Linhas de Ônibus

Nome do arquivo: linhas.c, linhas.cpp, linhas.pas, linhas.java, linhas.js, linhas.py2.py ou linhas.py3.py

Nessa grande cidade na China, há T terminais de ônibus, numerados de 1 a T; e L linhas de ônibus, numeradas de 1 a L. Os mapas são muito confusos mas conseguimos entender que os ônibus de uma linha fazem viagens circulares passando por um conjunto fixo de terminais. Por exemplo, a tabela seguinte indica o conjunto de terminais por onde passam os ônibus de cada linha, para T=10 e L=5:

Linha	Conjunto de Terminais
1	$\{4, 3, 8, 2, 1\}$
2	$\{5, 10, 7\}$
3	$\{1, 5\}$
4	$\{6, 8, 10\}$
5	$\{9, 4, 5\}$

Não estamos preocupados com o trajeto da linha, com a ordem na qual o ônibus passa pelos terminais. Portanto, para ir do terminal 2 para o terminal 4, precisamos apenas tomar um ônibus da linha 1 e esperar até ele chegar no terminal 4. O sistema garante que é possível viajar entre qualquer par de terminais, mas talvez seja preciso trocar de linha de ônibus algumas vezes.

Nós estamos com medo de tomar um ônibus errado e acabar perdidos na cidade. É tudo muito grande na China! Por isso, queremos trocar de ônibus o menor número possível de vezes. Por exemplo, você pode ir do terminal 2 para o terminal 10 primeiro tomando a linha 1 até o terminal 1, depois a linha 3 até o terminal 5 e, por fim, a linha 2 até o terminal 10; trocando de ônibus duas vezes, usando três linhas no total. Só que dá para ir do terminal 2 para o 10 trocando apenas uma vez: primeiro tomando a linha 1 até o terminal 8 e depois a linha 4 até o terminal 10.

Neste problema, dados os conjuntos de terminais de cada linha, um terminal origem e um terminal destino, seu programa deve computar o número mínimo possível de linhas de ônibus para fazer a viagem.

Entrada

A primeira linha da entrada contém quatro inteiros, T, L, O e D, representando, respectivamente, o número de terminais, o número de linhas de ônibus, o terminal origem e o terminal destino. As últimas L linhas da entrada descrevem, cada uma, o conjunto de terminais pelos quais uma linha de ônibus passa. A i-ésima linha (dessas últimas L linhas da entrada) descreve o conjunto de terminais da linha de ônibus i, no seguinte formato: o primeiro inteiro na linha, C, indica o número de terminais no conjunto. Depois desse inteiro, o restante da linha da entrada contém C inteiros distintos representando os terminais.

Saída

Seu programa deve produzir uma única linha, contendo apenas um inteiro, o número mínimo possível de linhas de ônibus para viajar do terminal O para o terminal D.

Restrições

- $2 \le T \le 500$
- $1 \le L \le 500$
- $2 \le C \le T$
- O ≠ D

Informações sobre a pontuação

- \bullet Em um conjunto de casos de teste somando 5 pontos, L=2
- $\bullet\,$ Em um conjunto de casos de teste somando outros 5 pontos, T=3
- $\bullet\,$ Em um conjunto de casos de teste somando outros 10 pontos, $T\leq 10$
- $\bullet\,$ Em um conjunto de casos de teste somando outros 20 pontos, $T \leq 100$
- $\bullet\,$ Em um conjunto de casos de teste somando outros 20 pontos, $C \leq 10$
- Em um conjunto de casos de teste somando os demais 40 pontos, nenhuma restrição adicional

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
10 5 2 10	2
5 4 3 8 2 1	
3 5 10 7	
2 1 5	
3 6 8 10	
3 9 4 5	

Exemplo de entrada 2	Exemplo de saída 2
2 1 1 2	1
2 2 1	

Exemplo de entrada 3	Exemplo de saída 3
10 9 1 10	8
2 1 2	
2 2 3	
2 3 4	
2 4 5	
3 5 6 7	
2 6 7	
2 7 8	
2 8 9	
2 9 10	