

M2201 - Théorie des graphes

TD6

Chemins de coût minimaux

1 Algorithme de Bellman-Ford (1).

Exécutez l'algorithme de Bellman-Ford sur le graphe suivant, à partir du sommet 5, en indiquant (par exemple à l'aide d'un tableau) l'évolution des valeurs des différentes variables. (On pourra numéroter les arcs dans l'ordre où ils sont parcourus.)

n° de tour			col	JT [S	omm	et]			PRE	D [S	Sommet]			
	arc racccourci	0	1	2	3	4	5	0	1	2	3	4	5	
initialisation			00	00	00	00	0	0	1	2	3	4	5	
1	5 → 1													
1														
-	-													

2 Algorithme de Bellman-Ford (2).

Écrivez l'action Bellman-Ford qui réalise l'algorithme de Bellman-Ford sur un graphe G à n sommets à partir d'un sommet de départ U (on supposera que tous les coûts sont positifs, la valeur -1 pouvant alors être utilisée dans la matrice G pour indiquer la non adjacence).

3 Algorithme de Dijkstra (1).

Exécutez l'algorithme de Dijkstra sur le graphe précédent, à partir du sommet 5, en indiquant (par exemple à l'aide d'un tableau) l'évolution des valeurs des différentes variables.

Sommet	COUT [Sommet]							PRE	D [S	omm	et]	ETAT [Sommet]										
choisi	0	0	0	0	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5
initialisation	00	00	00	00	00	0	0	1	2	3	4	5	N	N	N	N	N	Α				
	- 7	7	-				- 2					÷						Т				
					*									1								
		η,				٠,,					-					1		-				
			-					- 1			7											
		- 1							-													
	- 1	- (1,7			-																

Sommet	COUT [Sommet]							PRE	D [S	omm	et]	ETAT [Sommet]						
choisi	0	1	2	3	4	5	0	1	2	3	4	5	0	1	2	3	4	5
initialisation	00	00	00	00	00	0	0	1	2	3	4	5	N	N	N	N	N	Α
5	00	9	11	00	19	0	0	5	5	3	5	5	N	Α	Α	N	Α	Т
1	00	9	11	10	19	0	0	5	5	1	5	5	N	Т	Α	Α	Α	Т
3	12	9	11	10	12	0	3	5	5	1	3	5	Α	Т	Α	Т	Α	Т
2	12	9	11	10	12	0	3	5	5	1	3	5	Α	Т	Т	Т	Α	Т
0 (par ex)	12	9	11	10	12	0	3	5	5	1	3	5	Т	Т	Т	Т	Α	Т
4	12	9	11	10	12	0	3	5	5	1	3	5	Т	Т	Т	Т	Т	Т

4 Algorithme de Dijkstra (2)

Écrivez l'action Dijkstra qui réalise l'algorithme de Dijkstra sur un graphe G à n sommets à partir d'un sommet de départ U (on supposera que tous les coûts sont positifs, la valeur -1 pouvant alors être utilisée dans la matrice G pour indiquer la non adjacence).