Exercises in PDE and Functional Analysis

Exercise Sheet 8

Jendrik Stelzner

Exercise 2

(i)

We may assume that $c \ge 0$, because otherwise we can replace c by -c and x by -x; we may also assume that $c \ne 0$ and hence c > 0. Suppose that not $||x - c\mathbf{1}||_{\infty} \ge c$. Then

$$\sup_{n \in \mathbb{N}} |x_n - c| = ||x - c\mathbf{1}||_{\infty} < c$$

and hence there exist 0 < c' < c with $|x_n - c| < c'$ for every $n \in \mathbb{N}$. It follows from $x \in W$ that there exists some $y \in \ell^{\infty}$ with x = Sy - y, and hence $x_n = y_{n+1} - y_n$ for every $n \in \mathbb{N}$. We now have for every $n \in \mathbb{N}$ that

$$|y_{n+1} - y_n - c| < c'$$

and hence

$$c - c' < y_{n+1} - y_n < c + c'$$
.

It follows from c' < c that c - c' > 0 for every $n \in \mathbb{N}$, hence we find that the sequence y is strictly increasing. But this contradicts y being bounded.

(ii)

It follows from part (i) that $\mathbf{1} \notin W$ because for $x = \mathbf{1}$ and c = -1 we get

$$||x - c\mathbf{1}||_{\infty} = ||0||_{\infty} = 0 < 1 = |c|.$$

The sum $Y := W + \mathbb{R}\mathbf{1}$ is therefore direct, i.e. it holds that $Y = W \oplus \mathbb{R}\mathbf{1}$. We can hence define a map

$$\varphi \colon Y \to \mathbb{R}, \quad x + c\mathbf{1} \mapsto c$$

where $x \in W$ and $c \in \mathbb{R}$. The map φ is linear, and it follows from part (i) that

$$\varphi(y) = \varphi(x + c\mathbf{1}) = c \le |c| \le ||x + c\mathbf{1}||_{\infty} = ||y||_{\infty}$$

for every $y \in Y$ with $y = x + c\mathbf{1}$, where $x \in W$ and $c \in \mathbb{R}$. Hence $\varphi \in Y'$ with $\|\varphi\| \le 1$. By considering $y = \mathbf{1}$ we see that actually $\|\varphi\| = 1$ because $\varphi(\mathbf{1}) = 1$ and $\|\mathbf{1}\|_{\infty} = 1$.

It follows from a version of the Hahn–Banch theorem (Theorem 6.4 from the lecture) that there exist an extension $\Phi \in (\ell^{\infty})'$ of φ with $\|\Phi\| = \|\varphi\| = 1$. It again holds that $\Phi(\mathbf{1}) = \varphi(\mathbf{1}) = 1$. The functional Φ is shift invariant: We have for every $x \in \ell^{\infty}$ that

$$\Phi(Sx) = \Phi(x) \iff \Phi(Sx) - \Phi(x) = 0 \iff \Phi(Sx - x) = 0,$$

and the last condition holds because $Sx - x \in W$ and hence

$$\Phi(Sx - x) = \varphi(Sx - x) = 0$$

by construction of Φ via φ , and the definition of φ .

That Φ is positive, i.e. that $\Phi(x) \geq 0$ for $x \geq 0$, follows from the upcoming part (iii) because $\liminf_{n\to\infty} x_n \geq 0$.

(iii)

Suppose first that $x \geq 0$. We then have for every $N \in \mathbb{N}$ that

$$\Phi(x) = \Phi(S^N x) \le |\Phi(S^N x)| \le ||S^N x||_{\infty} = \sup_{n \in \mathbb{N}} |x_{n+N}| = \sup_{n \ge N} |x_n| = \sup_{n \ge N} x_n.$$

By taking the limit $n \to \infty$ we find that

$$\Phi(x) \leq \limsup_{n \to \infty} x_n$$
.

If now $x \in \ell^{\infty}$ then we get for $c := \inf_{n \in \mathbb{N}} x_n \in \mathbb{R}$ that $x - c\mathbf{1} \ge 0$ and hence

$$\Phi(x) - c = \Phi(x - c\mathbf{1}) \le \limsup_{n \to \infty} (x_n - c) = \left(\limsup_{n \to \infty} x_n\right) - c$$

which again shows that

$$\Phi(x) \leq \limsup_{n \to \infty} x_n$$
.

We now also find for every $x \in \ell^{\infty}$ that

$$-\Phi(x) = \Phi(-x) \le \limsup_{n \to \infty} (-x_n) = -\liminf_{n \to \infty} x_n,$$

and hence

$$\Phi(x) \ge \liminf_{n \to \infty} x_n \, .$$

Exercise 3

We only consider the case $X \neq 0$.

(i)

It holds for all $x, y \in X$ that

$$(Tx) + (Ty) = \left(\lim_{n \to \infty} T_n x\right) + \left(\lim_{n \to \infty} T_n y\right)$$
$$= \lim_{n \to \infty} \left[(T_n x) + (T_n y) \right] = \lim_{n \to \infty} T_n (x+y) = T(x+y),$$

and for all $x \in X$ and $\lambda \in \mathbb{K}$ that

$$T(\lambda x) = \lim_{n \to \infty} T_n(\lambda x) = \lim_{n \to \infty} \lambda T_n x = \lambda \lim_{n \to \infty} T_n x = \lambda T x$$

This shows that T is linear.

We have for every $x \in X$ with ||x|| = 1 by the continuity of the norm (of Y) that

$$||Tx|| = \left\| \lim_{n \to \infty} T_n x \right\| = \lim_{n \to \infty} ||T_n x|| = \liminf_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n x||.$$

That $\liminf_{n\to\infty} ||T_n|| < \infty$ follows from the Banach–Steinhaus theorem (Theorem 7.3 in the lecture). (That the theorem can be applied, i.e. that $\sup_{n\in\mathbb{N}} ||T_nx|| < \infty$ for every $x\in X$, follows from the convergence of the sequence $(T_nx)_n$.) It follows in particular that T is bounded, and hence that $T\in\mathcal{L}(X,Y)$.

(ii)

For every $n \in \mathbb{N}$ let $T_n : \ell^1 \to \ell^1$ be the linear map that multiplies the *n*-th position with 2, i.e. that is given by

$$(T_n x)_m = \begin{cases} 2x_m & \text{if } m = n, \\ x_m & \text{if } m \neq n \end{cases}$$

for every $x \in \ell^1$. Then

$$||T_n x||_1 \le \sum_{m \in \mathbb{N}} 2|x_m| = 2||x||_1$$

for every $x \in \ell^1$ and therefore $||T_n|| \le 2$ for every $n \in \mathbb{N}$. Hence $T_n \in \mathcal{L}(X,Y)$ for every $n \in \mathbb{N}$.

We have for every $x \in \ell^1$ that

$$||T_n x - x||_1 = |x_n| \to 0$$

as $n \to \infty$, and hence that $T_n x \to x$. But the sequence $(T_n)_n$ does not converge in the operator norm: We have for all n > m that

$$\|(T_n - T_m)e^{(n)}\|_1 = \|2e^{(n)} - e^{(n)}\|_1 = \|e^{(n)}\|_1 = 1$$

and hence $||T_n - T_m|| \ge 1$. The sequence $(T_n)_n$ is therefore not a Cauchy sequence, and hence not convergent.

Exercise 4

(i)

We need to show that the family of linear functionals

$$\mathcal{T} := \{ T(y) \mid y \in X, ||y|| \le 1 \}$$

is bounded. We have for every $x \in X$ that T(y)x = T(x)y by assumption, and therefore

$$\sup_{S \in \mathcal{T}} |Sx| = \sup_{\substack{y \in X \\ \|y\| \le 1}} |(Ty)x| = \sup_{\substack{y \in X \\ \|y\| \le 1}} |(Tx)y| \le \|Tx\| < \infty.$$

It hence follows from the Banach–Steinhaus theorem that T is bounded.

(ii)

By the closed graph theorem we need to show for every sequence $(x_n)_n$ in X and all $x \in X$ and $S \in X'$ with both $x_n \to x$ and $Tx_n \to S$ we already have S = Tx. For this we may replace x_n by $x_n - x$ and S by S - Tx to additionally assume that $x_n \to 0$. We hence need to show that S = 0, whence that Sy = 0 for every $y \in X$.

We have for every $\lambda \in \mathbb{R}$ that

$$0 \le \langle x_n + \lambda y, T(x_n + \lambda y) \rangle$$

= $\langle x_n, Tx_n \rangle + \lambda(\langle x_n, Ty \rangle + \langle y, Tx_n \rangle) + \lambda^2 \langle y, Ty \rangle$.

It follows from $x_n \to 0$ that $\langle x_n, Tx_n \rangle \to 0$ and $\langle x_n, Ty \rangle \to 0$, and we also have that $\langle y, Tx_n \rangle \to \langle y, S \rangle$. By taking the limit $n \to \infty$ we therefore find that

$$0 \le \lambda \langle y, S \rangle + \lambda^2 \langle y, Ty \rangle = \lambda \cdot (\langle y, S \rangle + \lambda \langle y, Ty \rangle)$$

for every $\lambda \in \mathbb{R}$. This shows that

$$\begin{cases} \langle y, S \rangle + \lambda \langle y, Ty \rangle \ge 0 & \text{if } \lambda > 0, \\ \langle y, S \rangle + \lambda \langle y, Ty \rangle \le 0 & \text{if } \lambda < 0. \end{cases}$$

It follows for $\lambda = 0$ by continuity that $\langle y, S \rangle \geq 0$ and $\langle y, S \rangle \leq 0$, and hence $\langle y, S \rangle = 0$.