Lecture 12: Conjugate gradients

School of Mathematical Sciences, Xiamen University

1. Idea of conjugate gradient

• Consider a Hermitian positive definite linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \quad \mathbf{A} \in \mathbb{C}^{m \times m}, \quad \mathbf{b} \in \mathbb{C}^m.$$

For initial guess \mathbf{x}_0 , at step j, the conjugate gradient method finds an approximate solution

$$\mathbf{x}_j \in \mathbf{x}_0 + \mathcal{K}_j(\mathbf{A}, \mathbf{r}_0)$$

satisfying

$$\mathbf{r}_j := \mathbf{b} - \mathbf{A}\mathbf{x}_j \perp \mathcal{K}_j(\mathbf{A}, \mathbf{r}_0),$$

where

$$\mathcal{K}_j(\mathbf{A}, \mathbf{r}_0) := \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{j-1}\mathbf{r}_0\}.$$

• Note that the residual of GMRES satisfies

$$\mathbf{r}_{j} \perp \mathbf{A} \mathcal{K}_{j}(\mathbf{A}, \mathbf{r}_{0}).$$

2. Conjugate gradient

Algorithm CG: $\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{C}^{m \times m}$ Hermitian positive definite.

Choose arbitrary \mathbf{x}_0 : Set $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ and $\mathbf{p}_0 = \mathbf{r}_0$; for j = 1, 2, ..., do until convergence: $\alpha_j = \frac{\langle \mathbf{r}_{j-1}, \mathbf{r}_{j-1} \rangle}{\langle \mathbf{A} \mathbf{p}_{j-1}, \mathbf{p}_{j-1} \rangle} = \frac{\mathbf{r}_{j-1}^* \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^* \cdot \mathbf{A} \mathbf{p}_{j-1}}; \quad (\text{step length})$ $\mathbf{x}_{i} = \mathbf{x}_{i-1} + \alpha_{i} \mathbf{p}_{i-1};$ (approximation solution) $\mathbf{r}_{i} = \mathbf{r}_{i-1} - \alpha_{i} \mathbf{A} \mathbf{p}_{i-1};$ (residual) $\beta_j = \frac{\langle \mathbf{r}_j, \mathbf{r}_j \rangle}{\langle \mathbf{r}_{i-1}, \mathbf{r}_{i-1} \rangle} = \frac{\mathbf{r}_j^{\mathsf{T}} \mathbf{r}_j}{\mathbf{r}_{i-1}^{\mathsf{T}} \mathbf{r}_{j-1}};$ $\mathbf{p}_i = \mathbf{r}_i + \beta_i \mathbf{p}_{i-1};$ (search direction) end

• M.R. Hestenes and E. Stiefel

Methods of conjugate gradients for solving linear systems

J. Research Nat. Bur. Standards 49 (1952), 409-436

Theorem 1

Assume CG does not converge at step l (i.e., $\mathbf{r}_j \neq \mathbf{0}$, $0 \leq j \leq l$). Then $\forall 1 \leq j \leq l$:

- (1) The jth residual \mathbf{r}_j satisfies $\mathbf{r}_i^* \mathbf{r}_j = 0$ for $0 \le i < j$. (orthogonal)
- (2) The jth search direction \mathbf{p}_j is nonzero $(\mathbf{p}_j \neq \mathbf{0})$ and satisfies $\mathbf{p}_i^* \mathbf{A} \mathbf{p}_j = 0$ for $0 \leq i < j$. (A-conjugate or $\langle \cdot, \cdot \rangle_{\mathbf{A}}$ -orthogonal)
- (3) The Krylov subspace

$$\mathcal{K}_{j+1}(\mathbf{A}, \mathbf{r}_0) := \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \cdots, \mathbf{A}^j \mathbf{r}_0\}$$

$$= \operatorname{span}\{\mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0, \cdots, \mathbf{x}_{j+1} - \mathbf{x}_0\}$$

$$= \operatorname{span}\{\mathbf{p}_0, \mathbf{p}_1, \cdots, \mathbf{p}_j\}$$

$$= \operatorname{span}\{\mathbf{r}_0, \mathbf{r}_1, \cdots, \mathbf{r}_j\}.$$

• A direct result of Theorem 1: There exists $k \leq m$ such that

$$\mathbf{r}_j \neq \mathbf{0}, \quad \mathbf{r}_j \perp \mathcal{K}_j, \quad j = 1, \dots, k - 1, \quad \text{and} \quad \mathbf{r}_k = \mathbf{0},$$

i.e., CG finds the exact solution at step k.

• Since **A** is Hermitian positive definite, the function $\|\cdot\|_{\mathbf{A}}$ defined by $\|\mathbf{x}\|_{\mathbf{A}} = \sqrt{\mathbf{x}^* \mathbf{A} \mathbf{x}}$ is a norm, called **A**-norm.

Theorem 2 (Optimality of CG)

Let \mathbf{x}_{\star} denote the exact solution $\mathbf{A}^{-1}\mathbf{b}$. We consider the \mathbf{A} -norm of the vector $\boldsymbol{\varepsilon}_{j} = \mathbf{x}_{\star} - \mathbf{x}_{j}$, the error at step j. If $\mathbf{r}_{j-1} \neq \mathbf{0}$, then \mathbf{x}_{j} is the unique vector in $\mathbf{x}_{0} + \mathcal{K}_{j}(\mathbf{A}, \mathbf{r}_{0})$ such that

$$\|\boldsymbol{\varepsilon}_j\|_{\mathbf{A}} = \|\mathbf{x}_{\star} - \mathbf{x}_j\|_{\mathbf{A}} = \min_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_j(\mathbf{A}, \mathbf{r}_0)} \|\mathbf{x}_{\star} - \mathbf{x}\|_{\mathbf{A}}.$$

• A direct result of Theorem 2 and $\mathbf{r}_j = \mathbf{A}\boldsymbol{\varepsilon}_j$: There exists $k \leq m$ such that

$$\|\boldsymbol{\varepsilon}_0\|_{\mathbf{A}} \geq \|\boldsymbol{\varepsilon}_1\|_{\mathbf{A}} \geq \cdots \geq \|\boldsymbol{\varepsilon}_{k-1}\|_{\mathbf{A}} > \|\boldsymbol{\varepsilon}_k\|_{\mathbf{A}} = 0.$$

That is to say CG converges monotonically and finds the exact solution at step k.

• Let \mathbb{P}_j denote the set of polynomials p of degree $\leq j$.

Theorem 3

If $\mathbf{r}_{j-1} \neq \mathbf{0}$, then we have

$$\frac{\|\boldsymbol{\varepsilon}_j\|_{\mathbf{A}}}{\|\boldsymbol{\varepsilon}_0\|_{\mathbf{A}}} = \min_{p \in \mathbb{P}_j, p(0) = 1} \frac{\|p(\mathbf{A})\boldsymbol{\varepsilon}_0\|_{\mathbf{A}}}{\|\boldsymbol{\varepsilon}_0\|_{\mathbf{A}}} \leq \min_{p \in \mathbb{P}_j, p(0) = 1} \max_{\lambda \in \Lambda(\mathbf{A})} |p(\lambda)|,$$

where $\Lambda(\mathbf{A})$ denotes the spectrum of \mathbf{A} .

Theorem 4

If **A** has only n distinct eigenvalues, then the CG iteration converges in at most n steps.

Hint: construct a special polynomial of degree n and prove that $\varepsilon_n = \mathbf{0}$.

Theorem 5 (rate of convergence)

Let **A** have the 2-norm condition number $\kappa = \lambda_{\max}(\mathbf{A})/\lambda_{\min}(\mathbf{A})$. Then the **A**-norms of the errors satisfy

$$\frac{\|\boldsymbol{\varepsilon}_j\|_{\mathbf{A}}}{\|\boldsymbol{\varepsilon}_0\|_{\mathbf{A}}} \le 2 / \left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1} \right)^j + \left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1} \right)^{-j} \right] \le 2 \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} \right)^j.$$

3. Numerical example

- Consider a 500×500 sparse matrix **A** constructed as follows.
 - (i) First we put 1 at each diagonal position and a random number from the uniform distribution on [-1,1] at each off-diagonal position (maintaining the symmetry $\mathbf{A} = \mathbf{A}^{\top}$)
 - (ii) Then we replace each off-diagonal entry with $|a_{ij}| > \tau$ by zero, where τ is a parameter.
- For τ close to zero, the matrix **A** is well-conditioned positive definite.

• Convergence history of CG: **b** random, $\mathbf{x}_0 = \mathbf{0}$

4. CG as an optimization algorithm

• Consider minimizing the nonlinear function $\varphi(\mathbf{x})$ of $\mathbf{x} \in \mathbb{R}^m$:

$$\varphi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{x}^{\top} \mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times m} \text{ (SPD)}, \quad \mathbf{b} \in \mathbb{R}^{m}.$$

A standard algorithm (line search): At each step, an iterate

$$\mathbf{x}_j = \mathbf{x}_{j-1} + \alpha_j \mathbf{p}_{j-1}$$

is computed. The optimal step length α_i is given by

$$\alpha_j = \frac{\mathbf{p}_{j-1}^{\top} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^{\top} \mathbf{A} \mathbf{p}_{j-1}} = \arg \min_{\alpha} \varphi(\mathbf{x}_{j-1} + \alpha \mathbf{p}_{j-1}),$$

which ensures that

$$\mathbf{x}_j = \underset{\mathbf{x} \in \mathbf{x}_{j-1} + \text{span}\{\mathbf{p}_{j-1}\}}{\arg \min} \varphi(\mathbf{x}).$$

• The steepest descent iteration uses the negative gradient direction:

$$\mathbf{p}_{i-1} = -\nabla \varphi(\mathbf{x}_{i-1}) = \mathbf{r}_{i-1}.$$

Example:
$$\mathbf{A} = \operatorname{diag}\{\lambda_1, \lambda_2\}$$

 $\mathbf{b} = \begin{bmatrix} 0 & 0 \end{bmatrix}^\top$

Steepest descent

Conjugate gradient

• CG uses the A-conjugate direction

$$\mathbf{p}_{j-1} = \mathbf{r}_{j-1} + \beta_{j-1} \mathbf{p}_{j-2},$$

which has the special property

$$\mathbf{x}_j = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbf{x}_{j-1} + \operatorname{span}\{\mathbf{p}_{j-1}\}} \varphi(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbf{x}_0 + \operatorname{span}\{\mathbf{p}_0, \mathbf{p}_1, \cdots, \mathbf{p}_{j-1}\}} \varphi(\mathbf{x}).$$

5. Preconditioning

- A good preconditioner \mathbf{M} , which accelerates the convergence, needs to be easy to construct and cheap to perform $\mathbf{M}^{-1}\mathbf{z}$. Moreover, the preconditioned matrix should have eigenvalues clustering behavior.
- ullet For CG, we will assume that ${\bf M}$ is also Hermitian positive definite. However, we can not apply CG straightaway for the explicitly preconditioned systems

$$\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \mathbf{M}^{-1}\mathbf{b}, \quad \text{or} \quad \mathbf{A}\mathbf{M}^{-1}\mathbf{M}\mathbf{x} = \mathbf{b},$$

because $\mathbf{M}^{-1}\mathbf{A}$ and $\mathbf{A}\mathbf{M}^{-1}$ are most likely not Hermitian.

• One way out is to apply the two-sided preconditioning strategy:

$$\mathbf{M} = \mathbf{L}\mathbf{L}^*, \quad (\mathbf{L}^{-1}\mathbf{A}\mathbf{L}^{-*})\mathbf{L}^*\mathbf{x} = \mathbf{L}^{-1}\mathbf{b}.$$

This approach has the disadvantage that **M** must be available in factored form.

• There is a more elegant alternative.

For the left and right preconditioned matrices $\mathbf{M}^{-1}\mathbf{A}$ and $\mathbf{A}\mathbf{M}^{-1}$, replace the standard inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^* \mathbf{x}$$

by

$$\langle \mathbf{x}, \mathbf{y} \rangle_{L} = \langle \mathbf{M} \mathbf{x}, \mathbf{y} \rangle$$
 and $\langle \mathbf{x}, \mathbf{y} \rangle_{R} = \langle \mathbf{M}^{-1} \mathbf{x}, \mathbf{y} \rangle$,

respectively.

It is easy to verify that $\mathbf{M}^{-1}\mathbf{A}$ and $\mathbf{A}\mathbf{M}^{-1}$ are *self-adjoint* and positive definite with respect to the inner products $\langle \cdot, \cdot \rangle_{L}$ and $\langle \cdot, \cdot \rangle_{R}$, respectively. For example,

$$\begin{split} \langle \mathbf{A}\mathbf{M}^{-1}\mathbf{x}, \mathbf{y} \rangle_R &= \langle \mathbf{M}^{-1}\mathbf{A}\mathbf{M}^{-1}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{M}^{-1}\mathbf{x}, \mathbf{A}\mathbf{M}^{-1}\mathbf{y} \rangle \\ &= \langle \mathbf{x}, \mathbf{A}\mathbf{M}^{-1}\mathbf{y} \rangle_R. \end{split}$$

Algorithm PCG: $AM^{-1}z = b$, $x = M^{-1}z$

Choose
$$\mathbf{x} = \mathbf{x}_0$$
; set $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$ and $\mathbf{p}_0 = \mathbf{M}^{-1}\mathbf{r}_0$;
for $j = 1, 2, ..., \mathbf{do}$ until convergence:

$$\mathbf{x}_j = \mathbf{x}_{j-1} + \alpha_j \mathbf{p}_{j-1};$$

$$\mathbf{r}_j = \mathbf{r}_{j-1} - \alpha_j \mathbf{A}\mathbf{p}_{j-1};$$

$$\mathbf{p}_j = \mathbf{M}^{-1}\mathbf{r}_j + \beta_j \mathbf{p}_{j-1};$$
where

$$\mathbf{r}_{i-1}^* \mathbf{M}^{-1}\mathbf{r}_{j-1} \qquad \mathbf{r}_i^* \mathbf{M}^{-1}\mathbf{r}_j$$

$$\alpha_j = \frac{\mathbf{r}_{j-1}^* \mathbf{M}^{-1} \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^* \mathbf{A} \mathbf{p}_{j-1}}; \quad \beta_j = \frac{\mathbf{r}_j^* \mathbf{M}^{-1} \mathbf{r}_j}{\mathbf{r}_{j-1}^* \mathbf{M}^{-1} \mathbf{r}_{j-1}}.$$

• We now are minimizing (note that $\mathbf{x}_0 = \mathbf{M}^{-1}\mathbf{z}_0$ and $\mathbf{x} = \mathbf{M}^{-1}\mathbf{z}$)

$$\begin{split} \langle \mathbf{A}\mathbf{M}^{-1}(\mathbf{z}_{\star}-\mathbf{z}), \mathbf{z}_{\star}-\mathbf{z} \rangle_{R} &= \langle \mathbf{A}\mathbf{M}^{-1}(\mathbf{z}_{\star}-\mathbf{z}), \mathbf{M}^{-1}(\mathbf{z}_{\star}-\mathbf{z}) \rangle \\ &= \langle \mathbf{A}(\mathbf{x}_{\star}-\mathbf{x}), \mathbf{x}_{\star}-\mathbf{x} \rangle \\ &= \|\boldsymbol{\epsilon}\|_{\mathbf{A}}^{2}, \end{split}$$

over
$$\mathbf{z}_0 + \mathcal{K}_i(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0)$$
 or $\mathbf{x}_0 + \mathbf{M}^{-1}\mathcal{K}_i(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0)$.

 \bullet CG and PCG convergence curves for a 1000×1000 matrix

6. CGN = CG applied to the normal equations

• Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ be nonsingular but not necessarily Hermitian. We can solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ via applying the CG method to the normal equations

$$\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}.$$

- The matrix $\mathbf{A}^*\mathbf{A}$ is not formed explicitly. Instead, each matrix-vector product $\mathbf{A}^*\mathbf{A}\mathbf{v}$ is evaluated in two steps as $\mathbf{A}^*(\mathbf{A}\mathbf{v})$.
- We have

$$\begin{aligned} \|\mathbf{r}_j\|_2 &= \|\boldsymbol{\varepsilon}_j\|_{\mathbf{A}^*\mathbf{A}} = \|\mathbf{x}_{\star} - \mathbf{x}_j\|_{\mathbf{A}^*\mathbf{A}} \\ &= \min_{\mathbf{x} \in \mathbf{x}_0 + \mathcal{K}_j(\mathbf{A}^*\mathbf{A}, \mathbf{A}^*\mathbf{r}_0)} \|\mathbf{x}_{\star} - \mathbf{x}\|_{\mathbf{A}^*\mathbf{A}}, \end{aligned}$$

and

$$\frac{\|\mathbf{r}_j\|_2}{\|\mathbf{r}_0\|_2} \le 2\left(\frac{\kappa - 1}{\kappa + 1}\right)^j, \quad \text{where} \quad \kappa = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})}.$$