

Language: Finnish

Day: **1**

Tiistaina, 23. heinäkuuta 2013

Tehtävä 1. Todista, että jokaista positiivisten kokonaislukujen paria k ja n kohti on olemassa k sellaista positiivista kokonaislukua m_1, m_2, \ldots, m_k (jotka eivät välttämättä ole eri lukuja), että

$$1 + \frac{2^k - 1}{n} = \left(1 + \frac{1}{m_1}\right) \left(1 + \frac{1}{m_2}\right) \cdots \left(1 + \frac{1}{m_k}\right).$$

Tehtävä 2. 4027 tason pisteen asetelmaa kutsutaan *kolumbialaiseksi*, jos se koostuu 2013 punaisesta ja 2014 sinisestä pisteestä, joista mitkään kolme eivät ole samalla suoralla. Taso jaetaan piirtämällä muutama suora useisiin alueisiin. Tällainen suorien joukko on *suopea* kolumbialaiselle asetelmalle, jos seuraavat kaksi ehtoa täyttyvät:

- mikään suora ei kulje minkään asetelman pisteen kautta;
- mikään alue ei sisällä kummankinvärisiä pisteitä.

Etsin pienin sellainen k, että jokaista 4027 pisteen kolumbialaista asetelmaa kohti on olemassa tälle asetelmalle suopea k suoran sijoittelu.

Tehtävä 3. Kolmion ABC kärjen A vastainen sivuympyrä sivutkoon sivua BC pisteessä A_1 . Määriteltäköön sivun CA piste B_1 ja sivun AB piste C_1 vastaavasti käyttämällä kärkien B ja C vastaisia sivuympyröitä. Oletetaan, että kolmion $A_1B_1C_1$ ympäri piirretyn ympyrän keskipiste sijaitsee kolmion ABC ympäri piirretyllä ympyrällä. Todista, että kolmio ABC on suorakulmainen.

Kolmion ABC kärjen A vastainen sivuympyrä on ympyrä, joka sivuaa janaa BC, puolisuoraa AB janan AB jatkeella ja puolisuoraa AC janan AC jatkeella. Kärkien B ja C vastaiset sivuympyrät määritellään vastaavasti.

Language: Finnish

Language: Finnish

Day: **2**

Keskiviikkona, 24. heinäkuuta 2013

Tehtävä 4. Olkoon ABC teräväkulmainen kolmio, jonka korkeusjanojen leikkauspiste on H, ja olkoon W sivun BC piste, joka sijaitsee aidosti pisteiden B ja C välissä. Pisteet M ja N olkoot kärjistä B ja C lähtevien korkeusjanojen kannat. Merkitään ω_1 :llä kolmion BWN ympäripiirrettyä ympyrää, ja olkoon X ympyrän ω_1 se piste, jolle WX on ympyrän ω_1 halkaisija. Merkitään ω_2 :lla vastaavasti kolmion CWM ympäripiirrettyä ympyrää, ja olkoon Y se ympyrän ω_2 piste, jolle WY on ympyrän ω_2 halkaisija. Todista, että X, Y ja H ovat samalla suoralla.

Tehtävä 5. Olkoon $\mathbb{Q}_{>0}$ positiivisten rationaalilukujen joukko. Olkoon $f: \mathbb{Q}_{>0} \to \mathbb{R}$ kuvaus, joka toteuttaa seuraavat kolme ehtoa:

- (i) kaikilla $x, y \in \mathbb{Q}_{>0}$ pätee $f(x)f(y) \ge f(xy)$;
- (ii) kaikilla $x, y \in \mathbb{Q}_{>0}$ pätee $f(x+y) \ge f(x) + f(y)$;
- (iii) on olemassa rationaaliluku a > 1, jolle f(a) = a.

Todista, että jokaisella $x \in \mathbb{Q}_{>0}$ pätee f(x) = x.

Tehtävä 6. Olkoon $n \geq 3$ kokonaisluku. Tarkastellaan ympyrää, jolle on merkitty n+1 pistettä tasaisin välein. Tarkastellaan pisteiden kaikkia mahdollisia nimeämisiä luvuilla $0, 1, \ldots, n$, missä kutakin lukua käytetään täsmälleen kerran; tällaisia nimeämisiä pidetään samoina, jos ne voidaan saada toisistaan ympyrän kierrolla. Nimeämistä kutsutaan kauniiksi, jos a:ksi ja d:ksi nimettyjen pisteiden välinen jänne ei leikkaa b:ksi ja c:ksi nimettyjen pisteiden välistä jännettä, kun neljälle nimelle a < b < c < d pätee a + d = b + c.

Olkoon M kauniiden nimeämisten lukumäärä, ja olkoon N niiden positiivisten kokonaislukujen järjestettyjen parien (x, y) lukumäärä, joille $x + y \le n$ and $\operatorname{syt}(x, y) = 1$. Todista, että

$$M = N + 1$$
.

Language: Finnish