Coursera Data Science Final Project

Density and Specializations of Boston's Restaurants

Introduction

- We want to discover a good place to build a new Mexican Restaurant in Boston
- We want to find a place with high density of restaurants but a low density of Mexican restaurants

Data

Foursquare and District Data

African	Thai	German	Mediterranea n
American	BBQ	Greek	Middle eastern
Asian	Burger	Indian Pizza	
Chinese	Burger	Italian	Southern
Japanese	Fish	Latin	Spanish
Korean	French	Mexican	Steak

- We pulled data from an external CSV with Boston District Data
- We use Foursquare to find information on the various venues. Venue name, Restaurant Category and Longitude/Latitude will all be collected.

Exploratory Data Analysis

Foursquare location data

- We pulled a total amount of 57200 venue's from foursquare with a net amount of 3956 venues loaded in
- The graph on the right shows the information loaded in from foursquare showing the X/Y location data from each of the venues.

Predictive Modeling

Using DB Scan clustering

- We used DB Scan to auto-generate clusters finding 92 unique clusters using an epsilon of 0.001 and a min cluster value of 5
- Used the formula show below to calculate the value level of each district based on total number of venues and the number of unique instances in each cluster
- Value = (# of Restaurants in Cluster/Total Restaurants) * (# of Unique Restaurants/ Total # of Restaurants in cluster)

Conclusion

- The top candidate we found from the analysis was cluster 1 with a value of 0.0195.
- The next three candidates we see a sharp drop in value but still look promising.
- The 1st cluster has a Longitude and Latitude value of -71.059 and 42.356 respectively.

Cluster	Total Value	Cluster	Total Value
1	0.019473950429944400	6	0.0005058168942842690
2	0.0032878098128477500	12	0.0005058168942842690
32	0.0030349013657056100	0	0.0005058168942842690
8	0.002529084471421350	7	0.0005058168942842690
16	0.0015174506828528100	73	0.0005058168942842690
47	0.0010116337885685400	10	0.0005058168942842690
20	0.0010116337885685400	55	0.00025290844714213500
3	0.0007587253414264040	58	0.00025290844714213500
33	0.0007587253414264040	64	0.00025290844714213500
57	0.0005058168942842690	22	0.00025290844714213500
52	0.0005058168942842690	21	0.00025290844714213500
70	0.0005058168942842690	75	0.00025290844714213500

Future Directions

- Increased the number of samples pulled
- Introduce additional data based on population of the districts and density of people in the area.
- Could pull data in about affluence of each region to see if the area we are looking at could sustain the expense level of the restaurant we have in mind.
- Preform additional analysis combine the cluster data we have above with the sources listed above.