

MID TERM EXAMINATIONS - July 2024

aramme	B.Tech.	Semester		Fall Semester 2024-2025
ogramme	: Digital Logic and Computer Architecture	Course Code		CSA2003
ate/Session	: 15 July 2024/ Session I	Slot	:	B12+B13+E11+E12+E13
me	: 1 ½ hours	Max. Marks	:	50

Answer all the Questions

No.	Sub.	Question Description M	arks
	(a)	Perform the following operations using 2's complement method using 8-bit representation for each number: (i) 48-23 (ii) 23-48 (iii) 48-(-23) (iv) -48-23	6
	(b)	Convert the hexadecimal number CA5E to following number systems: (i) Decimal	4
		(ii) Octal Simplify the following logic function using K-map method: $f(A,B,C,D) = AB\bar{C}D + \bar{A}BCD + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{D} + A\bar{C} + A\bar{B}C + \bar{B}$	10
		Discuss the necessity and functioning of a master-slave flip-flop in digital circuits. Use the D flip-flop as an example to illustrate your explanation containing the truth table and timing diagram.	10
		Provide a comparative analysis covering definitions, structural and operational differences, and applications of multiplexers and de-multiplexers. Use diagrams and truth tables to illustrate your points.	10
		Design 2-bit Up and Down ripple counters using suitable flip-flops.	10