Can Machines Learn from Experience?

An Intro to Reinforcement Learning

Agenda

- 1. Coordinator Pitches
- 2. The RL Problem (Ch. 1^[1])
- 3. Markov Decision Processes (Ch. 3^[1])

Agenda

- 1. Coordinator Pitches
- 2. The RL Problem (Ch. 1^[1])
 - a. Learning through interaction
 - b. Reinforcement learning
- 3. Markov Decision Processes (Ch. 3^[1])

Learning through interaction

Reinforcement learning

- Formalization of learning through *interaction*
- What to do in order to maximize some numerical reward
 - Mapping states to actions, π: S → A
- Characterized by the problem rather than a method(s)
 - Any method suited for RL problems can be considered an RL method

Reinforcement learning

- There is an agent-environment relationship
 - A/E Interface
- The agent
 - must be able to sense state
 - must be able to act to change that state
 - must have goal(s) related to that environment
- tuple:(Sensation, Action, Goal)

Elements of reinforcement learning

π

Policy

Reward Function R

Value Function (

Model

π: maps from perceived states in the environment to actions that should be taken

R: defines the goal in a given problem, what the agent seeks to maximize – short-term focus

Q: also seeks to maximize, but has a long-term focus

T: mimics behavior of the environment; ultimately should allow for inference about how the environment will behave

A new paradigm

- We've covered ANNs, CNNs, and RNNs
 - These are typically used in supervised learning
- Supervised learning has an expert providing examples and labels
 - No learning through interaction
- Do we learn only from an expert's examples and those labels?
 - Handling novel situations, uncharted territory, etc.
 - Learning from experience is necessary
- Key idea: feedback is provided by evaluating the actions taken, rather than instruction by correct actions

Agenda

- 1. Coordinator Pitches
- 2. The RL Problem (Ch. 1^[1])
- 3. Markov Decision Processes (Ch. 3^[1])
 - a. The Agent-Environment Interface
 - b. Goals and Rewards
 - c. The Markov Property
 - d. Markov Decision Processes

The Agent-Environment Interface

- Agent
 - is learner and decision maker
- Environment
 - intuitively: everything in agent *interacts with*
 - unintuitively: everything the agent is not
 - gives rise to rewards (R), and has states (S)
- Task
 - single instance of the RL problem
 - complete definition of the environment and how rewards are determined

$$t = 0, 1, 2, 3, ...$$

$$S_{t} \in S$$

$$A_{t} \in A(S_{t})$$

$$R_{t} \in R$$

$$\pi_t : S_t \to A_t$$

 $\pi_t(a \mid s) \text{ is P}(A_t = a \text{ if } S_t = s)$

- We deal with discrete timesteps
 - $t = 0, 1, ..., n \mid n \in \mathbb{Z}^+$
- At each time t the environment has some state (S,)
 - $S_{\downarrow} \in S$, where S is all possible states of the environment
- At each time t, given a state S, the agent takes an action (A)
 - $A_t \in A(S_t)$, where $A(S_t)$ is the set of actions available in S_t
- After taking an action A_t the agent receives some reward in t + 1
 - $R_{t+1} \in \mathbf{R}$
- The goal of RL is to have an agent maximize reward over the long term

- Abstract, flexible framework
 - Timesteps can refer to stages in decision making
 - Actions can be low- or high-level
 - States can be low- or high-level
- Choice in representation is "more art than science" at least for now

Goals and Rewards

The Reward Hypothesis:

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

Basically, we can define a goal as maximizing some numerical value

An example of goals and rewards

- Captures a lot of wanted behavior in situations/tasks
- Robot learning to walk
 - R_t = +n | n is proportional to forward motion at t
 - R₊ = -1 for each timestep
 - max(R)
- A way to bias agents into *how* we want them to achieve their goals

Goals and Rewards

- Returns or Utility
- We've been informal so far
 - goals, maximizing cumulative reward
 - so what does that look like formally?

Goals and Rewards, Formally

- Returns
 - We seek to maximize Expected Return/Utility
- G₊ is the function that defining some reward sequence
 - Simplest case: $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T | T$ is final timestep★
- ★ Having T makes sense for tasks that have are naturally finite
 - think games
 - each pass through the game to T is called an *episode* or *trial*

Aside: Episodic Tasks

- Episodic tasks are finite
 - they have an end
 - consider a game
- Continual tasks are infinite
 - no intuitive/conceivable/real end
 - consider learning about RL

Back to formalizing G₊

- Most tasks are continuous, we need a richer G₊
 - For most interesting tasks, T = ∞
 - Currently, G, has an infinite value not good for continual tasks
- We need a terminal state
 - Discounting
 - Absorbing State*
 - Finite Horizon*

Aside: Discounting

- The notion that rewards now are better than rewards later
- $0 \le \gamma \le 1$, the *discount factor* (how much do future rewards matter?)
- $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_T$ becomes: $\Sigma_{k=\{0..\infty\}} (\gamma^k R_{t+k+1}) \mid k \to \infty$
- Now, if γ < 1, G_t has a finite value!
 (provided {R_t} is bounded)

Aside: Discounting

- Utility is $\Sigma_{k=\{0..\infty\}} (\gamma^k R_{t+k+1}) \mid k \to \infty$
- If $\gamma = 0$, the agent becomes myopic
 - doesn't consider future rewards
 - $G_{+} = 0$ for k > 0
- As $\gamma \rightarrow 1$, the agent becomes increasingly farsighted
 - heavily weights future rewards
 - $G_+ > 0$ for k > 0

Our return function so far

$$\sum_{k=\{0..\infty\}} \left(\gamma^k \cdot R_{t+k+1} \right) \mid k \to \infty$$

The Markov Property

- Agent makes decisions as a function of the state
 - state is a signal from the Environment (Env)
 - can be thought of as: info from the Env, available to the Agent
- What should be required of a State?
 - Give all relevant information
 - immediate sensations, and
 - past sensations
 (but not all of them)

The Markov Property

- A state that successfully retains all relevant info has the Markov Property
- The future is independent of the past, given the present, e.g.
 - cannonball's trajectory mid flight, or
 - state of a checkers board mid game

So why's the Markov Property important?

- Consider: How might an Env respond at t + 1 for an action at t
- Previously: What will the state S_{t+1} be if I take some action in state S_t ? $p(s', r \mid s, a) = Pr\{S_{t+1} = s', R_{t+1} = r \mid S_0, A_0, R_0, ..., S_{t-1}, A_{t-1}, R_t, S_t, A_t\}$
- But, with the Markov Property, $p(s', r \mid s, a) = Pr\{S_{t+1} = s', R_{t+1} = r \mid S_{t} = s, A_{t} = a\}$

The Markov Property

- If it is the case that, $p(s', r | s, a) = Pr\{S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a\}$; then our task has the Markov Property
- This enables us to predict S_{t+1} and R_{t+1} given $S_t = s$ and $A_t = a$
- Can be shown just as powerful as having complete history
- Can be shown best policy for Markov is equal to best policy for complete histories

The importance of the Markov Property

- Assumed that decisions and values are functions of the current state
 - Thus, the **state** representation must be informative
- Theory helps understand behavior of the algorithms
 - Understanding of the theory of the Markov case is essential foundation
 - Assumption of Markov state not unique to reinforcement learning

Markov Decision Processes (MDPs)

- If a task possesses the Markov Property, then it's also a Markov Decision Process (MDP)
- If state and action space are finite, we call them a *finite MDP*
 - "... they are all you need to understand 90% of modern reinforcement learning."^[1]
- Given one-step dynamics, p(s', r | s, a), we can get:
 - Expected rewards for state-action pairs
 - State-transition probabilities
 - Expected reward of state-action-next-state triples

Markov Decision Processes

- A five-tuple (S, S_o, A, T, R)
 - T = p(s' | s,a) or T(s, a, s')
 - R(s,a,s') with discount factor
- A solution to an MDP is a policy π : S \rightarrow A
 - V*(s) value of acting optimally from state s
 - Q*(s,a) value of taking a in s and acting optimally thereafter
 - π* optimal policy

Markov Decision Process

Graphics from <u>CS188 at Berkeley</u>

Markov Decision Processes

- Optimal Value Function v_∗(s)
 - Satisfies a particular recursive relationship
 - $v_*(s) = max_a v_*(s)$
- Optimal Action-Value Function Q(s)

-
$$Q^*(s) = \Sigma_{s'}T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$

- $V^*(s) = \max_{a} \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$

Bellman Optimality Equations

Markov Decision Processes

-
$$Q^*(s) = \Sigma_s, T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$

- $V^*(s) = \max_{a} \Sigma_{s}, T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$
- We want to iterate over an MDP to find V* and Q* and then find some π^*

Questions?

References (Check 'em Out)

- 1. "Reinforcement Learning: An Introduction" Sutton and Barto
- 2. <u>CS188</u> at Berkeley

Resources (Check 'em Out)

- This Week in Machine Learning and AI (TWIMLAI)
- <u>Mapping Babel</u>
- Two Minute Papers
- Talking Machines
- CS188 at Berkeley by P. Abbeel
- Machine Learning on Coursera by A. Ng
- <u>CS231</u> at Stanford by Fei-Fei Lei & Andrej Karpathy

On the Interwebs

