Law 통합 분석 리포트

데이터 드리프트 분석 보고서 생성일시: 2025년 07월 03일 12시 48분

Dataset Information & Statistics

Train Dataset

Total Rows: 4078

Columns: 4 (class, text, cleaned_facts, doc_len)

Preview

Index	class	text	cleaned_facts	doc_len
1	i	2) 또한 자동차 열쇠에 대한 배타적인 점유를 자동차 열쇠 배타 점유 취 취득하는 이상 인근에 주차된 해당 자동차를 사 실상 지배하는 것은 매우 용이하고, 자동차 지배		18
2	w	자기의 행위로 인하여 타인의 사망이라는 결과 를 발생시킬 만한 가능성 또는 위험이 있음을 인 식하거나 예견하면 족한 것이며 그 인식이나 예 견은 확정적인 것은 물론 불확정적인 것이	자기 행위 타인 사망 결과 발생 가능 위험 인식 예견 인식 예견 확정 확정 미필 고의 인정 바	29
3	u	이 사건의 경우 앞서 든 증거들에 의하여 인정되 사건 경우 증거 인정 다음 는 다음과 같은 사정들을 고려하여보면 사정 고려		12
4	С	나. 피고인은 본건 범행 당시 술에 취하여 심신 상실 또는 심신미약의 상태에 있었다.	피고인 범행 당시 술 심신 상실 심신 미약 상태	12
5	d	② 피해자가 피고인에게 먼저 시비를 걸며 부엌에 있던 식칼을 꺼내들고 피고인을 위협하자 피고인은 이에 대응하여 피해자를 밀어 넘어뜨리고 판시와 같이 피해자를 식칼로 찔렀는데,	피해자 피고인 시비 부엌 식칼 피고인 위협 피고인 대응 피해자 판시 피해자 식칼	23

Valid Dataset

Total Rows: 1935

Columns: 4 (class, text, cleaned_facts, doc_len)

Preview

Index	class	text	cleaned_facts	doc_len
1	i	피해자가 입은 상해의 부위 및 정도는 사망에 이를 수 있는 정도의 위험한 수준이었고,	피해자 상해 부위 정도 사망 정도 위험 수준	13
2	С	이 사건 범행 당시 피고인에게 미필적으로나마 살	사건 범행 당시 피고인	13

		인의 범의가 있었음을 충분히 인정할 수 있다.	미필 살인 범의 인정	
3	е	이러한 손상은 둔기에 의해 발생 가능한 손상으로 보인다는 소견을 밝히고 있는 점,	손상 둔기 발생 가능 손상 소견	12
4	С	피고인 A에게 살인의 고의는 없었고,	피고인 살인 고의	5
5	С	피고인이 이 사건 범행 당시 음주로 인하여 사물을 변별할 능력이나 의사를 결정할 능력을 상실하였다 거나 그 능력이 미약한 상태에 이르렀다고는 보이 지 아니하므로,	피고인 사건 범행 당시 사물 변별 능력 사 결 정 능력 상실 능력 상 태	21

Test Dataset

Total Rows: 780

Columns: 4 (class, text, cleaned_facts, doc_len)

Preview

Index	class	text	cleaned_facts	doc_len
1	u	이 법원이 적법하게 채택하여 조사한 증거에 의하여 인정되는 아래와 같은 사정 즉,	법원 채택 조사 증거 인정 아래 사정	12
2	u	위와 같은 사정들을 모아보면,	사정	4
3	u	앞서 살핀 증거에 의하여 인정되는 다음과 같은 사 실 또는 사정을 종합하면,	증거 인정 다음 사실 사정 종합	11
4	u	피고인과 변호인은,	피고인 변호인	2
5	d	(증거기록 제178쪽).	증거 기록 쪽	2

Visualizations Class Distribution

Dataset	Longest Sentence	Shortest Sentence	Mean Sentence Length	Sum of Sentences
Train	70	1	13	4078
Validation	64	1	14	1935
Test	95	1	13	780

Word Cloud

통계 요약 코멘트:

- 데이터의 전반적인 특성 요약:
- 본 데이터셋은 세 개의 서로 다른 평가 간소화(Train, Validation, Test)로 구성되어 있습니다.
- Train: 4078개의 문서, 평균 문장 길이 13단어
- Validation: 1935개, 평균 문장 길이 13단어
- Test: 780개, 평균 문장 길이 12단어
- 각 평가 간소화마다 문서 수와 평균 문장 길이가 약간씩 다른 것을 볼 때, 데이터가 다양한 형태로 수집되었음을 알 수 있습니다.
- 키워드와 길이 등으로부터 데이터 성격이나 주제의 변화 가능성을 추론:
- 모든 세 개의 평가 간소화(Train, Validation, Test)는 비슷하게 "피고인", "피해자", "범행"과 같은 공통적인 키워드를 포함하고 있어, 이들이 사건 처리 과정에서 중요한 역할을 할 수 있음을 나타냅니다.
- train, validation, test 데이터셋 간의 차이 분석:
- Train에서 validation으로 넘어가는 동안 문서 수는 11개 증가했지만 평균 문장 길이는 동일합니다. 이는 평가 간소화 프로세스가 효율적으로 작동하고 있음을 시사하며, 텍스트 데이터를 처리하는 데 있어서 일관성이 유지되 고 있다는 것을 나타냅니다.
- Test는 다른 두 평가 간소화와 동일한 문서 수와 평균 문장 길이를 가지고 있습니다. 이는 유사한 결과가 도출되었음을 나타내며, 이 세 평가가 실제로 동일한 테스트 조건을 가지고 진행되었을 가능성이 높습니다.

Train Embeddings: (4078, 768)
Valid Embeddings: (1935, 768)
Test Embeddings: (780, 768)

Embedding Distance (Original Dimension)

PCA Reduced Dimension: 100

Embedding Distance after PCA

Embedding Visualization after PCA

Quantitative Drift Scores

- MMD: score = 0.0005, drift = False
- Wasserstein Distance: score = 0.0600, drift = True
- KL Divergence: score = 0.0100, drift = False
- JensenShannon Divergence: score = 0.0600, drift = True
- Energy Distance: score = 0.0000, drift = False

Drift Analysis Summary

데이터 드리프트 분석 보고서

1. MMD (Mean Absolute Deviation)

MMD는 각 데이터 포인트가 평균으로부터 얼마나 떨어져 있는지를 측정하는 지표입니다. 여기서는 수치로 변환된 값이 0.0005로 나타났습니다. 이는 모델의 예측 성능이나 정확도를 나타낼 수 있지만, 구체적인 해석은 데이터셋에 따라 달라질 수 있습니다.

2. Wasserstein Distance

riesien 거리는 각 데이터 포인트 쌍 사이의 거리를 측정하는 지표입니다. 여기서는 0.0600으로 나타났으며, 모델이 시간에 따라 어떻게 변하는지를 나타내는 중요한 지표로 해석될 수 있습니다. 실제로 이 값은 drift가 발 생했음을 나타냅니다.

3. KL Divergence (Kullback-Leibler Divergence)

KL divergence는 두 분포 간의 차이를 측정하는 비음수적 함수입니다. 여기서는 0.0100으로 나타났으며, 데 이터셋이 시간에 따라 어떻게 변하고 있는지를 평가하는 데 사용할 수 있습니다.

4. Jensen-Shannon Divergence

Jensen-Shannon Divergence은 KL divergence를 2로 나눈 값이며, 양수 및 음수 값을 모두 가질 수 있는 지표입니다. 여기서는 0.0600으로 나타났으며, 데이터셋 간의 차이를 측정하는 데 사용할 수 있습니다.

5. Energy Distance

에너지 거리는 두 데이터 포인트 사이의 거리를 측정하는 지표입니다. 여기서는 0.0000으로 나타났으며, 이는모델이 동일한 값을 예측하고 있음을 나타냅니다.

drift 발생 판단 근거

- Wasserstein Distance는 0.0600의 값으로 실제로 drift가 발생했음을 확인하였습니다. drift가 발생할 경우 모델 성능에 미치는 영향
- 데이터셋 간의 차이가 큰 경우, 모델의 예측 성능이 저하될 수 있습니다. 특히, 특정 시간이 지나면서 모델이 시간에 따라 어떻게 변하는지를 정확하게 반영하지 못한다면 예측 정확도가 떨어질 가능성이 높습니다. 전반적 해석 및 요약

데이터셋 간 차이를 종합적으로 해석하기 위해서는 여러 지표들을 함께 고려해야 합니다. MMD와 KL divergence는 데이터의 변동성을 직접적으로 나타내는 반면, stewardship 거리와 에너지 거리는 모델이 시간에 따라 어떻게 변하는지를 평가하는 데 유용합니다. 이 경우, 우선적으로 stewardship 거리가 0.0600인 것을 통해 drift가 발생했음을 확인할 수 있으며, 이는 모델 예측 성능에 영향을 미칠 가능성이 높습니다. 데이터셋 간 차이를 해석하기 위해서는 여러 지표들을 종합적으로 고려하여 데이터의 변동성, 시간에 따른 변화등을 평가하는 것이 중요합니다. 이를 바탕으로 적절한 모델을 선택하고, 지속적인 모니터링을 통해 모델 성능을 유지하는 것이 필요합니다.

KETI DataDrift Detection System

자동 생성된 분석 리포트