Haptic Virtual Approach: 触覚・仮想アプローチおよび効果 測定手法の検討

基盤システムソフトウエア研究室 指導教員 菅谷みどり AL12091 保科篤志

背景

- 「橙色の屋根のお家」[1]
 - 発達障害や学習障害を抱えた子ども達のコミュニケーション力の向上を目的
 - センサーが付いた家形デバイス(触覚)とCG(仮想)を連携
 - 具体物や抽象概念を触覚,仮想情報によって把握可能

[1]: 渡辺柚佳子. "橙色の屋根のお家:コミュニケーションに障害を持つ児童向けのデジタル教材". 卒業論文概要集. 芝浦工業大学. 2015, 第36号, p.145-146

先行実験の結果/問題点

• 通常のドールハウスと橙色の屋根のお家の効果比較

評価項目	通常のドールハウス	橙色の屋根のお家		
具体物に反応した回数	9回(約1.9回/分)		32回(約3.1回/分)	
抽象概念に反応した回数	5回(約1.1回/分)		24回(約2.3回/分)	
ミスコミュニケーションが発 生した回数	20回(約4.3回/分)		4回(約0.4回/分)	
継続時間	4分37秒		10分20秒	

協力者:

定型発達の女児(5歳)1名 セラピスト1名 サポート1名 通常のドールハウスよりも全ての項自にお いて効果が上昇

→効果の要因の調査が行われていなかっ

2016/2/9

目的/提案

- 「橙色の屋根のお家」の効果の要因を得る
 - 仮説:デバイス(触覚;Haptic)とCG(仮想情報;Virtual)の連携が効果を発揮
 - 本効果を Haptic Virtual とする
 - Haptic Virtualの効果を, Haptic/Virtual単体との<u>比較により明確にする</u>
- 効果の測定方法
 - 生体情報で効果の測定・比較
 - 心拍:わくわくの評価[2],ストレスの評価[3]
 - 脳波:集中の評価[4],リラックスの評価[5]
 - 言語反応やデバイスの体験時間と結びつけられるか
 - [2] Michiko OHKURA 他, "MEASUREMENT OF "WAKUWAKU" FEELING GENERATED BY INTERACTIVE SYSTEMS USING BIOLOGICAL SIGNALS". KEER. 2010
 - [3] 南谷晴之. "疲労とストレス". バイオメカニズム学会誌. Vol.21, No.2, 1997, pp.58-64
 - [4] Greeta U Navalyal 他. "A dynamic attention assessment and enhancement tool using computer graphics". Human-centric Computing and Information Sciences, 2014, 4:11
- [5] Kimberly Chu 他. "Player's Attention and Meditation Level of Input Devices on Mobile Gaming". i-USEr. 2014, pp.13-17_{2016/2/9} 2015年度卒業研究発表会 4

※Haptic, Virtualを単体で運用するときも,同一のデバイスを使用

開発環境

使用したセンサー

センサー類	デバイスでの機能
	人形の認識
	照明, LEDの明度調整
	照明の電源操作
	エアコンの電源操作
	エアコンの温度を上げる
	エアコンの温度を下げる
	R10 J5

ソフトウェア実装

• Haptic Virtualのソフトウェア実装

操作者	機能	入力	出力
	キャラクターの表示	人形, 圧力センサー	CG
	エアコン・温度の操作	タクトスイッチ	CG
	照明の電源操作	タクトスイッチ	LED, CG
	照明, LEDの明度変更	可変抵抗器	LED, CG
	季節の変更(=気温の変化)	キーボード	CG
	時間の変更(=気温,部屋の 明るさの変化)	キーボード	CG
	キャラクターの感情表現	キーボード	CG

Haptic:

説明者の入力:な

L

出力:CG→口答

Virtual:

入力:すべてキーボード

出力:LED→なし

効果測定

- 目的
 - 3つのデバイス(Haptic, Virtual, Haptic Virtual)の効果比較

- 効果の比較内容
 - デバイスの体験順番の違いによる生体情報の比較
 - 複数回実験を行った際の生体情報の比較
 - 個人差による属性や主観評価と,生体情報の効果の関連

生体情報の測定手順

計器	測定值	測定内容	測定周期
心拍計 WHS-1[6]	心拍数 LF/HF(*)	わくわく度 ストレス度	0.6秒~1秒
脳波計 MindWave Mobile[7]	Attention(**) Meditation(**)	集中度 リラックス度	1秒~6秒

(*)LF(交感神経、緊張の指標)/HF(副交感神経、リラックスの指標)

(**)本脳波計の独自のアルゴリズムから算出される値(0-100)

MindWave Mobile

[6] "心拍センサ WHS-1". 株式会社ユニオンツール

http://www.uniontool.co.jp/product/sensor/index_02.html

[7] "MindWave Mobile: Brainwave Starter Kit". NeuroSky Store

http://store.neurosky.com/collections/eeg-headsets/products/brainwave-starter-kit

実験内容

- 対象
 - 20~24歳の学生20名(男:16名,女:4名)

- <u>デバイスの体験順番が異なる</u>4つのグループ(各5名)
 - グループ1, 2: Haptic Virtualを最後に体験するグループ
 - グループ3,4:Haptic Virtualを最初に体験するグループ
- 実験の複数回実施
 - 各グループ1名ずつ,計4名に実験を2度行ってもらう

手順

- 1) 自身に対するアンケートに回答
- 2)2分間、閉眼静止状態の生体情報を取得
- 3)3つのデバイスの内,1つを体験
- 4) デバイスの印象評価アンケートに回答
- 5)全てのデバイスを体験するまで,3)と4)の繰り返し

主観評価の項目

アンケートの種類	項目	評価 (低い ←→ 高い)
自身に対する質問	年齢 実験回数 前日の睡眠時間 画面で動くものを見るのが好き	嫌い ←→ 好き
	子どものころ,おもちゃで遊ぶのが 好きだった	嫌い ←→ 好き
	楽しさ	退屈 ←→ 楽しい
	動的さ	静的な ←→ 動的 な
	好き・嫌い	嫌いな ←→ 好き な
デバイフの印象証価	変化の多さ	単調な ←→ 変化に富んだ
デバイスの印象評価	想像性	想像に乏しい ←→ 想像が膨らむ
	斬新さ	陳腐な ←→ 斬新 な
	分かりやすさ	分かりづらい ←→ 分かりやすい

分析方法

- 生体情報の測定値の変化率を算出して比較[8]
 - --(剤)定値の各平均値の変化率(%)=

- 変化率の比較では,以下
 動
 ・
 順で有意差を確認
 - 変化率の比較では、以下の手順で有意差を確認

分析の種類	分析する内容
(繰り返しのない) 二元配置分散分析	・すべてのグループの,各デバイスの各生体情報の変化率
対応のあるt検定	 分散分析で有意差が現れたグループの生体情報 Haptic Virtualと、それ以外のデバイスの生体情報の平均値の有意差

3つのデバイスの生体情報の比較結果

• 二元配置分散分析(P値の算出)の結果

集中度の比較

• HapticとHaptic Virtual, VirtualとHaptic Virtualの 比較

− <u>Attention(</u> タグループ	集中度)の変化 検定の種類	審のt検定(t値の Haptic Virtual のt値	算出) Virtualと Haptic Virtual のt値
2 (Haptic Virtual	片側	0.308 ^	0.059
(Haptic Virtual を最後に体験)	両側	0.617	\0.118
3	片側	0.009	\ .037
(Haptic Virtual を <mark>最初に</mark> 体験)	両側	0.017	075

有意差を確認できない

集中度の比較

• HapticとHaptic Virtual, VirtualとHaptic Virtualの 比較

- Attention(集中度)の変化率のt検定(t値の算出)						
グループ	·	Hapticと Haptic Virtual のt値	Virtual 2			
2 (Hantic Virtual	片側	0.308	0.059			
_ (Haptic Virtual を最後に体験)	両側	0.617	0.118			
3	片側	0.009	0.037			
(Haptic Virtual を最初に体験)	両側	0.017	0.075			

有意差を確認できた

→グループ3のAttentionを用いて以降の分析を

グループ3の集中度の推移の比較

複数回実験の効果の比較

• Attention(集中度)の変化率を,1度目と2度目で比較

実験回数	Haptic Virtualでの Attention変化率 (%)
1回目	72.74
2回目	81.47(+8.73)

- 対応のない等分散のt検定で有意差を確認
 - 検定内容:1度目と2度目のAttentionの平均(変化率ではない)

デバイス	t値		
Haptic Virtual	0_268		

有意差あり: t値<0.05

有意差が見られない

→複数回デバイスを体験しても,集中度が下がらなかった

個人差による属性や主観評価と、生体情報の効果の関連

- ピアソンの積率相関係数rを算出
- Attention(集中度)と質問項目との相関を算出

アンケートの 種類	項目	相関 (Haptic Virtual)	相()	i関 Haptic)	相関 (Virtual)
	画面で動くものを 見るのが好き	正の相関	ΙĒ	の相関	正の相関
	斬新さ	負の相関		の相関	無相関

すべてのデバイスに正の相関

- →CGに表示された画面の変化に集中の向上を促した
- →Haptic(家型デバイスの操作のみ)でも集中が向上した

個人差による属性や主観評価と、生体情報の効果の関連

- ピアソンの積率相関係数rを算出
- Attention(集中度)と質問項目との相関を算出

アンケートの 種類	項目	相関 (Haptic Virtual)	相関 (Haptic)	相関 (Virtual)
	画面で動くものを 見るのが好き	正の相関	正の相関	正の相関
	斬新さ	負の相関	負の相関	無相関

Haptic VirtualとHapticに負の相関

→Hapticの操作に陳腐感を抱く人ほど高い集中度を発揮

考察

- Haptic Virtualの優位性
 - 集中度に見られた
 - デバイス体験時間と結び付けられるか
- 複数回の実験に対する,集中への影響
 - 有意差が見られなかった
 - ▶繰り返し用いるという運用方法に適している
- アンケートの分析
 - 相関が現れた項目があった
 - ▶ デバイスを好むユーザの傾向の確認

課題

- 今回の実験に対する課題
 - より多くの被験者に対する実験の協力
 - 生体情報の詳細な反応を測定できる計器の使用
- 将来的な課題
 - デバイス・ソフトウェアの再設計
 - 実験手法の再検討
 - 子どもに対する実験
 - Haptic Virtualの, 複数のデバイスへの導入

参考文献

- [1]渡辺柚佳子. "橙色の屋根のお家:コミュニケーションに障害を持つ児童向けのデジタル教材". 卒業論文概要集. 芝浦工業大学. 2015, 第36号, p.145-146
- [2] Michiko OHKURA 他, "MEASUREMENT OF "WAKUWAKU" FEELING GENERATED BY INTERACTIVE SYSTEMS USING BIOLOGICAL SIGNALS". KEER. 2010
- [3] 南谷晴之. "疲労とストレス". バイオメカニズム学会誌. Vol.21, No.2, 1997, pp.58-64
- [4] Greeta U Navalyal 他. "A dynamic attention assessment and enhancement tool using computer graphics". Human-centric Computing and Information Sciences, 2014, 4:11
- [5] Kimberly Chu 他. "Player's Attention and Meditation Level of Input Devices on Mobile Gaming". i-USEr. 2014, pp.13-17
- [6] "心拍センサ WHS-1". 株式会社ユニオンツール
- http://www.uniontool.co.jp/product/sensor/index_02.html
- [7] "MindWave Mobile: Brainwave Starter Kit". NeuroSky Store
- http://store.neurosky.com/collections/eeg-headsets/products/brainwave-starter-kit [8]高津浩彰 他. "心拍変動による精神的ストレスの評価についての検討". 電子論C, 120巻1号, 2000, p.104-110

ご清聴ありがとうございました