Address Decoding

- Decoding makes memory function at a unique section or partition of memory map.
- Without an address decoder, only one memory device can be connected to a MP, which make it virtually useless.
- Why Decode Memory?
- •2716(EPROM) has 11 address pin & MP has 20
- means that MP sends out a 20-bit memory address whenever it reads or writes data

- •Because EPROM has only 11 address pins, there is a mismatch that corrected
- •If only 11 address pin are connected to memory, MP see only 2exp(11)=2KB of memory instead of 1MB that it "expects" the memory to contain
- •Decoder corrects the mismatch by decoding address pins that do not connect to memory component.

Simple NAND Gate Decoder

- When 2K*8 RPROM is used, address connections A0-A10 of MP are connected to address inputs A0-A10 of EPROM
- Remaining 09 address pins (A19-A11) are connected to inputs of a NAND gate decoder
- See fig 10-13, p-348,Brey
- $\overline{CE}=0$, data will be read from EPROM only if $\overline{OE}=0$
- OE pin activated by MP, RD signal

Fig 10.13: A simple NAND gate decoder used to select a 2716 EPROM memory component for memory location FF800H-FFFFFH.

- If 20-bit address, decoded by NAND gate, leftmost 09 bits are 1 & rightmost 11 bits are don't care (X), actual address range of EPROM can be determined
- Example: 2 KB EPROM decoded at memory location, FF800H~FFFFH

A19	9 A18	8 A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X

Lowest add=1111 1111 1000 0000 0000=FF800H Highest add=1111 1111 1111 1111 1111=FFFFFH

3-to-8 Line Decoder

Fig 10.14: Function table for 3-8 line decoder

		1,	pu	r e:		7		200		·			
	Ena			Sele	ct	1			Ou	tpu	ts		
02	V CZ	G	I,C	B	A	Īō	11	12	13	14	5	16	7
11	LX	X	X	X	X	1	1	Ti	1	1	1	1	1
X	11	X	X	X	×	1	Ti	Ti	Ti	1	Ti	†	1
×	X	0	X	X	×		l	1	1	1	1	ti	1
0	0	11	0	0	0	0	Ti	1	1	li	1	+	1
0	0	1	0	0	1	1	0	1	1	1	Ť	1	1
0	0	1	0	1	0	1	1	0	1	1	Ti	T i	1
0	0	1	0		1	1	,	ī	0	T		H	
0	0	1	1	0	0	1	1	1	1	0		1	
0	0	1	1	0	1	1	1	1	1	1	0		1
0	0	l		1	0	1	1	-			Ť	o	
O	0	1	1		1	1	1					1	0

3-to-8 Line Decoder(74LS138)

- •see fig 10-14, p-349,Brey
- •for an output(O0-O7) to go low, 03 enable input (G2A, G2B, & G1) must be active
- •to be active, $\overline{G2A} = \overline{G2B} = 0$, & G1=1
- •once 74LS138 is enabled, address input (C,B,A) select which output pin goes low.
- •see fig 10-15, p-350, Brey
- address inputs (C,B,A) connect to MP address pin (A15,A14,A13), determines output pin low & select EPROM

Fig 10-15: Addresses selected in this ckt: F0000H-FFFFFH.

Example

01. Addresses range for entire decoder:

A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5 <i>A</i>	44 <i>A</i>	43 A	A2 A1	A0
1	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X	XX	X

Lowest add=1111 0000 0000 0000 0000 =F0000H

Highest add=1111 1111 1111 1111 1111 =FFFFFH

Address Range= F0000H~FFFFFH = 64KB of memory

02. For output pin (0):

Lowest add=1111 0000 0000 0000 0000 = F0000H Highest add = 1111 0001 1111 1111 1111 = F1FFFH

03. For output pin (1):

A19	9 A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
1	1	1	1	0	0	1	X	X	X	X	X	X	X	X	X	X	X	X	X
				C	В	A													

Lowest add = 1111 0010 0000 0000 0000 = F2000H Highest add = 1111 0011 1111 1111 1111 = F3FFFH

Problems

- 01. Design a NAND gate Decoder to select the memory for address range DF800H~DFFFFH.
- 02. Design a NAND gate Decoder to select the memory for address range 40000H~407FFH.
- 03.Design a 3-to-8 line Decoder to select the memory for address range 40000H~4FFFFH.