УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

К работе допущен
Работа выполнена
Отцет принат

Рабочий протокол и отчет по лабораторной работе №2.04

Определение коэффициента вязкости жидкости

1. Цель работы.

Определение коэффициента внутреннего трения касторового масла методом Стокса. Проверка справедливости формулы Стокса для шариков разного диаметра.

2. Задачи, решаемые при выполнении работы.

- Определение коэффициента внутреннего трения касторового масла методом Стокса;
 - Расчет погрешностей измерений.

3. Объект исследования.

Движение металлических шариков в касторовом масле.

4. Рабочие формулы и исходные данные.

Поправочный коэффициент:

$$k = \frac{1}{1 + \frac{2,4r}{R}}$$

Коэффициент вязкости жидкости:

$$\eta = \frac{2}{9} \frac{r^2(\rho - \rho_0)}{r} gk$$

Скорость падения шарика:

$$v = l / t$$

Диаметр шарика:

$$d = x_2 - x_1$$

Средний радиус шарика:

$$r = \alpha \bar{d} / 2$$

Относительная погрешность коэффициента вязкости жидкости:

$$\frac{\Delta\eta}{\eta} = \left[\left(2\frac{\Delta r}{r} \right)^2 + \left(\frac{\Delta v}{v} \right)^2 + \left(\frac{\Delta g}{g} \right)^2 + \frac{(\Delta\rho)^2 + (\Delta\rho_0)^2}{(\rho - \rho_0)^2} \right]^{\frac{1}{2}}$$

Относительная погрешность скорости падения шарика:

$$\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}$$

Относительная погрешность радиуса шарика:

$$\frac{\Delta r}{r} = \frac{\Delta d}{d}$$

Абсолютная погрешность диаметра шарика:

$$\Delta d = K_s \sqrt{\frac{\sum_{i=1}^{N} (d_i - \bar{d})^2}{N(N-1)}}$$

5. Измерительные приборы.

Таблица 1: Измерительные приборы

Nº п/п	Наименование	Тип прибора	Используемы й диапазон		Погрешность прибора	
11/11			ОТ	до	Приоора	
1	Линейка	Измерительный	0,0	20,0	0,2 мм	
'	Линсика	прибор	СМ	СМ	0,2 IVIIVI	
2	Микроскоп	Измерительный	0,00	8,00	0,001 мм/дел	
_	IVIVIKPOCKOTI	прибор	дел	дел		
3	Цифровой	Измерительный	0,00	60,00	0,005 сек	
<u> </u>	секундомер	прибор	сек	сек	0,003 Cek	

6. Результаты прямых и косвенных измерений.

Таблица 2

$(R \pm \Delta R)$ см	$2,95 \pm 0,05$
$(ρ \pm Δρ)$ κ r/m^3	7800 ± 100
$(ho_0\pm\Delta ho_0)$ кг/м 3	960 ± 40
$(\alpha \pm \Delta \alpha)$ мм/дел	$0,266 \pm 0,001$

$(l\pm \Delta l)$ см	$16,9 \pm 0,02$

Таблица 3 (Самый крупный шарик)

Первый шарик					
<i>N</i> опыта	1	2	3	4	5
<i>x</i> ₂ дел	6,93	6,78	6,78	6,78	6,79
x_1 дел	0,73	0,80	0,83	0,69	0,69
d дел	6,20	5,98	5,95	6,09	6,10
$\left(ar{d} \pm \Delta ar{d} ight)$ дел	$6,06 \pm 0,12$				
$(r \pm \Delta r)$ мм	$0,807 \pm 0,017$				
$(t \pm \Delta t) c$	$12,200 \pm 0,005$				
$(v \pm \Delta v) M/c$	$0,013875 \pm 0,000017$				
$(η \pm Δη)$ Πa · c	$0,66 \pm 0,05$				

Таблица 4 (Средний шарик)

Второй шарик					
<i>N</i> опыта	1	2	3	4	5
<i>x</i> ₂ дел	6,19	6,12	6,15	6,27	6,18
x_1 дел	1,32	1,33	1,36	1,38	1,37
d дел	4,87	4,79	4,79	4,89	4,81
$\left(ar{d} \pm \Delta ar{d} ight)$ дел	$4,83 \pm 0,06$				
$(r \pm \Delta r)$ мм	$0,642 \pm 0,008$				
$(t \pm \Delta t) c$	$19,110 \pm 0,005$				
$(v \pm \Delta v) M/c$	$0,008844 \pm 0,000011$				
$(η \pm Δη)$ Πa · c	$0,66 \pm 0,04$				

Таблица 5 (Самый маленький шарик)

Третий шарик					
<i>N</i> опыта	1	2	3	4	5
x_2 дел	5,71	5,73	5,69	5,78	5,74
x_1 дел	2,08	2,03	2,09	2,14	2,18
d дел	3,63	3,70	3,60	3,64	3,56
$\left(ar{d} \pm \Delta ar{d} ight)$ дел	$3,63 \pm 0,06$				
$(r \pm \Delta r)$ мм	$0,482 \pm 0,009$				
$(t \pm \Delta t) c$	$28,930 \pm 0,005$				
$(v \pm \Delta v) M/c$	$0,005842 \pm 0,000007$				

$$(\eta \pm \Delta \eta) \Pi a \cdot c$$

 0.57 ± 0.04

7. Окончательные результаты.

Для первого шарика:

$$\eta = [0.66 \pm 0.05], \qquad \varepsilon_{\eta} = 8\%, \qquad \alpha = 0.95$$

Для второго шарика:

$$\eta = [0.66 \pm 0.04], \qquad \varepsilon_{\eta} = 7\%, \qquad \alpha = 0.95$$

Для третьего шарика:

$$\eta = [0.57 \pm 0.04], \qquad \varepsilon_{\eta} = 7\%, \qquad \alpha = 0.95$$

8. Выводы и анализ результатов работы.

В ходе данной лабораторной работы были получены значения коэффициентов вязкости касторового масла для трех металлических шариков разного размера. Их численные значения примерно равны, что позволяет сделать вывод о том, что вязкость жидкости не зависит от размеров падающего в него тела.