$$(a+b)^2 = \dots \dots$$

$$(a-b)^2 = \dots \dots$$

$$(a+b)(a-b) = \dots \dots$$

Remarque. – Il faut savoir utiliser les identités précédentes dans les deux sens, c'est-à-dire pour développer et factoriser.

Exemples. -

1. Développer puis réduire les expressions suivantes :

(a) 
$$(2x+4)^2$$

(b) 
$$(x-7)^2$$

(a) 
$$(2x+4)^2$$
 (b)  $(x-7)^2$  (c)  $(10x+2)(10x-2)$ 

2. Factoriser les expressions suivantes :

(a) 
$$y^2 - 10y + 25$$

(b) 
$$4x^2 - 36$$

(a) 
$$y^2 - 10y + 25$$
 (b)  $4x^2 - 36$  (c)  $4c^2 + 16c + 16$ 

3. Python permet de développer des expressions :

Out[1]: 
$$10x^2 + 40$$

Lorsque a et b sont positifs, l'identité remarquable

$$(a+b)^2 = a^2 + 2ab + b^2$$

peut s'illustrer de la façon suivante :

Exemple. – AEFD est un rectangle « formé » d'un carré ABCD de côté x (avec x > 0) et d'un rectangle BEFC tel que BE = 2. On note  $\mathcal{A}$  l'aire du rectangle AEFD.



- 1. Exprimer A en fonction de x.
- 2. Vérifier que  $A = (x+1)^2 1$ .