K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DIODE APPLICATIONS

Numerical 1: Simulate a Half wave rectifier circuit with Amplitude = 220Vpeak, f = 50Hz, $R_L = 95\Omega$ using LT spice. Select diode as IN41481. Use 10:1 step down transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the circuit

Also, calculate the efficiency of the Half wave rectifier circuit.

Figure 1: Circuit 1

Solution:

Since the circuit is a step down transformer with step voltage ratio = $\frac{V_2}{V_1} = \frac{N_2}{N_1}$, hence,

$$\frac{V_S}{220} = \frac{1}{10}$$

$$\therefore V_S = 22V$$

Applying KVL to the loop1

$$V_S - V_{DON} - V_{out} = 0$$

$$V_m = V_{out} = 22 - 0.7 = 21.3V$$

$$I_m = \frac{V_m}{R_f + R_L} = \frac{21.3}{95.7} = 222.57mA$$

$$P_{ac} = \frac{V_m^2}{4(R_f + R_L)} = \frac{(21.3)^2}{4 \times 95.7} = 1.185W$$

$$P_{dc} = \frac{V_m^2}{\pi^2 \times R_L} = \frac{(21.3)^2}{\pi^2 \times 95.7} = 0.4839W$$

$$\eta(\%) = \frac{P_{dc}}{P_{ac} \times 100} = 40.833\%$$

$$PIV = -V_m = -21.3V$$

Graphs:

a) Input voltage

Figure 2: Input voltage

b) Current in Rectifier

Figure 3: Current in Rectifier

c) Voltage across resistor

Figure 4: Voltage across resistor

d) Voltage across Diodes

Figure 5: Voltage across Diodes

SIMULATED RESULTS:

The given circuit is simulated in lTspice and the results obtained are as follows:

Pac = Vm*Vm/(Rf+Rl)=1.1487W Pdc = Vm*Vm/(pi*pi*Rl) = 0.469W Efficiency = Pdc*100/Pac = 40.828% PIV = -21.3V

Figure 6: Circuit schematic and simulated results

Figure 7: Simulated results for Primary and Secondary voltages

Figure 8: Simulated results for Output peak voltage

Figure 9: Simulated results for Output peak current

Figure 10: Simulated results for PIV rating

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak value(V_m)	21.30V	20.97V
Output peak $current(I_m)$	222.57mA	$220.76 \mathrm{mA}$
Ac power	1.185W	1.1487W
Dc power	0.4839W	0.4839W
Efficiency	40.833%	40.828%
PIV rating	-21.39V	-20.97V

Table 1: Numerical 1

Numerical 2: Simulate a Full wave rectifier circuit with input Amplitude = 220V peak, f = 50Hz, $R_L = 90\Omega$ using LT spice. Select diode as IN41481. Use 10:1 step down center tap transformer. Plot the following using LTspice:

- a) Primary peak voltage
- b) Secondary peak voltage
- c) Output voltage across resistor
- d) Output voltage across diodes
- e) Current flowing through the diodes
- f) Current flowing through the circuit

Also, calculate the efficiency of the Full wave center tapped rectifier circuit.

Figure 11: Circuit 2

Solution:

Since the circuit is a step down transformer with step voltage ratio = $\frac{N_2}{N_1} = \frac{1}{10}$, hence,

$$\frac{V_2}{V_1} = \frac{1}{10}$$

$$\frac{V_S}{220} = \frac{1}{10}$$

$$\therefore V_S = 22V$$

Applying KVL to the loop1

$$V_S - V_{DON} - V_{out} = 0$$

$$V_m = V_{out} = 22 - 0.7 = 21.3V$$

$$I_m = \frac{V_m}{R_f + R_L} = \frac{21.3}{90.7} = 234.84mA$$

$$P_{ac} = \frac{I_m^2}{2} (R_f + R_L) = \frac{(234.84 \times 10^{-3})^2}{2} \times 90.7 = 2.5010W$$

$$P_{dc} = \frac{2I_m^2}{\pi^2} \times R_L = \frac{(2 \times 234.84 \times 10^{-3})^2}{\pi^2} \times 90.7 = 2.0116W$$

$$\eta(\%) = \frac{P_{dc}}{P_{ac} \times 100} = 80.43\%$$

$$PIV = 2 \times (V_{out}) = 2(-21.3) = -42.6V$$

Graphs:

a) Input voltage

Figure 12: Input voltage

b) Output Voltage

Figure 13: Output Voltage

c) Diode voltages

Figure 14: Diode voltages

d) Current across Diodes

Figure 15: Current across Diodes

e)Total Current through circuit

Figure 16: Total Current through circuit

SIMULATED RESULTS:

The given circuit is simulated in ITspice and the results obtained are as follows:

Figure 17: Circuit schematic

Figure 18: Simulated results for Primary and Secondary voltages

Figure 19: Simulated results for Output peak voltage

Figure 20: Simulated results for Output peak current

Figure 21: Simulated results for PIV rating

Comparison of theoretical and simulated values:

Parameters	Theoretical Values	Simulated Values
Output peak value(V_m)	21.3V	21.92V
Output peak $current(I_m)$	234.84 mA	234.71mA
Ac power	2.5010W	2.4982W
Dc power	2.0116W	2.0093W
Efficiency	80.43%	80.72%
PIV rating	-42.6V	-43.84V

Table 2: Numerical 2

