Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko bigarren zatia Bilboko Ingeniaritza Eskola (UPV/EHU) 1,3 puntu Ebazpena

2016-01-11

1 ε -AFED bati dagokion AFED-a kalkulatu (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako ε -AFED honen baliokidea den AFED-a kalkulatu klasean aurkeztutako era jarraituz:

 $E \in AFED$ -ari dagokion N AFED-ak egoera-kopuru bera izango du eta gainera $E \in AFED$ -an bi zirkulu dituzten egoerak AFED-an ere bi zirkuludunak izango dira:

Jarraian q_0 egoerak bi zirkulu izango al dituen erabaki behar izaten da. ε sinboloa duten geziak bakarrik jarraituz q_0 -tik bi zirkulu dituen egoeraren batera iristea baldin badago, orduan q_0 -k ere bi zirkulu izango ditu. Kasu honetan horrela da, izan ere, q_1 egoerara irits gaitezke ε trantsizioak jarraituz. Beraz, q_0 egoerak ere bi zirkulu izango ditu.

Orain egoera bakoitzetik sinbolo bakoitzarekin zein egoeretara iritsi gaitezkeen kalkulatu beharko da. Hasteko q_0 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_0 -tik bi gezi aterako dira. Gezi horiek q_2 -ra eta q_5 -era joango dira (q_2, ε) eta (q_5, ε) konfigurazioak lortu direlako. Gezi horiek a sinboloa izango dute:

Orain q_1 egoera aztertuko dugu:

$$(q_1, a)$$
 (q_1, b) (q_1, c)
 (q_2, ε)

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_1 -etik gezi bakarra aterako da. Gezi hori q_2 -ra joango da (q_2, ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

N

Orain q_2 egoera aztertuko dugu:

$$(q_{2},a) \qquad (q_{2},b) \qquad (q_{2},c)$$

$$| \qquad \qquad (q_{3},\varepsilon)$$

$$| \qquad \qquad \qquad (q_{0},\varepsilon)$$

$$(q_{1},\varepsilon) \qquad (q_{4},\varepsilon)$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz q_2 -tik lau gezi aterako dira. Gezi horiek q_3, q_0, q_1 eta q_4 -ra joango dira, $(q_3, \varepsilon), (q_0, \varepsilon), (q_1, \varepsilon)$ eta (q_4, ε) konfigurazioak lortu baitira. Gezi horiek b sinboloa izango dute:

Orain q_3 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Horrelako hiru konfigurazio lortu dira: (q_2, ε) , (q_5, ε) eta (q_5, ε) . Hor (q_5, ε) konfigurazioa errepikatuta dagoenez, q_3 -tik bi gezi aterako dira. Gezi horiek q_2 -ra eta q_5 -era joango dira. Gezi horiek a sinboloa izango dute:

Orain q_4 egoera aztertuko dugu:

$$(q_4, a)$$
 (q_4, b) (q_4, c)

$$\downarrow$$

$$(q_5, \varepsilon)$$

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_4 -tik gezi bakarra aterako da. Gezi hori q_5 -era joango da (q_5, ε) konfigurazioa lortu delako. Gezi horrek a sinboloa izango du:

Orain q_5 egoera aztertuko dugu:

$$(q_5,a)$$
 (q_5,b) (q_5,c) (q_6,ε) (q_6,ε) (q_5,ε)

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_5 -etik bi gezi aterako dira. Gezi horiek q_6 eta q_5 egoeretara joango dira (q_6,ε) eta (q_5,ε) konfigurazioak lortu baitira. Gezi horiek c sinboloa izango dute:

Orain q_6 egoera aztertuko dugu:

 ε duten konfigurazioetako egoeretara ipini beharko da gezia. Beraz, q_6 -tik gezi bat aterako da. Gezi hori q_6 egoerara joango da (q_6, ε) konfigurazioa lortu baita. Gezi horrek c sinboloa izango du:

Eta hori da lortu nahi genuen AFED-a.

2 AFED bati dagokion AFD-a kalkulatu (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFED honen baliokidea den AFD-a kalkulatu klasean aurkeztutako era jarraituz:

Jarraian AFED horri dagokion AFD-a kalkulatuko da. Urratsez urrats egingo da, urrats bakoitzean sortzen diren egoerak azalduz. Bukaeran egoerak berrizendatu egingo dira:

 $\bullet\;$ Beti bezala, hasierako egoera $\{q_0\}$ izango da.

$$\rightarrow (q_0)$$

• $\{q_0\}$ egoeratik aterako diren trantsizioak kalkulatuko dira orain: $\nu^*(\{q_0\},a)=\{q_2,q_5\}, \nu^*(\{q_0\},b)=\varnothing$ y $\nu^*(\{q_0\},c)=\varnothing$

• Lehenengo $\{q_2,q_5\}$ egoera aztertuko dugu eta hor alde batetik $\nu^*(\{q_2,q_5\},a) = \nu(q_2,a) \cup \nu(q_5,a) = \varnothing \cup \varnothing$, hau da, \varnothing . Beste aldetik, $\nu^*(\{q_2,q_5\},b) = \nu(q_2,b) \cup \nu(q_5,b) = \{q_0,q_1,q_3,q_4\} \cup \varnothing$, hau da, $\{q_0,q_1,q_3,q_4\}$. Azkenik, $\nu^*(\{q_2,q_5\},c) = \nu(q_2,c) \cup \nu(q_5,c) = \varnothing \cup \{q_0,q_1,q_4,q_6\}$, hau da, $\{q_0,q_1,q_4,q_6\}$.

• Orain $\{q_0,q_1,q_3,q_4\}$ egoera hartuz, $\nu^*(\{q_0,q_1,q_3,q_4\},a) = \nu(q_0,a) \cup \nu(q_1,a) \cup \nu(q_3,a) \cup \nu(q_4,a) = \{q_2,q_5\} \cup \{q_2\} \cup \{q_2,q_5\} \cup \{q_5\}$, hau da, $\{q_2,q_5\}$. Bestalde, $\nu^*(\{q_0,q_1,q_3,q_4\},b) = \nu(q_0,b) \cup \nu(q_1,b) \cup \nu(q_3,b) \cup \nu(q_4,b) = \varnothing \cup \varnothing \cup \varnothing \cup \varnothing$, hau da, \varnothing . Eta c-ren kasuan, $\nu^*(\{q_0,q_1,q_3,q_4\},c) = \nu(q_0,c) \cup \nu(q_1,c) \cup \nu(q_3,c) \cup \nu(q_4,c) = \varnothing \cup \varnothing \cup \varnothing \cup \varnothing$, hau da, \varnothing .

• Jarraian $\{q_0, q_1, q_4, q_6\}$ egoera hartuz, alde batetik $\nu^*(\{q_0, q_1, q_4, q_6\}, a) = \nu(q_0, a) \cup \nu(q_1, a) \cup \nu(q_4, a) \cup \nu(q_6, a) = \{q_2, q_5\} \cup \{q_2\} \cup \{q_5\} \cup \{q_2, q_5\}$, hau da, $\{q_2, q_5\}$. Bestalde, $\nu^*(\{q_0, q_1, q_4, q_6\}, b) = \nu(q_0, b) \cup \nu(q_1, b) \cup \nu(q_4, b) \cup \nu(q_6, b) = \emptyset \cup \emptyset \cup \emptyset \cup \emptyset$, hau da, \emptyset . Gainera, $\nu^*(\{q_0, q_1, q_4, q_6\}, c) = \nu(q_0, c) \cup \nu(q_1, c) \cup \nu(q_4, c) \cup \nu(q_6, c) = \emptyset \cup \emptyset \cup \emptyset$, es decir, \emptyset .

• Jarraian \varnothing egoera hartuz, alde batetik $\nu^*(\varnothing,a)=\varnothing$, beste aldetik, $\nu^*(\varnothing,b)=\varnothing$ eta, bukatzeko, $\nu^*(\varnothing,c)=\varnothing$.

• Trantsizio denak ipini ditugunez, bi zirkulu izango dituzten egoerak zein izango diren zehaztea geratzen da. Hain zuzen ere, hasierako AFED-an bi zirkulu dituen egoeraren bat duten egoerak izango dira bi zirkuludunak AFD honetan. Beraz, $\{q_0\}$, $\{q_0,q_1,q_3,q_4\}$ eta $\{q_0,q_1,q_4,q_6\}$ egoerek bi zirkulu izango dituzte.

• Bukatzeko, egoerak berrizendatuko ditugu: $r_0 = \{q_0\}, r_1 = \{q_2, q_5\}, r_2 = \varnothing, r_3 = \{q_0, q_1, q_3, q_4\}$ eta $r_4 = \{q_0, q_1, q_4, q_6\}$

3 Automata finitu bati dagokion lengoaia erregularra kalkulatu (0,300 puntu)

 $A=\{a,b,c\}$ alfabetoaren gainean definitutako honako AF honi dagokion lengoaia erregularra kalkulatu klasean aurkeztutako metodoa jarraituz:

Lehenengo urrats bezala q_{hasi} eta q_{bai} egoerak ipiniko ditugu.

Ezabaketekin hasteko, q_1 ezabatuko dugu:

Bai q_0 eta q_5 -en artean eta bai q_1 eta q_5 -en artean bi gezi daudenez, gezi bakarra ipiniko dugu kasu bietan, espresioak komaz bereiziz:

Jarraian q_5 ezabatuko da:

Gezi bakarra ipiniko dugu q_0 eta q_{bai} egoeren artean:

Orain q_3 ezabatuko da. q_3 -tik lau bide igarotzen dira: q_1 -etik q_2 -ra doana, q_2 -tik q_1 -era doana, q_1 -etik q_1 -era doana eta q_2 -tik q_2 -ra doana.

Bi egoeren artean trantsizio bat baino gehiago daudenean, gezi bakarra ipini ohi dugu, espresioak komaz bereiziz. q_1 -etik q_2 -ra doazen bi gezi daudenez eta q_2 -tik q_1 -era doazen bi gezi daudenez, kasu bietan gezi bakarra ipiniko dugu. q_2 -ko bi begiztekin ere gauza bera egingo dugu:

Orain q_2 ezabatuko da. q_2 -tik bide bakarra igarotzen da, q_1 -etik q_1 -era doana:

Orain q_1 -eko bi begiztentzat gezi bakarra ipiniko da:

Jarraian q_1 ezabatuko da. q_1 -etik igarotzen diren bi bide daude: q_0 -tik q_0 -ra doana eta q_0 -tik q_{bai} -ra doana.

Ibilbide bera egiten duten geziak elkartuko dira orain:

Bukatzeko, q_0 ezabatuko da:

$$\varepsilon((a+ca)a+a((b+ca)(a+aa)^*(b+ac)+cc)^*(a+ba)a)^*(\varepsilon+(a+ca)\varepsilon+a((b+ca)(a+aa)^*(b+ac)+cc)^*(a+ba)\varepsilon)$$

Beraz, honako lengoaia hau lortu da

$$\varepsilon((a+ca)a+a((b+ca)(a+aa)^*(b+ac)+cc)^*(a+ba)a)^*(\varepsilon+(a+ca)\varepsilon+a((b+ca)(a+aa)^*(b+ac)+cc)^*(a+ba)\varepsilon)$$

Espresio hori $\varepsilon\beta$ edo $\beta\varepsilon$ erako espresioak β espresioaz ordezkatuz sinplifika daiteke. Izan ere, $\varepsilon\beta$ edo $\beta\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori β espresioaren baliokidea izango da. Bestalde, $\varepsilon+\beta$ edo $\beta+\varepsilon$ egitura duen espresio bat hartzen badugu, espresio hori orokorrean ez da izango β espresioaren baliokidea. Beraz, honako hau geldituko zaigu:

$$((a+ca)a + a((b+ca)(a+aa)^*(b+ac) + cc)^*(a+ba)a)^*(\varepsilon + (a+ca) + a((b+ca)(a+aa)^*(b+ac) + cc)^*(a+ba))$$

4 Lengoaia erregularra dela frogatu (0,100 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako lengoaia hau erregularra dela frogatu klasean aurkeztutako bidea jarraituz:

$$L = \{ w \mid w \in A^* \land |w| \ge 2 \land \exists j, k (1 \le j \le |w| \land 1 \le k \le |w| \land w(j) = b \land w(k) = c) \}$$

Adibidez, ccccba, ccbcbb, aaabccabab eta cb hitzak lengoaia horretakoak dira baina ε , a, bb, aa, cccc, aabbaaa, abbba eta accccacca hitzak ez dira lengoaia horretakoak.

Lengoaia hori erregularra da bilkura (+), kateaketa eta itxidura (*) erabiliz adierazi daitekeelako:

$$((a+b+c)*b(a+b+c)*c(a+b+c)*) + ((a+b+c)*c(a+b+c)*b(a+b+c)*)$$

5 Lengoaia erregular bati dagokion automata finitua kalkulatu (0,300 puntu)

 $A = \{a, b, c, d, e\}$ alfabetoaren gainean definitutako honako lengoaia erregular honi dagokion automata finitua kalkulatu klasean aurkeztutako prozedura jarraituz:

$$a(b^* + c^*)^*((dd) + (ee))^*$$

Hasteko, q_{hasi} eta q_{bai} egoerak sortu eta bien arteko gezian espresio osoa ipini:

Orain espresio horretan kateatuta dauden bi zati bereiziko ditugu: a eta $(b^* + c^*)^*((dd) + (ee))^*$

Orain kateaketaren bidez $(b^* + c^*)^*((dd) + (ee))^*$ espresioa osatzen duten $(b^* + c^*)^*$ eta $((dd) + (ee))^*$ espresioak banandu edo bereiziko ditugu:

Orain $(b^* + c^*)^*$ espresioa garatuko dugu:

Jarraian $b^* + c^*$ garatuko dugu bi begizta ipiniz:

Orain b^* espresioa garatuko dugu:

Orain c^* espresioa garatuko dugu:

Jarraian $(dd + ee)^*$ espresioa garatuko dugu:

Hurrengo urratsean, bi gezi sortuko dira dd + ee garatzeko:

Orain dd espresioari dagokion garapena dator. Horretarako, egoera berri bat eta bi gezi sortuko dira:

Azkenik, ee espresioaren garapena dator, beste egoera bat eta bi gezi sortuz:

Eta hor daukagu emaitza.