ACADEMIA DE STUDII ECONOMICE

Facultatea: Cibernetică, Statistică și Informatică Economică

Specializarea: Cibernetică Economică

Sisteme Suport de decizie:

PROIECT SEMINAR:

Aplicarea Sistemului Suport de Decizie în cadrul organizației "Căile Ferate Române"

Cărtuță Rareș-Constantin Grupa 1075, Anul III

Profesor Coordonator:

Georgescu Irina-Alexandra

Cuprins

Introducere:	3
Partea 1 - Managementul bazelor de date	3
1.1 Conceperea bazei de date	3
1.2 Curățarea datelor și popularea bazei de date	8
1.2.1. Sucursale și Funcții:	8
1.2.2 Angajați	9
1.2.3 Achiziții și Furnizori	12
1.3 Analiză descriptivă scurtă a datelor în R	17
Partea 2 - Modelarea și analiza datelor	19
2.1 Analiza cu Charts și Dashboard în Power BI	19
2.2 Prognoza unor indicatori micro- sau macro economici	21
2.3 Rezolvarea unei probleme decizionale economice în cadrul respectivei companii	24
Partea 3 - Interfața cu utilizatorul	28
Partea 4- Managementul cunoștințelor	32
Concluziile analizei	33
Surse web pentru date	33

Introducere:

În cadrul acestui proiect, am urmărit analiza situației financiare a organizației "Căile Ferate Române", pe baza datelor publice de pe site-ul CFR Călători privind achiziții publice, date salariale și date de natură financiară.

Am stocat toate informațiile pe care le-am considerat relevante în realizarea aplicației într-o bază de date relațională de tip SQL, prin intermediul aplicației "Microsoft SQL Server Management Studio".

Pentru curățarea și standardizarea datelor de interes, cât și efectuarea unei scurte analize descriptive a datelor, am folosit aplicațiile EXCEL și RSTUDIO.

Pentru vizualizarea datelor într-un format tip dashboard, am folosit aplicația Power BI.

De asemenea, am folosit Excel în scopul realizării unei previziuni asupra unui indicator economic, dar și în cadrul unei probleme decizionale care necesita o scurtă analiză de text, urmată de aplicare metodei Lanțurilor Markov, în această analiză de text, a fost folosită, în prima fază, aplicația ANT CONC.

Partea 1 - Managementul bazelor de date

1.1 Conceperea bazei de date

În cadrul proiectului, mi-am propus să extrag și să standardizez cele mai relevante informații legate de funcționarea firmei. În acest scop, am creat 5 tabele, cu legături între fiecare dintre ele (Sucursale, Funcții, Angajați, Furnizori, Achiziții).

Datele extrase sunt publice, fiind luate de pe site-ul CFR Călători si cuprind:

- Anexele de achiziții publice
- Raportări Contabile
- Bugetul Salarial

Descrierea Tabelelor:

Tabela Sucursală conține două câmpuri: id_sucursală și denumire_sucursală, în cadrul acesteia sunt incluse cele 8 sucursală CFR (București, Craiova, Timișoara, Cluj, Brașov, Iași, Galați, Constanța). Tabelul are o legătură indirectă de tip one to many cu tabelul Achiziții și încă una cu tabelul Angajați.

```
Create Table Sucursale

(
   id_sucursala int identity(1,1) primary key,
   denumire_sucursala varchar(250)
);
```

Fig 1.1 Query creare pentru tabela Sucursală

id_sucursala	denumire_sucursala
1	Bucuresti
2	Craiova
3	Timisoara
4	Cluj
5	Brasov
6	lasi
7	Galati
8	Constanta

Fig 1.2 Conținut Tabelă Sucursală

Tabela Funcții a fost creată pe baza informațiilor salariale aflate pe site-ul CFR Călători. Aceasta conține 4 câmpuri: id_funcție, denumire_funcție, salariu_baza_brut_min, salariu_baza_brut_max și tip_functie. Cele 2 câmpuri reprezintă limitele în care se poate încadra salariul de baza brut al angajaților care ocupă o anumită funcție, iar câmpul tip_functie reprezintă o variabilă categorială care poate facilitate vizualizarea și prelucrarea informațiilor. Tabela are o legătură indirectă de tip one to many cu Angajați. Conține 95 de funcții

```
id_functie int identity(1,1) primary key,
    denumire_functie varchar(250),
    salariu_baza_brut_min int,
    salariu_baza_brut_max int,
    tip_functie varchar(250)
);
```

Fig 1.3 Query pentru crearea Tabelei Funcții

id_functie	denumire_functie	salariu_baza_brut_min	salariu_baza_brut_max	tip_functie
1	Muncitor necalificat	3293	3376	muncitor_necalificat
2	Muncitor calificat grad I	3783	4308	muncitor_calificat
3	Muncitor calificat grad II	3455	3855	muncitor_calificat
4	Vânzător bilete	3455	3520	activitate_exploatare
5	Acar	3520	3701	activitate_exploatare
6	Conductor tren	3666	3701	activitate_exploatare
7	Informator călători	3455	3520	activitate_exploatare
8	Magaziner comercial	3520	3590	activitate_exploatare
9	Manevrant vagoane	3666	3855	activitate_exploatare
10	Sef tură la comanda personalului de tren	4532	4630	activitate_exploatare
11	Sef manevră	3943	4120	activitate_exploatare

Fig 1.4 Continut tabelă Funcții

Tabela Angajați este oarecum specială, deoarece datele din interiorul acesteia sunt practic doar o simulare, acestea fiind generate în urma rulării unui script în R, procesul populării acestui tabel va fi descris în subcapitolele următoare.

Tabela conține 9 coloane dintre care id_angajat, gen, nume, prenume, email, telefon, salariu, id sucursala, id functie.

Gen conține un constraint care permite doar valorile "F" și "M", pentru facilitarea simulării datelor, Telefon conține un constraint care permite doar introducerea cifrelor, iar id_sucursala și id_functie reprezintă foreign key-uri prin intermediul cărora se realizează legătura directă între Angajați și tabela Sucursale, respectiv tabela Funcții.

Tabela conține 2000 de intrări.

```
|Create Table Angajati
    id_angajat int identity(1,1) primary key,
    gender VARCHAR(250) CHECK (gender IN ('M', 'F')),
    nume varchar(250),
    prenume varchar(250),
    email varchar(250),
    telefon CHAR(10),
    CONSTRAINT chk telefon CHECK (telefon not like '%[^0-9]%'),
    id sucursala int,
    CONSTRAINT FK_angajati_sucursale FOREIGN KEY (id_sucursala)
    REFERENCES Sucursale (id_sucursala),
    id_functie int,
    CONSTRAINT FK_angajati_functii FOREIGN KEY (id_functie)
    REFERENCES Functii (id_functie),
    salariu int
);
```

Fig 1.5: Query Pentru crearea tabelei Angajaţi

id_angajat	gender	nume	prenume	email	telefon	id_sucursala	id_functie	salariu
1	М	CROITORU	Giorgian	Giorgian.CROITORU@yahoo.com	0785545509	3	12	2755
3	М	CRACIUN	Ducu	Ducu.CRACIUN@yahoo.com	0744253946	5	22	3145
4	M	NITA	Cristinel	Cristinel.NITA@yahoo.com	0785115459	7	60	4679
5	M	IORGA	Zaharia	Zaharia.IORGA@yahoo.com	0799692898	3	65	5904
6	F	NICULESCU	Anghelina	Anghelina.NICULESCU@yahoo.com	0779722234	4	81	5810
7	M	IACOB	Leordean	Leordean.IACOB@yahoo.com	0797817892	4	13	2632
8	M	GROZA	lgor	Igor.GROZA@yahoo.com	0783523669	1	73	3769
9	F	NISTOR	Andrada	Andrada.NISTOR@yahoo.com	0733101049	1	43	5168
10	F	PETRESCU	Camelia	Camelia.PETRESCU@yahoo.com	0763772506	1	36	2252
11	F	COJOCARU	Marioara	Marioara.COJOCARU@yahoo.com	0756083283	4	63	5664
13	M	NEAGU	lanis	lanis.NEAGU@yahoo.com	0764294367	8	34	1993
14	F	IGNAT	Marcheta	Marcheta.IGNAT@yahoo.com	0723884264	7	69	3635
15	M	FILIP	Titus	Titus.FILIP@gmail.com	0793845868	1	83	6434
16	M	UNGUREANU	Florin	Florin.UNGUREANU@yahoo.com	0743629762	1	67	6031
17	F	ADAM	Cleopatra	Cleopatra.ADAM@yahoo.com	0771908601	6	74	4065
18	M	MIRON	Visarion	Visarion.MIRON@gmail.com	0742912986	7	3	2301
20	F	VERES	Flora	Flora.VERES@gmail.com	0713176863	7	9	2359
21	F	PATRASCU	Tamara	Tamara.PATRASCU@yahoo.com	0703141082	1	52	4366
23	M	NICOLESCU	Marinel	Marinel.NICOLESCU@yahoo.com	0741619993	4	20	2988

Fig 1.6: Conținut Tabela Angajați

Tabela Furnizori are doar două câmpuri(id_furnizor și denumire_furnizor) și a fost creată pe baza datelor din anexele de achiziții, această există pentru a facilita standardizarea și curățarea datelor, lucru care va fi evidențiat în subcapitolele următoare. În urma standardizării datelor tabela are 1047 de înregistrări.

```
Create Table Furnizori
(
    id_furnizor int identity(1,1) primary key,
    denumire_furnizor varchar(250),
)
```

Fig 1.7: Query creare tabelă Furnizori

id_fumizor	denumire_fumizor
1	SC APA TALEA SRL
2	SC VIOSIL INSTALCONSTRUCT SRL
3	SC BRAMCO CONRECON SRL
4	SC SCUDIVER TOOLS SRL
5	SC RIAN CONSULT SRL
6	SC EMON SRL
7	SPITALUL CLINIC CF 2 BUCURESTI
8	SC ROMOLD SRL
9	SC ALSIMCRIS UTIL SRL
10	SC TISECO SRL
11	SC EURO VIAL LIGHTING SRL
12	SC PSICOM GLOBAL SRL
13	SC PIN PLUS PIN SRL
14	SC SERVICII SALUBRITATE BUCURESTI SA
15	SC GRAFORESS SRL
16	SC OZON SERV SRL
17	SC POLYGON TRADING SRL
18	SC SAFETY SECURITY SRL
19	SC MASTERY ELECTRONICS SRL

Fig 1.8: Conținut tabelă Furnizori

Tabela Achiziții este cea mai vastă din baza de date, iar standardizarea și curățarea datelor din ea a ocupat cea mai mare parte din proiect. Aceasta cuprinde o bună parte din totalul achizițiilor publice din cele 8 sucursale din 2015 până în prezent, cuprinzând 2331 de intrări. Tabela conține informații cu privire la data de începere și finalizare a unei achiziții, obiectivul său, tipul său, valoarea sa, stadiul de execuție și durata în zile.

De asemenea, tabela conține două foreign key-uri: id_furnizor și id_sucursală, prin intermediul cărora se face legătură cu tabela Furnizori, respectivă Sucursale. Ambele chei redau o relație de tip one to many.

```
(
    id_achizitie int identity(1,1) primary key,
    id_sucursala int,
    constraint FK_achizitii_sucursale foreign key (id_sucursala)
    references Sucursale (id_sucursala),
    data_achizitie date,
    data_finalizare date,
    obiect varchar(MAX),
    valoare float,
    durata_zile int,
    tip_procedura varchar(MAX),
    id_furnizor int,
    constraint FK_achizitii_furnizori foreign key (id_furnizor)
    references Furnizori (id_furnizor),
    stadiu_executie DECIMAL(5, 2)
)
```

Figura 1.9: Query creare tabelă Achiziții

id_achizitie	id_sucursala	data_achizitie	data_finalizare	obiect	valoare	durata_zile	tip_procedura	id_fumizor	stadiu_executie
1	1	2016-01-04	2017-01-03	Fumizare apa pentru dozator Post Revizie Vag. Ploiest	5036.64	365	Achizitie directa	1	1.00
2	1	2016-01-21	2016-06-20	Cartuse toner pentru imprimante, copiatoare si aparate	42473	151	Cerere de oferta	697	1.00
3	1	2016-01-27	2016-03-26	Executie instalatii incalzire a cladirilor din grupa tehnica	119576.39	59	Licitatie deschisa	2	1.00
4	1	2016-01-28	2016-04-27	Realizarea retelei de canalizare a apelor pluviale cu m	45320.2	90	Cerere de oferta	3	1.00
5	1	2016-02-01	2016-06-28	Lenjerie de pat, cearceaf plic, cearceaf pat, fata de pe	274200	148	Cerere de oferta	398	1.00
7	1	2016-03-08	2016-04-07	Reparare a doua vinciuri (20tf) la Revizia de vag. Buc	15032.8	30	Achizitie directa	4	1.00
8	1	2016-03-10	2017-03-09	Servicii de colectare si eliminare filtre si lavete uzate la	3792	364	Achizitie directa	5	1.00
9	1	2016-03-17	2016-04-16	Repararea statiei IT la Revizia de vag. Bucuresti Basa	17505	30	Achizitie directa	6	1.00
10	1	2016-04-14	2016-07-13	Acumulatori 12V pentru sursa neintreruptibila de putere	1222	90	Licitatie deschisa	668	1.00
11	1	2016-04-14	2017-05-08	Prestarea serviciilor de examinari medicale si psihologi	19266	389	Licitatie deschisa	56	1.00
12	1	2016-04-14	2017-05-08	Prestarea serviciilor de examinari medicale si psihologi	104305.5	389	Licitatie deschisa	7	1.00
13	1	2016-04-19	2016-06-18	Serviciul de paza a obiectivului, bunurilor si valorilor di	86572.8	60	Negociere	8	1.00
14	1	2016-04-19	2016-05-08	Executarea lucrarilor de reparare ferestre termopan la s	6131	19	Achizitie directa	9	1.00
15	1	2016-04-19	2016-06-03	Lucrari de curatare si calibrare rezervoare motorina di	70988.4	45	Achizitie directa	10	1.00
16	1	2016-04-25	2016-05-31	Furnizare de megohmetreu 5000V la Depoul Ploiesti	8762.9	36	Achizitie directa	11	1.00
20	1	2016-05-23	2016-06-22	Echipament tip CUTTER PLOTTER profesional la Re	20513.37	30	Achizitie directa	13	1.00
21	1	2016-05-24	2016-11-23	Costume salopeta - 1350 buc	63990	183	Cerere de oferta	213	1.00
22	1	2016-05-30	2016-06-29	Ridicare transport si depozitare deseuri menajere si inc	3907.6	30	Negociere	14	1.00
23	1	2016-06-07	2017-06-14	Buletine de avizare a restrictiilor de viteza	38491.2	372	Licitatie deschisa	15	1.00

Figura 1.10: Conținut tabelă Achiziții

Figura 1.11: Schema Conceptuală a bazei de date

1.2 Curățarea datelor și popularea bazei de date

Curățarea și standardizarea datelor reprezintă o etapă esențială în efectuarea oricărei analize a datelor și care poate să ocupe enorm de mult timp. În cadrul acestei etape, mi-am propus să păstrez cât mai multe date cu putință, așadar a fost nevoie să implementez o oarecare automatizare în cadrul populării, dar și al curățării datelor.

Modul în care am realizat aceasta etapă a proiectului, diferă de la tabelă, la tabelă, spre exemplu sucursale și funcții au putut fi introduse manual, fără prea mari probleme, în schimb pentru tabela angajați a fost nevoie de multă improvizație, datele din acestea fiind generate aleator pe baza unui script, iar pentru curățarea tabelei Achiziții a fost nevoie de supunerea la o curățare inițială în Excel, urmată de implementarea a numeroase funcții în R, dar și a uneia de SQL, pe care am invocat-o ulterior în R.

Detalierea Procesului de Populare:

1.2.1. Sucursale și Funcții:

Cele două tabele au fost populate în cea mai facilă manieră, fiind necesare doar câteva interogări de tipul INSERT.

```
∃INSERT INTO Sucursale(denumire sucursala)
VALUES('Bucuresti')
∃INSERT INTO Sucursale(denumire sucursala)
VALUES('Craiova')
∃INSERT INTO Sucursale(denumire sucursala)
 VALUES('Timisoara')
∃INSERT INTO Sucursale(denumire sucursala)
 VALUES('Cluj')
INSERT INTO Sucursale(denumire_sucursala)
 VALUES('Brasov')
∃INSERT INTO Sucursale(denumire_sucursala)
VALUES('Iasi')
INSERT INTO Sucursale(denumire_sucursala)
 VALUES('Galati')
∃INSERT INTO Sucursale(denumire sucursala)
VALUES('Constanta')
```

Figura 1.12: Populare Sucursale

```
INSERT INTO Functii (denumire_functie, salariu_baza_brut_min, salariu_baza_brut_max, tip_functie)

VALUES

('Muncitor necalificat', 3293, 3376, 'muncitor_necalificat'),
('Muncitor calificat grad I', 3783, 4308, 'muncitor_calificat'),
('Muncitor calificat grad II', 3455, 3855, 'muncitor_calificat'),
('Vânzător bilete', 3455, 3520, 'activitate_exploatare'),
('Acar', 3520, 3701, 'activitate_exploatare'),
('Conductor tren', 3666, 3701, 'activitate_exploatare'),
('Informator călători', 3455, 3520, 'activitate_exploatare'),
('Magaziner comercial', 3520, 3590, 'activitate_exploatare'),
('Manevrant vagoane', 3666, 3855, 'activitate_exploatare'),
('Sef tură la comanda personalului de tren', 4532, 4630, 'activitate_exploatare'),
('Sef manevră', 3943, 4120, 'activitate_exploatare'),
```

Figura 1.13: Populare Funcții

1.2.2 Angajaţi

În lipsa accesului publicului la datele angajaților, am recurs la simularea acestora, pe baza informațiilor extrase în tabela Funcții, cu ajutorul mediului de programare RSTUDIO.

Pentru început am realizat 3 documente text, în care am inclus cele mai comune prenume (masculine, cât și feminine, fiecare într-un folder separat) și nume românești, apoi le-am importat în R.

```
length(prenume_barbati)
[1] 329
> length(prenume_barbati)
[1] 329
> length(prenume_femei)
[1] 439
 · length(nume_romanesti)
[1] 300
> prenume_barbati[1:10]
 [1] "Abel"
                                        "Adelin" "Adi"
                                                               "Adonis" "Adrian"
                 "Achim"
                             "Adam"
                                                                                     "Agnos"
                                                                                                 "Albert"
[10] "Aleodor"
> prenume_femei[1:10]
[1] "Ada" "Adela
[9] "Agripina" "Aida"
                  "Adela"
                               "Adelaida" "Adelina" "Adina"
                                                                     "Adriana"
                                                                                              "Aglaia"
> nume_romanesti[1:10]
[1] "POP" "POPESCU"
 [1] "POP" "POPES
[9] "GHEORGHE" "RUSU"
                               "POP"
                                                                   "DUMITRU" "STOICA"
                                           "RADII"
                                                        "IONESCU"
                                                                                              "STAN"
> |
```

Figura 1.14: Nume Introduse in R

Apoi am folosit funcția sample() din R pentru a genera un set de "genuri"

```
> dom <- sample(1:2, size=500, replace=TRUE, prob=c(0.5,0.5))
> genuri <- factor(dom, labels=c("F","M"))
> genuri[1:10]
[1] M M M F F F M M F F
Levels: F M
> length(genuri)
[1] 500
```

Figura 1.15: Generare genuri

După obținerea genurilor acestea pot fi folosite pentru a condiționa generarea prenumelor în funcție de genul persoanei.

```
> n_elements <- length(nume_romanesti)</pre>
> equal_probabilities <- rep(1/n_elements, n_elements)</pre>
> dom <- sample(1:n_elements, size=500, replace=TRUE, prob=equal_probabilities)</pre>
> nume_generate <- nume_romanesti[dom]</pre>
> prenume_generate <- ifelse(genuri == "F", sample(prenume_femei, size = 500, replace = TRUE), sampl
e(prenume_barbati, size = 500, replace = TRUE))
> prenume_generate[1:10]
[1] "Grigore" "Brăduţ"
 [1] "Grigore"
                                                      "Alexia"
                                                                   "Corina"
                                                                               "Petrisor" "Iorqu"
                              "Dacian"
                                          "Fabia"
 [9] "Ṣtefana" "Aniṣoara"
> nume_generate[1:10]
 [1] "TOADER"
[9] "BUNEA"
                  "STANESCU" "PETRE"
                                          "NICOLAE" "RUSU"
                                                                   "BUNEA"
                                                                               "SIMA"
                                                                                           "PIRVU"
                  "ILIESCU"
```

Figura 1.16: Generare prenume și nume

Am continuat prin generarea adreselor de email, dând o probabilitate de 80% ca adresa angajatului sa fie de la yahoo și o probabilitate de 20% ca aceasta să fie de gmail.

```
> email_domains <- sample(c("@gmail.com", "@yahoo.com"), size = 500, replace = TRUE, prob = c(0.2, 0.8))
> emails_generate <- paste0(prenume_generate, ".", nume_generate, email_domains)
> emails_generate[1:10]
[1] "Grigore.TOADER@yahoo.com" "Brăduţ.STANESCU@yahoo.com" "Dacian.PETRE@yahoo.com"
[4] "Fabia.NICOLAE@yahoo.com" "Alexia.RUSU@yahoo.com" "Corina.BUNEA@yahoo.com"
[7] "Petrişor.SIMA@yahoo.com" "Iorgu.PIRVU@yahoo.com" "ştefana.BUNEA@yahoo.com"
[10] "Anişoara.ILIESCU@yahoo.com"
```

Figura 1.17: Generare email

În continuare sunt generate numerele de telefon, acestea încep de fiecare dată cu 07, iar celelalte 8 cifre sunt generate aleator.

Figura 1.18: Generare Telefon

Pentru generarea id-urilor de tip funcție, este necesară comunicarea cu baza de date, acest lucru este posibil folosing librăria RODBC.

```
> dbhandle <- odbcDriverConnect('driver={SQL Server};server=
                                                                    :database=Proiect_SSD:tr
sted_connection=true')
> query_functii <- sqlQuery(dbhandle, 'select * from Functii')
> query_sucursale <- sqlQuery(dbhandle, 'select * from Sucursale')
> odbcclose(dbhandle)
> dom <- sample(1:8, size=2000, replace=TRUE, prob=c(0.2,0.1,0.1,0.1,0.1,0.1,0.1,0.1))</pre>
> sucursale <- query_sucursale$id_sucursala
> sucursale_generate <- factor(sucursale[dom], levels = sucursale)
> table(sucursale_generate)
sucursale_generate
                5
            4
                     6
     2
445 233 230 220 205 213 213 241
                      Figura 1:19: Sucursale generate în urma interogării
```

```
> n_elements <- sum(table(query_functii$id_functie))
> equal_probabilities <- rep(1/n_elements, n_elements)
> dom <- sample(1:n_elements, size = 2000, replace = TRUE, prob = equal_probabilities)
> functii <- query_functii$id_functie
> functii_generate <- factor(dom, levels = 1:n_elements, labels = functii)
> functii_generate[1:10]
    [1] 69 81 36 78 17 28 32 2 69 81
```

Figura 1.20: Funcții generate în urma interogării

Pentru generarea salariului este nevoie de un pic mai multă muncă, componenta aleatorie are loc de fapt în cadrul unei interogări SQL, unde se citește id-ul funcției angajatului apoi se returnează suma dintre salariul minim al funcției respective și produsul dintre un număr aleatoriu cu valori între 0 și 1 și diferența dintre salariul maxim si cel minim, apoi, odată ce

acest număr este returnat, aceasta urmează să fie transformat în salariul real, în urma aplicării formulei de calculare salarială.

Figura 1.21: Salarii reala generate

După aceea, am creat un dataframe, cu toate aceste data și pe baza lui am generat un fișier csv.

```
date_angajati <- data.frame(
   id = id,
   nume_generate = nume_generate,
   prenume_generate = prenume_generate,
   genuri = genuri,
   emails_generate = emails_generate,
   numere_telefon_generate = numere_telefon_generate,
   sucursale_generate = sucursale_generate,
   functii_generate = functii_generate
)
write.csv(date_angajati, "date_angajati.csv", row.names = FALSE)</pre>
```

Figura 1.22: Creare dataframe + CSV

d	nume_generate	prenume_generate	genuri	emails_generate	numere_telefon	sucursale	functii_g	e salariu_mediu_	_value
1	CROITORU	Giorgian	M	Giorgian.CROITORU@yahoo.com	785545509	3	12	2755	
	GRIGORE	BrÄduČ>	M	BrÄduČ>.GRIGORE@yahoo.com	754029424	8	32	2351	
	CRACIUN	Ducu	M	Ducu.CRACIUN@yahoo.com	744253946	5	22	3145	
4	1 NITA	Cristinel	M	Cristinel.NITA@yahoo.com	785115459	7	60	4679	
5	IORGA	Zaharia	M	Zaharia.IORGA@yahoo.com	799692898	3	65	5904	
(NICULESCU	Anghelina	F	Anghelina.NICULESCU@yahoo.com	779722234	4	81	5810	
-	7 IACOB	Leordean	M	Leordean.IACOB@yahoo.com	797817892	4	13	2632	
8	GROZA	Igor	M	Igor.GROZA@yahoo.com	783523669	1	73	3769	
9	NISTOR	Andrada	F	Andrada.NISTOR@yahoo.com	733101049	1	43	5168	
10	PETRESCU	Camelia	F	Camelia.PETRESCU@yahoo.com	763772506	1	36	2252	
1	LCOJOCARU	Marioara	F	Marioara.COJOCARU@yahoo.com	756083283	4	63	5664	
12	2 MUNTEANU	BrÄduČ>	M	BrÄduČ>.MUNTEANU@yahoo.com	708131289	8	45	4020	

Figura 1.23: CSV Angajați

Apoi, am automatizat procesul de inserare a valorilor în baza de date, folosind următorul cod:

Figura 1.24: Cod pentru automatizarea inserării

1.2.3 Achiziții și Furnizori

Standardizarea acestor date a reprezentat cea mai dificilă parte a întregului proiect, deoarece datele originale erau pline de inconsistențe și câteodată chiar de greșeli logice.

SRTFC BUCUREȘTI	ANEXA 4 LA OMTI nr. 1121/2012
,	. PRIVIND STADIUL DE EXECUȚIE A CONTRACTELOR CĂRII PROCEDURILOR DE ACHIZIȚIE PUBLICĂ

Nr. Crt.	Nr. și data	Obiect	Valoare (lei, fără TVA)	Durată	Tipul procedurii aplicate pt. atribuire	Denumire furnizor / prestator / executant	Stadiu execuție (%)	Obs
1	1/04.01.2016	Furnizare apa pentru dozator Post Revizie Vag. Ploiesti - 40 recipienti bidon 19L/luna; inchiriere dozator la Post Revizie Vag. Ploiesti - 1 buc., igienizare dozator	5.036,64	12 luni 04.01.2016 - 0.3.01.2017	achizitie directa	SC APA TALEA SRL	100%	
2	3/21.01.2016	Cartuse toner pentru imprimante, copiatoare si aparate fax	42.473,00	6 luni 21.01.2016 - 20.06.2016	cerere de oferte	SC ALIMAR OEM SRL	100%	
3	4/27.01.2016	Executie instalatii incalzire a cladirilor din grupa tehnica Revizia de Vagoane Bucuresti Basarab	119.576,39	60 zile 27.01.2016 - 26.03.2016	licitatie deschisa	SC VIOSIL INSTALCONSTRUCT SRL	100%	
4	5/28.01.2016	Realizarea retelei de canalizare a apelor pluviale cu montarea unui separator - Dep. BC, SELC Basarab	45.320,20	90 zile 28.01.2016 - 27.04.2016	cerere de oferte	SC BRAMCO CONRECON SRL	100%	
5	6/01.02.2016	Lenjerie de pat, cearceaf plic, cearceaf pat, fata de perna	274.200,00	4 luni 29.02. 2016 - 28.06.2016	cerere de oferte	SC ELITEX SRL	100%	
6	7/17.02.2016	Lucrari de instalare de echipamente de incalzire centrala, instalatii eletrice aferente si instalatii de utilizare de gaze naturale la: cladirea anexa salubrizare parter+etaj, remiza PSH-centrul de calcul, eladire baterii ecumulatori, eladire magazie materiale+eladire compresor, district IT(dispecerat Mecanic si electric hala), lucrari neefectuate –Revizia de Vagoane Bucuresti Grivita inclusiv obtinere de Autorizatie de Construire	259.179,02	8 luni 17.02.2016- 16.02.2016	licitatie deschisa	SC AB INSTAL SRL	100%	
7	9/08.03.2016	Reparare a doua vinciuri (20tf) la Revizia de vag. Bucuresti Basarab	15.032,80	30 zile 08.03.2016 - 07.04.2016	achizitie directa	SC SCUDIVER TOOLS SRL	100%	

Figura 1.25: Format Inițial al unei achiziții

Pentru început am descărcat toate datele disponibile și le-am introdus în Excel, apoi am creat o nouă coloana pentru a trece data de începere/data achiziției, folosind următoarea formulă:

```
"=RIGHT(B6, LEN(B6) - FIND("/", B6))"
```

Obținerea datei finale s-a dovedit mai dificilă, deoarece aceasta nu era menționată de multe ori, în coloana "Nr si data" sau "Durată" prin urmare am improvizat formula:

```
"=IFERROR(RIGHT(E6, LEN(E6) - FIND("-", E6)), E6)"
```

Am creat, de asemenea și o coloană în care este precizată sucursala care a efectuat achiziția.

Acesta este rezultatul final:

Nr. Crt.	Nr. și data	Obiect	Valoare (lei, fără TVA)	Durată	Tipul procedurii aplicate pt. atribuire	Denumire furnizor / prestator / executant	Stadiu execuție (%)	Data_Începere	Dată finalizare/Timp necesar	Sucursala
1	1/04.01.2016	Furnizare apa pentru dozator Post Revizie Vag. Ploiesti - 40 recipienti bidon 19L/luna; inchiriere dozator la Post Revizie Vag. Ploiesti - 1 buc., igienizare dozator	5.036,64	12 luni 04.01.2016 - 03.01.2017	achizitie directa	SC APA TALEA SRL	100%	04.01.2016	03.01.2017	Bucuresti
2	3/21.01.2016	Cartuse toner pentru imprimante, copiatoare si aparate fax	42.473,00	6 luni 21.01.2016 - 20.06.2016	cerere de oferte	SC ALIMAR OEM SRL	100%	21.01.2016	20.06.2016	Bucuresti
3	4/27.01.2016	Executie instalatii incalzire a cladirilor din grupa tehnica Revizia de Vagoane Bucuresti Basarab	119.576,39	60 zile 27.01.2016 - 26.03.2016	licitatie deschisa	SC VIOSIL INSTALCONSTRUCT SRL	100%	27.01.2016	26.03.2016	Bucuresti
4	5/28.01.2016	Realizarea retelei de canalizare a apelor pluviale cu montarea unui separator - Dep. BC, SELC Basarab	45.320,20	90 zile 28.01.2016 -27.04.2016	cerere de oferte	SC BRAMCO CONRECON SRL	100%	28.01.2016	27.04.2016	Bucuresti
5	6/01.02.2016	Lenjerie de pat, cearceaf plic, cearceaf pat, fata de pema	274.200,00	4 luni 29.02. 2016 - 28.06.2016	cerere de oferte	SC ELITEX SRL	100%	01.02.2016	28.06.2016	Bucuresti

Figura 1.26: Tabel final date achiziții

Ulterior am creat un alt fișier în care am dat paste as values pentru a nu avea limitări legate de formule. Trebuie să precizez ca acele 2 formule nu au fost suficiente, fiind nevoie să apelez și la SUBSTITUTE() sau la alte variații de LEFT() sau RIGHT(), însă nu mai am acces la ele.

În cadrul acestei capitol nu voi recurge atât de des la print screen-uri cu output ca în cel precedent, deoarece schimbările sunt adesea greu de observat, cea mai stabilă metrică a succesului fiind numărul final de inregistrări din tabelă.

```
date_achizitii <- read_excel("Anexa_Achizitii3.xlsx")

validare_stadiu_executie <- function(stadiu_executie) {
    stadiu_executie <- ifelse(grepl("%", stadiu_executie), as.numeric(gsub("%", "",
    stadiu_executie)), as.numeric(stadiu_executie))

if (is.na(stadiu_executie)) {
    print("format invalid")
    return(NULL)
}

return(ifelse(stadiu_executie > 1, stadiu_executie / 100, stadiu_executie))
}

date_achizitii$`Stadiu_executie (%)` <- sapply(date_achizitii$`Stadiu_executie (%)`,
    validare_stadiu_executie)</pre>
```

În cadrul codului de mai sus a loc citirea fișierului urmată de implementarea unei funcții care convertește valorile în numere cuprinse între 0 și 1. Mai întâi caută caracterul % în cadrul

argumentului, iar apoi elimină caracterul și convertește argumentul într-o valoare numerică, dacă acea valoare numerică este mai mare decât 1, realizează împărțirea la 100.

```
curatare numere <- function(string numeric) {</pre>
 if (grepl(",", string numeric)) {
  cleaned string <- gsub("\\.", "", string numeric)</pre>
  cleaned_string <- gsub(",", ".", cleaned_string)</pre>
  cleaned numeric <- as.numeric(cleaned string)</pre>
  if (!is.na(cleaned numeric)) {
   return(cleaned numeric)
  } else {
   return(NULL)
  }
 } else {
  numeric result <- as.numeric(string numeric)</pre>
  if (!is.na(numeric result)) {
   return(numeric result)
  } else {
   return(NULL)
  }
 }
date_achizitii$`Valoare (lei, fără TVA)` <- sapply(date achizitii$`Valoare (lei, fără TVA)`,
curatare numere)
```

Această funcție are rolul de a standardiza/curăța valorile numerice de potențiale greșeli de format, cum ar fi spre exemplu "100.85,20", acesta nu ar putea fi introdus vreodată în baza de date sub forma aceasta, însă, dacă aceste e trecut prin funcție acel "." va fi eliminat, iar acea "," va fi transformată într-un punct, căpătând astfel un format acceptabil.

```
calculate_data_finala <- function(data_initiala, data_finala) {
  #data_initiala <- clean_and_convert_date(data_initiala)
  data_finala <- tolower(data_finala)
  is_luni <- grepl("luni", data_finala)
  is_zile <- grepl("zile", data_finala)
  if (!is_luni && !is_zile) {
    return(data_finala)
  }
  num <- as.numeric(gsub("\\D", "", data_finala))</pre>
```

Această funcție are menirea de a converti date finale cu un format de tipul "x zile" sau "x luni" în date reale. Pentru început aceasta caută să vadă dacă argumentul conține "luni" sau "zile", în cazul în care nu conține, atunci funcția se oprește și returnează argumentul așa cum era el inițial, în caz contrar se va face suma dintre data inițială și numărul de zile sau luni descris în parametru si va fi returnat.

```
> # Test
> calculate_data_finala('17.01.2012', '13 zile')
[1] "2012-01-30"
```

Figura 1.27: Exemplu de conversie a datei

Trebuie adusă în discuție tabela furnizori, aceasta a fost generată în R, importând coloana furnizori în serverul de SQL. Am vrut să creez un query mai complex, în cadrul serverului de SQL, care să elimine valorile cu sintaxa foarte apropiate (ex: 'SC FIRMA FIRMESCU' și 'S.C FIRMA FIRMESCUU'), de unde rezultă următoarea secvență de cod SQL.

```
select count(id furnizor) from furnizori;
DELETE f1
FROM furnizori fl
JOIN furnizori f2
ON CHARINDEX(SUBSTRING(f2.denumire furnizor, 1,
  WHEN LEN(f2.denumire furnizor) > 99 THEN 15
  ELSE 20
 END
), f1.denumire furnizor) > 0
WHERE f1.denumire furnizor <> f2.denumire furnizor;
SELECT * INTO furnizori backup FROM furnizori;
DROP TABLE furnizori:
CREATE TABLE furnizori
  id furnizor int identity(1,1) primary key,
  denumire furnizor varchar(250)
);
INSERT INTO furnizori (denumire furnizor)
```

```
SELECT denumire_furnizor FROM furnizori_backup;
DBCC CHECKIDENT ('furnizori', RESEED, 0);
DROP TABLE furnizori_backup
select count(id_furnizor) from furnizori;
```

Pentru a putea converti denumirea funcțiilor cu id-urilor lor în R, este necesară importarea unei funcții SQL, care pe baza argumentului pe care îl primește, returnează id-ul celui mai apropiat 'match'.

```
dbhandle <- odbcDriverConnect('driver={SQL
Server}; server=; database=Proiect_SSD; trusted_connection=true')

if (is.null(dbhandle)) {
    stop("Database connection failed.")
}

furnizorPatterns <- date_achizitii$`Denumire furnizor / prestator / executant`
furnizori <- numeric(length(furnizorPatterns))
for (i in seq_along(furnizorPatterns)) {
    furnizorPattern <- paste0("", furnizorPatterns[i], """)
    query <- paste("select dbo.RETURN_FURNIZOR_ID(", furnizorPattern, ")", sep = "")
    result <- sqlQuery(dbhandle, query)
    furnizori[i] <- result
    num_nulls <- sum(is.na(furnizori))
    num_nulls
}

odbcClose(dbhandle)</pre>
```

În cadrul codului de mai sus este apelată funcția din serverul sql pentru fiecare element din denumire furnizor, iar rezultatul este returnat în interiorul vectorului furnizori.

```
dbhandle <- odbcDriverConnect('driver={SQL Server}; server=; database=Proiect_SSD; trusted_connection=true') for (i in 1:nrow(date_achizitii)) {
    id_sucursala_query <- paste("SELECT id_sucursala FROM sucursale WHERE denumire_sucursala = "", date_achizitii$Sucursala[i], """, sep="")
    id_sucursala_fetch <- as.numeric(sqlQuery(dbhandle, id_sucursala_query))

query <- paste("INSERT INTO Achizitii (id_sucursala, id_furnizor, data_achizitie, data_finalizare, obiect, valoare, stadiu_executie, tip_procedura) VALUES (", id_sucursala_fetch, ", ",
```

```
furnizori[i], ", ",
    """, date_achizitii$Data_Începere[i], "', ",
    """, date_achizitii$`Dată finalizare/Timp necesar`[i], "', ",
    """, date_achizitii$`Valoare (lei, fără TVA)`[i], "', ",
    """, date_achizitii$`Stadiu execuţie (%)`[i], "', ",
    """, date_achizitii$`Tipul procedurii aplicate pt. atribuire`[i], "')",
    sep="")

tryCatch({
    odbcQuery(dbhandle, query)
}, error = function(e) {
    cat("Error: ", e$message, "\n")
})
}
```

odbcClose(dbhandle)

În această ultima secvență de cod este apelată inițial o interogare care returnează id-ul unei sucursale pe baza denumirii acesteia. Apoi are loc exportarea elementului dataframe ului in SQL.

1.3 Analiză descriptivă scurtă a datelor în R

Am realizat o scurtă analiză descriptivă în vedere mai bunei înțelegeri a datelor. Variabilă vizată o reprezintă valoarea achiziției.

```
> summary(date_achizitii$`valoare (lei, fără TVA)`)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
132 10647 30836 116095 88162 53970904
                                                               NA's
                                                                 81
> summary(date_achizitii$`Valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Bucuresti'])
   Min. 1st Qu. Median Mean 3rd Qu. Max.
172 24406 67990 259750 156308 53970904
                                                     Max.
                                                               NA's
> summary(date_achizitii$`Valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Craiova'])
   Min. 1st Qu. Median Mean 3rd Qu. Max.
1080 10208 29782 121497 71264 7299416
> summary(date_achizitii$`valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Timisoara'])
  Min. 1st Qu. Median Mean 3rd Qu.
139 13270 33300 101848 89020
                  33300 101848 89020 1441747
> summary(date_achizitii$`valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Brasov'])
   Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
    623 12270 31256
                            99637 101367 1084740
> summary(date_achizitii$`valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Iasi'])
    Min. 1st Qu. Median Mean
131.8 7951.2 23205.5 87035.6
                                     Mean 3rd Qu. Max.
035.6 73787.5 3003238.0
                                                           Max. NA's
    131.8
> summary(date_achizitii$`Valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Galati'])
  Min. 1st Qu. Median Mean 3rd Qu. Max.
737 7526 19338 56620 47474 3153600
> summary(date_achizitii$`valoare (lei, fără TVA)`[date_achizitii$Sucursala == 'Constanta'])
                                                     NA's
   Min. 1st Qu. Median Mean 3rd Qu. Max.
    300 9939 23599 56149 53188 1000371
```

Figura 1.28: Statistici descriptive valoare

Se poate observa cum valoare are o variabilitate extrem de mare pentru fiecare sucursală în parte.

Figura 1.29: Boxplot valoare

În figura de mai sus se poate observa că sucursalele înregistrează outlieri pentru valorile superioare medianei, aceștia pot fi explicați de natură neechilibrată a achizițiilor necesare, costul nu contează atât de mult ca utilitatea adusă.

Incidența valorilor outlier este prea mare pentru a putea fi afișată integral în documentația proiectului, însă am atasat o parte mică din ea în figura de mai jos.

```
Sucursala: Bucuresti
Outliers însoțiți de data în care s au produs:
  Outlier: 441000
                  Date: 04 Jan 2016
  Outlier: 492000
                     Date: 21 Jan 2016
  Outlier: 53970904
                     ı
                       Date: 27 Jan 2016
  Outlier: 596160
                   Date: 28 Jan 2016
  Outlier: 372713
                     Date: 01 Feb 2016
  Outlier: 537043
                     Date: 17 Feb 2016
                       Date: 08 Mar 2016
  Outlier: 494992.8
  Outlier: 430267.1
                                    2016
                       Date: 10 Mar
  Outlier: 433347.6
                       Date: 17 Mar 2016
  Outlier: 374542.1
                       Date: 14 Apr 2016
```

Figura 1.30: Exemplu incidență outlieri

În figura de mai jos se poate observa frecvența valorilor fiecărei sucursale, fiecare dintre acestea prezintă o distribuție puternic leptocurtica cu asimetrie foarte pronunțată la dreapta, așadar există diferențe extreme între frecvențe, acestea având sa se cumuleze într-un spațiu foarte restrâns în partea stângă a distribuției

Figura 1.31: Frecvența valorilor sucursalelor

Partea 2 - Modelarea și analiza datelor

2.1 Analiza cu Charts și Dashboard în Power BI

Figura 2.1: Dashboard Achiziții

În acest dashboard sunt surprinse informații cantitative cu privire la datele din tabela Achiziții, în materie de valoare, durată, eficiență, etc. De asemenea sunt prezente slidere pentru filtrarea în funcție de Sucursală, Tipul procedurii și data achiziției.

Din dashboard reies următoarele concluzii:

- București generează cele mai mari cheltuieli, sucursala fiind responsabilă pentru aproape jumătate dintre toate achizițiile firmei.
- Cea mai puţin eficientă sucursală este Braşov, achiziţiile efectuate de sucursală având în medie un stadiu de executie de doar 80%
- Numărul achizițiilor continuă să crească de la an la an
- Durata medie ce a mai mare a unei achiziții este în sucursala Constanța, iar cea mai mică este în Brașov
- Între Cost și Durată există o corelație destul de semnificativă când ambele au valori scăzute, însă atunci când se înregistrează outlieri în una dintre cele două, valorile tind preponderent să nu coreleze între ele.

Figura 2.2 : Dashboard Angajaţi

De asemenea, am realizat un mic dashboard și pentru angajați, însă după cum se poate observa datorită naturii simulării, variabilitatea datelor este redusă. Se pot observa următoarele lucruri:

- Nu există aproape nicio diferență între plata primită de femei și bărbați
- Funcțiile de tip executiv, conducere și activitate de exploatare ocupă 90% din ponderea funcțiilor angajaților

- Salariul Mediu este relativ similar în toate sucursalele, însă cea mai mare valoare este 4614 (înregistrată în București), iar cea mai mică 4161(înregistrată în Craiova)
- Primii 10 angajați au o valoare similară foarte apropiată. Diferența salarială între primul angajat și cel de-al zecelea este mai mică de 10%
- Per total, în cazul acestei simulări, locul de muncă pare unul foarte sănătos

2.2 Prognoza unor indicatori micro- sau macro economici

Pentru această etapă, am decis sa efectuez prognoza cifrei de afaceri, deoarece este un indicator semnificativ în evaluare performanței unei firme, evoluția sa determinând potențialul firmei pe piață.

Am extras acest indicator din bilanțul contabil al firmei, care este public și vizează datele din primul semestru al anilor 2012-2023. Am extins orizontul de previziune până în anul 2024. Mediul în care am decis să realizez această prognoză este Excel, iar metodele folosite sunt "three months average" și aplicarea regresiei (folosind funcția trend() din Excel)

Indice Perioadă	Perioada	Cifra de afaceri netă
0	SEM 1-2012	763075.59
1	SEM 1 -2013	779022.45
2	SEM 1 -2014	970152.21
3	SEM 1 -2015	897800.54
4	SEM 1 -2016	816926.65
5	SEM 1-2017	931864.82
6	SEM 1 -2018	868640.36
7	SEM 1 -2019	883464.23
8	SEM 1 -2020	760971.09
9	SEM 1 -2021	811651.87
10	SEM 1 -2022	939373.33
11	SEM 1 -2023	1325048.35

Figura 2.3: Date inițiale cifră de afaceri

Pe baza acestor date, urmează să fie aplicate 3 months average și metoda regresiei, iar apoi să fie măsurate tipurile de erori, pentru a vedea care dintre aceste metode, ar fi cea mai stabilă pentru viitoarele previziuni.

		Eroare 3 mon	th moving	average		Eroare TREND()			
3 month moving Average folosit pe datele istorice	TREND() folosit pe date istorice	Error	ABS	Error %	Sq.Error	Error	ABS	Error %	Sq.Error
763075.59	763075.59	0.00	0	0%	0.00	0.00	0	0%	0.00
779022.45	779022.45	0.00	0	0%	0.00	0.00	0	0%	0.00
970152.21	970152.21	0.00	0	0%	0.00	0.00	0	0%	0.00
837416.75	1044493.37	-60383.79	60383.79	-7%	3646202416.81	146692.82	146692.8	14%	21518784710.89
862197.14	1148031.67	45270.48	45270.48	6%	2049416610.93	331105.02	331105	29%	109630535483.25
889922.03	1251569.98	-41942.78	41942.78	-5%	1759197154.53	319705.17	319705.2	26%	102211394659.05
863178.64	1355108.29	-5461.72	5461.72	-1%	29830389.67	486467.93	486467.9	36%	236651049675.14
871765.94	1458646.60	-11698.29	11698.29	-1%	136850105.23	575182.37	575182.4	39%	330834754540.81
874955.53	1562184.91	113984.44	113984.4	15%	12992453651.61	801213.82	801213.8	51%	641943588296.78
869966.70	1665723.22	58314.83	58314.83	7%	3400619724.99	854071.35	854071.3	51%	729437866335.78
872229.39	1769261.53	-67143.94	67143.94	-7%	4508308964.66	829888.19	829888.2	47%	688714412604.18
872383.88	1872799.83	-452664.47	452664.5	-34%	204905123168.64	547751.49	547751.5	29%	300031691875.88

Figura 2.4: Tabel prognoze și erori generate

În figura de mai sus sunt afișate datele în urma aplicării celor 2 metode și calculării erorilor.

ME	-46858	ME	543564
MAE	95207	MAE	543564
MAPE	-3%	MAPE	36%
MSE	25936444687	MSE	351219342020

Figura 2.5: Erorile Totale

În figura de mai sunt afișate cele 4 tipuri ale erorii, în dreapta pentru 3 months average, iar în stânga pentru metoda regresiei, realizată prin intermediul funcției trend().

Prin interpretarea coeficientului MAPE (eroarea medie procentuală), putem spune că în medie, metoda three months a prezis valori cu -3% mai mici decât în realitate, iar metoda regresiei a prezis valori cu 36% mai mari ca în realitate, așadar putem spune cu ușurință că metoda "three months average" a fost mult mai practică, lucru care se poate vedea și comparând coeficienții MSE (eroarea medie pătratică - cu cât aceasta are o valoare mai mare cu atât mai prevalente/semnificative sunt erorile), cea de-a a doua metodă având un coeficient de peste 10 ori mai mare ca prima.

	Indice Perioadă	Perioada	Cifra de afaceri netă	3 month Moving Average	TREND()
	12	SEM 1 -2024	?	1025357.85	1010427.44
	13	SEM 1 -2025	?	1096593.18	1031293.16
	14	SEM 1 -2026	?	1148999.79	1052158.88
	15	SEM 1 -2027	?	1090316.94	1073024.61
Orizont de	16	SEM 1 -2028	?	1111969.97	1093890.33
	17	SEM 1 -2029	?	1117095.57	1114756.05
prognoza	18	SEM 1 -2030	?	1106460.82	1135621.78
	19	SEM 1 -2031	?	1111842.12	1156487.50
	20	SEM 1 -2032	?	1111799.50	1177353.22
	21	SEM 1 -2033	?	1110034.15	1198218.95
	22	SEM 1 -2034	?	1111225.26	1219084.67

Figura 2.6: Date numerice previzionate

Pe baza acestor date putem realiza reprezentări grafice ale trendului pentru a evidenția acuratețea fiecărei previziuni.

În acest scop, am realizat două grafice, unul care urmărește trend-ul "previziunilor" folosite pe datele istorice și încă unul care urmărește potențiala evoluție a orizontului de prognoză.

Figura 2.7: Comparație între realitate și cele două prognoze

Figura 2.8: Potențialul trend al orizontului de prognoză

Analizând figura 2.8, ni se prezintă două scenarii ipotetice:

- 1. În cazul previziunii cu 3 months average, se observă o creștere pe orizontul primilor 3 ani, urmată de o scadere în următorul an, urmată de o perioada de stagnare consistentă, până la sfârșitul perioadei prognozate, valoare finală fiind totuși mai mare decât cea inițială cu aproximativ 10% (1000).
- 2. În cazul regresiei, trendul este unul strict liniar crescător valoare cifrei de afaceri crescând cu aproximativ 2,5% în fiecare an, ajungând la o valoare mai mare cu peste 20% (2000) decăt cea inițială.

Ambele scenarii au impact pozitiv asupra firmei, dar 3 months average, reda un viitor mai pesimist, indicând stagnarea firmei pe termen lung, în timp ce regresia arată un viitor optimist, indicând o creștere constantă.

2.3 Rezolvarea unei probleme decizionale economice în cadrul respectivei companii

În cadrul acestui capitol, mi-am propus să realizez o scurtă analiză text cu Ant Conc, dar și să implementez lanțurile lui Markov în Excel.

Enunt:

Să se identifice care au fost motivele achizițiilor publice ale firmei CFR, apoi să se vizualizeze datele obținute. După aceea se reclasifice ponderile obținute, dupa 3 macro-categori: Mentenanță, Servicii, Achiziții și să calculeze și reprezinte grafic evoluția ponderilor pe o durată de 5 unități de timp (ani), avand la dispoziție matricea probabilităților de trecere

Objectiv	Reorientari de fonduri catre			
Objectiv	Ch Ment	Ch Servicii	Ch Achiz	
Cheltuieli Mentenanta	0.200	0.400	0.400	
Cheltuieli Servicii	0.400	0.250	0.350	
Cheltuieli Achizitii	0.400	0.350	0.250	

Figura 2.9: Matricea Probabilităților de trecere

Etapa 1:

Pentru început trebuie extrasă coloana obiectiv din data frame-ul construit anterior sub format text pentru a putea astfel importa datele în ANTCONC.

writeLines(date achiziții\$Obiect, "obiective.txt")

Etapa 2:

Se crează un nou corpus și se adaugă fișierul text, creat în R, apoi se selectează ca target corpus. Apoi se selectează coloana Word => Adv Search => Search Query List și se introduc cuvinte relevante analizei. Pentru a deduce ce cuvinte ar putea fi prevalente există posibilitatea de a viziona și a dat scroll întregului document prin intermediul ferestrei "File View"

Figura 2.10: Fereastra File View

De asemenea se pot accesa N-Gram sau Word și apoi să se realizeze o căutare fără termeni specifici pentru a afișa cele mai folosite cuvinte sau grupe de cuvinte.

După stabilirea cuvintelor pe care le vrem găsite, se accesează Word și se adaugă în Query List, apoi se realizează o căutare.

	Туре	Rank	Freq	Range
1	servicii	1	793	1
2	salubrizare	2	313	1
3	reparatii	3	238	1
4	intretinere	4	224	1
5	apa	5	132	1
6	personal	6	109	1
7	transport	7	91	1
8	paza	8	89	1

Figura 2.11: Output parțial din ANTCONC

Etapa 3:

Se importă datele în EXCEL, păstrându-se coloanele TYPE, RANK(opțional) și FREQ, se crează și o coloană nouă, care să indice categoria obiectului, această coloană poate conține doar categoriile stabilite de decident.

Type	Rank <mark>↓†</mark>	Freq	Categorie	
salubrizare	2	313	mentenanta	
reparatii	3	238	mentenanta	
intretinere	4	224	mentenanta	
apa	5	132	combustibil	
personal	6	109	personal	
paza	8	89	securitate	
lenjerie	9	86	bunuri de consum	

Figura 2.12: Tabel analiză text Excel

Etapa 4:

Se realizează un tabel în care este însumată frecvența fiecărei categorii, iar apoi se calculează procentul ocupat de fiecare din ponderea totală, pe baza acestora se realizează un pie chart.

Total Relevant Freq	1962	Percentages
mentenanta	931	47.5%
personal	178	9.1%
securitate	195	9.9%
bunuri de consum	195	9.9%
analiza	87	4.4%
combustibil	226	11.5%
modernizare/inovare	44	2.2%
componente feroviale	106	5.4%

Figura 2.13: Frecvențe și procentaje

Figura 2.14: Distribuție Categorială

Etapa 5:

Realizăm redistribuirea ponderilor în funcție de cele 3 macro categorii stabilite în enunț.

Cateogori Generalizate	Procentaj
Cheltuieli Mentenanta	0.475
Cheltuieli Servicii	0.234
Cheltuieli Achizitii	0.291

Figura 2.15: Ponderi macro categorii

Ne folosim de funcția MMULT() pentru a calcula produsul dintre matricea probabilităților de trecere și vectorul de macro categorii de mai sus.

	Ch Ment	Ch Serv	Ch Achiz	
T0	0.474516	0.234455	0.29103	
T1	0.305097	0.35028	0.344623	
T2	0.338981	0.330227	0.330793	
T3	0.332204	0.333926	0.33387	
T4	0.333559	0.333218	0.333223	
T5	0.333288	0.333356	0.333356	

Figura 2.16: Prognoză macro categorii

În concluzie, pe baza prognozei realizate, procentul Mentenanței va scădea de la 47% la 33% în 5 ani, iar cel Serviciilor va crește de la 23% la 33% și cel al Achizițiilor de la 29% la 33%, de altfel putem observa că va avea loc o situație de echilibru perfect, în care toate cele 3 macro categorii au aproximativ aceeași pondere.

Etapa 6:

Realizăm un line chart pe baza datelor obținute.

Figura 2.17: Line chart ponder

Pe baza line chart-ului efectuat, putem observa că toate ponderile au tendința de a se apropia de echilibru, cea mai mare schimbare se petrece la trecerea din S0 în S1, iar apoi, treptat, macro categoriile se apropie de 33%.

Partea 3 - Interfața cu utilizatorul

În vederea prezentării interfețelor cu utilizatorul al sistemelor suport de deciziei folosite, am atașat următoarele print screen-uri:

Figura 3.1: Inserare Chart Excel

Figura 3.2: Validare Date Excel

Figura 3.3: Aspectul unei foi de calcul Excel

```
Script protect_SSD.R ×

| Solute on Save | Solute on Save
```

Figura 3.4: Aspectul unui Fișier deschis în Rstudio

Figura 3.5: Aspectul secțiunii Environment în Rstudio

Figura 3.6: Object Explorer în SQL SERVER

Figura 3.7: Vizualizarea structurii unui tabel în SQL SERVER

Figura 3.8: Collocate pentru cuvântul instalații - ANTCONC

Figura 3.9: Corpus Manager - ANTCONC

Figura 3.10: Advanced Search - ANTCONC

Partea 4- Managementul cunoștințelor

Pe baza analizelor efectuate, am obținut segmentarea cheltuielilor publice a firmei, scenarii de evoluție a cifrei de afaceri și a cheltuielilor cu achizițiile publice, cunoașterea eficienței sucursalelor în vederea folosirii fondurilor pentru achiziții publice, identificarea celor mai de încredere furnizori, o idee de ansamblu cu privire la ponderea alocării fondurilor în fiecare sucursală, dar și cum ar trebui să arate repartiția funcțiilor angajaților și salariile acestora într-o simulare lipsită de bias.

Schema Sistemului Suport de Decizie:

Managementul Bazei de Date

- SQL SERVER: Creare tabele, legături, funcții și interogări
- RSTUDIO: Standardizare, curăţare şi populare tabele
- Excel: Standardizare şi Curăţare a datelor

Modelare Si Analiză

- EXCEL: Realizarea de prognoze şi vizualizarea datelor
- RSTUDIO: Realizarea unei analize descriptive a datelor şi vizualizarea datelor
- POWER BI: Realizarea de dashboard-uri
- ANTCONC: Analiză Text

Interfața cu utilizatorul

- SQL SERVER: Lucrul cu baza de date
- RSTUDIO: Mediu de programare
- EXCEL: Foi de calcul
- POWER BI: Dashboard
- ANTCONC: Analiză de text

MANAGEMENTUL CUNOȘTINȚELOR

- Scenarii de Evoluţie
- Scenarii de Optimalitate
- Monitorizarea Eficientei
- Cunoașterea distribuţiei cheltuielilor
- Cunoașterea punctelor tari și slabe

Concluziile analizei

În urma realizării acestei analize, am dezvoltat numeroase cunoștințe pe baza datelor făcute publice de către organizația "Căile Ferate Române", mai precis, o bună înțelegere a modului în care această firmă își gestionează resursele și cât de bine o face.

Pentru realizarea acestui lucru a fost necesară o curățare și standardizare riguroasă a datelor, deoarece acestea aveau un caracter foarte haotic, aceast proces de "sanitizare" a datelor a făcut posibilă modelarea cu acuratețe a situației firmei, cât și a prognozei unor scenarii viitoare potențiale.

Prin urmare, am dovedit că implementarea Sistemului Suport de Decizie, facilitează și eficientizează procesul de modelare, vizualizare, calcul și luare a decizilor.

Surse web pentru date

- https://www.cfrcalatori.ro/achizitii-publice/
- https://www.cfrcalatori.ro/buget/
- https://www.cfrcalatori.ro/raportari-contabile/