1. The SI unit of resistivity is:
(a) ohm (b) ohm-metre (c) ohm/cm (d) ohm/m ²
Answer: (b) ohm-metre Explanation: Resistivity (ρ) has unit Ω ·m. It's a material property independent of dimensions.
2. Ohm's law is not valid for:
(a) Copper wire(b) Nichrome wire(c) Vacuum diode(d) Silver conductor
Answer: (c) Vacuum diode Explanation: Ohm's law is valid only for ohmic conductors (V \propto I). A vacuum diode is non-ohmic.
3. When a potential difference of 12 V is applied across a wire of resistance 6 Ω , the current through the wire is:
(a) 1 A (b) 2 A (c) 0.5 A (d) 72 A
Answer: (b) 2 A Explanation: I = V/R = 12/6 = 2 A
4. Drift velocity of electrons increases when:
(a) Cross-sectional area of wire increases(b) Temperature increases(c) Electric field increases

(d) Charge of electrons increases Answer: (c) Electric field increases **Explanation:** $v_d \propto E$; higher electric field \rightarrow more drift velocity 5. The relation between current density (J) and electric field (E) is: (a) $J = \sigma E$ (b) $J = E/\sigma$ (c) $J = \rho E$ (d) $J = E^2/\sigma$ Answer: (a) $J = \sigma E$ **Explanation:** $J = \sigma E$, where $\sigma = conductivity = 1/\rho$ 6. Two wires A and B have the same length and material but B has double the diameter of A. The ratio R_A: R_B is: (a) 1:1 (b) 1:2 (c) 1:4(d) 4:1 Answer: (d) 4:1 **Explanation:** $R \propto 1 / A = 1 / \pi r^2 \rightarrow$ If diameter doubles, resistance becomes 1/4 7. A wire of resistance 10 Ω is stretched to double its original length. Its new resistance is: (a) 5 Ω (b) 20 Ω (c) 40Ω (d) 10 Ω Answer: (c) 40 Ω

Explanation:

$R \propto L^2$ (if volume is constant).
New R = R \times 2 ² = 10 \times 4 = 40 Ω

- 8. The drift speed of electrons in a conductor is of the order of:
- (a) 10⁶ m/s
- (b) 10^3 m/s
- (c) 10^{-4} m/s
- (d) 10^{-1} m/s

Answer: (c) 10^{-4} m/s

Explanation:

Despite large number of electrons, the average drift velocity is very small.

- 9. If the length and area of cross-section of a wire are both doubled, then its resistance:
- (a) Doubles
- (b) Halves
- (c) Remains the same
- (d) Becomes four times

Answer: (c) Remains the same

Explanation:

 $R \propto L / A \rightarrow R_new = 2L / 2A = L/A$ (no change)

- 10. In a conductor, free electrons move:
- (a) Randomly
- (b) With constant velocity
- (c) Due to electric field only
- (d) Randomly but with a small net drift in direction of field

Answer: (d) Randomly but with a small net drift in direction of field

Explanation:

Electrons undergo random collisions but drift due to the applied electric field.

11. The specific resistance of a wire depends on:

(a) Length(b) Cross-sectional area(c) Temperature(d) Shape
Answer: (c) Temperature Explanation: Resistivity is a material property, mainly affected by temperature.
12. When 1 A of current flows for 1 second, the total charge transferred is:
(a) 1 C (b) 10 C (c) 0.5 C (d) 100 C
Answer: (a) 1 C Explanation: $Q = I \times t = 1 \times 1 = 1$ C
13. A copper wire and an iron wire of the same length and cross-sectional area are connected in series. Which has more resistance?
(a) Copper(b) Iron(c) Same(d) Depends on temperature
Answer: (b) Iron Explanation: Iron has higher resistivity than copper → more resistance
14. A fuse wire should have:
(a) Low resistance and high melting point (b) High resistance and low melting point (c) High resistance and low melting point

((h)	low	resistance	and	low	melting	point
И	u	LOW	1 Colotalice	anu	10 44	HICHING	ponit

Answer: (c) High resistance and low melting point

Explanation:

High resistance \rightarrow heats quickly; low melting point \rightarrow melts easily to break the circuit.

15. The quantity of charge flowing through a conductor in 2 minutes if current is 3 A is:

- (a) 3 C
- (b) 180 C
- (c) 360 C
- (d) 120 C

Answer: (c) 360 C Explanation:

 $Q = I \times t = 3 \times 120 = 360 C$

- 16. Kirchhoff's junction rule is based on:
- (a) Conservation of energy
- (b) Conservation of momentum
- (c) Conservation of charge
- (d) Ohm's law

Answer: (c) Conservation of charge

Explanation:

The total current entering a junction equals the total current leaving it, since charge is conserved.

- 17. In a series combination of resistors, the equivalent resistance is:
- (a) Smaller than the smallest resistor
- (b) Greater than the largest resistor
- (c) Equal to the smallest resistor
- (d) Product of all resistors

Answer: (b) Greater than the largest resistor

Explanation:

 $R_eq(series) = R_1 + R_2 + ...$ so it's always greater than any individual resistance.

- 18. Two resistors of 2 Ω and 3 Ω are connected in parallel. The equivalent resistance is:
- (a) 6 Ω
- (b) 1.2 Ω
- (c) 5 Ω
- (d) 0.5Ω

Answer: (b) 1.2 Ω

Explanation:

 $1/R = 1/2 + 1/3 = 5/6 \rightarrow R = 6/5 = 1.2 \Omega$

- 19. A 3 V battery is connected to a 6 Ω resistor. The power consumed is:
- (a) 1.5 W
- (b) 3 W
- (c) 0.5 W
- (d) 1 W

Answer: (a) 1.5 W

Explanation:

 $P = V^2/R = 9/6 = 1.5 W$

- 20. The potential difference across a 10 Ω resistor carrying 2 A current is:
- (a) 5 V
- (b) 10 V
- (c) 20 V
- (d) 2 V

Answer: (c) 20 V

Explanation:

 $V = IR = 2 \times 10 = 20 V$

- 21. A battery of EMF 6 V and internal resistance 1 Ω is connected to a 5 Ω resistor. The current is:
- (a) 1 A

(b) 5 A (c) 6 A (d) 3 A
Answer: (a) 1 A Explanation: Total resistance = $5 + 1 = 6 \Omega$ I = EMF / R = $6 / 6 = 1 A$
22. In the Wheatstone bridge, when the bridge is balanced:
(a) Current flows through the galvanometer(b) No current flows through the galvanometer(c) Current flows only through one arm(d) Resistance becomes infinite
Answer: (b) No current flows through the galvanometer Explanation: In a balanced bridge, potential difference across galvanometer is zero.
23. In a balanced Wheatstone bridge, if all resistors are 10 Ω , the resistance between opposite corners is:
(a) $10~\Omega$ (b) $20~\Omega$ (c) $5~\Omega$ (d) $15~\Omega$
Answer: (c) 5 Ω $$ Explanation: Use symmetry and equivalent resistance calculation across diagonals.
24. A battery of EMF E and internal resistance r gives maximum power to the external resistor when:
(a) R = r (b) R > r (c) R < r (d) R = 0

Answer: (a) R = r**Explanation:** According to the maximum power transfer theorem, power is maximum when external resistance equals internal resistance. 25. A wire of resistance R is stretched to double its length. The new resistance becomes: (a) 2R (b) 4R (c) R/2(d) R/4Answer: (b) 4R **Explanation:** $R \propto L^2$ (when volume remains constant), so new R = 4R. 26. The net resistance of three resistors 3 Ω , 6 Ω , and 9 Ω connected in series is: (a) 2 Ω (b) 18 Ω (c) 6 Ω (d) 3 Ω Answer: (b) 18 Ω **Explanation:** R_total(series) = $3 + 6 + 9 = 18 \Omega$ 27. In a meter bridge, the balancing point is found at 40 cm. If the resistance in the known arm is 12 Ω , the unknown resistance is: (a) 12 Ω (b) 8 Ω (c) 18 Ω (d) 24 Ω

Answer: (b) 8 Ω Explanation:

 $R_1/R_2 = L_1/L_2 \rightarrow X/12 = 40/60 \rightarrow X = 8 \Omega$

28. Current density is given by:
(a) J = I × A (b) J = A/I (c) J = I / A (d) J = I × t
Answer: (c) J = I / A Explanation: Current density is current per unit area.
29. If current I flows through a resistor R for time t, the heat produced is:
(a) $H = IR$ (b) $H = I^2Rt$ (c) $H = VIt$ (d) $H = V^2/R$
Answer: (b) H = I ² Rt Explanation: This is the Joule's law of heating.
30. Which of the following factors does NOT affect the resistance of a conductor?
(a) Length(b) Cross-sectional area(c) Temperature(d) EMF of battery
Answer: (d) EMF of battery Explanation: Resistance is a material property. EMF only affects current, not resistance.
31. Three resistors of 3 Ω , 6 Ω , and 9 Ω are connected in parallel. What is the equivalent resistance?
(a) 18 Ω

- (b) 2 Ω
- (c) 6 Ω
- (d) 1Ω

Answer: (b) 2 Ω Explanation:

1/R = 1/3 + 1/6 + 1/9 = (6 + 3 + 2)/18 = 11/18

R = $18/11 \approx 1.64 \Omega$ (closest to 2 Ω)

32. Two resistors $R_1 = 6 \Omega$ and $R_2 = 3 \Omega$ are connected in series across a 9 V battery. The voltage drop across R_2 is:

- (a) 3 V
- (b) 6 V
- (c) 4.5 V
- (d) 2 V

Answer: (a) 3 V Explanation:

 $V_{total} = 9 V, R_{total} = 9 \Omega$

I = V/R = 9/9 = 1 A $V_2 = I \times R_2 = 1 \times 3 = 3 V$

33. Two resistors of 5 Ω each are connected in parallel and then in series with a 10 Ω resistor. Find the total resistance.

- (a) 5 Ω
- (b) 15 Ω
- (c) 12.5 Ω
- (d) 7.5Ω

Answer: (c) 12.5 Ω

Explanation:

Parallel: $1/R = 1/5 + 1/5 = 2/5 \rightarrow R = 2.5 \Omega$

Total = $2.5 + 10 = 12.5 \Omega$

34. In a circuit, two resistors of 10 Ω each are connected in parallel. What is the power dissipated if 5 V is applied across them?

(a) 2.5 W (b) 5 W (c) 10 W (d) 1.25 W
Answer: (b) 5 W Explanation: $R_eq = 5 \Omega.$ $P = V^2 / R = 25 / 5 = 5 W$
35. A cell of emf 1.5 V and internal resistance 0.5 Ω is connected to a 2.5 Ω resistor. What is the current in the circuit?
(a) 1 A (b) 0.5 A (c) 0.75 A (d) 1.5 A
Answer: (c) 0.75 A Explanation: $R_{total} = 2.5 + 0.5 = 3 \Omega$ $I = 1.5 / 3 = 0.5 A$
(Corrected: Answer is (b) 0.5 A, not (c))
36. A potentiometer wire has length 1 m and resistance 10 Ω . A 5 V battery is connected across it. What is the potential gradient?
(a) 0.5 V/m (b) 5 V/m (c) 50 V/m (d) 0.05 V/m
Answer: (a) 0.5 V/m Explanation: Potential gradient = $V / L = 5 / 10 = 0.5 \text{ V/m}$

37. The potentiometer is preferred over voltmeter for measuring emf because:

(a) It is cheaper(b) It does not draw current(c) It is faster(d) It is larger
Answer: (b) It does not draw current Explanation: This avoids loading the circuit, giving accurate emf readings.
38. A battery of emf 12 V is connected to a potentiometer wire of 4 m. The potential gradient is 3 V/m. The length needed to balance a cell of emf 1.5 V is:
(a) 2 m (b) 0.5 m (c) 1.5 m (d) 3 m
Answer: (b) 0.5 m Explanation: L = emf / gradient = 1.5 / 3 = 0.5 m
39. A 20 Ω and 30 Ω resistors are connected in parallel. Find the current through the 30 Ω resistor when total current is 2 A.
(a) 0.8 A (b) 1.2 A (c) 0.5 A (d) 1.5 A
Answer: (a) 0.8 A Explanation: Use current division rule: $I_{30} = I \times (R \text{ total } / R_{30})$

First find R_eq = $1/(1/20 + 1/30) = 12 \Omega$

 $V = I \times R = 2 \times 12 = 24 V$ $I_{30} = 24 / 30 = 0.8 A$

40. If 3 resistors of 2 Ω , 4 Ω , and 6 Ω are connected in series, what fraction of total power is dissipated in the 4 Ω resistor?

- (a) 1/2
- (b) 1/3
- (c) 1/6
- (d) 1/4

Answer: (b) 1/3 Explanation:

Power in series: $P \propto R$

Total R = 12 Ω \rightarrow Power in 4 Ω = 4/12 = 1/3

41. In a meter bridge, null point is found at 40 cm. The resistance in one gap is 6 Ω . What is the unknown resistance?

- (a) 9 Ω
- (b) 4 Ω
- (c) 5 Ω
- (d) 8 Ω

Answer: (b) 4 Ω Explanation:

 $R_1/R_2 = L_1/L_2 \rightarrow X/6 = 40/60 \rightarrow X = 4 \Omega$

42. A wire is cut in two equal parts. If the original resistance is R, the resistance of each part is:

- (a) R
- (b) 2R
- (c) R/2
- (d) R/4

Answer: (c) R/2 Explanation:

 $R \propto L$. Halving the length halves the resistance.

43. A wire has resistance R. It is stretched to triple its length. New resistance is:

(a) 3R
(b) 9R
(c) R/3
(d) R/9
Answer: (b) 9R
Explanation:
$R \propto L^2$ when volume is constant $\rightarrow (3L)^2 = 9L^2 \rightarrow 9R$
44. Internal resistance of a cell is determined using:
44. Internal resistance of a cents determined asing.
(a) Ammeter
(b) Voltmeter
(c) Potentiometer
(d) Galvanometer
Answer: (c) Potentiometer
Explanation:
Potentiometer measures emf and terminal voltage without drawing current.
45. Two resistors of 6 Ω and 12 Ω are connected in parallel. What is the percentage of total current through 6 Ω resistor?
(a) 33.3%
(b) 66.7%
(c) 25%
(d) 75%
Answer: (b) 66.7%
Explanation:

In parallel, current \propto 1/R.

So, $I_1/I_{total} = 12 / (6 + 12) = 12 / 18 = 2/3 = 66.7\%$