## Claims

## 1. Radiation-sensitive element comprising

- (a) an aluminum substrate which has been subjected to a pretreatment of electrochemical roughening and optionally subsequent anodizing and/or application of a hydrophilizing layer, wherein the electrochemical roughening is carried out with a hydrochloric acid electrolyte or an electrolyte essentially consisting of hydrochloric acid, and
- (b) a radiation-sensitive coating comprising
  - at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,
  - (ii) at least one sensitizer of the formula (I),

$$R^{18}$$
  $R^2$   $R^3$   $R^{18}$   $R^3$   $R^3$ 

wherein

 $R^1$ ,  $R^{16}$ ,  $R^{17}$  and  $R^{18}$  are independently selected from -H, a halogen atom,  $C_1$ - $C_{20}$  alkyl, -OH, -O- $R^4$  and -N $R^5R^6$ , wherein  $R^4$  is  $C_1$ - $C_{20}$  alkyl,  $C_5$ - $C_{10}$  aryl or  $C_6$ - $C_{30}$  aralkyl and  $R^5$  and  $R^6$  are independently selected from a hydrogen atom and  $C_1$ - $C_{20}$  alkyl,

or R<sup>1</sup> und R<sup>16</sup>, R<sup>16</sup> and R<sup>17</sup> or R<sup>17</sup> and R<sup>18</sup> together form a 5- or 6-membered heterocyclic ring with a heteroatom selected from N and O in one or both positions adjacent to the phenyl ring,

or R<sup>16</sup> or R<sup>17</sup> forms, together with each of its two adjacent substituents, a 5- or 6-membered heterocyclic ring with a heteroatom selected from N and O in one or both positions adjacent to the phenyl ring;

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more  $C_1$ - $C_6$  alkyl groups,

with the proviso that at least one of  $R^1$ ,  $R^{16}$ ,  $R^{17}$  and  $R^{18}$  is not hydrogen or  $C_1$ - $C_{20}$  alkyl,

R<sup>2</sup> is a hydrogen atom, C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>5</sub>-C<sub>10</sub> aryl or C<sub>6</sub>-C<sub>30</sub> aralkyl and

R³ is a hydrogen atom or a substituent selected from -COOH, -COOR³, -COR³, -CONR°R¹0, -CN, C₅-C₁₀ aryl, C₆-C₃₀ aralkyl, a 5- or 6-membered heterocyclic group, a group -CH=CH-R¹² and



wherein  $R^7$  is  $C_1$ - $C_{20}$  alkyl,  $R^8$  is  $C_1$ - $C_{20}$  alkyl or a 5- or 6-membered heterocyclic group,  $R^9$  and  $R^{10}$  are independently selected from a hydrogen atom and  $C_1$ - $C_{20}$  alkyl,  $R^{11}$  is  $C_1$ - $C_{12}$  alkyl or alkenyl, a heterocyclic non-aromatic ring or  $C_5$ - $C_{20}$  aryl optionally with a heteroatom selected from O, S and N, and  $R^{12}$  is  $C_5$ - $C_{10}$  aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R<sup>2</sup> and R<sup>3</sup>, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

(iii) at least one coinitiator selected from an onium compound, a hexaarylbiimidazole compound and a trihalogenomethyl compound;

(iv) at least one biuret oligomer of the formula (V)

wherein  $Z^1$ ,  $Z^2$  and  $Z^3$  are independently selected from  $C_2\text{-}C_{18}$  alkanediyl and  $C_6\text{-}C_{20}$  arylene,

B<sup>1</sup>, B<sup>2</sup> and B<sup>3</sup> are independently selected from

$$-(CHR^{13}-CHR^{13}-O)_p-CH_2-CH=CH_2$$
 and

$$\begin{array}{c} R^{14} \\ | \\ (CH_2)_q \\ | \\ (CHR^{13} - CHR^{13} - O)_p - CH_2 - C - (CH_2)_r - R^{14} \\ | \\ (CH_2)_s \\ | \\ R^{14} \end{array} \tag{Va}$$

wherein  $R^{13}$  is independently selected from a hydrogen atom and -  $CH_3$  and p=0 or an integer from 1-10, each group  $R^{14}$  is independently selected from a hydrogen atom, a group

 $R^{15}$  is a hydrogen atom or  $C_1$ – $C_{12}$  alkyl and

q, r and s independently of each other are 0 or 1,

).

with the proviso that in each group  $B^1$ ,  $B^2$  and  $B^3$  at least one  $R^{14}$  is not a hydrogen atom if  $B^1$ ,  $B^2$  and  $B^3$  all represent a group of the formula (Va), and

- (v) optionally at least one metallocene.
- 2. Radiation-sensitive element according to claim 1, wherein the radiation-sensitive coating additionally comprises at least one further component selected from free-radical polymerizable monomers/oligomers/prepolymers that are different from component (i) of the radiation-sensitive coating, alkalisoluble binders, thermopolymerization inhibitors, dyes, plasticizers, chain transfer agents, leuco dyes, inorganic fillers and surfactants.
- 3. Radiation-sensitive element according to claim 1 or 2, wherein the sensitizer of the formula (I) is selected from the following compounds and mixtures thereof:

)

)

)

١

- 4. Radiation-sensitive element according any of claims 1 to 3, wherein the coinitiator is an iodonium salt or a hexaarylbiimidazole compound.
- 5. Radiation-sensitive element according to any of claims 1 to 4, wherein the radiation-sensitive coating comprises a metallocene with a metal of the fourth subgroup as a central atom.
- 6. Radiation-sensitive element according to any of claims 1 to 5, wherein the free-radical polymerizable monomer with at least one ethylenically unsaturated group and at least one P-OH group is represented by the following formula (II) or (III):

$$\left(H_{2}C = CH - CH_{2} - O\right)_{n} P - \left(OH\right)_{k}$$
(III)

wherein n is 1 or 2,

m is 0 or 1,

)

k is 1 or 2,

n + k = 3

R is a hydrogen atom or  $C_1$ - $C_{12}$  alkyl,

X is C2-C12 alkanediyl and

Y is C<sub>2</sub>-C<sub>12</sub> alkanediyl.

- 7. Radiation-sensitive element according to any of claims 1 to 6, wherein in the biuret of formula (V)  $Z^1 = Z^2 = Z^3$ .
- 8. Radiation-sensitive element according to any of claims 1 to 7, wherein an oxygen-impermeable overcoat is provided on the radiation-sensitive coating.
- 9. Process for the production of an imaged element comprising

- (a) providing a radiation-sensitive element as defined in any of claims 1 to 8;
- (b) image-wise exposure of the element with radiation of a wavelength adjusted to the sensitizer present in the radiation-sensitive layer of the element;
- (c) optionally heating;
- (d) removing the unexposed areas with an aqueous alkaline developer; and
- (e) optionally heating the imaged element obtained in step (d) and/or subjecting it to overall exposure.

## 10. Radiation-sensitive composition comprising

- (i) at least one free-radical polymerizable monomer with at least one ethylenically unsaturated polymerizable group and at least one P-OH group,
- (ii) at least one sensitizer of the formula (I)

$$R^{17}$$
 $R^{18}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{1}$ 

wherein.

 $R^1$ ,  $R^{16}$ ,  $R^{17}$  and  $R^{18}$  are independently selected from -H, a halogen atom,  $C_1$ - $C_{20}$  alkyl, -OH, -O- $R^4$  and -NR $^5R^6$ , wherein  $R^4$  is  $C_1$ - $C_{20}$  alkyl,  $C_5$ - $C_{10}$  aryl or  $C_6$ - $C_{30}$  aralkyl and  $R^5$  and  $R^6$  are independently selected from a hydrogen atom and  $C_1$ - $C_{20}$  alkyl,

or R<sup>1</sup> und R<sup>16</sup>, R<sup>16</sup> and R<sup>17</sup> or R<sup>17</sup> and R<sup>18</sup> together form a 5- or 6-membered heterocyclic ring with a heteroatom, selected from N and O, in one or both positions adjacent to the phenyl ring,

or R<sup>16</sup> or R<sup>17</sup> forms, together with each of its two adjacent substituents, a 5- or 6-membered heterocyclic ring with a heteroatom, selected from N and O, in one or both positions adjacent to the phenyl ring,

wherein each formed 5- or 6-membered heterocyclic ring can independently be substituted with one or more  $C_1$ - $C_6$  alkyl groups,

with the proviso that at least one of  $R^1$ ,  $R^{16}$ ,  $R^{17}$  and  $R^{18}$  is not hydrogen or  $C_1$ - $C_{20}$  alkyl;

R<sup>2</sup> is a hydrogen atom, C<sub>1</sub>-C<sub>20</sub> alkyl, C<sub>5</sub>-C<sub>10</sub> aryl or C<sub>6</sub>-C<sub>30</sub> aralkyl and

 $R^3$  is hydrogen atom or a substituent selected from -COOH, -COOR<sup>7</sup>, -COR<sup>8</sup>, -CONR<sup>9</sup>R<sup>10</sup>, -CN, C<sub>5</sub>-C<sub>10</sub> aralkyl, a 5- or 6-membered heterocyclic group, a group -CH=CH-R<sup>12</sup> and



wherein  $R^7$  is  $C_1$ - $C_{20}$  alkyl,  $R^8$  is  $C_1$ - $C_{20}$  alkyl or a 5- or 6-membered heterocyclic group,  $R^9$  and  $R^{10}$  are independently selected from a hydrogen atom and  $C_1$ - $C_{20}$  alkyl,  $R^{11}$  is  $C_1$ - $C_{12}$  alkyl or alkenyl, a heterocyclic non-aromatic ring or  $C_5$ - $C_{20}$  aryl optionally with a heteroatom selected from O, S and N, and  $R^{12}$  is  $C_5$ - $C_{10}$  aryl or a 5- or 6-membered heterocyclic, optionally aromatic, ring;

or R<sup>2</sup> and R<sup>3</sup>, together with the carbon atoms to which they are bonded, form a 5- or 6-membered, optionally aromatic, ring;

- (iii) at least one coinitiator selected from an onium compound, a hexaarylbiimidazole compound and a trihalogenomethyl compound;
- (iv) at least one biuret oligomer of the formula (V)

wherein Z1, Z2 and Z3 are independently selected from C2-C18 alkanediyl and C<sub>6</sub>-C<sub>20</sub> arylene,

B<sup>1</sup>, B<sup>2</sup> and B<sup>3</sup> are independently selected from

$$-(CHR^{13} - CHR^{13} - O)_p - CH_2 - CH = CH_2$$
 and

$$-(CHR^{13} - CHR^{13} - O)_{p} - CH_{2} - CH = CH_{2}$$

$$-(CHR^{13} - CHR^{13} - O)_{p} - CH_{2} - (CH_{2})_{q}$$

$$-(CHR^{13} - CHR^{13} - O)_{p} - CH_{2} - (CH_{2})_{r} - R^{14}$$

$$-(CH_{2})_{s}$$

$$-(CH_{2})$$

wherein R<sup>13</sup> is independently selected from a hydrogen atom and  $-CH_3$  and p = 0 or an integer from 1-10, each group  $R^{14}$  is independently selected from a hydrogen atom, a group

R<sup>15</sup> is a hydrogen atom or C<sub>1</sub>–C<sub>12</sub> alkyl and

q, r and s independently of each other are 0 or 1,

);

with the proviso that in each group B<sup>1</sup>, B<sup>2</sup> and B<sup>3</sup> at least one R<sup>14</sup> is not a hydrogen atom if B<sup>1</sup>, B<sup>2</sup> and B<sup>3</sup> all represent a group of the formula (Va), and

- (v) a solvent or solvent mixture; and
- (vi) optionally at least one metallocene.
- 11. Radiation-sensitive composition according to claim 10, additionally comprising at least one further component selected from free-radical polymerizable monomers/oligomers/prepolymers that are different from component (i) of the radiation-sensitive composition, alkali-soluble binders, thermopolymerization inhibitors, dyes, plasticizers, chain transfer agents, leuco dyes, inorganic fillers and surfactants.
- 12. Use of a radiation-sensitive composition as defined in claim 10 or 11 for the production of a radiation-sensitive element.
- 13. Production of a radiation-sensitive element as defined in any of claims 1 to 8 comprising:
  - (a) providing an aluminum substrate which has been subjected to a pretreatment of electrochemical roughening and optionally subsequent anodizing and/or application of a hydrophilizing layer, wherein the electrochemical roughening is carried out with a hydrochloric acid electrolyte or an electrolyte essentially consisting of hydrochloric acid;
  - (b) applying a radiation-sensitive composition as defined in claim 10 or 11;
  - (c) drying; and
  - (d) optionally applying an oxygen-impermeable overcoat and drying.
- 14. Printing form obtainable from the process according to claim 9.