

Área de Ciências Exatas e Engenharias Lógica Computacional e Programação

Manipulação de Arquivos

Professores:
Carine Webber
Maria de Fátima Webber do Prado Lima
Helena Graziottin Ribeiro
Gabriele Dani
Márcio Moura Leal

Python

Como os dados processados pelo computador podem ser armazenados no HD do computador ou em um dispositivo de memória?

Como os dados processados pelo computador podem ser armazenados no computador?

Através da gravação de arquivos

Arquivos

- Um arquivo é uma área em um dispositivo (HD, pen drive, CD) onde os dados ficam armazenados de forma permanente, até que o proprietário do dispositivo os apague.
- Um arquivo pode ter diversos formatos: texto, binário, ...
- Arquivos texto:
 - sequência estruturada de linhas que contém cada uma uma sequência de caracteres.
 - o texto não possui formatação.
 - cada linha é terminada com um caractere especial de fim de linha, como o caractere newline (\n).

Arquivos

- Etapas para armazenar os dados em um arquivo ("gravar arquivo"):
 - Informar o nome do arquivo onde os dados devem ser armazenados:
 - Comando open
 - Informar o modo de abertura do arquivo, ou seja, qual operação será realizada no arquivo:
 - Modo w (dados estarão sendo gravados)
 - Informar os dados a serem armazenados:
 - Comando write
 - Sinalizar que todos os dados já foram incluídos no arquivo:
 - Comando close

Exemplo de gravação de arquivos

#o programa cria um arquivo chamado disciplina.txt
#modo w (write) indica que dados serão gravados
arq= open("disciplina.txt","w")

arq.write('Universidade de Caxias do Sul\n')
arq.write('Área do Conhecimento de Ciências Exatas e Engenharias\n')
arq.write('Disciplina: Lógica Computacional e Programação\n')

#"fecha" o arquivo indicando que ele n\u00e3o ser\u00e1 mais utilizado
arq.close()

UNIVERSIDADEDE CAXIAS DO SUL

Exemplo de gravação de arquivos

```
#o programa cria um arquivo chamado notas.csv
#modo w (write) indica que dados serão gravados
arq= open("notas.csv","w")
```

```
arq.write('Claudia;7;7;7;7\n')
```

arq.write('Fabio;6;6;6;6\n')

arq.write('Marcos;9;9;9\n')

arq.write('Patricia;8;8;8\n')

#é obrigatório "fechar" o arq. indicando que ele não será mais utilizado arq.close()

Arquivos

- Etapas para recuperar (ler) os dados anteriormente armazenado no computador:
 - Informar o nome do arquivo onde os dados devem ser armazenados:
 - Comando open
 - Informar o modo de abertura do arquivo, ou seja, qual operação será realizada no arquivo:
 - Modo r (dados serão acessados, "lidos")
 - Acessar os dados armazenados:
 - Comando read (recupera todo o texto armazenado)
 - Comando readline (recupera linha a linha os dados armazenados)
 - Sinalizar que todos os dados já foram incluídos no arquivo:
 - Comando close

Anteriormente tínhamos aprendido a gravar em arquivos .txt

```
#o programa cria um arquivo chamado disciplina.txt
#modo w (write) indica que dados serão gravados
arq= open("disciplina.txt","w")
```

arq.write('Universidade de Caxias do Sul\n')
arq.write('Área do Conhecimento de Ciências Exatas e Engenharias\n')
arq.write('Disciplina: Lógica Computacional e Programação\n')

#"fecha" o arquivo indicando que ele n\u00e3o ser\u00e1 mais utilizado
arq.close()

Agora.... Acessaremos o seu conteúdo

```
#o programa cria um arquivo chamado disciplina.txt
#modo r (read) indica que dados serão lidos
arq= open("disciplina.txt","r")
```

#o comando read acessa todo o texto armazenado no arquivo
texto = arq.read()
print(texto)

#"fecha" o arquivo indicando que ele não será mais utilizado arq.close()

Anteriormente tínhamos aprendido a gravar em arquivos .csv

```
#o programa cria um arquivo chamado notas.csv
#modo w (write) indica que dados serão gravados
arq= open("notas.csv","w")

arq.write('Claudia;7;7;7;7\n')
arq.write('Fabio;6;6;6;6\n')
arq.write('Marcos;9;9;9\n')
arq.write('Patricia;8;8;8\n')
```

#é obrigatório "fechar" o arq. indicando que ele não será mais utilizado arq.close()

Agora.... Acessaremos o seu conteúdo

```
#o programa cria um arquivo chamado disciplina.txt
#modo r (read) indica que dados serão lidos
arq= open("notas.csv","r")
```

#o comando arq.readline() lê uma linha do arquivo e coloca o seu conteúdo na variável linha

```
linha = arq.readline()
```

```
#o conteúdo da variável linha é colocado em 5 variáveis: nome, n1,n2, n3 e media
#o comando split é utilizado para separar a linha em vários strings menores
#o caracter separador utilizado é o ";"
nome,n1,n2,n3,media = linha.split(";")
```

#"fecha" o arquivo indicando que ele n\u00e3o ser\u00e1 mais utilizado
arq.close()

Área de Ciências Exatas e Engenharias Lógica Computacional e Programação

Condicionais Compostos e Aninhados

Professores:
Carine Webber
Maria de Fátima Webber do Prado Lima
Helena Graziottin Ribeiro
Gabriele Dani
Márcio Moura Leal

Temos 3 segmentos de reta:

segmento 1

segmento 2

segmento 3

Temos 3 segmentos de reta:

segmento 1

segmento 2

segmento 3

Temos 3 segmentos de reta:

segmento 1

segmento 2 -

segmento 3

Todos 3 segmentos de reta formam um triângulo?

Temos 3 segmentos de reta:

segmento 1 —

segmento 2

segmento 3

Temos 3 segmentos de reta:

segmento 1 —

segmento 2 ——

segmento 3

Temos 3 segmentos de reta:

segmento 1 —

segmento 2 ——

segmento 3

E aí????

Condição de existência de um triângulo!

 Para construir um triângulo é necessário que a medida de qualquer um dos lados seja menor que a soma das medidas dos outros dois.

Traduzindo...

$$s1 < s2 + s3$$
 e $s2 < s1 + s3$ e $s3 < s1 + s2$

Condição de existência de um triângulo!

 Para construir um triângulo é necessário que a medida de qualquer um dos lados seja menor que a soma das medidas dos outros dois.

Traduzindo...

e ???

Operadores Lógicos

Operação	Operador
E	and
OU	or

Tabela Verdade Operador E

Entrada 1	Entrada 2	Saída
V	V	V
V	F	F
F	V	F
F	F	F

Tabela Verdade Operador OU

Entrada 1	Entrada 2	Saída
V	V	V
V	F	V
F	V	V
F	F	F

Resolvendo...

```
temp.py* 🗵
 1print("-*-"*20)
 2 print("Analisador de Triângulos")
 3 print("-*-"*20)
 5 s1=float(input("Informe o primeiro segmneto: "))
 6 s2=float(input("Informe o segundo segmneto: "))
7 s3=float(input("Informe o terceiro segmneto: "))
8print("-*-"*20)
10 if s1 < s2+s3 and s2 < s1+s3 and s3 < s1+s2:
      print("Os segmentos informados FORMAM UM TRIÂNGULO!")
12 else:
      print("Os segmentos informados NÃO FORMAM UM TRIÂNGULO!")
13
```


Tipos de triângulos

Quais tipos de triângulos você conhece?

Temos 3 segmentos

- Quero descobrir que tipo de triângulo eles formam:
 - É equilátero se s1 = s2 e s2 = s3
 - É escaleno se s1 != s2 e s2 != s3 e s1 != s3
 - É isósceles se não for nenhum dos dois acima

Como faz isso em Python?

Condicionais Aninhados

if (condição):

instruções

elif (condição):

instruções

else:

instruções

Resolvendo...

- Algumas considerações importantes...
 - Precisa testar se os segmentos formam um triângulo antes.
 - O Python aceita um tipo de comparação múltipla que vai facilitar a nossa vida...veja a seguir!

Resolvendo...

```
temp.py* 🗵
 1print("-*-"*20)
 2 print("Analisador de Triângulos")
 3 print("-*-"*20)
 5 s1=float(input("Informe o primeiro segmneto: "))
6 s2=float(input("Informe o segundo segmneto: "))
 7 s3=float(input("Informe o terceiro segmneto: "))
8print("-*-"*20)
10 if s1 < s2+s3 and s2 < s1+s3 and s3 < s1+s2:
      print("Os segmentos informados FORMAM UM TRIÂNGULO!")
11
12
13
      if s1 == s2 == s3:
14
          print("EQUILÁTERO")
15
      elif s1 != s2 != s3 != s1:
16
          print("ESCALENO")
17
      else:
          print("ISÓSCELES")
18
19
20 else:
      print("Os segmentos informados NÃO FORMAM UM TRIÂNGULO!")
21
22
```


Desafio.....

- Pedra....Papel....Tesoura...
- Desenvolva um programa que jogue esse jogo com você de acordo com as regras:
 - · Você escolhe uma opção;
 - O computador escolhe outra;
 - Seu programa diz quem ganhou.

