HOMOMORPHISMS FROM THE COMPLEX NUMBERS TO THE REAL NUMBERS

DAVID BOWMAN

1. Introduction

In this article we shall investigate the the existence of both group and ring homomorphisms from \mathbb{C} to \mathbb{R} . We shall note now that no isomorphism from \mathbb{C} to \mathbb{R} exists and thus this shall not be considered.

2. Groups Homomorphism

We shall consider the groups $(\mathbb{C},+)$ and $(\mathbb{R},+)$. A group homomorphism ϕ can be constructed as follows:

Let $\phi: \mathbb{C} \to \mathbb{R}$ such that:

- $\phi(0) = 0$
- $\phi(1) = 1$
- $\phi(i) = 1$

We shall now check that ϕ satisfies the necessary properties. Let $a, b, c, d \in \mathbb{R}$ such that $(a+bi), (c+di) \in \mathbb{C}$. Then:

$$\phi(a+bi) + \phi(c+di) = (a+b) + (c+d) = (a+c) + (b+d) = \phi((a+bi) + (c+di))$$

It is also true that:

$$\phi(-(a+bi)) = -a - b = -\phi(a+bi)$$

Thus ϕ is a group homomorphism from \mathbb{C} to \mathbb{R} . We can therefore conclude there do exist homomorphisms from the additive group of \mathbb{C} to the additive group of \mathbb{R} .

We shall consider the groups (\mathbb{C}, \times) and (\mathbb{R}, \times) . Let $\phi : \mathbb{C} \to \mathbb{R}$ such that for $z \in \mathbb{C}$ we have $\phi(z) = |z|$. We shall now check if ϕ satisfies the necessary properties:

- $\phi(1) = 1$
- $\phi(zw) = |zw| = |z||w| = \phi(z)\phi(w)$ $\phi(\frac{1}{z}) = |\frac{1}{z}| = \frac{1}{|z|} = \phi^{-1}(z)$.

Thus ϕ is a group homomorphism. We can therefore conclude there do exist homomorphisms from the multiplicative group of \mathbb{C} to the multiplicative group of \mathbb{R} .

3. Ring Homomorphism

We now consider the rings $(\mathbb{C}, +, \times)$ and $(\mathbb{R}, +, \times)$. We claim that there exists no ring homomorphism ϕ from \mathbb{C} to \mathbb{R} . Suppose there does exist a ring homomorphism $\phi: \mathbb{C} \to \mathbb{R}$:

$$-\phi(1) = \phi(-1) = \phi(i \times i) = \phi(i)\phi(i) = \phi(i)^2 = -1$$
$$\implies \exists \phi(i) \in \mathbb{R} : (\phi(i))^2 = -1$$

But this is of course a contradiction.