PCT/US01/06016

WO 01/62152

CLAIMS:

1	1.	A method of diagnosing pathologic heart conditions comprising:
2		identifying a systolic sub-interval of a systolic interval for a plurality of heart
3	cycles	in a sequence of heart cycles;
4		computing an energy value for each systolic sub-interval;
5		computing a composite energy value using the computed energy values for each
6	systol	ic sub-interval; and

- comparing the composite energy value to a threshold level in order to distinguish between a normal heart and a pathologic heart.
- 1 2. A method of diagnosing pathologic heart conditions comprising:
- 2 filtering a time series of heart sounds;
- parsing the time series of heart sounds into a sequence of individual heart cycles;
- 4 identifying a systolic interval for each heart cycle;
- 5 identifying a systolic sub-interval of the systolic interval for each heart cycle;
- 6 computing an energy value for the systolic sub-interval of one or more heart
- 7 cycles, said energy value being proportional to the energy level associated with the filtered series of heart sounds;
- 9 computing a composite energy value for the systolic sub-intervals of one or more 10 heart cycles; and
- 11 comparing the composite energy value to a threshold level in order to distinguish 12 between a normal heart and a pathologic heart.
 - 1 3. The method of claim 2 wherein said parsing step uses electro-cardiogram (ECG)
- 2 data in order to transform a time series of heart sounds into a sequence of individual heart
- 3 cycles.
- 1 4. The method of claim 2 wherein said parsing step uses acoustic heart sounds
- 2 obtained directly from a patient in order to transform a time series of heart sounds into a
- 3 sequence of individual heart cycles.

10945110.012502

WO 01/62152 PCT/US01/06016

- 1 5. The method of claim 2 wherein identifying a systolic interval for each heart cycle
- 2 is achieved by identifying pulses on an electro-cardiogram (ECG).
- 1 6. The method of claim 2 wherein identifying a systolic interval for each heart cycle
- 2 is achieved by acoustically locating a first and a second heart sound using a bandpass
- 3 filter, said bandpass filter applied to the time series of heart sounds.
- 1 7. The method of claim 2 wherein filtering the time series of heart sounds is achieved
- 2 using a bandpass filter.
- 1 8. The method of claim 2 wherein filtering the time series of heart sounds is achieved
- 2 using time-frequency transforms.
- 1 9. The method of claim 8 wherein the time-frequency transform is a wavelet
- 2 transform.
- 1 10. The method of claim 8 wherein the time-frequency transform is a Fourier
- 2 transform.
- 1 11. The method of claim 2 wherein the systolic sub-interval is centered in systole.
- 1 12. The method of claim 2 wherein the systolic sub-interval is centered in systole and
- 2 is half of the systolic interval.
- 1 13. The method of claim 2 wherein the composite energy value is computed as the
- 2 median of the computed energy values for more than one of the systolic sub-intervals of
- 3 the heart cycles.
- 1 14. The method of claim 2 wherein the composite energy value is computed as the
- 2 weighted average of more than one of the computed energy values for the systolic sub-
- 3 intervals of the heart cycles.

10048110 O18508

WO 01/62152 PCT/US01/06016

- 1 15. The method of claim 2 wherein the composite energy value is computed as the
- 2 median across more than one of the heart cycle systolic sub-intervals of a quantity
- 3 proportional to energy.
- 1 16. The method of claim 2 wherein the composite energy value is computed as the
- 2 weighted average energy value across more than one of the heart cycle systolic sub-
- 3 intervals.
- 1 17. The method of claim 14 wherein the ratio of energies between systolic interval and
- 2 diastolic interval are also used to distinguish a normal heart from a pathologic heart by
- 3 prior statistical characterization of the ratio of energies between systolic interval and
- 4 diastolic interval for normal and pathologic hearts.
- 1 18. The method of claim 14 wherein the standard deviation of the energy in a systolic
- 2 interval is also used to distinguish a normal heart from a pathologic heart by prior
- 3 statistical characterization of the standard deviation of the energy in a systolic interval for
- 4 normal and pathologic hearts.
- 1 19. A system for diagnosing pathologic heart conditions comprising:
- 2 a portable computing device for:
- 3 managing data collection from new patients;
- 4 storing data; and
- 5 analyzing data,
- 6 and
- 7 a patient data collection unit for acquiring electro-cardiogram (ECG) and heart
- 8 sound data from a patient, said patient data collection unit operatively connected with said
- 9 portable computing device.
- 1 20. The system of claim 17 wherein the patient data collection unit comprises:
- 2 a contact microphone for obtaining acoustic data;

WO 01/62152

PCT/US01/06016

3	an acoustic pre-amplifier operatively connected with said contact microphone, said	
4	pre-amplifier having a passband of 20 Hz to 2 kHz used to condition acoustic data	
5	received from said contact microphone;	
6	a variable amplifier operatively connected with said acoustic pre-amplifier for	
7	variably amplifying the conditioned acoustic data;	
8	an electro-cardiogram (ECG) electrode;	
9	an ECG amplifier operatively connected with said electro-cardiogram (ECG)	
10	electrode;	
11	an analog to digital converter operatively connected with said variable amplifier	
12	and said ECG amplifier, said analog to digital converter for digitizing acoustic data and	
13	electro-cardiogram (ECG) data.	
1	21. A method of optimizing a heart auscultation screening algorithm comprising:	
2	applying a heart auscultation screening time-frequency transform algorithm to a set	
3	of data, wherein:	
4	said algorithm includes wavelets and bandpass filters;	
5	said data includes heart sounds known to be normal and heart sounds known to	
6	be pathologic;	
7	said heart sounds being characterized by a systolic interval;	
8	said systolic interval capable of being divided into systolic sub-intervals,	
9	recording the results of said heart auscultation screening algorithm for a variety of	
. 10	time-frequency transform parameters and systolic sub-intervals; and	
11	determining an optimal combination of wavelet scale parameter and systolic sub-	
12	interval for use with said heart auscultation screening wavelet algorithm based on	
13	sensitivity and specificity measurements.	
1	22. A computer readable medium whose contents cause a computer based system to	
2	determine patient heart pathology by:	
3	identifying a systolic sub-interval of a systolic interval for a plurality of heart	
4	cycles in a sequence of heart cycles;	
5	computing an energy value for each systolic sub-interval;	
	······································	

WO 01/62152 PCT/US01/06016

. 6	computing a composite energy value using the computed energy values for each	
7	systolic sub-interval; and	
8	comparing the composite energy value to a threshold level in order to distinguish	
9	between a normal heart and a pathologic heart.	
1	23. A computer readable medium whose contents cause a computer based system to	
2	determine patient heart pathology by:	
3	filtering a time series of heart sounds;	
4	parsing the time series of heart sounds into a sequence of individual heart cycles;	
5	identifying a systolic interval for each heart cycle;	
6	identifying a systolic sub-interval of the systolic interval for each heart cycle;	
7	computing an energy value for the systolic sub-interval of one or more heart	
8	cycles, said energy value being proportional to the energy level associated with the filtered	
9	series of heart sounds;	
10	computing a composite energy value for the systolic sub-intervals of one or more	
11	heart cycles; and	
12	comparing the composite energy value to a threshold level in order to distinguish	
13	between a normal heart and a pathologic heart.	
1 -	24. A computer readable medium whose contents transform a computer based system	
2	into a heart pathology detection system, comprising:	
. 3	a patient data collection subsystem for acquiring electro-cardiogram (ECG) and	
4	heart sound data from a patient;	
5 .	a data management subsystem for managing electro-cardiogram (ECG) and heart	
6	sound data;	
7	a data analysis subsystem for processing and analyzing electro-cardiogram (ECG)	
8	and heart sound data; and	
9	a data storage subsystem for storing processed electro-cardiogram (ECG) and heart	
10	sound data.	