1. (1p) Adăugați ponderi - numere naturale pozitive - pe muchiile grafului din figura de mai jos care nu au încă ponderi, astfel încât graful să aibă exact doi arbori parțiali de cost minim (justificați).

- **2.** (**1p**) Care dintre următoarele afirmații sunt adevărate pentru un graf neorientat conex ponderat cu n>3 vârfuri? Justificați (complexitatea algoritmilor studiați se presupune cunoscută, nu trebuie demonstrată în justificare)
 - a) Algoritmul lui Kruskal determină corect un arbore parțial de cost minim în G chiar dacă graful are și muchii cu ponderi negative
 - b) Algoritmul lui Dijkstra determină corect distanțele de la vârful 1 la celelalte vârfuri chiar dacă graful are și muchii cu ponderi negative
 - c) Algoritmul lui Prim are complexitatea O(m) dacă graful este complet
 - d) Un arbore parțial de cost minim conține toate muchiile critice din graf
- **3.** (**1p**) a) Fie G un graf neorientat conex cu gradul maxim 6. Care este numărul maxim de culori folosite de algoritmul Greedy de colorare a vârfurilor lui G prezentat la curs, dacă vârfurile sunt ordonate folosind strategia Smallest First? Justificați.
- b) Exemplificați (cu explicații) algoritmul Greedy de colorare cu vârfurile ordonate folosind strategia Smallest First pentru graful următor.

4. (**1,5p**) Definiți noțiunile de flux, tăietură minimă și lanț nesaturat/drum de creștere. Ilustrați pașii algoritmului Ford-Fulkerson pentru rețeaua din figura următoare (unde pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate), pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețeaua (se vor indica vârfurile din bipartiție, arcele directe, arcele inverse). Mai există și o altă s-t tăietură minimă în această rețea? Justificați răspunsurile

5. (**2p**) **a**) Descrieți algoritmul Floyd-Warshall pentru determinarea de distanțe într-un graf orientat ponderat cu n vârfuri, detaliind următoarea schemă (se vor respecta numele variabilelor din schemă):

Inițializarea matricelor D de distanțe și P de predecesori

pentru $\mathbf{i} \leftarrow 1$, n execută

pentru $\mathbf{u} \leftarrow 1$, n execută

pentru $\mathbf{v} \leftarrow 1$, n execută

.....

- b) Presupunem că n>3. Ce reprezintă valoarea D[u][v] după încheierea execuției pasului la care i=2 (ce semnifică)?
- c) La finalul execuției pseudocodului de mai sus pentru un graf cu 8 vârfuri se obțin matricele următoare:

D =	0	2	3	7	4	8	-1	9	P =	0	1	2	5	7	4	8	6
D –	8	0	1	8	8	8	8	8	r –	2	0	2	0	0	0	0	0
	8	8	0	8	8	8	8	8		0	3	0	0	0	0	0	0
	0	2	3	-1	-4	0	-9	1		4	1	2	5	7	4	8	6
	3	5	6	2	-1	3	-6	4		4	1	2	5	7	4	8	6
	-1	1	2	-2	-5	-1	-10	0		4	1	2	5	7	4	8	6
	8	10	11	7	4	8	-1	9		4	1	2	5	7	4	8	6
	-3	-1	0	-4	-7	-3	-12	-2		4	1	2	5	7	4	8	6

Adăugați în pseudocod instrucțiunile necesare pentru ca algoritmul să testeze existența unui circuit cu cost negativ în graf, și, în caz afirmativ, să afișeze unul, și ilustrați-le pentru graful dat ca exemplu (cu explicații).

6. (**1p**) Este corect următorul algoritm de determinare a unui arbore parțial de cost minim al unui graf conex ponderat G = (V, E, w)? Justificați (fără a apela în justificare la modul de funcționare al altor algoritmi; rezultatele folosite trebuie demonstrate și trebuie explicat modul în care se folosesc)

T=G

Cat timp T contine cicluri

- 1. Alege C un ciclu elementar de lungime minimă în T
- 2. Alege e o muchie de cost maxim in C
- 3. T = T-e (elimina e din T)
- 7. (1,5p).a) Indicați fețele hărții următoare și gradul fiecărei fețe.

b) Fie M=(V,E,F) o hartă conexă bipartită cu $n=|V|\geq 4$. Arătați că $m=|E|\leq 2n-4$, $|F|\leq n-2$ și există în M cel puțin un vârf de grad mai mic sau egal cu 3.