Proofs about programs

Assia Mahboubi (inspired by Yves Bertot's previous slides)

Proofs of programs in Coq

Monday: Benjamin explained how to write programs in Coq (booleans, numbers, lists).

Monday and Tuesday: Pierre and Yves explained how to write statements and how to write a formal proof.

Now : We will see how to write specifications of programs written in Coq and how to prove them.

Do not be too decieved...

We know your favorite programming language is not (yet?) Coq. But:

- Coq programs can be seen as models of realistic programs and its formal proof as a dynamic documentation.
- Coq programs can be translated (extracted) to realistic programming languages.
- Coq programs can be executed efficiently, and this is a proof automation technique.

And there exists tools too to prove even imperative programs but it is much more intricate a problem.

Proofs about computation

- Reason about functional correctness
- State properties about computation results
 - Show consistency between several computations
- Use the same tactics as for usual logical connectives
- Add tactics to control computations and observation of data
- Follow the structure of functions
 - Proving is akin to symbolic debugging
 - ▶ A proof is a guarantee that all cases have been covered
 - It is much stronger than a test!

First examples

Controlling execution

- Replace formulas containing functions with other formulas
- Manually with direct Coq control:
 - ▶ change f_1 with f_2
 - \blacktriangleright Really checks that f_1 and f_2 are the same modulo computation
- Manually with indirect control
 - ▶ replace f_1 with f_2
 - ▶ Produces a side goal with the equality $f_1 = f_2$
- Simply expand definitions
 - ▶ unfold f, unfold f at 2

Functions and specifications

- ▶ Each function should comes with theorems about it.
- ▶ In this course, sometimes called companion theorems.
- ► They should be usable directly through apply when the goal's conclusion fits.
- Otherwise, they can be brought in the context using assert assert (H := th a b c H').

Reasoning about pattern-matching constructs

- ▶ Pattern-matching typically describes alternative behaviors.
- Reasoning on these functions goes by covering all cases.
- Companion theorems describe the non trivial identities.

Examples with natural numbers

Tools

- case is the basic constructs
 - generates one goal per constructor
 - the expression is replaced by constructor-values, in the conclusion
 - ▶ the argument to S becomes a universally quantified variable
- destruct is more advanced and covers the context
 - like case, but nesting is authorized
 - the context is also modified
- case_eq remembers in which case we are
 - the context is not modified (as in case)
 - remembering can be crucial

How to find Companion theorems

- SearchAbout is your friend.
- ▶ In general Search commands are your friends.
 - Search: use a predicate name Search le.
 - SearchRewrite: use patterns of expressions searchRewrite (_ + 0).
 - ► SearchPattern: use a pattern of a theorem's conclusion (type Prop, usually)

```
SearchPattern (_ * _ <= _ * _).
```

Recursive functions and induction

- When a function is recursive, calls are usually made on direct subterms.
- Companion theorems do not already exist, but have to be stated and proved by the user.
- ▶ Induction hypotheses make up for the missing theorems.
- ▶ The structure of the proof is imposed by the data-type.

Examples on recursive functions

A trick to control recursion

- Add one-step unfolding theorems to recursive functions
- Associate any definition
 Fixpoint f x1 ...xn := body
 with a (trivial) theorem f_step
 forall x1 ...xn, f x1 ...xn = body
- Use rewrite f_step instead of change, replace, or simpl
- This provides a better control than simpl.
- ▶ More concise than replace or change.
- ▶ Note that unfold is not well-suited for recursive functions.

Proofs on functions on lists

- ► Tactics case, destruct, case_eq also work
- ▶ Induction on lists works like induction on natural numbers
- ▶ nil plays the same role as 0: base case of proofs by induction
- a::tl plays the same role as S
 - ▶ Induction hypothesis on tl
 - ▶ Fits with recursive calls on tl

Example proof on lists

Require Import List.

```
Print rev.
fun A : Type => fix rev (1 : list A) : list A :=
 match 1 with
  | nil => nil
  | x :: 1' => rev 1' ++ x :: nil
  end : forall A : Type, list A -> list A
Fixpoint rev_app (A : Type)(11 12 : list A) : list A :=
 match 11 with
   nil \Rightarrow 12
  | a::tl => rev_app A tl (a::12)
  end.
```

Implicit Arguments rev_app.

Example proof on lists (continued)

Example proof on lists (continued)

```
forall 12 : list A, rev_app 11 12 = rev 11 ++ 12
induction 11; intros 12.
2 subgoals
 A : Type
  12 : list A
   rev_app nil 12 = rev nil ++ 12
subgoal 2 is:
rev_app (a :: 11) 12 = rev (a :: 11) ++ 12
simpl; reflexivity.
```

Example proof on lists (continued)

```
IH11 : forall 12 : list A, rev_app 11 12 = rev 11 ++ 12
  12 : list A
   rev_app (a :: 11) 12 = rev (a :: 11) ++ 12
simpl.
   rev_app 11 (a :: 12) = (rev 11 ++ a :: nil) ++ 12
SearchRewrite ((_ ++ _) ++ _).
app_ass:
    forall A (1 m n:list A), (1 ++ m) ++ n = 1 ++ m ++ n
rewrite app_ass; apply IH11.
Proof completed.
Qed.
```