

The sub-ice platelet layer in a mushy-layer sea ice model

Martin Vancoppenolle¹, Pat Wongpan^{2,3}, Pat Langhorne² Inga Smith, Gurvan Madec, Alex Gough, Andy Mahoney and Tim Haskell

¹ LOCEAN-IPSL, CNRS, Paris, France

² UOtago, New Zealand

³ IMAS, Hobart, Australia

The sub-ice platelet layer (SIPL)

All great figures kindly or nastily borrowed from Hoppmann et al (2020)

An SIPL. Where, when and why?

SIPL = Sub-Ice-Platelet-Layer

Locations where SIPL is reported (Langhorne et al 2015)

2010 2011 2012 2013 2014 2015 2016 2017 2018

consolidated ice

* Arndt et al (2020)

Time series observations from Atka bay, Antarctica

Good observational description

(Unsuccessful or) limited modelling attempts

Low mechanistic understanding

Liquid fraction in mushy-layer sea ice models

Liquid fraction (%) vs T & S

The SIPL in a 1D mushy-layer sea ice model @McMurdo

SIPL = Sub-Ice-Platelet-Layer

SIPL model drivers

- Key role for thermal insulation
 - induces thickness trigger
 - makes deep snow favourable
- High liquid fraction thermally stabilizes the SIPL
- Brine drainage sharpens the upper SIPL boundary

SIPL = Sub-Ice-Platelet-Layer

Summary and implications

- Simulate SIPL and associated mechanisms.
- Physically understand better the SIPL
- Under prescribed ocean heat loss (limitation)
- SIPL in large-scale models?
 - Sea ice component: virtually ready
 - Ocean component: more work (nucleation, mass flux)
- SIPL is a *new* phenomenon emerging from mushy-layer physics

SIPL = Sub-Ice-Platelet-Layer

Sub-Ice Platelet Layer Physics: Insights From a Mushy- JGR Oceans **Layer Sea Ice Model**

P. Wongpan^{1,2,3,4}, M. Vancoppenolle⁵, P. J. Langhorne¹, I. J. Smith¹, G. Madec^{5,6} A. J. Gough¹, A. R. Mahoney⁷, and T. G. Haskell⁸

RESEARCH ARTICLE

10.1029/2019JC015918

Work promoted by IS-ENES3

IS-ENES3 has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824084.

