INSTRUMENTAL VARIABLE ESTIMATION (I)

Joy Shi, Barbra Dickerman, Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Define an instrumental variable
- Define the standard instrumental variable estimator
- Provide examples of commonly used instruments
- ☐ Key concepts
 - Instrument
 - Surrogate instrument
 - Two-stage least squares estimator

Instrumental variables (I)

Our goal: To estimate the average causal effect of treatment A on outcome Y

☐ For example

- \blacksquare the effect of aspirin (A) on blood pressure (Y)
- \blacksquare the effect of smoking cessation (A) on weight gain (Y)
- ☐ The average causal effect is the difference of counterfactual means $E[Y^{a=1}] E[Y^{a=0}]$

Instrumental variables (I)

3

To validly estimate causal effects we will generally need to adjust for confounding

For example

- Individuals with history of coronary heart disease are more likely to receive aspirin (A) and also to have higher blood pressure (Y)
- Heavy smokers are less likely to quit smoking (A) and also less likely to gain weight (Y)

Instrumental variables (I)

Methods to adjust for confounding

- Stratification/Regression
- Matching
- Stratification/matching based on propensity scores
- Standardization/G-formula
- IP weighting
- G-estimation

☐ All these methods require one unverifiable condition...

Instrumental variables (I)

5

The measured confounders ${\it L}$ are sufficient to control all confounding

"No unmeasured confounding" condition

Requires conditional exchangeability

■ the outcome distribution in the treated if untreated is the same as the outcome distribution in the untreated, and vice versa, within levels of *L*

$$Y^a \perp \!\!\!\perp A \mid L = l$$
 for all a

Instrumental variables (I)

Conditional exchangeability is necessary for all the above methods, but...

... it is also empirically unverifiable

■ Data to test this condition are, by definition, unavailable

☐ For example:

- We cannot prove that individuals who take and do not take aspirin are comparable after conditioning on the measured confounders
- because these individuals may still not be comparable with respect to unmeasured confounders

Instrumental variables (I)

7

Meet instrumental variable (IV) estimation

- ☐ We can identify causal effects using IV estimation even if we do not measure the confounders!
- ☐ Sounds like magic?
 - Economists have used IV methods for a long time
 - Epidemiologists are increasingly using IV methods

Instrumental variables (I)

The "magic" of IV estimation applies to treatment-outcome confounders only

- ☐ For example, if there is time-varying selection bias (e.g., because of differential loss to follow-up), then additional adjustment is necessary
 - Such adjustment requires additional data
 - e.g., data on joint predictors of censoring and outcome to estimate IP weights and then implement IV estimation in the pseudo-population

Instrumental variables (I)

9

Z is an instrument if it meets the 3 instrumental conditions

- i. Z is associated with treatment A
 - relevance condition
- ii. Z affects the outcome Y only through treatment A
 - exclusion restriction
- iii. Z does not share causes with the outcome Y
 - \blacksquare no confounding for Z

Instrumental variables (I)

Outline

- 1. IV estimation in randomized experiments
- 2. IV estimation in observational studies
- 3. Application to smoking cessation study
 - Standard IV estimator
 - Two-stage estimator
- 4. Limitations of IV estimation
- 5. Conclusions

Instrumental variables (I)

11

Example: Double-blind randomized experiment

- \square Z: assigned treatment
 - Aspirin (1: yes, 0: no)
- \square A: actual treatment
 - Aspirin (1: yes, 0: no)
- ☐ *Y*: outcome
 - Blood pressure
- \square *U*: unmeasured factors
 - Healthy lifestyle

Instrumental variables (I)

The Z-A association is a valid estimator of the effect of Z on A	₩ 0
True	
	0%
False	
	0%
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

We can estimate the intention-to-treat effect ☐ That is, the effect of being assigned to aspirin vs. no aspirin ☐ regardless of whether trial participants adhered to

- \blacksquare this is the effect of Z on Y
- ☐ However, the intention-to-treat effect is hard to interpret because it critically depends on the degree of adherence
 - \blacksquare the effect of Z on A

their assignment

Instrumental variables (I)

15

We would like to estimate the per-protocol effect

- ☐ That is, the effect of actually receiving aspirin vs. no aspirin
 - the effect if trial participants adhered to their assignment
 - \blacksquare this is the effect of A on Y

Instrumental variables (I)

How can IV estimation work?

- ☐ By taking advantage of two average causal effects that can be estimated without bias
 - The effect of Z on Y
 - The effect of Z on A

Instrumental variables (I)

19

Two effects can be directly estimated because they are unconfounded

Effect of Z on Y

$$E[Y|Z=1]-E[Y|Z=0]$$

☐ on additive scale

Effect of Z on A

$$E[A|Z=1]-E[A|Z=0]$$

- □ on additive scale
- ☐ Intention-to-treat effect ☐ Adherence (compliance)

Instrumental variables (I)

The average causal effect of A on Y $E[Y^{a=1}] - E[Y^{a=0}]$ is the standard IV estimand

$$\frac{\text{Effect of } Z \text{ on } Y}{\text{Effect of } Z \text{ on } A} = \frac{\text{ITT effect}}{\text{Adherence}} = \frac{\text{E}[Y|Z=1] - \text{E}[Y|Z=0]}{\text{E}[A|Z=1] - \text{E}[A|Z=0]}$$

- ☐ Intention-to-treat effect in the numerator is inflated by a measure of adherence in the denominator
 - If full compliance, the denominator is 1 and the intentto-treat effect equals the effect of *A* on *Y*
 - See Chapter 16 for a proof under additional conditions

Instrumental variables (I)

21

IV estimands for the average causal effect of A on Y

☐ The standard IV estimand measures the effect on the additive scale for a dichotomous instrument

$$\frac{E[Y|Z=1] - E[Y|Z=0]}{E[A|Z=1] - E[A|Z=0]}$$

- Difference of means or risks
- ☐ Other IV estimands yield the effect on the multiplicative scale
 - Ratio of means or risks

Instrumental variables (I)

Outline

- 1. IV estimation in randomized experiments
- 2. IV estimation in observational studies
- 3. Application to smoking cessation study
 - Standard IV estimator
 - Two-stage estimator
- 4. Limitations of IV estimation
- 5. Conclusions

Instrumental variables (I)

23

Z is an instrument if it meets the 3 instrumental conditions

- i. Z is associated with treatment A
 - relevance condition
- ii. Z affects the outcome Y only through treatment A
 - exclusion restriction
- iii. Z does not share causes with the outcome Y
 - \blacksquare no confounding for Z

Instrumental variables (I)

l For surrogate ins	truments, the Z-Y association is a valid estimator of the effect of Z on Y	₩0
True		
		0%
False		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

A surrogate instrument Z can also be used for IV estimation

- i. Z is associated with treatment A
 - It is OK if the Z A association is not a valid estimator of the effect of Z on A
 - lacktriangle As long as the causal instrument U_Z is
- ii. Z affects the outcome Y only through treatment A
 - It is OK if Z does not affect the outcome Y through A
 - \blacksquare As long as the causal instrument $U_{\rm Z}$ only affects the outcome through treatment A
- iii. Z does not share causes with the outcome Y
 - It is OK if Z and Y share the causal instrument U_Z as a cause
 - $lacktriangleq U_Z$ cannot share common causes with outcome Y

Instrumental variables (I)

Proposed instruments in observational studies Genetic variants

- A: Alcohol intake (1: heavy drinking, 0: mild/no drinking)
- *Y*: Coronary heart disease
- Z: Genetic variants associated with alcohol metabolism, e.g., ALDH2 polymorphisms in Asian populations

□ Mendelian randomization

■ Katan 1986, Davey Smith and Ebrahim 2004, Chen et al 2008...

Instrumental variables (I)

31

Proposed instruments in observational studies Genetic variants (surrogate)

- *A*: Dietary calcium
- *Y*: Osteoporosis
- U_7 : Lactose intolerance gene
- Z: Self-reported lactose intolerance
- \square Causal instrument U_Z is unmeasured, instrument Z is a proxy for U_Z

Instrumental variables (I)

Proposed instruments in observational studies Preference Lung cancer patients A: Type of chemotherapy Y: 5-year mortality Z: Physician's preference for type of chemotherapy Pharmacoepidemiology / Outcomes research Korn and Baumrind 1998, Earle et al 2001, Brookhart et al 2006...

Proposed instruments in observational studies Preference (surrogate)

- ☐ Lung cancer patients
 - *A*: Type of chemotherapy
 - *Y*: 3-year mortality
 - U_Z : Physician's preference for type of chemotherapy
 - Z: Proportion of patients recently treated by that physician who received A=1
- \square Causal instrument U_Z is unmeasured, instrument Z is a proxy for U_Z

Instrumental variables (I)

35

Proposed instruments in observational studies Access: physical distance

- ☐ Patients with myocardial infarction
 - A: Invasive procedures
 - *Y*: Mortality
 - Z: Distance from patient's residence to hospital with capability for invasive procedures
 - □ McClellan et al 1994

Instrumental variables (I)

Proposed instruments in observational studies Access: price

- ☐ Patients with myocardial infarction
 - *A*: Cigarette smoking cessation
 - Y: Health outcome (physical functional status)
 - Z: Cigarette price
 - ☐ Leigh and Schembri 2004

Instrumental variables (I)

37

Proposed instruments in observational studies Access: calendar time

- □ HIV-infected patients
 - A: Type of antiretroviral therapy (monotherapy, combination therapy, cART)
 - *Y*: AIDS or death
 - *Z*: Calendar period (1990-93, 1994-95, 1996-97)
 - ☐ Hoover et al 1994, Detels et al 1998

Instrumental variables (I)

Proposed instruments in observational studies Access (surrogate)

- \square Physical distance, price, calendar period, can also be seen as surrogates of the causal instrument accessibility U_Z
 - Distance Z is an approximation to actual driving time (e.g., traffic patterns may be important too)
 - Cigarette price in a state Z is an approximation to price at the closest store
 - Calendar time Z is an approximation to accessibility to a treatment because there might be a fuzzy boundary of availability

Instrumental variables (I)

39

Outline

- 1. IV estimation in randomized experiments
- 2. IV estimation in observational studies
- 3. Application to smoking cessation study
 - Standard IV estimator
 - Two-stage estimator
- 4. Limitations of IV estimation
- 5. Conclusions

Instrumental variables (I)

Study population ☐ 1629 cigarette smokers ☐ Aged 25-74 years when interviewed in 1971-75 (baseline) ☐ Interviewed again in 1982 ☐ Known sex, age, race, weight, height, education,

and follow-up visits, and who answered the general

medical history questionnaire at baseline

Instrumental variables (I)

alcohol use, and smoking intensity at both baseline

41

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Proposed instrument Z	Price of a pack of cigarettes in 1982 in the state of birth in 2008 US dollars 1: greater than \$1.50, 0: \$1.50 or lower
Y and Z available for 1476 individuals	For simplicity, IV analysis restricted to them

Instrumental variables (I)

Reminder

- \square Average causal effect of A on Y is $E[Y^{a=1}] E[Y^{a=0}]$
 - on the additive scale

□ where

- $E[Y^{a=1}]$ is the mean weight gain if everybody had quit smoking
- $E[Y^{a=0}]$ is the mean weight gain if nobody had quit smoking

Instrumental variables (I)

43

Data analysis Standard IV estimator

- $\square \hat{E}[Y|Z=1] \hat{E}[Y|Z=0]$
 - \blacksquare = 2.686 2.536 = 0.1503
- \Box $\hat{E}[A|Z=1] \hat{E}[A|Z=0] =$
- \square The IV estimate of $E[Y^{a=1}] E[Y^{a=0}]$ is
 - 0.1503 / 0.0627 = 2.4 kg See iv.R, lines 6-11

Instrumental variables (I)

Data analysis Two-stage least-squares estimator

- ☐ Stage 1: Fit a linear model for treatment
 - $\blacksquare \quad \mathbf{E}[A|Z] = \alpha_0 + \alpha_1 Z$
 - Generate the predicted values $\hat{\mathbb{E}}[A|Z]$ for each individual
- ☐ Stage 2: Fit a linear model for the outcome
 - $\blacksquare \quad \mathbf{E}[Y|Z] = \beta_0 + \beta_1 \hat{\mathbf{E}}[A|Z]$
- \square The parameter estimate of β_1 is the IV estimate
 - 2.4 kg; 95% CI (-36.5, 41.3) See iv.R, lines 16-24

Instrumental variables (I)

45

Standard estimator and two-stage estimator are equivalent IV estimators

- ☐ But the two-stage estimator is more frequently used because it makes it easier to
 - introduce covariates
 - handle continuous treatments
 - consider multiple instruments simultaneously
- ☐ However, the two-stage estimator makes strong parametric assumptions
 - Robins's g-estimators of structural mean models avoid some of those assumptions but have been rarely used

Instrumental variables (I)

Isn't it amazing? □ NO DATA on confounders are needed! □ If we find an instrument ■ conditional exchangeability of the treated and untreated is not necessary for causal inference from observational data □ Why have we wasted our time with confounding adjustment methods that require exchangeability? Instrumental variables (1) 47

Progress report

- Introduction to modeling
- 2. Stratified analysis:
 - outcome regression
 - propensity scores
- 3. Standardization
- 4. Inverse probability weighting
 - Marginal structural models
- Instrumental variable estimation to be continued...

Instrumental variables (I)