

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede concultar ningún material.
- Valor de cada pregunta: Problema 1: 30%; problema 2: 20%; problema 3: 20%; problema 4: 20%; problema 5: 10%.
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Problema 1

- a) Formalizad utilizando la lógica de enunciados las frases siguientes. Utilizad los átomos propuestos.
 - Para ir de viaje es necesario tener un buen sueldo, ahorrar dinero y tener días libres. V→ S^A^L
 - 2) Si tienes un buen sueldo o no tienes gastos, entonces ahorras dinero. $S^{\vee} \neg G \rightarrow A$
 - 3) Cuando vas de viaje o te invitan o tienes gastos, pero no ambas cosas a la vez. $V \rightarrow (I^{\vee}G) ^{\wedge} \neg (I^{\wedge}G)$
 - 4) Si tienes días libres, solo ahorras si te invitan.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

 $L\rightarrow (A\rightarrow I)$

Átomos:

- V: Ir de viaje
- A: Ahorrar dinero
- L: Tener días libres
- S: Tener un buen sueldo
- G: Tener gastos
- I: Ser invitado
- a) Formalizad utilizando la lógica de predicados las frases siguientes. Utilizad los predicados propuestos.
 - 1) La cerveza Duff no es un producto ecológico.

 \neg (E(d) P (d))

2) Algunos restauradores no compren ningún producto ecológico.

$$\exists x (R(x) ^ \neg \exists y (P(y) ^E(y) ^C(x,y)))$$

3) Es necesario que a un restaurador le vaya bien el negocio para que todos los productos que compre sean ecológicos.

$$\forall x \ (\ \mathsf{R}(x) \ ^{\wedge} \ (\ \forall y \ (\ \mathsf{P}(y) \ ^{\wedge} \mathsf{C}(x,y) \to \mathsf{E}(y)) \) \to \mathsf{B}(x) \)$$

4) Todo producto no ecológico es comprado por algún restaurador.

$$\forall x \ (P(x) \ ^\neg E(x) \rightarrow \exists y (R(y) \ ^C(x,y)))$$

Dominio: un conjunto no vacío

Predicados:

- R(x): x es restaurador
- B(x): a x le va bien el negocio
- C(x,y): x compra y
- E(y): y es ecológico
- P(x): x es producto

Constantes:

• d: la cerveza Duff

Problema 2

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Utilizad solo las 9 reglas básicas (es decir, no utilicéis ni reglas derivadas ni equivalentes deductivos).

$$\neg P \rightarrow (Q^{\wedge} \neg S), Q \rightarrow (R^{\vee}S), R \rightarrow S :. P$$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Problema 3

Indicad aplicando resolución si el siguiente razonamiento es válido, indicad también si las premisas son consistentes.

$$\neg A {\rightarrow} B^{\vee} C, \ \neg B^{\vee} \neg C {\rightarrow} A, \ D^{\wedge} C {\rightarrow} \neg B, \ \neg E {\rightarrow} \ (A^{\wedge} B), \ (A^{\wedge} \neg C) \ \therefore \ D {\rightarrow} \ A$$

Buscamos las FNC:

Primera premisa:

¬A→B^vC Eliminación de la implicación

 $A^{\mathsf{Y}}B^{\mathsf{Y}}C$ FNC

Segunda premisa:

 $\neg B^{\lor} \neg C \rightarrow A$ Eliminación de la implicación

¬ (¬B^v¬C) ^vA Interiorización de la negación: De Morgan

(¬¬B^¬¬C) A Eliminación de la doble negación (B^C) A Propiedad distributiva

 $(A^{\vee}B)^{\wedge}(A^{\vee}C)$ FNC

Tercera premisa:

D^C→¬B Eliminación de la implicación

¬ (D^C)[∨]¬B Interiorización de la negación: De Morgan

 $\neg D^{\vee} \neg C^{\vee} \neg B$ FNC

Cuarta premisa:

 $\neg E \rightarrow (A^{\wedge}B)$ Eliminación de la implicación $\neg \neg E^{\vee} (A^{\wedge}B)$ Eliminación de la doble negación

E^v (A^AB) Propiedad distributiva

 $(E^{Y}A)^{A}(E^{Y}B)$ FNC

Quinta premisa:

¬ (A[^]¬C) Interiorización de la negación: De Morgan

¬A^v¬¬C Eliminación de la doble negación

 $\neg A^{\mathsf{Y}}C$ FNC

Negación de la conclusión:

¬(D→ A) Eliminación de la implicación

¬(¬D^vA) Interiorización de la negación: De Morgan

¬¬D^¬A Eliminación de la doble negación

D^¬A FNC

El conjunto de cláusulas obtenidas es (en negrita el conjunto de soporte): { $A^{V}B^{V}C$, $A^{V}B$, $A^{V}C$, $D^{V}D^{V}D^{V}B$, $E^{V}A$, $E^{V}B$, $D^{V}D^{V}D^{V}B$, $D^{V}D^{V}D^{V}D^{V}B$, $D^{V}D^{V}D^{V}D^{V}B$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

La cláusula A'B'C queda subsumida por A'B:

E es un literal puro:

La cláusula ¬A^vC queda subsumida por ¬A:

Por tanto nos queda el siguiente conjunto de cláusulas:

 $\{ A^{\vee}B, A^{\vee}C, \neg D^{\vee}\neg C^{\vee}\neg B, \mathbf{D}, \neg \mathbf{A} \}$

Cláusulas troncales Cláusulas laterales

 $\neg D^{\vee} \neg C^{\vee} \neg B$

Llegamos a contradicción, por tanto el razonamiento es válido.

Vamos a comprobar si la validez es debida a la inconsistencia de las premisas.

Conjunto de cláusulas sin el conjunto de soporte:

 $\{A^{\dot{Y}}B^{\dot{Y}}C, A^{\dot{Y}}B, A^{\dot{Y}}C, \neg D^{\dot{Y}}\neg C^{\dot{Y}}\neg B, E^{\dot{Y}}A, E^{\dot{Y}}B, \neg A^{\dot{Y}}C\}$

La cláusula A'B'C queda subsumida por A'B:

 $\{A^{V}B, A^{V}C, \neg D^{V}\neg C^{V}\neg B, E^{V}A, E^{V}B, \neg A^{V}C\}$

E es un literal puro:

 $\{A^{V}B, A^{V}C, \neg D^{V}\neg C^{V}\neg B, \neg A^{V}C\}$

¬D es un literal puro:

 $\{A^{V}B, A^{V}C, \neg A^{V}C\}$

C es un literal puro:

 $\{A^{\mathsf{Y}}B\}$

No podemos llegar a contradicción con este conjunto de cláusulas que nos queda.

Por tanto las premisas son consistentes.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Problema 4

El siguiente razonamiento es válido. Demostradlo utilizando el método de resolución.

```
\neg \ \forall x \ \exists y \ \neg A(x,y) \ ^{\vee} \ \neg \exists z \ \neg C(z) \forall x \ (\ C(x) \ \rightarrow \exists y \ B(x,y) \ ) \ , \exists y \ \forall x \ \neg A(x,y) \ ^{\wedge}D(x) \ , \therefore \ \forall x \ (D(x) \ \rightarrow \exists z \ B(x,z) \ )
```

Primera premisa:

 $A(a,y) \stackrel{\vee}{C}(z)$ FNS

Segunda premisa:

 $\forall x \ (\ C(x) \to \exists y \ B(x,y)\)$ Eliminación de la implicación $\forall x \ (\neg C(x) \ ^{\lor} \ \exists y \ B(x,y)\)$ Skolemización: substituimos y por una función nueva de x $\forall x \ (\neg C(x) \ ^{\lor} \ B(x,f(x))\)$ Eliminamos los cuantificadores universales $\neg C(x) \ ^{\lor} \ B(x,f(x))$ FNS

Tercera premisa:

 $\exists y \ \forall x \ \neg A(x,y) \ ^\circ D(x)$ Skolemización: substituimos y por una constante nueva Eliminamos los cuantificadores universales $\neg A(x,b) \ ^\circ D(x)$ FNS

Negación de la conclusión:

 $\neg \ \forall x \ (D(x) \rightarrow \exists z \ B(x,z))$ Eliminación de la implicación $\exists x \ \neg \ (\neg D(x) \ \ \ \exists z \ B(x,z)))$ Interiorización de las negaciones $\exists x \ (D(x) \ \ \ \neg \exists z \ B(x,z))$ Interiorización de las negaciones: De Morgan $D(c) \ \ \ \forall z \neg B(c,z)$ FNS

Conjunto de cláusulas

{ $A(a,y) \ ^{\vee}C(z), \ B(x,f(x)) \ ^{\vee} \ ^{\vee}C(x), \ ^{\vee}A(u,b), \ D(v), \ D(c), \ ^{\vee}B(c,w)$ }

Simplificación del conjunto por la regla del literal puro:

 $\{A(a,y) \ ^{\vee}C(z), B(x,f(x)) \ ^{\vee} \ \neg C(x), \ \neg A(u,b), \ \neg B(c,w) \}$

Cláusulas troncales	Cláusulas laterales	Sustitucione
		S
¬B(c,w)	$B(x,f(x)) \ ^{\vee} \ \neg C(x)$	x per c
$\neg B(c,f(c))$	$B(c,f(c)) \ ^{\vee} \ \neg C(c)$	w per f(c)
¬C(c)	A(a,y) [∨] C(z)	z per c
	A(a,y) [∨] C(c)	
A(a,y)	¬A(u,b)	u per a
A(a,b)	¬A(a,b)	y per b

Queda demostrada que el razonamiento es válido.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Problema 5

¿Cuál de las siguientes interpretaciones es un contraejemplo del razonamiento? Razona tu respuesta.

```
\forall x \; (\; P(x) \; \rightarrow \exists y \; Q(x,y)), \; \exists x \; \exists y \; \neg P(x) \; ^{\wedge}Q(x,y) \; \vdots \; \exists x (\; P(x) \; ^{\wedge} \; \forall y Q(x,y) \; )
```

- a) $< \{1, 2\}, \{P(1)=V, P(2)=F, Q(1,1)=V, Q(1,2)=V, Q(2,1)=V, Q(2,2)=F\} >$
- b) < {1, 2}, {P(1)=V, P(2)=F, Q(1,1)=F, Q(1,2)=V, Q(2,1)=V, Q(2,2)=V} >
- c) < {1, 2}, {P(1)=V, P(2)=V, Q(1,1)=F, Q(1,2)=V, Q(2,1)=F, Q(2,2)=V} >
- d) $< \{1, 2\}, \{P(1)=V, P(2)=F, Q(1,1)=F, Q(1,2)=F, Q(2,1)=F, Q(2,2)=V\} >$

Premisa 1:

```
\forall x \ (\ P(x) \to \exists y \ Q(x,y)) =
= (\ P(1) \to Q(1,1) \ ^{\vee}Q(1,2) \ ) \ ^{\wedge} \ (\ P(2) \to Q(2,1) \ ^{\vee}Q(2,2) \ )
```

Premisa 2:

```
\exists x \; \exists y \; \neg P(x) \; ^Q(x,y) = \\ = \; (\neg P(1) \; ^Q(1,1)) \; ^\vee (\neg P(1) \; ^Q(1,2)) \; ^\vee (\neg P(2) \; ^Q(2,1)) \; v \; (\neg P(2) \; ^Q(2,2))
```

Conclusión:

$$\exists x(P(x) ^ \forall yQ(x,y)) =$$

= $(P(1) ^Q(1,1) ^Q(1,2)) ^ (P(2) ^Q(2,1) ^Q(2,2))$

In	Р	Р	Q	Q	Q	Q	Premisa 1	Premisa 2	Conclusión
t	(1	(2	(1,1	(1,2	(2,1	(2,2			
))))))			
a)	V	F	V	V	V	F	$(V \rightarrow V^{\vee} V)^{\wedge}$	(¬V ^V) (¬V ^V) `	(V^V^V) \(^(F^V^F)\)
							$(F \rightarrow V^{\vee} F)$	(¬F ^V) [^] (¬F ^F)	=V ^v F
							=V	=V	=V
b)	V	F	F	V	V	V	$(V \rightarrow V^{\vee} V)^{\wedge}$	(¬V ^F) ⁽ (¬V ^V) ⁽	(V^F^V)
							$(F \rightarrow V^{\vee} F)$	(¬F ^V) [^] (¬F ^V)	=F ^v F
							=V	=V	=F
c)	V	٧	F	V	F	V	$(V \rightarrow V^{\vee} V)^{\wedge}$	(¬V ^F) ⁽ (¬V ^V) ⁽	(V^F^V)
							$(F \rightarrow V^{\vee} F)$	(¬V ^F) ^v (¬V ^V)	=F ^v F
							=V	=F	=F
d)	٧	F	F	F	F	V	$(V \rightarrow F^{\vee} F)^{\wedge}$	(¬V ^F) '(¬V ^V) '	(V^F^F) * (F^ F ^V)
							$(F \rightarrow F^{\vee} V)$	(¬F^F) [∨] (¬F ^V)	=F ^v F
							=F	=F	=F

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30

Asignatura	Código	Fecha	Hora inicio
Lógica	75.056	19/06/2010	15:30