Digital Clock Implementation with Arduino

EE24BTECH11024 - Abhimanyu Koushik

$March\ 24,\ 2025$

Contents

1	Introduction	2
2	Objectives	2
3	Materials Required	2
4	4.2 Pin Diagrams	2 3 3 4 4 4 4 4
5	Working Principle 5.1 Timing and Multiplexing	5
6	6.2 ISR (Interrupt Service Routine)	5 5 5 6
7	Challenges and Solutions	6
8	Conclusion	6
9	Source Code and Documentation	6

1 Introduction

This report describes the design, implementation, and analysis of a digital clock using an *Arduino Uno* microcontroller, 7-segment displays, and multiplexing techniques. The project employs AVR-GCC programming for efficient control and accurate timekeeping.

2 Objectives

The primary objectives of this project are:

- To create a digital clock capable of displaying hours, minutes, and seconds.
- To use multiplexing techniques for reducing the number of required microcontroller pins.
- To implement precise time management using *Timer1 interrupts*.
- To demonstrate AVR-GCC direct register manipulation for efficient hardware control.

3 Materials Required

- Arduino Uno board (ATmega328P)
- Six 7-segment displays
- 7447 BCD-to-7-segment decoders
- 180Ω resistors (current limiting resistors)
- Push buttons (for time adjustments)
- Breadboard and jumper wires
- Power supply or USB connection for the Arduino

4 Circuit Description

The clock uses six 7-segment displays to represent HH:MM:SS. The digits are arranged as follows:

HH:MM:SS = Hour Tens + Hour Units + Minute Tens + Minute Units + Second Tens + Second Units

4.1 Wiring Configuration

Figure 1: Digital Clock Circuit using Arduino and 7-segment displays

4.2 Pin Diagrams

Figure 2: 7447 BCD-to-7-segment Decoder Pinout

Figure 3: 7-segment Display Pinout

4.3 Connections

4.3.1 7447 Decoder to Arduino Connections

- D2 \rightarrow A (LSB) on 7447
- D3 \rightarrow B on 7447
- D4 \rightarrow C on 7447
- $\bullet~\mathrm{D5} \to \mathrm{D}~(\mathrm{MSB})$ on 7447
- GND \rightarrow GND (Common ground)

4.3.2 7447 to 7-segment Display Connections

- 7447 Pin 9 \rightarrow Segment E
- 7447 Pin $10 \rightarrow \text{Segment D}$
- 7447 Pin 11 \rightarrow Segment C
- 7447 Pin 12 \rightarrow Segment B
- 7447 Pin 13 \rightarrow Segment A
- 7447 Pin 14 \rightarrow Segment G
- 7447 Pin 15 \rightarrow Segment F

4.3.3 7-segment Display to Arduino Connections

- A0 \rightarrow Display 1 Common Anode
- A1 \rightarrow Display 2 Common Anode

5 Working Principle

The clock uses *multiplexing* to drive multiple 7-segment displays while reducing the required number of pins. The Arduino cycles through each display quickly (approximately every 2ms), creating the illusion of simultaneous illumination.

5.1 Timing and Multiplexing

The *Timer1 interrupt* triggers every second to update the clock values. The display refresh rate is approximately:

Refresh rate = $\frac{1}{12\text{ms}} \approx 83\text{Hz}$

6 Challenges and Solutions

- Flickering: Increasing the refresh rate resolved flickering issues.
- Time accuracy: Timer1 was configured with a prescaler of 1024 to ensure accurate 1-second time-keeping.
- Pin limitations: Multiplexing allowed the use of fewer pins by controlling each digit sequentially.

7 Conclusion

This project successfully demonstrates the implementation of a digital clock using AVR-GCC programming on an $Arduino\ Uno$. The use of multiplexing reduces the required number of pins, while Timer1 interrupts ensure accurate timekeeping. The clock displays hours, minutes, $and\ seconds$ using six 7-segment displays and a 7447 BCD-to-7-segment decoder.

8 Source Code and Documentation

The complete source code and documentation are available on GitHub:

https://github.com/AbhimanyuKoushik/Digital-Clock-Arduino