CS2601 Linear and Convex Optimization Homework 4

Due: 2021.10.28

1. Let Δ_{n-1} be the probability simplex. The **entropy** of a probability distribution $x \in \Delta_{n-1}$ is defined by

$$H(\boldsymbol{x}) = -\sum_{i=1}^{n} x_i \log x_i.$$

where we use the convention $0 \log 0 = 0$.

- (a). Use the concavity of $\log x$ to show that $H(x) \leq \log \|x\|_0 \leq \log n$, where $\|x\|_0 = \sum_{i=1}^n \mathbb{1}\{x_i \neq 0\}$ is the number of nonzero components of x. Hint: If $\|x\|_0 = k$, you can assume the first k components are nonzero without loss of generality.
- (b). Show that the uniform distribution \bar{x} with $\bar{x}_i = \frac{1}{n}$ for i = 1, 2, ..., n is the **unique** maximum of H(x) on Δ_{n-1} . Hint: For uniqueness, show H(x) is strictly **convex** on $C = \{x \in \Delta_{n-1} : x > 0\}$ and use part (a) for $x \in \Delta_{n-1} \setminus C$.
- **2.** Let $f:(a,b)\to\mathbb{R}$ be convex, where $-\infty\leq a< b\leq +\infty$. Let X be random variable taking values in (a,b). Suppose the expectations $\mathbb{E}X$ and $\mathbb{E}f(X)$ exist. Prove Jensen's inequality $f(\mathbb{E}X)\leq \mathbb{E}f(X)$ by completing the following steps.
- (a). Let $\mu = \mathbb{E}X$. For $a < s < \mu < u < b$, show

$$\frac{f(\mu) - f(s)}{\mu - s} \le \frac{f(u) - f(\mu)}{u - \mu}.$$

(b). Show that there exists $\beta \in \mathbb{R}$ such that

$$f(x) \ge f(\mu) + \beta(x - \mu), \quad \forall x \in (a, b)$$
 (*)

Hint: You can take

$$\beta = \sup_{a < s < \mu} \frac{f(\mu) - f(s)}{\mu - s}.$$

Obviously $\beta > -\infty$. Use part (a) to show that $\beta < +\infty$ and satisfies (*) (consider $a < x < \mu$ and $\mu < x < b$ separately).

(c). Show that

$$f(X) \ge f(\mu) + \beta(X - \mu).$$

and conclude $\mathbb{E}f(X) \geq f(\mathbb{E}X)$ by taking expectation.

Remark. If f is differentiable, we can take $\beta = f'(\mu)$ by the first-order condition. Part (a) shows that (\star) holds without assuming differentiability. The number β used in the proof generalizes the concept of gradient (derivative) $f'(\mu)$. Any β satisfying (\star) is called a **subgradient** of f at μ . For example, any $\beta \in [-1,1]$ is a subgradient of f(x) = |x| at 0.

3. Is the following set convex? Show your argument.

$$S = \{ \boldsymbol{x} = (x_1, x_2) \in \mathbb{R}^2 : \max\{ \|\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\|^3, \log(1 + e^{3x_1 + 2x_2}) \} \le 2 \}.$$

You can use any results we have proved in class.

4. Determine if the following optimization problems are convex optimization problems.

(a).

$$\min_{x_1, x_2} \quad x_1^2 - 2x_1x_2 + x_2^2 + x_1 + x_2$$
s.t.
$$(x_1 - x_2)^2 + 4x_1x_2 + e^{x_1 + x_2} \le 0$$

$$x_1 - 3x_2 = 0$$

(b).

$$\begin{aligned} & \min_{x_1, x_2} & x_1^2 + x_2^4 \\ & \text{s.t.} & x_1 e^{-(x_1 + x_2)} \leq 0 \\ & x_1^2 - 2x_1 x_2 + x_2^2 + x_1 + x_2 \leq 0 \\ & 6x_1^2 - 7x_2 = 0 \end{aligned}$$