BASICS OF INFORMATION SYSTEM SECURITY

User Authentication, Access Control, and Operating System

Video Summary

- Brute Force Attack on Hashed Passwords
- Hashing Speed
- Preventing Hashing Attacks
- Rainbow Tables

Brute Force Attack on Hashed Passwords

- Aim: given one (or more) target hash value, find the original password
- Start with large set of possible passwords (e.g. from dictionary, all possible n-character combinations)
- Calculate hash of possible password, compare with target hash
 - if match, original password is found
 - else, try next possible password
- Attack duration depends on size of possible password set

username	H(password)		
john	06c219e5bc8378f3a8a3f83b4b7e4649		
sandy	5fc2bb44573c7736badc8382b43fbeae		
daniel	06c219e5bc8378f3a8a3f83b4b7e4649		
steve	75127c78fd791c3f92a086c59c71ece0		

- ➤ Brute force on n-bit hash value: 2ⁿ attempts
- For MD5 128 bit: 2¹²⁸ attempts (how long does this take?)
- ➤ How many hashes your computer calculate per second?

4 x 10 history/sec

username	H(password)		
john	06c219e5bc8378f3a8a3f83b4b7e4649		
sandy	5fc2bb44573c7736badc8382b43fbeae		
daniel	06c219e5bc8378f3a8a3f83b4b7e4649		
steve	75127c78fd791c3f92a086c59c71ece0		

- > Brute force on n-bit hash value: 2ⁿ attempts
- For MD5 128 bit: 2¹²⁸ attempts (how long does this take?)
- ➤ How many hashes your computer calculate per second?

 \Rightarrow @ 4x106 hashes/sec $(4 \times 10^{6} \times 60 \times 60 \times 24) = 9.85 \times 10^{6}$

username	H(password)		
john	06c219e5bc8378f3a8a3f83b4b7e4649		
sandy	5fc2bb44573c7736badc8382b43fbeae		
daniel	06c219e5bc8378f3a8a3f83b4b7e4649		
steve	75127c78fd791c3f92a086c59c71ece0		

- > Brute force on n-bit hash value: 2ⁿ attempts
- For MD5 128 bit: 2¹²⁸ attempts (how long does this take?)
- ➤ How many hashes your computer calculate per second?
- ➤ @ 4x10⁶ hashes/sec
- \rightarrow How long \rightarrow 2¹²⁸ /(4000000*60*60*24)=9.85x10²⁶ days = 2.7x10²⁴ years

- ➤ What if we used a GPU? (gaming computers or mining hardware)
- ➤ 10⁶ hashes/sec: still TOO LONG

- ➤ What if we used a GPU? (gaming computers or mining hardware)
- ➤ 10⁶ hashes/sec: still TOO LONG
- ➤ What about using GPU and parallel computing? → 10¹⁰ hashes/sec
- ➤ How many passwords the user can choose from given that you have a maximum of 8 characters?

$$\begin{array}{c}
1 \longrightarrow 94 \\
2 \longrightarrow (94)^2 \\
3 \longrightarrow (94)^3
\end{array}$$

$$8 \rightarrow (94)^8$$

- Worst case: $94^8 + 94^7 + 94^6 + 94^5 + 94^4 + 94^3 + 94^2 + 94^4 = 6.16 \times 10^{15}$ possible passwords $94^8 6.16 \times 10^{15}$
- ➤ If we are used a GPU (10¹¹ hashes/sec).. How long it will take us to calculate the hashes of all passwords?

$$6.16 \times 10^{15} (10 \times 60 \times 60 \times 24)$$

7 du 15

- Worst case: $94^8 + 94^7 + 94^6 + 94^5 + 94^4 + 94^3 + 94^2 + 94^1 = 6.16 \times 10^{15}$ possible passwords
- ➤ If we are used a GPU (10¹⁰ hashes/sec).. How long it will take us to calculate the hashes of all passwords?
- \triangleright 6.16x10¹⁵ / (10¹⁰ *60*60*24) = 7 days!!
- How to prevent such an attach?

- Worst case: $94^8 + 94^7 + 94^6 + 94^5 + 94^4 + 94^3 + 94^2 + 94^1 = 6.16 \times 10^{15}$ possible passwords
- ➤ If we are used a GPU (10¹⁰ hashes/sec).. How long it will take us to calculate the hashes of all passwords?
- \triangleright 6.16x10¹⁵ / (10¹⁰ *60*60*24) = 7 days!!
- ➤ How to prevent such an attach? → Use a slower hash function

	Hash Type	PC1	PC2
-7	MD5	8581 Mh/s	2753 Mh/s
\(\frac{-5}{}	SHA1	3037 Mh/s	655 Mh/s
	SHA256	1122 Mh/s	355 Mh/s
	SHA512	414 Mh/s	104 Mh/s
T	SHA-3(Keccak)	179 Mh/s	92 Mh/s

- Worst case: $94^8 94^7 + 94^6 + 94^5 + 94^4 + 94^3 + 94^2 + 94^1 = 6.16 \times 10^{15}$ possible passwords
- ➤ If we are used a GPU (10¹¹⁰ hashes/sec).. How long it will take us to calculate the hashes of all passwords?
- \triangleright 6.16x10¹⁵ / (10¹⁰ *60*60*24) = 7 days!!
- ➤ How to prevent such an attach?
 - ✓ More characters in the password (for example 9 digits)

Cracking Passwords

- > Store passwords and hash values in advance (instead of generating them)
- > The question is how big is it?

Password is 8 Bytes + hash is 128 bits (if using MD5)

(8 Byte + 16 Byte) \times 948 = 1.4 \times 1017 Bytes = 146 TB (approx.)

> Instead of generating this huge amount of data we can use

Rainbow Tables

Cracking Passwords

➤ Rainbow Tables

MD5 Rainbow Tables

Table ID	Charset	Plaintext Length	Key Space	Success Rate	Table Size
# md5_ascii-32-95#1-7	ascii-32-95	1 to 7	70,576,641,626,495	99.9 %	52 GB 64 GB
# md5_ascii-32-95#1-8	ascii-32-95	1 to 8	6,704,780,954,517,120	96.8 %	460 GB 576 GB
# md5_mixalpha-numeric#1-8	mixalpha-numeric	1 to 8	221,919,451,578,090	99.9 %	127 GB 160 GB
# md5_mixalpha-numeric#1-9	mixalpha-numeric	1 to 9	13,759,005,997,841,642	96.8 %	690 GB 864 GB

➤ Lookup on 0.5 TB Rainbow Table will take only hours to find the password

http://project-rainbowcrack.com/table.htm

Pre-calculated Hashes & Rainbow Tables

- ► How big is such a database of pre-calculated hashes?
 - In raw form, generally too big to be practical (100's, 1000's of TB)
 - Using specialised data structures (e.g. Rainbow tables), can obtain manageable size, e.g. 1 TB
- ► Trade-off: reduce search time, but increase storage space
- Countermeasures:
 - Longer passwords
 - Slower hash algorithms
 - Salting the password before hashing

Video Summary

- Brute Force Attack on Hashed Passwords
- Hashing Speed
- Preventing Hashing Attacks
- Rainbow Tables