

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa inżynierska

Implementacja maszyny wirtualnej dla funkcyjnych języków programowania wspierających przetwarzanie współbieżne.

Implementation of a virtual machine for functional programming languages with support for concurrent computing.

Autor: Kajetan Rzepecki Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Piotr Matyasik

Oświadczam, świadomy odpowiedzialności karnej za poświadczenie nieprawdy, że niniejszą pracę dyplomową wykonałem osobiście i samodzielnie i nie korzystałem ze źródeł innych niż wymienione w pracy.

Serdecznie dziękuję opiekunowi pracy za wsparcie merytoryczne oraz dobre rady edytorskie pomocne w tworzeniu pracy.

Spis treści

1.	Wst	ęp	7
	1.1.	Motywacja pracy	8
	1.2.	Zawartość pracy	9
2.	Arc	hitektura ThesisVM	11
	2.1.	Reprezentacja pośrednia programów (TVMIR)	11
	2.2.	Kompilacja kodu bajtowego	12
	2.3.	Interpretacja kodu bajtowego	13
	2.4.	Zarządzanie pamięcią	13
	2.5.	Przetwarzanie współbieżne	13
3.	Inte	erpreter kodu bajtowego	15
	3.1.	Implementacja obietków prostych	15
	3.2.	Implementacja obiektów złożonych	16
	3.3.	Implementacja wbudowanych operatorów	16
	3.4.	Ewaluacja argumentów i aplikacja funkcji	16
	3.5.	Reprezentacja kodu bajtowego ThesisVM	16
	3.6.	Generacja kodu bajtowego ThesisVM	17
4.	Mod	del zarządzania pamięcią	19
	4.1.	Architektura wspólnej sterty	19
	4.2.	Implementacja alokatora obiektów	20
	4.3.	Kolekcja nieosiągalnych obiektów	20
	4.4.	Kolekcja obiektów cyklicznych	21
5 .	Mod	del przetwarzania współbieżnego	23
	5.1.	Implementacja Modelu Aktorowego	23
	5.2.	Implementacja przesyłania wiadomości	24
	5.3.	Harmonogramowanie procesów	25
6.	Pod	sumowanie	27
	6.1	Leniwe zliczanie referencii	27

6 SPIS TREŚCI

6.2. Przesyłanie wiadomości								27
Bibliografia								29
A. Przykładowe programy								33
$\mathbf{B.}$ Spisy wbudowanych funkcji i operatorów								35
C. Spisy rysunków, fragmentów kodu i tablic .								37

1. Wstęp

Tematem pracy jest implementacja maszyny wirtualnej dla funkcyjnych języków programowania wspierających przetwarzanie współbieżne.

Maszyna wirtualna jest warstwą abstrakcji leżącą pomiędzy programem a rzeczywistym sprzętem, która pozwala uniezależnić ów program od rozbieżności w działaniu różnych architektur komputerów. Wystarczy zaimplementować maszynę wirtualną dla danej architektury rzeczywistego sprzętu by umożliwić uruchamianie na niej wszystkich kompatybilnych z programów. Rysunek 1.1 prezentuje uproszczony schemat takiego rozwiązania - programy docelowe zostają skompilowane do *kodu bajtowego* akceptowanego przez maszynę wirtualną a dopiero ów bajtkod jest przez nią uruchamiany.

Rysunek 1.1: Schemat interakcji z Maszyną Wirtualną.

Przetwarzanie współbieżne opiera się o współistnienie wielu procesów, które konkurują o dostęp do współdzielonych zasobów. W kontekście pracy, przetwarzanie współbieżne jest rozumiane jako asynchroniczne przekazywanie wiadomości pomiędzy działającymi, autonomicznymi procesami, czyli jako Model Aktorowy [1, 2].

Celem pracy jest stworzenie interpretera kodu bajtowego zdolnego uruchamiać kod skompilowanych programów, kolektora obiektów nieosiągalnych umożliwiającego automatyczne zarządzanie pamięcią oraz architektury symetrycznego multiprocesora (SMP) zapewniającego rzeczywistą współbieżność uruchamianych programów w oparciu o Model Aktorowy. Językiem implementacji projektu jest język D (w wersji 2.0 opisanej w [3]), stosunkowo nowoczesny, kompilowany do kodu maszynowego następca języka C++.

1.1. Motywacja pracy

Motywacją powstania pracy są problemy napotkane podczas użytkowania języka Erlang [4], dotyczące wydajności przesyłania wiadomości średniego rozmiaru w obecnej, standardowej jego implementacji. Problemy owe zilustrowano na listingu 1.

Zaprezentowany fragment kodu odczytuje plik w formacie JSON, który następnie jest dekodowany do wewnętrznej reprezentacji posiadającej skomplikowaną strukturę, by ostatecznie został on wysłany do dużej liczby współbieżnie działających procesów celem dalszego przetwarzania (linia 8). Rozwiązanie takie powoduje znaczący spadek wydajności.

```
start() ->
      2
      transmogrify(Data).
3
4
   transmogrify(Data) ->
5
      Pids = framework:spawn_bajilion_procs(fun do_stuff/1),
6
      JSON = json:decode(Data),
                                     %% {[Dane ...]}
7
      framework:map reduce(Pids, JSON). %% !#63^@
9
   do stuff(JSON) ->
10
      %% Operacje na danych.
11
      result.
12
```

Listing 1: Fragment kodu prezentujący problem występujący w języku Erlang.

Język Erlang wykorzystuje skomplikowaną architekturę pamięci, która w różny sposób traktuje obiekty różnego typu. Większość obiektów, w szczególności skomplikowana strukturalnie reprezentacja danych w formacie JSON, przechowywana jest w prywatnych stertach każdego procesu i musi być kopiowana podczas przesyłania jej w wiadomościach pomiędzy nimi. Reguła ta nie dotyczy danych binarnych, w szczególności danych odczytanych z pliku, ponieważ te korzystają z innych algorytmów nie wymagających kopiowania kosztem większego zużycia pamięci.

W związku z tym, aby zaradzić problemowi opisanemu powyżej, wystarczy przenieść operację dekodowania danych odczytanych z pliku bezpośrednio do procesów na nich operujących (listing 2). W nowej wersji procesy przesyłają jedynie dane binarne, które nie wymagają kopiowania pamięci, a narzut wydajności spowodowany wielokrotnym ich dekodowaniem jest niższy niż ten spowodowany nadmiernym kopiowianiem. W efekcie, kod działa wydajniej, kosztem logiki przepływu danych i organizacji modułów.

Celem pracy jest uniknięcie problemu nadmiernego kopiowania pamięci przez wybranie odpowiedniego modelu pamięci i implementację algorytmów kolekcji obiektow nieosiągal-

Listing 2: Suboptymalne rozwiązanie problemu w języku Erlang.

nych, które umożliwiają przesyłanie wiadomości pomiędzy procesami bez konieczności kopiowania ich zawartości.

1.2. Zawartość pracy

W skład pracy wchodzi implementacja interpretera kodu bajtowego, kolektora obiektów nieosiągalnych oraz symetrycznego multiprocesora (SMP).

Sekcja 1 opisuje cele, motywację, zakres oraz zawartość pracy.

Sekcja 2 przybliża architekturę maszyny wirtualnej ThesisVM zaimplementowanej w ramach pracy, zaczynając od reprezentacji pośredniej programów (TVMIR) i jej kompilacji do kodu bajtowego, przez interpretację kodu bajtowego i zarządzanie pamięcią do projektu przetwarzania współbieżnego.

Sekcja 3 szczegółowo opisuje implementację interpretera kodu bajtowego maszyny wirtualnej ThesisVM. Zaprezentowane zostają reprezentacje różnych obiektów, na których operuje maszyna, implementacja wpudowanych operatorów i funkcji prymitywnych oraz reprezentacja i generowanie kodu bajtowego akceptowanego przez interpreter.

Sekcja 4 szczegółowo prezentuje implementację wybranego modelu pamięci, alokatora nowych obiektów oraz kolektora obiektów nieosiągalnych.

Sekcja 5 szczegółowo opisuje implementację asynchronicznego przekazywania wiadomości i symetrycznego multiprocesora w maszynie ThesisVM. Zaprezentowana zostaje implementacja Modelu Aktorowego i harmonogramowania procesów.

Sekcja 6 zawiera podsumowanie pracy oraz zarys możliwych kierunków dalszego rozwoju projektu.

Dodatki A, B i C zawierają odpowiednio przykładowe programy gotowe do uruchomienia na maszynie wirtualnej ThesisVM, spis wbudowanych operatorów i funkcji prymitywnych oraz spisy rysunków, tablic i fragmentów kodu znajdujących się w tekście pracy.

2. Architektura ThesisVM

– Opisać architekturę w odniesieniu do wyżej wymienionych celów pracy.

Rysunek 2.1: Architektura maszyny wirtualnej ThesisVM.

- Wspomnieć o wykorzystaniu TVMIR.
- Wspomnieć o wykorzystaniu kodu bajtowego i jego kompilatora.

2.1. Reprezentacja pośrednia programów (TVMIR)

- Opisać krótko TVMIR. [5, 6]
- Opisać dostępne typy danych.
- Opisać dostępne konstrukcje języka.

- Porównać TVMIR do core lang. [6]
- Porównać TVMIR do Core Erlang. [7, 8]

2.2. Kompilacja kodu bajtowego

Rysunek 2.2: *Pipeline* kompilatora kodu bajtowego ThesisVM wraz ze schematami reprezentacji danych poszczególnych faz.

- Opisać krótko analizę leksykalną.
- Opisać krótko analizę syntaktyczną.
- Opisać krótko analizę semantyczną (+ proste transformacje TVMIR jeśli jakieś będą).
- Opisać krótko fazę optymalizacji (+ proste optymalizacje jak constant folding, etc).
- Opisać krótko generację kodu bajtowego.

2.3. Interpretacja kodu bajtowego

- Opisać ogólnie architektury pamięci i przekazywanie wiadomości. [9]
- Opisać sposób budowy interpreterów kodu bajtowego. [10]
- Opisać krótko różne architektury interpreterów (stosowa, rejestrowa, grafowa). [6]
- Wspomnieć o wybranym modelu.

2.4. Zarządzanie pamięcią

– Opisać krótko strategie alokacji i architektury sterty. [11, 9]

Rysunek 2.3: Różne modele wykorzystania pamięci maszyn wirtualnych.

- Opisać krótko strategie GC (ref-count vs tracing). [12]
- Wspomnieć o problemach kolekcji tracing GC (w kontekście problemu Erlang'a). [13]
- Umotywować wykorzystanie zliczania referencji (wspomnieć, że Erlang też korzysta). [14]

2.5. Przetwarzanie współbieżne

- Opisać różne sposoby przetwarzania wielowatkowego SMP i AMP.
- Opisać wady i zalety poszczególnych modeli (SMP skalowalność, AMP VCGC). [15]
- Opisać krótko Model Aktorowy. [1, 2].
- Umotywować wybrany model przetwarzania i jego relację z Modelem Actorowym.

3. Interpreter kodu bajtowego

- Opisać wybrany model Three Instruction Machine. [16, 6], [17]
- Opisać krótko działanie TIM, zwrócić uwagę na leniwość. [16, 6], [17]
- Opisać modyfikacje modelu TIM.

Rysunek 3.1: Schemat stanu maszyny wirtualnej.

- Opisać wykorzystywane rejestry.
- Opisać krótko alternatywne rozwiązania (SECD, TRSECD, SICP machine). [18, 19, 5, 10], [17]

3.1. Implementacja obietków prostych

- Opisać implementację atomów (≤ 8 bajtów).
- Opisać metodę tagowania atomów (dolne trzy bity) [13], [20]
- Opisąć optymalizacje/trejdofy wybranego sposobu tagowania. [13], [20]

3.2. Implementacja obiektów złożonych

- Opisać implementację obiektów złożonych (≥ 8 bajtów pary, funkcje/domknięcia, procesy).
- Opisać metodę tagowania (dolne dwa bajty + górne 48 bitów zarezerwowane dla GC). [13], [20]
- Opisać komponenty par.
- Opisać poszczególne komponenty obiektów funkcyjnych.
- Opisać reprezentację obiektów procesów (gołe rejestry).
- Opisać relację pomiędzy zbiorem rejestrów a reprezentacją procesu.

3.3. Implementacja wbudowanych operatorów

- Opisać wykorzystanie VStack.
- Opisać dostępne operacje prymitywne (LispKit). [5]
- Skonfrontować dostępne operacje prymitywne z Core Erlang. [8]
- Opisać optymalizacje operacji arytmetycznych. [13]

3.4. Ewaluacja argumentów i aplikacja funkcji

- Opisać działanie interpretera kodu bajtowego ThesisVM. [16, 6]
- Opisać leniwa ewaluację argumentów.
- Opisać aplikację funkcji.
- Opisać aplikację operacji prymitywnych.

3.5. Reprezentacja kodu bajtowego ThesisVM

- Opisać reprezentację kodu bajtowego (listy opkodów).
- Opisać optymalizacje TVMBC (wykorzystanie górnych dwóch bajtów słowa, 0 = pushc, threading, itd).
- Opisać dostępne opkody kodu bajtowego. [16, 6]

3.6. Generacja kodu bajtowego Thesis ${ m VM}$

– Opisać szczegółowo generację kodu bajtowego. [6]

3.6.	Generacja	kodu	bajtowego	ThesisVM

4. Model zarządzania pamięcią

– Opisać krótko architekturę wspólnej sterty. [9]

Rysunek 4.1: Model wspólnej pamięci ThesisVM.

– Opisać strategie zarządzania pamięcią (alokator i GC). [12]

4.1. Architektura wspólnej sterty

- Opisać szczegółowo wybraną architekturę.
- Wspomnieć o problemach wybranej architektury (duży root-set, długie kolekcje). [9]
- Skonfrontować publiczną stertę z architekturą prywatnej sterty. [9]
- Wspomnieć o problemach prywatnej sterty (powolne przekazywanie wiadomości przez kopiowanie). [9]
- Wspomnieć o istnieniu rozwiązań hybrydowych. [9]
- Wspomnięć o problemach rozwiązań hybrydowych (usunięte z Erlang/OTP R15B02).

Rysunek 4.2: Schemat kaskadowych alokatorów wykorzystanych w ThesisVM.

4.2. Implementacja alokatora obiektów

- Opisać działanie kaskadowego alokatora. [11]
- Opisać implementację wykorzystanego alokatora.
- Opisać optymalizacje alokatora (wykorzystanie free listy).
- Opisać zmiany wprowadzone w stanie maszyny wirtualnej (dodatkowe rejestry).
- Opisać krótko alternatywne rozwiązania (mallocator, etc). [11]

4.3. Kolekcja nieosiągalnych obiektów

- Opisać leniwe zliczanie referencji. [21]
- Opisać implementację algorytmu leniwego zliczania referencji. [12]
- Opisać konieczność wykorzystania operacji atomowych i barier pamięci (liczniki referencji).
- Opisać zmiany wprowadzone w stanie maszyny wirtualnej (dodatkowe rejestry).

Rysunek 4.3: Schemat działania zwalniania pamięci obiektów.

- Opisać narzut pamięci związany z licznikiem referencji i leniwością algorytmu. [21, 12]
- Opisać krótko wady, możliwe usprawnienia i alternatywne rozwiązania (zaproponowane przez Joe'go oraz VCGC) [22, 15]

4.4. Kolekcja obiektów cyklicznych

- Opisać, że obiekty cykliczne nie występują.
- Wspomnieć o możliwości zaimplementowania zapasowego stop-the-world GC.
- Wspomnieć o możliwości cyklicznego uruchamiania D'owego GC.

Rysunek 4.4: Schemat działania alokacji pamięci nowych obiektów.

Rysunek 4.5: Schemat rejestrów wymaganych przez implementację kolektora obiektów nieosiągalnych.

5. Model przetwarzania współbieżnego

Opisać bardziej szczegółowo Model Aktorowy i asynchroniczne przekazywanie wiadomości. [1, 2]

Rysunek 5.1: Schemat symetrycznego multiprocesora ThesisVM.

- Opisać bardziej szczegółowo działanie SMP - wiadomości kontrolne oraz RQue.

5.1. Implementacja Modelu Aktorowego

- Opisać powstawanie procesów i prymityw spawn.
- Opisać logiczną autonomiczność procesów (brak mutacji = inne procesy nie mogą ingerować).
- Opisać sposób porozumiewania się procesów (kolejki nieblokujące). [23, 24]
- Opisać implementację kolejek nieblokujących (+ weryfikacja poprawności). [23, 25]- Opisać wykorzystanie CAS i problem ABA.

Rysunek 5.2: Schemat rejestrów wymaganych przez implementację Modelu Aktorowego.

- Opisać zmiany wprowadzone w stanie maszyny wirtualnej (dodatkowe rejestry).
- Opisać krótko wady i możliwe usprawnienia zastosowanego rozwiązania (dynamic size, wait-free, optimistic FIFO). [24, 26, 27]
- Opisać krótko alternatywne podejścia (synchroniczne przekazywanie wiadomości kanały, locki/mutexy/semafory).

5.2. Implementacja przesyłania wiadomości

- Opisać implementację prymitywów send oraz receive.
- Zwrócić uwagę na konieczność wykorzystania operacji atomowych oraz barier pamięci.
- Snippet kodu przesyłającego wiadomość.

Rysunek 5.3: Schemat działania przesyłania wiadomości.

- Opisać co dzieje się podczas wysyłania wiadomości.

- Opisać sposób pobierania wiadomości z kolejki.
- Zwrócić uwagę na fakt, że problem kopiowania został zniwelowany kosztem lekkich barier pamięci.

5.3. Harmonogramowanie procesów

- Opisać sposób harmonogramowania procesów (brak load-balancingu, losowy spawn).
- Opisać implementację prymitywu sleep oraz sleep-table.
- Opisać wiadomości kontrolne.

Rysunek 5.4: Schemat rejestrów wymaganych przez usprawnienia hanmonogramowania SMP.

- Opisać możliwe usprawnienia (load-balancing i dzielenie zużycia).

6. Podsumowanie

- Opisać co udało się zrobić.
- Opisać czego nie udało się zrobić (+ możliwe usprawnienia).
- Opisać plany na przyszły rozwój projektu (priorytet procesów, load balancing SMP, wsparcie dla Core Erlang, bytecode threading, przebiegi optymalizacyjne podczas kompilacji, umożliwienie dystrybucji na wiele maszyn, zapasowy kolektor śmieci cyklicznych, opcja wykorzystania sterty prywatnej i autonomicznego alokatora, natywna kompilacja JIT, wektory, data-level parallelism, optymalizacja wykorzystania stosu, hardłerowa implementacja interpretera kodu bajtowego).

6.1. Leniwe zliczanie referencji

– Przeanalizować szybkość, pauzy, zużycie pamięci.

6.2. Przesyłanie wiadomości

 Przeanalizować szybkość przesyłania wiadomości/konieczność czekania procesów, wielkość kolejek wiadomości.

Bibliografia

- [1] C. Hewitt, P. Bishop, and R. Steiger, "A universal modular actor formalism for artificial intelligence," in *Proceedings of the 3rd International Joint Conference on Artificial Intelligence*, IJCAI'73, (San Francisco, CA, USA), pp. 235–245, Morgan Kaufmann Publishers Inc., 1973.
- [2] W. D. Clinger, "Foundations of actor semantics," tech. rep., Cambridge, MA, USA, 1981.
- [3] A. Alexandrescu, The D Programming Language. Pearson Education, 2010.
- [4] J. Armstrong, R. Virding, C. Wikström, and M. Williams, Concurrent Programming in ERLANG (2Nd Ed.). Hertfordshire, UK, UK: Prentice Hall International (UK) Ltd., 1996.
- [5] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs. Cambridge, MA, USA: MIT Press, 2nd ed., 1996.
- [6] S. P. Jones and D. Lester, *Implementing functional languages: a tutorial*. Prentice Hall, 1992. Free online version.
- [7] R. Carlsson, "An introduction to Core Erlang," in *In Proceedings of the PLI'01 Erlang Workshop*, 2001.
- [8] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nyström, M. Pettersson, and R. Virding, "Core Erlang 1.0.3 language specification," tech. rep., Department of Information Technology, Uppsala University, Nov. 2004.
- [9] J. Wilhelmsson, Efficient Memory Management for Message-Passing Concurrency
 part I: Single-threaded execution. Licentiate thesis, Department of Information
 Technology, Uppsala University, May 2005.
- [10] G. L. Steele Jr and G. J. Sussman, "The art of the interpreter of the modularity complex (parts zero, one, and two)," 1978.

30 BIBLIOGRAFIA

[11] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, "Dynamic storage allocation: A survey and critical review," 1995.

- [12] D. F. Bacon, P. Cheng, and V. T. Rajan, "A unified theory of garbage collection," in Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA '04, (New York, NY, USA), pp. 50–68, ACM, 2004.
- [13] D. Gudeman, "Representing type information in dynamically typed languages," 1993.
- [14] R. Shahriyar, S. M. Blackburn, and D. Frampton, "Down for the count? getting reference counting back in the ring," in *Proceedings of the 2012 International Symposium on Memory Management*, ISMM '12, (New York, NY, USA), pp. 73–84, ACM, 2012.
- [15] L. Huelsbergen and P. Winterbottom, "Very concurrent mark-&-sweep garbage collection without fine-grain synchronization," in *Proceedings of the 1st International Symposium on Memory Management*, ISMM '98, (New York, NY, USA), pp. 166–175, ACM, 1998.
- [16] J. Fairbairn and S. Wray, "TIM: A simple, lazy abstract machine to execute super-combinators," in *Proc. Of a Conference on Functional Programming Languages and Computer Architecture*, (London, UK, UK), pp. 34–45, Springer-Verlag, 1987.
- [17] O. Kaser, S. Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar, "Fast parallel implementation of lazy languages - the equals experience," in *Journal of Functional Programming*, pp. 335–344, ACM, 1992.
- [18] D. Van Horn and M. Might, "Abstracting abstract machines," in *Proceedings of the* 15th ACM SIGPLAN International Conference on Functional Programming, ICFP '10, (New York, NY, USA), pp. 51–62, ACM, 2010.
- [19] J. D. Ramsdell, "The Tail-Recursive SECD Machine," *Journal of Automated Reasoning*, vol. 23, no. 1, pp. 43–62, 1999.
- [20] W. R. Cook, "Anatomy of programming languages." Free online version.
- [21] H.-J. Boehm, "The space cost of lazy reference counting," in *Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, POPL '04, (New York, NY, USA), pp. 210–219, ACM, 2004.
- [22] J. Armstrong and R. Virding, "One pass real-time generational mark-sweep gar-bage collection," in IN INTERNATIONAL WORKSHOP ON MEMORY MANA-GEMENT, pp. 313–322, Springer-Verlag, 1995.

BIBLIOGRAFIA 31

[23] M. M. Michael and M. L. Scott, "Simple, fast, and practical non-blocking and blocking concurrent queue algorithms," in *Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing*, PODC '96, (New York, NY, USA), pp. 267–275, ACM, 1996.

- [24] M. Herlihy, V. Luchangco, P. Martin, M. Moir, D. sized Lockfree, D. Structures, M. Herlihy, V. Luchangco, P. Martin, and M. Moir, "Dynamic-sized lockfree data structures," tech. rep., 2002.
- [25] L. Groves, "Verifying michael and scott's lock-free queue algorithm using trace reduction," in *Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory Volume 77*, CATS '08, (Darlinghurst, Australia, Australia), pp. 133–142, Australian Computer Society, Inc., 2008.
- [26] A. Kogan and E. Petrank, "Wait-free queues with multiple enqueuers and dequeuers," in Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming, PPoPP '11, (New York, NY, USA), pp. 223–234, ACM, 2011.
- [27] E. Ladan-Mozes and N. Shavit, "An optimistic approach to lock-free fifo queues," 2004.

32 BIBLIOGRAFIA

A. Przykładowe programy

- Opisać sposób uruchamiania maszyny wirtualnej.
- Hello world.
- Factorial.
- Fibonacci.
- Concurrent Hello world.
- Map-reduce.

B. Spisy wbudowanych funkcji i operatorów

Spis funkcji wbudowanych

– Wylistować funkcje wbudowane.

Spis operatorów wbudowanych

– Wylistować operacje prymitywne.

C. Spisy rysunków, fragmentów kodu i tablic

Spis rysunków

1.1.	Schemat interakcji z Maszyną Wirtualną	7
2.1.	Architektura maszyny wirtualnej ThesisVM	11
2.2.	Pipeline kompilatora kodu bajtowego ThesisVM wraz ze schematami reprezentacji danych poszczególnych faz	12
2.3.	Różne modele wykorzystania pamięci maszyn wirtualnych	13
3.1.	Schemat stanu maszyny wirtualnej	15
4.1.	Model wspólnej pamięci ThesisVM	19
4.2.	Schemat kaskadowych alokatorów wykorzystanych w ThesisVM	20
4.3.	Schemat działania zwalniania pamięci obiektów	21
4.4.	Schemat działania alokacji pamięci nowych obiektów	22
4.5.	Schemat rejestrów wymaganych przez implementację kolektora obiektów nieosiągalnych	22
5.1.	Schemat symetrycznego multiprocesora ThesisVM	23
5.2.	Schemat rejestrów wymaganych przez implementację Modelu Aktorowego	24
5.3.	Schemat działania przesyłania wiadomości	24
5.4.	Schemat rejestrów wymaganych przez usprawnienia hanmonogramowania SMP.	25
\mathbf{Sp}	is listingów	
1.1.	Fragment kodu prezentujący problem występujący w języku Erlang	8
1.2.	Suboptymalne rozwiązanie problemu w języku Erlang	9

38 SPIS TABLIC

Spis tablic