Research Cycle 1 Group C1

Group members:

160010L-A. M. N. C. R. Adhikari

160180F- K.K.Gunasinghe

160509B-R.B.M. Rajapaksha

160544C-Sajeevan .V

160618H-W.G.S.H.Thamel

Theorems and definitions

Binary Triple

Binary triple is a number which consists of three binary numbers.

E.g.
$${a, b, c}, {0,1,0}, etc..$$

Cyclic Order

A cyclic order is a way to arrange a set of objects in a circle.

Figure 1 Cyclic path

De Bruijn Graph

De Bruijn graph is a graph whose nodes are sequences of symbols from some alphabet and whose edges indicate the sequences which might overlap. The below figures show the first $(n-1)-dimentional\ de\ Bruijn\ Graph\ on\ m$ symbols and n order, (m,n-1) for $m,n\geq 2$

Figure 2 example de Bruijn graph

http://mathworld.wolfram.com/deBruijnGraph.html

http://mathworld.wolfram.com/EulerianCycle.htmlEulerian cycle is a trail which starts and ends at the same graph vertex. In other words, it is a graph cycle which uses each graph edge exactly once.

Figure 3 Eulerian cycle on graph

http://mathworld.wolfram.com/EulerianCycle.html

■ De Bruijn Sequence

The shortest circular sequence of length m^n The shortest circular sequence of length n on the alphabet a size of m m occurs on a contiguous subrange of the sequence described by n such a sequence is denoted by n

Alphabet: {0, 1} Subsequence length: 2

"Each De Bruijn graph is Eulerian and Hamiltonian. The Euler cycles and Hamiltonian cycles of these graphs (equivalent to each other via the line graph construction) are De Bruijn sequences[1]"

Source: De Bruijn graph - https://en.wikipedia.org

Assigned problem

Create a sequence of 1s and 0s such that when the digits are arranged in a cycle, each possible binary triple appears exactly once in the cycle?

Solution

- ✓ In this case we must prove existence of B(2,3), alphabet $a = \{0,1\}$.
 - 1. By definition of de Bruijn graph m=2, n=3. Required De Bruijn graph = (2,2)

Length of the sequence	23
Dimension of the De Bruijn graph	2-D
Possible combination of De Bruijn	(0,0)
graph vertices	(0,1)
	(1,0)
	(1,1)

The 2-dimensional De Bruijn graph is given below.

Figure 5 2-D Binary De Bruijn graph

To obtain a De Bruijn sequence, we need to find an *Eulerian cycle* on the above *De Bruijn Graph*.

Figure 6 Eulerian cycle on De Bruijn graph

The state changes of the above Eulerian cycle corresponds to a De Bruijn sequence.

Therefore, De Bruijn sequence = $\{1, 0, 1, 1, 1, 0, 0, 0\}$

Therefore, by De Bruijn sequence definition, {1, 0, 1, 1, 1, 0, 0, 0} is a sequence of 1s and 0s such that when the digits are arranged in a cycle, each possible binary triple appears exactly once in the cycle.

Related Questions

- 1. Create a sequence of 1s and 0s such that when the digits are arranged in a cycle, each possible binary quadruple appears exactly once in the cycle.
- 2. Sketch (3,2) De Bruijn graph
- 3. Find a De Bruijn sequence to the above (3,2) De Bruijn graph

Solutions to Related Questions

1. graph should be 3D Possible combinations = 000, 001, 010, 011, 100, 101, 110, 111

De Bruijn sequence = $\{1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0\}$

CS 2150 Graph Theory for computing

References

- http://mathworld.wolfram.com/deBruijnGraph.html
- http://mathworld.wolfram.com/EulerianCycle.html
- http://mathworld.wolfram.com/deBruijnSequence.html
- https://en.wikipedia.org/wiki/Cyclic_order
- https://en.wikipedia.org/wiki/De_Bruijn_sequence