Paper List

MICCAI2021

Improving Pneumonia Localization via Cross-Attention on Medical Images and Reports

Information

Improving Pneumonia Localization via Cross-Attention on Medical Images and Reports

Riddhish Bhalodia¹, Ali Hatamizadeh², Leo Tam², Ziyue Xu², Xiaosong Wang², Evrim Turkbey³, and Daguang Xu^{2(⊠)}

School of Computing, University of Utah, Salt Lake City, UT, USA riddhishb@sci.utah.edu

² NVIDIA Corporation, Santa Clara, USA

 $\{ahatamizadeh, leot, ziyuex, xiaosongw, daguangx\} @nvidia.com$

Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, USA

evrim.turkbey@nih.gov

Introduction

- Pneumonia localization in chest X-rays and its subsequent characterization is of vital importance
- Medical reports, on the other hand, are highly descriptive and provide a plethora of information
- Distill information from the Medical Report and inform the localization of corresponding images without added supervision

Difficulties

- Textual information from medical reports is hard to distill:
 - 1. lot of specific terminologies
 - 2. no clear sentence construction
 - 3. many redundant/extraneous information

Dataset

MIMIC-CXR dataset:

473,064 chest X-ray images with 206,754 paired radiology reports for 63,478 patients

https://arxiv.org/abs/1901.07042

Only utilize the images corresponding to pneumonia and having at least one of the attributes in the attribute set, which results in 11,308 training samples.

90% for training, 5% for validation, 5% for testing

Dataset

Evaluation:

1. Chest-X-ray-8 dataset: utilizing the 120 annotations given for pneumonia https://arxiv.org/abs/1705.02315

2. COVID-19 X-Ray dataset: contains 951 X-ray images acquired from different centers across the world

https://github.com/ieee8023/covid-chestxray-dataset

1. Attribute Extraction

- Extract a dictionary of important text-attributes indicative of pneumonia location and characteristics from reports
- Construct a constant attribute set of 22 keywords
- ullet Pre-train a Word2Vec[1] model on the entire set to extract the text-features T as $\{\mathbf{m}_i\}_{i=1}^M$

- 2. Box Detector and Image Features
 - Pretarin a Retinanet with Resnet-50 backbone on ChestX-Ray-8 images, with 2560 pneumonia annotations (bounding-boxes)
 - Produces ROIs and pneumonia classification score.

$$\{\mathbf{r}_i\}_{i=1}^N$$

$$\{s_i\}_{i=1}^N$$

$$\{\mathbf g_i\}_{i=1}^N$$

Fig. 1. Network architecture for training the attention based image-text matching for localization. (Color figure online)

- 3. Network Architecture and Attention Model
 - A. Feature Extractor:

ROI features:
$$\phi_i = W_1 \mathbf{r}_i + W_2[\text{LN}(W_g \mathbf{g}_i) | \text{LN}(W_s s_i)]$$

text features: $\{\mathbf{m}_i\}_{i=1}^M$

B. Attribute Classification:

Discover the appropriate ROIs that can successfully classify the attribute string

$$\mathbf{v} = \sum_{i=1}^{N} \alpha_i \boldsymbol{\phi}_i$$

- 3. Network Architecture and Attention Model
 - B. Attribute Classification:

Discover the appropriate ROIs that can successfully classify the attribute string

With computed weights , get an aggregate ROI-feature $\mathbf{v} = \sum_{i=1}^N \alpha_i \boldsymbol{\phi}_i$

v, input into a multi-label attribute classification, to produce an attribute probability vector

Loss: BCE loss

- 3. Network Architecture and Attention Model
 - C. Cross-Attention:
 - 1. construct weighted contribution vectors s_{ij} : the cosine-similarity between ϕ_i and m_j

$$a_{ij} = rac{\exp\left(\lambda_a s_{ij}
ight)}{\sum\limits_{i} \exp\left(\lambda_a s_{ij}
ight)}, \quad b_{ij} = rac{\exp\left(\lambda_b s_{ij}
ight)}{\sum\limits_{i} \exp\left(\lambda_b s_{ij}
ight)}$$

A_j represents the aggregate ROI feature based on its contribution to the text attribute m_j

$$\mathbf{A}_j = \sum_{i=1}^N \alpha_i \boldsymbol{\phi}_i a_{ij}$$

Birepresents the aggregate attribute feature based on its contribution to the ROI feature ϕ_i .

 $\mathbf{B}_i \, = \, \sum\limits_{j=1}^{M} \mathbf{m}_j b_{ij}$

- 3. Network Architecture and Attention Model
 - C. Cross-Attention:
 - 2. Calculate mean similarity: reflect how well a given image I matches with the report T

$$R_{text}^j = rac{\mathbf{A}_j^T \mathbf{m}_j}{||\mathbf{A}_j||||\mathbf{m}_j||}, \quad R_{roi}^i = rac{\mathbf{B}_i^T \phi_i}{||\mathbf{B}_i||||\phi_i||}$$

$$S_{roi}(I,T) = \frac{1}{N} \sum_{i=1}^{N} R_{roi}^{i} \text{ and } S_{text}(I,T) = \frac{1}{M} \sum_{j=1}^{M} R_{text}^{j}$$

- 3. Loss Construction and Inference
 - A. Loss Construction:

Negative ROIs, *In*: taking the set of lowest ranking ROIs coming from the Retinanet box detector

Negative attributes, T_n : finding the nearest word to the given attribute

Loss
$$\mathcal{L}_{trip} = \max(\beta - S_{roi}(I, T) + S_{roi}(I_n, T), 0) + \max(\beta - S_{text}(I, T) + S_{text}(I, T_n), 0)$$
(1)

Final Loss:
$$\mathcal{L} = \mathcal{L}_{trip} + \mathcal{L}_{BCE}$$

- 3. Loss Construction and Inference
 - B. Inference:

Only utilize the weights for ROI selection, and following by non-maximal suppression to remove redundant ROI

No text input for testing

Results

The attribute classification on the test set for MIMIC-CXR 95.6% Acc with an AUC of 0.84 :95.6%

Table 1. Pneumonia localization performance on different dataset using different methods, the Retinanet [10] refers to the supervised baseline.

Method	Dataset	IoU@0.25	IoU@0.5	IoU@0.75
CAM [22]	MIMIC-CXR	0.521	0.212	0.015
GradCAM [16]	MIMIC-CXR	0.545	0.178	0.029
Retinanet [10]	MIMIC-CXR	0.493	0.369	0.071
Proposed w/o classification	MIMIC-CXR	0.510	0.408	0.097
Proposed	MIMIC-CXR	0.529	0.428	0.123
Retinanet [10]	Chest X-ray-8	0.492	0.430	0.115
Proposed w/o classification	Chest X-ray-8	0.484	0.422	0.099
Proposed	Chest X-ray-8	0.507	0.439	0.114

Results

Fig. 2. Examples of localization and attribute classification from MIMIC-CXR test data. Green: expert annotated boxes and extracted attributes, Red: predicted boxes and attributes. (Color figure online)

Results

Fig. 3. Example case studies for pneumonia characterization from the COVID-19 Chest X-Ray dataset. The images, predicted attributes and localization, report snippet are shown here.

Reference

[1] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)