```
In [45]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [46]: data=pd.read_csv("/home/placement/Desktop/venkatesh/fiat500.csv")

In [47]: data

Out[47]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

```
In [48]: data1=data.loc[(data.previous_owners==1)]
    data1
```

Out[48]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1389 rows × 9 columns

```
In [49]: datal=data.drop(['ID','lat','lon'],axis=1)
In [50]: datal=pd.get_dummies(datal)
In [51]: y=datal['price']
X=datal.drop('price',axis=1)
```

```
In [52]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=42)#prev10%testing
```

Elastic net

```
In [53]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(X train, y train)
Out[53]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [54]: elastic regressor.best params
Out[54]: {'alpha': 0.01}
In [55]: elastic=ElasticNet(alpha=0.1)
         elastic.fit(X train,y train)
         y pred elastic=elastic.predict(X test)
```

Out[57]: 594506.161951724

```
In [59]: Results=pd.DataFrame(columns=['Price','Predicted'])
    Results['Price']=y_test
    Results['Predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results
```

Out[59]:

	index	Price	Predicted	ld
0	481	7900	5840.961095	0
1	76	7900	7150.647979	1
2	1502	9400	9863.866187	2
3	669	8500	9717.668610	3
4	1409	9700	10034.517091	4
149	1167	6900	7605.287074	149
150	1417	5600	6770.618440	150
151	1353	7500	8103.839842	151
152	1085	10900	10308.600617	152
153	486	9500	8826.631004	153

154 rows × 4 columns

```
In [60]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Price',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.plot()
```

Out[60]: []

In []:	
---------	--