

Designed by: Thuat NGUYEN-KHANH

Lecturer at The Faculty of Computer Networks & Communications - UIT - VNU-HCM

Email: thuatnk@uit.edu.vn

Chapter 3: IoT Wireless Technologies

- Overview
- Wireless technology Characteristics
- IEEE 802.11standard
- WPAN Characteristics
- Bluetooth
- Summary

IoT Layered Architecture

Source: ZTE

Wireless technology Characteristics

- Data rate of the devices
- Range or distance to the gateway
- The environment
- Need for encryption or authentication
- Power consumption
- Capacity
- Quality of service and reliability

- Network topology
- Simplex or duplex
- Suitable and available spectrum
- Available equipment
- Cost
- Development platform
- Internet access
- License

- IEEE 802.11 vs. Wi-Fi
 - IEEE 802.11 is a standard
 - Wi-Fi = "Wireless Fidelity" is a trademark
- 802.11 has many options and it is possible for two equipment based on 802.11 to be incompatible.
- All equipment with "Wi-Fi" logo have selected options such that they will interoperate.

- ISM Bands
 - The 2.4 GHz band is divided into 14 channels spaced 5 MHz apart, 3 non-overlapping channels
 - 5 GHz Band: 12 non-overlapping channels
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

- IEEE 802.11 Amendments
 - 802.11a-1999: Higher Speed PHY Extension in the 5
 GHz Band
 - 802.11b-1999: Higher Speed PHY Extension in the 2.5
 GHz Band
 - 802.11g-2003: Higher data rate extension in 2.4GHz band
 - 802.11n-2009: Enhancements for higher throughput (100+ Mbps)

- IEEE 802.11 Amendments
 - 802.11ac-2013: Very High Throughput <6GHz
 - 802.11ad-2012: Very High Throughput 60 GHz
 - 802.11ah-2017: Sub 1 GHz for IoT, Transmission range up to 1 km, Data rates > 100 kb/s.
 - 802.11ax: High Efficiency WLAN. Extension of 802.11ac. Expected Dec 2019.
 - 802.11ay: Next Generation 60 GHz. Extension of 802.11ad. Expected Dec 2019.

WPAN Characteristics

- Battery powered:
 Maximize battery life. A few hours to a few years on a coin cell.
- Dynamic topologies: Short duration connections and then device is turned off or goes to sleep
- No infrastructure

- Avoid Interference due to larger powered LAN devices
- Simple and Extreme
 Interoperability: Billions
 of devices. More variety
 than LAN or MAN
- Low-cost: A few dollars

IEEE 802.15.4

• Used by several "Internet of Things" protocols: ZigBee, 6LowPAN, Wireless HART, MiWi, and ISA 100.11a

Application	ee	Г	21	HART	Vi).11a	
Network	ZigBee		6LoWPAN	Wireless HAR	MiWi	ISA 100.	
MAC	15.4		802.15.4	802.15.4	15.4	15.4	
PHY	802.1		802.	802.	802.1	802.	

IEEE 802.15.4 Overview

- Low Rate Wireless Personal Area Network (LR-WPAN)
- 2.4 GHz (most common). 16 5-MHz channels
- 250 kbps PHY => 50 kbps application data rate
- Similar to 802.11: Direct Sequence Spread Spectrum, CSMA/CA, Backoff, Beacon, Coordinator (similar to Access point)

IEEE 802.15.4 Overview

- Lower rate, short distance => Lower power => Low energy
- Each node has a 64-bit Extended Unique ID (EUI-64):

• No segmentation/reassembly. Max MAC frame size is 127 bytes with a payload of 77+ bytes.

IEEE 802.15.4 Topologies

- Star and peer-to-peer
- Two types of devices: Full Function device (FFD), Reduced Function device (RFD)

IEEE 802.15.4/ZigBee

"low cost, low power, low data rate wireless networking"

ZigBee Alliance

- "The Software"
- Network, Security & Application
 Layers

IEEE 802.15.4

- "The Hardware"
- Physical & Medium Access Control Layers

Bluetooth

- Started with Ericsson's Bluetooth Project in 1994 for radiocommunication between cell phones over short distances
- Named after Danish king Herald Blatand
 (AD 940-981) who was fond of blueberries
- Intel, IBM, Nokia, Toshiba, and Ericsson formed Bluetooth SIG in May 1998

Bluetooth

- Key Features:
 - Lower Power: 10 mA in standby, 50 mA while transmitting
 - Cheap: \$5 per device
 - Small: 9 mm2 single chips

- Bluetooth 1.1: IEEE 802.15.1-2002
- Bluetooth 1.2: IEEE 802.15.1-2005, Higher variable rate retransmission, Adaptive frequency hopping
- Bluetooth 2.0: Enhanced Data Rate for video applications, reduced power due to reduced duty cycle

- Bluetooth 2.1 (July 2007): Enhanced Data Rate, Secure Simple Pairing to speed up pairing
- Bluetooth 3.0 (April 2009): High Speed
- Bluetooth 4.0 (June 2010): Low energy, Smaller devices requiring longer battery life (several years). New incompatible PHY. Bluetooth Smart or BLE

- Bluetooth 4.1: 4.0 + Core Specification Amendments (CSA) 1, 2, 3, 4
- Bluetooth 4.2 (Dec 2014): Larger packets, security/privacy, IPv6 profile

• Bluetooth 5

- 2X Data rate using a new modulation
- 4X range using a special coding
- 8X broadcast capacity by changing the advertising procedure
- +20 dBm transmit power available

Bluetooth: Details

- Frequency Range: 2402 2480 MHz (total 79 MHz band) 23 MHz in some countries, e.g., Spain
- Data Rate: 1 Mbps using 1 MHz (Nominal)
 720 kbps (User)
- Radio Frequency hopping: 1600 times/s =>
 625 ms/hop

Bluetooth: Details

- Security: Challenge/Response Authentication. 128b Encryption
- TX Output Power:
 - Class 1: 20 dBm Max. (0.1W) 100m
 - Class 2: 4 dBm (2.5 mW)
 - Class 3: 0 dBm (1mW) 10m

Bluetooth: Piconet

- Piconet is formed by a master and many slaves
 - Up to 7 active slaves. Slaves can only transmit when requested by master
 - Up to 255 Parked slaves

Bluetooth: Piconet

• Piconet:

Active slaves are polled by master for transmission

– Each station gets a 8-bit parked address => 255

parked slaves/piconet

Bluetooth: Scatter net

• Scatter net: A device can participate in multiple Pico nets => Timeshare and must synchronize to the master of the current piconet. Routing protocol not defined.

Bluetooth Smart

- Low Energy: 1% to 50% of Bluetooth classic
- For short broadcast: body temperature, Heart rate, Wearables, sensors, automotive, industrial. Not for voice/video, file transfers, ...
- Small messages: 1Mbps data rate but throughput not critical.

Bluetooth Smart

- Battery life: In years from coin cells
- Simple: Star topology. No scatter nets, mesh, ...
- Lower cost than Bluetooth classic

Bluetooth Smart

- New protocol design based on Nokia's
 WiBree technology Shares the same
 2.4GHz radio as Bluetooth =>Dual mode
 chips
- All new smart phones (iPhone, Android, ...) have dual-mode chips

Low Power Wide Area Network

- LPWAN is becoming popular day-by-day
- Long Range
- Low Power
- Low Data Rate

Overview of LoRa

• Long Range: 9 miles

• Low Power: 10 years

• Low Data Rate: 50 kbps

Implementation (Application Server)

Summary

- Wireless Technologies in IoT
- Wireless Technology Characteristics
- 802.11 or Wifi
- Wireless Personal Area Networks (WPAN)
- Bluetooth Technology
- LPWAN/LoRa

