泛函分析第次作业

林陈冉

2016年12月14日

5.26

- (1) $\forall v \in H$, $v = \sum_{n=1}^{\infty} (e_n, v)$, 由 $v \in H$, 可知 $|v|^2 = \sum_{n=1}^{\infty} |(e_n, v)|^2 < \infty$, 则 $\lim_{n \to \infty} |(e_n, v)|^2 = 0$, 自然的, $\lim_{n \to \infty} (e_n, v) = 0$, 故 $(e_n, v) \to 0$.
- (2) a_n 有界, 设 $|a_n| < M$, 那么有

$$|u_n|^2 = |(\frac{1}{n} \sum_{i=1}^{\infty} a_i e_i, \frac{1}{n} \sum_{i=1}^{\infty} a_i e_i)| = \frac{1}{n^2} \sum_{n=1}^{\infty} a_n^2 < \frac{1}{n} M^2$$

則 $\lim_{n\to\infty} |u_n|^2 < \lim_{n\to\infty} \frac{1}{n} M^2 = 0$,故 $|u_n| \to 0$.

(3)

5.28

(1) H 是可分的, $V \subset H$, 则显然 V 也是可分的. 记 $\{v_n\}$ 是 V 的一个可数稠密子集, 记 $\{v_1, v_2, \cdots, v_n\}$ 张成的空间为 V_n , 则 $\bigcup_{n=1}^{\infty} V_n$ 在 V 中是稠密的, 由 V在 H 中稠密, 可知 $\bigcup_{n=1}^{\infty} V_n$ 在 H 中也是稠密的.

对于 V_1 , 可以任意找一个单位向量 e_1 ; 对于 V_2 , 当 $V_1 \neq V_2$, 因为 V_2 是有限维的, 可以找另一个单位向量 e_2 , 使 $\{e_1,e_2\}$ 是 V_2 的一组正交基; 当 $V_1=V_2$, 则直接考虑 V_3 .

对所有的 V_n 重复这样的操作, 可以得到 H 的一组正交基 $\{e_1,e_2,\cdots,e_n,\cdots\}$, 显然它是属于 V 的.

(2) 由 H 是可分的, 则存在 H 的一个可数稠密子集 $\{v_k\}$, 那么 $\{v_k\} \cup \{e_n\}$ 也是 H 的一个可数稠密子集. 记 $\{e_1, e_2, \cdots, e_n, \cdots\}$ 张成的空间为 V_0 , $\{e_1, e_2, \cdots, e_n, \cdots\} \cup \{v_1, v_2, \cdots, v_k\}$ 张成的空间为 $V_k(k > 0)$, $\bigcup_{n=1}^{\infty} V_n$ 在 H 中是稠密的 .

对于 V_1 , 当 $V_1 \neq V_0$, 令 $u_1 = \frac{P_{V_0}v_1}{|P_{V_0}v_1|}$, 因为 V_0 是 $\bigcup_{n=1}^{\infty} \{e_n\}$ 张成的, 可知它是 H 的闭凸子空间, 则有 $\forall x \in V_0$, $(x,u_1)=0$,故 $(e_n,u_i)=0$. 且显然 $|u_1|=1$,故 $\{u_1,e_1,e_2,\cdots,e_n,\cdots\}$ 是 V_1 的一组正交基. 当 $V_1=V_0$,则直接考虑 V_2 与 V_1 ,以完全相同的办法可以找到 u_2 构成 V_2 的一组正交基.

对所有的 V_n 重复这样的操作,可以到的 H 的一组正交基 $\{u_1, u_2, \dots, u_k, \dots\} \bigcup \{e_1, e_2, \dots, e_n, \dots\}$,显然它是包含 $\{e_1, e_2, \dots, e_n, \dots\}$ 的.