	Th	$1.5 \times 10^{-7} \text{m} \Omega$
	Re	$1.8 \times 10^{-7} \mathrm{m}\Omega$
	Pa	$1.8 \times 10^{-7} \mathrm{m}\Omega$
	V	$2.0 \times 10^{-7} \mathrm{m}\Omega$
	Тс	$2.0 \times 10^{-7} \mathrm{m}\Omega$
	Cs	$2.0 \times 10^{-7} \mathrm{m}\Omega$
	Pb	$2.1 \times 10^{-7} \mathrm{m}\Omega$
	Yb	$2.8 \times 10^{-7} \mathrm{m}\Omega$
	U	$2.8 \times 10^{-7} \mathrm{m}\Omega$
	As	$3.0 \times 10^{-7} \mathrm{m}\Omega$
	Hf	$3.0 \times 10^{-7} \mathrm{m}\Omega$
	Ва	$3.5 \times 10^{-7} \mathrm{m}\Omega$
	Ti	$4.0 \times 10^{-7} \mathrm{m}\Omega$
	Sb	$4.0 \times 10^{-7} \mathrm{m}\Omega$
	Zr	$4.2 \times 10^{-7} \mathrm{m}\Omega$
	Ро	$4.3 \times 10^{-7} \mathrm{m}\Omega$
	Sc	$5.5 \times 10^{-7} \mathrm{m}\Omega$
∇	Υ	$5.6 \times 10^{-7} \mathrm{m}\Omega$
	Lu	$5.6 \times 10^{-7} \mathrm{m}\Omega$
	La	$6.1 \times 10^{-7} \mathrm{m}\Omega$
	\wedge \wedge ro	ws 34–53 of 71 ∨ ∨

~/Downloads/elemRests.csv

Measurements of the setup

```
ln[\circ]:= L = 10^{-2} \{10, 40, 60\} \& /@Range[1, 6] // N; (* Lengths of the wires (cm) *)
      r = \frac{1}{2} \times 10^{-3} \{1.00, 0.74, 0.71, 0.51, 0.35, 0.52\}; (* Radii of the wires (mm) *)
```

2-probes measurement of resistivity

```
In[\circ]:= V = 10^{-3} \{\{0.381, 0.515, 0.62\}, \{0.52, 0.756, 1.015\}, \{0.5, 0.763, 1.026\}, \{0.5, 0.763, 1.026\}\}
           \{0.774, 1.302, 1.838\}, \{1.29, 2.338, 3.378\}, \{0.382, 0.44, 0.524\}\};
In[o]:= fnfit = LinearModelFit[Transpose[#], x, x] & /@Transpose[{L, V}];
In[*]:= Plot[#["BestFit"] & /@ fnfit // Evaluate, {x, 0, 1}, PlotLabels → "Expressions",
        ImageSize → Large] // Show[#, ListPlot[Transpose[#] & /@Transpose[{L, V}]]] &
```



```
In[@]:= slopes = #["BestFitParameters"] [2] & /@ fnfit
Out[0]=
        \{0.000475526, 0.000973947, 0.00103816, 0.00209895, 0.00412211, 0.000276842\}
 ln[\cdot]:= \text{ rests} = \#1 \frac{\pi \#2^2}{10^{-3}} \&@@@Transpose[{slopes, r}];
```

In[*]:= samples = CharacterRange["A", "F"]; means = #1 \rightarrow #2 m Ω &@@@ Transpose[{samples, rests}] // Association // Dataset

Out[0]=

Α	$3.73477 \times 10^{-7} \mathrm{m}\Omega$
В	$4.18879 \times 10^{-7} \mathrm{m}\Omega$
С	$4.11027 \times 10^{-7} \mathrm{m}\Omega$
D	$4.28777 \times 10^{-7} \mathrm{m}\Omega$
E	$3.96593 \times 10^{-7} \mathrm{m}\Omega$
F	$5.87934 \times 10^{-8} \mathrm{m}\Omega$

In[@]:= ListPlot[{means, allElemData}, PlotRange → Automatic, ImageSize → Large, PlotLabel → "2-probes aquisition method"]

Out[•]=

In[0]:= Nearest[allElemData // Normal, #, 10] & /@ Values[means] // Normal // $\#1 \rightarrow \#2 \&@@@Transpose[{samples, \#}] \& // Association // Dataset$

Out[0]=

Α	Ва	: Ti	Sb	Zr	Po	As	Hf	Yb	: U	: Pb
В	Zr	Po	Ti	Sb	Ва	As	Hf	Sc	Yb	U
С	Zr	Ti	Sb	Po	Ва	As	Hf	Yb	U	Sc
D	Ро	Zr	Ti	Sb	Ва	Sc	As	Hf	Υ	Lu
E	Ti	Sb	Zr	Po	Ва	As	Hf	Yb	U	Sc
F	Zn	Со	Мо	W	K	Ni	Cd	Na	: Ir	Ru

4-probes measurement of resistivity

```
ln[\circ]:= V = 10^{-3} \{\{0.05, 0.212, 0.335\}, \{0.18, 0.45, 0.711\}, \{0.193, 0.44, 0.712\},
             \{0.453, 0.969, 1.5\}, \{0.970, 2.02, 3.063\}, \{0.008, 0.08, 0.18\}\};
 in[o]:= fnFit = LinearModelFit[Transpose[#], x, x] & /@Transpose[{L, V}];
 In[*]:= Plot[#["BestFit"] & /@ fnFit // Evaluate,
          \{x, 0, 1\}, ImageSize \rightarrow Large, PlotRange \rightarrow All] //
        Show[#, ListPlot[Transpose[#] & /@ Transpose[{L, V}]], PlotRange → All] &
Out[0]=
```

0.004 0.003 0.002 0.001

In[@]:= slope = #["BestFitParameters"] [2] & /@ fnFit;

$$ln[\cdot]:= \text{rests} = \#1 \frac{\pi \#2^2}{10^{-3}} \&@@@Transpose[{slope, r}];$$

means = $\#1 \rightarrow \#2 \ \text{m}\Omega \ \&@@@Transpose[{samples, rests}] // Association // Dataset$

Out[-]-	0	U	t	0]	=
---------	---	---	---	---	---	---

Α	$4.45817 \times 10^{-7} \mathrm{m}\Omega$
В	$4.51249 \times 10^{-7} \mathrm{m}\Omega$
С	$4.04254 \times 10^{-7} \mathrm{m}\Omega$
D	$4.21735 \times 10^{-7} \mathrm{m}\Omega$
E	$3.9753 \times 10^{-7} \mathrm{m}\Omega$
F	$7.13122 \times 10^{-8} \mathrm{m}\Omega$

In[o]:= ListPlot[{means, allElemData}, PlotRange → Automatic, ImageSize → Large, PlotLabel → "4-probes aquisition method"]

In[@]:= Nearest[allElemData // Normal, #, 10] & /@ Values[means] // Normal // $\sharp 1 \rightarrow \sharp 2 \&@@@ Transpose[{samples, \sharp}] \& // Association // Dataset$

Out[0]=

Α	Ро	Zr	Ti	Sb	Ва	Sc	Y	Lu	As	Hf
В	Ро	Zr	Ti	Sb	Sc	Ba	Υ	Lu	As	Hf
С	Ti	Sb	Zr	Po	Ва	As	Hf	Yb	U	Sc
D	Zr	Po	Ti	Sb	Ba	As	Hf	Sc	Y	Lu
Е	Ti	Sb	Zr	Po	Ba	As	Hf	Yb	U	Sc
F	Ru	K	Ni	Cd	: In	Os	Со	Zn	Mo	W

First part of the experiment with the thermistor

In[0]:= data = Import["/Users/giovannigravili/Library/Mobile Documents/com~apple~CloudDocs/LM MANO/Notebooks/RT/Dati.txt", "Table", "HeaderLines" → 6, "FieldSeparators" → "\t", "NumberPoint" → ",", CharacterEncoding → "UTF8"] // Dataset // #[All, Range[1, 12]] &; data = data All, $\langle | "t (s)" \rightarrow 1, "V_1 (V)" \rightarrow 2,$ $"V_2 \ (V) " \rightarrow 3 \text{, } "V_3 \ (V) " \rightarrow 4 \text{, } "V_4 \ (V) " \rightarrow 5 \text{, } "R_1 \ (\Omega) " \rightarrow 6 \text{, } "R_2 \ (\Omega) " \rightarrow 7 \text{, }$ $"R_{3} \ (\Omega)" \to 8 \,, \ "T \ (K)" \to 9 \,, \ "\frac{R_{1}}{R_{1,0}}" \to 10 \,, \ "\frac{R_{2}}{R_{2,0}}" \to 11 \,, \ "\frac{R_{3}}{R_{3,0}}" \to 12 \,|> \, \Big]$

Out[0]=

<								
t (s)	V ₁ (V)	V ₂ (V)	V ₃ (V)	V ₄ (V)	R ₁ (Ω)	R ₂ (Ω)		
0	1.32112	0.0634921	2.33578	2.99267	132.112	6.34921		
10	1.3199	0.0634921	2.33578	2.9939	131.99	6.34921		
20	1.3199	0.0622711	2.33578	2.9939	131.99	6.22711		
30	1.31868	0.0622711	2.337	2.9939	131.868	6.22711		
40	1.31868	0.0622711	2.337	2.9939	131.868	6.22711		
50	1.31746	0.0622711	2.337	2.99512	131.746	6.22711		
60	1.3199	0.0622711	2.337	2.99512	131.99	6.22711		
70	1.33211	0.0647131	2.33455	2.99512	133.211	6.47131		
80	1.34921	0.0647131	2.33211	2.9939	134.921	6.47131		
90	1.36874	0.0634921	2.32723	2.99145	136.874	6.34921		
100	1.3895	0.0634921	2.32112	2.98535	138.95	6.34921		
110	1.41026	0.0634921	2.31502	2.98046	141.026	6.34921		
120	1.43101	0.0634921	2.30769	2.97558	143.101	6.34921		
130	1.45177	0.0634921	2.30037	2.96825	145.177	6.34921		
140	1.47375	0.0634921	2.29182	2.95971	147.375	6.34921		
150	1.49451	0.0622711	2.28327	2.95116	149.451	6.22711		
160	1.51526	0.0622711	2.2735	2.94017	151.526	6.22711		
170	1.53602	0.0622711	2.26374	2.9304	153.602	6.22711		
180	1.55556	0.0610501	2.25275	2.91941	155.556	6.10501		
190	1.57387	0.0610501	2.24298	2.90598	157.387	6.10501		

$$In[*] := With \left[\left\{ retr = \left\{ "\frac{R_1}{R_{1,\theta}} ", "\frac{R_2}{R_{2,\theta}} ", "\frac{R_3}{R_{3,\theta}} " \right\} \right\},$$

ListLinePlot[Transpose[{data[All, "T (K)"], data[All, #]} // Normal] & /@ retr, PlotRange \rightarrow All, PlotLabels \rightarrow retr, AxesLabel \rightarrow {"T (K)", "R (Ω)"}]

In[*]:= With
$$\left[\left\{ \text{retr} = \left\{ "\frac{R_1}{R_{1,0}}", "\frac{R_2}{R_{2,0}}", "\frac{R_3}{R_{3,0}}" \right\} \right\},$$

ListLinePlot[Transpose[{data[All, "t (s)"], data[All, #]} // Normal] & /@ retr, PlotRange \rightarrow All, PlotLabels \rightarrow retr, AxesLabel \rightarrow {"t (s)"}]

In[o]:= **Z**Out[o]=

z