2. Двоичная частотная модуляция (ДЧМ):

«1» передается сигналом $S_I(t) = A\cos(\omega_I t)$, «0» передается сигналом $S_2(t) = A\cos(\omega_2 t)$, $0 \le t \le T$.

$$r_spprox0\implies$$
 по формуле :
$$P_{out}=0.5\Bigg[1-\mathcal{D}\Bigg(\sqrt{\frac{E\left(1-r_s
ight)}{N_o}}\Bigg)\Bigg]\qquad \qquad P_{out}=0.5\Bigg(1-\mathcal{D}\Bigg(\sqrt{\frac{E}{N_o}}\Bigg)\Bigg)$$
 получим:
$$P_{out}=1-\mathbf{F}\Bigg(\sqrt{\frac{E}{N_o}}\Bigg)$$

3. Двоичная фазовая модуляция (ДФМ):

$$P_{out} = 0.5 \Bigg[1 - \mathcal{O} \Bigg(\sqrt{\frac{E \left(1 - r_{\rm S} \right)}{N_o}} \Bigg) \Bigg] \qquad \qquad P_{out} = 0.5 \Bigg(1 - \mathcal{O} \Bigg(\sqrt{\frac{2E}{N_o}} \Bigg) \Bigg)$$
 получим:
$$P_{out} = 1 - F \Bigg(\sqrt{\frac{2E}{N_o}} \Bigg).$$

4. Двоичная относительная фазовая манипуляция (ДОФМ):

$$S_1(t) = \begin{cases} A\cos(\omega t), 0 < t \leq T, & \text{Сигнал } \mathbf{S}_1(t) \text{ соответствует передаче разности} \\ A\cos(\omega(t-T)), T < t \leq 2T. & \text{фаз } \Delta \varphi = 0, \text{ а сигнал } \mathbf{S}_2(t) - \Delta \varphi = \pi \end{cases}$$

$$S_2(t) = \begin{cases} A\cos(\omega t), 0 < t \leq T, \\ -A\cos(\omega(t-T)), T < t \leq 2T. \end{cases}$$

Исходное сообщение $b_k(k=0,1..)$, состоящее из 0 и 1, преобразуется в $J_k=2b_k-1$ (в последовательность из -1 и 1). При формировании ДОФМ сигнала символы J_k перекодируются следующим образом: $J_k'=J_k*J_{k-1}'$ где $J_0'=1$

Тогда для получения ДОФМ сигнала достаточно умножить несущее колебание $A\cos(\omega t)$ на $J_{_k}{}'$:

$$S(t) = J_k' \cdot A\cos(\omega t) = \pm A\cos(\omega t).$$

 $P_{DODM} = 2P_{DDM}(1 - P_{DDM}),$

где $P_{{\it Д}\Phi {\it M}}$ - вероятность принять неверно один символ, определяемая по

формуле:
$$P_{\text{out}} = 0.5 \bigg(1 - \Phi\bigg(\sqrt{\frac{2E}{N_0}}\bigg)\bigg) \\ \text{ м. } \\ P_{\text{out}} = 1 - F\bigg(\sqrt{\frac{2E}{N_0}}\bigg)\bigg). \\ \text{ получим: } \\ P_{\text{out}} = 1 - F\bigg(\sqrt{\frac{2E}{N_0}}\bigg)\bigg). \\ \text{ или } P_{\text{ДОФМ}} = 2\bigg(1 - F\bigg(\sqrt{\frac{2E}{N_0}}\bigg)\bigg) \cdot F\bigg(\sqrt{\frac{2E}{N_0}}\bigg)\bigg).$$