WYZNACZANIE ENERGII PROMIENIOWANIA GAMMA METODĄ ABSORPCYJNĄ

Część teoretyczna

Promieniowanie γ , obok a i b, jest promieniowaniem jądrowym, a więc emitowanym przez jądro, które przy przejściu ze wzbudzonego stanu energetycznego na niższy, wypromieniowuje kwant energii. Promieniowanie γ może być rozproszone lub pochłonięte na skutek oddziaływań z elektronami i jądrami, a także z ich polami elektrycznymi.

Z oddziaływaniami tymi mamy do czynienia w zjawiskach:

- Fotoelektrycznym w zjawisku tym energia fotonu zostaje zużyta na jonizację fotonu i nadanie energii kinetycznej wybitemu elektronowi,
- *tworzenia par elektron-pozyton* przy współdziałaniu jądra foton przekształca się w elektron i pozyton,
- zjawisku Comptona część energii fotonu γ zostaje przekazana elektronowi
 z którym się zderza. Foton o niższym poziomie energii zostaje odchylony o
 pewien kąt od kierunku pierwotnego.

Jeśli na drodze wiązki promieniowania γ zostanie umieszczona płytka absorbenta, to jej natężenie zmaleje, ponieważ kwanty γ są usuwane z wiązki w skutek oddziaływania z absorbentem. Usuwanie zachodzi z określonym prawdopodobieństwem zależnym od energii fotonów wiązki i materiału absorbenta.

Poniższa własność określa ilość n kwantów w wiązce w zależności od drogi x przebytej w absorbencie:

$$n(x) = n_0 \cdot e^{-px},$$

 n_0 - początkowa ilość kwantów γ ;

p - prawdopodobieństwo przypadające na jednostkę drogi w absorbencie.

Natężenie promieniowania maleje wykładniczo wraz ze wzrostem przebytej odległości.

W naszym doświadczeniu promieniowanie γ emitowane będzie przez izotop 60 Co. Rozpada się on według następującej reakcji:

tu miał być wzór ale nawalił Word 🕾

Opis metody pomiarowej

W ćwiczeniu źródłem promieniowania jest kobalt ⁶⁰C umieszczony w ołowianym pojemniku z otworem. Detektorem promieniowania jest licznik Geigera-Müllera, który zlicza ilość impulsów. Pomiędzy nim a źródłem umieszczać będziemy płytki absorbenta wykonane z ołowiu.

W pierwszej części ćwiczenia zamkniemy wylot pojemnika z preparatem promieniotwórczym, aby wyznaczyć liczbę zliczeń pochodzących od tła detektora. Pomiaru dokonujemy przez 10 minut.

Kolejno wykonamy pomiary w zależności od grubości absorbenta, zaczynając od sytuacji, w której źródło jest całkowicie odsłonięte. Od wszystkich wyników należy odjąć wyznaczoną wartość zliczeń pochodzących od tła detektora.

Tabela pomiarowa z obliczeniami

Grubość absorbenta [mm]	Czas zliczania 1000 impulsów [s]	Ilość zliczeń J na minutę [l/min]	Zliczenia na minutę minus tło detektora J'=J-B ⁽¹⁾	ln J'
0	133	451,13	308,93	5,733
5,1	155	387,1	244,9	5,501
10,2	192,8	311,2	169	5,13
15,2	235,9	254,35	112,15	4,72
20,3	268,4	223,55	81,35	4,399
30,63	326,5	183,77	41,57	3,727
41	392,8	152,75	10,55	2,356

⁽¹⁾ B - liczba zliczeń pochodzących od tła detektora = **142,2** [l/min]

Obliczenia i wyniki

Metodą regresji liniowej, korzystając z funkcji *REGLINP* programu Excel zawartego w pakiecie Microsoft Office obliczyliśmy współczynnik **a** oraz **b** teoretycznej funkcji liniowej dopasowanej do punktów pomiarowych. Używając tej funkcji wyliczyliśmy przy okazji niepewność **u(a)** i **u(b)** oraz współczynnik korelacji **R**².

$$ln J = -\mu x + ln J_0$$

 $y = ax + b$
 $a \approx -0.0798$
 $b \approx 5.90617$
 $u(a) \approx 0.05549$
 $u(b) \approx 0.12216$

Następnie na podstawie otrzymanej wartości współczynnika nachylenia prostej (a) wyznaczyliśmy grubość połówkowego osłabienia, ze wzoru: $x_{1/2} = -\frac{\ln 2}{a}$

$$X_{1/2} \approx 8,68605 \text{ [mm]} = 0,868605 \text{ [cm]}$$

Następnie korzystając z prawa propagacji niepewności obliczyliśmy niepewność $\mathbf{u}(\mathbf{x}_{1/2})$. Najpierw musieliśmy dokonać pewnych przekształceń.

$$\mathbf{X}_{1/2} = \frac{\ln 2}{|a|} = \ln 2 * a^{-1}$$

$$\mathbf{u}(\mathbf{x}_{1/2}) = \left| \frac{dx_{1/2}}{da} \right| * u(a)$$

$$\mathbf{u}(\mathbf{x}_{1/2}) = \left| \ln 2 * (-1) * a^{-2} \right| * u(a)$$

$$\mathbf{u}(\mathbf{x}_{1/2}) = \frac{\ln 2}{a^2} * u(a)$$

$$\mathbf{u}(\mathbf{x}_{1/2}) = \frac{\ln 2}{a^2} * u(a)$$

Kolejnym krokiem było wyliczenie wartości połówkowego osłabienia w jednostkach masowych $\mathbf{d}_{1/2}$ oraz niepewności $\mathbf{u}(\mathbf{d}_{1/2})$.

$$d_{1/2}[g/cm^{2}] = x_{1/2}[cm] \cdot \rho_{Pb}^{(1)}[g/cm^{3}]$$

$${}^{(1)}\rho_{Pb} = 11,34 \ [g/cm^{3}]$$

$$d_{1/2} \approx \underline{9,85} \ [g/cm^{2}]$$

$$u(d_{1/2}) \approx \underline{0,68493} \ [g/cm^{2}]$$

$$u(d_{1/2}) \approx 0,68493$$

tu miał być wzór ale Word nawalił 🕾

Wykresy i średnia wart. energii

1. Wykres zależności logarytmu z ilości zliczeń kwantów pomniejszonej o tło detektora od grubości absorbenta.

2. Wykres zależności grubości połówkowego osłabienia od energii (wyznaczanie graficzne średniej wartości energii promieniowania)

Odczytana wartość energii to około <u>**0,977**</u> [MeV], po uwzględnieniu niepewności otrzymujemy przedział **<0.927**, **1.06>.**

Wnioski

Zebrane w ćwiczeniu laboratoryjnym dane potwierdziły, że wraz z zwiększaniem grubości absorbentu rośnie intensywność zachodzenia procesu pochłaniania. Zależność ta ma charakter liniowy. Zwiększenie ilości i czasu wykonywania pomiarów, pozwoliłoby na uzyskanie bardziej dokładnych wartości.

Wyznaczona wartość energii promieniowania jest zbliżona do energii promieniowania izotopu 60C, która mieści się w przedziale 1,17-1,33 MeV. Ze względu na błąd pomiaru wartość jest zbliżona, ale nie pokrywa się z podanym wyżej przedziałem.