Lab ACP

Edwin Sanchez Stephanie Tamayo Andres Felipe Torres Fredy Urrea Sergio Velasquez Manuel Espitia

2025-05-18

Introduccion

Carga de los datos

Punto 2

Utilizar la función PCA del paquete FactoMiner para realizar un ACO con todas las varibales especificas del grupo utilizando cmo ilustrativas las variables de Recursos Humanos.

Preparación de datos

Seleccionamos las variables activas (internacionalización) y las variables

Análisis de Componentes Principales (ACP)

res.pca <- PCA(base_acp, scale.unit = TRUE, quanti.sup = 6:19, graph = FALSE)

Resultados

a) Valores propios

Table 1: Valores propios y varianza explicada

	eigenvalue	percentage of variance	cumulative percentage of variance
comp 1	3.110	62.199	62.199
comp 2	1.162	23.238	85.437
comp 3	0.476	9.520	94.957
comp 4	0.252	5.043	100.000
comp 5	0.000	0.000	100.000

b) Correlaciones de variables activas

Table 2: Correlación de variables activas con los factores

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
BCPIB	-0.699	0.672	0.218	0.113	0
CI	0.924	-0.352	0.104	-0.103	0
TOE	0.802	0.285	0.523	-0.037	0
DP	0.876	0.178	-0.192	0.404	0
DM	0.596	0.688	-0.327	-0.253	0

c) Correlaciones de variables ilustrativas

Table 3: Correlación de variables ilustrativas con los factores

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
PC	0.397	0.583	0.062	-0.436	0
TCP	-0.154	-0.387	-0.040	-0.305	0
AA	-0.057	-0.435	-0.067	-0.231	0
CBPS	0.163	-0.026	-0.277	0.112	0
CBES	0.246	0.706	-0.038	-0.462	0
RAP	0.029	-0.242	-0.200	-0.066	0
CC	-0.065	0.577	-0.155	-0.334	0
CPT	0.076	-0.128	-0.164	-0.040	0
CS	-0.079	0.340	-0.066	0.086	0
MI	0.168	-0.319	0.163	-0.313	0
DCFS	-0.270	-0.165	0.103	-0.038	0
VI	-0.308	-0.125	-0.017	-0.108	0
Н	0.169	0.219	0.094	0.094	0
S	-0.273	-0.162	0.137	0.127	0

Visualizaciones

a) Mapa de variables

b) Biplot

Biplot: ciudades y variables

Punto 3.

Utilizar la funcion PCA del paquete FactoMiner para realizar un ACP de las variables de recursos humanos (RH) utilizando como ilustrativas las que le correspondieron al grupo

Carga de archivos y ejecucion del ACP

```
# Estandrizacion y asiganacion de nombres de la filas
RHINTce <- scale(RHINT[,2:20], scale = TRUE, center = TRUE)
colnames(RHINTce) <- colnames(RHINT)[2:20]
rownames(RHINTce) <- RHINT$CIUDADES

require(FactoMineR)
#ACP sin grafica
pcaRHINTce <- PCA(RHINTce, quanti.sup = c(15:19), graph = F, ncp = 6)
#pcaRHINTce</pre>
```

Valores propios y varianza explicada

Table 4: Valores propios, porcentaje de varianza y varianza acumulada

	Valor propio	% Varianza	% Acumulado
comp 1	3.5715	25.5104	25.5104
comp 2	2.2390	15.9932	41.5036
comp 3	2.0716	14.7971	56.3007
comp 4	1.6027	11.4479	67.7486
comp 5	1.2583	8.9880	76.7366
comp 6	1.1918	8.5128	85.2494
comp 7	0.7712	5.5087	90.7581
comp 8	0.4614	3.2959	94.0539
comp 9	0.3276	2.3401	96.3941
comp 10	0.2153	1.5376	97.9316
comp 11	0.1288	0.9199	98.8515
comp 12	0.0942	0.6726	99.5241
comp 13	0.0538	0.3845	99.9086
comp 14	0.0128	0.0914	100.0000

Análisis de Varianza Explicada (ACP):

- 6 primeras componentes (valores propios >1) explican 85.25% de varianza
- 1ra componente: 25.51% varianza (mayor influencia)
- 2 componentes (41.5% varianza) permiten análisis bidimensional básico
- 90% varianza requiere 8 componentes (complejidad multidimensional)
- Conclusión: Reducción dimensional efectiva, pero se requieren múltiples componentes para capturar la complejidad de los datos.

Correlaciones variable factor

Table 5: Correlaciones variables factor primeras 6 dimensiones

	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6
PC	-0.3569	0.7088	-0.0370	0.2907	0.0014	0.4134
TCP	0.8193	0.1945	-0.1064	0.3789	0.1926	0.0511
AA	0.9042	0.2083	-0.2736	-0.0455	0.0122	0.0645
CBPS	0.2085	0.3028	0.6300	-0.5551	-0.1747	-0.1542
CBES	-0.5160	0.7179	0.1057	0.0908	0.1345	0.2576
RAP	0.7936	0.3049	0.2618	-0.0864	-0.2436	0.1866
CC	-0.6709	0.4063	0.1403	0.1353	0.2379	-0.0390
CPT	-0.2128	-0.3014	-0.1846	-0.5536	0.3631	0.4263
CS	-0.0764	0.4103	-0.2834	0.2444	0.0393	-0.7590
MI	0.6433	0.1904	-0.2198	0.0607	0.6197	0.0650
DCFS	0.2180	-0.1962	0.7679	0.4088	0.2387	0.1102
VI	0.0181	-0.2347	0.8007	0.3024	0.0763	-0.0669
Н	-0.1010	-0.0445	0.1945	-0.3387	0.6877	-0.3074
S	-0.2064	-0.6319	-0.2376	0.5359	0.0577	0.1202

Análisis de Correlaciones Principales (6 primeras dimensiones):

D1: Analfabetismo↑ + Educación.l.

D2: Educación↑ vs Secuestros↑

D3: Violencia género (Delitos 0.77, VIF 0.80)

D5-D6: Salud y violencia vinculadas

Variables y ciudades en las Dimensiones 1 y 2

Figure 1: Figura 1. Variables y ciudades en las Dimensiones 1 y 2

Análisis de Ciudades y Variables (Dimensiones 1 y 2 - 41.5% varianza total)

- Eje X (25.5%): Educación↑ vs Secuestros↑ → Bogotá/Medellín vs Cúcuta
- Eje Y (16%): Violencia \uparrow vs Educación \downarrow \to Villavicencio/Santa Marta vs Armenia
- Disparidad regional: Bogotá/Medellín vs. Cúcuta/San Andrés en desarrollo y seguridad
- Relación educación-mercados: CBES y DM correlacionan en ciudades desarrolladas
- Variables suplementarias: BCPIB y DM ayudan a contextualizar los ejes principales

Variables y ciudades en las Dimensiones 1 y 3

Figure 2: Figura 1.1 Variables y ciudades en las Dimensiones 1 y 3

Análisis Ciudades-Variables (Dim 1 y 3 - 40.3% varianza)

- Eje X: Crecimiento (AA/TCP) vs Educación (CC/CBES)
- Eje Y: Violencia familiar (VI/DCFS) vs Seguridad (CS/S)

Ciudades con alto crecimiento muestran dos patrones:

- Con alta violencia (Villavicencio)
- Con baja violencia (Riohacha)
- Infraestructura educativa se asocia con menor violencia específica
- Variables suplementarias (DM/PC) validan vínculo entre diversificación económica y desarrollo

Variables y ciudades en las Dimensiones 3 y 4

Figure 3: Figura 1. Variables y ciudades en las Dimensiones 3 y 4

Análisis Ciudades-Variables (Dim 3 y 4 - 26.2% varianza)

- Eje Y (D3): Violencia (VI/DCFS) vs Educación básica (CBPS)
- Eje X (D4): Secuestros/Salud vs Homicidios/Capacitación
- Paradoja educativa: Alta cobertura escolar (CBPS) coexiste con violencia familiar/sexual (VI/DCFS)

Dos modelos de seguridad:

- Ciudades con violencia doméstica (Villavicencio)
- Ciudades con secuestros pero baja violencia familiar (Bogotá)
- Formación laboral crítica: Baja capacitación (CPT) vinculada a homicidios (H) en ciudades como Cúcuta

Variables y ciudades en las Dimensiones 5 y 6

Figure 4: Figura 4. Variables y ciudades en las Dimensiones 5 y 6

Análisis Dimensiones 5 y 6 (17.5% varianza total)

 Paradoja capitalina: Bogotá combina altos índices violentos con fuerte capacitación laboral

Dos modelos exitosos:

- Ciudades con servicios consolidados (Pasto/Medellín)
- Ciudades con apuesta educativa (Montería/San Andrès)
- Foco crítico: Cúcuta/Cali requieren urgentes mejoras en cobertura sanitaria
- Dim5: Salud vs Violencia (H/MI)
- Dim6: Formación laboral + Vulnerabilidades
- Bogotá: Violencia + Capacitación
- Cúcuta/Cali: Urgen mejoras en salud
- Pasto/Medellín: Modelo a replicar

Biplot en las Dimensiones 1 y 2

Biplot Dimensiones 1 y 2

El biplot (41.5% varianza total) revela contrastes socioeconómicos entre ciudades:

- Dimensión 1 (25.5%): Seguridad vs. Desarrollo
 - (+) Riohacha/Valledupar: altos Homicidios (H) y Mortalidad Infantil (MI)
 - (-) Bogotá/Medellín: mejor Cobertura Salud (CS) y Educación Superior (CBES)
- Dimensión 2 (16%): Excelencia educativa
 - (+) Bogotá/Medellín: destacan en Calidad Colegios (CC) y CBES
 - (-) San Andrés/Ibagué: menores indicadores educativos
- Variables suplementarias (internacionalización) correlacionan levemente con ciudades desarrolladas.

Biplot en las Dimensiones 1 y 3

Figure 6: Figura 4.1 biplot Dimensiones 1 y 3

Biplot Dimensiones 1 y 3

- Ejes principales (40.3% varianza total):
- Dimensión 1 (25.5%): Contrasta dinamismo demográfico (TCP, AA) con calidad educativa (CC, CBES). Ciudades como Villavicencio muestran alto crecimiento pero desafíos en alfabetización, mientras Bogotá y Pasto destacan por su infraestructura formativa.
- Dimensión 3 (14.8%): Revela una tensión entre violencia (VI, DCFS) y escolarización básica (CBPS), con ciudades como Bucaramanga combinando buena cobertura educativa con focos de violencia doméstica.
- Hallazgos clave:
 - Cuatro perfiles urbanos identificados: desde ciudades con crecimiento acelerado y violencia (Villavicencio) hasta aquellas con educación sólida y baja criminalidad (Bogotá).
 - Variables como Cobertura en Salud (CS) y Secuestros (S) requieren análisis en otras dimensiones para su plena interpretación.
 - Las variables suplementarias (ej: diversificación de mercados) matizan patrones, sugiriendo que factores económicos complementan estas dimensiones.
- Conclusión: Este plano destaca la necesidad de políticas que equilibren crecimiento poblacional, calidad educativa y seguridad, invitando a profundizar en dimensiones adicionales para un diagnóstico integral.

Biplot en las Dimensiones 3 y 4

Figure 7: Figura 4. biplot Dimensiones 3 y 4

Biplot Dimensiones 3 y 4

- Dimensión 3 (14.8%):
 - Enfoque: Violencia intrafamiliar (VI) y delitos sexuales (DCFS)
 - Ciudades críticas: Bucaramanga (alta incidencia)
 - Ciudades destacadas: Armenia, Cartago y Manizales (baja incidencia + buena cobertura educativa CBPS)
- Dimensión 4 (11.4%):
- . Variables económicas: BCPIB y TCP con influencia moderada
 - Caso atípico: Villavicencio (dinámicas no explicadas por estas dimensiones)
 - Conclusiones:
 - Patrones claros de violencia de género vs. desempeño educativo
 - Oportunidad para políticas focalizadas en seguridad ciudadana y equidad educativa
 - Necesidad de análisis adicional para casos atípicos

Biplot en las Dimensiones 5 y 6

Figure 8: Figura 4. biplot Dimensiones 5 y 6

Biplot Dimensiones 5 y 6

- Dimensión 5 (9%):
 - Variable clave: Homicidios (H)
 - Ciudades críticas: Riohacha, Pereira, Cúcuta (alta violencia letal)
- Dimensión 6 (8.5%):
 - Variable moderada: Secuestros (S) (impacto negativo)
 - Ciudades estables: Bogotá, Ibagué, Cartago (posición neutra)
- Patrón destacado:
 - Ciudades con alta incidencia de homicidios se agrupan claramente
 - Variables de bienestar (CS, CC) tienen influencia secundaria