

Chapter 15: Query Processing

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 15: Query Processing

- Overview
- Measures of Query Cost
- Sorting
- Selection Operation
- Join Operation
- Other Operations
- Evaluation of Expressions

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions
 - E.g., $\sigma_{salary < 75000}(\prod_{salary}(instructor))$ is equivalent to $\Pi_{salary}(\sigma_{salary < 75000}(instructor))$
- Annotated expression specifying detailed evaluation strategy is called an evaluation-plan. E.g.,:
 - Use an index on salary to find instructors with salary < 75000,
 - Or perform complete relation scan and discard instructors with salary ≥ 75000
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g., number of tuples in each relation, size of tuples, etc.

Measures of Query Cost

- Many factors contribute to time cost
 - disk access, CPU, and network communication
- Disk cost can be estimated as:
 - Number of seeks * average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
- For simplicity we just use the number of block transfers from disk and the number of seeks as the cost measures
 - t_{τ} time to transfer one block
 - t_S time for one seek
 - Cost for b block transfers plus S seeks $b * t_T + S * t_S$
- t_S and t_T depend on where data is stored; with 4 KB blocks:
 - High end magnetic disk: $t_s = 4$ msec and $t_\tau = 0.1$ msec
 - SSD: $t_S = 20-90$ microsec and $t_T = 2-10$ microsec for 4KB

Measures of Query Cost (Cont.)

- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation.
- Several algorithms can reduce disk I/O by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
- Worst case estimates assume that no data is initially in buffer and only the minimum amount of memory needed for the operation is available
 - But more optimistic estimates are used in practice

Sorting

In-Memory vs. External Sorting

- Assume we want to sort 60GB of data on a machine with only 8GB of RAM
 - In-Memory Sort (e.g., Quicksort) ?
 - Yes, but data do not fit in memory
 - What about relying on virtual memory?

- In this case, external sorting is needed
 - In-memory sorting is orthogonal to external sorting!

A Simple Two-Way Merge Sort

- IDEA: Sort sub-files that can fit in memory and merge
- Let us refer to each sorted sub-file as a <u>run</u>
- Algorithm:
 - Pass 0: Read a page into memory, sort it, write it
 - 1-page runs are produced
 - Passes 1, 2, ...: Merge pairs (hence, 2-way) of runs to produce longer runs until only one run is left

A Simple Two-Way Merge Sort

• Algorithm:

- Pass 0: Read a page into memory, sort it, write it
 - How many buffer pages are needed? ONE
- Passes 1, 2, ...: Merge pairs (hence, 2-way) of runs to produce longer runs until only one run is left
 - How many buffer pages are needed? THREE

2-Way Merge Sort: An Example

2-Way Merge Sort: I/O Cost Analysis

- If the number of pages in the input file is 2^k
 - How many runs are produced in pass 0 and of what size?
 - 2^k 1-page runs
 - How many runs are produced in pass 1 and of what size?
 - 2^{k-1} 2-page runs
 - How many runs are produced in pass 2 and of what size?
 - 2^{k-2} 4-page runs
 - How many runs are produced in pass k and of what size?
 - 2^{k-k} 2^k-page runs (or 1 run of size 2^k)
 - For N number of pages, how many passes are incurred?
 - $\log_2 N + 1$ How many pages do we read and write in each pass?
 - **2** 2*N*
 - What is the overall cost?

$$2N \times (\lceil \log_2 N \rceil + 1)$$

2-Way Merge Sort: An Example

M-Way Merge Sort

- How can we sort a file with N pages using M buffer pages?
 - Pass 0: use M buffer pages and sort internally
 - This will produce $\lceil N/M \rceil$ sorted M-page runs
 - Passes 1, 2, ...: use M − 1 buffer pages for input and the remaining page for output; do (M-1)-way merge in each run

B-Way Merge Sort: I/O Cost Analysis

■ I/O cost = 2N × Number of passes

■ Number of passes =
$$1 + \lceil \log_{M-1} \lceil N/M \rceil \rceil$$

- Assume the previous example (i.e., 8 pages), but using 5 buffer pages (instead of 3)
 - I/O cost = 32 (*as opposed to 64*)
- Therefore, increasing the number of buffer pages minimizes the number of passes and accordingly the I/O cost!

Number of Passes of M-Way Sort

N	M=3	M=5	M=9	M=17	M=129	M=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

High Fan-in during merging is crucial!

Relational Operators – Implementation Algorithms

Selection Operation

- File scan
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - $cost = (b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search

Selections Using Indices

- Index scan search algorithms that use an index
 - selection condition must be on search-key of index.
- A2 (clustering index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
 - $Cost = h_i^* (t_T + t_S) + t_S + t_T$
- A3 (clustering index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records
 - $Cost = h_i^* (t_T + t_S) + t_S + t_T^* b$

Selections Using Indices

- A4 (secondary index, equality on key/non-key).
 - Retrieve a single record if the search-key is a candidate key

•
$$Cost = (h_i + 1) * (t_T + t_S)$$

- Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block

• Cost =
$$(h_i + n) * (t_T + t_S)$$

Can be very expensive!

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \le V}(r)$ or $\sigma_{A > V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- A5 (clustering index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge v$ and scan relation sequentially from there
 - For $\sigma_{A \leq V}(r)$ just scan relation sequentially till first tuple > v; do not use index
- A6 (clustering index, comparison).
 - For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - For σ_{A≤V} (r) just scan leaf pages of index finding pointers to records, till first entry > v
 - In either case, retrieve records that are pointed to
 - requires an I/O per record; Linear file scan may be cheaper!

Implementation of Complex Selections

- Conjunction: $\sigma_{\theta 1} \wedge \sigma_{\theta 2} \wedge \dots \sigma_{\theta n}(r)$
- A7 (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for σ_{θ_i} (r).
 - Test other conditions on tuple after fetching it into memory buffer.
- A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in memory.

Algorithms for Complex Selections

- Disjunction: $\sigma_{\theta 1} \vee \sigma_{\theta 2} \vee \dots \sigma_{\theta n} (r)$.
- A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
- Negation: σ_{¬θ}(r)
 - Use linear scan on file
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate

Nested-Loop Join

```
    To compute the theta join  r ⋈ θ s
    for each tuple t in r do begin
    for each tuple t in s do begin
    test pair (t,t) to see if they satisfy the join condition θ if they do, add t, • t, to the result.
    end
```

- r is called the outer relation and s the inner relation of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Block Nested-Loop Join

 Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin

for each block B_s of s do begin

for each tuple t_r in B_r do begin

for each tuple t_s in B_s do begin

Check if (t_r, t_s) satisfy the join condition

if they do, add t_r \bullet t_s to the result.

end

end

end
```


Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of r, and, for each tuple in r, we perform an index lookup on s.
- If indices are available on join attributes of both *r* and *s*, use the relation with fewer tuples as the outer relation.

Merge-Join

- Can be used only for equi-joins and natural joins
- Used when relations are sorted on the join attributes. If not sorted, first sort both relations on their join attribute.
- 3. Merge joins are faster and uses less memory than hash joins.
- Merge the sorted relations to join them
 - Join step is similar to the merge stage of the sort-merge algorithm.
 - Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched

©Silberschatz, Korth and Sudarshan

r

Hash Join

- The join algorithm based on hashing has two phases:
 - Partitioning (also called *Building*) Phase
 - Probing (also called *Matching*) Phase
- Idea: Hash both relations on the join attribute into k
 partitions, using the same hash function h

 Premise: R tuples in partition i can join only with S tuples in the same partition i

Hash Join: Partitioning Phase

Partition both relations using hash function h

Hash Join: Probing Phase

Read in a partition of R, hash it using h2 (!= h)

 Scan the corresponding partition of S and search for matches

Complex Joins

Join with a conjunctive condition:

$$r \bowtie_{\theta 1 \land \theta 2 \land \dots \land \theta n} S$$

- Either use nested loops/block nested loops, or
- Compute the result of one of the simpler joins $r \bowtie_{\theta_i} s$
 - final result comprises those tuples in the intermediate result that satisfy the remaining conditions

$$\theta_1 \wedge \ldots \wedge \theta_{i-1} \wedge \theta_{i+1} \wedge \ldots \wedge \theta_n$$

Join with a disjunctive condition

$$r \bowtie_{\theta 1} \bigvee_{\theta 2} \bigvee_{u v} \bigvee_{\theta n} S$$

- Either use nested loops/block nested loops, or
- Compute as the union of the records in individual joins $r \bowtie_{\theta_i} s$:

$$(r \bowtie_{\theta_1} s) \cup (r \bowtie_{\theta_2} s) \cup \ldots \cup (r \bowtie_{\theta_n} s)$$

Other Operations

- Duplicate elimination can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Other Operations : Aggregation

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: partial aggregation
 - combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the partial aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations: Set Operations

- Set operations (∪, ∩ and —): can either use variant of merge-join after sorting, or variant of hash-join.
- E.g., Set operations using hashing:
 - Partition both relations using the same hash function
 - 2. Process each partition *i* as follows.
 - Using a different hashing function, build an in-memory hash index on r_i.
 - 2. Process s_i as follows
 - *r* ∪ *s*:
 - Add tuples in s_i to the hash index if they are not already in it.
 - At end of s_i add the tuples in the hash index to the result.

Other Operations: Set Operations

- E.g., Set operations using hashing:
 - 1. as before partition *r* and *s*,
 - 2. as before, process each partition *i* as follows
 - 1. build a hash index on r_i
 - 2. Process s_i as follows
 - *r* ∩ *s*:
 - 1. output tuples in s_i to the result if they are already there in the hash index
 - r − s:
 - 1. for each tuple in s_{i} , if it is there in the hash index, delete it from the index.
 - 2. At end of s_i add remaining tuples in the hash index to the result.

Answering Keyword Queries

- Indices mapping keywords to documents
 - For each keyword, store sorted list of document IDs that contain the keyword
 - Commonly referred to as a inverted index
 - E.g.,: database: d1, d4, d11, d45, d77, d123
 distributed: d4, d8, d11, d56, d77, d121, d333
 - To answer a query with several keywords, compute intersection of lists corresponding to those keywords
- To support ranking, inverted lists store extra information
 - "Term frequency" of the keyword in the document
 - "Inverse document frequency" of the keyword
 - Page rank of the document/web page

Evaluation of Expressions

- So far: we have seen algorithms for individual operations
- Alternatives for evaluating an entire expression tree
 - Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk. Repeat.
 - Pipelining: pass on tuples to parent operations even as an operation is being executed.

Pipelining

- Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.
- Much cheaper than materialization: no need to store a temporary relation to disk.
- Pipelining may not always be possible e.g., sort, hash-join.
- Pipelines can be executed in two ways:
 - demand driven (lazy evaluation or pull model)
 - producer driven (eager evaluation or push model).