Prática 3. 15 de Maio de 2013

Assinatura:

Descarregue os ficheiros de código associados a esta prática. Abra todos os ficheiros no entorno Dev-C++, no entorno Visual Studio ou em outro entorno integrado de programação. Guarde estes ficheiros numa pasta identificada com o nome N126Pratica1. Abra todos os ficheiros *.c e *.cpp da prática no editor do entorno de programação.

No entorno Visual Studio usaremos a linha de comandos. Para isto escolha Tools→Visual Studio Command Prompt; Na linha de comandos aberta execute "vcvars32.bat". Isto prepara o sistema para compilar desde a linha de comandos: "cl_ficheiro.cpp" compila o ficheiro fonte e cria um executável "ficheiro.exe".

No entorno Dev-C++ pode usar o botão de compilar para criar o ficheiro executável ficheiro.exe Use a instrução "cd_C:diretorio" para mudar o "command prompt" ao diretório onde tiver os ficheiros *.c,*.cpp de código. Agora nesta janela pode compilar e executar os códigos. Se quiser, pode entrar nas propriedades da janela (botão direito do rato na barra superior) para alterar o tamanho desta. Use o editor para fazer alterações de código onde precisar.

Observe o código destes programas e as explicações indicadas para elaborar um relatório com a resposta a todas as questões que aparecem ressaltadas. Deverá usar alguma folha de rascunho, e os programas, em algum caso com o código alterado, para responder as questões. O estudo dos códigos e das questões pode ser feiro em grupo, no entanto a elaboração do relatório deve ser individual, não se admitindo copias de uns alunos para outros.

Polinómio interpolador, ajustamento polinomial de dados

Para uma função polinomial de grau n, $p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$, se sabemos que p(x) em k+1 pontos diferentes t_0, \dots, t_k toma os valores $y_0 = p(t_0)$, $y_1 = p(t_1), \dots, y_k = p(t_k)$, então os coeficientes do polinómio c_0, \dots, c_n verificam:

$$c_{0} + c_{1} \cdot t_{0} + c_{2} \cdot t_{0}^{2} + \dots + c_{n} t_{0}^{n} = p(t_{0}) = y_{0}$$

$$c_{0} + c_{1} \cdot t_{1} + c_{2} \cdot t_{1}^{2} + \dots + c_{n} t_{1}^{n} = p(t_{1}) = y_{1}$$

$$\vdots$$

$$c_{0} + c_{1} \cdot t_{k} + c_{2} \cdot t_{k}^{2} + \dots + c_{n} t_{k}^{n} = p(t_{k}) = y_{k}$$

$$A = \begin{bmatrix} 1 & t_{0} & \dots & t_{0}^{n} \\ 1 & t_{1} & \dots & t_{1}^{n} \\ \vdots & \ddots & \vdots \\ 1 & t_{k} & \dots & t_{k}^{n} \end{bmatrix}$$

Temos um sistema de k+1 equações lineares com n+1 incógnitas $c=(c_0,c_1,\ldots,c_n)$, e termos independentes $y=(y_0,\ldots,y_k)$. Sejam quais forem os k+1 pontos **diferentes** escolhidos, a matriz de coeficientes tem característica máxima (igual ao menor valor, número de linhas k+1 ou de colunas n+1). Portanto:

- Dada uma colecção de n+1 pontos $(t_0, y_0), (t_1, y_1), \dots (t_n, y_n)$ com abscissas diferentes $(t_i \neq t_j, \forall i \neq j)$, existe sempre um único polinómio de grau n (ou menor se $c_n = 0$) cujo gráfico passa por estes pontos. Este polinómio é o **polinómio interpolador** dos n+1 pontos dados.
- Dada uma coleção com $m \leq n$ pontos com abscissas diferentes, existem sempre infinitos polinómios de grau n ou menor cujo gráfico passa por esses pontos. Entre eles, o de menor grau será o polinómio interpolador dos m pontos, indicado acima.
- Dada uma coleção com m > n+1 pontos com abscissas diferentes, só para valores particulares de y podemos garantir a existência dum polinómio cujo gráfico passe por esses m pontos (Por exemplo, se todos os pontos são colineares).

A não existência de solução quando temos demasiados pontos m > n+1 é um problema. É frequente conjuntos de dados que, ainda que deviam estar relacionados por uma expressão linear/quadrática, por algum motivo prático não se ajustam a um polinómio de grau 1 ou 2. Quando temos m = k+1 valores diferentes t_0, \ldots, t_k com k > n, e valores y_0, \ldots, y_k , chamamos função de **regressão linear** (n=1), função de **regressão quadrática** (n=2), ou em geral **polinómio de mínimos quadrados** de grau n associado a estes dados o polinómio p(x) de grau n para o qual o erro quadrático seguinte:

$$E(c_0, \dots, c_n) = \sum_{i=0}^{k} (p(t_i) - y_i)^2$$

é mínimo, entre todos os possíveis polinómios $p(x) = c_0 + c_1 x + \ldots + c_n x^n$. O mínimo acontece num valor (c_0, \ldots, c_n) onde $\frac{\partial E}{\partial c_k} = 0$, para cada k. Como $\partial p(t_i)/\partial c_k = t_i^k$, temos as equações normais que determinam o polinómio p(x) que ajusta os dados, segundo o critério de mínimos quadrados:

$$\sum_{i} (p(t_i) - y_i) \cdot t_i^k = 0, \ \forall k \qquad \text{Matricialmente } A^t \cdot (A \cdot c - y) = 0 \qquad (A^t \cdot A) \cdot c = (A^t \cdot y)$$

Se as abscissas são k+1 valores diferentes e o grau pequeno (n < k+1), a matriz $A^t \cdot A$ é invertível, e as equações têm solução única². O polinómio resultante é também chamado **ajustamento de grau** n (ajustamento linear, quadrático, etc), segundo o critério de mínimos quadrados.

 $^{^1}$ A característica de A é menor ou igual ao número de linhas e ao número de colunas. A característica é igual ao número de linhas (ou de colunas) se estas são linearmente independentes. Isto acontece quando seja possível incorporar novas linhas/colunas para formar uma matriz invertível. Bastará provar então que $(t_i^j)_{i,j=0,\ldots,N}$ é invertível. Pensemos no sistema de equações anterior com grau N e N+1 pontos diferentes $(t_0,t_1,\ldots,t_n\ldots t_N)$ e com $y_0=y_1=\ldots=y_N$. Cada solução deste sistema determinará os coeficientes c_0,\ldots,c_N dum polinómio de grau N que se anula em N+1 pontos (tem N+1 raízes diferentes). O único polinómio com tantas raízes é o polinómio 0. Como acabamos de ver o sistema tem solução única, portanto a sua matriz de coeficientes $(t_i^j)_{i,j=0,\ldots,N}$ é invertível, como queríamos provar.

²Se $A^t \cdot A$ não fosse invertível, existiria uma coluna $x \neq 0$ com $A^t \cdot A \cdot x = 0$, portanto $(A \cdot x)^t \cdot (A \cdot x) = 0$, portanto $A \cdot x = 0$, e portanto as colunas de A seriam linearmente dependentes, não poderíamos completar com novas colunas para formar uma matriz invertível. No caso n+1 < k+1 isto está em contradição com o que sabemos: que $(t_i^j)_{i,j=0,\ldots,k}$ é invertível quando os pontos t_0,\ldots,t_k são diferentes.

1. Polinómio interpolador:

Use o programa para determinar o **polinómio que interpola os dados** indicados na página seguinte. Determine o **erro relativo cometido** pelo valor $f(t_6)$ como aproximação de y_6 .

2. Regressão linear simples para ajustamentos $y = m \cdot x + b$:

Considere novamente os mesmos 6 dados (t_i, y_i) . Faça um ajustamento por mínimos quadrados a uma função linear f(x) = mx + b. Indique qual foi a lista de dados introduzidos no programa. Indique quais foram as equações normais resolvidas. Indique qual é a função linear que melhor ajusta estes dados. Sabemos que $y_i \simeq f(t_i) = m \cdot t_i + b$. Determine qual é o erro relativo cometido pelo valor $f(t_6)$ como aproximação de y_6 .

3. Regressão linear (y = mx + b) para ajustamentos $y = c \cdot t^k$:

Se pretendemos ajustar um conjunto de dados $(t_0, y_0), \ldots, (t_n, y_n)$ ao gráfico duma função $f(x) = c \cdot x^k$, não podemos fazer um ajustamento de mínimos quadrados a um polinómio de grau k. Primeiro, k não é conhecido e poderia não ser nem sequer inteiro e ainda no caso em que o fosse, um ajustamento polinomial produz $c_0 + c_1 \cdot t + \ldots + c_k \cdot t^k$, que normalmente vai ter termos de grau $0, 1, \ldots, k-1$ e não só de grau k.

O ajustamento a uma função $f(x) = c \cdot x^k$ pode ser feito se observamos que:

$$y = c \cdot t^k \Leftrightarrow \ln y = k \cdot \ln t + \ln c$$

Portanto um ajustamento linear dos dados $(\ln t, \ln y)$ deveria produzir como resultado um polinómio mx + b onde m será o valor k procurado e c verifica $\ln c = b$. Melhor ainda, k não depende de mudanças nas unidades usadas para y ou para t, dado que ao alterarmos as unidades $\bar{y} = \alpha \cdot y$, $\bar{t} = \beta \cdot t$ temos $\ln \bar{y} = \ln y + \ln \alpha$, $\ln \bar{t} = \ln t + \ln \beta$, e como isto corresponde a uma simples traslação em $\ln t$, $\ln y$, o declive obtido na regressão linear destes dados voltará a ser o mesmo k.

Use regressão linear dos dados $(\ln t, \ln y)$ para determinar uma função $f(x) = c \cdot t^k$ que aproxime os valores (t, y). Indique os dados introduzidos. Indique qual será a função $c \cdot t^k$ e indique um valor racional a/b próximo de k.

4. Ajustamento polinomial de dados

Resolvida a alínea anterior sabemos que os dados $(t_0, y_0), \ldots, (t_n, y_n)$ podem ser ajustados em forma aproximada a uma função $f(x) = c \cdot x^k$. Imaginemos que k é um número racional k = a/b, com $a \in \mathbb{N}$. Então (t_i, y_i^b) podem ser ajustados ao gráfico de $c^b \cdot x^a$. Se admitimos mais coeficientes neste polinómio de grau a, os dados (t_i, y_i^b) podem ser ajustados a uma curva $p(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2 + \ldots c_a \cdot x^a$.

Use ajustamento por mínimos quadrados para encontrar uma função $c_0 + c_1 \cdot x + \ldots + c_a \cdot x^a$ que aproxime os dados (t_i, y_i^b) . Indique os dados introduzidos e o polinómio de grau a obtido. Use o resultado para indicar uma função $f(x) = (c_0 + c_1 \cdot x + \ldots + c_a \cdot x^a)^{1/b}$ que aproxime os dados (t_i, y_i) . Indique qual é o erro relativo cometido por $f(t_6)$ como aproximação de y_6 . Use a função obtida para dar um valor aproximado da derivada dy/dt no ponto t=50.

Tabela de dados. CONSELHO: Tente alterar o código do programa para não ter de introduzir os valores manualmente

Numero	Aluno	Lista de dados (t_i, y_i)
043	PEDRINHO	((6, 19), (26, 183), (40, 357), (72, 851), (75, 911), (84, 1085))
072	RAMOS	((22, 689), (29, 1230), (33, 1583), (64, 5803), (69, 6824), (79, 8897))
092	FARINHA	((11, 112), (14, 199), (18, 310), (31, 987), (69, 4723), (88, 7776))
114	LADEIRAS	((5, 17), (14, 75), (43, 402), (59, 636), (76, 930), (83, 1063))
131	SOLOVEY	((4, 8), (28, 150), (31, 177), (47, 324), (71, 599), (91, 868))
147	MANGERONA	((15, 386), (36, 2281), (60, 6339), (69, 8146), (76, 10122), (88, 13341))
195	CARNEIRO	((22, 175), (30, 287), (55, 694), (70, 1016), (80, 1243), (98, 1677))
219	SEQUEIRA	((17, 291), (26, 694), (30, 928), (55, 3058), (78, 6064), (85, 7196))
239	RAMOS	((5, 37), (43, 2578), (45, 2811), (66, 6208), (84, 10000), (87, 10635))
266	BATISTA	((21, 2119), (50, 17260), (55, 22633), (56, 23539), (89, 75459), (92, 81704))
278	CARDOSO	((18, 104), (69, 813), (70, 837), (85, 1107), (91, 1228), (93, 1267))
296	GOUVEIA	((3, 4), (40, 244), (47, 317), (65, 522), (86, 789), (92, 870))
299	LOURENÇO	((8, 113), (14, 341), (26, 1149), (60, 6133), (84, 12185), (95, 15674))
333	LOUSA	((16, 1002), (27, 3619), (31, 5268), (41, 10834), (65, 33431), (76, 49717))
339	GOMES	((50, 343), (56, 408), (57, 420), (81, 712), (91, 849), (95, 916))
356	ABREU	((8, 81), (12, 200), (20, 570), (44, 2741), (91, 11612), (92, 11884))
360	GARCIA	((12, 217), (15, 319), (24, 796), (38, 2027), (49, 3382), (69, 6715))
401	PEREIRA	((20, 91), (71, 602), (73, 628), (76, 658), (93, 896), (99, 987))
421	MELRO	((23, 885), (24, 1015), (30, 1517), (67, 7789), (78, 10537), (97, 16379))
496	DUARTE	((14, 324), (34, 2048), (39, 2632), (56, 5473), (75, 9844), (94, 15168))
514	SILVA	((3, 11), (10, 95), (21, 430), (29, 828), (82, 6793), (99, 9820))
523	SANTOS	((8, 24), (24, 123), (27, 144), (41, 264), (74, 643), (87, 823))
532	PINTO	((6, 73), (38, 2484), (65, 7349), (71, 8644), (76, 10136), (83, 11908))
777	PESTANA	((4, 14), (59, 771), (62, 830), (63, 866), (91, 1493), (93, 1541))
		((15, 102), (22, 178), (36, 371), (75, 1117), (76, 1127), (92, 1523))
		((70, 4986), (71, 5008), (72, 5049), (77, 5881), (85, 7301), (96, 9122))
		((29, 814), (51, 2647), (62, 3897), (66, 4345), (69, 4697), (76, 5807))
		((11, 41), (16, 67), (25, 129), (67, 559), (70, 589), (71, 592))