Análisis Funcional I – 2021 Práctico 5

Espacios vectoriales topológicos

(1) (a) Probar que si 1 y <math>1 - 1/p = 1/p' entonces $(\ell^p)'$ es isométricamente isomorfo a $\ell^{p'}$.

- (b) Probar que $(\ell^1)'$ es isométricamente isomorfo a ℓ^{∞} . ¿Vale el mismo resultado intercambiando los roles de ℓ^1 y ℓ^{∞} ?
- (c) Probar que $(c_0)'$ es isométricamente isomorfo a ℓ^1 . ¿Qué ocurre con c'?
- (d) Probar que si $0 entonces existe un isomorfismo lineal entre <math>(\ell^p)'$ y ℓ^{∞} .
- (2) El Teorema de Banach-Steinhauss (o Principio de Acotación Uniforme) no vale cuando X no es completo. Considerar

$$X := \{x = \{x_i\}_{i=1}^{\infty}, \ x_i = 0 \text{ salvo un número finito de i's } \}.$$

Notar que X es un espacio normado con la $||\cdot||_1$, $||\cdot||_2$ o $||\cdot||_{\infty}$.

Sea
$$A_n(x) := nx_n$$
. Probar

- (a) $A_n \in X' := \mathcal{B}(X, \mathcal{B}K)$.
- (b) $\sup_n |A_n(x)| < \infty$ y $\lim_{n \to \infty} ||A_n|| = \infty$ (verificarlo con $||\cdot||_1$).
- (3) Sea N un espacio normado.
 - (a) Probar que para todo $x \neq 0$ en N existe $F \in N'$ tal que ||F|| = 1 y F(x) = ||x||.
 - (b) N' separa puntos en N, es decir, dados $x_1 \neq x_2 \in N$ existe $F \in N'$ tal que $F(x_1) \neq F(x_2)$.
 - (c) Probar que para todo $x \in N$ existe $\tilde{x}: N' \to \mathbb{K}$, definida por $\tilde{x}(F) = F(x)$ lineal y continua, es decir \tilde{x} pertenece al bidual o doble-dual N'' := (N')' de N.
 - (d) Probar que la aplicación $x \to \tilde{x}$ es lineal e isométrica.
- (4) Sea N un espacio normado, $S \subseteq N$ un subespacio vectorial cerrado. Probar que para todo $x \notin S$ existe $F \in N'$ tal que $F(x) \neq 0 = F(y)$ para todo $y \in S$.
- (5) Hacer los ejercicios 5.26, 5.28 y 5.30 de la página 165 del libro Linear Functional Analysis de Rynne y Youngson.
- (6) Sea S un subconjunto de un EV X. Entonces su capsula convexa es

$$S_c = \left\{ \sum_{i=1}^n \alpha_i x_i : x_i \in S, \ \alpha_i > 0, \ \sum_{i=1}^n \alpha_i = 1 \ y \ n \in \mathbb{N} \right\}.$$

(7) Probar que si S es balanceado, su cápsula convexa S_c es balanceada. Deducir que en un EVTLC, los entornos del $0 \in X$ balanceados y convexos (y absorbentes por ser entornos del origen) forman base de entornos.

1

- (8) Sea X un EV y \mathcal{P} una familia no vacia de seminormas sobre X. Para cada $p \in \mathcal{P}$ y $\epsilon > 0$ definimos $V(p,\epsilon) = \{x \in X : p(x) < \epsilon\}$. Sea \mathcal{U} el conjunto de todas las intersecciones finitas de estos conjuntos. Demostrar que \mathcal{U} cumple el Teorema 1 y por lo tanto existe una única topología τ que admite a \mathcal{U} como base de entornos de 0.
- (9) Sea $X = l^1(\mathbb{N})$ y sea $p_i(x) = |x_i|, i \in \mathbb{N}$. Probar que $\{p_i\}$ es una familia de seminormas que determinan sobre X una topología localmente convexa. Determinar los entornos del cero. Esta topología es equivalente a la generada por la $\|\cdot\|_1$?
- (10) Sea X un EVT sobre \mathbb{K} , con $\mathbb{K} = \mathbb{R} \ o \ \mathbb{K}$. Sea $\Lambda : X \to \mathbb{K}$ lineal, no nula. Probar que Λ es una aplicación abierta.
- (11) Dar ejemplo de un EVTLC no metrizable y de un EVT metrizable no LC.
- (12) Probar que un EVT T_1 es normable si y solo si el origen admite un entorno S convexo y acotado. Ayuda: usar la funcional de Minkowski de S.
- (13) Sean (X, \mathcal{P}) y (Y, \mathcal{Q}) dos espacios vectoriales topológicos localmente convexos (EVTLC), generados por las familias de seminormas \mathcal{P} y \mathcal{Q} respectivamente. Sea $A: X \to Y$ lineal. Entonces: A es continua si y sólo si, para todo $q \in \mathcal{Q}$ existen $p_1, \ldots, p_n \in \mathcal{P}$ y M > 0 tales que

$$q(A(x)) \leq M[p_1(x) + \cdots + p_n(x)]$$

para todo $x \in X$.

(14) Sea $\mathcal{P} = \{p_n\}_{n \in \mathbb{N}}$ una familia númerable de seminormas en un EV X, tal que para todo $x \in X$ existe $p_n \in \mathcal{P}$ con $p_n(x) \neq 0$. Demostrar que

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)},$$

es una distancia en X.

(15) Sea $C := C[0,1] = \{f[0,1] \to \mathbb{C}, \text{continuas}\}$. Definimos

$$d(f,g) = \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx.$$

Sea (C, σ) el espacio C con la topología inducida por esta métrica y (C, τ) el espacio C con la topología de las seminormas

$$p_x(f) = |f(x)|, \quad 0 \le x \le 1.$$

- (a) Probar que todo conjunto τ -acotado también es σ -acotado y por lo tanto la $id:(C,\tau)\to(C,\sigma)$ manda conjuntos acotados en conjuntos acotados.
- (b) Probar que $id:(C,\tau)\to (C,\sigma)$ no es continua, a pesar que es sucesionalmente continua, (por el teorema de la convergencia dominada), y por lo tanto (C,τ) no es metrizable. Probar también que (C,τ) no tiene base local numerable.
- (c) Probar que toda funcional lineal en (C, τ) es de la forma $f \to \sum_{i=1}^n c_i f(x_i)$, para alguna elección de puntos $x_1, \ldots, x_n \in [0, 1]$ y algunos $c_i \in \mathbb{C}$.
- (d) Probar que los únicos abiertos convexos de (C, σ) son \emptyset y C.
- (e) $id:(C,\sigma)\to(C,\tau)$, no es continua.
- (16) Sea $\mathcal{S}(\mathbb{R})$ el espacio de las funciones de Schwartz.
 - (a) Probar que las aplicaciones $f \to x^n f$, $f \to \frac{d^n}{dx^n} f$ y $f \to g f$ son continuas de $\mathcal{S}(\mathbb{R})$ en $\mathcal{S}(\mathbb{R})$ donde $g \in \mathcal{S}$.
 - (b) Probar que para cada f fija en $\mathcal{S}(\mathbb{R})$ la aplicación $h \to \tau_h(f) = f(x h)$ es continua de \mathbb{R} en $\mathcal{S}(\mathbb{R})$. Además, para cada h fijo, la aplicación $f \to \tau_h(f)$ es continua de $\mathcal{S}(\mathbb{R})$ en $\mathcal{S}(\mathbb{R})$.
 - (c) Probar que la inclusión de $\mathcal{S}(\mathbb{R})$ en $L^p(\mathbb{R})$, $1 \leq p \leq \infty$ y la inclusión de $\mathcal{S}(\mathbb{R})$ en $C_0(\mathbb{R})$ son continuas, donde $C_0(\mathbb{R})$ es el espacio de todas las funciones continuas f tal que $\lim_{|x|\to\infty} f(x) = 0$ con la norma infinito.
- (17) Probar que las siguientes funcionales están en el espacio de distribuciones temperadas $\mathcal{S}'(\mathbb{R})$:
 - (a) $\delta_a f = f(a)$.
 - (b) $L_q(f) = \int fg$ donde $g \in L^p(\mathbb{R})$ y $1 \leq p \leq \infty$.
- (18) Para $f \in \mathcal{S}(\mathbb{R})$ definimos en valor principal de $\frac{1}{x}$ en f como

$$v.p.$$
 $\frac{1}{x}(f) := \lim_{\epsilon \to 0} \int_{|t| > \epsilon} \frac{f(t)}{t} dt.$

Demostrar que el valor principal de $\frac{1}{x}$ están en el espacio de distribuciones temperadas $\mathcal{S}'(\mathbb{R})$. Ayuda, para cada ϵ dividir la integral en los conjuntos $\{|t| > 1\}$ y $\{1 \ge |t| > \epsilon\}$ en este ultimo usar el teorema del valor medio.

- (19) Sea X = C([0,1]). Consideremos en X las topologías generadas por $||\cdot||_{\infty}$ y la generada por la familia de seminormas $\mathcal{P}_x(f) = |f(x)|$. Si $T: X \to X$ es el operador definido por $(Tf)(x) = \int_0^x f(t)dt$, probar que:
 - (a) $T:(X,||\cdot||_{\infty})\to (X,||\cdot||_{\infty})$ es continuo y hallar su norma.
 - (b) $T:(X,||\cdot||_{\infty})\to (X,\mathcal{P}_x)$ es una aplicación continua.
 - (c) $T:(X,\mathcal{P}_x)\to (X,\mathcal{P}_x)$ no es continua.