COMPUTER SCIENCE CHEAT SHEET

Greek Alphabet

$\mid A \mid$	α	Alpha	I	ι	Iota	P	ρ	Rho
B	β	Beta	K	κ	Kappa	\sum	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	T	τ	Tau
Δ	δ	Delta	M	μ	mu	Y	\overline{v}	Upsilon
$oxed{E}$	ϵ	Epsilon	N	ν	nu	Ф	ϕ	Phi
Z	ζ	Zeta		ξ	Xi	X	χ	Chi
H	η	Eta	O	0	Omicron	Ψ	ψ	Psi
(-)	θ	Theta	П	π	Pi	\bigcirc	(1)	Omega.

e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$

Abstract Algebra

Field

A set F with two binary operations + and \cdot ia a *field* if: 1. + and \cdot are commutative

 $2. + \text{and} \cdot \text{are associative}$

 $3. + \text{ and } \cdot \text{ have identities, 0 and 1 respectively, 0} \neq 1$ $4. \text{ every element } a \in F \text{ has inverse for } +, \text{ written } -a$

5. every element $a \in F$ has inverse for \cdot , written a^{-1}

 $6. \, \forall a, b, c \in F, \ a \cdot (b+c) = a \cdot b + a \cdot c$

Linear Algebra

Probability

Complexity