(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-306996

(43)公開日 平成5年(1993)11月19日

(51)Int.Cl.⁶ G 0 1 N 21/31 識別記号 庁内整理番号

FΙ

技術表示箇所

21/74

A 7370-2 J 9115-2 J

審査請求 未請求 請求項の数1(全 5 頁)

(21)出顯番号

特顯平4-139917

(22)出願日

平成 4年(1992) 4月30日

(71)出願人 000001993

株式会社島津製作所

京都府京都市中京区西ノ京桑原町1番地

(72)発明者 西垣 日出久

京都府京都市中京区西ノ京桑原町1番地

株式会社島津製作所三条工場内

(74)代理人 弁理士 野口 繁雄

(54) 【発明の名称 】 原子吸光分光光度計

(57)【要約】

【目的】 オートサンプラーのアームの長さを短かくし て小型にするとともに、アームの回転方向の分解能が低 くてすむようにする。

【構成】 測定装置本体2にオートサンプラー8が組み 込まれ、オートサンプラー8のアーム16はノズル12 を試料容器の位置、混合容器の位置及び試料注入位置に 配置されたグラファイトチューブ6の試料導入穴14の 位置へ移動させる。試料注入位置はグラファイトチュー ブ6が分析位置にあるときよりもオートサンプラー8に 近い位置にある。フレームレス方式の測定の前に、原子 化部が前方に引き出されてグラファイトチューブ6の試 料注入穴14が試料注入位置へ位置決めされ、調合され た試料がノズル12によってグラファイトチューブ16 内に導入される。

【特許請求の範囲】

【請求項1】 測定光を発する光源、試料を原子化する フレームレス方式の原子化部、原子化部を通過した測定 光を分光する分光器、及び分光された測定光を検出する 検出部を備えた測定装置と、この測定装置に組み込ま れ、測定光束が原子化部のグラファイトチューブを通過 する分析位置でのグラファイトチューブの試料導入穴よ りも近い位置の試料注入位置へ試料を搬送して注入する 試料自動注入装置と、原子化部のグラファイトチューブ を測定光がその中を通る分析位置及びグラファイトチュ 10 ーブの試料導入穴が前記試料注入位置にくる位置の間で 移動させる移動機構とを備えたことを特徴とする原子吸 光分光光度計。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は原子吸光分光光度計に関 し、特に原子化部としてフレームレス方式の原子化部を 少なくとも備え、フレームレス方式の原子化部のグラフ ァト炉へ試料を注入するためのオートサンプラー(試料 自動注入装置)が組み込まれた自動測定方式の原子吸光 20 分光光度計に関するものである。

[0002]

【従来の技術】フレームレス方式の原子吸光測定におい ては、測定光の光束上に設置された原子化部のグラファ イト炉のグラファイトチューブに試料が導入される。グ ラファイトチューブへの試料導入は、グラファイトチュ ーブの上面に開けられた穴にオートサンプラーのノズル を差し入れて行なっている。グラファイトチューブが設 置されている原子化部は外気からの汚染などの影響を避 けるために狭くしてあるので、オートサンプラーを使用 30 向の分解能が高くなくてもすむようになり、安価なオー する場合にはノズルを移動させるための長いアームが必 要である。

[0003]

【発明が解決しようとする課題】オートサンプラーのア ームが長くなるとオートサンプラーの寸法が大きくな り、また、アームの回転方向の角度分解能の高いものが 必要となる。アームの長さを短かくするとオートサンプ ラーの寸法は小さくなるが、そのアームでノズルをグラ ファイトチューブの試料導入穴に搬送できるところまで オートサンプラーを原子化部に接近させて設置しなけれ 40 ばならない。原子化部にフレームレス方式の原子化部と フレーム方式の原子化部をともに備えた原子吸光分光光 度計もあり、その場合には、グラファイト炉が手前に設 けられ、フレーム方式のバーナヘッドが奥側に設けられ るのが普通であるので、フレーム方式の測定を行なうと きには測定光束がフレーム中を通過するように原子化部 を前方に引き出すように原子化部を移動させる必要があ る。原子化部に接近してオートサンプラーを設置した場 合には原子化部の移動の妨げになるので、オートサンプ

ラーは通常測定装置の前面に設置されるので、オートサ ンプラーを移動させるときには操作者がオートサンプラ ーと測定装置の間に指を挟まれる危険性がある。また、 オートサンプラーを移動させないで放置したときには測 定が不能になるなどの問題が生じる。そこで、本発明は オートサンプラーのアームの長さを短かくして原子吸光 分光光度計全体の大きさを小型にするとともに、アーム の回転方向の分解能も実現しやすい程度のものとするこ とを目的とするものである。

[0004]

【課題を解決するための手段】本発明ではオートサンプ ラーは固定とし、フレームレス方式の原子化部のグラフ ァイトチューブに試料を注入するときは、測定光束が原 子化部のグラファイトチューブを通過する分析位置での グラファイトチューブの試料導入穴よりもオートサンプ ラーに近い位置の試料注入位置へグラファイトチューブ を移動させる。

[0005]

【作用】フレームレス方式の測定を行なうときは、グラ ファイトチューブの試料導入穴が試料注入位置にくるま で原子化部を前方に引き出し、オートサンプラーのアー ムによって試料をノズルでグラファイトチューブの試料 導入穴に注入する。その後、グラファイトチューブを測 定光束が通過する分析位置に戻して測定を行なう。試料 をグラファイトチューブに注入するときは原子化部が試 料注入位置まで移動するので、オートサンプラのアーム を長くする必要がなくなり、オートサンプラが小型にな り、ひいては原子吸光分光光度計全体が小さくなる。ア ームを長くする必要がなくなることから、アーム回転方 トサンプラーですむようになる。移動箇所が原子化部の 内部になるので、操作者が指を挟むなどの危険性がなく なる。

[0006]

【実施例】図1は一実施例の外観斜視図である。(A) はフレーム方式による測定時の状態を表わし、(B)は フレームレス測定時の状態を表わしている。光源、分光 器及び検出部を含む測定装置本体2に、原子化部として バーナヘッド4を含むフレーム方式の原子化部とグラフ ァイトチューブ6を含むフレームレス方式の原子化部と が一体化されたものが前後方向(X方向)及び上下方向 (2方向) に移動可能に設けられている。原子化部の移 動機構は図1では省略されており、後で図2において詳 しく説明する。

【0007】測定装置本体2にはオートサンプラー8が 組み込まれている。オートサンプラー8は複数の試料容 器を保持して回転するターンテーブル10と、ターンテ ーブル10上の試料をターンテーブル10上又はターン テーブル10の外側に配置された混合容器を用いて標準 ラーも可動式とする必要がある。しかし、オートサンプ 50 試料や希釈液と調合するノズル12、及びノズル12を

試料容器の位置、混合容器の位置及び試料注入位置に配置されたグラファイトチューブ6の試料導入穴14の位置へ移動させるアーム16を備えている。試料注入位置はグラファイトチューブ6が分析位置(グラファイトチューブ6を測定光束が通過する位置)にあるときよりもオートサンプラー8に近い位置にある。

【0008】図1(A)に示されるフレーム方式の測定状態では、フレーム18を測定光束が通過するように原子化部が位置決めされており、霧化器に試料が吸入され、バーナヘッド4から発生するフレーム18中で試料が原子化されて分析される。図1(B)に示されるフレームレス方式の測定状態では、グラファイトチューブ16が測定光束の光軸上に位置決めされている。この測定の前に、原子化部が前方に引き出されてグラファイトチューブ6の試料注入穴14が試料注入位置へ位置決めされ、調合された試料がノズル12によってグラファイトチューブ16内に導入される。

【0009】図2に原子化部を移動させる移動機構の一例を示す。支持台24がガイド26に案内されて水平面内で光軸28方向(Y方向)に直交する前後方向(X方20向)に移動可能に支持されており、支持台24をX方向に移動させるために支持台24の側面にはラック30が設けられ、前後方向駆動用ステッピングモータ32の回転軸に取りつけられたギア34がラック30と噛み合っている。支持台24には第2の支持台36がガイド棒38と支持台24に設けられたガイド穴40とにより上下方向(Z方向)に移動可能に支持されている。支持台36の裏面には支持台36の表面と直交する方向に延びるラック42が設けられ、ラック42には上下駆動用ステッピングモータ44の回転軸に取りつけられたギヤ4630が噛み合っている。

【0010】支持台36上にはフレーム式原子化部とフレームレス式原子化部が一体化されて取りつけられている。フレーム式原子化部のバーナヘッド4はX方向の奥側に配置され、フレームレス式原子化部のグラファイトチューブ6はX方向の手前側に配置されている。ステッピングモータ32が作動することにより支持台24がX方向に移動し、バーナヘッド4及びグラファイトチューブ6は測定光束の光軸28に対して前後方向に移動する。ステッピングモータ44が作動することにより支持40台36がZ方向に移動し、バーナヘッド4とグラファイトチューブ6が上下方向に移動する。X方向とZ方向の移動によりグラファイトチューブ6の試料導入穴14は試料注入位置にも移動させられる。

【0011】次に、この実施例においてフレームレス方式の測定を行なうときのグラファイトチューブ6の移動と測定のタイミングを説明する。初めにオートサンプラー8で試料が調合される。グラファイトチューブ6の試料導入穴14がオートサンプラー8のノズル12の届く位置まで、つまり試料注入位置まで移動する。グラファ 50

イトチューブ6に試料が注入され、グラファイトチューブ6が測定光束の光軸28の位置まで戻されて測定が行なわれる。

【0012】上記の動作ではオートサンプラー8で試料 を調合した後に原子化部のグラファイトチューブ6を試 料注入位置へ移動させているが、試料の調合と原子化部 の移動を同時に行なってもよく、その場合には測定時間 を短縮することができる。また、フレームレス方式の測 定では、乾燥・灰化及び原子化の段階を得なければなら ず、1回の測定には約3分を要する。測定は灰化の終わ りごろから原子化時に行なわれる。上記の動作の例では グラファイトチューブ6に試料を注入し、グラファイト チューブ6を測定光束28の光軸位置まで戻した後に測 定のための乾燥、灰化及び原子化を行なうようになって いるが、グラファイトチューブ6が光軸28の位置まで 戻される前に試料注入後の乾燥から灰化にいたる工程を 開始し、グラファイトチューブ6が光軸28の位置に戻 ったころには測定を開始できるようにタイミングを計る ことによって、測定時間をさらに短縮することができ る。実施例は原子化部にフレーム方式とフレームレス方 式を一体的に備えたものを例として示しているが、本発 明はフレームレス方式の原子化部のみを備えた原子吸光 分光光度計にも適用することができる。

[0013]

【発明の効果】本発明では原子化部を試料注入位置まで移動可能にし、オートサンプラーでフレームレス方式の原子化部のグラファイトチューブに試料を注入するときにはグラファイトチューブの試料導入穴が試料注入位置にくるようにしたので、オートサンプラーのアームを長くする必要がなくなり、オートサンプラが小型になり、ひいては原子吸光分光光度計全体が小さくなる。アームを長くする必要がなくなることから、アーム回転方向の分解能が高くなくてもすむようになり、安価なオートサンプラーですむようになる。移動箇所が原子化部の内部になるので、操作者が指を挟むなどの危険性がなくなる。

【図面の簡単な説明】

【図1】一実施例を示す斜視図であり、(A)はフレーム方式の測定状態を示す図、(B)はフレームレス方式の測定状態を示す図である。

【図2】同実施例における原子化部の移動機構の一例を示す斜視図である。

【符号の説明】

- 2 測定装置本体
- 4 バーナヘッド
- 6 グラファイトチューブ
- 8 オートサンプラー
- 10 ターンテーブル
- 12 ノズル
- 0 14 グラファイトチューブの試料導入穴

16 オートサンプラーのアーム

6

【図1】

【手続補正書】 【提出日】平成4年5月11日 【手続補正1】 【補正対象書類名】図面

【補正対象項目名】全図 【補正方法】変更 【補正内容】

【図2】

7/23/05, EAST Version: 2.0.1.4

