Rafael Georgetti Grossi

Carga e Descarga de um Capacitor

Belo Horizonte

Lista de ilustrações

Figura 1 -	- Circuito Capacitor	4
Figura 2 -	- Corrente por Tempo ligado à Fonte	7
Figura 3 -	- Corrente por Tempo com Capacitor	7
Figura 4 -	- $\ln i$ por tempo	8

Lista de tabelas

Tabela 1	_	Corrente por	Tempo ligae	do a Fonte		•	 •		•			•		(
Tabela 2	_	Corrente por	Tempo com	Capacitor										(

Sumário

1	INTRODUÇÃO	4
2	PARTE EXPERIMENTAL	5
2.1	Objetivos	5
2.2	Material Utilizado	5
2.3	Procedimentos	5
3	DESENVOLVIMENTO	6
4	CONCLUSÃO	g
	REFERÊNCIAS	C

1 Introdução

Capacitores são dispositivos que tem como função armazenar cargas elétricas e consequente energia eletrostática, ou elétrica através de um campo elétrico. Ele é constituído de dois eletrodos metálicos. Entre esses eletrodos existe um material dielétrico (isolante), cuja função é permitir que as placas sejam colocadas muito próximas.

Figura 1 – Circuito Capacitor

A figura 1 mostra um circuito de carga de um capacitor com capacitância C utilizado uma fonte de tensão constante V_0 . O processo de carga inicia-se quando fechamos a chave S. No instante imediato ao fechamento (t=0) o circuito comporta-se como se o capacitor não existisse. Portanto a corrente i no instante t=0 é igual a $\frac{V_0}{R}$. A medida que o capacitor é carregado esta corrente diminui e em um instante t qualquer a relação entre as voltagens nos elementos do circuito é dada por:

$$V_0 = V_{Resistor}(t) + V_{Capacitor}(t) \tag{1.1}$$

Escrevendo-se em função da corrente têm-se:

$$V = Ri + \frac{q}{C} \tag{1.2}$$

Porem $i = \frac{dq}{dta}$, logo:

$$V = R\frac{dq}{dt} + \frac{q}{C} \tag{1.3}$$

Resolvendo-se a equação diferencial encontra-se:

$$q = CV(1 - e^{-\frac{t}{RC}}) \tag{1.4}$$

$$i(t) = -\frac{V}{R}e^{-\frac{t}{RC}} \tag{1.5}$$

Portanto a corrente ira diminuir exponencialmente a medida que o capacitoré carregado e o inverso durante a descarga. Nota-se que este processor é extremamente rápido, então tanto a carga quanto a descarga serão quase instântaneos.

2 Parte Experimental

2.1 Objetivos

Analisar o comportamento da corrente em função do tempo, durante o processo de carga e descarga de um capacitor.

2.2 Material Utilizado

- a) Fonte de Corrente Contínua;
- b) Resistor de 11 $k\Omega$;
- c) Capacitor Eletrolítico de $1000\mu F$;
- d) Micrô Amperímetro;
- e) Cronômetro;

2.3 Procedimentos

- a) Montar o circuito ligando propriamente o amperímetro;
- b) Ajustar a Fonte para 1.5V;
- c) Ligar o circuito e preencher uma tabela corrente i por tempo T;
- d) Criar gráficos para a carga e descarga do capacitor corrente i por tempo T e um gráfico para ln(i) por T;

3 Desenvolvimento

Primeiramente monta-se o circuito como elaborado na figura 1 e em seguida preparase o cronômetro para registrar o tempo. Divide-se em duas tarefas, uma para a carga e outra para a descarga. Para registrar os dados durante as duas tarefas utilizou-se uma câmera e através do filme foi possível criar as tabelas de corrente i por tempo t.

Tabela 1 – Corrente por Tempo ligado a Fonte.

Corrente (i)	Tempo (s)
50	3
40	3,08
30	3,41
20	3,80
10	4,51
5	5,17

Fonte: Autoria Própria.

Tabela 2 – Corrente por Tempo com Capacitor.

Corrente (i)	Tempo (s)
50	3
40	3,21
30	3,53
20	3,93
10	4,51
5	5,23

Fonte: Autoria Própria.

Em seguida, com auxilio do programa SciDavis foram plotados os gráficos referentes às tabelas 1 e 2. A área abaixo da curva dos gráficos fornece a carga Q do capacitor.

X Axis Title

Figura 2 – Corrente por Tempo ligado à Fonte

Fonte: Autoria Própria

Fonte: Autoria Própria

Como o gráfico $\ln i$ por t
 tem característica linear, é possivel fazer uma regressão linear e encontrar a Capacitância C
 através da equação:

$$\ln i = \ln \frac{V}{R} - \frac{T}{RC} \tag{3.1}$$

Como o gráfico é linear, sabe-se que o coeficiente linear a é:

$$a = \frac{1}{RC} \tag{3.2}$$

Resolvendo-se as equações encontra-se a Capacitância de $945\mu F$.

Fonte: Autoria Própria

4 Conclusão

A corrente durante a carga e a descarga tem forma exponencial $i=I_0e^{-\frac{t}{RC}}$. Tomando o logaritimo natural em ambos os lados encontra-se a equação (3.1) e apartir desta foi possível calcular a Capacitância de $945\mu\mathrm{F}$ que é muito proxima da descrita pelo fabricante ($1000\mu\mathrm{F}$). A diferença é muito pequena e pode ser explicado pelo fato dos aparatos de medidas não serem muito precisos e o fator do erro humano durante as etapas do experimento.

Referências

HALLIDAY, D.; WALKER, J.; RESNICK, R. Fundamentals of physics. [S.l.]: John Wiley & Sons, 2013.

PUCMINAS, D. *Eletromagnetismo*. Belo Horizonte: Puc Minas - Instituto de Ciências Exatas e Informática, 2019. 79 p.