

平滑转换模型

王群勇(南开大学数量经济研究所,教授、博士生导师,QunyongWang@outlook.com)

内容

平滑转换模型

Stata 指令: stregress 与 xtstregress

应用

平滑转换模型

$$y_t = x_t \beta + G(s_t; c, \gamma) z_t \alpha + \epsilon_t$$
.

条件期望 $E(y_t|x_t)$ 包括两部分:

- 线性部分 $x_t\beta$,
- 非线性部分 $G(s_t; c, \gamma)z_t\alpha$.

 x_t 与 z_t 可以相同,也可以不同。

模型设定

 $G(s_t; c, \gamma)$ 为平滑函数,常见的包括: logistic, normal, and exponential

$$G(s_t; c, \gamma) = \begin{cases} [1 + \exp(-\gamma(s_t - c))]^{-1} & \text{Logistic, or LSTR} \\ 1 - \exp(-\gamma(s_t - c)^2) & \text{Exponential, or ESTR} \\ \Phi(\gamma(s_t - c)) & \text{Normal CDF} \end{cases}$$

其中, $\gamma > 0$,控制转换的速度。

模型设定

模型设定

边际效应

设 $x_t = z_t$,那么 x_t 对E $(y_t|x_t)$ 的边际效应: $\beta + G(s_t; c, \gamma)\alpha$. $0 \le G(s_t; c, \gamma) \le 1$,两种极端状态下的边际效应为 β 和 $\beta + \alpha$ 。

北京友万信息科技有限公司 www.uone-tech.cn

LSTR and NSTR:

- $\exists s_t \to -\infty$, $G(s_t; c, \gamma) \to 0$, 边际效应为 β ;
- $\exists s_t \to \infty$, $G(s_t; c, \gamma) \to 1$, 边际效应为 $\beta + \alpha$.
- 随着 s_t 的增加,边际效应从 β 过渡到 $\beta + \alpha$,中心点为c(边际效应为 $\beta + \alpha/2$)。

边际效应

ESTR:

- $\exists s_t \rightarrow c, G(s_t; c, \gamma) \rightarrow 0,$ 边际效应为 β .
- $\exists s_t \to -\infty$ 或 $s_t \to \infty$, $G(s_t; c, \gamma) \to 1$, 边际效应为 $\beta + \alpha$.

转换速度

当 γ → ∞, $G(s_t; c, \gamma)$ 变为示性函数。

$$G(s_t; c, \gamma) = \begin{cases} 1 & s_t \ge c \\ 0 & s_t < c \end{cases}$$

模型退化为门限模型。

当 γ → 0,模型退化为线性模型:

- $G(s_t; c, \gamma) \rightarrow 1/2$ in LSTR and NSTR model
- $G(s_t; c, \gamma) \rightarrow 0$ in ESTR model

多个状态

LSTR 模型的多个状态的情况

$$G(s_t; c, \gamma) = \left[1 + \exp\left(-\gamma \prod_{j=1}^m (s_t - c_j)\right)\right]^{-1},$$

绝大多数情况下,m=1或者 m=2。

m=2时,转移函数以 $(c_1+c_2)/2$ 为中心点(最低点)呈对称形状。

多个状态

模型估计

数值最优化方法。

初始值:

- 给定 (c,γ) ,模型退化为线性模型,可以采用格点搜索法确定 (c,γ) 的初始值。
- 需要将 γ 标准化: γ/σ_s^m 。或者将 s_t 标准化。

非线性检验

 $H_0: \gamma = 0 \text{ or } H_0: \alpha = 0.$

由于冗余参数问题, 检验统计量服从非标准分布。

$$G(h_t; \gamma) \approx G(0; \gamma) + G'(h_t; \gamma)h_t + G''(h_t; \gamma)h_t^2 + G'''(h_t; \gamma)h_t^3.$$

非线性检验

对于 LSTR 模型,

$$G'(h_t; \gamma) = \frac{e^{-h_t}}{(1 + e^{-h_t})^2} = 1/4 \text{ at } h_t = 0$$

$$G''(h_t; \gamma) = \frac{-e^{-h_t}(1 - e^{-h_t})}{(1 + e^{-h_t})^3} = 0 \text{ at } h_t = 0$$

$$G'''(h_t; \gamma) = \frac{-e^{-h_t}(1 - 4e^{-h_t} + e^{-2h_t})}{(1 + e^{-h_t})^4} = -1/8 \text{ at } h_t = 0$$

$$G(h_t; \gamma) \approx h_t/4 - h_t^3/8.$$

平滑转换模型可以写作

$$y_t = x_t \beta + z_t \alpha (s_t/4 - s_t^3/8) + u_t$$

非线性检验

对 $G(h_t; \gamma)$ 在 $h_t = 0$ 做 Taylor 级数展开,对于 ESTR 模型,

$$G'(h_t; \gamma) = 2h_t \exp(-h_t^2) = 0 \text{ at } h_t = 0$$

 $G''(h_t; \gamma) = 2\exp(-h_t^2) - 4h_t^2 \exp(-h_t^2) = 2 \text{ at } h_t = 0$
 $G'''(h_t; \gamma) = -12h_t \exp(-h_t^2) + 8h_t^3 \exp(h_t^2) = 0 \text{ at } h_t = 0$
 $G(s_t; \gamma, c) \approx 2s_t^2$.

平滑转换模型可以写作

$$y_t = x_t \beta + z_t \alpha(2s_t^2) + u_t$$

对于 LSTR (m=2) 也可以得到相似的展开式。

非线性检验

Lin and Teräsvirta (1994)建议如下序贯检验步骤:

$$y_t = x_t \beta + z_t s_t \pi_1 + z_t s_t^2 \pi_2 + z_t s_t^3 \pi_3 + v_t$$

- H_{04} : $\pi_1 = \pi_2 = \pi_3 = 0$
- H_{03} : $\pi_3 = 0$
- H_{02} : $\pi_2 = 0 | \pi_3 = 0$

• H_{01} : $\pi_1 = 0 | \pi_2 = \pi_3 = 0$

如果 H_{02} 的检验的 p 值最低,那么 ESTR 模型更适合。

如果 H_{01} 或 H_{03} 的检验的 p 值最低,那么 LSTR 模型更适合。

模型选择

Escribano and Jorda (1999):

- H_{024} : $\pi_2 = \pi_4 = 0$
- H_{013} : $\pi_1 = \pi_3 = 0$

如果 H_{024} 的检验统计的 p 值更低,则采用 LSTR (m=2)或者 ESTR 模型。如果 H_{013} 的检验统计的 p 值更低,则采用 LSTR (m=1)模型。

STAR 模型

在时间序列自回归模型中,以某个滞后变量作为作为门限变量,即得到了平滑转换自回归模型,包括 LSTAR (Logistic Smoothing Transition AutoRegressive)、ESTAR (Exponential Smoothing Transition AutoRegressive)模型。

$$y_t = \beta_0 + \sum_{k=1}^K \beta_k y_{t-k} + G(y_{t-d}; c, \gamma) \sum_{k=1}^K \alpha_k y_{t-k} + \epsilon_t.$$

面板平滑转换模型

model:

$$y_{it} = c + x_{it}\beta + G(s_{it}; c, \gamma)z_{it}\alpha + u_i + \epsilon_{it}.$$

 $\diamondsuit sz(c,\gamma)_{it} = G(s_{it};c,\gamma)z_{it}$

$$y_{it} - \bar{y}_{i.} = (x_{it} - \bar{x}_{i.})\beta + (sz_{it} - \overline{sz(c, \gamma)}_{it})\alpha + \epsilon_{it} - \bar{\epsilon}_{i.}$$

内容

平滑转换模型

stregress 与 xtstregress

应用

语法

$$y_t = x_t \beta + G(s_t; c, \gamma) z_t \alpha + \epsilon_t.$$

stregress depvar indep [if] [in], [lstr(spec) estr(spec) nstr(spec) nolog options] lstr, estr, nstr 可以重复设定。

spec 的格式: transition, regime-dependents, [constant, number of states]

- *constant* 为 0 (z) 中是否含有常数项(0 或 1)
- *number of states*: 默认值为 1

xtstregress depvar indep [if] [in], [1str(spec) estr(spec) [nstr(spec) nolog options]

语法

estat linear

estat reslinear

estat pconst

estat stplot

estat ic

estat summ

内容

平滑转换模型

stregress 与 xtstregress

应用

非对称的货币政策

Taylor 规则 (Enders, 2015, p436):

$$i_t = \alpha_0 + \alpha \pi_t + \beta y_t + \gamma_1 i_{t-1} + \epsilon_t$$

其中, i_t 为名义利率, π_t 为通胀率, y_t 为产出缺口(实际产出距离潜在产出的百分比)。 在高通胀或低增长时,货币政策的反应强度可能更大。估计如下模型:

$$i_t = \alpha_0 + \gamma_1 i_{t-1} + x_{t-1} \beta + G(\pi_{t-1}; \gamma, c) z_{t-1} \alpha + \epsilon_t$$

泰勒规则

- . use taylor, clear
- . stregress ffr l.ffr l.pi l.ygap, lstr(l.pi, l.pi l.ygap,1) nolog

Smoothing transition regression (lstr)

= :	335.5950	Number of obs R-squared Adj R-squared Root MSE			113 0.9398 0.9352 0.9403
Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
0.7750	0.0439	17.67	0.000	0.6890	0.8609
-0.1767	0.3533	-0.50	0.617	-0.8693	0.5158
0.4346	0.1412	3.08	0.002	0.1578	0.7113
1.1327	0.7372	1.54	0.124	-0.3123	2.5777
0.6104	0.3709	1.65	0.100	-0.1165	1.3372
-0.2282	0.1616	-1.41	0.158	-0.5450	0.0885
-1.0977 2.4867 4.4934	0.7782 0.0456 6.9501	-1.41 54.56 0.65	0.158 0.000 0.518	-2.6228 2.3974 -9.1285	0.4275 2.5761 18.1154
	Coef. 0.7750 -0.1767 0.4346 1.1327 0.6104 -0.2282 -1.0977	= 313.7759 = 335.5950 = 322.6299 Coef. Std. Err. 0.7750 0.0439 -0.1767 0.3533 0.4346 0.1412 1.1327 0.7372 0.6104 0.3709 -0.2282 0.1616 -1.0977 0.7782 2.4867 0.0456	= 313.7759 = 335.5950 = 322.6299 Coef. Std. Err. z 0.7750 0.0439 17.67 -0.1767 0.3533 -0.50 0.4346 0.1412 3.08 1.1327 0.7372 1.54 0.6104 0.3709 1.65 -0.2282 0.1616 -1.41 -1.0977 0.7782 -1.41 2.4867 0.0456 54.56	= 313.7759 R-squar 335.5950 Adj R-s 8 322.6299 Root MS Coef. Std. Err. z P> z 0.7750 0.0439 17.67 0.000 -0.1767 0.3533 -0.50 0.617 0.4346 0.1412 3.08 0.002 1.1327 0.7372 1.54 0.124 0.6104 0.3709 1.65 0.100 -0.2282 0.1616 -1.41 0.158 -1.0977 0.7782 -1.41 0.158 -1.0977 0.7782 -1.41 0.158 2.4867 0.0456 54.56 0.000	R-squared Hotel Hotel

. est store spi

泰勒规则

. stregress ffr l.ffr l.pi l.ygap, lstr(l.ygap, l.pi l.ygap,1) nolog

Smoothing transition regression (lstr)

log-likelihood AIC BIC HQIC	=	306.6940 R-squared = 328.5131 Adj R-squared =			306.6940 R-squared 328.5131 Adj R-squared			= 306.6940 = 328.5131			red = squared =	113 0.9434 0.9391 0.9113
ffr	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]						
Linear ffr												
L1.	0.8194	0.0410	19.96	0.000	0.7390	0.8998						
pi L1.	0.3721	0.1214	3.06	0.002	0.1341	0.6100						
ygap L1.	-1.2190	0.4649	-2.62	0.009	-2.1302	-0.3077						
_cons	-4.1373	1.1827	-3.50	0.000	-6.4554	-1.8192						
L.ygap												
pi L1.	0.0112	0.1121	0.10	0.920	-0.2084	0.2309						
ygap L1.	1.4083	0.4720	2.98	0.003	0.4832	2.3333						
_cons threshold1 lngamma	4.1074 -1.6536 3.7723	1.1957 0.1714 3.0053	3.44 -9.65 1.26	0.001 0.000 0.209	1.7639 -1.9895 -2.1181	6.4509 -1.3176 9.6627						

. est store sygap

泰勒规则

. est table spi sygap, stat(N aic bic) star(.1 .05 .01) eq(1,2)

Variable	spi	sygap
#1 ffr L1.	.77498173***	.81939891***
pi L1.	17672544	.3720814***
ygap L1.	.43456372***	-1.2189682***
_cons	1.1326753	-4.1373013***
#2 pi L1.	.61038749*	.01124651
ygap L1.	22821481	1.4082912***
_cons threshold1 lngamma	-1.0976931 2.4867259*** 4.493442	4.107365*** -1.6535736*** 3.7722966
Statistics N	113	113
aic bic	315.7759 340.32239	308.69403 333.24052

legend: * p<.1; ** p<.05; *** p<.01

泰勒规则

. estat linear

Linearity (homegeneity) test for all nonlinear parts:

Но	chi2	df1	df2	prob
b1=0	1.6483	2	107	.1972
b1=b2=0	1.2192	4	105	.3071
b1=b2=b3=0	1.6241	6	103	.1479
b1=b2=b3=b4=0	1.6473	8	101	.1208

Escribano-Jorda linearity test (based on 4th Taylor expansion):

Ho	chi2	df1	df2	prob
b1=b3=0(HoL)	1.1760	4	101	.3259
b2=b4=0(HoE)	1.2574	4	101	

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

prob	df2	df1	chi2	Ho
.1972	107	2	1.6483	b1=0 b2=b3=0
.4536	105	2	0.7965	b2=0 b3=0
.09854	103	2	2.3702	b3=0

泰勒规则

. estat reslinear, l.pi

Linearity (homegeneity) test for all nonlinear parts:

Но	chi2	df1	df2	prob
b1=0 b1=b2=0 b1=b2=b3=0	0.3559 0.3121 1.4461	3 5 7	107 105 103	.7849 .9047 .1951
b1=b2=b3=b4=0	1.5648	9	101	.136

Escribano-Jorda linearity test (based on 4th Taylor expansion):

prob	df2	df1	chi2	Но
.06122	101	6	2.0869	b1=b3=0(HoL)
	101	6	2.1948	b2=b4=0(HoE)

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

prob	df2	df1	chi2	Но
.7849	107	3	0.3559	b1=0 b2=b3=0
.7713	105	3	0.3749	b2=0 b3=0
.03408	103	3	2.9986	b3=0

泰勒规则

- . est restore sygap
 (results sygap are active now)
- . lincom [#1]_b[1.pi]+[#2]_b[1.pi]
- (1) [Linear]L.pi + [L.ygap]L.pi = 0

ff	r	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	0.3833	0.0843	4.55	0.000	0.2181	0.5486

- . lincom [#1]_b[l.ygap]+[#2]_b[l.ygap]
- (1) [Linear]L.ygap + [L.ygap]L.ygap = 0

ffr	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
(1)	0.1893	0.0929	2.04	0.041	0.0073	0.3713

泰勒规则

. estat stcoef

Transformed coefficient confidence interval (level=95):

		Coef	se	z	P> z	CILower	CIUpper
L.ygap	gamma	43.4798	130.6720	0.33	0.7393	-212.6326	299.5922

例子

. estat stplot

smooth transition plot

sunspot

根据 Ghaddar and Tong (1981), $y_t = 2[(1+x_t)^{1/2} - 1]$,

- . use sunspot, clear
- . tsline y

sunspot

```
. frame reset
```

. use sunspot, clear

. frame create sim aic bic

```
. forvalues i=1/12 {
  2. qui arima y, ar(1/`i')
  3. qui estat ic
  4. matrix ic = r(S)
  5. local aic=el(ic,1,5)
  6. local bic=el(ic,1,6)
  7. frame post sim (`aic') (`bic')
  8. }
```

. frame sim: list aic bic

	aic	bic
1.	1811.399	1822.704
2.	1588.852	1603.925
3.	1586.573	1605.415
4.	1588.544	1611.154
5.	1589.92	1616.298
6.	1579.446	1609.593
7.	1565.558	1599.473

8.	1558.999	1596.682
9.	1530.128	1571.579
10.	1531.946	1577.166
11.	1533.887	1582.875
12.	1535.541	1588.297

. stregress y 1(1/9).y, 1str(12.y, 1(1/9).y, 1) nolog

Smoothing transition regression (lstr)

<pre>log-likelihood</pre>	=	-699.3807	Number of obs	=	311
AIC	=	1440.7614	R-squared	=	0.8999
BIC	=	1519.2971	Adj R-squared	=	0.8927
HQIC	=	1472.1532	Root MSE	=	2.3756

у	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Linear						
У						
L1.	1.5063	0.1145	13.15	0.000	1.2819	1.7307
L2.	-1.0784	0.3170	-3.40	0.001	-1.6997	-0.4570
L3.	0.1443	0.2993	0.48	0.630	-0.4424	0.7309
L4.	-0.5632	0.2680	-2.10	0.036	-1.0885	-0.0380
L5.	0.4776	0.2673	1.79	0.074	-0.0464	1.0015
L6.	0.0370	0.2274	0.16	0.871	-0.4086	0.4827
L7.	0.1734	0.2274	0.76	0.446	-0.2723	0.6191
L8.	0.1027	0.2291	0.45	0.654	-0.3465	0.5518
L9.	0.1390	0.1248	1.11	0.265	-0.1056	0.3835
_cons	-3.9351	1.5248	-2.58	0.010	-6.9236	-0.9465
L2.y						
у						
L1.	-0.4495	0.1280	-3.51	0.000	-0.7004	-0.1985
L2.	0.8574	0.3295	2.60	0.009	0.2117	1.5032
L3.	-0.4732	0.3188	-1.48	0.138	-1.0981	0.1517
L4.	0.8559	0.2819	3.04	0.002	0.3033	1.4084
L5.	-0.7475	0.2820	-2.65	0.008	-1.3002	-0.1948
L6.	-0.0173	0.2447	-0.07	0.944	-0.4969	0.4623
L7.	0.0031	0.2454	0.01	0.990	-0.4779	0.4841
L8.	-0.3929	0.2445	-1.61	0.108	-0.8721	0.0863
L9.	0.1729	0.1362	1.27	0.204	-0.0941	0.4400

_cons	7.5126	1.7000	4.42	0.000	4.1806	10.8446
threshold1	6.7660	0.0388	174.47	0.000	6.6900	6.8420
lngamma	4.1741	1.5604	2.67	0.007	1.1157	7.2325

. estat linear

Linearity (homegeneity) test for all nonlinear parts:

prob	df2	df1	chi2	Но
1.091e-07	292	9	5.9791	b1=0
6.578e-08	283	18	4.2127	b1=b2=0
2.221e-06	274	27	3.0344	b1=b2=b3=0
9.624e-06	265	36	2.5701	b1=b2=b3=b4=0

Escribano-Jorda linearity test (based on 4th Taylor expansion):

Но	chi2	df1	df2	prob
b1=b3=0(HoL)	1.2790	18	265	.201
b2=b4=0(HoE)	0.9487	18	265	.5201

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

prob	df2	df1	chi2	Но
1.091e-07	292	9	5.9791	b1=0 b2=b3=0
.02087	283	9	2.2213	b2=0 b3=0
.6666	274	9	0.7459	b3=0

sunspot

. estat reslinear, 12.y

Linearity (homegeneity) test for all nonlinear parts:

prob	df2	df1	chi2	Но
.1768 .3109 .2894 .3141	292 283 274 265	10 19 28 37	1.4058 1.1394 1.1415 1.1091	b1=0 b1=b2=0 b1=b2=b3=0 b1=b2=b3=b4=0

Escribano-Jorda linearity test (based on 4th Taylor expansion):

Но	chi2	df1	df2	prob
b1=b3=0(HoL)	1.0028	20	265	.4591
b2=b4=0(HoE)	0.9804	20	265	.4864

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

prob	df2	df1	chi2	Но
.6452	292	10	1.4058	b1=0 b2=b3=0
	283	10	0.7830	b2=0 b3=0
	274	10	1.0232	b3=0

sunspot

. estat stcoef

Transformed coefficient confidence interval (level=95):

		Coef	se	z	P> z	CILower	CIUpper
L2.y	gamma	64.9784	101.3946	0.64	0.5216	-133.7514	263.7082

. estat stplot

smooth transition plot

面板平滑转换

c1

0.0853

```
. use hansen1999, clear
(The Value and Performance of U.S.Corporations (B.H.Hall & R.E.Hall, 1993))
. xtstregress i c1 q1 q2 q3 d1 qd1, estr(d1, c1) nolog
Grid search initial values with range: 1 = ( .0063 , .4719 ) ......
Smoothing transition regression (estr)
log-likelihood
                        12896.8579
                                                  Number of obs
                                                                             7910
AIC
                       -25775.7157
                                                  R2-within
                                                                           0.0961
BIC
                       -25712.9328
                                                  R2-between
                                                                           0.0549
HQIC
                       -25754.2140
                                                  R2-overall
                                                                           0.0570
           i
                    Coef.
                            Std. Err.
                                                 P>|z|
                                                           [95% Conf. Interval]
                                            Z
Linear
```

11.28

0.000

0.0705

0.1001

0.0076

q1	0.0103	0.0009	11.53	0.000	0.0086	0.0121
q2	-0.0214	0.0026	-8.37	0.000	-0.0264	-0.0164
q3	0.0012	0.0002	6.08	0.000	0.0008	0.0016
d1	-0.0153	0.0048	-3.18	0.001	-0.0247	-0.0059
qd1	0.0028	0.0014	1.96	0.050	0.0000	0.0056
_cons	0.0612	0.0011	56.29	0.000	0.0591	0.0634
d1						
c1	-0.2770	0.0674	-4.11	0.000	-0.4091	-0.1449
threshold1	0.5186	0.1458	3.56	0.000	0.2329	0.8044
lngamma	-1.7627	0.4668	-3.78	0.000	-2.6777	-0.8477

. est store estr

面板平滑转换

- . est restore estr
 (results estr are active now)
- . estat linear

Linearity (homegeneity) test for all nonlinear parts:

prob	df2	df1	F	Но	
6.807e-11	7338	2	23.4854	b1=0	
7.425e-15	7336	4	18.1613	b1=b2=0	
2.574e-23	7334	6	19.9988	b1=b2=b3=0	
8.185e-23	7332	8	15.4907	b1=b2=b3=b4=0	

Escribano-Jorda linearity test (based on 4th Taylor expansion):

2 prob	df2	df1	F	Но
	7332	4	16.5654	b1=b3=0(HoL)
	7332	4	16.1777	b2=b4=0(HoE)

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

Но	F	df1	df2	prob
b1=0 b2=b3=0	23.4854	2	7338	6.807e-11
b2=0 b3=0	12.7619	2	7336	2.932e-06
b3=0	23.4515	2	7334	7.040e-11

面板平滑转换

. estat reslinear

Linearity (homegeneity) test for all nonlinear parts:

prob	df2	df1	F	Но	
.9265	7338	1	0.0085	b1=0	
.9953	7337	2	0.0047	b1=b2=0	
.971	7336	3	0.0798	b1=b2=b3=0	
.9934	7335	4	0.0599	b1=b2=b3=b4=0	

Escribano-Jorda linearity test (based on 4th Taylor expansion):

Но	F	df1	df2	prob
b1=b3=0(HoL)	0.0605	2 2	7335	.9413
b2=b4=0(HoE)	0.1070		7335	.8985

Note: HoL against LSTR, HoE against ESTR

Terasvirta sequential test:

Но	F F	df1	df2	prob
b1=0 b2=b3=0	0.0085	1	7338	.9265
b2=0 b3=0	0.0008	1	7337	.977
b3=0	0.2302	1	7336	.6314

面板平滑转换

. estat stcoef

Transformed coefficient confidence interval (level=95):

		Coef	se	Z	P> z	CILower	CIUpper
d1	gamma	0.1716	0.0801	2.14	0.0322	0.0146	0.3286

. estat stplot

smooth transition plot

更多计量方法与 Stata 程序,请扫码关注公众号 StataPLUS:

微信公众号: StataPLUS

获取程序请联系: StataPLUS@outlook.com