about getting started syntax

About

AsciiMath is an easy-to-write markup language for mathematics. Try it out in the interactive renderer:

Input:

$$sum_{(i=1)^n i^3=((n(n+1))/2)^2}$$

Rendering:

$$\sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Getting Started

In order to get started you have two options:

1. Use <u>MathJax</u> to render your formulas. MathJax is a full fledged open source JavaScript display engine for mathematics and **works in all browsers**.

This is the recommended approach!

Get started by loading the default AsciiMath configuration:

<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/latest.js?con fig=AM_CHTML"></script>

Visit the MathJax <u>Getting Started</u> page to find other CDN options, or to learn how to install MathJax locally on your server.

Text in your HTML enclosed in (backticks) will now get rendered as a math formula. The math delimiters can also be customized. Check out the <u>MathJax</u> website for more information!

2. Load the AsciiMath javascript file (get it on GitHub) in either the head or the body tag of your website like this:

```
<script src="ASCIIMathML.js"></script>
```

This file contains JavaScript to convert AsciiMath notation and (some) LaTeX to Presentation MathML. The conversion is done while the HTML page loads.

Attention: Currently this only works in Firefox and Safari.

While HTML5 now includes MathML as an official recommendation, the remaining browsers do not appear to be implementing it. For widest browser compatibility, the use of MathJax is recommended.

Syntax

Most AsciiMath symbols attempt to mimic in text what they look like rendered, like oo for ∞ . Many symbols can also be displayed using a TeX alternative, but a preceding backslash is not required.

Type	TeX alt	See
+		+
-		_
*	cdot	٠
**	ast	*
***	star	*
//		/
//	backslash setminus	\
XX	times	×
-:	div	•
><	Itimes	×
><	rtimes	\bowtie
><	bowtie	\bowtie
@	circ	0
0+	oplus	\oplus
ОХ	otimes	\otimes
0.	odot	•
sum		\sum
prod		\prod
۸۸	wedge	\wedge
۸۸۸	bidwedge	\land
VV	vee	\vee
VVV	bigvee	\vee
nn	сар	\cap
nnn	bigcap	\bigcap
uu	cup	U
uuu	bigcup	U

Type	TeX alt	See
2/3	frac{2}{3}	$\frac{2}{3}$
2^3		2^3
sqrt x		\sqrt{x}
root(3)(x)		$\sqrt[3]{x}$
int		\int
oint		\oint
del	partial	∂
grad	nabla	∇
+-	pm	土
O/	emptyset	Ø
00	infty	∞
aleph		X
:.	therefore	••
:'	because	
	ldots	
cdots		
vdots		•
ddots		•
\		
quad		
/_	angle	_
frown		
/_\	triangle	Δ
diamond		♦
square		
	Ifloor	L
_	rfloor	
~	Iceiling	Γ
~ Type	r đeiXnalt	See

Type	TeX alt	See
=		=
!=	ne	\neq
<	It	<
>	gt	>
<=	le	<u> </u>
>=	ge	\geq
-<	prec	\prec
-<=	preceq	\preceq
>-	succ	>
>-=	succeq	\succeq
in		\in
!in	notin	⊭
sub	subset	
sup	supset	\subseteq
sube	subseteq	\subseteq
supe	supseteq	\supseteq
-=	equiv	
~=	cong	\cong
~~	approx	\approx
prop	propto	\propto

CC		\mathbb{C}
NN		N
QQ		Q
RR		\mathbb{R}
ZZ		\mathbb{Z}
"hi"	text(hi)	hi

Logical symbols

Туре	TeX alt	See
and		and
or		or
not	neg	_
=>	implies	\Rightarrow
if		if
<=>	iff	\Leftrightarrow
AA	forall	\forall
EE	exists	3
l	bot	
TT	top	一
	vdash	H
==	models	H

Grouping brackets

Туре	TeX alt	See
((
))
[[
]]
{		{
}		}
(:	langle	<
:)	rangle	>
<<		<
>>		>
{: x)		x)
(x :}		(x
abs(x)		x
floor(x)		$\lfloor x \rfloor$
ceil(x)		$\lceil x \rceil$
norm(vecx)		$\ ec{x}\ $

Arrows Accents

Type	TeX alt	See
uarr	uparrow	↑
darr	downarrow	+
rarr	rightarrow	\rightarrow
->	to	\rightarrow
>->	rightarrowtail	\longrightarrow
->>	twoheadrightarrow	\longrightarrow
>->>	twoheadrightarrowtail	>>>
->	mapsto	\mapsto
larr	leftarrow	\leftarrow
harr	leftrightarrow	\leftrightarrow
rArr	Rightarrow	\Rightarrow
IArr	Leftarrow	(
hArr	Leftrightarrow	\Leftrightarrow

Туре	TeX alt	See
hat x		\widehat{x}
bar x	overline x	\bar{x}
ul x	underline x	$ \underline{x} $
vec x		$ec{x}$
dot x		\dot{x}
ddot x		\ddot{x}
overset(x)(=)	overset(x)(=)	$= \frac{x}{x}$
underset(x)(=)		= x
ubrace(1+2)	underbrace(1+2)	$\underbrace{1+2}$
obrace(1+2)	overbrace(1+2)	$\overbrace{1+2}$
color(red)(x)		\boldsymbol{x}
cancel(x)		X

Greek Letters

Font commands

Туре	See	Type	See
alpha	α		
beta	β		
gamma	γ	Gamma	Γ
delta	δ	Delta	Δ
epsilon	ε		
varepsilon	ε		
zeta	ζ		
eta	η		
theta	θ	Theta	Θ
vartheta	ϑ		
iota	ι		
kappa	κ		
lambda	λ	Lambda	Λ
mu	μ		
nu	ν		
xi	ξ	Xi	Ξ
pi	π	Pi	П
rho	ρ		
sigma	σ	Sigma	Σ
tau	au		
upsilon	v		
phi	ϕ	Phi	Φ
varphi	φ		
chi	χ		
psi	ψ	Psi	Ψ
omega	ω	Omega	Ω

Туре	See
bb "AaBbCc"	AaBbCc
bbb "AaBbCc"	$\mathbb{A}\mathbf{a}\mathbb{B}\mathbf{b}\mathbb{C}\mathbf{c}$
cc "AaBbCc"	<i>A</i> a <i>B</i> b€c
tt "AaBbCc"	AaBbCc
fr "AaBbCc"	AaBbCc
sf "AaBbCc"	AaBbCc

Standard Functions

sin, cos, tan, sec, csc, cot, arcsin, arccos, arctan, sinh, cosh, tanh, sech, csch, coth, exp, log, ln, det, dim, mod, gcd, lcm, lub, glb, min, max, f, g.

Special Cases

Matrices: [[a,b],[c,d]] yields to
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Column vectors: ((a),(b)) yields to
$$\begin{pmatrix} a \\ b \end{pmatrix}$$

Matrices can be used for layout:
$$\{(2x,+,17y,=,23),(x,-,y,=,5):\}$$
 yields

$$\begin{cases} 2x + 17y = 23 \\ x - y = 5 \end{cases}$$

Complex subscripts:
$$\lim_{N \to \infty} (N-\infty) = \lim_{N \to \infty} \sum_{i=0}^{N} \sum_{j=0}^{N} (N-\infty) = \lim_{N \to \infty} \sum_{j=0}^{N} \sum_{i=0}^{N} (N-\infty) = \lim_{N \to \infty} \sum_{j=0}^{N} \sum_{i=0}^{N} (N-\infty) = \lim_{N \to \infty} \sum_{i=0}^{N} \sum_{j=0}^{N} (N-\infty) = \lim_{N \to \infty} (N-\infty$$

Subscripts must come before superscripts:
$$[int_0^1 f(x) dx]$$
 yields to $\int_0^1 f(x) dx$

Derivatives: f'(x) = dy/dx yields
$$f'(x) = \frac{dy}{dx}$$

For variables other than x,y,z, or t you will need grouping symbols: (dq)/(dp) for $\frac{dq}{dp}$

Overbraces and underbraces: ubrace(1+2+3+4)_("4 terms") yields
$$\underbrace{1+2+3+4}_{4 \text{ terms}}$$
.

obrace(1+2+3+4)^("4 terms") yields
$$\overbrace{1+2+3+4}^{4 \text{ terms}}$$

Attention: Always try to surround the > and < characters with spaces so that the html parser does not confuse it with an opening or closing tag!

The Grammar

Here is a definition of the grammar used to parse AsciiMath expressions. In the Backus-Naur form given below, the letter on the left of the ::= represents a category of symbols that could be one of the possible sequences of symbols listed on the right. The vertical bar | separates the alternatives.