Chapter 3

Stabla

3.1 Karakterizacija stabla

Za graf koji ne sadrži nijednu konturu, kažemo da je acikličan.

Definicija 113 Za prost graf G = (V, E) kažemo da je stablo ako važi:

- (i) G je povezan graf i
- (ii) G je acikličan graf.

Na sledećoj slici su prikazana tri stabla.

U nastavku ćemo dati niz ekvivalentnih tvrđenja koja karakterišu stablo.

Teorema 114 Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo ako i samo ako za svaka dva čvora $u,v\in V$ postoji jedinstven uv-put.

Dokaz. Za n=2tvrđenje sledi direktno. Pretpostavićemo da je $n\geq 3.$ (\Rightarrow)

92

Pretpostavimo suprotno, da u stablu G postoje čvorovi u i v sa osobinom da između njih postoje dva različita uv-puta. Neka su to putevi U_1 i U_2 , sa osobinom da $\{u_i, u_{i+1}\} \in U_1, \{u_i, u_{i+1}\} \notin U_2$:

$$U_1 = uu_1 \dots u_i u_{i+1} \dots u_m v$$
$$U_2 = uv_1 \dots v_n v$$

(ako su različiti putevi, onda postoji grana koja pripada jednom, a ne pripada drugom).

Ovde ćemo prikazati slučaj kada je $u, v \notin \{u_i, u_{i+1}\}$, ostali slučajevi se izvode slično. Sada je

$$u_i \dots u_1 u v_1 \dots v_n v u_m \dots u_{i+1}$$

 u_iu_{i+1} -šetnja u grafu $G - \{u_i, u_{i+1}\}$. Ako u grafu $G - \{u_i, u_{i+1}\}$ postoji u_iu_{i+1} -šetnja, onda postoji i u_iu_{i+1} -put. Dodavanjem grane u_iu_{i+1} dobijamo konturu u grafu G, što je u suprotnosti sa pretpostavkom da je G stablo.

 (\Leftarrow) Ako za svaka dva čvora $u,v\in V$ postoji uv-put, onda je G po definiciji povezan graf. Treba još pokazati da je G acikličan. Pretpostavimo suprotno, da u grafu G postoji kontura oblika

$$w_1w_2w_3\ldots w_lw_1$$
.

Tada postoje bar dva puta od w_1 do w_l :

$$w_1w_l w_1w_2w_3\ldots w_l$$

što je u kontradikciji sa pretpostavkom da za svaka dva čvora postoji jedinstven put od jednog do drugog. To znači da je naša pretpostavka netačna i da je G acikličan graf. \Box

Lemma 115 Neka je G=(V,E) stablo i neka je $|V|=n\geq 2$. Tada postoje bar dva čvora stepena 1.

Dokaz. Kako je Gstablo, G je povezan graf. Pretpostavimo da je

$$u_1 u_2 \dots u_l \tag{3.1}$$

najduži put u grafu G (može biti više takvih puteva iste dužine). Pokazaćemo da je tada $d_G(u_1) = d_G(u_l) = 1$. Pretpostavimo da je $d_G(u_1) \geq 2$ (slično za $d_G(u_l) \geq 2$). Tada postoji čvor $w \neq u_2$)sa osobinom $u_1 w \in E$.

Ako $w \in \{u_3, \dots, u_l\}$ onda G ima kon-(i) turu, što je u kontradikciji sa pretpostavkom da je G stablo.

3.1. KARAKTERIZACIJA STABLA

Ako $w \notin \{u_3, \ldots, u_l\}$, onda je put

(ii) $wu_1u_2 \dots u_l$ duži od (3.1), što dovodi do kontradikcije.

93

Lemma 116 Neka je G = (V, E), $|V| = n \ge 2$, i neka je $d_G(u) = 1$ za neki čvor $u \in V$. Tada je G stablo ako i samo ako je G - u stablo.

Dokaz. (\Rightarrow) Pretpostavimo da je G stablo. Da bismo pokazali da je G-u stablo, treba pokazati sledeće: (i) G-u je povezan; (ii) G-u je acikličan.

- (i) Posmatrajmo dva proizvoljna čvora $v, w \in V(G-u)$. Kako je G povezan, postoji vw-put u G. Ovaj put ne sadrži čvor stepena 1 koji je različit od v i w, što znači da ne sadrži u. Znači, taj put je ujedno i put u G-u, što pokazuje da je G-u povezan.
- (ii) Kako je G acikličan, to je i G-u acikličan, zato što brisanjem grane iz acikličnog grafa ne možemo dobiti konturu.
- (⇐) Neka je G-u stablo. Od acikličnog grafa, dodavanjem nazad lista u ne možemo dobiti ciklus u tom grafu. Svaki čvor konture ima stepen bar dva, a čvor u je stepena 1. Svaka dva čvora koja su povezana u G-u ostaju povezana i u G. Ostaje još da pokažemo da za postoji uw-put za svaki čvor $w \in V(G-u)$. Kako je $d_G(u)=1$ postoji $v \in V(G-u)$ sa osobinom $\{u,v\} \in E(G)$. Iz pretpostavke da je G-u stablo, sledi da je G-u povezan graf, odakle za svako $w \in V(G-u)$ postoji wv-put u G-u. Dodavanjem grane $\{u,v\}$ tom putu, dobijamo put u G. \square

Teorema 117 Neka je G = (V, E) i $|V| = n \ge 2$. Tada je G stablo ako i samo ako je G povezan graf i |E| = n - 1.

 $Dokaz. \ (\Rightarrow)$ Prema definiciji stabla, G je povezan graf. Indukcijom ponćemo pokazati da je |E|=n-1.

 $\underline{\text{Baza } n=2}$: Stablo sa dva čvora ima tačno jednu granu.

Induktivni korak $T_{n-1} \Rightarrow T_n$: Ako je G stablo onda postoji čvor u sa osobinom $\overline{d_G(u)} = 1$. Graf G' = G - u ima osobinu

$$|V(G')| = |V(G)| - 1 = n - 1$$
 i $|E(G')| = |E(G)| - 1$.

Ako je G stablo, onda je prema Lemi 116 G' stablo. Prema induktivnoj pretpostavci je |E(G')| = n - 1, a odatle je |E(G)| = |E(G')| + 1 = n.

 (\Leftarrow) Indukcijom po n.

Baza n=2: Povezan graf sa dva čvora i jednom granom je stablo. Induktivni korak $T_{n-1}\Rightarrow T_n$: Ako je E(G)=V(G)-1, onda prema Posledici 93 postoji čvor u sa osobinom $d_G(u)\leq 1$. Kako je G povezan, mora važiti $d_G(u)=1$ i graf G'-u je povezan graf sa osobinom |V(G')|=|V(G)|-1=n i |E(G')|=|E(G)|-1=n-1. Prema induktivnoj pretpostavci je sada G'-u stablo. Prema Lemi 116, G je stablo. \square

Lemma 118 Neka je G = (V, E), gde je $|V| = n \ge 2$ i $|E| \ge n$. Neka su $V(G_1), \ldots V(G_l)$ komponente povezanosti grafa G sa k_1, \ldots, k_l čvorova, respektivno. Tada postoji $i \in \{1, \ldots, l\}$ sa osobinom $|E(G_i)| \ge k_i$.

Dokaz. Pretpostavimo suprotno, da za svako $i \in \{1,\dots,l\}$ važi $|E(G_i)| < k_i.$ Tada je

$$n \le |E(G)| = |E(G_1)| + \ldots + |E(G_l)| < k_1 + \ldots k_l = n \Leftrightarrow n < n$$

što dovodi do kontradikcije. \square

Teorema 119 Neka je $G=(V,E),\ gde$ je $|V|=n\geq 2$ i $|E|\geq n.$ Tada G sadrži konturu.

Dokaz. Razmatramo dva slučaja.

- (i) Gje povezan: ako Gnema konturu, onda je stablo $\Rightarrow G$ ima n-1 grana.
- (ii) G nije povezan: neka su G_1, \ldots, G_l komponente povezanosti grafa G:

$$|V(G_1)| = k_1, \dots, |V(G_l)| = k_l$$
 $k_1 + \dots + k_l = n$.

Prema Lemi 118, postoji $i \in \{1, \ldots, l\}$ sa osobinom $|E(G_i)| \geq k_i$. Ako G_i nema konturu, onda je G_i stablo i ima k_i-1 granu, što dovodi do kontradikcije. Znači, G_i ima konturu, a samim tim i G. \square

Teorema 120 Neka je G = (V, E) i $|V| = n \ge 2$. Tada je G stablo akko je G povezan i brisanjem proizvoljne grane se dobija nepovezan graf.

Dokaz. (\Rightarrow) Ako je G stablo, onda je G po definiciji povezan graf. Neka je $\{u,v\}\in E$ proizvoljna grana. Ako pretpostavimo da je $G-\{u,v\}$ povezan,

onda postoji uv-put i dodavanjem grane uv bismo dobili konturu u G, što je u suprotnosti sa pretpostavkom da je G acikličan.

(⇐) Ako je G povezan i brisanjem proizvoljne grane se dobija nepovezan graf, onda treba pokazati da je G acikličan. Pretpostavimo da je G povezan i sadrži konturu C. Tada za svaku granu $uv \in C$ sledi da je $G - \{u, v\}$ povezan, što je u suprotnosti sa pretpostavkom. \square

Teorema 121 Neka je G = (V, E) i $|V| = n \ge 2$. Tada je G stablo akko je G acikličan i dodavanjem grane se dobija graf koji sadrži konturu.

 $Dokaz. \ (\Rightarrow)$ Ako je G stablo, onda je G acikličan graf po definiciji. Posmatrajmo proizvoljna dva čvora u, v sa osobinom $uv \notin E(G)$. Kako je G povezan, postoji uv-put u G. Dodavanjem grane uv dobijamo konturu u G + uv.

 (\Leftarrow) Treba pokazati da jeG povezan. Neka su u i v proizvoljni čvorovi iz $V\!.$ Imamo dva slučaja:

- (i) Ako je $uv \in E$, onda je to uv-put.
- (ii) Ako $uv \notin E$, onda G + uv sadrži konturu koja sadrži uv. Oduzimanjem sa konture grane uv dobijamo uv-put u G.

Teorema 122 (Karakterizacija stabla) Neka je G = (V, E) prost graf. Sledeća tvrđenja sa ekvivalentna:

- (i) G je stablo.
- (ii) Za svaka dva čvora $u, v \in V(G)$ postoji jedinstven put od u do v.
- (iii) G je povezan i |E(G)| = |V(G)| 1.
- (iv) G je povezan i brisanjem proizvoljne grane dobija se nepovezan graf (tj. Gje minimalan povezan graf).
- (v) G je acikličan i dodavanjem grane se dobija graf koji sadrži konturu (tj. G je maksimalan acikličan graf).

Dokaz. Dokazali smo sledeći niz ekvivalencija:

$$(i) \Leftrightarrow (ii) \quad (i) \Leftrightarrow (iii) \quad (i) \Leftrightarrow (iv) \quad (i) \Leftrightarrow (v).$$

Odatle možemo izvesti i sve ostale parove ekvivalencija. \Box

3.2 Pokrivajuća stabla

Kada se razmatraju problemi optimizacije na grafovima, često se dešava da optimalno rešenje ima ne-nula vrednosti samo na nekim podgrafovima koja su stabla i čiji skup čvorova je isti kao u plaznom grafu. Za takav podgraf kažemo da je pokrivajuće (ili razapinjuće ili razapeto) stablo.

Definicija 123 Graf G_1 je pokrivajuće stablo grafa G ako važe sledeće dve osobine:

- (i) G_1 je pokrivajući podgraf od G: $V(G_1) = V(G)$ i $E(G_1) \subseteq E(G)$;
- (ii) G_1 je stablo.

Zadatak 124 Koliko ima različitih pokrivajućih stabala grafa K₄?

 $Re\check{s}enje.$ Zadatak ćemo rešiti konstruktivno, tako što ćemo konstruisati sva pokriajuća stabla grafa $K_4.$

Tako smo dobili konstruisali svih 16 pokruvajućih stabala grafa K_4 , među kojima ima 4 neizomorfna stabla.

Sa ciljem da uvedemo potreban i dovoljan uslov za egzistenciju pokrivajućeg grafa, dokazaćemo prvo jednu pomoćnu lemu.

Lemma 125 Neka je $n \geq 3$. Ako je G povezan i $|E(G)| = k \geq n$, onda G ima pokrivajuće stablo.

Dokaz. Indukcijom pok. Podsetimo se prvo da, prema Teoremi 119, graf sa n čvorova i bar n grana ima konturu.

<u>Baza k=n</u>: Oduzimanjem iz grafa jedne grane konture, graf ostaje povezan i pokriva i dalje sve čvorove. Povezan graf sa n-1 čvorova je stablo.

Induktivni korak $T_{k-1} \Rightarrow T_k$: Ako G sadrži konturu, onda možemo konstruisati povezan graf G' brisanjem proizvoljne grane konture. Primetimo da je V(G') = V(G) i $E(G') \subseteq E(G)$. Kako je G' povezan, prema induktivnoj pretpostavci, G' ima pokrivajuće stablo, a to je ujedno i pokrivajuće stablo grafa G.

Teorema 126 Graf G ima pokrivajuće stablo ako i samo ako je povezan.

Dokaz. (\Rightarrow) Ako G ima pokrivajuće stablo, onda postoji put između svaka dva čvora stabla, a onda je to put i u grafu G.

 (\Leftarrow) Neka je G povezan. Posmatraćemo dva slučaja.

- 1. |V(G)|=2: Povezan graf sa dva čvora ima jednu granu i sopstveno je pokrivajuće stablo.
- 2. $|V(G)| = n \ge 3$: Za povezan graf važi da je $|E(G)| \ge n 1$.
 - (a) Ako je |E(G)|=n-1, povezan graf sa n-1 grana je stablo. Znači, G je stablo, a ujedno i sopstveno pokrivajuće stablo.
 - (b) Neka je $E(G)|=k\geq n.$ U ovom slučaju tvrđenje važi na osnovu Leme 125.

3.2.1 Algoritmi za konstrukciju pokivajućeg stabla

U literaturi se može pronaći veliki broj algoritama za određivanje pokrivajućeg stabla u grafu. Mi ćemo u nastavku navesti dva, koja ćemo kasnije prilagoditi težinskim grafovima i problemu određivanja minimalnog pokrivajućeg stabla.

Algoritam1 Neka je G = (V, E) povezan graf, gde je $V = \{v_1, \ldots, v_n\}$. Prvi algoritam koji ćemo predstaviti prikazan je na Slici 3.1. U prvom koraku se bira proizvoljan čvor v_1 . U svakom narednom koraku, podgrafu se dodaje jedan novi čvor koji nije prethodno izabran i za koji postoji grana u grafu koja je incidentna sa tim novim čvorom i jednim već izabranim čvorom. U podgraf se dodaje ta

grana. Kako se u svakom koraku dodaje jedna grana i jedan čvor, algoritam staje nakon što je posle prvog koraka izvršeno još n-1 koraka algoritma (što kontroliše brojač i). Pokrivajuće stablo grafa je (V_n, E_n) .

Figure 3.1: Algoritam1

Algoritam2 Neka je G=(V,E) povezan graf, gde je $V=\{v_1,\ldots,v_n\}$ i neka su grane proizvoljno uređene u niz

$$(e_1,e_2,\ldots,e_m).$$

Algoritam za određivanje pokrivajućeg stabla dat je na slici 3.2. U prvom koraku, podgraf sadrži samo granu e_1 . Svaki sledeći korak prvo proverava da

li naredna grana pravi konturu dodavanjem u prethodno konstruisani podgraf. Ako ne pravi, onda se ta grana dodaje podgrafu, inače algoritam prelazi na proveru naredne grane u nizu. Algoritam staje u trenutku kada je izabrano n-1 grana. Tada je pokrivajuvajuće stablo (V,E_j) gde je $|E_j|=n-1$, za neko $j\in\{1,\ldots,m\}$.

Figure 3.2: Algoritam2

3.3 Prüferov niz

U ovom delu ćemo prikazati jedan dokaz za određivanje broja označenih stabala.

Primer 15 Za n = 2 imamo jedno, dok za n = 3 imamo 3 različita označena stabla, kao što je prikazano na slici.

Označena stabla za n = 4 prikazana su u Zadatku 124.

Tvrđenje u nastavku obično se pripisuje Cayleyu, a mi ćemo dati dokaz koji su izveli Prüfer i Clarke. Dokaz se zasniva na principu bijekcije. Svakom označenom stablu sa n čvorova pridružuje se niz, tzv. Prüferov niz

$$(p_1, p_2, \dots, p_{n-2})$$
 $1 \le p_i \le n$ $1 \le i \le n-2$.

Teorema 127 Neka je $n \geq 2$. Broj različitih označenih stabala sa čvorovima $\{1, 2, ..., n\}$ jednak je n^{n-2} .

Dokaz. Ako je n=2, imamo jedno označeno stablo i tvrđenje važi. Posmatraćemo sada $n\geq 3$ i pokazaćemo dva podtvrđenja: (i) svakom stablu sa čvorovima $\{1,\ldots,n\}$ možemo na jedinstven način pridružiti Prüferov niz (p_1,\ldots,p_{n-2}) koji čine n-2 cela broja iz skupa $\{1,\ldots,n\}$ (koja se mogu ponavljati); (ii) svaki niz (p_1,\ldots,p_{n-2}) sa osobinom $\{p_1,\ldots,p_{n-2})\subseteq\{1,\ldots,n\}$ je Prüferov niz nekog stabla sa n čvorova.

- (i) Niz ćemo formirati kao što je objašnjeno u nastavku.
 - 1. Odrediti najmanju oznaku lista u stablu i za p_1 uzeti oznaku njemu susednog čvora. Oduzeti iz grafa list sa oznakom p_1 (i njemu incidentnu granu).
 - 2. Ponavljati prvi korak, dok god ne ostanu samo dva čvora u stablu. Znači za p_i , $2 \le i \le n-2$, uzeti oznaku suseda lista (u novodobijenom stablu) sa najmanjom oznakom.

Tako smo svakom stablu pridružili Prüferov niz.

- (ii) Neka je dat niz (p_1, \ldots, p_{n-2}) . U nastavku ćem konstruisati stablo čiji je to Prüferov niz.
 - 1. Neka je l_1 najmanji broj koji se ne pojavljuje u skupu $\{p_1, \ldots, p_{n-2}\}$. To je morao biti list koji se skida u prvom koraku algoritma. Znači, treba spojiti granom čvorove p_1 i l_1 .

- 2. U svakom narednom koraku, tražimo vrednost l_i koja će odgovarati najmanjoj oznaci lista koji skidamo kada formiramo niz. To je u svakom koraku najmanja vrednost iz skupa koji dobijamo kada iz $\{1,\ldots,n\}$ oduzmemo naredne članove niza (čim se pojavljuju u nizu, znači da nisu mogli biti skinuti kao listovi sa najmanjom oznakom) i prethodno skinute listove, tj. $l_i = \min((\{1,\ldots,n\} \setminus \{l_1,\ldots,l_{i-1}\}) \setminus \{p_i,\ldots,p_{n-2}\})$. Grana koju formiramo je $\{l_i,p_i\}$.
- 3. Preostala dva čvora, koji se nisu pojavili u skupu identifikovanih listova, povežemo granom.

Pseudokod obratnog smera algoritma je sledeći:

Neka je $p(G) = (p_1, \dots, p_{n-2})$ Priferov niz dobijen od označenog stabla G.

- 1. Za $l_1 = \min(\{1, \dots, n\} \setminus \{p_1, \dots, p_{n-2}\})$ kreiraj granu $\{l_1, p_1\} \in G$.
- 2. Za i = 2 do i = n 2 ponavljaj sledeće korake:
 - (a) odredi list

$$l_i = \min(\{1, \dots, n\} \setminus (\{p_i, \dots, p_{n-2}\} \cup \{l_1, \dots, l_{i-1}\})$$

= \min(\{1, \dots, n\} \left\ \{l_1, \dots, l_{i-1}, p_i, \dots, p_{n-2}\})

- (b) kreiraj granu $\{l_i, p_i\} \in T(G)$.
- 3. Poslednja grana je $\{u,v\}$, gde je $u,v\in\{1,\ldots,n\}\setminus\{l_1,\ldots,l_{n-2}\}.$

Zadatak 128 Odrediti Prüferov niz za stablo sa slike.

Rešenje. Prüferov niz za dato stablo je $(p_1, p_2, p_3, p_4, p_5, p_6) = (1, 4, 1, 1, 4, 7)$. Određivanje redom pojedinačnih koordinata tog niza ilustrovano je grafički u nastavku.

Zadatak 129 Odrediti stablo čiji Pruüferov niz je (1,3,1,1,3,3).

 $Re\check{s}enje$. Prvo treba primetiti da je dužina niza n-2=6, odakle je broj čvorova stabla n=8. Daćemo grafički prikaz formiranja stabla. Uvedimo oznaku $V=\{1,2,3,4,5,6,7,8\}$.

3.3. PRÜFEROV NIZ

Kada iz skupa svih čvorova V konačno iskuljučimo sve prethodno određene listove $\{1,2,4,5,6,7\}$, ostanu nam čvorovi 3 i 8, koje u poslednjem koraku treba spojiti granom. Tako dobijamo sledeće stablo:

