18.100B: Problem Set 5

Dmitry Kaysin

November 2019

Problem 1

Let \mathcal{M} be a complete metric space, and let $X \subseteq \mathcal{M}$. Show that X is complete if and only if X is closed.

Proof. Suppose X is complete. Any limit point of X is the limit of some Cauchy sequence in X. Since any Cauchy sequence converges in X, its limit must be in X. Thus all limit points of X are in X and therefore X must be closed.

Now suppose X is closed. Any Cauchy sequence in \mathcal{M} that is also in X must converge to some limit in \mathcal{M} . Limit of any Cauchy sequence in X must be either a point of X or a limit point of X. Since X is closed, it contains all its limit points. Therefore, all Cauchy sequences in X converge in X. Thus, X is a complete metric space.

Problem 2

a) Show that a sequence in an arbitrary metric space $\{x_n\}$ converges if and only if the 'even' and 'odd' subsequences $\{x_{2n}\}$ and $\{x_{2n-1}\}$ both converge to the same limit.

Proof. Suppose sequence $\{x_n\}$ converges to x. Then for any ϵ we can find $N \in \mathbb{N}$ such that for all $n > N : d(x, x_n) < \epsilon$. Clearly, $d(x, x_{2n}) < \epsilon$ and $d(x, x_{2n-1}) < \epsilon$. Therefore subsequence $\{x_{2n}\}$ and subsequence $\{x_{2n-1}\}$ must converge to x.

Suppose both $\{x_{2n}\}$ and $\{x_{2n-1}\}$ converge to x. Then for any ϵ we can find $N, M \in \mathbb{N}$ such that for all $n > N : d(x, x_{2n}) < \epsilon$ and for all $n > M : d(x, x_{2n-1}) < \epsilon$. We notice that for all $n > 2N : d(x, x_n) < \epsilon$. Therefore, sequence $\{x_n\}$ must converge to x.

b) Show that a sequence in an arbitrary metric space $\{x_n\}$ converges if and only if the subsequences $\{x_{2n}\}$, $\{x_{2n-1}\}$, and $\{x_{5n}\}$ all converge.

Proof. Consider $\{x_n\}$ and its subsequence $\{x_{f(n)}\}$ where n and f(n) are natural numbers and $f(n) \ge n$. Suppose $\{x_n\}$ converges to x. Then for any $\epsilon > 0$ there exists N such that for all $n > N : d(x, x_n) < \epsilon$. For any given n we notice that $n > N \Rightarrow f(n) geqn > N$. Therefore $d(x, x_{f(n)}) < \epsilon$ and thus subsequence $\{x_{f(n)}\}$ converges to x.

Conversely, suppose that $\{x_{f(n)}\}$ converges to x. Then for any $\epsilon > 0$ there exists N such that for all $n: f(n) > N: d(x, x_{f(n)}) < \epsilon$. We notice that for any N there exists K such that K > f(N) by the Archimedean property. Then K > f(N) > N. Therefore for all $n > K: d(x, x_n) < \epsilon$ and thus sequence $\{x_n\}$ converges to x.

We conclude that sequence converges to x if and only if all its subsequences converge to x. Case in hand is a special case of this general theorem for three chosen subsequences.

Problem 3

If $\{x_n\}$ and $\{y_n\}$ are two bounded sequences of real numbers, show that:

- $\limsup (x_n + y_n) \le \limsup x_n + \limsup y_n$;
- $\liminf (x_n + y_n) \ge \liminf x_n + \liminf y_n$.

Proof. Let $x = \limsup x_n$, $y = \limsup y_n$. Since sequences x_n and y_n are bounded, $(x_n + y_n)$ must be also bounded, thus we can find a convergent subsequence $s_{n_k} = (x_{n_k} + y_{n_k})$; $s_{n_k} \to s$. Since sequence x_{n_k} is bounded, there must exist its subsequence that is convergent; denote it $x_{n_a} \to a$. Now consider a bounded sequence y_{n_a} , which must contain a convergent subsequence $y_{n_b} \to b$. We note that x_{n_b} is a subsequence of convergent sequence, thus $x_{n_b} \to a$. Now consider sequence $(x_{n_b} + y_{n_b})$, which must converge to a + b. At the same time, $(x_{n_b} + y_{n_b})$ is a subsequence of convergent sequence s_{n_k} . Therefore s_{n_k} must also converge to a + b, which means s = a + b. We notice that $a \le x$ and $b \le y$. Therefore:

$$s \le x + y$$

We can see that limit of any convergent subsequence of $(x_n + y_n)$ must be strictly less than x + y. In other words, x + y is an upper bound of the set of subsequential limits of s_n . Supremum of the set of subsequential limits of s_n is its least upper bound, therefore:

 $\limsup (x_n + y_n) \le \limsup x_n + \limsup y_n.$

Similar logic can be used to show that

$$\lim\inf(x_n+y_n)\geq \lim\inf x_n+\lim\inf y_n$$
.

Moreover, show that if $\{x_n\}$ converges, then both inequalities are actually equalities.

Proof. Suppose $\{x_n\}$ converges to p. Then its every subsequence converges to p. For $\limsup\{y_n\}=a$ there must exist a subsequence $\{y_{n_a}\}$ of $\{y_n\}$ that converges to a. Consider subsequence $\{x_{n_a}+y_{n_a}\}$ of the sequence $\{x_n+y_n\}$ for which:

$$\limsup \{x_{n_a} + y_{n_a}\} \le \limsup \{x_n + y_n\}$$

We note that subsequence $\{x_{n_a} + y_{n_a}\}$ converges to p+a, therefore:

$$p + a \le \limsup \{x_n + y_n\}$$

$$\limsup \{x_n\} + \limsup \{y_n\} \le \lim \sup \{x_n + y_n\}$$

At the same time, using the result from the first part of the problem we can see that

$$\limsup \{x_n + y_n\} \le \limsup \{x_n\} + \limsup \{y_n\}$$

From this follows the equality

$$\limsup \{x_n + y_n\} = \limsup \{x_n\} + \limsup \{y_n\}$$

Using the same logic we can prove that for convergent $\{x_n\}$ and bounded $\{y_n\}$ that

$$\lim\inf\{x_n\} + \lim\inf\{y_n\} = \lim\inf\{x_n + y_n\}$$

Problem 4

The 'sequence of averages' of a sequence of real numbers $\{x_n\}$ is the sequence $\{a_n\}$ defined by

$$a_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

If $\{x_n\}$ is a bounded sequence of real numbers, then show that

 $\liminf x_n \le \liminf a_n \le \limsup a_n \le \limsup x_n$.

Proof. Denote $x^* = \limsup x_n$. For a given $\epsilon > 0$ consider $K = \{k \in \mathbb{N} : x_k \ge x^* + \epsilon\}$. Suppose K is infinite. Then bounded sequence $\{x_k\}_{k \in K}$ must contain a convergent subsequence $x_{k_c} \to c$. Limit of x_{k_c} must lie in the closed interval:

$$\liminf x_{k_c} \le c \le \limsup x_{k_c}$$

Since $x^* + \epsilon < \liminf x_{k_c}$ we've found a subsequence of x_n that converges to a point that is strictly greater than $\limsup x_n$. Contradiction. Therefore, K must be finite.

Define $S_n = \{i \in \mathbb{N} : i \in K, i \leq n\}$ and $T_n = \{i \in \mathbb{N} : i \notin K, i \leq n\}$ and define sequences s_n and t_n by:

$$s_n = \sum_{i \in \mathcal{S}_n} x_i, \quad t_n = \sum_{i \in \mathcal{T}_n} x_i$$

Since $S_n \cup T_n = \{i \in \mathbb{N} : i \leq n\}$, the set of the first n natural numbers, $s_n + t_n$ is equal to the sum of first n elements of the sequence x_n . Therefore:

$$a_n = \frac{s_n}{n} + \frac{t_n}{n}$$
.

We notice that $\frac{s_n}{n} \to 0$ since $s_n \to s$, some finite number, and $n \to \infty$. Furthermore, we notice that every element of $\{x_k\}_{k \in \mathbb{N}, k \notin K}$ is less than $x^* + \epsilon$. Then the sum of any n elements from $\{x_k\}_{k \in \mathbb{N}, k \notin K}$ is less than $n(x^* + \epsilon)$ for any $n \in \mathbb{N}$. Therefore:

$$\frac{t_n}{n} < x^* + \epsilon$$

Using the result from problem 3 we find that:

$$\limsup \left(\frac{s_n}{n} + \frac{t_n}{n}\right) \le \limsup \frac{s_n}{n} + \limsup \frac{t_n}{n}$$

Since $\limsup \frac{s_n}{n} = 0$ and $\limsup \frac{t_n}{n} \le x^* + \epsilon$:

$$\limsup a_n \le x^* + \epsilon$$

We notice that $\limsup x_n$ is a lower bound for the set $\{x^* + \epsilon : \epsilon > 0\}$, therefore it cannot be greater than x^* . Thus $\limsup x_n \leq x^*$. We conclude that:

$$\limsup a_n \leq \limsup x_n$$

Similar logic can be employed to show that $\liminf x_n \leq \liminf a_n$.

In particular, if $x_n \to x$ then show that $a_n \to x$.

Proof. If $x_n \to x$ then $\liminf x_n = \limsup x_n = x$. Therefore $\liminf a_n = \limsup a_n = x$. From this $a_n \to x$.

Does the convergence of $\{a_n\}$ imply the convergence of $\{x_n\}$?

Answer: Convergence of a_n does not necessarily imply the convergence of x_n .

Proof. Counterexample: Consider sequence $\{x_n\} = \{(-1)^n : n \in \mathbb{N}\}$. Sequence a_n for such x_n converges to 0. Indeed a_n can be rewritten as:

$$a_n = \frac{0 \cdot k + (-1)^{n-2k}}{n} = \frac{0}{n} + \frac{(-1)^{n-2k}}{n}$$

where $k = \lfloor \frac{n}{2} \rfloor$. From this it is clear that $\frac{(-1)^{n-2k}}{n} \to 0$ as $n \to 0$. At the same time, x_n clearly does not converge.

Problem 5

Consider any sequence (x_n) defined by choosing $0 < x_1 < 1$ and then defining $x_{n+1} = 1 - \sqrt{1 - x_n}$ for $n \ge 0$. Show that x_n is a decreasing sequence converging to zero.

Proof. Suppose that $0 < x_n < 1$. Then

$$0 < 1 - x_n < 1$$

$$0 < \sqrt{1 - x_n} < 1$$

$$0 < 1 - \sqrt{1 - x_n} < 1$$

$$0 < x_{n+1} < 1$$

By induction with $0 < x_1 < 1$ we conclude that all elements of sequence x_n are between 0 and 1.

Furthermore, x_n is decreasing. To prove this, consider the difference:

$$d = x_{n+1} - x_n = 1 - \sqrt{1 - x_n} - x_n = 1 - x_n - \sqrt{1 - x_n} = \sqrt{1 - x_n} \left(\sqrt{1 - x_n} - 1 \right)$$

We notice that $0 < \sqrt{1 - x_n} < 1$, then d < 0, thus for any $n \in \mathbb{N} : x_{n+1} < x_n$. Therefore, limit of x_n must lie in [0,1).

Suppose that $\lim x_n = L > 0$. Then for all x_n :

$$x_n > L$$

$$x_{n+1} > L$$

$$1 - \sqrt{1 - x_n} > L$$

$$\sqrt{1 - x_n} < 1 - L$$

$$1 - x_n < (1 - L)^2$$

$$x_n - 1 > -(1 - L)^2$$

$$x_n > 1 - (1 - L)^2$$

We then examine the difference

$$1 - (1 - L)^{2} - L = (1 - L) - (1 - L)^{2} = (1 - L)(1 - 1 + L) = L(1 - L),$$

which is greater than 0 for any 0 < L < 1. Therefore

$$x_n > 1 - (1 - L)^2 > L$$

However, we then can find ϵ -neighbourhood of L that contains no points of x_n . Therefore L>0 cannot be a limit of x_n . Contradiction. We conclude that $\lim x_n=0$.

Another way to see that the limit of sequence x_n is 0 is to evaluate its first few elements:

$$x_2 = 1 - \sqrt{1 - x_1} = 1 - (1 - x_1)^{\left(\frac{1}{2}\right)^1}$$

$$x_3 = 1 - \sqrt{1 - x_2} = 1 - \sqrt{1 - \left(1 - \sqrt{1 - x_1}\right)} = 1 - (1 - x_1)^{\left(\frac{1}{2}\right)^2}$$

It is easy to see that:

$$x_n = 1 - (1 - x_1)^{\left(\frac{1}{2}\right)^n}$$

For $0 < x_1 < 1$ we notice that $(1 - x_1)^p \to 1$ as $p \to 0$. Therefore $x_n \to 0$ as $n \to \infty$.

Also, show that $\frac{x_{n+1}}{x_n} \to \frac{1}{2}$.

Proof.

$$\frac{x_{n+1}}{x_n} = \frac{1 - \sqrt{1 - x_n}}{x_n} = \frac{x_n}{x_n \left(1 + \sqrt{1 - x_n}\right)} = \frac{1}{1 + \sqrt{1 - x_n}}$$

As $x_n \to 0$ we can see that limit of the denominator of the above expression is 2. Thus, $\frac{x_{n+1}}{x_n} = \frac{1}{2}$.

Problem 6

The Greeks thought that the number Φ , known as the Golden Mean, was the ratio of the sides of the most aesthetically pleasing rectangles. Imagine a line segment A divided into two smaller line segments B and C, with lengths a, b, and c respectively and b > c. If the proportion between a and b is the same as the proportion between b and c, then we call this proportion Φ .

a) Show that with a,b,c as above, $\Phi=\frac{b}{c}$ satisfies $\Phi^2=\Phi+1$. Conclude that $\Phi=\frac{1+\sqrt{5}}{2}$

Proof.

$$\Phi = \frac{a}{b} = \frac{b}{c}$$

$$ac = b^{2}$$

$$ac^{2} = b^{2}c$$

$$\frac{b^{2}}{c^{2}} = \frac{a}{c}$$

$$\frac{b^{2}}{c^{2}} = \frac{b+c}{c}$$

$$\frac{b^{2}}{c^{2}} = \frac{b}{c} + 1$$

$$\Phi^{2} = \Phi + 1$$

Solving for Φ we get:

$$\Phi = \frac{1 \pm \sqrt{5}}{2}$$

Since Φ is a ratio between lengths of line segments, it cannot be negative. Thus, $\Phi = \frac{1+\sqrt{5}}{2}$.

b) Show that:

$$\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

Proof. Consider sequence x_n , which is defined by a recurrence relation:

$$x_1 = 1, \quad x_{n+1} = 1 + \frac{1}{x_n}$$

Sequence x_n is positive and bounded. Indeed, for any $n \in \mathbb{N}$: $1 \le x_n \le 2$. Now consider two subsequences of x_n : odd x_n^o and even x_n^e :

$$x_n^o = x_n,$$
 $x_{n+1}^o = 1 + \frac{1}{1 + \frac{1}{x_n}}$
 $x_n^e = x_{n+1},$ $x_{n+1}^e = 1 + \frac{1}{1 + \frac{1}{x_{n+1}}}$

We examine difference between two subsequent elements of subsequence x_n^o :

$$x_{n+1}^{o} - x_{n}^{o} = 1 + \frac{1}{1 + \frac{1}{x_{n}}} - x_{n} = -\frac{x_{n}^{2} - x_{n} - 1}{x_{n} + 1}$$

$$= -\frac{(x_{n} - \Phi)(x_{n} - \frac{1 - \sqrt{5}}{2})}{x_{n} + 1} = \frac{(\Phi - x_{n})(x_{n} + \frac{\sqrt{5}}{2} - 1)}{x_{n} + 1} \quad (1)$$

We notice that expression 1 is positive only if $x_n < \Phi$. Furthermore we claim that if $x_n^o < \Phi$ then $x_{n+1}^o < \Phi$. To prove that we consider the difference

$$\begin{split} x_{n+1}^o - \Phi &= \frac{2x_n + 1}{x_n + 1} - \frac{1 + \sqrt{5}}{2} \\ &= \frac{4x_n + 2 - (x + \sqrt{5}x_n + 1 + \sqrt{5})}{2(x_n + 1)} = \frac{x_n(3 - \sqrt{5}) + (1 - \sqrt{5})}{2(x_n + 1)} \\ &= \frac{4x_n + 3 + \sqrt{5} - 3\sqrt{5} - 5}{2(x_n + 1)(3 + \sqrt{5})} = \frac{2x_n - 1 - \sqrt{5}}{(x_n + 1)(3 + \sqrt{5})}, \end{split}$$

which is positive if and only if $x_n < \Phi$. Therefore $x_n^o < \Phi \Rightarrow x_{n+1}^o < \Phi$. We notice that $x_1^o = 1 < \Phi$, therefore the whole sequence x_n^o is increasing.

Moreover, subsequence x_n^o is bounded by boundedness of x_n ; therefore, it must converge. Any convergent sequence in complete metric space is a Cauchy sequence. Therefore expression 1 must be equal to zero as $n \to \infty$.

$$\lim_{n \to \infty} \frac{(\Phi - x_n)(x_n + \frac{\sqrt{5}}{2} - 1)}{x_n + 1} = \frac{(\Phi - \lim x_n^o)(\lim x_n^o + \frac{\sqrt{5}}{2} - 1)}{\lim x_n^o + 1} = 0,$$

which is true if and only if $\lim x_n^o = \Phi$.

We can prove in a similar way that subsequence x_n^e also converges to Φ . Since odd and even subsequences of sequence x_n converge to Φ , x_n itself must converge to Φ .

c) Show that:

$$\Phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}}$$

Proof. Consider sequence y_n , which is defined by a recurrence relation:

$$y_1 = 1, \qquad y_{n+1} = \sqrt{1 + y_n}$$

We consider the ratio of two subsequent elements of y_n :

$$\frac{y_{n+1}}{y_n} = \frac{\sqrt{1+y_n}}{y_n}$$

$$y_{n+1} > y_n \iff \frac{\sqrt{1+y_n}}{y_n} > 1 \iff \frac{1+y_n}{y_n^2} - 1 > 0 \iff$$
$$\iff -\frac{y_n^2 - y_n - 1}{y_n^2} > 0 \iff \frac{(\Phi - y_n)(y_n + \frac{\sqrt{5}}{2} - 1)}{y_n^2} > 0.$$

This expression is true if and only if $y_n < \Phi$. Furthermore, we can prove that $y_n < \Phi \Rightarrow y_{n+1} < \Phi$ (the same argument as in part (c) of the problem). We also note that $y_1 = 1 < \Phi$. We conclude that y_n is increasing. Furthermore, y_n is bounded, therefore it must converge and, furthermore, it must be a Cauchy sequence. Therefore, denoting $\lim y_n = L$:

$$\lim_{n \to \infty} \frac{\sqrt{1 + y_n}}{y_n} = 1 \iff \frac{\sqrt{1 + L}}{L} = 1$$

$$L^2 - L - 1 = 0$$

From this we find that $L = \frac{1 \pm \sqrt{5}}{2}$. Since all y_n are positive:

$$\lim y_n = \frac{1+\sqrt{5}}{2} = \Phi.$$

d) The Fibonacci sequence is defined by $z_1=1, z_2=1, z_{n+2}=z_{n+1}+z_n$. Show that the sequence of ratios of successive elements, $\frac{z_{n+1}}{z_n}$, converges to Φ .

Proof. Consider sequence $x_n = \frac{z_{n+1}}{z_n}$. We can rewrite this as

$$x_n = \frac{z_{n+1}}{z_n} = \frac{z_n + z_{n-1}}{z_n} = 1 + \frac{z_{n-1}}{z_n} = 1 + \frac{1}{\frac{z_n}{z_{n-1}}} = 1 + \frac{1}{x_{n-1}}$$

We also notice that $x_1 = 1$. Thus, by 6b), sequence x_n must converge to Φ .