

Introduction to metagenetics analysis with QIIME2

Websites

NEOF: https://neof.org.uk/

NERC: https://nerc.ukri.org/

CGR:

https://www.liverpool.ac.uk/genomic-research/

Twitter

NEOF: @NERC_EOF

NERC: @NERCscience

CGR: @CGR_UoL

Upcoming workshops

https://neof.org.uk/training/

- Metabarcoding for diet analysis and environmental DNA
 - 28th February & 2nd March 2023
- Microbial shotgun metagenomics
 - 21st & 23rd March 2023
- Eukaryote genome assembly
 - 18th & 20th April 2023
- More!

Format & Schedule

This intro

Bookdown

Theory

Practice

Exercises

MCQs

Optional materials

Work at your own pace on your own time

Introduction

- Why 16S rRNA?
- What is QIIME2?
- QIIME2 Workflow
- Quality Control prior to QIIME2 analysis
- DADA2
- Sequence table and taxonomy classification
- Biodiversity
 - Alpha, Beta and Gamma
- Biomarker detection

16S rRNA

- 16S ribosomal RNA
- Prokaryotic ribosome
- Phylogeny reconstruction
- Slow rate of evolution
- Functional constancy
- ~1,500 bp long
- 9 variable regions
- Flanked by conserved regions

Johnson, Jethro S., et al. "Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis." Nature communications 10.1 (2019): 1-11.

What is ame 2?

- Chiime
- Quantitative Insights Into Microbial Ecology
- Open-source pipeline
- Python
- Wraps Popular algorithms
- Comparison and analysis of microbial communities
- Next iteration of QIIME
 - Cited 24,228 times (07 APR 2021)
 - Publication: Caporaso, J. Gregory, et al. (2010)

aime2Workflow

aime2 Installation

- ANACONDA
- VirtualBox
- Amazon Web Services
- Docker

aime2 supported input files

- Sequence files
 - Fastq
- Artifact files
 - .qza: Contains all data QIIME2 requires
 - .qzv: Files containingvisualisation information

DADA2

- Divisive Amplicon Denoising Algorithm
- Models and corrects Illumina-sequenced amplicon errors
- Pipeline
 - Filtering
 - Dereplication
 - Chimera Identification
 - Merging paired-reads
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927377/

PhiX removal

- Remove sequences similar to PhiX
 - BLAST
- PhiX Quality control
 - cluster generation
 - Sequencing
 - o alignment.
- PhiX virus

Chimera removal

DNA from two or more parent molecules

- PCR artifact
- Erroneous "novel" sequence

Merging reads

- Align read pairs R1/R2 to each other
- Improves quality of reads
- Longer reads

R1 (30bp)	ACCGTACGTATGCGTAGCTGACGTAGCATG
R2 (30bp)	TGCGTAGCTGACGTAGCATGCGCGATTCGA
Overlap (20bp)	TGCGTAGCTGACGTAGCATG
Stitched read (40bp)	ACCGTACGTATGCGTAGCTGACGTAGCATGCGCGATTCGA

- Previous methods
 - OTUs (Operational taxonomic units)
 - Cluster sequences by identity e.g. 97% similarity for species
 - Can cause over clustering
 - 97% is chosen due to errors within Illumina data
- DADA2
 - Denoises and cleans reads so they represent real sequences
 - Much finer resolution on sequences
 - Can differentiate sequences that have only 1bp difference

Errors and denoising recap

Taxa classification

- Assigns each ASV taxonomy based on a DB
- Reliant on:
 - Quality and completeness of DB
 - Tool used to search DB
- Two highly used DBs
 - Greengenes
 - Silva

Phylum level Taxonomy

			To	tal	ICF.1	ICF.2	ICF.3	ICF.4	ICF.5	ICF.6	ICF.7	ICF.8	ICF.9	ICF.10	ICF.11	ICF.12	ICF.13	ICF.14	ICF.15
Legend	Taxonomy		count	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	kBacteria;p_	Actinobacteria	0	0.1%	0.0%	0.3%	0.1%	0.0%	0.0%	0.0%	1.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.2%
	kBacteria;p_	Bacteroidetes	4	24.5%	11.3%	30.6%	33.2%	10.8%	14.0%	33.1%	12.9%	28.7%	22.3%	25.9%	19.5%	52.6%	19.1%	7.1%	46.7%
	k_Bacteria;p	Firmicutes	11	72.5%	87.8%	45.8%	65.6%	89.0%	84.8%	64.9%	85.1%	70.0%	76.0%	73.8%	80.2%	46.7%	80.5%	84.9%	51.5%
	kBacteria;p_	Fusobacteria	0	1.5%	0.0%	22.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	kBacteria;p_	Proteobacteria	0	0.3%	0.0%	0.5%	0.0%	0.1%	0.6%	0.6%	0.5%	0.5%	1.4%	0.3%	0.2%	0.0%	0.0%	0.1%	0.0%
	k_Bacteria;p	Tenericutes	0	1.1%	0.8%	0.8%	1.1%	0.1%	0.6%	1.4%	0.1%	0.7%	0.3%	0.1%	0.0%	0.7%	0.3%	7.8%	1.5%

Genus level taxonomy

Biodiversity

- Richness
- Relative abundance
- Evenness

Alpha diversity

Richness example

A Richness: 9

Richness: 6

Richness: 7

Beta

Richness example

B A vs C

B vs C

Gamma

Relative abundance

Relative abundance

Total abundance

Relative versus quantitative

Vandeputte, Doris, et al. "Quantitative microbiome profiling links gut community variation to microbial load." Nature551.7681 (2017): 507-511.

GNEISS & ANCOM

- Biomarker detection
- Both statistically heavy methods
- ANCOM
 - Analysis of composition of microbiomes: a novel method for studying microbial composition
 - Differential abundance analysis
 - ANCOM assumes that less than ~25% of features are changing between groups.
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450248/

gneiss

- Differential abundance analysis
- Attempts to account for using relative abundance through balances
- o In essence it looks at log ratios try to determine real changes

Online Resources

- QIIME2 documents
 - https://docs.qiime2.org/2021.2/tutorials/

Useful papers

- What is new and relevant for sequencing-based microbiome research?
 A mini-review
 - Johnson, Jethro S., et al. "Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis."
 Nature communications 10.1 (2019): 1-11
- Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis
 - Vandeputte, Doris, et al. "Quantitative microbiome profiling links gut community variation to microbial load." Nature551.7681 (2017): 507-511.

Reminders and Tips

Work at your own pace

Typos

Ask questions

Breaks are important

Tab, space, and enter

Online class info

to see and help with issues.

Zoom - Ask via microphone if no question currently being asked/answered Slack - Ask questions via the channel or ask to go into a zoom breakout room with one of us WebVNC - We can connect to your webVNC

Format & Schedule

This intro

Bookdown

Theory

Practice

Exercises

MCQs

Optional materials

Work at your own pace on your own time

Book

Online HTML book
Read through and follow
instructions
Link is in workshop
agenda
Active learning

16S metabarcoding

- 1 Introduction
- 2 Background
- 3 Introduction to QIIME2
- 4 Cluster Introduction
- 5 Data
- 6 QIIME2 analysis workflow

Preprocessing of data

- 7 Sequence import
- 8 Trim the PCR primer sequences

ASVs, Taxonomy, and phylogen

- 9 De-novo amplicon sequence varia...
- 10 ASV taxonomic assignment
- 11 Phylogenetic tree construction

Analysis

- 12 Sequencing depth evaluation
- 13 Diversity analysis
- 14 Alpha diveristy statistical analysis
- 15 Beta diversity statistical analysis
- 16 Differential abundance analysis
- 17 Final consideration

.....

A Resources

Bacterial 16S metabarcoding

Luca Lenzi and Matthew R. Gemmell

2022-08-22

Chapter 1 Introduction

This practical session aims to introduce you to the analysis of bacterial 16S metabarcoding with QIIME2. The topics covered are:

- · Background on the biology
- · Introduction to QIIME2
- · Cluster and webVNC information
- · Information on initial data
- . OIIME? analysis workflow

Recap

- Why 16S rRNA is used for microbial community analysis
- Qiime2 and its 16S rRNA workflow
- DADA2 quality control
- Alpha, Beta and Gamma Diversity analysis
- Relative abundance
- ANCOM & GNEISS

Segmentation fault

Thank you!

Questions?

