

Description

The VSM90N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =20V,I_D =90A

 $R_{DS(ON)}$ <5.5m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 7.5m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM90N02-T2	VSM90N02	TO-252	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	Vgs	±12	V
Drain Current-Continuous	I _D	90	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	63.6	А
Pulsed Drain Current	I _{DM}	360	А
Maximum Power Dissipation	P _D	83	W
Derating factor		0.56	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	280	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.8	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Off Characteristics							
						•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)			•				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.75	1.1	V	
Dunin Course On State Besietenes		V _{GS} =4.5V, I _D =20A	-	4	5.5	m0	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =20A	-	6	7.5	mΩ	
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	20	-	-	S	
Dynamic Characteristics (Note4)	•		•				
Input Capacitance	C _{lss}	\/ 40\/\/ 0\/	-	2016	-	PF	
Output Capacitance	C _{oss}	$V_{DS}=10V, V_{GS}=0V,$	-	391	-	PF	
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	130	-	PF	
Switching Characteristics (Note 4)	<u> </u>						
Turn-on Delay Time	t _{d(on)}		-	6	-	nS	
Turn-on Rise Time	t _r	V_{DD} =10 V , I_D =20 A	-	4	-	nS	
Turn-Off Delay Time	t _{d(off)}	$V_{\text{GS}}\text{=}10V, R_{\text{GEN}}\text{=}2.7\Omega$	-	31	-	nS	
Turn-Off Fall Time	t _f		-	5	-	nS	
Total Gate Charge	Qg	V _{DS} =10V,I _D =20A,	-	15	-	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = 10V, I_D = 20A,$ $V_{GS} = 4.5V$	-	3	-	nC	
Gate-Drain Charge	Q_{gd}	V _{GS} -4.5V	-	4	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V	
Diode Forward Current ^(Note 2)	Is		-	-	90	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	18	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	30	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=10V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

 $\mathsf{BV}_{\mathsf{DSS}}$

Figure 8 Safe Operation Area

 T_J -Junction Temperature($^{\circ}$ C)

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance