Linear Mixed Effects Model

Monte Carlo Group

Liang Zou, Michael Mcbride, Xinlu Zhang Caleb Donoho, Ashley Lu

22 January 2018

Introduce the definition of LMM

Linear mixed effects models simply model the fixed and random effects as having a linear form. Similar to the Generalized Linear Model, an outcome variable is contributed to by additive fixed and random effects (as well as an error term). Using the familiar notation, the linear mixed effect model takes the form:

$$y_{ij} = b_0 + b_1 x_{ij} + v_i + \epsilon_{ij}$$

- y_{ij} is the response value for a particular ij case.
- b_0 is fixed intercept for regression model.
- b_1 is fixed slope for regression model.
- x_{ij} is fixed-effect variable for observation j-th measurement of i-th subject.
- \mathbf{v}_i is random intercept of i-th subject.
- ullet ϵ_{ij} is a Gussian error term which assumed to be multivariate normally distributed.

Assumption of the models

- The relationship between x and y is linear
- Y is observed random variable.
- X is a design matrix for fixed effect.
- $v_i \sim N(0, \sigma_v^2)$ is an unobserved random noise.
- $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$ is an unobserved random noise.
- v_i and ϵ_{ij} are independent of each other.
- b_0 and b_1 are unknown constants.

When and Why LMM is necessary and carried out.

We use Linear Mixed Effect Models when we believe that the data comes from partitions on the sample space, that each partition is internally correlated, and that the partition means are determined by some global parameters plus some noise. This type of situation is illustrated on the graph shown below (image obtained from here):

When and Why LMM is necessary and carried out.

As we can see, the mean within each group follows the larger line, while the data within each group follows it's own sub-population line. In situations like these we might want to be able to make both population and sub-population inferences, or discuss how much the grouping affects the variation. Using an LMM allows us do all of these things. Essentially, we use LMMs when we believe the response variable is sampled from different distributions, the parameters for which are sampled from a parent distribution, and we want our inference to be reflective of this model.

Statistical Analysis packages

There are several packages in R, which contains for fitting LMMs, for instance nlme, Ime4.0, or MCMCglmm. For use in R, it should be noted that Ime4 and nlme do not interact well with each other.

```
require(lme4)
citation("lme4")
require(nlme)
citation("nlme")
require(MCMCglmm)
citation("MCMCglmm")
```

Statistical Analysis packages

Two main differences between "Ime4" and "nlme":

- "nlme" can only fit outcomes with normal distribution
- "Ime4" can use other link functions (e.g. logistic regression)
- "nlme" is flexible with more variance-covariance structures
- "Ime4" can only specify diagonal and unstructured covariance matrices

Statistical Analysis packages: MCMCglmm

- Estimate the parameters of random effects via MCMC
- Two types of MCMC: Gibbs sampler and Metropolis-Hasting
- General procedure of MCMC:
- Set up initial values
- Run the chain multiple times until they become stable
- Approximation

Perform dataset

We are using the dataset called Imm.dataRC and using SPSS to perform the analysis.

Perform dataset

	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	id	Numeric	3	0		None	None	8	Right		🔪 Inpu
2	extro	Numeric	16	13		None	None	16	Right		> Inpu
3	open	Numeric	16	13		None	None	16	Right		> Inpu
4	agree	Numeric	16	13		None	None	16	Right		Ŋ Inpu
5	social	Numeric	16	13		None	None	16	Right		∑ Inpu
6	class	String	1	0		None	None	4	E Left	& Nominal	Ŋ Inpu
7	school	String	3	0		None	None	5	 Left	& Nominal	Ŋ Inpu
8	classRC	Numeric	8	0		None	None	10	Right	& Nominal	∑ Inpu
9	schoolRC	Numeric	8	0		None	None	10	Right	& Nominal	→ Inpu
10	FXPRED_1	Numeric	19	15	Fixed Predicte	None	None	21	Right		→ Inpu
11	PRED_1	Numeric	19	15	Predicted Values	None	None	21	Right		Ŋ Inpu
12											

Perform dataset

- The data contains 1200 cases evenly distributed among 24 nested groups (4 classes within 6 schools).
- extro: the interval scaled outcome variable Extroversion.
- open: predicted by fixed effects for the interval scaled predictor Openness to new experiences.
- agree: the interval scaled predictor Agreeableness.
- social: the interval scaled predictor Social engagement.
- classRC: the nominal scaled predictor Class.
- schoolRC: the random (nested) effect of Class (classRC) within School (schoolRC) as well as the random effect of School.

The Case Processing Summary simply shows that the cases are balanced among the categories of the categorical variables and no cases were excluded.

Case Processing Summary

		Count	Marginal Percentage
classRC	1	300	25.0%
	2	300	25.0%
	3	300	25.0%
	4	300	25.0%
schoolRC	1	200	16.7%
	2	200	16.7%
	3	200	16.7%
	4	200	16.7%
	5	200	16.7%
	6	200	16.7%
Valid		1200	100.0%
Excluded		0	
Total		1200	

Rather large table contains all the descriptive statistics (only the very top of the table is shown here).

lassRC	school	RC	Count	Mean	Standard Deviation	Coefficient of Variation
l	1	extro	50	80.3780775	2.72223072	3.4%
		open	50	40.3949348	5.99143304	14.8%
		agree	50	36.2490009	6.16716305	17.0%
		social	50	101.347351	17.6249114	17.4%
	2	extro	50	68.3509948	.438343995	0.6%
		open	50	40.2310796	6.13149141	15.2%
		agree	50	34.4292989	5.65646971	16.4%
		social	50	98.4141077	15.4740068	15.7%
	3	extro	50	63.7827007	.281376636	0.4%
		open	50	40.4489301	5.18116491	12.8%
		agree	50	35.5121035	4.70341338	13.2%
		social	50	100.324500	14.2921193	14.2%
	4	extro	50	59.7253379	.259824951	0.4%
		open	50	38.3536854	5.69767114	14.9%
		agree	50	36.4827588	4.75289937	13.0%
		social	50	102.088786	15.2093760	14.9%
	5	extro	50	55.8117921	.242368327	0.4%
		open	50	40.2527442	5.70058013	14.2%
		agree	50	35.8178298	4.19656365	11.7%
		social	50	100.216916	14.9726997	14.9%
	6	extro	50	50.3883065	.639401003	1.3%
		open	50	40.1017695	4.74579412	11.8%
		agree	50	34.5376332	4.45036364	12.9%
		social	50	95.4782588	18.3242857	19.2%
	Total	extro	300	63.0728683	9.68321522	15.4%
		open	300	39.9638573	5.59578837	14.0%
		agree	300	35.5047708	5.05514415	14.2%
		social	300	99.6449864	16.0645459	16.1%
2	1	extro	50	74.8053293	1.20904041	1.6%
		open	50	40.8589429	5.34758369	13.1%
		agree	50	35.9456349	4.30277384	12.0%
		social	50	99.8706241	16.3033499	16.3%

The Model Dimension table simply shows the model in terms of which variables (and their number of levels) are fixed and / or random effects and the number of parameters being estimated

Model Dimensiona

		Number of Levels	Covariance Structure	Number of Parameters
Fixed Effects	Intercept	1		1
	open	1		1
	agree	1		1
	social	1		1
	classRC	4		3
Random Effects	classRC(schoolRC) + schoolRC ^b	30	Variance Components	2
Residual				1
Total		38		10

a. Dependent Variable: extro.

b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

The table displays fit indices. For each index; the lower the number, the better the model fits the data.

Information Criteriaa

-2 Restricted Log Likelihood	3528.106
Akaike's Information Criterion (AIC)	3534.106
Hurvich and Tsai's Criterion (AICC)	3534.126
Bozdogan's Criterion (CAIC)	3552.359
Schwarz's Bayesian Criterion (BIC)	3549.359

The information criteria are displayed in smaller-is-better form.

a. Dependent Variable: extro.

This table is our Estimates of Fixed Effect. This is what we'd expect to see in a normal linear regression model with our β values, their standard error, degrees of freedom, t-value, significance, and 95% interval.

Estimates of Fixed Effects^a

						95% Confidence Interval		
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound	
Intercept	57.383879	4.056589	5.299	14.146	.000	47.130810	67.636947	
open	.006130	.004963	1173.270	1.235	.217	003608	.015868	
agree	007736	.005698	1173.203	-1.358	.175	018916	.003444	
social	.000531	.001852	1173.359	.287	.774	003103	.004165	
[classRC=1]	5.665733	.983721	15.001	5.759	.000	3.568999	7.762468	
[classRC=2]	3.704930	.983709	15.001	3.766	.002	1.608212	5.801648	
[classRC=3]	2.054798	.983726	15.002	2.089	.054	041945	4.151541	
[classRC=4]	Ор	0						

a. Dependent Variable: extro.

b. This parameter is set to zero because it is redundant.

- The RC variables contain the same information as the original variables, they simply have been recoded.
- SPSSautomatically choose the category with the highest numerical value (or the lowest alphabetical letter) as the reference category for categorical variables.
- In the lme4 package in R, the software automatically picks the lowest numerical value (or the earliest alphabetically letter) as the reference category for categorical variables.

Covariance Parameters

Estimates of Covariance Parametersa

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound	
Residual		.968368	.039986	24.218	.000	.893085	1.049998	
classRC(schoolRC)	Variance	2.883600	1.060023	2.720	.007	1.402910	5.927070	
schoolRC	Variance	95.171929	60.651592	1.569	.117	27.293005	331.868776	

a. Dependent Variable: extro.

Correlation Matrix for Estimates of Covariance Parameters

Parameter		Residual	classRC (schoolRC) Variance	schoolRC Variance	
Residual		1	001	.000	
classRC(schoolRC)	Variance	001	1	004	
schoolRC	Variance	.000	004	1	

a. Dependent Variable: extro.

- We have the Covariance Matrix for the Estimates of Fixed effects table to determine the covariance between our fixed effects. The only significant covariances we see is between our class variables with themselves which is to be expected.
- The Correlation Matrix for Estimates of Fixed Effects table shows us a similar story as our covariance matrix where we find relatively small and insignificant correlations between our variables except between our classes.

Conclusion

- The LMM model is a useful tool when observing both fixed and random effects as in world data.
- In particular, our use of the LMM is able to be useful in addressing nested effects such as with classes within schools.
- To create LMM, SPSS is able to easily build and return descriptive statistics to address the fixed effects.
- In our interpretation of LMM, we have multiple tables to focus on the fixed effects in quantity and confidence intervals as our random effects are known via assumption.
- We should intend to use a LMM when we sample from subgroups which have different distributions determined by the parent group.

Reference

- http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/ SPSS_SC/Module9/M9_LMM/SPSS_M9_LMM.htm
- http://users.stat.umn.edu/~helwig/notes/Imer-Notes.pdf
- http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf