2

Re-Wind Analyse zum Produkt: sfh

Annahmen zu den Produkteigenschaften

Anzahl Re-Assemblys je linearem Lebenszyklus

Ökonomie spezifisch

Fußabdruck der 1. Re-Assembly bezogen auf den Fußabdruck einer Neuproduktion 10 %

Steigung des Fußabdrucks von einer Re-Assembly zur nächsten 10 %-punkte

Fußabdruck der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion 40 %

Steigung des Fußabdrucks von einer großen Re-Assembly zur nächsten 5 %-punkte

Fußabdruck der Nutzung bezogen auf den Fußabdruck der Neuproduktion 50 % Stärke der vorzeitigen Effizienzsteigerung durch Re-Assembly 5 (0-10)

Kundennutzen spezifisch

Särke des Innovationsrückgangs 5 (0-10)

Ökologie spezifisch

Kosten der 1. kleinen Re-Assembly bezogen auf die Kosten einer Neuproduktion 10 %

Steigung der Kosten von einer kleinen Re-Assembly zur nächsten 5 %-punkte

Kosten der 1. großen Re-Assembly bezogen auf die Kosten einer Neuproduktion 40 %

Steigung der Kosten von einer großen Re-Assembly zur nächsten 5 %-punkte

Höhe der Subskriptionserlöse in einem linearen Lebenszyklus bezogen auf den Verkaufset 1203 Weines linearen Produkts

Marge: Anteil der Herstellungskosten am Verkaufspreis 60 (0-10)

Gesamtergebnis in den drei Dimensionen			
	Unterer Grenze Op	timaler ■ Abbruchzeitpur	kt Obere Grenze
Ökologie	Var1	Var2	Var3
Kundennutzen	Var4	Var5	Var6
Ökonomie	Var7	Var8	Var9