PROJECT: STUDENT PERFORMANCE ANALYSIS (DATA LABELING)

MOHAMED RAAIZ

Project: Student Performance Analysis

Introduction

Student Performance Analysis is a data-driven approach to understand academic trends, evaluate student strengths, and identify areas for improvement. By analyzing student scores, attendance, and subject-wise performance, educators can make informed decisions to enhance learning outcomes. This type of analysis is critical for personalized interventions, curriculum improvements, and monitoring overall class performance.

Key Points

1. Dataset Features:

Student_ID: Unique identifier for each student

Name: Student name

o Age: Age of the student

o Gender: Male/Female/Other

o Subject: Subject name (Math, Science, English, etc.)

Score: Marks obtained

o Attendance (%): Percentage of classes attended

```
[1] # Step 1: Import Libraries
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
# Step 2: Create Dummy Dataset
     data = {
         "Student_ID": [1,2,3,4,5,6,7,8,9,10],
         "Name": ["Alice", "Bob", "Charlie", "David", "Eva", "Frank", "Grace", "Hannah", "Ian", "Julia"], "Age": [15,16,15,17,16,15,16,17,15,16],
         "Gender": ["F", "M", "M", "F", "M", "F", "M", "F"],
"Subject": ["Math", "Science", "English", "Math", "Science", "English", "Math"],
         "Score": [88,92,75,85,95,80,78,89,70,90],
         "Attendance": [95,88,80,92,97,85,90,93,78,96]
     df = pd.DataFrame(data)
[4] # Step 3: Average Scores per Subject
     avg_scores = df.groupby("Subject")["Score"].mean()
     print("Average Scores per Subject:\n", avg_scores)
→ Average Scores per Subject:
     Subject
     English
                75.00
     Math
                85.25
     Science
              92.00
    Name: Score, dtype: float64
[5] # Step 4: Top Performing Students
     top_students = df.sort_values(by="Score", ascending=False)[["Name","Subject","Score"]].head(5)
     print("\nTop Performing Students:\n", top_students)
```

```
₹
    Top Performing Students:
          Name Subject Score
          Eva Science
         Bob Science
                          92
    9 Julia Math
7 Hannah Science
                          90
                          89
    0 Alice Math
[6] # Step 5: Correlation between Attendance and Score
    correlation = df["Attendance"].corr(df["Score"])
    print("\nCorrelation between Attendance and Score:", correlation)
<del>_</del>__
    Correlation between Attendance and Score: 0.8575939939456327
[7] # Step 6: Visualize Score Distribution
    plt.figure(figsize=(8,5))
    sns.boxplot(x="Subject", y="Score", data=df)
    plt.title("Score Distribution per Subject")
    plt.show()
    plt.figure(figsize=(8,5))
    sns.scatterplot(x="Attendance", y="Score", hue="Subject", data=df, s=100)
    plt.title("Attendance vs Score")
    plt.show()
```


Attendance vs Score


```
# Step 7: Predict Pass/Fail based on Score Threshold (e.g., 75)
df["Pass/Fail"] = df["Score"].apply(lambda x: "Pass" if x>=75 else "Fail")
print("\nPass/Fail Status:\n", df[["Name","Score","Pass/Fail"]])
Pass/Fail Status:
       Name Score Pass/Fail
0
     Alice
               88
                        Pass
       Bob
               92
1
                        Pass
   Charlie
               75
                        Pass
     David
3
               85
                        Pass
4
       Eva
               95
                        Pass
5
     Frank
               80
                        Pass
     Grace
               78
                        Pass
    Hannah
               89
                        Pass
               70
8
       Ian
                        Fail
     Julia
9
               90
                        Pass
```

2. Analysis Tasks:

- o Calculate average scores per subject.
- Identify top-performing students.

- o Check correlation between attendance and scores.
- Visualize score distributions using histograms or boxplots.
- o Predict pass/fail likelihood based on attendance and scores.

3. Key Keywords:

Data Cleaning, Aggregation, Correlation, Visualization, Predictive Analysis,
 Performance Metrics

Conclusion

Analyzing student performance provides actionable insights for teachers and administrators. Key benefits include:

- Identifying top-performing and struggling students
- Understanding subject-wise trends and patterns
- Linking attendance to academic performance
- Supporting data-driven interventions to improve student outcomes

Outcome: Helps schools enhance teaching strategies, monitor learning effectiveness, and improve overall academic results.