Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Plan

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p'_1, \cdots, p_n = p'_n$$
v.s.

 $H_1: p_i \neq p_i'$ for at least one *i*

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p'_1, \cdots, p_n = p'_n$$

 $H_1: p_i \neq p'_i$ for at least one *i*

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p'_1, \cdots, p_n = p'_n$$

 $H_1: p_i \neq p_i'$ for at least one *i*

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p_1', \cdots, p_n = p_n'$$
v.s.

 $H_1: p_i \neq p'_i$ for at least one i

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^k \pi_i = 1$$
, $\sum_{i=1}^k o_i = n$, and $\mathbb{E}[O_i] = n\pi_i =: e_i$, $\operatorname{Var}(O_i) = n\pi_i (1-\pi)$

1. Suppose we are sampling from the c.d.f. F(y)

- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- 4. Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_{i} = 1$$
, $\sum_{i=1}^{k} o_{i} = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.,

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_{i} = 1$$
, $\sum_{i=1}^{k} o_{i} = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_{i} = 1$$
, $\sum_{i=1}^{k} o_{i} = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- **5.** Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_i = 1$$
, $\sum_{i=1}^{k} o_i = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- **5.** Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.,

$$\mathbb{P}(O_1 = o_1, \cdots, O_k = o_k) = \frac{n!}{\prod_{i=1}^k o_i!} \prod_{i=1}^k \pi_i^{o_i}$$

with
$$\sum_{i=1}^k \pi_i = 1$$
, $\sum_{i=1}^k o_i = n$, and
$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \mathsf{Var}(O_i) = n\pi_i(1-\pi_i)$$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{\textit{O}_1 - \textit{n}\pi_1}{\sqrt{\textit{n}\pi_1(1 - \pi_1)}} \overset{\textit{d}}{\rightarrow} \textit{N}(0, 1) \quad \Longrightarrow \quad \frac{(\textit{O}_1 - \textit{n}\pi_1)^2}{\textit{n}\pi_1(1 - \pi_1)} \overset{\textit{d}}{\rightarrow} \chi_1^2$$

$$\frac{||}{(O_1 - n\pi_1)^2} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\frac{||}{\frac{(O_1-e_1)^2}{e_1}+\frac{(O_2-e_2)^2}{e_2}}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{\textit{O}_1 - \textit{n}\pi_1}{\sqrt{\textit{n}\pi_1(1 - \pi_1)}} \overset{\textit{d}}{\rightarrow} \textit{N}(0, 1) \quad \Longrightarrow \quad \frac{(\textit{O}_1 - \textit{n}\pi_1)^2}{\textit{n}\pi_1(1 - \pi_1)} \overset{\textit{d}}{\rightarrow} \chi_1^2$$

$$\frac{||}{n\pi_1} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\dfrac{||}{(\mathit{O}_1-\mathit{e}_1)^2} + \dfrac{(\mathit{O}_2-\mathit{e}_2)^2}{\mathit{e}_2}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{O_1 - n\pi_1}{\sqrt{n\pi_1(1 - \pi_1)}} \stackrel{d}{\to} N(0, 1) \quad \Longrightarrow \quad \frac{(O_1 - n\pi_1)^2}{n\pi_1(1 - \pi_1)} \stackrel{d}{\to} \chi_1^2$$

$$\frac{||}{n\pi_1} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\dfrac{||}{(\emph{O}_{1}-\emph{e}_{1})^{2}} + \dfrac{(\emph{O}_{2}-\emph{e}_{2})^{2}}{\emph{e}_{2}}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k=2, by CLT, as $n\to\infty$,

$$\frac{O_1 - n\pi_1}{\sqrt{n\pi_1(1 - \pi_1)}} \stackrel{d}{\to} N(0, 1) \implies \frac{(O_1 - n\pi_1)^2}{n\pi_1(1 - \pi_1)} \stackrel{d}{\to} \chi_1^2$$

$$\qquad \qquad ||$$

$$\frac{(O_1 - n\pi_1)^2}{n\pi_1} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\qquad \qquad ||$$

$$\frac{(O_1 - e_1)^2}{e_1} + \frac{(O_2 - e_2)^2}{e_2}$$

Hence, as $n \to \infty$,

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

ļ

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

Alternative: G-test

- the likelihood ration test for multinomial model

1. Under $H_0: \pi_i = p_i, i = 1, \dots, k$, the MLE of π_i are

$$\widetilde{\pi}_i = p_i = \frac{np_i}{n} = \frac{e_i}{n}, \quad \forall i.$$

2. When there are no constraints, for $i = 1, \dots, k-1$.

$$\frac{\partial}{\partial \pi_i} \ln L(\pi_1, \dots, \pi_{k-1} | o_1, \dots, o_k) = 0, \quad 1 \le i \le k-1$$

$$\frac{o_i}{\widehat{\pi}_i} = \frac{o_k}{1 - \widehat{\pi}_1 - \dots - \widehat{\pi}_{k-1}}, \quad 1 \le i \le k-1$$

$$\widehat{\pi}_i = \frac{o_i}{n}, \quad 1 \le i \le k$$

Alternative: G-test

- the likelihood ration test for multinomial model

1. Under $H_0: \pi_i = p_i, i = 1, \dots, k$, the MLE of π_i are

$$\widetilde{\pi}_i = p_i = \frac{np_i}{n} = \frac{e_i}{n}, \quad \forall i.$$

2. When there are no constraints, for $i = 1, \dots, k - 1$,

$$\frac{\partial}{\partial \pi_i} \ln L(\pi_1, \dots, \pi_{k-1} | o_1, \dots, o_k) = 0, \quad 1 \le i \le k-1$$

$$\frac{o_i}{\widehat{\pi}_i} = \frac{o_k}{1 - \widehat{\pi}_1 - \dots - \widehat{\pi}_{k-1}}, \quad 1 \le i \le k-1$$

$$\widehat{\pi}_i = \frac{o_i}{n}, \quad 1 \le i \le k$$

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$
$$= \sum_{i=1}^k o_i \ln \left(\frac{\widetilde{\pi}_i}{n} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right)$$
$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(\frac{e_i}{o_i}\right) = 2\sum_{i=1}^k o_i \ln \left(\frac{o_i}{e_i}\right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right)$$
$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$\mathcal{G} := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(rac{oldsymbol{e}_i}{o_i}
ight) = 2\sum_{i=1}^k o_i \ln \left(rac{o_i}{oldsymbol{e}_i}
ight)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n

$$\Rightarrow$$

$$\begin{split} \lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right) \\ = \sum_{i=1}^k o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right) \end{split}$$

$$\sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(\frac{e_i}{o_i} \right) = 2\sum_{i=1}^k o_i \ln \left(\frac{o_i}{e_i} \right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n

$$\Rightarrow$$

$$egin{aligned} \lambda := \ln \left(rac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)}
ight) = \log \left(rac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}}
ight) \ &= \sum_{i=1}^k o_i \ln \left(rac{\widetilde{\pi}_i}{\widehat{\pi}_i}
ight) \ &= \sum_{i=1}^k o_i \ln \left(rac{e_i}{o_i}
ight) \end{aligned}$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(rac{oldsymbol{e}_i}{o_i}
ight) = 2\sum_{i=1}^k o_i \ln \left(rac{o_i}{oldsymbol{e}_i}
ight)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$

$$= \sum_{i=1}^{k} o_{i} \ln \left(\frac{\widetilde{\pi}_{i}}{\widehat{\pi}_{i}} \right)$$

$$= \sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i}\right) = 2\sum_{i=1}^{k} o_i \ln \left(\frac{o_i}{e_i}\right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

By second order Taylor expanson around 1

$$G = -2\sum_{i=1}^{k} o_i \ln\left(\frac{e_i}{o_i}\right)$$

$$\approx -2\sum_{i=1}^{k} o_i \left[\left(\frac{e_i}{o_i} - 1\right) - \frac{1}{2}\left(\frac{e_i}{o_i} - 1\right)^2\right]$$

$$= -2\sum_{i=1}^{k} (e_i - o_i) + \sum_{i=1}^{k} o_i \left(\left(1 - \frac{o_i}{e_i}\right) + \frac{o_i}{e_i}\right) \left(\frac{e_i}{o_i} - 1\right)^2$$

$$= 0 + \sum_{i=1}^{n} \frac{o_i^2}{e_i} \left(1 - \frac{o_i}{e_i}\right)^3 + \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\approx \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\parallel$$

$$D$$

.. Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_i \ln\left(\frac{e_i}{o_i}\right)$$

$$\approx -2\sum_{i=1}^{k} o_i \left[\left(\frac{e_i}{o_i} - 1\right) - \frac{1}{2}\left(\frac{e_i}{o_i} - 1\right)^2\right]$$

$$= -2\sum_{i=1}^{k} (e_i - o_i) + \sum_{i=1}^{k} o_i \left(\left(1 - \frac{o_i}{e_i}\right) + \frac{o_i}{e_i}\right) \left(\frac{e_i}{o_i} - 1\right)^2$$

$$= 0 + \sum_{i=1}^{n} \frac{o_i^2}{e_i} \left(1 - \frac{o_i}{e_i}\right)^3 + \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\approx \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

∴ Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}}\right)$$

$$\approx -2\sum_{i=1}^{k} o_{i} \left[\left(\frac{e_{i}}{o_{i}} - 1\right) - \frac{1}{2}\left(\frac{e_{i}}{o_{i}} - 1\right)^{2}\right]$$

$$= -2\sum_{i=1}^{k} (e_{i} - o_{i}) + \sum_{i=1}^{k} o_{i} \left(\left(1 - \frac{o_{i}}{e_{i}}\right) + \frac{o_{i}}{e_{i}}\right) \left(\frac{e_{i}}{o_{i}} - 1\right)^{2}$$

$$= 0 + \sum_{i=1}^{n} \frac{o_{i}^{2}}{e_{i}} \left(1 - \frac{o_{i}}{e_{i}}\right)^{3} + \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\approx \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\parallel$$

$$D$$

∴ Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}}\right)$$

$$\approx -2\sum_{i=1}^{k} o_{i} \left[\left(\frac{e_{i}}{o_{i}} - 1\right) - \frac{1}{2}\left(\frac{e_{i}}{o_{i}} - 1\right)^{2}\right]$$

$$= -2\sum_{i=1}^{k} (e_{i} - o_{i}) + \sum_{i=1}^{k} o_{i} \left(\left(1 - \frac{o_{i}}{e_{i}}\right) + \frac{o_{i}}{e_{i}}\right) \left(\frac{e_{i}}{o_{i}} - 1\right)^{2}$$

$$= 0 + \sum_{i=1}^{n} \frac{o_{i}^{2}}{e_{i}} \left(1 - \frac{o_{i}}{e_{i}}\right)^{3} + \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\approx \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\parallel$$

$$D$$

.: Pearson's Chi-square test is an approximation of G-test.

E.g. 1 Benford's law:

Initial digits

Use this law to check whether the bookkeepers have made up entries.

Assume that bookkeepers are not aware of Benford's law.

E.g. 1 Benford's law:

Table 10.3.1		
Digit, i	$\log_{10}(i+1) - \log_{10}(i)$	
1	0.301	
2	0.176	
3	0.125	
4	0.097	
5	0.079	
6	0.067	
7	0.058	
8	0.051	
9	0.046	

Initial	diaits

Digit	Observed, k_i
1	111
2	60
2	46
4 5	29
5	26
6	22
7	21
8	20
9	20
	355

Use this law to check whether the bookkeepers have made up entries.

Assume that bookkeepers are not aware of Benford's law.

Sol. The test should be

$$H_0: p_1=p_{10},\cdots,p_9=p_{90}$$
 $v.s.$ $H_1: p_i
eq p_{i0}$ for at least one $i=1,\cdots,9.$

Critical region: $\left(\chi^2_{.95,8},\infty\right)=(15.507,\infty)$.

Sol. The test should be

$$H_0: p_1=p_{10},\cdots,p_9=p_{90}$$
 $extit{v.s.}$ $H_1: p_i
eq p_{i0} ext{ for at least one } i=1,\cdots,9.$

Critical region:
$$\left(\chi^2_{.95,8},\infty\right)=(15.507,\infty).$$

Compute the *D* and *G* scores:

Digit	Oi	p_i	ei	$(o_i-e_i)^2/e_i$	$2o_i \ln(e_i/o_i)$
1	111	0.301			
2	60	0.176			
3	46	0.125			
4	29	0.097			
5	26	0.079			
6	22	0.067			
7	21	0.058			
8	20	0.051			
9	20	0.046			
sum	355	1	355	d =	g =

Digit	Oi	pi	ei	$(o_i - e_i)^2/e_i$	$2o_i \ln(e_i/o_i)$
1	111	0.301	106.9	0.16	8.449
2	60	0.176	62.5	0.10	-4.860
3	46	0.125	44.4	0.06	3.309
4	29	0.097	34.4	0.86	-9.963
5	26	0.079	28.0	0.15	-3.937
6	22	0.067	23.8	0.13	-3.433
7	21	0.058	20.6	0.01	0.828
8	20	0.051	18.1	0.20	3.982
9	20	0.046	16.3	0.82	8.109
sum	355	1	355	d = 2.49	g = 2.48

Conclusion: Fail to reject.

```
1 > # FX 10 3 2
 2 > library (data.table)
 3 > mydat <- fread('http://math.emory.edu/~lchen41/teaching/2020 Spring/Case 10-3-2.data')</p>
   trying URL 'http://math.emory.edu/~lchen41/teaching/2020_Spring/Case_10-3-2.data'
   Content type 'unknown' length 153 bytes
   downloaded 153 bytes
9 > head(mvdat)
      Digit Oi
   1: 1 111 0.301
13 3: 3 46 0.125
14 4: 4 29 0.097
| 15 \rangle pi = mydat[.3]
16 > oi = mydat[,2]
| 17 \rangle = sum(oi)
18 > ei = n*pi
| | > di = (ei-oi)^2/ei
20 > qi = 2*qi*loq(qi/ei)
> print (paste("Using Pearson's test, D value is equal to ", round(sum(di),3)))
> print (paste("Using the G-test, G value is equal to ", round(sum(gi),3)))
[1] "Using the G-test, G value is equal to 2.484"
```

Codes available

E.g. 2 Test for randomness

Is the following sample of size 40 from $f_Y(y) = 6y(1-y)$, $y \in [0,1]$?

E.g. 2 Test for randomness

Is the following sample of size 40 from $f_Y(y) = 6y(1-y), y \in [0,1]$?

Table	10.3.4			
0.18	0.06	0.27	0.58	0.98
0.55	0.24	0.58	0.97	0.36
0.48	0.11	0.59	0.15	0.53
0.29	0.46	0.21	0.39	0.89
0.34	0.09	0.64	0.52	0.64
0.71	0.56	0.48	0.44	0.40
0.80	0.83	0.02	0.10	0.51
0.43	0.14	0.74	0.75	0.22

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

$$d = \cdots = 1.84$$

Unitical region: $(\chi_{0.6.2}^{\circ}, \infty) = (5.992, \circ$ Conclusion: Fail to reject.

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5						
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$			
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16			

$$d = \cdots = 1.84$$

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5						
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$			
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16			

Table 10.3.6						
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$			
$0 \le y < 0.40$	16	0.352	14.08			
$0.40 \le y < 0.60$	14	0.296	11.84			
$0.60 \le y \le 1.00$	10	0.352	14.08			

$$d = \cdots = 1.84$$

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5						
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$			
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16			

Table 10.3.6						
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$			
$0 \le y < 0.40$	16	0.352	14.08			
$0.40 \le y < 0.60$	14	0.296	11.84			
$0.60 \le y \le 1.00$	10	0.352	14.08			

$$d = \cdots = 1.84$$
.

Critical region: $(\chi^2_{.95,2}, \infty) = (5.992, \infty)$.

Conclusion: Fail to reject

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5						
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$			
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16			

Table 10.3.6						
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$			
$0 \le y < 0.40$	16	0.352	14.08			
$0.40 \le y < 0.60$	14	0.296	11.84			
$0.60 \le y \le 1.00$	10	0.352	14.08			

$$d = \cdots = 1.84$$
.

Critical region: $\left(\chi^2_{.95,2},\infty\right)=(5.992,\infty).$

Conclusion: Fail to reject.

```
1 > # Case Study 10.3.2
 2 > # Read data from the URL link
3 > library (data.table)
 4 > mydat <- fread('http://math.emory.edu/~lchen41/teaching/2020_Spring/EX_10-3-1.data')
   trying URL 'http://math.emory.edu/~lchen41/teaching/2020_Spring/EX_10-3-1.data
   Content type 'unknown' length 234 bytes
   downloaded 234 bytes
   >d(mydat)
      Col1 Col2 Col3 Col4 Col5
      1: 0.18 0.06 0.27 0.58 0.98
      2: 0.55 0.24 0.58 0.97 0.36
      3: 0.48 0.11 0.59 0.15 0.53
    4: 0.29 0.46 0.21 0.39 0.89
      5: 0.34 0.09 0.64 0.52 0.64
      6: 0.71 0.56 0.48 0.44 0.40
18 # Conditions for lower bounds
|19| > |b| = c(0.0.40.0.60)
20 > # Conditions for upper bounds
| > up = c(0.40, 0.60, 1.00) 
> # Store the results in d
> oi <- seq(1:length(lb))
> pi < seq(1:length(lb))
| > integrand <- function(y) \{6*y*(1-y)\} 
> for (i in c(1:length(lb))) {
27 + oi[i] <- table(mvdat>=lb[i] & mvdat<up[i])[2]
28 + pi[i] <- integrate(integrand, lb[i], up[i])$value[1]
29 + print (paste("the", i, "th bin has", oi[i],
            'entries and pi is equal to", pi[i]))
31 + }
```

```
[1] "the 1 th bin has 16 entries and pi is equal to 0.352"
4 > pi <- unlist (pi)
5 > n <- sum(oi)
6 > ei <- n*pi
7 > di <- (ei-oi)^2/ei
|s| > \alpha i < -2*oi*log(oi/ei)
9 > rbind(oi, pi, ei, di, qi)
            [,1]
                      [,2]
                                [,3]
11 oi 16.0000000 14.0000000 10.000000
12 pi 0.3520000 0.2960000 0.352000
  ei 14.0800000 11.8400000 14.080000
14 di 0.2618182 0.3940541 1.182273
15 gi 4.0906679 4.6920636 -6.843405
| print (paste("Using Pearson's test, D value is equal to ",round(sum(di),3)))
> print (paste("Using the G-test, G value is equal to ", round(sum(gi),3)))
19 [1] "Using the G-test, G value is equal to 1.939"<Paste>
```

http://math.emory.edu/~lchen41/teaching/2020_Spring/EX_10-3-1.R

E.g. 3 Fisher's suspicion on Mendel's experiments on 1866:

$$d = \dots = 0.47$$

P-value =
$$\mathbb{P}(\chi_3^2 \le 0.47) = 0.0746$$
.

E.g. 3 Fisher's suspicion on Mendel's experiments on 1866:

Table 10.3.7			
Phenotype	Obs. Freq.	Mendel's Model	Exp. Freq.
(round, yellow)	315	9/16	312.75
(round, green)	108	3/16	104.25
(angular, yellow)	101	3/16	104.25
(angular, green)	32	1/16	34.75

$$d = \dots = 0.47$$

$$extbf{\textit{P-value}} = \mathbb{P}(\chi_3^2 \leq 0.47) = 0.0746.$$

```
| > # Case Study 10.3.3
| > x=seq(0,10,0.1)
| > plot (x,dchisq(x,3),type = "I")
| > abline (v=0.47,col = "gray60")
| > text (0.47,0,"0.47")
| > title ("Chi Square distribution + of freedom 3")
| > pchisq(0.47,3)
| 1] 0.07456892
```


E.g. 2' A second look at the random generator in E.g. 2.

Does it fit the model too well? Find the *P*-value.

```
| > # Example 10.3.1
| > x=seq(0,10,0.1)
| > plot (x, dchisq(x,2),type = "I")
| > abline (v=1.84,col = "gray60")
| > text (1.84,0, "1.84")
| > title ("Chi Square distribution
| + of freedom 2")
| > pchisq(1.84,2)
| 1] 0.601481
```

$$P$$
-value = $0.601 \implies No$.

E.g. 2' A second look at the random generator in E.g. 2.

Does it fit the model too well? Find the P-value.

```
| > # Example 10.3.1
| > x=seq(0,10,0.1)
| > plot(x,dchisq(x,2),type = "1")
| > abline(v=1.84,col = "gray60")
| > text (1.84,0, "1.84")
| > title ("Chi Square distribution
| + of freedom 2")
| > pchisq(1.84,2)
| 1] 0.601481
```


P-value = 0.601 \implies No.