23/11/21

- Worst case Analysis. Assume P + NP 35Ai & P. or any other NP-complete problems. (1) Allow run-time larger than polynomial For example, 3SAT & TIME[1.304] K-SAT E TIME [2 n(1-1/k)] for some Constant c>o.

"Exact-Algorithms" Still run in poly-time but only ask for approximate "Solutions. Vertex - Cover Solution 2. Optimum Gr, Size Size. 35AT – a satisfying anignment Satisfies all clauses approximate Solution- an assignment that Salisfies "most" of the clauses

3 99% Approximation Algorithms". (3) May be you want an algorithm that runs correctly in poly-time on most of the instance. > 99% (SAT Solvers) "Average Case Complexity". Approximation - Algorithms Hardness-ef-Approximation Went a Solution that is Close to the optimum Solution. Minimization problem e.g. vertex comer. given by Solution

the algorithm Optimum < Colution maximization problem; eig MaxCuf, Max SAT

offinal Solution given by

Solution

The algorithm Optimal Solution (Probabilistically Checkable proofs.) PCP Thun: P + NP. Then, A any poly-fine algorithm that finds an assignment that Satisfies $\geq 99.99\%$ of the clauses [Hastad 99] Assuming P & NP. # any given 3-CNF formula poly-time algorithm that finds an arrignment flat satisfier, t €>0, (2(7+E)) fraction of clauses. optimal. I a poly-time algorithm that given 3-CNF formula outpots an arrignment that Satisfies at least 7 fraction of clauses.

Proof: randomized algorithm that in expectation satisfies > = fraction Will be working with Exact - 3-CNF. Given y a Exact-3-CNF on n-variables. Let a $\in \{0,1\}^n$ be a random assignat if clause j is satisfied by a Tj = {0 otherwise. # Satisfied clauses = I, + - + Im Ea[# Satisfied clauses] = = [I] = 2 Pr[fi evaluates i=1 to True] $(x_1 \vee x_3 \vee \overline{x_5})$ = 7 m Deraudomization: Method of conditional Expectation)

Ea [# Claus] = f. F [# claus | x=1]+ f. F [# claus | x=2]

Solution < 2. Optimal ferom you Salution algo. Verfex Coner Approximating Vertex-Cover better than √2-ε is NP-hard. >= (.414-ε Minimum Bisection: Circu a graph Gr you want to find a subset Sof vertices of size |V| S.1. the edges going across S = 3 is animized. approx. upper bound $\leq (\log n)$ we don't have any approxi lower bound. Problem! - Given a 3-CNF formula

Problem! - Given a 3-CNF formula
Output the wax. no. of
Clauses that can be
Satisfied.

output: some number 1	< out of m
Suppose you have a polytalgoritum. That gives an	ine assignment
that satisfies > 7 fraction \$\frac{7}{8} + 0.000000001 Then we can use this	of Clauses.
Then we can use this	promised
algo to solve 3-SAT	in poly-time
Exact - Algorithms: K SAT E TIME [2] for some constant	Ex) 7 C>0.
3-SAT runs in time	1.304 Juay be. poly(107n)
	n log lan

[Impagliazzo-Paturi- Zane O] Strong- Exponential-Time-Hypothesis (SETH) K-SAT requires ₩ € >0, 3 K S.+. $2^{(I-\varepsilon)}n$ time. Orthogonal LCS

Edit

O(N) based

Distance.

programminy

O(N) given d 15(=n Vectors. Does I two vector $O(n^{\nu})$ u, ses Conditioned on SETH 2-1. you can show that (U,v)=0! the above runfime 15 optimal. Confoapositive if LCs has O(n1.99999)—time algo then SETH false. Understand the exact complexity Goal:

3) 'Average Case Complexity"
Applications in Cryptography.
- Average Con Hardness
_ One - way functions
f: {0,112 -> 50,113 +
compok f(x) easily but given y
computing f'(y) is hard.
pseudo-random generators
to lower bounds.
SAT requires linea time linea size
Do Circuit Complexity

FA Communication Complexity. to polynomial methods in CKS - depth CKS - Chs Captere its Compostational pouver molfiveriète polynomials. (Razborar-Smolensler)
Coustant-depth cless can be approximated by a low-degre polyno mials e-g. On = parity over n-bits