OFDM for VLC with probabilistic constellation shaping

Thang K. Nguyen

Contents

- ☐ Basic idea of OFDM
- □ OFDM-VLC
- ☐ PAPR problem
- ☐ Draft idea

LED transmitter

Multiple path propagation

- In wireless channel (RF, VLC, ...), the signal can reach a user using multiple path component
- Each path has different attenuation, frequency, phase and time delay
- At the receiver, the signal from these multiple paths can get added constructively or destructively based on the phase alignment

Flat fading

- Occurs when the signal's bandwidth is narrow enough that all frequencies experience roughly the same channel
- Multiple path signals experiences the same fading level

Frequency selective fading

- Occurs when the signal's bandwidth is **large** and spans a wide frequency range
- Multiple path signals experience different fading levels

- Due to the multipath components arriving at different time (because of **frequency selective fading**), the symbols are overlapping and leads to **Inter Symbol Interference (ISI)**
- The effect ISI depends on the relationship between the delay spread and the symbol duration:

 $\Delta T \approx T_s$: More severe

 $\Delta T \ll T_s$: Less severe

OFDM = O + FDM

• FDM can deal with delay spread and ISI, but the subcarriers can interfere to others and cause Inter Carrier Interference (ICI)

Design the subcarriers **orthogonal** (**O**) to each other, which allows them to occupy the same bandwidth without any interference

OFDM-VLC

- OFDM frame mapping:
 - Form an OFDM frame from the transmitted complex QAM symbol
 - Impose Hermitian symmetry to ensure a real-valued time domain signal x(k) (different to RF transmission)
- IFFT:
 - Convert the frequency-domain data into a time-domain signal that can be transmitted over the communication channel.
 - Maintains the orthogonality of subcarriers
- Signal clipping in DSP:
 - Guarantee normal operation of the LEDs

OFDM-VLC

Advantage

- Resilience to Frequency Selective Fading
- Mitigation of Inter-symbol Interference (ISI)
- Offer high data rate transmission
- Adaptive Modulation and Coding
- Efficient Spectrum Utilization
- Multiple access capability (OFDMA)

Issue

- Implementation complexity
- Complex synchronization requirements
- High peak-to-average power ratio (PAPR)

PAPR problem

Time (microseconds)

- By using IFFT, the transmitted signal in time domain is the **sum** of waveform from *N* subcarriers
- At a particular time, there would be a peak amplitude in each of these subcarrier waveforms and add up to a very big amplitude in transmitted signal waveform
- A high peak to average power ratio
 (PAPR) can appear

$$PAPR = \frac{P_{peak}}{P_{average}}$$

 The PAPR rises with the number of subcarriers N

PAPR problem

What is the effect of high PAPR in OFDM-VLC system?

- Due to high PAPR. the peak amplitude of x(t) is very high and it cross over non-linear region.

- The output OFDM signal x(t) is distorted and the orthogonality is lost

Severe ISI and high BER

PAPR problem

How to reduce PAPR inf OFDM-VLC system?

Clipping signal	Selective mapping	Geometric constellation shaping
• Limits the peak amplitude of	• Generates multiple OFDM	 Adjust the constellation
the OFDM signal to a	signals with different phase	point positions to reduce the
predetermined threshold	sequences and selects the one	probability of high peaks
• Pros : Simple and effective	with the lowest PAPR	occurrence
• Cons: Introduce signal	• Pros: Simple and without	• Pros : Without significant
distortion and BER	significant signal distortion	signal distortion.
	• Cons: Increase computational	• Cons: Increase complexity of
	complexity and require the	receiver block, require the
	transmission of side	transmission of side
	information.	information and increase BER

Draft idea

How to reduce PAPR inf OFDM-VLC system? ———— Probabilistic constellation shaping

 Design the occurrence of constellation points to reduce the PAPR

• Pros:

- Simple implementation
- Not introduce signal distortion
- Probably reduce BER

Cons:

- Require transmission of side information

Thank you for listening!

Q & A