Carro Bluetooth

Jesús Adolfo Flores Pérez

Juan Carlos Ubaldo Sánchez

Índice

I. Introducción	
I. Introducción	
II. Descripción Del Diseño	
→ ENLAZAR DISPOSITIVOS BLUETOOTH	
III. Descripción Del Funcionamiento	
→ FORMA DE CONECTADO	
IV. Programa	
V. Lista De Materiales	
VI. Ficha Técnica	
VII. Lista De Herramientas	
VIII. Distribución De Tareas	
IX. Diario De Lo Realizado	
X. Dificultades Encontradas	
XI. Sugerencias De Mejoras	
XII. Planos	
→ CIRCUITO IMPRESO O CONEXIONES	
→ Foto Construcción Terminada O De Partes	

	15 16	
XIII.	Hoja De Construcción	16
XIV.	Conclusiones	18

Introducción

••• Este proyecto describe el diseño y la implementación de un vehículo controlado de manera remota a través de un dispositivo móvil. Estará formado por dos grandes bloques: hardware y software. El prototipo de vehículo, construido a escala mediante una estructura que contiene un microcontrolador, podrá desplazarse con las órdenes que el usuario envíe o de manera automática, gracias a la creación de un algoritmo inteligente. En el presente documento se detalla todo el proceso llevado a cabo en la realización del proyecto.

Descripción del diseño

•• Se ha conseguido construir una estructura de un vehículo, en la que pudimos añadir todos los circuitos para que se mueva sin tener que tener una conexión a un ordenador o a la corriente eléctrica.

•• La estructura no es un vehículo como tal, no contiene una carcasa que sea la de un vehículo radio control y es una estructura simple, pero el objetivo de este trabajo era crear un prototipo de vehículo, por lo que el aspecto externo resultante pasa a ser secundario.

••• Se ha descargado una aplicación para Arduino en la que se tienen en cuenta tanto los posibles movimientos del vehículo como los dos modos de manejo con el envío mediante el botón correspondiente desde la aplicación del teléfono, el software cargado en la placa de Arduino recibe dicho carácter del módulo Bluetooth instalado en el vehículo y lo procesa, realizando en cada caso cierto movimiento de los motores.

Enlazar Dispositivos Bluetooth

Los pasos para activar el Bluetooth son los siguientes:

- 1. Abrir el menú de Ajustes del teléfono.
- 2. Elegir "Bluetooth" en el menú de "Conexiones inalámbricas" o "Redes inalámbricas".
- 3. Tocar la opción de Activar.
- 4. Una vez activado, en la barra de notificaciones (parte superior de la pantalla) aparecerá el icono de Bluetooth.

Conectar el control el carro vía una aplicación descargada en la Play Store

El siguiente paso es conectarse a un dispositivo. Para ello:

- 1. El Bluetooth debe estar activado. Si no lo está, ver pasos anteriores.
- 2. En "Dispositivos disponibles" se encuentran todos aquellos dispositivos con los que poder establecer una conexión.
- 3. Pulsar sobre el dispositivo deseado (en el caso del vehículo, es necesario consultar previamente el nombre del módulo Bluetooth; el usado en el proyecto es HC-06).
- 4. Si requiere contraseña, probar a introducir 0000 o 1234, las más habituales. En caso de que no funcione con ninguna de ellas, consultar la documentación del dispositivo.
- 5. Si la contraseña es correcta, los dispositivos permanecerán enlazados correctamente.

Descripción del funcionamiento

→ Se muestra cómo se conecta Arduino y HC 06, debemos de tener cuidado al conectar el + y el -, ya que, si lo cambiamos, el módulo se averiará.

Forma de conectado

Módulo Bluetooth	Módulo Bluetooth Arduino	
VCC	5 V	
GND	GND	
TXD	RX (Conexión 0 del Arduino)	
RXD	TX (Conexión 1 del Arduino)	

La conexión de Arduino con los motores.

Programa

```
#include <AFMotor.h>
AF_DCMotor motor1(1, MOTOR12_1KHZ);
AF_DCMotor motor4(4, MOTOR34_1KHZ);
char command;
void setup()
{
  Serial.begin(9600);
void loop(){
  if(Serial.available() > 0){
    command = Serial.read();
    Stop();
    switch(command){
    case 'F':
      forward();
      break;
    case 'B':
      back();
      break;
    case 'L':
      left();
      break;
    case 'R':
      right();
      break;
  }
}
void forward(){
  motor1.setSpeed(255);
  motor1.run(FORWARD);
  motor4.setSpeed(255);
  motor4.run(FORWARD);
}
void back(){
  motor1.setSpeed(255);
  motor1.run(BACKWARD);
  motor4.setSpeed(255);
  motor4.run(BACKWARD);
}
```

```
void left(){
  motor1.setSpeed(255);
  motor1.run(BACKWARD);
  motor4.setSpeed(255);
  motor4.run(FORWARD);
}
void right(){
  motor1.setSpeed(255);
 motor1.run(FORWARD);
  motor4.setSpeed(255);
  motor4.run(BACKWARD);
}
void Stop(){
  motor1.setSpeed(0);
 motor1.run(RELEASE);
  motor4.setSpeed(0);
 motor4.run(RELEASE);
}
```

Lista de materiales

Arduino Uno

Juego de cables

Shield Motor

Batería

Modulo Bluetooth

Conector Batería

Esqueleto de carro

Cable Usb

2 Llantas de plástico

1 Rueda Loca De Plástico

2 Motores reductor

Ficha técnica

Material	Modelo Características		
Arduino Uno	Con 14 pines de entrada/salidas digitales (de los cuales 6 se pueden utilizar como salidas PWM), 6 entradas analógicas, un vidrio de cuarzo de 16 MHz, una conexión USB, un conector de alimentación, un encabezado ICSP y un botón de reinicio.		
Shield Motor	V1 driver I293d		
Modulo Bluetooth	Hc-06 Para Arduino Pic Raspberry		
Esqueleto de carro	STEREN		
2 Ilantas	De plástico		
1 Rueda	Loca De Plástico		
2 Motor reductor	Doble tipo I		
Cinchos	Nylon Naturales		
Juego de cables	8 cables de 15 cm tipo Dupont		
Batería	Eveready Pila Carbón Zinc, 9V		
Conector Batería	Dc 9v A Plug, Broche Pila Arduino		
Cable Usb	Para Arduino Uno Y Mega		

Lista de herramientas

Desarmador
Estaño
Herramientas para soldadura
Pinzas

Distribución de tareas

	Inicio	Fin
Merari Organizadora y Documentación	29/11/2022	03/12/2022
Ruanet Armado y Código	29/11/2022	01/12/2022
Yair Soldadura	29/11/2022	01/12/2022
Adolfo Herramientas	29/11/2022	01/12/2022
Ubaldo Planos	29/11/2022	30/11/2022
Fabio Conexiones	29/11/2022	01/12/2022
Frida Prueba y Error	29/11/2022	01/12/2022

Diario de lo realizado

Actividades	Martes	Miércoles	Jueves	Viernes	Sábado
Organizar las actividades					
Creación de					
planos					
Armado del Carro					
Soldadura					
Conexiones					
Código					
Pruebas de funcionamiento					

Dificultades encontradas

Nuestro principal problema fue que en Internet muy pocos videos o proyectos utilizaban un puente L293 y esto se nos hacía muy contraproducente.

Otro problema que tuvimos al inicio fue la asignación de motores en el código (ya que eran 4 slots) y si usabas uno donde no tenías conectado nada te marcaba error porque no pasaba correctamente todos los datos.

Sugerencias de mejoras

Enfoque sobre los procesos

Gestionar las actividades como procesos. Definiendo responsables, objetivos, inputs/outputs, flujos de trabajo, procedimientos, relaciones con otros procesos, etc.

Gestión sistémica

Toma de decisiones objetiva y basada en datos reales

Contar con un mejor presupuesto

Planos

Circuito impreso o conexiones.

Foto construcción terminada o de partes.

Fotos y video del proyecto funcionando.

Link del video terminado

https://drive.google.com/file/d/1gECYv8OK36hTlw7WgsVCoi67lt37i0IJ/view?usp=s hare_link

Hoja de construcción

1. Se ensambló las ruedas a la placa.

2. Se soldaron los pines a ambos motores.

3. Se conecto el Puente encima del Arduino UNO.

4. Los pines que se soldaron al motor la contraparte se colocó y apretó en M1 y M4 del puente y posteriormente se apretaron.

5. Se conecto la tierra del Puente al Bluetooth.

- 6. Se soldaron al Puente los dos cables sobrantes que faltaban de conectar en el Bluetooth.
- 7. Conectamos la aplicación con el bluetooth y ya podemos usar nuestro carro bluetooth con Arduino.

Conclusiones

- → El objetivo principal de este proyecto, que ha sido diseñar e implementar un prototipo de vehículo a escala para que pudiera ser controlado de forma remota a través de un dispositivo móvil, se puede afirmar que ha sido logrado de manera satisfactoria.
- ⇔ La realización del proyecto, desde un primer momento, ha requerido un gran esfuerzo personal debido a la poca experiencia en el entorno del sistema. Lo que ha resultado más sencillo, pero a la vez ha entrañado más problemas, ha sido la construcción del vehículo; todas las conexiones de las componentes hardware que constituyen la estructura pudieron realizarse correctamente gracias a la amplia documentación existente en Internet. Los problemas fueron sobre todo para acoplar la circuitería a la estructura del vehículo y la construcción de dicha estructura. La parte más complicada, en la que se ha empleado mayor esfuerzo, ha sido en la programación del software, ya que contaba con poca experiencia programando aplicaciones Android y ninguna con Arduino. Han sido numerosas las dificultades encontradas durante la realización del proyecto y han surgido contratiempos que han hecho que los plazos definidos para las tareas pudieran verse afectados.