발표 대본

16p

비디오 추출 과정은 크게 mp4파일을 프레임별로 잘라 jpeg 파일을 추출 과정과 ViTPose에 이미지를 태워, 이미지내 사람의 관절 정보를 추출하는 과정으로 구성되어 있습 니다.

17p

이미지 추출 과정에 대해 설명하자면, 40초 가량의 태권도 품새 7장 mp4파일을 openCV 라이브러리를 사용하여 0.2초 간격으로 이미지를 잘라 폴더에 저장하게 됩니다.

이를 통해 000 ~ 185 까지 총 186장을 추출하였습니다.

18p

그 후 사전학습된 easy-ViTPose 모델에 앞서 추출한 186장의 이미지를 차례대로 태웁니다.

이때 easy-ViTPose 코드를 약간 변형하여 다음 그림과 같이 사람을 detect 한 후, detect 한 사람 관절을 시각화한 img와 사람 관절의 좌표 정보를 담은 dictionary를 추출하게 됩니다.

이렇게 추출한 사람의 25개 관절의 좌표 186개를 얻게 됩니다.

19p

앞선 분류 작업에서 가장 성능이 좋은 randomforest 기반으로 사람의 동작 분류를 진행하였습니다.

동작과 동작 사이의 준비과정은 특정 class로 불류할 수 없기 때문에

이미지가 특정 label에 속할 Probaility를 구한 후, max probaility가 낮으면 이미지를 제거하고 max probability가 높으면 이미지를 선별하여 해당 동작이 무엇인지 분류를 진행하였습니다.

20p

발표 대본

1

좀 더 자세히 설명하자면, predict_proba 함수는 각 샘플별로 클래스에 속할 확률을 제공합니다.

그리고 각각의 image마다 나올 확률이 최대인 class로 해당 이미지의 동작을 분류하게 됩니다.

하지만 max probability가 낮은 이미지는 어떠한 class에도 속하지 않는 준비 과정이기 때문에 제거해주었습니다.

21p

Max probability가 높은 이미지만 따로 선별한 후 predict한 label에 해당하는 동작은 위쪽 그림과 같고, 선별한 이미지와 분류된 동작을 시각화한 것은 아래쪽 그림입니다.

22p

5번 이미지는 뒷굽이하고 손날거들어 아래막기라고 분류될 max probability가 0.22로 분류가 제대로 이루어지지 못하였습니다.

실제로 이미지를 보더라도 동작과 동작 사이의 준비동작에 해당되는 것을 볼 수 있습니다.

반면 21번 이미지는 앞차기라고 분류된 max probability가 0.81로 매우 높습니다.

그리고 실제로 이미지를 보면 앞차기를 하는 동작에 해당하는 것을 알 수 있습니다.

발표 대본