

Proving Program Termination with Matrix Weighted Digraphs

Aaron Dutle

NASA Langley Research Center

28th Cumberland Conference on Combinatorics, Graph Theory & Computing May 15, 2015

Where I work

- "Formal Methods" refers to mathematically rigorous techniques and tools for the specification, design and verification of software and hardware systems.
- Formal methods provide a means to symbolically examine the entire state space of a digital design (hardware or software) and establish correctness or safety properties that are true for all possible inputs.

What I do

 PVS is a tightly coupled specification language and interactive theorem-prover used extensively by the formal methods group.

Termination in PVS

Prove termination in two steps.

- ▶ Provide a function on the inputs into a well-founded order. (A WFO is a set S and a relation < with no infinite decreasing chain.)</p>
- ► Show that every recursive call "lowers" the value of the function.

For $m, n \in \mathbb{N}$, let

$$Ack(m,n) = \begin{cases} n+1 \\ Ack(m-1,1) \\ Ack(m-1,Ack(m,n-1)) \end{cases}$$

if m = 0if m > 0 and n = 0otherwise.

- (m, n) > (m 1, 1),
- (m, n) > (m-1, Ack(m, n-1)),
- (m, n) > (m, n 1)

For $m, n \in \mathbb{N}$, let

$$Ack(m, n) = \begin{cases} n+1 \\ Ack(m-1, 1) \\ Ack(m-1, Ack(m, n-1)) \end{cases}$$

if m = 0if m > 0 and n = 0otherwise.

- (m, n) > (m-1, 1),
- (m, n) > (m 1, Ack(m, n 1)),
- (m, n) > (m, n 1)

For $m, n \in \mathbb{N}$, let

$$Ack(m,n) = \begin{cases} n+1 & \text{if } m=0\\ Ack(m-1,1) & \text{if } m>0\\ Ack(m-1,Ack(m,n-1)) & \text{otherwise} \end{cases}$$

if m = 0if m > 0 and n = 0otherwise.

- (m, n) > (m 1, 1),
- ▶ (m, n) > (m 1, Ack(m, n 1)),
- (m, n) > (m, n 1).

For $m, n \in \mathbb{N}$, let

$$Ack(m,n) = \begin{cases} n+1 & \text{if } m=0\\ Ack(m-1,1) & \text{if } m>0 \text{ and } n=0\\ Ack(m-1,Ack(m,n-1)) & \text{otherwise.} \end{cases}$$

- (m, n) > (m 1, 1),
- (m, n) > (m-1, Ack(m, n-1)),
- ▶ (m, n) > (m, n 1).

For $m, n \in \mathbb{N}$, let

$$Ack(m,n) = egin{cases} n+1 & \text{if } m=0 \ Ack(m-1,1) & \text{if } m>0 \ ext{and } n=0 \ Ack(m-1,Ack(m,n-1)) & \text{otherwise.} \end{cases}$$

Three calls, so need some measure where:

- (m, n) > (m 1, 1),
- (m, n) > (m-1, Ack(m, n-1)),
- ▶ (m, n) > (m, n 1).

Lexicographic order on pairs works...

The Size Change Principle

"A program teminates on all inputs if any infinite call sequence would give rise to an infinite descent in some (well-founded) data values." [Lee, Jones, Ben-Amram]

The Size Change Principle

"A program teminates on all inputs if any infinite call sequence would give rise to an infinite descent in some (well-founded) data values." [Lee, Jones, Ben-Amram]

Calling Context Graph for Ackermann

$$Ack(m,n) = egin{cases} n+1 & \text{if } m=0 \ Ack(m-1,1) & \text{if } m>0 \ ext{and } n=0 \ Ack(m-1,Ack(m,n-1)) & \text{otherwise.} \end{cases}$$

Three calling contexts:

- 1. $\{(m,n), (m>0 \land n=0), (m-1,1)\}$
- 2. $\{(m,n), (m>0 \land n>0), (m-1, Ack(m, n-1))\}$
- 3. $\{(m,n), (m>0 \land n>0), (m,n-1)\}$

Calling Context Graphs

(Very informally,)
"If every infinite walk on the CCG of a function results in the infinite descent of some well-founded measure, then the function terminates on all inputs." [Manolios and Vroon]

Matrix Weighted Digraphs [Avelar, Muñoz, Rincón]

A framework built on CCGs to efficiently handle several measures.

- ▶ Each edge from a CCG is assigned an $N \times N$ matrix with entries in $\{-1,0,1\}$.
- Matrix multiplication is standard, but with a non-standard operations on elements.
- ► The *weight* of a walk on the graph is the product of the matrices on the edges.
- A matrix is called positive if it has a 1 entry on the main diagonal.

Matrix Weighted Digraphs [Avelar, Muñoz, Rincón]

A framework built on CCGs to efficiently handle several measures.

- ▶ Each edge from a CCG is assigned an $N \times N$ matrix with entries in $\{-1,0,1\}$.
- Matrix multiplication is standard, but with a non-standard operations on elements.
- The weight of a walk on the graph is the product of the matrices on the edges.
- A matrix is called positive if it has a 1 entry on the main diagonal.

A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?

A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?

A Theorem and a Problem

Theorem (Avelar, Muñoz, Rincón)

If every circuit of a Matrix-Weighted Digraph has positive weight, then the corresponding program terminates on all inputs.

Problem: There are infinitely many circuits, and circuits can be arbitrarily long. How can this be checked?

One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2}|G|+1$ suffices.

Proof

One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2}|G|+1$ suffices.

Proof.

One Solution

Theorem

It suffices to examine a finite collection of circuits.

Specifically, if G is the matrix weighted digraph, and the matrices are $N \times N$, checking circuits with length at most $3^{N^2}|G|+1$ suffices.

Proof.

- ▶ Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- ▶ Start with empty lists for S_0 .
- ► Calculate S: 11 from S:

- ▶ Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- ▶ Start with empty lists for S_0 .
- ▶ Calculate S_{i+1} from S_i .

- ▶ Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- ▶ Start with empty lists for S_0 .
- ▶ Calculate S_{i+1} from S_i .

- ▶ Let $S_i = \{L_v | v \in G\}$, where L_v contains all matrices that are the weight of some circuit at v with length at most i.
- ▶ Start with empty lists for S_0 .
- ▶ Calculate S_{i+1} from S_i . ← The hard part.

Given a *cycle* at v, instead of multiplying matrices only from the edges, for each vertex u on the cycle, include a matrix from L_u .

Simulates following a circuit at u.

Given a *cycle* at v, instead of multiplying matrices only from the edges, for each vertex u on the cycle, include a matrix from L_u .

Given a *cycle* at v, instead of multiplying matrices only from the edges, for each vertex u on the cycle, include a matrix from L_u . Simulates following a circuit at u.

Given a *cycle* at v, instead of multiplying matrices only from the edges, for each vertex u on the cycle, include a matrix from L_u . Simulates following a circuit at u.

Append the result to L_v . Do this for every vertex, cycle at the vertex, and choice of matrices at vertices of the cycle.

An Optimization

The lists L_v can get long, making the calculation of S_{i+1} slow. We can do better.

- lacktriangle Matrices form a partial order under pointwise \leq .
- Multiplication respects the partial order

Instead of keeping *all* matrices in L_v , keep only those *minimal* with respect to this partial order.

An Optimization

The lists L_v can get long, making the calculation of S_{i+1} slow. We can do better.

- ▶ Matrices form a partial order under pointwise \leq .
- Multiplication respects the partial order.

Instead of keeping *all* matrices in L_v , keep only those *minimal* with respect to this partial order.

An Optimization

The lists L_v can get long, making the calculation of S_{i+1} slow. We can do better.

- ▶ Matrices form a partial order under pointwise \leq .
- Multiplication respects the partial order.

Instead of keeping all matrices in L_v , keep only those minimal with respect to this partial order.

- ▶ If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- ▶ If ever $S_{i+1} = S_i$, then every further iteration will equal S_i (Stabilization...)
- ► The process will always stabilize. (At worst 3^{N²} | G | + 1 iterations.)

- ▶ If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- ▶ If ever $S_{i+1} = S_i$, then every further iteration will equal S_i . (Stabilization...)
- ► The process will always stabilize. (At worst 3^{N²} | G | + 1 iterations.)

- ▶ If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- ▶ If ever $S_{i+1} = S_i$, then every further iteration will equal S_i . (Stabilization...)
- ► The process will always stabilize. (At worst $3^{N^2}|G| + 1$ iterations.)

- ▶ If the process ever results in a non-positive matrix, it can quit. (Failed to prove termination...)
- ▶ If ever $S_{i+1} = S_i$, then every further iteration will equal S_i . (Stabilization...)
- ► The process will *always* stabilize. (At worst $3^{N^2}|G|+1$ iterations.)

Terminal Remarks

In practice, the process always stabilizes early.

Example

For Ack(m, n), let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.

Terminal Remarks

In practice, the process always stabilizes early.

Example

For Ack(m, n), let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.

The guarantee is $3^5 + 1 = 244$ iterations.

Terminal Remarks

In practice, the process always stabilizes early.

Example

For Ack(m, n), let $\mu_1(m, n) = m$ and $\mu_2(m, n) = n$.

The guarantee is $3^5 + 1 = 244$ iterations.

The process stabilizes after 2 iterations.

Thanks!