Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Khomutinnikov Pavel Гр. 320207

Вариант 23

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:5061:7665:6c00:0/102

Задание 1.2: разбить сеть из п.1.1 на 50 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	$2001: \mathtt{db8:0:4eef:} 5061: 7665: 6c00:0/108$
Префикс $N_{\text{CPëPS}}$	2001:db8:0:4eef:5061:7665:6f10:0/108

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (23*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (23*16)/256=112

Дано: Сеть 11.112.0.0/12

Задание 2.1.1: разбить сеть на 32768 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	112	0	0
Адрес сети	00001011	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

- 2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 3 бит из 1-го октета.
- 3. Итого, получается, что сеть 11.112.0.0/12 мы разбили на 32768 подсети, в каждой из которых по 30 узлов, указываем первые 5 подсетей:

	11	112	0	0
Адрес сети дв.с	00001011	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

200	200	200
Адрес сети $N_1/$ Префикс N_1	11.112.0.0	/27
Адрес первого узла N_1	11.112.0.1	
Адрес последнего узла N_1	11.112.0.30)
Широковещательный адрес N_1	11.112.0.3	1
Адрес сети $N_2/$ Префикс N_2	11.112.0.32	2/27
Адрес первого узла N_2	11.112.0.3	3
Адрес последнего узла N_2	11.112.0.65	2
Широковещательный адрес N_2	11.112.0.6	3
Адрес сети $N_3/$ Префикс N_3	11.112.0.6	4/27
Адрес первого узла N_3	11.112.0.6	5
Адрес последнего узла N_3	11.112.0.9	4
Широковещательный адрес N_3	11.112.0.9	ŏ
Адрес сети $N_4/$ Префикс N_4	11.112.0.96	6/27
Адрес первого узла N_4	11.112.0.9	7
Адрес последнего узла N_4	11.112.0.12	26
Широковещательный адрес N_4	11.112.0.12	27

Адрес сети $N_5/$ Префикс N_5	11.112.0.128/27
Адрес первого узла N_5	11.112.0.129
Адрес последнего узла N_5	11.112.0.158
Широковещательный адрес N_5	11.112.0.159

Дано: Сеть 11.112.0.0/12

Задание 2.1.2: разбить сеть на 1000 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	112	0	0
Адрес сети	00001011	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(1000\leqslant 2^{10}=1024)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 6 бит из 2-го октета (получается, что сеть можно разбить на 1024 подсетей: $2^{10}=1024$; оставшиеся 10 бит идут под узлы: $2^{10}-2=1022$ в каждой подсети).

	11	112	0	0
Адрес сети дв.с	00001011	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.112.0.0/22
${ m A}$ дрес первого узла N_1	11.112.0.1
${ m A}$ дрес последнего узла N_1	11.112.3.254
Широковещательный адрес N_1	11.112.3.255

Адрес сети $N_2/$ Префикс N_2	11.127.156.0/22
Адрес первого узла N_2	11.127.156.1
Адрес последнего узла N_2	11.127.159.254
Широковещательный адрес N_2	11.127.159.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 4096 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	112	0	0
Адрес сети	00001011	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=12, т.к. $2^{12}-2=4094$. Т.е. нужно выбрать такую маску, которря выделит ровно 12 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^8=512$ подсетей по 4094 узла(ов) в каждой.

	11	112	0	0
Адрес сети дв.с	00001011	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11110000	00000000
	255	255	240	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	$ \boxed{ 11.127.176.0/20 } $
Адрес первого узла N_1	11.127.176.1
Адрес последнего узла N_1	11.127.191.254
Широковещательный адрес N_1	11.127.191.255

Адрес сети $N_2/$ Префикс N_2	11.127.192.0/20
Адрес первого узла N_2	11.127.192.1
Адрес последнего узла N_2	11.127.207.254
Широковещательный адрес N_2	11.127.207.255
$lacksquare$ Адрес сети $N_3/$ Префикс N_3	11.127.208.0/20
Адрес первого узла N_3	11.127.208.1
Адрес последнего узла N_3	11.127.223.254
Широковещательный адрес N_3	11.127.223.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.127.224.0/20
$egin{aligned} { m Aдреc} \ { m сети} \ N_4/\ { m Префикс} \ N_4 \ \\ { m Адреc} \ { m первого} \ { m узла} \ N_4 \ \\ \end{gathered}$	11.127.224.0/20 11.127.224.1
_ ,	,
Λ дрес первого узла N_4	11.127.224.1
Адрес первого узла N_4 Адрес последнего узла N_4	11.127.224.1 11.127.239.254
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4	11.127.224.1 11.127.239.254 11.127.239.255
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4 Адрес сети $N_5/$ Префикс N_5	11.127.224.1 11.127.239.254 11.127.239.255 11.127.240.0/20

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 2000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	112	0	0
Адрес сети	00001011	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046\geqslant 2000$.

	11	112	0	0
Адрес сети дв.с	00001011	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.112.0.0/21
Адрес первого узла N_1	11.112.0.1
Адрес последнего узла N_1	11.112.7.254
Широковещательный адрес N_1	11.112.7.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.127.248.0/21
Адрес первого узла N_2	11.127.248.1
Адрес последнего узла N_2	11.127.255.254

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 500 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	112	0	0
Адрес сети	00001011	01110000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	112	0	0
Адрес сети дв.с	00001011	01110000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.127.246.0/23
Адрес первого узла N_1	11.127.246.1
Адрес последнего узла N_1	11.127.247.254
Широковещательный адрес N_1	11.127.247.255
$oxedsymbol{\Lambda}$ дрес сети $N_2/$ Префикс N_2	11.127.248.0/23
Адрес первого узла N_2	11.127.248.1
Адрес последнего узла N_2	11.127.249.254
Широковещательный адрес N_2	11.127.249.255
$oxedsymbol{\Lambda}$ дрес сети $N_3/$ Префикс N_3	11.127.250.0/23
Адрес первого узла N_3	11.127.250.1
Адрес последнего узла N_3	11.127.251.254
Широковещательный адрес N_3	11.127.251.255
$oxedsymbol{\Lambda}$ дрес сети $N_4/$ Префикс N_4	11.127.252.0/23
Адрес первого узла N_4	11.127.252.1
Адрес последнего узла N_4	11.127.253.254
Широковещательный адрес N_4	11.127.253.255
$oxedsymbol{\Lambda}$ Адрес сети $N_5/$ Префикс N_5	11.127.254.0/23
Адрес первого узла N_5	11.127.254.1
Адрес последнего узла N_5	11.127.255.254
Широковещательный адрес N_5	11.127.255.255