## A Corner-based Saliency Model

Wirawit Rueopas

Sangsan Leelhapantu

Thanarat Chalidabhongse

Department of Computer Engineering Chulalongkorn University

## A Corner-based Saliency Model

# Visual Saliency



# Visual Saliency



## Visual Saliency



"amount of attention spent on these pixels"

## Saliency Modelling

=

Calculate visual saliency as our brain does

#### Input & Output



"Saliency map"

## Factors



- Internal goals
- Knowledge deers are meaningful than trees and grasses
- Features brown colours are rare in this scene

### Other kind of features





Colour and orientation

## A Corner-based Saliency Model

### Past works

- Custom definition of rareness
  - Patch dissimilarity
  - Information theory
  - · Graph-based, face & object detection, etc.
- Machine learning
- Biological-inspired model

## Itti & Koch (1998)



## Outline

- Hypothesis: why corner?
- Algorithm
- Results

# Why corner?





Gabor filters













26











# Algorithm



# Algorithm



#### Intensity





on(x,y) = intensity(x,y) - avg. of surrounding intensity

avg. of surrounding intensity - intensity(x,y)

#### Colour opponency

RGB

$$R = \left[r - \frac{g+b}{2}\right]$$

$$G = \left[g - \frac{r+b}{2}\right]$$

$$B = \left[b - \frac{r+g}{2}\right]$$

$$Y = \left[\frac{r+g}{2} - \frac{|r-g|}{2} - b\right]$$



$$RG = \lfloor R - G \rfloor$$
  
 $GR = \lfloor G - R \rfloor$   
 $BY = \lfloor B - Y \rfloor$   
 $YB = \lfloor Y - B \rfloor$ .

Intensity: on, off
4 color opponencies

Laplacian Filter

Edge features

Corner Extraction

**Channel Combination** 

#### **Orientations**

#### Gabor Energy Filter



Corner Extraction

**Channel Combination** 

#### **Orientations**



4 orientations

#### Corner Extraction

#### **Channel Combination**



Corner Extraction

**Channel Combination** 



(promote individual clusters)



(suppress boring information)

Linear Combination













120 indoor & outdoor images

### Examples

The proposed model





Bitmap of fixations

Metric: AUC-shuffled

(Area Under ROC Curve)

#### our model



TABLE I. Performance of 7 algorithms on Toronto Dataset

| Algorithm       | AUC-shuffled<br>(mean STD) | AUC-shuffled<br>(optimal STD) |
|-----------------|----------------------------|-------------------------------|
| Itti et al. [3] | 0.6573                     | 0.6704                        |
| GBVS [9]        | 0.6714                     | 0.6975                        |
| AIM [1]         | 0.6415                     | 0.6554                        |
| SUN [16]        | 0.6429                     | 0.6615                        |
| SUN-small       | 0.6764                     | 0.6849                        |
| Signature [19]  | 0.7016                     | 0.7121                        |
| Cor (8)         | 0.7074                     | 0.7237                        |

#### MIT Saliency benchmark: dataset MIT300

| Deep Gaze 1                             | i: Boosting Saliency Prediction with Feature Maps Trained<br>on ImageNet [arxiv 2014]                                                    |                       | 0.84 | 0.39 | 4.97 | D.83 | 0.66 | 0.48 | 1.22 | 1.23 | last tested: 15/11/2015<br>maps from authors                                                                         | 86.00 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|------|------|------|------|------|------|------|----------------------------------------------------------------------------------------------------------------------|-------|
| АМ                                      | Neil Bruce, John Teotece. Attention based on information maximization [JoV 2007]                                                         | matlab                | 0.77 | 0.40 | 4.73 | D.75 | 0.66 | 0.31 | 0.79 | 1.13 | last tested: 23/09/2014 maps from code (DL:15/01/2014) with params: resize=0.5, convolve=1, thebasis='31informax975' |       |
| lmage Signature                         | Xiaodi Hou, Jonathan Harel, Christof Koch, Image Signature:<br>Highlighting Sparse Salient Regions [PAMI 2011]                           | matlab                | 0.75 | 0.43 | 4.49 | 0.74 | 0.66 | 0.38 | 1.01 | 1.09 | first tested: 19/06/2014<br>last tested: 15/11/2015<br>maps from authors                                             | 1     |
| Local+Global<br>Saliency Model<br>(LGS) | Ali Borji, Laurent Itti. Exploiting local and global patch rarities for sidecy detect in. (CVPR 2012)                                    | mati-b                | 0.76 | 0.42 | 4.63 | D 76 | 0.66 | 0.39 | 1.02 | 1.11 | first tested: 27/11/2014<br>last tested: 15/11/2015                                                                  |       |
|                                         | Pierre Marighetto, Nicolae Riche, Matei Mancae. Lº JN<br>SALICON Challenge<br>(http://sun.cs.princeton.edu/leaderboard/#saliencysalicon) |                       | 0.61 |      | 3.74 |      | 0.00 | 0.51 | 1.34 | 0.89 | first tested: 23/10/2015<br>last tested: 23/10/2015<br>maps from authors                                             |       |
| Corner-based<br>Satiency (CORS)         | Wirawit Rueopas                                                                                                                          | Python                | 0.79 | 0.47 | 3.91 | 0.77 | 99.0 | 0.46 | 1.22 | 1.03 | first tested: 30/03/2016<br>last tested: 30/03/2016<br>maps from authors                                             |       |
| Salient Point<br>Parzen Map<br>(SPPM)   | Saulo Oliveira                                                                                                                           |                       | 0.77 | 0.46 | 4.17 | 0.76 | 99.0 | 0.42 | 1.10 | 1.13 | first tested: 23/10/2016<br>last tested: 23/10/2016<br>maps from authors                                             | d.    |
| Boolean Map<br>based Saliency           | Janming Zhang, Stan Sclaroff, Saliency detection: a boolean                                                                              | matlab,<br>executable | 0.83 | 0.51 | 3.35 | 0.82 | 0.65 | 0.55 | 1.41 | 0.81 | first tested: 14/05/2014<br>last tested: 23/09/2014                                                                  | 4     |

http://saliency.mit.edu

### Weaknesses

Predict well only on natural images

## Weaknesses



Input



Orientational pop-out



Saliency map by proposed model

### Weaknesses

- No higher knowledge
  - Shape
  - Faces
  - Object

### Conclusion

- Corners
  - Predict saliency well
  - Biologically plausible
  - Good shape descriptor

Thank You:)

Q & A

## Applications

- Reduce the object detection time
- · Video compression
- Image retargeting
- Advertisement validation



https://www.computer.org/csdl/trans/tp/2012/10/ttp2012101915-abs.html



HOME SERVICE CASE STUDIES CREW SCIENCE RESEARCH CONTACT

#### Visual Ad Scan Technology™

Vast™ scanning software predicts what consumers see in the first seconds of ad viewing



http://www.visualadscan.com

## Why not machine learning?

- Clear contribution of feature
- · System is easier to get up and running

### Resources

http://www.imodel.org/m/09/MEO\_Gabor/g/MEO\_Gabor.jpg