Bayesian thinking and Ecology Workshop - Part B

Estimating species interactions from experimental data using Bayesian ODEs (Ordinary differential equations)

Instructors: Florian Hartig & Frank Pennekamp

Participants: Lukas Heiland, Nico Neureiter, Mikaela Tillman, Pengjuan Zu

Species interactions

Species interactions are crucial for the stability of

ecological communities

Predator-prey

- Functional responses:
 - Type I
 - Type II
 - Type III

Density of prey population

Temperature effects on predator-prey interactions

Interaction strength Spathidium sp. **Dexiostoma**

Functional response per capita prey consumption by predator

15 ° C

25 ° C

Model parameters

$$\frac{dR}{dt} = -F(R)P + rR(1 - \frac{R}{K})$$

$$\frac{dP}{dt} = -cF(R)P$$

$$F(R) = \frac{ahR^{(q+1)}}{1 + ahR^{(q+1)}}$$

Project goals

- Compare three models where the functional response parameters b, h and q are functions of temperature, while all other parameters are fitted hierarchically
- The three parameters of interest will be treated differently:
 - 1) Fitted as independent fixed effects
 - 2) Fitted as random effects (hierarchical)
 - 3) Fitted as linear temperature effect (not conducted)

Estimating model parameters with BayesianTools package

- Original estimation based on Maximum Likelihood
- Refitted parameters with BayesianTools package
- ODE solving based on odeintr package (pre-compiled ODEs in C++)
- Working solution in Stan

Marginal parameter uncertainty

Goals achieved

- ✓ Fit models in Stan
- ✓ Recover parameters estimated with ML approach
- ✓ Fit models in hierarchical fashion with all parameters as random effects

All temperatures

Temperature dependency

Lessons learned

- Deeper understanding of inner workings of hierarchical models
- Familiar with Bayesian analysis