testG

Example for algorithm testG. Algorithm is usefull only for testing QWTB toolbox. It calculates maximal and minimal value of the record. GUF is calculated by wrapper.

See also qwtb

Contents

- Generate sample data
- Call algorithm
- Plot results

Generate sample data

Two quantities are prepared: t and y.

```
t.v = [1:20];
y.v = [1:14 13:-1:8];
All uncertainties are set to 1.

t.u = t.v.*0 + 1;
y.u = y.v.*0 + 1;
Set degrees of freedom.

t.d = t.v.*0 + 60;
```

Quantities are put into data input structure DI.

```
DI.t = t;
DI.y = y;
```

Create calculation settings ${\tt CS}$ and set uncertainty calculation method to GUM uncertainty framework.

```
CS = [];
CS.unc = 'guf';
```

y.d = y.v.*0 + 9;

Call algorithm

Use QWTB to apply algorithm testG to data DI with calculation settings CS.

```
DO = qwtb('testG', DI, CS);

QWTB: default correlation matrix generated for quantity 't'
QWTB: default correlation matrix generated for quantity 'y'
QWTB: uncertainty calculation by means of wrapper or algorithm
```

Plot results

Plot input data and calculated maximal and minimal values as a red and green lines with uncertainties represented by dashed lines.

```
figure
hold on
errorbar(DI.t.v, DI.y.v, DI.y.u, 'xb')
plot([DI.t.v(1) DI.t.v(end)], [D0.max.v D0.max.v], '-r', 'linewidth', 3)
plot([DI.t.v(1) DI.t.v(end)], [D0.max.v - D0.max.u D0.max.v - D0.max.u], '--r', 'linewidt plot([DI.t.v(1) DI.t.v(end)], [D0.min.v D0.min.v], '-g', 'linewidth', 3)
plot([DI.t.v(1) DI.t.v(end)], [D0.min.v - D0.min.u D0.min.v - D0.min.u], '--g', 'linewidt plot([DI.t.v(1) DI.t.v(end)], [D0.max.v + D0.max.u D0.max.v + D0.max.u], '--r', 'linewidt plot([DI.t.v(1) DI.t.v(end)], [D0.min.v + D0.min.u D0.min.v + D0.min.u], '--g', 'linewidt legend('original data (DI.t.v, DI.y.v)', 'line at maximum value (D0.max.v)', 'uncertaint xlabel('quantity t')
ylabel('quantity y')
title('input data and results of testG algorithm')
hold off
```

