Advanced Studies In Mathematics Exercise

Hwijae Son

May 21, 2024

1. (Python) Consider the univariate function

$$f(x) = (x - 2)\cos(4x).$$

Let $f_{\theta}(x)$ be a 3-layer MLP with the sigmoid activation function $\sigma(x) = \frac{1}{1+e^{-x}}$. Given data x_i generated as i.i.d. standard normal distribution and corresponding labels $y_i = f(x_i)$ for i = 1, ..., 1000, define the loss function

$$\mathcal{L}(\theta) = \frac{1}{2000} \sum_{i=1}^{1000} (f_{\theta}(x_i) - y_i)^2.$$

Use PyTorch to train f_{θ} with SGD. Use layer width (1, 64, 64, 1), total epochs K = 1000, stepsize $\eta = 0.1$, batch size B = 128. Plot the final trained function and the true function.

- 2. In the previous problem, how many trainable parameters are in the 3-layer MLP?
- 3. Repeat the problem 1 with noisy label $y_i = f(x_i) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.5)$.
- 4. Prove the followings.
- (a) The ReLU activation $\sigma(x) = \max\{0, x\}$ is idempotent, i.e.,

$$\sigma(\sigma(x)) = \sigma(x), \forall x \in \mathbb{R}.$$

- (b) The softplus function $\sigma(x) = \log(1+e^x)$ is considered a smooth alternative of ReLU. Show that the softplus has Lipschitz continuous derivatives while ReLU does not.
- (c) Let $\sigma(x) = \frac{1}{1+e^{-x}}$ be the sigmoid function and let $\rho(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ be the hyperbolic tangent function. Show that the two activation functions are equivalent in the sense that MLPs built with them are equivalent: given $L > 1, A_1, \ldots A_L, b_1, \ldots b_L$ there are $C_1, \ldots C_L, d_1, \ldots d_L$ such that a tanh network with weights C_i , biases d_i represents identical mapping with the sigmoid network with weights A_i , biases b_i and vice versa.
- 5. Consider the 2-layer neural network

$$f_{\theta}(x) = v^T \sigma(wx + b) = \sum_{j=1}^p v_j \sigma(w_j x + b_j),$$

where $x \in \mathbb{R}, w, b, v \in \mathbb{R}^p$, and $\sigma(x) = \max\{0, x\}$. We train the network with the standard MSE loss function with SGD and data $\{(x_i, y_i)\}_{i=1}^N$. Assume the j-th ReLU output is "dead" at initialization in the sense that $w_j^0 x_i + b_j^0 < 0$ for all i = 1, 2, ..., N. Show that j-th ReLU output remains dead throughout the training.

6. The leaky ReLU activation is defined as

$$\sigma(x) = \begin{cases} x & \text{for } x \ge 0, \\ \alpha x & \text{otherwise,} \end{cases}$$

where α is a fixed parameter often set to $\alpha=0.01$. Show that if leaky ReLU is used in the previous problem, the ReLU node no longer be dead.