Design and Analysis of Algorithms

CSE 5311

Lecture 13 Amortized Analysis

Song Jiang, Ph.D.

Department of Computer Science and Engineering

How large should a hash table be?

Goal: Make the table as small as possible, but large enough so that it won't overflow (or otherwise become inefficient).

Problem: What if we don't know the proper size in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, "grow" it by allocating (via **malloc** or **new**) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

- 1. Insert
- 2. Insert

- 1. Insert
- 2. Insert

- 1. Insert
- 2. Insert

1 2

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert

- 3
- 4

- 1. Insert
- 2. Insert
- 3. Insert
- 4. INSERT
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. INSERT
- 5. Insert

- 1. Insert
- 2. Insert
- 3. Insert
- 4. Insert
- 5. Insert
- 6. Insert
- 7. Insert

Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n^2)$.

Let's see why.

Tighter analysis

```
Let c_i = the cost of the i th insertion
= \begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}
```

i $size_i$ c_i	1	2	3	4	5	6	7	8	9	10
sizei	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1

Tighter analysis

Let c_i = the cost of the *i*th insertion = $\begin{cases} i & \text{if } i-1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise.} \end{cases}$

i $size_i$ c_i	1	2	3	4	5	6	7	8	9	10
size _i	1	2	4	4	8	8	8	8	16	16
c_i	1	1	1	1	1	1	1	1	1	1
c_i		1	2		4				8	

Tighter analysis (continued)

Cost of
$$n$$
 insertions $= \sum_{i=1}^{n} c_i$
 $\leq n + \sum_{j=0}^{\lfloor \lg(n-1) \rfloor} 2^{j}$
 $\leq 3n$
 $= \Theta(n)$.

Thus, the average cost of each dynamic-table operation is $\Theta(n)/n = \Theta(1)$.

Amortized analysis

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we're taking averages, however, probability is not involved!

• An amortized analysis guarantees the average performance of each operation in the *worst case*.

Types of amortized analyses

Three common amortization arguments:

- the *aggregate* method,
- the *accounting* method,
- the *potential* method.

We've just seen an aggregate analysis.

The aggregate method, though simple, lacks the precision of the other two methods. In particular, the accounting and potential methods allow a specific *amortized cost* to be allocated to each operation.

Accounting method

- Charge *i* th operation a fictitious *amortized cost* \hat{c}_i , where \$1 pays for 1 unit of work (*i.e.*, time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the *bank* for use by subsequent operations.
- The bank balance must not go negative! We must ensure that

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

for all n.

• Thus, the total amortized costs provide an upper bound on the total true costs.

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the *i*th insertion.

- \$1 pays for the immediate insertion.
- \$2 is stored for later table doubling.

When the table doubles, \$1 pays to move a recent item, and \$1 pays to move an old item.

Example:

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

i	1	2	3	4	5	6	7	8	9	10
sizei	1	2	4	4	8	8	8	8	16	16
c_i	1	2	3	1	5	1	1	1	9	1
\hat{c}_i	2*	3	3	3	3	3	3	3	3	3
i $size_i$ c_i \hat{c}_i $bank_i$	1	2	2	4	2	4	6	8	2	4

^{*}Okay, so I lied. The first operation costs only \$2, not \$3.

Potential method

IDEA: View the bank account as the potential energy (à *la* physics) of the dynamic set.

Framework:

- Start with an initial data structure D_0 .
- Operation *i* transforms D_{i-1} to D_i .
- The cost of operation i is c_i .
- Define a *potential function* $\Phi: \{D_i\} \to \mathbb{R}$, such that $\Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$ for all i.
- The *amortized cost* \hat{c}_i with respect to Φ is defined to be $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$.

Understanding potentials

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$potential \ difference \ \Delta\Phi_{i}$$

- If $\Delta \Phi_i > 0$, then $\hat{c}_i > c_i$. Operation *i* stores work in the data structure for later use.
- If $\Delta\Phi_i < 0$, then $\hat{c}_i < c_i$. The data structure delivers up stored work to help pay for operation *i*.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

Summing both sides.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

The series telescopes.

The amortized costs bound the true costs

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

$$\geq \sum_{i=1}^{n} c_{i} \quad \text{since } \Phi(D_{n}) \geq 0 \text{ and }$$

$$\Phi(D_{0}) = 0.$$

Potential analysis of table doubling

Define the potential of the table after the ith insertion by $\Phi(D_i) = 2i - 2^{\lceil \lg i \rceil}$. (Assume that $2^{\lceil \lg 0 \rceil} = 0$.)

Note:

- $\Phi(D_0) = 0$,
- $\Phi(D_i) \ge 0$ for all i.

Example:

$$\Phi = 2 \cdot 6 - 2^3 = 4$$

accounting method)

Calculation of amortized costs

The amortized cost of the *i*th insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

Calculation of amortized costs

The amortized cost of the *i*th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise;} \end{cases}$$

$$+ \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right)$$

Calculation of amortized costs

The amortized cost of the *i*th insertion is

$$\hat{c}_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

$$= \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise;} \end{cases}$$

$$+ \left(2i - 2^{\lceil \lg i \rceil}\right) - \left(2(i-1) - 2^{\lceil \lg (i-1) \rceil}\right)$$

$$= \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2,} \\ 1 & \text{otherwise;} \end{cases}$$

$$+ 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}.$$

Case 1: i - 1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

Case 1: i - 1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

= $i + 2 - 2(i-1) + (i-1)$

Case 1: i-1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

Case 1: i - 1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 1: i-1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_i = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

Case 1: i - 1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_i = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= 3 \qquad \text{(since } 2^{\lceil \lg i \rceil} = 2^{\lceil \lg (i-1) \rceil}\text{)}$$

Case 1: i-1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_i = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil} \\
= 3$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

Case 1: i-1 is an exact power of 2.

$$\hat{c}_i = i + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil}$$

$$= i + 2 - 2(i-1) + (i-1)$$

$$= i + 2 - 2i + 2 + i - 1$$

$$= 3$$

Case 2: i - 1 is not an exact power of 2.

$$\hat{c}_i = 1 + 2 - 2^{\lceil \lg i \rceil} + 2^{\lceil \lg (i-1) \rceil} \\
= 3$$

Therefore, *n* insertions cost $\Theta(n)$ in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.

Conclusions

- Amortized costs can provide a clean abstraction of data-structure performance.
- Any of the analysis methods can be used when an amortized analysis is called for, but each method has some situations where it is arguably the simplest or most precise.
- Different schemes may work for assigning amortized costs in the accounting method, or potentials in the potential method, sometimes yielding radically different bounds.