1.1 Einleitung

1.1.1 Mathematik und Informatik

Die Informatik verwendet

- die mathematische Notation und Begriffsbildung
- die mathematische Denkweise
- mathematische Ergebnisse

Mathematische Methodologie:

- 1. Definition definiere Begriffe formal
- 2. Satz formuliert whare Aussagen
- 3. Beweis beweise diese Aussagen

Beispiel: natürliche Zahlen $0, 1, 2, 3, \ldots$, Addition, Multiplikation, die Ordnung und deren Eigenschaften seien bereits definiert beziehungsweise bewiesen.

```
z.B gilt (a \cdot b) \cdot c = a \cdot (b \cdot c) (Assoziativgesetz)
```

Definition: Es seien t und n natürliche Zahlen, t sei ungleich 0. Dann teilt t die Zahle n, falls es ein k gibt mit $n = k \cdot t$. Die Null teilt keine Zahl, auch nicht die Null.

```
t ist Teiler von n n ist Vielfaches von t (ganze Zahlen . . . , -2, -1, 0, 1, 2, . . . 2, 3, -2, -3 teilen 6, -6)
```

Für n ungleich 0 heißen 1 und n **triviale Teiler** von n. Eine Primzahl ist eine natürliche Zahl ungleich 0 und 1, die nur triviale Teiler hat. ($2,3,5,7,11,13,\ldots$)

5 Lemma: Sei *n* ungleich 1 eine natürliche Zahl. Dann wird *n* von einer Primzahl geteilt.

Beweis: Für n=0 oder n prim ist die Aussage klar. Wir können also annehmen: $n \neq 0, 1$ n nicht prim. Nach Definition der Primzahl hat n einen *nicht trivialen* Teiler.

Sei t der kleinste nicht triviale Teiler von n Wir zeigen, dass t prim ist.

Falls t nicht prim wäre, hat t einen nicht trivialen Teiler t' es folgt 1 < t' < t < n. Weiter ist t' Teiler von n da gilt: $n = k \cdot t$ und $t = k' \cdot t'$ dann folgt $n = k \cdot t = k \cdot (k' \cdot t') = (k \cdot k') \cdot t'$

WIDERSPRUCH!!!

Satz von Euklid Es gibt unendlich viele Primzahlen

Beweis: Wir nehmen an, es gäbe nur endlich viele Primzahlen p_1, \ldots, p_t . Sei $n = p_1, \ldots, p_t$. Dann wird n von alle $p_i, 1 = i \le t$, geteilt, zum Beispiel gilt $n = (p_i, \ldots, p_t) \cdot p_1$

Somit wird n+1 durch kein p_i geteilt, dafür müsste gelten, dass p_i die Zahl (n+1)-n=1 teilt.

WIDERSPRUCH: **Lemma 5**: n + 1 hat keinen Teiler, der prim ist.

1.1.2 Mengenlehre

Menge $\widehat{=}$ Zusammenfassung von Objekten, den Elementen der Menge. Schreibweisen für Mengen:

$$\mathbb{N} = \{0, 1, 2, \dots\} \ U = \{1, 2, 3, \dots\}$$
 $A = \{2, 3, 5, 7, 11\} \ B = \{e, \dots, m\}$

$$1\in\mathbb{N},1\in U,1
otin A$$

Gleichheit von Mengen (Extensionalitätsprinzip)

Definition: Mengen A und B sind gleich, falls beide Mengen dieselben Elemente enthalten. A ist Teilmenge von B, falls jedes Element von A auch Element von B ist, Kurz: $A \subseteq B$ Es gibt eine leere Menge, geschrieben als $\{\}$ oder \emptyset die keine Elemente enthalten. Für alle Mengen A gilt $\emptyset \leq A$.