Q1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

A) Data type of columns in a table

Ans:

Customers:

Geolocation:

Order_reviews:

Payments:

Prooducts:

Sellers:

Order items:

Orders:

• B) Time period for which the data is given

```
Ans: "select min(order_purchase_timestamp) as first_order_date,max(order_purchase_timestamp) as last_order_date from `scaler_project.orders`"
```

Quer	y results				
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	first_order_date		last_order_date	,	
1	2016-09-04 21:15:19 UTC		2018-10-17 17:3	0:18 UTC	

• C) Cities and States of customers ordered during the given period

Ans: "select distinct customer_state, customer_city

from `scaler_project.orders` o inner join `scaler_project.customers` c
on o.customer_id=c.customer_id"

Row	customer_state	customer_city
1	RJ	rio de janeiro
2	RS	sao leopoldo
3	SP	general salgado
4	DF	brasilia
5	PR	paranavai
6	MT	cuiaba
7	MA	sao luis
8	AL	maceio
9	SP	hortolandia
10	MT	varzea grande

Q2. In-depth Exploration:

• A) Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
Ans: "select extract(year from order_purchase_timestamp) as year,extract(month from order_purchase_timestamp) as month,count(order_id) as no_of_orders
```

from `scaler_project.orders` group by 1,2 order by 1,2 "

Row	year //	month	no_of_orders
1	2016	9	4
2	2016	10	324
3	2016	12	1
4	2017	1	800
5	2017	2	1780
6	2017	3	2682
7	2017	4	2404
8	2017	5	3700
9	2017	6	3245
10	2017	7	4026

Insight: There is a gradual increase in the sales from the month of January 2017 to august 2018 with a peak in November 2017.

• B) What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
Ans: "with time_data as (select *,case when extract(hour from order_purchase_timestamp) between 0 and 6 then "Dwan" when extract(hour from order_purchase_timestamp) between 7 and 12 then "Morning" when extract(hour from order_purchase_timestamp) between 13 and 18 then "Afternoon" else "Night" end as time_division from `scaler_project.orders`)
```

```
select time division, count(order id) from time data group by 1"
```

Row	time_division	1.	f0_	1.
1	Morning			27733
2	Dwan			5242
3	Afternoon			38135
4	Night			28331

Q3. Evolution of E-commerce orders in the Brazil region:

• A) Get month on month orders by states

```
Ans: "select customer_state, extract(year from order_purchase_timestamp) as year, extract(month from order_purchase_timestamp) as month, count(order_id) as no_of_orders
```

from `scaler_project.customers` b left join `scaler_project.orders` c on b.customer_id=c.customer_id group by 1,2,3 order by 1,2,3"

Row	customer_state	year //	month //	no_of_orders
1	AC	2017	1	2
2	AC	2017	2	3
3	AC	2017	3	2
4	AC	2017	4	5
5	AC	2017	5	8
6	AC	2017	6	4
7	AC	2017	7	5
8	AC	2017	8	4
9	AC	2017	9	5
10	AC	2017	10	6

• B) Distribution of customers across the states in Brazil

Ans: "select customer_state,count(customer_unique_id) as no_of_customers from `scaler_project.customers` group by 1"

Row	customer_state	no_of_customer
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747

Q4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

• A) Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
Ans: "with cost_each_order as (select order_id, sum(payment_value) as cost_of_order from `scaler_project.payments` group by 1),

total_cost_year as (select extract(year from order_purchase_timestamp) as year, sum(cost_of_order) as total_cost
from `scaler_project.orders` a inner join cost_each_order b
  on a.order_id=b.order_id
  where extract(year from order_purchase_timestamp) in (2017,2018) and extract(month from order_purchase_timestamp) between 1 and 8
  group by 1)
  select * ,round(((total_cost-(lag(total_cost) over(order by year)))/lag(total_cost) over(order by year))
  from total_cost_year order by year"
```

Row	year	11	total_cost //	f0_
1		2017	3669022.11	null
2		2018	8694733.83	136.98

• B) Mean & Sum of price and freight value by customer state

```
Ans: "select customer_state, sum(price) as price_sum, sum(freight_value) as freight_sum, avg(price) as price_avg, avg(freight_value) as freight_avg

from `scaler_project.order_items` a inner join `scaler_project.orders` b on a.order_id=b.order_id
  inner join `scaler_project.customers` c on b.customer_id=c.customer_id
  group by 1"
```


Results per page: 50 ▼ 1 - 27 of 27

Q5. Analysis on sales, freight and delivery time

A) Calculate days between purchasing, delivering and estimated delivery

```
Ans: "select
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
diff_purchase_delivered,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff_delivered_estimate,
date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as
diff_purchase_estimate
from `scaler_project.orders` order by 3 desc"
```


Results per page: 50 ▼ 1 - 50 of 99441

 B) Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

```
time_to_delivery = order_delivered_customer_date-order_purchase_timestamp

diff_estimated_delivery = order_estimated_delivery_date-
order_delivered_customer_date
```

```
Ans: "select
date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,

date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff_estimated_delivery
from `scaler_project.orders`"
```


 C) Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
Ans: "with orders_days_calc as (select
*,date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,

date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff_estimated_delivery
from `scaler_project.orders`)

select customer_state,avg(time_to_delivery) as avg_time_to_delivery,
avg(diff_estimated_delivery) as
avg_diff_estimated_delivery,avg(freight_value) as avg_freight_value
from `scaler_project.customers` a left join orders_days_calc b
on a.customer_id= b.customer_id left join `scaler_project.order_items` c
on c.order id=b.order id group by 1"
```


D) Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

```
Ans: "with answer as (
with orders_days_calc as (select
*,date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff_estimated_delivery
from `scaler_project.orders`)

select customer_state,avg(time_to_delivery) as avg_time_to_delivery,
avg(diff_estimated_delivery) as
avg_diff_estimated_delivery,avg(freight_value) as avg_freight_value
from `scaler_project.customers` a left join orders_days_calc b
on a.customer_id= b.customer_id left join `scaler_project.order_items` c
on c.order_id=b.order_id group by 1)

select customer_state,avg_freight_value
from answer order by 2 desc limit 5"
```

Row	customer_state	11	avg_freight_valu
1	RR		42.9844230
2	РВ		42.7238039
3	RO		41.0697122
4	AC		40.0733695
5	PI		39.1479704

Insights:

Above pic shows the top 5 states in avg_frieght_value that is these 5 states are have high freight values which takes more cost for delivery compared to others.

Top 5 states with highest/lowest average time to delivery

```
Ans: "with answer as (
with orders days calc as (select
*,date diff(order delivered customer date,order purchase timestamp,day) as
time to delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff estimated delivery
from `scaler_project.orders`)
select customer state,round(avg(time to delivery),2) as
avg_time_to_delivery,
round(avg(diff_estimated_delivery),2) as
avg_diff_estimated_delivery,avg(freight_value) as avg_freight_value
from `scaler_project.customers` a left join orders_days_calc b
on a.customer_id= b.customer_id left join `scaler_project.order_items` c
on c.order_id=b.order_id group by 1)
select customer_state,avg_time_to_delivery
from answer order by 2 limit 5"
```

Row	customer_state	avg_time_to_deli
1	SP	8.26
2	PR	11.48
3	MG	11.52
4	DF	12.5
5	SC	14.52

Insights:

Above pic shows the lowest avg_time_delivery 5 states which means customers in this state getting orders delivered fast.

Top 5 states where delivery is really fast/ not so fast compared to estimated date

```
Ans: "with answer as (
with orders_days_calc as (select
*,date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)
as diff_estimated_delivery
from `scaler_project.orders`)
```

```
select customer_state,round(avg(time_to_delivery),2) as
avg_time_to_delivery,
round(avg(diff_estimated_delivery),2) as
avg_diff_estimated_delivery,avg(freight_value) as avg_freight_value
from `scaler_project.customers` a left join orders_days_calc b
on a.customer_id= b.customer_id left join `scaler_project.order_items` c
on c.order_id=b.order_id group by 1)
select customer_state,avg_diff_estimated_delivery
from answer order by 2 limit 5"
```

Row	customer_state	avg_diff_estimat
1	AL	7.98
2	MA	9.11
3	SE	9.17
4	ES	9.77
5	BA	10.12

Insights:

States in above pic are the top 5 states which are fast in delivery

Q6. Payment type analysis:

• A) Month over Month count of orders for different payment types

```
Ans: "select extract(year from order_purchase_timestamp) as year,

extract(month from order_purchase_timestamp) as month,

payment_type,count(a.order_id) as no_of_orders

from `scaler_project.payments` a inner join `scaler_project.orders` b

on a.order_id=b.order_id group by 1,2,3 order by 1,2,3"
```

Row	year //	month //	payment_type	no_of_orders /
1	2016	9	credit_card	3
2	2016	10	UPI	63
3	2016	10	credit_card	254
4	2016	10	debit_card	2
5	2016	10	voucher	23
6	2016	12	credit_card	1
7	2017	1	UPI	197
8	2017	1	credit_card	583
9	2017	1	debit_card	9
10	2017	1	voucher	61

• B) Count of orders based on the no. of payment installments

Ans: "select payment_installments,count(order_id) as no_of_orders from `scaler_project.payments` group by 1"

	_	
Row	payment_installr	no_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

Insights:

• 1)Customers who have chosen more than 1 instalment method used only credit card for payment.

Query: "select distinct payment_type from `scaler_project.payments` where payment_installments>1"

• 2)Max number of products were sold from the sellers in "SP" state(71%).

Query: "select seller_state, (products_count/sum(products_count) over())*100
as pct_sold from

(select seller_state,count(a.seller_id) as no_of_sellers,sum(no_of_pro) as
products_count from

(select seller_id,count(product_id) as no_of_pro,sum(price) as total_cost from `scaler_project.order_items`

group by 1) a inner join `scaler_project.sellers` b on a.seller_id=b.seller_id group by 1) order by 2 desc"

Row	seller_state ▼	pct_sold ▼
1	SP	71.32001775410
2	MG	7.835774522858
3	PR	7.697292498890
4	RJ	4.276964047936
5	SC	3.617399023524
6	RS	1.952063914780
7	DF	0.798047048379
8	BA	0.570794496227
9	GO	0.461606746560
10	PE	0.397691966267

• 3) Product category with highest number of sales was "Bed table bath" (10%).

Query: "select *, (no_of_products/sum(no_of_products) over())*100 as pct_sales, (cost/sum(cost) over())*100 as pct_income from (

select product_category,count(c.product_id) as no_of_products,sum(price)
as cost

from `scaler_project.order_items` c inner join `scaler_project.products` d
on c.product_id=d.product_id where product_category is not null group by
1) order by 4 desc"

Row	product_category ▼	no_of_products ▼	cost ▼	pct_sales ▼	pct_income ▼
1	bed table bath	11115	1036988.680000	10.00927535187	7.731734992939
2	HEALTH BEAUTY	9670	1258681.339999	8.7080245301539	9.384664219705
3	sport leisure	8641	988048.9700000	7.781389861950	7.366842997829
4	Furniture Decoration	8334	729762.4900000	7.504930344808	5.441072105500
5	computer accessories	7827	911954.3200000	7.048366907705	6.799485147615
6	housewares	6964	632248.6600000	6.271218493070	4.714013935774
7	Watches present	5991	1205005.679999	5.395012922456	8.984461221645
8	telephony	4545	323667.5299999	4.092861581132	2.413248684429
9	Garden tools	4347	485256.4600000	3.914558700370	3.618047549305
10	automotive	4235	592720.1100000	3.813700505191	4.419291072208

• 4)"Health beauty"(9.4%) and "Watches present"(9%) product categories were the major contributors in income generation.

```
Query: "select *, (no_of_products/sum(no_of_products) over())*100 as pct_sales, (cost/sum(cost) over())*100 as pct_income from (

select product_category, count(c.product_id) as no_of_products, sum(price) as cost

from `scaler_project.order_items` c inner join `scaler_project.products` d on c.product_id=d.product_id where product_category is not null group by 1) order by 5 desc"
```

Row	product_category ▼	no_of_products ▼	cost ▼	pct_sales ▼	pct_income ▼	
1	HEALTH BEAUTY	9670	1258681.339999	8.7080245301539	9.384664219705	
2	Watches present	5991	1205005.679999	5.395012922456	8.984461221645	
3	bed table bath	11115	1036988.680000	10.00927535187	7.731734992939	
4	sport leisure	8641	988048.9700000	7.781389861950	7.366842997829	
5	computer accessories	7827	911954.3200000	7.048366907705	6.799485147615	
6	Furniture Decoration	8334	729762.4900000	7.504930344808	5.441072105500	
7	Cool Stuff	3796	635290.8500000	3.418372400875	4.736696350088	
8	housewares	6964	632248.6600000	6.271218493070	4.714013935774	
9	automotive	4235	592720.1100000	3.813700505191	4.419291072208	
10	Garden tools	4347	485256.4600000	3.914558700370	3.618047549305	

• 5) More than three quarters of the orders got review score of 4(19.3%) and 5(57.8%)

Query: "select review_score, (no_of_orders/(sum(no_of_orders) over()))*100
from (

select review_score,count(order_id) as no_of_orders from
`scaler_project.order_reviews` group by 1) order by 1 desc"

Row	review_score	▼ //	f0_ ▼
1		5	57.77634443279
2		4	19.29170362009
3		3	8.242965411593
4		2	3.175642989599
5		1	11.51334354591

Recommendations:

- Based on insight-1 credit card was the only method used for payments with more than 1
 instalments because this could be the only option allowed by the store. Payments through
 other modes like debit card can be allowed on the basis of certain eligibility criteria so that
 some more customers may add up.
- Based on insights-3,4 "watches present" product category was contributing to 9% of income generation with 5% of sales. Focusing on slight increase in "watches present" sales will generate relatively more income compared to other product categories.