The cylinder at spatial infinity and asymptotic charges

Rafael Pinto

Instituto Superior Técnico

September 21, 2023

Advisors: Dr. Edgar Gasperín and Dr. Alex Vañó Viñuales

Table of Contents

- Newman-Penrose constants
- 2 Cylinder at i^0
- 3 Spin-0 fields close to i^0 and \mathscr{I}
- 4 The NP-constants for the spin-0 fields close to $i^0 \& \mathscr{I}$
- The classical NP constants at \mathscr{I}^+
- 6 References

Introduction

- The Newman-Penrose (NP) constants serve as conserved quantities at null infinity in asymptotically flat gravitational fields.
- These constants present a comprehensive conservation system for various spins: spin-1 fields and spin-2 fields, with our research focusing on spin-0 fields linked to wave equation solutions.
- In the detailed context, while an infinite series of conserved quantities is identified in the linear theory, the non-linear General Relativity theory conserves only ten.

Conservation laws

• These charges are computed as 2-surface integrals at cuts $C \approx \mathbb{S}^2$ of null infinity \mathscr{I} .

Figure: Visual representation of the behavior of the Newman-Penrose constants at null infinity.

Spin-1 (EM) Field

• A complex tetrad can be selected as follows:

$$I^{\mu} = \delta_1^{\mu}, \quad n^{\mu} = \delta_0^{\mu} - \delta_1^{\mu},$$

$$m^{\mu} = \frac{1}{\tau} \left(\delta_2^{\mu} + \frac{1}{\sin \theta} \ \delta_3^{\mu} \right), \qquad \overline{m}^{\mu} = \frac{1}{\tau} \left(\delta_2^{\mu} - \frac{1}{\sin \theta} \ \delta_3^{\mu} \right). \tag{1}$$

• To describe the electromagnetic (EM) field, we make use of three complex tetrad components of the Maxwell field tensor denoted as $F_{\mu\nu}$:

$$\Phi_0 = F_{\mu\nu} I^{\mu} n^{\nu},
\Phi_1 = \frac{1}{2} F_{\mu\nu} (I^{\mu} n^{\nu} + \overline{m}^{\mu} m^{\nu}),
\Phi_2 = F_{\mu\nu} \overline{m}^{\mu} n^{\nu}.$$
(2)

NP Constants Calculation

• The NP constants are calculated using the following formula:

$$F_m^{n,k} = \int {}_1\overline{Y}_{n-k+1,m}\Phi_0^{n+1}d\omega. \tag{3}$$

 The interpretation of charges, such as the Newman-Penrose constants, remains an open debate, yet their conservation is evident in general asymptotically flat spacetimes, even in events like black hole collisions.

The i^0 cylinder representation in Minkowski spacetime

- Consider spherical polar coordinates $(\tilde{t}, \tilde{\rho}, \vartheta^A)$ with A = 1, 2.
- ullet The metric of physical Minkowski spacetime in this coordinate system is given by $ilde{\eta}$:

$$\tilde{\boldsymbol{\eta}} = -\mathbf{d}\tilde{\boldsymbol{t}} \otimes \mathbf{d}\tilde{\boldsymbol{t}} + \mathbf{d}\tilde{\boldsymbol{\rho}} \otimes \mathbf{d}\tilde{\boldsymbol{\rho}} + \tilde{\boldsymbol{\rho}}^2 \boldsymbol{\sigma}. \tag{4}$$

• Introduce unphysical spherical polar coordinates (t, ρ, ϑ^A) as an intermediate step:

$$t = \frac{\tilde{t}}{\tilde{\rho}^2 - \tilde{t}^2}, \quad \rho = \frac{\tilde{\rho}}{\tilde{\rho}^2 - \tilde{t}^2}.$$
 (5)

ullet The conformal metric in unphysical coordinates, $oldsymbol{\eta}=\Xi^2oldsymbol{ ilde{\eta}}$:

$$\eta = -\frac{1}{\tilde{\rho}^2 - \tilde{t}^2} (-\mathbf{d}\tilde{t} \otimes \mathbf{d}\tilde{t} + \mathbf{d}\tilde{\rho} \otimes \mathbf{d}\tilde{\rho} + \tilde{\rho}^2 \sigma). \tag{6}$$

i⁰ Representation in Unphysical Coordinates

- In this conformal representation $(t \in (-\infty, \infty), \rho \in [0, \infty))$, spatial infinity and the origin interchange.
- i^0 is represented by the point $(t=0, \rho=0)$ in (\mathbb{R}^4, η) .
- Introduce coordinates $(\tau, \rho, \vartheta^A)$ with $t = \rho \tau$.
- Consider the conformal metric $\mathbf{g} = \rho^{-2} \boldsymbol{\eta}$.
- ullet Express the unphysical metric $oldsymbol{g}$ in F-coordinates:

$$\mathbf{g} = -\mathbf{d}\tau \otimes \mathbf{d}\tau + \frac{1 - \tau^2}{\rho^2} \mathbf{d}\rho \otimes \mathbf{d}\rho - \frac{\tau}{\rho} \left(\mathbf{d}\rho \otimes \mathbf{d}\tau + \mathbf{d}\rho \otimes \mathbf{d}\tau \right) + \sigma.$$
(7)

Conformal Factor and Lorentz Transformation

• The conformal factor Θ in F-coordinates and physical coordinates:

$$\Theta := \rho(1 - \tau^2) = \frac{1}{\tilde{\rho}}.$$
 (8)

• The boost parameter κ :

$$\kappa := \frac{1+\tau}{1-\tau} = -\frac{\tilde{v}}{\tilde{u}}.\tag{9}$$

The Lorentz transformation that connects the NP and F-frames:

$$(\Lambda_+)^2 := \Theta^{-1} \kappa^{-1}, \quad (\Lambda_-)^2 := \Theta^{-1} \kappa.$$
 (10)

i⁰ Cylinder and Null Frames

Identify future and past null infinity in the conformal representation:

$$\mathscr{I}^+ \equiv \{ p \in \mathcal{M} \mid \tau(p) = 1 \},$$

 $\mathscr{I}^- \equiv \{ p \in \mathcal{M} \mid \tau(p) = -1 \}.$

• The i^0 -cylinder represents spatial infinity as an extended set $I \approx \mathbb{R} \times \mathbb{S}^2$:

$$I \equiv \{ p \in \mathcal{M} \mid |\tau(p)| \ 1, \ \rho(p) = 0 \},$$

$$I^0 \equiv \{ p \in \mathcal{M} \mid \tau(p) = 0, \ \rho(p) = 0 \}.$$

F-Frame and Null Frames

• Introduce the *F*-frame:

$$m{e} = (1+ au) m{\partial}_{ au} -
ho m{\partial}_{
ho}, \quad \underline{m{e}} = (1- au) m{\partial}_{ au} +
ho m{\partial}_{
ho}, \quad m{e}_{m{A}} \quad \text{ with }$$

$$m{A} = \{\uparrow, \downarrow\}. \tag{11}$$

• The NP-frame hinged at \mathscr{I}^{\pm} :

NP hinged at
$$\mathscr{I}^+$$
: $e^+, \underline{e}^+, e_A^+$,
NP hinged at \mathscr{I}^- : $e^-, \underline{e}^-, e_A^-$.

Transformation between NP and F-frames:

NP hinged at
$$\mathscr{I}^+$$
: $\mathbf{e}^+ = \Theta^{-2} L$, $\underline{\mathbf{e}}^+ = \underline{L}$, $\mathbf{e}_{\mathbf{A}}^+ = \mathbf{e}_{\mathbf{A}} = \Theta^{-1} \tilde{\mathbf{e}}_{\mathbf{A}}$
NP hinged at \mathscr{I}^- : $\mathbf{e}^- = L$, $\underline{\mathbf{e}}^- = \Theta^{-2} \underline{L}$, $\mathbf{e}_{\mathbf{A}}^- = \mathbf{e}_{\mathbf{A}} = \Theta^{-1} \tilde{\mathbf{e}}_{\mathbf{A}}$.

• For $(\tilde{M}, \tilde{\mathbf{g}})$ and (M, \mathbf{g}) , the transformation of the D'Alembertian operator under conformal transformations is,

$$\Box \phi - \frac{1}{6}\phi R = \Omega^{-3} \left(\tilde{\Box} \tilde{\phi} - \frac{1}{6} \tilde{\phi} \tilde{R} \right). \tag{12}$$

• Using F-coordinates, the wave equation is represented by

$$(\tau^2 - 1) \partial_{\tau}^2 \phi - 2\rho \tau \partial_{\tau} \partial_{\rho} \phi + \rho^2 \partial_{\rho}^2 \phi + 2\tau \partial_{\tau} \phi + \Delta_{S^2} \phi = 0.$$
 (13)

We consider the Ansatz

$$\phi = \sum_{p=0}^{\infty} \sum_{\ell=0}^{p} \sum_{m=-\ell}^{m=\ell} \frac{1}{p!} a_{p;\ell,m}(\tau) \rho^p Y_{\ell m}.$$
 (14)

• Solving (13) simplifies to solving the following (ODE) for every p, ℓ , and m:

$$(1-\tau^2)\ddot{a}_{p;\ell,m} + 2\tau(p-1)\dot{a}_{p,\ell,m} + (\ell+p)(\ell-p+1)a_{p;\ell,m} = 0.$$
 (15)

Lemma

The solution to equation (15) is given by:

• For $p \ge 1$ and $0 \le \ell \le p-1$

$$a(\tau)_{p;\ell,m} = A_{p,\ell,m} \left(\frac{1-\tau}{2}\right)^{p} P_{\ell}^{(p,-p)}(\tau) + B_{p,\ell,m} \left(\frac{1+\tau}{2}\right)^{p} P_{\ell}^{(-p,p)}(\tau)$$
(16)

② For $p \ge 0$ and $\ell = p$:

$$a_{p;p,m}(\tau) = \left(\frac{1-\tau}{2}\right)^p \left(\frac{1+\tau}{2}\right)^p \left(C_{p,p,m} + D_{p,p,m} \int_0^\tau \frac{ds}{(1-s^2)^{p+1}}\right)$$
(17)

• When analyzing the hypergeometric function presented in Equation (17) for different values of p we can see the emergence of logarithmic terms. Let's consider the cases of p=0 and p=1, which yield the following expressions:

$$\begin{aligned} a_{0;0,0}(\tau) &= C_{000} + \frac{1}{2} D_{000}(\log(1+\tau) - \log(1-\tau)) \\ a_{1;1,m}(\tau) &= \frac{1}{4} (1-\tau)(1+\tau) \left(C_{11m} + \frac{1}{4} D_{11m}(\log(1+\tau) - \log(1-\tau) + 2\tau(1-\tau^2)) \right). \end{aligned} \tag{18}$$

 These logarithmic terms have implications for the linear version of the associated peeling property.

Remark

(Regularity condition). Lemma 1 implies that expanding the integral in (17) results in logarithmic terms, hence $D_{p,p,m}=0$ is called the regularity condition. The solutions for $a(\tau)$ are polynomic in τ , except for $\ell=p$ where one needs to impose the regularity condition to only have polynomic solutions.

• We can see how peeling is violated for the spin-0 field by expanding $\tilde{\phi}$ in terms of the *F*-frame. Making use of eqs (2.34), (2.35) and *Lemma* 1, we truncate (14) up tp p=1 and get the following expression:

$$\tilde{\phi} = \frac{C_{000}}{\tilde{\rho}} + \frac{1}{2\tilde{\rho}} D_{000} \log \left(\frac{\tilde{\rho} + \tilde{t}}{\tilde{\rho} - \tilde{t}} \right) Y_{00} + \frac{1}{8\tilde{\rho}} \left(1 - \frac{\tilde{t}^2}{\tilde{\rho}^2} \right)
\left[D_{11-1} \log \left(\frac{\tilde{\rho} + \tilde{t}}{\tilde{\rho} - \tilde{t}} \right) Y_{1-1} + D_{110} \log \left(\frac{\tilde{\rho} + \tilde{t}}{\tilde{\rho} - \tilde{t}} \right) Y_{10} \right]
+ \left[D_{111} \log \left(\frac{\tilde{\rho} + \tilde{t}}{\tilde{\rho} - \tilde{t}} \right) Y_{11} \right] + \frac{1}{2\tilde{\rho}} \left(\tilde{t}^2 - \tilde{\rho}^2 \right) (A_{100} + B_{100}) Y_{00} +
\frac{1}{4\tilde{\rho}} \left(1 - \frac{\tilde{t}^2}{\tilde{\rho}^2} \right) (C_{11-1} Y_{1-1} + C_{110} Y_{10} + C_{111} Y_{11}).$$
(20)

• The expantion of the physical field $\tilde{\phi}$ helps to understand the concept of peeling in the spin-0 case. In the spin-0 case, the peeling property is violated by the logarithmic terms that appear in the expansion of $\tilde{\phi}$.

The NP-constants for the spin-0 fields close to $i^0 \& \mathscr{I}$

The NP constants emerge from a set of asymptotic conservation laws.
 For the spin-0 field in flat spacetime one has:

$$\underline{L}(\tilde{\rho}^{-2\ell}L(e^+)^{\ell+1}\phi_{\ell m}) = 0, \qquad L(\tilde{\rho}^{-2\ell}\underline{L}(e^-)^{\ell+1}\phi_{\ell m}) = 0 \qquad (21)$$

here, $\phi_{\ell m} = \int_{\mathbb{S}^2} \phi \, Y_{\ell m} d\sigma$ represents the integral of ϕ multiplied by the spherical harmonics $Y_{\ell m}$ over the surface \mathbb{S}^2 , where $d\sigma$ denotes the area element on \mathbb{S}^2 .

• One can introduce the $f(\tilde{\rho})$ -modified NP constants in the following manner:

$${}^{f}\mathcal{N}_{\ell,m}^{+} := f(\tilde{\rho})L(\boldsymbol{e}^{+})^{\ell}\phi_{\ell m}|_{C^{+}}, \tag{22}$$

$${}^{f}\mathcal{N}_{\ell,m}^{-} := f(\tilde{\rho})\underline{L}(\underline{e}^{-})^{\ell}\phi_{\ell m}|_{C^{-}}.$$
 (23)

here, $C^{\pm} \approx \mathbb{S}^2$ represents a cut of \mathscr{I}^{\pm} .

• In the specific case of $f(\tilde{\rho}) = \tilde{\rho}^2$, these quantities are referred to as the "classical NP-constants" and are denoted as $\mathcal{N}_{\ell,m}^{\pm}$. They can be succinctly expressed as follows:

$$\mathcal{N}_{\ell,m}^+ := (\boldsymbol{e}^+)^{\ell+1} \phi_{\ell m}|_{C^+},$$
 (24)

$$\mathcal{N}_{\ell,m}^{-} := (\underline{\underline{e}}^{-})^{\ell+1} \phi_{\ell m} |_{C^{-}}. \tag{25}$$

In the notation for ${}^f\mathcal{N}^+_{\ell,m}$ presented below, it will be implicitly assumed that m takes values from $-\ell$ to ℓ .

The classical NP constants at \mathscr{I}^+

• This analysis is facilitated by the expression,

$$\phi_{\ell m} = \sum_{p=\ell}^{\infty} \frac{1}{p!} a_{p;\ell,m}(\tau) \rho^p. \tag{26}$$

ullet Considering $\ell=0$, the computation of $oldsymbol{e}^+(\phi_{00})$ is sufficient.

$$\mathbf{e}^{+}(\phi_{\ell m}) = 4\rho^{-1}(1+\tau)^{-2} \sum_{p=0}^{\infty} \frac{1}{p!} \rho^{p}((1+\tau)\dot{a}_{p;\ell,m} - pa_{p;\ell,m}). \quad (27)$$

With

$$Q_{p;\ell,m}^{0}(\tau) := (1+\tau)\dot{a}_{p;\ell,m} - pa_{p;\ell,m}.$$
 (28)

ullet With this definition in place, we can express $m{e}^+(\phi_{\ell m})$ as follows:

$$\mathbf{e}^{+}(\phi_{\ell m}) = 4(\Lambda_{+})^{2} \sum_{\rho=0}^{\infty} \frac{1}{\rho!} \rho^{\rho} Q_{p,\ell,m}^{0}(\tau). \tag{29}$$

• To compute the $\ell=0$ NP constant at \mathscr{I}^+ , it is necessary to evaluate $\boldsymbol{e}^+(\phi_{00})$ at a specific cut C^+ of \mathscr{I}^+ . By utilizing equation (29) we obtain the following expression:

$$\mathcal{N}_{0,0}^{+} = \lim_{\substack{\rho \to \rho_{\star} \\ \tau \to 1}} \mathbf{e}^{+}(\phi_{00}) = \sum_{p=0}^{\infty} \frac{1}{p!} \rho_{\star}^{p-1} Q_{p,0,0}^{0}|_{\mathscr{I}^{+}} = -A_{100}.$$
 (30)

ullet To calculate the $\ell=1$ NP constants, we must evaluate $(oldsymbol{e}^+)^2(\phi_{1m}).$

$$(\mathbf{e}^{+})^{2}(\phi_{\ell m}) = 4^{2}(\Lambda_{+})^{2}\mathbf{e}\Big((\Lambda_{+})^{2}\sum_{\rho=\ell}^{\infty}\frac{1}{\rho!}\rho^{\rho}Q_{\rho,\ell,m}^{0}(\tau)\Big),$$
 (31)

where

$$\boldsymbol{e}\left(\Lambda_{+}^{2}\right) = -\Lambda_{+}^{2}.\tag{32}$$

• Utilizing the aforementioned equations yields:

$$(\mathbf{e}^{+})^{2}(\phi_{\ell m}) =$$

$$= 4^{2} (\Lambda_{+})^{4} \sum_{p=\ell}^{\infty} \frac{1}{p!} \rho^{p} ((1+\tau) \dot{Q}_{p;\ell,m}^{0}(\tau) - (p+1) Q_{p;\ell,m}^{0}(\tau)).$$
 (33)

Where

$$Q^1_{\rho,\ell,m}(\tau) := \left((1+\tau) \dot{Q}^0_{\rho,\ell,m}(\tau) - (\rho+1) Q^0_{\rho,\ell,m}(\tau) \right). \tag{34}$$

Finally, one has:

$$\mathcal{N}_{1,m}^{+} = \lim_{\substack{\rho \to 0 \\ \tau \to 1}} 2^{-4} \frac{1}{2!} Q_{2,1,m}^{1} \cdot (\tau) = 3A_{21m}. \tag{35}$$

• The NP constants for \mathscr{I}^- can be calculated in a similar manner, where the time reversed version of the F-frame is used.

References

Thank You