Chapter 0 Prologue

Solutions

0.1. In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

	f(n)	g(n)	
а	n - 100	n - 200	$f = \Theta(g)$
b	$n^{1/2}$	$n^{3/2}$	f = O(g)
С	100n + log n	$n + (\log n)^2$	$f = \Theta(g)$
d	n + log n	10n log 10n	$f = \Theta(g)$
е	log 2n	log 3n	$f = \Theta(g)$
f	10 log n	$log(n^2)$	$f = \Theta(g)$
g	$n^{1.01}$	$n (log^2 n)$	$f = \Omega(g)$
h	$n^2/\log n$	$n (\log n)^2$	$f = \Omega(g)$
i	$n^{0.1}$	$(\log n)^{10}$	f = O(g)
j	$(\log n)^{\log n}$	n / log n	$f = \Omega(g)$
k	\sqrt{n}	$(\log n)^3$	$f = \Omega(g)$
I	$n^{1/2}$	$5^{\log_2 n}$	f = O(g)
m	n2 ⁿ	3 ⁿ	f = O(g)
n	2 ⁿ	2 ⁿ⁺¹	$f = \Theta(g)$

0	n!	2 ⁿ	$f = \Omega(g)$
р	$(\log n)^{\log n}$	$2^{(\log_2 n)^2}$	f = O(g)
q	$\sum_{i=1}^{n} i^{k}$	n^{k+1}	If $k = 0$, $f = \Theta(g)$ If $k < 0$, $f = O(g)$ If $k > 1$, $f = \Omega(g)$ If $k = 1$, $f = \Theta(g)$ See working below

• If
$$k = 0$$
,

$$f(n) = 1^{0} + 2^{0} + 3^{0} + \dots + n^{0} = 1 + 1 + 1 + \dots + 1$$
, total n terms $f(n) = n$
$$g(n) = n^{0+1} = n^{1} = n$$
 Hence $f = \Theta(g)$

• If k < 0,

$$f(n)=1+\frac{1}{2^k}+\frac{1}{3^k}+\cdots+\frac{1}{n^k}$$
, the sum converges towards 1 $g(n)=\frac{1}{n^{k+1}}$

Hence
$$f = O(g)$$

• If k > 1,

$$f(n) = 1 + 2^{k} + 3^{k} + \dots + n^{k}$$

$$g(n) = n^{k+1}$$
Hence $f = O(n)$

Hence
$$f = \Omega(g)$$

• If k = 1,

$$f(n)=1+2^1+3^1+\cdots+n^1$$
 , sum of first n natural numbers $f(n)=\frac{n(n+1)}{2}$
$$g(n)=n^2$$
 Hence $f=\theta(g)$

0.2 Show that, if c is a positive real number, then

$$g(n) = 1 + c + c^2 + \dots + c^n$$
 is:

a. $\Theta(1)$ if c < 1.

Let's assume c = 0.5, which is less than 1. The sequence will become:

$$g(n) = 1 + 0.5^{1} + 0.5^{2} + \dots + 0.5^{n}$$

$$g(n) = 1 + 0.5 + 0.25 + 0.0625 + \dots + 0.5^{n}$$

As we expand more terms value is decreasing i.e. become closer to 0. So the sequence is bound by the first value. So asymptotically $g(n) = \Theta(1)$

b. $\Theta(n)$ if c = 1.

For c = 1 the sequence is:

$$g(n) = 1 + 1 + 1^2 + \dots + 1^n$$

$$g(n) = 1 + 1 + 1 + \dots + 1, n \text{ terms}$$

$$g(n) = n$$

Hence $g(n) = \Theta(n)$

(c) $\Theta(c^n)$ if c > 1.

For c > 1, each power of c will be greater than 1. Hence c^n will be the dominating term.

So sum of sequence will be bounded by last term i.e. c^n

Therefore $g(n) = \Theta(c^n)$

0.3. The Fibonacci numbers F_0 , F_1 , F_2 , . . . , are defined by the rule

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$.

In this problem we will confirm that this sequence grows exponentially fast and obtain some bounds on its growth.

(a) Use induction to prove that $F_n \ge 2^{0.5n}$ for $n \ge 6$.

Consider the base case first.

$$n = 6$$

$$F_6 \ge 2^{0.5 \times 6}$$

 $8 \ge 8$, Hence true.

$$n = 7$$

$$F_7 \ge 2^{0.5 \times 7}$$

$$F_7 \ge 2^{3.5}$$

 $13 \ge 11.313$, Hence true.

Let's say $k \ge 7$, then replacing n by k our inequality becomes.

$$F_k \ge 2^{0.5k}$$
 ---- 1

Now we have to prove that our inequality holds for k+1 too. Replacing k by k+1 we get:

$$F_{k+1} \ge 2^{0.5(k+1)} ---- 2$$

Similarly for k-1,

$$F_{k-1} \ge 2^{0.5(k-1)}$$
 ---- 3

Adding inequality 1 and 3 will yield

$$F_{k+1} = F_k + F_{k-1} \ge 2^{0.5k} + 2^{0.5(k-1)}$$

$$F_{k+1} \ge 2^{0.5k} + 2^{0.5(k-1)}$$

$$F_{k+1} \ge 2^{0.5k} + 2^{0.5k - 0.5}$$

$$F_{k+1} \ge 2^{0.5k} + \frac{2^{0.5k}}{2^{0.5}}$$

$$F_{k+1} \ge 2^{0.5k} \left(1 + \frac{1}{2^{0.5}} \right)$$

The term $\left(1 + \frac{1}{2^{0.5}}\right) = 1.707106781$. Which is approximately equal to

$$2^{0.5} = 1.41421356.$$

$$F_{k+1} \ge 2^{0.5k} \times 2^{0.5}$$

$$F_{k+1} \ge 2^{0.5k+0.5}$$

$$F_{k+1} \ge 2^{0.5(k+1)}$$

Hence proved.

c. Find a constant c < 1 such that $F_n \le 2^{cn}$ for all $n \ge 0$. Show that your answer is correct

$$F_n \le 2^{cn} - - 1$$

For finding the value of c replace n by n-1 in above inequality we get:

$$F_{n-1} \le 2^{c(n-1)}$$

Similarly replacing n by n + 1 we get:

$$F_{n+1} \le 2^{c(n+1)}$$

The original inequality $F_n \le 2^{cn}$ will become:

$$F_{n-1} + F_{n-2} \le 2^{cn-c} + 2^{cn-2c}$$

$$F_n \le 2^{cn-c} + 2^{cn-2c}$$

$$F_n \le \frac{2^{cn}}{2^c} + \frac{2^{cn}}{2^{2c}}$$

$$F_n \le 2^{cn} \left(\frac{1}{2^c} + \frac{1}{2^{2c}}\right)$$

For initial condition (inequality 1) to hold the expression $\left(\frac{1}{2^c} + \frac{1}{2^{2c}}\right)$ must be equal to 1. So that when multiplied with 2^{cn} , the result remains the same.

Solving for
$$\left(\frac{1}{2^{c}} + \frac{1}{2^{2c}}\right) = 1$$

 $\frac{2^{2c} + 2^{c}}{2^{3c}} = 1$
 $2^{2c} + 2^{c} = 2^{3c}$

Taking 2^c common on both sides

$$2^{c}(2^{c} + 1) = 2^{c}(2^{2c})$$

$$2^{2c} = 2^{c} + 1$$

$$2^{2c} - 2^{c} - 1 = 0$$

$$(2^{c})^{2} + (-1)(2^{c}) + (-1) = 0$$
Let $x = 2^{c}$

$$x^{2} + (-1)(x) + (-1) = 0$$

Hence we have a quadratic equation of the form $ax^2 + bx + c = 0$, such that

$$a = 1, b = -1, c = -1$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)}$$

$$x = \frac{1 \pm \sqrt{5}}{2}$$

$$x = \frac{1 \pm 2.236}{2}$$

$$x = \frac{1+2.236}{2}$$

$$x = 1.618$$
Substituting value of x

$$2^{c} = 1.618$$
Taking log on both sides
$$log_{2}(2^{c}) = log_{2}(1.618)$$

$$c = log_{2}(1.618)$$

$$c = 0.694$$

$$x = \frac{1 - 2.236}{2}$$

$$x = -0.618$$
Substituting value of x

$$2^{c} = -0.618$$

Since log on -ve values are not defined. So we can not conclude the value of c from this path

So value of c is defined as : 0.694 <= c < 1

We can rewrite 1 as: $F_n \le 2^{0.694n} --- 2$

To prove that our approximation is correct we will use induction. Consider the bases cases:

For
$$n=0$$
, $F_0 \le 2^0 \Rightarrow 0 \le 1$ Hence true
For $n=1$, $F_1 \le 2^{0.694} \Rightarrow 1 \le 1.6$ Hence true
For $n=2$, $F_2 \le 2^{0.694*2} \Rightarrow 1 \le 2.617$

Let's assume $k \ge 2$ we can rewrite 2 as:

$$F_{k} \le 2^{0.694k} ---3$$

Now we need to prove for k+1, we will show that $\boldsymbol{F}_{k+1} = 2^{c(k+1)}$

$$\begin{split} F_{k+1} &= F_k + F_{k-1} \\ F_k &\leq 2^{0.694k} \text{ and } F_{k-1} \leq 2^{0.694(k-1)} \\ F_{k+1} &\leq 2^{0.694k} + 2^{0.694k-0.694} \\ F_{k+1} &\leq 2^{ck} \Big(1 + 2^{-c} \Big) \\ \text{Since } c &= 0.694, \, \Big(1 + 2^{-c} \Big) = 1.618 = 2^c = 2^{0.694} \\ F_{k+1} &\leq 2^{0.694k} \times 2^{0.694} \end{split}$$

$$F_{k+1} \le 2^{ck} \times 2^{c}$$
$$F_{k+1} \le 2^{c(k+1)}$$

Hence proved.

0.4. Is there a faster way to compute the nth Fibonacci number than by fib2 (page 13)? One idea involves matrices. We start by writing the equations $F_1 = F_1$ and $F_2 = F_0 + F_1$ in matrix notation:

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Similarly,

$$\begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

and in general

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

So, in order to compute F_n , it suffices to raise this 2 × 2 matrix, call it X, to the nth power.

(a) Show that two 2 \times 2 matrices can be multiplied using 4 additions and 8 multiplications.

Consider the following matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$X = A \cdot B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$X = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

8 multiplications that are required are : ae, bg, af, bh, ce, dg, cf and dh. 4 additions that are required are : ae + bg, af + bh, ce + dg and cf + dh

b. Show that $O(\log n)$ matrix multiplications suffice for computing X^n . (Hint: Think about computing X^n .)

Since we know that matrix multiplication is not commutative i.e. $AB \neq BA$ but it is associative i.e. ABC = (AB)C = A(BC).

Let's start with the hint

$$X^{8} = X \cdot X$$

To calculate this apparently we need 8 matrix multiplications but considering associativity we can avoid some recalculations.

$$X^{8} = X^{4} \cdot X^{4}$$
 ---- 1 multiplication will be done here

To compute X^4

$$X^4 = X^2 \cdot X^2 ----$$
 1 multiplication will be done here

Similarly to computer X^2

$$X^2 = X \cdot X - - - 1$$
 multiplication will be done here

So to calculate X^8 , we performed at most 3 multiplications. Hence X^8 can be computed in at most $O(\log n) = O(\log_2 8) = 3$ matrix multiplications.

Similarly we can use halving technique to calculate X^n using at most $O(\log n)$ matrix multiplications.