```
In [103]:  # Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as pyplot

# Import dataset
churn_clean = pd.read_csv("C:/Users/hkeim/OneDrive/Documents/School/D212/churn_clean.csv")
churn_clean.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):

Data	columns (total 50 colu	umns):	
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	City	10000 non-null	object
5	State	10000 non-null	object
6	County	10000 non-null	object
7	Zip	10000 non-null	int64
8	Lat	10000 non-null	float64
9	Lng	10000 non-null	float64
10	Population	10000 non-null	int64
11	Area	10000 non-null	object
12	TimeZone	10000 non-null	object
13	Job	10000 non-null	object
14	Children	10000 non-null	int64
15	Age	10000 non-null	int64
16	Income	10000 non-null	float64
17	Marital		
18		10000 non-null	object
	Gender	10000 non-null	object
19	Churn	10000 non-null	object
20	Outage_sec_perweek	10000 non-null	float64
21	Email	10000 non-null	int64
22	Contacts	10000 non-null	int64
23	Yearly_equip_failure	10000 non-null	int64
24	Techie	10000 non-null	object
25	Contract	10000 non-null	object
26	Port_modem	10000 non-null	object
27	Tablet	10000 non-null	object
28	InternetService	10000 non-null	object
29	Phone	10000 non-null	object
30	Multiple	10000 non-null	object
31	OnlineSecurity	10000 non-null	object
32	OnlineBackup	10000 non-null	object
33	DeviceProtection	10000 non-null	object
34	TechSupport	10000 non-null	object
35	StreamingTV	10000 non-null	object
36	StreamingMovies	10000 non-null	object
37	PaperlessBilling	10000 non-null	object
38	PaymentMethod	10000 non-null	object
39	Tenure	10000 non-null	float64
40	MonthlyCharge	10000 non-null	float64
41	Bandwidth_GB_Year	10000 non-null	float64
42	Item1	10000 non-null	int64
43	Item2	10000 non-null	int64
44	Item3	10000 non-null	int64
45	Item4	10000 non-null	int64
46	Item5	10000 non-null	int64
47	Item6	10000 non-null	int64
48	Item7	10000 non-null	int64
49	Item8	10000 non-null	int64

```
memory usage: 3.8+ MB

In [104]: # Select dimensions
    dimensions = churn_clean.filter(items = ['Churn','Tenure', 'MonthlyCharge'])

# Convert Churn to category codes
    dimensions['Churn'] = dimensions['Churn'].astype('category')
    dimensions['Churn'] = dimensions['Churn'].cat.codes
```

dtypes: float64(7), int64(16), object(27)

```
In [105]: # Import StandardScaler
from sklearn.preprocessing import StandardScaler

# Scale data
scaler = StandardScaler()
scaler.fit(dimensions)
dim_scaled=scaler.transform(dimensions)
```

```
In [106]: # Import KMeans
from sklearn.cluster import KMeans

# Create elbow graph to determine number of clusters
ks = range(1, 6)
inertias = []

for k in ks:
    model=KMeans(n_clusters=k)
    model.fit(dim_scaled)
    inertias.append(model.inertia_)
plt.plot(ks, inertias, '-o')
plt.xlabel('number of clusters, k')
plt.ylabel('inertia')
plt.xticks(ks)
plt.show()
```



```
In [107]: # Run KMeans with 4 clusters
kmeans = KMeans(n_clusters=4)
kmeans.fit(dim_scaled)

# Assign the columns of dim_scaled: xs and ys
xs = dim_scaled[:,1]
```

```
ys = dim_scaled[:,2]

# Make a scatter plot of xs and ys, using labels to define the colors
plt.scatter(xs, ys, c=labels)

# Assign the cluster centers: centroids
centroids = kmeans.cluster_centers_

# Assign the columns of centroids: centroids_x, centroids_y
centroids_x = centroids[:,1]
centroids_y = centroids[:,2]

# Make a scatter plot of centroids_x and centroids_y
plt.scatter(centroids_x, centroids_y, marker='D', s=50)
plt.show()
```



```
# Create crosstab

df = pd.DataFrame({'labels': labels, 'Churn': Churn})

ct = pd.crosstab(df['labels'], df['Churn'])

print(ct)
```

```
Churn No Yes labels 965 1 760 263 2 417 1402 3 2959 20
```

```
In [110]:
```

Export dim_scaled for report purposes
dimensions.to_csv("C:/Users/hkeim/OneDrive/Documents/School/D212/Keim D212 Task One Cleaned D

In []: