)			

import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') In [1]:

df = sns.load_dataset('titanic')
df In [2]:

Out[2]:		survived pclass	pclass	sex	age	sibsp	age sibsp parch	fare	embarked	class	who	adi
	0	0	c	male	22.0	~	0	7.2500	S	Third	man	
	_	←	_	1 female	38.0		0	71.2833	U	First	woman	
	7	~	m	3 female	26.0	0	0	7.9250	S	Third	woman	
	m	_	_	1 female	35.0	_	0	53.1000	S	First	woman	
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	
	:	:	:	:	:	i	÷	:	:	:	÷	
	988	0	2	male	27.0	0	0	13.0000	S	S Second	man	
	887	_	_	female	19.0	0	0	30.0000	S	First	woman	
	888	0	c	3 female	NaN	_	2	23.4500	S	Third	woman	
	889	_	_	male	26.0	0	0	30.0000	U	First	man	
	890	0	3	male	32.0	0	0	7.7500	Ø	Third	man	

891 rows × 15 columns

In [3]: sns.boxplot(x='age', y='sex', data=df)

Out[3]: <Axes: xlabel='age', ylabel='sex'>

In [4]: sns.boxplot(x='age', y='sex', hue='survived', data=df)

1/14

Out[5]: <Axes: xlabel='sex', ylabel='age'>

In [6]: sns.boxplot(y='age', x='sex', hue='survived', data=df)

Out[6]: <Axes: xlabel='sex', ylabel='age'>

4/18/24, 12:58 AM

Assignment 9

Out[7]: sex age

0 male 22.0

1 female 38.0

2 female 26.0

3 female 35.0

4 male 35.0

...

 886
 male
 27.0

 887
 female
 19.0

 888
 female
 NaN

889 male 26.0 **890** male 32.0

891 rows × 2 columns

In [8]: sns.boxplot(y='age', x='sex', hue='sex', data=data)

3/14

In [9]: sns.stripplot(y='age', x='sex', hue='sex', data=data)

Out[9]: <Axes: xlabel='sex', ylabel='age'>

In [10]: sns.swarmplot(y='age', x='sex', hue='sex', data=data)

Assignment 9

```
In [12]: data_male = data[data['sex']=='male']
data_female = data[data['sex']=='female']
In [13]: data_male.describe()
```

Out[13]:

count 453.000000

mean 30.726645

 mean
 30.726645

 std
 14.678201

 min
 0.420000

 25%
 21.000000

 50%
 29.000000

 75%
 39.000000

In [14]: |data_female.describe()

80.000000

75% max

```
        mean
        27.915709

        min
        0.750000

        50%
        27.00000

        75%
        37.00000

        max
        63.00000
```

```
In [15]: male_q1 = data_male['age'].quantile(0.25)
male_q3 = data_male['age'].quantile(0.75)
male_iqr = male_q3 - male_q1
print(male_q1)
print(male_q3)
print(male_q3)
```

21.0 39.0 18.0

female

sex

male

```
In [16]: female_q1 = data_female['age'].quantile(0.25)
  female_q3 = data_female['age'].quantile(0.75)
  female_iqr = female_q3 - female_q1
  print(female_q1)
  print(female_q3)
  print(female_q3)
```

```
print(remare_14r)
18.0
37.0
19.0
```

7/14

file:///C:/Users/PV/Downloads/Assignment 9.html

9/14

In [22]: sns.swarmplot(x='age', y='sex', data=data_male)

Out[22]: <Axes: xlabel='age', ylabel='sex'>

& female -

09

20

40

30 age

20

10

In [24]: | sns.violinplot(x='age', y='sex', data=data_male)

In [25]: sns.violinplot(x='age', y='sex', data=data_female)

Out[25]: <Axes: xlabel='age', ylabel='sex'>

