Equations

zavier

August 2015

1 Variables

Temperature (K)	
Temperavare (II)	T
Heat Capacity $(\frac{J}{K})$	C
Heat Energy (J)	C
ricat Energy (b)	Q
Internal Energy (J)	E
Volume (m ³)	E
volume (m)	V
Mass (Kg)	
Density $\left(\frac{Kg}{m^3}\right)$	m
Density (_m 3)	ρ
Mass-specific heat capacity $(\frac{J}{kg \cdot K})$	
	c_m
Thickness (m)	
. 0.	L
Area (m^2)	A
Thermal Conductivity (K-Value $\frac{W}{m \cdot K})$	
	K
Thermal Transmittance (U-Value $\frac{1}{m}$	$\frac{W}{^2 \cdot \mathrm{K}}$)
	U

Simulation

Rate of Energy Transmission $Q_{a \to b} = T_a \cdot U A_{a \leftrightarrow b}$

Energy Transmitted

New Total Energy

New Temperature

 $T_a = \frac{E_a}{C_a}$ $T_b = \frac{E_b}{C_b}$

 $E_b = E_b + Q_{a \rightarrow b} - Q_{b \rightarrow a}$

 $E_a = E_a + Q_{b \rightarrow a} - Q_{a \rightarrow b}$

 $Q_{a \rightarrow b} = \dot{Q}_{a \rightarrow b} \cdot \Delta t$ $Q_{b\rightarrow a} = \dot{Q}_{b\rightarrow a} \cdot \Delta t$

 $\dot{Q}_{b \rightarrow a} = T_b \cdot U A_{a \rightarrow b}$

Matrix Equation

 $\begin{bmatrix} T_{a-new} \\ T_{b-new} \end{bmatrix} = \begin{bmatrix} 1 - UA_{a \leftrightarrow b} \cdot \Delta t \cdot \frac{1}{C_a} & UA_{a \leftrightarrow b} \cdot \Delta t \cdot \frac{1}{C_a} \\ UA_{a \leftrightarrow b} \cdot \Delta t \cdot \frac{1}{C_c} & 1 - UA_{a \leftrightarrow b} \cdot \Delta t \cdot \frac{1}{C_c} \end{bmatrix} \cdot \begin{bmatrix} T_a \\ T_b \end{bmatrix}$

 $\vec{T}_{now} = M \cdot \vec{T}$

 $M = C \cdot (M_{adjacency} + E_{lost}) \cdot \Delta t + I$

6 Superfast simulation

Some ways of simulating the change in heat area over 1024 timesteps with a 10*10 matrix:

Both these ways take very long and are inefficient so to make it super fast I calculate it like this:

$$\vec{T}_{new} = \left(\left(\left(M \cdot M \right) \cdot \left(M \cdot M \right) \right) \cdot \left(\left(M \cdot M \right) \cdot \left(M \cdot M \right) \right) \right) \cdot \vec{T}$$

simplified it looks like this:

 $\vec{T}_{new} = M^{(2^{10})} \cdot \vec{T}$ this way takes 10,000 multiplications