Overview of Advanced Calculus (Folland)

Brett Saiki

Oct. 2020

This is a condensed version of Gerald B. Folland's $Advanced\ Calculus$ containing only definitions, propositions, theorems, etc. For proofs and detailed explanations, refer to the actual text.

1 Introduction / Basic Topology

1.1 Euclidean Spaces and Vectors

Definition. If $\mathbf{x} \in \mathbb{R}^n$, the **norm** of \mathbf{x} is defined to be

$$|\mathbf{x}| = \sqrt{x_1^2 + \ldots + x_n^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

Definition. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the **distance** between \mathbf{x} and \mathbf{y} is defined to be

$$|\mathbf{x} - \mathbf{y}| = \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$$

1.1 Proposition (Cauchy's Inequality). For any $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$,

$$|\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}||\mathbf{b}|$$

1.2 Proposition (The Triangle Inequality). For any $a, b \in \mathbb{R}^n$,

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|$$

1.3 Equation.

$$\max(|x_1|, \dots, |x_n) \le |\mathbf{x}| \le \sqrt{n} \max(|x_1|, \dots, |x_n)$$

1.2 Subsets of Euclidean Space

Definition. A set $S \subset \mathbb{R}^n$ is **bounded** if there exists a ball that contains every point in S. In other words, there exists a contant C such that $|\mathbf{x}| < C$ for every $\mathbf{x} \in S$.

Definition. Let S be a subset of \mathbb{R}^n . Then the **complement** of S is the set of all points in \mathbb{R}^n not in S. The complement is denoted $\mathbb{R}^n \setminus S$ or S^c .

Definition. A point $\mathbf{x} \in \mathbb{R}^n$ is called an **interior point** of S if all points sufficiently close to \mathbf{x} are also in \S . The set of all interior points of S is called the **interior** of S and is denoted S^{int} .

Definition. A point $\mathbf{x} \in \mathbb{R}^n$ is called an **boundary point** of S if every ball centered at \mathbf{x} contains both points in \S and in \S^c . The set of all boundary points is called the **boundary** of S and is denoted ∂S . S is **open** if it contains none of its boundary points.

Definition. The closure of S is the union of S and all its boundary points and is given by

$$\overline{S} = S \cup \partial S$$

Defintiion. A neighborhood of a point $\mathbf{x} \in \mathbb{R}^n$ is a set of which \mathbf{x} is an interior point.

- **1.4 Proposition.** Suppose $S \subset \mathbb{R}^n$. Then, the following are true:
- a. S is open \Leftrightarrow every point of S is an interior point
- b. S is closed $\Leftrightarrow S^c$ is open

1.3 Limits and Continuity

1.6 Definition. The **limit** of $f(\mathbf{x})$ as \mathbf{x} approaches \mathbf{a} is L if for any $\epsilon > 0$, there is some $\delta > 0$ such that

$$|f(\mathbf{x}) - L| < \epsilon \text{ whenever } 0 < |\mathbf{x} - \mathbf{a}| < \delta$$

1.7 Definition. Alternatively, the limit of f(x) exists if for every $\epsilon > 0$, there exists a $\delta' > 0$ such that

$$|f(\mathbf{x}) - L| < \epsilon$$
 whenever $0 < \max(|x_1 - a_1|, \dots, |x_n - a_n|) < \delta'$

1.8 Definition. If f is a function on $U \subset \mathbb{R}^n$, then f is **continuous** on U if for every $\mathbf{x} \in U$,

$$|f(\mathbf{x}) - f(\mathbf{a})| < \epsilon \text{ whenever } |\mathbf{x} - \mathbf{a}| < \delta$$

- **1.9 Theorem.** Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is continuous on $U \subset \mathbb{R}^n$ and $g: \mathbb{R}^m \to \mathbb{R}^k$ is continuous on $\mathbf{g}(U) \subset \mathbb{R}^m$. Then, $\mathbf{g} \circ \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^k$ is continuous on U.
- 1.10 Theorem. Let $f_1(x,y) = x + y$, $f_2(x,y) = xy$, and $g(x) = \frac{1}{x}$. Then, f_1 and f_2 are continuous on \mathbb{R}^2 and g is continuous on $\mathbb{R} \setminus \{0\}$.
- 1.11 Corollary. The function $f_3(x,y) = x y$ is continuous on \mathbb{R}^2 , and the function $f_4(x,y) = \frac{x}{y}$ is continuous on $\{(x,y): y \neq 0\}$.
- **1.12 Corollary.** Result of 1.10 and 1.11: the sum, difference, and product of two continuous functions is continuous while the quotient of two continuous functions is continuous where the denominator is zero.
- **1.13 Theorem.** Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^k$ is continuous and $U \subset \mathbb{R}^k$, and let $S = \{x \in \mathbb{R}^n : \mathbf{f}(x) \in U\}$. Then, S is open if U is open and S is closed if U is closed. In brief, continuous functions map open sets to open sets and closed sets to closed sets.

1.4 Sequences

- **1.14 Theorem.** Suppose $S \subset \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. Then, \mathbf{x} belongs to \overline{S} if and only if there is a sequence in S that converges to \mathbf{x} .
- **1.15 Theorem.** Given $S \subset \mathbb{R}^n$, $\mathbf{a} \in S$, and $\mathbf{f} : S \to \mathbb{R}^m$, the following are equivalent:
- (a) **f** is continuous at **a**
- (b) for any sequence $\{\mathbf{x}_k\}$ in S that converges to \mathbf{a} , the sequence $\{\mathbf{f}(\mathbf{x}_k)\}$ converges to $\mathbf{f}(\mathbf{a})$.

Definition. A point $\mathbf{a} \in \mathbb{R}^n$ is an accumulation point of $S \subset \mathbb{R}^n$ if every neighborhood of \mathbf{a} contains infinitely many points in S.

1.5 Completeness

The Completeness Axiom. Let S be a nonempty set of real numbers If S has an upper bound, then S has a least upper bound, called the **supremum** of S (sup S) is the smallest number u such that $x \leq u$ for all $x \in S$. If S has a lower bound, the **infimum** of S (inf S) is the largest number u such that $x \geq u$ for all $x \in S$. If S has no upper bound, we shall define sup S to be $+\infty$, and if S has no lower bound, we shall define inf S to be $-\infty$.

- **1.16 Theorem (The Monotone Sequence Theorem).** Every bounded monotone sequence in \mathbb{R} in convergent. More precisely, the limit of an increasing (resp. decreasing) sequence is the supremum (resp. infimum) of its set of values.
- **1.17 Theorem (The Nested Interval Theorem).** Let $I_1 = [a_1, b_1], I_2 = [a_2, b_2], \ldots$ be a sequence of closed, bounded, intervals in \mathbb{R} . Suppose that (a) $I_1 \supset I_2 \supset \ldots$ and (b) $b_k a_k$ tends to 0 as $k \to \infty$. Then, there is exactly one points in every I_k .
- 1.18 Theorem. Every bounded sequence in \mathbb{R} has a convergent subsequence.
- **1.19 Theorem.** Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Definition. A sequence $\{x_k\}$ is Cauchy if $x_k - x_j \to 0$ as $k, j \to \infty$. In other words, a sequence is Cauchy if for every $\epsilon > 0$, there exists an integer K such that $|x_k - x_j| < \epsilon$ whenever k > K, j > K.

1.20 Theorem A sequence is Cauchy if and only if it is convergent.

1.6 Compactness

- 1.21 Theorem (Bolzano-Weierstrauss Theorem). If S is a subset of \mathbb{R}^n , the following are equivalent:
- (a) S is compact
- (b) Every sequence of points in S has a convergent subsequence that converges to a point in S.

Definition. A set is **compact** if it is closed and bounded.

- **1.22 Theorem.** Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a continuous function and $U \subset \mathbb{R}^k$, and let $S = \{x \in \mathbb{R}^n : \mathbf{f}(x) \in U\}$. If S is compact, then $\mathbf{f}(S)$ is also compact. In brief, continuous functions map compact sets to compact sets.
- **1.23 Corollary (Extreme Value Theorem).** Suppose $S \subset \mathbb{R}^n$ is compact and $f: S \to \mathbb{R}$ is continuous. Then f has an absolute minimum and maximum on S. In other words, there exist points $a, b \in S$ such that $f(a) \leq f(x) \leq f(b)$ for all $x \in S$.

Definition. A collection \mathcal{U} of subsets of \mathbb{R}^n is called a **covering** of S if S is contained in the union of the sets in \mathcal{U} .

- 1.24 Theorem (Heine-Borel Theorem). If S is a subset of \mathbb{R}^n , the following are equivalent:
- (a) S is compact
- (b) Every open convering of S has a finite subconvering.

Definition. The **distance** between two sets $U, V \subset \mathbb{R}^n$ is defined to be

$$d(U, V) = \inf\{|\mathbf{x} - \mathbf{y}| : \mathbf{x} \in U, \mathbf{y} \in V\}$$

1.7 Connectedness

Definition. A set is **disconnected** if it is the union of two non-empty subsets, neither of which intersects the closure of the other. More formally, a set S is disconnected if there exist two sets U, V such that

$$S = U \cup V$$
 and $\overline{U} \cap \overline{V} = \emptyset$

Any set is **connected** if it is not disconnected.

- **1.25 Theorem.** The connected subsets of \mathbb{R} are precisely the intervals in \mathbb{R} .
- **1.26 Theorem.** Suppose $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is a continuous function and $U \subset \mathbb{R}^k$, and let $S = \{x \in \mathbb{R}^n : \mathbf{f}(x) \in U\}$. If S is connected, then $\mathbf{f}(S)$ is also connected. In brief, continuous functions map connected sets to connected sets.
- **1.27 Theorem (Intermediate Value Theorem).** Suppose $f: S \to \mathbb{R}$ is continuous at every point of S and $V \subset S$ is connected. If $a, b \in V$ and f(a) < t < f(b) or f(b) < t < f(a), then there is a point $c \in V$ such that f(c) = t.
- **1.28 Theorem.** If $S \in \mathbb{R}^n$ is arcwise connected, then S is connected.
- **1.30 Theorem.** If $S \in \mathbb{R}^n$ is open and connected, then S is arcwise connected.

1.8 Uniform Continuity

Definition. A function $\mathbf{f}: S \to \mathbb{R}^m$ is **uniformly continuous** on S if for every $\epsilon > 0$, there is a $\delta > 0$ such that

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| < \epsilon$$
 whenever $\mathbf{x}, \mathbf{y} \in S$ and $|\mathbf{x} - \mathbf{y}| < \delta$

1.33 Theorem. Suppose $S \subset \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^m$ is continuous at every point of S. If S is compact, then f is uniformly continuous on S.

2 Differential Calculus

2.1 Differentiability of One Variable

2.1, 2.2 Definition. A function $f: S \to \mathbb{R}$ is **differentiable** at a if there is a number m, called the **derivative**, such that

$$f(a+h) = f(a) + mh + E(h) \text{ where } \lim_{h \to 0} \frac{E(h)}{h} = 0$$

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- **2.5 Proposition.** Suppose f is defined on an open interval I. If f has a local maximum or minimum at the point $a \in I$ and f is differentiable at a, then f'(a) = 0.
- **2.6 Theorem (Rolle's Theorem).** Suppose f is continuous on [a,b] and differentiable on (a,b). If f(a) = f(b), there is at least one point $c \in (a,b)$ such that f'(c) = 0.

5

2.7 Theorem (Mean Value Theorem I). Suppose f is continuous on [a,b] and differentiable on (a,b). There is at least one point $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- **2.8 Theorem.** Suppose f is differentiable on I. Then, the following are true:
- (a) If $|f'(x)| \leq C$ for all $x \in I$, then $|f(b) f(a)| \leq C|b a|$ for all $a, b \in I$.
- (b) If f'(x) = 0 for all $x \in I$, then f is constant on I.
- (c) If $f'(x) \ge 0$ (resp. f'(x) > 0, $f'(x) \le 0$, f'(x) < 0) for all $x \in I$, then f is increasing (resp. strictly increasing, decreasing, strictly decreasing) on I.
- **2.9 Theorem (Mean Value Theorem II).** Suppose that f and g are continuous on [a,b] and differentiable on (a,b) and $g'(x) \neq 0$ for all $x \in (a,b)$. Then, there exists $c \in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

2.10 Theorem (L'Hôpital's Rule I). Suppose f and g are differentiable functions on (a,b) and $\lim_{x\to a^+} f(x) =$

$$\lim_{x\to a^+}g(x)=0. \text{ If } g' \text{ never vanishes on } (a,b) \text{ and } \lim_{x\to a^+}\frac{f'(x)}{g'(x)}=L, \text{ then } \lim_{x\to a^+}\frac{f(x)}{g(x)}=L.$$

- **2.11 Theorem (L'Hôpital's Rule II).** Theorem 2.10 (L'Hôpital's Rule I) remains valid if $\lim |f(x)| = \lim |g(x)| = \infty$.
- **2.12 Corollary.** For any a > 0, we have

$$\lim_{x \to \infty} \frac{x^a}{e^x} = \lim_{x \to \infty} \frac{\log x}{x^a} = \lim_{x \to 0^+} \frac{\log x}{x^{-a}}$$

Definition. The **partial derivative** of a function $f(x_1, \ldots, x_n)$ with respect to x_i is

$$\lim_{h\to 0} \frac{f(x_1,\ldots,x_j+h,\ldots,x_n)-f(x_1,\ldots,x_j,\ldots,x_n)}{h}$$

2.2 Differentiability of Several Variables

Partial derivatives are generally notated $\frac{\partial f}{\partial x_j}$, f_j or $\partial_j f$.

2.15 Definition. A function f defined on an open set $S \subset \mathbb{R}^n$ is called **differentiable** at a point $\mathbf{a} \in S$ if there is a vector $\mathbf{c} \in \mathbb{R}^n$ such that

$$\lim_{h\to 0} \frac{f(\mathbf{a}+\mathbf{h}) - f(\mathbf{a}) - \mathbf{c} \cdot \mathbf{h}}{|\mathbf{h}|} = 0$$

The vector **c** is called the **gradient** of f at **a** and is generally denoted $\nabla f(\mathbf{a})$.

2.16 Equation.
$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla(\mathbf{a}) \cdot \mathbf{h} + E(\mathbf{h})$$
 where $\frac{E(\mathbf{h})}{|\mathbf{h}|} \to 0$ as $\mathbf{h} \to \mathbf{0}$.

2.17 Theorem. If f is differentiable at **a**, then the partial derivatives $\partial_j f(\mathbf{a})$ all exist, and they are the components of the vector $\nabla f(\mathbf{a})$.

6

2.18 Theorem. If f is differentiable at a, then f is continuous at a.

2.19 Theorem. Let f be a function defined on an open set in \mathbb{R}^n that contains the point \mathbf{a} . Suppose that the partial deriatives $\partial_j f$ all exist on some neighborhood if \mathbf{a} and that they are continuous at \mathbf{a} . Then, f is differentiable at \mathbf{a} .

Definition. Given a unit vector \mathbf{u} , the directional derivative of f at \mathbf{a} in the direction of \mathbf{u} is defined by

$$\partial_{\mathbf{u}} f(\mathbf{a}) = \frac{d}{dt} f(\mathbf{a} + t\mathbf{u}) \Big|_{t=0} = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t}$$

2.23 Theorem. If f is differentiable at \mathbf{a} , then the directional derivatives of f at \mathbf{a} all exist, and they are given by

$$\partial_{\mathbf{u}} f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

2.3 Chain Rule

2.26 Theorem (Chain Rule I). Suppose that $\mathbf{g}(t)$ is differentiable at t = a $f(\mathbf{x})$ is differentiable at $\mathbf{x} = \mathbf{b}$, and $\mathbf{b} = \mathbf{g}(a)$. Then the composite function $\varphi(t) = f(\mathbf{g}(t))$ is differentiable at t = a, and its derivative is given by

$$\varphi'(a) = \nabla f(\mathbf{b}) \cdot \mathbf{g}'(a)$$

or in Leibniz notation where $w = f(\mathbf{x})$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial w}{\partial x_n} \frac{dx_n}{dt}$$

2.29 Theorem (Chain Rule II). Suppose that g_1, \ldots, g_n are functions of $\mathbf{t} = (t_1, \ldots, t_n)$ and f is a function of $\mathbf{x} = (x_1, \ldots, x_n)$. Let $\mathbf{b} = \mathbf{g}(\mathbf{a})$ and $\varphi = f \circ \mathbf{g}$. If g_1, \ldots, g_n are differentiable at \mathbf{a} (resp. of class C^1 near \mathbf{a}) and f is differentiable at \mathbf{b} (resp. of class C^1 near \mathbf{b}), then φ is differentiable at \mathbf{a} (resp. of class C^1 near \mathbf{a}), and its partial derivatives are given by

$$\frac{\partial \varphi}{\partial t_k} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_k} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_k}$$

where the derivatives $\partial f/\partial x_1$ are evaluated at **b** and the derivatives $\partial \varphi/\partial t_k$ and $\partial x_j/\partial t_k = \partial g_j/\partial t_k$ are evaluated at **a**.

Definition. A function f on \mathbb{R}^n is called (positively) **homogeneous** of degree a ($a \in \mathbb{R}$) if $f(t\mathbf{x}) = t^a f(\mathbf{x})$ for all t > 0 and $\mathbf{x} \neq \mathbf{0}$.

2.36 Theorem (Euler's Theorem). If f is homogeneous of degree a, then at any point x where f is differentiable we have

$$x_1 \partial_1 f(\mathbf{x}) + x_2 \partial_2 f(\mathbf{x}) + \ldots + x_n \partial_n f(\mathbf{x}) = a f(\mathbf{a})$$

2.37 Theorem. Suppose that F is a differentiable function on some open set $U \subset \mathbb{R}^3$ and that the set

$$S = \{(x, y, z) \in U : F(x, y, z) = 0\}$$

is a smooth surface. If $\mathbf{a} \in S$ and $\nabla F(\mathbf{a}) \neq \mathbf{0}$, then the vector $\nabla F(\mathbf{a})$ is perpindicular, or normal, to the surface S at \mathbf{a} .

2.38 Corollary. Under the conditions of the theorem, the equations of the tangent plane to S at \mathbf{a} is $\nabla F(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) = 0$.

2.4 The Mean Value Theorem

2.39 Theorem (Mean Value Theorem III). Let S be a region in \mathbb{R}^n that contains the points \mathbf{a} and \mathbf{b} as well as the line segment L that joins them. Suppose that f is a differentiable on every point of L except perhaps the endpoints \mathbf{a} and \mathbf{b} . Then, there is a point \mathbf{c} on L such that

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a})$$

Definition. A set $S \subset \mathbb{R}^n$ is called **convex** if whenever $\mathbf{a}, \mathbf{b} \in S$, the line segment from \mathbf{a} to \mathbf{b} also lies in S.

2.40 Corollary. Suppose that f is differentiable on an open convex set S and $|\nabla f(\mathbf{x})| \leq M$ for every $\mathbf{x} \in S$. Then, $|f(\mathbf{b}) - f(\mathbf{a})| \leq M|\mathbf{b} - \mathbf{a}|$ for all $\mathbf{a}, \mathbf{b} \in S$.

2.41 Corollary. Suppose that f is differentiable on an open, convex set S and $|\nabla f(\mathbf{x})| = 0$ for every $\mathbf{x} \in S$. Then, f is constant on S.

2.42 Theorem. Suppose that f is differentiable on an open, connected set S and $|\nabla f(\mathbf{x})| = 0$ for every $\mathbf{x} \in S$. Then, f is constant on S.

2.5 Functional Relations and Implicit Functions

2.6 Higher-Order Partial Derivatives

Definition. The partial derivatives of the partial derivatives of some function f are referred to as second order derivatives and are generally denoted $f_{j,i}$, ∂_i , $\partial_j f$. A function is said to be of class C^k on an open set U if all of its partial derivatives ∂_{i_1} , ∂_{i_2} , ... $\partial_{i_k} f$ exist and are continuous on U. If the partial derivatives of f of all orders exist and are continuous on U, f is said to be of class C^{∞} on U. It is common to refer to the derivatives $\partial_i^2 f$ and $\partial_i \partial_j f$ ($i \neq j$) as **pure** and **mixed** second-order partial derivatives of f.

2.45 Theorem. Let f be a function defined in an open set $S \in \mathbb{R}^n$. Suppose $\mathbf{a} \in S$ and $i, j \in \{1, \ldots, \}$. If the derivatives ∂_i , $\partial_j f$, $\partial_i \partial_j f$, and $\partial_j \partial_i f$ exist in S, and if $\partial_i \partial_j f$ and $\partial_j \partial_i f$ are continuous at \mathbf{a} , then $\partial_i \partial_j f(\mathbf{a}) = \partial_j \partial_i f(\mathbf{a})$.

2.46 Corollary. If f is of class C^2 on an open set S, then $\partial_i \partial_j f = \partial_j \partial_i f$ on S, for all i and j.

2.47 Theorem. If f is of class C^k on an open set S, then

$$\partial_{i_1}\partial_{i_2}\cdots\partial_{i_k}f=\partial_{j_1}\partial_{j_2}\cdots\partial_{j_k}f$$
 on S

whenever the sequence $\{j_1, \ldots, j_k\}$ is a reordering of the sequence $\{i_1, \ldots, i_k\}$.

2.51 Proposition. Suppose u is a C^2 function of (x,y) in some open set in \mathbb{R}^2 . If (x,y) is related to (r,θ) by $x = r \cos \theta$, $y = r \sin \theta$, we have

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

Definition. A multi-index is an n-tuple of nonnegative integers usually denoted

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

The number $|\alpha| = \alpha_1 + \ldots + \alpha_n$ is called the **order** or **degree** of α .

2.52 Theorem (The Multinomial Theorem). For any $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and any positive number k,

$$(x_1 + x_2 + \ldots + x_n)^k = \sum_{|\alpha| = k} \frac{k!}{\alpha!} \mathbf{x}^{\alpha}$$

2.7 Taylor's Theorem

Definition. Let F be a function of class C^k on an interval I containing the point x = a. The k-th order **Taylor polynomial** for f based at a is given by

$$P_{a,k}(h) = \sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} h^{j}$$

and the difference

$$R_{a,k}(h) = f(a+h) - P_{a,k}(h) = f(a+h) - \sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} h^{j}$$

is called the k-th order **Taylor remainder**.

2.55 Theorem (Taylor's Theorem with Integral Remainder I). Suppose that f is of class C^{k+1} $(k \ge 0)$ on an interval $I \subset \mathbb{R}$, and $a \in I$. Then, the remainder $R_{a,k}$ is given by

$$R_{a,k}(h) = \frac{h^{k+1}}{k!} \int_0^1 (1-t)^k f^{(k+1)}(a+th) dt$$

2.58 Theorem (Taylor's Theorem with Integral Remainder II). Suppose that f is of class C^{k+1} $(k \ge 1)$ on an interval $I \subset \mathbb{R}$, and $a \in I$. Then, the remainder $R_{a,k}$ is given by

$$R_{a,k}(h) = \frac{h^k}{(k-1)!} \int_0^1 (1-t)^{k-1} [f^{(k)}(a+th) - f^{(k)}(a)] dt$$

- **2.60 Corollary.** If f is of class C^k on I, then $R_{a,k}(h)/h^k \to 0$ as $h \to 0$.
- **2.61 Corollary.** If f is a class C^{k+1} on I and $|f^{(k+1)}(x)| \leq M$ for $x \in I$, then

$$|R_{a,k}(h)| \le \frac{M}{(k+1)!} |h|^{k+1} \quad (a+h \in I)$$

- **2.62 Lemma.** Suppose g is k+1 times differentiable on [a,b]. If g(a)=g(b) and $g^{(j)}(a)=0$ for $1 \leq j \leq k$, then there is a point $c \in (a,b)$ such that $g^{(k+1)}(c)=0$.
- **2.63 Theorem (Taylor's Theorem with Lagrange's Remainder).** Suppose f is k+1 times differentiable on an interval $I \in \mathbb{R}$, and $a \in I$. For each $h \in R$ such that $a+h \in I$, there is a point c between 0 and h such that

$$R_{a,k}(h) = f^{(k+1)}(a+c)\frac{h^{k+1}}{(k+1)!}$$

2.65 Proposition. The Taylor polynomials of degree k about a=0 of the functions

$$e^x$$
, $\cos x$, $\sin x$, $(1-x)^{-1}$

are, respectively

$$\sum_{j=0}^{k} \frac{x^k}{j!}, \qquad \sum_{j=0}^{k} \frac{(-1)^j x^{2j}}{(2j)!}, \qquad \sum_{j=0}^{k} \frac{(-1)^j x^{2j+1}}{(2j+1)!}, \qquad \sum_{j=0}^{k} x^j$$

2.68 Theorem (Taylor's Theorem in Several Variables). Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is of class C^k on an open convex set S. If $\mathbf{a} \in S$ and $\mathbf{a} + \mathbf{h} \in S$, then

$$f(\mathbf{a} + \mathbf{h}) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!} \mathbf{h}^{\alpha} + R_{a,k}(\mathbf{h})$$

where

$$R_{\mathbf{a},k}(h) = k \sum_{|\alpha| \le k} \frac{\mathbf{h}^{\alpha}}{\alpha!} \int_{0}^{1} (1-t)^{k-1} [\partial^{\alpha} f(\mathbf{a} + t\mathbf{h}) - \partial^{\alpha} f(\mathbf{a})] dt$$

If f is a of class C^{k+1} on S, we also have

$$R_{\mathbf{a},k}(h) = (k+1) \sum_{|\alpha| \le k+1} \frac{\mathbf{h}^{\alpha}}{\alpha!} \int_{0}^{1} (1-t)^{k} \partial^{\alpha} f(\mathbf{a} + t\mathbf{h}) dt$$

and for some $c \in (0,1)$

$$R_{\mathbf{a},k}(h) = \sum_{|\alpha| \le k+1} \partial^{\alpha} f(\mathbf{a} + c\mathbf{h}) \frac{\mathbf{h}^{\alpha}}{\alpha!}$$

2.75 Corollary. If f is of class C^k on S, then $R_{\mathbf{a},k}(\mathbf{h})/|\mathbf{h}|^k \to 0$ as $\mathbf{h} \to \mathbf{0}$. If f is of class C^{k+1} on S and $|\partial^{\alpha} f(\mathbf{x})| \leq M$ for $x \in S$ and $|\alpha| = k+1$, then

$$|R_{\mathbf{a},k}(\mathbf{h})| \le \frac{M}{(k+1)!} ||\mathbf{h}||^{k+1}$$

where $||\mathbf{h}|| = |h_1| + |h_2| + \ldots + |h_n|$.

2.76. Lemma. If $P(\mathbf{h})$ is a polynomial of degree $\leq k$ that vanishes to order > k as $\mathbf{h} \to \mathbf{0}$, i.e. $P(\mathbf{h})/|\mathbf{h}|^k \to 0$, then $P \equiv 0$.

2.77 Theorem. Suppose f is of class $C^{(k)}$ near \mathbf{a} . If $f(\mathbf{a} + \mathbf{h}) = Q(\mathbf{h}) + E(\mathbf{h})$ where Q is a polynomial of degree $\leq k$ as $E(\mathbf{h})/|\mathbf{h}|^k \to 0$ as $\mathbf{h} \to 0$, then Q is the Taylor polynomial $P_{\mathbf{a},k}$.

2.8 Critical Points

Definition. Suppose f is a differentiable function on some open set $S \subset \mathbb{R}^n$. The point $\mathbf{a} \in S$ is called a **critical point** of f if $\nabla f(\mathbf{a}) = \mathbf{0}$.

2.78 Proposition. If f has a local maximum or minimum at **a** and f is differentiable at **a** then $\nabla f(\mathbf{a}) = \mathbf{0}$.

Definition. Suppose f is a real-valued function of class C^2 on some open set $S \subset \mathbb{R}$ and f has a critical point at \mathbf{a} . It is often to examine the **Hessian** of f at \mathbf{a} :

$$H = H(\mathbf{a}) = \begin{pmatrix} \partial_1^2 f(\mathbf{a}) & \partial_1 \partial_2 f(\mathbf{a}) & \cdots & \partial_1 \partial_n f(\mathbf{a}) \\ \partial_2 \partial_1 f(\mathbf{a}) & \partial_2^2 f(\mathbf{a}) & \cdots & \partial_2 \partial_n f(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_n \partial_1 f(\mathbf{a}) & \partial_n \partial_2 f(\mathbf{a}) & \cdots & \partial_n^2 f(\mathbf{a}) \end{pmatrix}$$

2.80 Equation. We can use the Hessian to express f around \mathbf{a} .

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \frac{1}{2}H\mathbf{h} \cdot \mathbf{h} + R_{\mathbf{a},2}(\mathbf{h})$$

2.81 Theorem. Suppose f is of class C^2 at \mathbf{a} and that $\nabla f(\mathbf{a}) = 0$, and let H be the Hessian matrix. For f to have a local minimum at \mathbf{a} , it is necessary for the eigenvalues of H all to be nonnegative and sufficient for them all to be strictly positive. For f to have a local maximum at \mathbf{a} , it is necessary for the eigenvalues of H all to be nonpositive and sufficient for them all to be strictly negative.

Definition. If there are two eigenvalues of oppositive signs, then f is said to have a **saddle point**. If there is a zero eigenvalue, then H is singular or **degenerate**.

- **2.82 Theorem** Suppose f is of class C^2 on an open set in \mathbb{R}^2 containing the point \mathbf{a} , and suppose $\nabla f(\mathbf{a}) = \mathbf{0}$. Let $\alpha = \partial_1^2 f(\mathbf{a}), \beta = \partial_1 \partial_2 f(\mathbf{a}), \gamma = \partial_2^2 f(\mathbf{a})$. Then,
 - (a) If $\alpha \gamma \beta^2 < 0$, f has a saddle point at **a**.
 - (b) If $\alpha \gamma \beta^2 > 0$ and $\alpha < 0$, f has a local minimum at **a**.
 - (c) If $\alpha \gamma \beta^2 > 0$ and $\alpha < 0$, f has a local maximum at **a**.
- (d) If $\alpha \gamma \beta^2 = 0$, f has a saddle point at **a**.

2.9 Extreme Value Problems

- **2.83 Theorem.** Let f be a continuous function on an unbounded closed set $S \subset \mathbb{R}^n$.
 - (a) If $f(\mathbf{x}) \to +\infty$ as $|\mathbf{x}| \to \infty$ ($\mathbf{x} \in S$), then f has an absolute minimum but no absolute maximum on S.
- (b) If $f(\mathbf{x}) \to 0$ as $|\mathbf{x}| \to \infty$ ($\mathbf{x} \in S$) and there is a point $\mathbf{x}_0 \in S$ where $f(\mathbf{x}_0) > 0$ (resp. $f(\mathbf{x}_0) < 0$), then f has an absolute minimum (resp. minimum) on S.

Definition. Suppose we wish to maximize or minimize a differentiable function f on the set

$$S = \{ \mathbf{x} : G(\mathbf{x}) = 0 \}$$

where G is of class C^1 and $\nabla G(\mathbf{x}) \neq \mathbf{0}$ on S. Lagrange's method requires us to solve the equation

$$\nabla f(\mathbf{a}) = \lambda \nabla G(\mathbf{a})$$
 for some $\lambda \in \mathbb{R}$

The parameter λ is called the **Lagrange's multiplier**. Similarly, if the constraint were defined with two functions

$$S = {\mathbf{x} : G_1(\mathbf{x}) = G_2(\mathbf{x}) = 0}$$

Then, the equation becomes

$$\nabla f(\mathbf{a}) = \lambda \nabla G_1(\mathbf{a}) + \mu \nabla G_2(\mathbf{a})$$

2.10 Vector-Valued Functions and Their Derivatives

Definition. A mapping **f** from an open set $S \subset \mathbb{R}^n$ into \mathbb{R}^m is said to be **differentiable** at $\mathbf{a} \in S$ if there is an $m \times n$ matrix L such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{|\mathbf{f}(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L\mathbf{h}|}{|\mathbf{h}|}=0$$

The matrix L is unique and is called the (**Fréchet**) derivative of f at a and is denoted Df(a).

2.85 Proposition. An \mathbb{R}^m -valued function \mathbf{f} is differentiable at \mathbf{a} precisely when each of its components f_1, \ldots, f_m is differentiable at \mathbf{a} . In this case, $D\mathbf{f}(\mathbf{a})$ is the matrix whose jth row vector $\nabla f_j(\mathbf{a})$. In other words,

$$D\mathbf{f} = \begin{pmatrix} \partial f_1/\partial x_1 & \cdots & \partial f_1/\partial x_n \\ \vdots & \ddots & \vdots \\ \partial f_m/\partial x_1 & \cdots & \partial f_m/\partial x_n \end{pmatrix}$$

2.86 Theorem (Chain Rule III). Suppose $\mathbf{g}: \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at $\mathbf{a} \in \mathbb{R}^k$ and $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\mathbf{g}(\mathbf{a}) \in \mathbb{R}^n$. Then $\mathbf{H} = \mathbf{f} \circ \mathbf{g}: \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at \mathbf{a} and

$$D\mathbf{H}(\mathbf{a}) = D\mathbf{f}(\mathbf{g}(\mathbf{a}))D\mathbf{g}(\mathbf{a})$$

where the expression on the right is the product of the matrices $D\mathbf{f}(\mathbf{g}(\mathbf{a}))$ and $D\mathbf{g}(\mathbf{a})$.

Definition. Suppose $A: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping. Then, the **norm** is smallest constant C such that $|A\mathbf{x}| \leq C|\mathbf{x}|$ for all $\mathbf{x} \in \mathbb{R}^n$. The norm of A is denoted by ||A||. Thus,

$$|A\mathbf{x}| \le ||A|| \, |\mathbf{x}| \qquad (\mathbf{x} \in \mathbb{R}^n)$$

2.88 Theorem. Suppose \mathbf{f} is a differentiable \mathbb{R}^m -valued function on an open convex set $S \in \mathbb{R}^n$, and suppose that $||D\mathbf{f}(\mathbf{x})|| \leq M$ for all $\mathbf{x} \in S$. Then,

$$|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})| \le M|\mathbf{b} - \mathbf{a}| \text{ for all } \mathbf{a}, \mathbf{b} \in S$$

3 The Implicit Function Theorem and Its Applications

3.1 The Implicit Function Theorem

- **3.1 Theorem (Implicit Function Theorem for a Single Equation).** Let $F(\mathbf{x}, y)$ be a function of class C^1 on some neighborhood of a point $(\mathbf{a}, b) \in \mathbb{R}^{n+1}$. Suppose that $F(\mathbf{a}, b) = 0$ and $\partial_y F(\mathbf{a}, b) \neq 0$. Then there exist positive numbers r_0 , r_1 such that the following conclusions are valid.
 - (a) For each \mathbf{x} in the ball $|\mathbf{x} \mathbf{a}| < r_0$ there is a unique $|y b| < r_1$ and $F(\mathbf{x}, y) = 0$. We denote this y by $f(\mathbf{x})$; in particular, $f(\mathbf{a}) = b$
 - (b) The function f thus defined for $|\mathbf{x} \mathbf{a}| < r_0$ is of class C^1 , and its partial derivative are given by

$$\partial_j f(\mathbf{a}) = -\frac{\partial_j F(\mathbf{x}, f(\mathbf{x}))}{\partial_y F(\mathbf{x}, f(\mathbf{x}))}$$

- **3.3 Corollary.** Let F be a function of class C^1 on \mathbb{R}^n , and let $S = \{\mathbf{x} : F(\mathbf{x}) = 0\}$. For every $\mathbf{a} \in S$ such that $\nabla F \mathbf{a} \neq \mathbf{0}$ there is a neighborhood N of \mathbf{a} such that $S \cap N$ is the graph of a C^1 function.
- **3.9 Theorem (The Implicit Function Theorem for a System of Equations).** Let $\mathbf{F}(\mathbf{x}, \mathbf{y})$ be an \mathbb{R}^k -valued function of class C^1 on some neighborhood of a point $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+k}$ and let $B_{ij} = (\partial F_i/\partial y_j)(\mathbf{a}, \mathbf{b})$. Suppose that $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ and $\det(B) \neq 0$. Then there exist positive numbers r_0 , r_1 such that the following conclusions are valid.
 - (a) For each \mathbf{x} in the ball $|\mathbf{x} \mathbf{a}| < r_0$ there is a unique $|\mathbf{y} \mathbf{b}| < r_1$ and $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$. We denote this \mathbf{y} by $f(\mathbf{x})$; in particular, $f(\mathbf{a}) = \mathbf{b}$
 - (b) The function **f** thus defined for $|\mathbf{x} \mathbf{a}| < r_0$ is of class C^1 , and its partial derivatives $\partial_{x_j} \mathbf{f}$ can be computed by differentiating the equations $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$ with respect to x_j and solving the resulting linear system of equations for $\partial_{x_j} f_1, \ldots, \partial_{x_j} f_k$.

- **3.A Theorem (Implicit Function Theorem for a Linear System).** Let $L: \mathbb{R}^{n+m} \to \mathbb{R}^n$ and assume that L_x is invertible. Then for every $\mathbf{k} \in \mathbb{R}^m$, there exists a unique $\mathbf{h} \in \mathbb{R}^n$ such that $L(\mathbf{h}, \mathbf{k}) = 0$, and h can be written as $\mathbf{h} = -(L_x)^{-1}L_y\mathbf{k}$.
- **3.B Theorem (Implicit Function Theorem).** Let f be a C^1 mapping on an open set $S \in \mathbb{R}^{n+m} \to \mathbb{R}^n$, such that $\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ for some point $(\mathbf{a}, \mathbf{b}) \in S$. Let $L = \mathbf{f}'(\mathbf{a}, \mathbf{b})$ and assume L_x is invertible. Then there exists open sets $U \in \mathbb{R}^{n+m}$ and $W \in \mathbb{R}^m$ with $(\mathbf{a}, \mathbf{b}) \in U$ and $\mathbf{b} \in W$ such that to every $\mathbf{y} \in W$, there exists a unique \mathbf{x} such that

$$(\mathbf{x}, \mathbf{y}) \in U$$
 and $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$

If $\mathbf{x} = \mathbf{g}(\mathbf{y})$, then $\mathbf{g} \in C^1(W)$, $\mathbf{g}(\mathbf{b}) = \mathbf{a}$, $\mathbf{f}(\mathbf{g}(\mathbf{y}), \mathbf{y}) = \mathbf{0}$, and $\mathbf{g}'(\mathbf{b}) = -(L_x)L_y$.

3.2 Curves in the Plane

Definition. There are three ways common ways of representing a smooth curve in \mathbb{R}^2

- (i) as the graph of the function, y = f(x) or x = f(y), where f is of class C^1 ;
- (ii) as the locus of an equation F(x,y) = 0, where F is of class C^1 ;
- (iii) parametrically, as the range of a C^1 function $\mathbf{f}:(a,b)\in\mathbb{R}^2$.
- **3.11 Theorem.** The representations (ii) and (iii) are locally equivalent to (i) if (a) and (b) are satisfied, respectively.
 - (a) Let F be a real-valued function of class C^1 on an open set in \mathbb{R}^2 , and let $S = \{(x,y) : F(x,y) = 0\}$. If $\mathbf{a} \in S$ and $\nabla F(\mathbf{a}) \neq \mathbf{0}$, there is neighborhood N of \mathbf{a} in \mathbb{R}^2 such that $S \cap N$ is the graph of a C^1 function f (either y = f(x) or x = f(y)).
 - (b) Let $\mathbf{f}:(a,b)\to\mathbb{R}^2$ be a function of class C^1 . If $\mathbf{wf'}(t_0)\neq\mathbf{0}$, there is an open interval I containing t_0 such that the set $\{\mathbf{f}(t):t\in I\}$ is the graph of a C^1 function f (either y=f(x) or x=f(y)).

Definition. More formally, a set $S \in \mathbb{R}^2$ is a **smooth curve** if (a) S is connected, and (b) every $\mathbf{a} \in S$ satisfies Theorem 3.11.

3.3 Surfaces and Curves in Space

Definition. There are three ways common ways of representing a smooth surface in \mathbb{R}^3 .

- (i) as the graph of the function, z = f(x, y), y = f(x, z) or x = f(y, z), where f is of class C^1 ;
- (ii) as the locus of an equation F(x, y, z) = 0, where F is of class C^1 ;
- (iii) parametrically, as the range of a C^1 function $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$.
- **3.15 Theorem.** The representations (ii) and (iii) are locally equivalent to (i) if (a) and (b) are satisfied, respectively.
 - (a) Let F be a real-valued function of class C^1 s on an open set in \mathbb{R}^3 , and let $S = \{(x, y, z) : F(x, y, z) = 0\}$. If $\mathbf{a} \in S$ and $\nabla F(\mathbf{a}) \neq \mathbf{0}$, there is neighborhood N of \mathbf{a} in \mathbb{R}^3 such that $S \cap N$ is the graph of a C^1 function f (either z = f(x, y), y = f(x, z), or x = f(y, z)).
 - (b) Let \mathbf{f} be a C^1 mapping from an open set in \mathbb{R}^2 into \mathbb{R}^3 . If $[\partial_u \mathbf{f} \times \partial_v \mathbf{f}](u_0, v_0) \neq \mathbf{0}$, there is a neighborhood N of (u_0, v_0) in \mathbb{R}^2 such that the set $\{\mathbf{f}(u, v) : (u, v) \in N\}$ is the graph of a C^1 function.

Definition. A set $S \in \mathbb{R}^3$ is a **smooth surface** if (a) S is connected, and (b) every $(u, v) \in S$ satisfies Theorem 3.15.

Definition. There are three ways common ways of representing a smooth curve in \mathbb{R}^3

- (i) as the graph of the function, y = f(x) or z = g(x) (or similar expressions with coordinates permuted) where f and g are C^1 functions;
- (ii) as the locus of an equation F(x, y, z) = G(x, y, z) = 0, where F and G are C^1 functions;
- (iii) parametrically, as the range of a C^1 function $\mathbf{f}: \mathbb{R} \to \mathbb{R}^3$.

Representation (ii) is locally equivalent to (i) when $\nabla F(\mathbf{x})$ and $\nabla G(\mathbf{x})$ are linearly independent at every \mathbf{x} where $F(\mathbf{x}) = G(\mathbf{x}) = 0$, and (iii) is locally equivalent to (i) when $\mathbf{f}'(t) \neq \mathbf{0}$.

3.4 Transformations and Coordinate Systems

3.18 Theorem (The Inverse Mapping Theorem). Let U and V be open sets in \mathbb{R}^n , $\mathbf{a} \in U$, and $\mathbf{b} = \mathbf{f}(\mathbf{a})$. Suppose that $\mathbf{f} : U \to V$ is a mapping of class C^1 and the Fréchet's derivative $D\mathbf{f}(\mathbf{a})$ is invertible. Then, there exist neighborhoods $M \subset U$ and $N \subset V$ of \mathbf{a} and \mathbf{b} , respectively, so that \mathbf{f} is a one-to-one map from M onto N, and the inverse map \mathbf{f}^{-1} from N to M is also of class C^{-1} . Moreover, if $\mathbf{y} = \mathbf{f}(\mathbf{x}) \in N, D(\mathbf{f}^{-1})(\mathbf{y}) = [D\mathbf{f}(\mathbf{x})]^{-1}$.

4 Integral Calculus

4.1 Integration on a Line

Definition. A partition P of the interval [a,b] is a subdivision of [a,b] into non-overlapping subintervals specified by x_1, \ldots, x_{j-1} with $x_0 = a$ and $x_j = b$. We denote a partition with $P = \{x_0, x_1, \ldots, x_J\}$. We say that P' is a **refinement** of P if P' is obtained from P by adding more subdivision points, that is $P \subset P'$.

Definition. Given a partition P and a bounded real-valued function on [a, b], the minimum and maximum of f on each subinterval is given by

$$m_j = \inf\{f(x) : x_{j-1} \le x \le x_j\}$$
 $M_j = \sup\{f(x) : x_{j-1} \le x \le x_j\}$

and the lower Riemann sum $s_P f$ and the upper Riemann sum $S_P f$ corresponding to the partition P are defined by

$$s_P f = \sum_{1}^{J} m_j (x_j - x_{j-1})$$
 $S_P f = \sum_{1}^{J} M_j (x_j - x_{j-1})$

- **4.3 Lemma.** If P' is a refinement of P, then $s_{P'}f \geq s_Pf$ and $S_{P'}f \leq S_Pf$.
- **4.4 Lemma.** If P and Q are partitions of [a, b], then $s_P f \leq S_Q f$.

Definition. The lower integrals and upper integrals of f on [a,b] by

$$\underline{I}_a^b(f) = \sup s_P f$$
 $\overline{I}_a^b(f) = \inf S_P f$

If the upper and lower integrals coincide, f is called **Riemann integrable** on [a,b] and the common value of the upper and lower integrals is the **Riemann integral** $\int_a^b f(x) dx$.

4.5 Lemma. If f is a bounded function on [a, b], the following conditions are equivalent:

- (a) f is integrable on [a, b]
- (b) For every $\epsilon > 0$ there is a partition P of [a, b] such that $S_P f s_P f < \epsilon$.

4.6 Theorem.

(a) Suppose a < b < c. If f is integrable on [a, b] and on [b, c], then f is integrable on [a, c] and

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx$$

(b) If f and g are integrable on [a, b], then so is f + g and

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Equation. For any $a, b \in \mathbb{R}$

$$\int_a^b f(x) \ dx = -\int_a^b f(x) \ dx$$

- **4.9 Theorem.** Suppose f is integrable on [a, b].
 - (a) If $c \in \mathbb{R}$, then cf is integrable on [a, b], and $\int_a^b cf(x) dx = c \int_a^b f(x) dx$.
 - (b) If $[c,d] \subset [a,b]$, then f is integrable [c,d].
 - (c) If g is integrable on [a,b] and $f(x) \leq g(x)$ for $x \in [a,b]$, then $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$.
 - (d) |f| is integrable on [a, b], and $|\int_a^b f(x) \ dx| \le \int_a^b |f(x)| \ dx$.
- **4.10 Theorem.** If f is bounded and monotone on [a, b], then f is integrable on [a, b].
- **4.11 Theorem.** If f is continuous on [a, b], then f is integrable on [a, b].
- **4.12 Theorem.** If f is bounded on [a, b] and continuous at all except finitely many points in [a, b], then f is integrable on [a, b].

Definition. A set $Z \subset \mathbb{R}$ is said to have **zero content** if for any $\epsilon > 0$ there is finite collection of intervals $I_1, \ldots I_L$ such that (i) $Z \subset \bigcup_1^L I_l$, and (ii) the sum of the lengths of the I_l 's is less than ϵ .

- **4.13 Theorem.** If f is bounded on [a, b] and the set of points in [a, b] at which f is discontinuous has zero content, then f is integrable on [a, b].
- **4.14 Proposition.** Suppose f and g are integrable on [a,b] and f(x)=g(x) for all except finitely many points $x \in [a,b]$. Then $\int_a^b f(x) dx = \int_a^b f(x) dx$.

4.15 Theorem (The Fundamental Theorem of Calculus).

- (a) Let f be an integrable function on [a,b]. For $x \in [a,b]$, let $F(x) = \int_a^x f(t) dt$. Then F is continuous on [a,b]; moreover, F'(x) exists and equals f(x) at every x at which f is continuous.
- (b) Let F be a continuous function on [a,b] that is differentiable except perhaps at finitely many points in [a,b], and let f be a function on [a,b] that agrees with F' at all points where the latter is defined. If f is integrable on [a,b], then $\int_a^b f(t) \ dt = F(b) F(a)$.

Definition. If $P = \{x_0, \dots, x_J\}$ is a partition of [a, b] and t_j is any point in the interval $[x_{j-1}, x_j]$, then the quantity

$$\sum_{1}^{J} f(t_{j})(x_{j} - x_{j-1})$$

is called a **Riemann sum** for f associated to the partition P.

4.16 Proposition. Suppose f is integrable on [a,b]. Given $\epsilon > 0$, there exists $\delta > 0$ such that if $P = \{x_0, \ldots, x_J\}$ is any partition of [a,b] satisfying

$$\max_{1 \le j \le J} (x_j - x_{j-1}) < \delta,$$

the sums $s_P f$ and $S_P f$ differ from $\int_a^b f(x) dx$ by at most ϵ .

4.2 Integration in Higher Dimensions

Definition. A partition P of the rectangle $R = [a, b] \times [c, d]$ is a subdivision of R into non-overlapping subrectangles specified by x_0, \ldots, x_J and y_0, \ldots, y_K . Thus, we write $P = \{x_0, \ldots, x_J; y_0, \ldots, y_K\}$. Each subtrectangle is defined by $R_{jk} = [x_{j-1}, x_j] \times [y_{k-1}, y_k]$ where the are $\Delta A_{jk} = (x_j - x_{j-1})(y_k - y_{k-1})$.

Definition. Given a partition P and a bounded real-valued function on the rectangle R, the minimum and maximum of f on each subrectangle R_{ik} is given by

$$m_{jk} = \inf\{f(x,y) : (x,y) \in R_{jk}\}\$$
 $M_{jk} = \sup\{f(x,y) : (x,y) \in R_{jk}\}\$

and the lower Riemann sum $s_P f$ and the upper Riemann sum $S_P f$ corresponding to the partition P are defined by

$$s_P f = \sum_{1}^{J} \sum_{1}^{K} m_{jk} \Delta A_{jk} \qquad S_P f = \sum_{1}^{J} \sum_{1}^{K} M_{jk} \Delta A_{jk}$$

Definition. The lower integrals and upper integrals of f on R by

$$\underline{I}_R(f) = \sup s_P f$$
 $\overline{I}_R(f) = \inf S_P f$

If the upper and lower integrals coincide, f is called **Riemann integrable** on R, and the common value of the upper and lower integrals is the **Riemann integral**, denoted by

$$\iint_R f(x,y) dA \quad \text{or} \quad \iint_R f(x,y) dx dy$$

The characteristic function of S is the function χ_S defined by

$$\chi_S(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{otherwise} \end{cases}$$

Suppose S is a bounded set of \mathbb{R}^2 and f is a bounded function on \mathbb{R}^2 . Let R be the rectangle that contains S. We say f is **integrable** on S if $f\chi_S$ is integrable on R. We define the integral of f over S by

$$\iint_{S} f \, dA = \iint_{R} f \chi_{S} \, dA$$

4.17 Theorem.

(a) If f_1 and f_2 are integrable on the bounded set S and $c_1, c_2 \in \mathbb{R}$, then $c_1f_1 + c_2f_2$ is integrable on S, and

$$\iint_{S} [c_1 f_1 + c_2 f_2] dA = c_1 \iint_{S} f_1 dA + c_2 \iint_{S} f_2 dA$$

(b) Let S_1 and S_2 be bounded sets with no points in common and let f be a bounded function. If f is integrable on S_1 and on S_2 , then f is integrable on $S_1 \cup S_2$, and

$$\iint_{S_1 \cup S_2} f \, dA = \iint_{S_1} f \, dA + \iint_{S_2} f \, dA$$

- (c) If f and g are integrable on S and $f(\mathbf{x}) \leq g(\mathbf{x})$ for $\mathbf{x} \in S$, then $\iint_S f \, dA \leq \iint_S g \, dA$.
- (d) If f is integrable on S, then so is |f|, and $|\iint_S f \, dA| \leq \iint_S |f| \, dA$.

Definition. A set $Z \subset \mathbb{R}^2$ is said to have **zero content** if for any $\epsilon > 0$ there is finite collection of rectangles $R_1, \ldots R_M$ such that (i) $Z \subset \bigcup_1^M R_m$, and (ii) the sum of the areas of the R_m 's is less than ϵ .

4.18 Theorem. Suppose f is a bounded function on the rectangle R. If the set of points in R at which f is discontinuous has zero content, then f is integrable on R.

4.19 Proposition.

- (a) If $Z \subset \mathbb{R}^2$ has zero content and $U \subset Z$, then U has zero content.
- (b) If Z_1, \ldots, Z_k have zero content, then so does $\bigcup_{1}^k Z_i$.
- (c) If $\mathbf{f}:(a_0,b_0)\to\mathbb{R}^2$ is of class C^1 , then $\mathbf{f}([a,b])$ has zero content whenever $a_0 < a < b < b_0$.
- **4.20 Lemma.** The function χ_S is discontinuous at **x** if and only if **x** is in the boundary of S.

Definition. A set $S \subset \mathbb{R}^2$ is (Jordan) measurable if it is bounded and its boundary has zero content.

- **4.21 Theorem.** Let S be a measureable subset of \mathbb{R}^2 . Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is bounded and the set of points in S at which f is discontinuous has zero content. Then f is integrable on S.
- **4.22 Proposition.** Suppose $Z \subset \mathbb{R}^2$ has zero content. If $f : \mathbb{R}^2 \to \mathbb{R}$ is bounded, then f is integrable on Z and $\iint_Z f \, dA = 0$.

4.23 Corollary.

- (a) Suppose that f is integrable on the set $S \in \mathbb{R}^2$. If $g(\mathbf{x}) = f(\mathbf{x})$ except for \mathbf{x} in a set of zero content, then g is integrable on S and $\iint_S g \ dA = \iint_S f \ dA$.
- (b) Suppose that f is integrable on S and on T and $S \cap T$ has zero content. Then F is integrable on $S \cup T$, and $\iint_{S \cup T} f \ dA = \iint_{S} f \ dA + \iint_{T} f \ dA$.

Definition. If S is a Jordan measurable set in the plane, then its **area** is the integral over S of the constant function $f(\mathbf{x}) = 1$

$$\operatorname{area}(S) = \iint_{S} 1 \, dA = \iint_{S} \chi_{S} \, dA$$

4.24 Theorem (The Mean Value Theorem for Integrals). Let S be a compact, connected, measurable subset of \mathbb{R}^n , and let f and g be continuous functions on S with $g \geq 0$. Then there is a point $\mathbf{a} \in S$ such that

$$\int \cdots \int_{S} f(\mathbf{x})g(\mathbf{x}) \ d^{n}\mathbf{x} = f(\mathbf{a}) \int \cdots \int_{S} g(\mathbf{x}) \ d^{n}\mathbf{x}$$

4.25 Corollary. Let S be a compact, connected, measurable subset of \mathbb{R}^n , and let f be a continuous function on S. Then there is a point $\mathbf{a} \in S$ such that

$$\int \cdots \int_{S} f(\mathbf{x}) \ d^{n}\mathbf{x} = f(\mathbf{a})|S|$$

where |S| denoted the *n*-dimensional volume of S.

4.3 Multiple Integrals and Iterated Integrals

4.26 Theorem (Fubini's Theorem). Let $R = \{(x,y) : a \le x \le b, c \le y \le d\}$, and let f be an integrable function on R. Suppose that for each $y \in [c,d]$, the function f_y defined by $f_y = f(x,y)$ is integrable on [a,b], and the function $g(y) = \int_a^b f(x,y) dx$ is integrable on [c,d]. Then

$$\iint_{R} f \, dA = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] dy$$

Likewise, if $f_x = f(x, y)$ is integrable on [c, d] for each $x \in [a, b]$, and $h(x) = \int_c^d f(x, y) dy$ is integrable on [a, b], then

$$\iint_{R} f \, dA = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx$$

Definition. The integrals on the right side of the equations in Theorem 4.26 are called **iterated integrals**. It is customary to omit the brackets and write, for example

$$\int_{c}^{d} \int_{a}^{b} f(x, y) \ dx \ dy$$

4.4 Changes of Variables for Multiple Integrals

Equation 4.32 (Change of variable in one dimension).

$$\int_{a}^{b} f(g(u))g'(u) \ du = \int_{g(a)}^{g(b)} f(x) \ dx$$

Equation 4.34 (Equation 4.32, rewritten).

$$\int_{I} f(x) \ dx = \int_{g^{-1}(I)} f(g(u))|g'(u)| \ du$$

4.37 Theorem. Let A be an invertible $n \times n$ matrix, and let $\mathbf{G}(\mathbf{u}) = A\mathbf{u}$ be the corresponding linear transformation of \mathbb{R}^n . Suppose S is a measurable region in \mathbb{R}^n and f is the integrable function on S. Then $\mathbf{G}^{-1}(S) = \{A^{-1}\mathbf{x} : \mathbf{x} \in S\}$ is measurable and $f \circ \mathbf{G}$ is integrable on $\mathbf{G}^{-1}(S)$, and

$$\int \cdots \int_{S} f(\mathbf{x}) \ d^{n}\mathbf{x} = |\det A| \int \cdots \int_{\mathbf{G}^{-1}(S)} f(A\mathbf{u}) \ d^{n}\mathbf{u}$$

4.41 Theorem. Given open sets U and V in \mathbb{R}^n , let $\mathbf{G}: U \to V$ be a one-to-one transformation of class C^1 whose derivative $D\mathbf{G}(\mathbf{u})$ is invertible for all $\mathbf{u} \in U$. Suppose that $T \subset U$ and $S \subset V$ s are measurable sets such that $\mathbf{G}(T) = S$. If f is an integrable function on S, then $f \circ \mathbf{G}$ is integrable on T, and

$$\int \cdots \int_{S} f(\mathbf{x}) d^{n} \mathbf{x} = \int \cdots \int_{\mathbf{G}^{-1}(S)} f(\mathbf{G}(u)|\det D\mathbf{G}(\mathbf{u})| d^{n} \mathbf{u}$$

4.5 Functions defined by Integrals

4.6 Improper Integrals

5 Line and Surface Integrals; Vector Analysis

5.1 Arc Length and Line Integrals

Definition. Let C be a smooth curve in \mathbb{R}^n . We consider two points \mathbf{x} and $\mathbf{x} + d\mathbf{x}$. The distance between them is given by

$$ds = |d\mathbf{x}| = \sqrt{dx_1^2 + \ldots + dx_n^2}$$

Now, let $\mathbf{x} = \mathbf{g}(t)$, $a \le t \le b$ be the parameteric form of C. Then the points \mathbf{x} and $\mathbf{x} + d\mathbf{x}$ are given by g(t) and g(t+dt), so

$$d\mathbf{x} = \mathbf{g}(t + dt) - \mathbf{g}(t) = \mathbf{g}'(t) dt = \left(\frac{dx_1}{dt}, \dots, \frac{dx_n}{dt}\right) dt$$

and

$$ds = |d\mathbf{x}| = |\mathbf{g}'(t)| dt = \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \ldots + \left(\frac{dx_n}{dt}\right)^2} dt$$

If we sum up the distances between two close points across all of C, then the total length of the curve, or the **arc length** is given by

$$s = \int_C ds = \int_a^b |\mathbf{g}'(t)| dt$$

Definition. We define the **orientation** of C to be the direction of travel along C when we choose some parameterization $\mathbf{x} = \mathbf{g}(t)$.

Definition. A curve in \mathbb{R}^n is defined to be **piecewise smooth** if it can be constructed using finitely many smooth curves joined end-to-end. In other words, there exists some parameterization $\mathbf{x} = \mathbf{g}(t)$ where $\mathbf{g} : [a, b] \to \mathbb{R}^n$ is (i) continuous, and (ii) its derivative exists and is continuous except at finitely many points.

Definition. Let f be a continuous function whose domain includes some piecewise smooth curve C in \mathbb{R}^n . If C is parameterized by $\mathbf{x} = \mathbf{g}(t), a \leq t \leq b$, we define the **line integral** of f to be

$$\int_C f \, ds = \int_a^b f(\mathbf{g}(t)) |\mathbf{g}'(t)| \, dt$$

Line integrals also extend to vector fields. We define the line integral of a \mathbb{R}^m -valued vector field \mathbf{F} to be

$$\int_C \mathbf{F} \ ds = \left(\int_C F_1 \ ds, \dots, \int_C F_n \ ds \right)$$

5.8 Proposition. If **F** is a continuous \mathbb{R}^m -valued function on [a,b], then

$$\left| \int_{a}^{b} \mathbf{F}(t) \ dt \right| \le \int_{a}^{b} |\mathbf{F}(t)| \ dt$$

Definition. If C is a piecewise smooth curve in \mathbb{R}^n and **F** is a continuous vector field defined on some neighborhood of C in \mathbb{R}^n , the (scalar-valued) line integral of **F** over C is

$$\int_C \mathbf{F} \cdot d\mathbf{x} = \int_C (F_1 \ dx_1 + \ldots + F_n \ dx_n)$$

If we parameterically descibe C using $\mathbf{x} = \mathbf{g}(t), a \leq t \leq b$, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{x} = \int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) dt$$

We note that $\mathbf{F} \cdot d\mathbf{x}$ is the component of \mathbf{F} tangent to the curve at every point. Thus

$$\int_C \mathbf{F} \cdot d\mathbf{x} = \int_C F_{\text{tang}} \, ds$$

5.2 Green's Theorem

Definition. A simple closed curve in \mathbb{R}^n is a curve whose starting and ending point coincide, but does not intersect itself anywhere else. We can parameterize the curve using $\mathbf{x} = \mathbf{g}(t)$, $a \le t \le b$ such that $\mathbf{g}(a) = \mathbf{g}(b)$.

Definition. We will use the term **regular region** to mean a compact set in \mathbb{R}^n that is the closure of its interior. In other words, a compact set $S \subset \mathbb{R}^n$ is a regular region if every neighborhood of every point on the boundary, contains points in the interior of S.

Definition. We say the a regular region $S \subset \mathbb{R}^2$ has a **piecewise smooth boundary** if the boundary of S is the finite union of disjoing, piecewise smooth simple closed curves. The **positive orientation** on ∂S is the orientation on each of the closed boundary curves such that S is on the left when traveling in the positive direction.

5.12 Theorem (Green's Theorem). Suppose S is a regular region in \mathbb{R}^2 with a piecewise smooth boundary. Suppose also that \mathbf{F} is a vector field of class C^1 on \overline{S} . Then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \iint_{S} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) dA$$

5.17 Corollary. Suppose S is a regular region in \mathbb{R}^n with a piecewise smooth boundary, and let $\mathbf{n}(\mathbf{x})$ be the unit outward normal vector to ∂S at $\mathbf{x} \in S$. Suppose also that \mathbf{F} is a vector field of class C^1 on \overline{S} . Then

$$\int_{\partial S} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{S} \left(\frac{\partial F_{1}}{\partial x_{1}} + \frac{\partial F_{2}}{\partial x_{2}} \right) \ dA$$

Definition. We define the **normal derivative** of f on ∂S to be $\nabla f \cdot \mathbf{n}$ and denote it $\partial f/\partial n$.

5.3 Surface Area and Surface Integrals

Definition. Let S be a smooth surface in \mathbb{R}^3 . Assume that S is represented parameterically as the image of a connected open set W in the uv-plane under a one-to-one C^1 map $\mathbf{G}: W \to \mathbb{R}^3$.

$$\mathbf{x} = (x, y, z) = \mathbf{G}(u, v), \qquad (u, v) \in W$$

Consider some point (u,v) and some increments du and dv. Then

$$\mathbf{G}(u+du,v) - \mathbf{G}(u,v) = \frac{\partial \mathbf{G}}{\partial u} du$$
 and $\mathbf{G}(u,v+dv) - \mathbf{G}(u,v) = \frac{\partial \mathbf{G}}{\partial v} dv$

These vectors are tangent to S, so we can compute the area of the parallelogram they span.

$$dA = \left| \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right| du dv$$

If R is a measureable set of W that maps to the surface S, then the surface area of S is given by

$$A = \iint_{R} \left| \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right| du dv$$

Definition. Let S be a surface in \mathbb{R}^3 and $\mathbf{x} = \mathbf{G}(u, v)$ be a parameterization of S where $(u, v) \in W$. Then the **surface integral** of a scalar function f on S is

$$\iint_{S} f \, dA = \iint_{W} f(\mathbf{G}(u, v)) \left| \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right| \, du \, dv$$

Now, suppose \mathbf{F} is a continuous vector field defined on a neighborhood of S. The surface integral of \mathbf{F} over S is defined to be

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dA = \iint_{W} \mathbf{F}(\mathbf{G}(u, v)) \cdot \left(\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right) \ du \ dv$$

5.4 Vector Derivatives

Definition. The gradient of a C^1 function on \mathbb{R}^n is a vector field defined by

grad
$$f = \nabla f = (\partial_1 f, \dots, \partial_n f)$$

Definition. If **F** is a C^1 vector field on an open subset of \mathbb{R}^n , the **divergence** of **F** is the function defined by

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \partial_1 F_1 + \ldots + \partial_n F_n$$

Definition. If **F** is a C^1 vector field on an open subset of \mathbb{R}^3 , the **divergence** of **F** is the function defined by

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = (\partial_2 F_3 - \partial_3 F_3) \mathbf{i} + (\partial_3 F_1 - \partial_1 F_3) \mathbf{j} + (\partial_1 F_2 - \partial_2 F_1) \mathbf{k}$$

Definition. The **Laplacian** of f, usually denoted $\nabla^2 f$ or Δf , is defined as

$$\nabla^2 f = \Delta f = \operatorname{div}(\operatorname{grad} f) = \partial_1^2 f + \ldots + \partial_n^2 f$$

5.5 The Divergence Theorem

5.34 Theorem (The Divergence Theorem). Suppose R is a regular region in \mathbb{R}^3 with a piecewise smooth boundary ∂R , oriented so the positive normal points out of R. Suppose also that \mathbf{F} is a vector field of class C^1 on R. Then

$$\iint_{\partial R} \mathbf{F} \cdot \mathbf{n} \ dA = \iiint_{R} \operatorname{div} \mathbf{F} \ dV$$

Note that this theorem is also called Gauss's theorem or Ostrogradski's theorem.

5.37 Corollary (Green's Formulas). Suppose R is a regular region in \mathbb{R}^3 with a piecewise smooth boundary, and f and g are functions of class C^2 on \overline{R} . Then

$$\iint \partial R f \nabla g \cdot \mathbf{n} \ dA = \iiint_{R} (\nabla f \cdot \nabla g + f \nabla^{2} g) \ dV$$

$$\iint \partial R (f \nabla g - g \nabla f) \cdot \mathbf{n} \ dA = \iiint_{R} (f \nabla^{2} g - g \nabla^{2} f) \ dV$$

5.6 Applications in Physics

5.7 Stokes's Theorem

5.52 Theorem (Stokes's Theorem). Let S be a surface in R^3 that is bounded by a piecewise smooth curve ∂S . We assume that S is oriented by a choice of normal vector field \mathbf{n} . Informally speaking, if we follow ∂S in the positive direction on the positive side of S, then S is on the left. Let \mathbf{F} be a C^1 vector field defined on some neighborhood of S in \mathbb{R}^3 . Then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dA$$

5.56 Corollary. If S is a closed surface (i.e. a surface with no boundary) in \mathbb{R}^3 with unit outward normal \mathbf{n} , and \mathbf{F} is a C^1 vector field on S, then

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \ dA = 0$$

5.8 Integrating Vector Derivatives

5.59 Proposition. Suppose **G** is a continuous vector field on an open set R in \mathbb{R}^n . The following conditions are equivalent:

- (a) If C_1 and C_2 are any two oriented curves in R with the same initial point and the same end point, then $\int_{C_1} \mathbf{G} \cdot d\mathbf{x} = \int_{C_2} \mathbf{G} \cdot d\mathbf{x}$.
- (b) If C is any closed curve in R, $\int_C \mathbf{G} \cdot d\mathbf{x} = 0$.

5.60 Proposition. A continuous vector field **G** is an open set $R \subset \mathbb{R}^n$ is conservative if and only if **G** is the gradient of a C^1 function f on R.

5.62 Theorem. Suppose R is a convex open set in \mathbb{R}^n and \mathbf{G} is a C^1 vector field on R. If $\partial_k G_j - \partial_j G_k = 0$ for all $j \neq k$ (for n = 3, this means curl $\mathbf{G} = \mathbf{0}$), then \mathbf{G} is the gradient of a C^2 function on R.

5.63 Theorem. Suppose R is a convex open set in \mathbb{R}^3 and \mathbf{G} is a C^1 vector field on R. If \mathbf{G} satisfies div $\mathbf{G} = 0$ on R, then \mathbf{G} is the curl of a C^2 vector field on R.

5.64 Theorem. Let R be a bounded convex open set in \mathbb{R}^3 . For any C^1 function g on \overline{R} and any C^2 vector field \mathbf{G} on \overline{R} such that $\operatorname{div} \mathbf{G} = 0$, there is a C^2 vector field \mathbf{G} on \overline{R} such that $\operatorname{curl} \mathbf{F} = \mathbf{G}$ and $\operatorname{div} \mathbf{F} = g$ on R.

5.65 Proposition. Let R be a bounded convex open set in \mathbb{R}^3 with piecewise smooth boundary. Suppose \mathbf{H} is a C^1 vector field on \overline{R} such that $\operatorname{curl} \mathbf{F} = \mathbf{0}$ and $\operatorname{div} \mathbf{F} = 0$ on R and $\mathbf{F} \cdot \mathbf{n} = 0$ on ∂R . Then \mathbf{H} vanishes identically on R.

5.9 Higher Dimensions and Differential Forms

6 Infinite Series

6.1 Definitions and Examples

Definition. An infinite series (or series, for short) is an expression of the form

$$\sum_{0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots$$

The **partial sum**, s_k , is the sum of the first k terms in the sequence. If $\{s_k\}$ converges to some limit S, then we say that the series is convergent, and write $\sum_{0}^{\infty} a_n = S$. Otherwise, we say that the series is divergent.

- **6.1 Theorem.** Let a_n and b_n be sequences of real numbers.
 - (a) If the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are convergent, with sums S and T, then $\sum_{n=0}^{\infty} (a_n + b_n)$ is convergent, with sum S + T.
 - (b) If the series $\sum_{0}^{\infty} a_n$ is convergent, with sum S, then for any $c \in \mathbb{R}$, the series \sum_{0}^{∞} is convergent, with sum cS.
 - (c) If the series $\sum_{0}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$. Equivalently, if $a_n \not\to 0$ as $n\to\infty$, then the series $\sum_{0}^{\infty} a_n$ is divergent.

Definition. A simple infinite series is the **geometric series** with multiple a and ratio x.

$$a + ax + ax^2 + \dots = \sum_{n=0}^{\infty} ax^n$$

6.3 Theorem. The geometric series $\sum_{0}^{\infty} x^{n}$ converges if and only if |x| < 1, in which case the sum is $(1-x)^{-1}$.

6.5 Definition. Recall the k-th order Taylor polynomial a C^{∞} function. If we let $k \to \infty$, we obtain the **Taylor series** of f (centered at x = 0):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

- **6.6 Theorem.** Let f be a function of class C^{∞} on the interva (-c,c) where $0 < c < \infty$.
 - (a) If there exist constants a, b > 0 such that $|f^{(k)}(x)| \le ab^k k!$ for all |x| < c and $k \ge 0$, then (6.5) holds for $|x| < \min(c, b^{-1})$.
 - (b) If there exist constants A, B > 0 such that $|f^{(k)}(x)| \le AB^k$ for all |x| < c and $k \ge 0$, then (6.5) holds for |x| < c.

Definition. Let $\sum_{0}^{\infty} a_n$ be some series. Suppose that $\{b_n\}$ is the sequence such that $a_0 = b_0$ and $a_n = b_n - b_{n-1}$ for $n \ge 1$. Then

$$s_k = a_0 + a_1 + \ldots + a_k = b_0 + (b_1 - b_0) + \ldots + (b_k - b_{k-1}) = b_k$$

so the series $\sum_{0}^{\infty} a_n$ converges if and only if the sequence $\{b_n\}$ converges, in which case $\sum_{0}^{\infty} a_n = \lim b_n$. Such series are called **telescoping series**.

Definition. Given a sequence $\{a_n\}$ of numbers, let $\prod_{1}^{k} a_n$ denote the product of the numbers a_1, \ldots, a_k . The **infinite product** $\prod_{1}^{\infty} a_n$ is said to converge of the number P if the sequence of partial products converges to P:

$$\prod_{1}^{\infty} a_n = \lim_{k \to \infty} \prod_{1}^{k} a_n = \lim_{k \to \infty} a_1 a_2 \cdots a_k$$

6.2 Series with Nonnegative Terms

6.7 Theorem. Suppose f is a positive, decreasing function on the half-line $[a, \infty)$. Then for any integers j, k with $a \le j < k$,

$$\sum_{n=j}^{k-1} f(n) \ge \int_{j}^{k} f(x) \, dx \ge \sum_{n=j+1}^{k} f(n)$$

- **6.8 Corollary (Integral Test).** Suppose f is a positive, decreasing function on the half-line $[1, \infty)$. Then the series $\sum_{1}^{\infty} f(n)$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ converges.
- **6.9 Theorem (p-test).** The series $\sum_{1}^{\infty} n^{-p}$ converges if p > 1 and diverges if $p \ge 1$.
- **6.11 Theorem (General Comparison Tests).** Suppose $0 \le a_n \le b_n$ for $n \ge 0$. If $\sum_{0}^{\infty} b_n$ converges, then so does $\sum_{0}^{\infty} a_n$. If $\sum_{0}^{\infty} a_n$ diverges, then so does $\sum_{0}^{\infty} b_n$.
- **6.12 Theorem (Limit Comparison Test).** Suppose $\{a_n\}$ and $\{b_n\}$ are sequence of positive numbers and a_n/b_n approaches a positive, finite limit as $n \to \infty$. Then the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are either both convergent or both divergent.
- **6.13 Theorem (Ratio Test).** Suppose $\{a_n\}$ is a sequence of positive numbers.
 - (a) If $a_{n+1}/a_n < r$ for all sufficiently large n, where r < 1, then the series $\sum_{0}^{\infty} a_n$ converges. On the other hand, if $a_{n+1}/a_n \ge 1$ for all sufficiently large n, then the series $\sum_{0}^{\infty} a_n$ diverges.
 - (b) Suppose that $L = \lim_{n \to \infty} a_{n+1}/a_n$ exists. Then the series $\sum_{n=0}^{\infty} a_n$ converges if L < 1 and diverges if L < 1. No conclusion can be drawn if L = 1.

6.14 Theorem (Root Test).

- (a) If $a_n^{1/n} < r$ for all sufficiently large n, where r < 1, then the series $\sum_{0}^{\infty} a_n$ converges. On the other hand, if $a_n^{1/n} \ge 1$ for all sufficiently large n, then the series $\sum_{0}^{\infty} a_n$ diverges.
- (b) Suppose that $L = \lim_{n \to \infty} a_n^{1/n}$ exists. Then the series $\sum_{n=0}^{\infty} a_n$ converges if L < 1 and diverges if L < 1. No conclusion can be drawn if L = 1.
- **6.16 Theorem (Raabe's Test).** Let $\{a_n\}$ be a sequence of positive numbers. Suppose that

$$\frac{a_{n+1}}{a_n} \to 1$$
 and $n\left[1 - \frac{a_{n+1}}{a_n}\right] \to L \text{ as } n \to \infty$

If L > 1, the series $\sum a_n$ converges, and if L < 1, the series $\sum a_n$ diverges. If L = 1, no conclusion can be drawn.

6.3 Absolute and Conditional Convergence

Definition. A series $\sum a_n$ is called **absolutely convergent** if the series $\sum_{n=0}^{\infty} |a_n|$ converges.

- **6.17 Theorem.** Every absolutely convergent series is convergent.
- **6.18 Theorem.** Let $a_n^+ = \max(a_n, 0)$ and $a_n^- = \max(-a_n, 0)$ where $\{a_n\}$ is some sequence of real numbers. If $\sum a_n$ is absolutely convergent, the series $\sum a_n^+$ and $\sum a_n^-$ are both convergent. If $\sum a_n$ is conditionally convergent, the series $\sum a_n^+$ and $\sum a_n^-$ are both divergent.
- **6.19 Theorem.** If $\sum_{0}^{\infty} a_n$ is absolutely convergent with sum S, then for every rearrangement of $\sum_{0}^{\infty} a_{\sigma(n)}$ is also absolutely concergent with sum S.
- **6.20 Theorem.** Suppose $\sum_{0}^{\infty} a_n$ is conditionally convergent. Given any real number S, there is a rearrangement $\sum_{0}^{\infty} a_{\sigma(n)}$ that converges to S.

6.4 More Convergence Tests

6.21 Theorem.

- (a) If $|a_n| \leq Cn^{-1-\epsilon}$ for some $C, \epsilon >$, then $\sum a_n$ converges absolutely. If $|a_n| \geq C_n^{-1}$ for some C > 0, then $\sum a_n$ either converges conditionally or diverges.
- (b) (Ratio Test) If $|a_{n+1}/a_n| \to L$ as $n \to \infty$. Then the series $\sum a_n$ converges absolutely if L < 1 and diverges if L < 1.
- (c) (Ratio Test) If $|a_n|^{1/n} \to L$ as $n \to \infty$. Then the series $\sum a_n$ converges absolutely if L < 1 and diverges if L < 1.

Definition. An alternating series is a series whose terms alternate in sign. Such a series is generally denoted $\sum (-1)^n a_n$ or $\sum (-1)^{n-1} a_n$, depending on whether the even or odd terms are positive.

6.22 Theorem (Alternating Series Test). Suppose the sequence $\{a_n\}$ s decreasing and $\lim_{n\to\infty} a_n = 0$. Then the series $\sum_{0}^{\infty} (-1)^n a_n$ is convergent. Moreover, if s_k and S denote the kth partial sum and the full sum of this series, we have

$$s_k > S$$
 for even k , $s_k < S$ for odd k , $|s_k - S| < a_{k+1}$ for all k

6.23 Lemma (Summation by Parts). Given two numerical sequences $\{a_n\}$ and $\{b_n\}$, let

$$a_n' = a_n - a_{n-1} \qquad B_n = b_0 + \ldots + b_n$$

Then

$$\sum_{n=0}^{k} a_n b_n = a_k B_k - \sum_{n=1}^{k} a'_n B_{n-1}$$

6.25 Theorem (Dirichlet's Test). Let a_n and b_n be numerical sequences. Suppose that $\{a_n\}$ is decreasing and tends to 0 as $n \to \infty$, and that the sums $B_n = b_0 + \ldots + b_n$ are bounded in absolute value by a constant C independent o n. Then the series $\sum_{0}^{\infty} a_n b_n$ converges.

Corollary (Abel's Test). Suppose $\sum a_n$ is a convergent series and $\{b_n\}$ is a sequence of positive numbers that converges to some number. Then the series $\sum a_n b_n$ converges.

6.5 Double Series; Products of Series

Definition. A double infinite series is an expression of the form

$$\sum_{m,n}^{\infty} a_{mn}$$

Given a one-to-one correspondence $j \to (m,n)$ between the nonnegative integers and a set of ordered pairs of nonnegative integers, we can let $b_j = a_{mn}$ and form an ordinary infinite series $\sum_{0}^{\infty} b_j$ to compute the double series. Such a series is called an **ordering** of the double series $\sum_{m,n=0}^{\infty} a_{mn}$. All orderings of $\sum a_{mn}$ are rearrangements of one another.

Just as before, $\sum a_{mn}$ is called **absolutely convergent** if $\sum |a_{mn}|$ converges. By Theorem 6.19, all orderings of $\sum a_{mn}$ have the same sum.

25

6.29 Theorem. Suppose that $\sum_{0}^{\infty} a_m$ and $\sum_{0}^{\infty} b_n$ are both absolutely convergent with sums A and B. Then the double series $\sum_{m,n=0}^{\infty} a_m b_n$ is absolutely convergent, and its sum is AB.

Definition. Given two convergent series, $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, we can form the series

$$\sum_{j=0}^{\infty} \left(\sum_{m+n=j} a_n b_m \right) = \sum_{j=0}^{\infty} (a_0 b_j + a_1 b_{j-1} + \dots + a_{j-1} b_1 + a_j b_0)$$

whose partial sums are the trangular partial sums of the double series $\sum a_m b_n$. We call such a sum the **Cauchy product** of $\sum a_m$ and $\sum b_n$.

7 Functions Defined by Series and Integerals

7.1 Sequences and Series of Functions

Definition. A sequence of functions $\{f_k\}_0^{\infty}$ is a map that assigns to each nonnegative integer k a function f_k . It is implicitly assumed that the functions f_k are defined on some common domain S (usually a subset of \mathbb{R} or \mathbb{R}^n) and all take values in the same space.

Definition. A sequence of functions $\{f_k\}$ defined on a set $S \subset \mathbb{R}^n$ is **pointwise** convergent on S if there exists some function f such that

$$f_k \to f(\mathbf{x})$$
 for every $\mathbf{x} \in S$

This is denoted $f_k \to f$.

Definition. A sequence of functions $\{f_k\}$ defined on a set $S \subset \mathbb{R}^n$ is **uniformly** convergent on S if for every $\epsilon > 0$ there is an integer K such that

$$|f_k(\mathbf{x}) - f(\mathbf{x})| < \epsilon$$
 whenever $k > K$ and $\mathbf{x} \in S$

Alternatively, for the same K, we can write

$$\sup_{\mathbf{x} \in S} |f_k(\mathbf{x}) - f(\mathbf{x})| < \epsilon \text{ whenever } k > K$$

7.5 Theorem. The sequence $\{f_k\}$ converges to f uniformly on S if and only if there is a sequence $\{C_k\}$ of positive constants such that $|f_k(\mathbf{x}) - f(\mathbf{x})| \le C_k$ for all $\mathbf{x} \in S$ and $\lim_{k \to \infty} C_k = 0$.

Definition. A sequence $\{f_k\}$ of functions on a set S is **uniformly Cauchy** if for every $\epsilon > 0$ there is an integer K so that

$$|f_i(\mathbf{x}) - f_k(\mathbf{x})| < \epsilon$$
 whenever $j, k > K$ and $\mathbf{x} \in S$,

or alternatively

$$\sup_{\mathbf{x} \in S} |f_j(\mathbf{x}) - f_k(\mathbf{x})| < \epsilon \text{ whenever } j, k < K$$

7.7 Theorem. The sequence $\{f_k\}$ is uniformly Cauchy on S if and only if there is a function f on S such that $f_k \to f$ uniformly on S.

7.8 Theorem. Suppose $f_k \to f$ uniformly on S. If each f_k is continuous on S, then so is f.

Definition. We can also define convergence for series of functions. If a series $\sum f_n(\mathbf{x})$ converges for each $\mathbf{x} \in S$, we say that the series is **pointwise convergent** on S. The resultant sum is a function on S denoted by $\sum f_n$. The series $\sum f_n$ is said to be **uniformly convergent** on S if the sequence of partial sums, $s_k = \sum f_n$ is uniformly convergent on S.

7.9 Theorem (The Weierstrauss M-Test). Let $\{f_n\}_0^{\infty}$ be a sequence of functions on the set S. Suppose there is a sequence $\{M_n\}_0^{\infty}$ of positive constants such that (i) $|f_n(x)| \leq M_n$ for all $x \in S$ and all n, and (ii) $\sum_{0}^{\infty} M_n < \infty$. Then the series $\sum_{0}^{\infty} f_n$ is absolutely and uniformly convergent on S.

7.10 Theorem. Suppose $\{f_n\}$ is a sequence of continuous functions on a set S. If the series $\sum f_n$ converges uniformly on S, its sum is a continuous function on S.

7.2 Integrals and Derivatives of Sequences and Series

7.11 Theorem. Suppose S is a measureable set in \mathbb{R}^n and $\{f_k\}$ is a sequence of integrable functions on S that converges uniformly to an integrable function f on S. Then

$$\int \cdots \int_{S} f(\mathbf{x}) d^{n} \mathbf{x} = \lim_{k \to \infty} \int \cdots \int_{S} f_{k}(\mathbf{x}) d^{n} \mathbf{x}$$

7.12 Theorem. Let $\{f_k\}$ be a sequence of functions of class C^1 on the interval [a, b]. Suppose that $\{f_k\}$ converges pointwise to f and that $\{f'_k\}$ converges uniformly to g on [a, b]. Then f is of class C^1 on [a, b], and g = f'.

7.13 Theorem. Suppose that $\{f_n\}$ is a sequence of continuous functions on the interval [a, b] and that the series $\sum f_n$ converges pointwise on [a, b].

(a) If $\sum f_n$ converges uniformly on [a, b], then

$$\int_{a}^{b} \left[\sum f_n(x) \right] dx = \sum \int_{a}^{b} f_n(x) dx$$

(b) If every f_n is of class C^1 and the series $\sum f'_n$ converges uniformly on [a, b], then the $\sum f_n$ is of class C^1 on [a, b], and

$$\frac{d}{dx}\left[\sum f_n(x)\right] = \sum f'_n(x) \qquad x \in [a, b]$$

7.3 Power Series

Definition. A power series is an infinite series of the form

$$\sum_{n=0}^{\infty} a_n (x-b)^n = a_0 + a_1 (x-b) + a_2 (x-b)^2 + \dots$$

where x is a real and complex variable.

7.15 Lemma. If the power series $\sum_{0}^{\infty} a_n x^n$ converges for $x = x_0$, then it converges absolutely for all x such that $|x| < |x_0|$.

7.16 Theorem. For any power series $\sum_{0}^{\infty} a_n x^n$, there is a number $R \in [0, \infty]$, called the **radius of convergence** of the series, such that the series converges absolutely for |x| < R and diverges for |x| > R. When R = 0, this means that the series converges only for x = 0; when x = 0, it means the series converges

absolutely for all x.

7.17 Theorem. Let R be the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$. For any r < R, the series $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on [-r, r]. It's sum f is continuous on (-R, R).

7.18 Theorem. Suppose the series
$$f(x) = \sum_{0}^{\infty} a_n x^n$$
 has radius of convergence $R > 0$.
(a) If $-R < a < b < R$, then $\int_a^b f(x) \ dx = \sum_{0}^{\infty} a_n \frac{b^{n+1} - a^{n+1}}{n+1}$.

(b) If
$$F$$
 is any antiderivative of f , then $F(x) = F(0) + \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ for $|x| < R$.

7.19 Theorem. The radius of convergence of any power series $\sum_{n=0}^{\infty} a_n x^n$ is equal to the radius of convergence of any power series $\sum_{n=0}^{\infty} a_n x^n$ gence of the derived series $\sum_{0}^{\infty} n a_n x^{n-1}$.

7.20 Theorem. Suppose the radius of convergence of the series $f(x) = \sum a_n x^n$ is R > 0. Then the function is of class C^{∞} on (-R,R) and its kth derivative may be computed on (-R,R) by differentiating each term k times.

7.21 Corollary. Every power series $\sum a_n x^n$ with a positive radius of convergence is the Taylor series of its sum; that is, if $f(x) = \sum a_n x^n$ for |x| < R, then

$$a_n = \frac{f^{(n)}(0)}{n!}$$

7.22 Corollary. If $\sum a_n x^n = \sum b_n x^n$ for |x| < R, then $a_n = b_n$ for all n.

7.26 Theorem (Abel's Theorem). If the series $\sum a_n x^n$ converges at x = R (resp. x = -R), then it converges uniformly on [0,R] (resp. [-R,0]), and hence defines a continuous function on that interval.

7.28 Corollary. If $\sum a_n$ converges, then $\lim_{x\to 1^-} \sum a_n x^n = \sum a_n$.

7.4 The Complex Exponential and Trig Functions

7.5 Functions Defined by Improper Integrals

Definition. The integral $\int_c^{\infty} f(x,t) dt$ converges uniformly for $x \in I \subset \mathbb{R}$, when

$$\sup_{x \in I} \left| \int_{d}^{\infty} f(x, t) \ dt \right| \to 0 \quad \text{as} \quad d \to \infty$$

7.38 Theorem. Suppose there is a function $g(t) \geq 0$ on $[c, \infty)$ such that (i) $|f(x,t)| \leq g(t)$ for all $x \in I$ and $t \ge c$, and (ii) $\int_c^\infty g(t) dt < \infty$. Then $\int_c^\infty f(x,t) dt$ converges absolutely and uniformly for $x \in I$.

7.39 Theorem. Suppose that f(x,t) is a continuous function on the set $S = \{(x,t) \mid x \in I, t \geq c\}$ and the integral $\int_{c}^{\infty} f(x,t) dt$ is uniformly convergent for $x \in I$. Then

28

- (a) The function $F(x) = \int_{c}^{\infty} f(x,t) dt$ is continuous on I.
- (b) If $[a,b] \subset I$, then $\int_a^b \int_c^\infty f(x,t) dt dx = \int_c^\infty \int_a^b f(x,t) dx dt$.

7.40 Theorem. Suppose that f(x,t) and its partial derivative $\partial_x f(x,t)$ are continuous functions on $\{(x,t) \mid x \in I, t \geq c\}$. Suppose also that the integral $\int_c^{\infty} f(x,t) dt$ converges for $x \in I$ and the integral $\sum_c^{\infty} \partial_x f(x,t) dt$ converges uniformly for $x \in I$. Then the former integral is differentiable on I as a function of x and

$$\frac{d}{dx} \int_{c}^{\infty} f(x,t) dt = \int_{c}^{\infty} \frac{\partial f}{\partial x}(x,t) dt$$

Theorem (Dirichlet's Test). Let g, g_x , h be continuous on $[a,b) \times S$. If $\lim_{x\to b^-} \sup_{y\in S} |g(x,y)| = 0$, and there exists a constant M such that $\sum_{y\in S} \left|\int_a^x h(u,y)\ du\right| < M$ for $a\leq x\leq b$ and $\int |g_x(x,y)|\ dx$ converges uniformly on S, then $\int_a^b g(x,y)h(x,y)\ dx$ converges uniformly on S.

7.6 The Gamma Function

Definition. The **gamma function** $\Gamma(x)$ is defined for x > 0 by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

The gamma function is uniquely defined by the following properties:

$$\Gamma(1) = 1$$
 $\Gamma(x+1) = x\Gamma(x)$ $\Gamma(n+1) = n!$ for $n = 1, 2, 3, \dots$ $\log \Gamma$ is convex on $(0, \infty)$

The k-th derivative of the gamma function

$$\Gamma^{(k)}(x) = \int_0^\infty (\log t)^k t^{x-1} e^{-t} dt$$

Definition. Related to the gamma function is the **beta function**

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt \qquad (x,y>0)$$

7.55 Theorem. For x, y > 0,

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

7.56 Theorem (The Duplication Formula).

$$\Gamma(2x) = \pi^{-1/2} 2^{2x-1} \Gamma(x) \Gamma\left(x + \frac{1}{2}\right)$$

7.57 Theorem. For a > 0,

$$\lim_{x \to \infty} \frac{\Gamma(x+a)}{x^a \Gamma(x)} = 1$$

8 Fourier Series

8.1 Periodic Functions and Fourier Series

Definition. A function f on \mathbb{R} is called **periodic** with period P, or P-periodic, if f(x+P)=f(x) for all x. Thus all of f is completely determined by its values on [a, a+P] for some a.

Definition. A function f defined on an interval [a, b] is **piecewise continuous** if it is continuous at all but finitely many points.

Definition. Given a 2π -periodic, piecewise continuous function f, its Fourier series is defined by

$$f(\theta) = \sum_{-\infty}^{\infty} c_n e^{in\theta} = \frac{a_0}{2} + \sum_{1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

where

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n\theta \ d\theta \qquad \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin n\theta \ d\theta$$
$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} \ d\theta$$

are the Fourier coefficients of f.

8.2 Convergence of Fourier Series

8.12 Theorem (Bessel's Inequality). If f is 2π -periodic and piecewise continuous, then

$$\sum_{-\infty}^{\infty} |c_n|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta$$

where c_n is the Fourier coefficient of f.

Definition. The partial sum of the Fourier series of f is given by

$$S_N^f = \int_{-\pi}^{\pi} f(\varphi + \theta) D_N(\varphi) \, d\varphi \quad \text{where} \quad D_N(\varphi) = \frac{1}{2\pi} \sum_{-N}^{N} e^{in\varphi}$$

 D_N is called the N-th **Dirichlet kernel**.

8.15 Lemma. Let $D_N(\varphi)$ be the N-th Dirichlet kernel. Then

a.
$$\int_{-\pi}^{0} D_N(\varphi) d\varphi = \int_{0}^{\pi} D_N(\varphi) d\varphi = \frac{1}{2}$$

b.
$$D_N(\varphi) = \frac{1}{2\pi} \frac{e^{i(N+1)\varphi} - e^{-iN\varphi}}{e^{i\varphi} - 1}$$

Definition. We say a periodic function is piecewise smooth if on any bounded interval, it is of class C^1 on all but finitely many points.

8.16 Theorem. Suppose f is 2π -periodic and piecewise smooth. Then the partial sums S_N^f converge pointwise to $\frac{1}{2}[f(\theta-)+f(\theta+)]$. In particular, they converge to $f(\theta)$ at each θ where f is continuous.

Definition. We shall call f standardized if it satisfies $f(\theta) = \frac{1}{2} [f(\theta -) + f(\theta +)]$ for every θ .

8.18 Corollary. If f and g are standardized piecewise-smooth, 2π -periodic functions with the same Fourier coefficients, then f = g.

Definition. Abel's summation allows us to find the Fourier series of piecewise continuous functions. Consider the following series for 0 < r < 1 and its limit as $r \to 1^-$:

$$A_r f(\theta) = \sum_{-\infty}^{\infty} r^{|n|} c_n e^{in\theta}$$

We can re-express the right side with

$$A_r f(\theta) = \int_{-\pi}^{\pi} f(\theta + \varphi) P_r(\varphi) d\varphi$$
 where $P_r(\varphi) = \sum_{n=0}^{\infty} r^{|n|} e^{in\theta}$

where P_r is the **Poisson kernel**. Unlike the Dirchlet kernel, the Poisson kernel uniformly converges on $[-\pi, -\delta]$ and $[\delta, \pi]$ for any $\delta > 0$ as $r \to 1^-$.

8.24 Theorem. Suppose that f is 2π -periodic. If f is piecewise continuous, then

$$\lim_{r \to 1^{-}} A_r f(\theta) = \frac{1}{2} \left[f(\theta -) + f(\theta +) \right]$$

for every θ . If f is continuous, then $A_r f \to f$ uniformly as $r \to 1^-$.

8.3 Derivatives, Integrals, and Uniform Convergence

8.26 Theorem. Suppose f is 2π -periodic, continuous, and piecewise smooth, and let c_n and c'_n be the Fourier coefficients of f and f'. Then $c'_n = inc_n$. Equivalently, if a_n, b_n and a'_n, b'_n are the Fourier coefficients of f and f', then $a'_n = nb_n$ and $b'_n = -na_n$.

8.27 Corollary. Suppose f is 2π -periodic, continuous, and piecewise smooth, and that f' is also piecewise smooth. If

$$\sum_{-\infty}^{\infty} c_n e^{in\theta} = \frac{a_0}{2} + \sum_{1}^{\infty} (a_n \cos bn + b_n \sin bn)$$

is the Fourier series of f, then $f'(\theta)$ is the derived series

$$\sum_{-\infty}^{\infty} inc_n e^{in\theta} = \sum_{1}^{\infty} (nb_n \cos bn - na_n \sin bn)$$

at every θ where $f'(\theta)$ exists. At the points where f' jumps, the series converges to $\frac{1}{2}[f'(\theta-)+f'(\theta+)]$.

8.28 Theorem. Suppose f is a 2π -periodic function and piecewise continuous, with Fourier coefficients c_n or a_n and b_n . Assume that $c_0 = \frac{a_0}{2} = 0$. If F is a continuous, piecewise-smooth function such that F' = f (except where f jumps), then

$$F(\theta) = C_0 + \sum_{n \neq 0} \frac{c_n}{in} e^{in\theta} = C_0 + \sum_{n=0}^{\infty} \left(\frac{a_n}{n} \sin n\theta - \frac{b_n}{n} \cos n\theta \right)$$

for all θ where C_0 is the mean value of F on $[-\pi, \pi]$.

8.29 Theorem. If f is 2π -periodic, continuous, and piecewise smooth, then the Fourier series of f is absolutely and uniformly convergent.

8.4 Fourier Series on Intervals

Definition. Given a piecewise continuous function f on $[0,\pi]$, we define the even extension of f on $[-\pi,\pi]$ by

$$f_{even} = \begin{cases} f(\theta) & 0 \le \theta \le \pi \\ f(-\theta) & -\pi \le \theta < 0 \end{cases}$$

The Fourier series of f_{even} , also called the Fourier cosine series of f, is the series

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos n\theta \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \cos n\theta \ d\theta$$

Similarly, we can define the odd extension of f on $[-\pi, \pi]$ to be

$$f_{odd} = \begin{cases} f(\theta) & 0 < \theta < \pi \\ -f(-\theta) & -\pi < \theta < 0 \\ 0 & \theta = 0, \pm \pi \end{cases}$$

The Fourier series of f_{odd} , also called the Fourier sine series of f, is the series

$$\sum_{1}^{\infty} b_n \sin n\theta \qquad \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \sin n\theta \ d\theta$$

8.30 Theorem. Suppose f is piecewise smooth is on $[0, \pi]$. The Fourier cosine series and the Fourier sine series converge to $\frac{1}{2}[f(\theta-)+f(\theta+)]$ at every $\theta \in (0,\pi)$. The cosine series converges to f(0+) at $\theta=0$ and to $f(\pi-)$ at $\theta=\pi$; the sine series converges to 0 at both of these points.

We may want to consider periodic function with a period other than 2π . Suppose f(x) is a 2l-periodic function. Then the Fourier series of f is

$$f(x) = \sum_{-\infty}^{\infty} c_n e^{in\pi x/l} \qquad c_n = \frac{1}{2l} \int_{-l}^{l} f(x)e^{-in\pi x/l} dx$$

and the corresponding formula using sines and cosines is

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{l} + b_n \cos \frac{n\pi x}{l} \right]$$

where

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
 $b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$

Thus for a piecewise smooth function f on [0, l], its Fourier cosine and sine series are

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l}$$

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx$$

and

$$f(x) = \sum_{1}^{\infty} b_n \sin \frac{n\pi x}{l}$$
 $b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx$

8.5 Applications in Differential Equations

8.6 The Infinite-Dimensional Geometry of Fourier Series

Definition. For complex n-dimensional vectors \mathbf{a} , \mathbf{b} , we define the **inner product** to be

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{1}^{n} a_{j} \overline{b_{j}} \qquad (\mathbf{a}, \mathbf{b} \in \mathbb{C}^{n})$$

Now consider piecewise continuous, complex-valued functions f and g on an interval [a, b]. We define **inner product** of two functions f and g as

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx$$

We define the **norm** of a function f to be

$$||f|| = \langle f, f \rangle^{1/2} = \left[\int_a^b |f(x)|^2 dx \right]^{1/2}$$

We call two functions f and g orthogonal on [a,b] if $\langle f,g\rangle=0$. A sequence of functions $\{\varphi_n\}$ is called **orthogonal** if $\langle \varphi_n, \varphi_m \rangle=0$ for $m \neq n$ and **orthonormal** if, in addition, $||\varphi_n||=1$ for all n.

Definition. Since we have norm, we define the **distance** between two functions to be

$$||f - g|| = \left[\int_a^b |f(x) - g(x)|^2 dx \right]^{1/2}$$

Thus, we have a definition of convergence:

$$f_k \to f \quad \iff \quad ||f_k - f|| \to 0, \text{ i.e., } \int_a^b |f_k(x) - f(x)|^2 dx \to 0$$

This definition of convergence is called **convergence in norm** or **mean-square convergence**.

8.42 Proposition. If $f_k \to f$ uniformly on [a, b], then $f_k \to f$ in norm in [a, b].

Definition. We define the space of square-integrable functions to be

$$L^2(a,b) = \{f \mid f \text{ is Lebesgue measureable on } [a,b] \text{ and } \int_a^b f(x) \ dx < \infty \}$$

8.43 Theorem. Let $e_n(\theta) = e^{in\theta}$.

a. If $f \in L^2(-\pi, \pi)$, the Fourier series

$$\sum_{-\infty}^{\infty} c_n e_n, \qquad c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta$$

converges in norm to f, that is,

$$\lim_{N \to \infty} \int_{-\pi}^{\pi} \left| f(\theta) - \sum_{-N}^{N} c_n e^{in\theta} \right| d\theta = 0$$

33

b. Bessel's inequality is an equality: For any $f \in L^2(-\pi,\pi)$,

$$\sum_{-\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta$$

This equality is called **Parseval's identity**.

c. If $\{c_n\}_{-\infty}^{\infty}$ is any sequence of complex numbers such that $\sum_{-\infty}^{\infty} |c_n|^2$ converges, then the series $\sum_{-\infty}^{\infty} c_n e_n$ converges in norm to a function in $L^2(-\pi,\pi)$.