HW #3 CSc 137, Harvey Adder/Mux (12 pts)

- 1. Design a Single cell -1 bit Carry propagate (Ripple Carry Adder) full adder. (6 pts)
 - a. Generate the truth table
 - b. Using K-map, determine the logical expression for Carry out (C-out) and Sum (S)
 - c. Based on the logical expression, create the schematic diagram for full adder
- 2. Design a 1 bit, 2 to 1 multiplexer (Mux). Outputs Y when S = 0; X when S = 1. (6 pts)
 - a. Generate the truth table
 - b. Using K-map, determine the logical expression for output
 - c. Based on the logical expression, create the schematic diagram for Mux
- (Design a single cell-1 bit Corry Propagate (Ripple Carry Adder) full adder.

a) Generate Truth Table

	I,	nputs	Outputs		
	Δ×	Β×	Cin	S output	Cout
RI	0	0	0	0	\bigcirc
R2	0	0		•	0
R3	0	l	0		0
RU	0			0	
R5		0	0		0
R6		0		6	b
R7			0	0	
RS		l l			

b) Using K-map, determine the logical expression for Carry out (c-out) and Sum (s)

$$= A \circ B \circ C$$

$$= A \circ B \circ C \times + A \times B \times C \times$$

Cout =
$$\overline{A} \times B \times C \times + A \times \overline{B} \times C \times + A \times B \times \overline{C} \times + A \times B \times C \times$$

$$S = \frac{100}{B_{\times}} + \frac{111}{B_{\times}}$$
$$= A_{\times} \oplus B_{\times} \oplus C_{\times}$$

c) Based on the logical expression, create the schematic diagram for full adder

2 Design a 1-bit, 2 to1 MUX. Output Y when S=0, X when S=1 a) Generate truth table

control signal	input signals		output	
S	×	2	7	
0	0	50	0	
0	Ø	1	1	
0 0 0	l	0	0	
0	l	1	J	
1	0	0	0	
1	0	ſ	0	
l (1	O	1	
- 1		1		

Y when
$$S=0$$

X when $S=1$

b) Using K-Map, determine the logical expression for output

$$\Gamma = \frac{3y}{5y} + \frac{111}{5x} + \frac{110}{5x} = \frac{3y}{5y} + 6x$$

c) Based on the logical expression,

create the schematic diagram for MUX

r=5y+sx

