

Laboratorio de Sistemas Electrónicos – Curso 2015

Artés, Diego Onofre Granda, Juan Manuel Muñoz, Daniel Ramos, Sergio Real, Santiago Isidro

Agenda

12:10h – 12:30h – Presentación Proyecto MiRobot

12:30h - 12:45h - Demostración Práctica

12:45h – 13:00h – Coloquio

13:00h – 13:30h – Invitación a Aperitivo

Presentación

PROYECTO MIROBOT

Contenido

- Introducción General Proyecto MiRobot
- Descripción Pioneer 3AT (adept mobilerobots)
- HW Modificaciones realizadas al robot original
- Operación de Funciones Básicas
- SW Sistema Integrado de Comunicación y Control de Funciones
- Arquitectura de Comportamiento Robótico
- Demostración práctica
- Posibilidades Futuras

INTRODUCCIÓN GENERAL

Objeto:

- Partiendo de robot original con elementos electromecánicos, electrónica de control y potencia y ordenador de propósito general
- Alcanzar sistema capaz de realizar funciones en tiempo real explotando las posibilidades existentes
- Sirviendo de base para la incorporación de futuras aplicaciones y usos

• Líneas de actuación:

- Sustitución de ordenador de propósito general por sistema electrónico empotrado
- Desarrollo de código para controlar funciones del robot y capturar información de estado y lecturas
- Diseño e Implementación de Arquitectura software para futuras Aplicaciones y Sistema Autónomo

- Equipo de Proyecto
 - Cliente
 - 2 profesores del Dpto. Ingeniería Electrónica
 - 5 estudiantes de Ingeniería de Sistemas Electrónicos Empotrados

- Metodología ágil de Proyecto Scrum
 - Tiempo y Esfuerzo definidos. Calidad nunca comprometida. Maximización de Alcance según progreso en cada Sprint
 - Requisitos, Objetivos y Tests acordados con Cliente.
 - Auto organización en Equipo (Tareas, Ejecución, ...)
 - 4 Sprints de 1 semana. Daily Meetings en remoto
 - Proceso permanente de mejora

0 S1 S2 S3 S4

Entorno

- Adaptaciones HW iniciales
- Comunicación RasPi – Robot (I)
- R/W estado y comandos

Motores

- Comunicación RasPi – Robot (II)
- Control Motores
- Movimiento rectilíneo distintas velocidades

Operación

- Adapt. HW/SW inalámbrica
- Lecturas Bumpers y Sónares
- Giros y guiado para Trayectorias

Integración e Inteligencia

- Integración de código
- Arquitectura para futuro desarrollo
- Arquitectura inicial para Sistema Autónomo

Documentación y Presentación

- Mejoras finales de código
- Documentación para continuación
- Exploración de futuras posibilidades
- Presentación

Pioneer 3AT (adept mobilerobots)

DESCRIPCIÓN

Breve descripción Pioneer 3AT

- (NH, USA) fabrica desde 1995 robots para Investigación, Desarrollo y Formación
- Características físicas:
 - orientado a todo terreno o laboratorio
 - cuerpo de aluminio 51 x 50 x 28 cm (L x W x H)
 - 12 Kg de peso y hasta 35 Kg transporte de carga
 - 4 ruedas TT neumáticas y 4 motores solidarios 2 a 2 (d i)
 - Velocidad máx. de 0.7 m/s (2.5 Km/h) Pendiente de 35%
 - Radio de Giro de 0 a ∞ (cm) Velocidad de Giro 140°/s
 - Hasta 3 baterías Pb ácido, simultáneas, hot-swap, de 12 V y 7
 Ah Autonomía entre 2 y 4 h (según fabricante)

Breve descripción Pioneer 3AT

- Electrónica incorporada
 - Microcontrolador SH2
 - Microprocesador RISC Renesas SH2-7144 32-bit, 32K RAM y 128K Flash
 - 4 Puertos Serie, Entradas Digitales (32), Salida Digitales (8), Entradas Analógicas (7)
 - Firmware ARCOS (Advanced Robot Control & Operations Software)
 - Placa de Potencia (Motores y Alimentaciones)
- PC Onboard: Mamba EBX-37 (Dual Core 2.26 GHz - 2-8 GB RAM)
- Fabricante ofrece accesorios: Sónares, Bumpers, Láser, Cámaras, Brazos robóticos, Giróscopo, Micrófonos, Altavoces, Joystick, GPS, ...

MODIFICACIONES REALIZADAS AL ROBOT ORIGINAL

Modificaciones al robot original (1/2)

- Análisis del HW del dispositivo
- Extracción del PC on Board
- Introducción de Raspberry Pi Modelo B
 - Consumo
 - Tamaño
 - Tiempo Real
- Interfaz RS232
- Modulo WiPi
- Caja protectora impresa

Modificaciones al robot original (2/2)

- Mantenimiento de otras funciones del fabricante / posibilidades (retrocompatibilidad - ARIA)
- Lineas de trabajo futuro en HW
 - Sensor de temperatura, humedad, brújula, infrarrojos, GPS, GSM
 - Creación de un joystick
 - Accesorios imprimibles para nuevas funcionalidades

Movimiento, Parachoques y Sónares

OPERACIÓN DE FUNCIONES BÁSICAS

Operación de Funciones Básicas (1/2)

 SIP (Server Information Packet) - Lectura de estado del Robot

- Datos: Motores; Sónares (2 x 8); Parachoques (2 x 5 Bumpers)
- Escritura de comandos

			_
Cabecera	Tamaño	Datos	Checksum

 Sincronización – Habilitación Motores – Pulse (para evitar disparo Watchdog, Parada)

BIT	CONDITION IF SET	
0	Motors enabled	
1	Sonar array #1 enabled	
2	Sonar array #2 enabled	
3	Sonar array #3 enabled	
4	Sonar array #4 enabled	
5	STOP button pressed	
6	E stall engaged	
7	Far ledge detected (IR)	
8	Near ledge detected (IR)	
9	Joystick button 1 pressed	
10	Recharging "power-good"	
11-15	Reserved	

SYNC0: 250, 251, 3, 0, 0, 0 SYNC1: 250, 251, 3, 1, 0, 1 SYNC2: 250, 251, 3, 2, 0, 2

Operación de Funciones Básicas (2/2)

- Movimiento rectilíneo: Velocidad, Velocidad Máxima, Aceleración, Tiempo en régimen permanente.
- Giros: Velocidad Angular, Velocidad Angular Máxima, Aceleración Angular
- Sónares: Lectura de Distancia a Objetos, Representación Gráfica, Rutinas para provocar comportamientos ante proximidad

Comunicación y Control de Funciones

SISTEMA INTEGRADO

Sistema Integrado (1/2)

Raspberry con Xenomai

Sistema Integrado (2/2)

- Introducción de nuevos algoritmos de comportamiento
- De cara al futuro
 - Aplicación externa (conexión a api.c)
 - Actualizaciones de código

ARQUITECTURA DE COMPORTAMIENTO ROBÓTICO

Arquitectura de Subsunción

- Objetivos:
 - Desplazarse, reconocer obstáculo y detenerse
- Sistema autónomo
- ¿Por qué arquitectura de subsunción?
 - SENCILLEZ Y ESCALABILIDAD

Diagrama de Bloques

Comportamientos y prioridades

Implementación

activationTable [] = { velocidad1, Flag1, velocidad2, Flag2, velocidad3, Flag3 } (bumpers) (sonars) (motores)

Posibilidades a futuro

- Añadir comportamientos al esquema básico
- Arquitectura modular y fácilmente ampliable
 - Esquivar objetos
 - Seguir recorrido
 - Reconocimiento y mapeo del terreno
 - Robótica evolutiva
 - Aprendizaje
 - **–** ...

DEMOSTRACIÓN PRÁCTICA

POSIBILIDADES FUTURAS

Posibilidades Futuras

- Diseño y Desarrollo de Interfaz Gráfica de Usuario
- Información (log) de recorrido (distancia-tiempo; parada-tiempo).
- Realización de recorridos sorteando obstáculos.
- Transporte de Objetos delicados (test por sensores de vibración / acelerómetros)
- Navegación predefinida / Navegación automática
- Registro de trayectorias / Levantamiento de Planos
- Imágenes: Enviar imágenes de recorrido; Búsqueda de objetos / personas por imagen
- ¿Preferencias? ¿Educación / Formación? ¿Investigación? ¿Mercados?

MUCHAS GRACIAS