

N3290x

Data Sheet

ARM926-based Media Processor

The information in this document is subject to change without notice.

The Nuvoton Technology Corp. shall not be liable for technical or editorial errors or omissions contained herein; nor for incidental or consequential damages resulting from the furnishing, performance, or use of this material.

This documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from the Nuvoton Technology Corp.

Nuvoton Technology Corp. All rights reserved.

N3290x

ARM926-based Media Processor

Table of Contents

1.	GENI	ERAL DESCRIPTION	5
	1.1	Applications	5
2.	FEAT	TURES	6
3.	PIN [DIAGRAM	12
	3.1	N32901U1DN (LQFP-128)	12
	3.2	N32901U2DN (LQFP-128)	13
	3.3	N32903U1DN (LQFP-128)	14
	3.4	N32903U2DN (LQFP-128)	15
	3.5	N32905U1DN (LQFP-128)	16
	3.6	N32905U2DN/N32905U4DN (LQFP-128)	17
	3.7	N32905U3DN (LQFP-128)	18
	3.8	N32901R1DN (LQFP-64)	19
	3.9	N32903R1DN (TQFP-64)	20
	3.10	N32905R3DN (TQFP-64)	21
4.	PIN D	DESCRIPTION	22
	4.1	Pin Description & Cross Reference	22
	4.2	Pin Type Description	30
5.	ELEC	CTRICAL SPECIFICATION	31
	5.1	Absolute Maximum Rating	31
	5.2	DC Characteristics (Normal I/O)	31
	5.3	Audio DAC Characteristics	32
	5.4	ADC Characteristics	34
	5.5	AC Characteristics (Digital Interface)	34
	5.6	Power-on Sequence	43
	5.7	Thermal characteristics of LQFP-128 Package	43
6.	ORD	ERING INFORMATION	44
	6.1	Part Number Definition	45
	6.2	Comparsion for Differences Between of N3290x series	46
7.	PAC	KAGE OUTLINE	47

Release Date: May, 2016

N3290x DATASHEET

	7.1	LQFP-128 (14X14X1.4mm body, 0.4mm pitch)	47
	7.2	LQFP-64 (10X10X1.4mm body, 0.5mm pitch)	48
	7.3	TQFP-64 (10X10X1.0mm body, 0.5mm pitch)	49
8	REVIS	SION HISTORY	52

1. GENERAL DESCRIPTION

The N3290xUxDN is built on the ARM926EJ-S CPU core and integrated with JPEG codec, CMOS sensor interface, 32-channel SPU (Sound Processing Unit), ADC, DAC, for meeting various kinds of application needs while saving the BOM cost. The combination of ARM926 @ 200MHz, synchronous DRAM, 2D BitBLT accelerator, CMOS image sensor interface, LCD panel interface, USB 1.1 Host & USB2.0 HS Device makes the N3290xUxDN the best choice for LCD ELA devices.

Maximum resolution for the N3290xUxDN is XVGA (1,024x768) @ TFT LCD panel. The 2D BitBLT accelerator accelerates the graphic compution to make the rendering smooth and off-load CPU to save power consumption.

The N3290xUxDN is well-positioned in terms of cost/performance for the applications which bitmap graphics is extensively used or CMOS Image Sensor (CIS) interface is required.

The N3290xUxDN is for application under Linux OS and leverage the driver availability of emerging functionalities like Wi-Fi, browser, etc. On the other hand, the open source code environment also give the product development more flexible.

To meet the different requirement of the overall system BOM cost, the different size of DRAM is stacked with N3290x main SoC into one package, that is, multi-chip package (MCP). The N32901U1DN is particularly designed with the 128-pin LQFP package and the 1Mbitx16 SDRAM is stacked inside the MCP. The N32903U1DN is particularly designed with the 128-pin LQFP package and the 4Mbitx16 SDRAM is stacked inside the MCP. The 16Mbitx16 DDR SDRAM is stacked inside the N32905U1DN/N32905U2DN MCP and 16Mbitx16 DDRII is stacked inside N32905U3DN, N32905R3DN and N32905U4DN to ensure higher performance and minimize the system design efforts, like EMI & noise coupling. Total BOM cost could be reduced by employing 2-layer PCB along with the elimination of damping resistors, EMI prevention components, etc. Advantages including, but not limited to, less PCB space, shorter lead time, and higher / reliable production yield.

1.1 Applications

- ELA (Educational Learning Aid)
- HMI
- Security
- Home Appliance
- Advertisement

2. FEATURES

- CPU
 - ARM926EJ-S 32-bit RISC CPU with 8KB I-Cache & 8KB D-Cache
 - Frequency up to 200MHz@1.8V core power operation voltage
 - JTAG interface supported for development and debugging
- Internal SRAM & ROM
 - 8KB internal SRAM and 16KB IBR internal booting ROM supported
 - IBR booting messages displayed by UART console for debugging supported
 - Different system booting modes supported:
 - Memory card
 - SD card
 - SD-to-NAND flash bridge
 - ◆ Raw NAND Flash
 - ◆ SPI Flash
 - ◆ USB
- EDMA (Enhanced DMA)
 - Totally 5 DMA channels supported
 - ♦ 4 peripheral DMA channels for transfer between memory and on-chip peripherals, such as ADC, UART and SPI
 - ♦ One dedicated channel for memory-to-memory transfer
 - Byte, half-word and word data width types supported
 - Single and burst transfer modes supported
 - Block transfer supported in memory-to-memory transfer channel
 - Color format transformation supported in memory-to-memory transfer channel
 - ♦ Source color format could be RGB555, RGB565 and YCbCr422
 - Destination color format could be RGB555, RGB565 and YCbCr422
 - Auto reload supported for continuous data transfer
 - Interrupt generation supported in the half-of-transfer or end-of-transfer
- Capture (CMOS Sensor I/F)
 - CCIR601 & CCIR656 interfaces supported for connection to CMOS image sensor
 - Resolution up to 2M pixel for Still Image Capture, 640x480 (VGA) resolution for MJPEG Video Streaming
 - YUV422 and RGB565 color format supported for data-in from CMOS sensor
 - YUV422, RGB565, RGB555 and Y-only color format supported for data storing to system memory
 - Planar and packet data formats supported for data storing to system memory
 - Image cropping supported with the cropping window up to 4096x2048
 - Image scaling-down supported
 - ♦ Vertical and horizontal scaling-down for preview mode supported
 - The scaling factor is N/M
 - Two pairs of configurable 8-bit N and 8-bit M for vertical and horizontal scaling-down
 - The value of N has to equal to or less than M
 - Frame rate control supported
 - Combines two interlace fields to a single frame supported for data in from TV-decoder
- JPEG Codec
 - Baseline Sequential mode JPEG codec function compliant with ISO/IEC 10918-1

international JPEG standard supported.

- Planar Format
 - ◆ Support to encode interleaved YCbCr 4:2:2/4:2:0 and gray-level (Y only) format image
 - ◆ Support to decode interleaved YCbCr 4:4:4/4:2:2/4:2:0/4:1:1 and gray-level (Y only) format image
 - ◆ Support to decode YCbCr 4:2:2 transpose format
 - Support arbitrary width and height image encode and decode
 - ◆ Support three programmable quantization-tables
 - ♦ Support standard default Huffman-table and programmable Huffman-table for decode
 - ◆ Support arbitrarily 1X~8X image up-scaling function for encode mode
 - ◆ Support down-scaling function for encode and decode modes
 - Support specified window decode mode
 - Support quantization-table adjustment for bit-rate and quality control in encode mode
 - Support rotate function in encode mode
- Packet Format
 - Support to encode interleaved YUYV format input image, output bitstream 4:2:2 and 4:2:0 format
 - ◆ Support to decode interleaved YCbCr 4:4:4/4:2:2/4:2:0 format image
 - ◆ Support decoded output image RGB555, RGB565 and RGB888 formats.
 - ♦ The encoded JPEG bit-stream format is fully compatible with JFIF and EXIF standards
 - Support arbitrary width and height image encode and decode
 - ◆ Support three programmable quantization-tables
 - Support standard default Huffman-table and programmable Huffman-table for decode
 - ◆ Support arbitrarily 1X~8X image up-scaling function for encode mode
 - Support down-scaling function 1X~ 16X for Y422 and Y420, 1X~ 8X for Y444 for decode mode
 - Support specified window decode mode
 - Support quantization-table adjustment for bit-rate and quality control in encode mode

2D Accelerator

- BitBLT operation
 - ♦ 2x2 transform matrix with effects:
 - Scale
 - Translate
 - Rotate
 - Shear
 - ◆ Alpha blending and color transformation supported
 - Source format for operations: supported color format of source bitmap
- Fill
 - ◆ Rectangle Fill with single color ARGB8888
 - ◆ Fill with blending effect supported
- Supported color formats
 - Source
 - 16 bits/pixel RGB565
 - 32 bits/pixel ARGB8888
 - 1 bit/pixel, 2 bits/pixel, 4 bits/pixel, 8 bits/pixel with RGB color palette
 - Destination
 - 16 bits/pixel RGB565
 - 32 bits/pixel ARGB8888

VPOST

- 8/16/18-bit SYNC type and 8/9/16/18-bit MPU type TFT LCD supported
- Color format supported:
 - ◆ YCbCr422, RGB565, RGB555, and RGB888 color formats supported for data in
 - ◆ YCbCr422, RGB565, RGB555, and RGB888 color formats supported for data out
- XGA (1024x768), SVGA (800x600), WVGA (800x480), D1 (720X480), VGA (640x480), WQVGA (480x272), QVGA (320x240) and HVGA (640x240) resolution supported
 - ◆ The maximum resolution is up to D1 (720X480) for TV output
 - ◆ The maximum resolution is up to 1024X768 for TFT LCD panel for still image displaying
 - ♦ The maximum resolution is up to 480x272 for TFT LCD panel for MJPEG video displaying up to 25fps.
- Display scaler to fit different size of LCD panels
 - ♦ Horizontal: At most 4.0x scale
 - ♦ Vertical: At most 3.0x scale
- For SYNC type LCD:
 - ◆ For 8-bit bus
 - CCIR601 YCbCr422 packet mode (NTSC/PAL) supported
 - CCIR601 RGB Dummy mode (NTSC/PAL) supported
 - CCIR656 interface supported
 - RGB Through mode supported
 - ◆ For 16/18-bit bus
 - Parallel pixel data output mode (1-pixel/1-clock)
- NTSC/PAL interlace & non-interlace output supported
- Color format transform supported:
 - ♦ Color format transform between YCbCr422 and RGB565
 - ◆ Color format transform from YCbCr422 to RGB888
- TV encoder supported
- Dual screen, outputs to TV and LCD simultaneously with same content, supported
 - ◆ LCD panel should be 320X240 MPU-type, or 8-bit SYNC-type LCD panel with TV timing
- Notch filter for NTSC supported to remove the rainbow color effect
- Support OSD function to overlap system information like battery life, brightness tuning, volume tuning or muting, etc.
- Frame Switch Controller
 - Frame relation controlled between VPOST and Capture supported
 - 2 modes supported to switch Frame Buffer Base
 - ◆ Frame Ratio Mode (16 selectable ratio)
 - ◆ Frame sync mode
 - Double/triple buffers supported
- SPU (Sound Processing Unit)
 - 32 stereo channels supported
 - PCM8/PCM16/4-bit MDPCM/TONE source format supported
 - 7-bit volume control supported for each of 32 channels
 - 5-bit pan control supported for each L/R of 32 channels
 - 10-band equalizer supported
 - Special code supported for loop playing and event detection
- Audio DAC

- 16-bit stereo DAC supported with headphone driver output
- H/W volume control supported
- I2S Controller
 - I2S interface supported to connect external audio codec
 - 16/18/20/24-bit data format supported
- Storage Interface Controller
 - Interface to NAND Flash:
 - 8-bit data bus width supported
 - ◆ SLC and MLC type NAND Flash supported
 - ♦ 512B, 2KB, 4KB, and 8KB page size NAND Flash supported
 - ◆ ECC4, ECC8, ECC12 and ECC15 algorithm supported for ECC generation, error detection and error correction
 - ◆ PBA-NAND flash supported
 - Interface to SD/MMC/SDIO/SDHC/micro-SD cards supported
 - ♦ SD-to-NAND flash bridge supported
 - DMA function supported to accelerate the data transfer between system memory and NAND Flash or SD/MMC/SDIO/SDHC/micro-SD
- USB Device Controller
 - USB2.0 HS (High-Speed) x 1 port
 - 6 configurable endpoints supported
 - Control, Bulk, Interrupt and Isochronous transfers supported
 - Suspend and remote wakeup supported
- USB Host Controller
 - USB1.1 Host one H/W Engine, two pin locations.
 - Fully compliant with USB Revision 1.1 specification
 - Open Host Controller Interface (OHCI) Revision 1.0 compatible
 - Full-speed (12Mbps) and low-speed (1.5Mbps) USB devices supported
 - Control, Bulk, Interrupt and Isochronous transfers supported
- Timer & Watch-Dog Timer
 - Two 32-bit with 8-bit pre-scalar timers supported
 - One programmable 24-bit Watch-Dog Timer supported
- PWM
 - 4 PWM channel outputs supported
 - 16-bit counter supported for each PWM channel
 - Two 8-bit pre-scalars supported and each pre-scalar shared by two PWM channels
 - Two clock-dividers supported and each divider shared by two PWM channels
 - Two Dead-Zone generators supported and each generator shared by two PWM channels
 - Auto reloaded mode and one-shot pulse mode supported
 - Capture function supported
- UART
 - A high speed UART supported:
 - ♦ Baud rate is up to 1M bps
 - ♦ 4 signals TX, RX, CTS and RTS supported
 - A normal UART supported:

- ♦ Baud rate is up to 115.2K bps
- ♦ 2 signals TX and RX supported only
- SPI
 - One SPI controller is supported
 - ♦ Both master and slave mode are supported in SPI interface
 - ◆ Two chip selection signals for two SPI devices
- I2C
 - One I2C channel supported
 - Compatible with Philips's I²C standard and only master mode supported
 - Multi-master operation supported
- Advanced Interrupt Controller
 - Total 32 interrupt source supported
 - Configurable interrupt type:
 - ◆ Low-active level triggered interrupt
 - ♦ High-active level triggered interrupt
 - ◆ Low-active edge (falling edge) triggered interrupt
 - ◆ High-active edge (rising edge) triggered interrupt
 - Individual interrupt mask bit for each interrupt source
 - 8 different priority levels supported
 - Daisy-chain priority mechanism supported for interrupts with same priority level
 - Low priority interrupt automatic masking supported for interrupt nesting
- RTC
 - Independent power plane supported
 - 32.768 KHz crystal oscillation circuit supported
 - Time counter (second, minute, hour) and Calendar counter (day, month, year) supported
 - Alarm supported (second, minute, hour, day, month and year)
 - 12/24-hour mode and Leap year supported
 - Alarm to wake chip up from Standby mode or from Power-down mode supported
 - Wake chip up from Power-down mode by input pin supported
 - Power-off chip by register setting supported
 - Power-on timeout is supported for low battery protection
- GPIO
 - 80 programmable general purpose I/Os supported and separated into 5 groups
 - Individual configuration supported for each I/O signal
 - Configurable interrupt control functions supported
 - Configurable de-bounce circuit supported for interrupt function
- ADC
 - Multi-channel, 10-bit ADC supported
 - ♦ 2 channels dedicated for 4-wire resistive touch sensor inputs
 - ♦ 2 channels dedicated for Audio ADC with Microphone pre-Amp & AGC
 - ♦ 3 channels reserved for various purposes, like LVD (Low Voltage Detection), keypad input, and light sensor
 - ♦ Input voltage range from 0V ~ 3.3V supported
 - Maximum 25MHz input clock supported

- Maximum 400K/s conversion rate supported
- LVR (Low Voltage Reset) supported
- Power Management
 - Advanced power management including Power Down, Deep Standby, CPU Standby, and Normal Operating modes
 - ◆ Normal Operating Mode
 - Core power is 1.8V and chip is in normal operation
 - CPU Standby Mode
 - Core power is 1.8V and only ARM CPU clock is turned OFF
 - ◆ Deep Standby Mode
 - Core power is 1.8V and all IP clocks are turned OFF
 - ◆ Power Down Mode
 - Only the RTC power is ON. Other 3.3V and 1.8V power are OFF
- Software Support
 - Development Tools
 - ♦ Bootloader / Diagnostic Program / NAND Writer Program: ADS 1.2 or RVDS 2.x or 3.x
 - ♦ Linux Kernel (2.6.17.14) / System Manager: GCC 4.2
 - ◆ TurboWriter / Sync Tool: Microsoft VC 6.0
 - NAND Flash File System
 - ◆ FAT12, FAT16 and FAT32 with long filename are supported
 - ♦ Hidden disk is supported
 - ◆ RAM disk is supported
 - S/W audio Library
 - ◆ Decoders with ADPCM / MP3 / ACC / OGG / WMA format support
 - ◆ 32-polyphony Wavetable MIDI synthesizer
 - Programmable sampling rate and target bit rate
 - USB Driver
 - ♦ MS (Mass Storage) Class
 - ♦ HID (Human Interface Device) Class
- Operating Voltage
 - I/O: 3.3V
 - Core: 1.8V for 200MHz
- Package
 - LQFP-128 (MCP, stacked with DDR @ 1.8V and SDR @ 1.8V)

3. PIN DIAGRAM

3.1 N32901U1DN (LQFP-128)

3.2 N32901U2DN (LQFP-128)

3.3 N32903U1DN (LQFP-128)

3.4 N32903U2DN (LQFP-128)

3.5 N32905U1DN (LQFP-128)

3.6 N32905U2DN/N32905U4DN (LQFP-128)

3.7 N32905U3DN (LQFP-128)

3.8 N32901R1DN (LQFP-64)

3.9 N32903R1DN (TQFP-64)

3.10 N32905R3DN (TQFP-64)

4. PIN DESCRIPTION

4.1 Pin Description & Cross Reference

	.pu.	x Closs Reference							
Pin Name	I/O Type	Description	N32901U1DN	N32901U2DN	N32903U1DN	N32905U1DN	N32905U2DN	N32903R1DN N32905R3DN	N32901R1DN
Clock & Reset	<u>.</u>		· ·		L	<u> </u>	L		
XIN	I	27MHz/12MHz Crystal Input	•	•	•	•	•	•	•
хоит	0	27MHz/12MHz Crystal Output	•	•	•	•	•	•	•
RST_	IOSU	System Reset, Input, Low Active							
		Watch-Dog Reset, Output, Low Active	•	•	•	•	•	•	•
JTAG Interface									
тск	IOD	JTAG Interface Test Clock, Input							
SPI1_CS1_		SPI Port 1 Device Select 1, Output, Low Active	•	•	•	•	•		
PWM0		PWM Channel 0							
GPD[0]		GPIO Port D Bit 0							
TMS	IOU	JTAG Interface Test Mode Select, Input							
HUR_TXD		High-Speed UART TX Data, Output							
PWM1		PWM Channel 1	•	•	•	•	•	•	•
GPD[1]		GPIO Port D Bit 1							
TDI	IOU	JTAG Interface Test Data In, Input							
HUR_RXD		High-Speed UART RX Data, Input		_				_	
PWM2		PWM Channel 2	•	•	•	•	•	•	•
GPD[2]		GPIO Port D Bit 2							
TDO	IOU	JTAG Interface Test Data Out, Output							
HUR_CTS		High-Speed UART Clear-To-Send, Input, Low Active	•	•	•	•	•		
PWM3		PWM Channel 3							
GPD[3]		GPIO Port D Bit 3							
TRST_	IOU	JTAG Interface Test Reset, Input, Low Active							
HUR_RTS		High-Speed UART Reset-To-Send, Output, Low Active	•	•	•	•	•		
SPIO_CS1_		SPI Port 0 Device Select 1, Output, Low							

		Active							
GPD[4]		GPIO Port D Bit 4							
NAND Interface	<u> </u>	L	1				1	1	1
NCSO_	IOU	NAND Interface Chip Select 0, Output, Low Active							
SDDAT2[1]		SD Port 2 Data Bit 1	•	•	•	•	•		
GPE[8]		GPIO Port E Bit 8							
NCS1_	IOU	NAND Interface Chip Select 1, Output, Low Active							
SDDAT2[0]		SD Port 2 Data Bit 0	•	•	•	•	•		
GPE[9]		GPIO Port E Bit 9							
NALE	IOU	NAND Interface Address-Latch-Enable, Output, High Active	•						
GPE[10]		GPIO Port E Bit 10							
NCLE	IOU	NAND Interface Command-Latch-Enable, Output, High Active	•						
GPE[11]		GPIO Port E Bit 11							
NBUSY0_	IOU	NAND Interface Busy 0, Input, Low Active							
SDDAT2[3]		SD Port 2 Data Bit 3	•	•	•	•	•		
GPD[5]		GPIO Port D Bit 5							
NBUSY1_	IOU	NAND Interface Busy 1, Input, Low Active							
SDDAT2[2]		SD Port 2 Data Bit 2	•	•	•	•	•		
GPD[6]		GPIO Port D Bit 6							
NRE_	IOU	NAND Interface Read Enable, Output, Low Active							
SDCLK2		SD Port 2 Clock, Output	•	•	•	•	•		
GPD[7]		GPIO Port D Bit 7							
NWR_	IOU	NAND Interface Write Enable, Output, Low Active							
SDCMD2		SD Port 2 Command/Response	•	•	•	•	•		
GPD[8]		GPIO Port D Bit 8							
ND[7:0]	IOU	NAND Interface Data Bit [7:0]							
CHIPCFG[7:0]		Chip Power-On Configuration Bit [7:0], Input	•	•	•	•	•		
Sensor/Video-In I	nterface								
SCLKO	IOU	Clock to Sensor Module, Output							
UHL_DP1		USB Host Like Interface, DP	•	•	•	•	•	•	•
SDDAT1[1]		SD Port 1 Data Bit 1							

CDDIOI		CDYO Down B Bit O							
GPB[0]		GPIO Port B Bit 0							
SPCLK	IOU	Sensor Interface Pixel Clock, Input							
UHL_DM1		USB Host Like Interface, DM	•	•	•	•	•	•	
SDDAT1[0]		SD Port 1 Data Bit 0							
GPB[1]		GPIO Port B Bit 1							
SHSYNC	IOU	Sensor Interface HSYNC, Input							
I2S_MCLK		Clock to I2S Codec, Output							
SDCLK1		SD Port 1 Clock, Output	•		•	•		•	•
GPB[2]		GPIO Port B Bit 2							
SVSYNC	IOU	Sensor Interface VSYNC, Input							
I2S_BCLK		I2S Interface Clock, Input							
SDCMD1		SD Port 1 Command/Response			•				•
GPB[3]		GPIO Port B Bit 3							
SFIELD	IOU	Sensor Interface Even/ODD Field Indicator, Input							
I2S_WS		I2S Interface Word Select, Output			•	•		•	
SDDAT1[3]		SD Port 1 Data Bit 3							
GPB[4]		GPIO Port B Bit 4							
SPDATA[0]	IOU	Sensor Interface Data Bit 0, Input							
I2S_DOUT		I2S Interface Data Output							
SDDAT1[2]		SD Port 1 Data Bit 2	•		•	•		•	•
GPB[5]		GPIO Port B Bit 5							
SPDATA[1]	IOU	Sensor Interface Data Bit 1, Input							
I2S_DIN		I2S Interface Data Input	•		•	•		•	•
GPB[6]		GPIO Port B Bit 6							
		I2C Interface						•	
ISCK	IOU	I2C Interface Clock, Output							
GPB[13]		GPIO Port B Bit 13	•	•	•	•	•		
ISDA	IOU	I2C Interface Data							
LMVSYNC		MPU Mode VSYNC, Output							
LFMARK		Frame Mark, Input	•	•	•	•	•		
GPB[14]		GPIO Port B Bit 14							
LCD/Display Inter	face								
LPCLK	IOU	LCD Interface Pixel Clock, Output							
GPB[15]		GPIO Port B Bit 15	•	•	•	•	•		
LHSYNC	IOU	LCD Interface HSYNC, Output, High Active	•	•	•	•	•		
		I .	1	1					1

GPD[9]		GPIO Port D Bit 9							
LVSYNC	IOU	LCD Interface VSYNC, Output, High Active							
GPD[10]		GPIO Port D Bit 10			•	•	•		
LVDE	IOU	LCD Interface Data Enable, Output, High Active	•	•			•		
GPD[11]		GPIO Port D Bit 11							
LVDATA[0]	IOU	LCD Interface Data Bit 0							
GPC[0]		GPIO Port C Bit 0							
LVDATA[1]	IOU	LCD Interface Data Bit 1							
GPC[1]		GPIO Port C Bit 1							
LVDATA[2]	IOU	LCD Interface Data Bit 2							
GPC[2]		GPIO Port C Bit 2							
LVDATA[3]	IOU	LCD Interface Data Bit 3							
GPC[3]		GPIO Port C Bit 3							
LVDATA[4]	IOU	LCD Interface Data Bit 4							
GPC[4]		GPIO Port C Bit 4	•	•	•	•	•		
CHIPCFG[8]		Chip Power-On Configuration Bit [8], Input							
LVDATA[5]	IOU	LCD Interface Data Bit 5							
GPC[5]		GPIO Port C Bit 5	•	•	•	•	•		
CHIPCFG[9]		Chip Power-On Configuration Bit [9], Input							
LVDATA[6]	IOU	LCD Interface Data Bit 6							
GPC[6]		GPIO Port C Bit 6							
CHIPCFG[10]		Chip Power-On Configuration Bit [10], Input							
LVDATA[7]	IOU	LCD Interface Data Bit 7							
GPC[7]		GPIO Port C Bit 7	•	•	•	•	•		
LVDATA[8]	IOU	LCD Interface Data Bit 8							
KPI_SI[0]		KPI Scan In Bit 0							
SPDATA[0]		Sensor Interface Data Bit 0, Input	•	•	•	•	•	•	•
GPC[8]		GPIO Port C Bit 8							
LVDATA[9]	IOU	LCD Interface Data Bit 9							
KPI_SI[1]		KPI Scan In Bit 1	1						
SPDATA[1]		Sensor Interface Data Bit 1, Input	•	•	•	•	•	•	•
GPC[9]		GPIO Port C Bit 9							
LVDATA[10]	IOU	LCD Interface Data Bit 10							
KPI_SI[2]		KPI Scan In Bit 2	•	•	•	•	•	•	•

T						,			
SPDATA[2]		Sensor Interface Data Bit 2, Input							
GPC[10]		GPIO Port C Bit 10							
LVDATA[11]	IOU	LCD Interface Data Bit 11							
KPI_SI[3]		KPI Scan In Bit 3							
SPDATA[3]		Sensor Interface Data Bit 3, Input	•	•	•	•	•	•	•
GPC[11]		GPIO Port C Bit 11							
LVDATA[12]	IOU	LCD Interface Data Bit 12							
KPI_SI[4]		KPI Scan In Bit 4							
SPDATA[4]		Sensor Interface Data Bit 4, Input	•	•	•	•	•	•	•
GPC[12]		GPIO Port C Bit 12							
LVDATA[13]	IOU	LCD Interface Data Bit 13							
KPI_SI[5]		KPI Scan In Bit 5							
SPDATA[5]		Sensor Interface Data Bit 5, Input	•	•	•	•	•	•	•
GPC[13]		GPIO Port C Bit 13							
LVDATA[14]	IOU	LCD Interface Data Bit 14							
KPI_SI[6]		KPI Scan In Bit 6							
SPDATA[6]		Sensor Interface Data Bit 6, Input	•	•	•	•	•	•	•
GPC[14]		GPIO Port C Bit 14							
LVDATA[15]	IOU	LCD Interface Data Bit 15							
KPI_SI[7]		KPI Scan In Bit 7							
SPDATA[7]		Sensor Interface Data Bit 7, Input	•	•	•	•	•	•	•
GPC[15]		GPIO Port C Bit 15							
LVDATA[16]	IOU	LCD Interface Data Bit 16							
SHSYNC		Sensor Interface HSYNC, Input	•	•	•	•	•		
GPE[0]		GPIO Port E Bit 0							
LVDATA[17]	IOU	LCD Interface Data Bit 17							
SVSYNC		Sensor Interface VSYNC, Input	•	•	•	•	•		
GPE[1]		GPIO Port E Bit 1							
UART Interface				-	•	•	•		
URTXD	IOU	UART TX Data, Output							
SPI1_CS1_		SPI Port 1 Device Select 1, Output, Low Active		•	•	•	•	•	•
GPA[10]		GPIO Port A Bit 10							
URRXD	IOU	UART RX Data, Input							
LMVSYNC	<u> </u>	MPU Mode VSYNC, Output	•	•	•	•	•	•	•
LFMARK		Frame Mark, Input							
							•	•	

GPA[11]		GPIO Port A Bit 11							
SPI 0 Interface									
SPIO_CLK	IOU	SPI Port 0 Clock							
		Output in Master Mode					•		
		Input in Slave Mode		•					
GPD[12]		GPIO Port D Bit 12							
SPIO_CSO_	IOU	SPI Port 0 Device Select 0, Low Active							
		Output in Master Mode					•		
		Input in Slave Mode							
GPD[13]		GPIO Port D Bit 13							
SPIO_DI	IOU	SPI Port 0 Data Input					•		
GPD[14]		GPIO Port D Bit 14							
SPIO_DO	IOU	SPI Port 0 Data Output	_						
GPD[15]		GPIO Port D Bit 15	•	•	•	•	•	•	•
SD Card Interfac	е			-		-	•		-
SDCLK	IOU	SD Port 0 Clock, Output		_	_	_	_	_	_
GPE[7]		GPIO Port E Bit 7	•	•	•	•	•	•	•
SDCMD	IOU	SD Port 0 Command/Response							
GPE[6]		GPIO Port E Bit 6	•	•	•	•	•	•	•
SDDAT[0]	IOU	SD Port 0 Data Bit 0		_		_	_	_	_
GPE[2]		GPIO Port E Bit 2	•	•	•	•	•	•	•
SDDAT[1]	IOU	SD Port 0 Data Bit 1							
GPE[3]		GPIO Port E Bit 3	•	•	•	•	•	•	•
SDDAT[2]	IOU	SD Port 0 Data Bit 2							
GPE[4]		GPIO Port E Bit 4	•	•	•	•	•	•	•
SDDAT[3]	IOU	SD Port 0 Data Bit 3							
GPE[5]		GPIO Port E Bit 5	•	•	•	•	•	•	•
GPIO A			<u> </u>				L	<u> </u>	
GPA[0]	IOU	GPIO Port A Bit 0	•	•	•	•	•		
GPA[1]	IOU	GPIO Port A Bit 1							
SD_CD_		SD Card Detect, Input, Low Active	•	•	•	•	•	•	•
GPA[2]	IOU	GPIO Port A Bit 2							
LMVSYNC		MPU Mode VSYNC, Output							
LFMARK		Frame Mark, Input	•	•	•	•	•		
KPI_SO[0]		KPI Scan Out Bit 0							
GPA[3]				<u> </u>	ļ			ļ	

UHL_DP1		USB Host 1.0 Lite Port 1, D+							
KPI_SO[1]		KPI Scan Out Bit 1							
GPA[4]	IOU	GPIO Port A Bit 4							
UHL_DM1		USB Host 1.0 Lite Port 1, D-	•	•	•	•	•	•	•
KPI_SO[2]		KPI Scan Out Bit 2							
GPA[5]	IOU	GPIO Port A Bit 5							
SPIO_CS1_		SPI Port 0 Device Select 1, Output, Low Active	•	•	•	•	•	•	•
KPI_SO[3]		KPI Scan Out Bit 3							
GPA[6]	IOU	GPIO Port A Bit 6							
SPI1_CS1_		SPI Port 1 Device Select 1, Output, Low Active	•	•	•	•	•		
KPI_SO[4]		KPI Scan Out Bit 4							
GPA[7]	IOU	GPIO Port A Bit 7	_					_	_
KPI_SO[5]		KPI Scan Out Bit 5	•	•	•	•	•	•	•
RTC (Real Time Clo	ock)								
RTC_XIN (32768Hz)	I	32768Hz Crystal Input	•	•	•	•	•		
RTC_XOUT (32768Hz)	0	32768Hz Crystal Output	•	•	•	•	•		
RTC_RWAKE_	I	Wakeup Enable, Input, Low Active	•	•	•	•	•		
RTC_RPWR	OD	Power Enable, Open-Drain	•	•	•	•	•		
USB 2.0 Device Int	terface								
UD_CDET	I	USB Device Connect Detect, Input, High Active	•	•	•	•	•	•	•
UD_DP	10	USB 2.0 Device D+	•	•	•	•	•	•	•
UD_DM	IO	USB 2.0 Device D-	•	•	•	•	•	•	•
UD_REXT	10	External Resistor Connect							
		Recommend to connect 12.1K $\!\Omega\!$ resistor to ground for USB 2.0 PHY	•	•	•	•	•	•	•
TV Out									
TVDAC_TVOUT	0	Composite/Chroma Output							
		Connect an external 75 Ω resistor to ground of TVDAC as TV terminal impedence		•			•		
TVDAC_REXT	IO	External Resistor Connection							
		Recommend to connect 160 Ω resistor to ground of TVDAC		•			•		
TVDAC_COMP	0	External Capacitor Connection Connect 0.1uF capacitor to VDD33 of TVDAC		•			•		
	ı		l .	I	1	ı			l

			ı	1			1		
TVDAC_VREF	0	Reference Voltage Output							
		Connect 0.1uF capacitor to ground of TVDAC		•			•		
ADC & Touch Panel	l		-	-		-	•	-	
ADC_AIN[3]	I	ADC Analog Input Channel 3	•	•	•	•	•		
ADC_AIN[2]	I	ADC Analog Input Channel 2	•	•	•	•	•	•	•
ADC_AIN[1]	I	ADC Analog Input Channel 1							
MIC_IN_M	I	Microphone Negative Input	•	•	•	•	•	•	•
ADC_AIN[0]	I	ADC Analog Input Channel 0	_	_	_	_	_	_	_
MIC_IN_P	I	Microphone Positive Input	•	•	•	•	•	•	•
ADC_TP_YP	I	Touch Panel YP	•	•	•	•	•		
ADC_TP_XP	I	Touch Panel XP	•	•	•	•	•		
ADC_TP_XM	I	Touch Panel XM	•	•	•	•	•		
ADC_TP_YM	I	Touch Panel YM	•	•	•	•	•		
Audio DAC				_	•	_		_	
ADAC_HPOUT_R	0	Audio Headphone Right Channel Output	•	•	•	•	•	•	•
ADAC_HPOUT_L	0	Audio Headphone Left Channel Output	•	•	•	•	•	•	•
ADAC_VREF	0	Audio DAC Reference Voltage Output							
		Recommend to connect 1uF capacitor to ground of Audio DAC	•	•	•	•	•	•	•
Power/Ground									
MVREF	Р	Reference Voltage for SDRAM I/F							
		Useless if SDR SDRAM used.							
		It should be MVDD/2 if DDR/DDR2/LPDDR SDRAM used							
MVREF_GND_SHI ELDING	G	Ground Shielding for Reference Voltage	•		•				
MVDD18	P	SDRAM I/F Power (1.8V)	•		•	•	•	•	
MVDD33	Р	SDRAM I/F Power (3.3V)		•					•
MVSS	G	SDRAM I/F Ground (0V)	•	•	•	•	•	•	•
MVDDQ	Р	SDRAM I/F Power (1.8V)	•	•	•	•	•	•	•
MVSSQ	G	SDRAM I/F Ground (0V)	•	•	•	•	•	•	•
RTC_VDD	Р	RTC Core, I/F & 32768Hz Crystal Power	•	•	•	•	•		
UD_VDD33	P	USB 2.0 PHY Power (3.3V)	•	•	•	•	•	•	•
UD_VDD18	P	USB 2.0 PHY Power (1.8V)	•	•	•	•	•		
UD_VSS	G	USB 2.0 PHY Ground (0V)	•	•	•	•	•		
TVDAC_VDD33	P	TV DAC Power (3.3V)		•			•		
TVDAC_VSS33	G	TV DAC Ground (0V)		•			•		

ADC_VDD33	Р	ADC Power (3.3V)	•	•	•	•	•	•	•
ADC_VSS33/ADC _VSS	G	ADC Ground (0V)	•	•	•	•	•	•	•
ADAC_HPVDD33	Р	Audio DAC Headphone Driver Power (3.3V)	•	•	•	•	•	•	•
ADAC_HPVSS33	G	Audio DAC Headphone Driver Ground (0V)	•	•	•	•	•	•	•
ADAC_AVDD33	Р	Audio DAC Power (3.3V)	•	•	•	•	•	•	•
ADAC_AVSS33	G	Audio DAC Ground (0V)	•	•	•	•	•	•	•
PLL_VDD18	Р	PLL Power (1.8V)						•	•
VDD33	Р	I/O Power (3.3V)	•	•	•	•	•	•	•
VDD18	Р	Core Logic Power (1.8V)	•	•	•	•	•	•	•
VSS	G	Ground (0V)	•	•	•	•	•	•	•

4.2 Pin Type Description

Туре	Description
I	Input
0	Output
OD	Open Drain output
IO	Input / Output
IOD	Input with pull-Down / Output
IOU	Input with pull-Up / Output
IOSU	Input with Schmitt trigger & pull-Up/ Output
Р	Power
G	Ground

5. ELECTRICAL SPECIFICATION

5.1 Absolute Maximum Rating

Parameters	Values
Ambient Temperature	-20 °C ~ 85 °C
Storage Temperature	-40 °C ~ 125 °C
Voltage On Any Pin	-0.3V ~ 3.6V
Power Supply Voltage (Core Logic)	-0.5V ~ 2.5V
Power Supply Voltage (I/O Buffer)	-0.5V ~ 4.6V
Injection Current (Latch-Up Testing)	100mA
Crystal Frequency	2MHz ~ 27MHz

5.2 DC Characteristics (Normal I/O)

Symbol	Parameter	•	Condition	Min.	Тур.	Max.	Unit
VDD33	I/O Buffer Post-Drive	r Voltage		3.0	3.3	3.6	V
MVDD33	SDRAM Operation Vo	ltage		3.0	3.3	3.6	V
VDD18	Core Logic and I/O Buffer Pre-Driver Voltage	200MHz		1.62	1.8	1.98	>
MVDD18	DDR Operation Voltage	100MHz		1.7	1.8	1.9	V
MVDDQ/ MVDD	DDR Operation Voltage	100MHz		1.7	1.8	1.9	V
RTC_VDD	RTC Power Supply			1.2	-	1.8	V
I_{RTC_VDD}	RTC Supply Current		RTC_VDD <vdd18< td=""><td>-</td><td>4</td><td>-</td><td>uA</td></vdd18<>	-	4	-	uA
V_{IH}	Input High Voltage			2.0	-	5.5	V
V_{IL}	Input Low Voltage			-0.3	-	0.8	V
V_T	Threshold Point			1.45	1.58	1.74	V
V _{T+}	Schmitt Trigger Low Threshold Point	to High		1.44	1.42	1.56	V
V _{T-}	Schmitt Trigger High Threshold Point	to Low		0.89	1.06	0.99	V
I _{CC}	Core Power Supply C	urrent	$F_{CPU} = 200MHz,$ $MCLK = 100MHz,$	-	160	-	mA

			VDD18 = 1.8V				
I_{L}	Input Leakage Curr	ent		-10	-	10	uA
I _{OZ}	Tri-State Output Le Current	akage		-10	-	10	uA
R _{PU}	Pull-Up Resistor			39	65	116	kΩ
R _{PD}	Pull-Down Resistor			40	56	108	kΩ
V _{OL}	Output Low Voltage			-	-	0.4	V
V _{OH}	Output High Voltage	9		2.4	-	-	V
I _{OL}	Low Level Output Current	4mA I/O	V _{OL} = 0.4V	-	4.0	-	mA
I _{OH}	High Level Output Current	4mA I/O	V _{OH} = 2.4V	-	5.9	-	mA

5.3 Audio DAC Characteristics

Test conditions: RL = 10K / 50pF, BW = 20Hz ~ 20KHz, Freq.= 1KHz, Sample Rate = 48KHz.

Parameter	Min	Тур	Max	Unit
Operating Voltage	3.0	3.3	3.6	V
Reference Voltage	-	DAC_VDD/2	-	V
Reference Capacitor	-	0.1	-	uF
Full Scale output voltage	-	0.74	-	Vrms
Full Scale output voltage	-	2.08	-	Vpp
Maximum Output Power	-	-	52	mW
Maximum Output Power @ 32ohm load	-	-	46	mW
Maximum Output Power @ 16ohm load	-	-	41	mW
L-Channel SNR	-	86	-	dBV
R-Channel SNR	-	85	-	dBV
L-Channel THD+N	-	-64	-	dB
R-Channel THD+N	-	-64	-	dB
L-Channel THD+N @ 32ohm load	-	-63	-	dB
R-Channel THD+N @ 32ohm load	-	-63	-	dB
L-Channel THD+N @ 16ohm load	-	-62	-	dB

N3290x DATASHEET

R-Channel THD+N @ 16ohm load	-	-62	-	dB

5.4 ADC Characteristics

Parameter	Min.	Тур.	Max.	Unit
SAR ADC Input Voltage Range	3.0	-	3.6	V
Resolution of ADC	-	-	10	bit
Signal-to-Noise Plus Distortion of ADC from Line In	-	TBD	-	dB
Integral Non-Linearity of ADC	-	±2.0	-	LSB
Differential Non-Linearity of ADC	-	±0.8	-	LSB
No Missing Code	-	10	-	bit
AD Conversion Rate=ADCCLK/16	-	-	400	KHz

5.5 AC Characteristics (Digital Interface)

2.5.8 Clock Input Characteristics

Fxin = 1 / Txin

XINduty = Txinwh / (Txinwh + Txinwl)

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{XIN}	Clock Input Frequency	-	12 / 27	-	MHz
XIN _{DUTY}	Clock Input Duty Cycle	45	50	55	%

5.5.2 SDRAM Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{MCLK}	MCLK Clock Cycle Time	6	-	12	ns
T _{MWL}	MCLK Clock Low Time	0.45	-	0.55	T _{MCLK}
T _{SWH}	MCLK Clock High Time	0.45	-	0.55	T_{MCLK}
T _{MODLY}	Command and Address Output Delay Time	-	-	2	ns
Тмон	Command and Address Output Hold Time	2	-	-	ns
T _{MDQSH}	MDQS0/MDQS1 High Time	0.4	-	0.6	T _{MCLK}
T _{MDQSL}	MDQS0/MDQS1 Low Time	0.4	-	0.6	T _{MCLK}
T _{MDSU}	MD to MDQS0/MDQS1 Setup Time	0.6	-	-	ns
T _{MDH}	MD to MDQS0/MDQS1 Hold Time	0.6	-	-	ns
VREF	IO reference voltage	0.49	-	0.51	VDD

5.5.3 Sensor/Video-In Interface

Ī	-	-		-	
Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPCLK}	SPCLK Clock Frequency	-	-	50	MHz
T _{SWL}	SPCLK Clock Low Time	10	-	-	ns
T _{SWH}	SPCLK Clock High Time	10	-	-	ns
T _{SISU}	SHSYNC, SVSYNC, SFIELD, SPDATA[7:0] Setup Time	1.0	-	-	ns
T _{SIH}	SHSYNC, SVSYNC, SFIELD, SPDATA[7:0] Hold Time	1.0	-	-	ns

5.5.4 I2S Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{ABCLK}	I2S_BCLK Clock Frequency	-	-	16	MHz
T _{AWL}	I2S_BCLK Clock Low Time	31.25	-	-	ns
T _{AWH}	I2S_BCLK Clock High Time	31.25	-	-	ns
T _{AISU}	I2S_DIN Setup Time	10	-	-	ns
T _{AIH}	I2S_DIN Hold Time	10	-	-	ns
T _{AODLY}	I2S_DOUT Output Delay Time	-	-	0.5	ns
T _{AOH}	I2S_DOUT Output Hold Time	0.1	-	-	ns

5.5.5 LCD/Display Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPCLK}	LPCLK Clock Frequency	-	-	27	MHz
T _{LWL}	LPCLK Clock Low Time	18.5	-	-	ns
T _{LWH}	LPCLK Clock High Time	18.5	-	-	ns
T_{LODLY}	LHSYNC, LVSYNC, LVDE and LVDATA Output Delay Time	-	-	1.3	ns
T _{LOH}	LHSYNC, LVSYNC, LVDE and LVDATA Output Hold Time	0.67	-	-	ns

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
T _{LCSS}	CS_ to WR_ Setup Time		2	-	-	PCLK
T _{LCSH}	CS_ to WR_ Hold Time		1	-	-	PCLK
T _{LAS}	RS to WR_ Setup Time		1	-	-	PCLK
T _{LAH}	RS to WR_ Hold Time		1	-	-	PCLK
T _{LDODLY}	LVDATA Output Delay Time		-	-	1	PCLK
T _{LDOH}	LVDATA Output Hold Time		1	-	-	PCLK
T _{LWR}	WR_ Pulse Width	80 Mode	1	-	-	PCLK
T _{LEN}	EN Pulse Width	68 Mode	1	-	-	PCLK

Note: PCLK is the period of one APB bus clock.

5.5.6 SPI Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPCLK}	SPI0_CLK Clock Frequency	-	-	25	MHz
T _{SPWL}	SPI0_CLK Clock Low Time	20	-	-	ns
T _{SPWH}	SPI0_CLK Clock High Time	20	-	-	ns
T _{SPISU}	SPI0_DI Setup Time	10	-	-	ns
T _{SPIH}	SPI0_DI Hold Time	10	-	-	ns
T _{SPODLY}	SPI0_DO Output Delay Time	-	-	1	ns
T _{SPOH}	SPI0_DO Output Hold Time	0.2	-	-	ns

5.5.7 NAND Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{NWL}	Write Pulse Low Width	10	-	-	ns
T_NWH	NWR_ High Hold Time	10	-	-	ns
T _{NODLY}	ND[7:0] Output Delay Time	-	-	2.5	ns
T _{NOH}	ND[7:0] Output Hold Time	10	-	-	ns
T _{NISU}	ND[7:0] Data in Setup Time	3.2	-	-	ns
T _{NIH}	ND[7:0] Data in hold time	1	-	-	ns

5.5.8 SD Card Interface

Symbol	Parameter	Min.	Тур.	Max.	Unit					
Clock SDC	Clock SDCLK									
F _{SDCLK}	Clock Frequency in Data Transfer Mode	-	-	24	MHz					
F _{SDCLK}	Clock Frequency in Identification Mode	100	-	400	KHz					
T _{SDWL}	Clock Low Time	10	-	-	ns					
T_{SDWH}	Clock High Time	10	-	-	ns					
Input SD	CMD, SDDAT[3:0] (referenced t	o SDCLK	()							
T _{SDISU}	Input Setup Time	6	-	-	ns					
T _{SDIH}	Input Hold Time	2	-	-	ns					
Output SI	DCMD, SDDAT[3:0] (referenced	to SDCI	К)							
T _{SDODLY}	Output Delay Time	-	-	14	ns					
T_{SDOH}	Output Hold Time	2.5	-	-	ns					

5.6 Power-on Sequence

5.7 Thermal characteristics of LQFP-128 Package

Thermal Performance of LQFP-128 under Forced Convection

6. ORDERING INFORMATION

Part no.	Package type	Description	Chip Version
N32901U1DN	LQFP-128, MCP	Stacked 1Mbit x16 SDR MCP with LCD, CIS and I2S interface	Е
N32901U2DN	LQFP-128, MCP	Stacked 1Mbit x16 SDR MCP with LCD,CIS interface & TV output	Е
N32903U1DN	LQFP-128, MCP	Stacked 4Mbit x16 DDR MCP with LCD,CIS and I2S interface	E
N32903U2DN	LQFP-128, MCP	Stacked 4Mbit x16 DDR MCP with LCD,CIS interface & TV output	E
N32905U1DN	LQFP-128, MCP	Stacked 16Mbit x16 DDR MCP with LCD, CIS and I2S interface	E
N32905U2DN	LQFP-128, MCP	Stacked 16Mbit x16 DDR MCP with LCD,CIS interface & TV output	Е
N32905U3DN	LQFP-128, MCP	Stacked 16Mbit x16 DDRII MCP with LCD, CIS and I2S interface	F
N32905U4DN	LQFP-128, MCP	Stacked 16Mbit x16 DDRII MCP with LCD,CIS interface & TV output	F
N32901R1DN	LQFP-64, MCP	Stacked 1Mbit x 16 SDR MCP with CIS, SDHC and I2S interface	Е
N32903R1DN	TQFP-64, MCP	Stacked 4Mbit x 16 DDR MCP with CIS, SDHC and I2S interface	Е
N32905R3DN	TQFP-64, MCP	Stacked 16Mbit x 16 DDRII MCP with CIS, SDHC and I2S interface	F

Note.

- Only F version IC can support DDR2, eMMC booting, SPI flash size 128Mb or above with 4-bytes mode booting.
- Also be notice that F version IC have to use a specific utility of Turbo-Writer version for programming by USB.
- F version IC apply to N32905U3DN, N32905R3DN or N32905U4DN PKG.
- Others PKG are used with E verion.

6.1 Part Number Definition

6.2 Comparsion for Differences Between of N3290x series

	LCD	TV	I2S Interface	HW I2C	RTC	JTAG
N32901U1DN	V		V	V	V	V
N32901U2DN	V	V		V	V	V
N32903U1DN	V		V	V	V	V
N32903U2DN	V	V		V	V	V
N32905U1DN	V		V	V	V	V
N32905U2DN	V	V		V	V	V
N32905U3DN	V		V	V	V	V
N32905U4DN	V	V		V	V	V
N32901R1DN			V			
N32903R1DN			V			
N32905R3DN			V			

7. PACKAGE OUTLINE

7.1 LQFP-128 (14X14X1.4mm body, 0.4mm pitch)

COTROL DIMENSIONS ARE IN MILLIMETERS.

SYMBOL	м	ILLIMET	ER		INCH		
SIMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	_		1.60	_	_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
HD	1	6.00 B	SC.	0.	630 BS	SC.	
D	1-	4.00 B	SC.	0.551 BSC.			
HE	1	6.00 B	SC.	0.630 BSC.			
Е	1 -	4.00 B	SC.	0.551 BSC.			
b	0.13	0.16	0.23	0.005	0.006	0.009	
е		0.40 B	SC.	0.01	6 BSC		
θ	0,	3.5*	7*	0.	3.5*	7*	
С	0.09	_	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L ₁	1.00 REF			0.	.039 R	EF	
у	-	-	0.1	-	-	0.004	

7.2 LQFP-64 (10X10X1.4mm body, 0.5mm pitch)

Symbol	Dime	nsion in	inch	Dime	mm	
Symbol	Min	Nom	Max	Min	Nom	Max
Α			0.063			1.60
A 1	0.002		0.006	0.05		0.15
A ₂	0.053	0.055	0.057	1.35	1.40	1.45
b	0.007	0.008	0.011	0.17	0.20	0.27
С	0.004		0.008	0.09		0.20
D		0.393			10.00	
E		0.393			10.00	
e		0.020			0.50	
H₀		0.472			12.00	
HE		0.472			12.00	
L	0.018	0.024	0.030	0.45	0.60	0.75
L ₁		0.039			1.00	
У		0.004			0.10	
θ	0	3.5	7	O	3.5	7

7.3 TQFP-64 (10X10X1.0mm body, 0.5mm pitch)

DIM	MIN	MAX						
Α		1.2						
A1	0.05	0.15	DIM	MIN		MAX		
A2	0.95 1	1.05	L1		1 REF			
b	0.17 0.22	0.27	R1	0.08				
b1	0.17 0.2	0.23	R2	0.08		0.2		
С	0.09	0.2	S	0.2				
c1	0.09	0.16	θ	0.	3.5°	7°		
D	12 BS	SC	θ1	0.				
D1	10 BS	SC	θ2	11°	12°	13°		
е	0.5 B	SC	θ3	11°	12°	13°		
E	12 BSC		M	5.85		6.05		
E1	10 BS	SC	N	5.85		6.05		
L	0.45 (0	OTROL DIMENSIONS	ARE IN MILI	JMETERS.				
	MILLIMETER							

NOM. MAX. 1.60 0.15 A2 1.35 1.40 1.45 HD 16.00 BSC. D 14.00 BSC. 16.00 BSC. ΗE 14.00 BSC. Ε 0.13 0.16 0.23 b е 0.40 BSC. θ 3.5* 7 0.09 0.20 0.45 0.60 0.75 1.00 REF

0.1

8. REVISION HISTORY

VERSION DATE PAGE DESCRIPTION A0 Jul. 25, 2012 All ● Initial release. A1 Aug. 1, 2012 36 ● Add stacked DRAM size into order Information A2 Aug. 20, 2012 All	
A1 Aug. 1, 2012 36 • Add stacked DRAM size into order Information • Add N32901U1DN Information	
Add N32901U1DN Information	
Add N32901U1DN Information	
A2 Aug. 30, 2012 All • Correct the N32905U2DN Pin Diagram	
A2.1 Sept. 17, 2012 22 • 1Mx16 MVDD and MVDDQ are changed from 3.3V 1.8V for consistence with N32905 and N32903	to
A3 Oct. 15, 2012 23, 35 Extend Operation Temperature Range	
◆ Add Parts Feature Difference Table	
A3.1 Oct. 26, 2012 35 • Add Part Number Definition	
Add CCIR Still Image and Video Recommanded Resolutions.	
 Add LCD Display for Still Image and Video Recommanded Resolutions. 	
A3.2 Nov. 8, 2012 6, 7, 8, 9 • Modify One SPI H/W Engine to Support Two SPI D by Two Chip Selection Signals when SPI0 is in Mas Mode. For LQFP128 package, only SPI0 is active.	
 Add USB 1.1 Host One H/W Controller, Three Different Pin Locations Information. 	rent
A3.3 Nov. 10, 2012 35 • Remove Adobe Flash Feature from Comparision Ta	able.
A3.4 Jan. 21, 2013 4, 5, 10, 23 ● Update the AC characteristics.	
A4.0 Mar. 15, 2013 All ● Add N32903R1DN	
A5.0 May 1, 2013 All • Add N32901R1DN Information.	
• Add N32901U2DN Information.	
A5.1 May 3, 2013 28 • Add SDRAM and DDR Operation Voltage Spec	
A5.2 Mar. 17, 2014 ● Add N32905U3DN	
A5.3 Aug. 13, 2014 31 Revise Audio DAC Characteristics of Full Scale out voltage	put
Add N32903U2DN to pin diagram	
A5.4 Sept. 10, 2014 15, 21, 42, 43 • Add N32903U2DN, N32901R1DN & N32901U2DN Ordering Information	to
Comparison table for N3290x series	
△5.5 Oct 23, 2014 9, 43, 43	
A5.5 Oct. 23, 2014 8, 42, 43 ■ Removed VPOST supports LCD VSYNC/MPU-24b	it BUS
A5.6 Dec. 15, 2015 24, 26, 29 ● Revised pin desciprion.	
Add N32905U4DN to pin diagram	
A5.7 May 17.2016 17,45,46 ● Add N32905U4DN to ordering information	,

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Worldwide Locations

Headquarters

Nuvoton Technology Corp.

No. 4, Creation Rd. 3, Science-Based Industrial Park, Hsinchu, 300, Taiwan, R.O.C.

Tel: 886-3-5770066

Asia

Nuvoton (HK)

Unit 9-11, 22/F, Millennium City 2, 378 Kwun Tong Road, Kowloon, Hong Kong

Tel: 852-27513100

Nuvoton (Shanghai)

27F, 2299 Yan An West Rd., Shanghai, P.R. China

Tel: 86-21-6236-5999 Fax: 86-21-6236-5998

Nuvoton (Shenzhen)

15/F., New World Center, 6009 Yitian Road,

Futian, Shenzhen, P.R. China

Tel: 86-755-8351-5350 Fax: 86-755-8351-5348

Product Contact

Website

www.nuvoton.com

Nuvoton (Taipei)

9F, No. 480, Rueiguang Rd., Neihu District, Taipei City 11492, Taiwan, R.O.C.

Tel: 886-2-2658806

America / Europe

Nuvoton (America)

2727 N. First Street, San Jose, CA 95134, U.S.A.

Tel: 1-408-943-6666

Nuvoton (Israel)

Hasadnaot 8, Herzlia B 46130, Israel Tel: 972-9-970-2000

Bordeaux (France)

Tel: +33 5 46 75 86 80 Mobile : +33 6 15 04 81 30

Sales Support

SalesSupport.hk@nuvoton.com
SalesSupport.usa@nuvoton.com

Affiliate Sales Office

Winbond (Japan)

No.2 Ueno-Bldg., 7-18, 3-chome, Shinyokohama Kouhoku-ku, Yokohama-shi, 222-0033, Japan

Tel: 81-45-478-1881 Fax: 81-45-478-1800

Rev. A5.7