实验4

简单计算机系统 系统设计B

主要内容

- 1、简单计算机系统实验任务简介
- 2、完善模块
- 3、完善数据通路
- 4、动手练习: 仿真验证功能

实验任务简介

- 实现一种简单计算机系统的设计.
- ✓ 精简的MIPS指令集
- ✓ EDA仿真
- 编写程序, 仿真验证所设计系统的功能
- ✔ 用汇编格式编写程序,并翻译成机器码.
- ✓ 将机器码程序放入ROM,通过仿真验证简单计算机系统的功能.

简单计算机系统指令集

实验3 已经完成 的指令

四十月五		ナリチルレスト			
操作夕称	操作码	汇编语言格式指令	上。 地行操作		
与	0000	AND Rd, Rs, Rt Rd \leftarrow Rs and Rt; PC \leftarrow PC + 1			
或	0001	OR Rd, Rs, Rt	$Rd \leftarrow Rs \text{ or } Rt; PC \leftarrow PC + 1$		
不带进位加	0010	ADD Rd, Rs, Rt	$Rd \leftarrow Rs + Rt; PC \leftarrow PC + 1$		
不带借位减	0011	SUB Rd, Rs, Rt	$Rd \leftarrow Rs - Rt; PC \leftarrow PC + 1$		
无符号数比较	0100	SLT Rd,Rs,Rt	If Rs <rt, <math="" else="" pc="" rd="0;">\leftarrow PC + 1</rt,>	- R	
带借位减	0101	SUBC Rd, Rs, Rt	$Rd \leftarrow Rs - Rt - (1-C); PC \leftarrow PC + 1$		
带进位加	0110	ADDC Rd, Rs, Rt	$Rd \leftarrow Rs + Rt + C; PC \leftarrow PC + 1$	J	
					
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1	7	
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1		
立即数加	1010	ADDI Rt, Rs, imm	$Rt \leftarrow Rs + imm; PC \leftarrow PC + 1$		
读存储器	1011	LW Rt, Rs, imm	$Rt \leftarrow MEM[Rs+imm]; PC \leftarrow PC +1$	L T	
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC +1$	1	
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1		
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1	J	
无条件跳转	0111	JMP imm	PC ← imm	- J	

I型指令编码

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ор			R	Rs	R	lt .				Im	nm			

操作名称	操作码	汇编语言格式指令	执行操作
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1
立即数加	1010	ADDI Rt, Rs, imm	$Rt \leftarrow Rs + imm; PC \leftarrow PC + 1$
读存储器	1011	LW Rt, Rs, imm	Rt←MEM[Rs+imm]; PC ←- PC +1
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC + 1$
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1

7条 **3**+2+2

I型指令编码(1)

- ■这3条I型指令
- ✓ 3个操作数
- ✓ 操作数中2个为寄存 器,1个为立即数
- ✓均要用到alu
- ✓ alu计算结果均要写入 寄存器Rt(注意与R 指令的区别)

15 14 13 12	11 10	9 8	7 6	5	4	3	2	1	0
Op	Rs	Rt			Im	m			

操作名称	操作码	汇编语言格式指令	执行操作
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1
立即数加	1010	ADDI Rt, Rs, imm	Rt \leftarrow Rs+ imm; PC \leftarrow PC +1

- ■与控制器相关的信号
- ✓ 控制器通知alu做相应运算, alu的cs[2:0]
- ✓ 控制器送出写寄存器组信号

增加3条I指令之后

针对这3条I指令,控制器的信号

- 输入信号: Op
- 输出信号: alucs[2:0], regwrite, flagwrite
- 与上面的R指令的区别
- ✓ R指令时alu结果要写入Rd,这3条I指令则 要写入Rt
- ✓ 控制器:输出一个选择信号**regdes**,控制 将alu结果写入的寄存器号
- ✓ 控制器:输出一个选择信号alusrcb,选择 第alu的第2个操作数来源,R指令来自寄 存器组的q2,I指令来自指令中的立即数 imm

增加3条I指令之后

- ✓ 控制器:输出一个选择信号regdes,控制将alu结果写入的寄存器号
- ✓ 控制器:输出一个选择信号**alusrcb**,选择第alu的第2个操作数来源,R指令来自 寄存器组的q2,I指令来自指令中的立即数imm

实验任务4

任务4.1

- (1) 完善任务3.2的数据通路,使其可以执行上述3 条I指令. cpuD
- (2)任务3.2中,是直接在**寄存器组**的实现代码中给寄存器赋初值;本任务中,将其修改为通过指令给R0和R1赋值;编写相应汇编指令,改变R0和R1的值,执行上述<u>16条指令</u>构成的代码段(将指令翻译成机器码,写入ROM数据文件中),分析仿真结果.

	bb a day and	
行号	指令代码	机器码
0	ANDI R0,R0,0	
1	ANDI R1,R1,0	
2	ADDI R0,R0,11	
3	ADDI R1, R1,22	
4	AND R2,R0,R1	
5	OR R3,R0,R1	
6	ADD R2,R2,R3	
7	SUB R3,R3,R2	
8	ADD R3,R3,R2	
9	ADDC R2,R0,R1	
10	SUB R1,R3,R2	
11	SUBC R2,R3, R2	
12	SLT R2,R1,R0	
13	SLT R3,R0,R1	
14	SUB R2,R0, R1	
15	SUBC R3,R0, R1	

R指令

简单计算机系统指令集

		1-3	1 41 21 0 62414	701H / 71/				
_	操作 夕称	操作码	汇编语言格式指令	—————	l			
	与	0000	AND Rd, Rs, Rt	$Rd \leftarrow Rs$ and Rt ; $PC \leftarrow PC + 1$	<u> </u>			
Į	或	0001	OR Rd, Rs, Rt	$Rd \leftarrow Rs \text{ or } Rt; PC \leftarrow PC + 1$				
	不带进位加	0010	ADD Rd, Rs, Rt	$Rd \leftarrow Rs + Rt; PC \leftarrow PC + 1$				
ı	不带借位减	0011	SUB Rd, Rs, Rt	$Rd \leftarrow Rs - Rt; PC \leftarrow PC + 1$			T	
i	无符号数比较	0100	SLT Rd,Rs,Rt	If Rs <rt, <math="" else="" pc="" rd="0;">\leftarrow PC + 1</rt,>			K	
	带借位减	0101	SUBC Rd, Rs, Rt	$Rd \leftarrow Rs - Rt - (1-C); PC \leftarrow PC + 1$				
i	带进位加	0110	ADDC Rd, Rs, Rt	$Rd \leftarrow Rs + Rt + C; PC \leftarrow PC + 1$,			
i								
	立即数与	1000	ANDI Rt, Rs, imm	Rt \leftarrow Rs and imm; PC \leftarrow PC +1	i ¬			
i	立即数或	1001	ORI Rt, Rs, imm	Rt \leftarrow Rs or imm; PC \leftarrow PC +1				
Ī	立即数加	1010	ADDI Rt, Rs, imm	$Rt \leftarrow Rs + imm; PC \leftarrow PC + 1$				
					•			
	读存储器	1011	LW Rt, Rs, imm	$Rt \leftarrow MEM[Rs+imm]; PC \leftarrow PC +1$			T	
	写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC +1$			_	
	相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1				
	不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1	ل	J		
	无条件跳转	0111	JMP imm	PC ← imm	} J			

已经完成 的指令

I型指令编码

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ор			R	Rs	R	\t				In	nm			

操作名称	操作码	汇编语言格式指令	执行操作
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1
立即数加	1010	ADDI Rt, Rs, imm	Rt←Rs+ imm; PC ← PC +1
读存储器	1011	LW Rt, Rs, imm	Rt←MEM[Rs+imm]; PC ←- PC +1
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC + 1$
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1

7条 3+**2**+2

I型指令编码(2)

- ■这2条I型指令
- ✓ 3个操作数
- ✓ 操作数中2个为寄存 器,1个为立即数
- ✓均要用到alu
- ✓ alu计算结果作为 RAM的地址
- ✓ LW: 写寄存器组
- ✓ SW: 写RAM

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C	p		R	S	R	2t				Im	ım			

操作名称	操作码	汇编语言格式指令	执行操作
读存储器	1011	LW Rt, Rs, imm	Rt←MEM[Rs+imm]; PC ←- PC +1
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC + 1$

- ■与控制器相关的信号
- ✓ 通知alu做相应运算alu的cs[2:0]: 加法
- ✓ 送出写RAM的信号或写寄存器组的信号
- ✓ 送出多路选择器选择信号memtoreg, alusrcb, regdes...

SW Rt, Rs, imm

$MEM[Rs+imm] \leftarrow Rt$

LW Rt, Rs, imm

Rt←MEM[Rs+imm]

实验任务4

任务4.2

- (1) 在任务4.1的基础上,增加执行lw和sw指令的数据通路,使所设计的计算机系统可以执行7条R指令+addi/ori/andi/lw/sw, 共12条指令; 修改控制器模块. cpuE
- (2) 在任务4.1中代码段的基础上,增加代码,**将R2、R3的值送入RAM的 X及X+1单元,随后再将X及X+1单位的内容分别送至R3和R2中**,其中X为 <u>学号后两位数字</u>。将代码翻译成机器码,写入ROM数据文件中.
 - (3) 分析仿真结果,必要时修改相关模块.

行号	指令代码	机器码
0	ANDI R0,R0,0	
1	ANDI R1,R1,0	
2	ADDI R0,R0,11	
3	ADDI R1, R1,22	
4	AND R2,R0,R1	
5	OR R3,R0,R1	
6	ADD R2,R2,R3	
7	SUB R3,R3,R2	
8	ADD R3,R3,R2	
9	ADDC R2,R0,R1	
10	SUB R1,R3,R2	
11	SUBC R2,R3, R2	
12	SLT R2,R1,R0	
13	SLT R3,R0,R1	
14	SUB R2,R0, R1	
15	SUBC R3,R0, R1	

简单计算机系统指令集

操作名称	操作码	汇编语言格式指令	执行操作
与	0000	AND Rd, Rs, Rt	$Rd \leftarrow Rs \text{ and } Rt; PC \leftarrow PC + 1$
或	0001	OR Rd, Rs, Rt	$Rd \leftarrow Rs \text{ or } Rt; PC \leftarrow PC + 1$
不带进位加	0010	ADD Rd, Rs, Rt	$Rd \leftarrow Rs + Rt; PC \leftarrow PC + 1$
不带借位减	0011	SUB Rd, Rs, Rt	$Rd \leftarrow Rs - Rt; PC \leftarrow PC + 1$
无符号数比较	0100	SLT Rd,Rs,Rt	If Rs <rt, +="" 1<="" else="" pc="" rd="0;" th="" ←=""></rt,>
带借位减	0101	SUBC Rd, Rs, Rt	$Rd \leftarrow Rs - Rt - (1-C); PC \leftarrow PC + 1$
带进位加	0110	ADDC Rd, Rs, Rt	$Rd \leftarrow Rs + Rt + C; PC \leftarrow PC + 1$
立即数与	1000	ANDI Rt, Rs, imm	Rt←Rs and imm; PC ← PC +1
立即数或	1001	ORI Rt, Rs, imm	Rt←Rs or imm; PC ←PC +1
立即数加	1010	ADDI Rt, Rs, imm	$Rt\leftarrow Rs+ imm; PC \leftarrow PC +1$
读存储器	1011	LW Rt, Rs, imm	$Rt \leftarrow MEM[Rs+imm]; PC \leftarrow PC +1$
写存储器	1100	SW Rt, Rs, imm	$MEM[Rs+imm] \leftarrow Rt; PC \leftarrow PC +1$
相等时跳转	1101	BEQ Rs, Rt, imm	If Rt=Rs, PC←PC+imm+1 else PC←PC+1
不等时跳转	1110	BNE Rs, Rt, imm	If Rt!=Rs, PC←PC+imm+1 else PC←PC+1
无条件跳转	0111	JMP imm	PC ← imm

THE END