Learning Dynamical Systems with Side Information (Proofs)

Amir Ali Ahmadi

AAA@PRINCETON.EDU

Bachir El Khadir

BKHADIR@PRINCETON.EDU

1. Preliminary: Measure of Similarity Between Vector Fields

Fix a set $\Omega \in \mathbb{R}^n$ and a time horizon T. In order the assess how close two vector fields $f, g : \Omega \to \mathbb{R}^n$ are, we define the following two metrics. The first one compares directly the values taken by f and g on the compact set Ω :

$$||f - g||_{\Omega} := \max_{x \in \Omega} ||f(x) - g(x)||$$

The second metric of interest, which is more dynamics-focused, measures how different the trajectories of f and g starting from an invariant set Ω are after some time T > 0, i.e.

$$d_{\Omega,T}(f-g) := \sup_{x_0 \in \Omega, t \in [0,T]} \max\{\|x(t,x_0) - y(t,x_0)\|, \|\dot{x}(t,x_0) - \dot{y}(t,x_0)\|$$

where $x(t, x_0)$ (resp. $y(t, x_0)$) is the trajectory starting from $x_0 \in \Omega$ and following the dynamics of f (resp. g).

The metric $d_{\Omega,T}(\cdot)$ is "finer" than $\|\cdot\|_{\Omega}$. Indeed, by noting that $\dot{x}(0,x_0)=f(x_0)$ and $\dot{y}(0,x_0)=g(x_0)$, we obtain that $d_{\Omega,T}(f-g)\leq \|f-g\|_{\Omega}$. The next proposition shows that for vector fields that leave the set Ω invariant, these two metric become equivalent.

Proposition 1 For any positive scalar L > 0, there exists a constant $C_{\Omega,T,L}$ such that

$$||f - g||_{\Omega} \le d_{\Omega,T}(f - g) \le C_{\Omega,T,L}||f - g||_{\Omega}$$

for every two L-Lipchitz vector fields f and g that leave the set Ω invariant.

To present the proof of this proposition, we need to recall the classical lemma of *Gronwall*.

Lemma 2 (Gronwall) Let I = [a, b] denote a non-empty interval on the real line. Let α , β , and u be continuous, real-valued functions defined on I and satisfying

$$u(t) \le \alpha(t) + \int_a^t \beta(s)u(s) ds \quad \forall t \in I.$$

If α is nondecreasing and β is nonnegative, then

$$u(t) \le \alpha(t) \exp\left(\int_a^t \beta(s) \, \mathrm{d}s\right) \quad t \in I.$$

Proof (Proof of Proposition 1) Consider two trajectories x(t) and y(t) both starting from $x_0 \in \Omega$ and following f and g respectively. The proof is divided into two parts.

For the first part of the proof, we will bound ||y(t) - x(t)||. By definition of y and x, for every $t \in [0, T]$ we have that

$$x(t) - y(t) = \int_0^t f(x(s)) - g(y(s)) ds$$

= $\int_0^t f(x(s)) - g(x(s)) ds + \int_0^t g(x(s)) - g(y(s)) ds$.

Using the triangular inequality, we get

$$||y(t) - x(t)|| \le \int_0^t ||f(x(s)) - g(x(s))|| \, \mathrm{d}s + \int_0^t ||g(x(s)) - g(y(s))|| \, \, \mathrm{d}s. \tag{1}$$

Since f leaves Ω invariant, we know that for all $s \in [0,t]$, $x(s) \in \Omega$ and therefore $||f(x(s)) - g(x(s))|| \le ||f - g||_{\Omega}$. Furthermore, because the function g is L-Lipchiz, $||g(x(s)) - g(y(s))|| \le L||x(s) - y(s)||$. From (1) we conclude therefore that

$$||y(t) - x(t)|| \le t||f - g||_{\Omega} + L \int_0^t ||x(s) - y(s)|| ds,$$

and by Gronwall's lemma,

$$||y(t) - x(t)|| \le t \exp(Lt) ||f - g||_{\Omega} \ \forall t \in [0, T].$$

For the second part of the proof, we will bound $\|\frac{\partial}{\partial t}y(t) - \frac{\partial}{\partial t}x(t)\| = \|f(x(s)) - g(y(s))\|$. note that since f and g leave Ω invariant, we know that for all $s \in [0,t]$, $x(s),y(s) \in \Omega$. By triangular inequality again, we know that $\|f(x(s)) - g(y(s))\| \le \|f(x(s)) - g(x(s))\| + \|g(x(s)) - g(y(s))\|$. Using the fact that g is L-Lipchiz on Ω , $\|g(x(s)) - g(y(s))\| \le L\|y(t) - x(t)\|$. Therefore $\|f(x(s)) - g(y(s))\| \le \|f - g\|_{\Omega} + L\|y(t) - x(t)\|$.

Putting the first and second part of the proof together, we have

$$||y(t) - x(t)|| \le T \exp(LT) ||f - g||_{\Omega}$$

and

$$\|\frac{\partial}{\partial t}y(t) - \frac{\partial}{\partial t}x(t)\| \le \|f - g\|_{\Omega} + L\|y(t) - x(t)\|$$

$$\le \|f - g\|_{\Omega} + Lt\exp(Lt)\|f - g\|_{\Omega}.$$

Therefore

$$d_{\Omega,T}(f-q) \leq C(\Omega,T,L) \|f-q\|_{\Omega}$$

with
$$C(\Omega, T, L) = \max\{T \exp(LT), 1 + LT \exp(LT)\}.$$

2. Proof of Theorem 1

Fix a compact set $\Omega \subset \mathbb{R}^n$, a time horizon T > 0, and a desired accuracy $\varepsilon > 0$. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous differentiable vector field that satisfies any one of the following constraints:

- (i) equilibria at a given finite set of points,
- (ii) symmetry.
- (iii) nonnegativity,
- (iv) directional monotonicity,
- (v) invariance of a full-dimensional, star-shaped basic semialgebraic set,
- (vi) gradient or Hamiltonian structure.

In this section, we prove that there exists a polynomial vector field $p: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$||f - g||_{\Omega} \le \varepsilon,$$

(by proposition 1, this shows in particular that trajectories of f and p can be made arbitrarily close) and p satisfies the same side information as f. Before we give a case-by-case proof depending on which side information f satisfies, we present the following universal-approximation result that will be invoked frequently.

Theorem 3 (Weirstrass approximation theorem) If $f: \Omega \to \mathbb{R}^n$ is continuously-differentiable, then for any $\varepsilon > 0$, there exists a polynomial $p: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$||f(x) - p(x)|| \le \varepsilon \quad \forall x \in \Omega.$$

2.1. If f satisfies the equilibrium conditions in (i)

Suppose f satisfies

$$f(x_i) = \alpha_i \quad i = 1, \dots, m. \tag{2}$$

Let p be a polynomial vector field uniformly approximating f as in Theorem 3. Let $v_i = (\alpha_i - (f(x_i) - p(x_i)))$, and note that $||v|| \le \varepsilon$.

The proposition below, shows that there exists a polynomial q such that

$$(p+q)(x_i) = \alpha_i \quad i = 1, \dots, m,$$

and $||q||_{\Omega} \leq C\varepsilon$, where C is a constant depending only on the x_i . The last inequality implies in particular that

$$||f - (p+q)||_{\Omega} \le \varepsilon (1+C).$$

Proposition 4 For any positive integers d and n, for any d points x^1, \ldots, x^d in a compact set Ω , there exists a constant $C(x_1, \ldots, x_d)$ such that the following holds: For any vector $v \in \mathbb{R}^d$, there exists a polynomial $p \in \mathbb{R}_d[x]$ such that

$$p(x_i) = v_i, \quad i = 1, ..., d \text{ and } \max_{x \in \Omega} |p(x)| \le C(x_1, ..., x_d) ||v||_2$$

Lemma 5 (Proposition 4.3 in Comon et al.) (Multivariate Polynomial Interpolation) If x^1, \ldots, x^d are d different points of \mathbb{R}^n , then the vectors $m_d(x^1), \ldots, m_d(x^d)$ are linearly independent. (Here $m_d(x^i)$ is the vector of monomials in x_i up to degree d.)

Proof [Proof of Proposition 4] By Lemma 5, the system of linear equations

$$p(x_i) = v_i \quad i = 1, \dots, n \tag{3}$$

in the variable $p \in \mathbb{R}_d[x]$ are independent. If we identify p by its coefficients in the monomial basis, then we can rewrite the system in Equation (3) as

$$Ap = v$$
,

where $A=(m_d(x^1),\ldots,m_d(x^d))^T$ is a matrix depending only on x_1,\ldots,x_d that has independent rows. The proof follows by taking $C(x_1,\ldots,x_d)$ to be the operator norm of the matrix $M:=(A^TA)^{-1}A^T$ and p=Mv.

2.2. If f satisfies the symmetry in (ii)

Suppose f satisfies a symmetry

$$B^{-1}f(Ax) = f(x). (4)$$

For a vector field h, define

$$[\psi(h)](x) := \frac{B^{-1}h(Ax) + h(x)}{2}$$

Note that ψ is a linear function and that the equality in Equation (4) translates to $\psi f = f$. Moreover, ψ is an involution (i.e., $\psi^2 = \psi$) and a contraction (i.e. $\|\psi(h)\|_{\Omega} \le \|h\|_{\Omega}$.)

Let p be a polynomial vector field uniformly approximating f as in Theorem 3, i.e., $||p-f||_{\Omega} \le \varepsilon$, and let $q = \psi p$. Then, $\psi(q) = q$, and $||q-f||_{\Omega} \le ||q-f||_{\Omega} \le \varepsilon$.

2.3. If f satisfies the nonnegativity condition in (iii)

Suppose f satisfies $f_i(x) \trianglerighteq_i 0 \ \forall x \in B_i$ for $i, j \in \{1, ..., n\}$. Let $f_{\varepsilon}(x)$ the vector field defined component wise by

$$f_{\varepsilon,j}(x) = f_j(x) + \varepsilon \alpha_i,$$

where $\alpha_i = 1$ if $\geq_i = \geq$, and $\alpha_i = -1$ otherwise. Approximating f_{ε} uniformly by a polynomial p gives the desired construction.

2.4. If f satisfies the monotonicity condition in (iv)

Suppose f satisfies $\frac{\partial f_i}{x_j}(x) \trianglerighteq_{i,j} 0 \ \forall x \in B_{i,j} \ \text{for} \ i,j \in \{1,\ldots,n\}$. Let $f_{\varepsilon}(x)$ the vector field defined component wise by

$$f_{\varepsilon,i}(x) = f_i(x) + \varepsilon \alpha_{ij} x_i,$$

where $\alpha_{ij} = 1$ if $\geq_{i,j} = \geq$, and $\alpha_{ij} = -1$ otherwise. Approximating f_{ε} uniformly by a polynomial p gives the desired construction.

2.5. If f satisfies invariance in (v)

Let B be the set defined by the inequalities $h_1(x) \ge 0, \ldots, h_m(x) \ge 0$, where each of the h_i is concave, and suppose there exists a point $x_0 \in B$ such that $h_i(x) > 0$ for all i. Suppose f leaves B invariant, i.e.,

$$h_j(x) \ge 0 \ \forall j \text{ and } h_i(x) = 0 \implies \langle f(x), \nabla h_i(x) \rangle \ge 0 \quad \forall x \in \mathbb{R}^n, i = 1, \dots, m.$$
 (5)

Let $f_{\varepsilon}(x) = f(x) - \varepsilon(x - x_0)$, and notice that $||f_{\varepsilon} - f|| \le |\Omega|\varepsilon$. (Here $|\Omega| := \sup_{x,y \in \Omega} ||x - y||$). Moreover, if $h_j(x) \ge 0 \ \forall j$ and $h_i(x) = 0$, then

$$\langle f_{\varepsilon}(x), \nabla h_i(x) \rangle = \langle f(x), \nabla h_i(x) \rangle + \varepsilon \langle x - x_0, \nabla h_i(x) \rangle \ge \varepsilon h_i(x_0).$$

Let p be a polynomial vector field such that $||p - f_{\varepsilon}||_{\Omega} \leq \varepsilon$, then by continuity, p satisfies Equation (5). Moreover,

$$||f - p|| \le ||f - f_{\varepsilon}|| + ||f_{\varepsilon} - p|| \le \varepsilon(|\Omega| + 1).$$

2.6. If f satisfies the gradient/Hamiltonian condition in (vi)

Suppose f is a gradient, i.e., $f(x) = -\nabla V(x)$ for some scalar-valued function V. Let W be polynomial approximation of V, i.e.

$$\|V(x) - W(x)\| \le \varepsilon \quad \text{ and } \quad \|\nabla V - \nabla W\| \le \varepsilon.$$

Then, the polynomial vector field $p := -\nabla W$ is a gradient and approximates f uniformly on Ω .

3. Proof of Theorem 2

Let C denote the set of continuously differentiable vector fields. The table below shows for every side information S, there exists a continuous functional

$$L_S:C\to\mathbb{R}$$

that is continuous with respect to the $\|\cdot\|_{\Omega}$ norm, and such that

$$\forall f \in C, \ f \text{ satisfies } S \iff L_S(f) = 0,$$

and

$$\forall f \in C, \ f \ \delta$$
-satisfies $S \iff L_S(f) \leq \delta$.

Side Information S	Linear functional L_S
$Interp(\{x_i, y_i)_{i=1}^m\}$	$L_S(f) := \sum_{i=1}^m \ f(x_i) - y_i\ $
$\mathbf{Sym}(A,B)$	$L_S(f) := \ f(Ax) - Bf(x)\ $
$\mathbf{Pos}(\{ \succeq_i, B_i \}_{i=1}^n)$	$L_S(f) := \min_i \min_{B_i} f$
$\mathbf{Mon}(\{ \succeq_{i,j}, B_{i,j} \}_{i,j=1}^n)$	$L_S(f) := \min_{i,j} \min_{B_{ij}} rac{\partial f_j}{\partial x_j}$
$\mathbf{Inv}(B)$	$L_S(f) := \min_i \min_{x \in B, h_i(x) = 0} \langle f(x), \nabla h_i(x) \rangle$
Grad	$L_S(f) := \min_{V:\mathbb{R}^n \to \mathbb{R}} \ f - \nabla V\ _{\Omega}$

Now let f be a vector field in C satisfying a side information S. Then, for all $\delta>0$, there exists $\varepsilon>0$ such that

$$\forall p \in C, \quad ||p - f|| \le \varepsilon \implies L_S(p) - L_S(f) \le \delta.$$

By Theorem 3, there exists a polynomial vector field p such that $||p-f||_{\Omega} \leq \varepsilon$. In particular, p δ -satisfies the side information S. By Putinar's approximation theorem, the following polynomial inequality admits an sos certificate.

$$L_S(p) < 2\delta$$
.

References

Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. Symmetric tensors and symmetric tensor rank. URL http://arxiv.org/abs/0802.1681.