Sistemas Inteligentes

Lista de Exercícios para Estudo sobre Busca e Agentes Inteligentes (Esta lista não precisa ser entregue nem vale nota)

1) A* - Problema do metrô de Paris

Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido entre a estação onde ele se encontra e a estação de destino. O usuário tem um painel com o mapa, podendo selecionar a sua estação de destino. O sistema então acende as luzes sobre o mapa mostrando o melhor trajeto a seguir (em termos de quais estações ele vai atravessar., e quais as conexões mais rápidas a fazer – se for o caso). Para facilitar a vida, consideramos apenas 4 linhas do metrô.

Considere que:

- a distância em linha reta entre duas estações quaisquer é dada pela tabela 1 e a distância real é dada pela tabela 2.
- a velocidade média de um trem é de 30km/h;
- o tempo gasto para trocar de linha dentro de mesma estação (fazer baldeação) é de 4 minutos.

Questões:

- 1. Formule este problema em termos de estado inicial, estado final, operadores e função de avaliação para Busca heurística com A*.
- 2. Descreva o funcionamento do algoritmo em português (5 linhas).
- 3. Desenhe a árvore de busca desenvolvida pelo A* para o seguinte caso:
 - Ei = estação 6 linha azul
 - Ef = estação 13 linha vermelha

Dados do problema:

Tabela1: distâncias diretas entre as estações do Metrô de Paris.

	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14
E1	-	10	18,5	24,8	36,4	38,8	35,8	25,4	17,6	9,1	16,7	27,3	27,6	29,8
E2		ı	8,5	14,8	26,6	29,1	26,1	17,3	10	3,5	15,5	20,9	19,1	21,8
E3			-	6,3	18,2	20,6	17,6	13,6	9,4	10,3	19,5	19,1	12,1	16,6
E4				-	12	14,4	11,5	12,4	12,6			18,6		15,4
E5					-	З	2,4	19,4	23,3				14,5	
E6						1	3,3	22,3	25,7	30,3	36,7	27,6	15,2	
E7							-	20	23	27,3	34,2	25,7	12,4	15,6
E8								ı	8,2	20,3	16,1	6,4	22,7	27,6
E9									-	13,5	11,2	10,9	21,2	26,6
E10										ı	17,6	24,2	18,7	21,2
E11											ı	14,2	31,5	35,5
E12												1	28,8	33,6
E13													-	5,1
E14														-

Tabela2: distâncias reais entre as estações do Metrô de Paris.

								50					E40	
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14
E1	-	10												
E2		ı	8,5						10	3,5				
E3			-	6,3					9,4				18,7	
E4				1	13			15,3					12,8	
E5					ı	3	2,4	30						
E6						-								
E7							-							
E8								-	9,6			6,4		
E9									-		12,2			
E10										-				
E11											-			
E12												-	·	
E13												, in the second	-	5,1
E14														-

Mapa do metrô de Paris.

2) Busca Heurística

Uma forma de analisar e comparar o desempenho de algoritmos de busca heurística é utilizar um problema bem conhecido como referência. Um exemplo desse tipo de problema é o cálculo de rotas entre diferentes cidades. No grafo ilustrado acima, cada nó representa uma cidade distinta, e cada ramo, uma rodovia que interliga as cidades representadas pelos nós que ele une, cujo peso indica a distância, em km, entre essas cidades pela rodovia. Suponha que se deseje encontrar a melhor rota entre as cidades A e M, indicadas nesse grafo. Considere, ainda, os valores indicados na tabela abaixo como distância em linha reta, em km, de cada cidade para a cidade M.

Α	44,72
В	20,00
С	33,54
D	25,00

Е	30,67
F	22,36
G	14,14
Н	10,00

Ι	11,18
J	5,00
K	40,00
L	20,00

A partir dessas informações, julgue os itens seguintes, relativos a algoritmos de busca.

I Utilizando-se o algoritmo A*, a rota ente A e M encontrada no problema acima é ACDFLM e o custo do caminho é 56,18.

II Utilizando-se a busca gulosa, a rota encontrada no problema acima é ACDFLM.

III Para utilizar algoritmos de busca heurística, deve-se definir uma heurística que superestime o custo da solução.

IV O A* é um algoritmo ótimo e completo quando heurísticas admissíveis são utilizadas.

V No simulated annealing, é possível haver movimentos para um estado com avaliação pior do que a do estado corrente, dependendo da temperatura do processo e da probabilidade

Estão corretas apenas

- a) I, II e III
- b) I, IV e V
- c) I, III, V
- d) II, III, IV
- e) II, IV, V

3) Otimização - Subida da Encosta

Uma empresa deseja montar uma rede de computadores interna, instalando máquinas em várias salas (12 máquinas ao todo). Cada computador estará ligado a dois outros, com exceção do primeiro e do último (que estão ligados apenas a um outro computador). Nem todas as combinações de ligações entre computadores são possíveis. A tabela 3 abaixo indica as possibilidades de ligação (o traço (-) indica que não há conexão possível entre os computadores indicados). A empresa deseja fazer essas ligações de forma a economizar o cabo (em metros). Estamos diante de um problema de otimização. O operador considerado para gerar os sucessores do estado corrente é apenas a permutação da ordem atual das ligações entre computadores dois a dois, sem testar todas as combinações em uma mesma iteração. Por exemplo, dado o estado inicial:

Ei (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12)

As permutações em uma iteração seriam:

E1 (C2, C1, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12)

E2 (C1, C3, C2, C4, C5, C6, C7, C8, C9, C10, C11, C12)

E3 (C1, C2, C4, C3, C5, C6, C7, C8, C9, C10, C11, C12) etc...

A distância direta entre os pontos da rede são dadas na tabela abaixo.

Tabela 3: Distâncias entre os computadores, indicando as ligações possíveis.

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
C1	0	30	84	56	-	70	-	75	-	40	-	10
C2		0	65	1	-	-	70	-	-	40	-	-
C3			0	60	52	55	-	135	143	48	25	-
C4				0	135	-	-	20	-	-	58	-
C5					0	70	-	122	98	80	-	-
C6						0	68	-	82	35	-	130
C7							0	-	120	57	-	-
C8								0	-	-	45	-
C9									0	-	-	68
C10										0	10	-
C11											0	14
C12												0

Questões:

- 1. Formule o problema em termos de:
 - a) estado inicial;
 - b) estado final;
 - c) operadores (e seus custos associados);
 - d) função de avaliação (h).
- 2. Descreva, sucintamente, o funcionamento do algoritmo (explique como você o implementaria).
- 3. Exemplifique o funcionamento do algoritmo em 2 iterações para Ei= (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12)

levando em conta os valores da função de avaliação para justificar as escolhas.

- 4) O que é um Agente Inteligente? Onde pode ser aplicado?
- 5) Descreva as características dos seguintes agentes de acordo com a sua estrutura.
 - a. Agentes reativos simples
 - b. Agentes reativos com estado do mundo
 - c. Agentes baseados em objetivos
 - d. Agentes otimizadores
 - e. Agentes com aprendizagem
- 6) Responda SIM ou NÃO para indicar o que caracteriza cada um dos ambientes apresentados a seguir (justifique as suas respostas).

	Catálogo de compras da internet	Assistente matemático para demonstração de teoremas
Completamente Observável		do tooremas
Determinístico		
Estático		
Episódico		
Discreto		
Agente único		

7) Considere o seguinte mapa (fora de escala)

Usando o algoritmo A^* determine uma rota de A até R, usando as seguintes funções de custo g(n) = a distância entre cada cidade (mostrada no mapa) e h(n) = a distância em linha reta entre duas cidades. Estas distâncias são dadas na tabela abaixo.

Em sua resposta forneça o seguinte:

- 1. A árvore de busca que é produzida, mostrando a função de custo em cada nó.
- 2. Defina a ordem em que os nós serão expandidos.
- 3. Defina a rota que será tomada e o custo total.

Distância em linha reta até R

A	240
В	186
B C D	182
D	163
E	170
F	150
G	165
H	139
I	120
J	130
K	122
L	104
L M	100
N	77
0	72
P	65
Q R	65
R	0

8) Considere o espaço de busca a seguir. Cada nó é rotulado por uma letra. Cada nó objetivo é representado por um círculo duplo. Existe uma heurística estimada para cada dado nó (indicada por um valor ao lado do nó). Arcos representam os operadores e seus custos associados.

Para cada um dos algoritmos a seguir, liste os nós visitados na ordem em que eles são examinados, começando pelo nó **A**. No caso de escolhas equivalentes entre diferentes nodos, prefira o nodo mais próximo da raiz, seguido pelo nodo mais à esquerda na árvore.

- a) Algoritmo de Busca em Largura;
- b) Algoritmo de Busca em Profundidade;
- c) Algoritmo de Busca Gulosa;
- d) Algoritmo A*.

9) Para o problema a seguir¹, em que o gato (na posição (3,2)) deseja atingir um dos ossos dispostos no labirinto (posições (2, 6) ou (6, 6)):

- a) Formule o problema como um problema de busca, sabendo que o gato pode mover-se para esquerda, direita, acima e abaixo (se o gato bater na parede ele continua no mesmo lugar).
- b) Qual o tamanho do espaço de estados?
- c) Caracterize as propriedades do **ambiente** deste problema, justificando sua caracterização.
- d) Considere a seguinte função heurística f, dado o gato na posição (x, y):

$$f(y,x)=\min(\sqrt{(y-2)^2+(x-6)^2},\sqrt{(y-6)^2+(x-6)^2})$$

(ou seja, a menor distância euclidiana entre o ponto em que o gato está e os ossos no mapa). Argumente por que a função f é admissível, sabendo que o gato quer chegar no osso com o menor número de movimentos possível.

- e) Proponha uma segunda heurística admissível *h*, tal que *h* domine *f* (demonstre).
- f) Para cada um dos algoritmos a seguir, explique, passo a passo (mostrando a fronteira a cada passo), a visitação dos quatro primeiros nós (use a notação (linha, coluna) como no enunciado), começando pelo nó inicial. No caso de escolhas equivalentes entre diferentes nós, prefira o nó mais próximo da raiz, seguido pelo nó mais à direita no labirinto, seguido pelo nó mais abaixo no labirinto:
 - 1. Algoritmo de Busca em Profundidade;
 - 2. Algoritmo de Busca Gulosa (usando uma função heurística admissível)
 - 3. Algoritmo A* (usando uma função heurística admissível)
- f) Explique porque neste problema é fundamental "lembrar" os nós que já foram visitados, e explique como isso pode ser implementado para o A*
- g) Considere agora o caso em que o gato, iniciando na mesma posição (3, 2), para o mesmo labirinto, só que agora seu sistema de movimentação está defeituoso, e às vezes, guando ele avança em uma direção ele anda 2 guadrados ao invés de um só.

- h)Quais são os próximos estados de crença para cada uma das ações a partir da posição inicial?
- 10) Considere o problema de 3-coloração (com as cores R, G, B) do grafo abaixo.

- 1. Caracterize o problema como um CSP (variáveis, domínios, restrições)
- Execute, passo a passo, uma busca cega com backtrack e forwardchecking para encontrar uma 3-coloração, usando como heurística para ordenação de variáveis a variável envolvida no maior número de restrições (desempate lexicograficamente: primeiro A, B etc.) e ordem fixa de instanciação de valores, RGB.

Abaixo incluo também alguns exercícios do livro.

- 10) (2.5) Para cada um dos agentes a seguir, desenvolva uma descrição de PEAS do ambiente de tarefas.
 - a) Robô jogador de futebol.
 - b) Agente de compras na Internet.
 - c) Robô explorador de Marte.
 - d) Assistente de matemático para demonstração de teoremas.
- 11) (2.6) Para cada um dos agentes a seguir, caracterize o ambiente de acordo com as propriedades dadas na Seção 2.3 e selecione um projeto de agente adequado.
 - a) Robô jogador de futebol.
 - b) Agente de compras na Internet.
 - c) Robô explorador de Marte.
 - d) Assistente de matemático para demonstração de teoremas
- 12) (3.6) Um espaço de estados finito conduz a uma árvore de busca finita? E no caso de um espaço de estados finito que é uma árvore? Você poderia ser mais preciso em definir que tipos de espaços de estados sempre levam a árvores de busca finitas?
- 13) (3.7) Forneça o estado inicial, o teste de objetivo, a função sucessor e a função de custo para cada um dos itens a seguir:

- a) Você tem de colorir um mapa plano usando apenas quatro cores, de tal modo que não haja duas regiões adjacentes com a mesma cor.
- b) Um macaco com um metro de altura está em uma sala em que algumas bananas estão presas no teto, a 2,5 metros de altura. Ele gostaria de alcançar as bananas. A sala contém dois engradados empilháveis, móveis e escaláveis, com um metro de altura cada.
- 14) (3.8) Considere um espaço de estados onde o estado inicial é o número 1 e a função sucessor para o estado n retorna dois estados, com os números 2n e 2n+1.
 - a) Desenhe a porção do espaço de estados correspondente aos estados 1 a 15.
 - b) Suponha que o estado objetivo seja 11. Liste a ordem em que os nós serão visitados no caso da busca em extensão, da busca em profundidade limitada com limite 3 e da busca por aprofundamento iterativo.