Corso di Laurea: Ingegneria Informatica

Esercizio 1

Figura 1:

Consideriamo il corpo rigido mostrato in figura: esso è costituito da due sbarre sottili (una di lunghezza $l=80\,\mathrm{cm}$ e una di lunghezza l/2) saldate fra loro come in figura nel punto mediano di \overline{AB} ; la massa complessiva del corpo è pari a $M=100\,\mathrm{kg}$. L'estremo A del corpo rigido è ancorato ad una parete verticale tramite una cerniera (che ne permette la libera rotazione in un piano verticale). Il sistema è mantenuto in equilibrio statico nella disposizione in figura tramite una fune orizzontale che connette l'estremo C della barretta più corta alla parete. Si noti che in tale disposizione la barretta più lunga è orizzontale. Determinare:

a) la tensione della corda:

$$|\vec{T}| = \dots;$$

b) il modulo della reazione della cerniera:

$$|\vec{F_c}| = \dots$$

Ad un certo istante la corda si spezza ed il corpo rigido inizia a cadere ruotando intorno al punto A. Determinare:

c) la velocità angolare del corpo rigido nell'istante in cui esso urta la parete verticale:

Esercizio 2

Figura 2:

Un solenoide rettilineo costituito da $N=10^3$ spire di area $A=5\cdot 10^{-3}\,\mathrm{m}^2$, è chiuso su una resistenza $R=30\,\Omega$ e immerso in un campo magnetico \vec{B} uniforme e parallelo al suo asse. A partire dall'istante t=0 il campo magnetico diminuisce secondo la legge $B(t)=B_0-\alpha t^2$ e dopo un tempo $t_0=3\cdot 10^{-2}\,\mathrm{s}$ si annulla; in questo intervallo di tempo nella resistenza R fluisce una carica complessiva pari $q=10^{-4}\,\mathrm{C}$. Si trascurino gli effetti di auto-induzione. Determinare:

a) la legge $I = I(t, B_0, \alpha)$ con cui varia la corrente nel circuito e il valore $I_0 = I(t = 0, B_0, \alpha)$, entrambi espressi in funzione di B_0 e α :

$$I(t, B_0, \alpha) = \dots I_0(B_0, \alpha) = \dots ;$$

b) i valori di B_0 e α ;

$$B_0 = \dots \qquad \alpha = \dots ;$$

c) l'energia W dissipata nel circuito nell'intervallo di tempo t_0 :

$$W = \dots$$

(punteggio: 1.a = 5 punti, 1.b = 5 punti, 1.c = 5 punti, 2.a = 5 punti, 2.b = 5 punti, 2.c = 5 punti)