Contents

1	Titl	e Page	1
		1.0.1	1
		1.0.2	1
	1.1	Overview	2
		1.1.1	2
	1.2	What is the $3x + 1$ Problem?	2
		1.2.1	2
		1.2.2	2
		1.2.3 Stopping time	2
		1.2.4 Total Stopping time	2
		1.2.5 Trajectory	2
	1.3	What is the collatz conjecture?	2
		1.3.1 Possible behavior	2
		1.3.2 The Conjecture	3
		1.3.3 research areas	3
	1.4	What is cool about it?	3
		1.4.1	3
		1.4.2	3
	1.5	History of the Conjecture	3
		1.5.1 background	3
	1.6	Attributes of the function	3
		1.6.1 Cycles	3
		1.6.2 Stochastic approximations	4
		1.6.3 Height of the Graph	4
		1.6.4 Stopping time	4
		1 6 5	4

1 Title Page

1.0.1

• The 3x + 1 Problem

1.0.2

- Name
- Date
- University, department, etc

1.1 Overview

1.1.1

- What is the 3x + 1 Problem?
- What is the Collatz conjecture?
- What is cool about it?
- History of the conjecture
- closer look at attributes of it
 - plotting graphs?
 - cycles
 - stochastic approximations
 - height of the graph
 - stopping time

1.2 What is the 3x + 1 Problem?

1.2.1

- based on the Collatz function C(x)
- often written in literature as the 3x + 1 function T(x)

1.2.2

- number theoretic function deals only with integers
- map of positive natural numbers to the same
- stopping time
- total stopping time
- trajectory of a number

1.2.3 Stopping time

1.2.4 Total Stopping time

1.2.5 Trajectory

• show the graph of a cool one?

1.3 What is the collatz conjecture?

1.3.1 Possible behavior

• integer function, so three possible paths

1.3.2 The Conjecture

- for each natural number the collatz sequence contains one
- alternative ways to phrase that observation
- many unproven subsidiary conjectures

1.3.3 research areas

• Lagarias describes applications in these fields

1.4 What is cool about it?

1.4.1

• Paul Erdos quote

1.4.2

- the problem itself is not that important does not have immediate applications
- general type of functions is pretty popular right now
- is seen as difficult because it is so random where maths generally needs order to prove things
- it is simple to state and hard to prove which is cool
- . . .

1.5 History of the Conjecture

1.5.1 background

- many different names based on people who studied it
- started with Collatz etc
- how research developed
- today we have over 10²⁰ numbers verified

1.6 Attributes of the function

1.6.1 Cycles

- non-trivial cycle at {1}
- if we expand to all integers we get three more cycles
- Ch had a cycle of at least 272 mil in length, Lagarias say 10 billion
- Garner proved at least 10s of thousands

1.6.2 Stochastic approximations

- show the pseudo-randomness with the help of a graph
- interesting because stochastic models are used to approach deterministic systems
- we assume that the number of add iterated and even iterates is about the same
- because it seems random people are using probability distributions to describe groups of these functions

1.6.3 Height of the Graph

- height can be called the cardinality of the trajectory?
- how many approximation of the height of a function
- graph actual height of the function vs the approximation?

1.6.4 Stopping time

- most into have large stopping times, even though they can be very large
- average stopping time for odd integers should be around 9.477955
- general total stopping time estimation
- total stopping time is equal to the number of even iterates in the sequence
- upper bound for the total stopping time is 41.... log n suggests that all sequences are finite
- graph the stopping times for some functions vs their approximations?

1.6.5

- logarithmically the slope of the function is equal x
- most trajectories follow that shape
- some are split and more interesting
- iterates can be arbitrarily larger than the starting values
- sum of even ints equals the sum of odd ints plus the number of odd ints?