Zadania do samodzielnej realizacji

Korzystając ze środowiska Cedar (oprogramowanie do ściągnięcia http://sourceforge.net/projects/cedarlogic/)

1. Jakie funkcje logiczne realizują poniższe układy:

2. Zapisz tablice prawdy, wykonaj minimalizację metodą tablic Karnaughta oraz sprawdź otrzymane rezultaty używając środowiska Cedar (wszystkie kombinacje sygnałów wejściowych i odpowiedzi układu w oknie oscyloskopu) następujących funkcji:

a.
$$f(a,b) = a\overline{b} + \overline{a}b + ab$$

b.
$$f(a,b,c) = \overline{a(b+c)} + b(a+c)$$

c.
$$f(a,b) = (a + \overline{b})(\overline{a} + b)$$

3. Przedstaw w jak najprostszej postaci zapis funkcji zamieszczonej poniżej, działanie układu sprawdź w aplikacji CEDAR

$$f(a,b,c,d) = \bar{a}\bar{b}cd + abcd + abc\bar{d} + a\bar{b}cd$$

4. Znajdź minimalne postaci alternatywne funkcji z tablic Karnaugh'a. Sprawdź działanie układów w symulatorze CEDAR.

X ₁ X	2				X1 X2				
X ₃ X ₄ X ₅	_00	01	11	10	X ₃ X ₄ X ₅	00	01	11	10
000	1	1	1	1	000	1	1	1	1
001	1	1	0	1	001	1	1	1	1
011	0	0	0	0	011	1	1	1	1
010	0	1	1	0	010	1	1	1	1
110	0	1	1	0	110	0	1	1	0
111	0	0	0	0	111	0	0	0	1
101	1	1	0	1	101	1	1	1	1
100	1	1	1	1	100	1	1	1	1
n=5						n=	=5		

5. Zrealizuj dane funkcje w postaci minimalnej alternatywnej i koniunkcyjnej.

X ₁ X ₂ X ₃	f(x ₁ , x ₂ , x ₃)
000	1
001	1
010	0
011	-
100	0
101	-
110	0
111	1

X ₁ X ₂ X ₃	f(x ₁ , x ₂ , x ₃)
000	0
0 0 1	1
010	1
011	0
100	0
101	1
110	-
111	-

X ₁ X ₂ X ₃ X ₄	f(x ₁ , x ₂ , x ₃)
0000	0
0010	0
0100	1
0110	1
1000	0
1010	0
1100	1
1110	1

6. Zaprojektuj układ konwertujący kod naturalny binarny na kod BCD

b ₃ b ₂ b ₁ b ₀ (NKB)	y ₃ y ₂ y ₁ y ₀ (BCD)
0000	0000
0001	0001
0010	0010
0011	0011
0100	0100
0101	0101
0110	0110
0111	0111
1000	1000
1001	1001
1010	0000
1011	0001
1100	0010
1101	0011
1110	0100
1111	0101