Top-down Chart Parsing: the Earley algorithm Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2021/22

Top-down parsing as search

Earley algorithm

Parsing so far

 Earley algorith (earley1970) rithm is a top down (and left-to-right) parsing algorithm · It allows arbitrary CPGs

we can formulate junzang, as

- Top-down: begin with the start symbol, try to produce the input string to be parsed

- Bottom up: begin with the input, and try to refuce it to the start symbol

Another aspect of a parser is its directionality. Two choices are:
 Directional: parses processes the input left to right (right to left is also possible but rarely used)
 Non-directional: order is not important, typically require all input to be in

- . Keeps record of constituents that are
- predicted using the grammar (top-down) in-progress with partial evidence completed based on input seen so far at every position in the input string
- Time complexity is O(n³)

Earley chart entries (states or items)

Earley chart entries are CF rules with a 'dot' on the RHS representing the state of $\bullet \ A \ \rightarrow \ \bullet \alpha[i,i]$ predicted without any evidence (yet)

- $\bullet \ A \ \rightarrow \ \alpha \bullet \beta[i,j]$ partially matched
- $\bullet \ A \ \rightarrow \ \alpha\beta \bullet [i,j]$ completed, the non-terminal A is found in the given span

Earley algorithm: an informal sketch

- 1. Start at position 0, predict S
- 2. Predict all possible states (rules that apply)
- 3 Read a world
- 4. Update the table, advance the dot if possible
- 5. Go to step 2
- 6. If we have a completed S production at the end of the input, the input it recognized

Earley algorithm: three operations

Predictor adds all rules that are possible at the given state Completer adds states from the earlier chart entries that match the completed state to the chart entry being processed, and advances their dot Scanner adds a completed state to the next chart entry if the current category is a POS tag, and the word matches

Earley parsing example (chart[0])

0	she 1 saw	a a	3 duck 4
state	rule	position	operation
0	γ → •S	[0,0]	initialization
1	$S \rightarrow \bullet NP VP$	[0,0]	predictor
2	$S \rightarrow \bullet Aux NP VP$	[0,0]	predictor
3	$NP \rightarrow \bullet Det N$	[0,0]	predictor
4	$NP \rightarrow \bullet NP PP$	[0,0]	predictor
5	$NP \rightarrow \bullet Prn$	[0,0]	predictor

Note: the chart[0] is independent of the input

5 → NF VF
5 → Aux NF VF
NF → Det N
NF → Pm
NF → NF PF
VF → V NF
VF → V NF
NF → V NF
N → dack
V → dack
V → dack
V → dack
V → sane
V → sane
V → sane

Earley parsing example (chart[1])

o sh	e saw 2	a	3 duck
state	rule	position	operation
6	Prn → she •	[0,1]	scanner
7	$NP \rightarrow Prn \bullet$	[0,1]	completer
8	$S \rightarrow NP \bullet VP$	[0,1]	completer
9	$NP \rightarrow NP \bullet PP$	[0,1]	completer
10	$VP \rightarrow \bullet V NP$	[1.1]	predictor
11	$VP \rightarrow \bullet V$	[1,1]	predictor
12	$VP \rightarrow \bullet VP PP$	[1,1]	predictor
13	$PP \ \to \bullet Prp \ NP$	[1,1]	predictor

5	\rightarrow Aux NF VF
	→ Det N
	→ Pm
NE	\rightarrow NF FF
	\rightarrow V NT
	$\rightarrow V$
	\rightarrow VF FF
277	→ Prp NP
	→ duck
N	→ park
	→ duck
V.	dacks
	→ szw
	→ she her
Prop	→ in with
Det	- a the
Auc	x → does has

Earley parsing example (chart[2])

state	rule	position	operation
14	V → saw •	[1,2]	scanner
15	$VP \rightarrow V \bullet NP$	[1,2]	completes
16	$VP \rightarrow V \bullet$	[1,2]	completes
17	$S \rightarrow NP VP \bullet$	[0,2]	completes
18	$NP \rightarrow \bullet Det N$	[2,2]	predictor
19	$NP \rightarrow \bullet NP PP$	[2,2]	predictor
20	$NP \rightarrow \bullet Pm$	[2.2]	predictor

	\rightarrow NP VP
- 5	→ Aux NP VP
	→ Det N
	→ Pm
	\rightarrow NP PP
	\rightarrow V NP
	\rightarrow V
	\rightarrow VP FF
	→ Prp NP
	→ duck
	→ park
	→ duck
v	→ ducks
	→ saw
	→ she her
Pry	→ in with
	t → a the
Au	x → does has

Earley parsing example (chart[3])

, sh	е 1	saw	2	a	3 duck
state	rule			position	operation
21 22	Det - NP -	+ a • Det •N	ı	[2,3] [2,3]	scanner complete

		NE VE	
5		Aux NP VI	
NF	-	Det N	
NF			
		NETT	
		VNP	
VF	-	v	
VF	-	VEST	
		Prp NP	
		dack	
N	-	park	
v		dack	
v	-	dade	
v		SEN	
Pm	-	she her	
Prp	-	in with	
		a the	
Acce	-	does has	

Earley parsing example (chart[4])

	she		SZW		a		duck	
o stati		le		2	position	3	peration	ď
23	N	→ 0	luck •		[3,4]	s	canner	_
24	V	$\rightarrow d$	tuck •		[3,4]	s	canner	
25	N	- ₽	Det N •	. 1	[2,4]	c	omplete	r
26	VE		V NP •		1,4	c	omplete	r
27	0	N	P VP •		0.41	-	omploto	

Earley parsing: summary • Complexity (asymptotic) is the same as CKY — time complexity: (orle*) — spec complexity: (orle*) • Our countyle shows recognization, we need to maintain back links for parsing • Again. Intelly dust delives a person forest compactly, but extracting all three may require exponential time (Clothe 10 (Internet) Hings. Number 100.00 10.00	Summary * The early parser is a top-down parser with bottom-up filtering (or, you can also view if the other way around) * The parser improves over a behavioral parser by - dynamic progression and behavioral production that the cannot match at a given importance of the particular production to the cannot match at a given imper position. * It can process any CFC (no need for CFF) * There is a nice relation between CY and Earley: you can view Earley as benarting the grammar (converting to CNF) von the fly* Next * Dependency parsing * Reading suggestion: parafeky 2009
An exercise Connect its CVY and Endoy shorts for the sentence below. The effect the near far in the park: Recommended grammar: $S \rightarrow NP VP \qquad PP \rightarrow PPp NP \\ NP \rightarrow De N \qquad N \rightarrow park \\ NP \rightarrow Pm \qquad N \rightarrow de N \\ NP \rightarrow Pm \qquad N \rightarrow de N \\ NP \rightarrow NP \leq V \rightarrow de N \\ NP \rightarrow NP \leq V \rightarrow de N \\ NP \rightarrow NP \leq V \rightarrow de N \\ NP \rightarrow NP \leq V \rightarrow de N \\ NP \rightarrow NP \leq V \rightarrow de N \\ NP \rightarrow NP \Rightarrow de VP \rightarrow V \qquad Pp \rightarrow de N \\ VP \rightarrow V \qquad Pp \rightarrow de N \\ (Clean, 40 Limited Margell$	Acknowledgments, references, additional reading material