Reproducing: "Topic Modeling on Podcast Short-Text Metadata" by Valero et al.

YAHYA JABARY*, TU Wien, Austria JOACHIM BIBERGER, TU Wien, Austria SELINA REINHARD, TU Wien, Austria NUSAIBA AHMED, TU Wien, Austria JULIA CHALISSERY, TU Wien, Austria

...

Additional Key Words and Phrases: Reproducibility, Information Retrieval

ACM Reference Format:

In this paper, we aim to reproduce the evaluation of the NEiCE algorithm as presented by Valero et al. [3].

1 Introduction

Named Entity informed Corpus Embedding (NEiCE), is a topic modeling algorithm that uses named entities (NE) to improve the quality of topics extracted from short-text content. The algorithm was introduced in the paper "Topic Modeling on Podcast Short-Text Metadata" by Valero et al. [3] from Deezer Research. It is based on the CluWords [4] algorithm, which clusters words based on their nearest neighbors. The authors claim that NeICE outperforms other topic modeling algorithms of the same class, such as Non-negative matrix factorization (NMF), Short-text topic modeling via non-negative matrix factorization (SeaNMF) [2] and Clustering words (CluWords) [4], on podcast metadata from Deezer, Spotify and iTunes.

The motivation behind this study stems from the nature of podcast metadata, which typically consists of short text such as titles and descriptions. Traditional topic modeling algorithms often struggle with short text due to the lack of context and sparse data, even when concatenated into pseudo-documents. However, NMF-based algorithms have shown promise in handling short text more effectively compared to probabilistic models, such as the Generalized Polya Urna Dirichlet Multinomial Mixture (GPU-DMM) [1]. Additionally, NMF-based algorithms offer better interpretability than neural models, such as the Negative sampling and Quantization Topic Model (NQTM) [5]. NEiCE offers an improvement over CluWords by leveraging named entities, which are more informative and coherent than regular words.

Authors' Contact Information: Yahya Jabary, jabaryyahya@gmail.com, TU Wien, Austria; Joachim Biberger, TU Wien, Austria; Selina Reinhard, TU Wien, Austria; Nusaiba Ahmed, TU Wien, Austria; Julia Chalissery, TU Wien, Austria.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

1.1 NEiCE Algorithm

The NEiCE algorithm consists of a (1) preprocessing stage and a (2) topic modeling stage. The preprocessing stage prepares the podcast metadata for topic modeling by enriching the text with named entities, generating contextualized word embeddings and creating document-level representations. The topic modeling stage then applies Non-negative Matrix Factorization (NMF) to discover relevant topics from the preprocessed data.

1.1.1 Preprocessing Stage. The preprocessing stage begins with named entity identification in both the title and description fields of podcast metadata. The system employs the Radboud Entity Linker (REL) library for linking these entities to Wikipedia entries. Within this linking process, the Flair library, which utilizes embeddings, performs Named Entity Recognition (NER) to detect entity mentions. It then uses wikipedia2vec to identify unique candidates from a list of potential matches.

For each identified named entity, the system generates a Wikipedia page reference along with a confidence score. This score is crucial as it determines how the entity will be treated in subsequent processing – either as a simple text span, as a confirmed named entity, or as individual words requiring separate processing.

The vocabulary cleaning phase incorporates the NameDataset library to eliminate overly common named entities such as actors and athletes that might not contribute meaningfully to topic identification. Following the cleaning process, the system applies a specialized NE-related re-weighting to the term frequency (tf) factor.

The preprocessing stage handles different datasets with specific criteria. For both iTunes and Spotify datasets, the system removes duplicate titles and eliminates entries where the combined title and description contain fewer than three terms. The Spotify dataset undergoes additional language filtering, utilizing both fastText and CLD3 to ensure only English-language podcasts are retained. The Deezer dataset, which is the largest among the three, contains similar metadata including creator-provided information, titles, descriptions and show names in English. Across all datasets, genres with fewer than 300 shows are excluded to ensure robust topic modeling.

1.1.2 Topic Modeling Stage.

1.2 Evaluation

In short, we want to reproduce table 1 and conduct a statistical analysis to evaluate our confidence in the results.

Dataset	Deezer				Spotify				iTunes			
	20	50	100	200	20	50	100	200	20	50	100	200
NEiCE (0.2, 0.3)	50.2	48.9	51.4	48.4	51.7	49.0	45.2	46.5	49.3	43.3	49.5	47.0
NEiCE (0.2, 0.4)	53.1	49.2	50.8	50.6	48.7	48.7	43.5	41.7	47.2	49.5	50.7	51.3
NEiCE (0.3, 0.3)	48.5	52.1	51.5	49.8	52.2	49.0	47.5	47.6	50.3	52.5	49.0	48.2
NEiCE (0.3, 0.4)	53.3	50.9	55.3	51.6	50.1	48.5	51.1	49.8	52.5	49.5	49.2	49.8
NEiCE (0.4, 0.3)	53.2	51.5	52.2	50.0	53.2	49.5	50.5	45.9	52.8	50.1	50.6	51.1
NEiCE (0.4, 0.4)	56.4	52.6	48.1	49.0	51.0	48.2	47.3	47.8	52.4	51.9	49.9	47.4
NEiCE (0.5, 0.3)	52.5	56.3	50.8	55.4	51.3	47.7	45.6	45.4	50.6	46.5	46.7	49.0
NEiCE (0.5, 0.4)	56.3	60.6	54.9	53.3	55.0	49.9	46.7	45.0	50.5	52.0	48.7	46.1

Table 1. Topic coherence scores C_V (in %) obtained by NEiCE for each $(\alpha^{word}, \alpha^{ent})$ configuration on the Deezer, Spotify and iTunes datasets – named "Table 5" in the original paper.

- 2 Strategies
- 3 Difficulties
- 4 Key Findings
- 5 Conclusion

References

- [1] Chenliang Li, Haoran Wang, Zhiqian Zhang, Aixin Sun, and Zongyang Ma. 2016. Topic Modeling for Short Texts with Auxiliary Word Embeddings. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (Pisa, Italy) (SIGIR '16). Association for Computing Machinery, New York, NY, USA, 165–174. https://doi.org/10.1145/2911451.2911499
- [2] Tian Shi, Kyeongpil Kang, Jaegul Choo, and Chandan K Reddy. 2018. Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In Proceedings of the 2018 world wide web conference. 1105–1114.
- [3] Francisco B Valero, Marion Baranes, and Elena V Epure. 2022. Topic modeling on podcast short-text metadata. In European Conference on Information Retrieval. Springer, 472–486.
- [4] Felipe Viegas, Sérgio Canuto, Christian Gomes, Washington Luiz, Thierson Rosa, Sabir Ribas, Leonardo Rocha, and Marcos André Gonçalves. 2019. CluWords: Exploiting Semantic Word Clustering Representation for Enhanced Topic Modeling. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (Melbourne VIC, Australia) (WSDM '19). Association for Computing Machinery, New York, NY, USA, 753–761. https://doi.org/10.1145/3289600.3291032
- [5] Xiaobao Wu, Chunping Li, Yan Zhu, and Yishu Miao. 2020. Short text topic modeling with topic distribution quantization and negative sampling decoder. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 1772–1782.

A System Specifications

All experiments were conducted on a consumer-grade laptop with the following specifications:

\$ system_profiler SPSoftwareDataType SPHardwareDataType
Software:

System Software Overview:

System Version: macOS 14.6.1 (23G93) Kernel Version: Darwin 23.6.0 Boot Volume: Macintosh HD

Boot Mode: Normal

Computer Name: Yahya's MacBook Pro User Name: Yahya Jabary (sueszli) Secure Virtual Memory: Enabled System Integrity Protection: Enabled

Time since boot: 103 days, 2 hours, 59 minutes

Hardware:

Hardware Overview:

Model Name: MacBook Pro Model Identifier: Mac14,10 Model Number: <redacted> Chip: Apple M2 Pro

Total Number of Cores: 12 (8 performance and 4 efficiency)

Memory: 16 GB

System Firmware Version: 10151.140.19 OS Loader Version: <redacted> Serial Number (system): <redacted>

Hardware UUID: <redacted>
Provisioning UDID: <redacted>

Yahya Jabary, Joachim Biberger, Selina Reinhard, Nusaiba Ahmed, and Julia Chalis	sery
--	------

Activation Lock Status: Disabled

4