2007 A2

Ezra Guerrero Alvarez

January 15, 2022

2007 A2

2007 A2

Consider those functions $f: \mathbb{N} \to \mathbb{N}$ which satisfy the condition

$$f(m+n) \ge f(m) + f(f(n)) - 1$$

for all $m, n \in \mathbb{N}$. Find all possible values of f(2007).

All possible values for f(2007) are $1, 2, \dots, 2008$. First, we prove these are the only ones. Note that if a > b then

$$f(a) = f(b + (a - b)) \ge f(b) + f(f(a - b)) - 1 \ge f(b),$$

so f is non-decreasing. Now, we proceed to show $f(n) \leq n+1$ for all n. Clearly, $f \equiv 1$ is a solution and satisfies this. So, assume f is not identically 1 and let α be the smallest integer such that $f(\alpha) > 1$. Suppose f(n) > n. Then,

$$f(f(n)) = f(f(n) - n + n) \ge f(f(n) - n) + f(f(n)) - 1,$$

so $1 \ge f(f(n) - n)$. Therefore, $f(n) - n < \alpha$. Thus, we find that g(n) := f(n) - n is bounded from above. Let c be its maximum and k such that g(k) = c. Then, $g(2k) \le c$ so

$$2k + c > f(2k) = f(k+k) > f(k) + f(f(k)) - 1 > 2f(k) - 1 = 2k + 2c - 1$$

giving $1 \ge c$. Hence, c = 1 and $f(n) - n \le 1$ as desired.

Finally, note that the following function achieves f(2007) = r, where $r \in \{1, 2, \dots, 2008\}$:

$$f(1) = f(2) = \dots = f(2006) = 1, f(2007 + m) = r + m \forall m \ge 0.$$

We verify these satisfy the condition. If m, n < 2007 or m, n > 2006 this is clear. Otherwise, let a < 2007 and b = 2007 + m. We have

$$f(a+2007+m) = r+m+a \ge 2r+m-2007 = 1+r+(r+m-2007)-1 = f(a)+f(f(2007+m))-1.$$

This concludes the proof. \blacksquare