

Project Documentation DemoApplication

Contents

L	X2C Model	3
1	Version Information 1.1 X2C 1.2 Operating System 1.3 Scilab	3 3 3
2	Model Structure 2.1 Xcos Model	4 4 5
3	Model Parameter 3.1 Sample Time	6 6
4	Mask Parameter	7
II	Frame Program Documentation	10
5		10 10
6		10
	6.1.1 Detailed Description	11 11
	6.3 inc/GlobalDefines.h File Reference	12 12 13
	6.4 inc/Hardware.h File Reference	13 13 13
	6.4.2 Function Documentation	13 14
	6.6 inc/lwipopts.h File Reference	14 15 15
	6.7 inc/Main.h File Reference	15 15 15
	6.8 inc/MMUConfig.h File Reference	15 16 16
	6.9.1 Detailed Description	16 16 17
	6.10 src/bl_platform.c File Reference	17 18

	6.11 src/pwmss.c File Reference	
	•	
	6.11.2 Function Documentation	21
Ш	Used X2C-Blocks	22
7	Project Specific Blocks	22
8	Internal Library Blocks	22
	AutoSwitch	
	Constant	
	1	
	LoopBreaker	33
	Negation	
	Sin3Gen	38

Part I

X2C Model

1 Version Information

1.1 X2C

• X2Cfull: Version 1072

1.2 Operating System

• OS: Windows 7 6.1

1.3 Scilab

• Scilab: Version 5.5.1.1412169962

• Java: Version 1.6.0_41

2 Model Structure

2.1 Xcos Model

Figure 1: DemoApplication

2.2 Subsystems

Figure 2: DemoApplication_TriangleGenerator

3 Model Parameter

3.1 Sample Time

Sample Time	
T_S	$100\mu s$

3.2 Scilab Parameter

```
// File with model parameters such as sample time, scaling factors, etc...
2
   // Copyright (c) 2017, Linz Center of Mechatronics GmbH (LCM) http://www.lcm.at/
3
   // All rights reserved.
4
   // This file is licensed according to the BSD 3-clause license as follows:
6
8
   // Redistribution and use in source and binary forms, with or without
   // modification, are permitted provided that the following conditions are met:
9
          * Redistributions of source code must retain the above copyright
10
   11
   11
            notice, this list of conditions and the following disclaimer.
11
          st Redistributions in binary form must reproduce the above copyright
   11
12
            notice, this list of conditions and the following disclaimer in the
13
   11
            \hbox{\tt documentation and/or other materials provided with the distribution.}
14
          * Neither the name of the "Linz Center of Mechatronics GmbH" and "LCM" nor
15
   11
            the names of its contributors may be used to endorse or promote products
   11
16
            derived from this software without specific prior written permission.
   11
17
18
   // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
19
   // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20
   // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   // IN NO EVENT SHALL "Linz Center of Mechatronics GmbH" BE LIABLE FOR ANY
22
   // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23
   // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25
   // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27
   // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29
   // $LastChangedRevision: 1069 $
30
   // $LastChangedDate:: 2016-12-23 15:05:57 +0100#$
31
32
   // This file is part of X2C. http://www.mechatronic-simulation.org/
33
34
   // Sampling time
35
   X2C_sampleTime = 100e-6;  // 10kHz sampling frequency
36
37
   // Scaling factors
38
39
   // Controller parameters
```

Listing 1: ModelParameter.sce

4 Mask Parameter

Constant: Amplitude	
Value	50.0
Used Implementation	Float32

AutoSwitch: AutoSwitch1	
Thresh_up	50.0
Thresh_down	50.0
Used Implementation	Float32

AutoSwitch: AutoSwitch2	
Thresh_up	50.0
Thresh_down	50.0
Used Implementation	Float32

AutoSwitch: AutoSwitch3	
Thresh_up	50.0
Thresh_down	50.0
Used Implementation	Float32

Constant: DigOut1	
Value	0.0
Used Implementation	Float32

Constant: DigOut2	
Value	0.0
Used Implementation	Float32

Constant: DigOut3	
Value	0.0
Used Implementation	Float32

Constant: DigOut4	
Value	0.0
Used Implementation	Float32

Constant: LED off	
Value	0.0
Used Implementation	Float32

Constant: LED on	
Value	1.0
Used Implementation	Float32

Constant: LED_on_off	
Value	0.0
Used Implementation	Float32

Sin3Gen: Sin3Gen	
fmax	1000.0
Offset	50.0
ts_fact	1.0
Used Implementation	Float32

Constant: Start_Stop	
Value	1.0
Used Implementation	FiP8

AutoSwitch: TriangleGeneratorAutoSwitch0	
Thresh_up	500.0
Thresh_down	0.0
Used Implementation	Float32

I: TriangleGeneratorI	
Ki	1.0
ts_fact	1.0
Used Implementation	Float32

Constant: TriangleGeneratorInit	
Value	0.0
Used Implementation	Float32

LoopBreaker: TriangleGeneratorLoopBreaker		
Used Implementation	Float32	

Negation: TriangleGeneratorNegation	
Used Implementation	Float32

Constant: TriangleGeneratorSlope	
Value	10.0
Used Implementation	Float32

Part II

Frame Program Documentation

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

inc/bl.h This file defines boot macros and objects	10
inc/bl_platform.h This file exports the APIs used for configuring devices required during boot	11
inc/GlobalDefines.h Collection of globally needed defines	12
inc/Hardware.h Hardware initialization	13
inc/InputControl.h Handling of inputs	14
inc/lwipopts.h	15
inc/Main.h Main function	15
inc/MMUConfig.h MMU configuration	16
inc/OutputControl.h Handling of outputs	16
src/bl_platform.c Initializes AM335x Device Peripherals	17
src/pwmss.c This file contains functions which does platform specific configurations for PWMSS	20

6 File Documentation

6.1 inc/bl.h File Reference

This file defines boot macros and objects.

This graph shows which files directly or indirectly include this file:

6.1.1 Detailed Description

This file defines boot macros and objects.

6.2 inc/bl_platform.h File Reference

This file exports the APIs used for configuring devices required during boot. #include "soc_AM335x.h" Include dependency graph for bl_platform.h:

This graph shows which files directly or indirectly include this file:

6.2.1 Detailed Description

This file exports the APIs used for configuring devices required during boot.

6.3 inc/GlobalDefines.h File Reference

Collection of globally needed defines.

```
#include "Target.h"
#include "../X2CCode/X2C.h"
#include "soc_AM335x.h"
#include "gpio_v2.h"
#include "ehrpwm.h"
Include dependency graph for Globa
```

Include dependency graph for GlobalDefines.h:

Macros

- #define SELECTED SAMPLETIME SAMPLETIME 100US
- #define PWM_FREQUENCY PWM_20KHZ /* fPWM = 20kHz */

X2C Outports

- #define USER LED0 (*Outports.pLED0) /* User LED 0 */
- #define USER_LED1 (*Outports.pLED1) /* User LED 1 */
- #define USER LED2 (*Outports.pLED2) /* User LED 2 */
- #define USER LED3 (*Outports.pLED2) /* User LED 2 */

X2C Inports

- #define AIN0 (Inports.P9_39) /* Analog input 0 */
- #define AIN1 (Inports.P9 40) /* Analog input 1 */
- #define AIN2 (Inports.P9_37) /* Analog input 2 */
- #define AIN3 (Inports.P9 38) /* Analog input 3 */
- #define AIN4 (Inports.P9 33) /* Analog input 4 */
- #define AIN5 (Inports.P9 36) /* Analog input 5 */
- #define AIN6 (Inports.P9_35) /* Analog input 6 */

Port Pin Definitions

- #define USER LED0 ON GPIOPinWrite(SOC GPIO 1 REGS, 21, GPIO PIN HIGH)
- #define **USER_LED0_OFF** GPIOPinWrite(SOC_GPIO_1_REGS, 21, GPIO_PIN_LOW)
- #define USER LED1 ON GPIOPinWrite(SOC GPIO 1 REGS, 22, GPIO PIN HIGH)
- #define USER LED1 OFF GPIOPinWrite(SOC GPIO 1 REGS, 22, GPIO PIN LOW)
- #define **USER_LED2_ON** GPIOPinWrite(SOC_GPIO_1_REGS, 23, GPIO_PIN_HIGH)
- #define USER_LED2_OFF GPIOPinWrite(SOC_GPIO_1_REGS, 23, GPIO_PIN_LOW)
- #define **USER LED3 ON** GPIOPinWrite(SOC GPIO 1 REGS, 24, GPIO PIN HIGH)
- #define **USER LED3 OFF** GPIOPinWrite(SOC GPIO 1 REGS, 24, GPIO PIN LOW)
- #define **GPIO 1 13 ON** GPIOPinWrite(SOC GPIO 1 REGS, 13, GPIO PIN HIGH)
- #define GPIO_1_13_OFF GPIOPinWrite(SOC_GPIO_1_REGS, 13, GPIO_PIN_LOW)
- #define GPIO 1 15 ON GPIOPinWrite(SOC GPIO 1 REGS, 15, GPIO PIN HIGH)
- #define **GPIO 1 15 OFF** GPIOPinWrite(SOC GPIO 1 REGS, 15, GPIO PIN LOW)
- #define GPIO 2 2 ON GPIOPinWrite(SOC GPIO 2 REGS, 2, GPIO PIN HIGH)
- #define GPIO 2 2 OFF GPIOPinWrite(SOC GPIO 2 REGS, 2, GPIO PIN LOW)

- #define GPIO_2_5_ON GPIOPinWrite(SOC_GPIO_2_REGS, 5, GPIO_PIN_HIGH)
- #define **GPIO_2_5_OFF** GPIOPinWrite(SOC_GPIO_2_REGS, 5, GPIO_PIN_LOW)
- #define **READ_GPIO_1_12** GPIOPinRead(SOC_GPIO_1_REGS, 12)
- #define READ GPIO 1 14 GPIOPinRead(SOC GPIO 1 REGS, 14)
- #define READ GPIO 2 3 GPIOPinRead(SOC GPIO 2 REGS, 3)
- #define **READ_GPIO_2_4** GPIOPinRead(SOC_GPIO_2_REGS, 4)

6.3.1 Detailed Description

Collection of globally needed defines. Available Preprocessor Definitions:

none

6.3.2 Macro Definition Documentation

6.3.2.1 #define PWM_FREQUENCY PWM_20KHZ /* fPWM = 20kHz */

PWM frequency

6.3.2.2 #define SELECTED_SAMPLETIME SAMPLETIME_100US

Sample time

6.4 inc/Hardware.h File Reference

Hardware initialization.

Functions

void initHardware (void)
 Initialization of hardware.

6.4.1 Detailed Description

Hardware initialization.

6.4.2 Function Documentation

6.4.2.1 void initHardware (void)

Initialization of hardware.

- · Configuration of IO ports
- · Configuration of PWM
 - Activation of modules 0, 1, 2
 - Frequency set to 20kHz
 - Center aligned mode
 - Active high complementary output mode
 - Dead band module activated, but delay is set to 0 by default
- · Configuration of ADC
 - Activation of channels 0..6

- 200kSamples/s
- ADC is triggered by timer 4
- · Configuration of timer 4
 - 24MHz timer clock
 - Generation of cyclic interrupt with selected sample time
 - Interrupt calls X2C main task

Here is the call graph for this function:

6.5 inc/InputControl.h File Reference

Handling of inputs.

Functions

- void readAnalogIn (void)
 - Routine to read values from ADC.
- void readDigitalIn (void)

Routine to read digital input pins.

6.5.1 Detailed Description

Handling of inputs.

- · Reading of digital inputs
- · Reading of analog inputs

6.6 inc/lwipopts.h File Reference

#include "consoleUtils.h"
Include dependency graph for lwipopts.h:

Macros

• #define LWIP_NETIF_HOSTNAME 1

6.6.1 Detailed Description

· Configuration options for lwIP

Copyright (c) 2010 Texas Instruments Incorporated

6.6.2 Macro Definition Documentation

6.6.2.1 #define LWIP_NETIF_HOSTNAME 1

User specific macros.

6.7 inc/Main.h File Reference

Main function.

Functions

void mainTask (void)

Main control task.

6.7.1 Detailed Description

Main function.

X2C maintenance table, protocol & hardware initialization. Uses Atmel Software Framework (ASF).

6.7.2 Function Documentation

6.7.2.1 void mainTask (void)

Main control task.

This task is/has to be called periodically. Calling rate = Sample time defined in GlobalDe-fines.h

- · assign inports
- update X2C
- · update outports

Here is the call graph for this function:

6.8 inc/MMUConfig.h File Reference

MMU configuration.

6.8.1 Detailed Description

MMU configuration.

6.9 inc/OutputControl.h File Reference

Handling of outputs.

Functions

void setPWM (void)

Routine to set PWM duty cycle.

void writeDigitalOut (void)

Routine to write to digital output pins.

6.9.1 Detailed Description

Handling of outputs.

- · Setting duty cycle of PWM signals
- · Setting of digital outputs

6.9.2 Function Documentation

6.9.2.1 void setPWM (void)

Routine to set PWM duty cycle.

- · check range of duty cycle
- · set duty cycle in PWM module

6.9.2.2 void writeDigitalOut (void)

Routine to write to digital output pins.

- LEDs
- General purpose outputs

6.10 src/bl_platform.c File Reference

```
Initializes AM335x Device Peripherals.
```

```
#include "hw_types.h"
#include "hw_cm_cefuse.h"
#include "hw_cm_device.h"
#include "hw_cm_dpll.h"
#include "hw_cm_gfx.h"
#include "hw_cm_mpu.h"
#include "hw_cm_per.h"
#include "hw_cm_rtc.h"
#include "hw_cm_wkup.h"
#include "hw_control_AM335x.h"
#include "hw_emif4d.h"
#include "bl.h"
#include "gpmc.h"
#include "bl_platform.h"
#include "uartStdio.h"
#include "watchdog.h"
#include "hsi2c.h"
#include "gpio_v2.h"
#include "board.h"
#include "device.h"
#include "string.h"
Include dependency graph for bl_platform.c:
```


Functions

- void Configure Vdd2 (unsigned int op VolMultiplier, unsigned maxLoadCurrent, unsigned int timeStep, unsigned int supplyState)
 - Configure vdd2 for various parameters such as Multiplier, Maximum Load Current etc

17

void SelectVdd2Source (unsigned int vddSource)

Select the VDD2 value. VDD2 OP REG or VDD2 SR REG.

void SetVdd2OpVoltage (unsigned int opVolSelector)

set VDD2_OP voltage value.

void SetVdd2SrVoltage (unsigned int opVolSelector)

set VDD2_SR voltage value

void SelectI2CInstance (unsigned int i2cInstance)

Select I2C interface whether SR I2C or Control I2C.

- void ConfigureVdd1 (unsigned int opVolMultiplier, unsigned maxLoadCurrent, unsigned int timeStep, unsigned int supplyState)
 - Configure vdd1 for various parameters such as Multiplier, Maximum Load Current etc
- void SelectVdd1Source (unsigned int vddSource)

Select the VDD1 value. VDD1_OP_REG or VDD1_SR_REG.

void SetVdd1OpVoltage (unsigned int opVolSelector)

set VDD1_OP voltage value.

6.10.1 Detailed Description

Initializes AM335x Device Peripherals.

6.10.2 Function Documentation

6.10.2.1 void ConfigureVdd1 (unsigned int *opVolMultiplier*, unsigned *maxLoadCurrent*, unsigned int *timeStep*, unsigned int *supplyState*)

• Configure vdd1 for various parameters such as Multiplier, Maximum Load Current etc

Parameters

opVolMulti- plier	- Multiplier.
maxLoadCur- rent	- Maximum Load Current.
timeStep	- Time step - voltage change per us(micro sec).
supplyState	- Supply state (on (high/low power mode), off)

Returns

: None.

6.10.2.2 void ConfigureVdd2 (unsigned int *opVolMultiplier*, unsigned *maxLoadCurrent*, unsigned int *timeStep*, unsigned int *supplyState*)

• Configure vdd2 for various parameters such as Multiplier, Maximum Load Current etc

Parameters

opVolMulti- plier	- Multiplier.
maxLoadCur- rent	- Maximum Load Current.
timeStep	- Time step - voltage change per us(micro sec).
supplyState	- Supply state (on (high/low power mode), off)

Returns

: None.

6.10.2.3 void Selectl2CInstance (unsigned int i2cInstance)

Select I2C interface whether SR I2C or Control I2C. Parameters

i2cInstance	- I2c instance to select.
-------------	---------------------------

Returns

None.

6.10.2.4 void SelectVdd1Source (unsigned int vddSource)

Select the VDD1 value. VDD1_OP_REG or VDD1_SR_REG. Parameters

vddSource	- VDD2 value.
-----------	---------------

Returns

None.

6.10.2.5 void SelectVdd2Source (unsigned int vddSource)

Select the VDD2 value. VDD2_OP_REG or VDD2_SR_REG. Parameters

vddSource	- VDD2 value.

Returns

None.

6.10.2.6 void SetVdd1OpVoltage (unsigned int opVolSelector)

set VDD1_OP voltage value.

Parameters

opVolSelec-	- VDD2_OP voltage value.
tor	

Returns

None.

6.10.2.7 void SetVdd2OpVoltage (unsigned int opVolSelector)

set VDD2_OP voltage value.

Parameters

opVolSelec-	- VDD2_OP voltage value.
tor	

Returns

None.

6.10.2.8 void SetVdd2SrVoltage (unsigned int opVolSelector)

set VDD2_SR voltage value

Parameters

opVolSelec-	- VDD2_SR voltage value.
tor	

Returns

None.

6.11 src/pwmss.c File Reference

This file contains functions which does platform specific configurations for PWMSS.

```
#include "hw_control_AM335x.h"
#include "soc_AM335x.h"
#include "ehrpwm.h"
#include "hw_cm_per.h"
#include "hw_types.h"
```

Include dependency graph for pwmss.c:

Functions

void PWMSSTBClkEnable (unsigned int instance)

This function Enables TBCLK(Time Base Clock) for specific EPWM instance of pwmsub-system.

void PWMSSModuleClkConfig (unsigned int instanceNum)

This function configures the L3 and L4_PER system clocks. It also configures the system clocks for the specified ePWMSS instance.

6.11.1 Detailed Description

This file contains functions which does platform specific configurations for PWMSS.

6.11.2 Function Documentation

6.11.2.1 void PWMSSModuleClkConfig (unsigned int instanceNum)

This function configures the L3 and L4_PER system clocks. It also configures the system clocks for the specified ePWMSS instance.

Parameters

instanceNum	The instance number of ePWMSS whose system clocks have to be con-
	figured.

'instanceNum' can take one of the following values: $(0 \le \text{instanceNum} \le 2)$

Returns

None.

6.11.2.2 void PWMSSTBClkEnable (unsigned int instance)

This function Enables TBCLK(Time Base Clock) for specific EPWM instance of pwmsub-system.

Parameters

instance	It is the instance number of EPWM of pwmsubsystem.
----------	--

Part III

Used X2C-Blocks

- 7 Project Specific Blocks
- 8 Internal Library Blocks

Block: AutoSwitch

Inports	
ln1	Input #1
Switch	Input #2: Threshold signal
ln3	Input #3

Outports	
Out	Either value of input #1 or input #3 dependent on value of input #2

Mask Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal

Description:

Switch between In1 and In3 dependent on Switch signal: Switch signal rising: Switch >= Threshold up -> Out = In1 Switch signal falling: Switch < Threshold down -> Out = In3

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 128 Revision 0.1

C filename AutoSwitch_FiP8.c
H filename AutoSwitch_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int8
                    *In1;
                    *Switch;
     int8
     int8
                    *In3;
     int8
                    Out;
                   Thresh_up;
     int8
                   Thresh_down;
     int8
     int8
                    Status;
} AUTOSWITCH_FIP8;
```

Implementation: FiP16

Name FiP16 ID 129 Revision 0.1

C filename AutoSwitch_FiP16.c
H filename AutoSwitch_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
int16    Out;
int16    Thresh_up;
int16    Thresh_down;
int8    Status;
} AUTOSWITCH_FIP16;
```

Implementation: FiP32

Name FiP32 ID 130 Revision 0.1

C filename AutoSwitch_FiP32.c
H filename AutoSwitch_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *In1;
     int32
                    *Switch;
     int32
                    *In3;
     int32
                    Out;
     int32
                    Thresh_up;
     int32
                    Thresh_down;
     int8
                    Status;
} AUTOSWITCH_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 131

 Revision
 0.1

C filename AutoSwitch_Float32.c H filename AutoSwitch_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In1;
     float32
                    *Switch;
     float32
                    *In3;
     float32
                    Out;
     float32
                    Thresh_up;
     float32
                    Thresh_down;
                    Status;
     int8
} AUTOSWITCH_FLOAT32;
```

Implementation: Float64

Name Float64
ID 132
Revision 0.1

C filename AutoSwitch_Float64.c
H filename AutoSwitch_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
typedef struct {
     uint16
                    ID;
     float64
                    *In1;
     float64
                    *Switch;
     float64
                    *In3;
     float64
                    Out;
     float64
                    Thresh_up;
     float64
                    Thresh_down;
                    Status;
     int8
} AUTOSWITCH_FLOAT64;
```

Block: Constant

Outports	
Out	Constant output

Mask Parameters	
Value	Constant factor

Description:

Constant value.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 48 Revision 0.3

C filename Constant_FiP8.c
H filename Constant_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Implementation: FiP16

Name FiP16 ID 49 Revision 0.3

C filename Constant_FiP16.c
H filename Constant_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 50

 Revision
 0.3

C filename Constant_FiP32.c
H filename Constant_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

Implementation: Float32

Name Float32 ID 51 Revision 0.1

C filename Constant_Float32.c
H filename Constant_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

```
typedef struct {
    uint16     ID;
    float32     Out;
    float32     K;
} CONSTANT_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 52

 Revision
 0.1

C filename Constant_Float64.c
H filename Constant_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

```
typedef struct {
    uint16      ID;
    float64      Out;
    float64      K;
} CONSTANT_FLOAT64;
```

Block: I

Inports	
In	Control error input
Init	Value which is loaded at initialization function call
Enable	Enable == 0: Deactivation of block; Out set to 0 Enable 0->1: Preload of integral part Enable == 1: Activation of block

Outports	
Out	Control value

Mask Parameters	
Ki	Integral Factor
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

I controller:

$$G(s) = Ki/s = 1/(Ti*s)$$

Each fixed point implementation uses the next higher integer datatype for the integrational value storage variable.

A rising flank at the *Enable* inport will preload the integrational part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_I T_s \frac{1}{z-1}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8
ID 3200
Revision 1.0
C filename I_FiP8.c
H filename I_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                     ID;
     int8
                     *In;
                     * Init;
     int8
     int8
                     *Enable;
     int8
                     Out;
     int8
                    b0;
     int8
                     sfr;
                     i_old;
     int16
                     enable_old;
     int8
} I_FIP8;
```

Implementation: FiP16

Name FiP16
ID 3201
Revision 1.0
C filename I_FiP16.c
H filename I_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
```

```
uint16
                    ID;
     int16
                    *In;
     int16
                    * Init;
     int8
                    *Enable;
     int16
                    Out;
     int16
                    b0;
     int8
                    sfr;
                    i_old;
     int32
     int8
                    enable_old;
} I_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 3202

 Revision
 1.0

 C filename
 I_FiP32.c

 H filename
 I_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    * In;
     int32
                    * Init;
     int8
                    *Enable;
     int32
                    Out;
     int32
                    b0;
     int8
                    sfr;
     int64
                    i_old;
     int8
                    enable_old;
} I_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 3203

 Revision
 0.1

C filename I_Float32.c H filename I_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In;
     float32
                    * Init;
     int8
                    *Enable;
     float32
                    Out;
     float32
                    b0;
     float32
                    i_old;
     int8
                    enable_old;
} I_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 3204

 Revision
 0.1

C filename I_Float64.c H filename I_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
     uint16
                    ID;
     float64
                    *In;
     float64
                    * Init;
                    *Enable;
     int8
     float64
                    Out;
     float64
                    b0;
     float64
                    i_old;
     int8
                    enable_old;
} I_FLOAT64;
```

Block: LoopBreaker

Inports	
In	Input In(k)

Outports	
Out	Output Out(k)=In(k-1)

Description:

Block to break algebraic loops.

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 481

 Revision
 0.1

C filename LoopBreaker_FiP16.c
H filename LoopBreaker_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 482

 Revision
 0.1

C filename LoopBreaker_FiP32.c
H filename LoopBreaker_FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

```
typedef struct {
    uint16     ID;
    int32     *In;
    int32     Out;
} LOOPBREAKER_FIP32;
```

Implementation: Float32

Name Float32 ID 483 Revision 0.1

C filename LoopBreaker_Float32.c H filename LoopBreaker_Float32.h

32 Bit Floating Point Implementation

Data Structure:

Implementation: Float64

 Name
 Float64

 ID
 484

 Revision
 0.1

C filename LoopBreaker_Float64.c
H filename LoopBreaker_Float64.h

64 Bit Floating Point Implementation

```
typedef struct {
    uint16     ID;
    float64    *In;
    float64     Out;
} LOOPBREAKER_FLOAT64;
```

Block: Negation

Inports	
In	Input

Outports	
Out	Negated input value

Description:

Negation of input signal.

Calculation:

$$Out = -In$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

 Name
 FiP8

 ID
 5040

 Revision
 0.1

C filename Negation_FiP8.c
H filename Negation_FiP8.h

8 Bit Fixed Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 5041

 Revision
 0.1

C filename Negation_FiP16.c
H filename Negation_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 5042

 Revision
 0.1

C filename Negation_FiP32.c H filename Negation_FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

Implementation: Float32

 Name
 Float32

 ID
 5043

 Revision
 0.1

C filename Negation_Float32.c
H filename Negation_Float32.h

32 Bit Floating Point Implementation

```
} NEGATION_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 5044

 Revision
 0.1

C filename Negation_Float64.c
H filename Negation_Float64.h

64 Bit Floating Point Implementation

```
typedef struct {
    uint16     ID;
    float64    *In;
    float64     Out;
} NEGATION_FLOAT64;
```

Block: Sin3Gen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output phase u
V	Sine wave output phase v
W	Sine wave output phase w

Mask Parameters	
fmax	Maximum Frequency in Hz
Offset	Offset
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a 3 sine waves with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$u_k = A_k \cdot \sin(2f_k \cdot f_{max} \cdot kT_S) + A_{Offset}$$

$$v_k = A_k \cdot \sin(2f_k \cdot f_{max} \cdot kT_S - \frac{2\pi}{3}) + A_{Offset}$$

$$w_k = A_k \cdot \sin(2f_k \cdot f_{max} \cdot kT_S + \frac{2\pi}{3}) + A_{Offset}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

$$\begin{array}{rcl} u_k & = & A_k \cdot \sin\left(2\pi f_k \cdot kT_S\right) + A_{Offset} \\ \\ v_k & = & A_k \cdot \sin\left(2\pi f_k \cdot kT_S - \frac{2\pi}{3}\right) + A_{Offset} \\ \\ w_k & = & A_k \cdot \sin\left(2\pi f_k \cdot kT_S + \frac{2\pi}{3}\right) + A_{Offset} \end{array}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 432 Revision 1.0

C filename Sin3Gen_FiP8.c H filename Sin3Gen_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                     ID;
     uint16
     int8
                     *A;
     int8
                     * f;
     int8
                     u;
     int8
                     ν;
     int8
                    w;
     int8
                     delta_phi;
     int8
                     offset;
     int8
                     phi;
} SIN3GEN_FIP8;
```

Implementation: FiP16

Name FiP16 ID 433 Revision 1.0

C filename Sin3Gen_FiP16.c
H filename Sin3Gen_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int16
                    *A;
     int16
                    * f;
     int16
                    u;
     int16
                    ٧;
     int16
                    w;
     int16
                    delta_phi;
     int16
                    offset;
     int16
                    phi;
} SIN3GEN_FIP16;
```

Implementation: FiP32

Name FiP32 ID 434 Revision 1.0

C filename Sin3Gen_FiP32.c
H filename Sin3Gen_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
typedef struct {
     uint16
                    ID;
     int32
                    *A;
     int32
                    * f ;
     int32
                    u;
     int32
                    ۷;
     int32
                    w;
     int32
                    delta_phi;
     int32
                    offset;
     int32
                    phi;
} SIN3GEN_FIP32;
```

Implementation: Float32

Name Float32 ID 435 Revision 0.1

C filename Sin3Gen_Float32.c H filename Sin3Gen_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                   ID;
     uint16
     float32
                   *A;
     float32
                   * f;
     float32
                   u;
     float32
                   ν;
     float32
                   w;
     float32
                   delta_phi;
     float32
                   offset;
     float32
                   phi;
} SIN3GEN_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 436

 Revision
 0.1

C filename Sin3Gen_Float64.c
H filename Sin3Gen_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
float64 u;
float64 v;
float64 w;
float64 delta_phi;
float64 offset;
float64 phi;
} SIN3GEN_FLOAT64;
```