Stream Data Mining

Data Streams

Many modern applications generate huge amounts of fast data streams:

- Credit card transactions
- Wearable sensors
- Connected vehicles
- Industry 4G
- IoT

Data Collection Devices

RFID Systems

hpe.com

Smart Machinery

Digital Signage

Phones and Tablets

Security Systems

Home Automation

Medical Devices

Data Streams V.S. Databases

Data
Streams

Data flow

Oueries

Analyses

Results

Data Stream Challenges

- One pass constraint
 - Data size is the assumed to be infinite. No chance to store all, and do second pass. So what? Think of k-means
- Concept drift
 - Data evolves over time, and also its statistical properties. So what? Think of outlier mining
- Resource constraints
 - Variable arrival rate forces that algorithms have to be very efficient
- Massive domain
 - Some data attributes might have large number of distinct values (massive domain), e.g., social network connections. So what ? Think of frequent itemset mining

Tools for your data scientist toolbox

- Have I seen you before?
- How many time did I see you?
- How many persons have attended my lecture?
 - Solution 1, 3

Synopsis structures for massive domain

Bloom Filter False Positive (incorrectly predicted as positive) is possible i.e. element is not there but it says element is present False Negative is not possible

Given a particular element, has it ever occurred in the data stream?

- A Bloom filter is a synopsis that gives an answer of this query with a probabilistic bound on the accuracy.
- If the bloom filter reports that an element does not belong to the stream, then this will always be the case. But there can be false positives.
- A bloom filter consists of:
 - a binary bit array of length m, [0, ..., m-1]
 - w independent hash functions $h_1(.) ... h_w(.)$

Bloom Filter

```
Algorithm BloomConstruct(Stream; \mathcal{S}, Size; m, Num. Hash Functions; w)
begin
Initialize all elements in a bit array \mathcal{B} of size m to 0;
repeat
Receive next stream element x \in \mathcal{S};
for i = 1 to w do
Update h_i(x)th element in bit array \mathcal{B} to 1;
until end of stream \mathcal{S};
return \mathcal{B};
end
```


Count-Min Sketch

Given a particular element, how many times did it appear before in the data stream?

- A count-min sketch consists of:
 - o a set of w different numeric arrays, each of which has a length m
 - w independent hash functions $h_1(.)$... $h_w(.)$

Construction

ESTIMATED COUNT OF $x = \min\{h_1(x), h_2(x), ..., h_w(x)\}$

```
Algorithm CountMinConstruct(Stream: \mathcal{S}, Width: w, Height: m)
begin
Initialize all entries of w \times m array \mathcal{CM} to 0;
repeat
Receive next stream element x \in \mathcal{S};
for i = 1 to w do
Increment (i, h_i(x))th element in \mathcal{CM} by 1;
until end of stream \mathcal{S};
return \mathcal{CM};
end
```

Querying

ESTIMATED COUNT OF $x = \min \{ h_1(x), h_2(x), ..., h_w(x) \}$

```
Algorithm CountMinQuery (Element: y, Count-min Sketch: \mathcal{CM})
begin
Initialize Estimate = \infty:
```

```
Initialize Estimate = \infty;

for i = 1 to w do

Estimate = \min\{Estimate, V_i(y)\};

\{V_i(y) \text{ is the count of the } (i, h_i(y)) \text{th element in } \mathcal{CM} \}

return Estimate;

end
```

Flajolet-Martin Algorithm

How many persons are attending Justin Bieber concert

- Use a hash function $h(\cdot)$: stream element x -> integer in the range [0, 2 \(^L 1\)]
- Usually, the value L is selected to be 64. We need that 2^L > number of distinct elements
- Take the binary representation of h(x) 00001011101011010100000000
- Look at the number of 0's in the tail
- Keep the maximum of the number of 0s in the tail

Flajolet-Martin Algorithm

000010111010110101000000000

The intuition is that Probability of finding a tail of r zeros:

- Goes to 1 if n >> 2^r
- Goes to 0 if n << 2^r

It has been proven that the expected maximum number of trailing zeros over all stream elements is

 $E[R_{max}] = log_2(0.77351 n)$, n is number of distinct elements in the stream

Reversing it:

$$n=2^{Rmax} / 0.77351$$

000010111010110101000000000

What if the first guy to enter my lecture hits a record of trailing zeros?

Flajolet-Martin will estimate that my lecture has much more people than Justin

Bieber concert

Solution?

000010111010110101000000000

What if the first guy to enter my lecture hits a record of trailing zeros?

Flajolet-Martin will estimate that my lecture has much more people than Justin Bieber concert

Solution ? Multiple hash functions can be used, and the average value of R $_{\rm max}$ over the different hash functions

Multiple Hash Functions:

Instead of applying a single hash function, use multiple independent hash functions. Each hash function will produce a different result for the same input.

Combine Results:

For each hash function, apply the Flajolet-Martin algorithm independently to get an estimate of the count of trailing zeros (R) for that hash function.

Average Results:

Compute the average of the R values obtained from different hash functions. This averaged value can be used as the final estimation.

000010111010110101000000000

What if the concert hall has many doors ? How to synchronize multiple Flajolet-Martin $R_{\rm max}$

Solution?

Multiple Streams:

If you have data streams from multiple doors (or multiple sources), apply the Flajolet-Martin algorithm independently to each stream.

Calculate max Rmax for Each Stream:

For each stream, calculate the max Rmax value using the Flajolet-Martin algorithm.

Aggregate Results:

Take the maximum max Rmax value across all streams.

This aggregated max Rmax represents the maximum number of trailing zeros observed across all streams.

Final Estimation:

The final estimation of the cardinality can then be obtained using the aggregated max Rmax value.

000010111010110101000000000

What if the concert hall has many doors?

How to sum multiple Flajolet-Martin $R_{\rm max}$

Hyperloglog

Flajolet-Martin[1] -> loglog[2] -> hyperloglog[3]

- 1. Flajolet, Philippe; Martin, G. Nigel (1985). <u>"Probabilistic counting algorithms for data base applications"</u>
- 2. Durand, Marianne; Flajolet, Philippe (2003). "Loglog Counting of Large Cardinalities"
- 3. Flajolet, Philippe; Fusy, Éric; Gandouet, Olivier; Meunier, Frédéric (2007). <u>HyperLogLog:</u> the analysis of a near-optimal cardinality estimation algorithm

Hyperloglog

towardsdatascience.com

Hyperloglog

- Workhorse when it comes to cardinality counting
- Avoids the need for many hash-functions to reduce error
- Standard error 1.04/m (m is the number of buckets)
- Great demo at:

http://content.research.neustar.biz/blog/hll.html

Credits Filter - Analysis

These slides, except when explicitly stated, use material from:

- Charu C.Aggarwal. Data Mining The Textbook, Springer.
- Toon Calders, Tools for a data scientist's toolbox: Data Stream Processing and others, eBISS summer school 2017