

# Appunti Simulazione

# Formulario

Anno Accademico 2021-2022

 $Last\ Update:\ January\ 29,\ 2023$ 

# Contents

Typing Monkeys

| 1        | Dist | tribuzioni                                            | 5  |  |  |  |  |  |  |  |  |  |  |  |
|----------|------|-------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|--|--|
|          | 1.1  | 1 Stimare la Distribuzione                            |    |  |  |  |  |  |  |  |  |  |  |  |
|          | 1.2  | Calcolare la Probabilità di una Distribuzione         | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.1 Esponenziale                                    | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.1.1 Senza Intervalli                              | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.1.2 Con Intervalli                                | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.2 Poisson                                         | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.3 Geometrica                                      | 6  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.4 Normale                                         | 7  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 1.2.5 Uniforme                                        | 7  |  |  |  |  |  |  |  |  |  |  |  |
|          | 1.3  | Come Raggruppare                                      | 7  |  |  |  |  |  |  |  |  |  |  |  |
| <b>2</b> | God  | odness of Fit                                         | 8  |  |  |  |  |  |  |  |  |  |  |  |
|          | 2.1  | Test $\chi^2$                                         | 8  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.1.1 Dati senza Intervalli                           | 8  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.1.2 Dati con Intervalli                             | 9  |  |  |  |  |  |  |  |  |  |  |  |
|          | 2.2  | Test Kolmogorov                                       | 10 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.2.1 Dati Senza Intervalli                           | 10 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.2.2 Dati Con Intervalli                             | 10 |  |  |  |  |  |  |  |  |  |  |  |
|          | 2.3  | Informazioni utili su Formule                         | 11 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.3.1 Komorov                                         | 11 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | $2.3.1.1  cumsum \dots \dots \dots \dots \dots \dots$ | 11 |  |  |  |  |  |  |  |  |  |  |  |
|          | 2.4  | Tabelle di Riferimento                                | 12 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.4.1 Tabella di Riferimento Test $\chi^2$            | 12 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2.4.2 Tabella di Riferimento Test Kolmogorov          | 14 |  |  |  |  |  |  |  |  |  |  |  |
| 3        | Sist | emi a Coda Singola                                    | 15 |  |  |  |  |  |  |  |  |  |  |  |
|          | 3.1  | Come Riconoscere un Modello di Coda                   | 15 |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 3.1.1 Consigli                                        | 16 |  |  |  |  |  |  |  |  |  |  |  |
|          | 3.2  | Parametri Fondamentali                                | 16 |  |  |  |  |  |  |  |  |  |  |  |
|          | 3.3  | Come Calcolare i Parametri Base                       | 17 |  |  |  |  |  |  |  |  |  |  |  |

2

|      | 3.3.1 Domande                            | 17 |
|------|------------------------------------------|----|
| 3.4  | Condizione di Stazionarietà              | 18 |
| 3.5  | M/M/1                                    | 18 |
|      | 3.5.1 Parametri                          | 18 |
| 3.6  | M/M/m                                    | 18 |
|      | 3.6.1 Parametri                          | 19 |
| 3.7  | $M/M/\infty$                             | 20 |
|      | 3.7.1 Parametri                          | 20 |
| 3.8  | M/M/1/K (dimensione coda finita)         | 20 |
|      | 3.8.1 Parametri                          | 21 |
| 3.9  | M/M/1//M (dimensione popolazione finita) | 22 |
|      | 3.9.1 Parametri                          | 22 |
| 3.10 | M/G/1                                    | 23 |
|      | 3.10.1 Parametri                         | 23 |
| 3.11 | M/D/1                                    | 24 |
|      | 3.11.1 Parametri                         | 24 |

"Oi, con quanto sentimento defeco sul tuo naso, così che ti coli sul mento."

Wolfgang Amadeus Mozart

# Chapter 1

# Distribuzioni

## 1.1 Stimare la Distribuzione

Per stimare una distribuzione avendo solo i dati iniziali del problema effettua le seguenti operazioni:

**N.B.** nel caso di Intervalli, categoria, va sostituito con Punto Medio Intervallo,

- 1.  $n = \sum f_i$ : assicurati di aver calcolato la somma totale delle osservazioni
- 2. Calcola la **Media**:
  - (a) Aggiungi Colonna Totale: categoria,  $*f_i$
  - (b) Calcola la media effettiva con:  $media = \frac{\sum totale}{n}$
- 3. Calcola la **Varianza**  $\sigma^2$ :
  - (a) Aggiungi  $Colonna\ ris:\ ({\rm categoria}_i {\rm media})^2 * f_i$
  - (b) Calcola la varianza effettiva con:  $\sigma^2 = \frac{\sum_{ris}}{n-1}$
- 4. Calcola la **Deviazione Standard**  $\sigma$ :
  - (a)  $\sigma = \sqrt{\sigma^2}$
- 5. Calcola  $V = \frac{\sigma}{\text{media}}$

Una volta completati tutti i calcoli controlla se il coefficiente V è vicino ad 1 e:

- se lo è allora utilizza l'Esponenziale,
- se non lo è è Poissoniana ma per avere una verifica, controlla che la media e la varianza siano uguali.

#### Note:

Si può avere una prima idea del tipo di distribuzione anche osservando le frequenze per categoria:

- Se le frequenze hanno valori alti per le prime categorie e poi decrescono, probabilmente è esponenziale negativa.
- Se le frequenze hanno valori bassi per le prime categorie e poi crescono, probabilmente è esponenziale...
- Se le frequenze hanno valori alti nelle categorie centrali e bassi verso le categorie agli estremi, probabilmente è Poissoniana
- Nel caso in cui sia geometrica solitamente viene esplicitato.

### 1.2 Calcolare la Probabilità di una Distribuzione

N.B. nel caso di Intervalli, categoria, va sostituito con intervallo,

### 1.2.1 Esponenziale

Numero di Parametri: 1

#### 1.2.1.1 Senza Intervalli

$$p(i) = \frac{e^{\frac{-\text{categoria}_i}{\text{media}}}}{\text{media}}$$

#### 1.2.1.2 Con Intervalli

$$p(i) = 1 - e^{\frac{-\text{intervallo}_i}{\text{media}}}$$

### 1.2.2 Poisson

Numero di Parametri: 1

$$p(i) = \frac{e^{-\text{media}} * \text{media}^{\text{categoria}_i}}{\text{categoria}_i!}$$

### 1.2.3 Geometrica

Numero di Parametri: 1

$$p(i) = \rho * (1 - \rho)^{\text{categoria}_i}$$

### 1.2.4 Normale

Numero di Parametri: 2

### 1.2.5 Uniforme

Numero di Parametri: 0

p(i) = 1/numero categorie

# 1.3 Come Raggruppare

Raggruppare le categorie se  $\exists categoria < 5$ :

- Parti dall'ultimo a salire (dal basso verso l'alto delle categorie)
- Raggruppale tutte nell'ultima categoria che le faccia diventare maggiori di 5 sommando le frequenze.
- Esempio:



# Chapter 2

# Goodness of Fit

# 2.1 Test $\chi^2$

Devi utilizzare questa sezione solo se il numero delle **osservazioni totale** n>30.

### 2.1.1 Dati senza Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
  - Colonna 1: categorie
  - Colonna 2:  $f_i$
- 2. Calcolare:
  - (a)  $n = \sum (f_i)$
  - (b)  $f(i) = f_i/n$ : non serve
  - (c) Capire la distribuzione se non è data (vedi 1.1)
  - (d) p(i): dipende dalla distribuzione (vedi 1.2)
  - (e)  $F_i = n * p(i)$ : numero di intervalli unitari teorici con i arrivi
  - (f) Raggruppare  $f_i$ e  $F_i$ se <br/> ∃categoria < 5 (vedi 1.3)
  - (g)  $G_i = \frac{(f_i F_i)^2}{F_i}$

- (h)  $V = \sum G_i$ : sommare tutti i valori di G
- (i) df = Numero Categorie 1 Numero Parametri Distribuzione

Una volta terminati i calcoli devi guardare la riga nella tabella del  $\chi^2$  (vedi 2.4.1) con lo stesso valore di df: devi controllare che il valore V ricada negli intervalli che non superino il  $P_{95}$ .

### 2.1.2 Dati con Intervalli

Devi utilizzare questa sezione solo quando hai dei dati divisi in **Intervalli**, devi anche fare attenzione che il **numero di osservazioni** n > 30!!

#### Calcoli da effettuare:

- 1. Riportare i dati in una tabella in Calc:
  - Colonna 1: categorie, probabilmente devi aggiungerle tu, parti da 0 in poi
  - Colonna 2: intervallo, del tipo  $x_1 x_2$ . Fai sempre attenzione che  $x_2 \ge x_1$ !!! In caso li inverti.
  - Colonna 3: frequenza  $f_i$
- 2. Aggiungere Colonna  $x_1$  (intervallo più piccolo)
- 3. Aggiungere Colonna  $x_2$  (intervallo più grande)
- 4. Aggiungere Colonna Punto Medio Intervalli tra  $x_2$  e  $x_1$  con  $\frac{x_1+x_2}{2}$
- 5. Calcolare:
  - (a) capire la distribuzione se non è data (vedi 1.1)
  - (b)  $f(i) = f_i/n$ : non serve
  - (c)  $p(i) = p(x_2) p(x_1) = \text{calcolare secondo la distribuzione (vedi 1.2)}$
  - (d)  $F_i = n * p(i)$ : numero di intervalli unitari teorici con i arrivi
  - (e) Raggruppare  $f_i$  e  $F_i$  se  $\exists categoria < 5$  (vedi 1.3)
  - (f)  $G_i = \frac{(f_i F_i)^2}{F_i}$
  - (g)  $V = \sum G_i$ : sommare tutti i valori di G
  - (h) df = Numero Categorie 1 Numero Parametri Distribuzione

Una volta terminati i calcoli devi guardare la riga nella tabella del  $\chi^2$  (vedi 2.4.1) con lo stesso valore di df: devi controllare che il valore V ricada negli intervalli che non superino il  $P_{95}$ .

## 2.2 Test Kolmogorov

Devi utilizzare questa sezione solo se il numero delle **osservazioni totale** n < 30.

### 2.2.1 Dati Senza Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni totali** n < 30!!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
  - Colonna categorie
  - Colonna frequenze  $f_i$
- 2. Calcolare:
  - (a)  $f(i) = f_i/n$ : frequenze osservate
  - (b) Individuare la distribuzione di probabilità adatta (vedi 1.1)
  - (c) p(i): probabilità teorica (vedi 1.2)
  - (d)  $d_i = cumsum(f(i))$ : somma cumulativa delle f(i)
  - (e)  $D_i = cumsum(p(i))$ : somma cumulativa delle p(i)
  - (f)  $D = |d_i D_i|$ : la differenza assoluta
  - (g)  $D_{max} = \max(D)$ : il massimo valore tra le differenze assolute D

Una volta completati tutti i calcoli, cercare nella tabella di *Kolmogorov-Smirnov* (vedi 2.4.2) la riga corrispondente al valore delle osservazioni totali n: se il valore  $D_{max}$  è sotto il  $D_{0,10}$  la distribuzione è accettata, altrimenti no.

### 2.2.2 Dati Con Intervalli

Devi utilizzare questa sezione solo quando hai dei dati **Senza Intervalli**, devi anche fare attenzione che il **numero di osservazioni totali** n < 30!!

N.B.: non abbiamo trovato esercizi con cui testare questa sezione!

Operazioni da effettuare:

- 1. Riportare i dati in una tabella in Calc:
  - Colonna categorie: probabilmente devi aggiungerle tu, parti da 0 in poi
  - Colonna intervallo: del tipo  $x_1 x_2$ . Fai sempre attenzione che  $x_2 \ge x_1$ !!! In caso li inverti.
  - Colonna frequenze  $f_i$
- 2. Aggiungere  $Colonna x_1$  (estremo più piccolo dell'intervallo)
- 3. Aggiungere  $Colonna\ x_2$  (estremo più grande dell'intervallo)
- 4. Calcolare:
  - (a)  $f(i) = f_i/n$ : frequenze osservate
  - (b) Individuare la distribuzione di probabilità adatta (vedi 1.1)
  - (c)  $p(i) = p(x_2) p(x_1)$ : probabilità teorica per ogni intervallo (vedi 1.2)
  - (d)  $d_i = cumsum(f(i))$ : somma cumulativa delle f(i)
  - (e)  $D_i = cumsum(p(i))$ : somma cumulativa delle p(i)
  - (f)  $D = |d_i D_i|$ : la differenza assoluta
  - (g)  $D_{max} = \max(D)$ : il massimo valore tra le differenze assolute D

Una volta completati tutti i calcoli, cercare nella tabella di *Kolmogorov-Smirnov* (vedi 2.4.2) la riga corrispondente al valore delle osservazioni totali n: se il valore  $D_{max}$  è sotto il  $D_{0,10}$  la distribuzione è accettata, altrimenti no.

## 2.3 Informazioni utili su Formule

### 2.3.1 Komorov

#### 2.3.1.1 cumsum

Per calcolare *cumsum* (somma cumulativa) va eseguito il seguente procedimento:

• La prima cella resta uguale alla prima cella della colonna di riferimento (es. f(i) o p(i))

• Dalla seconda cella in poi si blocca la prima cella della somma cumulativa (quella calcolata al punto precedente) e si somma fino alla cella i di riferimento (vedi Figura 2.1)



Figure 2.1: Esempio di calcolo della funzione cumsum

## 2.4 Tabelle di Riferimento

## 2.4.1 Tabella di Riferimento Test $\chi^2$



Figure 2.2: Tabella di Riferimento per Test  $\chi^2$ 

| $\overline{df}$ | $P_{0.5}$ | $P_1$   | $P_{2.5}$ | $P_5$  | $P_{10}$ | $P_{90}$ | $P_{95}$ | $P_{97.5}$ | $P_{99}$ | $P_{99.5}$ |
|-----------------|-----------|---------|-----------|--------|----------|----------|----------|------------|----------|------------|
| 1               | 0.000039  | 0.00016 | 0.00098   | 0.0039 | 0.0158   | 2.71     | 3.84     | 5.02       | 6.63     | 7.88       |
| 2               | 0.0100    | 0.0201  | 0.0506    | 0.1026 | 0.2107   | 4.61     | 5.99     | 7.38       | 9.21     | 10.60      |
| 3               | 0.0717    | 0.115   | 0.216     | 0.352  | 0.584    | 6.25     | 7.81     | 9.35       | 11.34    | 12.84      |
| 4               | 0.207     | 0.297   | 0.484     | 0.711  | 1.064    | 7.78     | 9.49     | 11.14      | 13.28    | 14.86      |
| 5               | 0.412     | 0.554   | 0.831     | 1.15   | 1.61     | 9.24     | 11.07    | 12.83      | 15.09    | 16.75      |
|                 |           |         |           |        |          |          |          |            |          |            |
| 6               | 0.676     | 0.872   | 1.237     | 1.64   | 2.20     | 10.64    | 12.59    | 14.45      | 16.81    | 18.55      |
| 7               | 0.989     | 1.24    | 1.69      | 2.17   | 2.83     | 12.02    | 14.07    | 16.01      | 18.48    | 20.28      |
| 8               | 1.34      | 1.65    | 2.18      | 2.73   | 3.49     | 13.36    | 15.51    | 17.53      | 20.09    | 21.95      |
| 9               | 1.73      | 2.09    | 2.70      | 3.33   | 4.17     | 14.68    | 16.92    | 19.02      | 21.67    | 23.59      |
| 10              | 2.16      | 2.56    | 3.25      | 3.94   | 4.87     | 15.99    | 18.31    | 20.48      | 23.21    | 25.19      |
|                 |           |         |           |        |          |          |          |            |          |            |
| 11              | 2.60      | 3.05    | 3.82      | 4.57   | 5.58     | 17.28    | 19.68    | 21.92      | 24.72    | 26.76      |
| 12              | 3.07      | 3.57    | 4.40      | 5.23   | 6.30     | 18.55    | 21.03    | 23.34      | 26.22    | 28.30      |
| 13              | 3.57      | 4.11    | 5.01      | 5.89   | 7.04     | 19.81    | 22.36    | 24.74      | 27.69    | 29.82      |
| 14              | 4.07      | 4.66    | 5.63      | 6.57   | 7.79     | 21.06    | 23.68    | 26.12      | 29.14    | 31.32      |
| 15              | 4.60      | 5.23    | 6.26      | 7.26   | 8.55     | 22.31    | 25.00    | 27.49      | 30.58    | 32.80      |
|                 |           |         |           |        |          |          |          |            |          |            |
| 16              | 5.14      | 5.81    | 6.91      | 7.96   | 9.31     | 23.54    | 26.30    | 28.85      | 32.00    | 34.27      |
| 18              | 6.26      | 7.01    | 8.23      | 9.39   | 10.86    | 25.99    | 28.87    | 31.53      | 34.81    | 37.16      |
| 20              | 7.43      | 8.26    | 9.59      | 10.85  | 12.44    | 28.41    | 31.41    | 34.17      | 37.57    | 40.00      |
| 24              | 9.89      | 10.86   | 12.40     | 13.85  | 15.66    | 33.20    | 36.42    | 39.36      | 42.98    | 45.56      |
| 30              | 13.79     | 14.95   | 16.79     | 18.49  | 20.60    | 40.26    | 43.77    | 46.98      | 50.89    | 53.67      |
|                 |           |         |           |        |          |          |          |            |          |            |
| 40              | 20.71     | 22.16   | 24.43     | 26.51  | 29.05    | 51.81    | 55.76    | 59.34      | 63.69    | 66.77      |
| 60              | 35.53     | 37.48   | 40.48     | 43.19  | 46.46    | 74.40    | 79.08    | 83.30      | 88.38    | 91.95      |
| 120             | 83.85     | 86.92   | 91.57     | 95.70  | 100.62   | 140.23   | 146.57   | 152.21     | 158.95   | 163.65     |

Table 2.1: Tabella di Riferimento per Test $\chi^2$ 

# 2.4.2 Tabella di Riferimento Test Kolmogorov

| n        | D <sub>0,10</sub>    | $D_{0,05}$ | $D_{0,01}$ |  |
|----------|----------------------|------------|------------|--|
|          | 0,950                | 0,975      | 0,995      |  |
| 1        | 0,776                | 0,842      | 0,929      |  |
| 2        | 0,642                | 0,708      | 0,828      |  |
| 3        | 0,564                | 0,624      | 0,733      |  |
| 4        | 0,510                | 0,565      | 0,669      |  |
| 5        | 0,310                | 0,521      | 0,618      |  |
| 6        | 0,478                | 0,486      | 0,577      |  |
| 7        | 0,438                | 0,457      | 0,543      |  |
| 8        | 0,388                | 0,432      | 0,514      |  |
| 9        | 0,368                | 0,410      | 0,490      |  |
| 10       | 0,352                | 0,391      | 0,468      |  |
| 11       | 0,338                | 0,375      | 0,450      |  |
| 12       | 0,325                | 0,361      | 0,433      |  |
| 13       | 0,314                | 0,349      | 0,418      |  |
| 14       | 0,304                | 0,338      | 0,404      |  |
| 15       | 0,295                | 0,328      | 0,392      |  |
| 16       | 0,286                | 0,318      | 0,381      |  |
| 17<br>18 | 0,278                | 0,309      | 0,371      |  |
| 19       | 0,272                | 0,301      | 0,363      |  |
| 20       | 0,264                | 0,294      | 0,356      |  |
| 25       | 0,24                 | 0,27       | 0,32       |  |
| 30       | 0,22                 | 0,24       | 0,29       |  |
| 35       | 0,21                 | 0,23       | 0,27       |  |
| Oltre    | 1,22                 | 1,36       | 1,63       |  |
| 35       | $\frac{1}{\sqrt{n}}$ | $\sqrt{n}$ | $\sqrt{n}$ |  |

Figure 2.3: Tabella di Riferimento per Test Kolmogorov

# Chapter 3

# Sistemi a Coda Singola

### 3.1 Come Riconoscere un Modello di Coda

Un modello di coda secondo la notazione di Kendall è così rappresentato:

dove:

- A: indica la distribuzione del tempo di inter-arrivo
- b: indica la distribuzione del tempo di servizio  $T_s$
- c: indica il numero di serventi
- n: indica la dimensione della coda
- p: indica la dimensione della popolazione
- Z: indica la disciplina di servizio

Tale notazione si semplifica in A/b/c nel caso in cui la dimensione della popolazione e della coda sono infinite e la disciplina di servizio segue la logica FIFO ( $n = p = \infty$  e Z = FIFO).

Per quanto riguarda i possibili valori di A, b e c:

- A e b: può assumere i valori D (distribuzione deterministica o costante), M (distribuzione esponenziale negativa), G (distribuzione generale),  $H_h$ (distribuzione iperesponenziale),  $E_k$  (l'Erlangiana a k stadi)
- c: 1 o m, dove 1 indica un singolo servente e m indica che ci sono serventi multipli. Non importa inizialmente specificare quanto è m, ma per le formule successive il valore va sostituito con il numero esatto di serventi.

### 3.1.1 Consigli

Solitamente negli esercizi è sottinteso che la dimensione della popolazione e della coda sono infinite (non lo sono soltanto nel caso in cui viene specificato diversamente), lo stesso vale per la gestione del servizio che è sempre FIFO (salvo casi estremi che devono essere specificati).

Per quanto riguarda le distribuzioni degli interarrivi e del servizio: essi sono sempre specificati e nei soli casi in cui non viene esplicitato il tipo di distribuzione (che ovviamente può essere diverso per interarrivo e servizio) si considera la distribuzione generale G.

Nei pochi casi in cui la distribuzione è deterministica è sempre specificato, ad esempio viene detto che il tempo è costante.

## 3.2 Parametri Fondamentali

- $\Delta$ : Tempo di Inter-arrivo (il tempo che intercorre tra un arrivo e il successivo)
- w: Numero di utenti in coda
- $t_w$ : Tempo di Attesa in Coda
- s: Numero di Utenti in Servizio
- $t_s$ : Tempo di Servizio
- q: Numero di Utenti nel Sistema
- $t_q$ : Tempo di Risposta

### N.B.

- Tutti i **Tempi** vanno espressi in **minuti**,
- tutti i valori precedenti sono **interi** e **maggiori o uguali** a 0,
- $0 \le s \le c$ .
- stare bene a tenti a se la chiede in ore o minuti 🐖

### 3.3 Come Calcolare i Parametri Base

- Tempo Medio di Servizio  $T_s = \frac{1}{\mu}$
- Tempo medio di Inter-arrivi  $\mu = \frac{1}{T_s}$
- Tasso medio di Arrivi  $\lambda = \Delta^{-1}$
- Intensità del Traffico  $\rho = \frac{\lambda}{\mu}$

### 3.3.1 Domande

• Qual è la distribuzione di probabilità del numero di arrivi?

Nel caso in cui abbiamo i **tempi di inter-arrivo Esponenziali** allora avremo i **tempi di arrivo** con distribuzione di **Poisson**:

– La **densità di probabilità** del numero di **arrivi** si calcola con:

$$P_d = \frac{e^{-\lambda} \lambda^n}{n!}$$

 Se si ha un blocco del sistema per un tempo t, la probabilità che ci siano n utenti è:

$$P_d = \frac{e^{-t\lambda} (t\lambda)^n}{n!}$$

• Qual è la distribuzione di probabilità dei tempi di Inter-Arrivo?

Nel caso in cui abbiamo i **tempi di arrivo** con distribuzione di **Poisson** allora i **tempi di inter-arrivo** saranno **esponenziali**:

 La densità di probabilità dei tempi di inter-arrivo si calcola con

$$f(n) = \lambda e^{-\lambda n}$$

 Se si ha un blocco del sistema per un tempo t, la probabilità che ci siano n utenti è:

$$f(n) = t\lambda e^{-t\lambda n}$$

– La funzione di distribuzione è:

$$F(n) = 1 - e^{-\lambda n}$$

### 3.4 Condizione di Stazionarietà

$$\rho \leq 1$$

Controllare bene (STARE BENE A TENTI) che la condizione di Stazionarietà sia verificata altrimenti l'esercizio non si può continuare.

## 3.5 M/M/1

Sistema aperto denotato da un singolo servente:

- Distribuzione del Tempo di Inter-arrivo Esponenziale con parametro  $\lambda$
- Tempo di Servizio Esponenziale di parametro  $\mu$

### 3.5.1 Parametri

- Numero di Utenti Medio:  $N = \frac{\rho}{1-\rho} = \lambda R$
- Numero Medio di Utenti in Coda:  $W=N-\rho=\frac{\rho^2}{1-\rho}$
- Tempo Medio di Risposta:  $R = \frac{\frac{1}{\mu}}{1-\rho} = T_s + T_w = \frac{N}{\lambda}$
- Tempo di Attesa Medio in Coda:  $T_w = \frac{\frac{\rho}{\mu}}{1-\rho} = R T_s$
- Probabilità di Osservare almeno k utenti in un Sistema in condizione di Stazionarietà: =  $\rho^k$
- Probabilità di avere 0 utenti nel sistema:  $\pi_0 = 1 \rho$
- Probabilità di avere k utenti nel sistema:  $\pi_k = \rho^k \pi_0 = \rho^k (1-\rho)$

# 3.6 M/M/m

Sistema aperto dotato di m serventi:

- Distribuzione del Tempo di Arrivo Poissoniano con parametro  $\lambda$
- Distribuzione del Tempo di Servizio Esponenziale con parametro  $\mu$

### 3.6.1 Parametri

- Numero di Servienti: m
- Tempo Medio di Servizio:  $T_s$  (vedi 3.3)
- Tasso Medio di Arrivi  $\lambda$  (vedi 3.3)
- Tempo Medio di Inter-Arrivo:  $\mu$  (vedi 3.3)
- Intensità del Traffico:  $\rho = \frac{\lambda}{mu}$
- Probabilità di avere 0 utenti nel sistema:

$$\pi_0 = \left[ \sum_{k=0}^{m-1} \left( \frac{(m\rho)^k}{k!} \right) + \frac{(m\rho)^m}{m!} \frac{1}{1-\rho} \right]^{-1}$$

• Probabilità di avere k utenti nel sistema:

$$\nearrow$$
 se  $1 \le k \le m$ 

$$\pi_k = \frac{(m\rho)^k}{k!} \pi_0$$

$$\pi_k = \frac{m^m \rho^k}{m!} \pi_0$$

• Numero Medio di Serventi Occupati:

$$E[s] = \sum_{k=0}^{m-1} (k\pi_k) + \frac{m\pi_m}{1-\rho} = m\rho = \frac{\lambda}{\mu}$$

- Numero di Utenti Medio:  $N = m\rho + \pi_m \frac{\rho}{(1-\rho)^2}$
- Numero di Utenti Medio in Coda:  $W = \pi_m \frac{\rho}{(1-\rho)^2}$
- Tempo Medio di Risposta:  $R = \frac{N}{\lambda} = \frac{m\rho + W}{\lambda}$
- Tempo di Attesa in Coda:

$$T_w = \frac{\pi_m}{m\mu(1-\rho)^2}$$

- Tempo di Utilizzo (tempo in cui si sta bene a tenti):  $U=1-\pi_0=\rho$
- Tempo di Non Utilizzo:  $\hat{U}=1-U$

• Probabilità che un Utente in Arrivo trovi tutti i serventi occupati:

$$Prob_{coda} = \sum_{k=m}^{+\infty} \pi_k = \pi_0 \frac{(m\rho)^m}{m!} \frac{1}{1-\rho}$$

• Probabilità che un Utente in Arrivo Non trovi una coda:

$$Pro\hat{b}_{coda} = 1 - Prob_{coda}$$

# $3.7 \text{ M/M/}\infty$

Sistema aperto con infiniti servienti:

- Distribuzione del Tempo di Arrivo Poissoniano di parametro  $\lambda$
- Distribuzione del Tempo di Servizio Esponenziale di parametro  $\mu$

### 3.7.1 Parametri

- Intensità del Traffico:  $\rho$  (vedi 3.3)
- Probabilità di avere k utenti, che coincide (in questo caso specifico) con la Probabilità di avere k serventi occupati:

$$\pi_k = \frac{\rho^k}{k!} e^{-\rho}$$

 $con k \ge 0$ 

- Numero Medio di Utenti:  $N = \rho$
- Tempo Medio di Risposta, che coincide con il Tempo Medio di Servizio:

$$R = T_s = \frac{1}{\mu}$$

# 3.8 M/M/1/K (dimensione coda finita)

Sistema M/M/1 dove sono ammessi al più K utenti (coda finita):

- Distribuzione del Tempo di Inter-arrivo vedi 3.5
- Tempo di Servizio vedi 3.5

Esempio: Il processo di arrivo è Poissoniano di parametro  $\lambda$ , ma un utente che arrivando trova il sistema completo, cioè con K utenti già presenti, non viene accettato e viene perso. Il sistema M/M/1/K è un sistema con perdita. Nel caso particolare in cui K=1, al più un utente è ammesso nel sistema e di conseguenza non si forma mai coda. La distribuzione del tempo di servizio è esponenziale di parametro  $\mu$ , vi è un singolo servente, e la disciplina di coda è FIFO.

### 3.8.1 Parametri

- Per quelli base vedere 3.3 e 3.5
- Probabilità di avere k utenti nel sistema:

$$\pi_k = \frac{1 - \rho}{1 - \rho^{K+1}} \rho^K \quad \text{con} \quad 0 \le k \le K$$

$$\pi_k = 0$$
 con  $k > K$ 

dove  $\rho = \frac{\lambda}{\mu}$ 

Nel caso particolare di K=1 lo spazio è formato da 2 soli stati e si ricava:

$$\pi_0 = \frac{\mu}{\lambda + \mu}$$

$$\pi_1 = \frac{\lambda}{\lambda + \mu}$$

- Utilizzazione CPU:  $U=1-\pi_0=\rho$
- Frequenza media del completamento delle richieste (throughput):

$$X = \mu(1 - \pi_0) = \mu U = \frac{U}{E(T_s)}$$

- Il tempo che ciascun utente impiega per la prossima richiesta:  $R + \frac{1}{\lambda}$  secondi
- Frequenza media di generazione richieste:

$$\frac{M}{R + \frac{1}{\lambda}}$$

• In stato stazionario, le frequenze di generazione e il tempo di completamento delle richieste devono essere uguali:

$$X = \mu(1 - \pi_0) = \frac{M}{R + \frac{1}{\lambda}}$$

$$R = \frac{M}{\mu(1 - \pi_0)} - \frac{1}{\lambda} = \frac{M}{X} - \frac{1}{\lambda} = \frac{\text{Numero Clienti}}{\text{Throughput Medio}}$$

## 3.9 M/M/1//M (dimensione popolazione finita)

Sistema M/M/1 dove la popolazione è finita di dimensione M > 0:

- Distribuzione del Tempo di Inter-arrivo vedi 3.5
- Tempo di Servizio vedi 3.5

Esempio: Consideriamo il sistema M/M/1 assumendo che gli utenti provengano da una popolazione finita, di dimensione M>0. Ogni utente si trova ad ogni istante o all'interno del sistema (in coda o in servizio) o all'esterno. Assumiamo che ogni utente, una volta che ha lasciato il sistema dopo essere stato servito, si ripresenti al sistema stesso dopo un tempo esponenziale di parametro  $\lambda$ . Inoltre assumiamo che ogni utente sia indipendente dagli altri. Questo comporta che, se vi sono k utenti nel sistema ( $0 \le k \le M$ ) ed M-k all'esterno, il processo di arrivo totale è dato dalla composizione di M-k processi di Poisson indipendenti, ognuno di parametro  $\lambda$ . Per la proprietà di composizione dei processi di Poisson, anche il processo totale di arrivo al sistema è ancora un processo di Poisson di parametro dipendente dallo stato  $\lambda(k) = (M-k)\lambda$ ,  $(0 \le k \le M)$ .

### 3.9.1 Parametri

- Per quelli base vedere 3.3 e 3.5
- La condizione di stazionarietà è certamente verificata, poiché il processo è finito e irriducibile e la distribuzione stazionaria del numero di utenti nel sistema, dalle formule:

$$\pi_k = \pi_0 \rho^k \frac{M!}{(M-k)!}$$
 con  $0 \le k \le M$ 

con

$$\pi_0 = \left[\sum_{k=0}^M \rho^k \frac{M!}{(M-k)!}\right]^{-1}$$
 dove  $\rho = \frac{\lambda}{\mu}$ 

$$\pi_k = 0 \quad \text{con } k > M$$

# 3.10 M/G/1

Sistema aperto con un singolo servente:

- Distribuzione del Tempo di Inter-Arrivo Esponenziale con parametro  $\lambda$
- Distribuzione del Tempo di Servizio degli Utenti Indipendente con Distribuzione Generale

### 3.10.1 Parametri

- Per quelli di base vedere 3.3
- Numero Medio di Utenti (formula di Khintchine-Pollaczk 👰):

$$N = \rho + \frac{\rho^2 (1 + C_B^2)}{2(1 - \rho)}$$

dove:

- $-C_B = \sigma \mu$  (Coefficiente di Variazione)
- $-\sigma = \sqrt{\text{Varianza}}$  (Deviazione Standard)
- Tempo Medio di Risposta di un lavoro:  $R = \frac{N}{\lambda}$
- Tempo Medio di Attesa in Coda:  $W = \lambda T_w = N \rho$
- Tempo di Attesa in Coda:  $T_w = \frac{N-\rho}{\lambda}$

### N.B.

• Se  $\rho = 1$  e quindi il sistema è **congestionato**, allora gli indici medi  $N, W, R, T_w$  tendono a crescere senza limite.

## 3.11 M/D/1

Versione di M/G/1 con Distribuzione del Tempo di Servizio Deterministico:

- Distribuzione del Tempo di Inter-Arrivo Esponenziale con parametro  $\lambda$
- Distribuzione del Tempo di Servizio degli Utenti Indipendente con Distribuzione Deterministica

### 3.11.1 Parametri

• Valore Medio degli Utenti nel Sistema:

$$N = \rho + \frac{\rho^2}{2(1-\rho)}$$

• Numero di Utenti Medio in Attesa:

$$W = \frac{\rho^2}{2(1-\rho)}$$

### N.B.

- Se  $\rho = 1$  e quindi il sistema è **congestionato**, allora gli indici medi  $N, W, R, T_w$  tendono a crescere senza limite.