Course Project: Combinatorics & Graph Theory Đồ Án Môn Học: Tổ Hợp & Lý Thuyết Đồ Thị

Nguyễn Quản Bá Hồng*

Ngày 26 tháng 6 năm 2025

Tóm tắt nội dung

This text is a part of the series Some Topics in Advanced STEM & Beyond: URL: https://nqbh.github.io/advanced_STEM/.
Latest version:

- Course Project: Combinatorics & Graph Theory Đồ Án Môn Học: Tổ Hợp & Lý Thuyết Đồ Thị.

 PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/project/NQBH_combinatorics_graph_theory_project.pdf.
 - $TEX: \ \ URL: \ https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/project/NQBH_combinatorics_graph_theory_project.tex.$
- Lecture Note: Combinatorics & Graph Theory Bài Giảng: Tổ Hợp & Lý Thuyết Đồ Thị.

 PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/lecture/NQBH_combinatorics_
 - graph_theory_lecture.pdf.

 TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/lecture/NQBH_combinatorics_graph_theory_lecture.tex.
- Slide: Combinatorics & Graph Theory Slide Bài Giảng: Tổ Hợp & Lý Thuyết Đồ Thị.

 PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/slide/NQBH_combinatorics_graph_
 - theory_slide.pdf.
 - $\label{thm:combinatorics} TEX: \verb|URL:| https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/slide/NQBH_combinatorics_graph_theory_slide.tex.$
- Survey: Combinatorics & Graph Theory Khảo Sát: Tổ Hợp & Lý Thuyết Đồ Thị.
 - PDF: url: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/NQBH_combinatorics.pdf.
 - TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/NQBH_combinatorics.tex.
- Codes:
 - ${\tt \circ C/C++: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/C++.}$
 - o Pascal: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/Pascal.
 - o Python: https://github.com/NQBH/advanced_STEM_beyond/blob/main/combinatorics/Python.

Muc luc

1	Project 1: Mathematical Induction & Recurrence Relations – Đồ Án 1: Quy Nạp Toán Học & Quan Hệ Truy Hồi	2
2	Project 2: Counting, Probability, Balls, & Boxes – Đồ Án 2: Đếm, Xác Suất, Banh & Hộp	2
3	Project 3: Generating Functions – Đồ Ấn 3: Hàm Sinh	2
4	Project: Integer Partition – Đồ Án: Phân Hoạch Số Nguyên	2
5	Project 4: Graph & Tree Traversing Problems – Đồ Án 4: Các Bài Toán Duyệt Đồ Thị & Cây 5.1 Breadth-first search algorithm – Thuật toán tìm kiếm theo chiều rộng 5.2 Depth-first search algorithm – Thuật toán tìm kiếm theo chiều rộng	3
	Project 5: Shortest Path Problems on Graphs – Đồ Án 5: Các Bài Toán Tìm Đường Đi Ngắn Nhất Trên Đồ Thị	વ

^{*}A scientist- & creative artist wannabe, a mathematics & computer science lecturer of Department of Artificial Intelligence & Data Science (AIDS), School of Technology (SOT), UMT Trường Đại học Quản lý & Công nghệ TP.HCM, Hồ Chí Minh City, Việt Nam.

E-mail: nguyenquanbahong@gmail.com & hong.nguyenquanba@umt.edu.vn. Website: https://nqbh.github.io/. GitHub: https://github.com/NQBH.

	Floyd-Warshall algorithm – Thuật toán Floyd-Warshall	
	Optional: Johnson's algorithm – Thuật toán Johnson	
	scellaneous	

Rules

- 1. Chấp/Cho phép sử dụng AIs.
- 2. Các đồ án nên được trình bày chi tiết nhất có thể, về cả 3 phương diện Toán học, thuật toán, & lập trình:
 - Derivation của các công thức đệ quy, quy hoạch động.
 - Giải thích code, ý nghĩa của các biến quan trọng, i.e., các biến số chính đại diện cho đại lượng nào.
- 3. Gửi kèm codes chạy được với đồ án.
- 4. Ưu tiên nộp đồ án theo 1 GitHub repository để tiện git clone.
- 5. Đồ án môn học được thực hiện theo cá nhân mỗi sinh viên, không thực hiện theo nhóm. Khi nộp sẽ có vấn đáp để kiểm tra khả năng & mức độ thấu hiểu vấn đề cũng như các phương pháp & thuật toán mà sinh viên sử dụng trong đồ án của mình.
- 6. Mỗi sinh viên làm tất cả các đồ án.

Resources - Tài nguyên.

- 1. [Bal97]. V. K. Balakrishnan. Schaum's Outline of Graph Theory.
- 2. [Gol18]. Boris Goldengorin. Optimization Problems in Graph Theory.
- 3. [Sha22]. Shahriar Shahriari. An Invitation To Combinatorics.
- 4. [Val02; Val21]. Gabriel Valiente. Algorithms on Trees & Graphs With Python Code.
- 1 Project 1: Mathematical Induction ℰ Recurrence Relations Đồ Án 1: Quy Nạp Toán Học ℰ Quan Hệ Truy Hồi
- 2 Project 2: Counting, Probability, Balls, & Boxes Đồ Án 2: Đếm, Xác Suất, Banh & Hộp
- 3 Project 3: Generating Functions Đồ Án 3: Hàm Sinh
- 4 Project: Integer Partition Đồ Án: Phân Hoạch Số Nguyên

Bài toán 1 (Ferrers & Ferrers transpose diagrams – Biểu đồ Ferrers & biểu đồ Ferrers chuyển vị). Nhập $n, k \in \mathbb{N}$. Viết chương trình $\mathsf{C}/\mathsf{C}++$, Python để in ra $p_k(n)$ biểu đồ Ferrers F & biểu đồ Ferrers chuyển vị F^\top cho mỗi phân hoạch $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_k)\in (\mathbb{N}^\star)^k$ có định dạng các dấu chấm được biểu diễn bởi dấu \star .

Bài toán 2. Nhập $n, k \in \mathbb{N}$. Đếm số phân hoạch của $n \in \mathbb{N}$. Viết chương trình C/C++, Python để đếm số phân hoạch $p_{\max}(n, k)$ của n sao cho phần tử lớn nhất là k. So sánh $p_k(n)$ & $p_{\max}(n, k)$.

Bài toán 3 (Số phân hoạch tự liên hợp). Nhập $n, k \in \mathbb{N}$. (a) Đếm số phân hoạch tự liên hợp của n có k phần, ký hiệu $p_k^{\mathrm{selfcjg}}(n)$, rồi in ra các phân hoạch đó. (b) Đếm số phân hoạch của n có lẻ phần, rồi so sánh với $p_k^{\mathrm{selfcjg}}(n)$. (c) Thiết lập công thức truy hồi cho $p_k^{\mathrm{selfcjg}}(n)$, rồi implementation bằng: (i) đệ quy. (ii) quy hoạch động.

5 Project 4: Graph & Tree Traversing Problems – Đồ Án 4: Các Bài Toán Duyệt Đồ Thị & Cây

Doc [Val21, 1.3: Representation of Trees & Graphs, p. 23].

Bài toán 4. Viết chương trình C/C++, Python chuyển đổi giữa 4 dạng biểu diễn: adjacency matrix, adjacency list, extended adjacency list, adjacency map cho 3 đồ thị: đơn đồ thị, đa đồ thị, đồ thị tổng quát; & 3 dạng biểu diễn: array of parents, first-child next-sibling, graph-based representation of trees của cây.

Sẽ có $3A_4^3 + A_3^2 = 36 + 6 = 42$ converter programs.

Bài toán 5. Làm Problems 1.1-1.6 & Exercises 1.1-1.10 [Val21, pp. 39-40].

Bài toán 6 (Tree edit distance). Viết chương trình C/C++, Python để giải bài toán tree edit distance problem bằng cách sử dụng: (a) Backtracking. (b) Branch-&-bound. (c) Divide-&-conquer – chia để trị. (d) Dynamic programming – Quy hoạch động.

Bài toán 7 (Tree traversal – Duyệt cây). Viết chương trình C/C++, Python để duyệt cây: (a) preorder traversal. (b) postorder traversal. (c) top-down traversal. (d) bottom-up traversal.

5.1 Breadth-first search algorithm – Thuật toán tìm kiếm theo chiều rộng

Bài toán 8. Let G = (V, E) be a finite simple graph. Implement the breadth-first search on G.

Bài toán 9. Let G = (V, E) be a finite multigraph. Implement the breadth-first search on G.

Bài toán 10. Let G = (V, E) be a general graph. Implement the breadth-first search on G.

5.2 Depth-first search algorithm – Thuật toán tìm kiếm theo chiều rộng

Bài toán 11. Let G = (V, E) be a finite simple graph. Implement the depth-first search on G.

Bài toán 12. Let G = (V, E) be a finite multigraph. Implement the depth-first search on G.

Bài toán 13. Let G = (V, E) be a general graph. Implement the depth-first search on G.

6 Project 5: Shortest Path Problems on Graphs – Đồ Án 5: Các Bài Toán Tìm Đường Đi Ngắn Nhất Trên Đồ Thị

Resources - Tài nguyên.

1. Wikipedia/shortest path problem.

6.1 Dijkstra's algorithm – Thuật toán Dijkstra

Bài toán 14. Let G = (V, E) be a finite simple graph. Implement the Dijkstra's algorithm to find the shortest path problem on G.

Bài toán 15. Let G = (V, E) be a finite multigraph. Implement the Dijkstra's algorithm to find the shortest path problem on G.

Bài toán 16. Let G = (V, E) be a general graph. Implement the Dijkstra's algorithm to find the shortest path problem on G.

6.2 Bellman–Ford algorithm – Thuật toán Bellman–Ford

Bài toán 17. Let G = (V, E) be a finite simple graph. Implement the Bellman–Ford algorithm to find the shortest path problem on G.

Bài toán 18. Let G = (V, E) be a finite multigraph. Implement the Bellman-Ford algorithm to find the shortest path problem on G.

Bài toán 19. Let G = (V, E) be a general graph. Implement the Bellman-Ford algorithm to find the shortest path problem on G.

6.3 A* algorithm – Thuật toán A*

Bài toán 20. Let G = (V, E) be a finite simple graph. Implement the A^* algorithm to find the shortest path problem on G.

Bài toán 21. Let G = (V, E) be a finite multigraph. Implement the A^* algorithm to find the shortest path problem on G.

Bài toán 22. Let G = (V, E) be a general graph. Implement the A^* algorithm to find the shortest path problem on G.

6.4 Floyd–Warshall algorithm – Thuật toán Floyd–Warshall

Bài toán 23. Let G = (V, E) be a finite simple graph. Implement the Floyd-Warshall algorithm to find the shortest path problem on G.

Bài toán 24. Let G = (V, E) be a finite multigraph. Implement the Floyd-Warshall algorithm to find the shortest path problem on G.

Bài toán 25. Let G = (V, E) be a general graph. Implement the Floyd-Warshall algorithm to find the shortest path problem on G

6.5 Optional: Johnson's algorithm – Thuật toán Johnson

Bài toán 26. Let G = (V, E) be a finite simple graph. Implement the Johnson's algorithm to find the shortest path problem on G.

Bài toán 27. Let G = (V, E) be a finite multigraph. Implement the Johnson's algorithm to find the shortest path problem on G.

Bài toán 28. Let G = (V, E) be a general graph. Implement the Johnson's algorithm to find the shortest path problem on G.

6.6 Optional: Viterbi's algorithm – Thuật toán Viterbi

Bài toán 29. Let G = (V, E) be a finite simple graph. Implement the Viterbi's algorithm to find the shortest path problem on G

Bài toán 30. Let G = (V, E) be a finite multigraph. Implement the Viterbi's algorithm to find the shortest path problem on G.

Bài toán 31. Let G = (V, E) be a general graph. Implement the Viterbi's algorithm to find the shortest path problem on G.

7 Miscellaneous

Tài liêu

- [Bal97] V. K. Balakrishnan. Schaum's Outline of Graph Theory. Schaum's Outline Series. McGraw Hill, 1997, p. 293.
- [Gol18] Boris Goldengorin, ed. Optimization problems in graph theory. Vol. 139. Springer Optimization and Its Applications. In honor of Gregory Z. Gutin's 60th birthday. Springer, Cham, 2018, pp. xviii+331. ISBN: 978-3-319-94829-4; 978-3-319-94830-0. DOI: 10.1007/978-3-319-94830-0. URL: https://doi.org/10.1007/978-3-319-94830-0.
- [Sha22] Shahriar Shahriari. An invitation to combinatorics. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 2022, pp. xv+613. ISBN: 978-1-108-47654-6.
- [Val02] Gabriel Valiente. Algorithms on trees and graphs. Springer-Verlag, Berlin, 2002, pp. xiv+490. ISBN: 3-540-43550-6. DOI: 10.1007/978-3-662-04921-1. URL: https://doi.org/10.1007/978-3-662-04921-1.
- [Val21] Gabriel Valiente. Algorithms on trees and graphs—with Python code. Texts in Computer Science. Second edition [of 1926815]. Springer, Cham, [2021] © 2021, pp. xv+386. ISBN: 978-3-303-81884-5; 978-3-303-81885-2. DOI: 10.1007/978-3-030-81885-2. URL: https://doi.org/10.1007/978-3-030-81885-2.