Discrete Mathematics (2011 Spring) Midterm I

- 1. (12%) For sets $A,B \subseteq U$, in each of the following statements, <u>determine</u> and <u>explain</u> whether it is correct or not.
 - (1). $P(A \cup B) = P(A) \cup P(B)$
 - (2). $P(A \cap B) = P(A) \cap P(B)$
 - (3). $(A-B) \cup (A \cap B) = U$
 - (4). $\overline{A} \cup \overline{B} \cup (A \cap B \cap \overline{C}) = \overline{A} \cup \overline{B} \cup \overline{C}$
- 2. (10%) Negate and simplify the statement $p \land (q \lor r) \land (\neg p \lor \neg q \lor r)$.
- 3. (15%) Define the connective "Nand" by $(p \uparrow q) \Leftrightarrow \neg (p \land q)$, for any statements p, q. Represent the following using only this connective. (a) $p \lor q$, (b) $p \land q$, (c) $p \to q$.
- 4. (10%) In all compositions of 18, what are the probabilities of (a) each summand is a multiple of 3, and (b) the first summand is 3?
- 5. (15%) Determine the value of $c \in Z^+$, $10 \le c \le 16$ such that equation 84x + 990y = c has solutions. Determine the solutions for this c value.
- 6. (10%) Determine the following value (a) the coefficient of $x^4y^2z^{-2}$ for the complete expansion of $(x 2y)^6(3z^{-1} + 4)^4$, (b) the coefficient of x^3y^4 for the complete expansion of $(x 2y)^3(3x + 4y)^4$. [Note: Exhaustive expansion is not allowed.]
- 7. (8%) How many permutations of the 26 letters of the alphabet contain (a) either the pattern "OUT" or the pattern "DIG"? (b) neither the pattern "MAN" nor the pattern "ANT"?
- 8. (10%) Please give TWO different solutions to determine the number of integer solutions for $x_1+x_2+x_3 < 10$, x_1 , x_2 , $x_3 > 0$.
- 9. (10%) If $n \in \mathbb{N}$, prove that $5F_{n+2} = L_{n+4} L_n$, where $F_{n+2} = F_{n+1} + F_n$, $F_0 = F_1 = 1$ and $L_{n+2} = L_{n+1} + L_n$, $L_0 = 2$, $L_1 = 1$.