

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	739877
Project Title	WCE Curated Colon Disease Classification using Deep Learning
Maximum Marks	6 Marks

Preprocessing

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detecting edges, converting color space, cropping, batch normalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

Section	Description
Data Overview	The dataset is sourced from Kaggle , consisting of colonoscopy images labeled with different colon diseases.
Resizing	Images are resized to a target size of 224x224 pixels
Normalization	Pixel values are normalized to the range [0, 1] by dividing by 255.
Data Augmentation	Augmentation techniques like shearing , zooming , and horizontal flipping are applied to enhance the dataset.

Data Preprocessing Code Screenshots

Loading Data	<pre>import kagglehub import os from tensorflow.keras.preprocessing.image import ImageDataGenerator # Download the dataset dataset_path = kagglehub.dataset_download("francismon/curated-colon-dataset-for-deep-learning") # Determine the actual path to the training and test data # This might require inspecting the dataset structure # Assuming the training data is in a 'train' folder and test data is in a 'test' train_data_path = os.path.join(dataset_path, 'train') test_data_path = os.path.join(dataset_path, 'test') # Path to the test data</pre>
Resizing	# Apply ImageDataGenerator train_data = train_datagen.flow_from_directory(train_data_path, # Updated path
Normalization	# Configure ImageDataGenerator # You might want a separate ImageDataGenerator for test data without augmentations train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1./255) # Only rescaling for test data
Data Augmentation	train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)