Algebra II (ISIM), lista 7 (7.12.2021, deklaracje do godziny 9:00).

Teoria: Grupa wolna: definicja, konstrukcja, własności. Przykłady (lemat pingpongowy). Grupy opisane (prezentowane) przez relacje. Komutant, abelianizacja.

- 1. Załóżmy, że grupa G jest abelowa. Udowodnić, że:
 - (a) Jeśli każdy element niezerowy grupy G ma rząd 2, to grupa G jest izomorficzna z sumą prostą pewnej liczby kopii grupy \mathbb{Z}_2 .
 - (b) To samo, co w (a), lecz z liczbą 2 zastąpioną przez liczbę pierwsza p.
 - (c) Jeśli grupa G jest beztorsyjna i podzielna, to G jest izomorficzna z sumą prostą pewnej liczby kopii $(\mathbb{Q}, +)$.
 - (Wsk: w (a) i (b) wprowadzić w grupie G naturalną strukturę przestrzeni liniowej nad ciałem \mathbb{Z}_p , w (c) nad ciałem \mathbb{Q} .)
- 2. Udowodnić, że działanie konkatenacji w zbiorze słów nieskracalnych $\mathcal{F}(X)$ jest łączne.
- 3. Załóżmy, że $X \subseteq G$. Udowodnić, że X jest zbiorem wolnych generatorów grupy $F = \langle X \rangle \iff$ wartość w grupie G każdego nieskracalnego słowa $\sigma \neq \varepsilon$ nad X jest różna od e_G .
- 4. W wolnej grupie $\mathcal{F}(a,b)$ rangi 2 wskazać podgrupę wolną rangi nieskończonej.
- 5. Sprawdzić, że macierze z wykładu generują wolną grupę rangi 2.
- 6. * Wskazać niepuste rozłączne zbiory $A, B \subseteq \mathbb{N}$ i permutacje $\sigma, \tau \in Sym(\mathbb{N})$, które spełniają warunek z lematu pingpongowego.
- 7. * Udowodnić, że produkt wolny grup G*H z naturalnymi zanurzeniami $i_G:G\to G*H,\ i_H:H\to G*H$ jest ko-produktem w kategorii grup.
- 8. (a) Udowodnić, że $\mathcal{F}(X)_{ab} \cong \bigoplus_{x \in X} \mathbb{Z}x$, czyli: jest wolną grupą abelową rangi |X|.
 - (b) Udowodnić, że jeśli F jest grupą wolną oraz X, Y są dwoma zbiorami jej wolnych generator \check{A} łw, to X i Y sa równoliczne (więc pojęcie rangi grupy wolnej jest dobrze określone). (wsk: rozważyć F_{ab} , skorzystać z zadania 6.8).
- 9. Załóżmy, że $X\subseteq G$, \mathcal{R} jest pewnym zbiorem relacji grupowych na X, które zachodzą w G. Udowodnić, że istnieje homomorfizm $f:\langle X|\mathcal{R}\rangle\to G$ taki, że $f|_X=id_X$.
- 10. Udowodnić, że (a) $\mathbb{Z}_n \cong \langle x | x^n = e \rangle$ (b)* $D_n \cong \langle x, y | x^n = y^2 = e, yxy^{-1} = x^{-1} \rangle$
- 11. * Znaleźć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x \in \mathbb{R}$ warunki: f(2x) = 2f(x) 1 i f(x+2) = 4 + f(x). (wsk: Niech G będzie podgrupą grupy $Sym(\mathbb{R})$ generowaną przez funkcje s,t dane wzorami s(x) = 2x, t(x) = x + 1. Wyznaczyć orbity działania grupy G na \mathbb{R} .)
- 12. * Udowodnić, że grupa Burnside'a $B_{2,3}$ jest skończona.