	Teste de Matemática A						
	2019 / 2020						
Teste N.º 4							
Matemática A							
Duração do Teste: 90 minutos							
11.º Ano de Escolaridade							
Nome do aluno:	N.º: Turma: _						

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Apresente apenas uma resposta para cada item. As cotações dos itens encontram-se no

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

É permitido o uso de calculadora.

final do enunciado.

1. Considere as sucessões (u_n) e (v_n) definidas por:

$$u_n = (n - 2020)^2$$
 e $v_n = \begin{cases} n \text{ se } n < 2020 \\ \cos(n\pi) \text{ se } n \ge 2020 \end{cases}$

Em relação a estas sucessões, podemos concluir que:

- (A) são ambas monótonas.
- (B) são ambas limitadas.
- **(C)** (u_n) é monótona e não limitada. **(D)** (v_n) é não monótona e limitada.
- **2.** Sejam $f \in g$ as funções definidas por $f(x) = 3\cos(2x)$ e $g(x) = \sin\left(-\frac{\pi}{2} + x\right) + a\cos(x)$, onde a é um número real superior a 1.
 - **2.1.** A função f é uma função periódica de período:
 - (A) $\frac{\pi}{2}$

- (B) $\frac{\pi}{2}$ (C) $\frac{2\pi}{3}$
- **(D)** π
- **2.2.** Qual é o contradomínio da função g, para qualquer valor de a?
 - (A) [a-1, a+1] (B) [1-a, a-1] (C) [-a, a] (D) $\left[-\frac{a}{2}, \frac{a}{2}\right]$

- **2.3.** Considerando a = 4 e recorrendo a processos exclusivamente analíticos, determine as abcissas dos pontos de interseção dos gráficos das funções $f \in g$.
- 2.4. Considere, num referencial o.n. Oxy, o gráfico da função f representado no intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e um triângulo [OAP].

Sabe-se que:

- os pontos A e P são pontos do gráfico de f;
- o ponto A tem abcissa positiva e esta é o zero da função f no intervalo considerado;
- *P* é um ponto do gráfico da função *f* e pertence ao segundo quadrante.

Determine, recorrendo à calculadora gráfica, as coordenadas do ponto P, de modo que a área do triângulo [OAP] seja igual a $\frac{1}{2}$.

Na sua resposta deve:

- determinar analiticamente as coordenadas do ponto *A*;
- equacionar o problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação, devidamente identificado(s), incluindo o referencial;
- indicar as coordenadas do ponto *P*, com arredondamento às centésimas.

- **3.** Num referencial o.n. *Oxy* do plano, considere:
 - a circunferência de equação $x^2 + y^2 = 25$;
 - a reta t tangente à circunferência no ponto de coordenadas (3,4).

Seja α a inclinação da reta t.

Determine, sem recurso à calculadora, o valor de $\cos \alpha$.

- **4.** O limite da sucessão de termo geral $u_n = 1 + \frac{1}{5} + \frac{1}{25} + \dots + \frac{1}{5^n}$ é:
 - **(A)** $\frac{5}{4}$
- (B) $\frac{4}{5}$
- **(C)** 0

(D) $+\infty$

- **5.** Considere, num referencial o.n. *Oxyz*:
 - a superfície esférica de equação $(x-1)^2 + y^2 + z^2 = 13$;
 - o ponto A de coordenadas A(1,2,3) pertencente a essa superfície esférica.

Recorrendo a processos analíticos, resolva os itens seguintes.

- **5.1.** Seja B o ponto de interseção da superfície esférica com o semieixo negativo das ordenadas.
 - **5.1.1.** Seja *M* o ponto médio do segmento de reta [*AB*].

Se P pertencer ao plano mediador de [AB], então necessariamente:

- (A) $\overrightarrow{PA}.\overrightarrow{PM}=0$
- **(B)** \overrightarrow{AB} . $\overrightarrow{PM} = 0$
- (C) $\overrightarrow{AB} \cdot \overrightarrow{PB} = 0$
- **(D)** \overrightarrow{AM} . $\overrightarrow{AP} = 0$
- **5.1.2.** Determine a amplitude do ângulo *AOB*.

Apresente o resultado em graus, arredondado às décimas.

- **5.1.3.** Determine uma equação cartesiana do plano *OAB*.
- **5.2.** Seja α o plano definido por:

$$2x - 3y + 11 = 0$$

Sabe-se que o plano α é tangente à superfície esférica.

Determine as coordenadas do ponto de tangência.

- **6.** Determine o primeiro termo de uma progressão aritmética, da qual se sabe que a soma dos quatro primeiros termos é igual a 46 e que a diferença entre o oitavo termo e o quinto termo é igual a 9.
- 7. Considere as sucessões (a_n) e (b_n) definidas por:

$$a_n = \frac{4n^3 + n^2 - 1}{-2n^3 + n}$$
 e $b_n = \sqrt{n^2 + 1} - n$

Seja $A = \lim a_n$ e $B = \lim b_n$.

Determine o valor de A + B.

- FIM -

COTAÇÕES

	Item												
	Cotação (em pontos)												
1.	2.1.	2.2.	2.3.	2.4.	3.	4.	5.1.1.	5.1.2.	5.1.3.	5.2.	6.	7.	
8	8	8	20	20	20	8	8	20	20	20	20	20	200