

DB2 Storage Optimization

Current IT Storage Spending

"Reducing storage-related costs is again a top priority in 2011, as many organizations continue to struggle with taming data growth"

Gartner

"Data growth is the biggest data center hardware infrastructure challenge for large enterprises"

"...power consumption by data centers doubled from 2000 to 2005 ...in 2012, [the census] did predict growth in the Eastern United States of some 22 percent"

The New Hork Times

Agenda

- Compression Overview
- Storage Optimization in DB2
 - Value Compression
 - Row Compression
 - Temporary Table Compression
 - XML Compression
 - Index Compression
 - Backup Compression
- Compression Benefits
- Client Success

Compression Overview

- Requires less storage space and memory
 - Usually the most expensive component in a database solution
- Helps manage storage growth
 - Saves on power and cooling
- Helps improve database performance
 - Fewer I/O operations required
- Reduce administration costs and increase productivity of the IT team
- Facilitates lower cost of ownership

Storage Optimization in DB2

- Provides storage compression services to optimize the performance and footprint of your data
- Basic compression features included in several editions
- Advanced compression features bundled as DB2 Storage
 Optimization Feature, included in Advanced Enterprise Server edition
 - Available for DB2 Enterprise Server edition with a PVU license

^{*} Included in DB2 Storage Optimization Feature

5

Row Compression

- Also known as deep compression
- Uses a dictionary-based compression algorithm to replace recurring strings with shorter symbols within rows
- Continuous enhancement since it was introduced in DB2 9.1

Index compression*

LOB inlining

- Two types available:
 - Classic (static) row compression
 - Adaptive row compression
 - An enhancement to classic row compression to provide extra storage savings
- Included in DB2 Storage Optimization Feature

© 2012 IBM Corporation

New in

DB2 10

Understanding the Basics

Row Compression - Classic

- Also referred to as static row compression
- Uses a table-level compression dictionary (1 dictionary per table) to compress data by row, across multiple columns
- Dictionary is used to map repeated byte patterns to smaller symbols. These smaller symbols replace long patterns in table rows.
- After dictionary is created, data is compressed as it is inserted/updated in the table.
 - DB2 automatically creates the dictionary when enough the table has enough data for sampling

Name	Dept	Salary	City	ST	ZIP
Bob	smpo	30000	Dallas	TX	75063
John	smpo	25000	Dallas	TX	75063

Dictionary				
(01)	smpo			
(02)	Dallar, TX, 75063			

Row Compression - Adaptive

- Adaptive Compression is an enhancement to the Classic Row Compression
 - Compress rows by using a combination of two types of dictionaries
 - Global static table level dictionary
 - Local page level dictionaries

Benefits

- Page level dictionaries adapt to data skew over a period of time
- No REORGs required to maintain high compression ratio
- Less disk space for data and logs
- Reduced I/O. Fewer pages to process

- Better compression ratios than Classic Row Compression
- Over time reduces need of a REORG as page-level dictionaries adapt to data skew over time (i.e. maintain compression rates)
- Default row compression method in DB2 10

How Does Adaptive Compression Work?

Step 1: Compression with static table level dictionary

Christine	Haas	(408) 463-1234	555 Bailey Ave	nue	San Jos	se	California	95141
John	Thompson	(408) 463-5678	555 Bailey Ave	nue	San Jos	se	California	95141
Jose	Fernandez	(408) 463-1357	555 Bailey Ave	nue	San Jos	se	California	95141
Margaret	Miller	(408) 463-2468	555 Bailey Ave	nue	San Jos	se	California	95141
Bruce	Kwan	(408) 956-9876	4400 North 1st	Street	San Jos	se	California	95134
James	Geyer	(408) 956-5432	4400 North 1st	Street	San <mark>Jo</mark>	se	California	95134
Linda	Hernandez	(408) 956-9753	4400 North 1st	Street	San <mark>Jo</mark>	se	California	95134
Theodore	Mills	(408) 927-8642	650 Harry Road	b	San <mark>Jo</mark>	se	California	95134
Susan	Stern	(408) 927-9630	650 Harry Road	b	San <mark>Jo</mark>	se	California	95134
James	Polaski	(415) 545-1423	425 Market Str	eet	San Fra	ancisco	California	94105
John	Miller	(415) 545-5867	425 Market Str	eet	San Fra	ancisco	California	94105
James	Walker	(415) 545-4132	425 Market Str	eet	San Fra	ancisco	California	94105
Elizabeth	Brown	(415) 545-8576	425 Market Str	eet	San Fra	ancisco	California	94105
Sarah	Johnson	(415) 545-1928	425 Market Str	eet	San Fra	ancisco	California	94105

	[1]	California 9
	[2]	San
	[3]	Jose
	[4]	Francisco
	[5]	Avenue
	[6]	Street
	[7]	Road
Compression with global table static dictionary		

- Table level compression symbol dictionary containing globally recurring patterns
- Table-level dictionary can only be rebuilt during Classic Table REORG
 - Involves re-compressing all data

Christine	Haas	(408) 463-1234	555 Bailey [5]	[2][3]	[1]	95141
John	Thompson	(408) 463-5678	555 Bailey [5]	[2][3]	[1]	95141
[3]	Fernandez	(408) 463-1357	555 Bailey [5]	[2][3]	[1]	95141
Margaret	Schneider	(408) 463-2468	555 Bailey [5]	[2][3]	[1]	95141
Bruce	Kwan	(408) 956-9876	4400 North 1st [6]	[2][3]	[1]	95134
James	Geyer	(408) 956-5432	4400 North 1st [6]	[2][3]	[1]	95134
Linda	Hernandez	(408) 956-9753	4400 North 1st [6]	[2][3]	[1]	95134
Theodore	Mills	(408) 927-8642	650 Harry [7]	[2][3]	[1]	95134
Susan	Stern	(408) 927-9630	650 Harry [7]	[2][3]	[1]	95134
James	Polaski	(415) 545-1423	425 Market [6]	[2][4]	[1]	94105
John	Miller	(415) 545-5867	425 Market [6]	[2][4]	[1]	94105
James	Walker	(415) 545-4132	425 Market [6]	[2][4]	[1]	94105
Elizabeth	Miller	(415) 545-8576	425 Market [6]	[2][4]	[1]	94105
Sarah	Johnson	(415) 545-1928	425 Market [6]	[2][4]	[1]	94105

How Does Adaptive Compression Work?

Step 2: Compression w/ Page-Level Dictionaries

4	Theodore	Mills	(408) 927-8642	650 Harry [7]	[2][3]	[1]	5134
ge	Susan	Stern	(408) 927-9630	650 Harry [7]	[2][3]	[1]	5134
pa	James	Polaski	(415) 545-1423	425 Market [6]	[2][4]	[1]	4105
<u>a</u>	John	Miller	(415) 545-5867	425 Market [6]	[2][4]	[1]	4105
Data	James	Walker	(415) 545-4132	425 Market [6]	[2][4]	[1]	4105
_	Elizabeth	Miller	(415) 545-8576	425 Market [6]	[2][4]	[1]	4105
	Sarah	<mark>John</mark> son	(415) 545-1928	425 Market [6]	[2][4]	[1]	4105

Christine	Haas	(2)1234	(4)
John	Thompson	(2)5678	(4)
Ellen	F(1)	(2)1357	(4)
Margaret	Schneider	(2)2468	(4)
Bruce	Kwan	(3)9876	(5)
James	Geyer	(3)5432	(5)
Linda	H(1)	(3)9753	(5)

Theodore	(3)s	(4)8642	(6)
Susan	Stern	(4)9630	(6)
(1)	Polaski	(5)1423	(7)
(2)	(3)er	(5)5867	(7)
(1)	Walker	(5)4132	(7)
Elizabeth	(3)er	(5)8576	(7)
Sarah	(2)son	(5)1928	(7)

(1)	ernandez
(2)	(408) 463-
(3)	(408) 956-
(4)	555 Bailey [5] [2][3] [1] 5141
(5)	4400 North 1st [6] [2][3] [1] 5134

Page level dictionary

(1)	James
(2)	John
(3)	Mill
(4)	(408) 927-
(5)	(415) 545-
(6)	650 Harry [7] [2][3] [1] 5134
(7)	425 Market [6] [2][4] [1] 4105

Page level dictionary

- Page-level compression dictionaries contain locally frequent patterns
- Page-level compression dictionary building & rebuilding is fully automatic
- Algorithm optimized for compressing data already compressed by table-level dictionary
- Page-level compression dictionaries are stored as special records in each page

Data Warehouse Compression Results 230GB raw size - Most of the data in a single table

- Graph Storage Savings
- Increase in savings by Adaptive Compression
 - 3x Compression with Static Compression using reorg
 - 5.6x Compression with Automatic dictionary creation and Adaptive Compression
 - 7.4x Compression with Adaptive Compression and full reorg

Real Customer Results with Adaptive Compression

- Customer top 5 tables
 - DB2 9.7 compression rates between 3X and 6X
 - DB2 10 compression rates between 4X and 10X
- Sum of all tables DB2 9.7 delivered 5X compression
- Sum of all tables DB2 10 delivered 7X compression

DB2 Compression Factors

Row Compression - Enablement & Tools

- How to enable row compression?
 - Must have DB2 Storage Optimization Feature
 - To enable classic row compression

```
CREATE TABLE / ALTER TABLE ... COMPRESS YES STATIC
```

To enable adaptive row compression

```
CREATE TABLE / ALTER TABLE ... COMPRESS YES
```

To disable compression

```
CREATE TABLE / ALTER TABLE ... COMPRESS NO
```


- Data is compressed after the table dictionary is created.
 - INSERT/UPDATE/LOAD/IMPORT can trigger the automatic dictionary creation
 - Classic REORG with RESETDICTIONARY option will always generate a new dictionary and compress all table data

Row Compression - Example Scenarios

1) Compressing data for new table

CREATE TABLE Sales (<columns definition>) COMPRESS YES

Load data... Automatic Dictionary Creation (ADC) will kick off and create compression dictionary. Once dictionary is built, new data put into the table is compressed:

LOAD FROM file OF DEL REPLACE INTO NewSale

2) Compressing data in existing tables

ALTER TABLE Sales COMPRESS YES

Data is still un-compressed. Explicitly compress data via REORG:

REORG TABLE Sales

3) Recreating the dictionary to optimize compression

(<u>Classic Row Compression</u>) Data has changed a lot so current dictionary is not so effective anymore. Use REORG to recreate dictionary and re-compress data:

REORG TABLE Sales RESETDICTIONARY

4) Uncompressing your data

Disable compression:

ALTER TABLE Sales COMPRESS NO

Uncompress data:

REORG TABLE Sales

Adaptive Compression greatly reduces the need for REORGs to maintain the compression ratio.

Row Compression - Enablement & Tools

- **Estimating storage savings**
 - ADMIN_GET_TAB_COMPRESS_INFO V97 ← ADMIN_GET_TAB_COMPRESS_INFO V97
 - Instead use: ADMIN_GET_TAB_COMPRESS_INFO and ADMIN GET TAB DICTIONARY INFO

```
SELECT SUBSTR(TABNAME, 1, 10) tabname, OBJECT_TYPE, ROWCOMPMODE,
PCTPAGESSAVED CURRENT current, PCTPAGESSAVED STATIC with static,
PCTPAGESSAVED ADAPTIVE with adaptive
FROM TABLE (SYSPROC. ADMIN GET TAB COMPRESS INFO 'DB2INST1', 'CUSTOMERS')) AS T;
```


TABNAME	OBJECT_TYPE	ROWCOMPMODE	CURRENT	WITH_STATIC	WITH_ADAPTIVE
CUSTOMERS	DATA	S	60	68	81
CUSTOMERS	XML	S	58	62	62

Temporary Table Compression

- Enabled automatically with the DB2 Storage Optimization Feature
- Only classic row compression is used for temporary tables
- System temporary tables
 - DB2 Optimizer analyzes storage savings and performance impact, if it is worthwhile to compress, classic row compression is used automatically
- User temporary tables
 - Created global temporary tables (CGTTs) and declared global temporary tables (DGTTs) are always compressed
- Use db2pd to see whether the optimizer used compression for system temporary tables

db2pd -db <database> -temptable

Index Compression

- Especially useful for large OLTP and data warehouse environments
- Index is compressed by default for compressed tables
- Can specify COMPRESS YES option in CREATE INDEX
- Different algorithms implemented by the DB2 engine for:
 - -RID list compression
 - Prefix compression
 - Variable slot directory
 - Key compression

CREATE INDEX <index name> COMPRESS YES

ALTER INDEX <index_name> COMPRESS YES
REORG INDEXES ALL FOR TABLE

Index Compression – Monitoring

• How much space could I save by compressing the indexes on table T1?

```
SELECT index_name, pages_saved_percent, compress_attr, index_compressed FROM TABLE(SYSPROC.ADMIN_GET_INDEX_COMPRESS_INFO ('T', 'myschema', 'T1', NULL, NULL)) AS T
```


INDEX_NAME		PERCENT_PAGES_SAVED	COMPRESS_ATTR	IN
INDEX1	57	N	N	

Index Compression – Monitoring

■ How much space did I save by compressing the indexes on table T1?

```
ALTER INDEX index1 COMPRESS YES
REORG INDEXES ON TABLE t1
RUNSTATS ON TABLE t1
```

SELECT index_name, pages_saved_percent, compress_attr, index_compressed
FROM TABLE (SYSPROC.ADMIN_GET_INDEX_COMPRESS_INFO 'T', 'myschema', 'T1', NULL, NULL)) AS T

actual savings

XML and LOB Inlining

Default storage behavior

- All XML documents stored in XML storage object, also referred to as XDA (XML Data Area)
- All LOB (Large Objects) stored in LOB storage object
- Descriptors in rows identify location of each object

XML and LOB Inlining

- Inlining
 - Allows small (<32KB) XML documents and LOBs to be stored in the base table row
 - Better performance and reduced storage needs

CREATE TABLE PROJECTS (PID INTEGER, PLAN XML INLINE LENGTH 300, STARTDATE DATE, ...)

ALTER TABLE PROJECTS ALTER COLUMN PLAN SET INLINE LENGTH 1004

XML and LOB Compression

XML (XDA) Compression

- Available since DB2 9.7
- Same dictionary approach used for Table Compression
- Enablement is via the table COMPRESS YES option
- Classic/'Offline' REORG table based
 - Use LONGLOBDATA option to compress XML data

CREATE TABLE mytab1 COMPRESS YES ALTER TABLE mytab1 COMPRESS YES

Inlining

 Inlined XML or LOB data can be compressed with both adaptive and classic row compression

Compression Benefits

Index Compression

- Fewer index levels
 - Fewer logical and physical I/Os for key search (insert, delete, select)
 - Better buffer pool hit ratio
- Fewer index leaf pages
 - Fewer logical and physical I/Os for index scans
 - Fewer splits
 - Better buffer pool hit ratio

Compression Benefits

Temp Table Compression

- Only vendor in industry to compress temp tables
 - Internal (DB2 utilities, SORT) and external (DGTTs) compressed
- Savings and performance benefits require no DBA intervention

Archive Log Compression

- New in DB2 10 archive log compression reduces log archive storage
- Simply turn it on and DB2 does the compression for you
 - logarchcompr1 database configuration parameter set to ON
- Large SAP customer generates 60GB of log per day and they keep 8 weeks of archives
 - Storing 3.3TB of archived log files
 - Compression of 4x results in storage of only 825GB for 8 weeks

Client Success What Customers are Saying ...

Customer experiences are consistent

- -Tables will compress in the range of 60% 80%
- -Indexes compress around 50%
- -Temp space will compress around 35%
- -Overall database storage savings will be between 50% and 65%

Summary

- Storage optimization through DB2 10 compression can save 55-70% of your database storage requirements
- You not only see your online database shrink but often more importantly, your backup storage and disaster recovery storage is cut in half as well
- In real customer examples storage savings are realized and performance benefits are apparent
- DB2 10 offers better compression ratios, improved ease of use and higher data availability
 - Adaptive compression provides better compression than classic row compression
 - Adaptive compression adapts to date skews over time i.e. no REORG needed to maintain compression ratio

Questions?

E-mail: techcamp@ca.ibm.com

Subject: "DB2 10 Bootcamp"

Backup Slides

Value Compression

- Removes duplicate entries for a value, only storing one copy
- Can offer savings if your table:
 - has many rows with columns that contain the same value, such as a city name
 - has columns that contain the default value for the data type of the column
- Can be used in combination of either adaptive row compression or classic row compression
- Enabled with VALUE COMPRESSION option in CREATE TABLE
- Compress system default column values with clause COMPRESS SYSTEM DEFAULT

```
CREATE TABLE EMPLOYEE_SALARY

(DEPTNO CHAR(3) NOT NULL,

EMPNO CHAR(6) NOT NULL,

SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)

VALUE COMPRESSION;
```


Backup Compression

- Reduce size of database backups in addition to other table-level compressions
- All of data in backup image is compressed, including
 - Catalog tables
 - Index objects
 - LOB objects
 - Auxiliary database files
 - Database meta-data
 - more

32

Enable with COMPRESS option in BACKUP DATABASE

BACKUP DATABASE <database> ... COMPRESS

Index Compression Page Format Overview

Index Compression Variable Slot Directory

Index Compression RIDlist Compression

Index Compression Prefix Compression

Questions?

E-mail: techcamp@ca.ibm.com

Subject: "DB2 10 Bootcamp"

