

CURSO: ENGENHARIAS PROFESSOR: Fábio Macêdo Mendes

DISCIPLINA: Física para jogos **SEMESTRE/ANO**: 02/2016

C. HORÁRIA: 60 h CRÉDITOS: 04

PLANO DE ENSINO

1. OBJETIVOS DA DISCIPLINA

Apresentar ao aluno os conceitos básicos de simulação dos sistemas físicos mais comuns utilizados em jogos eletrônicos. No fim do curso, o aluno deve ser capaz de implementar mecanismos rudimentares de simulação de física dentro de um jogo de computador.

2. EMENTA DO PROGRAMA

- 1. Leis de Newton, cinemática e mecânica.
- 2. Matemática de rotações e transformações afins
- 3. Física dos corpos rígidos em 2D.
- 4. Resposta a colisões.
- 5. Arquitetura de um jogo

3. HORÁRIO DAS AULAS, AVALIAÇÕES E ATENDIMENTO

Aulas teóricas e de exercícios: segundas, quartas

Atendimento e monitoria: a definir.

4. METODOLOGIA

O método básico aplicado é o de aulas expositivas, com o auxílio do quadro negro, projetor digital em laboratório de computação. As atividades de programação serão realizadas na linguagem Python utilizando as bibliotecas FGAme e pygame. As aulas serão complementadas com atividades de exercícios e demandas extra-classe.

5. CRITÉRIOS DE AVALIAÇÃO

Pontos e estrelas

A avaliação do curso segue uma metáfora de jogos em que a menção final é calculada a partir dos *pontos* e *estrelas* coletados por cada aluno ao longo do curso. O pontos consistem na parte obrigatória da avaliação, e são distribuídos em um total de até 10.000 pontos. O aluno que obter a pontuação completa do curso é aprovado com a menção máxima. A tabela de conversão entre pontuação e menção é a usual: 9.000pts: **SS**, 7.000pts: **MS**, 5.000pts: **MM**, 3.000pts: **MI** e menos que isto **II**.

A distribuição de pontos ao longo do curso é dada pela equação:

$$P_{final} = P_1 + P_2 + EP_1 + EP_2 + EP_3 + EP_4 + EP_5$$

onde P1 e P2 consistem na nota das provas 1 e 2, valendo 2.000 pontos cada, e EP1 até EP5 são os "exercícios problema", que valem 1.000 pontos cada, exceto o EP5, que consiste no trabalho final e vale 2.000 pontos.

As estrelas são coletadas em atividades optativas e podem ser convertidas em "poderes especiais" ou em pontos ao final do curso. Os poderes conferidos por estrelas ajudam o aluno melhorar a nota e serão descritos com mais cuidado no Moodle da disciplina (ex: abonar uma falta, direito a fazer a prova substitutiva, etc). No final do curso, o aluno pode trocar as estrelas que estão sobrando por nota usando a seguinte regra:

- Cada estrela equivale 200 pontos.
- Soma-se a pontuação de todas as estrelas PE e calcula-se a nova pontuação final de acordo com

$$P'_{final} = PE + \frac{10.000 - PE}{10.000} P_{final}$$

As estrelas sempre aumentam a nota final e garantem uma pontuação mínima PE independente da nota obtida nas provas e trabalhos.

6. PROVA SUBSTITUTIVA E FALTAS

Cada aluno possui uma "barra de vidas" com 9 vidas. Cada falta implica na perda de uma vida. Uma vida pode ser recuperada gastando-se 4 estrelas. Faltas com justificativa médica **não** serão abonadas. A prova substitutiva será aplicada apenas em caso de falta justificada no dia da prova. O aluno deve apresentar a justificativa na aula seguinte à prova ou quando terminar a licença médica. O aluno que atingir *zero* vidas estará automaticamente com menção **SR**.

7. CRONOGRAMA DE ATIVIDADES

Semana	Dia	Aula
1	8/8/2016	Início das aulas – Apresentação do curso
	10/8/2016	Introdução ao Python
2	15/8/2016	Cinemática de partículas
	17/8/2016	Lab: Animação e movimento Tempo discreto Simulação de movimento com o Pygame Zero Pausa na simulação e interatividade básica
3	22/8/2016	Leis de Newton e modelos de força • Revisão das Leis de Newton • Gravidade e aceleração uniforme • Oscilador harmônico • Conservação da energia
	24/8/2016	Lab: Simulação de sistemas físicos

Semana	Dia	Aula
4	29/8/2016	Física em 2D e modelos dissipativos Leis de Newton em 2D Dissipação viscosa Arrasto aerodinâmico e atrito
	31/8/2016	Lab: Sistemas auto gravitantes • Lei da gravitação universal • Gravidade "suavizada" • "Molas" gravitacionais • Raio de influência • "Atrito" no espaço EP1: Simulação de física (dupla)
5	5/9/2016	Vetores (revisão)
		Biblioteca "smallvectors"
	7/9/2016	Feriado – Independência do Brasil
6	12/9/2016	Interação com o usuário
	14/9/2016	Colisões 1D • Impulso • Coeficiente de restituição Simulação de colisões
7	19/9/2016	Entrega do EP1: Apresentações EP2: Jogo (tech demo, individual) EP3: Game design document
	21/9/2016	Arquitetura de jogos
8	26/9/2016	Lab: Qualidade de Software • Github • pip e python-boilerplate • Testes unitários • Documentação TB2: Evolução da FGAme/Smallvectors/Smallshapes (até TB3)
	28/9/2016	Primeira Prova: Leis de Newton
9	3/10/2016	Matrizes e vetores em 2D • Rotação de vetores • Matrizes de rotação • Transformações matriciais
	5/10/2016	Corpos rígidos em 2D Centro de massa Momento de inércia Energia de rotação
10	10/10/2016	Lab: Animações e álgebra linear • Visualização de transformações lineares • Espaço de cores
	12/10/2016	Feriado – Nossa Senhora
11	17/10/2016	Entrega do EP2: Apresentações

Semana	Dia	Aula
		Publicação do EP3: virtual via Github EP4: Evolução de arquitetura (sinais, classes e empacotamento do EP2)
	19/10/2016	Leis de Newton na forma angular • Momentum angular • Torque TB3: Tutoriais de física com a FGAme (até TB4)
12	24/10/2016	Lab: Simulação de rotações
	26/10/2016	Detecção de colisões
13	31/10/2016	Lab: Detecção de colisões
	2/11/2016	Feriado – Finados
14	7/11/2016	Colisões em 2D Impulso e vetor normal Resposta angular
	9/11/2016	Entrega do EP4/EP3: Apresentações EP5: Conclusão do jogo
15	14/11/2016	Colisões com atrito
	16/11/2016	Lab: Empilhamento e estabilidade • Modelando coeficiente de restituição • Estabilidade de uma pilha de objetos
16	21/11/2016	Segunda Prova TB4: Fechamento de issues na FGAme (até EP5)
	23/11/2016	Ponto de controle 1 Testes de jogabilidade Testes de dificuldade
17	28/11/2016	Ponto de controle 2
	30/11/2016	Entrega e apresentação do EP5
18	5/12/2016	Prova substitutiva
	7/12/2016	

Obs.: O cronograma está sujeito a alterações.

8. BIBLIOGRAFIA

BÁSICA:

BOURG, David., *Physics for game developers*, 1^a ed. – O'Rilley, 2002 **GREGORY,** Jason., *Game Engine Architecture*, 1^a ed. – A K Peters Ltd., 2009