Readings for the Week of January 31, 2022

§1.6, 2.2: Existence and Uniqueness; Linear ODEs **§2.3, App. A:** Cramer's Rule and the Wronskian

Problem Set 3

(Due Monday, February 7, 2022, at 11 p.m.)

For a 10% penalty on your score, you may hand in the problem set late, until February 8, 2022, 11 p.m.

- 1. For each of the following ODEs, answer the following questions:
 - is the ODE linear?
 - if the ODE is linear, write a linear differential operator L and use it to rewrite the ODE in the form Lx = E(t).
 - is the ODE homogeneous?

(a)
$$\frac{d^5x}{dt^5} + t^2 \frac{dx}{dt} = te^t.$$

(b)
$$\frac{d^2x}{dt^2} = x\frac{dx}{dt} + t.$$

(c)
$$\frac{d^3x}{dt^3}\sin(t)\frac{dx}{dt} = t^2x.$$

(d)
$$\frac{d^3x}{dt^3} + e^t \frac{d^2x}{dt^2} + tx = e^t$$
.

2. Calculate and simplify the determinant of the following matrix:

$$\begin{bmatrix} e^t & \sin t & \cos t \\ e^t & \cos t & -\sin t \\ e^t & -\sin t & -\cos t \end{bmatrix}$$

- 3. Consider the differential equation Lx = 0 where $L = D^3 4D$.
 - (a) Check that each of $h_1(t) = 1$, $h_2(t) = e^{2t}$ and $h_3(t) = e^{-2t}$ are solutions to this ODE.
 - (b) Use the Wronskian test to confirm that h_1 , h_2 , h_3 generate the general solution.
 - (c) Indicate' the system of linear equations that you would need to solve in order to find c_1 , c_2 , c_3 such that

$$x(t) = c_1 h_1(t) + c_2 h_2(t) + c_3 h_3(t)$$

is a solution to the initial value problem Lx = 0, x(0) = 1, x'(0) = 1, x''(0) = 1. Do not solve this system of equations.

- 4. Find the solution to the initial value problem $D^2x = sin(2t)$, $x(\pi) = 1$, $x'(\pi) = 0.5$.
- 5. Let $L = D^2 3D + 2$.
 - (a) Check that $h_1(t) = e^{2t}$ and $h_2(t) = e^t$ are both solutions to the Ordinary Differential Equation Lx = 0.
 - (b) Use the Wronskian test to show that $x(t) = c_1h_1(t) + c_2h_2(t)$ is the general solution of Lx = 0.
 - (c) Note that L[t] = 2t 3. Thus p(t) = t is a solution to the ODE $(\clubsuit)Lx = 2t 3$.

Find the general solution to the $ODE(\clubsuit)$.