Lad $Q \in \mathbb{R}^{n \times n}$, være en reel $n \times n$ ortogonal matrix.

Vis at $det(Q) = \pm 1$

Opgave 2

Lad $Q \in \mathbb{R}^{n \times n}$, være en reel $n \times n$ ortogonal matrix.

Vis at Q bevarer standard indre produktet, dvs.

$$\langle x, y \rangle = x^T y = \langle Qx, Qy \rangle$$

Opgave 3

Lad

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$$

1. Find Q således at

$$D = Q^{-1}AQ$$

er en diagonal matrix med egenværdierne for A.

2. Find en ortonormal basis for rummet udspændt af A.

Opgave 4

Antag at $A \in \mathbb{R}^{n \times n}$ er symmetrisk og at A^{-1} eksisterer.

Vis at A^{-1} også er symmetrisk.

Lad

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \qquad v_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

- 1. Vis, at (v_1, v_2) er ortogonale mht. standard indre produktet $\langle \cdot, \cdot \rangle$ på \mathbb{R}^3 , altså at de er lineært uafhængige.
- 2. Find en vektor v_3 , så (v_1, v_2, v_3) er en basis for \mathbb{R}^3 .
- 3. Find en ortonormal basis (u_1, u_2, u_3) for \mathbb{R}^3 udfra (v_1, v_2, v_3) .
- 4. Vis, at matricen $P = (u_1 \ u_2 \ u_3)$ er ortonormal.

Opgave 6

Lad $V=\mathbb{R}^2,$ og definer afbildningen $<<\cdot,\cdot>>:V\times V\longrightarrow\mathbb{R}$ ved

$$<<\cdot,\cdot>>=3x_1y_1+4x_2y_2.$$

- 1. Vis at $<<\cdot,\cdot>>: V\times V\longrightarrow \mathbb{R}$ er et indre produkt.
- 2. Find normen af vektorerne

$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \qquad y = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

 $\mathrm{mht.} <<\cdot,\cdot>>$

- 3. Er x og y ortogonale mht. $<<\cdot,\cdot>>$?
- 4. Er x og y ortogonale mht. $\langle \cdot, \cdot \rangle$ (standard indre produkt)?
- 5. Find den 2×2 matrix B der definerer << ·,· >>, dvs. find B så

$$\langle x, y \rangle_B = x^T B y = \langle \langle x, y \rangle \rangle$$

Lad $A \in \mathbb{R}$ være en reel $n \times n$ matrix, og lad $A_{(i)}$ betegne den i'te søjle i A og A_{ij} elementet i den i'te række og j'te søjle af A.

Sandt eller falskt? (Begrund dine svar)

- 1. Hvis der eksisterer i, j således at $A_{(i)} = A_{(j)}$ er $\det(A) \neq 0$?
- 2. Gælder det altid at hvis $A_{ij} \neq 0, \forall i, j \text{ er det}(A) \neq 0$?

Opgave 8

Definer mængden $V = \{x \in \mathbb{R}^2 | x_1 = 2x_2\} \subset \mathbb{R}^2$. Lad V^{\perp} betegne det ortogonale komplement til V, dvs.

$$V^{\perp} = \{ x \in \mathbb{R}^2 | \langle x, y \rangle = 0, \forall y \in V \}$$

Vis at $V^{\perp} = \{x \in \mathbb{R}^2 | x_1 = -\frac{1}{2}x_2\}$ og lav en skitse af V og V^{\perp} i \mathbb{R}^2 .

Opgave 9

MI opgave 19.7:

Lad $X = (X_1, \dots, X_n)^T$ være en stokastisk (søjle)-vektor. Antag at X har endeligt andet moment og vis at kovarians matricen for X er givet ved

$$\mathbb{V}X = \mathbb{E}XX^T - \mathbb{E}X\mathbb{E}X^T$$

Opgave 10

MI opgave 19.9:

Lad Σ være en symmetrisk, positiv semi-definit $n \times n$ matrix. Vis at der eksisterer en stokastisk vektor $X = (X_1, \dots, X_n)^T$ med kovarians matrix $\Sigma = \mathbb{V}X$.

Hint: benyt spektral sætningen til at vise resultatet for en diagonal matrix.

Indlæs datasættet brainhead.txt i R. De 4 variable er:

- gender= $\begin{cases} 1: & \text{mand} \\ 2: & \text{kvinde} \end{cases}$
- age= $\begin{cases} 1: & \text{aldersgruppe 20-46 år} \\ 2: & \text{aldersgruppe >46 år} \end{cases}$
- ullet size=størrelsen af personens hoved i cm³
- weight=vægten af personens hjerne i gram
- 1. Start med at plotte data: vægt mod størrelse. Du kan evt. prøve at farve punkterne efter grupperne (se Figur 1).
- 2. Lav en lineær regression af vægt på størrelse. Hvad betyder koefficienterne?
- 3. Tegn regressions linjen ind i data plottet.
- 4. Prøv at lave en regression som før, men hvor du kun benytter data for hhv. mændene (gender==1) og kvinderne (gender==2). Tegn linjerne i data plottet.
- 5. Prøv at lave en regression som før, men hvor du kun benytter data for hhv. 20-46 årige (age==1) og >46 årige (age==1). Tegn linjerne i data plottet.

Figur 1: Data til opgave 14 plottet i grupper.

Lad I_n betegne $n \times n$ enhedsmatricen, og A^T den transponerede matrix A. Benyt R til følgende opgaver:

1. Lav matricen

$$A = \begin{pmatrix} 4 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$

2. Find $A^2 = A^T A$:

$$A^T A = \begin{pmatrix} 21 & -4 & 13 \\ -4 & 6 & 3 \\ 13 & 3 & 14 \end{pmatrix}$$

3. Find determinanten af A.

- 4. Find den inverse matrix A^{-1} , tjek at $A^{-1}A = I_3$.
- 5. Find egenværdierne til A.
- 6. Find B så $B^TB = A$, B kaldes også Cholesky dekompositionen af A.
- 7. Kan du finde Q og Λ så $A=Q\Lambda Q^T,$ hvor Λ er en diagonal matrix og $QQ^T=I_3$?
- 8. Lav en ny matrix A^* udfra A, hvor en af søjlerne eller rækkerne består at 0'er.
- 9. Prøv om du kan invertere A^* . Tjek evt. egenværdierne af A^* .
- 10. Uden brug af R: Kan A, A^*, B antages at være variansmatricer? Hvorfor, hvorfor ikke?

Hint: der eksisterer flere funktioner i R der kan lette ovenstående opgaver betydeligt...!