Sr. No: 11

Name: Soham Desai

Date: 25/01/22

Experiment 3

Aim: Realize Half adder and Full adder

LO & Statement: LO: 2) Analyze and design combinational circuits

Software Requirements: Logisim software

Theory:

Half Adder

- The half adder is an example of a simple, functional digital circuit built from two logic
- The half adder adds to one-bit binary numbers (A,B).
- The output is the sum of the two bits (S) and the carry

Half adder truth table

Α	В	Sum	Carry-Out	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

For carry

For Sum

S = AB + AB

S=A ⊕ B (Exclusive OR)

Sr. No: 11

Name: Soham Desai

Date: 25/01/22

Full Adder

- The full adder accepts two inputs bits and an input carry and generates a sum output and an output carry.
- The full-adder circuit adds three one-bit binary numbers (Cin, A ,B) and outputs two one-bit binary numbers, a sum (S) and a carry (Cout).
- The full-adder is usually a component in a cascade of adders, which add 8, 16, 32, etc. binary numbers.

HALF ADDER TRUTH TABLE

Inputs			Outputs	
A	В	C-IN	Sum	C-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sr. No: 11

Name: Soham Desai

Date: 25/01/22

Output:

Conclusion:

The half adder and full adder is working as expected