COS234: Introduction To Machine Learning

Prof. Yoram Singer

Topic: Linear Classification

Who Will Win Wimbledon?

	H2H	Court	Injur.	Kids	Temp.	Rack.	
Xi	4 – 7	Grass	8 – 1	0 – 2	45F	8 –21	1
X _{i+1}	1 — 1	Clay	1 - 0	0 - 0	81F	3 - 12	-1
							•
	1.7	-3	2.9	12	-5	0.1	

Classification

- If $\mathbf{w} \cdot \mathbf{x} > 0$ /* yes, True, positive */
 Predict +1
- If w · x < 0 /* no, False, negative */
 Predict -1
- If $\mathbf{w} \cdot \mathbf{x} = \mathbf{0}$ /* toss a coin */ Predict -1 w.p 0.5 & +1 w.p 0.5
- Prediction is $\hat{y} = sign(\mathbf{w} \cdot \mathbf{x})$

$$\hat{\mathbf{x}} \quad \hat{\mathbf{y}} = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}) = +1$$

$$\hat{\mathbf{w}} \quad \hat{\mathbf{y}} = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}) = -1$$

 ${f w}$ is normal to hyperplane defined by $\{{f x}\,|\,{f w}\cdot{f x}=0\}$

W is **normal** to **hyperplane** defined by $\{\mathbf{x} \mid \mathbf{w} \cdot \mathbf{x} = 0\}$

W is d dimensional \Rightarrow hyperplane is subspace whose dimension is d-1

0-1 Loss

• For classification problems where $y, \hat{y} \in \{-, +\}$ we could consider ℓ :

$$\mathcal{E}(y,\hat{y}) = 1 - \frac{|\hat{y} + y|}{2} = \left[1 \text{ if } y \neq \hat{y} \text{ and } 0 \text{ o.w}\right] = \mathbf{1}[y \neq \hat{y}]$$

• Alas, this loss function is difficult to work with and often we need $\hat{y} \in \Re$ (why?)

not separable since $\gamma \leq 0$ margin γ

z w.r.t \mathbf{w} ; (\mathbf{x}, \mathbf{y}) is: y X (w·x)

> data linearly-separable with margin $\gamma > 0$

$$\gamma = \min_{i} z_{i} = \min_{i} y_{i} (\mathbf{w} \cdot \mathbf{x}_{i})$$

Margin-based Losses

- $z := y(\mathbf{w} \cdot \mathbf{x}) = 0$ loss should be ≥ 1
- $z \to \infty$ loss should $\to 0$; $z \to -\infty$ loss should $\gg 0$ and often $\to \infty$
- If $z_1 < z_2$ we typically want $\ell(z_1) > \ell(z_2)$

Margin-Based Hinge Loss

0-1 loss

margin: $z := y(\mathbf{w} \cdot \mathbf{x})$

Exponential Loss

$$log(1 + e^{-z}) \sim e^{-z}$$
 for $z \gg 0$

Logistic (Log) $\log(1 + e^{-z}) \sim -z$ for $z \ll 0$ Loss

Squared Error?

- Recall that $z = y \times (\mathbf{w}^T \mathbf{x})$
- Though y takes only two values {-1,+1} use as target
- Squared error:

$$(y - w \cdot x)^2 = y^2(y - w \cdot x)^2 = (y^2 - y w \cdot x)^2 = (1 - z)^2$$

Logistic Regression

• Given \mathbf{x} "probability" of \mathbf{y} to be +1: $\mathbf{P}[+1 \mid \mathbf{x}; \mathbf{w}] = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$

• Probability of y to be -1: $\mathbf{P}\left[-1 \mid \mathbf{x}; \mathbf{w}\right] = 1 - \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}} = \frac{1}{1 + e^{\mathbf{w} \cdot \mathbf{x}}}$

Logistic Regression

- Given **x** "probability" of y to be +1: $\mathbf{P}[+|\mathbf{x};\mathbf{w}] = \frac{1}{1+e^{-\mathbf{w}\cdot\mathbf{x}}}$
- Probability of y to be -1: $\mathbf{P}[-|\mathbf{x};\mathbf{w}] = 1 \frac{1}{1 + e^{-\mathbf{w}\cdot\mathbf{x}}} = \frac{1}{1 + e^{\mathbf{w}\cdot\mathbf{x}}}$
- Combine two cases: $\mathbf{P}[\mathbf{y} \mid \mathbf{x}; \mathbf{w}] = \frac{1}{1 + e^{-\mathbf{y} \cdot \mathbf{w} \cdot \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{z}}}$

Predict +1 w.p. $P[+|\mathbf{x}|]$ and -1 w.p. $P[-|\mathbf{x}|]$

Define loss to be negative of log-probability (log-likelihood):

$$-\log(\mathbf{P}[\mathbf{y}\,|\,\mathbf{x};\mathbf{w}]) = \log(1 + \mathbf{e}^{-\mathbf{z}})$$