1. Цель работы

Нахождение графического решения задачи линейного программирования.

Вариант 4:

$$z = 5x_1 + x_2 \rightarrow max$$

$$-x_1 + x_2 \le 1 \tag{1}$$

$$x_1 \ge 2 \tag{2}$$

$$4x_1 - 8x_2 \le 12 \qquad (3)$$

$$x_2 \le 6 \tag{4}$$

$$3x_1 + 2x_2 \le 21 \qquad (5)$$

$$x_1, x_2 \ge 0$$

2. Решение задачи линейного программирования графическим методом

На рисунке 1 представлена область допустимых значений.

Рисунок 1 – Область допустимых значений

На рисунке 2 представлен графический метод решения ЗЛП.

Рисунок 2 – Решение ЗЛП графическим методом

Точка Е является оптимумом, так как при перемещении целевой функции в направлении градиента точка Е будет последней, которая входит в область допустимых значений. Точка

Е находится на пересечении прямых:
$$\begin{cases} 4x_1 - 8x_2 = 12 \\ 3x_1 + 2x_2 = 21 \end{cases}$$

Решив эту систему, получим: $x_1 = 6$, $x_2 = 1.5$.

3. Анализ чувствительности

$$z = 5x_1 + x_2 \to max$$

Точка оптимума Е находится на пересечении прямых:

$$\begin{cases} 4x_1 - 8x_2 = 12 \\ 3x_1 + 2x_2 = 21 \end{cases}$$
 , соответствующих ограничениям: $\begin{cases} 4x_1 - 8x_2 \le 12 \\ 3x_1 + 2x_2 \le 21 \end{cases}$

Находим диапазоны изменения каждого коэффициента:

Диапазон изменения C_1 , при $C_2=const$:

$$tg\alpha_{\mathrm{IJ}\Phi} = \frac{\mathsf{C}_1}{\mathsf{C}_2} = \frac{\mathsf{C}_1}{1}$$

$$tg\alpha_{(1)} = \frac{4}{-8} = -0.5$$

$$tg\alpha_{(2)} = \frac{3}{2}$$

$$\frac{C_1}{1} = -0.5$$

$$min C_1 = -0.5$$

$$\frac{C_1}{1} = \frac{3}{2}$$

$$max C_1 = \frac{3*1}{2} = 1,5$$

Таким образом: $-0.5 \le C_1 \le 1,5$

Диапазон изменения E_2 , при $E_1=$ const:

$$tg\alpha_{\mathrm{IJ}\Phi} = \frac{\mathrm{E}_1}{\mathrm{E}_2} = \frac{5}{\mathrm{E}_2}$$

$$\frac{-8}{4} \le \frac{C_2}{5} \le \frac{2}{3}$$

Таким образом: $-10 \le C_2 \le 10/3$

3.1. Оценка ресурса М3

Концевые точки отрезка определяют интервал осуществимости для ресурса M3. Количество сырья, соответствующего точке (7,0), равно $4\cdot 7 - 8\cdot 0 = 28$ Количество сырья, соответствующего точке (3.8,4.8), равно $4\cdot 3.8 + -8\cdot 4.8 = -23.2$ Таким образом, интервал осуществимости для ресурса M3 составляет $-23.2 \le M3 \le 28$ Вычислим значение целевой функции в этих точках:

$$F(7,0) = 5 \cdot 7 + 1 \cdot 0 = 35$$

$$F(3.8,4.8) = 5 \cdot 3.8 + 1 \cdot 4.8 = 23.8$$

$$Y_{M3} = \frac{35 - 23.8}{28 + 23.2} = 0.219$$

3.2. Оценка ресурса М5

Концевые точки отрезка определяют интервал осуществимости для ресурса M5. Количество сырья, соответствующего точке (15,6), равно $3 \cdot 15 + 2 \cdot 6 = 57$ Количество сырья, соответствующего точке (3,0), равно $3 \cdot 3 + 2 \cdot 0 = 9$ Таким образом, интервал осуществимости для ресурса M5 составляет $9 \le M5 \le 57$ Вычислим значение целевой функции в этих точках:

$$F(15,6) = 5 \cdot 15 + 1 \cdot 6 = 81$$

$$F(3,0) = 5 \cdot 3 + 1 \cdot 0 = 15$$

$$Y_{M5} = \frac{81 - 15}{57 - 9} = 1.375$$

Уменьшение правой части несвязывающего ограничения (1).

Не изменяя оптимального решения, прямую L_1 можно опустить до пересечения с оптимальной точкой. При этом правая часть ограничения (1) станет равной $-x_1+x_2=-4.5$, что позволит записать ограничение (1) в виде $-x_1+x_2\leq -4.5$.

Уменьшение правой части несвязывающего ограничения (2).

Не изменяя оптимального решения, прямую L_2 можно опустить до пересечения с оптимальной точкой. При этом правая часть ограничения (2) станет равной $x_1 = 6$, что позволит записать ограничение (1) в виде $x_1 \ge 6$.

Уменьшение правой части несвязывающего ограничения (4).

Не изменяя оптимального решения, прямую L_4 можно опустить до пересечения с оптимальной точкой. При этом правая часть ограничения (4) станет равной $x_2 = 1.5$, что позволит записать ограничение (1) в виде $x_2 \le 1.5$.

4. Решение в табличном процессоре Excel

На рисунке 2 и 3 представлены решения задачи линейного программирования при помощи среды Microsoft Excel.

A	В	С	D	Е	F
1 целевая функция	5	1	31,5		
2 огр1	-1	1	-4,5	<=	1
3 огр2	1	0	6	>=	2
4 огр3	4	-8	12	<=	12
5 огр4	0	1	1,5	<=	6
6 огр5	3	2	21	<=	21
7					
8 перем	x1	x2	L(x)		
9	6	1,50	31,5		

Рисунок 2 – Модель задачи

Microsoft Excel 16.0 Отчет об устойчивости

Лист: [Книга1]Лист1

Отчет создан: 18.02.2022 18:16:03

Ячейки переменных

		Окончательное	Приведенн.	Целевая функция	Допустимое	Допустимое
Ячейка	Имя	Значение	Стоимость	Коэффициент	У величение	Уменьшение
\$B\$9	x1	6	0	5	1E+30	3,5
\$C\$9	x2	1,5	0	1	2,333333333	11

Ограничения

		Окончательное	Тень	Ограничение	Допустимое	Допустимое
Ячейка	Имя	Значение	Цена	Правая сторона	У величение	Уменьшение
\$D\$2	огр1	-4,5	0	1	1E+30	5,5
\$D\$3	огр2	6	0	2	4	1E+30
\$D\$4	огр3	12	0,21875	12	16	35,2
\$D\$5	огр4	1,5	0	6	1E+30	4,5
\$D\$6	огр5	21	1,375	21	36	12

Рисунок 3 - Решение

5. Выводы

В ходе выполнения лабораторной работы была решена графическим методом задачи линейного программирования. Найденная точка оптимума – точка E(6; 1,5);

Также были рассчитаны диапазоны изменения коэффициентов целевой функции, при которых точка оптимума не меняется. Из полученных результатов можно сделать вывод, что коэффициент C1 можно уменьшить до -0,5 и увеличить до 1,5, так как точка оптимума меняться не будет. Коэффициент C2 можно увеличить до 10/3 и уменьшить до -10 и при этом точка оптимума не изменится.

Результаты, которые были получены при расчетах, совпали с результатами, полученными при помощи MS Excel.