VE401 Recitation 3

Discrete Random Variable

Hypergeometric Distribution

Purpose: Select n samples from N objects (within which r objects have trait), what is the probability of having x objects with trait?

0

Parameter and properties:

- $N \in \{0, 1, 2, ...\}$ is the number of total objects.
- $n \in \{0, 1, 2, ..., N\}$ is the number of samples.
- $r \in \{0, 1, 2, ..., N\}$ is the number of objects with traits. $p := \frac{r}{N}, q := 1 p$.

E[X]	Var[X]	PI	OF
n p	$n p q \frac{N-n}{N-1}$	$\left\{ \begin{array}{c} \binom{r}{x} \binom{N-r}{n-x} \\ \binom{N}{n} \end{array} \right.$	$0 \le x \le N$
		(0	otherwise

Approximation: if n/N is sufficiently small, it can be approximated by binomial distribution with parameter n and p = r / N.

•

Example:

I have a batch of 1000 products, within which 5 are defective. My friend said that he will not accept the batch if there are more than 1% of products that are defective. If he is collecting 100 samples, what is the probability of my batch being falsely rejected?

$$1 - P[X \le 1] = 1 - \sum_{x=0}^{1} \frac{\binom{5}{x} \binom{995}{100-x}}{\binom{1000}{100}} = 1 - 91.898 \% = 8.102 \%$$

Or we can use the binomial approximation,

$$1 - P[X \le 1] = 1 - \sum_{x=0}^{1} {100 \choose x} (0.005)^{x} (0.995)^{100-x} = 1 - 91.018 \% = 8.982 \%$$

Summary

Discrete Random Variables

(a) Distribution

	Geometric	Binomial	Pascal	Hypergeometric	Poisson
Ω	$\mathbb{N} \setminus \{0\}$	$\{0,1,2,\ldots,n\}$	$\{r,r+1,\dots\}$	Ω_H	N
P	0	0	0	$N, n, r \in \mathbb{N} \setminus \{0\}$	$k = \lambda t$
	q = 1 - p	q = 1 - p	q = 1 - p	$r,n \leq N$	$k\in\mathbb{R}$
		$n \in \mathbb{N} \setminus \{0\}$	$r \in \mathbb{N} \setminus \{0\}$		
f_X	$(1-p)^{x-1}p$	$\binom{n}{x}p^x(1-p)^{n-x}$	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$	$\frac{k^x e^{-k}}{x!}$
F	$1 - q^{\lfloor x \rfloor}$				
m_X	$(-\infty, -\ln q) \to \mathbb{R}$	$\mathbb{R} o \mathbb{R}$	$\mathbb{R} o \mathbb{R}$		$\mathbb{R} \to \mathbb{R}$
	$rac{pe^t}{1-qe^t}$	$(q+pe^t)^n$	$\frac{(pe^t)^r}{(1-qe^t)^r}$		$e^{k(e^t-1)}$
E	$\frac{1}{p}$	np	$\frac{r}{p}$	$nrac{r}{N}$	k
Var	$\frac{q}{p^2}$	npq	$rac{rq}{p^2}$	$n\frac{r}{N}\frac{N-r}{N}\frac{N-n}{N-1}$	k

Note: $\Omega_H = \{x \in \mathbb{N} : max(0, n - (N - r)) \le x \le min(n, r)\}$

(b) Approximation

Hypergeometric: binomial with n and $p = \frac{r}{N}$ when $\frac{n}{N}$ is sufficiently small.

Binomial: poisson with k = pn when n is large and p is small.

Continuous Random Variables

Chi-squared Distribution

Purpose: how is the sum of squares of γ independent standard normal random variables distributed?

Parameter and properties:

■ $\gamma \in \mathbb{N}^+$ is the *degrees of freedom*.

Mean	Variance	PDF		MGF
γ	γ^2	$\begin{cases} \frac{1}{\Gamma(\frac{\gamma}{2})2^{\gamma/2}} x^{\frac{\gamma}{2}-1} e^{-x/2} \\ 0 \end{cases}$	x > 0 True	$(1-2\ t)^{-\gamma/2}$

Chebyshev Inequality

Purpose: To (roughly) estimate the variance of a random variable.

Mathematical representation: for $k \in \mathbb{N} \setminus \{0\}$, $P[|X| \ge c] \le \frac{\mathbb{E}[|X|^k]}{c^k}$.

Application: $P[|X - \mu| \ge m\sigma] \le \frac{1}{m^2}$.

Reliability

To study the reliability of a system, we have the following:

- Failure density $f(t) = \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t]}{\Delta t}$, the probability of failing at time t, (uniform, Weibull, ...)
- reliability function R(t) = 1 F(t), the probability of system still working at time t,
- hazard rate $\rho(t) = \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t \mid T \ge t]}{\Delta t} = \frac{f(t)}{R(t)}$, the rate of failing at time t given that it didn't fail before t.

- For series system, all components still working ⇒ system still working. $R_S(t) = P[\text{all components still working}] = \prod_{i=1}^k R_i(t).$
- For parallel system, at least one component still working ⇒ system still working. $R_S(t) = P[\text{not all components broken}] = 1 - \prod_{i=1}^k (1 - R_i(t)).$

Example:

Your professor has announced that we will have a quiz on Monday class (just an example! not real!), but you don't know the exact time. What is the probability of not having a quiz in the first 45 minutes? Assume that a class is non-stop and 90 minutes long.

We can use uniform distribution to describe the "failure" density,

$$f(t) = \begin{cases} \frac{1}{90} & \text{if } 0 \le t \le 90\\ 0 & \text{otherwise} \end{cases}$$

And the reliability at time t = 45 is

$$R(t) = 1 - F(t) = 1 - t/90 = 0.5$$

what is the expected rate of your professor giving the quiz at the very next moment?

The hazard rate at t = 45 can be calculated as

$$\rho(t) = \frac{f(t)}{1 - F(t)} = \frac{1/90}{1 - t/90} = \frac{1/90}{1 - 45/90} = \frac{1}{45}$$

Weibull Distribution

Purpose: To represent a failure density f(t).

Parameters and properties:

 \blacksquare α , $\beta > 0$.

$$\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \begin{tabular}$$

Mean	Variance	PDF
$\alpha^{-1/\beta} \Gamma \left(1 + \frac{1}{\beta}\right)$	$\alpha^{-2/\beta} \left(\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^2 \right)$	$\begin{cases} \alpha\beta x^{\beta-1} e^{-\alpha x^{\beta}} & x > 0 \\ 0 & \text{True} \end{cases}$

Summary

\mathbf{r}				
1)1	stri	ıbı	11.1	on

	P	f_X	m_X	E	Var
Exponential	$\beta \in \mathbb{R}$	$\begin{cases} \frac{1}{\beta}e^{-x/\beta}, & x > 0, \\ 0, & x \le 0, \end{cases}$	$(-\infty, \frac{1}{\beta}) \to \mathbb{R}$ $(1 - \beta t)^{-1}$	β	eta^2
	$\beta > 0$		$(1-\beta t)^{-1}$		
Gamma	$\alpha, \beta \in \mathbb{R}$	$ \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, & x > 0, \\ 0, & x \le 0, \end{cases} $	$(-\infty, rac{1}{eta}) o \mathbb{R}$	lphaeta	$\alpha \beta^2$
	$\alpha, \beta > 0$		$(1-\beta t)^{-\alpha}$		
Normal	$\mu \in \mathbb{R}$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-((x-\mu)/\sigma)^2/2}$	$\mathbb{R} o \mathbb{R}$	μ	σ^2
	$\sigma > 0$		$e^{\mu t + \sigma^2 t^2/2}$		
Standard Normal	$\mu = 0$	$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$	$\mathbb{R} o \mathbb{R}$	0	1
	$\sigma = 1$		$e^{t^2/2}$		
Weibull	$\alpha, \beta > 0$	$\left\{ \begin{array}{ll} \alpha\beta x^{\beta-1}e^{-\alpha x^{\beta}}, & x>0, \\ 0, & x\leq 0, \end{array} \right.$		μ_W	σ_W^2
(two-parameter)					
Uniform		$\begin{cases} 1, & 0 \le x \le 1, \\ 0, & otherwise \end{cases}$			

\overline{Note} :

- $\begin{array}{l} \bullet \ \Gamma(\alpha) = \int_0^\infty z^{\alpha-1} e^{-z}, \alpha > 0 \text{: Euler gamma function.} \\ \bullet \ \Gamma(1) = 1, \Gamma(\alpha) = (\alpha-1)\Gamma(\alpha-1) \quad \text{if} \quad \alpha > 1. \\ \bullet \ \mu_W = \alpha^{-1/\beta} \Gamma(1+1/\beta), \sigma_W^2 = \alpha^{-2/\beta} \Gamma(1+2/\beta) \mu^2. \end{array}$

Joint Distributions

Discrete Multivariate Random Variables and its Properties

A discrete multivariate random variable is a map $X : S \to \Omega$ with a PDF $f_X : \Omega \to \mathbb{R}$ such that

- $f_X(x, y) \ge 0$ for all $x = (x_1, ..., x_n) \in Ω$,
- $\sum_{x \in \Omega} f_{\mathbf{X}}(x) = 1.$

Bivariate Poisson Distribution with mean vector λ ={4,4} 0.06 0.02 0.000.00

where $f_X(x) = P[X = x = (x_1, ..., x_n)]$. The *marginal density* for X is $f_X(x) = \sum_y f_{XY}(x, y)$.

Example:

Let X, Y be random variables such that their PDF looks like

$f_{XY}(x, y)$	y = -1	y = 0	<i>y</i> = 1	$f_X(x)$
x = 0	0	1 3	0	
x = 1	1/3	0	1 3	
$f_{Y}(y)$				

, calculate the marginal density $f_X(x)$ and $f_Y(y)$.

The marginal density is easily calculated as

$f_{XY}(x, y)$	y = -1	<i>y</i> = 0	<i>y</i> = 1	$f_X(x)$
<i>x</i> = 0	0	$\frac{1}{3}$	0	<u>1</u> 3
x = 1	<u>1</u> 3	0	<u>1</u> 3	<u>2</u> 3
$f_{\gamma}(y)$	1/3	<u>1</u> 3	1 3	1

Continuous Multivariate Random Variables and its Properties

A *continuous multivariate random variable* is a map $X : S \to \mathbb{R}^2$ with a PDF $f_{XY} : \mathbb{R}^2 \to \mathbb{R}$ such that

- $f_{\mathbf{X}}(x) \ge 0$ for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$,

where $P[X \in \Omega] = \int_{\Omega} f_X(x) dx$.

The *marginal density* for X is $f_{X_k}(x_k) = \int_{\mathbb{R}^{n-1}} f_{\boldsymbol{X}}(x) \, dx_1 \dots dx_{k-1} \, dx_{k+1} \dots dx_n$.

Independence and Conditional Densities

Comparing two RVs is very analogous to comparing two events.

	Independence	Conditional Probability
two events A and B	$P[A \cap B] = P[A] P[B]$	$P[A \mid B] = \frac{P[A \cap B]}{P[B]}$
two RVs X and Y	$f_{XY}(x, y) = f_X(x) f_Y(y)$ for all $(x, y) \in \text{dom } f_{XY}$	$f_{X y}(x) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$

Where $f_{X|y}(x) = P[X = x | Y = y].$

Example:

Let X, Y be random variables such that their PDF looks like

$f_{XY}(x, y)$	y = -1	y = 0	<i>y</i> = 1	$f_X(x)$
x = 0	0	<u>1</u> 3	0	<u>1</u> 3
x = 1	$\frac{1}{3}$	0	1/3	<u>2</u> 3
$f_{Y}(y)$	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	1

, calculate $P[X = 0 \mid Y = 1]$.

This is given by
$$P[X = 0 \mid Y = 1] = \frac{P[X=0 \text{ and } Y=1]}{P[Y=1]} = \frac{0}{1/3} = 0.$$

Expectation

Again the properties of expectation of bivariate RVs are similar to RV with single variable.

	Discrete Case	Continuous Case
Ε[<i>φ</i> ∘ X]	$\sum_{x\in\Omega}\varphi(x)f_X(x)$	$\int_{\mathbb{R}^n} \varphi(x) \ f_X(x) \ dx$

$E[X_k]$	$E[X_k] = \sum_{x \in \Omega} x_k f_{\boldsymbol{X}}(x)$	$E[X_k] = \int_{\mathbb{R}^n} x_k f_{\boldsymbol{X}}(x) dx$
$E[X_i + X_j]$	$E[X_i + X_j] =$	$= E[X_i] + E[X_j]$
$E[X_i x_j]$	$E[X_i X_j = x_j] = \sum_{x_i} x_i f_{X_i x_j}(x_j)$	$E[X_i \mid X_j = x_j] = \int_{-\infty}^{\infty} x_i f_{X_i \mid x_j}(x_j) dx_j$

Example:

Let X, Y be random variables such that their PDF looks like

$f_{XY}(x, y)$	y = -1	y = 0	<i>y</i> = 1	$f_X(x)$
x = 0	0	1 3	0	<u>1</u> 3
x = 1	<u>1</u> 3	0	1 3	<u>2</u> 3
$f_{Y}(y)$	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	1

, calculate E[X], E[Y | X = 1] and E[X Y].

We have
$$E[X] = 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{2}{3}$$
, $E[Y \mid X = 1] = -1 \cdot \frac{1/3}{2/3} + 0 \cdot \frac{0}{2/3} + 1 \cdot \frac{1/3}{2/3} = 0$ and $E[X \mid Y] = -1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$.

Covariance

Intuition: The tendency in the linear relationship. Does more X lead to more Y?

Mathematical representation: Simple calculation on the variance of the sum of RV will give

$$Var[X + Y] = Var[X] + Var[Y] + 2 E[(X - E[X])(Y - E[Y])]$$

The extra term will be called the covariance of (X, Y),

$$Cov[X, Y] = E[(X - \mu_X)(Y - \mu_Y)] = E[X Y] - E[X] E[Y].$$

We note that

- \bullet Cov[X, X] = Var[X],
- Cov[X, Y] = E[X Y] E[X] E[Y] = 0 if X and Y are independent. However, the converse is not true. i.e. zero covariance does not imply independence.

Example:

Let X, Y be random variables, and Cov[X, Y] = a. What will Cov[2 X, 2 Y] be?

Simple calculation shows that

$$Cov[2X, 2Y] = E[4XY] - E[2X]E[2Y] = 4E[XY] - 4E[X]E[Y] = 4a$$

So the covariance is dependent on the scale of data.

Let X, Y be random variables such that their PDF looks like

$f_{XY}(x, y)$	y = -1	y = 0	<i>y</i> = 1	$f_X(x)$
x = 0	0	$\frac{1}{3}$	0	1 3
x = 1	$\frac{1}{3}$	0	$\frac{1}{3}$	<u>2</u> 3
$f_{Y}(y)$	<u>1</u> 3	<u>1</u> 3	1/3	1

are they independent? Calculate Cov[X, Y].

Since P[x = 0 and y = -1] = 0 instead of 1/9, X and Y are clearly not independent. However, we have $\mu_X = \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$, $\mu_Y = \frac{1}{3} \cdot 0 = 0$, and

$$Cov[X, Y] = E[X Y] - E[X] E[Y]$$

= 0 - 0 = 0

Covariance Matrix

We define the *covariance matrix* for a multivariate RV,

$$\mathsf{Var}[\boldsymbol{X}] = \begin{pmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, \, X_2] & \cdots & \mathsf{Cov}[X_1, \, X_n] \\ \mathsf{Cov}[X_1, \, X_2] & \mathsf{Var}[X_2] & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathsf{Cov}[X_{n-1}, \, X_n] \\ \mathsf{Cov}[X_1, \, X_n] & \cdots & \mathsf{Cov}[X_{n-1}, \, X_n] & \mathsf{Var}[X_n] \end{pmatrix}$$

Properties:

- Covariance matrix is symmetric.
- For any constant $n \times n$ matrix with real coefficient $C \in \text{Mat}(n \times n; \mathbb{R})$, $\text{Var}[C X] = C \text{Var}[X] C^T$.

Example:

Let X, Y be random variables such that their PDF looks like

$f_{XY}(x, y)$	y = -1	y = 0	<i>y</i> = 1	$f_X(x)$
x = 0	0	$\frac{1}{3}$	0	$\frac{1}{3}$
x = 1	$\frac{1}{3}$	0	1/3	<u>2</u> 3
$f_{Y}(y)$	<u>1</u> 3	<u>1</u> 3	1 3	1

, calculate the covariance matrix Var[(X, Y)].

We can first calculate

$$Var[X] = E[(X - \mu_X)^2] = \frac{1}{3} \left(0 - \frac{2}{3}\right)^2 + \frac{2}{3} \left(1 - \frac{2}{3}\right)^2 = \frac{2}{9}$$

$$Var[Y] = E[(Y - \mu_Y)^2] = \frac{1}{3} (-1 - 0)^2 + \frac{1}{3} (0 - 0)^2 + \frac{1}{3} (1 - 0)^2 = \frac{2}{3}$$

Therefore we have
$$Var[(X, Y)] = \begin{pmatrix} Var[X] & Cov[X, Y] \\ Cov[X, Y] & Var[Y] \end{pmatrix} = \begin{pmatrix} \frac{2}{9} & 0 \\ 0 & \frac{2}{3} \end{pmatrix}$$
.

Pearson Correlation Coefficient

Purpose: to eliminate the effect of the scale of data on covariance.

Mathematical representation: $\rho_{XY} = \frac{\mathsf{Cov}[X,Y]}{\sqrt{\mathsf{Var}[X]\mathsf{Var}[Y]}}$

Properties:

- $-1 \le \rho_{XY} \le 1$,
- $|\rho_{XY}| = 1$ indicates perfect linear relationship.
- To measure linearity of X and Y, the *Fisher transformation* $\frac{1}{2} \ln \left(\frac{1 + \rho_{XY}}{1 \rho_{XY}} \right) = \operatorname{artanh}(\rho_{XY})$ is used. $\text{If } \left| \operatorname{artanh}(\rho_{XY}) \right| \to \infty \text{ or } \left| \rho_{XY} \right| \to 1 \text{, then it indicates linear relationship of } X \text{ and } Y.$

Bivariate Normal Distribution

Purpose: Combine two normal distributed RVs together.

Parameter and properties:

- μ_X , μ_Y are the expectation of X and Y, respectively.
- σ_X , σ_Y are the standard deviation of X and Y, respectively.
- $-1 < \varrho < 1$ is the covariance of X and Y.

Mean	Variance	PDF
	$Var[X] = \sigma_X$ $Var[Y] = \sigma_Y$	$\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\varrho^2}}\exp\left(-\frac{1}{2(1-\varrho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2-2\varrho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)+\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]\right)$

■ The conditional mean of Y is linearly dependent on x, $E[Y \mid x] = \mu_Y + \varrho \frac{\sigma_Y}{\sigma_X} (x - \mu_X)$. Taking $\mu_X = \mu_Y = 0$ and $\sigma_X = \sigma_Y = 1$ we have $E[Y \mid x] = \varrho x$.

Transformation of Variables

Let $((X, Y), f_{XY})$ be continuous bivariate random variable and $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be differentiable bijective map with inverse φ^{-1} , then $(U, V) = \varphi \circ (X, Y)$ is a continuous bivariate random variable with

$$f_{UV}(u,\ v)\ = f_{XY} \circ \varphi^{-1}(u,\ v) \cdot \, \Big| \det D\, \varphi^{-1}(u,\ v) \, \Big|$$

where
$$D \varphi^{-1}(u, v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$
 is the Jacobian of φ^{-1} .

Problems for Discussion

Transformation of Variables: Sum of Two Independent Random Variables

Problem: Given two independent random variables X, Y, and their PDF $f_X(x)$, $f_Y(y)$, how is Z = X + Y distributed? We will start by investigating easier examples.

Discrete Case: Rolling Dice

Let X and Y denote the outcome of rolling a die. That is,

$$f_X(x) = f_Y(x) = \begin{cases} \frac{1}{6} & \text{if } x = 1, 2, 3, 4, 5, 6 \\ 0 & \text{otherwise} \end{cases}$$

Calculate P[Z = 2], P[Z = 3] and P[Z = 4].

Solution

$$P[Z=2] = P[X=1] \ P[Y=1] = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$P[Z=3] = P[X=1] \ P[Y=2] + P[X=2] \ P[Y=1] = \frac{2}{36}$$

And similarly, $P[Z = 4] = P[X = 1] P[Y = 3] + P[X = 2] P[Y = 2] + P[X = 3] P[Y = 1] = \frac{3}{36}$.

In fact, you have proved in assignment 2 that

$$P[Z=z] = \sum_{x+y=z} P[X=x] \, P[Y=y] = \sum_{y=-\infty}^{\infty} f_X(z-y) \, f_Y(y)$$

We notice that this is actually the *discrete convolution* of f_X and f_Y .

Continuous Case: Sum of Uniform Distributed RVs

Let X and Y be identical independent uniform distributed random variables, such that

$$f_X(x) = f_Y(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

What is the distribution of Z?

Solution

It looks like a triangular PDF. Let us verify this. We define $\binom{u}{v} = \varphi(x, y) := \binom{x+y}{y}$, then $\binom{x}{v} = e^{-1}(u, y) = \binom{u-v}{y}$. Therefore, the Jacobian of e^{-1} is

$$\binom{x}{y} = \varphi^{-1}(u, v) = \binom{u - v}{v}.$$
 Therefore, the Jacobian of φ^{-1} is

$$D\,\varphi^{-1}\,(u,\,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \quad \begin{pmatrix} \frac{\partial u - v}{\partial u} & \frac{\partial u - v}{\partial v} \\ \frac{\partial v}{\partial u} & \frac{\partial v}{\partial v} \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

and its determinant is 1. As a result,

$$f_{UV}(u, v) = f_{XY} \circ \varphi^{-1}(u, v) \cdot \left| \det D \varphi^{-1}(u, v) \right|$$

= $f_{XY}(u - v, v)$
= $f_{X}(u - v) f_{Y}(v)$

Calculating marginal density and replacing u with z,

$$f_Z(z) = f_U(z) = \int_{-\infty}^{\infty} f_X(z - v) f_Y(v) dv = (f_X * f_Y)(z)$$

So we can conclude that f_Z is actually the *convolution* of f_X and f_Y . From this we can easily calculate

$$f_{Z}(z) = \begin{cases} z & \text{if } 0 \le z \le 1\\ 2 - z & \text{if } 1 < z \le 2\\ 0 & \text{otherwise} \end{cases}$$

which matches our experiment.

Application: Moment Generating Functions of Sum of Independent RVs

If X and Y are independent and moment generating function for X and Y are $m_X(t)$ and $m_Y(t)$, respectively, calculate $m_Z(t)$.

Solution

$$m_{Z}(t) = \mathbb{E}\left[e^{tZ}\right]$$

$$= \int_{-\infty}^{\infty} e^{zt} f_{Z}(z) dz$$

$$= \int_{-\infty}^{\infty} e^{zt} \int_{-\infty}^{\infty} f_{X}(z-v) f_{Y}(v) dv dz$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{(z-v)t} f_{X}(z-v) e^{vt} f_{Y}(v) dv dz$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{xt} f_{X}(x) e^{yt} f_{Y}(y) dy dx \qquad (x := z-v, y := v)$$

$$= \int_{-\infty}^{\infty} e^{xt} f_{X}(x) dx \cdot \int_{-\infty}^{\infty} e^{yt} f_{Y}(y) dy$$

$$= m_{Y}(t) m_{Y}(t)$$

Application: Sum of Two i.i.d. Exponential Random Variable

Let $f_X(x) = f_Y(x) = \begin{cases} b e^{-bx} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$ be two exponential distributed PDF. What is the distribution of Z = X + Y?

Solution

Using the convolution property we can calculate that when $z \ge 0$,

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - v) f_Y(v) dv$$

= $\int_0^z b e^{-b(z-v)} b e^{-bv} dv$
= $b^2 z e^{-bz}$

Recall that gamma distribution has PDF $f_U(u) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\beta u}$. We can see that $f_Z(z)$ is actually a PDF of gamma distribution with $\alpha = 2$ and $\beta = b$.

Another Solution

We have

$$m_Z(t) = m_X(t) m_Y(t)$$
$$= \left(\frac{b}{b-t}\right)^2$$
$$= \left(1 - \frac{1}{b} t\right)^{-2}$$

But gamma distribution with parameters α and β has MGF $\left(1-\frac{t}{\beta}\right)^{-\alpha}$. Together with the **unique**ness of moment generating function, we can conclude that Z follows a gamma distribution with $\alpha = 2$, $\beta = b$. This matches our intuition:

time until second arrival = time until first arrival + time until first arrival given that the rate of arrival remains the same.

Application of Chebyshev Inequality: Weak Law of Large Numbers

Problem: We want to prove that when the number of independent and identical experiment is very large (e.g. flipping a coin 10000 times), then the proportion of trials with A (e.g. heads coming up) occurring will be close to actual probability of A happening (e.g. 0.5),

In[251]:= Histogram[RandomInteger[{0, 1}, 100], PlotTheme → "Classic", PlotLabel → "Simulation result"]

We can denote $X_1, ..., X_n$ as n i.i.d. Bernoulli random variable with mean $\mu = p$ and variance $\sigma^2 = p \ q$ to represent *n* experiments, where $P[X_i = 1] = P[A \text{ occurring on } i^{\text{th}} \text{ experiment}]$, then

$$\frac{\text{number of times } A \text{ occurs}}{\text{number of times experiment is performed}} = \frac{X_1 + \dots + X_n}{n}$$

and $P[A] = \mu = p$.

Proof

Let
$$X:=\frac{\text{number of times } A \text{ occurs}}{\text{number of times experiment is performed}} - P[A] = \frac{X_1 + \ldots + X_n}{n} - \mu$$
. We have

$$\mathsf{E}[X] = \mathsf{E}\Big[\frac{X_1 + \dots + X_n}{n} - \mu\Big] = \frac{n\,\mu}{n} - \mu = 0$$

and

$$Var[X] = Var\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Therefore, $E[X^2] = Var[X] + E[X]^2 = \frac{\sigma^2}{n}$. Using Chebyshev's Inequality with k = 2,

$$P[|X| \ge \varepsilon] \le \frac{\sigma^2}{n\varepsilon^2} \xrightarrow{n \to \infty} 0$$
.