計量経済 1: 宿題7

村澤 康友

提出期限: 2024年6月25日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 187, 実証分析問題 7-D) データセット「7_2_work.dta」を gretl に読み込み, 以下の分析 を行いなさい.
 - (a) 妻が働いているかどうかを夫の所得と 6 歳以下の子供の有無で説明する教科書 p.~176 の回帰分析の結果を再現しなさい.
 - (b) 15 歳の時に母親が働いていたかどうかを説明変数に加えて回帰分析を実行しなさい.
 - (c) 不均一分散が懸念される場合は、以下の手順で OLS を実行する.
 - i. メニューから「モデル」→「通常の最小二乗法」を選択.
 - ii.「従属変数」を1つ選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「頑健標準誤差を使用する」をチェック.
 - v.「OK」をクリック.

分散不均一に対して頑健な標準誤差を求めなさい.

- (d) OLS を実行した画面のメニューから「検定」 \rightarrow 「不均一分散」を選択すれば,不均一分散の検定が実行できる.前問の回帰モデルについて Breusch-Pagan の検定と White の検定を実行し,結果を比較しなさい.
- 2. ダミー従属変数の場合,通常は線形確率モデルでなく2値応答モデルを使用する. ロジット・モデルの (最尤) 推定は以下の手順で実行する.
 - (a) メニューから「モデル」→「制限従属変数」→「ロジット」→「二項(Binary)」を選択.
 - (b)「従属変数」を1つ選択.
 - (c)「説明変数(回帰変数)」を選択.
 - (d) 必要なら「平均での限界効果を表示する」を選択.
 - (e) $\lceil OK \rfloor$ $\not \sim DU \lor D$.

プロビット・モデルも同様. 前間 (b) と同じ説明変数でロジット・モデルとプロビット・モデルを推定し、各説明変数の限界効果が 3 つのモデルでほぼ等しいことを確認しなさい.

解答例

1. (a) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–1053 従属変数: work

	係数		Sto	d. Error	$t ext{-ratio}$	p 値
const	0.77032	24	0.03	70387	20.80	0.0000
$income_s$	-0.00022	23647	6.23	917e-005	-3.585	0.0004
childu6	-0.20119	96	0.02	99428	-6.719	0.0000
Mean depende	nt var	0.5641	103	S.D. deper	ndent var	0.496109
Sum squared r	resid	246.15	577	S.E. of reg	ression	0.484186
R^2		0.0493	302	Adjusted A	R^2	0.047491
F(2, 1050)		27.225	571	$\operatorname{P-value}(F$)	2.97e-12
Log-likelihood	-	-728.91	134	Akaike cri	terion	1463.827
Schwarz criteri	ion	1478.	705	Hannan-Q	uinn	1469.467

(b) 説明変数を追加

モデル 2: 最小二乗法 (OLS), 観測: 1–1053 従属変数: work

	係数	汝	St	d. Error	$t ext{-ratio}$	p 値
const	0.6805	75	0.0	442131	15.39	0.0000
$income_s$	-0.0002	24959	6.20	0262e-005	-3.627	0.0003
childu6	-0.2048	375	0.0	297838	-6.879	0.0000
mowork15	0.1243	343	0.0	339083	3.667	0.0003
Mean depende	nt var	0.5641	103	S.D. deper	ndent var	0.496109
Sum squared r	esid	243.04	121	S.E. of reg	ression	0.481341
R^2		0.0613	335	Adjusted A	\mathbb{R}^2	0.058650
F(3, 1049)		22.848	803	P-value(F)	2.48e-14
Log-likelihood		-722.20)71	Akaike crit	terion	1452.414
Schwarz criteri	ion	1472.2	252	Hannan-Q	uinn	1459.935

(c) 頑健な標準誤差

モデル 3: 最小二乗法 (OLS), 観測: 1-1053

従属変数: work

不均一分散頑健標準誤差, バリアント HC1

	係数	Std. Error	t-ratio	p 値
const	0.680575	0.0443839	15.33	0.0000
$income_s$	-0.000224959	$6.20314 \mathrm{e}{-005}$	-3.627	0.0003
childu6	-0.204875	0.0297250	-6.892	0.0000
mowork15	0.124343	0.0343364	3 621	0.0003

Mean dependent var	0.564103	S.D. dependent var	0.496109
Sum squared resid	243.0421	S.E. of regression	0.481341
R^2	0.061335	Adjusted \mathbb{R}^2	0.058650
F(3, 1049)	23.38407	P-value (F)	1.18e-14
Log-likelihood	-722.2071	Akaike criterion	1452.414
Schwarz criterion	1472.252	Hannan-Quinn	1459.935

(d) Breusch-Pagan の検定

不均一分散についてのブロイシュ=ペーガン (Breusch-Pagan) 検定

最小二乗法 (OLS), 観測: 1-1053

従属変数: scaled uhat^2

	係数	標準誤差	t 値	p 値
const	0.913002	0.0505915	18.05	1.30e-063 ***
income_s	0.000129619	7.09743e-05	1.826	0.0681 *
childu6	0.144827	0.0340805	4.250	2.33e-05 ***
mowork15	-0.0631069	0.0388000	-1.626	0.1042

Explained sum of squares = 6.81236

検定統計量: LM = 3.406182,

なお、p値(p-value) = P(カイ二乗(3) > 3.406182) = 0.333135

White の検定

不均一分散についてのホワイト(White)の検定

最小二乗法 (OLS), 観測: 1-1053

従属変数: uhat^2

	係数	標準誤差	t 値	p 値	
const	0.220917	0.0235974	9.362	4.65e-020	***
income_s	5.11118e-05	5.47435e-05	0.9337	0.3507	
childu6	0.00419328	0.0219513	0.1910	0.8485	
mowork15	-0.0417677	0.0218761	-1.909	0.0565	*
sq_income_s	-2.76700e-08	2.65597e-08	-1.042	0.2977	
X2_X3	6.90453e-06	3.34010e-05	0.2067	0.8363	
X2_X4	2.12261e-05	3.77638e-05	0.5621	0.5742	
X3_X4	0.0355218	0.0179491	1.979	0.0481	**

Unadjusted R-squared = 0.026129

検定統計量: TR^2 = 27.513788,

なお、p値(p-value) = P(カイ二乗(7) > 27.513788) = 0.000269

2. ロジット・モデル

モデル 1: ロジット・モデル, 観測: 1-1053

従属変数: work

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準	誤差	z	傾き*
const	0.779574	0.1933	358	4.032	
$income_s$	-0.0009884	85 0.0002	277126	-3.567	-0.000242575
childu6	-0.870413	0.130	144	-6.688	-0.210321
mowork15	0.532976	0.1461	101	3.648	0.131788
Mean deper	ndent var	0.564103	S.D. d	lependent	var 0.496109
McFadden	R^2	0.045872	Adjus	ted R^2	0.040326
Log-likeliho	ood -	-688.1231	Akaik	e criterion	1384.246
Schwarz cri	terion	1404.084	Hanna	an-Quinn	1391.767

^{*}Evaluated at the mean

「正しく予測された」ケース数 = 657~(62.4~パーセント)

尤度比検定: $\chi^2(3) = 66.166$ [0.0000]

プロビット・モデル

モデル 2: プロビット・モデル, 観測: 1-1053

従属変数: work

標準誤差はヘッシアン(Hessian)に基づく

	係数	標準	準誤差	z	傾き *
const	0.477963	0.118	3331	4.039	
$income_s$	-0.0005991	01 0.000	167849	-3.569	-0.000235593
childu6	-0.536753	0.079	7238	-6.733	-0.208525
mowork 15	0.327574	0.089	9990	3.640	0.129575
Mean deper	ndent var	0.564103	S.D. o	dependent	var 0.496109
McFadden	R^2	0.045751	Adjus	sted R^2	0.040205
Log-likeliho	ood -	-688.2105	Akaik	e criterion	1384.421
Schwarz cri	terion	1404.259	Hanna	an–Quinn	1391.942

^{*}Evaluated at the mean

「正しく予測された」ケース数 = 657 (62.4 パーセント)

尤度比検定: $\chi^2(3) = 65.992$ [0.0000]

残差の正規性の検定 -

帰無仮説: 攪乱項は正規分布に従う 検定統計量: $\chi^2(2)=8.66609$ なお、p 値 (p-value) = 0.0131275