Cyber Security Mitigation and Response Al

Dataset Source: https://www.kaggle.com/sampadab17/network-intrusion-detection)

In [75]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sweetviz as sv
from scipy import stats
import seaborn as sns
```

In [76]:

```
test_cs = pd.read_csv('test_data.csv')
train_cs = pd.read_csv('train_data.csv')
```

In [77]:

train_cs

Out[77]:

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	uı
0	0	tcp	ftp_data	SF	491	0	0	0	
1	0	udp	other	SF	146	0	0	0	
2	0	tcp	private	S0	0	0	0	0	
3	0	tcp	http	SF	232	8153	0	0	
4	0	tcp	http	SF	199	420	0	0	
25187	0	tcp	exec	RSTO	0	0	0	0	
25188	0	tcp	ftp_data	SF	334	0	0	0	
25189	0	tcp	private	REJ	0	0	0	0	
25190	0	tcp	nnsp	S0	0	0	0	0	
25191	0	tcp	finger	S0	0	0	0	0	

25192 rows × 42 columns

In [78]:

train_cs.describe()

Out[78]:

	duration	src_bytes	dst_bytes	land	wrong_fragment	urgent
count	25192.000000	2.519200e+04	2.519200e+04	25192.000000	25192.000000	25192.00000
mean	305.054104	2.433063e+04	3.491847e+03	0.000079	0.023738	0.00004
std	2686.555640	2.410805e+06	8.883072e+04	0.008910	0.260221	0.00630
min	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	0.00000
25%	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000	0.00000
50%	0.000000	4.400000e+01	0.000000e+00	0.000000	0.000000	0.00000
75%	0.000000	2.790000e+02	5.302500e+02	0.000000	0.000000	0.00000
max	42862.000000	3.817091e+08	5.151385e+06	1.000000	3.000000	1.00000

8 rows × 38 columns

In [79]:

```
train cs.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25192 entries, 0 to 25191
Data columns (total 42 columns):
    Column
#
                                 Non-Null Count Dtype
     -----
                                 -----
0
    duration
                                 25192 non-null int64
1
                                 25192 non-null object
    protocol_type
2
    service
                                 25192 non-null object
 3
    flag
                                 25192 non-null object
4
    src_bytes
                                 25192 non-null int64
5
    dst_bytes
                                 25192 non-null int64
6
                                 25192 non-null int64
    land
7
                                 25192 non-null int64
    wrong_fragment
8
    urgent
                                 25192 non-null int64
9
                                 25192 non-null int64
    hot
10
    num_failed_logins
                                 25192 non-null int64
                                 25192 non-null int64
11
    logged_in
12
    num_compromised
                                 25192 non-null int64
13
    root_shell
                                 25192 non-null int64
                                 25192 non-null int64
14
    su_attempted
                                 25192 non-null int64
 15
    num root
16
    num_file_creations
                                 25192 non-null int64
 17
    num shells
                                 25192 non-null int64
    num_access_files
                                 25192 non-null int64
18
                                 25192 non-null int64
 19
    num_outbound_cmds
 20
    is host login
                                 25192 non-null int64
21
   is_guest_login
                                 25192 non-null int64
                                 25192 non-null int64
 22
    count
 23
    srv_count
                                 25192 non-null int64
 24
    serror_rate
                                 25192 non-null float64
                                 25192 non-null float64
 25
    srv_serror_rate
                                 25192 non-null float64
 26
    rerror rate
 27
                                 25192 non-null float64
    srv_rerror_rate
    same_srv_rate
                                 25192 non-null float64
                                 25192 non-null float64
 29
    diff srv rate
 30
    srv_diff_host_rate
                                 25192 non-null float64
                                 25192 non-null int64
 31
    dst_host_count
    dst_host_srv_count
 32
                                 25192 non-null int64
                                 25192 non-null float64
 33
    dst host same srv rate
    dst_host_diff_srv_rate
 34
                                 25192 non-null float64
    dst_host_same_src_port_rate 25192 non-null float64
    dst_host_srv_diff_host_rate 25192 non-null float64
 36
 37
    dst_host_serror_rate
                                 25192 non-null float64
   dst_host_srv_serror_rate
                                 25192 non-null float64
                                 25192 non-null float64
    dst host rerror rate
40 dst_host_srv_rerror_rate
                                 25192 non-null float64
                                 25192 non-null object
41
    class
dtypes: float64(15), int64(23), object(4)
memory usage: 8.1+ MB
```

In [80]:

```
#demotrain = sv.analyze(train_cs)
#demotrain.show_html()
```

In [81]:

```
train_cs.isnull().sum()
```

Out[81]:

```
duration
                                 0
                                 0
protocol_type
service
                                 0
flag
                                 0
                                 0
src_bytes
dst_bytes
                                 0
land
                                 0
wrong_fragment
                                 0
                                 0
urgent
                                 0
hot
num_failed_logins
                                 0
logged_in
                                 0
num_compromised
                                 0
root_shell
                                 0
su attempted
                                 0
                                 0
num_root
num_file_creations
                                 0
num_shells
                                 0
num_access_files
                                 0
                                 0
num_outbound_cmds
is_host_login
                                 0
                                 0
is_guest_login
count
                                 0
                                 0
srv_count
serror_rate
                                 0
srv_serror_rate
                                 0
rerror_rate
                                 0
srv_rerror_rate
                                 0
same_srv_rate
                                 0
diff_srv_rate
                                 0
srv_diff_host_rate
                                 0
dst host count
                                 0
dst_host_srv_count
                                 0
dst_host_same_srv_rate
                                 0
dst host diff srv rate
                                 0
dst_host_same_src_port_rate
                                 0
dst_host_srv_diff_host_rate
                                 0
                                 0
dst_host_serror_rate
dst_host_srv_serror_rate
                                 0
dst_host_rerror_rate
                                 0
                                 0
dst_host_srv_rerror_rate
class
dtype: int64
```

In [82]:

```
train_cs.duplicated().sum()
```

Out[82]:

0

In [83]:

```
sns.countplot(data=train_cs, x='class')
```

Out[83]:

<AxesSubplot:xlabel='class', ylabel='count'>

In [84]:

```
(train_cs['class'].values == 'anomaly').sum()
```

Out[84]:

11743

In [85]:

```
sns.countplot(data=train_cs, x='protocol_type')
```

Out[85]:

<AxesSubplot:xlabel='protocol_type', ylabel='count'>

In [86]:

```
train_cs['service'].unique()
```

Out[86]:

In [87]:

```
sns.countplot(data=train_cs, x='flag')
```

Out[87]:

<AxesSubplot:xlabel='flag', ylabel='count'>

In [88]:

```
nor_data = train_cs.loc[train_cs['class'] == 'normal']
```

In [89]:

nor_data #normal data distribution

Out[89]:

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	urg
0	0	tcp	ftp_data	SF	491	0	0	0	
1	0	udp	other	SF	146	0	0	0	
3	0	tcp	http	SF	232	8153	0	0	
4	0	tcp	http	SF	199	420	0	0	
12	0	tcp	http	SF	287	2251	0	0	
25176	0	tcp	ftp_data	SF	748	0	0	0	
25177	0	tcp	http	SF	293	2486	0	0	
25184	29	tcp	ftp	SF	329	1063	0	0	
25185	1	tcp	smtp	SF	2896	333	0	0	
25186	0	tcp	http	S1	339	14600	0	0	

13449 rows × 42 columns

→

In [90]:

ano_data = train_cs.loc[train_cs['class'] == 'anomaly']

In [91]:

ano_data #anomaly data distribution

Out[91]:

е	dst_host_same_src_port_rate	dst_host_srv_diff_host_rate	dst_host_serror_rate	dst_host_srv_se
5	0.00	0.00	1.0	
7	0.00	0.00	0.0	
5	0.00	0.00	1.0	
7	0.00	0.00	1.0	
5	0.00	0.00	1.0	
6	0.00	0.00	0.0	
0	1.00	0.18	0.0	
7	0.00	0.00	0.0	
6	0.00	0.00	1.0	
3	0.01	0.00	1.0	

←

In [92]:

sns.countplot(data=ano_data, x='protocol_type')

Out[92]:

<AxesSubplot:xlabel='protocol_type', ylabel='count'>

In anomaly data tcp and icmp protocols have higher usages

In [93]:

```
sns.countplot(data=nor_data, x='protocol_type')
```

Out[93]:

<AxesSubplot:xlabel='protocol_type', ylabel='count'>

In normal distribution tcp and udp protocols have higher usage

In [94]:

```
sns.countplot(data=ano_data, x='flag')
```

Out[94]:

<AxesSubplot:xlabel='flag', ylabel='count'>

In [95]:

```
sns.countplot(data=nor_data, x='flag')
```

Out[95]:

<AxesSubplot:xlabel='flag', ylabel='count'>

In [96]:

```
corr = train_cs.corr()
plt.figure(figsize=(12,12))
sns.heatmap(corr, cmap='cubehelix_r');
```



```
In [97]:
```

```
train_cs.drop(['num_outbound_cmds', 'is_host_login'], axis=1, inplace=True)
test_cs.drop(['num_outbound_cmds', 'is_host_login'], axis=1, inplace=True)
```

Separating numerical and object columns

Combining all Numerical Columns

```
In [98]:
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

cols = train_cs.select_dtypes(include=['float64','int64']).columns
sc_train = scaler.fit_transform(train_cs.select_dtypes(include=['float64','int64']))
sc_test = scaler.fit_transform(test_cs.select_dtypes(include=['float64','int64']))

train_num = pd.DataFrame(sc_train, columns = cols)
test_num = pd.DataFrame(sc_test, columns = cols)
```

Finding Object type Columns

In [99]:

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()

# extract object attributes from both train and test sets
train_obj = train_cs.select_dtypes(include=['object']).copy()
test_obj = test_cs.select_dtypes(include=['object']).copy()

# encode the object attributes
train_a = train_obj.apply(encoder.fit_transform)
test_a = test_obj.apply(encoder.fit_transform)

# separate 'class' column from encoded data
train_noclass = train_a.drop(['class'], axis=1)
Ytrain_class = train_a[['class']].copy()
```

```
In [100]:
train_x = pd.concat([train_num,train_noclass],axis=1)
train_y = train_cs['class']
train_x.shape

Out[100]:
(25192, 39)
In [101]:
test_ = pd.concat([test_num,test_a],axis=1)
test_.shape

Out[101]:
(22544, 39)
```

Feature Selection

In [102]:

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier();

# fit random forest classifier on the training set
rfc.fit(train_x, train_y);

# extract important features
score = np.round(rfc.feature_importances_,3)
imp = pd.DataFrame({'feature':train_x.columns,'importance':score})
imp = imp.sort_values('importance',ascending=False).set_index('feature')

# plot importances
plt.rcParams['figure.figsize'] = (11, 4)
imp.plot.bar();
```


In [103]:

```
from sklearn.feature_selection import RFE
import itertools
rfc = RandomForestClassifier()

# create the RFE model and select 15 attributes
rfe = RFE(rfc, n_features_to_select=15)
rfe = rfe.fit(train_x, train_y)

# summarize the selection of the attributes
feature_map = [(i, v) for i, v in itertools.zip_longest(rfe.get_support(), train_x.columns)
features = [v for i, v in feature_map if i==True]
```

Out[103]:

```
['src_bytes',
  'dst_bytes',
  'logged_in',
  'count',
  'srv_count',
  'same_srv_rate',
  'diff_srv_rate',
  'dst_host_srv_count',
  'dst_host_same_srv_rate',
  'dst_host_diff_srv_rate',
  'dst_host_same_src_port_rate',
  'dst_host_srv_diff_host_rate',
  'protocol_type',
  'service',
  'flag']
```

In [104]:

```
train_feature = train_x[features]
train_feature
```

Out[104]:

rv_rate	dst_host_srv_count	dst_host_same_srv_rate	dst_host_diff_srv_rate	dst_host_same_src_po
349282	-0.813985	-0.779157	-0.280673	0.0
190836	-1.030895	-1.157831	2.764403	2.3
)42773	-0.804947	-0.935081	-0.173828	-0.4
349282	1.264742	1.069663	-0.440940	-0.:
349282	1.264742	1.069663	-0.440940	-0.4
)42773	-0.976667	-1.091006	-0.120406	-0.4
349282	-0.687453	1.069663	-0.440940	2.7
)42773	-0.922440	-1.046456	-0.066984	-0.4
)13235	-0.859174	-0.979631	-0.120406	-0.4
266804	-0.597074	-0.734607	-0.280673	-0.4
4				

Defining Train and Test

In [105]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(train_feature, train_y, test_size = 0.2
```

Applying Logistic Regression

In [106]:

```
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.model_selection import cross_val_score
```

In [107]:

```
LGR_Classifier = LogisticRegression(n_jobs=-1, random_state=0)
LGR_Classifier.fit(X_train, Y_train);
```

In [122]:

```
LGR_Classifier.coef_
```

Out[122]:

```
array([[ 9.81364175e-02, -3.65668863e-01, -7.22050813e-02, -1.65244595e-03, -1.31498884e+00, -9.28785294e-02, -5.90453266e-01, -2.05501508e-02, 1.91271626e-01, -4.50808136e-01, -7.36916857e-02, 3.45145878e-01, 3.01212944e-01, 3.97918465e-02, 1.18981959e-01, 2.18297502e-02, 3.97770604e-01, -1.48222618e+00, 3.98018259e-01, -4.21418384e-01, -1.31829496e+00, -4.56260289e-01, -1.13789835e+00, 1.19844649e+00, 3.55295807e-01, -2.63479517e-01, -9.60747615e-01, 1.70019090e+00, -1.20766337e+00, -3.01584356e-01, -8.48080088e-01, -3.32264621e-01, -5.11430962e-01, -9.89170359e-01, -3.09202230e-01, 1.07031839e-01, 1.60210425e+00, 4.85916741e-03, -3.65035186e-01]])
```

Evaluating Model

In [108]:

```
models = []
models.append(('LogisticRegression', LGR_Classifier))
for i, v in models:
   scores = cross_val_score(v, X_train, Y_train, cv=10)
   accuracy = metrics.accuracy_score(Y_train, v.predict(X_train))
   confusion_matrix = metrics.confusion_matrix(Y_train, v.predict(X_train))
   classification = metrics.classification_report(Y_train, v.predict(X_train))
   print()
   print()
   print ("Cross Validation Mean Score:" "\n", scores.mean())
   print ("Model Accuracy:" "\n", accuracy)
   print()
   print("Confusion matrix:" "\n", confusion_matrix)
   print()
   print("Classification report:" "\n", classification)
   print()
```

====== LogisticRegression Model Evaluation =======

Cross Validation Mean Score:

0.943632391371936

Model Accuracy:

0.9439504604636393

Confusion matrix:

[[8162 652] [407 9673]]

Classification report:

CIUSSI I ICUCIO	precision	recall	f1-score	support
anomaly	0.95	0.93	0.94	8814
normal	0.94	0.96	0.95	10080
accuracy			0.94	18894
macro avg	0.94	0.94	0.94	18894
weighted avg	0.94	0.94	0.94	18894

Validating Model

In [109]:

======= LogisticRegression Model Test Results ======

```
Model Accuracy:
```

0.9402985074626866

Confusion matrix: [[2703 226] [150 3219]]

Classification report:

	precision	recall	f1-score	support
anomaly	0.95	0.92	0.93	2929
normal	0.93	0.96	0.94	3369
accuracy			0.94	6298
macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94	6298 6298
				3

Another approach to improve model's accuracy rate

In [110]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(train_x, train_y, test_size = 0.25, ran
```

In [111]:

```
LGR_Classifier = LogisticRegression(n_jobs=-1, random_state=0)
LGR_Classifier.fit(X_train, Y_train);
```

Evaluation Model

In [112]:

```
models = []
models.append(('LogisticRegression', LGR_Classifier))
for i, v in models:
   scores = cross_val_score(v, X_train, Y_train, cv=10)
   accuracy = metrics.accuracy_score(Y_train, v.predict(X_train))
   confusion_matrix = metrics.confusion_matrix(Y_train, v.predict(X_train))
   classification = metrics.classification_report(Y_train, v.predict(X_train))
   print()
   print()
   print ("Cross Validation Mean Score:" "\n", scores.mean())
   print()
   print ("Model Accuracy:" "\n", accuracy)
   print()
   print("Confusion matrix:" "\n", confusion_matrix)
   print()
   print("Classification report:" "\n", classification)
   print()
```

====== LogisticRegression Model Evaluation =======

Cross Validation Mean Score:

0.9547470036776546

Model Accuracy:

0.9556472954377051

Confusion matrix:

[[8298 516]

[322 9758]]

Classification report:

	precision	recall	f1-score	support
anomaly normal	0.96 0.95	0.94 0.97	0.95 0.96	8814 10080
noi illa i	0.55	0.57		
accuracy			0.96	18894
macro avg	0.96	0.95	0.96	18894
weighted avg	0.96	0.96	0.96	18894

Validation Model

```
In [113]:
```

```
Model Accuracy:
0.9537948555096856
Confusion matrix:
[[2754 175]
[ 116 3253]]
Classification report:
           precision recall f1-score
                                 support
   anomaly
             0.96
                     0.94
                            0.95
                                    2929
    normal
             0.95
                     0.97
                            0.96
                                    3369
  accuracy
                            0.95
                                    6298
                     0.95
                            0.95
  macro avg
             0.95
                                    6298
weighted avg
             0.95
                     0.95
                            0.95
                                    6298
```

Predicting normal and anamoly behaviour on Test dataset

In [116]:

test_cs

Out[116]:

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment
0	0	tcp	private	REJ	0	0	0	0
1	0	tcp	private	REJ	0	0	0	0
2	2	tcp	ftp_data	SF	12983	0	0	0
3	0	icmp	eco_i	SF	20	0	0	0
4	1	tcp	telnet	RSTO	0	15	0	0
22539	0	tcp	smtp	SF	794	333	0	0
22540	0	tcp	http	SF	317	938	0	0
22541	0	tcp	http	SF	54540	8314	0	0
22542	0	udp	domain_u	SF	42	42	0	0
22543	0	tcp	sunrpc	REJ	0	0	0	0

22544 rows × 39 columns

1

In [117]:

```
pred_df = pd.DataFrame(pred_log, columns = ['class'])
test_output = pd.concat([test_cs, pred_df],axis=1)
```

In [118]:

test_output

Out[118]:

е	dst_host_same_src_port_rate	dst_host_srv_diff_host_rate	dst_host_serror_rate	dst_host_srv_se
6	0.00	0.00	0.00	
6	0.00	0.00	0.00	
4	0.61	0.02	0.00	
0	1.00	0.28	0.00	
7	0.03	0.02	0.00	
6	0.01	0.01	0.01	
0	0.01	0.01	0.01	
0	0.00	0.00	0.00	
1	0.00	0.00	0.00	
3	0.00	0.00	0.00	

←

In [119]:

sns.countplot(data = test_output, x = 'class')

Out[119]:

<AxesSubplot:xlabel='class', ylabel='count'>

In []: