期中考试分析

一、判断题

1. $x \to 0$ 时, $x \sin x = (e^x - 1) \ln(1 + x)$ 是等价无穷小量。

如果lim(β/a) = 1,则β与a为等价无穷小如果 $lim(β/a) = C \neq 0$,则β与a为同阶无穷小

0/0型,利用洛必达法则易知 xsinx与(e^x-1)ln(1+x) 为等价无穷小。

一、判断题

2. $y = \sin 2x + \sin \pi x$ 是周期函数。

错误。

Sin2x最小周期为 π , sin π x最小周期为2,则Sin2x周期应该k π , sin π x为2n k,n为正整数。无论k,n怎么取值,显然k π ≠ 2n

3. 设函数 $\{x_n\}$ 的极限不存在, $\{y_n\}$ 的极限存在,则 $\{x_n+y_n\}$ 的极限一定不存在

正确。因为若{xn+yn} 的极限存在,则由{yn} 的极限存在,则由{xn+yn-yn} 限存在,根据极限的四则运算可以推出{xn+yn-yn} 极限存在,即{xn}极限存在,与题设矛盾。

4.
$$f(x) = \begin{cases} x \tan \frac{1}{x^{1/3}}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 在 $x = 0$ 处不连续。

错误。
$$\lim_{x\to 0^+} x \tan \frac{1}{x^{1/3}} = \lim_{x\to 0^-} x \tan \frac{1}{x^{1/3}} = f(0) = 0$$

5. 拐点就是二阶导数等于零或不存在的函数点。

改变曲线的凹凸性的点 拐点一定使得二阶导为零,或者二阶导不存在,反之则不对 只有当二阶导在**x0**两侧异号,**x0**才是拐点。

二、选择题

- 1. 设 f(x)为不恒等于零的奇函数,且 f'(0)存在,则函数 $g(x) = \frac{f(x)}{x}$
 - (A) 在 x=0 处左极限不存在

- (B) 有跳跃间断点 x=0
- (C) 在 x=0 处右极限不存在
- (D) 有可去间断点 x=0₽

分析: f(x)为不恒等于0的奇函数, 故f(0) = 0,

故g₀⁺ =
$$g_0$$
⁻ = $\lim_{x\to 0} \frac{f(x)}{x} = f'(0)$

故选D

- 2. $x \to 0$ 时 $(e^{2x} 1)(1 \cos x)$ 是 x^3 的()
 - (A) 同阶无穷小但非等价无穷小
 - (C) 低阶无穷小

- (B) 等价无穷小
- (D) 高阶无穷小

分析:
$$e^{2x}-1 \sim 2x, 1-\cos x \sim \frac{1}{2}x^2$$

所以
$$(e^{2x}-1)(1-\cos x) \sim x^3$$

故选B

3. 曲线
$$y = x^3 - 3x^2 - 9x + 11$$
 在区间 $(1,2)$ 内的一段弧是 () \downarrow

(A)上升,凹的 (B)上升,凸的 (C)下降,凹的 (D)下降,凸的

分析:
$$y' = 3x^2 - 6x - 9 = 3(x - 3)(x + 1), y'' = 6x - 6 = 6(x - 1)$$

 $x \in (1, 2)$ 时, $y' < 0, y'' > 0$
故选C

4. 设
$$y = xe^x$$
 则 $y^{(n)} = ($)

(A)
$$nxe^x$$

(B)
$$(n-x)e^x$$

(c)
$$(n+x)e^{x}$$

(A)
$$nxe^x$$
 (B) $(n-x)e^x$ (C) $(n+x)e^x$ (D) $(1+x)^n e^x$

分析:
$$y' = e^{X} + xe^{X} = (1+x)e^{X}, y'' = e^{X} + (1+x)e^{X} = (2+x)e^{X}$$

依次类推 $y^{(n)} = (n+x)e^{X}$
故选C

5. 函数
$$y = x - \frac{3}{2}x^{\frac{2}{3}}$$
 ()

- (A) 有极大值 0
- (C) 有极小值-1

- (B) 有极大值 1
- (D) 无极值↔

分析:
$$x=1$$
时, $y'=1-x^{-\frac{1}{3}}=0$
当 $x>1$ 时, $y'>0$; 当 $0<$ x<1时, $y'<0$; 当 $x<0$ 时, $y'>0$;
故 y 在 $x=1$ 处取极小值 $y(x=1)=-\frac{1}{2}$, 在 $x=0$ 处取极大值 $y(x=0)=0$ 故选A

三、填空题

1.
$$\exists x f(x) = \begin{cases} 2x, & 0 < x \le 1 \\ x+1, & 1 < x \le 4, \end{cases}$$

f(x)定义域(0,4] g(x)的定义域是f(x²)与f(x)各自定义域的交集
$$0 < x^2 \le 4 \rightarrow x \in [-2,0) \cup (0,2]$$
 $0 < x+3 \le 4 \rightarrow x \in (-3,1]$ $\{[-2,0) \cup (0,2]\} \cap \{(-3,1]\} \rightarrow [-2,0) \cup (0,1]$

2.
$$i \oplus f(x) = \ln(1-2x)$$
, $\iiint \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = \underbrace{\frac{2}{2x_0 - 1}}$

很容易求得**x0**处一阶导数的相反数为: $\frac{-2}{2x_0-1}$

注意,题目要求x0处的导数,严格来计 $\frac{-2}{2x-1}$ 是不对的

3.
$$\lim_{x \to \infty} \left(\frac{ax^2 + bx + c}{x - c} \right)^x = e$$
, $\mathbb{N} = 0$

考察重要极限

$$\lim_{\mathbf{x} \to \infty} \left(1 + \frac{2\mathbf{c}}{\mathbf{x} - \mathbf{c}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to \infty} \left(1 + \frac{1}{\frac{\mathbf{x} - \mathbf{c}}{2\mathbf{c}}} \right)^{\mathbf{x}} = \lim_{\mathbf{x} \to$$

4. 设曲线 $y = 1 - x^2$ 与直线 x = -1 的交点为 P,则曲线 $y = 1 - x^2$ 在 P 处的切线方程为

$$\begin{cases} y = 1 - x^{2} \\ x = -1 \end{cases} = \begin{cases} x = -1 \\ y = 0 \end{cases}, P(-1,0), y'|_{x=-1} = 2$$

切线方程: (y-0) =y'*[x-(-1)],即: y=2x+2

5. 函数 $f(x) = x^3 + 2x$ 区间[0,1]上満足于拉格朗日定理条件,则定理中的 $\xi = x^3$

已知满足拉格朗日条件的函数满足: $f'(\xi)(b-a)=f(b)-f(a)$ $f'(\xi)=[f(b)-f(a)]/(b-a)=[f(1)-f(0)]/1=3$

$$f'(\xi)=3 \xi^2+2=3, \xi=\frac{1}{\sqrt{3}}$$

四、计算题

$$\lim_{n \to \infty} \left(\frac{n+3}{n-1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{4}{n-1} \right)^n = \lim_{n \to \infty} \left(1 + \frac{4}{n-1} \right)^{n-1} \cdot \lim_{n \to \infty} \left(1 + \frac{4}{n-1} \right)$$

$$= \left[\lim_{n \to \infty} \left(1 + \frac{1}{n-1} \right)^{\frac{n-1}{4}} \right]^4 \cdot \lim_{n \to \infty} \left(1 + \frac{4}{n-1} \right) = e^4$$

主要考点:
$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x\to 0} (\sqrt{1+x^2})^{\cot^2 x} = \lim_{x\to 0} e^{\cot^2 x \ln \sqrt{1+x^2}} = \lim_{x\to 0} e^{\frac{1}{2}\cot^2 x \ln(1+x^2)}$$

$$\lim_{x \to 0} \frac{\frac{1}{2} \ln(1+x^2)}{\tan^2 x} = \lim_{x \to 0} \frac{\frac{x}{1+x^2}}{2 \tan x \sec^2 x} = \frac{1}{2}$$

故原式=e²

主要考点: 洛必达法则

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{0}{0} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

$$= \lim_{x \to \infty} \frac{a^{\frac{1}{x}} \ln a \frac{-1}{x^2} - b^{\frac{1}{x}} \ln b \frac{-1}{x^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} (a^{\frac{1}{x}} \ln a - b^{\frac{1}{x}} \ln b) = \ln \frac{a}{b}$$

主要考点: 洛必达法则
$$\lim_{x \to \infty} f(x)g(x) = \lim_{x \to 0} 0 \times \infty$$

$$= \lim_{x \to 0} \frac{0}{0} = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$

$$=\lim_{x\to 0}\frac{f'(x)}{g'(x)}$$

$$\lim_{x \to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2} = \lim_{x \to 0} \frac{\frac{1}{2} (1+x)^{-\frac{1}{2}} - \frac{1}{2} (1-x)^{-\frac{1}{2}}}{2x}$$

$$= \frac{1}{4} \lim_{x \to 0} \frac{-\frac{1}{2}x - \frac{1}{2}x}{x} = -\frac{1}{4}$$

主要考点: 洛必达法则

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{0}{0} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

很多同学求导求错!

$$(\sqrt{1-x})' = ?$$

$$y = \ln(x + \sqrt{x^2 - 1}) + \arccos\frac{1}{x}$$

$$y' = \frac{1}{x + \sqrt{x^2 - 1}} (1 + \frac{x}{\sqrt{x^2 - 1}}) + \frac{-1}{\sqrt{1 - \frac{1}{x^2}}} (-\frac{1}{x^2})$$

$$= \frac{x + 1}{x\sqrt{x^2 - 1}}$$

主要考点:

基本函数与复合函数求导

$$y = \frac{(\ln x)^x}{x^{\ln x}}$$

两边取对数: $\ln y = x \ln \ln x - (\ln x)^2$

两边对x求导:
$$\frac{1}{y}y' = \ln \ln x + x \frac{1}{\ln x} \frac{1}{x} - 2\ln x \frac{1}{x}$$

$$y' = \frac{(\ln x)^x}{x^{\ln x}} (\ln \ln x + x \frac{1}{\ln x} \frac{1}{x} - 2 \ln x \frac{1}{x})$$

参看课件:《导数的运算法则与基本公式》例9. 幂指函数求导

五、证明题

设 f(x) 在[0,1]上连续,在(0,1)可导,f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$,

求证: 存在 $\xi \in (0,1)$ 使得 $f'(\xi) = 1$ 。

分析: 要证明存在 $\xi \in (0,1)$,使得 $f'(\xi) = 1$,即证明 $F'(\xi) = f'(\xi) - 1 = 0$ 很自然的想到构造函数F(x) = f(x) - x,如果在 x_1 和 $x_2 \in (0,1)$,使得 $F(x_1) = 0$ 和 $F(x_2) = 0$,由于F(x)在定义域内连续可导,便可以知道存在 $\xi \in (0,1)$,使得 $F'(\xi) = 0$,这样原命题得证。实际上我们知道

$$F(\frac{1}{2}) = f(\frac{1}{2}) - \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}, F(1) = f(1) - 1 = 0 - 1 = -1$$

故可知存在 $\eta \in (\frac{1}{2},1)$,使得 $F(\eta) = 0$

又由于F(0)=f(0)-0=0

故存在 $\xi \in (0,\eta) \in (0,1)$,使得 $F'(\xi) = 0$

六、解答题

设
$$f(x) = \begin{cases} \frac{g(x) - \cos x}{x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 其中 $g(x)$ 具有二阶连续可导,且 $g(0) = 1$ 。

(1) 确定 a 的值, 使 f(x) 在 x=0 处连续。

分析: f(x)在定义域为 $x \neq 0$ 时,表达式为 $\frac{g(x) - \cos x}{x}$,是连续函数,

要使f(x)在x = 0处也连续,必须满足 $f_{0^{+}}(x) = f_{0^{-}}(x) = f(a)$ 。

而f(a)=a,所以a=g'(0)

主要考点:连续的定义

设
$$f(x) =$$

$$\begin{cases} \frac{g(x) - \cos x}{x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 其中 $g(x)$ 具有二阶连续可导,且 $g(0)=1$ 。

(2) f(x)在x=0处连续时,求f'(x)。

分析: 当f(x)在定义域为 $x \neq 0$ 时, 其为连续可导函数, 故

$$f'(x) = \left(\frac{g(x) - \cos x}{x}\right)' = \frac{1}{x} [g'(x) + \sin x] - \frac{1}{x^2} [g(x) - \cos x]$$

当f(x)在定义域为x=0时,其导数值需由导数的定义来计算,

$$\mathbb{E}[f'(0)] = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{g(x) - \cos x}{x} - g'(0)}{x}$$

$$= \lim_{x \to 0} \frac{g(x) - \cos x - xg'(0)}{2} = \frac{g''(0) + 1}{2}$$

即 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{g(x) - \cos x}{x} - g'(0)}{x}$ $= \lim_{x \to 0} \frac{g(x) - \cos x - xg'(0)}{x^2} = \frac{g''(0) + 1}{2}$ $f'(x) = \begin{cases} \frac{1}{x} [g'(x) + \sin x] - \frac{1}{x^2} [g(x) - \cos x] \dots x \neq 0 \\ \frac{g''(0) + 1}{2} \dots x = 0 \end{cases}$

设
$$f(x) = \begin{cases} \frac{g(x) - \cos x}{x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 其中 $g(x)$ 具有二阶连续可导,且 $g(0) = 1$ 。
(3) 讨论 $f'(x)$ 在 $x = 0$ 处的连续性。

(3) 讨论 f'(x) 在 x=0 处的连续性。

分析: 由第二问我们已经知道f(x)的导函数表达式为

要讨论其连续性,即分析 $x \neq 0$ 时,f'(x)在x = 0的极限值 与x = 0时,f'(x)的函数值之间的关系

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{x[g'(x) + \sin x] - [g(x) - \cos x]}{x^2} = \frac{g''(0) + 1}{2} = f'(0)$$

故f'(x)在x=0处是连续的

七、作图题

试作出函数 $y = \frac{x^2}{1+x}$ 的图形(要求:写出定义域、极值点、单调区间,列出

表格,求出渐近线,作出图形)。

定义域:由1+x≠0可得函数的定义域为(-∞,-1)∪(-1,+∞)。+

间断点: $\lim_{x \to -1^-} \frac{x^2}{1+x} = -\infty$, $\lim_{x \to -1^+} \frac{x^2}{1+x} = +\infty$, 因此点 x = -1 为函数的第二类间断点。

(2)**单调区间:** 对函数在定义域内求导得
$$y' = \frac{2x(1+x)-x^2}{(1+x)^2} = \frac{x^2+2x}{(1+x)^2}$$

令
$$y' = 0$$
 得 $x_{1,2} = -2,0$, 易知 y'
$$\begin{cases} > 0, x \in (-\infty, -2) \cup (0, +\infty) \\ < 0, x \in (-2, -1) \cup (-1, 0) \end{cases}$$
 , 因而 , φ

(-∞,-2) \cup (0,+∞)是单调递增区间;(-2,-1) \cup (-1,0)是单调递减区间。

试作出函数 $y = \frac{x^2}{1+x}$ 的图形(要求:写出定义域、极值点、单调区间,列出

表格,求出渐近线,作出图形)。

(3) 极值点:函数的二阶导数为₽

$$y'' = \frac{(1+x)^2 (2x+2) - 2(x^2 + 2x)(1+x)}{(1+x)^4} = \frac{2x+2}{(1+x)^4} = \frac{2}{(1+x)^3} \begin{cases} > 0, x > -1 \\ < 0, x < -1 \end{cases}$$

根据函数取得极值的充分条件↓

$$x=-2$$
 时 $y'=0,y''<0$,因此 $x=-2$ 是函数的极大值点; ₹

$$x=0$$
 时 $y'=0,y'>0$,因此 $x=0$ 是函数的极小值点。

试作出函数 $y = \frac{x^2}{1+x}$ 的图形(要求:写出定义域、极值点、单调区间,列出

表格,求出渐近线,作出图形)。

(4) 列表: ↔

_								
	区间₽	(-∞,-2) ₽	-2 ↔	(-2,-1)	-1₽	(-1,0)	0 &	(0,+∞)↔
	y' 0	+0	0 0	-0	10	-0	0 0	++ ++
	y" +2	-0	-0	- - -	<i> </i> ϕ	+ 47	++	4+
	<i>y</i> +3	↑.	-4+	↓.p	/0	↓e	0 43	↑ ₽
$\left\langle \right\rangle$	f(x)	Д	极大₽	<u>C</u>	/φ	Ñ	极小↩	Ü ³

试作出函数 $y = \frac{x^2}{1+x}$ 的图形(要求:写出定义域、极值点、单调区间,列出

表格,求出渐近线,作出图形)。

(5)渐近线:下面求渐近线₽

$$\lim_{x \to \infty} \frac{x^2}{(1+x)x} = 1 \qquad \lim_{x \to \infty} \frac{x^2}{(1+x)} - x = -1$$

所以渐近线方程为x=-1和y=x-1。

