Laboratório de Engenharia Química 1

Prática Nº 2: Estática dos Fluidos e a Força de Empuxo

1. INTRODUÇÃO

Segundo o Princípio de Arquimedes, um corpo sólido submerso em um fluido está sujeito a uma força de sustentação, chamada Força de Empuxo (F_E), com módulo igual ao peso do fluido deslocado.

A Força de Empuxo é diretamente proporcional à massa específica do fluido em que o corpo está submerso, sendo desprezível quando exercida por gases se comparada à Força de Empuxo exercida por líquidos. Entretanto, a Força de Empuxo ocasionada por gases é responsável por fenômenos importantes, como o deslocamento de massas de ar quente e frio na atmosfera.

O Princípio de Arquimedes apresenta várias aplicações, entre elas está a medida de massa específica de líquidos. A referida medição pode ser realizada empregando-se um conjunto contendo uma balança, uma proveta graduada e um corpo sólido, como apresentado na Figura 1.

Figura 1: Esquema de balança com provetas graduadas contendo líquido e corpo sólido imerso.

Na Figura 1, uma proveta com certo volume de líquido está sobre uma balança. Se um corpo sólido, de massa m, for imerso parcialmente no líquido (incompressível), e permanecer estagnado devido à ação da tração T que impede seu movimento descendente, uma porção do líquido, de volume igual ao volume submerso do corpo, será deslocado e o nível de líquido da proveta se elevará. Em uma proveta graduada pode-se determinar, através da nova posição do nível do líquido, o volume deslocado do corpo sólido.

Antes da imersão do corpo sólido no líquido, a balança mede a força de módulo Fo = Mog, correspondente ao peso da massa Mo, referente ao conjunto proveta e líquido; sendo g a aceleração da gravidade (10 m/s²). Após a imersão do corpo, o mesmo sofrerá a ação da Força de Empuxo, direcionada para cima. Segundo a Terceira Lei de Newton, o

Laboratório de Engenharia Química 1

corpo exercerá sobre o líquido uma força de módulo igual à Força de Empuxo e de sentido contrário à mesma. Essa força será transmitida à balança, que registrará um incremento no peso do conjunto proveta e líquido (massa M). Esse acréscimo no peso aparente do conjunto representa a Força de Empuxo exercida pelo líquido sobre o corpo sólido.

A Figura 2 apresenta um diagrama das forças que atuam sobre o corpo sólido e sobre a balança, após a imersão parcial do corpo.

Figura 2: Diagrama de forças atuantes no corpo sólido imerso e na balança contendo a proveta e o corpo sólido.

Se o corpo sólido não estiver imerso no líquido, a balança medirá o peso do conjunto líquido e proveta (Mog); após a imersão do corpo, o valor da leitura será maior, devido à ação da Força de Empuxo. A força medida após a imersão do corpo é representada pela Equação 1.

$$Mg = Mog + F_E \tag{1}$$

A Força de Empuxo pode ser determinada na leitura da balança, considerando as medidas anteriores e posteriores à imersão parcial do corpo, através da Equação 2.

$$F_{E} = (M - Mo)g$$

$$\frac{F_{E}}{g} = (M - Mo)$$
(2)

Inicialmente, a proveta continha volume Vo de líquido. Após a imersão parcial do corpo, a leitura da graduação da proveta indica um volume maior, V. Assim, o volume da porção de líquido deslocada pelo corpo sólido será $\Delta V = V - Vo$ e sabe-se que o peso dessa porção de líquido é igual à Força de Empuxo exercida sobre o corpo, conforme Equação 3.

$$F_{E} = \rho(V - Vo)g$$

$$\frac{F_{E}}{g} = \rho(V - Vo)$$
(3)

Laboratório de Engenharia Química 1

A grandeza $\frac{F_{\scriptscriptstyle E}}{g}$ aparece também na Equação 2, e é calculada pela diferença

 $\Delta M = M - Mo$. Assim, determina-se o valor da massa específica do líquido, através dos coeficientes angulares da Equação 4.

$$(M - Mo) = \rho(V - Vo) \tag{4}$$

2. OBJETIVO

Determinar os valores de massa específica dos fluidos analisados, através de medidas de Força de Empuxo exercida pelos fluidos em corpos sólidos de diferentes formatos.

3. MATERIAIS E EQUIPAMENTOS

- Proveta de 1 L
- Balança
- Água
- Etanol
- Corpo cilíndrico de alumínio
- Corpo esférico de alumínio

4. METODOLOGIA

- 1) Preencha a proveta graduada com 500 mL de água
- 2) Posicione a proveta na balança e registre a medida da massa do conjunto proveta e líquido. A proveta deverá permanecer sobre a balança.
- 3) Mergulhe a peça cilíndrica na água, pouco a pouco, de forma a variar a leitura de volume na escala da proveta entre os 500 mL e 800 mL. Utilize variações de volume de 50 mL para obter medidas de 6 diferentes pontos. Realize medidas da massa M em função do volume V de líquido na proveta. Realize as medidas em réplicas
- 4) Repita as medidas, substituindo os 500 mL de água por 500 mL de etanol. Variando o volume de 50 em 50 mL, realize 6 medidas em réplicas
- 5) Para as medidas com o corpo esférico, a quantidade inicial de líquido na proveta dever ser 800 mL. Meça 4 diferentes variações de volume (20 mL, 20 mL e por fim 10 mL) e massa. Realize medições em réplicas.

5. RESULTADOS E DISCUSSÕES

Os resultados para o corpo cilíndrico devem ser registrados segundo a Tabela 1, e os resultados para o corpo esférico segundo a Tabela 2.

Laboratório de Engenharia Química 1

Tabela 1 – Resultados de variação de massa e volume (corpo cilíndrico).

Líquido:	
Massa inicial (Mo), proveta + líquido:	
Volume inicial (Vo):	
MEDIDA 1	MEDIDA 2
$M_1 =$	$M_1 =$
$V_1 =$	$V_1 =$
$M_2 =$	$M_2 =$
$V_2 =$	$V_2 =$
$M_3 =$	$M_3 =$
$V_3 =$	$V_3 =$
$M_4 =$	$M_4 =$
$V_4 =$	$V_4 =$
$M_5 =$	$M_5 =$
$V_5 =$	$V_5 =$
$M_6 =$	$M_6 =$
$V_6 =$	$V_6 =$

Tabela 2 – Resultados de variação de massa e volume (corpo esférico).

Líquido:	
Massa inicial (Mo), proveta + líquido:	
Volume inicial (Vo):	
MEDIDA 1	MEDIDA 2
$M_1 =$	$M_1 =$
$V_1 =$	$V_1 =$
$M_2 =$	$M_2 =$
$V_2 =$	$V_2 =$
$M_3 =$	$M_3 =$
$V_3 =$	$V_3 =$
$M_4 =$	$M_4 =$
$V_4 =$	$V_4 =$

- 1) Mediante os resultados obtidos na prática, relacione em um gráfico, os dados de (M-Mo) e (V-Vo), de forma a obter a massa específica do líquido estudado.
- 2) Se corpos sólidos com os mesmos formatos e volume, porém constituídos de outro material, com densidade igual ao dobro da densidade do alumínio, fossem imersos nos líquidos analisados, os resultados de massa específica dos líquidos seriam distintos? Explique.

Laboratório de Engenharia Química 1

3) Caso um terceiro corpo sólido fosse utilizado no experimento, um corpo cilíndrico de alumínio de diâmetro igual à metade do diâmetro do corpo empregado, a Força de Empuxo atuante no corpo imerso seria diferente? Explique.

SEGURANÇA

Neste experimento, os aspectos sobre segurança estão relacionados aos cuidados em se manipular etanol. Deve-se evitar a inalação de vapores e o contato com os olhos. O etanol é um composto inflamável e o contato com fontes de calor oferece riscos de ignição.

6) REFERÊNCIAS BIBLIOGRÁFICAS

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. **Fenômenos de Transporte**. Rio de Janeiro: Editora LTC, 2ª Edição, 2012.

WHITE, F. M. **Mecânica dos Fluidos**. Porto Alegre: McGraw-Hill, Bookman, AMGH Editora Ltda, 6ª Edição, 2011.