实验报告评分:

2020 级 11 系 3 班

姓名 黄瑞轩

日期 2021年6月6日

Nº PB20111686

实验题目:磁力摆

实验目的: 利用磁力摆测地磁场大小: 测量磁力摆的磁矩和转动惯量: 探究地磁场中耦合磁针的运动。

实验器材: 磁力摆、高斯计、电源、螺母(配重)、秒表、亥姆霍兹线圈、尺子。

实验原理:

磁力摆原理:将一枚小磁针用一根细线悬挂起来,置于匀强磁场B中,当小磁针偏离平衡位置的角位移 θ 很小时,小磁针将在其平衡位置附近作简谐振动,构成如图 1 所示的磁力摆。当磁力摆偏离平衡位置的角位移 θ 小于 5°时,磁力摆的运动方程为

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{MB}{J}\theta\tag{1}$$

式中m是磁力摆的磁矩,J是磁力摆的转动惯量。由上式可得磁力摆一级近似的振动周期为

$$T = 2\pi \sqrt{\frac{J}{MB}} \tag{2}$$

局域地磁场和亥姆霍兹线圈磁场:地球是一个大磁体,地球本身及其周围空间存在着磁场,即地磁场。

亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈组,每组N 匝,两组线圈内的电流方向一致,大小均为I,线圈之间的距离a 正好等于圆形线圈的平均半径R 时,两线圈轴线中点附近近似于均匀磁场,如图 2 所示。两线圈轴线中点处的磁感应强度为

$$B = \frac{8\sqrt{5}}{25} \frac{\mu_0 I}{R} = kI \tag{3}$$

将小磁针置于局域地磁场和亥姆霍兹线圈共同磁场中,如图 3 所示,磁力摆所处位置的磁感应强度由局域磁场水平分量 B_0 和亥姆霍兹线圈磁场 B_1 叠加而成。

当亥姆霍兹线圈磁场与地磁场水平方向一致时,位于轴线上的磁场水平分量 $B=B_0+B_1$; 当亥姆霍兹线圈磁场与地磁场水平方向相反时,位于轴线上的磁场水平分量 $B=B_0-B_1$ 。

根据磁力摆在磁场中的运动特性, 可以确定局域地磁场的水平分量、小磁针磁矩及其转动惯量。

地磁场中小磁针的耦合运动原理:

在地磁场中放置两枚相同的磁针,并使它们沿着地磁场方向处于一条直线上。当相邻磁针的磁场不可 忽略时,它们构成一个耦合振动系统。由于耦合的存在,磁针的运动形式更加丰富。由机械振动的知识, 可以得到耦合运动的一般结论:

$$\begin{cases} \theta_{1} = A^{*} e^{-\beta t} \cos(\omega^{*} t + \varphi_{0}^{*}) + A e^{-\beta t} \cos(\omega t + \varphi_{0}) \\ \theta_{2} = -A^{*} e^{-\beta t} \cos(\omega^{*} t + \varphi_{0}^{*}) + A e^{-\beta t} \cos(\omega t + \varphi_{0}) \end{cases}$$
(4)

当产生拍现象时,初始条件为t=0, $\theta_1=\theta$, $\theta_2=0$, $\frac{\mathrm{d}\theta_1}{\mathrm{d}t}=0$, $\frac{\mathrm{d}\theta_2}{\mathrm{d}t}=0$, 此时运动方程的解为

$$\begin{cases} \theta_{1} = \frac{\theta}{2} e^{-\beta t} \cos \omega^{*} t + \frac{\theta}{2} e^{-\beta t} \cos \omega t \\ \theta_{2} = -\frac{\theta}{2} e^{-\beta t} \cos \omega^{*} t + \frac{\theta}{2} e^{-\beta t} \cos \omega t \end{cases}$$

$$(5)$$

两磁针的角位移图像如图 4。

当进行同相运动时, 初始条件为 t=0, $\theta_1=\theta_2$, $\frac{\mathrm{d}\theta_1}{\mathrm{d}t}=0$, $\frac{\mathrm{d}\theta_2}{\mathrm{d}t}=0$, 此时运动方程的解为

$$\begin{cases} \theta_1 = A e^{-\beta t} \cos(\omega t + \varphi_0) \\ \theta_2 = A e^{-\beta t} \cos(\omega t + \varphi_0) \end{cases}$$
(6)

两磁针的角位移图像如图 5。

当进行反相运动时,初始条件为t=0, $\theta_1=-\theta_2$, $\frac{\mathrm{d}\theta_1}{\mathrm{d}t}=0$, $\frac{\mathrm{d}\theta_2}{\mathrm{d}t}=0$,此时运动方程的解为

$$\begin{cases} \theta_1 = A^* e^{-\beta t} \cos(\omega^* t + \varphi_0^*) \\ \theta_2 = -A^* e^{-\beta t} \cos(\omega^* t + \varphi_0^*) \end{cases}$$

$$(7)$$

两磁针的角位移图像如图 6。

图 4 拍现象下小磁针的 θ -t 曲线

图 5 同相运动下小磁针的 θ -t 曲线

图 6 反相运动下小磁针的 θ -t 曲线

实验方案设计

一、测量磁针处局域磁场水平分量的大小

1、测量磁场大小与线圈电流的关系,得到B = kI中的k值。

方案简述: 使电源供应 $0.1 \,\mathrm{A} \sim 0.8 \,\mathrm{A}$ 的电流,步长为 $0.1 \,\mathrm{A}$,共 $8 \,\mathrm{\gamma}$ 数据,作图得到 k 值。

2、判断线圈附加磁场与局域磁场是反向还是同向。

方案简述:交换电源的正负极输出接口,观察高斯计测得磁场的变化。若数值变大,则原来附加磁场与局域磁场反向;若数值变小,则原来附加磁场与局域磁场同向。

3、选取适当的测量范围测量不同电流下磁针的振动周期 T,通过作图法给出局域磁场水平分量的值。

方案简述: 振动周期平方的倒数 T^2 与所在磁场磁感应强度成正比,因此可用作图法得到所加磁场与 $\frac{1}{T^2}$ 的函数关系,由截距可确定地磁场的大小。

根据不确定度要求 $\frac{\Delta T}{NT}$ <0.5%,根据统计分析,实验人员开启或停止秒表的反应时间为0.1s左右,所以实验人员测量时间的精度近似为 $\Delta T \approx 0.2s$ 。则至少应满足NT > 40s,测量的总时间最好在40 秒以上。

二、测量磁针的磁矩以及转动惯量

由上面的测量,我们可以计算出J/M的值,因此只要再计算出J或M,就可求得另一个。

方案简述:将小磁针放在地磁场中,测量周期 T;再在小磁针两端各安放一个质量 m=0.62g 的无磁性螺母,此时可以计算出 $\frac{J+\Delta J}{M}$ 的值,其中 $\Delta J=2mr^2$,因此可解 J 与 M 。

三、地磁场中耦合磁针运动的观察

将两个磁针沿着局域磁场的方向共线放置,使它们同相位运动,则磁针共同运动的圆频率为 ω 。将两个磁针沿着局部地磁场的方向共线放置,使它们反相位运动,则磁针共同运动的圆频率为 ω^* 。这两个频率都与单独一个磁针的圆频率 ω_0 不同。

- 1、比较 ω、ω*、ω0 三者的大小。
- 2、改变两个磁针之间的距离 L,观察拍频随 L 的增加如何变化。

四、地磁场中耦合磁针运动的测量

已知两个磁针之间的耦合系数 $k' = \alpha \frac{M^2}{L^\beta} = \frac{1}{2} \left| \omega^2 - \omega^{*2} \right|$, 其中 α 和 β 是常数, M 是磁矩。

- 1、改变两个磁针之间的距离 L,测量 ω 、 ω *随 L 的变化情况。
- 2、确定系数 α 和 β 的值。

方案简述: 用对数坐标, 在 SI 下采用作图法得到各待求参数。

实验数据与分析

一、测量磁针处局域磁场水平分量的大小

为得到 B=kI 中的 k 值,实验数据如表 1 所示。

———电流 <i>I</i> /A	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
磁感应强度 B/mT	0.4871	0.9672	1.4524	1.9375	2.4237	2.9095	3.3979	3.8844

表 1

用 Origin 作图如图 7 所示。

于是得到

$$k = 4.8562 \times 10^{-3} \,\mathrm{T} \cdot \mathrm{A}^{-1} \tag{8}$$

选取适当的测量范围测量不同电流下磁针的振动周期 T,数据如表 2 所示。根据 $T = \frac{t}{N}$ 可计算出一次振幅周期,列在表 2 中,根据 B = kI 可计算出每个电流对应的磁感应强度值,也列在表 2 中。

电流 I/A	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045
磁感应强度 B/mT	0.048562	0.072843	0.097124	0.121405	0.145686	0.169967	0.194248	0.218529
振动总时间 t/s	55"88	48"64	54"19	54"60	50"55	47"61	53"24	50"52
振动总次数 N	80	81	100	110	110	110	130	130
振动周期 T/s	0.6985	0.6005	0.5419	0.4964	0.4595	0.4328	0.4095	0.3886
T ² 的倒数/s ⁻²	2.0496	2.7732	3.4053	4.0588	4.7353	5.3381	5.9623	6.6216

表 2

用 Origin 作 $\frac{1}{T^2}$ – B 图像如图 8 所示。

由于实验前在地磁场中对高斯计做了调零处理, 因此截距为负, 测得地磁场为

$$B = 3 \times 10^{-5} \text{T} \tag{9}$$

二、测量磁针的磁矩以及转动惯量

无配重时(情形 1)与有配重时(情形 2)的振动数据如表 3 所示。根据 $T=\frac{t}{N}$ 可计算出一次振幅周期,列在表 3 中。

	情形1	情形 2				
振动总时间 t/s	55"21	52"24				
振动总次数 N	45	33				
振动周期 T/s	1.2269	1.5830				
表 3						

我们已求得 $B=3\times10^{-5}$ T,并测量得到L=2r=5.42cm。

在情形1中,有

$$\frac{J}{M} = B \left(\frac{T}{2\pi}\right)^2 \tag{10}$$

在情形2中,有

$$\frac{J+2mr^2}{M} = B\left(\frac{T'}{2\pi}\right)^2 \tag{11}$$

联立上述两式求得

$$M = 1.198 \cdot s^2 \tag{12}$$

$$J = 1.370 \times 10^{-6} \,\mathrm{kg \cdot m^2} \tag{13}$$

三、地磁场中耦合磁针运动的观察

实验记录数据如表 4 所示。根据 $T=\frac{t}{N}$ 可计算出一次振幅周期,列在表 4 中;利用 $\omega=\frac{2\pi}{T}$ 可计算角频率,也列在表 4 中。

	拍	拍	同相运动	反相运动
距离 L/cm	21.51	16.81	16.81	16.81
摆动总时间 t/s	44″14	46"94	50″11	56"53
摆动次数 N	11	22	80	66
摆动周期 T/s	4.013	2.134	0.626	0.857
角频率 ω/s ⁻¹	1.566	2.944	10.04	7.332

表 4

记同相运动时磁针共同运动的圆频率为 ω ; 反相运动时磁针共同运动的圆频率为 ω^* ; 单独一个磁针的圆频率为 ω_0 。由表 3 情形 1 可计算出

$$\omega_0 = \frac{2\pi}{T} = 5.121 \text{ s}^{-1} \tag{14}$$

于是 ω 、 ω^* 、 ω 0 三者的大小关系为

$$\omega_0 < \omega^* < \omega \tag{15}$$

由表 4 第 1、2 组数据可看出, 当 L 减小时, 拍频增大。

四、地磁场中耦合磁针运动的测量

记录数据如表 5 所示。

间距 L/cm	23.52	29.02	19.03	27.53	32.04	20.05
正相运动总时间 t1/s	41"31	41"57	42"58	42"94	52"39	44"68
正相运动总次数 N ₁	47	43	60	44	52	60
反相运动总时间 t2/s	44"01	41"60	41″17	42"85	46"46	44"87
反相运动总次数 N2	43	37	44	37	40	46

表 5

根据 $T = \frac{t}{N}$ 可计算出一次振幅周期,利用 $\omega = \frac{2\pi}{T}$ 可计算角频率,利用 $k' = \frac{1}{2} \left| \omega^2 - \omega^{*2} \right|$ 可计算耦合系数,均列在表 6 中;此外,用于计算的对数值均已先转化为国际单位。

间距 L/cm	23.52	29.02	19.03	27.53	32.04	20.05
正相运动周期 T ₁ /s	0.8789	0.9667	0.7097	0.9759	1.008	0.7447
正相运动角频率 ω/s ⁻¹	7.149	6.499	8.854	6.438	6.236	8.438
反相运动周期 T2/s	1.023	1.124	0.9357	1.158	1.162	0.9754
反相运动角频率 ω*/s-1	6.139	5.588	6.715	5.425	5.410	6.441
耦合系数 k'/s-2	6.708	5.505	16.65	6.008	4.815	14.85
耦合系数的对数 ln k'	1.903	1.706	2.812	1.793	1.572	2.698
间距的对数 ln L	- 1.447	- 1.237	- 1.659	- 1.290	- 1.138	- 1.607

表 6

对 $k' = \alpha \frac{M^2}{L^{\beta}}$ 取对数可得

$$\ln k' = 2\ln M + \ln \alpha - \beta \ln L \tag{16}$$

利用 Origin 作 $\ln k' - \ln L$ 图像,如图 9 所示。

图 9 得到的拟合方程为

$$\ln k' = -2.438 \ln L - 1.324, R^2 = 0.8903 \tag{17}$$

而显然从左到右第3个数据点偏差过大,舍去后得到图10,其拟合方程为

$$\ln k' = -2.523 \ln L - 1.381, R^2 = 0.9856 \tag{18}$$

已知 $M=1.198 \text{A} \cdot \text{s}^2$,故 $2 \ln M = 0.3613$ 。对比原方程有 $2 \ln M + \ln \alpha = -1.381$ 、 $-\beta = -2.523$,解得

$$\alpha = 0.1751$$
 $\beta = 2.523$ (19)

思考题

一、如何利用作图法或最小二乘法求得局域地磁场的水平分量?

我们已知磁力摆的周期公式 $T=2\pi\sqrt{\frac{J}{MB}}$,因此可以得到 $B=\frac{4\pi^2J}{MT^2}$,因此 B 和 $\frac{1}{T^2}$ 成线性关系。由于在实验前对高斯计进行了调零,所以此方程应当变形为 $B=\frac{4\pi^2J}{MT^2}-B_0$ 。

通过实验可以得到一系列 $(B, \frac{1}{T^2})$ 数据点,因此可以通过最小二乘法来获得拟合直线,最小二乘法的计算公式如下:

拟合直线公式设为y = a + bx,x 的平均值设为x,y 的平均值设为y,则

$$\begin{cases} b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \\ a = \bar{y} - b\bar{x} \end{cases}$$

由此公式即可求出拟合直线。事实上,利用 Origin 等软件,可以方便地自动生成最小二乘拟合直线。

二、说明两小磁针耦合运动"拍频"与哪些物理量有关?

拍频的定义为 $f = \frac{\omega - \omega^*}{2\pi}$, 因此应与 ω, ω^* 有关。由电磁学的知识可以推知简正频率

$$\omega = \sqrt{\frac{m}{J}B_0 - \frac{3\mu_0 m^2}{4\pi l^3 J} - \beta^2}$$

$$\omega^* = \sqrt{\frac{m}{J}B_0 + \frac{\mu_0 m^2}{4\pi l^3 J} - \beta^2}$$

其中m为小磁针质量、J为小磁针转动惯量、 B_0 为所处磁场(地磁场)磁感应强度、l为两小磁针之间的距离、 $\beta = \frac{\gamma}{2J}$ 是描述小磁针阻尼性质的辅助物理量。拍频就与上述物理量有关。