DMG ASSIGNMENT 3 Harshal Dev, 2019306 Sneh Suman, 2019337

Procedure, steps, and outcomes

Assumption-

- 1) K-mean clustering is used out of all after testing for the large dataset provided to us.
- 2) The number of clusters = The number of targets we have
- 3) Since we get values from 0 to k-1 when we set the cluster as k. We will increment all our clusters by 1 so that both clusters and targets become from 0 to 1.

Procedure-

1) We will first preprocess our dataset.


```
[29] df['Hillshade_Noon'] = df['Hillshade_Noon'].replace("hillnoon_min", 0)
         df['Hillshade_Noon'] = df['Hillshade_Noon'].replace("hillnoon_max", 1)
[30] df.Hillshade Noon.unique()
         array([1, 0])
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 406708 entries, 0 to 406707
         Data columns (total 11 columns):
          # Column
                                                           Non-Null Count
                                                                                Dtype
               Elevation
                                                           406708 non-null
                                                                                int64
              Aspect
                                                           406708 non-null
                                                                                int64
               Slope
                                                           406708 non-null
                                                                                int64
              Hillshade 9am
                                                           406708 non-null
                                                                                int64
              Hillshade Noon
                                                           406708 non-null
                                                                                int64
              Horizontal Distance To Hydrology
                                                           406708 non-null
                                                                                int64
              Vertical Distance To Hydrology
                                                           406708 non-null
                                                                                int64
               Horizontal Distance To Fire Points
                                                           406708 non-null
                                                                                object
              Soil Type
                                                           406708 non-null
                                                                                int64
               Wilderness
                                                           406708 non-null
                                                                                int64
                                                           406708 non-null int64
          10 target
         dtypes: int64(10), object(1)
         memory usage: 34.1+ MB
• df.describe()
         Horizontal_Distance_To_Hydrology Vertical_Distance_To_Hydrology
                                                          Soil_Type
                      406708.000000
                                            406708.000000 406708.000000 406708.000000 406708.000000
                                                1.202819
                                                          23.358461
                                                                     1.114679
    std
                          1.048836
                                                           9.483622
                                                                               1.396507
                                                                               1.000000
                          0.000000
                                                0.000000
                                                           0.000000
                                                                               1.000000
    25%
                                                1.000000
                                                          19.000000
                                                                     0.000000
                          1.000000
                                                1.000000
                                                                   1.000000
                                                                               2.000000
    50%
                                                          28.000000
                           Horizontal\_Distance\_To\_Hydrology \ \ Vertical\_Distance\_To\_Hydrology \ \ Soil\_Type \ \ Wilderness
    Horizontal_Distance_To_Hydrology
                                            1.000000
                                                                   1.000000 0.060589 0.165132 0.073802
     Vertical_Distance_To_Hydrology
                                            0.506584
                                                                   0.060589 1.000000 -0.271669 -0.163359
                                            0.187463
                                                                   0.165132 -0.271669 1.000000 0.275715
                                            0.056313
```

Wilderness target

- 3) Since there are some columns in the dataset which have string values. We will change those strings with numbers.
- 4) Now since we have all of our columns having numerical values we can continue our work.
- 5) Now we will be doing three clusterings Algo namely- k means, agglo, spectral.
- 6) After that, we will do the visualization for each algorithm we have implemented in the previous steps.
- 7) Then we will compare the count of points with target and our predictions
- 8) Here we will obtain a gaussian-based model with the other three models.

Outcomes-Solution 1)

K Means

Q1) 1st and 2nd part - We've plotted the graph with clusters and centroids for k means .

Q1 3rd part - Cluster with target = 5 is the most populated, whereas originally it is cluster with target = 2 that is the most populated

Agglomerative Clustering

Q1) 1st and 2nd part - We've plotted the graph with clusters and centroids for agglomerative clustering .

Q1 3rd part - Cluster with target = 3 is the most populated, whereas originally it is cluster with target = 2 that is the most populated

Spectral Clustering

Q1) 1st and 2nd part - We've plotted the graph with clusters and centroids for spectral clustering

Q1 3rd part - Cluster with target = 4 is the most populated, whereas originally it is cluster with target = 2 that is the most populated

Gaussian based clustering model -

Q1) 1st and 2nd and 3rd part - We've plotted the graph with clusters and centroids for gaussian.

Q1 4th part
Gaussian seems to be more accurate compared to all the graphs
Kmeans and gaussian cluster are strikingly similar

Solution 2)

```
[49] X_mat = dx.values
[50] #np.random.seed(0)
    centroids, labels, centroids_history, labels_history = predict(X_mat, 7)
[51] foo = np.array(labels)
    m = np.median(foo[foo > 0])
    foo[foo == 0] = int(m)

| Sdd=sm.accuracy_score(y_true.to_numpy(), foo) * 100
    sdd
| 44.652182892886294
```

```
+ Code + Text

| Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Code | Text | Text | Code | Text | Text
```

We are sending clusters =7. As we have 7 target values to prefdict. Then we are comparing the and calculating the accuracy.

