

Files Needed in MD Simulations: PDB, PSF, RTF, PRM, DCD, NAMD conf and out Files

- ▶ PDB Protein Data Bank
- > PSF Protein Structure File
- RTF Residue Topology File
- PRM Parameter Files
- DCD Coordinate/Velocity Trajectory Files
- conf NAMD Configuration File
- out NAMD Standard Output (Log) File

PDB file

- PDB files (downloaded from the <u>Protein Data Bank</u>) contain standard records for species, tissue, authorship, citations, sequence, secondary structure, etc.
- We only care about the ATOM records...
 - ▶ atom name (N, C, CA)
 - residue name (ALA, HIS)
 - residue id (integer)
 - coordinates (x, y, z)
 - occupancy (0.0 to 1.0)
 - ▶ temperature (B-) factor
 - > segment id (6PTI)
- PDB files from the Protein Data Bank contain NO hydrogen atoms! (need to be added when building the system)

PDB file format (Appendix A NAMD Tutorial)

=======	====== ATOM	=======================================				
COLUMNS	DATA TYPE	FIELD	DEFINITION			
1 - 6	Record name	 "ATOM "				
7 - 11	Integer	serial	Atom serial number.			
13 - 16	Atom	name	Atom name.			
17	Character	altLoc	Alternate location indicator.			
18 - 20	Residue name	resName	Residue name.			
22	Character	chainID	Chain identifier.			
23 - 26	Integer	resSeq	Residue sequence number.			
27	AChar	iCode	Code for insertion of residues.			
31 - 38	Real(8.3)	x	Orthogonal coordinates for X in			
			Angstroms.			
39 - 46	Real(8.3)	У	Orthogonal coordinates for Y in			
			Angstroms.			
47 - 54	Real(8.3)	z	Orthogonal coordinates for Z in			
			Angstroms.			
55 - 60	Real(6.2)	occupancy	Occupancy.			
61 - 66	Real(6.2)	tempFactor	Temperature factor.			
73 - 76	${ t LString(4)}$	segID	Segment identifier, L-justified.			
77 - 78	LString(2)	element	Element symbol, right-justified. Charge on the atom.			
79 - 80	LString(2)	charge				
From PDB:	ATOM 1 N MET 1	27.340 24.430) 2.614 1.00 9.67 1UBO 71			
110111100			3 2.842 1.00 10.38 1UBO 72			
	AIOM 2 CA MEI I					
Saved	amon 1 N New y 1	27 240 24 420	2 614 1 00 0 67 1000			
			0 2.614 1.00 9.67 1UBQ			
trom AWD:	ATOM 2 CA MET X 1	26.266 25.413	3 2.842 1.00 10.38 1UBQ			

Protein Structure File (PSF)

needs to be built!!! ,e.g., by using psfgen

- Every atom in the system is listed.
- Provides five main sections:
 - **atom**
 - bonds
 - angles
 - dihedrals
 - impropers
- ▶ What is not in the PSF file?
 - coordinates (dynamic data, initially read from PDB file)
 - velocities (dynamic data, initially from Boltzmann distribution)
 - force field parameters (non-specific, used for many molecules)

PSF file format (Appendix B NAMD Tutorial)

exp: see the ubq.psf file you have generated

	PSF											
		1		ITLE							c. c.i.a	
REMARKS original 1231 !NATOM					gene	generated structure x-plor psf			t file			
		231 1	• = 1 = 1	10M	MET	N	NH3	-0	30000	0	14.0070	0
		2	_	_	MET	HT1	HC		33000		1.0080	0
		3	_	1	MET	HT2	HC		33000		1.0080	0
1237 !NBOND: bonds												
		inf			nds							
	1		5	2	1	3	1	4	1			
	5		6	7	5	7	8	7	9			
2257 !NTHETA: angles												
	1		5	6	1	5	18	2	1	5		
	2		1	4	2	1	3	3	1	5		
	2001			4.1								
	3293	3 !N			drals			_				
			5	7	10	1	5	7	8			
	1	•	5	7	9	1	5	18	20			

Topology File (RTF)

(Appendix C - NAMD Tutorial)

blueprints for building a PSF file

- For every type of residue known:
 - > atom name, type, mass, and charge
 - bonds within the residue
 - bonds to other residues
 - any planar impropers (rare)
- Additional "patches" for:
 - terminating protein segments
 - joining protein segments
 - modifying protonation states
 - adding disulphide bonds

RTF File: H₂O

RESI TIP3 0.000

- ! tip3p water model
- ! generate using noangle nodihedral

GROUP

ATOM H2

ATOM OH2 OT -0.834 ATOM H1 HT 0.417

HT

BOND OH2 H1 OH2 H2 H1 H2

! the last bond is needed for "shake", i.e., rigid solvent model

0.417

ANGLE H1 OH2 H2

! required

ACCEPTOR OH2

RTF File

- Differences between RTF's for single molecules and residues
 - First residue converted to N-terminus NH₃+
 - Last residue converted to C-terminus CO-O-
- Special atoms
 - ▶ -C, -O, +N, +H, +CA
 - Refers to atoms in residues preceding (-) or following (+)

Parameter File (PRM)

Appendix E - NAMD Tutorial

- Equilibrium value and spring constant for
 - every pair of atom types that can form and bond
 - every triple of atom types that can form an angle
 - every quad of atom types that can form a dihedral or improper (many wildcard cases)
- vdW radius and well depth for every atom type
 - actually need these for every pair of atoms types!
 - pair radius calculated from arithmetic mean
 - pair well depth calculated from geometric mean
- Closely tied to matching topology file!

```
BONDS
```

```
!V(bond) = Kb(b - b0)**2
                               PRT File Format
!Kb: kcal/mole/A**2
!b0: A
!atom type Kb
                   b0
C
    C 600.000 1.3350 ! ALLOW ARO HEM
              ! Heme vinyl substituent (KK, from propene (JCS))
    CA
CA
         305.000
                   1.3750 ! ALLOW
                                  ARO
              ! benzene, JES 8/25/89
----- (missing data here)-------
ANGLES
!V(angle) = Ktheta(Theta - Theta0)**2
!V(Urey-Bradley) = Kub(S - S0)**2
!Ktheta: kcal/mole/rad**2
!Theta0: degrees
!Kub: kcal/mole/A**2 (Urey-Bradley)
!S0: A
!atom types Ktheta
                      Theta0 Kub S0
        CA
    CA
             40.000 120.00 35.00 2.41620 ! ALLOW
CA
                                                     ARO
             ! JES 8/25/89
CE1 CE1 CT3
             48.00 123.50
```

NAMD Configuration File

Example

Appendix E - NAMD Tutorial

```
# Minimization and Equilibration of
```

Ubiquitin in a Water Sphere

set outputname ubq_ws_eq # base name of output files (Tcl)

firsttimestep 0 # start simulation at t=0

SIMULATION PARAMETERS

```
# Input
paraTypeCharmm
                                           ;# use CHARMM forcefield parameters
                    on
parameters ../common/par_all27_prot_lipid.inp ;# load PRM file
temperature $temperature
                                             # set temperature
# Force-Field Parameters
                         - specific to CHARMM
              scaled1-4
exclude
1-4scaling
               1.0
switching
               on
                            # specified by user
cutoff
             12.
switchdist
              10.
pairlistdist
              13.5
# Integrator Parameters
timestep
                             ;# 2fs/step
               2.0
                             ;# needed for 2fs steps
rigidBonds
                all
nonbondedFreq
                             ;# non bonded forces calculated every steps
                 1
                             ;# use PME only every other step
fullElectFrequency 2
stepspercycle
                            ;# redo pairlists every ten steps
                 10
```

SIMULATION PARAMETERS (cont)

```
# Constant Temperature Control
                       ;# do langevin dynamics
langevin
              on
                       ;# damping coefficient (gamma) of 5/ps
langevinDamping
                   5
langevinTemp $temperature ;# heat bath temperature
langevinHydrogen off ;# don't couple Langevin bath to hydrogens
# Output
outputName
                 $outputname ;# set base name for output files
                        ;# write restart files w/ frequency 500steps = every 1ps
restartfreq
               500
                        ;# output coordinates in DCD trajectory file every 500steps
dcdfreq
              500
                        ;# output energies/temperature,etc. every 100steps
outputEnergies
                  100
                        :# output pressure every 100steps
outputPressure
                  100
```

EXTRA PARAMETERS

Spherical harmonic boundary conditions (BC)
sphericalBC on ;# turn on spherical BC
set location of sphere's center
sphericalBCcenter 30.3081743413, 28.8049907121, 15.353994423
use only 1 boundary potential (max 2 can be used)
sphericalBCr1 26.0 ;# distance from center where 1st boundary potential sets in
sphericalBCk1 10 ;# force constant for 1st potential
sphericalBCexp1 2 ;# exponent for 1st potential

$$U(r) = k(r - r_0)^2$$
, if $r > r_0$

EXECUTION SCRIPT

Minimization

minimize 100 ;# run structure minimization for 100 steps

reinitvels \$temperature ;# reinitialize velocities corresponding to 310K

run 5000 ;# run MD simulation (equilibration) for 10ps

;# recall: timeStep = 2fs!

NAMD Output File

Appendix F - NAMD Tutorial

running NAMD2 jobs (simulations)

charmrun namd2 ++local my_job.conf > my_job.out &

ETITLE: TS BOND ANGLE DIHED IMPRP ELECT VDW BOUNDARY MISC KINETIC TOTAL TEMP TOTAL2 TOTAL3 TEMPAVG PRESSURE GPRESSURE VOLUME PRESSAVG GPRESSAVG

ENERGY: 1000 0.0000 0.0000 0.0000 0.0000 -97022.1848 9595.3175 0.0000 0.0000 14319.5268 -73107.3405 300.2464 -73076.6148 -73084.1411 297.7598 -626.5205 -636.6638 240716.1374 -616.5673 -616.6619

use namdplot to graph these quantities vs time, e.g.,

namdplot TOTAL TEMP vs TS my_job.out &

NAMD Output File (cont.)

Info: Benchmark time: 47 CPUs 0.0475851 s/step 0.275377 days/ns 13540 kB memory

TIMING: 1000 CPU: 18.35, 0.01831/step Wall: 50.1581, 0.0499508/step,

6.92374 hours remaining, 14244 kB of memory in use.

OPENING COORDINATE DCD FILE
WRITING COORDINATES TO DCD FILE AT STEP 1000

<u>Warning:</u> Pairlistdist is too small for 1 patches during timestep 17. <u>Warning:</u> Pairlists partially disabled; reduced performance likely. <u>Warning:</u> 20 pairlist warnings since previous energy output.

(too short pairlist distance AND/OR too long cycle length \rightarrow reduced performance)

Do not ignore warnings you do not understand!