

PHYSICS LAB
(20147)
Experiment No. 5
Newton's Second Law

Acceleration Due to Gravity

Exp.no.5 Newton's Second LawAcceleration Due to Gravity

Newton's second law takes the form

$$\sum \mathbf{F} = \mathbf{m} \ a$$

Where \sum_{I}

is the resultant force acting on an object and cause its motion.

m

is the mass of the object.

 \boldsymbol{a}

is the acceleration of the object.

We shall use this law to determine the acceleration of gravity by studying the freely motion of an object on a frictionless incline surface.

Motion of an object on an incline surface

According to Newton's second law, the force caused the motion of the object is

m g sin θ

We can write

$$m g \sin \theta = m a$$

or

$$g \sin \theta = a$$

From which we determine the acceleration due to gravity as

$$g = \frac{a}{\sin e \theta}$$

To find sin θ experimentally

we have
$$sin \theta = \frac{h}{d}$$
, but $h = y - x$

Therefore
$$\sin \theta = \frac{y-x}{d}$$

To determine a experimentally

According to the laws of motions

$$S_1 = V_0 t_1 + 1/2 a t_1^2$$
.....(1)
 $S_2 = V_0 t_2 + 1/2 a t_2^2$(2)

Solving eqs. 1 and 2, we get

$$a = \frac{2(S_2t_1 - S_1t_2)}{t_1t_2(t_2 - t_1)}$$

$$g = \frac{ad}{h}$$

How to operate the electronic timer for the first time

1. Turn the power switch on.

3. Press times.

many

4. Connect the photo cells in the right order.

How to take readings by the electronic timer

1. Press

2. To find t₁, press

3. To find t₂, press

4. To start new reading, press

Results:

A) Complete the following table:

$$d = cm, y = cm, x = cm, h = cm$$

No.	P ₁	P ₂	P 3	S ₁	S ₂	t 1 Sec.	t 2 Sec.	a cm/s²	g cm/s²
1	70	90	110						
2	80	95	125						
3	90	100	130						
Average g								=	

B. Calculate the acceleration **a** of the trolley using the relation

$$a = \frac{2(S_2t_{1-}S_1\,t_2)}{t_1t_2(t_2-t_1)}$$

and the acceleration due to gravity **g** using the relation $\mathbf{g} = \frac{\mathbf{ad}}{\mathbf{h}}$ your results in the above table.

in each case, write

Case 1:

Case 2.