第二章 极限与连续

1. 下列极限中, 极限不为**0** 的是 ().

(A)
$$\lim_{x \to \infty} \frac{\arctan x}{x}$$

(B)
$$\lim_{x \to \infty} \frac{2\sin x + 3\cos x}{x}$$

(D) $\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$

(C)
$$\lim_{x\to 0} x^2 \sin\frac{1}{x}$$

(D)
$$\lim_{x \to 0} \frac{x^3}{x^5 + x^3}$$

2. 下列运算正确的是().

(A)
$$\lim_{x \to 0} \left(\sin x \cdot \cos \frac{1}{x} \right) = 0 \cdot \lim_{x \to 0} \cos \frac{1}{x} = 0$$

(B)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x\to 0} \frac{x-x}{x^3} = 0$$

(C)
$$\lim_{x \to \infty} \frac{\sin x + 2}{x} = \lim_{x \to \infty} \frac{\sin x}{x} + \lim_{x \to \infty} \frac{2}{x} = 0$$

(D)
$$\lim_{x \to \pi} \frac{\tan 3x}{\sin 5x} = \lim_{x \to \pi} \frac{3x}{5x} = \frac{3}{5}$$

- **3.** 设函数 $f(x) = \frac{x \ln x^2}{|x-1|}$, 则 f(x) 有 ().
 - (A) 两个可去间断点

(B) 一个可去间断点, 一个跳跃间断

(C) 两个无穷间断点

- (D) 一个可去间断点, 一个无穷间断点
- **4.** 当 $x \to 0$ 时, $\sqrt{2+x^3} \sqrt{2}$ 与 x^2 比较是 ().
 - (A) 高阶无穷小量 (B) 等价无穷小量 (C) 低阶无穷小量 (D) 同阶无穷小量
- **5.** 函数 $f(x) = \frac{\sin(x-1)}{x^2-1}$ 的第二类间断点是 ().

(A) x = 1

(B) x = -1 (C) $\frac{1}{2}$

(D) $-\frac{1}{2}$

6. 函数 $f(x) = \frac{x}{\cos x}$ 的第一类间断点个数是 ().

(A) 0

(B) 1

(C) 2

(D) 3

- **7.** 函数 $f(x) = \frac{x}{\tan x}$ 的第一类间断点是 ().
 - (A) $x = 2\pi$
- (B) $x = -\pi$
- (C) x = 0
- (D) $x = \pi$

- 8. 当 $x \rightarrow 0$ 时, $x \sin x$ 是比 x^2 的 (
 - (A) 低阶无穷小

(B) 高阶无穷小

(C) 等价无穷小

(D) 同阶但非等价无穷小

- **9.** $\lim_{x \to 1} \frac{\sin(1-x^2)}{x-1} = ($
 - $(A) \frac{1}{2}$
- (B) 2
- (C) -2

- 10. 下列函数在其定义域内连续的是(
 - (A) $f(x) = \frac{1}{x}$

- (B) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (C) $f(x) = \begin{cases} \frac{1}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
- (D) $f(x) = \begin{cases} \sin x, & x \neq 0 \\ \cos x, & r = 0 \end{cases}$
- **11.** 若 $\lim_{x \to x_0} f(x) = a$, 则必有 ().
 - (A) f(x) 在点 x_0 的某一个去心领域内有定义;
 - (B) f(x) 仕点 x_0 处有定义;
 - (C) f(x) 在点 x_0 的任意一个去心领域内有定义;
 - (D) $a = f(x_0)$.
- **12.** 函数 $f(x) = \frac{x}{\sin x}$ 的第一类间断点是 ().
 - (A) $x = \frac{\pi}{2}$; (B) $x = -\pi$; (C) x = 0; (D) $x = \pi$.

- **13.** 设函数 $f(x) = \begin{cases} (1 \frac{3x}{2})^{\frac{1}{x}}, & x \neq 0 \\ & \text{在点 } x = 0 \text{ 处连续,则 } A = \underline{\hspace{1cm}}. \end{cases}$
- **14.** 当 $x \to 0$ 时, $1 \cos kx$ 与 x^2 是等价无穷小量, 则 $k = _____.$
- **15.** $\[\psi f(x) = x \sin \frac{3}{x} + \frac{\sin x}{x}, \] \[\lim_{x \to \infty} f(x) = \underline{\qquad}. \]$

16.
$$\lim_{x\to 0} \frac{x}{e^x - e^{-x}} = \underline{\hspace{1cm}}$$

17.
$$\lim_{x \to 0} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) = \underline{\hspace{1cm}}$$

18. 若
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^{kx} = 9$$
,则 $k =$ ______.

19.
$$\lim_{x \to \infty} \left(\frac{\sin x}{x} + x \sin \frac{1}{x} \right) \stackrel{\text{\tiny 44}}{=} \mp$$

20. 求极限
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.

21. 求极限
$$\lim_{n\to\infty} (1-\frac{1}{n})^{\sqrt{n}}$$
.