Queue Management for SLO-Oriented Large Language Model Serving

论文信息

Title: Queue Management for SLO-Oriented Large Language Model Serving

Authors: Archit Patke, Dhemath Reddy, Haoran Qiu, and Zbigniew Kalbarczyk,

Ravishankar Iyer, University of Illinois Urbana-Champaign;

Saurabh Jha, Christian Pinto, and Chandra Narayanaswami, IBM Research;

Conference: SoCC '24, November 20–22,2024, Redmond, WA, USA

研究背景

1. 为企业和消费者应用提供具有延迟导向的服务等级目标(SL0)的多个模型变得越来越关键。

- 2. 以往该领域的工作主要侧重于服务交互式请求,而未考虑批量请求。
- 3. 以往面向 SLO 的服务工作主要聚焦于具有确定性执行时间的传统深度神经网络(DNN)服务负载。

动机

见解#1: 长请求队列中的等待时间可以通过分析进行准确估计。

Figure 3: Requests have predictable waiting times in a continuous batching system.

见解#2: 由于连续批处理造成的队头(HOL)阻塞时间可能长达数十秒。

Figure 4: Forced request eviction leads to reduction in head-of-line (HOL) blocking time.

见解#3: 诸如最早截止期限优先(EDF)之类的策略不足以消除模型切换中的队头(HOL)阻塞。

Figure 5: Model swapping and request pulling can jointly decrease queue drain time.

QLM 设计概览

Figure 6: Overview of QLM.

请求组创建

- 1. 当新请求加入全局队列时,它们被分类到现有的请求组中。
- 2.触发请求等待时间(RWT)估计器计算,以检查是否有任何SLO被违反。
- 3.一旦发现任何 SLO 违反,将调用全局调度器来重新排列虚拟队列中的请求组,以最大化 SLO 达成率。
- (1) 基于模型类型、输入/输出 token 分布和 SLO 值对类似请求进行聚类。
- (2) 拆分大型请求组。

Algorithm 1 Request Group Creation

```
    groups ← kMeansClustering(requests)
    for i ← 1 to length(groups) do
    if groups[i].size() > avg_batch_size × δ then
    newGroups ← groups[i].splitHalf()
```

5: groups.append(newGroups)

6: end if

7: end for

LLM 服务操作

Figure 7: Basic LLM serving operations (LSOs) for an LLM-serving instance that a QLM agent manages.

请求等待时间估计器

The total request completion time equals the sum of the waiting time (Wq), prefill time (P), and total decode time across all the output tokens (Dq) for a request q.

$$C_q = W_q + P + D_q \tag{1}$$

$$W_q = \sum_{i=1}^{q-1} \frac{O_i}{\Theta} \tag{2}$$

$$\sum_{i=1}^{q-1} O_i \sim N((q-1)\mu_o, (q-1)\sigma_o^2)$$
 (3)

$$D_q = O_q \times \epsilon \times d \tag{4}$$

$$C = \max_{q} C_{q} \tag{5}$$

全局调度器

$$\sum_{g} \sum_{j} x_{g,i,j} = 1 \forall i \qquad \sum_{i} x_{g,i,j} = 1 \forall g, j$$
 (6)

$$m_{g,j} = \sum_{i} \text{models}_i \times x_{g,i,j} \forall g, j$$
 (7)

$$slo_{g,j} = \sum_{i} slos_i \times x_{g,i,j} \forall g, j$$
 (8)

$$t_{g,j} = (m_{g,j-1} \neq m_{g,j}) \forall g, j$$
 (9)

$$wt_{g,j} = \sum_{i} \sum_{k}^{j-1} W_{g,i} \times x_{g,i,k} + \sum_{k}^{j-1} t_{g,k} \times S + \sum_{i} \sum_{k}^{j-1} C_{g,i} \times t_{g,k} \times x_{g,i,j} \forall g, j$$
(10)

$$p_{g,j} = wt_{g,j} - slo_{g,j} \forall g, j$$

$$p_{g,j} \le 0 \forall g, j$$
(11)

$$p_{g,j} \le 0 \forall g, j \tag{12}$$

$$\min(\sum_{g} \sum_{j} p_{g,j}) \tag{13}$$

实验设置

我们在多个不同规模的开源 LLM 上评估 QLM: Mistral-7B、Vicuna-13B 和 Llama-70B。

基线: EDF(最早截止期限优先)、vLLM和SHEPHERD。

测试平台: 我们在由两种类型的 GPU 组成的测试平台上进行评估: 30 个 NVIDIA A10 (24GB 内存)和 50个 NVIDIA A100 (80GB 内存)。

工作负载:请求到达遵循泊松分布,并通过改变到达率来创建队列。每个工作负 载跟踪使用来自 ShareGPT 数据集的 3500 个请求。我们将所有请求分为三类,并 相应地定义它们的 SLO 值: (1) 交互式: 20 秒, (2) 批量 1: 1 分钟, (3) 批量 2: 1 小时。

WA: 单模型交互式和批量工作负载

WB: 多模型批量工作负载

WC: 单模型大型提示工作负载

单模型评估

interactive arrival rate. Increased throughput corresponds to 1.1-2.3× GPU requirement reduction.

Figure 9: Single model request serv- Figure 10: Single model SLO satisfac- Figure 11: Single model LSO ablation ing throughput at 0.5K requests/s tion for varying interactive request study at 0.5K requests/s interactive arrival rates for Vicuna 13B.

arrival rate for Vicuna 13B.

多模型评估

Figure 12: Multi-model request serving throughput for varying Batch-1 request arrival rates. Increased throughput corresponds to 2-5× GPU requirement reduction.

tion for varying Batch-1 request arrival rates.

Figure 13: Multi-model SLO satisfac- Figure 14: Multi-model LSO ablation study for 0.25K requests/sec Batch-1 arrival rate.

QLM 鲁棒性分析

Figure 15: Impact of hardware het-Figure 16: Impact of mega prompt Figure 17: Impact of increasing erogeneity. arrivals. queue size on SLO satisfaction.

Figure 18: Accuracy of RWT estima- Figure 19: Impact of request group size on QLM performance.

Figure 20: QLM Overhead.

结论

- 1. 我们提出了 QLM, 这是一种新颖的队列管理框架, 用于面向服务等级目标(SLO) 的大型语言模型(LLM)服务后端协调。
- 2. 在异构模型类型和 GPU 设备上使用真实世界 LLM 服务数据集进行的评估表明, QLM 将端到端延迟 SLO 达成率提高了 40 - 90%,同时使服务吞吐量和设备利用率 提高了 20-400%。