Quadratic Equations and Functions:

a polynomial that looks like ax^2+bx+c

What is a quadratic? × +P

What is the "parent quadratic"?

purent goadratic:

$$a=1$$
, $b=0$, $c=0$
 $1x^{2}+0x+0=x^{2}$
 $f(x)=x^{2}$

$$f(x) = x$$
(prent function)
of a linear equation)

Graphing Quadratics:

Start with the parent function:

$$y = x^2$$

- vertex? axis of symmetry?

Nowest of ways the y-axis

when b=0

What about when a <> 0?

$$y = 3x^2$$

- vertical stretch $\rightarrow (4 > 0)$ (horizontal shrink) ...

More variations:

What if a < 0? Or a fraction?

$$y = -\frac{1}{4}x^2$$

- vertical shrink and reflection

$$y = x^2$$

Still more variations:

What if $c \leftrightarrow 0$?

$$y = 2x^2 - 4$$

 χ

3

 \mathcal{V}

- vertical translation (+ vertical stretch)

In Summary:

Graph the function and identify its domain and range. Compare the graph with the graph of $y = x^2$.

19. $y = x^2 + 9$

24. $y = -5x^2 + 2$

and -translation)

Section 10.1 051512.notebook May 15, 2012

Roof Shingle A roof shingle is dropped from a rooftop that is 100 feet above the ground. The height y (in feet) of the dropped roof shingle is given by the function $y = -16t^2 + 100$ where t is the time (in seconds) since the shingle is dropped.

- a. Graph the function.
- **b.** Identify the domain and range of the function in this situation.
- **c.** Use the graph to estimate the shingle's height at 1 second.
- **d.** Use the graph to estimate when the shingle is at a height of 50 feet.
- **e.** Use the graph to estimate when the shingle is at a height of 0 feet.

Homework:

p. 632, 6-21 by 3, 24-30 by 3, 37, 39

Section 10.1 051512.notebook May 15, 2012