	Φ		Несобственные интегралы, зависящие от параметра		
	Функциональные	Функциональные ряды	I рода:	II рода:	
	последовательности		$X = [a, +\infty), \mathbf{B} = +\infty$	$X = [a,b), \mathbf{B} = b \in \mathbb{R},$	
ти)		$\sum_{k=1}^{n} u_k(x) = S_n(x), x \in Q$	$\varphi(\eta,\gamma) = \int_{a}^{\eta} f(x,\gamma) dx, \ \gamma \in Q,$	$\varphi(\eta,\gamma) = \int_{a}^{\eta} f(x,\gamma) dx, \ \gamma \in Q,$	
MOC	$f_n(x) \underset{X}{\Longrightarrow} f(x)$, при $n \to \infty$	$S_n(x) \underset{x}{\Longrightarrow} S(x)$, при $n \to \infty$	$\varphi(\eta,\gamma) \rightrightarrows I(\gamma)$, при $\eta \to +\infty$.	$\phi(\eta,\gamma) \Rightarrow I(\gamma)$, при $\eta \to b-0$.	
ПДО	X	X	r	Г	
Определения множество сходимости	$\Phi\Pi \ f_n(x)$ при $n \to \infty$	$\Phi P \; \sum_{k=1}^{\infty} u_k \left(x \right)$	Интеграл $I(\gamma) = \int_{a}^{\infty} f(x, \gamma) dx$,	Интеграл $I(\gamma) = \int_a^b f(x,\gamma) dx$,	
Пре	сходится равномерно	сходится равномерно	сходится равномерно	сходится равномерно	
O	на $X \subset Q$, если	на $X \subset Q$, если	на $\Gamma \subset Q$, если	на $\Gamma \subset Q$, если	
$-\widetilde{O}$	$\lim_{n\to\infty} \sup_{x\in X} f(x)-f_n(x) = 0$	$\lim_{n\to\infty}\sup_{x\in X}\left S(x)-S_n(x)\right =$	$\lim_{\eta\to+\infty}\sup_{\gamma\in\Gamma} I(\gamma)-\varphi(\eta,\gamma) =$	$\lim_{\eta \to b^{-0}} \sup_{\gamma \in \Gamma} \left I(\gamma) - \varphi(\eta, \gamma) \right =$	
		$= \lim_{n \to \infty} \sup_{x \in X} \left \sum_{k=n+1}^{\infty} u_k(x) \right = 0.$	$= \lim_{\eta \to +\infty} \sup_{\gamma \in \Gamma} \left \int_{\eta}^{\infty} f(x, \gamma) dx \right = 0.$	$= \lim_{\eta \to b-0} \sup_{\gamma \in \Gamma} \left \int_{\eta}^{b} f(x, \gamma) dx \right = 0.$	
74	$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \ \forall n \ge n_0 \ \forall m > n$		$\forall \epsilon > 0 \ \exists \eta_{\epsilon}$		
Критерий Коши	$\sup_{x \in X} \left f_m(x) - f_n(x) \right < \varepsilon$	$\sup_{x \in X} \left \sum_{k=n+1}^{m} u_k(x) \right < \varepsilon$		$\forall \eta_{\varepsilon} \leq \eta < b \forall \eta < \chi < b$	
Кри	XEA	$\sum_{x \in X} \sum_{k=n+1}^{\infty} x_k(x)$	$\sup_{\gamma \in \Gamma} \left \int_{n}^{\chi} f(z) dz \right $	$(x,\gamma)dx$ $< \varepsilon$	
	1	<u> </u>	11	ı	

	Функциональные последовательности	Функциональные ряды	Несобственные зависящие от I рода : $X = [a, +\infty), \mathbf{B} = +\infty$	
Необходи-мое условие		$\lim_{n\to\infty}\sup_{x\in X}\left u_n\left(x\right)\right =0$	$\lim_{x \to +\infty} \sup_{\gamma \in \Gamma} \left f(x, \gamma) \right = 0$	$\lim_{x \to b^{-0}} \sup_{\gamma \in \Gamma} \left f(x, \gamma) \right = 0$
-d;	Если $\forall n \ f_n(x) \in \mathbb{C}(X)$, Если $\forall k \ u_k(x) \in \mathbb{C}(X)$		Если $f(x,\gamma) \in \mathbb{C}(X \times \Gamma)$,	
чный авноме імости георем вности	$\Phi\Pi\left\{f_{n}(x)\right\}$	$\Phi P \sum_{k=1}^{\infty} u_k(x)$	интеграл $I(\gamma)$ =	$= \int_{a}^{B} f(x,\gamma) dx$
Достаточный признак не равномер. ной сходимости (следствие теоремы о непрерывности)	cxodumcs на незамкнутом множестве X , но расходится хотя бы в одной граничной точке этого множества, то		сходится на незамкну но расходится хо граничной точке это	отя бы в одной
триз: но (сле	$\Phi \hat{\Pi}$	Φ Р X неравномерно.	несобственный интеграл, з сходится на Г	вависящий от параметра,
К	Если 1) $\forall n \ f_n(x) \in \mathbb{C}([a,b])$	Если	Есл	
13На.	1) $\forall n \ f_n(x) \in \mathcal{C}([a,b])$ 2) $\forall x \in [a,b] \{f_n(x)\}$	1) $\forall k \ u_k(x) \in \mathbb{C}([a,b])$	1) $\forall x \in X \ f(x, \gamma) \in \mathbb{C}([\gamma_1, \gamma_2]),$ 2) $\forall x \in X \ \forall \gamma \in [\gamma_1, \gamma_2] \ f(x, \gamma) \ge 0,$	
пру коду	$(J_n(x))$ монотонна по n ,	2) $\forall x \in [a,b] \forall k \ u_k(x) \ge 0$,		$[\gamma_2] J(x,\gamma) \ge 0,$
ный ой су	3) $f_n(x) \rightarrow f(x)$ и	3) $\sum_{k=1}^{\infty} u_k(x) = S(x)$ и	3) $\int_{a}^{b} f(x,\gamma) dx$	$dx = I(\gamma)$ и
Достаточный признак равномерной сходимости Теорема Д ини	$f(x) \in \mathbb{C}([a,b]),$	$S(x) \in \mathbb{C}([a,b]),$	$I(x) \in \mathbb{C}($	[v v])
OCTA SHON T	то ФП сходится	то ФР сходится	то интеграл, завися	/
pai	равномерно на $[a,b]$.	равномерно на $[a,b]$.	сходится равноме	
признак одимости асса	Если 1) $\forall n \ \forall x \in X \ \left f_n(x) \right \le c_n \in \mathbb{R}$,	Если	Есл	
признак одимост асса	1) $\forall n \ \forall x \in A \ J_n(x) \le c_n \in \mathbb{R}^n$, 2) числовая посл-ть $\{c_n\}$	1) $\forall k \ \forall x \in X \ \left u_k(x) \right \le c_k \in \mathbb{R}$,	1) $\forall x \in X \ \forall \gamma \in \Gamma$	$ f(x,\gamma) \leq g(x),$
ый п í схс итра	(c_n) сходится,	2) числовой ряд $\sum_{k=0}^{\infty} c_k$	2) несобственный интегр	ал $\int g(x)dx$ сходится,
таточный э мерной сх Вейерштр	то ФП $\{f_n(x)\}$	k=1 сходится,	1	a R
Достаточный равномерной сх Вейерштр	сходится равномерно и абсолютно на X .	то ФР $\sum_{k=1}^{\infty} u_k(x)$ сходится равно-	то интеграл $I(\gamma)$	a
pa		мерно и абсолютно на X .	сходится равномерно	и абсолютно на Γ .

	Функциональный ряд $\sum_{k=1}^{\infty}u_{k}(x)v_{k}(x)$ сходится равномерно на X , если:	Несобственный интеграл I рода, зависящий от параметра $\int_{a}^{+\infty} f(x,\gamma)g(x,\gamma)dx$ сходится равномерно на Γ , если:	Несобственный интеграл II рода, зависящий от параметра $\int_a^b f(x,\gamma)g(x,\gamma)dx$ сходится равномерно на Γ , если:
Достаточный признак равномерной сходимости Дирихле	1) посл-ть частичных сумм $\sum_{k=1}^{n} u_{k}(x)$ равномерно ограничена, т.е. $\exists C \in \mathbb{R}$ $\forall n \ge 1 \ \forall x \in X \ \left \sum_{k=1}^{n} u_{k}(x) \right \le C$, 2) $\forall x \in X \ \left\{ v_{k}(x) \right\}$ монотонна по k , 3) $v_{k}(x) \Longrightarrow 0$ при $n \to \infty$, т.е. $\lim_{k \to \infty} \sup_{x \in X} \left v_{k}(x) \right = 0$	1) $\exists C \in \mathbb{R}$ $\sup_{\gamma \in \Gamma} \sup_{x \in \mathcal{I}} 2$ 2) $\forall \gamma \in \Gamma$ $g(x, \gamma)$ 3) $g(x, \gamma) \Longrightarrow 0$ $\text{при } x \to +\infty$, т.е. $\lim_{x \to +\infty} \sup_{\gamma \in \Gamma} g(x, \gamma) = 0.$	ļu ļ
Достаточный признак равномерной сходимости Абеля	1) ФР $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на X , 2) $\forall x \in X \ \{v_k(x)\}$ монотонна по k , 3) $\{v_k(x)\}$ равномерно ограничена на X , т.е. $\exists C \in \mathbb{R}$ $\forall k \ge 1 \ \forall x \in X \ v_k(x) < C$.	1) несобственный интеграл $\int_a^B f(x,\gamma)dx$ сходится равномерно на Γ , 2) $\forall \gamma \in \Gamma$ $g(x,\gamma)$ монотонна по x , 3) $g(x,\gamma)$ равномерно ограничена на Γ , т.е. $\exists C \in \mathbb{R}$ $\sup_{x \in X} \sup_{\gamma \in \Gamma} g(x,\gamma) = C$.	

	Функциональные последовательности	Функциональные ряды	зависящи I рода :	нные интегралы, пе от параметра II рода: $X = [a,b), \mathbf{B} = b \in \mathbb{R}$,
Предельный переход	Если 1) $f_n(x) \rightrightarrows f(x)$, 2) x_0 предельная точка множества X , 3) $\forall n \exists \lim_{x \to x_0} f_n(x)$, то $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x)\right) = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x)\right)$ Замечание. Если $x_0 \in \partial X$	Если 1) $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно к $S(x)$ на множестве X , 2) x_0 предельная точка множества X , 3) $\forall k \exists \lim_{x \to x_0} u_k(x) = c_k \in \mathbb{R}$, то $\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{k=1}^{\infty} u_k(x) = \sum_{k=1}^{\infty} \lim_{x \to x_0} u_k(x) = \sum_{k=1}^{\infty} \lim_{x \to x_0} u_k(x) = \sum_{k=1}^{\infty} c_k$	Если 1) $\int_{a}^{B} f(x,\gamma) dx$ сходится равномерно к $I(\gamma)$ на множестве Γ , 2) γ_{0} предельная точка множества Γ , 3) $\forall x \in X \exists \lim_{\gamma \to \gamma_{0}} f(x,\gamma) = g(x)$, το $\lim_{\gamma \to \gamma_{0}} I(\gamma) = \lim_{\gamma \to \gamma_{0}} \int_{a}^{B} f(x,\gamma) dx = \lim_{\gamma \to \gamma_{0}} f(x,\gamma) dx = \lim_{\gamma \to \gamma_{0}} f(x,\gamma) dx = \lim_{\gamma \to \gamma_{0}} f(x,\gamma) dx$	
Непрерывность	Если 1) $f_n(x) \rightrightarrows f(x)$, 2) $\forall n f_n(x) \in \mathbb{C}(X)$, то $f(x) \in \mathbb{C}(X)$ Следствие. I 1') $f_n(x) \rightrightarrows f(x)$ ϱ на любом отрезке $\varrho \subset X$	Если $1) \sum_{k=1}^{\infty} u_k(x) \text{ сходится равномерно}$ к $S(x)$ на множестве X , $2) \ \forall k u_k(x) \in \mathbb{C}(X),$ то $S(x) \in \mathbb{C}(X)$ При исследовании непрерывности на незможет быть заменено на более слабонований объекты об	1) $\int_{a}^{B} f(x,\gamma) dx$ о к $I(\gamma)$ на 2) $\forall x \in X$ то I амкнутом множестве то бое требование 1')	Если еходится равномерно и множестве Γ , $f(x,\gamma) \in \mathbb{C}(\Gamma)$, $(\gamma) \in \mathbb{C}(\Gamma)$ гребование 1) еходится равномерно бом отрезке $Q \subset \Gamma$

	Функциональные последовательности	Функциональные ряды	зависящие с	ые интегралы, от параметра II рода: $X = [a,b), \mathbf{B} = b \in \mathbb{R}$,
Интегрируемость в собственном смысле	Если 1) $f_n(x) \rightrightarrows f(x)$, [a,b] 2) $\forall n f_n(x) \in \mathbb{R}([a,b])$, то $f(x) \in \mathbb{R}([a,b])$ и $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.	Если 1) $\sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на $[a,b]$ к некоторой $S(x)$, 2) $\forall k$ $u_k(x) \in \mathbb{R}([a,b])$, то $S(x) \in \mathbb{R}([a,b])$ и $\int_a^b S(x) dx = \sum_{k=1}^{\infty} \int_a^b u_k(x) dx$.	на $[\gamma_1, \gamma_2]$ к не 2) $\forall x \in X$ $f(x)$ то $I(\gamma) \in \mathbb{R}$	дится равномерно $I(\gamma),$ $(\gamma) \in \mathbb{R}([\gamma_1, \gamma_2]),$
Интегрируемость в несобственном смысле			1) $\int_{a}^{B} f(x,\gamma) dx$ сходится $\int_{\gamma_{1}}^{+\infty} f(x,\gamma) d\gamma \text{ сход}$ на любом отрезнать один из двух $\int_{\gamma_{1}}^{+\infty} d\gamma \int_{a}^{B} f(x,\gamma) dx,$ существует, то существует, то существуене	дится равномерно $\ker [a,b] \subset [a,\mathbf{B});$

	Функциональные последовательности	Функциональные ряды	Несобственные интегралы, зависящие от параметра I рода: $X = [a, +\infty), \mathbf{B} = +\infty$ $X = [a, b), \mathbf{B} = b \in \mathbb{R}$,
Дифференцируемость	Если 1) $\forall n \ f_n(x)$ дифференцируемы на $[a,b]$, 2) $\{f'_n(x)\}$ сходится равномерно на $[a,b]$, 3) $\{f_n(x)\}$ сходится хотя бы в одной точке $x_0 \in [a,b]$, то $\Phi\Pi \ \{f_n(x)\}$ сходится равномерно на $[a,b]$ к некоторой $f(x)$ и $\forall x \in [a,b] \ f'(x) = \lim_{n \to \infty} f'_n(x).$ Следствие. При исследовании	Если 1) $\forall k \ u_k(x)$ дифференцируемы на $[a,b]$, 2) $\sum_{k=1}^{\infty} u_k'(x)$ сходится равномерно на $[a,b]$, 3) $\sum_{k=1}^{\infty} u_k(x)$ сходится хотя бы в одной точке $x_0 \in [a,b]$, то $\Phi P \sum_{k=1}^{\infty} u_k(x)$ сходится равномерно на $[a,b]$ к некоторой $S(x)$ и $\forall x \in [a,b] \ S'(x) = \sum_{k=1}^{\infty} u_k'(x).$	Если 1) $f(x,\gamma) \in \mathbb{C}([a,B) \times [\gamma_1,\gamma_2])$ и $\frac{\partial}{\partial \gamma} f(x,\gamma) \in \mathbb{C}([a,B) \times [\gamma_1,\gamma_2])$ 2) $\int_a^B \frac{\partial}{\partial \gamma} f(x,\gamma) dx$ сходится равномерно на $[\gamma_1,\gamma_2]$, 3) $\int_a^B f(x,\gamma) dx$ сходится хотя бы в одной точке $\gamma_0 \in [\gamma_1,\gamma_2]$, то $\int_a^B f(x,\gamma) dx$ сходится равномерно на $[\gamma_1,\gamma_2]$ к некоторой $I(\gamma)$ и $\forall \gamma \in [\gamma_1,\gamma_2] \frac{d}{d\gamma} I(\gamma) = \int_a^B \frac{\partial}{\partial \gamma} f(x,\gamma) dx$. Замечание. Утверждение остается справедливым, если функции $f(x,\gamma)$ и $\frac{\partial}{\partial \gamma} f(x,\gamma)$ могут быть доопределены по непрерывности на $[a,B) \times [\gamma_1,\gamma_2]$.
	Следствие. При исследовании дифференцируемости на незамкнутом множестве достаточно показать, что требова ние теоремы выполняются на любом отрезке, содержащемся в рассматриваемом незамкнутом множестве.		

Разложения со множеством сходимости $\mathbb R$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\sin x = \sum_{k=0}^{\infty} \frac{\left(-1\right)^k x^{2k+1}}{\left(2k+1\right)!}$$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

Разложения со множеством сходимости $-1 < x \le 1$

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}$$

Разложения со множеством сходимости -1 < x < 1

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} x^{k}, -1 < x < 1$$

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^{k} x^{k}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k}$$

$$\frac{1}{\sqrt{1+x}} = 1 + \sum_{k=1}^{\infty} (-1)^{k} \frac{(2k-1)!!}{(2k)!!} x^{k}$$

$$\frac{1}{\sqrt{1-x}} = 1 + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k)!!} x^{k}$$

$$\sqrt{1+x} = 1 + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{(2k-1)!!}{(2k+2)!!} x^{k+1}$$

$$\sqrt{1-x} = 1 - \sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k+2)!!} x^{k+1}$$

Интеграл Дирихле

$$\int_{0}^{+\infty} \frac{\sin(ax)}{x} dx = \frac{\pi}{2} \operatorname{sign} a;$$

Интеграл Эйлера-Пуассона

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2};$$

Интегралы Френеля:

$$\int_{0}^{+\infty} \sin x^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}},$$

$$\int_{0}^{+\infty} \cos x^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}};$$

$$\int_{0}^{+\infty} e^{-ax} \sin bx \, dx = \frac{b}{a^2 + b^2},$$

Интегралы Лапласа:

$$\int_{0}^{+\infty} e^{-x^{2}} \cos(2ax) dx = \frac{\sqrt{\pi}}{2} e^{-a^{2}},$$

$$\int_{0}^{+\infty} \frac{\cos(ax)}{1+x^{2}} dx = \frac{\pi}{2} e^{-|a|},$$

$$\int_{0}^{+\infty} \frac{x \sin(ax)}{1+x^{2}} dx = -\frac{\pi}{2} \operatorname{sign} a e^{-|a|}$$

$$\int_{0}^{+\infty} e^{-ax} \cos bx \, dx = \frac{a}{a^2 + b^2}$$

Интегралы Эйлера

Бета-функция Гамма-функция $\Gamma(p) = \int_{-\infty}^{+\infty} e^{-x} x^{p-1} dx, \ p > 0$ $B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx, p > 0, q > 0$ $B(p,q) = \int_{0}^{+\infty} \frac{t^{q-1}}{(1+t)^{p+q}} dt = \int_{0}^{+\infty} \frac{t^{p-1}}{(1+t)^{p+q}} dt \quad (x = \frac{1}{t+1})$ $\Gamma(p) = \int_{0}^{1} \left[\ln \frac{1}{t} \right]^{p-1} dt \quad (t = e^{-x})$ $\Gamma(p) = \int_{-\infty}^{+\infty} e^{pt} e^{-e^t} dt \ (t = \ln x).$ $B(p,q) = 2\int_{0}^{\pi/2} (\sin t)^{2p-1} (\cos t)^{2q-1} dt \ (x = \sin^2 t)$ Связь между интегралами Эйлера $B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}$ Непрерывна на всей области определения. Симметрична, т.е. B(p,q) = B(q,p). Положительна $\Gamma(p) > 0 \quad \forall p > 0$. Бесконечно дифференцируема и $\Gamma^{(m)}(p) = \int_{0}^{\infty} e^{-x} x^{p-1} (\ln x)^{m} dx, m \in \mathbb{N}$ $\Gamma(p) \sim 1/p$ при $p \to +0$, $\Gamma(p) \to +\infty$ при $p \to +\infty$. Формулы приведения $B(p,q+1) = \frac{q}{p+q} B(p,q), p>0, q>0;$ $\Gamma(p+1) = p\Gamma(p), p > 0$. $B(p+1,q) = \frac{p}{p+q}B(p,q), p>0, q>0.$ Формулы дополнения $B(p,1-p) = \frac{\pi}{\sin \pi p}, \ 0$ $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin \pi p}, \ 0$ $B(m,n) = \frac{(n-1)!(m-1)!}{(m+n-1)!}, m,n \in \mathbb{N}.$ $\Gamma(n+1) = n!, n \in \mathbb{N}$. $B\left(\frac{1}{2},\frac{1}{2}\right) = \pi.$ $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \ \Gamma(1) = 1$ $\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n}\sqrt{\pi}, \ n \in \mathbb{N}.$ $B(p,1) = \frac{1}{p}, B(1,q) = \frac{1}{q}.$ $\Gamma(p)\Gamma(p+\frac{1}{2})=\frac{\sqrt{\pi}}{2^{2p-1}}\Gamma(2p).$

Формула Стирлинга*

 $\Gamma(p+1) = \sqrt{2\pi p} p^p e^{-p} e^{\frac{\theta(p)}{12p}}, 0 < \theta(p) < 1.$

^{*}Используется также для приближенного вычисления n! при больших n