Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1^{-}}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$+^{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
$+^{\alpha \beta}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\dagger^{\alpha \beta}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
<u>-</u> 1 +α	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	0	$\frac{2i}{kr_5+2k^3r_5}$
-̄ ₂ +α	0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2 k^4 r_5}$	$\frac{3k^2 r_5 + 2t_3}{(k+2k^3)^2 r_5 t_3}$	0	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
$-1+\alpha$	0	0	0	0	0	0	0
<u>-</u> 2 +α	0	0	0	$-\frac{2i}{kr_5+2k^3r_5}$	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6k^2r_5+4t_3}{(1+2k^2)^2r_5t_3}$

Cna Cna	Quadratic (Tree) action
S== S	
<i>JJJ</i>	$\iiint (\frac{1}{6} (-4t_3 \ \omega^{\alpha}_{\alpha} \ \omega^{\kappa}_{l \ \kappa} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 8t_3 \ \omega^{\kappa}_{\alpha \ \kappa} \ \partial_{l} f^{\alpha\prime} - 8t_3 \ \omega^{\kappa}_{l \ \kappa}$
$\partial' f'$	$\partial' f^{\alpha}_{\ \alpha} + 4 t_3 \partial_i f^{\kappa}_{\ \kappa} \partial^i f^{\alpha}_{\ \alpha} + 4 t_2 \omega_{i \theta \alpha} \partial^{\theta} f^{\alpha \prime} + 2 t_2 \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha \prime} - t_2 \partial_{\alpha} f_{\theta \prime} \partial^{\theta} f^{\alpha \prime} -$
$t_2 \partial$	$t_2\partial_i f_{\alpha\theta}\partial^{\theta}f^{lpha\prime}+t_2\partial_{\theta}f_{lpha\prime}\partial^{\theta}f^{lpha\prime}-t_2\partial_{\theta}f_{lpha}\partial^{ heta}f^{lpha\prime}-4t_2\omega_{lpha heta\prime}(\omega^{lpha\prime heta}+\partial^{ heta}f^{lpha\prime})+$
$2t_2$	$2t_2 \omega_{\alpha\prime\theta} (\omega^{\alpha\prime\theta} + 2\partial^{\theta}f^{\alpha\prime}) + 8t_2 \partial_{\beta}\omega_{\alpha\prime\theta} \partial^{\theta}\omega^{\alpha\beta\prime} - 4t_2 \partial_{\beta}\omega_{\alpha\theta\prime} \partial^{\theta}\omega^{\alpha\beta\prime} +$
4 r ₂	$4r_2\partial_\beta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$
4 r ₂	$4 r_2 \partial_\theta \omega_{\alpha l \beta} \partial^\theta \omega^{\alpha \beta l} + 6 r_5 \partial_l \omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
4 t ₃	$4t_3\partial_i f^{\alpha i}\partial_\kappa f_\alpha^{\ \ \kappa} - 8t_3\partial^i f^\alpha_{\ \ \alpha}\partial_\kappa f_\beta^{\ \ \kappa} - 6r_5\partial_\alpha\omega^{\alpha i\theta}\partial_\kappa\omega_i^{\ \ \kappa} + 12r_5\partial^\theta\omega^{\alpha i}_{\ \ \alpha}\partial_\kappa\omega_i^{\ \ \kappa} +$
6 r ₅	$6 r_5 \partial_{\alpha} \omega^{\alpha l \theta} \partial_{\kappa} \omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

$f_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$	$\sigma_{2}^{\#1}{}_{lphaeta}\; t^{ec{i}}_{ec{i}}$	ο υ	ο σ	0			
$f_{1}^{\#1}$	0	0	0	0	0	0	0		$\sigma_2^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{z_1}^{*1} + \alpha \beta \chi$	- 7		
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[1 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$		1 † ^{αμ}	$\omega_2^{\#}$	1 + αβ	$f_{2+\alpha}^{#1}$	$_{\beta}$ ω_{2}^{\sharp}	0
$\omega_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i kt3 3	$f_{2}^{\#}$ $\omega_{2}^{\#1}$	$+^{\alpha\beta}$			0		0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	leneratore	Multiplicities					
$\omega_1^{\#_2^2}$	$\frac{\sqrt{2}\ t_2}{3}$	t 2 3	$\frac{1}{3}$ \vec{i} kt_2	0	0	0	0	מטומ	Multip	1	Н	m	М	е
$\omega_{1}^{\#1}{}_{\alpha\beta}$	k^2	$\frac{\sqrt{2}t_2}{3}$	ا س	0	0	0	0	Source constraints/dauge denerators	reps		$\langle \sigma_{0+}^{\#1} == 0$	$2ik \sigma_{1}^{\#2}\alpha == 0$	0	$+ik \sigma_{1+}^{\#2\alpha\beta} == 0$
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$	977108	SO(3) irreps	$\tau_0^{\#2} == 0$	$\tau_0^{\#1} - 2ik\sigma_0^{\#1}$	l +	l	$\tau_1^{\#1}{}^{\alpha\beta}$ +

0

Source constraints/gauge generators	Multiplicities										$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
ger	ciplic										$\tau_0^{\#2}$	0	0	0	0
ange	Muli	1	1	М	М	М	2	2	2	26	٦.	$\frac{2}{2}k$	$\frac{2}{3^2t_3}$		
aints/g			0	0 == _σ		$\alpha\beta$ == 0				ıts:	$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2}$	$\frac{2k^2}{(1+2k^2)^2}$	0	0
onstra	sde		$\sigma_{0}^{\#1} == 0$	$+2ik \sigma_{1}^{\#2}\alpha$		$k \sigma_1^{\#2} \alpha \beta$	0 ==	0	0	Total constraints:	$\sigma_{0}^{\#1}$	$\frac{1}{(+2 k^2)^2 t_3}$	$i \sqrt{2} k $ (1+2 k ²) ² t ₃	0	C
rce co	SO(3) irreps	0 ==	$-2ik\sigma_0^{\#1}$		0 == 2	$^{\chi\beta} + i k$		H	$\alpha\beta$ == 0	l con	D	(1+2)	$\frac{\bar{l} \ \sqrt{1}}{(1+2)}$		
Sou	SO(τ ^{#2} =	$\tau_{0}^{\#1}$ -	$t_1^{\#2}\alpha$	$t_{1}^{\#1}\alpha$	$\tau_1^{\#1}^{\alpha\beta}$	$\sigma_{2}^{#1}^{a\beta\chi}$	$\tau_2^{\#1}\alpha\beta$	$\sigma_{2}^{\#1}{}^{\alpha\beta}$	Tota		#1 0+	# ₁ 0+	#2 0 ⁺ †	# ₁ +

0

0

 $\sqrt{2} kt_3$

 $w_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + g_{0}^{#1} + g_{$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions