Question 1: Mean Value Theorem for Integrals

Find the number(s) c referred to in the Mean Value Theorem for Integrals for each function, over the interval indicated.

(a)
$$f(x) = \sqrt{x}$$
 over $[0,4]$

$$c = \frac{16}{9}$$

(b)
$$f(x)=rac{x^2}{x+1}$$
 over $[0,1]$

$$c \approx 0.5466$$

Problem 2

(a)
$$\sum_{n=0}^{\infty} \left(rac{1}{3}
ight)^n$$

This is a geometric series with the first term a=1 (when n=0, $\left(\frac{1}{3}\right)^0=1$) and a common ratio $r=\frac{1}{3}$. The sum of an infinite geometric series $\sum_{n=0}^{\infty}ar^n$ (where |r|<1) is given by $\frac{a}{1-r}$.

•
$$a = 1, r = \frac{1}{3}$$

• Sum =
$$\frac{1}{1-\frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

Answer: $\frac{3}{2}$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n$$

This is a geometric series starting at n=1, with the first term $a=\frac34$ (when n=1) and a common ratio $r=\frac34$. Since $|r|=\frac34<1$, the series converges, and the sum of $\sum_{n=1}^\infty r^n$ is $\frac r{1-r}$.

•
$$r = \frac{3}{4}$$

• Sum =
$$\frac{\frac{3}{4}}{1-\frac{3}{4}} = \frac{\frac{3}{4}}{\frac{1}{4}} = 3$$

Answer: 3

(c)
$$\sum_{n=2}^{\infty} \frac{4}{(n-1)(n+1)}$$

This series involves a rational function. We use partial fraction decomposition to simplify the general term:

$$\frac{4}{(n-1)(n+1)} = \frac{A}{n-1} + \frac{B}{n+1}$$

Solving for A and B:

$$4 = A(n+1) + B(n-1)$$

• Set
$$n = 1$$
: $4 = A(1+1) + B(1-1) = 2A$, so $A = 2$

• Set
$$n = -1$$
: $4 = A(-1+1) + B(-1-1) = -2B$, so $B = -2$

Thus:

$$\frac{4}{(n-1)(n+1)} = \frac{2}{n-1} - \frac{2}{n+1}$$

Now the series is:

$$\sum_{n=2}^{\infty} \left(\frac{2}{n-1} - \frac{2}{n+1} \right) = 2 \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n+1} \right)$$

This is a telescoping series. Let's write out the first few terms to identify the pattern:

- For $n=2:\frac{1}{1}-\frac{1}{3}$
- For $n = 3: \frac{1}{2} \frac{1}{4}$
- For $n=4:\frac{1}{3}-\frac{1}{5}$
- And so on...

The partial sum S_N up to N terms is:

$$S_N = 2\left[\left(rac{1}{1} - rac{1}{3}
ight) + \left(rac{1}{2} - rac{1}{4}
ight) + \left(rac{1}{3} - rac{1}{5}
ight) + \dots + \left(rac{1}{N-1} - rac{1}{N+1}
ight)
ight]$$

Most terms cancel:

- $\frac{1}{1}$ remains.
- $\frac{1}{2}$ remains.
- The $-\frac{1}{3}$ from the first term cancels with $\frac{1}{3}$ from the third term, and this pattern continues.
- ullet As $N o\infty$, the remaining terms are $rac{1}{N+1} o0$.

So:

$$S_N = 2\left[1 + rac{1}{2} - rac{1}{N+1}
ight] = 2\left[rac{3}{2} - rac{1}{N+1}
ight] = 3 - rac{2}{N+1}$$

As $N o \infty$:

$$\sum_{n=2}^{\infty} \frac{4}{(n-1)(n+1)} = 3$$

Answer: 3

(d)
$$\sum_{k=1}^{\infty} \frac{1}{4k^2-1}$$

This series also involves a rational function. Let's try partial fraction decomposition:

$$rac{1}{4k^2-1} = rac{1}{(2k-1)(2k+1)} = rac{A}{2k-1} + rac{B}{2k+1}$$

Solving for A and B:

$$1 = A(2k+1) + B(2k-1)$$

• Set 2k - 1 = 0 (so $k = \frac{1}{2}$):

$$1 = A(2 \cdot \frac{1}{2} + 1) + B(2 \cdot \frac{1}{2} - 1) = A(2) + B(0) \implies A = \frac{1}{2}$$

• Set 2k+1=0 (so $k=-\frac{1}{2}$):

$$1 = A(2 \cdot -\frac{1}{2} + 1) + B(2 \cdot -\frac{1}{2} - 1) = A(0) + B(-2) \implies B = -\frac{1}{2}$$

Thus:

$$\frac{1}{4k^2 - 1} = \frac{1/2}{2k - 1} - \frac{1/2}{2k + 1} = \frac{1}{2} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right)$$

Now the series is:

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2} \sum_{k=1}^{\infty} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right)$$

This is another telescoping series. Let's write out the first few terms:

- For $k=1:\frac{1}{1}-\frac{1}{3}$
- For $k = 2: \frac{1}{3} \frac{1}{5}$
- For $k = 3: \frac{1}{5} \frac{1}{7}$
- And so on...

The partial sum S_N up to N terms is:

$$S_N = rac{1}{2} \left[\left(rac{1}{1} - rac{1}{3}
ight) + \left(rac{1}{3} - rac{1}{5}
ight) + \left(rac{1}{5} - rac{1}{7}
ight) + \dots + \left(rac{1}{2N-1} - rac{1}{2N+1}
ight)
ight]$$

Most terms cancel:

- $\frac{1}{1}$ remains.
- $-\frac{1}{3}$ from the first term cancels with $\frac{1}{3}$ from the second term, and this continues.
- ullet As $N o\infty$, the remaining terms $rac{1}{2N+1} o0$.

The sum simplifies to:

$$S_N = rac{1}{2}iggl[1-rac{1}{2N+1}iggr]$$

As $N o \infty$:

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

Answer: $\frac{1}{2}$

Problem 3

(a) 0.10111_{two}

Digits:

- $d_1 = 1$
- $d_2 = 0$
- $d_3 = 1$
- $d_4 = 1$
- $d_5 = 1$

Calculation:

•
$$1 \times 2^{-1} = 1 \times \frac{1}{2} = 0.5$$

•
$$0 \times 2^{-2} = 0 \times \frac{1}{4} = 0$$

•
$$1 \times 2^{-3} = 1 \times \frac{1}{8} = 0.125$$

•
$$1 \times 2^{-4} = 1 \times \frac{1}{16} = 0.0625$$

•
$$1 \times 2^{-5} = 1 \times \frac{1}{32} = 0.03125$$

Sum:

$$0.5 + 0 + 0.125 + 0.0625 + 0.03125 = 0.71875$$

Result: $0.10111_{\rm two} = 0.71875$

(b) $0.10101_{\rm two}$

Digits:

- $d_1 = 1$
- $d_2 = 0$
- $d_3 = 1$
- $d_4 = 0$
- $d_5 = 1$

Calculation:

- $1 \times 2^{-1} = 0.5$
- $0 \times 2^{-2} = 0$
- $1 \times 2^{-3} = 0.125$
- $0 \times 2^{-4} = 0$
- $1 \times 2^{-5} = 0.03125$

Sum:

$$0.5 + 0 + 0.125 + 0 + 0.03125 = 0.65625$$

Result: $0.10101_{\rm two} = 0.65625$

(c) 0.10111101_{two}

Digits:

- $d_1 = 1$
- $d_2 = 0$
- $d_3 = 1$
- $d_4 = 1$
- $d_5 = 1$
- $d_6 = 1$
- $d_7 = 0$

•
$$d_8 = 1$$

Calculation:

•
$$1 \times 2^{-1} = 0.5$$

•
$$0 \times 2^{-2} = 0$$

•
$$1 \times 2^{-3} = 0.125$$

•
$$1 \times 2^{-4} = 0.0625$$

•
$$1 \times 2^{-5} = 0.03125$$

•
$$1 \times 2^{-6} = 1 \times \frac{1}{64} = 0.015625$$

•
$$0 \times 2^{-7} = 0$$

•
$$1 \times 2^{-8} = 1 \times \frac{1}{256} = 0.00390625$$

Sum:

$$0.5 + 0 + 0.125 + 0.0625 + 0.03125 + 0.015625 + 0 + 0.00390625 = 0.73828125$$

Result: $0.101111101_{two} = 0.73828125$

(d) $0.110110111_{\rm two}$

Digits:

•
$$d_1 = 1$$

•
$$d_2 = 1$$

•
$$d_3 = 0$$

•
$$d_4 = 1$$

•
$$d_5 = 1$$

•
$$d_6 = 0$$

•
$$d_7 = 1$$

•
$$d_8 = 1$$

•
$$d_9 = 1$$

Calculation:

•
$$1 \times 2^{-1} = 0.5$$

•
$$1 \times 2^{-2} = 0.25$$

•
$$0 \times 2^{-3} = 0$$

•
$$1 \times 2^{-4} = 0.0625$$

•
$$1 \times 2^{-5} = 0.03125$$

•
$$0 \times 2^{-6} = 0$$

•
$$1 \times 2^{-7} = 0.0078125$$

•
$$1 \times 2^{-8} = 0.00390625$$

•
$$1 \times 2^{-9} = 1 \times \frac{1}{512} = 0.001953125$$

Sum:

Result: $0.1101101111_{two} = 0.857421875$

Final Answers

- (a) $0.10111_{\rm two} = 0.71875$
- (b) $0.10101_{\mathrm{two}} = 0.65625$
- (c) $0.101111101_{\rm two} = 0.73828125$
- (d) $0.1101101111_{\text{two}} = 0.857421875$

Problem 4

(a)

Start with R=1/3.

- Step 1: Compute $2R=2\times 1/3=2/3$. Since 2/3<1, the integer part is 0, so $d_1=0$. Fractional part: $F_1=2/3$.
- Step 2: Compute $2F_1=2\times 2/3=4/3=1+1/3.$ Since 4/3>1, the integer part is 1, so $d_2=1.$ Fractional part: $F_2=4/3-1=1/3.$
- Step 3: Compute $2F_2=2\times 1/3=2/3$. Since 2/3<1, $d_3=0$. Fractional part: $F_3=2/3$, which matches F_1 .
- Step 4: Compute $2F_3=2\times 2/3=4/3$. $d_4=1, F_4=1/3$, which matches F_2 .

At this point, the fractional parts repeat: $F_1=2/3$, $F_2=1/3$, $F_3=2/3$, $F_4=1/3$, and so on. Correspondingly, the digits repeat: $d_1=0$, $d_2=1$, $d_3=0$, $d_4=1$, etc. The binary representation is:

 $0.010101..._2$

The repeating block is "01", so we denote it as:

$$1/3 = 0.\overline{01}_2$$

(b)

Start with R=1/5.

- Step 1: $2R = 2 \times 1/5 = 2/5$. 2/5 < 1, so $d_1 = 0$, $F_1 = 2/5$.
- Step 2: $2F_1 = 2 \times 2/5 = 4/5$. 4/5 < 1, so $d_2 = 0$, $F_2 = 4/5$.
- Step 3: $2F_2 = 2 \times 4/5 = 8/5 = 1 + 3/5$. 8/5 > 1, so $d_3 = 1$, $F_3 = 8/5 1 = 3/5$.

- Step 4: $2F_3=2\times 3/5=6/5=1+1/5.$ 6/5>1, so $d_4=1$, $F_4=6/5-1=1/5.$
- Step 5: $2F_4=2 imes 1/5=2/5$. 2/5<1, so $d_5=0$, $F_5=2/5$, which matches F_1 .

The fractional parts repeat: $F_1=2/5$, $F_2=4/5$, $F_3=3/5$, $F_4=1/5$, $F_5=2/5$, etc. The digits are: $d_1=0$, $d_2=0$, $d_3=1$, $d_4=1$, $d_5=0$, $d_6=0$, $d_7=1$, $d_8=1$, etc. The binary representation is:

 $0.00110011..._2$

The repeating block is "0011", so:

$$1/5 = 0.\overline{0011}_2$$

(c)

Start with R = 1/10.

- Step 1: $2R = 2 \times 1/10 = 1/5$. 1/5 < 1, so $d_1 = 0$, $F_1 = 1/5$.
- Step 2: $2F_1 = 2 \times 1/5 = 2/5$. 2/5 < 1, so $d_2 = 0$, $F_2 = 2/5$.
- Step 3: $2F_2 = 2 \times 2/5 = 4/5$. 4/5 < 1, so $d_3 = 0$, $F_3 = 4/5$.
- Step 4: $2F_3 = 2 \times 4/5 = 8/5 = 1 + 3/5$. 8/5 > 1, so $d_4 = 1$, $F_4 = 8/5 1 = 3/5$.
- Step 5: $2F_4=2 imes 3/5=6/5=1+1/5.$ 6/5>1 , so $d_5=1$, $F_5=6/5-1=1/5$, which matches F_1 .

The fractional parts repeat: $F_1=1/5$, $F_2=2/5$, $F_3=4/5$, $F_4=3/5$, $F_5=1/5$, etc. The digits are: $d_1=0$, $d_2=0$, $d_3=0$, $d_4=1$, $d_5=1$, $d_6=0$, $d_7=0$, $d_8=1$, $d_9=1$, etc. The binary representation is:

 $0.0001100110011..._2$

After the first three zeros, the pattern "1100" repeats: digits 4–7 are "1100", digits 8–11 are "1100", and so on. Thus:

$$1/10 = 0.000\overline{1100}_2$$

Final answer is:

- (a) $\frac{1}{3} = 0.\overline{01}_2$
- (b) $\frac{1}{5} = 0.\overline{0011}_2$
- (c) $\frac{1}{10} = 0.000\overline{1100}_2$

Problem 5

Base Case: N=1

For N=1, we have:

$$2^{-1} = \frac{1}{2} = 0.5$$

This clearly has exactly 1 digit after the decimal point. Hence, the statement holds for N=1.

For
$$N>=2$$

Assume that for some positive integer k, the statement holds true, i.e.,

$$2^{-k} = 0.d_1d_2d_3\dots d_k$$

where $d_1d_2d_3\dots d_k$ represents the decimal expansion of 2^{-k} and has exactly k digits.

We know that:

$$2^{-(k+1)} = \frac{1}{2^{k+1}} = \frac{1}{2} \times 2^{-k}$$

By the inductive hypothesis, we know that $2^{-k}=0.d_1d_2d_3\dots d_k$. Now, multiplying 2^{-k} by $\frac{1}{2}$ shifts the decimal point one place to the right, giving us:

$$2^{-(k+1)} = rac{1}{2} imes 0.d_1 d_2 d_3 \dots d_k = 0.5 imes (0.d_1 d_2 d_3 \dots d_k)$$

This results in a number with exactly k+1 digits, as required.

Problem 6

Final Answers:

- Part (a):
 - o Sum: 1.506
 - o Product: 0.1162
- Part (b):
 - o Sum: 32.343
 - o Product: 0.91342

Problem 7

(a)
$$\ln(x+3) - \ln(x)$$
 for large x

We start with the given expression:

$$\ln(x+3) - \ln(x)$$

By applying the logarithmic identity $\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right)$, we rewrite the expression as:

$$\ln(x+3) - \ln(x) = \ln\left(rac{x+3}{x}
ight)$$

Simplifying the fraction inside the logarithm:

$$\ln\left(\frac{x+3}{x}\right) = \ln\left(1 + \frac{3}{x}\right)$$

For large x, the term $\frac{3}{x}$ becomes very small. Using the approximation $\ln(1+y) \approx y$ for small y, we have:

$$\ln\left(1+\frac{3}{x}\right) \approx \frac{3}{x}$$

Thus, the equivalent formula for large \boldsymbol{x} is:

$$\ln(x+3) - \ln(x) pprox rac{3}{x}$$

(b) $\sqrt{x^2+1}-x$ for large x

Consider the expression:

$$\sqrt{x^2+1}-x$$

To avoid a loss of significance, we rationalize the expression by multiplying both the numerator and denominator by $\sqrt{x^2+1}+x$:

$$\sqrt{x^2+1}-x=rac{\left(\sqrt{x^2+1}-x
ight)\left(\sqrt{x^2+1}+x
ight)}{\sqrt{x^2+1}+x}$$

Using the difference of squares identity in the numerator:

$$\left(\sqrt{x^2+1}\right)^2-x^2=(x^2+1)-x^2=1$$

Thus, the expression simplifies to:

$$\sqrt{x^2 + 1} - x = \frac{1}{\sqrt{x^2 + 1} + x}$$

For large x, $\sqrt{x^2+1} pprox x$, so the denominator becomes approximately 2x. Therefore, we have:

$$\sqrt{x^2 + 1} - x \approx \frac{1}{2x}$$

(c)
$$\cos^2(x) - \sin^2(x)$$
 for $x pprox \frac{\pi}{4}$

Using the well-known trigonometric identity for the difference of squares:

$$\cos^2(x) - \sin^2(x) = \cos(2x)$$

Thus, the expression simplifies to:

$$\cos^2(x) - \sin^2(x) = \cos(2x)$$

For $x pprox rac{\pi}{4}$, we have:

$$2xpproxrac{\pi}{2}$$

Therefore:

$$\cos(2x) = \cos\left(\frac{\pi}{2}\right) = 0$$

Hence, for $x pprox rac{\pi}{4}$, the expression becomes:

$$\cos^2(x) - \sin^2(x) = 0$$

(d)
$$\sqrt{rac{1+\cos(x)}{2}}$$
 for $xpprox\pi$

Recognize that the given expression is related to the half-angle identity for cosine:

$$\cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos(x)}{2}}$$

Thus, the expression simplifies to:

$$\sqrt{\frac{1+\cos(x)}{2}}=\cos\left(\frac{x}{2}\right)$$

For $x \approx \pi$, we have:

$$\frac{x}{2} pprox \frac{\pi}{2}$$

Therefore:

$$\cos\left(\frac{x}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$$

Thus, for $x pprox \pi$, the expression becomes:

$$\sqrt{\frac{1+\cos(x)}{2}}=0$$

Problem 8

Firstly, we add the given expansions for $\cos(h)$ and $\sin(h)$.

$$\cos(h) + \sin(h) = \left(1 - rac{h^2}{2!} + rac{h^4}{4!} + O(h^6)
ight) + \left(h - rac{h^3}{3!} + rac{h^5}{5!} + O(h^7)
ight).$$

Simplifying the right-hand side:

$$\cos(h) + \sin(h) = (1+h) - \frac{h^2}{2!} - \frac{h^3}{3!} + \frac{h^4}{4!} + \frac{h^5}{5!} + O(h^6).$$

The highest power of h in this expression is h^5 , and the next order term is of order $O(h^6)$.

Thus, the order of the approximation for the sum $\cos(h)+\sin(h)$ is $O(h^6)$.

Also, we consider the product of $\cos(h)$ and $\sin(h)$. We multiply the two given expansions:

$$\cos(h)\cdot\sin(h) = \left(1-rac{h^2}{2!}+rac{h^4}{4!}+O(h^6)
ight)\cdot \left(h-rac{h^3}{3!}+rac{h^5}{5!}+O(h^7)
ight).$$

Expanding the product:

$$\cos(h)\cdot\sin(h) = 1\cdot h + 1\cdot\left(-\frac{h^3}{3!}\right) + 1\cdot\left(\frac{h^5}{5!}\right) + \left(-\frac{h^2}{2!}\right)\cdot h + \left(-\frac{h^2}{2!}\right)\cdot\left(-\frac{h^3}{3!}\right) + O(h^7).$$

Simplifying the terms:

$$\cos(h) \cdot \sin(h) = h - \frac{h^3}{3!} + \frac{h^5}{5!} - \frac{h^3}{2!} + O(h^7).$$

Combining the terms of order h^3 :

$$\cos(h)\cdot\sin(h) = h - \left(rac{h^3}{3!} + rac{h^3}{2!}
ight) + rac{h^5}{5!} + O(h^7).$$

The highest power of h in this expression is h^5 , and the next order term is of order $\mathcal{O}(h^7)$.

Thus, the order of the approximation for the product $\cos(h)\cdot\sin(h)$ is $O(h^6)$.