Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Évolution

- Word alignment (précédent)
 - attention input-output
 - réseau a() calculant l'attention peu profond
- Attention is all you need
 - attention input-input,
 input-output, output-output
 - beaucoup plus de profondeur
 - Aucune récurrence
 - Plus facile à entraîner
 - Gradient se propage bien
 - Facilité à paralléliser (car non-séquentiel)
 - Utilise le self-attention

Multi-head: attentions combinées

plusieurs séries (têtes), à combiner

mêmes séries en entrées

- Chaque tête peut apprendre des relations temporelles différentes (+ grande flexibilité)
- Interprétabilité des résultats

Single-head: mémoire associative

- Voir comme une mémoire associative, version soft d'un dictionnaire Python
 - clefs + valeurs
 - requête
 - fonction de distance requête-clefs

Single-head: mémoire associative

- Similarité cosinus (cosine distance)
- Utilisation du softmax pour les pondérations
- Compacter toutes les requêtes q_i dans une matrice Q
 - optimisation GPU pour matricematrice malgré le facteur O(T²)

$$Attention(Q, K, V) = \text{Softmax}\left(\frac{QK^{T}}{\sqrt{d_k}}\right)V$$

*head*_i: Scaled Dot-Product Attention

*head*_i: Scaled Dot-Product Attention

*head*_i: Scaled Dot-Product Attention

Attention

Avantages du self-attention

- Facilité à paralléliser le calcul
 - RNN est fondamentalement séquentiel
- Longueur fixe du chemin dans le graphe de calcul pour les dépendances à longueportée
 - plus de vanishing gradient
 - RNN : longueur dépend du nombre d'itérations

Multi-head attention

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O \\ \text{where head}_i &= \text{Attention}(\tilde{Q}W_i^Q, \tilde{K}W_i^K, \tilde{V}W_i^V) \end{aligned} \right\} \text{notation diverge du papier}$

Similarité avec ResNext

réduit

dimension

par facteur h

Temps de calcul de h têtes sur dimension 1/h *égale* temps de calcul d'une tête pleine dimension

Linear

Scaled Dot-Product

Attention 1

Linear

Architecture complète

Profondeur

Architecture

Répartition de l'attention

Vue encodeur-décodeur

Génération séquence de sortie o

Génération séquence de sortie o

Génération séquence de sortie o

Encodage position sinus/cosinus

 Perte de l'ordre car l'approche est similaire à CBOW (continuous bag-of-words)

Code de position

• Additionne à l'embedding un vecteur encodant les positions

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

 Redonne un signal sur l'ordre des mots

Probabilités

Softmax

Linear

Add & Norm

Résultats

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	