以下での(*)とは,次のもの:

- integral,
- separated,
- noetherian, and
- regular in codimention one.

また, (†) は次のもの: X :: noetherian scheme, S :: graded \mathcal{O}_X -algebra となっている. また, $d \in \mathbb{Z}, d \geq 0$ について, \mathcal{S}_d :: homogeneous part of S を $U \mapsto \mathcal{S}(U)_d$. X, S は次をすべて満たす.

- \mathcal{S} :: quasi-coherent.
- $S = \bigoplus_{d>0} S_d$.
- $S_0 = \mathcal{O}_X$.
- S_1 :: coherent \mathcal{O}_X -module.
- S :: locally generated by S_1 as \mathcal{O}_X -algebra.

Ex7.1 Surjective Mophism between Invertible Sheaves is Isomorphic.

X:: locally ringed space, \mathcal{L} , \mathcal{M} :: invertible sheaves on X, $f:\mathcal{L} \to \mathcal{M}$:: surjective mophism, とする.

■Proof 1. 任意の点 $x \in X$ をとり, $A = \mathcal{O}_{X,x}$ とおく. $f_x : \mathcal{L}_x \to \mathcal{M}_x$ は同型写像を合成することで $\phi : A \to A$:: surjective A-morphism と同一視出来る. ϕ :: surjective より, $\phi(\alpha) = 1 \in A$ となる $\alpha \in A$ がとれる.また ϕ は A-module morphism だから, $\alpha\phi(1) = 1$.そこで $\psi : A \to A$ を $a \mapsto \alpha a$ と 定義すれば,これが ϕ の逆写像になる.よって ϕ , f_x は同型.Prop1.1 から,f :: iso.

■Proof 2. Matsumura, Thm2.4 から分かる. これは NAK (or Nakayama's Lemma) からの帰結である.

注意 Ex7.1.1

k(x) :: residue field と $f_x: \mathcal{L}_x \to \mathcal{M}_x$ をテンソルすると, $f_x \otimes \operatorname{id}_{k(x)}$:: surjective k(x)-module morphism が得られる.よって $\ker(f_x \otimes \operatorname{id}_{k(x)}) = 0$. しかし,ここから NAK をつかって $\ker f_x = 0$ を 導くことは出来ない.k(x) が flat $\mathcal{O}_{X,x}$ -module でなく,したがって $\ker(f_x \otimes \operatorname{id}_{k(x)})$ と $(\ker f_x) \otimes k(x)$ の間に同型があることが言えないからである.このことは flat \Longrightarrow torsion-free に気をつければすぐ に分かる.同様の議論が f_x :: injective(と $\operatorname{coker} f_x$)の場合に出来ることにも気づくが,このときは $\mathbb{Z}_2 \to \mathbb{Z}_2; 1 \mapsto 3$ という反例がある.

Ex7.2 Two Sets of Global Generators and Corresponding Morphisms.

k:: field, X:: scheme /k, \mathcal{L} :: invertible sheaf on X, $S = \{s_0, \ldots, s_m\}$, $T = \{t_0, \ldots, t_n\}$:: global generators of \mathcal{L} . とする.ここで S, T は同じ線形(部分)空間 $V \subseteq \Gamma(X, \mathcal{L})$ を張るとする.また $n \leq m, d = \dim_k V$ とする.

S,T からそれぞれ Thm7.1 のように定まる morphism を ϕ_S,ϕ_T とする. ϕ_S が次のように分解できる

ことを示す.

$$X \xrightarrow{\phi_T} \operatorname{im} \phi_T \xrightarrow{} \mathbb{P}^m - L \xrightarrow{\pi} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

 $22 \text{ T} = \pi$, α is the linear projection is automorphism of α .

 $X \to \mathbb{P}^n$ の morphism を考えることは, $k[y_0,\ldots,y_n]$ の元 y_0,\ldots,n の変換を考えることと同じである.これは Thm7.1 の証明を観察すれば分かる.二つの k-linear map は ϕ_S^*,ϕ_T^* はそれぞれ, $y_i \mapsto s_i (i=0,\ldots,n), \ y_i \mapsto t_i (i=0,\ldots,m)$ で定まっている.したがって問題は, t_0,\ldots,t_m を s_0,\ldots,s_n へ変換する projection と automorphism をつくる問題,と言い換えられる.

今,次のような(m+1)×(n+1)行列Qが存在する.

$$\begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} = Q \begin{bmatrix} t_0 \\ \vdots \\ t_m \end{bmatrix}.$$

S,T が V の生成系であることから $\mathrm{rank}\,Q=\dim V=:d$. Q は基本行列をいくつもかける(あるいは基本変形を繰り返し行う)ことにより、次の形に分解できる.

$$Q = LP_dR$$
 where $L \in PGL(m, k), R \in PGL(n, k)$

ただし行列 P_r $(r=1,\ldots,n+1)$ は $r\times r$ -identity matrix I_r をもちいて $P_r=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ と定義される行列である.(TODO: P_d を P_{n+1} に交換しても問題ない?) L,P_{n+1},R が誘導する morphism をそれぞれ $\beta,\tilde{\pi},\alpha$ とすれば, α,β は automorphism であり, $\tilde{\pi}$ は projection である.

$$\mathbb{P}^m \xrightarrow{\beta} \mathbb{P}^m \stackrel{i}{\longrightarrow} \mathbb{P}^m - L \xrightarrow{\tilde{\pi}} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

求める射はこの α と, $\pi=\beta\circ i\circ \tilde{\pi}$ である.また, $L=\mathcal{Z}_p(y_0,\ldots,y_n)\subseteq \mathbb{P}^m$ の次元は m-(n+1) である.

Ex7.3 Morphism of $\mathbb{P}^n \to \mathbb{P}^m$ can be Decomposed into Common Ones.

 $\phi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ を考える. $\mathcal{O}_{\mathbb{P}^m}(1), \mathcal{O}_{\mathbb{P}^n}(1)$:: invertible sheaves の global generator をそれぞれ $\{x_0,\ldots,x_m\},\{y_0,\ldots,y_n\}$ とする.

(a) $\operatorname{im} \phi = pt$ or $m \geq n$ and $\operatorname{dim} \operatorname{im} \phi = n$.

 $s_i = \phi^*(x_i) \ (i = 0, ..., m)$ とおくと、 $s_0, ..., s_m$ は $\mathcal{L} := \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$ の global generator である。 \mathcal{L} は \mathbb{P}^n 上の invertible sheaf だから、Cor6.17 より、 $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ となる $d \in \mathbb{Z}$ が存在する。Example 7.8.3 同様、 $\mathcal{O}_{\mathbb{P}^n}(d)$ は |d| 次斉次単項式で生成される。

- $\blacksquare m < n \implies \dim \operatorname{im} \phi = 0.$
- $\blacksquare m \ge n \implies \dim \operatorname{im} \phi = n.$

Ex7.4 If X Admits an Ample Invertible Sheaf, then X is Separated.

(a) Assumption of Thm7.6 $\implies X ::$ separated.

A:: noetherian ring, X:: scheme of finite type /A とする. $\mathcal L$:: ample invertible sheaf on X が存在したとする. Thm7.6 から, immersion $i:X\to\mathbb P^n_A$ (n>0) が存在する. これは X から $\mathbb P^n_A$ $\mathcal O$ locally closed subscheme $\mathcal O$ isomorphism である. これに projection $\mathrm{pr}:\mathbb P^n_A=\mathbb P^n_\mathbb Z\times_\mathbb Z$ $\mathrm{Spec}\,A\to\mathrm{Spec}\,A$ を合成したものは、quasi-projective.

$$X \xrightarrow{\sim} U \xrightarrow{\sim} Z \xrightarrow{\operatorname{pr}} \operatorname{Spec} A$$

Z は \mathbb{P}^n_A の closed subscheme, U は Z の open subscheme である. A, X についての仮定から $\operatorname{Spec} A, X$:: noetherian scheme がわかる $^{\dagger 1}$ から、 $\operatorname{Thm} 4.9$ より、この射 $X \to \operatorname{Spec} A$ は separated.

(b) There is No Ample Invertible Sheaf on ---- / a field k.

k :: field, X :: affine with doubled origin /k とする. より詳細に,X は $X_1=\operatorname{Spec} k[x_1], X_2=\operatorname{Spec} k[x_2]$ を $U_1=X_1-\{O_1\}, U_2=X_2-\{O_2\}$ で貼りあわせたものとする。ただし $O_1\in X_1, O_2\in X_2$ は原点である。 X_i, U_i, O_i (i=1,2) はすべて X の部分集合とみなす。また $U=X_1\cap X_2=X-\{O_1,O_2\}$ とする。明らかに $U=U_1=U_2\cong \mathbb{A}^1-\{0\}=\operatorname{Spec} k[x_1,x_1^{-1}]$ 。また $x_1|_U=x_2|_U$.

■Plot. まず、X 上の invertible sheaf 全体 ${\rm Pic}\, X$ がどのようなものか調べる. これは ${\rm Pic}\, X\cong \mathbb{Z}$ となる. $n\in \mathbb{Z}$ に対応する ${\rm Pic}\, X$ の元を \mathcal{L}_n とする. 次に、generated by global section であるような invertible sheaf を考える. これは $\mathcal{L}_0(=\mathcal{O}_X)$ しかない、すると任意の $m>0, n\neq 0$ について

$$\mathcal{L}_0 \otimes (\mathcal{L}_n)^{\otimes m} = \mathcal{L}_{mn} \neq \mathcal{L}_0.$$

$$\mathcal{L}_n \otimes (\mathcal{L}_0)^{\otimes m} = \mathcal{L}_n \quad \neq \mathcal{L}_0.$$

なので、どの invertible sheaf も ample でない.

■X:: noetherian integral scheme. $X_1, X_2 \cong \mathbb{A}^1 = \operatorname{Spec} k[x_1]$ と reduced が local な性質であることから X:: noetherian reduced scheme. X:: irreducible も明らかだから、X:: noetherian integral scheme.

■ $\operatorname{Pic} X \ni \mathcal{L} = \mathcal{L}(D)$. $\mathcal{L} \in \operatorname{Pic} X$ を任意にとる. X :: integral と $\operatorname{Prop6.15}$ より, $\mathcal{L} = \mathcal{L}(D)$ となる $D \in \operatorname{CaCl} X$ が存在する. $\operatorname{Prop6.13}$ の証明から D がどのような形のものか考えよう. Example 6.3.1, $\operatorname{Cor} 6.16$ より, $\operatorname{Pic} X_1, \operatorname{Pic} X_2$. なので $\mathcal{L}|_{X_1} \cong \mathcal{O}_{X_1}, \mathcal{L}|_{X_2} \cong \mathcal{O}_{X_1}$ となる. $\operatorname{Prop6.13}$ の証明から,D は次のような形をしている.

$$D = \{ \langle X_1, f_1 \rangle, \langle X_2, f_2 \rangle \} \text{ where } f_1 \in \Gamma(X_1, \mathcal{K}_{X_1}^*) = (k(x_1))^*, f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(x_2))^*.$$

 $\blacksquare D \sim \{\langle X_1, x_1^n \rangle, \langle X_2, 1 \rangle\}$. Cartier divisor の定義から, $U = X_1 \cap X_2$ において $f_1/f_2 \in \Gamma(U, \mathcal{O}_U^*)$ となっている. $U \subseteq X_1 = \operatorname{Spec} k[x_1]$ と考えると, $U = \operatorname{Spec} k[x_1]_{x_1} = \operatorname{Spec} k[x_1, x_1^{-1}]$. $(U \subseteq X_1 \in \mathbb{Z})$

 $^{^{\}dagger 1}$ $f: X \to \operatorname{Spec} A$ $^{\sharp i}$ finite type ならば $f^{-1}\operatorname{Spec} A = X$ は finite affine open cover をもち、各 affine open cover は finitely generated A-algebra $^{\sharp i}$ Spec である。finitely generated A-algebra は A $^{\sharp i}$ ら noetherian を受け継ぐから、X:: noetherian.

ば $U = \operatorname{Spec} k[x_2, x_2^{-1}]$ であるが、どちらでも同じである.)そして

$$\Gamma(U, \mathcal{O}_U^*) = (k[x_1, x_1^{-1}])^* = \{\alpha x_1^n \mid \alpha \in k^*, n \in \mathbb{Z}\}.$$

であるから, $f_1/f_2 = \alpha x_1^n (\iff f_2/f_1 = (\alpha x_2^n)^{-1})$ と書ける. よって

$$D = \{\langle X_1, \alpha x_1^n f_2 \rangle, \langle X_2, f_2 \rangle\} \text{ where } f_2 \in \Gamma(X_2, \mathcal{K}_{X_2}^*) = (k(x_2))^*.$$

再び X :: integral から、 \mathcal{K}_X は constant sheaf であり、したがって $f_2 \in K = \Gamma(X,\mathcal{K}_X^*)$ となる。なので $\{\langle X_1,f_2\rangle,\langle X_2,f_2\rangle\}$ は principal。加えて $\{\langle X_1,\alpha\rangle,\langle X_2,1\rangle\}\in\Gamma(X,\mathcal{O}_X^*)$ なので $^{\dagger 2}$ 、結局 $D\sim\{\langle X_1,X_1^n\rangle,\langle X_2,1\rangle\}$.

 $\blacksquare \operatorname{Pic} X \cong \mathbb{Z}$. $n \in \mathbb{Z}$ に対し、次のように定める.

$$D_n = \{\langle X_1, x_1^n \rangle, \langle X_2, 1 \rangle\}, \quad \mathcal{L}_n = \mathcal{L}(D_n).$$

これは次の写像を定める.

$$\mathbb{Z} \to \operatorname{CaCl} X$$
 $n \mapsto D_n$

明らかに $D_m + D_n = D_{m+n}$, $\mathcal{L}_m \otimes \mathcal{L}_n = \mathcal{L}_{m+n}$ だから,これは加法群としての全射準同型.最後に,単射であることを見よう. $D_n = D_0$ ならば, D_0 同様 D_n も principal である.したがって次を満たす $f \in \Gamma(X, \mathcal{K}_X^*)$ が存在する.

$$f|_{X_1}/x_1^n \in \Gamma(X_1, \mathcal{O}_{X_1}^*) = k^*, \quad f|_{X_2}/1 \in \Gamma(X_2, \mathcal{O}_{X_2}^*) = k^*$$

ここから $f|_{X_1} \in k^*$ が得られる. よって $(f|_{X_1})/x_1^n \in k^*$ と合わせて n=0 を得る. このことは次の段落でも使うので、別に主張として述べておく.

主張 Ex7.4.1

 $f \in \Gamma(X, \mathcal{K}_X^*)$ とする. $f|_{X_2} \in k^*$ ならば, $f|_{X_1} \in k^*$.

(証明). $f|_{X_2} \in k^*$ から $f|_U \in k^*$ が得られる. $f|_U = \alpha$ としよう. $U = \operatorname{Spec} k[x_1]_{x_1} \subset X_1$ をみなして 考えると, $k[x_1]_{x_1}$ の元として $(f|_{X_1})|_U = \alpha$ となっている.なので整数 $r \geq 0$ が存在し, $k[x_1]$ の元として $x_1^r(f|_{X_1} - \alpha) = 0$. しかし $k[x_1]$ は整域なので,結局 $f|_{X_1} = \alpha \in k^*$.

■Globally Generated Invertible Sheaf on X. $n \in \mathbb{Z}$ を任意にとり, $\{g_i\}_i \subseteq \Gamma(X,\mathcal{L}_n)$ が \mathcal{L}_n の global generators であるとしよう. $\mathcal{L}_n = \mathcal{L}(D_n)$ だから, $\mathcal{L}_n|_{X_1}$ は x_1^n で generate され, $\mathcal{L}_n|_{X_2}$ は 1 で generate されている. 特に後者から, $\mathcal{L}_n|_U$ は 1 で generate されている. したがって stalk で見れば,次のようになっている.

$$\forall P \in X_2, \quad \langle \{(g_i)_P\}_i \rangle = (\mathcal{L}_n)_P = \mathcal{O}_{X,P}$$
 as $\mathcal{O}_{X,P}$ -module.
 $\langle \{(g_i)_{O_1}\}_i \rangle_i = (\mathcal{L}_n)_{O_1} = (x_1^n)_{O_1} \mathcal{O}_{X,O_1}$ as \mathcal{O}_{X,O_1} -module.

$$\mathcal{L}(\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\}) = \mathcal{O}_X = \mathcal{L}(\{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\})$$

故に $\{\langle X_1, \alpha \rangle, \langle X_2, 1 \rangle\} = \{\langle X_1, 1 \rangle, \langle X_2, 1 \rangle\}$, と理解しても良い.

^{†2} ここの部分は Prop6.13c を用いて

これらを可換環に翻訳し、 g_i を $g_i|_{X_2}, g_i|_{U}, g_i|_{X_1}$ の順に求めていく、 $X_2 = \operatorname{Spec} k[x_2]$ だから、P に対応する素イデアル $\mathfrak{p} \subset k[x_2]$ がとれる。また、 $g_i|_{X_2} \in \Gamma(X_2, \mathcal{O}_X) = k[x_2]$. $\mathcal{O}_{X,P} = \mathcal{O}_{X_2,P} = k[x_2]_{\mathfrak{p}}$ であり、したがって $k[x_2]_{\mathfrak{p}}$ -module として $\langle (g_i|_{X_1})_{\mathfrak{p}} \rangle = k[x_2]_{\mathfrak{p}}$. なので、次が成り立つ。

$$\forall \mathfrak{p} \in \operatorname{Spec} k[x_2], \quad \forall i, \quad (g_i|_{X_2})_{\mathfrak{p}} \in (k[x_2]_{\mathfrak{p}})^* = k[x_2] \setminus \mathfrak{p}.$$

よって $g_i|_{X_2}\in (k[x_2])^*=k^*$ がわかる。前段落に書いた主張から $g_i|_{X_1}\in k^*$. $\langle (g_i)_{O_1}\rangle_i=(x_1^n)_{O_1}\mathcal{O}_{X,O_1}$ と合わせて $(g_i|_{X_1})/x_1^n\in k^*$ が得られ,n=0 となる。以上より, \mathcal{L}_0 のみが generated by global sections である。

■Another Proof: Globally Generated Invertible Sheaf on X. $n \in \mathbb{Z}$ をとり, $\{g_i\}_i \in \Gamma(X, \mathcal{L}_n)$ を \mathcal{L}_n の global generator とする. $\mathcal{L}_n|_{X_1}$ は x_1^n で, $\mathcal{L}_n|_{X_2}$ は 1 で生成されており, X_1, X_2 共に affine scheme である. そのため,次のようになる.

$$\begin{split} \langle \{g_i|_{X_2}\}_i \rangle &= \Gamma(X_2, \mathcal{L}_n|_{X_2}) = k[x_2] \\ \langle \{g_i|_{X_1}\}_i \rangle &= \Gamma(X_1, \mathcal{L}_n|_{X_1}) = x_1^n k[x_1] \end{split} \quad \text{as } k[x_2]\text{-module.} \end{split}$$

一行目から, $\{g_i|_{X_2}\}\subseteq (k[x_2])^*=k^*$. なので前々段落の主張から, $\{g_i|_{X_1}\}\subseteq k^*$. よって $x_1^n\in (k[x_1])^*=k^*$ が得られる.

■資料. 詰まったところでは次のページを参考にした: https://math.stackexchange.com/questions/70042.

Ex7.5 Ample and Very Ample are Inherted by Tensor Products.

X:: noetherian scheme, \mathcal{L} , \mathcal{M} :: invertible sheaves on X とする. "generated by global sections"は gbgs と略す. (d), (e) では更に X:: finite type over a noetherian ring A, と仮定する. (これは Thm7.6 の仮定である.)

補題 Ex7.5.1

If $\mathcal{M}, \mathcal{M}'$:: gbgs invertible sheaves on X, then $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{M}'$:: gbgs.

(証明). $\{m_i\}\subseteq \Gamma(X,\mathcal{M}), \{m_j'\}\subseteq \Gamma(X,\mathcal{M}')$ をそれぞれ $\mathcal{M}, \mathcal{M}'$ の global generator とする.定義より,このことは次と同値である:任意の点 $x\in X$ について $\mathcal{M}_x, \mathcal{M}_x'$ はそれぞれ $\{(m_i)_x\}_i, \{(m_i')_x\}_j$ で $\mathcal{O}_{X,x}$ -module として生成される.さて,tensor product は left adjoint であることから colimit と交換する.なので $(\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{M}')_x$ は $\mathcal{M}_x\otimes_{\mathcal{O}_{X,x}}\mathcal{M}_x'$ と同型である.明らかにこれは $\{(m_i)_x\otimes (m_i')_x\}_{i,j}$ で 生成される(Ati-Mac $\S 2.7$)から, $\mathcal{M}\otimes_{\mathcal{O}_X}\mathcal{M}'$:: gbgs.global generator は $\{m_i\otimes m_i'\}_{i,j}$ である.

(a) If \mathcal{L} :: ample and \mathcal{M} :: gbgs then $\mathcal{L} \otimes \mathcal{M}$:: ample.

 \mathcal{F} :: coherent sheaf on X とする. \mathcal{L} :: ample なので、十分大きな n>0 について $\mathcal{F}\otimes\mathcal{L}^{\otimes n}$:: gbgs. これに $\otimes\mathcal{M}^{\otimes n}$ を合わせて整理すると、補題から $\mathcal{F}\otimes(\mathcal{L}\otimes\mathcal{M})^{\otimes n}$:: gbgs. よって $\mathcal{L}\otimes\mathcal{M}$:: ample.

(b) If \mathcal{L} :: ample and \mathcal{M} :: arbitrary then $\mathcal{M} \otimes \mathcal{L}^{\otimes n}$:: ample for some n > 0.

 \mathcal{M} :: coherent なので、十分大きな n>0 について $\mathcal{M}\otimes\mathcal{L}^{\otimes n}$:: gbgs. 任意の \mathcal{F} :: coherent sheaf に対して十分大きい r>0 をとると、 $\mathcal{F}\otimes\mathcal{L}^{\otimes rn}$:: gbgs. 補題より次も gbgs:

$$(\mathcal{F} \otimes \mathcal{L}^{\otimes rn}) \otimes (\mathcal{M} \otimes \mathcal{L}^{\otimes n})^{\otimes r}$$
.

整理して $\mathcal{F} \otimes (\mathcal{M} \otimes \mathcal{L}^{\otimes 2n})^{\otimes r}$:: gbgs. よって $\mathcal{M} \otimes \mathcal{L}^{\otimes 2n}$:: ample.

(c) If \mathcal{L}, \mathcal{M} :: ample then $\mathcal{L} \otimes \mathcal{M}$:: ample.

 \mathcal{F} :: cohenrent sheaf on X とする. 十分大きな l>0 について, $\mathcal{F}\otimes\mathcal{L}^{\otimes l}$:: gbgs. この sheaf も coherent なので,十分大きな m>0 について $\mathcal{F}\otimes\mathcal{L}^{\otimes l}\otimes\mathcal{M}^{\otimes m}$:: gbgs. $n=\max(l,m)$ とすれば $\mathcal{F}\otimes\mathcal{L}^{\otimes n}\otimes\mathcal{M}^{\otimes n}$:: gbgs. 整理すれば $\mathcal{L}\otimes\mathcal{M}$:: ample が得られる.

(d) If \mathcal{L} :: very ample and \mathcal{M} :: gbgs then $\mathcal{L} \otimes \mathcal{M}$:: very ample.

 \mathcal{L} , \mathcal{M} に対応する morphism を、それぞれ $i:X\to\mathbb{P}^m_A, j:X\to\mathbb{P}^n_A$ とする.Thm7.1b より、 $\mathcal{L}\cong i^*\mathcal{O}(1)$, $\mathcal{M}\cong j^*\mathcal{O}(1)$.この時,次の(1) のような 2 重の fiber product を考える.ここでの \mathbb{P}^N は \mathbb{P}^m , \mathbb{P}^n の Cartesian product(Ex5.11) であり,N=mn+m+n である.

(2) では X を図式に付け加え、fiber product $X \times X$ の普遍性から誘導される射と $i \times j$ の合成を ω としている. $\omega^*\mathcal{O}_{\mathbb{P}^N}(1)$ を計算すると、次のようになる.

$$\omega^* \mathcal{O}_{\mathbb{P}^N}(1)$$

$$\cong \omega^* (p_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A p_2^* \mathcal{O}_{\mathbb{P}^m}(1))$$

$$\cong \omega^* p_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A \omega^* p_2^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong (p_1 \circ \omega)^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A (p_2 \circ \omega)^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong i^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes_A j^* \mathcal{O}_{\mathbb{P}^m}(1)$$

$$\cong \mathcal{L} \otimes_A \mathcal{M}$$

上から順に、Ex5.11、Ex5.1 の解答にある補題、 $(p_- \circ \omega)_*$ が $\omega^* p_-^*$ に adjoint であること^{†3}、図式の可換性を用いている。最後に ω が immersion であることを示そう。

主張 Ex7.5.2

^{†3} もう少し詳しく述べておこう。 $X \xrightarrow{f} Y \xrightarrow{g} Z$ を考える。 f^*g^* は $g_*f_* = (g \circ f)_*$ と adjoint。そして $(g \circ f)_*$ は $(g \circ f)^*$ と adjoint。これと adjoint の一意性から $f^*g^* \cong (g \circ f)^*$ が得られる。

 $i:X \to \mathbb{P}^m_A$ を immersion とする. 次の可換図式において, $X \to \mathbb{P}^N_A$ は immersion である.

(証明). (TODO) 多分示す必要があるもの: $j, X \to X \times X$:: closed immersion, immersion :: stable under base extension & inherted by composition. 以上を示すと,主張は自明になる. j :: closed immersion は Prop7.2 と Thm7.6 の証明から得られると思う. $X \to X \times X$:: closed immersion は $X \times X$ との合成が surjective であることから,定義にしたがって示せると思う.

(e) If \mathcal{L} :: ample then $\mathcal{L}^{\otimes n}$:: very ample for sufficiently large all n > 0.

Thm7.6 より、ある正整数 l>0 について $\mathcal{L}^{\otimes l}$:: very ample. また、 \mathcal{L} :: ample より、正整数 $m_0>0$ が存在し、任意の整数 $m\geq m_0$ について $\mathcal{O}_X\otimes\mathcal{L}^{\otimes m}$:: gbgs. したがって、 $N=n+m_0$ とおけば、(d) より

$$(\mathcal{O}_X \otimes \mathcal{L}^{\otimes m}) \otimes \mathcal{L}^{\otimes l} = \mathcal{L}^{\otimes n} \quad (m \ge m_0, n \ge N)$$

は very ample である.

Ex7.6 The Riemann-Roch Problem.

k:: algebraically closed field, X:: nonsingular projective variety over k, D:: divisor on X とする. (したがって |D|:: linear system が考えられる.) この時, n の関数 $\dim_k |nD|$ を考える. \mathcal{L} を D に対応する invertible sheaf とすると,Prop7.7 より,これは $\dim_k \Gamma(X,\mathcal{L}^n) - 1$ とも書ける.

Ex2.14 と Cor5.16 を合わせると、 $X=\operatorname{Proj} k[x_0,\ldots,x_d]/I$ なる I:: homogeneous ideal が存在することが分かる。そこで $S=k[x_0,\ldots,x_d],T=S/I$ としておく。また $\phi:S\to T=S/I$ を標準的全射としておく。

(a) $D :: \text{ very ample } \Longrightarrow {}^{\forall} n \gg 0, \quad \dim_k |nD| = P_X(n) - 1.$

今, \mathcal{L} :: very ample だから, $i^*\mathcal{O}_{\mathbb{P}^d}(1)\cong\mathcal{L}$ となる closed immersion $i:X\to\mathbb{P}^d_k$ が存在する. (closed であることは Remark5.16.1 と同様.) Ex6.8a (i^* と \otimes が分配的であること) と Prop5.12 (の証明) から次が分かる.

$$\mathcal{L}^{\otimes n} = (i^* \mathcal{O}_{\mathbb{P}^d}(1))^{\otimes n} \cong i^* ((\mathcal{O}_{\mathbb{P}^d}(1))^{\otimes n}) \cong i^* (S(n)^{\sim}) \cong (S(n) \otimes T)^{\sim}.$$

 ϕ が次数を保つこと (したがって $\phi(S(n))=T(n)$) から、 $S(n)\otimes T\cong T(n)$. Ex5.9b より、十分大きい全ての n について $T_n\cong \Gamma(X,(T(n))^{\sim})$ となる. よって、 P_X を X の Hilbert polynomial とすると、十

分大きい全ての n について $P_X(n) = \dim_k \Gamma(X, \mathcal{L}^{\otimes n})$.

(b) If D is torsion element of order r, then $\dim_k |nD| = 0$ if $r \setminus n \& = -1$ otherwise order の定義から, $nD = 0 \iff n \bmod r = 0$ であることに注意する.次を示す.

$$\dim_k |nD| = \begin{cases} 0 & n \bmod r = 0 \\ -1 & n \bmod r \neq 0 \end{cases}$$

- ■ $n \mod r = 0 \implies \dim_k |nD| = 0$. $n \mod r = 0$ の時, nD = 0, $\mathcal{L}^{\otimes n} = \mathcal{O}_X$. 今, X :: integral & proper & finite type scheme over algebraically closed subset. なので Ex4.5d より, $\Gamma(X, \mathcal{O}_X) = k$. よって $\dim_k |nD| = \dim_k \Gamma(X, \mathcal{O}_X) 1 = 0$.
- ■ $n \mod r \neq 0 \implies |nD| = \emptyset \implies \dim_k |nD| = -1$. $n \mod r \neq 0$ の時, $|nD| = \emptyset$ を示す. $E = \{\langle U_i, f_i \rangle\}_i \in |nD|$ がとれるとして矛盾を導くことにする. E :: effective かつ $E \sim nD \not\sim 0$ なので, $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$ は単元でない. したがって f_i^r も単元でない^{†4}. いずれの i についても同様なので, rE は principal でない $(rE \not\sim 0)$. 一方, $E \sim nD, rD = 0$ だから $rE \sim rnD \sim 0$.

Ex7.7 Some Rational Surfaces.

Ex7.8 Sections of $\pi: X \to \mathbb{P}(\mathcal{E}) \leftrightarrow \text{Quotient Invertible Sheaves of } \mathcal{E}$.

X:: noetherian scheme, $\mathcal E$:: coherent locally free sheaf on X とする. Prop7.12 において $Y=X,g=\mathrm{id}_X$ とすると、以下の図式を成立させる $\sigma:X\to\mathbb P(\mathcal E)$ と quotient invertible sheaf of $\mathcal E$:: $\mathcal E\to\mathcal L\to 0$ が 対応することがわかる.

明らかに σ は π の section である.

Ex7.9 $\operatorname{Pic} \mathbb{P}(\mathcal{E}) \cong \operatorname{Pic} X \times \mathbb{Z}$.

X :: regular noetherian scheme, $\mathcal E$:: locally free coherent sheaf of rank ≥ 2 on X とする. $r = \operatorname{rank} \mathcal E (\geq 2)$ とおく.

(a) $\operatorname{Pic} \mathbb{P}(\mathcal{E}) \cong \operatorname{Pic} X \times \mathbb{Z}$.

X は locally factorial, reduced, noetherian scheme である. Prop4.1 より affine scheme は separated だから, X の任意の irreducible affine open subset :: $U = \operatorname{Spec} A$ は $\operatorname{Cor6.16}$ の条件を満たす. したがって $\operatorname{Pic} U \cong \operatorname{Cl} U$. そして $\operatorname{p.162}$ から $\pi^{-1}(U) \cong \mathbb{P}_A^{r-1}$.

 $^{^{\}dagger 4}$ f_i は単元でないから, $\Gamma(U_i,\mathcal{O}_{U_i})$ の真のイデアルに属す.そして f_i^r もこのイデアルに属し,したがって f_i^r は単元でない

 $^{^{\}dagger5}$ $\mathcal{E} \to \mathcal{L} \to 0$ だけで \mathcal{L} と全射 :: $\mathcal{E} \to \mathcal{L}$ の組を意味する. $g^*\mathcal{E} = \mathcal{E}$ に注意.

Ex7.8 の図式から、次の split する図式が得られる.

$$0 \longrightarrow \ker \sigma^* \longrightarrow \operatorname{Pic} \mathbb{P}(\mathcal{E}) \xrightarrow[\pi^*]{\sigma^*} \operatorname{Pic} X \longrightarrow 0$$

(b) $\mathbb{P}(\mathcal{E}) \cong \mathbb{P}(\mathcal{E}') \iff {}^{\exists}\mathcal{L} \in \operatorname{Pic} X, \ \mathcal{E}' = \mathcal{E} \otimes \mathcal{L}.$

 \mathcal{E}' :: locally free coherent sheaf on X とする. $(\operatorname{rank} \mathcal{E}' \geq 2 \ \text{という条件はついていない.})$

- Ex7.10 \mathbb{P}^n -Bundles Over a Scheme.
- Ex7.11 Different Sheaves of Ideals can Give Rise to Isomorphic Blow Up Schemes.
- Ex7.12
- Ex7.13 * A Complete Nonprojective Variety.
- Ex7.14