Tutorial 5: Krylov subspace methods

GMRES convergence

Match the following matrices with their GMRES convergence histories.

• Matrices:

$$A = diag(1, ..., 4),$$
 $B = diag(1, ..., 10),$ $C = diag(10, ..., 40)$

where

diag
$$(v_1, \dots, v_n)[i, j] = \begin{cases} v_k & \text{if } i = j = k, \\ 0 & \text{otherwise.} \end{cases}$$

• Convergence histories:

where $r_n = \min_{p \in \mathcal{P}_n} ||b - A p(A) b||_2$.

Krylov convergence plots

The methods on the right applied to a symmetric and positive definite linear system Ax = b of size 40×40 results in the convergence plot on the left.

- (A) Restarted GMRES with $n_{\rm inner} = 10$
- (B) MinRes
- (C) Conjugate gradients

Match the methods and convergence plots.

For restarted GMRES, the convergence plot shows the residual after every inner iteration.

MinRes vs LU factorisation

Let $A_N \in \mathbb{R}^{N \times N}$ be a sequence of dense and symmetric matrices such that the eigenvalues of all these matrices is contained in some set $S \subset \mathbb{R} \setminus \{0\}$ independent of N, and assume we want to determine approximate solutions \tilde{x}_N to $A_N x_N = b_N$ such that

$$||b_N - A_N \, \tilde{x}_N||_2 \le \tau \, ||b_N||_2$$

for some given $\tau > 0$ and $b_N \in \mathbb{R}^N$.

Show that MinRes can solve this problem in $O(N^2)$ runtime while dense LU factorisation requires $O(N^3)$ runtime.