

Vectorized Implementation for Linear Regression (Naive and Curious Appoach)

Quang-Vinh Dinh Ph.D. in Computer Science

Motivation

***** Linear regression

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House price data

Model:
$$\hat{y} = w_1 x_1 + b$$

price = $a * area + b$

Features Label TV **♦ Radio ♦ Newspaper ♦ Sales** 230.1 37.8 69.2 22.1 44.5 39.3 45.1 10.4 17.2 45.9 69.3 12 151.5 41.3 58.5 16.5 180.8 10.8 58.4 17.9

Advertising data

Model:
$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Sale = $w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$

$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Linear Regression

	Featur	es	Label
TV	+ Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$

$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

```
1 # compute output and loss
 2 def predict(x1, x2, x3, w1, w2, w3, b):
       return w1*x1 + w2*x2 + w3*x3 + b
 3
 4 def compute_loss(y_hat, y):
       return (y_hat - y)**2
 6
 7 # compute gradient
 8 def compute gradient wi(xi, y, y hat):
       dl_dwi = 2*xi*(y_hat-y)
       return dl dwi
10
   def compute_gradient_b(y, y_hat):
       dl_db = 2*(y_hat-y)
      return dl_db
13
14
15 # update weights
   def update_weight_wi(wi, dl_dwi, lr):
       wi = wi - lr*dl dwi
       return wi
18
19 def update_weight_b(b, dl_db, lr):
       b = b - lr*dl db
20
       return b
21
```

Motivation

F	Feature	Label	
		nrico	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

House price data

	reatur		Label
TV	Radio	Newspaper	≑ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Fastures

Advertising data

Lahal

if area=6.0, price=?

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=? **Features** Label

crim \$	zn \$	indus \$	chas \$	nox \$	rm \$	age \$	dis	rad \$	tax \$	ptratio \$	black \$	Istat \$	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5 5	311	15.2	395.6	12.43	22.9

Boston House Price Data

Objectives

- **Using vector and matrix for notation**
- **Using Numpy for implementation**

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = X\theta$$

3) Compute loss

$$L = (\hat{y} - y)(\hat{y} - y)^{\mathrm{T}} \frac{1}{N}$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y})$$
$$L'_{\mathbf{\theta}} = X^T \mathbf{k}$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{N}$$

Outline

SECTION 1

1-sample Vectorization

SECTION 2

m-sample Vectorization

Feature	Label	
area	price	L
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	
$\boldsymbol{\mathcal{X}}$	y	

SECTION 3

N-sample Vectorization

$$\hat{y} = wx + b \qquad \mathbf{y} = \begin{bmatrix} 1 \\ x \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix}$$

Transpose

$$\vec{v} = \begin{bmatrix} v_1 \\ \dots \\ v_n \end{bmatrix} \qquad \qquad \vec{v}^T = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$

$$\vec{v}^T = [v_1 \dots v_n]$$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \dots & \dots & \dots \\ a_{1n} & \dots & a_{mn} \end{bmatrix}$$

$$\mathbf{A}^T = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \dots & \dots & \dots \\ a_{1n} & \dots & a_{mn} \end{bmatrix}$$

```
import numpy as np
# create data
 data = np.array([1,2,3])
factor = 2
# broadcasting
result multiplication = data*factor
```

[1 2 3] [2 4 6]

Multiply with a number

$$\alpha \vec{u} = \alpha \begin{bmatrix} u_1 \\ \dots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \dots \\ \alpha u_n \end{bmatrix}$$

Feature	Label	
area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	
$\boldsymbol{\chi}$	y	

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

Traditional

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial h} = 2(\hat{y} - y)$$

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix} \qquad \boldsymbol{\theta}^T = \begin{bmatrix} b & w \end{bmatrix}$$

$$\hat{y} = wx + b1 = \begin{bmatrix} b & w \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \boldsymbol{\theta}^T x$$

$$\text{dot product}$$

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

Traditional

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$L(\hat{y}, y) = (\hat{y} - y)^2$$
numbers

What will we do?

1) Pick a sample (x, y) from training data

Linear Regression (1-samples)

2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

Traditional

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b \qquad (= \begin{bmatrix} b \\ x \end{bmatrix}) \quad \theta = \begin{bmatrix} b \\ w \end{bmatrix}$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y) = 2 \times (\hat{y} - y) \times 1$$

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) = 2 \times (\hat{y} - y) \times x$$

$$= L'_{\theta} \qquad \rightarrow \qquad L'_{\theta} = 2 \chi(\hat{y} - y)$$

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

3) Compute loss

$$L = (\hat{y} - y)^2$$

 $\hat{y} = wx + b$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\hat{y} = wx + b$$

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$L'_{\theta} = \begin{bmatrix} \frac{\partial L}{\partial b} \\ \frac{\partial L}{\partial w} \end{bmatrix}$$

$$\theta = \begin{bmatrix} b \\ w \end{bmatrix}$$

$$\begin{bmatrix}
b \\
b
\end{bmatrix} = \begin{bmatrix}
b \\
- \eta
\end{bmatrix} - \eta \begin{bmatrix}
\frac{\partial L}{\partial b}
\end{bmatrix} \\
w = \begin{bmatrix}
w \\
- \eta
\end{bmatrix} \frac{\partial L}{\partial w}
\end{bmatrix} \\
\frac{\partial L}{\partial w}$$

$$\rightarrow \boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

Vectorized

Linear Regression (1-samples)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

Traditional

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L_{\boldsymbol{\theta}}' = 2\boldsymbol{x}(\hat{y} - y)$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

$$\eta \text{ is learning rate}$$

$$\hat{y} = wx + b$$

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix} \quad \boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix}$$

Feature	Label	
aroa	price	
area		
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	
$\boldsymbol{\mathcal{X}}$	y	

$\mathbf{X} = \begin{bmatrix} 1 \\ \chi \end{bmatrix} = \begin{bmatrix} 1 \\ 6.7 \end{bmatrix}$

Given
$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix} = \begin{bmatrix} 0.049 \\ -0.34 \end{bmatrix}$$

$$\eta = 0.01$$

\rightarrow 1) Pick a sample (**x**, y) from training data

2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L'_{\boldsymbol{\theta}} = 2\boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

 η is learning rate

Implementation (vectorization using numpy)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$m{ heta} = m{ heta} - \eta L_{m{ heta}}'$$
 η is learning rate

```
import numpy as np
    # forward
   def predict(x, theta):
        return x.dot(theta)
    # compute gradient
8 - def gradient(y_hat, y, x):
        dtheta = 2*x*(y hat-y)
10
11
        return dtheta
12
   # update weights
14 - def update_weight(theta, lr, dtheta):
        dtheta_new = theta - lr*dtheta
15
16
        return dtheta_new
```

$$\hat{y} = wx + b$$

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix} \quad \theta = \begin{bmatrix} b \\ w \end{bmatrix}$$

Feature		Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
į	3.5	4.6	
	5.5	6.7	
	$\boldsymbol{\mathcal{X}}$	y	

$x = \begin{bmatrix} 1 \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ 3.5 \end{bmatrix}$

Given
$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}$$

$$\eta = 0.01$$

- \rightarrow 1) Pick a sample (x, y) from training data
 - 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L'_{\boldsymbol{\theta}} = 2\boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

 η is learning rate


```
data = np.genfromtxt('data.csv', delimiter='.')
                                                          1 lr = 0.01
   N = 4
                                                          2 epoch max = 10
                                                          3
 5
                                                          4 # [b, w]
   areas = data[:, 0].reshape(N, 1)
                                                          5 theta = np.array([0.049, -0.34])
   prices = data[:, 1].reshape(N,)
                                                          6
8
                                                             for epoch in range(epoch_max):
   # vector [1, area]
                                                                 for i in range(N):
                                                          8
   features = np.hstack([np.ones((N,1)), areas])
                                                          9
                                                                     # get a sample
                                                                     x = features[i,:]
                                                         10
1 # forward
                                                                     y = prices[i]
                                                         11
 2 def predict(x, theta):
                                                         12
        return x.T.dot(theta)
                                                         13
                                                                     # predict y hat
4
                                                                     y hat = predict(x, theta)
                                                         14
     compute gradient
                                                         15
   def gradient(y_hat, y, x):
                                                                     # compute Loss
                                                         16
 7
        dtheta = 2*x*(y_hat-y)
                                                                     loss = (y hat-y)*(y_hat-y)
                                                         17
        return dtheta
8
                                                         18
9
                                                                     # compute gradient
                                                         19
   # update weights
10
                                                         20
                                                                     dtheta = gradient(y_hat, y, x)
   def update_weight(theta, lr, dtheta):
                                                         21
12
        dtheta new = theta - lr*dtheta
                                                                     # update weights
                                                         22
        return dtheta new
13
                                                                     theta = update weight(theta, lr, dtheta)
                                                         23
```

Advertising Problem

	Featur	res	Label
TV	≑ Radio	Newspaper	≑ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=?

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

$$x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\theta = \begin{bmatrix} b \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

- 1) Pick a sample (\mathbf{x}, \mathbf{y}) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L'_{\boldsymbol{\theta}} = 2\boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta L_{\boldsymbol{\theta}}'$$

 η is learning rate

Outline

SECTION 1

1-sample Vectorization

SECTION 2

m-sample Vectorization

SECTION 3

N-sample Vectorization

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Way 1 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

Way 2 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

Linear Regression

***** Vectorization

	Feature	Label	
	area	price	
House_	6.7	9.1 👤	
price-	4.6	5.9	// .
-	3.5	4.6	MIL
data	5.5	6.7	
	•		1

Model

price = w * area + b $\hat{y} = wx + b$

$$\mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \\ 4.6 \\ 6.7 \end{bmatrix}$$

Parameter Initialization

$$\theta = \begin{pmatrix} w \\ b \end{pmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Way 1 for constructing matrix **x**

Way 2 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

Feature	Label
area	price
6.7	9.1
4.6	5.9

- House price prediction
 - **❖** m-sample training (1<m<N)

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Compute loss

$$\int L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^{2}$$

4) Compute derivative

$$\underbrace{L_w^{\prime(i)}}_{L_b^{\prime(i)}} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})
\underline{L_b^{\prime(i)}}_{L_b^{\prime(i)}} = 2(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

5) Update parameters

$$w = w - \eta \frac{\sum_{i} L_{w}^{\prime(i)}}{m}$$

$$b = b - \eta \frac{\sum_{i} L_{b}^{\prime(i)}}{m}$$

Learning rate η

Label	
price	
9.1	
5.9	
	price 9.1

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Compute loss

$$L = \sum_{i=1}^{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^{2}$$

4) Compute derivative

$$L_w^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$L_h^{\prime(i)} = 2(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

5) Update parameters

$$w = w - \eta \frac{\sum_{i} L_{w}^{\prime(i)}}{m}$$

$$b = b - \eta \frac{\sum_{i} L_{b}^{\prime(i)}}{m}$$
Learning rate η

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \mathbf{x}^{(i)} = (\mathbf{x}^{(i)})^T \boldsymbol{\theta} \quad \text{for } 0 \le i < m$$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{(i)} = 2\chi^{(i)}(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < m$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$

 η is learning rate

Implementation - Differences

Feature		Label	
	area	price	
	6.7	9.1	
	4.6	5.9	

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$L_{\boldsymbol{\theta}}' = 2\boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\theta = \theta - \eta L'_{\theta}$$
 η is learning rate

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta \frac{\sum_i L_{oldsymbol{ heta}}^{\prime(i)}}{m}$$
 η is learning rate

```
# vector [x, b]
    data = np.c_[areas, np.ones((data_size, 1))]
    # init weight
    lr = 0.01
    theta = np.array([-0.34, 0.04]) #[w, b]
    # number of epochs
    epoch_max = 10
10
    # mini-batch size
    \mathbf{m} = 2
```

Linear Regression

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$m{ heta} = m{ heta} - \eta \frac{\sum_i L_{m{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

```
14 for epoch in range(epoch max):
      for j in range(0, data_size, m):
16
           # some variables
17
            sum_of_losses = 0
18
            gradients = np.zeros((2,))
19
     for index in range(j, j+m):
                # get mini-batch
21
               x_i = data[index]
22
                y_i = prices[index]
23
24
                # predict y hat i
25
26
                y_hat_i = x_i.dot(theta)
27
                # compute loss
28
                li = (y hat i - y i)*(y hat i - y i)
29
30
                # compute gradient
31
                gradient_i = x_i*2*(y_hat_i - y_i)
32
33
                # accumulate gradients
34
                gradients = gradients + gradient_i
35
                sum_of_losses = sum_of_losses + l_i
37
            # normalize
38
            sum of losses = sum of losses/2
                          = gradients/2
            gradients
40
```


- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

5) Update parameters

$$m{ heta} = m{ heta} - \eta \frac{\sum_i L_{m{ heta}}^{\prime(i)}}{m}$$
 η is learning rate

More vectorization

Feature		Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

way 1

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

F	Teature	Label
	area	price
	6.7	9.1
	4.6	5.9
	3.5	4.6
	5.5	6.7

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \quad \text{for } 0 \le i < m$$

$$m{ heta} = m{ heta} - \eta \frac{\sum_i L_{m{ heta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$
 $y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$ 3.5 4.6 5.5 6.7

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \boldsymbol{\theta}^T X$$

$$= \begin{bmatrix} -0.34 & 0.049 \end{bmatrix} \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -2.238 & -1.524 \end{bmatrix}$$

Feature Label

area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \quad \text{for } 0 \le i < m$$

5) Update parameters

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta \frac{\sum_i L_{oldsymbol{ heta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

 $= \frac{1}{2}(128.5 + 55.11) = 91.8$

$$\hat{y} = \theta^T X = [-2.238 - 1.524]$$

$$L = \frac{1}{m} [(\hat{y}^{(0)} - y^{(0)})^2 + (\hat{y}^{(1)} - y^{(1)})^2]$$

$$= \frac{1}{m} [(\hat{y}^{(0)} - y^{(0)}) \quad (\hat{y}^{(1)} - y^{(1)})] [(\hat{y}^{(0)} - y^{(0)})]$$

$$= \frac{1}{m} (\hat{y} - y^T) (\hat{y} - y^T)^T$$

Feature Label

area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
 - 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \theta^T X = [-2.238 - 1.524]$$

$$k = 2(\hat{y} - y^T)$$

= [-22.676 - 14.848]

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

Feature Label

area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \theta^T X = [-2.238 - 1.524]$$

$$k = 2(\hat{y} - y^T)$$

= [-22.676 - 14.848]

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

Take a look and improve

Way 1.1

price area 6.7 9.1 5.9 4.6 4.6 5.5 6.7

Label

Feature

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \boldsymbol{\theta}^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\hat{y} - \mathbf{y}^T) = 2(\hat{y} - \mathbf{y}^T)$$

= $[-22.676 - 14.848]$

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

Take a look and improve

Gradient for w from $x^{(i)}$

Gradient for b from $x^{(i)}$

Feature Label

area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.347 \\ 0.049 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \boldsymbol{\theta}^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\hat{y} - \mathbf{y}^T) = 2(\hat{y} - \mathbf{y}^T)$$

= $[-22.676 - 14.848]$

$$x = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

$${k \brack k} = \begin{bmatrix} -22.676 & -14.848 \\ -22.676 & -14.848 \end{bmatrix}$$

$${k \brack k} \odot X = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix}$$

$$L'_{\theta} = \left(\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

 Feature
 Label

 area
 price

 6.7
 9.1

 4.6
 5.9

5.5

4.6

6.7

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \quad \text{for } 0 \le i < m$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \boldsymbol{\theta}^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y}^T)$$

$$L_{\boldsymbol{\theta}}' = \left(\begin{bmatrix} \boldsymbol{k} \\ \boldsymbol{k} \end{bmatrix} \odot X \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

eature Label

area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \boldsymbol{\theta}^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\hat{y} - \mathbf{y}^T)$$

$$L'_{\boldsymbol{\theta}} = \left(\begin{bmatrix} \boldsymbol{k} \\ \boldsymbol{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix} \qquad \begin{aligned} \eta &= 0.01 \\ m &= 2 \end{aligned}$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

$$= \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix} - 0.005 \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix} = \begin{bmatrix} 0.761 \\ 0.227 \end{bmatrix}$$

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)}$$

for $0 \le i < m$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2$$
 for $0 \le i < m$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < m$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \boldsymbol{\theta}^T X$$

3) Compute loss

$$L = \frac{1}{m} (\widehat{y} - y^{T}) (\widehat{y} - y^{T})^{T}$$

4) Tính đạo hàm

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y}^T)$$

⊙ is element-wise multiplication

$$L_{\boldsymbol{\theta}}' = \left(\begin{bmatrix} \boldsymbol{k} \\ \boldsymbol{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5) Cập nhật tham số

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

Linear Regression

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \theta^T X$$

3) Compute loss

$$L = \frac{1}{m} (\widehat{y} - y^{T}) (\widehat{y} - y^{T})^{T}$$

4) Compute derivative

$$k = 2(\hat{y} - y^T)$$
 of is element-wise multiplication

$$L_{\boldsymbol{\theta}}' = \left(\begin{bmatrix} \boldsymbol{k} \\ \boldsymbol{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

```
import numpy as np
    import matplotlib.pyplot as plt
 3
    data = np.genfromtxt('data.csv', delimiter=',')
    areas = data[:,0]
    prices = data[:,1:]
    N = areas.size
 9 # vector [x, b]^T
    data = np.vstack([areas, np.ones((N,))])
11
12 # [w, b]
    theta = np.array([[-0.34],
14
                      [0.04]])
15
16 # params
17 	 lr = 0.01
   epoch_max = 1
19 m = 2
20
   # logging
    losses = []
```


- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \theta^T X$$

3) Compute loss

$$L = \frac{1}{m} (\widehat{y} - y^{T}) (\widehat{y} - y^{T})^{T}$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y}^T)$$

⊙ is element-wise multiplication

$$L_{\boldsymbol{\theta}}' = \left(\begin{bmatrix} \boldsymbol{k} \\ \boldsymbol{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

More generalized formula

```
for epoch in range(epoch_max):
        for i in range(0, N, m):
            x = data[:, i:i+m]
            y = prices[i:i+m, :]
            y_hat = theta.T.dot(x)
10
            loss = np.multiply((y_hat-y.T), (y_hat-y.T))
12
            losses.append(np.mean(loss))
13
14
15
            k = 2*(y_hat-y.T)
            gradients = np.multiply(np.vstack((k, k)), x)
16
            gradients = gradients.dot(np.ones((m, 1))) / m
17
18
19
20
            theta = theta - lr*gradients
```

Feature

area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix} \qquad =$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \theta^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\hat{\mathbf{y}} - \mathbf{y}^T)$$

$$= [-22.676 - 14.848]$$

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

$${k \brack k} \odot X = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix}$$

$$L'_{\theta} = \left(\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

Feature Label

area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{\theta}$$
 for $0 \le i < m$

3) Compute loss

$$L = \frac{1}{m} \sum_{i} (\hat{y}^{(i)} - y^{(i)})^2$$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$
 for $0 \le i < m$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{m}$$
 η is learning rate

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}}) (\widehat{\boldsymbol{y}} - \boldsymbol{y}^{\mathrm{T}})^{\mathrm{T}}$$

$$\hat{y} = \theta^T X = [-2.238 - 1.524]$$

$$\mathbf{k} = 2(\hat{\mathbf{y}} - \mathbf{y}^T)$$

= $[-22.676 - 14.848]$

$$X = \begin{bmatrix} 6.7 & 4.6 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} \odot \mathbf{X} = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix}$$

$$L_{\boldsymbol{\theta}}' = X \boldsymbol{k}^T$$

$$L'_{\theta} = \left(\begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} \odot \mathbf{X} \right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -151.92 & -68.301 \\ -22.676 & -14.848 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

Linear Regression

Way 1.2

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \theta^T X$$

3) Compute loss

$$L = \frac{1}{m} (\widehat{y} - y^{T}) (\widehat{y} - y^{T})^{T}$$

4) Compute derivative

$$k = 2(\widehat{y} - y^T)$$
$$L'_{\theta} = Xk^T$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

More generalized formula

```
import numpy as np
    import matplotlib.pyplot as plt
 3
    data = np.genfromtxt('data.csv', delimiter=',')
    areas = data[:,0]
    prices = data[:,1:]
    N = areas.size
    data = np.vstack([areas, np.ones((N,))])
11
12 # [w, b]
    theta = np.array([[-0.34],
14
                      [0.04]])
15
16 # params
17 	 lr = 0.01
   epoch_max = 1
   m = 2
20
21 # logging
   losses = []
```


Way 1.2

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = \theta^T X$$

3) Compute loss

$$L = \frac{1}{m} (\widehat{y} - y^{T}) (\widehat{y} - y^{T})^{T}$$

4) Compute derivative

$$k = 2(\hat{y} - y^T)$$
$$L'_{\theta} = Xk^T$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

More generalized formula

```
for epoch in range(epoch_max):
        for i in range(0, N, m):
 3
            x = data[:, i:i+m]
            y = prices[i:i+m, :]
 6
            y_hat = theta.T.dot(x)
 8
10
            loss = np.multiply((y_hat-y.T), (y_hat-y.T))
12
            losses.append(np.mean(loss))
13
14
15
            k = 2*(y_hat-y.T)
16
            gradients = x.dot(k.T) / m
17
18
            theta = theta - lr*gradients
```


What about this arrangement?

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\hat{y} = X\theta = \begin{bmatrix} -2.238 \\ -1.524 \end{bmatrix}$$

$$L = \frac{1}{m} (\hat{y} - y)^{T} (\hat{y} - y) = \frac{1}{2} (128.5 + 55.11) = 91.8$$

$$k = 2(\hat{y} - y) = \begin{bmatrix} -22.676 \\ -14.848 \end{bmatrix}$$

$$L'_{\theta} = \mathbf{k}^T X = \begin{bmatrix} -22.676 \\ -14.848 \end{bmatrix} \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \left(\frac{L_{\boldsymbol{\theta}}'}{m}\right)^{T}$$

$$= \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix} - 0.005 \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix} = \begin{bmatrix} 0.761 \\ 0.227 \end{bmatrix}$$

***** What about this arrangement?

Feature	Label	
area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = X\theta$$

3) Compute loss

$$L = \frac{1}{m}(\widehat{y} - y)^{\mathrm{T}}(\widehat{y} - y)$$

4) Compute derivative

$$k = 2(\hat{y} - y)$$

$$L_{\boldsymbol{\theta}}' = \boldsymbol{k}^T X$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \left(\frac{L_{\boldsymbol{\theta}}'}{m}\right)^T$$
 η is learning rate

What about this arrangement?

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

$$\hat{y} = X\boldsymbol{\theta} = \begin{bmatrix} -2.238 \\ -1.524 \end{bmatrix}$$

$$L = \frac{1}{m} (\widehat{\mathbf{y}} - \mathbf{y})^{\mathrm{T}} (\widehat{\mathbf{y}} - \mathbf{y})$$

$$\mathbf{k} = 2(\hat{\mathbf{y}} - \mathbf{y}) = \begin{bmatrix} -22.676 \\ -14.848 \end{bmatrix}$$

$$L'_{\theta} = X^T k = \begin{bmatrix} 6.7 \\ 1 \end{bmatrix} \begin{bmatrix} -22.676 \\ -14.848 \end{bmatrix} = \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix}$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

$$= \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix} - 0.005 \begin{bmatrix} -220.23 \\ -37.524 \end{bmatrix} = \begin{bmatrix} 0.761 \\ 0.227 \end{bmatrix}$$

What about this arrangement?

]	Feature	Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

- 1) Pick m samples (x, y) from training data
- 2) Compute output \hat{y}

$$\hat{y} = X\theta$$

3) Compute loss

$$L = \frac{1}{m}(\widehat{y} - y)^{\mathrm{T}}(\widehat{y} - y)$$

4) Compute derivative

$$k = 2(\hat{y} - y)$$

$$L_{\boldsymbol{\theta}}' = \mathbf{X}^T \boldsymbol{k}$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{m}$$

 η is learning rate

Outline

SECTION 1

1-sample Vectorization

SECTION 2

m-sample Vectorization

SECTION 3

N-sample Vectorization

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Way 1 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 4.6 & 3.5 & 5.5 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Way 2 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 1 \\ 4.6 & 1 \\ 3.5 & 1 \\ 5.5 & 1 \end{bmatrix}$$

***** House price prediction

❖ N-sample training

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Compute derivative

$$L_w^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$L_h^{\prime(i)} = 2(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < N$$

$$w = w - \eta \frac{\sum_{i} L_{w}^{\prime(i)}}{N}$$

$$b = b - \eta \frac{\sum_{i} L_{b}^{\prime(i)}}{N}$$
Learning rate η

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Compute derivative

$$L_w^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$L_h^{\prime(i)} = 2(\hat{y}^{(i)} - y^{(i)}) \quad \text{for } 0 \le i < N$$

5) Update parameters
$$w = w - \eta \frac{\sum_{i} L'_{w}^{(i)}}{N}$$

$$b = b - \eta \frac{\sum_{i} L'_{b}^{(i)}}{N}$$
 η is learning rate

Friendly version

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)} \qquad \text{for } 0 \le i < N$$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2$$
 for $0 \le i < N$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < N$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{N}$$
 η is learning rate

Generalized formula

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{\mathbf{y}}^{(i)} = \boldsymbol{\theta}^T \mathbf{x}^{(i)}$$

for $0 \le i < N$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2$$
 for $0 \le i < N$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < N$$

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{N}$$
 η is learning rate

```
import numpy as np
   from numpy import genfromtxt
    data = genfromtxt('data.csv', delimiter=',')
    areas = data[:,0]
   prices = data[:,1]
   data_size = areas.size
 8
   # vector [x, b]
    data = np.c_[areas, np.ones((data_size, 1))]
11
   n_epochs = 10
   lr = 0.01
14
   theta = np.array([[-0.34],[0.04]])
```

Linear Regression

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{y}^{(i)}$

$$\hat{\mathbf{y}}^{(i)} = \boldsymbol{\theta}^T \mathbf{x}^{(i)}$$

for $0 \le i < N$

3) Compute loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2$$
 for $0 \le i < N$

4) Compute derivative

$$L_{\theta}^{\prime(i)} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)}) \text{ for } 0 \le i < N$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{\sum_{i} L_{\boldsymbol{\theta}}^{\prime(i)}}{N}$$
 η is learning rate

Generalized formula

```
losses = [] # for debug
   for epoch in range(n epochs):
        sum of losses = 0
        gradients = np.zeros((2,1))
        for index in range(data_size):
            # get data
            x_i = data[index:index+1]
            y_i = prices[index:index+1]
10
            # compute output y_hat_i
11
            y_hat_i = x_i.dot(theta)
12
13
            # compute loss
            l_i = (y_{at_i} - y_i)^*(y_{at_i} - y_i)
            # compute gradient
            g l i = 2*(y hat i - y i)
            gradient = x i.T.dot(g l i)
20
            # accumulate gradient
            gradients = gradients + gradient
            sum_of_losses = sum_of_losses + 1_i
23
        # normalize
        sum_of_losses = sum_of_losses/data_size
                      = gradients/data_size
        gradients
        # for debug
        losses.append(sum_of_losses[0][0])
        # update
        theta = theta - lr*gradients
```


Linear Regression

Vectorization

rice
9.1
5.9
4.6
6.7

Model

price =
$$w * area + b$$
 $\hat{y} = wx + b$

$$\mathbf{y} = \begin{bmatrix} 9.1 \\ 5.9 \\ 4.6 \\ 6.7 \end{bmatrix}$$

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Way 1 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 4.6 & 3.5 & 5.5 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Way 2 for constructing matrix **x**

$$X = \begin{bmatrix} 6.7 & 1\\ 4.6 & 1\\ 3.5 & 1\\ 5.5 & 1 \end{bmatrix}$$

Linear Regression [1]

Training

data

Pick all the N

samples (x, y)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House Price Data

Model

price =
$$w * area + b$$

 $\hat{y} = wx + b$

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Compute output \hat{y}

Compute derivative

Update parameters

1) Pick all the N samples from training data

2) Compute output $\hat{\mathbf{y}}$

$$\widehat{\boldsymbol{y}} = \boldsymbol{\theta}^T \mathbf{X}$$

3) Compute loss

$$L = \frac{1}{N}(\widehat{y} - y)(\widehat{y} - y)^{\mathrm{T}}$$

4) Compute derivative

$$\boldsymbol{k} = 2(\widehat{\boldsymbol{y}} - \boldsymbol{y}^T)$$

$$L'_{\boldsymbol{\theta}} = X \boldsymbol{k}^T$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{N}$$

 η is learning rate

Vectorization Approach

Linear Regression [2]

Training

data

Pick all the N

samples (x, y)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House Price Data

Model

price =
$$w * area + b$$

 $\hat{y} = wx + b$

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Compute output $\widehat{m{y}}$

Compute loss

Compute derivative

Update parameters

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = X\theta$$

3) Compute loss

$$L = \frac{1}{N} (\widehat{\mathbf{y}} - \mathbf{y})^{\mathrm{T}} (\widehat{\mathbf{y}} - \mathbf{y})$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y})$$

$$L'_{\boldsymbol{\theta}} = \boldsymbol{k}^T X$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \left(\frac{L_{\boldsymbol{\theta}}'}{N} \right)^{T}$$

 η is learning rate

Vectorization Approach

Linear Regression [3]

Training

data

Pick all the N

samples (x, y)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House Price Data

Model

price =
$$w * area + b$$

 $\hat{y} = wx + b$

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Compute output \hat{y}

Compute 10

Compute derivative

Update parameters

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\widehat{y} = X \theta$$

3) Compute loss

$$L = \frac{1}{N} (\widehat{y} - y)^{\mathrm{T}} (\widehat{y} - y)$$

4) Compute derivative

$$k = 2(\hat{y} - y)$$

$$L'_{\boldsymbol{\theta}} = \mathbf{X}^T \boldsymbol{k}$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{N}$$

 η is learning rate

Vectorization Approach

Summary

Feature	Label	
area	price	
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

House Price Data

Model

price =
$$w * area + b$$
 $\hat{y} = wx + b$

Parameter Initialization

$$\boldsymbol{\theta} = \begin{bmatrix} w \\ b \end{bmatrix} = \begin{bmatrix} -0.34 \\ 0.049 \end{bmatrix}$$

Training Compute loss

Pick all the N

samples (x, y)

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = X \theta$$

3) Compute loss

$$L = \frac{1}{N} (\widehat{\mathbf{y}} - \mathbf{y})^{\mathrm{T}} (\widehat{\mathbf{y}} - \mathbf{y})$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y})$$
$$L'_{\boldsymbol{\theta}} = X^T \mathbf{k}$$

5) Update parameters

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta \frac{L_{oldsymbol{ heta}}'}{N}$$
 η is learning rate

for epoch in range(epoch_max):
 y_hat = x.dot(theta)

loss = np.multiply((y_hat-y), (y_hat-y))
losses.append(np.mean(loss))

k = 2*(y_hat-y)
gradients = x.T.dot(k) / N

theta = theta - lr*gradients

