

 $\bigcirc$ 

### Álgebra Linear

# **Matriz Inversa**

Profa. Elba O. Bravo Asenjo <a href="mailto:eoba@uenf.br">eoba@uenf.br</a>

### Referências Bibliográficas







#### Matriz Inversa

**Definição**. Dada uma matriz quadrada **A**, se pudermos encontrar uma matriz **B** de mesmo tamanho tal que **AB** = **BA** = **I**, então diremos que **A** é **invertível** e que **B** é uma **Inversa** de **A**. Se não puder ser encontrada uma tal matriz **B** então diremos que **A** é **não-invertível** ou **singular**.

#### Exemplo.

A matriz 
$$B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
 é uma inversa de  $A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$ 

Pois 
$$AB = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$
 e  $BA = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ 

#### Matriz Inversa

Teorema. SE B e C são ambas inversas da matriz A, então B = C.

Isto é, uma matriz invertível tem exatamente uma inversa. Se A é invertível, então sua inversa será denotada pelo símbolo  $A^{-1}$  Assim,

$$A^{-1}A = I$$
 e  $AA^{-1} = I$ 

### Inversa de uma matriz quadrada de ordem 2

#### Teorema.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Seja  $A = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$  uma matriz quadrada de ordem 2. Se  $ad - bc \neq 0$  então

A é invertível e

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Se ad - bc = 0, então A é não invertível.

A expressão ad - bc é chamada determinante de A e escreve-se det(A) = ad - bc

Este Teorema diz que, uma matriz quadrada A de ordem 2 é invertível se, e somente se  $det(A) \neq 0$ .

## Inversa de uma matriz quadrada de ordem 2

#### Exemplo.

Encontrar a inversa da matriz

$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

Como det(A) = 3(6) - 4(5) = -2 então A é invertível e

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 6 & -4 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 6/(-2) & -4/(-2) \\ -5/(-2) & 3/(-2) \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix}$$

### Propriedades

#### Teorema.

- a) Se A é uma matriz invertível, então  $A^{-1}$  é invertível e  $(A^{-1})^{-1} = A$
- b) Se A e B são matrizes invertíveis de mesmo tamanho, então AB é invertível e

$$(AB)^{-1} = B^{-1}A^{-1}$$

c) Se A é uma matriz invertível, então  $A^T$  também é invertível e  $(A^T)^{-1} = (A^{-1})^T$ 

## Operações Elementares sobre as linhas da Matriz

- 1. Permutar duas linhas de A Indicamos a troca das linhas  $L_i$  e  $L_j$  por  $L_i \leftrightarrow L_j$
- 2. Multiplicar uma linha de A por um número real não nulo Indicamos que multiplicamos a linha  $L_i$  de A pelo número real  $\lambda$  escrevendo  $L_i \leftarrow \lambda L_i$
- 3. Somamos a uma linha de A uma outra linha, multiplicada por um número real. Indicamos que somamos à linha  $L_i$  a linha  $L_j$  multiplicada pelo número real  $\lambda$  por:  $L_i \leftarrow L_i + \lambda L_j$

### Operações Elementares sobre as linhas da Matriz

#### Exemplo.

Seja a matriz
$$A = \begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix}$$

$$\left[ 
\begin{array}{cccc}
-3 & 2 & 5 \\
0 & 1 & 6 \\
8 & 4 & -2
\end{array} 
\right]$$

$$\begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} \xrightarrow{L_1 \leftrightarrow L_3} \Rightarrow \begin{bmatrix} 8 & 4 & -2 \\ 0 & 1 & 6 \\ -3 & 2 & 5 \end{bmatrix} \begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} \xrightarrow{L_2 \leftarrow -3L_2} \Rightarrow \begin{bmatrix} -3 & 2 & 5 \\ 0 & -3 & -18 \\ 8 & 4 & -2 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 2 & 5 \\ 0 & 1 & 6 \\ 8 & 4 & -2 \end{bmatrix} L_2 \leftarrow L_2 + 2L_3 \Rightarrow \begin{bmatrix} -3 & 2 & 5 \\ 16 & 9 & 2 \\ 8 & 4 & -2 \end{bmatrix}$$

#### Cálculo da Inversa de uma Matriz

Matriz Aumentada [A I] Se A é equivalente por linhas a I, então [A I] é equivalente por linhas a [I  $A^{-1}$ ]. Caso contrário A não tem inversa.

Exemplo 1. Calcular a inversa da matriz

$$A = \begin{bmatrix} 3 & 1 & 2 \\ -1 & 0 & 3 \\ 4 & 2 & -5 \end{bmatrix}$$

#### Logo, a matriz A é invertível e

$$A^{-1} = \frac{1}{15} \begin{bmatrix} 6 & -9 & -3 \\ -7 & 23 & 11 \\ 2 & 2 & -1 \end{bmatrix}$$

#### Exemplo 2.

Determinar a inversa da matriz

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$

#### Solução

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} L_1 \leftrightarrow L_2 \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} L_3 \leftarrow L_3 - 4L_1$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix} L_3 \leftarrow L_3 + 3L_2 \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix} L_3 \leftarrow \frac{1}{2} L_3$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix}$$

$$L_1 \leftarrow L_1 - 3L_3$$
  
$$L_2 \leftarrow L_2 - 2L_3$$

$$\begin{bmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix}$$

$$= [I \quad A^{-1}]$$

Logo A é invertível e

$$A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Verificando

$$AA^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Não é necessário verificar  $A^{-1}A = I$  pois A é invertível.