Parallel Niching Genetic Algorithms

A Crowding Perspective

Project: Minor Thesis Author: Jason Brownlee

Centre for Intelligent Systems and Complex Processes School of Information Technology Swinburne University of Technology

Problem and Questions

- ☐ Type of Problem Domains
 - "Difficult" search problem domains
 - Not-feasible to exhaustively search
 - Desire multiple approximate "Good Enough" solutions

☐ Questions Addressed

- What is a "Niching Genetic Algorithm" and "Crowding"?
- Is there a Common Template & Framework for Crowding Algorithms?
- What are observed behaviours of my proposed Simple Crowding algorithm?

Standard Genetic Algorithm Initialise & evaluate population of solutions Select reproductive set from population Recombine set to produce offspring Mutate offspring Evaluate offspring Insert offspring into population

Parallel Niching Genetic Algorithm (Crowding)

- □ **Niching** groups of similar samples at areas of interest in the search space
 - Locate and maintain multiple solutions
- $\hfill\Box$ **Parallel** – multiple niches in one population
- $\hfill\Box$ Crowding - a way of niching
- □ "Localised competition for limited resources"
 - Localised Similarity between samples
 - Limited Resource Places in population
 - Competition Solution Quality/Usefulness
- □ "Restrictive Replacement Algorithm"

Example – With Niching 1 2 2

What value does the model add?

- ☐ Template for existing crowding algorithms
 - Discrete functional units or algorithm operators
 - Various biasing and approximation techniques
- ☐ Framework for analysis and development of crowding algorithms
 - Test and evaluate logical units independently
 - What is the behaviour of an archetype crowding algorithm?
- ☐ Refined crowding definition:
 - "Localised Generational Competition"

New Algorithm: Simple Crowding

- ☐ Embodiment of Crowding Principle
 - "Localised Generational Competition"
- $\ \square$ A possible prototype of Crowding in Search
- □ Algorithm Features
 - lacktriangle Entire population participates, random pairing
 - Exact similarity matching
 - Rank based fitness competition
- ☐ No forced bias or similarity approximations
- ☐ Analysis tool for crowding in search

Some Preliminary Observations

- □ Upfront Selection (Solution Pairing)
 - Natural bias (~80%) towards different-niche pairing
- ☐ Recombination (New Solutions)
 - Natural bias (98%) towards same-niche offspring
- ☐ Localised Selection (Similarity Matching)
 - Interesting transitional matching behaviour
- ☐ Replacement Strategy (Actual Replacements)
 - Trend towards equal probability of the replacements of parents or some other solutions

Some Preliminary Observations Same-niche and different-niche pairing Faster to reach a state of minimal change with bias towards different-niche pairings Small and large samples sizes Smaller the sample, the less stable the subpopulations Different replacement strategies? Exact localised replacement can maintain some stability of subpopulation size alone

Future Research

- $\hfill \square$ Analytical modelling of the simple crowding algorithm
 - Attempt to explain matching and replacement behaviour
 - Further analyse the simple crowding algorithm
- ☐ Use framework and analysis measure to further develop a crowding based niching genetic algorithm
 - Devise an algorithm to address the needs of practical application
- □ Apply crowding principle elsewhere
 Shown to be a Simple & Flexible concept
 May be useful in other types of search algorithms
 - May be useful for other purposes such as data reduction

Acknowledgements

- $\hfill\square$ My Advisor Professor Tim Hendtlass
 - Useful feedback providing grounding and clarity
- ☐ People at the CISCP
 - Meaningful discussion and airing of ideas

Questions		
☐ Questions?		