The Comparisons of Age and Gender Stratified COVID-19 CT Deep Learning Detection Models

Group 5: Yaru Zhou, Lingyun Wu, Zaiqiu Cao

Our Findings

- The patient characteristics of age and gender played an important role in COVID-19 CT diagnosis.
- Using age and gender stratified models in setting up COVID-19 CT deep learning detection models might promote the model performance.

Introduction

- Coronavirus diseases 2019 (COVID-19) had caused over 83 million cases and over 1.8 million deaths in the world before 05/01/2020 (1).
- One diagnosis method of COVID-19 is reverse-transcription polymerase chain reaction (RT-PCR) testing. However, it has several drawbacks:
 - Take approximately five to six hours to reveal the results;
 - The sensitivity is only 60% to 70%;
 - Testing kits are not enough
 - Unlike CT scans, not able for earlier diagnosis and early intervention.
- So, in the diagnosis, CT scans played an irreplaceable role (2). A lot of deep learning models based on convolutional neural networks (CNNs) have been implemented for detecting COVID-19 CT images, but they did not take age and gender into consideration (3).
- Studies have been proved the severity of symptoms of COVID-19 varies by biological gender and age. Male and people aged over 50 are more likely to be infected and have negative outcomes (4,5).

Objective

- Illustrate different deep learning assist COVID-19 detection models: nonstratified, age-stratified and gender-stratified models.
- Compare the performance of these stratified models.

Methods

The general process of this study was shown following:

Figure 1 The Process of COVID-19 CT Deep Learning Detection Models (6)

• The structure of the model: ResNet50V2-FPN.

ResNet50V2, an updated version ResNet50, is one kind of CNNs. Feature pyramid network (FPN) can help detecting features at different

Dataset

Table 1 Dataset of Different Stratified Models

Model	COVI	D-19*	Normal			
	Patients (N**)	Images (N)	Patients (N)	Images (N)		
Non-Stratified	47	1077	141	4715		
Age-Stratified	1					
Age≥50	48	1332	48	1564		
Age<50	47	950	234	8212		
Age-Stratified	2					
Age≥40	74	1935	124	4364		
Age<40	21	347	158	5412		
Gender-Stratif	ied					
Female	39	876	183	5633		
Male	56	1400	136	5299		

*COVID-19 = Coronavirus diseases 2019; **N = number.

After image selection, there were 12258 chest CT images from 377 patients selected. Then they were stratified by age and gender. In this study, age had two study methods:

- •Age 50- generally considered as the boundary to stratify COVID-19 CT dataset (5);
- Age 40- the median age.

Results

Table 2 Summary of Different Stratified Model Performance in Classifying Patients

	Sensitivity		Specificity		Precision		Recall		F1-Score	
	COVID-19 [*]	Normal	COVID-19	Normal	COVID-19	Normal	COVID-19	Normal	COVID-19	Normal
Non-Stratified	0.946	0.941	0.941	0.946	0.484	0.997	0.946	0.941	0.641	0.968
Age-Stratified '	1									
Age≥50	0.917	0.939	0.939	0.917	0.893	0.955	0.917	0.939	0.905	0.947
Age<50	0.941	0.839	0.839	0.941	0.229	0.998	0.941	0.839	0.369	0.912
Age-Stratified 2	2									
Age≥40	0.967	0.901	0.901	0.967	0.625	0.995	0.967	0.901	0.759	0.946
Age<40	0.852	0.744	0.744	0.852	0.064	0.997	0.852	0.744	0.120	0.852
Gender-Stratifi	ed									
Female	0.918	0.953	0.953	0.918	0.449	0.997	0.912	0.949	0.605	0.969
Male	0.982	0.940	0.940	0.982	0.611	0.999	0.983	0.935	0.753	0.968

* COVID-19 = Coronavirus diseases 2019.

The female stratified model outperformed in sensitivity, recall, F1-score of normal patients, and the specificity of COVID-19.

The elder group of agestratified model outperformed non-stratified model in the precision of COVID-19 patients. The increasing precision indicates the necessary of using stratified dataset in building up models.

The younger group of agestratified model performed worse than non-stratified model. Especially the age<40 stratified model, which performed worst among all of the models. There were significant decreases in the model performance between this model and non-stratified model (*p*<0.001).

The male stratified model performed better in almost all metrics, except for subtle decreases in the sensitivity, recall of normal patients, and specificity of COVID-19 patients.

References

[1] Coronavirus Disease (COVID-19) Situation Reports [Internet]. [cited 2021 Jan 6]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

[2] Sayan M, Sarigul Yildirim F, Sanlidag T, Uzun B, Uzun Ozsahin D, Ozsahin I. Capacity Evaluation of Diagnostic Tests for COVID-19 Using Multicriteria Decision-Making Techniques. Comput Math Methods Med. 2020;2020.

[3] Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020 296:2, E65-E71.

[4] Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. Coyne CB, editor. PLOS Pathogens 16(6): e1008570.

[5] Gu Q, Ouyang X, Xie A, Tan X, Liu J, Huang F, et al. A retrospective study of the initial chest CT imaging findings in 50 COVID-19 patients stratified by gender and age. J Xray Sci Technol. 2020;28(5):875-884.

[6] Rahimzadeh M, Attar A, Sakhaei SM. A Fully Automated Deep Learning-based Network For Detecting COVID-19 from a New And Large Lung CT Scan Dataset. medRxiv [Internet]. 2020 Sep 1 [cited 2021 Jan 6];2020.06.08.20121541. Available from: https://doi.org/10.1101/2020.06.08.20121541

