STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

March 8, 2018

Class 16- Case Study VI

Three approaches

Ref: https://www.framinghamheartstudy.org/index.php

- ► Learning Objectives
 - Use 4 approaches to analyze Case Study VI data
 - Write out the models used and the assumptions for inference
 - Carry out the inference procedures completely
 - ▶ Interpret the respective R outputs

Case Study VI: Framingham Heart Study

- ► Background: In 1948, in Massachusetts, 5209 healthy mean and women, aged 30-60, were recruited and followed (their descendants are followed too) to examine risk factors for cardiovascular disease (CVD)
- Data considered:
 - n = 1329 men
 - \triangleright X = Cholesterol measurement in 1948
 - ► Y = After 10 years, did they developed CVD?

vascular disease (C	VD)						
considered:			- 2 factors 2 levels. Leach @ 2 levels.				
= 1329 men			- ach w y ara				
C = Cholesterol measurement in 1948							
X= Cholesterol	Y=CVD			the "			
level (mg/dl)	present	absent	row total				
High (≥ 260)	41)	245	286	41/286 = P1			
Low (< 260)	51	992	1043	$41/286 = p_1$ $51/1043 = \hat{7}_2$			
column total	92	1237	1329	2			
5		1.0					

Q: Is high cholesterol associated with increased risk of CVD?

Notation: Let

- \blacktriangleright π_H = the probability of CVD in men with high (H) cholesterol
- \blacktriangleright π_L = the probability of CVD in men with low (L) cholesterol

Hypotheses:

$$H_0: \pi_H = \pi_L$$

$$H_a: \pi_H \neq \pi_L$$

ypotheses:
$$H_0: \pi_H = \pi_L \quad \uparrow \quad \uparrow_H - \uparrow_L = 0$$

$$\frac{\hat{\pi}_H - \hat{\pi}_L - \mathcal{D}_{\bullet}}{SE(\hat{\pi}_H - \hat{\pi}_L)}$$

$$E(\mathcal{X}_{H}-\mathcal{X}_{L}) = T_{H}-T_{L}$$

$$= 0 \quad (under H_{s})$$

$$= 2$$

$$E(\mathcal{X}_{H}-\mathcal{X}_{L}) = T_{H}-T_{L}$$

$$= 0 \quad (under H_{s})$$

$$= 3$$

$$E(\mathcal{X}_{H}-\mathcal{X}_{L}) = T_{H}-T_{L}$$

$$= 0 \quad (under H_{s})$$

$$= 3$$

$$E(\mathcal{X}_{H}-\mathcal{X}_{L}) = T_{H}-T_{L}$$

$$= 0 \quad (under H_{s})$$

Assumption: Depending on level of cholesterol, each person is a Bernoulli trial with chance of developing CVD as:

- \blacktriangleright π_H with $n_H = 286$ or
- π_L with $n_L = 1043$

Then, for fixed n_H and fixed n_L , the count of the number of people who develop CVD is:

Binomial
$$(n_H = 286, \pi_H)$$
 or

 $y_{\perp} \sim \text{Binomial } (n_L = 1043, \pi_L)$

Binomial $(n_L = 1043, \pi_L)$
 $\uparrow_{H} = y_{H}$
 $\downarrow_{L} \sim \text{Binomial } (n_L = 1043, \pi_L)$
 $\uparrow_{L} \sim \text{Binomial } (n_L = 1043, \pi_L)$
 $\downarrow_{L} \sim \text{Binomial } (n_L$

Binomial sampling

$$Var\left(\frac{y_{+}}{n_{+}}\right) + Var\left(\frac{y_{-}}{n_{-}}\right)$$

Therefore,

$$Var(\hat{\pi}_{H} - \hat{\pi}_{L}) = Var(\hat{\pi}_{H}) + Var(\hat{\pi}_{L})$$

$$= \frac{n_{H}\pi_{H}(1 - \pi_{H})}{n_{H}^{2}} + \frac{n_{L}\pi_{L}(1 - \pi_{L})}{n_{L}^{2}}$$

$$= \frac{\pi_{H}(1 - \pi_{H})}{n_{H}} + \frac{\pi_{L}(1 - \pi_{L})}{n_{L}}$$

$$+ 2ab (n (x,y)).$$

The property of the

Binomial sampling

Estimates of population proportions:

$$\hat{\pi}_H = \frac{41}{286}, \quad \hat{\pi}_L = \frac{51}{1043}$$

Estimate of variance of difference:

$$\widehat{\text{Var}}(\hat{\pi}_H - \hat{\pi}_L) = \frac{\hat{\pi}_H(1 - \hat{\pi}_H)}{n_H} + \frac{\hat{\pi}_L(1 - \hat{\pi}_L)}{n_L}$$
 (1)

Note, under H_0 , $\pi_H = \pi_L$ then: • $\hat{\pi}_{combined} = \frac{92}{1329}$ and

$$\hat{\pi}_{combined} = \frac{92}{1329}$$
 and

$$\widehat{SE}(\hat{\pi}_H - \hat{\pi}_L) = \sqrt{\frac{\frac{92}{1329}(1 - \frac{92}{1329})}{286} + \frac{\frac{92}{1329}(1 - \frac{92}{1329})}{1043}}$$

$$= \sqrt{\hat{\pi}_c(1 - \hat{\pi}_c)\left(\frac{1}{n_H} + \frac{1}{n_L}\right)}$$

CIF
$$\pi_1 - \pi_2$$
:

$$(\widehat{\pi}_1 - \widehat{\pi}_2) \stackrel{+}{-} Z_{\nu_2} SE(\widehat{\pi}_1 - \widehat{\pi}_2)$$

$$\widehat{SE}(\widehat{\pi}_1 - \widehat{\pi}_2) = (1)$$

$$(1)$$

$$\widehat{T}_H = T_L = T$$

$$\widehat{F} - pooled estimate$$

$$\widehat{OF} T$$

$$\frac{2}{29}$$

$$\widehat{T \cdot S} = \widehat{T_1 - 1/2}$$

7.5=
$$\pi_1 - \pi_2$$

(2) $\pi_1 - \pi_2$
 $\pi_1 - \pi_2$
 $\pi_2 - \pi_3$
 $\pi_1 - \pi_2$
 $\pi_1 - \pi_2$

Analysis I: Summary

► For large samples, as in our case, proportions are normally distributed by the CLT.

▶ The test statistic under H_0 is approximately Normally distributed.

- ► Test Statistic= 5.575.
- ▶ p-value=2 $P(Z \ge 5.575)$ is very small

We have strong evidence that the probability of developing 5.575 5.535 CVD is not the same for High and Low cholesterol groups

- ► Analysis I Approach: "Binomial sampling"
- Underlying distribution of outcome: Binomial

Analysis II: Contingency Tables

- ▶ Assume n = 1329 is fixed
- Classify the observations in 2 ways:
 - 1. Cholesterol status: H or L
 - 2. CVD status: present of absent
- ► Two categorical variables, each with 2 levels:
 - 1. C-cholesterol status
 - 2. D-disease status
- ► In general, we have a row factor with I levels and a column factor with J levels

Analysis II: Contingency Tables

Notation:

▶ Joint distribution of C and D:

$$P(C = i, D = j) = \pi_{ij}$$

- the probability that an observation falls into row i, column j, for $i=1,\ldots,I,\ j=1,\ldots,J$

► Marginal distribution of C:

$$P(C=i)=\pi_i$$
.

- probability an observation falls into row i
- ► Marginal distribution of D:

$$P(D=j)=\pi_{\cdot j}$$

-probability an observation falls into column j Case Study VI

Analysis II: Contingency Tables

Hypotheses:

- ▶ $H_0: \pi_{ij} = \pi_{i}.\pi_{.j}$ (There is no relationship between C and D)
- $ightharpoonup H_a: \pi_{ij} \neq \pi_{i}.\pi_{.j}$

Analysis II: $I \times J$ Contingency Table

Observed cell counts, and row and column totals:

		Column fa			
Row factor	1	2		J	row totals
1	<i>y</i> 11	<i>y</i> 12		<i>Y</i> 1 <i>J</i>	$y_{1.} = \sum_{j=1}^{J} y_{1j}$
2	<i>y</i> 21	<i>y</i> 22	• • •	<i>Y</i> 2 <i>J</i>	$y_{2.} = \sum_{j=1}^{J} y_{2j}$
:	:	:	٠.	:	i :
1	У/1	У12		УIJ	$y_{I.} = \sum_{j=1}^{J} y_{Ij}$
col. totals	$\sum_{i=1}^{I} y_{i1}$	$\sum_{i=1}^{I} y_{i2}$		$\sum_{i=1}^{I} y_{iJ}$	Grand= $\sum_{j}\sum_{i}y_{ij}$

Under H_0 , we estimate the expected count, μ_{ij} for the (i,j)th cell as:

Analysis II: Test Statistic

Estimated expected cell count:

$$\hat{\mu}_{ij} = n \times \hat{\pi}_{i}.\hat{\pi}_{.j}$$

$$= n \left(\frac{y_{i}.}{n}\right) \left(\frac{y_{.j}}{n}\right)$$

$$= \frac{y_{i}.y_{.j}}{n}$$

Thus, our test statistic is:

$$X^{2} = \sum_{j=1}^{J} \sum_{i=1}^{I} \frac{(y_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}}$$

Analysis II: Distribution of Test Statistic

▶ Under H_0 , with large samples,

$$X^2 \stackrel{.}{\sim} \chi^2_{df}$$
 with $df = (I-1)(J-1)$

- ▶ df = # of cells- # of restrictions on df
- \blacktriangleright # of restrictions = # of estimates needed to compute T.S.
- ▶ To estimate each $\hat{\mu}_{ij}$, we need:
 - ▶ ith row total, y_i.
 - ▶ jth column total, y.j
 - ▶ n
- ▶ The row and column total add to *n*. Overall, we need:
 - (I-1) row totals
 - (J-1) column totals
- ▶ Therefore, df = IJ (I 1) (J 1) 1

Analysis II: R output

- ► From R output:
 - ► $X^2 = 31.08$ (a Chi-square statistic)
 - df = (I-1)(J-1) = 1 since I = J = 2
 - ▶ *p*-value< 0.0001
 - ► Conc: We have strong evidence that C and D are not independent; CVD status depends on cholesterol level

Case Study VI: The CVD Data

```
cvd<-matrix(c(41,245,51,992), nrow=2,byrow=TRUE)
dimnames(cvd)<-list(c("High","Low"), c("Present","Absent"))
names(dimnames(cvd))<-c("Cholesterol","Cardio Vascular Disease")
cvd</pre>
```

Cardio Vascular Disease
Cholesterol Present Absent
High 41 245
Low 51 992

Case Study V: CI for difference of proportions (p1.hat=41/(41+245)); (p2.hat=51/(51+992)) ## [1] 0.1433566 — ## [1] 0.04889741 — X=0.05 1-X=0.95 n1=41+245 n2=51+992 conf.level=0.95 (crit.val=qnorm(1-(1-conf.level)/2)) ## [1] 1.959964 se.hat=sqrt(p1.hat*(1-p1.hat)/n1+p2.hat*(1-p2.hat)/n2)c((p1.hat-p2.hat)-crit.val*se.hat,(p1.hat-p2.hat)+crit.val*se.hat) **##** [1] 0.05178874 0.13712972 Two possible values for pi!

Case Study VI: Difference of Proportions and Pearson's TOI

prop.test(cvd,correct=FALSE)

```
##
    2-sample test for equality of proportions without continuity
     correction
##
## data: cvd /
## X-squared = 31.082, df = 1, p-value = 2.474e-08
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## (0.05178874 0.13712972) Same as previous page; Z =
## sample estimates:
## prop 1 prop 2 without continuity correction
## 0.14335664 0.04889741
chisq.test(cvd,correct=FALSE)
##
    Pearson's Chi-squared test
##
## data: cvd
## X-squared = (31.082) df = 1, p-value = 2.474e-08
                         Equivalent procedure (Analysis II)
```

Case Study VI: With continuity correction

```
(Not used in this curse)
prop.test(cvd,correct=T)
##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: cvd
## X-squared = 29.633, df = 1, p-value = 5.221e-08
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.0495611 0.1393574
## sample estimates:
      prop 1
                 prop 2
## 0.14335664 0.04889741
chisq.test(cvd,correct=TRUE)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: cvd
## X-squared = 29.633, df = 1, p-value = 5.221e-08
```

Equivalence between the 2 approaches

- ▶ In the case where I = J = 2, the Pearson chi-square test of independence is equivalent to comparing two proportions.
- ▶ Show the exact relationship between the test statistics for these two approaches. (*Hint*: Show that the chi-square statistic is equivalent to

$$\frac{n(y_{11}y_{22}-y_{21}y_{12})^2}{y_{1\cdot}y_{2\cdot}y_{\cdot1}y_{\cdot2}}$$

Class 16 Summary

- ► Four Approaches:
 - ► Analysis I: Difference between 2 proportions
 - ► Analysis II:
 - ► 2 × 2 contingency table
 - ▶ $I \times J$ contingency table
 - Analysis III: Fisher's Exact Test
 - Analysis IV: Poisson regression/ Log-linear model
- ► R functions: table(), prop.test(), chisq.test()
- Next: Analyses III & IV