Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2014

	ausur- mmer						
Nachname:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	7
max. Punkte	8	8	6	8	4	9	7
tats. Punkte							
Gesamtpunkt				Note:			

Aufgabe 1 (2 + 2 + 1 + 1 + 2 = 8 Punkte)

•	Geben Sie zwei Funktionen $f: \mathbb{N}_+ \to \mathbb{N}_+$ und $g: \mathbb{N}_+ \to \mathbb{N}_+$ derart an, dass $f(n) \in \Theta(n^2)$, $g(n) \in \Theta(n^2)$ und $(f(n) - g(n)) \in \Theta(n)$.
•	Geben Sie einen endlichen Akzeptor mit 641 Zuständen und Eingabealphabet $\{a,b\}$ an, der die formale Sprache $L=\{\}$ akzeptiert.

 \bullet Für welche Belegung mit Wahrheitswerten wird die aussagenlogische Formel $A\Rightarrow (B\Rightarrow A)$ wahr?

Geben Sie eine Menge M und eine totale Abbildung $f: M \to M$ an.

ullet Geben Sie eine Menge M und eine totale Abbildung $f: M \to M$ an, die injektiv aber nicht surjektiv ist.

 \bullet Die Sprachen $L_k,\,k\in\mathbb{N}_0,$ seien induktiv definiert durch

$$\begin{split} L_0 = \{a\}, \\ \forall k \in \mathbb{N}_0 \colon L_{k+1} = L_k^* L_k. \end{split}$$

Geben Sie für jede nicht-negative ganze Zahl $k \in \mathbb{N}_0$ die Sprache L_{k+1} ohne Bezug auf andere L_j , $j \in \mathbb{N}_0$, in Mengenschreibweise an.

Name: Matr.	-Nr.:
-------------	-------

Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (2 + 2 + 1 + 3 = 8 Punkte)

Es sei L₁ die formale Sprache

$$L_1 = \{ w \mid w \in \{0, 1, \bullet, f\}^* \land \exists w_1, w_2 \in \{0, 1\}^+ : w = w_1 \bullet w_2 f \}.$$

- a) Geben Sie einen regulären Ausdruck R derart an, dass $\langle R \rangle = L_1$. Verwenden Sie in Ihrem regulären Ausdruck ausschließlich die Symbole 0, 1, •, f, (,), |, * und \emptyset .
- b) Geben Sie einen endlichen Akzeptor an, der die formale Sprache L₁ akzeptiert.

Es sei L₂ die formale Sprache über dem Alphabet {a, b}, die genau diejenigen $w \in \{a, b\}^*$ enthält, für die gilt:

- w beginnt mit einem a und
- w endet mit einem b und
- w enthält mindestens zwei a und
- w enthält mindestens zwei b.
- c) Geben Sie drei Wörter an, die zu L_2 gehören, und drei Wörter, die nicht zu L_2 gehören.
- d) Geben Sie einen regulären Ausdruck an, der L2 beschreibt.

Name: Matr.	-Nr.:
-------------	-------

Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (3 + 2 + 1 = 6 Punkte)

Gegeben seien zwei Akzeptoren $M_i = (Z_i, A_i, X_i, f_i, F_i)$, $i \in \{1, 2\}$. Deren *Produktakzeptor* $M_1 \times M_2$ ist festgelegt durch die Zustandsmenge $Z_1 \times Z_2$, den Anfangszustand (A_1, A_2) , das Eingabealphabet $X_1 \cap X_2$, die Zustandsüberführungsfunktion

f:
$$(Z_1 \times Z_2) \times (X_1 \cap X_2) \to Z_1 \times Z_2$$
,
 $f((z_1, z_2), x) = (f_1(z_1, x), f_2(z_2, x))$,

und die Menge $F_1 \times F_2$ als Menge der akzeptierenden Zustände.

a) Nachfolgend sind zwei Akzeptoren M_1 (links) und M_2 (rechts) graphisch dargestellt:

Geben Sie den Produktakzeptor $M_1 \times M_2$ graphisch an. Sie können dabei die Zustände, die nicht vom Anfangszustand erreichbar sind, weglassen.

- b) Welche Sprachen werden von den drei Akzeptoren M_1 , M_2 und $M_1 \times M_2$ der vorherigen Teilaufgabe akzeptiert?
- c) Charakterisieren Sie die von einem Produktakzeptor $M_1 \times M_2$ akzeptierte Sprache $L(M_1 \times M_2)$ anhand der Sprachen $L(M_1)$ und $L(M_2)$. Nutzen Sie dabei ausschließlich die Mengenoperationen \cup , \cap und \times .

Name:	MatrNr.:
-------	----------

Platz für Antworten zu Aufgabe 3:

Aufgabe
$$4(2 + 3 + 3 = 8 \text{ Punkte})$$

Gegeben sei für jede nicht-negative ganze Zahl $k\in\mathbb{N}_0$ ein gerichteter Graph $T_k=(V_k,E_k)$ mit Knotenmenge

$$V_k = \{ w \mid w \in \{\mathtt{a},\mathtt{b}\}^* \land |w| \le k \}$$

und Kantenmenge

$$\begin{split} \mathsf{E}_k = & \{ (w_1, w_2) \mid w_1 \in \mathsf{V}_k \land w_2 \in \mathsf{V}_k \land \exists x \in \{\mathsf{a}, \mathsf{b}\} \colon w_2 = w_1 x \} \\ & \cup \{ (w, w) \mid w \in \mathsf{V}_k \land |w| = k \}. \end{split}$$

- a) Zeichnen Sie T_0 , T_1 und T_2 .
- b) Für welche nicht-negativen ganzen Zahlen $k\in\mathbb{N}_0$ ist die Relation E_k
 - reflexiv?
 - transitiv?
 - symmetrisch?
 - antisymmetrisch?
- c) Geben sie die reflexiv-transitive Hülle \boldsymbol{E}_k^* in Mengenschreibweise an.

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5 (4 Punkte)

Gegeben sei eine natürliche Zahl $\alpha\in\mathbb{N}_+.$ Die Abbildung $S\colon\mathbb{N}_0\to\mathbb{Z}$ sei induktiv definiert durch

$$S(0) = 1,$$

$$\forall k \in \mathbb{N}_0 \colon S(k+1) = \alpha^{k+1} + S(k).$$

Beweisen Sie durch vollständige Induktion, dass gilt:

$$\forall k \in \mathbb{N}_0 \colon (\alpha - 1)S(k) = \alpha^{k+1} - 1.$$

Name: Matr.	-Nr.:
-------------	-------

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (2 + 3 + 4 = 9 Punkte)

Gegeben sei die kontextfreie Grammatik G mit Nichtterminalsymbolen

$$N = \{S, Q, V, K, R\},\$$

Terminalsymbolen

$$T = \{ \forall, \exists, x, y, z, (,), \land, \lor, \Rightarrow, =, \leq \},$$

Startsymbol S und Produktionsmenge

$$P = \{ S \rightarrow QV(S) \mid (S)K(S) \mid VRV, \\ Q \rightarrow \forall \mid \exists, \\ V \rightarrow \mathbf{x} \mid \mathbf{y} \mid \mathbf{z}, \\ K \rightarrow \land \mid \lor \mid \Rightarrow, \\ R \rightarrow = \mid < \}.$$

a) Zeichnen Sie den Ableitungsbaum für das Wort

$$\forall x (\exists y (x = y))$$

b) Es bezeichne L die von G erzeugte formale Sprache L(G). Beweisen Sie, dass

$$\{() \cdot L \cdot \{)\} \cdot \{\land, \lor, \Rightarrow\} \cdot \{() \cdot L \cdot \{)\} \subseteq L$$

gilt.

c) Geben Sie eine kontextfreie Grammatik H derart an, dass L(H) die Sprache aller mathematischen Terme über den Zeichen

$$x, y, z, +, \cdot, (und)$$

ist, wobei jeder nichtleere Teilterm geklammert werden muss. Beispielsweise soll $\mathsf{L}(\mathsf{G})$ die Terme

$$\varepsilon$$
 , (x) , ((x) + (y)) , ((x) + ((y) \cdot (z))) , (((x) + (y)) \cdot (z))

und so weiter enthalten.

Platz für Antworten zu Aufgabe 6:

Aufgabe 7(3 + 1 + 3 = 7 Punkte)

Gegeben sei die Turingmaschine T mit Zustandsmenge $Z = \{A, B, C, D, E, F\}$, Anfangszustand A und Bandalphabet $X = \{0, 1, a, b, \Box\}$, deren Arbeitsweise durch das folgende Diagramm festgelegt ist:

- a) Geben Sie für das Eingabewort 0100 (umgeben von Blanksymbolen) folgende Konfigurationen an:
 - die Konfiguration, die vorliegt, nachdem die Turingmaschine zum ersten Mal von Zustand C nach Zustand D gewechselt hat;
 - die Konfiguration, die vorliegt, nachdem die Turingmaschine zum ersten Mal von Zustand C nach Zustand E gewechselt hat;
 - die Endkonfiguration, die vorliegt, nachdem die Turingmaschine gehalten hat.

Nutzen Sie dazu die Raster auf der Folgeseite. Notieren Sie nur den Teil des Bandes, der *keine* Blanksymbole enthält

- b) Erläutern Sie knapp für jedes Eingabewort $w \in \{0, 1\}^*$ die Gestalt des Wortes auf dem Band der Endkonfiguration.
- c) Geben Sie eine scharfe obere asymptotische Schranke für die Laufzeit der Turingmaschine in Abhängigkeit der Länge $n \in \mathbb{N}_0$ des Eingabewortes an.

Name:	MatrNr.:
-------	----------

Platz für Antworten zu Aufgabe 7a): Schreiben Sie jeweils in die untere Zeile eines Kastens die Bandbeschriftung und in die obere über dem aktuell besuchten Feld den Zustand.

Anfangskonfiguration:

A						
0	1	0	0			

Nach dem ersten Wechsel von C nach D:

Nach dem ersten Wechsel von C nach E:

Endkonfiguration:

Platz für Antworten zu Aufgabe 7: