Modelo difuso de predicción de energía en parques eólicos

Ignacio Fernández Sánchez-Pascuala

Universidad Complutense Madrid & Universidad Politécnica Madrid

22 de abril de 2024

- Introducción
- 2 Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- 3 Detalles Implementación
- 4 Resultados
- Conclusión
- 6 Referencias

Introducción

- Importancia energía eólica
- Predicción de energía:
 - Integración en red eléctrica
 - Control precios del mercado respecto oferta y demanda
 - Activación de plantas auxiliares
- Problema: Fluctuación del viento => Modelo de predicción a corto plazo (30 min, 1 h, 2 h)
- FCM + Sistema de inferencia borroso => Conjunto de reglas IF-THFN

Figura: Funcionamiento turbina

- Introducción
- Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- Oetalles Implementación
- 4 Resultados
- Conclusión
- 6 Referencias

Potencia de una planta eólica

- Potencia de salida de una planta eólica => Energía cinética del viento capturada por las turbinas eólicas.
- La energía eólica se puede calcular utilizando la fórmula:

$$E=\frac{1}{2}mv^2(J)$$

 La potencia del viento se puede derivar de la energía cinética del viento utilizando:

$$P = \frac{dE}{dt} = \frac{1}{2} \frac{dm}{dt} v^2 = \frac{1}{2} (\rho A v) v^2 = \frac{1}{2} \rho A v^3 (W)$$

donde ρ es la densidad del aire (en kg/m³), A es el área barrida por las palas del rotor (en m²).

Límite de Betz

- Límite de Betz: Una turbina eólica no puede aprovechar más de un 59.3 % de la energía cinética del viento.
- Potencia máxima limitada por:

$$P_{\mathsf{max}} = \frac{1}{2} \rho A v^3 \cdot 0,593$$

• Esto se debe a la conservación de la masa y del momento de inercia del flujo de aire.

Figura: Caricatura de 2 moléculas de aire

Factores que afectan la producción eléctrica

- Factores principales: Velocidad del viento y la temperatura del aire.
- La rugosidad del suelo también influye.
- En la práctica, 75 % a un 80 % del límite de Betz.
- Aerogeneradores modernos: Velocidades del viento que varían entre 3 y 25 m/s (velocidad de conexión y de corte).
- Curva de potencia del fabricante:

Entrada y salida del modelo

- Modelo difuso basado en datos para pronosticar la energía eólica generada por una turbina.
- Datos de entrada: sistema SCADA + producción histórica energía EMS.
 - Velocidad del aire: v(n), v(n-1), ...
 - Temperatura del aire: t(n), t(n-1), ...
 - Producción de energía eólica: p(n), p(n-1), ...
- **Salida modelo:** Producción energía eólica en el siguiente instante p(n+1).

Figura: Mapa esquemático flujo de datos

Modelo Difuso

 Modelo difuso => Conjunto de reglas en la forma IF-THEN para describir las relaciones de entrada-salida del modelo de predicción.

Regla difusa:

 R_i : IF x_1 is A_{i1} and x_2 is A_{i2} and ... and x_s is A_{is} THEN $y_i = z_i(x)$

donde $x = (x_1, x_2, ..., x_s)$ son variables lingüísticas, A_{ij} son conjuntos difusos, R_i representa la i-ésima regla, y_i es la salida de la i-ésima regla.

Modelos Difusos:

- Takagi-Sugeno (TS): $z_i = b_{i0} + \sum_{j=1}^{s} b_{ij} x_j$
- Mamdani (TS orden 0): $z_i = b_i$

Función de pertenencia:

$$u_{ij}(x_j) = \exp\left(-\frac{(x_j - a_{ij})^2}{\sigma_{ij}^2}\right)$$

donde α_{ij} y σ_{ij} son el centro y la anchura de la j-ésima función de pertenencia en la i-ésima regla.

Relación entrada-salida:

$$y = \sum_{i=1}^{p} z_i \left[\prod_{j=1}^{s} u_{ij}(x_j) \right] / \sum_{i=1}^{p} \left[\prod_{j=1}^{s} u_{ij}(x_j) \right]$$

donde $u_{ij}(x_j)$ denota la función de pertenencia de x_j a la i-ésima regla.

Selección del Número de Reglas Difusas

- Algoritmo de agrupamiento modificado Fuzzy C-Means (FCM).
- Objetivo:

Minimizar
$$J_m = \sum_{k=1}^n \sum_{i=1}^c u_{ik}^m(\mathbf{x}) \|\mathbf{x}_k - \mathbf{v}_i\|^2$$
, $1 < m < \infty$

donde:

- *m*: Exponente difuso.
- v_i: Centro del i-ésimo clúster.
- u_{ik} : Grado de pertenencia del k-ésimo dato al i-ésimo clúster.

• Restricciones Problema de Optimización:

$$v_i, \quad u_{ik} \in U$$
 $0 < \sum_{i=1}^n u_{ik} < n \quad ext{para } i=1,2,\ldots,c$ $\sum_{k=1}^c u_{ik} = 1 \quad ext{para } k=1,2,\ldots,n$

• Algoritmo **FCM**: Optimización iterativa de J_m en el espacio de producto de variables de entrada-salida.

- Criterios de Validación del Número de Clústeres (c):
 - 1 Índice XB (Xie & Beny)

$$V_{XB}(U,c) = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} \|x_{j} - v_{i}\|^{2}}{n \cdot \min_{i \neq j} \|v_{i} - v_{i}\|^{2}}$$

Índice VT (Tang)

$$VT(U,c) = \frac{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij}^{m} \|x_{j} - v_{i}\|^{2} + \frac{1}{c(c+1)} \sum_{i=1}^{c} \sum_{k=1, k \neq i}^{c} \|v_{i} - v_{k}\|^{2}}{\min_{i \neq j} \|v_{i} - v_{j}\|^{2} + \frac{1}{c}}$$

Se busca el valor de c que minimice estos índices.

Entrenamiento y Ajuste de Parámetros

• Centros de los clústeres de salida:

$$v_i = (v_{i1}, v_{i2}, \dots, v_{is}, v_{is+1}), \quad i = 1, 2, \dots, c.$$

Sea $a_i = (a_{i1}, a_{i2}, \dots, a_{is}) = (v_{i1}, v_{i2}, \dots, v_{is})$ y $z_i = v_{is+1}$.
 a_i : Centro i-ésima partición difusa en el espacio de entrada.
 z_i : Centro i-ésima partición difusa en el espacio de salida.

Modelo difuso final:

$$R_i$$
: IF x_1 is A_{i1} and x_2 is A_{i2} ... and x_s is A_{is} THEN y_i is z_i ,

para
$$i = 1, 2, ..., c$$

donde A_{ij} denota la función de pertenencia gaussiana centrada en a_{ij} , $a_{ij} \in a$, y z_i es la salida de la i-ésima regla del modelo.

• Optimización parámetros σ_{ij} : Algoritmo genético (GA) para minimizar la raíz el error cuadrático medio (RMSE).

Modelo predicción potencia planta eólica

- Parques eólicos: Varias turbinas eólicas.
- Producción energía = suma de la potencia de cada turbina.
- Otros modelos (RNNs, ARIMAs, NWP,mapas de viento...)

- Introducción
- 2 Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- Detalles Implementación
- 4 Resultados
- Conclusión
- 6 Referencias

Detalles implementación

- Datos reales de Mayo de 2022 de la planta Berrybank en Australia proporcionados por Naturgy GPG.
- Datos = mediciones cada 10 minutos de temperatura, velocidad del viento y energía producida (SCADA y EMS).
- Uso 3 intervalos anteriores para la predicción. Intervalos de 30 minutos y 1 hora.
- Prueba con 1 turbina aleatoria.
- Filtrado solo datos disponibles (funcionamiento correcto turbina).
- Uso librerías scikit-fuzzy (FCM) y pymoo (GA).
- Separación datos 80 % primeros días (entrenamiento) y el 20 % siguientes (test).

- Introducción
- 2 Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- 3 Detalles Implementación
- Resultados
- Conclusión
- Referencias

Elección número de clusters

30 Minutos

1 Hora

Valores predichos Entrenamiento

30 Minutos

1 Hora

Valores predichos Test

30 Minutos

1 Hora

Resultados RMSE

Intervalo	Entrenamiento	Test
30 Min	387.22	551.27
1 Hora	483.56	695.35

- Introducción
- 2 Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- 3 Detalles Implementación
- 4 Resultados
- Conclusión
- 6 Referencias

Conclusión

- Aplicación exitosa del modelo difuso basado en datos históricos de un parque eólico.
- Menor error de predicción con un período de 30 minutos.
- Estructura interpretable y útil para la descripción cualitativa del sistema de predicción.
- Posibles Mejoras modelo:
 - Factores como la dirección del viento y la humedad.
 - Probar Clustering sustractivo.
 - Paralelizar el algoritmo genético.
 - Uso de más datos del histórico para entrenar.
 - Validación para evitar sobreajuste.
 - Takagi-Sugeno.

- Introducción
- 2 Modelado de una planta eólica
 - Potencia de una planta eólica
 - Modelo predicción potencia turbina eólica
 - Modelo de predicción de la potencia de una planta eólica
- 3 Detalles Implementación
- 4 Resultados
- Conclusión
- 6 Referencias

Referencia

- "A prediction model for wind farm power generation based on fuzzy modeling" presentado en la 2011 International Conference on Environmental Science and Engineering (ICESE2011) por Bo Zhu, Min-you Chen, Neal Wade, y Li Ran.
- "A novel clustering validity function of FCM clustering algorithm." IEEE Access 7 (2019): 152289-152315 por Zhu, Ling-Feng, Jie-Sheng Wang, y HY Wang.

¡Gracias por su atención!