Midterm study guide: linear algebra

October 24th, 2024

linear algebra content is from Chapter 8 of the textbook. Here are some things you should know for the exam free to use this as a checklist):
Labeling three-dimensional coordinate axes using the right hand rule (8.1)
The distance formula in three dimensions (8.1)
The equation of a sphere (8.1)
The distance formula in n dimensions
Vector addition/subtraction algebraically and geometrically (8.2)
Scalar multiplication algebraically and geometrically (8.2)
How to find the vector between two points (8.2)
How to find the length of a two-dimensional vector (8.2)
How to find the length of a three dimensional vector (8.2)
Algebraic properties of vectors (8.2, last page)
The definition of the dot product (8.3)
Algebraic properties of the dot product (8.3)
The cos formula for the dot product (8.3)
How to find the equation of the plane passing through a given point and perpendicular to a given vector (8.3)
Scalar and vector projections (8.3)
The definitions of square matrices, column vectors, row vectors (8.4)
Forming the transpose of a matrix (8.4)
Matrix addition and scalar multiplication (8.4)
Associative, commutative, distributive properties of matrix addition (8.4)
How to multiply two matrices and when it is possible to do so (8.4)
The form of an identity matrix (8.4)
How to draw a Leslie diagram (8.5)
The definition of the inverse of a matrix and when matrices can be inverted (8.6)
The definition of singular and nonsingular matrices (8.6)
How to find the inverse of a 2×2 matrix
Properties of matrix inverses (8.4, under the definition of the inverse)
The determinant of a 1×1 matrix, a 2×2 matrix, and a 3×3 matrix (8.6)
Using matrices to represent and solve systems of equations, including determining the possibility of infinite, zero, or no solutions (8.6)
If the determinant of A is not zero, then there is a unique solution to $A\vec{x} = \vec{b}$ (8.6)
If the determinant of A is zero, then there are either infinitely many solutions or zero solutions to $A\vec{x} = \vec{b}$ (8.6)

The definition of an eigenvalue and its corresponding eigenvector (8.7)
The definition of a characteristic polynomial (8.7)
How to find a characteristic polynomial (8.7)
How to find eigenvalues using the characteristic polynomial (8.7)
How to find a corresponding eigenvalue given an eigenvector (8.7)
How to compute $A\vec{v}$ as a transformation on vectors, especially when the effect of matrix multiplication can be described qualitatively (shears, dilations, rotations, etc.) (8.7)
How to write a recursion formula using a matrix (8.8)
Diagonalizing matrices, writing $A = PDP^{-1}$ and using this formula to find powers of $A(8.8)$
Using the diagonalization to solve recutsions using $\vec{n}_t = PD^tP^{-1}\vec{n}_0$ (8.8)
The general solution for $\vec{n_t}$ in terms of eigenvalues and eigenvectors (8.8)
Solving for complex eigenvalues (8.8)

Help! I'm stuck on....

- ...the equation of a **sphere**: check out this 11 minute video
- ...magnitudes of vectors: check out this 3 minute video
- ...vector **dot products**: check out this 7 minute video
- ...understanding matrix definitions (size, rows, columns, etc.): check out this 11 minute video (watch at 2x)
- ...finding the transpose of a matrix: check out this 2 minute video and its chill music
- ...matrix **operations**—adding, subtracting, and scalar multiplying: check out this 9 minute video (watch at 2x)
- ...Leslie matrices: check out this 10 minute video
- ...finding the **inverse of a** 2×2 **matrix**: check out this 3 minute video
- ...practicing 2×2 and 3×3 **determinants**: check out this 10 minute video
- ...representing systems of equations with matrices: check out this 7 minute video
- ...finding eigenvalues from characteristic polynomials: check out this 4 minute video
- ...solving for eigenvectors and eigenvalues: check out parts of this 17 minute video
- ...finding general forms of eigenvectors: check out this 6 minute video
- ...solving for corresponding eigenvectors: check out this 8 minute video