DATA MINING Project

BY:

Mohammad Dabash₍₂₀₃₅₀₆₈₎ Yazeed Alsahouri₍₂₁₃₆₈₆₆₎ Abdulrahman Abuhani₍₂₁₃₂₄₆₂₎ Belal Khaled₍₂₁₃₆₈₇₃₎

Table Of Contents:

Topics:	Page:	
1. Introduction	<i>3</i>	
2. $Task A$ (Data exploration)	···· 4-7	
• A.1 Data Types	4	
• A.2 Statistical summaries and visualizations	···· <i>5</i>	
• Output for A.2	6	
• A.3 Clustering and detecting Outliers	····· 7	
$m{3. Task B}$ (Data preprocessing)	8-11	
• B.1 Binning	8	
• Output for B.1 Binning & B.2 Normalization	9	
ullet B.3 Discretization & B.4 converting Gender to binary	10	
• Final view of the preprocessed attributes	11	
4 Task C (Association rules mining)	12-13	
• Apriori	12	
• Output for task C		
5. References	11	

Introduction:

In this report, we delve into the comprehensive process of analyzing a dataset, starting from: initial exploration to data pre-processing and concluding with association rules mining.

Task A(Data exploration):

Here we will do the following using 'Community-Participation-DataSet(8).csv':

- \checkmark Identify the type of each attribute(nominal, ordinal, interval or ratio).
- **✓** Statistical summaries and visualizations.
- ✓ Clustering and detecting Outliers.

Task B (Data preprocessing):

Here we will do the following using 'Scoring-Dataset-8.csv':

- ✓ Binning with both (equal width and equal depth) then smoothing by bin means.
- ✓ Normalization.
- ✓ Discretization.
- ✓ Converting Gender attribute to binary.
- ✓ Final view of the preprocessed attributes.

Task C(Association rules mining):

Here we will do the following using 'Community-Participation-DataSet(8).csv':

- ✓ Apriori.
- \checkmark Increasing the threshold of confidence to be > 0.70.

> Importing all libraries we need:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.cluster import KMeans
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
import warnings
warnings.filterwarnings("ignore")

TASK A(Data exploration)

A.1 Data Types:

• Code:

data1 = pd.read_csv('/content/Community-Participation-DataSet(8).csv')
data1
#The data contains 2000 `record` and 13 `attribute`, let's explore their types.
data1.info()

> Output for A.1(Data Types):

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 12 columns)

# Column	Non-Null Count	Dtype
o Record#	2000 non-null	int64 → Ordinal
1 Elapsed_Time	2000 non-null	float64 → Ratio
2 Time in Communit	y 2000 non-null	object → Ordina
3 Gender	2000 non-null	object > Binary
4 Working	2000 non-null	object 🗲 Binary
5 Age	2000 non-null	int64 🗲 Ratio
6 Family	2000 non-null	object 🗲 Binary
7 Hobbies	2000 non-null	object → Binary
8 Social_Club	2000 non-null	object → Binary
9 Political	2000 non-null	object 🗲 Binary
10 Professional	2000 non-null	object > Binary
11 Religious	2000 non-null	object → Binary
12 Support_Group	2000 non-null	object → Binary

dtypes: float64(1), int64(2), object(10)

memory usage: 203.2+ KB

TASK A(Data exploration):

A.2 Statistical summaries and visualizations:

• Code:

```
#Let's start simple:
1- data1[['Age', 'Elapsed Time']].describe().T
2- data1.describe(include = "object").T
3- sns.histplot(data1['Elapsed_Time'], kde=True)
   plt.title(f'Distribution of Elapsed Time')
   plt.xlabel('Elapsed Time')
   plt.ylabel('Frequency')
   plt.tight_layout()
   plt.show() #Elapsed_Time distribution using Histogram plot.
4- sns.histplot(data1['Age'], kde=True)
   plt.title(f'Distribution of Elapsed_Time')
   plt.xlabel('Age')
   plt.ylabel('Frequency')
   plt.tight layout()
   plt.show() #Age distribution using Histogram plot.
5- sns.scatterplot(data=data1, x='Elapsed_Time', y='Age')
   plt.show()#Correlation between Age and Elapsed Time.
   #Lets see the value counts of some attributes using word cloud and bar plot 🗲
   #Time_in_Community →
6- text = data1['Time_in_Community']
   text = ''.join(list(text))
   wordcloud = WordCloud().generate(text)
   x = list(dict(data1['Time_in_Community'].value_counts()).keys())
   counts = list(data1['Time_in_Community'].value_counts())
   fig. axs = plt.subplots(1, 2, figsize=(15.7))
   axs[o].imshow(wordcloud, interpolation='bilinear')
   axs[o].axis("off")
   axs[1].bar(x=x,height=counts, data=data1, color=['#5F0F40', '#FB8B24', '#E36414'])
   plt.show()
  #Gender 🗲
  text = data1['Gender']
  text = ''.join(list(text))
  wordcloud = WordCloud().generate(text)
  x = list(dict(data1['Gender'].value counts()).keys())
  counts = list(data1['Gender'].value_counts())
  fig, axs = plt.subplots(1, 2, figsize=(15,7))
  axs[o].imshow(wordcloud, interpolation='bilinear')
  axs[o].axis("off")
  axs[1].bar(x=x,height=counts, data=data1, color=['#5F0F40', '#FB8B24', '#E36414'])
  plt.show()
```

\blacktriangleright Output for A.2 (Statistical summaries and visualizations):

TASK A(Data exploration):

A.3 Clustering and detecting Outliers:

• Code:

```
#Clustering:
   numerical = data1.select_dtypes(include=['number']).drop('Record#', axis=1).columns
   categorical = data1.select_dtypes(include=['object']).columns
   preprocessor = ColumnTransformer(
   transformers=[
   ('num', StandardScaler(), numerical),('cat', OneHotEncoder(), categorical)])
   prep_data = preprocessor.fit_transform(data1)
   kmeans = KMeans(n_clusters=3, random_state=42)
   clusters = kmeans.fit_predict(prep_data)
   plt.figure(figsize=(10,6))
   plt.scatter(data1['Elapsed_Time'], data1['Age'], c=clusters, cmap='plasma', marker='o')
   plt.title('Cluster Visualization (Simplified Data)')
   plt.xlabel('Elapsed_Time')
   plt.ylabel('Age')
   plt.colorbar(label='Cluster')
   plt.show()
   #OutLiers(we will detect Outliers using Boxplot):
  #Age→
  sns.boxplot(data=data1['Age'], color='skyblue', orient='h')
  plt.title('Boxplot of Age')
  plt.show()
  #Elapsed Time→
  sns.boxplot(data=data1['Elapsed_Time'], color='mediumseagreen', orient='h')
  plt.title('Boxplot of Elapsed_Time')
  plt.show()
      \blacktriangleright Output for A.3 (Clustering and detecting Outliers):
Cluster visualization (simplified data).
               Boxplot of Age
                                                                                 Boxplot of Elapsed_Time
                                       There is no OutLiers in our data
                                         depending on the Boxplot.
                                                                           Boxplot of Elapsed Time
           Boxplot of Age
```

TASK B(Data preprocessing)

B.1 Binning:

• Code(Equal width binning):

```
#We Chose the 8th dataset.
 data2 = pd.read csv('/content/Scoring-Dataset-8.csv')
data2
#Performing Equal width binning >
min_age = data2['Age'].min()
max age = data2['Age'].max()
w = (max\_age - min\_age) / 3
bin_boundaries = [min_age + i * w for i in range(3)] #bin boundaries = min + i * w
 bin_boundaries.append(max_age)
 data2['equi_width'] = pd.cut( data2['Age'], bins=bin_boundaries, labels=
                               ['Bin 1', 'Bin 2', 'Bin 3'], include lowest=True)
data2[['Age', 'equi width']]
#Bin values 👈
for bin_number in ['Bin 1', 'Bin 2', 'Bin 3']:
 bin_values = data2[data2['equi_width'] == bin_number]['Age'].tolist()
 print(f'{bin_number}: {bin_values}\n') → #prints every bin and its values.
#Smoothing by bin means 🗦
for bin_number in ['Bin 1', 'Bin 2', 'Bin 3']:
bin mean = np.mean(data2[data2['equi width'] == bin number]['Age'].tolist())
bin_mean = round(bin_mean)
 data2.loc[data2['equi_width'] == bin_number, 'Age_Smoothed'] = bin_mean
 data2[['Age', 'equi_width', 'Age_Smoothed']]
#We'll keep smoothed values only >
 data2.drop('equi width', axis=1, inplace=True)
   • Code(Equal depth binning):
#Performing Equal depth binning →
#first we will sort the data by age to perform equal depth binning 🗲
data2 = data2.sort_values(by='Age')
 data2.reset_index(drop=True, inplace=True)
 data2.loc[:99, 'equi_depth'] = 'Bin 1'
data2.loc[100:199, 'equi_depth'] = 'Bin 2'
 data2.loc[200:, 'equi_depth'] = 'Bin 3'
 data2[['Age', 'equi depth']]
#Making sure that they are equal 🗲
data2['equi_depth'].value_counts()
#Smoothing by bin means ->
for bin number in ['Bin 1', 'Bin 2', 'Bin 3']:
bin mean = np.mean(data2[data2['equi depth'] == bin number]['Age'].tolist())
bin_mean = round(bin_mean)
 data2.loc[data2['equi_depth'] == bin_number, 'Age_Smoothed_2'] = bin_mean
 data2[['Age', 'equi_depth', 'Age_Smoothed_2']]
#We'll keep smoothed values only >
 data2.drop('equi_depth', axis=1, inplace=True)
```

> Output for B.1 (Binning):

	Age	equi_width		
0	54	Bin 3		
1	24	Bin 1		
2	45	Bin 2		
3	33	Bin 1		
4	37	Bin 2		
295	37	Bin 2		
296	46	Bin 2		
297	66	Bin 3		
298	37	Bin 2		
299	26	Bin 1		
300 rows × 2 columns				

→ Performing Equal width binning

Smoothing by bin means (Equal width)

Performing Equal depth binning

Smoothing by bin means (Equal depth)

TASK B(Data preprocessing)

B.2 Normalization:

• Code:

```
#Min Max
min = data2['Age'].min()
max = data2['Age'].max()

data2['Age_minmax'] = (data2['Age'] - min) / (max - min) → #calculate for each age its min_max.

#Z-score
mu = data2['Age'].mean()
std = data2['Age'].std()
```

data2['Age_Zscore'] = (data2['Age'] - mu) / std → #calculate for each age its Z-score.

TASK B(Data preprocessing):

B.3 Discretization:

• Code:

```
labels = ['Teenager', 'Young', 'Mid_Age', 'Mature', 'Old']
edges = [0, 16, 35, 55, 70, np.inf]
data2['Age_categorical'] = pd.cut(data2['Age'], bins=edges, labels=labels)
data2[['Age_categorical', 'Age']]
```

> Output for B.3 (Discretization):

TASK B(Data preprocessing):

B.4 Converting Gender to binary:

• Code:

```
data2['Gender_Binary'] = data2['Gender'].map({'M': 1, 'F': 0}) data2[['Gender', 'Gender_Binary']]
```

\triangleright Output for B.4 (Converting Gender to binary):

TASK B(Data preprocessing):

Final view of the preprocessed attributes:

• Code:

data_preprocessed.sample(8)

> *Output:*

	Age	Age_categorical	Age_Smoothed	Age_Smoothed_2	Gender	Gender_Binary
80	36	Mid_Age	45.0	30.0	М	1
85	37	Mid_Age	45.0	30.0	F	0
58	32	Young	27.0	30.0	М	1
194	52	Mid_Age	45.0	47.0	F	0
158	49	Mid_Age	45.0	47.0	F	0
14	23	Young	27.0	30.0	М	1
275	65	Mature	60.0	60.0	F	0
133	46	Mid_Age	45.0	47.0	F	0

TASK C_(Association rules mining): Apriori:

• Code:

```
data = pd.read csv('/content/Community-Participation-DataSet(8).csv')
data = data.drop(columns=['Age', 'Record#', 'Elapsed_Time'], axis=1)
#First we will convert the data into a list of transactions -
transactions = \Pi
for i in range(len(data)):
  one transaction = \Pi
 row = data.iloc[i] #series
 one_transaction.append(row['Time_in_Community'])
  if row['Working'] == 'Yes': one_transaction.append('Working')
 if row['Family'] == 'Yes': one_transaction.append('Family')
  if row['Support_Group'] == 'Yes': one_transaction.append('Support_Group')
  if row['Religious'] == 'Yes': one transaction.append('Religious')
  if row['Professional'] == 'Yes': one_transaction.append('Professional')
  if row['Political'] == 'Yes': one_transaction.append('Political')
  if row['Social Club'] == 'Yes': one transaction.append('Social Club')
 if row['Hobbies'] == 'Yes': one transaction.append('Hobbies')
 transactions.append(one transaction)
#Declaring a transaction encoder to convert the data to a format that apriori algorithm accepts 🗲
t encoder = TransactionEncoder()
te arr = t encoder.fit transform(transactions)
df = pd.DataFrame(te_arr, columns=t_encoder.columns_)
#Applying apriori algorithm on our transformed data 🗲
frequent_itemsets = apriori(df, min_support=0.15, use_colnames=True)
rules = association rules(frequent itemsets, metric="confidence", min threshold=0.5)
rules[['antecedents', 'consequents', 'support', 'confidence']] → #printing the result.
#Increasing the threshold of confidence to be > 0.70 \Rightarrow
frequent_itemsets = apriori(df, min_support=0.15, use_colnames=True)
rules = association rules(frequent itemsets, metric="confidence", min threshold=0.70)
rules[['antecedents', 'consequents', 'support', 'confidence']] - #printing the result.
```

> Output for task C:

rules[['antecedents', 'consequents', 'support', 'confidence']]

→ the result:

After Increasing the threshold of confidence to be > 0.70:

→ the result:

* These rules suggest strong associations between being involved in hobby-oriented community organizations (and in combination with family-oriented organizations) and being a member of a religious organization.

√ References:

https://www.analyticsvidhya.com/blog/2021/07/da ta-visualization-a-useful-tool-to-exploredata/#:~:text=What%20are%20the%20tools%20use d,%2C%20Power%20BI%2C%20and%20D3.

https://www.geeksforgeeks.org/data-preprocessing-in-data-mining/

https://towardsdatascience.com/apriori-associationrule-mining-explanation-and-pythonimplementation-290b42afdfc6