Institute for Analysis and Scientific Computing

Lothar Nannen, Markus Wess

Numerische Mathematik - Kreuzlübung 1

Übungstermin: 8.10.2019 1. Oktober 2019

Aufgabe 1:

Sei $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times k}$, $C \in \mathbb{R}^{k \times l}$ und $b \in \mathbb{R}^m$ für $n, m, k, l \in \mathbb{N}$. Berechnen Sie die Anzahl der Rechenoperationen zur Berechnung von

- \mathbf{a}) Ab.
- **b**) *AB*,
- c) (AB)C und
- d) A(BC).

Erklären Sie den Unterschied zwischen (c) und (d) für den Fall n,k=1000 und m,l=2.

Aufgabe 2:

Zur Berechnung der Euler'schen Zahl e könnte man so vorgehen, dass man den Grenzwert

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1}$$

bzw.

$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} \tag{2}$$

approximiert, indem man n geeignet wählt.

- a) Wieviele Rechenoperationen benötigen Sie in Abhängigkeit von n zur Approximation von e bei beiden Varianten.
- b) Schätzen Sie für beide Varianten den Approximationsfehler $\Delta_{\rm app}(n) := e \left(1 + \frac{1}{n}\right)^n$ bzw. $\Delta_{\rm app}(n) := e \sum_{k=0}^n \frac{1}{k!}$ in Abhängigkeit von n ab.

Hinweis: Verwenden Sie für die erste Variante den Mittelwertsatz der Differentialrechnung für eine geeignete Funktion f auf dem Intervall [0, 1/n].

Aufgabe 3:

Sei f eine Abbildung des normierten linearen Raumes $(X, \|\cdot\|_X)$ in den normierten linearen Raum $(Y, \|\cdot\|_Y)$. Dann kann die absolute Konditionszahl

des Problems (f, x) (Auswertung von f an der Stelle $x \in X$) als die kleinste Zahl $\kappa \in \mathbb{R}_+ \cup \{\infty\}$ definiert werden, sodass für hinreichend kleine $h \in X$ gilt $||f(x+h) - f(x)||_Y \le \kappa ||h||_X$.

Berechnen Sie in diesem Sinne die absolute Konditionszahl der Abbildung

$$x \mapsto Q(x) := \int_{-2}^{2} \frac{x(t)}{\sqrt{4 - t^2}} dt,$$

wobei X der Raum aller auf dem Intervall [-2,2] stetigen Funktionen versehen mit der Supremumsnorm $\|x\|_{\infty} := \sup_{t \in [-2,2]} |x(t)|$ ist. Für $Y = \mathbb{R}$ verwenden Sie die übliche Betragsfunktion als Norm.

Aufgabe 4:

Für eine Folge $(x_t)_{t\in\mathbb{N}}$ aus \mathbb{R} gelte $|4-x_{t+1}| < q|4-x_t|^2$ für $t\in\mathbb{N}$ und q>0. Unter welchen Voraussetzungen an den Startwert x_1 ist die Konvergenz dieser Folge garantiert? Wie groß muss t in Abhängigkeit von x_1 und q sein, damit $|4-x_t|$ im double precision standard 0 ist?

Aufgabe 5:

In Beispiel 1.1 der Vorlesung wird eine Fixpunktiteration der Form

$$x_t := \frac{1}{x_{t-1}} + \frac{x_{t-1}}{2}, \qquad t \in \mathbb{N},$$

mit einem Startwert $x_0 = 5$ zu Berechnung von $\sqrt{2}$ verwendet. Beweisen Sie, dass diese Fixpunktiteration für beliebige Startwerte $x_0 > 0$ gegen $\sqrt{2}$ konvergiert. Vernachlässigen Sie dabei mögliche Rundungsfehler.

Aufgabe 6:

Sei $(x_t)_{t\in\mathbb{N}}$ eine Folge aus \mathbb{R}^n mit $||x_t||_2 = \mathcal{O}(a^t)$, $t\to\infty$ und $a\in(0,1)$. Weiter sei $z_t:=\frac{x-x_t}{||x-x_t||_2}$ für $t\in\mathbb{N}$ mit einem beliebigen $x\in\mathbb{R}^n\setminus\{0\}$. Zeigen Sie

$$\left\|z_t - \frac{x}{\|x\|_2}\right\|_2 = \mathcal{O}(a^t), \quad t \to \infty.$$