Система типов IntBool + Let

1. Выпишите в форме Бэкуса-Наура грамматику термов $t \in \text{Tm}$ и типов $T \in \{\text{Int}, \text{Bool}\}$ языка IntBool+Let, поддерживающего логические значения и целые (не натуральные!) числа, условный оператор, взятие следующего числа, предыдущего числа, сложение и объявление новых имён через let.

 $t ::= \text{true} \mid \text{false} \mid \text{zero} \mid \text{succ} \ t \mid \text{pred} \ t \mid t_1 + t_2 \mid \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 \mid x_1 \mid \dots \mid x_n \mid \text{let} \ t_1 = t_2 \ \text{in} \ t_3$ $V = \mathbb{I} \cup \mathbb{B} \cup \{ \text{var} \} \cup \{ \bot \}$

- 2. Определите разумную денотационную семантику $[\![t]\!]$ для языка нетипизированных термов Tm. Что в данном контексте значит функциональность и тотальность? Докажите их.
 - (a) $[x_{1...n}] = \bot$
 - (b) [true] = T
 - (c) $\|false\| = F$
 - (d) [zero] = 0
 - (e) $\llbracket \operatorname{succ} t \rrbracket = \begin{cases} \llbracket t \rrbracket + 1 & \llbracket t \rrbracket \in \mathbb{I} \\ \bot \end{cases}$
 - $\text{(f)} \ \ \llbracket \operatorname{pred} t \rrbracket = \begin{cases} \llbracket t \rrbracket 1 & \ \llbracket t \rrbracket \in \mathbb{I} \\ \bot \end{cases}$
 - $(\mathbf{g}) \ \left[\!\!\left[t_1+t_2\right]\!\!\right] = \begin{cases} \left[\!\!\left[t_1\right]\!\!\right] + \left[\!\!\left[t_2\right]\!\!\right] & \left[\!\!\left[t_1\right]\!\!\right], \left[\!\!\left[t_2\right]\!\!\right] \in \mathbb{I} \\ \bot \end{cases}$
 - (h) $\llbracket \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rrbracket = \begin{cases} \llbracket t_2 \rrbracket & \llbracket t_1 \rrbracket = T \\ \llbracket t_3 \rrbracket & \llbracket t_1 \rrbracket = F \\ \bot \end{cases}$
 - (i) $\llbracket \operatorname{let} t_1 = t_2 \operatorname{in} t_3 \rrbracket = \begin{cases} \llbracket \llbracket t_2/x \rrbracket t_3 \rrbracket & \llbracket x \rrbracket \in \operatorname{var}, \\ \bot & \end{cases}$

где $\lceil q/p \rceil r$ — выражение r, в котором все употребления p заменены на q

Тотальность — $\forall t \in \text{Tm } \exists v(\llbracket t \rrbracket = v)$

Док-во. Будем говорить, что терм t означен, если $\exists v(\llbracket t \rrbracket = v)$. Очев., каждая из констант (true, false, zero) и все переменные означены. Пусть t означен. Тогда succ t и pred t означены. Аналогично, если t_1 и t_2 означены, то $t_1 + t_2$ означен; если t_1 , t_2 и t_3 означены, то if t_1 then t_2 else t_3 означен. Тогда по структурной индукции любой терм t, не содержащий оператора let, означен.

 $\det t_1 = t_2 \operatorname{in} t_3$ означен титтк $[t_2/t_1]t_3$ означен (или $t_1 \notin \{var\}$). Пусть t_2 означен, и t_3 не содержит оператора \det . Поскольку t_1 и t_2 являются термами, любое выражение, где t_1 заменено на t_2 , также будет термом. Тогда по предыдущему абзацу $[t_2/t_1]t_3$ означен. Тогда по структурной индукции любой терм $\det t_1 = t_2 \operatorname{in} t_3$ означен.

Функциональность — $\forall t \in \text{Tm } \forall v_1, v_2(\llbracket t \rrbracket = v_1 \land \llbracket t \rrbracket = v_2 \longrightarrow v_1 = v_2)$

Доказывается аналогично.

- 3. Определите small-step операционную семантику вычислений с кучей $H;t \to H';t'$ для языка IntBool + Let. Докажите сильную нормализацию.
 - (a) $\frac{H;t \to H';t'}{H;\operatorname{succ} t \to H';\operatorname{succ} t'}$
 - (b) $\frac{H; t \to H'; t'}{H; \operatorname{pred} t \to H'; \operatorname{pred} t'}$
 - (c) $\frac{H;t_1 \to H';t_1'}{H; \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \to H'; \text{if } t_1' \text{ then } t_2 \text{ else } t_3}$
 - (d) $\frac{H; t_2 \to H'; t_2'}{H; \operatorname{let} t_1 = t_2 \operatorname{in} t_3 \to H; \operatorname{let} t_1 = t_2' \operatorname{in} t_3}$

- (e) $\frac{t \in pos \cup neg}{H; succ(pred t) \longrightarrow H; t}$
- (f) $\frac{t \in pos \cup neg}{H; pred(succ t) \to H; t}$
- (g) H; zero + $t \rightarrow H$; t
- (h) H; succ $t_1 + t_2 \rightarrow H$; succ $(t_1 + t_2)$
- (i) H; pred $t_1 + t_2 \rightarrow H$; pred $(t_1 + t_2)$
- (j) H; if true then t_1 else $t_2 \rightarrow H$; t_1
- (k) H; if false then t_1 else $t_2 \rightarrow H$; t_2
- (l) H; let $x = t_1$ in $t_2 \to H \cup \{x = t_1\}, t_2$
- (m) $\frac{(x=t) \in H}{H; x \to H; t}$

Доказать сильную нормализацию хз как.

- 4. Выпишите БНФ для множества значений $v \in V \subseteq \text{Tm}$, погружённого в множество термов. Докажите, что все они находятся в нормальной форме относительно (\rightarrow) .
 - *v*::= true | false | zero | pos | neg
 - pos::= succ zero | succ pos
 - neg::=predzero | pred neg

Каждая из констант (true, false, zero) находится в НФ, т. к. не существует правила, выводящего что-либо из них.

Докажем по индукции, что роз находится в НФ. succ zero находится в НФ, т. к. zero находится в НФ, и не существует правила, выводящего что-либо из succ t или succ zero. Пусть роз находится в НФ. Тогда succ роз находится в НФ, т. к. имеет форму succ(succ t_1), но не существует правила, выводящего что-либо из succ t без посылки о выводимости чего-либо из t или включающего подстроку succ(succ.

Док-во для пед аналогично.

- 5. Докажите эквивалентность семантик $[\![t]\!]$ и $\emptyset; t \to^* H; n$ (где n- терм в нормальной форме). Иными словами, докажите следующее:
 - Для любых терма t и значения v, $\llbracket t \rrbracket = \llbracket v \rrbracket$ тогда и только тогда, когда $\emptyset; t \longrightarrow^* H; v$ для некоторой кучи H;
 - Для любого терма t, $\llbracket t \rrbracket = \bot$ тогда и только тогда, когда ни для каких кучи H и значения v не верно, что \emptyset ; $t \to^* H$; v.
 - (a) По индукции. Если t=v, то тривиально. Пусть $H;t \to^* H';v$ и $\llbracket t \rrbracket = \llbracket v \rrbracket$. Тогда
 - H; succ $t \rightarrow^* H'$; succ v и $\llbracket \operatorname{succ} t \rrbracket = \llbracket t \rrbracket + 1 = \llbracket v \rrbracket + 1 = \llbracket \operatorname{succ} v \rrbracket$ (аналогично для pred t);
 - H; $\operatorname{succ}(\operatorname{pred} t) \to H$; $t \to^* H'$; v и $[\operatorname{succ}(\operatorname{pred} t)] = ([t] 1) + 1 = [t] = [v]$ (аналогично для $\operatorname{pred}(\operatorname{succ} t)$);
 - H; zero + $t \rightarrow H$; $t \rightarrow^* H'$; v u $\llbracket zero + t \rrbracket = 0 + \llbracket t \rrbracket = \llbracket t \rrbracket = \llbracket v \rrbracket$;

Пусть H; succ $t_1 + t_2 \rightarrow^* v$ и $\llbracket t_1 + t_2 \rrbracket = \llbracket v \rrbracket$. Тогда H; succ $t_1 + t_2 \rightarrow H$; succ $(t_1 + t_2) \rightarrow^* H'$; succ (v) и $\llbracket \operatorname{succ} t_1 + t_2 \rrbracket = \llbracket t_1 \rrbracket + 1 + \llbracket t_2 \rrbracket = \llbracket v \rrbracket + 1 = \llbracket \operatorname{succ} v \rrbracket$ (аналогично для pred $t_1 + t_2$).

Пусть $H;t_1 \rightarrow^* H';$ true, $[\![t_1]\!] = T$ и $H;t_2 \rightarrow^* H';v_2$. Тогда H; if t_1 then t_2 else $t_3 \rightarrow H;t_2 \rightarrow^* H';t_2$ и $[\![$ if t_1 then t_2 else $t_3]\!] = t_2$ (аналогично для $H;t_1 \rightarrow^* H';$ false).

Пусть $H;t_1 \to^* H';v_1$, $\llbracket t_1 \rrbracket = \llbracket v_1 \rrbracket$ и $\llbracket x \rrbracket \in \{var\}$. Тогда $H; \det x = t_1 \operatorname{in} t_2 \to^* H'; \det x = v_1 \operatorname{in} t_2 \to H \cup \{x = v_1\}; t_2$ и $\llbracket \det x = t_1 \operatorname{in} t_2 \rrbracket = \llbracket [t_1/x]t_2 \rrbracket$. Докажем эквивалентность для $H \cup \{x = v_1\}; t_2$ и $\llbracket [t_1/x]t_2 \rrbracket$. Пусть $(x = t) \in H$. Тогда $H; x \to H; t$ и $\llbracket [t/x]x \rrbracket = t$. Далее по индукции.

- (b) Обозначим как $H; t \rightarrow$, если $\neg \exists H', v \in V(H; t \rightarrow^* H'v)$.
 - Если $\llbracket t \rrbracket \in \text{var}$, то $t \notin v$ и t в НФ, т.е. $\emptyset; t \not \to$.

Пусть [[$\operatorname{succ} t$]] = ⊥, т. е. [[t]] \notin I. Тогда t \notin pos \cup neg, и ¬∃t' \in pos \cup neg (t = pred t'). Тогда \emptyset ; $\operatorname{succ} t$ $\not\longrightarrow$. Для остальных операторов аналогично.

6. Введите правила типизации $\Gamma \vdash t : T$ языка IntBool + Let. Докажите preservation и progress теоремы относительно $H; t \to H'; t'$.

```
 \begin{split} & \cdot \frac{x:T \in \Gamma}{\Gamma \vdash x:T} \\ & \cdot \text{ [[true]]} : \mathbb{B} \\ & \cdot \text{ [[false]]} = \mathbb{B} \\ & \cdot \text{ [[zero]]} = \mathbb{I} \\ & \cdot \frac{\Gamma \vdash t:\mathbb{I}}{\Gamma \vdash \text{succ}\,t:\mathbb{I}} \\ & \cdot \frac{\Gamma \vdash t:\mathbb{I}}{\Gamma \vdash \text{pred}\,t:\mathbb{I}} \\ & \cdot \frac{\Gamma \vdash t_1,t_2:\mathbb{I}}{\Gamma \vdash t_1+t_2:\mathbb{I}} \\ & \cdot \frac{\Gamma \vdash t_1:\mathbb{B} \land t_2,t_3:\mathbb{T}}{\Gamma \vdash \text{if}\,t_1\,\text{then}\,t_2\,\text{else}\,t_3:\mathbb{T}} \\ & \cdot \frac{\Gamma \vdash t_1:T \quad \Gamma \land x:T \vdash t_2:U}{\Gamma \vdash \text{let}\,x=t_1\,\text{in}\,t_2:U} \end{split}
```

- 7. Докажите здравость (корректность) введённой типизации относительно [_].
- 8. Всегда ли верно, что если $[\![t]\!] \in \mathbb{Z}$ или $[\![t]\!] \in \mathbb{B}$, то $\cdot \vdash t : T$ для некоторого T? (Полна ли система типов?) Нет. Например, $[\![if]\!]$ true then 0 else false $[\![t]\!] \in \mathbb{Z}$; но так как $\neg \exists T(0, \text{false} \in T)$, посылка для типизации условного оператора не выполняется, и $\neg \exists T : \cdot \vdash$ if true then 0 else false : T.