IV.12.4(a).

```
| (*запишем наши функции*)
| g1[x_, y_] := Sin[x+1]-y-1.2
| g2[x_, y_] := 2 x + Cos[y]-2
| g[x_, y_] := g1[x, y] - g2[x, y]
| ContourPlot[{g1[x, y] == 0, g2[x, y] == 0}, {x, -3, 3}, {y, -3, 3}, ContourStyle \rightarrow {{Thick, Blue}, {Thick, Red}}, PlotLegends \rightarrow {"g1(x, y) = 0", "g2(x, y) = 0"}, FrameLabel \rightarrow {"x", "y"}, PlotRange \rightarrow All, ImageSize \rightarrow Large]
| (*Найдем решение системы (иначе не знаю как оценивать точность начального приближения для МПИ)*)
| FindRoot[{g1[x, y] == 0, g2[x, y] == 0}, {x, 0}, {y, 0}]
```


Out[5]=
$$\{x \rightarrow 0.51015, y \rightarrow -0.201838\}$$

(*область локализации,
$$[0,1]*[-1,0]*$$
)

(*Возьмем некоторое отображение и проверим доста—е условия сжимаемости*)

(* $x=1-\cos y$, $y=\sin(x+1)-1,2*$)

 $G1[x_, y_]:=1-\cos[y]/2$
 $G2[x_, y_]:=\sin[x+1]-1.2$

 $J[x_{y}] := \{\{D[G1[x,y], x], D[G1[x,y], y]\}, \{D[G2[x,y], x], D[G2[x,y], y]\}\}\}$ Norm1[x_, y_] := Max[Total[Abs[J[x,y]][All, 1]]], Total[Abs[J[x,y]][All, 2]]]];

NMaximize[{Norm1[x,y], 0 \le x \le 1 && -1 \le y \le 0}, {x,y}]

(*взяли 1 норму, видим что максимум нормы матрицы Якоби < 1*)

```
In[0]:=
    (*Итог: наше отображение G является сжимающим, теперь построим МПИ*)
    NormV1[x_, y_] := Abs[x] + Abs[y]
    (*взяли 1 векторную норму для согласованности*
    q := 0.540302 (*из прошлого пункта*)
    accuracy := 10^(-3)
    (*Начальное приближение*)
     xk := 0.0
    yk := 0.0
    err := NormV1[0.5, -0.2]
    For[i = 1, i ≤ 100, i++,
     curXk = xk;
      curYk = yk;
     xk = G1 curXk, curYk];
     yk = G2[curXk, curYk];
     err = err *q; (*На семинаре показали эволюцию ошибки*)
     If[err < accuracy, Break[]];</pre>
    \{xk, yk, i\}
    (*Итог: при начальном приближении (0,0) МПИ сходится за 11 шагов*)
Out[*]= \{0.51015, -0.201838, 11\}
```

```
(★Теперь построим метод Ньютона★)
(*Начальное приближение*)
xnk := 0.51015
ynk := -0.201838
f1[x_{,}, y_{,}] := sin[x+1] - y - 1.2
f2[x_{y}, y_{z}] := 2x + Cos[y] - 2
df1x[x_{,} y_{,} := cos[1.0 + x];
dfly[x_, y_] := -1.0;
df2x[x_, y_] := 2.0;
df2y[x_{,} y_{,} := -sin[y];
For [i = 1, i \le 100, i++,
 curXnk = xnk;
 curYnk = ynk;
 der = Inverse[{{dflx[curXnk, curYnk], dfly[curXnk, curYnk]},
     {df2x[curXnk, curYnk], df2y[curXnk, curYnk]}}];
 xnk = curXnk - der[[1, 1]] * f1[curXnk, curYnk] + der[[1, 2]] * f2[curXnk, curYnk];
 ynk = curYnk - der [2, 1] * f1 curXnk, curYnk + der [2, 2] * f2 curXnk, curYnk ;
 deltaX = Abs[xnk - curXnk];
 deltaY = Abs vnk - curYnk];
 Print["Step: ", i, ", \Delta x: ", deltaX, ", \Delta y: ", deltaY];
\{xnk, ynk, i\}
(★Видим, что до 8 шага точность хорошоая, а потом метод начинает расходиться★)
Step: 1, \Delta x: 7.27853 \times 10<sup>-8</sup>, \Delta y: 4.29311 \times 10<sup>-7</sup>
Step: 2, \Delta_x: 2.30236 \times 10<sup>-7</sup>, \Delta_y: 1.39544 \times 10<sup>-8</sup>
Step: 3. \Delta x: 4.60472 \times 10<sup>-7</sup>. \Delta y: 2.7909 \times 10<sup>-8</sup>
Step: 4, \Delta_x: 9.20944 \times 10<sup>-7</sup>, \Delta_y: 5.58185 \times 10<sup>-8</sup>
Step: 5, \Delta_{x}: 1.84189 \times 10<sup>-6</sup>, \Delta_{y}: 1.11639 \times 10<sup>-7</sup>
```

Step: 6, Δ_{x} : 3.68378 \times 10⁻⁶, Δ_{y} : 2.23285 \times 10⁻⁷ Step: 7, Δ_{x} : 7.36755 \times 10⁻⁶, Δ_{y} : 4.46601 \times 10⁻⁷ Step: 8, Δx : 0.0000147351, Δy : 8.93322 \times 10 Step: 9, Δ_x : 0.0000294701, Δ_y : 1.78713 \times 10⁻⁶ Step: 10, Δ_x : 0.00005894, Δ_y : 3.5762 \times 10⁻⁶ Step: 11, Δ_{x} : 0.000117879, Δ_{y} : 7.16015 \times 10⁻⁶ Step: 12, Δ_x : 0.000235755, Δ_y : 0.0000143513 Step: 13, Δ_x : 0.000471498, Δ_y : 0.0000288267 Step: 14, Δx : 0.000942946, Δy : 0.0000581495 Step: 15, Δx : 0.00188569, Δy : 0.000118283 Step: 16, Δx : 0.00377058, Δy : 0.000244499 Step: 17, Δx : 0.00753792, Δy : 0.000520694 Step: 18, Δ x: 0.0150629, Δ y: 0.00116791 Step: 19, Δx : 0.0300738, Δy : 0.0028397 Step: 20, Δx : 0.0599365, Δy : 0.00767639 Step: 21, Δx : 0.118997, Δy : 0.0231758 Step: 22, Δ_x : 0.234106, Δ_y : 0.0760437 Step: 23, Δx : 0.448379, Δy : 0.25361 Step: 24, Δ_{x} : 0.791986, Δ_{y} : 0.73627 Step: 25, Δ_x : 1.3747, Δ_y : 1.44479

Step: 26, Δ_x : 4.15095, Δ_y : 0.579064 Step: 27, Δx : 6.38551, Δy : 3.93471 Step: 28, Δ_x : 14.2924, Δ_y : 7.51817 Step: 29, Δx : 29.4109, Δy : 2.87276 Step: 30, Δ_x : 82.9359, Δ_y : 51.5454 Step: 31, Δx : 160.339, Δy : 78.2492 Step: 32, Δx : 500.557, Δy : 540.832 Step: 33, Δx : 643.09, Δy : 328.901 Step: 34, Δ_x : 1150.39, Δ_y : 770.82 Step: 35, Δ x: 2618.38, Δ y: 184.963

- Step: 36, Δ x: 6960.11, Δ y: 5768.15
- Step: 37, Δx : 8344.55, Δy : 10294.4
- Step: 38, Δ_x : 18588.5, Δ_y : 3874.76
- Step: 39, Δx : 42295.4, Δy : 13727.6
- Step: 40, Δx : 67312.5, Δy : 28273.9
- Step: 41, Δx : 199426., Δy : 108230.
- Step: 42, Δ_x : 541768., Δ_y : 607207.
- Step: 43, Δx : 1.10803 \times 10⁶, Δy : 540181.
- Step: 44, Δ_{x} : 2.10178 \times 10⁶, Δ_{y} : 338558.
- Step: 45, Δx : 3.82918 \times 10⁶, Δy : 572671.
- Step: 46, Δx : 6.32892 × 10⁶, Δy : 5.46756 × 10⁶
- Step: 47, Δ_{x} : 1.55312 \times 10⁷, Δ_{y} : 5.25041 \times 10⁶
- Step: 48, Δx : 3.07968 \times 10⁷, Δy : 5.87317 \times 10⁶
- Step: 49, Δ_{x} : 8.70128 \times 10⁷, Δ_{y} : 5.71496 \times 10⁷
- Step: 50. Δx : 9.62426 \times 10⁷. Δv : 1.0672 \times 10⁸
- Step: 51, Δ_{x} : 2.43624 \times 10⁸, Δ_{y} : 2.14114 \times 10⁷
- Step: 52, Δx : 4.78216 \times 10⁸, Δy : 3.90541 \times 10⁷
- Step: 53, Δ_{x} : 1.40442 \times 10⁹, Δ_{y} : 8.81918 \times 10⁸
- Step: 54, Δx : 1.48796 \times 10 9 , Δy : 2.26564 \times 10 9
- Step: 55, Δ_{x} : 4.60801 × 10⁹, Δ_{y} : 1.53756 × 10⁹
- Step: 56, Δ_{x} : 1.21422 \times 10¹⁰, Δ_{y} : 1.08353 \times 10¹⁰
- Step: 57, Δx : 2.10202 \times 10¹⁰, Δy : 9.59467 \times 10⁹
- Step: 58, Δ_{x} : 4.15067 \times 10¹⁰, Δ_{y} : 1.8856 \times 10⁹
- Step: 59, Δx : 1.26281 \times 10¹¹, Δy : 1.06207 \times 10¹¹
- Step: 60, Δx : 2.7936 \times 10¹¹, Δy : 1.44106 \times 10¹¹
- Step: 61, Δx : 4.75985 \times 10¹¹, Δy : 2.23717 \times 10¹¹
- Step: 62, Δ_{x} : 1.84341 \times 10¹², Δ_{y} : 2.11028 \times 10¹²
- Step: 63, Δx : 2.30039 \times 10¹², Δy : 2.47348 \times 10¹²
- Step: 64, Δx : 6.33758 \times 10¹², Δy : 3.04603 \times 10¹²

```
Step: 65, \Delta_{x}: 1.07528 \times 10<sup>13</sup>, \Delta_{y}: 7.33554 \times 10<sup>12</sup>
Step: 66, \Delta x: 2.24961 \times 10<sup>13</sup>, \Delta y: 1.24425 \times 10<sup>13</sup>
Step: 67, \Delta x: 3.53956 \times 10<sup>13</sup>, \Delta y: 4.67247 \times 10<sup>13</sup>
Step: 68, \Delta_{x}: 6.73855 \times 10<sup>13</sup>, \Delta_{y}: 9.51145 \times 10<sup>13</sup>
Step: 69, \Delta x: 1.34237 \times 10<sup>14</sup>, \Delta y: 3.239 \times 10<sup>13</sup>
Step: 70, \Delta x: 2.55869 \times 10<sup>14</sup>, \Delta y: 3.09189 \times 10<sup>14</sup>
Step: 71, \Delta_{x}: 1.19782 \times 10<sup>15</sup>, \Delta_{y}: 1.34155 \times 10<sup>15</sup>
Step: 72, \Delta_{x}: 1.53351 \times 10<sup>15</sup>, \Delta_{y}: 1.06637 \times 10<sup>15</sup>
Step: 73. \Delta x: 2.23097 \times 10<sup>15</sup>. \Delta y: 2.08684 \times 10<sup>15</sup>
Step: 74, \Delta_x: 4.23978 \times 10<sup>15</sup>, \Delta_y: 2.92528 \times 10<sup>15</sup>
Step: 75, \Delta_{x}: 7.00366 × 10<sup>15</sup>, \Delta_{y}: 6.81562 × 10<sup>15</sup>
Step: 76, \Delta_{x}: 1.57932 \times 10<sup>16</sup>, \Delta_{y}: 7.59656 \times 10<sup>15</sup>
Step: 77, \Delta_{x}: 2.96885 \times 10<sup>16</sup>, \Delta_{y}: 9.81554 \times 10<sup>15</sup>
Step: 78, \Delta_{x}: 7.02568 \times 10<sup>16</sup>, \Delta_{y}: 1.65565 \times 10<sup>16</sup>
Step: 79, \Delta_{x}: 1.27144 \times 10<sup>17</sup>, \Delta_{y}: 4.15373 \times 10<sup>16</sup>
Step: 80, \Delta_{x}: 2.09045 \times 10<sup>17</sup>, \Delta_{y}: 1.40975 \times 10<sup>17</sup>
Step: 81, \Delta x: 3.96159 \times 10<sup>17</sup>, \Delta y: 3.30754 \times 10<sup>17</sup>
Step: 82, \Delta_{x}: 8.4343 \times 10<sup>17</sup>, \Delta_{y}: 4.44168 \times 10<sup>17</sup>
Step: 83, \Delta x: 2.79605 \times 10<sup>18</sup>, \Delta y: 2.19158 \times 10<sup>18</sup>
Step: 84. \Delta x: 4.89446 \times 10<sup>18</sup>. \Delta y: 2.4279 \times 10<sup>18</sup>
Step: 85, \Delta x: 9.5848 \times 10<sup>18</sup>, \Delta y: 3.7365 \times 10<sup>17</sup>
Step: 86, \Delta_x: 1.54621 \times 10<sup>19</sup>, \Delta_y: 7.45497 \times 10<sup>18</sup>
Step: 87, \Delta_x: 3.24749 \times 10<sup>19</sup>, \Delta_y: 4.65238 \times 10<sup>18</sup>
Step: 88, \Delta_{x}: 6.83654 \times 10<sup>19</sup>, \Delta_{y}: 1.01058 \times 10<sup>19</sup>
Step: 89. \Delta_{x}: 1.20442 \times 10<sup>20</sup>. \Delta_{y}: 8.88383 \times 10<sup>19</sup>
Step: 90. \Delta x: 2.54075 \times 10<sup>20</sup>. \Delta y: 8.04813 \times 10<sup>18</sup>
Step: 91, \Delta x: 3.08425 \times 10<sup>20</sup>, \Delta y: 4.05441 \times 10<sup>20</sup>
Step: 92, \Delta x: 5.4244 \times 10<sup>20</sup>, \Delta y: 6.72868 \times 10<sup>20</sup>
```

```
Step: 93, \Delta x: 9.67976 \times 10<sup>20</sup>, \Delta y: 1.1801 \times 10<sup>21</sup>

Step: 94, \Delta x: 1.52917 \times 10<sup>21</sup>, \Delta y: 1.77809 \times 10<sup>21</sup>

Step: 95, \Delta x: 4.22521 \times 10<sup>21</sup>, \Delta y: 1.04272 \times 10<sup>21</sup>

Step: 96, \Delta x: 5.48263 \times 10<sup>21</sup>, \Delta y: 5.39537 \times 10<sup>21</sup>

Step: 97, \Delta x: 1.24855 \times 10<sup>22</sup>, \Delta y: 2.62124 \times 10<sup>21</sup>

Step: 98, \Delta x: 2.67469 \times 10<sup>22</sup>, \Delta y: 5.82988 \times 10<sup>21</sup>

Step: 99, \Delta x: 5.18929 \times 10<sup>22</sup>, \Delta y: 4.2346 \times 10<sup>22</sup>

Step: 100, \Delta x: 1.04977 \times 10<sup>23</sup>, \Delta y: 7.46152 \times 10<sup>21</sup>

Out[-]= \left\{-2.09668 \times 10^{23}, -2.09645 \times 10^{22}, 101\right\}
```

In[0]:=