Week 8 – Data Warehouse and OLAP

BUMBC — Data 604 Data Management

Introduction

- Operational versus tactical/strategic decision-making
- Data warehouse definition
- Data warehouse schemas
- The extraction, transformation, and loading (ETL) process
- Data marts
- Virtual data warehouses and virtual data marts
- Operational data store
- Data warehouses versus data lakes
- Business intelligence

Descriptive Analytics

- The exploratory phase of Analytics and Business Intelligence
- explores, aggregates and visualizes data
- Management Information Reports
- Dashboards
- Graphs and charts
- Business Scorecards
- Data warehousing and OLAP are ways to optimize data for BI and Reporting

Traditional Data Warehousing

- Uses BI, relational databases and OLAP features of traditional relational database management systems
- Use ETL methods to transform relational data into a data warehouse
- Star schema and snowflake database design methods to create Dimension and Fact tables
- Data marts -subject oriented data warehouses
- Scale up with computing and data nodes on high end servers (how does this differ from big data?)

Decision-Making Levels

- Operational level
 - Day-to-day business decisions
 - Short time frame
 - On-Line Transaction Processing (OLTP)
- Tactical level
 - Middle management decisions
 - Medium-term focus
- Strategic level
 - Senior management decisions
 - Long-term focus

Decision-Making Levels

- Operational systems
 - Operational level
 - Focus on simple INSERT, UPDATE, DELETE, and/or SELECT statements
 - Transaction throughput
- Decision support systems
 - Tactical + strategic level
 - Focus on data retrieval by answering complex ad-hoc queries (SELECT statements)
 - Represent data in a multidimensional way
 - Trend analysis

Data Warehouse Definition

- "A data warehouse is a subject-oriented, integrated, timevariant, and nonvolatile collection of data in support of management's decision-making process." (Inmon, 1996)
- Subject oriented
 - Organized around subjects such as customers, products, sales
- Integrated
 - Integrates data from a variety of operational sources and a variety of formats

Data Warehouse Definition

- Non-volatile
 - data are primarily read-only
 - data loading and data retrieval
- Time variant
 - time series of periodic snapshots

Data Warehouse Definition

	Transactional System	Data Warehouse
Usage	Day-to-day business operations	Decision support at the tactical/strategic level
Data latency	Real-time data	Periodic snapshots, incl. historical data
Design	Application oriented	Subject oriented
Normalization	Normalized data	(Sometimes also) denormalized data
Data manipulation	INSERT/UPDATE/DELETE/SELECT	INSERT/SELECT
Transaction management	Important	Less of a concern
Type of queries	Many simple queries	Fewer, but complex and ad-hoc queries

Data Warehouse Schemas

- Star schema
- Snowflake schema
- Fact constellation
- Specific schema issues

Star Schema

Star Schema

- Fact table
 - one tuple per transaction or event (i.e., a fact) and also measurement data (e.g., sales)
- Dimension table
 - further information about each of the facts in the fact table (e.g., Time, Store, Customer, Product)
 - criteria for aggregating the measurement data
 - often denormalized

Star Schema

Fact table

TimeKey	ProductKey	StoreKey	CustomerKey	Sales in Units	Sales in Euros
200	50	100	20006010	6	167.94
210	25	130	20006012	3	54
180	30	150	20006008	12	384

Dimension tables

TimeKey	Date	Quarter	
200	08/03/2017	1	
210	09/11/2017	3	
180	27/02/2017	1	

CustomerKey	CustomerNr	CustName	
20006008	20	Bart Baesens	
20006010	10	Wilfried Lemahieu	
20006012	5	Seppe vanden Broucke	

StoreKey	StoreNr	StoreName	
100	68	The Wine Depot	
130	94	The Wine Crate	
150	69	Vinos del Mundo	

ProductKey	ProdNr	ProdName	
25	0178	Meerdael, Methode Traditionnelle Chardonnay, 2014	
30	0199	Jacques Selosse, Brut Initial, 2012	
50	0212	Billecart-Salmon, Brut Réserve, 2014	

Snowflake Schema

Snowflake Schema

- In case dimension tables grow too large
- In case most queries don't make use of the outer-level dimension tables

Fact Constellation

Specific Schema Issues

- Surrogate keys
- Granularity of the fact table
- Factless fact tables
- Optimizing the dimension tables
- Defining junk dimensions
- Defining outrigger tables
- Slowly changing dimensions
- Rapidly changing dimensions

Surrogate Keys

- StoreKey, ProductKey, ShipperKey, ...
- Meaningless integers
- Cannot use business keys since they usually have a business meaning
- Surrogate keys essentially buffer the data warehouse from the operational environment
- Business keys are usually larger in size
- Business keys are also often re-used over longer periods of time

WUMBC — Data 604 Data Mana

Granularity of the Fact Table

- Level of detail of one row of the fact table
- Higher (lower) granularity implies more (fewer) rows
- Tradeoff between level of detailed analysis and storage requirements
- Examples:
 - One tuple of the fact table corresponds to one line on a purchase order
 - One tuple of the fact table corresponds to one purchase order
 - One tuple of the fact table corresponds to all purchase orders made by a customer

Factless Fact Tables

Optimizing the Dimension Tables

- Dimension tables should be heavily indexed to improve query execution time
- On average between five and ten
- E.g., Time
 - TimeKey, Date, DayOfWeek, DayOfMonth, DayOfYear, Month, MonthName, Year, LastDayInWeekFlag, LastDayInMonthFlag, FiscalWeek, HolidayFlag, ...

Junk Dimensions

- Deal with low cardinality attribute types such as flags or indicators
- Example: On-line Purchase (Y/N), Payment (cash or credit card),
 Discount (Y/N)
- Junk dimension is a dimension that simply enumerates all feasible combinations of values of the low cardinality attribute types

JunkKey1	On-line purchase	Payment	Discount
1	Yes	Credit card	Yes
2	Yes	Credit card	No
3	No	Credit card	Yes
4	No	Credit card	No
5	No	Cash	Yes
6	No	Cash	No

Outrigger Tables

 Store a set of attribute types of a dimension table which are highly correlated, low in cardinality, and updated simultaneously

Slowly Changing Dimensions

- Dimensions that change slowly and irregularly over a period of time
- Example: customer segment ranging from AAA, AA, A, BBB, ... to C, determined on a yearly basis

Slowly Changing Dimensions

Approach 1

OLD STATUS

CustomerKey	CustomerNr	CustomerName	Segment
123456	ABC123	Bart Baesens	AA

CustomerKey	CustomerNr	CustomerName	Segment
123456	ABC123	Bart Baesens	AAA

Slowly Changing Dimensions

Approach 2

OLD STATUS

CustomerK	cy CustomerNr	CustomerName	Segment	Start_Date	End_Date	Current_Flag
123456	ABC123	Bart Baesens	AA	27-02-2014	31-12-9999	Υ

CustomerKey	CustomerNr	CustomerName	Segment	Start_Date	End_Date	Current_Flag
123456	ABC123	Bart Baesens	AA	27-02-2014	27-02-2015	N
123457	ABC123	Bart Baesens	AAA	28-02-2015	31-12-9999	Υ

Slowly Changing Dimensions

Approach 3

OLD STATUS

CustomerKey	CustomerNr	CustomerName	Segment
123456	ABC123	Bart Baesens	AA

CustomerKey	CustomerNr	CustomerName	Old Segment	New Segment
123456	ABC123	Bart Baesens	AA	AAA

Slowly Changing Dimensions

Approach 4

OLD STATUS

CustomerKey	CustomerNr	CustomerName	Segment
123457	ABC123	Bart Baesens	AAA

CustomerKey	CustomerNr	CustomerName	Segment	Start_Date	End_Date
123456	ABC123	Bart Baesens	AA	27-02-2014	27-02-2015
123457	ABC123	Bart Baesens	AAA	28-02-2015	31-12-9999

Rapidly Changing Dimensions

- Dimensions that change rapidly and regularly over a period of time
- Example: customer segment ranging from AAA, AA, A, BBB,
 ... to C, determined on a daily basis
- Approaches 2 and 4 discussed in the previous section will result in a lot of rows
- Split customer information into stable (e.g., gender, marital status, ...) and rapidly changing information which is put in a mini-dimension table

Rapidly Changing Dimensions

Rapidly Changing Dimensions

Fact table

TimeKey	ProductKey	StoreKey	CustomerKey	SegmentKey	Sales in Units	Sales in Euros
200	50	100	1200	1	6	167.94
210	25	130	1400	4	3	54
180	30	150	1000	3	12	384
•••						

Customer Dimension

CustomerKey	CustomerNr	CustName	SegmentKey
1000	20	Bart Baesens	2
1200	10	Wilfried Lemahieu	1
1400	5	Seppe vanden Broucke	1

CustomerSegment Dimension

SegmentKey	SegmentName
1	А
2	В
3	С
4	D

Rapidly Changing Dimensions

The Extraction, Transformation, and Loading (ETL) Process

- Can consume up to 80% of all efforts needed to set up a data warehouse
- Dump the data in a so-called staging area where all the ETL activities can be executed

The Extraction, Transformation, and Loading (ETL) Process

- Extraction
 - Full or incremental (changed data capture)
- Transformation
 - formatting
 - cleansing
 - aggregation and merging
 - enrichment
- Loading
 - Fill the fact and dimension tables
- Documentation and metadata

Data Marts

- A data mart is a scaled-down version of a data warehouse aimed at meeting the information needs of a homogeneous small group of end-users such as a department or business unit
- Provide focused content and improved query performance

Data Marts

• **Dependent data marts** pull their data directly from a central data warehouse

Data Marts

 Independent data marts are standalone systems drawing data directly from the operational systems, external sources or a combination of both

Virtual Data Warehouses and Virtual Data Marts

- Idea of virtualization is to use middleware to create a logical or virtual data warehouse or virtual data mart which has no physical data but provides a single point of access to a set of underlying physical data stores.
- Data is only accessed ("pulled") at query time.

Virtual Data Warehouses and Virtual Data Marts

 Virtual Data warehouse can be built as a set of SQL views directly on the underlying operational data sources

Virtual Data Warehouses and Virtual Data Marts

 Virtual data warehouse can be built as an extra layer on top of a collection of physical independent data marts

Virtual Data Warehouses and Virtual Data Marts

- Metadata model contains the schema mappings between the schemas of the underlying data stores and the schema of the virtual data warehouse
- Query reformulation

Virtual Data Warehouses and Virtual Data Marts

- A virtual data mart is usually defined as a single SQL view
- Virtual independent versus virtual dependent data mart
- Disadvantages
 - Extra processing capacity from the underlying (operational) data sources
 - Not possible to keep track of historical data

Operational Data Store

- Operational data store (ODS) can be considered as a staging area that provides query facilities
- Good for analysis tools that need data that are closer to real time
- More complex analyses are still conducted on the actual data warehouse

Data Warehouses versus Data Lakes

	Data Warehouse	Data Lake
Data	Structured	Often unstructured
Processing	Schema-on-write	Schema-on-read
Storage	Expensive	Low cost
Transformation	Before entering the DW	Before analysis
Agility	Low	High
Security	Mature	Maturing
Users	Decision-makers	Data scientists

Business Intelligence

- Business intelligence (BI) is referred to as the set of activities, techniques, and tools aimed at understanding patterns in past data and predicting the future.
- Garbage in, garbage out (GIGO)
- BI techniques
 - Query and reporting
 - Pivot tables
 - OLAP

Query and Reporting

- Business user can graphically and interactively design a query and corresponding report
- Self-service BI
- Query by example (QBE)
 - a query is composed in a user-friendly and visual way
- Report can be refreshed at any time
- Innovative visualization techniques

Pivot Tables

A pivot or cross-table is a popular data summarization tool. It
essentially cross-tabulates a set of dimensions in such a way that
multidimensional data can be represented in a two-dimensional
tabular format.

Sales		Quarter				<u>Total</u>
		Q1	Q2	Q3	Q4	
Region	Europe	100	200	50	100	450
	Africa	50	100	200	50	400
	Asia	20	50	10	150	230
	America	50	10	100	100	260
	<u>Total</u>	220	360	360	400	1340

On-Line Analytical Processing (OLAP)

- OLAP allows you to interactively analyze the data, summarize it, and visualize it in various ways
- Provides the business user with a powerful tool for ad-hoc querying
- Types
 - MOLAP
 - ROLAP
 - HOLAP

MOLAP

 Multidimensional OLAP (MOLAP) stores the multidimensional data using a multidimensional DBMS (MDBMS), whereby the data are stored in a multidimensional array-based data structure optimized for efficient storage and quick access.

Array (key, value)	Q1	Q2	Q3	Q4	<u>Total</u>
Product A	(1,1) 10	(1,2) 20	(1,3) 40	(1,4) 10	(1,5) 80
Product B	(2,1) 20	(2,2) 40	(2,3) 10	(2,4) 30	(2,5) 100
Product C	(3,1) 50	(3,2) 20	(3,3) 40	(3,4) 30	(3,5) 140
Product D	(4,1) 10	(4,2) 30	(4,3) 20	(4,4) 20	(4,5) 80
<u>Total</u>	(5,1) 90	(5,2) 110	(5,3) 110	(5,4) 90	(5,5) 400

MOLAP

- Fast in terms of data retrieval
- More storage space needed
- Scales poorly when the number of dimensions increases
- No universal SQL-like standard is provided
- Not optimized for transaction processing

ROLAP

- Relational OLAP (ROLAP) stores the data in a relational data warehouse, which can be implemented using a star, snowflake, or fact constellation schema
- ROLAP scales better to more dimensions than MOLAP
- ROLAP query performance may be inferior to MOLAP

HOLAP

- Hybrid OLAP (HOLAP) tries to combine the best of both MOLAP and ROLAP
- An RDBMS is used to store the detailed data in a relational data warehouse, whereas the pre-computed aggregated data are kept as a multidimensional array managed by an MDBMS
- OLAP analysis first starts from the multidimensional database
- Combines the performance of MOLAP with the scalability of ROLAP

OLAP Operators

OLAP Operators

- Roll-up refers to aggregating the current set of fact values within or across one or more dimensions
- Hierarchical versus dimensional roll-up

Reverse: drill-down!

OLAP Operators

- **Drill-across** is another OLAP operation, in which information from two or more connected fact tables is accessed
- Slicing represents the operation in which one of the dimensions is set at a particular value

OLAP Operators

• **Dicing** corresponds to a range selection on one or more dimensions

- SQL-99 introduced three extensions to the GROUP BY statement: the CUBE, ROLLUP, and GROUPING SETS operators
- The **CUBE** operator computes a union of GROUP BYs on every subset of the specified attribute types

PRODUCT	QUARTER	REGION	SALES
А	Q1	Europe	10
А	Q1	America	20
А	Q2	Europe	20
А	Q2	America	50
А	Q3	America	20
А	Q4	Europe	10
А	Q4	America	30
В	Q1	Europe	40
В	Q1	America	60
В	Q2	Europe	20
В	Q2	America	10
В	Q3	America	20
В	Q4	Europe	10
В	Q4	America	40

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY CUBE (QUARTER, REGION)
```

- this query computes the union of 2² = 4 groupings of the SALESTABLE, being: {(quarter,region), (quarter), (region), ()}, where () denotes an empty group list
- resulting multiset will have 4 × 2 + 4 × 1 + 1 × 2 + 1 or 15 tuples

OLAP Queries in SQL

QUARTER	REGION	SALES
Q1	Europe	50
Q1	America	80
Q2	Europe	40
Q2	America	60
Q3	Europe	NULL
Q3	America	40
Q4	Europe	20
Q4	America	80
Q1	NULL	130
Q2	NULL	100
Q3	NULL	40
Q4	NULL	90
NULL	Europe	110
NULL	America	250
NULL	NULL	360

CASE WHEN grouping(QUARTER) = 1
THEN 'All' ELSE QUARTER END AS QUARTER and
CASE WHEN grouping(REGION) = 1 THEN
'All' ELSE REGION END AS REGION

- ROLLUP operator computes the union on every prefix of the list of specified attribute types, from the most detailed up to the grand total
- The key difference between the ROLLUP and CUBE operators is that the former generates a result set showing the aggregates for a hierarchy of values of the specified attribute types, whereas the latter generates a result set showing the aggregates for all combinations of values of the selected attribute types

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY ROLLUP (QUARTER, REGION)
```

- This query generates the union of three groupings {(quarter, region), (quarter}, ()} where () again represents the full aggregation
- Resulting multiset will thus have $4 \times 2 + 4 + 1$ or 13 rows

OLAP Queries in SQL

QUARTER	REGION	SALES
Q1	Europe	50
Q1	America	80
Q2	Europe	40
Q2	America	60
Q3	Europe	NULL
Q3	America	40
Q4	Europe	20
Q4	America	80
Q1	NULL	130
Q2	NULL	100
Q3	NULL	40
Q4	NULL	90
NULL	NULL	360

© Cambridge University Press 2018

OLAP Queries in SQL

 GROUP BY ROLLUP construct can also be applied to attribute types that represent different aggregation levels along the same dimension

```
SELECT REGION, COUNTRY, CITY, SUM(SALES)
FROM SALESTABLE
GROUP BY ROLLUP (REGION, COUNTRY, CITY)
```

OLAP Queries in SQL

 GROUPING SETS operator generates a result set equivalent to that generated by a UNION ALL of multiple simple GROUP BY clauses

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY GROUPING SETS ((QUARTER), (REGION))
```

```
SELECT QUARTER, NULL, SUM(SALES)
FROM SALESTABLE
GROUP BY QUARTER
UNION ALL
SELECT NULL, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY REGION
```


QUARTER	REGION	SALES
Q1	NULL	130
Q2	NULL	100
Q3	NULL	40
Q4	NULL	90
NULL	Europe	110
NULL	America	250

WUMBC

Data 604 Data Management

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY CUBE (QUARTER, REGION)
```

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY GROUPING SETS ((QUARTER, REGION),
(QUARTER), (REGION), ())
```

WUMBC

Data 604 Data Management

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY ROLLUP (QUARTER, REGION)
```

```
SELECT QUARTER, REGION, SUM(SALES)
FROM SALESTABLE
GROUP BY GROUPING SETS ((QUARTER, REGION),
(QUARTER),())
```

WUMBC — Data 604 Data Manage

OLAP Queries in SQL

 SQL2003 introduced support for two types of other activities: ranking and windowing

PRODUCT	SALES
А	50
В	20
С	10
D	45
E	40
F	30
G	60
Н	20
ı	15
J	25

WUMBC

Data 604 Data Management

```
SELECT PRODUCT, SALES,
RANK() OVER (ORDER BY SALES ASC) as RANK_SALES,
DENSE_RANK() OVER (ORDER BY SALES ASC) as
DENSE_RANK_SALES, PERCENT_RANK() OVER (ORDER BY
SALES ASC) as PERC_RANK_SALES,
CUM_DIST() OVER (ORDER BY SALES ASC) as
CUM_DIST_SALES,
FROM SALES
ORDER BY RANK SALES ASC
```


Product	Sales	RANK_SALES	DENSE_RANK_SALES	PERC_RANK_SALES	CUM_DIST_SALES
С	10	1	1	0	0.1
I	15	2	2	1/9 = 0.11	0.2
В	20	3	3	2/9 = 0.22	0.4
Н	20	3	3	2/9 = 0.22	0.4
J	25	5	4	4/9 = 0.44	0.5
F	30	6	5	5/9 = 0.55	0.6
E	40	7	6	6/9 = 0.66	0.7
D	45	8	7	7/9 = 0.77	0.8
А	50	9	8	8/9 = 0.88	0.9
G	60	10	9	9/9 = 1	1

OLAP Queries in SQL

• Windowing allows calculating cumulative totals or running averages based on a specified time window.

QUARTER	REGION	SALES
1	America	10
2	America	20
3	America	10
4	America	30
1	Europe	10
2	Europe	20
3	Europe	10
4	Europe	20

WUMBC

Data 604 Data Management

```
SELECT QUARTER, REGION, SALES,
AVG(SALES) OVER (PARTITION BY REGION ORDER BY
QUARTER ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
SALES_AVG
FROM SALES
ORDER BY REGION, QUARTER, SALES_AVG
```


QUARTER	REGION	SALES	SALES_AVG
1	America	10	15
2	America	20	13,33
3	America	10	20
4	America	30	20
1	Europe	10	15
2	Europe	20	13,33
3	Europe	10	16,67
4	Europe	20	15

Conclusions

- Operational versus tactical/strategic decision-making
- Data warehouse definition
- Data warehouse schemas
- The extraction, transformation, and loading (ETL) process
- Data marts
- Virtual data warehouses and virtual data marts
- Operational data store
- Data warehouses versus data lakes
- Business intelligence

Reporting

WUMBC

Data 604 Data Management

Common Reporting Tools

- Crystal Reports
- Microsoft Access
- Microsoft Excel
- Microsoft SQL Server Reporting Services
- Oracle OBIEE
- IBI WebFocus
- Custom Developed Reports within Applications

Basics of Report Creation

- Create Data source
 - Establishes connection to database
 - Some tools support more than one data source
- Create Dataset
 - Defines what data (tables, columns) you want to pull into report
- Display Data
 - Display the data you want the users to see and how you want them to see it (e.g. matrix or table view)
 - Can include user interactivity to enable filters and drilldowns
 - Can include charts and graphs
- Publish or Distribute

Data Visualizations

- Representation of data in graphical and multimedia formats for human analysis
- "A picture tells a thousand words"
- Without showing precise values, graphs and charts can depict relationships in the data
- Often used in dashboards, as shown in next slide

WUMBC

Data 604 Data Management

Common Data Visualization Tools

- Tableau
- Microsoft PowerBl
- QuikView
- Oracle OBIEE
- SAS Visual Analytics
- SAS JMP
- R
- Python

Sample Dashboard

Business Performance Management (BPM) systems allow managers to measure, monitor, and manage key activities and processes to achieve organizational goals.

Dashboards are often used to provide an information system in support of BPM.

Pearson Copyright © 2019, 2016, 2013 Pearson Education, Inc. All Rights Reserved
This work is protected by United States copyright laws and is provided solely
for the use of instructors in teaching their courses and assessing student
learning. Dissemination or sale of any part of this work (including on the
World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to
students except by instructors using the accompanying text in their
classes. All recipients of this work are expected to abide by these
restrictions and to honor the intended pedagogical purposes and the needs of
other instructors who rely on these materials.