WHAT IS CLAIMED IS:

5

10

25

1. A compound of the structural formula I:

$$R_{4}$$
 Q
 R_{2}
 R_{3}
 R_{4}
 Q
 R_{2}

Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

R represents hydrogen, or C₁₋₆ alkyl;

R₁ represents hydrogen or C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy, OH, COR^c, CO₂R₈,

CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents -(CHR7)p-;

20 Y represents $-CO(CH_2)_n$ -, or -CH(OR)-;

Q represents N, CRy, or O, wherein R2 is absent when Q is O;

Ry represents H, or C₁₋₆ alkyl;

 R_w represents H, C_{1-6} alkyl, $-C(O)C_{1-6}$ alkyl, $-C(O)OC_{1-6}$ alkyl, $-SO_2N(R)_2$, $-SO_2C_{1-6}$ alkyl, $-SO_2C_{6-10}$ aryl, NO_2 , CN or $-C(O)N(R)_2$;

R2 represents hydrogen, C_{1-10} alkyl, C_{1-6} alkylSR, - $(CH_2)_nO(CH_2)_mOR$, - $(CH_2)_nC_{1-6}$ alkoxy, - $(CH_2)_nC_{3-8}$ cycloalkyl, - $(CH_2)_nC_{3-10}$ heterocyclyl, - $(CH_2)_nC_{5-10}$ heterocyclyl, - $(CH_2)_nC_{6-10}$ aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a ;

5

- $\label{eq:R3} R3 \ \text{represents hydrogen}, C_{1-10} \ \text{alkyl}, -(CH_2)_n C_{3-8} \ \text{cycloalkyl}, -(CH_2)_n C_{3-10} \ \text{heterocyclyl}, -(CH_2)_n C_{5-10} \ \text{heterocyclyl}, -(CH_2)_n C_{5-10} \ \text{heterocyclyl}, -(CH_2)_n C_{6-10} \ \text{aryl}, -(CH_2)_n NHR_8, -(CH_2)_n N(R)_2, -(CH_2)_n N(R_8)_2, -(CH_2)_n NHCOOR, -(CH_2)_n N(R_8)_2 C_{2R}, -(CH_2)_n N(R_8)_2, -(CH_2)_n C_{1-6}_2, -(CH_2)_n C_{1-6}_3, -(CH_2)_n C_{2R}, -$
- 10 (CH₂)_nNHCOR, -(CH₂)_nCONH(R₈), aryl, -(CH₂)_nC₁₋₆-OR, CF₃, -(CH₂)_nSO₂R, (CH₂)_nSO₂N(R)₂, -(CH₂)_nCON(R)₂, -(CH₂)_nCONHC(R)₃, -(CH₂)_nCONHC(R)₂CO₂R, (CH₂)_nCOR₈, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of R^a;
- or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;
- R4 and R5 independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO₃H, C₁₋₆ alkylcarbonyl, S(O)qRy, -O(CH₂)_nN(R)₂, -O(CH₂)_nCO₂R, -OPO(OH)₂, CF₃, -N(R)₂, nitro, cyano, C₁₋₆ alkylamino, or halogen;
- R6 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₆₋₁₀ aryl, -NH(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nC₅₋₁₀ heteroaryl, -NH(CH₂)_nC₅₋₁₀ heteroaryl, (C₆₋₁₀ aryl)O-, -(CH₂)_nC₃₋₁₀

 25 heterocyclyl, -(CH₂)_nC₃₋₈ cycloalkyl, -COOR, -C(O)CO₂R, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a;
 - R7 represents hydrogen, C1-6 alkyl, -(CH2)nCOOR or -(CH2)nN(R)2,
- R8 represents -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_n 3-10 heterocyclyl, C₁₋₆ alkoxy or -(CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nC₆₋₁₀ aryl said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;

Ra represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -(CH₂)_nCOR₈, -(CH₂)_nCONHR₈, -(CH₂)_nCON(R₈)₂, -O(CH₂)_nCOOR, -NH(CH₂)_nOR, -COOR, -OCF₃, -NHCOR, -SO₂R, - SO_2NR_2 , -SR, $(C_1-C_6 \text{ alkyl})O_7$, - $(CH_2)_nO(CH_2)_mOR$, - $(CH_2)_nC_1$ -6 alkoxy, (aryl)O-, -OH, $(C_1-C_6 \text{ alkyl})S(O)_m$ -, $H_2N-C(NH)$ -, $(C_1-C_6 \text{ alkyl})C(O)$ -, $(C_1-C_6 \text{ alkyl})OC(O)NH$ -, $-(C_1-C_6 \text{ alkyl})C(O)$ -, $(C_1-C_6 \text{ alkyl})OC(O)NH$ -, $-(C_1-C_6 \text{ alkyl})C(O)$ -, $(C_1-C_6 \text{ alkyl})OC(O)NH$ -, $-(C_1-C_6 \text{ alkyl})OC(O)$ alkyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-5 C₆ alkyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)-C₃₋₁₀ heterocyclyl-R_w, -(CH₂)_n-Z₁- $C(=Z^2)N(R)_2$, $-(C_{2-6} \text{ alkenyl})NR_w(CH_2)_nC_{3-10}$ heterocyclyl- R_w , $-(C_{2-6} \text{ alkenyl})O(CH_2)_nC_{3-10}$ 10 heterocyclyl-R_w, -(C₂₋₆ alkenyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂₋₆ alkenyl)-C₃₋₁₀ heterocyclyl- R_w , -(C2-6 alkenyl)- Z^1 -C(= Z^2)N(R)2, -(CH2)nSO2R, -(CH2)nSO3H, -10 (CH₂)_nPO(OR)₂, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C2-6 alkenyl, and C1-C10 alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 groups selected from C₁-C₆ alkyl, and COOR;

15

 Z^1 and Z^2 independently represents NR_w, O, CH₂, or S;

 R^b represents C_{1-6} alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl;

20

25

30

R^c represents hydrogen, C₁₋₆ alkyl, or -(CH₂)_nC₆₋₁₀ aryl;

m is 0-3; n is 0-3; q is 0-2; and p is 0-1.

- 2. A compound of the structural formula I wherein X is CHR7.
- 3. A compound according to claim 1 wherein Y is $-CO(CH_2)_n$.
- 4. A compound according to claim 1 wherein Y is CH(OR).

- 5. A compound according to claim 1 wherein Q is N.
- 6. A compound according to claim 1 wherein Q is CH.

5

7. A compound according to claim 2 wherein R_6 is $(CH_2)_nC_{6-10}$ aryl, $(CH_2)_nC_{5-10}$ heteroaryl, $(CH_2)_nC_{3-10}$ heterocyclyl, or $(CH_2)_nC_{3-8}$ cycloalkyl, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a .

10

- 8. A compound according to claim 6 wherein R7 is hydrogen or C₁₋₆ alkyl.
- 9. A compound according to claim 6 wherein Q is N and n is 0.
- 10. A compound according to claim 1 wherein Y is -CO(CH₂)_n, Q is N, n is
 15 0, R₂ is C₁₋₁₀ alkyl or C₁₋₆ alkylOH and R₃ is (CH₂)_nC₃₋₁₀ heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a.
 - 11. A compound which is selected from Tables 1 through 4:

 $-\$ NH(CH₂)₂NHCO₂X , or $-\$ NHC_{1-\(\text{p}\) alkyl;}

n is 0 to 3; X, Y and Z, independently represent hydrogen or C_{1-6} alkyl; and Rc represents hydrogen, halogen, C_{1-6} alkyl, CF3, OCF3, N(CH3)3, COC₁₋₆ alkyl, or methoxy;

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; R^b and R^a independently represent hydrogen, methoxy, CO_2X , NHAc, or C_{1-6} alkyl; R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} alkyl, or methoxy

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; and R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} alkyl, or methoxy

or

wherein:

 R^b and R^a independently represent hydrogen, methoxy, CO_2X , NHAc, or C_{1-6} alkyl;

 R^d represents C1-6 alkyl, pyridinyl, -O-phenyl, phenyl, thienyl, said pyridinyl and phenyl optionally substituted with 1-3 halogen, CF_3 , $N(CH_3)_2$, methoxy or C1-6 alkyl; and

 R^e represents methoxy, $O(CH_2)_2N(CH_3)_2$, or OH;

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

5 12. A method for treating ocular hypertension or glaucoma comprising administration to a patient in need of such treatment a therapeutically effective amount of a

compound of structural formula I:

$$R_{4}$$
 Q
 R_{2}
 R_{4}
 Q
 R_{3}

5 Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

10 R represents hydrogen, or C₁₋₆ alkyl;

R₁ represents hydrogen or C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy, OH, COR^c, CO₂R₈, CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents -(CHR7)_p-;

15

Y represents $-CO(CH_2)_n$ -, or -CH(OR)-;

Q represents N, CRY, or O, wherein R2 is absent when Q is O;

Ry represents H, or C₁₋₆ alkyl;

 $R_{w} \text{ represents H, C}_{1-6} \text{ alkyl, -C(O)C}_{1-6} \text{ alkyl, -C(O)OC}_{1-6} \text{ alkyl, -SO}_{2}N(R)_{2}, -SO_{2}C_{1-6} \text{ alkyl, -SO}_{2}C_{1-6} \text{ alkyl, -SO}_{2}C_{1$

R2 represents hydrogen, C1-10 alkyl, C1-6 alkylSR, -(CH2)nO(CH2)mOR,

- $(CH_2)_nC_{1-6}$ alkoxy, - $(CH_2)_nC_{3-8}$ cycloalkyl, - $(CH_2)_nC_{3-10}$ heterocyclyl, - $(CH_2)_nC_{5-10}$ heterocyclyl, - $(CH_2)_nC_{6-10}$ aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a ;

- R3 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, (CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nCOOR, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nNHR₈, -(CH₂)_nN(R)₂, (CH₂)_nN(R₈)₂, -(CH₂)_nNHCOOR, -(CH₂)_nN(R₈)CO₂R, -(CH₂)_nN(R₈)COR, (CH₂)_nNHCOR, -(CH₂)_nCONH(R₈), aryl, -(CH₂)_nC₁₋₆-OR, CF₃, -(CH₂)_nSO₂R, (CH₂)_nSO₂N(R)₂, -(CH₂)_nCON(R)₂, -(CH₂)_nCONHC(R)₃, -(CH₂)_nCONHC(R)₂CO₂R, (CH₂)_nCOR₈, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of R^a;
 - or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;
 - R4 and R5 independently represent hydrogen, C_{1-6} alkoxy, OH, C_{1-6} alkyl, COOR, SO₃H, C_{1-6} alkylcarbonyl, S(O)qRy, -O(CH₂)_nN(R)₂, -O(CH₂)_nCO₂R, -OPO(OH)₂, CF₃, -N(R)₂, nitro, cyano, C_{1-6} alkylamino, or halogen;
 - R6 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₆₋₁₀ aryl, -NH(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nC₅₋₁₀ heteroaryl, -NH(CH₂)_nC₅₋₁₀ heteroaryl, (C₆₋₁₀ aryl)O-, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₃₋₈ cycloalkyl, -COOR, -C(O)CO₂R, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a;
 - R7 represents hydrogen, C_{1-6} alkyl, -(CH₂)_nCOOR or -(CH₂)_nN(R)₂,

15

20

25

- R8 represents -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_n 3-10 heterocyclyl, C₁₋₆ alkoxy or -(CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nC₆₋₁₀ aryl said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;
 - $R^{a} \text{ represents F, Cl, Br, I, CF}_{3}, N(R)_{2}, NO_{2}, CN, -(CH_{2})_{n}COR_{8}, -(CH_{2})_{n}CONHR_{8}, -(CH_{2})_{n}CON(R_{8})_{2}, -O(CH_{2})_{n}COOR, -NH(CH_{2})_{n}OR, -COOR, -OCF_{3}, -NHCOR, -SO_{2}R, -SO_{2}NR_{2}, -SR, (C_{1}-C_{6} \text{ alkyl})O-, -(CH_{2})_{n}O(CH_{2})_{m}OR, -(CH_{2})_{n}C_{1-6} \text{ alkoxy, (aryl})O-, -OH,$

(C₁-C₆ alkyl)S(O)_m-, H₂N-C(NH)-, (C₁-C₆ alkyl)C(O)-, (C₁-C₆ alkyl)OC(O)NH-, -(C₁-C₆ alkyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)-C₃₋₁₀ heterocyclyl-R_w, -(CH₂)_n-Z¹-C(=Z²)N(R)₂, -(C₂-6 alkenyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)-C₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)-Z¹-C(=Z²)N(R)₂, -(CH₂)_nSO₂R, -(CH₂)_nSO₃H, - (CH₂)_nPO(OR)₂, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C₂-6 alkenyl, and C₁-C₁₀ alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 groups selected from C₁-C₆ alkyl, and COOR;

Z¹ and Z² independently represents NR_w, O, CH₂, or S;

Rb represents C₁₋₆ alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl;

R^c represents hydrogen, C₁₋₆ alkyl, or -(CH₂)_nC₆₋₁₀ aryl;

- 20 m is 0-3; n is 0-3; q is 0-2; and p is 0-1.
- 25 13. The method according to claim 12 wherein the compound of Formula I is selected from Tables 1 through 4:

 ξ -NH(CH₂)₂NHCO₂X , or ξ -NHC₁₋₆alkyl;

n is 0 to 3; X, Y and Z, independently represent hydrogen or C_{1-6} alkyl; and Rc represents hydrogen, halogen, C_{1-6} alkyl, CF3, OCF3, N(CH3)3, COC₁₋₆ alkyl, or methoxy;

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; R^b and R^a independently represent hydrogen, methoxy, CO_2X , NHAc, or C_{1-6} alkyl; R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} alkyl, or methoxy

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; and R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} alkyl, or methoxy

or CH₃O N S

wherein:

 ${\sf R}^{\sf b}$ and ${\sf R}^{\sf a}$ independently represent hydrogen, methoxy, ${\sf CO_2X}$, NHAc, or ${\sf C_{1-6}}$ alkyl;

 R^d represents C1-6 alkyl, pyridinyl, -O-phenyl, phenyl, thienyl, said pyridinyl and phenyl optionally substituted with 1-3 halogen, CF_3 , $N(CH_3)_2$, methoxy or C1-6 alkyl; and

R^e represents methoxy, O(CH₂)₂N(CH₃)₂, or OH;

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

The method according to claim 12 wherein the compound of the formula I is administered in a formulation selected from solution topical formulation and a suspension topical formulation.

15. A method according to claim 14 wherein an active ingredient belonging to the group consisting of: β-adrenergic blocking agent, parasympathomimetic agent, carbonic anhydrase inhibitor, and a prostaglandin or a prostaglandin derivative is optionally added to the formulation.

5

10

15

- 16. A method according to claim 21 wherein the β -adrenergic blocking agent is timolol; the parasympathomimetic agent is pilocarpine; the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the prostaglandin is latanoprost or rescula, and the prostaglandin derivative is a hypotensive lipid derived from PGF2 α prostaglandins.
- 17. A method for treating macular edema or macular degeneration, increasing retinal and optic nerve head blood velocity or increasing retinal and optic nerve oxygen tension, or providing a neuroprotective effect comprising administration to a patient in need of such treatment a pharmaceutically effective amount of a compound of claim 1; or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
 - 18. The method according to Claim 17 wherein the compound of formula I is applied as a topical formulation.

20

19. A method according to claim 18 in which the topical formulation optionally contains xanthan gum or gellan gum.

25

20. A method of preventing repolarization or hyperpolarization of a mammalian cell wherein the cell contains a potassium channel comprising the administration to a mammal, including a human, in need thereof, of a pharmacologically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

30

21. A method of treating Alzheimer's Disease, depression, cognitive disorders or arrhythmia disorders in a patient in need thereof comprising administering a pharmaceutically effective amount of a compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

- 22. A method of treating diabetes in a patient in need thereof comprising administering a pharmaceutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
 - 23. A process for making a compound of formula Ia:

11

wherein R₂ is C₁₋₁₀ alkyl, C₁₋₆ alkylSR, -(CH₂)_nO(CH₂)_mOR,

-(CH₂)_nC₁₋₆ alkoxy, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₅₋₁₀ heteroaryl, -N(R)₂, -COOR, or -(CH₂)_nC₆₋₁₀ aryl, comprising adding to an alcohol suspension of compound 9:

9

a compound of formula 10:

5

15

20

$$OCH_3$$

10

and concentrated HCl and heating at reflux to give a compound of formula 11.

24. A process according to claim 23 wherein the alcohol is ethanol, methanol, isopropanol, butanol, pentanol or hexanol.