Custom Computing: Assessed Coursework

Ioannis Kassinopoulos

February 28, 2013

Question 1

Recurring engin eering costs are the costs that will occur in a repeating fashion during the production, usually involving fabriction. These costs are usually descriped in a per unit form.

Non-recurring engineering cost is the one-time up-front cost for research, design, testing and development of a new product.

As we can see below, the minimum number of units that need to be sold for the ASIC implementation to be cost-effective is 1 million units.

$$C_{FPGA} > C_{ASIC} \Rightarrow \pounds2 \times N_{units} > \pounds10^6 + \pounds1 \times N_{units} \Rightarrow N_{units} > 10^6$$

Question 2

(a) Diagramatic and symbolic Simulation

Diagram of circuit Q1

Figure 1: the circuit as derrived from Q1

Diagram of circuit P1

Figure 2: the circuit as derrived from P1

Simulation

The source code of the simulation (uninitialized delay) is the following:

```
INCLUDE "prelude.rby". P1 n = Q1^n; fork^\sim1 . Q1 = snd fork; rsh; [add,D^\sim1]. current = P1 4.
```

The circuit representation:

Name	Domain	Range
D ?	.1	.2
D ?	.3	.1
D ?	.4	.3
D ?	.5	.4
add	<.6,.2>	.7
add	<.7,.1>	.8
add	<.8,.3>	.9
add	<.9,.4>	.5

Directions - <in,out> \sim out

Wiring - <.6,.2> \sim .5

Inputs - .6

The source code of the simulation (initialized delay with 0) is the following:

INCLUDE "prelude.rby". P1 n = Q1^n; fork^ \sim 1 . Q1 = snd fork; rsh; [add,DI 0^ \sim 1]. current = P1 4.

The circuit representation:

Name	Domain	Range
D 0 D 0 D 0	.1 .3 .4	.2 .1 .3
D 0	.5	.4
add	<.6,.2>	.7
add	<.7,.1>	.8
add	<.8,.3>	.9
add	<.9,.4>	.5

Directions - <in,out> ~ out

Wiring - <.6,.2> ~ .5

Inputs - .6

The simulation output (for 4 cycles) can be found in the included zip file.

Question 3

(a) Proof by induction

In order to show that $[P,Q]^n$; R=R; Q^n for n>0, we first have to show that it is True for n=1.

Base case:
$$[P,Q]^1; R=R; Q^1$$

This is intuitively shown to be true by the given assumption $[P,Q]^n$; R which is equivalent.

Assuming that it is also true for n = k > 0

$$[P,Q]^k; R = R; Q^k$$

We need to show that the same is true for n = k + 1

$$[P,Q]^{k+1}; R$$

$$= [P,Q]^k; [P,Q]; R$$

$$=[P,Q]^k;R;Q$$

$$=R;Q^k;Q$$

$$=R;Q^{k+1}$$

So by induction we have proved that if we know [P,Q]; R=R; Q to be True, for n>0:

$$[P,Q]^n; R=R; Q^n$$
 is also $True$

Question 4