浙江大学

面向对象程序设计

大程序报告

姓名: 叶泽凯 学号: 3200104207 电话: _18658705712_

指导老师: 李际军

2021~2022 秋冬学期 ___2021_年_12_月_21_日

报告撰写注意事项

- 1) 图文并茂。文字通顺,语言流畅,无错别字。
- 2) 书写格式规范,排版良好,内容完整。
- 3) 存在拼凑、剽窃等现象一律认定为抄袭; 0分
- 4) 蓝色文字为说明,在最后提交的终稿版本,请删除这些文字。

目 录

大程	序简介	4
1.1	选题背景及意义	4
1.2	目标要求	4
1.3		
功能	需求分析	4
程序	开发设计	5
3.1	总体架构和类体系设计	5
3.2	类体系设计	6
3.3		
3.4		
署部	运行和使用说明	11
4.1	编译安装	11
4.2	运行测试	15
4.3	使用操作	16
总结	和参考文献资料	20
5.1	编码规范	20
5.2	收获感言	20
5.3	参考文献	20
	1.1 1.2 1.3 功能 程序 3.1 3.2 3.3 3.4 部署 4.1 4.2 4.3 总结 5.1 5.1	1.2 目标要求 1.3 术语说明 功能需求分析 程序开发设计 3.1 总体架构和类体系设计 3.2 类体系设计 3.3 主要类内部函数功能设计描述 3.4 源代码文件组织设计 部署运行和使用说明 4.1 编译安装 4.2 运行测试 4.3 使用操作 总结和参考文献资料 5.1 编码规范 5.2 收获感言

Mashware4017 大程序设计

1 大程序简介

1.1 选题背景及意义

MeshLab 是一个开源、可移植和可扩展的三维几何处理系统,主要用于交互处理和非结构化编辑三维三角形网格。本次大程序设计诣在实现一个小规模的 MeshLab,以更深入地了解 C++的特性,以及对图形学、项目构建等有初步了解。

1.2 目标要求

- 1) 提供美观、合理、符合传统习惯的界面
- 2)包含文件、编辑、显示设置、帮助等基本菜单体系
- 3) 支持对网格的加密和稀疏等高级操作

1.3 术语说明

术语	说明	
OpenGL	用于渲染 2D、3D 矢量图形的跨语言、跨平台的应用程序编	
	程接口(API)	
Qt	一个用于创建图形化用户接口的窗口工具链	
Visual Studio 2019	C++编程 IDE,项目构建平台	
VCGLib	CGLib Visualization and Computer Graphics Library,可视化与计算	
	图形学库,用于三角网络和四面体网络的控制、处理和	
	OpenGL 的显示	
VBO	顶点缓存对象,将绘制图形的信息投喂给 VBO,再由 VBO	
	传递给显卡	
VAO	顶点数组对象,保存对 VBO 内信息利用方式,并通知显卡	

2 功能需求分析

①主要功能列举如下表

功能	类			
文件操作窗口	QMainWindow			
模型读取	vcg::tri::io::Importer			
模型保存	vcg::tri::io::Exporter			
模型移动、翻转、大小改变	矩阵实现			

模型稀疏	vcg::tri::Clustering
模型加密	vcg::tri::Refine
模型平滑	vcg::tri::Smooth
帮助窗口	QMainWindow
状态栏	QMainWindow

②需要的主要库列举如下

类	备注
veglib	网格操作数学库
QMainWindow	UI 设计与响应功能库
QopenGLFunctions_4_4_Core	Qt 的 OpenGL 库

③性能要求

- 1) 图像操作不卡顿
- 2) 能打开大小合适的 3D 图像文件

3 程序开发设计

3.1 总体架构和类体系设计

总体架构类图如上所示, 所有的类包含均为公有继承, 深色部分为我自己实现的部分

3.2 功能算法类体系设计

焦点关注功能的类体系设计,尤其是自己简化的思路

1) 总体

本项目的功能类体系,为 mymodel 类和 myvcg 类 主要功能参考了网上的资料以及 vcg 自带的 app 示例。 其中光滑(smooth),稀疏(cluster),加密(refine)的主要代码也是参考了 ①trimesh_smooth ②trimesh_clustering ③trimesh_refine 三个样例文件

2) mymodel 类

mymodel 主要实现对模型的抽象与视角的切换 其中视角的切换未应用摄像机概念,直接通过矩阵的乘法,对点的坐标进行改变

```
矩阵的定义如下,分别对应着旋转和大小的改变
float RotateX[9] = \{
                                            float RotateY [9] = {
    1.0f, +0.0f, 0.0f,
                                                cos1, 0.0f, +sin1,
    0.0f, +cos1, sin1,
                                                +0.0f, 1.0f, +0.0f,
    0.0f, -sin1, cos1
                                                -sin1, 0.0f, cos1
};
                                           };
float RotateY[9] = {
                                           float RotateZ [9] = {
    cos1, 0.0f, -sin1,
                                                cos1, -sin1, 0.0f,
    0.0f, 1.0f, +0.0f,
                                                +sin1, cos1, 0.0f,
    sin1, 0.0f, +cos1
                                                +0.0f, +0.0f, 1.0f
                                           };
float RotateZ[9] = {
                                           float Bigger[9] = {
    +cos1, sin1, 0.0f,
                                                1.25f, 0.0f, 0.0f,
                                                0.0f, 1.25f, 0.0f,
    -sin1, cos1, 0.0f,
                                                0.0f, 0.0f, 1.25f
    +0.0f, 0.0f, 1.0f
                                           }:
float RotateX [9] = {
                                           float Smaller[9] = {
    1.0f, +0.0f, +0.0f,
                                                0.8f, 0.0f, 0.0f,
    0.0f, cos1, -sin1,
                                                0.0f, 0.8f, 0.0f,
    0.0f, +sin1, cos1
                                                0.0f, 0.0f, 0.8f
```

3) myvcg 类

对 vcg 的自带类进行继承,继承关系如下

4) 动作实现

每次动作被捕捉后,传入 mymodel, mymodel 做出相应反应, 若涉及网格的变换

抑或读取/保存,进一步调用 myvcg 类,否则将最新计算出的点对投喂给 VBO,调用 update()函数,进行更新。

3.3 主要类内部函数功能设计描述

函数原型: Update()

功能描述: 更新 model 的绘制坐标

参数描述:无 返回值描述:无

重要局部变量定义:无

重要局部变量用途描述:无

函数算法描述: 遍历点集(x,y,z), 与大小矩阵和旋转矩阵依次相乘后, 再加上位

移向量,得到呈现在画板上的矩阵

函数原型: Draw()

功能描述: 绘制 model

参数描述:无 返回值描述:无

重要局部变量定义:无

重要局部变量用途描述:无

函数算法描述: 先清空画布, 载入 VAO, 设置绘制模式为线模式/填充模式, 再

进行绘制

函数原型: Extract (bool hav) 功能描述: 提取 model 点集

参数描述: hav, 是否是第一次调用

返回值描述:无

重要局部变量定义:无

重要局部变量用途描述:无

函数算法描述:如果已经被调用过了,清理原来 vertex 和 vertexw 的内存。遍历

图像包含的面,将面的三个角的(x,y,z)坐标依次加入 vertex

函数原型: ViewFill()

功能描述: 切换为填充模式

参数描述:无 返回值描述:无

重要局部变量定义:无

重要局部变量用途描述:无

函数算法描述:将 mode 切换为 ModeFill 模式,然后进行更新

函数原型: ViewLine ()

功能描述: 切换为线模式

参数描述:无

返回值描述:无

重要局部变量定义:无

重要局部变量用途描述:无

函数算法描述:将 mode 切换为 ModeLine 模式,然后进行更新

3.4 源代码文件组织设计

<文件目录结构>

- 1) 文件函数结构
- 1)Mashware4017.h

②Mashware4017.cpp

定义了 Mashware 4017. h 中声明的所有函数

3myopenglwidget.h

- ④myopenglwidget.cpp
- 定义了 myopenglwidget. h 中声明的所有函数
- ⑤mymodel.h

6myvcg.h

2) 多文件构成机制

①总的文件架构如下

②文件关系可由下述思维导图展示

备注:有颜色部分为我自己实现的代码;由于篇幅限制,忽略了少部分文件。

4 部署运行和使用说明

4.1 编译安装

①运行压缩包内的 meshware4017. ms

③若想要查看源码,则可以将文件夹目录更改为你想保存的目录(若使用默认目录,则在保存文件的时候会出现权限错误) 安装选项,选择只有我或者任何人

④安装完毕

此时在桌面会生成一个可执行文件 Meshwar...

⑤双击打开

⑥打开文件

⑦选择任意模型打开

⑧以 bunny10k.ply 为例

进行操作(注意:稀疏操作目前仍存在算法不兼容的情况,可能会有弹窗提示或者会有图像消失的情形)(同时加密操作存在次数限制)

4.2 运行测试

打开一个某个文件 按 e 发现无法加密 定位至 Refine 函数

vcg::tri::Refine(MyMesh, vcg::tri::MidPoint(MyMesh) > (*this, vcg::tri::MidPoint(MyMesh) (this), 0.1); 发现参数设置 0.1 可能过大

将参数调整到0.0,可以进行进一步加密

4.3 使用操作

打开图像后

可点击工具栏图标/菜单栏项目/快捷键,对图像进行操作如:旋转

放大

缩小

移动

加密

光滑化

左下角的菜单栏会实时提示当前的操作 点击保存

即可成功保存图像(如果发生权限错误,请更换安装时的目录)

5 总结和参考文献资料

5.1 编码规范

- ①本次代码, myvcg.h 和 mymodel.h 都包含了函数的定义, 这是参考了 vcglib 的 实现形式, 可以方便迁移与环境的配置。
- ②myopenglwidget.h 中的函数均使用小驼峰命名法,mymodel.h 和 myvcg.h 里的函数均使用大驼峰命名法
- ③对具有特殊含义的变量,都进行了宏定义

5.2 收获感言

这次实验是我第一次从头开始一个人构建项目,在过程中通过网上搜集资料,咨询有相关经验的同学一些技术问题,磕磕绊绊花了一个多星期终于完成了这个项目。当然这个项目有不少差强人意的地方,比如稀疏和加密并不能兼容等等。但我从中仍然收获了许多:比如显卡的运作逻辑,opengl规范,Qt的使用,visual stduo 的项目管理,vcglib 的使用。更重要的,就是资料的搜集能力以及官网文档的阅读真的很重要。十分有幸能够有这次动手利用现有库构建项目的机会!

5.3 参考文献

- [1]https://github.com/cnr-isti-vclab/vcglib
- [2]https://github.com/cnr-isti-vclab/meshlab
- [3]https://blog.csdn.net/qq 31804159/article/details/103228706
- [4]https://www.cnblogs.com/liangliangh/p/4165228.html
- [5]http://vcg.isti.cnr.it/vcglib
- [6]https://www.bilibili.com/video/BV1MJ411u7Bc?p=20