Lecture 2: Noise, Overfitting, and Bias vs Variance

lain Styles

11 October 2019

Noise, Overfitting, and Bias vs Variance

By the end of this lecture you should be able to:

- 1. Understand the effect of noise on machine learning problems
- 2. Understand and explain the concepts of over and underfitting
- Be able to explain these concepts using the idea of bias-variance decomposition

Choosing a model $f(\mathbf{w}, x)$

▶ If we know something about our data we may be able to deduce what *f* should be

$$ightharpoonup F = ma, s - ut + \frac{1}{2}at^2$$
, etc

- More often than not, we will not be able to do this and we will have to choose a representation (basis)
- ► This has to be done very carefully
- We will explore the implications of different choices in this lecture

A model problem

- We will continue to work with linear models but need example that
 - allows us to explore the power of linear models
 - study the effect of model choice in depth
- Our (my?) choice: $y(x) = \sin(2\pi x)$
- ► $f(\mathbf{w}, x) = w_0 \sin(2\pi x)$ is trivial, but we will assume no knowledge
- ► $f(\mathbf{w}, x) = \sum_{i=0}^{M-1} w_i x^i$ is a common and powerful choice

A reasonable expectation?

- $y(x) = \sin(2\pi x) = \sum_{i=0}^{M-1} w_i x^i$?
- ► Maclaurin series: $\sin(ax) = ax \frac{a^3x^3}{3!} + \frac{a^5x^5}{5!} \frac{a^7x^7}{7!} + \cdots$
- So we can evaluate the quality of the estimation of the underlying function
- ► True weights for $a = 2\pi$ are $\mathbf{w} \approx (0, 6.28, -41.34, 0, 81.61, 0, -76.7, 0, 42.1, ...)$
- Start by generating "pure" data with no added noise
- Fit polynomial expansion up to order M=9

Evaluation

- How do we evaluate the quality of these results?
- Root-mean-square (RMS) error, $R = \sqrt{\frac{1}{N} \sum_{i} r_{i}^{2}} = \sqrt{\mathcal{L}_{\text{LSE}}/N}$
- Normalises for number of data points
- Converges rapidly towards zero, with little change after M = 7
- Zero coefficients show as plateaux

What are the coefficients of the fitted polynomial?

М	w_0	w_1	w_2	W_3	w_4	w_5	w_6	w_7	<i>w</i> ₈	W ₉
0	0.00									
1	0.00	-0.29								
2	0.00	-0.29	-0.00							
3	0.00	-0.07	-0.00	-0.31						
4	0.00	-0.07	0.00	-0.31	-0.00					
5	0.00	3.85	-0.00	-16.51	0.00	12.69				
6	0.00	3.85	-0.00	-16.51	0.00	12.69	-0.00			
7	-0.00	6.00	0.00	-35.84	-0.00	54.04	0.00	-24.20		
8	-0.00	6.00	0.00	-35.84	-0.00	54.04	0.00	-24.20	-0.00	
9	-0.00	6.28	0.00	-41.12	-0.00	78.61	0.00	-63.77	-0.00	20.00
True	0	6.28	0	-41.34	0	81.61	0	-76.7	0	42.1

Analysis

- Coefficients are not quite correct
- ► Effect of limited sample domain (Maclaurin series is over $x \in [-\infty, \infty]$)
- Low order terms match well
- ightharpoonup But note M=9 has zero error
- Exactly fits all data point
- A strong hint as to what can go wrong
- Repeat, with added noise: $y = \sin(2\pi x) + \epsilon$

Noise can dramatically changes the result

- Low order fits are similar in noise-free and noisy cases
- ► High order fits differ quite dramatically
- Match data points exactly but do not model the underlying function, even though they are clearly able towards
- ▶ High order models also expressive enough to fit model + noise
- What happens if we have a different realisation of noise?

Noise corrupts

- Low-order fits similar
- ► High-order fits very different
- ▶ Noise in the data leads to noise in the estimated model
- Robust models cannot model the data very well
- ► How can we understand this?

- ▶ Underlying data generating function h(x)
- ▶ Data $y = h(x) + \epsilon$
- ightharpoonup Estimated model f(x)

- ▶ Underlying data generating function h(x)
- ▶ Data $y = h(x) + \epsilon$
- ightharpoonup Estimated model f(x)

What is the expected value of the least-squares loss?

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y - f)^2] \tag{1}$$

We first expand the square

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y-f)^2]$$

$$= \mathbb{E}[y^2] + \mathbb{E}[f^2] - 2\mathbb{E}[yf]$$
(2)
(3)

We first expand the square

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y-f)^2] \tag{2}$$

$$= \mathbb{E}[y^2] + \mathbb{E}[f^2] - 2\mathbb{E}[yf] \tag{3}$$

The variance of a random variable is:

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2, \tag{4}$$

and for independent variables X and Y

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \tag{5}$$

We first expand the square

$$\mathbb{E}[\mathcal{L}] = \mathbb{E}[(y-f)^2] \tag{2}$$

$$= \mathbb{E}[y^2] + \mathbb{E}[f^2] - 2\mathbb{E}[yf] \tag{3}$$

The variance of a random variable is:

$$var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2, \tag{4}$$

and for independent variables X and Y

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \tag{5}$$

This allows us to rewrite the loss as

$$\mathbb{E}[\mathcal{L}] = \operatorname{var}[y] + (\mathbb{E}[y])^2 + \operatorname{var}[f] + (\mathbb{E}[f])^2 - 2\mathbb{E}[y]\mathbb{E}[f]$$
 (6)

- ightharpoonup Recall $y = h(x) + \epsilon$
- Noise distribution: $\mathbb{E}[\epsilon] = 0$ and $var[\epsilon] = \sigma^2$
- ► So $\mathbb{E}[y] = h$ and $var[y] = \sigma^2$.

- ▶ Noise distribution: $\mathbb{E}[\epsilon] = 0$ and $var[\epsilon] = \sigma^2$
- ▶ So $\mathbb{E}[y] = h$ and $var[y] = \sigma^2$.

The expected loss becomes

$$\mathbb{E}[\mathcal{L}] = \sigma^2 + h^2 + \text{var}[f] + (\mathbb{E}[f])^2 - 2h\mathbb{E}[f]$$
 (7)

$$= \sigma^{2} + var[f] + h^{2} + (\mathbb{E}[f])^{2} - 2h\mathbb{E}[f]$$
 (8)

$$= \sigma^{2} + \underbrace{\operatorname{var}[f]}_{\text{variance}} + \underbrace{(h - \mathbb{E}[f])^{2}}_{\text{bias}}$$
 (9)

Interpretation

- How can we interpret this result?
- ▶ Only contribution from data y is its variance σ^2 .
- ▶ All dependency on the *specific sample*, *y*, of the data has been absorbed into the other terms.
- ▶ The variance of f is a consequence of the variance in the data
 - ightharpoonup No noise ightarrow always learn the same model
 - Noisy samples → different models.
 - var f is sensitivity of learned model to the choice of data.

Interpretation

- ▶ $h(x) \mathbb{E}[f(x)]$ is the ability of the estimated model to accurately represent the true model
- lt is the bias of the estimate.
- Fitting f(x) = mx * c to $h(x) = \sin(2\pi x)$ has a high bias: cannot represent the data
- But it has a low variance: insensitive to particular data choice
- Loss minimisation requires simultaneous minimisation of both bias and variance
 - ► Models that both fit and generalise well
 - Nearly always in conflict
- A fundamental limitation of machine learning.