Домашнее задание для студентов 2-го курса (3-й этап) (По программе курса физики на 3 семестра)

Поляризация света

- 1. На стеклянную пластинку с показателем преломления n =1,54 падает естественный свет. Определить угол между падающим лучом и отраженным, если отраженный луч максимально поляризован.
- 2. Угол преломления луча в жидкости равен 36°. Определить показатель преломления n этой жидкости, если отраженный от ее поверхности луч при соответствующем угле падения максимально поляризован?
- 3. Под каким углом надо отразить луч от кристалла каменной соли (n = 1,544), чтобы получить максимальную поляризацию отраженного луча? Падающий свет естественный.
- 4. Угол полной поляризации при отражении света от поверхности некоторого вещества равен 56°20'. Определить скорость распространения света в этом веществе. Вещество изотропно.
- 5. На плоскую поверхность прозрачного диэлектрика с n=1,73 падает монохроматический свет с круговой поляризацией под углом Брюстера. Найти интенсивность отраженного света в % от интенсивности падающего света.
- 6. Луч света, идущий в стеклянном сосуде, наполненном серной кислотой, отражается от поверхности стекла. При каком угле падения отраженный свет максимально поляризован? п $\kappa u c \pi = 1,43$; п $c m e \kappa \pi a = 1,52$.
- 7. Луч света проходит через жидкость, налитую в стеклянный сосуд ($n_2 = 1,5$) и отражается от дна. Отраженный луч полностью поляризован при падении его на дно сосуда под углом $\alpha = 42^{\circ}37'$. Найти показатель преломления n_1 жидкости, под каким углом должен падать луч, чтобы наступило полное внутреннее отражение?
- 8. Определить угол преломления луча в бромоформе (n = 1,73), если луч падает на поверхность бромоформа под углом Брюстера.
- 9. На поверхность воды под углом Брюстера падает пучок плоскополяризован ного света. Плоскость колебаний вектора E составляет угол $\phi = 45^{\circ}$ с плоскостью падения. Найти коэффициент отражения.
- 10. На стеклянную пластинку ($n_1 = 1,73$) падает луч под углом полной поляризации. На сколько надо изменить угол падения, чтобы сохранить поляризацию отраженного луча, если пластинку помесить в сосуд с жидкостью ($n_2 = 1,3$).
- 11.Степень поляризации частично поляризованного света P=0,25. Найти отношение интенсивности поляризованной составляющей этого света к интенсивности естественной составляющей.
- 12. Найти угол полной поляризации для света, отраженного от стекла (n = 1,483). Найти степень поляризации лучей, прошедших в пластинку. Лучи падают на пластинку под углом полной поляризации. Падающий свет естественный. Поглощения в стекле нет.
- 13. Найти угол полной поляризации для света, отраженного от стекла (n = 1,600). Найти степень поляризации лучей, прошедших через пластинку. Лучи падают на пластинку под углом полной поляризации. Падающий свет естественный.
- 14. Найти степень поляризации света, отраженного от поверхности стекла под углами: 0° , 45° , $56^{\circ}51'$, 90° . Показатель преломления стекла n = 1,53. Падающий свет естественный.
- 15.Определить толщину кварцевой пластинки, для которой угол поворота плоскости поляризации света с длиной волны 509 μ равен 180°. Постоянная вращения в кварце для этой длины волны равна 29,7 ϵ град/мм.
- 16.Пластинка кварца, вырезанная перпендикулярно оптической оси, помещена между параллельными николями. Для длины волны $\lambda = 5890~A$ удельное вращение плоскости поляризации равно $20~^{\circ}/_{MM}$. При какой минимальной толщине кварца свет этой длины волны будет полностью погашен?
- 17. Кварцевая пластинка Q, вырезанная перпендикулярно оптической оси и помещенная между поляризатором P и анализатором A, с параллельными главными плоскостями, полностью

- затемняет поле зрения. Минимальная толщина пластинки равна 4,20 мм. Найти постоянную вращения кварца.
- 18.Между скрещенными поляроидами поместили пластину кварца, вырезанную поперек оптической оси. Чтобы погасить свет с $\lambda = 0.5$ мкм пришлось повернуть анализатор на угол $\phi = 22^\circ$. Найти толщину пластинки, если постоянная вращения кварца для этой длины волны $\alpha = 29.7$ °/мм.
- 19.Показатель преломления кристалла $n_e = 1,544$, $n_O = 1,553$. Какова должна быть минимальная толщина кристалла, чтобы сдвиг фаз обыкновенного и необыкновенного лучей составил 90° , если используется $\lambda = 5460~A$? Направление распространения падающего луча перпендикулярно оптической оси кристалла.
- 20. Между поляроидами P и A расположен тонкий кварцевый клин Q с преломляющим углом $\theta = 6^{\circ}40'$. Направление оптической оси в кварце параллельно основанию клина . В прошедшем свете ($\lambda = 0,59$ *мкм*) видна система светлых и темных полос с шагом 25 *мм*. Определить удельное вращение кварца.
- 21. Монохроматический свет проходит через поляроиды P и A, между которыми находится тонкий кварцевый клин Q с преломляющим углом $\theta = 7^{\circ}48'$. Направление оптической оси в кварце параллельно основанию клина. Удельное вращение для $\lambda = 4047~A$ равно $48.9~^{\circ}/_{MM}$. Определить период наблюдаемых полос.
- 22.Свет проходит через систему из двух скрещенных поляроидов, между которыми расположена кварцевая пластинка, вырезанная перпендикулярно к оптической оси. Определить минимальную толщину пластинки, при которой свет с длиной волны $\lambda_1 = 436$ μ будет полностью задерживаться этой системой, а свет с $\lambda_2 = 497$ μ пропускаться наполовину, если постоянная вращения кварца для этих длин волн равна соответственно 41.5 и 31.1 °/ μ .
- 23.Между скрещенными николями помещена кристаллическая пластинка, вырезанная параллельно оптической оси так, что ее ось составляет угол 45° с главными плоскостями николей. Рассчитать минимальную толщину пластинки, при которой линия с $\lambda_1 = 660~\text{нм}$ будет максимально ослаблена, а линия с $\lambda_2 = 410~\text{нм}$ максимально усилена, если разница показателей преломления n_{e} - $n_{\text{O}} = 0.01$.
- 24. Главные плоскости двух николей составляют угол $\alpha_1 = 30^\circ$. Как изменится интенсивность света, проходящего через эти николи, если главные плоскости их поставить под углом $\alpha_2 = 60^\circ$.
- 25.Угол между главными плоскостями двух призм Николя равен 45° . Чему равна интенсивность света вышедшего из этой системы, если интенсивность падающего естественного света равна J_{\circ} . Во сколько раз уменьшится интенсивность света, прошедшего через николи, если угол увеличить до 60° ?
- 26.Во сколько раз уменьшится интенсивность естественного света, прошедшего через три николя, если угол между главными плоскостями первого и второго николей составляет угол $\alpha_1 = 30^\circ$, а угол между плоскостями второго и третьего $\alpha_2 = 60^\circ$?
- 27. На пути естественного света интенсивности Јо поставлены поляризатор P и анализатор A. Угол между их главными плоскостями $\alpha = 60^\circ$. Определить как изменится интенсивность света после прохождения сквозь поляроиды, если потери на отражение в каждом элементе составляют 10%.
- 28.Естественный свет проходит через поляризатор и анализатор, поставленные так, что угол между их главными плоскостями равен α . Как поляризатор, так и анализатор поглощают и отражают 8% падающего на них света. Оказалось, что интенсивность луча, вышедшего из анализатора, равна 9% интенсивности естественного света, падающего на поляризатор. Найти угол α .
- 29.Интенсивность светового потока уменьшилась в 9 раз в результате пропускания естественного света через две призмы Николя. Определить угол между главными плоскостями николей. Потери энергии, связанные с отражением света в каждом николе составляют 10%.
- 30. Во сколько раз изменяется интенсивность линейно-поляризованного света при прохождении через два поляризатора, главные плоскости которых составляют угол 60° и при этом главная плоскость второго поляризатора параллельна плоскости поляризации падающего света?

- 31. Поляризованный по кругу свет интенсивностью I_0 падает на стопку из трех поляризаторов.
- Первый и последний из них "скрещены", а главная плоскость среднего образует угол α с главной плоскостью первого. Определить интенсивность на выходе из системы.
- 32. Естественный свет проходит через два николя, главные плоскости которых составляют угол 45°. Выйдя из второго николя свет отражается от зеркала и проходит через оба николя в обратном направлении. Определить отношение интенсивностей света на входе и на выходе этой системы
- 33. При падении естественного света на некоторый поляризатор проходит η_1 = 30% светового потока, а через два таких поляроида η_2 = 13,5%. Найти угол ϕ между плоскостями пропускания этих поляризаторов
- 34.Определить отношение интенсивностей поляризованной и естественной компонент частично поляризованного света, если при повороте поляризатора на 45° от положения соотвествующего максимальной интенсивности выходящего из него пучка света, его интенсивность уменьшается в 1,5 раза.
- 35.На пути частично поляризованного света поместили поляризатор. При повороте поляризатора на угол $\phi = 60^\circ$ из положения, соответствующего максимуму пропускания, интенсивность прошедшего света уменьшилась в $\eta = 3,0$ раза. Найти степень поляризации падающего света.
- 36.Смесь линейно-поляризованного и поляризованного по кругу света проходит через поляризатор. При повороте поляризатора на угол 30° от положения, соответствующего максимальной интенсивности прошедшего через него света, интенсивность уменьшилась на 20%. Чему равно отношение интенсивностей света поляризованного по кругу и линейно поляризованного.
- 37. Чему равна в кварце разность показателей преломления света с $\lambda = 589$ *нм* поляризованного по кругу вправо и влево, если плоскость поляризации поворачивается на 22° на пути в 1 *мм*?
- 38. Какую минимальную разность показателей преломления света с $\lambda = 590$ *нм* с правой и левой круговой поляризацией можно обнаружить при использовании пластинки толщиной 30 *см*, если точность измерения угла поворота плоскости поляризации равен $1^{\circ} = 0.017$ рад.
- 39.Определить оптические разности хода обыкновенного и необкновенного лучей в кристаллической пластинке толщиной 1 *см* при распространении света параллельно и перпендикулярно к оптической оси кристалла, если $\varepsilon_{\perp}=2,25$, а $\varepsilon_{\parallel}=2,56$. 40.Смесь света, поляризованного по кругу $(J_{\rm K})$ и естественного $(J_{\rm C})$ проходит через
- 40.Смесь света, поляризованного по кругу $(J_K)^{\perp}$ и естественного (J_e) проходит через "четвертьволновую" пластинку и анализатор (призму Николя). При вращении последнего найдено, что $(J_{max}/J_{min}) = 3$. Найти отношение J_k/J_e .
- 41.Смесь света, поляризованного по кругу (J_K) и естественного (J_e) проходит через "четвертьволновую" пластинку и анализатор (призму Николя). При вращении последнего найдено, что $(J_max/J_min) = 5$. Найти отношение J_k/J_e .
- 42.Смесь света, поляризованного по кругу (J_K) и естественного (J_e) проходит через "четвертьволновую" пластинку и анализатор (призму Николя). При вращении последнего найдено, что $(J_max/J_min) = 2$. Найти отношение J_k/J_e .
- 43. Пучок света проходит через два николя, главные плоскости которых составляют угол 20°. Между николями ставится пластинка в "полволны". Какой угол должна составлять оптическая ось пластинки с главной плоскостью первого николя, чтобы свет через эту систему не прошел? 44. Естественный свет проходит через систему из двух николей, между которыми помещена кристаллическая пластинка в "полволны" Главные плоскости николей составляют с главной плоскостью пластинки углы α и β . Определить отношение интенсивностей света на выходе и

входе в эту систему. Рассчитать при $\alpha = 50^{\circ}$ и $\beta = 20^{\circ}$.

- 1. В какой области спектра лежат максимумы излучения чернокожего африканца, и человека с белой кожей? Считать, что они излучают как абсолютно черные тела.
- 2. Каково соотношение температур T_1/T_2 источников излучения (AЧТ), если отношение длин волн, соответствующих максимуму их излучения $\lambda_1/\lambda_2 = 2$.
- 3. Каково соотношение температур T_1/T_2 источников излучения (AЧТ), если длины волн, соответствующих максимумам их излучения равны $\lambda_1 = 0,550$ мкм и $\lambda_2 = 10$ мкм.
- 4. Какой должна быть температура абсолютно черного тела, чтобы максимальное значение поверхностной плотности излучения приходилось на середину видимой области спектра (от $\lambda_1 = 0.4$ до $\lambda_1 = 0.7$ мкм)?
- 5. Какому цвету в спектре излучения соответствует максимум спектральной плотности энергетической светимости АЧТ при температуре 6170*C*?
- 6. Какому цвету в спектре излучения соответствует максимум спектральной плотности энергетической светимости раскаленной вольфрамовой нити в лампе накаливания (АЧТ) при температуре 1900C?
- 7. На сколько градусов надо нагреть АЧТ, находящееся при комнатной температуре, чтобы тах излучения приходился на желтый участок спектра ($\lambda = 600$ нм)?
- 8. Белая кафельная плитка фотокомнаты при проявлении пленки освещается фонарем со светофильтром пропускающим $\lambda = 0.64$ мкм. Какого цвета будет плитка и какой длине волны соответствует тах спектральной плотности энергетической светимости кафеля?
- 9. Зеленая кафельная плитка фотокомнаты при проявлении пленки освещается светом фонаря со светофильтром пропускающим λ =640 μ . Какого цвета будет кафельная плитка и какой длине волны соответствует тах спектральной плотности энергетической светимости кафеля?
- 10. Шар, излучающий как АЧТ, имевший температуру $T_1 = 680C$, остывает. При этом длина волны, соответствующая тах спектра излучения изменилась вдвое. Какова новая температура шара?
- 11. В какой области спектра лежат длины волн, соответствующие тах спектральной плотности энергетической светимости, если источником света служит атомная бомба, в которой в момент взрыва возникает температура 10 млн градусов. Бомба излучает как АЧТ.
- 12. В спектре излучения огненного шара радиусом 100м, возникающего при ядерном взрыве, тах излучения приходится на $\lambda = 0.29$ мкм. Определить температуру поверхности шара.
- 13. Температура АЧТ возросла с 500C до1500C. Во сколько раз увеличилась его интегральная энергетическая светимость?
- 14. Энергетическая светимость АЧТ равна $3.0 \, Bm/cm^2$. Определить длину волны отвечающую тах испускательной способности этого тела.
- 15. Температура абсолютно черного тела изменилась при нагревании от 730 до 2730C. На сколько изменилась при этом длина волны, на которую приходится тах спектральной плотности энергетической светимости?
- 16. Температура абсолютно черного тела изменилась при нагревании от 730 до 2230 С. Во сколько раз увеличилась при этом его максимальная плотность энергетической светимости?
- 17. Чему равна температура АЧТ, если оно излучает с 2 cm^2 в минуту 530 κan ?
- 18. Мощность излучения АЧТ равна 34 κBm . Найти температуру этого тела, если известно, что его поверхность равна $0.6~{\rm M}^2$.
- 19. Пренебрегая потерями тепла на теплопроводность, подсчитать мощность электрического тока, необходимую для накаливания нити диаметром 1 *мм* и длиной 20 *см* до T = 3500*K*. Считать, что нить излучает, подчиняясь закону Стефана-Больцмана.
- 20. Как изменилось бы общее количество энергии, излучаемой Солнцем, если бы одна половина его поверхности нагрелась на ΔT , а другая на столько же охладилась?
- 21. АЧТ находится при T_1 =2900K. В результате остывания этого тела длина волны на которую приходится тах спектральной плотности энергетической светимости изменилась на $\Delta\lambda = 9~m\kappa m$. Какую температуру приобрело тело?
- 22. Имеются два AЧ источника теплового излучения. Температура одного из них $T_1 = 2500K$. Найти температуру другого источника. если длина волны, отвечающая максимуму его

излучательной способности на $\Delta\lambda = 0,5$ *мкм* больше длины волны, соответствующей максимуму излучательной способности первого источника.

- 23. Вследствие изменения температуры АЧТ максимум спектральной плотности энергетической светимости сместился с 2,4*мкм* на 0,8*мкм*. Как, и во сколько раз, изменились энергетическая светимость тела и максимальное значение спектральной плотности энергетической светимоси?
- 24. Определить температуру Солнца, если известно, что максимум интенсивности спектра Солнца лежит в области длин волн $5 \cdot 10^{-5}$ *см*. Солнце считать АЧТ.
- 25. Максимум излучения АЧТ приходится на λ =250 μ м. На какую длину волны придется максимум излучения, если температуру тела повысить на 50C?

Фотоэффект

- 1. До какого максимального потенциала зарядится удаленный от других тел медный шарик при облучении его светом с $\lambda = 0.14 \text{мкм}$?
- 2. При фотоэффекте с платиновой поверхности электроны полностью задерживаются разностью потенциалов U=0.8B. Найти длину волны применяемого облучения и предельную длину волны λ , при которой еще возможен фотоэффект.
- 3. Красная граница фотоэффекта для рубидия равна 540 нм. Определить работу выхода и максимальную скорость электронов при освещении поверхности металла светом с длиной волны $\lambda = 400$ нм.
- 4. При освещении поверхности цезия светом с λ = 360 μ м задерживающий потенциал равен 1,47B. Определить красную границу фотоэффекта для цезия.
- 5. Красная граница фотоэффекта для цинка лежит при длине волны 290*нм*. Какая часть энергии фотона, вызывающего фотоэффект, расходуется на работу выхода, если максимальная скорость электронов, вырванных с поверхности металлла составляет 10⁸ см/с?
- 6. Определить наименьший задерживающий потенциал, необходимый для прекра-щения эмиссии с фотокатода, если поверхность его освещается светом с λ =0,4m κ m и красная граница фотоэффекта для катодов данного типа лежит при λ =0,67m κ m.
- 7. На металлическую пластинку падает монохроматический свет с λ =0,413mкm. Поток фотоэлектронов, вырываемых с поверхности металла полностью задерживатся, когда разность потенциалов тормозящего электрического поля достигает 1B. Определить работу выхода электронов из металла и красную границу фотоэффекта.
- 8. Выбиваемые светом при фотоэффекте электроны полностью задерживаются обратным потенциалом 4В. Красная граница фотоэффекта 0,6*мкм*. Определить частоту падающего света.
- 9. Красная граница фотоэффекта для некоторого металла равна 250*нм*. Найти работу выхода электронов из металла; максимальную скорость электронов, вырываемых из этого металла светом с λ=200*нм*; максимальную кинетическую энергию этих электронов.
- 10. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта равна 307*нм* и максимальная кинетическая энергия электрона 19*B*?
- 11. При поочередном освещении поверхности некоторого металла светом с λ_1 =0,35mкм и λ_2 =0,54mкм обнаружили, что соответствующие максимальные скорости фотоэлектронов отличаются друг от друга в 2 раза. Найти работу выхода электронов с поверхности этого металла.
- 12. Красная граница фотоэффекта для некоторого металла 0,4*мкм*. Кинетическая энергия вылетевших электронов 2эB. Какая доля энергии падающих фотонов расходуется на работу выхода?
- 13. Кванты света с энергией 4,99B вырывают фотоэлектроны из металла с работой выхода 4,59B. Найти максимальный импульс, передаваемый поверхности металла при вылете каждого электрона.

- 14. При освещении вакуумного фотоэлемента светом с длиной волны $\lambda = 600$ нм он заряжается до разности потенциалов $U_1 = 1,2B$. До какой разности потенциалов зарядится фотоэлемент при освещении его светом с $\lambda = 400$ нм?
- 15. Катод фотоэлемента освещается монохроматическим светом с длиной волны λ . При отрицательном потенциале на аноде $U_1 = -1,6B$ ток в цепи прекращается. При изменении длины волны света в 1,5 раза для прекращения тока потребовалось подать на анод отрицательный потенциал $U_2 = -1,8B$. Определить работу выхода материала катода.
- 16. Для измерения постоянной Планка катод вакуумного фотоэлемента освещается монохроматическим светом. При длине волны излучения $\lambda = 620$ нм ток фотоэлектронов прекращается, если в цепь между катодом и анодом включить задерживающий потенциал U_3 не меньше определенного значения. При увеличении длины волны на 25% задерживающий потенциал оказывается на 0.4B меньше. Определить по этим данным постоянную Планка.
- 17 Фототок, возникающий в цепи вакуумного фотоэлемента при освещении цинкового электрода светом с $\lambda = 262$ нм прекращается, если подключить внешнее задерживающее напряжение 1,5B. Найти величину и полярность внешней контактной разности потенциалов.
- 18. Красная граница фотоэффекта для калия лежит при длине волны 577 μ м. При какой разности потенциалов между анодом и катодом прекратится эмиссия электронов с поверхности калия, если освещать катод светом с $\lambda = 400\mu$ м? Контактная разность потециалов между катодом и анодом равна 2B и контактное поле направлено от анода к катоду.
- 19. Какую разность потенциалов надо приложить между катодом и анодом, чтобы электрическое поле задерживало все фотоэлектроны? Задачу решить для случая цинкового катода, у которого красная граница лежит при λ =290 μ . Катод освещается монохроматическим светом с λ =253,7 μ . Контактное поле между анодом и катодом тормозит электроны и соответствует контактной разности потенциалов 0,5 μ .
- 20. Имеется вакуумный фотоэлемент, один из электродов которого цезиевый, другой медный. Определить максимальную скорость фотоэлектронов, подлетающих к медному электроду при освещении цезиевого электрода светом с $\lambda = 0.22$ мкм, если оба электрода замкнуть снаружи накоротко.
- 21. Вакуумный фотоэлемент состоит из центрального катода вольфрамового шарика и анода внутренней поверхности посеребренной изнутри колбы. Контактная разность потенциалов между электродами, численно равная $U_0 = 0.6B$, ускоряет вылетающие электроны. Фотоэлемент освещается светом с $\lambda = 230$ нм.
- 1) Какую задерживающую разность потенциалов надо приложить между электродами, чтобы фототок упал до нуля?
- 2) Какую скорость получают фотоэлектроны, когда они долетают до анода, если не прикладывать между катодом и анодом внешней разности потенциалов?

Работы выхода электронов из металлов (в эВ)										
Вольфрам	4,50	Натрий	2,27	Цезий	1,89	Олово	4,51			
Золото	4,58	Платина	5,29	Цинк	3,74	Свинец	4,15			
Калий	2,15	Серебро	4,28	Медь	4,47					
Литий	2,39	Железо	4,36	Никель	4,84					

Распределение задач по вариантам

N_0N_0	Поляризация			Теплов.	Фотоэффект	
вариантов				излуч.		
1	1	39	15	11	13	17
2	2	38	16	8	12	18
3	3	37	17	5	14	19
4	4	36	18	9	11	20
5	5	35	19	16	15	21
6	6	34	20	19	10	17
7	7	33	21	15	8	19
8	8	32	40	22	6	21
9	9	31	41	1	9	18
10	10	30	42	18	5	20
11	11	29	43	25	7	17
12	12	28	44	20	4	21
13	13	27	32	7	16	19
14	14	26	33	14	3	20
15	15	25	34	4	12	18
16	16	35	12	12	13	17
17	17	33	36	10	11	21
18	18	34	37	23	2	20
19	19	32	38	6	1	19
20	20	30	39	21	10	18
21	21	19	40	2	16	17
22	22	18	41	24	14	21
23	23	17	42	17	9	20
24	24	16	43	3	7	19
25	25	15	44	13	8	18