ADVAIT MEHLA

Final year undergraduate, Indian Institute of Technology Bombay (+91) 9167147931 ♦ advaitmehla@iitb.ac.in

Education _____

Indian Institute of Technology Bombay

(Nov '20 - present)

- Major degree (with Honors): Bachelors of Technology in Engineering Physics CPI: 8.87/10
- Minor degree : Department of Electrical Engineering

Scholastic Achievements

- Among the top 23 students worldwide to be awarded a fully-funded LIGO-SURF internship at Caltech ('23)
- Awarded a **Branch Change** to **Engineering Physics** based on exemplary academic performance ('21)
- Secured a percentile of **99.923** among over **1 million** candidates in **JEE Mains** ('20)
- Awarded the KVPY fellowship by DST, Govt. of India twice with All India Ranks 306 and 466 ('19,'18)
- Among the **top 450** students nationally selected for **Indian National Physics Olympiad (INPhO)** (19)

Publications _

- Bala S., Mate S., Mehla A. et al. Prospects of measuring Gamma-ray Burst Polarisation with the Daksha mission (ArXiv:2306.16781). Submitted to *JATIS* (2023)
- Bhalerao V., Sawant D., ..., Mehla A. et al. Science with the Daksha High Energy Transients Mission (ArXiv:2211.12052). Submitted to Experimental Astronomy (2022)

Key Projects _

Measuring the Polarisation of GRBs with the Daksha mission

(Nov '21 - present)

Guides: Prof. Varun Bhalerao, Dept. of Physics IIT Bombay; Dr. Sujay Mate, TIFR Mumbai Daksha is a proposed space telescope mission consisting of a pair of satellites to act as a high energy all-sky monitor

- Simulated the interactions of photons with detectors using the **Geant4 toolkit** developed by **CERN**
- Created a pipeline to construct response files for inferring source spectra from the detected counts
- Developing and testing a processing pipeline to implement **Compton Polarimetry** with **pixellated detectors** in order to **determine polarisation** of sources and estimate the Minimum Detectable Polarisation
- Work on the polarisation capabilities of Daksha was presented at the *Astrophysical Polarimetry in the Time-Domain Era* conference held at Politecnico di Milano Lecco, Italy as a poster with me as a co-author

Demonstrating Optimal Nonlinear Temperature Control

(May '23 - present)

Guide : Prof. Rana Adhikari, California Institute of Technology

- Designed and built low-noise temperature sensors and PWM driven heater circuits for the control system
- Implemented a data acquisition and actuation system using a Raspberry Pi and Waveshare AD/DA Board
- Modelled heat transfer mechanisms for an insulated mass and fitted experimental data to obtain parameters
- Successfully implemented PID temperature control of a mass and achieved identical performance to simulations
- Exploring reinforcement learning based methods of training neural networks for nonlinear control

Studying an Exoplanetary System with GROWTH-India Telescope | Report

(Spring '23)

Course Project, PH556: Observational Astrophysics, Prof. Varun Bhalerao, Department of Physics The GROWTH-India Telescope is a 0.7m robotic transient telescope located at the Indian Astronomical Observatory

• Submitted a **proposal** to take continuous observations of a **transit of WASP-43b** around its host star

- Reduced images to compute the evolution of relative flux during the transit using Astropy and Photutils
 Fitted the observed transit data to a model using Markov-Chain Monte Carlo method with the exoplanet

package and **inferred** the planetary radius, impact parameter and mid-transit time **within** 1σ of actual values **Resonant Mass GW Detectors : Instrumentation & Noise Sources** | *Report* (Autumn '22)

Course Project, PH821: Gravitational Wave Astronomy and Physics, Prof. Archana Pai, Department of Physics

- Surveyed literature on resonant bar based gravitational wave detectors and the measurement challenges associated
- Analysed the electro-mechanical oscillator system and its transfer function to understand its advantages
- Quantified the minimal detectable energy and noise spectral density of the dominant noise sources

Workshops ____

Radio Astronomy Winter School | NCRA - TIFR

(Dec '22)

Ten-day offline school consisting of talks and experiments on the fundamentals of radio astronomy

- Attended sessions by renowned experts on topics like radiative processes, techniques and instruments used in radio astronomy, observational radio astronomy, cosmology and fast radio bursts
- Recorded observations of HI emissions at different longitudes in the galactic plane with a rudimentary horn antenna and analysed the data to generate a rotation curve for the Milky Way

GEANT4 and its Application to High-Energy Physics and Astrophysics | IUCAA

Five-day offline workshop on the applications of GEANT4 for astrophysics and high energy physics instruments

- Attended talks by prominent researchers working on various experiments and missions like CMS, Hyper-K, POLAR, Fermi, Swift and AstroSat and learnt about the instruments and simulation techniques utilised
- Implemented detector systems like CMS-HGCAL and a scattering polarimeter in GEANT4 from scratch during hands-on tutorial sessions and analysed resulting data using Python and ROOT

Other Projects .

Simulating Kirkwood Gaps

(July '21 - Sept '21)

Krittika, the Astronomy Club of IIT-B (Summer Project)

- Implemented a Monte Carlo simulation to evolve large distributions of asteroids over millions of years
- Observed the emergence of Kirkwood gaps in the asteroid belt along with features like the Jupiter Trojans
- Optimised simulation times by a factor of 6 to 12 via implementation of parallelised code and utilisation of high performance computing libraries like OpenMP and CUDA Fortran

Team Member, GLEE | IIT Bombay Student Satellite Program

(May '21 - June '22)

A 70+ member student team with the vision of making IIT Bombay a centre of excellence in space technology

- Instrumentation Subsystem
 - Scrutinised components & constructed a multi-stage readout circuit for a PIN diode based spectroscope
 - Tested and verified the functioning of the circuit by simulating input signals & analysing the output waveform
- Communications Subsystem
 - Designed several iterations of a 4cm x 4cm prototype ChipSat capable of processing and wirelessly transmitting data from the lunar environment gathered by two sensors interfaced with a microcontroller
 - Learnt embedded C and implemented UART, SPI communication protocols to achieve data transmission

Truly Random Number Generator using Chaos

(Autumn '22)

Course Project, PH435: Microprocessors Lab, Prof. Pradeep Sarin, Department of Physics

- Designed, simulated and constructed a chaotic Chua circuit tuned to operate in the double scroll region
- Interfaced the circuit with an Arduino and pre-processed the bitstream using the von Neumann whitening algorithm to de-skew the incoming random bits and subjected them to rigorous tests of randomness

Analysis of the Nonlinear Dynamics of Neuronal Models

Course Project, PH567: Nonlinear Dynamics and Chaos, Prof. Amitabha Nandi, Department of Physics

- Designed and constructed an analog circuit to mimic the Nagumo neuronal model and demonstrated the action potential and other neuronal behaviour by visualising signals on a digital oscilloscope
- Explored the phase space of the Fitzhugh model by numerically integrating the dynamical equations

Technical Skills

C/C++, Python, Fortran, MATLAB, LATEX Languages

Astropy, NumPy, Matplotlib, SciPy, SymPy, Pandas, Numba, OpenMP, CUDA Packages/Libraries

Other Software GEANT4, Git, Proteus, Photoshop, LTspice, EAGLE, Arduino

Leadership Experience ___

Manager | Krittika, the Astronomy Club of IIT Bombay

(June '22 - present)

- Leading a team of 6 conveners to organise & conduct events to propagate astronomy at IITB and beyond
- Spearheading the development of the **IIT Bombay Observatory** with an initial funding of INR 1.8 million
- Organized the Krittika Summer Projects, an 8-week long program aimed at exposing students to astronomical research & received 100+ applications along with international participation for the first time
- Hosted observing sessions where 500+ students viewed various astronomical objects through telescopes

Key Courses

Physics Observational Astrophysics, Advanced Astrophysics*, Gravitational Wave Astronomy,

General Relativity, Quantum Mechanics I & II, Classical Mechanics, Nonlinear Dynamics

Mathematics Differential Calculus, Integral Calculus, Linear Algebra, Complex Analysis,

Differential Equations I, Differential Equations II, Numerical Analysis

Electronics Basic Circuits Lab, Op Amp Circuits Lab, Digital Electronics Lab, Microprocessors Lab,

Digital Systems, Electronic Devices, Signal Processing, Image Processing, Machine Learning

Extracurricular Activities and Interests _____

* To be completed by Nov '23

- Awarded NASA Astronomy Picture of the Day for processing raw data from the Hubble Space Telescope ('20)
- Captured images of several deep sky objects using basic equipment as an amateur astrophotographer
- Awarded a cash prize and an internship offer as sole winner out of 20+ teams in the Astronomy
 General Championship conducted by Nayam Innovations and Institute Technical Council, IITB ('22)
- Attended the 3-day **Vijyoshi National Science Camp** conducted at **IISc Bangalore** for facilitating interactions between KVPY Fellows and world-renowned researchers from various fields of science ('19)