User's Guide

May 30, 2014

VASPKIT

Postprocessing tool for the VASP code

 $\sp{*}$ Bug report: please send a copy of both input and output files to

Dr. WANG (wangvei@icloud.com)

1. Features

VASPKIT version: 0.3 (14 Apr. 2014)

Choose the problem to solve:
======= Structural Options ===========
4: Building Supercell (New added)
5: EOS Fitting
======================================
11/12: Total/Projected DOS
13: l-m Decomposed DOS
21/22: Total/Projected Band Structure
====== Charge Density & Potential Options ==========
31/32: Charge/Spin Density
33: Spin-Up & -Down Density (New added)
34/35: Charge/Spin Density Difference (New added)
41/42: Planar Average Charge/Potential (New added)
======================================
51: Linear Optics
0: Quit ——>>

2. Installation

For the VASPKIT installation, basic UNIX/LINUX environment and *fortran compiler* are required. Also, you can install VASPKIT on WINDOWS system using MinGW program.

Compiling the program is very simple, please use the following commands.

- $\$ tar -zvxf vaspkit.*.tar.gz
- \$ cd vaspkit.*/src
- \$ modify the Makefile file based on your machine environment;
- \$ make
- * Note that the formats of POSCAR, CONCAR and CHGCAR files in VASP.5.x are slightly different from those in VASP.4.x. Please set the vasp5=.false. in the src/module.f90 file if you use VASP.4.x;

3. Usage

Table 1: Current available option, function and the corresponding input (output) files.

Option	Function	Read file	Output file
4	Building Supercell	POSCAR/CONTCAR	SC***.VASP ^[1]
5	EOS Fitting	EOS.IN	*.DAT ^[2]
11	Total DOS	DOSCAR	TDOS.DAT, ITDOS.DAT
12	Projected DOS	DOSCAR	PDOS.No.*.DAT, IPDOS.No.*.DAT
13	l-m Decomposed DOS	DOSCAR	LMDOS.No.*.DAT, ILMDOS.No.*.DAT
21	Band Structure	PROCAR, KPOINTS	BAND.DAT, KPATH.DAT
22	Projected Band Structure	PROCAR, KPOINTS	PBAND.DAT, KPATH.DAT
31	Charge Density	CHG	CHARGE.VASP
32	Spin Density	CHG	SPIN.VASP
33	Spin-Up & -Down Density	CHG	SPIN.UP.VASP, SPIN.DOWN.VASP
34	Charge Density Difference	CHG1*, CHG2*[3]	CHGDIFF.VASP
35	Spin Density Difference	CHG1*, CHG2*	SPINDIFF.VASP
41	Planar Average Charge	CHG	PAVG.DAT
42	Planar Average Potential	LOCPOT	PAVG.DAT
51	Linear Optics	REAL.IN and IMAG.IN	*.DAT

^[1] Open *.VASP files with VESTA code (http://jp-minerals.org/vesta/en/).

3.1 EOS fitting

The equation of state (EOS) sub-program for fitting energy-volume data was implemented from elk code (http://elk.sourceforge.net/). You need to prepare the EOS.IN file before performing EOS fitting. The following variables are set in the file EOS.IN:

cname: name of crystal up to 256 characters

natoms: number of atoms in unit cell

etype: equation of state type (see below)

vplt1, vplt2, nvplt : volume interval over which to plot energy, pressure etc. as well as the number of points in the plot

nevpt: number of energy-volume points to be inputted vpt(i)

ept(i): energy-volume points (VASP default units, i.e., \mathring{A}^3 and eV)

^[2] Open *.DAT files with scientific 2D plotting program, such as Origin, Gnuplot, Grace and so on.

^[3] The file names of CHG1* and CHG2* can only consist of letter and number.

* Note that the input units are VASP default values, i.e., \mathring{A}^3 and eV. See an example in vaspkit.*/examples/eos/

The equations of state currently implemented are:

- 1. Universal EOS (Vinet P et al., J. Phys.: Condens. Matter 1, 1941 (1989))
- 2. Murnaghan EOS (Murnaghan F D, Am. J. Math. 49, 235 (1937))
- 3. Birch-Murnaghan 3rd-order EOS (Birch F, Phys. Rev. 71, 809 (1947))
- 4. Birch-Murnaghan 4th-order EOS
- 5. Natural strain 3rd-order EOS (Poirier J-P and Tarantola A, Phys. Earth Planet Int. 109, 1 (1998))
 - 6. Natural strain 4th-order EOS
 - 7. Cubic polynomial in $(V-V_0)$

3.2 Linear optics

The absorption coefficient, refractive coefficient, reflectivity coefficient, extinction coefficient and energy-loss function as a function of photon energy can be calculated. You need to prepare the REAL.IN and IMAG.IN files which include the real and imaginary parts of frequency-dependent complex dielectric function. The REAL.IN and IMAG.IN consist of the following data:

```
energy xx yy zz xy yz zx
.. .. .. .. .. .. ..
```

energy is the photon energy (in eV). xx, yy, zz, xy, yz and zx are the calculated values of frequency dependent dielectric tensor writted in vasprun.xml. There is a bash script optics.sh as a reference in the vaspkit.*/examples/optic/ could help you to prepare the real.in and imag.in files.

3.3 Misc

 $Under\ construction\$