MAT414 - Modern Algebra

Miraj Samarakkody

Tougaloo College

03/24/2025

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $|a^k| = n/\gcd(n,k)$ Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$ and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$

Theorem 4.2 - $\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$ and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k> = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk

Theorem 4.2 -
$$\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$$
 and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk
 - ▶ Write d = ns + kt for some integers s, t

Theorem 4.2 -
$$\langle a^k \rangle = \langle a^{\gcd(\mathsf{n},k)} \rangle$$
 and $|a^k| = n/\gcd(n,k)$

Let a be an element of order n is a group and let k be a positive integer. Then $< a^k > = < a^{\gcd(n,k)} >$ and $|a^k| = n/\gcd(n,k)$

Proof steps:

We let $d = \gcd(n, k)$

- ▶ In the first part, we have to prove $< a^k > \subset < a^{\gcd(n,k)} >$ and $< a^k > \supset < a^{\gcd(n,k)} >$
 - ightharpoonup Let d = nk
 - Write d = ns + kt for some integers s, t
- ▶ Here we show that $|a^d| \le n/d$ and then $|a^k| = n/d$.

For |a| = 30, find $< a^{26} >$ and $|a|^{26}$.

For |a| = 30, find $< a^{17} >$ and $|a|^{17}$.

For |a| = 30, find $< a^{18} >$ and $|a|^{18}$.

Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order of the group.

```
Criterian for \langle a^i \rangle = \langle a^j \rangle and |a^i| = |a^j|
Let |a| = n. Then \langle a^i \rangle = \langle a^j \rangle if and only if \gcd(n, i) = \gcd(n, j), and |a^i| = |a^j| if and only if \gcd(n, i) = \gcd(n, j).
```

Generators of Finite Cyclic Groups

Let |a| = n. Then $\langle a \rangle = \langle a^j \rangle$ if and only if $\gcd(n,j) = 1$, and $|a| = |\langle a^j \rangle|$ if and only if $\gcd(n,j) = 1$.

Generators of \mathbb{Z}_n

An integer k in \mathbb{Z}_n is a generator of \mathbb{Z}_n if and only if gcd(n, k) = 1.

Find all generators of the cyclic group U(50).

Fundamental Theorem of Cyclic Groups

Theorem 4.3

Fundamental Theorem of Cyclic Group

Every subgroup of a cyclic group is cyclic. Moreover, if $|\langle a \rangle| = n$, then the order of any subgroup of $\langle a \rangle$ is a divisor of n; and, for each positive divisor k of n, the group $\langle a \rangle$ has exactly one subgroup of order k-namely, $\langle a^{n/k} \rangle$.

Suppose $G = \langle a \rangle$ and G has order 30. Find all the subgroups of G.

Subgroups of \mathbb{Z}_n

For each positive divisor k of n, the set $\langle n/k \rangle$ is the unique subgroup of \mathbb{Z}_n of order k; moreover, these are the only subgroups of \mathbb{Z}_n .

Write the list of subgroups of $\mathbb{Z}_{30}. \label{eq:subgroups}$

Find the generators of the subgroup of order 9 in \mathbb{Z}_{36} .

Euler Phi Function

Let $\phi(1) = 1$, and for any integer n > 1, let $\phi(n)$ denote the number of positive integers less than n and relatively prime to n.

Example

Write each $\phi(n)$ for $n \in \{1, 2, \dots, 12\}$