

CSCI 2824: Discrete Structures

Lecture 12: Set Theory and Set

Operations

Rachel Cox

Department of Computer Science

101100001000 101100001000 101100001000 101100001000 101100001000

A <u>set</u> is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

$$N=\{0,1,2,3,4,5,...\}$$
 the set of natural numbers \emptyset aka $\{\ \}$
$$Z=\{...,-2,-1,0,1,2,...\}$$
 the set of integers
$$Z^+=\{1,2,3,...\}$$
 the set of positive integers
$$Q=\{\frac{p}{a} \mid p\in Z, q\in Z, and \ q\neq 0\}$$
 the set of rational numbers
$$V=\{a,e,i,o,u\}$$

Typically sets are denoted with uppercase letters while elements of sets are denoted by lowercase letters.

Roster Method: set notation where all members of the set are listed between braces.

e.g. $B = \{bison, mountain lion, deer, rabbit, coyote, prairie dog\}$

<u>Set Builder Notation</u>: members of a set are characterized by stating the property or properties they must have to be members.

e.g.
$$C = \{x \mid x > 3\}$$
 $C = \{y \mid y > 3\}$

To show that $A \subseteq B$ you have to show that every element of A is also in B.

To show that $A \nsubseteq B$ you have to find just one element in A that is not in B.

Proper Subset: In order for A to be a proper subset of B we must have that A is a subset of B but that $A \neq B$.

- \triangleright denoted: $A \subseteq B$
- ightharpoonup means: $\forall x(x \in A \rightarrow x \in B) \land \exists x(x \in B \land x \notin A)$

Two sets are <u>equal</u> if and only if they have the same elements. Therefore, if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$. We write A = B if A and B are equal sets.

Example: Consider the sets $A = \{black, gold, ralphie, 2018\}$ and $B = \{gold, black, 2018, 2018, ralphie, black\}$.

Are these sets equal?

Yes! These are equal?

to show equality we show A S B AND

Sets can have pretty much anything in them, including other sets. e.g. $S = \{0, 1, \{0, 1, 2\}, \mathbf{Z}, \text{lamp}\}$

Sets have no ordering. e.g. $\{1, 2, 3, 4\} = \{4, 3, 2, 1\}$

 \clubsuit Repeated elements don't matter. e.g. $\{cat, dog\} = \{cat, cat, dog\}$

Theorem: For every set S,

Three Special Sets

The Empty Set: The set that has no elements \emptyset or $\{\}$

The Singleton Set: A set with only one element

The Power Set: set of all subsets of a set S P(S)

Example: $P(\{0,1,2\}) = \{0, 1, 2\}$ $\{0, 1, 2\}$ $\{0, 1, 2\}$ $\{0, 1, 2\}$ $\{0, 1, 2\}$

 \triangleright If S has n elements then P(S) has 2^n elements.

The number of elements in a set is called the sets **cardinality**. If a set's cardinality is a finite number, then we say the set is finite

Example: What is the cardinality of the english alphabet?

26

Example: What is the cardinality of \mathbb{Z} ?

Set A

Cardinality is Represented 1A1

ll integers

infruite

Let A and B be sets. The <u>Cartesian product</u> of A and B, denoted by $\underbrace{A \times B}$, is the set of all ordered pairs (a,b), where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

The Cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered n_tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i for $i = 1, 2, \ldots, n$.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_1 \in A_i \text{ for } i = 1, 2, \dots, n\}$$

Example: Think about ordered pairs of integers representing points in the xy-plane. (3,5) is very different from (5,3)

indicates an ondered triple.

Example: What is the Cartesian product $A \times B \times C$ where $A = \{a, b\}, B = \{x, y\},$ and $C = \{m, n\}$

$$A = \{a, b\}$$
 $B = \{x, y\}$
 $C = \{m, n\}$

$$A \times B \times C = \{ (a, x, m), (a, x,$$

$$\{(a, y, m), (b, x, m), (b, x, m), (b, x, m), (b, x, m), (b, y, m$$

$$A = \{1, 2\}$$

$$A - \{1, 2\}$$

Example: Suppose that $A = \{1, 2\}$. Find $A \times A$ (aka A^2) and find $A \times A \times A$ (aka A^3)

$$A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$$

$$A \times A \times A$$

Example
$$A = \{a, b, c\}$$

 $B = \emptyset$

$$A \times B = \{ \}$$

$$A = \{a,b,c\}$$

$$B = \{ \phi \}$$

$$A = \{a,b,c\}$$

$$B = \{\phi\}$$

$$A \times B = \{(a,\phi),(b,\phi),(c,\phi)\}$$

Venn diagrams can be useful when trying to understand and represent set operations.

Let A and B be sets. The <u>union</u> of the sets A and B, denoted $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

Let A and B be sets. The **intersection** of the sets A and B, denoted $A \cap B$, is the set that contains those elements that are in both A and B.

Example: Consider the sets: $A = \{1, 3, 5\}$ and $B = \{1, 2, 3\}$. Find the union and the intersection of these two sets.

$$AUB = \{1, 2, 3, 5\}$$

 $ANB = \{1, 3\}$

Example: Consider the sets: $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Find the union and the intersection of these two sets.

AUB =
$$21,2,3,4,5,6$$

ANB = ϕ

> Two sets are called <u>disjoint</u> if their intersection is the empty set.

Let A and B be sets. The <u>difference of A and B</u>, denoted A - B, (or $A \setminus B$), is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

Example: What is the difference of the set of positive integers less than 10 and the set of prime numbers?

$$T = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$P = \{2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\}$$

$$T - P = \{1, 4, 6, 8, 9\}$$

Definition: The <u>universal set</u>, denoted typically by *U*, is the set containing all elements within the domain of discourse.

 You can think about the universal set as the set containing all elements under consideration.

Example: if the domain of discourse is all CU students, then *U* is the set of all CU students.

Definition: Let U be the universal set. The <u>complement</u> of the set A, denoted \overline{A} , is the set U - A.

An element belongs to \bar{A} if and only if $x \notin A$, so $\bar{A} = \{x \in U \mid x \notin A\}$, or just $\{x \mid x \notin A\}$

Example: Show that $A - B = A \cap \overline{B}$

 \triangleright In general: To show that two sets R and S are equal, we will show that $R \subseteq S$ and $S \subseteq R$

Show
$$A - B \subseteq A \cap B$$

Let \times be an arbitrary element of $A - B$
 $\times \in A - B$
 $\Rightarrow \times \in A \land \times \notin B$
 $\Rightarrow \times \in B \Rightarrow \times \in B$
 $\Rightarrow \times \in A \land \times \in B$
 $\Rightarrow \times \in A \land \times \in B$
 $\Rightarrow \times \in A \land B$
Def of intersection

Therefore A-B = ANB

Now we show ANBSA-B let $x \in A \cap B$ be arbitrary. => X & A A X & B by. of Intersection X ∈ B ⇒ X € B Def. of Complement ⇒ X ∈ A ∧ X ∉ B Def. of Difference. ⇒ × ∈ A - B

Thus A-B = ANB

Therefore ANB = A-B

When sets are combined using only \cup , \cap , and complements, there is a set of **Set Identities** that completely mirrors the logical equivalences from last chapter.

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Example: Prove DeMorgan's Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Example: Prove DeMorgan's Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

$$\overline{A} \cap B = \{ x \mid x \notin A \cap B \}$$
 Definition of Complement
 $= \{ x \mid \neg (x \in A \cap B) \}$ Definition of "Not In"
 $= \{ x \mid \neg (x \in A \cap X \in B) \}$ Definition of Intersection
 $= \{ x \mid \neg (x \in A) \mid \neg (x \in B) \}$ Definition of "Not In"
 $= \{ x \mid x \notin A \mid x \notin B \}$ Definition of Complement
 $= \{ x \mid x \in A \mid x \in B \}$ Definition of Complement
 $= \{ x \mid x \in A \mid uB \} = \overline{A} \cup \overline{B}$ Definition of Union

End of Sets and Set Operations!

Next Up: More Set Examples!