Lista de Estequiometria – Exercícios adicionais.

1. (<u>FÁCIL</u>) O SO₂ (dióxido de enxofre) se transforma em SO₃ (trióxido de enxofre) segundo a reação abaixo:

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

Levando em consideração a reação descrita acima, quantos gramas de O₂ (gás oxigênio) e SO₂ (dióxido de enxofre) são necessários para se obter 250 g de SO₃ (trióxido de enxofre?)

- 2. (<u>DIFÍCIL</u>) Sabe-se que um determinado composto orgânico contém somente carbono, hidrogênio e oxigênio. A combustão completa de uma amostra de 2,15.10⁻² g do composto origina 4,31.10⁻² g de CO₂ e 1,75.10⁻² g de H₂O. Qual é a fórmula mínima do composto? Escreva uma equação para essa combustão.
- 3. (MÉDIO) O fósforo sofre reação com o bromo para produzir PBr₃. Se são reagidos 50,0 g de fósforo com 200,0 g de bromo, quantos gramas de PBr₃ serão obtidos? Caso haja um composto em excesso, quantos gramas dele ficarão sem reagir?
- 4. (<u>MÉDIO</u>) Certo composto contém apenas carbono e hidrogênio. Na combustão de 0,588 g do composto, se originam 1,73 g de CO₂ e 1,06 g de H₂O.
- a) Encontre a fórmula mínima do composto;
- b) Sabendo que a massa molecular do composto é 32 g/mol, ache a fórmula molecular do composto.
- 5. (<u>FÁCIL PRÁTICA</u>) Escreva reações químicas que descrevam cada uma dos processos abaixo:
- a) Tratamento de íons dissolvidos Cr³+ com uma base qualquer, ocorrendo a precipitação do hidróxido de cromo(III);
- b) Dissolução de carbonato de bário em ácido nítrico, para dar dióxido de carbono e nitrato de bário, em uma solução aquosa;
- c) Reação de amônia (gás) com ácido nítrico puro, para dar nitrato de amônio sólido.

6. (FÁCIL) O cloreto de tionila, SOCl₂, reage com a água segundo a reação abaixo:

$$SOCl_{2(l)} + H_2O_{(l)} \rightarrow SO_{2(g)} + 2HCl_{(aq)}$$

Se são misturados 5,0 g de $SOCl_2$ com 1,0 g de H_2O , que quantidade de HCl se produzirá?

7. (<u>MÉDIO</u>) Caso sejam aquecidos 10,0 g de ferro em presença de 10,0 g de enxofre, quantos gramas de FeS (sulfeto de ferro) serão produzidos? Quantos gramas permanecem sem reagir?

Respostas da lista de estequiometria.

1. Resposta: 200,6 g de SO₂ e 50,24 g de O₂.

Sabendo que são produzidos 250,0 g de tróxido de enxofre, e que sua massa molar é de 80,1 g/mol, temos 3,13 mols de SO₃ produzidos.

Como a equação mostra, são necessário 2 mols de SO_2 para produzir 2 mols de SO_3 (a proporção 2:2 é equivalente à proporção 1:1), logo, temos 3,13 mols de SO_2 consumidos. Sabendo que a massa molar do SO_2 é de 64,1 g/mol, temos 200,6 g de SO_2 consumidos.

Para cada 2 mols de SO_3 produzidos, utiliza-se 1 mol de O_2 , de modo que 1,57 mols de O_2 são consumidos. Sabendo que a massa molar do O_2 é de 32,0 g/mol, temos 50,24 g de O_2 consumidos.

2. Resposta:
$$C_2H_4O$$
 e $2C_2H_4O_{(l)} + 5O_{2(g)} \rightarrow 4CO_{2(g)} + 4H_2O_{(g)}$.

O primeiro passo é saber quantos mols de cada produto foram produzidos. No caso do gás carbônico, sabendo que a sua massa molar é 44,0 g/mol, temos $9,78.10^{-4}$ mols de CO_2 e, consequentemente, de carbono. Para a água, sabendo que sua massa molar é de 18,0 g/mol, temos $9,79.10^{-4}$ mols de água, e, consequentemente, $1,94.10^{-3}$ mols de hidrogênio (sabendo que em cada molécula de água, temos 2 átomos de hidrogênio).

Após isso, deve-se observar que a única fonte de carbono para o CO_2 provém do carbono do composto, logo, há 9,78. 10^{-4} mols de carbono no composto inicial. Sabendo que a única fonte de hidrogênio, para a água, também provém do composto, sabemos que há 1,94. 10^{-3} mols de hidrogênio no composto.

Para saber quantos mols de oxigênio temos no composto, basta saber a massa de carbono e hidrogênio, e subtrair essa quantidade da massa inicial fornecida $(2,15.10^{-2} \text{ g})$. Logo, temos que $9,78.10^{-4}$ mols de carbono pesam $1,17.10^{-2}$ g (massa molar = 12,0 g/mol) e $1,94.10^{-3}$ mols de hidrogênio pesam $1,94.10^{-3}$ g. A soma das duas massas é de $1,36.10^{-2}$ g.

A massa de oxigênio, logo é a diferença entre $2,15.10^{-2}$ g e $1,36.10^{-2}$ g, o que é igual a $0,79.10^{-2}$ gramas. Sabendo que a massa molar do oxigênio é 16,0 g/mol, temos $4,9.10^{-4}$ mols de oxigênio no composto.

Agora temos que, no composto, há 9,78.10⁻⁴ mols de carbono, 1,94.10⁻³ mols de hidrogênio e 4,9.10⁻⁴ mols de oxigênio. Dividindo todos os número pelo menor deles (mols de oxigênio), temos a proporção aproximada de 2,0 para o carbono, 4,0 para o hidrogênio e 1,0 para o oxigênio.

Logo, a fórmula mínima do composto é C₂H₄O e sua reação de combustão é:

$$2C_2H_4O_{(l)} + 5O_{2(g)} \rightarrow 4CO_{2(g)} + 4H_2O_{(g)}$$

3. Resposta: 226 g de PBr₃ e 24 g de P, em excesso.

Considerando que a reação de formação do PBr₃ envolve apenas fósforo e bromo, temos:

$$2P_{(s)} + 3Br_{2(g)} \rightarrow 2PBr_{3(l)}$$

Partindo das massas fornecidas (50,0 g de fósforo e 200,0 g de gás bromo), temos, sabendo as massas molares do fósforo e do gás bromo (31,0 g/mol e 160,0 g/mol, respectivamente), 1,61 mols de P (fósforo) e 1,25 mols de Br₂ (gás bromo).

Partindo da proporção estequiométrica da reação, pode-se ver que 2 mols de fósforo reagem com 3 mols de gás bromo, logo, 1,61 mols de fósforo necessitariam de 2,41 mols de gás bromo, o que é uma quantidade maior do que está disponível, logo, o gás bromo é o reagente limitante. Logo, deve-se saber a quantidade de mols de fósforo que reagem, a partir do gás bromo.

Considerando que 1,25 mols de gás bromo reagem, e levando em considerando que para cada 3 mols de gás bromo, 2 mols de fósforo são consumidos, temos que 0,833 mols de fósforo serão consumidos (0,78 mols de excesso de fósforo).

Considerando que a reação é de proporção igual no consumo de fósforo para a produção de tribrometo de fósforo, temos que 0,833 mols de PBr₃ serão produzidos, logo, sabendo que sua massa molar é de 271,0 g/mol, temos 226 g de PBr₃ produzidos.

Quanto ao excesso (0,78 mols de fósforo), sabendo a massa molar do fósforo, 31,0 g/mol, sabe-se que há 24 g de fósforo em excesso. Observa-se que um total de 250 g de reagente foram adicionados, e um total de 250 g (226+24) de produto e excesso estão no estado final da reação.

4. Resposta: a) fórmula mínima: CH₃ b) fórmula molecular: C₂H₆

a) Usando o mesmo raciocínio da questão 2, calcula-se quantos mols de CO_2 e H_2O foram produzidos, sabendo suas massa molares (44,0 g/mol e 18,0 g/mol, respectivamente), sendo 0,0393 mols de gás carbônico e, consequentemente, de carbono, e 0,0589 mols de água e, consequentemente, 0,118 mols de hidrogênio (sabendo que 1,73 g de CO_2 e 1,06 g de H_2O foram produzidos).

Fazendo a correspondência entre carbono e hidrogênio, ou seja, ambos surgiram somente do composto inicial, sabe-se que ele possui 0,0393 mols de carbono e 0,118 mols de hidrogênio.

Considerando 0,0393 mols de carbono e 0,118, a sua proporção (feita pela divisão desses números) é igual a 3 carbonos para 1 hidrogênio. Logo, a fórmula mínima do composto é CH₃, de massa molecular 15,0 g/mol.

b) Considerando a massa molecular dada (32,0), deve-se fazer a relação entre as duas massas (32,0 e 15,0). A divisão dos valores dá aproximadamente 2, logo, o composto de massa molecular 32 terá uma fórmula de $C_{1.2}H_{3.2}$, ou seja, C_2H_6 .

5. Respostas:

a)
$$Cr_{(aq)}^{3+} + 3OH_{(aq)}^{-} \rightarrow Cr(OH)_{3(s)}$$

b)
$$BaCO_{3(s)} + 2HNO_{3(aq)} \rightarrow \langle H_2CO_{3(g)} \rangle + Ba(NO_3)_{2(aq)} \rightarrow Ba(NO_3)_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$$

c)
$$NH_{3(g)} + HNO_{3(l)} \to NH_4NO_{3(s)}$$

6. Resposta: 3,1 g de HCl.

Considerando que a massa molar do cloreto de tionila, $SOCl_2$, é de 119,0 g/mol, temos 0,042 mols (5,0 g) de $SOCl_2$ produzidos. Considerando a massa molar da água, 18,0 g/mol, temos 0,056 mols de H_2O (1,0) foram produzidos.

Como a reação é 1:1, na parte do consumo de reagentes (água e cloreto de tionila), sabese que a água está em excesso (0,014 mols de excesso), logo, apenas 0,042 mols de cada espécie irão reagir.

Sabendo que a proporção da reação, no consumo de cloreto de tionila para a produção de ácido clorídrico, é de 1:2, temos que 0,084 mols de HCl foram produzidos, o que, sabendo a massa molar do ácido clorídrico (36,5 g/mol), corresponde a 3,1 g.

7. Resposta: 15,7 g de FeS produzidos e 4,30 g de enxofre sem reagir.

Como o enunciado fala que o aquecimento do ferro em presença de enxofre gera apenas sulfeto de ferro, pode-se assumir que não há outros participantes da reação, a não ser os três citados.

Considerando 10,0 g de ferro e 55,8 g/mol como sua massa molar, temos 0,179 mols de ferro consumidos. Sabendo que a massa molar do enxofre é 32,1 g/mol e que 10,0 gramas dele foram consumidos, temos 0,313 mols de enxofre consumidos.

Como a proporção dos reagente é 1:1, assim como a dos produtos, temos um excesso de 0,134 mols de enxofre, o que corresponde a 4,30 g de enxofre em excesso. Sabendo que apenas 0,179 mols de cada reagente irão devidamente reagir, temos a produção de 0,179 mols de FeS, o que corresponde a 15,7 g de FeS (sabendo que sua massa molar é 87,8 g/mol).