PRÁCTICA: LARSON - SECCIÓN 3.6 PROBLEMAS DE OPTIMIZACIÓN

Dra. Penélope Cordero

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

¿Qué ejercicios de práctica debo hacer?

- ✓ Ejercicios Propuestos:
 - **Pág. 203 a 205**: 1 al 28

- ✓ EN ESTE VIDEO:
 - Ejercicio 2.
 - Ejercicio 19.
 - Ejercicio 24.

LINEAMIENTOS PARA LA SOLUCIÓN DE PROBLEMAS DE MÍNIMOS Y MÁXIMOS

- Identificar todas las cantidades dadas y las cantidades a ser determinadas.
- Escribir una ecuación primaria para la cantidad que va a ser maximizada o minimizada.
- Reducir la ecuación primaria a una ecuación que tenga una sola variable independiente. Para esto puede ser necesario usar una ecuación secundaria que relacione las variables independientes de la ecuación primaria.
- Determinar el dominio factible de la ecuación primaria. Es decir, determinar los valores razonables para el problema planteado.
- 6 Determinar el valor máximo o mínimo deseado empleando las técnicas de cálculo vistas.

EJERCICIO 2

(Pag. 203)

 Análisis numérico, gráfico y analítico Una caja abierta de volumen máximo se va a construir a partir de una pieza cuadrada de material, de 24 pulgadas de lado, cortando cuadrados iguales a partir de las esquinas y doblando los bordes (ver la figura).

(a) Complete a seis renglones la tabla que se da abajo. Use la tabla para estimar el volumen máximo.

Altura	Largo y	Volumen
1	24 -2(1)	$1[24 - 2(1)]^2 = 484$
2	24 -2(2)	$2[24 - 2(2)]^2 = 800$
3	24 -2(3)	$3[24 - 2(3)]^2 = 972$
4	24 -2(4)	$4[24 - 2(4)]^2 = 1024$
5	24 -2(5)	$5[24 - 2(5)]^2 = 980$
6	24 -2(6)	$6[24 - 2(6)]^2 = 864$

Sigue \downarrow

(b) Escribir el volumen V como una función de x.

Volumen = (altura)(área de la base)

$$V = x(24 - 2x)^2$$
 Ecuación Primaria

¿Cuál es el dominio factible para V? En primer lugar, $V \geq 0$ y además 0 < 24 - 2x, con lo cual:

Dominio factible

(c) Emplear cálculo para determinar el punto crítico de la función en el apartado b) y encontrar el valor máximo.

$$\frac{dV}{dx} = (24 - 2x)(24 - 6x) = 0$$
 Igualar la derivada a 0

$$x = 4, 12$$
 Números críticos

(Pag. 203)

Dado que 12 no está dentro del dominio factible de V, sólo consideramos x=4. De modo que $V(0)=0,\,V(4)=1024$ y V(12)=0. Por lo tanto, el volumen V es máximo cuando la altura x=4.

(d)

19. Área Un granjero desea cercar un pastizal rectangular adyacente a un río. El pastizal deberá medir 180.000 m^2 para que tenga suficiente pastura para el ganado. ¿Cuáles deberán ser las dimensiones para que se necesite la menor cantidad de cerca si a lo largo del río no es necesaria ninguna cerca?

longitud a cercar P = 2x + h Ecuación primaria

área del pastizal x.h=180000 Ecuación secundaria Como $h=\frac{180000}{x}$ tenemos que:

$$P = 2x + \frac{180000}{x}$$
 Ecuación primaria

¿Cuál es el dominio factible para P? Como $P \geq 0$, entonces 0 < x < 180000.

$$P' = 2 - \frac{180000}{x^2} = 0$$
 Igualar la derivada a 0
$$x = \pm 300$$
 Números críticos

Dado que -300 no está dentro del dominio factible de P, sólo consideramos x=300.

Teniendo en cuenta:

valor de prueba 200 400 signo de
$$P'$$
 $P'(200) < 0$ $P'(400) > 0$

Como P' cambia de negativa a positiva, P tiene un *mínimo relativo* en x=300.

Luego, las dimensiones del pastizal deben ser 300×600 para minimizar la longitud de la cerca.

24. Área máxima Encuentre el área del mayor triángulo isósceles que puede inscribirse en un círculo de radio 4.

Figura para 24

EJERCICIO 24

Resuelva dando el área en función de h.

 $\text{Área} \implies A = \frac{b.a}{2}$

Ec. Primaria

altura \Rightarrow a = 4 + h

base? \Rightarrow $4^2 = (\frac{b}{2})^2 + h^2$

Pitágoras

Figura para 24

$$\Rightarrow$$
 $b = 2\sqrt{16 - h^2}$ Ec. Secundaria

Por lo tanto:

$$A = (4+h)\sqrt{16-h^2}$$
 Ecuación primaria en función de h
$$0 \le h$$
 Dominio factible

$$A' \quad = \frac{16-4h-2h^2}{\sqrt{16-h^2}} = 0 \qquad \quad \text{Igualar la derivada a 0}$$

h = 2,-4

Sólo consideramos h=2. Teniendo en cuenta el criterio de la derivada primera, obtenemos A tiene un $m\acute{a}ximo$ relativo en h=2, de modo que

$$A(2) = 12\sqrt{3}$$

Números críticos

es el área máxima del triángulo inscrito en la circunferencia de radio 4.

(b) Resuelva dando el área en función de α .

Área
$$\Rightarrow$$
 $A = \frac{b.a}{2}$

Ec. Primaria

altura
$$\Rightarrow$$
 $a = 4 + h \Rightarrow a = 4(1 + \cos 2\alpha)$

Ejercicio 24 b

(b) Resuelva dando el área en función de α .

base
$$\Rightarrow$$
 $\cos \beta = \frac{\frac{b}{2}}{4} \Rightarrow$ $\cos \left(\frac{\pi}{2} - 2\alpha\right) = \frac{b}{8} \Rightarrow$ $b = 8\cos\left(\frac{\pi}{2} - 2\alpha\right)$
 $b = 8\left(\cos\frac{\pi}{2}\cos 2\alpha + \sin\frac{\pi}{2}\sin 2\alpha\right) \Rightarrow$ $b = 8\sin 2\alpha$

Ejercicio 24 b

$$A = \frac{b \cdot a}{2}$$
 $a = 4(1 + \cos 2\alpha)$ $b = 8\sin 2\alpha$

$$A = \frac{4(1 + \cos 2\alpha)8\sin 2\alpha}{2} = 16(1 + \cos 2\alpha)\sin 2\alpha$$
$$= 16(1 + \cos \alpha\cos\alpha - \sin\alpha\sin\alpha)(\sin\alpha\cos\alpha + \sin\alpha\cos\alpha)$$
$$= 16(1 + \cos^2\alpha - \sin^2\alpha)2\sin\alpha\cos\alpha$$
$$= 32(2\cos^2\alpha)\sin\alpha\cos\alpha$$

$$A = 64\cos^3\alpha\sin\alpha$$

Ecuación Primaria

$$0<\alpha<\frac{\pi}{2}$$

Dominio factible

$$A' = 64\cos^2\alpha(1 - 4\sin^2\alpha)$$

Derivada

$$\begin{array}{lll} A'&=64\cos^2\alpha(1-4\sin^2\alpha)=0 & \text{Igualar la derivada a 0}\\ \cos^2\alpha=0 & \text{o} & 1-4\sin^2\alpha=0\\ \alpha=\frac{\pi}{2}+2\pi n & \text{o} & \alpha=\frac{\pi}{6}+2\pi n,\,\frac{5\pi}{6}+2\pi n & \text{Números Críticos}\\ \frac{3\pi}{2}+2\pi n & \frac{7\pi}{6}+2\pi n,\,\frac{11\pi}{6}+2\pi n \end{array}$$

Sólo consideramos $\alpha = \frac{\pi}{6}$. Teniendo en cuenta el criterio de la derivada primera, se tiene que A tiene un máximo relativo en $\alpha = \frac{\pi}{6}$, de modo que $A\left(\frac{\pi}{6}\right) = 12\sqrt{3}$ es el área máxima del triángulo inscrito en la circunferencia de radio 4.

(c) Identificar el tipo de triángulo de área máxima.

El triángulo de área máxima es isósceles y sus ángulos interiores son de 60° , por lo tanto es un triángulo equilátero.