Cross-Modal Fine-Tuning Align then Refine

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Cross-Modal Fine-Tuning 1 / 43

•00

- 6 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 2 / 43

Introduction

000

Transfer learning:

- Reuse of a pre-trained model on a new problem.
- Models can apply what they have learned from large amounts of unlabeled data to downstream tasks.

Existing research:

focuses on in-modality transfer within these well-studied areas.

Figure 1: The early and middle layers are used and we only retrain the latter layers

Cross-Modal Fine-Tuning 3/43Tran Trong Khiem

Cross-Modal Fine-Tuning

Problem: Could cross-modal fine-tuning have immense impact on less-studied areas?

 could we use pretrained BERT models to tackle genomics tasks, or vision transformers to solve PDEs?

ORCA:

- cross-modal fine-tuning workflow.
- prevent the distortion of the pretrained weights.
- exploit the knowledge encoded in the pretrained model.

Tran Trong Khiem Cross-Modal Fine-Tuning 4 / 43

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- 5 Proposed
- **6** Apendix
- Referenses

Tran Trong Khiem Cross-Modal Fine-Tuning 5 / 43

ORCA work flow

Figure 2: ORCA's three-stage fine-tuning workflow

ORCA:

- **Dimensionality Alignment:**
 - generate task-specific embedder and predictor.
- Distribution Alignment:
 - train the the embedding network.
- **Refine model weight**: fine-tuning to minimize the target loss.

Tran Trong Khiem Cross-Modal Fine-Tuning 6 / 43

Problem setup

Denote:

- A domain \mathcal{D} consists of a feature space \mathcal{X} , a label space \mathcal{Y} , and a joint probability distribution $P(\mathcal{X}, \mathcal{Y})$.
- The target domain \mathcal{D}^t and source (pretraining) domain \mathcal{D}^s
- $\mathcal{X}^t \neq \mathcal{X}^s$, $\mathcal{Y}^t \neq \mathcal{Y}^s$, and $P_t(\mathcal{X}^t, \mathcal{Y}^t) \neq P_s(\mathcal{X}^s, \mathcal{Y}^s)$
- embedder *f* that transforms input *x* into a **sequence of features**.
- model body g that applies a series of pretrained attention layers to the embedded features.
- predictor h that generates the outputs with the desired shape.

Goal:

- Given target data $\{(x_{t_i}, y_{t_i})\}_{i=1}^n$ sampled from a joint distribution P^t in domain \mathcal{D}^t ,
- learn a model m^t that correctly maps each input x^t to its label y^t

Tran Trong Khiem Cross-Modal Fine-Tuning 7 / 43

Figure 3: Dimensionality Alignment

Goal: addressing the problem of dimensionality mismatch. **Custom Embedding Network:**

- The target embedder $f^t: \mathcal{X} \to \dot{\mathcal{X}}$ with $\dot{\mathcal{X}}$ is feature space.
- f^t is composed of a convolutional layer.

Custom Prediction Head

• The prediction head h^t take $\dot{y} \in \dot{\mathcal{Y}}$ as input and return a task-dependent output tensor.

Tran Trong Khiem Cross-Modal Fine-Tuning 8 / 43

000000 **Distribution Alignment**

ORCA

Goal: manipulate the target data so that they become closer to the pretraining modality.

- train the embedder before actually fine-tuning the model body.
- makes the embedded target features resemble the source features.
- key idea.

Denote:

- $f^s: \mathcal{X}^s \to \dot{\mathcal{X}}$ is the pretrained source embedder.
- We can learn f^t by minimize $D(P(f^t(x^t), y^t)||P(f^s(x^s), y^s))$
- D is a metric for measuring distribution distance (MMD, OTDD, Euclidean).

Tran Trong Khiem Cross-Modal Fine-Tuning 9 / 43

Implement OTDD for Distribution Alignment

- Compute distance between two dataset : $\mathcal{D}^s = (\dot{x}^s, y^s)$ and $\mathcal{D}^t = (\dot{x}^t, y^t)$
- OTDD represents each class label as a distribution over the in-class features:

$$y \mapsto \alpha_y(X) = P(\dot{X} \mid Y = y)$$

We can compute distance between feature-label pairs as :

$$d_Z\left((x,y),(x',y')\right) = \left[d_{\mathcal{X}}(x,x')^p + W_p^p(\alpha_y,\alpha_{y'})\right]^{\frac{1}{p}}$$

• we can finally use optimal transport to compute OTDD:

$$d_{ ext{OT}}(D^s, D^t) = \min_{\pi \in \Pi(lpha, eta)} \int_{Z imes Z} d_Z(z^s, z^t)^p \ \pi(z^s, z^t)$$

•
$$z = (\dot{x}, y)$$

ORCA

Tran Trong Khiem Cross-Modal Fine-Tuning 10 / 43

- 3 Implement ORCA

Implement ORCA ôoooooooo

Tran Trong Khiem Cross-Modal Fine-Tuning 11 / 43

Research questions

Figure 4: ORCA work flow

- **1** How does the choice of proxy dataset affect performance?
- 2 Does doing (more) embedder training improve performance?
- **3** What do the embedder and the pre-trained model contribute individually?
- 4 How much pre-training is necessary for cross-modal transfer?

Tran Trong Khiem Cross-Modal Fine-Tuning 12 / 43

Experimental setup

Transformers pre-train model:

- **1** RoBERTa-base(Liu et al.,2019) for 1*D* tasks.
- 2 Swin-base(Liu et al.,2021) for 2D tasks.

Embedder traing

Using OTDD.

Target dataset

- 1 1D datasets: Satellite, DeepSEA, and ECG
- 2 2D datasets: NinaPro, CIFAR-100, and Darcy Flow.

Proxy datasets

- 1 CIFAR-10 (Krizhevsky, 2009) for all 2D tasks.
- 2 CoNLL 2003 (Tjong Kim Sang and De Meulder, 2003) for all 1D tasks.

Tran Trong Khiem Cross-Modal Fine-Tuning 13 / 43

How does the choice of proxy dataset affect performance?

Experiment with the choice of proxy dataset for the tasks.

 Base line: embedder is trained with different proxy datasets or not trained.

Figure 5: Per-epoch fine-tuning performance

Tran Trong Khiem Cross-Modal Fine-Tuning 14 / 43

How does the choice of proxy dataset affect performance?

Paper finding:

 Embedder training does play a role in the 1D tasks, but does not matter for 2D tasks.

Questions:

- 1 Can we trust this conclusion (just comparing 4 dataset)?
- 2 Why are there differences between 2D tasks and 1D tasks?

Tran Trong Khiem Cross-Modal Fine-Tuning 15 / 43

Does doing (more) embedder training im- prove performance?

Figure 6: Per-epoch embedder training comparing OTDD

Paper finding:

 Embedder training is unnecessary in 2/6 tasks, training the embedder more can even lead to worse task performance.

Tran Trong Khiem Cross-Modal Fine-Tuning 16 / 43

What do the embedder and the pre-trained model contribute individually?

Experiment with freezing different parts of the pipeline:

• Freezing just the embedder, just the model, or both

Figure 7: Freezing just the embedder, just the model, or both.

Tran Trong Khiem Cross-Modal Fine-Tuning 17 / 43

What do the embedder and the pre-trained model contribute individually?

Paper finding:

- fine-tuning the pre-trained model is a critical component of ORCA.
- while training the embedder is important for ORCA's success on these datasets.
 - it need not be fine-tuned beyond that.

Tran Trong Khiem Cross-Modal Fine-Tuning 18 / 43

Pre-training is not always necessary

Use RoBERTa models pre-trained on **different amounts of English data**: 10B,100M, 10M,...

Figure 8: Effect of different amounts of pre-training data on downstream performance.

Paper finding:

• the amount of pre-training has a notice able effect only at certain(30B) scales.

Tran Trong Khiem Cross-Modal Fine-Tuning 19 / 43

Conclusion

In 1D task:

- 1 some amount of **embedder training** is **necessary**.
- **2** more embedder training can even hurt performance on the target task.
- 3 using a pre-trained model is actually not necessary.

In 2D task:

1 embedder training does not help at all.

Questions:

- 1 Can we trust this conclusion (just comparing 4 dataset)?
- 2 Why are there differences between 2D tasks and 1D tasks?

Tran Trong Khiem Cross-Modal Fine-Tuning 20 / 43

Idea for question about differences between 2D tasks and 1D tasks.

Figure 9: orca loss in Ninapro dataset

ORCA: unstable training, trapped in unfavorable local optima.

Tran Trong Khiem Cross-Modal Fine-Tuning 21 / 43

- 4 Enhancing Cross-Modal Fine-Tuning

Tran Trong Khiem Cross-Modal Fine-Tuning 22 / 43

Introduction

ORCA:

- faces instability during training.
- potentially leading to suboptimal results as it is prone to getting trapped in unfavorable local optima.

Figure 10: Loss landscape

Patch Replacement(PaRe):

 Motivated by traditional data augmentation techniques like Mixup (Zhang et al., 2017) and CutMix (Yunet al., 2019)

Tran Trong Khiem Cross-Modal Fine-Tuning 23 / 43

Patch Replacement(PaRe)

Figure 11: PaRe Overview

Embedder:

- pre-trained embedder $f_s: \mathcal{X}^s \to \tilde{\mathcal{X}}^s$
- target embedder f_t is randomly initialized $f_t: \mathcal{X}^t \to \tilde{\mathcal{X}}^t$

Tran Trong Khiem Cross-Modal Fine-Tuning 24 / 43

PaRe

Figure 12: Patch scoring

Patch scoring:

- The source embeddings $\tilde{X}_s \in \mathbb{R}^{N \times D}$ contain N patches, where $\tilde{X}_s = {\tilde{x}_{s1}, \tilde{x}_{s2}, \dots, \tilde{x}_{sN}}.$
- Score each patch \tilde{x}_{si} from the source and \tilde{x}_{ti} from the target using a gate network.

$$S_s = \sigma(F_C(\tilde{X}_s))$$

• The higher the score, the more critical information the patch contains

Tran Trong Khiem Cross-Modal Fine-Tuning 25 / 43

PaRe

Figure 13: Pa Re

Patches replacement

- keep the positions of the top (N k) target patches with the highest scores fixed.
- replace the bottom (*k*) target patches with the lowest scores with the top (*k*) source patches with the highest scores.
- k linearly decreases with the number of training epochs:

$$k = k_0(1 - \frac{\text{ep}_{\text{current}}}{\text{ep}_{\text{current}}}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 26 / 43

Loss function

Denote:

- Output of patchs replacement \tilde{X}^m for source and target.
- Output of source encoder $g(\tilde{X}^m)$.
- source prediction $p^{ms} = h_s\left(g(\tilde{X}^m)\right)$ and target prediction $p^{mt} = h_t\left(g(\tilde{X}^m)\right)$.
- Weight $\lambda = \frac{k}{k_0}$.

Loss function:

• Calculate the mixed loss \mathcal{L}_{mix} using mixed embeddings \tilde{X}^m .

$$\mathcal{L}_{\text{mix}} = (1 - \lambda)\mathcal{L}_{\text{tar}}(p^{mt}, y_t) + \lambda\mathcal{L}_{\text{src}}(p^{ms}, y_s)$$

Tran Trong Khiem Cross-Modal Fine-Tuning 27 / 43

Experiment Setup

Pre-train model:

- 1 RoBERTa (Liu et al., 2019) for 1D tasks.
- 2 Swin Transformers (Liu et al., 2021) for 2D tasks.

Proxy datasets:

- 1 2D classification tasks: CIFAR10, Tiny-ImageNet.
- 2 D dense prediction tasks: VOC.
- 3 1D tasks: CoNLL-2003.

Tran Trong Khiem Cross-Modal Fine-Tuning 28 / 43

Overall results

NAS-Bench-360:

- comprises four 2D classification tasks, three 2D dense prediction tasks, and three 1D tasks.
- PaRe achieves the best performance across all tasks.

	CIFAR-100 0-1 error (%)	Spherical 0-1 error (%)	Darcy Flow relative ℓ_2	PSICOV MAE ₈	Cosmic 1-AUROC	NinaPro 0-1 error (%)	FSD50K 1-mAP	ECG 1-F1 score	Satellite 0-1 error (%)	DeepSEA 1-AUROC
Hand-designed	19.39	67.41	8.00E-03	3.35	0.127	8.73	0.62	0.28	19.80	0.30
NAS-Bench-360	23.39	48.23	2.60E-03	2.94	0.229	7.34	0.60	0.34	12.51	0.32
DASH	24.37	71.28	7.90E-03	3.30	0.190	6.60	0.60	0.32	12.28	0.28
Perceiver IO	70.04	82.57	2.40E-02	8.06	0.485	22.22	0.72	0.66	15.93	0.38
FPT	10.11	76.38	2.10E-02	4.66	0.233	15.69	0.67	0.50	20.83	0.37
NFT	7.67	55.26	7.34E-03	1.92	0.170	8.35	0.63	0.44	13.86	0.51
ORCA	6.53	29.85	7.28E-03	1.91	0.152	7.54	0.56	0.28	11.59	0.29
PaRe	6.25	25.55	7.00E-03	0.99	0.121	6.53	0.55	0.28	11.18	0.28

Figure 14: Prediction errors (↓) across 10 diverse tasks on NAS-Bench-360.

Tran Trong Khiem Cross-Modal Fine-Tuning 29 / 43

Overall results(.cnt)

PDEBench:

 comprises multiple scientific ML-related datasets, with a focus on the physics domain.

	Advection 1D	Burgers 1D	Diffusion-Reaction 1D	Diffusion-Sorption 1D	Navier-Stokes 1D	Darcy-Flow 2D	Shallow-Water 2D	Diffusion-Reaction 2D
PINN	6.70E-01	3.60E-01	6.00E-03	1.50E-01	7.20E-01	1.80E-01	8.30E-02	8.40E-01
FNO	1.10E-02	3.10E-03	1.40E-03	1.70E-03	6.80E-02	2.20E-01	4.40E-03	1.20E-01
U-Net	1.10E+00	9.90E-01	8.00E-02	2.20E-01	-	-	1.70E-02	1.60E+00
ORCA	9.80E-03	1.20E-02	3.00E-03	1.60E-03	6.20E-02	8.10E-02	6.00E-03	8.20E-01
PaRe	2.70E-03	8.30E-03	2.60E-03	1.60E-03	6.62E-02	8.06E-02	5.70E-03	8.18E-01

Figure 15: Normalized Root Mean Squared Errors (nRMSEs, ↓) across 8 tasks of PDEBench

Tran Trong Khiem Cross-Modal Fine-Tuning 30 / 43

Limitation

- 1 Determining the most suitable source modality proxy dataset based on the target modality dataset remains a **challenge**.
- **2** a modality-agnostic data augmentation method is necessary to prevent model overfitting and enhance cross-modal fine-tuning.

Tran Trong Khiem Cross-Modal Fine-Tuning 31 / 43

- 6 Proposed
- 6 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 32 / 43

Idea

Problem setup:

- Tranformers pre-train body model g_s in domain D^s .
- Dataset $\{x_i, y_i\}_{i=1}^N$ in domain D^t .

Figure 16: proposed model

embedder: f extract feature from input f(.)

• Using pretrain model + linear projection.

predictor: h generate output h(.)

Tran Trong Khiem Cross-Modal Fine-Tuning 33 / 43

Idea(cnt.)

Proposed workflow:

- 1 Stage 1 : Data augmentation.
- **2** Stage 2 : Contrastive training for predictor.
- **3** Stage 3 : Model Fine-tuning.

Stage 1: Data augmentation.

- $d_i = g_s(f(x_i))$ is output vector of body model.
- We have new dataset $\{d_i\}_{i=1}^N$.
- Pertubing data T times with multi-scale gaussian noise $\{\sigma_i\}_{i=1}^K$.

$$d_i^t = \sqrt{1 - \sigma^2} d_i^{t-1} + \sigma * \epsilon$$
$$\epsilon \sim \mathcal{N}(0, I)$$

• We have finnal dataset $\{d_i, y_i\}_{i=1}^M$ with $M = N \times K \times T$

Tran Trong Khiem Cross-Modal Fine-Tuning 34 / 43

Contrastive training for predictor

We have:

- Prediction $z_i = h(d_i)$ is a output vector.
- Similarity between two output:

$$cos(z_i, z_j) = \frac{z_i z_j}{||z_i|| * ||z_j||}$$

- **Objective**: Similarity high in the same label, low in the different label.
- Loss function for label Y:

$$\mathcal{L}_{Y} = -\log \frac{\sum_{j}^{y_{j}=Y} \sum_{i}^{y_{i}=Y} cos(z_{i}, z_{j})}{\sum_{i}^{y_{i}=Y} \sum_{j=1}^{M} \lambda_{i,j} cos(z_{i}, z_{j})}$$

• $\lambda_{i,j} \propto \frac{1}{\text{correlation}(y_i,y_i)+\epsilon}$ and $\lambda_{i,j} = 1$ if $y_i = y_j$.

Tran Trong Khiem Cross-Modal Fine-Tuning 35 / 43

Contrastive training for predictor(.cnt)

Problem:

• Are d_i and pertubed version \tilde{d}_i remain the same label?

Idea for solution:

- $P(\text{label}(d_i) = \text{label}(\tilde{d}_i)) = P_l(\tilde{d}_i) \approx 1 \frac{\Delta_d \partial h}{C * \partial d}$
- $\Delta_d = ||d_i \tilde{d}_i||$
- Similarity between 2 output becomes:

$$si(z_i, z_i) = P_l(d_i)P_l(d_i)\cos(z_i, z_i)$$

Tran Trong Khiem Cross-Modal Fine-Tuning 36 / 43

Model fine-tuning

Stage 3: Model fintuning.

• Trainning model with Dataset $\{x_i, y_i\}_{i=1}^N$

Training options:

- Freezing embedder.
- 2 Training embedder.
- 3 Training only linear projection.

Prediction options:

- 1 Nomal forwarding.
- 2 Perturbation forwarding.
 - $d = g_s(f(x))$
 - Perturb *d* with gaussian noise, we have $\{\tilde{d}_i\}_{i=1}^M$.
 - Prediction as $y = \mathbb{E}[h(\tilde{d})]$

Tran Trong Khiem Cross-Modal Fine-Tuning 37 / 43

Problem

Problem: How to bridge the domain gap?

• Using embedder training as same as ORCA?

Tran Trong Khiem Cross-Modal Fine-Tuning 38 / 43

- **6** Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 39 / 43

MMD

Define: MMD is a distance (difference) between feature means. **Denote**:

- X and $\phi(X) \in \mathcal{F}$ is the a feature map.
- Assuming \mathcal{F} satisfies the necessary conditions:
 - X, Y such that $k(X, Y) = \langle \phi(X), \phi(Y) \rangle_{\mathcal{F}}$

Feature Mean:

• Given $\mathcal{X} \sim P$ we have feature means :

$$\mu_P = \mathbb{E}_{X \sim P}[\phi(X)]$$

Maximum mean discrepancy:

$$MMD(P, Q) = ||\mathbb{E}_{X \sim P}[\phi(X)] - \mathbb{E}_{Y \sim O}[\phi(Y)]||_{\tau} = ||\mu_P - \mu_O||_{\tau}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 40 / 43

Optimal transport(OP): Comparing by 'transporting'

Figure 17: Optimal transport

Optimal transport

- a method to find least-cost schemes to transport dirt and rubble from one place to another.
- $\operatorname{OT}_c(\alpha, \beta) := \min_{\pi \in \Pi(\alpha, \beta)} \int_{X \times X} c(x, y) \, d\pi(x, y).$
 - $\Pi(\alpha, \beta)$ be the set of joint probability distributions on $X \times X$.
- $W_p(\alpha, \beta) = OT(\alpha, \beta)^{1/p}$ is called the *p*-Wasserstein distance.

Tran Trong Khiem Cross-Modal Fine-Tuning 41 / 43

- 1 Introduction
- 2 ORCA
- 3 Implement ORCA
- 4 Enhancing Cross-Modal Fine-Tuning
- 5 Proposed
- **6** Apendix
- Referenses

Tran Trong Khiem Cross-Modal Fine-Tuning 42 / 43

Referenses

References

- Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar; Cross-Modal Fine-Tuning: Align then Refine
- 2 MMD.
- **3** OTDD
- Paloma García-de-Herreros, Vagrant Gautam, Philipp Slusallek, Dietrich Klakow, Marius Mosbach, What explains the success of cross-modal fine-tuning with ORCA?
- **(5)** Lincan Cai, Shuang Li, Wenxuan Ma, Jingxuan Kang, Binhui Xie, Zixun Sun, Chengwei Zhu, Enhancing Cross-Modal Fine-Tuning with Gradually Intermediate Modality Generation.

Tran Trong Khiem Cross-Modal Fine-Tuning 43 / 43