Predict energy consumption and generation

Baigalmaa BAATAR

Objective

Build a machine learning model that predicts the production and energy consumption of a solar installation.s

Project idea

Future of energy:

The world is in a transition to new kinds of energy:

Blockchain enabled software platform for trading renewable energy and environmental commodities.

"Energy independence is new independence."

The peer-to-peer nature of blockchain could provide a particularly useful answer to the existing problems we see within energy networks around the world.(Power Ledger company)

mage source

Contents

- Data scraping
- EDA
- Modeling
 - Feature selection
- Result
- Conclusion

Collecting data/Web scraping

Data

The data for this project comes from Ausgrid's API and covers 300 homes with solar rooftop systems.

Weather information for energy generation

I used weather information from <u>DarkSky</u>.net. Web scraping to obtain 3 years of weather data, temperature, UV index, snow, in total 14 features.

Data overview

Location	Australia, East coast			
Date	2010-2013			
Number of observations	300 household (52602 observations)			
Repeat	Every 30 mins			
Target	Energy Consumption(GC)			

Data for energy consumption

Location	Australia, East coast
Date	2010-2013
Number of observations	300 household (52602 observations)
Repeat	Every 30 mins
Features	Temperature, Humidity,UV Index, Cloud Cover, Rain chance, Snow chance, Dew point, Pressure, Wind speed, Wind Gust, Wind Bearing, Visibility
Target	Energy Generation(GG)

Data for energy generation

EDA(Exploratory Data Analysis)

Average High and Low Temperature

Average High and Low Temperature

Energy consumption by month, by week

Energy consumption by week and weekend

Total usage by weekday

Daily energy generation and consumption

Energy generation and consumption hourly

Energy generation and features

Energy generation vs UV Index

Energy generation ve UV Index

Energy generation vs Temperature

Energy generation ve Temperature

Energy generation vs Humidity

Energy generation ve Humidity

Temperature, humidity and generation

Hottest day: Temperature vs Humidity vs Energy generation

Modeling on Energy generation

Feature selection

Most important feature (LR)

SelectKBest method

Result

Model	Before Fea	ture selection	After Feature selection		
Score	R2 score	MSE	R2 score	MSE	
Linear regression	0.58	0.027	0.57	0.027	
Random Forest	0.75	0.016	0.69	0.019	
XGBoost	0.82	0.012	0.72	0.018	

Modeling on Energy consumption

Forecasting Time series

Why time series is special?

 Level, Trend, Seasonality, Noise, Stationarity

4 models used

- ARIMA
- SARIMAX
- LSTM (deep learning)
- Facebook's Prophet

ARIMA model

ARIMA modeling

Prediction vs actual consumption

- Find best parameters: auto_arima (functions as GridSeachCV)
 - AR:p Auto-regressive aspect of the model, which incorporates past values.
 - Integrate: d Integrated part of the model. Effect the amount of differencing to apply to a time series
 - MA:q Moving average part of the model
- Model gets the trend and level.
 But not much accurate in terms of highest and lowest points.

SARIMAX model

ARIMA model with SEASONALITY

Train set

Test set (prediction)

Naive LSTM model

Most simple LSTM model with 2 layers(input 100), 1 Dense layer (output 1), loss function:mae, optimizer:adam.

Result in test set

Facebook Prophet

Prediction

Modèles et Résultats

Modèle	RMSE[kWh]
ARIMA	5.4
SARIMAX	4.1
LSTM	3.8
Prophet	5.5

Conclusion & Perspectives

Conclusion

- Obtain more data to make our predictions better
- Radiation (UV Index), temperature and humidity seem to be important parameters for better generating solar energy
- For power generation, the XGBoost model performs best (score 0.82 R2)
- For power consumption, the LSTM model performs best (3.8 [kWh] RMSE).

Future work

- Use quantile regression K-near neighbors metho energy consumption and generation
- Feature selection for energy consumption prediction

Additional materials

Energy consumption by month, by week

Energy consumption by week and weekend

Total usage by weekday

Daily energy generation and consumption

Hottest vs Coldest month consumption

Hottest vs Coldest month consumption

ARIMA model

Important parameters:

AR:**p** Auto-regressive aspect of the model, which incorporates past values.

Integrate: **d** Integrated part of the model. Effect the amount of differencing to apply to a time series

MA:**q** Moving average part of the model

Forecasting Time series

Why time series is special?

- **Level**: The baseline
- Trend: Behavior of the series over time.
- Seasonality: Repeating patterns or cycles of behavior over time.
- Noise: Variability in the observations
- Stationarity: A time series is stationary when the mean, variance, and autocorrelation are constant over time

ARIMA model

ARIMA model

Find best parameters: auto_arima (GridSeachCV in arima)

Window rolling technic

Naive LSTM model

Most simple LSTM model with 2 layers(input 100), 1 Dense layer (output 1), loss function:mae, optimizer:adam.

Loss in train, test set

Facebook Prophet

We can see more detail in Prophet result!

ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	additive_terms	additive_terms_lowe	er additive_terms_uppe	r daily	daily_lower	daily_upper
o 2013- 01-01	14.449945	6.785332	16.501677	14.449945	14.449945	-2.667754	-2.66775	-2.66775	4 -0.358377	-0.358377	-0.358377
weekly	weekly_low	wer weekly_	upper ye	arly yearly_	lower yearly_	upper multipli	cative_terms multip:	licative_terms_lower m	nultiplicativ	e_terms_upper	yhat
-1.118643	-1.1186	343 -1.1	118643 -1.19	0734 -1.1	90734 -1.1	90734	0.0	0.0		0.0	11.782191

	horizon	mse	rmse	mae	mape	mdape	coverage
0	36 days 00:00:00	22.076445	4.698558	3.886572	0.298633	0.228618	0.700935
1	36 days 12:00:00	22.211953	4.712956	3.906536	0.300074	0.233749	0.700935
2	37 days 00:00:00	22.504910	4.743934	3.937652	0.300372	0.234613	0.691589
3	37 days 12:00:00	22.054008	4.696170	3.894398	0.299203	0.233749	0.696262
4	38 days 00:00:00	21.926405	4.682564	3.889139	0.298848	0.234613	0.691589

Prophet result

Facebook Prophet

Prophet uses models trend, seasonality and HOLIDAY effects, and irreducible error.

Prophet

Decomposition