Reaching for the Stars: Discounts and Review Tier Transitions in the Video Games Market

Dmitry Sorokin (NYU)

January 15, 2021

Sorokin (NYU) January 15, 2021 1/39

Economics of Attention

1-48 of over 5,000 results for "wine glasses"

Amazon Prime

Deals

☐ Today's Deals

Prime Wardrobe

prime wardrobe

Department

Kitchen & Dining
Wine Glasses

- See more
- See All 17 Departments

Avg. Customer Review

Buy it again

See all and manage

Sorokin (NYU) January 15, 2021 2 / 39

Economics of Attention

- Online consumer reviews help to simplify choice in many markets
 - → Individual consumers leave reviews
 - → Reviews are often aggregated into review tiers (******)
 - → Future customers rely on reviews
- Firms try to manage their reviews
 - → Soliciting reviews from their buyers
 - → Responding to the reviews they receive
 - → Leaving fake reviews
- What firms can do to affect their reviews is important for market design
 - → "Zero Reviews Trap" as a barrier to entry
- I study a new form of review management
 - → Can firms use price promotions to upgrade their review tiers?
 - → A link between discounts and review tier transitions

Sorokin (NYU) January 15, 2021 3

Why Discount?

- Consider a product that is a few reviews short of obtaining an extra star
- Would it be profitable for this product to launch a price promotion?
- The selection effect:
 - → Customers who buy during a discount are potentially different
 - → They could leave better or worse reviews
 - → The sign of the selection effect is an empirical question
- The variance effect:
 - → Randomness in the outcome of the discount
 - → A good outcome catapults the product to the next review tier
 - → A bad outcome might not affect the review tier
 - → The opposite effect for a product close to a review tier downgrade

Sorokin (NYU) January 15, 2021

Sorokin (NYU) January 15, 2021 5/39

Sorokin (NYU) January 15, 2021 5/39

Sorokin (NYU) January 15, 2021 5 / 39

Sorokin (NYU) January 15, 2021 5 / 39

What I do

- Model of demand and reviewing on Steam
 - → The best review tier increases sales by 23% compared the worst tier
 - → Discounts are followed by a 38% spike in sales
- 2 Discounting around transitions
 - → Products that are close to upgrading their review tier are 4-9% more likely to sell at a discount
 - → Evidence that proximity to a downward transition decreases the probability to sell at a discount by up to 4%
- 3 Selection vs. Variance
 - → The selection effect is small
 - → Controlling for the selection effect, proximity to a negative transition decreases the probability of a discount by 6%
 - → Consumers are more likely to leave reviews when they buy during a discount

Sorokin (NYU) January 15, 2021

Literature

- Regression discontinuity with review tiers: Anderson and Magruder (2012), Luca (2016), Sorokin and Stevens (2020)
 - → How random is assignment around the cutoffs?
- Promotions: is the selection effect negative?
 - → Ifrach et al. (2017), Acemoglu et al. (2019)
 - → Byers et al. (2012), Li (2016), Zhu et al. (2019), Cabral and Li (2015)
- A negative selection effect poses a puzzle:
 - → Zegners (2017): free pricing leads to bad reviews
- Design of recommendation systems in digital markets
 - → Vellodi (2020): reviews as barriers to entry and pricing as a way to solve it

Sorokin (NYU) January 15, 2021

Roadmap for Today

- Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- **5** Selection vs. Variance

Sorokin (NYU) January 15, 2021

8/39

Roadmap for Today

- Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- 5 Selection vs. Variance

Sorokin (NYU) January 15, 2021 9 / 39

Steam

- In 2018 the U.S. video games market revenue matched the one of the U.S. film industry: \$43.4 billion (Minotti 2019)
- Steam is the major online marketplace for selling video games
 - → Think "App Store" for games on PC and Mac
 - → 2013: 75% of all PC games sold online (Cliff 2013)
 - → January 2018: over 47 million daily active users
- Until recently, virtually no competition
 - → Developers: Steam is a powerful player that you can't ignore

Sorokin (NYU) January 15, 2021 10 / 39

Reviews on Steam

- Transparency and simplicity
 - → Users give "thumbs up" or "thumbs down"
- A Review Score is the fraction of positive reviews among all reviews
 - → A game with 6 good reviews out of 10 total reviews has a score of 60%
- Review Bins based on the score:

Review Bin	N. of Reviews	Score
No Score	[0, 10)	-
Negative	Any	[0, 40)
Mixed	Any	[40, 70)
Mostly Positive	Any	[70, 80)
Positive	[10, 50)	[80, 100)
Very Positive	More than 50	[80, 100)
Overwhelmingly Positive	More than 500	[95, 100]

Sorokin (NYU) January 15, 2021 11/3

Visibility and Reviews

- Labels better than "Negative" have a similar contribution to visibility
- The effect is through the information that reviews convey

Sorokin (NYU) January 15, 2021 12 / 39

Roadmap for Today

- 1 Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- 5 Selection vs. Variance

Sorokin (NYU) January 15, 2021

13 / 39

Data

- Main source: SteamDB.com, a third party website
- Player count: the maximum number of concurrent players on any given day
- Price history: daily observations of prices
- Review history:
 - → Cumulative numbers of positive and negative reviews on any day
 - → Review score and review labels are reverse-engineered

Sorokin (NYU) January 15, 2021 14/39

Example Game

Sample

- Single player, not free-to-play games
 - → Games with stable quality: no more than 5 small patches
- Released in 2017 or later
 - → Stable review system
- At least 4 concurrent players on the median day
- This leaves us with 906 games, about 319,000 observations

Sorokin (NYU) January 15, 2021 16 / 39

Transitions

Transitions Stats

- 596 games have transitioned, 1688 unique transitions
 - → 1225 are followed by at least 7 days in the new bin
- Every tier is well-represented in the data Transitions Matrix

Sorokin (NYU) January 15, 2021 17/39

Discounts

- Nominal prices rarely change, but instead products go on discounts
 - → 6331 discounts vs. 43 price changes
 - → Consumers can set up discount notifications
- Custom and Curated discounts
 - → Seasonal sale: 64% of the sample

Sorokin (NYU) January 15, 2021 18/39

Discounts Around Transitions

- Transitions between review bins are preceded by discounts
- Extra day closer to the transition \iff the probability of discount $\uparrow 3\%$
- ullet Extra day after the transition \iff the probability of discount $\downarrow 7\%$

Sorokin (NYU) January 15, 2021 19/3

Roadmap for Today

- Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- 5 Selection vs. Variance

Sorokin (NYU) January 15, 2021

20 / 39

Empirical Model of Demand and Gaming

- How impactful are discounts on Steam?
- How much do various review labels matter for sales?
- Data limitation: no sales data
 - → I use the model to infer demand parameters from product usage
- Prerequisite for a model of reviewing

Sorokin (NYU) January 15, 2021 21 / 39

Arrival of Customers

- Game i on day t sells to B_{it} new buyers
 - $\rightarrow B_{it} \sim P(\lambda_{it}), \ \lambda_{it} = \lambda_i (1 + x'_{it}\beta)$
 - → x_{it}: price, review information, age, seasonality
 - $\rightarrow Q_{it}^D(x_{it}) = \mathbb{E}[B_{it}] = \lambda_i(1 + x'_{it}\beta)$ is the demand function
- Active players, A_{it}: bought the game and keep playing
- Game i on day t forever loses Eit active players
 - $\rightarrow E_{it} \sim Binomial(A_{it-1}; 1 \psi_i)$
- The evolution of A_{it} is then

$$A_{it} = A_{it-1} + B_{it} - E_{it} \tag{1}$$

January 15, 2021 22 / 39

Identification Challenges: Unobserved Buyers

Both the number of buyers and the number of exiters are unobserved

$$A_{it} - A_{it-1} = B_{it} - E_{it}$$

- Key: entry is in absolute numbers, but exit is proportional to player count
 - → Exit rates are identified from the spikes in the player count (Show me!)
 - → Entry rates are identified from the level at which the player count settles
 - → Crucial heterogeneity in ψ_i

Sorokin (NYU) January 15, 2021 23 / 3:

Identification Challenges: Causal Effects

- Time varying unobserved demand shifters correlated with the observables
 - → Sample selection ⇒ fixed quality
- Identifying assumption: conditional on the controls, the unobserved factors are not correlated with the review tier
 - → Rely on the panel structure of the data
 - → "Compare" sales between the periods spent in different review tiers

Sorokin (NYU) January 15, 2021 24 / 39

Estimation

$$A_{it} = A_{it-1} + B_{it} - E_{it}$$

- $\mathbb{E}\left[A_{it} \mid A_{it-1}, x_{it}\right] = \psi_i A_{it-1} + \lambda_i (1 + x'_{it}\beta)$
- The model implies the following regression equation:

$$A_{it} = \psi_i A_{it-1} + \lambda_i (1 + x'_{it}\beta) + u_{it}$$
 (2)

$$0 = \mathbb{E}\left[u_i \mid A_{it-1}, x_{it}\right] \tag{3}$$

- Parameters: $\theta = (\{\psi_i, \lambda_i\}_{i=1}^n, \beta)$, $\dim(\theta) = 2n + k$
- Conditional on β , ψ_i and λ_i could be obtained by OLS
- Minimize the concentrated sum of squares with respect to β

Sorokin (NYU) January 15, 2021 25 / 3:

Results: Distributions of $\hat{\lambda}_i (1 + \bar{x}_i \hat{\beta})$ and $\hat{\psi}_i$

Results: Demand Parameters $\hat{\beta}$

Price	-0.342***
	(0.010)
New Discount	0.230***
	(0.013)
Seasonal Sale	-0.006
	(0.004)
No Score	-0.128***
	(0.019)
Negative	0.005
	(0.020)
Mostly Positive	0.019**
	(800.0)
Positive	0.054***
	(0.010)
Very Positive	0.052***
	(0.010)
Overwhelmingly Positive	0.100***
	(0.013)
Observations	355900
R ²	0.850

Sorokin (NYU) January 15, 2021 27/39

Roadmap for Today

- 1 Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- 5 Selection vs. Variance

Sorokin (NYU) January 15, 2021

28 / 39

Discounts and Realized Transitions

Sorokin (NYU) January 15, 2021 29/39

Discounts and Realized Transitions

- Realized transitions are preceded by discounts
- It is merely a correlation
 - → Discounts could be causing transitions
 - → In fact, they better be, for my story to hold up!
- Firms that give a discount, but do not transition, are not accounted for
 - → Firms avoiding a bad transition and not making a good one
- Solution: potential transitions
 - → Remember the stylized model!
 - → How close the game is to a transition is a state variable
 - → Discount today can not cause the potential of transition

Sorokin (NYU) January 15, 2021 30 / 3

Potential Transitions

- The goal is to see if proximity to a transition increases the probability of discounting
- Define a measure of proximity to a transition
- For each game:
 - → How many positive (negative) reviews are needed for a positive (negative) transition
 - → Calculate the speed of positive (negative) review arrival
 - → Days to potential transition if only receiving one type of reviews

→ Example

Sorokin (NYU) January 15, 2021 31/39

Empirical Strategy

- One has to study proximities to positive and negative thresholds together
 - → A firm close to an upgrade might be willing to give a discount
 - → A firm close to a downgrade might be willing to stay put

Sorokin (NYU) January 15, 2021 32 / 39

Empirical Strategy

- One has to study proximities to positive and negative thresholds together
 - → A firm close to an upgrade might be willing to give a discount
 - → A firm close to a downgrade might be willing to stay put
- ullet Let $T_{it}^+ \in \{\,0,1\,\}$ indicate if proximity to a + transition is less than 14 days
- ullet Let $T_{it}^- \in \{\,0,1\,\}$ indicate if proximity to a transition is less than 14 days

Sorokin (NYU) January 15, 2021 32 / 39

Empirical Strategy

- One has to study proximities to positive and negative thresholds together
 - → A firm close to an upgrade might be willing to give a discount
 - → A firm close to a downgrade might be willing to stay put
- ullet Let $T_{it}^+ \in \{\,0,1\,\}$ indicate if proximity to a + transition is less than 14 days
- ullet Let $\mathcal{T}_{it}^- \in \{\,0,1\,\}$ indicate if proximity to a transition is less than 14 days
- Estimate

$$disc_{it} = \beta^{+} T_{it}^{+} + \beta^{-} T_{it}^{-} + X_{it}\beta + f_{i} + \tau_{t} + \varepsilon_{it}, \tag{4}$$

- $\rightarrow disc_{it} = 1 \{ discount_{it} > 0 \}$
- → X_{it}: log proximities to transitions, log review count, score, review bin dummies, time without a discount, age
- → f_i: game effect
- $\rightarrow \tau_t$: day of the week and week effects

Sorokin (NYU) January 15, 2021 32 / 39

Results

- Close to an upgrade: 4-9% increase in the daily probability of a discount
- Close to a downgrade: 4% decrease in the daily probability of a discount

	Depende	ent variable:	
	Discount Probability		
	14 days	7 days	
Close to Pos. Transition	0.015***	0.007**	
	(0.003)	(0.003)	
Close to Neg. Transition	-0.006**	0.001	
	(0.003)	(0.004)	
Observations	295,228	295,228	
R ²	0.428	0.428	
Note:	*p<0.1; **p<	(0.05; ***p<0.01	

Sorokin (NYU) January 15, 2021 33/39

Roadmap for Today

- Institutional Setting
- 2 Data
- 3 Empirical Model
- 4 Discounts Around Transitions
- 5 Selection vs. Variance

Sorokin (NYU) January 15, 2021

34 / 39

Selection vs. Variance

- Attenuation of the effect of the proximity to a negative transition on the probability of the discount
 - → Positive selection effect vs. negative variance effect
- Estimate the difference in review sentiment on and off a discount

$$\Delta \textit{score}_i = \begin{bmatrix} \mathsf{Expected Score} \\ \mathsf{on a Discount} \end{bmatrix} - \begin{bmatrix} \mathsf{Expected Score} \\ \mathsf{off a Discount} \end{bmatrix}$$

- Using the estimates of the selection effect, check for the variance effect:
 - → Products on the verge of a review slump should discount less

The Variance Effect

Estimate

$$\textit{disc}_{\textit{it}} = \left(\beta_0^+ + \Delta \textit{score}_{\textit{i}}\beta_1^+\right)T_{\textit{it}}^+ + \left(\underline{\beta_0^-} + \Delta \textit{score}_{\textit{i}}\beta_1^-\right)T_{\textit{it}}^- + X_{\textit{it}}\beta + f_{\textit{i}} + \tau_t + \varepsilon_{\textit{it}}$$

- β_0^- measures the effect of proximity to a negative transition when the selection effect $\Delta score_i$ is zero
- Additional test: do consumers who buy during a discount leave reviews with a higher probability?

Sorokin (NYU) January 15, 2021 36 / 39

Results: $\triangle score_i$

- Can not reject the hypothesis that the selection effect is negative (p = 0.14)
- Reject the hypothesis that users are less likely to leave a review during a discount (t = 9.16)
 - → They are 24-40% more likely to do so

Sorokin (NYU) January 15, 2021 37 / 39

	Dependent variable:				
	Discount Probability				
	Controlling for $\Delta score_i$	Not controlling for $\Delta score$			
Pos. Transition	0.014***	0.015***			
	(0.003)	(0.003)			
Neg. Transition	-0.009***	-0.006^{**}			
	(0.003)	(0.003)			
Selection \times Pos. Tr.	0.009	· -			
	(0.013)				
Selection \times Neg. Tr.	0.019	-			
	(0.015)				
Observations	290,628	295,228			
R ²	0.434	0.428			
Note:		*p<0.1; **p<0.05; ***p<0.01			

Sorokin (NYU) January 15, 2021 38/39

Conclusion

- I estimate a model of demand and reviewing behavior
 - → The best review tier increases sales by 23% compared to the worst tier
 - → Discounts are followed by a 38% spike in sales
- Proximity to a review transition affects discounting
 - → Review upgrade: 4-9% more likely to sell at a discount
 - → Review downgrade: 4% more likely to sell at a discount
- Two major effects at play: the selection and the variance effects
 - → The selection effect is small on Steam
 - → The variance effect decreases the probability of a discount by 6% for products close to a negative transition

Sorokin (NYU) January 15, 2021 39 / 3

40

Figure: Distribution Of the Number of Reviews and Players at 180 Days.

41

Figure: Distribution Of the Number of Reviews and Players at 180 Days.

Stats Before Transitions

Table: Average Discount, Age, and Review Count Two Weeks Before A Transition

Statistic	N	Mean	St. Dev.	Pctl(25)	Pctl(75)
Mean Discount (%)	1,225	10	14	0	15.9
Age	1,225	142	157	8	226
Reviews	1,225	130	343	26	81

Transition Matrix

43

		Prob	abiliti	es					С	ounts		
Neg	Mix	M. Pos	Pos	V. Pos	Ov. Pos		Neg	Mix	M. Pos	Pos	V. Pos	Ov. Pos
0	100	0	0	0	0	Negative	0	58	0	0	0	0
24	0	76	0	0	0	Mixed	60	0	189	0	0	0
0	43	0	25	33	0	M. Positive	0	245	0	141	188	0
0	0	40	0	60	0	Positive	0	2	207	0	310	0
0	0	84	0	0	16	V. Positive	0	0	220	0	0	43
0	0	0	0	100	0	Ov. Positive	0	0	0	0	25	0

44

0.005***
(0.0005)
-0.011***
(0.0005)
-0.007
(0.011)
0.005
(0.006)
0.044***
(0.009)
0.014
(0.009)
0.020
(0.016)
-0.0005*
(0.0003)
-0.010***
(0.002)
0.0003***
(0.00001)
0.903***
(0.021)
32,112
0.396
Weekdays, Week
×
d = 2

Proximity to a Transition: Example

- Consider a game with 19 positive and 6 negative reviews
 - → Score = 76%, "Mostly Positive"
 - → Needs 5 positive reviews to transition to "Positive": 24/30 = 80%
 - → Needs 3 negative reviews to transition to "Mixed": $19/28 \approx 67\%$
- If at age of 200 the game has 80 positive and 20 negative reviews, then
 - → Average of 0.4 positive and 0.1 negative reviews per day
 - → Needs 5/0.4 = 12.5 days of only positive reviews
 - → Needs 3/0.1 = 30 days of only negative reviews

46

Figure: Distribution Of the Number of Reviews and Players at 180 Days.

Demand: Identification of β

- · Goals: prediction of customer arrival and the effect of reviews on sales
- Unobserved factors \tilde{x}_{it} that are correlated with the observed ones can lead to the OVB

$$A_{it} = \psi_i A_{it-1} + \lambda_i (1 + x'_{it}\beta) + \lambda_i \tilde{x}'_{it}\beta + \tilde{u}_{it}$$

- Solution:
 - → Sample selection ruling out changes in quality
 - $\rightarrow \lambda_i$ controls for time invariant features
 - → Time effects to account for day of the week seasonality and big seasonal sales
 - → Other controls: age, price, number of reviews, review score
- Review labels don't exhibit enough variation within games
 - → Extrapolate changes in customer inflow from games that switch labels

Demand: Estimation

• The NLLS estimator $\hat{\theta}$ is the solution to

$$\min_{\theta} \sum_{i=1}^{n} \sum_{t=2}^{T_i} w_i (A_{it} - \psi_i A_{it-1} - \lambda_i (1 + x'_{it} \beta))^2$$
 (5)

- Conditional on β , the problem is OLS
 - → Solve for $\hat{\lambda}_i(\beta)$ and $\hat{\psi}_i(\beta)$
 - → Concentrate λ_i and ψ_i out
- Solve the concentrated out minimization problem

F.O.C. for the NLLS Problem

$$\psi_i: \sum_{t=2}^{T_i} (y_{it} - \psi_i y_{it-1} - \lambda_i (1 + x'_{it} \beta)) y_{it-1} = 0$$
 (6)

$$\lambda_i: \sum_{t=2}^{T_i} (y_{it} - \psi_i y_{it-1} - \lambda_i (1 + x'_{it}\beta)) (1 + x'_{it}\beta) = 0$$
 (7)

$$\beta: \sum_{i=1}^{n} \sum_{t=2}^{T_i} w_i (y_{it} - \psi_i y_{it-1} - \lambda_i (1 + x'_{it} \beta)) \lambda_i x_{it} = 0$$
 (8)

Stylized Model

- A product has of a review status $s \in (0,1)$ can give a discount at cost c
- Status goes up by x with prob. p, down by x with prob. 1 p
- → Upgrade: *s* exceeds 1. Downgrade: *s* goes below 0.
- Payoffs from downgrade, no change, or upgrade: $u^L < 0 < u^H$
- Give the discount if $\mathbb{E}\left[U(s+X)\right]=pU(s+x)+(1-p)U(s-x)-c>0$
- If s > 1/2, then

$$\mathbb{E}[U(s+X)] = \begin{cases} -c & x < 1-s \\ pu^{H} - c & x \in [1-s,s) \\ pu^{H} + (1-p)u^{L} - c & x \geqslant s \end{cases}$$
(9)

Arrival of Reviews

- ullet A buyer at t-k leaves a positive (negative) review with probability r_{it}^+ (r_{it}^-)
- Good reviews $G_{it} \sim P(\cdot; r_{it}^+ \lambda_{it-k})$, bad reviews $B_{it} \sim P(\cdot; r_{it}^- \lambda_{it-k})$
- The like rate and the dislike rate are linear functions of observables

$$r_{it}^{+} = w_{it}' \rho_{i}^{+} \qquad r_{it}^{-} = w_{it}' \rho_{i}^{-}$$
 (10)

• $w_{it} = [1, disc_{it-k}, \ldots]', \ \rho_i^+ = [\rho_{i0}^+, \rho_{i1}^+, \ldots]$

The Selection Effect

- Probabilities of a like and a dislike off a discount: ρ_{i0}^+ and ρ_{i0}^-
- During a discount: $\rho_{i0}^+ + \rho_{i1}^+$ and $\rho_{i0}^- + \rho_{i1}^-$
- Review score: probability of a like conditional on a review
- Measure the selection effect by the difference between the expected scores on and off a discount

$$\Delta \textit{score}_i := \frac{\rho_{0i}^+ + \rho_{1i}^+}{\rho_{0i}^+ + \rho_{1i}^+ + \rho_{0i}^- + \rho_{1i}^-} - \frac{\rho_{0i}^+}{\rho_{0i}^+ + \rho_{0i}^-}$$

Test

$$\begin{split} &H_0: \frac{\rho_0^+ + \rho_1^+}{\rho_0^+ + \rho_1^+ + \rho_0^- + \rho_1^-} - \frac{\rho_0^+}{\rho_0^+ + \rho_0^-} \leqslant 0 \\ &H_1: \frac{\rho_0^+ + \rho_1^+}{\rho_0^+ + \rho_1^+ + \rho_0^- + \rho_1^-} - \frac{\rho_0^+}{\rho_0^+ + \rho_0^-} > 0 \end{split}$$

Reviews: Identification

- Turns out, G_{it} and B_{it} are independent
 - → We can estimate the like and dislike rates separately
- The lag between a purchase and review k is set to be the max of the impulse response function of review count to discounts $\frac{1}{2}$
- ullet Estimation is by maximum likelihood, using the estimates $\hat{\lambda}_{it}$ in place of λ_{it}

$$\mathbb{P}(G_{it} = g) = \frac{(r_{it}^+ \hat{\lambda}_{it-k})^g}{g!} e^{-r_{it}^+ \hat{\lambda}_{it-k}}$$

• If discount is a dummy, a closed-form solution can be derived

$$\hat{\rho}_{0i}^{+} + \hat{\rho}_{1i}^{+} = \frac{\sum_{t} disc_{it-k} g_{it}}{\sum_{t} disc_{it-k} \hat{\lambda}_{it-k}}$$
(11)

$$\hat{\rho}_{0i}^{+} = \frac{\sum_{t} (1 - disc_{it-k}) g_{it}}{\sum_{t} (1 - disc_{it-k}) \hat{\lambda}_{it-k}}$$
(12)

Reviews: Estimates

	(1)	(2)
Constant (Like)	0.074***	0.067***
	(0.002)	(0.001)
Discount (Like)	0.032***	0.017***
	(0.003)	(0.001)
Constant (Dislike)	0.015***	0.013***
	(0.001)	(0.000)
Discount (Dislike)	0.004***	0.002***
	(0.001)	(0.000)
Young (Like)		0.296***
		(0.015)
Old (Like)		-0.045
		(0.001)
Young (Dislike)		0.067***
		(0.006)
Old (Dislike)		-0.008
•		(0.000)
Observations	355077	355077

Identification of k

55

eviews New Review 1.801** 22) (0.135) 1.802** 76) (0.228) 776) (0.228) 777 (0.208) 778 (0.100) 778 (0.100) 778 (0.072)	* -0.159 (0.152) * -0.557*** (0.184) * -0.470*** (0.176) * -0.370**
22) (0.135) 1*** 4.282** 76) (0.228) 7*** 1.969** 39) (0.100) 1.197**	(0.152) * -0.557*** (0.184) * -0.470*** (0.176) * -0.370**
*** 4.282** 76) (0.228) *** 1.969** 39) (0.100) *** 1.197**	* -0.557*** (0.184) * -0.470*** (0.176) * -0.370**
76) (0.228) *** 1.969** 39) (0.100) 5** 1.197**	* -0.557*** (0.184) * -0.470*** (0.176) * -0.370**
7*** 1.969** 39) (0.100) 3*** 1.197**	* -0.470*** (0.176) * -0.370**
39) (0.100) 3*** 1.197**	(0.176) * -0.370**
3** [*] 1.197** [*]	* —0.370 [*] *
10) (0.072)	(0.170)
2*** 0.847**	* -0.401**
96) (0.066)	(0.166)
3*** 1.023**	* — 0.395 [*] *
04) (0.125)	(0.161)
71 0.396**	* -0.368**
86) (0.063)	(0.159)
.20* 0.254**	* —0.336 [*] *
72) (0.076)	(0.155)
<i>′</i> √	✓
·	✓
910 350 910	350,819
019 330,019	0.154
	86) (0.063) 20* 0.254** 72) (0.076)

Note:

*p<0.1; **p<0.05; ***p<0.01