CSE 101 – Dec 6, 2019 (Week 10) (Half Lecture)

Notes provided by Ben Sihota bsihota@ucsc.edu

Binary Search Trees

- Binary trees
- Complete binary trees (CBT)
- Almost complete binary trees (ACBT)

Let T be an ACBT with n nodes, height h. Then

$$2^h - 1 < n \le 2^{h+1} - 1$$

$$2^h \le n < 2^{h+1}$$

$$\therefore h \le \lg n < h+1$$

$$\therefore h = \lfloor \lg n \rfloor$$

6.1 Heaps

Two things:

- ACBT
- An array
- Helper functions

Attributes:

- heapSize[A]
- length[A]

Helper functions

$$Parent(i) = \lfloor \frac{1}{2} \rfloor$$
 $(i > 1)$

$$Left(i) = 2i$$

$$Right(i) = 2i + 1$$

Heap properties

Max: $A[Parent(i)] \ge A[i]$

 $\mathbf{Min} \colon A[\mathrm{Parent}(i)] \leq A[i]$

How?

- Heapify
- BuildHeap

Why?

- HeapSort
- Priority Queue operations
 - Insert
 - ExtractMax
 - Max
 - IncreaseKey