Всеволод Заостровский, 409 группа

Отчёт по задаче "Решение уравнения типа теплопроводности с коэффициентами в дивергенции".

Содержание

1	Пос	становка задачи.	2
	1.1	Одномерный Лаплас	2
	1.2	Двумерный Лаплас	2
2	Алі	горитм решения одномерной схемы.	2
	2.1	Дискретизация	2
	2.2	Общий вид матрицы уравнения	3
	2.3	Решение схемы	3
3	Алі	горитм решения двумерной схемы.	4
	3.1	Дискретизация	4
	3.2	Теоретическая корректность схемы	5
		3.2.1 Аппроксимация	5
		3.2.2 Устойчивость	6
	3.3	Общий вид матрицы уравнения	7
	3.4	Решение схемы	9
	3.5	Алгоритм для программирования	10
4	Tec	ты.	11
	4.1	Простейший случай $(k={ m const})$	11
	4.2	Непостоянный k	11

1 Постановка задачи.

1.1 Одномерный Лаплас

Необходимо решить уравнение:

$$u_t(t, x) = \operatorname{div}(k(x) \operatorname{grad} u(t, x)).$$

Будем считать, что $0 \le t, x \le 1$. В моём варианте, краевые условия:

$$u(t,x)\big|_{x\in\partial\Omega}=0,\quad \Omega=[0,1].$$

 $u(0,x)=u^0(x),\quad x\in\Omega.$

1.2 Двумерный Лаплас

Необходимо решить уравнение:

$$u_t(t, x, y) = \operatorname{div}(k(x, y) \operatorname{grad} u(t, x, y)).$$

Будем считать, что $0 \le t, x, y \le 1$. В моём варианте, краевые условия:

$$u(t, x, y)\big|_{(x,y)\in\partial\Omega} = 0, \quad \Omega = [0, 1] \times [0, 1].$$

 $u(0, x, y) = u^{0}(x, y), \quad (x, y) \in \Omega.$

2 Алгоритм решения одномерной схемы.

2.1 Дискретизация

Уравнение будем приближать посредством следующей схемы:

$$\frac{u_i^{n+1}-u_i^n}{\tau} = \frac{k(x_{i+\frac{1}{2}})^{\frac{u_{i+1}^{n+1}-u_i^{n+1}}{h}} - k(x_{i-\frac{1}{2}})^{\frac{u_i^{n+1}-u_{i-1}^{n+1}}{h}}}{h}.$$

Краевые условия:

$$u(t,x)\big|_{x\in\partial\Omega} = 0, \quad \Omega = [0,1].$$

 $u(0,x) = u^0(x), \quad x \in \Omega.$

2.2 Общий вид матрицы уравнения.

Преобразуем схему:

$$u_i^{n+1} - u_i^n = \tau k(x_{i+\frac{1}{2}}) \frac{u_{i+1}^{n+1} - u_i^{n+1}}{h^2} - \tau k(x_{i-\frac{1}{2}}) \frac{u_i^{n+1} - u_{i-1}^{n+1}}{h^2}.$$

$$u_i^{n+1} - u_i^n = \tau k(x_{i+\frac{1}{2}}) \frac{u_{i+1}^{n+1}}{h^2} - u_i^{n+1} \frac{\tau}{h^2} (k(x_{i+\frac{1}{2}}) + k(x_{i-\frac{1}{2}})) + \tau k(x_{i-\frac{1}{2}}) \frac{u_{i-1}^{n+1}}{h^2}.$$

Таким образом, получим:

$$-u_{i+1}^{n+1}k(x_{i+\frac{1}{2}})\frac{\tau}{h^2}+u_i^{n+1}\left(1+\frac{\tau}{h^2}(k(x_{i+\frac{1}{2}})+k(x_{i-\frac{1}{2}}))\right)-u_{i-1}^{n+1}k(x_{i-\frac{1}{2}})\frac{\tau}{h^2}=u_i^n. \tag{1}$$

Матрица примет вид:

$$A = \begin{pmatrix} c & b_{+} & 0 & 0 & 0 & \dots & 0 \\ b_{-} & c & b_{+} & 0 & 0 & \dots & 0 \\ 0 & b_{-} & c & b_{+} & 0 & \dots & 0 \\ 0 & 0 & b_{-} & c & b_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_{-} & c & b_{+} \\ 0 & 0 & 0 & \dots & 0 & b_{-} & c \end{pmatrix}, \text{где} \begin{cases} c = 1 + \frac{\tau}{h^{2}} (k(x_{i+\frac{1}{2}}) + k(x_{i-\frac{1}{2}})), \\ b_{+} = -k(x_{i+\frac{1}{2}}) \frac{\tau}{h^{2}}, \\ b_{-} = -k(x_{i-\frac{1}{2}}) \frac{\tau}{h^{2}}. \end{cases}$$

2.3 Решение схемы.

Итоговый вид интересующей нас системы:

$$Au^{n+1} = u^n, \quad u^n := (u_0^n, u_1^n, \dots u_{N_x}^n).$$

Как видно, эту системы легко решить методом прогонки: двигаясь от 0-го слоя к N-му. Несколько сложнее дела обстоят с двумерной схемой, которая описана ниже.

3 Алгоритм решения двумерной схемы.

3.1 Дискретизация.

Уравнение будем приближать посредством следующей схемы:

$$\begin{split} \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\tau} &= \frac{k(x_{i+\frac{1}{2},j}) \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_X} - k(x_{i-\frac{1}{2},j}) \frac{u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h_X}}{h_X} + \\ &\quad + \frac{k(x_{i,j+\frac{1}{2}}) \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h_Y} - k(x_{i,j-\frac{1}{2}}) \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_Y}}{h_Y}. \end{split}$$

Краевые условия:

$$u(t,x,y)\big|_{(x,y)\in\partial\Omega}=0,\quad \Omega=[0,1]\times[0,1].$$

$$u(0,x,y)=u^0(x,y),\quad x\in\Omega.$$

3.2 Теоретическая корректность схемы.

3.2.1 Аппроксимация.

В прошлых отчетах было показано, что:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\tau} = u_{t}(t_{n+1}, x_{i}, y_{j}) + O(\tau),$$

$$\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h_{X}} = u_{x}(t_{n+1}, x_{i} + \frac{h_{X}}{2}, y_{j}) + \frac{h^{2}}{12}u_{xxx}(t_{n+1}, x_{i} + \frac{h_{X}}{2}, y_{j}) + O(h_{X}^{3}),$$

$$\frac{u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h_{X}} = u_{x}(t_{n+1}, x_{i} - \frac{h_{X}}{2}, y_{j}) - \frac{h^{2}}{12}u_{xxx}(t_{n+1}, x_{i} - \frac{h_{X}}{2}, y_{j}) + O(h_{X}^{3}),$$

$$\frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h_{Y}} = u_{x}(t_{n+1}, x_{i}, y_{j} + \frac{h_{Y}}{2}) + \frac{h^{2}}{12}u_{xxx}(t_{n+1}, x_{i}, y_{j} + \frac{h_{Y}}{2}) + O(h_{Y}^{3}),$$

$$\frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h_{Y}} = u_{x}(t_{n+1}, x_{i}, y_{j} - \frac{h_{Y}}{2}) - \frac{h^{2}}{12}u_{xxx}(t_{n+1}, x_{i}, y_{j} - \frac{h_{Y}}{2}) + O(h_{Y}^{3}).$$

Отсюда имеем:

$$\begin{split} &\frac{k(x_{i+\frac{1}{2},j})\frac{u_{i+1,j}^{n+1}-u_{i,j}^{n+1}}{h_X}-k(x_{i-\frac{1}{2},j})\frac{u_{i,j}^{n+1}-u_{i-1,j}^{n+1}}{h_X}}{h_X}=\\ &=\frac{k(x_{i+\frac{1}{2},j})}{h_X}\left(u_x(t_{n+1},x_i+\frac{h_X}{2},y_j)+\frac{h_X^2}{12}u_{xxx}(t_{n+1},x_i+\frac{h_X}{2},y_j)+O(h_X^3)\right)-\\ &-\frac{k(x_{i-\frac{1}{2},j})}{h_X}\left(u_x(t_{n+1},x_i-\frac{h_X}{2},y_j)-\frac{h_X^2}{12}u_{xxx}(t_{n+1},x_i-\frac{h_X}{2},y_j)+O(h_X^3)\right)=\\ &=\frac{k(x_{i+\frac{1}{2},j})u_x(t_{n+1},x_i+\frac{h_X}{2},y_j)-k(x_{i-\frac{1}{2},j})u_x(t_{n+1},x_i-\frac{h_X}{2},y_j)}{h_X}+O(h_X^2)+\\ &+\frac{h_X^2}{12}\frac{k(x_{i+\frac{1}{2},j})u_{xxx}(t_{n+1},x_i+\frac{h_X}{2},y_j)-k(x_{i-\frac{1}{2},j})u_{xxx}(t_{n+1},x_i-\frac{h_X}{2},y_j)}{h_X}=\\ &=\frac{\partial}{\partial x}\left(k(x_i,y_j)u_x(t_{n+1},x_i,y_j)\right)+\frac{h_X^2}{12}\frac{\partial}{\partial x}\left(k(x_i,y_j)u_{xxx}(t_{n+1},x_i,y_j)\right)+O(h_X^2). \end{split}$$

Для второй дроби аналогично получается та же оценка. Итого, имеем порядок аппроксимации $O(\tau + h_X^2 + h_Y^2)$.

3.2.2 Устойчивость.

Для придания выкладкам хоть сколько-нибудь приемлемого вида, здесь и далее считаем $h_X = h_Y = h = \frac{1}{N_X - 1}$, $N_X = N_Y$. Пользуясь вычислениями из предыдущего раздела, получим:

$$\begin{split} u_{i,j}^{n+1} - u_{i,j}^n &= \tau k(x_{i+\frac{1}{2}}, y_j) \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{h^2} - \tau k(x_{i-\frac{1}{2}}, y_j) \frac{u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h^2} + \\ &+ \tau k(x_{i,y_{j+\frac{1}{2}}}) \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{h^2} - \tau k(x_i, y_{j-\frac{1}{2}}) \frac{u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h^2}. \\ u_{i,j}^{n+1} - u_{i,j}^n &= -u_{i,j}^{n+1} \frac{\tau}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right) + \\ + \tau k(x_{i+\frac{1}{2}}, y_j) \frac{u_{i+1,j}^{n+1}}{h^2} + \tau k(x_{i-\frac{1}{2}}, y_j) \frac{u_{i-1,j}^{n+1}}{h^2} + \tau k(x_i, y_{j+\frac{1}{2}}) \frac{u_{i,j+1}^{n+1}}{h^2} + \tau k(x_i, y_{j-\frac{1}{2}}) \frac{u_{i,j-1}^{n+1}}{h^2}. \end{split}$$

Итоговая схема выглядит следующим образом:

$$\begin{split} u_{i,j}^{n+1} \left(\frac{1}{\tau} + \frac{1}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right) \right) - \\ &+ \frac{1}{h^2} \left[-u_{i+1,j}^{n+1} k(x_{i+\frac{1}{2}}, y_j) - u_{i-1,j}^{n+1} k(x_{i-\frac{1}{2}}, y_j) - u_{i,j+1}^{n+1} k(x_i, y_{j+\frac{1}{2}}) - u_{i,j-1}^{n+1} k(x_i, y_{j-\frac{1}{2}}) \right] \\ &= \frac{u_{i,j}^n}{\tau}. \end{split}$$

Отсюда имеем:

$$\begin{split} u_{i,j}^{n+1} \left(1 + \frac{\tau}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right) \right) - \\ - \frac{\tau}{h^2} \left(u_{i+1,j}^{n+1} k(x_{i+\frac{1}{2}}, y_j) + u_{i-1,j}^{n+1} k(x_{i-\frac{1}{2}}, y_j) + u_{i,j+1}^{n+1} k(x_i, y_{j+\frac{1}{2}}) + u_{i,j-1}^{n+1} k(x_i, y_{j-\frac{1}{2}}) \right) = \\ = u_{i,j}^n. \end{split}$$

Выше мы раскладывали разности u в соседних узлах сетки в ряд Тейлора, воспользуемся этим:

$$\begin{split} &k(x_{i+\frac{1}{2}},y_{j})\left(u_{i,j}^{n+1}-u_{i+1,j}^{n+1}\right)+k(x_{i-\frac{1}{2}},y_{j})\left(u_{i,j}^{n+1}-u_{i-1,j}^{n+1}\right)+\\ &+k(x_{i},y_{j+\frac{1}{2}})\left(u_{i,j}^{n+1}-u_{i,j+1}^{n+1}\right)+k(x_{i},y_{j-\frac{1}{2}})\left(u_{i,j}^{n+1}-u_{i,j-1}^{n+1}\right)=\\ &=k(x_{i+\frac{1}{2}},y_{j})\left(-hu_{x}(t_{n+1},x_{i}+\frac{h}{2},y_{j})-\frac{h^{3}}{12}u_{xxx}(t_{n+1},x_{i}+\frac{h}{2},y_{j})+O(h^{3})\right)+\\ &+k(x_{i-\frac{1}{2}},y_{j})\left(-hu_{x}(t_{n+1},x_{i}-\frac{h}{2},y_{j})+\frac{h^{3}}{12}u_{xxx}(t_{n+1},x_{i}-\frac{h}{2},y_{j})+O(h^{3})\right)+\\ &+k(x_{i},y_{j+\frac{1}{2}})\left(-hu_{x}(t_{n+1},x_{i},y_{j}+\frac{h}{2})-\frac{h^{3}}{12}u_{xxx}(t_{n+1},x_{i},y_{j}+\frac{h}{2})+O(h^{3})\right)+\\ &+k(x_{i},y_{j-\frac{1}{2}})\left(-hu_{x}(t_{n+1},x_{i},y_{j}-\frac{h}{2})+\frac{h^{3}}{12}u_{xxx}(t_{n+1},x_{i},y_{j}-\frac{h}{2})+O(h^{3})\right). \end{split}$$

3.3 Общий вид матрицы уравнения.

Эту схему можно записать в огромную ($\mathbb{R}^{N_X^4}$) разреженную блочную матрицу вида:

$$A = \begin{pmatrix} I & 0 & 0 & 0 & 0 & \dots & 0 \\ D_{-} & C & D_{+} & 0 & 0 & \dots & 0 \\ 0 & D_{-} & C & D_{+} & 0 & \dots & 0 \\ 0 & 0 & D_{-} & C & D_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & D_{-} & C & D_{+} \\ 0 & 0 & 0 & \dots & 0 & 0 & I \end{pmatrix},$$

описание блоков:

Блок C:

$$C = \begin{pmatrix} c & b_{+} & 0 & 0 & 0 & \dots & 0 \\ b_{-} & c & b_{+} & 0 & 0 & \dots & 0 \\ 0 & b_{-} & c & b_{+} & 0 & \dots & 0 \\ 0 & 0 & b_{-} & c & b_{+} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & b_{-} & c & b_{+} \\ 0 & 0 & 0 & \dots & 0 & b_{-} & c \end{pmatrix},$$

в матрице C:

$$\begin{cases} c = \frac{1}{\tau} + \frac{1}{h^2} \left(k(x_{i+\frac{1}{2}}, y_j) + k(x_{i-\frac{1}{2}}, y_j) + k(x_i, y_{j+\frac{1}{2}}) + k(x_i, y_{j-\frac{1}{2}}) \right), \\ b_+ = -k(x_{i+\frac{1}{2}}, y_j) \frac{1}{h^2}, \\ b_- = -k(x_{i-\frac{1}{2}}, y_j) \frac{1}{h^2}; \end{cases}$$

Блок I: I — единичная матрица размера $N_X \times N_X$;

Блок
$$D_-$$
: $D_- = -k(x_i, y_{j-\frac{1}{2}}) \frac{\tau}{h^2} I =: d_- I;$

Блок
$$D_+$$
: $D_- = -k(x_i, y_{j+\frac{1}{2}}) \frac{\tau}{h^2} I =: d_+ I$.

Итоговый вид уравнения:

$$Au^{n+1} = \frac{u^n}{\tau}.$$

По предыдущему слою мы будем находить следующий, начиная с 0-го слоя, который нам дан, по условию. Отметим, что мы хотим построить трёхмерную матрицу $U=(u_{i,j}^n)_{0\leq i,j\leq N_X}^{0\leq n\leq N}$, но форма записи матрицы Aпредполагаем, что множество $(u_{i,j}^n)_{0 \le i,j \le N_X}^{n=\mathrm{const}}$ вытягивается в вектор u^n :

$$u^{n} = (u_{0,0}^{n}, u_{1,0}^{n}, u_{2,0}^{n}, \dots u_{0,1}^{n}, u_{0,2}^{n}, \dots u_{0,N_{X}}^{n}, u_{1,N_{X}}^{n}, \dots u_{N_{X},N_{X}}^{n})^{T}$$

3.4 Решение схемы.

Для решения этой системы также можно применять прогонку (точнее, её более общую модификацию). Мы применим итеративный алгоритм решения с предобуславливателем, который подробно опишем ниже. Общий вид таких алгоритмов:

$$B\frac{u^{n+1,p+1} - u^{n+1,p+1}}{\theta} + Au^{n+1,p} = b^n.$$

В нашем случае,

A — матрица, описанная в разделе 3.3. Следует отметить, что эта матрица пятидиагональная, так что, несмотря на то, что формально она принадлежит пространству $\mathbb{R}^{(N_X+1)^4}$, для её хранения требуется лишь $5*(N_X+1)^2$ памяти (по массиву для каждой из 5 диагоналей), а умножение матрицы на вектор требует $10*(N_X+1)^2$ арифметических операций.

 $u^{n,p}$ — результат после p-ой итерации процесса для n слоя ответа. Отметим, что мы считаем $u^{n,0}=u^n$.

 θ — итерационный параметр. Наивысшая (в некотором смысле) скорость сходимости достигается при $\theta=\frac{2}{m+M}$, где M и m — соответственно, максимальное и минимальное собственные значения матрицы.

B — предобуславливатель, берётся разным для разных задач. Мы рассмотрим $B=A\Big|_{k(x_i,y_i)=rac{k(x_0,y_0)+k(x_{N_X},y_{N_X})}{2}}.$

Итерироваться мы будем следующим образом:

1. Заметим, что:

$$B\frac{u^{n+1,p+1} - u^{n+1,p+1}}{\theta} + Au^{n+1,p} = \frac{u^n}{\tau} \Leftrightarrow \begin{cases} By^{p+1} = \frac{u^n}{\tau} - Au^{n+1,p}, \\ u^{n+1,p+1} = u^{n+1,p} + \theta y^{p+1}. \end{cases}$$

- 2. За $O(N^2)$ вычислим вектор $\frac{u^n}{\tau} Au^{n+1,p}$.
- 3. С помощью метода Фурье за $O(N^3)$ решим систему $By^{p+1} = b Ax^p$. Схема при этом принимает вид:

$$\begin{split} \frac{u_{i,j}^{n+1}}{k\tau} - \frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} - u_{i-1,j}^{n+1}}{h^2} - \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} - u_{i,j-1}^{n+1}}{h^2} = \\ = \underbrace{f(x_i, y_j)}_{=(\frac{u^n}{\tau} - Au^{n+1,p})/k}\Big|_{i,j} = \frac{u^n}{k\tau} - \frac{1}{k}Au^{n+1,p}. \end{split}$$

4. Следующий вектор в итеративной процедуре вычислим по формуле $x^{k+1} = x^k + \tau y^{k+1}.$

3.5 Алгоритм для программирования.

На шаге n нам известны слои вплоть до u^n (слой — матрица, вытянутая в вектор). u^0 задан изначально.

1. Нужно решить уравнение:

$$Au^{n+1} = \frac{u^n}{\tau}.$$

Для этого:

(а) Решаем уравнение

$$By^{k+1} = \frac{u^n}{\tau} - Ax^k,$$

где B — матрица Фурье с постоянным k.

- (b) Вычисляем $x^{k+1} = x^k + \theta y^{k+1}$.
- (с) Повторяем процедуру пока не увидим сходимость.
- 2. Таким образом, от слоя к слою, восстановим всю матрицу.

4 Тесты.

4.1 Простейший случай (k = const)

Для простоты сравнения с предыдущим отчетом было рассмотрено k=1. В целом, всё аналогично предыдущему случаю, поэтому здесь не проводилось более глубоких тестов. На графике 1 по оси y отложено значение функции, по оси x — порядковый номер тройки точек (x,y,z): вывод задачи представлен в виде

$$(x, y, z,$$
численное решение, аналитическое решение)

и, при заданном разбиении каждой точки равномерной сетки соответствует натуральное число.

Отметим, что сходимость итерационного алгоритма в этом случае происходила за одну итерацию, как и должно быть.

4.2 Непостоянный k

Рассмотрим $k(x, y) \neq \text{const:}$

$$u_t(t, x) = \operatorname{div}(k(x, y) \operatorname{grad} u(t, x)) = k_x u_x + k_y u_y + k(u_{xx} + u_{yy}).$$

Попробуем подогнать краевые условия и k под мою любимую функцию:

$$u(t, x, y) = e^t \sin \pi x \sin \pi y.$$

Рис. 1: Замыкание на постоянный k.

Подставим её в уравнение:

 $e^{t} \sin \pi x \sin \pi y = \pi k_{x} e^{t} \cos \pi x \sin \pi y + \pi k_{y} e^{t} \sin \pi x \cos \pi y - 2\pi^{2} k e^{t} \sin \pi x \sin \pi y,$ $1 = \pi k_{x} \cot \pi x + \pi k_{y} \cot \pi y - 2\pi^{2} k.$

Согласно Wolfram Mathematica¹, часть решений диффура описывается соотношением:

$$k(x,y) = \frac{4\pi^2 \phi(\frac{2\cos \pi y}{\pi \cos \pi x}) - \cos 2\pi x}{4\pi^2 \cos^2 \pi x}.$$

К сожалению, решение получилось разрывным и от этого разрыва никак не избавиться, так что просить компьютер считать такую функцию довольно бессмысленно.

 $^{^{1}}$ Я бы с удовольствием избавил себя от изнурительного подбора решения для тестов, но решать данное уравнение аналитически Wolfram отказывается. Численно он его решить должен, но с аппроксимацией будет неудобно работать.