

FACULTY OF SCIENCE

Basic Properties of Josephson Junctions

Dieter Koelle

Physikalisches Institut & Center for Quantum Science (CQ) in the Center for Light-Matter Interaction, Sensors & Analytics (LISA+)

Motivation

Josephson junction (JJ) = two weakly coupled superconductors ("weak link")

quantum mechanical coupling of the superconductor wave functions

insights into basic properties of superconductors

e.g. phase-sensitive experiments on the order parameter symmetry of unconventional superconductors, based on inteference effects

\Rightarrow

JJ is the key element in superconducting electronics

large variety of devices for many applications, e.g.

- voltage standards,
- SQUID magnetometers,
- radiation detectors,
- qubits,
- ultrafast processors,
- ...

Outline

I. Macroscopic Wave Function

- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, φ -Junctions

Books:

- A. Barone & G. Paterno, *Physics & Applications of the Josephson Effect*, J. Wiley & Sons (1982)
- K.K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon & Breach (1986)
- T.P. Orlando, K.A. Delin, Foundations of Applied Superconductivity, Addison-Wesley (1991)
- W. Buckel, R. Kleiner, *Superconductivity*, Wiley-VCH, 3rd ed. (2016)

Reviews:

- K.K. Likharev, Superconducting weak links, Rev. Mod. Phys. **51**, 101 (1979)
- A.A. Golubov, M.Yu. Kupriyanov, E. Il'ichev, *The current phase relation in Josephson junctions*, Rev. Mod. Phys.
- **76**, 411 (2004)
- A.I. Buzdin, Proximity effects in superconductor-ferromagnet heterostructures, Rev. Mod. Phys. 77, 935 (2005)

Macroscopic Wave Function

a single (macroscopic) wave function describes the state of all Cooper pairs in a superconductor → highly correlated, coherent many-particle quantum state

superconducting charge carriers: Cooper pairs (mobile electrons

correlated in momentum *k*-space)

$$\Psi = \Psi_0 \cdot e^{i\varphi}$$

phase φ

determined by carrier velocity $oldsymbol{v}_{\mathrm{s}}$ & vector potential $oldsymbol{A}$

(connected to magnetic field via relation for magnetic induction (flux density) $oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$

amplitude
$$\Psi_0 = \sqrt{n_{\rm s}}$$

 $n_{
m s}$: Cooper pair density

$$\hbar \boldsymbol{\nabla} \varphi = m_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}} + q_{\mathrm{s}} \boldsymbol{A}$$

Cooper pair charge $q_{\rm s}=2e$ and mass $m_{\rm s}=2m_e$

Macroscopic Wave Function

a single (macroscopic) wave function describes the state of all Cooper pairs in a superconductor

→ highly correlated, coherent many-particle quantum state

Cooper pairs
highly correlated
motion

supercurrent density:

$$\boldsymbol{j}_{\mathrm{s}} = q_{\mathrm{s}} n_{\mathrm{s}} \boldsymbol{v}_{\mathrm{s}} = \frac{q_{\mathrm{s}} n_{\mathrm{s}}}{m_{\mathrm{s}}} \left(\hbar \boldsymbol{\nabla} \varphi - q_{\mathrm{s}} \boldsymbol{A} \right)$$

Macroscopic Wave Function

with the definition of the gauge-invariant phase gradient

$$oldsymbol{
abla} \phi \equiv oldsymbol{
abla} arphi - rac{q_{
m s}}{\hbar} oldsymbol{A} \quad ext{ or }$$

$$m{
abla}\phi\equivm{
abla}arphi-rac{q_{\mathrm{s}}}{\hbar}m{A}$$
 or $m{
abla}\phi\equivm{
abla}arphi-rac{2\pi}{\Phi_0}m{A}$

with
$$q_s=2e$$
 and magnetic flux quantum $\Phi_0\equiv rac{h}{2e}$

$$m{j_{
m s}} = rac{q_{
m s}\hbar}{m_s}\,n_{
m s}\,m{
abla}\phi$$
 i.e. $m{j_{
m s}}\propto n_{
m s}m{
abla}\phi$

$$oldsymbol{j}_{\mathrm{s}} \propto n_{\mathrm{s}} oldsymbol{
abla} \phi$$

integration of
$$\nabla \phi \equiv \nabla \varphi - \frac{2\pi}{\Phi_0} A$$
 gauge-invariant phase

$$\phi(\mathbf{r}) = \varphi(\mathbf{r}) - \frac{2\pi}{\Phi_0} \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{A} d\mathbf{r}$$

Weakly Coupled Superconductors

consider now two superconductors S₁, S₂ with macroscopic wave functions

$$\Psi_i = \Psi_{0,i} \cdot e^{i\varphi_i} \quad (i = 1, 2)$$

What is the relation between the wave functions Ψ_i (phases φ_i) if the two superconductors are coupled via a weak link?

(e.g. via insulating (I) tunnel barrier in a SIS junction)

finite coupling \iff overlap of the wave functions Ψ_i

supercurrent through weak link (across barrier)

Outline

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, ϕ -Junctions

connect phase of the wave functions to current *I* and voltage *U* across weak link

derivation by solving Schrödinger Eq. for two coupled quantum mechanical systems → Feynman

Alternative: following general arguments by Landau & Lifschitz

B. D. Josephson Nobel prize physics 1973

assume

- barrier in (y,z) plane
- constant current density in (y,z)
 - constant phase gradient and n_s in the S_1 , S_2 electrodes

B.D. Josephson, *Possible new effects in superconductive tunneling*, Phys. Lett. **1**, 251 (1962) R.P. Feynman, R.B. Leighton, M. Sands, *Feynman Lectures on Physics* **3**, Addison-Wesley (1965) L.D. Landau, E.M. Lifschitz, *Lehrbuch der Theoretischen Physik IX*, Akademie-Verlag (1980) W. Buckel, R. Kleiner, *Superconductivity*, Wiley-VCH, 3rd ed. (2016)

for current *I* along *x* and cross section A_J =const

$$j_{\rm s}(x) = I/A_{\rm J} = const$$

i.e., because of
$$~~\pmb{j}_{\rm s} \propto n_{\rm s} \pmb{\nabla} \phi \Longrightarrow ~~n_{\rm s}(x) \cdot \frac{\partial \phi}{\partial x}(x) = const$$

• change in n_s at weak link has to be compensated by change in $\partial \phi l \partial x$

suppressed n_s at barrier \rightarrow dip in $n_s(x)$

peak in ∂∮/∂*x*

 \Rightarrow $\phi(x)$ makes a step

weak link is characterized by a phase difference

$$\delta \equiv \phi_2 - \phi_1 = \varphi_2 - \varphi_1 - \frac{2\pi}{\Phi_0} \int_1^2 A_x dx$$

integral across barrier

analogous to $j_{\rm s} \propto {f \nabla} \phi$ in the bulk superconductor, $j_{\rm s}$ across the weak link is a function of the phase difference

$$\boldsymbol{j}_{\mathrm{s}} = \boldsymbol{j}_{\mathrm{s}}(\delta)$$

Question: what is the functional dependence of j_s (δ)?

- from simple considerations:
- phases ϕ_i in the electrodes are defined modulo 2π (phase change of $2\pi n$ (n: integer) does not change Ψ_i)
 - $j_s = 2\pi$ -periodic function of δ

$$j_{\rm s} = \sum_{n} j_{0n} \sin n\delta + \sum_{n} \tilde{j}_{0n} \cos n\delta \qquad (n = 1, 2, \ldots)$$

- time reversal symmetry: $j_{\rm s}(\delta) = -j_{\rm s}(-\delta)$ (both, currents and phases ($\sim \omega t$) change sign upon time reversal)
 - excludes cosine terms
- rapid convergence of sin-series (e.g. for conventional SIS junctions)

$$j_{\rm s} = j_0 \, \sin \delta$$

 $j_{
m S}=j_0\,\sin\delta\,|\,$ 1. Josephson relation (current-phase relation = CPR)

Question: what is the evolution of δ in time?

take time derivative of gauge-invariant phase difference $\delta = \varphi_2 - \varphi_1 - \frac{2\pi}{\Phi_2} \int_0^z A \cdot dl$

$$\frac{\partial \delta}{\partial t} = \frac{\partial \varphi_2}{\partial t} - \frac{\partial \varphi_1}{\partial t} - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_1^2 \mathbf{A} \cdot d\mathbf{l}$$

with energy-phase relation $-\hbar \frac{\partial \varphi}{\partial t} = \frac{\mu_0 \lambda_{\rm L}^2}{2n} j_{\rm s}^2 + q_{\rm s} \tilde{\phi}$ (derived from Schrödinger equation for $n_{\rm s}$ =const in the electrodes)

with London penetration depth
$$~\lambda_{
m L}=\left(rac{m_{
m s}}{\mu_0q_{
m s}^2n_{
m s}}
ight)^{1/2}$$

= electric field **E**

with London penetration depth $\lambda_{\mathrm{L}} = \left(\frac{m_{\mathrm{s}}}{\mu_{0}q_{\mathrm{s}}^{2}n_{\mathrm{s}}}\right)^{1/2}$ and electrochemical potential $\tilde{\phi}$ related to electric field $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \mathbf{\nabla}\tilde{\phi}$

$$\frac{\partial \delta}{\partial t} = -\frac{1}{\hbar} \left(\frac{\mu_0 \lambda_{\rm L}^2}{2n_{\rm s}} \left[\boldsymbol{j}_{\rm s}^2(2) - \boldsymbol{j}_{\rm s}^2(1) \right] + q_{\rm s} \left[\tilde{\varphi}_2 - \tilde{\varphi}_1 \right] \right) - \frac{2\pi}{\Phi_0} \frac{\partial}{\partial t} \int_1^2 \boldsymbol{A} \cdot d\boldsymbol{l}$$

=0 (current continuity)

$$\frac{\partial \delta}{\partial t} = \frac{2\pi}{\Phi_0} \int_1^2 \left(-\nabla \tilde{\varphi} - \frac{\partial \mathbf{A}}{\partial t} \right) \cdot d\mathbf{l} \quad \Longrightarrow \quad \frac{\partial \delta}{\partial t} \equiv \boxed{\dot{\delta} = \frac{2\pi}{\Phi_0} U} \quad \text{(voltage-phase relation)}$$

voltage across junction

TConsequences of Josephson Relations

1. zero voltage state (static case) $U=0 \Rightarrow \delta=const=\delta_0$

$$U=0 \Rightarrow \delta=const=\delta_0$$

$$\implies j_s = j_0 \sin \delta_0$$

 $\Rightarrow j_s = j_0 \sin \delta_0 \Rightarrow \max$ maximum supercurrent density across junction:

$$\sin \delta_0 = 1 \Rightarrow j_{s,max} = j_0$$
 critical current density

$$ightharpoonup j_0 \ll j_{c,deparing} \implies$$
 "weak link"

 Δ : energy gap in the quasiparticle density of states

2. finite voltage state (dynamic case) $U \neq 0$

for
$$U=const$$
 integrate 2nd Josephson Eq. $\delta(t)=\delta_0+2\pi\frac{U}{\Phi_0}\,t$

insert into 1st Josephson Eq.
$$j_{\rm s}=j_0\sin\{\delta_0+2\pi f_{\rm J}t\}$$

Cooper pair current across junction oscillating with the Josephson frequency

$$f_{\rm J} \equiv \frac{U}{\Phi_0} \approx 483.6 \, \frac{\rm GHz}{\rm mV} \cdot U$$

quantum interference of the wave functions across the barrier

Outline

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, ϕ -Junctions

field **H** applied in the JJ plane (rectangular barrier)

magnetic flux density **B** penetrates into electrodes

→ effective magnetic thickness:

$$d_{\rm eff} \approx d_{\rm b} + 2\lambda_{\rm L}$$

for identical electrode materials with thickness $d_{\rm e}\gtrsim 2\lambda_{\rm L}$

for different electrode materials with thickness $d_{\mathrm{e,i}}$:

$$d_{\text{eff}} \equiv d_{\text{b}} + \lambda_{\text{L},1} \tanh \frac{d_{\text{e},1}}{\lambda_{\text{L},1}} + \lambda_{\text{L},2} \tanh \frac{d_{\text{e},2}}{\lambda_{\text{L},2}}$$

relation between B and δ ?

$$egin{aligned} m{B} &= m{
abla} imes m{A} \ \delta &= arphi_2 - arphi_1 - rac{2\pi}{\Phi_0} \int_1^2 m{A} \cdot \mathrm{d}m{l} \ \mathrm{from} \, m{j}_\mathrm{s} &= rac{q_\mathrm{s} n_\mathrm{s}}{m_\mathrm{s}} \left(\hbar m{
abla} arphi - q_\mathrm{s} m{A}
ight) \ m{
abla} arphi &= rac{2\pi}{\Phi_0} \left(\mu_0 \lambda_\mathrm{L}^2 m{j}_\mathrm{s} + m{A}
ight) \end{aligned}$$

integrate $\nabla \varphi$ along dotted lines in the two electrodes

path 2
$$ightarrow$$
1: $\varphi(1)-\varphi(2)=rac{2\pi}{\Phi_0}\mu_0\lambda_{\mathrm{L}}^2\int_2^1 m{j}_{\mathrm{s}}\,\mathrm{d}m{l}+rac{2\pi}{\Phi_0}\int_2^1 m{A}\,\mathrm{d}m{l}$

path 1´+2´:
$$\varphi(2') - \varphi(1') = \frac{2\pi}{\Phi_0} \mu_0 \lambda_{\mathrm{L}}^2 \int_{1'}^{2'} \boldsymbol{j}_{\mathrm{s}} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_0} \int_{1'}^{2'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l}$$

sum up both Eqs. and add on both sides integrals across barrier

$$\frac{2\pi}{\Phi_0} \int_1^{1'} \boldsymbol{A} \, \mathrm{d}\boldsymbol{l} + \frac{2\pi}{\Phi_0} \int_{2'}^2 \boldsymbol{A} \, \mathrm{d}\boldsymbol{l}$$

flux through integration path

$$\frac{\delta(x + \mathrm{d}x)}{\varphi(2') - \varphi(2) - \frac{2\pi}{\Phi_0} \int_2^{2'} \mathbf{A} \, \mathrm{d}\mathbf{l} - \left(\varphi(1') - \varphi(1) - \frac{2\pi}{\Phi_0} \int_1^{1'} \mathbf{A} \, \mathrm{d}\mathbf{l}\right) = \frac{2\pi}{\Phi_0} \oint \mathbf{A} \, \mathrm{d}\mathbf{l} + \frac{2\pi}{\Phi_0} \mu_0 \lambda_{\mathrm{L}}^2 \left(\int_2^1 \mathbf{j}_{\mathrm{s}} \, \mathrm{d}\mathbf{l} + \int_{1'}^{2'} \mathbf{j}_{\mathrm{s}} \, \mathrm{d}\mathbf{l}\right)$$

 \Longrightarrow magnetic field induces a gradient of δ along the JJ

$$\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B d_{\text{eff}}$$

for thick enough electrodes in the Meissner state

General case: applied field **H** can be screened by supercurrents flowing across the JJ

with Ampere's law $oldsymbol{
abla} imes oldsymbol{B}=\mu_0oldsymbol{j}$

for our geometry $m{B} = B_y \hat{m{e}}_y$: $\frac{\partial B_y(x)}{\partial x} = \mu_0 j_z(x)$

combined with
$$\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B_y d_{\text{eff}} \implies \frac{\partial^2 \delta}{\partial x^2} = \frac{2\pi}{\Phi_0} d_{\text{eff}} \frac{\partial B_y}{\partial x} = \frac{1}{\lambda_1^2} \frac{j_z(x)}{j_0} = \frac{1}{\lambda_1^2} \sin \delta(x)$$

with the Josephson length $\lambda_{
m J}\equiv\left(rac{\Phi_0}{2\pi\mu_0 d_{
m eff}\,i_0}
ight)^{1/2}$

Ferrel-Prange Eq.

for small applied fields:
$$\frac{\partial^2 \delta}{\partial x^2} = \frac{1}{\lambda_{\rm J}^2} \delta(x) \qquad \Longrightarrow \delta(x) = \delta(0) e^{-\frac{x}{\lambda_{\rm J}}} \\ \left(\frac{\partial \delta}{\partial x} \ll \frac{1}{\lambda_{\rm J}}\right) \qquad \Longrightarrow B_y(x) = B_y(0) e^{-\frac{x}{\lambda_{\rm J}}}$$

 λ_J is the characteristic length over which a JJ can screen external magnetic fields (similar to λ_L in a bulk superconductor)

Short JJ in a Magnetic Field

"short junction" limit:

size of JJ along direction ⊥*H*

$$a \lesssim 4\lambda_{
m J}$$

magnetic field penetrates JJ homogeneously along the barrier

B(x) = const

magnetic flux in the JJ:

$$\Phi_{\rm J} = B \, d_{\rm eff} \, a$$

integration of
$$\frac{\partial \delta}{\partial x} = \frac{2\pi}{\Phi_0} B d_{\rm eff}$$
 along x \Longrightarrow $\delta(x) = \delta_0 + \frac{2\pi}{\Phi_0} B d_{\rm eff} x$

 $\delta(x)$ grows linearly along barrier (slope determined by *B*)

Short JJ in a Magnetic Field

$$\delta(x) = \delta_0 + \frac{2\pi}{\Phi_0} B d_{\text{eff}} x$$
 inserted into 1st Josephson relation:

$$j_{\rm s}(x) = j_0 \sin \left\{ \delta(0) + \frac{2\pi}{\Phi_0} B d_{\rm eff} \cdot x \right\}$$

$$\Phi_{\rm J}=0$$

$$\Phi_J = \Phi_0$$

$$\Phi_{\rm J} = \frac{1}{2}\Phi_0$$

$$\Phi_{\rm J} = \frac{3}{2}\Phi_0$$

Short JJ in a Magnetic Field

total supercurrent I_s through the JJ \rightarrow integrate $j_s(x)$ over JJ area $A_J = ab$

$$I_{\rm s}(\Phi_{\rm J}, \delta_0) = \int_0^b \mathrm{d}y \int_0^a \mathrm{d}x j_0 \sin \delta(x) = -j_0 \cdot b \cdot \left. \frac{\cos \left(\delta_0 + \frac{2\pi}{\Phi_0} B d_{\rm eff} x \right)}{\left(\frac{2\pi}{\Phi_0} B d_{\rm eff} \right)} \right|_0^a$$

$$\Rightarrow \sin(\delta_0 + \pi \frac{\Phi_J}{\Phi_0}) \pm 1$$

(analogous to diffraction at single slit in optics)

Outline

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, ϕ -Junctions

resistively and capacitively shunted junction (RCSJ)

- simple model to describe dynamics of JJs
 - → current voltage characteristics (IVC)

Josephson current

- $I_{\rm s} = I_0 \sin \delta$
- displacement current across junction capacitance C
- $I_{\rm d} = C\dot{U}$

- dissipative (quasiparticle) current ohmic current through shunt resistor *R*
- $I_{\rm qp} = U/R$

- current noise source thermal noise of shunt resistor R at temperature T, with spectral density $S_I(f) = \frac{4k_BT}{R}$
- $I_{\rm N}(t)$

W.C. Stewart, *Current-voltage characteristics of Josephson junctions*, Appl. Phys. Lett. **12**, 277 (1968) D.E. McCumber, *Effect of ac impedance on dc voltage-current characteristics of Josephson junctions*, J. Appl. Phys. **39**, 3113 (1968)

from Kirchoff's law:

$$\oint_U I + I_N(t) = I_0 \sin \delta + \frac{U}{R} + C\dot{U}$$

replace $U
ightarrow \dot{\delta}$ via 2nd Josephson relation $\dot{\delta} = \frac{2\pi}{\Phi_0} U$

Eq. of motion for δ :

$$I + I_N(t) = I_0 \sin \delta + \frac{\Phi_0}{2\pi R} \dot{\delta} + \frac{\Phi_0 C}{2\pi} \ddot{\delta}$$

finite voltage contains high-frequency Josephson oscillations \rightarrow experimentally detected voltage: $V \equiv \langle U \rangle = \frac{1}{t-1} \int_0^{t av} \mathrm{d}t \, U(t)$

$$\equiv \langle U \rangle = \frac{1}{t_{\rm av}} \int_0^{t_{\rm av}} \mathrm{d}t \, U(t)$$

solution of Eq. of motion (numerical simulations)

$$\delta(t)\Rightarrow\dot{\delta}(t)\propto U(t)\Rightarrow V\;\; {
m for \ given \ bias \ current \ Is}$$

current-voltage characteristics (IVC)

rearrange Eq. of motion for δ (for simplicity we set T=0, i.e. $I_N=0$)

$$\frac{\Phi_0}{2\pi}C\ddot{\delta} + \frac{\Phi_0}{2\pi}\frac{1}{R}\dot{\delta} = -I_0\sin\delta + I \equiv -\frac{2\pi}{\Phi_0}\frac{\partial U_{\rm J}}{\partial \delta}$$

with the tilted washboard potential $U_{\rm J} \equiv E_{\rm J} \{1 - \cos \delta - i \delta\}$

$$U_{\rm J} \equiv E_{\rm J} \{ 1 - \cos \delta - i \, \delta \}$$

Josephson coupling energy
$$E_{\rm J}\equiv \frac{I_0\Phi_0}{2\pi}$$
 normalized bias current $\,i\equiv\frac{I}{I_0}$

analogous system: point-like particle in the tilted washboard potential

$$m\ddot{x} + \xi \dot{x} = -\frac{\partial \left\{ W(x) - F_{d}x \right\}}{\partial x}$$

C capacitance mass mon coeff. ξ \longleftrightarrow 1/R conductance force $F_{\rm d}$ $\dot{\delta} \frac{\Phi_0}{2\pi} = U$ voltage friction coeff. ξ

static case:

"particle" is trapped in potential minimum $\langle \dot{\delta} \rangle \propto V = 0$

dynamic case:

"particle" rolls down the tilted potential

$$\langle \dot{\delta} \rangle \propto V \neq 0$$

potential minima disappear at $i=1 \Leftrightarrow I=I_0$ i.e. when critical current I_0 is reached

for large tilt
$$F_{\rm d}\gg \frac{\partial W(x)}{\partial x}\Longrightarrow \dot{x}=\frac{F_{\rm d}}{\xi}$$
 i.e. for $I\gg I_0\Longrightarrow V=I\,R$

Effect of Damping in the RCSJ Model

normalized Eq. of motion

$$\beta_C \ddot{\delta} + \dot{\delta} + \sin \delta = i + i_N$$

with Stewart-McCumber parameter
$$eta_C \equiv rac{2\pi}{\Phi_0} I_0 R^2 C$$

 $i\equivrac{I}{I_{
m O}}$, $i_{
m N}\equivrac{I_{
m N}}{I_{
m O}}$

characteristic voltage $(I_0R \text{ product})V_c \equiv I_0R$ characteristic frequency

$$\omega_{\rm c} \equiv \frac{2\pi}{\Phi_0} I_0 R$$

normalized time $\tau \equiv t\omega_c$

decrasing / from />I₀:

strong damping: friction term δ dominates,

i.e. $\beta_{\rm C}\ll 1$

particle gets retrapped at $=I_0$

non-hysteretic IVC

weak damping: inertial term δ dominates, i.e. $\beta_{\rm C}\gg 1$

particle gets retrapped at $=I_r < I_0$

hysteretic IVC

Microwave Absorption: Shapiro Steps

apply alternating current in addition to dc current $I_{\mathrm{tot}} = I + I_{\mathrm{ac}} \sin \omega_{\mathrm{ac}} t$

regimes of constant voltage V_n in the IVC = Shapiro steps

Microwave Absorption: Shapiro Steps

illustrative interpretation with particle in tilted washboard potential

motion of the "particle" synchronizes with the external drive

change of δ by $2\pi~n~~(n=1,2,\ldots)$ per excitation period $T_{\rm ac} = 1/f_{\rm ac}$

$$f_{\rm ac} = 2\pi\omega_{\rm ac}$$

$$\Longrightarrow$$
 velocity $\dot{\delta}_n = rac{2\pi n}{T_{
m ac}} = 2\pi n f_{
m ac}$

stable within some intervall of applied dc current I

$$\implies$$
 steps of constant voltage V_n on IVC at

steps of constant voltage
$$V_{
m n}$$
 on IVC at $V_n=rac{\Phi_0}{2\pi}\dot{\delta}_n=n\Phi_0f_{
m ac}$

$$\Delta V = V_{n+1} - V_n = \Phi_0 f_{\rm ac} \approx \frac{1 \,\mathrm{mV}}{483.6 \,\mathrm{GHz}} \cdot f_{\rm ac}$$

Josephson Normal: Voltage Standard

reproducible voltages with relative uncertainty < 1 : 10¹⁰, corresponds to 1 nV at 10 V)

Outline

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, φ -Junctions

Fluctuations in Josephson Junctions

Thermal noise

What is the effect of finite temperature T?

for a JJ described within the RCSJ model:

$$\frac{\Phi_0}{2\pi}C\ddot{\delta} + \frac{\Phi_0}{2\pi}\frac{1}{R}\dot{\delta} = -I_0\sin\delta + I + I_N \equiv -\frac{2\pi}{\Phi_0}\frac{\partial U_J}{\partial \delta}$$

noise current acts as a stochastic force → Langevin Eq.

induces fluctuating tilt of the washboard potential

$$U_{\rm J} \equiv E_{\rm J} \{1 - \cos \delta - (i + i_{\rm N}) \delta\} \qquad i_{\rm N} \equiv I_{\rm N}/I_0$$

Fluctuations in Josephson Junctions

for $I \lesssim I_0$ fluctuations can lead to $I + I_{\rm N}(t) > I_0$ voltage pulses $\it U(t)$ with $\it V>0$

thermal smearing (noise rounding) of IVCs

quantified by thermal noise parameter $\Gamma \equiv \frac{k_{\mathrm{B}}T}{E_{\mathrm{J}}}$

 $E_{\rm J}$: Josephson coupling energy = amplitude of washboard potential

Fluctuations in Josephson Junctions

$$\Gamma = \frac{2\pi k_{\rm B}T}{I_0\Phi_0} = \frac{2\pi k_{\rm B}T/\Phi_0}{I_0} = \frac{I_{\rm th}}{I_0}$$
 thermal fluctuations "destroy" Josephson coupling

regime of small thermal fluctuations:

$$\Gamma \ll 1$$

corresponds to $I_0\gg I_{
m th}=rac{2\pi}{\Phi_0}k_{
m B}T\propto T$

for T= 4.2 K: $I_{th} \sim 0.18 \mu A$ for T = 77 K: $I_{th} \sim 2.3 \mu A$

significant suppression of "measurable I_c already at Γ =10⁻²!

Fluctuations in Josephson Junctions

Low-frequency excess noise: 1/f noise

description of tunnel junctions by parameter fluctuations rather than Langevin force

origin:

fluctuations in I_0 due to trapping and release of electrons at defects in the tunnel barrier (change barrier height, and hence I_0 , (also R))

single trap:

random switching of I_0 between two values with difference δI_0 and effective lifetime τ

random telegraph signal (RTS)

R. Gross, B. Mayer, Physica C **180**, 235 (1991)

V(t) of grain boundary junction at $I=1.2 I_0$

with Lorentzian spectral density

$$S_I(f) = \frac{(\delta I_0)^2 \cdot \tau}{1 + (2\pi\tau \cdot f)^2}$$

with $\tau^{-1} \equiv \tau_1^{-1} + \tau_2^{-1}$ for mean life times $\tau_1 = \tau_2$ in the two states

C.T. Rogers & R.A. Burman, Composition of 1/f noise in metalinsulator-metal tunnel junctions, Phys. Rev. Lett. 53, 1272 (1984)

Fluctuations in Josephson Junctions

for thermally activated trapping processes

$$\tau = \tau_0 \exp\left(\frac{E}{k_{\rm B}T}\right)$$

with τ_0 =const, and activation energy E

e.g. τ_0 =0.1 s, and *E*=1.8 meV for Nb-AlO_x-Nb tunnel JJs

B. Savo, F.C. Wellstood, J. Clarke, Appl. Phys. Lett. **50**, 1757 (1987)

superposition of several (or many) traps

for given T, only traps contribute with

$$\tilde{E} - k_{\rm B}T \lesssim E \lesssim \tilde{E} + k_{\rm B}T$$

for broad distribution D(E) with respect to $k_{\rm B}T$: take $D(\tilde{E})$ out of the integral

Fluctuations in Josephson Junctions

superposition of several (or many) traps

the superposition of only few traps already yields $\,S(f) \propto rac{1}{f}\,$

Outline

- I. Macroscopic Wave Function
- II. Josephson Relations & Consequences
- III. Josephson Junction in a Magnetic Field
- IV. Resistively & Capacitively Shunted Junction (RCSJ) model
- V. Fluctuations in Josephson Junctions
- VI. Classification of JJs Ground States: 0- π -, φ -Junctions

Types of Josephson Junctions

insulator (I), normal conductor (N), ferromagnet (F)

grain boundary junction (cuprates)

intrinsic Josephson junctions

The **Josephson energy** $U_J(\delta)$ can be derived for any CPR, i.e. $I_s(\delta)$: Increase current I_s in time $t \to change of <math>\delta(t) \to finite voltage U$

$$U_{\mathrm{J}}(\delta) = \int_{t_{0}}^{t} I_{\mathrm{s}}(\delta(\tilde{t})) U_{\mathrm{d}} d\tilde{t} = \frac{\Phi_{0}}{2\pi} \int_{t_{0}}^{t} I_{\mathrm{s}}(\tilde{\delta}(\tilde{t})) \underline{\dot{\delta}(\tilde{t})} d\tilde{t} = \frac{\Phi_{0}}{2\pi} \int_{\delta_{0}}^{\delta} I_{\mathrm{s}}(\tilde{\delta}) d\tilde{\delta}$$
$$= \frac{\Phi_{0}}{2\pi} \dot{\delta}(\tilde{t})$$
$$= d\tilde{\delta}$$

for
$$I_{\rm S}=I_0\sin\delta$$
 \Longrightarrow $U_{\rm J}(\delta)=E_{\rm J}(1-\cos\delta)$ $=\frac{I_0\Phi_0}{2\pi}$

CPR

Josephson energy

CPR: $I_{\rm s} = I_0 \sin(\delta)$

$$\rightarrow$$
 ground state: $\delta=0$

CPR: $I_{\rm s} = I_0 \sin(\delta - \pi)$ \rightarrow ground state: $\delta = \pi$

$$\rightarrow$$
 ground state: $\delta = \pi$

Experiment: V.V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001)

CPR: $I_{\rm s} = I_0 \sin(\delta - \varphi_0)$ (with $0 < \varphi_0 < \pi$)

$$ightarrow$$
 ground state: $\delta=\varphi_0$

Experiment: D.B. Szombati et al., Nat. Phys. 12, 568 (2016)

CPR: $I_{\rm s} = I_{0,1} \sin(\delta) + I_{0,2} \sin(2\delta)$

$$ightarrow$$
 ground state: $\delta=\pm\varphi$

(with
$$0<\varphi<\pi$$
 and $\varphi=\arccos(-\frac{I_{0,1}}{2I_{0,2}})$ for $-I_{0,2}>\frac{I_{0,1}}{2}$)

Theory: Yu.S. Barash *et al.*, Phys. Rev. B 52, 665 (1995) Y. Tanaka , S. Kashiwaya, Phys. Rev. B 53, R11957 (1996) A. Buzdin, A.E. Koshelev, Phys. Rev. B 67, 220504(R) (2003)

φ*

load

Self-biased RSFQ flip-flop:

integrated π -rings based on YBCO-Nb s-/d-wave JJs

T. Ortlepp et al., Science 312, 1495 (2006)

Phase qubit with SFS π -JJ: based on Nb-CuNi-Nb JJs

Feofanov et al., Nature Physics 6, 595 (2010)

φ-JJ: Tunable Bistable System

based on periodic $0-\pi$ JJs

A. Buzdin, A.E. Koshelev, PRB **67** (2003)

simplest case: **0-**π **JJ**

E. Goldobin et al., Phys. Rev. Lett. 107, 227001 (2011)

$$u_{\rm J} \equiv \frac{U_{\rm J}(\delta)}{E_{\rm J}} = 1 - \cos(\delta) + \frac{\Gamma_0}{4} \left\{ 1 - \cos(2\delta) \right\} + \Gamma_h h \sin(\delta)$$

 Γ_h : asymmetry parameter

$$\Gamma_0 \equiv \frac{2I_{0,2}}{I_{0,1}}$$

bistabe/two-level system for $-\Gamma_0$ >1

φ-JJ: Tunable Bistable System

simplest case: $\mathbf{0}$ - π \mathbf{JJ}

E. Goldobin *et al.*, Phys. Rev. Lett. **107**, 227001 (2011)

$$u_{\rm J} \equiv \frac{U_{\rm J}(\delta)}{E_{\rm J}} = 1 - \cos(\delta) + \frac{\Gamma_0}{4} \left\{ 1 - \cos(2\delta) \right\} + \Gamma_h h \sin(\delta)$$

 Γ_h : asymmetry parameter

$$\Gamma_0 \equiv \frac{2I_{0,2}}{I_{0,1}}$$

tunable by magnetic field

lifts degeneracy of double-well potential

φ-JJ: Two Critical Currents

experimental realization: Nb-AlO_x-Cu_{0.4}Ni_{0.6}-Nb SIFS JJ with step in the F layer

H. Sickinger *et al.*, Phys. Rev. Lett. **109**, 107002 (201

φ-JJ Application: φ bit (memory cell)

Summary

Macroscopic Wave Function → coherent state of Cooper pairs

Weak coupling of two condensates

- → Josephson Relations & Consequences (static & dynamic cases)
 - Static case:

Josephson Junction in a Magnetic Field $\rightarrow I_c(H)$ Fraunhofer pattern for short JJs

- Dynamic case:

Resistively & Capacitively Shunted Junction (RCSJ) model

I-V-characteristics (particle in the tilted washboard potential)

Fluctuations in Josephson Junctions \rightarrow thermal noise & I_c fluctuations important for device applications, e.g. SQUIDS

Classification of JJs – Ground States: 0- π -, φ -Junctions

→ new applications: phase batteries, memory devices, qubits,...