Amendments to the Claims:

1

2

3

4

5

6

7

8

9

10

11

12

1

This listing of the claims will replace all prior versions, and listings, of the claims in the application:

- 1. (currently amended) A near object detection system <u>adapted to be coupled to a vehicle</u> having a plurality of vehicle systems, the near object detection system comprising:
 - a plurality of sensors, each of the said plurality of sensors for providing range cell data associated with a range cell in one of a plurality of a predetermined coverage zonezones;
 - a processor, coupled to receive and process the range cell data from one or more of said plurality of sensors, said processor adapted to provide a processor output signal coupled to one or more of the plurality of vehicle systems, wherein said processor includes a target tracker portion adapted to maintain track information from a plurality of targets with the track information being generated from the range cell data provided by the one or more of saidthe plurality of target sensors; and
 - means, coupled to each of said plurality of sensors and to said processor, for sharing information between at least somefrom each of saidthe plurality of sensors.
- (previously presented) The system of Claim 1 wherein said processor corresponds to a
 central sensor processor coupled to each of said plurality of sensors.
- 1 3. (currently amended) The system of Claim 1, wherein said processor is provided as a
- 2 <u>distributed processoris</u> provided from a plurality of sensor processors, each of said plurality of the
- 3 sensor processors disposed in a corresponding one of said plurality of sensors; and each of said
- 4 plurality of the sensor processors having communication means for allowing information to be
- 5 shared between at least someeach of the said plurality of sensor processors.
 - 4. (currently amended) A near object detection system for a vehicle, comprising:
- a plurality of sensors, disposed about a perimeter of the vehicle, each of said plurality of
- 3 sensors providing data associated with a range cell detection coverage in a respective one of a
- 4 <u>plurality of predetermined coverage zones disposed about the</u>a perimeter of the vehicle, and

2

3

4

parking aid zone, and a stop and go zone.

3	wherein each of said plurality of the sensors has a respective predetermined range, angular extent,
6	and velocity range based upon respective coverage zone requirements; and
7	a processor, coupled to one or more of said plurality of sensors, said processor adapted to
8	receive and process the range cell data provided thereto from the one or more of said plurality of
9	sensors, said processor including a target tracker portion adapted to maintain track information
10	from a plurality of targets with the track information being generated from the range cell data.
1	5. (currently amended) The system according to claim 4, wherein the <u>plurality of predetermined</u>
2	coverage zones include two or more of an adaptive cruise control/night vision zone, a lane
3	keeping zone, a road departure zone, a side object detection zone, a backup and parking aid zone,
4	and a stop and go zone.
1	6. (currently amended) A near object detection system, comprising:
2	a plurality of sensors, each of the said plurality of sensors for providing detection
3	coverage in a respective one of a plurality of predetermined coverage zones;
4	a multiple hypothesis tracker for processing data from each of saidthe plurality of sensors
5	to make a hypothesis about data association, resolution, and/or data quality;
6	a prediction filter coupled to said the multiple hypothesis tracker for scheduling the
7	plurality of sensors;
8	a public track former, coupled to said plurality of sensors, including a discrimination
9	processor for generating data to control operation of saidthe plurality of sensors;
10	an estimator/best state vector subsystem coupled to saidthe public track former; and
11	a vehicle control crash management interface coupled to saidthe estimator/best state
12	vector subsystem and to said public track former the discrimination processor.
1	7. (currently amended) The system according to Claim 6, wherein the plurality of

predetermined coverage zones includes two or more of an adaptive cruise control/night vision

zone, a lane keeping zone, a road departure zone, a side object detection zone, a backup and

- 8. (currently amended) The system of Claim 1, wherein said processor further includes a data
- 2 fuser portion adapted to fuse the plurality of track information into a common filter to increase
- 3 performance of <u>saidthe</u> plurality of target sensors.
- 9. (currently amended) The system of Claim 1; wherein said plurality of the sensors; each
- 2 include at least one of:
- an infrared (IR) sensor and a radar sensor.
- 1 10. (currently amended) The system of Claim 9, wherein the radarat least one of said plurality
- 2 sensors comprises:
- a transmit antenna for transmitting an FMCW frequency in a plurality of transmit beams;
- 4 and
- 5 a receive antenna for receiving the FMCW frequency in a plurality of receive beams,
- 6 which, in combination the transmit beams, provides the plurality of a pre-determined coverage
- 7 zones.
- 1 11. (previously presented) The system of Claim 10, having at least one transmit beam and at
- 2 least one receive beam.
- 1 12. (currently amended) The system of Claim 10, wherein each of the plurality of
- 2 predetermined coverage zones has respective zone characteristics, at least one of which can be
- 3 statically changed.
- 1 13. (currently amended) The system of Claim 12, wherein at least one of the zone
- 2 characteristics can be dynamically changed to provide an alteration of a time period upon which
- 3 at least one of said plurality of the target sensors processes a particular transmit beam and a
- 4 particular receive beam.
- 1 14. (previously presented) The system of Claim 9, wherein said processor is provided from a
- 2 central processor.

- 1 15. (previously presented) The system of Claim 9, wherein said processor comprises two or
- 2 more distributed processors.