Test switch normal: student Test switch corrig: corrige

Test switch imbriqués: student corrige

Test QR:

- 1) Ceci est le corrigé
- /2 2) a E2
- /10 b E3

Le condensateur est initialement chargé. Soit E sa tension initiale. On utilise l'équation 2 pour trouver que $\frac{dv}{dt} = \frac{i'(0)}{C}$, sachant qu'à t = 0 le circuit est équivalent à un circuit RC en décharge et qu'on a donc i'(0) = E/R. On trouve ainsi

3)

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{E}{\tau}$$

En finissant la détermination des constantes d'intégration, on trouve

$$v(t) = \frac{E}{\tau(r_{+} - r_{-})} \left[e^{r_{+}t} - e^{r_{-}t} \right]$$

I \mid RLC échelon montant

Indiquer la ou les bonnes réponses en justifiant tout votre raisonnement.

On considère un circuit RLC série, alimenté par une source idéale de tension de force électromotrice E constante comme schématisé ci-contre. Le condensateur peut être court-circuité lorsque l'interrupteur K est fermé. On note i(t) l'intensité du courant qui traverse la bobine et $u_C(t)$ la tension aux bornes du condensateur C.

Le condensateur est mis en court-circuit par un interrupteur K depuis une durée suffisamment longue, pour que le régime permanent soit établi. À l'instant pris comme origine des temps, on ouvre l'interrupteur K.

4) Intéressons-nous d'abord au circuit à t < 0. L'interrupteur est alors fermé si bien que u_C est une tension aux bornes d'un fil donc

$$u_C\left(t=0^-\right)=0$$

De plus, le condensateur assure la continuité de la tension à ses bornes, donc

$$u_C(t=0^+) = u_C(t=0^-) = 0$$

Par ailleurs en régime permanent constant, on sait que la bobine est équivalente à un interrupteur fermé (un fil). Si bien que le circuit est alors équivalent à uniquement la résistance R en série avec la source idéale de fem E. Ainsi d'après la loi de Pouillet,

$$i\left(t=0^{-}\right) = E/R$$

De plus, la bobine assure la continuité de l'intensité qui la traverse, donc

$$i(t = 0^+) = i(t = 0^-) = \frac{E}{R}$$

Réponses B et 42.