TP04 – Pilotage de LED et mémoire Partie 2

Cédrine Socquet

Rendu

Votre rapport devra contenir:

- Vos schéma RTL
- Vos résultats de simulation avec vos chronogrammes commentés
- Vos résultats de synthèse (analyse de vos ressources utilisées)
- Vos résultats de STA (analyse du rapport de timing)
- Une démonstration de votre design

Vous fournirez également vos codes source commentés.

Réponses

1. Voici mon schéma RTL avec la modification du module LED_driver avec une sortie end_cycle. Cette sortie vaut 1 à la fin d'un cycle allumé/éteint de la LED RGB.

2. Voici ci-dessous mon schéma RTL avec la modification de la logique en entrée du module avec une FIFO. Cette FIFO prend en entrée le code couleur « vert » ou « bleu » suivant l'état du bouton_1 et est connectée en sortie à l'entrée color_code du module LED_driver. La donnée est écrite dans la FIFO lorsqu'il y a un front montant du bouton_0. La donnée de la FIFO est lue lorsque le signal end_cycle du module LED_driver vaut 1.

3. Voir les codes Led_driver.vhd et tb_Led_driver.vhd.

Sur le chronogramme ci-dessous, on peut voir que « end_cycle » vaut bien 1 à la fin de chaque cycle allumé/éteint de la LED RGB (voir signaux rose pâle).

4. Voir les codes tp_with_Led_driver.vhd et tb_tp_with_Led_driver.vhd.

Sur le chronogramme ci-dessous, on peut voir que lorsque le resetn = 1, la FIFO est vide (0). Elle commence à se remplir lorsque le button_1 à été actionné une première fois (en dehors du resetn) et que le cmd_button_0 vaut 1 également, permettant ainsi l'écriture de la donnée « din » dans la FIFO. L'écriture « dout » quant à elle est permise uniquement lorsque « end_cycle_in » vaut 1 et que l'état

de la FSM est « on ».

5. Voici le rapport de synthèse, les ressources utilisées correspondent bien au schéma RTL du tp_with_LED_driver.

En effet, on retrouve bien les entrées du schéma (clock, resetn, button_0 et button_1) et les sorties (led_out_bleue, led_out_verte et led_out_rouge) ainsi que les deux registres du button_0, le composant LED driver et la FIFO avec ses deux Luts.

	Cell	Co	unt						
1	+ fifo_generator	-+ [11						
2	BUFG	1	11	1/20 WW WORLDWINE		20 20			
3	CARRY4	1	71	Detailed RTL Component Info :					
4	LUT1	1	21	+Adders :					
5	LUT2	Į.	351	2 Input	2	Bit	Adders := 1		
6	LUT3	1	21	+Registers :					
7	LUT4	î	41			3 Bit	Registers :=		
8	LUT5	i	31			2 Bit	Registers :=		
9	LUT6	É	31			1 Bit	Registers :=		
10	FDCE	1	361	+Muxes :					
11	FDPE		11	4 Input	3	Bit	Muxes := 1		
	170000000000			2 Input	2	Bit	Muxes := 2		
12	IBUF		41			Bit	Muxes := 3		
113	OBUF	1	31	4 Input		Bit	Muxes := 1		

Dans le Report Cell Usage, on retrouve bien les 4 entrées du schéma (clock, resetn, button_0 et button_1) ainsi que les 3 sorties (led_out_bleue, led_out_verte et led_out_rouge). On retrouve également les 36 registres FDCE, les 28 du compteur, les 2 des boutons, 3 pour les couleur_led_out et 2 pour end_tempo_cycle du Led_driver et le dernier pour le present_state de la FSM. On retrouve aussi 1 registre FDPE pour la led_on_off.

Dans le Detailed RTL Component Info, on retrouve les registres ainsi que leur nombre de bits mais aussi l'ensemble des multiplexeurs utilisés dans le schéma, ainsi qu'un adder pour la FIFO.

- 6. On voit dans le rapport de timing qu'il n'y a pas de violations (TNS et WHS = 0), le Worth Negative Slack (WNS) est de 4.965 ns et le chemin critique (Max Delay Paths) prend sa source ici :
- « led_driver_unit_inst/counter_unit_inst/Q_reg[23]/C » et sa destination ici :
- « led_driver_unit_inst/counter_unit_inst/Q_reg[25]/D »

| Design Timing Summary

1 -----

WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)
4.965	0.000	0	144	0.081	0.000

Max Delay Paths

Slack (MET) : 4.965ns (required time - arrival time)

led_driver_unit_inst/counter_unit_inst/Q_reg[23]/C Source:

(rising edge-triggered cell FDCE clocked by sys_clk_pin {rise@0.000ns fall@5.000ns period=10.000ns})

Destination: led_driver_unit_inst/counter_unit_inst/Q_reg[25]/D

(rising edge-triggered cell FDCE clocked by sys_clk_pin {rise@0.000ns fall@5.000ns period=10.000ns})

7. Le bitstream a été généré et le comportement observé sur carte est celui attendu.