Plan

- Traitement analyse d'image
 - Intro
 - Traitement
 - Transformations géométriques
 - Filtrage
 - Analyse détection de contour

Pourquoi analyser une image?

(Re)trouver des informations particulières

Pourquoi analyser une image?

(Re)trouver des informations particulières en vue d'une application précise.

Création d'images panoramiques

Création d'images panoramiques

Segmentation d'images médicales

Segmentation d'images médicales

Reconnaissance de caractères

Exemple d'une ligne d'une image

Exemple d'une ligne d'une image

Contour Différents types

Interprétation en terme de dérivées

Source : Caroline Rougier. Traitement d'images (IFT2730). Univ. de Montréal.

Image
$$I \equiv \text{fonction} \left\{ \begin{array}{ccc} I & : & \mathbb{R}^2 & \to & \mathbb{R} \\ & & (x,y) & \mapsto & I(x,y) \end{array} \right.$$

$$\mathsf{Image} \ \mathit{I} \equiv \mathsf{fonction} \ \left\{ \begin{array}{ccc} \mathit{I} & : & \mathbb{R}^2 & \to & \mathbb{R} \\ & (\mathit{x},\mathit{y}) & \mapsto & \mathit{I}(\mathit{x},\mathit{y}) \end{array} \right.$$

Dérivée de
$$I = \text{gradient de } I = \overrightarrow{\nabla} I = \begin{pmatrix} \frac{\partial I}{\partial y}(x,y) \\ \frac{\partial I}{\partial y}(x,y) \end{pmatrix}$$

Interprétation en terme de dérivées

Image
$$I \equiv \text{fonction} \left\{ \begin{array}{ccc} I & : & \mathbb{R}^2 & \to & \mathbb{R} \\ & (x,y) & \mapsto & I(x,y) \end{array} \right.$$

Dérivée de
$$I=$$
 gradient de $I=\overrightarrow{\nabla}I=\left(\begin{array}{c} \frac{\partial I}{\partial x}(x,y)\\ \frac{\partial J}{\partial y}(x,y)\end{array}\right)$

Dérivée directionnelle de I suivant le vecteur $u = \begin{pmatrix} u_x \\ u_y \end{pmatrix}$:

$$u_x \frac{\partial I}{\partial x}(x,y) + u_y \frac{\partial I}{\partial y}(x,y)$$

◆ロ ト ◆ □ ト ◆ 豆 ト ◆ 豆 ・ か へ ○

Interprétation en terme de dérivées

Dérivée seconde de I = Hessien de I :

$$H(I) = \begin{pmatrix} \frac{\partial^2 I}{\partial x^2}(x, y) & \frac{\partial^2 I}{\partial x \partial y}(x, y) \\ \frac{\partial^2 I}{\partial x \partial y}(x, y) & \frac{\partial^2 I}{\partial y^2}(x, y) \end{pmatrix}$$

Interprétation en terme de dérivées

Dérivée seconde de I =Hessien de I :

$$H(I) = \begin{pmatrix} \frac{\partial^2 I}{\partial x^2}(x, y) & \frac{\partial^2 I}{\partial x \partial y}(x, y) \\ \frac{\partial^2 I}{\partial x \partial y}(x, y) & \frac{\partial^2 I}{\partial y^2}(x, y) \end{pmatrix}$$

Laplacien de
$$I = \Delta(I) = \frac{\partial^2 I}{\partial x^2}(x, y) + \frac{\partial^2 I}{\partial y^2}(x, y)$$

Interprétation en terme de dérivées

I = (I(x, y)) connue uniquement pour des valeurs x et y entières

Interprétation en terme de dérivées

I = (I(x, y)) connue uniquement pour des valeurs x et y entières \rightarrow utilisation d'approximant pour calculer les dérivées premières et secondes

Interprétation en terme de dérivées

I = (I(x, y)) connue uniquement pour des valeurs x et y entières → utilisation d'approximant pour calculer les dérivées premières et secondes

$$\frac{\partial I}{\partial x}(x,y) \simeq \frac{I(x,y) - I(x-h,y)}{h} \underbrace{=}_{h=1} I(x,y) - I(x-1,y)$$

$$\frac{\partial I}{\partial y}(x,y) \simeq \frac{I(x,y) - I(x,y-h)}{h} \underbrace{=}_{h=1} I(x,y) - I(x,y-1)$$

Interprétation en terme de dérivées

I = (I(x, y)) connue uniquement pour des valeurs x et y entières → utilisation d'approximant pour calculer les dérivées premières et secondes

$$\frac{\partial^2 I}{\partial x^2}(x,y) \simeq \frac{-I(x+h,y) + 2 I(x,y) - I(x-h,y)}{h^2}$$

$$= -I(x-1,y) + 2 I(x,y) - I(x+1,y)$$

Interprétation en terme de dérivées

I = (I(x, y)) connue uniquement pour des valeurs x et y entières \rightarrow utilisation d'approximant pour calculer les dérivées premières et secondes

$$\frac{\partial^2 I}{\partial y^2}(x,y) \simeq \frac{-I(x,y+h) + 2I(x,y) - I(x,y-h)}{h^2}$$

$$= -I(x,y-1) + 2I(x,y) - I(x,y+1)$$

Filtres dérivées

Image I Image filtrée

◆ロ → ◆回 → ◆ き → ◆ き → り へ ○

Image I

Filtre dérivée E K_E

Image filtrée \bar{R}_E

Image I

Filtre dérivée W K_W

Image filtrée \bar{R}_W

Image I

Filtre dérivée N K_N

Image filtrée \bar{R}_N

Image I

Filtre dérivée S K_S

Image filtrée \bar{R}_S

Image *I*

Filtre dérivée NE K_{NF}

Image filtrée \bar{R}_{NE}

Image *I*

Filtre dérivée SW K_{SW}

Image filtrée $ar{R}_{SW}$

Image *I*

Filtre dérivée NW K_{NW}

Image filtrée \bar{R}_{NW}

Image *I*

Filtre dérivée SE K_{SE}

Image filtrée \bar{R}_{SE}

Image filtrée
$$\bar{R} = \frac{1}{8} \quad \left(\bar{R}_E(x,y) + \bar{R}_W(x,y) + \bar{R}_N(x,y) + \bar{R}_S(x,y) + \bar{R}_{NE}(x,y) + \bar{R}_{SW}(x,y) + \bar{R}_{NW}(x,y) + \bar{R}_{SE}(x,y) \right)$$

Contour Filtres dérivées

Image filtrée \bar{R}

Filtres dérivées

Autre formule possible : Image filtrée $\bar{R} = \operatorname{Max} \quad \left(\bar{R}_E(x,y), \bar{R}_W(x,y), \bar{R}_N(x,y), \bar{R}_S(x,y), \right)$

$$\bar{R}_{NE}(x,y), \bar{R}_{SW}(x,y), \bar{R}_{NW}(x,y), \bar{R}_{SE}(x,y)$$

Contour Filtres dérivées

Image filtrée *R*

Filtres dérivées

Autres filtres basés sur la dérivée première : filtres de Prewitt et Sobel

Filtres dérivées

Autres filtres basés sur la dérivée première : filtres de Prewitt et Sobel

$$K_1 = rac{1}{a+2} \left(egin{array}{c} 1 \\ a \\ 1 \end{array}
ight) \left(egin{array}{ccc} -1 & 0 & 1 \end{array}
ight) = rac{1}{a+2} imes rac{-1 & 0 & 1}{-a & 0 & a} \ \hline -1 & 0 & 1 \end{array}$$

$$\mathcal{K}_2 = rac{1}{a+2} \left(egin{array}{c} -1 \ 0 \ 1 \end{array}
ight) \left(egin{array}{cccc} 1 & a & 1 \end{array}
ight) = rac{1}{a+2} imes rac{-1 & -a & -1}{0 & 0 & 0} \ \hline 1 & a & 1 \end{array}$$

Filtres dérivées

Autres filtres basés sur la dérivée première : filtres de Prewitt et Sobel

$$K_1 = rac{1}{a+2} \left(egin{array}{c} 1 \\ a \\ 1 \end{array}
ight) \left(egin{array}{ccc} -1 & 0 & 1 \end{array}
ight) = rac{1}{a+2} imes rac{egin{array}{cccc} -1 & 0 & 1 \\ -a & 0 & a \\ \hline -1 & 0 & 1 \end{array}
ight)$$

$$K_2 = \frac{1}{a+2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & a & 1 \end{pmatrix} = \frac{1}{a+2} \times \begin{bmatrix} -1 & -a & -1 \\ 0 & 0 & 0 \\ \hline 1 & a & 1 \end{bmatrix}$$

$$\Rightarrow$$
 $R_1=I*K_1\;,\;R_2=I*K_2\; {
m et}\;R=\sqrt{R_1^2+R_2^2}$

Filtres dérivées

Autres filtres basés sur la dérivée première : filtres de Prewitt et Sobel

$$K_1 = \frac{1}{a+2} \begin{pmatrix} 1 \\ a \\ 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \end{pmatrix} = \frac{1}{a+2} \times \begin{bmatrix} -1 & 0 & 1 \\ -a & 0 & a \\ -1 & 0 & 1 \end{bmatrix}$$

$$K_2 = \frac{1}{a+2} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & a & 1 \end{pmatrix} = \frac{1}{a+2} \times \begin{vmatrix} -1 & -a & -1 \\ 0 & 0 & 0 \\ \hline 1 & a & 1 \end{vmatrix}$$

$$\Rightarrow$$
 $R_1 = I * K_1$, $R_2 = I * K_2$ et $R = \sqrt{R_1^2 + R_2^2}$

Prewitt : a = 1 et Sobel : a = 2

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 9 (で

Filtres dérivées

Variantes des filtres de Sobel et Prewitt

Filtres dérivées

Variantes des filtres de Sobel et Prewitt

Utilisation de 4 noyaux suivant les 4 directions E-W N-S NW-SE NE-SW

$$K_1 = \frac{1}{a+2} \times \begin{array}{|c|c|c|c|c|c|} \hline -1 & 0 & 1 \\ \hline -a & 0 & a \\ \hline -1 & 0 & 1 \\ \hline \end{array}$$

$$K_3 = rac{1}{a+2} imes egin{array}{c|cccc} -a & -1 & 0 \ \hline -1 & 0 & 1 \ \hline 0 & 1 & a \ \hline \end{array}$$

$$K_2 = rac{1}{a+2} imes egin{array}{c|cccc} -1 & -a & -1 \ \hline 0 & 0 & 0 \ \hline 1 & a & 1 \ \hline \end{array}$$

$$K_4 = \frac{1}{a+2} \times \begin{array}{c|ccc} 0 & -1 & -a \\ \hline 1 & 0 & -1 \\ \hline a & 1 & 0 \end{array}$$

Filtres dérivées

Variantes des filtres de Sobel et Prewitt

Utilisation de 4 noyaux suivant les 4 directions E-W N-S NW-SE NE-SW

$$K_1 = \frac{1}{a+2} \times \begin{bmatrix} -1 & 0 & 1 \\ -a & 0 & a \\ -1 & 0 & 1 \end{bmatrix}$$
 $K_2 = \frac{1}{a+2} \times \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

$$\mathcal{K}_2 = rac{1}{a+2} imes egin{array}{c|ccc} -1 & -a & -1 \ \hline 0 & 0 & 0 \ \hline 1 & a & 1 \ \hline \end{array}$$

$$K_3 = rac{1}{a+2} imes egin{pmatrix} -a & -1 & 0 \ \hline -1 & 0 & 1 \ \hline 0 & 1 & a \ \hline \end{pmatrix}$$

$$\Rightarrow R_k = I * K_k \ (1 \le k \le 4) \ \ \text{et} \ \ R = \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2}$$

Filtres dérivées

Variantes des filtres de Sobel et Prewitt

Utilisation de 4 noyaux suivant les 4 directions E-W N-S NW-SE NE-SW

$$K_1 = rac{1}{a+2} imes egin{pmatrix} -1 & 0 & 1 \ -a & 0 & a \ -1 & 0 & 1 \ \end{pmatrix}$$

$$\mathcal{K}_2 = rac{1}{a+2} imes egin{array}{c|ccc} -1 & -a & -1 \ \hline 0 & 0 & 0 \ \hline 1 & a & 1 \ \hline \end{array}$$

$$K_4 = rac{1}{a+2} imes egin{array}{c|ccc} 0 & -1 & -a \ \hline 1 & 0 & -1 \ \hline a & 1 & 0 \ \hline \end{array}$$

$$\Rightarrow R_k = I * K_k \ (1 \le k \le 4) \ \ \text{et} \ \ R = \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2}$$

Prewitt : a = 1 et Sobel : a = 2

4□▶<</p>
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

Filtres dérivées

Autres filtres basés sur la dérivée seconde :

Filtres dérivées

Autres filtres basés sur la dérivée seconde :

Filtres de type laplacien :

Filtres dérivées

Autres filtres basés sur la dérivée seconde :

Filtres de type laplacien :

Filtres dérivées

Autres filtres basés sur la dérivée seconde :

Filtres de type laplacien :

ou
$$K = \begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{vmatrix}$$

ou
$$K = \begin{vmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{vmatrix}$$

L'image

Filtre dérivée

Filtre de Sobel

Filtre de Prewitt

Filtre laplacien

Traitement d'une image

Image

Image + filtre de Sobel

 ${\sf Image} + {\sf filtre} \; {\sf de} \; {\sf Sobel} + {\sf seuillage}$

Traitement d'une image

Image

 ${\sf Image} + {\sf lissage}$

Image + lissage + filtre de Sobel

 ${\sf Image} + {\sf lissage} + {\sf filtre} \; {\sf de} \; {\sf Sobel} + {\sf seuillage}$