

Explaining the Unexplainable Python Tools for Al Transparency Using Captum

David vonThenen

in C You @davidvonthenen

David vonThenen

- Are you Human or an Al?
- I want 5 Kubernetes
- Virtual Machines are Real
- Cloudy, cloudy,...
- There is storage for that!

Agenda

- What is Explainable AI?
- Understanding Data Inconsistencies
- Dataset Observability and Diagnostics
 - Demos, Demos, Demos
- Adversarial Attacks for Good... & Bad
 - Demos, Demos, Demos
- A&O

What is Explainable AI?

Flawed Data

- AI/ML Only As Good As the Data
 - Owner of the Data is Flawed?
- Real-World Examples:
 - Recruiter AI + Male Skewed
 - Offensive Al Chatbot
 - Court Case Hallucinations
 - Home Purchasing Spree
 - Scan Sitting Up or Down
 - Many, Many, Many More

Explainable Al

Why Do We Care?

- Trust and Transparency
- **Debugging + Improvement**
- **Compliance and Ethics**

Key Goals:

- Interpretability
- Accountability
- Fairness + Bias Detection

Understanding Data Inconsistencies

Data Inconsistencies Matter

- Impacts AI "Decision Making"
 - Annotation Errors
 - Data Bias
 - Distribution Drift
 - Adversarial Input
- Accidental, Unintended Consequences

Data Bias

Min Quartile 1 Median Quartile 3 Max Female Male

Data Imbalance

Unbalanced Dataset DOGS

CATS

Distribution Shifts

Let's Input These

Adversarial Samples

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

x + $\epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

X

"panda" 57.7% confidence

DEVOX France

Dataset Observability And Diagnostics

What Tools Can I Use?

- Captum https://github.com/pytorch/captum
- SHAP https://github.com/shap/shap
- LIME
- ELI5
- AIX360
- Many...
- Many...
- More

Let's Take a Look at Captum

- Open Source PyTorch Library
 - Gradients, Saliency Maps, SHAP
 - Layer/Neuron Contributions
 - NLP, Vision
- Detects:
 - Biases
 - Inconsistency
 - Hidden Patterns

Captum: Case Study

- **Study: Urinary Incontinence**
- Captum Revealed Findings:
 - Validated Contributions
 - Discovered 3 Features
- Future Application:
 - **Update Surgical Protocols**
 - Improved Techniques
 - Post-Op Therapy

An artificial intelligence method for predicting postoperative urinary incontinence based on multiple anatomic parameters of MRI

<u>Jiakun Li</u> ^{a,b}, <u>Xuemeng Fan</u> ^{a,b,1}, <u>Tong Tang</u> ^{b,c}, <u>Erman Wu</u> ^b, <u>Dongyue Wang</u> ^d, <u>Hui Zong</u> ^b, <u>Xianghong Zhou</u> Li a, Chichen Zhang a, Yihang Zhang a, Rongrong Wu b, Cong Wu b, Lu Yang a,**, Bairong Shen b,*

▶ Author information ▶ Article notes ▶ Copyright and License information

PMCID: PMC10520312 PMID: 37767466

Abstract

Background

Deep learning methods are increasingly applied in the medical field; however, their lack interpretability remains a challenge. Captum is a tool that can be used to interpret neur network models by computing feature importance weights. Although Captum is an interpretable model, it is rarely used to study medical problems, and there is a scarcity

Demo: Captum + NLP Classifier

https://youtu.be/geZNwLzoaT4 https://youtu.be/m0VxUAGhKcY

Demo: Captum + Vision Classifier

https://youtu.be/5J2sGIU0RV4

Adversarial Attacks: For Good... and Bad

Building Better Models via Intentional Disruption

Turning Insights Into Action

- Why Explainable AI?
 - **Question Rigid Assumptions**
 - Finding Data Flaws
 - **Expose Ethical Scenarios**
 - Adversarial Testing
- Result
 - Why Exclude Data
 - Fix Problematic Data
 - Underrepresentation
 - **Fairness**

What Else...

- Intentional Adversarial Attacks
 - Besides Finding Holes...
 - Disrupting Classification
 - Vision
 - NLP
- Why?
 - Unauthorized Surveillance
 - Protect Privacy
 - Obfuscation

Adversarial Strategies

Ideas/Concepts in NLP to Disrupt

Be Creative!!

- Encoding/Formatting
- Homophones and Phonetics
- Code Switching
- Low-Resource Languages
 - Navajo "Code Talkers"
- Adversarial Spelling
- Polysemy/Multiple Meanings
- Speaking in Metaphors

Creative Communication

Attacking Vision

$$+.007 \times$$

 $\operatorname{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{ heta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

x + $\epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

 \boldsymbol{x}

"panda" 57.7% confidence

Demo: Read That Sentiment Wrong

https://youtu.be/CoLnvqHHN_M

Demo: One Pixel Attack

https://youtu.be/s8SHeXXAWjQ

Demo: Spoofing Real-Time Vision

https://youtu.be/b_T448UXaHw

Just In Case...

Resources

Resources

All Materials/Demos: TODO

DigitalOcean AMD Bare Metal GPUs (MI300X) Availability https://www.digitalocean.com/blog/now-available-bare-metal-amd-instinct-mi300x-gpus

Continue the Conversation - DigitalOcean Discord https://discord.com/invite/digitalocean

- Captum:
 - GitHub https://github.com/pytorch/captum
 - Tutorials https://captum.ai/tutorials/
- PyTorch:
 - GitHub https://github.com/pytorch/pytorch
 - Tutorials https://pytorch.org/tutorials/index.html

Thank You!

David vonThenen Senior AI/ML Engineer

in C You My Madavidvonthenen