Projekt chwytaka

Dorota Dydo-Rożniecka

Wydział Elektroniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Akademia Górniczo-Hutnicza w Krakowie

2016/2017

I. Ogólne zasady zaprojektowanego chwytaka:

- urządzenie zostało zaprojektowane na podstawie schematu z Rys. 1.
- obiektem transportowym są wałki ustawione w pozycji pionowej o zakresie średnic $d=39 \div 60 \ mm$ i długości $l=100 \div 230 \ mm$.
- urządzenie ma za zadanie uchwycić przedmiot w pozycji początkowej, utrzymać je podczas zmiany położenia oraz pozostawić go w miejscu końcowym

Rys. 1. Schemat kinematyczny chwytaka

II. Obliczanie ruchliwości chwytaka

$$w = 3n - \sum_{i=4}^{5} (i-3) \cdot p_i = 3n - p_4 - 2p_5$$

 $n = 5;$ $p_5 = 7;$ $p_4 = 0;$

Po podstawieniu do wzoru otrzymujemy ruchliwość mechanizmu w=1. Oznacza to, że do napędzania mechanizmu wystarczy użyć jednego członu napędzającego.

III. Modelowanie schematu kinematycznego, przyjmowanie wymiarów oraz skoku członu napędowego

Rys. 2. Model chwytaka w programie SAM. Dwa skrajne położenia przy przyjętym skoku członu napędzającego Δx =10mm a) dla maksymalnego rozwarcia szczęk d_{max} =60 mm; b)dla minimalnego rozwarcia szczęk d_{min} = 39 mm.

IV. Wyznaczanie koniecznej siły chwytu do podniesienia wałków o przyjętych wymiarach.

Maksymalny ciężar przedmiotu stalowego przedmiotu obliczono ze wzoru:

$$Q_a = \frac{\pi d_{max}^2 l}{4} \rho g \approx 22,35 \, N$$

Gdzie:

l=100mm - maksymalna długość przedmiotu o maksymalnej średnicy $d_{max}=60~mm$; $ho=7900~\frac{kg}{m^3}$ – przybliżona gęstość stali; $gpprox 10~\frac{m}{s^2}$ – przyśpieszenie ziemskie;

Siłę potrzebną do uchwytu przedmiotu o ciężarze Q_a obliczono w następujący sposób, korzystając z danych:

 $\mu = 0.1$ – współczynnik tarcia wstępującego między szczękami i przedmiotem stalowym

n=2 – współczynnik przeciążenia chwytaka wynikający z uwzględnienia siły bezwładności przy przenoszeniu przedmiotu z pewnym przyspieszeniem (zakładamy maksymalne przyspieszenie przy przenoszeniu równe przyśpieszeniu ziemskiemu)

 $2\gamma = 134^{\circ}$ - kąt rozwarcia szczęk chwytaka, dane odczytane z programu SAM.

Pozycję transportowania przedmiotu ilistruje Rys. 3.

Rys. 3. Zobrazowanie sił działających na chwytak podczas chwytania przedmiotu: a) rozkład sił tarcia; b) rozkład sił normalnych.

$$F_{ch} = 2Ncos(90^{\circ} - \gamma)$$

$$N = \frac{F_{ch}}{2\cos(90^{\circ} - \gamma)} = \frac{F_{ch}}{2\sin\gamma}$$

$$T = \mu N = \frac{F_{ch}\mu}{2\sin\gamma}$$

Aby prawidłowo uchwycić przedmiot musi być spełniony warunek:

$$4T = \frac{2F_{ch}\mu}{\sin\gamma} \ge Qn$$

Stąd wyznaczamy warunek na siłę chwytu:

$$F_{ch} \geq \frac{Q \cdot nsin \, \gamma}{2\mu}$$

Dla pozycji początkowej a) warunek wygląda następująco:

$$F_{a\,ch} \ge \frac{Q_a \cdot n\sin\gamma}{2\mu}$$

$$F_{a\,ch} \ge \frac{22,35\,N\,\cdot 2\,\cdot \sin\,67^\circ}{2\cdot 0.1} \approx 206\,N$$

V. Charakterystyka przemieszczeniowa $y=f_p(x)$

Wykres 1. Charakterystyka przemieszczeniowa wykonana w programie SAM, na podstawie punktu nr 5 w kierunku osi Y (**Rys. 2**).

$$y_{max} = f_p(x_{max}) = 22,319 \ mm$$

VI. Charakterystyka prędkościowa chwytaka $f_{v}(x) = \frac{\dot{y}}{\dot{x}}$

W przypadku przyjęcia prędkości członu napędzającego $v=1\frac{m}{s}$ otrzymano w programie SAM wykres: $f_v(x)=\dot{y}(x)$

Wykres 2. Charakterystyka prędkościowa chwytaka $f_v(x) = \dot{y}$

Odczytane wartości prędkości maksymalnej i minimalnej:

$$f_{v max}(x) = \dot{y}_{max} = 25,73 \frac{mm}{s}$$

$$f_{v \, min}(x) = \dot{y}_{min} = 17,88 \frac{mm}{s}$$

VII. Charakterystyka siłowa chwytaka

Charakterystyka siłowa $f_F(x) = \frac{F_{ch}}{F_s}$

Gdzie:

 $F_{\rm S}$ – siła na wyjściu siłownik napędzającego chwytak,

 F_{ch} – siła chwytu,

 $f_F(x)$ – przełożenie siłowe mechanizmu chwytaka.

Zamiast wyznaczenia charakterystyki siłowej wyznaczono charakterystykę siły na siłowniku $F_s(x)$ w programie SAM. Przy założeniu $F_{a\ ch}=206\ N$ otrzymano w programie SAM siłę na siłowniku, na podstawie której dobrano siłownik.

VIII. Dobór siłownika

Wykres 3. Charakterystyka siły na siłowniku chwytaka.

Z wykresu odczytano w programie siłę maksymalną otrzymaną na członie napędzającym:

$$F_{s max} = 1253 N$$

Średnicę tłoka siłownika wyznaczono

z wzoru:

$$p=rac{4\,F_{S\,max}}{\pi d_{S}^{2}}$$
 , stąd

$$d_{s} = \sqrt{\frac{4F_{s max}}{\pi \cdot p}}$$

Gdzie:

p=0.6MPa – ciśnienie używane w siłownikach

 $F_{s\,max}=1253\,N$ - siła maksymalna na siłowniku

Zasada doboru siłownika: $P_t \ge P_w = k \cdot F_{s max}$

Gdzie:

 P_t -teoretyczna siła ciągnąca siłownika,

 P_w - obliczona wymagana siła na tłoczysku

 $k = 1,2 \div 1,5$ – współczynnik przeciążenia (przyjęto 1,2)

Po podstawieniu otrzymano:

$$P_t \ge P_w = k \cdot F_{s max} = 1.2 \cdot 1073 N = 1503.6 N$$

Do wzoru na d_s zamiast $F_{s \ max}$ użyto siły przemnożonej przez współczynnik przeciążenia P_w :

$$d_s = \sqrt{\frac{4P_w}{\pi \cdot p}} = \sqrt{\frac{4 \cdot 1503,6 \, N}{\pi \cdot 6 \cdot 10^5 Pa}} = 0,0565m$$

Na podstawie obliczeń dobrano za pomocą strony festo.pl siłownik **AEVULQZ-63-10-P-A** o średnicy tłoka $D=63\ mm$ i skoku $s=25\ mm$ oraz mocowanie kołnierzowe FUA-63 do przymocowania części chwytaka do siłownika.

Siłownik kompaktowy AEVULQZ-63-10-P-A

Numer części: 157148 Produkt wycofywany z produkcji

Typ wycofywany z produkcji. Dostępny do 2019. Alternatywne produkty patrz Support Portal.

z bezdotykową sygnalizacją położenia. Zabezpieczenie przed obrotem zapewnia kwadratowe tłoczysko.

FESTO

Karta danych

Cecha	Wartość			
Skok	10 mm			
Średnica tłoka	63 mm			
Amortyzacja	P: Elastyczne pierścienie / płytki amortyzacyjne z obu stron			
Pozycja zabudowy	Dowolna			
Tryb pracy	Jednostronnego działania			
	Ciągnący			
Zakończenie tłoczyska	Gwint wewnętrzny			
Konstrukcja	Tłok			
	Tłoczyskowy			
Sygnalizacja położenia	Przy pomocy czujników			
Warianty	Jednostronne tłoczysko			
Zabezpieczenie przed obrotem/prowadzenie	Kwadratowe tłoczysko			
Ciśnienie robocze	0.8 10 bar			
Medium robocze	Sprężone powietrze wg ISO8573-1:2010 [7:4:4]			
Uwagi odnośnie medium roboczego	Możliwa praca na powietrzu olejonym (po rozpoczęciu olejenia jest			
	ono wymagane przy dalszej pracy)			
Klasa odporności na korozję CRC	2 – Średnia odporność na korozję			
mperatura otoczenia -20 80 °C				
Maks. energia uderzenia w położeniach końcowych	0.7 J			
Siła teoretyczna przy 6 har, wysuw	1 679 N			

IX. Obliczanie sił przyłożonych do elementów konstrukcyjnych chwytaka

Na podstawie modeli wyznaczono w programie SAM siły wywołujące naprężenia w elementach konstrukcyjnych chwytaka.

Rys. 4. Charakterystyka siły reakcji $R_3(x)$ w przegubie chwytaka.

Z wykresu odczytano:

 $R_{3 max}(x) \approx 828 N$ – w pozycji wąskiej (b);

 $R_{3\,min}(x) \approx 793\,N\,$ – w pozycji rozwartej (a).

Rys. 5. Charakterystyka siły reakcji $R_1(x)$ w przegubie chwytaka.

Z wykresu: $R_{1 max}(x) = R_{2 max}(x) \approx 682 N$

W programie ForceEffect wykonano obliczenia sprawdzające dla chwytaka w pozycji rozwartej.

Rys. 6. Siły reakcji siły $R_3(x)$.

Do ramienia został przyłożony układ trzech sił R_3 , R_2 , $F_{s\,a}$. Kierunki tych sił przecinają się w jednym punkcie S. Oznacza to, że zostało spełnione jedno z najważniejszych praw mechaniki. $F_{s\,a}=1233~N~R_3=793~N$

Rys. 7. Siły reakcji siły $R_1(x) = R_2(x)$

 $R_1(x) = 685 N$

X. Obliczenia wytrzymałościowe chwytaka.

Rys. 8. Wykresy sił ścinających i momentów działających na odcinku CD, wygenerowane przy użyciu programu ForceEffect.

Rys. 9. Wykresy sił ścinających i momentów działających na odcinku DF, wygenerowane przy użyciu programu ForceEffect.

Obliczenia wykonane przez program ForceEffect pokazują, że największy moment na ścinanie występuje w punkcie D.

Sprawdzenie warunku wytrzymałościowego na ścinanie dla najbardziej obciążonego sworznia

- Pary obrotowe (przeguby) w mechanizmie chwytaka są zrealizowane jako połączenia sworzniowe. Wszystkie sworznie posiadają średnicę $\emptyset = 6 \ mm$.
- Na podstawie analizy sił (Rys 3, 4) wiadomo, że największe obciążenie występuje w sworzniu łożyskowym dźwigni ramienia chwytaka i wynosi: $R_3 = 793 \ N$.
- Wybrano sworznie ze **stali St5** o wytrzymałości na zginanie równej $k_t = 85 \, MPa$. Warto zaznaczyć, że każdy sworzeń jest ścinany w dwóch płaszczyznach.

Warunek wytrzymałościowy sworznia:

$$\tau_{max} = \sigma_{\tau} \le k_t$$

$$\tau_{max} = \sigma_{\tau} = \frac{R_{3 max}}{2A} = \frac{4R_{3 max}}{2\pi d^2} = \frac{2 \cdot 828 N}{\pi (0.006m)^2} \approx 15 MPa \le k_t = 85 MPa$$

Gdzie:

 $au_{max} = \sigma_{ au\,max}$ - naprężenia ścinające;

 $R_{3 max}$ – maksymalna siła poprzeczna tnąca;

A - przekrój poprzeczny;

d - średnica sworznia;

 k_t - naprężenia dopuszczalne na ścinanie.

Rys. 10. Wskazanie sworzni w mechanizmie chwytaka.

Sprawdzenie warunku wytrzymałościowego na zginanie ramion chwytaka

Do sprawdzenia warunku wytrzymałościowego ramię chwytaka potraktowano jako belkę podpartą w dwóch punktach (przegubach) i obciążoną na końcu siłą F_{ch} . Rozpatrzymy położenie chwytaka w **poz. a)(rys.2).** W tym przypadku maksymalny moment gnący w ramieniu chwytaka występuje w przekroju A-A (rys. 7)

Moment gnący w przekroju A-A obliczymy ze wzoru:

Rys.11. Model obliczeniowy ramienia chwytaka na zginanie. A, B - rzeczywiste miejsca, C - teoretyczny punkt przyłożenia siły chwytu.

Warunek wytrzymałościowy na zginanie ramienia chwytaka:

$$\sigma_{g \; max} = \frac{M_{g \; max}}{W_{a}} \le k_{g}$$

Gdzie:

 $M_{g max}$ – moment gnący;

 W_g – wskaźnik wytrzymałości przekroju na zginanie;

 k_g – wytrzymałość materiału na zginanie.

Jako materiał do wyrobu ramienia chwytaka wybrano stop aluminium PA6 (inne oznaczenia: AlCu4MgSi (A), EN AW-2017A) o wytrzymałości na zginanie $k_g=113-130\ MPa$.

Wskaźnik przekroju belki z uwzględnieniem otworu na sworzeń obliczono ze wzoru:

$$W_g = \frac{b(H^3 - h^3)}{6 H}$$

$$W_g = \frac{0.02(0.017^3 - 0.006^3)}{6 \cdot 0.017} \approx 9.2 \cdot 10^{-7} \text{m}^3$$

Moment gnący wyliczono ze wzoru: $M_{g max} = F_{ch max} \cdot L$

 $F_{ch \ max} = 206 \text{N}$ L = 90,97 mm

 $M_{a max} \approx 18,7 Nm$

$$\sigma_{g \; max} = \frac{18.7}{9.2 \cdot 10^{-7}} \approx 20.4 \; MPa < k_g$$

Powyższe obliczenia pokazują, że zaprojektowana konstrukcja chwytaka spełnia warunki wytrzymałościowe z dużym zapasem wytrzymałości. Oznacza to możliwość przenoszenia wałków o większej masie. Jest to możliwe dla wałków o mniejszej średnicy o odpowiednio większej długości.

Obliczanie maksymalnej możliwej siły uchwytu oraz maksymalnego ciężaru transportowanych przedmiotów.

Bilans mocy przy pominięciu tarcia, sił ciężkości i bezwładności jego elementów:

Gdzie:
$$N_{we} + N_{wy} = 0$$

$$N_{wy} = 2\overline{F_{ch}} \cdot \overline{\dot{y}}$$

$$\overline{F_S} \cdot \overline{\dot{x}} + 2\overline{F_{ch}} \cdot \overline{\dot{y}} = 0, \text{ stąd } F_S \cdot \dot{x} - 2F_{ch} \cdot \dot{y} = 0$$

Rys. 12. Model chwytaka do wyznaczenia bilansu mocy chwilowych.

Na podstawie ostatniego wzoru oraz skorzystaniu z charakterystyki prędkościowej wyznaczono charakterystykę siłową.

$$\frac{F_{ch}}{F_s} = \frac{\dot{x}}{2\dot{y}} = f_F(x) \rightarrow f_F(x) = \frac{1}{2f_v(x)}$$

Z Wykresu 3. za konieczną siłę siłownika napędowego przyjmujemy: $F_{s max} = 1253N$.

Kolejne obliczenia przeprowadzono dla pozycji chwytaka przy minimalnym rozwarciu szczęk (poz. b) rys. 2.).

$$F_{b\ ch} = F_s \frac{\dot{x}}{2\dot{y}}$$

Dla $\dot{x}=1\frac{m}{s},~\dot{y}_{min}\approx 1.8~\frac{m}{s}$ (z Wykresu 2.)

$$F_{b\ ch} = F_s \frac{\dot{x}}{2\dot{y}} = 1253 \frac{1}{2 \cdot 1.8} \approx 348\ N$$

$$M_{q\,b} = F_{b\,ch} \cdot L_b = 348 \cdot 0,084 \approx 29,2 \, Nm$$

 $L_b=0.084\ m$ –ramię zginania odczytano z programu SAM, dla pozycji b) z Rys. 2.

$$\sigma_{g \, max} = \frac{29.2}{9.2 \cdot 10^{-7}} \approx 31.7 \, MPa < k_g$$

Można zauważyć, że również w tym przypadku naprężenia zginające ramię chwytaka są mniejsze od dopuszczalnych.

Obliczono maksymalny ciężar jaki można uchwycić za pomocą dobranego siłownika w pozycji b) z Rys. 2.

$$Q_{b max} = \frac{2F_{b ch}\mu}{\text{n siny}} = \frac{2 \cdot 348 \cdot 0.1}{2 \sin 67^{\circ}} = 37.8 \text{ N}$$

Wówczas dla wałka o średnicy $d_{min}=39\ mm$ maksymalna długość wynosi:

$$Q_a = \frac{\pi d_{max}^2 l}{4} \rho g$$

$$l_b = \frac{4 Q_{b max}}{\pi d_{min}^2 \rho g} = \frac{4 \cdot 37.8}{\pi \cdot 0.039^2 \cdot 7900 \cdot 10} = 0.401 m = 401 mm$$

XI. Projekt konstrukcyjny chwytaka P(O-O-O)

16.	Podkładka 4,3			4	DIN 125 1-A			
15.		Śruba M4x8	3	4	DIN EN 24017			
14.	Śruba M6x20			1	DIN EN ISO 4762			
13.	Podkładka 8,4			4	DIN 433-1A			
12.	Nakrętka M8			4	DIN 28673			
11.		Śruba M8x30			DIN EN 24017			
10.	Śruba M10x30			4	DIN-6912			
9.	Kołnierz mocujący FUA-63			1	festo.pl			
8.	Siłownik AEVULQZ-63-10-P-A			1	festo.pl			
7.	Sworzeń 2			2	CH.01.07	St5		
6.	Sworzeń 1			4	CH.01.06	St5		
5.	Wspornik			2	CH.01.05	PA6		
4.	Szczęka			2	CH.01.04	PA6		
3.	Ramię chwytaka			2	CH.01.03	PA6		
2.	Cięgno			2	CH.01.02	PA6		
1.	Przedłużenie tłoczyska z belką			1	CH.01.01	PA6		
Lp.	Na	Nazwa przedmiotu			Nr normy rysunku	Materia	ał Uwagi	
			Li	sta częśc	i			
Zaprojektowany przez D. Dydo-Rożniecka Sprawdzony przez Zatwierdzony prz			rzez Data	Data Data 03.06.201				
Chwytak nr 2 typu P(O-O-O)								
WEAIiIB AGH - 			CH.01		Wydanie	Arkusz 2 / 2		
			4	7			•	

小

