Vehicle Actuation

Course 1, Module 4, Lesson 6

Learning Objectives

- Build models for the main vehicle actuation systems such as steering, throttling, and braking
- Connect these models to longitudinal and lateral vehicle dynamic models

Coupled Lateral & Longitudinal

Main Control Task:

To keep the vehicle on the defined path at the desired velocity

Steering

Simple Steering Model

Actual Steering System

Powertrain System (Driveline)

• Throttle and brake commands affect torque balance

Throttling (Accelerating)

Accelerating Model

Characteristics Plots

Typical Torque Curves for Gasoline Engines

$$T_{e_{max}}(\omega_e) = A_0 + A_1 \omega_e + A_2 \omega_e^2$$

$$T_e(\omega_e, x_\theta) \approx x_\theta (A_0 + A_1 \omega_e + A_2 \omega_e^2)$$

engine Throttle position (percentage)

Throttle position (percentage)

Braking (Decelerating)

Braking Model

Braking System

- Basic functionality of braking includes:
 - Shorten stopping distance
 - Steerability during braking through ABS systems
 - Stability during braking to avoid overturning

Summary

What we have learned from this lesson:

- The workings of the vehicle actuation systems such as steering, power generation, and braking
- How to convert steering, throttle and brake inputs to wheel angles and torques

What is next?

Tire modeling, connecting the car to the road