1. Give a careful proof by induction that for every positive integer n

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n - 1)^{2} = \frac{n(2n - 1)(2n + 1)}{3}$$

- 2. **PODASIP:** For any odd positive integer m, the number of nonzero perfect squares in \mathbb{Z}_m is $\frac{m-1}{2}$.
- 3. **PODASIP:** For any $a \in \mathbb{Z}$ and any positive prime p, we have

$$a^{p-1} \equiv 1 \pmod{p}$$

- 4. (a) State carefully the *definition* of $\varphi(m)$, where m is a positive integer. (Do not give a formula for computing it.)
 - (b) Working directly from this definition proof that

$$\varphi(m) = m - 1 \iff m \text{ is prime.}$$

- 5. Numerical & Computational problems
 - (a) Expand $\left(x + \frac{1}{x}\right)^6$.
 - (b) Compute 2³²⁷ (mod 51).
 - (c) Simplify $\frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}}$.
 - (d) Compute the following (without a calculator!):

$$9^7 + 7 \cdot 9^6 + 21 \cdot 9^5 + 35 \cdot 9^4 + 35 \cdot 9^3 + 21 \cdot 9^2 + 7 \cdot 9$$

- 6. True/False & Explain: For each statement below, state whether it is true or false and give a convincing reason.
 - (a) $\sqrt{3} + \sqrt{27} \sqrt{48}$ is irrational.
 - (b) The sum of a rational number and an irrational number is irrational.
 - (c) For $0 \le k \le n$ we have

$$\binom{n}{k} = \binom{n}{n-k}.$$

(d) If $x \equiv a \pmod{m}$ and $x \equiv a \pmod{n}$, then $x \equiv a \pmod{mn}$.

- 7. Make sure you know how to prove the following facts from the text.
 - (a) Every integer n > 1 can be written as a product of primes (not necessarily uniquely). [Via strong induction.]
 - (b) For $1 \le r \le n$

$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$$

(c) (Euler-Fermat) If m is a positive integer and (a, m) = 1, then

$$a^{\varphi(m)\equiv 1 \pmod{m}}$$
.

(d) There are numbers which are not rational.