Introduction to Mathematical Modeling

Ramapo College of New Jersey Instructor: Dr. Atul Anurag

Semester: Fall 2025 Date: October 23, 2025

Converting Decimal to Binary and Binary to Decimal

Introduction

In digital systems, numbers are represented in the **binary system**, which uses only two digits: 0 and 1. Humans commonly use the **decimal system**, based on ten digits (0–9). Understanding how to convert between these systems is fundamental in computer science, electronics, and data modeling.

Positional Number Systems

Every number system is based on a base or radix:

• Decimal system: base 10

• Binary system: base 2

In a positional system, each digit represents a power of the base:

$$(345)_{10} = 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

$$(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Converting Decimal to Binary

Definition 1 (Division–Remainder Method). To convert a decimal number to binary:

- 1. Divide the decimal number by 2.
- 2. Record the remainder (0 or 1).
- 3. Divide the quotient again by 2.
- 4. Continue dividing until the quotient becomes 0.
- 5. Read the remainders from **bottom to top**.

Example: Convert 45_{10} to binary.

Step	Division by 2	Remainder		
1	$45 \div 2 = 22$	1		
2	$22 \div 2 = 11$	0		
3	$11 \div 2 = 5$	1		
4	$5 \div 2 = 2$	1		
5	$2 \div 2 = 1$	0		
6	$1 \div 2 = 0$	1		
$(45)_{10} = (101101)_2$				

Converting Binary to Decimal

Definition 2. To convert a binary number to decimal:

- 1. Write the binary number.
- 2. Multiply each bit by 2^n , where n is the position index from right (starting at 0).
- 3. Sum all results.

Example:

$$(101101)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 45$$

Thus, $(101101)_2 = (45)_{10}$.

Practice Problems

- 1. Convert 27_{10} to binary.
- 2. Convert 110101_2 to decimal.
- 3. Verify that converting one way and back yields the original number.

The Caesar Cipher

The Caesar Cipher is one of the simplest and earliest encryption methods. It shifts each letter by a fixed number of positions in the alphabet.

Encryption

Definition 3. Let plaintext $P = p_1, p_2, \dots, p_n$. Each letter is replaced by:

$$C_i = (P_i + k) \bmod 26$$

where k is the shift (key).

Example: Encrypt HELLO with k = 3:

Letter	Value	Encrypted
\overline{H}	7	K
E	4	H
L	11	O
L	11	O
O	14	R

 $\mathtt{HELLO} o \mathtt{KHOOR}$

Decryption

Shift in the opposite direction:

$$P_i = (C_i - k) \mod 26$$

$$KHOOR \to HELLO$$

The Decimation Cipher

Introduction

The **Decimation Cipher** multiplies each letter's numeric value by a key k, using modular arithmetic. It requires k to be an **odd number not equal to 13** to ensure invertibility.

Encryption Steps

- 1. Assign $A = 0, B = 1, \dots, Z = 25$.
- 2. Choose a valid key k.
- 3. Compute $E(x) = (k \times x) \mod 26$.

Example: Encrypt CODE with k = 5:

$$C(2) \to K, \ O(14) \to S, \ D(3) \to P, \ E(4) \to U$$

$${\tt CODE} \to {\tt KSPU}$$

Why Not 13?

Keys that are even or equal to 13 have no modular inverse mod 26, making decryption impossible.

Decryption

Use the inverse key j, such that $(k \times j) \mod 26 = 1$. Then compute $D(x) = (j \times x) \mod 26$.

Example: If k = 5, its inverse is j = 21.

$$\mathtt{KSPU} \to \mathtt{CODE}$$

Practice

- 1. Encrypt MATH using k = 7.
- 2. Decrypt a message encoded with k = 9.
- 3. Explain why k = 13 or any even number fails.

Example: Encrypting THANKS with k = 11

$$E(i) = (11 \times i) \bmod 26$$

Letter	Value	$11 \times i \bmod 26$	Encrypted
\overline{T}	19	1	В
Η	7	25	${f Z}$
A	0	0	A
N	13	13	N
K	10	6	G
S	18	16	Q

$$\mathtt{THANKS} \longrightarrow \mathtt{BZANGQ}$$

Example: Decrypting with k = 21, inverse j = 5

$$D(x) = (5 \times x) \bmod 26$$

4

MATH 106: Introduction to Mathematical Modeling

Cipher	Value	$5 \times x \mod 26$	Plain
Q	16	2	С
R	17	7	Η
G	6	4	\mathbf{E}
S	18	12	\mathbf{M}
\mathbf{M}	12	8	I
O	14	18	\mathbf{S}
J	9	19	${ m T}$
${ m T}$	19	17	\mathbf{R}
K	10	24	Y

 $Q \ R \ G \ S \ M \ O \ J \ T \ K \longrightarrow CHEMISTRY$

End of Lecture #12