

ЭТИКЕТКА

Функциональное назначение – Стробируемый дешифратор возбуждения одноразрядного 7-ми сегментного индикатора

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход стробирования С	9	Выход У1
2	Вход информационный X2 (2 ²)	10	Выход У2
3	Вход информационный X1 (2 ¹)	11	Выход УЗ
4	Вход информационный X3 (2³)	12	Выход У4
5	Вход информационный X0 (2 ⁰)	13	Выход У5
6	Вход Х4	14	Выход У6
7	Питание, U _{u.n2}	15	Выход У7
8	Общий	16	Питание, U _{u.n1}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

Изимонования параметра, отнична намарания, размим намарания	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = - 5 B	U_{OL}	/-4,99/	-
2. Выходное напряжение высокого уровня, B, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B$	U _{OH}	4,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: U_{CC1} = 5 B, U_{CC2} = - 5 B	U _{OL max}	/-4,0/	-
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{\rm CC1}$ = 5 B, $U_{\rm CC2}$ = - 5 B	U _{OH min}	4,0	-
5. Входной ток низкого уровня, мкА, при: $U_{CC1} = 5$ B, $U_{CC2} = -5$ B $U_{CC1} = 15$ B, $U_{CC2} = 0$ B	I_{IL}	- -	/-0,05/ /-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_{CC1} = 0 \; B, \; U_{CC2} = -15 \; B$	I_{IH}	-	0,05 -0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC1} = 5 \; B, \; U_{CC2} = -5 \; B \\ U_O = -4,5 \; B$	I_{OL}	0,9	-
8. Выходной ток высокого уровня, мА, при: $U_{\rm CC1}$ = 5 B, $U_{\rm CC2}$ = - 5 B $U_{\rm O}$ = 4,5 B	Іон	/-0,45/	-
9. Ток потребления (в статическом режиме), мкА, при: U_{CC1} = 5 B, U_{CC2} = - 5 B U_{CC1} = 0 B, U_{CC2} = - 15 B	I _{CC}	-	10 20

Продолжение таблицы 1					
1	2	3	4		
10. Время задержки распространения при включении, н C , при: U_{CC1} = 5 B, U_{CC2} = - 5 B	t _{PHL}	-	1200		
11. Время задержки распространения при выключении, н C , при: U_{CC1} = 5 B, U_{CC2} = - 5 B	t _{PLH}	-	1200		
12. Время перехода при включении, нС, при: U_{CC1} = 5 B, U_{CC2} = - 5 B	t _{THL}	-	180		
13. Время перехода при выключении, нС, при: $U_{CC1} = 5$ B, $U_{CC2} = -5$ В	$t_{ m TLH}$	-	180		
14. Минимальная длительность строб. импульсов, нС, при: U_{CC1} = 5 B, U_{CC2} = - 5 B	t _{строб.}	-	170		
15. Входная емкость, пФ, при: U _{CC1} = 5 B, U _{CC2} = - 5 B	C _I	-	7,5		

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

 $2.1~{\rm M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11~0398-2000~{\rm u}$ ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~{\rm ^{\circ}}$ С не менее $100000~{\rm u}$., а в облегченных режимах, которые приводят в ТУ при $U_{\rm CC}=5$ В $\pm~10\%$ - не менее $120000~{\rm u}$.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В 11 0398 — 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИД5В соответствуют техническим условиям бК0.347.064 ТУ27 и признаны годными для эксплуатации.

Приняты по (извещение, акт и др.)	ОТ	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка и	произведена	
Приняты по	от	
Место для штампа ОТК		Место для штампа ВГ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.