Solutions to Lengths and Areas in Triangles

Dennis Chen

GQU

Contents

1	Unsourced 1.1 Solution	2 2
2	Unsourced 2.1 Solution	3
3	Unsourced 3.1 Solution	4
4	Unsourced 4.1 Solution	5
5	e-dchen Mock MATHCOUNTS, Sprint Round, Problem 17 5.1 Solution	6
6	Autumn Mock AMC 10, Problem 8 6.1 Solution	7
7	AIME I 2019/3 7.1 Solution	8
8	AMC 8 2019/24 8.1 Solution	9
9		10 10
		11

§ 1 Unsourced

Find the inradius of the triangles with the following lengths:

- **♦** 3, 4, 5
- **♦** 5, 12, 13
- **♦** 13, 14, 15
- **♦** 5, 7, 8

(These are arranged by difficulty. All of these are good to know.)

§ 1.1 Solution

We find the area of each of the triangles and divide by the semiperimeter.

- ♦ This is a right triangle, so the area is $\frac{3\cdot 4}{2} = 6$. Thus the inradius is $\frac{6}{\frac{3+4+5}{2}} = 1$.
- ♦ This is a right triangle, so the area is $\frac{5\cdot 12}{2} = 30$. Thus the inradius is $\frac{30}{\frac{5+12+13}{2}} = 2$.
- ♦ By Heron's Formula, the area of this triangle is $\sqrt{21(21-13)(21-14)(21-15)} = 84$. Thus the inradius is $\frac{84}{\frac{13+14+15}{2}} = 4$.
- ♦ By Heron's Formula, the area of this triangle is $\sqrt{10(10-5)(10-7)(10-8)} = 10\sqrt{3}$. Thus the inradius is $\frac{10\sqrt{3}}{\frac{5+7+8}{10}} = \sqrt{3}$.

§ 2 Unsourced

Prove that in a right triangles with legs of length a, b, and hypotenuse with length $c, r = \frac{a+b-c}{2}$.

§ 2.1 Solution

Let the triangle have legs AC,BC and hypotenuse AB, let the incenter of $\triangle ABC$ be I, and let the incircle be tangent to AC,BC at X,Y. Then note that CXOY is a square, since $\angle XCY = 90^\circ$ and $\angle OXC = \angle OYC = 90^\circ$ because AC,BC are tangents. So $r = s - c = \frac{a+b-c}{2}$.

§ 3 Unsourced

In $\triangle ABC$, AB=5, BC=12, and CA=13. Points D,E are on BC such that BD=DC and $\angle BAE=\angle CAE$. Find [ADE].

§ 3.1 Solution

Note that by the angle bisector theorem, $BE = \frac{5}{5+13} \cdot 12 = \frac{10}{3}$, so $ED = \frac{8}{3}$. Thus $[ADE] = \frac{1}{2} \cdot \frac{8}{3} \cdot 5 = \frac{20}{3}$.

§ 4 Unsourced

Find the maximum area of a triangle with two of its sides having lengths 10,11.

§ 4.1 Solution

By $\frac{1}{2}ab\sin C$, the area is $\frac{1}{2}\cdot 10\cdot 11\cdot \sin\theta=55\sin\theta$, where θ is the angle between the sides of lengths 10, 11. Clearly $\sin\theta$ is maximized when $\theta=90^\circ$, so the maximum area is 55.

§ 5 e-dchen Mock MATHCOUNTS, Sprint Round, Problem 17

Consider rectangle ABCD such that AB = 2 and BC = 1. Let X, Y trisect AB. Then let DX and DY intersect AC at P and Q, respectively. What is the area of quadrilateral XYQP?

§ 5.1 Solution

Without loss of generality, let AX < AY. Then note that we want to find [AQY] - [APX]. Since $\triangle AQY \sim \triangle CQD$, the height from Q to AY is $\frac{2}{5}$ and since $\triangle APX \sim \triangle CPD$, the height from P to AX is $\frac{1}{4}$. Thus $[AQY] = \frac{1}{2} \cdot \frac{4}{3} \cdot \frac{2}{5} = \frac{4}{15}$ and $[APX] = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{12}$, so $[PQXY] = \frac{4}{15} - \frac{1}{12} = \frac{11}{60}$.

§ 6 Autumn Mock AMC 10, Problem 8

Equilateral triangle ABC has side length 6. Points D, E, F lie within the lines AB, BC and AC such that BD = 2AD, BE = 2CE, and AF = 2CF. Let N be the numerical value of the area of triangle DEF. Find N^2 .

§ 6.1 Solution

We know that $[ABC] = 9\sqrt{3}$. By $\frac{1}{2}ab\sin\theta$,

$$[AFD] = \frac{1}{2} \cdot 4 \cdot 2\sin 60^{\circ} = 2\sqrt{3}$$

$$[BDE] = \frac{1}{2} \cdot 4 \cdot 4\sin 60^\circ = 4\sqrt{3}$$

$$[CEF] = \frac{1}{2} \cdot 2 \cdot 2 \sin 60^{\circ} = \sqrt{3}.$$

Thus $[ABC] = 9\sqrt{3} - 2\sqrt{3} - 4\sqrt{3} - \sqrt{3} = 2\sqrt{3}$, so the answer is 12.

§7 AIME I 2019/3

In $\triangle PQR$, PR=15, QR=20, and PQ=25. Points A and B lie on \overline{PQ} , points C and D lie on \overline{QR} , and points E and F lie on \overline{PR} , with PA=QB=QC=RD=RE=PF=5. Find the area of hexagon ABCDEF.

§ 7.1 Solution

We know that [PQR] = 150. By $\frac{1}{2}ab\sin\theta$,

$$[PFA] = \frac{1}{2} \cdot 5 \cdot 5 \sin \angle APF = \frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{4}{5} = 10$$

$$[QBC] = \frac{1}{2} \cdot \dots \cdot 5 \sin \angle BQC = \frac{1}{2} \cdot \dots \cdot \frac{3}{5} = \frac{15}{2}$$

$$[RDE] = \frac{1}{2} \cdot 5 \cdot 5 \sin \angle DRE = \frac{1}{2} \cdot 5 \cdot 5 \cdot 1 = \frac{25}{2}.$$

Thus $[ABC] = 150 - 10 - \frac{15}{2} - \frac{25}{2} = 120.$

§8 AMC 8 2019/24

In triangle ABC, point D divides side \overline{AC} so that AD:DC=1:2. Let E be the midpoint of \overline{BD} and let F be the point of intersection of line BC and line AE. Given that the area of $\triangle ABC$ is 360, what is the area of $\triangle EBF$?

§ 8.1 Solution

We use mass points. Note that we can assign $\diamond A = \diamond C = 1$, implying $\diamond D = 2$, which leads to $\diamond B = 2$ and $\diamond E = 4$. Thus $\diamond F = 3$.

Now note that $[EBF] = [ABC] \cdot \frac{EF}{AF} \cdot \frac{BF}{BC}$ by $\frac{bh}{2}$, and that

$$[ABC] \cdot \frac{EF}{AF} \cdot \frac{BF}{BC} = 360 \cdot \frac{1}{4} \cdot \frac{1}{3} = 30$$

by mass points.

Unsourced § 9

Consider $\triangle ABC$ such that AB = 8, BC = 5, and CA = 7. Let AB and CA be tangent to the incircle at T_C , T_B , respectively. Find $[AT_BT_C]$.

§ 9.1 **Solution**

The gist of the solution is that we use Heron's to find that $[ABC] = 10\sqrt{3}$, use the Two Tangent Theorem to find $AT_B = AT_C = 5$, and use $\frac{1}{2}ab\sin\theta$ to find $\frac{[AT_BT_C]}{[ABC]}$, which determines $[AT_BT_C]$. We first prove the following lemma, which we have implicitly used on the problems before this.

Lemma 1 (Area Ratio Given Collinear Points) Given collinear points P, A, X and P, B, Y,

$$\frac{[PXY]}{[PAB]} = \frac{PX \cdot PY}{PA \cdot PB}.$$

Proof: Note that $[PXY] = \frac{1}{2}PX \cdot PY \sin \angle XPY$ and $[PAB] = \frac{1}{2}PA \cdot PB \sin \angle APB$, and since P, A, Xand P, B, Y are collinear, $\sin \angle XPY = \sin \angle APB$, which proves our desired result.

Now note that $\frac{[AT_BT_C]}{[ABC]} = \frac{5.5}{7.8}$, implying that $[AT_BT_C] = \frac{125\sqrt{3}}{28}$.

§ 10 Unsourced

Consider trapezoid ABCD with bases AB and CD. If AC and BD intersect at P, prove the sum of the areas of $\triangle ABP$ and $\triangle CDP$ is at least half the area of trapezoid ABCD.

§ 10.1 Solution

Let $AB = b_1$, $CD = b_2$, and let the height from P to AB be h_1 and the height from P to CD be h_2 . Note that we want to prove

$$\frac{b_1h_1+b_2h_2}{2} \ge \frac{(b_1+b_2)(h_1+h_2)}{4},$$

which is equivalent to

$$2b_1h_1 + 2b_2h_2 \ge b_1h_1 + b_2h_2 + b_1h_2 + b_2h_1$$

$$b_1h_1 + b_2h_2 \ge b_1h_2 + b_2h_1$$
.

Note that by similar triangles, $b_2 = b_1 k$ and $b_2 = b_1 k$ for some constant k. So this is equivalent to

$$b_1h_1(1+k^2) \ge b_1h_1(2k)$$

$$k^2 + 1 \ge 2k$$

$$(k-1)^2 \ge 0,$$

and the last inequality is obviously true. Since all steps are reversible, we are done.

