Bayesian Inference and Hypothesis Testing

Christos Dimitrakakis

October 23, 2024

1/20

Conditional Probability and the Theorem of Bayes

Conditional Probability and the Theorem of Bayes

Simple Bayesian hypothesis testing

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

Combining the two equations, reverse the conditioning:

$$P(A|B) = P(B|A)P(A)/P(B)$$

► Recall the definition of Conditional probability:

$$P(A|B) = P(A \cap B)/P(B)$$

i.e. the probability of A happening if B happens.

It is also true that:

$$P(B|A) = P(A \cap B)/P(A)$$

Combining the two equations, reverse the conditioning:

$$P(A|B) = P(B|A)P(A)/P(B)$$

So we can reverse the order of conditioning, i.e. relate to the probability of A given B to that of B given A.

2/20

The cards problem

- 1. Print out a number of cards, with either [A|A], [A|B] or [B|B] on their sides.
- 2. If you have an A, what is the probability of an A on the other side?
- 3. Have the students perform the experiment with:
 - 3.1 Draw a random card.
 - 3.2 Count the number of people with A.
 - 3.3 What is the probability that somebody with an A on one side will have an A on the other?
 - 3.4 Half of the people should have an A?

The cards problem

- 1. Print out a number of cards, with either [A|A], [A|B] or [B|B] on their sides.
- 2. If you have an A, what is the probability of an A on the other side?
- 3. Have the students perform the experiment with:
 - 3.1 Draw a random card.
 - 3.2 Count the number of people with A.
 - 3.3 What is the probability that somebody with an A on one side will have an A on the other?
 - 3.4 Half of the people should have an A?

The prior and posterior probabilities

```
A A 2/6 A observed 2/3
A B 1/6 A observed 1/3
B A 1/6
B B 2/6
```

Simple Bayesian hypothesis testing

Conditional Probability and the Theorem of Bayes

Simple Bayesian hypothesis testing

▶ A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

All those that think the accused is guilty, raise their hand.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - ► H₀: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class
- ▶ Let us call this $P(H_1)$.

- A murder occurred in a house over Christmas. There were *n* people inside, plus the victim. Person X, the victim's son, is accused of a murder.
- ► There are two possibilities:
 - $ightharpoonup H_0$: They are innocent.
 - $ightharpoonup H_1$: They are guilty.

What is your belief that they have committed the crime?

Prior elicitation

- All those that think the accused is guilty, raise their hand.
- Divide by the number of people in class
- ▶ Let us call this $P(H_1)$.
- This is a purely subjective measure!

Let us now do a DNA test on the suspect

Let us now do a DNA test on the suspect

DNA test properties

▶ *D*: Test is positive

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- $ightharpoonup P(D|H_0) = 1\%$: False positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- ▶ $P(D|H_0) = 1\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ▶ D: Test is positive
- ▶ $P(D|H_0) = 1\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- $ightharpoonup P(D|H_0) = 1\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Run the test

▶ The result is either positive or negative $(\neg D)$.

Let us now do a DNA test on the suspect

DNA test properties

- ► D: Test is positive
- $ightharpoonup P(D|H_0) = 1\%$: False positive rate
- ▶ $P(D|H_1) = 100\%$: True positive rate

Run the test

- ▶ The result is either positive or negative $(\neg D)$.
- ▶ What is your belief now that the suspect is guilty?

Run a DNA test on everybody in the house.

- Run a DNA test on everybody in the house.
- ▶ What is different from before?

- Run a DNA test on everybody in the house.
- ▶ What is different from before?
- ► Who has a positive test?

- Run a DNA test on everybody in the house.
- What is different from before?
- ► Who has a positive test?
- ▶ What is your belief that the people with the positive test are guilty?

ightharpoonup Prior: $P(H_i)$

- ightharpoonup Prior: $P(H_i)$
- ▶ Likelihood $P(D|H_i)$.

- \triangleright Prior: $P(H_i)$
- ▶ Likelihood $P(D|H_i)$.
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$

- \triangleright Prior: $P(H_i)$
- ► Likelihood $P(D|H_i)$.
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$
- Marginal probability: $P(D) = P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$

- \triangleright Prior: $P(H_i)$
- ▶ Likelihood P(D|H_i).
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$
- lacktriangle Marginal probability: $P(D)=P(D|H_0)P(H_0)+P(D|H_1)P(H_1)$
- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_1)P(H_1)}$

- \triangleright Prior: $P(H_i)$.
- ▶ Likelihood P(D|H_i).
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$
- Marginal probability: $P(D) = P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$
- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_1)P(H_1)}$
- Assuming $P(D|H_1) = 1$, and setting $P(H_0) = q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

Explanation

- \triangleright Prior: $P(H_i)$.
- ▶ Likelihood P(D|H_i).
- ▶ Posterior: $P(H_i|D) = P(D \cap H_i)/P(D) = P(D|H_i)P(H_i)/P(D)$
- Marginal probability: $P(D) = P(D|H_0)P(H_0) + P(D|H_1)P(H_1)$
- ▶ Posterior: $P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D|H_0)P(H_0) + P(D|H_1)P(H_1)}$
- Assuming $P(D|H_1) = 1$, and setting $P(H_0) = q$, this gives

$$P(H_0|D) = \frac{0.1q}{0.1q + 1 - q} = \frac{q}{10 - 9q}$$

▶ The posterior can always be updated with more data!

7/20

Python example

```
# the input to the function is the prior, the likelihood function, a
# Input:
# - prior for hypothesis 0 (scalar)
# - data (single data point)
# - likelihood[data][hypothesis] array unction
# Returns:
# - posterior for the data point (if multiple points are given, the
def get_posterior(prior, data, likelihood):
```

marginal = prior * likelihood[data][0] + (1 - prior) * likelihood
posterior = prior * likelihood[data][0] / marginal
return posterior

import numpy as np
prior = 0.9
likelihood = np.zeros([2, 2])

pr of negative test if not a match
likelihood[0][0] = 0.9

pr of positive test if not a match

likelihood[1][0] = 0.1

____Chrigtos_Dimitrakskis_____Bayesian Inference_and Hypothesis Testing

Types of hypothesis testing problems

Simple Hypothesis Test

Example: DNA evidence, Covid tests

- ightharpoonup Two hypothesese H_0, H_1
- \triangleright $P(D|H_i)$ is defined for all i

Multiple Hypotheses Test

Example: Model selection

- \triangleright H_i : One of many mutually exclusive models
- \triangleright $P(D|H_i)$ is defined for all i

Null Hypothesis Test

Example: Are men's and women's heights the same?

- $ightharpoonup H_0$: The 'null' hypothesis
- \triangleright $P(D|H_0)$ is defined
- The alternative is undefined

Problem definition

▶ Defining the models $P(D|H_i)$ incorrectly.

The garden of many paths

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

The garden of many paths

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

The garden of many paths

► Having a huge hypothesis space

Problem definition

- ▶ Defining the models $P(D|H_i)$ incorrectly.
- ▶ Using an "unreasonable" prior $P(H_i)$

The garden of many paths

- ► Having a huge hypothesis space
- ► Selecting the relevant hypothesis after seeing the data

▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- lacktriangle Each model eta assigns probabilities $P_eta(x)$ to possible $x\in X$.

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- **Each** model β assigns probabilities $P_{\beta}(x)$ to possible $x \in X$.
- ▶ We also have a (subjective) prior distribution P over the parameters.

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- **Each** model β assigns probabilities $P_{\beta}(x)$ to possible $x \in X$.
- ▶ We also have a (subjective) prior distribution P over the parameters.
- Given x, we calculate the posterior distribution

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- **Each** model β assigns probabilities $P_{\beta}(x)$ to possible $x \in X$.
- ▶ We also have a (subjective) prior distribution P over the parameters.
- Given x, we calculate the posterior distribution

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- lacktriangle Each model eta assigns probabilities $P_{eta}(x)$ to possible $x \in X$.
- ▶ We also have a (subjective) prior distribution P over the parameters.
- Given x, we calculate the posterior distribution

$$P(\beta|x) = \frac{P_{\beta}(x)P(\beta)}{\sum_{\beta' \in \mathcal{B}} P_{\beta'}(x)P(\beta')}, \qquad \text{(finite \mathcal{B}, P is a probability)}$$

$$p(\beta|x) = \frac{P_{\beta}(x)p(\beta)}{\int_{\mathcal{B}} P_{\beta'}(x)p(\beta')d\beta'}, \qquad \text{(continuous \mathcal{B}, p is a density)}$$

$$P(B|x) = \frac{\int_{B} P_{\beta'}(x)dP(\beta)}{\int_{\mathcal{B}} P_{\beta'}(x)dP(\beta)}, \qquad B \subset \mathcal{B} \qquad \text{(arbitrary \mathcal{B}, P is a measure)}$$

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- **Each** model β assigns probabilities $P_{\beta}(x)$ to possible $x \in X$.
- We also have a (subjective) prior distribution P over the parameters.
- Given x, we calculate the posterior distribution

$$P(\beta|x) = \frac{P_{\beta}(x)P(\beta)}{\sum_{\beta' \in \mathcal{B}} P_{\beta'}(x)P(\beta')}, \qquad \text{(finite \mathcal{B}, P is a probability)}$$

$$p(\beta|x) = \frac{P_{\beta}(x)p(\beta)}{\int_{\mathcal{B}} P_{\beta'}(x)p(\beta')d\beta'}, \qquad \text{(continuous \mathcal{B}, p is a density)}$$

$$P(B|x) = \frac{\int_{B} P_{\beta'}(x)dP(\beta)}{\int_{\mathcal{B}} P_{\beta'}(x)dP(\beta)}, \qquad B \subset \mathcal{B} \qquad \text{(arbitrary \mathcal{B}, P is a measure)}$$

Alternative notation for different probability spaces

- ▶ The prior $P(\beta) = \mathbb{P}(\beta)$ and posterior $P(\beta \mid x) = \mathbb{P}(\beta \mid x)$ belief.
- ▶ The likelihood $P_{\beta}(x) = \mathbb{P}(x \mid \beta)$
- ▶ The marginal $\mathbb{P}_P(x) = \sum_{\beta} P_{\beta}(x) P(\beta)$.

Probabilistic machine learning

▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$

Maximum likelihood approach

- ▶ Model selection: $\beta_{ML}^*(x) = \arg\max_{\beta} P_{\beta}(x)$.
- ▶ Model prediction: $P_{\beta_{MI}^*(x)}(x_{t+1})$

Maximum a posteriori approach

- ▶ Model selection: $\beta_{MAP}^*(x) = \arg\max_{\beta} P_{\beta}(x)P(\beta)$.
- ▶ Model prediction: $P_{\beta_{MAR}^*(x)}(x_{t+1})$

- ▶ Posterior calculation: $P(\beta|x) = P_{\beta}(x)P(\beta)/\mathbb{P}_{P}(x)$
- Model prediction: $\mathbb{P}_P(x_{t+1}|x) = \sum_{\beta} P_{\beta}(x_{t+1})P(\beta|x)$

Probabilistic machine learning

- ightharpoonup Model family $\{P_{eta}|eta\in\mathcal{B}\}$
- ightharpoonup Prior P on \mathcal{B}

Maximum likelihood approach

- ▶ Model selection: $\beta_{ML}^*(x) = \arg\max_{\beta} P_{\beta}(x)$.
- ▶ Model prediction: $P_{\beta_{MI}^*(x)}(x_{t+1})$

Maximum a posteriori approach

- ▶ Model selection: $\beta_{MAP}^*(x) = \arg\max_{\beta} P_{\beta}(x)P(\beta)$.
- ▶ Model prediction: $P_{\beta_{MAR}^*(x)}(x_{t+1})$

- ▶ Posterior calculation: $P(\beta|x) = P_{\beta}(x)P(\beta)/\mathbb{P}_{P}(x)$
 - Model prediction: $\mathbb{P}_P(x_{t+1}|x) = \sum_{\beta} P_{\beta}(x_{t+1})P(\beta|x)$

Probabilistic machine learning

- ▶ Model family $\{P_{\beta}|\beta \in \mathcal{B}\}$
- \triangleright Prior P on \mathcal{B}
- Observations $x = x_1, \dots, x_t$

Maximum likelihood approach

- ▶ Model selection: $\beta_{ML}^*(x) = \arg\max_{\beta} P_{\beta}(x)$.
- ▶ Model prediction: $P_{\beta_{MI}^*(x)}(x_{t+1})$

Maximum a posteriori approach

- ▶ Model selection: $\beta_{MAP}^*(x) = \arg\max_{\beta} P_{\beta}(x)P(\beta)$.
- ▶ Model prediction: $P_{\beta_{MAR}^*(x)}(x_{t+1})$

- ▶ Posterior calculation: $P(\beta|x) = P_{\beta}(x)P(\beta)/\mathbb{P}_{P}(x)$
- Model prediction: $\mathbb{P}_P(x_{t+1}|x) = \sum_{\beta} P_{\beta}(x_{t+1})P(\beta|x)$

Differences between approaches

Maximum likelihood approach

- Ignores model complexity
- ► Is an optimisation problem

Maximum a posteriori approach

- Regularises model selection using the prior
- Can be seen as solving the optimisation problem

$$\max_{\beta} \ln P_{\beta}(x) + \ln P(\beta),$$

where the prior term $\ln P(\beta)$ acts as a regulariser.

- ► Does not select a single model
- Averages over all models according to their fit and the prior
- Does not result in an optimisation problem.

The n-meteorologists problem

- ▶ Consider *n* meteorological stations $\{\mu\}$ predicting rainfall.
- $ightharpoonup x_t \in \{0,1\}$ with $x_t = 1$ if it rains on day t.
- lacktriangle We have a prior distribution $P(\mu)$ for each station.
- At time t, station μ makes as a prediction $P_{\mu}(x_{t+1}|x_1,\ldots,x_t)$
- We observe x_{t+1} and calculate the posterior $P(\mu|x_1,\ldots,x_t,x_{t+1})$.

The marginal distribution

To take into account all stations, we can marginalise:

$$\mathbb{P}_{P}(x_{t+1} \mid x_{1}, \dots x_{t}) = \sum_{\mu} P_{\mu}(x_{t+1} | x_{t}) P(\mu)$$

The posterior

► Show that

$$P(\mu \mid x_1, \dots, x_{t+1}) = \frac{P_{\mu}(x_t \mid x_1, \dots, x_t) P(\mu \mid x_1, \dots, x_t)}{\sum_{\mu'} P_{\mu'}(x_t \mid x_1, \dots, x_t) P(\mu' \mid x_1, \dots, x_t)}$$

► How would you implement an ML or a MAP solution to this problem?

Sufficient statistics

A statistic f

This is any function $f: X \to S$ where

- X is the data space
- \triangleright S is an arbitrary space

Example statistics for $X = \mathbb{R}^*$ (the set of all real-valued sequences)

- ▶ The sample mean of a sequence $1/T \sum_{t=1}^{T} x_t$
- \triangleright The total number of samples T

Sufficient statistic

f is sufficient for a family $\{P_{\beta} : \beta \in \mathcal{B}\}$ when

$$f(x) = f(x') \Rightarrow P_{\beta}(x) = P_{\beta}(x') \forall \beta \in \mathcal{B}.$$

If there exists a finite-dimensional sufficient statistic, Bayesian and ML learning can be done in closed form within the family.

Conjugate priors

Consider a parametrised family of priors $\mathcal P$ on $\mathcal B$ and a distribution family $\{P_\beta\}$ The pair is conjugate if, for any prior $P\in\mathcal P$, and any observation x, there exists $P'\in\mathcal P$ such that $P'(\beta)=P(\beta|x)$

Standard Parametric conjugate families

Prior	Likelihood	Parameters eta	Observations x
Beta	Bernoulli	[0,1]	$\{0,1\}^{T}$
Multinomial	Dirichlet	n	$\{1,\ldots,n\}^T$
Gamma	Normal	\mathbb{R}, \mathbb{R}	\mathbb{R}^{T}
Wishart	Normal	$\mathbb{R}^n, \mathbb{R}^{n \times n}$	$\mathbb{R}^{n \times T}$

The Simplex $^n = \{ \beta \in [0,1]^n : \|\beta\|_1 \}$ is the set of all *n*-dimensional probability vectors.

Extensions

- Discrete Bayesian Networks.
- Linear-Gaussian Models (i.e. Bayesian linear regression)
- Gaussian Processes

Beta-Bernoulli

Definition of the Bernoulli distribution

If $x_t \mid \beta \sim \text{Bernoulli}(\beta)$. $\beta \in [0,1]$, $x_t \in \{0,1\}$ and:

$$P_{\beta}(x_t=1)=\beta$$

Definition of the Beta density

If $\beta \sim \text{Beta}(\alpha_1, \alpha_0), \alpha_0, \alpha_1 > 0$ and

$$p(\beta|\alpha_1,\alpha_0) \propto \beta^{\alpha_1-1} (1-\beta)^{\alpha_0-1}$$

Bayesian Inference and Hypothesis Testing

Beta-Bernoulli conjugate pair

 $\triangleright \beta \sim \text{Beta}(\alpha_1, \alpha_0)$

Christos Dimitrakakis

 $\triangleright x_t \mid \beta \sim \text{Bernoulli}(\beta).$

Then, for any $x = x_1, \dots, x_T$, the posterior distribution is

$$\beta \mid x \sim \text{Beta}(\alpha_1 + \sum_t x_t, \alpha_0 + T - \sum_t x_t).$$

Dirichlet-Multinomial

Definition of the Multinomial distribution If $x_t \mid \beta \sim (\beta)$, with $\beta \in {}^n$ and $x_t \in \{1, \ldots, n\}$ and:

$$P_{\beta}(x_t = i) = \beta_i$$

Definition of the Dirichlet density

If $\beta \sim (\alpha)$, with $\alpha \in \mathbb{R}^n_{\perp}$ then

$$p(eta|lpha) \propto \prod_i eta_i^{lpha_i-1}$$

Dirichlet-Multinomial conjugate pair

- $\triangleright \beta \sim (\alpha)$.
- $\triangleright x_t \mid \beta \sim \text{Bernoulli}(\beta).$

Phistos Dirhitys kakiss Whelesverian Inference and Hypothesis Testing

Then, for any $x = x_1, \dots, x_T$, the posterior distribution is

Discrete Bayesian Networks

- ▶ A directed acyclic graph (DAG) defined on variables $x_1, ..., x_n$ with each x_n taking a finite number of values,
- ▶ Let S_i be the indices corresponding to parent variables of x_i .

Example: Lung cancer, smoking and asbestos

$$P_{\beta_A}(x_A = 1) = \beta_A \tag{1}$$

$$P_{\beta_S}(x_S=1)=\beta_S \qquad (2)$$

$$P_{\beta_C}(x_C = 1 \mid X_A = j, X_S = k) = \beta_{C,j,k}$$
 (3)

Markov model

A Markov model obeys

$$\mathbb{P}_{\beta}(x_{k+1}|x_k,\ldots,x_1) = \mathbb{P}_{\beta}(x_{k+1}|x_k)$$

i.e. the graphical model is a chain. We are usually interested in homogeneous models, where

$$\mathbb{P}_{\beta}(x_{k+1} = i \mid x_k = j) = \beta_{i,j} \qquad \forall k$$

Inference for finite Markov models

- ▶ If $x_t \in [n]$ then $x_{t+1} \mid \beta, x_t = i \sim (\beta_i), \beta_i \in \mathbb{R}$
- ▶ Prior $\beta_i \mid \alpha \sim (\alpha)$ for all $i \in [n]$.
- Posterior $\beta_i \mid x_1, \dots, x_t, \alpha \sim (\alpha^{(t)})$ with

$$\alpha_{i,j}^t = \alpha_{i,j} + \sum_{i=1}^{\infty} \mathbb{I}\left\{x_k = i \land x_{k+1} = j\right\}_{\alpha_{i,j}} \alpha_{i,j}^0 = \alpha.$$