III. Nemzetközi Magyar Matematika Verseny

Ungvár, 1994. ápr. 15-19.

12. osztály

1. feladat: Igazoljuk, hogy ha x_1 és x_2 az $x^2 - 1994x + 1$ másodfokú polinom gyökei, akkor minden n > 0 egész számra $x_1^n + x_2^n$ pozitív egész szám!

Szabó Magda (Szabadka)

1. feladat I. megoldása: Alkalmazzunk teljes indukciót, mutassuk meg, hogy bármely n-re $x_1^{n+1}+x_2^{n+1}>x_1^n+x_2^n$, és $x_1^n+x_2^n\in\mathbb{N}^+!$ $x_1+x_2=1994$ (a Viete-formula alapján). Tegyük fel most, hogy az állítás igaz egy n pozitív egész számig. Szorozzuk meg az $x_1^2-1994x_1+1=0$ egyenletet x_1^{n-1} -gyel, $x_2^2-1994x_2+1=0$ -t pedig x_2^{n-1} -gyel! Kapjuk, hogy $x_1^{n+1}+x_1^{n-1}=1994x_1^n$, továbbá $x_2^{n+1}+x_2^{n-1}=1994x_2^n$. Ha összeadjuk a megfelelő oldalakat és átrendezünk, azt kapjuk, hogy

$$x_1^{n+1} + x_2^{n+1} = 1994(x_1^n + x_2^n) - (x_1^{n-1} + x_2^{n-1})$$

Ez pedig azt jelenti, hogy n+1-re is igaz az állítás, mivel tudjuk, hogy $x_1^n+x_2^n>x_1^{n-1}+x_2^{n-1}$ és pozitív egészek, ami azt jelenti, hogy $x_1^{n+1}+x_2^{n+1}>x_1^n+x_2^n$ és pozitív egész szám, ez pedig azt azt jelenti, hogy igaz a feladat állítása.

2. feladat: Tekintsük azon $y=x^2+px+q$ egyenletű parabolák halmazát, amelyek a koordinátatengelyeket három különböző pontban metszik. Bizonyítsuk be, hogy e ponthármasokon áthaladó körvonalaknak van közös pontja.

Gecse Friques (Unqvár)

2. feladat I. megoldása: Keressük meg a kör egyenletét a p, q paraméterekkel! A három metszéspont: $M_1(0;q)$, a másik két metszéspont pedig $M_2(x_1;0)$ és $M_3(x_2;0)$, ahol x_1 és x_2 a polinom gyökei. Legyen a kör egyenlete $x^2+y^2+ax+by+c=0$, ez teljesül M_2 -re és M_3 -ra is, tehát $x_1^2+ax_1+c=0$ és $x_2^2+ax_2+c=0$, ez azt jelenti, hogy kivonva egymásból a megfelelő oldalakat $x_1^2-x_2^2=a(x_2-x_1)$, tehát $a=-(x_1+x_2)=-p$, ezt figyelembe véve $x_1^2-(x_1+x_2)x_1+c=0$, amiből átrendezve $c=x_1x_2=q$ adódik. Mivel a kör átmegy M_1 -en, azért (behelyettesítve M_1 koordinátáit és c értékét) $q^2+bq+q=0$, ezt átrendezve b=-1-q.

Minden ilyen egyenletű egyenes pedig átmegy a (0;1) ponton, mivel 1+(-1-q)+q=1-(1+q)+q=0.

3. feladat: Bizonyítsuk be, hogy ha a, b, c > 1, vagy 0 < a, b, c < 1 valós számok, akkor

$$\frac{\log_b a^2}{a+b} + \frac{\log_c b^2}{b+c} + \frac{\log_a c^2}{a+c} \ge \frac{9}{a+b+c}.$$

Szabó Magda (Szabadka)

3. feladat I. megoldása: A feltételek miatt $\log_b a$, $\log_c b$ és $\log_a c$ mind pozitív számok. Alkalmazhatjuk tehát a számtani és mértani közép közti egyenlőtlenséget 3 változóra:

$$\frac{1}{3} \left(\frac{\log_b a^2}{a+b} + \frac{\log_c b^2}{b+c} + \frac{\log_a c^2}{a+c} \right) \ge \sqrt[3]{\frac{(\log_b a^2)(\log_c b^2)(\log_a c^2)}{(a+b)(b+c)(a+c)}} =$$

$$= \sqrt[3]{\frac{2^3(\log_b a^2)(\log_c b^2)(\log_a c^2)}{(a+b)(b+c)(a+c)}} =$$

$$= \frac{2}{\sqrt[3]{(a+b)(b+c)(c+a)}}$$

A számtani és mértani közép közti egyenlőtlenség másik alkalmazásával kapjuk, hogy

$$\frac{2(a+b+c)}{3} = \frac{(a+b) + (b+c) + (a+c)}{3} \ge \sqrt[3]{(a+b)(b+c)(a+c)}$$

Ebből pedig az következik, hogy $\frac{2}{\sqrt[3]{(a+b)(b+c)(a+c)}} \ge \frac{3}{a+b+c}$, ezt egybevetve az előbb kapott egyenlőtlenséggel pedig éppen a feladat állítását kapjuk.

4. feladat: Számoljuk ki (zsebszámológép és függvénytáblázat használata nélkül) a következő szorzat értékét:

$$x = \sin 5^{\circ} \cdot \sin 15^{\circ} \cdot \sin 25^{\circ} \cdot \sin 35^{\circ} \cdot \sin 45^{\circ} \cdot \sin 55^{\circ} \cdot \sin 65^{\circ} \cdot \sin 75^{\circ} \cdot \sin 85^{\circ}.$$

Kántor Sándorné (Debrecen)

4. feladat I. megoldása: "Egészítsük ki" a szorzatot! Jelöljük y-nal a $\sin 5^{\circ} \cdot \sin 10^{\circ} \sin 15^{\circ} \cdot \dots \cdot \sin 80^{\circ} \cdot \sin 85^{\circ}$ kifejezés értékét! A hegyesszögek között ismert $\sin \alpha = \cos(90^{\circ} - \alpha)$ egyenlőség miatt

$$y = (\sin 5^{\circ} \cos 5^{\circ})(\sin 10^{\circ} \cos 10^{\circ}) \cdot \dots \cdot (\sin 40^{\circ} \cdot \cos 40^{\circ}) \cdot \sin 45^{\circ}.$$

Tudjuk, hogy $\sin 2\alpha = 2 \sin \alpha \cos \alpha$. Ezt felhasználva a kifejezés (y értékére) a következő alakba írható

$$y = \frac{\sqrt{2}}{2} \cdot \frac{1}{2^8} \cdot \sin 5^\circ \cdot \sin 10^\circ \cdot \sin 20^\circ \dots \cdot \sin 80^\circ$$

Jelöljük a megkeresendő értéket x-szel, ez azt jelenti, hogy

$$xy = \frac{\sqrt{2}}{2} \cdot \frac{1}{2^8} \cdot \sin 5^\circ \cdot 10^\circ \cdot \dots \cdot \sin 85^\circ = \frac{\sqrt{2}}{2^9}y$$

Ezt átrendezve pedig azt kapjuk, hogy $x = \frac{\sqrt{2}}{2^9} = \frac{\sqrt{2}}{512}$. Ezzel a feladatot megoldottuk.

5. feladat: Határozzuk meg, hogy azok közül a tetraéderek közül, amelyeknek három, egy csúcsból induló éle páronként merőleges egymásra és összes élének hosszát összeadva egy h állandó értéket kapunk, melyiknek a térfogata maximális és mennyi ez a térfogat!

Kántor Sándorné (Debrecen)

 ${f 5.}$ feladat ${f I.}$ megoldása: Jelöljük a feladatban említett csúcsból kiinduló éleket $a,\ b,\ c$ -vel! Ekkor

$$h = a + b + c + \sqrt{a^2 + b^2} + \sqrt{b^2 + c^2} + \sqrt{c^2 + a^2},$$

hiszen a többi élt a Pitagorasz-tétel segítségével kiszámolhatjuk. A számtani és mértani közép közti egyenlőtlenségből adódnak a következő összefüggések:

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc}, \ a^2+b^2 \ge 2ab, \ b^2+c^2 \ge 2bc, \ c^2+a^2 \ge 2ca$$

Ebből az következik, hogy

$$h \ge \sqrt[3]{abc} + \sqrt{2ab} + \sqrt{2bc} + \sqrt{2ca} = 3\sqrt[3]{abc} + \sqrt{2}\left(\sqrt{ab} + \sqrt{bc} + \sqrt{ca}\right)$$

Mivel pedig szintén a számtani és mértani közép közti egyenlőtlenség miatt $\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{3} \geq \sqrt[3]{abc}$, azért $h \geq 3(1+\sqrt{2})\sqrt[3]{abc}$ is igaz lesz, egyenlőség az összes esetben a=b=c esetén áll fönn. Tehát a térfogat $(\frac{abc}{6})$ a=b=c esetén lesz maximális, és értéke $\frac{h^3}{6\cdot 3^3(1+\sqrt{2})^3}=\frac{5\sqrt{2}-7}{162}h^3$.

6. feladat: Igazoljuk, hogy ha n > 0 egész szám, akkor

$$e^{1-\frac{1}{2n}} < \left(1+\frac{1}{n}\right)^n < e^{1-\frac{1}{2n}+\frac{1}{3n^2}},$$

ahol

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n,$$

a természetes logaritmus alapszáma!

Bencze Mihály (Brassó)

6. feladat I. megoldása: A feladatban szereplő első egyenlőtlenség mindkét oldal természetes alapú logaritmusát véve ekvivalens az $1-\frac{1}{2n} < n\ln\left(1+\frac{1}{n}\right)$ egyenlőtlenséggel. Legyen most egy tetszőleges 0 < x < 1, és $g(x) = \ln(1+x) - x + \frac{x^2}{2}$. A függvény deriváltja $\frac{1}{1+x} - 1 + x > 0$, tehát a függvény szigorúan monoton növekszik. Ebből következően g(x) > g(0) = 0, tehát

$$ng\left(\frac{1}{n}\right) = n\left(\ln\left(1 + \frac{1}{n}\right) - \left(\frac{1}{n} - \frac{1}{2n^2}\right)\right) > 0,$$

ami viszont éppen a bizonyítandó egyenlőtlenség első felét jelenti. Másfelől legyen most $h(x)=x-x\frac{x^2}{2}-\frac{x^3}{3}-\ln(1+x)>0$. A függvény deriváltja $1-x+x^2-\frac{1}{1+x}=\frac{x^3}{1+x}>0$, tehát ez a függvény is szigorúan monoton növekvő. Ugyanolyan módon, mint az imént, ebből igazolható az egyenlőtlenség másik oldala is.