Machine Learning from Data

Lecture 11: Spring 2021

Today's Lecture

- Overfitting
 - What is overfitting?
 - When does it occur?
 - Stochastic Vs. Deterministic Noise

Non-Linear Transforms

$$\mathbf{x}_n \in \mathcal{X}$$

2. Transform the data

$$\mathbf{z}_n = \Phi(\mathbf{x}_n) \in \mathcal{Z}$$
 .

4. Classify in \mathcal{X} -space

$$g(\mathbf{x}) = \tilde{g}(\Phi(\mathbf{x})) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}}\Phi(\mathbf{x}))$$

3. Separate data in \mathcal{Z} -space

$$\tilde{g}(\mathbf{z}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}}\mathbf{z})$$

\mathcal{X} -space is \mathbb{R}^d

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

$$y_1, y_2, \ldots, y_N$$

no weights

$$d_{\text{VC}} = d + 1$$

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{x}))$$

\mathcal{Z} -space is $\mathbb{R}^{\tilde{d}}$

$$\mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = \left[egin{array}{c} 1 \ \Phi_1(\mathbf{x}) \ dots \ \Phi_{ar{d}}(\mathbf{x}) \end{array}
ight] = \left[egin{array}{c} 1 \ z_1 \ dots \ z_{ar{d}} \end{array}
ight]$$

$$\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N$$

$$y_1, y_2, \ldots, y_N$$

$$\tilde{\mathbf{w}} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{\tilde{d}} \end{bmatrix}$$

$$d_{\scriptscriptstyle
m VC} = d+1$$

Digits Data

Average Intensity

Linear model $E_{\text{in}} = 2.13\%$ $E_{\text{out}} = 2.38\%$

Average Intensity

3rd order polynomial model
$$E_{\rm in} = 1.75\%$$

$$E_{\rm out} = 1.87\%$$

Humans Overfit (Superstitions)

Fear of Friday the 13th

Unfortunate wents.
Overfitting lead to Opposite effect.

Illustration of Overfitting

Quadratic f

5 data points

A little noise (measurement error)

5 data points \rightarrow 4th order polynomial fit

Overfitting Example

Quadratic f

5 data points

A *little* noise (measurement error)

5 data points \rightarrow 4th order polynomial fit

Classic overfitting: simple target with excessively complex \mathcal{H} .

$$E_{\rm in} \approx 0; E_{\rm out} \gg 0$$

Define Overfitting

• Fitting the data more than is warranted.

> bad generalization > process of priving a number time resulting in a higher tout.

Eont overfithing

Case Study

10th order f with noise.

simble noise No hope

2nd order vs. 10th order polynomial

 ${\mathcal H}$ should match quantity and quality of data, not f

Measure Overfitting

Number of data points ↑ Overfitting ↓

Noise ↑ Overfitting ↑

Target complexity ↑ Overfitting ↑

Wich cannot be modelled Noise Sources: Stochastic Noise.

with noise -> Light thanks of my model stay. modelled

Stochastic Noise

We would like to learn from O:

$$y_n = f(x_n)$$

Unfortunately, we only observe O:

$$y_n = f(x_n) + \text{`stochastic noise'}$$

Stochastic Noise: fluctuations/measurement errors we cannot model.

) eterministic Noise

Stochartic & Determinist effect & Overfit Regenerate n values \$ 3 different y values Des same y values. is) Safriany n Dehoose NJ Trade off.

Stochastic Noise

source: random measurement errors

re-measure y_n stochastic noise changes.

change \mathcal{H} stochastic noise the same.

Deterministic Noise

source: learner's $\mathcal H$ cannot model f

re-measure y_n deterministic noise the same.

change \mathcal{H} deterministic noise changes.

We have single $\mathcal D$ and fixed $\mathcal H$ so we cannot distinguish

Deterministic Noise

We would like to learn from \bigcirc :

$$y_n = h^*(x_n)$$

Unfortunately, we only observe \bigcirc :

$$y_n = f(x_n)$$
 $= h^*(x_n) + \text{`deterministic noise'}$
 $\stackrel{}{\uparrow}_{\mathcal{H} \text{ cannot model this}}$

Deterministic Noise: the part of f we cannot model.

Bias Variance Analysis and Noise

$$\frac{E_{D}[E_{DNY}]}{E_{DNY}} = \frac{B_{ias}(x)}{B_{ias}(x)} + \frac{V_{avianue}(x)}{Vav(g(x))}$$

$$\frac{(g(x) - f(x))^{2}}{Vav(g(x))}$$

$$= (g(x) - f(x) - E)$$

$$= (g(x) - f(x))^{2} - 2 \underbrace{E_{g}(x)}_{f(x)} + E$$

$$= (g(x) - f(x))^{2} - 2 \underbrace{E_{g}(x)}_{f(x)} + E$$

$$= (g(x) - f(x))^{2} - 2 \underbrace{E_{g}(x)}_{f(x)} + E$$

 $E\left[E_{\text{out}}(x)\right] = E\left(g(x)-f(x)\right), + E\left(2\right)$ - Bias + Varianue + 0° Varianu + 6-E[Eont] = Bias + Variance indirect of impact of impart of noise Model -> lower bias, lower verriance

Overfitting - > known problem. Noise -> cannot be modelled, always there. There. There. There. There. Regularization. Validation

Summary

•

Thanks!