Review 7

1. Illustrate the operation of COUNTING-SORT on the array $A=\{6,2,1,3,1,3,2\}$.

	1	2	3	4	5	6	7
В				2			

	1	2	3	4	5	6	7
В							

	1	2	3	4	5	6
C	2					7

	1	2	3	4	5	6
C						

•

2. Fill in the following RADIX-SORT example.

C	O	W
D	О	G
S	E	A
R	U	G
R	O	W
M	O	В
В	Ο	X
T	A	В
В	A	R
Е	A	R
T	A	R

3. Stack depth for quicksort

```
TAIL- RECURSIVE- QUICKSORT(A, p, r)

while p < r

// Partition and sort left subarray

q = \text{PARTITION}(A, p, r)

TAIL- RECURSIVE- QUICKSORT(A, p, q-1)

p = q + 1
```

- a. Argue that TAIL-RECURSIVE-QUICKSORT(A, 1, A.length) correctly sorts the array A.
- b. Describe a scenario in which TAIL-RECURSIVE-QUICKSORT's stack depth is $\Theta(n)$ on *n*-element input array.

c. Modify the code for TAIL-RECURSIVE-QUICKSORT so that the worst-case stack depth is $\Theta(\lg n)$. Maintain the $O(n \lg n)$ expected running time of the algorithm.