7.4: Omvendte funksjoner

Utgangspunkt:
$$y = f(x)$$

Omnendt funksjon g: $g(y) = x$.
 $g(f(x)) = x$

Ehs:
$$f(x) = 2x+1$$
.
 $y = 2x+1$ Løser for x.
 $\frac{y-1}{2} = x$. Hor funnet g:
 $g(y) = \frac{y-1}{2}$.

2x+1=-3. Likning: g gir den "generelle" løsningen. $y=-3 \Rightarrow x=g(-3)=\frac{-3-1}{2}=-2$.

bith funksjon
$$f: D_f \longrightarrow V_f$$
.

 $D_f = definisjons mengden$
 $V_f = verdimengden$
 $= \{f(x) | x \in D_f\}.$
 $g = verdimengden$
 $= \{f(x) | x \in D_f\}.$
 $g = verdimengden$
 $= \{f(x) | x \in D_f\}.$
 $g = verdimengden$
 $= \{f(x) | x \in D_f\}.$
 $g = verdimengden$
 $= \{f(x) | x \in D_f\}.$
 $= \{f(x) | x \in D_f\}.$

For at inversen skal eksistere

må f være <u>injektiv</u>:

Det vil si: alle verdier $y \in V_f$ er verdien til nøyaktig <u>en</u> $x \in D_f$.

Med andre ord: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

Kontrapositivt: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

Definisjon:

Anta at $f:D_f \longrightarrow V_f$ en injektiv. Da de finener vi den om vendte funksjonen som: $g:V_f \longrightarrow D_f$ der g(y) = denunik verdien $x \in D_f$ slik at f(x) = y. Kaller den f'!

FRS: (()) 1. ()

ERS: $f(x) = \ln(x+3)$. er injektiv. $D_f = (-3, \infty)$.

 $y = \ln(x+3).$

 $e^{y} = e^{\ln(x+3)} = x+3$

 $x = e^{y} - 3$

5å g(y)= e -3.

Grafentil g en speilingen av grafen til f over linjen y= x.

Vi sen på funksjoner f:[a,L]→R.

fer injektir ⇒ strengt voksende

-eller strengt av ta gende.

Voksende: $X_1 < X_2 \implies f(X_1) < f(X_2)$

Teorem: Hvisf: $[a,b] \rightarrow \mathbb{R}$ en kontinuerlig og strengt voksende \mathbb{R} Da er den om vendte fonksjonen $g: V_f \rightarrow [a,b]$ strengt voksende og \mathbb{R} kontinuerlig. $V_f = [f(a), f(b)] = 9: [f(a), f(b)] \rightarrow [a,b]$

Hvis fer kontinuerlig og strengt monoton, og deriverbar i et punkt X = Of 5lik at f'(x) =0, La $g = f', y = f(x), da er g'(y) = \frac{1}{x^2}$ Eks: $f(x) = x + e^x$. En injektiv.

Problem : ...

Prøver å finne den omvendte funksjonen: $y = x + e^x$. Umulig å løse. Kan studene f'likevel.

f en deriver har: f'(x)=1+ex. f'(0) = 1 + e' = 2. y = f(0) = e' = 1.

Da er den deriverte tilf:

 $Df'(1) = \frac{1}{f'(0)} = \frac{1}{2}$

Ser at $1+e^{x}=f'(x)>0$ => Komalltid finne den deriver te til f'.

$$g'(y) = \frac{1}{f'(x)}, \quad don \quad y = f(x), \quad g \text{ inversen}$$

$$Bevis:$$

$$Por \quad definisjon: \quad g'(y) = \lim_{\Delta y \to 0} g(y + \Delta y) - g(y)$$

$$Definerer \quad \Delta x = g(y + \Delta y) - g(y).$$

$$f(x + \Delta x) - f(x) = f(g(y + \Delta y) - g(y)) + g(y) - f(x)$$

$$g(f(x)) = x. \quad = f(g(y + \Delta y)) - f(x)$$

$$f(g(y)) = y. \quad \Rightarrow y + \Delta y - y = \Delta y.$$

$$g'(y) = \lim_{\Delta y \to 0} \frac{g(y + \Delta y) - g(y)}{\Delta y} = \lim_{\Delta x \to 0} \frac{\Delta x}{f(x + \Delta x) - f(x)}$$

$$\lim_{\Delta y \to 0} \frac{1}{f(x + \Delta x) - f(x)} = \lim_{\Delta x \to 0} \frac{\Delta x}{f(x + \Delta x) - f(x)} = \frac{1}{f'(x)}.$$

$$Men \quad g \quad \text{an } \text{pon } \text{tinuer lig. } S^* \Delta y \to 0 \Rightarrow \Delta x \to 0$$

7.5 Cotangens

Definisjon:
$$\cot x = \frac{\cos x}{\sin x}$$

forutsetter $\sin x \neq 0$.

$$= \frac{1}{\tan x}$$

$$\tan x = \frac{\sin x}{\cos x} \Rightarrow \frac{1}{\tan x} = \frac{1 \cdot \cos x}{\cos x} = \frac{\cos x}{\sin x}$$

Deriverte:
$$D\left(\frac{\cos x}{\sin x}\right) = \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x}$$
$$= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$$
$$= \frac{-1}{\sin^2 x}$$

7.6 Arcustunksjoner Shal finne invers +il sinx.

Bruker et triks: innskrenke definisjonsområdet.

Definisjon: Lar $f: [-\frac{11}{2}, \frac{11}{2}] \rightarrow \mathbb{R}$ vore definert ved $f(x) = \sin x$. Da er f injektiv,

og har en invers f':[-1,1] ->[-π,π]

Denne halles arcus sinus,

f(x)= arcsin(x)

Sin(arcsin(x)) = X. for alle $x \in [-1,1]$. Men generelt: arcsin (sin(x))= y, som ikke nødvendig viser X. Men likheten gjelder når $x \in [-\frac{11}{2},\frac{11}{2}]$. Deriverte til arcsin.

7.6.2 Setning:

Funksjonen arcsin en kontinuerlig, streng t voksende, med derivere $D[arcsin(x)] = \frac{1}{\sqrt{1-x^2}}$

Regner ut den deriverte:

Husk: $g'(y) = \frac{1}{f'(x)} der y = f(x)$.

 $1)f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R} , f(x) = \sin x.$

1) g(y)= arcsin(y).

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{\cos x}, (x = \arcsin(y))$$

 $y = \sin x$. Hugh: $\sin^2 x + \cos^2 x = 1$.

 \Rightarrow $\cos^2 x = 1 - \sin^2 x$

=) Cos X= 11-sin'x.

Kan cosx vone negativ? Ikkepå [-11 11] Men sin X = Y. cos $X = \sqrt{1-\sin x}$

$$g'(y) = \frac{1}{\cos x} = \frac{1}{\sqrt{1-y^2}} = \sqrt{1-y^2}$$

$$D[arcsin(x)] = \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow \int_{\sqrt{1-x^2}}^{1} dx = \arcsin(x) + ($$

Definisjon:

- i) La $f:[0,\Pi] \rightarrow \mathbb{R}$ vone definent ved $f(x) = \cos x$. f on injektiv og inversen kalles arcus cosinus. $f'(x) = \operatorname{arccos}(x)$.
- (i) La $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$ vore definent $\forall ed\ f(x) = +an\ x$. f injektiv. Inverson kalles arcus tangens $f'(x) = anc+an\ (x)$.

tan X:

