Estructuras Discretas INF-313

Sergio Hernández shernandez@ucm.cl

Facultad de Ciencias de la Ingeniería

Permutaciones

<u>Per</u>mutaciones

Una permutación es un reordenamiento de los elementos de una lista ordenada. El número de permutaciones de una lista con n elementos es n!.

$$n! = n \times (n-1) \times (n-2) \dots \times 3 \times 2 \times 1, n \ge 1$$

 $0! = 1$

Permutaciones

Permutaciones

Si n es un entero positivo y r es otro entero tal que $1 \le r \le n$ entonces existen $P(n,r) = n \times (n-1) \times (n-2) \times \cdots \times (n-r+1)$ ordenamientos con r elementos de un conjunto de n elementos distintos (sin repeticiones). Entonces:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Permutaciones Generalizadas

Permutaciones Generalizadas

En el caso de permitir repeticiones, es decir que existen r subconjuntos con n_i ; $1 \le i \le n$ de elementos entonces podemos generalizar:

$$P(n; n_1, \ldots, n_r) = \frac{n!}{n_1! \ldots (n_r)!}$$

Permutaciones

Combinatoria

Combinaciones

Si n es un entero positivo y r es otro entero tal que $1 \le r \le n$ entonces existen C(n,r) subconjuntos con r elementos de un conjunto de n elementos distintos **sin orden en particular**. Entonces:

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

Combinaciones

