Rotations for Computer Vision and Robotics

Umberto Castellani Robotics, vision and control

Rotations

- Rotations, and spatial transformations, are very important for many task in computer vision and robotics.
- Rotations should be:
 - Composed,
 - Inverted,
 - Differentiated,
 - interpolated

Each of these aspects can be better addressed with a particular rotation techniques!

Rotations

- Rotation matrix,
- Euler angles,
- Axis-angles representation,
- Quaternions,
- Exponential matrix

Rotations as 3x3 matrices (9 scalars)

- after all, rotations are linear operators
- Rot = 3x3 submatrix of a 4x4 rotation affine matrix

Reminder: R is orthonormal, with det = +1

Rotations as 3x3 matries (9 scalars)

- Wasteful in RAM (9 scalars, versus a minimum of 3)
- Easy to apply (matrix-vector prod: 9 mults)
- Relat. easy to compose (matrix-matrix prod: 27 x mult)
- Immediate to invert (just transpose)
- Interpolate: troubles

$$k \left[\begin{array}{c} R_0 \end{array} \right] + (1-k) \left[\begin{array}{c} R_1 \end{array} \right] = \left[\begin{array}{c} M \end{array} \right]$$
NOT a rotation

Compositions

- Multiplying matrices composites the rotation
 - remember: neither matrix-matrix product, nor composition of 3D rotations, is commutative!
- e.g.: $R_{TOT} = R_0 \cdot R_1$
 - rotate as R₁ followed by R₀
 - with $R_0 \cdot R_1$ rotation matrices
 - i.e. orthonormal matrices with det = 1
- R_{TOT} is a rotation matrix too, in theory
- in practice, approximation errors can break that
 - especially after long sequences of compositions.

Rotations as 3x3 matrices (9 scalars)

- Nice plus:

 its three columns are
 the three versors representing
 the X, Y, Z axis of the *local* space
 in global space
 - i.e. the world-space versors

Osservazione:

trasf. di rotazione di 90 gradi senso antiorario

In 3D:

trasf. di rotazione di 90 gradi attorno all'asse delle z

Matrice di trasformazione: rotazione attorno all'asse delle Z

$$f\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} -y \\ x \\ z \\ 1 \end{pmatrix} \qquad \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} -y \\ x \\ z \\ 1 \end{bmatrix}$$

 $R_{Z,90}^{\circ}$ matrice di rotazione di 90° attorno all'asse delle Z

Rotazioni in 3D: esercizi

- ✓ Es: definire la trasf *f*
 - ⇒di rotazione di 180° attorno all'asse delle Z
 - ⇒di 90° attorno all'asse delle X e Y

Come cambia la matrice di trasformazione?

Trasf. di rotazione in 2D generica

(attorno all'origine, di un angolo β generico, in senso antiorario)

Trasf. di rotazione in 2D (attorno all'origine, di un angolo β generico, in senso antiorario)

In coordinate polari, la rotazione sarebbe banale: l'angolo α incrementa di β , la distanza ρ rimane invariata

$$x = \rho \cos \alpha$$

partenza:

$$y = \rho \sin \alpha$$

arrivo:

$$x' = \rho \cos(\alpha + \beta) = \rho \cos\alpha \cos\beta - \rho \sin\alpha \sin\beta = x \cos\beta - y \sin\beta$$
$$y' = \rho \sin(\alpha + \beta) = \rho \cos\alpha \sin\beta + \rho \sin\alpha \cos\beta = x \sin\beta + y \cos\beta$$

Trasf. di rotazione in 2D (attorno all'origine, di un angolo β generico, in senso antiorario)

Quindi:

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \end{pmatrix}$$

alla fine, il passaggio alle coord polari non serve :-)

bastano il valore di seno e coseno dell'angolo di rotazione β

Trasf. di rotazione in 2D (attorno all'origine, di un angolo β generico, in senso antiorario)

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \end{pmatrix}$$

Nota: questa trasformazione ruota attorno all'origine degli assi (non certo attorno al centro delle figure)

Trasf. di **rotazione** 3D attorno all'asse z (di un angolo β)

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \\ z \end{pmatrix}$$

Torniamo in 3D:

Trasf. di **rotazione attorno all'asse** \mathcal{Z} (di un angolo β)

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \\ z \end{pmatrix}$$

Rotazione 3D attorno all'asse z... come moltiplicazione con matrice

$$x' = x \cos \beta - y \sin \beta$$
$$y' = x \sin \beta + y \cos \beta$$
$$z' = z$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = R_{Z(\beta)} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \cos\beta - y \sin\beta \\ x \sin\beta + y \cos\beta \\ z \\ 1 \end{bmatrix}$$

Trasf, di rotazione attorno ad uno dei tre assi

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \cos \beta - z \sin \beta \\ y \sin \beta + z \cos \beta \end{pmatrix} \qquad f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \sin \beta + x \cos \beta \\ y \\ z \cos \beta - x \sin \beta \end{pmatrix} \qquad f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos \beta - y \sin \beta \\ x \sin \beta + y \cos \beta \\ z \end{pmatrix}$$

Matr di Rotazione attorno all'asse x, y, o z

$$R_X(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_Y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

e le inverse?
$$R_{X}(\theta)^{-1} = R_{X}(-\theta) = R_{X}(\theta)^{T}$$

$$R_{X}(\theta)^{-1} = R_{X}(\theta)^{T}$$

$$R_{X}(\theta)^{-1} = R_{X}(\theta)^{T}$$

$$R_{X}(\theta)^{-1} = R_{X}(\theta)^{T}$$

Matrici di rotazione - recap

- ✓ Tutte le matrici di rotazione con asse qualsiasi passante per l'origine le posso costruire componendo rotazioni sui tre assi X, Y, Z
- ✓ Loro inversa: la trasposta
- ✓ Sono matrici ortonormali

Rotazione intorno ad un asse parallelo all'asse z

Rotazione intorno ad un asse parallelo all'asse z

Ripassino: moltiplicazione matrice matrice

✓ Attenzione all'inversione: $(AB)^{-1} = B^{-1}A^{-1}$

✓ Associativa si, ma commutativa no!

⇒ previsione:
determinare il corretto ordine delle trasformazioni non sarà intuitivo

Inversione di una affine generica

nb: (A B)⁻¹ = B⁻¹ A⁻¹

Sistema di riferimento o reference *frame* oppure *spazio*

- ✓ Definito da
 - \Rightarrow una base vettoriale $\{a_x, a_y, a_z\}$ (assi dello spazio)
 - ⇒un punto di *origine* •
- ✓ Posso esprimere (univocamente) ogni punto p come:

$$p = a_x x + a_y y + a_z z + o$$

✓ cioè:
$$\mathbf{v} = \begin{bmatrix} \mathbf{a_x} & \mathbf{a_y} & \mathbf{a_z} & \mathbf{o} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$
 coordinate omogenee di \mathbf{p}

Es: rot di 45° su Z

 $\begin{bmatrix} +0.7 & -0.7 & 0 & 0 \\ +0.7 & +0.7 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \end{bmatrix} \begin{bmatrix} -5.0 \\ 1.0 \\ 0.0 \\ 1 \end{bmatrix} = \begin{bmatrix} -4.6 \\ -2.5 \\ 0.0 \\ 1 \end{bmatrix}$

matrice per passare dal frame di partenza al frame di arrivo

Es: rot di 45° su Z

matrice per passare dal frame di partenza al frame di arrivo

Es: rot di 45° su Z

matrice per passare dal frame di partenza al frame di arrivo

$$\begin{bmatrix} +0.7 & -0.7 & 0 & 0 \\ +0.7 & +0.7 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \end{bmatrix} \begin{bmatrix} -5.0 \\ 1.0 \\ 0.0 \\ 1 \end{bmatrix} = \begin{bmatrix} -4.4 \\ -2.8 \\ 0.0 \\ 1 \end{bmatrix}$$

$$\vec{x} \qquad \vec{y} \qquad \vec{z} \qquad \mathbf{0}$$

Rotations

Rotations as 3x3 matrices (9 scalars)

Eigendecomposition of Rotation matrix?

- -One real eigenvalue $\lambda=1$
- -What is the meaning of its associate eigenvector?

 $Rv = \lambda v = v$

Rotations

Euler angles

- Any 3D rotation can be expressed as:
 - \Rightarrow a rotation around X axis (by α degrees), followed by:
 - \Rightarrow a rotation around Y axis (by β degrees), followed by :
 - ⇒a rotation around Z axis (by y degrees):
- ✓ Angles α β γ :
 - "Euler angles" of a specific rotation
 - ⇒(therefore: its "coordinates")

this order (X-Y-Z) is chosen arbitrary but once and for all! (in a given game engine / lib)

✓ In nautical / aeronautical language, the three angles have names:

✓ A physical implementation: "three axes globe"

- ✓ Is it 1:1?
 - ⇒ 1 rotation ⇔ 1 euler angle triplet ?
- ✓ Almost
 - ⇒assuming angles are properly bounded

Ugly exception:

"GIMBAL LOCK"

- ⇒when 1st rotation makes the axes of the next two axes coincide
- ⇒this cannot be avoided, no matter how axes are chosen

Gimbal lock

√ https://www.youtube.com/watch?v=zc8b2Jo7mno

Rotations as Euler angles (3 scalars)

- ✓ Conciseness: perfect! 3 scalars for 3 DOF
- ✓ Application : a bit work-intensive
 - ⇒ three rotations in succession
- ✓ Interpolation : you can do that...
 - ⇒just interpolate the three angles
 - (remember to always "pick the shortest path" whenever interpolating angles: that is, must take in account the $\alpha \approx \alpha + 360 \ k$ equivalence)
 - ...but results won't always be nice!
- ✓ Composite / invert: not easy nor immediate...

from: euler angles to: 3x3 matrix

Easy to write down!

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

$$M = R_{z}(\gamma) \cdot R_{y}(\beta) \cdot R_{x}^{\dagger}(\alpha)$$

- ⇒ requires several sin / cos evaluations (and matrix mult)
- ✓ What about the vice-versa?
 - ⇒not very convenient: many inverse trigonometric functions

Rotations

Axis angle

Rotations as axis & angle

Any rotation can be expressed as:

• one rotation by some angle around some axis

must be appropriately chosen

- Angle: a scalar
- Axis: a versor (3 scalars)
 - note: the axis is considered to pass around the origin.
 For the more general case, combine with translations.

Rotations as axis & angle

- Compactness: good, 4 scalars
 - Just one more than bare minimum
- Ease of application: not too good ⊗
 - Ways include: switch to 3x3 matrix (exercise: how to) or to quaternion: see later
- Invert: super easy / quick
 - just flip the angle sign or the axis vector
 - question: what if both?
 answer: Rotation is inverted twice:
 it's back to the same rotation again!

Rotations as axis & angle: equivalent representations

- Therefore: $\left(a_x, a_y, a_z, \alpha\right)$ and $\left(-a_x, -a_y, -a_z, -\alpha\right)$ represent the same rotation
- Any rotation has two equivalent representations in this format
 - except the identity, which has infinitely many: angle α = 0, with any axis a_x , a_y , a_z
- This is always a bit inconvenient
 - Complicates interpolation ("shortest path" problems)
 - Complicates testing for equality/similarity, etc.

Rotations as axis & angle

- Compositing rotations: not at all immediate or easy to do ☺
- Interpolating rotations: very good!
 - Just interpolate axis and angle separately
 - Some *caveat*:
 - 1) shortest path for axes: first, flip either rotation (both its axis & angle) when this makes the two axes closer (how to test?)
 - 2) shortest path for angles: as usual, angles must then be interpolated... «modulo 360°»,
 - 3) interpolate between axes requires SLERP or NLERP (when interpolating versors)
 - 4) beware degenerate cases (opposite axes); point 1 avoids this
 - best results! Usually produces the "right" rotation

Rotations as axis and angle, variant: as axis angle

- axis: V (versor, |V| = 1)
- angle: α (scalar)
- can be represented as one vector V' (3 scalars)

$$v' = \alpha v$$

- angle $\alpha = |v'|$
- axis $v = v' / \alpha$
- note: when $\alpha = 0$, the axis is lost... it's ok, we don't need it!
- more compact, but fairly equivalent
 - actually, better: we now have only 1 representation per rotation (why?)
 ... including the identity (why?)

Rotations

Quaternions

A flashback: Complex Numbers in a nutshell 1/3

- It all starts with a «fantasy» assumption, which is: there is an imaginary number i such that $i^2 = -1$
 - And for any other purpose, i behaves just like a (non-zero) Real number
- Consequences:
 - We now have number of the form a+bi, with $a,b \in \mathbb{R}$, called complex numbers (the set is \mathbb{C})
 - The algebra of complex numbers (how to sum, multiply, invert them...) is simply determined by the «fantasy» assumption above

A flashback:

Complex Numbers in a nutshell 2/3

- For example, sum: $(a+b\ i) + (c+d\ i) = (a+c) + (b+d)i$
- For example, product (remembering $i^2 = -1$): (a + b i) * (c + d i) = (ac bd) + (ad + bc)i
- For example, inverse (check):

Inverse (check): the «coniugate» of
$$(a + b \ i)^{-1} = \frac{(a - b \ i)}{a^2 + b^2}$$
 the squared «magnitude»

• What is interesting to us is the **geometric interpretation** of these objects & operations

A flashback:

Complex Numbers in a nutshell 3/3

- a + b i represents the vector/point (a, b)
- Complex sum is vector sum
- Complex conjugate is mirroring with the Real axis (horizontal)
- Product is... add angles (with Real axis), multiply magnitudes
- Therefore,
 - product with a unitary (magnitude = 1) complex number is a pure 2D rotation
 - A complex number $c \in \mathbb{C}$ with ||c|| = 1 represents a 2D rot; multiply vector (x + y i) with c means to rotate it

Wouldn't it be cool to have the same for 3D rotations?

Quaternions

- New «fantasy» assumption: there are three different "imaginary" $\begin{cases} i^2 = k^2 = j^2 = -1 \\ ij = k \end{cases}, \quad ji = -k \\ jk = i \end{cases}, \quad kj = -i \\ ki = j \end{cases}, \quad ik = -j$ there are three
 - for any other purpose, i, j, k behave like real numbers
- Consequences:
 - We now have number of the form a i + b j + c k + d, with $a, b, c, d \in \mathbb{R}$, called Quaternions (their set is \mathbb{H})
 - The algebra of quaternions (how to sum, multiply, invert) them...) is simply determined by the «fantasy» assumption
 - Again, what is interesting to us is the **geometric interpretation**...

imaginary parts real part

Quaternions: how to write them (equivalently)

- Algebraic form: a i + b j + c k + d
 - often, omitting the zeros, e.g. i + 2k is a quaternion
- ullet As vectors of \mathbb{R}^4 : (a , b , c , d)
- As vector & scalar pair: (\vec{v}, d) imaginary part, a vector (\vec{v}, d) (\vec{v}, d)

Conjugate of a quaternion: invert the sign of the imaginary part

Quaternions: operations how-to

$$q \in \mathbb{H}$$

$$q = ai + bj + ck + d$$

- Sum, Scale, Interpolate, etc.: trivial
 - same as 4D vectors
- Magnitude

$$\|\mathbf{q}\| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

 $\|\mathbf{q}\|^2 = a^2 + b^2 + c^2 + d^2$

- «unitary» if it's 1
- same as 4D vectors

Quaternions: operations how-to

$$q \in \mathbb{H}$$

$$q = ai + bj + ck + d$$

- Product: just apply «fantasy» assumptions
 - Observe: product is not commutative (nor anticommut.)
 - (see next 3 slides for the math)

- «Coniugate»:
 - like for complex numbers:

$$\overline{\mathbf{q}} = -ai - bj - ck + d$$

Flip imaginary parts

- Inverse: (like for complex numbers) $q^{-1} = \bar{q} / ||q||^2$
 - For unitary quat, it's just the coniugate

Quaternion Product

×	a i	+	b j	+	c k	+	d	
e <i>i</i>		+		+		+		+
+								
\mathbf{f} j								
+								
g k								
+								
h								

Quaternion Product

 (\overrightarrow{w}, h) some vector some scalar

Quaternion Product

$$(\overrightarrow{w}, h)$$

$$(\overrightarrow{v}, d)$$

$$=$$

$$(\overrightarrow{w}d + \overrightarrow{v}h + \overrightarrow{w} \times \overrightarrow{v})$$

$$h d - \overrightarrow{w} \cdot \overrightarrow{v}$$

Quaternions: Geometric Interpretation!

- A quaternion $q = (\vec{v}, d)$ represents :
 - the 3D point or vector $\vec{\mathrm{v}}$, when d=0
 - a 3D rotation, when q is unit, i.e. $||q||^2 = ||\vec{v}||^2 + d^2 = 1$
 - (neither, otherwise)
- If q is a rotation and p is a point $(q, p \in \mathbb{H})$ then...
 - $\mathbf{q} \cdot \mathbf{p} \cdot \overline{\mathbf{q}}$ is the rotated point / vector
 - ullet \overline{q} is the inverse rotation
 - $q_0 \cdot q_1$ is the composited rotation (first q_1 then q_0)
 - (so, $\overline{q} \cdot p \cdot q$ is the pt rotated... in the *other* direction)

Compositing Quaternions: why it works

 $q_0, q_1, p \in \mathbb{H}$ q_0, q_1 represent rotations p represents a point

product is associative (like for complex numbers)

$$\overline{r} \cdot \overline{s} = \overline{s \cdot r}$$
(rules of quaternions)
(remember: product is not commutative)

3D Rotations as Quaternions

- quaternion q representing the 3D rotation of angle α around axis \hat{a} :
 - $q = \left(\sin\left(\frac{\alpha}{2}\right)\hat{a}, \cos\left(\frac{\alpha}{2}\right)\right)$

that is

•
$$q = \sin\left(\frac{\alpha}{2}\right) \hat{a}_{x} i + \sin\left(\frac{\alpha}{2}\right) \hat{a}_{y} j + \sin\left(\frac{\alpha}{2}\right) \hat{a}_{z} k + \cos\left(\frac{\alpha}{2}\right)$$

• Observe that $\|\mathbf{q}\|^2 = 1$

3D Rotations as Quaternions: a problem

• Around axis \hat{a} by angle α :

$$q = \left(\sin\left(\frac{\alpha}{2}\right)\hat{a}, \cos\left(\frac{\alpha}{2}\right)\right)$$

• Around axis $-\hat{a}$ by angle $(-\alpha)$: (it's the same rotation!)

$$q' = \left(-\sin\left(\frac{-\alpha}{2}\right)\widehat{a}, \cos\left(\frac{-\alpha}{2}\right)\right) = q$$
same quaternion :-)

Good! But:

• Around axis \hat{a} by angle $(\alpha + 360^{\circ})$: (it's the same rotation!)

$$q'' = \left(\sin\left(\frac{\alpha}{2} + 180^{\circ}\right) \hat{a}, \cos\left(\frac{\alpha}{2} + 180^{\circ}\right)\right) =$$

$$= \left(-\sin\left(\frac{\alpha}{2}\right) \hat{a}, -\cos\left(\frac{\alpha}{2}\right)\right) = -q$$

Conclusion:

 quaternion q and quaternion —q encode the same rotation

3D Rotations as Quaternions: a problem

Given a quaternion which is a rotation:

- Flip its real part: invert rotation
- Flip its imaginary part (conjugate): same
- Flip everything: same rotation

Every rotation is encoded by two different quaternions \mathbf{q} and $-\mathbf{q}$.

Interpolating two quaternions representing rotations

Good results, but two *caveats*:

- ⚠ Take the "shortest path" (as usual): flip 2nd quaternion first, if this makes them closer
 - Distance defined as dot product in 4D (they are 4D unit vectors!)
- ⚠ Loss of normality
 - Needs re-normalization (NLERP),
 - Or SLERP
 (again, consider them as 4D unit vectors)

Quaternions as rotations

- Almost as compact as possible to store (4 scalars)
- Trivial to invert
- Fast to composite
- Fast to apply
- Easy to ensure they are still rotations (just normalize)
 - Even after long sequences of cumulations, unlike matrices
- Behaves well under interpolation
 - Even with just NLERP better with SLERP

Rotations

Exponential matrix