Предвидување на срцеви проблеми

Содржина

Податочно множество	2
Зависности помеѓу атрибутите	3
Визуелизација со РСА	4
Отстранување на outliers	5
Missing values	5
Дрво на одлучување	6
Random forest classifier	6
GaussianNB	7
CategoricalNB	7
K-Neighbors Classifier	8
Предвидување на холестерол во крвта со помош на линеарна регресија	9
Резултати на обична линеарна регресија:	9
Резултати на обична линеарна регресија со скалирање на променливите:	9
Полиномна регресија со скалирање:	9
Ridge регресија	10
Предвидување на target атрибутот со помош на логистичка регресија	10
LDA со не балансирано и балансирано множество	11
Ensemble методи	11
Кластер модели	12
KMeans	12
Algomerative кластерирање	13

Податочно множество

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

• **Chest pain (СР):** Вредности од 0 до 3

• Trestbps: крвен притисок во одморена состојба

• **Chol:** холестерол во mg/dl

• **Fbs:** дали има >120 mg/dl шеќер во крв

• Restecg: резултати од електрокардиографија

• Thalach: максимален пулс

• **Exang**: Болка во гради од вежбање

• Oldpeak: ST depression иницирано од вежбање

• Са: број на главни аорти

• **Thal:** дефект на аорти

• Target: Дали пациентот има срцеви заболувања?

Зависности помеѓу атрибутите

Отстранување на outliers

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	cause of removal
0	65.0	0.0	2.0	140.0	417.0	1.0	0.0	157.0	0.0	8.0	2.0	1.0	2.0	1.0	417.0
1	53.0	0.0	2.0	128.0	216.0	0.0	0.0	115.0	0.0	0.0	2.0	0.0	0.0	1.0	0.0
2	67.0	0.0	2.0	115.0	564.0	0.0	0.0	160.0	0.0	1.6	1.0	0.0	3.0	1.0	564.0
3	52.0	1.0	2.0	138.0	223.0	0.0	1.0	169.0	0.0	0.0	2.0	4.0	2.0	1.0	4.0
4	58.0	1.0	1.0	125.0	220.0	0.0	1.0	144.0	0.0	0.4	1.0	4.0	3.0	1.0	4.0
5	38.0	1.0	2.0	138.0	175.0	0.0	1.0	173.0	0.0	0.0	2.0	4.0	2.0	1.0	4.0
6	38.0	1.0	2.0	138.0	175.0	0.0	1.0	173.0	0.0	0.0	2.0	4.0	2.0	1.0	4.0
7	62.0	0.0	0.0	160.0	164.0	0.0	0.0	145.0	0.0	6.2	0.0	3.0	3.0	0.0	6.2
8	63.0	0.0	0.0	150.0	407.0	0.0	0.0	154.0	0.0	4.0	1.0	3.0	3.0	0.0	407.0
9	55.0	1.0	0.0	140.0	217.0	0.0	1.0	111.0	1.0	5.6	0.0	0.0	3.0	0.0	5.6
10	56.0	0.0	0.0	200.0	288.0	1.0	0.0	133.0	1.0	4.0	0.0	2.0	3.0	0.0	200.0
11	56.0	0.0	0.0	134.0	409.0	0.0	0.0	150.0	1.0	1.9	1.0	2.0	3.0	0.0	409.0
12	54.0	1.0	1.0	192.0	283.0	0.0	0.0	195.0	0.0	0.0	2.0	1.0	3.0	0.0	192.0
13	43.0	1.0	0.0	132.0	247.0	1.0	0.0	143.0	1.0	0.1	1.0	4.0	3.0	0.0	4.0
14	67.0	1.0	0.0	120.0	237.0	0.0	1.0	71.0	0.0	1.0	1.0	0.0	2.0	0.0	71.0
15	52.0	1.0	0.0	128.0	204.0	1.0	1.0	156.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0

⇒ Отстранети се 16 редици од множеството, така што мерката употребена за отфрлање на редици е ако некој атрибут има вредност поголема од 3 * Standard deviation на соодветниот атрибут

Missing values

	Num. of missing values	% of missing values
age	0	0.0
sex	0	0.0
ср	0	0.0
trestbps	0	0.0
chol	0	0.0
fbs	0	0.0
restecg	0	0.0
thalach	0	0.0
exang	0	0.0
oldpeak	0	0.0
slope	0	0.0
ca	0	0.0
thal	0	0.0
target	0	0.0

Дрво на одлучување

⇒ Споредба на модели со различна вредност на срр_alphas и тунирање на истите

DTC with entropy precision: 0.966666666666667 DTC with entropy accuracy: 0.8275862068965517 DTC with gini precision: 0.966666666666667 DTC with gini accuracy: 0.8275862068965517

Random forest classifier

⇒ Најдобриот модел е со max depth = 12, со тоа се достигнува вредност на test accuracy со над 0.86

GaussianNB

Accuracy score: 0.896551724137931 Precision score: 0.9310344827586207

CategoricalNB

Промена на атрибутите од непрекинат тип според следниве правила и отстранување на атрибутот oldpeak бидејќи има голема зависност со slope атрибутот:

- chol: <150 (normal), >150 <200 (mildly high), >200 <500 (high), >500 (very high)
- age: 18-39 (adult), 40-59 (middle aged), >60 (senior adult)
- trestbps (Resting blood pressure, Systolic): <120 (normal), >120 <140 (elevated), >140 <160 (High blood pressure), >160 (Hypertension)
- thalach (Maximum hearth rate): <120 normal, >120 <150 moderate, >150 high
- oldpeak: removed

Се добиваат следниве резултати каде што има мало подобрување во ассигасу:

Accuracy score: 0.9137931034482759 Precision score: 0.896551724137931

K-Neighbors Classifier

⇒ Тестирање на различни модели, така што за секоја К вредност употребени се 100 различни варијанти на множество за да биде појасно кој е најдобрата вредност на К

Со одбирање на $\kappa=10$ и користење на Minkowski мерка за дистанца (p=1) се добиваат следниве резултати

	precision	recall	f1-score	support
0 1	0.90 0.95	0.90 0.95	0.90 0.95	21 37
accuracy macro avg weighted avg	0.93 0.93	0.93 0.93	0.93 0.93 0.93	58 58 58
[[19 2] [2 35]]				

Предвидување на холестерол во крвта со помош на линеарна регресија

Резултати на обична линеарна регресија:

Mean Squared Error: 2322.0206946198655 Mean absolute Error: 38.153844251238475 Root Mean squared error: 48.18734994394136

Резултати на обична линеарна регресија со скалирање на променливите:

Mean Squared Error: 0.032329314638837536 Mean absolute Error: 0.14236509048969584 Root Mean squared error: 0.17980354456694544

Полиномна регресија со скалирање:

Ridge регресија

Предвидување на target атрибутот со помош на логистичка регресија

LDA со не балансирано и балансирано множество

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.82	0.85	0.84	27	0	0.87	0.89	0.88	38
1	0.91	0.89	0.90	45	1	0.90	0.88	0.89	41
accuracy			0.88	72	accuracy			0.89	79
macro avg	0.87	0.87	0.87	72	macro avg	0.89	0.89	0.89	79
weighted avg	0.88	0.88	0.88	72	weighted avg	0.89	0.89	0.89	79

Не балансирано

Балансирано

Ensemble методи

Со помош на 3 различни модели (Логистички регресионен модел, Random forest classifier и KNeighborsClassifier) се добива Test Accuracy:

0.9137931034482759

Кластер модели

KMeans

Algomerative кластерирање

