集合的基数

School of Computer Wuhan University

集合的基数

School of Computer Wuhan University

本章内容

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Outline

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Journey to infinity

基数

- 从一到无穷大
- 一一对应——双射

Journey to infinity

基数

- 从一到无穷大
- 一一对应——双射

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\bullet \{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}\$
- $\emptyset^+ = \emptyset \cup \{\emptyset\} = \{\emptyset\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\$
- o · · · · · ·

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$
- o · · · · · ·

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

- $\{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$
- $\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$
- $(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$
- o · · · · · ·

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

例

•
$$\{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$$

$$\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

•
$$(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\$$

o · · · · ·

©YaoYı

Definition (后继(Successor ordinal))

• 任意集合S的后继集合定义为: $S^+ = S \cup \{S\}$

例

•
$$\{a,b\}^+ = \{a,b\} \cup \{\{a,b\}\} = \{a,b,\{a,b\}\}$$

$$\bullet \varnothing^+ = \varnothing \cup \{\varnothing\} = \{\varnothing\}$$

•
$$(\varnothing^+)^+ = \{\varnothing\}^+ = \{\varnothing\} \cup \{\{\varnothing\}\} = \{\varnothing, \{\varnothing\}\}\}$$

•

@YaoYt

自然数的构造

Theorem (自然数公理)

存在集合N满足以下条件:

- $\emptyset \varnothing \in \mathbb{N}$;

自然数集合

集合	编号
Ø	0
$\overline{\{\varnothing\}}$	1
$\{\varnothing,\{\varnothing\}\}$	2
	n
$n \cup \{n\}$	n+1

自然数的构造

Theorem (自然数公理)

存在集合N满足以下条件:

自然数集合

集合	编号
Ø	0
$\overline{\{\varnothing\}}$	1
$\{\varnothing,\{\varnothing\}\}$	2
	n
$n \cup \{n\}$	n+1

Theorem (Peano自然数公理)

- $0 \in \mathbb{N}$:
- 2 如果 $n \in \mathbb{N}$,则存在唯一的n的后继 $n' \in \mathbb{N}$;(后继唯一性)
- ③ 0不是任何自然数的后继;
- ④ 如果n' = m',那么n = m;(直接前驱唯一性)

- 常以❷和❹来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,......
 - 序列 0,2,4,6,.....,1,3,5,7,.....

Theorem (Peano自然数公理)

- $\mathbf{0} \ 0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在唯一的n的后继 $n' \in \mathbb{N}$;(后继唯一性)
- ③ 0不是任何自然数的后继;
- ④ 如果n' = m',那么n = m;(直接前驱唯一性)

- 常以❷和❹来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,......
 - 序列 0,2,4,6,.....,1,3,5,7,.....

Theorem (Peano自然数公理)

- $0 \in \mathbb{N}$:
- 2 $\omega \mathbb{R}^n \in \mathbb{N}$, 则存在唯一的n的后继 $n' \in \mathbb{N}$; (后继唯一性)
- 3 0不是任何自然数的后继;
- ④ 如果n' = m',那么n = m;(直接前驱唯一性)

- 常以❷和母来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,.....
 - 序列 0,2,4,6,.....,1,3,5,7,.....

Theorem (Peano自然数公理)

- $0 \in \mathbb{N}$:
- 2 如果 $n \in \mathbb{N}$,则存在唯一的n的后继 $n' \in \mathbb{N}$;(后继唯一性)
- 3 0不是任何自然数的后继;
- \bullet 如果n'=m',那么n=m;(直接前驱唯一性)

- 常以❷和母来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,......
 - 序列 0,2,4,6,.....,1,3,5,7,.....

Theorem (Peano自然数公理)

- $0 \in \mathbb{N}$:
- 2 $\omega \mathbb{R}^n \in \mathbb{N}$, 则存在唯一的n的后继 $n' \in \mathbb{N}$; (后继唯一性)
- 3 0不是任何自然数的后继;
- ④ 如果n' = m',那么n = m;(直接前驱唯一性)

- 常以❷和❹来检验一个序列有没有"自然数性质",如:
 - 序列 0,1,2,3,4,5,......
 - 序列 0,2,4,6,.....,1,3,5,7,.....

Theorem (Peano自然数公理)

- $\mathbf{0} \ \ 0 \in \mathbb{N}$:
- ② 如果 $n \in \mathbb{N}$,则存在唯一的n的后继 $n' \in \mathbb{N}$;(后继唯一性)
- 3 0不是任何自然数的后继;
- \bullet 如果n'=m',那么n=m;(直接前驱唯一性)

Remark

常以❷和母来检验一个序列有没有"自然数性质",如:

- 序列 0,1,2,3,4,5,.....
- 序列 0,2,4,6,.....,1,3,5,7,.....

自然数的大于和小于

Definition (小于)

Definition (自然数的初始段)

• $A = \{0, 1, 2, ..., n-1\}, \text{ n } \text$

自然数的大于和小于

Definition (小于)

• 若 $m, n \in \mathbb{N}$,使得 $m \in n$,则称m小于n(或n大于m),记为m < n(or: n > m).

Definition (自然数的初始段)

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$; 否则,称集合A, B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

- 例:试证明:集合(-1,1)与(-∞,∞)等势.
- 证:令 $f: (-1,1) \to (-\infty,\infty), f(x) = \tan(\frac{\pi}{2}x)$ $\forall y \in (-\infty,\infty), x = \arctan(y) * \frac{2}{\pi}, f(x) = y$ ∴ f是满射; 又∵若 $x_1 \neq x_2, \inf(x_1) = \tan(\frac{\pi}{2}x_1) \neq \tan(\frac{\pi}{2}x_2) = f(x_2),$ ∴ f是单条

等势

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$; 否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

- 例:试证明:集合(-1,1)与(-∞,∞)等势.
- 证:令 $f: (-1,1) \to (-\infty,\infty), f(x) = \tan(\frac{\pi}{2}x)$ $\forall y \in (-\infty,\infty), x = \arctan(y) * \frac{2}{\pi}, f(x) = y : f$ 是满射; 又:若 $x_1 \neq x_2$,则 $f(x_1) = \tan(\frac{\pi}{2}x_1) \neq \tan(\frac{\pi}{2}x_2) = f(x_2)$,: f是单

等势

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$; 否则,称集合A, B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

- 例:试证明:集合(-1,1)与 $(-\infty,\infty)$ 等势.
- 证:令 $f: (-1,1) \to (-\infty,\infty), f(x) = \tan(\frac{\pi}{2}x)$ $\forall y \in (-\infty,\infty), x = \arctan(y) * \frac{2}{\pi}, f(x) = y$ ∴ f是满射; \mathcal{X} ∵若 $x_1 \neq x_2$, \mathcal{M} $f(x_1) = \tan(\frac{\pi}{2}x_1) \neq \tan(\frac{\pi}{2}x_2) = f(x_2)$,∴ f是单射;

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$: 否则,称集合A, B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

例

- 例:试证明:集合(-1,1)与 $(-\infty,\infty)$ 等势.
- $\mathrm{i} : \diamondsuit f : (-1,1) \to (-\infty,\infty), f(x) = \tan(\frac{\pi}{2}x)$

 $\forall y \in (-\infty, \infty), x = \arctan(y) * \frac{1}{\pi}, f(x) = y : f \not\in \mathbb{A} \mathbb{A} \mathbb{B};$ $\nabla : \overrightarrow{A} x_1 \neq x_2, M f(x_1) = \tan(\frac{\pi}{2}x_1) \neq \tan(\frac{\pi}{2}x_2) = f(x_2),$

等势

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$: 否则,称集合A, B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

- 例:试证明:集合(-1,1)与 $(-\infty,\infty)$ 等势.

Definition (等势(Equinumerous))

- 定义: 集合A和集合B等势, iff, 集合A和B之间存在双射,记为 $A \sim B$; 否则,称集合A,B不等势,记为 $A \sim B$.
- 等势关系是一个等价关系.

- 例:试证明:集合(-1,1)与 $(-\infty,\infty)$ 等势.
- 证:令 f: (-1,1) → (-∞,∞), f(x) = tan(^π/₂x)
 ∀y ∈ (-∞,∞), x = arctan(y) * ²/_π, f(x) = y ∴ f是满射;
 又∵若x₁ ≠ x₂, 则f(x₁) = tan(^π/₂x₁) ≠ tan(^π/₂x₂) = f(x₂),∴ f是单射;

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n; 反之,集合A称为无限集.

例

- 例:试证明自然数集N是无限集.
- 证明:(反证法)

设N为有限集,则∃ $f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), \mathbb{Z}$ 双射,

:.f不是满射,与f是双射矛盾.

::自然数集N是无限集

Definition (有限集(Finite set))和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n; 反之,集合A称为无限集.

- 例:试证明自然数集】是无限集.
- - ∴f不是满射,与f是双射矛盾.
 - ::自然数集N是无限集.

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n; 反之,集合A称为无限集.

例

- 例:试证明自然数集N是无限集.
- 证明:(反证法)

设 \mathbb{N} 为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), 是双射,$

- :.f不是满射,与f是双射矛盾.
- :.自然数集N是无限集.

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n;反之,集合A称为无限集.

例

- 例:试证明自然数集 N是无限集.
- 证明:(反证法)

设 \mathbb{N} 为有限集,则 $∃f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}),$ 是双射,

设 $k \in \max(f(0), ..., f(n-1)) + 1, 则k \in \mathbb{N}, 但不存在x, 使<math>f(x) = k$,

· 自然数集N是无限集.

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n;反之,集合A称为无限集.

例

- 例:试证明自然数集 N是无限集.
- 证明:(反证法)

设 \mathbb{N} 为有限集,则 $∃f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}),$ 是双射,

设 $k \in \max(f(0), ..., f(n-1)) + 1$,则 $k \in \mathbb{N}$,但不存在x, 使f(x) = k,

- :.f不是满射,与f是双射矛盾.
- ::自然数集N是无限集.

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n;反之,集合A称为无限集.

- 例:试证明自然数集N是无限集.
- - :.自然数集N是无限集

Definition (有限集(Finite set)和无限集(Infinite set))

• 集合A为有限集,iff, $\exists n \in \mathbb{N}$,使得 $\mathbb{N}_n \sim A$,称集合A的基数 (Cardinal)为n,记为|A|=n; 反之,集合A称为无限集.

- 例:试证明自然数集N是无限集.
- 证明:(反证法) 设N为有限集,则 $\exists f: \mathbb{N}_n \to \mathbb{N}, (n \in \mathbb{N}), \mathbb{R}$ 是双射, 设 $k \in \max(f(0), ..., f(n-1)) + 1, 则 k \in \mathbb{N}, \ell$ 但不存在x, 使 f(x) = k,
 - $Q_n \in \operatorname{max}(J(0), ..., J(n-1)) + 1, 网n \in \mathbb{N}$, 巨小行任点, $Q_n(x) = n$
 - ∴f不是满射,与f是双射矛盾.
 - :.自然数集N是无限集.

有限集和无限集的性质

性质

- 任何有限集都不能与其真子集等势.
- 任何无限集都能与其真子集等势.
- 有限集的子集都是有限集
- 无限集的父集一定是无限集.

有限集和无限集的性质

性质

- 任何有限集都不能与其真子集等势.
- 任何无限集都能与其真子集等势.
- 有限集的子集都是有限集.
- 无限集的父集一定是无限集.

有限集和无限集的性质

- 任何有限集都不能与其真子集等势.
- 任何无限集都能与其真子集等势.
- 有限集的子集都是有限集.
- 无限集的父集一定是无限集.

有限集和无限集的性质

- 任何有限集都不能与其真子集等势.
- 任何无限集都能与其真子集等势.
- 有限集的子集都是有限集.
- 无限集的父集一定是无限集.

性质

Theorem

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若C是 \varnothing ,则C是有限集;
- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - (a) i = 0, j = 0;
 (b) 检查的是否在子集((c) + 芳a; ∈ C, 转((c) + 万则转((d) + 万则转((c) + 万));
 - **○** *f*(*f*) = *f*(*f*) + *f*(
 - \cup t++; $\pm t < n$, 转 Θ ; 否则结束.
 - 由此构造的g是从 $N_j = \{0,1,...,j-1\}$ 到C的双射,所以C是有限集.

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若C是 \varnothing ,则C是有限集;
- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中、若 $a_i \in C$ 、转③: 否则转④:
 - ③ $g(j) = a_i, j++, i++; \exists i < n, € 2; 否则结束;$
 - (4) i++; 若i < n, 转②; 否则结束

性质

Theorem

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若C非空,则A也非空,可将A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中, 若 $a_i \in C$, 转 \mathfrak{g} ; 否则转 \mathfrak{g} ;

 - **④** *i*++; 若*i* < *n*, 转**②**; 否则结束.

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中, 若 $a_i \in C$, 转③; 否则转④;
 - ③ $g(j) = a_i, j++, i++; \exists i < n, *** 2; 否则结束;$
 - (4) i++; 若i < n, 转②; 否则结束。

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若C是 \varnothing ,则C是有限集;
- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中,若 $a_i \in C$, 转 Θ ; 否则转 Φ ;

 - ④ i++; 若i < n, 转②; 否则结束.

有限集的子集都是有限集.

Proof.

设A是有限集, $C \subseteq A$. 分两种情况:

- 若 C非空,则 A也非空,可将 A中的元素列为: $a_0, a_1, a_2,, a_{n-1}$,其中 $n \in \mathbb{N}, n \geqslant 1$ 现构造一个双射函数 $g: \mathbb{N}_i \to C, (j \in \mathbb{N})$,算法如下:
 - **1** i = 0, j = 0;
 - ② 检查 a_i 是否在子集C中,若 $a_i \in C$, 转 Θ ; 否则转 Φ ;

 - **④** *i*++; 若*i* < *n*, 转**②**; 否则结束.

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零), 记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为N₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

0

可数集 有限集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零), 记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

0

可数集 可数集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \dots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集.
- . ___

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n ,∴A的元素可以无重复地排列为f(0), f(1), ..., f(n), ...,即排列为 $a_0, a_1, a_2, ...$

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉性质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \dots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f: A \to \mathbb{N}$, $f(a_n) = n$,
- $\bullet \Longrightarrow$

若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n , $\therefore A$ 的元素可以无重复地排列为 $f(0), f(1), \dots, f(n), \dots$,即排列为 a_0, a_1, a_2, \dots

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉性质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots \}$,则 a_n 与自然数n对应,即可定义从A到 $\mathbb N$ 的双射, $f \colon A \to \mathbb N$, $f(a_n) = n$,
 - :. A 为可数无限集.

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉性质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f \colon A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集.

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉胜质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f \colon A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集.
- =>
 - 若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$, 即f(n)对应的元素为 a_n , ∴ A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ..., 即排列为 $a_0, a_1, a_2, ...$...

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉料质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f \colon A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集.
- ==>

 \overline{A} 为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n) 对应的元素为 a_n , A 的元素可以无重复地排列为f(0), f(1), ..., f(n), ...,即排列为 $a_0, a_1, a_2, ...$

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉胜质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \dots

Proof.

- =
 - 集合A可表示为 $A=\{a_0,a_1,a_2,.....\}$,则 a_n 与自然数n对应,即可定义从A到 $\mathbb N$ 的双射, $f\colon A\to \mathbb N$, $f(a_n)=n$,
 - :. A 为可数无限集.
- \Longrightarrow 若A为可数无限集,则存在双射 $f: \mathbb{N} \to A, f(n) = a_n$,即f(n)对应的元素为 a_n . $\therefore A$ 的元素可以无重复地排列为

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列具有"自然数性质"

Theorem

无限集合A为可数无限集, iff, A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots\}$,则 a_n 与自然数n对应,即可定义从A到 \mathbb{N} 的双射, $f \colon A \to \mathbb{N}$, $f(a_n) = n$, A 为可数无限集.

- "重复排列"等价干"无重复排列"(构造算法)
- 此序列且有"自然粉性质"

Theorem

无限集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A=\{a_0,a_1,a_2,.....\}$,则 a_n 与自然数n对应,即可定义从A到 $\mathbb N$ 的双射, $f\colon A\to \mathbb N$, $f(a_n)=n$,
 - ∴ A 为可数无限集.

- "重复排列"等价于"无重复排列".(构造算法)
- 此序列具有"自然数性质

Theorem

无限集合A为可数无限集,iff,A的全部元素可以无重复地排列为一个序列 a_0, a_1, a_2, \ldots

Proof.

- =
 - 集合A可表示为 $A = \{a_0, a_1, a_2, \ldots, \}$,则 a_n 与自然数n对应,即可定义从A到 $\mathbb N$ 的双射, $f \colon A \to \mathbb N$, $f(a_n) = n$,A 为可数无限集.

- "重复排列"等价于"无重复排列".(构造算法)
- 此序列具有"自然数性质".

Definition (枚举(Enumeration))

集合A的枚举是从自然数集 $\mathbb{N}(\mathbb{N}$ 的初始段)到A的一个满射函数;

- 若该满射也是单射,则是一个无重复枚举;
- 若为非单射,则是重复枚举.

- 通常,枚举 f表示为⟨f(0), f(1), f(2), ..., f(n), ...⟩
- · 集合A是可数的, iff, 集合A可枚举.

Definition (枚举(Enumeration))

集合A的枚举是从自然数集 $\mathbb{N}(\mathbb{N}$ 的初始段)到A的一个满射函数;

- 若该满射也是单射,则是一个无重复枚举;
- 若为非单射,则是重复枚举.

- 通常,枚举 f 表示为 $\langle f(0), f(1), f(2), ..., f(n), ... \rangle$
- · 集合A是可数的, iff, 集合A可枚举

Definition (枚举(Enumeration))

集合A的枚举是从自然数集 $\mathbb{N}(\mathbb{N}$ 的初始段)到A的一个满射函数;

- 若该满射也是单射,则是一个无重复枚举;
- 若为非单射,则是重复枚举.

- 通常,枚举 f表示为⟨f(0), f(1), f(2), ..., f(n), ...⟩
- 集合A是可数的, iff, 集合A可枚举

Definition (枚举(Enumeration))

集合A的枚举是从自然数集 $\mathbb{N}(\mathbb{N}$ 的初始段)到A的一个满射函数;

- 若该满射也是单射,则是一个无重复枚举;
- 若为非单射,则是重复枚举.

- 通常,枚举 f表示为⟨f(0), f(1), f(2), ..., f(n), ...⟩
- 集合A是可数的, iff, 集合A可枚举.

N×N的枚举

1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /								
$\langle 0,0 \rangle$	$\langle 0,1 \rangle$	$ angle\langle 0,2 angle -$	}					
$\langle 1, 0 \rangle$	$\langle 1, 1 \rangle$	$\langle 1, 2 \rangle$						
$\langle 2,0\rangle$	$\langle 2,1\rangle$	$\langle 2, 2 \rangle$						
1/								
			$\langle m, n \rangle$					
		K						

何

• N×N是可数无限集.

$\mathbb{N} \times \mathbb{N}$ 的枚举

1 \ 1 \ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\								
\downarrow								
$\langle 0,0 \rangle$	$\Rightarrow \langle 0, 1 \rangle$	$\langle 0,2 \rangle$	}					
$\langle 1, 0 \rangle$	$\langle 1, 1 \rangle$	$\langle 1, 2 \rangle$						
$\langle 2,0\rangle$	$\langle 2,1 \rangle$	$\langle 2, 2 \rangle$						
🛚				,				
			$\langle m, n \rangle$					
		K						

何

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m, n) = \frac{(m+n)(m+n+1)}{2} + m$

何

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

佰

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · かへで

何

- N×N是可数无限集
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

←□ → ←団 → ← 三 → ○へ○

佰

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

←□ → ←団 → ← 三 → ○へ○

何

- N×N是可数无限集
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

何

- N×N是可数无限集
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m,n) = \frac{(m+n)(m+n+1)}{2} + m$

N×N的枚举							
$\langle 0,0 \rangle$	$\rangle \langle 0, 1 \rangle$	$\rangle \langle 0, 2 \rangle$	>				
$\langle 1,0\rangle$	$\langle 1, 1 \rangle$	$\langle 1, 2 \rangle$					
$\langle 2,0\rangle$	$\langle 2,1\rangle$	$\langle 2, 2 \rangle$					
🗸							
			$\langle m, n \rangle$				
•••		K					

例

- N×N是可数无限集.
- $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(m, n) = \frac{(m+n)(m+n+1)}{2} + m$

. Q+的枚举(二)			
<u> </u>			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	$-3/2$ \langle	-3/3	
+	<i>\</i>	-m/n	*

例

• Q+是可数无限集.

是有重复的序列、等价于无重复的序列。

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
$1/1_{J}$	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	*

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	 🔻	-m/n	*

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	
3/1	-3/2 <	-3/3	
+	<i><</i>	-m/n	

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
<	<i><</i>	-m/n	

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	*

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	→	-m/n	

何

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	-2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	⁻

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

Q ⁺ 的枚举(二) ↓			
1/1	1/2	1/3	
2/1	- 2/2	2/3	↓
3/1	-3/2 <	-3/3	
+	<i>\</i>	-m/n	·

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

^{ℚ+} 的枚举(二) ↓			
1/1		1/3	
2/1	- 2/2	2/3	↓
3/1	- 3/2 ←	- 3/3	
•••			
+	 	-m/n	<u>*</u>

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

- Q+是可数无限集.
- 是有重复的序列,等价于无重复的序列.

例

- 字母表 $\Sigma = \{a, b\}$, 其中 $a \prec b$, 则 Σ^* 是可数无限集.
 - Σ^* 的元素可以排成序列 ε , a, b, aa, ab, ba, bb, 则 $|\Sigma^*| = \aleph_0$

Definition (字典序和标准序)

- 字典序≼ (s ≺ t)

 - S关的 所缀;
- 标准序

 (s

 t)

 - ||s|| = ||/||. 且在字典序中s前于//

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序≼ (s ≺ t)
 - 0 8是的前缀:
 - - 中u的第一个字符前于v的第一个字符.
- 标准序

 (s ≺ t)
 - |s| < |t|, or
 - ||s|| = ||세、且在字典序中s前干;

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq $(s \prec t)$
 - □ 8是空串;
 - ② s是t的前缀;
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s ≺ t)
 - \bullet ||s|| < ||t||. or
 - ② ||s|| = ||d||. 且在字典序中s前干

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq $(s \prec t)$
 - ① *8*是空串;
 - ② s是t的前缀;
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s ≺ t)
 - \bullet ||s|| < ||t||. or
 - $\Theta ||s|| = ||y||$. 且在字典序中s前干

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序≼ (s ≺ t)
 - ❶ 8是空串;
 - ② s是t的前缀;
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序≼(s ≺ t)
 - - ② ||s|| = ||川. 且在字典序中s前于

例

字母表∑ = {a,b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq ($s \prec t$)
 - ❶ 8是空串;
 - ② s是t的前缀;
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 的最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序

 (s

 t)
 - ||s|| < ||t||, or
 - $\Theta ||s|| = ||d|$. 且在字典序中s前于

例

字母表∑ = {a,b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq ($s \prec t$)
 - ❶ 8是空串;
 - ② s是t的前缀;
 - ③ $s = zu, t = zv, (z \in \Sigma^* \neq s, t)$ 最长公共前缀),且在字母线序中u的第一个字符前于v的第一个字符.
- 标准序≼(s ≺ t)
 - ||s|| < ||t||, or
 - ② ||s|| = ||t||, 且在字典序中s前于t

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq ($s \prec t$)

 - ② s是t的前缀;
- 标准序≼(s ≺ t)
 - **1** ||s|| < ||t||, or
 - ② ||s|| = ||t||, 且在字典序中s前于t

例

字母表∑ = {a, b}, 其中a ≺ b, 则∑*是可数无限集.
 ∑*的元素可以排成序列ε, a, b, aa, ab, ba, bb, ..., 则|∑*| = ℵ₀

Definition (字典序和标准序)

- 字典序 \preccurlyeq ($s \prec t$)
 - ❶ 8是空串;
 - ② s是t的前缀;
- 标准序≼(s ≺ t)
 - **1** ||s|| < ||t||, or
 - ② ||s|| = ||t||, 且在字典序中s前于t.

可数集的性质(I)

性质

- 可数集的任何子集都是可数集.
- ② 可数个可数集的并集是可数集. 证明:分两种情况:见下表

有限个可数集

A_0	a_{00}	a_{01}	a_{02}	
A_1	a_{10}	a_{11}	a_{12}	
A_2	a_{20}	a_{21}	a_{22}	
A_n	a_{n0}			

可数无限个可数集

A_0	a_{00}	a_{01}	a_{02}	
A_1	a_{10}	a_{11}	a_{12}	
A_2	a_{20}	a_{21}	a_{22}	
A_n	a_{n0}			

Theorem

- 若A是可数集,则Aⁿ是可数集.

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

Theorem

- 若A是可数集,则Aⁿ是可数集.

Example

- ①是可数集:
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

Theorem

- 若A是可数集,则Aⁿ是可数集.

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

©YaoYı

Theorem

- 若A是可数集,则Aⁿ是可数集.

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

Theorem

- 若A是可数集,则Aⁿ是可数集.

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

@YaoYu

Theorem

Example

- Q是可数集;
- $\mathbb{N}^2, \mathbb{Z}^n, \mathbb{Q}^n$ 是可数集;
- 有理系数的所有(n次)多项式的集合是可数集;
- 以有理数为元素的所有m×n矩阵(任意有限维的矩阵)的集合是可数集.

Theorem

任一无限集A,必会有可数无限子集.

- 若A 为无限集,则A 非空,可任取出一元素 $a_1 \in A$,
- $A \{a_1\}$ 仍为无限集, 再取出一元素 $a_2 \in A \{a_1\}$,
- 所得集合仍为无限集;
- 如此继续, $\{a_1, a_2, a_3, \ldots\}$. \square

Theorem

任一无限集A,必会有可数无限子集.

- 若A为无限集,则A非空,可任取出一元素 $a_1 \in A$,
- $A \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A \{a_1\}$,
- 所得集合仍为无限集;
- 如此继续, $\{a_1, a_2, a_3, \ldots\}$. \square

Theorem

任一无限集A,必会有可数无限子集.

- $A \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A \{a_1\}$,
- 所得集合仍为无限集;
- 如此继续, $(a_1, a_2, a_3,)$. \square

Theorem

任一无限集A,必会有可数无限子集.

- $A \{a_1\}$ 仍为无限集,再取出一元素 $a_2 \in A \{a_1\}$,
- 所得集合仍为无限集;
- 如此继续, $\{A$ 的可数无限子集 $\{a_1, a_2, a_3,\}$.

Theorem

任一无限集M,必与自己的某真子集等势.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots \}$,
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\};$
 - $0 \ f(a_n) = a_{n+1} \ (a_n \in A)$
- 则,易证f是双射.: $M \sim M \{a_0\}$.

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots \}$,
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\}$;
 - $a_{n+1} (a_n \in B)$
- 则, 易证f是双射. $: M \sim M \{a_0\}$

٦

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots \}$,
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\}$;

 - **2** $f(b) = b \ (b \in B).$
- 则,易证f是双射. $: M \sim M \{a_0\}$.

٦

可数集性质(III)

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots \}$,
- $\diamondsuit M A = B$,
- 定义函数 $f: M \rightarrow M \{a_0\}$;
 - **1** $f(a_n) = a_{n+1} \ (a_n \in A);$
 - **2** $f(b) = b \ (b \in B).$
- 则,易证f是双射. $: M \sim M \{a_0\}$.

٦

可数集性质(III)

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots\},$
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\}$;
 - **1** $f(a_n) = a_{n+1} \ (a_n \in A);$
 - **2** $f(b) = b \ (b \in B).$
- 则,易证f是双射. $: M \sim M \{a_0\}$.

٦

可数集性质(III)

Theorem

任一无限集M,必与自己的某真子集等势.

Proof.

- 由上可得M有可数无限子集 $A = \{a_0, a_1, a_2, \dots \}$,
- $\diamondsuit M A = B$,
- 定义函数 $f: M \to M \{a_0\}$;
 - **1** $f(a_n) = a_{n+1} \ (a_n \in A);$
 - **2** $f(b) = b \ (b \in B).$
- 则,易证f是双射. $: M \sim M \{a_0\}$.

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N、Z⁺、Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

0

可数集 有限集 可数 年 可数 无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零), 记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

0

可数集 「数集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集,iff,集合A与自然数集 \mathbb{N} 等势,其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

集合N, Z⁺, Z的基数均为ℵ₀.

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Definition (可数无限集(Countably infinite set))

• 集合A为可数无限集, iff, 集合A与自然数集 \mathbb{N} 等势, 其基数用 \aleph_0 表示(读作阿列夫零),记为 $|A|=\aleph_0$.

例

• 集合 \mathbb{N} , \mathbb{Z}^+ , \mathbb{Z} 的基数均为 \aleph_0 .

Definition (不可数集(Uncountable set))

• 集合A是不可数集, iff, A不是有限集且不是可数无限集.

集合分类

可数集 有限集 可数无限

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.\mathbf{a_{00}} a_{01} a_{02} \dots$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0.a_{n0} a_{n1} a_{n2} \dots a_{nn} \dots$$

• 构造:
$$r = 0.b_0 b_1 b_2 \dots b_n$$
... ,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
 - :.[0,1]不是可数无限集或有限集,[0,1]是不可数集.

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

```
f(0) = 0.a_{00}a_{01}a_{02}.....
f(1) = 0.a_{10}a_{11}a_{12}.....
f(2) = 0.a_{20}a_{21}a_{22}.....
....
f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}...
```

- 构造: $r = 0.b_0b_1b_2.....b_n...$,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$
- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- : [0,1]不是可数无限集或有限集, [0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0. a_{00} a_{01} a_{02} \dots f(1) = 0. a_{10} a_{11} a_{12} \dots f(2) = 0. a_{20} a_{21} a_{22} \dots f(n) = 0. a_{n0} a_{n1} a_{n2} \dots a_{nn} a_{nn}$$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- :. [0,1]不是可数无限集或有限集, [0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}...$$

$$f(1) = 0.a_{10}a_{11}a_{12}...$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

• 构造:
$$r = 0.b_0 b_1 b_2 \dots b_n$$
... ,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- :. [0,1] 不是可数无限集或有限集, [0,1] 是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}....$$

$$f(n) = 0.a_{n0} a_{n1} a_{n2} ... a_{nn}$$
.....

• 构造:
$$r = 0.b_0 b_1 b_2 \dots b_n$$
... ,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- :. [0,1] 不是可数无限集或有限集, [0,1] 是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}....$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

- 构造: $r = 0.b_0b_1b_2.....b_n...$,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$
- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- ∴ [0,1]不是可数无限集或有限集, [0,1]是不可数集。

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

- 构造: $r = 0.b_0b_1b_2.....b_n...$,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$
- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- :.[0,1]不是可数无限集或有限集,[0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

Proof.(对角线法证明).

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}.....$$

$$f(1) = 0.a_{10}a_{11}a_{12}....$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

.....

• 构造:
$$r = 0.b_0b_1b_2.....b_n...$$
 ,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- :.[0,1]不是可数无限集或有限集,[0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.a_{00}a_{01}a_{02}...$$

$$f(1) = 0.a_{10} a_{11} a_{12} \dots$$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

- 构造: $r = 0.b_0b_1b_2.....b_n$... ,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$
- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾
- : [0,1]不是可数无限集或有限集, [0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

Proof.(对角线法证明).

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.\mathbf{a_{00}} a_{01} a_{02}.....$$

 $f(1) = 0.a_{10} \mathbf{a_{11}} a_{12}.....$

$$f(2) = 0.a_{20}a_{21}a_{22}...$$

$$f(n) = 0.a_{n0}a_{n1}a_{n2}...a_{nn}....$$

.....

• 构造:
$$r = 0.$$
 $b_0 b_1 b_2 \dots b_n \dots$,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$

- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾.
- : [0,1]不是可数无限集或有限集, [0,1]是不可数集

Theorem

集合[0,1] ⊆ \mathbb{R} 是不可数集.

Proof.(对角线法证明).

- (反证法)假设[0,1]为可数无限集,则 \mathbb{N} 与[0,1]之间存在双射 f,
- 则可将 f 的值顺序排列为十进制小数:

$$f(0) = 0.\mathbf{a_{00}} a_{01} a_{02}.....$$

 $f(1) = 0.a_{10} \mathbf{a_{11}} a_{12}.....$

$$f(2) = 0.a_{20}a_{21}a_{22}.....$$

$$f(n) = 0. a_{n0} a_{n1} a_{n2} \dots a_{nn} \dots$$

.....

- 构造: r = 0. $b_0 b_1 b_2 \dots b_n \dots$,其中 $b_i = \begin{cases} 1, & \text{if } a_{ii} \neq 1 \\ 2, & \text{if } a_{ii} = 1 \end{cases}$
- 则, $r \in [0,1]$, 但 $r \notin f(\mathbb{N})$, 所以 f 不是双射,矛盾.
- \bullet \therefore [0,1] 不是可数无限集或有限集,[0,1] 是不可数集.

Definition (连续统势)

• 任一集合A具有连续统(Continuum)势,iff,A与集合[0,1]等势,A的基数为c,即|A|=c.

- (0,1)
- **3** R

Definition (连续统势)

• 任一集合A具有连续统(Continuum)势, iff, A与集合[0,1]等势, A的基数为c, p|A|=c.

- \bullet [a, b]
- (0,1)
- **3** R

Definition (连续统势)

• 任一集合A具有连续统(Continuum)势, iff, A与集合[0,1]等势, A的基数为c, p|A|=c.

- \bullet [a, b]
- (0,1)
- 3

Definition (连续统势)

• 任一集合A具有连续统(Continuum)势, iff, A与集合[0,1]等势, A的基数为c, p|A|=c.

- \bullet [a, b]
- (0,1)
- **3** R

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A=\{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A\subseteq [0,1]$,设 $f\colon [0,1]\longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A=\{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A\subseteq [0,1]$,设 $f\colon [0,1]\longrightarrow (0,1)$

$$\mathit{f}(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A = \{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A \subseteq [0,1]$,设 $f \colon [0,1] \longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A = \{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A \subseteq [0,1]$,设 $f \colon [0,1] \longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A=\{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A\subseteq [0,1]$,设 $f\colon [0,1]\longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0\\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N})\\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Example

- 试证明:集合(0,1)与[0,1]等势.
- 证明:

令
$$A=\{0,1,1/2,1/3,.....,1/n,.....\}$$
,则 $A\subseteq [0,1]$,设 $f\colon [0,1]\longrightarrow (0,1)$

$$f(x) = \begin{cases} 1/2 & \text{if} \quad x = 0 \\ 1/(n+2) & \text{if} \quad x = 1/n, (n \geqslant 1, n \in \mathbb{N}) \\ x & \text{if} \quad x \in [0, 1] - A \end{cases}$$

Continuum hypothesis

连续统假设

- 连续统假设——在ℵ₀和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立,依赖于集合论的公理如何选择.
- https://en.wikipedia.org/wiki/Continuum_hypothesis

Continuum hypothesis

连续统假设

- 连续统假设——在ℵ₀和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立,依赖于集合论的公理如何选择.
- https://en.wikipedia.org/wiki/Continuum_hypothesis

Continuum hypothesis

连续统假设

- 连续统假设——在ℵ₀和c之间不存在其它的"无穷大"基数?
- 连续统假设是否成立,依赖于集合论的公理如何选择.
- https://en.wikipedia.org/wiki/Continuum_hypothesis

本章内容

- 1 可数集合和不可数集合
 - 自然数的定义
 - 等势
 - 有限集和无限集
 - 可数集
 - 不可数集

Reference books

Kenneth H. Rosen.

《离散数学及其应用》(原书第8版). 机械工业出版社.

■ 刘玉珍 《离散数学》. 武汉大学出版社.

■ 王汉飞 《离散数学》讲义.