Foundation of Cryptography, Lecture 8 Secure Multiparty Computation Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

June 11, 2013

Section 1

The Model

Multiparty Computation

- Multiparty Computation computing a functionality f
- Secure Multiparty Computation: compute f in a "secure manner"
 - Correctness
 - Privacy
 - Independence of inputs
 - Guaranteed output delivery
 - Fairness: corrupted parties should get their output iff the honest parties do
 - and ...
- Examples: coin-tossing, broadcast, electronic voting, electronic auctions
- How should we model it?
 Real Vs. Ideal model

Real Model Execution

Let $\overline{A}=(A_1,A_2)$ be a pair of algorithms, and $x_1,x_2\in\{0,1\}^*$. Define $\mathsf{REAL}_{\overline{A}}(x_1,x_2)$ as the joint outputs of $(A_1(x_1),A_2(x_2))$

- An honest party follows the prescribed protocol (i.e., π) and outputs the prescribed output
- A semi-honest party follows the protocol, but might output additional information

Ideal Model Execution

Let $\overline{B} = (B_1, B_2)$ be a pair of oracle-aided algorithms. An execution of \overline{B} in the ideal model on inputs $x_1, x_2 \in \{0, 1\}^*$, denoted $\overline{IDEAL}_{f, \overline{B}}(x_1, x_2)$, is the joint output of the parties in the end of the following experiment:

- The input of B_i is x_i ($i \in \{0, 1\}$)
- ② Each party sends value y_i to the trusted party (possibly \perp)
- **3** Trusted party sends $f_i(y_0, y_1)$ to B_i (sends \bot , if $\bot \in \{y_0, y_1\}$)
- Each party outputs some value
 - An honest party, sends its input to the trusted party and outputs the trusted party message
 - A semi-honest party, might output additional information

Securely computing a functionality

 $\overline{A} = (A_1, A_2)$ is an admissible algorithm pair for π [resp., for f], if at least one party is honest

Definition 1 (secure computation)

A protocol π securely computes f, if \forall real model, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model admissible pair PPT $\overline{B} = (B_1, B_2)$, s.t.

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(x_1,x_2)\}_{x_1,x_2} \approx_{\mathcal{C}} \{\mathsf{IDEAL}_{f,\overline{\mathsf{B}}}(x_1,x_2)\}_{x_1,x_2},$$

where the enumeration is over all $x_1, x_2 \in \{0, 1\}^*$ with $|x_1| = |x_2|$.

- Auxiliary inputs
- Security parameter
- We focus on semi-honest adversaries

Section 2

Oblivious Transfer

Oblivious Transfer

A protocol that securely realize the functionality

OT:
$$(\{0,1\}^* \times \{0,1\}^*) \times \{0,1\} \mapsto \{0,1\}^* \times \bot$$
, where $f_1(\cdot) = \bot$ and $f_2((\sigma_0,\sigma_1),i) = \sigma_i$ and .

- "Complete" for multiparty computation
- We show how to construct for bit inputs

Oblivious Transfer from Trapdoor Permutations

Let (G, f, Inv) be a TDP and let b be an hardcore predicate for f.

Protocol 2 ((S,R))

Common input: 1^n , S's input: $\sigma_0, \sigma_1 \in \{0, 1\}$, R's input: $i \in \{0, 1\}$

- **1** S chooses $(e, d) \leftarrow G(1^n)$, and sends e to R
- 2 R chooses $x_0, x_1 \leftarrow \{0, 1\}^n$, sets $y_i = f_e(x_i)$ and $y_{1-i} = x_{1-i}$, and sends y_0, y_1 to S
- **3** S sets $c_j = b(\operatorname{Inv}_d(y_j)) \oplus \sigma_j$, for $j \in \{0, 1\}$, and sends (c_0, c_1) to R
- \bigcirc R outputs $c_i \oplus b(x_i)$.

Claim 3

Protocol 2 securely realizes OT (in the semi-honest model).

Proving Claim 3

- Correctness
- Secrecy: We need to prove that \forall real model, semi-honest, admissible PPT $\overline{A} = (A_1, A_2)$, exists an ideal-model, admissible pair PPT $\overline{B} = (B_1, B_2)$ s.t.

$$\{\mathsf{REAL}_{\overline{\mathsf{A}}}(1^n,(\sigma_0,\sigma_1),i\} \approx_{c} \{\mathsf{IDEAL}_{\mathsf{OT},\overline{\mathsf{B}}}(1^n,(\sigma_0,\sigma_1),i\},$$
 (1)

where the enumeration is over $n \in \mathbb{N}$ and $\sigma_0, \sigma_1, i \in \{0, 1\}$

R's privacy

For $\overline{A}=(S',R)$, where S' is a semi-honest implementation of S, let $\overline{B}=(S'_{\mathcal{I}},R_{\mathcal{I}})$ be an ideal-model protocol, where $R_{\mathcal{I}}$ acts honestly, and

Algorithm 4 ($S'_{\mathcal{I}}$)

input: 1^n , σ_0 , σ_1

- Send (σ_0, σ_1) to the trusted party
- 2 Emulate S' $(1^n, \sigma_0, \sigma_1)$, acting as R $(1^n, 0)$
- Output the same output that S' does

Claim 5

Equation (1) holds with respect to \overline{A} and \overline{B} .

Proof?

S's privacy

For $\overline{A}=(S,R')$, where R' is a semi-honest implementation of R, let $\overline{B}=(S_{\mathcal{I}},R'_{\mathcal{I}})$ be an ideal-model protocol, where $S_{\mathcal{I}}$ acts honestly and

Algorithm 6 ($R'_{\mathcal{I}}$)

input: $1^n, i \in \{0, 1\}$

- **①** Send *i* to the trusted party, and let σ be its answer.
- **2** Emulate R'(1ⁿ, i), acting as S(1ⁿ, σ_0 , σ_1), where $\sigma_i = \sigma$, and $\sigma_{1-i} = 0$
- Output the same output that R' does

Claim 7

Equation (1) holds with respect to \overline{A} and \overline{B} .

Proof?

Section 3

Yao Garbled Circuit

Before we start

- Fix a (multiple message) semantically-secure private-key encryption scheme (G', E, D) with
 - **1** $G'(1^n) = U_n$
 - $D_d(E_{d'}(m)) = \perp$, for any $d \neq d'$ and $m \in \{0, 1\}^*$.

Can we achieve such scheme?

 Boolean circuits: gates, wires, inputs, outputs, values, computation

The Garbled Circuit

Let *C* be Boolean a circuit from $\{0,1\}^{\ell}$ to $\{0,1\}^{m}$ and let $n \in \mathbb{N}$

- Let W and G be the (indices) of wires and gates of C.
- For any $w \in \mathcal{W}$, associate two random 'keys" k_0^w , $k_w^1 \in \{0,1\}^n$.
- For $g \in G$ with input wires i, j and output wire h, let T(g) be the following table

input wire i	input wire <i>j</i>	output wire h	hidden output wire
k_i^0	k_j^0	$k_h^{g(0,0)}$	$E_{k_i^0}(E_{k_i^0}(k_h^{g(0,0)}))$
k_i^0	k_j^1	$k_h^{g(1,0)}$	$E_{k_i^0}(E_{k_i^1}(k_h^{g(0,1)}))$
k_i^1	k_j^0	$k_h^{g(0,1)}$	$E_{k_i^1}(E_{k_i^0}(k_h^{g(1,0)}))$
k_i^1	k_j^1	$k_h^{g(1,1)}$	$E_{k_i^1}(E_{k_j^1}(k_h^{g(1,1)}))$

Figure : Table for gate g, with input wires i and j, and output wire h.

Let \mathcal{I} and \mathcal{O} be the input and outputs wires of \mathcal{C}

- For $g \in G$, let $\widetilde{T}(g)$ be a random permutation of the fourth column of T(g)
- For $x \in \{0, 1\}^{\ell}$ and $w \in \mathcal{W}$, let $C(x)_w$ be the value the computation of C(x) assigns to w.
- Given $\widetilde{T} = \{(g, \widetilde{T}(g))\}_{g \in G}, \{k_i^{C(x)_w}\}_{w \in \mathcal{I}}, \text{ for some } x \in \{0, 1\}^{\ell}, \text{ and } \{(w, k_w)\}_{w \in \mathcal{O}}, \text{ we can efficiently compute } C(x)$
- No other information about x leaks!
- Can we use garbled circuit for secure computation?

The protocol

Let $f: \{0,1\}^{\ell} \times \{0,1\}^{\ell} \times \{0,1\}^{m} \times \{0,1\}^{m}$ and let C be a circuit that computes f. Let (S,R) be a secure protocol for OT.

Let \mathcal{I}_1 and \mathcal{I}_2 be the input wires of x_1 and x_2 (A and B inputs), and let \mathcal{O}_1 and \mathcal{O}_2 be the output wires of A and B.

Protocol 8 ((A,B))

Common input: 1^n . A/B's input: $x_1/x_2 \in \{0, 1\}^{\ell}$

- A prepares random $\{k_w = (k_w^0, k_w^1)\}_{w \in \mathcal{W}}$ and $\widetilde{\mathcal{T}}$, and sends $\widetilde{\mathcal{T}}$, $\{(w, k_w^{C(X_1, \cdot)_w})\}_{w \in \mathcal{I}_1}$ and $\{(w, k_w)\}_{w \in \mathcal{O}_2}$ to B.
- ② $\forall w \in \mathcal{I}_2$, A and B interact in $(S(k_w), R(C(\cdot, x_2)_w))(1^n)$.
- **3** B computes the (garbled) circuit, and sends $\{(w, k_w^{C(x_1, x_2)_w})\}_{w \in \mathcal{O}_2}$ to A.
- The parties compute $f(x_1, x_2)_1$ and $f(x_1, x_2)_2$ respectively.

Claim 9

Protocol 8 securely computes *f* (in the semi-honest model)

Proof:

- Correctness
- B's privacy Immediately follows from the security of the OT
- 3 A's privacy The simulator for B puts random values in \widetilde{T} , $\{(w, k_w^{C(x_1, \cdot)_w})\}_{w \in \mathcal{I}_1}$ and $\{(w, k_w^{C(\cdot, x_2)_w})\}_{w \in \mathcal{I}_1}$, and sets $\{(w, k_w)\}_{w \in \mathcal{O}_2}$ according to $f_2(x_1, x_2)$.

Extensions

- Efficiently computable f
 Both parties first compute C_f a circuit that compute f for inputs
 of the right length
- Hiding C? All but its size

Malicious model

The parties prove that they act "honestly"

- Forces the parties to chose their random coin properly
- Before each step, the parties prove in ZK that they followed the prescribed protocol (with respect to the random-coins chosen above)

More efficient alternatives: "cut and choose"

Course Summary

See diagram

What we did not cover

- "Few" reductions
- Environment security (e.g., UC)
- Information theoretic crypto
- Non-generic constructions: number theory, lattices
- Impossibility results
- "Real life cryptography" (e.g., Random oracle model)
- Security
- Differential Privacy
- and....