

Chương 6 : Hồi qui

Trịnh Anh Phúc 1

¹Bộ môn Khoa Học Máy Tính, Viện CNTT & TT, Trường Đại Học Bách Khoa Hà Nội

Ngày 23 tháng 5 năm 2014

Giới thiệu

- 1 Bài toán hồi qui
 - Định nghĩa
 - Lớp hàm và tiêu chí
- 2 Hồi qui tuyến tính trên một thuộc tính Simple Linear Regression Model
 - Mô hình tuyến tính đơn
 - Ví dụ
- 3 Hồi qui tuyến tính trên mọi thuộc tính Linear Regression Model
 - Mô hình tuyến tính
 - Vấn đề ước lượng tham số và nhiễu cộng
- 4 Chương trình Weka

Định nghĩa về bài toán hồi qui

Giống bài toán phân loại nhưng không gian giá trị đầu ra $y \in \mathbb{R}$ là giá trị liên tục, vô hạn

Ứng dụng trong khai phá dữ liệu

- Sử dụng tập các đối tượng đã được quan sát gồm các cặp $(\mathbf{X},Y)=\{(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_n,y_n)\}$ trong đó (\mathbf{x}_i,y_i) với $i=1,\cdots,n$ với \mathbf{x}_i là tập giá trị thuộc tính, còn $y_i\in\mathbb{R}$ là giá trị cần ước lượng
- Sử dụng *lớp các hàm số* $f(\mathbf{X}) \mapsto \mathbb{R}$ trong đó \mathbf{X} là tập giá trị thuộc không gian thuộc tính
- Sử dụng tiêu chí xác định tham số của hàm $f(\mathbf{X})$ sao cho ánh xạ có giá trị đầu ra gần y nhất có thể

Lớp các hàm số $f(\mathbf{X}) \mapsto \mathbb{R}$

- Lớp các hàm số truyến tính có dạng $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b \leftarrow lớp$ hàm hay dùng
- Lớp các hàm số phi tuyến, e.g. $f(\mathbf{x}) = exp(-||\mathbf{x}||^2)$, $f(\mathbf{x}) = \frac{exp(||\mathbf{x}||^2) exp(-||\mathbf{x}||^2)}{exp(||\mathbf{x}||^2) + exp(-||\mathbf{x}||^2)}$...

Các tiêu chí

Dựa trên tập các điểm dữ liệu (X, Y)

- Tổng bình phương lỗi $\sum_{i=1}^{n} (f(\mathbf{x}_i) y_i)^2 \Leftarrow$ tiêu chí hay dùng
- Trung bình tổng bình phương lỗi $\frac{1}{n}\sum_{i=1}^{n}(f(\mathbf{x}_i)-y_i)^2$
- Tổng trị tuyệt đối lỗi $\sum_{i=1}^{n} |f(\mathbf{x}_i) y_i|$

Nhận xét về bài toán hồi qui áp dụng KPDL

- Ap dụng hoàn toàn thuộc tính có giá trị là số
- Thường dùng chính tiêu chi để đánh giá độ tốt xấu của ánh $x \neq f(\mathbf{X}) \mapsto \mathbb{R}$ với tập dự đoán
- Bài toán hồi qui khó hơn bài toán phân loại do không gian đầu ra $y \in \mathbb{R}$ là vô hạn

Bai toan noi qui Lớp hàm và tiêu chí

Dành cho trả lời c<u>âu hỏi</u>

- 1 Bài toán hồi qui
 - Định nghĩa
 - Lớp hàm và tiêu chí
- 2 Hồi qui tuyến tính trên một thuộc tính Simple Linear Regression Model
 - Mô hình tuyến tính đơn
 - Ví dụ
- 3 Hồi qui tuyến tính trên mọi thuộc tính Linear Regression Model
 - Mô hình tuyến tính
 - Vấn đề ước lượng tham số và nhiễu cộng
- 4 Chương trình Weka

└ Mô hình tuyến tí<u>nh đơn</u>

Bài toán hồi qui

Mô hình tuyến tính đơn - Simple Linear Regression

Với các thuộc tính $x^1, x^2, ..., x^m \equiv \mathbf{x}$ ta sử dụng

Lớp các hàm tuyến tính một chiều

$$f(x) = ax + b$$

 Tiêu chí đánh giá là tổng bình phương lỗi (sum of squared errors)

$$se = \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2 = \sum_{i=1}^{n} (ax_i^j + b - y_i)^2$$

để ước lượng a và b sao cho tổng bình phương nhỏ nhất có thể

■ Thế ngược để xác định thuộc tính lựa chọn $x^j \in \mathbf{x}$ với $j = \overline{1, m}$

∟Mô hình tuyến tính đơn

Giải thuật SimpleLinearRegression

- Đầu vào : Tập điểm dữ liệu $(\mathbf{X}, Y) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- **Dầu ra** : Ánh xạ f(x) = ax + b và thuộc tính làm cực tiểu hóa bình phương lỗi

Procedure SimpleLinearRegression(**X**, Y)

- **1** jmin ← 1; (amin, bmin) ← (0,0); $se_{min} \leftarrow \infty$;
- 2 for $j \leftarrow 1$ to m do
 - se ← 0
- **for** $i \leftarrow 1$ **to** n **do** // với x_i^j giá trị thuộc tính j của \mathbf{x}_i
- $5 se \leftarrow se + (ax_i^j + b y_i)^2$
- 6 endfor
- $(a_i, b_i, se_i) \leftarrow ArgMin(se)$
- if $(se_{min} > se_j)$ then $jmin \leftarrow j$; $se_{min} \leftarrow se_j$; $(amin, bmin) \leftarrow (a_i, b_i)$ endif
- g endfor
- return (amin. bmin) và imin

∟Mô hình tuyến tính đơn

Giải thuật SimpleLinearRegression

Tổng bình phương lỗi

$$se = \sum_{i=1}^{n} (ax_{i}^{j} + b - y_{i})^{2} = \sum_{i=1}^{n} ((ax_{i}^{j})^{2} + 2(ax_{i}^{j})(b - y_{i}) + (b - y_{i})^{2})$$

$$= \sum_{i=1}^{n} (a^{2}(x_{i}^{j})^{2} + ab(2x_{i}^{j}) - a(2x_{i}^{j}y_{i}) + b^{2} - b(2y_{i}) + y_{i}^{2})$$

$$= a^{2} \sum_{i=1}^{n} (x_{i}^{j})^{2} + ab \sum_{i=1}^{n} 2x_{i}^{j} - a \sum_{i=1}^{n} 2x_{i}^{j}y_{i} + nb^{2} - b \sum_{i=1}^{n} 2y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$= a^{2}A + abB - aC + nb^{2} - bD + E$$

Do hệ số A > 0 và n > 0 nên bình phương lỗi có cực tiểu toàn cục

$$\partial se/\partial b = aB + 2nb - D = 0$$

 $\partial se/\partial a = 2aA + bB - C = 0$

└ Mô hình tuyến tính đơn

Giải thuật SimpleLinearRegression

Giải hệ phương trình

$$aB + b2n - D = 0 \Rightarrow aB + b2n = D$$

 $a2A + bB - C = 0 \Rightarrow a2A + bB = C$

Các định thức
$$\Delta = \begin{vmatrix} B & 2n \\ 2A & B \end{vmatrix}$$
, $\Delta_a = \begin{vmatrix} D & 2n \\ C & B \end{vmatrix}$ và $\Delta_b = \begin{vmatrix} B & D \\ 2A & C \end{vmatrix}$ Vậy
$$a_j = \frac{\Delta_a}{\Delta}; \quad b_j = \frac{\Delta_b}{\Delta}$$

Thế ngược lại phương trình bình phương lỗi, ta có được se_j

∟Mô hình tuyến tính đơn

Giải thuật SimpleLinearRegression

Thủ tục con ArgMin

- **Dầu vào** : Tổng bình phương lỗi $se = a^2A + abB - aC + nb^2 - bD + E$ với A > 0
- **Đầu ra** : Tham số a_j , b_j và giá trị cực tiểu bình phương lỗi se_j

Function ArgMin(se)

- 1 Tính các giá trị A, B, C, D và E
- 2 Tính các định thức Δ , Δ_a và Δ_b
- $3 a_j \leftarrow \frac{\Delta_a}{\Delta}; b_j \leftarrow \frac{\Delta_b}{\Delta}$
- 4 $se_j \leftarrow se(a_j, b_j)$
- **5 return** (a_j, b_j, se_j)

End

- 1 Bài toán hồi qui
 - Định nghĩa
 - Lớp hàm và tiêu chí
- 2 Hồi qui tuyến tính trên một thuộc tính Simple Linear Regression Model
 - Mô hình tuyến tính đơn
 - Ví dụ
- 3 Hồi qui tuyến tính trên mọi thuộc tính Linear Regression Model
 - Mô hình tuyến tính
 - Vấn đề ước lượng tham số và nhiễu cộng
- 4 Chương trình Weka

Xét tập dữ liệu house.arff, để tính thủ tục con ArgMin()

kích thước	đất	phòng	granit	phòng tắm phụ	giá
1076	2801	6	0	0	324500
990	3067	5	1	1	466000
1229	3094	5	0	1	425900
731	4315	4	1	0	387120
671	2926	4	0	1	312100

- Giả sử ta chọn thuộc tính x_j là đất, hay j = 2
- Tổng bình phương lỗi $se = a^2A + abB aC + nb^2 bD + E$ với n = 5 và m = 5

Các giá trị tính được gồm

$$A = 54005627, \ B = 32406, \ C = 12479017000, \ D = 3831240, \ E = 751115364400$$

Các định thức

$$\Delta = -29963704$$
, $\Delta_a = -635006560$, $\Delta_b = -9422011872960$

Các tham số

$$a_2 = \frac{\Delta_a}{\Delta} = 21.2; \quad b_2 = \frac{\Delta_b}{\Delta} = 314447.5$$

Tổng bình phương lỗi

$$se_2 = 16522497885.39$$

Nhập môn khai phá dữ liệu └─Hồi qui tuyến tính trên một thuộc tính - Simple Linear Regression Model

Dành cho trả lời câu hỏi

- 1 Bài toán hồi qui
 - Định nghĩa
 - Lớp hàm và tiêu chí
- 2 Hồi qui tuyến tính trên một thuộc tính Simple Linear Regression Model
 - Mô hình tuyến tính đơn
 - Ví dụ
- 3 Hồi qui tuyến tính trên mọi thuộc tính Linear Regression Model
 - Mô hình tuyến tính
 - Vấn đề ước lượng tham số và nhiễu cộng
- 4 Chương trình Weka

└ Mô hình tuyến tính

Bài toán hồi qui

Mô hình hồi qui tuyến tính đơn - Linear Regression Model

Với các thuộc tính $x^1, x^2, ..., x^m \equiv \mathbf{x} \in \mathbb{R}^m$ ta sử dụng trọng số $w^1, w^2, ..., w^m \equiv \mathbf{w} \in \mathbb{R}^m$

Lớp các hàm tuyến tính đa chiều

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

trong đó \cdot là phép nhân vô hướng hai vec tơ \mathbf{x} và \mathbf{w}

■ Tổng bình phương lỗi $\sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2 = \sum_{i=1}^{n} (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)^2$ dùng để ước lượng \mathbf{w} và b

1

¹Các số trên giá trị thuộc tính chỉ thứ tự thuộc tính, không phải số mũ

└Mô hình tuyến tính

Bài toán hồi qui

Giải thuật Linear Regression

- Đầu vào : Tập điểm dữ liệu $(\mathbf{X}, Y) = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- Đầu ra : Ánh xạ $f(x) = \mathbf{w} \cdot \mathbf{x} + b$

Function LinearRegresion((X, Y))

- **1** *se* ← 0
- 2 for $i \leftarrow 1$ to n do
- $3 se \leftarrow se + (\mathbf{w} \cdot \mathbf{x}_i + b y_i)^2$
- 4 endfor
- $(\mathbf{w}, b) \leftarrow \operatorname{ArgMin}(se)$
- $\mathbf{6}$ return (\mathbf{w}, b)

End

└Vấn đề ước lượng tham số và nhiễu cộng

Bài toán hồi qui

Với phép nhân vô hướng $\mathbf{w} \cdot \mathbf{x} = w^1 x^1 + w^2 x^2 + \cdots w^m x^m$, hệ phương trình đạo hàm bộ phận bậc 1 của bình phương lỗi tạo nên gradient

$$\frac{\partial se}{\partial w^1} = 2\sum_{i=1}^n (\mathbf{w} \cdot \mathbf{x}_i + b - y_i) x_i^1 \tag{1}$$

$$\frac{\partial se}{\partial w^2} = 2\sum_{i=1}^n (\mathbf{w} \cdot \mathbf{x}_i + b - y_i) x_i^2$$
 (2)

$$\frac{\partial se}{\partial w^m} = 2\sum_{i=1}^n (\mathbf{w} \cdot \mathbf{x}_i + b - y_i) x_i^m \tag{4}$$

$$\frac{\partial se}{\partial b} = 2\sum_{i=1}^{n} (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)$$
 (5)

└Vấn đề ước lượng tham số và nhiễu cộng

Bài toán hồi qui

Khác với mô hình Simple Linear Regression có thể giải được một cách tường minh, ta thường dùng các kỹ thuật tối ưu - optimization techniques - để ước lượng ${\bf w}$ và b

- Bước gradient thấp nhất (Descent gradient)
- Phương pháp gần Newton (Quasi-Newton method)
- Limited Memory-BFGS (Broyden–Fletcher–Goldfarb–Shanno Method)

Vậy thủ tục con $\operatorname{ArgMin}(se)$ có thể áp dụng một trong các kỹ thuật tối ưu trên. Nhắc lại các tham số trả lại (\mathbf{w},b) là không duy nhất cho cùng bộ dữ liệu.

Chương trình Weka

Yêu cầu

- Tải tập dữ liệu cholesterol.arff
- Chay mô hình Simple Linear Regression và Linear Regression Model ²
- Giải thích các tham số của các giải thuật

²Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York. Akaike Information Criterion (AIC)