Title: "Integer Cycle Frequency Hopping Modulation For The Radio Frequency

Transmission of High Speed Data"

Serial No. 10/765,442

Attorney Docket No. P031696-08UT Responsive to Office Action Mailed October 31, 2006

Date: April 13, 2007

AMENDMENTS TO THE CLAIMS

Please amend the Claims as follows:

1. (currently amended) A modulated radio frequency carrier capable of transmitting a

binary information stream made up of first and second binary states comprising:

a carrier frequency waveform made up of a continuous sequence of complete discrete

wavelets;

said complete discrete wavelets being defined by a 360 degree cycle between crossover

positions;

said crossover positions representing a substantially zero energy level; and,

said complete discrete wavelets having been modulated in accordance with said

information stream by having altered the frequency of a single or non-zero positive integer

number of said complete discrete wavelets that correspond to said first binary states of said

information stream and not having altered the frequency of a single or non-zero positive integer

number of said complete discrete wavelets that correspond to said second binary states of said

information stream where the change of frequency from said carrier frequency waveform to said

altered frequency wavelets starts at the zero degree phase angle and ends at the 360 degree phase

angle resulting in a spectral output defined by the difference in frequency between said carrier

frequency waveform and said altered frequency wavelets during said altered 360 degree cycle.

2. (previously amended) The modulated radio frequency carrier of claim 1 wherein:

any harmonics of said modulated radio frequency carrier that were generated when said

complete discrete wavelets were altered have been reduced by filtering.

3. (currently amended) A method for transmitting binary information from a binary

information stream over a radio frequency carrier comprising the steps of:

generating a radio frequency carrier at a select carrier frequency such that said radio

frequency carrier has a waveform with a continuous sequence of complete discrete wavelets with

similar amplitudes;

Title: "Integer Cycle Frequency Hopping
Modulation For The Radio Frequency
Transmission of Wish Speed Pate"

Transmission of High Speed Data" Serial No. 10/765,442

Attorney Docket No. P031696-08UT

Responsive to Office Action Mailed October 31, 2006

Date: April 13, 2007

said complete discrete wavelets being defined by a 360 degree cycle between crossover positions of said radio frequency carrier waveform;

said crossover positions representing a substantially zero energy level;

receiving said information stream as a binary data sequence of first and second binary states;

modulating said radio frequency carrier in accordance with said binary data sequence by altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets that correspond to said first binary states to derive first carrier binary signals and not altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets that correspond to said second binary states of said information stream where the change of frequency from said carrier frequency waveform to said altered frequency wavelets starts at the zero degree phase angle and ends at the 360 degree phase angle resulting in a spectral output defined by the difference in frequency between said carrier frequency waveform and said altered frequency wavelets during said altered 360 degree cycle thereby generating an integer cycle modulated carrier made up of said first carrier binary signals and said second carrier binary signals; and,

broadcasting said integer cycle modulated carrier such that a integer cycle modulated radio frequency signal is generated.

4. (previously amended) The method of claim 3 wherein:

the modulating of said radio frequency carrier is carried out by altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets while minimizing sideband distortions of said radio frequency carrier.

5. (original) The method of claim 3 wherein:

the generation of said radio frequency carrier is accomplished by a local oscillator having an oscillator output at a select carrier frequency.

6. (previously amended) The method of claim 3 comprising the additional step of:

reducing of harmonics from said integer cycle modulated carrier by filtering said integer cycle modulated carrier.

Title: "Integer Cycle Frequency Hopping
Modulation For The Radio Frequency
Transmission of High Speed Data"
Serial No. 10/765,442
Attorney Docket No. P031696-08UT
Responsive to Office Action Mailed October 31, 2006
Date: April 13, 2007

7. (previously amended) The method of claim 3 wherein:

broadcasting said integer cycle modulated carrier is accomplished using a Time Division Multiple Access system such that Time Division Multiple integer cycle modulated radio frequency signals are broadcasted.

8. (previously amended) The method of claim 3 wherein:

broadcasting said integer cycle modulated carrier is accomplished using a Frequency Division Multiple Access system such that Frequency Division Multiple integer cycle modulated radio frequency signals are broadcasted.

9. (currently amended) A method for receiving radio frequency transmitted binary information that was derived from a binary information stream composed of a binary data sequence of first and second binary states that was modulated onto a radio frequency carrier which has a waveform with a continuous sequence of complete discrete wavelets with similar amplitudes defined by a 360 degree cycle between crossover positions representing a substantially zero energy level in which the radio frequency carrier has been modulated in accordance with said binary data sequence by altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets that correspond to said first binary states to derive first carrier binary signals and not altering the frequency of a single or non-zero positive integer number of said complete discrete that correspond to said second binary states of said information stream where the change of frequency from said carrier frequency waveform to said altered frequency wavelets starts at the zero degree phase angle and ends at the 360 degree phase angle resulting in a spectral output defined by the difference in frequency between said carrier frequency waveform and said altered frequency wavelets during said altered 360 degree cycle thereby generating an integer cycle frequency modulated carrier made up of said first carrier binary signals and said second carrier binary signals such that an integer cycle frequency modulated radio frequency signal was generated and broadcasted comprising the steps of:

receiving said integer cycle frequency modulated radio frequency signal through an antenna responsive to said carrier radio frequency signal;

Title: "Integer Cycle Frequency Hopping Modulation For The Radio Frequency

Transmission of High Speed Data" Serial No. 10/765.442

Attorney Docket No. P031696-08UT

Responsive to Office Action Mailed October 31, 2006

Date: April 13, 2007

extracting said integer cycle frequency modulated carrier from said integer cycle

frequency modulated carrier radio frequency signal received by said antenna;

demodulating said integer cycle frequency modulated carrier by detecting the respective

frequencies of a single or non-zero positive integer number of said complete discrete wavelets to

identify said first binary states and said second binary states that correspond with said first

carrier binary signals and said second carrier binary signals; and,

reconstructing said binary data sequence from said first binary states and said second

binary states resulting in regeneration of said information stream.

10. (original) The method of claim 9 wherein:

broadcasting and receiving said integer cycle frequency modulated carrier is

accomplished using a Time Division Multiple Access system such that Time Division Multiple

integer cycle frequency modulated radio frequency signals are broadcasted and received.

11. (original) The method of claim 9 wherein:

broadcasting and receiving said integer cycle frequency modulated carrier is

accomplished using a Frequency Division Multiple Access system such that Frequency Division

Multiple integer cycle frequency modulated radio frequency signals are broadcasted and

received.

12. (currently amended) A method for transmitting binary information from a binary

information stream over a radio frequency carrier, receiving the radio frequency carrier, and

converting the transmitted binary information back into an information stream comprising the

steps of:

generating a radio frequency carrier at a select carrier frequency such that said radio

frequency carrier has a waveform with a continuous sequence of complete discrete wavelets with

similar amplitudes;

said complete discrete wavelets being defined by a 360 degree cycle between crossover

positions of said radio frequency carrier waveform;

said crossover positions representing a substantially zero energy level;

Title: "Integer Cycle Frequency Hopping Modulation For The Radio Frequency Transmission of High Speed Data"

Serial No. 10/765.442

Attorney Docket No. P031696-08UT

Responsive to Office Action Mailed October 31, 2006

Date: April 13, 2007

receiving said information stream as a binary data sequence of first and second binary

states;

second carrier binary signals;

altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets that correspond to said first binary states to derive first carrier binary signals and not altering the frequency of a single or non-zero positive integer number of said complete discrete wavelets that correspond to said second binary states of said information stream where the change of frequency from said carrier frequency waveform to said altered frequency wavelets starts at the zero degree phase angle and ends at the 360 degree phase angle resulting in a spectral output defined by the difference in frequency between said carrier frequency waveform and said altered frequency wavelets during said altered 360 degree cycle thereby generating an

broadcasting said integer cycle frequency modulated carrier such that an integer cycle frequency modulated radio frequency signal is generated;

integer cycle frequency modulated carrier made up of said first carrier binary signals and said

receiving said integer cycle frequency modulated radio frequency signal through an antenna responsive to said carrier radio frequency signal;

extracting said integer cycle frequency modulated carrier from said integer cycle frequency modulated carrier radio frequency signal received by said antenna;

demodulating said integer cycle frequency modulated carrier by detecting the respective frequencies of a_single or non-zero positive integer number of said complete discrete wavelets to identify said first binary states and said second binary states that correspond with said first carrier binary signals and said second carrier binary signals; and,

reconstructing said binary data sequence from said first binary states and said second binary states resulting in regeneration of said information stream.

13. (previously amended) The method of claim 12 wherein:

the modulating of said radio frequency carrier is carried out by altering the frequency of said complete discrete wavelets while minimizing sideband distortions of said radio frequency carrier.

Title: "Integer Cycle Frequency Hopping
Modulation For The Radio Frequency
Transmission of High Speed Data"
Serial No. 10/765,442
Attorney Docket No. P031696-08UT
Responsive to Office Action Mailed October 31, 2006
Date: April 13, 2007

14. (original) The method of claim 12 wherein:

the generation of said radio frequency carrier is accomplished by a local oscillator having an oscillator output at a select carrier frequency.

15. (original) The method of claim 12 comprising the additional step of:

reducing of harmonics from said integer cycle frequency modulated carrier by filtering said integer cycle frequency modulated carrier.

16. (original) The method of claim 12 wherein:

broadcasting and receiving said integer cycle frequency modulated carrier is accomplished using a Time Division Multiple Access system such that Time Division Multiple integer cycle frequency modulated radio frequency signals are broadcasted and received.

17. (original) The method of claim 12 wherein:

broadcasting and receiving said integer cycle frequency modulated carrier is accomplished using a Frequency Division Multiple Access system such that Frequency Division Multiple integer cycle frequency modulated radio frequency signals are broadcasted and received.