CHAPITRE 1

RAPPELS SUR LE COURANT **CONTINU**

A- GENERALITES

A-1- COURANT ELECTRIQUE

Un conducteur possède des électrons libres animés de mouvements désordonnés dont la vitesse moyenne est nulle en l'absence de forces extérieures ; le conducteur est dit en équilibre électrostatique. Appliquons une différence de potentiel $V_A - V_B$ aux bornes du conducteur, les électrons seront désormais soumis champ électrique $\vec{E} = -\vec{qrad}V$ dirigé de $A \rightarrow B$ (vers les potentiels décroissants) et aussi animés d'une vitesse \vec{v} ; il y a donc apparition d'un courant I

qui est la charge qui traverse une section de conducteur par unité de temps c'est à dire:

$$I = \frac{dq}{qt}$$
 avec I en A; q en C et t en s

On peut également définir un vecteur densité volumique de courant \vec{i} avec la relation:

$$\vec{j} = \rho \vec{v} = -ne\vec{v}$$
 | $j en A/m^2$
 $\rho en C/m^3 et e = -1,6.10^{-19}$
 $n en m^{-3}$

 ρ étant la densité volumique de charge et n le nombre d'électrons par mètre cube. On a aussi:

$$I = \iint_{(S)} \vec{j} \cdot \overrightarrow{ds}$$

A-2- CONVENTIONS DE SIGNE

Lorsqu'on ferme l'interrupteur, les électrons de l'extrémité A du conducteur vont se déplacer pour neutraliser les charges positives du pole positif du générateur. Il va donc avoir un manque d'électrons au point A et d'où les conventions de signe:

$$\underline{G\acute{e}n\acute{e}rateur} \qquad E > 0 \ et \ I > 0$$

B- LOI DE JOULE

Soit un conducteur filiforme de longueur l de section s parcouru par un courant I. ce conducteur s'échauffe lors du passage du courant et l'énergie dissipée par effet joule est:

$$W = \rho \frac{l}{s} I^2 t$$
 | $W en J$, $len m$, $sen m^2$
 $Ien A et t en s$

Où ρ est la résistivité exprimée en Ω .m et $\sigma = \frac{1}{\rho}$ est la conductivité en S/m

	Ag	Cu	Au	Al
ρ	1,63	1,72	2,42	2,72
$ imes 10^{-8} \Omega$. m				

On peut aussi définir la résistance R par :

$$R = \rho \frac{l}{s} = \frac{l}{\sigma s} \quad et \ G = \frac{1}{R} \quad (S)$$

Ainsi on a $W = RI^2t$

C-LOIDE D'OHM

C-1- ENONCE:

Pour une résistance R parcourue par un courant I sous une tension U on écrire que:

$$|U = RI \text{ avec } U \text{ en } V \text{ et } R \text{ en } \Omega$$

$$I = G.U \text{ avec } G \text{ en } S$$

C-2- ENERGIE ET PUISSANCE

On a:
$$W = RI^2t \ et \ U = RI \ \rightarrow W = \frac{U^2}{R}t = UIt$$

Dans le cas général, l'énergie d'un circuit parcourue par un courant I et soumis à une tension s'écrit:

$$W = UIt$$

La puissance est alors : $P = \frac{W}{t} = U.I$

Pour une résistance on a : $P = RI^2 = \frac{U^2}{R} = U.I$

C-3- ASSOCIATION DE RESISTANCES

C-3-1- en série

Les résistances seront dites en série lorsqu'elles sont parcourues par le même courant *I*. On a donc :

$$U = R.I = (R_1 + R_2 + R_3).I \iff R = \sum_{k=1}^{n} R_k$$

C-3-2- en parallèle

Les résistances sont dites en parallèles lorsqu'elles sont soumises à la même tension *U*. On

$$I = G.U = (G_1 + G_2 + G_3) \leftrightarrow G = G_1 + G_2 + G_3$$

$$\to \frac{1}{R} = \sum_{k=1}^{n} \frac{1}{R_k}$$

C-4- TENSION AUX BORNES D'UN GENERATEUR

Dans un très large domaine la tension aux bornes du générateur est sous la forme

U = E - r. I où r est la résistance interne du générateur qui doit etre aussi faible que possible. Pour un générateur parfait, r = 0

On peut alors utiliser le modèle de Thévenin qui est composé d'un générateur parfait en série avec une résistance r.

C-5- GENERATEUR EN OPPOSITION OU EN RECEPTION

D- LOIS DE KIRCHOFF

D-1-ENONCE:

Un circuit électrique possède b branches et n nœuds. Un nœud est le point de concours d'au moins 3 branches alors qu'une branche relie entre eux 2 nœuds consécutifs.

Résoudre ce circuit revient à déterminer les b courants de branches i ou les b tensions aux bornes des branches b.

Procédure

- Orienté les courants de branches en respectant la convention de signe pour les branches possédant des f.é.m. ou source de tension.
- Représenter les tensions et les f.é.m. en respectant les conventions de signe.

1ère <u>loi</u> : Il ne peut y avoir accumulation d'électricité en un nœud c'està-dire que pour un nœud donné on a Σ i =0 en comptant \oplus les courants entrants et

pour les courants sortants.

Donc: 1)
$$i_1+i_2-i_4=0$$
 (1)
2) $i_4-i_5-i_6=0$ (2)
3) $i_5-i_1-i_3=0$ (3)
(1)+(2)+(3) $\Rightarrow i_2-i_3-i_6=0$

La $1^{\grave{e}re}$ loi permet d'obtenir n-1 équation ; donc la $2^{\grave{e}me}$ loi nous en donnera bn+1 équation.

On appelle maille tout circuit fermé ; il existe par conséquent b-n+1 maille indépendante contenant tous les éléments du circuit.

<u>2ème loi</u>: Lorsqu'on parcourt une maille la somme des tensions est nulle en comptant \oplus celles qui sont dans le sens de parcours de la maille. On choisit le sens de parcours des mailles en respectant autant que possible le sens des sources de tensions.

$$(E_1R_1R_4R_5E_1): E_1-R_1I_1-R_4I_4-R_5I_5=0$$
 (4)

$$(E_2R_4R_6R_2E_2): E_2-R_4I_4-R_6I_6-R_2I_2=0$$
 (5)

$$(E_3R_3R_6R_5E_3): E_3-R_3I_3-R_6I_6-R_5I_5=0$$
 (6)

D-2) DIVISEUR DE TENSION:

$$U = U_1 + U_2 \text{ or } U_1 = R_1 I \text{ et } U_2 = R_2 I$$

$$\to U_1 = \frac{R_1}{R_1 + R_2} . U; \ \ U_2 = \frac{R_2}{R_1 + R_2} . U$$

$$donc \quad U_k = \frac{R_k}{\sum_{l=1}^n R_l}.U$$

Maintenant on fait varier R₂ et on veut trouver la valeur de R₂ pour laquelle la puissance dissipée est maximale.

On a:

$$P_{R_2} = \frac{U_2^2}{R_2} = \frac{R_2}{(R_1 + R_2)^2} \cdot U^2$$

D-3) DIVISEUR D'INTENSITE

$$I = (G_1 + G_2)U \text{ or } I_1 = G_1U \text{ et } I_2 = G_2U$$

$$I_1 = \frac{G_1}{G_1 + G_2} \cdot I = \frac{R_2}{R_1 + R_2} \cdot I$$

$$I_2 = \frac{G_1}{G_1 + G_2}.I = \frac{R_1}{R_1 + R_2}.I$$

$$\to I_k = \frac{G_k}{\sum_{l=1}^n G_l}.\,I$$

CHAPITRE 2:

COURANT ALTERNATIF SINUSOIDAL MONOPHASE

A- RAPPELS SUR LES NOMBRES COMPLEXES A-1) DEFINITION

Définissons le complexe j tel que $j^2=-1$; on obtient un corps commutatif (C,+,x) d'espace vectoriel de dimension 2 sur R et de base (i,j) tel que $z \in C$, z=a+jb avec $(a,b) \in R^2$.

a=partie réelle et b=partie imaginaire.

L'élément neutre pour l'addition est le nb 0 tandis que pour la multiplication il s'agit de 1.

<u>Conséquences</u>:

- $z=0 \Rightarrow a=0$ b=0
- $z_1=z_2 \Rightarrow a_1-a_2+i(b_1-b_2)=0$ $\Rightarrow a_1=a_2 \text{ et } b_1=b_2$

A-2) REPRESENTATION

A-2-1) Forme canonique

C'est celle de la forme a+jb avec $(a, b) \in R2$

A-2-2) Module et argument

On définit le module par $|z| = Z = \sqrt{a^2 + b^2}$ avec $Z \in R_+$

On a:
$$Arg z = \varphi + 2k\pi \ avec \ tg\varphi = \frac{b}{a}; cos\varphi = \frac{a}{z}; sin\varphi = \frac{b}{z};$$

D'où les formes équivalentes :

- trigonométrique $z = Z(\cos\varphi + j\sin\rho)$
- polaire $z = [Z, \rho]$ Z/ρ
- exponentielle $z = Ze^{j\rho}$

Remarque : soit a>0 \Longrightarrow 0 est réelle car cette comparaison n'est pas dans $\mathbb C$ alors $a = a \underline{0}^{\circ}$; $-a = a \underline{180}^{\circ}$

$$ja = a/90^{\circ}$$
; $-ja = a/90^{\circ} = a/270^{\circ}$

A.3) OPERATIONS

soit
$$z_1 = a_1 + jb_1 = /Z_1 \rho_1 z_2 = a_2 + jb_2 = Z_2/\rho_3$$

A.3.1) addition

Pour l'addition, on utilisera la forme canonique et on obtient $z_1 + z_2 = a_1 + a_2 + a_3 + a_4 + a$ $a_2 + j(b_1 + b_2)$

A.3.2) multiplication

Ici on utilisera les formes polaires et/ou exponentielles c'est-à-dire

 $z_1z_2=Z_1Z_2e^{j(\rho_1+\rho_2)}=Z_1Z_2/\rho_1+\rho_2$ la forme trigonométrique permet de passer de la forme canonique aux formes polaire et exponentielle et inversement.

On a aussi
$$\frac{z_1}{z_2} = \frac{Z_1}{Z_2} / \rho_1 - \rho_2$$

Exemple: calculons
$$\frac{z_1 z_2}{z_1 + z_2}$$
 avec $z_1 = 4 + j3$ et $z_2 = 5/30^{\circ}$

Donc
$$z_1 = 5/36,87^{\circ}$$
 et $z_2 = 4,33 + j2,5$

$$\frac{z_1 z_2}{z_1 + z_2} = \frac{25 / 66,87^{\circ}}{9,982 / 33,435^{\circ}} = 2,505 / 33,435$$
$$= 2.09 + i1.38$$

A.4) NOMBRE COMPLEXE CONJUGUE

Propriétés:

$$\bullet \quad \frac{1}{z} = \frac{z^*}{Z^2}$$

A.5) RACINES CUBIQUES DE L'UNITE

Il s'agit des nombres a tels que $a^3 = 1 = 1360^{\circ}$ donc

$$\begin{cases} 1 \\ 1 \underline{/120} = -\frac{1}{2} + \frac{j\sqrt{3}}{2} \\ 1 \underline{/240} = 1 \underline{/-120} = -\frac{1}{2} - \frac{j\sqrt{3}}{2} \end{cases}$$

B- TENSIONS ET COURANTS SINUSOIDAUX

B.1) DEFINITIONS

Il s'agit des expressions de la forme $x = X_m \sin(\omega t + \rho)$ et $y = y_m \cos(\omega t + \rho)$ ρ) où x et y sont les valeurs à l'instant t;

 X_m et Y_m les valeurs maximales ou valeur de crête $\omega t + \rho$ phase à l'instant t et ρ est la phase à l'origine.

On a :
$$x(t+T) = x(t)$$

$$\Rightarrow \sin[\omega(t+T) + \rho] = \sin(\omega t + \rho + 2\pi)$$

$$\Rightarrow \omega T = 2\pi$$

Donc
$$T = \frac{2\pi}{\omega}$$
 qui est la période (s) et $f = \frac{1}{T}$ la fréquence et $\omega = \frac{2\pi}{T}$ (rad/s)

B.2) VALEUR MOYENNE ET VALEUR EFFICACE

Valeur moyenne

$$X_{moy} = \frac{1}{T} \int_0^T x dt = 0$$

Valeur efficace

Calculons l'énergie dissipée par effet joule dans une résistance parcourue par un courant i

On a:

$$\int_0^T Ri^2 dt = \int_0^T RI_m^2 \cos^2 \omega t \, dt$$
$$= \int_0^T \left(\frac{1 + \cos 2\omega t}{2}\right) RI_m^2 dt$$

La valeur efficace d'un courant alternatif périodique est le courant continu qui dissiperait la même énergie par effet joule pendant une période $X^2 = \frac{1}{\tau} \int_0^T x^2 dt$ pout toute grandeur périodique

Pour des grandeurs sinusoïdales on a :

$$X^{2} = \frac{X_{m}^{2}}{2}$$
; $X = \frac{X_{m}}{\sqrt{2}}$ et $x = X\sqrt{2}\sin(\omega t + \rho)$

En électricité, les grandeurs en majuscules sont des grandeurs efficaces.

B.3) NOTIONS SUR LE DEPHASAGE

Considérons le système suivant : $x = x_m \sin \omega t$ et $y = y_m \sin(\omega t + \rho)$

y est en avance de ρ sur x. x est en retard de ρ sur y.

Dans chaque problème, on choisira une origine de phase sauf mention contraire. Les phases à l'origine des autres grandeurs seront prises par rapport à cette origine de phase

B.4) NOTATION COMPLEXE

$$x = X_m \sin(\omega t + \rho) \to \bar{x} = X_m e^{j(\omega t + \rho)}$$
$$y = Y_m \cos(\omega t + \rho) \to \bar{y} = Y_m e^{j(\omega t + \rho)}$$

Exemple

On a
$$x = X_m \sin \omega t$$
; $y = Y_m \cos \omega t$ et $u = U_m \sin(\omega t + \rho)$

$$\Longrightarrow \bar{x}=x_me^{j\omega t}\;; \bar{y}=Y_me^{j\left(\omega t+\frac{\pi}{2}\right)}\;et\;\bar{u}=U_me^{j\left(\omega t+\rho-\frac{\pi}{2}\right)}$$

Pour passer aux expressions complexes, il faut mettre toutes les expressions instantanées sous forme de sinus ou de cosinus ; après les calculs avec les nombres complexes, on revient à un sinus si l'on est parti d'un sinus, à un cosinus si l'on est parti d'un cosinus.

Lorsque toutes les grandeurs ont la même pulsation, alors la grandeur résultante aura la même pulsation et on aura $x = X \rho$ où x est la grandeur efficace, ρ est la phase d'origine.

C- LOI D'OHM EN COURANT ALTERNATIF

On a:

$$\begin{cases} u = U\sqrt{2}cos\omega t \to \bar{u} = U\sqrt{2}e^{j\omega t} = U \text{ } \underline{/0^{\circ}} \\ i = I\sqrt{2}\cos(\omega t - \rho) \to \bar{\iota} = I\sqrt{2}e^{j(\omega t - \rho)} = I \text{ } \underline{/-\rho} \end{cases}$$

Ou

$$\begin{cases} u = U\sqrt{2}\cos(\omega t - \rho) \to \bar{u} = U & /\psi \\ i = I\sqrt{2}\cos(\omega t + \psi - \rho) \to \bar{\iota} = I & /\psi - \rho \end{cases}$$

C.1- DIPOLES ELEMENTAIRES

C.1.1) RESISTANCE

Pour une résistance dans un circuit parcouru par un courant i sous une tension u, on a:

$$u = Ri \rightarrow \bar{u} = R\bar{\iota}$$

Ainsi $Z_R = R$ est l'impédance complexe car c'est le coefficient de proportionnalité en complexe entre \bar{u} et $\bar{\iota}$.

On a alors $u\langle 0^{\circ} = RI \langle -\varphi \implies \begin{cases} I = \frac{U}{R} \\ \omega = 0^{\circ} \end{cases} \Longrightarrow \begin{cases} \overline{u} = U\langle 0^{\circ}, \text{ donc le courant et la} \end{cases}$ tension traversant la résistance sont en phase.

C.1.2) Capacité

On a
$$u = \frac{q}{c} = \frac{1}{c} \int i \, dt \implies \bar{u} = \frac{1}{c} \int I \sqrt{2} e^{j(wt - \varphi)} \, dt$$

$$\Rightarrow \bar{u} = \frac{1}{jCw} I \sqrt{2} e^{j(wt - \varphi)} = \frac{-j}{Cw} \bar{\iota}$$

d'où $Z_c = \frac{-j}{Cw}$ est l'impédance complexe de la capacité.

On peut alors écrire : $u\langle 0^{\circ} = \frac{1}{Cw} \langle -90^{\circ} . I \langle -\varphi \rangle$

Donc
$$\begin{cases} I = UCw \\ \varphi = -90^{\circ} \end{cases} \iff \begin{cases} \bar{u} = U(0^{\circ}) \\ \bar{\iota} = I(90^{\circ}) \end{cases}$$

Donc le courant iest en quadrature avance par rapport à la tension.

C.1.3 Inductance

$$\begin{array}{ccc}
L & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
U & & e = -L \cdot \frac{di}{dt}
\end{array}$$

$$u = L \cdot \frac{di}{dt} \implies \bar{u} = L \cdot \frac{d(I\sqrt{2}e^{j(wt-\varphi)})}{dt}$$

$$\Rightarrow \bar{u} = jLwI\sqrt{2}e^{j(wt-\varphi)} \ \Rightarrow \ \bar{u} = jlw\bar{\iota} \, \text{et} \, Z_L = jlw$$

 Z_L est l'impédance complexe de cette inductance.

$$u\langle 0^{\circ} = LwI\langle (90^{\circ} - \varphi) \implies \begin{cases} I = \frac{U}{Lw} \\ \varphi = 90^{\circ} \end{cases} \Rightarrow \begin{cases} \bar{u} = U\langle 0^{\circ} \\ \bar{\iota} = I\langle -90^{\circ} \end{cases}$$

Ainsi i est en quadrature retard par rapport à u.

C.2) IMPEDANCE COMPLEXE ET ADMITTANCE COMPLEXE

Considérons le circuit :

On voit que $u = u_R + u_L + u_C \implies \overline{u} = \overline{u_R} + \overline{u_L} + \overline{u_C}$

$$\bar{u} = R\bar{\iota} + jlw\bar{\iota} - \frac{j}{Cw}\bar{\iota} = \left(R + jlw - \frac{j}{Cw}\right)\bar{\iota}$$

 $\Rightarrow Z = R + j \left(lw - \frac{1}{Cw} \right)$ est l'impédance complexe (en Ω) de la branche AB.

 $Y = \frac{1}{7}$ (en s) est appelée admittance complexe.

En général, on a Z = R + jX

Avec R= résistance, $R \ge 0$ ou;

 $X = \text{réactance}, X \in \mathbb{R}$

$$\begin{cases}
\bar{u} = U\langle 0^{\circ} \\
\bar{\iota} = I\langle -\varphi \end{cases} ou \begin{cases}
\bar{u} = U\langle \psi \\
\bar{\iota} = I\langle \psi - \varphi
\end{cases}$$

$$\bar{u} = Z\bar{\iota} \iff U\langle 0^{\circ} = ZI\langle ArgZ - \varphi \\
\iff ArgZ = \varphi$$

Exemple:
$$i$$
 i_2 $\bar{e} = E\langle 0^{\circ}$ Z_1 Z_2

$$\begin{split} \bar{e} &= Z_1 \bar{\iota_1} \implies E \langle 0^\circ = Z_1 I_1 \langle (ArgZ_1 + Argi_1) \implies ArgZ_1 = -Argi_1 \\ \\ \bar{\iota_1} &= I_1 \langle -\varphi \implies ArgZ_1 = \varphi_1 \ et \ \varphi_2 = ArgZ_2 \end{split}$$

$$\bar{u} = U \langle \psi$$

$$\bar{u} = \frac{(Z_1 \parallel Z_3)}{Z_2 + (Z_1 \parallel Z_3)}$$

$$\psi = Arg\left(\frac{(Z_1 \parallel Z_3)}{Z_2 + (Z_1 \parallel Z_3)}\right)$$

C.3) ASSOCIATION D'IMPEDANCES

En série

En parallèle

$$Y = Y_1 + Y_2 + Y_3$$

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$$

Exemple

Ici on demande la condition pour que i_R soit indépendant de R.

$$Z_1 = -\frac{j}{Cw}$$
; $Z_2 = jLw$; $Z_3 = R$

• Le circuit est équivalent à

$$\overline{u_R} = \frac{(Z_2 \parallel Z_3)}{Z_1 + (Z_2 \parallel Z_3)} \bar{u} = \frac{\frac{Z_2 Z_3}{Z_2 + Z_3}}{Z_1 + \frac{Z_2 Z_3}{Z_2 + Z_3}} \bar{u}$$

$$\Rightarrow \overline{\iota_R} = \frac{\overline{u_R}}{Z_3} = \frac{Z_2}{Z_1 Z_2 + Z_3 Z_2 + Z_3 Z_1} \bar{u}$$

$$\overline{\iota_R} = \frac{Z_2}{Z_1 Z_2 + Z_3 (Z_1 + Z_2)} \bar{u} = \frac{Z_2}{Z_1 Z_2 + R(Z_1 + Z_2)} \bar{u}$$

D'où $\bar{\iota}_R$ indépendant de R $\Longrightarrow Z_1 + Z_2 = 0 \implies LCw^2 = 1$

$$\bar{\iota}_{R} = \frac{Z_{2}}{Z_{2} + Z_{3}} \bar{\iota} = \frac{Z_{2}}{Z_{2} + Z_{3}} \cdot \frac{\bar{u}}{Z_{1} + (Z_{2} \parallel Z_{3})}$$

$$= \frac{Z_{2}}{Z_{2} + Z_{3}} \cdot \frac{\bar{u}}{(Z_{1} + Z_{2})Z_{3} + Z_{1}Z_{2}}$$

$$Z_{2} + Z_{3}$$

$$\overline{\iota_R} = \frac{Z_2}{(Z_1 + Z_2)Z_3 + Z_1Z_2} \overline{u}$$

D'où $\overline{\iota_R}$ indépendant de Z_3 ssi $Z_1 + Z_2 = 0$

D. DIPOLES EN COURANT ALTERNATIF MONOPHASE

D.1. CIRCUIT RC

D.1.1 Filtre passe bas

Un filtre est un circuit qui laisse passer une plage de fréquences.

On a

$$\bar{s} = \frac{-\frac{j}{Cw}}{R - \frac{j}{Cw}}\bar{e} = \frac{1}{1 + jRCw}\bar{e} = t.\bar{e}$$

Où $t = \frac{1}{1 + iRCw}$ est le facteur de transmission

$$\Rightarrow T = \frac{1}{\sqrt{1 + R^2 C^2 w^2}}$$

$$\lim_{w\to 0} T = 1$$
; $\lim_{w\to +\infty} T = 0$ Passe-bas.

Fréquence de coupure

La fréquence de coupure revient à diviser le facteur de transmission maximal par $\sqrt{2}$ ou, la fréquence de coupure est celle pour laquelle le facteur de transmission maximal est divisé par $\sqrt{2}$.

$$T_D = \frac{T_{max}}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1 + R^2 C^2 w_D^2}}$$
$$\Rightarrow w_D = \frac{1}{RC} \Rightarrow f_D = \frac{1}{2\pi RC}$$

On a $S\langle -\varphi = TE\langle Argt \rangle$

$$\varphi = -Argt = -Arg\left(\frac{1}{1 + jRCw}\right) = Arg(1 + jRCw)$$
$$\varphi = Arctg RCw > 0$$

s est en retard sur e.

D.1.2) FILTRE PASSE-HAUT

$$\bar{s} = \frac{R}{R - \frac{f}{C\omega}} \bar{e} = \frac{1}{1 - \frac{f}{RC\omega}} \bar{e} = t \bar{e}$$

donc
$$t = \frac{1}{1 - \frac{f}{RC\omega}} \bar{e} \Rightarrow T = \frac{1}{\sqrt{1 + \frac{1}{R^2C^2\omega^2}}}$$

$$\lim_{\omega \to 0} T = 0$$
 et $\lim_{\omega \to +\infty} T = 1$

FREQUENCE DE COUPURE

$$To = \frac{Tmax}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1 + \frac{1}{R^2C^2\omega o^2}}}$$

$$\omega_o = \frac{1}{RC} \Rightarrow f_o = \frac{1}{2\pi RC}$$

$$S / = \Phi = TE / Arg t$$

$$\varphi = - \operatorname{Arg} t = - \operatorname{Arg} \left(\frac{1}{1 - \frac{j}{RC\omega}} \right) = \operatorname{Arg} \left(1 - \frac{j}{RC\omega} \right)$$

$$\varphi = -Arctg \frac{1}{RC\omega} < 0$$

s est en avance sur e

NB: aigüe = haute

D.2 <u>CIRCUIT RLC</u> 1) <u>EQUATIONS</u>

$$\bar{\mu} = U / O^{\circ}$$
 ; $\bar{\iota} = I / \Phi$

$$E/O^{\circ} = Z/Arg z . I/-\varphi$$

D'où
$$I = \frac{E}{Z} = \frac{E}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$
 et $\varphi = \text{Arg } z$

Donc tg
$$\varphi = \frac{L\omega - \frac{1}{C\omega}}{R}$$
, $\sin \varphi = \frac{L\omega - \frac{1}{C\omega}}{Z}$ $\cos \varphi = \frac{R}{Z}$

On voit alors que

- $\phi > 0$ ($L\omega > \frac{1}{C\omega}$, c'est-à-dire qu'ici on a des fréquences hautes).

On dit que i est en retard sur e c'est-à-dire que le circuit est inductif, le cos est arrière et il y a consommation de Q.

- $\phi < 0$ ($L\omega < \frac{1}{C\omega}$) nous voyons donc que i est en avance sur e le circuit est alors dit capacitif, le cos est avant et il y a fourniture de Q.

D.2.2) RESONANCE

A la résonance, on aura Z_{min} et I_{max} .

 $\lim_{\omega \to 0} I = 0$; $\lim_{\omega \to +\infty} I = 0$; $I \ge 0$ donc il passé forcément par un max I_{\max}

$$I_{\text{max}} \Leftrightarrow Z_{\text{min}} \Leftrightarrow \frac{dZ}{d\omega} = 0$$

$$\Leftrightarrow Z \frac{dZ}{d\omega} = 0 \Leftrightarrow \frac{dZ^2}{\omega} = 0$$

$$\Leftrightarrow 2\left(L\omega - \frac{1}{c\omega}\right)\left(L + \frac{1}{c\omega^2}\right) = 0$$

$$\Leftrightarrow LC\omega_0^2 = 1$$

Où $\omega_0 = \frac{1}{\sqrt{LC}}$ pulsation; $f_0 = \frac{1}{2\pi\sqrt{LC}}$ fréquence

<u>Conséquence</u>: A la résonance on a $Z_0 = R$ et $I = \frac{E}{R}$; On dit que le circuit se comporte comme une résistance pure (c'est-à-dire $\varphi = 0$)

D.2.3) COEFFICIENT DE SURTENSION 1) **DEFINITION**

A la résonance, $U_{Lo} = L\omega_o I_o = U_{Co} = \frac{Io}{C\omega o}$ avec $I_o = \frac{E}{R}$ Le coefficient de surtension est $Q = \frac{U_{Lo}}{E} = \frac{U_{Co}}{E}$ d'où

$$Q = \frac{L\omega o}{R} = \frac{R}{C\omega o}$$

Lorsque Q est grand (R faible), nous avons une résonance aigüe.

2) BANDE PASSANTE

Les fréquences de coupure f_1 et f_2 correspondent à la division de I_o (I_{max}) par $\sqrt{2}$. Le segment $[f_1,f_2]$ est appelé bande passante.

On a:

$$I = \frac{Io}{\sqrt{2}} = \frac{E}{R\sqrt{2}} = \frac{E}{Z} = \frac{E}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}$$

⇒
$$2R^2 = R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2$$

⇒ $L\omega - \frac{1}{C\omega} = \pm R$

i)
$$\omega = \omega_1 < \omega_0 \implies$$
 circuit capacitif $(L\omega_1 < \frac{1}{C\omega_1})$ c'est-à-dire $L\omega_1 - \frac{1}{C\omega_1} = -R \implies \omega_1^2 + \frac{R}{L}\omega_1 - \frac{1}{LC} = 0$

$$\Rightarrow \omega_1^2 + \frac{R}{L}\omega_1 - \omega_0^2 = 0$$

$$\text{d'où} \quad \omega_1 = -\frac{R}{2L} + \frac{1}{2}\sqrt{\frac{R^2}{L^2} + 4\omega_0^2}$$

$$\text{ii)} \quad \omega = \omega_2 > \omega_0 \implies \text{inductif}\left(L\omega_2 > \frac{1}{C\omega_2}\right)$$

$$L\omega_2 - \frac{1}{C\omega_2} = R$$

D'où
$$\omega_2 = \frac{R}{2L} + \frac{1}{2} \sqrt{\frac{R^2}{L^2} + 4\omega_0^2}$$

$$\bullet \frac{\omega_0}{\omega_2 - \omega_1} = \frac{L\omega_0}{R} = Q$$

•
$$\omega_2.\omega_1 = \omega_0^2$$

D.3) CIRCUIT RLC PARALLELE PUR

$$\bar{\iota} = y.\bar{e} = \left[\frac{1}{R} + \frac{1}{jL\omega} - \frac{C\omega}{j}\right].\bar{e}$$

$$= \left[\frac{1}{R} + j\left(C\omega - \frac{1}{L\omega}\right)\right].\bar{e}$$

$$I/- \varphi = y \quad Arg/y \cdot E/0^{\circ}$$

$$I = \sqrt{\frac{1}{R^2} + \left(C\omega - \frac{1}{L\omega}\right)^2} \cdot E$$

$$\varphi = -Arg y = Arg z$$

$$tg\phi = \frac{R - RLC\omega^2}{L\omega}$$

A la résonance Y_{min} et I_{min} c'est-à-dire $C\omega - \frac{1}{L\omega} = 0$ \Rightarrow LC $\omega_0^2 = 1$ avec $I_0 = \frac{E}{R}$, $Z_0 = R$ et $\varphi = 0$

COEFFICIENT DE SURINTENSITE

$$I_{L0} = \frac{E}{L\omega_0} = I_{C0} = E.C.\omega_0$$

$$q = \frac{I_{C_0}}{I_0} \quad \text{avec } I_0 = \frac{E}{R}$$

$$q = \frac{R}{LW_0} = RC W_0$$

D.4) CIRCUIT BOUCHON

on a
$$\bar{s} = \frac{z}{r+z}\bar{e} = \left(\frac{1}{1+\frac{R}{Z}}\right)\bar{e}$$
 avec $z = \frac{-\frac{j}{cw}(r+jlw)}{r+jlw-\frac{j}{cw}} = \frac{r+jlw}{1-lcw^2+jrcw} =$

 $\bar{s} = t\bar{e} \text{ donc } T = \frac{s}{E} \max \text{ pour Z max}$

avec
$$Z = \frac{\sqrt{r^2 + l^2 w^2}}{\sqrt{(1 - lcw^2)^2 + r^2 c^2 w^2}}$$
 Z_{max} pour $1 - lcw_0^2 = 0$ ie : $lcw_0^2 = 1$

 $w_0 = \frac{1}{\sqrt{lc}}$, $f_0 = \frac{1}{2\pi\sqrt{lc}}$ (elle est appelée fréquence d'accord)

c'est l'application du circuit RLC parallèle.

E. PUISSANCE EN COURANT ALTERNATIF MONOPHASE E.1) PUISSANCE ACTIVE

$$p = ui = U\sqrt{2} \cos wt . I\sqrt{2} \cos(wt - \rho)$$

$$P = \frac{1}{T} \int_0^T u. i dt = \frac{1}{T} \int_0^T 2UI \cos wt . \cos(wt - \rho) dt$$

$$= \frac{1}{T} \int_0^T \frac{2UI}{2} [\cos(2wt - \rho) + \cos \rho] dt$$

$$\Rightarrow$$
 P=U.I.cos ρ

 $\cos \rho$ etant le facteur de puissance

E.2) PUISSANCE REACTIVE Q ET PUISSANCE **APPARENTES**

On a

S en VA (Volt-Ampère) et l'on defini aussi la

puissance réactive Q par :

$$Q=U.I \sin \rho$$

Q en Volt-Ampere réactif (VAR)

On peut alors définir les relations suivantes :

$$S = \sqrt{P^2 + Q^2}$$

$$S = \sqrt{P^2 + Q^2}$$
 $\cos \rho = \frac{P}{S}$, $\sin \rho = \frac{Q}{S}$, $\tan \rho = \frac{Q}{P}$

E.3) PUISSANCE COMPLEXE

$$\bar{\mu} = U / 0^{\circ}; \quad ; \quad \bar{\iota} = I / -\rho$$

$$\overline{\mu}$$
. $\overline{\iota}^* = U/0^{\circ}$. I/ρ = UI/ρ

$$= UI (\cos \rho + j\sin \rho)$$

$$\bar{s} = UI \cos \rho + jUI \sin \rho$$

$$\bar{s} = \bar{u}.\bar{\iota} * = P + jQ$$

E.4) BILAN DE PUISSANCE DANS UN CIRCUIT

$$\bar{u} = z.\bar{\iota} \implies \begin{cases} \mu = Z.I \\ \rho = \arg(z) \end{cases}$$

•
$$S = U.I = Z.I.I => S=ZI^2$$

•
$$P = U.I \cos \rho = S \cos \rho = Z.I^2.\frac{R}{Z}$$
 \Rightarrow $P = R.I^2$

ou $P = \frac{U_R^2}{R}$

Dans un circuit passif, toute la puissance active est consommée par effet joule dans les résistances.

• .Q = U.I
$$\sin \rho = S \sin \rho = Z.I^2 \frac{lw - \frac{1}{cw}}{Z}$$

=> Q = $LwI2 - \frac{I^2}{cw}$
Alors QL = $LwI2 = \frac{U_L^2}{lw}$ et Qc = $\frac{-I^2}{cw} = -U_C^2.cw$

Les inductances consomment de la puissance réactive alors que les capacités fournissent de la puissance réactive au réseau. Lorsqu'on parle de $\cos \rho$ sans précision, alors il est inductif c'est-à-dire que le circuit est inductif c'est-à-dire qu'il y a consommation de la puissance réactive. On peut alors augmenter le facteur de puissance en ajoutant des capacités dans le circuit.

E.5) CONSERVATION DE LA PUISSANCE DANS UN CIRCUIT

THEOREME DE BOUCHEROT : Dans une installation électrique, la puissance active fournie est = à la somme arithmétique des puissances consommées.

La puissance réactive fournie est = à la somme algébrique des puissances réactives dans les différentes branches du circuit.

EXEMPLE: une installation 220-50 Hz comporte un moteur asynchrone(MAS) de puissance utile $P_0 = 150$ cv (cheval vapeur) de $\cos \rho =$ 0.85 et de rendement $\eta=0.9$

-un moteur synchrone (ms), de $P_u = 80$ cv , un $\cos \rho = 0.8$ avant et $\eta = 0.88$.

- un four de 80 kw (à résistances)
- -200 lampes de 75 w chacune.

Calculons I et $\cos \rho$. NB: 1 cv = 736 w

$$\bar{\iota} = \bar{\iota}_1 + \bar{\iota}_2 + \bar{\iota}_3 + \bar{\iota}_4 \Rightarrow I/-\rho = I_1$$

•
$$I\cos \rho = I_1 \cos \rho_1 + I_2 \cos \rho_2 + I_3 + I_4$$

$$UI\cos\rho = UI_1\cos\rho_1 + UI_2\cos\rho_2 + UI_3 + UI_4$$

$$P = P_1 + P_2 + P_3 + P_4$$

$$I\sin \rho = I_1 \sin \rho_1 + I_2 \sin \rho_2$$

$$Q = Q_1 + Q_2$$

$\cos \rho$	$P_{\text{(kw)}} = \frac{P_u * 0.736}{\eta}$	$Q = P tg \rho$	$S = \sqrt{P^2 + Q^2}$
	11	(kvars)	
0,85	122,67	76,02	
0,8 av	66,91	-50,18	
1 (four)	80	0	
1 (lampes)	15	0	
		25,84	285,75
	284,58		

$$I = \frac{s}{U} \sim 1300 \text{ A et } \cos \rho = \frac{P}{s} \sim 1$$

CHAPITRE 3:

ANALYSE DES RESEAUX

A. SYSTEMES DE CRAMER.

A.1.DETERMINANT D'ORDRE 3.

Soit la matrice A =
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = (a_{kl})_{k=\overline{1,3}; l=\overline{1,3}}$$

$$\det \mathbf{A} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Les coefficients de a_{kl} sont appelés des cofacteurs et notés $(-1)^{k+l}$. a_{kl} . Ce sont les déterminants d'ordre n-1 formés d'éléments autre que ceux de la ligne k et de la colonne l contenant a_{kl} .

Si l'on considère maintenant les vecteurs $\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}$ tel que $\overrightarrow{V_1} \begin{pmatrix} a_{11} \\ a_{21} \\ a_{22} \end{pmatrix}$, $\overrightarrow{V_2} \begin{pmatrix} a_{12} \\ a_{22} \\ a_{23} \end{pmatrix}$,

$$\overrightarrow{V_3} \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}. \quad \text{Donc} : \det A = (\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}) = \overrightarrow{V_1}. (\overrightarrow{V_2} \wedge \overrightarrow{V_3})$$

A.2. RESOLUTION D'UN SYSTEME DE CRAMER.

Il s'agit d'un système de n équations linéaires à n inconnues possédant une solution unique.

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

En posant
$$X \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $B \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, on a $A.X = B \iff X = A^{-1}.B$

Posons
$$\vec{B} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
. Alors $x_1 \vec{V_1} + x_2 \vec{V_2} + x_3 \vec{V_3} = \vec{B}$

$$\Rightarrow x_1 \vec{V_1} \cdot (\vec{V_2} \wedge \vec{V_3}) = \vec{B} \cdot (\vec{V_2} \wedge \vec{V_3})$$

$$x_1 = \frac{(\vec{B}, \vec{V_2}, \vec{V_3})}{\det A}$$

C'est-à-dire:
$$x_1 = \frac{1}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}} \times \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

De même, on a:

$$x_2 = \frac{(\overrightarrow{V_1}, \overrightarrow{B}, \overrightarrow{V_3})}{detA} \ x_1 = \frac{(\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{B})}{detA}$$

On voit alors qu'en général x_k est le rapport du déterminant calculé en remplaçant la colonne k par les composantes de \vec{B} sur le déterminant de A.

B. METHODE DES MAILLES (MAXWELL)

B.1. **DEFINITIONS:**

(Voir chapitre 1 : loi de Kirchoff)

Un **réseau** ou **circuit électrique** comporte b branches et n nœuds c'est-à-dire b-n+1 mailles indépendants ; on peut donc définir b-n+1 courants de mailles $\overline{I_1}, \overline{I_2}, ..., \overline{I_{h-n+1}}$.

Les connaissances des b - n + 1 courants de mailles I est égale à la connaissance des b courants de branches \overline{i} . On passe donc d'un système de béquations à b inconnues (courants de branches) à un système à b-n+11 équations à b - n + 1 inconnues (courants de mailles).

Loi des mailles (Kirchoff)

$$\begin{aligned} & (\overrightarrow{V_1}z_1 \ z_4 \ \overrightarrow{V_1}) : \overrightarrow{V_1} - z_1 \overline{i_1} - z_4 \overline{i_4} = 0 \\ & (z_2 z_5 \ z_4 \ z_2) : -z_2 \overline{i_2} + z_4 \overline{i_4} - z_5 \overline{i_5} = 0 \\ & (\overrightarrow{V_3}z_3 \ z_5 \ \overrightarrow{V_3}) : \overrightarrow{V_3} - z_5 \overline{i_5} - z_3 \overline{i_3} = 0 \\ & (1) \Rightarrow \overrightarrow{V_1} = z_1 \overline{I_1} + z_4 (\overline{I_1} - \overline{I_2}) \\ & (2) \Rightarrow z_2 \overline{I_2} - z_4 (\overline{I_1} - \overline{I_2}) - z_5 (\overline{I_2} + \overline{I_3}) = 0 \\ & (3) \Rightarrow z_5 (\overline{I_2} + \overline{I_3}) + z_3 \overline{I_3} = \overrightarrow{V_3} \\ & C'est-\grave{a}-dire : \\ & (z_1 + z_4) \ \overline{I_1} - z_4 \overline{I_2} = \overrightarrow{V_1} \\ & -z_4 \overline{I_1} + (z_2 + z_4 + z_5) \overline{I_2} + z_5 \overline{I_3} = 0 \\ & z_5 \overline{I_2} + (z_3 + z_5) \ \overline{I_3} = \overrightarrow{V_3} \end{aligned}$$

$$\Rightarrow \begin{pmatrix} z_1 + z_4 & -z_4 & 0 \\ -z_4 & z_2 + z_4 + z_5 & z_5 \\ 0 & z_5 & z_3 + z_5 \end{pmatrix} \begin{pmatrix} \overline{\overline{I_1}} \\ \overline{\overline{I_2}} \\ \overline{\overline{I_3}} \end{pmatrix} = \begin{pmatrix} \overrightarrow{V_1} \\ 0 \\ \overrightarrow{V_3} \end{pmatrix}$$

B.2. ECRITURE DIRECTE.

$$\begin{pmatrix} z_{11} & \pm z_{12} & \pm z_{13} \\ \pm z_{21} & z_{22} & \pm z_{23} \\ \pm z_{31} & \pm z_{32} & z_{33} \end{pmatrix} \begin{pmatrix} \overline{I_1} \\ \overline{I_2} \\ \overline{I_3} \end{pmatrix} = \begin{pmatrix} \overrightarrow{V_1} \\ \overrightarrow{V_2} \\ \overrightarrow{V_3} \end{pmatrix}$$

- $ightharpoonup z_{kk}$ est l'impédance propre de la maille avec k= somme de toute les impédances de la maille k.
- $ightharpoonup z_{kl}$ $(k \neq l)$ = somme des impédances communes aux mailles k et l . Il est affecter du signe – si les courants de mailles $\overline{\operatorname{I}_k}$ et $\overline{\operatorname{I}_l}$ y circulent ec sens contraire.
- $ightharpoonup \overrightarrow{V_k}$ est la somme de toutes les sources d'énergie de k en comptant positivement celles qui sont dans le sens du courant de mailles $\overline{I_k}$.

Exemple: Pont

On peut écrire que :

$$\begin{pmatrix} z_g + z_1 + z_2 & z_1 & z_1 + z_4 \\ z_1 & z_1 + z_2 & z_1 + z_2 \\ z_1 + z_4 & z_1 + z_2 & z_1 + z_2 + z_3 + z_4 \end{pmatrix} \begin{pmatrix} \overline{I_1} \\ \overline{I_2} \\ \overline{I_3} \end{pmatrix} = \begin{pmatrix} \overline{e} \\ 0 \\ 0 \end{pmatrix}$$

Or on veut que
$$\overline{i} = 0 \Rightarrow \overline{I_2} = 0$$

$$\Rightarrow \begin{vmatrix} z_g + z_1 + z_2 & \overline{e} & z_1 + z_4 \\ z_1 & 0 & z_1 + z_2 \\ z_1 + z_4 & 0 & z_1 + z_2 + z_3 + z_4 \end{vmatrix} = 0$$

$$\Rightarrow z_1(z_1 + z_2 + z_3 + z_4) - (z_1 + z_4)(z_1 + z_2) = 0$$

$$\Rightarrow z_1 z_3 - z_4 z_2 = 0$$

$$\Rightarrow z_1 z_3 = z_4 z_2$$

C. METHODE DES NŒUDS

C.1. DEFINITIONS

C.1.1. Tension de nœud

On appelle tension de nœud la ddp entre un nœud donné et un nœud particulier appelé nœud de référence dont le potentiel est pris comme nul (c'est-à-dire qu'il est lié à la terre). Il existe donc n-1 tensions de nœud.

Nœud 1 :
$$\overrightarrow{V_1} = \overrightarrow{V_{13}} = \overrightarrow{V_1} - \overrightarrow{V_3}$$

Nœud 2 : $\overrightarrow{V_2} = \overrightarrow{V_{23}}$

Nœud 2 :
$$\overrightarrow{V_2} = \overrightarrow{V_{23}}$$

C.1.2) EQUATIONS

$$\bar{v}_{1} - z_{1} - \bar{\iota}_{1} = 0 \qquad => \qquad \bar{\iota}_{1} = \frac{\bar{v}_{1} - \bar{V}_{1}}{Z_{1}}
\bar{V}_{2} + z_{2} \bar{\iota}_{2} - \bar{V}_{1} = 0 \qquad => \qquad \bar{\iota}_{2} = \frac{\bar{V}_{1} - \bar{V}_{2}}{Z_{2}}
\bar{V}_{2} - z_{3} \bar{\iota}_{3} + \bar{v}_{3} = 0 \qquad => \qquad \bar{\iota}_{3} = \frac{\bar{V}_{2} + \bar{v}_{3}}{Z_{3}}
\bar{V}_{1} = z_{4} \bar{\iota}_{4} \qquad => \qquad \bar{\iota}_{4} = \frac{\bar{V}_{1}}{Z_{4}} \quad ; \quad \bar{\iota}_{5} = \frac{\bar{V}_{2}}{Z_{5}}$$

La connaissance des n-1 tensions de nœuds implique la connaissance des b courants de branches; on passe donc d'un système de b équations à b inconnues à un système de n-1 équations à n-1 inconnues.

Loi des nœuds

$$\bar{\iota}_{1} - \bar{\iota}_{2} - \bar{\iota}_{4} = 0 \qquad (1)$$

$$\bar{\iota}_{2} - \bar{\iota}_{5} - \bar{\iota}_{3} = 0 \qquad (2)$$

$$(1) \implies \frac{\bar{v}_{1}}{Z_{1}} - \frac{\bar{v}_{1}}{Z_{1}} - \frac{\bar{v}_{1}}{Z_{2}} + \frac{\bar{v}_{2}}{Z_{2}} - \frac{\bar{v}_{1}}{Z_{4}} = 0$$

$$\implies \frac{\bar{v}_{1}}{Z_{1}} - \bar{V}_{1} \left(\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \frac{1}{Z_{4}} \right) + \bar{V}_{2} \cdot \frac{1}{Z_{2}} = 0$$

$$(2) \implies \frac{\bar{v}_{1}}{Z_{2}} - \frac{\bar{v}_{2}}{Z_{2}} - \frac{\bar{v}_{2}}{Z_{5}} - \frac{\bar{v}_{2}}{Z_{3}} - \frac{\bar{v}_{3}}{Z_{3}} = 0$$

$$\implies \bar{V}_{1} \cdot \frac{1}{Z_{2}} - \bar{V}_{2} \left(\frac{1}{Z_{2}} + \frac{1}{Z_{5}} + \frac{1}{Z_{3}} \right) + = \frac{\bar{v}_{3}}{Z_{3}}$$

D'où la matrice

$$\begin{bmatrix} \frac{1}{Z1} + \frac{1}{Z2} + \frac{1}{Z4} & -\frac{1}{Z2} \\ -\frac{1}{Z2} & \frac{1}{Z2} + \frac{1}{Z5} + \frac{1}{Z3} \end{bmatrix} \begin{bmatrix} \bar{V}1 \\ \bar{V}2 \end{bmatrix} = \begin{bmatrix} \frac{\bar{v}1}{Z1} \\ -\frac{\bar{v}3}{Z3} \end{bmatrix}$$

C.2) ECRITURE DIRECTE

$$\begin{pmatrix} Y11 & -Y12 & -Y13 \\ -Y21 & Y22 & -Y23 \\ -Y31 & -Y32 & Y33 \end{pmatrix} \begin{pmatrix} \overline{V}2 \\ \overline{V}2 \\ \overline{V}3 \end{pmatrix} = \begin{pmatrix} \overline{I}1 \\ \overline{I}2 \\ \overline{I}3 \end{pmatrix}$$

- Y_{kk} = somme de toutes les admittances aboutissant au nœud k.
- $Y_{kl} = Y_{lk} (l \neq k)$ = admittance équivalente reliant les nœuds k et l ; elle est toujours affectée d'un signe(-).

• \bar{I}_k = somme des courants créés par les sources au nœud k.

On compte positivement les courants entrant dans le nœud et négativement les courants sortant du nœud.

Exemple:

D'où
$$\mathbf{Z}_1\mathbf{Z}_3 = \mathbf{Z}_4\mathbf{Z}_2$$

D- THEOREME RELATIF AUX RESEAUX

D.1) SOURCE D'ENERGIE

D.1.1) Générateur de tension

Un générateur de tension délivre entre ses bornes une tension constante à vide ; un tel générateur sera donc déterminé par un essai à vide et par un essai en court-circuit.

A vide

En court-circuit

Z est l'impédance interne du générateur ; en court-circuit, on mesure $\bar{l}_{cc} = \frac{\bar{e}}{z}$

En charge, la tension aux bornes du générateur s'écrit $\bar{u} = \bar{e} - Z \bar{\iota}$

Pour un générateur parfait, Z = 0

D.1.2) Générateur de courant

Un générateur de courant délivre un courant parfait (ou cte) en CC. Un tel générateur sera donc déterminé par un essai en CC et un essai à vide. Lors d'un tel essai, on aura $\bar{\iota}_0 = \bar{\iota}_{cc}$

Essai à vide

$$\bar{\iota}_{\rm cc} = y \; \bar{u}_0 \quad ; \; y = \frac{1}{Z}$$

y est l'admittance interne du générateur

en charge

Pour un générateur de courant parfait, y = 0 ($Z = \infty$)

D.1.3) EQUIVALENCE

Pour
$$\bar{u} = \bar{e} - Z \bar{\iota} \implies \frac{\bar{u}}{z} = \frac{\bar{e}}{z} - \bar{\iota}$$

$$\implies \bar{\iota} = \frac{\bar{e} - \bar{u}}{z} = \bar{\iota}_{cc} - y \bar{u}$$

$$\implies \bar{\iota}_{cc} = \frac{\bar{e}}{z} \text{ et } y = \frac{1}{z}$$

Il y aura donc équivalence entre les deux générateurs.

D.2) THEOREME DE THEVENIN

Lorsqu'on veut calculer un courant $\bar{\iota}$ qui circule dans l'impédance Z, la partie du circuit ne contenant pas Z peut-être remplacée par un générateur de Thevenin (\bar{e}_T, Z_T) et on peut écrire $\bar{\iota} = \frac{\bar{e}^T}{ZT + Z}$

 \bar{e}_{T} sera déterminé par un essai à vide ; Z_{T} sera déterminé par un essai en CC.

Règles pratiques pour la détermination des impédances

- Court-circuiter les sources de tension
- Retirer (éliminer) les sources de courant
- Z_T est donc l'impédance équivalente entre A et B

Exemple

équivaut à

Essai à vide

$$\underline{\text{Mailles}}: (z_1 - z_2)\bar{I} = \bar{e_1} - \bar{e_1}$$

$$\bar{I} = \frac{\overline{e_1} - \overline{e_1}}{z_1 + z_2}$$

$$\begin{split} \bar{e}_T &= \bar{e}_1 - z_1 \bar{I} = \bar{e}_2 - z_2 \bar{I} \\ &= \frac{\bar{e}_1(z_1 + z_2) - z_1(\bar{e}_1 - \bar{e}_2)}{z_1 + z_2} \\ \bar{e}_T &= \frac{\bar{e}_1 z_2 + \bar{e}_2 z_1}{z_1 + z_2} \end{split}$$

Nœuds

$$\left(\frac{1}{z_1} + \frac{1}{z_2}\right)\bar{e}_T = \frac{\bar{e}_1}{z_1} + \frac{\bar{e}_2}{z_2} \qquad \qquad \bar{e}_T = \frac{\bar{e}_1 z_2 + \bar{e}_2 z_1}{z_1 + z_2}$$

$$\bar{e}_T = \frac{\bar{e}_1 z_2 + \bar{e}_2 z_1}{z_1 + z_2}$$

En courant continu

$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} \begin{pmatrix} \bar{I}_1 \\ \bar{I}_2 \end{pmatrix} = \begin{pmatrix} \bar{e}_1 \\ \bar{e}_2 \end{pmatrix}$$

$$F_{cc} = \bar{I}_1 + \bar{I}_2 = \frac{\bar{e}_1}{z_1} + \frac{\bar{e}_2}{z_2}$$

$$z_T = \frac{\bar{e}_T}{T_{cc}} = \frac{\frac{z_2\bar{e}_1 + z_1\bar{e}_2}{z_1 + z_2}}{\frac{z_2\bar{e}_1 + z_1\bar{e}_2}{z_1z_2}} = \frac{z_1z_2}{z_1 + z_2}$$

Règle pratique

équivaut à

$$z_T = z_1//z_2$$

Exemple: Pont

$$\bar{e}_T = v_2 - v_1 = \left(-\frac{z_1}{z_1 + z_4} + \frac{z_2}{z_2 + z_3}\right)\bar{e}$$

$$\bar{e}_T = 0$$
 $z_1(z_2 + z_3) = z_2(z_1 + z_4)$

$$z_1 z_3 = z_2 z_4$$

$$z_T = (z_1//z_4) + (z_2//z_3)$$

$$\bar{e}_1' = \bar{e}_1 + z_1 \bar{e}_1$$

La règle pratique nous montre que $z_T = (z_1 + z_3)//z_2$ c'est-à-dire :

D.3 THEOREME DE NORTON

La partie G du circuit ne contenant pas l'impédance z où circule $\bar{\iota}$ peut être remplacée par un générateur de courant ou de NORTON $(\bar{\iota}_N, z_N)$: on a alors $\bar{\iota} = \frac{z_N}{z_N + z} \bar{e}_N$

u_N est déterminé lors d'un essai en courant continu et z_N est déterminé lors d'un essai à vide $\left(y_N = \frac{1}{z_N} = \frac{\bar{\iota}_N}{\bar{\mu}_0}\right)$. On peut calculer z_N en utilisant la même règle pratique que pout z_T (voir exemple 1 théorie de Thévenin)

Il y a équivalence entre le théorème de Norton et celui de Thévenin avec $\bar{\iota}_N = \frac{e_T}{2\pi}$

$$z_N = z_T$$

D.4 THEOREME DE MILLMAN

$$u_{N} = \sum_{k=1}^{n} \frac{\bar{e}_{k}}{z_{k}} = \sum_{k=1}^{n} y_{k} \bar{e}_{k} \qquad y_{N} = \sum_{k=1}^{n} y_{k} = \sum_{k=1}^{n} \frac{1}{z_{k}}$$

$$\bar{e}_{T} = z_{N} \bar{\iota}_{N} = \left(\sum_{k=1}^{n} \frac{\bar{e}_{k}}{z_{k}}\right) * \frac{1}{\left(\sum_{k=1}^{n} y_{k}\right)}$$

$$z_{T} = \frac{1}{\sum_{k=1}^{n} \frac{1}{z_{k}}}$$

E. THEOREME DE KENELLY $(Y-\Delta)$: TRANSFORMATION ETOILE-**TRIANGLE**

$$(1) \begin{cases} \bar{\iota}_1 + \bar{\iota}_2 + \bar{\iota}_3 = 0 \\ \bar{z}_1 \bar{\iota}_1 - \bar{z}_2 \bar{\iota}_2 = \bar{u}_{12} \\ z_2 \bar{\iota}_2 - \bar{z}_3 \bar{\iota}_3 = \bar{u}_{23} \end{cases}$$

$$(1) \begin{cases} \bar{l}_1 + \bar{l}_2 + \bar{l}_3 = 0 \\ \bar{z}_1 \bar{l}_1 - \bar{z}_2 \bar{l}_2 = \bar{u}_{12} \\ z_2 \bar{l}_2 - \bar{z}_3 \bar{l}_3 = \bar{u}_{23} \end{cases}$$

$$(2) \begin{cases} \bar{u}_{12} + \bar{u}_{23} + \bar{u}_{31} = 0 \\ \frac{\bar{u}_{12}}{z_{12}} - \frac{\bar{u}_{31}}{z_{31}} = \bar{l}_1 \\ -\frac{\bar{u}_{12}}{z_{12}} + \frac{\bar{u}_{23}}{z_{23}} = \bar{l}_2 \end{cases}$$

E.1 TRANSFORMATION $(Y-\Delta)$

D'après (1) on a :

$$\begin{pmatrix}
1 & 1 & 1 \\
z_1 & -z_2 & 0 \\
0 & z_2 & -z_3
\end{pmatrix}
\begin{pmatrix}
\bar{\iota}_1 \\
\bar{\iota}_2 \\
\bar{\iota}_3
\end{pmatrix} = \begin{pmatrix}
0 \\
\bar{u}_{12} \\
\bar{u}_{23}
\end{pmatrix}$$

$$\bar{\iota}_1 = \frac{1}{\begin{vmatrix}
1 & 1 & 1 \\
z_1 & -z_2 & 0 \\
0 & z_2 & -z_3
\end{vmatrix}}
\begin{vmatrix}
0 & 1 & 1 \\
\bar{u}_{12} & -z_2 & 0 \\
\bar{u}_{23} & z_2 & -z_3
\end{vmatrix}$$

$$= \frac{z_3\bar{u}_{12} + z_2(\bar{u}_{12} + \bar{u}_{23})}{z_2 + z_3}$$
Or $\bar{u}_{12} + \bar{u}_{23} + \bar{u}_{31} = 0$

$$\bar{\iota}_1 = \frac{z_3 \bar{u}_{12} - z_2 \bar{u}_{31}}{z_1 z_2 + z_1 z_3 + z_2 z_3}$$

On voit alors que:

$$z_{12} = \frac{z_1 z_2 + z_1 z_3 + z_2 z_3}{z_3}$$

$$z_{23} = \frac{z_1 z_2 + z_1 z_3 + z_2 z_3}{z_1}$$

$$z_{31} = \frac{z_1 z_2 + z_1 z_3 + z_2 z_3}{z_2}$$

Le numérateur de l'impédance z_{kl} triangle est la somme des points deux a deux des impédances du montage étoile. Le dénominateur de l'impédance z_{kl} triangle est l'impédance étoile relié au nœud opposée de z_{kl} dans le montage.

Il y a donc lieu de faire correspondre les nœuds entre le montage étoile et le montage triangle. On peut avoir plusieurs triangles.

E.2 TRANSFORMATIONS $(\Delta - y)$

$$\begin{pmatrix} 1 & 1 & 1 \\ y_{12} & 0 & -y_{31} \\ -y_{12} & y_{23} & 0 \end{pmatrix} \begin{pmatrix} \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{pmatrix} = \begin{pmatrix} 0 \\ i_1 \\ i_2 \end{pmatrix}$$

$$\rightarrow \overline{u_{12}} = \frac{1}{\begin{vmatrix} 1 & 1 & 1 \\ y_{12} & 0 & -y_{31} \\ -y_{12} & y_{23} & 0 \end{vmatrix}} * \begin{vmatrix} 0 & 1 & 1 \\ \overline{\iota_1} & 0 & -y_{31} \\ \overline{\iota_2} & y_{23} & 0 \end{vmatrix}$$

$$= \frac{-y_{31}i_{2+\overline{y_{23}}\overline{\iota_1}}}{y_{12y_{31}} + y_{23}(y_{31} + y_{12})}$$

$$\rightarrow z_1 = \frac{y_{23}}{y_{12y_{23} + y_{23y_{31}}} + y_{12y_{31}}} = \frac{\frac{1}{z_{23}}}{\frac{1}{y_{12y_{31}}} + \frac{1}{y_{23y_{31}}} + \frac{1}{y_{12y_{31}}}}$$

$$= \frac{z_{31}z_{12}}{z_{23} + z_{31+z_{12}}}$$

$$\rightarrow z_2 = \frac{z_{23}z_{12}}{z_{23} + z_{31+z_{12}}} z_3 = \frac{z_{23}z_{31}}{z_{23} + z_{31+z_{12}}}$$

Le numérateur de l'impédance z_k étoile est le produit des deux impédances reliées au nœud k dans le montage triangle et son dénominateur est la somme des impédances triangle.

Exemple: Pont

$$\overline{e_T} = \overline{v_1} - \overline{v_2} = \left(\frac{z_2}{z_2 + z_3} - \frac{z_1}{z_1 + z_4}\right) \overline{u}$$

$$\text{Avec } \overline{u} = \frac{(z_1 + z_4)/(z_1 + z_3)}{z_g + (z_1 + z_4)/(z_2 + z_3)} \overline{e_g}$$

EXERCICE

CHAPITRE 5:

LES SYSTEMES TRIPHASES

A- LES SYSTEMES EQUILIBRES

Il s'agit d'un système de tensions sinusoïdales de même fréquence de même amplitude régulièrement déphasé l'un par rapport à l'autre de $120^{\circ}(\frac{2\pi}{3})$

A.1) LES SYSTEMES DIRECTS

$$v_1 = V\sqrt{2}\sin\omega t$$

$$v_2 = V\sqrt{2}\sin\left(\omega t - \frac{2\pi}{3}\right) = V\sqrt{2}\sin\left(\omega t + \frac{4\pi}{3}\right)$$

$$v_3 = V\sqrt{2}\sin\left(\omega t - \frac{4\pi}{3}\right) = V\sqrt{2}\sin\left(\omega t + \frac{2\pi}{3}\right)$$

$$a=1\sqrt{120^\circ} \quad ; \quad a^2 = 1/240^\circ = 1/4120^\circ$$

 $(\overline{v_1}; a^2 \overline{v_1}; a\overline{v_1})et\overline{v_1} + \overline{v_2} + \overline{v_3} = 0$ est une condition nécessaire mais pas suffisante pour avoir un système déphasé. Donc si cette condition n'est pas vérifiée on est sûr que le système n'est pas triphasé.

A.2) SYSTEME INVERSE

$$v_1 = V\sqrt{2}sin\omega t \rightarrow \overline{v_1} = V/0^{\circ}$$

$$v_2 = V\sqrt{2}\sin\left(\omega t + \frac{2\pi}{3}\right) = V\sqrt{2}\sin\left(\omega t - \frac{4\pi}{3}\right) \rightarrow \overline{v_2} = V/\underline{120}^{\circ}$$

$$v_3 = V\sqrt{2}\sin\left(\omega t + \frac{4\pi}{3}\right) = \rightarrow \overline{v_3} = V/240^\circ$$

Ici on a le système $(\overline{v_1}; a\overline{v_1}; a^2\overline{v_1})et\overline{v_1} + \overline{v_2} + \overline{v_3} = 0$

A.3) TENSION DE COURANT

A.3.1) Montage étoile 4 fils

Nous avons accès à deux systèmes de tension. Les tensions $\overline{v_1}$, $\overline{v_2}$ et $\overline{v_3}$ prises entre phase et neutre ou tensions simple et les tensions **composées** u_{12} , $u_{23}etu_{31}$ prises entre deux phases.

Alors
$$u_{12}=\overline{v_1}-\overline{v_2}$$
 , $u_{23}=\overline{v_2}-\overline{v_3}etu_{31}=\overline{v_3}-\overline{v_1}$

Supposons que l'on est $(\overline{v_1}; a\overline{v_1}; a^2\overline{v_1})$ dans u k on a

$$\overline{u_{12}} = \overline{v_1}(1 - a^2) = \overline{v_1}(1 - 1/240^\circ)$$

$$= \overline{v_1}(1 + \frac{1}{2} + j\frac{\sqrt{3}}{2})$$

$$= \sqrt{3}\overline{v_1}\left(\frac{\sqrt{3}}{2} + j * \frac{1}{2}\right)$$

$$\rightarrow \overline{u_{12}} = \overline{v_1} * \sqrt{3/30}^{\circ}$$

Donc
$$(\vec{v}_1; a^2 \vec{v}_1; a \vec{v}_1) \rightarrow (\vec{u}_{12}; a^2 \vec{u}_{12}; a \vec{u}_{12})$$
 avec $\vec{u}_{12} = \vec{v}_1 \cdot \sqrt{3} \cdot \angle -30^{\circ}$

Dans le système direct, les tensions composées U sont en avance de 30° par rapport aux tensions simples et nous avons $U=V.\sqrt{3}$

Pour le système inverse on aura :

$$\vec{u}_{12} = (1-a).\vec{v}_1 = (\frac{\sqrt{3}}{2} - \frac{1}{2}\mathbf{j}_1).\vec{v}_1 = \vec{v}_1.\sqrt{3}.\angle -30^{\circ}$$

Donc
$$(\vec{v}_1; a^2\vec{v}_1; a\vec{v}_1) \rightarrow (\vec{u}_{12}; a^2\vec{u}_{12}; a\vec{u}_{12})$$
 avec $\vec{u}_{12} = \vec{v}_1 \cdot \sqrt{3}$. $\angle -30^{\circ}$

Dans le système inverse, les tensions composées U sont en retard de 30° par rapport aux tensions simples et nous avons $U=V.\sqrt{3}$

(Représentation de Fresnel dans le système inverse et direct)

Les courants de ligne ou de phase i_1, i_2 et i_3 sont les même que dans les enroulements du transformateur.

(Bon à savoir : Un montage à 4 fils se représentera toujours en étoile.)

A.3.2) MONTAGE TRIANGLE:

Dans le montage triangle, nous n'avons plus accès qu'aux tensions composées U. Par contre, les courants de ligne i_1, i_2 et i_3 sont différents des courants des enroulements j_1, j_2 et j_3 . Si le système de tension est toujours équilibré (sauf en cas de défaut), le système de courant peut être équilibré ou non.

Lorsque le système de courant est équilibré, nous aurons

$$i_1 = j_1 - j_3;$$
 $i_2 = j_2 - j_1;$ $i_3 = j_3 - j_2$

• *Direct* $(j_1; a^2j_1; aj_1)$

$$i_1 = (1-a).j_1 = j_1.\sqrt{3} \angle -30^\circ$$

$$Donc(j_1; a^2j_1; aj_1) \rightarrow (i_1; a^2i_1; ai_1) \ avec \ i_1 = j_1 \cdot \sqrt{3}. \angle -30^{\circ}$$

Inverse $(j_1; aj_1; a^2j_1)$

$$i_1 = (1-a^2).j_1 = j_1.\sqrt{3} \angle 30^\circ$$

Donc
$$(j_1; aj_1; a^2j_1) \rightarrow (i_1; ai_1; a^2i_1)$$
 avec $i_1 = j_1 \sqrt{3} \angle -30^\circ$

Dans le système direct, les courants de ligne sont en retard de 30° par rapport aux courants dans les enroulements, et c'est le contraire dans le système inverse. Mais dans les deux cas nous avons $I = J.\sqrt{3}$

B. CHARGES TRIPHASEES EQUILIBREES.

Une charge <u>passive</u> sera dite équilibrée lorsqu'à la même impédance complexe dans chaque phase ; si c'est une charge active nous devons avoir la même puissance et le même $cos \varphi$.

B.1) RESEAU 3 FILS ALIMENTANT UNE CHARGE Δ

$$i_1 = j_1 - j_3;$$
 $i_2 = j_2 - j_1;$ $i_3 = j_3 - j_2$

Remarque: Une alimentation 3 fils peut être triangle ou étoile sans neutre; dans tous les cas nous n'avons accès qu'aux tensions composées.

On
$$a: \quad \vec{J}_{1} = \vec{u}_{12}/z_{\Delta} \qquad \vec{J}_{2} = \vec{u}_{23}/z_{\Delta} \qquad \vec{J}_{3} = \vec{u}_{31}/z_{\Delta}$$

- $(j_1; a^2j_1; aj_1) \rightarrow (i_1; a^2i_1; ai_1)$ avec $i_1 = j_1.\sqrt{3}$. $\angle -30^{\circ}$
- $(j_1; aj_1; a^2j_1) \rightarrow (i_1; ai_1; a^2i_1)$ avec $i_1 = j_1.\sqrt{3}$. $\angle 30^{\circ}$

B.2) RESEAU 4 FILS ALIMENTANT UNE CHARGE Y

On a:
$$\vec{l}_1 = \vec{v}_1/z_Y$$
 $\vec{l}_2 = \vec{v}_2/z_Y$ $\vec{l}_3 = \vec{v}_3/z_Y$

Le système $(i_1; i_2; i_3)$ est **équilibré** parce que la charge est équilibrée.

B.3) CIRCUIT EQUIVALENT A UN CONDUCTEUR.

Kenelly:
$$z_Y = z_{\Delta}^2 / 3z_{\Delta} \Rightarrow z_Y = z_{\Delta} / 3$$
.

D'où le circuit équivalent

$$\vec{l} = \vec{v} / z_{\rm Y} = 3\vec{v} / z_{\Delta}$$

$$\vec{v}_1 = V \angle \psi$$
 ; $\vec{v}_2 = V \angle \psi$ -120°

Exemple: Un réseau 3 fils de 220 V alimente une charge $z_{\Delta} = 11 \angle 45^{\circ} \Omega$.

Solution:

$$U = 220 \Rightarrow V = \frac{220}{\sqrt{3}} = 127 \text{ V}$$

$$I = \frac{3*127}{11 (45^\circ)} = 34.64 \angle -45^\circ A$$

C- CHARGES DESEQUILIBRES

Même si la charge est déséquilibrée, le système des tensions d'alimentation lui, restera toujours équilibré (par construction)

C-1- SYSTEME 3 FILS ALIMENTANT CHARGE Δ

Comme dans le cas de charge Δ équilibré on a :

$$J_1 = \frac{\sigma_{12}}{z_1}$$
 $J_2 = \frac{\sigma_{23}}{z_2}$ $J_3 = \frac{\sigma_{31}}{z_3} \rightarrow J_1 + J_2 + J_3 \neq 0$

Le système des courants j n'est plus équilibré. On a aussi : $\bar{\iota}_1 = j_1 - j_2$ $\bar{\iota}_2 =$ $j_3 - j_2$ $\bar{\iota}_3 = j_2 - j_1 \rightarrow \bar{\iota}_1 + \bar{\iota}_2 + \bar{\iota}_3 = 0$ (c'est nécéssaire pas suffisant)

Le système de courants de ligne n'est pas équilibré. Lorsqu'on est alimenté par un réseau 3 fils, la somme des courants de ligne est nulle.

On a:

$$\bar{J}_{1} = 24 / 120^{\circ} \qquad \bar{J}_{2} = 16 / 30^{\circ} \quad \bar{J}_{3} = 24 / 210^{\circ}$$

$$\bar{J}_{1} + \bar{J}_{2} + \bar{J}_{3} = 25,30 / 138,43^{\circ} \quad A \neq 0$$

$$\bar{\iota}_{1} = 33,94 / 75^{\circ} \quad \bar{\iota}_{2} = 28,84 / -26,31^{\circ} \quad A \quad \bar{\iota}_{3} = 40 / -150^{\circ} \quad A$$

$$\bar{\iota}_{1} + \bar{\iota}_{2} + \bar{\iota}_{3} = 1,13.10^{-3} / -105^{\circ} \quad A \approx 0$$

C-2- RESEAU 4 FILS ALIMENTANT UNE CHARGE Y

D'après la loi des mailles, $\bar{\iota}_N = -(\bar{\iota}_1 + \bar{\iota}_2 + \bar{\iota}_3)$; le courant de neutre n'est plus nul de le système de courant de ligne n'est pas équilibré. Mais, comme dans le cas d'une charge équilibrée, on a :

$$\bar{\iota}_1 = \frac{\bar{v}_1}{z_1} = 20 \quad \boxed{-90^{\circ} \text{ A}}$$

$$\bar{\iota}_2 = \frac{\bar{v}_2}{z_2} = 20 \quad \boxed{0^{\circ} \text{ A}} \quad \rightarrow \bar{\iota}_N = 14,15 \quad \boxed{-157^{\circ} \text{A}}$$

$$\bar{\iota}_3 = \frac{\bar{v}_3}{z_3} = 24 \quad \boxed{105^{\circ} \text{ A}}$$

C-3- RESEAU HORS FILS ALIMENTANT UNE CHARGE Y DEPLACEMENT DU POINT NEUTRE (N)

D'après les

Donc le resultat précédent (3 fils) est toujours valable, mais le système ($\bar{\iota}_1$, $\bar{\iota}_2$, $\bar{\iota}_3$) n'est pas équilibré. Par contre, O n'est plus le point neutre car $V_0 \neq 0$: il y a déplacement du point neutre.

1)
$$\Rightarrow \overline{v}_1 + \overline{v}_2 + \overline{v}_3 - 3\overline{v}_2 = z_1 \overline{i}_1 + z_2 \overline{i}_2 + z_3 \overline{i}_3$$

$$\Rightarrow \nabla_0 = -\frac{1}{3}(z_1\overline{v_1} + \overline{z_2}\overline{v_2} + z_3\overline{v_3})$$

Car $\overline{v}_1 + \overline{v}_2 + \overline{v}_3 = 0$ (car le système de tension est toujours équilibré)

2)
$$\Rightarrow \overline{i_1} + \overline{i_2} + \overline{i_3} = 0 \equiv y_1(v_1 - v_0) + y_2(v_2 - v_0) + y_3(v_3 - v_0) = 0$$

 $\Rightarrow v_0 = \frac{y_1 v_1 + y_2 v_2 + y_3 v_3}{y_1 + y_2 + y_3}$

D'après la loi des mailles on a :

$$\overline{i_1} = \overline{I_1}$$
 $\overline{i_2} = -\overline{I_1} + \overline{I_2}$ $\overline{i_3} = -\overline{I_2}$

la matrice est alors

$$\begin{vmatrix}
z_1 + z_2 & -z_2 \\
-z_2 & z_2 + z_3
\end{vmatrix} = \begin{vmatrix}
I_1 \\
I_2
\end{vmatrix} = \begin{pmatrix}
\overline{V}_{12} \\
\overline{V}_{23}
\end{vmatrix}$$

$$\overline{I}_1 = \frac{\begin{vmatrix}
\overline{V}_{12} & -z_2 \\
\overline{V}_{23} & z_2 + z_3
\end{vmatrix}}{z_1 z_2 + z_1 z_3 + z_2 z_3} = 23,27 / -38,98^{\circ} A$$

$$\overline{I}_{2} = \frac{\begin{vmatrix} z_{1} + z_{2} & \overline{V}_{12} \\ -z_{2} & \overline{V}_{23} \end{vmatrix}}{z_{1}z_{2} + z_{1}z_{3} + z_{2}z_{3}} = 26, 52/\underline{-3}, 63^{\circ} A$$

$$\overline{I}_{2} = \frac{z_{1} + z_{2} - \overline{V}_{23}}{z_{1}z_{2} + z_{1}z_{3} + z_{2}z_{3}} = 26, 52/\underline{-3}, 63^{\circ} A$$

$$\overline{I}_{2} = 15,411/\underline{57,127^{\circ}} A$$

$$\overline{I}_{3} = 26, 52/\underline{176}, 37^{\circ} A$$

$$\overline{V}_{0} = 28, 04/\underline{99,37^{\circ}} V$$

D- PUISSANCE EN COURANT ALTERNATIF TRIPHASE

D-1) DÉFINITIONS

$$\overline{v_1} = V/\underline{0^{\circ}}$$
 $v_2 = V/\underline{-120^{\circ}}$ $v_3 = V/\underline{-240^{\circ}}$

$$i_1 = I_1 / - \phi_1$$
 $i_2 = I_2 / -120^{\circ} - \phi_2$ $i_3 = I_3 / -120^{\circ} - \phi_3$

P=
$$\frac{1}{T}$$
 $v_1i_1+v_2i_2+v_3i_3$ dt

$$\Rightarrow P=V(I_1cos\phi_1+I_2cos\phi_2+I_3cos\phi_3$$

Charge équilibrée

φ est le déphasage entre courant de ligne et tensions simples.

Explication:
$$U_{12}=U/0^{\circ} \Rightarrow V_1=V/90^{\circ} \Rightarrow i_1=I_1/30^{\circ}-\phi_1$$

 $\phi \in [-90^{\circ}, 90^{\circ}] \text{ car } P>0 \text{(tjrs)} \Rightarrow \cos\phi>0$

D-1-2) Puissance réactrice Q et puissance apparente S

$$Q=V(I_1sin\phi_1 + I_2sin\phi_2 + I3sin\phi_3)$$

$$S=\sqrt{P^2+Q^2}$$

Charge équilibrée

Q=3VIsin
$$\phi$$
=UI $\sqrt{3}$ sin ϕ
S=3VI=UI $\sqrt{3}$

$$\cos \varphi = \frac{P}{S} \sin \varphi = \frac{Q}{S} \operatorname{tg} \varphi = \frac{Q}{P}$$

N.B: Lorsqu'on alimente une installation électrique à l'aide d'un système triphasé, on devra procéder autant que possible à un équilibrage de phase c'est-à-dire $P_1=P_2=P_3$ et $Q_1=Q_2=Q_3$ (même puissance active et même puissance réactive).

On pourra alors définir le cos\phi.

