mIPEA User Manual

(version 1.0)

- mlPEA is a user-friendly, full-functionality pipeline specifically designed to enhance the processing, analysis, and interpretation of m6A-Seq in non-model plants by leveraging machine learning.
- mlPEA comprises four functional modules: **Data Preprocessing, Transcriptome Construction, m⁶A Calling, and Functional Exploration**.
- mlPEA was powered with an advanced packaging technology, which enables compatibility and portability.
- mlPEA project is hosted on http://github.com/cma2015/mlPEA
- mIPEA docker image is available at http://hub.docker.com/r/malab/mlpea
- mlPEA server can be accessed via http://mlpea.omstudio.cloud

m⁶A Calling Module

This module provides step-by-step functions required for epitranscriptome reads mapping and identification of RNA modifications.

Align Reads to Genome

Bowtie2 is wrapped to align epitranscriptome reads to genome.

Tools	Description	Input	Output	Time (test data)	Reference
Bowtie2	Bowtie2 is a short read aligner which achieves a combination of high speed, sensitivity and accuracy by combining the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms, therefore bowtie2 is suitable for large genomes	Epitranscriptome sequencing reads in FASTQ format and reference genome sequences in FASTA format	Read alignments in SAM/BAM format	~5 mins	(Grabherr et al., 2011)

Identify RNA Modifications

Identify RNA Modifications implements three pipelines.

Tools	Description	Input	Output	Time (test data)	Reference
Peak Calling	used the SlidingWindow method with default options. To call m6A peaks, each transfrag was scanned using a 100-bp sliding window with 25-bp steps.	Input the transcripts in FASTA format;Input the ReadsCoverage file in IP sample;Input the ReadsCoverage file in input sample	The enriched peak region matrix in BED format	~5 mins	(Zhai <i>et al</i> , 2018)
Merge Biological Replicates	obtain consistent RNA modifications among three biological replicates.	Peak regions for biological Replicates	Consistent peak regions among multiple biological replicates	~10 mins	in-house scripts
High Confidence Peak	All peaks derived from the HC transcripts are designated as positive samples and utilized as input for the weakly supervised learning framework to facilitate model training.	Transcripts in FASTA format;The enriched peak region matrix in BED format	High condfidence Peak region in BED format	~20mins	(Huang et al, 2021; Song et al, 2024)

Align Reads to Genome

Input

- Epitranscriptome sequencing reads in FASTQ format
- Assembled transcripts in FASTA format

Output

- Alignments in BAM format
- Alignment summary generated by bowtie2
- ReadsCoverage summary in TXT format generate by BEDtools

How to use this function

Peak Calling

In this function, Peak calling was performed using PEA (Zhai *et al*, 2018), which used the SlidingWindow method with default options. To call m6A peaks, each transfrag was scanned using a 100-bp sliding window with 25-bp steps.

Input

- Input the transfrags file: Input the transfrags in FASTA format
- Input the ReadsCoverage file in IP sample: Input ReadsCoverage file in TXT format
- Input the ReadsCoverage file in input sample: Input ReadsCoverage file in TXT format

Output

• The enriched peak region matrix in BED format

How to use this function

Merge Biological Replicates

In this function, mIPEA obtained consistent RNA modifications among three biological replicates.

Input

• Peak regions for biological Replicates

Output

• Consistent peak regions among multiple biological replicates

How to use this function

High Confidence Peak

All peaks derived from the HC transcripts are designated as positive samples and utilized as input for the weakly supervised learning framework to facilitate model training.

Input

- Input the transfrags file: Input the transfrags in FASTA format
- Input the peak region file: The enriched peak region matrix in BED format

Output

• High condfidence Peak region in BED format

How to use this function

