Regression Analysis Assignment2

November 1, 2021

Problem1. Prove $\frac{1}{n} \leq h_{ii} + \frac{\hat{\mathbf{e}}_{i}^2}{\hat{\mathbf{e}}^t \hat{\mathbf{e}}} \leq 1$ referring to slide3 in the lecture.(Hint: Consider the augmented matrix $\mathbf{X}^* = (\mathbf{X}, \mathbf{Y})$ and put $\mathbf{H}^* = \mathbf{X}^* (\mathbf{X}^{*t} \mathbf{X}^*)^{-1} \mathbf{X}^{*t}$. Then apply the similar argument to \mathbf{H}^* as in the proof of $\frac{1}{n} \leq h_{ii} \leq 1$.)

Problem2. Observe $(\mathbf{X}_1, Y_1), \dots (\mathbf{X}_n, Y_n)$ for p+1-dimensional vector \mathbf{X}_i^t . We consider the multiple linear regression model. Let $\hat{\sigma}^2$ be the MSE of the full model and $\hat{\sigma}_i^2$ be the MSE without i-th observation. Prove that

$$(n-p-2)\hat{\sigma}_i^2 = (n-p-1)\hat{\sigma}^2 - \frac{e_i^2}{1-h_{ii}}$$

where e_i be the *i*-th residual and h_{ii} be a *i*-th diagonal element of the hat matrix.