Algorithms and Computation (grad course)

Lecture 7: Algorithms for NP-Complete problems

Instructor: Hossein Jowhari

jowhari@kntu.ac.ir

Department of Computer Science and Statistics Faculty of Mathematics K. N. Toosi University of Technology

Fall 2021

Dominating Set Problem

Definition: Given the unidrected graph G = (V, E), the set $D \subseteq V$ is a dominating set for G if every vertex in G is either contained in D or has a neighbor in D.

The Dominating Set problem asks if the given graph G has a dominating set of size at most k?

Show that Dominating Set problem is NP-Complete.

Inside NP-Completeness

NP-Complete problems are equivalent with respect to polynomial-time reducibility but each one is a different beast.

3-SAT problem

Is there an assignment that satisfy the Boolean formula ϕ (in 3-CNF format) defined on n variables?

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge \ldots \wedge (\ldots)$$

Brute-force algorithm tries all 2^n different assignment. Running time is $O(2^n m)$ when m is the number of clauses.

Is there a faster algorithm for 3-SAT?

Yes there is! but not much faster.

A general framework for solving 3-SAT, DPLL

Davis-Putnam-Logemann-Loveland

 $ALG(\phi: 3CNF formula, P: Partial Assignment)$

Pick a variable x (IN A CLEVER WAY):

- try ALG(ϕ , $P \cup \{x = T\}$)
- try ALG(ϕ , $P \cup \{x = F\}$)

Some ways to pick the next variable x:

- ▶ Pick x that appears in many clauses. Try x = T first.
- Pick x that appears a lot but \overline{x} appears a little.

The 7 algorithm

 $ALG(\phi: 3CNF formula, P: Partial Assignment)$

- ▶ If ϕ is in 2 CNF use 2SAT algorithm to solve it.
- Find $C = (x \lor y \lor z)$ a clause not touched.
- For all 7 ways to set (x, y, z) so that C = TRUE. In each case, let P' be the extension of P to the new assignment. Try $ALG(\phi, P')$

Algorithm analysis

 $T(n) \rightarrow \text{running time of the algorithm}$

$$T(0) = 1$$

$$T(n) = 7T(n-3)$$

$$T(n) = 7^2 T(n - 3 \times 2)$$

$$T(n) = 7^i T(n - 3i)$$

Plug i = n/3.

$$T(n) = 7^{n/3}O(1) = O((7^{1/3})^n) = O(1.913^n)$$

► There is an O(1.439ⁿ) deterministic algorithm for 3-SAT. (Konstantin Kutzkov, Dominik Scheder, 2010)

► There is a O(1.321ⁿ) randomized algorithm for 3-SAT.
(Timon Hertli, Robin A. Moser, Dominik Scheder, 2011)

▶ The **ETH** (*Exponential Time Hypothesis*) asserts that no algorithm can solve 3-SAT in $2^{o(n)}$ time.

Note that all problems in NP have $2^{\text{poly}(n)}$ time algorithms.

Vertex Cover

Vertex cover with parameter k. Given the undirected graph G, does G have a vertex cover of size less than or equal to k?

Recall: A vertex cover for graph G = (V, E) is a subset $S \subseteq V$ where each edge $(u, v) \in E$ has at least one endpoint in S.

Brute-force algorithm examines every subset S of size k and checks if S covers the edge set E. There $\binom{n}{k} \approx n^k$ subsets. The algorithm runs in $O(n^kkn) = O(n^{k+1}k)$ time.

A better algorithm for Vertex Cover

There is an algorithm for the Vertex Cover problem with parameter k that runs in $O(2^kkn)$ time. In particular when $k = O(\log n)$ the algorithm runs in polynomial time.

Observation 1: If G has a vertex cover of size $\leq k$, then G can have at most k(n-1) number of edges.

First Step of the algorithm: If |E| > k(n-1) then we reject the input and claim the size of the min vertex cover is greater than k

Observation 2: Let (u, v) be any edge in the graph. G has a vertex cover of size at most k if and only if $G - \{u\}$ or $G - \{v\}$ has a vertex cover of size at most k - 1.

Recursive Algorithm:

To search for a k-node vertex cover in G: If G contains no edges, then the empty set is a vertex cover If G contains >k |V| edges, then it has no k-node vertex cover Else let e = (u, v) be an edge of G Recursively check if either of G - |u| or G - |v| has a vertex cover of size k-1 If neither of them does, then G has no k-node vertex cover Else, one of them (say, G - |u|) has a (k-1)-node vertex cover T In this case, $T \cup \{u\}$ is a k-node vertex cover of G Endif Endif

Analyzing the algorithm

 $T(n,k) \rightarrow \text{running time of the algorithm}$

There exists constant c where

$$T(n,1) \le cn$$

$$T(n,k) \le 2T(n-1,k-1) + ckn$$

We can show (by induction) $T(n,k) \le 2^k cnk$.

This shows that $T(n,k) = O(2^k nk)$

There is a better algorithm for Vertex Cover that runs in $O(1.2832^kk + nk)$ time.

An algorithm with a running time f(k).poly(n,k) for a NP-complete problem is called a fixed parameter algorithm.

MAX Independent Set

MAX Independent Set with parameter k. Given the undirected graph G, does G have an independent set of size at least k?

Recall: An independent set in graph G = (V, E) is a subset $S \subseteq V$ where there is no edge between the vertices in S.

Brute-force algorithm examines every subset S of size k and checks if S is an independent set. There $\binom{n}{k} \approx n^k$ subsets. The algorithm runs in $O(n^kkn) = O(n^{k+1}k)$ time.

- There is no known fixed parameter algorithm for the Independent Set problem.
- In other words, we do not know of any $O(f(k)\operatorname{poly}(n,k))$ algorithm for the Independent Set problem (or for the k-Clique problem)
- ▶ **Fact**: If there is a $O(f(k)\operatorname{poly}(n,k))$ algorithm for k-Clique then it would lead to a $2^{o(n)}$ algorithm for the n-variable 3-SAT (i.e the ETH fails)
- ▶ Some NP-Complete problems (like the Vertex Cover problem) have fixed parameter algorithm. For example the *k*-PATH problem and the *k*-Disjoint Triangle problem.

NP-Complete problem on Special Inputs

- When the input (of the algorithm) is restricted to special instances the problem might become tractable.
- ▶ For example in the SAT problem when all the clauses are of length 2 or 1 (2SAT) we have polynomial time algorithm for that.
- Independent Set problem is easy to solve when the input graph is a tree.
- ▶ Independent Set and Vertex Cover problems remain NP-Complete even on planar graphs of degree at most 3.
- Hamiltonian Cycle remains NP-Complete on Bipartite graphs.

Vertex Cover for Bipartite Graphs

König's theorem: In any bipartite graph, the number of edges in a <u>maximum matching</u> equals the number of vertices in a minimum vertex cover.

Conclusion: There is a polynomial time algorithm for the Vertex Cover in bipartite graphs.

$$m(G) = 8$$

Find a vertex cover of size 8.

Short Proof of König's theorem (non-constructive)

Lemma 1: In every graph G, we have $v(G) \ge m(G)$.

Proof: No vertex can cover two edges of a matching.

Lemma 2: In every bipartite graph G, we have v(G) = m(G).

Proof: If G is is a path or cycle then it is true (check it!)

Now for the sake of contradiction, suppose the statement is wrong. In other words, there is a bipartite graph G where v(G) > m(G).

Let G = (V, E) be the minimal counter-example. It means:

- ▶ For any edge $e \in E$, v(G e) = m(G e)
- ▶ For any vertex $v \in E$, v(G v) = m(G v)

Since G is not a path or a cycle, it must have a vertex with degree 3.

Suppose m(G-v) < m(G). (It means a maximum matching of G must use v) Then by minimality G-v has a vertex cover W' of size less than m(G). Hence $W' \cup \{v\}$ is a vertex cover of G of size m(G). Contradiction!

Now suppose there is maximum matching of G that does not use v. So u must be part the maximum matching. Let f be an edge incident on u and not part of the maximum matching.

Let W' be a cover of G-f. We have |W'|=m(G) (by minimality). W' should cover every edge of the maximum matching in G-f. Since v is not part of the matching W' cannot contain v. Therefore W' must contain v and there it should be a cover for G. A contradiction!