Academic year 2023-2024 (Even Sem)

		DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING					
		Date July 2024 Maximum Marks 60		-			
Course Code CY245AT Duration 120 Minutes							
		Sem IV					
SL	OPEN BOOK- CIEII- Computer Networks (Common to CS, IS, CD, AI & CY) SI. No. PART-A						
				0			
		(QUIZ)					
1	a	Write a sink tree for Node G in a given network below. Draw a sing tree for node 'J'. Assume that, Node I crash in sometime. Update the sink tree of J and draw its structure after the node I crashes.	3	3			
		Fig. 1(a)	2	3	2		
	b	Draw any 2 unique Spanning trees which includes Group1, 2 and 3 nodes for Multicasting. 1, 2, 3 1, 2, 3 C 1, 2	2	3	2		
		I,2,3 F I,2,3 Fig. 1(b)					
	С	Identify the general major cause of congestion and solution to control over congestion in a network when adequate resources are provided.	2	3	2		
	d	For the following network below, which type of routing scheme is best suitable to route the packets from R1 to R4? Justify your answer.	2	3	3		
		Can HELLO packet is used for measuring delay? Justify your answer with reason.	2	3	2		
	e			1	18		
		PART-B	10	4	2		
2	(a).	Find the Routing table for all the nodes of a network given below using Bellman Ford algorithm for Distance vector routing and show the routing table entries in every step. Assume the following two different scenarios and show the updated routing tables of all the nodes under each scenario: i) There is good news that, Link is established from F to C with distance value 1. ii) There is a bad news where link between C to D of distance value 1 crashes.	g				

+91-080-68188100 | www.rvce.edu.in

Academic year 2023-2024 (Even Sem)

CO1: Apply the algorithms/techniques of routing and congestion control to solve problems related to Computer Networks.

CO2: Analyse the services provided by various layers of TCP/IP model to build effective solutions

CO3: Design sustainable networking solutions with societal and environmental concerns by engaging in Lifelong learning for emerging technology.

CO4: Exhibit Demonstrate the solutions using various algorithms/protocols available to address networking issues.

CO5: Using modern tools by exhibiting team work and effective communication network configuration, protocol usage and performance evaluation in networks.

COs/BTL	COI	CO2	CO3	CO4	CO5	L1	L2	L3 L4
Marks		16	34	10	10			20 40
Midiko		THE RESERVE OF THE PARTY OF THE		IN SECTION AND ADDRESS OF THE PARTY OF THE P				

Academic year 2023-2024 (Even Sem)

	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Date August 2024 Maximum Marks 10 + 50						
	Course Code	CY245AT Duratio	Duration 120 Minute				
Sem IV							
		COMPUTER NETWORKS					
		IMPROVEMENT CIE PART-A					
Sl. No.		M	ВТ	CO			
1	Convert the	2	L3	2			
	i. 62.5	54.165.38					
	ii. 229	1	L3	3			
2	Given the C	2	L3	3			
	in the CIDR i. 20.1						
		0.30.35					
3	_	onnected to local LAN needs to transmit a packet to the remote	connected	2	L4	3	
		well needs to receive packets from outside world, in both them					
		stem would find the IP address and the Hardware address respe					
4		an entry of IP address - 160.36.30.110, network		2	L4	4	
	mask of 255						
		adcast address for the network.					
5		work ID for the network. e of QoS scheme used in the following scenarios:		2	L4	5	
	i. A co	2	L4	3			
	calls						
	that						
	over		-				
	ii. A co						
	low	latency, high bandwidth, and minimal jitter to ensure smooth munication between participants in different locations.					
SI. No.	com						
		PART-B		M	BT	C	
	i. Classify th	ne following scenarios under congestion and flow control:		10	L4	3	
	a. A data c	center is handling traffic from multiple clients.					
	b. A cloud	server is targeted by a Distributed Denial of Service (DDoS) uter sends too many print jobs too quickly to a networked print	attack. nter with a				
	small buffer						
	e. A micr	network with thousands of sensors floods a gateway with dat ocontroller sends data faster than a connected peripheral	a,				
	f. A peer-te	o-peer file-sharing application leads to excessive traffic acros	e the network				
	via the local	ISP's links.					
1	ii. Suppose y	ou have a congested network. Consider the following scenar	os and provide				
	your answer.			<u> </u>			
		•					
	a.	Is it always possible to provide OoS on a congested network?	,				
	b.	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes	,				
(a)	b.	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer.	or no, justify				
(a)	A router can	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 process.	or no, justify	10	L4	3	
(a)	A router can packets/sec of	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average.	or no, justify		L4	3	
(a)	A router can packets/sec of i.	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average. What is the average waiting time for each packet at a rout	or no, justify	10	L4	3	
(a)	A router can packets/sec of	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average. What is the average waiting time for each packet at a rout If a route from source to destination contains 7 routers, he	or no, justify	10	L4	3	
(a)	A router can packets/sec o i. ii.	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average. What is the average waiting time for each packet at a rout If a route from source to destination contains 7 routers, he spent being queued and serviced by the router?	or no, justify nillion er? ow much time	10	L4	3	
(a)	A router can packets/sec (i. ii. Suppose ther	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average. What is the average waiting time for each packet at a rout If a route from source to destination contains 7 routers, he spent being queued and serviced by the router? We are 4 flows at router waiting to go out on a link having bar	or no, justify nillion er? ow much time	10	L4	3	
(a)	A router can packets/sec of i. ii. Suppose ther 30Mbps. Rat	Is it always possible to provide QoS on a congested network? Is there a way to provide QoS on a congested network? If yes your answer. process 15 million packets/sec. The load offered to it is 12 non average. What is the average waiting time for each packet at a rout If a route from source to destination contains 7 routers, he spent being queued and serviced by the router?	or no, justify nillion er? www.much.time.idwidth	10	L4	3	

Academic year 2023-2024 (Even Sem)

3 (a) A university has class B address space of 182.17.X.X. It has 45 departments each having 700 hosts. You must design an appropriate subnetting scheme to support the needs of this university.	10	L3	
Identify the number of bits for hosts and subnets. Find the subnet mask. Design the first five subnet id's and the range of host addresses on these subnets. How many total hosts can be supported in each subnet if the department grows in future?		LS	2
	10	L4	4
Consider sending a 2400-byte datagram that gets transmitted into a link that has an MTU of 700 bytes. Suppose the original datagram is stamped with the identification number 422. Determine the following i) How many fragments are generated? ii) List the various IP header fields related to fragmentation. iii) What are the values in the various fields in the IP datagram(s) generated related to fragmentation?	10	L4	5

iv) Illustrate how IPv6 handles the fragmentation entirely?
COURSE OUTCOMES:
CO1 Apply the algorithms/techniques of routing and congestion control to solve problems related to
Computer Networks.
CO2 Analyse the services provided by various layers of TCP/IP model to build effective solutions.
CO3 Design sustainable networking solutions with societal and environmental concerns by engaging in
lifelonglearning for emerging technology.
CO4 Exhibit network configuration, protocol usage and performance evaluation in networks.
CO5 Demonstratethe solutions using various algorithms/protocols available to address networking issues
usingmodern tools by exhibiting team work and effective communication.

COs/BTL	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4
Marks		12	24	12	12		-	14	46
1,101,10									