Formulário Estatística 2 - Variáveis fulcrais e estatísticas de teste

	Parametro a estimar	População(ões) tipo	Dimensão amostral	σ² conhecida(s)?	Estatística de teste	Variável fulcral	Distribuição amostral
1	μ	normal	qualquer	sim	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	\cap $n(0,1)$
2	μ	qualquer	n > 30	sim	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	<i>∩ n</i> (0,1)
3	μ	normal	qualquer	não	$\frac{\bar{X} - \mu_0}{S'/\sqrt{n}}$	$\frac{\bar{X} - \mu}{S'/\sqrt{n}}$	$\cap t_{(n-1)}$
4	μ	qualquer	n > 30	não	$\frac{\bar{X} - \mu_0}{S'/\sqrt{n}}$	$\frac{\bar{X} - \mu}{S'/\sqrt{n}}$	<i>∩ n</i> (0,1)
5	$\mu_1 - \mu_2$	normal	qualquer	$(\sigma_1^2 \; ; \; \sigma_2^2)$ sim	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\cap n(0,1)$
6	$\mu_1 - \mu_2$ (SPSS)	normal	qualquer	$(\sigma_1^2~;~\sigma_2^2)$ não, mas $\sigma_1^2=\sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\cap \left(t_{n_1+n_2-2}\right)$
7	$\mu_1 - \mu_2$	qualquer	n ₁ > 30 e n ₂ > 30	$(\sigma_1^2~;~\sigma_2^2)$ não, mas $\sigma_1^2=\sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S'_1^2 + (n_2 - 1)S'_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	∩ <i>n</i> (0,1)

	Parametro a estimar	População(ões) Tipo	Dimensão amostral	σ² conhecida(s)?	Estatística de teste	Variável fulcral	Distribuição amostral
8	μ ₁ — μ ₂ (SPSS)	normal	qualquer	$(\sigma_1^2~;~\sigma_2^2)$ não, mas $\sigma_1^2 eq \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$v = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{(n_{1}-1)}$
9	$\mu_1 - \mu_2$	qualquer	$n_1 > 30$ e $n_2 > 30$	$(\sigma_1^2~;~\sigma_2^2)$ não, mas $\sigma_1^2 \neq \sigma_2^2$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)_0}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1'^2}{n_1} + \frac{S_2'^2}{n_2}}}$	$\dot{\cap}n(0,\!1)$
10	σ^2	normal	qualquer	-	$\frac{(n-1)S'^2}{\sigma_0^2}$	$\frac{(n-1)S'^2}{\sigma^2}$	$\cap \chi^2_{(n-1)}$
11	μ _d (amostras emparelhadas)	normal	qualquer	não	$\frac{\overline{D} - \mu_{d0}}{S'_d / \sqrt{n}}$	$\frac{\overline{D} - \mu_d}{S'_d / \sqrt{n}}$	$\cap t_{(n-1)}$
12	P (Wald)	Bernoulli	n > 30	-	$\frac{\bar{X}_b - p_0}{\sqrt{\frac{\bar{X}_b(1 - \bar{X}_b)}{n}}} \\ \text{Continuity Corrected} \\ \frac{ n\bar{X}_b - np_0 - 0.5}{\sqrt{n \times \bar{X}_b \times (1 - \bar{X}_b)}} \\ (\bar{X}_b - p_0) \\ / \sqrt{\frac{p_0 \times q_0}{n}}$	$\frac{\bar{X}_b - p}{\sqrt{\frac{\bar{X}_b(1 - \bar{X}_b)}{n}}}$	$\dot{\cap}\ n(0,1)$
13	P (Scores)	Bernoulli	n > 30	-	$\frac{(\bar{X}_b - p_0)}{\sqrt{\frac{p_0 \times q_0}{n}}}$ Continuity Corrected $\frac{\left n\bar{X}_b - np_0\right - 0.5}{\sqrt{n \times p_0 \times q_0}}$	$(\bar{X}_b - p) / \sqrt{\frac{p \times q}{n}}$	∩ n(0,1)

	Parâmetro a estimar	População(ões) Tipo	Dimensão amostral	σ² conhecida(s)?	Estatística de teste	Variável fulcral	Distribuição amostral
14	p ₁ – p ₂	Bernoulli	$n_1 > 30$ e $n_2 > 30$	-	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)_0}{\sqrt{\frac{[p_1(1 - p_1)]_0}{n_1} + \frac{[p_2(1 - p_2)]_0}{n_2}}}$	$\frac{(\bar{X}_1 - \bar{X}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$	$\dot{\cap}\ n(0,1)$
15	p ₁ — p ₂ (Wald)	Bernoulli	$\begin{cases} \bar{X}_F \times n_F > 10 \\ (1 - \bar{X}_F) \times n_F > 10 \\ \bar{X}_M \times n_M > 10 \\ (1 - \bar{X}_M) \times n_M > 10 \end{cases}$	-	$\frac{(\bar{X}_F - \bar{X}_M)}{\sqrt{\bar{X}(1 - \bar{X})\left(\frac{1}{n_F} + \frac{1}{n_M}\right)}} \dot{\cap} n(0,1)$	$\frac{(\bar{X}_F - \bar{X}_M) - (p_1 - p_2)}{\sqrt{\bar{X}(1 - \bar{X})\left(\frac{1}{n_F} + \frac{1}{n_M}\right)}}$	<i>Ċ n</i> (0,1)
16	σ_1^2/σ_2^2	normal	qualquer	-	$\frac{S_1^{\prime 2}}{S_2^{\prime 2}} \times \left(\frac{\sigma_2^2}{\sigma_1^2}\right)_0$	$\frac{S_1^{\prime 2}}{S_2^{\prime 2}} \times \frac{\sigma_2^2}{\sigma_1^2}$	$\cap F_{(n_1-1.n_2-1)}$
17	μ ₁ = μ _{2 = =} μ _k Oneway ANOVA	normal	qualquer	$ (\sigma_1^2 \; ; \; \sigma_2^2 ; \dots \sigma_k^2) $ Não, mas $ \sigma_1^2 = \sigma_2^2 = \dots $ $ = \sigma_k^2 $	$\frac{SSB/(K-1)}{SSW/(n-k)}$	-	$\cap F_{(k-1.n-k)}$
18	$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ (Levene)	normal	qualquer	-	$rac{SSB/(K-1)}{SSW/(n-k)}$ Para a variável transformada $\left X_i-\overline{X} ight $		$\cap F_{(k-1.n-k)}$
19	Independência de 2 variáveis qualitativas Teste de Qhi- quadrado	qualquer	qualquer	-	$\sum_{i=1}^{c_1} \sum_{j=1}^{c_2} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$	-	$\bigcap X^2_{(c_1-l)\times(c_2-l)}$
20	Bondade de ajustamento Teste de Qhi- quadrado	qualquer	qualquer	-	$\sum_{i=1}^{c} \frac{(O_i - E_i)^2}{E_i}$	-	$\bigcap X^2_{(c-k-1)}$
21	Normalidade de 1 população Teste K-S	qualquer	n > 50	-	$d_n = \max_{i=1,2,,n} \{ F(x_i) - S(x_{i-1}); F(x_i) - S(x_i) \}$	-	
22	Normalidade de 1 população Teste de Shapiro- Wilk	qualquer	n ≤ 50	-	$W = \left(\sum_{i=1}^{n} a_i X_i\right)^2 / \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2$	-	$\dot{\cap} n(0,1)$