AUTOMATED CRATER DETECTION USING MACHINE LEARNING

A Dissertation Presented by Joseph Paul Cohen

Submitted to the Office of Graduate Studies, University of Massachusetts Boston, in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2016

Computer Science Program

ProQuest Number: 10118515

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10118515

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

© 2016 by Joseph Paul Cohen All rights reserved

AUTOMATED CRATER DETECTION USING MACHINE LEARNING

A Dissertation Presented by Joseph Paul Cohen

Approved as to style a	nd content by:	
Wei Ding, Associate P. Chairperson of Commi		
Dan A. Simovici, Profe Member	ssor	
Marc Pomplun, Profess Member	sor	
Zong-Guo Xia, Profess Member	or	
	Dan A. Simovici, Program Director Computer Science Program	
	Peter Fejer, Chairperson Computer Science Department	

ABSTRACT

AUTOMATED CRATER DETECTION USING MACHINE LEARNING

May 2016

Joseph Paul Cohen,
A.S., Massachusetts Bay Community College
B.S., University of Massachusetts Boston
M.S., University of Massachusetts Boston

Directed by Associate Professor Wei Ding

Craters are among the most studied geomorphic features in the Solar System because they yield important information about the past and present geological processes and provide information about the relative ages of observed geologic formations. This work focuses on improving the features extracted from satellite imagery in order to more accurately detect craters. The first focus is on improving the accuracy of methods based on semi-automatic Haar image features by only considering subsets of the features. Using feature selection methods for black-box optimization such as genetic algorithms and randomized variable elimination we are able to achieve better performance. The second focus was to learn the optimal filters and features based on training examples and replace the semi-automatic Haar features with full-automatic convolutional filters. For this a Convolutional Neural Network (CNN) called CraterCNN is designed which outperforms all existing methods and achieves up to 90% on the standard crater benchmark dataset. Then the GoogLeNet inception architecture is used to further improve the benchmark and achieve up to 93% F1-Score. In order to decrease the computational cost

of CNN models to make global Martian analysis possible a convolutional feature selection method called RANDOMOUT is proposed. This method identifies convolutional filters which have been abandoned by the network by using the convolutional gradient norm and reinitializes them during training. RANDOMOUT method enables CNNs to increase their accuracy to that of a network containing more filters but without the computational cost of actually adding more filters. This dissertation showcases significant progress in the field of automated crater detection and provides methods that can be applied to many other areas of automated planetary science.

ACKNOWLEDGMENTS

This work is partially funded by a grant from the National Science Foundation Graduate Research Fellowship Program (grant number: DGE-1356104), and National Nuclear Security Agency of the U.S. Department of Energy (grant number: DE-NA0001123), and Computing and Communication Foundations Program (grant number: CCF-1062749) as well as by the U.S. National Aeronautics and Space Administration (grant number: NNX09AK86G). This work utilized the supercomputing facilities managed by the Research Computing Department at the University of Massachusetts Boston as well as the resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science.

TABLE OF CONTENTS

1 DESIRE AND CHALLENGES			ND CHALLENGES	1
	1.1	Applio	cations: Surface Dating	1
	1.2	Applio	cations: Query-by-Content and Regionalization	2
	1.3	Contri	ibutions	3
	1.4	Open	Problems	4
2	REI	LATED	WORK, TRENDS, AND BACKGROUND	5
	2.1	Super	vised/Unsupervised Learning	6
	2.2	Featur	re Selection	7
3	FEA	ATURE	EXTRACTION	12
	3.1	Semi-a	automatic (Haar)	12
	3.2	Fully-	automatic (Convolutional Neural Network Layers)	13
4	FEA	ATURE	SELECTION AND WEIGHTING ALGORITHMS	17
	4.1	Genet	ic Feature Selection	17
		4.1.1	Subset Representation as Chromosome	19
		4.1.2	Wrapped Classifier Multiobjective Fitness Function	20
		4.1.3	Random Crossover 🛇	21
		4.1.4	Mutation	22
		4.1.5	Greedy Random Search (GRS)	22
		4.1.6	Weighted Random Search	24

		4.1.7	Weighted Random with Simulated Annealing Search	26
		4.1.8	Shrinking Cardinality Chromosome Search (SCCS) $\ \ldots \ \ldots$	27
	4.2	Probal	oilistic Feature Selection	31
		4.2.1	Calculating the Optimal Number of Image Attributes to Re-	
			move	33
		4.2.2	Cost Function	34
		4.2.3	Dynamic Programming to Precompute the Cost Function	
			Offline	36
		4.2.4	Feedback Loop Estimation Correction	37
	4.3	Neural	Network Feature Selection (RandomOut)	40
5	EVA	LUATI	ON	44
	5.1		lutional Neural Network	
	5.2	Rando	mOut	48
6	CON	ICLUSI	ION	53
REFERENCES			55	

LIST OF TABLES

2.1	The datasets shown here are well established University of Califor-	
	nia, Irvine (UCI) datasets	8
4.1	Descriptions of probabilistic feature selection notation	33
5 1	F1-score via 10-fold cross validation	48

LIST OF FIGURES

1.1	An example of two square regions of NLCD data constructed as	
	histograms. The legend to the right shows the name of each category.	3
2.1	An overview of the last 16 years of automated crater detection re-	
	search. Major concepts in the field are shown in colored boxes with	
	their citations along with lines showing where these publications	
	appear on the timeline	6
2.2	Visualizations of the wrapper subset search space for multiple datasets.	
	The top node in each panel represents the subset containing no	
	features and the bottom node represents the subset containing all	
	features. The colors in b, c , and d represent the accuracy and are	
	scaled such that blue represents the minimum and red represents	
	the maximum	Ć
3.1	A visualization of a Haar feature to demonstrate the alignment of	
	it's values	13
3.2	An example convolutional layer	14
3.3	Crater Convolutional Neural Network (CNN) architecture compu-	
	tation graph. Each layer is identified with a letter and lines show	
	processing from left to right	15

3.4	A crater and non-crater candidate are processed by the first con-	
	volutional layer. Eight filters with interesting activation patterns	
	are shown to the right of each candidate image in false color. Val-	
	ues are scaled and then colored to make these values visible and to	
	maximize contrast within each square with blue $=$ low and red $=$	
	high	16
4.1	Shown here is diagram based on one used by Kohavi to represent the	
	search space for 4 features [KJ97]. Each vertex is a possible subset of	
	features and it's size represents the result of it's evaluation function	
	in relation to other verticies. Vertices that have been visited by the	
	algorithm are colored blue and unvisited in gray	19
4.2	Sample F1 values of subsets given proportional value in the pie chart	
	based on their computed $norm$ values. The edge of the pie chart is	
	taken up based on the F1 score of the subset	25
4.3	This brick chart details the GetWeightedSubset function in Algo-	
	rithm 4. It shows the subsets depicted in Figure 4.2 but as rectan-	
	gles side by side. Each block contains it's fitness score and also it's	
	normalized fitness value	26
4.4	Subset size distributions and their F1 score on the datasets. These	
	are the resulting subsets from over 1200 runs of the algorithm. It is	
	clear that the smaller the subset size the better the F1 is	28

4.5	The SCCS algorithm restricts the search space by eliminating higher	
	cardinality vertices from selection. This upper bound is constructed	
	with the mean of the highest performing vertices. Each vertex is a	
	possible subset of features and it's size represents the result of it's	
	evaluation function in relation to other vertices	9
4.6	Pipeline of attribute selection process	2
4.7	The testing accuracy of the network is plotted while varying nothing	
	but the random seeds used to initialize the network 4	1
5.1	Labels of each crater dataset tile. This dataset is composed of 6	
	tiles (1700x1700 pixels each) with resolution 12.5m/pixel shown in	
	Figure. The imagery is nadir panchromatic footprint h0905_0000	
	that was captured by the HRSC aboard the Mars Express spacecraft. 4	5
5.2	The computation graph of the CraterCNN [CLL16] is shown split	
	between two columns. The data input is shown in the upper left	
	and the softmax output is shown in the lower right corner 4	7
5.3	The computation graph of the Inception BN network [IS15] is shown	
	split between two columns. The data input is shown in the upper	
	left and the softmax output is shown in the lower right corner 4	9
5.4	Resulting accuracy gain of when using two hyperparameters of extscRan-	
	dom Out threshold and $\%$ of epochs are varied. Each cell value in	
	the heatmap is the mean gain of 50 different random seeds when	
	using RandomOut	0

5.5	Evaluation of 50 random seeds sorted by accuracy and shown side by	
	side when using RANDOMOUT and when not. Left: the East region	
	with RandomOut was run with $\tau = 1 \times 10^{-8}$ with $\mathcal{P} = 60\%$. Right:	
	the West region with Random Out was run with $\tau = 1 \times 10^{-12}$ with	
	$\mathcal{P} = 90\%$	51
5.6	Here the number of filters used in the network is varied between	
	1 to 10 with and without RANDOMOUT enabled. This plot shows	
	the mean accuracy score from 50 different random seeds of CNNs	
	with RANDOMOUT lead those without it by around 1 to 2 filters	
	consistently. This means the RANDOMOUT method enables CNNs	
	to increase their accuracy to that of a network containing more	
	filters but without the computational cost of actually adding more	
	filters.	52

CHAPTER 1

DESIRE AND CHALLENGES

Craters are among the most studied geomorphic features in the Solar System because they yield important information about the past and present geological processes and provide information about the relative ages of observed geologic formations. We systematically study and present a method for automatic crater detection using advanced machine learning to deal with the large amount of satellite imagery collected.

The challenge of automatically detecting craters comes from their is complex surface because their shape erodes over time to blend into the surface. The limiting factor in existing work is the use of hand crafted filters on the image such as Gabor, Sobel filters, or Haar features. These hand crafted methods rely on domain knowledge to construct. We would like to learn the optimal filters and features based on training examples.

1.1 Applications: Surface Dating

The most popular usage of crater counts is to estimate the age of a specific area of a planetary body. Studies involving crater counts have discovered evidence for recent volcanism on Mars by studying the distribution of Martian craters in relation to craters on the Moon [HMM99]. This is possible because of the observation that old