$12n_{0404} \ (K12n_{0404})$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle -u^7 + 2u^6 - 5u^5 + 6u^4 - 6u^3 + 4u^2 + b - u - 1, \\ u^{10} &- 4u^9 + 13u^8 - 26u^7 + 42u^6 - 50u^5 + 45u^4 - 28u^3 + 9u^2 + 2a + 4u - 3, \\ u^{11} &- 4u^{10} + 13u^9 - 28u^8 + 48u^7 - 64u^6 + 67u^5 - 52u^4 + 29u^3 - 6u^2 - 3u + 2 \rangle \\ I_2^u &= \langle u^7 + 3u^5 + 2u^3 + b - u - 1, \ u^9 + 4u^7 + u^6 + 5u^5 + 3u^4 + u^3 + 2u^2 + a, \ u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 21 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^7 + 2u^6 + \dots + b - 1, \ u^{10} - 4u^9 + \dots + 2a - 3, \ u^{11} - 4u^{10} + \dots - 3u + 2 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{10} + 2u^{9} + \dots - 2u + \frac{3}{2}\\u^{7} - 2u^{6} + 5u^{5} - 6u^{4} + 6u^{3} - 4u^{2} + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{10} - 3u^{9} + 9u^{8} - 16u^{7} + 24u^{6} - 27u^{5} + 22u^{4} - 13u^{3} + 3u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{10} - 3u^{9} + 9u^{8} - 16u^{7} + 24u^{6} - 27u^{5} + 22u^{4} - 13u^{3} + 3u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} + 1\\u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{10} + 5u^{8} + 8u^{6} + 3u^{4} - u^{2} + 1\\9u^{10} - 24u^{9} + \dots + 10u - 8 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{2} + 1\\-u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{8} - u^{7} - 2u^{6} - 5u^{5} + 2u^{4} - 6u^{3} + 4u^{2} - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

$$= -2u^{10} + 8u^9 - 26u^8 + 54u^7 - 88u^6 + 106u^5 - 94u^4 + 52u^3 - 10u^2 - 18u + 18u^4 + 100u^4 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{11} + 54u^{10} + \dots + 10929u - 576$
c_{2}, c_{5}	$u^{11} + 2u^{10} + \dots + 9u - 24$
c_3, c_4, c_9	$u^{11} + 4u^{10} + \dots - 3u - 2$
c_6, c_8, c_{10} c_{12}	$u^{11} - u^{10} + \dots + u - 1$
c_7, c_{11}	$u^{11} - u^{10} + \dots - 13u - 19$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 546y^{10} + \dots + 91631457y - 331776$
c_{2}, c_{5}	$y^{11} + 54y^{10} + \dots + 10929y - 576$
c_3, c_4, c_9	$y^{11} + 10y^{10} + \dots + 33y - 4$
$c_6, c_8, c_{10} \\ c_{12}$	$y^{11} + 33y^{10} + \dots - y - 1$
c_7, c_{11}	$y^{11} + 93y^{10} + \dots + 4083y - 361$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.025290 + 0.573466I		
a = 0.522820 + 0.914944I	14.2401 + 3.3069I	6.51466 - 1.87736I
b = -2.15532 - 0.07526I		
u = 1.025290 - 0.573466I		
a = 0.522820 - 0.914944I	14.2401 - 3.3069I	6.51466 + 1.87736I
b = -2.15532 + 0.07526I		
u = -0.041636 + 1.304450I		
a = 0.517767 - 0.458534I	-3.44187 - 1.25408I	7.18214 + 5.23967I
b = -0.109577 + 0.529508I		
u = -0.041636 - 1.304450I		
a = 0.517767 + 0.458534I	-3.44187 + 1.25408I	7.18214 - 5.23967I
b = -0.109577 - 0.529508I		
u = 0.564252 + 0.373580I		
a = 0.013693 - 0.730377I	-1.87019 + 1.75538I	8.10394 - 4.89065I
b = 0.832660 - 0.220165I		
u = 0.564252 - 0.373580I		
a = 0.013693 + 0.730377I	-1.87019 - 1.75538I	8.10394 + 4.89065I
b = 0.832660 + 0.220165I		
u = 0.21728 + 1.43552I		
a = -1.255990 - 0.421534I	-7.66219 + 4.64924I	5.42003 - 4.56433I
b = 1.114610 - 0.376316I		
u = 0.21728 - 1.43552I		
a = -1.255990 + 0.421534I	-7.66219 - 4.64924I	5.42003 + 4.56433I
b = 1.114610 + 0.376316I		
u = 0.40590 + 1.55278I		
a = 1.63733 + 1.45401I	7.51792 + 8.56204I	4.30767 - 3.05307I
b = -2.10223 - 0.22168I		
u = 0.40590 - 1.55278I		
a = 1.63733 - 1.45401I	7.51792 - 8.56204I	4.30767 + 3.05307I
b = -2.10223 + 0.22168I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.342167		
a = 0.628767	0.526767	18.9430
b = -0.160296		

$$\begin{aligned} \text{II. } I_2^u &= \langle u^7 + 3u^5 + 2u^3 + b - u - 1, \ u^9 + 4u^7 + u^6 + 5u^5 + 3u^4 + u^3 + 2u^2 + \\ & a, \ u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 4u^{7} - u^{6} - 5u^{5} - 3u^{4} - u^{3} - 2u^{2} \\ -u^{7} - 3u^{5} - 2u^{3} + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{9} - u^{8} + 4u^{7} - 4u^{6} + 5u^{5} - 4u^{4} + u^{3} - 1 \\ -u^{9} - 4u^{7} - 5u^{5} - u^{4} - u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{8} - 4u^{6} - 5u^{4} - 2u^{2} - 1 \\ -u^{9} - 4u^{7} - 5u^{5} - u^{4} - u^{3} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{8} - 3u^{6} - u^{4} + 2u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} + 3u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{9} - 5u^{7} - 8u^{5} - 3u^{3} + u \\ u^{8} - u^{7} + 4u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^6 12u^4 8u^2 + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$
c_2	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$
c_3, c_4, c_9	$u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1$
c_5	$(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$
c_6, c_8, c_{10} c_{12}	$(u^2+1)^5$
<i>c</i> ₇	$u^{10} - 2u^9 + 5u^8 + 7u^6 + 10u^5 + 24u^4 + 30u^3 + 37u^2 + 40u + 29$
c_{11}	$u^{10} + 2u^9 + 5u^8 + 7u^6 - 10u^5 + 24u^4 - 30u^3 + 37u^2 - 40u + 29$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$
c_{2}, c_{5}	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_3, c_4, c_9	$(y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2$
$c_6, c_8, c_{10} \\ c_{12}$	$(y+1)^{10}$
c_7, c_{11}	$y^{10} + 6y^9 + \dots + 546y + 841$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.217740I		
a = -0.37029 - 1.58802I	-5.69095	2.51890
b = 1.000000 + 0.766826I		
u = -1.217740I		
a = -0.37029 + 1.58802I	-5.69095	2.51890
b = 1.000000 - 0.766826I		
u = 0.549911 + 0.309916I		
a = 0.42897 - 1.54636I	-3.61897 + 1.53058I	3.48489 - 4.43065I
b = 1.82238 - 0.33911I		
u = 0.549911 - 0.309916I		
a = 0.42897 + 1.54636I	-3.61897 - 1.53058I	3.48489 + 4.43065I
b = 1.82238 + 0.33911I		
u = -0.549911 + 0.309916I		
a = -0.686530 + 0.668968I	-3.61897 - 1.53058I	3.48489 + 4.43065I
b = 0.177625 - 0.339110I		
u = -0.549911 - 0.309916I		
a = -0.686530 - 0.668968I	-3.61897 + 1.53058I	3.48489 - 4.43065I
b = 0.177625 + 0.339110I		
u = -0.21917 + 1.41878I		
a = -0.092267 + 0.641941I	-9.16243 - 4.40083I	-0.74431 + 3.49859I
b = -0.200152 - 0.455697I		
u = -0.21917 - 1.41878I		
a = -0.092267 - 0.641941I	-9.16243 + 4.40083I	-0.74431 - 3.49859I
b = -0.200152 + 0.455697I		
u = 0.21917 + 1.41878I		
a = -2.27989 - 1.10735I	-9.16243 + 4.40083I	-0.74431 - 3.49859I
b = 2.20015 - 0.45570I		
u = 0.21917 - 1.41878I		
a = -2.27989 + 1.10735I	-9.16243 - 4.40083I	-0.74431 + 3.49859I
b = 2.20015 + 0.45570I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2)(u^{11} + 54u^{10} + \dots + 10929u - 576)$
c_2	$((u^5 - u^4 + 2u^3 - u^2 + u - 1)^2)(u^{11} + 2u^{10} + \dots + 9u - 24)$
c_3, c_4, c_9	$(u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1)(u^{11} + 4u^{10} + \dots - 3u - 2)$
c_5	$((u^5 + u^4 + 2u^3 + u^2 + u + 1)^2)(u^{11} + 2u^{10} + \dots + 9u - 24)$
c_6, c_8, c_{10} c_{12}	$((u^2+1)^5)(u^{11}-u^{10}+\cdots+u-1)$
c_7	$(u^{10} - 2u^9 + 5u^8 + 7u^6 + 10u^5 + 24u^4 + 30u^3 + 37u^2 + 40u + 29)$ $\cdot (u^{11} - u^{10} + \dots - 13u - 19)$
c_{11}	$(u^{10} + 2u^9 + 5u^8 + 7u^6 - 10u^5 + 24u^4 - 30u^3 + 37u^2 - 40u + 29)$ $\cdot (u^{11} - u^{10} + \dots - 13u - 19)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$ $\cdot (y^{11} - 546y^{10} + \dots + 91631457y - 331776)$
c_2,c_5	$((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2)(y^{11} + 54y^{10} + \dots + 10929y - 576)$
c_3,c_4,c_9	$((y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2)(y^{11} + 10y^{10} + \dots + 33y - 4)$
c_6, c_8, c_{10} c_{12}	$((y+1)^{10})(y^{11}+33y^{10}+\cdots-y-1)$
c_7, c_{11}	$(y^{10} + 6y^9 + \dots + 546y + 841)(y^{11} + 93y^{10} + \dots + 4083y - 361)$