## BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA FACULTY OF MATHEMATICS AND INFORMATICS SPECIALIZATION: COMPUTER SCIENCE

### **Diploma Thesis**

## Critical node detection problem in complex networks

**Abstract** 

## EZ AZ OLDAL NEM RÉSZE A DOLGOZATNAK!

Ezt az angol kivonatot külön lapra kell nyomtatni és alá kell írni!

## A DOLGOZATTAL EGYÜTT KELL BEADNI!

#### Kötelező befejezés:

This work is the result of my own activity. I have neither given nor received unauthorized assistance on this work.

2020 BÉCZI ELIÉZER

ADVISOR: ASSIST PROF. DR. GASKÓ NOÉMI Babeş-Bolyai University of Cluj-Napoca Faculty of Mathematics and Informatics Specialization: Computer Science

## **Diploma Thesis**

# Critical node detection problem in complex networks



ADVISOR: STUDENT:
ASSIST PROF. DR. GASKÓ NOÉMI BÉCZI ELIÉZER

Universitatea Babeș-Bolyai, Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Informatică

## Lucrare de licență

# Identificarea nodurilor critice în rețele complexe



CONDUCĂTOR ȘTIINȚIFIC: LECTOR DR. GASKÓ NOÉMI ABSOLVENT: BÉCZI ELIÉZER

## Babeş-Bolyai Tudományegyetem Kolozsvár Matematika és Informatika Kar Informatika Szak

## Szakdolgozat

# Kritikus csomópontok meghatározása komplex hálózatokban



TÉMAVEZETŐ:

Szerző:

DR. GASKÓ NOÉMI, EGYETEMI ADJUNKTUS BÉCZI ELIÉZER

## **Tartalomjegyzék**

| 1. | Bevezető                      | 3  |
|----|-------------------------------|----|
|    | 1.1. Áttekintés               |    |
|    | Egycélú CNDP                  | 4  |
|    | 2.1. Páronkénti konnektivitás | 2  |
|    | 2.2.1. Általánosan            | 4  |
|    | 2.3. Genetikus algoritmus     |    |
|    | 2.3.1. Általánosan            | 6  |
| 3. | Kétcélú CNDP                  | 10 |

#### 1. fejezet

### Bevezető

#### 1.1. Áttekintés

Hálózatok terén nem minden csomópont egyforma fontosságú. A kulcsfontosságú csomópontok keresésével hálózatokban széles körben foglalkoznak, különösképpen olyan csomópontok esetén, melyek a hálózat konnektivitásához köthetők. Ezeket a csomópontokat általában úgy nevezzük, hogy Kritikus Csomópontok.

Kritikus Csomópontok Meghatározásának Problémája (CNDP) egy optimalizációs feladat, amely egy olyan csoport csomópont megkereséséből áll, melyek törlése maximálisan rontja a hálózat konnektivitását bizonyos predefiniált konnektivitási metrikák szerint.

A CNDP számos alkalmazási területtel rendelkezik. Például, közösségi hálók nagy befolyással bíró egyedeinek azonosítása, komputációs biológiában kapcsolatok definiálására jelút vagy fehérje-fehérje kölcsönhatás hálózatokban, smart grid sebezhetőségének vizsgálata, egyének meghatározása védőoltással való ellátásra vagy karanténba való zárásra egy fertőzés terjedésének gátlása érdekében.

A CNDP egy  $\mathcal{NP}$ -teljes feladat. Adva van egy G=(V,E) gráf, ahol |V|=n a csomópontok száma, és |E|=m pedig az élek száma. A feladat k kritikus csomópont meghatározása, amelyek törlése a bemeneti gráfból minimalizálja a hálózat páronkénti konnektivitását. Az alapján, hogy mit értünk egy hálózat konnektivitása alatt, a CNDP-nak van egycélú illetve többcélú megfogalmazása is.

#### 1.2. Hozzájárulásaink

Ebben a dolgozatban többek között egy bi-objektív megfogalmazásával fogunk foglalkozni a CNDP-nak. Standard evolúciós algoritmusokat fogunk összehasonlítani egymással különböző szintetikus bemenetekre, illetve való világból inspirált bemenetekre, ugyanakkor célunk egy új hibrid algoritmus fejlesztése, melynek eredményei összehasonlíthatók a standard algoritmusok eredményeivel.

Az algoritmusokat Python-ban fogjuk bemutatni, és a NetworkX könyvtárat [Hagberg et al., 2008] fogjuk használni ahhoz, hogy gráfokat tudjunk manipulálni.

Benchmark tesztelés végett egy olyan gráfhalmazt fogunk használni, amelyben 4 alapvető típus jelenik meg, mindegyik a maga jellegzetességeivel.

#### 2. fejezet

## Egycélú CNDP

#### 2.1. Páronkénti konnektivitás

Egycélú CNDP esetén a kihívás abban áll, hogy találjunk egy olyan konnektivitási metrikát, amely alkalmazási területtől függően megfelelően leírja egy gráf összefüggőségét. S-el fogjuk jelölni a törlendő csomópontok halmazát, míg azf(S) jóság függvény fogja jellemezni a  $G[V\setminus S]$  feszített részgráf összefüggőségét. Ha H-val jelöljük a  $G[V\setminus S]$  feszített részgráf összefüggő komponenseinek a halmazát, akkor a jóságfüggvény a következő képlettel írható le:

$$f(S) = \sum_{h \in H} \frac{|h| \cdot (|h| - 1)}{2},\tag{2.1}$$

amelyet az irodalom [Aringhieri et al., 2016; Ventresca, 2012] úgy tart számon, hogy **páronkénti konnektivitás**. Tehát a feladat a 2.1 függvénynek a minimalizálása:

$$\min_{S \subset V} f(S). \tag{2.2}$$

A 2.1 fitnesz függvény implementációját a 2.1 kódrészlet szemlélteti Python-ban. A továbbiakban tárgyalt 3 algoritmus ezt a fitnesz függvényt fogja használni.

Listing 2.1. Páronkénti konnektivitás

```
def pairwise_connectivity(G):
    components = networkx.algorithms.components.connected_components(G)
    result = 0
    for component in components:
        n = len(component)
        result += (n * (n - 1)) // 2
    return result
```

#### 2.2. Mohó algoritmus

#### 2.2.1. Általánosan

Egy mohó algoritmus egy egyszerű és intuitív algoritmus, amely gyakran használt optimalizációs feladatok megoldására. Az algoritmus helyi optimumok megvalósításával próbálja megtalálni a globális

optimumot.

Habár a mohó algoritmusok jól működnek bizonyos feladatok esetében, mint pl. Dijkstra-algoritmus, amely egy csomópontból kiindulva meghatározza a legrövidebb utakat, vagy Huffman-kódolás, amely adattömörítésre szolgál, de sok esetben nem eredményeznek optimális megoldást. Ez annak köszönhető, hogy míg a mohó algoritmus függhet az előző lépések választásától, addig a jövőben meghozott döntésektől független.

Az algoritmus minden lépésben mohón választ, folyamatosan lebontva a feladatot kisebb feladattá. Más szavakkal, a mohó algoritmus soha nem gondolja újra választásait.

#### 2.2.2. Saját mohó algoritmus

A CNDP esetén a mohó algoritmust a 2.2 kódrészlet szemlélteti.

Listing 2.2. Saját mohó algoritmus

```
def greedy_cnp(G, k):
    S = networkx.algorithms.approximation.min_weighted_vertex_cover(G)

while len(S) > k:
    B = objective_function.minimize_pairwise_connectivity(G, S)
    i = random.choice(B)
    S.discard(i)

return S
```

A mohó algoritmus kiindul a gráf csúcslefedéséből.  $^1$  Ez lesz a kezdeti S megoldásunk. A maradék csomópontok  $V\setminus S$  a gráf maximális független csúcshalmazát  $^2$  MIS alkotják. Mivel majdnem biztos, hogy |S|>k, ezért mohón elkezdünk kivenni csomópontokat S-ből, majd ezeket hozzáadni MIS-hez, amíg |S|>k. A hozzáadott csomópont az lesz, amelyiket ha visszatesszük az eredeti gráfba, akkor a minimum értéket téríti vissza a páronkénti konnektivitásra a keletkezett gráfban.

Mivel több olyan csomópont lehet, amelyeket ha visszateszünk az eredeti gráfba, akkor ugyanazt a minimális értéket adják vissza a páronkénti konnektivitásra, ezért ezeket eltároljuk a B halmazban, és minden lépésben random módon határozzuk meg, hogy melyik kerüljön vissza *MIS*-be.

Ezzel az eljárással garantáljuk, hogy a mohó algoritmusunk különböző megoldásokat fog adni többszöri futtatások esetén.

#### 2.3. Genetikus algoritmus

#### 2.3.1. Általánosan

A genetikus algoritmus a metaheurisztikák osztályába tartozik, és a természetes kiválasztódás inspirálta. Egy globális optimalizáló, amely gyakran használt optimalizációs és keresési problémák esetében, ahol a sok lehetséges megoldás közül a legjobbat kell megkeresni. Azt hogy egy megoldás mennyire jó, a fitnesz függvény mondja meg.

<sup>1.</sup> Angolul: vertex cover.

<sup>2.</sup> Angolul: maximal independent set.

A genetikus algoritmus mindig egy populációnyi megoldással dolgozik. A populációba egyedek tartoznak, amelyek egyenként egy-egy megoldásai a feladatnak. Az algoritmus minden iterációban egy új populációt állít elő az aktuális populációból úgy, hogy a szelekciós operátor által kiválasztott legrátermettebb szülőkön alkalmazza a rekombinációs és mutációs operátorokat.

Ezen algoritmusok alapötlete az, hogy minden újabb generáció az előzőnél valamelyest rátermettebb egyedeket tartalmaz, és így a keresés folyamán egyre jobb megoldások születnek.

#### 2.3.2. Saját genetikus algoritmus

A CNDP esetén a genetikus algoritmust a 2.3 kódrészlet szemlélteti.

Listing 2.3. Saját genetikus algoritmus

```
def genetic algorithm (G, k, N=100,
                              pi min=5, pi max=50, delta pi=5, alpha=0.2,
                              t_{max} = 10000):
       def fitness_function(S):
            subgraph = networkx.subgraph\_view(G,
                                                       filter node=lambda n: n not in S)
            metric = connectivity_metric.pairwise_connectivity(subgraph)
            commonalities = S.intersection (best S)
            return metric + gamma * len(commonalities)
       def my cmp(a, b):
            return fitness function(a) - fitness function(b)
16
       P = []
       pi = pi_min
       my key = functools.cmp to key(my cmp)
21
       while len(P) < N:
            P.append (generate_random_solution(G, k))
       best S = P[0].copy()
       gamma = update(G, best_S, P, alpha)
26
       best S fitness = fitness function (best S)
       while t < tmax:
            \begin{array}{lll} new\_P &=& new\_generation\left(k,\ N,\ P\right) \\ mutation\left(G,\ k,\ N,\ new\_P,\ pi\right) \end{array}
31
            P. extend (new P)
            P. sort (key=my_key)
            P = P[:N]
36
            \operatorname{curr} S = P[0]
            curr_S_fitness = fitness_function(curr_S)
            if curr_S_fitness < best_S_fitness:
    best_S = curr_S.copy()
    best_S_fitness = curr_S_fitness</pre>
41
                 pi = pi_min
                 pi = min(pi + delta_pi, pi_max)
46
            gamma = update(G, best S, P, alpha)
       return best S, best S fitness
```

Egy Genetikus Algoritmus (GA) standard algoritmikus keretrendszerét használjuk fel. Generálunk egy kezdeti populációt megoldásokkal. Utána keresztezzük őket, hogy új megoldásokat kapjunk, amelyeket pedig mutálunk. Ezután rendezzük a régi és új megoldásokat egy fitnesz függvény alapján, és létrehozunk egy új populációt eltávolítva a rossz megoldásokat. A folyamatot addig ismételjük, amíg az iterációk száma el nem ér egy felső korlátot. Az algoritmus végén visszatérítjük a legjobb megoldást.

#### Inicializáció

A kezdeti populáció egyedeit random generáljuk ki. Ez azt jelenti, hogy minden egyed kromoszómája egy k csomópontból álló részhalmaza lesz a bemeneti gráf csomóponthalmazának. Ezt szemlélteti a 2.4 kódrészlet.

Listing 2.4. Random inicializáció

```
\begin{array}{c} def & generate\_random\_solution(G, \ k): \\ & S = list(G) \\ & & while \ len(S) > k: \\ & & S.pop(random.randrange(len(S))) \\ & & & return \ set(S) \end{array}
```

Egy új fitnesz függvényt vezetünk be egy-egy egyed jóságának felmérése végett. Ez abban tér el a 2.1 részben tárgyaltaktól, hogy nem csak a páronkénti konnektivitás mértékét vesszük figyelembe egy egyed esetén, hanem hogy az eddigi talált legjobb megoldástól mennyire tér el. Ezt a fitnesz függvényt a következő képlettel írjuk le:

$$g(S, S^*) = f(S) + \gamma \cdot |S \cap S^*|.$$
 (2.3)

A képletben szereplő  $S^*$  jelenti az eddig talált legjobb megoldást. A  $\gamma$  egy változó, amely abban segít, hogy fenntartsuk a változatosságot a populáció egyedei között, megbüntetve azokat, amelyek túl közel vannak a legjobbhoz. A  $\gamma$  változót minden iterációban a következő képlettel számoljuk újra:

$$\gamma = \frac{\alpha \cdot f(S)}{\langle |S \cap S^*| \rangle_{S \in P}},\tag{2.4}$$

ahol a nevező a populáció egyedeinek és a legjobb egyed közötti átlagos hasonlóságot fejezi ki. Az  $\alpha$  pedig a képletben található változók egymás feletti fontosságát befolyásolja.

A 2.4 képlet implementációját láthatjuk a 2.5 kódrészletben.

Listing 2.5.  $\gamma$  inicializálása

#### Reprodukció

A genetikus algoritmus egy kulcsfontosságú fázisa a reprodukció. Itt döntjük el, hogy a meglévő populációból miként jöjjön létre az új generáció. Ez azt jelenti, hogy meghatározzuk, hogy az  $S_1$  és  $S_2$  szülők kromoszómáit hogyan olvasztjuk egybe annak érdekében, hogy egy új S' egyed szülessen. Ezt a folyamatot szemlélteti a 2.6 kódrészlet.

Listing 2.6. Reprodukció

```
def new
            generation (k, N, P):
       new_P
              = []
           \underline{\phantom{a}} in range (N):
            \overline{r}1 = random \cdot randrange(N)
            r2 = random.randrange(N)
            while r1 = r2:
                 r2 = random.randrange(N)
10
            new S = P[r1]. union (P[r2])
            if len(new S) == k:
                new P. append (new S)
                 tmp = list(new_S)
                 random. shuffle (tmp)
                 tmp = tmp \mid : k \mid
                 new P.append(set(tmp))
20
       return new P
```

Esetünkben úgy történik egy új egyed létrehozása, hogy random módon kiválasztunk 2 különböző szülőt, és ezek kromoszómáit egybevonjuk:  $S' = S_1 \cup S_2$ . Mivel majdnem biztos, hogy az így kapott egyed kromoszómája több, mint k csomópontot tartalmaz, ezért szükséges törölnünk belőle nódusokat, amíg |S'| > k. Az hogy melyik nódus kerül törlésre az új egyed kromoszómájából, random módon történik.

Fontos megemlítenünk, hogy mivel a szülőket random módon választjuk ki egy-egy egyed létrehozásához, ezért a populáció egyedei között nem teszünk különbséget. Vagyis keresztezéskor nem nézzük, hogy csak a legrátermettebb szülőket válasszuk, hanem egyenlő eséllyel választunk kevésbé jó fitnesz értékkel rendelkező egyedet is szülőnek. Ez lelassítja a populáció uniformizálódásának folyamatát, de segíti a megoldástér bejárását. Ez azért jó, mert nem tudjuk előre, hogy a csomópontok mely kombinációja fogja eredményezni a bemeneti gráf maximális szétesését, ha ezeket együtt töröljük a gráfból. Ezért a kevésbé jó fitnesz értékkel rendelkező egyedeket sem kell figyelmen kívül hagyni, mert kombinálva őket jó megoldásokhoz juthatunk.

#### Mutáció

Listing 2.7. Mutáció

## 3. fejezet

## Kétcélú CNDP

## Irodalomjegyzék

- Aringhieri, R., Grosso, A., Hosteins, P., és Scatamacchia, R. A general evolutionary framework for different classes of critical node problems. *Engineering Applications of Artificial Intelligence*, 55: 128–145, 2016.
- Hagberg, A., Swart, P., és S Chult, D. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
- Ventresca, M. Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. *Computers & Operations Research*, 39(11):2763–2775, 2012.