Diseño y Análisis de Algoritmos – CC4102 Control 1 - Semestre Otoño 2015

1. Diseñe un algoritmo eficiente para memoria secundaria que dada una relación binaria R sobre el dominio $\{1,\ldots,n\}$ determine si R es simétrica. Asuma que la relación R se presenta en disco como un archivo secuencial de todos sus pares $(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,n\}$.

Solución: Tomamos una copia de R y la ordenamos con respecto a su primera componente, y luego con respecto a la segunda en caso de empates. El resultado lo dejamos en cinta C. Luego hacemos una copia de R^{-1} y la ordenamos igual que la anterior. El resultado lo dejamos en cinta C'. Luego verificamos que ambas cintas contengan lo mismo. El costo es O(sort(R)) en término de llamadas a disco.

2. Sea $k \geq 1$ un entero fijo y considere el siguiente algoritmo para seleccionar un buen candidato para el máximo de un arreglo x_1, x_2, \ldots, x_n de n enteros positivos distintos (donde n > k): (1) Compute el máximo m entre x_1, \ldots, x_k . (2) Elija como buen candidato para el máximo al menor j con $k+1 \leq j \leq n$ tal que $m < x_j$. Si no existe tal x_j entonces simplemente elija a x_n como su buen candidato.

Sea S el evento que expresa que el algoritmo anterior computa efectivamente el máximo. Queremos computar la probabilidad Pr(S) del evento S. Para eso, note que Pr(S) es igual $\sum_{i=k+1}^n Pr(S_i)$, donde S_i es el evento de que nuestro algoritmo compute el máximo y que tal máximo esté en la i-ésima posición del arreglo (¿por qué?). Además, para cada $k+1 \le i \le n$ se tiene que $Pr(S_i)$ es igual a $Pr(B_i \cap O_i)$, donde B_i es el evento de que el máximo esté en la posición i y O_i es el evento de que ningún elemento entre k+1 y i-1 sea elegido como buen candidato por el algoritmo (¿por qué?).

a) (2 pts) Demuestre que para cada $k+1 \le i \le n$ se tiene que $Pr(B_i \cap O_i) = \frac{k}{n(i-1)}$.

Solución: Los eventos B_i y O_i son independientes. Claramente, $Pr(B_i) = 1/n$. Además, para que el evento O_i ocurra se debe cumplir que el máximo entre x_1, \ldots, x_{i-1} está en (cualquiera) de las primeras k posiciones. La probabilidad de que esto ocurra es k/(i-1).

b) (2 pts) Demuestre que $Pr(S) = \frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$, y que por tanto $Pr(S) \ge \frac{k}{n} (\ln n - \ln k)$.

Solución: Sabemos que Pr(S) es igual $\sum_{i=k+1}^n Pr(S_i)$, y por tanto $Pr(S) = \sum_{i=k+1}^n \frac{k}{n(i-1)}$. Esto último es igual a $\frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$. Claramente, $\int_k^n \frac{1}{x} dx \leq \sum_{i=k}^{n-1} \frac{1}{i}$. Por tanto, $Pr(S) \geq \frac{k}{n} (\ln n - \ln k)$.

c) (2 pts) Enucentre un valor de k que maximice la probabilidad de Pr(S). ¿Cuál es una cota inferior para la probabilidad de S en tal caso?

Solución: Derivaremos la expresión $\frac{k}{n}(\ln n - \ln k)$ y la igualaremos a 0. La derivada de esta expresión es $\frac{1}{n}(\ln n - \ln k - 1)$. Igualando a 0 obtenemos un valor óptimo de k = n/e. En tal caso la probabilidad de S es al menos 1/e.

3. Sean x_1, x_2, \ldots, x_n números naturales distintos con pesos positivos w_1, w_2, \ldots, w_n tal que se cumple que $\sum_{i=1}^n w_i = 1$. Definimos su *mediana de pesos (inferior)* (mp) como el elemento x_k que satisface lo siguiente:

$$\sum_{x_i < x_k} w_i < 1/2 \quad \text{y} \quad \sum_{x_i > x_k} w_i \leq 1/2.$$

a) (2 pts) Demuestre que la mediana (inferior) de x_1, x_2, \dots, x_n es la mp de los x_i con pesos $w_i = 1/n$, para $i = 1, 2, \dots, n$.

Solución: La mediana inferior x_k de x_1, x_2, \ldots, x_n es estrictamente mayor que $\lfloor n+1/2 \rfloor -1 = \lfloor n-1/2 \rfloor$ elementos. Por tanto, se cumple que $\sum_{x_i < x_k} w_i = 1/n(\lfloor n-1/2 \rfloor) \le (n-1)/2n < 1/2$. Además, x_k es menor que $n - \lfloor n+1/2 \rfloor$ elementos. Por tanto, se cumple que $\sum_{x_i > x_k} w_i = 1/n(n - \lfloor n+1/2 \rfloor) = 1 - 1/n(\lfloor n+1/2 \rfloor) \le 1 - 1/2 \le 1/2$.

b) Diseñe un algoritmo que compute la mp en tiempo O(n) (4 pts). Si no puede, diseñe un algoritmo que compute la mp en tiempo $O(n \log n)$ (2 pts).

Hint: Para el algoritmo en O(n) puede utilizar el hecho que la mediana inferior de los x_i se puede computar en O(n) (como vimos en clases).

Solución: Primero presentamos una solución sencilla en $O(n \log n)$. Ordene los x_i 's utilizando mergesort. Esto toma $O(n \log n)$. Luego compute el mayor elemento x_k tal que $\sum_{x_i < x_k} w_i < 1/2$ en tiempo O(n). Para demostrar que este x_k es la mp solo falta demostrar que $\sum_{x_i > x_k} w_i \le 1/2$. Note que $\sum_{x_i > x_k} w_i = 1 - (\sum_{x_i < x_k} w_i) - w_k$. Sabemos que $\sum_{x_i < x_k} w_i + w_k \ge 1/2$ (porque de otra forma el algoritmo no hubiera elegido a x_k). Por tanto, $\sum_{x_i > x_k} w_i \le 1/2$. El algoritmo que trabaja en tiempo lineal es un poco más complejo:

```
mp(A,l)
1. n \leftarrow \text{length}(A)
2. m \leftarrow \operatorname{median}(A)
3. B \leftarrow \emptyset % B contiene todos los elementos de A menores a m
4. C \leftarrow \emptyset % C contiene todos los elementos de A mayores o iguales a m
5. w_B \leftarrow 0 % w_B es suma de pesos de elementos en B
6. if n = 1
7.
     then return A[1]
8. for i \leftarrow 1 to n
9.
       do if A[i] < m
10.
               then w_B \leftarrow w_B + w_i
                     Append A[i] to B
11.
12.
               else Append A[i] to C
13. if l + w_B < m
                       \% mediana de pesos pertenece a B
       then mp(B,l)
14.
```

15.

else mp (C, w_B)

El algoritmo se aplica en entrada (X,0), asumiendo X es el arreglo de los x_i . En cada paso aplicamos el algoritmo en entrada (A,l), donde l es la suma de los pesos de los elementos en X que son menores que todos los elementos de A. El costo del algoritmo es T(n) := T(n/2) + T(n/2)

O(n) (ya que la mediana se puede computar en tiempo lineal, como vimos en clases). Por tanto, T(n) es O(n) según Teorema Maestro.