Tidy Data with

tidyr

A package that reshapes the layout of tabular data.

spread() and gather()

You can represent any group of values as key:value pairs

key	value
2011	: 7000
2011	: 5800
2011	: 15000
2012	: 6900
2012	: 6000
2012	: 14000
2013	: 7000
2013	: 6200
2013	: 13000

You can represent any group of values as key:value pairs or a group of columns with column names.

key	value
2011	7000
2011	5800
2011	15000
2012	6900
2012	6000
2012	14000
2013	7000
2013	6200
2013	13000

2011	2012	2013
7000	6900	7000
5800	6000	6200
15000	14000	13000

spread()

```
pollution %>% spread(key = size, value = amount)
```

data frame to reshape

column to use for keys
(becomes new
column names)

column to use for values (becomes new column cells)


```
cases %>% gather(key = "year", value = "n", 2:4)
```

data frame to reshape

name of the new key column (a character string)

name of the new value column (a character string)

numeric indexes of columns to collapse (or names)


```
cases %>% gather("year", "n", 2:4)
```

numeric indexes


```
cases %>% gather("year","n", 2:4)
```

```
cases %>% gather("year","n", `2011`, `2012`, `2013`)
```

names


```
cases %>% gather("year", "n", 2:4)
cases %>% gather("year", "n", `2011`, `2012`, `2013`)
cases %>% gather("year", "n", starts_with("201"))
                                 select
                                 helper
```

functions


```
cases %>% gather("year", "n", 2:4)
cases %>% gather("year", "n", `2011`, `2012`, `2013`)
cases %>% gather("year", "n", starts_with("201"))
cases %>% gather("year", "n", -Country)
```


Toy data

```
cases <- tribble(
    ~Country, ~"2011", ~"2012", ~"2013",
        "FR", 7000, 6900, 7000,
        "DE", 5800, 6000, 6200,
        "US", 15000, 14000, 13000
)</pre>
```

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Your Turn

Use gather() and then spread() to make cases look first like this and then like this. Connect everything with the pipe operator.

Count	2011	2012	2013	Count	year	cases		Count	2011	2012	2013	
FR	7000	6900	7000	 FR	2011	7000		DE	5800	6000	6200	
DE	5800	6000	6200	DE	2011	5800		FR	7000	6900	7000	
US	15000	14000	13000	US	2011	15000		US	15000	14000	13000	
				FR	2012	6900						
				DE	2012	6000						
				US	2012	14000						
				FR	2013	7000						
				DE	2013	6200						
				US	2013	13000						· [

(Applied) Data Science

Reshaping tables

spread() is one of a family of functions for reshaping tables.

- spread() move values into column names
- gather() move column names into values
- separate() separate variables that share a column
- unite() unite a variable that is split across several columns

Tidy Data

Tidy data

Tidy functions all expect and return the same data structure, known as **tidy data**:

- 1. A data frame that contains
- 2. variables in the columns and
- 3. cases in the rows.

View(table1)

col	lu	m	ns

country	year [‡]	cases [‡]	population [‡]
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Tidy data

A data set is **tidy** iff:

- Each variable is in its own
 column
- 2. Each case is in its own row

	country [‡]	year [‡]	cases [‡]	population [‡]
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

table1\$country
table1\$year
table1\$cases
table1\$population

table2\$cou.
table2\$year
table2\$count[c(1,3,5,7,9,11)]
table2\$count[c(2,4,6,8,10,12)]

	country	year ‡	cases [‡]	population [‡]	rate
1	Afghanistan	1999	745	19987071	0.0000372741
2	Afghanistan	2000	2666	20595360	0.0001294466
3	Brazil	1999	37737	172006362	0.0002193930
4	Brazil	2000	80488	174504898	0.0004612363
5	China	1999	212258	1272915272	0.0001667495
6	China	2000	213766	1280428583	0.0001669488

table1\$cases / table1\$population -> table1\$rate

"Data comes in many formats, but R prefers just one: tidy data."

- Garrett Grolemund

table2

	country	year [‡]	type [‡]	count
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766

table3

	country	year [‡]	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

table4a and table4b

	country	1999 [‡]	2000 =
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766

	country	1999 [‡]	2000
1	Afghanistan	19987071	20595360
2	Brazil	172006362	174504898
3	China	1272915272	1280428583

table5

	country	century	year [‡]	rate
1	Afghanistan	19	99	745/19987071
2	Afghanistan	20	00	2666/20595360
3	Brazil	19	99	37737/172006362
4	Brazil	20	00	80488/174504898
5	China	19	99	212258/1272915272
6	China	20	00	213766/1280428583

Tidy data

Tidy functions all expect and return the same data structure, known as **tidy data**:

- 1. A data frame that contains
- 2. variables in the columns and
- 3. cases in the rows.

Which is tidy? What is a variable?

```
layout1 %>%
    ggplot(aes(year, n)) +
    geom_line(aes(color = sex))
```

```
layout2 %>%
mutate(pmale = M / (M + F))
```

```
year
          sex
  <dbl> <chr> <int>
          F 90993
   1880
          M 110491
   1880
        F 91954
   1881
    1881
            M 100745
   1882
            F 107850
            M 113688
   1882
6
```

```
year
  <dbl> <int> <int>
   1880 90993 110491
   1881 91954 100745
   1882 107850 113688
    1883 112321 104629
    1884 129022 114445
   1885 133055 107800
6
```


General advice

Describe what you want to do in an **equation**. Each variable in the equation should correspond to a variable in your data:

- "color by sex"color = sex
- "calculate the proportion of males"
 prop male = number of males / number of females + number of males

WOO

(Untidy Data)

who

Tuberculosis (TB) cases broken down by year, country, age, gender, and diagnosis method from the 2014 World Health Organization Global Tuberculosis Report

View(who)

who variables

country, iso2, iso3 - country identifiers year - year

other columns names - encode type of TB case, sex, and age

who codes

Type of TB case

- rel relapse
- ep extra-pulmonary
- sn- pulmonary, smear negative
- sp -pulmonary, smear positive

Gender

- m male
- f female

Age group

- **014** 0 to 14 years old
- 1524 15 to 24 years old
- 2534 25 to 34 years old
- 3544 35 to 44 years old
- 4554 45 to 54 years old
- 5564 55 to 64 years old
- 65 65 and older

Your Turn

Gather the 5th through 60th columns of who into a key column: value column pair named codes and n.

Then select just the county, year, codes and n variables.

who %>%
 gather("codes", "n", 5:60) %>%
 select(-iso2, -iso3)

	country	year [‡]	code	S		#	n	÷
1	Afghanistan	1980	new	sp.	m	14		NA
2	Afghanistan	1981	new	sp.	m	14		NA
3	Afghanistan	1982	new	sp.	m	14		NA
4	Afghanistan	1983	new	sp.	m	14		NA
5	Afghanistan	1984	new	sp.	m	14		NA
6	Afghanistan	1985	new	sp.	m	14		NA
7	Afghanistan	1986	new	sp.	m	14		NA
8	Afghanistan	1987	new	sp.	m	14		NA
9	Afghanistan	1988	new	sp.	m	14		NA
10	Afghanistan	1989	new	sp.	m	14		NA
11	Afghanistan	1990	new	sp.	m)14		NA
12	Afghanistan	1991	new	sp.	m	14		NA

separate()

Quiz

What variables are "hidden" here in plain sight?

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

Quiz

What variables are "hidden" here in plain sight?

- year
- month
- day

storms

storm	wind	pressure		da.
Alberto	110	1007	2	00-08-12
Alex	45	1009	19	98-07-30
Allison	65	1005	19	95-06-04
Ana	40	1013	19	97-07-01
Arlene	50	1010	19	99-06-18
Arthur	45	1010	1	96-06-21

separate()

Splits a column by dividing values at a specific character.

separate(storms, date, c("year", "month", "day"), sep = "-")

	storm	wind	pressure	date		storm	wind	pressure	year	month	day
1	Alberto	110	1007	2000-08-03	1	Alberto	110	1007	2000	80	0 3
2	Alex	45	1009	1998-07-27	2	Alex	45	1009	1998	07	27
3	Allison	65	1005	1995-06-03	3	Allison	65	1005	1995	06	03
4	Ana	40	1013	1997-06-30	4	Ana	40	1013	1997	06	30
5	Arlene	50	1010	1999-06-11	5	Arlene	50	1010	1999	06	11
6	Arthur	45	1010	1996-06-17	6	Arthur	45	1010	1996	06	17

separate(storms, date, c("year", "month", "day"), sep = "-")

	storm	wind	pressure	date
1	Alberto	110	1007	2000-08-03
2	Alex	45	1009	1998-07-27
3	Allison	65	1005	1995-06-03
4	Ana	40	1013	1997-06-30
5	Arlene	50	1010	1999-06-11
6	Arthur	45	1010	1996-06-17

	storm	wind	pressure	year	month	n day
1	Alberto	110	1007	"2000"	"08"	"03"
2	Alex	45	1009	"1998"	"07"	"27"
3	Allison	65	1005	"1995"	"06"	"03"
4	Ana	40	1013	"1997"	"06"	"30"
5	Arlene	50	1010	"1999"	"06"	"11"
6	Arthur	45	1010	"1996"	"06"	"17"

separate(storms, date, c("year","month","day"), sep = "-", convert = TRUE)

	storm	wına	pressure	aate
1	Alberto	110	1007	2000-08-03
2	Alex	45	1009	1998-07-27
3	Allison	65	1005	1995-06-03
4	Ana	40	1013	1997-96-30
5	Arlene	50	1010	1999-06-11
6	Arthur	45	1010	1996-06-17

	storm	wind	pressure	year	month	day	
1	Alberto	110	1007	2000	80	03	
2	Alex	45	1009	1998	07	27	
3	Allison	65	1005	1995	06	03	
4	Ana	40	1013	1997	06	30	
5	Arlene	50	1010	1999	06	11	
6	Arthur	45	1010	1996	06	17	

Converts
numeric
column names
to numbers

Your Turn

Separate the codes column into three columns at the underscores. Use the column names "new", "type", "sexage". Then select everything but the "new" column.


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new)
```

	country	year [‡]	type [‡]	sexage [‡]	n [‡]
1	Afghanistan	1980	sp	m 014	NA
2	Afghanistan	1981	sp	m 014	NA
3	Afghanistan	1982	sp	m 014	NA
4	Afghanistan	1983	sp	m 014	NA
5	Afghanistan	1984	sp	m 014	NA
6	Afghanistan	1985	sp	m 014	NA
7	Afghanistan	1986	sp	m 014	NA
8	Afghanistan	1987	sp	m014	NA
9	Afghanistan	1988	sp	m014	NA
10	Afabanistan	1000	c n	~014	A/A

separate()

Splits a column by dividing values at a specific character.

```
separate(storms, date, c("year", "rest"), sep = c(4,8))
```

locations to split at

(Split after 4th and 8th characters)

Your Turn

Separate the sexage column into sex and age columns.


```
who %>%
  gather("codes", "n", 5:60) %>%
  select(-iso2, -iso3) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new) %>%
  separate(sexage, c("sex", "age"), sep = 2)
```

	country	year [‡]	type [‡]	sex [‡]	age [‡]	n [‡]
1	Afghanistan	1980	sp	m	014	NA
2	Afghanistan	1981	sp	m	014	NA
3	Afghanistan	1982	sp	m	014	NA
4	Afghanistan	1983	sp	m	014	NA
5	Afghanistan	1984	sp	m	014	NA
6	Afghanistan	1985	sp	m	014	NA
7	Afghanistan	1986	sp	m	014	NA
8	Afghanistan	1987	sp	m	014	NA
9	Afghanistan	1988	sp	m	014	NA
10	Afabanistan	1000	6.10	100	014	AIA

separate_rows()

Splits a column. Creates a new row for each result.

separate_rows(storms, date, sep = "-", convert = TRUE)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

	storm [‡]	wind [‡]	pressure	date [‡]
1	Alberto	110	1007	2000
2	Alberto	110	1007	8
3	Alberto	110	1007	3
4	Alex	45	1009	1998
5	Alex	45	1009	7
6	Alex	45	1009	27
7	Allison	65	1005	1995
8	Allison	65	1005	6
9	Allison	65	1005	3

unite()

unite()

Unites columns into single column by combining cells.

Your Turn

Use separate() and then unite() to change how storms codes date, as below.

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	08/12/2000
Alex	45	1009	07/30/1998
Allison	65	1005	06/04/1995
Ana	40	1013	07/01/1997
Arlene	50	1010	06/13/1999
Arthur	45	1010	06/21/1996


```
storms %>%
separate(date, c("year", "month", "day"), sep = "-") %>%
unite("date", month, day, year, sep = "/")
```


Missing Values

Can we clean up the missing values?

	country	year [‡]	type [‡]	sex [‡]	age [‡]	n [‡]
1	Afghanistan	1980	sp	m	014	NA
2	Afghanistan	1981	sp	m	014	NA
3	Afghanistan	1982	sp	m	014	NA
4	Afghanistan	1983	sp	m	014	NA
5	Afghanistan	1984	sp	m	014	NA
6	Afghanistan	1985	sp	m	014	NA
7	Afghanistan	1986	sp	m	014	NA
8	Afghanistan	1987	sp	m	014	NA
9	Afghanistan	1988	sp	m	014	NA
10	Afghanistan	1989	sp	m	014	NA
11	Afghanistan	1990	sp	m	014	NA
12	Afghanistan	1991	sp	m	014	NA
13	Afghanistan	1992	sp	m	014	NA

Toy data

```
x <- tribble(
  \sim x1, \sim x2,
           NA,
           NA,
           NA
```


fill()

Fills in NA's with preceding (or following) values.

fill()

Fills in NA's with preceding (or following) values.

```
fill(x, x2, .direction = "down")
```


fill()

Fills in NA's with preceding (or following) values.

```
fill(x, x2, .direction = "up")
```


replace_na()

Replace NA's by column.

```
replace_na(x, replace = list(x2 = 2))
```

data frame to transform

A named list of column names paired with values to replace NA's with.

replace_na()

Replace NA's by column.

```
replace_na(x, replace = list(x2 = 2))
```


drop()

Drops rows that contain NA's in the specified columns.

drop_na()

Drops rows that contain NA's in the specified columns.


```
who %>%
  gather("codes", "n", 5:60) %>%
  separate(codes, c("new", "type", "sexage"), sep = "_") %>%
  select(-new, -iso2, -iso3) %>%
  separate(sexage, c("sex", "age"), sep = 2) %>%
  drop_na(n)
```

	country	year [‡]	type [‡]	sex [‡]	age [‡]	n [‡]
1	Afghanistan	1997	sp	m0	14	0
2	Afghanistan	1998	sp	m0	14	30
3	Afghanistan	1999	sp	m0	14	8
4	Afghanistan	2000	sp	m0	14	52
5	Afghanistan	2001	sp	m0	14	129
6	Afghanistan	2002	sp	m0	14	90
7	Afghanistan	2003	sp	m0	14	127
8	Afghanistan	2004	sp	m0	14	139
9	Afghanistan	2005	sp	m0	14	151

Recap

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

Tidy Data with

Reshaping Final Exam

"Tidy data sets are all alike; but every messy data set is messy in its own way."

- Hadley Wickham

Your Turn

In your grous, use spread(), gather(), separate(), and/or unite() to tidy each of the following tables:

- table2
- table3
- table4a does not contain population
- table4b does not contain cases
- table5

Unless otherwise specified, each contains a country, year, cases, and population variable.

```
table2 %>%
spread(type, count)
```

```
table3 %>%
  separate(rate, c("cases", "population"), sep = "/",
  convert = TRUE)
```

```
table4a %>%
  gather("year", "cases", 2:3, convert = TRUE)
```

```
table4b %>%
gather("year", "population", 2:3, convert = TRUE)
```

```
table5 %>%
unite("year", century, year, sep = "") %>%
separate(rate, c("cases", "population"), sep = "/",
    convert = TRUE)
```

