

Data science for genetic data analysis and disease prediction

Andrea Lampis

Andrea Mario Vergani

- PhD students in Data Analytics and Decision Sciences
 - O Di Angelantonio & Ieva Group @ Health Data Science Centre, Human Technopole
 - o Politecnico di Milano (DEIB, DMAT)
- MSc in Computer Science and Engineering @ Politecnico di Milano

Tutorial overview

Objectives

- Learn to apply data science techniques to:
 - Analyse genetic data
 - Predict disease (genetic) risk
- Run your (first) statistical genetics scripts
- Access popular genetics databases and web apps to validate findings

Organization

- Background (Andrea Lampis)
- Part 1 (Andrea Lampis) R notebook
 - Genetic data quality control
 - Genome-Wide Association Studies (GWAS)
 - Polygenic Risk Score (PRS)
- Part 2 (Andrea Mario Vergani) Python notebook
 - GWAS databases and summary statistics
 - Biological relevance of GWAS findings

Chromosomes

Cells

DNA

Possible base pairings

Single Nucleotide Polymorphism (SNP)

Adapted from Wikimedia

Reference Genome

Biallelic variants:

- Reference Allele:
 - The nucleotide found in the reference genome, representing the baseline sequence.
- G Alternate Allele:
 - A variant nucleotide found in some individuals, differing from the reference sequence.

0/1/2 Encoding

Count of alternate allele

Why 0/1/2 Matters

Genome-wide Association Studies (GWAS):

- Quantifies statistical association between genetic variants (e.g., SNPs) and traits or diseases.
- Scans the genomes of many individuals to find variants linked to specific outcomes.

GWAS Summary Statistics

SNP	 Beta (effect size)	•••
rs10212	-0.0912	
rs21210	0.7895	

rs20192	0.0245	

GWAS typically use additive models:

- Assumes each minor/alternate allele contributes additively to the trait or disease risk.
- Allows researchers to treat genotype effects as linear, so the effect size (often derived from regression coefficients) represents the change per additional risk allele.

Why use 0/1/2 encoding?

- Reduces complex genotype data to a single number.
- Enables efficient testing of millions of SNPs for associations.
- Facilitates the use of standard statistical tools like regression.

Google Colab notebooks

Part 1

Part 2

https://github.com/ht-diva/ds4hb_workshop_t1_1

