Curve tracing of polar form:

(1) Symmetry:

(i) If $f(r, \theta) = f(r, -\theta)$

Then this curve is symmetric about initially line (i.e. $\theta = 0$ line)

(ii) If $f(r, \theta) = f(r, \pi - \theta)$

Then this curve is symmetric about $\theta = \frac{\pi}{2}$ line.

(iii) **Pole**: Put r = 0, then find value of θ .

Hence (r, θ) is a pole.

(iv) Tangent at pole: Put r = 0, then value of θ is tangent at pole.

(v) Table:

r				.0					
θ	0	30	45	60	90	120	135	150	180

(vi) Asymtotes:

For any value of θ if r become ∞ , then a curve has asymtotes.

Transformation of Variables:

Sometime, it is convenient to solve the double integral by transforming the variables.

Transformation in polar form: (A)

Let $\iint f(x,y)dxdy$ is a integration in cartisian form, then put $x = r \cos\theta$, $y = r \sin\theta$ in givenintegration.

2.
$$dxdy = \frac{\partial(x,y)}{\partial(r,\theta)} drd\theta$$

$$dxdy = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} d\theta dr$$

$$dxdy = r d\theta dr$$
Putting this value, then we get
$$\iint f(r,\theta) r d\theta dr$$
.

$$dxdy = r d\theta dr$$

Q.1. The value of $\iint_G \frac{\log(x^2 + y^2)}{x^2 + y^2} dxdy$ where

 $G = \{(x, y) \in R^2; 1 \le x^2 + y^2 \le e^2\}$ is **IIT JAM 2010**

(a) π

(b) 2π

(c) 3π

(d) 4π

The value of $\iint \sqrt{x^2 + y^2} dxdy$ over the region lying in xy-plane and bounded by $x^2 + y^2 = 4$, $x^2 + y^2 = 9$

(a)
$$\frac{37\pi}{3}$$

(b)
$$\frac{38}{3}\pi$$
(d) $\frac{19}{3}\pi$

(c)
$$\frac{19}{2}\pi$$

(d)
$$\frac{19}{3}\pi$$

Q.3. Let D be the region in the first quadrant lying between $x^2 + y^2 = 1 & x^2 + y^2 = 4$, value of integral $\iint_D \sin(x^2 + y^2) dx dy$. IIT JAM – 2007

(a)
$$\frac{\pi}{4}(\cos 1 - \cos 2)$$

(b)
$$\frac{\pi}{4}$$
(cos1 - cos4)

$$(c)\frac{\pi}{2}(\cos 1 - \cos 2)$$

(d)
$$\frac{\pi}{2}$$
(cos1-cos4)

If G is the region in
$$\mathbb{R}^2$$
 given by $G = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1, \frac{x}{\sqrt{3}} < y < \sqrt{3}x, x > 0, y > 0 \right\}$

then the value of $\frac{200}{\pi} \iint_{C} x^{2} dx dy$ is IIT JAM 2022

(a) 2.5

(b) 4.16

(c)3

(d) 5.5

Q.8. The integral $\iint_R e^{x^2+y^2} dy dx$, where R is the semicircle

region bounded by the x – axis and the curve $y = \sqrt{1-x^2}$ equals SAU 2017

(a)
$$\frac{\pi}{2}(e+1)$$

(c)
$$\frac{\pi}{2}(e^2)$$

$$(b)\frac{\pi}{2}(e-1)$$

$$(d)\frac{\pi}{2}e$$