Coordinate Transforms

Sunday, 28 April 2024 2:00 PM

$$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- theta = \sim 45 degrees in this example

$$\mathsf{T} = \begin{bmatrix} x_{trans} \\ y_{trans} \end{bmatrix}$$

 $T = \begin{bmatrix} x_{trans} \\ y_{trans} \end{bmatrix}$ - [5;6] in this example

Local to global:

$$p_{global} = R * p_{local} + T$$

Global to local

$$p_{local} = R^{T} (p_{global} - T)$$
- since $R^{-1} = R^{T}$

Euler discrete time approximation

Thursday, 22 February 2024 5:01 PM

```
\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))
\downarrow \mathbf{x}(t + \Delta t) \cong \mathbf{x}(t) + \Delta t \cdot \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))
```

Matlab implementation:

```
function X1 = Example_Question(length, dt, X0, L1, velocity, steerAngle)
  % length = time in seconds
  % dt = sample time
  numSamples = length/dt;
  % Drive in a circle
  % Parameters:
% L1 = 1.5;
% L2 = 3;
% steerAngle = 45*pi/180;
% velocity = 1; % Constant velocity
% X0 = [0; 0; 0];
  % Storage variables:
  X1 = X0;
% X2 = X0;
  % Run sim:
  for i = 1:numSamples
    X1(:, i+1) = model(X1(:, i), dt, L1, velocity, steerAngle);
%
end
function X = model(X0, dt, L, velocity, steerAngle)
  dX = [velocity*cos(X0(3)); velocity*sin(X0(3)); velocity/L*tan(steerAngle)];
  X = X0 + dt*dX;
end
```

Kinematic Models in this course

Wednesday, 1 May 2024

2:59 PM

Inputs are the steering angle and the linear velocity (at point p)

 $\beta(t)$: steering angle at time t

 $x(t), y(t), \varphi(t)$: vehicle's pose.

$$\mathbf{v}(t) = \begin{bmatrix} v(t) \cdot \cos(\varphi(t)) \\ v(t) \cdot \sin(\varphi(t)) \end{bmatrix} : \text{velocity vector at point } \mathbf{p}$$

$$\frac{d\varphi}{dt} = \omega(t)$$

 $\omega(t)$: yaw rate at time t

 $x(t), y(t), \varphi(t)$: vehicle's pose.

Topic	Explanation	Image
$X \sim N(\mu, \sigma^2)$ "Normal" (aka "Gaussian") Distribution	This means that X is a random variable which follows a normal distribution with: -mean (expectation) μ -standard deviation σ -variance σ² https://en.wikipedia.org/wiki/Normal distribution Note: "White gaussian noise" follows this distribution.	$\mu = 0, \sigma^2 = 0.2 - \mu = 0, \sigma^2 = 1.0 - \mu = 0, \sigma^2 = 1.0 - \mu = 0, \sigma^2 = 5.0 - \mu = 0, \sigma^2 = 5.0 - \mu = 0.2 \sigma^2 = 0.5, \dots$ $\mu = -2, \sigma^2 = 0.5, \dots$ $\mu = -2, \sigma^2 = 0.5, \dots$ Probability density function examples (normal distributions)
$x \sim p(x)$ $= N(\hat{x}, P_x)$	This is the matrix version of above.	1D case: Equation $p_{X}(x) = c \cdot e^{\frac{1}{2}(x-\hat{x})^{2}} p_{X}(X) = c \cdot e^{\frac{1}{2}(x-\hat{x})^{2} + r^{-1}(x-\hat{x})} p_{X}(X) = c$
Obtaining a Marginal PDF	A marginal PDF is a subset of the original PDF, e.g. for just one of the states. E.g. if $x \sim p(x) = N(\hat{x}, P_x)$, then the marginal PDF about the random variable x_2 is: $-p_{x_2}(x_2) = N\left(\hat{x}_2, P_{x_2}\right)$ or more specifically: $-\hat{x}_2 = \hat{x}(2) \text{ (the second element in the matrix)} - P_{x_2} = P_x(2,2) \text{ (the element in the second row and second column)}$ The marginal PDF about the random variables x_2 and x_4 is: $-\hat{w} = \hat{x}([2,4]) \text{ (a two element vector, consisting of the second and fourth element of } \hat{x}) - P_w = P_x([2,4],[2,4]) \text{ a } 2x2 \text{ matrix consisting of the elements in the second and fourth rows and columns.}$	given the RV $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]^T \sim N(\hat{\mathbf{x}}, \mathbf{P_x}), \hat{\mathbf{x}} = \begin{bmatrix} 7 \\ 5 \\ 6 \\ 12 \end{bmatrix}, \mathbf{P_x} = \begin{bmatrix} 20 & 1 & 3 & 2 \\ 1 & 15 & 1 & 3 \\ 3 & 1 & 9 & 4 \\ 2 & 3 & 4 & 10 \end{bmatrix}$ $= \text{example 1: } x_2 \sim p_{x_2}(x_2) = N(5,15)$ $= \text{example 2: } \mathbf{w} = \begin{bmatrix} x_2 \\ x_4 \end{bmatrix}, \mathbf{w} \sim p_{\mathbf{w}}(\mathbf{w}) = N(\hat{\mathbf{w}}, \mathbf{P_w})?$ $\hat{\mathbf{w}} = \hat{\mathbf{x}}([2,4]); \mathbf{P_w} = \mathbf{P_x}([2,4],[2,4]); \text{ "using MATLAB notation and indexes}$ $\hat{\mathbf{w}} = \hat{\mathbf{x}}([2,4]) = \begin{bmatrix} 5 \\ 12 \end{bmatrix}; \mathbf{P_w} = \mathbf{P_x}([2,4],[2,4]) = \begin{bmatrix} 15 & 3 \\ 3 & 10 \end{bmatrix}$

Understanding P:

- diagonal is the variance of each variable
 off-diagonal values are "how much x1 depends on x2" for example
 - cross-correlations

Transformations:

For two random variables "x" and "y", and constant matrix A and constant vector \boldsymbol{b}

Transformation	Expected value	Covariance matrix P	Matlab Code
z = x + y	$\hat{z} = \hat{x} + \hat{y}$	$P_z = P_x + P_y$	P_x = [0 0; 0 0] P_y = [0 0; 0 0] P_z = P_x + P_y
z = A * x + b	$\hat{z} = A * \hat{x} + b$	$P_z = A * P_x * A^T$	A = [1, 2; 3, 4] b = [1, 2]

			x = 0; P_x = [0 0; 0 0]; z = A*x + b; P_z = A*P_x*A';
z = a(x) (nonlinear transformation)	$\hat{z} = a(\hat{x})$	$P_z = A * P_x * A^T \text{ where } A = (\text{jacobian matrix})$ $\begin{bmatrix} \frac{\partial a_1}{\partial x_1} & \frac{\partial a_1}{\partial x_2} & \cdots & \frac{\partial a_1}{\partial x_k} \\ \frac{\partial a_2}{\partial x_2} & \cdots & \cdots & \frac{\partial a_2}{\partial x_k} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial a_n}{\partial x_1} & \cdots & \cdots & \frac{\partial a_n}{\partial x_k} \end{bmatrix}$ $\text{evaluated at } x = \hat{x}$	A = jacobian(x) P_z = A*P_x*A' function J = MyJacobian(x) J = [0 0; 0 0] % Depends on your transform end
z = A * x + y + b	$\hat{z} = A * \hat{x} + \hat{y} + b$	$P_z = A * P_x * A^T + P_y$	

Notes

- the nonlinear transformation case is based on the linear approximation $% \left(1\right) =\left(1\right) \left(1\right) \left$

this is based on the linear approximation
$$a(x) \cong a(\hat{x}) + \left[\frac{\partial a}{\partial x}\right]_{x=\hat{x}} \cdot (x-\hat{x})$$

 $\circ\hspace{0.1cm}$ (approximate about the expected value)

Examples:

Question	Solution	Explanation
For the same case described in question 5, we have the extra complication that the state equation is not perfectly accurate, and whose uncertainty is modelled by a RV, $\xi(k)$. $\mathbf{x}(k+1) = \begin{bmatrix} 0.9 & 0.1 \\ 0.1 & 0.95 \end{bmatrix} \cdot \mathbf{x}(k) + \begin{bmatrix} 1+\xi(k) \\ 0 \end{bmatrix}$	$\begin{split} P &= [[0.1, 0]; [0.0]]; \text{ % initial covariance matrix of X} \\ Xe &= [0;1]; \\ Y_{-\text{error}=0.4^22}; \\ Y_{-\text{error}=0.4^222}; \\ Y_{-\text{error}=0.4^2222}; \\ Y_{-\text{error}=0.4^222}; \\ Y_{-\text{error}=0.4^2222}; \\ Y_{-\text{error}=0.4^2222}; \\ Y_{-\text{error}=0.4^2222$	-This is both addition and multiplication transforms • x and error (ξ) are random variables -standard deviation = 0.4 so variance = 0.4^2 • i.e. $P_{\xi} = P_{error} = 0.4^2$ -"Q" refers to the covariance matrix for noise added at each step. In this case the noise only effects state 1, so we use B = [1;0] and Q=B*pe*B' to get Q = [pe, 0; 0, 0]

Summary Page 5

The only difference between the EKF and traditional KF is that the EKF does not have $h_expected = H*x_expected$. Hence, $z = y_expected = H*x_expected$.

Description	Explanation	Image	Pseudocode
High level	1. Start with an initial state estimate X	image	for k = 1:k_max
sequence of steps	and covariance matrix P 2. For each iteration: 1. update X and P using the kinematic model ("Prediction step") 2. if measurement available, update X and P using y_meas, H and R. ("Update step")	$\begin{split} & \cdot \begin{bmatrix} \hat{\mathbf{X}}(i i - 1) \\ \mathbf{P}(i i - 1) \end{bmatrix} \xrightarrow[\text{spikov}]{\mathbf{X}(i i)} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i) \\ \mathbf{P}(i i) \end{bmatrix}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i) \\ \mathbf{P}(i i) \end{bmatrix}}_{P(i i)} \underbrace{\begin{cases} \hat{\mathbf{X}}(i + 1 i) \\ P(i i i) \end{cases}}_{P(i i i)} \underbrace{\begin{cases} \hat{\mathbf{X}}(i + 1 i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{P(i i i)} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i i) \end{cases}}_{\text{spikov}} \underbrace{\begin{cases} \hat{\mathbf{X}}(i i i i) \\ P(i i $	9% Run EKF estimator: [X_est(:,k+1), Px(:,:,k+1)] = EKF_Prediction(X_est(:,k), Px(:,:,k), U_meas(k), Pu, dt, params_real); if is_data_available
		k=1 : de-prediction (use proces model, inputs values) $\{\delta(1 0), P(1 0)\}$ k=1 : if observations are available \Rightarrow perform update : $\{\delta(1 1), P(1 1)\}$ else keep current values of parameters "go to sleep for r" wake upl k=2 : de-prediction $\{\delta(2 1), P(2 1)\}$ k=2 : if observations are available \Rightarrow perform update : $\{\delta(2 2), P(2 2)\}$ else keep current values of parameters go to steep for r keep repeating k>2 ("ad infinitum") so that always, at present time k , we have $\{\delta(k k), P(k k)\}$	function (X2, P2) = EKF_Prediction(X1, P1, U1, P_u, dt, params)
Prediction step	X is updated normally, as per the kinematic model. P is updated using the jacobians of the model (df/dx and df/du) and the current P	prediction step: $\hat{\mathbf{x}}\left(k+1 k\right) = \mathbf{f}\left(\hat{\mathbf{x}}\left(k k\right), \bar{\mathbf{u}}\left(k\right)\right)$ $\mathbf{P}\left(k+1 k\right) = \mathbf{J} \cdot \mathbf{P}\left(k k\right) \cdot \mathbf{J}^T + \mathbf{Q}_{\mathbf{u}}$ $\mathbf{Q}_{\mathbf{u}} = \mathbf{J}_{\mathbf{u}} \cdot \mathbf{P}_{\mathbf{u}} \cdot \mathbf{J}_{\mathbf{u}}^T$ in which $\bar{\mathbf{u}}\left(k\right) : \text{measured/known input value}$ $\mathbf{P}_{\mathbf{u}} : \text{covariance matrix of noise which affects inputs}$ $\mathbf{J} = \left[\frac{\partial \mathbf{f}\left(\mathbf{x},\mathbf{u}\right)}{\partial \mathbf{u}}\right]_{\substack{\mathbf{x} = \mathbf{x}(k \mathcal{X}) \\ \mathbf{u} = \mathbf{u}(k)}}^{\mathbf{x} = \mathbf{x}(k \mathcal{X})}$ $\mathbf{J}_{\mathbf{u}} = \left[\frac{\partial \mathbf{f}\left(\mathbf{x},\mathbf{u}\right)}{\partial \mathbf{u}}\right]_{\substack{\mathbf{x} = \mathbf{x}(k \mathcal{X}) \\ \mathbf{u} = \mathbf{u}(k)}}^{\mathbf{x} = \mathbf{x}(k \mathcal{X})}$	function XZ, P2 = KF. Prediction XI, P1, U1, P_u, dt, params) J = Mylacobian_dfdx XI, U1, dt, params); J u = Mylacobian_dfdu XI, U1, dt, params); Qu = J_uP_U-J_u^*, P2 = J*P1*J* + Qu; % Here Q = Qu only since the model doesnt add any other uncertainty. Otherwise Q = Cu + Othordel X2 = model_f(X1, U1, dt, params); end
Update step	- H is the jacobian of h(x) - h(x) = the expected value of the output variable - y_meas = the measured value of the output variable - can be a transformed version of directly measured output data - R = covariance matrix of y_meas	Relevant "actors" in the Update step	function [X2, P2] = do, EKF_update(X1, P1, landmark_measured_LiDAR_CF, landmark_known_GCF, R, lidar_offset, handleLidarPlots) h. expected = landmarkGCFicLidarCF_h(landmark_known_GCF, X1, lidar_offset, handleLidarPlots); y. meas = landmark, measured_LiDAR_CF; H = MyJacobian_H_dhdx(X1, landmark_known_GCF); set(handleLidarPlots(7), xdata*, h. expected(1;), ydata*, h_expected(2;)) set(handleLidarPlots(5), xdata*, y_meas(1,-), ydata*, y_meas(2,:)) z = y, meas = h_expected. [X2, P2] = EKF_Update(X1, P1, H, R, z); end function [X2, P2] = EKF_Update(X1, P1, H, R, z); % X1: current expected value (PRIOR) % P1: current covariance matrix (PRIOR) % P2 : covariance matrix of noise polluting output measurements/ % 2: ym + NQ, the difference between measurement of output y and % estimate of output y (y_est = h(X1)) S=HP1*H+R; Sianv(S); K = P1*H*Si+H*P1; %updated expected value P2=P1 - P1*H*Si+H*P1; %updated covariance matrix

Symbols explanation:

Symbol	Meaning	
x x̂	-State vector -Estimate of the state vector	
Р	Covariance matrix associated to the expected state values (propagation of initial covariance)	
P(k k-1)	Covariance matrix prior to performing EKF update step (for the estimated state values)	
P(k k)	Covariance matrix after performing EKF update step (for the estimated state values)	
Q	Covariance matrix of noise which is added at every time step we refer to $P_{q x}$ using the name $Q(k)$ ($\xi(k) - N(0, Q(k))$) Q_u = due to sensor inaccuracies (inputs) O other = due to inaccuracies in the model (per time step)	
$y_{meas}(k)$	measurement of the output variable , at time step (k). This does not have to be the directly measured data, but can be a transformation of the measured data (e.g. a coordinate frame transformation).	
R(k)	Covariance matrix for the measured output (y_meas). If y_meas is derived using a transformation, the covariance matrix R needs to be derived using the same transformations (I think)	
h(x)	a function which transforms the current estimated state (\hat{x}) to the output variable (expected output variable value "h_expected").	
Н	Jacobian matrix of the model's output equation h(x). i.e.	

	$\frac{\partial \mathbf{a}(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial a_1}{\partial x_1} & \frac{\partial a_1}{\partial x_2} & \dots & \frac{\partial a_n}{\partial x_n} \\ \frac{\partial a_2}{\partial x_1} & \dots & \dots & \frac{\partial a_n}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial a_n}{\partial x_n} & \dots & \dots & \frac{\partial a_n}{\partial x_n} \end{bmatrix}$ where $\mathbf{a}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$. (note the da2/dx2 should be da2/dx1) I.e. $\mathbf{H} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \bigg _{\mathbf{x} = \hat{\mathbf{x}}}$	
-	-evaluated at the current estimate of X (after the prediction step)	
ξ	error	
J	Jacobian matrix $\mathbf{J} = \left[\frac{\partial f\left(\mathbf{x}, \mathbf{u}\right)}{\partial \mathbf{x}} \right]_{\mathbf{x} = \hat{\mathbf{x}}(k k), \mathbf{u} = \mathbf{u}(k)}$ (jacobian matrix)	
$\eta(k)$	error due to sensor noise and inaccuracies in output model $ \mathbf{y}_{\text{measurement}}(k) = \mathbf{h}\big(\mathbf{x}(k)\big) + \mathbf{\eta}(k) \\ \text{-assume WGN, with known variance R(k)} $	
z	difference between measured output and expected output. Also known as the "innovation"	
z(k)	difference between measured output and expected (prior to EKF correction) output. Also known as the "innovation" $-z(k) = y_{meas}(k) - h\left(\hat{x}(k k-1)\right)$	

Optimisers

Thursday, 25 April 2024

7:52 PM

General background:

- The goal of optimisation is to minimise a cost function (a 1D function which depends on the values of an X vector input)

fminsearch:

- minimise the difference between the expected and measured output, to estimate the current state vector.
- i.e. the cost function is norm(expected output measured output) (order doesn't matter due to the norm())

example:

```
% This file estimates the pose via optimisation, given a set of detected
% landmarks and their associated known locations. Valid if at least 2
% landmark locations are given.
% by Alex Hunter z5312469 16/03/2024
function [epose, valid] = EstimatePoseD(Useful OOIs, AssociatedLandmarks, currPose)
  [~, numUsefulOOIs] = size(Useful OOIs);
  if (numUsefulOOIs < 2) % At least two landmarks required
    valid = 0;
    epose = [0;0;0];
    return
  else
    valid = 1;
  end
  poseTransform = fminsearch(@(poseTransform)costFunction(Useful_OOIs, AssociatedLandmarks, poseTransform),
[0;0;0];
  R = rot(poseTransform(3));
  T = poseTransform(1:2);
  epose = [R*currPose(1:2) + T; currPose(3) + poseTransform(3)];
function cost = costFunction(Useful_OOIs, AssociatedLandmarks, transformPose)
  T = transformPose(1:2);
  alpha = transformPose(3);
  R = rot(alpha);
  OOIs in GCF = R*Useful OOIs + T;
  cost = norm(OOIs_in_GCF - AssociatedLandmarks)^2;
```

- fminsearch only optimises a single input variable, so we need to use this lambda function format in order to use constant variable inputs as well.
 - o i.e. @(poseTransform)... intends to optimise the poseTransform state.
 - anonymous functions have the form "handle = @(argument) argument.^2"
 where the output is argument.^2 here

Particle swarm optimisation:

State update	$\mathbf{X}_{i,n+1} = \mathbf{X}_{i,n} + \mathbf{V}_{i,n+1},$ $(1 \le j \le N)$

Velocity update		$\begin{aligned} \mathbf{V}_{i,n+1} &= \mathbf{V}_{i,n} + c_1 \cdot r_{i,n} \cdot \left(\mathbf{P}_{i,n} - \mathbf{X}_{i,n} \right) + c_2 \cdot R_{i,n} \cdot \left(\mathbf{G}_n - \mathbf{X}_{i,n} \right), \\ & \text{(velocity of particle #i at iteration } n+1, \ \mathbf{V}_{i,n+1} \text{)} \end{aligned}$ $r_{i,n} \Box U (0,1), R_{i,n} \Box U (0,1) \text{(random coefficients)}$ $c_1, c_2 : \text{constants ("Acceleration constants")}$ $\mathbf{V}_{i,n} : \text{previous velocity , known as the "inertia" part}$ $c_1 \cdot r_{i,n} \cdot \left(\mathbf{P}_{i,n} - \mathbf{X}_{i,n} \right) : \text{The "cognition" part}$ $c_2 \cdot R_{i,n}^j \cdot \left(\mathbf{G}_n - \mathbf{X}_{i,n} \right) : \text{The "social" part}$
personal best update		$\mathbf{P}_{i,n} = \begin{cases} \mathbf{X}_{i,n}, & f(\mathbf{X}_{i,n}) < f(\mathbf{P}_{i,n-1}) \\ \mathbf{P}_{i,n-1}, & f(\mathbf{X}_{i,n}) \ge f(\mathbf{P}_{i,n-1}), \end{cases}$
global best update		$\mathbf{G}_{n} = \mathbf{P}_{g,n}$ $g = \operatorname{argmin}_{1 \le j \le M} \{ f(\mathbf{P}_{j,n}) \}.$
Swarm size (number of particles)	M = 10 + 2*sqrt(D) or M = 40	
Weighted inertia variant		$\begin{aligned} \mathbf{V}_{i,n+1} &= \mathbf{w}_{\mathbf{n}} \cdot \mathbf{V}_{i,n} + c_1 \cdot r_{i,n} \cdot \left(\mathbf{P}_{i,n} - \mathbf{X}_{i,n}\right) + c_2 \cdot R_{i,n}^{j} \cdot \left(\mathbf{G}_{\mathbf{n}} - \mathbf{X}_{i,n}\right), \\ w_n &= \frac{\left(w_{initial} - w_{final}\right) \cdot \left(n_{max} - n\right)}{n_{max}} + w_{final}, \end{aligned}$
algorithm	-for L iterations o for each particle •evaluate cost •if position is a new best, save new best o update global best o exit if global best is good enough o for each particle •update velocity and position -solution = global best	P=particle initialization(); for i = 1 to L

(old) Basic kalman filter

Thursday, 4 April 2024 10:24 AM

Prediction step: (regular kalman filter, linear outputs only)

$$z(k) = y_{meas}(k) - h(x) \Big|_{x = \hat{x}(k|k-1)}$$

$$H = \left[\frac{\partial h(x)}{\partial x} \right] \Big|_{x = \hat{x}(k|k-1)}$$

$$S = H * P(k|k-1) * H^{T} + R(k)$$

$$K(k) = P(k|k-1) * H^{T} * S^{-1}$$

$$\hat{x}(k|k) = \hat{x}(k|k-1) + K(k) * z(k)$$

$$P(k|k) = P(k|k-1) - P(k|k-1) * H^{T} * S^{-1} * H * P(k|k-1)$$

$$P(k|k) = P(k|k-1) - K(k) * H * P(k|k-1)$$
or
$$\hat{x}(k|k) = \hat{x}(k|k-1) + \left(P(k|k-1) * H^{T} * \left(H * P(k|k-1) * H^{T} + R(k)\right)^{-1}\right) * z(k)$$

$$P(k|k)$$

$$P(k|k) = P(k|k-1) - P(k|k-1) * H^{T} * (H * P(k|k-1) * H^{T} + R(k))^{-1} * H * P(k|k-1)$$

In matlab:

```
% KF update, for a LINEAR Output equation
% there are diverse ways to perform it, THIS is ONE of them.
function [X_updated,P_updated]=PerformUpdate(ym,H,R,Xe,P)
% ym: measurement of output y
% H: output model is y=H*X (linear)
% Xe: current expected value (PRIOR)
% P: current covariance matrix (PRIOR)
% R: covariance matrix of noise polluting output measurements/
% Returned variables.
% [Xu,Pu]: updated expected value and covariance matrix.
% implement KF update equations, here
  ye=H*Xe; %expected output
  z=ym-ye;
  S=H*P*H'+R;
  Si=inv(S);
  K = P^*H'^*Si;
                         %updated expected value
  X_updated = Xe+K*z;
  P_updated=P- P*H'*Si*H*P; %updated covariance matrix
end
```

(old) Extended Kalman Filter

Wednesday, 3 April 2024 7:0

Use EKF when the model is nonlinear. I.e. $x(k+1|k) = f(x(k), u(k)) + \xi(k)$

Prediction $\widehat{\boldsymbol{x}}(k+1|k) = f(\widehat{\boldsymbol{x}}(k|k), \widecheck{\boldsymbol{u}}(k)) + \xi(k)$ prediction step: $\hat{\mathbf{x}}(k+1|k) = \mathbf{f}(\hat{\mathbf{x}}(k|k), \mathbf{u}(k))$ Correction $P(k+1|k) = J^*P(k|k)^*J^T + Q(k)$ Step where: $\mathbf{P}(k+1|k) = \mathbf{J} \cdot \mathbf{P}(k|k) \cdot \mathbf{J}^T + \mathbf{Q}_{\mathbf{u}}$ $-I = jacobian \ of \ f(x, u)$, evaluated at: $\circ \ x = \hat{x}(k|k)$ $\mathbf{Q}_{\mathbf{u}} = \mathbf{J}_{\mathbf{u}} \cdot \mathbf{P}_{\mathbf{u}} \cdot \mathbf{J}_{\mathbf{u}}^{T}$ • $\hat{x}(k|k)$ is given by x(k+1) = $f(x(k),u(k)) + \xi(k)$ • i.e. $\hat{x}(k|k) = f(x(k-1), u(k-1)) + \xi(k)$ in which ■ i.e. after prediction step $\mathbf{\tilde{u}}(k)$: measured/known input value $\circ\ u=u(k)$ $-\ddot{u}(k) = measured/known input value$ P_n: covariance matrix of noise which affects inputs $-Q = covariance\ matrix\ of\ error\ added\ at\ each\ step$ - Q_u =covariance matrix of -J and J_u are jacobian matrixes

recall the Jacobian matrix:

$$\begin{bmatrix} \frac{\partial a_1}{\partial x_1} & \frac{\partial a_1}{\partial x_2} & \dots & \frac{\partial a_1}{\partial x_n} \\ \frac{\partial a_2}{\partial x_2} & \dots & \dots & \frac{\partial a_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial a_m}{\partial x_1} & \dots & \dots & \frac{\partial a_m}{\partial x_n} \end{bmatrix}$$

- but replace "a" with "f"

Matlab Example:

```
function Example (X0, u0)
stds = [0.0005,0.004]; % standard deviations of noise components.
                         % A diagonal Q, because, in this case, noises E1,E2 are independent
Q = diag(stds.^2);
Tau=0.01;
params = [-10,-0.04,1]; %model's coefficients a,b,c
% initial expected value, and initial covariance matrix
Xe=X0;
P=zeros(2,2);
% For the sake of simplicity, in this example, I assume we keep applying u\left(k\right)=u0.
 N=500:
for k=1:N.
    % get predicted covariance matrix and expected value
% Here, in our example/simulation, we apply it in a loop, but this type of prediction is usually applied in real-time
    [Xe,P]=DoPrediction(Xe,P, u, params,Tau,Q);
end;
function [X,P]=DoPrediction(X,P, u, params,Tau,Q)
   % need Jacobian to be evaluated at each discrete time k (because model J= MyJacobian(X,u,Tau,params); % (see code inside this function)
                                                                                       is non-linear)
    P = J*P*J'+0;
                           % covariance of predicted x(k)
    X=modelPendulum(X,u,Tau,params); % get expected value
                                                                                                                  x_1 + \tau \cdot x_2
function J=MyJacobian(X,u,T,params)
                                                                                                      x_2 + \tau \cdot \left(-10 \cdot \sin\left(x_1\right) - 4 \cdot x_2 + u\right)
 a=params(1);b=params(2);

J = [ [1,T];[T*a*cos(X(1)),1+b*T]];
                                                                                                                    1
                                                                                              \partial f(x, \mathbf{u})
% implement discrete time model of plant.
                                                                                                              -\tau \cdot 10 \cdot \cos(x_1) \quad 1 - 4 \cdot \tau
function Xnew=modelPendulum(X,u,Tau,params)
 a=params(1);b=params(2);c=params(3);
  X_{\text{new}} = [X(1) + Tau^*X(2); X(2) + Tau^*(a^*sin(X(1)) + b^*X(2) + c^*u)];
```

UNSW MTRN4010/2024 Lecturer: Jose Guivant

11