Problema 26. Considerem el grup diedral $D_{2\cdot n}$.

- (a) Expliciteu tots els subgrups de $D_{2\cdot 4}$ i digueu quins són normals.
- (b) Demostreu que $D_{2\cdot n}$ té un subgrup normal d'ordre n, que és cíclic.
- (c) Demostreu que $D_{2\cdot 3} \simeq S_3$.

Solució.

(a)

$$D_{2\cdot 4} = <\rho, \sigma>$$
, on $\rho^4 = e, \ \sigma^2 = e, \ \sigma\rho\sigma = \rho^{-1}, \ \rho^2 \neq e \ i \ \sigma \neq e$

Per construir $\langle \rho, \sigma \rangle$ hem de fer tots els productes entre ells i entre els seus inversos. Si fem servir la propietat $\rho\sigma = \sigma\rho^{-1}$, es dedueix fàcilment $(\rho\sigma)^{-1} = \rho\sigma$, $(\rho^2\sigma)^{-1} = \rho^2\sigma$ i $(\rho^3\sigma)^{-1} = \rho^3\sigma$, per tant es comprova que totes les combinacions donen lloc a:

$$D_{2\cdot 4} = \{e, \sigma, \rho, \rho^2, \rho^3, \rho\sigma, \rho^2\sigma, \rho^3\sigma\}.$$

Observem que l'ordre de $D_{2\cdot 4}$ és 8; per tant, pel teorema de Lagrange, només podem tenir subgrups d'ordres 1, 2, 4 i 8. Comencem pels subgrups cíclics a partir d'elements de $D_{2\cdot 4}$:

$$< e >= \{e\} \text{ (ordre 1)}$$

 $< \sigma >= \{e, \sigma\} \text{ (ordre 2)}$
 $< \rho >= \{e, \rho, \rho^2, \rho^3\} =< \rho^3 > \text{ (ordre 4)}$
 $< \rho^2 >= \{e, \rho^2\} \text{ (ordre 2)}$
 $< \rho\sigma >= \{e, \rho\sigma\} \text{ (ordre 2)}$
 $< \rho^2\sigma >= \{e, \rho^2\sigma\} \text{ (ordre 2)}$
 $< \rho^3\sigma >= \{e, \rho^3\sigma\} \text{ (ordre 2)}$

Com que l'ordre de $<\rho>$ és 4, qualsevol subconjunt que contingui ρ i un element no pertanyent a $<\rho>$ ens generarà tot $D_{2\cdot 4}$ (1)

Construïm, doncs, la resta de possibles subgrups.

Amb
$$\sigma$$
: $<\sigma, \rho^2>=\{e,\sigma,\rho^2,\sigma\rho^2\}=<\sigma,\rho^2\sigma>$ (ordre 4).

Els altres dos, $\langle \sigma, \rho \sigma \rangle$ i $\langle \sigma, \rho^3 \sigma \rangle$, ens generen el total.

Amb
$$\rho^2$$
: $\langle \rho^2, \rho\sigma \rangle = \{e, \rho^2, \rho\sigma, \rho^3\sigma\} = \langle \rho^2, \rho^3\sigma \rangle$ (ordre 4)

Si fem $< \rho^2, \rho^2 \sigma >$ torna a sortir $< \sigma, \rho^2 >$.

Amb $\rho\sigma$: $\langle \rho\sigma, \rho^2\sigma \rangle = D_{2\cdot 4}$ i $\langle \rho^2, \rho\sigma \rangle$ l'hem vist abans estudiant ρ^2 .

Per tant amb $\rho\sigma$ només resta veure $<\rho\sigma, \rho^3\sigma>=<\rho^2, \rho\sigma>$, vist abans.

Finalment, $< \rho^2 \sigma, \rho^3 \sigma >$ torna a generar el total i aquests son tots els subgrups possibles (per cardinalitat, com hem comentat a (1)).

Tenim, doncs, tres subgrups d'ordre 4 i cinc subgrups d'ordre 2.

Per determinar els subgrups normals, clarament tenim que els d'ordre 4 són normals com a consequencia del teorema de Lagrange, ja que el seu índex és 2 i tot subgrup d'índex 2 és normal per l'exercici 19.

Pel que respecta als subgrups d'ordre 2, l'únic que és normal a $D_{2\cdot 4}$ és $<\rho^2>$.

(b)

Sabem que $D_{2\cdot n}$ sempre conté a $<\rho>$, que té ordre n i és cíclic. D'altra banda, sabem pel teorema de Lagrange que si G es un grup finit, i H⊆G és un subgrup de G, llavors l'ordre d'H divideix l'ordre de G. En particular tenim la igualtat $|G| = |H| \cdot [G:H]$, on [G:H] és l'índex de H en G. Per tant, si ho apliquem al cas particular on $G=D_{2\cdot n}$ i $H=<\rho>$, tenim $2n=n\cdot [G:H]$ i resulta que l'índex de H en G és 2 i per tant $\langle \rho \rangle$ és normal en $D_{2\cdot n}$ (per l'exercici 19).

(c)

Per aquest apartat farem servir la notació anterior per als elements de $D_{2\cdot3}$ i la notació de permutacions habitual per als elements de S_3 .

Donarem explícitament un morfisme de grups entre $D_{2\cdot3}$ i S_3 . Tot i que en podem trobar més d'un, hem triat el següent:

Sigui f:
$$D_{2\cdot 3} \longrightarrow S_3$$

 $f(e) = Id$
 $f(\sigma) = (12)$

$$f(\sigma) = (12)$$

$$f(\rho) = (123)$$

$$f(\rho^2) = (132)$$

$$f(\rho\sigma) = (13)$$

$$f(\rho^2\sigma) = (23)$$

Comprovem que f és, de fet, un isomomorfisme de grups.

f homomorfisme:

$$f(e) = e$$
 per definició.

$$f(\rho)f(\sigma) = (123)(12) = (13) = f(\rho\sigma).$$

$$f(\rho^2)f(\sigma) = (132)(12) = (23) = f(\rho^2\sigma)$$
, etc.

f bijectiva:

f és clarament injectiva ja que Ker(f) = e, i f és exhaustiva per construcció (tot element de S_3 té antiimatge en $D_{2\cdot 3}$ per f).