Let's transform Hull-White Model for better!

$$x(t) = r(t) - f(0, t)$$

Kshitij Anand

02-02-2025

Introduction to the Hull-White Model

- The Hull-White model is a widely used interest rate model that allows the simulation of future short rates, enabling the modeling of future interest rate scenarios.
- Once interest rates are modeled, we can price interest rate derivatives efficiently.
- ► The Hull-White model belongs to the class of no-arbitrage models. The current term structure of interest rates is used as input.
- ► In this booklet, I present a transformation in the Hull-White Model for easy calibration.

The Hull-White Model Equation

The short rate r(t) under the Hull-White model is governed by the following stochastic differential equation:

$$dr(t) = k(t)[\theta(t) - r(t)]dt + \sigma(t)dW(t),$$

- r(t): The short-term interest rate at time t. It represents the instantaneous risk-free rate at which borrowing or lending occurs over an infinitesimally short period.
- ▶ k(t): The mean reversion speed of the short rate process. It determines how quickly r(t) reverts to its long-term mean $\theta(t)$.
- $\theta(t)$: The long-term mean level of the short rate. It represents the level towards which r(t) is expected to revert over time.
- $ightharpoonup \sigma(t)$: The volatility of the short-rate process. Quantifies the uncertainty or randomness in the evolution of r(t) over time.

What's the issue?

The current term structure of interest rates is incorporated into the above model via $\theta(t)$ using the following relation:

$$\theta(t) = \frac{1}{k(t)} \frac{\partial f(0,t)}{\partial t} + f(0,t) + \frac{1}{k(t)} \int_0^t e^{-2\int_u^t k(s) ds} \sigma(u)^2 du.$$

where:

$$f(0,T)=-\frac{\partial \ln P(0,T)}{\partial T},$$

The term $\frac{\partial f(0,t)}{\partial t}$ is quite problematic, especially when the initial forward curve is not smooth. This motivates us to present a transformed dynamics of the short rate.

Transformed Equation

Define

$$x(t) \triangleq r(t) - f(0, t).$$

Then, the model dynamic is as follows:-

$$dx(t) = (y(t) - k(t)x(t)) dt + \sigma(t)dW(t)$$

where

$$x(0) = 0$$
 and $y(t) = \int_0^t e^{-2\int_u^t k(s)ds} \sigma(u)^2 du$.

Dynamics of Zero Coupon Bonds

The price of a zero-coupon bond under the new dynamics is given as:

$$P(t,T) = \frac{P(0,T)}{P(0,t)} \exp\left(-k(t)G(t,T) - \frac{1}{2}y(t)G(t,T)^2\right)$$

where,

$$G(t,T) = \int_t^T e^{-\int_t^u k(s)ds} du.$$

Final Comments

- ▶ Transformation x(t) = r(t) f(0, t) helps to eliminate the explicit dependence on the initial forward curve f(0, t).
- ▶ It allows us to work with the deviations of the short rate r(t) from the initial term structure rather than the absolute values.
- The term $\frac{\partial f(0,t)}{\partial t}$ in the drift of r(t) can be problematic, especially when the initial yield curve is not smooth. This transformation helps to handle such cases.
- ► Calibrating the interest rate through the transformed dynamics leads to ease and greater accuracy.

Hints on Derivation

- The above dynamics can be derived using the forward rate dynamics from the HJM model, followed by basic calculus to obtain the transformed dynamics.
- ► The proof serves as an excellent exercise for revising engineering mathematics. Interested individuals can contact me for the full derivation.
- ➤ References: Volume 2, Interest Rate Modeling by Andersen and Piterbarg.