half adder

truth table

A	В	Co	S	
	0	0	0	0
	0	1	0	1
	1	0	0	1
	1	1	1	0

K maps

		В		
Co		0	1	
۸	0	0	0	
А	1	Ο	1	

logic expression without XORs Co = AB , S =BA'+AB' 3 AND gates & 1 OR gate & 2 NOT gates

logic expression with XORs Co = AB, S = $A \oplus B$ 1 AND gate & 1 XOR gate

gate level schematic

Α

full adder

truth table

ti ditii tabic					
A	В	Ci	Co	S	
	0	0	0	0	0
	0	0	1	0	1
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	1

K maps

	Bci	İ			
Co	0&0	0&1	1&0	1&1	
Α	0	0	0	0	1

logic expression without XORs

Co = AB + BC + AC

S = A'B'C + ABC + A'BC' + AB'C'

6 NOT, 11 AND 2, 5 OR 2

logic expression with XORs

 $Co = AB + (A \oplus B)Ci$

 $S = (A \bigoplus B) \bigoplus Ci$

2 XOR, 2 AND2, 1 OR2

gate level schematic

2-bit Ripple Carry Adder truth table

input					ου	ıtput
A1	A0	B1	В0	Cin	Cou	
	0	0	0	0	0	0
	0	0	0	0	1	0
	0	0	0	1	0	0
	0	0	0	1	1	0
	0	0	1	0	0	0
	0	0	1	0	1	0
	0	0	1	1	0	0
	0	0	1	1	1	1
	0	1	0	0	0	0
	0	1	0	0	1	0
	0	1	0	1	0	0
	0	1	0	1	1	0
	0	1	1	0	0	0
	0	1	1	0	1	0
	0	1	1	1	0	1
	0	1	1	1	1	1
	1	0	0	0	0	0
	1	0	0	0	1	0
	1	0	0	1	0	0
	1	0	0	1	1	0
	1	0	1	0	0	0

1	0	1	0	1	0
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

gate-levelschematic

S 0 1 0 0 1 0 0 1 1 1 0

> Bci S 0&0 0&1 A 0 0

1&0 1&1 1 1 0 1 0 0 1

1	1
0	0
0	1
1	1
0	0
0	0
0	1
0	0
0	1
0	1
1	1