Master Information Evening

Jeroen Hofman

Department of Computational Science University of Amsterdam

November 8, 2012

Background.

- BSc Physics & Astronomy.
- One year at TU Delft (MSc Applied Physics).
- Currently master thesis at ING bank.

Personal experience with this programme.

Personal motivation:

- Interdisciplinary subjects.
- More aimed at the world after graduation.

Experience:

- Small classes.
- Wide variety of choices in courses.
- Project-based assignments, usually in groups.
- High motivation among students, high degree of independence.
- Good connection with the PhD-group and teachers/researchers.

Introduction in Computational Science.

- Correcting deficiencies.
- Introduction to certain types of models like dynamical systems.

Figure: Disease spreading on a network.

Stochastic Simulation.

- How to use probability theory in modeling? \rightarrow e.g. MC-simulations.
- Random number theory.

Figure: Mandelbrot set.

Concurrent Programming.

- Learning about parallel paradigms and applications.
- Getting familiar with many paradigms (e.g. pThreads, MPI)

Figure: Competition on performance.

Computational Finance.

- Principles of quantitative finance.
- Derivation of important formulas for option pricing.

Figure: Pricing surface of a digital option.

Complex System Simulation.

- Learning about complex (social) networks.
- Studying chaotic behavior.

Figure: Rebel-cop interaction on a grid.

Scientific Visualization.

- Studying about visualization methods used in scientific literature.
- Comparing visualization tools.

Figure: DNAViewer: an interactive webpage of Computational displaying mutation data.

My Master Thesis.

- Currently doing my master project at ING.
- Topic: Pricing and hedging of Single Premium Variable Annuities (SPVA's).
- Computational finance uses many principles from physics, e.g.:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

Others.

- Iona Niculescu, Modeling cells in blood vessel systems, Comp. Science UvA.
- Louis Dijkstra: Dynamic social-economic networks, University of St. Petersburg.
- Cong Chen: Potts-model research, CWI.
- Alex Thiakos: Insurance-related development of pricing methods, ING.
- Lotte Huisman: Multi-scale modeling of calcification in scleractinian corals, Comp. Science UvA/James Cook University.
- Amir Masoud Abdol: Multi-objective optimization for modeling developmental gene regulatory networks, Comp Science UvA/Centre for Regulatory Genomics Barcelona

Thank you for your attention!

Questions?

