ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО **МАТЕМАТИКА**

1 септември 2009 г. – <u>Вариант 2</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ , от които само един е верен. Отговорите на тези задачи отбелязвайте със син/черен цвят на химикалката в **листа за отговори**, а не върху тестовата книжка. Отбелязвайте верния отговор със знака X в кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и отбележете буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е отбелязана със знака ${f X}$.

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълнете решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 20. вкл. отбелязвайте в листа за отговори!

1. Дадени са числа	Ta $M = 3\frac{1}{3}\%$	от 20 и N = 0,667 . Вярн о	е, че:		
$\mathbf{A)} \ M > N$	Б) $M < N$	B) $M = N$ Γ) M	$^{\prime}$ и N не могат да се сравнят		
2. Сумата $\sqrt{(2-\sqrt{3})}$	$\left(\sqrt{3}-2\right)^{2}$) е равна на:			
A) $4-2\sqrt{3}$	Б) —	B) 0	Γ) $4+2\sqrt{3}$		
3. Изразът $\frac{2-x}{x+3}$: $\frac{x}{x+3}$	3. Изразът $\frac{2-x}{x+3}$: $\frac{x^2-4}{2x}$ е дефиниран при:				
A) $x \neq 0$ B) $x \neq 0$	$0, x \neq -3$	B) $x \neq 0, x \neq 2, x \neq -2$	$\Gamma) \ x \neq 0, x \neq -3, x \neq \pm 2$		
4. Ако x_1 и x_2 са корените на уравнението $x^2+10x+20=0$, то стойността на израза $\frac{x_1x_2^2+x_1^2x_2}{30+x_1+x_2}$ е:					
A) -10	Б) $\frac{1}{4}$	B) $\frac{1}{2}$	Γ) 5		
5. Броят на пресо	ечните точкі	и на графиките на фун	икциите $f(x) = x^2 - 5x + 3$ и		
$g(x) = 1 + x^2$ ca:					
A) 0	Б) 1	B) 2	Γ) 3		
6. Корените на ура	внението (х	$(-3).\sqrt{x-5}=0$ са числат	a:		
A)3	Б) 3 и	5 B) 5	Г) 5 и 9		
7. Стойността на израза $\log_3 9 - \lg \frac{1}{100} - 2^{2009} . \log_5 1$ е равна на:					
A) 0	Б) 1	B) 4	Γ) 5		
8. Решенията на н	еравенството	$\frac{3-x}{x-1} \le 0 \mathbf{ca}:$			
 8. Решенията на но A) x ∈ [1;3] B) x ∈ (1;3] 	еравенството	b) $x \in (-\infty)$	$(0,1)\cup[3,+\infty)$ $(0,1)\cup(3,+\infty)$		

9. На чертежа е построена единичната окръжност и права p, която се допира до окръжността в точка с ордината 1. Първото рамо на ъгъл $\,lpha$ съвпада с положителната посока на абсцисната ос. Второто рамо на ъгъл α пресича правата pв точка M, както е показано на чертежа. За ъгъл α абсцисата на точка M е стойността на функцията:

А) синус

Б) косинус

В) тангенс

Г) котангенс

10. Дадена е окръжност k(O, r = 0.8 cm) и точки A и B от окръжността, такива че радианната мярка на $\angle AOB$ е 5. Дължината на принадлежащата дъга AB на този ъгъл е:

- **A)** 2 cm
- **b**) 4 cm
- **B)** 6 cm
- Γ) 8 cm

11. За геометричната прогресия $a_1, a_2, ..., a_5$ е известно, че $a_3 = -2$. Произведението $a_1.a_5$ е равно на:

- $\mathbf{A}) -4$
- **Б**) −2
- **B)** 2
- **Γ**) 4

12. Ако средното аритметично на числата a, -5, -3 и -2 е равно на -1, то числото a е:

- **A)** -4
- **Б**) 5

B) 6

F) 8

AC:PC=5:3 и $PQ\parallel AB$, то отношението на лицата 13. Ако на чертежа S_{POC} : S_{ABOP} е равно на:

- **A)** 3:5
- **Б)** 3:2
- **B)** 9:25
- **Γ)** 9:16

14. В $\triangle ABC$ BL е ъглополовящата на $\angle ABC$, LM е медиана в

 $\triangle ABL$, $AL = BL = 2\sqrt{3}$, $LC = \sqrt{3}$ in $\triangle ALM \sim \triangle ABC$.

Страната BC на ΔABC е равна на:

- **A)** 3
- **Б**) 6
- **B)** $2\sqrt{3}$ Γ) $3\sqrt{3}$

15. На чертежа хордите AC и BD се пресичат в точка M. Ако BM = 12 cm, DM = 9 cm и AM : AC = 4:7, то HE е вярно, че:

A) $AB \parallel CD$

B) $S_{4MD}: S_{DMC} = 4:3$

 Γ) DC: AB = 3:4

16. Вписаната в правоъгълен триъгълник окръжност се допира до хипотенузата AB в точка M. Отсечката AM е 4, а хипотенузата е 10. Лицето на триъгълника е:

A) 12

Б) 24

B) 40

Г) 48

17. Ако BC е най-голямата страна в разностранния ΔABC , а d е диаметърът на описаната около триъгълника окръжност и $BC: d=1:\sqrt{2}$, то мярката на $\angle BAC$ е:

A) 45°

Б) 135°

B) 120°

Γ) 60°

18. В остроъгълния ΔABC страната BC=7~cm и AB=5~cm. Ако R е радиусът на описаната около триъгълника окръжност и BC : $R=\sqrt{3}$, то дължината на страната AC е равна на:

A) 6 cm

b) $\sqrt{39}$ *cm*

B) 8 cm

 Γ) $\sqrt{109}$ cm

19. $\triangle ABC$ е равностранен със страна $AB = 4\sqrt{3} \ cm$. Точка M е вътрешна за триъгълника и е такава, че лицата на триъгълниците ABM, BCM и ACM се отнасят съответно както 1:2:3. Разстоянието от M до AB е равно на:

A) 1 cm

Б) 2 ст

B) 3 cm

 Γ) 6 cm

20. Ако страната на ромб е 12~cm и един от ъглите му е 60° , то радиусът на вписаната в ромба окръжност е равен на:

A) 3 cm

b) $3\sqrt{3}$ *cm*

B) 6 cm

 Γ) $6\sqrt{3}$ cm

21. Запишете най-малкото цяло число x, за което е изпълнено неравенството

$$2.\left(\frac{2}{3}\right)^{x} + 5.\left(\frac{2}{3}\right)^{x} < 7$$

- 22. Ако се съберат първият и пети член на аритметична прогресия се получава 18, а ако от седмия се извади сборът на втория и трети член на тази прогресия се получава 1. Намерете сбора на първите 10 члена на прогресията.
- **23.** Намерете стойността на израза $tg75^{\circ} + \frac{1}{tg75^{\circ}}$.
- **24.** Основата на равнобедрен триъгълник е $30\ cm$, а центърът на вписаната в триъгълника окръжност дели височината към основата в отношение 5:13, считано от основата. Да се намери лицето на триъгълника в квадратни сантиметри.
- 25. Нека k е случайно избрано число измежду 5 цели числа. Намерете вероятността числото $cotg\left(\frac{\pi}{4} + k\pi\right)$ да е ирационално число.

<u>Пълните решения с необходимите обосновки на задачите от26. до 28. вкл. запишете в свитъка за свободните отговори!</u>

26. Решете уравнението
$$\sqrt{\frac{x+3}{x-3}} + 1 = 6\sqrt{\frac{x-3}{x+3}}$$
.

- 27. Дадени са пет отсечки с дължини 2 cm, 3 cm, 4 cm, 5 cm и 6 cm. Каква е вероятността три случайно избрани от тях да могат да образуват триъгълник?
- **28.** В триъгълника ABC BC = 6 cm, AC = 8 cm. Ъглополовящата през върха C пресича описаната около триъгълника окръжност в точка L. Да се намери страната AB в сантиметри, ако CL = AC.

Вариант 2

4

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_n q - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^{\ 2}=a_1b_1 \qquad r=\frac{a+b-c}{2} \qquad \sin\alpha=\frac{a}{c} \qquad \cos\alpha=\frac{b}{c} \qquad \operatorname{tg}\alpha=\frac{a}{b} \qquad \operatorname{cotg}\alpha=\frac{b}{a}$$
 Произволен триъгълник:
$$a^2=b^2+c^2-2bc\cos\alpha \qquad \qquad b^2=a^2+c^2-2ac\cos\beta$$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0_{0}	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot \alpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} \alpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \alpha)}{\cot(\alpha \pm \beta)} \pm \frac{\cot(\alpha \pm \beta)}{\cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \alpha) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\alpha \pm \beta)}$$

$$\cos(\alpha \pm$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

Учебен предмет – математика септември 2009 г.

ВАРИАНТ № 2

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1.	Б	2
2.	A	2
3.	Γ	2
4.	A	2
5.	Б	2
6.	В	2
7.	В	2
8.	Б	2
9.	Γ	2
10.	Б	2
11.	Γ	2
12.	В	2
13.	Γ	2
14.	A	2
15.	Б	2
16.	Б	2
17.	Б	2
18.	В	2
19.	A	2
20.	Б	2
21.	1	3
22.	140	3
23.	4	3
24.	540	3
25.	0	3

Nº	Верен отговор	Брой точки
26.	x = 5	15
27.	$x = 5$ $P = \frac{7}{10} = 0,7$ $AB = 7 cm$	15
28.	AB = 7 cm	15

ВЪПРОСИ С РЕШЕНИЯ

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 26

Първо решение:

1. Определяне множеството от допустими стойности: $\frac{x+3}{x-3} > 0$

T.e.
$$x \in (-\infty, -3) \cup (3, +\infty)$$
 (2 T.)

2. Полагане
$$\sqrt{\frac{x+3}{x-3}} = y$$
 (2 т.)

3. Допустими стойности за
$$y: y > 0$$
 (1 т.)

4. Получаване на уравнението
$$y - 6.\frac{1}{y} + 1 = 0$$
 (1 т.)

5. Намиране на корените
$$y_1 = -3$$
, $y_2 = 2$ (2 т.)

6. Отбелязване, че
$$y_1 = -3$$
 не е решение (2 т.)

7. Решаване на уравнението
$$\sqrt{\frac{x+3}{x-3}} = 2$$
 и получаване на $x = 5$ (3 т.)

8. Записване на отговора
$$x = 5$$
 (2 т.)

*Забележка: Ако вместо етап 1. и 6. е направена директна проверка с y_1 и y_2 и е установено , че $y_1 = -3$ не е решение, а $y_2 = 2$ е решение на даденото уравнение (4 т.)

Второ решение:

1.Записване на уравнението така: $\sqrt{\frac{x+3}{x-3}} - 6\sqrt{\frac{x-3}{x+3}} = -1$ и определяне множеството от

допустими стойности:
$$\frac{x+3}{x-3} > 0$$
 , т.е. $x \in (-\infty, -3) \cup (3, +\infty)$ (2 т.)

2. Повдигане двете страни на уравнението на втора степен и получаване

$$\frac{x+3}{x-3} - 12\sqrt{\frac{x+3}{x-3}} \cdot \sqrt{\frac{x-3}{x+3}} + 36 \cdot \frac{x-3}{x+3} = 1$$
 (3 т.)

3.Еквивалентни преобразувания до :
$$\frac{(x+3)^2 + 36(x-3)^2}{(x+3).(x-3)} - 12 = 1$$
 (2 т.)

4.
$$\frac{(x+3)^2 + 36(x-3)^2}{(x+3).(x-3)} = 13 \Leftrightarrow (x+3)^2 + 36(x-3)^2 = 13x^2 - 117$$
 (2 т.)

5.
$$24x^2 - 210x + 450 = 0$$
 (2 т.)

- **6.** Намиране корените на последното уравнение $x_1 = 5$, $x_2 = \frac{15}{4}$ (2 т.)
- 7. Проверка за принадлежност на корените към дефиниционното множество и отхвърляне на $x_2 = \frac{15}{4}$ като корен на даденото уравнение чрез пряка проверка (2 т.)
- * Забележка: Ако вместо етап 1. и 7. е направена директна проверка за числата $x_1 = 5$ и $x_2 = \frac{15}{4}$ дали са корени на даденото уравнение (4 т.)

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 27

1.Като се приложи теоремата за неравенство на триъгълника, а именно, че триъгълникът съществува, ако сборът на двете най –малки страни е по-голям от третата, то преброяваме възможните триъгълници. Те са със страни съответно:

2cm, 3cm и 4cm; 2cm, 4cm и 5cm; 2cm, 5cm и 6cm;

3 ст, 4 сти 5 ст; 3 ст, 4 ст и 6 ст; 3 ст, 5 ст и 6 ст;

4 cm, 5 cm и 6 cm, т.е. броят на благоприятните изходи е 7. (7 т.)

- **2.** Три от 5 отсечки можем да изберем по $C_5^3 = \frac{5.4.3}{3!} = 10$ начина. (5 т.)
- **3.** Търсената вероятност е $P = \frac{7}{10}$ (3 т.)

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 28

Първо решение:

- 1. Нека $CL \cap AB = P$ и CP = t, а PL = 8 t (2 т.)
- **2**. От свойството на ъглополовящата CP в $\triangle ABC$ следва, че

$$\frac{AP}{PB} = \frac{AC}{BC} = \frac{4}{3}$$
, следователно $AP = 4k$ и $PB = 3k$

(2 т.)

- **3**. От формулата за ъглополовяща следва, че $CP^2 = AC.BC AP.PB$ т.е. следва, че $t^2 = 48 12k^2$ (1) (4 т.)
- **4.** От $\triangle APC \sim \triangle LPB$ следва, че $\frac{AP}{LP} = \frac{PC}{PB}$, т.е. $\frac{4k}{8-t} = \frac{t}{3k}$. Следователно $12k^2 = 8t t^2$ (2)
- **5.** Заместваме $12k^2$ от (2) в (1) и получаваме $t^2 = 48 8t + t^2$, т.е. t = 6. Тогава k = 1 и AB = 7 ст

Второ решение:

1. Съобразяване че от
$$\angle ACL = \angle BCL \Rightarrow \widehat{AL} = \widehat{BL} \Rightarrow AL = BL = x$$
 (3 т.)

2. Два пъти прилагане на косинусова теорема съответно за $\triangle ACL$ и $\triangle BCL$

$$x^2 = AC^2 + CL^2 - 2.AC.CL\cos\frac{\gamma}{2}$$
 и $x^2 = BC^2 + CL^2 - 2.BC.CL\cos\frac{\gamma}{2}$ или $x^2 = 36 + 64 - 2.6.8\cos\frac{\gamma}{2}$ и $x^2 = 64 + 64 - 2.8.8\cos\frac{\gamma}{2}$ (2.2 т.) (4 т.)

3. Почленно изваждане на първото от второто уравнение и намиране

на
$$32\cos\frac{\gamma}{2} = 28$$
 и $\cos\frac{\gamma}{2} = \frac{7}{8}$ (3 т.)

4. Намиране на
$$\cos \gamma = 2\cos^2 \frac{\gamma}{2} - 1 = 2 \cdot \frac{49}{64} - 1 = \frac{17}{32}$$
 (2 т.)

5. Прилагане на косинусовата теорема за $\triangle ABC$:

$$AB^2 = AC^2 + BC^2 - 2.AC.BC\cos\gamma$$
 , $AB^2 = 36 + 64 - 2.6.8.\frac{17}{32}$ и намиране на $AB = 7$ cm (3 т.)