Fluid breakthrough experiments

Oliver Bond, Nicolas Boullé, Meredith Ellis and Huining Yang

The problem

- Waterproof membranes are used extensively in industry, for example in making waterproof coats.
- The membranes have a porous structure, comprising a large number of fibres.
- There are various choices for the material used to make the fibres, each with different wettability properties.

The problem

What is the shape of the meniscus between two fibres? How does this depend on the physical parameters?

Assumptions

- Fluid is **static** and **incompressible**.
- The pressure due to the fluid is hydrostatic.
- The upward force is due to the **surface tension** of the fluid.
- The membrane does **not bend**.
- The system is in its steady state.

Physical principles

Newton's second law

$$\rho g H = \kappa \gamma$$

Curvature

$$\kappa = \frac{1}{R_M}$$

Variables

 α position angle

 R_M radius of curvature of the meniscus

Governing equations

$$R_M(\alpha) = \frac{R\cos(\alpha) - \frac{l}{2}}{\cos(\theta - \alpha)}$$

$$P(\alpha) = \pm \frac{\gamma}{R_M(\alpha)}$$

Hydrophobic $\theta > \frac{\pi}{2}$

Contact angle: $\theta = \frac{2\pi}{3}$

Contact angle: $\theta = \frac{\pi}{4}$

Hydrophilic $\theta < \frac{\pi}{2}$

Contact angle: $\theta = \frac{\pi}{3}$

Conclusions

Bursting

Maximum pressure occurs at $\alpha_{\max} = \theta - \arcsin\left(\frac{2R}{l}\sin(\theta)\right)$

For this maximum pressure, we get critical thickness $\ H_{crit} = \frac{P(\alpha_{\max})}{\rho g}$

For any $\ H>H_{crit}$ we have bursting – meniscus cannot support weight of water above it

Flooding

If
$$H < H_{crit} \ \ \forall \ \alpha \in \left[-\frac{\pi}{2} \ \frac{\pi}{2} \right]$$
, then flooding occurs when $H = \frac{P(\frac{\pi}{2})}{\rho g}$

Further work – different radii

$$\begin{cases} 2R_M \cos\left(\frac{\alpha_1 - \alpha_2}{2}\right) \sin\left(\theta + \frac{\alpha_1 + \alpha_2}{2}\right) + R_1 \sin(\alpha_1) + R_2 \sin(\alpha_2) - l &= 0\\ 2R_M \sin\left(\frac{\alpha_1 - \alpha_2}{2}\right) \sin\left(\theta + \frac{\alpha_1 + \alpha_2}{2}\right) + R_1 \cos(\alpha_1) - R_2 \cos(\alpha_2) &= 0 \end{cases}$$

