

System Identification within Flight Test and Flight Physics

02.03.2018

A project proposal

Alejandro Valverde

♣ kopter

Aircraft System Identification

System Identification is the process of building mathematical models for physical systems based on imperfect observations or measurements

When applied to aircraft, it is called Aircraft System Identification

Problems in Aircraft Dynamics

Simulation: Given *u* and S, find z

Control: Given z and S, find u

Identification: Given z and u, find S

★ kopter

Applications of Aircraft System ID techniques

Aircraft System Identification offers a wide range of different applications, including:

Flight Simulator development

Flight Control System (FCS) design

Flight envelope expansion

Handling Qualities assessment and enhancement

And many others...

❖ kopter

Aircraft Simulation - Ongoing Kopter project

Extracted from Nicolas Callejo's MSc Thesis overview in collaboration with Kopter Avionics Dep.

★ kopter

Aircraft Simulation – Current Kopter approach

★ kopter

Aircraft Simulation – Aircraft SID approach

System ID R/C Model vs FlightLab

H/C model from System ID

Advantages:

- High accuracy provided that good quality data points are available
- Validation -> instantaneous
- Non-linear flight dynamics
- Transient flight conditions
- Real-time dynamic modelling
- Account for aeroelastic effects

Drawbacks:

 Depend on flight test data availability and dedicated flight manoeuvres

Best use: Dynamic model of the real H/C:

- FCS design
- Handling qualities
- Simulator development

@ Kopter Group AG | Alejandro Valverde

FlightLab H/C model

Advantages:

- Not dependent on flight test data
- Model complexity adjustable:
 Full aeroelastic -> loads&dynamics
 Rigid -> flight mechanics

Drawbacks:

- Validation -> complicated
- Full aeroelastic model -> complicated
- Internal parameters hard to properly be tuned

Best use: Prediction of H/C:

- H/C and compnt. loads
- Rotor dynamics
- H/C Performance

♣ kopter

How does it work?

Forces and moments
$$\frac{d}{dt}(mV) = \sum F \neq F_{Aero} + F_{Thrust} + F_{Gravity} + F_{Controls} + F_{Propulsion} + F_{Disturbances}$$

$$\frac{d}{dt}(Iw) = \sum M \neq M_{Aero} + M_{Thrust} + M_{Controls} + M_{Propulsion} + M_{Disturbances}$$

 $\begin{array}{c|c} \Sigma^F \\ \Sigma^M \end{array} \text{ Develop a model form from which parameters can be estimated} \\ \text{using } \underline{\text{flight test data}} \\ \end{array}$

Pitching moment coefficient

Thoment coefficient longitudinal pitch control measurement of attack velocity input noise
$$C_m = C_{m_0} + C_{m_\alpha} \alpha + C_{m_q} q + C_{m_\delta} \delta + \cdots + \nu_m$$
 pitching static stability moment bias dynamic stability (damping)

9

How does it work?

Pitching moment model:

$$C_{m} = C_{m_{0}} + C_{m_{\alpha}}\alpha + C_{m_{q}}q + C_{m_{\delta}}\delta + \nu_{m}$$

$$\theta = \left[C_{m_{0}}, C_{m_{\alpha}}, C_{m_{q}}, C_{m_{\delta}}\right]'$$

Observations z

y: Model output

 θ : Regresors

X: Values of variables measured

z: Observations

 ν : Noise of the measurement

SID Model:

Vector of regressors (parameters to be identified)

- Simple

 Real time parameters estimations

- Any nonlinear system dynamics

Machine learning techniques

☆ kopter

Tools – SIDPAC software

- Collection of over 350 state-of-the-art programs
- Used at more than 80 organization worldwide
- No development time needed

For permission to copy or to republish, contact the American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344

★ kopter

Tools – SIDPAC software

What would we need?

Complete instrumented helicopter

- IMUs
- MR/TR rpm
- δ_{col} , δ_{lat} , δ_{long} , δped

We already have <u>this</u>

Instrumentation overview

Table 9.1 Instrumentation characteristics for a general aviation airplane

Measured quantity	Transducer	Working range	Resolution	rms measurement error
a_x , g	Accelerometer	[-1,1]	0.001	0.0046
a_{y}, g	Accelerometer	[-1,1]	0.001	0.0050
a_z , g	Accelerometer	[-3,6]	0.001	0.0050
p, deg/s	Rate gyro	[-102,102]	0.12	0.20
q, deg/s	Rate gyro	[-29,29]	0.032	0.19
r, deg/s	Rate gyro	[-29,29]	0.034	0.080
ϕ , deg	Vertical gyro	[-90,90]	0.10	0.077
θ , deg	Vertical gyro	[-87,87]	0.098	0.092
α , deg	Flow vane	[-12,27]	0.029	0.027
β , deg	Flow vane	[-29,32]	0.018	0.019
δ_{a_r} , deg	Potentiometer	[-23,10]	0.002	0.019
δ_{a_I} , deg	Potentiometer	[-10,25]	0.002	0.0061
δ_s , deg	Potentiometer	[-16,3]	0.010	0.0037
δ_r , deg	Potentiometer	[-31,28]	0.011	0.0091
V, m/s	Pressure transducer	[0,75]	0.037	0.89
h, m	Altimeter	[-150,2900]		
T, °C	Thermometer	[-18,38]		

Table 9.2 Dynamic characteristics of transducers

Measured quantity	Transducer	Natural frequency, Hz	Damping ratio	Time delay, s
a_x , g	Accelerometer	402	1.58	0.0012
$a_{\rm v}, g$	Accelerometer	216	1.10	0.0016
a_z , g	Accelerometer	921	1.58	0.0005
p, deg/s	Rate gyro	27	0.64	0.0075
q, deg/s	Rate gyro	27	0.64	0.0075
r, deg/s	Rate gyro	27	0.64	0.0075
α, deg	Flow vane	23 ^a	0.085^{a}	0.0012
β , deg	Flow vane	23ª	0.085^{a}	0.0012

^aAt $V = 164 \, \text{ft/s}$

Inputs

Constraints on inputs:

- Rate of data acquisition
- Limited resolution on sensors or data acquisition system
- Limited time for each maneuver
- Limitations on how the aircraft can be excited

Inputs

☆ kopter

♣ kopter

Why to introduce System ID into P3 test campaign?

Sooner or later, it would need to be implemented

Every big helicopter manufacturer has a <u>dedicated SID department</u>

- SID framework could be developed now using P2 flight test data
- Assist P3 flight envelope expansion in Sicily, necessary for TC. Issues like the cyclic migration could be addressed and main driving parameters identified.
- Provide a proper dynamic model of the H/C for the simulator
- Surely it will be needed for PS4 and further developments after TC, such as FCS design
- Cost effective

We have to do it <u>now</u>, we are ready <u>now</u>

System ID takes time and money – but not nearly as much as not doing it

Eugene A. Morelli NASA Langley Research Center Hampton

Why I can be the one doing this?

- I know what to do and how to do it
- Kopter experience, within rotorheads
- Data analysis experience
 - Python
 - Matlab
 - Data analysis and machine learning techniques
 - ...
- Availability from April onwards

Next steps – Near future

★ kopter

- Perform <u>first approach System ID</u> on FlightLab:
 - Rigid body System ID framework
 - FlightLab linearized model
 - Inclusion of simulated disturbances in the measurements
- Develop a System ID framework suitable for <u>real flight test data</u>:
 - Rigid body System ID framework
 - Use of P2 flight test data if suitable
 - Assessment of <u>handling qualities issues</u>
 - Inclusion of aeroelastic effects
 - Provide dynamic model of P2 suitable for:
 - FCS design
 - Simulator development
- Assist P3 flight envelope expansion in Sicily:
 - Developed System ID framework could be ready to:
 - Perform post-flight analysis for accurate parameter estimation
 - Real-time dynamic modelling
 - Address handling qualities issues

April Beginning of summer

Beginning of summer

First steps, using FlightLab

★ kopter

- fwd level flight
- 147 kts
- 2800 kg
- $x_{cg} = 3.37$ m

LTI model

$$y = X \theta$$

$$z = X \theta + v$$

- 73 states
- 6 outputs
- 4 inputs

☆ kopter

Thank you

References

- [1] V. Klein and E. A. Morelli, "Aircraft System Identification Theory and Practice," 2006.
- [2] R. K. Remple and M. B. Tischler, Aircraft and Rotorcraft System Identification. 2006.
- [3] G. Morelli and S. Derry, "System Identification Methods for Aerodynamic Modeling and Validation using Flight Data," 2011.
- [4] G. Morelli, "Aircraft System Identification," 2011.

♣ kopter

