## Graphtheory Theorems + Exercises

## 1 Basics

#### **Definitions**

- A graph G is non-trivial if it contains at least one edge, equivalently if G is not an empty graph
- The order of G writen |G|, is the number of vertices of G, i.e. |G| = |V|
- The size of G wirten ||G||, is the number of edges of G, i. e. ||G|| = |E|, if order of G is n then the size of G is between 0 and  $\binom{n}{2}$
- N(S) the neighbourhood of  $S \subseteq V$  is the set of vertices in V. that have and adjacent vertex in S. Instead of  $N(\{v\})$  for  $v \in V$  we write N(v)
- vertex of degree 1 is called *leaf*
- vertex of degree 0 is called *isolated vertex*
- minimum degree of G, denoted by  $\delta(G)$  is the smallest vertex degree in G
- maximum degree of G, denoted by  $\Delta(G)$  is the highest vertex degree in G
- graph G is called k-regular, with  $k \in \mathbb{N}$ , if all vertices have degree k.
- average degree of G is defined as  $d(G) = \frac{\sum_{v \in V} deg(v)}{|V|}$ We have

$$\delta(G) \le d(G) \le \Delta(G)$$

with equality if and only if G is k-regular

**Handshake Lemma** For ever graph G = (V, E) we have

$$2|E| = \sum_{v \in V} d(v)$$

*Proof.* By double counting the set  $X = \{(e, x) : e \in E(G), x \in V(G), x \in e\}$  then

$$|X| = \sum_{v \in V(G)} d(x)$$

and

$$|X| = \sum_{e \in E(G)} 2 = 2|E(G)|$$

by the principle of double counting the terms are equal.

**Corollary** From this follows that the sum of all vertex degrees is even and therefore the number of vertices with odd degree is even.

**Proposition 3** If a graph G has minimum degree  $\delta(G) \geq 2$ , then G has a path of length  $\delta(G)$  and a cycle with at least  $\delta(G) + 1$  vertices.

*Proof.* Let  $P = (x_0, ..., x_k)$  be a longest path in G. Then  $N(x_0) \subseteq V(P)$ , otherwise for  $x \in N(x_0) \setminus V(P)$  the path  $(x, x_0, x_1, ..., x_k)$  would be a longer path.

Let *i* be the largest index such that  $x_i \in N(x_0)$ , then  $i \ge |N(x_0)| \ge \delta$ . So  $(x_0, x_1, ..., x_i, x_0)$  is a cycle of length at least  $\delta(G) + 1$ .

**Proposition 4** If for distinct vertices u and v a graph has a u-v-walk, then it has a u-v-path.

*Proof.* Consider a u-v-walk W with the smallest number of edges. Assume that W does not form a path, then there is a repeated vertex, w, i.e.

$$W = u, e, v_1, e_1, ..., e_k, w, e_{k+1}, ..., e_l, w, e_{l+1}, ..., v$$

Then  $W_1 = u, e, v_1, ..., e_k, w, e_{k+1}, ..., v$  is a shorter u-v-walk, a contradiction.  $\square$ 

**Propostion 5** If a graph has a closed walk of odd length, then it contains an odd cycle.

*Proof.* Let W be the shortest closed odd walk. If W is a cycle the Proposition holds. Otherwise there is a repeated vertex, so W is an edge-disjoint union of two closed walks. The sum of the lengths of these walks is odd, therefore one of them is an odd closed walk shorter than W a contradiction to the minimality of W.

**Proposition 6** If a graph has a closed walk with a non-repeated edge, then the graph contains a cycle.

*Proof.* Let W be a shortest walk with a non-repeated edge e. If W is a cycle, we are done. Otherwise, there is a repeated vertex and W is a union of two closed walks  $W_1$  and  $W_2$  that are shorter than W. One of them say  $W_1$ , contains e, a non-repeated edge. This contradicts the minimality of W.

**Definition bipartite** A graph G = (V, E) is called *bipartite* if there exists natural numbers m, n such that G is isomorphic to a subgraph of  $K_{m,n}$ . Then the vertex set can be written as  $V = A \cup B$  such that  $E \subseteq \{ab : a \in A, b \in B\}$ . The sets A and B are called the *partite sets* of G

**Proposition 1.5** A graph is bipartite if and only if it has no cycles of odd length.

*Proof.* skript  $"\rightarrow"$ 

Assume that G is a bipartite graph with parts A and B. Then any cycle has a form  $a_1,b_1,a_2,b_2,...,a_k,b_k,a_1$  where  $a_i \in A,b_i \in B, i \in [k]$ . Thus every cycle has even length.

"⇐"

Assume G does not have cycles of odd length. We can assume that G is

connected, otherwise we can treat the connected components separately. Let  $v \in V(G)$ . Let  $A = \{u \in V(G) : dist(u,v) \equiv 0 \pmod{2}\}$  and let  $B = \{u \in V(G) : dist(u,v) \equiv 1 \pmod{2}\}$  We claim that G is bipartite with parts A and B. To verify this it is sufficient to prove that A and B are independent sets. Let  $u_1u_2 \in E(G)$  and let  $P_1$  be a shortest  $u_1$ -v-path and  $P_2$  a shortest  $u_2$ -v-path. Then the union of  $P_1, P_2$  and  $u_1u_2$  forms a closed walk W. If  $u_1, u_2 \in A$  or  $u_1, u_2 \in B$  then W is a closed odd walk, because  $dist(v, u_1)$  and  $dist(v, u_2)$  are both even or odd. Thus by Prop. 5 G contains an odd cycle, a contradiction. Thus for any edge  $u_1u_2$  the adjacent vertices  $u_1$  and  $u_2$  are in different parts A or B. Therefore A and B are independent sets.

*Proof.* Diestel "←"

Let T be a spanning tree in G, pick a root  $r \in T$  and denote the associated tree-order on V by  $\leq_T$  (this order expressing height if x < y then x lies below y in T). For each  $v \in V(G)$  the unique path r-v-T has odd or even length. This defines a bipartition of V(G), we show that G is bipartite with this partition. Let e = xy be an edge of G. If  $e \in T$  with  $x <_T y$  say, then r-y-T = r-xy-T and so x and y lie in different partition classes. If  $e \notin T$  then  $C_e := x$ -y-T+ e is a cycle, and by the case treated already the vertices along x-y-T alternate between the two classes. Since  $C_e$  is even by assumption, x and y again lie in different classes.

**Euler tour** A closed walk that traverses every edge of the graph exactly once is called an *Euler tour*.

**Theorem 1.6 (Eulerian Tour Condition)** A connected graph has an Eulerian Tour if and only if every vertex has even degree.

Proof. " $\Rightarrow$ "

The degree condition is necessary for an euler tour, because a vertex appearing k times in an Euler tour (or k+1 times if it is the starting and finishing vertex) must have degree 2k.

"←"

Show by induction on ||G|| that every connected Graph G with all degrees even has an Euler tour. ||G|| = 0 is trivial.

Now let  $||G|| \ge 1$ , since all degrees are even, we can find in G a non-trivial closed walk that contains no edge more than once. To find this walk we consider W a walk of maximal length and write F for the set of its edges. If F = E(G), then W is an Euler tour.

Suppose, therefore G' := G - F has an edge.

For every vertex  $v \in G$ , an even number of edges of G at v lies in F, so the degrees of G' are again all even. Since G is connected, G' has an edge e incident with a vertex on W. By I.H. the component C of G' containing e has an Euler tour. Concatenating this with W (suitably re-indexed), we obtain a closed walk in G that contradicts the maximal length of W.

#### **Definitions**

- graph G is connected if any two vertices are linked by a path.
- a maximal connected subgraph of G is called a connected component of G.
- acyclic graphs are called *forests*
- a graph G is called a *tree* if G is connected and acyclic.

### **Lemma 7** Every tree on at least two vertices has a leaf.

*Proof.* If a tree T on at least two vertices does not have leaves then every vertex has degree > than 2, so we have a cycle in T with length  $\ge 3$ , a contradiction.  $\square$ 

## **Lemma 8** A tree of order $n \ge 1$ has exactly n - 1 edges.

*Proof.* We prove the statement by induction on n. When n = 1, there are no edges.

**I.H.:** Assume that each tree on n = k vertices has k - 1 edges, with  $k \ge 1$ .

**Step:** Lets prove that each tree on k+1 vertices has k edges. Consider a tree T on k+1 vertices. Since  $k+1 \geq 2$ , T has a leaf v. Let  $T' = T - \{v\}$ . We see that T' is connected because any u-w-path in T, for  $u \neq v$  and  $w \neq v$ , does not contain v. We see also that T' is acyclic, because deleting vertices from an acyclic graph does not create new cycles. Thus T' is a tree on k vertices. By I.H. |E(T')| = k-1. Thus |E(T)| = |E(T')| + 1 = (k-1) + 1 = k.

#### Lemma 9 Every connected graph contains a spanning tree.

*Proof.* Let G be a connected graph. Consider T, an acyclic spanning subgraph of G with largest number of edges. If it is a tree we are done.

Otherwise, T has more than one component. Consider vertices u and v from different components of G. Consider a shortest u-v-path P in G. Then P has an edge e = xy with exactly one vertex x in one of the components of T. Then P has an edge e = xy with exactly one vertex x in one of the components of T. Then  $T \cup \{e\}$  is acyclic. If there would be a cycle, it would contain e, however e connects to components, therefore cannot be part of a cycle (e would be a repeated edge). Thus  $T \cup \{e\}$  is a bigger spanning acyclic subgraph of G contradicting the maximality of T.

## **Lemma 10** A connected graph on $n \ge 1$ vertices and n-1 edges is tree.

*Proof.* Let G be a connected graph on n vertices with n-1 edges. Assume G is not a tree, i.e. contains a cycle. We therefore can remove a edge so that G is still connected. This is a contradiction because a graph on n vertices with n-2 edges cannot be connected. Because a walk from vertex 1 to vertex n has to have at least n-1 edges.

**Lemma 11** The vertices of every connected graph on  $n \ge 2$  vertices can be ordered  $(v_1,...,v_n)$  so that for every  $i \in \{1,...,n\}$  the Graph  $G[\{v_1,...,v_i\}]$  is connected.

## Proof. skript

Let G be a connected graph on n vertices. It contains a spanning tree T. Let  $v_n$  be a leaf of T, let  $v_{n-1}$  be a leaf of  $T - \{v_n\}$ , let  $v_{n-2}$  be a leaf of  $T - \{v_n, v_{n-1}\}$  and so on. Let  $v_k$  be a leaf in  $T - \{v_n, v_{n-1}, ..., v_{k+1}\}$ , k = 2, ..., n. Since deleting a leaf does not disconnect a tree, all resulting graphs form a spanning trees of  $G[v_1, ..., v_i]$ , i = 1, ..., n. A graph H having a spanning tree or any connected spanning subgraph H' is connected because a u-v-path in H' is a u-v-path in H. This observation completes the proof.

## Proof. diestel

Pick any vertex as  $v_1$ , and assume inductively that  $v_1, ..., v_i$  have been chosen for some i < |G|. Now pick a vertex  $v \in G - G_i$ . As G is connected, it contains a v- $v_1$  path P. Choose  $v_{i+1}$  as the last vertex of P in  $G - G_i$ , then  $v_{i+1}$  has a neighbour in  $G_i$ . If we consider i + 1 then we simply add  $v_{i+1}$  to our  $G_i$ , Thus  $G_{i+1} := G_i \cup \{v_{i+1}\}$  which is also connected.

**Tree equivalences** For any graph G = (V, E) the following are equivalent:

- (i) G is a tree, i.e. G is connected and acyclic.
- (ii) G is connected, but for any  $e \in E$  the graph G e is not connected (minimally connected)
- (iii) G is acyclic, but for any  $x,y \in V(G), xy \notin E(G)$  the graph G+xy has a cycle. (maximaly acyclic)
- (iv) G is connected and 1-degenerate
- (v) G is connected and |E| = |V| 1
- (vi) G is acyclic and |E| = |V| 1
- (vii) G is connected and every non-trivial subgraph of G has a vertex of degree at most 1.
- (viii) Any two vertices are joined by a unique path in G.

### Proof.

 $(i) \Rightarrow (ii)$ :

G is connected and acyclic, now assume for any edge e = xy the graph G' = G - e would still be connected. Then G' has a x-y-path P. But  $P \cup e$  is a cycle in G which contradicts that G is acyclic.

 $(ii) \Rightarrow (i)$ :

G is connected and for any edge e the graph G-e is not connected. We want to show that G is acyclic. If G would have a cycle we could simply remove an edge from that and the resulting graph would still be connected, a contradiction.  $\Box$ 

*Proof.* (i)  $\Rightarrow$  (iv):

$$(vi) \Rightarrow (i)$$
:

*Proof.* (i)  $\Rightarrow$  (vii):

$$(vii) \Rightarrow (i)$$
:

*Proof.* (i)  $\Rightarrow$  (viii):

$$(viii) \Rightarrow (i)$$
:

**Definition** d-degenerate If there is a vertex ordering  $v_1, ..., v_n$  of G and a  $d \in \mathbb{N}$  such that

$$|N(v_i) \cap \{v_{i+1}, ..., v_n\}| \le d$$

for all  $i \in [n-1]$  then G is called d-degenerate. The minimum d for which G is d-degenerate is called the degeneracy of G.

Every finite planar graph has a vertex of degree five or less, therefore every planar graph is 5-degenerate.

**Definition arboricity** The least number of trees that can cover the edges of a graph is its arboricity.

It is a measure for the graphs maximum local density: it is small if and only if the graph is nowhere dense, in the sense that there is no subgraph H with large  $\epsilon(H) = \frac{E(H)}{V(H)}$ .

**Definition Contract** For an edge e = xy in G we define  $G \circ e$  as the graph obtained from G by identifying x and y and removing (if necessary) loops and multiple edges. We say that  $G \circ e$  arises from G by contracting the edge e.

**Definition Complement** The *complement* of G, denoted by  $\overline{G}$  is defined as the graph  $(V, \binom{V}{2} \setminus E)$ . In particular  $G + \overline{G}$  is a complete graph and  $\overline{G} = (G + \overline{G}) - E$ .

#### **Definitions**

- girth of G, denoted by g(G) is the length of the shortest cycle in G, if G is acyclic, its girth is said to be  $\infty$
- circumference of G, is the length of the longest cycle if G is acyclic the circumference is said to be 0
- ullet G is called Hamiltonian if G has a spanning cycle, i.e. a cycle that contains every vertex of G. In other words the circumference is |V|
- G is called *traceable* if G has a spanning path

- For two vertices v and u in G, the distance between u and v, denoted by d(v,u) is the length of a shortest u-v-path in G. If no such path exists  $d(u,v)=\infty$
- The diameter of G, denoted by diam(G), is the maximum distance among all pairs of vertices in G, i.e.

$$\operatorname{diam}(G) = \max_{u,v \in V} d(u,v)$$

- eccentricity, ecc(v) is the greatest distance of v to any other vertex.
- The radius of G, denoted by rad(G) is defined as

$$\mathrm{rad}(G) = \min_{u \in V} \max_{n \in V} d(u, v)$$

its the vertex that has the smallest eccentricity

problem sheets 1 and 2

problem 1

problem 2

problem 3

problem 4

problem 5

problem 6

problem 7

# 2 Important Graphs

## Complete Graph, Clique:

the complete graph  $K_n$  on n vertices is isomorphic to  $([n], \binom{[n]}{2})$ 

## Cycle

 $C_n$  on n vertices with  $n \ge 3$  is isomorphic to  $([n], \{\{i, i+1\} : i=1, ..., n-1\} \cup \{n, 1\})$ , the *length of a cycle* is its number of edges.

#### **Empty Graph**

 $E_n$  on n vertices is isomorphic to  $([n], \emptyset)$ . Empty graphs correspond to *independent sets*.

#### Complete Bipartite Graph

 $K_{m,n}$  on n+m vertices is isomorphic to  $(A \cup B, \{xy : x \in A, y \in B\})$  where |A| = m and |B| = n and  $A \cap B = \emptyset$ .

Complete r-partite graph with  $r \ge 2$  is isomorphic to

$$(A_1 \cup ... \cup A_r, \{xy : x \in A_i, y \in A_j, i \neq j\})$$

where  $A_1, ..., A_r$  are disjoint non-empty finite sets.