STOR 415, Fall 2019 Solutions to Homework Assignment No. 6

1. (a) Solution: The statement is false; in the following example, the primal is feasible (indeed it is unbounded), and the dual is infeasible.

Primal: max y, s.t. $y \ge 2$.

Dual: min 2x, s.t. x = 1, $x \le 0$.

A general counter example can be constructed by using an unbounded LP as the primal. The dual of such a primal is infeasible.

(b) Solution: The statement is false; in the following example, both the primal and the dual are infeasible.

Primal: max $x_1 + 2x_2$, s.t. $x_1 + x_2 = 1$, $x_1 + x_2 = 2$.

Dual: min $y_1 + 2y_2$, s.t. $y_1 + y_2 = 1$, $y_1 + y_2 = 2$.

One way to construct such a counter example is to choose a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$ such that neither Ax = b nor $A^Ty = c$ has a solution, and let the primal LP be maximizing c^Tx subject to Ax = b.

2. (a) Solution: The dual LP is

min
$$6y_1 + 7y_2$$

 $2y_1 + y_2 \ge 5$
 $y_1 + 2y_2 \ge 3$
 $y_1 + y_2 \ge 1$
 $y_1 \ge 0$, $y_2 \ge 0$

Graphically solve the dual LP to find its optimal solution to be $y^* = (7/3, 1/3)$. Below, we pair each primal constraint with its corresponding dual constraint, and write down the complementary slackness condition as follows:

$$(2x_1 + x_2 + x_3 - 6)y_1 = 0 (x_1 + 2x_2 + x_3 - 7)y_2 = 0 x_1(2y_1 + y_2 - 5) = 0 x_2(y_1 + 2y_2 - 3) = 0 x_3(y_1 + y_2 - 1) = 0.$$

By plugging $y^* = (7/3, 1/3)$ in the above conditions, we find that the following equalities and inequalities have to be satisfied by x^* for it to be a primal optimal solution:

$$2x_1 + x_2 + x_3 = 6$$

$$x_1 + 2x_2 + x_3 = 7$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_3 = 0$$

The three equations above have a unique solution $x^* = (5/3, 8/3, 0)$, which also satisfies the two inequalities $x_1 \ge 0$ and $x_2 \ge 0$. Hence, $x^* = (5/3, 8/3, 0)$ is the unique primal optimal solution.

(b) Solution: The dual is

min
$$5y_1 + 3y_2$$

 $2y_1 + y_2 \ge 5$
 $y_1 - y_2 \ge -7$
 $y_1 + y_2 \ge 5$
 $y_1 \ge 0$, y_2 free

Graphically solve the dual LP to find its optimal solution to be $y^* = (0,5)$. Below, each primal constraint is paired with its corresponding dual constraint in the complementary slackness conditions:

$$(2x_1 + x_2 + x_3 - 5)y_1 = 0$$

$$(x_1 - x_2 + x_3 - 3)y_2 = 0$$

$$x_1(2y_1 + y_2 - 5) = 0$$

$$x_2(y_1 - y_2 + 7) = 0$$

$$x_3(y_1 + y_2 - 5) = 0$$

By plugging $y^* = (0, 5)$ in the above conditions, we find that the following equalities and inequalities have to be satisfied by x^* for it to be a primal optimal solution:

$$2x_1 + x_2 + x_3 \le 5$$

$$x_1 + 2x_2 + x_3 = 3$$

$$x_1 \ge 0$$

$$x_2 = 0$$

$$x_3 \ge 0$$

The two equations above give $x_2 = 0$ and $x_1 = 3 - x_3$. Replacing x_1 by $3 - x_3$ and x_2 by 0 in the first inequality, we find $2(3 - x_3) + x_3 \le 5$, so that $x_3 \ge 1$. The third inequality implies $x_3 \le 3$. We conclude that $x = (3 - x_3, 0, x_3)$ is an optimal solution for each $x_3 \in [1, 3]$, i.e., the set of optimal solutions is $\{x = (3 - x_3, 0, x_3) \mid x_3 \in [1, 3]\}$.

3. Solution:

- (a) x^* satisfies the constraints $x_5 \ge 0$ and $x_6 \ge 0$ as strict inequalities, and all other constraints as equalities. Accordingly, any dual optimal solution needs to satisfy $\pi_1 + 3\pi_2 = 27$ and $2\pi_1 + 3\pi_2 = 22$, in addition to other dual constraints. The only 2-dimensional vector that satisfies all those conditions is $\pi^* = (3, 8)$, which is the unique dual optimal solution.
 - To determine whether x^* is the unique or one of multiple optimal solutions to the primal LP, we use π^* to write down conditions for a 6-dimensional vector x to be a primal optimal solution. Note that π^* satisfies $\pi_1 + 3\pi_2 \leq 27$ and $2\pi_1 + 3\pi_2 \leq 22$ as equalities, and all other dual constraints as strictly inequalities. Thus, for a primal feasible solution x to be optimal, it needs to satisfy all the primal constraints (except the two constraints $x_5 \geq 0$ and $x_6 \geq 0$) as equalities. The only 6-dimensional vector that satisfies those conditions is x^* , which is therefore the unique primal optimal solution.
- (b) After the change, $\pi^* = (3, 8)$ remains feasible to the dual LP. To check if it is a dual optimal solution, we need to check if there is a 6-dimensional vector x that satisfies the complementary slackness conditions with π^* . Again, the requirement on x is that it is primal feasible and satisfies all the primal constraints (except the two constraints $x_5 \geq 0$ and $x_6 \geq 0$) as equalities. There is a unique vector x' = (0, 0, 0, 0, 6, 2.5) that satisfies those conditions. Thus, x' is the unique primal optimal solution, and π^* remains as a dual optimal solution.