Edges & Line Detection

Slides adapted from D.A. Forsyth, Lana Lazebnik, Li Fei-Fei, Kristen Grauman, D. Lowe, and Steve Seitz

Grouping & Fitting

- Previous Class: Template Matching
 - Slow
 - But, even if you could do this fast, it's only for a specific object
 - Different color, shape, etc.
- We need a more general approach
- Insight: Much of the computation in template matching is wasted
- Plan: Focus on parts of the image that are interesting
 - Issue: What parts of an image are interesting?

Edge Detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Why are edges important?

- Edges are caused by a variety of factors
 - Something "interesting" is usually happening

Characterizing edges

 An edge is a place of rapid change in the image intensity function

Image gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Different Edge Filters

Prewitt:

$$M_x = \begin{array}{c|cccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array}$$

Sobel:

$$M_x = \begin{array}{c|cccc} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{array}$$

; $M_y =$

1	2	1
0	0	0
-1	-2	-1

Roberts:

$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Derivative theorem of convolution

 Differentiation is convolution, and convolution is associative:

associative:
$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$
• This saves us one operation:

Source: S. Seitz

Derivative of Gaussian filter

Implementation issues

Image

Gradient Magnitude

- The gradient magnitude is large along a thick "trail" or "ridge," so how do we identify the actual edge points?
- How do we link the edge points to form curves?

Canny Edge Detector

Probably the most widely used edge detector in computer vision

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, 'canny')
- J. Canny, *A Computational Approach To Edge Detection*, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image (Lena)

magnitude of the gradient

thresholding

thinning

(non-maximum suppression)

Hysteresis thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz

Edge detection is just the beginning...

image

human segmentation

gradient magnitude

- We want to go from edges to objects...
 - Higher-level, more compact representation of the features in the image
 - Grouping multiple features according to a simple model

Fitting

Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting

- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

- Case Study: Line Fitting
 - Given edge points, find realworld lines in this image
 - Issues:
 - Noise in the measured feature locations
 - Clutter (outliers), multiple lines
 - Missing data: occlusions

Line Detection: Hough Transform

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

 A line in the image corresponds to a point in Hough space

- What does a point (x_0, y_0) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0 m + y_0$
 - This is a line in Hough space

- Where is the line that contains both (x_0, y_0) and (x_1, y_1) ?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

Image space

Hough parameter space

Basic Hough Transform

- Points which lie on the same line in image space will have lines which intersect at a point in Hough space
 - So, to find image line(s), we find the point(s) in Hough space where multiple Hough lines intersect.
 - Potential problem with this approach...
 - If the points don't lie exactly on the same line in image space, the lines in Hough space won't intersect
 - We can count intersections if they are "close" using by discretizing Hough space

3 lines pass through this grid cell

Hough Accumulator

More Problems

- What are some problems with the (m,b) Hough space:
 - Unbounded parameter domain
 - Vertical lines require infinite m

Image space Hough parameter space $y = m_0 x + b_0$ b_0 $m_0 \qquad m$

- Problems with the (m,b) space:
 - Unbounded parameter domain
 - Vertical lines require infinite m
- Alternative: polar representation

Each point will add a sinusoid in the (θ, ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each edge point (x,y) in the image
 For μ = 0 to 180
 ρ = x cos μ + y sin μ
 H(μ, ρ) = H(μ, ρ) + 1
 end

end

- Find the value(s) of (μ, ρ) where H(μ, ρ) is a local maximum
 - The detected line in the image is given by ρ = x cos μ + y sin μ

Basic illustration

Other shapes in images

Square Circle

Several lines

Real Image

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

Number of votes for a line of 20 points with increasing noise:

Random points

Uniform noise can lead to spurious peaks in the array

Random points

• As the level of uniform noise increases, the maximum number of votes increases too:

Practical details

- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude
 - Use gradient magnitude to only vote for lines in perp. direction
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Who belongs to which line?
 - Tag the votes

Hough Transform

- Not just for lines
 - Can be applied to any parametric model

- Hough Transform for Circles
 - How many dimensions will the parameter space have?
 - Given an oriented edge point, what are all possible bins that it can vote for?

Hough transform for circles

image space

Hough parameter space

Hough transform: Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model in a single pass
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Hough transform: Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size

Things to remember

Canny edge detector =
 smooth → derivative → thin →
 threshold → link

 Hough Transform = points vote for shape parameters

