Rappels et compléments sur les fonctions numériques

Destiné aux élèves de Terminale S Lycée de Dindéfelo Présenté par M. BA

31 octobre 2025

A. LIMITES-CONTINUITÉ

I.Limites

1) Quelques limites usuelles

$$\forall n \in \mathbb{N}^* \lim_{x \to +\infty} x^n = +\infty \;, \; \lim_{x \to +\infty} \frac{1}{x^n} = 0^+$$

$$\forall n \in \mathbb{N}^* \lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est pair} \end{cases} \;, \; \lim_{x \to -\infty} \frac{1}{x^n} = \begin{cases} 0^+ & \text{si } n \text{ est pair} \\ 0^- & \text{si } n \text{ est pair} \end{cases}$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty \;, \; \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0^+$$

$$\lim_{x \to a^+} \frac{1}{x - a} = +\infty \;, \; \lim_{x \to a^-} \frac{1}{x - a} = -\infty$$

Autre Notation

$$(x \to a^+) \Leftrightarrow (x \to a_>) \ , \ (x \to a^-) \Leftrightarrow (x \to a_<)$$

$$\lim_{x \to a^+} f(x) = +\infty \text{ se note aussi } \lim_{x \to a_>} f(x) = +\infty$$

$$\lim_{x \to a^-} f(x) = -\infty \text{ se note aussi } \lim_{x \to a_<} f(x) = -\infty$$

- 2) Quelques théorèmes sur les limites
 - a) Théorème de comparaison

Soient f et g trois fonctions définies sur un intervalle I au voisianage α , α étant un réel, $+\infty$ ou $-\infty$.

Si pour tout
$$x \in I$$
:
$$\begin{cases} f(x) \ge g(x) \\ \lim_{x \to \alpha} g(x) = +\infty \end{cases}$$
 alors $\lim_{x \to \alpha} f(x) = +\infty$

1

FIGURE 1 – Courbe de (Cf)

Si pour tout
$$x \in I$$
:
$$\begin{cases} f(x) \le g(x) \\ \lim_{x \to \alpha} g(x) = -\infty \end{cases}$$
 alors $\lim_{x \to \alpha} f(x) = -\infty$

FIGURE 2 – Courbe de (Cf)

Exemple 1::

Soit
$$f(x) = -x + \sin x$$
 Calculer $\lim_{x \to +\infty} f(x)$

Solution 1: :

Pour tout x, $\sin x \le 1 \implies -x + \sin x \le 1 - x \implies f(x) \le 1 - x$.

Posons
$$g(x) = 1 - x$$
 donc $f(x) \le g(x)$.

Or,
$$\lim_{x \to +\infty} g(x) = -\infty$$
, donc $\lim_{x \to +\infty} f(x) = -\infty$

Exemple 2::

Soit
$$g(x) = \frac{\sqrt{1+x^2}}{x^2}$$
. Calculer $\lim_{x\to 0} g(x)$

Solution 2::

Posons $f(x) = \frac{1}{x^2}$. Comme, pour tout $x \neq 0$, on a, $1 \leq \sqrt{1 + x^2}$., on a, pour tout $x \neq 0$

$$f(x) \ge g(x)$$
 Or, $\lim_{x\to 0} g(x) = +\infty$, donc $\lim_{x\to 0} f(x) = +\infty$

b) Théorème d'encadrement ou théorème des gendarmes

Soient f, g et h trois fonctions définies sur un intervalle I au voisianage α , α étant un réel, $+\infty$ ou $-\infty$.

Si
$$\forall x \in I$$

$$\begin{cases} g(x) \le f(x) \le h(x) \\ \lim_{x \to \alpha} g(x) = \lim_{x \to \alpha} h(x) = \ell, \end{cases}$$
 alors $\lim_{x \to \alpha} f(x) = \ell$

Exercice d'application 1:

Calculer
$$\lim_{x \to +\infty} \frac{x - \sin x}{x^2}$$

Correction 1:

c) Limite et composition de fonctions

Soit α , β et γ des réels ou $\pm \infty$ On considère deux fonctions u et v telles que

Si
$$\begin{cases} \lim_{x \to \alpha} u(x) = \beta \\ \lim_{x \to \beta} v(x) = \gamma \end{cases}$$
 alors $\lim_{x \to \alpha} v(u(x)) = \gamma$

Exercice d'application 2:

Calculer
$$\lim_{x \to +\infty} \sqrt{\frac{9}{x} + 7}$$

Correction 2:

On commence par la fonction la plus à l'intérieur :

Posons
$$u(x) = \frac{9}{x} + 7$$
 et $v(x) = \sqrt{\frac{9}{x} + 7}$

d) Théorème du changement de variable

$$\lim_{x \to x_0} f(x) = \lim_{t \to 0} f(x_0 + t)$$

$$\lim_{x \to +\infty} f(x) = \lim_{X \to 0^+} f\left(\frac{1}{X}\right)$$

$$\lim_{x \to -\infty} f(x) = \lim_{X \to 0^-} f\left(\frac{1}{X}\right)$$

Preuve [Exercice]

3) Limites de fonctions trigonométriques

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Exercice d'application 3:

$$\lim_{x \to +\infty} x \sin \frac{1}{x}$$

$$\lim_{x \to +\infty} x \sin \frac{3}{x}$$

$$\lim_{x \to +\infty} x \tan \frac{3}{x}$$

$$\lim_{x \to +\infty} x^2 \left(1 - \cos \frac{2}{x} \right)$$

Correction 3:

4) Interprétations géométriques des limites

Les limites peuvent être interprétées géométriquement de plusieurs manières en fonction du contexte. Voici quelques exemples typiques :

a) Asymptote horizontale (AH)[Parllèle à (ox)]:

Une fonction f a une asymptote horizontale en $y=\ell$ lorsque $\lim_{x\to +\infty} f(x)=\ell$ ou $\lim_{x\to +\infty} f(x)=\ell$

Si
$$\lim_{x \to +\infty} f(x) = \ell$$
 On dit que : $y = \ell$ est une AH à (C_f) en $+\infty$

Si
$$\lim_{x \to -\infty} f(x) = \ell$$
 on dit que : $y = \ell$ est une AH à (C_f) en $-\infty$

Cela signifie que la courbe de la fonction se rapproche de la droite $y=\ell$ à mesure que $x\to +\infty$ ou $x\to -\infty$.

Exemple 3::

Déterminer l'AH de f

$$f(x) = \frac{2x^2}{x^2 + 1}$$

Solution 3::

$$\lim_{x \to +\infty} f(x) = 2, \quad \lim_{x \to -\infty} f(x) = 2.$$

La courbe de la fonction se rapproche de la droite y=2 à mesure que $x\to +\infty$ ou $x\to -\infty$.

b) Asymptote verticale (AV)[Parallèle à (oy)]:

Soit
$$x = a \in \mathbb{R}$$

si
$$\lim_{x \to a} f(x) = \pm \infty$$
 alors $x = a$ est une AV à C_f

Cela signifie que la courbe de la fonction tend vers l'infini lorsque x approche a par la droite (ou la gauche).

Exemple 4: :

 $\overline{\text{Déterminer de l'AV de } f \text{ tel que } f(x) = \frac{1}{x}$

Solution 4::

$$\lim_{x \to 0^+} f(x) = +\infty$$
 et $\lim_{x \to 0^-} f(x) = -\infty$,

ce qui signifie que la fonction a une asymptote verticale en x=0.

c) Asymptote oblique (AO):

Si
$$\lim_{x\to +\infty} (f(x)-(ax+b))=0$$
 alors $y=ax+b$ est une AO à (C_f) en $+\infty$

Si
$$\lim_{x\to-\infty} (f(x)-(ax+b))=0$$
 alors $y=ax+b$ est une AO à (C_f) en $-\infty$

Cette méthode est utilisée pour montrer que y=ax+b est
est une AO

Exemple 5::

Soit $f(x) = \frac{x^2 + 2x + 1}{x}$ une fonction et (C_f) sa courbe représentative.

Montrer que y = x + 2 est AO à (C_f) en $\pm \infty$

Solution 5::

y = x + 2 est AO à (C_f) en $\pm \infty$ si $\lim_{x \to +\infty} [f(x) - y] = 0$

En effet

$$f(x) = \frac{x^2 + 2x + 1}{x}, \quad \lim_{x \to +\infty} (f(x) - (x+2)) = 0.$$

La courbe de la fonction se rapproche de la droite y = x + 2 pour $x \to +\infty$.

d) Propriété 1[Autre façon de montrer que y = ax + b est une AO]

Soit f une fonction, a, b un réel et (C_f) sa courbe représentative.

Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ et $\lim_{x \to +\infty} (f(x) - ax) = b$

alors
$$y = ax + b$$
 est une AO à (C_f) en $+\infty$.

NB:

Cette propriété reste valable lorsque $x \to -\infty$

On aura y = ax + b est une AO à (C_f) en $-\infty$

Exercice d'application 4:

- 1) Soit $f(x) = \frac{2x}{\sqrt{x+1}}$ Déterminer Df et montrer que x = -1 est une AV à (C_f) .
- 2) Soit $g(x) = \sqrt{4x^2 + 1} + 2x$
 - a) Montrer que y=0 est une AH à (C_q) en $-\infty$
 - b) Montrer que y = 4x est une AO à (C_g) en $+\infty$

Correction 4:

e) Branche parabolique de direction (oy)

Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = \pm \infty$

alors (C_f) admet une branche parabolique de direction (oy) en $+\infty$

Remarque 1:

Cette propriété reste valable lorsque $x \to -\infty$

f) Branche parabolique de direction (ox)

Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$

alors (C_f) admet une branche parabolique de direction (ox) en $+\infty$

Remarque 2:

Cette propriété reste valable lorsque $x \to -\infty$

g) Branche parabolique de direction y = ax (a réel)

Si
$$\lim_{x \to +\infty} f(x) = \pm \infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ et $\lim_{x \to +\infty} (f(x) - ax) = \pm \infty$

alors (C_f) admet une branche parabolique de direction y = ax en $+\infty$

Cette propriété reste valable lorsque $x \to -\infty$

Exercice d'application 5:

Étudier les branches infinies des courbes représentatives des fonctions suivantes :

a)
$$f(x) = \frac{2x^3 - 1}{x - 1}$$

a)
$$f(x) = \frac{2x^3 - 1}{x - 1}$$

b) $g(x) = \sqrt{x^2 + 1} - x$

c)
$$h(x) = x\sqrt{\frac{x+1}{x-1}}$$

Correction 5:

II.Continuité

1) Définition

Soit f une fonction definie en x_0 on dit que f est continue en x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$.

2) Prolongement par continuité

Continuité sur un intervalle

[Continuité de fonctions usuelles]

Opérations sur les fonctions continues

3) Compositions de deux fonctions continues

Si f est continue en x_0 et g continue en $f(x_0)$ alors $g \circ f$ est continue en x_0 donc la composition de deux fonctions continues est une fonction continue.

Exercice d'application 6:

a) Soit $f(x) = \sqrt{|2x^5|}$

Etudier la continuité de f sur \mathbb{R}

b) Soit $f(x) = x\sqrt{1-x}$

Etudier la continuité de f sur son domaine de définition.

Correction 6:

a) Continuité de $f(x) = \sqrt{|2x^5|}$ sur \mathbb{R}

Domaine de définition :

La fonction $f(x) = \sqrt{|2x^5|}$ est définie pour tous les $x \in \mathbb{R}$, car l'expression $|2x^5|$ est toujours positive ou nulle, et la racine carrée d'un nombre positif ou nul est bien définie. Donc, f(x) est définie sur \mathbb{R} .

Étude de la continuité:

La fonction f(x) est composée des fonctions suivantes :

- $-g(x)=2x^5$, une fonction polynomiale, qui est continue partout sur \mathbb{R} .
- h(x) = |x|, la fonction valeur absolue, qui est continue partout.
- $k(x) = \sqrt{x}$, la racine carrée, qui est continue pour $x \ge 0$.

Ainsi, f(x) est continue sur \mathbb{R} , car c'est la composition de fonctions continues sur leur domaine respectif.

Conclusion: La fonction $f(x) = \sqrt{|2x^5|}$ est continue sur \mathbb{R} .

b) Continuité de $f(x) = x\sqrt{1-x}$

Domaine de définition :

La fonction $f(x) = x\sqrt{1-x}$ impose que $1-x \ge 0$, c'est-à-dire $x \le 1$. Ainsi, la fonction est définie pour x < 1, sans autres contraintes. Le domaine de définition de f(x) est donc $]-\infty,1[$.

6

Étude de la continuité :

- La fonction g(x) = x est continue partout sur \mathbb{R} .
- La fonction $h(x) = \sqrt{1-x}$ est continue pour x < 1, car la racine carrée est définie pour les valeurs positives ou nulles.

Ainsi, $f(x) = x\sqrt{1-x}$ est continue sur $]-\infty,1[$.

Point de discontinuité possible en x = 1:

Lorsque x tend vers 1, la fonction $\sqrt{1-x}$ tend vers 0. À x=1, la racine carrée devient $\sqrt{1-1}=0$, donc $f(1) = 1 \times 0 = 0$. Cependant, la fonction n'est pas définie en x = 1, ce qui entraîne une discontinuité en x = 1.

Conclusion: La fonction $f(x) = x\sqrt{1-x}$ est continue sur $]-\infty,1[$ et présente une discontinuité en x = 1.

4) Image d'un intervalle par une fonction continue et stritement monotone

— L'image d'un intervalle par une fonction continue est un intervalle.

C'est à dire
$$\begin{cases} f \text{ est continue sur } I \\ I \text{ est un intervalle} \end{cases}$$
 alors $f(I)$ est un intervalle

— Lorsqu'une fonction f est continue et strictement monotone sur K, f(K) est un intervalle de même nature que K et ses bornes sont les limites de f aux bornes de K.

Le tableau ci-dessous précise f(K) suivant la nature de K et du sens de variation de f.

K	f(K)	f(K)
	f stictement croissante	f strictement décroissante
[a;b]	[f(a); f(b)]	[f(b); f(a)]
[a;b[$[f(a); \lim_{x \to b^{-}} f(x)]$	$\lim_{x \to b^{-}} f(x); f(a)]$
]a;b[$\lim_{x \to b^+} f(x); \lim_{x \to b^-} f(x)$	$\lim_{x \to b^{-}} f(x); \lim_{x \to b^{+}} f(x)[$
$a; +\infty[$	$[f(a); \lim_{x \to +\infty} f(x)[$	$\lim_{x \to +\infty} f(x); f(a)$
\mathbb{R}	$\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x)$	$\lim_{x \to +\infty} f(x); \lim_{x \to -\infty} f(x)[$

Soit
$$f(x) = \frac{2x+1}{x}$$

Exercice d'application 7: Soit $f(x) = \frac{2x+1}{x-1}$ Déterminer l'image par f des intervalles [-2;0] et $]1;+\infty[$

Soit
$$f(x) = \frac{2x+1}{x-1}$$
.

$$-D_f$$
:

$$D_f = \mathbb{R} \setminus \{1\}$$

-Continuité de f:

La fonction $f(x) = \frac{2x+1}{x-1}$ est une fonction rationnelle donc continue sur $D_f = \mathbb{R} \setminus \{1\}$.

-Monotonie de f:

Calculons la dérivée de $f: f'(x) = \frac{-3}{(x-1)^2}$

Pour tout $x \in D_f f'(x) < 0$.

Cela signifie que la fonction f est strictement décroissante sur chaque intervalle de son domaine de définition, à savoir $]-\infty;1[$ et $]1;+\infty[$.

$$-f([-2;0]) = [f(0); f(-2)] = [-1;1]$$

$$-f(]1; +\infty[) = \lim_{x \to +\infty} f(x); \lim_{x \to 1^+} f(x)[=]2; +\infty[$$

5) Théorème des valeurs intermédaires

Si la fonction f est continue sur [a;b] et si le réel m est compris entre f(a) et f(b), alors l'équation f(x) = m admet au moins une solution dans [a; b].

Autrement dit, il existe au moins un réel c entre a et b tel que f(c) = m

Illustration graphique

[Image]

Exemple 6::

Soit la fonction $f(x) = \frac{1}{2}x^3 + x - 5$

Montrer que l'équation f(x) = 5 admet une solution sur [-2; 4].

Solution 6: :

$$f([-2;4]) = [f(-2); f(4)] = [-11;31].$$

D'après le théorème précédent, comme $5 \in [-11; 31]$ donc l'équation f(x) = 5 a une solution dans [-2; 4].

NB

- Si m=0 il suffit de montrer que $\lim_{x\to a} f(x) \times \lim_{x\to b} f(x) < 0$
- Il faut toujours commencer par montrer que f est solution.

Exercice d'application 8:

$$f(x) = x^5 - x + 7$$

Montrer que l'équation f(x) = 0 admet au moins une solution dans [-2; -1].

Correction 8:

6) Théorème d'existence et d'unicité d'une solution

Si la fonction f est continue et strictement monotone (croissante ou bien décroissante) sur [a;b]. Pour tout réel m compris entre f(a) et f(b), alors l'équation f(x) = m admet une unique solution $\alpha \in [a;b]$.

Ilustration graphique

[Image]

Cas particulier

Si la fonction f réalise une bijection(continue et strictement monotone) de [a;b] de plus si $f(a) \times f(b) < 0$ alors l'équation f(x) = 0 admet une unique solution α sur l'intervalle [a;b].

Ilustration graphique

[Image]

Exemple 7::

Soit
$$f(x) = x^3 + x + 1$$

Montrer que l'équation f(x) = 0 admet une unique solution sur [-0, 8; -0, 6].

Solution 7::

7) Encadrement de la racine α à ϵ près

Méthode de dichotomie(Approche par exemple)

Si f fonction contenu strictement sur un intervalle [a;b], telle que $f(a) \ge 0$ et $f(b) \le 0$; alors il existe au moins un réel α dans l'intervalle [a;b] tel que $f(\alpha) = 0$.

L'idée est alors de trouver le signe de f au milieu de [a;b], et de distinguer les deux cas

- Si $f\left(\frac{a+b}{2}\right) \leq 0$, alors α est dans l'intervalle $\left[\frac{a+b}{2};b\right]$
- Sinon $f\left(\frac{a+b}{2}\right) > 0$, alors α est dans l'intervalle $\left[a; \frac{a+b}{2}\right]$

Dans les deux cas, on a trouvé un intervalle de longueur moité dans lequel est située une racine α de l'équation f(x) = 0.

On recommence alors avec cet intervalle, et ainsi de suite, jusqu'à ce qu'on trouve une approximation qui nous convienne.

Exercice d'application 9: Soit la fonction $f(x) = x^3 - 7x$

- a) Montrer que l'équation f(x) = 0 admet une unique solution α sur l'intervalle [2; 4].
- b) Donner un encadrement de α à 0.1 près

Correction 9:

Méthode de balayage(Approche par exemple)[Exercice]

8) Théorème d'existence d'une bijection et de sa réciproque

Si f est continue et strictement monotone sur un intervalle I, alors f est une bijection de I vers J = f(I). Dans ce cas, f admet une fonction réciproque f^{-1} qui est également continue et strictement monotone sur l'intervalle J, avec les propriétés suivantes :

— La fonction réciproque f^{-1} est telle que $f(f^{-1}(y)) = y$ pour tout $y \in J$ et $f^{-1}(f(x)) = x$ pour tout $x \in I$.

— La monotonie de f^{-1} est de même sens que celle de f .

Exemple 8::

Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$f(x) = 2x + 3$$

- (a) La fonction f est-elle continue sur \mathbb{R} ?
- (b) La fonction f est-elle strictement monotone sur \mathbb{R} ?
- (c) La fonction f est-elle une bijection de \mathbb{R} vers \mathbb{R} ?
- (d) Déterminer l'expression explicite la fonction réciproque f^{-1} de la fonction f?
- (e) La fonction réciproque f^{-1} est-elle continue et strictement monotone?

Solution 8: :

- (a) Oui, la fonction f(x) = 2x + 3 est continue sur \mathbb{R} car elle est une fonction affine (polynomiale de degré 1).
- (b) Oui, la fonction f est strictement croissante sur \mathbb{R} , car sa dérivée est f'(x) = 2 > 0, ce qui signifie que la pente est positive.
- (c) Oui, comme f est continue et strictement croissante, elle est bijective de \mathbb{R} vers \mathbb{R} .
- (d) Pour trouver la fonction réciproque f^{-1} , nous résolvons l'équation y = 2x + 3 pour x:

$$y = 2x + 3 \implies x = \frac{y - 3}{2}$$

Donc, la fonction réciproque est $f^{-1}(y) = \frac{y-3}{2}$.

- (e) Oui, la fonction réciproque $f^{-1}(y) = \frac{y-3}{2}$ est également continue et strictement croissante sur \mathbb{R} car elle est une fonction affine avec une pente positive.
- (f) Calculer $f^{-1}(5)$

NB : Il n'est pas toujours possible de déterminer l'expression explicite de f^{-1}

9) Calcul de $f^{-1}(y_0)$ sans connaître l'expression de f^{-1}

Pour calculer $f^{-1}(y_0)$, on résout $f(x) = y_0$.

Exemple 9: :

Soit $f(x) = \sqrt{x^2 + 3x + x - 1}$. On admet que f est une bijection de $[0; +\infty[$ vers $[-1; +\infty[$ Calculer $f^{-1}(2)$

Solution 9: :

B.Dérivabilité

I.Dérivation

1. Notion de nombre dérivé

Soit f une fonction définie sur un intervalle I contenant x_0 f est dérivable en x_0 ou f admet un nombre dérivé en x_0 si et seulment si

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell \text{ avec } (\ell \in \mathbb{R})$$

 ℓ est appelé le nombre dérivé de f en x_0 et est noté $f'(x_0)$.

On a alors:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Exemple 10: : Soit $f(x) = \frac{x}{2x+1}$ Etudier la dérivabilité de f en -1.

Solution 10: :

2.Dérivabilté à gauche-Dérivabilité à droite

Soit f une fonction définie sur un intervalle I contenant x_0 et ℓ un réel. f est dérivable à gauche de x_0 si

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

f est dérivable à droite de x_0 si

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

f est dérivable en x_0 si

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$

 ${\rm NB}$: On note $f_g'(x)$ la dérivé à gauche et $f_d'(x)$ la dérivé à droite

Exemple 11: :

 $\overline{f(x) = x|x-1|} f$ est-elle dérivable en 1?

Solution 11: :

3.Interprétation géométrique du nombre dérivé

• Si f est dérivable en x_0 alors $f'(x_0)$ existe et C_f admet une tangente au point d'abscisse x_0 d'équation : $y = f'(x_0)(x - x_0) + f(x_0)$

Limite	Dérivabilité en x_0	Interprétation géométrique : (C_f) admet
$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a \ (a \neq 0)$	f est dérivable en x_0	Une tangente au point $A(x_0; f(x_0))$ de coefficient directeur a
$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$		Une tangente horizontale au point $A\left(x_{0};f(x_{0})\right)$
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = a \ (a \neq 0)$	f est dérivable à droite en x_0	Une demi-tangente à droite au point $A(x_0; f(x_0))$ de coefficient directeur a
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = 0$	(3)	Une demi-tangente horizontale à droite au point $A(x_0; f(x_0))$
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$	f n'est pas dérivable à droite en x_0	Une demi-tangente verticale à droite au point $A(x_0; f(x_0))$ dirigée vers le bas
$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$		Une demi-tangente verticale à droite au point $A(x_0; f(x_0))$ dirigée vers le haut
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = a \ (a \neq 0)$	f est dérivable à gauche en x_0	Une demi-tangente à gauche au point $A(x_0; f(x_0))$ de coefficient directeur a
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = 0$		Une demi-tangente horizontale à gauche au point $A(x_0; f(x_0))$
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$	f n'est pas dérivable à gauche en x_0	Une demi-tangente verticale à gauche au point $A(x_0; f(x_0))$ dirigée vers le haut
$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$		Une demi-tangente verticale à gauche au point $A(x_0; f(x_0))$ dirigée vers le bas

4.Dérivabilité sur un intervalle

f est dérivable sur a; b si et seulement si f est dérivable en tout point de a; b. Propriété:

- Toute fonction polynôme est dérivable sur \mathbb{R} .
- Toute fonction rationnelle est dérivable sur son ensemble de définition .
- |f| est dérivable sur I si et selement si f est dérivable sur I et $f(x) \neq 0 \forall x \in I$
- \sqrt{f} est dérivable sur I si et selement si f est dérivable sur I et $f(x) > 0 \forall x \in I$

5. Dérivée d'une fonction composée

Soit f une fonction définie sur un intervalle I et g une fonction définie sur un intervalle K contenant f(I).

- Si f est dérivable en un élément x_0 de I et g dérivable en f alors $g \circ f$ est dérivable en et on a : $(g \circ f)'(x_0) = g' \circ f(x_0) \times f'(x_0)$
- Si f est dérivable sur I et g dérivable sur K alors $g \circ f$ est dérivable sur I et on a : $(g \circ f)' = g' \circ f \times f'$

6.Dérivée de la fonction réciproque

Soit f une fonction dérivable et bijective de $I \to J$ et f^{-1} la bijection réciproque donc $f^{-1'}(y) = \frac{1}{f'(x)}$ avec $f'(x) \neq 0$

En effet :

$$\begin{array}{ll} f:I\to J & f^{-1}:J\to I \\ f:x\mapsto y=f(x) & y\mapsto x=f^{-1}(y) \end{array}$$

On a

$$f^{-1} \circ f(x) = x \implies (f^{-1} \circ f(x))' = x'$$

$$\implies (f^{-1})'(f(x)) \times f'(x) = 1$$

$$\implies (f^{-1})'(y) \times f'(x) = 1$$

$$\implies (f^{-1})'(y) = \frac{1}{f'(x)}$$

Propriété:
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$
 avec $f'(x) \neq 0$

7. Inégalité des accroissements finis (IAF)

Soit f une fonction dérivable sur un intervalle I et $M \in \mathbb{R}_+^*$ tel que $|f'(x)| \leq M$.

Alors pour tout a et $b \in I$, on a : $|f(b) - f(a)| \le M(b - a)$

Exemple 12:

Démontrer que pour tout réels a et $b \mid \cos b - \cos a \le |b - a|$

Solution 12:

C.Primitives

1.Définition

Soit F une fonction définie sur un intervalle I et soit f une fonction définie et continue sur I.

On dit que F est une primitive de f sur I si pour tout x élément de I

On a : F'(x) = f(x)

F est une primitive de f sur I si f est la dérivée de F sur I.

2. Théorème (admis)

Toute fonction continue sur un intervalle I admet une primitive sur I.

Si f admet une primitive sur I alors elle en admet une infinité.

3.Théorème

Deux primitives d'une même fonction sur un même intervalle diffèrent d'une constante.

Donc si F et G sont des primitives de f sur I alors il existe une constante réelle k telle que pour tout x élément de I F(x) = G(x) + k

Pour la preuve voir la variation des fonctions avec l'utilisation des dérivées.

On en déduit que :

Chacune des primitives de f sur I est déterminée par sa valeur en un point de I.

Remarque:

Toute primitive de f sur I est dérivable sur I.

Il serait utile de connaître les résultats figurant sur le tableau suivant :

I = intervalle de	Remarques ou	Fonction f	Primitive F où k est une
définition de f	restrictions		constante réelle
$I \subset \mathbb{R}$		$x\mapsto 0$	$x \mapsto k$
$I \subset \mathbb{R}$	$a \in \mathbb{R}$	$x\mapsto a$	$x \mapsto ax + k$
$I \subset \mathbb{R}$	n entier naturel	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^*$	n entier relatif, $n \neq -1$	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^+$	n réel $n \neq -1$	$x \mapsto x^n$	$x \mapsto \frac{x^{n+1}}{n+1} + k$
$I \subset \mathbb{R}^*$		$x\mapsto \frac{1}{x^n}$	$x \mapsto -\frac{1}{(n-1)x^{n-1}} + k$
$I \subset \mathbb{R}^+$		$x \mapsto \frac{1}{\sqrt{x}}$	$x \mapsto 2\sqrt{x} + k$
$I \subset \mathbb{R}$		$x \mapsto \sin x$	$x \mapsto -\cos x + k$
$I \subset \mathbb{R}$	\bigcirc	$x \mapsto \cos x$	$x \mapsto \sin x + k$
$I \subset \mathbb{R}$	>	$x \mapsto \sin(ax+b)$	$x \mapsto -\frac{1}{a}\cos(ax+b) + k$
$I \subset \mathbb{R}$		$x \mapsto \cos(ax + b)$	$x \mapsto \frac{1}{a}\sin(ax+b) + k$
$I \subset \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$		$x \mapsto \frac{1}{\cos^2 x}$	$x \mapsto \tan x + k$
$I \subset \mathbb{R}$		$x \mapsto 1 + \tan^2 x$	$x \mapsto \tan x + k$
$I \subset \mathbb{R}^+$	x positif	$x \mapsto \sqrt{x}$	$x \mapsto \frac{2}{3}x^{3/2} + k$
$I \subset \mathbb{R}$		$x \mapsto (ax+b)^n$	$x \mapsto \frac{1}{a} \frac{(ax+b)^{n+1}}{n+1} + k$
$I \subset \mathbb{R}$	Avec les mêmes		
	contraintes sur n et sur $(ax + b)$		

Table 1 – Tableau des primitives

Lorsque U désigne une fonction dérivable sur I, positive et non nulle dans certains cas, on a :

$$\frac{U'}{U^2} \text{ a pour primitives } -\frac{1}{U}+k$$

$$U'\times U^n \text{ a pour primitives } \frac{U^{n+1}}{n+1}+k$$

$$U'\times \sqrt{U} \text{ a pour primitives } \frac{2}{3}U\sqrt{U}+k$$

$$\frac{U'}{\sqrt{U}} \text{ a pour primitives } 2\sqrt{U}+k$$

$$\frac{U'}{U^n} \text{ peut être ramenée à la forme } U'\times U^{-n}$$

Exercice d'application 10:

1. Déterminer toutes les primitives des fonctions suivantes, sur un intervalle bien choisi :

$$f_1(x) = 5x^3 - 3x + 7 \qquad f_2(x) = 2\cos(x) - 3\sin(x) \quad f_3(x) =$$

$$f_4(x) = \frac{5}{\sqrt{x}} + \frac{4}{x^4} + \frac{2}{x^2} + \frac{2}{x^3} \quad f_5(x) = \frac{x+5}{x^2} \qquad f_6(x) = \frac{x^2}{5} + \frac{1}{6}$$

$$f_3(x) = \sin(2x) \qquad f_4(x) = \cos\left(3x + \frac{\pi}{3}\right) \qquad f_5(x) = (2x+1)^2$$

$$f_6(x) = \frac{3}{\sqrt{5x+1}} \qquad f(x) = \frac{x}{1+x^2} \qquad m(x) = 3x\sqrt{1+x^2}$$

2.Reconnaissance de formes

1.
$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3, \ I = \mathbb{R}$$
 2. $f(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}, \ I =] - \infty, -2[$
3. $f(x) = \frac{(x - 1)}{\sqrt{x(x - 2)}}, \ I =] - \infty, 0[$
4. $f(x) = \frac{-2x}{(1 + x^2)^2}, \ I =]1, +\infty[.$

Correction 10:

D.ÉTUDES DE FONCTIONS

1. Courbe de la fonction réciproque

Soit f une bijection de I vers J et f^{-1} sa bijection réciproque. La courbe de f (C_f) et la courbe de f^{-1} ($C_{f^{-1}}$) sont symétriques par rapport à la première bissectrice

(
$$\Delta$$
) d'équation $y = x$.

2. Fonction paire

Soit f une fonction et D_f son ensemble de définition. La fonction f est dite paire lorsque, pour tout x appartenant à D_f , on a :

$$-x \in D_f$$
 et $f(-x) = f(x)$.

NB La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

3. Fonction impaire

Soit f une fonction et D_f son ensemble de définition. f est dite impaire lorsque, pour tout x appartenant à D_f , on a :

$$-x \in D_f$$
 et $f(-x) = -f(x)$.

NB: La courbe d'une fonction impaire est symétrique par rapport à l'origine.

4. Axe de symétrie

La droite d'équation cartésienne x=a est un axe de symétrie de la courbe C_f si les deux conditions suivantes sont réalisées :

- $(\forall x \in D_f); (2a x) \in D_f$
- $(\forall x \in D_f); f(2a x) = f(x)$

Figure 3 – centreSymetrie

Cas particulier Si a = 0; f est une fonction paire

Exemple 13:

 $\overline{f(x) = 2x^2 - 2x} + 1$ Montrer que $x = \frac{1}{2}$ est axe de symétrie pour la courbe C_f . Solution 13:

5. Centre de symétrie

Le point I(a;b) est un centre de symétrie de la courbe C_f si les deux conditions suivantes sont réalisées :

- $(\forall x \in D_f); (2a x) \in D_f$
- $(\forall x \in D_f); f(2a-x) + f(x) = 2b$

 $\Omega(a, b)$ centre de symétrie

Figure 4 – centreSymetrie

Cas particulier Si a = b = 0; f est une fonction impaire

Exemple 14:

 $\overline{f(x) = \frac{3x+1}{2x-6}}$ Montrer que $I(3; \frac{3}{2})$ est centre de symétrie pour la courbe C_f . Solution 14:

6. Périodicité

Soit f une fonction et D_f son ensemble de définition. Soit T un nombre réel strictement positif. On dit que

T est une période de f lorsque, pour tout x appartenant à $\mathcal{D}_f,$ on a :

$$-x+T\in D_f \tag{1}$$

$$---f(x+T) = f(x) \tag{2}$$

Le plus petit réel T strictement positif qui vérifie (1) et (2) est appelé la période de f.

Exemple 15:

Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(x)$ pour tout $x \in \mathbb{R}$.

La fonction sinus est périodique de période $T=2\pi$. En effet, pour tout $x\in\mathbb{R}$, on a :

- $x + 2\pi \in \mathbb{R}$ (ce qui vérifie la condition (1)),
- $-f(x+2\pi) = \sin(x+2\pi) = \sin(x) = f(x)$ (ce qui vérifie la condition (2)).

Ainsi, 2π est la période de $f(x) = \sin(x)$.

7. Position relative d'une courbe et de son asymptote $(\Delta): y = ax + b$

Soient f une fonction et (C_f) sa courbe représentative. $(\Delta): y = ax + b$. Posons g(x) = f(x) - (ax + b).

- Si $g(x) > 0 \ \forall x \in K$, alors (C_f) est au-dessus de (Δ) sur K.
- Si $g(x) < 0 \ \forall x \in K$, alors (C_f) est au-dessous (ou en dessous) de (Δ) sur K.
- Si $g(x) = 0 \ \forall x \in K$, alors (C_f) et (Δ) se coupent sur K.

Exemple 16:

Considérons la fonction $f(x) = 2x + \frac{1}{x}$ et son asymptote oblique $(\Delta): y = 2x$. Calculons $g(x) = f(x) - (2x) = 2x + \frac{1}{x} - 2x = \frac{1}{x}$.

- Pour x > 0, $g(x) = \frac{1}{x} > 0$, donc (C_f) est au-dessus de (Δ) pour x > 0.
- Pour x < 0, $g(x) = \frac{1}{x} < 0$, donc (C_f) est en dessous de (Δ) pour x < 0.
- g(x) ne s'annule jamais (sauf à l'infini), donc (C_f) et (Δ) ne se coupent pas.

Ainsi, la courbe de $f(x) = 2x + \frac{1}{x}$ est au-dessus de l'asymptote y = 2x pour x > 0 et en dessous pour x < 0, sans intersection entre (C_f) et (Δ) .

8. Position relative d'une courbe et de sa tangente au point M_0 d'abscisse x_0

Soit f une fonction deux fois dérivable sur un intervalle K et x_0 un élément de K.

On désigne par (C_f) sa courbe représentative et par (T) la tangente à (C_f) au point M_0 d'abscisse x_0 .

- (T) a pour équation : $y = f(x_0) + f'(x_0)(x x_0)$.
- Si $f'' > 0 \ \forall x \in K$, alors (C_f) est au-dessus de (T) sur K. On dit que f est convexe sur K.
- Si $f'' < 0 \ \forall x \in K$, alors (C_f) est au-dessous (ou en dessous) de (T) sur K. On dit que f est concave sur K.
- Si f'' s'annule et change de signe en x_0 , alors la droite (T) traverse la courbe (C_f) en M_0 . On dit que M_0 est un point d'inflexion de (C_f) .

Exemple 17:

Considérons la fonction $f(x) = x^3 - 3x^2 + 2x$ et étudions sa tangente au point M_0 d'abscisse $x_0 = 1$.

1. Calculons $f(x_0)$, $f'(x_0)$ et $f''(x_0)$:

$$f(x) = x^{3} - 3x^{2} + 2x$$

$$f'(x) = 3x^{2} - 6x + 2$$

$$f''(x) = 6x - 6$$

En prenant $x_0 = 1$:

$$f(1) = 1^3 - 3 \times 1^2 + 2 \times 1 = 0$$

$$f'(1) = 3 \times 1^2 - 6 \times 1 + 2 = -1$$

$$f''(1) = 6 \times 1 - 6 = 0$$

2. Équation de la tangente (T) en M_0 :

L'équation de la tangente au point $M_0(1,0)$ est donnée par :

$$y = f(x_0) + f'(x_0)(x - x_0) = 0 + (-1)(x - 1) = -x + 1$$

3. Analyse de la concavité :

Pour $f(x) = x^3 - 3x^2 + 2x$, on a f''(x) = 6x - 6, qui s'annule en x = 1. En étudiant le signe de f''(x) de part et d'autre de x = 1:

- Pour x < 1, f''(x) < 0, donc f est concave.
- Pour x > 1, f''(x) > 0, donc f est convexe.

Ainsi, f''(x) change de signe en $x_0 = 1$, ce qui signifie que M_0 est un point d'inflexion de la courbe (C_f) . La tangente (T) traverse la courbe en ce point.

PROBLÈME

Soit f la fonction définie par :

$$f(x) = \begin{cases} 2x\sqrt{1-x^2} & \text{si } x > 0\\ -x + \sqrt{x^2 - 2x} & \text{si } x \le 0 \end{cases}$$

- 1) Déterminer D_f , les limites aux bornes et préciser les asymptotes et branches infinies éventuelles.
- 2) Étudier la dérivabilité de f en 0 et 1; interpréter géométriquement les résultats obtenus.
- 3) Calculer f'(x) là où f est définie, puis dresser le tableau de variation de f.
- 4) Tracer la courbe de f.
- 5) Soit h la restriction de f à l'intervalle $]-\infty;0].$
 - (a) Montrer que h admet une bijection réciproque h^{-1} dont on précisera l'ensemble de définition, l'ensemble de dérivabilité et le tableau de variation.
 - (b) Sans utiliser l'expression de $h^{-1}(x)$, calculer $(h^{-1})'(2)$.
 - (c) Déterminer explicitement h^{-1} .
 - (d) Tracer la courbe de h^{-1} dans le même repère que celle de f.

CORRECTION

Soit f la fonction définie par :

$$f(x) = \begin{cases} 2x\sqrt{1 - x^2} & \text{si } x > 0, \\ -x + \sqrt{x^2 - 2x} & \text{si } x \le 0. \end{cases}$$

1) Détermination de l'ensemble de définition D_f

Première partie : $f(x) = 2x\sqrt{1-x^2}$ pour x > 0.

- L'expression $\sqrt{1-x^2}$ est définie si $1-x^2 \ge 0$, soit $-1 \le x \le 1$.
- Comme x > 0, on obtient $0 < x \le 1$.

Deuxième partie : $f(x) = -x + \sqrt{x^2 - 2x}$ pour $x \le 0$.

- L'expression $\sqrt{x^2-2x}$ est définie si $x^2-2x\geq 0$, soit $x(x-2)\geq 0$.
- Résolvons cette inéquation :

$$x(x-2) \ge 0 \iff \begin{cases} x \le 0 & \text{ou } x \ge 2. \end{cases}$$

- Comme cette partie est définie pour $x \leq 0$, on conserve uniquement $x \leq 0$.

Ensemble de définition :

- La première partie est définie sur $0 < x \le 1$.
- La deuxième partie est définie sur $x \leq 0$.
- En réunissant ces deux domaines, on obtient :

$$D_f =]-\infty, 1].$$

Limites aux bornes de D_f

Quand $x \to -\infty$:

Pour $x \to -\infty$, $f(x) = -x + \sqrt{x^2 - 2x}$.

Simplifions:

$$\sqrt{x^2 - 2x} = |x|\sqrt{1 - \frac{2}{x}}$$
 (avec $|x| = -x$ pour $x < 0$).

Ainsi,
$$f(x) = -x + (-x)\sqrt{1 - \frac{2}{x}}$$
.

Quand $x \to -\infty$, $\sqrt{1-\frac{2}{x}} \to 1$, donc:

$$f(x) \sim -x - x = -2x \to +\infty.$$

Quand $x \to 0^-$:

Pour
$$x \le 0$$
, $f(x) = -x + \sqrt{x^2 - 2x}$.

Quand $x \to 0^-$, $x^2 - 2x \to 0$, donc $\sqrt{x^2 - 2x} \to 0$.

Par conséquent :

$$f(x) \to -x \to 0.$$

Quand $x \to 0^+$:

Pour
$$x > 0$$
, $f(x) = 2x\sqrt{1 - x^2}$.

Quand $x \to 0^+$, $\sqrt{1-x^2} \to \sqrt{1} = 1$, donc:

$$f(x) \to 2x \to 0$$
.

Quand $x \to 1^-$:

Pour
$$x > 0$$
, $f(x) = 2x\sqrt{1 - x^2}$.

Quand
$$x \to 1^-, 1 - x^2 \to 0^+, \text{ donc } \sqrt{1 - x^2} \to 0^+.$$

Par conséquent :

$$f(x) = 2x\sqrt{1 - x^2} \to 0.$$

Asymptotes et branches infinies éventuelles

Pour $x \to -\infty$:

On a montré que $f(x) \sim -2x$.

Ainsi, f(x) admet une **branche infinie oblique** d'équation asymptotique :

$$y = -2x$$
 pour $x \to -\infty$.

2) Étude de la dérivabilité de f en 0 et 1:

En x = 0:

- Continuité:
 - À gauche $(x \to 0^-)$, $f(x) = -x + \sqrt{x^2 2x} \to 0$.
 - À droite $(x \to 0^+)$, $f(x) = 2x\sqrt{1-x^2} \to 0$.
 - Comme f(0) = 0, f est continue en x = 0.
- Dérivabilité :
 - À gauche, la dérivée $f'(x) = -1 + \frac{2x-2}{2\sqrt{x^2-2x}}$ diverge vers $-\infty$. À droite, $f'(x) = 2\sqrt{1-x^2} \frac{2x^2}{\sqrt{1-x^2}} \to 2$.

 - Les dérivées à gauche et à droite ne sont pas égales, donc f n'est pas dérivable en x = 0.

En x = 1:

- Continuité:
 - Pour $x \to 1^-$, $f(x) = 2x\sqrt{1-x^2} \to 0$.
 - f(1) n'est pas défini, donc f n'est pas continue en x = 1.
 - Par conséquent, f n'est pas dérivable en x = 1.

Interprétation géométrique :

- En x=0, f est continue mais présente une cassure (coussin), donc pas de tangente unique.
- En x = 1, f n'est pas définie, donc il n'y a pas de continuité ni de tangente.
- 3) Calcul de f'(x) et tableau de variation :

Calcul de f'(x) pour x > 0:

$$f'(x) = \frac{2(1 - 2x^2)}{\sqrt{1 - x^2}}.$$

Calcul de f'(x) pour x < 0:

$$f'(x) = -1 + \frac{x-1}{\sqrt{x^2 - 2x}}.$$

Tableau de variation:

x	$-\infty$	0	1
f'(x)	$+\infty$	0	_
f(x)	Croissante	Dérivabilité et continuité	Décroissante

FIGURE 5 – Courbe de f(x)