Social Media Sentiment Analysis System Using Ensemble Learning

This project develops a robust system to analyze sentiments in social media posts.

Project Overview

Objective

Analyze sentiments from Facebook and Twitter posts.

Approach

Use ensemble learning combining multiple ML and DL models.

Scope & Tools

Classify sentiments into four categories using Python and TensorFlow.

Dataset Description

Source & Structure

Facebook and Twitter datasets from Kaggle with train, validation, test sets.

Columns: text and sentiment labels.

Preprocessing & Size

Cleaned text by removing URLs, mentions, hashtags, and lowercased.

Test set has about 11,353 balanced samples.

Methodology

Data Preprocessing

Regex cleaning, TF-IDF for ML, tokenization and padding for LSTM.

Models

- Naive Bayes, Logistic
 Regression, SVM, KNN,
 XGBoost
- Bidirectional LSTM
- Ensemble: Hard Voting, Soft Voting, Stacking

Evaluation

Measured by Accuracy and Macro F1 Score.

Model Architecture

Traditional ML

- Naive Bayes, Logistic Regression,
 SVM, KNN, XGBoost
- Balanced weights and tuned parameters

LSTM

Embedding layer, Bidirectional LSTM with dropout, dense layers.

Ensemble

- Hard Voting: majority vote
- Soft Voting: weighted probabilities
- Stacking: meta-learner Logistic
 Regression

Results

KNN	Accuracy: 0.8641	Macro F1: 0.8611
Soft Voting Ensemble	Accuracy: 0.8779	Macro F1: 0.8745 (Best)
Stacking Ensemble	Accuracy: 0.8673	Macro F1: 0.8647
LSTM	Accuracy: 0.8287	Macro F1: 0.8239
Basic	Naive Bayes: 0.6278 Logistic Regression: 0.67 SVM: 0.6996, XGBoost: 0.6503, Hard Voting: 0.7351	0.5957 0.6697 0.6906 0.6225 0.7261

Soft Voting Ensemble outperforms individual models by leveraging strengths.

LSTM Training and Validation Accuracy

Training Accuracy

Training and Validation Accuracy

Challenges

Data Quality

Noisy text with slang, emojis; class imbalance handled by weights.

Model Integration

Stacking combined LSTM and ML models with different input formats.

Computational Cost

LSTM training was resource-heavy; tuning took significant time.

Overfitting Risk

Mitigated using early stopping and dropout in LSTM.

Future Work

1

CNN Implementation

Capture local text patterns with 1D convolutions and pooling.

7

3

Hybrid Ensemble

Combine CNN, LSTM, and ML models with advanced stacking.

Additional Improvements

- Use pretrained embeddings like GloVe and BERT
- Expand dataset with more social media platforms
- Optimize hyperparameters via grid or Bayesian search

Conclusion

Achievements

Built a high-performing sentiment system using ensemble learning.

Soft Voting Ensemble achieved best accuracy and F1 scores.

Integrated diverse ML and DL models for robust predictions.

Impact & Next Steps

Supports social media monitoring, brand management, market research.

Plan to implement CNN, enhance ensembles, and use pretrained embeddings.

