## Table of derivatives and antiderivatives

Note that a, c denote constants.

| $\overline{\text{ derivative }} \leftarrow$                                | $ function \qquad \rightarrow \qquad$                                                                  | anti-derivative                             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|
| f'(x)                                                                      | f(x)                                                                                                   | F(x)                                        |
| 0                                                                          | a                                                                                                      | ax + c                                      |
| $nx^{n-1}$                                                                 | $x^n \ (n \neq 0, -1)$                                                                                 | $\frac{x^{n+1}}{n+1} + c$                   |
| $\frac{-1}{(x-a)^2}$                                                       | $\frac{1}{x-a} \ (x \neq a)$                                                                           | $\ln x-a +c$                                |
| $\frac{-b}{(x-a)^{b+1}}$ $e^x$                                             | $\frac{1}{(x-a)^b} (x \neq a, b \ge 2)$ $\exp(x) = e^x$                                                | $\frac{-1}{(b-1)(x-a)^{b-1}} + c$ $e^x + c$ |
| $\frac{1}{x}$                                                              | $ \ln x \ (x > 0) $                                                                                    | $x \ln x - x + c$                           |
| $\cos x$                                                                   | $\sin x$                                                                                               | $-\cos x + c$                               |
| $-\sin x$                                                                  | $\cos x$                                                                                               | $\sin x + c$                                |
| $\frac{1}{\cos^2 x}$                                                       | $\tan x$                                                                                               | $-\ln( \cos x ) + c$                        |
| $\frac{1}{\sqrt{1-x^2}}$                                                   | $a\sin x \ (-1 < x < 1)$                                                                               | _                                           |
| $ \frac{1}{\sqrt{1-x^2}} $ $ -\frac{1}{\sqrt{1-x^2}} $ $ \frac{1}{1+x^2} $ | $a\cos x \ (-1 < x < 1)$                                                                               | _                                           |
| $\frac{1}{1+x^2}$                                                          | a tan x                                                                                                | _                                           |
| _                                                                          | $\frac{1}{\sqrt{1-x^2}} \left( -1 < x < 1 \right)$ $-\frac{1}{\sqrt{1-x^2}} \left( -1 < x < 1 \right)$ | $a\sin x + c$                               |
| _                                                                          | $-\frac{1}{\sqrt{1-x^2}} \left( -1 < x < 1 \right)$                                                    | $a\cos x + c$                               |
|                                                                            | $\frac{1}{1+x^2}$                                                                                      | a tan x + c                                 |

## Laplace Transform Table

$$\mathcal{L}(f(t)) = F(s) = \int_0^\infty f(t)e^{-st} dt$$

| SPECIFIC FUNCTIONS              |                                                              | GENERAL RULES               |                     |  |  |
|---------------------------------|--------------------------------------------------------------|-----------------------------|---------------------|--|--|
| F(s)                            | f(t)                                                         | F(s)                        | f(t)                |  |  |
| $\frac{1}{s}$                   | 1                                                            | $\frac{e^{-as}}{s}$         | H(t-a)              |  |  |
| $\frac{1}{s^n},  n \in Z^+$     | $\frac{t^{n-1}}{(n-1)!}$                                     | $e^{-as}F(s)$               | f(t-a)H(t-a)        |  |  |
| $\frac{1}{s+a}$                 | $e^{-at}$                                                    | F(s-a)                      | $e^{at}f(t)$        |  |  |
| $\frac{1}{(s+a)^n},  n \in Z^+$ | $e^{-at}\frac{t^{n-1}}{(n-1)!}$                              | sF(s) - f(0)                | f'(t)               |  |  |
| $\frac{1}{s^2 + \omega^2}$      | $\frac{\sin(\omega t)}{\omega}$                              | $s^2 F(s) - s f(0) - f'(0)$ | f''(t)              |  |  |
| $\frac{s}{s^2 + \omega^2}$      | $\cos(\omega t)$                                             | F'(s)                       | -tf(t)              |  |  |
| $\frac{1}{(s+a)^2 + \omega^2}$  | $\frac{e^{-at}\sin(\omega t)}{\omega}$                       | $F^{(n)}(s)$                | $(-t)^n f(t)$       |  |  |
| $\frac{s+a}{(s+a)^2+\omega^2}$  | $e^{-at}\cos(\omega t)$                                      | $\frac{F(s)}{s}$            | $\int_0^t f(u)  du$ |  |  |
| $\frac{1}{(s^2 + \omega^2)^2}$  | $\frac{\sin(\omega t) - \omega t \cos(\omega t)}{2\omega^3}$ | F(s)G(s)                    | (f*g)(t)            |  |  |
| $\frac{s}{(s^2 + \omega^2)^2}$  | $\frac{t\sin(\omega t)}{2\omega}$                            |                             |                     |  |  |

Higher derivatives:

$$\mathcal{L}\left(f^{(n)}(t)\right) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

The Convolution Theorem:

$$\mathcal{L}(f * g) = \mathcal{L}(f)\mathcal{L}(g)$$
 where  $(f * g)(t) = \int_0^t f(u)g(t - u) du$ 

Cumulative Standard Normal Probabilities (for z > 0). The table below gives  $F_Z(z)$  where  $Z \sim N(0,1)$  (see shaded area in the Figure).



| z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
| 3.5 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |