Degree: B. Tech Semester: Vth — Course work MID-SEMESTER EXAMINATION, September, 2024

Course Title: Data Handling and Visualization Tools Course Code: CDCSE01

Duration: 1:30 Hours Max. Marks: 25

Note: - Attempt all questions in the given order only. Missing data/information (if any), maybe suitably assumed & mentioned in the answer.

Q. No.		Marks	CO
12	Explain the stages involved in a typical data science. Illustrate each stage with an example from a real-world application.	2.5	1
1b	A data scientist needs to collect and analyze data from a social	2.5	1
/	media platform to study user engagement trends. Identify two		
	potential data security issues that could arise in this context and		
	propose solutions to mitigate these issues.		
2a	You have a dataset with 1,000 records across 5 columns: A, B,	2.5	2
2	C, D, and E. The dataset is structured as follows:		
	1. Column A: Contains 1,000 values.		
	2. Column B: Contains 1,000 values.		
	3. Column C: Contains 1,000 values.	Par I I	1
	4. Column D: Contains 1,000 values.		
	5. Column E: Contains 1,000 values.	1	
	Upon analysis, you find the following:		
	• 200 tuples (rows) have missing values in Column A.		
	• 150 tuples have missing values in Column B.		
	• 100 tuples have missing values in Column C.		
	• 50 tuples have missing values in Column D.		
	 80 tuples have missing values in Column E. 		
	However, some tuples have missing values in more than one		
	column.		
	i. Determine the number of tuples with missing values in a	t	
	least one column. Assume that no tuple is counted more than	1	1
	once, even if it has missing values in multiple columnsn		200
	ii. Calculate the percentage of tuples with missing values in a	it 2	UD 160
	least one column with respect to the total number of tuples	1. Th	
	Discuss possible strategies for handling missing data without	it	
	removing the rows with missing values. Explain how each	h	putation
	strategy can be applied and the potential impact on the dataset.	1	1
21.	Explain the importance of data cleaning in the data pre-	- 2.5	5 1
2b	Explain the importance of data cleaning in the data property		
7]	processing stage. Provide an example where improper dat		

	cleaning led to misleading results.		
3a/	Given a dataset with the following data points for the variable "X": [12, 15, 13, 20, 18, 14, 17, 16, 15, 19], calculate the mean, mode, standard deviation, skewness, and kurtosis. Interpret the skewness and kurtosis values in terms of the data distribution shape.	2.5	2
3b/	How would you use a residual plot to evaluate the accuracy of a polynomial regression model? What specific patterns in the residual plot would indicate that the model is well-fitted or poorly fitted?	2.5	3
4a	Describe the purpose of a pivot table in data analysis. Provide an example of how a pivot table can be used to summarize data for a retail store.		2
4b	Discuss the interpretation of p-values in ANOVA. What does a low p-value indicate, and how should you proceed based on this result? Provide an example scenario where ANOVA might be used in a real-life situation.	2.5	3
5a	What is the difference between simple regression and multiple regression? Provide a scenario where multiple regression is preferred over simple regression.	2.5	3
550 X	Explain a heat map and describe its typical use cases in data analysis. How does a heat map differ from other data visualization techniques like scatter plots or line graphs?	2.5	3

B.Tech. Semester: V- Course work END-SEMESTER EXAMINATION, Nov-Dec 2024

Course Title: Data Handling and Visualization Tools
Course Code: CDCSE01

me: 03 Hours

Max. Marks: 50

ote: - Attempt all the five questions. Missing data/ information (if any), maybe suitably assumed & entioned in the answer.

Q. No.		Marks	CO
Q1	Attempt any 2 parts of the following.		
العرا	Outline the typical stages in a data science project lifecycle. i. Explain the importance of each stage, from problem definition to deployment. ii. What challenges might arise at each stage, and how can they be addressed?	5	1
16	i. Compare and contrast different data collection strategies. What are the advantages and disadvantages of each method in terms of data quality and relevance? ii. Discuss how data integration and transformation can enhance the usability of data from multiple sources.	5	1
10/	Analyse the ethical implications of data science applications. i. How can data privacy concerns be addressed while leveraging data for decision-making? ii. What frameworks or guidelines should organizations follow to ensure ethical use of data?	5	1
Q 2 2a	Attempt any 2 parts of the following. Discuss the concept of in-sample evaluation and its importance in model development. i. What measures (e.g., R-squared, adjusted R-squared) can be used to evaluate the performance of a regression model? ii. How do you interpret these metrics in the context of your		2
2b	Explain the ANOVA (Analysis of Variance) and describe a real- time scenario where it would be appropriate to use ANOVA. i. How does ANOVA help in comparing means across multiple groups?		2
20	Given a dataset with the following values: [12, 14, 15, 16, 16, 18, 19, 20, 22, 30], calculate the skewness and kurtosis. i. Interpret the results: What do the values of skewness and kurtosis suggest about the distribution? ii. How would you visually confirm your findings using histogram or a box plot?	d	2
Q 3	Attempt any 2 parts of the following. Define what is meant by "integrity in visualization." i. Why is integrity important in the context of data visualization ii. Provide an example of a visualization that lacks integrity and discuss the potential implications of misleading visualizations.	5 n? nd s.	3

3
4.
4.
4.
4.
4.
4
4
4
4
,
,
,
,
4
5
-
5

	Using this confusion matrix, calculate the following performance metrics for the classifier: i. Accuracy ii. Precision for the spam class iii. Recall for the spam class iv. F1-score for the spam class		
5c	Define cross-validation and explain how it can help to prevent overfitting. Use the concept of Ridge Regression to show how regularization can improve model generalization.	5	5