UVOD V GEOMETRIJSKO TOPOLOGIJO: PISNI IZPIT 19. 6. 2015

1. NALOGA (20 točk)

- a. Naj bodo X, Y, Z topološki prostori in naj bo $r: X \to Y$ zvezna preslikava. Dokaži, da predpis $f \mapsto f \circ r$ podaja zvezno preslikavo $C(Y, Z) \to C(X, Z)$.
- b. Na prostoru $C(\mathbb{R}^2, Z)$ definiramo ekvivalenčno relacijo: $f \sim g \iff f|_{\mathbb{B}^2} = g|_{\mathbb{B}^2}$. Na primeren način identificiraj kvocientni prostor $C(\mathbb{R}^2, \mathbb{Z})/\sim$.

Prostori zveznih preslikav so opremljeni s kompaktno odprto topologijo.

Rešitve oziroma odgovore ustrezno utemelji.

2. NALOGA (20 točk)

- a. Naj bo $X \subset \mathbb{R}^n$. Dokaži: če je X mnogoterost razsežnosti n, je množica notranjih točk natanko enaka notranjosti množice X v \mathbb{R}^n , za množico robnih točk ∂X pa velja $\partial X = X \cap \mathrm{Meja}_{\mathbb{R}^n}(X)$.
- b. Dokaži potrebni in zadostni pogoj na množico $A \subset \mathbb{R}^2$, da je $\mathbb{R}^2 \times (-\infty, -1) \cup \mathbb{R}^2 \times (1, \infty) \cup A \times [-1, 1]$ mnogoterost.

3. NALOGA (20 točk)

Klasificiraj ploskvi, podani z besedama:

- **a.** $a_1 a_2 a_3 a_4 a_1^{-1} a_2^{-1} a_3^{-1} a_4^{-1}$, **b.** $a_1 a_2 a_3 a_4 a_2^{-1} a_1^{-1} a_4^{-1} a_3^{-1}$.

TEORETIČNA NALOGA (10 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (P) oziroma napačna (N).

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Kvocientni prostor $\mathbb{R}^2/[0,1]^2$ je homeomorfen ravnini \mathbb{R}^2 (z običajno topologijo).
Naj bo \sim ekvivalenčna relacija na prostoru X. Kvocientni prostor $X/\!\!\sim$ je ${\rm T}_1$ natanko tedaj, ko so ekvivalenčni razredi zaprti v X.
Kvocientni prostor nekompaktnega prostora je nekompakten prostor.
Naj bo $f \colon \mathbb{B}^2 \to \mathbb{R}^3$ zvezna injekcija. Tedaj je $\mathbb{R}^3 \setminus f(\mathbb{B}^2)$ s potmi povezan prostor.
Naj bo $f\colon\mathbb{S}^2\to\mathbb{S}^2$ zvezna injekcija. Tedaj je f homeomorfizem.
Podprostor absolutnega ekstenzorja za normalne prostore je absolutni ekstenzor za normalne prostore.
Vsako zvezno preslikavo $\mathbb{S}^1 \to \mathbb{S}^1$ je mogoče razširiti do zvezne preslikave $\mathbb{B}^2 \to \mathbb{S}^1$.
Če je X orientabilna sklenjena (kompaktna in brez roba) povezana ploskev. Tedaj je X homeomorfna povezani vsoti enega ali več torusov.
Rob poljubne ploskve je disjunktna unija topoloških krožnic.
Möbiusov trak je neorientabilna ploskev.