Q2 KNN

12 Points

Consider the following training dataset, what is the leave-one-out validation accuracy (i.e., accuracy computed using 9-fold cross-validation) for the following classifier?

Q2.1

4 Points

1-NN with Euclidean distance.

(Round your answer to two decimal places)

Enter your answer here

Save Answer

Q2.2

4 Points

3-NN with Euclidean distance

(Round your answer to two decimal places)

Enter your answer here

Q2.3

4 Points

5-NN with Euclidean distance (Round your answer to two decimal places)

Enter your answer here

Save Answer

Q3 Decision tree

22 Points

When training deep neural networks, out-of-memory errors often happen, depending on factors such as model size, batch size, and the quality of implementations. We will use the following dataset to learn a decision tree that predicts if an out-of-memory error will happen, based on 3 attributes (batch size, network depth, and the implementation version).

Batch size Depth		Implementation	Out-of-memory	
small	Deep	A	No	
small	Shallow	В	No	
small	Medium	В	Yes	
large	Shallow	A	No	
large	Medium	A	Yes	
large	Shallow	В	Yes	
large Deep		В	Yes	

In case that more than one attribute has equal information gain, the priority of choosing the attributes is ordered as Batch size > Depth > Implementation.

You may use the following formula.

Entropy:
$$H(p) = -(p \log_2 p + (1-p) \log_2 (1-p))$$

$$H(0)=0; H(1/2)=1; H(1/3)=0.933; H(1/4)=0.8; \\ H(1/5)=0.7; H(1/7)=0.571; H(3/7)=0.971$$
 You may also use $\log_2 3=1.6, \log_2 5=2.3$, and $\log_2 7=2.8$

Please round your answer to 2 decimal places.

6 Points
What is the entropy of ${\cal H}$ (out-of-memory)?
${\cal H}$ (out-of-memory)=
Enter your answer here
Save Answer
Q3.2 6 Points
What is the information gain if we partition the data on the attribute Implementation ? Information Gain (Implementation) =
Enter your answer here
Save Answer
Q3.3 6 Points
Suppose we learn a decision tree by the ID3 algorithm. What is the attribute used for the first split?
O Batch Size
O Depth
O Implementation
Save Answer
Q3.4 4 Points
Based on the learned decision tree learned from ID3, what is the prediction for an input with: Batch size=small, Depth=Deep, Implementation=B?
O Yes
O No

Q3.1 Decision Tree

Save Answer

Q4 Margin

19 Points

Q4.1

5 Points

Consider the following data point and the hyperplane.

What is the distance between the point C to the line in L2 (euclidean) distance? Round your answer to 2 decimal places.

1.41	
Save Answer	*Unsaved Changes

Q4.2

5 Points

Follow the previous question. What is the distance between the point C to the line in L1 (manhattan) distance? Round your answer to 2 decimal places.

*Unsaved Changes

What is the margin of the hyperplane in L2 (euclidean) distance? Round your answer to 2 decimal places.

1

2

3

5

Enter your answer here

0

Save Answer

Q4.4

4 Points

Follow the previous question. Is there another hyperplane with a larger margin in L2 (euclidean)?

O Yes

O No

Save Answer

Q5 Maximum Likelihood Estimation

22 Points

In the following questions, we will explore how to estimate the lifetime of a capacitor. The age of a capacitor depends on various factors and we have encoded them into numerical values: x. Given a bunch of capacitors drawn i.i.d. from the underlying distribution, their age and the factors, we create a training data set $\{(x_i,y_i)\}_{i=1}^N$ where $x_i\in\mathbb{R}^d$ and $y_i\in\mathbb{R}$. We ask some of our friends from the Statistics department and they suggest that we model the capacitor age using a Rayleigh distribution with parameter $\sigma=w^Tx$ as follows:

$$P(Y=y|\sigma) = rac{y}{\sigma^2} \cdot \exp\left(-rac{y^2}{2\sigma^2}
ight) \quad ext{where} \quad \exp(z) = e^z$$

That is the probability the lifetime y of a capacitor x follows the Rayleigh distribution with $\sigma=w^Tx$, $w\in\mathbb{R}^d$ is the weight vector we can learn.

A visualization of the probability density function of Rayleigh distribution is shown in the following

Q5.1

4 Points

We first consider giving a learned w. How we predict the most likely lifetime of a capacitor.

Rayleigh distribution with parameter σ have the following property:

$$\operatorname{arg\,max}_y \frac{y}{\sigma^2} \cdot \exp\left(-\frac{y^2}{2\sigma^2}\right) = \sigma$$

That is the peak of the Rayleigh distribution $P(Y=y|\sigma)$ is when $y=\sigma$.

Based on this property, consider the feature vector extracted for a capacitor is x = [1, 3, 1] and the learned weight vector w = [1, 2, 1]. What is the most likely lifetime y of the capacitor?

most likely lifetime =

Enter your answer here

Save Answer

Q5.2

4 Points

Now, let's discuss how to learn w based on the training data set $\{(x_i, y_i)\}_{i=1}^N$. We start with considering one data point (x_i, y_i) .

Based on our assumption, the distribution of the lifetime of a capacitor follow a Rayleigh distribution with parameter $\sigma=w^Tx$. What is the probability $P(Y=y_i|x_i,w)$ of that the lifetime of a capacitor x_i is y_i based on the assumption.

$$\bigcirc P(y_i|x_i,w) = rac{y_i}{x_i^2} \cdot \exp\left(-rac{y_i^2}{2x_i^2}
ight)$$

$$^{\bigcirc} P(y_i|x_i,w) = rac{y_i}{w^Tx_i} \cdot \exp\left(-rac{y_i^2}{2w^Tx_i}
ight)$$

$$egin{aligned} igthip P(y_i|x_i,w) = rac{y_i}{(w^Tx_i)^2} \cdot \exp\left(-rac{y_i^2}{2(w^Tx_i)^2}
ight) \end{aligned}$$

$$\bigcirc P(y_i|x_i,w) = \log(y_i) - \log(w^Tx_i) - rac{y_i^2}{2w^Tx_i}$$

Save Answer

Q5.3

4 Points

Given the dataset $\{(x_i,y_i)\}_{i=1}^N$, what is the log-likelihood of the model w?

$$^{\bigcirc}$$
 $\mathcal{LL}(w) = constant + \sum_{i=1}^{N} \left(-\log(w^Tx_i) - rac{y_i^2}{2w^Tx_i}
ight)$

$$^{\bigcirc}$$
 $\mathcal{LL}(w) = constant + \sum_{i=1}^{N} \left(-2\log(w^Tx_i) - rac{y_i^2}{2(w^Tx_i)^2}
ight)$

$$^{\bigcirc}$$
 $\mathcal{LL}(w) = constant + \prod_{i=1}^{N} rac{y_i}{(w^Tx_i)^2} \cdot \exp\left(-rac{y_i^2}{2(w^Tx_i)^2}
ight)$

$$^{\bigcirc} \mathcal{LL}(w) = constant + \prod_{i=1}^{N} \left(-\log(w^Tx_i) - rac{y_i^2}{2w^Tx_i}
ight)$$

ow we can sol	ve the optimization proble	m? (selected all correct of	options)	
The optimi	zation problem can be sol	ved by SGD		
The optimi	zation problem can be sol	ved by GD		
Save Answer				
26 Percen	tron			
	tron			
Q6 Percep 2 Points Consider the fol	tron	n dataset with 3 features		
2 Points consider the fol		n dataset with 3 features x_3	у	
2 Points consider the fol x_1	lowing binary classification			
2 Points consider the fol x_1	lowing binary classification $\ensuremath{x_2}$	x_3	у	
2 Points	lowing binary classification x_2	x ₃	y 1	

Consider training a Perceptron model $y=sgn(w^Tx+b)$, with w and b are initialized with 0.

Note that you can augment \boldsymbol{b} into \boldsymbol{w} using the trick we discussed in class.

Q5.4 4 Points

How we can obtain w?

We can maximize the log-likelihood in previous questionWe can minimize the log-likelihood in previous question

Q6.1

4 Points

After running the Perceptron model over these five data points **once**, what is w and b

Q6.2

4 Points

Given a test data point [-1, -3, 1], what is the model prediction.

y =

Enter your answer here

Save Answer

Q6.3

4 Points

If we allow the Perceptron model to run over these five data points **until it converges**, what is the final model

 $w_1=$

Enter your answer here

 $w_2 =$

Enter your answer here

 $w_{3} =$

Enter your answer here

b=

Enter your answer here

Save Answer

Q7 Multiple Choices and short answer

13 Points

Q7.1 Neural Network

6 Points

Consider the following neural network we discussed in the class. For a binary classification problem, the model make prediction on x based on the sign of $h_{\Theta}(x)$. That is the model predicts positive if $h_{\Theta}(x)>0$; otherwise it predicts negative.

 $a_i^{(j)}$ = "activation" of unit i in layer j

 $\Theta^{(j)} = \text{weight matrix controlling function}$ mapping from layer j to layer j+1

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

		le, we can find nd negative da		meter Θ such	that $sgn(h_{\Theta}($	x))
		le, we cannot all positive ar		arameter Θ su ata.	ich that	
If data are no $sgn(h_{\Theta}(x)$		arable, we can all positive ar			uch that	
If data are no $sgn(h_{\Theta}(x)$		arable, we can all positive ar			Θ such that	
Save Answer						
7.2						
Points						
ven a set of pos in a logistic reg lowing figure						
	i	i	i	i /	i	
6				/		
	i	i I	1/		1	
5		×	/	×	×	
	i I	1/	/	I 1	1	
4 +	×	/		×	×	
3.53			i	I I	I I	
			1	I	1	
3		X				
		1		1 1	1	
		X				
/	i	1	i i	i I	1	
1	×	 	X		 	
		i I	1	1	1	
	I I	Ů.	1	1	1	
0		^	3	4	5	

Q7.2

3 Points

Given a set of positive points (blue circle) and negative points (red cross) as training data. We train a logistic regression model using SGD with 100 iterations. The results are shown in the following figure

Which of the following statement is true:

- O The model is overfitting.
- O The model is underfitting.
- O The model has 0 training error

Save Answer

Q7.3

4 Points

Provide one possible reason why the model does not do well in one sentence.

Enter your answer here