Ray Tracing: O Mundo Através De Raios de Luz XXXVI Jornada Giulio Massarani de Iniciação Científica, Tecnológica, Artística e Cultural

Thiago Barroso Perrotta Prof.º Ricardo G. marroquim

Universidade Federal do Rio de Janeiro

10 de outubro de 2014

Agenda

- Raytracer
- Extração de primitivas em nuvens de pontos
- Resultados
- 4 Referências

Conceituando

• Renderizar imagens

• Defina alguns objetos

- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Define uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - atire um raio, a partir do centro do pixel, na direção dos objetos
 - compute, dentre os pontos atingidos nos objetos, o que esteja mais próximo
 - Se o raio atingiu um objeto
 - use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - defina a cor do pixel como preta

Objetos Esferas

Objetos Retângulos

Objetos Triângulos

Objetos _{Toros}

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Define uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - atire um raio, a partir do centro do pixel, na direção dos objetos
 - compute, dentre os pontos atingidos nos objetos, o que esteja mais próximo
 - Se o raio atingiu um objeto
 - use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - defina a cor do pixel como preta

Materiais

Materiais

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Define uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - atire um raio, a partir do centro do pixel, na direção dos objetos
 - compute, dentre os pontos atingidos nos objetos, o que esteja mais próximo
 - Se o raio atingiu um objeto
 - use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - defina a cor do pixel como preta

Fontes de luz

Fontes de luz

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Define uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - atire um raio, a partir do centro do pixel, na direção dos objetos
 - compute, dentre os pontos atingidos nos objetos, o que esteja mais próximo
 - Se o raio atingiu um objeto
 - use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - defina a cor do pixel como preta

Plano de visualização

- Número de pixels (ex.: 400x400)
 - Horizontal
 - Vertical
- Tamanho de cada pixel ⇒zoom

- Defina alguns objetos
- Especifique um material para cada objeto
- Defina algumas fontes de luz
- Define uma janela cuja superfície seja coberta com pixels
- Para cada pixel
 - atire um raio, a partir do centro do pixel, na direção dos objetos
 - compute, dentre os pontos atingidos nos objetos, o que esteja mais próximo
 - Se o raio atingiu um objeto
 - use o material do objeto e as fontes de luz para computar a cor do pixel
 - Senão
 - defina a cor do pixel como preta

Interseção entre raio e objetos

• Função Hit para cada objeto

•

Resultados

Conclusão

- Raytracer
- Detecção de formas em nuvens de pontos

Trabalho Futuro

Referências

- Suffern, Kevin Geoffrey, and Suffern, Kevin. Ray Tracing from the Ground up. AK Peters, 2007.
- Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. "Efficient RANSAC for Point-Cloud Shape Detection." Computer graphics forum. Vol. 26. No. 2. Blackwell Publishing Ltd, 2007.