## Good Data Practices For Machine Learning

Data4ML

Summer 2022

#### It's All About Data

Good Machine Learning starts with good datasets

- What makes a dataset 'good'
  - Reproducible
  - 'FAIR' Finable Accessible Interoperable and Reusable
- How to plan out your data taking

What makes a data set 'Al-Ready'

#### Reminder

- Clear Data Splits
  - Designate some examples as training data
  - Designate some examples as testing data
- Structed Data is 'Tidy' https://vita.had.co.nz/papers/tidy-data.pdf
  - Every column is a variable.
  - Every row is an observation.
  - Every cell is a single value
- The Dataset is Clean
  - No missing values or 'Nans'
  - No 'bad' data
  - Consistent as Possible

#### ML Data Content

ML models are programed with data

Beyond technical requirements the content of the data is important

- What is in your data determines how your model works
  - Will it generalize
  - Will it be able to train
  - How accurate will it be

### Confounders

- Beyond the format of the data good datasets have limited irrelevant confounders
- ML picks up on patterns, so you don't want to add your own that might not be relevant to the question you're asking

Columbia River



Riverbend



## Confounders - Example

- Study interested in understand Phenotype differences in two populations
- Rulers placed in image for scale Good for Consistency
- ID numbers include in image Good for reproducibility

Columbia River



Riverbend



## Confounders - Example

- Ruler color differs between collection site!
- ID numbers differ between collection site
- Both effects were learned by a classifier trying to predict the phenotype from the image!

Columbia River



Riverbend



#### Confounders - Lessons

- You may need to clean your data before training an ML algorithm
- Sometimes what's best for reproducibility is bad for ML algorithms
  - If you inject unique features into your data for each subject or experiment it can help you keep organized
  - Expect ML models to learn these features too! You'll need to remove them before training.
- This happens in other kinds of data too not just images

Columbia River



Riverbend



## What's the Confounder? Husky or Wolf



https://arxiv.org/abs/1602.04938

#### Confounders

• Is it a problem?



(a) Husky classified as wolf

(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

|                             | Before       | After        |
|-----------------------------|--------------|--------------|
| Trusted the bad model       | 10 out of 27 | 3 out of 27  |
| Snow as a potential feature | 12 out of 27 | 25 out of 27 |

Table 2: "Husky vs Wolf" experiment results.

https://arxiv.org/abs/1602.04938

## How much data do you need for ML

- A random answer on Quroa
  - At a bare minimum, collect around 1000 examples. For most "average" problems, you should have 10,000 100,000 examples.
- Statements like this are common, and completely incorrect
- Problem: There is no correct answer
  - ML finds patterns, the more obvious the pattern the less data you need
  - How good do you need your algorithm to work?
    - Better than people at something people are really good at like object recognition
      - A lot of data
    - Better than nothing
      - A little data
  - Do patterns exist?
    - If not then no amount of data will help

## Learning Curves

- Predicting sample size required for classification performance <a href="https://bmcmedinformdecismak.biomedcen">https://bmcmedinformdecismak.biomedcen</a> <a href="tral.com/articles/10.1186/1472-6947-12-8">tral.com/articles/10.1186/1472-6947-12-8</a>
- You'll need some data to estimate how much more you'll need to reach a given accuracy
- ML algorithms improve with data until they reach a saturation point
- Can be useful to train models early in data taking to get an idea of how much more you'll need to reach a certain goal





## Models have different learning curves



## Data Splits – How Much

- Recommendation split data into 80% training 20% testing
- What's the tradeoff?
  - More testing data means better estimates of how well your model is working
  - More training data means the better your model works.
- Another Recommendation if this split doesn't give you enough testing data consider a different validation strategy
  - Cross-validation K-Folds or leave one out
  - Both the above give you estimates of how well some models

## Extrapolation

- ML does a lot of neat things, but it isn't magic
- Unless specified treat ML algorithms as universal function approximators
  - i.e. 'Linear' regression is not a universal function approximator
- If you're collecting data make sure you collect 'representative' samples



#### **Dataset Bias**

- ML classifiers and algorithms will do there best to learn what they see in there training data.
- Example
  - Inputs: Room Temperature
  - Target: A random draw from a bag with 5 red balls and 5 green balls
  - This Input is completely un-related a well trained ML model will predict probabilities of ~50% red ~50% green
- Example 2 Same except
  - Target: A random draw from a bag with 10 red balls and 5 green balls
  - A well-trained ML model will predict probabilities of ~66% red ~33% green
- If we turn our probabilities into decisions by using the >0.5 rule
  - Case 1: >50% is probably still random equal prediction of red and green
  - Case2: Red is always > 50% prediction is red all the time
- When we train a model we get to decided what data we include
  - We can balance the classes, leave them as is, or over-sample a class
  - In our random example above this lets us pick an ML output anywhere from 100% red to 100% green
- Whenever there is uncertainty your class balance will change your result!
- Be-careful about think of these results as the truth. Think of it as the truth of the training data you selected

## ML Experiment

- 1) Define your problem
- 2) Gather preliminary or existing data
- 3) Fit a test model
- 4) Use a learning curve fit to estimate how much more data you might need
- Use importance or attribution to look for confounders that might affect your data
- 6) Gather data and experiment with new models
- 7) Deploy/Publish Return to 6

# Case Study: Why Amazons Automated Hiring Tool Discriminated Against Women

- 2014 Amazon built a model to read resumes and predict who will be successful
  - Inputs: Resume Terms
  - Outputs: Hired/Not Hired
- Uncertainty in hiring is large
- Dataset was historical and very Male Gender was excluded so in theory the model shouldn't know
- Confounders "downgraded resumes that included the word "women's" as in "women's rugby team.""
- In search of objectivity the model reproduced the training data's gender bias
- The model was scraped before put into production

https://www.aclu.org/blog/womens-rights/womens-rights-workplace/why-amazons-automated-hiring-tool-discriminated-against

#### Conclusions and Homework

#### Conclusions

- It's important to think about:
  - Possible confounders
  - Dataset bias and balance
  - Are you going to use your model on new data that isn't representative in your training data

#### Homework:

- 1. Use penguins.csv to make a histogram of body mass by species
- 2. Train a Random Forest Classifier from penguins.csv to predict species
  - Split dataset
  - Select numeric predictors
  - Fit a random forest.