

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «	Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 1 по курсу «Анализ алгоритмов»

на тему: «Редакционные расстояния между строками»

Студент <u>ИУ7-54Б</u> (Группа)	(Подпись, дата)	Булдаков М. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Волкова Л. Л (И. О. Фамилия)

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ	3
1	Ана	литический раздел	5
	1.1	Расстояние Левенштейна	C
		1.1.1 Нерекурсивный алгоритм нахождения расстояния Левен-	
		штейна	6
	1.2	Расстояние Дамерау—Левенштейна	6
		1.2.1 Рекурсивный алгоритм нахождения расстояния Дамерау—	
		Левенштейна с кешем	7
		1.2.2 Нерекурсивный алгоритм нахождения расстояния	
		Дамерау—Левенштейна	7
2	Koı	структорский раздел	ç
	2.1	Требования к вводу	Ö
	2.2	Требования к программе	S
	2.3	Разработка алгоритмов	9
	2.4	Описание используемых типов и структур данных	9
3	Tex	нологический раздел	16
	3.1	Средства реализации	16
	3.2	Сведения о модулях программы	16
	3.3	Реализация алгоритмов	16
	3.4	Функциональные тесты	22
4	Исс	ледовательский раздел	23
	4.1	Технические характеристики	23
	4.2	Демонстрация работы программы	23
	4.3	Время выполнения алгоритмов	25
	4.4	Характеристики по памяти	27
34	Ч КЛ	ЮЧЕНИЕ	30
\mathbf{C}	ПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	31

ВВЕДЕНИЕ

Расстояние Левенштейна – минимальное количество редакционных операций, которое необходимо выполнить для преобразования одной строки в другую [1]. Редакционными операциями являются:

- I вставка одного символа (insert);
- M удаление (match);
- R замена (replace).

Также обозначим совпадение как M (match).

Расстояние Дамерау—Левенштейна является модификацией расстояния Левенштейна, отличается от него добавлением операции транспозиции (перестановки).

Редакционные расстояния применяются для решения следующих задач:

- исправление ошибок в словах;
- обучение языковых моделей (расстояние Левенштейна вводится как метрика);
- сравнение геномов, хромосом и белков в биоинформатике.

Целью данной лабораторной работы является исследование алгоритмов вычисляющих расстояние Левенштейна и Дамерау—Левенштейна.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- 1) Изучить алгоритмы, вычисляющие расстояния Левенштейна и Дамерау— Левенштейна.
- 2) Разработать программное обеспечение, реализующее следующие алгоритмы:
 - нерекурсивный алгоритм поиска расстояния Дамерау—
 Левенштейна;
 - рекурсивный алгоритм поиска расстояния Дамерау—Левенштейна без кеширования;

- рекурсивный алгоритм поиска расстояния Дамерау—Левенштейна с кешированием;
- нерекурсивный алгоритм поиска расстояния Левенштейна.
- 3) Выбрать инструменты для реализации и замера процессорного времени выполнения алгоритмов, описанных выше.
- 4) Проанализировать затраты реализаций алгоритмов по времени и по памяти.

1 Аналитический раздел

Каждая редакционная операция имеет свой штраф, который определяет стоимость данной операции. В общем случае:

- m(a,b) цена замены символа a на b, при $a \neq b$;
- $-m(\lambda,a)$ цена вставки символа a;
- $-m(a,\lambda)$ цена удаления символа a.

Для решения задачи о редакционном расстоянии, необходимо найти последовательность операций, минимизирующую сумму штрафов.

1.1 Расстояние Левенштейна

При вычислении расстояния Левенштейна будем считать стоимость каждой редакционной операции равной 1, при этом, если символы совпадают, то штраф равен 0, т. е.:

- -m(a,b)=1;
- $m(\lambda, a) = 1;$
- $-m(a,\lambda)=1;$
- -m(a,a)=0.

Пусть S_1 и S_2 – две строки (длинной M и N соответственно) над некоторым алфавитом, тогда расстояние Левенштейна можно вычислить по следующей рекуррентной формуле (1.1).

$$D(i,j) = \begin{cases} 0, & i = 0, j = 0\\ i, & j = 0, i > 0\\ j, & i = 0, j > 0\\ min(\\ D(i,j-1)+1, & j > 0, i > 0\\ D(i-1,j)+1, & j > 0, i > 0\\ D(i-1,j-1)+m(S_1[i], S_2[j])\\), \end{cases}$$

$$(1.1)$$

Значение m(a,b) можно рассчитать по формуле (1.2).

$$m(a,b) = \begin{cases} 0, & \text{если a} = \mathbf{b} \\ 1, & \text{иначе} \end{cases}$$
 (1.2)

1.1.1 Нерекурсивный алгоритм нахождения расстояния Левенштейна

Прямая реализация формулы (1.1) малоэффективна, поскольку множество промежуточных значений вычисляются несколько раз. Используя матрицу $A_{(M+1)\times(N+1)}$ для хранения промежуточных значений, сведем задачу к итерационному заполнению матрицы $A_{(M+1)\times(N+1)}$ значениями D(i,j). Т. о. значение в ячейке [i,j] равно значению $D(S_1[1...i],S_2[1...j])$.

1.2 Расстояние Дамерау—Левенштейна

Расстояние Дамерау—Левенштейна модифицирует расстояние Левенштейна, добавляя ко всем перечисленным операциям, операцию перестановки соседних символов. Штраф новой операции также составляет 1.

Расстояние Дамерау—Левенштейна может быть вычислено по рекуррентной формуле (1.3).

$$D(i,j) = \begin{cases} 0, & \text{i} = 0, \text{j} = 0, \\ i, & \text{j} = 0, \text{i} > 0, \\ j, & \text{i} = 0, \text{j} > 0, \\ min(\\ D(i,j-1)+1, \\ D(i-1,j)+1, \\ D(i-1,j-1)+m(S_1[i],S_2[j]), \\ \begin{cases} & \text{если i} > 1, \text{j} > 1, \\ D(i-2,j-2)+1, & S_1[i] = S_2[j-1], \\ & S_1[i-1] = S_2[j], \\ \infty, & \text{иначе} \end{cases}$$
 (1.3)

1.2.1 Рекурсивный алгоритм нахождения расстояния Дамерау—Левенштейна с кешем

Используя кеш, рекурсивный алгоритм вычисления расстояния по формуле (1.3) можно оптимизировать по времени выполнения. В качестве кеша используется матрица. Суть данной оптимизации заключается в сокращении числа лишних операций, производимых над одними и теми же подстроками несколько раз. В случае, если для текущих подстрок, значение расстояния отсутствует в кеше, то оно вычисляется с помощью рекурсивного алгоритма и заносится в матрицу. Если же значение присутствует в кеше, то алгоритм сразу переходит к следующему шагу.

1.2.2 Нерекурсивный алгоритм нахождения расстояния Дамерау—Левенштейна

Рекурсивная реализация алгоритма нахождения расстояния Дамерау— Левенштейна с кешированием малоэффективна по времени при больших M и N. Можно свести задачу вычисления расстояния Дамерау—Левенштейна к итерационному заполнению матрицы промежуточными значениями D(i,j).

При этом матрица будет иметь размер $(M+1) \times (N+1)$.

Вывод

В данном разделе были рассмотрены алгоритмы нахождения расстояний Левенштейна и Дамерау—Левенштейна, поскольку данные расстояния могут быть вычислены с помощью рекуррентных формул, то алгоритмы могут быть реализованы рекурсивно и итеративно.

2 Конструкторский раздел

В этом разделе будут приведены требования к вводу и программе, а также схемы алгоритмов нахождения расстояний Левенштейна и Дамерау—Левенштейна.

2.1 Требования к вводу

- 1) На вход подаются две строки, которые могут быть пустыми.
- 2) Буквы верхнего и нижнего регистров считаются различными.

2.2 Требования к программе

- 1) Обрабатывать корректно любые входные строки.
- 2) В результате программа должна вывести число расстояние Левенштейна (Дамерау—Левенштейна).
- 3) Возможность обработки строк, включающих буквы как на латинице, так и на кириллице.
- 4) Возможность замерить процессорное время работы реализаций алгоритмов поиска расстояний Левенштейна и Дамерау—Левенштейна.

2.3 Разработка алгоритмов

На вход алгоритмов подаются строки S1 и S2.

На рисунке 2.1 представлена схема алгоритма поиска расстояния Левенштейна. На рисунках 2.2 – 2.5 представлены схемы алгоритмов поиска расстояния Дамерау—Левенштейна.

2.4 Описание используемых типов и структур данных

Для реализации алгоритмов, будут использованы следующие типы данных:

- str для двух строк, поданных на вход;
- int для возвращаемого значения искомого расстояния.

При реализации алгоритмов будет использована структура данных – матрица, которая является двумерным списком значений типа int.

Вывод

В данном разделе на основе теоретических данных были построены схемы требуемых алгоритмов, выбраны используемые типы данных.

Рисунок 2.1 – Нерекурсивный алгоритм нахождения расстояния Левенштейна

Рисунок 2.2 – Рекурсивный алгоритм нахождения расстояния Дамерау—Левенштейна

Рисунок 2.3 – Рекурсивный алгоритм нахождения расстояния Дамерау—Левенштейна с кешем

Рисунок 2.4 — Функция заполняющая матрицу расстояний Дамерау—Левенштейна рекурсивно

Рисунок 2.5— Нерекурсивный алгоритм нахождения расстояния Дамерау—Левенштейна

3 Технологический раздел

В данном разделе будут приведены требования к программному обеспечению, средства реализации, листинг кода и функциональные тесты.

3.1 Средства реализации

Для реализации данной работы был выбран язык *Python* [2]. Такой выбор обусловлен опытом работы с этим языком программирования. Также данный язык позволяет замерять процессорное время с помощью модуля *time*.

Время работы было замерено с помощью функции $process_time_ns()$ из модуля time [3].

3.2 Сведения о модулях программы

Данная программа разбита на следующие модули:

- *main.py* файл, содержащий функцию *main*;
- algorithms.py файл, содержащий код всех алгоритмов нахождения расстояний Левенштейна и Дамерау—Левенштейна;
- compare_time.py файл, в котором содержатся функции для замера и вывода времени работы алгоритмов.

3.3 Реализация алгоритмов

В листингах 3.1 - 3.4 приведены реализации алгоритмов поиска расстояний Левенштейна (только нерекурсивный алгоритм) и Дамерау—Левенштейна (нерекурсивный, рекурсивный и рекурсивный с кешированием).

Листинг 3.1 – Функция нахождения расстояния Левенштейна с использованием матрицы

```
def m(a, b):
       return 0 if a == b else 1
2
3
4
   def levenstein(s1, s2):
5
       matrix = [[0] * (len(s2) + 1) for _ in range(len(s1) + 1)]
6
       for i in range(len(matrix)):
7
           for j in range(len(matrix[0])):
8
                if i == 0 and j == 0:
9
                    matrix[i][j] = 0
10
                elif i > 0 and j == 0:
11
                    matrix[i][j] = i
12
                elif j > 0 and i == 0:
13
                    matrix[i][j] = j
14
                else:
15
                    matrix[i][j] = min(
16
                        17
                            matrix[i][j - 1] + 1,
18
                            matrix[i - 1][j] + 1,
19
                            matrix[i - 1][j - 1] + m(s1[i - 1], s2[j
20
                               - 1]),
                        ]
21
22
       return matrix[-1][-1]
23
```

Листинг 3.2 — Функция нахождения расстояния Дамерау—Левенштейна с использованием матрицы

```
def damerau_levenstein_iter(s1, s2):
       d = [[0] * (len(s2) + 1) for _ in range(len(s1) + 1)]
2
       for i in range(len(d)):
3
           for j in range(len(d[0])):
4
               if i == 0 and j == 0:
5
                    d[i][j] = 0
6
                elif i > 0 and j == 0:
7
                    d[i][j] = i
8
                elif j > 0 and i == 0:
9
                    d[i][j] = j
10
                elif i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and
11
                  s1[i - 2] == s2[j - 1]:
                    d[i][j] = min(
12
                        13
                            d[i][j-1]+1,
14
                            d[i - 1][j] + 1,
15
                            d[i - 1][j - 1] + m(s1[i - 1], s2[j -
16
                               1]),
                            d[i - 2][j - 2] + 1,
17
                        ]
18
                    )
19
                else:
20
                    d[i][j] = min(
21
                        22
                            d[i][j-1]+1,
23
                            d[i - 1][j] + 1,
24
                            d[i - 1][j - 1] + m(s1[i - 1], s2[j -
25
                               1]),
                        ]
26
27
       return d[-1][-1]
28
```

Листинг 3.3 — Функция нахождения расстояния Дамерау—Левенштейна рекурсивно

```
def damerau_levenstein_rec(s1, s2):
       if len(s1) == 0 or len(s2) == 0:
2
           return max(len(s1), len(s2))
3
       temp = min(
4
           Γ
5
               damerau_levenstein_rec(s1[:-1], s2) + 1,
6
               damerau_levenstein_rec(s1, s2[:-1]) + 1,
7
               damerau_levenstein_rec(s1[:-1], s2[:-1]) + m(s1[-1],
8
                  s2[-1]),
           ]
9
       )
10
11
       if len(s1) > 1 and len(s2) > 1 and s1[-1] == s2[-2] and
12
          s1[-2] == s2[-1]:
           temp = min(temp, damerau_levenstein_rec(s1[:-2],
13
              s2[:-2]) + 1)
14
15
       return temp
```

Листинг 3.4 — Функция нахождения расстояния Дамерау—Левенштейна рекурсивно с кешированием

```
def damerau_levenstein_rec_cash(s1, s2):
       d = [[-1] * (len(s2) + 1) for _ in range(len(s1) + 1)]
2
3
       def dlrc(s1, s2):
4
           if len(s1) == 0 or len(s2) == 0:
5
                d[len(s1)][len(s2)] = max(len(s1), len(s2))
6
               return d[len(s1)][len(s2)]
7
8
           if d[len(s1[:-1])][len(s2)] >= 0:
9
               dlr1 = d[len(s1[:-1])][len(s2)]
10
           else:
11
               dlr1 = dlrc(s1[:-1], s2)
12
               d[len(s1[:-1])][len(s2)] = dlr1
13
14
           if d[len(s1)][len(s2[:-1])] >= 0:
15
               dlr2 = d[len(s1)][len(s2[:-1])]
16
           else:
17
               dlr2 = dlrc(s1, s2[:-1])
18
               d[len(s1)][len(s2[:-1])] = dlr2
19
20
           if d[len(s1[:-1])][len(s2[:-1])] >= 0:
21
                dlr3 = d[len(s1[:-1])][len(s2[:-1])]
22
           else:
23
               dlr3 = dlrc(s1[:-1], s2[:-1])
24
               d[len(s1[:-1])][len(s2[:-1])] = dlr3
25
26
           temp = min([dlr1 + 1, dlr2 + 1, dlr3 + m(s1[-1],
27
              s2[-1])])
28
           if len(s1) > 1 and len(s2) > 1 and s1[-1] == s2[-2] and
              s1[-2] == s2[-1]:
                if d[len(s1[:-2])][len(s2[:-2])] >= 0:
30
                    dlr4 = d[len(s1[:-2])][len(s2[:-2])]
31
                else:
32
                    dlr4 = dlrc(s1[:-2], s2[:-2])
33
                    d[len(s1[:-2])][len(s2[:-2])] = dlr4
34
               temp = min(temp, dlr4 + 1)
35
36
           d[len(s1)][len(s2)] = temp
37
```

```
38
39 return temp
40
41 return dlrc(s1, s2)
```

3.4 Функциональные тесты

В таблице 3.1 приведены функциональные тесты для алгоритмов вычисления расстояний Левенштейна и Дамерау—Левенштейна. Все тесты пройдены успешно.

Таблица 3.1 – Функциональные тесты

Входные данные		Расстояние и алгоритм			
		Левенштейна	Дамерау—Левенштейна		
Строка 1	Строка 2	Итеративный	Итеративный	Рекурсивный	
				Без кеша	С кешом
λ	λ	0	0	0	0
a	b	1	1	1	1
a	a	0	0	0	0
КОТ	скат	2	2	2	2
ab	ba	2	1	1	1
bba	abba	1	1	1	1
aboba	boba	1	1	1	1
abcdef	gh	6	6	6	6

Вывод

Были реализованы алгоритмы поиска расстояния Левенштейна итеративно, поиска расстояния Дамерау—Левенштейна итеративно, рекурсивно и рекурсивно с кешированием. Проведено тестирование реализаций алгоритмов.

4 Исследовательский раздел

В данном разделе будут приведены примеры работы программ, постановка эксперимента и сравнительный анализ алгоритмов на основе полученных данных.

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры по времени:

- Процессор: AMD Ryzen 5 4600H 3 ГГц [4].
- Оперативная память: 16 ГБайт.
- Операционная система: Windows 10 Pro 64-разрядная система версии 22H2 [5].

При замерах времени ноутбук был включен в сеть электропитания и был нагружен только системными приложениями.

4.2 Демонстрация работы программы

На рисунке 4.1 представлена демонстрация работы разработанного программного обеспечения, а именно показаны результаты вычислений расстояний Левенштейна и Дамерау—Левенштейна для строк «скат», «кот» и «красивый», «карсивый» соответственно.

```
1 - Расстояние Левенштейна (итеративно)
    2 - Расстояние Дамерау-Левенштейна (итеративно)
    3 - Расстояние Дамерау-Левенштейна (рекурсивно)
    4 - Расстояние Дамерау-Левенштейна (рекурсивно с кешированием)
    5 - Вывести результаты тестов
    6 - Замер времени
0 - Выход
Выберите опцию: 1
Введите строку 1: скат
Введите строку 2: кот
Расстояние = 2
    1 - Расстояние Левенштейна (итеративно)
    2 - Расстояние Дамерау-Левенштейна (итеративно)
3 - Расстояние Дамерау-Левенштейна (рекурсивно)
    4 - Расстояние Дамерау-Левенштейна (рекурсивно с кешированием)
    5 - Вывести результаты тестов
    6 - Замер времени
    0 - Выход
Выберите опцию: 4
Введите строку 1: красивый
Введите строку 2: карсивый
Расстояние = 1
    1 - Расстояние Левенштейна (итеративно)
    2 - Расстояние Дамерау-Левенштейна (итеративно)
    3 - Расстояние Дамерау-Левенштейна (рекурсивно)
    4 - Расстояние Дамерау-Левенштейна (рекурсивно с кешированием)
    5 - Вывести результаты тестов
    6 - Замер времени
    0 - Выход
Выберите опцию:
```

Рисунок 4.1 – Демонстрация работы программы при поиске расстояний Левенштейна и Дамерау—Левенштейна

4.3 Время выполнения алгоритмов

Результаты замеров времени работы алгоритмов нахождения расстояний Левенштейна и Дамерау—Левенштейна приведены в таблице 4.1. Замеры времени проводились на строках одинаковой длины и усреднялись для каждого набора одинаковых экспериментов.

Таблица 4.1 – Время работы алгоритмов (в секундах)

Длина строк	Л (и)	Д-Л (и)	Д-Л (р)	Д-Л (рк)
1	0.0	7812.5	0.0	0.0
2	0.0	7812.5	0.0	0.0
3	7812.5	7812.5	78125.0	0.0
4	7812.5	15625.0	234375.0	0.0
5	15625.0	15625.0	1093750.0	78125.0
6	23437.5	23437.5	5234375.0	78125.0
7	39062.5	39062.5	27734375.0	78125.0
8	39062.5	46875.0	151015625.0	78125.0
9	46875.0	54687.5	833437500.0	156250.0
10	62500.0	70312.5	4610859375.0	156250.0

Рисунок 4.2 – Сравнение алгоритмов по времени

Наиболее эффективными являются алгоритмы, использующие матрицы, после них по скорости работы идет алгоритм использующий кеш, это обусловлено тем, что по сравнению с обычной рекурсией, мы не вычисляем повторно одни и те же значения, но все равно тратим время на рекурсивные вызовы.

4.4 Характеристики по памяти

Введем следующие обозначения:

- -n длина строки S_1 ;
- -m длина строки S_2 ;
- size() функция, вычисляющая размер в байтах;
- *int* целочисленный тип данных;
- *string* строковый тип данных.

Т. к. алгоритмы, вычисляющие расстояния Левенштейна и Дамерау— Левенштейна, не отличаются по использованию памяти, то достаточно рассмотреть итеративную, рекурсивную и рекурсивную с кешированием реализации алгоритмов вычисления расстояния Дамерау—Левенштейна.

Использование памяти при итеративной реализации теоритически рассчитывется по формул (4.1).

$$(n+1)*(m+1)*size(int) + 2*size(string) + 2*size(int),$$
 (4.1)

где

- -(n+1)*(m+1)*size(int) хранение матрицы;
- 2*size(string) хранение двух строк;
- 2*size(int) адрес возврата и возвращаемое значение.

Максимальная глубина стека вызовов при рекурсивной реализации нахождения расстояния Дамерау—Левенштейна равна сумме входящих строк, соответственно, максимальный расход памяти рассчитывается по (4.2).

$$(n+m)*(2*size(string) + 3*size(int)), \tag{4.2}$$

где

- -(n+m) максимальная глубина стека вызовов;
- -2*size(string) хранение двух строк;
- -2*size(int) адрес возврата и возвращаемое значение;
- size(int) временная переменная.

Для алгоритма, использующего кеширование требуется дополнительно память под кеш и 4 временных переменных (4.3).

$$(n+m)*(2*size(string)+6*size(int))+(n+1)*(m+1)*size(int),\ (4.3)$$
где

- -(n+m) максимальная глубина стека вызовов;
- -2*size(string) хранение двух строк;
- -2*size(int) адрес возврата и возвращаемое значение;
- -4*size(int) временные переменные;
- -(n+1)*(m+1)*size(int) хранение кеша.

По расходу памяти итеративные алгоритмы проигрывают рекурсивным: максимальный размер используемой памяти в итеративном растет как произведение длин строк, в то время как у рекурсивного алгоритма – как сумма длин строк.

Вывод

В данном разделе было произведено сравнение количества затраченного времени и памяти алгоритмов поиска расстояний Левенштейна и Дамерау—Левенштейна. Наименее затратным по времени оказался итеративный алгоритм нахождения расстояния Левенштейна.

По таблице 4.1 видно, что рекурсивный алгоритм в 65577 раз проигрывает итеративному при длине строк 10. Поэтому рекурсивные алгоритмы следует использовать лишь при малых длинах строк.

При этом как было замечено в пункте 4.4, рекурсивные алгоритмы занимают меньше памяти, чем итеративные алгоритмы.

Рекурсивная реализация алгоритма поиска расстояния Дамерау— Левенштейн будет более затратным по времени по сравнению с итеративной реализацией алгоритма поиска расстояния Дамерау—Левенштейна, но менее затратным по памяти по отношению к итеративному алгоритму Дамерау— Левенштейна. При этом рекурсивные алгоритм с кешированием проигрывает по памяти и по времени итеративному.

ЗАКЛЮЧЕНИЕ

В результате исследования было определено, что лучшие показатели по времени дают итеративные реализации алгоритмов, вычисляющих расстояния Левенштейна и Дамерау—Левенштейна, а также его рекурсивная реализация с кешем. Рекурсивный алгоритм вычисления расстояния Дамерау—Левенштейна оказался в 65 577 раз хуже итеративного алгоритма по времени для длины строк 10. При этом реализации с использованием матрицы занимает довольно много памяти при большой длине строк.

Цель данной лабораторной работы были достигнуты, а именно описание и исследование алгоритмов, вычисляющих расстояния Левенштейна и Дамерау—Левенштейна.

Для достижения поставленной целей были выполнены следующие задачи.

- 1) Изучены алгоритмы поиска расстояния Левенштейна и Дамерау—Левенштейна;
- 2) Создано программное обеспечение, реализующее следующие алгоритмы.
 - нерекурсивный метод поиска расстояния Левенштейна;
 - нерекурсивный метод поиска расстояния Дамерау—Левенштейна;
 - рекурсивный метод поиска расстояния Дамерау—Левенштейна;
 - рекурсивный с кешированием метод поиска расстояния Дамерау—
 Левенштейна.
- 3) Выбраны инструменты для реализации алгоритмов и замера процессорного времени их выполнения.
- 4) Проведен анализ затрат алгоритмов по времени и по памяти.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. И. Л. В. Двоичные коды с исправлением выпадений, вставок и замещений символов //. Т. 163. М.: Издательство «Наука», Доклады АН СССР, 1965. Гл. 4.
- 2. The official home of the Python Programming Language [Электронный pecypc]. Режим доступа: https://www.python.org/ (дата обращения: 19.09.2023).
- 3. time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html (дата обращения: 19.09.2023).
- 4. Amd [Электронный ресурс]. Режим доступа: https://www.amd.com/en. html (дата обращения: 28.09.2023).
- 5. Windows 10 Pro 22h2 64-bit [Электронный ресурс]. Режим доступа: https://www.microsoft.com/ru-ru/software-download/windows10 (дата обращения: 28.09.2023).