Reagent Name	Reqd. PPE	Critical Safety Hazards	Reactivity	Disposal
Limonene	Standard	Skin hazard, inhalation hazard,	Flammable	Hazardous Waste
		environmental hazard		
Methanol	Standard	Toxic	Flammable	Hazardous Waste

Procedure:

- 1. Label a 100 mL beaker "methanol".
- 2. Label eight 10 mL volumetric flasks "G", "O", "L"(for grapefruit, orange, and lemon), "S50", "S25", "S12.5", and "S6.25" (for the standards with the concentrations in μ g/mL), and leave one without a label.
- 3. Label a 25 mL volumetric flask "S100".
- 4. Gather stoppers for the volumetric flasks.
- 5. Label three 7 mL vials "G", "O", and "L".
- 6. Obtain two 5 mL beakers, label one "Limonene".
- 7. Pour roughly 75 mL of methanol into the beaker.
- 8. Obtain a working 5 mL volumetric pipette and bulb for the methanol.

Extraction of Limonene from Fruit

- 9. Using a razor blade, collect a piece of the rind of a grapefruit, lemon, and orange around a fingerprint size in area into a large weigh boat. Avoid having the white flesh in the sample.
- 10. Bring the rind pieces and the vials to an analytical balance.
- 11. From each rind piece, mass and record a roughly 0.1 g sample avoiding the white flesh.
- 12. Place this rind piece in the appropriate vial.
- 13. Using the volumetric pipet, transfer 5 mL of methanol into each vial.
- 14. Shake each vial vigorously for 5 minutes, then let each vial rest for 5 minutes.
- 15. Using a P500, transfer two 500 μ L aliquots from the "orange" vial and one aliquot for lemon and grapefruit to the 10 mL volumetric flask with the same label.
- 16. Using a transfer pipette, fill the volumetric flasks to the mark with methanol.

Preparation of Standard

$$97\%*0.842~{\rm g/mL}*\frac{200\mu L}{25~{\rm mL}}*\frac{153\mu L}{10~{\rm mL}}=100.\mu {\rm g/mL}$$

- 17. Pour roughly 1 mL of (R)-(+)-Limonene (Sigma-Aldrich, catalog number 18316, 97% purity) into the 5 mL beaker labeled "Limonene".
- 18. Using a P200, transfer 200 μL of the limonene from the beaker into an unlabeled 10 mL volumetric flask.
- 19. Fill the volumetric flask to the mark with methanol.
- 20. Pour out about 1 mL of this dilution into an unlabeled 5mL beaker.
- 21. Using a P200, transfer 153 μL of the dilution from the beaker into the 25 mL volumetric flask labeled "S100".
- 22. Mix "S100" by 20x inversion.
- 23. Using the volumetric pipette, transfer 5 mL of methanol into each of the four 10 mL volumetric flasks for the standards, recovering with the stopper immediately after to avoid evaporation.
- 24. Use a transfer pipette to fill the "S50" flask to the mark with the contents of the "S100" flask.
- 25. Mix "S50" by 20x inversion.
- 26. Use a new transfer pipette to fill the "S25" flask to the mark with "S50", and mix by inversion. Repeat this process to create the other two standards.

Operation of the GC-MS Machine

- 27. Label and fill GC vials with two replicates for each standard and one replicate for each fruit.
- 28. Bring them to the machine.
- 29. On the attached computer, open a GCMSD1 Enhanced window
- 30. Click the pencil icon in the "Method" section.
- 31. Check "Instrument/Acquisition" and leave the other two checkboxes blank.
- 32. For Inlet and Injection Parameters, ensure the the sample inlet is GC and the injection source is GCALS, and the "Use MS" box is checked.
- 33. Configure the instrument parameters according to this table.

Table 1. Operation Specifications for GC.					
Gas Chromatograph:	PerkinElmer Clarus 500 GC				
Analytical Column:	Elite-5ms (30 m x 0.25 mm x 0.25 μm)				
Injector-Port Type:	Capillary				
Injector-Port Temp:	250 °C				
Injection Type:	Split (20 mL/min)				
Syringe Volume:	5 μL				
Injection Volume:	0.5 μL				
Injection Speed:	Fast				
Rinse Solvent:	Methanol				
Carrier-Gas Program:	1 mL/min				
Oven Program:	Temperature	Hold Time	Rate		
-	80 °C	3 min	5 °C/min		
-	140 °C	0 min	45 °C/mir		
-	275 °C	Hold			

Table 2. Operation Specifications for MS.				
Mass Spectrometer:	PerkinElmer Clarus 560 D MS			
GC Inlet Temp:	250 °C			
Ion-Source Temp:	250 °C			
Function Type:	Full Scan			
Full-Scan Range:	m/z 40-300			
Full-Scan Time:	0.15 sec			
Interscan Delay:	0.05 sec			
Solvent Delay:	2.5 min			

- 34. Click Apply.
- 35. Click Okay.

- 36. When it asks for an MS Tune file use "atune u".
- 37. Save the method as u521-NW.
- 38. Go to the pencil in front of blue bottles icon under the sequence bar.
- 39. Delete any existing information in the sample log table and replace it with this (you can drag down cells to autopopulate with the same value.)

Type	Vial	Sample	Method/Keyword	Data file	Comments
Blank		Solvent Blank	u521-NW	25022700	
Sample		S100A	u521-NW	25022701	
Sample		S100B	u521-NW	25022702	
Sample		S50A	u521-NW	25022703	
Sample		S50B	u521-NW	25022704	
Sample		S25A	u521-NW	25022705	
Sample		S25B	u521-NW	25022706	
Sample		S12.5A	u521-NW	25022707	
Sample		S12.5B	u521-NW	25022708	
Sample		S6.25A	u521-NW	25022709	
Sample		S6.25B	u521-NW	25022710	
Sample		Orange	u521-NW	25022711	
Sample		Lemon	u521-NW	25022712	
Sample		Grapefruit	u521-NW	25022713	

- 40. Fill out the vial column by loading the samples into the tray and noting which place number they are placed into. Leave the comments column blank.
- 41. Click ok and select the running man.
- 42. When the samples have finished, go to file and select the folder with the datafiles.
- 43. Open each data file and select the area under the peak.
- 44. Confirm that the spectrogram of the fruits aligns with the spectrogram of the standard.
- 45. Go to Chromatogram > Percent Report and record the corrected area for each data file.