Coulomb's Law Lab PHY-222-AC01

Jasper Runco

August 25, 2020

1 Theory

Coulomb's law describes a mathematical expression for the interaction of electrically charged objects. The electrical charge generates a force pair, F_E , with a magnitude that has been experimentally determined to such a degree that it is accepted as a universal law.

1.1 Definitions

Electrically charged object - Matter with more or less electrons than protons is negatively or positively charged respectively.

Force pair - The principal of Newton's third law in which every action force has a corresponding reaction force equal in magnitude and opposite in direction.

Coulomb's law -

$$F_E = k \frac{q_1 q_2}{r^2}$$

 ${f r}$ - The distance between the charged objects measured in meters.

 q_1q_2 - The sum of the electrical charges of each object, measured in Coulombs.

k - The electric constant, the experimentally determined proportionality constant with a value of $k=9.0\times 10^9\frac{Nm^2}{C^2}$

2 Objectives

First Objective

Experimentally confirm Coulomb's law.

Second Objective

Study how distance and charge affect the electric force.

Third Objective

Experimentally determine the value of the electric constant, k.

3 Experimental Data

3.1 Part One

Table 1:			
$q_1 = 2\mu C$		$q_2 = 4\mu C$	
r(cm)	$r^{2}(m^{2})$	$\frac{1}{r^2} \left(\frac{1}{m^2} \right)$	$F_E(N)$
10	1.0×10^{-2}	1×10^{2}	7.190
9	8.1×10^{-3}	1.2×10^{2}	8.877
8	6.4×10^{-3}	1.6×10^{2}	11.234
7	4.9×10^{-3}	2.0×10^{2}	14.674
6	3.6×10^{-3}	2.8×10^{2}	19.972
5	2.5×10^{-3}	4.0×10^{2}	28.760
4	1.6×10^{-3}	6.3×10^{2}	44.938
3	9.0×10^{-4}	1.1×10^{3}	79.889

3.2 Part Two

Table 2: $q_1 = 5\mu C \mid r = 6cm$		
r = 6cm		
$F_E(N)$		
124.827		
112.344		
99.862		
87.379		
74.896		
62.414		
49.931		
37.448		

4 Data Analysis

4.1 Part One

4.1.1 F_E with respect to r

Figure 1: Force per distance

Comments on Figure 1: As the charged objects' distance (r) tends towards zero from the possitive direction, the force (F) tends towards infinity. As r tends towards positive infinity, F tends towards zero.

4.1.2 F_E with respect to $\frac{1}{r^2}$ to find k

Figure 2: Force per inverse square of distance

Coulomb's Law - $F_E = k \frac{q_1 q_2}{r^2}$

Linear regression of Figure 2 data - y = 0.072238x

$$q_1$$
 - $2\mu C$

$$q_2$$
 - $4\mu C$

$$F_E = k \frac{(2\mu C)(4\mu C)}{r^2} \Longrightarrow$$

$$F_E(N) = k \left(8 \times 10^{-12} C^2\right) \left(\frac{1}{r^2}\right) \left(\frac{1}{m^2}\right)$$

$$y = 0.072238x \Longrightarrow$$

$$F_E = 0.072238 \left(\frac{1}{r^2}\right)$$

$$0.072238 \left(\frac{1}{r^2}\right) (N) = k \left(8 \times 10^{-12} C^2\right) \left(\frac{1}{r^2}\right) \left(\frac{1}{m^2}\right)$$

$$k = \frac{0.072238 \left(\frac{1}{r^2}\right) (N)(m^2)}{8 \times 10^{-12} C^2 \left(\frac{1}{r^2}\right)}$$

$$k = \boxed{9.02975 \times 10^9} \left(\frac{Nm^2}{C^2}\right)$$

4.1.3 Percent error in k

% error =
$$\left| \frac{\text{theoretical} - \text{experimental}}{\text{theoretical}} \right| \times 100\%$$

% error = $\left| \frac{\left(9.0 \times 10^9 \frac{Nm^2}{C^2}\right) - \left(9.02975 \times 10^9 \frac{Nm^2}{C^2}\right)}{\left(9.0 \times 10^9 \frac{Nm^2}{C^2}\right)} \right| \times 100\%$
% error = 0.330556%

4.2 Part Two

4.2.1 F_E with respect to q_2

Figure 3: Force per magnitude charge on q_2

Comments on Figure 3: There is a positive linear relationship between the magnitude of charge on one object $q_2(\mu C)$ and electric force $F_E(N)$. Given the precision of F_E measurement, it appears to approach a lower bounds of $F_E = 0$ at $q_2 = 0$.

4.2.2 F_E with respect to q_2 to find k

Coulomb's Law - $F_E = k \frac{q_1 q_2}{r^2}$

Linear regression of Figure 3 data - y = 12.483x + 0.00021429

 q_1 - $5\mu C$

r - 6cm

$$F_E = k \frac{(5\mu C)(q_2)}{(6cm)^2} \Longrightarrow$$

$$F_E(N) = kq_2(\mu C) \left(\frac{5 \times 10^{-6}C}{3.6 \times 10^{-3}m^2}\right)$$

$$y = 12.483x + 0.00021429 \Longrightarrow$$

$$F_E = 12.483q_2 + 0.00021429$$

$$(12.483q_2 + 0.00021429)(N) = kq_2(\mu C) \left(\frac{5 \times 10^{-6}C}{3.6 \times 10^{-3}m^2}\right) \Longrightarrow$$

$$k = \frac{(12.483q_2 + 0.00021429)(3.6 \times 10^{-3}m^2)(N)}{(q_2)(5 \times 10^{-6}C)(10^{-6}C)} \Longrightarrow$$

$$k = 8.98776 \times 10^9 \left(\frac{Nm^2}{C^2}\right) + 1.542888 \times 10^5 q_2^{-1} \left(\frac{Nm^2}{C^2}\right)$$

4.2.3 Percent error in k

% error =
$$\left| \frac{\text{theoretical - experimental}}{\text{theoretical}} \right| \times 100\%$$

% error = $\left| \frac{\left(9.0 \times 10^9 \frac{Nm^2}{C^2} \right) - \left(8.98776 \times 10^9 \frac{Nm^2}{C^2} \right)}{\left(9.0 \times 10^9 \frac{Nm^2}{C^2} \right)} \right| \times 100\%$
% error = 0.136%

5 Results and Conclusions

6 Discussion of Experimental Uncertainty