El teorema de los ceros de Hilbert (segunda lección)

Alexey Beshenov (cadadr@gmail.com)

Universidad de El Salvador, 8 de marzo de 2018

Sea k un cuerpo algebraicamente cerrado. En esta lección vamos a deducir del teorema de los ceros débil $(V(\mathfrak{a})=\emptyset)$ implica $\mathfrak{a}=k[X_1,\ldots,X_n]$ que

$$I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}.$$

1 Álgebra conmutativa: localización

Ahora para deducir otra variante del teorema de los ceros, necesitamos revisar el concepto de la localización de anillos conmutativos.

1.1. Definición. Sea A un anillo conmutativo. Se dice que $S \subset A$ es un **subconjunto multiplicativo** si $1 \in S$ y para todo $s, t \in S$ se tiene $st \in S$.

La **localización** de A respecto a S es un anillo $S^{-1}A$ junto con un homomorfismo $i: A \to S^{-1}A$ que satisface la siguiente propiedad universal: los elementos $i(S) \subset S^{-1}A$ son invertibles y todo morfismo $\phi: A \to B$ tal que $\phi(S)$ es invertible en B se factoriza de modo único por $S^{-1}A$:

$$A \xrightarrow{\phi} B$$

$$\downarrow \downarrow \qquad \exists!$$

$$S^{-1}A$$

Como siempre, la propiedad universal define a $S^{-1}A$ de modo único salvo isomorfismo único. Para ver que la localización siempre existe, necesitamos dar alguna construcción particular de $S^{-1}A$. Consideremos la siguiente relación sobre el conjunto $A \times S$:

$$(f,s) \sim (f',s') \iff t(fs'-sf') = 0$$
 para algún $t \in S$.

1.2. Lema. \sim es una relación de equivalencia.

Demostración. La relación es reflexiva. Tenemos

$$1 \cdot (fs - sf) = 0.$$

Aquí hemos usado el hecho de que $1 \in S$. La relación es simétrica: si $(f,s) \sim (f',s')$, entonces

$$t\left(fs'-sf'\right)=0$$

para algún $t \in S$. Luego, multiplicando la identidad de arriba por -1, se obtiene

$$t\left(sf'-fs'\right)=0.$$

Por fin, supongamos que $(f_1, s_1) \sim (f_2, s_2)$ y $(f_2, s_2) \sim (f_3, s_3)$. Esto quiere decir que existen algunos $t_1, t_2 \in S$ tales que

$$t_1(f_1s_2 - s_1f_2) = 0$$
, $t_2(f_2s_3 - s_2f_3) = 0$.

Entonces

$$s_{2} t_{1} t_{2} (f_{1}s_{3} - f_{3}s_{1}) = t_{1} t_{2} s_{3} f_{1} s_{2} - \underline{t_{1} t_{2} s_{3} f_{2} s_{1}} + \underline{t_{1} t_{2} s_{1} f_{2} s_{3}} - t_{1} t_{2} s_{1} s_{2} f_{3}$$

$$= t_{1} t_{2} s_{3} (f_{1}s_{2} - f_{2} s_{1}) + t_{1} t_{2} s_{1} (f_{2}s_{3} - s_{2}f_{3}) = 0.$$

- **1.3. Comentario.** Note que si A no tiene divisores de cero y $0 \notin S$, entonces se puede omitir el factor t en la identidad "t(fs'-sf')=0". Si en A hay divisores de cero, este factor es necesario para asegurar que \sim sea una relación de equivalencia.
- 1.4. Construcción. Consideremos el conjunto cociente

$$S^{-1}A := (A \times S)/\sim$$

y denotemos la clase de equivalencia de (f,s) por un símbolo $\frac{f}{s}$. Se ve que $S^{-1}A$ es un anillo conmutativo respecto a las operaciones

$$\frac{f}{s} + \frac{f'}{s'} = \frac{fs' + sf'}{ss'}, \quad \frac{f}{s} \cdot \frac{f'}{s'} = \frac{ff'}{ss'}.$$

1.5. Ejercicio. Verifique que las fórmulas de arriba tienen sentido para las clases de equivalencia.

El cero en $S^{-1}A$ es $\frac{0}{1}$ y la identidad es $\frac{1}{1}$. Luego, se ve que el homomorfismo natural

$$i: A \to S^{-1}A,$$

$$f \mapsto \frac{f}{1}.$$

satisface la propiedad universal de la localización.

Un caso muy particular es el siguiente.

1.6. Ejemplo. Si A es un dominio de integridad y $S = A \setminus \{0\}$, entonces la localización correspondiente es el **cuerpo de fracciones** Frac A. En este caso el homomorfismo canónico $i: A \to \operatorname{Frac} A$ es inyectivo. \blacktriangle

Lo peor que se puede hacer es invertir el cero.

1.7. Observación. $S^{-1}A = 0$ si y solamente si $0 \in S$.

Demostración. Si $0 \in S$, entonces $i(0) = 0 \in S^{-1}A$ es invertible. Pero en este caso

$$1 = 0 \cdot 0^{-1} = 0,$$

así que el anillo $S^{-1}A$ es trivial. Viceversa, si $S^{-1}A=0$, entonces $\frac{1}{1}=\frac{0}{1}$, lo que significa que

$$t(1\cdot 1 - 1\cdot 0) = 0$$

para algún $t \in S$. Pero esta identidad implica que t = 0.

Nos va a interesar la situación cuando en A se invierte un solo elemento y todas sus potencias.

1.8. Ejemplo. Para $f \in A$ podemos considerar el conjunto multiplicativo $S := \{f^n \mid n = 0, 1, 2, \ldots\}$. En este caso la localización $S^{-1}A$ se denota por A_f . Tenemos $A_f = 0$ si y solamente si $f^n = 0$ para algún $n = 1, 2, 3, \ldots$, es decir, si y solamente si f es un nilpotente.

Hay otro modo de construir la localización: considerar el anillo de polinomios A[X] y luego tomar su cociente por la relación fX = 1.

1.9. Proposición. La aplicación

$$A \rightarrowtail A[X] \twoheadrightarrow A[X]/(fX-1)$$

satisface la propiedad universal de la localización y por lo tanto

$$A[X]/(fX-1) \cong A_f$$
.

Demostración. De hecho, f es invertible en A[X]/(fX-1). Sea $\phi:A\to B$ otro homomorfismo tal que $\phi(f)$ es invertible. Entonces, existe un homomorfismo

$$A[X] o B$$
, $\sum_i g_i X^i \mapsto \sum_i \phi(g_i) \left(\frac{1}{\phi(f)} \right)^i$,

que envía fX-1 a $\phi(f)$ $\frac{1}{\phi(f)}-1=0$ y por lo tanto induce un homomorfismo $A[X]/(fX-1)\to B$. Esta es una factorización única de ϕ por A[X]/(fX-1).

2 Teorema de los ceros en la forma $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$

Para un conjunto algebraico $V(\mathfrak{a}) \subset \mathbb{A}^n(k)$ se puede considerar el ideal $I(V(\mathfrak{a})) \subset k[X_1,\ldots,X_n]$. Sería interesante ver cuál es la relación entre \mathfrak{a} y $I(V(\mathfrak{a}))$. En general este último ideal es más grande que \mathfrak{a} : por ejemplo, si el polinomio f^n se anula sobre V, entonces f también se anula. Esto motiva el concepto del radical.

2.1. Definición. Sea A un anillo conmutativo. El **radical** de un ideal $\mathfrak{a} \subset A$ es dado por

$$\sqrt{\mathfrak{a}} := \{ f \in k[X_1, \dots, X_n] \mid f^n \in \mathfrak{a} \text{ para algún } n = 1, 2, 3, \dots \}.$$

- **2.2. Ejercicio.** *Verifique que* $\sqrt{\mathfrak{a}}$ *es un ideal y que* $\mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$.
- **2.3. Definición.** Si para un ideal $\mathfrak{a} \subseteq A$ se cumple $\mathfrak{a} = \sqrt{\mathfrak{a}}$, entonces se dice que \mathfrak{a} es un ideal radical.

He aquí una caracterización de ideales radicales.

- **2.4. Definición.** Si un anillo commutativo A no tiene nilpotentes no nulos (es decir, elementos $f \neq 0$ tales que $f^n = 0$ para algún n = 2, 3, 4, ...), se dice que A es **reducido**.
- **2.5. Proposición.** Para todo anillo commutativo A el cociente A/\mathfrak{a} es reducido si y solamente si \mathfrak{a} es un ideal radical.

Demostración. Sea $\mathfrak a$ un ideal radical. Supongamos que el elemento $\overline{f} \in A/\mathfrak a$ representado por algún $f \in A$ es un nilpotente y $\overline{f}^n = 0$ para algún $n = 1, 2, 3, \ldots$ Entonces $f^n \in \mathfrak a$, pero puesto que $\mathfrak a$ es radical, esto implica $f \in \mathfrak a$, así que $\overline{f} = 0$ en $A/\mathfrak a$.

Viceversa, supongamos que A/\mathfrak{a} es reducido. Sea $f \in A$ un elemento tal que $f^n \in \mathfrak{a}$ para algún $n = 1, 2, 3, \ldots$ Entonces, $\overline{f}^n = 0$ en A/\mathfrak{a} y por lo tanto $\overline{f} = 0$ y $f \in \mathfrak{a}$.

Como hemos notado, para todo subconjunto $V \subset \mathbb{A}^n(k)$ se tiene

$$I(V) = \sqrt{I(V)}$$

—el polinomio f^n es nulo sobre V si y solamente si f es nulo sobre V. Sin embargo, no todos los ideales radicales en $k[X_1,\ldots,X_n]$ surgen de esta manera. Por ejemplo, el ideal $(X^2+1)\subset\mathbb{R}[X]$ es radical, puesto que el cociente $\mathbb{R}[X]/(X^2+1)\cong\mathbb{C}$ es reducido (jes un cuerpo!). Sin embargo, el polinomio X^2+1 no tiene ceros sobre $\mathbb{A}^1(\mathbb{R})$.

Si tenemos un conjunto algebraico $V(\mathfrak{a})$ que corresponde a un ideal \mathfrak{a} , entonces está claro que

$$\sqrt{\mathfrak{a}} \subseteq I(V(\mathfrak{a})).$$

En general, el ideal $I(V(\mathfrak{a}))$ puede ser más grande que el radical $\sqrt{\mathfrak{a}}$, pero esto no sucede cuando el cuerpo k es algebraicamente cerrado.

2.6. Corolario (Teorema de los ceros, versión 4). Sea k un cuerpo algebraicamente cerrado. Entonces, para todo ideal $\mathfrak{a} \subset k[X_1, \ldots, X_n]$ se cumple

$$I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}.$$

Así que cuando k es algebraicamente cerrado, existe una biyección

{ideales radicales
$$\mathfrak{a} \subseteq k[X_1, \dots, X_n]$$
} $\overset{V}{\longleftrightarrow}$ {conjuntos algebraicos $V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ }

Demostración. Para $f \in I(V(\mathfrak{a}))$ tenemos que ver que $f \in \sqrt{\mathfrak{a}}$. Es lo mismo que demostrar que f es un nilpotente en el anillo $k[X_1, \ldots, X_n]/\mathfrak{a}$, lo que sucede si y solamente si la localización

$$(k[X_1,\ldots,X_n]/\mathfrak{a})_f$$

es trivial. La localización es isomorfa a

$$(k[X_1,\ldots,X_n]/\mathfrak{a})[Y]/(fY-1) \cong k[X_1,\ldots,X_n,Y]/(\mathfrak{a},fY-1).$$

Luego, tenemos en $\mathbb{A}^{n+1}(k)$

$$V(\mathfrak{a}, fY - 1) = \emptyset$$

así que el teorema de los ceros débil implica

$$(\mathfrak{a}, fY - 1) = k[X_1, \dots, X_n, Y].$$

Esto significa que

$$(k[X_1,\ldots,X_n]/\mathfrak{a})_f=0.$$

2.7. Comentario. La demostración de $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ a partir de la implicación

$$V(\mathfrak{a}) = \emptyset \Rightarrow \mathfrak{a} = k[X_1, \ldots, X_n]$$

es conocida como el **truco de Rabinowitsch**. Su origen es el artículo J.L. Rabinowitsch, "Zum Hilbertschen Nullstellensatz", Math. Ann. 102 (1):520, 1929. En realidad Rabinowitsch fue un seudónimo de George Yuri Rainich (1886–1968), un físico matemático nacido en el imperio ruso que emigró a los Estados Unidos en 1922.

Como hemos visto, el "truco de Rabinowitsch" es nada más la localización.