

Less is Better: Unweighted Data Subsampling via Influence Function

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, Shao-Lun Huang 2019/12/18

Data quality: Who is good?

Label Y Image X_{tr}

Cat

Dog

- . . - . . -

Testing set

Image X_{te}

Data quality: Noisy label

Training set

Label Y Image X_{tr}

Dog

Might be bad

Dog

Testing set

Image X_{te}

Data quality: Adversarial noise

Testing set

Label Y Image X_{tr}

Adversarial noise

Image X_{te}

Cat

 $+\epsilon \times$

Might be bad

Dog

Data quality: Distribution shift

Training set

Label Y Image X_{tr}

Cat

Might be bad

Testing set

Image X'_{te}

Motivation

Label Y Image X_{tr}

Cat

$$(1) \phi(X_{tr}, X_{te})$$

(2) $\pi(X_{tr})$

Image X_{te}

- (1) Measuring data quality. How much a training data *influences* the model's prediction on testing data, i.e. $\phi(X_{tr}, X_{te})$
- (2) **Doing data selection.** By which *probability* we select a data for training, namely probabilistic subsampling, considering data's quality, i.e. $\pi(X_{tr})$

Challenges

- ➤ **Dealing with ambiguity.** How to quantitatively define data's quality, in an unambiguous mathematical way, e.g. for text? Query?
- Theoretical guidance. How to build a theoretical reasonable method for data selection, and obtaining a better model via sub sample.
- \triangleright **Robust selection.** How to ensure robustness of subsampling, considering controlling the performance on a set of distributions, i.e. Q_{te} ∈ { $Q \mid D(Q||P) \le \delta$ }

Leave-one-out (LOO) Training?

(1) Model $\hat{\theta}$ trained on *full* set (2) Test $\hat{\theta}$'s loss on each test image

Leave-one-out (LOO) Training?

(3) Model $\tilde{\theta}$ trained on *sub* set (4) Test $\tilde{\theta}$'s loss on each test image

(5) Computing influence of $x_{tr}^{(0)}$

: I make test loss changes
$$\phi^{(0)} = \sum_{j=0}^{M} \left[l\left(x_{te}^{(j)}; \tilde{\boldsymbol{\theta}}\right) - l\left(x_{te}^{(j)}; \hat{\boldsymbol{\theta}}\right) \right]$$

Approximate LOO via IF

Original objective function for training

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{i=0}^{N} l(x_{tr}^{(i)}; \theta)$$

Reweight $l(x_{tr}^{(0)}; \theta)$ with a small ϵ

New objective function

$$\hat{\theta}_{\epsilon} = \operatorname{argmin}_{\theta} \frac{1}{N} \sum_{i=0}^{N} l(x_{tr}^{(i)}; \theta) + \epsilon \times l(x_{tr}^{(0)}; \theta)$$

Note: we here assume $\epsilon \in \left[-\frac{1}{N}, 0\right]$ because

$$ightharpoonup$$
 If $\epsilon=-\frac{1}{N}$, the $l\left(x_{tr}^{(0)};\theta\right)$ is removed

> If
$$\epsilon = 0$$
, the $l\left(x_{tr}^{(0)}; \theta\right)$ is kept

N Training Images

$$x_{tr}^{(0)}, y_{tr}^{(0)}$$

$$x_{tr}^{(N)}, y_{tr}^{(N)}$$

Approximate LOO via IF

N Training Images

M Testing Images

 \blacktriangleright Test loss change with new model $\hat{\theta}_{\epsilon}$ on each test sample (Koh & Liang, 2017):

$$l\left(x_{te}^{(j)}; \hat{\theta}_{\epsilon}\right) - l\left(x_{te}^{(j)}; \hat{\theta}\right) \approx \epsilon \times \phi^{(0)}\left(x_{te}^{(j)}\right) \text{ for all } j = 0,1,2...,M$$

> Definition of Influence Function (IF) $\phi^{(i)}(x_{te}^{(j)})$:

$$\phi^{(i)}\left(x_{te}^{(j)}\right) \triangleq \frac{\partial l\left(x_{te}^{(j)}, \theta_{\epsilon}\right)}{\partial \epsilon} \bigg|_{\epsilon = 0} = -\nabla_{\theta} l(x_{te}, \hat{\theta}) H_{\hat{\theta}}^{-1} \nabla_{\theta} l(x_{tr}^{(i)}, \hat{\theta})$$

How IF works

N Training Images

M Testing Images

$$x_{te}^{(0)}, y_{te}^{(0)}$$
 \vdots
 $x_{te}^{(M)}, y_{te}^{(M)}$

Test loss change ΔL of all test samples:

$$\Delta L = \sum_{j=0}^{M} \left[l\left(x_{te}^{(j)}; \hat{\theta}_{\epsilon}\right) - l\left(x_{te}^{(j)}; \hat{\theta}\right) \right] \approx \epsilon \times \sum_{j=0}^{M} \phi^{(0)}\left(x_{te}^{(j)}\right) \triangleq \epsilon \times \Phi^{(0)}$$

IF for data selection

Test loss change ΔL of all test samples:

$$\Delta L = \sum_{j=0}^{M} \left[l\left(x_{te}^{(j)}; \hat{\theta}_{\epsilon}\right) - l\left(x_{te}^{(j)}; \hat{\theta}\right) \right] \approx \epsilon \times \sum_{j=0}^{M} \phi^{(0)}\left(x_{te}^{(j)}\right) \triangleq \epsilon \times \Phi^{(0)}$$

Let
$$\epsilon = -\frac{1}{N} (x_{tr}^{(0)})$$
 is **dropped**), get $\Delta L \approx -\frac{1}{N} \times \Phi^{(0)}$, such that

ightharpoonup If $\Delta L > 0$, then $\Phi^{(0)} < 0$

> **Dropping** $x_{tr}^{(0)}$ causes test loss **increasing**, we should keep it.

Q: Is it the whole story?
A: Not really!

Cons: Over confidence

Overly confident on a single test set can undermine subsampling's robustness!

Set of distributions

- ► Define an uncertainty set of test distributions: $Q \triangleq \{Q \mid D_{\chi^2}(Q \parallel P) \leq \delta\}$
- ightharpoonup Define the worst-case risk on Q: $L(Q; \hat{\theta}_{\epsilon}) \coloneqq \sup_{Q \in \mathcal{Q}} \{\mathbb{E}_{Q}[l(\hat{\theta}_{\epsilon}; x)]\}$

Question:

If $\hat{\theta}$ goes to $\hat{\theta}_{\epsilon}$, how does $L(Q; \hat{\theta}_{\epsilon})$ change?

Worst-case risk with IF

- ► Define an uncertainty set of test distributions: $Q \triangleq \{Q \mid D_{\chi^2}(Q \parallel P) \leq \delta\}$
- ightharpoonup Define the worst-case risk on $Q: L(Q; \hat{\theta}_{\epsilon}) \coloneqq \sup_{Q \in \mathcal{Q}} \{\mathbb{E}_Q[l(\hat{\theta}_{\epsilon}; x)]\}$

Theorem

Let selection probability $\pi(\cdot)$ of a sample $x_{tr}^{(i)}$, takes its influence function $\Phi^{(i)}$ as input. If we have $\|\nabla\pi(\Phi^{(i)})\| \leq \sigma, \forall i=1,...,N$, then the worst-case risk $L(Q;\hat{\theta}_{\epsilon})$'s gradient norm has its upper bound:

Guide to design sampling function
$$\|\nabla_{\Phi} L\| \leq \sigma \frac{\sqrt{2\delta+1}}{N} \times \sqrt{\sum_{i=1}^{N} \Phi^{(i)}}$$

Design sampling functions

Probabilistic sampling

Linear sampling

Sigmoid sampling

"Over confidence" sampling

Gap at zero point, the $\|\nabla \pi\|$ is not bounded!

Data statistics

Table 1. Datasets Used in Experiments

Dataset	# samples	# features	Domain	
UCI breast-cancer	683	10	Medical	
diabetes	768	8	Medical	
news20	19,954	1,355,192	Text	
UCI Adult	32,561	123	Society	
cifar10	60,000	3,072	Image	
MNIST	70,000	784	Image	
real-sim	72,309	20,958	Physics	
SVHN	99,289	3,072	Image	
skin non-skin	245,057	3	Image	
criteo1%	456,674	1,000,000	CTR	
covertype	581,012	54	Life	
Avazu-app	14,596,137	1,000,000	CTR	
Avazu-site	25,832,830	1,000,000	CTR	
CPC	>100M	>10M	CTR	

- From low dimension to high dimension
- From large data to small data

Results on Open Datasets

Table 2. The average test loss with different sampling methods

Methods	Full set	Random	OptLR	Dropout	Linear(*)	Sigmoid(*)
UCI breast-cancer	0.0914	0.0944	0.0934	0.0785	0.0873	0.0803
diabetes	0.5170	0.5180	0.5232	0.5083	0.5127	<u>0.5068</u>
News20	0.5130	0.5177	0.5203	<u>0.5072</u>	0.5100	0.5075
UCI Adult	0.3383	0.3386	0.3549	0.3538	0.3384	<u>0.3382</u>
cifar10	0.6847	0.6861	0.7246	0.6851	0.6822	<u>0.6819</u>
MNIST	0.0245	0.0247	0.0239	0.0223	0.0245	0.0231
real-sim	0.2606	0.2668	0.2644	<u>0.2605</u>	0.2607	0.2609
SVHN	0.6129	0.6128	0.6757	0.6328	0.6122	0.6128
skin-nonskin	0.3527	<u>0.3526</u>	0.3529	0.4830	0.3713	0.3527
Criteo1%	0.4763	0.4768	0.4953	0.4786	<u>0.4755</u>	0.4756
Covertype	0.6936	0.6933	0.6907	0.7745	0.6872	0.6876
Avazu-app	0.3449	0.3449	0.3450	0.3576	0.3446	<u>0.3446</u>
Avazu-site	0.4499	0.4499	0.4505	0.5736	0.4490	<u>0.4486</u>
CPC	0.1955	0.1956	0.1958	0.1964	<u>0.1952</u>	0.1953

12 of 13 overtakes the full set, with selected sub samples.

Sampling ratio: 95% from the full training set.

*: Ours methods.

- The bold values indicate the loss smaller than the full set.
- The Dropout approach (Deterministic sampling) fails on many data sets.
- Our Linear and Sigmoid sampling methods overtake full set almost on each data set.

Noisy label setting

0.6

Putting 40% labels of training data flipped:

Under noisy data setting, our subsampling approaches show its enlarging superiority!

Conclusions

- Influence function is a useful measure for data's quality, which can guide us select good data and get better model.
- Our probabilistic sampling function can control the worst-case risk changes, to mitigate what is called *over confidence* problem.

References

- 1. Wang, Z., Zhu, H., Dong, Z., He, X., & Huang, S. L. (2019). Less Is Better: Unweighted Data Subsampling via Influence Function. arXiv preprint arXiv:1912.01321.
- 2. Wang, H., Zhu, R., & Ma, P. (2018). Optimal subsampling for large sample logistic regression. *Journal of the American Statistical Association*, 113(522), 829-844.
- 3. Ai, M., Yu, J., Zhang, H., & Wang, H. (2018). Optimal Subsampling Algorithms for Big Data Generalized Linear Models. *arXiv preprint arXiv:1806.06761*.
- 4. Ting, D., & Brochu, E. (2018). Optimal Subsampling with Influence Functions. In *Advances in Neural Information Processing Systems*, *NIPS* (pp. 3650-3659).
- 5. Koh, P. W., & Liang, P. (2017, August). Understanding black-box predictions via influence functions. In *Proceedings of the 34th International Conference on Machine Learning, ICML-Volume 70*(pp. 1885-1894). JMLR. org.
- 6. Hsia, C. Y., Chiang, W. L., & Lin, C. J. (2018, November). Preconditioned conjugate gradient methods in truncated Newton frameworks for large-scale linear classification. In *Asian Conference on Machine Learning*, *ACML* (pp. 312-326).
- 7. Agarwal, N., Bullins, B., & Hazan, E. (2017). Second-order stochastic optimization for machine learning in linear time. *The Journal of Machine Learning Research*, 18(1), 4148-4187.
- 8. Martens, J. (2010, June). Deep learning via Hessian-free optimization. In *ICML* (Vol. 27, pp. 735-742).
- 9. Wang, T., Huan, J., & Li, B. (2018). Data Dropout: Optimizing Training Data for Convolutional Neural Networks. 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 39-46.
- 10. Ren, M., Zeng, W., Yang, B., & Urtasun, R. (2018). Learning to Reweight Examples for Robust Deep Learning. ArXiv, abs/1803.09050.
- 11. Cook, R. D., and Weisberg, S. 1980. Characterizations of an empirical influence function for detecting influential cases in regression. Technometrics 22(4):495–508.
- 12. Schnabel, T.; Swaminathan, A.; Singh,
- 13. A.; Chandak, N.; and Joachims, T. 2016. Recommendations as treatments: Debiasing learning and evaluation. arXiv preprint arXiv:1602.05352.

Thanks for Listening! Q&A

Zifeng Wang, Hong Zhu, Zhenhua Dong, Xiuqiang He, Shao-Lun Huang.

Less Is Better: Unweighted Data Subsampling via Influence Function.

AAAI 2020.