Levy continuity Thm.

- \mathcal{O} If $F_n \gg F$ for some d.f. Fthen $\phi_n \gg \phi$ pointwise where \mathcal{O} is the C.f. of F
- @ if $\psi_n \rightarrow \psi$ pointwise for some function. ϕ . and ϕ is continuous at ϕ then. ϕ is the c.f. of some d.f. ϕ and ϕ is ϕ .

Fq. $\phi_n^*(t)$ converges to $\phi^*(t)$ But it's not a cf. $\chi_n = n \times \chi_n \wedge \chi_n(0,1) \Rightarrow \chi_n \wedge \chi_n(0,n^2)$ $\phi_n(t) = \text{If } e^{it \times n} = e^{-n^2t^2/2} \Rightarrow \phi_1(t) = \begin{cases} 1 & t = 0 \\ 0 & t \neq 0 \end{cases}$ withing customers is the basic purp of cof.

Fn, F. d. t we say Fn => F of Fn xx) -> Fox), an continuous point F may not be a dif.

Fn. d.f. we say Fn > F vaguely

Ley continuity Thm. (0=) rague convergence.

If (Fn > F at all continuous of F) and F is a dif.

Hen. 4n > 4 Pointuise. It is the cif. of F

- @ if $\psi_n \rightarrow \phi$ pointwise for some function. ϕ . and ϕ is the c.f. of some dif. F and $F_n \Rightarrow F$
 - (#) is equivalent to

pf. of is continous est o -> (Fn) is tight.

\[\frac{1}{u} \int_{-u} (+ \phi_n (t)) \dt 0 \]

UENIO) +ENIO).

4nH) ~ 4n1).

the arraye of (1-4ntt)) around o

ey. WLLN
$$X_1 - Y_1 \cdot d$$
. $\overline{E}[X_1] \subset \Omega$ $\overline{E}[X_1] \subset M$. Let $S_n = \frac{f_1}{f_1}X_1$. Then. $\frac{S_n}{h} \stackrel{\triangle}{\to} \mu$.

TIMPCO

only when ++0 This expansion is Eight -

But in Lévy continuous Thin.

ne have to check + & B

HTEP fixed

Pf.
$$\exists e^{i+\frac{s_{n-n}}{T_{n}}} = \exists e^{i+\frac{z(x_{i-n})}{T_{n}}} = \exists e^{i+\frac{z(x_{i-n})}{T_{n}}} = \exists e^{i+\frac{z(x_{i-n})}{T_{n}}} + o(\frac{+z}{n})^{n}$$

Lindeberg - Fetter CLT

After P.U. to have diff size.

XIII. XIV.M. IEMEN be independent

If Xnim =0 Let
$$S_1 = \frac{\pi}{2} S_1 S_1 S_1 N$$

XIII. XIV.M. IEMEN be independent

II. $S_1 = \frac{\pi}{2} S_2 S_1 N$

III. $S_2 = \frac{\pi}{2} S_2 S_1 N$

III. $S_3 = \frac{\pi}{2} S_2 S_2 N$

III. $S_4 = \frac{\pi}{2} S_2 S_3 N$

III. $S_4 = \frac{\pi}{2} S_4 S_4 N$

III. $S_4 = \frac{\pi}{2} S_4 N$

III. $S_4 = \frac{\pi}{2}$