CSEC-10/11 Admin

Teaching team

Tariq Elahi CO CSEC-10

Marc Juarez CO CSEC-11

Markulf Kohlweiss

TAs: CSEC-10 (Mhghna Sengupta, Rachel Somerset), CSEC-11 (Lawrence Piao)

Assessment

CSEC-10

• CW1 (formative)

• CW2 (25% of total)

• Final exam (75% of total)

CSEC-11

• CW1 (30% of total)

Final exam (70% of total)

Textbook

Where to find information

- Course Learn page
 - Schedule
 - Lecture recordings
 - Coursework submission links
 - Piazza (student discussions, CW Q&A)
 - Office hours
 - Post-recital Q&A

Course overview

- What are our goals in this course?
- What is trust?
- What is security?
- What is privacy?
- Who are the adversaries?
- Terminology
- Common defence methods

What are our goals in this course?

- To be able to identify security, privacy, and trust issues in various aspects of computing, such as:
 - Programs
 - Operating systems
 - Networks
 - Distributed systems
 - Internet applications
- The awareness of how security, privacy, and trust can be achieved in practice

The landscape

What do we want?

What do the we mean when we say...?

Authentic

Safe

- Common language/sense → (more) Formal language/models
 - Based on definitions
 - Properties of the system, the data, usage, and abilities of the participants
 - Wide-spread agreement (in some areas; still evolving)

Who is we?

- Ordinary citizen
- Whistle blower
- Corporate worker
- Dissident activist
- Secret agent

What is security?

- The main general properties are:
 - Confidentiality
 - Information access to only authorized entities
 - Integrity
 - The data is untampered and uncorrupted
 - Availability
 - Both the data and the system that provides access to it are there when you need them

Authenticity

Are these enough? What can still go wrong?

Failure of Security: Apple Security Cert Validation Bug

static OSStatus

- The bug occurs in code that is used to check the validity of the server's signature on a key used in an SSL/TLS connection.
- An active attacker (a "malfactor-in-the-middle") could potentially exploit this aw to get a user to accept a counterfeit key that was chosen by the attacker.

```
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
                                 uint8 t *signature, UInt16 signatureLen)
       OSStatus
                       err;
       if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
             goto fail;
       if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
             goto fail;
             goto fail; ←
       if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
             goto fail;
       . . .
fail:
       SSLFreeBuffer(&signedHashes);
       SSLFreeBuffer(&hashCtx);
       return err;
```

What is trust?

- Generally, we trust when we have:
 - Assurance
 - The means to know that the system is secure
 - Reliability/Resilience
 - To operate intact in the face of natural disasters and human-launched attacks
 - Accountability
 - The means to verify that the system is operating as designed (i.e. securely)

NB: There is a difference between trustworthy and trusted

Failure of Trust: CA Domain Control Validation

Failure of Trust: Operational security of digital certs

- Symantec has a track record of fumbling certificate issuance, once even wrongly issuing one for google.com
- Google chrome, among other browsers removes Symantec as a root CA
- Trustico (Symantec reseller) emails 23,000 private keys for certs they issued, thus invalidating them (how did they get them?)
- All 23,000 certs are revoked within 24 hours

Convenient insecurity

 Offer a service to generate public/private key pairs

Do not delete the keys afterwards

• 555

Profit

What is privacy?

- Concerns individuals and their expectations on how their data, behaviours, and interactions are recorded, utilized, and spread
- A useful definition: "Information self-determination"
 - A person gets to control information about themselves
 - Controls can include:
 - Who gets to see it
 - Who gets to use it
 - What they can use it for
 - Who they can give it to

Failure of Privacy: New York Taxi Database

- Database released for research
- Taxi numbers and licence numbers pseudonymized
 - MD5 hash
 - Same input = Same result
- Taxi/Lic. numbers have structure
 - Results in reduced number of possible values
 - Brute force is feasible on 24 million numbers

Failure of Privacy: New York Taxi Database

Taxi #	Lic. #
3A3D444BB	01001EDFD
•••	•••
•••	•••
ADE034523	BOBB321AA

DATABASE

- 1. Enumerate all values with structures: 5X55, XX555, XXX555, 5XXXXXX, 5XXXXXXX
- 2. Hash all values above with MD5
- 3. Compare results with database on left

How could we have prevented this?

Was the problem lack of education?

Could some processes have helped?

Were the problems obvious?

Were the right stakeholders involved?

Who are the adversaries?

- All systems are vulnerable to all manner of threats
- Adversary types:
 - Nature
 - Script kiddies
 - Crackers/Hackers
 - Organised Crime
 - Governments
 - Terrorists
- Who should we worry about most? Can we ignore anyone?

Threat Modelling

- Who is the adversary (the system may protect against many types)?
- What are they allowed to do? Or, what can't we prevent them from doing?
 - The adversary need not be malicious, he could merely be curious
- What do we want to prevent the adversary from doing or learning?
 - What is the adversary's aim, or, when does he win?
- The set of threats we want to protect against given this (set of) adversaries
 - When do we win?
 - When does the adversary win?

Terminology

- Assets: Things we want to protect, like:
 - Hardware
 - Software
 - Information

Vulnerabilities

- Weaknesses in a system that may be exploited
 - Example: Public facing email server without spam protection

Terminology

Threats

- Loss or damage to the system, its users, or operators
 - E.g. Proprietary source code being stolen and sold
- The six major categories of threats:
 - Interception
 - Interruption
 - Modification
 - Fabrication
 - Repudiation
 - Epistemic

Terminology

Attack

- An action that exploits a vulnerability to carry out a threat
 - E.g. Hacking the company public facing email server to read emails to steal company trade-secrets

Controls

- Mitigating or removing a vulnerability
- The control mitigates a vulnerability to prevent an attack and that defends against a threat
- No system is perfect: Control vulnerabilities when discovered

Security Principles (pp. 15-18)

- Economy of mechanism: easy to understand, verify, and maintain
- Fail-safe defaults: conservative permissions and functionality
- Complete mediation: every access should be checked (again)
- Open design: no security by obscurity
- Separation of privilege: cooperation required to act, no single point of failure
- Least privilege: programs and users on bare minimum of access
- Least common mechanism: minimize shared means of access to resources
- Psychological acceptability: well designed UI that are intuitive and clear
- Work factor: comparable effort for the value of the resource
- Compromise recording: record failures and breaches

Common defence methods

- There are 5 common defence patterns:
 - Prevent
 - Deter
 - Deflect
 - Detect
 - Recover

NB: Not all attacks can be prevented!

Best practice to employ some form of all to get "defence in depth"

Defence tools of the trade

- Protect assets that can be
 - Hardware, software, data (PII, social graph, confidential information, etc.)
- Many forms of control
 - Cryptography
 - Software controls
 - Hardware controls
 - Physical controls
 - Policies and procedures

Cryptography

• Protects the data, making it unreadable by anyone without keys

Authenticating users with digital signatures

Authenticating transactions with cryptographic protocols

Ensures the integrity of data against unauthorized modification

Software controls

- Passwords
- Sandboxes
- Virus scanners
- Source code versioning systems
- Software Firewalls
- Privacy enhancing technologies (PETs)

Hardware controls

Fingerprint readers

Smart tokens

Firewalls

Intrusion detection systems

Physical controls

 Protecting against unauthorized physical access to hardware

- Locks
- Guards
- Off-site backups

Policies and procedures

Non-technical means to protect against some type of attacks

Disallow personal hotspot within work place

Password rules

Security training against social engineering attacks

Recap

- What is our goal in this course?
 - Identify security and privacy issues
 - Design systems that are more protective of security and privacy
- What is Security?
 - Confidentiality, Integrity, Availability, Authenticity
- What is Trust?
 - Assurance, Reliability/Resilience, Accountability
- What is Privacy?
 - Informational self-determination

Recap

- Who are the adversaries?
 - Threat modelling
 - Learn to think like an attacker
- Trade-offs
 - Security, Privacy, Performance, Cost
- Assets, vulnerabilities, threats, attacks and controls
 - You control a vulnerability to prevent an attack and block a threat
- Methods of defence
 - Cryptography, software controls, hardware controls, physical controls, policies and procedures