Университет ИТМО

Учебно-исследовательская работа (УИР 2) «ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ НА МАРКОВСКИХ МОДЕЛЯХ»

По дисциплине «Моделирование» Вариант №9/12

Выполнили:

Белогаев Данила Валерьевич Кузнецов Максим Александрович

Группа: Р34131

Преподаватель:

Алиев Тауфик Измайлович

Содержание

Цель работы:
Задание:
Ход работы:
Исходные данные
Описание систем и построение графов переходов для заданных систем7
Система 1
Система 2
Кодирование состояний системы 19
Матрица интенсивностей переходов системы 1
Кодирование состояний системы 2
Матрица интенсивностей переходов системы 2
Сравнение систем
Вывод:

Цель работы: Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание:

2. Содержание работы

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

3. Этапы работы

- 3.1. Разработка марковских моделей исследуемых систем.
- 3.2. Освоение программы по расчету марковских моделей.
- 3.3. Проведение расчетов по разработанным моделям и обработка результатов.
 - 3.4. Анализ полученных результатов.
- 3.5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности.

4. Порядок выполнения работы

- 4.1. Получить вариант работы.
- 4.2. Построить графы переходов для заданных СИСТЕМЫ_1 и СИСТЕМЫ 2.
- 4.3. С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2.
 - 4.4. Проанализировать характеристики функционирования системы.

4.5. Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

5. Описание программы MARK

Программа MARK предназначена для расчета характеристик марковских процессов с непрерывным временем по заданным значениям интенсивностей переходов и матрице интенсивностей переходов.

Результатами расчетов являются:

- стационарные вероятности состояний марковского процесса;
- значения характеристик марковской модели, вычисленные на основе стационарных вероятностей по заданным формулам.

Предусмотрена возможность варьирования значений интенсивностей переходов и вывод результатов варьирования в виде таблиц или графика зависимостей характеристик марковской модели от варьируемых параметров.

Результаты расчетов могут быть выведены на экран или на печать.

6. Содержание отчета

- 6.1. Постановка задачи и исходные данные.
- 6.2. Описание исследуемой системы.
- 6.3. Перечень состояний марковского процесса для исследуемой системы.
- 6.4. Результаты работы:
- размеченный граф переходов марковского процесса;
- матрица интенсивностей переходов;
- значения стационарных вероятностей, сведенные в таблицу (форма 1);
- формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
- результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем;
- обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности.

Ход работы:

Исходные данные

Вариант 9/12:

- Интенсивность потока $\lambda = 0.2 \text{ c}^{-1}$
- Средняя длительность обслуживания b = 25 c
- Длительность обслуживания на одной фазе $Y = b / 2 = 12.5 \ c$ Интенсивность обслуживания $\mu = 0.04 \ c^{-1}$
- Вероятность занятия прибора:

системе заявок

CUCTEMA 1: p1 = 0.4, p2 = 0.6**CUCTEMA 2:** p1 = 0.4, p2 = 0.5, p3 = 0.1

• Критерий эффективности: минимальное время пребывания в

Таблица 1 Параметры структурной и функциональной организации исследуемых систем

Вариант	СИСТ	EMA_1	СИСТ	EMA_2	Критерий
	П	EH	П	EH	эффект.
1	1 (H ₂)	3	3	2/0/0	(a)
2	2	2/1	2 (H ₃)	2/1	(б)
3	2	3/0	3	1/1/1	(B)
4	2 (E ₂)	1/0	3	1/0/1	(r)
5	2	6	2	4/2	(д)
6	2	4/1	$1 (E_2)$	2	(a)
7	2	3/1	2	2/1	(б)
88	1 (H ₂)	2	2	1/3	(B)
9	2 (E ₂)	1/1	3	0/1/1	(r)
10	2	5	2	1/3	(д)
11	2	2/2	$1 (E_2)$	3	(a)
12	2	7	3 (H ₃)	1/0/0	(б)
13	3	1/1/1	3	3	(B)
14	3	2/0/0	2 (E ₂)	2/0	(r)
15	2	3	3	2/1/0	(71)

Обозначения в табл.1:

п - число обслуживающих Приборов;

 Π (**E**_k) - в одном из **Приборов** (любом) длительность обслуживания распределена по закону Эрланга k-го порядка;

30.09.23 YVP 2 4 (us 7)

МОДЕЛИРОВАНИЕ

НИУ ИТМО Факультет ПИ и КТ

 Π (H_{ν}) - в одном из **Приборов** (любом) длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации, равным ν ;

ЕН - **Емкости Накопителей**: **X/Y/Z** (**X** - перед первым прибором, **Y** - перед вторым прибором и **Z** - перед третьим прибором);

Указания: 1) заявка, поступившая в систему, с заданной вероятностью занятия прибора направляется к соответствующему прибору и ставится в очередь, либо теряется, если накопитель заполнен или отсутствует;

- 2) емкость накопителя, представленная одним числом, означает общий накопитель перед всеми приборами;
 - 3) критерий эффективности выбирается в соответствии с вариантом:
 - а) максимальная производительность системы;
 - б) минимальные потери заявок;
 - в) максимальная загрузка системы;
 - г) минимальное время пребывания в системе заявок;
 - д) минимальная суммарная длина очередей заявок.

Таблица 2 **Параметры нагрузки**

Номер вари-	Интенс. потока	Ср.длит. обслуж.	Вероятности занятия прибора					
анта	$\lambda_{1/c}$	<i>b</i> , c	П1	П2	П3			
1	0,1	25	1/3	1/3	1/3			
2	0,2	20	0,4	0,5	0,1			
3	0,3	20	0,25	0,25	0,5			
4	0,4	15	0,2	0,3	0,5			
5	0,5	10	0,5	0,4	0,1			
6	0,6	5	0,1	0,2	0,7			
7	0,7	5	0,2	0,4	0,4			
8	0,8	5	0,3	0,5	0,2			
9	0,9	4	0,5	0,3	0,2			
10	1,0	2	0,6	0,3	0,1			
11	0,1	40	1/3	1/3	1/3			
12	0,2	25	0,4	0,5	0,1			
13	0,3	25	0,25	0,25	0,5			
14	0,4	20	0,2	0,3	0,5			
15	0,5	10	0,5	0,4	0,1			
16	0,6	10	0,1	0,2	0,7			
17	0,7	8	0,4	0,4	0,2			
18	0,8	4	0,3	0,5	0,2			
19	0,9	2	0,5	0,3	0,2			
20	1,0	4	0,6	0,3	0,1			

Указания к табл.2:

Вероятности занятия прибора определяются следующим образом:

30.09.23 УИР 2 5 (из 7)

<u>МОДЕЛИРОВАНИЕ</u>

<u>НИУ ИТМО</u> факультет ПИ и КТ

- в случае трехканальной СМО выбираются из табл.2 (см. вероятности занятия приборов П1, П2 и П3);
- в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3;
- в случае одноканальной СМО вероятность занятия прибора принимается равной 1.

Описание систем и построение графов переходов для заданных систем

Рисунок 1. Система 1.

Рисунок 2. Система 2.

Система 1.

1. Описание системы.

- 1.1. Система содержит 2 прибора, то есть является многоканальной.
- **1.2.** В систему поступает однородный поток заявок, вероятности занятия прибора 1 и прибора 2 разные.
- 1.3. Длительность обслуживания заявок в приборах разная.
- **1.4.** В системе перед каждым прибором имеется накопитель единичной ёмкости r=1.

- 2. Предположения и допущения.
- 2.1. Поступающие в систему заявки образуют простейший поток с интенсивностью λ.
- 2.2. Длительность обслуживания заявок в приборе 2 распределена по экспоненциальному закону с интенсивностью 1 / b = μ, где b средняя длительность обслуживания заявок в приборе. Длительность обслуживания заявок в приборе 1 распределена по закону Эрланга 2-ого порядка. Обслуживание складывается из экспоненциальных фаз. Интенсивность обслуживания на каждой фазе равна μ = 1 / Y, следовательно, интенсивность обслуживания в приборе 2 равна 1 / 2(Y) = μ / 2 (в Φ1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на Ф2)
- **2.3.** Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- **2.4.** Дисциплина обслуживания в естественном порядке: заявка, поступившая в систему и заставшая прибор свободным, принимается на обслуживание.

Классификация каждого прибора:

1 прибор: М/Е₂/1/1

2 прибор: М/М/1/1

Система 2.

- 1. Описание системы.
- 1.1. Система содержит 3 прибора, то есть является многоканальной.
- **1.2.** В систему поступает однородный поток заявок, вероятности занятия каждого прибора разные.
- 1.3. Длительность обслуживания заявок в каждом приборе одинаковая.
- **1.4.** В системе перед первым прибором нет накопителя, перед 2 и 3 прибором имеется накопитель единичной ёмкости r=1.
- 2. Предположения и допущения.
- **2.1.** Поступающие в систему заявки образуют простейший поток с интенсивностью λ. **2.2. Длительность обслуживания** заявок в приборе распределена по экспоненциальному закону с интенсивностью 1 / b = μ, где b средняя длительность обслуживания заявок в приборе.
- **2.3.** Дисциплина буферизации с потерями: заявка, поступившая в систему и заставшая накопитель заполненным, теряется.
- **2.4.** Дисциплина обслуживания в естественном порядке: заявка, поступившая в систему и заставшая прибор свободным, принимается на обслуживание.

Классификация каждого прибора:

Прибор 1: М/М/1/0

Прибор 2: М/М/1/1

Прибор 3: М/М/1/1

Кодирование состояний системы 1

Закодируем состояния системы 1 следующим образом: $\{\mathbf{n1.1}, \mathbf{n1.2}, \mathbf{n2}, \mathbf{q1}, \mathbf{q2}\}$, где $\mathbf{n1.1}$ - число заявок на первом приборе в фазе 1, $\mathbf{n1.2}$ - число заявок на первом приборе в фазе 2, $\mathbf{n2}$ - число заявок на втором приборе, $\mathbf{q1}$ - число заявок в очереди первого прибора, $\mathbf{q2}$ - число в очереди второго прибора.

Номер состояния	Обозначение	Описание			
E0	0/0/0/0/0	В системе нет заявок			
E1	0/0/1/0/0	В системе только одна заявка, на обслуживании прибора 2			
E2	0/0/1/0/1	В системе 2 заявки: одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 2			
E3	0/1/0/0/0	В системе только одна заявка, на обслуживании прибора 1 в фазе 2			
E4	0/1/0/1/0	В системе 2 заявки: одна заявка на обслуживании прибора 1 в фазе 2, одна заявка в накопителе прибора 1			
E5	0/1/1/0/0	В системе 2 заявки: одна заявка на обслуживании прибора 1 в фазе 2, одна заявка на обслуживании прибора 2			
E6	0/1/1/0/1	В системе 3 заявки: одна заявка на обслуживании прибора 1 в фазе 2, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 2			
E7	0/1/1/1/0	В системе 3 заявки: одна заявка на обслуживании прибора 1 в фазе 2, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 1			

E8	0/1/1/1/1	В системе 4 заявки: одна заявка на обслуживании прибора 1 в фазе 2, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 1, одна заявка в накопителе прибора 2
Е9	1/0/0/0/0	
		В системе только одна заявка, на обслуживании прибора 1 в фазе 1
E10	1/0/0/1/0	В системе 2 заявки: одна заявка на обслуживании прибора 1 в фазе 1, одна заявка в накопителе прибора 1
E11	1/0/1/0/0	В системе 2 заявки: одна заявка на обслуживании прибора 1 в фазе 1, одна заявка на обслуживании прибора 2
E12	1/0/1/0/1	В системе 3 заявки: одна заявка на обслуживании прибора 1 в фазе 1, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 2
E13	1/0/1/1/0	В системе 3 заявки: одна заявка на обслуживании прибора 1 в фазе 1, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 1
E14	1/0/1/1/1	В системе 4 заявки: одна заявка на обслуживании прибора 1 в фазе 1, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 1, одна заявка в накопителе прибора 2

Рисунок 3. Граф переходов системы 1.

Матрица интенсивностей переходов системы 1.

	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14
E0		λp2								λp1					
E1	μ		λp2									λp1			
E2		μ											λp1		
E3	μ				λp1	λρ2									
E4				μ				λp2							
E5		μ		μ			λp2	λp1							
E6			μ			μ			λp1						
E7					μ	μ			λp2						
E8						μ		μ							
E9				μ							λp1	λρ2			
E10					μ									λp2	
E11						μ				μ			λp2	λp1	
E12							μ					μ			λp1
E13								μ			μ				λp2
E14									μ					μ	

Закодируем состояния системы 1 следующим образом: **{n1, n2, n3, q2, q3}**, где n1 - число заявок на первом приборе, n2 - число заявок на втором приборе, n3 - число заявок на третьем приборе, q2 - число заявок в очереди второго прибора, q3 - число в очереди третьего прибора.

Номер состояния	Обозначение	Описание				
E0	0/0/0/0/0	В системе нет заявок				
E1	0/0/1/0/0	В системе только одна заявка, на обслуживании прибора 3				
E2	0/0/1/0/1	В системе 2 заявки: одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 3				
E3	0/1/0/0/0	В системе только одна заявка, на обслуживании прибора 2				
E4	0/1/0/1/0	В системе 2 заявки: одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 2				
E5	0/1/1/0/0	В системе 2 заявки: одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3				
E6	0/1/1/0/1	В системе 3 заявки: одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 3				
E7	0/1/1/10	В системе 3 заявки: одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 2				
E8	0/1/1/1	В системе 4 заявки: одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 2, одна заявка в накопителе прибора 3				

Е9	1/0/0/0/0	
		В системе только одна заявка, на обслуживании прибора 1
E10	1/0/1/0/0	
		В системе 2 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 3
E11	1/0/1/0/1	В системе 3 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 3
E12	1/1/0/0/0	
		В системе 2 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2
E13	1/1/0/1/0	В системе 3 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2, одна заявка в накопителе прибора 2
E14	1/1/1/0/0	В системе 3 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3
E15	1/1/1/0/1	В системе 4 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 3
E16	1/1/1/1/0	В системе 4 заявки: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 2
E17	1/1/1/1/1	В системе 5 заявок: одна заявка на обслуживании прибора 1, одна заявка на обслуживании прибора 2, одна заявка на обслуживании прибора 3, одна заявка в накопителе прибора 3

Рисунок 4. Граф переходов системы 2

Матрица интенсивностей переходов системы 2.

	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17
E0		λр3		λp2						λp1								
E1	μ		λр3			λp2					λp1							
E2		μ					λp2					λp1						
E3	μ				λp2	λр3							λp1					
E4				μ				λр3						λp1				
E5		μ		μ			λр3	λр2							λp1			
E6			μ			μ			λp2							λp1		
E7					μ	μ			λр3								λp1	
E8							μ	μ										λp1

E9	μ										λр3		λp2					
E10		μ								μ		λр3			λp2			
E11			μ								μ					λp2		
E12				μ						μ				λp2	λр3			
E13					μ								μ				λр3	
E14						μ					μ		μ			λр3	λp2	
E15							μ					μ			μ			λρ2
E16								μ						μ	μ			λр3
E17									μ							μ	μ	

Таблица №1. Стационарные вероятности состояний

Номер	Сис	тема 1	Сис	тема 2
состояния	Обозн.	Вер-ть	Обозн.	Вер-ть
1	E0	0.010871	E0	0.008365
2	E1	0.029900	E1	0.011329
3	E2	0.056003	E2	0.006559
4	E3	0.024453	E3	0.030494
5	E4	0.049445	E4	0.047057
6	E5	0.090787	E5	0.034081
7	E6	0.078308	E6	0.017519
8	E7	0.137912	E7	0.117395
9	E8	0.328772	E8	0.047112
10	E9	0.006484	E9	0.040265
11	E10	0.010962	E10	0.023153
12	E11	0.017161	E11	0.012893
13	E12	0.040872	E12	0.080912
14	E13	0.030879	E13	0.182829
15	E14	0.087191	E14	0.060083
16			E15	0.033321
17			E16	0.160677
18			E17	0.085955

Напомним исходные данные:

- Интенсивность потока $\lambda = 0.2 \ c^{-1}$
- Средняя длительность обслуживания b = 25 с
- Длительность обслуживания на одной фазе Y=b/2=12.5~c Интенсивность обслуживания $\mu=0.04~c^{-1}$
- Вероятность занятия прибора:

Система 1: p1 = 0.4, p2 = 0.6

Система 2: p1 = 0.4, p2 = 0.5, p3 = 0.1

• Критерий эффективности: минимальное время пребывания в системе заявок

Таблица №2. Характеристики систем

Хар-ка	Прибор	Расчетная формула	Сист. 1	Сист. 2
Нагрузка	П1 (1)	y(1)1=λ*b*p1	2	
	П2 (1)	y(1)2=λ*b*p2	3	
	Сумм.	$y(1)=\lambda *b$	5	
	(1)			
	П1 (2)	$y(2)1=\lambda *b*p1$		2
	П2 (2)	y(2)2=λ*b*p2		2.5
	ПЗ (2)	y(2)3=λ*b*p3		0.5
	Сумм.	$y(2)=\lambda *b$		5
	(2)			
Загрузка	П1 (1)	p(1)1=1-(p0+p1+p2+)	0.903226	
	П2 (1)	p(1)2=1-(p0+p3+p4+p9+p10)	0.573417	
	Сумм.	p(1)=(p(1)1+p(1)2)/2	0.7383215	
	(1)			
	П1 (2)	p(2)1=p9+p10+p11+p12+p13+p14+p15+p16+p17		0.680088
	П2 (2)	p(2)2=1-(p0+p1+p2+p9+p10+p11)		0.897436
	ПЗ (2)	p(2)3=1-(p0+p3+p4+p9+p12+p13)		0.610078
	Сумм.	p(2)=(p(2)1+p(2)2+p(2)3)/3		0.729201
	(2)			
Длина	П1 (1)	l(1)1=p4+p7+p8+p10+p13+p14	0.645161	
очереди	П2 (1)	l(1)2=p2+p6+p8+p12+p14	0.591146	
	Сумм.	1(1)=1(1)1+1(1)2	1.236307	
	(1)			
	П1 (2)	1(2)1=0		-
	П2 (2)	1(2)2=p4+p7+p8+p13+p16+p17		0.641025
	ПЗ (2)	1(2)3=p2+p6+p8+p11+p15+p17		0.203359
	Сумм.	1(2)=1(2)2+1(2)3		0.844384
	(2)			
Число	П1 (1)	m(1)1 = l(1)1 + p(1)1	1.548387	
заявок	П2 (1)	m(1)2 = l(1)2 + p(1)2	1.164563	
	Сумм.	m(1) = m(1)1 + m(1)2	2.71295	
	(1)			
	П1 (2)	m(2)1 = l(2)1+p(2)1		0.680088
	П2 (2)	m(2)2 = l(2)2+p(2)2		1.538461
	ПЗ (2)	m(2)3 = 1(2)3 + p(2)3		0.813437
	Сумм.	m(2) = m(2)1 + m(2)2 + m(2)3		3.031986
	(2)			

Время	П1 (1)	$w(1)1 = l(1)1 / \lambda'(1)1$	9.0908975	
ожидания	П2 (1)	$w(1)2 = I(1)2 / \lambda'(1)2$	7.229305	
	Сумм.	w(1) = (w(1)1 + w(1)2) / 2	8.1601	
	(1)			
	П1 (2)	$w(2)1 = 1(2)1 / \lambda'(2)1$		0
	П2 (2)	$w(2)2 = 1(2)2 / \lambda'(2)2$		8.92855
	ПЗ (2)	$w(2)3 = 1(2)3 / \lambda'(2)3$		1.27635
	Сумм.	w(2) = (w(2)1 + w(2)2 + w(2)3) / 3		3.40163
	(2)			
Время	П1 (1)	$u(1)1 = m(1)1 / \lambda'(1)1$	21.81815	
пребывания	П2 (1)	$u(1)2 = m(1)2 / \lambda'(1)2$	14.2418	
	Сумм.	$u(1) = m(1) / \lambda'(1)$	18.03	
	(1)			
	П1 (2)	$u(2)1 = m(2)1 / \lambda'(2)1$		2.5285332
	П2 (2)	$u(2)2 = m(2)2 / \lambda'(2)2$		21.42855
	ПЗ (2)	$u(2)3 = m(/2)3 / \lambda'(2)3$		5.1055
	Сумм.	$u(2) = m(2) / \lambda`(2)$		9.687523
	(2)			
Вероятность	П1 (1)	$\pi(1)1 = P(1)1 * (p4+p7+p8+p10+p13+p14)$	0.2580644	
потери	П2 (1)	$\pi(1)2 = P(1)2 * (p2+p6+p8+p11+p15+p17)$	0.3546876	
	Сумм.	$\pi(1) = \pi(1)1 + \pi(1)2$	0.612752	
	(1)			
	П1 (2)	$\pi(2)1 = P(2)1 * (p4+p7+p8+p10+p13+p14)$		0.25641
	П2 (2)	$\pi(2)2 = P(2)2 * (p4+p7+p8+p13+p16+p17)$		0.10168
	ПЗ (2)	$\pi(2)3 = P(2)3 * (p2+p6+p8+p11+p15+p17)$		0.0844384
	Сумм.	$\pi(2) = \pi(2)1 + \pi(2)2 + \pi(2)3$		0.442528
	(2)			

Сравнение систем

Сравним полученные характеристики обеих систем:

В качестве критерия эффективности мы принимали минимальное время пребывания в системе, соответственно, в таком случае лучше подойдет система 2.

Вывод:

В начале выполнения УИР были проанализированы состояния марковских процессов для систем 1 и 2. На их основе были построены графы переходов марковских процессов, а впоследствии и матрицы интенсивностей переходов. С помощью программы МАКК были получены значения стационарных вероятностей, используя полученные матрицы интенсивностей переходов. Получив значения стационарных вероятностей, можно было приступать к этапу расчета характеристик для систем 1 и 2. Полученные характеристики для систем 1 и 2 были сопоставлены. В результате выяснилось, что система 2 имеет меньшее время пребывания в системе. Именно поэтому ей было отдано предпочтение при выборе наилучшей реализации из данных двух.