Método de Elementos Finitos

Pedro H A Konzen

17 de dezembro de 2024

Licença

Este texto é disponibilizado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

O site notaspedrok.com.br é uma plataforma que construí para o compartilhamento de minhas notas de aula. Essas anotações feitas como preparação de aulas é uma prática comum de professoras/es. Muitas vezes feitas a rabiscos em rascunhos com validade tão curta quanto o momento em que são concebidas, outras vezes, com capricho de um diário guardado a sete chaves. Notas de aula também são feitas por estudantes - são anotações, fotos, prints, entre outras formas de registros de partes dessas mesmas aulas. Essa dispersão de material didático sempre me intrigou e foi o que me motivou a iniciar o site.

Com início em 2018, o site contava com apenas três notas incipientes. De lá para cá, conforme fui expandido e revisando os materais, o site foi ganhando acessos de vários locais do mundo, em especial, de países de língua portugusa. No momento, conta com 13 notas de aula, além de minicursos e uma coleção de vídeos e áudios.

As notas de **Métodos de Elementos Finitos** abordam tópicos introdutórios sobre o método de elementos finitos para equações diferenciais. Códigos exemplos são trabalhos em linguagem Python com a ajuda do pacote computacional FEniCSx.

Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem com correções, sugestões e críticas! ;)

Pedro H A Konzen

https://www.notaspedrok.com.br

Conteúdo

C	apa			i
Li	cenç	a		ii
Prefácio				
\mathbf{C}	onteí	ido		\mathbf{v}
1	Pro	blemas	s Unidimensionais	1
	1.1	Interp	olação e Projeção	1
		1.1.1	Interpolação	3
		1.1.2	Projeção L^2	8
		1.1.3	Exercícios	12
	1.2	Proble	ema Modelo	13
		1.2.1	Formulação Fraca	13
		1.2.2	Formulação de Elementos Finitos	14
		1.2.3	Estimativa a Priori	17
		1.2.4	Estimativa a Posteriori	21
		1.2.5	Exercícios	22
	1.3	Condi	ções de Contorno	23
		1.3.1	Condições de Dirichlet	23
		1.3.2	Condições de Neumann	26
		1.3.3	Condições de Robin	32
		1.3.4	Exercícios	35
	1.4	Malha	s Auto-Adaptativas	35
		1.4.1	Exercícios	39
	1.5	Aplica	ação: EDP Evolutiva	40

Pedro H A Konzen

	1.5.1	Discretização do Tempo	40		
	1.5.2	Formulação de Elementos Finitos	41		
	1.5.3	Exercícios	44		
1.6	Aplica	ação: EDP de Advecção-Difusão	44		
	1.6.1	Exercícios	46		
1.7	Aplica	ação: EDP Não-Linear	46		
	1.7.1	Discretização do Tempo	46		
	1.7.2	Formulação de Elementos Finitos	47		
	1.7.3	Exercícios	50		
1.8	Seleçã	ío de Aplicações	50		
	1.8.1	Sistemas de Equações	51		
	1.8.2	Exercícios	54		
2 Pro	blema	s Bidimensionais	55		
2.1	Malha	a e Espaço	55		
	2.1.1	Malha	55		
	2.1.2	Espaço de Polinômios Lineares	57		
	2.1.3	Espaço contínuo dos polinômios lineares por partes	58		
	2.1.4	Exercícios	60		
2.2	Interp	oolação	61		
	2.2.1	Exercícios	68		
2.3	Projeg	ção	68		
	2.3.1	Exercícios	70		
2.4	Problema Modelo				
	2.4.1	Formulação Fraca	71		
	2.4.2	Formulação de Elementos Finitos	72		
	2.4.3	Exercícios	75		
2.5	Fundamentos da análise de elementos finitos				
	2.5.1	Existência e unicidade	76		
	2.5.2	Estimativa a priori do erro	77		
	2.5.3	Estimativa a posteriori	82		
Notas			85		
Referências					
Índice de Comandos					

Capítulo 1

Problemas Unidimensionais

Em revisão

1.1 Interpolação e Projeção

Em revisão

Seja dado um intervalo $I = [x_0, x_1] \subset \mathbb{R}, x_0 \neq x_1$. O **espaço vetorial das funções lineares** em I é definido por

$$P_1(I) := \{ v : \ v(x) = c_0 + c_1 x, \ x \in I, \ c_0, c_1 \in \mathbb{R} \}. \tag{1.1}$$

Observamos que dado $v \in P_1(I)$, temos que v é unicamente determinada pelos valores

$$\alpha_0 = v(x_0),$$

$$\alpha_1 = v(x_1).$$
(1.2)

Como consequência, existe exatamente uma única função $v \in P_1(I)$ para quaisquer dados valores α_0 e α_1 . Desta observação, introduzimos a chamada base nodal (base lagrangiana¹) $\{\varphi_0, \varphi_1\}$ para $P_1(I)$, definida por

$$\varphi_j(x_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases}, \tag{1.3}$$

¹Consulte mais em Notas de Aula: Matemática Numérica I: Interpolação de Lagrange.

Figura 1.1: Base nodal para o espaço $P_1([x_0, x_1])$.

Com esta base, toda função $v \in P_1(I)$ pode ser escrita como uma combinação linear das funções φ_0 e φ_1 com coeficientes α_0 e α_1 (graus de liberdade), i.e.

$$v(x) = \alpha_0 \varphi_0(x) + \alpha_1 \varphi_1(x). \tag{1.4}$$

Além disso, observamos que

$$\varphi_0(x) = \frac{x - x_1}{x_0 - x_1},\tag{1.5}$$

$$\varphi_1(x) = \frac{x - x_0}{x_1 - x_0}. (1.6)$$

Uma extensão do espaço $P_1(I)$ é o espaço das funções lineares por partes. Dado $I = [l_0, l_1], l_0 \neq l_1$, consideramos uma partição (malha) de I com n+1 pontos

$$\mathcal{I} = \{l_0 = x_0, x_1, \dots, x_n = l_1\}$$
(1.7)

e, portanto, com n subintervalos $I_i = [x_{i-1}, x_i]$ de comprimento (tamanho da malha) $h_i = x_i - x_{i-1}, i = 1, 2, ..., n$. Na malha \mathcal{I} definimos o seguinte

espaço das funções lineares por partes

$$V_h := \{ v : v \in C^0(\mathcal{I}), \ v|_{I_i} \in P_1(I_i), \ i = 1, 2, \dots, n \}.$$

$$(1.8)$$

Observamos que toda função $v \in V_h$ é unicamente determinada por seus valores nodais $\{\alpha_i = v(x_i)\}_{i=0}^n$. Reciprocamente, todo conjunto de valores nodas $\{\alpha_i\}_{i=0}^n$ determina unicamente uma função $v \in V_h$. Desta observação, temos que os valores nodais determinam os graus de liberdade com a base nodal $\{\varphi_j\}_{j=0}^n$ para V_h definida por

$$\varphi_j(x_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases}, \tag{1.9}$$

com $i, j = 0, 1, \dots, n$. Ou seja, temos que

$$v(x) = \sum_{j=0}^{n} \alpha_j \phi_j(x). \tag{1.10}$$

Podemos verificar que

$$\varphi_{i}(x) = \begin{cases} (x - x_{i-1})/h_{i} & , x \in I_{i}, \\ (x_{i+1} - x)/h_{i+1} & , x \in I_{i+1}, \\ 0 & , \text{noutros casos} \end{cases}$$
 (1.11)

consulte, Figura 1.2. É notável que $\varphi_i(x)$ tem suporte compacto $I_i \cup I_{i+1}$.

1.1.1 Interpolação

Em revisão

Interpolação é uma técnica de aproximação de funções. Dada uma função contínua f em $I = [l_0, l_1]$, definimos o **operador de interpolação linear** $\pi: C^0(I) \to V_h$ por

$$\pi f(x) = \sum_{j=0}^{n} f(x_j)\varphi_j(x)$$
 (1.12)

Observamos que πf é igual a f nos nodos x_j , $j = 0, 1, 2, \ldots, n$.

Exemplo 1.1.1. A Figura 1.3 ilustra a interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço de elementos finitos V_h das funções lineares por partes com 5 células.

Figura 1.2: Base nodal para o espaço das funções lineares por parte.

Figura 1.3: Interpolação linear de $f(x)=3\sin(2\pi x)$ no espaço de elementos finitos V.

Código 1.1: mef1d_interp_lin

```
1 from dolfinx import fem, mesh
2 import ufl
3 import numpy as np
4 from mpi4py import MPI
5 import matplotlib.pyplot as plt
7 # malha
810 = 0.25
911 = 0.75
10 domain = mesh.create_interval(MPI.COMM_WORLD,
                                  nx = 5,
11
                                  points = [10, 11])
12
13 x = ufl.SpatialCoordinate(domain)
14
15 # espaço
16 V = fem.FunctionSpace(domain, ('P', 1))
17
18 # fun
19 def fun(x, mod):
      return 3.*mod.sin(2.*mod.pi*x)
21
22 x = ufl.SpatialCoordinate(domain)
23 f expr = fem. Expression(fun(x[0], ufl),
                           V.element.
  interpolation_points())
26 # interpolação
27 pif = fem.Function(V)
28 pif.interpolate(f_expr)
```

 \triangle

Agora, vamos buscar medir o erro de interpolação, i.e. $f - \pi f$. Para tanto, podemos usar a norma L^2 definida por

$$||v||_{L^2(I)} = \left(\int_I v^2 dx\right)^{1/2}.$$
 (1.13)

Lembramos que valem a desigualdade triangular

$$||v + w||_{L^2(I)} \le ||v||_{L^2(I)} + ||w||_{L^2(I)} \tag{1.14}$$

e a desigualdade de Cauchy-Schwarz²

$$\int_{I} vw \, dx \le ||v||_{L^{2}(I)} ||w||_{L^{2}(I)},\tag{1.15}$$

para qualquer funções $v, w \in L^2(I)$.

Proposição 1.1.1. (Erro da interpolação linear) O interpolador $\pi f: C^0(I) \to P_1(I)$ satisfaz as estimativas

$$||f - \pi f||_{L^2(I)} \le Ch^2 ||f''||_{L^2(I)},$$
 (1.16)

$$||(f - \pi f)'||_{L^2(I)} \le Ch||f''||_{L^2(I)}, \tag{1.17}$$

onde C é uma constante e $h = x_1 - x_0$.

Demonstração. Denotemos o erro de interpolação por $e=f-\pi f$. Do teorema fundamental do cálculo, temos

$$e(y) = e(x_0) + \int_{x_0}^{y} e'(x) dx,$$
 (1.18)

onde $e(x_0) = f(x_0) - \pi f(x_0) = 0$. Daí, usando a desigualdade de Cauchy-Schwarz (1.15), temos

$$e(y) = \int_{x_0}^{y} e' \, dx \tag{1.19}$$

$$\leq \int_{x_0}^y |e'| \, dx \tag{1.20}$$

$$\leq \int_{I} 1 \cdot |e'| \, dx \tag{1.21}$$

$$\leq \left(\int_{I} 1^{2} dx\right)^{1/2} \left(\int_{I} e^{2} dx\right)^{1/2} \tag{1.22}$$

 ²Também conhecida como desigualdade de Cauchy–Bunyakovsky–Schwarz. Augustin-Louis Cauchy, 1789 - 1857, matemático francês. Viktor Yakovlevich Bunyakovsky, 1804
 - 1889, matemático Russo. Karl Hermann Amandus Schwarz, 1843 - 1921, matemático alemão.

$$= h^{1/2} \left(\int_{I} e^{2} dx \right)^{1/2}, \tag{1.23}$$

donde

$$e(y)^2 \le h \int_I e'^2 dx = h \|e'\|_{L^2(I)}^2.$$
 (1.24)

Então, integrando em I obtemos

$$||e||_{L^{2}(I)}^{2} = \int_{I} e^{2}(y) \, dy \le \int_{I} h||e'||_{L^{2}(I)}^{2} \, dy = h^{2}||e'||_{L^{2}(I)}^{2}, \tag{1.25}$$

ou seja, temos a seguinte desigualdade

$$||e||_{L^2(I)} \le h||e'||_{L^2(I)}. \tag{1.26}$$

Agora, observando que $e(x_0) = e(x_1) = 0$, o **teorema de Rolle**³ garante a existência de um ponto $\tilde{x} \in I$ tal que $e'(\tilde{x}) = 0$, donde do teorema fundamental do cálculo e da desigualdade de Cauchy-Schwarz, segue

$$e'(y) = e'(\tilde{x}) + \int_{\tilde{x}}^{y} e'' dx$$
 (1.27)

$$= \int_{\tilde{x}}^{y} e^{\prime\prime} dx \tag{1.28}$$

$$\leq \int_{I} 1 \cdot |e''| \, dx \tag{1.29}$$

$$\leq h^{1/2} \left(\int_{I} e^{\prime \prime 2} \right)^{1/2}. \tag{1.30}$$

Então, integrando em I, obtemos

$$||e'||_{L^2(I)}^2 \le h^2 ||e''||_{L^2(I)}^2,$$
 (1.31)

a qual, observando que e''=f'', equivale a segunda estimativa procurada, i.e.

$$||(f - \pi f)'||_{L^2(I)} \le Ch||f''||_{L^2(I)}. \tag{1.32}$$

Por fim, de (1.31) e de (1.26), obtemos a primeira estimativa desejada

$$||f - \pi f||_{L^2(I)} \le Ch^2 ||f''||_{L^2(I)}. \tag{1.33}$$

³Michel Rolle, 1652 - 1719, matemático francês.

Vamos, agora, generalizar o resultado da Proposição 1.1.1 para a interpolação no espaço V_h das funções lineares por parte.

O seguinte resultado fornece uma estimativa do erro de interpolação em relação ao tamanho h_i de cada elemento da malha.

Proposição 1.1.2. O interpolador πf satisfaz as estimativas

$$||f - \pi f||_{L^{2}(I)}^{2} \le C \sum_{i=1}^{n} h_{i}^{4} ||f''||_{L^{2}(I)}^{2}, \tag{1.34}$$

$$\|(f - \pi f)'\|_{L^{2}(I)}^{2} \le C \sum_{i=1}^{n} h_{i}^{2} \|f''\|_{L^{2}(I)}^{2}.$$
(1.35)

(1.36)

Demonstração. Ambas desigualdades seguem da desigualdade triangular e da Proposição 1.1.1. Por exemplo, para a primeira desigualdade, temos

$$||f - \pi f||_{L^{2}(I)}^{2} \le \sum_{i=1}^{n} ||f - \pi f||_{L^{2}(I_{i})}^{2}$$
(1.37)

$$\leq \sum_{i=1}^{n} Ch_i^4 ||f''||_{L^2(I_i)}^2. \tag{1.38}$$

1.1.2 Projeção L^2

Em revisão

Dada uma função $f \in L^2(I)$, definimos o **operador de projeção** L^2 $P_h : L^2(I) \to V_h$ por

$$\int_{I} (f - P_h f) v \, dx = 0, \quad \forall v \in V_h. \tag{1.39}$$

Como V_h é um espaço de dimensão finita, a condição (1.39) é equivalente a

$$\int_{I} (f - P_h f) \varphi_i \, dx = 0, \quad i = 0, 1, \dots, n,$$
(1.40)

onde φ_i é a *i*-ésima função base de V_h . Além disso, como $P_h f \in V_h$, temos

$$P_h f = \sum_{j=0}^n \xi_j \varphi_j, \tag{1.41}$$

onde $\xi_j, j = 0, 1, \dots, n$, são n + 1 incógnitas a determinar. Logo,

$$\int_{I} (f - P_h f) \varphi_i \, dx = 0 \tag{1.42}$$

$$\int_{I} f\varphi_{i} dx = \int_{I} P_{h} f\varphi_{i} dx \tag{1.43}$$

$$\int_{I} f\varphi_{i} dx = \int_{I} \left(\sum_{j=0}^{n} \xi_{j} \varphi_{j} \right) \varphi_{i} dx$$
 (1.44)

$$\sum_{i=0}^{n} \xi_{j} \int_{I} \varphi_{j} \varphi_{i} dx = \int_{I} f \varphi_{i} dx, \qquad (1.45)$$

para i = 0, 1, ..., n.

Observamos que (1.45) consiste em um sistema de n+1 equações lineares para as n+1 incógnitas ξ_j , $j=0,1,\ldots,n$. Este, por sua vez, pode ser escrito na seguinte forma matricial

$$M\xi = b,\tag{1.46}$$

onde $M = [m_{i,j}]_{i,j=0}^{n+1}$ é chamada de matriz de massa

$$m_{i,j} = \int_{I} \varphi_{j} \varphi_{i} \, dx \tag{1.47}$$

e $b = (b_0, b_1, \dots, b_n)$ é chamado de vetor de carregamento

$$b_i = \int_I f\varphi_i \, dx. \tag{1.48}$$

Ou seja, a projeção L^2 de f no espaço V_h é

$$P_h f = \sum_{j=0}^n \xi_j \varphi_j, \tag{1.49}$$

onde $\xi = (\xi_0, \xi_1, \dots, \xi_n)$ é solução do sistema (1.46).

Figura 1.4: Projeção L^2 de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes sobre uma malha com 5 células.

Exemplo 1.1.2. A Figura 1.4 ilustra a projeção L^2 da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes em uma malha uniforme do intervalo I = [1/4, 3/4] com n = 4 subintervalos (5 células).

Código 1.2: ex_mef1d_proj.py

```
from dolfinx import fem, mesh
from dolfinx.fem.petsc import LinearProblem
import ufl
from mpi4py import MPI

# malha
10 = 0.25
811 = 0.75
9 domain = mesh.create_interval(MPI.COMM_WORLD,
nx=5,
points=[10, 11])
12 x = ufl.SpatialCoordinate(domain)
```

```
13
14 # espaço
15 V = fem.functionspace(domain, ("P", 1))
16
17 # fun
18 f = 3.*ufl.sin(2.*ufl.pi*x[0])
19
20 # project f
21 u = ufl.TrialFunction(V)
22 v = ufl.TestFunction(V)
23 a = ufl.dot(u, v) * ufl.dx
24 L = ufl.dot(f, v) * ufl.dx
25 problem = LinearProblem(a, L, bcs=[])
26 Phf = problem.solve()
```

 \triangle

O próximo teorema mostra que $P_h f$ é a função que melhor aproxima f dentre todas as funções do espaço V_h .

Teorema 1.1.1. (A melhor aproximação.) A projeção L^2 satisfaz

$$||f - P_h f||_{L^2(I)} \le ||f - v||_{L^2(I)}, \quad \forall v \in V_h.$$
 (1.50)

Demonstração. Dado $v \in V_h$, temos

$$||f - P_h f||_{L^2(I)}^2 = \int_I |f - P_h f|^2 dx$$
 (1.51)

$$= \int_{I} (f - P_h f)(f - v + v - P_h f) dx$$
 (1.52)

$$= \int_{I} (f - P_h f)(f - v) dx + \int_{I} (f - P_h f)(v - P_h f) dx \quad (1.53)$$

$$= \int_{I} (f - P_h f)(f - v) dx$$
 (1.54)

$$\leq \|f - P_h f\|_{L^2(I)} \|f - v\|_{L^2(I)}, \tag{1.55}$$

donde segue o resultado.

O próximo teorema fornece uma estimativa a-priori do erro $||f - P_h f||_{L^2(I)}$ em relação ao tamanho da malha.

Teorema 1.1.2. A projeção L^2 satisfaz

$$||f - P_h f||_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^4 ||f''||_{L^2(I_i)}^2.$$
 (1.56)

Demonstração. Tomando a interpolação $\pi f \in V_h$, temos do Teorema da melhor aproximação (Teorema 1.1.1) e da estimativa do erro de interpolação (Proposição 1.1.2) que

$$||f - P_h f||_{L^2(I)}^2 \le ||f - \pi f||_{L^2(I)}^2$$
(1.57)

$$\leq C \sum_{i=1}^{n} h_i^4 ||f''||_{L^2(I_i)}^2. \tag{1.58}$$

1.1.3 Exercícios

Em revisão

- **E.1.1.1.** Faça um código para verificar a segunda estimativa da Proposição 1.1.1 no caso da interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço P_1 das funções lineares.
- **E.1.1.2.** Faça um código para verificar as estimativas da Proposição 1.1.2 no caso da interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes.
- **E.1.1.3.** Faça um código para computar a projeção L^2 $P_h f$ da função $f(x) = x \cos(x)$ no espaço V_h das funções lineares por partes em uma malha com 10 células no intervalo $I = [0, \pi]$. Faça o esboço dos gráficos de f e $P_h f$ e compute o erro $||f P_h f||_{L^2(I)}$.

Respostas

E.1.1.1. badgeConstrucao

1.2 Problema Modelo

Em revisão

Nesta seção, discutimos sobre a aplicação do método de elementos finitos para o seguinte problema de valor de contorno: encontrar u tal que

$$-u'' = f, \quad x \in I = [0, L], \tag{1.59}$$

$$u(0) = u(L) = 0, (1.60)$$

onde f é uma função dada.

1.2.1 Formulação Fraca

Em revisão

A derivação de um método de elementos finitos inicia-se da formulação fraca do problema em um espaço de funções apropriado. No caso do problema (1.59)-(1.60), tomamos o espaço

$$V_0 = \{ v \in H^1(I) : \ v(0) = v(1) = 0 \}. \tag{1.61}$$

Ou seja, se $v \in H^1(I)$, então $||v||_{L^2(I)} < \infty$, $||v'||_{L^2(I)} < \infty$, bem como v satisfaz as condições de contorno do problema.

A formulação fraca é, então, obtida multiplicando-se a equação (1.59) por uma função teste $v \in V_0$ (arbitrária) e integrando-se por partes, i.e.

$$\int_{I} f v \, dx = -\int_{I} u'' v \, dx \tag{1.62}$$

$$= \int_{L} u'v' dx - u'(L)v(L) + u'(0)v(0)$$
 (1.63)

(1.64)

Donde, das condições de contorno, temos

$$\int_{I} u'v' dx = \int_{I} fv dx. \tag{1.65}$$

Desta forma, o problema fraco associado a (1.59)-(1.60) lê-se: encontrar $u \in V_0$ tal que

$$a(u,v) = L(v), \quad \forall v \in V_0, \tag{1.66}$$

onde

$$a(u,v) = \int_{I} u'v' dx \tag{1.67}$$

$$L(v) = \int_{I} fv \, dx,\tag{1.68}$$

são chamadas de forma bilinear e forma linear, respectivamente.

1.2.2 Formulação de Elementos Finitos

Em revisão

Uma formulação de elementos finitos é um aproximação do problema fraco (1.66) em um espaço de dimensão finita. Aqui, vamos usar o espaço $V_{h,0}$ das funções lineares por partes em I que satisfazem as condições de contorno, i.e.

$$V_{h,0} = \{ v \in V_h : \ v(0) = v(L) = 0 \}. \tag{1.69}$$

Então, substituindo o espaço V_0 pelo subespaço $V_{h,0} \subset V_0$ em (1.66), obtemos o seguinte problema de elementos finitos: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, v) = L(v), \quad \forall v \in V_{h,0}. \tag{1.70}$$

Observação 1.2.1. A formulação de elementos finitos não é única, podendose trabalhar com outros espaços de funções. No caso em que o espaço da solução é igual ao espaço das funções testes, a abordagem é chamada de método de Galerkin⁴. \triangle

Observemos que o problema (1.70) é equivalente a: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, \varphi_i) = L(\varphi_i), \quad i = 1, \dots, n - 1, \tag{1.71}$$

onde φ_i , $i=1,\ldots,n-1$, são as funções base de $V_{h,0}$. Então, como $u_h \in V_{h,0}$, temos

$$u_h = \sum_{j=1}^{n-1} \xi_j \varphi_j, \tag{1.72}$$

⁴Boris Grigoryevich Galerkin, matemático e engenheiro soviético. Fonte: Wikipédia.

onde ξ_j , j = 1, 2, ..., n-1, são incógnitas a determinar. I.e., ao computarmos ξ_j , j = 1, 2, ..., n-1, temos obtido a solução u_h do problema de elementos finitos 1.70.

Agora, da forma bilinear (1.67), temos

$$a(u_h, \varphi_i) = a\left(\sum_{j=1}^{n-1} \xi_j \varphi_j, \varphi_i\right)$$
(1.73)

$$=\sum_{j=1}^{n-1} \xi_j a(\varphi_j, \varphi_i). \tag{1.74}$$

Daí, o problema (1.70) é equivalente a resolvermos o seguinte sistema de equações lineares

$$A\xi = b, \tag{1.75}$$

onde $A = [a_{i,j}]_{i,j=1}^{n-1}$ é a matriz de rigidez com

$$a_{i,j} = a(\varphi_j, \varphi_i) = \int_I \varphi_j' \varphi_i' \, dx, \tag{1.76}$$

 $\xi = (\xi_1, \xi_2, \dots, \xi_{n-1})$ é o vetor das incógnitas e $b = (b_i)_{i=1}^{n-1}$ é o vetor de carregamento com

$$b_i = L(\varphi_i) = \int_I f\varphi_i \, dx. \tag{1.77}$$

Exemplo 1.2.1. Consideramos o problema (1.59)-(1.60) com $f \equiv 1$ e L = 1, i.e.

$$-u'' = 1, \quad x \in I = [0, 1], \tag{1.78}$$

$$u(0) = u(1) = 0. (1.79)$$

Neste caso, a solução analítica $u(x) = -x^2/2 + x/2$ pode ser facilmente obtida por integração.

Agora, vamos computar uma aproximação de elementos finitos no espaço das funções lineares por partes $V_{h,0} = \{v \in P_1(I); \ v(0) = v(1) = 0\}$ construído numa malha uniforme de 5 células no intervalo I = [0,1]. Para tanto, consideramos o problema fraco: encontrar $u \in V_0 = \{v \in H^1(I); \ v(0) = v(L) = 0\}$ tal que

$$a(u,v) = L(v), \tag{1.80}$$

onde

$$a(u,v) = \int_{I} u'v' dx, \quad L(v) = \int_{I} fv dx.$$
 (1.81)

Então, a formulação de elementos finitos associada, lê-se: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, v_h) = L(v_h), \quad \forall v_h \in V_{h,0}. \tag{1.82}$$

A Figura ?? apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h .

Figura 1.5: Esboço dos gráficos das soluções referentes ao Exemplo 1.2.1.

Código 1.3: ex_mef1d_modelo.py

```
11 # condição de contorno
12 import numpy as np
13 uD = fem.Function(V)
uD.interpolate(lambda x: np.full(x.shape[1], 0.))
16 tdim = domain.topology.dim
17 \text{ fdim} = \text{tdim} - 1
18 domain.topology.create_connectivity(fdim, tdim)
19 boundary facets = mesh.exterior facet indices (
 domain.topology)
20 boundary dofs = fem.locate dofs topological(V,
 fdim,
21
 boundary facets)
22 bc = fem.dirichletbc(uD, boundary_dofs)
24 # problema mef
25 import ufl
26 from dolfinx import default_scalar_type
27 from dolfinx.fem.petsc import LinearProblem
28 u = ufl.TrialFunction(V)
29 v = ufl.TestFunction(V)
30
31 f = fem.Constant(domain, default scalar type(1.))
33 a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
34 L = f * v * ufl.dx
36 problem = LinearProblem(a, L, bcs=[bc])
37 uh = problem.solve()
```

 \triangle

1.2.3 Estimativa a Priori

Em revisão

Existem dois tipos de estimativas do erro $e := u - u_h$. Estimativas a pri-

ori, são aquelas em que o erro é dado em relação da solução u, enquanto que nas estimativas **a posteriori** o erro é expresso em relação a solução de elementos finitos u_b .

Teorema 1.2.1. (Ortogonalidade de Galerkin.) A solução de elementos finitos u_h de (1.70) satisfaz a seguinte propriedade de ortogonalidade

$$a(u - u_h, v) := \int_I (u - u_h)' v' dx = 0, \quad v \in V_{h,0},$$
(1.83)

onde u é a solução de (1.66).

Demonstração. De (1.70), (1.66) e lembrando que $V_{h,0} \subset V_0$, temos

$$a(u,v) = L(v) = a(u_h, v) \Rightarrow a(u - u_h, v) = 0,$$
 (1.84)

para todo $v \in V_{h,0}$.

Teorema 1.2.2. (A melhor aproximação.) A solução de elementos finitos u_h dada por (1.70) satisfaz a seguinte propriedade de melhor aproximação

$$\|(u-u_h)'\|_{L^2(I)} \le \|(u-v)'\|_{L^2(I)}, \quad v \in V_{h,0},$$
 (1.85)

onde u é a solução de (1.66).

Demonstração. Escrevendo $u - u_h = u - v + v - u_h$ para qualquer $v \in V_{h,0}$ e usando a ortogonalidade de Galerkin (Teorema 1.2.1), temos

$$\|(u-u_h)'\|_{L^2(I)}^2 = \int_I (u-u_h)'(u-u_h)' dx$$
(1.86)

$$= \int_{I} (u - u_h)' (u - v + v - u_h)' dx$$
 (1.87)

$$= \int_{I} (u - u_h)'(u - v)' dx + \int_{I} (u - u_h)'(v - u_h)' dx \quad (1.88)$$

$$= \int_{I} (u - u_h)'(u - v)' dx \tag{1.89}$$

$$\leq \|(u - u_h)'\|_{L^2(I)} \|(u - v)'\|_{L^2(I)}. \tag{1.90}$$

Teorema 1.2.3. (Estimativa *a priori*.) O erro em se aproximar a solução u de (1.66) pela solução de elementos finitos u_h dada por (1.70) satisfaz a seguinte estimativa *a priori*

$$\|(u-u_h)'\|_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^2 \|u''\|_{L^2(I_i)}^2.$$
(1.91)

Demonstração. Tomando $v=\pi u$ no teorema da melhor aproximação (Teorema 1.2.2), obtemos

$$\|(u-u_h)'\|_{L^2(I)} \le \|(u-\pi u)'\|_{L^2(I)}. \tag{1.92}$$

Daí, da estimativa do erro de interpolação (Proposição 1.1.2), temos

$$\|(u-u_h)'\|_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^2 \|u''\|_{L^2(I_i)}^2.$$
(1.93)

Exemplo 1.2.2. A Figura 1.6 apresenta o esboço da evolução do erro $||(u - u_h)'||_{L^2(I)}$ da solução de elementos finitos do problema (1.78)-(1.79) para malhas uniformes com $n = 2, 4, 8, \ldots, 128$ células.

Com o FEniCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

def boundary(x,on_boundary):
    return on_boundary

def solver(n):
    # malha
    mesh = IntervalMesh(n,0,1)

# espaco
```


Figura 1.6: Esboço dos gráficos das soluções referentes ao Exemplo 1.2.2.

```
V = FunctionSpace(mesh, 'P', 1)
bc = DirichletBC(V,Constant(0.0),boundary)

#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = u.dx(0)*v.dx(0)*dx
L = f*v*dx

#computa a sol
u = Function(V)
solve(a == L, u, bc)

return u, mesh
```

#sol analitica

```
ua = Expression('-x[0]*x[0]/2+x[0]/2',
                degree=2)
lerrors=[]
for n in [2,4,8,16,32,64,128]:
    u, mesh = solver(n)
    e = errornorm(u,ua,norm_type='H10',mesh=mesh)
    lerrors.append(e)
plt.plot([2,4,8,16,32,64,128],lerrors)
plt.xscale('log',basex=2)
#plt.yscale('log',base=2)
plt.xlabel(r"$n$")
plt.ylabel(r"$|\!|(u-u_h)'|\!|_{L^2(I)}$")
plt.xlim((2,128))
plt.xticks([2,4,8,16,32,64,128],[2,4,8,16,32,64,128])
plt.grid('on')
plt.show()
```

1.2.4 Estimativa a Posteriori

Em revisão

Aqui, vamos obter uma estimativa a posteriori para o erro $e = u - u_h$ da solução de elementos finitos u_h do problema (1.59)-(1.60).

Teorema 1.2.4. A solução de elementos finitos u_h satisfaz

$$\|(u-u_h)'\|_{L^2(I)}^2 \le C \sum_{i=1}^n \eta_i^2(u_h),$$
 (1.94)

 \triangle

onde $\eta_i(u_h)$ é chamado de elemento residual e é dado por

$$\eta_i(u_h) = h_i ||f - u_h''||_{L^2(I_i)}. \tag{1.95}$$

Demonstração. Tomando $e = u - u_h$ e usando a ortogonalidade de Galerkin

(Teorema 1.2.1) temos

$$||e'||_{L^2(I)}^2 = \int_I e'(e - \pi e)' dx = \sum_{i=1}^n \int_{I_i} e'(e - \pi e)' dx.$$
 (1.96)

Então, aplicando integração por partes

$$||e'||_{L^2(I)}^2 = \sum_{i=1}^n \int_{I_i} (-e'')(e - \pi e) \, dx + [e'(e - \pi e)]_{x_{i-1}}^{x_i}. \tag{1.97}$$

Daí, observando que $e-\pi e=0$ nos extremos dos intervalos I_i e que $-e''=-(u-u_h)''=-u''+u_h''=f+u_h''$, temos

$$||e'||_{L^2(I)}^2 = \sum_{i=1}^n \int_{I_i} (f + u_h'')(e - \pi e) dx.$$
 (1.98)

Agora, usando as desigualdades de Cauchy-Schwarz e a estimativa padrão de interpolação (1.26), obtemos

$$||e'||_{L^{2}(I)}^{2} \leq \sum_{i=1}^{n} ||f + u_{h}||_{L^{2}(I_{i})} ||e - \pi e||_{L^{2}(I_{i})} dx$$
(1.99)

$$\leq C \sum_{i=1}^{n} h_i \|f + u_h\|_{L^2(I_i)} \|e'\|_{L^2(I_i)} \tag{1.100}$$

$$\leq C \left(\sum_{i=1}^{n} h_i^2 \|f + u_h\|_{L^2(I_i)}^2 \right)^{1/2} \left(\sum_{i=1}^{n} \|e'\|_{L^2(I_i)}^2 \right)^{1/2}$$
(1.101)

$$= C \left(\sum_{i=1}^{n} h_i^2 \|f + u_h\|_{L^2(I_i)}^2 \right)^{1/2} \|e'\|_{L^2(I)}, \tag{1.102}$$

donde segue o resultado desejado.

Observação 1.2.2. No caso da solução de elementos finitos no espaço das funções lineares por partes, temos $u''_h = 0$. Logo, o elemento residual se resume em $\eta_i(u_h) = h_i ||f||_{L^2(I_i)}$.

1.2.5 Exercícios

Em revisão

E.1.2.1. Obtenha uma aproximação por elementos finitos lineares por partes da solução de

$$-u'' + u = 2 \operatorname{sen} x, \quad \forall x \in (-\pi, \pi),$$
 (1.103)

$$u(-\pi) = u(\pi) = 0. \tag{1.104}$$

Respostas

E.1.2.1. Código FENiCS.

1.3 Condições de Contorno

Em revisão

Nesta seção, vamos discutir sobre soluções de elementos finitos para a equações diferencial

$$-u'' = f, \quad x \in I = [0, L], \tag{1.105}$$

com diferentes condições de contorno.

1.3.1 Condições de Dirichlet

Em revisão

Consideramos o seguinte problema com condições de contorno de Dirichlet 1 : encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.106)

$$u(0) = u_0, \quad u(L) = u_L,$$
 (1.107)

com u_0 , u_L e f dados.

Tomando uma função teste $v \in V_0 := H_0^1(I) := \{v \in H^1(I); \ v(0) = v(L) = 0\}$ e multiplicando-a em (1.106), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.108}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx = \int_{I} fv dx. \tag{1.109}$$

Desta forma, definimos o seguinte **problema fraco** associado: encontrar $u \in V := \{v \in H^1(I); \ v(0) = u_0, \ v(L) = v_L\}$ tal que

$$a(u,v) = L(v), \quad \forall v \in V_0, \tag{1.110}$$

onde a(u, v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' \, dx \tag{1.111}$$

e L(v) é a forma linear

$$L(v) = \int_{I} fv \, dx. \tag{1.112}$$

Exemplo 1.3.1. Consideramos o problema

$$-u'' = 1, \quad x \in I = [0, 1], \tag{1.113}$$

$$u(0) = 1/2, \quad u(1) = 1.$$
 (1.114)

Sua solução analítica é $u(x) = -x^2/2 + x + 1/2$.

Para obtermos uma aproximação de elementos finitos, consideramos o seguinte problema fraco: encontrar $u \in V := \{v \in H^1(I); \ v(0) = 1/2, \ v(1) = 1\}$ tal que

$$a(u,v) = L(v), \tag{1.115}$$

para todo $v \in V_0 = \{v \in H^1(I); \ v(0) = v(1) = 0\}, \text{ onde}$

$$a(u,v) = \int_{I} u'v' dx,$$
 (1.116)

$$L(v) = \int_{I} fv \, dx. \tag{1.117}$$

Então, o problema de elementos finitos no espaço das funções lineares por partes lê-se: encontrar $u_h \in V_h = \{v \in P_1(I); v(0) = 1/2, v(1) = 1\}$ tal que

$$a(u_h, v_h) = L(v_h),$$
 (1.118)

para todo $v_h \in V_{h,0} = \{v \in H^1(I); \ v(0) = v(1) = 0\}.$

Código 1.4: ex_mef1d_dirichlet.py

```
1 from mpi4py import MPI
3 # malha
4 from dolfinx import mesh
5 domain = mesh.create unit interval(MPI.COMM WORLD,
                                       nx = 5
7# espaço
8 from dolfinx import fem
9 V = fem.functionspace(domain, ('P', 1))
11 # condição de contorno
12 import numpy as np
13 uD = fem.Function(V)
14 def dirichlet bc(x):
      y = np.full(x.shape[1], 0.5)
15
      y[x[0,:] > 0.5] = 1.
16
      return y
17
uD.interpolate(dirichlet_bc)
20 tdim = domain.topology.dim
21 \text{ fdim} = \text{tdim} - 1
22 domain.topology.create_connectivity(fdim, tdim)
23 boundary facets = mesh.exterior facet indices(
  domain.topology)
24 boundary_dofs = fem.locate_dofs_topological(V,
 fdim,
 boundary facets)
26 bc = fem.dirichletbc(uD, boundary_dofs)
28 # problema mef
29 import ufl
30 from dolfinx import default_scalar_type
31 from dolfinx.fem.petsc import LinearProblem
32 u = ufl.TrialFunction(V)
33 v = ufl.TestFunction(V)
```

```
34
35 f = fem.Constant(domain, default_scalar_type(1.))
36
37 a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
38 L = f * v * ufl.dx
39
40 problem = LinearProblem(a, L, bcs=[bc])
41 uh = problem.solve()
42
43 # armazena para visualização (paraview)
44 from dolfinx import io
45 from pathlib import Path
46 results_folder = Path("results")
47 results_folder.mkdir(exist_ok=True, parents=True)
48 filename = results_folder / "u"
49 with io.XDMFFile(domain.comm, filename.with_suffix
    (".xdmf"), "w") as xdmf:
    xdmf.write_mesh(domain)
    xdmf.write_function(uh)
```

 \triangle

1.3.2 Condições de Neumann

Em revisão

Consideramos o seguinte problema com condições de contorno de Neumann² homogênea em x = L: encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.119)

$$u(0) = u_0, \quad u'(L) = 0,$$
 (1.120)

com u_0 e f dados. Trata-se de um problema com condição de contorno de Dirichlet à esquerda e condição de contorno de Neumann³ homogênea à direita.

Tomando uma função teste $v \in V := \{v \in H^1(I); \ v(0) = 0\}$ e multiplicando-

a em (1.119), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.121}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \underbrace{u'(L)v(L)}_{u'(L)=0} + \underbrace{u'(0)v(0)}_{v(0)=0} = \int_{I} fv dx.$$
 (1.122)

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in \tilde{V} := \{v \in H^1(I); \ v(0) = u_0\}$ tal que

$$a(u,v) = L(v), \quad \forall v \in V, \tag{1.123}$$

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx \tag{1.124}$$

e L(v) é a forma linear

$$L(v) = \int_{I} fv \, dx. \tag{1.125}$$

Exemplo 1.3.2. Consideramos o problema

$$-u'' = 1, \quad x \in I = [0, 1], \tag{1.126}$$

$$u(0) = 0, \quad u'(1) = 0.$$
 (1.127)

Sua solução analítica é $u(x) = -x^2/2 + x$.

Podemos construir uma aproximação por elementos finitos do seguinte problema fraco associado: encontrar $u \in V = \{v \in H^1(I); v(0) = 0\}$ tal que

$$a(u,v) = L(v), \tag{1.128}$$

para todo $v \in V$, com as formas bilinear $a(\cdot, \cdot)$ e linear $L(\cdot)$ dadas em (1.124) e (1.125).

Então, considerando elementos lineares por partes, temos o seguinte problema de elementos finitos: encontrar $u_h \in V_h = \{v_h \in P_1(I); v_h(0) = 0\}$ tal que

$$a(u_h, v_h) = L(v_h), \quad \forall v_h \in V_h. \tag{1.129}$$

Código 1.5: ex_mef1d_neumann.py

```
1 from mpi4py import MPI
3 # malha
4 from dolfinx import mesh
5 domain = mesh.create unit interval(MPI.COMM WORLD,
                                       nx = 5)
7 # espaço
8 from dolfinx import fem
9 V = fem.functionspace(domain, ('P', 1))
11 # c.c. dirichlet
12 import numpy as np
13 from dolfinx.fem import dirichletbc,
 locate dofs geometrical
14 uD = fem.Function(V)
uD.interpolate(lambda x: np.full(x.shape[1], 0.))
16
17 def boundary_D(x):
      return np.isclose(x[0], 0.)
19
20 dofs_D = locate_dofs_geometrical(V, boundary_D)
21 bc = dirichletbc(uD, dofs_D)
22
23 # problema mef
24 import ufl
25 from dolfinx import default_scalar_type
26 from dolfinx.fem.petsc import LinearProblem
27 u = ufl.TrialFunction(V)
28 v = ufl.TestFunction(V)
30 f = fem.Constant(domain, default scalar type(1.))
32 a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
33 L = f * v * ufl.dx
35 problem = LinearProblem(a, L, bcs=[bc])
```

Agora, consideramos o seguinte problema com condições de Neumann não-homogênea em x=L: encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.130)

Δ

$$u(0) = u_0, \quad u'(L) = \alpha,$$
 (1.131)

com u_0 , α e f dados.

Tomando uma função teste $v \in V := \{v \in H^1(I); \ v(0) = 0\}$ e multiplicandoa em (1.130), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.132}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \alpha v(L) = \int_{I} f c dx. \tag{1.133}$$

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in \tilde{V} := \{v \in H^1(I); \ v(0) = u_0\}$ tal que

$$a(u,v) = L(v), \quad \forall v \in V,$$
 (1.134)

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx$$
 (1.135)

e L(v) é a forma linear

$$L(v) = \int_{L} fv \, dx + \alpha v(L). \tag{1.136}$$

Exemplo 1.3.3. Consideramos o problema

$$-u'' = 1, \quad x \in I = [0, 1], \tag{1.137}$$

$$u(0) = 0, \quad u'(1) = 1.$$
 (1.138)

Sua solução analítica é $u(x) = -x^2/2 + 2x$.

Agora, consideramos o seguinte problema fraco associado: encontrar $u \in V = \{v \in H^1(I); \ v(0) = 0\}$ tal que

$$a(u, v) = L(v), \quad \forall v \in V,$$
 (1.139)

com

$$a(u,v) = \int_{I} u'v' dx \tag{1.140}$$

е

$$L(v) = \int_{I} fv \, dx + 1 \cdot v(1). \tag{1.141}$$

Então, consideramos o seguinte problema de elementos finitos associado: encontrar $u_h \in V_h = \{v_h \in P_1(I); \ v_h(0) = 0\}$ tal que

$$a(u_h, v_h) = L(v_h), \quad \forall v_h \in V_h. \tag{1.142}$$

Código 1.6: ex_mef1d_neumann_nh.py

```
11 # c.c. dirichlet
12 import numpy as np
13 from dolfinx.fem import dirichletbc,
  locate_dofs_geometrical
14 uD = fem.Function(V)
uD.interpolate(lambda x: np.full(x.shape[1], 0.))
17 def boundary D(x):
      return np.isclose(x[0], 0.)
19
20 dofs D = locate dofs geometrical(V, boundary D)
21 bc = dirichletbc(uD, dofs_D)
23 # problema mef
24 import ufl
25 from dolfinx import default scalar type
26 from dolfinx.fem.petsc import LinearProblem
27 u = ufl.TrialFunction(V)
28 v = ufl. TestFunction(V)
29
30 f = fem.Constant(domain, default scalar type(1.))
31 g = fem.Constant(domain, default scalar type(1.))
32
33 a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
34 L = f * v * ufl.dx
35 L += g * v * ufl.ds
36
37 problem = LinearProblem(a, L, bcs=[bc])
38 uh = problem.solve()
40 # armazena para visualização (paraview)
41 from dolfinx import io
42 from pathlib import Path
43 results folder = Path("results")
44 results_folder.mkdir(exist_ok=True, parents=True)
45 filename = results folder / "u"
46 with io.XDMFFile(domain.comm, filename.with suffix
 (".xdmf"), "w") as xdmf:
```

xdmf.write_mesh(domain) xdmf.write_function(uh)

 \triangle

1.3.3 Condições de Robin

Em revisão

Consideramos o seguinte problema com condições de contorno de Robin 4 : encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.143)

$$u'(0) = r_0(u(0) - s_0), -u'(L) = r_L(u(L) - s_L),$$
(1.144)

com r_0 , r_L , s_0 , s_L e f dados.

Tomando uma função teste $v \in V = H^1(I)$ e multiplicando-a em (1.143), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.145}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \underbrace{u'(L)v(L)}_{-u'(L)=r_{L}(u(L)-s_{L})} + \underbrace{u'(0)v(0)}_{u'(0)=r_{0}(u(0)-s_{0})} = \int_{I} fc dx.$$
 (1.146)

ou, mais adequadamente,

$$\int_{I} u'v' dx + r_{L}u(L)v(L) + r_{0}u(0)v(0) = \int_{I} fc dx + r_{L}s_{L}v(L) + r_{0}s_{0}v(0). \quad (1.147)$$

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in H^1(I)$ tal que

$$a(u,v) = L(v), \quad \forall v \in V,$$
 (1.148)

onde a(u, v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx + r_{L}u(L)v(L) + r_{0}u(0)v(0)$$
 (1.149)

e L(v) é a forma linear

$$L(v) = \int_{I} fv \, dx + r_{L} s_{L} v(L) + r_{0} s_{0} v(0). \tag{1.150}$$

Exemplo 1.3.4. Consideramos o problema

$$-u'' = 1, \quad x \in I = [0, 1], \tag{1.151}$$

$$u'(0) = u(0), \quad -u'(1) = u(1) - 1.$$
 (1.152)

Sua solução analítica é $u(x) = -x^2/2 + 5x/6 + 5/6$.

Aqui, tomamos o seguinte problema fraco: encontrar $u \in V = H^1(I)$ tal que

$$a(u,v) = L(v), \quad \forall v \in V, \tag{1.153}$$

onde

$$a(u,v) = \int_{I} u'v' dx + u(1)v(1) + u(0)v(0)$$
 (1.154)

e

$$L(v) = \int_{I} fv \, dx + 1 \cdot v(1). \tag{1.155}$$

Então, uma aproximação por elementos finitos lineares por partes pode ser obtida resolvendo o seguinte problema: encontrar $u_h \in V_h = P_1(I)$ tal que

$$a(u_h, v_h) = L(v_h), \quad \forall v_h \in V_h. \tag{1.156}$$

```
1 from mpi4py import MPI
2
3 # malha
4 from dolfinx import mesh
5 domain = mesh.create_unit_interval(MPI.COMM_WORLD,
                                      nx = 5)
7# espaço
8 from dolfinx import fem
9 V = fem.functionspace(domain, ('P', 1))
10
11 # boundary colors
12 from dolfinx.mesh import locate entities
13 from dolfinx.mesh import meshtags
14 boundaries = [(0, lambda x: np.isclose(x[0], 0.)),
                 (1, lambda x: np.isclose(x[0], 1.))]
15
16 facet_indices, facet_markers = [], []
17 fdim = domain.topology.dim - 1
```

```
18 for (marker, locator) in boundaries:
      facets = locate entities(domain, fdim, locator
19
 )
      facet_indices.append(facets)
20
      facet markers.append(np.full like(facets,
 marker))
22 facet_indices = np.hstack(facet_indices).astype(np
  .int32)
23 facet markers = np.hstack(facet markers).astype(np
  .int32)
24 sorted_facets = np.argsort(facet_indices)
25 facet_tag = meshtags(domain, fdim, facet_indices[
 sorted_facets], facet_markers[sorted_facets])
26
27 # problema mef
28 import ufl
29 from dolfinx import default scalar type
30 from dolfinx.fem.petsc import LinearProblem
31 u = ufl.TrialFunction(V)
32 v = ufl. TestFunction(V)
34 f = fem.Constant(domain, default scalar type(1.))
35 g = fem.Constant(domain, default_scalar_type(1.))
37 ds = ufl.Measure('ds', domain=domain,
 subdomain_data=facet_tag)
38
39 a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx
40 a += u * v * ds(1) + u * v * ds(0)
41 L = f * v * ufl.dx
42 L += g * v * ds(1)
44 problem = LinearProblem(a, L, bcs=[])
45 uh = problem.solve()
47 # armazena para visualização (paraview)
48 from dolfinx import io
49 from pathlib import Path
```

1.3.4 Exercícios

Em revisão

E.1.3.1. Considere o problema

$$-u'' + u' + 2u = -\cos(x), \quad x \in (0, \pi/2), \tag{1.157}$$

$$u(0) = -0, 3, \quad u(\pi/2) = -0, 1.$$
 (1.158)

Obtenha uma aproximação por elementos finitos para a solução deste problema, empregando o espaço de elementos finitos linear sobre uma malha uniforme com 10 células. Então, compare a aproximação computada com sua solução analítica $u(x) = 0, 1(\operatorname{sen}(x) + 3\operatorname{cos}(x))$, bem como, compute o erro $||u - u_h||_{L^2}$.

Respostas

E.1.3.1. Código.

1.4 Malhas Auto-Adaptativas

Em revisão

Retornemos ao problema modelo (1.59)-(1.60)

$$-u'' = f, \quad x \in I = [0, L], \tag{1.159}$$

$$u(0) = u(L) = 0. (1.160)$$

A estimativa a posteriori dada no Teorema 1.2.4, indica que os elementos residuais $\eta_i(u_h)$ podem ser utilizados para estimarmos a precisão da aproximação por elementos finitos. Ou seja, espera-se que quanto menores forem os elementos residuais, mais precisa é a solução por elementos finitos. Além disso, como

$$\eta_i(u_h) = h_i ||f - u_h''||_{L^2(I_i)}, \tag{1.161}$$

podemos reduzir $\eta_i(u_h)$ diminuindo o tamanho da célula I_i .

Do observado acima, motiva-se o seguinte algoritmo de elementos finitos com refinamento automático de malha:

- 1. Escolhemos uma malha inicial.
- 2. Iteramos:
 - 2. Resolvemos o problema de elementos finitos na malha corrente.
 - 2. Computamos $\eta_i(u_h)$ em cada célula da malha corrente.
 - 2. Com base na malha corrente, Contruímos uma nova malha pelo refinamento das células com os maiores valores de $\eta_i(u_h)$.
 - 2. Verificamos o critério de parada.

Uma estratégia clássica para a escolha das células a serem refinadas é a seguinte: refina-se a i-ésima célula se

$$\eta_i(u_h) > \alpha \max_{j=1,2,\dots,n} \eta_j(u_h),$$
(1.162)

onde escolhemos $0 < \alpha < 1$.

Exemplo 1.4.1. Consideramos o problema

$$-u'' = e^{-100|x - \frac{1}{2}|}, \quad x \in I = [0, 1], \tag{1.163}$$

$$u(0) = u(1) = 0. (1.164)$$

Aqui, computamos aproximações de elementos finitos no espaço das funções lineares por partes $V_{h,0} = \{v \in P_1(I); \ v(0) = v(1) = 0\}$ com sucessivos refinamentos de malha. Utilizamos uma malha inicial uniforme com 10 células e

fazemos, então, 5 refinamentos sucessivos utilizando como critério de refinamento a estratégia (1.162) com $\alpha = 0, 5$. A Figura 1.7 apresenta o esboço do gráfico da solução de elementos finitos na malha mais refinada. Além disso, na Tabela 1.1 temos os o número de células e o $\eta_i(u_h)$ máximo respectivo.

Figura 1.7: Esboço dos gráficos das soluções referentes ao Exemplo 1.4.1.

$\# \mathrm{malha}$	#células	$\max_i \eta_i(u_h)$
0	10	5.0E-03
1	12	2.0E-03
2	14	8.6E-04
3	22	2.9E-04
4	30	1.4E-04
5	38	6.1E-05

Tabela 1.1: Resultados referente ao Exemplo 1.4.1.

Com o FEniCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

from __future__ import print_function, division
from fenics import *

```
import numpy as np
import matplotlib.pyplot as plt
# malha
mesh = IntervalMesh(10,0,1)
# espaco
V = FunctionSpace(mesh, 'P', 1)
# fonte
f = Expression('exp(-100*pow(fabs(x[0]-0.5),2))',degree=1)
# condicoes de contorno
def boundary(x,on boundary):
    return on_boundary
#iteracoes
for iter in np.arange(6):
    #problema
    bc = DirichletBC(V,Constant(0.0),boundary)
    u = TrialFunction(V)
    v = TestFunction(V)
    a = u.dx(0)*v.dx(0)*dx
    L = f*v*dx
    #resolve
    u = Function(V)
    solve(a == L, u, bc)
    #grafico
    plt.close('all')
    xx = mesh.coordinates()[:,0]
    sorted_indices = np.argsort(xx)
    yy = u.compute_vertex_values()
    plt.plot(xx[sorted_indices], yy[sorted_indices],
                 marker="o",label=r"$u_h$")
    plt.legend(numpoints=1)
```

```
plt.grid('on')
plt.show()
DG = FunctionSpace(mesh, "DG", 0)
v = TestFunction(DG)
a = CellVolume(mesh)
eta = assemble(f**2*v*a*dx)
# refinamento da malha
cell_markers = MeshFunction("bool", mesh, mesh.topology().dim(), False)
eta_max = np.amax(eta[:])
print(eta_max)
print("%d %d %1.1E\n" % (iter,mesh.num_cells(),eta_max))
alpha = 0.5
for i,cell in enumerate(cells(mesh)):
    if (eta[i] > alpha*eta max):
        cell markers[cell] = True
mesh = refine(mesh, cell_markers)
V = FunctionSpace(mesh, 'P', 1)
```

1.4.1 Exercícios

Em revisão

E.1.4.1. Use uma estratégia de sucessivos refinamentos globais para resolver o problema dado no Exemplo 1.4.1. Compare seus resultados com aqueles obtidos no exemplo.

Respostas

E.1.4.1. Código.

1.5 Aplicação: EDP Evolutiva

Em revisão

Como exemplo de aplicação do método de elementos finitos (MEF) na solução de equações diferenciais parciais evolutivas no tempo, consideramos a equação do calor com dadas condição inicial e condições de contorno de Dirichlet homogêneas

$$u_t = \alpha u_{xx} + f, \ (t, x) \in (0, t_f] \times (a, b),$$
 (1.165a)

$$u(0,x) = u_0(x), x \in [a,b],$$
 (1.165b)

$$u(t,a) = u(t,b) = 0, \ t \in [0,t_f],$$
 (1.165c)

onde f = f(t, x) denota uma dada fonte.

1.5.1 Discretização do Tempo

Consideramos os $n_t + 1$ tempos discretos $t^{(k)} = kh_t$, passo no tempo $h_t = t_f/n_t$, $k = 0, 1, 2, ..., n_t$. Seguindo esquema θ denotando $u^{(k)} \approx u\left(t^{(k)}, x\right)$ e $f^{(k)} = f\left(t^{(k)}, x\right)$, o problema (1.165) pode ser aproximado pela iteração

$$\frac{u^{(k+1)} - u^{(k)}}{h_t} = \theta \left(\alpha u_{xx}^{(k+1)} + f^{(k+1)} \right)
(1 - \theta) \left(\alpha u_{xx}^{(k)} + f^{(k)} \right), \qquad (1.166a)$$

$$u^{(k+1)}(a) = u^{(k+1)}(b) = 0, \qquad (1.166b)$$

onde $u^{(0)} = u_0$.

Observação 1.5.1. (Esquema θ .) O esquema θ e um forma robusta de escrever diferentes esquemas de discretização em uma única expressão:

- $\theta = 0$.: Euler explícito.
- $\theta = 1$.: Euler implícito.
- $\theta = 0.5$: Crank-Nicolson.

 \triangle

Por simplificação da notação, vamos suprimir o super-índice k, denotando $u^{(k+1)} := u$, $u^{(k)} = u^0$ e similar para $f^{(k)}$. Com isso e rearranjando os termos, cada iteração (1.166) se resume ao seguinte problema de valores de contorno

$$-\alpha \theta u_{xx} + \frac{1}{h_t} u = \frac{1}{h_t} u^0 + (1 - \theta) \alpha u_{xx}^0 + (1 - \theta) f^0 + \theta f, \qquad (1.167a)$$
$$u(a) = u(b) = 0. \qquad (1.167b)$$

1.5.2 Formulação de Elementos Finitos

A formulação fraca do problema (1.167) consiste em: encontrar $u \in V := H^1_0(a,b)$ tal que

$$a(u,v) = L(v), \ \forall v \in V, \tag{1.168}$$

onde

$$a(u,v) := \int_a^b \theta \alpha u' v' \, dx + \int_a^b \frac{1}{h_t} uv \, dx,$$
 (1.169)

$$L(v) := (1 - \theta) \int_a^b \alpha u^{0'} v' \, dx + \int_a^b \frac{1}{h_t} u^0 v \, dx$$

$$\theta \int_{a}^{b} f v \, dx + (1 - \theta) \int_{a}^{b} f^{0} v \, dx \tag{1.170}$$

Então, assumindo uma malha com n_x células $I_i = [x_i, x_{i+1}]$ de tamanho $h_x = (b-a)/n_x$ e nodos $x_i = a + (i-1)h_x$, $i = 0, 1, 2, ..., n_x$, escolhemos o espaço de elementos finitos

$$V_{h,0} := \{ v \in C^0([a,b]) : v|_{I_i} \in P_1(I_i), \ i = 0, 1, \dots, n_x, v(a) = v(b) = 0 \}.$$

$$(1.171)$$

Com isso, a formulação de elementos finitos do problema (1.167) consiste em: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, v_h) = L(v_h), \ \forall v_h \in V_{h,0}.$$
 (1.172)

Exemplo 1.5.1. Consideramos o seguinte problema de calor

$$u_t = u_{xx} + (\pi^2 - 1)e^{-t}\operatorname{sen}(\pi x), \ (t, x) \in (0, 1] \times (0, 1),$$
 (1.173a)

$$u(0,x) = \text{sen}(\pi x), \ x \in [0,1], \tag{1.173b}$$

```
u(t,0) = u(t,1) = 0. (1.173c)
```

```
1 from mpi4py import MPI
2 import ufl
3 from dolfinx import mesh
4 from dolfinx import fem
5 from dolfinx import default_scalar_type
6 from dolfinx.fem.petsc import LinearProblem
8 # parâmetros
9 tf = 1.
10 alpha = 1.
11
12 # esquema theta
13 \text{ theta} = 0.5
14
15 # discretização no tempo
16 \text{ nt} = 10
17 ht = tf/nt
18
19 # malha
20 domain = mesh.create_unit_interval(MPI.COMM_WORLD,
                                          nx = 5
22 x = ufl.SpatialCoordinate(domain)
24 # espaço
25 V = fem.functionspace(domain, ('P', 1))
27 # fonte
28 f = fem.Function(V)
29 def f(t,x):
      return (ufl.pi**2-1.)*ufl.exp(-t)*ufl.sin(ufl.
 pi*x[0])
32 # condição de contorno
33 import numpy as np
34 uD = fem.Function(V)
```

```
35 uD.interpolate(lambda x: np.full(x.shape[1], 0.))
37 def boundary D(x):
      return np.logical_or(np.isclose(x[0], 0.),
                              np.isclose(x[0], 1.))
39
40
41 dofs_D = fem.locate_dofs_geometrical(V, boundary_D
42 bc = fem.dirichletbc(uD, dofs D)
44 # mef fun.s
45 u = ufl.TrialFunction(V)
46 v = ufl.TestFunction(V)
48 # condição inicial
49 t = 0.
50 \text{ uO} = \text{fem.Function}(V)
51 u0.interpolate(lambda x: np.sin(np.pi*x[0]))
53 # fonte
54 def f(t, x):
      return (ufl.pi**2-1.)*ufl.exp(-t)*ufl.sin(ufl.
 pi*x[0])
57 # visualização (paraview)
58 from dolfinx import io
59 from pathlib import Path
60 results folder = Path("results")
61 results_folder.mkdir(exist_ok=True, parents=True)
63 # iteração no tempo
64 for k in range(nt):
     t += ht
65
66
      # forma bilinear
      a = theta * ufl.dot(ufl.grad(u), ufl.grad(v))
  * ufl.dx
a += u * v / ht * ufl.dx
```

```
70
      # forma linear
71
      L = (theta-1.) * ufl.dot(ufl.grad(u0), ufl.
72
  grad(v)) * ufl.dx
      L += u0 * v / ht * ufl.dx
73
      L += theta * f(t, x) * v * ufl.dx
74
      L += (1.-theta) * f(t-ht, x) * v * ufl.dx
75
76
      problem = LinearProblem(a, L, bcs=[bc])
      uh = problem.solve()
78
79
      # armazena para visualização (paraview)
80
      filename = results_folder / f"u_{k:0>6}"
      with io.XDMFFile(domain.comm, filename.
82
  with_suffix(".xdmf"), "w") as xdmf:
          xdmf.write mesh(domain)
83
          xdmf.write function(uh, t)
84
85
      u0.x.array[:] = uh.x.array[:]
```

1.5.3 Exercícios

Em construção

1.6 Aplicação: EDP de Advecção-Difusão

Em construção

Consideramos a equação de advecção-Difusão

$$cu' - \epsilon u'' = f, \tag{1.174}$$

no domínio $x \in [0,1]$, com $c \neq 0$, $\epsilon > 0$ e condições de contorno de Dirichlet⁵ homogêneas.

A formulação padrão de elementos finitos de Galerkin consiste em: encontrar

 $u_h \in V_h$ tal que

$$a(u_h, v_h) = l(v_h) \tag{1.175}$$

para todo $v_h \in V_h$. Aqui, vamos assumir que o espaço de elementos finitos V_h da funções v_h lineares por partes com v(0) = v(1) = 0. No caso de (1.174), temos a forma bilinear

$$a(u_h, v_h) := (cu'_h, v_h) + (\epsilon u'_h, v'_h)$$
(1.176)

e a forma linear

$$l(v_h) := (f, v_h). (1.177)$$

Para problema dominados pela advecção/convecção ($\epsilon \ll 1$), soluções da formulação padrão de elementos finitos tem grande dificuldade de tratar as camadas (regiões de rápida variação) que tipicamente fazem parte da solução do problema de advecção-difusão. A alternativa é usar os chamados métodos de elementos finitos estabilizados.

O método SUPG (streamline upwind Petrov-Galerkin) é uma formulação de estabilização para elementos finitos. A formulação de elementos finitos estabilizada é construída com a função teste $v_h + \tau c v_h' \in V_h$, $\tau > 0$, o que fornece

$$(cu'_h, v_h + \tau cv'_h) - (\epsilon u''_h, v_h + \tau cv'_h) = (f, v_h + \tau cv'_h). \tag{1.178}$$

Que por intergração por partes e das condições de contorno fornece

$$(cu'_h, v_h + \tau cv'_h) + (\epsilon u'_h, v'_h + \tau cv''_h) = (f, v_h + \tau cv'_h). \tag{1.179}$$

Observando que para elementos lineares $v_h''=0$, temos a formulação de elementos finitos com SUPG: encontrar $u_h \in V_h$ tal que

$$b(u_h, v_h) = l(v_h + \tau c v_h')$$
(1.180)

para todo $v_h \in V_h$, sendo a forma bilinear

$$b(u_h, v_h) := (cu'_h, v_h + \tau cv'_h) + (\epsilon u'_h, v'_h). \tag{1.181}$$

Uma escolha rasoável é $\tau = h/2$ de forma que $\tau \to 0$ quando $h \to 0$.

1.6.1 Exercícios

Em construção

1.7 Aplicação: EDP Não-Linear

Em construção

Como exemplo de aplicação do MEF na solução de **equações diferenciais parciais não-lineares**, consideramos a **equação de Fisher**⁶ com dadas condição inicial e condições de contorno de Neumann⁷

$$u_t = u_{xx} + u(1-u), (t,x) \in (0,t_f] \times (0,1),$$
 (1.182a)

$$u(0,x) = u_0(x), x \in [0,1],$$
 (1.182b)

$$u_x(t,0) = u_x(t,1) = 0, \ t \in [0, t_f].$$
 (1.182c)

1.7.1 Discretização do Tempo

Consideramos os $n_t + 1$ tempos discretos $t^{(k)} = kh_t$, passo no tempo $h_t = t_f/n_t$, $k = 0, 1, 2, ..., n_t$. Seguindo esquema θ denotando $u^{(k)} \approx u\left(t^{(k)}, x\right)$, o problema (1.182) pode ser aproximado pela iteração

$$\frac{u^{(k+1)} - u^{(k)}}{h_t} = \theta \left[u_{xx}^{(k+1)} + u^{(k+1)} \left(1 - u^{(k+1)} \right) \right]
(1 - \theta) \left[u_{xx}^{(k)} + u^{(k)} \left(1 - u^{(k)} \right) \right], \qquad (1.183a)$$

$$u_x^{(k+1)}(0) = u_x^{(k+1)}(1) = 0, \qquad (1.183b)$$

onde $u^{(0)} = u_0$.

Observação 1.7.1. (Esquema θ .) O esquema θ e um forma robusta de escrever diferentes esquemas de discretização em uma única expressão:

- $\theta = 0$.: Euler explícito.
- $\theta = 1$.: Euler implícito.
- $\theta = 0.5$: Crank-Nicolson.

Por simplificação da notação, vamos suprimir o super-índice k, denotando $u^{(k+1)} := u$, $u^{(k)} = u^0$. Com isso e rearranjando os termos, cada iteração (1.183) se resume ao seguinte problema de valores de contorno

$$\frac{1}{h_t}u - \frac{1}{h_t}u^0 - \theta \left[u_x x + u(1 - u)\right] - (1 - \theta) \left[u_x^0 x + u^0(1 - u^0)\right], \qquad (1.184a)$$

$$u_x(0) = u_x(1) = 0. \qquad (1.184b)$$

1.7.2 Formulação de Elementos Finitos

Em revisão

A formulação fraca do problema (1.184) consiste em: encontrar $u \in V := H^1[0,1]$ tal que

$$F(u;v) = 0, \ \forall v \in V, \tag{1.185}$$

onde

$$F(u;v) := \int_0^1 \frac{1}{h_t} u \, dx - \int_0^1 \frac{1}{h_t} u^0 \, dx$$

$$+ \theta \int_0^1 u_x v_x \, dx - \theta \int_0^1 u (1-u) v \, dx$$

$$+ (1-\theta) \int_0^1 u_x^0 v_x \, dx - (1-\theta) \int_0^1 u^0 (1-u^0) v \, dx.$$
(1.186)

Então, assumindo uma malha com n_x células $I_i = [x_i, x_{i+1}]$ de tamanho $h_x = 1/n_x$ e nodos $x_i = (i-1)h_x$, $i = 0, 1, 2, ..., n_x$, escolhemos o espaço de elementos finitos

$$V_h := \{ v \in C^0([a, b]) : v|_{I_i} \in P_1(I_i), \ i = 0, 1, \dots, n_x \}.$$
 (1.187)

Com isso, a formulação de elementos finitos do problema (1.184) consiste em: encontrar $u_h \in V_h$ tal que

$$F(u_h; v) = 0, \ \forall v_h \in V_h. \tag{1.188}$$

Observação 1.7.2. O problema (1.188) consiste em um sistema de equações não-lineares. \triangle

Exemplo 1.7.1. Consideramos a equação de Fisher com condições inicial e de contorno

$$u_t = u_{xx} + u(1 - u), \ t \in (0, t_f) \times (0, 1),$$
 (1.189a)

$$u(0,x) = \cos^2(\pi x), \ x \in [0,1],$$
 (1.189b)

$$u_x(t,0) = u_x(t,1) = 0, \ t \in [0, t_f],$$
 (1.189c)

com tf = 5.

Código 1.7: ex_mef1d_fisher.py

```
from mpi4py import MPI
    import numpy as np
2
    import ufl
3
    from dolfinx import mesh
4
5
    from dolfinx import fem
    from dolfinx import default_scalar_type
    from dolfinx.fem.petsc import NonlinearProblem
7
    from dolfinx.nls.petsc import NewtonSolver
8
9
    # parâmetros
10
    tf = 5.
11
12
13
    # esquema theta
    theta = 0.5
14
15
    # discretização no tempo
16
    nt = 100
17
    ht = tf/nt
18
19
    # malha
20
    domain = mesh.create_unit_interval(MPI.
  COMM_WORLD,
                                          nx = 5)
22
    x = ufl.SpatialCoordinate(domain)
23
24
```

```
# espaço
25
    V = fem.functionspace(domain, ('P', 1))
26
27
    # mef fun.s
28
    v = ufl.TestFunction(V)
29
    u = fem.Function(V)
30
31
    # condição inicial
32
    t = 0.
33
34
    u0 = fem.Function(V)
    u0.interpolate(lambda x: np.cos(np.pi*x[0])**2)
35
36
    # inicialização
37
    u.x.array[:] = u0.x.array[:]
38
39
    # visualização (paraview)
40
    from dolfinx import io
41
42
    from pathlib import Path
    results folder = Path("results")
43
    results_folder.mkdir(exist_ok=True, parents=True
44
 )
45
    # armazena para visualização (paraview)
46
    filename = results_folder / f"u_{0:0>6}"
47
    with io.XDMFFile(domain.comm, filename.
  with_suffix(".xdmf"), "w") as xdmf:
        xdmf.write mesh(domain)
49
        xdmf.write function(u, 0.)
50
51
52
53
    # iteração no tempo
    for k in range(nt):
55
        t += ht
56
        print(f''\{k+1\}: t = \{t:.4g\}'')
57
58
        # forma fraca
59
        ## time term
60
```

```
F = 1./ht * u * v * ufl.dx
61
        F = 1./ht * u0 * v * ufl.dx
62
        ## diffusion term
63
        F += theta * ufl.dot(ufl.grad(u), ufl.grad(v
  )) * ufl.dx
        F += (1.-theta) * ufl.dot(ufl.grad(u0), ufl.
  grad(v)) * ufl.dx
        ## reaction term
66
        F -= theta * u * (1. - u) * v * ufl.dx
        F = (1.-theta) * u0 * (1. - u0) * v * ufl.
68
  dx
69
        problem = NonlinearProblem(F, u)
        solver = NewtonSolver(MPI.COMM WORLD,
71
  problem)
72
        n, converged = solver.solve(u)
        print(f"\tNewton iterations: {n}")
73
74
        assert (converged)
75
        # armazena para visualização (paraview)
76
        filename = results folder / f"u {k+1:0>6}"
77
        with io.XDMFFile(domain.comm, filename.
78
  with_suffix(".xdmf"), "w") as xdmf:
            xdmf.write mesh(domain)
79
            xdmf.write function(u, t)
80
81
        u0.x.array[:] = u.x.array[:]
```

1.7.3 Exercícios

Em construção

1.8 Seleção de Aplicações

Em revisão

1.8.1 Sistemas de Equações

Em revisão

Consideramos o seguinte problema de equações diferenciais ordinárias com valores de contorno

$$-u_0'' + u_1 = f_0, \forall x \in (0, L)$$
(1.190)

$$-u_1'' + u_0 = f_1, \forall x \in (0, L)$$
(1.191)

$$u_0(0) = u_{00}, \quad u_0(L) = u_{0L},$$
 (1.192)

$$u_1(0) = u_{10}, \quad u_1(L) = u_{1L},$$
 (1.193)

onde f_0 , f_1 , u_{00} , u_{0L} , u_{10} , u_{1L} são dados.

Para construirmos uma aproximação por elementos finitos podemos tomar o seguinte problema fraco associado: encontrar $u = (u_0, u_1) \in V_0 \times V_1$ tal que

$$a(u, v) = L(v), \forall v = (v_0, v_1) \in V \times V,$$
 (1.194)

onde $V_0 = \{v \in H^1(I); v_0(0) = u_{00}, v_0(L) = u_{0L}\}, V_1 = \{v_1 \in H^1(I); v_1(0) = u_{10}, v_1(L) = u_{1L}\}, V = \{v \in H^1(I); v(0) = v(L) = 0\}, \text{ a forma bilinear } é$

$$a(u,v) = \int_{I} u'_{0}v'_{0} dx + \int_{I} u'_{1}v'_{1} dx + \int_{I} u_{1}v_{0} dx + \int_{I} u_{0}v_{1} dx$$
 (1.195)

e a forma linear é

$$L(v) = \int_{I} f_0 v_0 \, dx + \int_{I} f_1 v_1 \, dx. \tag{1.196}$$

Então, o problema de elemento finitos associado no espaço das funções lineares por partes lê-se: encontrar $u_h = (u_{h0}, u_{h1}) \in V_{h0} \times V_{h1}$ tal que

$$a(u_h, v_h) = L(v_h), \forall v_h = (v_{h0}, v_{h1}) \in V_h \times V_h,$$
 (1.197)

onde
$$V_{h0} = \{v_h \in P_1(I); v_{h0}(0) = u_{00}, v_{h0}(L) = u_{0L}\}, V_{h1} = \{v_{h1} \in P_1(I); v_{h1}(0) = u_{10}, v_{h1}(L) = u_{1L}\}, V_h = \{v_h \in P_1(I); v_h(0) = v_h(L) = 0\}.$$

Exemplo 1.8.1. Consideramos o seguinte problema de valor de contorno

$$-u_0'' + u_1 = \operatorname{sen}(x) + \cos(x), \forall x \in (-\pi, \pi)$$
 (1.198)

$$-u_1'' + u_0 = \cos(x) - \sin(x), \forall x \in (-\pi, \pi)$$
 (1.199)

$$u_0(-\pi) = 0, \quad u_0(\pi) = 0,$$
 (1.200)

$$u_1(-\pi) = -1, \quad u_1(\pi) = -1.$$
 (1.201)

Considerando elementos lineares por partes, temos a seguinte formulação de elementos finitos: encontrar $u_h = (u_{h0}, u_{h1}) \in V_{h0} \times V_{h1}$ tal que

$$a(u_h, v_h) = L(v_h), \forall v_h = (v_{h0}, v_{h1}) \in V_h \times V_h,$$
 (1.202)

onde $V_{h0} = \{v_h \in P_1(I); v_{h0}(0) = v_{h0}(L) = 0\}, V_{h1} = \{v_{h1} \in P_1(I); v_{h1}(0) = v_{h1}(L) = -1\}, V_h = \{v_h \in P_1(I); v_h(0) = v_h(L) = 0\}, \text{ com as formas bilinear e linear são dadas em (1.195) e (1.196), respectivamente.}$

A Figura 1.8 apresenta o esboço dos gráficos das soluções analíticas $u_0(x) = \operatorname{sen}(x)$ e $u_1(x) = \cos(x)$ e de suas aproximações de elementos finitos u_{h0} e u_{h1} , estas construídas no espaço dos polinômios lineares por partes sobre uma malha uniforme de 5 células.

Figura 1.8: Esboço dos gráficos das soluções referentes ao Exemplo 1.8.1.

Com o FEniCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

Pedro H A Konzen

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
#tolerance
tol=1e-14
# malha
mesh = IntervalMesh(10,-pi,pi)
# espaco
P1 = FiniteElement('P',interval,1)
element = MixedElement([P1,P1])
V = FunctionSpace(mesh, element)
#C.C.
def boundary(x,on_boundary):
    return on_boundary
bc = [DirichletBC(V.sub(0),Constant(0.0),boundary),
      DirichletBC(V.sub(1),Constant(-1.0),boundary)]
print(bc)
#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f0 = Expression('sin(x[0]) + cos(x[0])',
                degree=10)
f1 = Expression('cos(x[0]) - sin(x[0])',
                degree=10)
a = u[0].dx(0)*v[0].dx(0)*dx
a += u[1]*v[0]*dx
a += u[1].dx(0)*v[1].dx(0)*dx
a = u[0]*v[1]*dx
L = f0*v[0]*dx
L += f1*v[1]*dx
```

```
#computa a sol
u = Function(V)
solve(a == L, u, bc)
#sol analitica
u0a = Expression('sin(x[0])',
                 degree=10)
u1a = Expression('cos(x[0])',
                 degree=10)
plot(u[0],mesh=mesh,marker='.',label=r"$u_{h0}$")
plot(u[1],mesh=mesh,marker='.',label=r"$u_{h1}$")
mesh = IntervalMesh(100,-pi,pi)
plot(u0a,mesh=mesh,label=r"$u 0$")
plot(u1a,mesh=mesh,label=r"$u_1$")
plt.legend(numpoints=1)
plt.grid('on')
plt.show()
```

Δ

1.8.2 Exercícios

[[tag:construcao]]

Capítulo 2

Problemas Bidimensionais

2.1 Malha e Espaço

Em revisão

2.1.1 Malha

Em revisão

Seja $\Omega \subset \mathbb{R}^2$ um domínio limitado com fronteira $\partial\Omega$ suave e poligonal. Uma malha (ou triangularização) \mathcal{K} de Ω é um conjunto de $\{K\}$ células (ou elementos) K, em que $\Omega = \bigcup_{K \in \mathcal{K}} K$ e tal que a interseção de duas células é ou um lado, um canto ou vazio.

Classicamente as células K são escolhidas como triângulos. O comprimento do maior lado da célula K define o chamado **tamanho local da malha** h_K . O **tamanho global da malha** é definida por $h = \max_{K \in \mathcal{K}} h_K$.

Uma malha é dita regular quando existe uma constante $c_0 > 0$ tal que $c_K > c_0$ para todo $K \in \mathcal{K}$, sendo $c_K := d_K/h_K$ e d_K o diâmetro do circulo inscrito em K. Esta condição significa que os triângulos K da malha não podem ter ângulos muito grandes nem muito pequenos. Ao longo do texto, a menos que especificado o contrário, assumiremos trabalhar com malhas

regulares.

Exemplo 2.1.1. O seguinte código, gera uma malha uniforme no domínio $\Omega = [0, 1]^2$.

Figura 2.1: Esboço de uma malha triangular no domínio $D = [0, 1]^2$.

Código 2.1: ex_malha.py

```
15 tdim = domain.topology.dim
16 topology, cell_types, geometry = plot.vtk_mesh(
    domain, tdim)
17 grid = pyvista.UnstructuredGrid(topology,
    cell_types, geometry)
18
19 plotter = pyvista.Plotter()
20 plotter.add_mesh(grid, show_edges=True)
21 plotter.view_xy()
22 pyvista.OFF_SCREEN=True
23 if not pyvista.OFF_SCREEN:
24    plotter.show()
25 else:
26    figure = plotter.screenshot("malha.png")
```

Δ

2.1.2 Espaço de Polinômios Lineares

Em revisão

Seja K um triângulo e seja $P_1(K)$ o **espaço dos polinômios lineares** em K, i.e.

$$P_1(K) = \{v; \ v = c_0 + c_1 x_0 + c_2 x_1, (x_0, x_1) \in K, \ c_0, c_1, c_2 \in \mathbb{R}\}.$$

$$(2.1)$$

Observamos que toda função $v \in P_1(K)$ é unicamente determinada por seus valores nodais

$$\alpha_i = v(N_i), i = 0, 1, 2,$$
(2.2)

onde $N_i = (x_0^{(i)}, x_1^{(i)})$ é o *i*-ésimo nodo (vértice) do triângulo K. Isto segue do fato de que o sistema (2.2) tem forma matricial

$$\begin{bmatrix} 1 & x_0^{(0)} & x_1^{(0)} \\ 1 & x_0^{(1)} & x_1^{(1)} \\ 1 & x_0^{(2)} & x_1^{(2)} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix}$$
 (2.3)

Ainda, o valor absoluto do determinante da matriz de coeficientes é 2|K|, onde |K| denota a área de K, a qual é não nula.

Afim de usarmos os valores nodais como graus de liberdade (incógnitas), nós introduzimos a seguinte base nodal $\{\lambda_0, \lambda_1, \lambda_2\}$ com

$$\lambda_j(N_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases}, i, j = 0, 1, 2.$$
 (2.4)

Com esta base, toda função $v \in P_1(K)$ pode ser escrita como

$$v = \alpha_0 \lambda_0 + \alpha_1 \lambda_1 + \alpha_2 \lambda_2, \tag{2.5}$$

onde $\alpha_i = v(N_i)$.

2.1.3 Espaço contínuo dos polinômios lineares por partes

Em revisão

O espaço contínuo dos polinômios lineares por partes na malha \mathcal{K} é definido por

$$V_h = \{ v; \ v \in C^0(\Omega), \ v|_K \in P_1(K), \ \forall K \in \mathcal{K} \}.$$
 (2.6)

Observamos que toda função $v \in V_h$ é unicamente determinada por seus valores nodais $\{v(N_j)\}_{j=0}^{n_p-1}$, onde n_p é número de nodos da malha \mathcal{K} .

De fato, os valores nodais determinam uma única função em $P_1(K)$ para cada $K \in \mathcal{K}$ e, portanto, uma função em V_h é unicamente determinada por seus valores nos nodos. Agora, consideremos dois triângulos K_1 e K_2 compartilhando um lado $E = K_1 \cap K_2$. Sejam v_1 e v_2 os dois únicos polinômios em $v_1 \in P_1(K_1)$ e $v_2 \in P_1(K_2)$, respectivamente determinados pelos valores nodais em K_1 e K_2 . Como v_1 e v_2 também são polinômios lineares em E e seus valores coincidem nos nodos de E, temos $v_1 = v_2$ em E. Portanto, concluímos que toda função $v \in V_h$ é unicamente determinada por seus valores nodais.

Afim de termos os valores nodais como graus de liberdade (incógnitas), definimos a base nodal $\{\varphi_j\}_{j=1}^{n_p} \subset V_h$ tal que

$$\varphi_j(N_i) = \begin{cases} 1 & , i = j \\ 0 & , i \neq j \end{cases}, i, j = 0, 1, \dots, n_p - 1.$$
(2.7)

Figura 2.2: Esboço de uma função no espaço V_h com valores nodais $u(\boldsymbol{x}) = \operatorname{sen}(\pi x_0) \operatorname{sen}(\pi x_1)$.

Notamos que cada função base φ_j é contínua, polinômio linear por partes e com suporte somente em um pequeno conjunto de triângulos que compartilham o nodo N_j . Além disso, toda a função $v \in V_h$ pode, então, ser escrita como

$$v = \sum_{i=0}^{n_p - 1} \alpha_i \varphi_i, \tag{2.8}$$

onde $\alpha_i = v(N_i)$, $i = 0, 1, \dots, n_p$, são os valores nodais de v.

Exemplo 2.1.2. No seguinte código, alocamos um espaço de elementos finitos V_h sobre uma malha regular no domínio $\Omega = [0,1]^2$. Ainda, uma função $u_h \in V_h$ é alocada com valores nodais

$$u(\mathbf{x}) = \operatorname{sen}(\pi x_0) \operatorname{sen}(\pi x_1). \tag{2.9}$$

```
1 from mpi4py import MPI
2 from dolfinx import mesh
3
```

```
4 # malha
5 domain = mesh.create unit square(MPI.COMM WORLD,
7 from dolfinx import fem
9 # espaço de elementos finitos
10 V = fem.functionspace(domain, ("P",1))
12 # função do espaço V
13 uh = fem.Function(V)
15 # valor nodais
16 from numpy import sin, pi
17 for i,x in enumerate(domain.geometry.x):
   uh.x.array[i] = sin(pi*x[0])*sin(pi*x[1])
19
20 # gráfico
21 u_topology, u_cell_types, u_geometry = plot.
 vtk mesh(V)
22 u grid = pyvista. UnstructuredGrid(u topology,
 u_cell_types, u_geometry)
23 u_grid.point_data["u"] = uh.x.array.real
24 u grid.set active scalars("u")
25 u plotter = pyvista.Plotter()
26 u_plotter.add_mesh(u_grid, show_edges=True)
27 u plotter.view xy()
28 if not pyvista.OFF_SCREEN:
u plotter.show()
30 else:
figure = u_plotter.screenshot("u.png")
```

Δ

2.1.4 Exercícios

Em construção

Respostas

2.2 Interpolação

Em revisão

Dada uma função contínua f em um triângulo K com nodos N_i , i = 0, 1, 2, sua interpolação linear $\pi f \in P_1(K)$ é definida por

$$\pi f = \sum_{i=0}^{2} f(N_i) \varphi_i. \tag{2.10}$$

Logo, temos $\pi f(N_i) = f(N_i)$ para todo i = 0, 1, 2.

Exemplo 2.2.1. Consideramos a função

$$u(x_0, x_1) = \operatorname{sen}(\pi x_0) \cos(\pi x_1) \tag{2.11}$$

defina no domínio $D = [0,1]^2$. O seguinte código computa a interpolação de f no espaço de elementos finitos V_h sobre uma malha uniforme de 16×16 triângulos. Com ele, graficamos a função interpolada $u_h \in V_h$ e a função u. Consulte a Fig. 2.3.

Código 2.2: interp2d.py

```
1 from mpi4py import MPI
2 from dolfinx import mesh
3
4 # malha
5 domain = mesh.create_unit_square(MPI.COMM_WORLD,
16, 16)
6
7 from dolfinx import fem
8
9 # espaço de elementos finitos
10 V = fem.functionspace(domain, ("P",1))
11
12 # função do espaço V
13 uh = fem.Function(V)
14
```


Figura 2.3: Gráfico de comparação função interpolada $u_h \in V_h$ (gráfico de contornos em cores) e da função original u (isolinhas) referentes ao Exemplo 2.2.1.

```
15 # interpolate
16 import numpy as np
17 def u(x, mod=np):
      return mod.sin(mod.pi*x[0])*mod.sin(mod.pi*x
  \lceil 1 \rceil
19
20 uh.interpolate(lambda x: u(x))
21
22 # eval fun
23 from dolfinx import geometry
25 def fun_eval(u, points,
                domain=domain):
   u values = []
27
    bb_tree = geometry.bb_tree(domain, domain.
 topology.dim)
   cells = []
29
    points_on_proc = []
    # Find cells whose bounding-box collide with the
   the points
    cell candidates = geometry.
  compute_collisions_points(bb_tree,
33
       points.T)
    # Choose one of the cells that contains the
 point
    colliding_cells = geometry.
  compute_colliding_cells(domain,
36
     cell_candidates,
37
     points.T)
    for i, point in enumerate(points.T):
38
      if len(colliding_cells.links(i)) > 0:
39
        points_on_proc.append(point)
40
        cells.append(colliding_cells.links(i)[0])
41
42
    points_on_proc = np.array(points_on_proc, dtype=
43
```

```
np.float64)
    u_values = u.eval(points_on_proc, cells)
    return u values
46
47 # gráfico
48 import numpy as np
49 \text{ nx} = \text{ny} = 101
50 \times 0 = \text{np.linspace}(0., 1., \text{nx})
51 \times 1 = \text{np.linspace}(0., 1., \text{ny})
52 XO, X1 = np.meshgrid(xxO, xx1, indexing='ij')
53 points = np.zeros((3, nx*ny))
54 \text{ points}[0] = X0.\text{reshape}(-1)
55 \text{ points}[1] = X1.reshape(-1)
56
57 yh = fun_eval(uh, points)
58 Yh = yh.reshape((nx,ny))
59
60 import matplotlib.pyplot as plt
62 fig = plt.figure()
63 ax = fig.add subplot()
64 levels=10
65 cb = ax.contourf(XO, X1, Yh, levels = levels)
66 fig.colorbar(cb)
67 Y = u([X0, X1])
68 cl = ax.contour(XO, X1, Y, levels = levels, colors
  = ' w ' )
69 ax.clabel(cl)
70 plt.show()
```

Afim de determinarmos estimativas para o erro de interpolação, precisamos da chamada derivada total de primeira ordem

$$Df = \left(\left| \frac{\partial f}{\partial x_0} \right|^2 + \left| \frac{\partial f}{\partial x_1} \right|^2 \right)^{1/2}, \tag{2.12}$$

e da derivada total de segunda ordem

$$D^{2}f = \left(\left| \frac{\partial^{2} f}{\partial x_{0}^{2}} \right|^{2} + \left| \frac{\partial^{2} f}{\partial x_{0} \partial x_{1}} \right|^{2} + \left| \frac{\partial^{2} f}{\partial x_{1}^{2}} \right|^{2} \right)^{1/2}. \tag{2.13}$$

Proposição 2.2.1. (Erro da interpolação no espaço linear.) A interpolação πf satisfaz as seguintes estimativas

$$||f - \pi f||_{L^2(K)} \le Ch_K^2 ||D^2 f||_{L^2(K)},$$
 (2.14)

$$||D(f - \pi f)||_{L^2(K)} \le Ch_K ||D^2 f||_{L^2(K)}.$$
(2.15)

Demonstração. Veja [1, Capítulo 4].

Observação 2.2.1. A constante C dependo do inverso de $sen(\theta_K)$ onde θ_K é o menor angulo de K. Desta forma, para um triângulo com θ_K muito pequeno, as estimativas (2.14) e (2.15) perdem sentido. Este fato indica a necessidade de se trabalhar com malhas regulares.

A interpolação no espaço V_h de uma dada função f no domínio Ω é denotada também por $\pi f \in V_h$ e definida por

$$\pi f = \sum_{i=0}^{n_p - 1} f(N_i) \varphi_i. \tag{2.16}$$

Proposição 2.2.2. (Erro da interpolação no espaço contínuo linear por partes.) O interpolador $\pi f \in V_h$ satisfaz as seguintes estimativas

$$||f - \pi f||_{L^2(\Omega)}^2 \le C \sum_{K \in \mathcal{K}} h_K^4 ||D^2 f||_{L^2(K)}^2, \tag{2.17}$$

$$||D(f - \pi f)||_{L^{2}(\Omega)}^{2} \le C \sum_{K \in \mathcal{K}} h_{K}^{2} ||D^{2} f||_{L^{2}(K)}^{2},$$
 (2.18)

Demonstração. Demonstração análoga a Proposição 1.1.2.

Observação 2.2.2. (Taxa de convergência.) A taxa de convergência (ou ordem de truncamento) do erro de interpolação é definida como a potência

do h na estimativa (2.17). Esta taxa pode ser computacionalmente estimada. De fato, o erro de interpolação para uma dada malha i tem a forma $\varepsilon_i \approx Ch_i^r$. Conhecendo $\varepsilon_{i-1} \approx Ch_{i-1}^r$ para uma outra malha i-1, podemos resolver para r, obtendo a estimativa

$$r \approx \frac{\ln \varepsilon_i / \varepsilon_{i-1}}{\ln h_i / h_{i-1}}.$$
 (2.19)

 \triangle

Exemplo 2.2.2. Consideramos a interpolação feita no Exemplo 2.2.1. Aqui, computamos o erro de interpolação na norma L^2 , i.e.

$$\varepsilon = \|u_h - u\|_{L^2(\Omega)} \tag{2.20}$$

para diferentes refinamentos de malha.

Figura 2.4: Tamanho da malha h versus erro de interpolação na norma L^2 referente ao Exemplo 2.2.2.

Na Tabela 2.1, temos o número de células e seu tamanho h, o erro de interpolação ε e a estimativa da taxa de convergência dada por (2.19).

Tabela 2.1: Erro de interpolação referente ao Exemplo 2.2.2.

#células	h	$ $ ϵ	r
$ \begin{array}{c} 4 \times 4 \\ 8 \times 8 \\ 16 \times 16 \end{array} $	3.5×10^{-1} 1.8×10^{-1} 8.8×10^{-2}	$ \begin{array}{ c c c c c } \hline 6.0 \times 10^{-2} \\ 1.6 \times 10^{-2} \\ 3.9 \times 10^{-3} \end{array} $	-x- 1.91 2.04
32×32 64×64	8.8×10^{-2} 4.4×10^{-2} 2.2×10^{-2}	$\begin{vmatrix} 3.9 \times 10^{-4} \\ 9.8 \times 10^{-4} \\ 2.4e \times 10^{-4} \end{vmatrix}$	1.99 2.03

 \triangle

2.2.1 Exercícios

Em construção

2.3 Projeção

Em revisão

A projeção L^2 no espaço V_h de uma dada uma função $u \in L^2(\Omega)$ é denotada por $P_h u \in V_h$ e definida por

$$\int_{\Omega} (u - P_h u) v \, dx = 0, \ \forall v \in V_h.$$
 (2.21)

Analogamente a projeção em uma dimensão (consulte Subseção 1.1.2), a projeção é dada por

$$P_h u = \sum_{j=0}^{n_p - 1} \xi_j \varphi_j,$$
 (2.22)

com $\boldsymbol{\xi} = (\xi_j)_{j=0}^{n_p-1}$ satisfazendo o sistema linear

$$M\boldsymbol{\xi} = \boldsymbol{b},\tag{2.23}$$

onde $M = [m_{i,j}]_{i,j=0}^{n_p-1}$ é a matriz de massa com

$$m_{i,j} = \int_{\Omega} \varphi_i \varphi_j \, dx \tag{2.24}$$

e $\boldsymbol{b} = (b_1, b_2, \dots, b_{n_p-1})$ é o vetor de carga com

$$b_i = \int_{\Omega} u\varphi_i \, dx. \tag{2.25}$$

Também, vale o resultado análogo da **melhor aproximação** (consulte Teorema 1.1.1), i.e.

$$||u - P_h u||_{L^2(\Omega)} \le ||u - v||_{L^2(\Omega)}, \quad \forall v \in V_h.$$
 (2.26)

E, portanto, também temos a estimativa análoga para o erro de projeção (condulte Teorema 1.1.2)

$$||u - P_h u||_{L^2(\Omega)}^2 \le C \sum_{K \in \mathcal{K}} h_K^4 ||D^2 u||_{L^2(K)}^2.$$
 (2.27)

Tomando o tamanho global da malha, temos

$$||f - P_h f||_{L^2(\Omega)} \le Ch^2 ||D^2 f||_{L^2(K)}. \tag{2.28}$$

Exemplo 2.3.1. Consideramos a função $u(x_0, x_1) = \operatorname{sen}(\pi x_0) \cos(\pi x_1)$ definida no domínio $D = [0, 1] \times [0, 1]$. código computa a projeção de u no espaço V_h sobre uma malha triangular uniforme.

```
from mpi4py import MPI
from dolfinx import mesh

# malha
domain = mesh.create_unit_square(MPI.COMM_WORLD,
16, 16)

from dolfinx import fem

# espaço de elementos finitos
Vh = fem.functionspace(domain, ("P",1))

# função do espaço V
un elem.Function(Vh)
```

```
14
15 # projeção
16 import ufl
17 from dolfinx.fem.petsc import LinearProblem
18 def uex(x, mod=ufl):
      return mod.sin(mod.pi*x[0])*mod.sin(mod.pi*x
  [1])
20
21 x = ufl.SpatialCoordinate(domain)
22 u = ufl. TrialFunction (Vh)
23 v = ufl.TestFunction(Vh)
24 a = ufl.dot(u,v)*ufl.dx
25 L = uex(x)*v*ufl.dx
26 problem = LinearProblem(a, L, bcs=[])
27 Phu = problem.solve()
29 # saída (paraview)
30 from dolfinx import io
31 from pathlib import Path
32 results folder = Path("results")
33 results folder.mkdir(exist ok=True, parents=True)
34 filename = results folder / "phu"
35 Phu.name = "Phu"
36 with io.VTXWriter(domain.comm, filename.
 with suffix(".bp"), [Phu]) as vtx:
     vtx.write(0.0)
38 with io.XDMFFile(domain.comm, filename.with suffix
  (".xdmf"), "w") as xdmf:
      xdmf.write mesh(domain)
     xdmf.write function(Phu, 0.0)
```

 \triangle

2.3.1 Exercícios

Em revisão

E.2.3.1. Verifique computacionalmente a estimativa (2.28) no caso da função $f(x_0, x_1) = \text{sen}(\pi x_0) \cos(\pi x_1)$ projetada sobre uma malha triangular uniforme sobre o domínio $D = [0, 1] \times [0, 1]$.

2.4 Problema Modelo

Em revisão

Nesta seção, aplicamos do **método de elementos finitos para a equação de Poisson**⁸ com condições de Dirichlet⁹. Mais precisamente, definimos o chamdo **problema forte**: encontrar u tal que

$$-\Delta u = f, \ x \in \Omega := [0, 1]^2, \tag{2.29}$$

$$u = 0, \ x \in \partial\Omega, \tag{2.30}$$

onde $\Delta = \partial^2/\partial x_0^2 + \partial^2/\partial x_1^2$ é o operador de Laplace¹⁰ e f é uma função dada.

2.4.1 Formulação Fraca

Em revisão

A aplicação do método de elementos finitos é construída sobre a **formulação fraca** do problema (2.29)-(2.30). Para a obtermos, multiplicamos (2.29) por uma função teste v em um espaço adequado V_0 e integramos no domínio Ω , obtendo

$$-\int_{\Omega} \Delta u \, v \, dx = \int_{\Omega} f v \, dx. \tag{2.31}$$

Então, no lado esquerdo, aplicamos a fórmula de Green¹¹

$$\int_{\Omega} \Delta u \, v \, dx = -\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} \mathbf{n} \cdot \nabla u \, v \, ds. \tag{2.32}$$

donde temos

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} \mathbf{n} \cdot \nabla u v \, ds = \int_{\Omega} f v \, dx. \tag{2.33}$$

Então, observando critérios de regularidade e a condição de contorno (2.30), escolhemos o **espaço teste**

$$V_0 := \{ v \in H^1(\Omega) : v|_{\partial\Omega} = 0 \}.$$
 (2.34)

Lembramos que $H^1(\Omega) = \{v : ||v||_{L^2(\Omega)} + ||\nabla v||_{L^2(\Omega)} < \infty\}.$

Com isso, temos o seguinte **problema fraco** associado a (2.29)-(2.30): encontrar $u \in V_0$ tal que

$$a(u,v) = L(v), \ \forall v \in V_0, \tag{2.35}$$

onde a(u,v) é chamada de forma bilinear e definida por

$$a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v \, dx \tag{2.36}$$

e L(v) é chamada de **forma linear** e definida por

$$L(v) := \int_{\Omega} f v \, dx. \tag{2.37}$$

2.4.2 Formulação de Elementos Finitos

Em revisão

A formulação de elementos finitos é obtida da formulação fraca (2.35) pela aproximação do espaço teste V_0 por uma espaço de dimensão finita. Tomando uma triangulação $\mathcal{K} \subset \Omega$ e considerando o espaço contínuo dos polinômios lineares por partes

$$V_h := \{ v : v \in C^0(\Omega), v | K \in P_1(K) \ \forall K \in \mathcal{K} \},$$
 (2.38)

assumimos o espaço de elementos finitos

$$V_{h,0} := \{ v \in V_h : \ v|_{\partial\Omega} = 0 \}. \tag{2.39}$$

Com isso, temos o seguinte problema de elementos finitos associado (2.35): encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, v_h) = L(v_h), \ \forall v_h \in V_{h,0}.$$
 (2.40)

Observemos que (2.40) é equivalente ao problema de encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, \varphi_i) = L(\varphi_i), \tag{2.41}$$

com $i = 0, 1, \dots, n_p - 1$, onde $\{\varphi_i\}_{i=0}^{n_i - 1}$ é a base nodal de $V_{h,0}$ e n_i é o número de funções bases (igual ao número de nodos internos da triangulação \mathcal{K}). Ainda, como

$$u_h = \sum_{i=0}^{n_i - 1} \xi_j \varphi_j, \tag{2.42}$$

temos

$$a(u_h, \varphi_i) = a\left(\sum_{j=0}^{n_i - 1} \xi_j \varphi_j, \varphi_i\right)$$
(2.43)

$$=\sum_{i=0}^{n_i-1} \xi_j a(\varphi_j, \varphi_i). \tag{2.44}$$

Com isso, o problema de elementos finitos é equivalente a resolver o seguinte sistema linear

$$\sum_{j=0}^{n_i-1} \xi_j a(\varphi_j, \varphi_i) = L(\varphi_i), \ i = 0, 1, \dots, n_i - 1,$$
 (2.45)

para as incógnitas $\xi_j, j=0,1,\cdots,n_i-1$. Ou, equivalentemente, temos sua forma matricial

$$A\boldsymbol{\xi} = \boldsymbol{b},\tag{2.46}$$

onde $A = [a_{i,j}]_{i,j=0}^{n_i-1}$ é chamada de **matriz de rigidez** com

$$a_{i,j} = a(\varphi_j, \varphi_i) \tag{2.47}$$

e $\boldsymbol{b}=(b_0,b_1,\cdots,b_{n_i-1})$ é o vetor de carga com

$$b_i = L(\varphi_i). (2.48)$$

Exemplo 2.4.1. Consideremos o seguinte problema de Poisson

$$-\Delta u = 100x_0(1 - x_0)x_1(1 - x_1), \ x \in \Omega := (0, 1) \times (0, 1), \tag{2.49}$$

$$u = 0, \ x \in \partial\Omega.$$
 (2.50)

Na Figura 2.5 temos um esboço da aproximação de elementos finitos obtida em uma malha uniforme com 20×20 nodos. As isolinhas correspondem aos ponto tais que $u = 3 \times 10^{-1}, 2 \times 10^{-1}, 10^{-1}, 5 \times 10^{-2}$.

Com o FEniCS, podemos computar a solução deste problema com o seguinte código:

Figura 2.5: Esboço da solução de elementos finitos do problema discutido no Exemplo 2.4.1.

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

# malha
Nx = 20
Ny = 20
mesh = UnitSquareMesh(Nx,Ny)

# espaco
V = FunctionSpace(mesh, 'P', 1)
```

```
# cond. contorno
def boundary(x,on_boundary):
    return on_boundary
bc = DirichletBC(V,Constant(0.0),boundary)
# f
f = Expression('100*x[0]*(1-x[0])*x[1]*(1-x[1])',degree=4)
# MEF problem
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx
#computa a sol
u = Function(V)
solve(a == L, u, bc)
# exportanto em vtk
vtkfile = File('u.pvd')
vtkfile << u
```

2.4.3 Exercícios

Em revisão

E.2.4.1. Compute uma aproximação de elementos finitos para o seguinte problema

$$-\Delta u = 10, \ x \in (0,1) \times (0,1) \tag{2.51}$$

 \triangle

$$u(x,0) = 0, \ 0 \le x \le 1, \tag{2.52}$$

$$u(1,y) = 0, \ 0 \le y < 1, \tag{2.53}$$

$$u(x,1) = 1, \ 0 \le x \le 1, \tag{2.54}$$

$$u(0,y) = 1, \ 0 < x \le 1. \tag{2.55}$$

2.5 Fundamentos da análise de elementos finitos

Em revisão

2.5.1 Existência e unicidade

Em revisão

Teorema 2.5.1. (Matriz positiva definida) A matriz de rigidez é positiva definida.

Demonstração. A matriz de rigidez $A = [a(\varphi_j, \varphi_i)]_{ij=0}^{n_i-1}$ é obviamente simétrica. Além disso, para todo $\boldsymbol{\xi} \in \mathbb{R}^{n_i}, \boldsymbol{\xi} \neq 0$, temos

$$\boldsymbol{\xi}^T A \boldsymbol{\xi} = \sum_{i,j=0}^{n_i - 1} \xi_j a(\varphi_j, \varphi_i) \xi_i$$
(2.56)

$$= \sum_{i,j=0}^{n_i-1} \xi_j \int_{\Omega} \nabla \varphi_j \cdot \nabla \varphi_i \, dx \, \xi_i \tag{2.57}$$

$$= \int_{\Omega} \nabla \left(\sum_{j=0}^{n_i - 1} \xi_j \varphi_j \right) \cdot \nabla \left(\sum_{i=0}^{n_i - 1} \xi_i \varphi_i \right) dx \tag{2.58}$$

$$= \left\| \nabla \left(\sum_{j=0}^{n_i - 1} \xi_j \varphi_j \right) \right\|_{L^2(\Omega)}^2. \tag{2.59}$$

Portanto, $\boldsymbol{\xi}^T A \boldsymbol{\xi} \geq 0$ e é nulo se, e somente se, $v = \sum_{j=0}^{n_i-1} \xi_j \varphi_j$ for constante. Como $v \in V_{h,0}$, temos que v constante implica $v \equiv 0$, mas então $\boldsymbol{\xi} = 0$, o que é uma contradição. Logo, $\boldsymbol{\xi}^T A \boldsymbol{\xi} > 0$ para todo $\boldsymbol{\xi} \in \mathbb{R}^{n_i}$, $\boldsymbol{\xi} \neq 0$.

Teorema 2.5.2. (Existência e unicidade) O problema de elementos finitos (2.40) tem solução única.

Demonstração. O problema de elementos finitos (2.40) se resume a resolver o sistema linear $A\boldsymbol{\xi} = \boldsymbol{b}$. Do Teorema 2.5.1, temos que A é uma matriz definida positiva e, portanto, invertível. Daí segue, imediatamente, que o problema (2.40) tem solução única.

2.5.2 Estimativa a priori do erro

Em revisão

Teorema 2.5.3. (Ortogonalidade de Galerkin) A solução u_h do problema de elementos finitos (2.40) satisfaz

$$a(u - u_h, v_h) = 0, \ \forall v_h \in V_{h,0},$$
 (2.60)

onde u é a solução do problema fraco (2.35).

Demonstração. Segue, imediatamente, do fato de que $V_{h,0} \subset V_0$ e, portanto,

$$a(u, v_h) = L(v_h), \ \forall v_h \in V_{h,0},$$
 (2.61)

bem como

$$a(u_h, v_h) = L(v_h), \ \forall v_h \in V_{h,0}.$$
 (2.62)

Definição 2.5.1. (Norma da energia.) Definimos a norma da energia por

$$|||v||| := \left(\int_{\Omega} \nabla v \cdot \nabla v \, dx \right)^{1/2} = ||\nabla v||_{L^{2}(\Omega)},$$
 (2.63)

para todo $v \in V_0$.

Teorema 2.5.4. (Melhor aproximação.) A solução u_h do problema de elementos finitos satisfaz

$$|||u - u_h||| \le |||u - v_h|||, \ \forall v_h \in V_{h,0}.$$
 (2.64)

Demonstração. Observando que $u - u_h = u - v_h + v_h - u_h$ e usando a ortogonalidade de Galerkin (Teorema 2.5.3), temos:

$$|||u - u_h|||^2 = \int_{\Omega} \nabla(u - u_h) \cdot \nabla(u - u_h) dx$$

$$= \int_{\Omega} \nabla(u - u_h) \cdot \nabla(u - v_h) dx + \int_{\Omega} \nabla(u - u_h) \cdot \nabla(v_h - u_h) dx$$
(2.65)

$$= \int_{\Omega} \nabla(u - u_h) \cdot \nabla(u - v_h) dx \tag{2.67}$$

$$= \|\nabla(u - u_h)\|_{L^2(\Omega)}^2 \|\nabla(u - v_h)\|_{L^2(\Omega)}^2$$
(2.68)

$$= |||u - u_h|||^2 |||u - v_h|||.$$
(2.69)

Teorema 2.5.5. (Estimativa *a priori* do erro.) A solução u_h do problema de elementos finitos (2.40) satisfaz

$$|||u - u_h|||^2 \le C \sum_{K \in \mathcal{K}} h_K^2 ||D^2 u||_{L^2(K)}^2.$$
(2.70)

Demonstração. O resultado segue do Teorema da melhor aproximação (Teorema 2.5.4) e da estimativa do erro de interpolação (Proposição 2.2.2), pois

$$|||u - u_h|||^2 \le |||u - \pi u|||^2 \tag{2.71}$$

$$= \|D(u - \pi u)\|_{L^2(\Omega)}^2 \tag{2.72}$$

$$\leq C \sum_{K \in \mathcal{K}} h_K^2 ||D^2 u||_{L^2(\Omega)}^2. \tag{2.73}$$

Para obtermos uma estimativa na norma $L^2(\Omega)$, podemos usar a desigualdade de Poincaré.

Teorema 2.5.6. (Desigualdade de Poincaré.) Seja $\Omega \subset \mathbb{R}^2$ um domínio limitado. Então, existe uma constante $C = C(\Omega)$, tal que

$$||v||_{L^2(\Omega)} \le C||\nabla v||_{L^2(\Omega)}, \ \forall v \in V_0.$$
 (2.74)

Demonstração. Se Ω tem contorno suficientemente suave, então existe ϕ tal que $-\Delta \phi = 1$ em Ω com $\sup_{x \in \Omega} |\nabla \phi| < C$. Com isso, temos

$$||v||_{L^2(\Omega)}^2 = \int_{\Omega} v^2 dx \tag{2.75}$$

$$= -\int_{\Omega} v^2 \Delta \phi \, dx. \tag{2.76}$$

Agora, usando o Teorema de Green e a desigualdade de Cauchy-Schwarz, obtemos

$$||v||_{L^{2}(\Omega)}^{2} = -\int_{\partial\Omega} v^{2} n \cdot \nabla \phi \, ds + \int_{\Omega} \nabla v^{2} \cdot \nabla \phi \, dx \tag{2.77}$$

$$= \int_{\Omega} 2v \nabla v \cdot \nabla \phi \, dx \tag{2.78}$$

$$\leq \sup_{x \in \Omega} |\nabla \phi| \|v\|_{L^{2}(\Omega)} \|\nabla v\|_{L^{2}(\Omega)}. \tag{2.79}$$

Com a desigualdade de Poincaré e da estimativa a priori do erro (Teorema 2.5.5), temos

$$||u - u_h||_{L^2(\Omega)} \le C|||u - u_h||| \le Ch||D^2 u||_{L^2(\Omega)}, \tag{2.80}$$

onde $h = \max_{K \in \mathcal{K}} h_K$. Entretanto, esta estimativa pode ser melhorada.

Teorema 2.5.7. (Estimativa ótima *a priori* do erro.) A solução u_h do problema de elementos finitos (2.40) satisfaz

$$||u - u_h||_{L^2(\Omega)} \le Ch^2 ||D^2 u||_{L^2(\Omega)}.$$
 (2.81)

Demonstração. Seja $e = u - u_h$ o erro e ϕ a solução do problema dual (ou problema adjunto)

$$-\Delta \phi = e, \ \forall x \in \Omega \tag{2.82}$$

$$\phi = 0, \ \forall x \in \partial \Omega. \tag{2.83}$$

Então, usando a fórmula de Green, a ortogonalidade de Galerkin e, então, a desigualdade de Cauchy-Schwarz, temos

$$||e^2||_{L^2(\Omega)} = -\int_{\Omega} e\Delta\phi \, dx$$
 (2.84)

$$= \int_{\Omega} \nabla e \cdot \nabla \phi \, dx - \int_{\partial \Omega} e \, n \cdot \nabla \phi \, ds \qquad (2.85)$$

$$= \int_{\Omega} \nabla e \cdot \nabla (\phi - \pi \phi) \, dx \tag{2.86}$$

$$\leq \|\nabla e\|_{L^2(\Omega)} \|\nabla(\phi - \pi\phi)\|_{L^2(\Omega)}.$$
 (2.87)

Da estimativa a priori (2.80) (que segue do Teorema 2.5.5) temos

$$\|\nabla e\|_{L^2(\Omega)} \le Ch\|D^2 u\|_{L^2(\Omega)}. (2.88)$$

Agora, da regularidade elíptica $||D^2\phi||_{L^2(\Omega)} \leq C||\Delta\phi||_{L^2(\Omega)}$ [?] e da estimativa do erro de interpolação (Proposição 2.2.2), temos

$$\|\nabla(\phi - \pi\phi)\|_{L^2(\Omega)} \le Ch\|D^2\phi\|_{L^2(\Omega)} \le Ch\|\Delta\phi\|_{L^2(\Omega)} \le Ch\|e\|_{L^2(\Omega)}. \tag{2.89}$$

Então, temos

$$||e||_{L^2(\Omega)}^2 \le Ch||D^2u||_{L^2(\Omega)}Ch||e||_{L^2(\Omega)}.$$
 (2.90)

Exemplo 2.5.1. Consideremos o seguinte problema de Poisson

$$-\Delta u = -2(x_0^2 - x_0) - 2(x_1^2 - x_1), \ x \in \Omega := (0, 1) \times (0, 1), \tag{2.91}$$

$$u = 0, \ x \in \partial\Omega. \tag{2.92}$$

A solução analítica deste problema é $u(x) = (x_0^2 - x_0)(x_1^2 - x_1)$. Aqui, obtemos aproximações por elementos finitos u_h usando uma malha triangular uniforme $n \times n$ nodos, i.e. h = 1/n. A Tabela 2.2 mostra os valores dos erros $||u - u_h||_{L^2(\Omega)}$ para diferentes valores de h.

Tabela 2.2: Erros de aproximações por elementos finitos referente ao problema dado no Exemplo 2.5.1.

#nodos	h	$ u-u_h _{L^2(\Omega)}$
10×10	1e-1	9.29e - 4
20×20	5e-2	2.34e - 4
100×100	1e-3	9.40e - 6

Com o FEniCS, podemos computar a solução deste problema e o erro na norma L^2 com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

```
# malha
Nx = 100
Nv = 100
mesh = UnitSquareMesh(Nx,Ny)
# espaco
V = FunctionSpace(mesh, 'P', 1)
# cond. contorno
def boundary(x,on_boundary):
   return on_boundary
bc = DirichletBC(V,Constant(0.0),boundary)
f = Expression('-2*(x[1]*x[1]-x[1])-2*(x[0]*x[0]-x[0])',degree=2)
# MEF problem
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx
#computa a sol
u = Function(V)
solve(a == L, u, bc)
# sol. analitica
ua = Expression('x[0]*(x[0]-1)*x[1]*(x[1]-1)',degree=4)
# erro norma L2
erro L2 = errornorm(ua, u, 'L2')
print("||u-u_h||_L2 = %1.2E\n" % erro_L2)
# exportanto em vtk
vtkfile = File('u.pvd')
vtkfile << u
```

2.5.3 Estimativa a posteriori

Em revisão

Para obtermos uma estimativa *a posteriori* vamos precisar da chamada desigualdade do traço.

Teorema 2.5.8. (Desigualdade do traço) Seja $\Omega \subset \mathbb{R}^2$ um domínio limitado com fronteira $\partial \Omega$ convexa e suave. Então, existe uma constante $C = C(\Omega)$, tal que para qualquer $v \in V$ temos

$$||v||_{L^2(\partial\Omega)} \le C \left(||v||_{L^2(\Omega)}^2 + ||\nabla v||_{L^2(\Omega)}^2\right)^{1/2}.$$
 (2.93)

Demonstração. Veja [?].

Teorema 2.5.9. (Estimativa *a posteriori*) A solução u_h do problema de elementos finitos (2.40) satisfaz

$$|||u - u_h|||^2 \le C \sum_{K \in \mathcal{K}} \eta_K^2(u_h),$$
 (2.94)

onde o elemento residual $\eta_K(u_h)$ é definido por

$$\eta_K(u_h) = h_K \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2} h_K^{1/2} \|[n \cdot \nabla u_h]\|_{L^2(\partial K \setminus \partial \Omega)}. \tag{2.95}$$

Aqui, $[n \cdot \nabla u_h]|_K$ denota o salto na derivada normal de u_h nos lados interiores dos elementos de \mathcal{K} . Além disso, lembremos que $\Delta u_h = 0$.

Demonstração. Denotando $e := u - u_h$ o erro entre a solução do problema forte e a solução de elementos finitos, temos

$$|||e||||^2 = ||\nabla e||^2_{L^2(\Omega)}$$
(2.96)

$$= \int_{\Omega} \nabla e \cdot \nabla e \, dx \tag{2.97}$$

$$= \int_{\Omega} \nabla e \cdot \nabla (e - \pi e) \, dx. \tag{2.98}$$

Nesta última equação, temos usado a ortogonalidade de Galerkin (Teorema 2.5.3). Daí, temos

$$\int_{\Omega} \nabla e \cdot \nabla (e - \pi e) \, dx = \sum_{K \in \mathcal{K}} \int_{K} \nabla e \cdot \nabla (e - \pi e) \, dx \qquad (2.99)$$

$$= \sum_{K \in \mathcal{K}} - \int_{K} \Delta e (e - \pi e) \, dx$$

$$+ \int_{\partial K} n \cdot \nabla e (e - \pi e) \, ds, \qquad (2.100)$$

$$= \sum_{K \in \mathcal{K}} \int_{K} (f + \Delta u_{h}) (e - \pi e) \, dx$$

$$+ \int_{\partial K \setminus \partial \Omega} n \cdot \nabla e (e - \pi e) \, ds, \qquad (2.101)$$

uma vez que $-\Delta e|_K = f + \Delta u_h|_K$ e, ambos, $e \in \pi e$ se anulam em $\partial \Omega$.

Para computarmos o segundo termo do lado direito da ultima equação, observamos que o erro em lado E recebe contribuições dos dois elementos K^{\pm} que compartilham E. Com isso, temos

$$\int_{\partial K^{+} \cap \partial K^{-}} n \cdot \nabla e(e - \pi e) \, ds = \int_{E} (n^{+} \cdot \nabla e^{+} (e^{+} - \pi e^{+}) + n^{-} \cdot \nabla e^{-} (e^{-} - \pi e^{-})) \, ds, \qquad (2.102)$$

onde utilizamos a notação $v^{\pm} = v|_{K^{\pm}}$. Lembremos que o erro e é contínuo e, portanto, $(e^+ - \pi e^+)|_E = (e^- - \pi e^-)|_E$. Ainda, ∇u é contínuo, logo $(n^+ \cdot \nabla u^+ + n^- \cdot \nabla u^-)|_E = 0$. Entretanto, $\nabla u_h|_E$ não é geralmente contínuo, sendo apenas constante por partes. Assim sendo e denotando o salto $[n \cdot \nabla u_h] := (n^+ \cdot \nabla u_h^+ + n^- \cdot \nabla u_h^-)$, temos

$$\int_{E} (n^{+} \cdot \nabla e^{+}(e - \pi e) + n^{-} \cdot \nabla e^{-}(e - \pi e)) ds$$

$$= -\int_{E} [n \cdot \nabla u_{h}](e - \pi e) ds. \tag{2.103}$$

Com isso, temos

$$\sum_{K \in \mathcal{K}} \int_{\partial K \setminus \partial \Omega} n \cdot \nabla e(e - \pi e) \, ds = -\sum_{E \in \mathcal{E}_I} \int_E [n \cdot \nabla u_h](e - \pi e) \, ds, \qquad (2.104)$$

onde \mathcal{E}_I é o conjunto dos lados interiores na triangularização \mathcal{K} . Logo, retornando a (2.101), obtemos

$$|||e|||^2 = \sum_{K \in \mathcal{K}} \int_K (f + \nabla u_h)(e - \pi e) dx$$
$$-\frac{1}{2} \int_{\partial K \setminus \partial \omega} [n \cdot \nabla u_h](e - \pi e) ds.$$
(2.105)

Nos resta, agora, estimarmos estes dois termos do lado direito.

A estimativa do primeiro, segue da desigualdade de Cauchy-Schwarz seguida da estimativa padrão do erro de interpolação, i.e.

$$\int_{\mathcal{K}} (f + \Delta u_h)(e - \pi e) \, dx \le \|f + \delta u_h\|_{L^2(\Omega)} \|e - \pi e\|_{L^2(\Omega)} \tag{2.106}$$

$$\leq \|f + \Delta u_h\|_{L^2(\Omega)} Ch_K \|De\|_{L^2(\Omega)}$$
 (2.107)

Para estimarmos as contribuições dos lados, usamos a desigualdade do Traço [?]

$$||v||_{L^{2}(\Omega)}^{2} \le C\left(h_{K}^{-1}||v||_{L^{2}(K)}^{2} + h_{K}||\nabla v||_{L^{2}(\Omega)}^{2}\right). \tag{2.108}$$

Com esta, a desigualdade de Cauchy-Schwarz e a estimativa padrão do erro de interpolação, temos

$$\int_{\partial K \setminus \partial \Omega} [n \cdot \nabla u_h](e - \pi e) \, ds \leq \|[n \cdot \nabla u_h]\|_{L^2(\partial K)} \|e - \pi e\|_{L^2(\partial K)} \qquad (2.109)$$

$$\leq \|[n \cdot \nabla u_h]\|_{L^2(\partial K)} C \left(h_K^{-1} \|e - \pi e\|_{L^2(K)}^2\right)$$

$$+ h_K \|D(e - \pi e)\|_{L^2(K)}^2\right)^{1/2} \qquad (2.110)$$

$$\leq \|[n \cdot \nabla u_h]\|_{L^2(\partial K)} C h_K^{1/2} \|De\|_{L^2(K)}. \qquad (2.111)$$

Daí, a estimativa segue das (2.107) e (2.111).

Pedro H A Konzen

Notas

¹Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859, matemático alemão. Fonte: Wikipédia: Johann Peter Gustav Lejeune Dirichlet.

 $^2\mathrm{Carl}$ Gottfried Neumann, 1832 - 1925, matemático alemão. Fonte: Wikipédia: Carl Neumann.

 $^3\mathrm{Carl}$ Gottfried Neumann, 1832 - 1925, matemático alemão. Fonte: Wikipédia: Carl Neumann.

 $^4 \rm Victor$ Gustave Robin, 1855 - 1897, matemático francês. Fonte: Wikipedia: Victor Gustave Robin.

⁵Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859, matemático alemão. Fonte: Wikipédia: Johann Peter Gustav Lejeune Dirichlet.

⁶Ronald Aylmer Fisher, 1890-1962, biólogo inglês. Fonte: Wikipédia: Ronald Fisher.

 $^7\mathrm{Carl}$ Gottfried Neumann, 1832 - 1925, matemático alemão. Fonte: Wikipédia: Carl Neumann.

⁸Siméon Denis Poisson, 1781 - 1840, matemático francês. Fonte: Wikipédia:Siméon Denis Poisson.

⁹Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859, matemático alemão. Fonte: Wikipédia: Johann Peter Gustav Lejeune Dirichlet.

 $^{10} \mathrm{Pierre\text{-}Simon}$ Laplace, 1749 - 1827, matemático francês. Fonte: Wikipédia: Pierre-Simon Laplace.

 $^{11}\mathrm{George}$ Green, 1793 - 1841, matemático britânico. Fonte: Wikipédia: George Green .

Referências

- [1] Brenner, S.C.; Scott, L.R.. The mathematical Theory of Finite Element Methods. Springer, 2008.
- [2] Evans, L.C.. Partial Differential Equations. 2. ed., AMS, 2010. ISBN: 978-0-8218-4974-3
- [3] Langtangen, H.P.; Logg, A. Solving PDEs in Python. Springer, 2017. ISBN: 978-3-319-52461-0
- [4] Larson, M.G.; Bengson, F.. The Finite Element Method: Theory, Implementation, and Applications. Springer, 2013.
- [5] Tveito, A.; Winther, R.. Introduction to Partial Differential Equations: A Computational Approach. Springer, 1998. ISBN 978-0-387-22773-3. https://doi-org.ez45.periodicos.capes.gov.br/10.1007/b98967.

Índice de Comandos

desigualdade ${\rm de\ Cauchy\text{-}Schwarz,\ 6}$ ${\rm triangular,\ 6}$

matriz de rigidez, 73 teorema de Rolle, 7