苏州大学《线性代数》课程试卷库(第一卷)共 4 页

题号	 <u> </u>	=	四	五	六	七	八
得分							

一、**填空题**(每小题 3 分, 共计 30 分)

2、设
$$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 1 & 0 & -1 & 2 \\ 5 & 1 & -1 & 6 \end{vmatrix}$$
,则 $4A_{41} + 3A_{42} + 2A_{43} + A_{44} =$ ______。

$$3$$
、若二次型 f 的矩阵 $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$,则它的正惯性指数为_____。

4、设三阶方阵
$$A$$
 的行列式 $|A|=3$,其伴随阵为 A^* ,则 $|A^*|=$ _____。

5、设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,则 $(A + 3E)^{-1}(A^2 - 9E) = \underline{\hspace{1cm}}$ 。

6、已知向量组 $\alpha_1 = (1, 2, -1, 1), \alpha_2 = (2, 0, t, 0), \alpha_3 = (0, -4, 5, -2)$ 的 秩为 2,则t =_____。

7、设
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 $A = \begin{pmatrix} a_{11} & a_{12} + a_{13} & a_{13} \\ a_{21} & a_{22} + a_{23} & a_{23} \\ a_{31} & a_{32} + a_{33} & a_{33} \end{pmatrix}$,则初等矩阵 $A =$ ______。

8、已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+k\alpha_1$ 也线性无关,则k为

9、设三阶矩阵 A 的特征值为 1、2、3,则矩阵 $B = A^2 - 3A + E$ 的特征值为 _____。

10、若矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & x \end{pmatrix}, B = \begin{pmatrix} y & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
相似,则 $y = \underline{\hspace{1cm}}$ 。

二、 计算行列式
$$(10 \, \text{分})$$
 $D = \begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix}$

三、(10 分) 已知线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$

- 求(1) a,b 为何值时,方程组有唯一解?
 - (2) *a*,*b* 为何值时,方程组有无穷多组解,并用其导出组的基础解系求出其全部解。

四、
$$(10 分)$$
 设 $B = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 且 $AB - B = A$, 求: A

五、(10 分)设二次型 $f = 2x^2 + 4y^2 + 4xy + 4yz$, 试写出对应的矩阵,并利用配方法化为标准型。

六、(10分) 证明: n 维正交向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关。

七、(10分) 设
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
, 试求:

(1) A 的特征值和特征向量 (2) 正交矩阵 Q, 使 Q^TAQ 为对角阵

八、(10 分) 设 4 阶方阵 A 满足条件 |3I+A|=0, |A|<0,且 $AA^T=2I$,求: A^* 的一个特征值(A^* 为 A 伴随阵)。

	苏州大	、学《经	线性代	数》语	果程试	卷库(第二卷	失(急	页	
	学院			_专业_			成	绩		
	年级		学号_			姓名_			∃期	
	题号 得分			三	四	五.	六	七	八]
	、(每	题3分,	共计 30)分)单	项选择:					1
1,	设 f(x)	$= \begin{vmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix}$	$ \begin{array}{c c} 1 \\ x & 1 \\ 2-x \end{array} $	≠0 的 疗	它要条件	是		[]	
(a)	<i>x</i> ≠0或	$x \neq 1$ (b) $x \neq 0$	$\exists x \neq 1$	(c) x =	±1或 <i>x</i> ≠	2 (d)	$x \neq 1$ \blacksquare	$x \neq 2$	
2,	已知 A,	B 均为i	1阶方阵	<i>,</i> I 为 i	单位阵,	BCA = I	,则	[]	
(a)	ABC =	=I (b)) ACB	=I (c	BA	C = I	(d) <i>C</i>	BA = I		
3、	已知 $m \times$	n 阶矩图	年A 的秩	为 $n-1$,	α_1, α_2	是非齐次	线性方程	呈组 Ax =	<i>▶</i> 的两个	不
同	的解, k	为任意常	宫数,则	方程组A	x = 0的	通解可表	示为	[]	
(a)	$\alpha_1 + k$	α_2 (b)	$\alpha_2 + kc$	α_1 (c)	$k(\alpha_1 +$	α_2) (d	$k(\alpha_1)$	$-\alpha_2$)		
4, (a)	n 阶方四 矩阵 <i>i</i>				分必要条 阵 <i>A</i> 有 <i>n</i>		无关的特	[征向量]	
(c)	$ A \neq 0$			(d) 矩	阵 A 为多	 C C C C C C C C C 	阵			
填	空题									
5、	二次型 f	$=2x^2+3$	$3y^2 - 2xy$	+4yz 对,	应的矩阵	为[]		
6,	设 $A = \frac{1}{2}$	$\begin{vmatrix} 0 & 0 & 2 \\ 1 & 3 & 0 \\ 2 & 5 & 0 \end{vmatrix}$,则 <i>A</i> ⁻	¹ =[]。				
7、	若 A, B [‡]	匀为 n 阶	矩阵,且	L有 A =-	-2, $ B =3$	3,则 - A*	$ B^{-1} = [$]。	
8.	己知 β :	=(1, 1,	2)不能	$ \pm \alpha_1 = (2$	2, 2, -	-1), $\alpha_2 =$	(0, 4,	8), $\alpha_3 = 0$	(-1, k,	3)
	线性表出	,则 <i>k</i> =	[]	o					
9、	∂n 阶 \mathcal{I}	方阵 A 满	足毎行え	元素之和	都是 0,	如果秩	r(A) = n	-1,则	齐次方程	建组
	1 x - 0 th	通解具口		1						

10、设3阶矩阵A的特征值是 1, 2, -1, 设矩阵 $B=A^3-5A^2$, 则 $\left|B\right|=[$

]。

二、 (10 分) 计算行列式:
$$D_n = \begin{bmatrix} a & 0 & \cdots & 0 & 1 \\ 0 & a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a & 0 \\ 1 & 0 & \cdots & 0 & a \end{bmatrix}$$

三、(10 分) 讨论
$$k$$
 为何值时,非齐次线性方程组
$$\begin{cases} -x_1 + x_2 - kx_3 = k \\ x_1 + kx_2 - x_3 = 1 \\ kx_1 + x_2 + x_3 = k \end{cases}$$

有唯一解, 无解或有无穷多解? 并在有无穷多解时利用基础解系求其全部解。

四、(10 分) 设向量组 $A: \alpha_1 = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 0, & 2, & 2 \end{pmatrix}^T$,

$$\alpha_3 = \begin{pmatrix} 0, & 0, & 3, & 1 \end{pmatrix}^T$$
, $\alpha_4 = \begin{pmatrix} 1, & 3, & 6, & 4 \end{pmatrix}^T$,

求: (1) A 的秩, (2) 求A的一个极大线性无关组

五、(10分) 设:
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$
, 试求:

- (1) A的特征值和特征向量
- (2) 求可逆矩阵 P 及对角矩阵 Λ , 使 $P^{-1}AP = \Lambda$

六、(10分)如果 A 为非奇异矩阵,且 AB = C, BA = D,求证: r(B) = r(C) = r(D)

七、
$$(10 分)$$
 已知 $A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$,写出对应二次型,并化为标准型

八、 (10 分) 设
$$A$$
 的伴随矩阵 $A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{pmatrix}$ 且 $ABA^{-1} = B A^{-1} + 3I$ 求: B

苏州大学《线性代数》课程试卷库(第三卷)共 4 页

	成绩			
年级 学号 姓名	H	期		
题号 一 三 四 五 六	一七	八		

一、 填空题: (30分, 每题 3分)

1、多项式
$$f(x) = \begin{vmatrix} 2x & 3 & 1 & 2 \\ x & x & 0 & 1 \\ 2 & 1 & x & 4 \\ x & 2 & 1 & 4x \end{vmatrix}$$
 的常数项为_____。

2、设
$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 2 & 4 \end{pmatrix}$$
, $B_{3\times 3}$ 的列向量组线性无关,则 $r(AB) =$ _______。

3、设三元非齐次线性方程组Ax = b中,矩阵A的秩为2,且 $\mu_1 = (1, 2, 2)^T$,

 $\mu_2 = (3, 2, 1)^T$ 是方程组的两个特解,则此方程组的全部解为______

4、设
$$A$$
为三阶可逆矩阵, $|A|=2$,则 $|-2A^{-1}|=$ _____。

- 5、若线性无关的向量组 $\beta_1,\beta_2,\cdots\beta_k$ 能由 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示,则 k 与 m 之间的关系为 k _______m 。
- 6、设向量组 $\alpha_1 = \begin{pmatrix} 1, & 1, & 0, & 0 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 0, & k, & 1, & 1 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} 0, & 0, & 1, & k \end{pmatrix}^T,$

- 7、设A是n阶正交矩阵,且 $A^* + A^T = 0$,则 $|A| = _________。$
- 9、设 $\alpha = (-1, 2, 1)^T$, $\beta = (2, -1, 2)^T$, 则向量 α 与 β 的内积为_____。

10、设
$$A,B$$
均为三阶矩阵,且满足 $AB+I=A^2+B$, $A=\begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,

则 **B** = _____。

二、 (10 分) 计算行列式:
$$\begin{vmatrix} 2 & -5 & 3 & 1 \\ 1 & 3 & -1 & 3 \\ 0 & 1 & 1 & -5 \\ -1 & -4 & 2 & -3 \end{vmatrix}$$

三、 (10分) 设对称矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
, 求:

- (1) A的所有特征值和特征向量;
- (2) 正交矩阵 Q,使 $Q^TAQ = \Lambda$ (Λ 为对角矩阵)。

四、 (10分) *k* 满足什么条件时,下面的方程组有唯一解,无解,有无穷多解? 有无穷解时利用基础解系求出全部解。

$$\begin{cases} x_1 + x_2 + 2x_3 = -k \\ x_1 + 2x_2 + kx_3 = k^2 \\ 2x_1 + x_2 + k^2 x_3 = 0 \end{cases}$$

五、(10 分) 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ 4 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 3 \\ 4 \\ 7 \end{pmatrix}$$

- (1) 判断向量组的线性相关性
- (2) 求向量组的一个极大线性无关组,并其余向量由极大无关组线性表示。

六、(10分)已知A与B均为n阶矩阵,AB=0,求证: 秩A+秩B $\leq n$.

七、 $(10\ eta)$ 已知 A 三阶矩阵,2I-A,I-A,I+A 都不可逆,则求: A 的所有特征值及 |A|

八、
$$(10\, \text{分})$$
 设矩阵 $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 2 & -3 \end{pmatrix}$ 写出对应的二次型,并化为标准型

苏州大学	《线性代数》	课程试卷库	(第四卷)	共	4	面
かかくせ	\\ > \&\ T. \\ \\ X \ /				4	ソベ

苏州大学《线	性代数》课程	星试卷库	三 (第	四卷)	共 4	页
学院	专业			_成绩_		
年级	_ 学号	姓	名		日期_	
题号 一	二三	四	五.	六	七	
得分						
1、若方阵 A 与 B 相似			C相似。		()
2 、若向量组 $\alpha_1,\alpha_2,\alpha_3$,线性相关,则 α	₃ 能由α ₁ 和	和 $lpha_2$ 线性	比表示。	()
3、可逆方阵 A 的转置	矩阵 A^T 必可逆。				()
4、设有矩阵 A 、 B ,	且 AB 有意义,	$U A + B \mathcal{Q}$	的有意义	o	()
5、若方程组 $Ax = b(b)$	≠0)有无穷多解,	则 $Ax = 0$) 也有无	穷多解。	。 ()
选择题						
6、设 A,B 均为 n 阶方	阵,则必有	o				
(a) $ AB = BA $	(b) <i>AB</i>	= BA				
(c) $ A+B = A + B $	(d) (A+	$(B)^{-1} = A^{-1}$	$^{-1} + B^{-1}$			
$7、若矩阵 A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 3 \end{pmatrix}$	1 1 λ+1 的秩为 2,	则 λ=_		_°		
(a) 0 (b) 2	(c) -1 (d)	1				
8、设有两个向量组 A	$:\alpha_1,\alpha_2,\alpha_3$ 和 $B:\alpha_1$	$\alpha_1, \alpha_2, \alpha_3,$	α_4 ,则_		_结论是	正确的。
(a)若 A 线性无关,则(c)若 B 线性无关,则						
9、设非齐次线性方程	$\mathfrak{U} Ax = b$ 中,系数	数矩阵 A)	为m×n为	拒阵, 且	r(A) =	r,则下
列结论正确的是	唯一解 (b) 解 (d)	r < n 时	方程组有	无穷多角		
10 、设矩阵 $A = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	-2 -2,则下列矩阵	中非奇异的	矩阵是_		o	
(a) $-2I + A$ (b)	I-A (c) $2I$	- A ((d) $-3I$	-A		

二、 计算题 (每题 10 分, 共 20 分)

1、求行列式的值
$$D = \begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

2、已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
,求 $(A^*)^{-1}$

三、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & -2 & 2 \\ 4 & 3 & t \\ 3 & 1 & -1 \end{pmatrix}$$
, 三阶矩阵 $B \neq 0$, $AB = 0$, 求: $t \approx r(B)$

四、(10 分) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 2 & 3 & 3 & 4 \\ 3 & 5 & 4 & 7 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$
, 求: 齐次线性方程组 $Ax = 0$ 的

一个基础解系和全部解。

五、(10 分)设三阶矩阵 A 的特征值为 1、2、3,对应的特征向量分别为 $\alpha_1 = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T, \alpha_2 = \begin{pmatrix} 1, & 0, & 1 \end{pmatrix}^T, \alpha_3 = \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}^T$,试求矩阵 A。

六、(10 分) 设矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
, 求:

(1) A 的特征值和特征向量; (2) 正交矩阵Q, 使 $Q^{-1}AQ$ 为对角矩阵。

七、 $(10\,
m eta)$ 设向量 m eta 能由向量组 $m lpha_1, lpha_2, lpha_3$ 线性表示且表达式唯一,证明:向量组 $m lpha_1, lpha_2, lpha_3$ 线性无关。

苏州大学《线性代数》课程试卷库(第五卷)共 4 页

年级______ 学号_____ 姓名_____日期___

题号	 	111	四	五	六	七	八
得分							

一、填空题: (每题3分,共30分)

1、多项式
$$f(x) = \begin{vmatrix} x & -1 & 0 & x \\ 2 & 2 & 3 & x \\ -7 & 10 & 4 & 3 \\ 1 & -7 & 1 & x \end{vmatrix}$$
 中的常数项为_____。

- 2、若 A 为三阶可逆矩阵,且|A|=2,则 $|(-2A^*)^T|=$ _____。
- 3、设矩阵 A 满足 $A^2 + A 4I = 0$,则 $(A I)^{-1} =$ ______。

4、已知
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & a+1 \end{pmatrix}$$
的秩为 2,则 $a = \underline{\hspace{1cm}}$ 。

5、设
$$A$$
 为 4×3 阶矩阵, $r(A) = 2$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}$ 则 $r(AB) =$ _____。
6、已知线性方程组 $\begin{cases} x_1 & -2x_2 & +3x_3 & = & -1 \\ & -x_2 & +2x_3 & = & 2 \end{cases}$ 无解,则 $\lambda =$ ___。 $\lambda(\lambda-1)x_3 = (\lambda-1)(\lambda-2)$

- 7、当 t_____时,向量组 α_1 = (1,2,-2), α_2 = (4,t,3), α_3 = (3,-1,1) 线性无关。
- 8、设任意一个n维向量都是齐次线性方程组 $A_{mxn}x=0$ 的解向量,则 $r(A) = \underline{\hspace{1cm}}_{\circ}$
- 9、已知 λ 是A的特征值, A^* 是A的伴随阵,则 A^* 的特征值=

10、已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,则 $y = \underline{\hspace{1cm}}$ 。

二、(10分) 计算行列式
$$D = \begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix}$$

三、(10分)设矩阵
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, 且满足关系式 $AP = PB$,

求: A, A^5 .

四、
$$(10 分)$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{2000} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{2001}$$

五、(10分) 线性方程组
$$\begin{cases} x_1 + & x_2 + & x_3 + & x_4 + & x_5 &= a \\ 3x_1 + & 2x_2 + & x_3 + & x_4 - & 3x_5 &= 0 \\ & x_2 + & 2x_3 + & 2x_4 + & 6x_5 &= b \\ 5x_1 + & 4x_2 + & 3x_3 + & 3x_4 - & x_5 &= 2 \end{cases}$$

讨论当*a*,*b* 为何值时,方程组有解,当方程组有解时,用其导出组的基础解系表示方程组的全部解。

六、(10分) 已知
$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
, 求:

(1) A的所有特征值和特征向量、(2) 正交矩阵Q,使 $Q^{-1}AQ$ 为对角阵 Λ 。

七、(10 分) 已知
$$A = \frac{1}{9} \begin{pmatrix} -1 & 4 & a \\ a & 4 & -1 \\ 4 & b & 4 \end{pmatrix}$$
 是正交阵,求: a,b 的值

八、(10分)设 n 阶方阵 A,B 分别与对角阵 Λ_1,Λ_2 相似,

求证: 分块矩阵
$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$
 必与一个对角阵相似

苏州大学《线性代数》课程试卷库(第六卷)共 4 页

年级______ 学号______ 姓名_____日期____

题号	 	\equiv	四	五	六	七	八
得分							

一、填空题: (每题3分,共30分)

2、设 A, B 均为 n 阶矩阵,|A| = 2, |B| = -3, A^* 是 A 的伴随矩阵, $|3A^*B^{-1}| = ______$ 。

3、设
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
,则 $(2A)^{-1} = \underline{\hspace{1cm}}$ 。

4、非齐次线性方程组 $A_{m\times n}X_{n\times l}=b_{m\times l}$ 有惟一解的充分必要条件是_____。

5、向量 $\alpha = (3, 1)^T$ 用 $\eta_1 = (1, 2)^T, \eta_2 = (2, 1)^T$ 线性表示的表达式_____。

6、设
$$\alpha = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
,矩阵 $A = \alpha \alpha^T$, n 为正整数,则 $A^n = \underline{\hspace{1cm}}$ 。

8、若n阶矩阵A有一个特征值为 2,则 |A-2I|=_____。

9、已知三阶矩阵 A 的特征值为 -1, 3, -3, 矩阵 B = A + I, 则 $|B| = ______$ 。

三、(10 分) 线性方程组
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1 \\ x_1 - x_2 + x_3 + x_4 = 2 \\ 7x_1 + 2x_2 - 2x_3 + 4x_4 = a \\ 7x_1 - x_2 + x_3 + 5x_4 = b \end{cases}$$
 当 a,b 为何值时有解? 在有

解的情况下,利用其导出组的基础解系求其全部解。

四、(10分) 设
$$AX + B = X$$
, 其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$, 求: X

五、(10分) 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & x \end{pmatrix}$$
 相似,

求: (1) x; (2) 可逆矩阵 P, 使 $P^{-1}AP = B$.

六、(10 分) 设二次型 $f = 2x^2 + 4y^2 + 4xy + 4yz$,试写出对应的矩阵,并利用配方法化为标准型。

七、(10分)设
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 2 & -1 \\ 1 & 3 & 0 \end{pmatrix}$$
,求 A 的特征值和特征向量。

八、 $(10 \, \text{分})$ 证明: 如果 A 是 $n(n \geq 2)$ 阶矩阵, 当 r(A) = n - 1 时, 试证: $r(A^*) = 1$

苏州大学	《线性代数》	课程试卷库	(第七卷)	# 4	L面
かカリハナ	\\ \=\\ \ _ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			ノヽ‐	r ツベ

学院	专业_		成绩				
年级	学号		姓名_		日	期	
题号 一	= =	四	五.	六	七	八	
一、(每题 3 分,共 1、若 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ = 6, (a) 12 (b) - 2、设 A, B 都是 n 阶矩	则 $\begin{vmatrix} a_{12} & 2a_{11} & 0 \\ a_{22} & 2a_{21} & 0 \\ 0 & -2 & -1 \end{vmatrix}$ -12 (c) 18	(d)	0	立的是(
(a) A = 0, 或 B = 0(c) A, B 中至少有		` '	A, B都 $A+B=$				
3、已知向量组 α_1,α_2 (a) $\alpha_1,\alpha_2,\cdots \alpha_s$ 中 (b) $\alpha_1,\alpha_2,\cdots \alpha_s$ 中	一定含有零向量	0			()	
(c) $\alpha_1, \alpha_2, \cdots \alpha_s \Leftrightarrow$ (d) $\alpha_1, \alpha_2, \cdots \alpha_s \Leftrightarrow$						0	
4、设 <i>n</i> 阶矩阵 <i>A</i> 的税 (a) 必有 <i>r</i> 个行向量 (b) 任意 <i>r</i> 个行向量 (c) 任意 <i>r</i> 个行向量 (d) 任一行向量均可	量线性无关 。 量均可构成极大线 量均线性无关。	性无关	组。	()		
5、设 A, B 为 n阶矩阵	\mathbf{E} ,且 \mathbf{A} 与 \mathbf{B} 相似。	, <i>I</i> 为 n	阶矩阵,	,则结论	正确的是	를 ()	
 (a) λI - A = λI - B (c) A 与 B 都相似 6、设三阶矩阵 A = 	于一个对角矩阵	(d) d	cI – A与	cI - B 相	似(c为		
(a) -1 (b) 0	(c) 1	(d)	2				

是非题

- 7、若A和B都是n阶对称阵,则AB也是对称阵。 ()
- 8、 E_n 所矩阵 A_n 与 E_n 相似,则存在可逆矩阵 E_n 使得 E_n 使得 E_n ()
- 9、已知向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则向量组 $\alpha_1-\alpha_2,\alpha_2-\alpha_3,\alpha_3-\alpha_1$ 也线性无关
- 10、若 A 为满秩方阵,则 A 的特征值不为零。 ()
- 二、 $(10 \, \beta)$ 计算行列式 $\begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2-n & 0 \\ 0 & 0 & 0 & \cdots & n-1 & 1-n \end{vmatrix}$

三、(10 分)已知
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
,写出对应二次型,并化为标准型

四、(10 分) 线性方程组
$$\begin{cases} x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 2x_1 + x_2 - 6x_3 + 4x_4 = -1 \\ 3x_1 + 2x_2 + ax_3 + 7x_4 = -1 \\ x_1 - x_2 - 6x_3 - x_4 = b \end{cases}$$

- (1) 讨论 a,b 取何值时,方程组有解?无解?
- (2) 当有解时,试用其导出组的基础解系表示其全部解

五、
$$(10 分)$$
 已知向量 $\alpha = (1, k, 1)^T$ 是矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ 的逆矩阵 A^{-1} 的特征

向量, 求常数k的值

六、(10 分)已知向量组 $A: \alpha_1 = (2, 1, 1, 1)$, $\alpha_2 = (-1, 1, 7, 10)$, $\alpha_3 = (3, 1, -1, -2)$, $\alpha_4 = (8, 5, 9, 11)$, 求:它的一个极大无关组,并将 其余向量用此极大无关组线性表示。

七、
$$(10\, \mathcal{G})$$
 已知实对称矩阵 $A=\begin{pmatrix}1&-2&0\\-2&-2&0\\0&0&-2\end{pmatrix}$,求正交阵 Q ,对角阵 Λ ,使得 $Q^TAQ=\Lambda$

八、(10 分)设正交矩阵Q的特征值为 λ ,证明: $|\lambda|=1$

学院			专业							
年级		<u> </u>	8号		_ 姓名_		日	期		
题号			三	四	五.	六	七	八		
得分									=	
一、填空题 1 2a 1 a+b 1 2b 2、若n阶	$\begin{vmatrix} a^2 \\ b & ab \\ b^2 \end{vmatrix} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$									
3、设 A为										
4 、设 A, \overline{A} 。 分必要条 5 、设 A, B β_1, β_2, \cdots 6 、已知 $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$	·件是 匀为 m×i ,β"线性	n 矩阵, 表示,『	若 A 的歹 则 r(A) 与	间向量组 f r(B) 的	$oxed{lpha_1,lpha_2,\cdots}$ 关系为_	。 · ,α _n 可由	B 的列向	可量组	_0	
(a ₃ 7、已知向量 t =8、若 3 阶统	畫组α 1 =	(1, -2,	3), $\alpha_2 =$	= $(0, t -$	$1, 2), \alpha_3$	$_{3} = (0, 0)$), 3)的和	泆为2,	则	
9、已知 <i>a</i> = 对应于 <i>a</i> 10、设 <i>A</i> 为	的特征向	可量, <i>β</i>	$=\alpha_1-2\alpha_1$	$lpha_2$,则 A	β=				0	
则 $lpha_{\scriptscriptstyle 1},lpha_{\scriptscriptstyle 2}$	$lpha_2$ 的内积	(α_1, α_2)	=		_0					

苏州大学《线性代数》课程试卷库(第八卷)共4页

二、(10 分) 如果
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = m, \quad 则求 \begin{vmatrix} a_1 + 3b_1 & b_1 + 2c_1 & c_1 + a_1 \\ a_2 + 3b_2 & b_2 + 2c_2 & c_2 + a_2 \\ a_3 + 3b_3 & b_3 + 2c_3 & c_3 + a_3 \end{vmatrix}$$

三、(10分) 设矩阵
$$A,B$$
 满足 $A^*BA = 2BA - 8I$, 其中 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 求 B

四、
$$(10 分)$$
 设 $A = \begin{bmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{bmatrix}$, B 是非零的 3 阶矩阵,且 $AB = 0$,求: t 的值

五、(10 分) 线性方程组
$$\begin{cases} 3x_1 + x_2 - x_3 - 2x_4 = 2\\ x_1 - 5x_2 + 2x_3 + x_4 = -1\\ 2x_1 + 6x_2 - 3x_3 - 3x_4 = a + 1\\ -x_1 - 11x_2 + 5x_3 + 4x_4 = -4 \end{cases}$$

当 a 为何值时有解?在有解的情况下,利用基础解系求其全部解。

六、(10 分) 给定向量组
$$A = (\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4) = \begin{pmatrix} 2 & 3 & 1 & 4 \\ 1 & -1 & 3 & -3 \\ 3 & 2 & 4 & 1 \\ -1 & 0 & -2 & 1 \end{pmatrix}$$
 , 求向量

组的一个极大无关组,并将其余向量由此极大无关组表示;

七、(10分) 若矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
, 求可逆矩阵 P , 使 $P^{-1}AP = \Lambda$ 。

八、证明题: (10分)

设A为 $m \times n$ 矩阵, B为n阶方阵, 且r(A) = n, 试证: 如果 AB = A, 则 B = I

	苏州大	大学 《经	线性代	数》词	果程试	巻库(第九卷	矣) 共	4 页		
	学院			_ 专业	<u>, </u>			绩			
	年级		学	号		姓名_		日期			
	题号		<u></u>	三	四	五.	六	七	八		
	得分										
	一、(每题 3 分,共 30 分,)单项选择题: $1、行列式 A = \begin{vmatrix} 0 & 1 & 0 & 5 \\ 0 & 2 & 2 & 6 \\ 3 & 3 & 0 & 7 \\ 0 & 4 & 0 & 8 \end{vmatrix} = ()$ (a) -12 (b) -24 (c) -36 (d) -72										
((a) A^*B	?* (b) $ AB A$	$\mathbf{A}^{-1}\mathbf{B}^{-1}$	(c)	$B^{-1}A^{-1}$	(d)	B^*A^*			
	向量组。 (a) r=s								()	
4、	n阶矩阵	‡A,B均	为可逆知	5阵,若	$C = \begin{pmatrix} O \\ A \end{pmatrix}$	$\binom{B}{O}$, \bowtie	$C^{-1} =$	()	
((a) $\begin{pmatrix} A^{-1} \\ O \end{pmatrix}$	$\left. egin{array}{c} O \ B^{-1} \end{array} ight)$	(b) $\begin{pmatrix} a \\ A \end{pmatrix}$	$O B^{-1}$	(c)	$\begin{pmatrix} O & A \\ B^{-1} & C \end{pmatrix}$	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ (c)	d) $\begin{pmatrix} B^{-1} \\ O \end{pmatrix}$	$\left. egin{aligned} O \ A^{-1} \end{aligned} ight)$		
(n阶矩阵 (a) A有。 (c) A的。	n个线性	无关的特	持征向量	(b)	A有n个	不同的)	
6、	设A的特	寺征多项	式 21 -	A = (A)	$(\lambda + 1)(\lambda + 1)$	+ 4)(2	(1),	则 $ A =$	()		
	(a) 4 非题	(b)	1 (c	-1	(d)	-4					
7、	线性方称	呈组 Ax =	=0只有氡	\$解,则	Ax = b(b	≠0)有四	住一解。		()		
8、	若存在-	一组数 k ₁	$=k_2=\cdots$	$\cdot = k_m =$	0,使得	$k_1\alpha_1 + k_2$	$\alpha_2 + \cdots$	$+k_m\alpha_m =$	0成立,	,则	

9、设n阶矩阵A是奇异阵,则A中必有一列向量是其余列向量的线性组合。()

向量组 $\alpha_1, \alpha_2, \cdots \alpha_m$ 线性无关。

10、设A,B都是n阶矩阵,且 $|A| \neq 0$,则AB 与 BA 必相似。 ()

二、(10分) 计算
$$n$$
阶行列式 $\begin{vmatrix} x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \\ y & 0 & \cdots & 0 & x \end{vmatrix}$

三、
$$(10 \, \beta)$$
 设 A, B 为 3 阶矩阵,且满足方程 $A^{-1}BA = 6A + BA$, $A = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}$,

求B

四、(10 分) 线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 &= 2\\ 2x_1 + 3x_2 + x_3 + x_4 - 3x_5 &= 0\\ x_1 + 2x_3 + 2x_4 + 6x_5 &= 6\\ 4x_1 + 5x_2 + 3x_3 + 3x_4 - x_5 &= 4 \end{cases}$$

利用其导出组的基础解系求出方程组的全部解。

五、(10 分) 已知向量组
$$A: \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 \\ -3 \\ 5 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 3 \\ 2 \\ -1 \\ p+2 \end{pmatrix}, \alpha_4 = \begin{pmatrix} -2 \\ -6 \\ 10 \\ p \end{pmatrix}$$

求(1) p为何值时,向量组线性相关?

(2) 此时求向量组的一个极大无关组,并将其余向量由该极大无关组线性表出。

六、(10 分) 设 3 阶矩阵 A 的特征值分别为 $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = 3$,对应的特征向量依次为 $\xi_1 = \begin{pmatrix} 1, & -1, & 0 \end{pmatrix}^T$, $\xi_2 = \begin{pmatrix} 1, & -1, & 1 \end{pmatrix}^T$, $\xi_3 = \begin{pmatrix} 0, & 1, & -1 \end{pmatrix}^T$ 求:矩阵 A

七、(10 分) 设二次型 $f = 2y^2 + 3z^2 + 4xy - 2yz$, (1) 表示为矩阵形式, (2) 将其化为标准型。

八、(10分)设 $A^2=I$,但 $A\neq I$,证明: $\left|A+I\right|=0$

苏州大学《线性代数》课程试卷库(第十卷)共 4 页

年级______ 学号______ 姓名_____日期____

题号	_	 三	四	五.	六	七	八
得分							

- 一、填空题: (每题 3 分, 共 30 分)
- 1、排列 $(n-1)\cdots 3\cdot 2\cdot 1\cdot n$ 的逆序数为 。
- 2、设3阶方阵A,满足|A|=3,则 $|A^*+A^{-1}|=$ ______。
- 3 、 若 方 程 组 $\begin{cases} x_2 + x_3 = a_2 \\ x_3 + x_4 = a_3 \end{cases}$ 有 解 , 则 常 数 a_1, a_2, a_3, a_4 应 满 足 关 系

式______。
4、已知
$$X \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \begin{pmatrix} 2a_1 & 2b_1 & 2c_1 \\ a_2 & b_2 & c_2 \\ a_2 + a_3 & b_2 + b_3 & c_2 + c_3 \end{pmatrix}$$
,则 $X =$ ______。

- 5、设向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则向量组 $\alpha_1-\alpha_2,\alpha_2-\alpha_3,\alpha_3-\alpha_4,\alpha_4-\alpha_1$ 线
- 6、 齐次线性方程组 $x_1 + x_2 + \dots + x_n = 0$ 的基础解系所含解向量的个数
- 7、设 3 阶方阵 $A \neq 0$, $B = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & t \\ 3 & 5 & 3 \end{pmatrix}$,且 AB = 0,则 t =_______。
- 9、设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,则A的两个特征值之和为_____。
- 10、已知A是n阶方阵,满足 $A^2 = I$,则A的特征值 $\lambda =$ _____。

二、(10 分)设矩阵
$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
, $B = \begin{pmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{pmatrix}$, 且 $|A| = 4$, $|B| = 1$, 求: $|A + B|$

三、
$$(10 分)$$
 设矩阵 $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$,矩阵 X 满足 $A^*X = A^{-1} + 2X$,其中 A^* 是 A 的伴随阵,求:矩阵 X

四、(10 分) 已知 A,B 均是 3 阶矩阵,将 A 中第 3 行的 -2 倍加至第 2 行得到矩阵 A_1 ,将 B 中第 2 列加至第 1 列得到矩阵 B_1 ,又知 $A_1B_1=\begin{bmatrix}1&1&1\\0&2&2\\0&0&3\end{bmatrix}$,求 AB

五、(10 分) 给定线性方程组 $\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 3 \\ x_1 + 2x_2 + x_3 - x_4 = 2 \end{cases}$ 用其导出组的基础解系表 $2x_1 + x_2 + 5x_3 + 4x_4 = 7$ 示其全部解。

六、(10 分) 设向量组: $\alpha_1 = (1, 1, 1, 3)^T$, $\alpha_2 = (-1, -3, 5, 1)^T$ $\alpha_3 = (3, 2, -1, p+2)^T$, $\alpha_4 = (-2, -6, 10, p)^T$,

- 求(1) p为何值时,该向量组线性相关?
 - (2) 此时向量组的秩和一个极大线性无关组。

七、(10分) 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, 求:

(1) A 的特征值和特征向量, (2) 正交矩阵Q, 使 Q^TAQ 为对角阵

八、证明题: (10分)已知n阶实对称矩阵A满足 $A^2+6A+8I=0$,证明:

(1) A+3I是可逆矩阵; (2) A+3I是正交矩阵。

苏州	大学《	线性代	3数》i	果程试	卷库((第十-	一卷)	共 4	页		
学院_		专业				成绩					
年级_		学号			姓名	姓名			_日期		
题号	_	<u> </u>	=	四	五.	六	七	八	九		
得分											
一、选	择题: (本题 15	分,每小	、题 3 分))						
(A)	0 (2 3 4 1 -1 3 0 0 3 0 0 0 0 0 0 B) 2 0 0	(C) 3	的秩为 (D)	4					
2. 119		:	: : #	引且人			[J			
	$ \lambda_n $	0	0 0								
(A) ((B)) $\lambda_1 \lambda_2 \cdots$	$\cdot \lambda_n$ (C) (-1)	$\frac{n(n-1)}{2}\lambda_1\lambda_2$	$\cdots \lambda_n$	(D) -	$\lambda_1 \lambda_2 \cdots \lambda_n$			
		阶方阵,					[]			
(A) 5	矩阵 A 的	秩 r(A) =	= 3	(B) 行	列式 A^TA	$ \mathbf{A} = 1$					
(C) 彳	污列式 A	+E =0		(D) 矩队) ⁻¹ 的特征	正值分别	为 1, $\frac{1}{2}$, $\frac{1}{3}$			
4. 已知	们n维向量	量组 $\alpha_{\scriptscriptstyle 1}$, α	$\alpha_2, \cdots, \alpha_m$	(m > 2)	线性无法	矣,则	[]			

- (B) m>n 。 (C) 对任意n维向量 β ,有 $\alpha_1,\alpha_2,\cdots,\alpha_m,\beta$ 线性相关。
- (D) $\alpha_1, \alpha_2, \cdots, \alpha_m (m > 2)$ 中任意两个向量均为线性无关。
- 5. 设矩阵 $A_{m \times n}$ 的秩 r(A) = m < n, B 为 n 阶方阵, 则 [

(A) 对任意一组数 k_1,k_2,\cdots,k_m 都有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$ 。

- (A) $A_{m \times n}$ 的任意m阶子式均不为零。 (B) 当秩r(B) = n 时有秩 r(AB) = m。
- (C) $A_{m \times n}$ 的任意m个列向量均线性无关。(D) $\left| A^{T} A \right| \neq 0$

二、**填空题:**(本题 15 分,每小题 3 分)

- 2. 已知A, B为 4 阶方阵,且|A| = -2,|B| = 3,则 $|A^{-1}B^{-1}| = ______$ 。
- 3. 设A,B为可逆矩阵,则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} =$ _______。
- 4. 当t =_____时,向量组 $\alpha_1 = (0, 4, 2-t), \alpha_2 = (2, 3-t, 1),$ $\alpha_3 = (1-t, 2, 3)$ 线性相关。
- 5. 若 3 阶矩阵 A 的特征值为 $\lambda_1 = 2, \lambda_2 = 3, \lambda_3 = 1$,则 $|A| = ______$ 。

三、(本题 10 分) 已知
$$D = \begin{vmatrix} 1 & 0 & -3 & 7 \\ 0 & 1 & 2 & 1 \\ -3 & 4 & 0 & 3 \\ 1 & -2 & 2 & -1 \end{vmatrix}$$

求: (1) D的代数余子式 A_{12} (2) $A_{11} + A_{21} + 2A_{31} + 2A_{41}$

$$(2) \quad A_{11} + A_{21} + 2A_{31} + 2A_{41}$$

四、(本题 10 分) 已知
$$A = \begin{bmatrix} -4 & -3 & 1 \\ -5 & -3 & 1 \\ 6 & 4 & -1 \end{bmatrix}$$
, 且 $A^2 - AB = E$, 求: B

五、(本题 10 分) 设向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$

- (1) 求它的一个极大无关组和秩,并将其余向量由极大无关组线性表示。
- (2) 求向量组的一个正交向量组。

六、(本題 10 分) 已知 $\alpha_1 = (1, 4, 0, 2)^T$, $\alpha_2 = (2, 7, 1, 3)^T$, $\alpha_3 = (0, 1, -1, a)^T$, $\beta = (3, 10, b, 4)^T$

试讨论 (1) a,b取何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;

(2) a,b 取何值时, β 可以由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,并写出此表达式。

七、(本题 10 分) 已知
$$\xi = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 是矩阵 $A = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$ 的一个特征向量,利

用此条件 (1) 确定常数 a,b;

(2) 确定特征向量 ξ 对应的特征值 λ

八、(本题 10 分) 将二次型 $f = 3y^2 + 4z^2 + 6xy + 2xz$ 化为标准型。

九、(本题 10 分)证明题

设A是n阶正交矩阵,且|A|<0,证明:|A+E|=0

苏州大学	学《线	生代数	》课程	是试卷月	库 (第	十二巻	失(法	4 页
学院			专业			成绩		
年级		学号			性名		日期	月
题号	_		=	四	五	六	七	八
一、填空是 1、设方程								_•
2、设 1 0	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} X \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	$= \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 6 & 1 \end{bmatrix}$	则 <i>X</i> =			
3、设矩阵4、设向量								
$\stackrel{\underline{u}}{=} t = \underline{}}$	B	寸, β可	$ \pm \alpha_1, \alpha_2 $	₂ , α ₃ 线性	生表示。			
5、设 <i>A</i> 是	方阵且满	i足 A ² + .	A - 8E =	0, (A-	$-2E)^{-1}=$			o
6、当 <i>t</i> = 性相关。		村,向量组	$\mathbb{H} \alpha_1 = (1$, 2, 3)	$\alpha_2 = (2$	2, 3, 1), $\alpha_3 = 0$	1, 3, t)约
7、已知 <i>A</i>	B 为 4 阶	方阵,」	A = -2	2, B = 3	,则(AI	B) ⁻¹ =		o
8、设5元	线性齐次	方程组	AX = 0	,其基础	出解系由	3 个解向	量组成,	则 $r(A) =$
9、设 <i>A</i> =	$\begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix}, $	則 A ² 可	与对角阵	¥ Λ=		相位	义。	
10、设A共	是三阶方图	库,且 <i>A</i>	-E = A	A+2E =	2A+3E	= 0,则	A+E =	

二、判断题: (每小题 2 分,共计 10 分)

1、已知A是对称矩阵,则 AA^{-1} 也是对称矩阵。

[]

- 2、设A是 $m \times n$ 阶矩阵,且r(A) = r < m < n, A经过初等变换可化为 $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ 。
- 3、已知向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中任意两个向量都不成比例,则向量组线性无关。
- 4、若方程组 AX = 0有非零解,则方程组 AX = b 有无穷多个解。 []
- 5、如果A与B相似,则它们有相同的特征值和特征向量。 []
- 三、(本题 10 分) 设 $(\frac{1}{2}A)^{-1} = \begin{bmatrix} 0 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 0 & 0 \end{bmatrix}$, 求: 矩阵 A

四、(本题 10 分) 已知向量 α_1 = (1, 2, 3), α_2 = (4, 5, 6), α_3 = (7, 8, 9), 求: 向量组 α_1 , α_1 + α_2 , α_1 + α_2 + α_3 的秩与一个极大无关组

五、(本题 10 分) 已知矩阵
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

满足 $AXB^{T} = (BC)^{T}$, 求矩阵X

六、(本题 10 分)

已知线性方程组
$$\begin{cases} x_1 & +x_2 & +ax_3 & = 1 \\ ax_1 & +ax_2 & +x_3 & = 1 \\ (a+1)x_1 & +(a+1)x_2 & +(a+1)x_3 & = 2 \end{cases}$$

讨论 a 的取值与方程组之间的关系,且在有解时求解。

七、(本题 10 分) 设
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

- (1) 求 A 的特征值与特征向量;
- (2) 求正交矩阵Q, 使 $Q^{-1}(A^2+2A+E)Q$ 为对角矩阵。

八、(本题 10 分) 设向量组 α_1 , α_2 , α_3 线性无关,向量组 α_2 , α_3 , α_4 线性相关, 试证: α_1 不能由 α_2 , α_3 , α_4 线性表示。

苏州	N大学	《线性	性代数》	》课程	试卷库	尾(第一	十三卷	:) 共。	4 页
学院	i			专业			成绩_		
年级			学号_		姓	:名		日期_	
			Ξ	四	五.	六	七	八	九
得分 一、	 选择是	顷. (岳 語	题 3 分,	共计 15	<u>分</u>)				
•					$-5a_{21}$	$ 3a_{21} $			
1、已知	$\begin{vmatrix} a_{21} & a_{22} \end{vmatrix}$	$ a_{23} =$	3,则 <i>a</i>	$a_{12} 2a_{32}$	$-5a_{22}$ 3	$ a_{22} =$		[]
	$\begin{vmatrix} a_{31} & a_{31} \end{vmatrix}$	a_{33}	a	a_{13} $2a_{33}$	$-5a_{23}$ 3	$3a_{23}$			
					(D)				
					ラ矩阵 B				
(A)	A = B	(F	B) A与,	B有相回	目的特征多	多坝工			
(C) r((A) = r(B)	3) (D) <i>n</i> 阶矩	阵A与A	B有相同	的特征值	直且れ个物	恃征值各	-不相同
3、设 <i>A</i>	为m×n	阶矩阵,	C 是 n l	阶非奇异	异阵, B=	=AC,	r(A) = 1	r, r(B) =	= r ₁ ,则
								[]
(A) <i>r</i>	> <i>r</i> ₁	(B) r <	$< r_1$	(C) r=	$= r_1$ (D)) r与r	的关系的	依 <i>C</i> 而定	
4、设向	量组 α_1 ,	α_2, α_3	线性无关	き,则 下	「列向量组	组线性相	1关的是	[]
(A) a	$\alpha_1 + \alpha_2, \alpha_3$	$\alpha_2 + \alpha_3$	$\alpha_3 + \alpha_1$	(B)	$\alpha_{\scriptscriptstyle 1}, \alpha_{\scriptscriptstyle 1}$ +	α_2 , α_1 +	$\alpha_2 + \alpha_3$		
(C) α	$\alpha_1 - \alpha_2$, α_2	$\alpha_2 - \alpha_3$, α_3	$\alpha_3 - \alpha_1$	(D)	$\alpha_1 + \alpha_2$	$2\alpha_2 + \alpha_2$	$\alpha_3, 3\alpha_3 + \alpha_3$	$\alpha_{_1}$	
5、设线	性方程组	$4 \le Ax = b$	有n个表	 夫知量,	m个方程	星,且 r(A)=r,	则 []
					r=n				
(C) <i>n</i> 二、填 ²					r < n	寸,方程:	组有无实	3多解	
					$=\alpha^T\beta$,	则 $r(A)$	=	o	
2、设α	$\alpha_1, \alpha_2, \cdots$	$, \alpha_n$ 是 n	维列向量	畫, A =	$(\alpha_1, \alpha_2, \cdots)$	$\cdots, \alpha_n)$,	则 α_1 , α_2	$\alpha_2, \cdots, \alpha_n$	线性无
关的?	充要条件	-是 A		o					

- 3、若 $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 0 & 0 & x & 3 \\ 0 & 0 & 4 & 5 \end{vmatrix} = 0$,则 x =_______。
- 4、设3阶方阵A的三个特征值为1, 2, 3, 则 A^* 的三个特征值为
- 5、设三阶方阵 A 满足 $|A| = \frac{1}{2}$,且 $B = (2A^2)^{-1} 2(A^{-1})^2$,则 $|B| = _____$ 。
- 三、 $(10\, \%)$ 计算行列式 $\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$

- 四、(10分)设方阵 A 满足 $A^2 + A 8E = 0$,
 - (1) 证明: A-2E可逆;
 - (2) 设矩阵 X 与 A 满足关系式 $AX + 2(A + 3E)^{-1}A = 2X + 2E$, 求 X

五、(10分) 读
$$\begin{cases} x_1 + & x_2 + & x_3 + & x_4 + & x_5 & = 1 \\ 3x_1 + & 2x_2 + & x_3 + & x_4 - & 3x_5 & = a \\ & x_2 + & 2x_3 + & 2x_4 + & 6x_5 & = 3 \\ 5x_1 + & 4x_2 + & 3x_3 + & 3x_4 - & x_5 & = b \end{cases}$$

讨论当*a*,*b* 为何值时,方程组有解,当方程组有解时,用其导出组的基础解系表示方程组的全部解。

六、(10分) 向量组 $A: \alpha_1 = (1, 0, 1, 0, 1), \alpha_2 = (0, 1, 1, 0, 1),$

$$\alpha_3 = (1, 1, 0, 0, 1), \alpha_4 = (-3, -2, 3, 0, -1),$$

求:(1) A的秩及一个极大无关组;

(3) 将A的每一个向量用极大无关组线性表示。

七、(10 分) 设
$$A = \begin{pmatrix} a & 1 & 1 & 2 \\ 2 & a+1 & 2a & 3a+1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$
, 存在 3 阶非零方阵 $B \notin BA = 0$, 求 a

八、
$$(10 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, 求 (1) 特征值和特征向量;

(2) 正交矩阵Q, 使 Q^TAQ 为对角阵。

九、(10 分) 设A为正交矩阵,证明:A的伴随阵 A^* 也是正交矩阵。

苏州大学	《线性代数》	课程试卷库	(第十四卷)	共4页
学院		· 1/4	成绩	

题号	 	=	四	五	六	七	八
得分							

一、填空题: (每题3分,共30分)

- 3、设方阵 A 满足 $A^2 + 2A + 3E = 0$,则 $A^{-1} =$ ______。
- 4、设向量 $\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\beta = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$,矩阵 $A = \alpha \beta^T$,则 $A^6 = \underline{\hspace{1cm}}$ 。
- 5、设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & -3 \\ 3 & -1 & 1 \end{pmatrix}$,并且A的列向量组线性相关,则t =______。
- 6、设 $A = \left(a_{ij}\right)_{3\times 3}$, $B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{pmatrix}$,存在矩阵P使得PA = B,

7、如果n维向量组 α_1 , α_2 ,…, α_n 线性无关,当n阶实方阵A满足 ______

- 条件时,向量组 $A\alpha_1, A\alpha_2, \cdots, A\alpha_n$ 也线性无关。
- 8、设A为n阶可逆矩阵,其行向量可由 β_1 , β_2 ,…, β_s 线性表出,则s满足_____。
- 9、设n阶矩阵A的各行元素之和均为0,且r(A) = n 1,则齐次线性方程组Ax = 0的通解为_____。

10、设 λ 为n阶非奇异方阵A的一个特征值,则 $(A^*)^3 - 2E$ 必有特征值_____。

二、(10 分) 计算行列式
$$D = \begin{vmatrix} -a_1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & a_2 & \cdots & 0 & 0 \\ 0 & 0 & -a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_n & a_n \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

三、(10分) 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 1 & 3 & 0 \\ 1 & 2 & 1 & 4 \end{pmatrix}$$
, 求 A^{-1}

四、(10 分)设A,B,C为三阶可逆方阵,

(1) 化简等式 $(BC^T - E)^T (AB^{-1})^T + [(BA^{-1})^T]^{-1}$;

(2) 当
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
, $C = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 时,求出上式结果.

五、(10分) 求下列向量组的秩和一个极大无关组,并把其余向量用极大无关组线性表示.

$$\alpha_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -4 \end{pmatrix}, \quad \alpha_{2} = \begin{pmatrix} 2 \\ 3 \\ -4 \\ 1 \end{pmatrix}, \quad \alpha_{3} = \begin{pmatrix} 2 \\ -5 \\ 8 \\ -3 \end{pmatrix}, \quad \alpha_{4} = \begin{pmatrix} 5 \\ 26 \\ -9 \\ -12 \end{pmatrix}, \quad \alpha_{5} = \begin{pmatrix} 3 \\ -4 \\ 1 \\ 2 \end{pmatrix}$$

六、(10 分) 已知方程组
$$\begin{cases} (1-\lambda)x_1 + (1-\lambda)x_2 + & x_3 = 1 + \lambda \\ (1-2\lambda)x_1 + (1-\lambda)x_2 + & x_3 = 1 \\ x_1 + & x_2 + (1-\lambda)x_3 = 1 \end{cases}$$

- (1) 问λ为何值时,方程组有唯一解、无解或有无穷多解?
- (2) 在有无穷多解时求出通解.

七、(10 分) 问
$$a$$
 取何值时矩阵 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ -2 & a & 3 \end{pmatrix}$ A 可对角化

八、 $(10\,

ota)$ 设 $\lambda_1 = 1$, $\lambda_2 = -1$ 是正交矩阵 A 的两个特征值, α , β 是对应的特征向量,证明: $\alpha = \beta$ 正交

苏	苏州大学《线性代数》课程试卷库(第十五卷)共4页										
学院	ਦੇ ਹ			专业	成绩						
年级	支		学号_		姓	姓名					
题号	_		三	四	五.	六	七	八	九		
得分											
一、选	择题: (每题3分	、 共计	15分)			ļ.				
1、已知		2 4),则	$A^* =$					[]		
$(A) \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} \qquad (C) \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$											
		$A 与 B 相 \lambda E - B$,						[]		
$(B) \ \underline{\lambda}$	付于任意	常数t,	有 $ tE-E $	A = tE - t	B						
(C) 1	字在对角	矩阵Λ,	使得 A	与 B 都相	似于 \(\)						
(D) =	当 λ ₀ 是 A	与 B 的特	寺征值时	·, <i>n</i> 元 求	下次线性	方程组($\lambda_0 E - A$).	x = 0 = 5			
($\lambda_0 E - B$)	<i>x</i> = 0 同角	译								
3、设 A	4 为 n 阶	矩阵,上	$A^k=0$	(<i>k</i> 为正	整数),	则		[]		
(A) A					可一个不; n 个线性		序征值 特征向量	1			
4、设 A	4 为 n 阶	方阵, r	(A) = n -	-3,且向	可量组 α_1	α_2, α_3	是 $Ax = 0$	的三个组	线性		
无关的	解向量,	则 $Ax =$	0的基础	解系可し	以是[]					

(A) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ (B) $\alpha_2 - \alpha_1$, $\alpha_3 - \alpha_2$, $\alpha_1 - \alpha_3$

(A) 任何一个向量(B) 没有一个向量(C) 至少有一个向量(D) 至多有一个向量

组内其余向量线性表示。

(C) $2\alpha_2 - \alpha_1, \frac{1}{2}\alpha_3 - \alpha_2, \ \alpha_1 - \alpha_3$ (D) $\alpha_1 + \alpha_2 + \alpha_3, \ \alpha_3 - \alpha_2, -2\alpha_3 - \alpha_1$

5、设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ ($n \ge 2$) 线性相关,那么向量组内 [] 可由向量

- 二、填空题: (每题 3 分, 共计 15 分)
- 1、设向量 $\alpha = (1, a, b)$ 与 $\beta = (2, 2, 2)$, $\gamma = (3, 1, 3)$ 都正交,则 $a = ______$, $b = ______$ 。
- 2、设 A , B 为 3 阶方阵,且 $\left|A\right|=-1$, $\left|B\right|=2$,则 $\left|2(A^TB^{-1})^2\right|=$ _____。
- 3、设 4 阶方阵 A 的秩为 2,则其伴随阵 A^* 的秩是_____。
- 5、设 3 阶方阵 A 的三个特征值为 1, 2, 3, 则 A^*A^{-1} 的三个特征值为______,
- 三、(10 分) 计算行列式 $D_4 = \begin{vmatrix} 2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 5 & -9 & 2 & 7 \\ 4 & -6 & 1 & 2 \end{vmatrix}$

四、(10分)设方阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & -5 & 2 \\ -4 & -10 & 3 \end{pmatrix}$$
,

1、证明: A可逆; 2、求 $(A^*)^{-1}$; 3、解矩阵方程 $A^*X = A + A^{-1}$.

五、(10 分) 设线性方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 3x_4 + 7x_5 &= 0 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 &= 0 \\ x_2 + 2x_3 + 2x_4 + 6x_5 &= 0 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 &= 0 \end{cases}$$

用基础解系表示方程组的全部解

六、
$$(10 分)$$
 向量组 $A: \alpha_1 = (1, -2, -1, -2, 2), \alpha_2 = (4, 1, 2, 1, 3),$ $\alpha_3 = (2, 5, 4, -1, 0), \alpha_4 = (1, 1, 1, 1, \frac{1}{3}),$

- (1) 证明向量组 α_1 , α_2 , α_3 , α_4 线性相关;
- (2) 求向量组的一个极大无关组;
- (3) 将其余向量用极大无关组线性表示。

七、(10分)设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 求 A 特征值和特征向量;

八、(10分)利用正交变换将二次型 $f = x^2 + 2y^2 - 4xy$ 化为标准型。

九、(10 分)设非零数 λ_0 是正交矩阵A的一个特征值,

证明: $\frac{1}{\lambda_0}$ 也是 A 的特征值

学院	专业			成	绩	
年级	学号		姓名_		日	期
题号 一 得分 — 判断题, (每期	三 三 三 [2分, 共12分	四	五工	六	七	八 "~")
1、若方阵 A 、 B 、 $C2$ 、每一个秩为 r 的。	AB = AC,	$\mathbb{E} A \neq 0$,则 <i>B</i> =	<i>C</i> 。	()
$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ °					()
3 、 n 维向量组 α_1,α_2 ,	$, \alpha_s$ 线性无关	, 则 <i>n</i> 维	自量组	$\alpha_1, \alpha_2, \cdots$	$,\alpha_s,\alpha_{s+1}$	$,\cdots,lpha_{\scriptscriptstyle{m}}$ 也
线性无关。					()
4、有 n 阶矩阵 A , k	为一常数,,则	kA = k A	A •		()
5、一个向量组的极大 6、设 A 为 m×n 阶矩队 总有解。						
二、 选择题: (每题	[3分,共18分	>)				
l、已知 A 是 3 阶方图	$[A] = 2, A^* $ 是	是它的伴	随阵,贝	$\left 2A^* \right =$		o
(a) 4 (b) 8	(c) 16 (d) 32				
2、设向量组(1, 1, 0	(3, 0, -9)), (1,	2, 3),	(1, -1,	6) 的秽	是
a) 1 (b) 2 3、设有向量组 A,向 a)若 A 线性相关,则 c)若 B 线性无关,则]量组 <i>B</i> 是 <i>A</i> 的 <i>B</i> 线性相关	部分组, (b)若	A 线性力	无关, 则	B 线性3	元关
4、设 A 为正交阵,	a_j 是 A 的第 j 列	引,则 a_j	与 a_j 的[为积为_	0	
(a) 0 (b) 1	(c) 2 (d) 3				
5、如果齐次线性方程	${44 A_{s \times n} x = 0 有 = 0}$	非零解,	那么	o		
(a) $s < n$ (b) $s =$	= n (c) s	> n	(d) 三 ^元	种情况都	有可能	
5、设 A 是 n 阶矩阵,	如果 $ A =0$,贝	I A 的特	征值			
(a) 全为零 (b)	全不为零 (c)	至少有-	一个是零	(d)	可以是任	意数

苏州大学《线性代数》课程试卷库(第十六卷)共4页

三、 计算题:

1、(10 分) 求行列式的值
$$D = \begin{vmatrix} 2+x & 2 & 2 & 2 \\ 2 & 2-x & 2 & 2 \\ 2 & 2 & 2+y & 2 \\ 2 & 2 & 2 & 2-y \end{vmatrix}$$

2、(10 分) 设
$$A = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 1 \\ -1 & 2 \end{pmatrix}$, $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$, \overrightarrow{R} C^{-1}

四、
$$(10 分)$$
 已知矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, 且矩阵 X 满足

AXA + BXB = AXB + BXA + E, 求矩阵 X

五、(10分) 求线性方程组 $\begin{cases} x_2 + 2x_3 + 2x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 = -1 \end{cases}$ 的一个基础解系和全部解。 $4x_1 + 3x_2 + 2x_3 + 2x_4 = -1$

六、(10分)已知A的特征值为3,2,1,它们对应的特征向量为

$$\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}, \quad \stackrel{?}{\cancel{x}} A$$

七、(10分) 设矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, 求(1) A 的特征值和特征向量;

(2) 正交矩阵Q和对角阵 Λ , 使 $Q^{-1}AQ = \Lambda$ 。

八、(10 分)证明: 向量组 $A:\alpha_1,\alpha_2,\alpha_3$ 线性无关的充要条件是向量组 $B:\beta_1=\alpha_1+\alpha_2,\ \beta_2=\alpha_2+\alpha_3,\ \beta_3=\alpha_1+\alpha_3$ 线性无关。

		专业	· ·		成	绩		
年级		岁号		_ 姓名_		日邦	期	
题号 一	·	三	四	五	六	七	八	
│ 得分 、填空题 : (年	<u>■</u> ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	<u> </u>						
1 、设 α , β , γ			I 3 阶行	列式 4γ	$-\alpha$, β	-2γ , 2α	= 40,	贝
						•	I	
1] 列式 0	$\alpha, \beta, \gamma = 0$:	0					
2、已知 <i>A</i> ⁻¹	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$	 						
2、 L	$= \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, 贝 A = _				0		
3、如果每一	一个,维向	, 鲁新可止	1 向 景 组		a 维	州	回点	書り
5、州木母	化炉	里即門口	1円里知	$\alpha_1, \alpha_2, \cdots$	$\alpha_n \lesssim 1$	庄 仪 山,	火灯門	巳を
$\alpha_1, \alpha_2, \cdots$	·, <i>a</i> "线性		0					
4、设 <i>A</i> , <i>B</i> 均	月为n阶方四	声,且 <i>AI</i>	$ \mathbf{S} = 2$, \mathbb{J}	則方程组	$Ax = 0 \pm \frac{1}{2}$	$\vec{y} Bx = 0 \dot{\mathbb{P}}$	的非零網	解自
个数为_		•						
				(2-	a = 2)		
5、设实数 a	满足 $ a \neq 1$, 目齐次:	线性方程	星组 1 /	<i>n</i> 2	x = 0有非	上零解,	Ţ
5、设实数 a	满足 <i>a</i> ≠1	,且齐次:	线性方程	\mathbb{E} 组 $\binom{2-6}{1/2}$	2-a	x = 0有非	卡零解,	贝
a =	o			(/ 2	•	/		
<i>a</i> =6、已知 <i>A</i> ,	o	阶矩阵,	A 与 B	(/ 2	•	/		
<i>a</i> =6、已知 <i>A</i> ,	。 B均为n B的秩是	阶矩阵,	A 与 B °	相似且	方程组力	/		
a = 6、已知 A , 则矩阵 B	。 B 均为 n 的秩是	阶矩阵, $r(A) = 3$,	A 与 B 。 则 r(A*	* 相似且	方程组	$Ax = b \stackrel{?}{=}$	育唯一 角	裈,
a =	B 均为 n 的秩是	阶矩阵, $r(A)=3$, $\alpha_2=($	A 与 B	$\alpha_3 = (1,$	方程组 / 。 <i>t</i> ,3) 两两	$Ax = b \stackrel{?}{=}$	育唯一 角	裈,
a =	B 均为 n 的秩是	阶矩阵, $r(A)=3$, $\alpha_2=($	A 与 B	$\alpha_3 = (1,$	方程组 / 。 <i>t</i> ,3) 两两	$Ax = b \stackrel{?}{=}$	育唯一 角	裈,
a =	B 均为 n 的秩是	阶矩阵, $r(A) = 3,$ $\alpha_2 = ($ $\alpha_2 = ($ $\alpha_3 = ($	A 与 B	* 相似且 * 相似且 $\alpha_3 = (1,$	方程组 / 。 t,3) 两两 。	$Ax = b \stackrel{?}{\uparrow}$ 正交, $t = \frac{1}{2}$	可唯 ──角	裈,
a =	B 均为 n 的秩是	阶矩阵, $r(A) = 3,$ $\alpha_2 = ($ $\alpha_2 = ($ $\alpha_3 = ($	A 与 B	* 相似且 * 相似且 $\alpha_3 = (1,$	方程组 / 。 t,3) 两两 。	$Ax = b \stackrel{?}{\uparrow}$ 正交, $t = \frac{1}{2}$	可唯 ──角	裈,
a =	B 均为 n 的 秩是 A ,且 A A A B A B	阶矩阵, $r(A) = 3,$ $\alpha_2 = ($ 2 -3	A 与 B \mathbb{Q} $r(A^*$ $3,0,-1)$, \mathbb{Q} \mathbb{Q} \mathbb{Q}	$\alpha_3 = (1, 1)^3 = 1$	方程组 <i>z</i> 。 <i>t</i> ,3) 两两 。	Ax = b 有	可唯 ──角	裈,
a =	B 均为 n 的 A 的 A	阶矩阵, $r(A) = 3$, $\alpha_2 = ($ 2 $-3)$ 芸素全为 1	A 与 B 则 r(A [*] 3,0,-1), ,则 A i 正确的	$\alpha_3 = (1, 1)^3 = 2$ 为非零特 打" $\sqrt{3}^3 = 2$	方程组 / 。 <i>t</i> ,3) 两两 。 征值为_ ,否则打	Ax = b 有	可唯 ──角	诨,

3、如果向量组 $\beta_1,\beta_2,\beta_3,\beta_4$ 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出, $\beta_1,\beta_2,\beta_3,\beta_4$ 线性相关。

()

- 4、设n阶矩阵A,C是正交矩阵,且 $C^TAC = B$,则A,B有相同的特征值。(
- 5、设A是n阶下三角矩阵,当 $a_{ii} \neq a_{jj}$ $(i \neq j, i, j = 1, 2, \cdots, n)$ 时,A相似于对角阵。

()

三、(10分) 计算行列式 D=
$$\begin{vmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{vmatrix}$$

四、(10分)设矩阵
$$A,B$$
满足关系式 $AB = A + 2B$,且 $A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$

求: B

五、 $(10\, eta)$ 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ (m>1) 线性无关,且 $\beta=\alpha_1+\alpha_2+\cdots+\alpha_m$,判断向量组 $\beta-\alpha_1,\beta-\alpha_2,\cdots,\beta-\alpha_m$ 的线性相关性。

六、(10 分) 线性方程组
$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 1 \\ x_1 + 2x_2 - x_3 + 4x_4 = 2 \\ x_1 + 7x_2 - 4x_3 + 11x_4 = \lambda \end{cases}$$

- (1) 讨论当 λ 为何值时,方程组无解?方程组有解?
- (2) 当方程组有解时,用其导出组的基础解系表示方程组的全部解。

七、
$$(10 分)$$
 已知 $A = \begin{pmatrix} 1 & -2 & -2 \\ 2 & -3 & -2 \\ -2 & 2 & 1 \end{pmatrix}$, 求: (1) A 的所有特征值和特征向量;

(2) 可逆矩阵 P 和对角阵 Λ , 使 $P^{-1}AP = \Lambda$; (3) A^k

八、(10分)设n阶实对称矩阵A,B相似,

求证:存在正交矩阵Q,使 $Q^TAQ = B$

7	学院			_专业_			_成绩_			
左	F级 <u></u>		学号			姓名_		E	日期	
<u> </u>	题号 得分			三二	四	五	六	七	八	
一、 1、		选择题: 题正确的		6 选项填在	上愽线上	(母拠 4	分,共	计 20 分。 []	
(a)	若矩阵	$\hat{E}AB=E$,则 <i>A</i>	可逆且A	$^{-1}=B$ \circ					
(b)	若矩阵	A,B均	为 n 阶 ī	可逆,则	$A+B$ $\overset{\circ}{\mathbb{Z}}$	可逆。				
(c)	若矩阵	A,B均	为n阶不	可逆,贝	$\mathbb{I}A + B\mathbb{Z}$	必不可逆	0			
(d)	若矩阵	A,B均	为n阶不	可逆,贝	リAB 必フ	下可逆。				
2,	设 <i>A</i> 为	m×n 阶分	矩阵,1	3 为 m×s	阶矩阵,	已知矩	阵方程	$AX = B^{\frac{1}{2}}$	有解,则 ⁷]	有
(a)	$r(A) \leq$	r(B)	(b) r($A) \ge r(B)$	(c)	r(A) >	0 (d)	r(B)	> 0	
3、	下列命题	50不正确	的是					[]	
(a)	若n维	向量组c	$\alpha_1, \alpha_2, \cdots$	$,\alpha_{\scriptscriptstyle m}$ 中没	有零向量	量,则向:	量组必线	。性无关。		
(b)	若向量	$: 组 lpha_1, lpha_2$	α_{m} ,, α_{m}	满足 $\sum_{i=1}^{m} k_i$	$_{i}\alpha_{i}=0$,	则必有。	$k_1 = k_2 =$	$\cdots = k_m$	= 0 。	
(c)	向量组	$[\alpha_1, \alpha_2, \cdot]$	··,a _m 线	性无关,	即不存	在不全为	7 0 的数	(k_1, k_2, \cdots)	·,k _m ,使往	得
	$\sum_{i=1}^m k_i \alpha$	_i = 0 °								
(d)	向量组	$\alpha_1, \alpha_2, \cdots$	··,a _m 线	性无关,	即对任意	10000000000000000000000000000000000000	全为0印	勺数 k ₁ , k ₂	$,\cdots,k_m$,	凶
	有 $\sum_{i=1}^{m} k$	$\alpha_i = 0$								
4, Ē	己知 $lpha_{\scriptscriptstyle 1}$,	α_2, α_3 都	是齐次约	线性方程:	组 $Ax = 0$	的基础	解系,	『么基础	解系还可以	以
是								[]	
(a)	$k_1\alpha_1 +$	$k_2\alpha_2 + k$	α_3	(b)	$\alpha_1 + \alpha_2$	$,\alpha_2+\alpha_3$	$,\alpha_3+\alpha_1$			
(c)	$\alpha_1 - \alpha$	$\alpha_2, \alpha_2 - \alpha_3$	3	(d)	α_1, α_1 –	$\alpha_2 + \alpha_3$,	$\alpha_3 - \alpha_2$			

5、下列 2 阶矩阵可对角化的是

- (a) $\begin{pmatrix} 3 & 0 \\ -4 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & -4 \\ 1 & 5 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 3 \\ 0 & -4 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 3 \\ -3 & 6 \end{pmatrix}$

- 二、填空题: (每题 4 分, 共 20 分)
- 1、设 4 阶方阵 $A=\left(\xi,\ \alpha,\ \beta,\ \gamma\right),\ B=\left(\eta,\ \beta,\ \gamma,\ \alpha\right),\ \exists \ \exists \ |A|=1, |B|=2, 则$
- 2、若 A 为 2×3 阶矩阵,r(A) = 2, 已知非齐次线性方程组 $Ax = b(b \neq 0)$ 有解 α_1,α_2 ,且 $\alpha_1=\begin{pmatrix}1,&2,&1\end{pmatrix}^T$, $\alpha_1+\alpha_2=\begin{pmatrix}1,&-1,&1\end{pmatrix}^T$,则对应的齐次线性方程组 Ax = 0的通解为____
- 3、已知矩阵 $A = \begin{pmatrix} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{pmatrix}$, 且 3 阶方阵 B 的秩为 2,

$$r(B) - r(AB) = \underline{\hspace{1cm}}_{\circ}$$

- 5、已知 $\begin{pmatrix} x & -3 \\ y & -5 \end{pmatrix}$ 与 $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ 相似,则 $x + y = \underline{\qquad}$ 。
- 三、 $(10\, eta)$ 计算行列式: $D = \begin{vmatrix} 1 & a_1 & 0 & \cdots & 0 & 0 \\ -1 & 1 a_1 & a_2 & \cdots & 0 & 0 \\ 0 & -1 & 1 a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 a_{n-1} & a_n \\ 0 & 0 & 0 & \cdots & -1 & 1 a_n \end{vmatrix}$

四、(10 分)设线性方程组 $\begin{cases} 2x_1-x_2-x_3=2\\ x_1-2x_2-2x_3=-2 \text{, 求方程组的通解(用其导出组}\\ x_1+x_2+x_3=4 \end{cases}$

的基础解系表示)

五、
$$(10\, eta)$$
 设向量 $\alpha_1=\begin{pmatrix}b\\b+1\\2b+1\end{pmatrix}$, $\alpha_2=\begin{pmatrix}1\\b+1\\3\end{pmatrix}$, $\alpha_3=\begin{pmatrix}1\\2\\b+2\end{pmatrix}$, $\beta=\begin{pmatrix}1\\2\\3\end{pmatrix}$, 已知 β 可

由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,且 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,求b及 β 被 $\alpha_1,\alpha_2,\alpha_3$ 表示的表示式。

六、
$$(10 分)$$
 设: $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$, 试求 A 的特征值和特征向量

七、(10分)如果n阶矩阵A满足 $A^2 = A$,求证:r(A) + r(A - E) = n

八、(10分)1,2,-1是 3阶方阵 A的特征值,对应的特征向量分别为

苏州大学《统	线性代数》语	果程试	卷库 (第十力	1卷)共	;4页
学院	专业	<u></u>		成	绩	
年级	学号		姓名_		日期	玥
题号 一	= =	四	五.	六	七	八
得分 一、单项选择题: (1、4 阶行列式 D 的			Z式都等·	于a,则)
	(b) $D = 1$					
2 、设 A 是 $n \times m$ 阶知	拒阵, $r(A) = n$,	则			()
(a) AA ^T 为可逆	矩阵 (b	$A^T A$	为可逆矩	三阵		
(c) AA ^T 必与E	相似 (d	A^TA	必与 E 相	目似		
3 、向量组 $\alpha_1, \alpha_2, \alpha_3$	线性无关,向量	组 $lpha_2,lpha_3$	$,lpha_{\scriptscriptstyle 4}$ 线性	相关,「	训 ()
(a) α_4 未必能被 α_4	$lpha_{_{1}},lpha_{_{2}},lpha_{_{3}}$ 线性表示	京 (b)	$lpha_{\scriptscriptstyle 4}$ 必能	被 α_1, α_2	$_{2},lpha_{3}$ 线性 $_{3}$	長示
(c) α_1 未必能被 α_2	$lpha_2,lpha_3,lpha_4$ 线性表示	示 (d)	$lpha_{\scriptscriptstyle 1}$ 必能	$被lpha_{\scriptscriptstyle 2},lpha$	$_{_3},lpha_{_4}$ 线性	表示
4 、设 A 是 $m \times n$ 阶	矩阵,齐次线性	方程组A	AX = 0 是	eAX = b	的导出组 (,则必有)
(a) 若 AX = 0 有角 (b) 若 AX = 0 有非			多解			
(c) 若 AX = 0 只不 (d) 若 AX = b 有ラ	有零解,则 <i>AX</i> =	b有唯一	解			
5、设矩阵 <i>A</i> 与矩阵			. / J <i>3</i> / m²		()
(a) A,B有相同的	J特征向量	(b)	A,B有木	目同的行	列式	
(c) A,B相似于同	一个对角矩阵	(d)	矩阵 <i>Æ</i>	- A 与 A	E-B相等	Ť
二、填空题: (每题						
1、设 <i>A</i> 是3阶方阵						
2、若 n 阶矩阵 A ,	.)					
3 、设 $A = $ $\begin{pmatrix} 0 & A_1 \\ 0 & 0 \\ A_3 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ A_2 \\ 0 \end{pmatrix}$,其中 A_i (i	E = 1,2,3	是可逆矩	阵,则 A	⁻¹ =	c

4、若矩阵
$$\begin{pmatrix} 1 & a & -1 & 2 \\ 1 & -1 & a & 2 \\ 1 & 0 & -1 & 2 \end{pmatrix}$$
的秩为 2,则 $a =$ ______。

- 三、(10 分)计算行列式 $A = \begin{vmatrix} 0 & a & b & 0 \\ e & 0 & 0 & f \\ g & 0 & 0 & h \\ 0 & c & d & 0 \end{vmatrix}$

四、(10 分) 线性方程组 $\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 3\\ x_1 + 2x_2 + x_3 - x_4 = 2 \end{cases}$,利用其导出组的基础解系求 $2x_1 + x_2 + 5x_3 + 4x_4 = 7$ 出方程组的全部解。

五、
$$(20 分)$$
 已知向量 $\alpha_1 = \begin{pmatrix} a \\ a \\ a \end{pmatrix}, \alpha_2 = \begin{pmatrix} a-1 \\ a \\ a-1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ a-1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

- 求(1) a为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关;
 - (2) a为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 唯一线性表示;
 - (3) a为何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;
 - (4) a为何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示且表达式不唯一。

六、(10分) 将二次型 $f = x^2 + y^2 + z^2 + 4xy$ 化为标准型。

七、(10 分) 矩阵 $A = \begin{pmatrix} 5 & -4 & -2 \\ -4 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix}$, 求: (1) A 的所有特征值和特征向量

(2) 正交矩阵Q, 使得 $Q^{-1}AQ = \Lambda(\Lambda)$ 为对角矩阵)

八、 $(10 \, \beta)$ 设A为 $n \times m$ 矩阵, B为 $m \times n$ 矩阵, n < m, 且AB = E, 证明: r(B) = n

苏州大学《线性代数》课程试卷库(第二十卷)共4页

年级______ 学号_____ 姓名_____日期____

E A	题号	 	\equiv	四	五.	六	七	八
1	得分							

一、填空题: (每题 3 分, 共 30 分)

1、设
$$A,B$$
 都是 3 阶矩阵,且 $A = \begin{pmatrix} \alpha \\ 2\gamma_1 \\ 3\gamma_2 \end{pmatrix}$, $B = \begin{pmatrix} \beta \\ \gamma_1 \\ \gamma_2 \end{pmatrix}$,其中 $\alpha,\beta,\gamma_1,\gamma_2$ 均为 3 维

行向量,|A|=15,|B|=3,则行列式|A-B|=_____。

2、已知方阵 A 满足 $aA^2 + bA + cE = 0$ (其中 a,b,c 为常数,且 $c \neq 0$),则

 $A^{-1} = \underline{\hspace{1cm}}_{\circ}$

3、设
$$\begin{vmatrix} 1 & 1 & 0 & 0 \\ 1 & k & 1 & 0 \\ 0 & 0 & k & 2 \\ 0 & 0 & 2 & k \end{vmatrix} \neq 0$$
,则 k 应满足_____。

- 4 、 设 β,α_1,α_2 线 性 相 关 , β,α_2,α_3 线 性 无 关 , 则 $\beta,\alpha_1,\alpha_2,\alpha_3$ 线 性 _____。
- 5、设 $\alpha_1 = (1, 1, 1)$, $\alpha_2 = (a, 0, b)$, $\alpha_3 = (1, 3, 2)$ 线性相关,则a,b应满足关系式_____。
- 6、设A满足 $A^2 + 2A + E = 0$,则A的特征值为_____。
- 7、设A为n阶方阵,r(A) = n 3, $\alpha_1, \alpha_2, \alpha_3$ 是齐次线性方程组Ax = 0的三个线性无关的解向量,则Ax = 0的一个基础解系为 ________。
- 8、设 A 是 3×4 阶矩阵,r(A) = 2, $B = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$,则 $r(BA) = \underline{\qquad}$ 。
- 9、设方阵 $A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{pmatrix}$ 相似于对角矩阵 $\begin{pmatrix} 5 & & \\ & t & \\ & & -4 \end{pmatrix}$,则 $t = \underline{\qquad \qquad }$ 。

10、设有一个四元非齐次线性方程组 Ax=b, r(A)=3, $\alpha_1,\alpha_2,\alpha_3$ 为其解向量,

且 $\alpha_1 = (1, 9, 9, 7)^T$, $\alpha_2 + \alpha_3 = (1, 9, 9, 8)^T$, 则 此 方 程 组 的 一 般 解 为 ______。

二、
$$(10 分)$$
 计算 n 阶行列式 $\begin{vmatrix} -n & 1 & \cdots & 1 & 1 \\ 1 & -n & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \cdots & -n & 1 \\ 1 & 1 & \cdots & 1 & -n \end{vmatrix}$

三、(10 分)设矩阵
$$B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $C = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ 矩阵 X 满足

 $X(E-C^{-1}B)^TC^T=E$, 求: 矩阵 X

四、
$$(10 分)$$
 设矩阵 $A = \frac{1}{2} \begin{pmatrix} 1 & 2a & 1 \\ -1 & \sqrt{2} & 2b \\ \sqrt{2} & 2c & -\sqrt{2} \end{pmatrix}$,问当 a,b 为何值时, A 为正交矩阵;

此时利用正交矩阵性质,求解线性方程组 $Ax = (1, 1, 1)^T$.

五、(10 分) 给定线性方程组
$$\begin{cases} x_1 + x_2 + (2-\lambda)x_3 = 1 \\ (3-2\lambda)x_1 + (2-\lambda)x_2 + x_3 = \lambda \\ (2-\lambda)x_1 + (2-\lambda)x_2 + x_3 = 1 \end{cases}$$

讨论λ取何值时,方程组无解?有唯一解?有无穷多解?在有解时,求出其解。

六、 $(10\, \, \, \, \, \, \,)$ 设向量组: $\alpha_1 = \begin{pmatrix} 1, & 1, & 3, & 1 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} -1, & 1, & -1, & 3 \end{pmatrix}^T$ $\alpha_3 = \begin{pmatrix} 5, & -2, & 8, & -9 \end{pmatrix}^T$, $\alpha_4 = \begin{pmatrix} -1, & 3, & 1, & 7 \end{pmatrix}^T$, 求向量组的秩和一个极大线性无关组。

七、(10分) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{pmatrix}$$
, 求 A 的特征值和特征向量

八、证明题: $(10 \, \text{分})$ 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1 = \alpha_1 - \alpha_2$, $\beta_2 = 2\alpha_1 + 3\alpha_2 + 2\alpha_3, \quad \beta_3 = \alpha_1 + 3\alpha_2 + 2\alpha_3, \quad \text{证明:} \quad \beta_1, \beta_2, \beta_3$ 线性无关.