Supporting Information for: Porosity-Permeability Relationships in Mudstone from Pore-Scale Fluid Flow Simulations using the Lattice Boltzmann Method

¹Department of Earth, Environment and Planetary Sciences, Rice University, Houston, TX 77005

²Department of Geophysics, Colorado School of Mines, Golden, CO 80401

Contents of this File:

Figures S1 and S2

Tables S1 to S4

Introduction:

This supporting information includes six parts:

- (1) Incorporating heterogenous platelet geometry in mudstone models [Fig. S1]
- (2) Compaction data from smectite, kaolinite and intermediate mudstone models [Table S1]
- (3) Compaction data from natural mudstone models, NM1 and NM2 [Table S2]
- (4) Evolution of vertical tortuosity (τ_{ν}) during compaction and fluid injection [Fig. S2]
- (5) Microfracture growth data in compacted intermediate mudstone model [Table S3]
- (6) Macrofracture propagation data in compacted intermediate mudstone model [Table S4]

Figure S1: Scaled-down model of mudstone pore structure NM2 (ϕ =0.79), designed after sample 1324B-7H-7. The NM2 mudstone model consists of 31% smectite, 41% illite and 28% chlorite by volume. (a) Cross sectional view of NM2 pore structure with bedding layers consisting of smectite, illite and chlorite platelets; (b) Orthogonal view of NM2; and (c) Cross sectional view of NM2 pore structure with platelet rotation (θ =10°) and directions of vertical (q_v) and horizontal flow (q_h).

Table S1: Vertical (q_v) and horizontal (q_h) flux during compaction of kaolinite, smectite and intermediate mudstone models, simulated by step-wise decrease in intrabed (ξ) , interbed pore throat diameters (λ) and orientation (θ) .

Model	S t e p	Porosi ty \ \$\phi\$	Intrabed Pore Throat Width ξ	Interbed Pore Throat Width λ	Platelet Orientat ion O	Vertical Flux q v	Reynolds Number Vertical flow Re _v	Vertical Permeabili ty k_{ν}	Vertical Tortuosi ty τ _ν	Horizontal Flux <i>q_h</i>	Reynolds Number Horizontal flow Reh	Horizontal Permeabili ty <i>k_h</i>	Horiz ontal Tortu osity τ _h
			(nm)	(nm)	Degrees	(m/s)		(m²)		(m/s)		(m²)	
Kaolinite	1	0.76	3.60 x 10 ²	3.60 x 10 ²	45	7.15 x 10 ⁻¹	2.41 x 10 ⁰	8.31 x 10 ⁻¹⁵	3.98	1.12 x 10 ⁻¹	1.88 x 10 ⁻²	1.10 x 10 ⁻¹⁴	3.98
Kaolinite	2	0.68	2.60 x 10 ²	2.60 x 10 ²	35	3.56 x 10 ⁻¹	1.20 x 10 ⁰	3.42 x 10 ⁻¹⁵	5.68	5.16 x 10 ⁻²	8.69 x 10 ⁻³	4.96 x 10 ⁻¹⁵	4.36
Kaolinite	3	0.58	1.80 x 10 ²	1.80 x 10 ²	25	9.81 x 10 ⁻²	3.31 x 10 ⁻¹	7.84 x 10 ⁻¹⁶	8.15	1.77 x 10 ⁻²	2.99 x 10 ⁻³	1.68 x 10 ⁻¹⁵	4.53
Kaolinite	4	0.46	1.20 x 10 ²	1.20 x 10 ²	20	2.63 x 10 ⁻²	8.85 x 10 ⁻²	1.78 x 10 ⁻¹⁶	11.07	9.27 x 10 ⁻³	1.56 x 10 ⁻³	8.67 x 10 ⁻¹⁶	4.97
Kaolinite	5	0.35	8.00 x 10 ¹	8.00 x 10 ¹	15	5.73 x 10 ⁻³	1.93 x 10 ⁻²	3.42 x 10 ⁻¹⁷	14.30	2.33 x 10 ⁻³	3.93 x 10 ⁻⁴	2.16 x 10 ⁻¹⁶	5.00
Kaolinite	6	0.28	6.00 x 10 ¹	6.00 x 10 ¹	10	1.92 x 10 ⁻³	6.49 x 10 ⁻³	1.07 x 10 ⁻¹⁷	16.61	8.69 x 10 ⁻⁴	1.47 x 10 ⁻⁴	8.02 x 10 ⁻¹⁷	4.29
Kaolinite	7	0.19	4.00 x 10 ¹	4.00 x 10 ¹	5	3.91 x 10 ⁻⁴	1.32 x 10 ⁻³	2.02 x 10 ⁻¹⁸	19.80	2.60 x 10 ⁻⁴	4.39 x 10 ⁻⁵	2.39 x 10 ⁻¹⁷	3.31
Kaolinite	8	0.14	4.00 x 10 ¹	4.00 x 10 ¹	0	1.23 x 10 ⁻⁴	4.14 x 10 ⁻⁴	6.33 x 10 ⁻¹⁹	21.64	1.56 x 10 ⁻⁴	2.63 x 10 ⁻⁵	1.43 x 10 ⁻¹⁷	1.74
Smectite	1	0.80	9.00 x 10 ⁰	9.00 x 10 ⁰	45	3.56 x 10 ⁻¹	4.00 x 10 ⁻²	6.84 x 10 ⁻¹⁷	7.08	4.18 x 10 ⁻²	9.40 x 10 ⁻⁵	1.33 x 10 ⁻¹⁶	7.08
Smectite	2	0.76	7.00 x 10 ⁰	7.00 x 10 ⁰	35	2.10 x 10 ⁻¹	2.36 x 10 ⁻²	3.61 x 10 ⁻¹⁷	9.31	5.08 x 10 ⁻²	1.14 x 10 ⁻⁴	1.60 x 10 ⁻¹⁶	6.88
Smectite	3	0.72	5.00 x 10 ⁰	5.00 x 10 ⁰	25	1.08 x 10 ⁻¹	1.21 x 10 ⁻²	1.63 x 10 ⁻¹⁷	12.03	4.11 x 10 ⁻²	9.24 x 10 ⁻⁵	1.29 x 10 ⁻¹⁶	6.27
Smectite	4	0.66	4.00 x 10 ⁰	4.00 x 10 ⁰	15	3.50 x 10 ⁻²	3.93 x 10 ⁻³	4.60 x 10 ⁻¹⁸	15.44	1.66 x 10 ⁻²	3.72 x 10 ⁻⁵	5.16 x 10 ⁻¹⁷	5.06
Smectite	5	0.58	3.00 x 10 ⁰	3.00 x 10 ⁰	10	5.02 x 10 ⁻³	5.64 x 10 ⁻⁴	5.59 x 10 ⁻¹⁹	20.10	3.18 x 10 ⁻³	7.15 x 10 ⁻⁶	9.85 x 10 ⁻¹⁸	4.63
Smectite	6	0.45	2.00 x 10 ⁰	2.00 x 10 ⁰	5	3.04 x 10 ⁻⁴	3.42 x 10 ⁻⁵	2.77 x 10 ⁻²⁰	27.95	2.79 x 10 ⁻⁴	6.28 x 10 ⁻⁷	8.59 x 10 ⁻¹⁹	3.74
Smectite	7	0.16	1.00 x 10 ⁰	1.00 x 10 ⁰	0	1.84 x 10 ⁻⁷	2.06 x 10 ⁻⁸	1.30 x 10 ⁻²³	50.65	3.06 x 10 ⁻⁷	6.88 x 10 ⁻¹⁰	9.35 x 10 ⁻²²	1.71
Intermediate	1	0.73	13.71 x 10 ¹	13.71 x 10 ¹	45	1.39 x 10 ⁻¹	3.12 x 10 ⁻¹	6.10 x 10 ⁻¹⁶	6.72	1.75 x 10 ⁻²	1.12 x 10 ⁻³	1.11 x 10 ⁻¹⁵	6.72
Intermediate	2	0.66	10.28 x 10 ¹	10.28 x 10 ¹	35	3.73 x 10 ⁻²	8.37 x 10 ⁻²	1.38 x 10 ⁻¹⁶	9.60	7.07 x 10 ⁻³	4.54 x 10 ⁻⁴	4.44 x 10 ⁻¹⁶	7.11
Intermediate	3	0.60	80.00 x 10 ⁰	80.00 x 10 ⁰	25	1.73 x 10 ⁻²	3.88 x 10 ⁻²	5.59 x 10 ⁻¹⁷	12.79	5.78 x 10 ⁻³	3.71 x 10 ⁻⁴	3.60 x 10 ⁻¹⁶	6.68
Intermediate	4	0.50	57.14 x 10 ⁰	57.14 x 10 ⁰	20	6.95 x 10 ⁻³	1.56 x 10 ⁻²	1.93 x 10 ⁻¹⁷	16.88	3.00 x 10 ⁻³	1.93 x 10 ⁻⁴	1.86 x 10 ⁻¹⁶	7.06
Intermediate	5	0.44	45.71 x 10 ⁰	45.71 x 10 ⁰	15	2.98 x 10 ⁻³	6.70 x 10 ⁻³	7.58 x 10 ⁻¹⁸	20.03	1.45 x 10 ⁻³	9.31 x 10 ⁻⁵	8.93 x 10 ⁻¹⁷	6.46
Intermediate	6	0.35	34.28 x 10 ⁰	34.28 x 10 ⁰	10	1.06 x 10 ⁻³	2.38 x 10 ⁻³	2.45 x 10 ⁻⁸	24.45	7.22 x 10 ⁻⁴	4.64 x 10 ⁻⁵	4.43 x 10 ⁻¹⁷	5.60
Intermediate	7	0.25	22.85 x 10 ⁰	22.85 x 10 ⁰	5	2.48 x 10 ⁻⁴	5.57 x 10 ⁻⁴	5.16 x 10 ⁻¹⁹	30.30	2.33 x 10 ⁻⁴	1.49 x 10 ⁻⁵	1.42 x 10 ⁻¹⁷	4.16
Intermediate	8	0.07	11.42 x 10 ⁰	11.42 x 10 ⁰	0	5.54 x 10 ⁻⁶	1.24 x 10 ⁻⁵	1.02 x 10 ⁻²⁰	41.61	7.68 x 10 ⁻⁶	4.93 x 10 ⁻⁷	4.68 x 10 ⁻¹⁹	1.83

Table S2: Vertical (q_v) and horizontal (q_h) flux during compaction of *NM1* (designed after sample 1324C-1H-1) and *NM2* (designed after sample 1324B-7H-7) mudstone models, simulated by step-wise decrease in intrabed (ξ) , interbed pore throat diameters (λ) and orientation (θ) .

Model	Step	Porosity ϕ	Intrabed Pore Throat Width <i>ξ</i>	Interbed Pore Throat Width λ	Platelet Orientation O	Vertical Flux <i>q</i> _v	Reynolds Number Vertical flow <i>Re_v</i>	Vertical Permeabili ty <i>k</i> _v	Vertic al Tortu osity τ _ν	Horizontal Flux q _h	Reynolds Number Horizontal flow Reh	Horizontal Permeabili ty <i>k_h</i>	Horizont al Tortuosit y τ _h
			(nm)	(nm)	Degrees	(m/s)		(m²)		(m/s)		(m²)	
NM1	1	0.72	5.05 x 10 ¹	5.05 x 10 ¹	15	5.03 x 10 ⁻²	2.71 x 10 ⁻²	1.54 x 10 ⁻¹⁶	11.30	5.08 x 10 ⁻²	7.42 x 10 ⁻⁴	1.39 x 10 ⁻¹⁵	3.91
NM1	2	0.67	3.85 x 10 ¹	3.85 x 10 ¹	10	1.90 x 10 ⁻²	1.03 x 10 ⁻²	5.19 x 10 ⁻¹⁷	13.67	2.43 x 10 ⁻²	3.55 x 10 ⁻⁴	6.53 x 10 ⁻¹⁶	3.43
NM1	3	0.60	2.65 x 10 ¹	2.65 x 10 ¹	6	3.94 x 10 ⁻³	2.12 x 10 ⁻³	9.39 x 10 ⁻¹⁸	17.01	6.22 x 10 ⁻³	9.08 x 10 ⁻⁵	1.64 x 10 ⁻¹⁶	2.94
NM1	4	0.49	1.45 x 10 ¹	1.45 x 10 ¹	3	3.36 x 10 ⁻⁴	1.81 x 10 ⁻⁴	6.86 x 10 ⁻¹⁹	22.45	6.70 x 10 ⁻⁴	9.78 x 10 ⁻⁶	1.73 x 10 ⁻¹⁷	2.47
NM1	5	0.32	2.5 x 10 ⁰	2.5 x 10 ⁰	0	4.17 x 10 ⁻⁶	2.25 x 10 ⁻⁶	7.09 x 10 ⁻²¹	32.95	1.05 x 10 ⁻⁵	1.53 x 10 ⁻⁷	2.66 x 10 ⁻¹⁹	1.52
NM2	1	0.58	6.25 x 10 ¹	6.25 x 10 ¹	12	1.41x10 ⁻²	7.62 x 10 ⁻³	3.11 x 10 ⁻¹⁷	12.46	8.16 x 10 ⁻³	1.19 x 10 ⁻⁴	2.27 x 10 ⁻¹⁶	3.69
NM2	2	0.50	3.85 x 10 ¹	3.85 x 10 ¹	9	3.13x10 ⁻³	1.69 x 10 ⁻³	6.65 x 10 ⁻¹⁸	15.34	2.63 x 10 ⁻³	3.85 x 10 ⁻⁵	7.07 x 10 ⁻¹⁷	3.60
NM2	3	0.45	2.65 x 10 ¹	2.65 x 10 ¹	6	1.31 x 10 ⁻³	7.09 x 10 ⁻⁴	2.74 x 10 ⁻¹⁸	17.51	1.50 x 10 ⁻³	2.19 x 10 ⁻⁵	3.96 x 10 ⁻¹⁷	3.12
NM2	4	0.37	1.45 x 10 ¹	1.45 x 10 ¹	3	3.16 x 10 ⁻⁴	1.71 x 10 ⁻⁴	6.46 x 10 ⁻¹⁹	20.76	5.06 x 10 ⁻⁴	7.39 x 10 ⁻⁶	1.30 x 10 ⁻¹⁷	2.50
NM2	5	0.25	2.5 x 10 ⁰	2.5 x 10 ⁰	0	2.39 x 10 ⁻⁵	1.29 x 10 ⁻⁵	4.79 x 10 ⁻²⁰	26.54	5.96 x 10 ⁻⁵	8.71 x 10 ⁻⁷	1.51 x 10 ⁻¹⁸	1.60

Fig. S2: Vertical tortuosity increases as porosity declines during compaction (τ_v) (a) in kaolinite, smectite and intermediate mudstone models (b) in heterogenous mudstone models, *NM1* (designed after sample 1324C-1H-1) and *NM2* (designed after sample 1324B-7H-7).

Table S3: Vertical flux (q_v^{mf}) during growth of microfractures through compacted intermediate mudstone, simulated by step-wise increase in microfracture width (ξ^{mf}) .

Step	Porosity ø	Micro- fracture Width	Effective Fracture Width	Interbed Pore Throat Width	Vertical Flux	Reynolds Number Vertical flow	Vertical Permeability
		ξ ^{mf}	$oldsymbol{arepsilon}_{e\!f\!f}^{m\!f}$	λ	$oldsymbol{q}_{v}^{mf}$	Re _v	k₁ ^{mf}
		(nm)	(nm)	(nm)	(m/s)		(m²)
1	0.07	11.42 x10 ⁰	0.00 x10 ⁰	11.42 x10 ⁰	5.54 x 10 ⁻⁶	1.24 x 10 ⁻⁵	1.02 x 10 ⁻²⁰
2	0.10	57.14 x10 ⁰	1.37 x 10 ²	11.42 x10 ⁰	1.56 x 10 ⁻⁴	3.52 x 10 ⁻⁴	2.89 x 10 ⁻¹⁹
3	0.13	10.20 x10 ¹	2.74 x 10 ²	11.42 x10 ⁰	1.05 x 10 ⁻³	2.37 x 10 ⁻³	1.95 x 10 ⁻¹⁸
4	0.18	18.28 x10 ¹	5.14 x 10 ²	11.42 x10 ⁰	7.99 x 10 ⁻³	1.79 x 10 ⁻²	1.48 x 10 ⁻¹⁷
5	0.25	29.71 x10 ¹	8.57 x 10 ²	11.42 x10 ⁰	4.68 x 10 ⁻²	1.05 x 10 ⁻¹	8.66 x 10 ⁻¹⁷
6	0.29	37.70 x10 ¹	1.10 x 10 ³	11.42 x10 ⁰	1.12 x 10 ⁻⁴	2.52 x 10 ⁻¹	2.07 x 10 ⁻¹⁶

Table S4: Vertical flux (q_v^{frac}) during propagation of macrofracture through compacted intermediate mudstone, simulated by step-wise increase in fracture width (ξ^{frac}) .

Step	Porosity ø	Macro- fracture Width	Effective Fracture Width ε_{eff}^{frac}	racture Pore Throat		Reynolds Number Vertical flow Re _v	Vertical Permeability k_v^{frac}	
	,	ξ frac	"	λ	$oldsymbol{q}_{\sqrt{f^{rac}}}$			
		(nm)	(nm)	(nm)	(m/s)		(m²)	
1	0.07	11.42 x10 ⁰	0.00×10^{0}	11.42 x10 ⁰	5.54 x 10 ⁻⁶	1.24 x 10 ⁻⁵	1.02 x 10 ⁻²⁰	
2	0.12	37.71 x 10 ¹	3.66×10^2	11.42 x10 ⁰	9.41 x 10 ⁻⁶	2.11 x 10 ⁻⁵	1.74 x 10 ⁻²⁰	
3	0.17	70.85 x 10 ¹	6.97×10^2	11.42 x10 ⁰	1.17 x 10 ⁻⁵	2.64 x 10 ⁻⁵	2.17 x 10 ⁻²⁰	
4	0.21	11.09 x 10 ²	1.10×10^3	11.42 x10 ⁰	3.83 x 10 ⁻⁴	8.60 x 10 ⁻⁴	7.07 x 10 ⁻¹⁹	
5	0.25	14.74 x 10 ²	1.46×10^3	11.42 x10 ⁰	5.81 x 10 ⁻³	1.31 x 10 ⁻²	1.07 x 10 ⁻¹⁷	
6	0.32	22.06 x 10 ²	2.19×10^3	11.42 x10 ⁰	6.64 x 10 ⁻²	1.49 x 10 ⁻¹	1.22 x 10 ⁻¹⁶	