## Flow from Recycled Material Production to Transport







Flow from Transport to Industrial Waste Water (micro)



## Flow from Transport to Non-Textile Manufacturing



Flow from Non-Textile Manufacturing to Residential Soil (mig Mean Value 0.14 25% Quantile 75% Quantile 0.12 Range 0.10 Flow mass (kt) 0.08 0.06 0.04 0.02 0.00 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Non-Textile Manufacturing to Packaging (sector Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) 100 75 100 75 Year

ow from Non-Textile Manufacturing to Building and Construction Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Non-Textile Manufacturing to Agriculture (secto



Flow from Non-Textile Manufacturing to Automotive (sector



om Non-Textile Manufacturing to Electrical and Electronic Equip Mean Value 25% Quantile 75% Quantile Range Year

Flow from Non-Textile Manufacturing to Other Plastic Products ( Mean Value 1.75 25% Quantile 75% Quantile 1.50 Range 1.25 Flow mass (kt) 1.00 0.75 0.50 0.25 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Non-Textile Manufacturing to Pre-consumer Waste Col



Flow from Non-Textile Manufacturing to Industrial Waste Wate 0.0006 Mean Value 25% Quantile 75% Quantile 0.0005 Range 0.0004







## Flow from Packaging (sector) to Consumer Bags



Flow from Packaging (sector) to Consumer Bottles



Flow from Packaging (sector) to Other Consumer Packaging



## Flow from Packaging (sector) to Non Consumer Bags



Flow from Packaging (sector) to Other Non Consumer Film



Flow from Packaging (sector) to Building Packaging Films



Flow from Packaging (sector) to Agricultural Packaging Film



Flow from Building and Construction (sector) to Pipes and Du



Flow from Building and Construction (sector) to Lining Mean Value 25% Quantile 75% Quantile Range 5



### Flow from Automotive (sector) to Automotive





Flow from Agriculture (sector) to Agricultural Films



# Flow from Agriculture (sector) to Agricultural Pipes



Flow from Agriculture (sector) to Other Agricultural Plastics



Flow from Other Plastic Products (sector) to Other Plastic Products



Flow from Consumer Films to Compost collection (1mm-0.0200 Mean Value 25% Quantile 0.0175 75% Quantile Range 0.0150 ₹ 0.0125 Flow mass 0.0100 0.0075 0.0050 0.0025 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Consumer Films to Compost collection (1mm+) Mean Value 25% Quantile 1.2 75% Quantile Range 1.0 Flow mass (kt) 9.0 8.0 8.0 0.2 0.0

1950

1960

1970

1980

1990

Year

2000

2010

2020

Flow from Consumer Films to On-the-go consumption



## Flow from Consumer Films to Dumping



## Flow from Consumer Films to Packaging Collection



#### Flow from Consumer Films to Mixed Waste Collection



Flow from Consumer Bags to Compost collection (1mm+)





Flow from Consumer Bags to On-the-go consumption



## Flow from Consumer Bags to Dumping



### Flow from Consumer Bags to Packaging Collection





Flow from Consumer Bottles to Compost collection (1mm-) 5 Mean Value





Flow from Consumer Bottles to On-the-go consumption Mean Value 25% Quantile 0.04 75% Quantile Range 0.02 Flow mass (kt) 0.00 -0.02-0.041950 1960 1970 1980 1990 2000 2010 2020 Year





Flow from Consumer Bottles to Mixed Waste Collection



Flow from Other Consumer Packaging to Compost collection (1 Mean Value 25% Quantile 0.12 75% Quantile Range 0.10 Flow mass (kt) 0.08 0.06 0.04 0.02







### Flow from Other Consumer Packaging to Dumping



Flow from Other Consumer Packaging to Packaging Collecti



Flow from Other Consumer Packaging to Mixed Waste Collect



Flow from Agricultural Packaging Films to Agricultural Soil (ma





Flow from Agricultural Packaging Films to Agriculture Waste Coll



Flow from Building Packaging Films to Litter in residential enviro Mean Value 25% Quantile 0.20 75% Quantile Range 0.15 Flow mass (kt) 0.10 0.05 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

# Flow from Building Packaging Films to Dumping



llding Packaging Films to Construction and Demolition Incinerab 12 -Mean Value 25% Quantile 75% Quantile 10 Range 8 Flow mass (kt) 6 4



ow from Other Non Consumer Films to Litter in residential enviro Mean Value 3.5 25% Quantile 75% Quantile 3.0 Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year



Flow from Other Non Consumer Films to Packaging Collection Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year







Flow from Non Consumer Bags to Litter in residential environm 1.0 Mean Value 25% Quantile 75% Quantile 8.0 Range Flow mass (kt) 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Non Consumer Bags to Packaging Collection



Flow from Non Consumer Bags to Mixed Waste Collection



#### Flow from Pipes and Ducts to Sub-surface (micro)



Flow from Pipes and Ducts to Residential Soil (micro)



Flow from Pipes and Ducts to Litter in residential environme 0.05 Mean Value 25% Quantile 75% Quantile 0.04 Range Flow mass (kt) 20.0 co.0 0.01 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

# Flow from Pipes and Ducts to Dumping



w from Pipes and Ducts to Construction and Demolition Waste C Mean Value 2.5 25% Quantile 75% Quantile Range 2.0 Flow mass (kt) 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Lining to Litter in residential environments



Flow from Lining to Dumping



Flow from Lining to Construction and Demolition Waste Collec 4.0 Mean Value 25% Quantile 75% Quantile 3.5 Range 3.0 How mass (kt) 2.5 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020

Year





## Flow from Automotive to Export



### Flow from Automotive to End-Of-Life Vehicle Collection



Flow from Electrical and Electronic Equipment to Dumpir



Flow from Electrical and Electronic Equipment to Export



low from Electrical and Electronic Equipment to Mixed Waste Co Mean Value 25% Quantile 2.5 75% Quantile Range 2.0 Flow mass (kt) 1.5 1.0 0.5 0.0 2010 1950 1960 1970 1980 1990 2000 2020 Year

ical and Electronic Equipment to Electrical and Electronic Equim





Flow from Agricultural Films to Agricultural Soil (macro)



## Flow from Agricultural Films to Dumping



Flow from Agricultural Films to Agriculture Waste Collection



Flow from Agricultural Pipes to Agricultural Soil (micro)



Flow from Agricultural Pipes to Agricultural Soil (macro)







Flow from Agricultural Pipes to Agriculture Waste Collection



Flow from Other Agricultural Plastics to Agricultural Soil (mac



Flow from Other Agricultural Plastics to Agricultural Soil (mi



# Flow from Other Agricultural Plastics to Dumping



Flow from Other Agricultural Plastics to Agriculture Waste Colle





Flow from Other Plastic Products to Mixed Waste Collection





ow from On-the-go consumption to On-the-go consumption (trar Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

ow from On-the-go consumption to On-the-go consumption (resi 10 -Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year





Flow from On-the-go consumption (transport) to Litter on road s Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) 

Year

low from On-the-go consumption (transport) to Mixed Waste Co Mean Value 4.0 25% Quantile 75% Quantile 3.5 Range 3.0 Flow mass (kt) 2.5 2.1 1.5 1.0 0.5 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

om On-the-go consumption (residential) to Litter in residential er Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

w from On-the-go consumption (residential) to Mixed Waste Co Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Dumping to Litter in residential environments



## Flow from Dumping to Litter on road sides



Flow from Dumping to Litter in natural environments



low from Litter in residential environments to Mixed Waste Colle



Flow from Litter in residential environments to Residential Soil ( Mean Value 0.10 25% Quantile 75% Quantile Range 0.08 Flow mass (kt) 0.06 0.04



Flow from Litter in residential environments to Storm Water (m



Flow from Litter in residential environments to Surface Water (



Flow from Litter on road sides to Mixed Waste Collection



Flow from Litter on road sides to Road Side (macro)



Flow from Litter in natural environments to Mixed Waste Collection



Flow from Litter in natural environments to Natural Soil (mac



Flow from Litter in natural environments to Surface Water (n Mean Value



Flow from Compost collection (1mm+) to Incineration



om Compost collection (1mm+) to Compost size separation (fic Mean Value 0.030 25% Quantile 75% Quantile Range 0.025 ₹ 0.020 Flow mass 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Compost collection (1mm-) to Compost (micro



low from Compost size separation (fictional process) to Compos 0.014 Mean Value 25% Quantile 0.012 75% Quantile Range 0.010 Flow mass (kt) 0.008 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

flow from Compost size separation (fictional process) to Compos Mean Value 0.020 25% Quantile 75% Quantile Range 0.015 Flow mass (kt) 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Compost (macro) to Residential Soil (macro)





Flow from Compost (micro) to Residential Soil (micro) Mean Value 0.0012 25% Quantile 75% Quantile 0.0010 Range 0.0008 Flow mass 0.0006 0.0004 0.0002 0.0000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow from Compost (micro) to Agricultural Soil (micro)







w from Pre-consumer Waste Collection to Industrial Waste Wate 3.5 Mean Value 25% Quantile 75% Quantile 3.0 Range 2.5 Flow mass (kt) 2.0 1.5 1.0 0.5 0.0 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Pre-consumer Waste Collection to Material Reuse



Flow from Pre-consumer Waste Collection to Incineration



### Flow from Pre-consumer Waste Collection to Landfill



Flow from Packaging Collection to Residential Soil (macro



# Flow from Packaging Collection to Export





## Flow from Packaging Collection to Incineration



Flow from Packaging Collection to Landfill



### Flow from Mixed Waste Collection to Incineration



### Flow from Mixed Waste Collection to Landfill



v from Construction and Demolition Waste Collection to Litter or Mean Value 0.010 25% Quantile 75% Quantile Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

struction and Demolition Waste Collection to Construction and I Mean Value 25% Quantile 1.0 75% Quantile Range 8.0 Flow mass (kt) 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

ow from Construction and Demolition Waste Collection to Incine Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Construction and Demolition Waste Collection to La



Construction and Demolition Incinerable Waste Collection to Li



om Construction and Demolition Incinerable Waste Collection to Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

from Construction and Demolition Incinerable Waste Collection Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

w from End-Of-Life Vehicle Collection to Automotive Large Parts Mean Value 25% Quantile 0.25 75% Quantile Range 0.20 Flow mass (kt) 0.15 0.10 0.05 0.00 1950 1960 1970 1980 1990 2000 2010 2020

Year



Electronic Equiment Waste Collection to Waste of Electrical and



from Electrical and Electronic Equiment Waste Collection to Inc



low from Electrical and Electronic Equiment Waste Collection to 1.75 -Mean Value 25% Quantile 1.50 75% Quantile Range 1.25 Flow mass (kt) 1.00 0.75 0.50 0.25 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Agriculture Waste Collection to Compost collection (1 Mean Value 25% Quantile 0.6 75% Quantile Range 0.5 Flow mass (kt) 0.4 0.3 0.2 0.1 0.0 2010 1950 1960 1970 1980 1990 2000 2020

Year



low from Agriculture Waste Collection to Agriculture Plastic Rec Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Agriculture Waste Collection to Incineration



## Flow from Agriculture Waste Collection to Landfill







Flow from Packaging Recycling to Export





## Flow from Packaging Recycling to Incineration



low from Construction and Demolition Recycling to Residential 1 0.00014 Mean Value 25% Quantile 75% Quantile 0.00012 Range 0.00010 -Flow mass (kt) 0.00008 -0.00006 -0.00004 -0.00002 0.00000 1950 1960 1970 1980 1990 2000 2010 2020 Year

om Construction and Demolition Recycling to Industrial Waste W Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

Flow from Construction and Demolition Recycling to Material R 1.0 -Mean Value 25% Quantile 75% Quantile 8.0 Range Flow mass (kt) 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Construction and Demolition Recycling to Incinera





r from Aម្មដូចភ្ជាotive Large Parts Recycling to Industrial Waste Wa Mean Value 25% Quantile 1.0 75% Quantile Range 8.0 Flow mass (kt) 0.6 0.4 0.2 0.0 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Large Parts Recycling to Automotive Par 0.0175 Mean Value 25% Quantile 75% Quantile 0.0150 Range 0.0125 (kt) Flow mass 0.0100 0.0075 0.0050 0.0025 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Large Parts Recycling to Material Reu



Flow from Automotive Large Parts Recycling to Incineration



Flow from Automotive Large Parts Recycling to Landfill





ow from Automotive Shredder Residue Recycling to Residential S 0.005 Mean Value 25% Quantile 75% Quantile Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year



Flow from Automotive Shredder Residue Recycling to Material Mean Value 25% Quantile 0.04 75% Quantile Range 0.02 Flow mass (kt) 0.00 -0.02-0.041950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Automotive Shredder Residue Recycling to Incinerat



Flow from Automotive Shredder Residue Recycling to Landf



rom Waste of Electrical and Electronic Plastic Recycling to Outd 0.006 -Mean Value 25% Quantile 75% Quantile 0.005 Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

m Waste of Electrical and Electronic Plastic Recycling to Reside 0.006 -Mean Value 25% Quantile 75% Quantile 0.005 Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

om Waste of Electrical and Electronic Plastic Recycling to Waste 0.006 Mean Value 25% Quantile 75% Quantile 0.005 Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

from Waste of Electrical and Electronic Plastic Recycling to Mate Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year

au from Waste of Electrical and Electronic Plastic Recycling to Inci Mean Value 25% Quantile 75% Quantile Range Flow mass (kt) Year





Flow from Agriculture Plastic Recycling to Material Reuse



Flow from Agriculture Plastic Recycling to Incineration Mean Value 25% Quantile 8.0 75% Quantile Range 0.6 Flow mass (kt) 0.4 0.2 0.0 2020 1950 1960 1970 1980 1990 2000 2010 Year

Flow from Industrial Waste Water (micro) to Residential Soil (





Flow from Industrial Waste Water (micro) to Surface Water ( 0.0030 Mean Value 25% Quantile 75% Quantile 0.0025 Range 0.0020 Flow mass 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Storm Water (macro) to Waste Water Treatment Plant



Flow from Storm Water (macro) to Surface Water (macro 0.07 Mean Value 25% Quantile 0.06 75% Quantile Range 0.05 Flow mass (kt) 0.04 0.03 0.02 0.01 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Waste Water (micro) to Sub-surface (micro)



Flow from Waste Water (micro) to Waste Water Treatment Plan Mean Value 0.008 25% Quantile 75% Quantile Range 0.006 Flow mass (kt) 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Waste Water (micro) to On-Site Sewage Facility (r 0.0005 Mean Value 25% Quantile 75% Quantile 0.0004 Range Flow mass (kt) 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from On-Site Sewage Facility (micro) to Sub-surface (r Mean Value 25% Quantile 0.00020 75% Quantile Range 0.00015 -Flow mass 0.00010 0.00005 0.00000 1950 1960 1970 1980 2000 2010 2020 1990

Year

Flow from On-Site Sewage Facility (micro) to Sludge (mic



om Waste Water Treatment Plant (macro) to Primary Water Trea 0.06 Mean Value 25% Quantile 75% Quantile 0.05 Range 0.04 Flow mass (kt) 0.03 0.02 0.01 0.00 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Waste Water Treatment Plant (macro) to Incinera



om Waste Water Treatment Plant (macro) to Combined Sewer O Mean Value 25% Quantile 0.025 75% Quantile Range 0.020 Flow mass (kt) 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

rom Waste Water Treatment Plant (micro) to Primary Water Tre Mean Value 0.010 25% Quantile 75% Quantile Range 0.008 Flow mass (kt) 0.006 0.004 0.002 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Waste Water Treatment Plant (micro) to Incinera



rom Waste Water Treatment Plant (micro) to Combined Sewer C Mean Value 25% Quantile 0.0006 75% Quantile Range 0.0005 Flow mass (kt) 0.0004 0.0003 0.0002 0.0001 0.0000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Combined Sewer Overflow (macro) to Incinerati



Flow from Combined Sewer Overflow (macro) to Surface Water Mean Value 0.020 25% Quantile 75% Quantile Range 0.015 mass (kt) 0.010 Flow 0.005



Flow from Combined Sewer Overflow (micro) to Surface Water





rom Primary Water Treatment (macro) to Secondary Water Trea Mean Value 0.035 25% Quantile 75% Quantile 0.030 Range 0.025 Flow mass (kt) 0.020 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year

Flow from Primary Water Treatment (micro) to Sludge (mic 0.008 Mean Value 25% Quantile 0.007 75% Quantile Range 0.006 Flow mass (kt) 600.0 (kt) 600.0 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

from Primary Water Treatment (micro) to Secondary Water Treatment Mean Value 25% Quantile 0.0025 75% Quantile Range 0.0020 Flow mass (kt) 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year





Flow from Secondary Water Treatment (macro) to Sludge (m Mean Value 0.035 25% Quantile 75% Quantile 0.030 Range 0.025 Flow mass 0.020 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020 Year



from Secondary Water Treatment (micro) to Tertiary Water Tre 0.0016 Mean Value 25% Quantile 0.0014 75% Quantile Range 0.0012 Flow mass (kt) 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Secondary Water Treatment (micro) to Surface Water



Flow from Tertiary Water Treatment (micro) to Incinerati



Flow from Tertiary Water Treatment (micro) to Surface Water







Flow from Sludge (macro) to Agricultural Soil (macro) Mean Value 0.035 25% Quantile 75% Quantile 0.030 Range 0.025 Flow mass 0.020 0.015 0.010 0.005 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

## Flow from Sludge (macro) to Incineration



# Flow from Sludge (micro) to Export



Flow from Sludge (micro) to Agricultural Soil (micro) Mean Value 25% Quantile 0.005 75% Quantile Range 0.004 Flow mass (kt) 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

# Flow from Sludge (micro) to Landfill



## Flow from Sludge (micro) to Incineration



Flow from Outdoor air (micro) to Surface Water (micro) Mean Value 25% Quantile 0.0020 75% Quantile Range **3** 0.0015 -Flow mass 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990 Year

Flow from Outdoor air (micro) to Agricultural Soil (micro) Mean Value 25% Quantile 0.005 75% Quantile Range 0.004 0.003 0.002 0.001 0.000 1950 1960 1970 1980 1990 2000 2010 2020

Year

Flow mass (kt)

Flow from Outdoor air (micro) to Residential Soil (micro 0.0030 Mean Value 25% Quantile 75% Quantile 0.0025 Range 0.0020 Flow mass (kt) 0.0015 0.0010 0.0005 0.0000 1950 1960 1970 1980 2000 2010 2020 1990

Year



### Flow from Material Reuse to Export



Flow from Material Reuse to Recycled Material Production

