UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

DIPARTIMENTO DI INFORMATICA "GIOVANNI DEGLI ANTONI"

Corso di Laurea in Informatica

ASCON: ANALISI PRESTAZIONALE DEL NUOVO STANDARD INTERNAZIONALE PER LA CRITTOGRAFIA LIGHTWEIGHT

Relatore: Prof. Andrea Visconti

Tesi di Laurea di **Oldani Mattia** Matr. 966668

ANNO ACCADEMICO 2022-2023

Indice

In	dice			i
1	Intr	oduzio	one	1
	1.1	Obiett	tivi	1
	1.2	Strutt	cura dell'elaborato	2
2	Arc	hitettı	ura IoT	3
	2.1	Defini	zione	3
	2.2		sto di utilizzo	3
	2.3	IoT V	s. sistemi embedded	4
	2.4		s. macchine ad alte prestazioni	4
	2.5	Perché	é scegliere il mondo IoT	5
	2.6	Sfide o	del mondo IoT	6
3	Lig	htweig	ht Cryptography e ASCON	8
	3.1		weight Cryptography	8
	3.2		glia ASCON	8
		3.2.1	Standardizzazione	8
		3.2.2	Caratteristiche	9
		3.2.3	Suddivisione in famiglie	9
		3.2.4	<u> </u>	11
4	Tes	ting e	analisi	14
	4.1			14
		4.1.1		14
		4.1.2		16
		4.1.3	•	17
	4.2	Dispos		18
		4.2.1		19
		4.2.2		$\frac{1}{28}$
		4.2.3		 36

	4.3	Analis	si dei risultati	12
		4.3.1	Adafruit ItsyBitsy M0 Express	12
		4.3.2	Arduino Due	19
		4.3.3	Raspberry Pi 3 Model B	6
5		clusio		3 2
	5.1	Risult	ati ottenuti	i2
	5.2	Svilup	ppi futuri	<u>5</u> 2
\mathbf{R}				

Capitolo 1

Introduzione

1.1 Obiettivi

L'obiettivo del lavoro di tesi è testare e analizzare le prestazioni della famiglia **ASCON**, vincitrice della gara per la standardizzazione della crittografia lightweight indetta dal NIST nel 2018/2019[1].

Il lavoro svolto è stato suddiviso nelle seguenti fasi:

- 1. Individuazione di microcontrollori e board a disposizione da testare – In questo report vengono descritti i risultati di tre dispositivi: Arduino, Adafruit e Raspberry; analizzati nello specifico nel capitolo "Testing e analisi" (vedi Capitolo 4);
- 2. Setup della suite di test I file sorgente dei file di test sono stati forniti da ASCON nel loro repository Github[2] ma hanno richiesto delle modifiche per poter essere compilati dall'Arduino IDE. La creazione dei folder con i file delle implementazioni e dei file di test è stata automatizzata, dato il sostanzioso numero di implementazioni da testare;
- 3. Compilazione dei sorgenti e testing La suite di test dei primi due dispositivi IoT testati sono stati compilati con l'Arduino IDE, mentre la suite dell'ultimo dispositivo è stata compilata direttamente nel terminale;
- 4. Raccolta dei risultati Ogni suite di test ha generato una grande quantità di dati, raccolti in file CSV facilmente interrogabili;
- 5. Analisi dei risultati Tramite dei notebook Jupyter sono state analizzate le prestazioni di algoritmi e implementazioni, generando dei grafici commentati nella parte finale del capitolo "Testing e analisi".

Linguaggi di programmazione Il lavoro ha richiesto la conoscenza dei linguaggi C, Assembly ASM, C++ e Arduino. I primi due sono i linguaggi che ASCON ha scelto per implementare la propria famiglia di algoritmi, mentre gli ultimi due sono stati usati per permettere la compilazione delle suite di test sui dispositivi compatibili con l'Arduino IDE.

Una panoramica delle implementazioni di ASCON è presentata nel capitolo "Lightweight Cryptography e ASCON" (vedi Capitolo 3).

A questi linguaggi si aggiungono Python, Jupyter Notebook e Bash. Il primo e l'ultimo si sono rivelati fondamentali per la creazione di task automatici, come generazione delle suite di test e raccolta delle informazioni degli eseguibili; i notebook invece hanno permesso l'analisi dei risultati ottenuti con il testing.

1.2 Struttura dell'elaborato

L'elaborato inizia con una breve introduzione al mondo dell'IoT, definendo contesti di utilizzo e sfide, e alla crittografia lightweight, con l'analisi completa della famiglia ASCON. Successivamente viene presentato il capitolo riguardante l'attività di testing e analisi fatta sui dispositivi fisici. Infine, è presente un capitolo conclusivo che presenta un riassunto dei risultati ottenuti e possibili sviluppi futuri.

Capitolo 2

Architettura IoT

2.1 Definizione

L'IoT, dall'inglese *Internet of Things* (ossia *Internet delle cose*), descrive una rete di dispositivi fisici integrati tra loro tramite sensori, software e rete, consentendogli di raccogliere e condividere dati. I dispositivi IoT sono conosciuti anche come *smart objects*, e possono variare dai semplici dispositivi *smart home*, come i termostati intelligenti o gli *smartwatch*, fino a macchinari industriali e ai sistemi di trasporto. Una delle ultime novità in ambito IoT rappresenta l'idea delle *smart cities*, basate interamente sulle tecnologie IoT[3].

I dispositivi IoT sono degni di interesse perché presentano dimensioni molto ridotte, pertanto hanno scarsa memoria e processori con potenza computazionale limitata. Queste limitazioni lato hardware devono essere compensate con delle ottimizzazioni lato software mediante algoritmi lightweight, che vengono introdotti nel capitolo successivo (vedi Capitolo 3).

A fronte di tutte queste problematiche, questa architettura è in rapida crescita ed è sempre più presente nella vita quotidiana delle persone.

2.2 Contesto di utilizzo

Lo schema IoT consente ai dispositivi abilitati all'uso di internet di comunicare tra loro, scambiare dati e svolgere varie attività in maniera autonoma – ad esempio:

- Monitorare le condizioni ambientali;
- Gestire i modelli di traffico con automobili intelligenti, come la guida automatica presente nei prodotti Tesla ©;

- Controllare macchine e processi nelle fabbriche;
- Tenere traccia delle spedizioni nell'e-commerce.

I settori che possono trarre più vantaggio dall'IoT sono i seguenti[4]:

- Manifatturiero Si monitora la linea di produzione per verificare quando viene compromessa e si permette una rapida gestione degli asset;
- Automobilistico Situazione simile alla precedente, ovvero la verifica della compromissione degli asset, che viene poi segnalata all'utilizzatore durante l'uso del veicolo;
- Trasporto e logistica Rilevazione degli inventari per il monitoraggio delle spedizioni o della temperatura, soprattutto nei confronti di prodotti deperibili come gli alimentari e i farmaceutici;
- Sanità Rilevazione dell'esatta posizione delle risorse di assistenza, oltre al monitoraggio real time delle condizioni dei pazienti.

Le due liste appena presentate sono molto riduttive: il mondo IoT è vario e capace di svolgere quasi tutte le operazioni possibili e i settori che ne giovano sono in realtà molti di più rispetto a quelli presentati.

2.3 IoT Vs. sistemi embedded

Un primo confronto possibile è tra l'IoT e i **sistemi embedded**. Spesso i due termini vengono confusi e utilizzati come se fossero la stessa cosa, ma questo non è vero: i sistemi embedded, se integrati all'interno di oggetti o sistemi informatici più complessi, costituiscono una possibile soluzione IoT, ma *non necessariamente* lo sono.

Quest'ultimo è il caso dei sistemi progettati per ottenere uno scambio "chiuso", cioè di dati e informazioni tra dispositivi senza interazione con l'ambiente. Non è sufficiente, dunque, per un sistema embedded, essere dotato di microcontrollori con sensori e altri apparecchi fisici per essere considerato IoT[5].

2.4 IoT Vs. macchine ad alte prestazioni

Un secondo confronto è invece quello tra l'IoT e le **macchine ad alte prestazioni**, dette anche HCP (*High-Performance Computing*)[6], riassunto nella Tabella 1 (vedi sotto).

Aspetto	IoT	HCP
Definizione	Rete di dispositivi fisici connessi tramite la rete internet, la quale permette lo scambio dei dati raccolti tramite sensori o simili	Tecnologia che utilizza cluster di processori per elaborare enormi quantità di dati, detti anche big data
Dimensioni	Molto ridotte: l'ordine di grandezza è quello dei sensori, ovvero i principali dispositivi IoT	Molto grandi: sono utilizzati cluster di processori anche da 100000 nodi
Potenza computazionale	Limitata viste le ridotte dimensioni	Enorme vista la grande quantità di processori che possono lavorare in parallelo La velocità è quasi un milione di volte superiore rispetto ai classici sistemi desktop
Flusso di esecuzione	Seriale	Parallelo di massa
Ambito di utilizzo	Raccogliere e inviare dati tramite la rete per poterli analizzare	Machine learning, artificial intelligence, rendering grafico, sanità, genomica, finanza e trading, governo e difesa

Tabella 1: Differenze tra IoT e HCP.

2.5 Perché scegliere il mondo IoT

Il mondo IoT è in grado di migliorare la vita di tutti i giorni, semplificando varie operazioni in diversi ambiti, come quelli sanitario e dell'istruzione.

Alcuni benefici di questa tecnologia sono[7]:

- Raccolta efficiente dei dati In settori come sanità e finanza è utile per tenere traccia delle decisioni sugli acquisti e le tendenze di vendita. I dati sono poi usati per migliorare la gestione degli inventari e rilevare i comportamenti del cliente;
- 2. Controllo e automazione Si permette uno stile di vita controllabile "con un tocco", ad esempio tramite dispositivi intelligenti come lampadine, macchine per il caffè o, in generale, dispositivi di uso quotidiano;

- 3. Accesso in tempo reale alle informazioni Si offre accesso immediato alle informazioni, particolarmente utile in settori come la sanità. Soprattutto in ambito medico è utile: ad esempio è possibile monitorare la salute di un paziente in tempo reale, elemento che risulta cruciale nel fornire assistenza tempestiva;
- 4. **Miglioramento dell'efficienza** I sistemi IoT operano autonomamente, quindi si elimina la dipendenza dal lavoro umano in parallelo ad un aumento dell'efficienza;
- 5. Tracciamento degli asset Permette il tracciamento dei prodotti all'interno di un'impresa o di un sistema di gestione della logistica. Il tracciamento manuale degli asset è laborioso e richiede tempo, ma può essere semplificato attraverso l'applicazione di tecnologie IoT come codici a barre e tag RFID;
- 6. Aumento della produttività In relazione al secondo punto, grazie ai dispositivi smart e intelligenti gli utenti possono semplificare varie attività domestiche usando comandi vocali o applicazioni;
- 7. **Sicurezza** Si possono monitorare a distanza i propri asset di valore, come veicoli oppure oggetti di collezione, o anche comodamente tracciare la posizione dei figli dal telefono;
- 8. Miglioramento del coinvolgimento del cliente Sfruttando i dati dei clienti è possibile la personalizzazione delle esperienze, migliorando la convenienza e consentendo interazioni in tempo reale;
- 9. **Utilizzo efficiente delle risorse** Il tracciamento dello stato delle risorse, come attrezzature e macchinari, consente l'identificazione di inefficienze. La manutenzione predittiva nel settore industriale può prevedere guasti delle macchine, riducendo i tempi di inattività e ottimizzando l'allocazione delle risorse per la manutenzione.

2.6 Sfide del mondo IoT

Il mondo IoT deve affrontare una serie di sfide. Alcune di queste sono [8] [9]:

1. Sicurezza e la privacy — Con l'aumentare della diffusione dei dispositivi IoT la sicurezza e la privacy diventano sempre più importanti. Molti di essi sono vulnerabili ad attacchi su più livelli dello stack di rete, quindi bisogna ricorrere a tecniche di anonimato e crittografia per proteggere le enormi quantità di dati raccolte;

- 2. Interoperabilità I dispositivi IoT di diversi produttori spesso utilizzano standard e protocolli diversi, rendendo difficile la comunicazione. Una possibile soluzione è l'utilizzo di interfacce standard, ma la creazione di queste ultime, la loro implementazione e la successiva adozione da parte dell'intero panorama informatico ne rende praticamente impossibile l'attuazione;
- 3. Sovraccarico dei dati I dispositivi IoT generano enormi quantità di dati, che possono sovraccaricare le aziende impreparate a gestirli;
- 4. Costi e complessità Implementare un sistema IoT può essere costoso e complesso, richiedendo investimenti significativi in hardware, software e infrastruttura. La manutenzione invece richiede competenze ed esperienza specializzate;
- 5. **Sfide normative e legali** Con l'aumentare della diffusione dei dispositivi IoT stanno emergendo sfide normative e legali. Le aziende devono conformarsi a varie normative sulla protezione dei dati, sulla privacy e sulla sicurezza informatica, che possono variare da Paese a Paese;
- 6. Scalabilità All'aumentare del numero di dispositivi bisogna garantire una connettività fluida, una gestione efficace dei dati e prestazioni complessive ottime, ma questo è complicato se non si utilizzano tecnologie come componenti modulari, bilanciatori di carico e sistemi distribuiti.

Capitolo 3

Lightweight Cryptography e ASCON

In questo capitolo si darà una definizione della lightweight cryptography e un'analisi della famiglia ASCON, sulla quale è stata eseguita l'attività di testing presentata nel capitolo successivo.

3.1 Lightweight Cryptography

La lightweight cryptography, o crittografia leggera, definisce una classe di algoritmi crittografici progettati per dispositivi con risorse limitate in termini di potenza computazionale, memoria o energia. Ovviamente, tutto il mondo IoT utilizza in modo massiccio questi algoritmi, viste le scarse risorse di board, sensori e microcontrollori – ma non sono gli unici: tra i dispositivi che utilizzano questi algoritmi sono presenti anche smart card e sistemi embedded.

3.2 Famiglia ASCON

ASCON è una famiglia di algoritmi di cifratura autenticati e hash progettati per essere utilizzati in ambito lightweight. È stato selezionato come nuovo standard per la crittografia leggera vincendo il concorso del NIST "Lightweight Cryptography", gara indetta nel 2018/2019. ASCON è stato anche scelto come migliore algoritmo per la cifratura autenticata leggera nel concorso CAESAR, dal 2014 al 2019[10].

3.2.1 Standardizzazione

La standardizzazione della famiglia ASCON inizia il 7 febbraio 2023[11], giorno in cui ASCON vince la gara del NIST. Quest'ultima inizia il 14 maggio 2018[11],

quando il NIST pubblica un documento contenente[1]:

- 1. I requisiti che devono avere gli algoritmi iscritti alla gara;
- 2. Il processo di selezione;
- 3. I criteri di valutazione.

La prima fase di selezioni è il *Round 1*, che vede il NIST impegnato da marzo/aprile 2019 ad agosto 2019 per scegliere 32 algoritmi tra i 56 iscritti[11][1][12].

La seconda fase di selezioni è il *Round 2*, che inizia subito dopo la fine del Round 1 e termina nel mese di marzo 2021. Questa seconda scrematura fa avanzare solo 10 algoritmi dei 32 scelti al round precedente[11][1][13].

La terza e ultima fase di selezioni è la *Finale*, che, come il Round 2, inizia appena dopo la fine della fase precedente. Il termine è, come scritto prima, il 7 febbraio 2023, data nella quale comincia la fase di standardizzazione di ASCON[11][1].

3.2.2 Caratteristiche

Alcune delle caratteristiche principali di ASCON sono:

- Cifratura autenticata e hash con una singola permutazione leggera;
- Operazioni basate su sponge, con una permutazione SPN personalizzabile;
- Facile da implementare in software e hardware;
- Ottimo per i dispositivi con risorse limitate, dato che utilizza uno stato ridotto ed effettua semplici permutazioni.

ASCON deve la sua nascita al team formato da Christoph Dobraunig, Maria Eichlseder, Florian Mendel e Martin Schläffer[14], un gruppo di crittografi che lavorano per la Graz University of Technology, Infineon Technologies, Intel Labs e Radboud University[10].

3.2.3 Suddivisione in famiglie

La suite ASCON propone tre famiglie di algoritmi:

- I. Authenticated Encryption with Associated Data (AEAD);
- II. Funzioni hash;

III. Funzioni auth.

Nel loro repository di Github^[2] è presente anche una famiglia "ibrida", che unisce le funzionalità AEAD a quelle hash.

Authenticated Encryption with Associated Data

Per quanto riguarda la cifratura autenticata, ASCON utilizza un approccio duplex-sponge [15], ovvero un tipo di architettura crittografica che combina due concetti:

- I. Sponge La "spugna" è una struttura che utilizza una funzione hash (o in generale una funzione pseudorandomica) per "assorbire" i dati in ingresso e "spremere" i dati in uscita;
- II. Duplex La spugna descritta al punto precedente è in grado di elaborare dati sia in ingresso che in uscita contemporaneamente, permettendo una maggiore efficienza nell'implementazione degli algoritmi.

La spugna contiene uno stato interno, utilizzato per generare un tag di autenticazione associato al ciphertext: questo permette un ulteriore livello di sicurezza, garantendo l'integrità e l'autenticità dei dati prodotti.

L'approccio appena presentato viene utilizzato in ASCON in quattro fasi[15]:

- 1. **Inizializzazione** Lo stato interno della spugna viene inizializzato con la chiave K e il nonce¹ entrambi di 128 bit;
- 2. Elaborazione dei dati associati Viene aggiornato lo stato interno con blocchi di dati associati, chiamati A_i ;
- 3. Elaborazione del plaintext I blocchi P_i del plaintext sono "iniettati" nello stato interno ed estratti sotto forma di blocchi C_i di ciphertext;
- 4. **Finalizzazione** Viene "iniettata" la chiave K nello stato interno per estrarre il tag T di autenticazione.

Ogni volta che viene iniettato un blocco nello stato interno viene applicata una permutazione più o meno pesante in base al round, alla capacità della spugna e alla variante dell'algoritmo utilizzato.

Gli algoritmi presenti in questa famiglia sono ascon128, ascon128a e ascon80pq – tuttavia solo i primi due sono stati analizzati nel capitolo successivo. Questo perché l'ultimo algoritmo appartiene alla famiglia degli algoritmi post-quantum.

 $^{^1\}mathrm{Esso}$ è l'abbreviazione di "number used once", ed è un numero randomico utilizzato nella computazione.

Funzioni hash

Come la famiglia AEAD, anche la famiglia delle funzioni hash è di tipo spongebased e utilizza le stesse permutazioni, utilizzate durante la fase di assorbimento e spremitura. Per generare l'hash di un plaintext M quest'ultimo viene diviso in blocchi M_i di 64 bit ciascuno, "assorbito" dalla spugna e "spremuto" in blocchi H_i di 64 bit.

Gli algoritmi presenti in questa famiglia sono asconhash e asconhasha per quanto riguarda le funzioni hash con output di grandezza 256 bit, e asconxof e asconxofa per quanto riguarda le "extendable output function", ovvero funzioni hash con output di grandezza arbitrario[15].

Funzioni auth

La situazione della famiglia di funzioni auth è praticamente uguale a quella delle funzioni hash.

Gli algoritmi presenti in questa famiglia sono asconmac e asconmaca per quanto riguarda le funzioni MAC (Message Authentication Code) e asconprf, asconprfa e asconprfs per quanto riguarda le funzioni PRF (Pseudo Random Functions)[16]. L'ultimo algoritmo citato è una versione "short" degli algoritmi PRF utilizzato nelle PBKDF (Password-Based Key Derivation Function) oppure come tecnica per l'autenticazione dei puntatori.

3.2.4 Ottimizzazioni proposte

Nel repository Github di ASCON sono presenti una serie di ottimizzazioni in base all'architettura hardware che si sta utilizzando. Per ogni algoritmo è sempre presente l'implementazione ref, ovvero quella di riferimento.

La prima classe di ottimizzazioni è scritta totalmente in linguaggio C e contiene le seguenti implementazioni[2] (vedi Tabella 2):

Nome	Cosa viene ottimizzato	Architetture supportate
opt32 e opt64	Tempo	32 e 64 bit
opt32 lowsize e opt64 lowsize	Spazio	32 e 64 bit
bi32	Tempo tramite bit-interleaving	32 bit
bi32 lowreg	Uso dei registri tramite bit-interleaving	32 bit
bi32 lowsize	Spazio tramite bit-interleaving	32 bit
esp32	-	ESP32 a 32 bit
opt8	Tempo e spazio	8 bit
bi8	Tempo tramite bit-interleaving	8 bit

Tabella 2: Prima classe di ottimizzazioni.

La seconda classe di ottimizzazioni sostituisce il C con l'assembly ASM puro[2]:

Nome	Cosa viene ottimizzato	Architetture supportate
asm esp32	Tempo tramite funnel-shift	ESP32 a 32 bit
asm rv32i	Tempo tramite base instruction set	RV32I a 32 bit
asm rv32b	Tempo tramite bitmanip	RV32B a 32 bit
asm fsr rv32b	Tempo tramite funnel-shift e bitmanip	RV32B a 32 bit
asm bi32 rv32b	Tempo tramite bit-interleaving e bitmanip	RV32B a 32 bit

Tabella 3: Seconda classe di ottimizzazioni.

La terza classe di ottimizzazioni utilizza un approccio "ibrido" tra il C e l'inline assembly ASM[2]:

Nome	Cosa viene ottimizzato	Architetture supportate
avx512	Tempo	AVX512 a 320 bit
neon	Tempo	ARM NEON a 64 bit
armv6, armv6m e	Tompo	ARMv6, ARMv6-M e
armv7m	Tempo	ARMv7-M a 32 bit
armv6 lowsize,		ARMv6, ARMv6-M e
armv6m lowsize e	Spazio	ARMv7-M a 32 bit
armv7m lowsize		Altiviv i-ivi a 52 bit
armv7m small	Tempo e spazio	ARMv7-M a 32 bit
bi32 armv6, bi32		ARMv6, ARMv6-M e
armv6m e bi32	Tempo tramite bit-interleaving	ARMv7-M a 32 bit
armv7m		Altiviv i-ivi a 52 bit
bi32 armv7m	Tempo e spazio tramite	ARMv7-M a 32 bit
small	bit-interleaving	ATUVIVI-IVI a 92 DIU
avr	Tempo e spazio	AVR a 8 bit
avr lowsize	Spazio	AVR a 8 bit

Tabella 4: Terza classe di ottimizzazioni.

La quarta e ultima classe di ottimizzazioni utilizza un high-level masked C e l'inline assembly ASM[2]. Queste implementazioni sono utilizzate come punto di partenza per generare specifiche implementazioni che dipendono fortemente dal dispositivo utilizzato. Il linguaggi utilizzati sono sempre il C e l'assembly ASM.

Nome	Cosa viene ottimizzato	Architetture supportate
protected bi32 armv6	Tempo tramite masked bit interleaving	ARMv6 a 32 bit
protected bi32 armv6 leveled	Tempo tramite masked e leveled bit interleaving	ARMv6 a 32 bit

Tabella 5: Quarta classe di ottimizzazioni.

Capitolo 4

Testing e analisi

Come scritto in precedenza, ASCON propone tre famiglie di algoritmi crittografici: AEAD, funzioni hash e funzioni auth. Sono state testate tutte le famiglie proposte utilizzando diverse grandezze di plaintext e tre diversi dispositivi IoT fisici, ossia Arduino Due, Adafruit ItsyBitsy M0 Express e Raspberry Pi 3 Model B. Le prime due board sono prive di sistema operativo, mentre l'ultima è stata utilizzata con la distribuzione "Raspberry Pi OS".

In questo capitolo verranno usati i termini "algoritmo" per indicare un algoritmo di una data famiglia e "implementazione" per indicare un'implementazione di un dato algoritmo di una data famiglia. Viene fatto questo per evitare di ripetere ogni volta "una data implementazione di un dato algoritmo di una data famiglia".

4.1 Suite di test

Per poter partecipare alla gara del NIST, ASCON ha inserito nel proprio repository Github una serie di test che possono essere compilati ed eseguiti su ogni architettura supportata. I test forniti eseguivano mediamente mille esecuzioni di una implementazione scelta, usando di volta in volta diverse grandezze di plaintext e di dati associati. Il test utilizzato per i risultati presenti in questo report esegue al massimo nove esecuzioni per l'implementazione in esame, testando plaintext e dati associati di grandezze minime, massime – secondo i test definiti da ASCON – e intermedie significative.

4.1.1 Pseudocodice

Lo pseudocodice (vedi sotto) mostra la funzione di test utilizzata, creata modificando leggermente quella fornita da ASCON per poter rilevare i tempi di esecuzione. Per avere dei dati consistenti, la funzione di test viene chiamata mille volte

35:

36:

37:

▷ Stampa dei risultati.

PRINT(time)

 \triangleleft

Algoritmo Testing con varie lunghezze di plaintext e dati associati. Input: Lunghezza mlen del plaintext. Input: Lunghezza adlen dei dati associati (solo AEAD). 1: ▷ Generazione di chiave, nonce e dati associati. \triangleleft 2: $key \leftarrow GENERATE_KEY(klen)$ $3: nonce \leftarrow GENERATE_NONCE(nlen)$ 4: $ad \leftarrow GENERATE_AD(adlen)$ 6: ▷ Generazione del plaintext da testare. \triangleleft 7: $pt \leftarrow \text{GENERATE_PT}(mlen)$ 9: \triangleright Inizio timer. \triangleleft 10: $time \leftarrow GET_TIME$ 12: ▷ Cifratura e misura del tempo di esecuzione. \triangleleft 13: $ct, error \leftarrow \text{ENCRYPT}(pt, key, nonce, ad)$ 14: $time \leftarrow \text{GET_TIME}$ - time 15: 16: ▷ Controllo degli errori. \triangleleft 17: **if** error > 0 **then** 18: | EXIT(error) |19: 20: \triangleright Stampa dei risultati. \triangleleft 21: PRINT(time)22: 23: ▷ Se la famiglia testata è AEAD oppure autenticazione viene esequita la funzione di check \triangleleft 24: **if** $family \in \{AEAD, autenticazione\}$ **then** ▷ Inizio timer. 25: \triangleleft $time \leftarrow \text{GET_TIME}$ 26: 27: ▷ Decifratura e misura del tempo di esecuzione. 28: \triangleleft $pt, error \leftarrow \text{DECRYPT}(ct, key, nonce, ad)$ 29: $time \leftarrow \text{GET_TIME}$ - time 30: 31: ▷ Controllo degli errori. 32: \triangleleft if error > 0 then 33: EXIT(error)34:

per ogni grandezza di plaintext e dati associati in esame.

Per inserire i risultati come righe di un file CSV facilmente interrogabili, il programma che richiama la funzione di test esegue per mille volte un loop, nel quale vengono usate in sequenza le varie grandezze di plaintext e dati associati, così da avere, per ogni riga del file CSV, i tempi di esecuzione di un campionamento sulle lunghezze da testare.

Algoritmo Come viene chiamata la funzione di test.

```
1: \triangleright Funzione di test. 

2: for _ in range(1000) do
3: \mid TEST(mlen_1, adlen_1)
4: ...
5: TEST(mlen_{n-1}, adlen_{n-1})
6: \mid SEND_RESULTS()
```

L'header di ogni file CSV è composto da celle nel formato "NB-M", con:

- N: grandezza in byte del plaintext testato;
- B: indica appunto che la grandezza N è in byte;
- M: modalità, che per AEAD può essere E (encryption) oppure D (decryption), per autenticazione può essere A (authentication) oppure V (verify) mentre per hash questo campo non è presente.

0B-E	0B-D	1B-E	1B-D	8B-E	8B-D	16B-E	16B-D

Tabella 6: Header AEAD con plaintext da 0, 1 8 e 16 byte.

4.1.2 Compilazione

Per le board prive di sistema operativo è stato utilizzato il software Arduino IDE: il file di test veniva dapprima inserito in un progetto Arduino con i file che definivano l'implementazione scelta, successivamente compilato tramite il compilatore presente nella suite Arduino e infine trasferito tramite porta seriale alla board sotto testing. Per quanto riguarda la board con il sistema operativo, il file di test e i file dell'implementazione scelta venivano messi in una cartella, trasferiti sulla board tramite l'utility scp, compilati con gcc e infine eseguiti.

4.1.3 Raccolta dei risultati

Per le due board prive di sistema operativo, i risultati delle mille esecuzioni dei test di varie grandezze di plaintext e dati associati vengono inviati sulla porta seriale e intercettati da uno script Python che li inserisce in file CSV.

```
import argparse, os, serial
from serial import SerialException
def main(filename: str, port: str) -> None:
 while True:
    try:
      s = serial.Serial(port, 9600)
       break
      except SerialException:
       port = input("Porta errata da ARGV, inserisci la porta: ")
 files = [file.split(".")[0] for file in os.listdir()]
 while filename not in files:
    filename = input("Nome errato da ARGV, inserisci il nome: ")
 with open(f"{filename}.csv", "a") as f:
   for i in range(1000):
     f.write(f"{s.readline().strip().decode()}\n")
if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("filename")
 parser.add_argument("port")
 args = parser.parse_args()
 main(args.filename, args.port)
```

Lo script presentato per mille iterazioni legge dalla porta seriale un'esecuzione del loop di test e scrive il record nel file CSV corrispondente.

Nella board con il sistema operativo la logica di raccolta dati è stata invece spostata dentro il programma di test, che quando rileva un tempo di esecuzione lo va a scrivere direttamente nel file CSV.

4.2 Dispositivi utilizzati

L'attività di testing è stata eseguita su tre dispositivi IoT fisici: Arduino Due, Adafruit ItsyBitsy M0 Express e Raspberry Pi 3 Model B.

Nei capitoli successivi saranno presenti due tipi di tabelle:

- I. Tempi di esecuzione Contengono, appunto, i tempi di esecuzione, raccolti per implementazione e algoritmo; queste tabelle sono organizzate nel seguente modo:
 - Header, che contiene celle nel formato "N-V", dove:
 - -N: grandezza in byte del plaintext testato;
 - -V: tipo di valore indicato nelle celle sottostanti, e può essere:
 - (1) m: valore minimo;
 - (2) a: valore medio;
 - (3) M: valore massimo.

0-n	0-a	0-M	1-m	1-a	1-M	8-m	8-a	8-M
-----	-----	-----	-----	-----	-----	-----	-----	-----

Tabella 7: Header tabella con plaintext da 0, 1 e 8 byte.

- Righe, che contengono:
 - Il nome dell'algoritmo da testare e una serie di colonne vuote, oppure
 - Il nome di una implementazione dell'algoritmo letto precedentemente e una serie di colonne che rappresentano i tempi di esecuzione raccolti, misurati in microsecondi.

ascon128av12	
arvm6m	
ref	

Tabella 8: Righe tabella con algoritmo ascon128av12 e implementazioni armv6m e ref.

II. **Spazio utilizzato** — Contengono alcune informazioni sulle proprietà dei file eseguibili compilati. Per le due board prive di sistema operativo queste informazioni sono state ricavate dal terminale dell'Arduino IDE. Esse sono:

- Sketch: dimensione del file compilato in byte. È presente anche una percentuale, che indica quanto lo skecth occupa nella memoria della board;
- Eseguibile: dimensione del file compilato, al quale vengono aggiunti alcuni header per poter essere eseguito sulla board, sempre misurato in byte;
- Pagine: numero di pagine;
- Loading time: secondi impiegati per trasferire il file eseguibile dal dispositivo host alla board.

Per quanto riguarda invece la board con il sistema operativo, l'unica informazione disponibile è la grandezza in byte del file eseguibile, ricavata tramite l'utility *stat*. La struttura delle righe è la stessa della tabella precedente.

Per quanto riguarda le famiglie AEAD e auth, saranno presenti tre tabelle: (1) tempi di esecuzione durante la fase di cifratura/autenticazione; (2) tempi di esecuzione durante la fase di decifratura/verifica; (3) spazio utilizzato. Invece, per la famiglia hash, sarà presente una sola tabella con i tempi di esecuzione delle funzioni prese in esame e la tabella dello spazio utilizzato.

4.2.1 Adafruit ItsyBitsy M0 Express

La prima board testata è un prodotto Adafruit con un processore 32 bit ATSA-MD21G18 Cortex M0+ a 48 MHz, 256 KB di memoria flash e 32 KB di memoria RAM[17]. L'architettura della board è ARMv6-M, presente nelle ottimizzazioni fornite da ASCON[18].

Crypto AEAD

Per la famiglia crypto AEAD sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv6-M, ARMv6-M lowsize, bi32, bi32 ARMv6-M, bi32 lowreg, bi32 lowsize, opt32, opt32 lowsize e ref.

Tabella 9: Spazio utilizzato famiglia AEAD.

	Sketch	Eseguibile	Pagine	Loading time
ascon128abi32				
bi32	27760 [10%]	27852	436	0.239
bi32 armv6m	23116 [8%]	23208	363	0.200
bi32 lowreg	21140 [8%]	21232	332	0.189
bi32 lowsize	16928 [6%]	17020	266	0.136
ref	48352 [18%]	48444	757	0.448
ascon128av12				
armv6m	23108 [8%]	23200	363	0.210
armv6m lowsize	16888 [6%]	16980	266	0.179
bi32	32132 [12%]	32224	504	0.300
bi32 armv6m	27748 [10%]	27840	435	0.271
bi32 lowreg	24964 [9%]	25056	391	0.240
bi32 lowsize	16600 [6%]	16692	261	0.164
opt32	58872 [22%]	58964	922	0.455
opt32 lowsize	16972 [6%]	17064	267	0.170
ref	56412 [21%]	56504	883	0.526
ascon128bi32v12				
bi32	25824 [9%]	25916	405	0.201
bi32 armv6m	21916 [8%]	22008	344	0.198
bi32 lowreg	20232 [7%]	20324	318	0.155
bi32 lowsize	16864 [6%]	16956	265	0.185
ref	39628 [15%]	39720	621	0.370
ascon128v12				
armv6m	21864 [8%]	21956	344	0.227
armv6m lowsize	16824 [6%]	16916	265	0.183
bi32	28736 [10%]	28828	451	0.369
bi32 armv6m	25076 [9%]	25168	394	0.249
bi32 lowreg	22880 [8%]	22972	359	0.192
bi32 lowsize	16560 [6%]	16652	261	0.159
opt32	52768 [20%]	52860	826	0.425
opt32 lowsize	16908 [6%]	17000	266	0.170
ref	53044 [20%]	53136	831	0.484

Tabella 10: Prestazioni famiglia crypto AEAD nella fase di cifratura.

	0- m	0-a	0-M	1-m	1-a	1-M	16-m	16-a	16-M	32 - m	32-a	32 -M	48-m	48-a	$48\text{-}\mathrm{M}$	64-m	64-a	64-M
ascon128av12																		
armv6m	121	122.46	130	163	164.85	172	236	239.09	245	315	317.96	325	393	396.3	404	471	475.99	482
armv6m lowsize	129	130.73	138	171	172.9	180	255	258.27	566	341	344.3	352	426	430.77	437	511	516.54	522
bi32	186	187.82		249	251.8	260	364	367.39	374	487	492.29	498	611	617.51	622	735	742.61	746
bi32 armv6m	129	130.34	138	176	177.42	184	252	254.79	261	339	342.34	348	426	430.32	437	512	517.65	523
bi32 lowreg	207	209.28	218	271	274.46	282	382	385.86	393	504	509.15	515	626	632.08	637	748	755.4	759
bi32 lowsize	197	199.71	-	257	259.81	267	386	390.48	397	516	520.78	527	646	652.12	657	922	783.53	982
opt32	155	156.86	-	202	209.17	217	308	311.21	318	413	417.96	424	519	524.11	530	625	630.99	989
opt32 lowsize	202	204.38	211	267	269.48	277	399	402.76	409	531	536.5	542	664	670.81	675	662	804.17	808
ref	173	174.24	183	224	226.88	235	347	351.0	358	472	477.07	483	596	602.63	209	721	727.8	732
ascon128abi32v12																		
bi32	176	177.9	184	235	237.24	243	344	347.1	352	457	461.65	468	571	576.1	581	989	2.069	695
bi32 armv6m	118	119.44	127	159	160.77	168	231	233.6	240	308	310.16	318	384	388.43	395	460	464.19	471
bi32 lowreg	194	196.44	203	253	255.83	262	359	362.72	369	470	474.73	481	581	587.03	592	694	698.73	703
bi32 lowsize	182	183.78	192	240	242.75	251	358	362.15	369	477	482.16	488	296	602.29	209	715	722.22	726
ref	169	170.85	180	217	220.13	228	334	337.24	345	452	456.87	462	570	575.46	580	289	694.38	869
ascon128v12																		
armv6m	119	119.91		152	152.96	160	206	207.83	216	265	267.73	275	324	327.1	334	382	386.09	393
armv6m lowsize	129	130.48	138	162	163.48	170	223	224.77	231	284	286.56	293	345	348.7	356	407	410.7	417
bi32	185	187.27		238	240.12	248	321	324.33	332	413	417.65	424	206	510.69	517	298	604.42	610
bi32 armv6m	127	128.23		166	167.29	174	218	220.3	227	281	284.24	290	344	348.01	353	407	411.71	416
bi32 lowreg	206	208.68	215	258	261.17	267	336	339.26	345	424	429.12	435	513	518.39	525	602	608.64	613
bi32 lowsize	197	199.01		244	245.92	254	334	337.56	345	425	429.63	436	517	521.86	527	809	613.94	619
opt32	158	160.28		200	201.95	209	273	275.89	282	351	354.1	361	429	433.07	439	206	511.35	517
opt32 lowsize	202	203.93		252	254.35	263	347	350.82	358	443	447.6	454	539	544.58	220	635	641.72	646
ref	173	175.03	182	213	214.88	223	299	301.88	309	386	389.68	397	473	478.02	484	561	566.73	572
ascon128bi32v12																		
bi32	175	177.36		222	224.83	231	305	308.18	314	392	395.9	402	479	483.62	490	266	571.93	222
bi32 armv6m	116	117.35		149	150.77	821	203	204.77	212	261	263.84	270	319	322.32	329	928	380.52	387
bi32 lowreg	194	196.2	202	240	242.17	250	317	320.03	328	399	402.93	410	481	485.95	492	564	569.21	574
bi32 lowsize	181	183.66	192	226	228.98	237	311	314.72	322	397	401.58	408	483	487.69	494	569	574.31	280
ref	176	178.07	185	222	224.08	231	303	306.25	312	385	389.05	394	467	472.0	478	550	722 22	EG 1

Tabella 11: Prestazioni famiglia crypto AEAD nella fase di decifratura.

64-M		974	1062	1504	1060	1542	1597	1299	1641	1508		1405	953	1428	1477	1461		789	839	1226	839	1224	1251	1032	1306	1167		1164	777	1159	1173	1140
64-a		971.95	1059.62	1497.68	1057.45	1536.18	1591.94	1291.63	1636.17	1501.84		1399.85	950.23	1421.48	1471.25	1454.99		785.87	836.0	1219.24	835.4	1217.31	1242.57	1028.66	1298.48	1159.81		1156.61	773.32	1149.88	1163.54	1132.69
64-m		965	1059	1493	1057	1531	1586	1289	1630	1497		1396	944	1418	1466	1450		822	830	1217	830	1215	1240	1028	1295	1158		1155	892	1148	1162	1131
48-M		813	885	1253	880	1292	1332	1081	1370	1254		1174	795	1199	1234	1221		699	714	1033	710	1041	1058	873	1109	982		086	658	983	066	896
48-a		98.608	882.0	1244.72	877.28	1284.24	1324.22	1073.18	1362.71	1245.12		1166.14	791.14	1191.97	1225.64	1212.37		664.36	709.77	1030.15	202.66	1037.89	1055.6	870.73	1101.66	980.17		977.84	652.95	981.16	987.71	965.53
48-m		804	928	1242	871	1281	1321	1072	1359	1242		1165	982	1190	1223	1210		829	705	1029	701	1037	1055	865	1101	973		971	647	974	981	929
32-M		652	602	994	701	1035	1060	858	1097	066		935	637	964	982	972		549	589	844	581	861	872	717	806	805		803	539	816	815	802
32-a		646.86	704.47	991.8	696.95	1031.59	1056.76	854.99	1089.3	0.886		933.04	632.54	962.06	979.84	970.12		542.79	583.31	840.92	575.69	858.27	868.42	712.77	905.36	801.06		799.64	533.4	812.86	812.45	798.76
32-m		641	869	985	692	1031	1056	849	1089	981		926	627	955	971	196		538	578	835	220	852	861	802	899	794		794	528	805	805	793
16-M		491	533	743	522	783	793	642	820	735		704	480	737	738	731		428	463	929	450	683	989	561	713	627		626	421	649	641	637
16-a		484.84	526.66	739.08	516.57	778.91	789.65	636.51	816.14	730.67		699.53	472.22	732.76	733.87	727.09		421.92	456.58	650.52	445.68	678.71	681.58	554.86	709.07	622.23		621.38	413.97	644.39	636.55	631.9
16-m		480	522	732	512	772	782	631	811	724		695	469	728	727	720		418	453	645	441	674	929	550	702	616		615	410	638	631	628
1-M		342	358	513	365	222	530	438	550	484		485	332	522	496	495		320	338	489	344	531	503	416	520	453		461	312	495	469	475
1-a		334.71	351.13	507.41	360.33	551.19	523.84	430.84	544.47	477.56		478.85	326.41	515.64	490.18	488.69		311.37	332.54	482.34	338.53	524.78	496.51	408.72	514.05	446.24		454.32	306.28	488.62	462.45	468.59
1-m		331	348	503	357	546	519	427	540	473		474	323	511	486	484		309	329	478	335	520	492	405	509	442		420	303	484	458	464
0-M		253	275	384	270	426	409	331	420	379		362	246	401	379	397		251	272	383	265	425	409	325	419	372		363	244	401	378	381
0-a		246.76	266.93	376.49	263.25	418.47	402.28	323.21	412.92	371.86		356.6	240.22	394.12	372.0	389.56		242.96	266.14	375.86	258.9	417.52	401.72	319.81	412.5	364.81		356.3	236.72	393.85	370.92	375.09
0-m		244	264	373	261	415	399	320	409	368		353	237	390	369	386		241	263	373	256	414	398	317	408	361		353	235	390	368	372
	ascon128av12	armv6m	armv6m lowsize	bi32	bi32 armv6m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	ascon128abi32v12	bi32	bi32 armv6m	bi32 lowreg	bi32 lowsize	ref	ascon128v12	armv6m	armv6m lowsize	bi32	bi32 armv6m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	ascon128bi32v12	bi32	bi32 armv6m	bi32 lowreg	bi32 lowsize	ref

Crypto hash

Per la famiglia crypto hash sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv6-M, ARMv6-M lowsize, bi32, bi32 ARMv6-M, bi32 lowreg, bi32 lowsize, opt32, opt32 lowsize e ref.

Tabella 12: Spazio utilizzato famiglia hash.

	Sketch	Eseguibile	Pagine	Loading time
asconhashabi32v12				
bi32	23516 [8%]	23608	369	0.186
bi32 armv6m	16356 [6%]	16448	257	0.145
bi32 lowreg	16412 [6%]	16504	258	0.141
bi32 lowsize	15572 [5%]	15664	245	0.141
ref	27256 [10%]	27348	428	0.235
asconhashav12				
armv6m	16332 [6%]	16424	257	0.153
armv6m lowsize	15540 [5%]	15632	245	0.147
bi32	24016 [9%]	24108	377	0.195
bi32 armv6m	16832 [6%]	16924	265	0.143
bi32 lowreg	16896 [6%]	16988	266	0.152
bi32 lowsize	15644 [5%]	15736	246	0.124
opt32	27028 [10%]	27120	424	0.218
opt32 lowsize	15628 [5%]	15720	246	0.126
ref	31836 [12%]	31928	499	0.256
asconhashbi32v12				
bi32	20188 [7%]	20280	317	0.181
bi32 armv6m	16356 [6%]	16448	257	0.148
bi32 lowreg	16412 [6%]	16504	258	0.148
bi32 lowsize	15572 [5%]	15664	245	0.129
ref	27436 [10%]	27528	431	0.239
asconhashv12				
armv6m	16332 [6%]	16424	257	0.172
armv6m lowsize	15540 [5%]	15632	245	0.154
bi32	20688 [7%]	20780	325	0.182
bi32 armv6m	16832 [6%]	16924	265	0.163
bi32 lowreg	16896 [6%]	16988	266	0.144
bi32 lowsize	15644 [5%]	15736	246	0.137
opt32	30500 [11%]	30592	478	0.261
opt32 lowsize	15628 [5%]	15720	246	0.128
ref	35384 [13%]	35476	555	0.298
asconxofav12				
armv6m	16332 [6%]	16424	257	0.130
armv6m lowsize	15540 [5%]	15632	245	0.147
bi32	24016 [9%]	24108	377	0.212
bi32 armv6m	16832 [6%]	16924	265	0.147
bi32 lowreg	16896 [6%]	16988	266	0.137
bi32 lowsize	15644 [5%]	15736	246	0.131
opt32	27028 [10%]	27120	424	0.230
opt32 lowsize	15628 [5%]	15720	246	0.138
ref	31828 [12%]	31920	499	0.263
asconxofv12				
armv6m	16332 [6%]	16424	257	0.161
armv6m lowsize	15540 [5%]	15632	245	0.179
bi32	20688 [7%]	20780	325	0.179
bi32 armv6m	16832 [6%]	16924	265	0.166
bi32 lowreg	16896 [6%]	16988	266	0.144
bi32 lowsize	15644 [5%]	15736	246	0.141
opt32	30500 [11%]	30592	478	0.246
opt32 lowsize	15628 [5%]	15720	246	0.137
ref	35340 [13%]	35432	554	0.286

Tabella 13: Prestazioni famiglia hash.

			İ																							
asconhashav12	101	0.951	101	000	000 10	+	96 026	961 24	+	+	+	+	+	+	+	206 79	4	1961	1 363 66	1909	0577	9591.9	+	6407	4070 GE	1001
movimme arismol marare	187	180.0	100		+	202	+	+	974 32	339 342 69	69 350	407	404.00	503	2002	$^{+}$	103	1414	\dagger	_	1162	$^{+}$	2000	5103	5106.19	5115
ATIMON TOWSTEE	$^{+}$	770 040	133	27 077	2 00 000	+	+	+	+	$^{+}$	+	+	+	+	+	Ŧ	1	+	+	4	1402	$^{+}$	4	2575	2501.00	2507
mg/vm/re CEiq	\neg	102.11	000		_	+	+	+	+	+	+	+	+	+	+	+		+	+	4	9659	$^{+}$	+	5199	5194.35	5131
hi 32 lourned		979 83	980		_	+	+	+	+	t	+	+	+	+	+	t	┸	+	t	L	3863	$^{+}$	1	7460	7465 74	7471
bi32 lowsize	273	275.72	282	329 33	332.37	338	386 38	+	396 49	+	+	9 726	731.96	735	+	+	1194	+	+	_	3916	+	3925	7566	7571.58	7576
opt32		247.06	253		_	+	+	_	+	т	_	\vdash	+	_	-	+		+	т		3470	T	_	8699	6703.58	8029
opt32 lowsize		297.51	303		⊢	+	+	╄	\vdash	+	╀	\vdash	H	\vdash	L	+	L	\vdash	H	╙	4278	$^{-}$	_	8263	8266.42	8272
ref	314	316.65	324	-	┢		\vdash	424.25 43	431 52	526 531.17	L	7 738	745.27	7 749	11711	1 1173.32	32 1180	2029	T	1 2037	3734	3741.97	3745	7164	7166.94	7174
asconhashabi32v12					ш	Н	П		Н	Н	Ш	Н	Н	Н				Н	Н			Н	Н			
bi32	_	264.75	270	-	_	\vdash	\vdash	_	H		_	H	H	L		\vdash		H			\vdash	\vdash	<u> </u>	7304	7307.28	7313
bi32 armv6m	181	183.98	190		220.16	227 2	254 25	257.07	_	327 330.31	.31 338		476.82			5 772.03	3 775	1357	1359.63		2532		2543	4884	4890.51	4893
bi32 lowreg		263.2	273		-	Н	$\overline{}$	ш	Н		Н	Н	H	Н	H	Н		Н			3741	Н		7226	7230.18	7239
bi32 lowsize		267.33	273			328 3	374 37.	378.48 38	385 48	484 489	489.19 495	2 706	_		5 1153	3 1154.28	28 1162	2041		7 2050	3810		3819	7361	7364.6	7371
ref	309	312.74	318	360 36	363.91 3	369 4	411 41	415.04 42	421 51	512 517	517.02 522	2 716	721.94	4 725	5 1127	7 1128.71	71 1136	1938	1945.71	1 1947	3573	3579.33	3584	6838	6844.27	6847
asconhashv12	-																				\vdash					
armv6m	234	236.44	243	288 29	290.98	297 3			H				669.28			Н	1110		1968.19				3703	7159	7160.95	7168
armv6m lowsize		237.88		292 28	_	⊢	347 35	_	358 45	456 458		7 675	H	2 685	5 1122	\vdash	32 1132	2006	2007.2	2010	3775	\vdash		7304	7307.08	7317
bi32	347	350.63			433.79 4	440 2		516.49 52	522 67	676 682.61		7 1014	1014.25		2 1672	2 1678.11					_			99601	10973.56	92601
bi32 armv6m		241.71		293 26	—	304 3	\vdash	H	H	Н	H	7 673	H	L		Н		H	H		H	Н	L	7237	7239.3	7247
bi32 lowreg	_	353.65	358		34.75 4	141 5	\vdash	L	H		L	0 1011	H	<u> </u>		\vdash		H	H		H	\vdash		10885	10892.44	10894
bi32 lowsize	-	353.86	361	-		H			526 68			1 1019	1019.21		7 1678	8 1683.88							1 2680	10997	10997.89	10999
opt32		320.9	328	392 3	\vdash	403 4	466 47	470.97 47	477 61	616 621.65		7 916	923.32	H	5 1519	9 1525.0	0 1530	Н	2728.47	7 2733	5135	5136.99	5146	9951	9953.84	9955
opt32 lowsize	382	385.97	393	-		H															6256			12131	12132.9	12141
ref		390.75	397	464 46	468.28 4	475 5	Н	547.67 58	553 69	698 705	705.23 709	9 1018	3 1019.23	23 1028	8 1641	1 1648.29	29 1652	2896	2905.41	1 2907	5414	5418.9	5426	10440	10447.88	10454
asconhashbi32v12			\neg		\rightarrow	\dashv	_	_	\dashv	\neg	_	+	_	_	\dashv			\dashv	_	_						
bi32		342.12	320	419 42	423.06 4	430	499 50	503.67 51	510 65	629 666	666.31 670	0 981	989.59	991	1630	0 1637.72	72 1641	2922	2930.97		5514	5520.04	2220	10688	10698.3	10703
bi32 armv6m	230	232.22			_	_	\neg		-	\dashv	_	_		_				-		1 1928	3615	\neg		2006	7006.44	7009
bi32 lowreg		343.94	321	\rightarrow	\rightarrow	+	\dashv	\dashv	+	\dashv	-	+	\dashv	+	\dashv	\dashv		+	_	_	5495	\neg	_	10652	10657.3	10662
bi32 lowsize	342	345.82	353		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	_	\dashv	\dashv		\dashv	\dashv		\dashv	\dashv	_	5563		_	10783	10790.8	10794
ref		393.54	400	465 46	469.31	475 5	539 54	544.74 55	220 68	689 682	695.25 699	686	996.62	868	3 1593	3 1598.85	S2 1604	2798	2804.72	2 2807	5212	5214.09	5221	10033	10034.69	10038
asconxofav12	\rightarrow	1,	-	\rightarrow	+	+	\dashv	_	+	\dashv	\dashv	+	+	+	+	+	_	+	\forall	4	+	\forall	_	01101	00 0000	
armv6m		187.17	193		_	+	_	-	+	+	_	+	\dashv	+	-	+		+	+	_	+	7	_	4972	4979.63	4981
armv6m lowsize		189.09	198		\rightarrow	+	\dashv	4	+	\dashv	\perp	+	+	+	+	\dashv	4	+	+	4	+	\top	\perp	5103	5106.05	CIIC
bi32	270	272.83	087	326 32	329.62 3	337	383	387.02	394 48	496 500.75	500.75 507	7 722	729.75	733	1184	4 1186.19	1195	2099	2099.9	2108	3920	3927.01	3929	7576	7582.01	7587
DISZ armyon	-	020.00	200		+	+	$^{+}$	+	+	+	+	+	+	+	+	$^{+}$	4	+	Ť	4	#C02	†	+	2122	7467 76	Tere
Pi30 loreize	217	21 2.32 975 75	107		\perp	+	+	+	+	+	+	+	Ť	+	+	+	_	+	+	+	3016	$^{+}$	+	7566	7571.57	7576
ont:32	244	246.85	253	204 20	297.53	+	+	+	+	$^{+}$	+	5 646	+	7 655	+	+		1855	+	+	3470	t	3481	8699	89 8029	8029
opt32 lowsize	294	297.56	302		_	+	+	+	+	+	╀	+	+	+	╀	+	╀	+	+	\perp	4278	t	╀	8263	8266.27	8274
ref		316.52	322	-	_	t	+	_	\vdash	t	+	┝	╁	H	\vdash	t	L	H	t	╙	3736	т	_	7164	7166.86	7173
asconxofv12							+			+	╀							\vdash	H	⊢						
armv6m		236.46	245	-	⊢	H	341 34		352 44	\vdash	L	663	Н	H		Н		H	Н	╙	H	Н	H	7158	7161.07	7170
armv6m lowsize		239.06	246			-			_					_				_				_		7306	7307.07	7315
bi32		350.31	356		Н	439 5	511 51	516.38 52	Н	677 682.42	:42 686	6 1014	1014.21	_	1 1673	3 1678.03	Ш	Н	Н	Ш	Н	5662.1	2666	10966	10973.54	10975
bi32 armv6m	239	241.59	248	293 2	\dashv		\neg	_	357 45		.24 465	\dashv	\dashv				_	1984		5 1993	\dashv		3744	7237	7239.32	7246
bi32 lowreg		353.72	360		-	\dashv	\neg	_	\dashv	\exists	_	\dashv	-	_	_	_		-	\neg		+	\neg	-	10881	10892.09	10894
bi32 lowsize		353.76	361		\rightarrow	\dashv	\dashv	_	+	_	_	-		_	_	-		-			+	\dashv	_	10996	10997.9	10999
opt32	317	320.84	327		395.58 4	402 4	466 47	_	\dashv	\dashv	.82 627	\dashv	\dashv	\dashv	\dashv	\dashv	1 1530	+	\dashv	_	2132	\dashv	4	9951	9953.85	9926
opt32 lowsize		385.86	391			_	-	568.69 57	575 72	748 752	752.39 756	5	1200		XX	×		2	3355 50	3328	6256	6259.33	6265	200	23 39	12140
rof		2000	400		4	+	+	+	+	+	4	+	+	0001	+	+	1	+	+	1	0.72	+	4	10171	00.00101	01101

Crypto auth

Per la famiglia crypto auth sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv6-M, bi32, bi32 ARMv6-M, bi32 lowreg, opt32 e ref.

Tabella 14: Spazio utilizzato famiglia auth.

	Sketch	Eseguibile	Pagine	Loading time
asconmacav12				
armv6m	17268 [6%]	17360	272	0.136
bi32	24836 [9%]	24928	390	0.190
bi32 armv6m	18036 [6%]	18128	284	0.152
bi32 lowreg	18000 [6%]	18092	283	0.191
opt32	32232 [12%]	32324	506	0.250
ref	32496 [12%]	32588	510	0.256
asconmacv12				
armv6m	17268 [6%]	17360	272	0.146
bi32	21512 [8%]	21604	338	0.202
bi32 armv6m	18036 [6%]	18128	284	0.142
bi32 lowreg	18000 [6%]	18092	283	0.155
opt32	35640 [13%]	35732	559	0.284
ref	36008 [13%]	36100	565	0.284
asconprfav12				
armv6m	17268 [6%]	17360	272	0.140
bi32	24836 [9%]	24928	390	0.226
bi32 armv6m	18036 [6%]	18128	284	0.170
bi32 lowreg	18000 [6%]	18092	283	0.164
opt32	32256 [12%]	32348	506	0.268
ref	32456 [12%]	32548	509	0.255
asconprfsv12				
armv6m	15972 [6%]	16064	251	0.136
bi32	21884 [8%]	21976	344	0.197
bi32 armv6m	17108 [6%]	17200	269	0.170
bi32 lowreg	17128 [6%]	17220	135	0.270
opt32	20716 [7%]	20808	326	0.176
ref	20284 [7%]	20376	319	0.199
asconprfv12				
armv6m	17268 [6%]	17360	272	0.156
bi32	21512 [8%]	21604	338	0.206
bi32 armv6m	18036 [6%]	18128	284	0.168
bi32 lowreg	18000 [6%]	18092	283	0.157
opt32	35636 [13%]	35728	559	0.318
ref	35968 [13%]	36060	564	0.285

Tabella 15: Prestazioni famiglia auth nella fase di generazione del codice.

	0-m	0-a	0-M	0-M 8-m	8-a	8-M	16-m	16-a	16-M		32-m 32-a 32-M 64-m	32-M	64-m	64-a		128-m	128-a	128-M	64-M 128-m 128-a 128-M 256-m 256-a 256-M 512-m	256-a	256-M	512-m	-	512-M	512-a 512-M 1024-m 1024-a 1024-M	1024-a	
asconmacav12	Н	-						\vdash				Ш			Ш									Н			
armv6m	115	116.26	124	117	119.39	126	120	120.88	128	124	125.65	133	170	171.42	178	097	262.85	569	405	409.96	414	869	703.25	707	1322	1325.78	
bi32	176	178.92	185	180	182.82	189	184	186.74		192	194.53	201	560	262.53	569	968	400.94	407	619	624.05	627	1901	1067.52	1075	2010	2010.13	
bi32 armv6m	120	121.47	129	124	125.44	133	128	129.75	137	137	138.11		188	190.33	197	291	293.96	300	461	465.78	472	802	810.94	814	1532	1535.53	
bi32 lowreg	168	169.78	177	172	173.7	181	175	177.68		183	185.51		247	250.19	257	376	379.43		584	588.82	594	1009	1009.17		1891	1898.16	9
opt32	153	155.49	162	155	159.89		158	161.05	L	162	164.5	L	219	221.97	230	333	338.17		513	517.08	524	874	881.65		1649	1656.68	loo.
ref	167	169.0	176	172	174.48	181	178	179.86	186	188	190.53	197	259	261.61	268	400	405.75	409	635	641.03	644	1109	1110.56	9 1118	2101	2102.01	
asconmacv12																											
armv6m	115	116.1	126	117	118.94	128	120	120.93	130	177	178.87	_	239	241.64	250	363	366.17		610	616.65	621	1115	1116.69	9 1126	2114	2116.72	
bi32	176	178.27	185	180	182.25	189	184	186.18	193	270	272.33	279	363	368.02		551	556.35		878	932.06	937	1687	1692.75	9691 9	3204	3207.5	100
bi32 armv6m	120	121.58	129	124	125.56	133	128	130.07		187	189.52	196	255	257.69		389	393.43		199	665.21	029	1207	1209.45	5 1216	2294	2297.63	က
bi32 lowreg	167	169.06	176	171	172.98	180	175	177.1	184	255	258.35	264	344	347.38	353	520	525.94	531	928	883.11	882	1590	1595.69	1091	3022	3023.18	100
opt32	153	154.63	162	155	156.86	164	158	159.27	166	235	237.53	244	317	320.24	326	481	486.88	492	811	817.44	821	1475	1479.06	9811	2799	2805.76	199
ref	168	169.56	177	173	175.21	182	179	180.58	187	263	266.82	271	357	360.64	366	547	553.08	258	928	934.83	937	1695	1699.54	1704	3227	3228.83	100
asconprfav12																											
armv6m	114	116.02	125	117	118.75	127	119	120.5	130	124	125.23	134	169	171.44	180	260	262.64	271	405	409.73	416	969	703.04	707	1322	1325.38	
bi32	176	178.66	185	180	182.57	189	184	186.46	193	192	194.28	201	260	262.4	270	396	400.86	407	617	623.7	627	1066	1067.73	3 1075	2010	2010.13	
bi32 armv6m	120	121.54	129	124	125.49	133	128	129.72	136	137	138.09	145	188	190.29	197	291	294.1	301	461	465.68	472	805	810.94	814	1530	1535.44	7
bi32 lowreg	168	169.75	177	172	173.58	182	175	177.48	186	183	185.37	194	247	250.09	258	376	379.43	386	584	588.63	595	1009	1009.24	1017	1891	1898.2	\sim
opt32	153	154.76	162	155	160.16	164	158	162.22	166	162	165.32	171	219	223.08	228	334	339.62	344	515	517.99	525	879	885.34	887	1658	1664.64	T.
ref	166	167.87	175	172	173.37	181	177	178.84	186	188	9.681	197	258	260.96	267	400	405.36	410	633	640.42	644	1109	1109.98	8 1118	2100	2101.57	15
asconprfv12																											
armv6m	114	115.99	123	117	118.61	126	119	120.64	128	176	178.49	185	238	241.31	248	362	366.02	373	610	98.919	621	1115	1116.37	7 1123	2115	2116.54	E.
bi32	176	178.52	186	180	182.44	190	184	186.37		270	272.69	_	363	368.02	374	551	556.76	299	928	935.09	937	1685	1692.57	9691 2	3204	3207.29	153
bi32 armv6m	120	121.47	129	124	125.54	133	128	130.17	137	187	189.48	197	255	257.59	265	688	393.45		629	665.27	029	1207	1209.37	7 1216	2294	2297.42	2
bi32 lowreg	167	169.13	176	171	172.89	180	175	177.11	184	255	258.45	566	344	347.44		520	525.97		928	883.16	882	1590	1595.7	1091	3022	3023.23	127
opt32	153	153.89	163	156	156.6	166	158	159.8	L	235	237.88		317	319.44		481	485.99		808	816.16	819	1472	1477.88		2791	2800.83	က
ref	167	169.22	177	173	174.84	183	178	180.1	188	262	265.03	273	356	360.05	367	545	551.08	226	925	932.66	935	1689	1695.43	3 1700	3219	3221.91	_
asconprfsv12																											
armv6m	19	62.16	20	63	63.9	7.5	64	64.67	73																		
bi32	86	60.66	106	101	102.37	110	103	105.1	112																		
bi32 armv6m	89	22.89	2.2	7.1	72.1	62	73	75.3	85																		
bi32 lowreg	93	95.12	104	26	98.24	107	66	100.59	110																		
opt32	83	84.12	91	82	85.79	93	82	8.98	94																		
ref	92	93.3	101	96	97.37	105	100	101.19	110																		

Tabella 16: Prestazioni famiglia auth nella fase di verifica del codice.

	0-m	0-a	0-M	8-m	8-a	8-M 1	16-m	16-a 1	16-M 3	32-m	32-a 3.	32-M 64	64-m 6	64-a 64	64-M 128	128-m 12	128-a 123	128-M 25	256-m 2	256-a 2	256-M	512-m	512-a	512-M	1024-m	1024-a	4-a
asconmacav12	Ш		Н	-		Н	\vdash		Н	Н		Н	Н	Н	Н												
armv6m	536	238.72	242	241 2	243.79	250			255	255 25		264					531.64 5			825.24	829	1408	1411.91	1417	2653	265	2657.03
bi 32	329	362.31	-		370.21	375		378.13	H	Т		Н	-		538 80	Н		H	Н	L	1258	2140	2141.9	2149	4026	405	4026.58
bi32 armv6m	247	249.05	255	_	257.2	H	Н	265.53	H	Н	282.72	289	-	386.46 3	H	Н	L	H	H	938.41	941	Н	1627.66	1633	3076	307	3076.73
bi32 lowreg	342	345.38	353	350 3	353.19	360	-	361.01	368		376.68	384	501 50	506.78 5	L	Н	764.84 7	1 694	1183 11	1185.09	1192	2024	2024.67	2027	3794	380	3801.36
opt32	313	315.44	323	318 3	319.48	328	322 3	324.18	H	332 33	333.27	342 4		448.3 4	456 67	H	677.65 6	684	1042	1042.3	1045	1762	1769.84	1772	3314	331	3317.26
ref	341	343.3	350	352 3	354.03	360	362 3	364.89	371	\vdash	387.53	392	525 53	530.56 5	535 80	809 813	813.42 8	818	1283 12	1285.12	1292	2225	2229.24	2234	4208	4210.45	.45
asconmacv12																											
armv6m	236	238.85	247	241 2	243.18	252	246 2	247.99	257	360	363.3	371 4	484 48	488.22 4	495 73	732 733	738.84 7	743 1	1236 12	1238.85	1247	2236	2238.65	2248	4236	4240.07	0.07
bi 32	329	362.97	368	367 3	370.79	376	$\overline{}$			Н	551.44		736 74	740.12 7			1119.03		1870 18	1875.94	1879	3387	3389.97	3397	6415	6419.98	86.
bi32 armv6m	247	249.33	255	255 2	257.11	264			H	H	385.0	H	516 52	520.97 5	526 78	H	793.01 7	796	1334 13	1336.83	1342	2421	2424.55	2430	4597	4600.59	.59
bi32 lowreg	341	344.45	\vdash	348 3	352.08	357	П	359.85			522.16	528 6	969	700.43 7			1057.49 10	1060	H	1770.97	1775	3196	3198.02	3205	6051	6052.49	2.49
opt32	313	315.45	322	318 3	320.58	327	323 3	325.56	331	477 48	481.18	488 (643 64	647.72 6	652 97	971 978	978.61	980	1637 16	1641.77	1646	2959	2964.76	2968	5611	5615.32	5.32
ref	343	345.7	352	353 3	356.25	362	364	366.85	373	532 53	536.57	543 7	724 72	728.81 7	733 11	1110 111	1110.66	1119 1	1870 18	1876.08	1879	3401	3406.5	3411	6460	6465.88	88.0
asconprfav12																											
armv6m	236	238.37	247	241 2	243.25	251		247.6		-	256.54	366					530.85 5		H	824.99	828	1407	1411.61	1418	2651	265	2656.67
bi32	329	362.42	369	366 3	370.33	377		378.27	382	390 3	394.7	401 5		531.72 5	537 75		807.35 8	810 1	1249 12	1250.98	1260	2139	2141.68	2150	4026	4026.62	3.62
bi32 armv6m	247	248.96	257	255 2	257.14	265	263 2	265.54	273	280 28	282.65	290 3	383 38	386.27 3	393 58		593.55 5	200	932 9	938.41	941	1622	1627.79	1633	3076	3076.7.	3.71
bi32 lowreg	342	345.53	353	350 3	353.38	361		361.21	369	373 37	376.91	384 5	501 50	506.95 5	512 75		764.75 7	769	1183 11	1184.97	1193	2024	2024.7	2027	3794	3801.21	1.21
opt32	313	315.44	322	317 3	319.99	327		324.41	332	331 33	333.45	340 4	446 44	448.98 4			679.55 6	685 1		1046.12	1048	1771	1776.94	1780	3331	333	3333.76
ref	340	343.02	320	350 3	353.66	361	361	364.32	371	t	386.56	393	524 52	529.44 5	534 80	808 81	812.63 8	817 1	1282 12	1283.95	1292	2224	2227.74	2233	4207	420	4209.77
asconprfv12																											
armv6m	236	238.23	245	241 2	242.92	250	245 2	247.54	256	360 36	362.98	371 4	484 48	487.83 4	494 73	731 733	738.32 7	742 1	1236 1	1238.5	1245	2236	2238.24	2245	4236	423	4239.42
bi32	329	363.25	370	367 3	371.07	378	374 8	378.78	382	546 58	551.02	557 7	734 74	740.4 7	745 11	1118 111	1118.87	1127 1	1870 18	1875.96	1879	3387	3390.44	3398	6415	642	6420.38
bi32 armv6m	247	249.27	257	255 2	257.21	265	263 2	265.74		381 38	384.91	392	516 52	520.96 5	527 78	.62 982	792.93 7	796	1334 13	1336.82	1344	2421	2424.6	2432	4595	460	4600.8
bi32 lowreg	341	344.52	351	348 3	352.24	359	356	359.84		\vdash	522.15	528 6	694 70	700.4 7	705 108	1057 105	1057.47 10	1001	1764 17	1771.02	1775	3196	3197.97	3205	6052	605	6052.46
opt32	313	317.39	324	318 3	321.85	329	323 3	326.28	334		482.03	488				.26 696	977.55	979 1	1632 16	1639.45	1643	292	2960.32	2963	5598	5604.49	1.49
ref	342	345.02	352	352 3	355.55	362	363	306.08		531 53	535.63	541 7	720 72	726.25 7.		1107 110	1107.72	1116 1	1863 18	1871.32	1874	3393	3397.99	3404	6445	6450.28	.28
asconprf sv12																											
armv6m	130	131.0	140	133 1	134.34	144	135 1	136.01	145																		
bi32	202	204.53	211	209 2	211.31	218	214 2	216.55	223																		
bi32 armv6m	143	144.62	152	150 1	150.71	158	-	156.19	163																		
bi32 lowreg	194	195.75	204	200	202.49	211	-	207.09	216																		
opt32	173	174.71	182	176 1	178.05	187	178 1		188																		
404	101	109 46	006	100	200 84	006	-	208 83	217									L		L	r						

4.2.2 Arduino Due

La seconda board testata è un prodotto Arduino, con un processore 32 bit Atmel SAM3X8E ARM Cortex-M3 a 84 MHz e 96 KB di SRAM[19]. L'architettura della board è ARMv7-M, presente nelle ottimizzazioni fornite da ASCON[18].

Crypto AEAD

Per la famiglia crypto AEAD sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv7-M, ARMv7-M lowsize, ARMv7-M small, bi32, bi32 ARMv7-M, bi32 lowreg, bi32 lowsize, opt32, opt32 lowsize e ref.

Tabella 17: Spazio utilizzato famiglia AEAD.

	Sketch	Eseguibile	Pagine	Loading time
ascon128abi32				
bi32	21972 [4%]	23152	91	4.467
bi32 armv7m	38756 [7%]	39936	156	7.666
bi32 lowreg	17036 [3%]	18216	72	3.533
bi32 lowsize	13332 [2%]	14512	57	2.809
ref	14436 [2%]	15616	61	2.996
ascon128a				
armv7m	20692 [3%]	21872	86	4.212
armv7m lowsize	13220 [2%]	14400	57	2.785
armv7m small	14444 [2%]	15624	62	3.032
bi32	27252 [5%]	28432	112	5.499
bi32 armv7m	44964 [8%]	46144	181	8.889
bi32 lowreg	20844 [3%]	22024	87	4.270
bi32 lowsize	13644 [2%]	14824	58	2.857
opt32	60812 [11%]	61992	243	11.938
opt32 lowsize	13468 [2%]	14648	58	2.842
ref	14484 [2%]	15664	62	3.041
ascon128bi32				
bi32	20764 [3%]	21944	86	4.234
bi32 armv7m	35508 [6%]	36688	144	7.067
bi32 lowreg	16444 [3%]	17624	69	3.389
bi32 lowsize	13300 [2%]	14480	57	2.801
ref	13812 [2%]	14992	59	2.900
ascon128				
armv7m	19668 [3%]	20848	82	4.017
armv7m lowsize	13188 [2%]	14368	57	2.750
armv7m small	14052 [2%]	15232	60	2.939
bi32	24300 [4%]	25480	100	4.914
bi32 armv7m	39444 [7%]	40624	159	7.815
bi32 lowreg	18924 [3%]	20104	79	3.891
bi32 lowsize	13604 [2%]	14784	58	2.849
opt32	52620 [10%]	53800	211	10.365
opt32 lowsize	13428 [2%]	14608	58	2.845
ref	13852 [2%]	15032	59	2.899

Tabella 18: Prestazioni famiglia crypto AEAD nella fase di cifratura.

а 64-М		4 179	2 164	3 148	14 287	2 162	52 416	4 418	365	88 440	0 598		38 266	.6 129	86 421	392	.2 1191		2 148	2 132	.2 122	233	.2 128	27 332	4 329	282 83	346	52 463		18 219	.2 108	320	313	010
64-a		177.4	163.2	146.33	285.44	161.2	414.52	416.4	364.36	437.88	598.0		264.28	128.16	420.36	391.36	1190.2		147.2	131.12	121.12	231.24	127.12	331.27	327.4	281.28	344.32	460.52		217.48	107.12	319.32	311.32	040
64-m		177	163	146	285	160	414	416	364	437	297		264	127	419	390	1190		147	131	121	231	126	330	327	281	344	460		217	107	319	311	010
48-M		150	138	124	239	135	346	349	296	367	496		222	109	351	329	886		126	114	104	197	109	280	280	231	295	391		186	95	273	566	200
48-a		148.2	137.2	122.24	238.22	134.2	344.37	347.6	295.32	365.52	493.01		221.24	107.24	350.32	327.32	0.786		125.2	112.12	102.24	196.2	107.16	279.24	278.44	230.24	293.29	389.49		184.4	91.12	272.28	265.24	705 0
48-m		148	136	122	238	133	344	347	295	365	493		220	107	349	326	286		125	112	102	196	107	278	278	230	293	389		184	91	272	265	705
32 -M		121	111	100	191	107	275	280	227	295	392		179	88	281	264	787		103	95	98	162	68	228	231	181	243	320		153	92	226	220	GES
32-a		119.4	111.0	99.05	190.22	107.0	274.28	279.28	225.96	293.28	391.0		177.44	87.12	280.24	263.24	785.56		102.0	93.16	84.16	160.2	88.08	227.2	229.36	180.2	241.24	318.36		151.32	75.08	225.24	219.16	GEO GA
32- m		119	110	86	190	106	274	278	225	293	391		177	87	279	262	784		102	93	84	160	87	226	229	180	241	318		151	72	225	218	650
16-M		91	98	92	143	81	202	211	158	223	289		135	89	211	200	584		81	92	29	126	69	177	182	130	192	248		120	09	179	174	202
16-a		90.2	85.2	75.05	142.22	80.2	203.4	210.2	157.16	221.2	289.0		134.16	80.79	210.16	198.28	583.6		80.2	75.08	80.99	125.12	80.89	176.16	180.36	129.12	190.16	247.24		119.04	59.08	178.16	172.36	ROR RO
16-m		06	84	74	142	62	203	210	156	221	288		134	99	509	197	582		80	75	99	125	29	176	180	129	190	247		118	59	178	172	л Л
1-M		64	59	54	100	58	139	142	06	151	188		94	20	143	135	384		61	22	51	95	54	130	133	82	139	179		89	46	134	128	196
1-a		64.0	58.0	53.05	98.45	57.0	138.12	141.12	89.12	149.36	186.0		93.12	48.16	142.08	134.12	383.4		0.09	56.08	49.08	94.12	53.04	128.16	132.12	81.08	138.12	178.16		88.12	45.08	133.12	126.28	36 698
1-m		64	58	52	86	26	138	141	89	149	186		95	48	141	133	383		09	56	49	94	53	127	132	80	138	177		87	45	133	126	096
0-M		47	45	40	74	41	105	110	29	114	146		20	37	111	102	295		47	45	39	74	41	103			112	148		20	36	109	102	205
0-a		47.0	45.0	38.1	73.11	40.0	104.12	108.12	65.16	113.12	146.0		80.69	35.08	109.28	100.16	294.27		47.0	44.04	38.04	73.08	39.08	102.12	106.08	63.08	110.16	147.12		80.69	34.08	107.16	101.08	90/139
m-0		47	44	38	7.2	40	104	108	64	113	145		89	35	109	100	293		46	44	37	73	39	102	106	63	110	147		89	34	106	101	207
	ascon128av12	armv7m	armv7m lowsize	armv7m small	bi32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	ascon128abi32v12	bi32	bi32 armv7m	bi32 lowreg	bi32 lowsize	ref	ascon128v12	armv7m	armv7m lowsize	armv7m small	bi32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	ascon128bi32v12	bi32	bi32 armv7m	bi32 lowreg	bi32 lowsize	404

Tabella 19: Prestazioni famiglia crypto AEAD nella fase di decifratura.

	1	5	-TAT-0		۲-۲	I-IVI	m-oT	10-a	16-M	32-m	32-a	32-M	48-m	48-a	48-M	64-m	64-a	64-M
ascon128av12																		
	94	94.4	96	131	131.0	132	183	183.2	184	242	242.2	243	301	301.4	302	360	360.4	362
armv7m lowsize	_	86.4	88	114	114.0	114	167	168.2	169	221	221.2	222	275	275.4	927	328	328.4	330
		78.05	62	107	108.05	109	151	151.24	153	200	200.29	202	249	249.34	251	298	298.38	300
	146	146.11	147	200	200.11	201	287	287.33	288	384	384.44	385	480	480.67	482	222	577.56	579
bi32 armv7m		81.4	83	115	115.0	117	160	160.2	161	215	215.2	217	270	270.4	272	325	325.21	327
		209.25	211	278	278.28	279	410	410.44	412	553	553.56	554	695	8.269	869	838	838.84	841
bi32 lowsize 2	215	215.24	217	282	282.28	283	420	420.52	423	260	560.57	562	669	699.72	701	838	838.84	840
		135.16	136	185	185.4	187	321	321.32	322	462	462.48	463	603	9.809	604	744	745.16	746
opt32 lowsize 2		223.24	224	297	297.32	298	442	442.44	443	587	587.61	590	732	732.76	735	877	878.36	881
C 4		296.0	297	378	379.0	379	581	582.0	583	789	789.0	790	966	0.966	266	1204	1206.0	1206
ascon128abi32v12	-																	
	138	139.16	140	188	189.2	190	270	270.56	272	357	358.36	329	445	445.97	448	533	533.56	534
bi32 armv7m		72.08	73	66	100.08	101	136	136.12	137	176	177.16	178	219	219.2	220	260	260.28	262
bi32 lowreg	221 2	221.24	222	286	287.32	288	427	427.44	428	573	574.21	929	720	721.28	723	298	96.798	870
	205	205.25	202	271	271.56	273	401	401.4	402	530	531.56	533	099	89.099	662	262	8.067	792
		592.56	593	772	772.76	774	1174	1174.6	1176	1579	1579.56	1581	1983	1983.96	1985	2389	2390.28	2392
ascon128v12																		
	93	94.2	92	125	125.0	126	162	162.2	163	207	207.2	208	252	252.2	253	297	297.2	298
armv7m lowsize	98	86.16	88	110	110.12	111	148	148.12	149	186	186.16	187	224	224.4	226	262	263.24	264
armv7m small		80.77	28	101	102.08	103	132	133.12	134	170	170.16	171	207	207.2	808	244	244.48	246
		148.12	149	191	192.2	193	252	253.24	254	324	324.32	326	395	395.8	397	467	467.44	468
		80.62	80	107	107.24	109	137	137.24	139	178	178.16	179	218	218.4	220	259	259.24	261
bi32 lowreg 2		204.24	506	257	257.28	258	353	353.36	355	459	459.48	460	564	565.2	268	029	89.029	673
		216.24	217	267	267.56	569	366	366.4	367	464	464.52	466	563	563.56	292	662	89.799	664
	129	129.12	131	166	166.16	167	262	262.24	263	364	364.36	366	466	466.45	469	268	568.56	220
opt32 lowsize 2		219.24	220	274	275.28	276	378	378.4	379	482	482.48	483	585	585.96	282	689	689.72	069
	301	301.56	303	364	364.72	367	503	503.52	504	646	646.68	647	788	789.48	791	931	931.96	934
ascon128bi32v12																		
	_	138.12	140	177	177.16	179	238	238.24	240	304	304.32	306	371	371.36	372	437	437.44	439
	02	80.07	7.1	93	93.08	94	120	120.24	122	153	153.32	155	186	186.28	881	219	219.32	221
		215.24	216	270	271.28	272	356	357.36	358	450	450.92	452	544	544.56	546	638	638.64	640
		199.2	200	250	250.28	251	342	342.36	344	435	435.44	436	528	528.56	530	621	621.64	624
12.7		593.56	594	730	730.72	732	1017	1017.0	1018	1309	1309.4	1311	1600	1600.64	1603	1891	1891.88	1892

Crypto hash

Per la famiglia crypto hash sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv7-M, ARMv7-M lowsize, ARMv7-M small, bi32, bi32 ARMv7-M, bi32 lowreg, bi32 lowsize, opt32, opt32 lowsize e ref.

Tabella 20: Spazio utilizzato famiglia hash.

	Sketch	Eseguibile	Pagine	Loading time
asconhashabi32v12				
bi32	19852 [3%]	21032	83	4.066
bi32 armv7m	19140 [3%]	20320	80	3.921
bi32 lowreg	13508 [2%]	14688	58	2.843
bi32 lowsize	12380 [2%]	13560	53	2.605
ref	12380 [2%]	13560	53	2.603
asconhashav12				
armv7m	18812 [3%]	19992	79	3.871
armv7m lowsize	12260 [2%]	13440	53	2.593
armv7m small	12260 [2%]	13440	53	2.591
bi32	20444 [3%]	21624	85	4.164
bi32 armv7m	19788 [3%]	20968	82	4.028
bi32 lowreg	14036 [2%]	15216	60	2.945
bi32 lowsize	12668 [2%]	13848	55	2.689
opt32	27084 [5%]	28264	111	5.442
opt32 lowsize	12508 [2%]	13688	54	2.640
ref	12412 [2%]	13592	54	2.643
asconhashbi32v12	. ,			
bi32	16644 [3%]	17824	70	3.443
bi32 armv7m	21156 [4%]	22336	88	4.311
bi32 lowreg	13508 [2%]	14688	58	2.837
bi32 lowsize	12380 [2%]	12380	53	2.603
ref	12292 [2%]	13472	53	2.604
asconhashv12	[-/0]			2.002
armv7m	15980 [3%]	17160	68	3.330
armv7m lowsize	12260 [2%]	13440	53	2.591
armv7m small	12260 [2%]	13440	53	2.591
bi32	17228 [3%]	18408	72	3.546
bi32 armv7m	21756 [4%]	22936	90	4.424
bi32 lowreg	14044 [2%]	15224	60	2.935
bi32 lowsize	12668 [2%]	13848	55	2.688
opt32	32412 [6%]	33592	132	6.474
opt32 lowsize	12508 [2%]	13688	54	2.648
ref	12340 [2%]	13520	53	2.606
asconxofav12	12010 [270]	10020		2.000
armv7m	18812 [3%]	19992	79	3.877
armv7m lowsize	12260 [2%]	13440	53	2.600
armv7m small	12260 [2%]	13440	53	2.591
bi32	20444 [3%]	21624	85	4.172
bi32 armv7m	19788 [3%]	20968	82	4.038
bi32 lowreg	14036 [2%]	15216	60	2.936
bi32 lowsize	12668 [2%]	13848	55	2.689
opt32	27084 [5%]	28264	111	5.442
opt32 lowsize	12508 [2%]	13688	54	2.641
ref	12404 [2%]	13584	54	2.640
asconxofv12	-2101 [2/0]	15504	J-1	2.010
armv7m	15980 [3%]	17160	68	3.337
armv7m lowsize	12260 [2%]	13440	53	2.594
armv7m small	12260 [2%]	13440	53	2.594
bi32	17228 [3%]	18408	72	3.538
bi32 armv7m	21756 [4%]	22936	90	4.429
bi32 armv/m	14044 [2%]	15224	60	2.937
bi32 lowreg	12668 [2%]	13848	55	2.937
opt32 opt32	32412 [6%]	33592	132	6.481
opt32 opt32 lowsize	12508 [2%]	13688	54	2.648
ref	12332 [2%]	13512	53	2.619

Tabella 21: Prestazioni famiglia hash nella fase di cifratura.

1024-M	1904	1557	1557	3016	1495	4047	4135	4448	4481	5694	Caro	2852	1312	4311	4018	11/33	9696	9105	2195	4350	2029	6547	1909	2099	6593	8153		4211	1897	6405	5938	17159	1001	1557	1557	3016	1495	4047	4135	4449	4481	5728	9696	2195	2195	4349	2029	6546	6062	2099	6593	8109
1024-a	1902.8	1554.6	1555.0	3015.04	1492.4	4046.2	4134.2	4446.6	4479.6	5692.4	0 0 0 0 0 0	2850.84	1310.32	4310.2	4010.01	11/30.88	19 8696	9103.9	2193.2	4348.4	2028.04	6545.6	6059.4	9.9099	6592.56	8151.12		4209.4	1895.01	6404.4	5935.81	17158.2	1000 8	1555.2	1555.6	3015.04	1492.4	4045.2	4134.0	4446.6	4479.4	5725.6	2623 65	2193.2	2193.2	4348.4	2028.04	6545.6	0.0909	9.9099	6592.56	8108.10
1024-m	1902	1554				4045	4133	4446	4479	5691	0.00	2849	1309	+	$^{+}$	11/30	5696	9103	2193	t	t	T	6209	9099	r	8151		4209	1895	\forall	5935	\forall	1009	1554	t	T	T	4045	4133	4446	4478	5725	2693	2193	2193	4348	t		6020	Ħ	6591	1
512-M	186	908	908	1560	775	2102	2140	2293	2318	5969		1477	682	7.731	2000	0124	9281	1133	1133	2243	1050	3372	3125	3401	3399	4229		2172	885	3303	3061	8900	082	807	908	1560	222	2102	2140	2293	2318	2985	1356	1133	1133	2243	1021	3372	3126	3401	3330	4234
512-a	8.986	804.8	804.8	1559.56	773.8	2100.0	2139.2	2292.4	2317.4	2969.0		1475.48	680.64	27227	20102	0123.04	125/18/1	1139 16	1132.12	2242.2	1049.68	3370.4	3124.0	3399.4	3398.36	4226.2		2171.2	981.0	3301.2	3060.2	8897.89	0.620	804.8	804.8	1559.56	773.8	2099.2	2139.2	2292.4	2317.4	2985.0	1354 96	1132.12	1132.16	2242.2	1049.32	3370.4	3124.0	3399.4	3398.36	4233.2
512-m	986	804	804	1559	773	2099	2139	2292	2317	2968	1	1475	629	2230	2012	0122	1257	1131	1131	2241	1049	3370	3124	3399	3397	4226		2170	981	3301	3060	8897	980	804	804	1559	773	5099	2139	2292	2316	2984	1354	1131	1131	2242	1049	3370	3124	3399	3397	4233
256-M	528	432	431	834	416	1128	1144	1216	1238	1608	000	789	367	1192	OTTI	9321	062	609	602	1190	562	1784	1657	1797	1802	2265		1152	525	1751	1624	4770	590	431	431	833	416	1128	1144	1216	1237	1615	790	602	602	1190	562	1784	1657	1797	1802	72201
256-a	527.6	430.4	430.4	832.84	414.41	1126.6	1141.61	1215.2	1236.4	1902'91	0 10 010	787.8	366.32	1191.2	276011	3318.32	62 012	600 6	9.009	1189.2	559.57	1782.4	1655.41	1794.81	19.0081	2263.24		1151.2	523.21	1749.81	1621.61	4767.98	9 465	430.4	430.4	832.84	414.41	1126.2	1141.21	1215.2	1236.2	1613.6	719 79	9.009	9.009	1189.2	559.56	1782.8	1655.61	97621	1800.33	2200.08
256-m	526	430	429	831	414	1126	1141	1214	1236	1605	0.000	286	365	1191	GOTT	2212	210	600	009	1188	559	1782	1654	1794	1799	2263		1151	522	1749	1621	4767	962	430	430	831	414	1126	1141	1215	1236	1613	710	009	009	1189	559	1782	1655	1794	1799	2265
128-M	300	245	245	470	237	641	643	229	269	926		445	210	7.70	070	\perp	707	338	338	664	316	066	923	995				642	596	975	904	2704	300	242	245	469	237	641	643	829	269	929	405	338	338	99	316	066	923	992	_	1284
128-a	298.4	243.4	243.4	468.48	235.4	8.689	642.8	675.6	8.269	926.0		444.44	209.2	0.000	023.3	1910.08	92 607	335.37	335.37	8.199	315.32	989.2	922.0	994.0	1002.96	1282.28		641.2	294.2	975.0	902.41	2703.51	7 806	243.4	243.4	468.48	235.4	8.689	641.8	675.8	695.6	929.0	402 92	335.37	335,37	8.199	315.32	0.066	923.0	994.0	1003.0	1282.28
128-m	298	243	242	468	235	639	641	675	695	926	0.	443	209	0/0	070	1910	607	335	335	199	315	686	922	994	1002	1281		640	294	974	905	2702	306	242	243	468	235	639	641	675	694	927	402	335	335	199	315	686	922	994	1002	1282
64-M	185	151	151		Ш	398	\dashv	409	427	287	_	_	132	412	505	+	+	207		┸	194	294	222	594	L	792		-	182	\perp	_	1672	20,0	+	╀	580			394	_	427		945	+	\perp	401	\perp	-	557	\perp	4	791
64-a	183.4	149.0	149.0	286.33	145.4	396.4	393.4	406.4	425.4	584.61	00	272.28	130.12	410.4	991.4	+	944.94	903.9	203.16	398.4	193.2	591.61	554.61	592.6	602.57	790.76		386.4	180.2	586.01	542.6	1670.8	187.0	149.2	149.2	286.76	145.4	396.4	393.0	407.4	425.4	585.6	944 94	203.16	203.2	399.0	193.2	591.6	554.61	592.6	602.57	789.76
64-m	183	149	149	286	145	396	392	406	425	584	i i	272	130	410	100	CIZI	9/13	606	202	398	193	291	554	291	109	790		385	180	285	542	1670	183	149	149	286	145	396	392	406	425	584	943	202	202	398	193	291	554	592	109	789
32-M	127	103	103	197	102	277	271	274	291	416	4	188	4	582	707	900	167	38	+	╀	\vdash	⊢	372	394	405	547		261	125	393	364	1157	107	103	103	197	102	277	271	274	291	417	167	138	138	╀	\perp	+	372	394	404	546
32-a	126.0	102.0	102.2	196.2	101.0	275.2	268.21	272.2	290.2	414.4	000	186.24	91.08	281.2	200.4	804.84	165 16	136.68	136.4	267.2	132.12	393.4	371.4	392.2	403.36	545.52		259.2	123.2	392.2	363.4	1155.3	196.9	103.0	103.0	196.2	101.0	274.61	268.21	272.2	290.2	414.4	165 16	136.4	136.68	267.2	132.12	393.4	371.4	392.2	403.4	544.28
32-m	126	102	102	195	101	275	268	272	290	414	0	186	91	187	700	\$04	191	136	136	267	132	393	371	392	402	545		258	123	392	362	1155	196	102	102	196	101	274	368	272	290	413	165	136	136	267	132	393	371	392	402	543
16-M	66	80	80	152	42	215	208	207	224	331		145	72	717	T0Z	080	461	105	105	204	103	297	281	294	304	424		196	96	297	275	868	00	80	80	152	62	215	202	207	224	329	197	901	105	204	103	297	281	294	302	424
16-a	98.2	79.2	79.4	150.17	78.2	214.2	206.2	205.2	223.2	329.2		143.44	71.12	210.2	2002	088.08	195 98	103 28	103.24	201.21	102.12	294.21	279.2	292.2	303.32	422.92		195.2	92.0	295.2	273.2	896.34	6 80	79.2	79.2	150.21	78.2	214.2	206.2	205.2	223.2	328.2	195.36	103.24	103.28	201.6	102.12	294.21	280.2	292.2	303.32	421.4
16-m	26	7.0	7.0	150	78	214	206	204	222	329	9	143	17	GIZ	002	088	195	103	103	201	102	294	279	291	303	422		195	8	295	273	895	g	202	7.0	150	22	214	206	205	222	328	195	103	103	201	101	294	280	291	303	421
8-M	84	69	_	129	ш	185	176	173	191	589	_	123	_	G2 I	TUT	500	107	5 8 8	800	170	87	246	235	243	255	363		165	82	250	231	292	O.	69	89	129	89	185	176	173	190	288	107	88	88	170	87	246	235	\perp	255	_
8-a	83.2	67.0	67.0	128.16	67.0	184.2	175.2	171.2	189.2	287.2		122.12	62.04	183.4	Z.0.7.I	002.33	106.19	87.19	87.12	168.2	80.98	245.2	233.6	242.2	253.44	361.36		164.19	80.0	247.2	228.21	767.58	84.10	67.2	67.8	128.16	0.79	183.6	175.2	172.2	189.2	285.6	106.19	87.12	87.12	169.2	86.08	245.2	234.2	242.2	253.28	359.90
8-m	83	29	-	128	-	184	175	171	188	287	\rightarrow	\neg	_	+	607	-	105	22 22	87	168	98	244	233	242	253	361	-	\neg	\rightarrow		228		63	67	29	128	29	183	175	171	189	285	105	+	87	891	98	245	233	-	253	_
0-M	20	22	22	106	58	155	145	139	157	245	00.	102	23	791	141	ore	24	7.0	7.5	137	72	197	189	194	202	301		133	29	200	182	641	7	27	57	901	28	154	145	139	126	244	×24	72	72	137	7.5	197	189	194	205	300
0-a	0.69	56.0	56.0	105.12	56.0	154.2	144.2	138.0	156.19	244.2		101.12	52.0	7.101	140.2	914.0	80 98	20.08	70.12	136.2	71.08	196.2	188.2	193.19	203.53	300.32		132.2	66.2	198.2	184.0	639.5	609	55.8	56.0	105.12	56.0	153.2	144.2	138.0	155.2	243.0	86.08	70.12	70.08	136.2	71.08	195.4	188.2	193.19	203.36	298.50
0-m	69	99	-	\vdash	-	153		138		244	\rightarrow	\rightarrow	21	101	139	-	D.	20 02	202	135	7.1	195	188	-				131	99	861	183	637	09	22	55	105	26	153	144	_	155	-	×	20	202	136	7.1	195	-		203	
Christian	armv7m	armv7m lowsize	armv7m small	bi 32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	asconhashabi32v12	bi 32	bi32 armv7m	bl32 lowreg	D132 LOWS1Ze	rei	abcolliabilvi2	arianol mara	armv7m small	bi 32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	asconhashbi32v12	bi32	bi32 armv7m	bi32 lowreg	bi32 lowsize	ref	asconxofav12	armv7m lowsize	armv7m small	bi 32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ref	asconxofv12	armv7m lowsize	armv7m small	bi 32	bi32 armv7m	bi32 lowreg	bi32 lowsize	opt32	opt32 lowsize	ret

Crypto auth

Per la famiglia crypto hash sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: ARMv7-M, ARMv7-M small, bi32, bi32 ARMv7-M, bi32 lowreg, opt32 e ref.

Tabella 22: Spazio utilizzato famiglia auth.

	Sketch	Eseguibile	Pagine	Loading time
asconmacav12				
armv7m	19060 [3%]	20240	80	3.950
armv7m small	12580 [2%]	13760	54	2.652
bi32	21276 [4%]	22456	88	4.330
bi32 armv7m	23420 [4%]	24600	97	4.762
bi32 lowreg	15348 [2%]	16528	65	3.193
opt32	32212 [6%]	33392	131	6.431
ref	12764 [2%]	13944	55	2.689
asconmacv12	. ,			
armv7m	16236 [3%]	17416	69	3.378
armv7m small	12588 [2%]	13768	54	2.652
bi32	18068 [3%]	19248	76	3.722
bi32 armv7m	25572 [4%]	26752	105	5.147
bi32 lowreg	15340 [2%]	16520	65	3.193
opt32	37556 [7%]	38736	152	7.464
ref	12700 [2%]	13880	55	2.690
asconprfav12				
armv7m	19060 [3%]	20240	80	3.927
armv7m small	12580 [2%]	13760	54	2.653
bi32	21268 [4%]	22448	88	4.329
bi32 armv7m	23396 [4%]	24576	96	4.716
bi32 lowreg	15324 [2%]	16504	65	3.191
opt32	32212 [6%]	33392	131	6.431
ref	12764 [2%]	13944	55	2.689
asconprfsv12				
armv7m	16244 [3%]	17424	69	3.405
armv7m small	12588 [2%]	13768	54	2.655
bi32	18180 [3%]	19360	76	3.734
bi32 armv7m	16500 [3%]	17680	70	3.434
bi32 lowreg	13868 [2%]	15048	59	2.899
opt32	16836 [3%]	18016	71	3.476
ref	12508 [2%]	13688	54	2.640
asconprfv12				
armv7m	16236 [3%]	17416	69	3.383
armv7m small	12588 [2%]	13768	54	2.652
bi32	18052 [3%]	19232	76	3.722
bi32 armv7m	25548 [4%]	26728	105	5.155
bi32 lowreg	15324 [2%]	16504	65	3.181
opt32	37556 [7%]	38736	152	7.458
ref	12700 [2%]	13880	55	2.696

Tabella 23: Prestazioni famiglia auth nella fase di generazione del codice.

1024-M		455	386	774	480	1140	1002	1744		740	632	1262	719	1933	1805	2698		454	386	922	480	1150	1003	1744		740	632	1247	719	1953	1805	2697								
1024-m 1024-a		453.48	384.4	8.697	478.6	1138.88	1002.0	1742.72		738.72	630.64	1257.37	717.72	1932.92	1804.56	2695.68		453.18	384.4	773.6	478.48	1149.12	1002.52	1742.72		738.72	630.64	1245.24	717.64	1952.52	1804.72	2695.68								
1024-m		453	384	292	478	1138	1002	1741		738	630	1255	717	1932	1803	2692		452	384	773	478	1149	1002	1741		738	630	1244	716	1921	1803	2692								
512-M		243	207	412	255	609	517	921		393	337	999	378	1023	936	1417		243	207	414	254	613	517	921		393	337	629	378	1034	936	1417								
512-a		242.26	205.2	410.2	253.24	607.4	515.52	96.616		391.4	334.32	662.92	377.36	1023.0	935.68	1415.48		241.26	205.2	412.0	253.24	612.44	515.44	96.616		391.4	334.84	96'229	376.84	1033.76	935.88	1415.4								
512-m		242	202	409	253	909	515	919		391	334	199	377	1023	934	1415		241	202	411	252	611	514	616		391	334	657	376	1033	935	1415								
256-a 256-M 512-m		144	123	243	146	360	292	528		219	188	370	208	268	201	922		144	123	244	146	363	292	528		219	188	367	208	574	201	922								
256-a		143.13	122.12	241.6	144.56	359.12	289.29	526.52		218.2	186.32	367.2	207.2	567.36	500.24	774.8		143.13	122.12	242.4	144.44	361.36	290.04	526.52		218.2	186.64	364.96	206.56	573.36	500.44	774.76								
256-m		143	122	241	144	358	589	526		218	186	399	202	299	499	774		143	122	242	144	361	589	526		218	186	364	506	572	499	774								
128-M		92	81	157	91	237	178	332		132	114	221	123	342	284	456		94	81	157	91	237	178	332		132	114	220	123	345	284	456								
128-a		94.09	80.08	157.0	90.16	235.4	176.36	330.32		131.12	112.2	519.6	122.12	340.12	283.04	455.44		93.09	80.08	157.0	80.08	236.2	176.92	330.32		131.12	112.48	218.4	121.36	344.12	283.24	455.44								
128-m		94	80	156	06	235	176	330		131	112	219	122	339	282	455		93	80	157	06	236	176	330		131	112	218	121	343	282	455								
64-M		63	54	105	09	158	105	215		68	22	147	81	227	176	596		63	54	105	09	158	105	215		68	2.2	147	80	231	176	596								
64-a		62.04	53.04	104.2	59.04	156.84	103.16	213.6		88.08	75.2	146.12	79.16	226.2	174.92	295.28		62.04	53.04	104.2	59.04	156.12	103.84	213.6		88.08	75.56	145.2	80.62	229.36	174.52	295.28								
64-m		62	53	104	29	156	103	213		88	75	146	62	226	174	292		62	23	104	29	156	103	213		88	7.2	145	62	228	174	292								
32-M	Н	48		22	44	8 118	89	156		29	28	8 110		171	3 121	217		47	41	22	44	3 117	89	156				3 112		L	3 121	1 217								
1 32-a		46.05	40.04	77.0	43.04	116.88	66.16	155.12		80.99	57.04	109.08	58.04	169.24	119.88	215.6		46.05	40.04	77.0	43.04	116.08	66.84	155.12		80.99	57.04	109.08	58.04	171.96	120.08	215.24								
1 32-m		46	40	92	43	116	99	155		99	22	109	28	169	119	215		46	40	22	43	116	99	155		99	22	109	28	H	119	215							L	
M-91	Н	5 46		92	1 41	8 115	99 8	2 146		1 47	1 41	1 76	1 41	8 117	1 68	2 149		2 46	1 40	92	2 41	8 115	1 67	2 146	Ш	1 47		1 76	1 41	6 119	1 68	4 149								06
·m 16-a		45.05	-	75.2	40.04	113.88	65.08	145.12		46.04	39.24	75.04	40.04	115.08	66.84	148.12		45.05	39.0	74.6	39.32	114.08	65.84	145.12		46.04	40.0	75.04	40.04	Н	67.04	147.64		25.0	22.0	42.04	25.8	57.04	35.04	88.09
16			_	22	H	_		144		L	39	22	040	5 115	⊢	3 148		5 45	L		39	\vdash	9	⊢	Н				_	L	99	H		H	H			3 57	Н	L
8-a 8-M	Н	Н		1.0 74		112.88 11	-	139.32 14			.04 40			1115	H	142.12 14		.05 45		73.0 74		112.08 11	.84 66	139.32 14	Н		.04 40		H	\vdash	.04	141.48 14		H			24.8	.09 58	Н	H
8-m 8	Н		Н	73 74.0	\vdash	112 112	-	139 139		45 45.04	39 39.04	H	38 38.32	114 114.08	66 66.84	142 142		44 44.05	38.08		-	112 112	-	139 139	Н		39 39.04	_	38 38.04	\vdash	66 67.04	141 141		Н	21 22.0	Ė	H	Н	34 35.04	\vdash
0-M	Н			7.2			99			H	40		39 3	-	9 29	137 1		45 4			_	⊢	99	H	Н				38	H	99	┢		H	22 2	_		2 99	Н	L
0-a	Н		_	72.0		111.4	64.08	134.12		H	39.04	72.32	37.04	113.08	_	136.12		H	38.04	_		111.08	₩	134.12	Н	_		_	37.0	\vdash	_	136.12			21.84	_	H	55.12		77.32
0-m	Н	Н	Н	7.5	\vdash	111	64	-		\vdash	39	H	-	\vdash	-	135 1		44	⊢		-	-	-	-	Н	_	39 8	_	36	⊢	92	-	H	\vdash		_	\vdash	55	Н	Н
	asconmacav12	armv7m	armv7m small	bi32	bi32 armv7m	bi32 lowreg	opt32	ref	asconmacv12	armv7m	armv7m small	bi32	bi32 armv7m	bi32 lowreg	opt32	ref	asconprfav12	armv7m	armv7m small	bi32	bi32 armv7m	bi32 lowreg	opt32	ref	asconprfv12	armv7m	armv7m small	bi32	bi32 armv7m	bi32 lowreg	opt32	ref	asconprfsv12	armv7m	armv7m small	bi32	bi32 armv7m	bi32 lowreg	opt32	ref

Tabella 24: Prestazioni famiglia auth nella fase di verifica del codice.

0-a 0-M 8-m 8-a 8-M 16-m 16-a 16-M 32-m 32-a 3
94.18 96 95 95.09 97 96 96.18 98 98.09
80.08 81 80 81.08 82 81 81.16 83 83 83.08
147 147.2 148 149 150.2 151 151 152.0 152 157 157.2 158
225.2 226 228 228.2 229 230 231.2 233 236
131.24 133 132 133.12 134 133 134.12 135 136
273 281 281.56 283
95 94 94.08 95 95 95.16 97 136
82.08 83 82 83.08 84 83 84.08 85 119
149.12 150 151 151.24 153 154 154.12 155 222
78.08 79 81 81.08 82 84 84.16
229.36 231 232 232.2 234 235
134.12 136 135 136.12
589
96 95 96.04 97 96 97.09 98 99
80.08 81 80 81.08 82 81 81.16 83 82
154 154.0
80.08 81 82 83.08 84 86 86.16 88 92
229.2 231 232 232.2 233 234 235.2 237 240
132 132 133.12 134 134 134.12 135 136
271.24 273 281 281.56 283
93.08 95 94 94.08 95 95 95.16 97
83 82 82.16 84 83 83.16 85
151.12 153 153 153.12 154 156 156.16 157
77.08 78 79 80.08 81 83
237 238 238.24 239 241 241.24 242
134.12 136 135 136.12 137 136 137.12
275 275.32 278 287 287.36 289 299 299.4 301 435
56.04 57 57 57.04
49 48 48.04 49 48 48.08
84.08 85 86 86.08 87 87 87.08
50.08 52 52
71.09 73 72 72.09 74 72 72.08
161 162.16 163 173 173.16 174 184 184.16 185

4.2.3 Raspberry Pi 3 Model B

L'ultima board testata è un prodotto Raspberry, con un processore 64 bit quad core 1.2 GHz Broadcom BCM2837 con 1GB di RAM[20]. L'architettura della board non è presente nelle ottimizzazioni fornite da ASCON, quindi saranno testate al massimo tre implementazioni per algoritmo.

Nelle tabelle dei tempi di esecuzione sono presenti numerose celle con valore 1. Questo perché la quasi totalità di queste in realtà dovrebbero contenere 0: la board di Raspberry, essendo molto veloce, ha tempi sotto il microsecondo, che non possono essere rilevati dalla suite di test. Inoltre, sono presenti numerosi outliers, dovuti principalmente al sistema operativo durante la fase di scheduling dei processi.

Crypto AEAD

Per la famiglia crypto AEAD sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: opt64, opt64 lowsize e ref.

Tabella	$25 \cdot$	Spazio	utilizzato	famiglia	AEAD
Tabula .	40.	DDazio	uuiiizzauo	iamigna	μ

Implementazione	Eseguibile
ascon128av12	
opt64	30832
opt64 lowsize	18848
ref	30792
ascon128v12	
opt64	26488
opt64 lowsize	18600
ref	30520

Tabella 26: Prestazioni famiglia crypto AEAD nella fase di cifratura.

	-		1	-	-	17.	9		110	10	10.	16 14	7.	, ,	77.70	00	00	14 00
	-En	0-m 0-a 0-M	0-IVI	T-m	r-a	1-m 1-a 1-M 8-m	œ-m		8-IVI	T0-m	10-a	8-a 8-M 10-m 10-a 10-M 24-m 24-a 24-M 32-m 32-a	74-m	74-a	Z4-IVI	32-m	32-a	
ascon128av12																		
opt64	П	1.01	∞	1	1.55	11	П	1.82	40	2	2.28	34	2	2.63	38	2	3.02	
opt64 lowsize	П	1.01	9	1	1.01	9	1	1.23	46	П	1.47	9	П	1.78	17	1	2.06	
ref	1	1.14	10	1	1.48	11	2	2.35	129	2	2.67	42	2	3.25	100	3	3.72	
ascon128v12																		
opt64	П	1.04	10	1	1.2	12	-	1.31	10	1	1.6	10	1	1.95	11	2	2.27	
opt64 lowsize	П	1.24	10	1	1.66	34	2	2.08	12	2	2.49	12	2	3.02	40	3	3.39	
ref	П	1.07	11	1	1.29	11		1.67	11	П	2.02	12	2	2.37	12	2	2.84	

Tabella 27: Prestazioni famiglia crypto AEAD nella fase di decifratura.

	0-m	0-m 0-a 0-M	0-M	1-m	1-m 1-a 1-M	-	8-m	8-a	8-M	16-m	16-a	8-M 16-m 16-a 16-M	24-m	24-a	24-m 24-a 24-M	32-m	32-a 32-M	32-M
ascon128av12																		
opt64	1	1.69	56	2	2.53	13	3	3.17	14	33	4.17	66	4	4.8	17	5	5.57	16
opt64 lowsize	1	1.24	2	1	1.67	24	2	2.31	27	2	2.99	22	33	3.62	52	4	4.11	22
ref	2	2.35	26	2	2.8	12	3	4.2	185	4	5.06	113	ಬ	80.9	17	9	7.34	136
ascon128v12																		
opt64	1	1.6	23	2	2.64	13	2	2.75	38	33	3.39	27	3	4.24	130	4	4.58	31
opt64 lowsize	2	2.59	06	33	3.21	25	33	4.08	59	4	5.21	36	ಬ	6.07	43	9	6.79	35
ref	2	2.32	94	2	2.72	41	က	3.52	14	4	4.28	16	4	5.13	43	5	5.82	42

Crypto hash

Per la famiglia crypto hash sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: opt64, opt64 lowsize e ref.

Tabella 28: Spazio utilizzato famiglia hash.

Implementazione	Eseguibile
asconhashav12	
opt64	18192
opt64 lowsize	14192
ref	18104
asconhashv12	
opt64	18192
opt64 lowsize	14192
ref	18152
asconxofav12	
opt64	18192
opt64 lowsize	14192
ref	18104
asconxofv12	
opt64	18192
opt64 lowsize	14192
ref	18152

Tabella 29: Prestazioni famiglia hash.

O-m O-a O-M 8-m 8-a 8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64		-	-	-						ı		l			ı
8-m 8-a 8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m	+		_	Т			2	Г	_	_	1		_	_	c
8-m 8-a 8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m		1.21	1.54	1.46	1.53	1.9	2.14		1.3	1.51	1.35		1.58	1.87	7 1 9
8-a 8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m		27	22	11	34	22	12		22	11	10		13	12	G.
8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m	l	_	-	-	1	2	2		-	-	1		-	2	c
[16-m 16-a 16-M 32-m 32-a 32-M 64-m		1.43	1.78	1.7	1.84	2.22	2.55		1.48	1.84	1.6		1.85	2.46	0
16-a 16-M 32-m 32-a 32-M 64-m		25	19	40	25	11	56		=	34	10		17	212	10
16-M 32-m 32-a 32-M 64-m	T	1	-	1	2	2	2		-	1	1		2	2	c
32-m 32-a 32-M 64-m		1.67	2.18	1.91	2.18	5.6	2.85		1.68	2.13	1.93		2.16	5.66	100
32-a 32-M 64-m		11	85	12	24	13	13		10	12	94		12	24	00
32-M 64-m	t		2	2	2	80	8			2	2		2	8	0
64-m	H	2.11	2.63	2.37	2.77	3.46	3.55	-	2.11	2.64	2.33		2.7	3.55	22.0
		105	13	11	14	12	56		13	32	12		11	44	1.0
2	l	2	m	en	က	4	4		2	en	33		m	4	-
64-a 6		2.82	3.75	3.38	3.88	5.02	5.01		2.88	3.82	3.3		3.97	5.14	0
64-M 1		22	24	33	13	14	27		12	23	22		36	32	22
128-m		4	20	20	9	∞	-		4	20	2		9	×	1
128-a		4.43	90.9	5.32	6.37	8.16	7.91		4.58	6.14	5.23		6.51	8.27	1 00
128-M		14	16	38	16	53	33		38	37	27		53	53	40
256-m		7	6	∞	10	14	13		-1	6	∞		10	14	- 01
256-a		79.7	10.58	9.17	11.21	14.71	13.73		6.7	10.63	80.6		11.2	14.64	10 12
256-M		31	53	96	43	44	33		102	35	40		44	62	45
512-m		13	18	16	20	56	24		13	18	16		20	56	80
512-a		14.44	99.61	17.22	21.02	27.49	25.09		14.21	19.57	16.78		20.91	27.57	20 20
512-M		154	52	368	59	09	92		37	61	29		22	51	07.1
1024-m		56	35	31	39	51	46		56	35	31		39	51	9,7
1024-a		27.07	37.62	32.63	40.64	53.21	48.29		27.18	37.5	32.16		40.21	53.23	01.07
1024-M		124	80	589	128	86	101		63	62	80		81	137	00

Crypto auth

Per la famiglia crypto auth sono stati testati tutti gli algoritmi proposti nelle seguenti implementazioni: opt64 e ref.

Tabella 30: Spazio utilizzato famiglia auth.

Implementazione	Eseguibile
asconmacav12	
opt64	18272
ref	18224
asconmacv12	
opt64	18272
ref	18248
asconprfav12	
opt64	18272
ref	18224
asconprfsv12	
opt64	18392
ref	18360
asconprfv12	
opt64	18272
ref	18248

Tabella 31: Prestazioni famiglia auth nella fase di generazione del codice.

8-M 16-m 16-a 16-M 10 1 1.04 32 10 1 1.16 23 10 1 1.04 10 2 1 1.0 1 2 1 1.04 10	8-M 16-m 16-a 16-M 32-m 10 1 1.04 32 1 10 1 1.16 23 1 10 1 1.04 10 1 2 1 1.0 1 1 2 1 1.0 1 1 2 1 1.04 10 1 2 1 1.04 10 1	8-M 16-m 16-a 16-M 32-m 32-a 10 1 1.04 32 1 1.07 10 1 1.16 23 1 1.17 10 1 1.0 1.0	8-M 16-m 16-a 16-M 32-m 32-a 32-M 10 1 1.04 32 1 1.07 25 10 1 1.10 23 1 1.17 10 10 1 1.09 1 1.10 1 1	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 10 1 1.04 32 1 1.07 25 1 1 10 1 1.16 23 1 1.17 10 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.16 23 1 1.17 10 1 1.67 10 1 1.67 10 1 1.00 1 1.00 1 1.00 1 1 1 1	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 10 1 1.04 32 1 1.07 25 1 1.31 10 10 1 1.16 23 1 1.17 10 1 1.67 89 10 10 1 1.04 10 1 1.5 11 1 1.86 11 1 2 1 1.0 1 1 1.01 6 1 1.02 5 1 1 1.04 10 1 1.01 6 1 1.02 5 1 1.04 10 1 1.01 10 1 1.01 6 3	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 1 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1 10 1 1.16 23 1 1.17 10 1 1.67 89 2 1 10 1 1.04 10 1 1.5 11 1 186 11 2 2 2 1 1.0 1 1 1.01 6 1 1.02 5 1 2 2 1 1.04 10 1 1.01 6 1 1.02 5 1 2	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 112 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 10 1 1.16 23 1 1.17 10 1 1.67 80 2 2.12 10 1 1.04 10 1 1.5 11 1 1.86 11 2 2.66 2 1 1.0 1 1.01 1 1.01 6 1 1.02 5 1 1.45 2 1 1.0 1 1.01 1 1.02 1 1.86	8-M 16-m 16-m 16-M 32-m 32-M 64-m 64-m 64-m 128-m 128-m 128-M 25 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 10 1 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 10 1 1.17 10 1 1.67 89 2 2.12 23 2 1 1.04 10 1 1.5 11 1 1.8 11 2 2.12 23 2 1 1.04 10 1 1.5 11 1.10 2 1 1.45 14 3 1 1.0 1 1.0 1 1.0 1 1.12 1 1.12 1 1 1.12 1 1 1 1 1 1	8-M 16-m 16-M 32-m 32-M 64-m 64-m 64-M 128-m 128-m 256-m 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 10 1 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 2 10 1 1.17 10 1 1.86 11 2 2 6 27 4 2 1 1.01 6 1 1.02 5 1 1.45 14 2 3 1 1.01 1 1.02 1 1.65 1 1.85 11 2	8-M 16-m 16-m 16-M 32-m 32-M 64-m 64-m 128-m 128-m 128-M 256-m 256-m	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 256-a 256-M 51 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 10 1 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 10 1 1.04 10 1 1.5 11 1 1.86 11 2 2.66 27 4 4.21 26 2 1 1.0 1 1 1.01 1 1.01 6 1 1.02 5 1 1.45 14 2 2.3 8 2 2 3.7 4 3.8 4 2 3 1 1.45 14 2 2.3 8	8-M 16-m 16-m 16-m 16-m 16-m 32-m 32-m 64-m 64-m 64-M 128-m 128-m 256-m 256-m 512-m 5 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 4 - 10 1 1.16 23 1 1.77 10 1 1.67 80 2 2.12 23 2 3.11 13 4 1 10 1 1.17 10 1 1.67 80 2 2.12 23 2 3.11 13 4 1 2 2 2 2 2.12 23 2 3.11 13 4 1 3 1 1.04 1 1.12 1 1.45 1 4 4.21 3 3 4 1 3	8-M 16-m 16-m 32-m 32-m 64-m 64-m 64-M 128-m 128-m 256-m 256-m 256-m 256-M 512-m 512-m <th>8-M 16-m 16-m 16-m 32-m 32-m 64-m 64-m 128-m 128-m 128-M 256-m 256-m 512-m 512-m<th>0-m 0-a 0-M 8-m 8-a</th><th>asconmacav12</th><th>opt64 1 1.02 11 1</th><th>ref 1 1.14 20 1</th><th>asconmacv12</th><th>opt64 1 1.05 10 1</th><th>ref 1 1.01 5 1</th><th>asconprfav12</th><th>opt64 1 1.04 10 1</th><th></th><th>1 1.12</th><th>1 1.12</th><th>1 1.12</th><th>1 1.04</th><th>1 1.04</th><th>1 1.04 1 1.01 1 1.01 1 1.03</th></th>	8-M 16-m 16-m 16-m 32-m 32-m 64-m 64-m 128-m 128-m 128-M 256-m 256-m 512-m 512-m <th>0-m 0-a 0-M 8-m 8-a</th> <th>asconmacav12</th> <th>opt64 1 1.02 11 1</th> <th>ref 1 1.14 20 1</th> <th>asconmacv12</th> <th>opt64 1 1.05 10 1</th> <th>ref 1 1.01 5 1</th> <th>asconprfav12</th> <th>opt64 1 1.04 10 1</th> <th></th> <th>1 1.12</th> <th>1 1.12</th> <th>1 1.12</th> <th>1 1.04</th> <th>1 1.04</th> <th>1 1.04 1 1.01 1 1.01 1 1.03</th>	0-m 0-a 0-M 8-m 8-a	asconmacav12	opt64 1 1.02 11 1	ref 1 1.14 20 1	asconmacv12	opt64 1 1.05 10 1	ref 1 1.01 5 1	asconprfav12	opt64 1 1.04 10 1		1 1.12	1 1.12	1 1.12	1 1.04	1 1.04	1 1.04 1 1.01 1 1.01 1 1.03
8-M 16-m 16-a 16-M 10 1 1.04 32 10 1 1.16 23 10 1 1.04 10 2 1 1.04 10	8-M 16-m 16-a 16-M 32-m 10 1 1.04 32 1 10 1 1.16 23 1 10 1 1.04 10 1 2 1 1.01 1 1.04	8-M 16-m 16-a 16-M 32-m 32-a 10 11 104 32 1 1.07 11 1.07 11 1.16 23 1 1.17 11 1.17 11 1.04 10 1 1.15 1 1.04 10 1 1.04 10 1 1.05 1 1.04 10 1 1.05 10 1.	8-M 16-m 16-a 16-M 32-m 32-a 32-M 10 1 1.04 32 1 1.07 25 10 10 1 1.16 23 1 1.17 10 10 1 1.04 10 1 1.5 11 1.07 2 1 1.04 10 1 1.5 11 1.04 10 1 1.5 11 1.04 10 1 1.04 10	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 10 1 1.04 32 1 1.07 25 1 1 10 1 1.16 23 1 1.17 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 10 1 1.04 32 1 1.07 25 1 1.31 1.0 1 1.16 23 1 1.17 10 1 1.67 10 1 1.67 10 1 1.00 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 10-m 10-d 32-d 32-M 10-d 10-d 10-d 10-d 10-d 10-d 10-d 10-d	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 188-m 110 1 1.04 32 1 1.07 25 1 1.31 10 1 1 1.01 1 1.10 23 1 1.17 10 1 1.16 89 2 1 1.01 1 1.04 10 1 1 1.01	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 1 10-1	8-M 16-m 16-a 16-M 32-m 32-M 64-m 64-m 64-m 128-m 128-m 128-m 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 10 1 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 10 1 1.17 1.0 1 1.67 89 2 2.12 23 2 2 1 1.17 1 1 1.67 89 2 2.12 23 3 1 1.17 1 1 1 1 1 1 1 2 2.12 23 4 1	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 100 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2 1.0 2.0 2 1.0 2 1.0 1 1.00 1 1.10 1 1.10 1 1.10 1 1.10 1 1.10	8-M 16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 256-a 10-m 10-a 16-M 32-n 10-a 10-m 10-a 10-a 10-a 10-a 10-a 10-a 10-a 10-a	8-M 16-m 16-m 16-M 32-m 32-m 64-m 64-m 64-m 128-m 128-m 126-m 256-m 256-M 256-M 100 1 1.04 32 1 1.07 25 1 1.07 89 2 2.12 23 2 2.81 27 20 2 2 2 2 2 2 2 2	8-M 16-m 16-m 16-m 32-m 32-M 64-m 64-m 128-m 128-M 128-M 256-m 256-m 256-m 256-m 512-m 10 1 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 4 10 1 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 10 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 2 1 1.04 1 1.67 89 2 2.12 23 2 3.11 13 4 2 1 1.04 1 1.02 1 1.10 2 2.66 27 4 4.21 26 7 3 1	8-M 16-m 16-m 16-m 32-m 32-m 64-m 64-m 128-m 128-m 128-m 256-m 256-m 256-m 512-m 512-m <td>8-M 16-m 16-M 32-m 32-M 64-m 64-m 64-M 128-m 128-m 256-m 256-m 256-M 512-m 512-m<td>-8 m-</td><td></td><td>1 1.03</td><td>1.1</td><td></td><td>1 1.00</td><td>1 1.0</td><td></td><td>-</td><td>1.0</td><td>1 1.17</td><td>1 1.1</td><td>1 1.17</td><td>1 1.17 1 1.08 1 1.02</td><td>1 1.0</td><td>1 1.08 1 1.02 1 1.02</td></td>	8-M 16-m 16-M 32-m 32-M 64-m 64-m 64-M 128-m 128-m 256-m 256-m 256-M 512-m 512-m <td>-8 m-</td> <td></td> <td>1 1.03</td> <td>1.1</td> <td></td> <td>1 1.00</td> <td>1 1.0</td> <td></td> <td>-</td> <td>1.0</td> <td>1 1.17</td> <td>1 1.1</td> <td>1 1.17</td> <td>1 1.17 1 1.08 1 1.02</td> <td>1 1.0</td> <td>1 1.08 1 1.02 1 1.02</td>	-8 m-		1 1.03	1.1		1 1.00	1 1.0		-	1.0	1 1.17	1 1.1	1 1.17	1 1.17 1 1.08 1 1.02	1 1.0	1 1.08 1 1.02 1 1.02
16-m 16-m 16-m 16-m 16-m 16-m 10-m	16-m 16-m 13-m 13-m 1	16-m 16-a 16-M 32-m 32-a 13-a	16-m 16-a 16-M 32-m 32-m 32-m 11-d 32 1 1.07 25 1 1.16 11-d 11-	16-m 16-a 16-M 32-m 32-a 32-M 64-m 1 1.04 32 1 1.07 25 1 1 1.16 23 1 1.17 10 1 1 1 1 1 1 1 1	16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 1 1.04 32 1 1.07 25 1 1.31 1 1.16 23 1 1.17 10 1 1.67 1 1.04 10 1 1.5 11 1 1.86 1 1.0 1 1 1.01 6 1 1.02 1 1.04 10 1 1.01 1 1.02 1 1.04 10 1 1.02 10 1 1.02	16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 1 1.04 32 1 1.07 25 1 1.31 10 1 1.16 23 1 1.17 10 1 1.67 89 1 1.04 10 1 1.5 11 1 1.86 11 1.04 10 1 1.01 6 1 1.02 5 1 1.04 10 1 1.01 0 1 1.02 5 1 1.04 10 1 1.01 1 1.05 3 1 1.04 10 1 1.02 1 1.05	16-m 16-a 16-M 32-m 32-m 64-m 64-a 64-M 128-m 11 1.04 32 1 1.07 25 1 1.31 10 1 1 1.16 23 1 1.17 10 1 1.67 89 2 2 1 1.10 10 1 1.5 11 1 1.86 11 2 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1 1.01 1 1.01 1 1.02 1 1 1.01 1 1.02 1 1.02 1 1.05 1	16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-m 64-b 128-m 128-a 128-a	16-m 16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-n 128-a 128-M 128-m 128-a 128-a	16-m 16-m 16-M 32-m 32-m 32-M 64-m 64-m 128-m 128-m 128-m 256-m 128-m 128-m 256-m 128-m 128-m 128-m 256-m 128-m 128-m 256-m 128-m 128-	16-m 16-m 16-M 32-m 32-m 32-M 64-m 64-m 128-m 128-m 128-M 256-m 256-	16-m 16-m 18-m 32-m 32-m 32-m 64-m 64-m 128-m 128-m 128-m 256-m 256-	16-m 16-m 16-M 32-m 32-m 32-M 64-m 64-m 128-m 128-m 128-M 556-m 576-m 576-m 576-m 512-m 1	16-m 16-m 16-M 32-m 32-m 32-m 64-m 64-m 64-m 128-m	16-m 16-m 16-m 32-m 32-m 32-m 32-m 64-m 64-m 64-m 128-m 128-m 256-m 256-m 512-m									2			\perp	$\perp \perp \perp$	\bot	++++	+++++
16-a 16-M 1.04 32 1.16 23 1.10 1 1.04 10 1.04 10	16-a 16-M 32-m 1.04 32 1 1.16 23 1 1.04 10 1 1.04 10 1 1.04 10 1	16-a 16-M 32-m 32-a 1.04 32 1 1.07 1.16 23 1 1.17 1.04 10 1 1.5 1.0 1 1 1.01 1.04 10 1 1.01 1.04 10 1 1.01	16-a 16-M 32-m 32-m 1.04 32 1 1.07 25 1.16 23 1 1.17 10 1.04 10 1 1.5 11 1.0 1 1 1.01 6 1.04 10 1 1.01 6 1.04 10 1 1.02 10	16-a 16-M 32-m 32-m 64-m 1.04 32 1 1.07 25 1 1.16 23 1 1.17 10 1 1.04 10 1 1.5 11 1 1.0 1 1 1.01 6 1 1.04 10 1 1.01 6 1 1.04 10 1 1.02 10 1	16-a 16-M 32-m 32-m 32-M 64-m 64-m 64-m 1.04 32 1 1.07 25 1 1.31 1.16 23 1 1.17 10 1 167 1.04 10 1 1.5 11 1 1.86 1.0 1 1 1.01 6 1 1.02 1.04 10 1 1.02 1 1.20	16-a 16-M 32-m 32-m 32-M 64-m 64-m 64-m 64-m 1.04 32 1 1.07 25 1 1.31 10 1.16 23 1 1.17 10 1 167 89 1.04 10 1 1.5 11 1 186 11 1.0 1 1.01 6 1 1.02 5 1.04 10 1 1.02 5	16-a 16-M 32-m 32-a 32-M 64-m 64-M 128-m 1.04 32 1 1.07 25 1 1.31 10 1 1.16 23 1 1.17 10 1 1.67 89 2 1.04 10 1 1.5 11 1 1.86 11 2 1.0 1 1.01 6 1 1.02 5 1 1.04 10 1 1.02 1 1.26 3 1	16-a 16-M 32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-a 1.04 32 1 1.07 25 1 1.31 10 1 1.86 1.16 23 1 1.17 10 1 167 89 2 2.12 1.04 10 1 1.5 11 1 1.86 11 2 2.06 1.0 1 1.01 6 1 1.02 5 1 1.45 1.04 10 1 1.02 1 1.26 3 1 1.85	16-a 16-M 32-m 32-a 32-M 64-m 64-m 64-m 128-m 128-m 128-m 128-m 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 1.16 23 1 1.17 10 1 167 89 2 2.12 23 1.04 10 1 1.5 11 1 1.86 11 2 2.66 27 1.0 1 1.01 6 1 1.02 5 1 1.45 14 1.04 10 1 1.02 10 1 1.26 3 1 1.85 11	16-a 16-M 32-m 32-M 64-m 64-m 64-M 128-m 128-M 256-m 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 1.16 23 1 1.17 10 1 167 89 2 2.12 23 2 1.04 10 1 1.5 11 1 1.86 11 2 2.66 27 4 1.0 1 1.01 6 1 1.02 5 1 1.45 14 2 1.04 10 1 1.02 1 1.26 3 1 1.85 11 2	16-a 16-M 32-m 32-M 64-m 64-a 64-M 128-m 128-m 256-m 256-m 256-m 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 1.16 23 1 1.17 10 1 167 89 2 2.12 23 2 3.11 1.04 10 1 1.5 11 1.86 11 2 2.66 27 4 4.21 1.0 1 1.01 6 1 1.02 5 1 1.45 14 2 2.3 1.04 10 1 1.02 3 1 1.85 11 2 2.74	16-a 16-M 32-m 32-M 64-M 64-a 64-M 128-m 128-m 256-m 256-a 256-m 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 1.04 10 1 1.56 11 2 2.66 27 4 4.21 26 1.0 1 1.01 6 1 1.02 5 1 1.45 14 2 2.3 8 1.04 1 1.02 1 1.26 3 1 1.85 11 2 2.74 26	16-a 16-M 32-m 32-M 64-m 64-m 64-m 128-m 128-m 128-M 56-m 256-m 256-m 512-m 1.04 32 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 4 1.16 23 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 1.04 10 1 1.5 11 1 1.86 11 2 2.66 27 4 4.21 26 7 1.04 1 1.01 6 1 1.02 5 1 1.45 14 2 2.3 8 3 1.04 1 1.02 1 1.26 3 1 1.85 11 2 2.74 26 4	16-a 16-M 32-m 32-M 64-m 64-m 64-m 128-m 128-m 128-M 26-m 256-m 256-m 512-m 512-m </td <td>16a 16.M 32-m 32-M 64-M 64-M 128-m 128-M 256-m 256-M 512-m 512-m<</td> <td>16-m</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>_</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	16a 16.M 32-m 32-M 64-M 64-M 128-m 128-M 256-m 256-M 512-m 512-m<	16-m		1	1		-	-		_		-	-				
	32-m	32-m 32-a 1 1.07 1 1.17 1 1.15 1 1.01 1 1.02	32-m 32-a 32-M 1 1.07 25 1 1.17 10 1 1.5 11 1 1.01 6	32-m 32-d 64-m 1 1.07 25 1 1 1 1.17 10 1 1 1 1.5 11 1 1 1 1.01 6 1 1 1 1.02 10 1	32-m 32-3 32-M 64-m 64-a 1 1.07 25 1 1.31 1 1.17 10 1 1.67 1 1.5 11 1 1.86 1 1.01 6 1 1.02	32-m 32-a 32-M 64-m 64-a 64-M 1 1.07 25 1 1.31 10 1 1.17 10 1 1.67 89 1 1.5 11 1 1.86 11 1 1.01 6 1 1.02 5 1 1.02 10 1 1.26 3	32-m 32-a 32-M 64-m 64-a 64-M 128-m 1 1 1.07 25 1 1.31 10 1 1 1.17 10 1 1.67 89 2 1 1.5 11 1 1.86 11 2 1 1.01 6 1 1.02 5 1 1 1.02 10 1 1.26 3 1	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 1 1 1.07 25 1 1.31 10 1 1.86 1 1.17 10 1 1.67 89 2 2.12 1 1.5 11 1 1.86 11 2 2.66 1 1.01 6 1 1.02 5 1 1.45 1 1.02 10 1 1.26 3 1 1.85	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-m 128-M 1 1.07 25 1 1.31 10 1 1.86 34 1 1.17 10 1 1.67 89 2 2.12 23 1 1.5 11 1 1.86 11 2 2.66 27 1 1.01 6 1 1.02 5 1 1.45 14 1 1.02 10 1 1.26 3 1 1.85 11	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 1 1.07 25 1 1.31 10 1 1.86 34 2 1 1.17 10 1 1.67 89 2 2.12 23 2 1 1 1.15 11 1 1.86 11 2 2.66 27 4 1 1.01 6 1 1.02 5 1 1.45 14 2 1 1.01 10 1 1.26 3 1 1.85 11 2 2.66 27 4 1 1.01 6 1 1.02 5 1 1.45 14 2	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 256-a 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 1 1.5 11 1 1.86 11 2 2.66 27 4 4.21 1 1.01 6 1 1.02 5 1 1.45 14 2 2.3 1 1 1.01 10 1 1.26 3 1 1.85 11 1.85 11 2 2.67 2 2.81	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-h 256-m 256-n 256-M 1 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 13 11 1.18 11 1.19 1 1.18 11 1.19 1 1.18 11 1.19 1 1.18 11 1.19 1 1.19 5 1.74 26	32-m 32-m 32-M 64-m 64-m 128-m 128-m 128-M 256-m 256-m 512-m 1 1.07 25 1 1.31 10 1 1.86 2 2.12 23 2.81 27 4 1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 1 1 1.15 11 1 1.86 11 2 2.66 27 4 4.21 26 7 1 1.10 6 1 1.02 5 1 1.45 14 2 2.3 8 3 3 1 1.10 10 1 1.26 3 1 1.85 11 1.85 11 2.8 3 3 1 1.10 10 1 1.10 6 3 1 1.10 6 3 1 1.10 1 1.10 6 3 1	32-m 32-m 32-M 64-m 64-m 128-m 128-m 128-M 256-m 256-M 512-m 512-m 512-m 512-m 1107 25 1 1.31 10 1 1.86 34 2 2.31 27 4 4.67 1.1 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 5.21 1.1 1.15 11 1 1.86 11 2 2.66 27 4 4.21 26 7 7.29 1.1 1.10 6 1 1.02 5 1 1.45 14 2 2.3 8 3 4.05 1.1 1.10 10 1 1.26 3 1 1.85 11 2 2.74 26 4 4.7	32-m 32-a 32-M 64-m 64-a 64-M 128-m 128-a 128-M 256-m 256-M 512-m	16-a		1.04	1.16		1.04	1.0		1.04		1.12	1.12	1.12	1.12	1.12	1.12
		32-a 1.07 1.17 1.15 1.01 1.01	32-a 32-M 1.07 25 1.17 10 1.5 11 1.01 6 1.02 10	32-a 32-M 64-m 1.07 25 1 1.17 10 1 1.5 11 1 1.01 6 1 1.02 10 1	32-a 32-M 64-m 64-a 1.07 25 1 1.31 1.17 10 1 1.67 1.5 11 1 1.86 1.01 6 1 1.02 1.02 10 1 1.26	32-a 32-M 64-m 64-m 64-m 1.07 25 1 1.31 10 1.17 10 1 1.67 89 1.5 11 1 1.86 11 1.01 6 1 1.02 5 1.02 10 1 1.26 3	32-a 32-M 64-m 64-m 128-m 1.07 25 1 1.31 10 1 1.17 10 1 1.67 89 2 1.5 11 1 1.86 11 2 1.01 6 1 1.02 5 1 1.02 1 1.26 3 1	32-a 32-M 64-m 64-M 128-m 128-m 128-a 1 1.07 25 1 1.31 10 1 1.86 1 1.86 1 1.86 1 2 2.12 1 1.16 1 1.86 11 2 2.66 1 1.45 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1.85 1 1 1.85 1 1	32-a 32-M 64-m 64-M 128-m 128-m 128-m 1.07 25 1 1.31 10 1 1.86 34 1.17 10 1 1.67 89 2 2.12 23 1.5 11 1 1.86 11 2 2.66 27 1.01 6 1 1.02 5 1 1.45 14 1.02 10 1 1.26 3 1 1.85 11	32-a 32-M 64-m 64-m 64-M 128-m 128-M 256-m 1.07 25 1 1.31 10 1 1.86 34 2 1.17 10 1 1.67 89 2 2.12 23 2 1.5 11 1 1.86 11 2 2.66 27 4 1.01 6 1 1.02 5 1 1.45 14 2 1.02 1 1.26 3 1 1.85 11 2	32-a 32-M 64-m 64-m 64-M 128-m 128-m 256-m 256-m 256-m 1.07 25 1 1.31 10 1 1.86 34 2 2.81 1.17 10 1 1.67 89 2 2.12 23 2 3.11 1.5 11 1 1.86 11 2 2.66 27 4 4.21 1.01 6 1 1.02 5 1 1.45 14 2 2.3 1.02 1 1.26 3 1 1.85 11 2 2.74	32-a 32-M 64-m 64-a 64-m 128-m 128-m 256-m 257-m 27 271 27 271 27 271 27	32-a 32-M 64-m 128-m 128-m 128-M 266-m 266-m 266-M 512-m 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 4 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 1.5 11 1.67 89 2 2.12 23 2 3.11 13 4 1.5 11 1.86 11 2 2.66 27 4 4.21 26 7 1.01 6 1 1.02 5 1 1.45 14 2 2.3 8 3 1.02 1 1.26 3 1 1.85 11 2 2.74 26 4	32-a 32-M 64-m 64-m 128-m 128-m 128-M 256-m 256-m 256-M 512-m 512-m 512-m 1.07 25 1 1.31 10 1 1.86 34 2 2.81 27 4 4.67 1.17 10 1 1.67 89 2 2.12 23 2 3.11 13 4 5.21 1.5 11 1.67 89 2 2.12 23 2 3.11 13 4 5.21 1.15 11 1.86 11 2 2.66 27 4 4.21 26 7 7.29 1.01 6 1 1.02 5 1 1.45 14 2 2 3 4.05 1.02 10 1 1.26 3 1 1.85 11 2 2.74 26 4 4 4	32-a 32-M 64-m 64-a 64-M 128-m 128-m 256-m 256-m 256-M 512-m 512-			32	23		10	-		10		2	2	6 5	2 6 6	0 0 0	2 9 9 22
32-M 64-m 64-a 64-M 128-m 128-M 256-m 256-M 512-m 512-m 512-M 1024-m 25 1 1.31 10 1 1.86 34 2 2.81 27 4 4.67 38 8 10 1 1.67 80 2 2.12 23 2 3.11 13 4 5.21 30 9 11 1 1.86 11 2 2.66 27 4 4.21 26 7 7.29 29 13 6 1 1.02 5 1 1.45 14 2 2.3 8 3 4.65 9 7 10 1 1.26 3 1 1.85 11 2 2.74 26 4 4.7 33 8	64-m 64-e 64-m 128-m 128-m 256-m 256-m 512-m 512-m 512-m 512-m 104-m 1 1 1.31 1.01 1 1.86 34 2 2.81 2 4 467 38 8 1 1.67 89 2 2.12 23 2 3.11 13 4 5.21 30 9 1 1.67 89 2 2.12 23 2 3.11 13 4 5.21 30 9 1 1.86 11 2 2.66 27 4 4.71 26 7 7.29 29 13 1 1 1.02 5 1 1.46 2 2.3 8 3 4.05 9 7 1 1.26 3 1 1.85 11 2 2.74 26 4 4.7 33 8	64-a 64-M 128-m 128-M 256-m 256-m 512-m 512-M 512-M 1024-m 1.31 10 1 1.86 34 2 2.81 27 4 4.67 38 8 1.67 89 2 2.12 2.3 2.311 13 4 5.21 30 9 1.86 11 2 2.66 27 4 4.21 26 7 7.29 29 13 1.02 5 1 1.45 14 2 2.3 8 3 4.05 9 7 1.26 3 1 1.45 14 2 2.3 8 3 4.05 9 7 1.26 3 1 1.85 11 2 2.74 26 4 4.7 33 8	64-M 128-m 128-M 256-m 256-M 512-m 512-M 512-M 1024-m 10 1 1.86 34 2 2.81 27 4 4.67 38 8 89 2 2.12 23 2 3.11 13 4 5.21 30 9 11 2 2.66 27 4 4.21 26 7 7.29 29 13 5 1 1.45 14 2 2.3 8 3 4.05 9 7 3 1 1.85 11 2 2.74 26 4 4.7 33 8	128-m 128-a 128-M 256-m 256-a 256-M 512-m 512-m 512-m 1024-m 128-m 128-m 2 2.81 27 4 4.67 38 8 2 2.12 2.3 2 3.11 13 4 5.21 30 9 2 2.66 27 4 4.21 26 7 7.29 29 13 14 1.45 14 2 2.3 8 3 4.05 9 7 1 1.85 11 2 2.74 26 4 4.7 33 8 8	128-a 128-M 256-m 256-M 512-m 512-m 512-M 1024-m 1.86 34 2 2.81 27 4 4.67 38 8 2.12 2.3 2 3.11 13 4 5.21 30 9 2.06 27 4 4.21 20 7 7.29 29 13 1.45 14 2 2.3 8 3 4.05 9 7 1.85 11 2 2.74 26 4 4.7 33 8	256-m 256-m 256-m 512-m 512-m 512-m 512-m 1024-m 2 2.81 27 4 4.67 38 8 2 3.11 13 4 5.21 30 9 4 4.21 26 7 7.29 29 13 2 2.3 8 3 4.05 9 7 2 2.74 26 4 4.7 33 8	286-a 286-M 512-m 512-m 512-M 1024-m 281 7 4 4.67 38 8 3.11 13 4 5.21 30 9 4.21 26 7 7.29 29 13 2.3 8 3 4.05 9 7 2.3 8 3 4.05 9 7 2.74 26 4 4.7 33 8	256-M 512-m 512-m 512-M 1024-m 27 4 4.67 38 8 13 4 5.21 30 9 26 7 7.29 29 13 8 3 4.05 9 7 26 4 4.7 33 8	512-m 512-a 512-M 1024-m 4 4.67 38 8 4 5.21 30 9 7 77.29 29 13 3 4.05 9 7 4 4.7 33 8	512-a 512-M 1024-m 467 38 8 5.21 30 9 7.29 29 13 4.05 9 7 4.7 33 8	512-M 1024-m 38 8 30 9 29 13 9 7	1024-m 8 9 13 7 8		8.63 9.45 13.73 7.56 8.74		1024-M		48	31		22	25		87		137	137	137	137	137	137
32-M 64-m 64-a 64-M 128-m 128-m 256-m 256-M 512-m 512-m 512-m 1024-m 1024-m <t< td=""><td>64-m 64-e 64-m 128-m 128-m 256-m 256-m 512-m 512-m 512-m 1024-m 1024-m</td><td>64-a 64-M 128-m 128-m 256-m 256-m 512-m 512-m 512-m 1024-m 1024-m 1024-m 1.31 10 1 1.86 34 2 2.81 27 4 467 38 8 8.63 1.67 89 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 1.86 11 2 2.66 27 4 4.21 26 7 7.29 29 13 13.73 1.02 5 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1.26 3 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74</td><td>64-M 128-m 128-m 256-m 256-M 512-m 512-m 512-M 1024-m 1024-m 1024-m 10 1 1.86 34 2 2.81 27 4 467 38 8 6/3 89 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 11 2 2.06 27 4 4.21 26 7 7.29 29 13 13.73 5 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 3 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74</td><td>I 128-m 128-m 128-m 128-m 128-m 128-m 128-m 1024-m 1024-m 1024-m 1024-m 1 1.86 34 2 2.81 27 4 467 38 8 8.63 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 2 2.66 27 4 4.21 26 7 7.29 20 13 13.73 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74</td><td>128-a 128-M 256-m 256-M 512-m 512-m 512-M 1024-m 1024-m 1.86 34 2 2.81 27 4 467 38 8 6.63 2.12 2.3 2 3.11 13 4 5.21 30 9 9.45 2.06 27 4 4.21 26 7 7.29 29 13 13.73 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1.85 11 2 2.74 26 4 4.7 33 8 8.74</td><td>256-m 256-M 516-M 512-m 512-M 1024-m 1024-m 1024-m 2 2.81 27 4 467 38 8 863 2 3.11 13 4 5.21 30 9 9.45 4 4.21 26 7 7.29 29 13 13.73 2 2.3 8 3 4.05 9 7 7.56 2 2.74 26 4 4.7 33 8 8.74</td><td>286-a 516-m 512-m 512-m 1024-m 1024-m 1024-m 281 27 4.67 38 8.63 3.11 13 4 5.21 30 9 9.45 4.21 28 7 7.29 29 13 13.73 2.3 8 3 4.05 9 7 7.56 2.74 26 4 4.7 33 8 8.74</td><td>256-M 512-m 512-m 512-M 1024-m 1024-m 27 4 4.67 38 8 8.63 13 4 5.21 30 9 9.45 26 7 7.29 29 13 13.73 8 3 4.05 9 7 7.56 26 4 4.7 33 8 8.74</td><td>512-m 512-m 512-m 1024-m 1024-a 4 4.67 38 8.63 4 5.21 30 9 9.45 7 7.29 29 13 13.73 3 4.05 9 7 7.56 4 4.7 33 8 8.74</td><td>512-a 512-M 1024-m 1024-a 467 38 8.63 5.21 30 9 9.45 7.29 29 13 13.73 4.05 9 7 7.56 4.7 33 8 8.74</td><td>512-M 1024-m 1024-a 38 8 8.63 30 9 9.45 29 13 13.73 9 7 7.56 33 8 8.74</td><td>1024-m 1024-a 8 8.63 9 9.45 13 13.73 7 7.56 8 8.74</td><td>8.63 8.63 9.45 13.73 7.56 8.74</td><td></td><td>1024-M 48 31 77 25 87</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>	64-m 64-e 64-m 128-m 128-m 256-m 256-m 512-m 512-m 512-m 1024-m 1024-m	64-a 64-M 128-m 128-m 256-m 256-m 512-m 512-m 512-m 1024-m 1024-m 1024-m 1.31 10 1 1.86 34 2 2.81 27 4 467 38 8 8.63 1.67 89 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 1.86 11 2 2.66 27 4 4.21 26 7 7.29 29 13 13.73 1.02 5 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1.26 3 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74	64-M 128-m 128-m 256-m 256-M 512-m 512-m 512-M 1024-m 1024-m 1024-m 10 1 1.86 34 2 2.81 27 4 467 38 8 6/3 89 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 11 2 2.06 27 4 4.21 26 7 7.29 29 13 13.73 5 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 3 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74	I 128-m 128-m 128-m 128-m 128-m 128-m 128-m 1024-m 1024-m 1024-m 1024-m 1 1.86 34 2 2.81 27 4 467 38 8 8.63 2 2.12 23 2 3.11 13 4 5.21 30 9 9.45 2 2.66 27 4 4.21 26 7 7.29 20 13 13.73 1 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1 1.85 11 2 2.74 26 4 4.7 33 8 8.74	128-a 128-M 256-m 256-M 512-m 512-m 512-M 1024-m 1024-m 1.86 34 2 2.81 27 4 467 38 8 6.63 2.12 2.3 2 3.11 13 4 5.21 30 9 9.45 2.06 27 4 4.21 26 7 7.29 29 13 13.73 1.45 14 2 2.3 8 3 4.05 9 7 7.56 1.85 11 2 2.74 26 4 4.7 33 8 8.74	256-m 256-M 516-M 512-m 512-M 1024-m 1024-m 1024-m 2 2.81 27 4 467 38 8 863 2 3.11 13 4 5.21 30 9 9.45 4 4.21 26 7 7.29 29 13 13.73 2 2.3 8 3 4.05 9 7 7.56 2 2.74 26 4 4.7 33 8 8.74	286-a 516-m 512-m 512-m 1024-m 1024-m 1024-m 281 27 4.67 38 8.63 3.11 13 4 5.21 30 9 9.45 4.21 28 7 7.29 29 13 13.73 2.3 8 3 4.05 9 7 7.56 2.74 26 4 4.7 33 8 8.74	256-M 512-m 512-m 512-M 1024-m 1024-m 27 4 4.67 38 8 8.63 13 4 5.21 30 9 9.45 26 7 7.29 29 13 13.73 8 3 4.05 9 7 7.56 26 4 4.7 33 8 8.74	512-m 512-m 512-m 1024-m 1024-a 4 4.67 38 8.63 4 5.21 30 9 9.45 7 7.29 29 13 13.73 3 4.05 9 7 7.56 4 4.7 33 8 8.74	512-a 512-M 1024-m 1024-a 467 38 8.63 5.21 30 9 9.45 7.29 29 13 13.73 4.05 9 7 7.56 4.7 33 8 8.74	512-M 1024-m 1024-a 38 8 8.63 30 9 9.45 29 13 13.73 9 7 7.56 33 8 8.74	1024-m 1024-a 8 8.63 9 9.45 13 13.73 7 7.56 8 8.74	8.63 8.63 9.45 13.73 7.56 8.74		1024-M 48 31 77 25 87	_	_	_	_	_	_	_	_	_	_		_				

Tabella 32: Prestazioni famiglia auth nella fase di verifica del codice.

	asconmacav12	opt64	ref	asconmacv12	opt64	ref	asconprfav12	opt64	ref	asconprfsv12	opt64	ref	asconprfv12	opt64	
m-0		1	-1						2					-	,
0-m 0-a 0-M		1.74	2.15	H	8.1	1.08		1.78	2.17		1.44	1.07		1.77	00
		12	24		10	14		13	53		222	10		11	0
8-m 8-a		1	2	Г	-	-		-	2		-	-		-	,
		1.83	2.19		1.92	1.11		1.74	2.19		1.15	1.09		1.86	0,
8-W		25	35		24	9		12	59		11	2		32	
16-m		1	2		-1	-			2					-	,
16-a		1.86	2.19	Г	1.92	1.12		1.92	2.27		1.18	1.32		1.87	
16-M		24	34		12	9		38	53		11	111		11	k
32-m		1	2		2			1	2					2	,
32-a		1.87	2.28		2.76	1.5		1.86	2.23					2.7	ì.
32-M		24	24		43	12		11	11					7.1	1
64-m		2	2		3	-		2	2					3	,
64-a		2.43	2.87		3.6	1.99		2.44	2.97					4.71	20.0
64-M		12	12		42	21		14	42					1352	
128-m		3	3		4	2		3	4					4	
128-a		3.6	4.13		5.11	2.85		3.62	4.26					4.95	000
128-M		14	53		16	15		14	35					27	9
256-m		2	2		-1	4		23	9					-1	
256-a		5.53	6.11		8.26	4.63		5.58	6.24					8.12	1 1
256-M		28	17		35	51		25	36					22	
512-m		6	6		14	-		6	6					13	1
512-a		9.24	10.25		14.44	8.08		9.34	10.13					14.46	
512-M		19	64		33	18		87	30					62	,
1024-m		91	18		56	14		91	18					56	,
1024-a		17.16	18.65		26.99	15.07		17.5	18.83					27.09	000
1024-M		28	53		99	32		208	73					100	***

4.3 Analisi dei risultati

In ultima istanza, i risultati ottenuti sono stati analizzati con dei notebook Jupyter per ricercare le implementazioni migliori e peggiori per ogni algoritmo presente nella suite ASCON. L'algoritmo ascon80pq, facente parte della famiglia AEAD, non è stato preso in esame poiché non presente nella gara del NIST, essendo un algoritmo post-quantum.

I grafici seguenti contengono sull'asse delle x i nomi delle implementazioni testate e sull'asse delle y i corrispondenti tempi di esecuzione in tre "barre", che rappresentano, rispettivamente, le rilevazioni minima, media e massima.

In questo capitolo verranno usati i termini "algoritmi classici" per indicare gli algoritmi "base" che sono stati presentati da ASCON e "algoritmi bi32" per indicare gli algoritmi classici compilati con delle ottimizzazioni per le architetture a 32 bit.

4.3.1 Adafruit ItsyBitsy M0 Express

Crypto AEAD

Algoritmi bi32 In termini di tempi di esecuzione, l'implementazione bi32 armv6m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni bi32 e ref; invece le implementazioni bi32 lowreg e bi32 lowsize hanno avuto esito opposto, occupando a rotazione le prime due posizioni in tutte le grandezze di plaintext.

Considerando invece la dimensione dell'eseguibile, l'implementazione bi32 lowsize è la migliore in tutte le grandezze di plaintext, subito seguita dalla bi32 armv6m, confermando quindi la sua ottima posizione ottenuta nei tempi di esecuzione. L'implementazione peggiore è la ref, la quale si era classificata bene nella classifica precedente.

Figura 1: Plaintext di 0 byte con ascon128abi32.

Algoritmi no bi32 In termini di tempi di esecuzione, l'implementazione armv6m si classifica prima in tutte le grandezze di plaintext, seguita da armv6m lowsize e bi32 armv6m, mentre le implementazioni bi32 lowreg e opt32 lowsize sono le peggiori.

Per quanto riguarda la dimensione dell'eseguibile, le implementazioni con lowsize nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite poco dopo dalla armv6m, confermando quindi la sua ottima posizione ottenuta nei tempi di esecuzione. Le implementazioni peggiori invece sono state la opt32 e la ref, con un'occupazione dello spazio circa il quadruplo dell'implementazione migliore.

Figura 2: Plaintext di 0 byte con ascon128a.

Crypto hash

Algoritmi bi32 In termini di tempi di esecuzione, l'implementazione bi32 armv6m è risultata la migliore in tutte le grandezze di plaintext, seguita a pari merito dalle altre implementazioni. Per plaintext fino a 64 byte, l'implementazione ref è stata la peggiore, mentre è diventata la seconda più veloce con plaintext più grandi, lasciando il primo posto come peggiore all'implementazione bi32 lowsize.

Per la dimensione dell'eseguibile, l'implementazione bi32 lowsize è risultata la migliore in tutte le grandezze di plaintext, seguita poco dopo dalla bi32 armv6m, confermando quindi la sua ottima posizione ottenuta nei tempi di esecuzione. L'implementazione peggiore invece è la ref, con una dimensione doppia rispetto a quella migliore.

Figura 3: Plaintext di 0 byte con asconhashabi32.

Algoritmi no bi32 In termini di tempi di esecuzione, l'implementazione armv6m è risultata la migliore in tutte le grandezze di plaintext, anche se le implementazioni armv6m lowsize e bi32 armv6m hanno tempi molto simili; le implementazioni opt32 lowsize e ref sono risultate le peggiori.

Come prima, nella la dimensione dell'eseguibile le implementazioni con lowsize nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite poco dopo dalla armv6m. L'implementazione peggiore invece è la ref, che si riconferma la peggiore implementazione: in questo caso ha occupato quasi il triplo dello spazio della migliore implementazione.

Figura 4: Plaintext di 0 byte con asconhasha.

Algoritmi XOF In termini di tempi di esecuzione, l'implementazione armv6m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni armv6m lowsize e bi32 armv6m, mentre le implementazioni opt32 lowsize e ref sono risultate le peggiori.

Osservando la dimensione dell'eseguibile, le implementazioni con lowsize nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite poco dopo dalla armv6m. L'implementazione peggiore invece è la ref, occupando quasi il triplo dello spazio che occupa l'implementazione migliore e confermando, come negli algoritmi no bi32, la sua posizione generale pessima.

Figura 5: Plaintext di 0 byte con asconxofa.

Crypto auth

Algoritmi MAC In termini di tempi di esecuzione, l'implementazione armv6m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni bi32 armv6m e opt32, anche se quest'ultima è più lenta di circa il 21/27% rispetto alla prima classificata se consideriamo l'algoritmo asconmaca; le implementazioni bi32, bi32 lowreg e ref si contendono invece i primi posti come peggiori.

Considerando la dimensione dell'eseguibile, l'implementazione armv6m è ancora la migliore, confermandosi come migliore implementazione in ogni aspetto, seguita dalle implementazioni bi32 armv6m e bi32 lowreg. Le implementazioni peggiori invece sono la opt32 e la ref, con una dimensione doppia rispetto a quella migliore.

Figura 6: Plaintext di 0 byte con asconmaca.

Algoritmi PRF In termini di tempi di esecuzione, l'implementazione armv6m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni bi32 armv6m e opt32 hanno tempi molto simili, mentre le implementazioni bi32, bi32 lowreg e ref sono risultate le peggiori.

Osservando invece la dimensione dell'eseguibile, l'implementazione armv6m è ancora la migliore, confermandosi come migliore implementazione in ogni aspetto, seguita dalle implementazioni bi32 armv6m e bi32 lowreg. Le implementazioni peggiori invece sono la opt32 e la ref, con una dimensione doppia rispetto a quella migliore.

Figura 7: Plaintext di 0 byte con asconprfa.

Recap finale

Dalle analisi precedenti, possiamo quindi affermare che le implementazioni armv6m e bi32 armv6m sono risultate le migliori in ogni algoritmo considerato, mentre alcune implementazioni che avevano dei flag di ottimizzazione specifici, come ad esempio le implementazioni bi32, si sono comportate peggio di quelle prive di flag.

4.3.2 Arduino Due

Crypto AEAD

Algoritmi bi32 In termini di tempi di esecuzione, l'implementazione bi32 armv7m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni bi32 generiche, mentre l'implementazione ref è risultata la peggiore: infatti, risulta quasi tre volte più lenta della seconda peggiore e poco meno di dieci volte più lenta di quella migliore.

Nello studio della dimensione dell'eseguibile l'implementazione bi32 lowsize è risultata la migliore in tutte le grandezze di plaintext, seguita dalla ref, che si riprende dopo la pessima posizione ottenuta nei tempi di esecuzione. L'implementazione peggiore invece è la bi32 armv7m, che invece era la migliore nei tempi di esecuzione.

Figura 8: Plaintext di 0 byte con ascon128abi32.

Algoritmi no bi32 In termini di tempi di esecuzione, l'implementazione armv7m small è risultata la migliore in tutte le grandezze di plaintext, seguita dalle implementazioni bi32 armv7m, armv7m lowsize e armv7m, mentre l'implementazione ref è risultata la peggiore di quasi quattro volte rispetto alla migliore.

Per quanto riguarda la dimensione dell'eseguibile, le implementazioni con lowsize e small nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite dalla ref, che si riprende dopo la pessima posizione ottenuta nei tempi di esecuzione, e dalla armv7m small, che si dimostra quindi un'ottima soluzione anche per lo spazio occupato. L'implementazione peggiore invece è la ref, occupando quasi il quadruplo dello spazio che occupa l'implementazione migliore.

Figura 9: Plaintext di 0 byte con ascon128a.

Crypto hash

Algoritmi bi32 In termini di tempi di esecuzione, l'implementazione bi32 armv7m è risultata la migliore in tutte le grandezze di plaintext, seguita dalle altre implementazioni bi32. L'implementazione ref è invece la peggiore, che è oltre tre volte più lenta della seconda peggiore e dieci volte più lenta di quella migliore.

Per la dimensione dell'eseguibile, l'implementazione bi32 lowsize è risultata la migliore in tutte le grandezze di plaintext, seguita dalla ref, che si riprende dopo la pessima posizione nei tempi di esecuzione. Le implementazioni peggiori sono invece la bi32 armv7m, che tuttavia compensa con il migliore tempo di esecuzione, e la bi32.

Figura 10: Plaintext di 0 byte con asconhashabi32.

Algoritmi no bi32 In termini di tempi di esecuzione, le implementazioni bi32 armv7m, armv7m small e armv7m lowsize sono risultate le migliori, con la bi32 armv7m che diventa la migliore se la grandezza dei plaintext aumenta, mentre le implementazioni della famiglia opt32 e ref sono risultate le peggiori, anche se quest'ultima è più lenta del 23/27% rispetto alle altre.

Oltre alla classica lowsize, nella dimensione dell'eseguibile le implementazioni con lowreg e small nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite poco dopo dalla bi32 armv7m, confermando quindi la sua ottima posizione ottenuta nei tempi di esecuzione, e dalla ref, che recupera parzialmente la pessima posizione nei tempi di esecuzione. L'implementazione peggiore invece è la opt32, la quale occupa quasi il triplo dello spazio dell'implementazione migliore.

Figura 11: Plaintext di 0 byte con asconhasha.

Algoritmi XOF In termini di tempi di esecuzione, le implementazioni bi32 armv7m, armv7m small e armv7m lowsize sono risultate le migliori, con la bi32 armv7m che diventa la migliore se la grandezza dei plaintext aumenta, mentre le implementazioni della famiglia opt32 e ref sono risultate le peggiori, anche se quest'ultima è molto più lenta del 24/27% rispetto alle altre.

Come prima, per la dimensione dell'eseguibile le implementazioni con lowsize, lowreg e small nel nome sono risultate le migliori in tutte le grandezze di plaintext, seguite poco dopo dalla bi32 armv7m, confermando quindi la sua ottima posizione ottenuta nei tempi di esecuzione, e dalla ref, che recupera parzialmente la pessima posizione nei tempi di esecuzione. L'implementazione peggiore invece è la opt32, il triplo più pesante dell'implementazione migliore.

Figura 12: Plaintext di 0 byte con asconxofa.

Crypto auth

Algoritmi MAC In termini di tempi di esecuzione, le implementazioni bi32 armv7m, armv7m small e armv7m si contendono le prime tre posizioni al variare delle grandezze di plaintext, mentre l'implementazione ref è la peggiore.

Considerando la dimensione dell'eseguibile, le implementazioni armv7m small, ref e bi32 lowreg sono le migliori, ma solo la prima può vantare anche ottimi tempi di esecuzione. L'implementazione peggiore invece è la opt32, con una dimensione doppia rispetto a quella migliore.

Figura 13: Plaintext di 0 byte con asconmaca.

Algoritmi PRF In termini di tempi di esecuzione, le implementazioni armv7m small e bi32 armv7m sono risultate le migliori in tutte le grandezze di plaintext, con la prima che è più performante su plaintext di grandezza maggiore, mentre l'implementazione ref è risultata la peggiore.

Per la dimensione dell'eseguibile, le implementazioni armv7m small, ref e bi32 lowreg sono le migliori, ma solo la prima può anche ottimi tempi di esecuzione. L'implementazione peggiore invece è la opt32, con una dimensione quasi tripla rispetto a quella migliore.

Figura 14: Plaintext di 0 byte con asconprfa.

Recap finale

Dalle analisi precedenti, possiamo affermare che le implementazioni bi32 armv7m e armv7m small sono risultate le migliori in ogni algoritmo considerato, mentre l'implementazione ref si è spesso trovata tra le peggiori implementazioni.

4.3.3 Raspberry Pi 3 Model B

Come specificato all'inizio di questo capitolo, i dati per questa board sono influenzati dalla velocità di esecuzione sotto il microsecondo e dalla presenza dello scheduler del sistema operativo. Inoltre, non saranno presenti gli algoritmi bi32 perché la board possiede un'architettura 64 bit, che non rientra nelle ottimizzazioni fornite da ASCON.

Crypto AEAD

Algoritmi classici In termini di tempi di esecuzione, nessuna implementazione riesce a dominare definitivamente le altre, mentre per la dimensione dell'eseguibile l'implementazione opt64 lowsize è risultata la migliore, seguita dalla ref e dalla opt64, che hanno praticamente la stessa grandezza.

Figura 15: Plaintext di 0 byte con ascon128a.

Crypto hash

Algoritmi hash Nei tempi di esecuzione, per grandezze di plaintext ridotte nessuna implementazione domina le altre, mentre le restanti grandezze opt64 diventa la migliore e opt64 lowsize la peggiore.

Considerando invece la dimensione dell'eseguibile, l'implementazione opt64 lowsize è risultata la migliore, seguita dalla ref e dalla opt64, anche se i due valori differiscono di un numero di byte compreso tra 40 e 88.

Figura 16: Plaintext di 0 byte con asconhasha.

Algoritmi XOF Come per gli algoritmi hash, nei tempi di esecuzione per grandezze di plaintext ridotte nessuna implementazione riesce a dominare le altre, mentre per grandezze maggiori opt64 diventa la migliore e opt64 lowsize diventa la peggiore.

Per la dimensione dell'eseguibile, l'implementazione opt64 lowsize è risultata la migliore, seguita dalla ref e dalla opt64, anche se, come prima, i due valori differiscono di un numero di byte compreso tra 40 e 88.

Figura 17: Plaintext di 0 byte con asconxofa.

Crypto auth

Algoritmi MAC Per grandezze di plaintext ridotte i tempi di esecuzione di ogni implementazione non riescono a dominare gli altri, mentre per grandezze maggiori opt64 domina le altre e la ref diventa la peggiore.

Nello studio della dimensione dell'eseguibile, l'implementazione ref è risultata la migliore, seguita dalla opt64, che si classifica ultima, anche se i due valori differiscono di un numero di byte compreso tra 24 e 48, quindi le possiamo considerare praticamente allo stesso livello.

Figura 18: Plaintext di 0 byte con asconmaca.

Algoritmi PRF In ogni grandezza di plaintext nessuna implementazione riesce a dominare le altre con il proprio tempo di esecuzione.

Considerando invece la dimensione dell'eseguibile, l'implementazione ref è risultata la migliore, seguita dalla opt64, che si classifica ultima, anche se i due valori differiscono di un numero di byte compreso tra 24 e 48, quindi sono da considerarsi allo stesso livello.

Figura 19: Plaintext di 0 byte con asconprfa.

Recap finale

A differenza delle board precedenti, il pool di implementazioni disponibili è molto ridotto, formato infatti dalle sole implementazioni opt64, opt64 lowsize e ref.

Dalle analisi precedenti, l'implementazione opt64 è la migliore per quanto riguarda i tempi di esecuzione, soprattutto su plaintext di grandezza maggiore. Se l'ottimizzazione va invece verso lo spazio utilizzato, permettendo alcune perdite in termini di tempo di esecuzione, soprattutto sui plaintext di grandezza maggiore l'implementazione opt64 lowsize è la scelta migliore. L'implementazione ref è "nel mezzo" e non ha senso considerarla, perché:

- Se l'ottimizzazione va verso i tempi di esecuzione, ref è più lenta della opt64 ma con lo stesso spazio utilizzato;
- Se l'ottimizzazione va verso lo spazio utilizzato, ref è più pesante della opt64 lowsize ma con dei tempi di esecuzione molto simili.

Capitolo 5

Conclusioni

5.1 Risultati ottenuti

Osservando i risultati presentati nel Capitolo 4, la board RaspberryPi è risultata la migliore. Ciò era abbastanza prevedibile dal momento che la potenza del processore della board influisce in maniera consistente sui tempi di esecuzione ottenuti. RaspberryPi, infatti, ha una frequenza di clock 25 volte superiore alla board Adafruit e 12.5 volte superiore a quella di Arduino e questo si ripercuote sui risultati osservati sperimentalmente.

Tra le due board prive di sistema operativo, la migliore è stata quella di Arduino. In questo caso, anche se il processore installato ha una frequenza di clock doppia rispetto a quello di Adafruit, questo "fattore due" non si riflette appieno sui tempi di esecuzione. Infatti, la board Adafruit è 1.5 volte più lenta rispetto alla board Arduino.

I risultati ottenuti mostrano come la famiglia ASCON sia molto veloce e occupi una quantità di spazio ridotta su tutte le board testate. Queste due caratteristiche le hanno consentito di vincere sulla concorrenza e candidarsi come la miglior famiglia di cifrari presente al processo di standardizzazione del NIST.

5.2 Sviluppi futuri

I principali sviluppi futuri si muoveranno in quattro direzioni:

I. Raccolta dati — La fase di testing di tutti gli algoritmi presentati comprenderà l'analisi dei cicli della CPU tramite alcuni file di test forniti da ASCON nel loro repository Github[2];

- II. **Board** La fase di testing riguarderà altri dispositivi IoT. Infatti, il testing non è avvenuto su alcune architetture tra le quali:
 - ARMv6 e ARM neon per quanto riguarda le architetture ARM;
 - ESP32 a 32 bit;
 - AVX512 a 320 bit;
 - AVR a 8 bit;
 - RV32I a 32 bit;
 - RV32B a 32 bit.
- III. **Grandezze di plaintext** La fase di testing verrà estesa a grandezze di plaintext maggiori, come file che codificano immagini o video;
- IV. **Testing automatico** La fase di testing verrà resa automatica, realizzando degli script che vadano a testare in sequenza i vari algoritmi usando, ad esempio, l'Arduino IDE dal terminale e non tramite la GUI.

Ringraziamenti

Quelli che state leggendo sono i veri ringraziamenti della mia tesi. La prima versione che ho scritto è quella che ho consegnato di fretta entro l'8 aprile (perché mai mi so organizzare con i tempi), ma non sono quelli che avrei voluto scrivere veramente.

Scrivo queste parole in conclusione di un percorso lungo e pieno di difficoltà, ma che grazie a moltissime persone è finito nel migliore dei modi: mi sono laureato. Se mi avessero detto, a giugno 2020, che mi sarei laureato tre anni e mezzo dopo non ci avrei mai creduto. Mi ero appena ritirato da Matematica, avevo passato il TOLC per entrare ad Informatica ma non riuscivo ad immatricolarmi. La prima persona che ringrazio è la **signora della segreteria** che mi ha tenuto compagnia per 45 minuti per cercare di risolvere i miei problemi, grazie a lei sono qui e non al McDonald di Caravaggio a imbustare nuggets e imprecare verso i maranza.

Ringrazio profondamente il mio relatore, il **Prof. Andrea Visconti**, che mi ha assegnato un lavoro di tirocinio molto interessante e attuale sul quale lavorare, e che si è sempre reso disponibile per rispondere a dubbi e problemi con incontri – alcuni molto *esotici* come quello su Zoom in metro – e una serie infinita di mail. Le sue lezioni di Crittografia e Teoria dell'Informazione mi hanno trasmesso la passione per la crittografia e tutto ciò che c'è di teorico nel mondo informatico.

Non posso non ringraziare la banda di matti che ho conosciuto nel mio percorso universitario. Dopo la brutta esperienza a Matematica, dove ho fatto fatica a integrarmi con i compagni, la paura di fare la stessa fine anche qua era alta, ma così non è stato. Ci siamo conosciuti (quasi) tutti su Telegram e Discord, ma questo era quello che offriva la pandemia. E forse, tutto questo è stato un bene: conoscendomi, a fatica avrei fatto amicizia con così tanta gente entrato in un'aula con dentro 250 persone.

Iniziamo. Ringrazio **Aceti**, capo supremo del network, affiliato a ogni possibile codice amico esistente. Ringrazio **Albi**, un'amicizia nata con il volantinaggio e che

oggi va avanti a suon di "Oldani smettila di crescere per favore". Ringrazio Alessia, una delle poche ragazze conosciute in questo ambiente fallico-centrico, autrice di pazzi festini in casa e di spritz in piazza Leo. Ringrazio Armani, mio fratello, una persona fantastica e inimitabile, l'ho capito quando insieme ad Alessia ha deciso di comprarmi una mini tortina per il mio compleanno, e ci conoscevamo da poco meno di due mesi; insieme ne abbiamo passate tante, feste, esami passati e non, una vacanza pazza in Croazia, e spero di passarne ancora tante assieme. Ringrazio Asaf, abbiamo frequentato poco l'università assieme ma ci siamo sentiti costantemente per preparare esami e insultare la segreteria. Ringrazio Buso, compagno di giri in moto e grandi chiaccherate su Discord, ha un unico difetto: è bresciano. Ringrazio Caro, anche se all'inizio lo insultavo perché mi gufava il parziale di Continuo, piano piano siamo diventati amiconi, fino a diventare segretamente fidanzati (Martina scusa). Ringrazio Ceri, il mio uomo, mio fratello, mi fermo con gli epiteti perché quelli che ci scriviamo in chat rimangono in chat; amicizia iniziata per puro caso grazie all'esame di Continuo e alla festa di Silvio di qualche giorno dopo, dove mi ha tenuto compagnia in macchina da Treviglio fino a Cuggiono; non esiste un giorno dove non lo ringrazio per tutte le volte che mi ha accolto nella sua compagnia per uscire quando non avevo nessuno, per la devastante vacanza in Croazia, per tutte le feste che abbiamo passato dormendo per terra, per tutte le lezioni passate a giocare a Clash Royale, veramente grazie, ora ti aspetto su Brawl Stars. Ringrazio Edu, il mio secondo fratello, all'inizio probabilmente mi odiava perché quando ci siamo conosciuti per la prima volta in presenza mi salutava a fatica, ma poi tra Silab, aperitivi in piazza Leo, feste a casa di Silvio, gallette di Alex Theory e tanto tanto altro siamo diventati quello che siamo ora; lo ringrazio per gli insulti giornalieri che mi lancia, ma soprattutto per tutte le belle parole che ha speso per me in questi anni, veramente grazie. Ringazio Faro, compagno di Discord fino a tarda notte nel periodo della quarantena, pessimo navigatore in macchina ma sempre un piacere quando lo incontro dopo tanto tempo che non lo vedo. Ringrazio Frido, abbiamo condiviso pochi momenti in università ma sono stati preziosi e importanti, lo ringrazio soprattutto per non aver cacciato di casa me e gli altri quando sotto il suo appartamento ci siamo messi a fare un concerto. Ringrazio **Gigi**, mio fratello informatico teorico, compagno di insulti a Manto perché è un babbo e compagno di Magistrale che spero di avere al mio fianco fino alla fine. Ringrazio Mangio, quello vero, mio fratello ASSOLUTO, praticamente un google vivente; non penso di aver mai conosciuto una persona così intelligente ma pratica allo stesso tempo, vicino di banco in ogni singola lezione che abbiamo fatto in triennale, e ora anche in magistrale (GPU computing goes brrrrr); lo ringrazio per aver finito quel liquore maledetto e poi aver fatto la notte sul water, per tutte le feste che abbiamo fatto insieme e per tutti gli aiuti che mi ha dato, sei una persona fantastica. Ringrazio Mangio, quello falso, mio fratello dai monti

bergamaschi, insultato e bistrattato dal primo momento perché avevamo già un Mangio in compagnia, probabilmente la laurea l'ha comprata su AliExpress visto il risultato scarsissimo ottenuto alle domande della tua festa di laurea; lo ringrazio perché ogni volta che dicevo "dai bagai, birretta" lui non si tirava mai indietro, per quella volta che si è offerto di ospitarmi a casa sua al mio compleanno, per le partite a basket dove PALESEMENTE gli ho fatto il culo, per tutto quello che abbiamo condiviso, grazie fratello. Ringrazio Manto, fratello pipino, prima persona che ho conosciuto in università, non citerò niente di quello che ci scriviamo se non voglio finire dietro le sbarre in tempo zero, lo ringrazio perché mi ricorda sempre che esiste un simp più grande di me (ciao Elena). Ringrazio Mirko (er) Faina, mio fratello Black Russian (sfortunatamente, cit non per pochi), ormai addottato dal Poul, in università abbiamo passato tanto tempo di qualità assieme, soprattutto tutte quelle volte dove dovevo svegliarti perché ti eri addormentato a lezione. Ringrazio Mirko Seghezzi, conosciuto grazie al Ceri, tanto tempo condiviso tra vacanza pazza in Croazia, Silab, caffé pre-lezione e grandi festoni; per non essere lapidato, non dirò come ha accolto me e Mangio alla sua ultima festa di compleanno. Ringrazio Moro, conosciuto tramite il Recca e ora mio compagno di fiducia a Informatica Teorica, grazie alla sua penna magica sono riuscito a finire l'esame di Archi2 in tempo. Ringrazio il Recca, scambiato per un quarantenne la prima volta che ho visto la sua foto profilo, si è poi rivelato una persona fantastica sulla quale contare ogni volta che avevo bisogno di una mano, un tirocinio fatto (circa) insieme, lo ringrazio per tutti i bei momenti passati insieme, anche fe non fo fe fo fegliere un momento migliore. Ringrazio Sarti, fratello palestrato, compagno di grandi pranzi il primo anno tra riso-pollo-broccoli e banane spappolate, menomale su telegram esiste il 2x per gli audio. Ringrazio Silvio, fratello che abita in culo al mondo e che puntualmente faceva 12 feste all'anno, non ti ringrazio per tutta la benzina che ho usato ma ti ringrazio per tutte le serate passate su Discord a convincermi a comprare Overwatch, per i giorni passati in Silab a studiare per gli esami e per cercare ogni giorno di convincermi che il corso di Logica Matematica sia un bel corso. Ringrazio **Tella** per le grandi mangiate da fratello Luca e per gli infiniti aperitivi in piazza Leo nella infamissima spritzeria. Ringrazio Vincenzo, conosciuto durante l'ultimo semestre della mia vita (forse), con il quale ho condiviso due ottimi parziali di fisica e tanto tanto odio nei confronti della segreteria UniMi. Ringrazio Yeger, mio fratello alternativo, non contattatelo con applicazioni recenti perché è già tanto se ha gli SMS, conosciuto davanti alla "fontana" di Celoria 18 e da quel momento abbiamo condiviso ogni caffé preso la mattina prima delle lezioni, i pranzi da Luca, il treno, le feste, e la lista potrebbe andare avanti per molto molto tempo. Infine, ringrazio Yon, mio compagno dal primo giorno di tirocinio, abbiamo legato tantissimo nell'ultimo anno e sono molto contento di aver trovato una persona così solare, divertente e disponibile.

Non potevo chiedere compagni migliori, mi avete accolto dal primo momento e ora siete ancora qua, con me, per festeggiare questo traguardo.

Ringrazio **Gaetano** e **Charif**, gli unici amici che ho avuto a Matematica, grazie per tutte le ore passate in biblioteca a studiare per gli esami (passati 1 su 8) e per le pizze in Piazza Leo tra una lezione e l'altra. Ringrazio anche tutte le persone che ho conosciuto grazie ai miei compagni di università, soprattutto **Samu**, con il quale ho condiviso una vacanza pazzissima in Croazia, **Anna**, **Elena** e **Grazia**, ma in realtà, anche no.

Ringrazio i miei compagni di classe delle superiori, quelli che sono rimasti in contatto con me anche dopo la maturità, con i quali mi sono incontrato ogni tanto negli anni per rivivere "i bei vecchi tempi". Ringrazio quindi Botta, Ceres, Elena, Ferro, Gara, Mangio (il terzo, unico e inimitabile) e Vaila. Ringrazio anche Antonio, il Gargiu, che so che da lassù mi sta guardando e sta facendo il tifo per me. Sempre delle superiori voglio ringraziare il Prof. Bellavita, per avermi trasmesso la passione per l'Informatica, la Prof.ssa Bolzoni e, successivamente, la Prof.ssa Delmari, per avermi reso dipendente dalla Matematica, e il Prof. Bardelli, perché mi manda ogni anno gli auguri di Natale e Pasqua.

Ringrazio tutti i miei amici, compaesani e non, che mi conoscono da una vita e non sono ancora finiti in una clinica psichiatrica per colpa mia. Siete degli amici fantastici, ci siete sempre stati per me e spero di avervi per sempre nella mia vita. In questi anni mi siete stati vicini quando alcuni esami non andavano bene ed esultavate con me quando invece andavano bene, parte di questo traguardo è merito vostro.

Secondo round. Ringrazio Andrea e Carol, fedelissimi compagni di basket e sushi, quando esco con loro sono un po' il loro bambino visto che Andrea perde tutte le scommesse e mi paga sempre da mangiare. Ringrazio Biga, Miriam, Adele e Rek, un quartetto fantastico dove l'unico che si salva è il re del fuoco, fedelissimi compagni di grest, viaggi in treno, grigliate e spero ancora tanto altro. Ringrazio Arianna e Lisa, il duo delle capre dove la prima ha la 104 e la seconda pure, grazie per non aver mai smesso di credere in me, anche quando ero molto giù e non vedevo una soluzione ai miei problemi. Ringrazio Deep, mio fratello, conosciuto assieme alle ultime citate, ci siamo presi una bella pausa di 4 anni ma appena ci siamo rivisti era come se nulla fosse successo; prima persona a credere in me come "palestrato", ha tifato per me all'inizio e alla fine del mio percorso universitario, ora fammi uno Yellowstone con doppie patatine. Ringrazio Chiara

e RSP, coppia mancata perché a quanto pare Gesù attira di più della patata, con la prima ho legato di recente mentre con il secondo ho una relazione segreta da circa 4 anni. Ringrazio **Delia**, gymsis che ama fare lo step, non ci vediamo mai durante l'anno ma puntualmente al compleanno di Luca abbiamo il nostro discorso filosofico su come sta andando la nostra vita. Ringrazio **Davide** e Ele- na Martina, il mio migliore amico dalle elementari e la mia vicina da ormai 15 anni, un fidanzamento rocambolesco durante una festa molto movimentata, tante vacanze assieme, tante grigliate finite male, tante bellissime esperienze che spero non finiscano mai. Ringrazio Francesca, non ha la 104 ma almeno la 208, impedita con i computer e tutto ciò che esiste di tecnologico, ci conosciamo da secoli immemori e, se non fosse per la palestra, faremmo una fatica immane a vederci e riconoscerci per strada. Ringrazio **Laura** per aver tifato per me dal primo giorno che mi sono iscritto di nuovo in università, e anche se adesso siamo un po' litigati, sono sicuro che sta tifando ancora per me. Ringrazio Luca Maestri, conosciuto per puro caso una sera in un bar, da quel momento abbiamo condiviso feste, momenti in stazione a Lambrate, consigli sui corsi e tanto tanto altro. Ringrazio Manpreet, mio fratello che mi ha abbandonato dal nulla dopo la terza media ma che è uno dei pochi di quella classe che è rimasto con me, anche se ci sentiamo poche volte durante l'anno sono contentissimo della sua presenza, soprattutto a questa laurea. Ringrazio **Don Emanuele**, per tutte le volte che mi ha aiutato, supportato e "impegnato" le giornate tra muratori, contabilità e spostamento mobili. Ringrazio il Gippe, che appena ha saputo della mia iscrizione a Informatica ha subito cercato di indirizzarmi sui binari giusti e tifava per me ad ogni esame. Ringrazio tutti gli animatori del Grest, che durante la sessione estiva mi alleggerivano le giornate pesanti di studio facendomi divertire come solo loro sono capaci. Ringrazio tutti i miei gymbro della palestra di Treviglio, soprattutto Francesco, che non vede l'ora di avere una copia della mia tesi per fare una cosa che solo lui sa.

Ringrazio i **Roggiani**, i miei fratelli, Luca (*RR19*) e Mastro (*RR17*), grazie per tutto quello che fate per me ogni giorno, per non abbandonarmi in palestra ad orari improponibili, per rendermi la persona più felice del mondo e per farmi sentire a casa ogni volta che sono con voi. Ringrazio il **Tunet**, che assieme al Ciapa mi liberava la mente ogni sera per 2h durante il periodo delle zone Power Ranger e mi ha tenuto compagnia per tutto il periodo universitario tra treni cancellati o perennemente in ritardo. Ringrazio **Vittorio**, unico (*polipopi-ingegnere*) informatico che la mattina sul treno mi ascolta e non fa una faccia schifata perché non capisce quello che dico, autore del 99% delle correzioni fatte nella mia tesi, é stato importantissimo nella parte finale del mio percorso. Ringrazio **Giacomo**, il mio gymbro, il mio cioccolatino ripieno, il mio pookie, grazie per non avermi abbandonato ogni volta che volevo andare ad allenarmi ad orari proibitivi, per

aver ascoltato (e non aver capito) ogni argomento che facevo a lezione o quello che facevo durante il tirocinio, per tutti gli sgarri fatti dopo 2h chiusi in palestra con Chiara che aspettava solo di tornare a casa, per tutti i concerti che fai ogni tre secondi dove crei ogni volta una parodia diversa, per essere il giocatore più scarso di Clash Royale, grazie veramente per tutto, you are my sunshine.

Ringrazio Martina, la mia ragazza, grazie per esserci stata in questi ultimi anni, per il continuo supporto che mi dai ogni giorno, per sopportare ogni cosa stupida che faccio, per tutte le esperienze fantastiche che abbiamo fatto assieme, per aver ascoltato ogni mio audio di 25 minuti dove ripetevo allo sfinimento gli argomenti dei vari esami, per essermi stata vicina ogni volta che piangevo perché un esame non andava bene o accumulavo troppa ansia, per aver esultato ogni volta che "HO SISTEMATO IL CODICE, ORA FUNZIONA" (avevo dimenticato una virgola, non so programmare), grazie per essere semplicemente te.

Infine, ringrazio la mia famiglia. Ringrazio mamma Barbara e papà Marco per tutte le volte che mi hanno accompagnato nelle stazioni della bassa cremasca per prendere il treno, per tutte le volte che mi hanno aiutato preparandomi il pranzo o la cena quando ero in ritardo con i miei impegni, per il continuo e immancabile supporto ogni volta che si avvicinava la sessione, per tutto quello che han fatto per me in questi 23 anni, per avermi dato una seconda opportunità dopo la brutta esperienza a Matematica, grazie veramente, so che molto spesso non lo dimostro, ma sono orgogliosissimo di avere due genitori così fantastici. Ringrazio mia sorella Eva, per tutte le volte che ha messo la musica a volume 100 quando dovevo studiare, per tutti i "mi accompagni di qua?" ogni volta che avevo un impegno immediato da sbrigare, per tutti i "io esco alle 3 dalla disco, vieni a prendermi?" ogni volta che volevo dormire, ma anche per tutti i bei momenti che abbiamo passato assieme negli ultimi anni. Vi ringrazio di cuore, vivere con me non è facile visto che sono molto chiuso e sto molto sulle mie, ma sappiate che vi voglio veramente bene e sono grato di ogni momento passato assieme. Ringrazio i nonni Antonia, Antonio, Carolina e la bisnonna Carla. Ringrazio gli zii Annalisa, Tiziana, Wilma, Eleonora e Simone, Goffredo e Jessica. E per concludere, ringrazio i fantastici cugini Cristiano, Federico, Giorgia, Gianella, Elisa e Alessia.

Ringrazio tutti di cuore, grazie per esserci stati, e grazie a tutti quelli che ci saranno nei miei prossimi traguardi.

Bibliografia

- [1] Lightweight Cryptography Overview. URL: https://csrc.nist.gov/ Projects/Lightweight-Cryptography (visitato il 19/03/2024).
- [2] Repository Github di ASCON. URL: https://github.com/ascon/ascon-c (visitato il 04/03/2024).
- [3] What is the IoT? Introduction. URL: https://www.ibm.com/topics/internet-of-things (visitato il 11/03/2024).
- [4] Che cos'è l'IoT? URL: https://www.oracle.com/it/internet-of-things/what-is-iot/#industries-iot (visitato il 12/03/2024).
- [5] Sistemi embedded: cosa sono e a cosa servono. URL: https://www.internet4things.it/iot-library/sistemi-embedded-cosa-sono-e-a-cosa-servono/(visitato il 12/03/2024).
- [6] Cos'è l'HCP? URL: https://www.ibm.com/it-it/topics/hpc (visitato il 11/03/2024).
- [7] Introduction to IoT Advantages of IoT. URL: https://arxiv.org/pdf/2312.06689.pdf (visitato il 11/03/2024).
- [8] What is the IoT? Risks and challenges in IoT. URL: https://www.ibm.com/topics/internet-of-things (visitato il 11/03/2024).
- [9] Introduction to IoT Challenges and Future Directions. URL: https://arxiv.org/pdf/2312.06689.pdf (visitato il 11/03/2024).
- [10] Ascon overview. URL: https://ascon.iaik.tugraz.at/index.html (visitato il 27/02/2024).
- [11] Lightweight Cryptography Timeline. URL: https://csrc.nist.gov/projects/lightweight-cryptography/timeline (visitato il 19/03/2024).
- [12] Lightweight Cryptography Round 1. URL: https://csrc.nist.gov/Projects/lightweight-cryptography/round-1-candidates (visitato il 19/03/2024).

BIBLIOGRAFIA 71

[13] Lightweight Cryptography - Round 2. URL: https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates (visitato il 19/03/2024).

- [14] Ascon contact. URL: https://ascon.iaik.tugraz.at/contact.html (visitato il 27/02/2024).
- [15] Ascon specification. URL: https://ascon.iaik.tugraz.at/specification. html (visitato il 03/04/2024).
- [16] The Ascon Family: Lightweight Authenticated Encryption, Hashing, and More. URL: https://csrc.nist.gov/csrc/media/Presentations/2023/the-ascon-family/images-media/june-21-mendel-the-ascon-family.pdf (visitato il 04/03/2024).
- [17] Adafruit ItsyBitsy M0 Express. URL: https://www.adafruit.com/product/3727 (visitato il 28/08/2023).
- [18] List of ARM processors. URL: https://en.wikipedia.org/wiki/List_of_ARM_processors (visitato il 28/09/2023).
- [19] Arduino Due. URL: https://docs.arduino.cc/hardware/due/ (visitato il 18/03/2024).
- [20] RaspberryPi model 3B. URL: https://www.raspberrypi.com/products/raspberry-pi-3-model-b/ (visitato il 11/11/2023).