Homotopy Physics and Path Integral Formulation

by Sven Nilsen, 2021

In the Path Integral Formulation^[1] of Quantum Mechanics^[2], paths are functions of type:

$$I \to \mathbb{C}^{M}$$

$$I <=> \mathbb{R} \land (>= 0) \land (<= 1)$$
 $M : nat$

`I` is a shorthand for the unit interval and `M` is some natural number.

The paths are continuous maps.

Homotopy Physics^[3] extends the notion of paths into homotopy^[4] paths, which are functions of type:

$$I^N \to \mathbb{C}^M$$

N : nat M : nat

Both 'N' and 'M' are natural numbers.

References:

[1] "Path integral formulation"
Wikipedia
https://en.wikipedia.org/wiki/Path integral formulation

[2] "Quantum mechanics"
Wikipedia
https://en.wikipedia.org/wiki/Quantum mechanics

[3] "Homotopy Physics"
Sven Nilsen, 2021
https://github.com/advancedresearch/path-semantics/blob/master/papers-wip/homotopy-physics.pdf

[4] "Homotopy"
Wikipedia
https://en.wikipedia.org/wiki/Homotopy