CS 228 : Logic in Computer Science

Krishna. S

Recap

- ▶ FOL over words : Satisfiability
- ▶ Translation from formulae φ to equivalent DFA A, $L(\varphi) = L(A)$
- ▶ Proof by structural induction, with ¬, ∧, ∨ mapping to complementation, intersection and union
 - ► Union in DFA-> disjunction in logic
 - Intersection in DFA-> conjunction in logic
 - Complementation in DFA -> Negation in logic
- How to handle quantifiers?

Non-determinism

Non-determinism

- Assume we relax the condition on transitions, and allow
 - $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \delta(q_2, b) = \emptyset$
 - ▶ Is aabb accepted?

One run of aabb

One run of aabb

One run of aabb

Is aabb accepted?

► A non-accepting run for *aabb*

Is aabb accepted?

► A non-accepting run for *aabb*

Is aaab accepted?

► An accepting run for aaab

Nondeterministic Finite Automata(NFA)

- \triangleright $N = (Q, \Sigma, \delta, Q_0, F)$
 - Q is a finite set of states
 - ▶ $Q_0 \subseteq Q$ is the set of initial states
 - $\delta: Q \times \Sigma \to 2^Q$ is the transition function
 - ▶ $F \subseteq Q$ is the set of final states
- Acceptance condition: A word w is accepted iff it has atleast one accepting path

The Single Run

NFA to DFA: On the board

► Any DFA is also an NFA

- ► Any DFA is also an NFA
- ▶ Any NFA can be converted into a language equivalent DFA

- ► Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - Combine all the runs of w in the NFA into a single run in the DFA

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - A set of states evolves into another set of states

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - ► A set of states evolves into another set of states
 - Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - ► A set of states evolves into another set of states
 - Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$
 - Δ is an extension of δ

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - A set of states evolves into another set of states
 - ▶ Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$
 - Δ is an extension of δ
 - Accept if the obtained set of states contains a final state

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

▶ $\Delta: 2^Q \times \Sigma \to 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{a \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta: 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{a \in A} \delta(q, a) = \Delta(A, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

• $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is same as $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$ (recall $\delta: Q \times \Sigma \to 2^Q$)

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is same as $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$ (recall $\delta: Q \times \Sigma \to 2^Q$)
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $\blacktriangleright F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is same as $\hat{\delta}: 2^Q \times \Sigma^* \to 2^Q$ (recall $\delta: Q \times \Sigma \to 2^Q$)
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$
- \bullet $\hat{\delta}(A, xa) = \bigcup_{q \in \hat{\delta}(A, x)} \delta(q, a)$

NFA = DFA

$$x \in L(D) \leftrightarrow \hat{\Delta}(Q_0, x) \in F'$$
 \leftrightarrow

$$\hat{\delta}(Q_0, x) \in F'$$
 \leftrightarrow

$$\hat{\delta}(Q_0, x) \cap F \neq \emptyset$$
 \leftrightarrow
 $x \in L(N)$

Regularity

A language L is regular iff there exists an NFA A such that L = L(A)