Complete the following truth table for the or logic gate:

Inputs		Outputs
Α	В	AorB
0	0	0
0	1	Ī
1	0	,
1	1	

Using a truth table, identify the logic gate produced when two nand gates are combined as shown.

Write the Boolean expression for Y.

Input 1	Input 2	Output
1	1	0
1	0	1
0	1	1
0	0	1

 Draw the diagram of the logic circuit represented by the following Boolean expression:

Q = (A and not B) or (not A and B)

Complete the truth table for the circuit below, and see if you can recognise what it represents.

=> OR Gate

6. Identify the logic states of the circuit at points X and Y.

$$X = 0$$

$$Y = 1$$

 Work out the output at Q in the following arrangement of logic gates. You will need to work out the intermediate outputs, D and E first.

Use a truth table to help you to keep track of the values of each point for each combination of inputs.

Shortcuts

If A is I then D=0

(regardless of B)

If B is 1 then D=0

E is only 1 is bothn B and c are 1

Q is D OR E (only one has to be 1)

Note that the following task is for Higher Level students only.

Work out the outputs X and Y in the logic circuit shown. You will need to identify and work out the intermediate outputs first.

Use a truth table to help you to keep track of the values at each point for each combination of inputs. Write the Boolean expression for X.

Y 15 A AND B (both must be 1) If A is 0 then C=0 If B is 0 then D=0