Aggregate Implications of Child-Related Transfers with Means Testing

Darapheak Tin Chung Tran

Research School of Economics, Australian National University

WEAI 2023 Conference

April 2023

1. Substantial child-related transfers (2-2.5% of GDP over the past decade).

Family Tax Benefits for lower income households (parents of dependent children)

1. Substantial child-related transfers (2-2.5% of GDP over the past decade).

- 1. Substantial child-related transfers (2-2.5% of GDP over the past decade).
- 2. Family Tax Benefit (FTB) and Child Care Subsidy (CCS)
 - Similarities: Both programs test age and number of children, marital status, and income.
 - Differences:
 FTB is NOT conditional on labour participation, but CCS has a work hour test

- 1. Substantial child-related transfers (2-2.5% of GDP over the past decade).
- 2. Family Tax Benefit (FTB) and Child Care Subsidy (CCS)
 - Similarities: Both programs test age and number of children, marital status, and income.
 - Differences:
 FTB is NOT conditional on labour participation, but CCS has a work hour test.
- 3. Large differences in the age-profiles of labor supply and wages between mothers and everybody else (i.e., fathers and non-parents).

Age-profile of full-time participation

Our study

We construct a GE heterogeneous-agent OLG framework featuring:

- Family structure;
- Endogenous female human capital (learning-by-doing);
- Longevity and income risks;
- ► Time and monetary costs of children;
- ▶ Detailed child-related transfer programs.

Data: HILDA, ABS, World Bank.

Our study

We construct a GE heterogeneous-agent OLG framework featuring:

- Family structure:
- Endogenous female human capital (learning-by-doing);
- Longevity and income risks;
- Time and monetary costs of children;
- Detailed child-related transfer programs.

Data: HILDA, ABS, World Bank.

Key questions:

- 1. What are the macroeconomic implications of means-testing child-related transfers with opposing eligibility criteria?
 - our focus today
- 2. Are there efficiency and/or welfare improvement reforms? If yes, what do they look like?

Overview of counterfactual policy experiments

With income tax as a budget-balancing tool,

- 1. Reforming means-testing parameters
 - Experiment 1-5: vary FTB income test thresholds across a range of taper rates;
 - Experiment 6-10: vary CCS income test thresholds across a range of taper rates;
- 2. Reforming payment rates
 - Experiment 11-12: vary the FTB or CCS payment rates;
- 3. Elimination our focus today
 - Experiment 13: eliminate either the FTB, the CCS, or both.

1. Transfer programs' interaction

For example, removing the FTB:

▶ \downarrow public spending $\rightarrow \downarrow \tau$

1. Transfer programs' interaction

For example, removing the FTB:

- ▶ \downarrow public spending $\rightarrow \downarrow \tau$
- ▶ \uparrow labor supply \rightarrow \uparrow CCS spending \rightarrow \uparrow τ
- ▶ ↑ savings against earnings and longevity risk $\to \downarrow$ age-pension spending (assets test) $\to \downarrow \tau$
- Net effect is typically small.

1. Transfer programs' interaction

For example, removing the FTB:

- ▶ \downarrow public spending $\rightarrow \downarrow \tau$
- ▶ \uparrow labor supply \rightarrow \uparrow CCS spending \rightarrow \uparrow τ
- ▶ ↑ savings against earnings and longevity risk \rightarrow ↓ age-pension spending (assets test) \rightarrow ↓ τ
- Net effect is typically small.

2. Life-cycle dynamics

- Offsetting responses lower aggregate labor supply effect.
- But, reforms affecting the young have irreversible effect on human capital even if labor supply increases at older age.
- A small labor effect does not imply a small output effect.

3. Family structure

- ▶ Married mothers: benefit from (i) economies of scale in consumption, and (ii) family insurance.
 - ightarrow more responsive to work incentive effect of reforms
 - \rightarrow smaller welfare change due a reform.

3. Family structure

- ► Married mothers: benefit from (i) economies of scale in consumption, and (ii) family insurance.
 - → more responsive to work incentive effect of reforms
 - \rightarrow smaller welfare change due a reform.
- ➤ **Single mothers**: lack (i) economies of scale in consumption, (ii) family insurance, and (iii) self-insurance capacity.
 - \rightarrow tend to work part-time regardless
 - \rightarrow the presence of single mothers amplifies welfare effect of reforms.

Summary of lessons learned from policy experiments

- 1. Policy reforms require a holistic view.
 - 1.1 Efficiency perspective:
 - remove FTB: +10.6 p.p. LFP, +1% GDP
 - remove FTB and CCS: -2.3 p.p. LFP, -3.1% GDP
 - remove CCS: -10 p.p. LFP, -3.5% GDP (means-testing)

Summary of lessons learned from policy experiments

- 1. Policy reforms require a holistic view.
 - 1.1 Efficiency perspective:
 - remove FTB: +10.6 p.p. LFP, +1% GDP
 - remove FTB and CCS: -2.3 p.p. LFP, -3.1% GDP
 - remove CCS: -10 p.p. LFP, -3.5% GDP (means-testing)
 - 1.2 Welfare perspective:
 - remove CCS: -1%
 - remove FTB: -5.5% (CCS supports self-insurance)
 - remove FTB and CCS: -51.5% (borne by single mothers)

Summary of lessons learned from policy experiments

- 1. Policy reforms require a holistic view.
 - 1.1 Efficiency perspective:
 - remove FTB: +10.6 p.p. LFP, +1% GDP
 - remove FTB and CCS: -2.3 p.p. LFP, -3.1% GDP
 - remove CCS: -10 p.p. LFP, -3.5% GDP (means-testing)
 - 1.2 Welfare perspective:
 - remove CCS: -1%
 - remove FTB: -5.5% (CCS supports self-insurance)
 - remove FTB and CCS: -51.5% (borne by single mothers)
- 2. Partially offsetting effects over life cycle.
 - ► FTB discourages full-time work despite the presence of CCS
 - ightharpoonup However, eliminating both programs ightharpoonup less participation for young mothers (i.e., CCS's work incentive effect is dominant)

Summary of lessons learned from reforms

3. Multiple channels of improvement:

- ▶ \downarrow FTB or \uparrow CCS payment rates lead to efficiency gains (+7% LFP, +1% GDP) at low or no welfare cost;
- ► ↓ FTB taper rates (MTRs on earnings) generate gains (+4-5% LFP, +1.5-2% GDP, +0-0.7% welfare);
- ↑ CCS income test thresholds generate efficiency gains (+0.6-1% LFP, +1-1.4% GDP, +0.05-0.1% welfare). (Similar to Guner et al. (2020))

*NOTE: Changes refer to either doubling or halving.

Model overview

A small open economy calibrated to Australia (2012-2018):

1. Households

- heterogeneous in age (j), family structure (λ), asset (a), human capital (h), education (θ), transitory shocks (ϵ^m , ϵ^f);
- time and monetary costs of children;
- longevity and earnings risks;
- male labor supply is exogenous;
- ▶ make decision on joint consumption c, savings a^+ and female labor supply $\ell \in \{0,1,2\}$;
- 2. A representative firm with Cobb-Douglas technology;
- 3. Government commits to balance the budget every period:
 - income tax, corporate income tax, consumption tax, borrowing;
 - general expenditure, age pension, FTB, CCS, debt;
- 4. Goods and factor markets clear.

Demographics (1)

- 1. Time-invariant population growth rate (n) and survival probabilities $(\psi_j^m \text{ and } \psi_j^f)$;
- 2. Populated by three household types:
 - Married parents, $\lambda = 0$
 - ▶ Single childless men, $\lambda = 1$
 - ▶ Single mothers, $\lambda = 2$
- 3. Households are born as workers at j=1, retire at j=45 and can live to the maximum age of j=J=80;

Demographics (2)

- 4. Low education (θ_L) households have children earlier;
- 5. Child spacing is identical for all parents;
- Children are exogenous and fully determined by household age, j:
 - ▶ the k^{th} child is born to households aged $j = b_{k,\theta}$;
 - ▶ the k^{th} child is dependent for 18 years from $j = b_{k,\theta}$ to $j = b_{k,\theta} + 17$;

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A time cost, χ , and time cost per child, χ_{c,j_c} , for full-time work:

$$I_{j}^{f} = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} < 1 & \text{if } \ell = 1 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} - (\chi + \chi_{c,j_{c}} \times nc_{j}) < 1 & \text{if } \ell = 2 \end{cases}$$

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A **time cost**, χ , and **time cost per child**, χ_{c,j_c} , for full-time work:

$$I_{j}^{f} = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} < 1 & \text{if } \ell = 1 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} - (\chi + \chi_{c,j_{c}} \times nc_{j}) < 1 & \text{if } \ell = 2 \end{cases}$$

2. A **formal childcare cost per child** κ_j that is decreasing in the age of children:

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A time cost, χ , and time cost per child, χ_{c,j_c} , for full-time work:

$$I_{j}^{f} = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} < 1 & \text{if } \ell = 1 \\ 0 < 1 - n_{j,\lambda,\ell}^{f} - (\chi + \chi_{c,j_{c}} \times nc_{j}) < 1 & \text{if } \ell = 2 \end{cases}$$

- **2.** A **formal childcare cost per child** κ_j that is decreasing in the age of children:
- 3. A loss of a portion or all of the means-tested FTB benefits.

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$y_j = w n_j \theta h_j \epsilon_j$$

$$\ln(\epsilon_j) = \rho \times \ln(\epsilon_{j-1}) + v_j; \qquad v_j \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$y_j = w n_j \theta h_j \epsilon_j$$

$$\ln(\epsilon_j) = \rho \times \ln(\epsilon_{j-1}) + v_j; \qquad v_j \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

2. Child care subsidy s_i per child

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$\begin{aligned} y_j &= w n_j \theta h_j \epsilon_j \\ \ln(\epsilon_j) &= \rho \times \ln(\epsilon_{j-1}) + \upsilon_j; \qquad \upsilon_j \sim \mathcal{N}(0, \sigma_\epsilon^2) \end{aligned}$$

- **2.** Child care subsidy s_i per child
- 3. Human capital accumulation for the next period:

$$log(h_j) = log(h_{j-1}) + [\xi_1 + \xi_2 \times (j-1)] \mathbf{1}_{\{\ell_{j-1} \neq \mathbf{0}\}} - \delta_{\ell} \mathbf{1}_{\{\ell_{j-1} = \mathbf{0}\}}$$
 (1)

Key Macro Variables: Model vs. Data

Moments	Benchmark	Data	Source
	economy		
Targeted			
$\overline{Capital}, K/Y$	3.2	3-3.3	ABS (2012-2018)
Savings, S/Y	6.5%	5-8%	ABS (2013-2018)
Mother's labor participation, <i>LFP</i>	63%	65-70%	HILDA (2012-2018)*
Mother's full time rate, FT	23%	26-28% (40%× <i>LFP</i>)	HILDA (2012-2018)*
Consumption Tax, T^C/Y	4.26%	4.50%	APH Budget Review
Company Tax, T^{K}/Y	4.25%	4.25%	APH Budget Review
Age Pension, P/Y	3.31%	3.20%	ABS (2012-2018)
Gini coefficient (male	0.35	0.35	,
aged 21)			
Non-targeted			
$\overline{\text{Consumption}}, C/Y$	53.23%	54-58%	ABS (2012-2018)
Investment, I/Y	32.30%	24-28%	ABS (2013-2018)
Income tax, T^I/Y	12.11%	11%	APH Budget Review
Tax revenue to output	20.35%	25%	ABS(2012-2018)
Child-related transfers $(FTB + CCS)$	2.75%	2%	ABS (2012-2018)
Gini coefficient (working	0.3766	0.45	PC (2018)
age male)		4 D > 4 🗗 > 4 🗐	E ► 4 E ► E ◆9 Q ← 17/86

Results: FTB means-testing parameter reforms (1)

$0.5 imesar{y}^{tr}$	$ar{y}^{tr}$	$1.5 imesar{y}^{tr}$
5.88 p.p.	5.08 p.p.	3.71 p.p.
5.72 p.p.	0.00 p.p.	2.22 p.p.
3.95 p.p.	-0.22 p.p.	-0.48 p.p.
2.72% 2.70%	2.55% 0.00%	1.41% 0.54%
1.61%	-0.13%	-1.25%
2.21%	1.98%	1.58%
2.47%	0.00%	1.29%
1.78%	0.82%	0.29%
	5.88 p.p. 5.72 p.p. 3.95 p.p. 2.72% 2.70% 1.61%	5.88 p.p. 5.08 p.p. 5.72 p.p. 0.00 p.p. 3.95 p.p0.22 p.p. 2.72% 2.55% 2.70% 0.00% 1.61% -0.13% 2.21% 1.98% 2.47% 0.00%

Table: Percentage point (p.p.) changes in LFP, and percentage (%) changes in human capital and output.

Results: FTB means-testing parameters reforms (2)

\bar{y}^{tr} ω	$0.5 imes ar{y}^{tr}$	$ar{y}^{tr}$	$1.5 imesar{y}^{tr}$
$0.5 imes \omega$	-0.05%	0.41%	0.68%
ω	-0.44%	0.00%	0.50%
$1.5 imes\omega$	-0.79%	-0.01%	0.38%

Table: Percentage (%) changes in welfare of newborns

Results: CCS means-testing parameter reforms (1)

\bar{y}^{sr} ω_{ccs}	$0.5 imes ar{y}^{sr}$	$ar{y}^{sr}$	$1.5 imesar{y}^{sr}$
LFP & FT			
rates			
$1.5 imes\omega_{ccs}$	-2.46 p.p.	0.36 p.p.	0.75 p.p.
ω_{ccs}	-2.48 p.p.	0.00 p.p.	0.67 p.p.
$0.5 imes\omega_{csc}$	-2.67 p.p.	-1.86 p.p.	1.02 p.p.
Human Cap. $1.5 \times \omega_{ccs}$ ω_{ccs} $0.5 \times \omega_{csc}$	-1.50% -1.53% -1.66%	0.11% 0.00% -0.95%	0.37% 0.34% 0.70%
Output			
$1.5 imes\omega_{ccs}$	-0.22%	0.87%	0.99%
ω_{ccs}	-0.13%	0%	1.37%
$0.5 imes\omega_{csc}$	-0.15%	0.33%	1.26%

Table: Percentage point (p.p.) changes in labor force participation (LFP) rate, and percentage (%) changes to aggregate human capital and output.

Results: CCS means-testing parameter reforms (2)

$ar{ar{y}}^{sr}$ ω_{ccs}	$0.5 imes ar{y}^{sr}$	$ar{y}^{sr}$	$1.5 imesar{y}^{sr}$
$1.5 imes\omega_{ccs}$	-0.0154%	0.0893%	0.0519%
$1.25 imes \omega_{ccs}$	-0.0009%	0.0879%	0.0847%
ω_{ccs}	-0.0050%	0%	0.1007%
$0.75 imes \omega_{ccs}$	0.0131%	0.0383%	0.0801%
$0.5 imes\omega_{csc}$	-0.02%	0.02%	0.08%

Table: Percentage (%) changes in welfare of newborns

Results: Benchmark vs. Experiments

	Pre-reform	Remove	Remove	Remove
		FTB	CCS	both
	Benchmark	Change	Change	Change
	values			
Income (Y)	1.13	1.01%	-3.48%	-3.05%
Consumption (C)	0.60	1.43%	-3.26%	-2.31%
Savings (S)	0.07	16.03%	-1.41%	18.99%
Female LFP	63.55%	10.58 p.p.	-10.00 p.p.	-2.31 p.p.
Female FT rate	24.02%	11.18 p.p.	-4.55 p.p.	0.26 p.p.
Income tax rate	19.77	-1.72 p.p.	-0.70 p.p.	-4.22 p.p.
FTB expense	0.0183		10.89%	_
CCS expense	0.013	79.23%	_	_
Pension	0.0382	-3.14%	-3.93%	-8.12%
HEV (newborn)	0	-5.5021%	-1.00%	-51.46%**

Table: Stationary equilibria comparison

^{**}Turning off household types, the loss is only 2% See also experiment 2. 22/86

LFP and human capital of mothers: Benchmark

LFP and human capital of mothers: Remove FTB

LFP and human capital of mothers: Remove CCS

LFP and human capital of mothers: Remove FTB and CCS

Reform effect on coefficients of variation of log output and log consumption

Conclusion

- Experiments on key means-testing and payment rate parameters in an environment where transfers have opposing eligibility criteria;
- 2. A spotlight on the interplay between transfer programs;
- 3. An emphasis on the role of family structure and life-cycle dynamics in policy analyses;
- 4. Lessons from a unique configuration in Australia:
 - Efficiency and welfare improvement through multiple channels;
 - ► As in Guner et al. (2020), our findings suggest expanding the work conditional program;
 - In general, approaching a more universal setting (e.g., ↓ taper rates) is an improvement;

Caveats

We abstract from:

- 1. Labor market and political frictions;
- 2. Administrative overhead of a complex welfare system;
- 3. Intensive margin of female labor supply;
- Endogenous male labor supply;
- 5. Child-less married household;
- 6. Fertility, education and marriage/divorce decisions;
- Full welfare analysis along the transitional dynamics between two steady states.

Future plan

Planned expansion:

- 1. More labor options (permanent and casual employments);
- 2. Endogenize intensive margin of labour supply;
- 3. Richer income process (See De Nardi et al. (2020));
- 4. More detailed policy experiments;
- 5. Optimal transfer policy.

Welfare expenditure in Australia

Financial year	Welfare (\$b)	Welfare-GDP (%)	Welfare- Revenue (%)	
2010-11	140.19	8.43	34.04	
2011-12	149.66	8.7	34.2	
2012-13	153.24	8.89	33.62	
2013-14	155.68	8.88	33.47	
2014-15	165.13	9.41	35.15	
2015-16	167.68	9.47	34.59	
2016-17	165.76	8.95	33.02	
2017-18	171.62	8.99	32	
2018-19	174.24	8.8	31.18	
2019-20	195.71	9.86	36.05	

Note: \$ value is expressed in 2019-20 prices.

Source: Australian Institute of Health and Welfare

Welfare expenditure to GDP (%) by target groups

Financial year	Families & children	Old people	Disabled	Unemployed	Others
2009-10	2.51	3.33	1.87	0.48	0.40
2010-11	2.39	3.33	1.94	0.44	0.34
2011-12	2.33	3.43	1.98	0.44	0.52
2012-13	2.31	3.57	2.00	0.49	0.52
2013-14	2.26	3.47	2.02	0.55	0.57
2014-15	2.33	3.79	2.09	0.59	0.61
2015-16	2.32	3.86	2.08	0.60	0.62
2016-17	2.02	3.72	2.01	0.57	0.63
2017-18	1.94	3.67	2.18	0.56	0.65
2018-19	1.81	3.63	2.22	0.49	0.64
2019-20	1.92	3.85	2.53	0.93	0.62

Source: Australian Institute of Health and Welfare

Full time employment rate by gender

◆ Back to Introduction

Labour force participation rate by gender

◆ Back to Main Section

Literature

Tax-Transfer in heterogeneous agent models with family structure:

- 1. Joint-filing income tax
 - ► For proportional and separate filing income tax in the US (Guner et al., 2012a,b) and in US and 10 EU countries (Bick and Fuchs-Schundeln, 2017)
- 2. Spousal and survival benefits
 - ► For elimination (US) (Kaygusuz, 2015; Nishiyama, 2019; Borella et al., 2020)*
- 3. Child-related transfers
 - Expansion requires stronger evidence (US) (Guner et al., 2020)
 - Negative childcare price elasticity of labour supply (AU)
 (Doiron and Kalb, 2004)*
- 4. Old age pension
 - ► For (at least) partial means-tested (US) (Feldstein, 1987; Braun et al., 2017)
 - ► Balancing insurance and incentive effects of means-tested Age Pension (AU) (Tran and Woodland, 2014)

Demographics (2)

As in Nishiyama (2019), the household type evolves according to Markov transition probabilities:

Table: Transition probabilities of household type

Households: Preferences (1)

Households born at time t maximize expected intertemporal utility:

$$\max_{c_j,l_j^f} \sum_{j=1}^J \beta^{j-1} \left(\prod_{s=1}^{j-1} \pi_{\lambda_{s+1}|\lambda_s}, \right) u(c_j,l_j^m,l_j^f,\lambda_j,nc_j) \tag{2}$$

- $\triangleright \beta$ discount factor;
- lacktriangledown time-invariant survival probabilities;
- $ightharpoonup \lambda$ household type (by marital status)
- c joint consumption;
- \triangleright I^i leisure time of $i \in m, f$;

◆ Back to Model Summary

Households: Preferences (2)

The periodic utility functions at age j are:

$$u(c, l^{m}, l^{f}, \lambda = 1, 0) = \frac{\left[\left(\frac{c}{ces(1, 0)}\right)^{\nu} (l^{m})^{1 - \nu}\right]^{1 - \frac{1}{\gamma}}}{1 - \frac{1}{\gamma}}$$
(3)

$$u(c, l^m, l^f, \lambda = 2, nc) = \frac{\left[\left(\frac{c}{ces(2, nc)}\right)^{\nu} \left(l^f\right)^{1-\nu}\right]}{1 - \frac{1}{\gamma}}$$
(4)

$$u(c, l^{m}, l^{f}, \lambda = 0, nc) = \frac{\left[\left(\frac{c}{ces(0, nc)}\right)^{\nu} (l^{m})^{1-\nu}\right]^{1-\frac{1}{\gamma}} + \left[\left(\frac{c}{ces(0, nc)}\right)^{\nu} (l^{f})^{1-\nu}\right]^{1-\frac{1}{\gamma}}}{1-\frac{1}{\gamma}}$$
(5)

- Spouses are perfectly altruistic towards one another;
- $ces(\lambda, nc) = \sqrt{\mathbf{1}_{\{\lambda \neq 1\}} + \mathbf{1}_{\{\lambda \neq 2\}} + nc}$ square root consumption equivalence scale;
- $\triangleright \gamma$ intertemporal elasticity of substitution;
- \triangleright ν taste for consumption relative to leisure.

More on children...

- 5. Households have full information on children (e.g., arrival time, costs and benefits if work, etc);
- 6. No informal child care available;
- 7. Childcare quality and cost are identical;
- 8. Children leave home at 18 years old. This marks the end of the link between parents and their children;
- 9. No bequest motive.

Bick (2016) finds that child care support does not increase the fertility rate in Germany. Discussed in Guner et al. (2020), evidence on child care quality is mixed. Marriage/divorce and education decisions are more likely impacted.

Households: Endowments

Labour income for $i \in \{m, f\}$ in working age j = 1 to $j = J_R = 45$:

$$y_{j,\lambda}^i = w n_{j,\lambda}^i e_{j,\lambda}^i$$

- w wage rate;
- ightharpoonup n exogenous labour hours (n = 1 I);
- e earning ability:

Where

$$e_{j,\lambda}^{m} = \overline{e}_{j}\left(\theta, h_{j,\lambda}^{m}\right) \times \epsilon_{j}^{m}$$

- **Deterministic**: θ permanent education; h human capital;
- Stochastic: ϵ transitory shocks.

Retirees receive means-tested pension $pen(y_{i,\lambda}^m + y_{i,\lambda}^f, a_i)$.

Households (working age): Men

Men always works and receives labor income:

$$y_{j,\lambda}^{m} = w n_{j,\lambda}^{m} \theta h_{j,\lambda}^{m} \epsilon_{j}^{m}$$

 n^m and h^m are exogenous.

The transitory shocks follow an AR1 process:

$$\underbrace{\mathsf{In}\left(\epsilon_{j}^{m}\right)}^{=\eta_{j}^{m}} = \rho^{m} \times \underbrace{\mathsf{In}\left(\epsilon_{j-1}^{m}\right)}^{=\eta_{j-1}^{m}} + \upsilon_{j}^{m}; \qquad \upsilon_{j}^{m} \sim \mathcal{N}(0, \sigma_{v}^{2}) \tag{6}$$

Dynamic Optimization Problem: Working households

Let $V(z_j)$ denotes the value function for a household aged j with state $z_j = \left\{ \lambda_j, a_j, h_{j,\lambda,\ell}^f, \theta, \eta_j^m, \eta_j^f \right\}$ for $j < J_R$, and let $y_{j,\lambda} = \mathbf{1}_{\{\lambda \neq 2\}} y_{j,\lambda}^m + \mathbf{1}_{\{\lambda \neq 1,\ \ell_i > 0\}} y_{j,\lambda}^f + r a_j$.

$$V(z_{j}) = \max_{c_{j}, \ell_{j}, a_{j+1}} \{ u(c_{j}, l_{j}^{m}, l_{j}^{f}, \lambda_{j}, nc_{j}) +$$

$$\beta \sum_{c_{j}} \int_{c_{j}} V(z_{j+1}) d\Pi(\lambda_{j+1}, \eta_{j+1}^{m}, \eta_{j+1}^{f} | \lambda_{j}, \eta_{j}^{m}, \eta_{j}^{f}) \}$$
(7)

s.t.

$$(1+\tau^{c})c_{j} + (a_{j+1} - a_{j}) + \mathbf{1}_{\{\lambda \neq 1, \, \ell_{j} > 0\}}[wn_{j,\lambda}^{f} \sum_{i=1}^{J} (1 - sr_{j,i})\kappa_{j,i}]$$

$$= y_{j,\lambda} + \mathbf{1}_{\{\lambda \neq 1\}}(nc_{j} \times tr_{j}^{A} + tr_{j}^{B}) + beq_{j} - tax_{j}$$

$$c_{j} > 0$$

$$a_{j+1} \geq 0$$

$$l_{i}^{m} = 1 - n_{i,\lambda}^{m} \text{ if } \lambda = 0 \text{ or } \lambda = 1$$

$$(11)$$

 $I_i^f = 1 - \mathbf{1}_{\{\ell > 0\}} n_{i.\lambda.\ell}^f - \mathbf{1}_{\{\ell = 1\}} (\chi + \chi_{c,j_c} \times \mathit{nc}_j) \quad \text{if } \lambda = 0 \text{ or } \lambda = 2$

(12)

Dynamic Optimization Problem: Retirees

Retiree's state vector is $z_j^R = \{a_j, \lambda_j\}$

- No labour income, no children;
- Pension is independent of labour earnings history but dependent on household type.

$$V(z_j^R) = \max_{c_j, a_{j+1}} \left\{ u(c_j, \lambda_j) + \beta \sum_{\Lambda} V(z_{j+1}^R) d\Pi(\lambda_{j+1} | \lambda_j) \right\}$$
(13)

s.t.

$$(1+\tau^{c})c_{i}+(a_{i+1}-a_{i})=ra_{i}+pen_{i}-tax_{i}$$
 (14)

$$c_j > 0 \tag{15}$$

$$a_{i+1} \ge 0$$
 and $a_{j+1} = 0$ (16)

Technology

▶ A firm with Cobb-Douglas production and labour-augmenting technology *A* (with constant growth rate *g*):

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha}$$

Firm maximizes profit according to:

$$\max_{K_t, L_t} \quad (1 - \tau_t^k)(Y_t - w_t A_t L_t) - (r_t + \delta)K_t \quad (17)$$

Firm's FOC yields:

$$r_t = (1 - \tau_t^k) \alpha \frac{Y_t}{K_t} - \delta \tag{18}$$

$$w_t = (1 - \alpha) \frac{Y_t}{A_t L_t} \tag{19}$$

Government: Tax system

Separate tax filing for $i \in \{m, f\}$ on \widetilde{y}_j

If proportional:

$$tax_j^i = \tau^w \times \widetilde{y}_j \tag{20}$$

If progressive:

$$tax_{j}^{i} = \max\left\{0, \quad \widetilde{y}_{j} - \zeta \widetilde{y}_{j}^{1-\tau}\right\}$$
 (21)

Where

- $ightharpoonup \widetilde{y_j} = y_{j,\lambda}^i + \mathbf{1}_{\lambda=0} rac{ra_j}{2} + \mathbf{1}_{\lambda
 eq 0} ra_j$ is the taxable income
- $\triangleright \zeta$ is a scaling parameter
- ightharpoonup au controls progressivity of the tax scheme:
 - $ightharpoonup au o \infty \implies tax_j^i o y_{j,\lambda}^i;$ i.e., tax everything;
 - $ightharpoonup au = 0 \implies tax_j^i = (1-\zeta)y_{j,\lambda}^i$; i.e., $(1-\zeta)$ is a flat tax rate.

Government: Family Tax Benefit part A (1)

The FTB part A is paid per dependent child.

There are 3 pairs of key parameters:

- 1. **Max** and **base** payments per child: $\{tr_j^{A1}; tr_j^{A2}\};$
- 2. **Income thresholds** for max and base payments: $\{\bar{y}_{max}^{tr}; \bar{y}_{base}^{tr}\};$
- 3. **Taper rates** for max and base payments: $\{\omega_{A1}; \omega_{A2}\}$

Government: Family Tax Benefit part A (2)

Let $y_{j,\lambda} = y_{j,\lambda}^m + y_{j,\lambda}^f + ra_j$. The benefit received per child, tr_j^A , is:

$$tr_{j}^{A} = \begin{cases} tr_{j}^{A1} & \text{if } y_{j,\lambda} \leq \bar{y}_{max}^{tr} \\ \max\left\{tr_{j}^{A2}, \quad tr_{j}^{A1} - \omega_{A1}\left(y_{j,\lambda} - \bar{y}_{max}^{tr}\right)\right\} & \text{if } \bar{y}_{max}^{tr} < y_{j,\lambda} < \bar{y}_{base}^{tr} \\ \max\left\{0, \quad tr_{j}^{A2} - \omega_{A2}\left(y_{j,\lambda} - \bar{y}_{base}^{tr}\right)\right\} & \text{if } y_{j,\lambda} \geq \bar{y}_{base}^{tr}, \end{cases}$$

$$\tag{22}$$

Government: Family Tax Benefit part B (1)

The FTB part B is paid per household to provide additional support to single parents and single-earner parents with limited means.

There are 3 pairs of key parameters:

- 1. Two max payments for households with children aged [0, 4] or [5, 18]: $\{tr_i^{B1}; tr_i^{B2}\};$
- 2. **Separate income thresholds** for y_{pe} and y_{se} : $\{\bar{y}_{pe}^{tr}; \bar{y}_{se}^{tr}\}$;
- 3. A taper rate based on y_{se} : ω_B

Where

- $y_{pe} = \max(y_{i\lambda}^m, y_{i\lambda}^f)$ is the primary earner's income
- $y_{se} = \min(y_{i,\lambda}^m, y_{i,\lambda}^f)$ is the secondary earner's income

Government: Family Tax Benefit part B (2)

The benefit received per household, tr_i^B , is given by:

$$tr_j^B = (23)$$

$$\begin{cases} \Upsilon_1 \times tr_j^{\text{B1}} + \Upsilon_2 \times tr_j^{\text{B2}} & \text{if } y_{pe} \leq \bar{y}_{pe}^{tr} \text{and } y_{se} \leq \bar{y}_{se}^{tr} \\ \\ \Upsilon_1 \times \max \left\{0, \ tr_j^{\text{B1}} - \omega_B(y_{se} - \bar{y}_{se}^{tr})\right\} & \text{if } y_{pe} \leq \bar{y}_{pe}^{tr} \text{and } y_{se} > \bar{y}_{se}^{tr} \\ + \Upsilon_2 \times \max \left\{0, \ tr_j^{\text{B2}} - \omega_B(y_{se} - \bar{y}_{se}^{tr})\right\} \end{cases}$$

Where

- $ightharpoonup \Upsilon_1 = \mathbf{1}_{\{nc_{[0,4],j} \geq 1\}}$
- ho $ho_2=1_{\{nc_{[0,4],j}=0 \text{ and } (nc_{[5,15],j}\geq 1 \text{ or } nc_{[16,18]_{AS},j}\geq 1)\}}$

◆ Back to Main Section

Government: Child Care Subsidy (1)

The Child Care Subsidy (CCS) assists households with the cost of formal care for **children aged 13 or younger**.

The rate of subsidy depends on

- 1. **Statutory rates**: $sr = \{0.85, 0.5, 0.2, 0\}$;
- 2. Income thresholds: \bar{y}_i^{sr} for $i \in \{1, 2, 3, 4, 5\}$;
- 3. Hour thresholds of recognized activities;
- 4. A taper rate, ω_C^i , on household income y_{hh}

Government: Child Care Subsidy (2)

The rate of subsidy, s_i , is:

$$s_{j} = \Psi(y_{j,\lambda}, n_{j,\lambda}^{m}, n_{j,\lambda}^{f}) \times$$

$$\begin{cases} sr_{1} & \text{if } y_{j,\lambda} \leq \bar{y}_{1}^{sr} \\ max\{sr_{2}, sr_{1} - \omega_{c}^{1}\} & \text{if } \bar{y}_{1}^{sr} < y_{j,\lambda} < \bar{y}_{2}^{sr} \\ sr_{2} & \text{if } \bar{y}_{2}^{sr} \leq y_{j,\lambda} < \bar{y}_{3}^{sr} \\ max\{sr_{3}, sr_{2} - \omega_{c}^{3}\} & \text{if } \bar{y}_{3}^{sr} \leq y_{j,\lambda} < \bar{y}_{4}^{sr} \\ sr_{3} & \text{if } \bar{y}_{4}^{sr} \leq y_{j,\lambda} < \bar{y}_{5}^{sr} \\ sr_{4} & \text{if } y_{j,\lambda} \geq \bar{y}_{5}^{sr} \end{cases}$$

Where

▶ Let $n_j^{min} = min\{n_{j,\lambda}^m, n_{j,\lambda,\ell}^f\}$. The adjustment factor is

$$\begin{split} \Psi(y_{j,\lambda}, n_{j,\lambda}^m, n_{j,\lambda}^f) &= 0 + 0.24_{\{y_{j,\lambda} \leq AU\$70,015, \, n_j^{min} \leq 8\}} + 0.36_{\{8 < n_j^{min} \leq 16\}} \\ &+ 0.72_{\{16 < n_j^{min} \leq 48\}} + 1_{\{n_j^{min} > 48\}} \end{split}$$

Government: Old Age Pension (1)

Pension is funded by the general government budget.

Pension is available to households aged $j \ge J_R$ and is means-tested (income and assets tests).

Income test:

$$\mathcal{P}^{y}\left(y_{j,\lambda}\right) = \begin{cases} p^{\max} & \text{if } y_{j,\lambda} \leq \bar{y}_{1}^{p} \\ \max\left\{0, \ p^{\max} - \omega_{y}\left(y_{j}^{p} - \bar{y}_{1}^{p}\right)\right\} & \text{if } y_{j,\lambda} > \bar{y}_{1}^{p}, \end{cases}$$

$$(25)$$

Asset test:

$$\mathcal{P}^{a}(a_{j}) = \begin{cases} p^{\max} & \text{if } a_{j} \leq \bar{a}_{1} \\ \max\{0, p^{\max} - \omega_{a}(a_{j} - \bar{a}_{1})\} & \text{if } a_{j} > \bar{a}_{1}, \end{cases}$$
(26)

Government: Old Age Pension (2)

The amount of pension benefit claimable, pen_j , is the minimum of (25) and (26). That is,

$$pen_{j} = \begin{cases} \min \left\{ \mathcal{P}^{a}\left(a_{j}\right), \mathcal{P}^{y}\left(y_{j,\lambda}\right) \right\} & \text{if } j \geq J_{P} \text{ and } \lambda = 0 \\ \\ \frac{2}{3} \min \left\{ \mathcal{P}^{a}\left(a_{j}\right), \mathcal{P}^{y}\left(y_{j,\lambda}\right) \right\} & \text{if } j \geq J_{P} \text{ and } \lambda = 1, 2 \\ \\ 0 & \text{otherwise} \end{cases}$$

Government: Budget

Government at time t collects taxes (T_t^c, T_t^K, T_t^I) and issue bond $(B_{t+1} - B_t)$ to meet its debt obligation $(r_t B_t)$ and its commitment to three spending programs:

- General government purchase, G_t;
- Family transfers (FTB + CCS), Tr_t ;
- ightharpoonup Old age pension, P_t .

The fiscal budget balance equation is therefore

$$(B_{t+1} - B_t) + T_t^{C} + T_t^{K} + T_t^{I} = G_t + Tr_t + P_t + r_t B_t.$$
 (28)

Competitive Equilibrium: Measure of Households

Let $\phi_t(z)$ and $\Phi_t(z)$ denote the population growth- and mortality-unadjusted population density and cumulative distributions, respectively, and Ω_t denotes the vector of parameters at time t.

Initial distribution of newborns:

$$\int_{\Lambda \times A \times H \times \Theta \times S^2} d\Phi_t(\lambda, a, h, \theta, \eta_m, \eta_f) \quad = \quad \int_{\Lambda \times \Theta \times S^2} d\Phi_t(\lambda, 0, 0, \theta, \eta_m, \eta_f) = 1, \quad \text{and}$$

$$\phi_t(\lambda, 0, 0, \theta, \eta_m, \eta_f) \quad = \quad \pi(\lambda) \times \pi(\theta) \times \pi(\eta_m) \times \pi(\eta_f).$$

The population density $\phi_t(z)$ evolves according to:

$$\phi_{t+1}(z^{+}) = \int_{\Lambda \times A \times H \times \Theta \times S^{2}} \mathbf{1}_{\{a^{+}=a^{+}(z,\Omega_{t}), h^{+}=h^{+}(z,\Omega_{t})\}} \times \pi(\lambda^{+}|\lambda)$$
$$\times \pi(\eta_{m}^{+}|\eta_{m}) \times \pi(\eta_{f}^{+}|\eta_{f}) d\Phi_{t}(z)$$
(29)

Competitive Equilibrium: Aggregation (Households)

Given the optimal decisions $\{c(z,\Omega_t),\,\ell(z,\Omega_t),\,a(z,\Omega_t)\}_{j=1}^J$, the share of alive households $(\mu_{j,t})$ and the distribution of households $\phi_t(z)$ at time t, we arrive at:

$$C_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} c(z, \Omega_t) \mu_{j,t} d\Phi_t(z)$$
 (30)

$$A_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} a(z, \Omega_t) \mu_{j,t} \, d\Phi_t(z)$$
 (31)

$$LFP_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} \mathbf{1}_{\{\ell(z,\Omega_t) \neq 0\}} \mu_{j,t} \, d\Phi_t(z). \tag{32}$$

$$LM_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} h_{j,\lambda}^m e^{\theta + \eta_m} \mu_{j,t} d\Phi_t(z)$$
 (33)

$$LF_{t} = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^{2}} \mathbf{1}_{\{\ell(z,\Omega_{t}) \neq 0\}} h_{j,\lambda,\ell}^{f} e^{\theta + \eta_{f}} \mu_{j,t} d\Phi_{t}(z).$$
(34)

Competitive Equilibrium: **Aggregation (Government)**

Given the optimal decisions $\{c(z,\Omega_t), \ell(z,\Omega_t), a(z,\Omega_t)\}_{i=1}^J$, government policy parameters, the share of alive households $(\mu_{i,t})$ and the distribution of households $\phi_t(z)$ at time t, we arrive at:

$$T_t^C = \tau_t^c C_t$$

$$T_t^K = \tau_t^k (Y_t - w_t A_t L_t)$$
(35)

$$T_t^K = \tau_t^k (Y_t - w_t A_t L_t)$$
 (36)

$$T_t^I = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} tax_j \mu_{j,t} d\Phi_t(z). \tag{37}$$

$$Tr_t = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^2} (ftba_j + ftbb_j + ccs_j) \mu_{j,t} d\Phi_t(z)$$
 (38)

$$\mathcal{P}_{t} = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^{2}} pen_{j} \mu_{j,t} d\Phi_{t}(z). \tag{39}$$

Competitive Equilibrium: Definition (1)

Given the household, firm and government policy parameters, the demographic structure, the world interest rate, a steady state equilibrium is such that:

- 1. The collection of individual household decisions $\{c_j, \ell_j, a_{j+1}\}_{j=1}^J$ solve the household problem (7) and (13);
- 2. The firm chooses labor and capital inputs to solve the profit maximization problem (18);
- 3. The government budget constraint (28) is satisfied;
- 4. The markets for capital and labour clear:

$$K_t = A_t + B_t + B_{F,t} \tag{40}$$

$$L_t = LM_t + LF_t \tag{41}$$

Competitive Equilibrium: Definition (2)

5. Goods market clears:

$$Y_{t} = C_{t} + I_{t} + G_{t} + NX_{t}$$

$$NX_{t} = (1+n)(1+g)B_{F,t+1} - (1+r)B_{F,t}$$

$$B_{F,t} = A_{t} - K_{t} - B_{t}$$
(42)

Where

- $I_t = (1+n)(1+g)K_{t+1} (1-\delta)K_t$ is investment
- \triangleright NX_t is the trade balance, and
- \triangleright $B_{F,t}$ is the foreign capital required to clear the capital market.

Competitive Equilibrium: Definition (3)

6. The total lump-sum bequest transfer, BQ_t , is the total assets left by all deceased households at time t:

$$BQ_{t} = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^{2}} (1 - \psi_{j,\lambda}) (1 + r_{t}) a(z, \Omega_{t}) d\Phi_{t}(z).$$

$$(43)$$

Bequest to each surviving household aged j at time t is

$$beq_{j,t} = \left[\frac{b_{j,t}}{\sum_{j=1}^{J} b_{j,t} m_{j,t}}\right] BQ_t$$
 (44)

Assuming bequest is uniform among alive working-age agents, then $b_{j,t} = \frac{1}{JR-1}$ if j < JR and $b_{j,t} = 0$ otherwise. Thus,

$$beq_{j,t} = \frac{BQ_t}{\sum_{j=1}^{JR-1} m_{j,t}}$$
 (45)

Summary: Externally Calibrated Parameters (1)

Parameter	Value	Target (2012-2018)
Demographics		,
Lifespan	J = 80	Age 21-100
Retirement	$J_R = 45$	Age 65
Population growth	n = 1.6%	Average (ABS)
Survival probabilities	ψ_{m},ψ_{f}	Australian Life Tables (ABS)
Measure of newborns by type		
Technology		
Labour augmenting tech. growth	g = 1.3%	Average per hour worked growth rate (World Bank)
Output share of capital	$\alpha = 0.4$	Output share of capital for Australia
Real interest rate	r = 4%	Average (World Bank)
Households		
Relative risk aversion	$\sigma = \frac{1}{\gamma} = 3$	standard values 2.5-3.5
Work hours	$n_{m,\lambda}, n_{f,\lambda}$	Age-profiles of avg. hours for employees (HILDA)
Male human capital profile	h_{λ}^{m}	Age-profile of hourly wages for married men

Summary: Externally Calibrated Parameters (2)

Parameter	Value	Target
Permanent shocks		
Value	$\{\theta_L, \theta_H\} \\ = \{0.745, 1.342\}$	College-HS wage ratio of 1.8 (HILDA, 2012-2018)
Measure of $\{\theta_L,\theta_H\}$ type households	$\{\pi(\theta_L), \pi(\theta_H)\}\$ = $\{0.7, 0.3\}$	College-HS ratio (ABS, 2018)
Fiscal Policy		
Consumption tax	$ au_c = 8\%$	$\tau_c \frac{C_0}{Y_0} = 4.5\%; \frac{C_0}{Y_0} = 56.3\%$ $\tau^k \left(\frac{Y - WL}{Y}\right) = 4.5\%; \frac{WL}{Y} = 1 - \alpha$
Company profit tax	$ au^k=10.625\%$	$ au^k \left(\frac{Y - WL}{Y} \right) = 4.5\%; \frac{WL}{Y} = 1 - \alpha$
Gov't debt-to-GDP	$\frac{B}{Y} = 20\%$ $\frac{G}{Y} = 14\%$	Average (CEIC data, 2012-2018)
Gov't general purchase	$\frac{G}{Y} = 14\%$	Net of FTB, CCS and Age Pension (WDI and AIHW)
FTB, CCS and pension parameters		HILDA Tax-Benefit model

Summary: Internally Calibrated Parameters (1)

innary: internary		
Parameter	Value	Target
Households		
Discount factor	$\beta = 0.99$	Saving ratio 5% – 8% (ABS, 2013-2018)
Taste for consumption	$\nu = 0.365$	LFP rate for mothers $= 65-70\%$
Time cost of non- mother's FT work	$\chi = 0.14$	Mother's full time rate $= 26-28\%$
Extra time cost of mother's full time work	$ \begin{array}{l} \{\chi_{c,j_c=[0,5]},\chi_{c,j_c=[6,11]}\} \\ \{0.0325,0.005\} \end{array} $	-Age-profile of full time share
Female human capital accumulation	$(\xi_{1,\lambda,\ell};\;\xi_{2,\lambda,\ell})$	Age-profile of hourly wages of male counterpart (if $\ell>0$ every period)
Female human capital depreciation	$\delta_h = 0.074$	Male-female wage gap at age 50 (HILDA)
Transitory shocks, ϵ		
Persistence	$\rho = 0.98$	Literature
Variance of shocks	$\sigma_{\epsilon}^2 = 0.0145$	Gini of male wges at age 21, $GINI_{j=1,m} = 0.35$
Fiscal policy		
Income tax	20%	Budget-balancing variable
Maximum pension	$pen^{max} = 30\% \times Y_m$	$\frac{\mathcal{P}_t}{\mathcal{T}_t} = 3.2\%$ (ABS, 2012-2018)

Calibration: Demographics (1)

- Since child-related transfers are concentrated during child-bearing and raising age, we set one model period to correspond to 1 year of life to better capture behavioural responses;
- 2. Time-invariant n, ψ_m and ψ_m induce an unchanging population structure in every period t (see share of survivors).

Calibration: Demographics (2)

Figure: Share of survivors over life cycle

Calibration: Endowment (Deterministic) (1)

Figure: Age profiles of average labor hours

Calibration: Endowment (Deterministic) (2)

Figure: Age profiles of male hourly wages

Calibration: Endowment (Deterministic, Female)

We calibrate the female human capital accumulation rate that their human capital profiles match those of their male counterparts:

- if the wife works without time off over life cycle, and
- assuming ex-ante assortative matching of couples in terms of skills.

Our estimates are:

- Married mothers working full time: $(\xi_{1,\lambda=0,\ell=1}, \xi_{2,\lambda=0,\ell=1}) = (0.0450, -0.00175)$
- Married mothers working part time: $(\xi_{1,\lambda=0,\ell=2}, \xi_{2,\lambda=0,\ell=2}) = (0.0350, -0.00135)$
- ► Single mothers working full time: $(\xi_{1,\lambda=2,\ell=1}, \xi_{2,\lambda=2,\ell=1}) = (0.0206, -0.00088)$
- ► Single mothers working part time: $(\xi_{1,\lambda=2,\ell=2}, \xi_{2,\lambda=2,\ell=2}) = (0.0179, -0.00060)$

Calibration: Endowment (Deterministic, Children)

Children:

- 1. Assign first and second child births to
 - type θ_H households aged {28, 31};
 - type θ_L households aged $\{21,24\}$ (See LSAC and AIHW reports)
- 2. Child care service fee is \$12.5/hour or 48% of age 21 married male hourly wage.
- Based on approximates from child care service and school fees, parents pay
 - ▶ 100% of the fee for child aged 0-2;
 - ▶ 80% for child aged 3-5;
 - ▶ 60% for child aged 6-11;
 - ▶ 40% for child aged 12-17.

Calibration: Endowment (Stochastic income process)

We calibrate the AR1 stochastic process, η^i , for $i \in \{m, f\}$ as follows:

▶ Discretized into 5 grid points:

$$\eta^i = \{0.29813, 0.54601, 1, 1.83146, 3.35424\}$$

Transition probabilities obtained via Rouwenhorst method:

Calibration: Endowment (Stochastic income process)

- Persistence: $\rho = 0.98$;
- Variance of the innovation to shocks: $\sigma_{\epsilon}^2 = 0.0145$ to achieve a Gini coefficient of age 21 male wage distribution of 0.35;
- ► The set-up results in GINI = 0.3766 for wage distribution of work-age male population (not targeted).

Lorenz Curve (male wages at aged 21 and 22)

Figure: Lorenz curves of the distributions of married male wages at age 21 and 22

Lorenz Curve (male wages at working age)

Figure: Lorenz curve of the wage distribution of the working-age male population (accounting for human capital, education and transitory shocks over the life cycle)

Benchmark: Life cycle profiles

Figure: **Top left:** Assets-to-income ratio. **Top right:** CVs of log output and consumption. **Bottom left:** Female labor force participation rate. **Bottom right:** Male and female human capital.

Experiment set 1: Varying FTB means-testing parameters

		c. A1 . A23 .c. /	B1 . B2 >
Status	quo FTB payment rat	es, $\{\emph{tr}^{A1}_i, \emph{tr}^{A2}_i\}$ and $\{\emph{tr}^{L}_i\}$	$\{t_j^{s-1}, t_j^{s-1}\}$
\bar{y}^{tr}			
	$0.5 imes ar{y}^{tr}$	$ar{y}^{tr}$	$1.5 imes ar{y}^{tr}$
ω			
$0.5 imes \omega$	exp 1.1	exp 1.2	exp 1.3
$0.75 imes \omega$	exp 2.1	exp 2.2	exp 2.3
ω	exp 3.1	exp 3.2	exp 3.3
$1.25 imes\omega$	exp 4.1	exp 4.2	exp 4.3
$1.5 imes\omega$	exp 5.1	exp 5.2	exp 5.3

Table: Summary of policy experiments on FTB, keeping CCS unchanged

◆ Back to Main Section

Experiment set 2: Varying CCS means-testing parameters

Status	quo CCS statutory s	ubsidy rates, $\{sr_1, sr_2, s$	$\{r_3, sr_4\}$
\bar{y}^{sr}	$0.5 imes ar{y}^{sr}$	$ar{y}^{sr}$	$1.5 imes ar{y}^{sr}$
ω_{ccs}			
$1.5 imes\omega_{ccs}$	exp 6.1	exp 6.2	ехр б.3
$1.25 imes \omega_{ccs}$	exp 7.1	exp 7.2	exp 7.3
ω_{ccs}	exp 8.1	exp 8.2	exp 8.3
$0.75 imes \omega_{ccs}$	exp 9.1	exp 9.2	exp 9.3
$0.5 imes \omega_{csc}$	exp 10.1	exp 10.2	exp 10.3

Table: Summary of policy experiments on CCS, keeping FTB unchanged

◆ Back to Main Section

Experiment set 3: Varying payment rates

	FTB A	FTB B	CCS
Change FTB payment	$\{tr_j^{A1}, tr_j^{A2}\}$	$\{tr_j^{B1}, tr_j^{B2}\}$	
Experiment 11.1	+50%	+50%	_
Experiment 11.2	-50%	-50%	_
Change CCS rate			$\{sr_1, sr_2, sr_3, sr_4\}$
Experiment 12.1	_	_	+50%
Experiment 12.2	_	_	-50%
Complete removal Experiment 13.1	$\{tr_j^{A1}, tr_j^{A2}\}\ -100\%$	$\{tr_{j}^{B1}, tr_{j}^{B2}\}\ -100\%$	$\{\mathit{sr}_1,\mathit{sr}_2,\mathit{sr}_3,\mathit{sr}_4\}$
Experiment 13.2	_	_	-100%
Experiment 13.3	-100%	-100%	-100%

Table: Summary of policy experiments

◆ Back to Main Section

Results: FTB means-testing parameter reforms (1)

$\bar{\mathbf{y}}^{\mathrm{tr}}$	$0.5 imes ar{y}^{tr}$	$ar{y}^{tr}$	$1.5 imes ar{y}^{tr}$
LFP & FT	_		
rates			
$0.5 imes \omega$	5.88 (0.25)	E 00 (1 72)	3.71 (-0.01)
$0.5 \times \omega$ $0.75 \times \omega$	\	5.08 (1.73)	
	5.83 (3.19)	2.61 (1.47)	3.02 (-0.23)
ω	5.72 (3.57)	0 (0)	2.22 (-0.56)
$1.25 imes \omega$	5.56 (4.13)	-0.04 (-0.15)	-0.42 (-1.77)
$1.5 imes\omega$	3.95 (2.47)	-0.22 (-0.06)	-0.48 (-1.75)
Human Cap.			
$0.5 imes\omega$	2.72%	2.55%	1.41%
$0.75 imes \omega$	2.70%	1.56%	1.14%
ω	2.70%	0.00%	0.54%
$1.25 imes \omega$	2.70%	-0.08%	-1.24%
$1.5 imes\omega$	1.61%	-0.13%	-1.25%
Output			
$0.5 imes \omega$	2.21%	1.98%	1.58%
$0.75 imes \omega$	2.32%	1.72%	1.39%
ω	2.47%	0.00%	1.29%
$1.25 imes \omega$	2.26%	0.76%	0.34%
$1.5 \times \omega$	1.78%	0.82%	0.29%
1.5 × W	1.70/0	0.02/0	: ► ◀ ≣ → □ ○.2970 : ► ▼ ■ → □ ○ ○ ○ 78

Results: FTB means-testing parameters reforms (2)

$ar{ar{y}}^{tr}$	$0.5 imes ar{y}^{tr}$	$ar{y}^{tr}$	$1.5 imesar{y}^{tr}$
$0.5 imes \omega$	-0.05%	0.41%	0.68%
$0.75 imes\omega$	-0.29%	0.29%	0.58%
ω	-0.44%	0.00%	0.50%
$1.25 imes\omega$	-0.73%	0.03%	0.38%
$1.5 imes\omega$	-0.79%	-0.01%	0.38%

Table: Percentage (%) changes in welfare of newborns

Results: CCS means-testing parameter reforms (1)

\bar{y}^{sr}	$0.5 imesar{y}^{sr}$	$ar{y}^{sr}$	$1.5 imesar{y}^{sr}$
ω_{ccs}			
LFP & FT			
rates			
$1.5 imes \omega_{ccs}$	-2.46 (-2.12)	0.36 (0.06)	0.75 (0.68)
$1.25 imes \omega_{ccs}$	-2.49 (-2.19)	0.29 (-0.02)	0.74 (0.83)
ω_{ccs}	-2.48 (-2.16)	0 (0)	0.67 (0.55)
$0.75 imes\omega_{ccs}$	-2.50 (-2.33)	-1.67 (-Ó.71)	0.63 (0.71)
$0.5 imes\omega_{csc}$	-2.67 (-2.45)	-1.86 (-1.02)	1.02 (0.83)
Human Cap.			
$1.5 imes\omega_{ccs}$	-1.50%	0.11%	0.37%
$1.25 imes \omega_{ccs}$	-1.52%	0.08%	0.38%
ω_{ccs}	-1.53%	0%	0.34%
$0.75 imes \omega_{ccs}$	-1.56%	-0.81%	0.39%
$0.5 imes\omega_{\mathit{csc}}$	-1.66%	-0.95%	0.70%
Output			
$1.5 imes \omega_{ccs}$	-0.22%	0.87%	0.99%
$1.25 \times \omega_{ccs}$	-0.14%	0.86%	1.15%
	-0.14%	0.80%	1.37%
ω_{ccs}	-0.15%	0.43%	1.21%
$0.75 \times \omega_{ccs}$, -
$0.5 imes\omega_{csc}$	-0.15%	0.33%	1.26%

Results: CCS means-testing parameter reforms (2)

$ar{ar{y}}^{sr}$ ω_{ccs}	$0.5 imes ar{y}^{sr}$	$ar{y}^{sr}$	$1.5 imesar{y}^{sr}$
$1.5 imes\omega_{ccs}$	-0.0154%	0.0893%	0.0519%
$1.25 imes \omega_{ccs}$	-0.0009%	0.0879%	0.0847%
ω_{ccs}	-0.0050%	0%	0.1007%
$0.75 imes \omega_{ccs}$	0.0131%	0.0383%	0.0801%
$0.5 imes\omega_{csc}$	-0.02%	0.02%	0.08%

Table: Percentage (%) changes in welfare of newborns

Results: Experiment set 2

	+50% FTB	+50% CCS	-50% FTB	-50% CCS
	Change	Change	Change	Change
Income (Y)	-1.11%	1.33%	1.09%	0.69%
Consumption (C)	-1.81%	2.05%	2.30%	-0.90%
Savings (S)	-3.75%	1.13%	4.22%	-2.11%
Female LFP	-3.48 p.p.	7.61 p.p.	6.83 p.p.	-4.31 p.p.
Female FT rate	-1.85 p.p.	4.29 p.p.	5.51 p.p.	-1.95 p.p.
Income tax rate	1.48 p.p.	0.61 p.p.	-1.15 p.p.	-1.08 p.p.
FTB expense	49.90%	-14.24%	-49.34%	4.88%
CCS expense	-12.12%	75.38%	37.40%	-60.00%
Pension	-0.31%	1.31%	0.11%	1.31%
HEV (newborn)	0.83%	0.1%	-1.00%	-0.3467%

Table: Changes relative to benchmark values

→ Back to Main Section

Computing the Steady State: Algorithm (1)

We solve the benchmark model (*small open economy*) for its initial balanced-growth path steady state equilibrium.

- 1. Parameterize the model and discretize assets on $[a_{min}, a_{max}]$ such that:
 - Number of grid points, $N_A = 70$;
 - $ightharpoonup a_{min} = 0$ (No-borrowing constraint);
 - ► The grid if fairly dense near a_{min} so households are not restricted by an all-or-nothing decision;
 - a_{max} is sufficiently large so that (i) households are not bound by a_{max}, and (ii) there is enough room for upward movement induced by new policy regimes.

and for human capital grids on $[h_{min}^f, h_{max}^f]$:

- Number of grid points, $N_H = 25$;
- $h_{min}^f = h_{i=21}^m = 1;$
- $h_{max}^f = h_{j=50}^m = 1.546;$

Computing the Steady State: Algorithm (2)

- 2. Guess K_0 and L_0 , endogenous government policy variables, and w_m , taking $r = r^w$ as given;
- 3. Solve the firm's problem for (w_m, w_f) ;
- 4. Given the factor prices (w_m, w_f, r) and the initial steady state vector of parameters (Ω_0) , solve the household problem for decision rules on $\{a^+, c, I^f\}$ by backward induction (from j = J to j = 1) using value function iteration;

Computing the Steady State: Algorithm (3)

- Starting from a known distribution of newborns, compute the measure of households across states by forward induction, using
 - the computed decision rules,
 - ψ,
 - $ightharpoonup \eta$ and its Markov transition probabilities, and
 - the law of motion of female human capital (1).
- Accounting for the share of alive agents, sum across states for aggregate variables: A, C, L, T and Tr. Update L, K, I and Y (convex update). Solve for endogenous government policy variables.

Computing the Steady State: Algorithm (4)

7. Given the updated variables, compute the goods market convergence criterion for a small open economy:

$$Y = C + I + G + NX$$

- $\blacktriangleright B_F = A K B;$
- $NX = (1+r)B_{F,t} (1+n)(1+g)B_{F,t+1};$
- NX < 0 implies a capital account surplus (increase in foreign indebtedness).
- 8. Return to step 3 until the convergence criterion is satisfied.

Bibliography I

- Bick, A. (2016). The Quantitative Role of Child Care for Female Labor Force Participation and Fertility. *Journal of the European Economic Association*, 14(3):639–668.
- Bick, A. and Fuchs-Schundeln, N. (2017). Quantifying the disincentive effects of joint taxation on married women's labor supply. *The American Economic Review*, 107(5):100–104.
- Borella, M., Nardi, M. D., and Yang, F. (2020). Are Marriage-Related Taxes and Social Security Benefits Holding Back Female Labor Supply?

 Opportunity and Inclusive Growth Institute Working Papers 41, Federal Reserve Bank of Minneapolis.
- Braun, A., Kopecky, K., and Koreshkova, T. (2017). Old, sick, alone, and poor: A welfare analysis of old-age social insurance programmes. *Review of Economics Studies*, 84:580–612.
- De Nardi, M., Fella, G., and Paz-Pardo, G. (2020). Wage risk and government and spousal insurance. *NBER Working Paper*.

Bibliography II

- Doiron, D. and Kalb, G. (2004). Demands for childcare and household labour supply in australia. Melbourne institute working paper series, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Feldstein, M. S. (1987). Should social security benefits be means tested? *The Journal of Political Economy*, 95(3):468–484.
- Guner, N., Kaygusuz, R., and Ventura, G. (2012a). Taxation and household labour supply. *The Review of Economic Studies*, 79(3):1113–1149.
- Guner, N., Kaygusuz, R., and Ventura, G. (2012b). Taxing women: A macroeconomic analysis. *Journal of Monetary Economics*, 59(1):111 128. Carnegie-NYU-Rochester Conference Series on Public Policy at New York University on April 15-16, 2011.
- Guner, N., Kaygusuz, R., and Ventura, G. (2020). Child-related transfers, household labour supply, and welfare. *The Review of Economic Studies*, 87(5):2290–2321.

Bibliography III

- Kaygusuz, R. (2015). Social security and two-earner households. *Journal of Economic Dynamics and Control*, 59:163–178.
- Nishiyama, S. (2019). The joint labor supply decision of married couples and the u.s. social security pension system. *Review of Economic Dynamics*, 31:277–304.
- Tran, C. and Woodland, A. (2014). Trade-offs in means-tested pension design. *Journal of Economic Dynamics and Control*, 47:72–93.