Happy Planet Index clustering script

HarvardX Data Science Capstone Own Project

Codrin Kruijne 2019-06-04

```
# PLEASE NOTE: SCRIPT SHOULD RUN ALL NECESSARY DATA, BUT HAS ONLY BEEN TESTED ON WINDOWS
# IF NEEDED, PLEASE DOWNLOAD THE TWO REQUIRED FILES IN a "Data" SUBDIR OF YOUR WORKING DIRECTORY
# HPI DATA https://www.dropbox.com/s/cqtynj47altwo3d/hpi-data-2016.xlsx?dl=0
# SPI DATA https://www.dropbox.com/s/hb2e3h5l69n0vrx/Social%20Progress%20Index%202018-Results.xlsx?dl=0
# YOU CAN UNCOMMENT CODE BELOW TO READ IN THE LOCAL FILES
# Script settings
knitr::opts_chunk$set(
   message = FALSE,
   warning = FALSE,
   cache = TRUE,
   tidy.opts = list(width.cutoff = 100),
   tidy = TRUE
script_start <- Sys.time()</pre>
# Load required packages
library(tidyverse)
library(RCurl)
library(foreign)
library(gridExtra)
library(readxl)
library(tidyimpute)
library(cluster)
```

Loading data

```
# Happy Planet Index data from http://happyplanetindex.org/s/hpi-data-2016.xlsx retrieved
# Backup on my Dropbox: https://www.dropbox.com/s/cqtynj47altwo3d/hpi-data-2016.xlsx?dl=0

# HPI <- read_excel("Data/hpi-data-2016.xlsx",
# sheet = "Complete HPI data",
# range = "C6:N146",
# trim_ws = TRUE)

# write_csv(HPI, "hpi.csv")

url <- "https://raw.githubusercontent.com/codrin-kruijne/HappyPlanetIndex/master/hpi.csv"
hpi_data <- getURL(url)
HPI <- read.csv(textConnection(hpi_data))</pre>
```

```
HPI[1:2] <- lapply(HPI[1:2], as.factor)</pre>
HPI <- HPI %>% mutate(Footprint = 1.73 - `Footprint..gha.capita.`) # Calculate net footprint by subtrac
# Social Progress Initiative data from https://www.socialprogress.org/download retrieved in 2019-06-01
# Backup on my Dropbox: https://www.dropbox.com/s/hb2e3h5l69n0vrx/Social%20Progress%20Index%202018-Resu
# SPI <- read_excel("Data/Social Progress Index 2018-Results.xlsx",
                    sheet = "2016",
#
                    range = "A1:BQ147", # data for countries that are in the index
#
                    trim ws = TRUE)
#
# write_csv(SPI, "spi.csv")
spi_url <- "https://raw.githubusercontent.com/codrin-kruijne/HappyPlanetIndex/master/spi.csv"</pre>
spi_data <- getURL(spi_url)</pre>
SPI <- read.csv(textConnection(spi_data))</pre>
SPI[3:76] <- lapply(SPI[3:69], as.numeric)</pre>
SPI[1:2] <- lapply(SPI[1:2], as.factor)</pre>
SPI <- SPI %>% select(-Code)
# Explore differing countries ### FIX DIFFERENT SPELLINGS
diff_countries <- HPI %>% anti_join(SPI, by = "Country") %>% select(Country)
# Join data
raw <- HPI %>% inner_join(SPI, by = "Country") %>%
                mutate(Country = as.factor(Country))
# Impute scaled data
imputed <- raw %>% impute_all(.na = mean, na.rm = TRUE)
# Scale numeric data
scaled <- imputed %>% mutate_if(is.numeric, scale) %>%
                      rename_if(is.numeric, paste, "SCALED")
# Let's have a quick look at the HPI data
hpi_hist_3 <- ggplot(raw, aes(`Happy.Planet.Index`)) + geom_histogram(binwidth = 3)
saveRDS(hpi_hist_3, "hpi_hist_3.rds")
hpi_hist_1 <- ggplot(raw, aes(`Happy.Planet.Index`)) + geom_histogram(binwidth = 1)
saveRDS(hpi_hist_1, "hpi_hist_1.rds")
hpi_region_hist <- ggplot(raw, aes(`Happy.Planet.Index`)) + facet_wrap(~Region) +
                                          geom_histogram(binwidth = 3)
saveRDS(hpi_region_hist, "hpi_region_hist.rds")
hpi_scatter <- ggplot(raw, aes(x = `Happy.Life.Years`, y = Footprint, size = `Happy.Planet.Index`, colo
  geom_point()
saveRDS(hpi_scatter, "hpi_scatter.rds")
plot(hpi_hist_3)
```


plot(hpi_hist_1)

plot(hpi_region_hist)

plot(hpi_scatter)

Cluster modeling

```
data_clusters <- kmeans(scaled[, -c(1, 2)], 6, nstart = 20)

raw_clustered <- mutate(raw, cluster = as.factor(data_clusters$cluster))
scaled_clustered <- mutate(scaled, cluster = as.factor(data_clusters$cluster))

cluster_expl <- ggplot(raw_clustered, aes(x = `Happy.Life.Years`, y = `Footprint`, size = `Happy.Planet saveRDS(cluster_expl, "cluster_expl.rds")

plot(cluster_expl)</pre>
```



```
##
       k tot_withinss
## 1
             9945.000
## 2
       2
             5619.825
## 3
       3
             4045.048
       4
## 4
             3794.686
## 5
             3547.508
## 6
             3477.236
       6
## 7
       7
             3355.714
## 8
             2989.959
       8
## 9
       9
             3067.542
## 10 10
             2918.336
```

```
elbow_plot <- ggplot(elbow_df, aes(x = k, y = tot_withinss)) +</pre>
                geom_line() +
                scale_x_continuous(breaks = 1:10)
saveRDS(elbow_plot, "elbow_plot.rds")
# Silhouette width method
sil_width <- map_dbl(2:10, function(k){</pre>
 model \leftarrow pam(x = scaled[, -c(1, 2)], k = k)
 model$silinfo$avg.width
})
sil_df <- data.frame(</pre>
k = 2:10,
sil_width = sil_width
print(sil_df)
      k sil_width
##
## 1 2 0.3884523
## 2 3 0.2926770
## 3 4 0.2101102
## 4 5 0.1680787
## 5 6 0.1686458
## 6 7 0.1232974
## 7 8 0.1122524
## 8 9 0.1085817
## 9 10 0.1061960
sil_width_plot <- ggplot(sil_df, aes(x = k, y = sil_width)) +</pre>
                    geom_line() +
                    scale_x_continuous(breaks = 2:10)
saveRDS(sil_width_plot, "sil_width_plot.rds")
# Plot
grid.arrange(elbow_plot, sil_width_plot)
```


Visualising clustered data

```
# It seems 2 or 3 clusters is optimal, let's have a look
bi_clusters <- kmeans(scaled[, -c(1, 2)], centers = 2, nstart = 20)
raw_clustered <- raw_clustered %>% mutate(final_cluster = as.factor(bi_clusters$cluster))
bi_plot_hpi <- ggplot(raw_clustered, aes(x = `Happy.Life.Years`, y = `Footprint`, size = `Happy.Planet.saveRDS(bi_plot_hpi, "bi_plot_hpi.rds")
bi_plot_spi <- ggplot(raw_clustered, aes(x = `Happy.Life.Years`, y = `Footprint`, size = `Social.Progre saveRDS(bi_plot_spi, "bi_plot_spi.rds")
# Arrange plots
plot(bi_plot_hpi)</pre>
```


plot(bi_plot_spi)

Cluster analysis

```
# Lets combina all data for analysis and visualisation
data <- raw_clustered %>% inner_join(scaled_clustered, by = c("Country", "Region"))
# Statistics per bi_cluster to compare
fct_order <- c("Basic.Human.Needs SCALED",</pre>
               "Foundations.of.Wellbeing SCALED",
               "Opportunity SCALED",
               "Social.Progress.Index SCALED",
               "Happy.Life.Years SCALED",
               "Footprint SCALED",
               "Happy.Planet.Index SCALED")
bi_averages <- data %>% select(`Happy.Life.Years SCALED`,
                               `Footprint SCALED`,
                                'Happy.Planet.Index SCALED',
                               `Basic.Human.Needs SCALED`,
                               `Foundations.of.Wellbeing SCALED`,
                                Opportunity SCALED,
                                `Social.Progress.Index SCALED`,
                                final_cluster) %>%
                        group_by(final_cluster) %>%
```

How do countries in clusters differ? Indicator avereges for countries per cluster

Appendix

```
# Which countries are in these cluster?
cluster_1 <- data %>% filter(final_cluster == 1) %>% select(Country)
cluster_2 <- data %>% filter(final_cluster == 2) %>% select(Country)

k1 = data.frame("Cluster 1" = cluster_1[1:(nrow(cluster_1)/2),])
k2 = data.frame("Cluster 1" = cluster_1[(nrow(cluster_1)/2+1):nrow(cluster_1),])
k3 = data.frame("Cluster 2" = cluster_2[1:(nrow(cluster_2)/2),])
k4 = data.frame("Cluster 2" = cluster_2[(nrow(cluster_2)/2+1):nrow(cluster_2),])
country_list <- list(k1, k2, k3, k4)</pre>
```

```
saveRDS(country_list, "country_list.rds")
knitr::kable(country_list)

# How long did the whole script take?
script_end <- Sys.time()
print(paste("Total script running time: ", round(difftime(script_end, script_start, units = "mins"), 1)
## [1] "Total script running time: 0.1 minutes"</pre>
```

Cluster.1	Cluster.1		
Albania	Latvia		
Algeria	Lebanon		
Argentina	Lithuania		
Armenia	Luxembourg		
Australia	Macedonia		
Austria	Malaysia		
Belarus	Mauritius		
Belgium	Mexico		
Bhutan	Mongolia	Cluster.2	Cluster.2
Bolivia	Montenegro		Lesotho
Brazil	Morocco	Afghanistan	
Bulgaria	Netherlands	Bangladesh	Liberia
Canada	New Zealand	Benin	Malawi
Chile	Nicaragua	Botswana	Mauritania
China	Norway	Burkina Faso	Mozambique
Colombia	Oman	Burundi	Myanmar
Costa Rica	Panama	Cambodia	Nepal
Croatia	Paraguay	Cameroon	Niger
Cyprus	Peru	Chad	Nigeria
Czech Republic	Philippines	Comoros	Pakistan
Denmark	Poland	Djibouti	Rwanda
Dominican Republic	Portugal	Egypt	Senegal
Ecuador	Romania	Ethiopia	Sierra Leone
El Salvador	Russia	Ghana	Swaziland
Estonia	Serbia	Guatemala	Tajikistan
Finland	Slovakia	Guinea	Tanzania
France	Slovenia	Honduras	Togo
Georgia	South Africa	India	Uzbekistan
Germany	Spain	Indonesia	Yemen
Greece	Sri Lanka	Kenya	Zimbabwe
Hungary	Suriname		
Iceland	Sweden		
Iran	Switzerland		
Ireland	Thailand		
Israel	Tunisia		
Italy	Turkey		
Japan	Ukraine		
Kazakhstan	United Kingdom		
Kyrgyzstan	Uruguay		