Геометрия и Топология

Мастера конспектов 14 января 2020 г.

Table of contents

Содержание

1	Билет	4
2	Билет	4
3	Билет	5
4	Билет	7
5	Билет	8
6	Билет	9
7	Билет	10
8	Билет	11
9	Билет	12
10	Билет	13
11	Билет	14
12	Билет	14
13	Билет	14
14	Билет	15
15	Билет	16
16	Билет	16
17	Билет	17
18	Билет	17
19	Билет	18
20	Билет	18
21	Билет	19
22	Билет	19
23	Билет	20
24	Билет	21

к содержанию	к списку объектов	3
25 Билет		21
26 Билет		21
27 Пофамильный указ	ватель всего на свете	23

1 Билет

Метрические пространства, произведение метрических пространств, пространство \mathbb{R}^n .

Функция $d: X \times X \to \mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$ называется метрикой (или расстоянием) в множестве X, если

- 1. $d(x,y) = 0 \Leftrightarrow x = y$;
- 2. d(x,y) = d(y,x) для любых $x, y \in X$;
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Пара (X,d), где d - метрика в X, называется метрическим пространством.

Теорема 1. (Прямое произведение матриц). Пусть (X, d_X) и (Y, d_Y) - метрические пространства. Тогда функция

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_y(y_1, y_2)^2}$$

задаёт метрику на $X \times Y$.

Доказательство. 1 и 2 аксиомы очевидны. Проверим выполнение третьей. Сделать это несложно, нужно всего лишь написать неравенство и дважды возвести в квадрат. Можно как-нибудь поиспользовать Коши или КБШ, на ваш вкус. □

Пространство $X = \mathbb{R}^n, x = (x_1, \dots, x_n), y = (y_1, \dots, y + n)$, на котором задана метрика

$$d(x,y) = \sqrt{(x_1 - y_2)^2 + \dots + (x_n - y_n)^2}$$

(которая называется $ee\kappa nudoeoŭ$), есть \mathbb{R}^n .

2 Билет

Шары и сферы. Открытые множества в метрическом пространстве. Объединения и пересечения открытых множеств.

• Пусть (X,d) — метрическое пространство, $a\in X, r\in \mathbb{R}, r>0.$

Множества

$$B_r(a) = \{ x \in X : d(a,x) < r \},\$$

$$\overline{B_r}(a) = D_r(a) = \{ x \in X : d(a,x) < r \}.$$

называются, соответственно, открытым шаром (или просто шаром) и замкнутым шаром пространства (X,d) с центром в точке a и радиусом r.

• Пусть (X,d) — метрическое пространство, $A\subseteq X$. Множество A называется открытым в метрическом пространстве, если

$$\forall a \in A \exists r > 0 : B_r(a) \subseteq A.$$

Примеры:

- $-\varnothing, X$ и $B_r(a)$ открыты в произвольном метрическом пространстве X.
- В пространстве с дискретной метрикой любое множество открыто.

Теорема 2. B произвольном метрическом пространстве X

- 1. объединение любого набора открытых множеств открыто;
- 2. пересечение конечного набора открытых множеств открыто.

Доказательство.

1. Пусть $\{U_i\}_{i\in I}$ — семейство открытых множеств в X. Хотим доказать, что $U=\bigcup_{i\in I}U_i$ — открыто.

$$x \in U \Rightarrow \exists j \in I : x \in U_j \Rightarrow \exists r > 0 : B_r(x) \subseteq U_j \subseteq U.$$

2. Пусть семейство $\{U_i\}_{i=1}^n$ — семейство открытых множеств в X. Хотим доказать, что $U=\bigcap_{i=1}^n U_i$ — открыто.

$$x \in U \Rightarrow \forall i : x \in U_i \Rightarrow \exists r_i : B_{r_i}(x) \subseteq U_i;$$

$$r := \min\{r_i\} \Rightarrow B_r \subseteq U.$$

3 Билет

Топологические пространства. Замкнутые множества, их объединения и пересечения. Замкнутость канторова множества.

Определение: Пусть X - произвольное множество, и множество $\Omega \subset \rho(X)$ обладает следующими свойствами:

- $\emptyset, X \in \Omega$
- \bullet Объединение любого набора множеств из Ω также лежит в Ω
- Пересечение любого конечного набора множеств из Ω также лежит в Ω

В таком случае:

- Ω топологическая структура (или топология) на X.
- $\bullet\,$ Множество X с выделенной топологической структурой называется monororuческим npocmpaнством
- Элементы множества Ω называются *открытыми множествами* пространства (X,Ω)

Определение: Множество $F \subseteq X$ называется *замкнутым* в X, если $X \backslash F$ открыто

Теорема 3. B произвольном топологическом пространстве X:

1. \emptyset u X замкнуты

0	$\Omega \subset \Omega$	_		_			
2.	Объединение	лююого	конечного	нарора	$3aM\kappa Humber$	множеств	замкнито

3. Пересечение любого набора замкнутых множеств замкнуто

Доказательство. Замкнутость множеств их всех трёх пунктов проверяется по определению:

1.
$$\emptyset = X \backslash X$$
 и $X = X \backslash \emptyset$

2.
$$X \setminus \bigcap F_i = \bigcup (X \setminus F_i)$$

3.
$$X \setminus \bigcup F_i = \bigcap (X \setminus F_i)$$

В пунктах (b) и (c) мы использовали формулы Де Моргана.

Примеры:

- В дискретной топологии все множества замкнуты
- ullet В антидискретной топологии замкнуты только \emptyset и X
- В метрическом пространстве любое одноточечное множество замкнуто.

Доказательство.
$$X \setminus \{a\} = \bigcup_{b \in X \setminus \{a\}} B_{d(b,a)}(b)$$
 - открыто.

• В метрическом пространстве любой замкнутый шар замкнут

Доказательство. Для каждой точки $b \in X \backslash D_r(a)$ можно выбрать открытый шар $B_{d(b,a)-r}(b)$, который, во-первых, корректно определён (так как $b \notin D_r(a) \Rightarrow d(b,a) > r$), а во-вторых, не содержит точек из $D_r(a)$ (так как если $c \in B$ и $c \in D$, то $\Rightarrow d(c,b) < d(b,a) - r \Rightarrow d(c,a) \ge d(c,b) + d(b,a) > r$ и $d(c,a) \le r$, противоречие)

ullet Канторово множество замкнуто в стандартной топологи на ${\mathbb R}$

Доказательство. Следует из построения множества.

Утверждение-сюрприз от leon.tyumen: Пусть U открыто в X, а V замкнуто. Тогда:

• $U \backslash V$ открыто в X.

Доказательство.
$$U \backslash V = U \cap (X \backslash V)$$

• $V \backslash U$ замкнуто в X.

Доказательство.
$$V \backslash U = V \cap (X \backslash U)$$

4 Билет

Внутренность, замыкание и граница множества: определение и свойства включения, объединения, пересечения.

Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Внутренностью множества A называется объединение всех открытых множество, содержащихся в A, т. е.:

$$\mathrm{Int}A=\bigcup_{U\in\Omega,U\subseteq A}U.$$

Свойства:

- Int A открытое множество;
- $\operatorname{Int} A \subseteq A$;
- B открыто, $B \subseteq A \Rightarrow B \subseteq Int A$;
- $A = Int A \Leftrightarrow A$ открыто;
- Int(IntA) = IntA;
- $A \subseteq B \Rightarrow \operatorname{Int} A \subseteq \operatorname{Int} B$;
- $\operatorname{Int}(A \cap B) = \operatorname{Int}A \cap \operatorname{Int}B;$ \mathcal{A} оказательство: $\subseteq : A \cap B \subseteq A \Rightarrow \operatorname{Int}(A \cap B) \subseteq \operatorname{Int}A \dots;$ $\supseteq : \operatorname{Int}A \cap \operatorname{Int}B \subseteq A \cap B \Rightarrow \operatorname{Int}A \cap \operatorname{Int}B \subseteq \operatorname{Int}(A \cap B).$
- $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}A \cup \operatorname{Int}B;$ \mathcal{A} оказательство \neq : $X = \mathbb{R}, A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q},$ $\operatorname{Int}A = \operatorname{Int}B = \emptyset, \operatorname{Int}(A \cup B) = \operatorname{Int}\mathbb{R} = \mathbb{R}$

Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Замыканием множества A называется пересечение всех замкнутых множество, содержащих A, т. е.:

$$ClA = \bigcap_{X \setminus V \in \Omega, V \supseteq A} V.$$

Свойства:

- ClA замкнутое множество;
- $A \subseteq ClA$;
- B замкнуто, $B \supseteq A \to B \supseteq \operatorname{Cl} A$;
- $A = ClA \Leftrightarrow A$ замкнуто;
- Cl(ClA) = ClA;
- $A \subseteq B \to ClA \subseteq ClB$;

- $Cl(A \cup B) = ClA \cup ClB$;
- $Cl(A \cap B) \subseteq ClA \cap ClB$ (на самом деле, даже \neq);
- $ClA = X \setminus Int(X \setminus (X \setminus A))$.

Пусть (X,Ω) - топологическое пространство и $A\subseteq X$. Тогда границей множества A называется разность его замыкания и внутренности: $\operatorname{Fr} A=\operatorname{Cl} A\backslash \operatorname{Int} A$.

Свойства:

- FrA замкнутое множество;
- $\operatorname{Fr} A = \operatorname{Fr}(X \backslash A)$;
- A замкнуто $\Leftrightarrow A \supseteq \operatorname{Fr} A$;
- A открыто $\Leftrightarrow A \cap \operatorname{Fr} A = \emptyset$.

5 Билет

Расположение точки относительно множества: внутренние и граничные точки, точки прикосновения, предельные и изолированные точки. Внутренность, замыкание и граница множества: из каких точек они состоят.

- Определения (A множество в топологическом пространстве):
 - 1. Окрестностью точки топологического пространства называется любое открытое множество, содержащее эту точку.
 - 2. Точка называется внутренней для A, если некоторая её окрестность содержится в A.
 - 3. Точка называется точкой прикосновения для A, если любая её окрестность пересекается с A.
 - 4. Точка называется граничной для A, если любая её окрестность пересекается с A и с дополнением A
 - 5. Точка называется изолированной для A, если она лежит в A и некоторая её окрестность пересекается по A ровно по этой точке.
 - 6. Точка называется предельной для A, если любая её выколотая окрестность пересекается с A.

Примеры...:(

- 1. Внутренность множества есть множество его внутренних точек:
 - $-\ b$ внутр. точка для $A\Rightarrow \exists U_{\varepsilon}(b)\subseteq A\Rightarrow U_{\varepsilon}(b)\subseteq IntA\Rightarrow b\in IntA;$
 - $-\ b\in IntA\Rightarrow b$ лежит в Aвместе с окрестностью $IntA\Rightarrow b$ внутренняя точка для A.
 - 2. Замыкание множества есть множество его точек прикосновения: b точка прикосновения для $A \iff b \notin Int(X \setminus A) \iff b \in ClA$

- 3. Граница множества есть множество его граничных точек: b граничная точка множества $A \iff (b \in ClA) \land (b \in Cl(X \setminus A)) \iff (b \in ClA) \land (b \notin IntA) \iff b \in FrA$.
- Замыкание множества есть объединение множеств предельных и изолированных точек:
 - $b\in ClA\iff b$ точка прикосновения \iff любая окрестность b пересекается с $A\iff$ либо любая выколотая окрестность b пересекается с A, либо существует выколотая окрестность, не пересекающаяся с A(тогда $b\in A$) \iff либо b— предельная точка, либо b— изолированная точка.
- 5. Замыкание множества есть объединение граничных и внутренних точек: $b \in ClA \iff b$ точка прикосновения \iff любая окрестность b пересекается с $A \iff$ либо любая окрестность b пересекается с $X \setminus A$, либо существует окрестность, которая не пересекается $X \setminus A \iff$ либо b граничная точка, либо b внутренняя точка.

6 Билет

Сравнение метрик и топологий (грубее/тоньше). Липшицево эквивалентные метрики.

Определение: Топология Ω_1 слабее (грубее) топологии Ω_2 на X, если $\Omega_1 \subseteq \Omega_2$. В этом случае топология Ω_2 сильнее (тоньше) топологии Ω_1

Пример: Из всех топологичских структур на X антидискретная топология - самая грубая; дискретная топология - самая тонкая.

Теорема 4. Топология метрики d_1 грубее топологии метрики $d_2 \iff 6$ любом шаре метрики d_1 содержится шар метрики d_2 с тем же центром

Доказательство. " \Rightarrow " шар $B^{d_1}_r(a)$ открыт в $d_2 \Rightarrow$ точка a входит в $B^{d_2}_r(a)$ вместе с некоторой своей окрестностью $B^{d_2}_q(a)$ " \Leftarrow " U открыто в $d_1 \Rightarrow \forall a \in U \exists q > 0: B^{d_1}_q(a) \subseteq U \Rightarrow \exists r > 0: B^{d_2}_r(a) \subseteq U \Rightarrow U$ открыто в d_2

Следствие 1: Пусть d_1,d_2 - две метрики на X. Если $d_1(a,b) \leq d_2(a,b)$ для любых $a,b \in X$, то топология d_1 грубее топологии d_2

Доказательство. $d_1 \leq d_2 \Rightarrow \forall r > 0 \forall a \in XB_r^{d_2}(a) \subseteq B_r^{d_1}(a) \Longleftrightarrow$ топология d_1 грубее топологии d_2

Определение: Две метрики в одном множестве называются эквивалентными, если они порождают одну и ту же топологию.

Лемма: Пусть (X,d) - метрическое пространство. Тогда для любого C>0 функция $C\cdot d$ - тоже метрика, причём эквивалентная метрике d.

Доказательство. НУ ОЧЕВИДНО ЖЕ

к содержанию к списку объектов 10

Следствие 2: Пусть d_1, d_2 - две метрики на X, причём для любых $a, b \in X$ выполнено $d_1(a,b) \le C d_2(a,b)$. Тогда топология d_1 грубее топологии d_2 .

Доказательство. По лемме d_2 и $C\cdot d_2$ эквивалентны, а по следствию 1 d_1 грубее $C\cdot d_2$ $\ \square$

Определение: Метрики d_1, d_2 называются липшицево эквивалентными, если существуют c, C > 0 такие, что для любых $a, b \in X$ $c \cdot d_2(a, b) \le d_1(a, b) \le C \cdot d_2(a, b)$

Теорема 5. Если метрики d_1 и d_2 липшицево эквивалентны, то они эквивалентны.

Доказательство. Согласно следствию 2, каждая из метрик грубее другой \Rightarrow они эквивалентны. □

Упражнение: Верно ли обратное утверждение?

Ответ на упражнение: Ну вроде верно (порождаемые топологии-то совпадают), но что-то как-то странно.

Пример: Три метрики на \mathbb{R}^2 - Евклидова, $\max\{|x_1-x_2|,|y_1-y_2|\}$ и $|x_1-x_2|+|y_1-y_2|$ эквивалентны (точки - это (x_1,y_1) и (x_2,y_2)).

Доказательство. Нетрудно проверить, что $\max\{|x_1-x_2|,|y_1-y_2|\}<\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}<2\cdot\max\{|x_1-x_2|,|y_1-y_2|\}$, поэтому первая и вторая метрики эквивалентны по предыдущей теореме. Аналогично, $\max\{|x_1-x_2|,|y_1-y_2|\}<|x_1-x_2|+|y_1-y_2|<2\cdot\max\{|x_1-x_2|,|y_1-y_2|\}$, поэтому вторая и третья метрики также эквивалентны.

Определение: Топологическое пространство называется *метризуемым*, если существует метрика, порождающая его топологию.

Примеры:

- Дискретная топология порождается дискретной метрикой
- ullet X с антидискретной топологией неметризуемо при |X|>1

Доказательство. Пусть $a, b \in X \ (a \neq b)$, и r = d(a, b). Тогда шар $B_r(a)$ открыт, непуст (так как $a \in B_r(a)$) и не совпадает со всем пространством (так как $b \notin B_r(a)$)

7 Билет

База топологии: два определения и их эквивалентность. Критерий базы

Базой топологии Ω называется такой набор Σ открытых множеств, что всякое открытое множество представимо в виде объединения множество из Σ .

$$\Omega\supseteq \Sigma$$
 - база $\Leftrightarrow \forall U\in \Omega \exists \Lambda\subseteq \Sigma: U=\bigcup_{W\in \Lambda} W.$

Теорема 6. (Второе определение базы). Пусть (X,Ω) - топологическое пространстви и $\Sigma \subseteq \Omega$. Σ - база топологии $\Omega \Longleftrightarrow \forall U \in \Omega \forall a \in U \exists V_a \in \Sigma : a \in V_a \subseteq U$.

Доказательство. Совсем немного формулок:

- $\forall U \in \Omega$ и $\forall a \in U$. $\Sigma \text{база} \Rightarrow \exists \Lambda \subseteq \Sigma : U = \bigcup_{W \in \Lambda} W \Rightarrow \exists V_a \in \Lambda : a \in V_a$
- $\forall U \in \Omega : U = \bigcup_{a \in U} V_a$.

Теорема 7. (Критерий базы). Пусть X - произвольное множество и $\Sigma = \{A_i\}_{i \in I}$ - его покрытие. Σ - база некоторой топологии $\iff \forall A_s, A_m \in \Sigma \exists J_{s,m} \subseteq I : A_s \cap A_m = \bigcup_{i \in J_{s,m}} A_i$.

Доказательство. Докажем факт в обе стороны: \Rightarrow По определению базы и открытости множеств $A_s \cup A_m$. \Leftarrow Пусть Ω - совокупность всевозможных объединений множеств из Σ . Докажем, что Ω - топология на X.

- Σ покрытие для $X\Rightarrow X\in\Omega;$
- объединение объединений есть объединение;
- $U,V\in\Omega\Rightarrow U=\bigcup_{s\in S\subset I}A_s$ и $V=\bigcup_{m\in M\subset I}A_m,$

$$U \cap V = \bigcup_{s,m} (A_s \cap A_m) = \bigcup_{s,m} \left(\bigcup_{j \in J_{s,m}} A_j \right) \in \Omega.$$

8 Билет

База топологии в точке. Связь между базой топологии и базами в точках. Предбаза топологии, как из неё получается база.

- Пусть (X,Ω) топологическое пространство, $a\in X$ и $\Lambda\subseteq\Omega.\Lambda$ называется базой топологии(базой окерестностей) в точке a, если:
 - $1. \ \forall U \in \Lambda: a \in U;$
 - 2. $\forall U_{\varepsilon}(a) \exists V_a \in \Lambda : V_a \subseteq U_{\varepsilon}(a)$.

Следствия

- 1. Σ база топологии $\Rightarrow \forall a \in X \ \Sigma_a := \{U \in \Sigma : a \in U\}$ база в точке a.
- 2. Пусть $\{\Sigma_a\}_{a\in X}$ семейство баз во всех точках. Тогда $\bigcup_{a\in X}\Sigma_a$ база топологии.

Пример

Множество $\Sigma_a = \{B_r(a) : r \in \mathbb{R}_+\}$ является базой метрического пространства в точке а.

• Набор Δ открытых множеств топологического пространства (X,Ω) называется предбазой топологии, если Ω — наименьшая по включению топология, содержащая Δ .

Теорема 8. Любой набор Δ подмножеств множества X является предбазой некоторой топологии на X.

Доказательство. Очевидно, Δ будет предбазой топологии объединений конечных пересечений подмножеств Δ ($X \cup \{ \cup \{ \cap_{i=1}^k W_i \} \}$), $W_i \in \Delta$).

Пример (Следствие)

База топологии является её предбазой.

9 Билет

Топология подпространства. Свойства: открытость и замкнутость подмножеств, база индуцированной топологии, транзитивность, согласованность с метрическим случаем.

Определение: Пусть (X,Ω) - топологическое пространство, и $A\subseteq X$. Тогда совокупность $\Omega_A=\{U\cap A:U\in\Omega\}$ - топология на множестве A.

Доказательство. Просто проверка аксиом топологии.

Определение:

- Ω_A индуцированная топология
- (A, Ω_A) *подпространство* пространства (X, Ω) .

Свойства:

• Множества, открытые в подпространстве, не обязательно открыты в самом пространстве

Пример: $X = \mathbb{R}, A = [0, 1]$. Тогда [0, 1) открыто в A, но не в X.

• Открытые множества открытого подпространства открыты и во всём пространстве.

Доказательство. U открыто в $A\subseteq X\Rightarrow \exists V\in\Omega: U=V\cap A,$ т.е. открыто в X, как пересечение двух открытых множеств.

• Множества, замкнутые в подпространстве, не обязательно замкнуты в самом пространстве

Пример: $X = \mathbb{R}, A = (0,1)$. Тогда $(0,\frac{1}{2}] = (0,1) \setminus (\frac{1}{2},1)$) замкнуто в A, но не в X.

• Замкнутые множества замкнутого подпространства замкнуты и во всём пространстве.

Доказательство. U замкнуто в $A\subseteq X\Rightarrow \exists V\in\Omega: A\backslash U=V\cap A$, но тогда $X\backslash U=(X\backslash A)\cup V$ т.е. открыто в X, как объединение двух открытых множеств. Значит, U замкнуто в X.

• Ваза индуцированной топологии: Если Σ - база топологии Ω , то $\Sigma_A = \{U \cap A : U \in \Sigma\}$ - база топологии Ω_A .

Доказательство. Просто проверка определения базы.

• "Транзитивность" индуцированных топологий: Пусть X - топологическое пространство, и $B \subseteq A \subseteq X$. Тогда $(\Omega_A)_B = \Omega_B$

Доказательство. Так как $U \cap B = (U \cap A) \cap B$, то $\Omega_B \subseteq (\Omega_A)_B$. Покажем обратное. Пусть $U \in (\Omega_A)_B$. Это значит, что существует открытое в A множество V такое, что $U = B \cap V$. V открыто в $A \Rightarrow$ существует открытое в X множество W такое, что $V = X \cap W$. Но тогда $U = B \cap (X \cap W) = B \cap W \Rightarrow U$ открыто в X.

• Связь с метрическим случаем: Пусть (X,d) - метрическое пространство, и $A\subseteq X$. Рассмотрим метричесоке пространство $(A,d_{|A})$, а также порождаемую его метрикой топологию Ω''_A . Кроме того, рассмотрим топологичесоке пространство (X,Ω) , порождаемую метрикой d, и его сужение (A,Ω_A) на A. Тогда $\Omega_A=\Omega''_A$

Доказательство. $U \in \Omega_A'' \iff U = \bigcup B_{r_i}^A(a_i) \iff U \stackrel{a_i \in A}{=} A \cup \left(\bigcup B_{r_i}^X(a_i)\right) \stackrel{(!)}{\Longrightarrow} U = A \cap V \iff U \in \Omega_A$. Таким образом, мы доказали одно вложение, и для полного счастья нам не хватает только равносильности в моменте (!). Мы победим, если для данного U, открытого в A, сможем выбрать открытое $V \in X$ такое, что $U = V \cap A$, и V представляется в виде объединения шаров из X с центрами из A. Но действительно, поскольку U открыто в A, существует какое-то $V': U = V' \cap A$. Рассмотрим $V = \bigcup_{a_i \in V' \cap A} B_{r_i}^X(a_i)$, где $B_{r_i}^X(a_i)$ - шары, полностю содержащиеся в X (они существуют в силу его открытости). Тогда $U = V \cap A$, V открыто в X и удовлетворяет условию, которое мы так от него ждали.

10 Билет

Непрерывные отображения. Непрерывность композиции и сужения, замена области значений.

Пусть X,Y - топологические пространства. Отображение $f:X\to Y$ называется непрерывным, если прообраз любого открытого множества пространства Y является открытым подмножеством пространства X.

Также можно упомянуть, что отображение непрерывно тогда и только тогда, когда прообраз любого замкнутого множества замкнут.

Доказательство.
$$f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$$
.

Теорема 9. (О композиции непрерывных). Композиция непрерывных отображений непрерывна.

Доказательство. Пусть $f: X \to Y, g: Y \to Z$ - непрерывны. Если $U \in \Omega_Z$, то $g^{-1}(U) \in \Omega_Y$, значит, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \in \Omega_X$.

Теорема 10. (О сужении отображения). Пусть Z - подпространство X и $f: X \to Y$ непрерывно. Тогда $f|_Z: Z \to Y$ непрерывно.

Доказательство. $\operatorname{in}_Z: Z \to X$ непрерывно, а также $f|_Z = f \circ \operatorname{in}_Z$.

Теорема 11. (Об изменении области значений). Пусть Z - подпространство Y, $f: X \to Y$ - отображение и $f(X) \subseteq Z$. Пусть $\tilde{f}: X \to Z$, т. ч. $\tilde{f}(x) = f(x)$. Тогда f непрерывная \iff \tilde{f} непрерывна.

Доказательство. Докажем факт в обе стороны: $\Leftarrow f = \operatorname{in}_Z \circ \tilde{f}. \Rightarrow \forall U \in \Omega_Z \exists W \in \Omega_Y : U = W \cup Z. \ \tilde{f}^{-1}(U) = f^{-1}(W) \in \Omega_X.$

11 Билет

Непрерывность в точке. Глобальная непрерывность эквивалентна непрерывности в каждой точке. Непрерывность и база окрестностей в точке.

• Отображение $f: X \to Y$ называется непрерывным в точке $a \in X$, если $\forall U_{\varepsilon}(f(a)) \; \exists V_{\delta}(a) : f(V_{\delta}(a)) \subseteq U_{\varepsilon}(f(a))$. Пример:(...

Теорема 12. Отображение $f: X \to Y$ непрерывно \iff оно непрерывно в каждой точке пространства.

Доказательство:

- (\Rightarrow) Очевидно, $V = f^{-1}(U)$.
- (\Leftarrow) Пусть $U\in\Omega_Y\Rightarrow \forall a\in f^{-1}(U)$ $\exists V_\varepsilon(a)\subseteq f^{-1}(U)\Rightarrow a$ внутренняя точка $f^{-1}(U)\Rightarrow f^{-1}(U)\in\Omega_X$

Теорема 13. Пусть X,Y — топологические пространства, $a \in X, f: X \to Y$ — отображение, Σ_a — база окрестностей в точке a и $\Lambda_{f(a)}$ — база окрестностей в точке f(a). Тогда f непрерывно в точке $a \in X \iff \forall U \in \Lambda_{f(a)} \ \exists V_a \in \Sigma_a: f(V_a) \subseteq U$. Доказательство:

- (\Rightarrow) f непрерывно в точке $a\Rightarrow (\forall U\in \Lambda_{f(a)}\;\exists W_{\varepsilon}(a):f(W_{\varepsilon}(a))\subseteq U))\land (\exists V\in \Sigma_a:V\in W_{\varepsilon}(a)).$
- $(\Leftarrow) (\forall U_{\varepsilon}(f(a)) \exists U \in \Lambda_{f(a)} : U \subseteq U_{\varepsilon}(f(a))) \land (\exists V \in \Sigma_a : f(V) \subseteq U \subseteq U_{\varepsilon}(f(a)))$

12 Билет

13 Билет

Фундаментальные покрытия. Их применение для доказательства непрерывности функций. Фундаментальность открытых и конечных замкнутых покрытий.

14

Покрытие $\Gamma = \{A_i\}_{i \in I}$ топологического пространства X называется ϕy н ∂ аментальным, если

$$\forall U \subseteq X : (\forall A_i \in \Gamma, U \cap A_i \text{ открыто в } A_i) \Rightarrow (U \text{ открыто в } X).$$

Теорема 14. Пусть X, Y - топологические пространства, $\Gamma = \{A_i\}_{i \in I}$ - фундаментальное покрытие X и $f: X \to Y$ - отображение. Если $\forall A_i \in \Gamma$ сужение $\Gamma|_{A_i}$ непрерывно, то и само отображение f непрерывно.

Доказательство. Хотим показать, что прообраз любого V, открытого в Y, открыт в X. Открытое в A_i $(f|_{A_i})^{-1}(V) = f^{-1}(V) \cap A$, так как $f|_{A_i}$ непрерывна. Тогда $f^{-1}(V) \cap A_i$ открыто в A_i . Пусть $U = f^{-1}(V) \in X$, и для любого i мы тогда знаем, что $U \cap A_i$ открыто в A_i . Тогда из фундаментальности, U открыто в X.

Покрытие топологического пространства называется:

- открытым, если оно стоит из открытых множеств;
- замкнутым, если оно состоит из замкнутых множеств;
- локально конечным, если каждая точка пространства обладает окрестностью, пересекающейся лишь с конечным числом элементов покрытия.

Теорема 15. Всякое открытое покрытие фундаментально.

Доказательство. (by lounres.) Пусть дано покрытие Γ и $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ открыто в A, а значит открыто в X. Тогда

$$U = U \cap X = \bigcup_{A \in \Gamma} U \cap A$$

есть объединение открытых множеств, а значит само открыто. Таким образом Γ фундаментально

Теорема 16. Всякое конечное замкнутое покрытие фундаментально.

Доказательство. (by lounres.) Пусть дано покрытие Γ и $U\subseteq X$, что для всякого $A\in \Gamma$ множество $U\cap A$ замкнуто в A, а значит замкнуто в X. Тогда

$$U=U\cap X=\bigcup_{A\in\Gamma}U\cap A$$

есть конечное объединение замкнутых множеств, а значит само замкнуто. Таким образом Γ фундаментально. \square

14 Билет

Фундаментальность локально конечных замкнутых покрытий.

Покрытие называют *локально конечным*, если каждая точка пространства обладает окрестностью, пересекающейся лишь с конечным числом элементов покрытия.

Пример... :(

Теорема 17. Всякое локально конечное замкнутое покрытие фундаментально.

Доказательство:

Пусть $\{A_i\}$ — локально конечное замкнутое покрытие. Хотим проверить его фундаментальность;

- 1. Пусть U произвольное множество, такое что $U \cap A_i$ открытое в A_i .
- 2. В каждой точке b пространства рассмотрим окрестность U_b , перескающуюся с конечным числом множеств покрытия (локальная конечность). Тогда $\{U_b\}$ открытое покрытие пространства \Rightarrow оно фундаментально (13 билет).
- 3. Зафиксируем b, тогда $\{U_b \cap A_i\}$ конечное замкнутое покрытие $U_b \Rightarrow \{U_b \cap A_i\}$ фундаментальное покрытие $U_b(13$ билет).

Покажем, что $\forall b ((U \cap U_b) \cap (U_b \cap A_i))$ — открыто в $U_b \cap A_i \Rightarrow U \cap U_b$ — открыто в U_b (фундаментальность из п.3) $\Rightarrow U$ — открыто в пространстве (фундаментальность п.2).

Действительно, $(U \cap U_b) \cap (U_b \cap A_i) = (U \cap A_i) \cap (U_b \cap A_i), U \cap A_i$ — открытое в $A_i(\pi.1)$ $\Rightarrow U \cap A_i = V \cap A_i$, где V — открытое во всём пространстве (определение открытого в подпространстве) $\Rightarrow (U \cap A_i) \cap (U_b \cap A_i) = (V \cap A_i) \cap (U_b \cap A_i) = V \cap (U_b \cap A_i)$ — открытое в $U_b \cap A_i$

15 Билет

16 Билет

Непрерывность и произведение: проекции, теорема о покоординатной непрерывности.

 $X = \prod_{i \in I} X_i$ - произвечение топологических пространств.

Теорема 18. Координатные проекции $p_i: X \to X_i$ непрерывны.

Доказательство. $\forall U$ открытого в X_i : $p_i^{-1}(U)$ - элемент предбазы Тихоновской топологии (по определению), следовательно открыт в X.

(Отображение в произведение двух) Пусть X, Y, Z – топологические пространства. Любое отображение $f: Z \to X \times Y$ имеет вид

$$f(z) = (f_1(z), f_1(z)),$$
 для всех $z \in Z$,

где $f_1:Z\to X,\, f_2:Z\to Y$ - некоторые отображения, называемые компонентами отображениями f .

(Отображение в произведение дохуя) Пусть Z и $\{X_i\}_{i\in I}$ - топологические пространства. Компонентами отображения $f:Z\to\prod_{i\in I}X_i$ называются отображения $f_i:Z\to X_i$, задаваемые формулами

$$f_i := p_i \circ f$$

Теорема 19. (О покоординатной непрерывности). Пусть Z и $\{X_i\}_{i\in I}$ - топологические пространства, $X = \prod_{i\in I} X_i$ - тихоновское произведение. Тогда отображение $f: Z \to \prod_{i\in I} X_i$ непрерывно, равносильно тому что каждая его компонента f_i непрерывна.

Доказательство. Докажем в обе стороны:

- $\Rightarrow f_i = p_i \circ f$, при этом p_i и f непрерывны, следовательно, и f_i непрерывна.
- \Leftarrow Сначала для любого U из предбазы X существует такой индекс $i \in I$ и $V \in \Omega_i$ такой, что $U = p_i^{-1}(V)$. Тогда $f^{-1}(U) = f^{-1}(p_i^{-1}(V)) = (p_i \circ f)^{-1}(U) = f_i^{-1}(V)$ открытое, так как f_i непрерывно.

 $\forall W$ открытого в $X,\,W=\bigcup$ (конечных пересечений эл-в предбазы) (далее - $\bigcup_{fuck})$

 $f^{-1}(W) = f^{-1}(\bigcup_{fuck}) = \bigcup f^{-1}$ (конечных пересечений) = \bigcup (конечных пересечений прообразов элементов предбазы)

Дополнительно от keba4ok: Также для проверки на непрерывность $f: X \to Y$ достаточно проверить открытость $f^{-1}(U)$ для всякого U из какой-либо базы или предбазы Y.

17 Билет

Пример функции на плоскости, непрерывной по каждой координате, но разрывной.

Функция : $\mathbb{R}^2 \to \mathbb{R}$, заданная уравнением

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{если } (x,y) \neq (0,0); \\ 0, & \text{если } x = y = 0. \end{cases}$$

Непрерывна по каждой координате, но разрывна в точке (0,0).

Доказательство. Док-во непрерывности функции $f(x) = \frac{2cx}{x^2+c^2}$ полагаем, не представляет труда доказать студентам, получившим 5 за матанализ. А в точке (0,0) функция разрывна, так как при $x=y\neq 0$ функция равна 1.

18 Билет

19 Билет

Гомеоморфизм. Гомеоморфные интервалы на прямой, $S^n \setminus \{p\}$ и \mathbb{R}^n .

Пусть X,Y - топологические пространства. Отображение $f:X\to Y$ называется гомеоморфизмом, если

- f биекция;
- f непрерывно;
- f^{-1} непрерывно;

Говорят, что пространство X гомеоморфно пространству Y ($X \simeq Y$), если существует гомеоморфизм $X \to Y$.

Дополнительно от keba4ok: Гомеоморфность - отношение эквивалентности среди топологических пространств.

Примеры на прямой, плоскости и т.д...:(

20 Билет

Аксиомы счётности. Теорема Линделёфа.

Будем считать, что множество X счётно, если существует инъекция $X \to \mathbb{N}$ (всякое подмножество счётного - счётно).

- 1. Топологическое пространство удовлетворяет *первой аксиоме счётности*, если оно обладает счётными базами во всех своих точках.
- 2. Топологическое пространство удовлетворяет *второй аксиоме счётности*, если оно имеет счётную базу.
- 3. Топологическое свойство называется наследственным, если из того, что пространство X обладает этим свойством, следует, что любое его подпространство тоже им обладает (аналогично про наследование при произведении).

Свойства:

1. $2AC \Rightarrow 1AC$:

см. 8 билет

2. Обратное неверно:

X— несчётное множество с дискретной метрикой. Тогда в каждой точке есть счётная база - сама точка, но при этом счётной базы всего пространства нет — каждый элемент должен входить в базу.

- 3. Всякое метрическое пространство удовлетворяет 1AC: Шары вида $B_{\frac{1}{2}}(a)$, где $n\in\mathbb{N}$ база в точке a.
- 4. 2AC наследственна(в обоих смыслах):
 - Пересечём базу с подмножеством получится счётная база подпространства.
 - Рассмотрим декартово произведение счётных баз получим счётную базу декартова произведения пространств.

Теорема 20 (Теорема Линделёфа). Если пространство удовлетворяет 2AC, то из всякого его открытого покрытия можно выделить счётное подпокрытие.

Доказательство. Пусть $\{U_i\}$ — открытое покрытие X, а Σ — счётная база. Рассмотрим $\Lambda := \{V \in \Sigma | \exists U_i : V \in U_i\}$. Заметим, что Λ — покрытие любого U_i (из определения базы) $\Rightarrow \Lambda$ — покрытие X, тогда каждому $V \in \Lambda$ сопоставим произвольное U_j , в котором оно лежит. Тогда $\{U_j\}$ — счётное покрытие X.

21 Билет

22 Билет

Аксиомы отделимости T_1-T_3 . Замкнутость диагонали в $X\times X$. Критерий регулярности.

Говорят, что топологическое пространство удовлетворяет *первой аксиоме отвемимости* T_1 , если каждая из любых двух различных точек пространства обладает окрестностью, не содержащей другую из этих точек.

Говорят, что топологическое пространство удовлетворяет второй аксиоме отдельности T_2 , если любые две различные точки пространства обладают непересекающимися окрестностями. Пространства, удовлетворяющий аксиоме T_2 , называются $xaycdop\phiosыmu$.

Теорема 21. (Замкнутость ёбаной диагонали). X хаусдорфово равносильно тому, что $\{(a,a): a \in X\}$ замкнуто в $X \times X$.

- \Rightarrow Покажем, что $(X \times X) \setminus \Delta$ открыто. Пусть $(b,c) \notin \Delta$. Тогда по T_2 есть окрестности U_b и U_c точек b и c в X, что $U_b \cap U_c = \varnothing$. Следовательно $(U_b \times U_c) \cap \Delta = \varnothing$, тогда $U_b \times U_c$ окрестность (b,c), лежащая в $(X \times X) \setminus \Delta$ как подмножество.
- \Leftarrow Пусть b и c различные точки X. Тогда $(b,c) \notin \Delta$. Поскольку Δ замкнуто, то $(X \times X) \setminus \Delta$ открыто. Поскольку $\{U \times V \mid U, V \in \Omega_X\}$ база $X \times X$, то есть некоторые открытые в X множества U и V, что

$$(b,c) \in U \times V \subseteq (X \times X) \setminus \Delta.$$

Следовательно, $(U \times V) \cap \Delta = \emptyset$, а значит, $U \cap V = \emptyset$. При этом $b \in U$, а $c \in V$. Значит U и V — непересекающиеся окрестности b и c. Поскольку b и c случайны, то выполнена T_2 .

Говорят, что топологическое пространство удовлетворяет *третьей аксиоме отделимостии* T_3 , если в нём любое замкнутое множество илюбая не содержащаяся в этом множестве точка обладают непересекающимися окрестностями. Пространства, одновременно удовлетворяющие аксиомам T_1 и T_3 , называются *регулярными*.

Теорема 22. (Критерий блядской регулярности). X регулярно тогда и только тогда, когда удовлетворяет T_1 и $\forall a \in X$ любой окрестности U_a существует окрестность V_a такая, что $ClV_a \subseteq U_a$.

Доказательство. (by lounres)

 \Rightarrow Пусть U_a — некоторая окрестность некоторой точки a в X. Тогда $X\setminus U_a$ замкнуто. По T_3 у $X\setminus U_a$ и a есть непересекающиеся окрестности W_a и V_a соответственно. Тогда $X\setminus W_a$ замкнуто; при этом $W_a\supseteq X\setminus U_a$, следовательно $X\setminus W_a\subseteq U_a$; аналогично имеем, что $V_a\subseteq X\setminus W_a$. Следовательно

$$Cl(V_a) \subseteq X \setminus W_a \subseteq U_a$$
.

Таким образом мы нашли искомую окрестность V_a .

 \Leftarrow Пусть даны замкнутое F и точка a вне него. Тогда $U_a:=X\setminus F$ — окрестность a. Тогда есть окрестность V_a точки a, что $\mathrm{Cl}(V_a)\subseteq U_a$. Следовательно $\mathrm{Int}(X\setminus V_a)\supseteq X\setminus U_a=F$. Значит $\mathrm{Int}(X\setminus V_a)$ и V_a — непересекающиеся окрестности F и a.

23 Билет

Аксиома отделимости T_4 . Нормальномть метрических пространств.

Говорят, что топологическое пространство удовлетворяет *четвёртой аксиоме отдели-мости*, если в нём любые два непересекающихся замкнутых множества обладают непересекающимися окрестностями.

Пространство, удовлетворяющее аксиомам T_1 и T_4 , назыывается *нормальным*.

Теорема 23. Всякое метрическое пространство нормально.

Доказательство. Пусть (X,d) — метрическое пространство. В нём выполняется $T_1(r=\frac{d(x,y)}{2})$. Покажем T_4 — пусть A,B — непересекающиеся замкнутые множества. $X\setminus B$ — открытое и содержит $A\Rightarrow \forall a\in A\exists r_a: B_{r_a}(a)\subseteq X\setminus B\iff B_{r_a}(a)\cap B=\varnothing$. Аналогично для каждой точки b из B находим окрестность $B_{r_b}(b)$, не пересекающуюся с A. Рассмотрим $U=\bigcup B_{\frac{r_a}{2}}(a)$ и $V=\bigcup B_{\frac{r_b}{2}}(b)$. Допустим $z\in (U\cap V)$ (иначе мы нашли две непересекающиеся окрестности, т.к. объединение открытых - открыто). $z\in (U\cap V)\Rightarrow \exists x\in A,y\in B: z\in (B_{\frac{r_x}{2}}(x)\cap B_{\frac{r_y}{2}}(y))\Rightarrow d(x,y)\leq \frac{r_x}{2}+\frac{r_y}{2}\leq \max(r_x,r_y)\Rightarrow (x\in B_{r_y}y)or(y\in B_{r_x}(x))$ — противоречие.

Дополнительно от artemi.sav:

X — нормально \Rightarrow X — регулярно \Rightarrow X — хаусдорфо \Rightarrow X удовлетворяет T_1 .

Заметим, что из T_1 следует, что любая точка - замкнута, из чего следует, что каждое следующее условие — частный случай предыдущего (например, X — нормально, то есть удовлетворяет T_4 и T_1 , вместо одного замкнутого множества в условии T_4 можем взять точку и получить T_3 , то есть регулярность).

24 Билет

25 Билет

Непрерывный образ связного пространства. Теорема о промежуточном значении.

Теорема 24. (Непрерывный обрах связного пространства связен). Если $f: X \to Y$ - непрерывное отображение и пространство X связно, то и множество f(X) связно.

Доказательство. От противного, пусть f(X) несвязно. Тогда $f(X) = U \cup V, U \cap V = \emptyset$, где U, V непусты и открыты.

Следовательно, мы имеем разбиение пространства X на два непустых открытых множества - $f^{-1}(U)$ и $f^{-1}(V)$, что противоречит связности пространства X.

Теорема 25. (О промежуточном значении). Если $f: X \to \mathbb{R}$ - непрерывное отображение, и пространство X связно, тогда для любых $a,b \in f(X)$ множество f(X) содержит все числа между a u b.

Доказательство. f(X) связно $\Rightarrow f(X)$ выпукло $\Rightarrow f(x)$ содержит [a,b].

26 Билет

Компоненты связности. Разбиение пространства на компоненты связности.

Kомпонентой связности пространства X называется всякое его максимальное по включению связное подмножество.

Лемма. Объединение любого семейства попарно пересекающихся связных множеств связно.

Доказательство. Обозначим это семейство множеств за $\{A_i\}, Y := \bigcup A_i$. Допустим Y - несвязно, тогда $Y = U \cup V$, где U и V - открытые непересекающиеся множества. Заметим, что $\forall A_i : A_i \subseteq U \vee A_i \subseteq V$ (иначе $A_i = (A_i \cap U) \cup (A_i \cap V)$, где $A_i \cap U$ и $A_i \cap V -$ непустые открыте подмножества в A_i). Зафиксируем A_0 , НУО $A_0 \subseteq V \Rightarrow \forall A_i (A_i \cap A_0 \neq \varnothing) \Rightarrow \forall A_i \subseteq V \Rightarrow U = \varnothing$, противоречие.

Теорема 26. 1. Каждая точка пространства X содержится в некоторой компоненте связности.

2. Различные компоненты связности пространства X не пересекаются.

Доказательство.

- 1. Пусть $x \in X$. Тогда множество A объединение всех связных множеств, содержащих x, является искомой компонентой связности(оно связно по лемме и наибольшее по включению по своему определению).
- 2. Пусть U,V пересекающиеся компоненты связности, тогда $U \cup V$ связное множество(по лемме), содержащее U и V, что противоречит определению компоненты связности.

Table of objects

27 Пофамильный указатель всего на свете

Быстрый список для особо заебавшегося поиска.

метрика