Lection 02: Link layer Routing

v.2022.09.14

Канальный уровень

- предназначен для обеспечения взаимодействия сетей на физическом уровне (в частности проверка доступности среды передачи) и реализация механизмов контроля за ошибками, которые могут возникнуть.
- Упаковывает данные в битах в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень
- обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру.

Функции канального уровня

- Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.
- Организация и передача кадров.
- Обнаружение и исправление ошибок.
- Управление потоками данных.
- Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Link layer (канальный уровень)

Сетевой интерфейс — это абстрактное сетевое устройство канального уровня, за работу которого отвечает ядро операционной системы. Сетевой интерфейс имеет единственный МАС-адрес и соответствует либо 16 физическому устройству (сетевому адаптеру), либо некоторому виртуальному устройству — реализация такого устройства может быть самой разнообразной. В некоторых ОС используется термин сетевое подключение в качестве синонима сетевого интерфейса.

Сегмент сети — совокупность соединённых с помощью сетевых интерфейсов машин, между которыми может быть передано сообщение канального уровня. Все сетевые интерфейсы в пределах сегмента должны иметь уникальные MAC-адреса.

IEEE 802.3

802.3 Ethernet packet and frame st

Layer	Preamble	Start frame delimiter	MAC destination	MAC source	802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46-1500 octets	4 octets	12 octets
Layer 2 Ethernet frame	← 64–1522 octets →								
Layer 1 Ethernet packet & IPG	← 72–1530 octets →								← 12 octets →

Hub VS Switch

Настройка

- man 5 /etc/network/interfaces

```
/etc/network/interfaces - network interface configuration for ifup and ifdown
auto eth0
      allow-hotplug eth1
      source interfaces.d/machine-dependent
      source-directory interfaces.d
      mapping eth0
            script /usr/local/sbin/map-scheme
           map HOME eth0-home
           map WORK eth0-work
      iface eth0-home inet static
            address 192.168.1.1
           netmask 255.255.255.0
           up flush-mail
      iface eth0-work inet dhcp
```

7

ARP (англ. Address Resolution Protocol — протокол определения адреса) — протокол в компьютерных сетях, предназначенный для определения *MAC-адреса* по IP-адресу другого компьютера.

ARP + tcpdump

```
arp who-has 10.0.0.22 tell 10.0.0.11 arp reply 10.0.0.22 is-at [MAC-адрес интерфейса машины ws2] IP 10.0.0.11 > 10.0.0.22: ICMP echo request, id [запрос], seq 1, length 64 IP 10.0.0.22 > 10.0.0.11: ICMP echo reply, [запрос], seq 1, length 64 IP 10.0.0.11 > 10.0.0.22: ICMP echo request, id [запрос], seq 2, length 64 IP 10.0.0.22 > 10.0.0.11: ICMP echo reply, id [запрос], seq 2, length 64 arp who-has 10.0.0.11 tell 10.0.0.22 arp reply 10.0.0.11 is-at [MAC-адрес интерфейса машины ws1]
```

Network layer(Сетевой уровень)

- Устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними
- Сообщает транспортному уровню о появляющихся ошибках.
- Отвечает за их адресацию и доставку сообщений "пакетов"

Сетевой уровень

- Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня.
- Проблема осложняется тем, что самый короткий путь не всегда самый лучший.
 Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени.
- Внутри сети доставка данных регулируется канальным уровнем, связанным с жестким ограничением по использованию в определенной топологии, а вот доставкой данных между сетями занимается сетевой уровень.
- При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Example Internet Datagram Header

ICMP

Routing

Маршрутизация IP-пакета (англ. IP routing) — определение адреса очередного получателя IP-пакета и последующая передача пакета очередному получателю в кадре канального уровня.

Routing: direct vs indirect

Local Network

Remote Network

Direct routing

Direct routing

- Ping 10.0.0.22 (с устройства с адресом 10.0.0.11)
- Формируется IP пакет (с типом ICMP)
- Побитовое И своего адреса с маской => srcNet
- Побитовое И удаленного адреса с маской => destNet
- Если srcNet == destNet, отправляем пакет непосредственно получателю
- Выполняем arp запрос на IP адрес 10.0.0.22
- Устройство 10.0.0.22 отвечает на arp запрос со своим МАС адресом
- Отправляем кадр на устройство 10.0.0.22
- Можем получить ошибку «устройство недоступно»

Indirect routing

- На входе: ІР адрес назначения
- На выходе: IP адрес маршрутизатора, которому надо отправить пакет + сетевой интерфейс, через который надо отправить пакет
- Алгоритм выбора строки:
 - Побитовое И колонки network и mask => netAddres
 - Побитовое И адреса и mask => destAddress
 - Если netAddress является «подмножеством» destAddress помечаем строку как «подходящую» и сохраняем кол-во совпавших битов
 - Среди всех «подходящих» строк выбирается одна с наибольшим количеством совпавших битов

ip r | route PRINT

```
oglan@UbuntuVM:~

oglan@UbuntuVM:~$ ip r

default via 10.1.1.1 dev eth0 proto static

10.1.1.0/24 dev eth0 proto kernel scope link src 10.1.1.107 metric 1

10.10.0.0/16 via 10.1.1.107 dev eth0

10.20.0.0/16 via 10.1.1.107 dev eth0

oglan@UbuntuVM:~$
```

```
C:\Windows\system32\cmd.exe
C:A.
IPv4 Route Table
Active Routes:
Network Destination
                            Netmask
                                             Gateway
                                                           Interface Metric
                                            10.1.1.1
          0.0.0.0
                           0.0.0.0
                                                             10.1.1.2
                                                             10.1.1.2
                                                                          276
         10.1.1.0
                     255.255.255.0
                                            On-link
         10.1.1.2 255.255.255.255
                                            On-link
                                                             10.1.1.2
                                                                          276
       10.1.1.255 255.255.255.255
                                                             10.1.1.2
                                                                          276
                                            On-link
                                                            127.0.0.1
                                                                          306
        127.0.0.0
                         255.0.0.0
                                            On-link
        127.0.0.1 255.255.255.255
                                            On-link
                                                            127.0.0.1
                                                                          306
  127.255.255.255 255.255.255.255
                                            On-link
                                                             127.0.0.1
                                                                          306
      169.254.0.0
                       255.255.0.0
                                                        169.254.80.80
                                                                          261
                                            On-link
    169.254.80.80 255.255.255.255
                                            On-link
                                                        169.254.80.80
                                                                          261
  169.254.255.255 255.255.255.255
                                                                          261
                                            On-link
                                                        169.254.80.80
        224.0.0.0
                                                                          306
                          240.0.0.0
                                            On-link
                                                             127.0.0.1
        224.0.0.0
                                                             10.1.1.2
                                                                          276
                          240.0.0.0
                                            On-link
                                            On-link
                                                        169.254.80.80
                                                                          261
                                                                          306
                                            On-link
                                                            127.0.0.1
  255.255.255.255 255.255.255.255
                                            On-link
                                                                          276
                                                             10.1.1.2
Persistent Routes:
  None
```