

CSE-350 Quiz-03

ADC & DAC

Set-A

Total - 20 marks

Time - 20 minutes

Dro	hlam_1		10 marks	
Na	ame -	Id -	Section -	

The figure shows the input-output characteristics of a converter. The output of the converter is denoted as V_o and the input as V_{in} . Identify the converter type and the number of bits used by the converter. Further, calculate V_{ref} when $R_F = 2R$.

Problem-2 10 marks

Design a 2 bit Flash ADC for an analog signal of range (0, 5). According to your circuit answer the following questions.

- i. What is the resolution and quantization error for this quantizer.
- ii. Write the encoded sequences for the following input sequences { 2.3, 0.6, 4.8, 3.7}

#Soln:
$$n=2 \rightarrow \Delta = \frac{V_{\text{max}} - V_{\text{min}}}{2^n} = \frac{5-0}{2^2} = \frac{5}{4} = 1.25$$

Quantization error = $\frac{\Delta}{2} = 0.625$

guantization Pange	Encoded Seg.
3.75-5	11
2.5-3.75	10
1.25-2.5	07)
0-1.25	070

$$i/p \rightarrow \{2.3, 0.6, 4.8, 3.7\}$$

encoded $\rightarrow \{01, 00, 11, 10\}$

CSE-350 Quiz-03

ADC & DAC

Set-B Total – 20 marks Time – 20 minutes

Name -	Id -	Section -
Problem-1		

Design a 2 bit Flash ADC for an analog signal of range (0, 10). According to your circuit answer the following questions.

- i. What is the resolution and quantization error for this quantizer.
- ii. Write the encoded sequences for the following input sequences { 2.3, 7.6, 5.8, 0.7}

#Soln:
$$n=2 \rightarrow \Delta = \frac{V_{\text{max}} - V_{\text{min}}}{2^n} = \frac{10-0}{2^2} = \frac{10}{4} = 2.5$$

Quantization error = $\frac{\Delta}{2} = 1.25$

Quarter Pour Q	C 11.
guantization Pange	Encoded Seg.
7.5-10	11
5-7.5	10
2.5-5	01
0-2.5	070

Problem-2 10 marks

The figure shows the input-output characteristics of a converter. The output of the converter is denoted as V_o and the input as V_{in} . Identify the converter type and the number of bits used by the converter. Further, calculate Vref when $R_F = R$.

Solp: DAC Converted 2 bits

$$b_1b_2 \rightarrow V_0 = 15$$
 $11 \rightarrow V_0 = 15$
 $V_0 = V_{\rm ref} \times \frac{P_F}{P} \left(b_1 + \frac{b_2}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$
 $\Rightarrow 15 = V_{\rm ref} \times \frac{P_F}{P} \left(1 + \frac{1}{2}\right)$

