Sleepiness Classification Using Empatica E4

By Litian Zhou, Bangyao Zhao Chenyi Yu, Ningyuan Wang, Qingzhi Liu

Can we use the Empatica E4 to predict whether the student is sleeping?

E4 & Data

From all five of us!

- 3-axis Acceleration (ACC)
- Electrodermal Activity (EDA)
- Heart Rate (HR)
- Temperature (TEMP)

Expectation

During Sleep time, relatively

- Lower ACC
- Lower EDA
- Lower HR
- Lower TEMP

Compared to the one during daytime

Descriptive statistic

	Duration Total (sleep) Hours	HR Range (mean) bpm	TEMP Range (mean) °C	EDA Range (mean) μS	ACC Range (mean) $1/64~\mathrm{g}$
Qingzhi Liu	34.30 (6.00)	[45.12, 201.65] (74.29)	[34.95, 39.16] (35.85)	[0.00267, 9.61] (0.27)	[1.41, 221.13] (62.74)
Ningyuan Wang	45.24 (13.33)	[50.56, 159.28] (71.73)	[26.41, 36.45] (33.99)	[0.001281, 7.39] (0.40)	[2.45, 220.55] (65.10)
Chenyi Yu	43.27 (15.05)	[52.00, 166.3] (73.61)	[27.57, 38.29] (35.66)	[0.01565, 11.46] (0.81)	[3.74, 193.38] (63.29)
Bangyao Zhao	46.50 (17.83)	[44.42, 186.48] (78.24)	[31.37, 36.16] (32.66)	[0.000267, 8.05] (0.78)	[2.24, 221.7] (65.10)
Litian Zhou	39.60 (8.26)	[41.53, 196.83] (76.89)	[34.55, 38.41] (35.23)	[0.00027, 9.61] (0.68)	[2.83, 221.70] (65.65)

Preparation Steps

Data structure

Outcome:

Sleep, not sleep

Covariate:

mean_acc, sd_acc, mean_eda, sd_eda, mean_temp, sd_temp, mean_hr and sd_hr, people_id

Box plot showing batch effect

before

Normalized by centering at mean and divided by standard error

after>

Autocorrelation plots

- 1. All five members' mean heart rate autocorrelation is lower than 0.4 after Lag = 5.
- 2. The heart rate standard error has even lower autocorrelation.
- 3. Other features, like temperature, varies from person to person.

Methods: Models for prediction

Machine learning methods

- KNN
- Tree-based methods
- SVM

Classical statistical model

• Logistic Regression

KNN & Tree Methods

heart_rate

https://www.geeksforgeeks.org/k-nearest-neighbours/ https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

SVM

• SVM for separable data

• SVM for nonseparable data

Logistic regression

- A generalized linear model (GLM)
- Response variable is binary
- Predict Sleep_Status = 1 if p(x) >= 0.5; Sleep_Status = 0 if p(x) < 0.5.

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + x \cdot \beta$$

Methods: training and validation

- Implement 5-fold cross validation for each model
- In each iteration, split data into training (4 subjects) and testing (1 subject) parts
- For the 4 different models, the accuracy on testing data is calculated and compared.

http://ethen8181.github.io/machine-learning/model_selection/model_selection.html

Methods: statistical inference

• Fit the final model by using 5 subjects' data and the best algorithm.

• Select the variable that is highly correlated with sleep status, based on certain criterion.

Results: model performance

Accuracy Table

	Random Forest	Logistic Regression	KNN	SVM
Litian Zhou	0.95	0.95	0.94	0.94
Bangyao Zhao	0.91	0.87	0.89	0.87
Qingzhi Liu	0.85	0.87	0.87	0.87
Ningyuan Wang	0.96	0.96	0.86	0.88
Chenyi Yu	0.84	0.78	0.82	0.7
Total	0.9	0.89	0.87	0.85

Winner: Random Forest Model

https://towardsdatascience.com/from-a-single-decision-tree-to-a-random-forest-b9523be65147

Remarks

- Bootstrap resampling
- Select features from a random subset of features →
 Decorelating

Example

- 8 features in total
- Feature candidates in each split is 3

Tune Random Forest Parameters

- Mtry
 - Number of features sampled as candidates at each split
 - \circ Mtry = 2
- Ntree
 - Number of trees to grow
 - \circ Ntree = 480

Important Features in Random Forest

Based on mean decrease Gini

Important features

Features in Random Forest [ranked by Gini]

- Mean hr
- Sd_hr
- Sd_Temp
- Mean_temp
- Sd_acc

Features in Logistic Regression [by Significance]

- Mean_hr
- Sd_temp
- Mean_eda
- Mean_temp
- Sd_eda

Logistic Coefficients

```
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 21.97856 6.09554
                           3,606 0,000311 ***
mean hr
        -13.83536 0.77768 -17.791 < 2e-16 ***
sd_hr -0.09175 0.04768 -1.924 0.054327 .
mean_eda 0.20465 0.04114 4.974 6.56e-07 ***
mean_acc -12.35554 5.81318 -2.125 0.033550 *
sd_acc
        0.01145 0.01539 0.744 0.456997
sd_temp -5.96742 1.00075 -5.963 2.48e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2962.3 on 2501 degrees of freedom
Residual deviance: 1225.3 on 2493 degrees of freedom
AIC: 1243.3
Number of Fisher Scoring iterations: 9
```

Logistic probability as sleep quality score?

Diary: The second night sleep was bad due to the effect of coffee

Limitation of this sleep quality score

1. Prediction accuracy of logistic model is not the best

2. Insufficient data to justify the interpretation

Strength

- 1. High model accuracy
- 2. Able to identify significant variables
- 3. Data normalization

Weakness

- 1. Unable to evaluate sleep quality
- 2. Independence assumption

- 1. Explore the possibility of sleep quality evaluation with more data
- 2. Further justify the model assumptions (e.g. independence)
 - a. Try different epoch length
 - b. Autocorrelation diagnosis

We enjoy the data analysis of our own data, and we believe that wearable devices have high potential to enhance personal health.

By one of our group member

Inspiration

