MÓDULO 3

Redes Neurais Convolucionais

ESPECIALIZAÇÃO

INTELIGÊNCIA ARTIFICIAL S CIÊNCIA DE DADOS

Bruno Légora Souza da Silva

Professor do Departamento de Informática/UFES

ÍNDICE

- 1. Imagens e Redes Neurais
- 2. Redes Neurais Convolucionais
- 3. Parâmetros da CNN e Pooling
- Pytorch e Redes Neurais
 Convolucionais
- 5. Laboratório 06

- No Laboratório 5, trabalhamos com imagens 64x64 em tons de cinza que resultaram em uma entrada "achatada" com 1024 elementos
 - Em algum lugar da rede neural, o algoritmo lida com uma matriz 1024 linhas e/ou colunas;

- É comum encontrarmos imagens com alta dimensão. Ex: uma imagem em tons de cinza com resolução 640x480 "achatada" gera um vetor de 307 mil elementos;
- Quase 1 milhão se for RGB;

- Hoje em dia lidamos com imagens
 FullHD 1920 x 1080 pixels, que são
 muito maiores que as citadas no slide
 anterior...
- Usá-las nas RNAs vistas é um problema grave...

- Além disso, vimos que imagens possuem uma característica espacial que se perde ao "achatar" a imagem:
 - Pixels vizinhos geralmente possuem alguma similaridade

Outra característica de imagens é que pequenos deslocamentos não alteram as características da imagem - enquanto vetores "achatados" [1, 0] e [0, 1] podem significar coisas completamente diferentes;

 Deslocamento de poucos pixels a esquerda:

 Deslocamento de poucos pixels à esquerda:

- As características apresentadas mostram que RNAs não são muito boas para serem usadas em imagens "cruas" apenas com a utilização de extratores de características (HOG, LBP, etc)
- Mas como poderíamos usar RNAs com imagens?

 Aprendemos uma operação básica na "Aula 3 - Processamento Básico de Imagens" que era capaz de detectar informações importantes de uma imagem (como as bordas, por exemplo)

- Esses procedimentos são
 conhecidos como filtros lineares e a
 operação matemática principal a ser
 usada é a de convolução
 - Opera diretamente sobre os pixels

• Convolução 2-D:

- Veremos, na próxima seção, as Redes
 Neurais Convolucionais
 - São redes neurais que usam a operação de convolução!

 Na disciplina de Redes Neurais, vocês viram as MLPs:

 A saída da camada de uma MLP é dada por:

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} f\left(w_{1,1}^{(0)}x_1 + w_{2,1}^{(0)}x_2 + b_1^{(0)}\right) \\ f\left(w_{1,2}^{(0)}x_1 + w_{2,2}^{(0)}x_2 + b_2^{(0)}\right) \end{bmatrix} = f(\overline{\mathbf{W}}\overline{x}) = \overline{\mathbf{z}}$$

- Dizemos que esse tipo de camada de rede neural é "totalmente conectada"
 - a saída z1 depende de todas as saídas da camada anterior (x1 e x2)
- Vetorialmente, dizemos que a saída z é dada pelo produto interno entre W e x (estendidos pelos biases);

 Para cada neurônio em uma camada, deve existir um conjunto de parâmetros (um para cada neurônio da próxima camada) da rede neural naquela camada - voltamos ao problema das imagens grandes;

 Já a camada convolucional substitui a operação por uma operação de convolução entre o filtro convolucional W e a matriz X

$$\mathbf{z} = f(\overline{\mathbf{W}} * \overline{x})$$

- O filtro, agora, tem tamanho único e fixo (não depende mais do tamanho da matriz X) - e a saída é outra matriz.
- A função de ativação permanece.
- Mas o que seria a matriz W?

- Na literatura de PDI/VC podemos encontrar vários filtros criados manualmente - Canny, Sobel, Gaussiano, etc
 - Todos são boas opções para detectar características fundamentais em imagens

- Na literatura de PDI/VC podemos encontrar vários filtros criados manualmente - Canny, Sobel, Gaussiano, etc
 - Mas não necessariamente para tarefas de mais "alto nível", como reconhecer objetos;

- Na Aula 5, vimos que as técnicas de DL aprendem as operações com os dados
 - Então, nossa RNC deverá aprender um filtro convolucional em seu processo de treinamento (backprop), assim como a RNA "padrão" aprende seus pesos;

 Numa CNN, os pesos dos filtros são compartilhados por toda a imagem, o que não acontecia em camadas totalmente conectadas (cada entrada tinha um peso distinto)

- Isso reduz, e muito, o custo computacional da rede neural;
- Vamos a uma comparação:

Tamanho da Imagem	Tipo e Tamanho da Camada	Número de parâmetros
64x64	TC - 100 neurônios	64*64*100 = 409.600
64x64	Conv - Filtro 11x11	11*11=121
640x480	TC - 100 neurônios	640*480*100 = 30.720.000
640x480	Conv - Filtro 11x11	11*11=121
1920x1080x3	TC - 100 neurônios	1920*1080*3*100 = 622.080.000
1920x1080x3*	Conv - Filtro 11x11x3*	11*11*3=363*

Obs: Em geral, são usados 1 matriz por canal de cor em imagens RGB

- Devido ao reduzido número de parâmetros que uma camada convolucional necessita, é comum usarmos múltiplas convoluções na mesma camada!
- O resultado é um tensor com múltiplos canais...

- Ex:
 - Entrada imagem tons de cinza
 - 10 filtros 11x11
 - Cada um resulta em uma matriz 2D
 - Resultado: Imagem com 10 canais

- Ex:
 - Entrada imagem RGB (3 canais)
 - 10 filtros 11x11x3
 - Cada um resulta em uma matriz 2D
 - Resultado: Imagem com 10 canais

- Vamos a um exemplo da operação de convolução de uma imagem RGB com 12 pixels de largura e 11 de altura por um filtro 3x3.
- Neste exemplo, para simplificar, vamos representar o filtro por um quadrado.

- Nos slides anteriores, pudemos ver que, ao processar a primeira linha da imagem (12 pixels), geramos uma linha com 10 "resultados" de convolução;
- A imagem resultante é menor que a original...

- A operação de convolução gera imagens menores que a entrada.
- O nº de linhas resultante segue a equação (o mesmo vale para colunas):

$$lin_{result} = \frac{lin_{orig} - nlin_{filtro}}{1} + 1$$

- Isso significa que não podemos usar filtros muito grandes em redes muito profundas sem adotar uma estratégia para "reduzir" esse problema;
- Veremos tais estratégias na próxima seção!

- Resumindo:
 - Camadas convolucionais aplicam convolução em imagens na tentativa de resolver os problemas que a MLP possui quando processa esse tipo de dado;
 - O filtro convolucional é treinado com o backpropagation!

- Resumindo:
 - Uma rede convolucional profunda substitui o pipeline clássico de visão computacional (não precisamos escolher um descritor!)
 - Porém, precisamos de muitos dados...

- Resumindo:
 - Embora a aplicação mais comum de RNC seja com imagens, ela pode ser aplicada em outros sinais com característica de vizinhança, como por exemplo, sinais temporais;

- A camada convolucional possui alguns parâmetros. Os mais óbvios são:
 - Número de canais da entrada
 - Número de canais da saída (nº de filtros)
 - Tamanho do filtro

- Temos também outros parâmetros que interferem no tamanho da saída;
- Na última seção, vimos que o tamanho da saída da convolução 2D varia de acordo com o tamanho do filtro (e da entrada);

- Os 3 principais são:
 - Padding
 - Stride
 - Dilation

- O parâmetro padding controla um pré-processamento feito na imagem original:
 - uma "borda" é criada (ou não)
 expandindo o tamanho na imagem

- Geralmente há 3 possibilidades:
 - o "valid"
 - o "same"
 - o número inteiro

- Geralmente há 3 possibilidades:
 - o "valid"
 - Não é feito nenhum padding

- Geralmente há 3 possibilidades:
 - o "same"
 - É feito um cálculo automático de forma a criar uma borda que resulte uma saída com tamanho igual ao da entrada

- Geralmente há 3 possibilidades:
 - o número inteiro N
 - É criada uma borda com N pixels em volta da imagem

• N = 1

- Independente do modo de padding, é possível definir o valor da borda:
 - número fixo (geralmente zeros)
 - refletido
 - o circular
 - o replicar

Zero

. 0	0	0	0	0	0	0
0	236	180	2	89	65	0
0	84	242	162	105	174	0
0	152	104	9	40	200	0
0	100	206	43	123	248	0
. 0	108	246	33	125	224	0
0	84	163	34	163	213	0
0	0	0	0	0	0	0

Refletido

242	235	180	2	89	65	105
180	236	180	2	89	65	65
 242 	84	242	162	105	174	174
104	152	104	9	40	200	200
206	100	206	43	123	248	248
243	108	246	33	125	224	224
 84 	84	163	34	163	213	213
246		163	 34	163	213	125

• Circular

213	84	163	34	163	213	84
65	236	180	2	89	65	180
174	84	242	162	105	174	242
200	152	104	9	40	200	104
248	100	206	43	123	248	206
224	108	246	33	125	224	243
213	84	163	34	163	213	84
 65 	236	180	2	89	65	236

Replicado

236	236	180	2	89	65	65
236	236	180	2	89	65	65
84	84	242	162	105	174	174
152	152	104	9	40	200	200
100	100	206	43	123	248	248
108	108	246	33	125	224	224
84 84	84	163	34	163	213	213
84	84 84	163	34	163	213	213

- O segundo parâmetro, chamado stride, controla a quantidade de "pulos" do filtro convolucional
 - Até agora, o filtro "desliza" na imagem pixel a pixel. Isso significa stride = 1.

• Stride = 2

- O parâmetro stride é usado como forma de reduzir o tamanho da saída e reduzir o processamento da rede;
- Há outras formas, que veremos ainda nesta seção;

- O terceiro parâmetro, chamado dilation,
 controla o espaçamento entre os pixels do filtro
 convolucional
 - Normalmente, os filtros consideram pixels vizinhos (dilatação = 1). Caso quisermos aumentar esse espaçamento, aumentamos esse parâmetro
 - Usado para diminuir tamanho da imagem;

 Em geral, o tamanho do resultado de uma convolução é dado por:

$$TS = \frac{(N - F + 2P)}{S} + 1$$

 N é o tamanho da entrada, F é o tamanho do filtro, P é o padding, S é o stride.

- Para finalizar a seção, vamos ver uma operação (que gera um novo tipo de camada de RNA) muito utilizado em conjunto com camadas convolucionais
 - Também são usadas para reduzir dimensão
 - Recebem o nome de "pooling".

- Uma camada de pooling aplica uma operação em cada uma das matrizes com a finalidade de "comprimir" os resultados e reduzir a dimensão
 - Ex: Supondo que temos 10 canais na saída de uma camada conv, continuaremos a ter 10 canais na saída do pooling, mas com dimensão menor

- A ideia do pooling é similar a convolução
 - mas uma operação não linear é aplicada
 - Uma janela "percorre a imagem" aplicando uma determinada operação matemática

- Os dois tipos mais comuns de pooling são:
 - Max pooling
 - Mean/Average pooling

 Ex: Max Pooling com uma imagem 4x4, janela 2x2 e stride 2

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

• Ex: Max Pooling com uma imagem 4x4 e janela 2x2 e stride 2 $\max(1,1,5,6)=6$

Ex: Max Pooling com uma imagem 4x4 e

janela 2x2 e stride 2 $\max(2,4,7,8) = 8$ 1 1 2 4

5 6 7 8

3 2 1 0 $\max(2,4,7,8) = 8$ 6 8

3 4 $\max(2,4,7,8) = 8$

 Ex: Max Pooling com uma imagem 4x4 e janela 2x2 e stride 2

 Já a operação de Mean/Average pooling é similar, onde o resultado é a média dos valores da janela sobreposta

- Observações:
 - A imagem de saída fica invariante a pequenas transformações
 - Informações importantes são preservadas na saída
 - Porém com tamanho menor (custo computacional reduzido!)

Resumo

- Camadas Convolucionais
 - Stride, tamanho do filtro, dilation e padding
- Camadas de Pooling
 - max ou avg pooling
- Camadas Totalmente Conectadas
 - Geralmente usada no final de uma CNN para problemas de classificação

4. Pytorch e CNNs

Pytorch e CNNs

- Existem diversas bibliotecas que implementam RNAs e CNNs
 - Pytorch é uma delas!
 - Não vamos reinventar a roda, vamos usá-la
- Material de estudo disponibilizado no AVA.

5. Laboratório 06

Laboratório 6

- No 6º laboratório da disciplina, vocês irão ter contato com uma rede neural convolucional simples, usando
 PyTorch!
- No Moodle!

Laboratório 6

 Após o Laboratório 6, temos o EA3 da disciplina!

INTELIGÊNCIA ARTIFICIAL & CIÊNCIA DE DADOS

Bruno Légora Souza da Silva

Professor do Departamento de Informática/UFES

bruno.l.silva@ufes.br

