PC4245 PARTICLE PHYSICS HONOURS YEAR Tutorial 1

1. From c, \hbar , and G (Newton's constant of universal gravitation), construct a quantity ℓ_p with the dimension of length, a quantity t_p with the dimension of time, a quantity m_p with the dimension of mass. These are known as $Planck\ length$, the $Planck\ time$ and $Planck\ mass$, respectively, after Max Planck, who first published then in 1899 – the year before the eponymous constant itself. Work out the actual numbers in meters, seconds, and kilograms. Also calculate the $Planck\ energy\ (E_p=m_pc^2)$ in GeV. [These quantities set the scale at which quantum gravity is expect to be relevant.]

(b) What is the gravitational analog to the fine structure constant? Fine the actual number, using (i) the mass of the electron, (ii) the Planck mass. $\alpha = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $F = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $F = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $F = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $F = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $q_1 = \frac{e^2}{4\pi\epsilon_0 r^2} \rightarrow \frac{e^2}{\hbar c}$ comes from $P = \frac{q_1 q_2}{4\pi\epsilon_0 r^2}$ by setting $Q_1 = \frac{e^2}{4\pi\epsilon_0 r^2}$ by setting $Q_1 = \frac{e^2}{4\pi\epsilon_$

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 12.9, page 420].

2. What is the Gell-Mann-Nishijima formula? Can it be generalized?

$$Q = I_3 + \frac{1}{2}(A + S)$$

$$[2Q = A + U + D + S + C + B + T]$$
Note that $2I_3$ is replaced by $u + D$

$$U = up ness$$

$$D = down ness$$
The Gell-Mann/Okubo mass formula relates the masses of members of the baryon

TO.

In MeV / c^2.

 $m_{\Xi} = 1533$ $m_{\Lambda} = 1115.68$

 $\Delta = 1232$

 $\Sigma^* = 1385$

 Ξ * = 1533

M = 938.565

 $\Sigma = 1192.64$

The *Gell-Mann/Okubo mass formula* relates the masses of members of the baryon octet (ignoring small differences between p and n; Σ^+ , Σ^0 , and Σ^- ; and Ξ^0 and Ξ^-): $2(m_N + m_\Xi) = 3m_\Lambda + m_\Sigma$

Using this formula, together with the known masses of the *nucleon* N (use the average of p and n), Σ (again, use the average), and Ξ (ditto), "predict" the mass of the Λ . How close do you come to the observed value?

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 1.4, page 56]. Calc: 1250 MeV / c^2

[Answer: m_A (observed) = 1116 MeV/ c^2] Actual: 1116 MeV / c^2

In MeV / c^2,

The mass formula for decuplets is much simpler –equal spacing between the rows:

$$M_{\Delta}-M_{\Sigma^*}=M_{\Sigma^*}-M_{\Xi^*}=M_{\Xi^*}-M_{\Omega}$$

Using this formula (as Gell-Mann did) to predict the mass of the Ω^- . (Use the average of the first two spacing to estimated the third.) How close is your prediction to the observed value?

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 1.6, page 57].

[Answer: M_{Ω} (observed) = 1672 MeV/ c^2] Calc: 1683.5 MeV/ c^2 Actual: 1672 MeV/ c^2

Sketch the lowest-order Feynman diagram representing Delbruck scattering: $\gamma + \gamma \rightarrow \gamma + \gamma$. This process, the scattering of light by light, has no analog in classical electrodynamics.

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 2.2, page 86].

6. A pion traveling at speed v decays into a muon and neutrino, $\pi^- \to \mu^- + \overline{\nu}_{\mu}$. If the neutrino emerges at 90° to the original pion direction, at what angle does the μ come

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 3.15, page 111].

[Answer:
$$\tan \theta = (1-m \frac{2}{\mu}/m_{\pi}^2)/(2\beta\gamma^2)$$
]

Particle A (energy E) hits particle B (at rest), producing particles $C_1, C_2, ... A + B$ $\rightarrow C_1 + C_2 + ... + C_n$. Calculate the threshold (i.e., minimum E) for this reaction, in terms of the various particle masses.

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 3.16, page 111].

[Answer:
$$E = \frac{M^2 - m_A^2 - m_B^2}{2m_B}c^2$$
, where $M \equiv m_1 + m_2 + \dots + m_n$]

8. Particle A, at rest, decays into particles B and $C(A \rightarrow B + C)$.

[Answer:
$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}c^2$$
]

b. Find the magnitudes of the outgoing momenta.

Answer:
$$\left| p_B \right| = \left| p_C \right| = \frac{\sqrt{\lambda(m_A^2, m_B^2, m_C^2)}}{2m_A} c$$
, where λ is the so-called triangle function: $\lambda(x, y, z) \equiv x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$.

c. Note that λ factors: $\lambda(a^2, b^2 c^2) = (a + b + c)(a + b - c)(a - b + c)(a - b - c)$. Thus $p_B |_{\infty}$ goes to zero when $m_A = m_B + m_C$, and runs imaginary if $m_A < m_B + m_C$ is the threshold condition for the rxn $(m_B + m_C)$. Explain. to occur; \overline{B} and C will have zero spatial momentum if the condition is true, and the rxn will not occur if RHS > LHS

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2nd Edition, Problem 3.19, page 112].

9. In reactions of the type $A + B \rightarrow A + C_1 + C_2 + \cdots$ (in which particle A scatters off particle B, producing $C_1, C_2, ...$), there is another inertial frame [besides the lab (B at rest) and the CM (P_{TOT} = 0)] which is sometimes useful. It is called the Breit, or "brick wall," frame, and it is the system in which A recoils with its momentum reversed ($p_{A \text{ after}} = -p_{A \text{ before}}$), as though it had bounced off a brick wall.

Take the case of elastic scattering $(A + B \rightarrow A + B)$; if particle A carries energy E, and scatters at an angle θ , in the CM, what is its energy in the Breit frame?

Find the velocity of the Breit frame (magnitude and direction) relative to the CM.

[This question is from the D J Griffiths, Introduction to Elementary Particles, 2^{nd} Edition, Problem 3.24, page 112].