1A)

1B)

A->B=2	B->C=1	C->E=2
A->C=1	B->D=2	C->F=2
A->D=2	B->E=3	D->E=1
A->E=3	B->F=3	D->F=1
A->F=3	C->D=1	E->F=1

Diameter=3

Emax= 15

O somatório da distancia entre todos os pares de nós da rede é somar todas as células da tabela acima e multiplicar por 2 (a distancia entre A->B é a mesma entre B->A)

Average path length = (2+1+2+3+3+1+2+3+3+1+2+2+1+1+1)*2/(2*15)=1.867

1C)		
eA=0	eC=0	eE=1
eB=0	eD=1	eF=1
Clustering C_A=0	Clustering C_C=0	Clustering C_E=2/2=1
Clustering C_B=0	Clustering C_D=2/6=0.33	Clustering C_F=2/2=1
Average local clustering C=2.333	/6=0.388	
1D)		
CB(A)=0	CB(C)=7	CB(E)=0
CB(B)=0	CB(D)=6	CB(F)=0
C'B(A)=0	C'B(C)=7/(5*4/2)=0.7	C'B(E)=0
C'B(B)=0	C'B(D)=6/(5*4/2)=0.6	C'B(F)=0
CC(A)=1/(1+2+2+3+3)=0.09	CC(C)=1/(1+1+1+2+2)=0.14	CC(E)=1/(1+1+2+3+3)=0.1
CC(B)= 1/(1+2+2+3+3)=0.09	CC(D)=1/(1+1+1+2+2)=0.14	CC(F)= 1/(1+1+2+3+3)=0.1

1E) Não

C'C(A)=0.09*5=0.45

C'C(B)= 0.09*5=0.45

Um grafo bipartido ou Bi-grafo é um grafo cujos vértices podem ser divididos em dois conjuntos disjuntos U e V tais que toda aresta conecta um vértice em U a um vértice em V; ou seja, U e V são conjuntos independentes. Para além disso, um grafo bipartido é um grafo que não contém qualquer ciclo de comprimento ímpar.

C'C(C)=0.14*5=0.70

C'C(D)= 0.14*5=0.70

C'C(E)=0.1*5=0.5

C'C(F) = 0.1*5 = 0.5

Se o conjunto U for formado pelos vértices [A,B,C] e o conjunto V formado pelos vértices [D,E,F], podemos verificar que os nós [A,B] não se ligam a um vértice do outro conjunto (existe outros caso), logo não é Bi-grafo.

2) Para esta pergunta usei conhecimento teórico da Wikipédia https://pt.wikipedia.org/wiki/Coeficiente de agrupamento

Para este exercício realizou-se 2 experiências, em que foi usado o algoritmo Erdős-Rényi.

Na primeira experiência, o grafo continha nós de baixo grau.

Na segunda experiência, o grafo continha nós de alto grau.

Realizei o cálculo do global clustering coefficient e o average cluster coeficiente dos 2 grafos.

Na experiência 2, o grafo apresentou maior global clustering coefficient do que average cluster coefficient.

Na experiência 1, foi o oposto, o grafo apresentou menor global clustering coefficient do que average cluster coefficient.

Posso concluir que, global clustering coefficient coloca maior peso nos nós com maior grau.

Cglobal = (3 * triangles)/number of triplets

A métrica global clustering coeficiente nos grafos em que os nós apresentam baixo grau é baixa porque o numerador da equação tende a ser pequeno, pois existe uma baixa probabilidade de se formar um triangulo fechado (B está ligado a A e C; A está ligado a C)

Em contrapartida, nos grafos em que os nós apresentam alto grau, há uma maior probabilidade de se formarem triângulos fechados, mas como é obvio também existem muitos triplos de nós. No entanto o multiplicador de 3 no numerador da equação faz com que a o valor resultante da fração de (um número grande de triângulos *3) / (um número grande de triplos) seja maior que (um número pequeno de triângulos *3) / (um número médio de triplos)

O average cluster coefficient de toda a rede corresponde, segundo Watts e Strogatz, ao valor médio dos local cluster coefficients de todos os vértices *n*.

O local cluster coeficiente de um vértice (nó) num grafo mede o quão perto os vizinhos estão de serem um clique (grafo completo). Por outras palavras, pode dizer-se que o coeficiente de agrupamento local mede o grau da densidade de ligações da vizinhança de um determinado nó, isto é, corresponde ao grau com que os vizinhos de um nó se interligam. Desta forma, os grafos em que os nós apresentam menor grau tendem a que os vizinhos estejam mais próximo de formarem um grafo completo do que do que em grafos em que os nós apresentam um maior grau.

3A) Not merge 3147 airports

66679 flights

3B) Merge(sum)

A média dos voos de partida é 21.188

A média de voos para diferentes aeroportos é 11.699

3f) Not merge

ld	Label	Interval	name	city	Betweenness Centrality \vee
3484			Los Angeles Int	Los Angeles	0.085182
1382			Charles de Gau	Paris	0.071947
507			London Heathr	London	0.061904

3g) Not merge

name	Betweennes	s Centrality	In-D	egree	Ou	t-Degree
Ted Stevens Anchora	0.052639		59		59	
				,		
name	:	Betweenness	Central \vee	In-Degi	ree	Out-Degree
Faa'a International Air	port	0.016657		38	3	37

A betweenness centrality capta o quanto um determinado nó (designado por u) está no meio de outros. Esta métrica é medida em função do número de caminhos mais curtos (entre qualquer par de nós nos gráficos) que passa pelo nó alvo u. Esta pontuação é moderada pelo número total de caminhos mais curtos existentes entre qualquer par de nós do gráfico.

Verificamos que o Nó TED e o FAA são nós que apesar de não terem muitas ligações para outros nós, são nós que tem muita relevância na rede pois utilizam-no como caminho mais curto na rede.

Para o caso do nó TED, todos os nós dentro da caixa a azul usam o nó TED como caminho mais curto. Daí um alto valor de betweenness centrality mas um baixo valor de out degree (o nó TED não é um nó central da rede)

Da mesma forma, o Nó Faa é um nó estramamente utilizado nas ligações mais curtas por todos os nós contidos na caixa a azul da imagem anterior, ilhas Hawai (entre outros) para ligar-se à america do sul, sul de africa e sul do continente asiatico. Mas mais uma vez este nó possui um baixo valor de out degree(o nó Faa não é um nó central da rede)

3H) Not merge

3I) Not merge

Ryanair (FR)

American Airlines (AA)
United Airlines (UA)

3J) Not merge

Nodes: 3147 (100% visible)

Edges: 10487 (15,73% visible)

Directed Graph

3K) Not merge

Nodes: 42 (1,33% visible)

Edges: 4530 (6,79% visible)

Directed Graph

3L) Not merge

3M) Not merge

3N) Not merge

Using depth=2

Nodes: 755 (23,99% visible)

Edges: 38583 (57,86% visible)

Directed Graph

Using depth = 3

Nodes: 2376 (75,5% visible)

Edges: 63026 (94,52% visible)

Directed Graph

3 O)

Parameters
column: country (class java.lang.String)
parts: [Canada, United States]

Range (Out-Degree)
Parameters
column: Out-Degree (class java.lang.Integer)
range: 100 - 915

Drag subfilter here

O tamanho do Nó reflete a betweenness centrality, enquanto que no label consta a cidade. As várias cidades estão de diferentes cores, mostrando os vários fusos horários.

Os códigos das funções dos próximos exercícios tiveram inspiração própria.

Exe6)

Ex8) Para calcular a função cumulativa da distribuição, utilizei uma função de Python que realiza este cálculo de forma automática

fit.power_law.plot_ccdf(linestyle='--', color='r')

Trabalho realizado por: Lázaro Costa