第五章 三角函数 单元综合测试卷

第I卷

一、选择题: 本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。

1. 已知
$$\sin \theta - 2\cos \theta = 0$$
,则 $\frac{\sin \theta + \sin \left(\frac{\pi}{2} + \theta\right)}{\sin \theta} =$ ()

- A. 3
- B. $\frac{3}{2}$ C. $\frac{1}{2}$
- D. -1

2. 下列函数既是奇函数又是周期为π的函数是()

A.
$$y = \tan 2x$$

$$\mathbf{B.} \quad y = \sin\left(2x + \frac{\pi}{2}\right)$$

$$C. \quad y = |\sin x|$$

$$D. \quad y = \cos\left(\frac{3}{2}\pi - 2x\right)$$

3. 函数 $y = \sin\left(\frac{\pi}{6} - 2x\right) (x \in [0, \pi])$ 为增函数的区间是()

A.
$$\left[0, \frac{\pi}{3}\right]$$

A.
$$\left[0, \frac{\pi}{3}\right]$$
 B. $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ C. $\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]$ D. $\left[\frac{5\pi}{6}, \pi\right]$

C.
$$\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]$$

D.
$$\left[\frac{5\pi}{6},\pi\right]$$

4. 己知 $\sin\left(\frac{\pi}{6} - \alpha\right) = -\frac{\sqrt{2}}{3}$,那么 $\cos 2\alpha + \sqrt{3} \sin 2\alpha =$ ()

- A. $\frac{10}{9}$ B. $-\frac{10}{9}$ C. $-\frac{5}{9}$

5. 函数 $f(x) = \frac{x}{2\cos x - 1}$, $x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ 的图象大致是 ()

C.

6. 已知函数 $f(x) = A\sin(\omega x + \varphi)$, A > 0, $\omega > 0$, $|\varphi| < \frac{\pi}{2}$ 的部分图象如图所示, 则

$$f\left(\frac{\pi}{3}\right) = ($$

- **A.** -1
- B. 1
- C. $\sqrt{2}$ D. $\sqrt{3}$

7. 已知曲线 C_1 : $y = \sin x$ 的图像, C_2 : $y = \cos\left(2x - \frac{\pi}{3}\right)$,则下面结论正确的是()

A. 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个 单位长度,得到曲线 C_2

B. 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 $\frac{\pi}{12}$ 个 单位长度,得到曲线 C_2

C. $\mathbb{H}C_1$ 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个 单位长度,得到曲线 C_2

D. 把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向左平移 $\frac{\pi}{12}$ 个 单位长度,得到曲线C,

8. 将函数 $f(x) = \sin \omega x (\omega > 0)$ 的图象向右平移 $\frac{\pi}{12}$ 个单位长度得到函数 y = g(x) 的图象,

若函数g(x)在区间 $\left[0,\frac{\pi}{2}\right]$ 上是单调增函数,则实数 ω 可能的取值为()

- A. $\frac{3}{2}$
- B. 3
- C. $\frac{5}{6}$
- D. 2

二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分。在每小题给出的选项中, 有多项符 合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。

9. 中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的 扇形制作而成,如图,设扇形的面积为 S_1 ,其圆心角为 θ ,圆面中剩余部分的面积为 S_2 ,

当 S_1 与 S_2 的比值为 $\frac{\sqrt{5}-1}{2}$ 时,扇面为"美观扇面",下列结论正确的是(参考数据:

$$\sqrt{5} \approx 2.236$$
) ()

A.
$$\frac{S_1}{S_2} = \frac{\theta}{2\pi - \theta}$$

- B. 若 $\frac{S_1}{S_2} = \frac{1}{2}$, 扇形的半径R = 3, 则 $S_1 = 2\pi$
- C. 若扇面为"美观扇面",则 $\theta \approx 138^{\circ}$
- D. 若扇面为"美观扇面",扇形的半径 R=20,则此时的扇形面积为 $200(3-\sqrt{5})$

10. 设函数
$$f(x) = \sin\left(2x + \frac{\pi}{4}\right) + \cos\left(2x + \frac{\pi}{4}\right)$$
, 则 $f(x)$

A. 是偶函数

B. 在区间 $\left(0,\frac{\pi}{2}\right)$ 上单调递增

C. 最大值为2

- D. 其图象关于点 $\left(\frac{\pi}{4},0\right)$ 对称
- 11. 已知函数 $f(x) = \sin(\omega x + \frac{5\pi}{12}) \cos(\omega x + \frac{5\pi}{12})$ (0< ω <6) 的图象关于直线 x=1 对
- 称,则满足条件的ω的值为()

- B. $\frac{\pi}{3}$ C. $\frac{4\pi}{3}$
- D. $\frac{7\pi}{2}$

12. 已知函数
$$f(x) = \sin(3x + \varphi)\left(-\frac{\pi}{2} < \varphi < \frac{\pi}{2}\right)$$
的图像关于直线 $x = \frac{\pi}{4}$ 对称,则()

- A. 函数 $f\left(x+\frac{\pi}{12}\right)$ 为奇函数.
- B. 函数 f(x) 在 $\left[\frac{\pi}{12}, \frac{\pi}{3}\right]$ 上单调递增.
- C. 若 $|f(x_1)-f(x_2)|=2$,则 $|x_1-x_2|$ 的最小值为 $\frac{\pi}{3}$.
- D. 当 $x \in \left[0, \frac{\pi}{3}\right], f(x)$ 的值域是 $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$.

第II卷

- 三、填空题: 本题共 4 小题,每小题 5 分,共 20 分。
- 13. 已知 $\alpha \in \left(0, \frac{\pi}{2}\right)$, $\sin\left(\alpha \frac{\pi}{6}\right) = \frac{1}{3}$, 则 $\sin\alpha$ 的值为_

14. 若
$$f(x) = \sin^2 x + \sqrt{3} \sin x \cos x - \frac{1}{2}$$
,则 $f(x)$ 在 $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ 上的最大值为_____

15. 海水受日月的引力,在一定的时候发生涨落的现象叫潮汐. 一般早潮叫潮,晚潮叫沙. 在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋. 下面是某港口在某季节某天的时间与水深值(单位: m)记录表.

时刻	0: 00	3: 00	6: 00	9: 00	12: 00	15: 00	18: 00	21: 00	24: 00
水深值	5.0	7.5	5.0	2.5	5.0	7.5	5.0	2.5	5.0

试用一个三角函数来近似地描述这个港口的水深值y与时间 $t(t \in [0,24])$ 的函数关系,则这个函数关系式是

16. 已知函数
$$f(x) = \sin(\pi x + \varphi)(|\varphi| < \pi)$$
 的图象过点 $\left(\frac{1}{3}, 1\right)$,若 $f(x)$ 在 $\left[-2, a\right]$ 内有 5 个零

点,则 a 的取值范围为_____.

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步聚。

17. (10分)

化简求值:

$$(1) \frac{\tan(\pi-\alpha)\cdot\cos(2\pi-\alpha)\cdot\sin\left(-\alpha+\frac{3\pi}{2}\right)}{\cos(-\alpha-\pi)\cdot\sin(-\pi-\alpha)};$$

(2)已知 $\tan \alpha = 2$, 求 $\sin \alpha \cdot \cos \alpha$ 的值.

18. (12分)

在① $\sin \alpha = \frac{\sqrt{6}}{3}$,② $\tan^2 \alpha + \sqrt{2} \tan \alpha - 4 = 0$ 这两个条件中任选一个,补充到下面的问题

中,并解答.

(1)求 $\tan \alpha$ 的值;

$$(2)$$
求 $\sqrt{2}\cos(2\alpha+\frac{3\pi}{2})+\cos(\alpha+\pi)\cos(\alpha-3\pi)$ 的值.

注: 如果选择多个条件分别解答, 按第一个解答计分.

19. (12分)

已知函数 $f(x) = \sqrt{3} \sin 2\omega x + \cos^4 \omega x - \sin^4 \omega x + 1$ (其中 $0 < \omega < 1$),若点 $\left(-\frac{\pi}{6}, 1\right)$ 是函数 f(x) 图象的一个对称中心.

(1)求f(x)的解析式,并求距y轴最近的一条对称轴的方程;

(2)先列表,再作出函数 f(x)在区间 $[-\pi,\pi]$ 上的图象.

20. (12分)

已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图.

(1)求函数f(x)的解析式;

(2)将函数 f(x) 的图象上所有点的横坐标变为原来的 2 倍,纵坐标不变,再将所得图象向左 平移 $\frac{\pi}{6}$ 个单位,得到函数 g(x) 的图象,当 $x \in \left[-\frac{\pi}{6}, \pi\right]$ 时,求 g(x) 值域.

21. (12分)

已知
$$f(x) = 4\sin\left(x + \frac{\pi}{2}\right)\sin\left(x + \frac{\pi}{3}\right) - \sqrt{3}$$
.

- (1) 求函数 f(x) 的的最小正周期和单调递减区间;
- (2) 若关于 x 的方程 $f(x) = m + 2\sin 2x$ 在区间 $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ 上恰有两个不等实根,求实数 m 的取值范围.

22. (12分)

已知函数 $f(x) = 2\sin\left(x + \frac{\pi}{3}\right)$,且函数 y = g(x) 的图象与函数 y = f(x) 的图象关于直线 $x = \frac{\pi}{4}$ 对称.

- (1)求函数g(x)的解析式;
- (2)若存在 $x \in \left[0, \frac{\pi}{2}\right]$, 使等式 $\left[g(x)\right]^2 mg(x) + 2 = 0$ 成立, 求实数m的取值范围;
- (3)若当 $x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$ 时,不等式 $\frac{1}{2}f(x) ag(-x) > a 2$ 恒成立,求实数a的取值范围.

第五章 三角函数 单元综合测试卷

一、选择题: 本题共 8 小题, 每小题 5 分, 共 40 分。在每小题给出的四个选项中, 只有 一项是符合题目要求的。

1. 己知
$$\sin \theta - 2\cos \theta = 0$$
,则 $\frac{\sin \theta + \sin \left(\frac{\pi}{2} + \theta\right)}{\sin \theta} =$ ()

A. 3

B. $\frac{3}{2}$

C. $\frac{1}{2}$

【答案】B

【解析】因为 $\sin\theta - 2\cos\theta = 0$,故可得: $\tan\theta = 2$.

原式=
$$\frac{\sin\theta + \sin\left(\frac{\pi}{2} + \theta\right)}{\sin\theta} = \frac{\sin\theta + \cos\theta}{\sin\theta} = 1 + \frac{1}{\tan\theta} = \frac{3}{2}$$
.

故选: B.

2. 下列函数既是奇函数又是周期为π的函数是()

A.
$$y = \tan 2x$$

$$B. \quad y = \sin\left(2x + \frac{\pi}{2}\right)$$

$$C. \quad y = |\sin x|$$

$$D. \quad y = \cos\left(\frac{3}{2}\pi - 2x\right)$$

【答案】D

【解析】 $y = \tan 2x$ 是最小正周期为 $\frac{\pi}{2}$ 的奇函数,故 A 错误;

 $y = \sin(2x + \frac{\pi}{2}) = \cos 2x$ 的最小正周期是 π 是偶函数, 故 B 错误;

 $y = |\sin x|$ 是最小正周期是 π 是偶函数,故 C 错误;

 $y = \cos(\frac{3\pi}{2} - 2x) = -\sin 2x$ 最小正周期为 π 的奇函数,故 D 正确 .

故选: D.

3. 函数
$$y = \sin\left(\frac{\pi}{6} - 2x\right) (x \in [0, \pi])$$
 为增函数的区间是 ()

A.
$$\left[0,\frac{\pi}{3}\right]$$

A.
$$\left[0, \frac{\pi}{3}\right]$$
 B. $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ C. $\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]$ D. $\left[\frac{5\pi}{6}, \pi\right]$

C.
$$\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]$$

D.
$$\left[\frac{5\pi}{6},\pi\right]$$

【答案】C

【解析】
$$y = \sin\left(\frac{\pi}{6} - 2x\right) = -\sin\left(2x - \frac{\pi}{6}\right)$$
,

$$2k\pi + \frac{\pi}{2} \le 2x - \frac{\pi}{6} \le 2k\pi + \frac{3\pi}{2}$$
, $k\pi + \frac{\pi}{3} \le x \le k\pi + \frac{5\pi}{6}$, $k \in \mathbb{Z}$,

$$\diamondsuit k = 0$$
 可的 $y = \sin\left(\frac{\pi}{6} - 2x\right)\left(x \in [0, \pi]\right)$ 的递增区间为 $\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]$.

故选: C

5. 函数
$$f(x) = \frac{x}{2\cos x - 1}$$
, $x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ 的图象大致是 ()

Α

C.

【答案】A

【解析】:
$$f(x) = \frac{x}{2\cos x - 1}, x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$$

$$\therefore \forall x \in x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right), -x \in x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right), \quad f(-x) = \frac{-x}{2\cos(-x)-1} = -f(x),$$

: 函数 f(x) 是奇函数,排除 D,

当 $0 < x < \frac{\pi}{3}$ 时, $2\cos x - 1 > 0$,则f(x) > 0,排除B,C.

故选: A.

6. 已知函数 $f(x) = A\sin(\omega x + \varphi)$, A > 0, $\omega > 0$, $|\varphi| < \frac{\pi}{2}$ 的部分图象如图所示,则

$$f\left(\frac{\pi}{3}\right) = ()$$

- A. -1
- B. 1
- C. $\sqrt{2}$
- D. $\sqrt{3}$

【答案】B

【解析】由图象可知A=2, f(0)=1, 则

$$f(0) = 2\sin\varphi = 1$$
, $4\sin\varphi = \frac{1}{2}$,

因为
$$|\varphi| < \frac{\pi}{2}$$
,

所以
$$\varphi = \frac{\pi}{6}$$
,

所以
$$f(x) = 2\sin\left(\omega x + \frac{\pi}{6}\right)$$
,

因为
$$f\left(\frac{11\pi}{12}\right) = 0$$
,所以 $2\sin\left(\omega \cdot \frac{11\pi}{12} + \frac{\pi}{6}\right) = 0$,所以 $\omega \cdot \frac{11\pi}{12} + \frac{\pi}{6} = k\pi, k \in \mathbb{Z}$,

因为
$$\frac{2\pi}{\omega}$$
> $\frac{11\pi}{12}$,所以 ω =2,

所以
$$f(x) = 2\sin\left(2x + \frac{\pi}{6}\right)$$
,

所以
$$f\left(\frac{\pi}{3}\right) = 2\sin\left(2 \times \frac{\pi}{3} + \frac{\pi}{6}\right) = 2\sin\frac{5\pi}{6} = 1$$
,

故选: B

7. 已知曲线
$$C_1: y = \sin x$$
 的图像, $C_2: y = \cos\left(2x - \frac{\pi}{3}\right)$,则下面结论正确的是()

A. 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个单位长度,得到曲线 C_2

- B. 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 $\frac{\pi}{12}$ 个单位长度,得到曲线 C_2
- C. 把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个单位长度,得到曲线 C_2
- D. 把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向左平移 $\frac{\pi}{12}$ 个单位长度,得到曲线 C_2

【答案】D

【解析】对于曲线 C_1 , $y = \sin x = \cos \left(x - \frac{\pi}{2} \right)$, 要得到 C_2 : $y = \cos \left(2x - \frac{\pi}{3} \right)$, 则把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,得到 $y = \cos \left(2x - \frac{\pi}{2} \right)$,再把得到的曲线向左平 移 $\frac{\pi}{12}$ 个单位长度,得到 $\cos \left[2 \left(x + \frac{\pi}{12} \right) - \frac{\pi}{2} \right] = \cos \left(2x - \frac{\pi}{3} \right)$,即得到曲线 C_2 .

故选: D.

8. 将函数 $f(x) = \sin \omega x (\omega > 0)$ 的图象向右平移 $\frac{\pi}{12}$ 个单位长度得到函数 y = g(x) 的图象,

若函数g(x)在区间 $\left[0,\frac{\pi}{2}\right]$ 上是单调增函数,则实数 ω 可能的取值为()

A. $\frac{3}{2}$

B. 3

C. $\frac{5}{6}$

D. 2

【答案】C

【解析】因为将函数 $f(x) = \sin \omega x (\omega > 0)$ 的图象向右平移 $\frac{\pi}{12}$ 个单位长度得到函数 y = g(x) 的图象,

所以
$$g(x) = \sin \omega \left(x - \frac{\pi}{12}\right) = \sin \left(\omega x - \frac{\pi \omega}{12}\right)$$

$$\stackrel{\underline{}}{=} x \in \left[0, \frac{\pi}{2}\right]$$
 $\text{ iff }, \quad \omega x - \frac{\pi \omega}{12} \in \left[-\frac{\pi \omega}{12}, \frac{5\pi \omega}{12}\right]$

因为函数g(x)在区间 $\left[0,\frac{\pi}{2}\right]$ 上是单调增函数,所以 $-\frac{\pi\omega}{12} \ge -\frac{\pi}{2},\frac{5\pi\omega}{12} \le \frac{\pi}{2}$

解得 $0 < \omega \le \frac{6}{5}$

故选: C

- 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
- 9. 中国传统扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,如图,设扇形的面积为 S_1 ,其圆心角为 θ ,圆面中剩余部分的面积为 S_2 ,

当 S_1 与 S_2 的比值为 $\frac{\sqrt{5}-1}{2}$ 时,扇面为"美观扇面",下列结论正确的是(参考数据:

$$\sqrt{5} \approx 2.236$$
) ()

A.
$$\frac{S_1}{S_2} = \frac{\theta}{2\pi - \theta}$$

- B. 若 $\frac{S_1}{S_2} = \frac{1}{2}$, 扇形的半径R = 3, 则 $S_1 = 2\pi$
- C. 若扇面为"美观扇面",则 $\theta \approx 138^{\circ}$
- D. 若扇面为"美观扇面",扇形的半径 R=20,则此时的扇形面积为 $200\left(3-\sqrt{5}\right)$

【答案】AC

【解析】对于 A, Q S_1 与 S_2 所在扇形的圆心角分别为 θ , $2\pi - \theta$,

$$\therefore \frac{S_1}{S_2} = \frac{\frac{1}{2} \cdot \theta \cdot r^2}{\frac{1}{2} (2\pi - \theta) \cdot r^2} = \frac{\theta}{2\pi - \theta} , A 正确;$$

对于 B,Q
$$\frac{S_1}{S_2} = \frac{\theta}{2\pi - \theta} = \frac{1}{2}$$
, $\therefore \theta = \frac{2\pi}{3}$, $\therefore S_1 = \frac{1}{2} \cdot \theta \cdot R^2 = \frac{1}{2} \times \frac{2\pi}{3} \times 9 = 3\pi$, B 错误;

对于 C,
$$Q\frac{S_1}{S_2} = \frac{\theta}{2\pi - \theta} = \frac{\sqrt{5} - 1}{2}$$
, $\therefore \theta = (3 - \sqrt{5})\pi$, $\therefore \theta \approx (3 - 2.236) \times 180^{\circ} \approx 138^{\circ}$, C 正确;

对于 D,
$$S_1 = \frac{1}{2} \cdot \theta \cdot R^2 = \frac{1}{2} \times (3 - \sqrt{5}) \pi \times 400 = 200 (3 - \sqrt{5}) \pi$$
, D 错误.

故选: AC.

10. 设函数
$$f(x) = \sin\left(2x + \frac{\pi}{4}\right) + \cos\left(2x + \frac{\pi}{4}\right)$$
, 则 $f(x)$ ()

B. 在区间
$$\left(0, \frac{\pi}{2}\right)$$
上单调递增

D. 其图象关于点
$$\left(\frac{\pi}{4},0\right)$$
对称

【答案】AD

【解析】 $f(x) = \sqrt{2}\sin\left(2x + \frac{\pi}{4} + \frac{\pi}{4}\right) = \sqrt{2}\cos 2x$,所以函数是偶函数,故 A 正确;

$$x \in \left(0, \frac{\pi}{2}\right)$$
时, $2x \in \left(0, \pi\right)$,所以函数 $f(x)$ 在区间 $\left(0, \frac{\pi}{2}\right)$ 上单调递减,故 B 错误;

函数的最大值是 $\sqrt{2}$,故C错误;

当
$$x = \frac{\pi}{4}$$
 时, $y = \sqrt{2} \times \sin \frac{\pi}{2} = 0$, 所以函数图象关于点 $\left(\frac{\pi}{4}, 0\right)$ 对称, 故 D 正确.

故选: AD

11. 已知函数
$$f(x) = \sin(\omega x + \frac{5\pi}{12}) - \cos(\omega x + \frac{5\pi}{12})$$
 (0< ω <6) 的图象关于直线 $x=1$ 对

称,则满足条件的ω的值为()

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

A.
$$\frac{\pi}{6}$$
 B. $\frac{\pi}{3}$ C. $\frac{4\pi}{3}$

D.
$$\frac{7\pi}{3}$$

【答案】BC

【解析】因为
$$f(x) = \sqrt{2}\sin(\omega x + \frac{5\pi}{12} - \frac{\pi}{4}) = \sqrt{2}\sin(\omega x + \frac{\pi}{6})$$
,

$$\boxplus \omega x + \frac{\pi}{6} = k\pi + \frac{\pi}{2} , \quad k \in \mathbb{Z} ,$$

因为
$$0 < \omega < 6$$
,所以 $x = \frac{k\pi}{\omega} + \frac{\pi}{3\omega}$, $k \in \mathbb{Z}$,

由题意可得
$$\frac{k\pi}{\omega} + \frac{\pi}{3\omega} = 1$$
, $k \in \mathbb{Z}$, 得 $\omega = k\pi + \frac{\pi}{3}$, $k \in \mathbb{Z}$,

因为
$$0 < \omega < 6$$
,所以 $\omega = \frac{\pi}{3}$ 或 $\omega = \frac{4\pi}{3}$.

故选: BC.

12. 已知函数
$$f(x) = \sin(3x + \varphi)\left(-\frac{\pi}{2} < \varphi < \frac{\pi}{2}\right)$$
 的图像关于直线 $x = \frac{\pi}{4}$ 对称,则()

A. 函数
$$f\left(x+\frac{\pi}{12}\right)$$
 为奇函数.

B. 函数
$$f(x)$$
 在 $\left[\frac{\pi}{12}, \frac{\pi}{3}\right]$ 上单调递增.

C. 若
$$|f(x_1)-f(x_2)|=2$$
,则 $|x_1-x_2|$ 的最小值为 $\frac{\pi}{3}$.

D. 当
$$x \in \left[0, \frac{\pi}{3}\right], f(x)$$
的值域是 $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$.

【答案】AC

【解析】Q函数
$$f(x) = \sin(3x + \varphi)\left(-\frac{\pi}{2} < \varphi < \frac{\pi}{2}\right)$$
的图像关于直线 $x = \frac{\pi}{4}$ 对称,

$$\therefore f\left(\frac{\pi}{4}\right) = \sin\left(3 \times \frac{\pi}{4} + \varphi\right) = \pm 1, \quad \therefore \frac{3\pi}{4} + \varphi = \frac{\pi}{2} + k\pi\left(k \in Z\right), \quad \therefore \varphi = -\frac{\pi}{4} + k\pi\left(k \in Z\right),$$

$$Q - \frac{\pi}{2} < \varphi < \frac{\pi}{2}, \quad \therefore k = 0 \text{ B}, \quad \varphi = -\frac{\pi}{4}, \quad \therefore f(x) = \sin\left(3x - \frac{\pi}{4}\right),$$

对于 A 选项: Q
$$f(x) = \sin\left(3x - \frac{\pi}{4}\right)$$
, $\therefore f\left(x + \frac{\pi}{12}\right) = \sin\left[3\left(x + \frac{\pi}{12}\right) - \frac{\pi}{4}\right] = \sin 3x$,

$$Q\sin(-3x) = -\sin 3x$$
, ∴ $f\left(x + \frac{\pi}{12}\right)$ 为奇函数, 故 A 选项正确;

对于 B 选项: 由
$$-\frac{\pi}{2} + 2k\pi < 3x - \frac{\pi}{4} < \frac{\pi}{2} + 2k\pi (k \in \mathbb{Z})$$
,得

$$-\frac{\pi}{12} + \frac{2k}{3}\pi < x < \frac{1}{4}\pi + \frac{2k}{3}\pi \left(k \in Z\right),$$

当
$$k = 0$$
 时, $f(x)$ 在 $\left[-\frac{\pi}{12}, \frac{\pi}{4}\right]$ 当单调递增,故 B 选项错误;

对于 C 选项: 若 $|f(x_1)-f(x_2)|=2$,则 $|x_1-x_2|$ 最小值为半个周期,即 $\frac{2\pi}{3} \times \frac{1}{2} = \frac{\pi}{3}$,故 C 选项正确;

对于 D 选项: 当 $x \in \left[0, \frac{\pi}{3}\right]$ 时, $-\frac{\pi}{4} \le 3x - \frac{\pi}{4} \le \frac{3\pi}{4}$,令 $t = 3x - \frac{\pi}{4}$,则 $-\frac{\pi}{4} \le t \le \frac{3\pi}{4}$,结合正弦函数图像知 $-\frac{\sqrt{2}}{2} \le \sin t \le 1$, $\therefore x \in \left[0, \frac{\pi}{3}\right]$,f(x)的值域是 $\left[-\frac{\sqrt{2}}{2}, 1\right]$,故 D 选项错误. 故选: AC

第II卷

三、填空题:本题共4小题,每小题5分,共20分。

13. 已知
$$\alpha \in \left(0, \frac{\pi}{2}\right)$$
, $\sin\left(\alpha - \frac{\pi}{6}\right) = \frac{1}{3}$, 则 $\sin\alpha$ 的值为______.

【答案】
$$\frac{\sqrt{3} + 2\sqrt{2}}{6}$$

【解析】由题意可知,因为
$$\alpha \in \left(0, \frac{\pi}{2}\right)$$
,所以 $\alpha - \frac{\pi}{6} \in \left(-\frac{\pi}{6}, \frac{\pi}{3}\right)$,

所以
$$\cos\left(\alpha - \frac{\pi}{6}\right) = \sqrt{1 - \sin^2\left(\alpha - \frac{\pi}{6}\right)} = \frac{2\sqrt{2}}{3}$$
,

$$\operatorname{III} \sin \alpha = \sin \left(\alpha - \frac{\pi}{6} + \frac{\pi}{6} \right) = \sin \left(\alpha - \frac{\pi}{6} \right) \cos \frac{\pi}{6} + \cos \left(\alpha - \frac{\pi}{6} \right) \sin \frac{\pi}{6}$$

$$= \frac{1}{3} \times \frac{\sqrt{3}}{2} + \frac{2\sqrt{2}}{3} \times \frac{1}{2} = \frac{\sqrt{3} + 2\sqrt{2}}{6} .$$

故答案为: $\frac{\sqrt{3}+2\sqrt{2}}{6}$

14. 若
$$f(x) = \sin^2 x + \sqrt{3} \sin x \cos x - \frac{1}{2}$$
,则 $f(x)$ 在 $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ 上的最大值为_____

【答案】1

【解析】由题意,函数
$$f(x) = \sin^2 x + \sqrt{3} \sin x \cos x - \frac{1}{2} = \frac{1 - \cos 2x}{2} + \frac{\sqrt{3}}{2} \sin 2x - \frac{1}{2}$$

$$= \frac{\sqrt{3}}{2} \sin 2x - \frac{1}{2} \cos 2x = \sin(2x - \frac{\pi}{6}),$$

因为
$$x \in \left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$$
,所以 $2x - \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$,

所以当 $2x - \frac{\pi}{6} = \frac{\pi}{2}$,即 $x = \frac{\pi}{3}$ 时,函数 f(x)取得最大值,最大值为 $f(x)_{max} = 1$.

故答案为: 1.

15. 海水受日月的引力,在一定的时候发生涨落的现象叫潮汐. 一般早潮叫潮,晚潮叫

汐. 在通常情况下, 船在涨潮时驶进航道, 靠近船坞; 卸货后落潮时返回海洋. 下面是某

港口在某季节某天的时间与水深值(单位: m)记录表.

时亥	0: 00	3: 00	6: 00	9: 00	12: 00	15: 00	18: 00	21: 00	24: 00
水深	5.0	7.5	5.0	2.5	5.0	7.5	5.0	2.5	5.0

试用一个三角函数来近似地描述这个港口的水深值y与时间 $t(t \in [0,24])$ 的函数关系,则这个函数关系式是

【答案】
$$y = \frac{5}{2}\sin\frac{\pi}{6}t + 5, t \in [0, 24]$$

【解析】设y与t之间的函数关系式为 $y = A\sin(\omega t + \varphi) + B(A > 0, \omega > 0)$,

则由表中数据可得
$$T = 12$$
 ,且
$$\begin{cases} A + B = 7.5 \\ -A + B = 2.5 \end{cases}$$

故
$$\omega = \frac{2\pi}{12} = \frac{\pi}{6}$$
且 $B = 5, A = \frac{5}{2}$,所以 $y = \frac{5}{2}\sin\left(\frac{\pi}{6}t + \varphi\right) + 5$

因为当
$$t = 3$$
时, $y = 7.5$,所以 $\frac{\pi}{6} \times 3 + \varphi = 2k\pi + \frac{\pi}{2}, k \in \mathbb{Z}$,

解得
$$\varphi = 2k\pi, k \in \mathbb{Z}$$
, 故 $y = \frac{5}{2}\sin\frac{\pi}{6}t + 5$, 其中 $0 \le t \le 24$.

故答案为:
$$y = \frac{5}{2}\sin\frac{\pi}{6}t + 5, t \in [0, 24].$$

16. 已知函数 $f(x) = \sin(\pi x + \varphi)(|\varphi| < \pi)$ 的图象过点 $\left(\frac{1}{3}, 1\right)$,若 f(x)在 $\left[-2, a\right]$ 内有 5 个零

点,则a的取值范围为____.

【答案】
$$\left[\frac{17}{6}, \frac{23}{6}\right)$$

【解析】由题意知,函数f(x)的图象过点 $\left(\frac{1}{3},1\right)$,所以 $\sin\left(\frac{\pi}{3}+\varphi\right)=1$,

解得
$$\frac{\pi}{3}$$
+ φ = $\frac{\pi}{2}$ + $2k\pi,k\in\mathbb{Z}$,

因为
$$|\varphi| < \pi$$
,所以 $\varphi = \frac{\pi}{6}$,所以 $f(x) = \sin\left(\pi x + \frac{\pi}{6}\right)$,

当
$$x \in [-2,a]$$
时,可得 $\pi x + \frac{\pi}{6} \in \left[-2\pi + \frac{\pi}{6}, a\pi + \frac{\pi}{6} \right],$

因为f(x)在[-2,a]内有 5 个零点,结合正弦函数的性质可得 $3\pi \le a\pi + \frac{\pi}{6} < 4\pi$,

所以
$$\frac{17}{6} \le a < \frac{23}{6}$$
,即实数 a 的取值范围是 $\left[\frac{17}{6}, \frac{23}{6}\right]$.

故答案为:
$$\left[\frac{17}{6}, \frac{23}{6}\right)$$
.

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步聚。

17. (10分)

化简求值:

$$(1)\frac{\tan(\pi-\alpha)\cdot\cos(2\pi-\alpha)\cdot\sin\left(-\alpha+\frac{3\pi}{2}\right)}{\cos(-\alpha-\pi)\cdot\sin(-\pi-\alpha)};$$

(2)已知 $\tan \alpha = 2$, 求 $\sin \alpha \cdot \cos \alpha$ 的值.

$$= \frac{-\tan\alpha \cdot \cos\alpha \cdot (-\cos\alpha)}{\cos(\pi + \alpha) \cdot [-\sin(\pi + \alpha)]} = \frac{\tan\alpha \cdot \cos\alpha \cdot \cos\alpha}{-\cos\alpha \cdot \sin\alpha} = \frac{\frac{\sin\alpha}{\cos\alpha} \cdot \cos\alpha}{-\sin\alpha} = -1$$
 ;

(2)原式=
$$\frac{\sin \alpha \cos \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{\tan \alpha}{1 + \tan^2 \alpha} = \frac{2}{5}$$
.

18. (12分)

在 $1\sin\alpha = \frac{\sqrt{6}}{3}$, $2\tan^2\alpha + \sqrt{2}\tan\alpha - 4 = 0$ 这两个条件中任选一个,补充到下面的问题

中,并解答.

已知角 a 是第一象限角, 且 .

(1)求 $\tan \alpha$ 的值;

$$(2)$$
求 $\sqrt{2}\cos(2\alpha+\frac{3\pi}{2})+\cos(\alpha+\pi)\cos(\alpha-3\pi)$ 的值.

注: 如果选择多个条件分别解答,按第一个解答计分.

【解析】(1) 选①: 因为
$$\sin\alpha = \frac{\sqrt{6}}{3}$$
 ,所以 $\cos^2\alpha = 1 - \sin^2\alpha = \frac{1}{3}$,所以 $\cos\alpha = \pm \frac{\sqrt{3}}{3}$,

因为角
$$\alpha$$
是第一象限角,所以 $\cos \alpha = \frac{\sqrt{3}}{3}$,则 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \sqrt{2}$.

选②: 因为
$$\tan^2 \alpha + \sqrt{2} \tan \alpha - 4 = 0$$
,所以 $(\tan \alpha - \sqrt{2})(\tan \alpha + 2\sqrt{2}) = 0$,

解得
$$\tan \alpha = \sqrt{2}$$
 或 $\tan \alpha = -2\sqrt{2}$,

因为角 α 是第一象限角,所以 $\tan \alpha = \sqrt{2}$.

$$= \sqrt{2} \sin 2\alpha + \cos^2 \alpha = 2\sqrt{2} \sin \alpha \cos \alpha + \cos^2 \alpha = \frac{2\sqrt{2} \sin \alpha \cos \alpha + \cos^2 \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{2\sqrt{2} \tan \alpha + 1}{\tan^2 \alpha + 1}$$

因为
$$\tan \alpha = \sqrt{2}$$
, 所以 $\frac{2\sqrt{2}\tan \alpha + 1}{\tan^2 \alpha + 1} = \frac{2\sqrt{2} \times \sqrt{2} + 1}{(\sqrt{2})^2 + 1} = \frac{5}{3}$,

$$\mathbb{E}\sqrt{2}\cos(2\alpha + \frac{3\pi}{2}) + \cos(\alpha + \pi)\cos(\alpha - 3\pi) = \frac{5}{3}.$$

19. (12分)

已知函数 $f(x) = \sqrt{3} \sin 2\omega x + \cos^4 \omega x - \sin^4 \omega x + 1$ (其中 $0 < \omega < 1$),若点 $\left(-\frac{\pi}{6}, 1\right)$ 是函数 f(x) 图象的一个对称中心.

(1)求f(x)的解析式,并求距y轴最近的一条对称轴的方程;

(2)先列表,再作出函数 f(x)在区间 $[-\pi,\pi]$ 上的图象.

【解析】(1)
$$f(x) = \sqrt{3}\sin 2\omega x + (\cos^2 \omega x + \sin^2 \omega x)(\cos^2 \omega x - \sin^2 \omega x) + 1$$

$$= \sqrt{3}\sin 2\omega x + \cos 2\omega x + 1 = 2\sin\left(2\omega x + \frac{\pi}{6}\right) + 1,$$

Q点
$$\left(-\frac{\pi}{6},1\right)$$
是函数 $f(x)$ 图象的一个对称中心,

$$\mathbb{I} - \frac{\omega \pi}{3} + \frac{\pi}{6} = k\pi , \quad k \in \mathbb{Z}, \quad \therefore \omega = -3k + \frac{1}{2}, \quad k \in \mathbb{Z},$$

Q0<
$$\omega$$
<1, \emptyset $k = 0$, $\omega = \frac{1}{2}$, $\forall f(x) = 2\sin(x + \frac{\pi}{6}) + 1$,

由
$$x+\frac{\pi}{6}=n\pi+\frac{\pi}{2}(n\in Z)$$
得 $x=n\pi+\frac{\pi}{3}(n\in Z)$,

令 k = 0,得函数 f(x) 图象距 y 轴最近的一条对称轴方程为 $x = \frac{\pi}{3}$

(2)由(1)知,
$$f(x) = 2\sin\left(x + \frac{\pi}{6}\right) + 1$$
, 当 $x \in \left[-\pi, \pi\right]$ 时, $-\frac{5\pi}{6} \le x + \frac{\pi}{6} \le \frac{7\pi}{6}$, 列表如下:

$x + \frac{\pi}{6}$	$-\frac{5\pi}{6}$	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$\frac{7\pi}{6}$
x	$-\pi$	$-\frac{2\pi}{3}$	$-\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{5\pi}{6}$	π

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(x)	0	-1	1	3	1	0
--	------	---	----	---	---	---	---

则函数 f(x) 在区间 $[-\pi,\pi]$ 上的图象如图所示.

20. (12分)

已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图.

(1)求函数 f(x) 的解析式;

(2)将函数 f(x) 的图象上所有点的横坐标变为原来的 2 倍,纵坐标不变,再将所得图象向左

平移 $\frac{\pi}{6}$ 个单位,得到函数g(x)的图象,当 $x \in \left[-\frac{\pi}{6}, \pi\right]$ 时,求g(x)值域.

【解析】(1)由图象可知,f(x)的最大值为2,最小值为-2,又A>0,故A=2,

周期
$$T = \frac{4}{3} \left[\frac{5\pi}{12} - \left(-\frac{\pi}{3} \right) \right] = \pi$$
 , $\therefore \frac{2\pi}{|\omega|} = \pi$, $\omega > 0$, 则 $\omega = 2$,

从而
$$f(x) = 2\sin(2x + \varphi)$$
,代入点 $\left(\frac{5\pi}{12}, 2\right)$,得 $\sin\left(\frac{5\pi}{6} + \varphi\right) = 1$,

又
$$|\varphi| < \frac{\pi}{2}$$
, 则 $\varphi = -\frac{\pi}{3}$.

$$\therefore f(x) = 2\sin\left(2x - \frac{\pi}{3}\right).$$

(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,

故可得
$$y = 2\sin\left(x - \frac{\pi}{3}\right)$$
;

再将所得图象向左平移 $\frac{\pi}{6}$ 个单位,得到函数g(x)的图象

故可得 $g(x) = 2\sin(x - \frac{\pi}{6})$;

Q
$$x \in [-\frac{\pi}{6}, \pi]$$
 : $x - \frac{\pi}{6} \in [-\frac{\pi}{3}, \frac{5\pi}{6}]$, $\sin(x - \frac{\pi}{6}) \in [-\frac{\sqrt{3}}{2}, 1]$,

$$2\sin\left(x-\frac{\pi}{6}\right) \in \left[-\sqrt{3},2\right], \quad \therefore g(x)$$
的值域为 $\left[-\sqrt{3},2\right].$

21. (12分)

已知
$$f(x) = 4\sin\left(x + \frac{\pi}{2}\right)\sin\left(x + \frac{\pi}{3}\right) - \sqrt{3}$$
.

- (1) 求函数 f(x) 的的最小正周期和单调递减区间;
- (2) 若关于 x 的方程 $f(x) = m + 2\sin 2x$ 在区间 $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$ 上恰有两个不等实根,求实数 m 的取值范围.

【解析】(1)
$$f(x) = 4\sin\left(x + \frac{\pi}{2}\right)\sin\left(x + \frac{\pi}{3}\right) - \sqrt{3}$$

$$=4\cos x\sin\left(x+\frac{\pi}{3}\right)-\sqrt{3}$$

$$= 4\cos x \left(\sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right) - \sqrt{3}$$

$$=2\sin x\cos x+2\sqrt{3}\cos^2 x-\sqrt{3}$$

$$=\sin 2x + \sqrt{3}\left(\cos 2x + 1\right) - \sqrt{3}$$

$$= \sin 2x + \sqrt{3}\cos 2x = 2\sin\left(2x + \frac{\pi}{3}\right),$$

则函数 f(x) 的的最小正周期为 $\frac{2\pi}{2} = \pi$,

得:
$$k\pi + \frac{\pi}{12} \le x \le k\pi + \frac{7\pi}{12}$$
,

则函数 f(x) 的单调递减区间为: $\left[k\pi + \frac{\pi}{12}, k\pi + \frac{7\pi}{12}\right]$;

(2) 由 (1) 得
$$f(x) = \sin 2x + \sqrt{3} \cos 2x$$
,

则
$$m = \sqrt{3}\cos 2x - \sin 2x = 2\cos\left(2x + \frac{\pi}{6}\right)$$
,

$$ot X \in \left[\frac{\pi}{12}, \frac{7\pi}{12}\right], 2x + \frac{\pi}{6} \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right],$$

不妨
$$g(x) = 2\cos\left(2x + \frac{\pi}{6}\right)$$
, $\diamondsuit t = 2x + \frac{\pi}{6}$,

$$\operatorname{Id} g(t) = 2\cos t, t \in \left[\frac{\pi}{3}, \frac{4\pi}{3}\right],$$

所以方程m = g(t)在区间 $\left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$ 上恰有两个不同的实根,

即直线y = m与函数 $g(t) = 2\cos t$ 在区间 $\left[\frac{\pi}{3}, \frac{4\pi}{3}\right]$ 上恰有两个不同的交点;

画出直线y = m与函数 $g(t) = 2\cos t$ 的图像,

由图像得实数 m 的取值范围是: $-2 < m \le -1$,

即实数m的取值范围是(-2,-1].

22. (12分)

已知函数 $f(x) = 2\sin\left(x + \frac{\pi}{3}\right)$,且函数 y = g(x) 的图象与函数 y = f(x) 的图象关于直线 $x = \frac{\pi}{4}$ 对称.

(1)求函数g(x)的解析式;

(2)若存在
$$x \in \left[0, \frac{\pi}{2}\right]$$
, 使等式 $\left[g(x)\right]^2 - mg(x) + 2 = 0$ 成立, 求实数 m 的取值范围;

(3)若当
$$x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$$
时,不等式 $\frac{1}{2}f(x) - ag(-x) > a - 2$ 恒成立,求实数 a 的取值范围.

【解析】(1) 因函数 y = g(x) 的图象与函数 y = f(x) 的图象关于直线 $x = \frac{\pi}{4}$ 对称,则 $g(x) = f(\frac{\pi}{2} - x)$.

所以
$$g(x) = 2\sin(\frac{\pi}{2} - x + \frac{\pi}{3}) = 2\sin[\pi - (x + \frac{\pi}{6})] = 2\sin(x + \frac{\pi}{6})$$
.

$$g(x) = 2\sin\left(x + \frac{\pi}{6}\right), \quad \underline{\underline{\underline{}}} \quad x \in \left[0, \frac{\pi}{2}\right]_{\text{HJ}}, \quad x + \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{2\pi}{3}\right], \quad \underline{\underline{\underline{}}} \quad 1 \le g(x) \le 2,$$

$$\diamondsuit g(x) = t$$
, 则 $1 \le t \le 2$. 存在 $x \in \left[0, \frac{\pi}{2}\right)$, 使 $\left[g(x)\right]^2 - mg(x) + 2 = 0$ 成立,

即存在 $t \in [1,2]$, 使 $t^2 - mt + 2 = 0$ 成立, 则存在 $t \in [1,2]$, $m = t + \frac{2}{t}$ 成立,

而函数 $m = t + \frac{2}{t}$ 在 $t \in [1, \sqrt{2}]$ 上递减,在 $t \in [\sqrt{2}, 2]$ 上递增,

当 $_{t} = \sqrt{2}$ 时, $m_{\min} = 2\sqrt{2}$,当 $_{t} = 1$ 或2时, $m_{\max} = 3$

所以实数 m 的取值范围为 $\left[2\sqrt{2},3\right]$.

(3) 由 (1) 知, 不等式
$$\frac{1}{2}f(x) - ag(-x) > a - 2 \Leftrightarrow \sin(x + \frac{\pi}{3}) + 2a\sin(x - \frac{\pi}{6}) > a - 2$$
,

$$\stackrel{\underline{}}{=} x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3} \right] \mathbb{H}^{\frac{1}{3}}, \quad 0 \le x + \frac{\pi}{3} \le \pi \; , \quad -\frac{\pi}{2} \le x - \frac{\pi}{6} \le \frac{\pi}{2} \; ,$$

若 a = 0 , 因 $0 \le \sin(x + \frac{\pi}{3}) \le 1$, 即 $\sin(x + \frac{\pi}{3}) > -2$ 恒成立,则 a = 0 ,

若 a > 0, 因 $\sin(x - \frac{\pi}{6})$ 在 $\left[-\frac{\pi}{3}, \frac{2\pi}{3}\right]$ 上单调递增,则当 $x = -\frac{\pi}{3}$ 时, $\sin(x + \frac{\pi}{3}) + 2a\sin(x - \frac{\pi}{6})$ 取得最小值,

原不等式恒成立可转化为 $\sin(-\frac{\pi}{3} + \frac{\pi}{3}) + 2a\sin(-\frac{\pi}{3} - \frac{\pi}{6}) > a - 2$ 恒成立,即 -2a > a - 2,因此 $0 < a < \frac{2}{3}$,

若 a < 0 , 当 $x = \frac{2\pi}{3}$ 时 , $\sin(x + \frac{\pi}{3}) + 2a\sin(x - \frac{\pi}{6})$ 取得最小值 ,

原不等式恒成立可转化为 $\sin(\frac{2\pi}{3} + \frac{\pi}{3}) + 2a\sin(\frac{2\pi}{3} - \frac{\pi}{6}) > a - 2$ 恒成立,即a > -2,因此-2 < a < 0,

所以 a 的取值范围是 $(-2,\frac{2}{3})$.