

Linear Regression Models

Segment 1 – Simple Linear Regression Model

Topic 5 – Accuracy of the Model

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

1. Residual Standard Error

2. R2 Statistic

3. Summary

Residual Standard Error

• The residual standard error (RSE) is a measure of lack of fit of the model to the data.

- The residual standard error (RSE) is a measure of lack of fit of the model to the data.
- In an SLRM $Y=\beta_0+\beta_1X_1+\varepsilon$, the random error term prevents a perfect prediction even if the population coefficients are exactly known.

- The residual standard error (RSE) is a measure of lack of fit of the model to the data.
- In an SLRM $Y=\beta_0+\beta_1X_1+\varepsilon$, the random error term prevents a perfect prediction even if the population coefficients are exactly known.
- ullet The RSE is an in-sample estimate of the standard deviation σ of the

random error term ε :

- The residual standard error (RSE) is a measure of lack of fit of the model to the data.
- In an SLRM $Y=\beta_0+\beta_1X_1+\varepsilon$, the random error term prevents a perfect prediction even if the population coefficients are exactly known.
- ullet The RSE is an in-sample estimate of the standard deviation σ of the

random error term
$$\varepsilon$$
: RSE $=\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}\left(y^{(i)}-\hat{y}^{(i)}\right)^2}$.

Residual Standard Frror

- The residual standard error (RSE) is a measure of lack of fit of the model to the data.
- In an SLRM $Y=\beta_0+\beta_1X_1+\varepsilon$, the random error term prevents a perfect prediction even if the population coefficients are exactly known.
- ullet The RSE is an in-sample estimate of the standard deviation σ of the

random error term
$$arepsilon$$
: RSE $=\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}\left(y^{(i)}-\hat{y}^{(i)}
ight)^{2}}.$

• The RSE is the amount by which the response will deviate from the true regression line on an average.

• Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 :

• Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model?

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^n \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^n \left(y^{(i)} \bar{y}_n\right)^2$.

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM;

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM; the associated error is

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM; the associated error is residual sum of squares (RSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \left(\hat{\beta}_0 + \hat{\beta}_1 x_1^{(i)}\right)\right)^2$.

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM; the associated error is residual sum of squares (RSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \left(\hat{\beta}_0 + \hat{\beta}_1 x_1^{(i)}\right)\right)^2$.
- The R² statistic is defined as

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM; the associated error is residual sum of squares (RSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \left(\hat{\beta}_0 + \hat{\beta}_1 x_1^{(i)}\right)\right)^2$.
- The R² statistic is defined as $\frac{TSS-RSS}{TSS} = 1 \frac{RSS}{TSS}$.

- Suppose we have a dataset with n samples and want a simple model to predict the response Y from a single predictor X_1 : the average model $\hat{y}^{(i)} = \bar{y}_n$.
- What is the error associated with this model? Total sum of squares (TSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \bar{y}_n\right)^2$.
- Suppose now we build an SLRM; the associated error is residual sum of squares (RSS) = $\sum_{i=1}^{n} \left(y^{(i)} \hat{y}^{(i)}\right)^2 = \sum_{i=1}^{n} \left(y^{(i)} \left(\hat{\beta}_0 + \hat{\beta}_1 x_1^{(i)}\right)\right)^2$.
- The R² statistic is defined as $\frac{TSS-RSS}{TSS} = 1 \frac{RSS}{TSS}$.
- The R^2 statistic varies between 0 & 1 is and is a measure of the variability in the response Y that the SLRM (built using the predictor X_1) is able to explain.

Summary

Different ways to assess the accuracy of an SLRM using residual standard error (RSE) and R² statistic.