Corso di Laurea in Informatica - A.A. 2017 - 2018 Esame di Fisica - 05/02/2019

Esercizio 1

Consideriamo il vettore $\vec{u} = \sqrt{3}\vec{i} + \vec{j}$ ed il vettore \vec{v} che va dall'origine (0,0) al punto $P = (2\sqrt{3}, -2)$. Calcolare \vec{v}^2 ed il prodotto scalare $\vec{u} \cdot \vec{v}$.

Esercizio 2

Consideriamo il piano xy. Nell'origine vi è un filo perpendicolare al piano xy, ossia parallelo all'asse z. Questo filo è percorso da una corrente I nel verso positivo dell'asse z.

Nel punto $P_0 = (0, d)$ vi è una carica Q_0 che si muove con velocità $\vec{v} = -u \ \vec{k}$. Nel punto $P_1 = (0, 3d)$ vi è una carica Q_1 ferma.

Calcolare:

- a) la forza che Q_1 esercita su Q_0 (3 punti)
- b) il potenziale elettrico in $P_2 = (0, 2d)$ dovuto alle due cariche sapendo che il potenziale elettrico all'infinito è nullo (3 punti)
- c) il modulo del campo magnetico generato dalla corrente che percorre il filo in P_0 (2 punti)
- d) il versore del campo magnetico generato dalla corrente che percorre il filo in P_0 (4 punti)
- e) la forza di Lorentz su Q_0 (4 punti)

Esercizio 3

Si consideri il circuito in figura. Il condensatore di capacità C è inizialmente scarico. Dopo essere stato a lungo aperto, l'interruttore T viene chiuso.

Calcolare:

- a) la carica presente su C subito dopo la chiusura di T (3 punti)
- b) la differenza di potenziale ai capi dell'induttore L subito dopo la chiusura di T (3 punti)
- c) la carica presente su C quando si raggiunge la stazionarietà (3 punti)
- d) la differenza di potenziale ai capi dell'induttore L quando si raggiunge la stazionarietà (3 punti)
- e) la corrente i_0 nel caso in cui T sia chiuso ed i valori di C ed L sono tali che, ad un certo istante, la carica presente sulle armature di C è $CV_0/4$ e, in quello stesso istante, la differenza di potenziale ai capi di L è $V_0/4$ (4 punti)

