Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ÉLÉTRICA E DE COMPUTAÇÃO

EA772 – Circuitos Lógicos Prova 3 – B 21/06/2007

RA: 071251

Nome: Jo50 Antonio G. L. Silva Ass.: furtherno G.L. Silva

			<u>1</u>
	Questão	Valor	Nota
1	1	(1,5)	150
/	2	(2,5)	0,50
ļ	3	1,25	425
	4	1,0	0,60
	5	$1,\!25$	0,00
	6	2,5	0,00
	Soma	10,0	3,85

Questão 1: Utilize um flip-flop D para projetar uma rede que corresponde a um flip-flop

- Questão 2: Usando um flip-flop JK (bit mais significativo) e um flip-flop T, projete um detector de padrão 0000 com repetição (Por exemplo, para uma sequência de entrada $\overline{x} = 0010000000101$ deve-se gerar a sequência z = 0000001111000 como saída). Mostre
 - 1. o diagrama de estados reduzido.
 - a tabela de transição e a codificação binária das variáveis do sistema.
 - 3. as funções de excitação do flip-flop JK em função da entrada x e do estado corrente do sistema.
 - 4. a função de excitação do flip-flop T em função da entrada x e do estado corrente do sistema.
 - 5. a função de saída.
 - 6. o diagram lógico do sistema.
- Questão 3: Utilize um decodificador de 3 entradas e portas OR para implementar a seguinte função lógica

$$z = ABC + \overline{A}C$$

- Questão 4: Dadas as duas operações aritméticas em decimais: (13-8)e(8-13) realize operações equivalentes na base 2 (com 5 algarismos) em C_{2-1} (complemento de 1) e em C_2 (complemento de 2). Mostre explicitamente os passos do algoritmo.
- Questão 5: Um técnico testa o circuito de soma/subtração da página em anexo. Há três modos de operação do circuito: a)no modo ADD=0,SUB=0, $[\Sigma] = [A]$; b) no modo ADD=1,SUB=0, $[\Sigma] = [A] + [B]$; c) no modo ADD=0,SUB=1, $[\Sigma] = [A] - [B]$.
 - 1. Um primeiro teste mostra que a saída $[\Sigma]$ sempre excede os resultados esperados de um para os dois primeiros modos de operação. Qual será o erro mais provável de conexão no circuito?
 - 2. Um segundo teste mostra que quando o modo é a adição, o resultado é um mais o esperado, e, quando o modo é a subtração, o resultado é um menos o esperado. Qual será agora o erro mais provável de conexão?

Questão 6: Considere um sistema de comunicação que deseja transmitir para um certo destino uma seqüência específica de "1"s e "0"s gerada por uma fonte de informação. O comprimento da seqüência é de 40 dígitos e ela é gerada a uma taxa de um dígito a cada T_b segundos. O transmissor, antes de enviar a seqüência, introduz a cada quatro dígitos gerados pela fonte, um dígito de paridade (par). O receptor (em sincronismo com o transmissor) verifica a paridade de cada bloco de cinco dígitos. Se for par, os dígitos de informação são recuperados. Caso contrário, um é adicionado a um contador. Projete circuitos digitais para o transmissor e para o receptor. Sempre que possível, utilize módulos-padrão combinacionais e seqüênciais vistos em sala de aula. Procure minimizar o número de módulos utilizados.