Nonstandard methods versus Nash-Williams

Kameryn J. Williams they/them

 $\mathsf{Sam}\ \mathsf{Houston}\ \mathsf{State}\ \mathsf{University} \to \mathsf{Bard}\ \mathsf{College}\ \mathsf{at}\ \mathsf{Simon's}\ \mathsf{Rock}$

MAMLS Spring Fling 2023 May 23

Joint work with Timothy Trujillo (SHSU)

Our project

- \bullet Nonstandard methods have been fruitfully applied to prove theorems about combinatorics on $\mathbb N$
 - Namedrop: Di Nasso, Goldbring, Jin, Lupini, Tao, . . .
- Topological Ramsey theory studies combinatorial topological spaces which generalize Ellentuck space (\approx the space of subsets of $\mathbb N$), the familiar setting for ordinary Ramsey theory
- Let's apply nonstandard methods to a more general setting than Ellentuck space
- Starting point: the Nash-Williams theorem for Ellentuck space and its generalization

Nonstandard methods

We can use tools from model theory to prove theorems outside of logic

- \bullet Take a structure. For this talk, it will mostly be $\mathbb N$
- Take an ultrapower of $\mathbb N$ to embed $\mathbb N$ into a saturated elementary extension $^*\mathbb N$
- Exploit the connection $\mathbb{N} \hookrightarrow {}^*\mathbb{N}$ to prove theorems about \mathbb{N}

3 / 23

A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition \mathbb{N} into finitely many pieces X_0, \ldots, X_n then one of the pieces is infinite.

4 / 23

A gentle warmup: the pigeonhole principle

Theorem (Pigeonhole Principle)

If you partition \mathbb{N} into finitely many pieces X_0, \ldots, X_n then one of the pieces is infinite.

Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- ${}^*X_0, \dots, {}^*X_n$ are a partition of ${}^*\mathbb{N}$ (by elementarity)
- So α is in some * X_i
- So X_i is infinite
 (by elementarity)

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding $\mathbb N$ into $^*\mathbb N$

5 / 23

Iterating the * map

I lied earlier when I said nonstandard methods work by embedding $\mathbb N$ into $^*\mathbb N$

- Actually we embed $V_{\omega}(\mathbb{N})$ into a saturated elementary extension
- ullet Then ${}^*V_\omega(\mathbb{N})$ is a definable class in $V_\omega(\mathbb{N})$
- So *N is a set in the domain of the embedding
- We can apply the * map to it and its elements
- If $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$ then $\alpha < {}^*\alpha$
- And we can iterate:

$$\mathbb{N} \hookrightarrow {}^{*}\mathbb{N} \hookrightarrow {}^{*(2)}\mathbb{N} \hookrightarrow \cdots \hookrightarrow {}^{*(k)}\mathbb{N} \hookrightarrow \cdots$$

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some i.

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some i.

Proof (k = 3):

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^*\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^*{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i}.$
- So $\{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i\}$ is infinite
- Let h_0 be the minimum member

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some i.

Proof (k = 3):

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^*\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^*{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i}.$
- So $\{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i\}$ is infinite
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \dots, h_i \rangle$
- Inductively, $\alpha \in {}^*\{a \in \mathbb{N} : t^{\smallfrown}a \in X_i\}$ for each $t \in [H_i]^2$
- And $\alpha \in {}^*{a \in \mathbb{N} : t^{\hat{a}} \cap \alpha \in {}^*X_i}$ for each $t \in [H_i]^1$

Theorem (Ramsey 1930)

Partition $[\mathbb{N}]^k$ into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $[H]^k \subseteq X_i$ for some i.

Proof (k = 3):

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\langle \alpha, {}^*\alpha, {}^{*(2)}\alpha \rangle$ is in some ${}^{*(3)}X_i$
- So $\alpha \in {}^*{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i}.$
- So $\{a \in \mathbb{N} : \langle a, \alpha, {}^*\alpha \rangle \in {}^{*(2)}X_i\}$ is infinite
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \dots, h_i \rangle$
- Inductively, $\alpha \in {}^*\{a \in \mathbb{N} : t^{\smallfrown}a \in X_i\}$ for each $t \in [H_i]^2$
- And $\alpha \in {}^*{a \in \mathbb{N} : t^a \cap \alpha \in {}^*X_i}$ for each $t \in [H_i]^1$
- ullet Finitely many, and lpha is in their nonstandard intersection
- So their standard intersection is infinite
- Pick $h_{i+1} > h_i$ from that intersection

Finally $H = \langle h_i \rangle$ is monochromatic

Generalizing Ramsey to families of sets of nonuniform size

Definition

The Schreier barrier S consists of all $s \in [\mathbb{N}]^{<\omega}$ so that $|s| = \min s + 1$.

- The first element of *s* tells you how long *s* is
- You can think of S as a tagged amalgamation of (copies of) all $[\mathbb{N}]^k$

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$S = \{ s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1 \}$$

8 / 23

A Ramsey property for the Schreier barrier

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$S = \{ s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1 \}$$

- For $[\mathbb{N}]^k$ we looked at what piece of the partition contained $\langle \alpha, *\alpha, \dots, *^{(k-1)}\alpha \rangle$
- But now we don't know in advance how long a sequence in ${\cal S}$ will be
- Intuitively, we want to look at

$$\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$$

 But this is nonsensical—what would it even mean to iterate * a nonstandard number of times?

A proxy for $\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$

Notation:

- * $\mathbb{N} = \operatorname{dir lim}_{k \in \omega}^{*(k)} \mathbb{N}$
- For $\beta \in {}^{\star}\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

A proxy for $\langle \alpha, \alpha, \alpha, \dots \alpha \rangle$

Notation:

- * $\mathbb{N} = \operatorname{dir lim}_{k \in \omega}^{*(k)} \mathbb{N}$
- For $\beta \in {}^*\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

Claim: Fix $\alpha \in {}^*\mathbb{N}$. For any sequence $\langle \beta_i : i \in \omega \rangle$ there is (a non-unique) $\sum_{\alpha} \beta_i \in {}^*\mathbb{N}$ so that for all $X \subseteq \mathbb{N}$

$$\sum_{i \in \mathbb{N}; \alpha} \beta_i \in {}^*X \quad \Leftrightarrow \quad \alpha \in {}^*\{i \in \mathbb{N} : \beta_i \in {}^{*(k(\beta_i))}X\}$$

9 / 23

A proxy for $\langle \alpha, {}^*\alpha, \dots {}^{*(\alpha)}\alpha \rangle$

Notation:

- * $\mathbb{N} = \operatorname{dir lim}_{k \in \omega}^{*(k)} \mathbb{N}$
- For $\beta \in {}^*\mathbb{N}$, let $k(\beta)$ be the least k so that $\beta \in {}^{*(k)}\mathbb{N}$

Claim: Fix $\alpha \in {}^*\mathbb{N}$. For any sequence $\langle \beta_i : i \in \omega \rangle$ there is (a non-unique) $\sum_{\alpha} \beta_i \in {}^*\mathbb{N}$ so that for all $X \subseteq \mathbb{N}$

$$\sum_{i \in \mathbb{N}; \alpha} \beta_i \in {}^*X \quad \Leftrightarrow \quad \alpha \in {}^*\{i \in \mathbb{N} : \beta_i \in {}^{*(k(\beta_i))}X\}$$

• Our proxy for $\langle \alpha, {}^*\alpha, \dots, {}^{*(\alpha)}\alpha \rangle$ is then

$$\sigma(\alpha) = \sum_{i \in \mathbb{N}; \alpha} \langle \alpha, \dots, *^{(i)} \alpha \rangle$$

Nash-Williams for S

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \mid H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

$$s_k = \langle \alpha, \dots^{*(k)} \alpha \rangle \text{ approximate } \sigma(\alpha)$$
Proof:

- **Proof:**
 - Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
 - Then $\sigma(\alpha)$ is in some * X_i
 - So $\alpha \in {}^*{a \in \mathbb{N} : a^{\hat{a}} \in {}^{*(a)}X_i}$
 - Let h_0 be the minimum member

Nash-Williams for ${\cal S}$

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

 $s_k = \langle \alpha, \dots^{*(k)} \alpha \rangle$ approximate $\sigma(\alpha)$
Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\sigma(\alpha)$ is in some * X_i
- So $\alpha \in {}^*{a \in \mathbb{N} : a^{\hat{a}} \in {}^{*(a)}X_i}$
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \dots, h_i \rangle$
- Inductively, for each $t \subseteq H_i$ with $|t| < \min t + 1$ we have that $\alpha \in {}^*\{a \in \mathbb{N} : t^{\smallfrown} a^{\smallfrown} s_\ell \in {}^{*(\ell)} X_i\}$, for ℓ the right length

Nash-Williams for ${\cal S}$

Theorem (Nash-Williams for S)

Partition S into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $S \upharpoonright H$ is monochromatic.

$$S \upharpoonright H = \{ s \in S : s \subseteq H \}$$

 $s_k = \langle \alpha, \dots^{*(k)} \alpha \rangle$ approximate $\sigma(\alpha)$
Proof:

- Consider $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$
- Then $\sigma(\alpha)$ is in some * X_i
- So $\alpha \in {}^*{a \in \mathbb{N} : a^{\hat{a}} \in {}^{*(a)}X_i}$
- Let h_0 be the minimum member

Now induct:

- Already built $H_i = \langle h_0, \dots, h_i \rangle$
- Inductively, for each $t \subseteq H_i$ with $|t| < \min t + 1$ we have that $\alpha \in {}^*\{a \in \mathbb{N} : t^{\smallfrown} a^{\smallfrown} s_\ell \in {}^{*(\ell)} X_i\}$, for ℓ the right length
- ullet Finitely many, so lpha is in their nonstandard intersection
- So their standard intersection is finite
- Pick $h_{i+1} > h_i$ from that intersection

Finally $H = \langle h_i \rangle$ is monochromatic

Further generalization: fronts

 $\mathcal{F} \subseteq [\mathbb{N}]^{<\omega}$ is a front if

- (antichain or Nash-Williams property) $s \not\sqsubseteq t$ for $s \neq t$ from \mathcal{F}
- (density) For any infinite $b \subseteq \mathbb{N}$ there is $s \sqsubseteq b$ from \mathcal{F}

Further generalization: fronts

$$\mathcal{F} \subseteq [\mathbb{N}]^{<\omega}$$
 is a front if

- (antichain or Nash-Williams property) $s \not\sqsubseteq t$ for $s \neq t$ from \mathcal{F}
- (density) For any infinite $b \subseteq \mathbb{N}$ there is $s \sqsubseteq b$ from \mathcal{F}

Examples:

- $[\mathbb{N}]^k$ for any k
- ullet The Schreier barrier ${\cal S}$

Ramsev properties for fronts

To prove a Ramsey property for $[\mathbb{N}]^k$ and \mathcal{S} we had an idea of what a generic nonstandard member looked like, based on how the front was built up

- $\langle \alpha, \dots, {}^{*(k-1)}\alpha \rangle$ for $[\mathbb{N}]^k$
- $\sigma(\alpha)$, a proxy for $\langle \alpha, \dots, *(\alpha) \alpha \rangle$ for S

Ramsev properties for fronts

To prove a Ramsey property for $[\mathbb{N}]^k$ and \mathcal{S} we had an idea of what a generic nonstandard member looked like, based on how the front was built up

- $\langle \alpha, \dots, {}^{*(k-1)}\alpha \rangle$ for $[\mathbb{N}]^k$
- $\sigma(\alpha)$, a proxy for $\langle \alpha, \dots, *(\alpha) \alpha \rangle$ for S

If we want to do the same for an arbitrary front \mathcal{F} we need to understand how \mathcal{F} is built up

Trees of fronts

For \mathcal{F} a front, set

$$T(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves

Trees of fronts

For ${\mathcal F}$ a front, set

$$\mathcal{T}(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves

Claim: $T(\mathcal{F})$ is well-founded

- If b were an infinite branch through $T(\mathcal{F})$ it'd extend some $s \in \mathcal{F}$ by density
- But by the Nash-Williams property such s is unique so b couldn't be infinite

Trees of fronts

For ${\mathcal F}$ a front, set

$$\mathcal{T}(\mathcal{F}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{F}\}$$

Then $T(\mathcal{F})$ is a tree and \mathcal{F} are the leaves Claim: $T(\mathcal{F})$ is well-founded

- If b were an infinite branch through $T(\mathcal{F})$ it'd extend some $s \in \mathcal{F}$ by density
- But by the Nash-Williams property such s is unique so b couldn't be infinite

We can think of ${\mathcal F}$ as built up by induction on ${\mathcal T}({\mathcal F})$

- For $s \in \mathcal{F}$, set $\mathcal{F}_s = \{s\}$
- ullet For $s\in T(\mathcal{F})\setminus \mathcal{F}$, set $\mathcal{F}_s=igcup_{t\in \mathsf{succ}\, s}\mathcal{F}_t$
- Here succ s is the set of successors of s in $T(\mathcal{F})$
- ullet Observe that \mathcal{F}_s is a front on $[\mathbb{N}]^{<\omega}\upharpoonright s$ Finally $\mathcal{F}=\mathcal{F}_\emptyset$

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

What is S_s for subsequences s of (2,7,9)?

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s ext{ for some } s \in \mathcal{S}\} \ &= \{t \in [\mathbb{N}]^{<\omega} : |s| \leq \min s + 1\} \end{aligned}$$

$$\mathcal{S}_s = \{s\}$$
 if $s \in \mathcal{S}$

$$= \bigcup_{t \in \text{succ } s} \mathcal{S}_s \text{ if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S}$$

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s ext{ for some } s \in \mathcal{S}\} \ &= \{t \in [\mathbb{N}]^{<\omega} : |s| \leq \min s + 1\} \end{aligned}$$

$$\mathcal{S}_s = \{s\}$$
 if $s \in \mathcal{S}$
= $\begin{bmatrix} \end{bmatrix}$ \mathcal{S}_s if $s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S}$

What is S_s for subsequences s of (2,7,9)?

Inductively from the end up:

$$\bullet \ \mathcal{S}_{\langle 2,7,9\rangle} = \{\langle 2,7,9\rangle\}$$

 $t \in \operatorname{succ} s$

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$egin{aligned} \mathcal{T}(\mathcal{S}) &= \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s ext{ for some } s \in \mathcal{S}\} \ &= \{t \in [\mathbb{N}]^{<\omega} : |s| \leq \min s + 1\} \end{aligned}$$

$$\mathcal{S}_s = \{s\}$$
 if $s \in \mathcal{S}$

$$= \bigcup_{t \in \mathsf{Succ}\, s} \mathcal{S}_s \text{ if } s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S}$$

What is S_s for subsequences s of (2,7,9)?

Inductively from the end up:

$$\bullet \ \mathcal{S}_{\langle 2,7,9\rangle} = \{\langle 2,7,9\rangle\}$$

$$\bullet \ \mathcal{S}_{\langle 2,7\rangle} = \{\langle 2,7,c\rangle : 7 < c\}$$

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$T(\mathcal{S}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{S}\}$$

= $\{t \in [\mathbb{N}]^{<\omega} : |s| \le \min s + 1\}$

$$\mathcal{S}_s = \{s\}$$
 if $s \in \mathcal{S}$
= $\bigcup_{t \in \mathsf{succ}\, s} \mathcal{S}_s$ if $s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S}$

What is S_s for subsequences s of (2,7,9)? Inductively from the end up:

- $\bullet \ \mathcal{S}_{\langle 2,7,9\rangle} = \{\langle 2,7,9\rangle\}$
- $\bullet \ \mathcal{S}_{\langle 2,7 \rangle} = \{ \langle 2,7,c \rangle : 7 < c \}$
- $S_{\langle 2 \rangle} = \{ \langle 2, b, c \rangle : 2 < b < c \} = \{2^{\hat{}} t : t \in [\mathbb{N} \setminus 3]^2 \}$

$$\mathcal{S} = \{s \in [\mathbb{N}]^{<\omega} : |s| = \min s + 1\}$$

$$T(\mathcal{S}) = \{t \in [\mathbb{N}]^{<\omega} : t \sqsubseteq s \text{ for some } s \in \mathcal{S}\}$$
$$= \{t \in [\mathbb{N}]^{<\omega} : |s| \le \min s + 1\}$$

$$\mathcal{S}_s = \{s\}$$
 if $s \in \mathcal{S}$
= $\bigcup_{t \in \text{succ } s} \mathcal{S}_s$ if $s \in \mathcal{T}(\mathcal{S}) \setminus \mathcal{S}$

What is S_s for subsequences s of $\langle 2, 7, 9 \rangle$? Inductively from the end up:

- $\bullet \ \mathcal{S}_{\langle 2,7,9\rangle} = \{\langle 2,7,9\rangle\}$
- $\bullet \ \mathcal{S}_{\langle 2,7\rangle} = \{\langle 2,7,c\rangle : 7 < c\}$
- $S_{\langle 2 \rangle} = \{ \langle 2, b, c \rangle : 2 < b < c \} = \{ 2^t : t \in [\mathbb{N} \setminus 3]^2 \}$
- $\bullet \ \mathcal{S} = \mathcal{S}_{\emptyset} = \{a^{\smallfrown}t : t \in [\mathbb{N} \setminus (a+1)]^a\}$

14 / 23

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$

The idea is, inductively build up $\sigma_{\emptyset} = \sigma_{\emptyset}(\alpha)$ to play a similar role as $\sigma(\alpha)$ did for S:

- For $s \in \mathcal{F}$, set $\sigma_s = \sigma_s(\alpha)$ to be $\langle \alpha \rangle$
- For $s \in T(\mathcal{F}) \setminus \mathcal{F}$, set $\sigma_s = \sigma_s(\alpha)$ to be $\sum_{t \in \text{succ s: } \alpha} \sigma_t(\alpha)$

Recall:

$$\sum \sigma_t \in {}^*X \Leftrightarrow s^{\hat{}}\alpha \in {}^*\{a \in \mathbb{N} : \sigma_{s^{\hat{}}a} \in {}^*X\}$$

The Nash-Williams theorem for Ellentuck space

Theorem (Nash-Williams theorem)

Let \mathcal{F} be a front. Partition \mathcal{F} into finitely many pieces X_0, \ldots, X_n . Then there is infinite $H \subseteq \mathbb{N}$ so that $\mathcal{F} \upharpoonright H$ is monochromatic.

Proof sketch: Fix $\alpha \in {}^*\mathbb{N} \setminus \mathbb{N}$

The idea is, inductively build up $\sigma_{\emptyset} = \sigma_{\emptyset}(\alpha)$ to play a similar role as $\sigma(\alpha)$ did for S:

- For $s \in \mathcal{F}$, set $\sigma_s = \sigma_s(\alpha)$ to be $\langle \alpha \rangle$
- For $s \in T(\mathcal{F}) \setminus \mathcal{F}$, set $\sigma_s = \sigma_s(\alpha)$ to be $\sum_{t \in \mathsf{succ}\, s;\, \alpha} \sigma_t(\alpha)$

- $\sigma_{\emptyset}(\alpha)$ is in some * X_i
- Pick h_0 to be the minimum element of $\{a \in \mathbb{N} : \sigma_a \in {}^*X_i\}$
- Then inductively pick $h_{i+1} > h_i$ using that α is in $\{a \in \mathbb{N} : \sigma_{t \cap a} \in {}^*X_i\}$ for each subset t of the i-th partial solution H_i

Finally $H = \langle h_i \rangle$ is monochromatic

Recall:

$$\sum \quad \sigma_t \in {}^*X \quad \Leftrightarrow \quad s^{\smallfrown}\alpha \in {}^*\{a \in \mathbb{N} : \sigma_{s^{\smallfrown}a} \in {}^*X\}$$

 $t \in \mathsf{succ}\, s; \alpha$

15 / 23

Abstract Ramsey spaces

Ellentuck space ${\mathcal E}$ has multiple components

- ullet The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in $[\mathbb{N}]^k$
- There is a partial order \subseteq on points

Abstract Ramsey spaces

Ellentuck space $\mathcal E$ has multiple components

- ullet The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in $[\mathbb{N}]^k$
- ullet There is a partial order \subseteq on points

And ${\mathcal E}$ has some nice properties

- (A.1) Sequencing: points behave like infinite sequences
- (A.2) Finitization: you can port the partial order ⊆ to the finite approximations, and each approximation has a finite number of predecessors
- (A.3) Amalgamation: [this one's more technical]
- (A.4) Pigeonhole: as it says in the name

Abstract Ramsey spaces

Ellentuck space ${\mathcal E}$ has multiple components

- ullet The points are elements of $[\mathbb{N}]^\omega$
- You can associate to each point its k-th finite approximation in $[\mathbb{N}]^k$
- ullet There is a partial order \subseteq on points

And ${\mathcal E}$ has some nice properties

- (A.1) Sequencing: points behave like infinite sequences
- (A.2) Finitization: you can port the partial order ⊆ to the finite approximations, and each approximation has a finite number of predecessors
- (A.3) Amalgamation: [this one's more technical]
- (A.4) Pigeonhole: as it says in the name

A Ramsey space is a tuple $(\mathcal{R}, \mathcal{AR}, \leq, r)$ satisfying (A.1–4) where \mathcal{R} are the points, $r: \mathcal{R} \times \omega \to \mathcal{AR}$ is the finite approximation map, and \leq is the partial order

The topological in topological Ramsey theory

The Ellentuck topology on \mathcal{R} is generated by basic open sets

$$[a,X]=\{Y\in\mathcal{R}:Y\leq X\text{ and }\exists k\ r_k(Y)=a\}.$$

The topological in topological Ramsey theory

The Ellentuck topology on $\ensuremath{\mathcal{R}}$ is generated by basic open sets

$$[a,X]=\{Y\in\mathcal{R}:Y\leq X\text{ and }\exists k\ r_k(Y)=a\}.$$

If \mathcal{R} is closed as a subspace of the product topology on \mathcal{AR} , it's quite nice

- $\mathcal{X} \subseteq \mathcal{R}$ is Ramsey if you can refine any basic open set be either contained in or disjoint from \mathcal{X}
- $\mathcal{X} \subseteq \mathcal{R}$ is Ramsey null if it is Ramsey and you can always refine to be disjoint from \mathcal{X}

- ullet If ${\mathcal R}$ is closed, any Baire subset is Ramsey and any meager subset is Ramsey null
- Indeed any Souslin-measurable or Borel subset is Ramsey

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose $\mathcal R$ is closed. Then any front on the finite approximations $\mathcal A\mathcal R$ satisfies a Ramsey partition property.

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose $\mathcal R$ is closed. Then any front on the finite approximations $\mathcal A\mathcal R$ satisfies a Ramsey partition property.

- I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem
- But

The abstract Nash-Williams theorem

Theorem (Abstract Nash-Williams)

Suppose $\mathcal R$ is closed. Then any front on the finite approximations $\mathcal A\mathcal R$ satisfies a Ramsey partition property.

- I'd like to say our nonstandard proof of the Nash-Williams theorem extends directly to the full abstract Nash-Williams theorem
- But we need the space to be amenable to nonstandard methods
- And we don't (yet?) have a proof that this applies to every nontrivial Ramsey space

What we do have for the abstract Nash-Williams theorem

Under an extra assumption the nonstandard proof goes through.

Theorem (Partial abstract Nash-Williams)

Consider a front \mathcal{F} on \mathcal{AR} . Suppose

- AR is infinitely branching everywhere; and
- There is a filter C on R so that for each $s \in T(F) \setminus F$ the restriction of succ s to C is a nonprincipal ultrafilter on succ s.

Then $\mathcal F$ satisfies a Ramsey partition property.

- ullet (\mathcal{R},\leq) is a poset, so the usual definition of filter applies to \mathcal{C}
- $\operatorname{succ} s \upharpoonright X = \{t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X)\}$
- $succ s \upharpoonright C = \{succ s \upharpoonright X : X \in C\}$

Positive examples

Any Ramsey space which can be thought of as its (k+1)-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will admit such a filter

- Ellentuck space
 - Restrict any nonprincipal ultrafilter on $\mathcal{P}(\mathbb{N})$ to the infinite subsets to get \mathcal{C}

Positive examples

Any Ramsey space which can be thought of as its (k+1)-th approximations coming from k-th approximations by concatenating sequences from (cofinite subsets of) a countable alphabet will admit such a filter

- Ellentuck space
 - Restrict any nonprincipal ultrafilter on $\mathcal{P}(\mathbb{N})$ to the infinite subsets to get \mathcal{C}
- The Milliken space of block sequences
- The Hales–Jewett space of variable words
- The space $\mathcal{E}_{\omega}(\mathbb{N})$ of equivalence relations on \mathbb{N} with infinite quotients

A silly negative example

The V space

- $m{\cdot}$ \mathcal{V} has two points, the constant 0 sequence and the constant 1 sequence
- Finite approximations are finite constant 0 or 1 sequences
- \bullet Trivially, any front on \mathcal{AV} satisfies a Ramsey partition property
- \bullet But ${\cal V}$ doesn't satisfy the filter property!

Continuing work

Question

Suppose you have a nontrivial^a Ramsey space $(\mathcal{R}, \mathcal{AR}, \leq, r)$ and a front \mathcal{F} on \mathcal{AR} . Then there is a filter \mathcal{C} on \mathcal{R} so that for each $s \in T(\mathcal{F}) \setminus \mathcal{F}$ the restriction of succ s to \mathcal{C} is a nonprincipal ultrafilter on succ s.

^aWhat should this mean?

- (\mathcal{R}, \leq) is a poset, so the usual definition of filter applies to \mathcal{C}
- $\operatorname{succ} s \upharpoonright X = \{ t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X) \}$
- succ $s \upharpoonright \mathcal{C} = \{ \operatorname{succ} s \upharpoonright X : X \in \mathcal{C} \}$

Continuing work

Question

Suppose you have a nontrivial^a Ramsey space $(\mathcal{R}, \mathcal{AR}, \leq, r)$ and a front \mathcal{F} on \mathcal{AR} . Then there is a filter \mathcal{C} on \mathcal{R} so that for each $s \in T(\mathcal{F}) \setminus \mathcal{F}$ the restriction of succ s to \mathcal{C} is a nonprincipal ultrafilter on succ s.

^aWhat should this mean?

- \bullet (\mathcal{R},\leq) is a poset, so the usual definition of filter applies to \mathcal{C}
- $\operatorname{succ} s \upharpoonright X = \{t \in \operatorname{succ} s : \exists k \ t \leq_{\operatorname{fin}} r_k(X)\}$
- succ $s \upharpoonright \mathcal{C} = \{ \operatorname{succ} s \upharpoonright X : X \in \mathcal{C} \}$

- The abstract Nash-Williams theorem isn't the only theorem in abstract Ramsey theory
- What other results are amenable to nonstandard methods?

Thank you!