5

10

CLAIMS

- A method of analyzing vocal signals of a speaker (λ) , characterized in that a probability density representing the resemblances between representation of the speaker (λ) in a predetermined model and a predetermined set of vocal representations number \mathbf{E} of reference speakers in predetermined model is used, and the probability therefrom density is analyzed so to deduce as information on the vocal signals.
- 2. The method as claimed in claim 1, characterized in that an absolute model (GMM), of dimension D, using a mixture of M Gaussians, is taken as predetermined model, for which the speaker (λ) is represented by a set of parameters comprising weighting coefficients (α_i , i = 1 to M) for the mixture of Gaussians in said absolute model (GMM), mean vectors (μ_i , i = 1 to M) of dimension D and covariance matrices (Σ_i , i = 1 to M) of dimension D \times D.
- The method as claimed in claim 2, characterized in 20 the probability density of the resemblances between the representation of said vocal signals of the the predetermined set of speaker (λ) and representations of the reference speakers represented by a Gaussian distribution $(\psi(\mu^{\lambda}, \Sigma^{\lambda}))$ 25 mean vector (μ^{λ}) of dimension E and of covariance matrix (Σ^{λ}) of dimension E \times E which are estimated in the space of resemblances to the predetermined set of E reference speakers.
- 30 4. The method as claimed in claim 3, characterized in that the resemblance $(\psi(\mu^{\lambda}, \Sigma^{\lambda}))$ of the speaker (λ) with respect to the E reference speakers is defined, for which speaker (λ) there are N_{λ} segments of vocal signals represented by N_{λ} vectors of the space of resemblances

5

with respect to the predetermined set of E reference speakers, as a function of a mean vector (μ^{λ}) of dimension E and of a covariance matrix (Σ^{λ}) of the resemblances of the speaker (λ) with respect to the E reference speakers.

- 5. The method as claimed in claim 4, characterized in that a priori information is further introduced into the probability densities of the resemblances $(\psi(\tilde{\mu}^{\lambda}, \tilde{\Sigma}^{\lambda}))$ with respect to the E reference speakers.
- 10 6. The method as claimed in claim 5, characterized in that the covariance matrix of the speaker (λ) is independent of said speaker $(\tilde{\Sigma}^{\lambda} = \tilde{\Sigma})$.
- A system for the analysis of vocal signals of a speaker (λ) , comprising databases in which vocal signals of a predetermined set of speakers and their 15 associated vocal representations in a predetermined model by mixing of Gaussians are stored, as well as databases of audio archives, characterized in that it comprises means for analyzing the vocal signals using a vector representation of the resemblances between the 20 representation of the speaker (\(\lambda\) and predetermined set of vocal representations reference speakers.
- 8. The system as claimed in claim 7, characterized in that the databases futher store the vocal signals analysis performed by said means for analyzing.
 - 9. The use of a method as claimed in any one of claims 1 to 6, for an indexing of audio documents.
- 10. The use of a method as claimed in any one of 30 claims 1 to 6, for an identification of a speaker.

11. The use of a method as claimed in any one of claims 1 to 6, for a verification of a speaker.