TD 1 : Fonctions d'une variable réelle

Exercice 1 - Calculs de limites

Calculer les limites suivantes.

$$1.1 \quad \lim_{x \to +\infty} \frac{x-2}{x^2+x+1}$$

1.2
$$\lim_{x \to -\infty} \frac{1 - x^2}{3x + 2}$$

1.3
$$\lim_{x\to 0} \frac{x-3}{x^2-3x+2}$$

1.4
$$\lim_{x \to +\infty} \exp(x) + \cos(x)$$

1.5
$$\lim_{x \to 3^{-}} \frac{1 - x^2}{x^2 - 7x + 12}$$

1.6
$$\lim_{x \to 3} \frac{2-x}{x^2 - 6x + 9}$$

1.7
$$\lim_{x \to 2} \frac{x-2}{x^2 - 3x + 2}$$

1.8
$$\lim_{x\to 0^+} x^x$$

Exercice 2 - Calculs de dérivées

Pour chacune des fonctions suivantes, préciser l'ensemble de dérivation et calculer la dérivée.

2.1
$$x \mapsto \cos(x) \exp(2x)$$

2.3
$$x \mapsto \ln(1+x^2)$$

2.2
$$x \mapsto \exp(-x^2)$$

2.4
$$x \mapsto x^x$$

Exercice 3 - Études de fonctions

Pour chacune des fonctions suivantes, faire une étude complète et tracer la courbe représentative.

3.1
$$x \mapsto (x-1)(x+2)^2$$

3.4
$$x \mapsto \cos(x) + \sin(x)$$

3.2
$$x \mapsto |x+3| + |1-x|$$

3.5
$$x \mapsto \exp(-x^2)$$

3.3
$$x \mapsto \frac{3x-1}{x-4}$$

Exercice 4 - Vrai ou faux?

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse. Justifiez votre réponse.

- **4.1** Si f est définie sur \mathbb{R} et strictement décroissante, alors $\lim_{x\to +\infty} f(x) = -\infty$.
- **4.2** Si f'(a) = 0, alors f admet un minimum ou un maximum local en a.
- **4.3** Si une fonction f admet un minimum en a, alors on a forcément f'(a) = 0.
- **4.4** La fonction ln(x) est convexe sur \mathbb{R}_{+}^{*} .
- **4.5** On a $\lim_{x\to 1^-} \frac{x+2}{x^2+2x-3} = -\infty$.

Exercice 5 - Attention aux limites

On considère un carré dont le coté est de longueur 1. On note t_n le trajet qui consiste à aller du coin supérieur gauche au coin inférieur droit en répétant n fois :

- On se déplace d'abord de 1/n sur la droite;
- puis, on se déplace de 1/n vers le bas.
- **5.1** Représenter graphiquement t_1 , t_2 , t_3 et t_8 .
- **5.2** Quel est le trajet t que l'on obtient en faisant tendre n vers $+\infty$?
- **5.3** On note $\ell(\mathcal{T})$ la longueur du trajet \mathcal{T} . Calculer $\lim_{n\to+\infty}\ell(t_n)$.
- **5.4** Combien vaut $\ell(t)$? Commenter.

Exercice 6 - Optimisation sous contrainte

(examen 2022)

Dans cet exercice, x et y sont deux entiers positifs vérifiant x + y = 20.

6.1 Trouvez les valeurs de x et y rendant x^2y le plus grand possible. Expliquez votre démarche. **note**: La contrainte d'égalité imposée dans cet exercice se réécrit y = 20 - x.

Exercice 7 - Inégalité de Young

Soient p, q > 1 tels que $\frac{1}{p} + \frac{1}{q} = 1$.

- 7.1 Montrer que $\frac{1}{q} = \frac{p-1}{p}$.
- $\textbf{7.2} \quad \text{On suppose pour cette question que b est un réel positif fixé}.$

Tracer le tableau de variations de la fonction $f_b: x \mapsto \frac{x^p}{p} + \frac{b^q}{q} - x b$.

7.3 En utilisant ce qui précède, montrer l'inégalité de Young :

$$\forall a \in \mathbb{R}^+, \ \forall b \in \mathbb{R}^+, \ ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

- 7.4 Vérifier que la fonction ln est concave.
- **7.5** En déduire que, pour tout a et b réels strictement positifs, on a

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{\ln(a^p)}{p} + \frac{\ln(b^q)}{q} = \ln(ab).$$

7.6 Proposer une autre démonstration de l'inégalité de Young. Commenter.