W4995 Applied Machine Learning

Introduction to Supervised Learning

02/04/19

Andreas C. Müller

A Note on homeworks

- Submit Zip file
- Don't include .git
- git archive master -o homework1.zip

Supervised Learning

$$(x_i, y_i) \propto p(x, y)$$
 i.i.d.

$$x_i \in \mathbb{R}^p$$

$$y_i \in \mathbb{R}$$

$$f(x_i) \approx y_i$$

$$f(x) \approx y$$

Nearest Neighbors

$$f(x) = y_i, i = \operatorname{argmin}_j ||x_j - x||$$

Nearest Neighbors

$$f(x) = y_i, i = \operatorname{argmin}_j ||x_j - x||$$

training set

test set

KNN with scikit-learn

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
print("accuracy: {:.2f}".format(knn.score(X_test, y_test)))
y_pred = knn.predict(X_test)
```

accuracy: 0.77

Influence of Number of Neighbors

Influence of Number of Neighbors

Influence of n_neighbors

Model complexity

Overfitting and Underfitting

Training

Overfitting and Underfitting

Training

Overfitting and Underfitting

Training

Nearest Centroid

$$f(x) = \operatorname{argmin}_{i \in Y} ||\bar{x}_i - x||$$

Nearest Centroid with scikit-learn

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

from sklearn.neighbors import NearestCentroid
nc = NearestCentroid()
nc.fit(X_train, y_train)
print("accuracy: {:.2f}".format(nc.score(X_test, y_test)))
```

accuracy: 0.62

Nearest Shrunken Centroid

Soft thresholding at 0.5

Computational Properties Centroids

Computational Properties Centroids

• fit: O(n * p)

• memory: O(n_classes * p)

• predict: O(n_classes * p)

 $n = n_samples p = n_features$

Computational Properties Neighbors

Naive

• fit: no time

• memory: O(n * p)

• predict: O(n * p)

n=n_samples p=n_features

Computational Properties Neighbors

Naive

- fit: no time
- memory: O(n * p)
- predict: O(n * p)

n=n_samples p=n_features

Kd-tree

- fit: O(p * n log n)
- memory: O(n * p)
- predict:
- O(k * log(n))FOR FIXED p!

Parametric and non-parametric models

- Parametric model: Number of "parameters" (degrees of freedom) independent of data.
- Non-parametric model: Degrees of freedom increase with more data.

Overfitting and Underfitting

Training

 ${\it KN} eighbors {\it Classifier}$

NearestCentroid

training cat

Overfitting the validation set

Validation: 0.972

Test: 0.965

Overfitting the validation set

```
val = []
test = []

for i in range(1000):
    rng = np.random.RandomState(i)
    noise = rng.normal(scale=.1, size=X_train.shape)
    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train + noise, y_train)
    val.append(knn.score(X_val, y_val))
    test.append(knn.score(X_test, y_test))

print("Validation: {:.3f}".format(np.max(val)))
print("Test: {:.3f}".format(test[np.argmax(val)]))
```

Validation: 1.000

Test: 0.958

Threefold split

Threefold split

pro: fast, simple

con: high variance, bad use of data

Threefold Split for Hyper-Parameters

```
X_trainval, X_test, y_trainval, y_test = train_test_split(X, y)
X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval)

val_scores = []
neighbors = np.arange(1, 15, 2)
for i in neighbors:
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, y_train)
    val_scores.append(knn.score(X_val, y_val))
print("best validation score: {:.3f}".format(np.max(val_scores)))
best_n_neighbors = neighbors[np.argmax(val_scores)]
print("best n_neighbors:", best_n_neighbors)

knn = KNeighborsClassifier(n_neighbors=best_n_neighbors)
knn.fit(X_trainval, y_trainval)

print("test-set score: {:.3f}".format(knn.score(X_test, y_test)))
```

https://amueller.github.io/COMS4995-s19/slides/aml-04-supervised-learning/#1

Cross-validation

Cross-validation

pro: more stable, more data

con: slower

Cross-validation + test set

All Data

Grid-Search with Cross-Validation

```
from sklearn.model_selection import cross_val_score

X_train, X_test, y_train, y_test = train_test_split(X, y)
cross_val_scores = []

for i in neighbors:
    knn = KNeighborsClassifier(n_neighbors=i)
    scores = cross_val_score(knn, X_train, y_train, cv=10)
    cross_val_scores.append(np.mean(scores))

print("best cross-validation score: {:.3f}".format(np.max(cross_val_scores)))
best_n_neighbors = neighbors[np.argmax(cross_val_scores)]
print("best n_neighbors:", best_n_neighbors)

knn = KNeighborsClassifier(n_neighbors=best_n_neighbors)
knn.fit(X_train, y_train)
print("test-set score: {:.3f}".format(knn.score(X_test, y_test)))
```

```
best cross-validation score: 0.967 best n_neighbors: 9
```


GridSearchCV

best mean cross-validation score: 0.967
best parameters: {'n_neighbors': 9}

test-set score: 0.993

GridSearchCV Results

```
import pandas as pd
 results = pd.DataFrame(grid.cv_results_)
 results.columns
Index(['mean_fit_time', 'mean_score_time', 'mean_test_score',
          'mean_train_score', 'param_n_neighbors', 'params', 'rank_test_score',
'split0_test_score', 'split0_train_score', 'split1_test_score',
'split1_train_score', 'split2_test_score', 'split2_train_score',
'split3_test_score', 'split3_train_score', 'split4_test_score',
           'split4_train_score', 'split5_test_score', 'split5_train_score',
           'split6_test_score', 'split6_train_score', 'split7_test_score', 'split7_train_score', 'split8_test_score', 'split8_train_score', 'split9_test_score', 'split9_train_score', 'std_fit_time',
           'std_score_time', 'std_test_score', 'std_train_score'],
         dtype='object')
 results.params
         {'n_neighbors': 1}
         {'n_neighbors': 3}
         {'n neighbors': 5}
         {'n neighbors': 7}
         {'n neighbors': 9}
       {'n_neighbors': 11}
       {'n_neighbors': 13}
Name: params, dtype: object
```

n_neighbors Search Results

Nested Cross-Validation

- Replace outer split by CV loop
- Doesn't yield single model (inner loop might have different best parameter settings)
- Takes a long time, not that useful in practice

Cross-Validation Strategies

StratifiedKFold

Stratified: Ensure relative class frequencies in each fold reflect relative class frequencies on the whole dataset.

Defaults in scikit-learn

- 3-fold is the deprecated default, 5-fold in 0.22
- For classification cross-validation is stratified
- train_test_split has stratify option: train_test_split(X, y, stratify=y)
- No shuffle by default!

Repeated KFold and LeaveOneOut

- LeaveOneOut : KFold(n_folds=n_samples) High variance, takes a long time
- Better: RepeatedKFold. Apply KFold or StratifiedKFold multiple times with shuffled data. Reduces variance!

ShuffleSplit / StratifiedShuffleSplit

GroupKFold

TimeSeriesSplit

Time series cross-validation

Using Cross-Validation Generators

```
from sklearn.model_selection import KFold, StratifiedKFold, ShuffleSplit, RepeatedStratifiedKFold
kfold = KFold(n_splits=5)
skfold = StratifiedKFold(n_splits=5, shuffle=True)
ss = ShuffleSplit(n_splits=20, train_size=.4, test_size=.3)
rs = RepeatedStratifiedKFold(n_splits=5, n_repeats=10)

print("KFold:")
print(cross_val_score(KNeighborsClassifier(), X, y, cv=kfold))

print("StratifiedKFold:")
print(cross_val_score(KNeighborsClassifier(), X, y, cv=skfold))

print("ShuffleSplit:")
print(cross_val_score(KNeighborsClassifier(), X, y, cv=ss))

print("RepeatedStratifiedKFold:")
print(cross_val_score(KNeighborsClassifier(), X, y, cv=rs))
```

cross_validate function

fit_time	score_time	test_accuracy	test_roc_auc	train_accurad	cy train_roc_auc
0.000839	0.010204	0.965217	0.996609	0.980176	0.997654
0.000870	0.014424	0.956522	0.983689	0.975771	0.998650
0.000603	0.009298	0.982301	0.999329	0.971491	0.996977
0.000698	0.006670	0.955752	0.984071	0.978070	0.997820
0.000611	0.006559	0.964602	0.994634	0.978070	0.998026

Questions?