Praktikum V

Selamat datang pada praktikum unggulan minggu ke - 5.

Gambar diatas menunjukkan tahapan yang Anda perlu lakukan ketika ingin membangun sebuah model artificial intelligence. Pada minggu ini Anda akan melakukan fase data cleansing atau pembersihan data. Tahapan ini biasanya dilakuakan sebelum anda melakukan tahapan EDA yang telah Anda pelajari sebelumnya. Tahapan ini perlu dilakukan jika data yang Anda miliki tidak 'bersih', sehingga perlu dilakukan pemrosesan terlebih dahulu (tahapan pre-processing) sebelum data tersebut masuk kedalam algoritma pembangunan model.

Materi praktikum ini dibagi menjadi 2 bagian dengan menggunakan dua dataset yang berbeda. Adapun operasi akan Anda lakukan antara lain

- Melihat bentuk data (shape) dari data train dan test set
- Cek data NaN, bila ada maka hapus/drop data NaN tsb
- Cek outliers, bila ada maka hapus/drop outliers tsb
- Melakukan konversi jenis kolom yang relevan.
- Melakukan transformasi terhadap data yang bersifat kategori

Operasi yang Anda lakukan pada tahapan pembersihan data sangat bergantung pada karakteristik permasalahan, karakter data, serta jenis data yang terdapat dalam dataset Anda. Sebagai referensi, berikut bagan dari berbagai macam tipe data yang mungkin Anda temui dalam sebuah dataset.

Continuous

Infinite options

Age, weight, blood

pressure

Discrete

Finite options Shoe size, number of children

Ordinal

Data has a hierarchy Pain severity, satisfaction rating, mood

Nominal

Data has no hierarchy Eye colour, dog breed, blood type

In [1]:

```
import numpy as np
import pandas as pd
import sklearn
import seaborn as sns
import matplotlib.pyplot as plt
```

Dataset 1

Dataset yang akan Anda gunakan pada praktikum kali ini adalah dataset komposisi beton (concrete).

In [2]:

```
# Load data train dan test ke dalam pandas dataframe
# dataset : https://gitlab.com/andreass.bayu/file-directory/-/raw/main/new_concreate.csv
concrete = pd.read_csv("https://gitlab.com/andreass.bayu/file-directory/-/raw/main/new_concreate.csv")
```

In [3]:

```
# menghasilkan jumlah baris dan jumlah kolom (bentuk data) pada data train dengan fungsi
.shape
concrete.shape
```

Out[3]:

(1030, 9)

In [4]:

```
# menampilkan 10 data teratas
concrete.head(10)
```

Out[4]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
0	141.3	212.0	NaN	203.5	NaN	971.8	748.5	28	29.89
1	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51
2	250.0	NaN	95.7	187.4	5.5	956.9	861.2	28	29.22
3	266.0	114.0	NaN	228.0	NaN	932.0	670.0	28	45.85
4	154.8	183.4	NaN	193.3	9.1	1047.4	696.7	28	18.29
5	255.0	NaN	NaN	192.0	NaN	889.8	945.0	90	21.86
6	166.8	250.2	NaN	203.5	NaN	975.6	692.6	7	15.75
7	251.4	NaN	118.3	188.5	6.4	1028.4	757.7	56	36.64
8	296.0	NaN	NaN	192.0	NaN	1085.0	765.0	28	21.65
9	155.0	184.0	143.0	194.0	9.0	880.0	699.0	28	28.99

In [5]:

fungsi describe() untuk mengetahui statistika data untuk data numeric seperti count, me
an, standard deviation, maximum, mininum, dan quartile.
concrete.describe()

Out[5]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength
count	1030.000000	559.000000	464.000000	1030.000000	651.000000	1030.000000	1030.000000	1030.000000	1030.000000
mean	281.167864	136.158676	120.288793	181.567282	9.816897	972.918932	773.580485	45.662136	35.817961
std	104.506364	72.351823	33.675470	21.354219	4.580328	77.753954	80.175980	63.169912	16.705742
min	102.000000	11.000000	24.500000	121.800000	1.700000	801.000000	594.000000	1.000000	2.330000
25%	192.375000	95.000000	97.850000	164.900000	6.950000	932.000000	730.950000	7.000000	23.710000
50%	272.900000	135.700000	121.400000	185.000000	9.400000	968.000000	779.500000	28.000000	34.445000
75%	350.000000	189.000000	141.000000	192.000000	11.600000	1029.400000	824.000000	56.000000	46.135000
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000	82.600000

In [6]:

#cek nilai yang hilang / missing values di dalam data train
concrete.isnull().sum().sort_values(ascending=False)

Out[6]:

ash	566
slag	471
superplastic	379
strength	0
age	0
fineagg	0
coarseagg	0
water	0
cement	0
dtype: int64	

Missing values adalah nilai yang tidak terdefinisi di dataset. Bentuknya beragam, bisa berupa blank cell, ataupun simbol-simbol tertentu seperti NaN (Not a Number), NA (Not Available), ?, -, dan sebagainya. Missing values dapat menjadi masalah dalam analisis data serta tentunya dapat mempengaruhi hasil modelling machine learning.

Lakukan pemeriksaan dan perubahan data kosong setiap kolom pada data train:

- 1. cement (kg)
- 2. slag (blast furnace slag, kg)
- 3. ash (fly ash, kg)
- 4. water (kg)
- 5. superplastic (superplasticizer, kg)
- 6. coarseagg (coarse aggregate, kg)
- 7. fineagg (fine aggregate, kg)
- 8. age (days, 1-365)
- 9. strength (Concrete compressive strength, MPa)

Instruksi Praktikum untuk mahasiswa FIKTI dan FTI (kecuali Teknik Industri, Teknik Mesin dan Agroteknologi)

- Lakukan teknik data cleaning untuk data yang bernilai NaN pada Dataset concrete. (Ubah data bernilai NaN menjadi 0)
- Transformasikan data pada kolom strength menjadi kolom baru bernama 'Category', dengan ketentuan :
 - 1. iika nilai >= 65 = 'Hard'

- 3. Jika nilai < 40 = 'Light'
- Lakukan analisis histogram untuk pengaruh kolom age terhadap kolom strength, apakah yang dapat Anda simpulkan ?
- · Cari tahu komposisi concrete yang memiliki kekuatan tertinggi dan terendah
- Berikan kesimpulan akhir anda terhadap pengaruh komposisi concrete berdasarkan dataset yang digunakan

JAWABAN

1. Lakukan teknik data cleaning untuk data yang bernilai NaN pada Dataset concrete. (Ubah data bernilai NaN menjadi 0)

```
In [7]:
```

age

strength

dtype: int64

2. Transformasikan data pada kolom strength menjadi kolom baru bernama 'Category', dengan ketentuan :

```
1. Jika nilai >= 65 = 'Hard'
```

2. Jika nilai >= 40 = 'Medium'

0

0

3. Jika nilai < 40 = 'Light'

```
In [8]:
```

```
def get_category(x):
    if x >= 65:
        return "Hard"
    elif x >= 40:
        return "Medium"
    return "Light"

concrete["category"] = concrete["strength"].apply(get_category)
concrete.head()
```

Out[8]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength	category
0	141.3	212.0	0.0	203.5	0.0	971.8	748.5	28	29.89	Light
1	168.9	42.2	124.3	158.3	10.8	1080.8	796.2	14	23.51	Light
2	250.0	0.0	95.7	187.4	5.5	956.9	861.2	28	29.22	Light
3	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.85	Medium
4	154.8	183.4	0.0	193.3	9.1	1047.4	696.7	28	18.29	Light

o. Lakukan anansis mistogram untuk pengarun kolom age ternauap kolom sulengui, apakan yang dapat Anda simpulkan?

```
In [9]:
```

```
fig, ax = plt.subplots(1,2,figsize=(12,6))
sns.histplot(concrete.age, ax=ax[0]).set_title("Kolom age");
sns.histplot(concrete.strength, ax=ax[1]).set_title("Kolom strength");
```


4. Cari tahu komposisi concrete yang memiliki kekuatan tertinggi dan terendah

```
In [10]:
```

```
print("Komposisi tertinggi")
concrete[concrete.strength==concrete.strength.max()]
```

Komposisi tertinggi

Out[10]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength	category
950	389.9	189.0	0.0	145.9	22.0	944.7	755.8	91	82.6	Hard

```
In [11]:
```

```
print("Komposisi terendah")
concrete[concrete.strength==concrete.strength.min()]
```

Komposisi terendah

Out[11]:

	cement	slag	ash	water	superplastic	coarseagg	fineagg	age	strength	category
230	108.3	162.4	0.0	203.5	0.0	938.2	849.0	3	2.33	Light

5. Berikan kesimpulan akhir anda terhadap pengaruh komposisi concrete berdasarkan dataset yang digunakan

```
In [12]:
```

```
sns.heatmap(concrete.corr());
```

