Álgebra Linear EE

Teste 1 2015/2016 - 19 de Novembro de 2015 Departamento de Matemática e Aplicações - Universidade do Minho

Nome:	·	N°:
Curso:		

1. O conjunto
$$F = \{(x, y, z) \in IR^3 : x = y - z\}$$
 é um subespaço vetorial de IR^3 .

2. A matriz
$$A = \begin{pmatrix} 1 & b & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
 é invertível se e só se $b = 0$.

3. Os vetores
$$(a,4)$$
, $(4,1)$, $(1,a)$ são linearmente independentes em IR^2 para qualquer que seja o valor de a .

4. Os vetores (1,2); (3,4) e (0,1) são geradores de IR^2 .

5. A função
$$f(x, y) = y^2$$
 não é linear.

6. Considere as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} i & 2 \\ 1 & i \end{bmatrix}$. Então $A^T B^H = \begin{bmatrix} -i+1 & 1-4i \\ -2i+4 & 2-2i \end{bmatrix}$.

7. A expressão
$$(AB^{T} + AC)^{T}$$
 pode ser escrita como $(B + C^{T})A^{T}$.

$$(AB^{T})^{T} + (AC)^{T} = (B^{T})^{T}A^{T} + C^{T}A^{T} =$$

$$= BA^{T} + C^{T}A^{T} = (B + C^{T})A^{T}$$

$$= BA^{T} + C^{T}A^{T} + C^{T}A^{T}$$

$$= BA^{T} + C^{T}A^{$$

- Grupo II Em cada uma das perguntas seguintes, responda sem apresentar cálculos.
 - 3 1. Considere o subespaço vetorial $S = \{(x, y, z) \in IR^3 : x = 2y + z\}$.
 - 2 1.1 Determine uma base de S e calcule a sua dimensão.

1.2 Determine um sistema gerador de S constituído por um conjunto de vetores linearmente dependentes.

- 2. Considere a matriz $B = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & c \\ 1 & 3 & 0 \end{pmatrix}$
- \mathfrak{I} 2.1 Reduza a matriz B a uma matriz triangular superior.

$$\begin{pmatrix} -1 & 1 & 1 \\ 0 & 1 & C \\ 0 & 0 & 1-4C \end{pmatrix}$$

 \uparrow 2.2 Determine os valores de c para os quais a matriz tem inversa.

2.3 Para c=0, determine a inversa de B.

- 3. Considere a matriz $A = \begin{bmatrix} 1 & 3 & 3 \\ a & 0 & 1 \\ 2 & 4 & 1 \end{bmatrix}$.
- 2 3.1 Reduza a matriz A a uma matriz triangular superior.

$$\begin{bmatrix} 1 & 3 & 3 \\ 0 & -2 & -5 \\ 0 & 0 & 9/2a+1 \end{bmatrix}$$

 Λ 3.2 Diga para que valores de a a característica da matriz $A \in 2$.

$$a = -\frac{2}{4}$$

3.3 Diga para que valores de a a matriz A tem inversa.

Álgebra Linear EE

Teste 1 2015/2016 - 19 de Novembro de 2015 Departamento de Matemática e Aplicações - Universidade do Minho

Nome:	Nº:	
Curso:		

Grupo I – Este grupo é constituído por oito afirmações que deve indicar se são verdadeiras ou falsas.

1. O conjunto
$$F = \{(x, y, z) \in IR^3 : x = y + 1\}$$
 é um subespaço vetorial de IR^3 .

2. A matriz
$$A = \begin{pmatrix} 1 & b & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
 é invertível se e só se $b \neq 0$

3. Os vetores (a,4), (4,1), (1,a) não são linearmente independentes em IR^2 para qualquer que seja o valor de a.

4. A função
$$f(x, y) = y^2 + 1$$
 não é linear.

6. Considere as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
 e $B = \begin{bmatrix} i & 2 \\ 1 & i \end{bmatrix}$. Então $A^T B^H = \begin{bmatrix} -i+8 & 1-4i \\ -2i+4 & 2-2i \end{bmatrix}$.

7. A expressão
$$(AB^T + AC)^T$$
 pode ser escrita como $A^T(B + C^T)$

8. A matriz
$$A = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix}$$
 é ortogonal quando $a = -1$.

- Grupo II Em cada uma das perguntas seguintes, responda sem apresentar cálculos.
 - 3 1. Considere o subespaço vetorial $S = \{(x, y, z) \in IR^3 : x = y z\}$.
 - $\gtrsim 1.1$ Determine uma base de S e calcule a sua dimensão.

1.2 Determine um sistema gerador de S constituído por um conjunto de vetores linearmente dependentes.

5 2. Considere a matriz
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & c \\ 1 & 3 & 0 \end{pmatrix}$$

2 2.1 Reduza a matriz B a uma matriz triangular superior.

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & C \\
0 & 0 & -1 - 2C
\end{pmatrix}$$

1 2.2 Determine os valores de c para os quais a matriz tem inversa.

$$c \neq -\frac{1}{2}$$

 ∂_{c} 2.3 Para c=0, determine a inversa de B.

$$\begin{pmatrix} 0 & -3 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}$$

3. Considere a matriz
$$A = \begin{bmatrix} 1 & 2 & 3 \\ a & 0 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
.

2 3.1 Reduza a matriz A a uma matriz triangular superior.

$$\begin{bmatrix}
1 & 2 & 3 \\
0 & -6 & -11 \\
0 & 0 & \frac{2}{3}a + 1
\end{bmatrix}$$

3.2 Diga para que valores de a a característica da matriz A é 2.

$$a = -3/2$$

3.3 Diga para que valores de a a matriz A tem inversa.

$$a \neq -3/2$$

Álgebra Linear EE
Teste 2 2015/2016 - 13 de Janeiro de 2016
Departamento de Matemática e Aplicações - Universidade do Minho

	Nome:	ne:N°:	
8	Grupo I – Este grupo é constituído por oito afirmações que deve indicar se são verdadeiras ou falsas.		icar se são
1	1. O sistema $\begin{cases} x + y - z = 0 \\ x - y - 2z = 0 \\ 2x - 3z = 0 \end{cases}$	tem apenas a solução trivial.	v (F
1	2. Os vetores próprios da matriz forma $(-2\alpha, \alpha)$ com $\alpha \neq 0$.	$z B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ associados ao valor próprio	$l = 0$ são da \widehat{V} F
1	3. Toda matriz da forma $\begin{bmatrix} a & b \\ d & e \\ c & f \end{bmatrix}$ nulo.	$\begin{bmatrix} a \\ d \\ c \end{bmatrix}$, $\forall a,b,c,d,e,f \in \mathbb{R}$ tem determinante	, (V) F
1	4. Os valores próprios da matriz	$B = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \text{ são } \lambda(B) = 1 \pm \sqrt{6} .$	v F
1	5. Seja A uma matriz de ordem 3	tal que $ A = 3$. Se $B = 2A$ então $ B = 24$.	(\mathbf{v}) F

6. Se
$$A \in B$$
 são duas matrizes quadradas então $\left| (A^T B)^T \right| = \frac{|A|}{|B|}$.

7. O sistema
$$\begin{cases} x_1 + x_2 + cx_3 = 0 \\ x_1 + x_2 + x_3 = 1 \\ x_2 - cx_3 + x_4 = 2 \end{cases}$$
 tem solução apenas quando $c \neq 1$.

8. Seja
$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, então $|A| \neq 0$ para qualquer valor de a .

1. Considere o sistema
$$\begin{cases} x - y + z = 1 \\ x - 2y + z = 2 \\ 2x - y + az = b \end{cases}$$

2 1.1 Para que valores de
$$a \in b$$
 o sistema é possível e indeterminado?

2 1.2 Calcule a solução do sistema quando a=3 e b=1.

1 2.1 Escreva a equação caraterística associada a A.

$$(1-\lambda)\left[-1+(3-\lambda)(1-\lambda)\right]=0$$

2 2.2 Determine os valores próprios de A.

2 2.3 Determine os vetores próprios de A associados ao valor próprio $\lambda = 1$.

3. Considere a matriz
$$C = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & b \\ a & 2 & 1 \end{pmatrix}$$

 l_1 53.1 Calcule o valor do determinante da matriz C, em função de a e b.

1.5 3.2 Determine qual a relação entre a e b de forma que C seja invertível.

-2b-a +3 \$0

Álgebra Linear EETeste 2 2015/2016 - 13 de Janeiro de 2016 Departamento de Matemática e Aplicações - Universidade do Minho

\sim	Nome: N°:		
8	Grupo I – Este grupo é constituído por oito afirmações que deve indicar se se verdadeiras ou falsas.		
1	1. Os vetores próprios da matriz $B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ associados ao valor próprio $\lambda = 5$ são de forma $(\alpha, 2\alpha)$ com $\alpha \neq 0$.		
1	2. O sistema $\begin{cases} x+y-z=0\\ x-y-2z=0\\ 2x-3z=0 \end{cases}$ tem mais do que uma solução.		
1	3. Toda matriz da forma $\begin{bmatrix} a & b & c \\ d & e & f \\ a & b & c \end{bmatrix}, \ \forall a,b,c,d,e,f \in \mathbb{R} \ \text{tem determinante não nulo.}$		
	· (1 2)		

4. Os valores próprios da matriz
$$B = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
 são $\lambda(B) = 2 \pm \sqrt{5}$.

5. Seja A uma matriz de ordem 3 tal que
$$|A| = 2$$
. Se $B = 3A$ então $|B| = 6$. V

6. O sistema
$$\begin{cases} x_1 + x_2 + cx_3 = 0 \\ x_1 + x_2 + x_3 = 1 \\ x_2 - cx_3 + x_4 = 2 \end{cases}$$
 tem solução apenas quando $c = 1$

tem solução apenas quando
$$c=1$$

7. Se
$$A \in B$$
 são duas matrizes quadradas então $|(B^T A)^T| = |A||B|$.

8. Seja
$$A = \begin{pmatrix} 1 & a & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, então $|A| \neq 0$ para $a \neq 1$.

Grupo II – Em cada uma das perguntas seguintes, responda sem apresentar cálculos.

1. Considere o sistema
$$\begin{cases} x - y + z = 1 \\ x - 2y + z = 2 \\ 2x - y + az = b \end{cases}$$

1.1 Para que valores de a e b o sistema é impossível?

1.2 Calcule a solução do sistema quando a=3 e b=0.

(5) 2. Dada a matriz
$$D = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{bmatrix}$$
:

 Λ 2.1 Escreva a equação caraterística associada a D.

$$(\lambda - \lambda) \left[-1 + (3 - \lambda) (\lambda - \lambda) \right] = 0$$

2.2 Determine os valores próprios de D.

2.2 Determine os vetores próprios de D associados ao valor próprio $\lambda = 1$.

3. Considere a matriz
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & b \\ a & 1 & 1 \end{pmatrix}$$

 $\frac{1}{3.1}$ Calcule o valor do determinante da matriz A, em função de a e b.

h = 3.2 Determine qual a relação entre $a \in b$ de forma que A seja invertível.