Математический анализ

Широков Николай Алексеевич 1

 $07.09.2023 - \dots$

 $^{^1}$ "Записал Сергей Киселев, Гараев Тагир"

Оглавление

1	Пос	троение множества вещественных чисел	2
	1.1	Множества	2
	1.2	Сечения	2
	1.3	Сумма сечений	3
	1.4	Теоремы сечений	4
2	Вещественные числа		8
	2.1	Супремумы и инфимумы	9
	2.2	Неравенство Бернулли	11
	2.3	Определение степени и логарифма	11
3	Пос	ледовательности	12
	3.1	Сопоставление вещественным числам десятичных дробей	12
	3.2	Предел последовательности	13
	3.3	Арифметические операции над пределами	14
	3.4	Расширенное множество вещественных чисел	15
	3.5	Бесконечные пределы	16
	3.6	Единообразная запись определения пределов	16
	3.7	Асимпотика	18
	3.8	Монотонные последовательности	18
	3.9	Число е	20
	3.10	Критерий Коши, существование конечного предела последо-	
		вательности	23
	3.11	Подпоследовательности	26
	3.12	Верхний и нижний предел последовательности	31
	3.13	Свойства верхних и нижних пределов	33
4	Функции. Предел функции, монотонность, непрерывность		37
	4.1	Предел функции	37
	4.2	Односторонние пределы	38
	4.3	Сущестование предела	39
	44	Свойства пределов функции	40

Глава 1

Построение множества вещественных чисел

Лекция 1: Введение

14.09.2023

1.1 Множества

```
Определение 1. Множества X и У равны, если: \forall a \in X : a \in Y
```

 $\forall a \in X : a \in I$ $\forall b \in Y : b \in X$

Определение 2. $X \subset Y$ если:

 $\forall a \in X : a \in Y$

Определение 3. 1. $a \in A \cup B \Leftrightarrow a \in A \lor a \in B$

 $2. \ a \in A \cap B \Leftrightarrow a \in A \wedge a \in B$

3. $a \in A \setminus B \Leftrightarrow a \in A \land a \notin B$

Определение 4. (Декартово произведение множеств)

 $A \times B = \{(a, b) : \forall a \in A, \forall \in B\}; A, B \neq \emptyset$

Определение 5. $F:A \to B$ - функция, такая, что: $\forall a \in A$ сопостовляет $b = F(a) \in B$

1.2 Сечения

Определение 6. Множество $\alpha \subset \mathbb{Q}$ называется сечением, если:

• I. $\alpha \neq \emptyset$

- ullet II. если $p \in \alpha$, то q
- \bullet III. в α нет наибольшего

Пример. 1. $p^* = \{r \in \mathbb{Q} : r < p\}$ - нет наибольшего 2. $\sqrt{2} = \{ p \in \mathbb{Q} : p \le 0 \lor p > 0 \land p^2 < 2 \}$

Теорема 1. (Утверждение 1) Если $p \in \alpha \land q \notin \alpha$, то q > p

Доказательство. Если $p \in \alpha$ и $q \leq p$, то из (II.) следует. что $q \in \alpha$

Теорема 2. (Утверждение 2) $\alpha < \beta \land \beta < \gamma \Rightarrow \alpha < \gamma$

Доказательство.
$$\begin{cases} \alpha < \beta \Rightarrow \exists p \in \beta, p \notin \alpha \\ \beta < \gamma \Rightarrow \exists p \in \gamma, q \notin \beta \end{cases} \Rightarrow p < q \Rightarrow \alpha < \gamma$$

Теорема 3. Пусть α, β - сечения. Между ними существует одно из нескольких отношений: $\begin{vmatrix} \alpha \\ \beta > \alpha \\ \alpha = \beta \end{vmatrix}$

Доказательство. Предположим, что
$$\alpha < \beta$$
 и $\beta < \alpha$, тогда:
$$\begin{cases} \exists p \in \alpha, p \notin \beta \\ \exists q \in \beta, q \notin \alpha \end{cases} \Rightarrow \begin{cases} p > q \\ q > p \end{cases}$$
 - Противоречие, тогда $\alpha \neq \beta$

1.3 Сумма сечений

Теорема 4. Пусть α, β - сечения, тогда: $\alpha+\beta=\{p+q:p\in\alpha,q\in\beta\}$ - тоже сечение.

Доказательство. • (I.) Пусть $\exists s \notin \alpha, \exists t \notin \beta$, тогда:

$$\forall p \in \alpha, q \in \beta : \begin{cases} p < s \\ q < t \end{cases} \Rightarrow p + q < s + t \Rightarrow \alpha + \beta \neq \mathbb{Q}$$

 $r_1 = p + q_1, r_1 < r \Rightarrow q_1 < q \Rightarrow q_1 \in \beta \Rightarrow p + q_1 \in \alpha + \beta$

• (III.)

$$\exists p_1 \in \alpha, p > p_1 \Rightarrow p_1 + q > p + q = r, p_1 + q \in \alpha + \beta$$
 - нет наибольшего

Теорема 5. (Свойства суммы сечений)

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$(\alpha + \beta) + \gamma = \alpha + (\beta + \beta)$$

3.
$$\alpha + 0^* = \alpha$$
, где $0^* = \{p \in \mathbb{Q} : p < 0\}$

Доказательство. Свойства 1 и 2 справедливы в силу коммутативности и ассоциативности рациональных чисел.

Докажем свойство 3:

- 1. Пусть $p \in \alpha, q \in 0^*$, тогда: $p+q , т.е. <math>\alpha+0^* \subset \alpha$
- 2. Пусть $p\in\alpha$, тогда: $\exists p_1>p\Rightarrow p_1\in\alpha, p=p_1+(p-p_1)$, при том $p_1\in\alpha, p-p_1\in0^*\Rightarrow p\in\alpha+0^*\Rightarrow\alpha\subset\alpha+0^*$

$$\begin{cases} \alpha \subset \alpha + 0^* \\ \alpha + 0^* \subset \alpha \end{cases} \Rightarrow \alpha = \alpha + 0^*$$

1.4 Теоремы сечений

Теорема 6. (Теорема 2) Пусть α - сечение, $r \in \mathbb{Q}^+$, тогда $\exists p \in \alpha \land q \notin \alpha$: q - не наименьшее верхнее (не входящее в сечение) число q-p=r

Доказательство. Пусть $p_0 \in \alpha, p_1 = p_0 + r$

- 1. Возможно, $p_1 \notin \alpha$, тогда:
 - (a) если p_1 не наименьшее в верхнем классе, то $q=p_1$
 - (b) если же наименьшее, то $p = p_0 + \frac{r}{2}, q = p_1 + \frac{r}{2}$
- 2. Если $p_1 \in \alpha$, тогда:

Положим $p_n=p_1+nr$ для $n=0,1,2,\ldots$ Тогда $\exists !m:$ $p_m\in\alpha$ и $p_{m+1}\notin\alpha$

- (a) Если p_{m+1} не наименьшее в верхнем классе, то выберем $p=p_m, q=p_{m+1}$
- (b) Если же наименьшее, то $p = p_m + \frac{r}{2}, q = p_{m+1} + \frac{r}{2}$

Теорема 7. (Существование противоположного элемента) Пусть α - сечение, тогда $\exists ! \beta : \alpha + \beta = 0^*$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 4

Доказательство. (нужно доказать единственность и существование)

1. Докажем единственность: пусть $\exists \beta_1, \beta_2$, удовлетворяющие условию, тогда:

$$\beta_2 = 0^* + \beta_2 = (\alpha + \beta_1) + \beta_2 = (\alpha + \beta_2) + \beta_1 = 0^* + \beta_1 = \beta_1$$

2. Докажем существование: пусть

 $\beta = \{p : -p \notin \alpha, -p \text{ не является наименьшим в верхнем классе } \alpha\}$

- (І.) Очевидно, что $\beta \neq \emptyset$, \mathbb{Q}
- (II.) Возьмем $p \in \beta, q -p \Rightarrow -q$ в верхнем классе α , но не наименьшее $\Rightarrow q \in \beta$
- (III.) Если $p \in \beta$, то -р не наименьшее в верхнем классе α , значит $\exists q: -q < -p$ и $-q \notin \alpha$ Положим $r = \frac{p+q}{2}$, тогда: $-q < -r < -p \Rightarrow$ -r не наименьшее в верхнем классе α . Значит, нашли такое r > p, что $r \in \beta$

Теперь проверим, что $\alpha + \beta = 0^*$:

- 1. Возьмем $p \in \alpha, q \in \beta$ По определению $\beta: -q \notin \alpha \underset{\text{Утв. 1}}{\Rightarrow} -q > p \Leftrightarrow p+q < 0 \Rightarrow p+q \in 0^* \Rightarrow \alpha+\beta \subset 0^*$
- 2. Возьмем по Теореме (2) $q-p=r\Leftrightarrow p-q=-r\in 0^*$ т.к. $q\notin \alpha$, то $-q\in \beta$, значит $p-q=p+(-q)\in \alpha+\beta\Rightarrow 0^*\subset \alpha+\beta$

$$\begin{cases} \alpha + \beta \subset 0^* \\ 0^* \subset \alpha + \beta \end{cases} \Rightarrow \alpha + \beta = 0^*$$

Лекция 2: Сечения

21.09.2023

Теорема 8. Пусть α, β — сечения. Тогда $\exists ! \gamma$ — сечение : $\alpha + \gamma = \beta$

Доказательство. Пусть имеем $\gamma_1 \neq \gamma_2$, удовлетворяющие условию. Тогда: $\alpha + \gamma_1 = \beta = \alpha + \gamma_2 \Rightarrow \gamma_1 = \gamma_2$ — противоречие.

Положим $\gamma=\beta+(-\alpha)$. Тогда в силу свойств сечений имеем: $\alpha+\gamma=\alpha+(\beta+(-\alpha))=\alpha+((-\alpha)+\beta)=(\alpha+(-\alpha))+\beta=0^*+\beta=\beta$

Определение 7. Сечение γ , построенное в предыдущей теореме обозначается через $\beta-\alpha$

Определение 8. (Абсолютная велечина) $|a| = \begin{cases} \alpha, & \text{если } \alpha \geq 0^* \\ -\alpha, & \text{если } \alpha < 0^* \end{cases}$

Глава 1. ПОСТРОЕНИЕ МНОЖЕСТВА ВЕЩЕСТВЕННЫХ ЧИСЕЛ 5

Определение 9. (Произведение) Пусть α, β — сечения, причем $\alpha \geq 0^*, \beta \geq 0^*$

Тогда $\alpha\beta = \{r \in \mathbb{Q} : r < 0 \lor r = pq, \text{ где } p \in \alpha, q \in \beta\}$

Пример. $\sqrt{2} \cdot \sqrt{2} = 2^*$

Теорема 9. (Любые 3 из них необоходимо доказать самостоятельно) Для любых сечений α, β, γ имеем:

- 1. $\alpha\beta = \beta\alpha$
- 2. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- 3. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$
- 4. $\alpha 0^* = 0^*$
- 5. $\alpha 1^* = \alpha$
- 6. если $\alpha < \beta$ и $\gamma > 0^*$, то $\alpha \gamma < \beta \gamma$
- 7. если $\alpha \neq 0^*$, то $\exists \beta : \alpha \cdot \beta = 1^*, \beta = \frac{1^*}{\alpha}$
- 8. если $\alpha \neq 0^*$, то $\exists \beta, \gamma : \alpha \cdot \gamma = \beta, \gamma = \frac{\beta}{\alpha}$

Теорема 10. (Свойства рациональных сечений)

- 1. $p^* + q^* = (p+q)^*$
- 2. $p^*q^* = (pq)^*$
- 3. $p^* < q^* \Leftrightarrow p < q$

Доказательство. 1. Возьмем $r \in (p+q)^* \Rightarrow r < p+q$

Положим h = p + q - r:

$$\begin{cases} p_1 = p - \frac{h}{2} \\ q_1 = q - \frac{h}{2} \end{cases} \Rightarrow \begin{cases} p_1$$

Теперь возьмем $r \in p^* + q^* \Rightarrow r = p_1 + q_1$:

$$\begin{cases} p_1 \in p^* \\ q_1 \in q^* \end{cases} \Rightarrow \begin{cases} p_1
$$\begin{cases} p^* + q^* \subset (p + q)^* \\ p^* + q^* \subset (p + q)^* \end{cases} \Rightarrow p^* + q^* \subset (p^* + q^*)$$$$

$$\begin{cases} p^* + q^* \subset (p+q)^* \\ (p+q)^* \subset p^* + q^* \end{cases} \Rightarrow p^* + q^* = (p^* + q^*)$$

2. Для умножения доказательство аналогично.

3. Если p < q, то $p \in q^*, p \notin p^* \Rightarrow p^* < q^*$ Если $p^* < q^*$, то $\exists r \in \mathbb{Q}: r \in q^*, r \notin p^* \Rightarrow p \le r < q \Rightarrow p < q$ Значит $p^* < q^* \Leftrightarrow p < q$

Теорема 11. Пусть α, β — сечения, $\alpha < \beta$. Тогда $\exists \ r^*$ — рациональное сечение : $\alpha < r^* < \beta$ **Доказательство.** $\alpha < \beta \Rightarrow \exists \ p : p \in \beta, p \notin \alpha$ Выберем такое r > p, так, что $r \in \beta$. Поскольку $r \in \beta, r \notin r^*$, то

Поскольку $p \in r^*, p \notin \alpha$, то $\alpha < r^*$

Глава 2

Вещественные числа

Определение 10. В дальнейшем сечения будут называться вещественными числами. Рациональные сечения будут отождествляться с рациональными числами. Все другие сечения будут называться иррациональными числами.

Таким образом, множество всех рациональных чисел оказывается подмножеством системы вещественных чисел.

Теорема 12. (Дедекинда) Пусть A и B — такие множества вещественных чисел, что:

- 1. $A \cup B = \mathbb{R}$
- $A \cap B = \emptyset$
- 3. $A, B \neq \emptyset$
- 4. $\forall \alpha \in A, \beta \in B : a < b$

Тогда $\exists ! \ \gamma \in \mathbb{R} : \alpha \leq \gamma \leq \beta \ \forall \alpha \in A, \forall \beta \in B$

Доказательство. 1. Докажем единственность.

Пусть γ_1,γ_2 — два числа, причем $\gamma_1 < gamma_2$. Тогда $\exists \ \gamma_3 : \gamma_1 < \gamma_3 < \gamma_2 \Rightarrow \gamma_3 \in A, \gamma_3 \in B$ — противоречие. Значит $\gamma_1 = \gamma_2$.

2. Проверим, является ли γ сечением.

$$\gamma = \{p \in \mathbb{Q} : \exists \alpha \in A : p \in \alpha\}$$

- I. $\gamma \neq \varnothing$, t.k. $A \neq \varnothing$ $\gamma \neq \mathbb{Q}, \text{t.k. } \exists q \in \mathbb{Q}: q \notin B \Rightarrow q \notin \gamma$
- II. Пусть $p_1 < p, p \in \gamma$. Тогда $\exists \alpha \in A : p_1 \in \alpha \Rightarrow p_1 \in \gamma$
- III. Пусть $p\in\gamma$. Тогда $\exists\alpha\in A:p\in\alpha$. Поскольку α сечение, то $\exists q\in\mathbb{Q}:q\in\alpha,q>p\Rightarrow q\in\gamma$

Ясно, что $\alpha \leq \gamma \forall \alpha \in A$.

Предположим, что $\exists \beta \in B : \beta < \gamma$. Тогда $\exists q \in \mathbb{Q} : q \in \gamma, q \notin \beta \Rightarrow \exists \alpha \in A : q \in \alpha \Rightarrow \alpha > \beta$ — противоречие. Значит $\gamma \leq \beta \ \forall \ \beta \in B$.

2.1 Супремумы и инфимумы

Определение 11. $E\subseteq\mathbb{R}, E\neq\varnothing$ Е - ограничено сверху, если $\exists y\in\mathbb{R}: \forall x\in E: x\leq y$

Определение 12. $G \subseteq \mathbb{R}, G \neq \emptyset$ G - ограничено снизу, если $\exists y \in \mathbb{R} : \forall x \in E : x \geq y$

Замечание. Если множество ограничено сверху и снизу, оно называется ограниченным.

Определение 13. Пусть Е ограничено сверху. Тогда y называется точной верхней границей (верхней гранью) Е, если:

- 1. у верхняя граница множества Е.
- 2. если x < y, то x не является верхней границей множества E.

Определение 14. Пусть Е ограничено снизу. Тогда y называется точной нижней границей (нижней гранью) Е, если:

- 1. у нижняя граница множества Е.
- 2. если x > y, то х не является нижней границей множества E.

Определение 15. Точная верхняя граница — $y \sup E$ Точная нижняя граница — $y \inf E$

Пример. Е состоит из всех чисел $\frac{1}{n}, n=1,2,3,\ldots$ Тогда множество ограничено, верхняя грань равна 1 и принадлежит множеству, а нижняя равна 0 и множеству не принадлежит.

Теорема 13. Пусть E ограничено сверху. Тогда $\sup E$ существует.

Доказательство. Пусть есть множества:

$$A = \{\alpha \in \mathbb{R} : \exists x \in E : x > \alpha\}$$

$$B = \mathbb{R} \setminus A$$
Torda $A \cap B = \emptyset, A \cup B = \mathbb{R}, A \neq \emptyset, B \neq \emptyset$

$$\begin{cases} \beta \in B \\ \alpha \in A \end{cases} \Rightarrow \begin{cases} \forall x \in E : x \leq \beta \\ \exists x_0 \in E : x_0 > \alpha \end{cases} \Rightarrow \alpha < \beta$$

Ясно, что никакой элемент множества A не является верхней гра-

ницей множества E, а любой элемент множества B является верхней границей множества E. Поэтому достаточно доказать, что B содержит наименьшее число.

По теореме Дедекинда:
$$\exists \gamma: \begin{cases} \alpha \leq \gamma \ \forall \alpha \in A \\ \beta \leq \gamma \ \forall \beta \in B \end{cases}$$

Предположим, что $\gamma \in A$. Тогда $\exists x \in E : x > \gamma$.

Возьмем $\gamma_1: \gamma < \gamma_1 < x \Rightarrow \gamma_1 \in A$ — противоречие.

Значит $\gamma \in B$.

Теорема 14. Пусть E ограничено снизу. Тогда inf E существует.

Доказательство. Доказательство тривиально и предоставляется читателю в качестве упражнения $\bigcirc \smile \bigcirc$.

Теорема 15. (Существование корня из вещественного числа) $\forall x \in \mathbb{R}$: $x > 0, \forall n \in \mathbb{N} : n > 0 \exists ! \ y \in \mathbb{R}, y > 0 : y^n = x, y = \sqrt[n]{x}$

Доказательство. 1. Единственность.

Пусть
$$y_1>y_2:y_2^n=x=y_1^n\Rightarrow y_2^n-y_1^n=0$$
 $>0 >0 (y_2-y_1)\cdot (y_2^{n-1}+y_2^{n-2}\cdot y_1+\ldots+y_1^{n-1})=0$ — противоречие.

2. Существование.

Пусть
$$E = \{t \in \mathbb{R} : t \ge 0, t^n < x\}$$

$$0 \in E \Rightarrow E \neq \emptyset$$

Положим
$$t_0 = 1 + x, t_0^n = (1 + x)^n$$

$$\sum_{k=1}^{n} C_n^k x^k = 1 + nx + \dots > x \Rightarrow E$$
 — ограничено сверху.

Пусть $y = \sup E$ (она существует по теореме о Существовании супремума).

- Допустим, что $y^n < x$. Возьмем h: 0 < h < 1 и $h < \frac{x-y^n}{(1+y)^n-y^n}$ Тогда $(y+h)^n = \sum_{k=0}^n C_n^k y^{n-k} h^k = y^n + \sum_{k=1}^n C_n^k y^{n-k} h^k = y^n + h \sum_{k=1}^n C_n^k y^{n-k} h^{k-1} < y^n + h \sum_{k=1}^n C_n^k y^{n-k} = y^n + h \cdot ((1+y)^n y^n) < (y+1)^n y^n < y^n + x y^n = x y$ не вехрняя граница.
- Допустим, что $y^n > x$. Возьмем $k: 0 < k < 1, \ k < \frac{y^n x}{(1+y)^n y^n}$ и k < y. Тогда аналогично с $y^n > x$ получаем, что y k верхняя граница E, что противоречит тому, что $y = \sup E$.

Значит $y^n = x$.

Лекция 3: Степень, логарифм, десятичные дроби. Последовательности.

287.09.2023

2.2 Неравенство Бернулли

Теорема 16 (Неравенство Бернулли). Пусть x>-1 и $n\in\mathbb{N}$. Тогда $(1+x)^n\geq 1+nx$.

Доказательство. Докажем по индукции. При n=1 неравенство очевидно. Пусть оно верно для n=k. Тогда

$$(1+x)^{k+1} = (1+x)^k(1+x) \ge (1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x.$$

Последнее неравенство выполнено, поскольку $kx^2 \ge 0$.

2.3 Определение степени и логарифма

Определение 16. Пусть $a>0,\ m,n\in\mathbb{Z}, m\neq 0; r=\frac{n}{m}$. Тогда $a^r=(a^{\frac{1}{m}})^n$. Если n>0, то: $x^m=x\cdot x\cdot \ldots\cdot x$ Если m<0, то $x^m=\frac{1}{x^{[m]}}$.

Определение 17. Пусть
$$p \in \mathbb{Q}, p \neq 0, a > 1$$
 Тогда $a^p = \sup\{a^r : r \in \mathbb{Q}, r \neq 0, r < p\}$ $a^0 = 1$

```
Определение 18. Пусть a>1, \alpha\in\mathbb{R} E=\{a^r:r\in\mathbb{Q}, r<\alpha, r\neq 0\} Тогда \sup E=a^\alpha. И \forall a\in\mathbb{R}:0< a<1:a^\alpha=(\frac{1}{a})^{-\alpha}
```

```
Определение 19. Пусть a>0, a\neq 0, x>0. Тогда Если a>1:\log_a x=\sup\{r\in\mathbb{Q}:a^r< x\}. Если 0< a<1:\log_a x=-\log_{\frac{1}{a}}x
```

Теорема 17. (Без доказательства) Для степени и логарифма справедливы все ранее встречавшиеся свойства. (имеется в виду школьный курс)

Глава 3

Последовательности

Определение 20. Пусть X — множество, $X \neq \emptyset$. Тогда последовательностью элементов множества X называется функция $f: \mathbb{N} \to X$. $x_1, x_2, \ldots, x_n \ldots; x_n \in X$ Последовательность — $\{x_n\}_{n=1}^\infty$

3.1 Сопоставление вещественным числам десятичных дробей

Алгоритм. (Построение дроби по числу)

Рассматриваем только $x > 0, x \in \mathbb{R}$

Возьмем $n_0 \in \mathbb{Z}_+ : n_0 \le x, n_0$ — максимальное число с таким свойством.

- Если $n_0 = x$ алгоритм закончен.
- Если $n_0 < x$ продолжаем: выбираем $n_1 \in \mathbb{Z} : n_0 + \frac{n_1}{10} \le x$

Аналогично с n_0 , проверяем равенство с х. Так вплоть до n_k : $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}\leq x$

Если ни на одном шаге равенство не выполняется, то задаем последовательность:

$$\{x_n\}_{n=0}^{\infty} = n_0, \frac{n_1}{10}, \frac{n_2}{10^2}, \dots$$

Теорема 18. (О супремуме десятичных дробей) Рассмотрим $E=\{r: r=\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}, k\in\mathbb{N}\}$ Тогда $\sup E=x$ (из алгоритма).

Доказательство. Так как $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x$, то $\sup E\leq x$ Предположим, что $\sup E< x$. Тогда $\exists r: r=x-\sup E>0$. Выберем такое k, что $\frac{1}{k^9}< r\Leftrightarrow k>\frac{1}{r^9}$. $n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}< x< n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k+1}{10^k}\Rightarrow n_0+\frac{n_1}{10}+\frac{n_2}{10^2}+\ldots+\frac{n_k}{10^k}> x-\frac{1}{10^k}> x-r=\sup E$, значит

$$x = \sup E$$

Лемма 1. (доказать самостоятельно) Пусть есть $E\subset\mathbb{R}, a\in\mathbb{R}, E_a=\{x+a:x\in E\}$ Тогда $\sup E_a=a+\sup E$

Дальше шла какая-то теорема, смысл которой я не понял. Если найдете адекватную запись или сможете объяснить — пишите \bigcirc \smile \bigcirc

3.2 Предел последовательности

Определение 21. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность вещественных чисел. Тогда $a\in\mathbb{R}$ называется пределом последовательности, если $\forall \varepsilon>0 \; \exists N: \forall n>N: |x_n-a|<\varepsilon.$

Замечание. $\forall x,y,z \in \mathbb{R}: |z-x| \leq |z-y| + |y-x|$

Определение 22. Пусть X — множество, функция ρ : $\rho: X \times X \to \mathbb{R}$ X — метрическое пространство, если: $\forall a,b \in X: \rho(a,b) \geq 0$ И выполнены следующие свойства:

- 1. $\rho(a,b) = 0 \Leftrightarrow a = b$
- 2. $\rho(a, b) = \rho(b, a)$
- 3. $\rho(a,b) \le \rho(a,c) + \rho(c,b)$

Тогда ρ — метрика X.

Пример. \mathbb{R} — метрическое пространство, $\rho(x,y) = |x-y|$

Определение 23. Пусть X — метрическое пространство, $a \in X, \{x_n\}_{n=0}^{\infty}, x_n \in X$ $\lim_{n \to \infty} x_n = a, \text{ если } \forall \varepsilon > 0 \; \exists N : \forall n > N : \rho(x_n, a) < \varepsilon$

Теорема 19. (Единственность предела) Если $\lim_{n\to\infty} x_n = a$ и $\lim_{n\to\infty} x_n = b$, то a=b

Доказательство. Пусть $a \neq b$. Тогда $\delta = \rho(a,b) > 0$. Положим $\varepsilon = \frac{\delta}{4}$.

- 1. Так как $\underset{n \to \infty}{x_n} \to a: \exists N_1: \forall n > N_1: \rho(x_n,a) < \varepsilon$
- 2. И так как $\underset{n \to \infty}{x_n} \to b: \exists N_2: \forall n > N_2: \rho(x_n, b) < \varepsilon.$

Пусть $n=N_1+N_2+1$. Тогда для n выполнены (1) и (2) Имеем $0<\delta=\rho(a,b)\leq \rho(a,x_n)+\rho(x_n,b)<\varepsilon+\varepsilon=\frac{\delta}{2}$ — противоречие.

Теорема 20. (Ограниченность сходящейся последовательности) X — метрическое пространство с метрикой ρ

$$x_n \in X, a \in X$$
 Пусть $x_n \to a$. Тогда $\exists \ R > 0 : \forall n \in \mathbb{N} : \rho(x_n, a) < R$

Доказательство. Возьмем

$$\varepsilon=1\Rightarrow\exists N:\forall n>N:\rho(x_n,a)<1$$
 (1)
Определим R как $R=\max(\rho(x_1,a)+1,\rho(x_2,a)+1,\ldots,\rho(x_N,a)+1,1)$ (2)

Тогда:

- если n>N, то из (1) следует (2), значит $R\geq 1$
- если $1 \le n \le N$, то $R \ge \rho(x_n, a)$

В обоих случаях R удовлетворяет условию теоремы.

3.3 Арифметические операции над пределами

Свойства. Для $\lim_{n\to\infty}x_n=a, \lim_{n\to\infty}y_n=b, c\in\mathbb{R}$ справедливы следующие свойства:

- 1. $\forall n \in \mathbb{N} : x_n = a \Rightarrow \lim_{n \to \infty} x_n = a$
- $2. \ c \cdot \lim_{n \to \infty} x_n = c \cdot a$
- $3. \ x_n + y_n \underset{n \to \infty}{\longrightarrow} a + b$
- 4. $x_n \cdot y_n \underset{n \to \infty}{\longrightarrow} a \cdot b$

- 2. $\forall \varepsilon > 0 \exists N : \forall n > N : |x_n a| < \varepsilon \Rightarrow |cx_n ca| = |c(x_n a) = |c||x_n a| < |c||\varepsilon|$
- $3. \begin{cases} \forall \varepsilon_1 > 0 \exists N_1 : \forall n > N_1 : |x_n a| < \varepsilon_1 \\ \forall \varepsilon_2 > 0 \exists N_2 : \forall n > N_2 : |y_n b| < \varepsilon_2 \end{cases} \Rightarrow \text{при } n > N_1 + N_2 + 1 : |x_n + y_n a b| \leq |x_n a| + |y_n b| < \varepsilon_1 + \varepsilon_2 \end{cases}$
- 4. Аналогично (3) при $n>N_1+N_2+1:|x_ny_n-ab|=|x_ny_n-ay_n+ay_n-ab|\leq |x_ny_n-ay_n|+|ay_n-ab|=|x_n-a||y_n|+|a||y_n-b|$ т.к. $\lim_{n\to\infty}y_n=b$, то $\exists R:\forall n:|y_n|\leq R$ (из предыдущей теоремы)

Тогда $|x_n - a||y_n| + |a||y_n - b| < \varepsilon_1 R + |a|\varepsilon_2$

Лекция 4: Продолжение

27.09.2023

Свойства. (Продолжение)

5
$$x_n \neq c \ \forall n, x_n \rightarrow a, a \neq 0 = > \frac{1}{x_n} \rightarrow \frac{1}{a}$$

$$6 \begin{cases} x_n \to a \text{из п. 5} \\ y_n \to b \end{cases} \Rightarrow \frac{y_n}{x_n} \to \frac{a}{b}$$

$$7 \ x_n \le y_n \forall n, x_n \to a, y_n b \Rightarrow a \le b$$

Доказательство. (5, 6, 7)

5 І. Возьмем $\varepsilon_0 = \frac{|a|}{2} > 0$, тогда:

$$\exists N : \forall n > N : |x_n - a| < \varepsilon_0 \Rightarrow |x_n| \ge |a| - |x_n - a| > |a| - \frac{|a|}{2} = \frac{|a|}{2}$$

II.
$$\forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : |x_n - a| < \varepsilon$$

 $N_0 = max(N_1,N)$. При $n > N_0$ получаем:

$$\left| \frac{1}{x_n} - \frac{1}{a} \right| = \left| \frac{a - x_n}{x_n \cdot a} \right| = \frac{1}{|a|} \cdot \frac{1}{|x_n|} \cdot |x_n - a| < \frac{1}{(I), (II)} \cdot \frac{2}{|a|} \cdot \varepsilon$$

6
$$\frac{y_n}{x_n} = y_n \cdot \frac{1}{x_n}$$
 — далее по п. (4), (5).

7 Предположим, что
$$a>b$$
. Тогда $\varepsilon_0=\frac{a-b}{2}>0\Rightarrow \begin{cases}\exists N_1:\forall n>N_1:|x_n-a|<\varepsilon_0\\\exists N_2:\forall n>N_2:|y_n-b|<\varepsilon_0\end{cases}$ = $\forall n>N_1+N_2+1:y_n<\varepsilon_0+b=b+\frac{a-b}{2}=a-\frac{a-b}{2}=a-\varepsilon_0<$ $x_n\Rightarrow y_n< x_n$ — противоречие с условием.

$$\forall n > N_1 + N_2 + 1 : y_n < \varepsilon_0 + b = b + \frac{a-b}{2} = a - \frac{a-b}{2} = a - \varepsilon_0 < x_n \Rightarrow y_n < x_n$$
— противоречие с условием.

Замечание. (Различные промежутки)

- 1. $(a,b) = \{x \in R : a < x < b\}$ интервал (открытый промежуток)
- $2. \ [a,b] = \{x \in R : a \le x \le b\} \ \ \text{замкнутный промежуток}$ $3. \ [a,b] = \{x \in R : a \le x \le b\} \ \ \text{полуоткрытый промежуток}$
- 4. $(a, b] = \{x \in R : a < x \le b\}$ полуоткрытый промежуток

3.4 Расширенное множество вещественных чисел

Определение 24. $\overline{R}=R\cup\{+\infty,-\infty\}$ — расширенное множество вещественных чисел. При этом:

$$\forall x \in \mathbb{R} : x < +\infty, x > -\infty$$

Замечание. (Еще промежутки)

1.
$$(a, \infty) = \{x \in \mathbb{R} : x > a\}$$

$$[a, \infty) = \{x \in \mathbb{R} : x > a\}$$

2.
$$[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$$

3. $(-\infty, a] = \{x \in \mathbb{R} : x < a\}$

4.
$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$$

Свойства. (Продолжение свойств пределов)

$$8 \begin{cases} \forall n: x_n \leq y_n \leq z_n \\ x_n \to a \\ z_n \to a \end{cases} \Rightarrow y_n \to a - \text{теорема о двух миллиционерах}$$

Доказательство.
$$\begin{cases} \forall \varepsilon > 0: \exists N_1: \forall n > N_1: |x_n - a| < \varepsilon \Leftrightarrow x \in (a - \varepsilon, a + \varepsilon) \\ \forall \varepsilon > 0: \exists N_2: \forall n > N_2: |z_n - a| < \varepsilon \Leftrightarrow z \in (a - \varepsilon, a + \varepsilon) \end{cases}$$

$$\forall n > \max(N_1, N_2):$$

$$a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon \Rightarrow |y_n - a| < \varepsilon$$

3.5 Бесконечные пределы

Определение 25. (Бесконечные пределы)

• $\{x_n\}_{n=1}^{\infty}, x_n \to \infty, n \to \infty$ $\lim_{n\to\infty} x_n = +\infty$, если:

 $\forall L \in \mathbb{R} \ \exists N : \forall n > N : x_n > L$

• $\{y_n\}_{n=1}^{\infty}, y_n \to -\infty, n \to \infty$

 $\lim_{n\to\infty}y_n=-\infty$, если:

 $\forall L \in \mathbb{R} : \exists N : \forall n > N : y_n < L$

(возможно сокращение записи n-> далее.)

3.6 Единообразная запись определения пределов

Определение 26. Окрестостью вещественного числа a называется любой интервал $(a - \varepsilon, a + \varepsilon)$, где $\varepsilon > 0$ (обозначается как $\omega(a)$).

Определение 27. Окрестность
$$+\infty:(L,+\infty), L\in\mathbb{R}$$
 Окрестность $-\infty:(-\infty,L), L\in\mathbb{R}$

Определение 28. Пусть $\{x_n\}_{n=1}^{\infty}$, тогда $x_n \to a$, если: $\forall \omega(\alpha): \exists N: \forall n > N: x_n \in \omega(\alpha)$

Свойства. (Доказать самостоятельно)

Пусть $\{a_n\}_{n=1}^{\infty}, a \to +\infty, \{b_n\}_{n=1}^{\infty}, b \to -\infty,$ тогда:

1.
$$c > 0 : ca_n \to +\infty, cb_n \to -\infty$$

 $c < 0 : ca_n \to -\infty, cb_n \to +\infty$

2.
$$x_n \to x, x \in \mathbb{R} \cup \{+\infty\} \Rightarrow a_n + x_n \to +\infty$$

 $y_n \to y, y \in \mathbb{R} \cup \{-\infty\} \Rightarrow b_n + y_n \to -\infty$

3. Возьмем x_n, y_n из п. (2), тогда:

$$x > 0 \Rightarrow a_n x_n \to +\infty, b_n x_n \to -\infty$$

 $y < 0 \Rightarrow a_n y_n \to -\infty, b_n y_n \to +\infty$

4. Если $\forall n: a_n \neq 0, b_n \neq 0$, тогда:

$$\frac{1}{a_n} \to 0$$

$$\frac{1}{b_n} \to 0$$

Если
$$x_n > 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to +\infty$$

Если
$$x_n < 0, x_n \to 0 \Rightarrow \frac{1}{x_n} \to -\infty$$

5.
$$\forall n : x_n \leq y_n, x \to \alpha, y_n \to \beta; \alpha, \beta \in \overline{\mathbb{R}} \Rightarrow \alpha \leq \beta$$

6.
$$\begin{cases} \forall n : x_n \leq y_n \leq z_n \\ x_n \to \alpha, \alpha \in \mathbb{R} \\ z_n \to \alpha \end{cases} \Rightarrow y_n \to \alpha$$

Замечание. $+\infty = +\infty$

$$-\infty = -\infty$$

$$-\infty < +\infty$$

Доказательство. (2, 6)

$$2 \begin{cases} x \in \overline{\mathbb{R}} \Rightarrow \exists M : \forall n : |x_n - x| < M \Rightarrow x_n > x - M \\ \forall L \in \overline{\mathbb{R}} : \exists N : \forall n > N : a_n > L \end{cases} \Rightarrow a_n + x_n > L + x - M$$
, где правая часть — любое число.

6
$$\forall \varepsilon > 0 : \exists N_1 : \forall n > N_1 : x_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

 $\forall \varepsilon > 0 : \exists N_2 : \forall n > N_2 : z_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$
 $N_0 = \max(N_1, N_2)$

$$\forall n > N_0 : x_n \le y_n \le z_n \Rightarrow y_n \in (\alpha - \varepsilon, \alpha + \varepsilon)$$

3.7 Асимпотика

Определение 29. (О-большая и о-малая)

- 1. $x_n = o(1)$, если $x_n \to 0$
- 2. $y_n = O(1)$, если $\exists C : \forall n : |y_n| \le C$
- 3. Пусть $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}, \forall n: b_n \neq 0$, тогда: $a_n = o(b_n)$, если $\frac{a_n}{b_n} \to 0$
- 4. Пусть есть $\{c_n\}, \{d_n\},$ тогда: $c_n = O(d_n),$ если $\exists C: |c_n| \leq C|d_n|$

Замечание. Это не равенство в привычном смысле, следует читать его только слева направо.

3.8 Монотонные последовательности

Определение 30. (монотонные последовательности)

- $\{a_n\}_{n=1}^{\infty}$ монотонно возрастает, если $\forall n: a_n \leq a_{n+1}$ (возрастает строго если $a_n < a_{n+1}$)
- $\{b_n\}_{n=1}^{\infty}$ монотонно убывает, если $\forall n: b_n \leq b_{n+1}$

Замечание. Говорят, что поледовательнотсть c_n монотонна, если она либо монотонно возрастает, либо монотонно убывает.

Теорема 21. (Теорема о пределе монотонной последовательности)

- Пусть есть последовательность $\{c_n\}_{n=1}^{\infty}$, тогда $\exists \lim_{n \to \infty} c_n \in \overline{\mathbb{R}}$.
- Для того, чтобы монотонно возрастающая последовательность имела конечный предел, необходимо и достаточно, чтобы последовательность была ограничена сверху.
- Для того, чтобы монотонно убывающая последовательность имела конечный предел необходимо и достаточно, чтобы последовательность была ограничена снизу.

При этом справелдивы неравенства:

- $\forall m: c_m \leq \lim_{n \to \infty} c_n$ если последовательность возрастает. (или < если строго возрастает)
- $\forall m : c_m \ge \lim_{n \to \infty} c_n$ если последовательность убывает.

Доказательство. 1. Предположим, что проследовательность c_n не ограничена сверху, тогда:

$$\forall L \in \mathbb{R} : \exists N : c_N > L$$

$$\forall n>N: c_n\geq c_{n-1}\geq c_{n-2}\geq ...\geq c_N+1\geq c_N>L$$
, значит $c_n>L$

Значит по определению предела: $\lim c_n = +\infty$

2. Предположим теперь, что последовательность c_n возрастает и ограничена сверху, тогда:

$$\begin{cases} c_n \le c_{n+1} \\ \exists M : \forall n : c_n \le M \end{cases}$$

Пусть $E = \{ \alpha \in \mathbb{R} : \exists n \in \mathbb{N} : \alpha = c_n \}$ — множество из всех элементов последовательности c_n .

Значит E — ограничено сверху. Положим $C=\sup E$, тогда имеем $\forall n:c_n\leq C$

 $\forall \varepsilon > 0: C - \varepsilon$ — не верхняя граница, значит $\exists N: c_N > C - \varepsilon \Rightarrow \forall n > N: c_n \geq c_{n-1} \geq \ldots \geq c_N > C - \varepsilon \Rightarrow C - \varepsilon < c_n \leq C < C + \varepsilon \Rightarrow |c_n - C| < \varepsilon \Rightarrow \lim_{n \to \infty} c_n = C$

В обратную сторону: если $\exists \lim_{n\to\infty} c_n = C \in \mathbb{R} \Rightarrow \exists M: \forall n: |c_n - C| < M \Rightarrow \forall n: c_n \leq C + M$

3. Доказательство для убывающей последовательности аналогично.

Теорема 22. (Теорема о вложенных промежутках)

Пусть
$$\forall n : [a_n, b_n] \supset [a_{n+1}, b_{n+1}]$$
 и $b_n - a_n \underset{n \to \infty}{\longrightarrow} 0$.

Тогда $\exists !c : \forall n : c \in [a_n, b_n]$

Доказательство. 1. существование

имеем неравенства:

$$\forall n: \begin{cases} a_n \leq a_{n+1} \\ b_n \geq b_{n+1} \\ a_n < b_n \end{cases} \Rightarrow a_n < b_1, b_n > a_1$$

Тогда в силу возрастания a_n и убывания b_n по предыдущей теореоме $\exists a=\lim_{n\to\infty}a_n$ и $\exists b=\lim_{n\to\infty}b_n$

По свойству перехода к пределу в неравенствах: $a_n < b_n \Rightarrow a \leq b$

Имеем
$$\begin{cases} \forall n: a_n \geq a \\ \forall n: b \leq b_n \end{cases} \Rightarrow \forall n: b-a \leq b_n - a_n \Rightarrow$$

$$\Rightarrow 0 \leq \lim_{n \to \infty} (b-a) \leq \lim_{n \to \infty} (b_n - a_n) = 0 - \text{в силу условия}.$$

Значит
$$b-a=0 \Rightarrow a=b \stackrel{def}{=} c$$

Имеем $a_n \leq c \leq b_n$, т.е. $c \in [a_n,b_n]$

2. Единственность Если бы
$$\exists c_0 \in [a_n,b_n]$$
, то $|c_0-c| \leq b_n-a_n \Rightarrow |c_0-c| < \lim_{n \to \infty} (b_n-a_n)=0 \Rightarrow c_0=c$

Замечание. Условие замкнутости промежутков существенно: Имеем $(0,\frac{1}{n+1}]\supset (0,\frac{1}{n}],\,\frac{1}{n}-0\underset{n\to\infty}{\to}0$

Имеем
$$(0, \frac{1}{n+1}] \supset (0, \frac{1}{n}], \frac{1}{n} - 0 \xrightarrow[n \to \infty]{}$$
 (Но $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}] = \emptyset$

3.9 Число e

Теорема 23. Пусть
$$x_n = (1+\frac{1}{n})^n$$
 и $y_n = (1+\frac{1}{n})^{n+1}$ Тогда $\forall n: x_n < y_n$ и $x_n \to e, y_n \to e, 2 < e < 3$

Доказательство. Рассмотрим:

$$\frac{y_{n-1}}{y_n} = \frac{\left(\frac{n}{n-1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n}{n+1}\right)^{n+1} \cdot \left(\frac{n}{n-1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n-1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n = \left(\frac{n}{n+1}\right)^n \cdot \left(\frac{n}{n+1}\right)^n \cdot$$

$$= \frac{n}{n+1} \cdot \left(\frac{n^2}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(\frac{n^2 - 1 + 1}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^n$$

Возьмем за $x = \frac{1}{n^2 - 1}$, тогда по неравенству Бернулли:

$$\frac{n}{n+1}\cdot(1+\frac{1}{n^2-1})^n>\frac{1}{n+1}\cdot(1+\frac{n}{n^2-1})=\frac{1}{n+1}\cdot\frac{n^2-1+n}{n^2-1}=$$

$$\frac{n^3+n^2-n}{n^3+n^2-n-1}>1$$

$$\Rightarrow y_n< y_{n-1}\Rightarrow y_n-\text{ строго монотонно убывающая.}$$

$$\frac{n^3 + n^2 - n}{n^3 + n^2 - n - 1} > 1$$

Теперь рассмотрим x_n : (считаем, что $n \ge 3$)

$$x_n = \left(1 + \frac{1}{n}^n\right) = \sum_{k=0}^n C_n^k \left(\frac{1}{n}\right)^k = 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n C_n^k \frac{1}{n^k} = 1 + n \cdot$$

(Продолжение на следующей лекции)

Лекция 5: Продолжение (Часть 1)

05.10.2023

Для того чтобы вывести все слагаемые, мы полагаем, что n>=3, тогда

$$x_n = 2 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$
 (5)(1)

Пример. (Пример умножения из предыдущей суммы) Если k = 3, то

$$(1-\frac{2}{n})\cdot(1-\frac{1}{n})$$

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)\right)$$
(2)

Замечание. Слагаемое из (2) $(1-\frac{n}{n+1})$, также оно же в виде $\frac{1}{(n+1)^{n+1}}$

Замечание. Если
$$r>0$$
, то $1-\frac{r}{n+1}>1-\frac{r}{n}$
$$\Rightarrow (1-\frac{k-1}{n+1})=(1-\frac{1}{n+1})\cdot \dots \cdot (1-\frac{1}{n+1})>(1-\frac{k-1}{n})\cdot \dots \cdot (1-\frac{1}{n})$$

Замечание. Получается, что в (1) и (2) одинаковое количество слагаемых. При этом, соотвествующе слагаемые относящихся к n+1 будет строго больше чем слагаемые относящихся к n.

Следовательно, равенство (2) больше, чем равенство (1).

Кроме того, в сумме относящийся к n+1 есть ещё n+1 слагаемое, которые положительно.

$$(1),(2) \Rightarrow x_{n+1} > x_n \tag{3}$$

Примем во внимание неравенства для у и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$(3)28.9(3)5.10 \Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1$$

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$(5) \Rightarrow \exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$(5) \Rightarrow \exists \lim_{n \to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

(Воспользуемся свойством предела произведения пределов)

$$\lim_{n \to \infty} (1 + \frac{1}{n}) \cdot \lim_{n \to \infty} (1 + \frac{1}{n})^n = 1 + \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

Замечание. Пользуемся свойствами пределов строго монотонной последовательностей.

Последовательность y_n строго убывает, а последовательность x_n строго возрастает поэтому её предел меньше любого y_n

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

Примечание. Нужно посчитать и понять намного ли это меньше 3 или нет.

$$e=2.718...$$

Замечание. Число е - одно из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья - это π

3.10 Критерий Коши, существование конечного предела последовательности

Теорема 24. Пусть имеется некоторая последовательность x_n .

$$x_{n} = 1$$

Для того чтобы $\exists\lim_{n\to\infty}x_n\in\mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon>0,\exists N$ такой, что $\forall m,\forall n>N$ выполнено

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. Важное обстоятельство содержащееся в формулировке.

В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует.

Это так называемая теорема существования.

Доказательства начнём с необходимости.

Примечание. Необходимость означает что предел существует.

Доказательство. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon>0\exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow \text{при} n > N, m > N$$

$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс А - это

$$A = \alpha \in \mathbb{R} : \exists N$$
такое, что $\forall n > Nx_n > \alpha$ (10)

Замечание. Номер n от α зависит.

Каждому α соответствует свой номер n.

Вернхний класс А' - это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

Нужно проверить, что A и A' не пустые и не совпадают с множеством вещественных чисел.

Возьмём

$$\varepsilon = 1$$

Тогда,

 $\exists N_0$ такой, что $\forall m, n > N_0$

$$|x_m - x_n| < 1$$

В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) = > x_{N+1} - 1 \in A \tag{12}$$

(по определению)

Пример. Если мы возьмем любой п который > N+1, тогда получается что x_n больше чем число (12)

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A, \text{ то-есть}, x_{N+1} + 1 \in A'$$
 (13)

При всех n, начиная с N + 1 x_n будет меньше чем то число. Оно никак не может удовлетворять соотношению (10).

Значит, это не может быть число из А, значит это число из А'.

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta inA'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N$$
такой, что $\forall n > Nx_n > \alpha$ (14)

Если бы для любого $\forall n>N$ выполнялось $x_n>\beta,$ то $\beta\in A.$ Однако, это не так, т.к. $\beta\in A'.$

То-есть,

$$\exists n_0 > N$$
такое, что $x_{n_0} \le \beta$ (15)

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение. Теперь можно применить теорему Дедекинда. По теореме Дедекинда, существует некое число

 $\exists a \in R$ такое, что $\forall \alpha in A, \forall \beta in A'$

$$\alpha \le a \le \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$

Тогда,

$$(8) = > \exists N$$
такое, что выполнено (8)

m = N + 1

Тогда,

$$(8) \Rightarrow \forall n > N+1$$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon) \tag{17}$$

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon u x_n < x_{N+1} + \varepsilon$$

Примечание. при $\forall n > N+1$, выполнена правая счасть неравенства (17) $x_n > x_{N+1} - \varepsilon$.

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит A', потому что если бы принадлежало A, должно было бы быть другое неравенство в другую сторону/

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

а (20) $\Rightarrow x_{N+1} - \varepsilon$ как β ,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon \tag{21}$$

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n>N+1.$

Поэтому, (21) и (17') \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела. По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказано. доказать конкретно а мы не смогли, но оно существует.

3.11 Подпоследовательности

Последовательность - это отображение $f: \mathbb{N} \to \mathbb{R}$.

Допустим, что у нас имеется некое отображение $g: \mathbb{N} \to \mathbb{N}$ которое не является тождественным.

д не тождественное отображение.

Когда каждому n сопоставляется тоже самое n.

$$\forall n < mg(n) < g(m)$$

Тогда, подпоследовательностью называется суперпозиция этих выражений.

$$f(g): \mathbb{N} \to \mathbb{R}$$
.

Примечание. Классический вид:

$$x_n {n=1}^{\infty}$$

$$g(k) = n_k$$

$$n_1 < n_2 < \dots$$

Тем самым, вместо всей последовательностьи x_n мы рассматриваем только с такими номерами:

$$x_{n_1}, x_{n_2}, \ldots$$

Это только часть первоначальной поледовательности.

Обозначение. Если эти номера определены, то последовательность обозначают

$$x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$$

Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A \in \overline{\mathbb{R}}$ является пределом, то-есть $x_{n_k} \to A$, при $k \to \infty$, если $\forall \Omega(A)$ существует такой номер K, что для любого k > K выполнено $x_{n_k} \in \Omega(A)$

Теорема 25. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$

и пусть мы имеем любой подпоследовательность

 $x_{n_k} \overset{\infty}{\underset{k=1}{\sim}}$ выбранную из этой последовательности. $\Rightarrow x_{n_k} \to A$, при $k \to \infty$.

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N$$
такое, что $\forall n > N$

будет выполняться

$$x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает,

$$\rightarrow n_1 \ge 1, n_2 > 1, n_2 \ge 2$$

(Шаг индукции)

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То-есть, если мы выберем подпоследовательность, то n_k будет больше или равно k. Начиная с какого-то индекса, будет строго больше.

Возьмём K = N.

Тогда, при k > N $n_k \ge k > N$

То-есть, при $\mathbf{k} > \mathbf{N}, \, x_{n_k} \in \Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$

Лекция 5: Продолжение (Часть 2)

05.10.2023

Теорема 26. (Больцано-Вейерштрасса)

Замечание. Эту теорему обычно называют принципом выбора Больцано-Вейерштрасса.

Пусть имеется некоторая последовательность $x_n,$ которая ограничена.

Примечание. Ограниченность означает ограниченность и сверху и снизу.

$$a \le x_n \le b \forall n \tag{1}$$

$$x_{n} = 1$$

Тогда,

$$\alpha \in [a,b]$$
и $x_{n_k} \underset{k=1}{\overset{\infty}{\underset{k=1}{\times}}}$

Такая, что

$$x_{n_k} \to \alpha$$
при $k \to \infty$ (2)

Замечание. Такое α может быть только одним, если последовательность ограниченна и имеет некоторый предел.

Доказательство. определим последовательность промежутков.

$$I_1 = [a, b]$$

$$I_2' = [a, \frac{a+b}{2}], I_2'' = [\frac{a+b}{2}, b]$$

Примечание. $\frac{a+b}{2}$ - это центр отрезка [a, b]

В последовательности x_n имеется бесконечно ммного номеров (начиная с 1).

Рассмотрим множество номеров в множестве
 п таких, что $x_n' \in I_2'$ и п такие что $x_n \in I_2''$

(Какое-то из них, или оба бесконечны.)

Если бы первое и второе множество n выше было конечно, то мы получили бы что у нас есть конечное множество номеров n.

А в силу соотношения 1 на всем промежутки I_1 лежит вся последовательность.

поэтому, если бы и первое и второе множество было бы конечно, мы бы получили что рассматривам конечно множество номеров x_n , которые лежат на всем отрезке I_1 , а на I_1 лежит вся последовательность.

Пусть I_2 - тот из $I_2',\ I_2'',\ для$ которого \exists бесконечно n таких что $x_n \in I_2$

Примечание. Это может быть либо I'_1 , либо I'_2 , либо I''_2 если оба удовлетворяем, то любой возьмем. Произвольно. Можно например всегда брать только I'_2 , но по крайней мере для одного, таких номеров будет бесконечно много.

Имеется некоторое множество натуральных чисел, таких что x_n принадлежит I_2

Пусть n_1 - минимаьные n, такие что $x_n \in I_2$ $I_2 = [a_2, b_2]$

Примечание. Снова рассмотрим середину, $\frac{a_2+b_2}{2}$

$$I_3' = [a_2, \frac{a_2 + b_2}{2}]$$

$$I_3'' = \left[\frac{a_2 + b_2}{2}, b_2\right]$$

Нам известно, что множество тех n, таких что лежат на I_2 , множество таких n - бесконечно.

По крайней мере в одном из этих множеств тоже будет находится бесконечное множество номеров ${\bf n}.$

Пусть I_3 - тот из I_3' , I_3'' , для которого \exists бесконечно n таких что $x_n \in I_3$

 n_2 - минимальное n такое, что $x_n \in I_3$, и $n_2 > n_1$.

Примечание. Точка x_n1 , может попасть на этот промежуток I_3 , но посколько для этого промежутка существует бесконечно много n, таких что n пренадлежит промежутку I_3 , то мы можем взять следующую, больше чем n_1 , и называем её n_2

И так далее по индукции. Предположим, что мы уже выбрали промежутки

$$I_1 \supset I_2 \supset \cdots \supset I_m$$
 (3')

При этом мы всё время делим пополам.

 $k+1 \le m$

длина $I_{k+1}=rac{1}{2}$ длинны

$$I_k = \frac{b-a}{2^k} \tag{3}$$

$$n_1 < n_2 < \dots n_m < n_{m+1} \tag{4}$$

$$x_{n_1} \in I_2, x_{n_2} \in I_2, \dots x_{n_{m-1}} \in I_m$$
 (5)

Предположим, что по индукции такое построение уже произошло Пусть

$$I_m = [a_m, b_m] \tag{6}$$

Индуктивное предположение (индуктивный шаг) Существует бесконечно много n, таких что

$$x_n \in I_m \tag{7}$$

Для двух и трёх мы это проделали. Предположим, что это проделано для n и будем выполнять индуктивный шаг.

$$I'_{m+1} = [a_m, \frac{a_m + b_m}{2}]$$

$$I_{m+1}^{"}=\left[\frac{a_{m}+b_{m}}{2},b_{m}\right]$$

Мы снова взяли и разделили промежуток $[a_m, b_m]$ пополам.

Рассмотрим множество номеров в множестве
 п таких, что $x_n' \in I_{m+1}'$ и п такие что $x_n \in I_{m+1}''$

(Хотя бы одно из них бесконечно, по той причине что объединение этих множеств это множество тех n таких что x_n принаддлежит I_m ,

потому что вместе они дают на I_m , в силу предположения (7). Если бы и то и другое было бы конечно, то на множестве I_m было бы конечно множество номеров таких что x_n лежит на I_m , а по предположениб индукции их должно быть бесконечно.)

Тогда по определению I_{m+1} - тот ищ I'_m, I''_m , для которого \exists бесконечно много п таких что $x_n \in I_{m+1}$

Пускай n_{m+1} - это наименьшее

н такое что $x_{n_m} \in I_{m+1}$ и $n_{m+1} > n_m$

Примечание. Если элемент x_{n_m} лежит на I_{m+1} , то мы вычеркиваем его и рассматриваем минимальный следующий (их бесконечно много).

И так мы получили в итоге этих рассуждений:

$$n_1 < n_2 < \cdots < n_m < \dots$$

$$x_{n_m} \in I_{m+1}$$

$$(3) \Rightarrow$$
 длина $I_m \to 0$, при $m \to \infty$ (8)

Примечание. Получается, что это вложенные промежутки.

$$(3')$$
и (8)

По теореме о вложенных пределах:

$$\exists! \alpha$$
 τακοέ чτο $\alpha \in I_m \forall m$ (9)

$$(5) \Rightarrow x_{n_m} \in I_{m+1}$$

Точка α лежит на этом промежутка и точка с номером x_{n_m} лежит на этом же промежутке.

$$(5), (9) \Rightarrow |x_{n_m} - \alpha| \le \frac{b - a}{2^m} \tag{10}$$

 $\forall \varepsilon > 0$

 $k: \frac{b-a}{2^k} < \varepsilon$

Возьмём m > K

$$(10), (11) \Rightarrow при m > K$$

выполнено

$$x_{n_m} - \alpha \to \alpha$$
при $m \to \infty$ (12)

Таким образом мы доказали, что существует подпоследовательность у которой есть конечный предел.

 $a \in I_1$

, т.е.

$$a \le \alpha \le e$$

3.12 Верхний и нижний предел последовательности

Определение 31. Пусть есть произвольная последовательность x_n .

$$x_{n}_{n=1}^{\infty}, x_n \in \mathbb{R}$$

Если $x_{n_{n=1}}^{\infty}$ не ограничена сверху, то верхний предел $\overline{\lim_{n \ to\infty}} x = +\infty,$ по определению.

Если $x_{n=1}^{\infty}$ ограничена сверху, т.е.

$$\exists M \text{ T.y. } x_n \leq M \forall$$
 (1)

$$E_n = a \in \mathbb{R} : a = x_m, m \ge n$$

(множество всех значение последовательности x_n начиная с множества n)

$$g_n = \sup E_n$$

 $(1) \Rightarrow E_n$ ограничена сверху \Rightarrow

$$g_n \le M \forall n \tag{2}$$

Обратим внимание, что

$$E_{n+1} \subset E_n \Rightarrow g_{n+1} \le g_n \tag{3}$$

Потому что может быть они совпадают, но мы рассматриваем элементов на 1 больше.

$$(3) \Rightarrow \exists \lim_{n \to \infty} g_n \ge -\infty \tag{4}$$

$$(2) \Rightarrow \lim_{n \to \infty} g_n \le M \tag{5}$$

$$\overline{\lim_{n \ to \infty}} x_n = \lim_{n \to \infty} g_n$$
по определению

Если мы посмотрим на определение верхнего предела, видно, что верхний предел, в отличии от просто предела существует в нулевой последовательности. Т.к. последовательность либо ограничена сверху, либо не ограничена сверху.

Если $x_{n}_{n=1}^{\infty}$ не ограничена снизу, то

$$\lim_{n \to \infty} x_n$$
по определению равно — ∞

Если $x_{n}_{n=1}^{\infty}$ ограничена снизу, то-есть

$$\exists L, \text{ T.y. } x_n \ge L \forall n$$
 (7)

$$h_n = \inf E_n$$

$$(7) \Rightarrow h_n > -\infty$$

$$h_{n+1} \ge h_n \tag{8}$$

 h_n - это монотонно возрастающая последовательность, а у любой такой последовательности есть предел. Может быть равный $+\infty$

$$(8) \Rightarrow \exists \lim_{n \to \infty} h_n \le +\infty$$

$$\lim_{n \to \infty} x_n$$
по определению равен
$$\lim_{n \to \infty} h_n \tag{9}$$

Таким образом,
если мы рассматриваем любую последовательность $x_n,$ то у неё существуют верхний и нижний предел.

3.13 Свойства верхних и нижних пределов

1.

$$h_n = \inf E_n \le \sup E_n = g_n \tag{10}$$

и последовательность g_n и h_n имеют пределы.

Для всякого n спораведливо это неравенство (10)

$$(10) \Rightarrow \lim_{n \to \infty} h_n \le \lim_{n \to \infty} g_n \tag{11}$$

$$(11): \lim_{n \to \infty} x_n \tag{12}$$

Примечание. В отличии от обычных пределов, верхние и нижние пределы существуют у любой последовательности.

Теорема 27. Есть некоторая последовательность, тогда для того чтобы существовал предел

$$\exists \lim_{n \to \infty} x_n = a \in \overline{\mathbb{R}}$$

необходимо и достаточно, чтобы

$$\lim_{n \to \infty} x_n = \overline{lim_{n \to \infty}} x_n = a \tag{13}$$

Примечание. Здесь нужно рассмотреть все случаи, когда соотвествующие пределы и какой-то из них является символами + или - ∞ , но мы рассмотрим только когда речь идет о когда оба предела это вещественные числа.

Предположим, что существует предел.

Хотим проверить, что верхний предел равен нижнему пределу.

$$\forall \varepsilon > 0 \exists N$$
 t. y. $\forall n > N$

$$a - \varepsilon < x_n < a + \varepsilon \tag{14}$$

Посмотрим на определение g_n и h_n .

$$(14) \Rightarrow \text{ при } n > NE_n \subset (a - \varepsilon, a + \varepsilon) \Rightarrow$$

$$\Rightarrow g_n \le a + \varepsilon, h_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow a - \varepsilon \le \underline{\lim} x_n = \overline{\lim} x_n \le a + \varepsilon$$

$$lim x_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow 0 \le \lim x_n - \lim x_n \le 2\varepsilon \tag{15}$$

Получается, что некоторое не отрицательное число не превосходит 2ε при любом положительном ε . Это может быть только тогда, когда это число равно 0.

$$(15) \Rightarrow \underline{\lim} x_n = \overline{\lim} x_n = \lim x_n$$

И нижние и верхние пределы на самом деле равны а.

Тогда мы получаем следующие суждения

$$g_n \to a, h_n \to a$$

$$g_n \ge a \forall n$$

$$h_n \le a \forall n$$

$$\forall \varepsilon > 0 \exists N_1 \text{т.ч.} a \le g_n < a + \varepsilon \text{при} n > N_1$$
 (16)

И

$$\exists N_2$$
 т.ч $a - \varepsilon < h_n \le a$ при $n > N_2$ (17)

$$N = \max(N_1, N_2)n > N$$

$$(16), (17) \Rightarrow a - \varepsilon < \inf E_n \le \sup E_n < a + \varepsilon \tag{18}$$

$$(18) \Rightarrow \forall m \ge n$$
выполнено $a - \varepsilon < x_m < a + \varepsilon$ (19)

В частности,

$$a - \varepsilon < x_n < a + \varepsilon \tag{20}$$

$$(20): \exists \lim_{n \to \infty} x_n = a = \underline{\lim} x_n = \lim x$$

Теорема доказана.

Лекция 6: Верхний и нижний пределы. Предел функции.

12.10.2023

Теорема 28. (свойства пределов) Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда справедливы следующие утверждения:

$$\exists N : \forall n > N : a_n < \limsup_{n \to \infty} a_n + \varepsilon \tag{1}$$

$$\forall N \exists n > N : a_n > \limsup_{n \to \infty} a_n - \varepsilon \tag{2}$$

$$\exists N_2 : \forall n > N_2 : a_n > \liminf_{n \to \infty} a_n - \varepsilon \tag{3}$$

$$\forall N_3 \exists n > N_3 : a_n < \liminf_{n \to \infty} a_n + \varepsilon \tag{4}$$

Доказательство. (Все пределы при $n \to \infty$)

Докажем только (1) и (2), другие свойства доказываются аналогично.

1. Возьмем $E_n = \{a_n : m \ge n\}$ и $g_n = \sup E_n$.

Тогда $\limsup a_n = \lim g_n$, и $\forall n : a_n \leq g_n$.

При этом $\exists N : \forall n > N : g_n < g_n + \varepsilon$

Имеем $\forall n > N : a_n \leq g_n < g_n + \varepsilon = \limsup a_n + \varepsilon$

2. Имеем $g_N = \sup E_N$ и $g_{N+1} \ge g_N$,

значит $\exists a_n \in E_{N+1} : a_n \ge g_n > g_n - \varepsilon \Rightarrow$

$$\Rightarrow a_n > \limsup a_n - \varepsilon$$

Свойства. (Без доказательств)

Пусть есть последовательность $\{a_n\}_{n=1}^{\infty}$, тогда:

$$\exists \{a_{n_k}\}_{k=1}^{\infty} : a_{n_k} \underset{k \to \infty}{\to} \limsup a_n$$

$$\exists \{a_{n_l}\}_{l=1}^{\infty} : a_{n_l} \underset{l \to \infty}{\to} \liminf a_n$$

Теорема 29. (Последнее свойство) Пусть есть подпоследовательность

$$\{a_{n_m}\}_{m=1}^{\infty}: \exists \lim_{m\to\infty} a_{n_m} \in \overline{\mathbb{R}}$$

Тогда выполнено следующее неравенство:

$$\liminf_{n \to \infty} a_n \le \lim_{m \to \infty} a_{n_m} \le \limsup_{n \to \infty} a_n$$

Доказательство. Пусть $h_n=\inf E_n, g_n=\sup E_n$. Имеем неравенство:

$$h_{n_m} \leq a_{n_m} \leq g_{n_m} \Rightarrow \lim_{m \to \infty} h_{n_m} \leq \lim_{m \to \infty} a_{n_m} \leq \lim_{m \to \infty} g_{n_m}$$

В силу существования пределов у последовательностей g_n, h_n имеем:

$$\liminf_{n \to \infty} a_n \le \lim_{m \to \infty} a_{n_m} \le \limsup_{n \to \infty} a_n$$

Глава 4

Функции. Предел функции, монотонность, непрерывность

4.1 Предел функции

Определение 32. Пусть X — метричесткое простанство с метрикой ρ , $\alpha \in X$. Окрестностью точки α называется: $\omega(\alpha) = \{ x \in X : \forall \varepsilon > 0 : \rho(x, \alpha) < \varepsilon \}$

Определение 33. α — точка сгущения множества X, если: $\forall \varepsilon > 0 \ \exists x_1 \in X : x_1 \neq \alpha \land \rho(x_1, \alpha) < \varepsilon \Leftrightarrow \forall \omega(\alpha) \ \exists x_1 \in \omega(\alpha), x_1 \neq \alpha$

Определение 34. α — точка сгущения для $E \subset \overline{\mathbb{R}}$, если: $\forall \omega(\alpha) \; \exists b \in (E \cap \omega(\alpha)), b \neq \alpha$

Пример. $E = \mathbb{N}, +\infty$ — точка сгущения для E.

Теорема 30. Пусть X — метрическое пространство с метрикой $\rho, \alpha \in$ X — точка сгущения, тогда:

$$\exists \{x_n\}_{n=1}^{\infty}, x_n \underset{n \to \infty}{\to} \alpha, \ \forall x_n : x_n \neq \alpha, x_n \in X$$

Доказательство. Возьмем $x_1 \neq \alpha$, пусть $\varepsilon_1 = \rho(x_1, \alpha) > 0$. $\exists x_2 \neq \alpha$: $\rho(x_2,\alpha) < \frac{1}{2}\varepsilon_1$. Положим $\varepsilon_2 = \rho(x_2,\varepsilon)$.

Пусть ўже выбрали выбрали x_1,\dots,x_n так, что $x_k \neq \alpha, 2 \leq k \leq$ $n, \varepsilon_k = \rho(x_k, \alpha) < \frac{1}{2} \varepsilon_{k-1}$ Тогда $\exists x_{n+1} \neq \alpha : \rho(x_{n+1}, \alpha) < \frac{1}{2} \varepsilon_n$.

Имеем
$$\varepsilon_n < \frac{1}{2}\varepsilon_{n-1} < \frac{1}{2^2}\varepsilon_{n-2} < \dots < \frac{1}{2^{n-1}}\varepsilon_1$$
, т.е. $\rho(x_n, \alpha) \underset{n \to \infty}{\to} 0 \Rightarrow$ $\Rightarrow x_n \underset{n \to \infty}{\to} \alpha$

Определение 35. (Предел функции) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция f: $X \to \mathbb{R}$ и $A \in \overline{\mathbb{R}}$, тогда:

$$f(x) \underset{x \to \alpha}{\to} A \Leftrightarrow \lim_{x \to \alpha} f(x) = A$$
, если выполнено: $\forall \omega(A) \; \exists \Omega(\alpha) : \forall x \in \Omega(\alpha), x \neq \alpha : f(x) \in \omega(A)$

Теорема 31. (единственность предела) Пусть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $f:X\to\mathbb{R}$. Тогда:

$$\exists ! A \in \overline{\mathbb{R}} : \lim_{x \to \alpha} f(x) = A$$

Доказательство. Предположим, что есть $A,B\in\overline{\mathbb{R}},B\neq A$ и

 $\lim_{x \to \alpha} f(x) = A, \lim_{x \to \alpha} f(x) = B.$

А также:
$$\begin{cases} \exists \Omega_1(\alpha) : \forall x \in \Omega_1(\alpha) : f(x) \in \omega_1(A) \\ \exists \Omega_2(\alpha) : \forall x \in \Omega_2(\alpha) : f(x) \in \omega_2(B) \end{cases}$$

Тогда:
$$\exists \omega_1(A), \omega_2(B) : (\omega_1(A) \cap \omega_2(B)) = \varnothing$$
А также:
$$\begin{cases} \exists \Omega_1(\alpha) : \forall x \in \Omega_1(\alpha) : f(x) \in \omega_1(A) \\ \exists \Omega_2(\alpha) : \forall x \in \Omega_2(\alpha) : f(x) \in \omega_2(B) \end{cases}$$
Рассмотрим $\Omega(\alpha) = \Omega_1(\alpha) \cap \Omega_2(\alpha)$:
$$\exists x \in \Omega(\alpha), x \neq \alpha : \begin{cases} f(x) \in \omega_1(A) \\ f(x) \in \omega_2(B) \end{cases}$$
— противоречие, т.к. $\omega_1(A) \cap \Omega_2(A) \in \varnothing$.

4.2 Односторонние пределы

Определение 36. Пусть есть $E = (p, q), p, q \in \mathbb{R}, a \in E, E_- = (p, a), E_+ =$ (a,q)

А также определены функции:

 $f: E \to \mathbb{R}$.

 $f_-:E_- o\mathbb{R},\quad f_-(x)=f(x),$ при $x\in E_-$

 $f_+: E_+ \to \mathbb{R}, \quad f_+(x) = f(x), \text{ при } x \in E_+$

Тогда пределом справа функции f в точке a называется:

$$\lim_{x \to a+0} f(x) = c_+$$

А пределом слева функции f в точке a называется:

$$\lim_{x \to a-0} f(x) = c_-$$

Теорема 32. (обозначения из определения выше)

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$$

Доказательство.

$$\Rightarrow: \ \Pi \text{усть} \lim_{x \to a} f(x) = c. \ \text{Тогда:}$$

$$\forall \omega(c) \ \exists \Omega(a) : \forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$$

$$\Pi \text{ри этом} \begin{cases} \Omega(a) \cap E_+ \in \Omega(a) \cap E \\ \Omega(a) \cap E_- \in \Omega(a) \cap E \end{cases}$$

$$\exists \text{начит получаем} \begin{cases} \forall x \in \Omega(a) \cap E_+ : f(x) \in \omega(c) \\ \forall x \in \Omega(a) \cap E_- : f(x) \in \omega(c) \end{cases} \Rightarrow$$

Значит получаем
$$\begin{cases} \forall x \in \Omega(a) \cap E_{+} : f(x) \in \omega(c) \\ \forall x \in \Omega(a) \cap E_{-} : f(x) \in \omega(c) \end{cases} \Rightarrow \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x)$$

$$\Leftarrow: \ \Pi \text{усть} \ \lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = c. \ \text{Тогда:}$$

$$\begin{cases} \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_1(a) \cap E_+, x \neq a : f(x) \in \omega(c) \\ \forall \omega(c) \exists \Omega(a) : \forall x \in \Omega_2(a) \cap E_-, x \neq a : f(x) \in \omega(c) \end{cases}$$
 Возьмем $\Omega(a) = \Omega_1(a) \cap \Omega_2(a)$ Имеем $((\Omega_1(a) \cap E_+) \setminus \{a\}) \cup ((\Omega_2(a) \cap E_-) \setminus \{a\}) = ((\Omega(a) \cap E) \setminus \{a\})$ Тогда справедливо: $\forall x \in \Omega(a) \cap E, x \neq a : f(x) \in \omega(c)$

4.3 Сущестование предела

Теорема 33. (Соответствие предела функции пределу последовательности) Пусть есть X — метрическое пространство с метрикой $\rho, \alpha \in X$ — точка сгущения, определна функция $F: X \to \mathbb{R}$.

И пусть $E\subset\overline{\mathbb{R}}, a$ — точка сгущения, определена функция $f:E\to\mathbb{R}$.

Рассмотрим последовательности:

$$\{F(x_n)\}_{n=1}^{\infty}, x_n \to \alpha, \forall n: x_n \neq \alpha$$
 $\{f(b_n)\}_{n=1}^{\infty}, b_n \to a, \forall n: b_n \neq a$ Тогда:

$$\exists \lim_{x \to \alpha} F(x) = A \Leftrightarrow \forall \{x_n\} : F(x_n) \underset{n \to \infty}{\longrightarrow} A$$

$$\exists \lim_{b \to a} f(x) = c \Leftrightarrow \forall \{b_n\} : f(b_n) \underset{n \to \infty}{\to} A$$

Доказательство. (Будем доказывать для метрического пространства, для множества E доказательство аналогично)

$$\Rightarrow$$
: Пусть $\lim_{x\to a} F(x) = A$. Тогда:

$$\forall \omega(A) \ \exists \Omega(\alpha) : \forall x \in \dot{\Omega}(\alpha) : F(x) \in \omega(A)$$

Поскольку
$$x_n \to \alpha$$
, то $\exists N : \forall n > N : x_n \in \Omega(\alpha)$

Имеем, что
$$\forall n > N : F(x_n) \in \omega(A) \Rightarrow F(x_n) \to A$$

 \Leftarrow : Предположим, что $\forall \{x_n\}: F(x_n) \to A$ — неверно. Тогда:

$$\exists \omega_0(A) : \forall \Omega_0(\alpha) \ \exists x \in \dot{\Omega}_0(\alpha) : F(x) \notin \omega_0(A)$$

Будем брать
$$\Omega_{1/n}(\alpha) = \{x \in X : \rho(x,\alpha) < \frac{1}{n}\}$$

$$\exists x_n \in \dots \Omega_{1/n}(\alpha) : F(x) \notin \omega_0(A)$$

Это означает, что $x_n \underset{n \to \infty}{\to} \alpha \Rightarrow F(x_n) \underset{n \to \infty}{\to} A$ — противоречие.

4.4 Свойства пределов функции

Свойства. (обозначения как в теореме выше) Для метрического пространства и для множества E:

- 1. $F(x) \equiv A \Rightarrow F(x) \to A, A \in \overline{\mathbb{R}}$
- 2. $\lim qF(x) = q \lim F(x), q \in \mathbb{R}$
- 3. $\lim(F(x) + G(x)) = \lim F(x) + \lim G(x)$
- 4. $\lim(F(x) \cdot G(x)) = \lim F(x) \cdot \lim G(x)$
- 5. $\lim \frac{1}{F(x)} = \frac{1}{\lim F(x)}$, если $\lim F(x) \neq 0$
- 6. $\lim \frac{F(x)}{G(x)} = \frac{\lim F(x)}{\lim G(x)}$, если $\lim G(x) \neq 0$
- 7. $\forall x : F(x) \le G(x) \Rightarrow \lim F(x) \le \lim G(x)$
- 8. $F(x) \leq G(x) \leq H(x)$ и $\lim F(x) = \lim H(x) \Rightarrow \exists \lim G(x) = \lim F(x)$

UPD: для множества E свойства аналогичны.

Доказательство. Все эти свойства доказываются аналогично свойствам пределов последовательностей, так как была доказана теорема о соответствии предела функции пределу последовательности.

Докажем 5 свойство для метрического пространства: Возьмем последовательность $\{x_n\}$ из теоремы.

По теореме:
$$F(x_n) \to A, A \neq 0$$

Получаем, что $\forall n: F(x_n) \neq 0 \Rightarrow \lim \frac{1}{F(x_n)} = \frac{1}{A} \Rightarrow$
$$\Rightarrow \lim_{x \to \alpha} \frac{1}{F(x)} = \frac{1}{A}$$