

Faculty of Engineering, **Built Environment and Information Technology**

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Inputs:

- A Modupe [PhD Candidate]
- A Moodley [MIT Big Data Science Student]

Special Topic: Word Embeddings + Language Models

Dr. Vukosi Marivate

Data Science for Social Impact

Make today matter

Word Embeddings + Language Models

Word Embeddings

"You shall know a word by the company it keeps"

"Tell me who your friends are, and I will tell you who you are."

The Distributional Hypothesis is that words that occur in the same contexts tend to have similar meanings [2]

Word Embeddings

"You shall know a word by the company it keeps"

"Tell me who your friends are, and I will tell you who you are."

The Distributional Hypothesis is that words that occur in the same contexts tend to have similar meanings [2]

Word Vectors

- Mapping from tokens to a continuous vector space
- Trained using a shallow neural network (not deep)

Word Vectors - The Idea!

- I went out with my BOYFRIEND to the movies.
- I went out with my GIRLFRIEND to the movies.
- I went out with my BAE to the movies.
- I went out with my FRIENDS to the movies.

Words used in a similar fashion in the same context!!!!

CBOW - Continuous Bag of Words

Predict word from context

CBOW - Working

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

 W_{3x5}

Skip-GRAM: Crazy idea, but works!!

Predict context from words

Word2Vec

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} log p(w_t | w_{t+j})$$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} log p(w_{t+j} | w_t)$$

disciplinations and disciplinations are disciplinations are disciplinations.

Friggigaliging

_midday

pambo dlamini dlamini dlamini dlamini

president

src

AMANITATIO

anational

GloVe: Global Vectors for Word Representation

Nearest neighbors

The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary. For example, here are the closest words to the target word frog:

- O. frog
- 1. frogs
- 2. toad
- 3, litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

3. litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

Linear Substructures: Analogies

Downstream tasks: Classification

Advanced: Language Models

Al researchers debate the ethics of sharing potentially harmful programs

Nonprofit lab OpenAl withheld its latest research, but was criticized by others in the field

By James Vincent | Feb 21, 2019, 10:30am EST

dar

The El releas

Beats Powerk headphones

UNIVERSITEIT VAN PRETORI UNIVERSITY OF PRETORI YUNIBESITHI YA PRETORI

Sequence Models

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

BERT Masked LM

W₂

[MASK]

W5

What can you do with these LMs

Part of many ML pipelines

Natural Language Understanding

Question Answering

Text Generation [https://transformer.huggingface.co/]

Topic Models

Resources

NLP General

- https://github.com/fastai/course-nl
- Stanford Coursera NLP Slides
 https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html
- Sebastian Ruder Newsletter [<u>http://ruder.io/nlp-news/</u>]
- https://nlpprogress.com

Python Libraries

- SKLearn NLP (Working With Text Data) <u>URL</u> (Nice tutorial)
- spaCY: Industrial-Strength Natural Language Processing <u>URL</u>
- NLTK

Thank You

Dr. Vukosi Marivatevukosi.marivate@cs.up.ac.za
https//dsfsi.github.io
@vukosi

Data Science for Social Impact

