

QUANTUM MACHINE LEARNING

Alex de Sá Ashar Malik Alex.deSa@baker.edu.au Ashar.Malik@baker.edu.au

https://github.com/alexgcsa/incob2023

QUANTUM MACHINE LEARNING

Alex de Sá Ashar Malik Alex.deSa@baker.edu.au Ashar.Malik@baker.edu.au

https://github.com/alexgcsa/incob2023

MACHINE LEARNING

Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.

Arthur L. Samuel, AI pioneer, 1959

Molnar, 2021

TRADITIONAL PROGRAMMING VERSUS MACHINE LEARNING

TRADITIONAL PROGRAMMING

MACHINE LEARNING

MACHINE LEARNING DEFINITION

A computer program is said to **learn** from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**."

Tom Mitchell, Professor at Carnegie Mellon University

https://www.cs.cmu.edu/~tom/mlbook.html

Identification of Hepatotoxicity in Small Molecules

HIND HOP COOH

OH

OH

$$F_2B_1C$$
 CCI_5

OH

 CI
 $COOH$
 CCI_5
 CI
 CI

Identification of Hepatotoxicity in Small Molecules

HN
$$COOH$$
 $COOH$
 OH
 $COOH$
 OH
 $COOH$
 OH
 O

- **Task:** predicting hepatotoxicity from small molecules.
- Performance: percentage of molecules classified correctly as toxic.
- Experience: dataset of small molecules experimentally distinguishing them between toxic and non-toxic for the liver.

Towards Data Science, 2020

SUPERVISED LEARNING

SUPERVISED LEARNING - CLASSIFICATION

SUPERVISED LEARNING - REGRESSION

16

MACHINE LEARNING WORKFLOW

DATA REPRESENTATION

 Most of the recent Machine Learning tools (e.g., scikit-learn, etc) only accept numerical matrices (or dataframes) as inputs.

• We need to find ways to represent our biological, chemical, human data, etc in a numerical way.

DATA REPRESENTATION - SMALL MOLECULES

Given the structure of the molecule, we are able to derive a list of descriptors aiming to characterise this input molecule to predict a given property

Chem Intelligence, 2021

DATA REPRESENTATION - SMALL MOLECULES

Chem Intelligence, 2021

DATA REPRESENTATION - SMALL MOLECULES

- **OD Descriptors:** No information about structure and connectivity.
 - Atom counts, or molecular weights
- 1D Descriptors: Partial information about the structure and connectivity.
 - Fingerprints.
- **2D Descriptors:** Information on molecular topology based on the graph representation.
 - Atom distance matrix.
- 3D Descriptors: Information about the spatial coordinates of atoms of a molecule
 - 3D fingerprints.

Open-Source Cheminformatics and Machine Learning

3D Representation:

Axen et al., 2017

Chem Intelligence, 2021

DATA REPRESENTATION - PROTEINS

Sequence-based descriptors

MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAADPAIPEEVWNIKQMIKLTQEH
IEALLDKFGGEHNPPSIYLEAYEEYTSKLDALQQREQQLLESLGNGTDFSVSSSASMDTV
TSSSSSSLSVLPSSLSVFQNPTDVARSNPKSPQKPIVRVFLPNKQRTVVPARCGVTVRDS
LKKALMMRGLIPECCAVYRIQDGEKKPIGWDTDISWLTGEELHVEVLENVPLTTHNFVRK

- Amino acid composition
- Physicochemical properties
- Disorder propensity scores

_	0	0	

#	А	С	D	E	F
P31946	0.085	0.008	0.057	0.122	0.024
P62258	0.098	0.012	0.086	0.114	0.020
Q04917	0.098	0.012	0.069	0.114	0.028
P61981	0.093	0.012	0.069	0.113	0.012
P31947	0.105	0.008	0.060	0.133	0.020
P27348	0.098	0.020	0.073	0.106	0.024

iFeature, 2018

DATA REPRESENTATION - PROTEINS

Structure-based descriptors:

Sanyal et al., 2021

- residue depth
- solvent accessible surface area
- secondary structure distribution
- torsion angles
- Cumulative pair distances between pharmacophore atom groups

Focusing on Classification

Definition: A decision boundary, is a surface that separates data points belonging to different class labels. (Sahu, 2021)

26

Comparison of the decision boundaries of 10 machine learning models:

Varoquaux and Müller

<u>SVM - Wikipedia</u>

32

Support Vector Machines were developed to deal with linear data. What happens when we take data like:

Non-linearly separable data

Support Vector Machines have a key component called kernel machine.

A **Kernel Function** manipulates the training data to transform a non-linear lower dimension space into a higher dimension space, which we can get a linear decision boundary

SVM - Wikipedia

A **Kernel Function** manipulates the training data to transform a non-linear lower dimension space into a higher dimension space, which we can get a linear decision boundary

SVM - Wikipedia

GITHUB REPOSITORY

https://github.com/alexgcsa/incob2023

ML RESOURCES

- Tom Mitchell's Book and Youtube Course:
 - o https://www.cs.cmu.edu/~tom/mlbook.html
 - https://www.youtube.com/watch?v=m4NlfvrRCdg&list=PLl-BBnDxtUt1hLXmIw u27P22bTi6VwMkN

- Sebastian Raschka's Course:
 - https://sebastianraschka.com/blog/2021/ml-course.html

- Andrew Ng's Course:
 - https://www.coursera.org/specializations/machine-learning-introduction
 on

QUANTUM MACHINE LEARNING

Alex de Sá Ashar Malik Alex.deSa@baker.edu.au Ashar.Malik@baker.edu.au

https://github.com/alexgcsa/incob2023

K-FOLD CROSS-VALIDATION

TRAIN/TEST

Test the model on new data, assessing its generalisation

CLASSIFICATION METRICS

Towards Data Science, 2023

Medium, 2020