Math 104 HW2

Neo Lee

09/08/2023

Exercise 4.1

For each set below that is bounded above, list three upper bounds for the set. Otherwise write "NOT BOUNDED ABOVE".

- (a) [0,1]
- (c) $\{2,7\}$
- (e) $\{\frac{1}{n}: n \in \mathbb{N}\}$
- (g) $[0,1] \cup [2,3]$
- (i) $\bigcap_{n=1}^{\infty} \left[\frac{-1}{n}, 1 + \frac{1}{n} \right]$ (k) $\left\{ n + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$ (m) $\left\{ r \in \mathbb{Q} : r^2 < 4 \right\}$
- (o) $\{x \in \mathbb{R} : x < 0\}$
- (q) {0, 1, 2, 4, 8, 16}
- (s) $\{\frac{1}{n}: n \in \mathbb{N} \text{ and } n \text{ is prime}\}$ (u) $\{x^2: x \in \mathbb{R}\}$
- (w) $\{ sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \}$

Exercise 4.2

Repeat Exercise 4.1 for lower bounds.

Exercise 4.8

Let S and T be nonempty subsets of R with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.

- (a) Oberserve that S is bounded above and T is bounded below.
- (b)

Proposition 1. Sup $S \leq \inf T$.

- (c) Give an example of such sets S and T where $S \cap T$ is nonempty.
- (d) Give an example of sets S and T where sup $S = \inf T$ and $S \cap T$ is an empty set.

Exercise 4.14

Let A and B be nonempty bounded subsets of \mathbb{R} , and let A+B be the set of all sums a+b where $a \in A$ and $b \in B$.

(a)

Proposition 2. Sup(A+B) = sup A + sup B. Hint: To show $sup A + sup B \le sup (A+B)$, show that for each $b \in B$, sup(A+B) - b is an upper bound for A, hence sup(A+B) - b. Then show sup(A+B) - sup A is an upper bound for B.

(b)

Proposition 3. Inf $(A + B) = \inf A + \inf B$.

Exercise 4.16

Proposition 4. Sup $\{r \in \mathbb{Q} : r < a\} = a \text{ for each } a \in \mathbb{R}.$

Exercise 5.5

Proposition 5. Inf $S \leq \sup S$ for every nonempty subset of \mathbb{R} . Consider both bounded and unbounded sets.