Ans1.

```
In [1]: | import numpy as np
         import pandas as pd
         import seaborn as sns
In [2]:
         df=pd.read_csv('download.csv')
In [3]:
         df.head()
Out[3]:
                       car name cyl
                                    disp
                                         hp
                                                 acc
                                                     yr mpg
                                8 307.0 130 3504 12.0 70
           chevrolet chevelle malibu
                                                          18.0
          1
                 buick skylark 320
                                8 350.0 165 3693 11.5 70
                                                          15.0
         2
                 plymouth satellite
                                8 318.0 150 3436 11.0 70
                                                          18.0
         3
                    amc rebel sst
                                8 304.0 150 3433 12.0 70
                                                          16.0
                                8 302.0 140 3449 10.5 70 17.0
                      ford torino
In [4]: X=df.drop('car name', axis=1)
In [5]: | X.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 398 entries, 0 to 397
         Data columns (total 7 columns):
                 398 non-null int64
         cyl
         disp
                 398 non-null float64
                 398 non-null object
         hp
                 398 non-null int64
         wt
                 398 non-null float64
         acc
                 398 non-null int64
         yr
                 398 non-null float64
         mpq
         dtypes: float64(3), int64(3), object(1)
         memory usage: 21.8+ KB
In [6]: X['hp'].replace(to_replace='?', value=np.NaN, inplace=True)
In [7]: | X['hp']=X['hp'].astype('float32')
In [8]: | X['hp'].fillna(X['hp'].median(), inplace=True)
```

Ans2.

In [10]: sns.pairplot(df, diag_kind ='kde')

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

val

Out[10]: <seaborn.axisgrid.PairGrid at 0x1a145fb2e8>

In [11]: from sklearn.cluster import KMeans
from scipy.spatial import distance

In [100]: distortion=[]

In [101]: cluster_range=range(2,6)

In [102]: cluster_error=[]

```
In [103]: ndf.head()
```

Out[103]:

	cyl	disp	hp	wt	acc	yr	mpg	group
0	1.498191	1.090604	0.673118	0.630870	-1.295498	-1.627426	-0.706439	1
1	1.498191	1.503514	1.589958	0.854333	-1.477038	-1.627426	-1.090751	1
2	1.498191	1.196232	1.197026	0.550470	-1.658577	-1.627426	-0.706439	1
3	1.498191	1.061796	1.197026	0.546923	-1.295498	-1.627426	-0.962647	1
4	1.498191	1.042591	0.935072	0.565841	-1.840117	-1.627426	-0.834543	1

Ans3.

```
In [104]: | for num in cluster_range:
               clusters=KMeans(n_clusters=num, n_init=5 )
               clusters.fit(X)
               centroids=clusters.cluster_centers_
               cluster_error.append(clusters.inertia_)
               distortion.append(sum(np.min(distance.cdist(X, centroids, 'eucl
In [105]: len(cluster_error)
Out[105]: 4
In [106]: cluster_df=pd.DataFrame({'Number Cluster':cluster_range, 'Cluster E
In [107]: cluster_df
Out[107]:
              Number Cluster Cluster Errors
                          7.428987e+07
           0
           1
                          3.420852e+07
           2
                          1.905701e+07
           3
                        5 1.376963e+07
In [108]:
          from matplotlib import pyplot as plt
```

```
In [109]: plt.figure(figsize=(12,6))
   plt.plot(cluster_df['Number Cluster'], cluster_df['Cluster Errors']
```

Out[109]: [<matplotlib.lines.Line2D at 0x1a20112e10>]

In [80]: distortion

Out[80]: [369.7424310089116, 247.81798687691148, 183.36581096312557, 159.23196020706771, 140.14818551033127, 122.59425198839452, 103.83216987082987, 95.61753934919263] In [82]: plt.plot(range(2,10), distortion, 'go-')

Out[82]: [<matplotlib.lines.Line2D at 0x1a200f8cc0>]

In [116]:

kmeans = KMeans(n_clusters=3)

kmeans = kmeans.fit(ndf)

```
labels = kmeans.predict(ndf)
centroids = kmeans.cluster centers
print("Centroid values")
print(centroids)
print(labels)
Centroid values
[[-0.85347696 - 0.80321374 - 0.67506205 - 0.78549879 0.36133415]
                                 0.3
0992304
 0.75394661]
[ 1.49819126  1.50068407
                    1.40001604 -1.07612225 -0.6
              1.5141292
725559
 -1.15871315]
0.35772459 0.24687769 -0.04275486 0.30829922
                          0.28578589 - 0.0
0272145
-0.47905415]]
2 2 2 2
2\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 2\ 0\ 2\ 2\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1
0 0 0 0
0 0 0 0
0 0 0 1
0 2 2 2
1 0 0 0
0 0 0 0
200000002000000000000000000000022222
2000
```

In [117]: ndf.head()

Out[117]:

	cyl	disp	hp	wt	acc	yr	mpg
0	1.498191	1.090604	0.673118	0.630870	-1.295498	-1.627426	-0.706439
1	1.498191	1.503514	1.589958	0.854333	-1.477038	-1.627426	-1.090751
2	1.498191	1.196232	1.197026	0.550470	-1.658577	-1.627426	-0.706439
3	1.498191	1.061796	1.197026	0.546923	-1.295498	-1.627426	-0.962647
4	1.498191	1.042591	0.935072	0.565841	-1.840117	-1.627426	-0.834543

```
In [118]: colnames = ndf.columns
    prediction= kmeans.predict(ndf)
    ndf1 = pd.DataFrame(ndf, columns= colnames)
    ndf1["group"] = prediction
ndf1.tail(5)
```

Out[118]:

	cyl	disp	hp	wt	acc	yr	mpg	group
393	-0.856321	-0.513026	-0.479482	-0.213324	0.011586	1.621983	0.446497	0
394	-0.856321	-0.925936	-1.370127	-0.993671	3.279296	1.621983	2.624265	0
395	-0.856321	-0.561039	-0.531873	-0.798585	-1.440730	1.621983	1.087017	0
396	-0.856321	-0.705077	-0.662850	-0.408411	1.100822	1.621983	0.574601	0
397	-0.856321	-0.714680	-0.584264	-0.296088	1.391285	1.621983	0.958913	0

In [119]: from scipy.stats import zscore

In [33]: X.head()

Out[33]:

	cyl	disp	hp	wt	acc	yr	mpg	group
0	8	307.0	130.0	3504	12.0	70	18.0	3
1	8	350.0	165.0	3693	11.5	70	15.0	4
2	8	318.0	150.0	3436	11.0	70	18.0	3
3	8	304.0	150.0	3433	12.0	70	16.0	3
4	8	302.0	140.0	3449	10.5	70	17.0	3

In [112]: ndf=X.loc[:,'cyl':'mpg'].apply(zscore)

In []: | ndf

In [120]: import matplotlib.pylab as plt ndf1.boxplot(by = 'group', layout=(2,4), figsize=(15, 10))

Out[120]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a20a46 a58>, <matplotlib.axes._subplots.AxesSubplot object at 0x1a20151</pre> 128>, <matplotlib.axes._subplots.AxesSubplot object at 0x1a20ee2</pre> 390>, <matplotlib.axes. subplots.AxesSubplot object at 0x1a20f10</pre> 630 >][<matplotlib.axes._subplots.AxesSubplot object at 0x1a20f3f</pre> 8d0>, <matplotlib.axes._subplots.AxesSubplot object at 0x1a20f6f</pre> b70>, <matplotlib.axes._subplots.AxesSubplot object at 0x1a20fa1</pre> e10>, <matplotlib.axes._subplots.AxesSubplot object at 0x1a20fde</pre> 128>]], dtype=object)

Boxplot grouped by group


```
In [121]: data = ndf1
def replace(group):
    median, std = group.median(), group.std() #Get the median and
    outliers = (group - median).abs() > 2*std # Subtract median fro
    group[outliers] = group.median() # replacing group outliers wit
    return group

data_corrected = (data.groupby('group').transform(replace))
concat_data = data_corrected.join(pd.DataFrame(ndf1['group']))
```

/Users/ghost/anaconda3/lib/python3.7/site-packages/ipykernel_launc her.py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

/Users/ghost/anaconda3/lib/python3.7/site-packages/ipykernel_launc her.py:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy)

In [166]: concat_data

Out[166]:

	cyl	disp	hp	wt	acc	yr	mpg	group
0	1.498191	1.090604	0.673118	0.630870	-1.295498	-1.627426	-0.706439	1
1	1.498191	1.503514	1.589958	0.854333	-1.477038	-1.627426	-1.090751	1
2	1.498191	1.196232	1.197026	0.550470	-1.658577	-1.627426	-0.706439	1
3	1.498191	1.061796	1.197026	0.546923	-1.295498	-1.627426	-0.962647	1
4	1.498191	1.042591	0.935072	0.565841	-1.840117	-1.627426	-0.834543	1
5	1.498191	2.262118	2.454408	1.620492	-2.021656	-1.627426	-1.090751	1
6	1.498191	1.503514	1.197026	1.635863	-1.005035	-1.627426	-1.218855	1
7	1.498191	1.503514	1.197026	1.586204	-1.005035	-1.627426	-1.218855	1
8	1.498191	1.503514	1.197026	1.719809	-2.021656	-1.627426	-1.218855	1
9	1.498191	1.887617	2.244844	1.039961	-1.005035	-1.627426	-1.090751	1
10	1.498191	1.820399	1.720935	0.700628	-2.021656	-1.627426	-1.090751	1
11	1.498191	1.407489	1.458981	0.755016	-1.005035	-1.627426	-1.218855	1

12	1.498191	1.983643	1.197026	0.934732	-2.203196	-1.627426	-1.090751	1
13	1.498191	1.503514	1.197026	1.441958	-2.021656	-1.627426	-1.218855	1
14	-0.856321	-0.772295	-0.243723	-0.707544	-0.206262	0.538847	0.062185	0
15	0.320935	0.043923	-0.243723	-0.162483	-0.024722	-1.627426	-0.194023	2
16	0.320935	0.053526	-0.191332	-0.232242	-0.024722	-1.627426	-0.706439	2
17	0.320935	0.063128	-0.505678	-0.453340	0.156817	-1.627426	-0.322127	2
18	-0.856321	-0.925936	-0.427091	-0.993671	-0.387801	0.538847	0.446497	0
19	-0.856321	-0.925936	-0.689046	-1.342463	1.790672	0.538847	0.318393	0
20	-0.856321	-0.801103	-0.453287	-0.352841	0.701436	0.538847	0.190289	0
21	-0.856321	-0.829911	-0.374700	-0.638968	-0.387801	0.538847	0.062185	0
22	-0.856321	-0.858718	-0.243723	-0.703997	0.701436	0.538847	0.190289	0
23	-0.856321	-0.695475	-0.689046	-0.870708	-1.113959	0.538847	0.318393	0
24	0.320935	0.053526	-0.374700	-0.381217	-0.206262	-1.627426	-0.322127	2
25	1.498191	1.599540	1.197026	1.944455	-0.569341	-1.627426	-1.731270	1
26	1.498191	1.090604	2.506799	1.661874	-0.206262	-1.627426	-1.731270	1
27	1.498191	1.196232	1.197026	1.668968	-0.750880	-1.627426	-1.603167	1
28	1.498191	1.061796	2.323431	2.082789	-1.005035	-1.627426	-1.218855	1
29	-0.856321	-0.925936	-0.427091	-0.993671	-0.387801	-1.356642	0.446497	0
368			0.407004	0.000070				0
	-0.856321	-0.781898	-0.427091	-0.390676	1.100822	1.621983	0.446497	
369	-0.856321 -0.856321	-0.781898 -0.781898	-0.427091 -0.427091	-0.680350	1.100822 0.882975	1.621983 1.621983	0.446497 1.343225	0
369 370								0
	-0.856321	-0.781898	-0.427091	-0.680350	0.882975	1.621983	1.343225	
370	-0.856321 -0.856321	-0.781898 -0.781898	-0.427091 -0.505678	-0.680350 -0.467528	0.882975 0.229433	1.621983 1.621983	1.343225 0.958913	0
370 371	-0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039	-0.427091 -0.505678 -0.531873	-0.680350 -0.467528 -0.526645	0.882975 0.229433 0.156817	1.621983 1.621983 1.621983	1.343225 0.958913 0.702705	0
370 371 372	-0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398	-0.427091 -0.505678 -0.531873 -0.374700	-0.680350 -0.467528 -0.526645 -0.278353	0.882975 0.229433 0.156817 0.882975	1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497	0 0
370 371 372 373	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648	0.882975 0.229433 0.156817 0.882975 0.302049	1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185	0 0 0
370 371 372 373 374	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672	1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919	0 0 0
370 371 372 373 374 375	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398 -0.849116	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016 -0.793827	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708 -1.171023	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672 -0.097338	1.621983 1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919 1.599433	0 0 0 0
370 371 372 373 374 375 376	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398 -0.849116 -0.983552	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016 -0.793827 -0.951000	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708 -1.171023 -1.117818	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672 -0.097338 0.955591	1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919 1.599433 1.727537	0 0 0 0 0
370 371 372 373 374 375 376 377	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398 -0.849116 -0.983552 -0.983552	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016 -0.793827 -0.951000 -0.951000	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708 -1.171023 -1.117818 -1.182846	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672 -0.097338 0.955591 0.737743	1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919 1.599433 1.727537 0.958913	0 0 0 0 0
370 371 372 373 374 375 376 377	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398 -0.849116 -0.983552 -0.983552 -0.849116	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016 -0.793827 -0.951000 -0.951000 -1.081977	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708 -1.171023 -1.117818 -1.182846 -0.999583	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672 -0.097338 0.955591 0.737743 -0.315185	1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919 1.599433 1.727537 0.958913 1.855641	
370 371 372 373 374 375 376 377 378 379	-0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321 -0.856321	-0.781898 -0.781898 -0.561039 -0.407398 -0.513026 -0.407398 -0.849116 -0.983552 -0.983552 -0.849116 -0.916334	-0.427091 -0.505678 -0.531873 -0.374700 -0.322309 -0.283016 -0.793827 -0.951000 -0.951000 -1.081977 -0.898609	-0.680350 -0.467528 -0.526645 -0.278353 -0.124648 -0.870708 -1.171023 -1.117818 -1.182846 -0.999583 -0.999583	0.882975 0.229433 0.156817 0.882975 0.302049 1.790672 -0.097338 0.955591 0.737743 -0.315185 0.628820	1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983 1.621983	1.343225 0.958913 0.702705 0.446497 0.062185 -0.065919 1.599433 1.727537 0.958913 1.855641 1.599433	

383	-0.856321	-0.983552	-0.977196	-1.188758	-0.206262	1.621983	1.855641	0
384	-0.856321	-0.983552	-0.977196	-1.188758	0.047894	1.621983	1.087017	0
385	-0.856321	-0.983552	-0.977196	-1.153288	0.229433	1.621983	1.855641	0
386	0.320935	-0.119320	0.149209	-0.030061	0.302049	1.621983	0.190289	2
387	-0.856321	-0.849116	-0.505678	-0.870708	0.519896	1.621983	1.855641	0
388	-0.856321	-0.849116	-0.322309	-0.455705	-0.387801	1.621983	0.318393	0
389	0.320935	0.370411	0.201600	-0.160119	-0.315185	1.621983	-0.194023	2
390	-0.856321	-0.474616	-0.217528	-0.361117	-0.605648	1.621983	1.087017	0
391	-0.856321	-0.561039	-0.531873	-0.709909	-0.932419	1.621983	1.599433	0
392	-0.856321	-0.407398	-0.374700	-0.870708	0.628820	1.621983	0.446497	0
393	-0.856321	-0.513026	-0.479482	-0.213324	0.011586	1.621983	0.446497	0
394	-0.856321	-0.925936	-1.370127	-0.993671	0.229433	1.621983	0.702705	0
395	-0.856321	-0.561039	-0.531873	-0.798585	-1.440730	1.621983	1.087017	0
396	-0.856321	-0.705077	-0.662850	-0.408411	1.100822	1.621983	0.574601	0
397	-0.856321	-0.714680	-0.584264	-0.296088	1.391285	1.621983	0.958913	0

398 rows × 8 columns


```
In [124]: for i in cluster_range:
              points = np.array(concat data.loc[concat data['group'] == i])
          points
Out[124]: array([], shape=(0, 8), dtype=float64)
In [157]: points
Out[157]: array([[-0.85632057, -0.77229532, -0.24372303, ...,
                                                               0.53884683,
                   0.06218515,
                                0.
                 [-0.85632057, -0.92593647, -0.42709115, ...,
                                                               0.53884683,
                   0.44649707, 0.
                 [-0.85632057, -0.92593647, -0.68904561, ...,
                                                               0.53884683,
                   0.31839309,
                                          1.
                 [-0.85632057, -0.56103873, -0.53187293, ..., 1.62198339,
                   1.08701694.
                 [-0.85632057, -0.70507731, -0.66285014, ..., 1.62198339,
                                0.
                   0.57460104,
                 [-0.85632057, -0.71467988, -0.5842638, ..., 1.62198339,
                   0.95891297,
                                0.
In [140]: k=np.array(X.loc[concat_data['group'] == 1])
In [141]:
Out[141]: array([[ 1.49819126,  1.0906037 ,
                                             0.67311752, 0.63086987, -1.295
          49834,
                  -1.62742629, -0.7064387,
                                             1.58995807, 0.85433297, -1.477
                 [ 1.49819126, 1.5035143 ,
          03779.
                  -1.62742629, -1.09075062,
                                             1.19702649, 0.55047045, -1.658
                 [ 1.49819126, 1.19623199,
          57724.
                  -1.62742629, -0.7064387,
                                             1.19702649, 0.54692342, -1.295
                 [ 1.49819126, 1.06179598,
          49834,
                  -1.62742629, -0.96264665,
                                             0.935072 , 0.56584093, -1.840
                 [ 1.49819126, 1.04259084,
          11669,
                  -1.62742629, -0.83454267,
                                            2.45440769, 1.62049216, -2.021
                 [ 1.49819126, 2.26211751,
          65614,
                  -1.62742629, -1.09075062,
                                            1.
                                                         1.63586264, -1.005
                 [ 1.49819126, 1.5035143 , 1.19702649,
          02522
In [168]: |var = 'hp'
          with sns.axes style("white"):
              plot = sns.lmplot(var, 'mpg', data=concat_data, hue='group')
          plot.set(ylim = (-3,3))
```

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

Out[168]: <seaborn.axisgrid.FacetGrid at 0x1a1cb4c710>


```
In [169]: var = 'disp'
with sns.axes_style("white"):
    plot = sns.lmplot(var,'mpg',data=concat_data,hue='group')
plot.set(ylim = (-3,3))
```

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

Out[169]: <seaborn.axisgrid.FacetGrid at 0x1a1e695518>


```
In [171]: var = 'acc'
with sns.axes_style("white"):
    plot = sns.lmplot(var, 'mpg', data=concat_data, hue='group')
plot.set(ylim = (-3,3))
```

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

Out[171]: <seaborn.axisgrid.FacetGrid at 0x1a1e7b02b0>


```
In [172]: var = 'wt'
with sns.axes_style("white"):
    plot = sns.lmplot(var, 'mpg', data=concat_data, hue='group')
plot.set(ylim = (-3,3))
```

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sum
val

/Users/ghost/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidim ensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array ind ex, `arr[np.array(seq)]`, which will result either in an error or a different result.

Out[172]: <seaborn.axisgrid.FacetGrid at 0x1a2265ae80>

Ans 4.

```
In [179]: from sklearn.linear_model import LinearRegression
         from sklearn.model_selection import train_test_split
In [197]: | for i in range(0,3):
             x=concat_data.loc[concat_data['group'] == i]
             X=x.drop(['mpg','group'], axis=1)
             y=x.loc[:,'mpg']
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_
             model=LinearRegression()
             model.fit(X_train, y_train)
             y_pred=model.predict(X_test)
             print(accuracy.)
             print("Coef for ",(i+1),"Group" )
             print(model.coef )
         Coef for
                   1 Group
         [ 0.
                     -0.19024435 -0.36276706 -0.73747192 -0.05948821 0.34
         6893521
         Coef for 2 Group
         [ 0.33663539 -0.01667302 -0.08700691 -0.16693998 -0.06563639
                                                                   0.07
         330876]
         Coef for 3 Group
         0.14
         4103811
```