Klaudia Wrona Inżynieria Obliczeniowa	Podstawy Sztucznej Inteligencji Sprawozdanie nr 6	
Numer indeksu: 293128	Sprawozdanie in o	
Budowa i działanie sieci Kohonena dla WTM		

Cel projektu

Celem ćwiczenia jest poznanie budowy i działania sieci Kohonena przy wykorzystaniu reguły WTM do odwzorowywania istotnych cech liter alfabetu.

2. Zadania do wykonania

- a) Wygenerowanie danych uczących i testujących, zawierających 20 dużych liter w postaci tablic.
- b) Przygotowanie (implementacja lub wykorzystanie gotowych narzędzi) sieci Kohonena i algorytmu uczenia opartego o regułę Winner Takes Most (WTM).
- c) Uczenie sieci dla różnych współczynników uczenia.
- d) Testowanie sieci.

3. Podstawowe pojęcia

Sieci Kohonena są szczególnym przypadkiem algorytmu realizującego uczenie się bez nadzoru. Ich głównym zadaniem jest organizacja wielowymiarowej informacji (np. obiektów opisanych 50 parametrami w taki sposób, żeby można ją było prezentować i analizować w przestrzeni o znacznie mniejszej liczbie wymiarów, czyli mapie (np. na dwuwymiarowym ekranie). Warunek: rzuty "podobnych" danych wejściowych powinny być bliskie również na mapie. Sieci Kohonena znane są też pod nazwami Self-Organizing Maps, Competitive Filters.

Zasady działania sieci Kohonena:

- Wejścia (tyle, iloma parametrami opisano obiekty) połączone są ze wszystkimi węzłami sieci
- Każdy węzeł przechowuje wektor wag o wymiarze identycznym z wektorami wejściowymi
- Każdy węzeł oblicza swój poziom aktywacji jako iloczyn skalarny wektora wag i wektora wejściowego (podobnie jak w zwykłym neuronie)
- Ten węzeł, który dla danego wektora wejściowego ma najwyższy poziom aktywacji, zostaje zwycięzcą i jest uaktywniony
- Wzmacniamy podobieństwo węzła-zwycięzcy do aktualnych danych wejściowych poprzez dodanie do wektora wag wektora wejściowego (z pewnym współczynnikiem uczenia)
- Każdy węzeł może być stowarzyszony z pewnymi innymi, sąsiednimi węzłami wówczas te węzły również zostają zmodyfikowane, jednak w mniejszym stopniu.
- Inicjalizacja wag sieci Kohonena jest losowa.

Reguła WTM - reguła aktywacji neuronów w sieci neuronowej, która jest oparta na zasadzie działania WTA z tą różnicą, że oprócz zwycięzcy wagi modyfikują również neurony z jego sąsiedztwa, przy czym im dalsza odległość od zwycięzcy, tym mniejsza jest zmiana wartości wag neuronu. Metoda WTA jest metodą słabo zbieżną - w szczególności dla dużej liczby neuronów. Sąsiedztwo jest pojęciem umownym - można definiować sąsiadów bliższych i dalszych, sąsiedztwo nie oznacza również, że neurony muszą być bezpośrednio połączone ze zwycięzcą.

4. Wykonanie zadania i kod

selforg map (dimensions, cover Steps, in it Neighbor, topology Fcn, distance Fcn)

Dimensions	Rozmiar wektora	
coverSteps	Liczba kroków szkoleniowych dla początkowego pokrycia przestrzeni wejściowej	
initNeighbor	Początkowy rozmiar sąsiedztwa	
topologyFcn	Funkcja topologii warstw	
distanceFcn	Odległość neuronowa	

gridtop - oblicza pozycje neuronów w warstwach dist – odległość euklidesowa

```
%kolumnowa reprezentacja binarna pierwszych 20 duzych liter
alfabetu dla tablicy 4x5
%dane wejsciowe:
%ABCDEFGHIJKLMNOPRSTU
WEJSCIE = [0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1;
1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0;
1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0;
0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1;
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1;
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0;
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0;
1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1;
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1;
1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0;
1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0;
1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1;
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1;
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0;
1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0;
0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1;
1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0];
% PARAMETRY SIECI KOHONENA
dimensions = [4 5]; %wymiar wektora
coverSteps = 100; %liczba kroków szkoleniowych dla początkowego
pokrycia przestrzeni wejściowej
initNeighbor = 1; %poczatkowy rozmiar sąsiedztwa
topologyFcn = 'gridtop'; %funkcja topologii warstw
distanceFcn = 'dist'; %funkcja odległości neuronowej
% TWORZENIE SIECI KOHONENA (SOM)
net = selforgmap(dimensions, coverSteps,
initNeighbor, topologyFcn, distanceFcn);
net.trainParam.epochs = 1500; %ustalenie maksymalnej liczby epok
treningowych utworzonej sieci
% TRENING SIECI
[net, tr] = train(net, WEJSCIE); %uczenie sieci
y = net(WEJSCIE); %przypisanie sieci do wyjścia Y
classes = vec2ind(y); %konwertowanie wektorów uczonej sieci na
indeksy
```

5. Wnioski

SOM Topology	Każdy neuron reprezentowany jest przez kwadrat.	SOM Topology 3 -
SOM Neighbor Connections	Powiązania sąsiedzkie	SOM Neighbor Connections 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1

- Prostokątna siatka neuronów umożliwia utworzonej sieci stworzenie bezpośrednich powiązań pomiędzy najbliższymi neuronami.
- ❖ Algorytm Winner Takes Most pokazywał prawie równomierne rozłożenie zwycięstw na całej wygenerowanej wcześniej sieci. W poprzednim scenariuszu metoda Winner Takes All koncentrowała wygrane neurony głównie w jednym miejscu sieci heksagonalnej. Rozkład zwycięstw metody WTM zwiększała poprawność działania sieci ze względu na równomierny rozkład zwycięstw.
- ❖ Wagi poszczególnych neuronów są rozłożone w zależności od ilości neuronów w sieci. Zwiększanie liczby neuronów wpływało na czas obliczeń znacznie go wydłużając.
- ❖ Zwiększanie sąsiedztwa powodowało błędy w działaniu sieci neuronowej. Wielkość sąsiedztwa jest uzależniona od wielkości sieci jeśli oba te parametry rosną jednocześnie wtedy działanie programu jest poprawne.
- ❖ Na podstawie wykresu pokazującego rozkład sił neuronów można zauważyć, że sieć korzystała z mechanizmu WTM (wykres pokazuje prawie równomierny rozkład zwycięstw neuronów.