



## SEM 2 - 5(RC16-17)

# F.E. (Semester – II) (Revised in 2016-17) Examination, May/June 2017 FUNDAMENTALS OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Duration: 3 Hours Max. Marks: 100

Instructions: 1) Answer five questions with two from Part – A, two from Part – B and one from Part – C.

- 2) Assume suitable data if necessary.
- 3) Figures to the right indicate full marks.

#### PART-A

Answer any two questions form the following:

- 1. a) With the help of heat sketch explain the formation of the depletion region in an open circuited PN junction (No Bias condition/No external voltage).
  - b) Differentiate between a bridge and a center-tapped rectifier. 3
  - c) For the network shown below in Fig. 1 (c) determine the range of  $R_L$  and  $I_L$  that will result in  $VR_L$  being maintained at 12V.



Fig. 1 (c)

d) Derive an expression for RMS value of current (I<sub>rms</sub>) of a half wave rectifier.

5

7



3

6

5

5

- 2. a) With the help of a neat diagram explain the construction of N-channel Depletion MOSFET. Also draw the drain characteristics for N-channel Depletion MOSFET.
  - b) Derive the relation between Ic and I<sub>CEO</sub> for a transistor.
  - c) Determine the dc bias voltage V<sub>CE</sub> and the current I<sub>C</sub> for the voltage divider configuration given below in Fig. 2(c):



- d) Explain the term Thermal Runaway.
- 3. a) With the help of energy diagrams, explain how materials are classified based on their conductivity.
  - b) Explain how the process of Zener Breakdown occurs in a PN junction diode.
  - c) With the help of a neat diagram explain how a BJT in Common Base (CB)configuration can be used as an amplifier.
  - d) With the help of a neat diagram and drain/output characteristics explain the working of N-channel JFET.



### PART-B

| Ansv | ver    | any two questions form the following:                                                                            |   |
|------|--------|------------------------------------------------------------------------------------------------------------------|---|
| 4.   | a)     | What are the various ways in which a Silicon Controlled Rectifier can be turned off?                             | 5 |
|      | b)     | With the help of Logic Diagram and Truth Tables, state and prove the DeMorgan's Laws.                            | 6 |
|      | c)     | Differentiate between an ideal and practical op-amp.                                                             | 4 |
|      | d)     | Draw the Logic Symbols, construct Truth Tables, and with the help of circuit diagrams, explain the working of :  | 5 |
|      |        | i) AND                                                                                                           |   |
|      |        | ii) OR                                                                                                           |   |
| 5.   | a)     | Define the gauge factor of a strain gauge. Explain the various characteristics of a strain gauge.                | 5 |
|      | b)     | With the help of a block diagram list and explain the basic units of a microprocessor.                           | 5 |
|      | c)     | What is a PCB? Give the steps involved in the manufacturing of single sided PCB with the help of a flow diagram. | 5 |
|      | d)<br> | With the help of a neat diagram explain the basic concept of amplitude modulation and frequency modulation.      | 5 |
| 6.   | a)     | With the help of neat diagram explain the characteristics of an SCR.                                             | 6 |
|      | b)     | Two square waves, A of 500Hz and B of 1 KHz frequency are applied as                                             |   |
|      |        | input to the following Logic Gates. Draw the output waveform in each case.                                       |   |
|      |        | i) NOR Gate                                                                                                      |   |
|      |        | ii) XOR Gate                                                                                                     | 2 |
|      | c)     | In Digital Electronics, what is Positive and Negative Logic?                                                     | 2 |
|      | d)     | With the help of a flow diagram explain the operating cycle of a CPU of a Programmable Logic Controller.         | 5 |
|      | e)     | What are the important functions of transmitter and receiver in a basic communication system?                    | 5 |



#### PART-C

### Answer any one question form the following:

| 7. | a) | Explain how the process of Avalanche Breakdown occurs in a PN junction diode.                     |    |
|----|----|---------------------------------------------------------------------------------------------------|----|
| -  | b) | With the help of neat diagram explain how Complementary MOSFET (CMOS) can be used as an inverter. | 5  |
|    | c) | With the help of a two-transistor model, explain the working of a Silicon Controlled Rectifier.   | 0, |
|    | d) | Explain the working principle of Piezoresistive strain gauge.                                     |    |
| 8. | a) | Explain P type semiconductor materials with the help of a neat diagram.                           | E  |
|    | b) | Draw and explain the output characteristics of a npn BJT connected in CB configuration.           | E, |
|    | c) | Explain the following:                                                                            |    |
|    |    | i) Common Mode Rejection Ratio (CMRR).                                                            |    |
|    |    | ii) Slew Rate.                                                                                    | !  |
|    | d) | What is a PLC ? How is it different from a computer ?                                             | 1  |