Restricted Lucas congruences for Apéry numbers modulo p^2

Eric Rowland

Hofstra University

Joint work with Reem Yassawi

AMS Fall Southeastern Sectional Meeting University of Florida, Gainesville, 2019–11–2

Apéry numbers

$$A(n) := \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
 arose in Apéry's proof that $\zeta(3)$ is irrational.

 $A(n)_{n\geq 0}$: 1,5,73,1445,33001,819005,21460825,...

Theorem (Gessel 1982)

Let p be a prime. The Apéry numbers satisfy the Lucas congruence

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_\ell) \mod p,$$

where $n_{\ell} \cdots n_1 n_0$ is the standard base-p representation of n.

Example

Let
$$p = 5$$
 and $n = 447 = 3242_5$.

$$A(447) \equiv A(2)A(4)A(2)A(3) \equiv 3 \cdot 1 \cdot 3 \cdot 0 \equiv 0 \mod 5.$$

Automaton interpretation

 $(A(n) \mod 5)_{n \ge 0}$ is 5-automatic.

Create one state for each residue modulo 5. Edges encode transitions between states.

$$A(447) \equiv A(2)A(4)A(2)A(3) \equiv 3 \cdot 1 \cdot 3 \cdot 0 \equiv 0 \mod 5$$

Mod 7

 $A(d) \not\equiv 0 \mod 7 \text{ for all } d \in \{0, 1, \dots, 6\}.$

Therefore $A(n) \not\equiv 0 \mod 7$ for all $n \ge 0$.

Diagonals of rational power series

The diagonal of a formal power series is

diag
$$\sum_{n_1,n_2,\dots,n_k\geq 0} a_{n_1,n_2,\dots,n_k} x_1^{n_1} x_2^{n_2} \cdots x_k^{n_k} := \sum_{n\geq 0} a_{n,n,\dots,n} x^n.$$

Straub (2014):

diag
$$\frac{1}{(1-x_1-x_2)(1-x_3-x_4)-x_1x_2x_3x_4}=\sum_{n\geq 0}A(n)x^n.$$

Theorem (Denef-Lipshitz 1987)

Let $\alpha \geq 1$. Let $R(\mathbf{x}), Q(\mathbf{x}) \in \mathbb{Z}_p[\mathbf{x}]$ such that $Q(0, \dots, 0) \not\equiv 0 \mod p$. Then the coefficient sequence of $\left(\operatorname{diag} \frac{R(\mathbf{x})}{Q(\mathbf{x})}\right) \mod p^{\alpha}$ is p-automatic.

 \mathbb{Z}_p denotes the set of *p*-adic integers.

Therefore $(A(n) \mod p^{\alpha})_{n \geq 0}$ is *p*-automatic for every prime power p^{α} .

Mod 9

Theorem (Gessel 1982)

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_\ell) \mod 9,$$

where $n_{\ell} \cdots n_1 n_0$ is the base-3 representation of n.

For $p \ge 5$, the Lucas congruence does not hold modulo p^2 .

Mod 25

Restrict the digit set.

Theorem (Rowland-Yassawi 2015)

If each digit in the base-5 representation of n belongs to $\{0,2,4\}$, then $A(n) \equiv A(n_0)A(n_1)\cdots A(n_\ell) \mod 25$.

Search for digit sets

Which digit sets support Lucas congruences for $A(n) \mod p^2$?

For large p, the automaton for $A(n) \mod p^2$ is hard to compute.

Experimental approach: Test all 3-element subsets of $\{0, 1, \dots, p-1\}$.

p	digits sets
3	{0,1,2}
5	$\{0,1,3\},\{0,2,4\}$
7	$\{0, 2, 3, 4, 6\}$
11	{0,5,10}
13	{0,6,12}
17	{0,3,13}, {0,8,16}
19	$\{0,8,10\},\{0,9,18\}$

Symmetry

Theorem (Malik–Straub 2016)

$$A(d) \equiv A(p-1-d) \mod p \text{ for each } d \in \{0,1,\ldots,p-1\}.$$

Let
$$\frac{D(p)}{D(p)} := \left\{ d \in \{0, 1, \dots, p-1\} : A(d) \equiv A(p-1-d) \mod p^2 \right\}.$$
 In particular, $\{0, \frac{p-1}{2}, p-1\} \subseteq D(p).$ $\{0, 2, 4\} \subseteq D(5)$

Theorem (Rowland-Yassawi)

The digit set D(p) supports a restricted Lucas congruence for the Apéry numbers modulo p^2 .

That is, if each base-p digit of n belongs to D(p), then

$$A(n) \equiv A(n_0)A(n_1)\cdots A(n_\ell) \mod p^2,$$

where $n_{\ell} \cdots n_1 n_0$ is the standard base-*p* representation of *n*.

Large digit sets

Primes p with $|D(p)| \ge 4$:

р	D(p)
7	{0,2,3,4,6}
23	{0,7,11,15,22}
43	{0,5,18,21,24,37,42}
59	{0, 6, 29, 52, 58}
79	{0, 18, 39, 60, 78}
103	{0, 17, 51, 85, 102}
107	{0, 14, 21, 47, 53, 59, 85, 92, 106}
127	{0, 17, 63, 109, 126}
131	{0,62,65,68,130}
139	{0,68,69,70,138}
151	{0, 19, 75, 131, 150}
167	$\{0, 35, 64, 83, 102, 131, 166\}$

$Mod 7^2$

$$D(7) = \{0, 2, 3, 4, 6\}$$

Mod 23²

$$\textit{D(23)} = \{0, 7, 11, 15, 22\}$$

Mod 59²

 $D(59) = \{0, 6, 29, 52, 58\}$

Gessel's mod p² congruence

Define the sequence $A'(n)_{n\geq 0}$ by

where $H_m := 1 + \frac{1}{2} + \cdots + \frac{1}{m}$ is the *m*th harmonic number.

$$A'(n)_{n\geq 0}$$
: 0, 12, 210, 4438, 104825, $\frac{13276637}{5}$, 70543291, $\frac{67890874657}{35}$, . . .

Gessel notes: If A(n) can be extended to a differentiable function A(x) satisfying the same recurrence as A(n), then $A'(n) = (\frac{d}{dx}A(x))|_{x=n}$.

Theorem (Gessel 1982)

Let p be a prime. For all $d \in \{0, 1, \dots, p-1\}$ and for all $n \ge 0$,

$$A(d+pn) \equiv (A(d)+pnA'(d))A(n) \mod p^2.$$

Interpolation to \mathbb{C}

A(n) is a hypergeometric function:

$$A(n) = \sum_{k \ge 0} {n \choose k}^2 {n+k \choose k}^2 = \sum_{k \ge 0} \frac{\Gamma(n+k+1)^2}{\Gamma(n-k+1)^2 k!^4}$$
$$= \sum_{k \ge 0} \frac{(-n)_k (-n)_k (n+1)_k (n+1)_k}{k!^4}$$
$$= {}_4F_3(-n,-n,n+1,n+1;1,1,1;1)$$

where $(a)_k = a(a+1)\cdots(a+k-1)$ is the Pochhammer symbol.

For all $z \in \mathbb{C}$, define

$$A(z) := {}_{4}F_{3}(-z, -z, z+1, z+1; 1, 1, 1; 1).$$

Theorem (Rowland-Yassawi)

A(z) is analytic at every $z \in \mathbb{C}$.

Recurrence

$$R(z) := z^3 A(z) - (34z^3 - 51z^2 + 27z - 5)A(z - 1) + (z - 1)^3 A(z - 2)$$

Then R(n) = 0 for every integer $n \ge 2$.

Plot of R(z):

For all $z \in \mathbb{C}$,

$$R(z) = \frac{8}{\pi^2}(2z - 1)(\sin(\pi z))^2.$$

This is sufficient, since R'(z) = 0 at integers z = n.

Series expansion

Power series:

$$A(z) = 1 + 0z + \zeta(2)z^2 + 2\zeta(3)z^3 - \frac{1}{2}\zeta(4)z^4 + \cdots$$

More terms of the power series:

$$A(z) = 1 + 0z + \zeta(2)z^{2} + 2\zeta(3)z^{3} - \frac{1}{2}\zeta(4)z^{4} - 4\zeta(3,2)z^{5} + (2\zeta(2,4) - \zeta(4,2))z^{6} + \cdots$$

The multiple zeta function is

$$\zeta(s_1, s_2, \ldots, s_m) := \sum_{n_1 > n_2 > \cdots > n_m > 0} \frac{1}{n_1^{s_1} n_2^{s_2} \cdots n_m^{s_m}}.$$

$$\zeta(3,2) = 3\zeta(2)\zeta(3) - \frac{11}{2}\zeta(5)$$

References

- Jan Denef and Leonard Lipshitz, Algebraic power series and diagonals, Journal of Number Theory **26** (1987) 46–67.
- Ira Gessel, Some congruences for Apéry numbers, *Journal of Number Theory* **14** (1982) 362–368.
- Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, *Research in Number Theory* **2** (2016) Article 5.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, *Journal de Théorie des Nombres de Bordeaux* **27** (2015) 245–288.
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, *Algebra & Number Theory* **8** (2014) 1985–2008.