ICPC Template Manual

University of Jinan

Star

Contents

0	Hea	nder	1
1	Mat	${ m th}$	2
	1.1	Prime	2
		1.1.1 Eratosthenes Sieve	2
		1.1.2 Eular Sieve	2
		1.1.3 Prime Factorization	4
		1.1.4 Miller Rabin	4
		1.1.5 Segment Sieve	5
	1.2	Euler phi	5
		1.2.1 Euler	5
		1.2.2 Sieve	5
	1.3	Basic Number Theory	6
		1.3.1 Extended Euclidean	6
		1.3.2 ax+by=c	6
		1.3.3 Multiplicative Inverse Modulo	6
		1.3.4 Discrete Logarithm	7
	1.4	Modulo Linear Equation	7
		1.4.1 Chinese Remainder Theory	7
		1.4.2 ExCRT	8
	1.5	Combinatorics	8
		1.5.1 Combination	8
		1.5.2 Lucas	9
		1.5.3 Big Combination	9
		1.5.4 Polya	10
	1.6	Fast Power	11
	1.7	Mobius Inversion	11
		1.7.1 Mobius	11
		1.7.2 Examples	$\frac{12}{12}$
	1.8	Fast Transformation	13
	1.0	1.8.1 FFT	13
		1.8.2 NTT	13
		1.8.3 FWT	14
	1.9	Numerical Integration	15
	1.0	1.9.1 Adaptive Simpson's Rule	15
			10

		1.9.2 Berlekamp-Massey
		1.9.3 Simplex
	1.10	Others
	1.11	Formula
2	Stri	ng Processing 22
	2.1	KMP
	2.2	ExtendKMP
	2.3	Manacher
	2.4	Aho-Corasick Automaton
	2.5	Suffix Array
	2.6	Suffix Automation
	2.7	Palindromic Tree
	2.8	Hash
3	Data	a Structure 29
	3.1	Binary Indexed Tree
	3.2	Segment Tree
		3.2.1 Area Combination
		3.2.2 Area Intersection
		3.2.3 Perimeter Combination
	3.3	Splay Tree
		3.3.1 Splay
		3.3.2 Splay _{Reverse}
	3.4	Functional Segment Tree
	3.5	Sparse Table
	3.6	Heavy-Light Decomposition
	3.7	Link-Cut Tree
	3.8	Virtual Tree
	3.9	Cartesian Tree
4	Gra	ph Theory 45
	4.1	Shortest Path
		4.1.1 Dijkstra
		4.1.2 Bellman-Ford
	4.2	Minimal Spanning Tree
		4.2.1 Zhu Liu

	4.3	LCA	
		4.3.1	DFS+ST
		4.3.2	Tarjan
	4.4	Depth	-First Traversal
		4.4.1	Biconnected-Component
		4.4.2	Strongly Connected Component
		4.4.3	2-SAT
	4.5	Eular	Path
		4.5.1	Fleury
	4.6	Bipart	ite Graph Matching
		4.6.1	Hungry(Matrix)
		4.6.2	$Hungry(List) \dots \dots$
		4.6.3	Hopcroft-Carp
		4.6.4	Hungry(Multiple)
		4.6.5	Kuhn-Munkres
	4.7	Netwo	rk Flow
		4.7.1	EdmondKarp 61
		4.7.2	Dinic
		4.7.3	ISAP
		4.7.4	MinCost MaxFlow
		4.7.5	Upper-Lower Bound
5	Con	nputat	ional Geometry 70
	5.1	Basic	Function
	5.2	Positio	on
		5.2.1	Point-Point
		5.2.2	Line-Line
		5.2.3	Segment-Segment
		5.2.4	Line-Segment
		5.2.5	Point-Line
		5.2.6	Point-Segment
		5.2.7	Point on Segment
	5.3	Polygo	
		5.3.1	Area
		5.3.2	Point in Convex
		5.3.3	Point in Polygon

		5.3.4	Judge Convex	73
	5.4	Integer	Points	73
		5.4.1	On Segment	73
		5.4.2	On Polygon Edge	73
		5.4.3	Inside Polygon	73
	5.5	Circle		74
		5.5.1	Circumcenter	74
	5.6	RuJia I	Liu's	74
		5.6.1	Point	74
		5.6.2	Circle	76
		5.6.3	Polygon	79
6	Dyr	omic D	Programming	81
U	6.1		uence	81
	0.1	_	Max Sum	81
			Longest Increase	81
			Longest Common Increase	82
	6.2		tatistics	82
	6.3	_	Optimization	83
	0.0	ыоре с		00
7	Oth	ers		84
	7.1	Matrix		84
		7.1.1	Matrix FastPow	84
		7.1.2	Gauss Elimination	84
	7.2	Tricks		84
		7.2.1	Stack-Overflow	84
		7.2.2	Fast-Scanner	85
		7.2.3	Strok-Sscanf	85
	7.3	Mo Alg	gorithm	85
	7.4	BigNun	n	86
		7.4.1	High-precision	86
		7.4.2	Complete High-precision	87
	7.5	Misc .		87
		7.5.1	Standard Template Library	87
		7.5.2	Policy-Based Data Structures	87
		7.5.3	Subset Enumeration	88
		7.5.4	Date Magic	88

ICPC Template Manual, Star

7.6	Config	guration														89
	7.6.1	Vim .														89

0 Header

```
#include <bits/stdc++.h>
  using namespace std;
3
4 const double eps = 1e-6;
5 const int mod = 1e9 + 7;
6 const int INF = 0x3f3f3f3f;
7
   const double pi = 4.0 * atan(1.0);
8
9 typedef long long ll;
10 typedef long double ld;
11 typedef vector<ll> vl;
12 typedef vector<int> vi;
13 typedef pair<int, int> pii;
14
15 #define fi first
16 #define se second
17 #define gc getchar()
18 #define pc(x) putchar(x)
19 #define pb(x) push_back(x)
20 #define eb(x) emplace_back(x)
21 #define rd_() rd<__int128>()
22 #define wd_(x) wr<__int128>(x)
23 #define print(x, c) wr(x), putchar(c)
24 #define rep(i, n) for (int i = 0; i < (n); ++i)
25 #define repn(i, n) for (int i = 1; i \leftarrow (n); ++i)
27 template <typename T>
28 inline T rd() {
29
       T x = 0, f = 1;
30
       char c = getchar();
       while (!isdigit(c)) f = c == '-' ? -1 : 1, c = getchar();
31
       while (isdigit(c)) x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
32
       return x * f;
33
34 }
35
36 template <typename T>
   inline void wr(T x) {
37
       T y = 1, len = 1;
38
       if (x < 0) x = -x, putchar('-');
39
       while (y \le x / 10) y = (y \le 1) + (y \le 3), ++len;
40
       for (; len; --len) putchar(x / y ^48), x %= y, y /= 10;
41
   }
42
43
  int main() {
44
   #ifdef IO
45
       freopen("test.in", "r", stdin);
freopen("test.out", "w", stdout);
46
47
48 #endif
49
       return 0;
50
51 }
```

1 Math

1.1 Prime

1.1.1 Eratosthenes Sieve

 $O(n \log \log n)$ 筛出 maxn 内所有素数 notprime[i] = 0/1 0 为素数 1 为非素数

```
1 const int maxn = "Edit";
2 bool notprime[maxn] = {1, 1}; // 0 && 1 为非素数
3 void GetPrime()
4 {
5 for (int i = 2; i < maxn; i++)
6 if (!notprime[i] && i <= maxn / i) // 筛到√n为止
7 for (int j = i * i; j < maxn; j += i)
8 notprime[j] = 1;
9 }
```

1.1.2 Eular Sieve

O(n) 得到欧拉函数 phi[]、素数表 prime[]、素数个数 tot

```
1 const int maxn = "Edit";
2 bool vis[maxn];
  int tot, phi[maxn], prime[maxn];
   void CalPhi()
5
       phi[1] = 1;
6
       for (int i = 2; i < maxn; i++)
7
8
            if (!vis[i])
9
                prime[tot++] = i, phi[i] = i - 1;
10
            for (int j = 0; j < tot; j++)
11
12
                if (i * prime[j] > maxn) break;
13
                vis[i * prime[j]] = 1;
                if (i % prime[j] == 0)
15
16
                    phi[i * prime[j]] = phi[i] * prime[j];
17
                    break;
18
                }
19
20
                else
                    phi[i * prime[j]] = phi[i] * (prime[j] - 1);
21
           }
22
23
       }
   }
24
```

d(n) 函数

```
1 const int maxn = "Edit";
   int prime[maxn], tot;
   int d[maxn], e[maxn]; //d正除数个数, e最小质因子个数
   bool check[maxn];
5
   void CalD()
6
   {
7
        d[1] = 1;
        for (int i = 2; i < maxn; i++)
8
9
            if (!check[i])
10
11
                prime[tot++] = i;
12
                e[i] = 1, d[i] = 2;
13
14
            for (int j = 0; j < tot; j++)
15
16
                if (i * prime[j] >= maxn) break;
check[i * prime[j]] = true;
17
18
                if (i % prime[j] == 0)
19
20
                    e[i * prime[j]] = e[i] + 1;
21
                     d[i * prime[j]] = d[i] / e[i] * (e[i] + 1);
22
23
                    break;
24
                }
25
                else
                {
26
27
                    e[i * prime[j]] = 1;
                     d[i * prime[j]] = 2 * d[i];
28
29
            }
30
31
        }
32
   }
   \sigma\lambda(n) 函数,\lambda=1
1 const int maxn = "Edit";
2 int prime[maxn], tot;
3 int sig[maxn], e[maxn]; //sig正除数, e不含能整除i的最小质因子的正除数和
4 bool check[maxn];
5 void CalSig()
6
7
        sig[1] = 1;
        for (int i = 2; i < maxn; i++)
8
9
            if (!check[i])
10
11
            {
                prime[tot++] = i;
12
                e[i] = 1, sig[i] = i + 1;
13
14
            for (int j = 0; j < tot; j++)
15
16
                if (i * prime[j] >= maxn) break;
17
                check[i * prime[j]] = true;
18
                if (i % prime[j] == 0)
19
20
                     sig[i * prime[j]] = sig[i] * prime[j] + e[i];
21
                     e[i * prime[j]] = e[i];
22
23
                    break;
24
                }
```

```
else
25
26
                {
                     sig[i * prime[j]] = sig[i] * (prime[j] + 1);
27
                     e[i * prime[j]] = sig[i];
28
                }
29
30
            }
31
        }
32 }
   1.1.3 Prime Factorization
```

```
vector<pair<ll, int>> getFactors(ll x)
2
       vector<pair<ll, int>> fact;
3
       for (int i = 0; prime[i] <= x / prime[i]; i++)</pre>
4
5
            if (x % prime[i] == 0)
6
7
                fact.emplace_back(prime[i], 0);
8
                while (x % prime[i] == 0) fact.back().second++, x /= prime[i];
9
10
11
       if (x != 1) fact.emplace_back(x, 1);
12
       return fact;
13
14 }
```

1.1.4 Miller Rabin

 $O(s \log n)$ 内判定 2^{63} 内的数是不是素数, s 为测定次数

```
1 bool Miller_Rabin(ll n, int s)
2
   {
3
        if (n == 2) return 1;
4
        if (n < 2 | | !(n & 1)) return 0;
        int t = 0;
5
        ll x, y, u = n - 1;
6
        while ((u & 1) == 0) t++, u >>= 1;
7
        for (int i = 0; i < s; i++)
8
9
            ll\ a = rand() \% (n - 1) + 1;
10
            11 x = Pow(a, u, n);
11
            for (int j = 0; j < t; j++)
12
13
                ll y = Mul(x, x, n);
14
                if (y == 1 \&\& x != 1 \&\& x != n - 1) return 0;
15
16
                x = y;
17
            if (x != 1) return 0;
18
        }
19
20
        return 1;
21 }
```

1.1.5 Segment Sieve

```
对区间 [a,b) 内的整数执行筛法。
   函数返回区间内素数个数
   is_prime[i-a]=true 表示 i 是素数
   1 < a < b \le 10^{12}, b - a \le 10^6
1 const int maxn = "Edit";
  bool is_prime_small[maxn], is_prime[maxn];
   ll prime[maxn];
4 int segment_sieve(ll a, ll b)
5
       int tot = 0;
6
       for (ll i = 0; i * i < b; ++i) is_prime_small[i] = true;</pre>
7
       for (ll i = 0; i < b - a; ++i) is_prime[i] = true;
8
9
       for (ll i = 2; i * i < b; ++i)
10
           if (is_prime_small[i])
11
               for (ll j = 2 * i; j * j < b; j += i)
12
                   is_prime_small[j] = false;
13
               for (ll j = max(2LL, (a + i - 1) / i) * i; j < b; j += i)
14
                   is_prime[j - a] = false;
15
16
       for (ll i = 0; i < b - a; ++i)
17
           if (is_prime[i]) prime[tot++] = i + a;
18
19
       return tot;
20 }
   1.2 Euler phi
   1.2.1 Euler
1 ll euler(ll n)
2
3
       ll rt = n;
       for (int i = 2; i * i <= n; i++)
4
           if (n \% i == 0)
5
6
               rt -= rt / i;
7
               while (n \% i == 0) n /= i;
8
9
       if (n > 1) rt -= rt / n;
10
       return rt;
11
12 }
   1.2.2 Sieve
1 const int N = "Edit";
2 \text{ int phi[N]} = \{0, 1\};
3 void caleuler()
4
  {
       for (int i = 2; i < N; i++)
5
```

```
if (!phi[i])
6
7
              for (int j = i; j < N; j += i)
8
                  if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
9
10
              }
11
12 }
       Basic Number Theory
   1.3.1 Extended Euclidean
1 ll exgcd(ll a, ll b, ll &x, ll &y)
2
   {
3
       11 d = a;
       if (b) d = exgcd(b, a \% b, y, x), y -= x * (a / b);
4
5
       else x = 1, y = 0;
       return d;
6
  }
7
   1.3.2 ax+by=c
   引用返回通解: X = x + k * dx, Y = y - k * dy
   引用返回的 x 是最小非负整数解, 方程无解函数返回 0
   #define Mod(a, b) (((a) % (b) + (b)) % (b))
   bool solve(ll a, ll b, ll c, ll& x, ll& y, ll& dx, ll& dy)
3
       if (a == 0 && b == 0) return 0;
4
       ll x0, y0;
5
       ll d = exgcd(a, b, x0, y0);
6
7
       if (c % d != 0) return 0;
       dx = b / d, dy = a / d;
8
9
       x = Mod(x0 * c / d, dx);
       y = (c - a * x) / b;
10
       // y = Mod(y0 * c / d, dy); x = (c - b * y) / a;
11
12
       return 1;
13 }
   1.3.3 Multiplicative Inverse Modulo
   利用 exgcd 求 a 在模 m 下的逆元,需要保证 gcd(a, m) == 1.
1 ll inv(ll a, ll m)
2
   {
3
       11 x, y;
4
       ll d = exgcd(a, m, x, y);
       return d == 1 ? (x + m) % m : -1;
5
6 }
   a < p 且 p 为素数时,有以下两种求法
   费马小定理
```

```
1 ll inv(ll a, ll p) { return Pow(a, p - 2, p); }
  贾志鹏线性筛
1 for (int i = 2; i < n; i++) inv[i] = inv[p % i] * (p - p / i) % p;
  1.3.4 Discrete Logarithm
  求解 a^x \equiv b \pmod{p}, p 可以不是质数
  ll exbsgs(ll a, ll b, ll p)
2
  {
3
      if (b == 1LL) return 0;
      ll t, d = 1, k = 0;
4
      while ((t = gcd(a, p)) != 1)
5
6
          if (b % t) return -1;
7
          ++k, b /= t, p /= t, d = d * (a / t) % p;
8
9
          if (b == d) return k;
```

for (ll j = 1; $j \leftarrow m$; ++j) mul = mul * a % p, dic[mul] = j;

if (dic[d]) return i * m - dic[d] + k;

1.4 Modulo Linear Equation

10

 $\begin{array}{c} 11 \\ 12 \end{array}$

13

14

15 16

17

18 19

20 21 }

map<ll, ll> dic;

return -1;

11 m = ceil(sqrt(p));

 $ll a_m = Pow(a, m, p), mul = b;$

for (ll i = 1; i <= m; ++i)

 $d = d * a_m % p$;

1.4.1 Chinese Remainder Theory

```
X \equiv r_i \pmod{m_i}; 要求 m_i 两两互质
   引用返回通解 X = re + k * mo
void crt(ll r[], ll m[], ll n, ll &re, ll &mo)
2
3
       mo = 1, re = 0;
4
       for (int i = 0; i < n; i++) mo *= m[i];
5
       for (int i = 0; i < n; i++)
6
7
           ll x, y, tm = mo / m[i];
           ll d = exgcd(tm, m[i], x, y);
8
           re = (re + tm * x * r[i]) \% mo;
9
10
11
       re = (re + mo) \% mo;
12 }
```

1.4.2 ExCRT

```
X \equiv r_i \pmod{m_i}; m_i 可以不两两互质
   引用返回通解 X = re + k * mo; 函数返回是否有解
  bool excrt(ll r[], ll m[], ll n, ll &re, ll &mo)
2
3
       11 x, y;
       mo = m[0], re = r[0];
4
       for (int i = 1; i < n; i++)
5
6
           ll d = exgcd(mo, m[i], x, y);
7
8
           if ((r[i] - re) % d != 0) return 0;
           x = (r[i] - re) / d * x % (m[i] / d);
9
           re += x * mo;
10
           mo = mo / d * m[i];
11
           re %= mo;
12
13
       re = (re + mo) \% mo;
14
15
       return 1;
16 }
```

1.5 Combinatorics

1.5.1 Combination

```
0 < m < n < 1000
     1 const int maxn = 1010;
                    11 C[maxn][maxn];
     3 void CalComb()
     4
                                                      C[0][0] = 1;
     5
                                                      for (int i = 1; i < maxn; i++)
     6
     7
     8
                                                                                   for (int j = 1; j \leftarrow i; j
     9
10
11 }
                        0 \le m \le n \le 10^5, 模 p 为素数
      1 const int maxn = 100010;
                  ll f[maxn];
                  ll inv[maxn]; // 阶乘的逆元
     4
                        void CalFact()
     5
     6
                                                      for (int i = 1; i < maxn; i++) f[i] = (f[i - 1] * i) % p;
     7
                                                      inv[maxn - 1] = Pow(f[maxn - 1], p - 2, p);
     8
                                                      for (int i = maxn - 2; \sim i; i--) inv[i] = inv[i + 1] * (i + 1) % p;
                      ll C(int n, int m) { return f[n] * inv[m] % p * inv[n - m] % p; }
```

1.5.2 Lucas

```
1 \le n, m \le 10000000000, 1  是素数
1 const int maxp = 100010;
2 11 f[maxn];
3 ll inv[maxn]; // 阶乘的逆元
  void CalFact()
5
   {
6
       f[0] = 1;
7
       for (int i = 1; i < maxn; i++) f[i] = (f[i - 1] * i) % p;
       inv[maxn - 1] = Pow(f[maxn - 1], p - 2, p);
8
       for (int i = maxn - 2; \sim i; i--) inv[i] = inv[i + 1] * (i + 1) % p;
9
10
   ll Lucas(ll n, ll m, ll p)
11
12
       ll ret = 1;
13
       while (n && m)
14
15
            ll a = n \% p, b = m \% p;
16
            if (a < b) return 0;
17
            ret = ret * f[a] % p * inv[b] % p * inv[a - b] % p;
18
19
            n \neq p, m \neq p;
20
21
       return ret;
22 }
   1.5.3 Big Combination
   0 \le n \le 10^9, 0 \le m \le 10^4, 1 \le k \le 10^9 + 7
1 vector<int> v;
  int dp[110];
3 11 Cal(int 1, int r, int k, int dis)
4
       ll res = 1;
5
6
       for (int i = 1; i <= r; i++)
7
            int t = i;
8
            for (int j = 0; j < v.size(); j++)</pre>
9
10
11
                int y = v[j];
12
                while (t % y == 0) dp[j] += dis, t /= y;
13
            res = res * (ll)t % k;
14
15
16
       return res;
17
   11 Comb(int n, int m, int k)
18
19
20
       memset(dp, 0, sizeof(dp));
21
       v.clear();
       int tmp = k;
22
       for (int i = 2; i * i <= tmp; i++)</pre>
23
            if (tmp % i == 0)
24
25
            {
```

```
26
                int num = 0;
                while (tmp \% i == 0) tmp /= i, num++;
27
28
                v.push_back(i);
29
       if (tmp != 1) v.push_back(tmp);
30
       ll ans = Cal(n - m + 1, n, k, 1);
31
32
       for (int j = 0; j < v.size(); j++) ans = ans * Pow(v[j], dp[j], k) % k;
       ans = ans * inv(Cal(2, m, k, -1), k) \% k;
33
34
       return ans;
35 }
   1.5.4 Polya
   推论: 一共 n 个置换,第 i 个置换的循环节个数为 gcd(i,n)
   N*N 的正方形格子,c^{n^2}+2c^{\frac{n^2+3}{4}}+c^{\frac{n^2+1}{2}}+2c^{\frac{n+1}{2}}+2c^{\frac{n(n+1)}{2}} 正六面体,\frac{m^8+17m^4+6m^2}{24} 正四面体,\frac{m^4+11m^2}{12}
   长度为 n 的项链串用 c 种颜色染 \sum_{d|n} \frac{\varphi(n/d)c^d}{n}
1 ll solve(int c, int n)
2
       if (n == 0) return 0;
3
       11 \text{ ans} = 0;
4
       for (int i = 1; i \le n; i++) ans += Pow(c, __gcd(i, n));
5
       if (n \& 1) ans += n * Pow(c, n + 1 >> 1);
6
       else ans += n / 2 * (1 + c) * Pow(c, n >> 1);
7
       return ans / n / 2;
8
  }
9
   每种颜色至少涂多少个, 求方案数
1 ll polya(int a)//a为循环节长度
2
       11 dp[65][65] = {0}; //前者为颜色,后者为未填充格子个数
3
       int tot = 60 / a, limit = 0;
4
       dp[0][tot] = 1;
5
       for (int i = 1; i <= n; i++)
6
7
8
            int tmp = (c[i] + a - 1) / a;
            int up2 = tot - limit;
9
            int up1 = up2 - tmp;
                                            //最多空tot-(limit + tmp)
10
            for (int j = 0; j <= up1; j++) //最少空0个, 即填满
11
12
                for (int k = tmp; j + k \ll up2; k++) //至少选tmp个,最多选tot - limit - j
13
                    (dp[i][j] += dp[i - 1][j + k] * C[j + k][k]) %= p;
14
15
            limit += tmp;
16
17
       return dp[n][0];
18
19
```

每种颜色要有多少个, 求恰好满足的方案数

```
bool check(int b) //a[i]是每种颜色有多少个, b是循环节长度
2
   {
       for (int i = 0; i < n; i++)
3
           if (a[i] % b) return false;
       return true;
5
6
   ll solve(int tot, int b) //tot是总数, b是循环节长度
8
       if (!check(b)) return 0;
9
       ll res = 1, cnt = tot / b; //cnt循环节个数
10
       for (int i = 0; i < 6; i++)
11
12
           res *= C[cnt][a[i] / b];
13
           cnt -= a[i] / b;
14
15
16
       return res;
17 }
   1.6 Fast Power
   inline ll Mul(ll a, ll b, ll m)
2
       if (m <= 1000000000)
3
           return a * b % m;
4
       else if (m <= 1000000000000011)
5
           return (((a * (b >> 20) % m) << 20) + (a * (b & ((1 << 20) - 1)))) % m;
6
       else
7
8
           ll d = (ll)floor(a * (long double)b / m + 0.5);
9
           ll ret = (a * b - d * m) \% m:
10
           if (ret < 0) ret += m;</pre>
11
12
           return ret;
       }
13
14
   ll Pow(ll a, ll n, ll m)
15
16
   {
       ll t = 1;
17
       for (; n; n >>= 1, a = (a * a % m))
18
           if (n \& 1) t = (t * a % m);
19
       return t;
20
21 }
```

1.7 Mobius Inversion

1.7.1 Mobius

```
\begin{split} F(n) &= \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) \\ F(n) &= \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d) \\ ^{1} & \text{const int maxn = "Edit";} \\ ^{2} & \text{int prime[maxn], tot, mu[maxn];} \\ ^{3} & \text{bool check[maxn];} \\ ^{4} & \text{void CalMu()} \end{split}
```

```
{
5
       mu[1] = 1;
6
       for (int i = 2; i < maxn; i++)
7
8
9
            if (!check[i]) prime[tot++] = i, mu[i] = -1;
            for (int j = 0; j < tot; j++)
10
11
                if (i * prime[j] >= maxn) break;
12
                check[i * prime[j]] = true;
13
                if (i % prime[j] == 0)
14
15
16
                    mu[i * prime[j]] = 0;
17
                    break;
18
                else
19
                    mu[i * prime[j]] = -mu[i];
20
           }
21
       }
22
23 }
   1.7.2 Examples
   有 n 个数 (n \le 100000, 1 \le a_i \le 10^6), 问这 n 个数中互质的数的对数
  const int maxn = "Edit";
  int b[maxn];
3 ll solve(int n)
4
   {
       11 \text{ ans} = 0:
5
       for (int i = 0, x; i < n; i++) scanf("%d", &x), b[x]++;
6
       for (int i = 1; i < maxn; i++)
7
8
            int cnt = 0;
9
            for (int j = i; j < maxn; j += i) cnt += b[j];
ans += 1LL * mu[i] * cnt * cnt;</pre>
10
11
12
13
       return (ans - b[1]) / 2;
14 }
   gcd(x,y) = 1 的对数, x \le n, y \le m
   ll solve(int n, int m)
1
2
   {
3
       if (n > m) swap(n, m);
4
       11 \text{ ans} = 0;
       for (int i = 1; i \le n; i++) ans += (ll)mu[i] * (n / i) * (m / i);
5
6
        数论分块写法(sum为莫比乌斯函数的前缀和)
7
       for (int i = 1; i <= n; i = pos + 1)
8
9
            pos = min(n / (n / i), m / (m / i));
10
            ans += 1LL * (sum[pos] - sum[i - 1]) * (n / i) * (m / i);
11
12
13
       return ans;
14
15 }
```

1.8 Fast Transformation

1.8.1 FFT

```
const double PI = acos(-1.0);
   //复数结构体
3 struct Complex
4 {
       double x, y; //实部和虚部 x+yi
5
       Complex(double _x = 0.0, double _y = 0.0) { x = _x, y = _y; }
6
       Complex operator-(const Complex& b) const { return Complex(x - b.x, y - b.y); }
7
       Complex operator+(const Complex& b) const { return Complex(x + b.x, y + b.y); }
8
       Complex operator*(const Complex& b) const { return Complex(x * b.x - y * b.y, x * b
9
       .y + y * b.x); }
10
   };
   void change(Complex y[], int len)
11
12
        for (int i = 1, j = len / 2; i < len - 1; i++)
13
14
            if (i < j) swap(y[i], y[j]);</pre>
15
            int k = len / 2;
16
           while (j >= k) j -= k, k /= 2;
17
            if (j < k) j += k;
18
       }
19
20
   }
21
22
   * len必须为2^k形式,
   * on==1时是DFT, on==-1时是IDFT
23
24
25
  void fft(Complex y[], int len, int on)
26
27
       change(y, len);
       for (int h = 2; h <= len; h <<= 1)
28
29
            Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
30
            for (int j = 0; j < len; <math>j += h)
31
32
                Complex w(1, 0);
33
34
                for (int k = j; k < j + h / 2; k++)
35
                    Complex u = y[k];
36
                    Complex t = w * y[k + h / 2];
37
                    y[k] = u + t, y[k + h / 2] = u - t;
38
                    W = W * Wn;
39
40
                }
            }
41
42
        if (on == -1)
43
            for (int i = 0; i < len; i++) y[i].x /= len;
44
45
  }
```

1.8.2 NTT

模数 P 为费马素数, G 为 P 的原根。 $G^{\frac{P-1}{n}}$ 具有和 $w_n = e^{\frac{2i\pi}{n}}$ 相似的性质。 具体的 P 和 G 可参考 1.11

```
1 const int mod = 119 << 23 | 1;</pre>
   const int G = 3;
   int wn[20];
3
4 void getwn()
   { // 千万不要忘记
5
        for (int i = 0; i < 20; i++) wn[i] = Pow(G, (mod - 1) / (1 << i), mod);
6
7
  }
8 void change(int y[], int len)
9
        for (int i = 1, j = len / 2; i < len - 1; i++)
10
11
12
            if (i < j) swap(y[i], y[j]);</pre>
            int k = len / 2;
13
            while (j >= k) j -= k, k /= 2;
14
            if (j < k) j += k;
15
16
17
   }
   void ntt(int y[], int len, int on)
18
19
        change(y, len);
20
        for (int h = 2, id = 1; h \le len; h \le 1, id++)
21
22
            for (int j = 0; j < len; <math>j += h)
23
24
25
                int w = 1;
                for (int k = j; k < j + h / 2; k++)
26
27
28
                    int u = y[k] \% mod;
                    int t = 1LL * w * (y[k + h / 2] % mod) % mod;
29
                    y[k] = (u + t) \% \mod, y[k + h / 2] = ((u - t) \% \mod + \mod) \% \mod;
30
31
                    W = 1LL * W * Wn[id] % mod;
32
                }
33
            }
34
        if (on == -1)
35
36
37
            // 原本的除法要用逆元
38
            int inv = Pow(len, mod - 2, mod);
            for (int i = 1; i < len / 2; i++) swap(y[i], y[len - i]);
39
            for (int i = 0; i < len; i++) y[i] = 1LL * y[i] * inv % mod;
40
        }
41
   }
42
   1.8.3 FWT
void fwt(int f[], int m)
2
        int n = __builtin_ctz(m);
3
4
        for (int i = 0; i < n; ++i)
5
            for (int j = 0; j < m; ++j)
                if (j & (1 << i))
6
7
8
                    int l = f[j \land (1 << i)], r = f[j];
                    f[j \land (1 << i)] = l + r, f[j] = l - r;
9
                    // or: f[j] += f[j ^ (1 << i)];
10
                    // and: f[j \land (1 << i)] += f[j];
11
                }
12
```

```
13 }
   void ifwt(int f□, int m)
14
15
        int n = __builtin_ctz(m);
16
        for (int i = 0; i < n; ++i)
17
             for (int j = 0; j < m; ++j)
18
                 if (j & (1 << i))
19
20
                      int l = f[j \land (1 << i)], r = f[j];
21
                      f[j \land (1 \lessdot i)] = (l + r) / 2, f[j] = (l - r) / 2;
22
                     // 如果有取模需要使用逆元
23
24
                     // \text{ or: } f[j] -= f[j \land (1 << i)];
                     // and: f[j \land (1 << i)] -= f[j];
25
                 }
26
27
  }
```

1.9 Numerical Integration

1.9.1 Adaptive Simpson's Rule

```
\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]
    |S(a,c) + S(c,b) - S(a,b)|/15 < \epsilon
   double F(double x) {}
   double simpson(double a, double b)
   { // 三点Simpson法
3
        double c = a + (b - a) / 2;
4
        return (F(a) + 4 * F(c) + F(b)) * (b - a) / 6;
5
6
   double asr(double a, double b, double eps, double A)
7
   { //自适应Simpson公式(递归过程)。已知整个区间[a,b]上的三点Simpson值A
        double c = a + (b - a) / 2;
        double L = simpson(a, c), R = simpson(c, b); if (fabs(L + R - A) \ll 15 * eps) return L + R + (L + R - A) / 15.0;
10
11
        return asr(a, c, eps / 2, L) + asr(c, b, eps / 2, R);
12
13
   double asr(double a, double b, double eps) { return asr(a, b, eps, simpson(a, b)); }
```

1.9.2 Berlekamp-Massey

```
const int maxn = 1 \ll 14;
   ll res[maxn], base[maxn], _c[maxn], _md[maxn];
   vector<int> Md;
   void mul(ll* a, ll* b, int k)
4
5
        for (int i = 0; i < k + k; i++) _c[i] = 0;
6
        for (int i = 0; i < k; i++)
7
8
             if (a[i])
        for (int j = 0; j < k; j++) _{c[i + j]} = (_{c[i + j]} + a[i] * b[j]) % mod; for (int <math>i = k + k - 1; i >= k; i--)
9
10
             if (_c[i])
11
                 for (int j = 0; j < Md.size(); j++) _{c[i - k + Md[j]]} = (_{c[i - k + Md[j]]}
12
        - _c[i] * _md[Md[j]]) % mod;
        for (int i = 0; i < k; i++) a[i] = _c[i];
13
```

```
14
   int solve(ll n, VI a, VI b)
15
16
        ll ans = 0, pnt = 0;
17
        int k = a.size();
18
        assert(a.size() == b.size());
19
        for (int i = 0; i < k; i++) _md[k - 1 - i] = -a[i];
20
        _{md[k]} = 1;
21
22
        Md.clear();
        for (int i = 0; i < k; i++)
23
24
            if (_md[i] != 0) Md.push_back(i);
25
        for (int i = 0; i < k; i++) res[i] = base[i] = 0;
26
        res[0] = 1;
        while ((1LL << pnt) <= n) pnt++;</pre>
27
        for (int p = pnt; p >= 0; p--)
28
29
            mul(res, res, k);
30
31
            if ((n >> p) & 1)
32
33
                for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i];
                res[0] = 0;
34
                for (int j = 0; j < Md.size(); j++) res[Md[j]] = (res[Md[j]] - res[k] * _md
35
        [Md[j]]) % mod;
36
37
        for (int i = 0; i < k; i++) ans = (ans + res[i] * b[i]) % mod;
38
39
        if (ans < 0) ans += mod;
40
        return ans;
41
   VI BM(VI s)
42
43
   {
        VI C(1, 1), B(1, 1);
44
        int L = 0, m = 1, b = 1;
45
        for (int n = 0; n < s.size(); n++)
46
47
            11 d = 0;
48
            for (int i = 0; i \le L; i++) d = (d + (ll)C[i] * s[n - i]) % mod;
49
50
            if (d == 0)
51
                ++m;
            else if (2 * L <= n)
52
53
                VI T = C;
54
                11 c = mod - d * Pow(b, mod - 2) % mod;
55
                while (C.size() < B.size() + m) C.push_back(0);</pre>
56
                for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
57
                L = n + 1 - L, B = T, b = d, m = 1;
58
59
            }
            else
60
            {
61
62
                11 c = mod - d * Pow(b, mod - 2) % mod;
63
                while (C.size() < B.size() + m) C.push_back(0);</pre>
64
                for (int i = 0; i < B.size(); i++) C[i + m] = (C[i + m] + c * B[i]) % mod;
65
                ++m;
            }
66
67
68
        return C;
69
70 int gao(VI a, ll n)
71  {
```

1.9.3 Simplex

输入矩阵 a 描述线性规划的标准形式。

a 为 m+1 行 n+1 列, 其中行 $0 \sim m-1$ 为不等式, 行 m 为目标函数 (最大化)。

列 $0 \sim n-1$ 为变量 $0 \sim n-1$ 的系数, 列 n 为常数项。

约束为 $a_{i,0}x_0 + a_{i,1}x_1 + \cdots \leq a_{i,n}$,目标为 $\max(a_{m,0}x_0 + a_{m,1}x_1 + \cdots + a_{m,n-1}x_{n-1} - a_{m,n})$

注意:变量均有非负约束 $x[i] \ge 0$

```
1 const int maxm = 500; // 约束数目上限
   const int maxn = 500; // 变量数目上限
  const double INF = 1e100;
  const double eps = 1e-10;
5 struct Simplex
6
   {
7
        int n;
                               // 变量个数
                               // 约束个数
        int m;
8
        double a[maxm][maxn]; // 输入矩阵
9
10
        int B[maxm], N[maxn]; // 算法辅助变量
11
        void pivot(int r, int c)
12
            swap(N[c], B[r]);
13
            a[r][c] = 1 / a[r][c];
14
            for (int j = 0; j <= n; j++)
  if (j != c) a[r][j] *= a[r][c];
15
16
            for (int i = 0; i <= m; i++)
17
                if (i != r)
18
19
20
                     for (int j = 0; j <= n; j++)
                         if (j != c) a[i][j] -= a[i][c] * a[r][j];
21
                     a[i][c] = -a[i][c] * a[r][c];
22
                }
23
24
25
        bool feasible()
26
            for (;;)
27
28
29
                int r, c;
                double p = INF;
30
```

```
31
                for (int i = 0; i < m; i++)
                    if (a[i][n] < p) p = a[r = i][n];
32
                if (p > -eps) return true;
33
34
                p = 0;
                for (int i = 0; i < n; i++)
35
36
                    if (a[r][i] < p) p = a[r][c = i];
                if (p > -eps) return false;
37
                p = a[r][n] / a[r][c];
38
                for (int i = r + 1; i < m; i++)
39
                    if (a[i][c] > eps)
40
41
42
                        double v = a[i][n] / a[i][c];
43
                        if (v < p) r = i, p = v;
44
45
                pivot(r, c);
            }
46
47
        // 解有界返回1, 无解返回0, 无界返回-1。b[i]为x[i]的值, ret为目标函数的值
48
        int simplex(int n, int m, double x[maxn], double& ret)
49
50
            this->n = n, this->m = m;
51
            for (int i = 0; i < n; i++) N[i] = i;
52
            for (int i = 0; i < m; i++) B[i] = n + i;
53
            if (!feasible()) return 0;
54
55
            for (;;)
56
                int r, c;
57
                double p = 0;
58
                for (int i = 0; i < n; i++)
59
60
                    if (a[m][i] > p) p = a[m][c = i];
                if (p < eps)
61
62
                    for (int i = 0; i < n; i++)
63
                        if (N[i] < n) \times [N[i]] = 0;
64
                    for (int i = 0; i < m; i++)
65
                        if (B[i] < n) \times [B[i]] = a[i][n];
66
                    ret = -a[m][n];
67
68
                    return 1;
                }
69
                p = INF;
70
                for (int i = 0; i < m; i++)
71
                    if (a[i][c] > eps)
72
73
74
                        double v = a[i][n] / a[i][c];
75
                        if (v < p) r = i, p = v;
76
77
                if (p == INF) return -1;
                pivot(r, c);
78
79
            }
80
        }
81 };
```

1.10 Others

约瑟夫问题

n 个人围成一圈, 从第一个开始报数, 第 m 个将被杀掉

```
1 int josephus(int n, int m)
3
      for (int k = 1; k \le n; ++k) r = (r + m) % k;
      return r + 1;
5
 }
6
  n^n 最左边一位数
1 int leftmost(int n)
2
3
      double m = n * log10((double)n);
      double g = m - (11)m;
4
      return (int)pow(10.0, g);
 }
  n! 位数
1 int count(ll n)
2
      if (n == 1) return 1;
3
      return (int)ceil(0.5 * log10(2 * M_PI * n) + n * log10(n) - n * log10(M_E));
4
  }
5
```

1.11 Formula

- 1. 约数定理: 若 $n = \prod_{i=1}^{k} p_i^{a_i}$,则
 - (a) 约数个数 $f(n) = \prod_{i=1}^{k} (a_i + 1)$
 - (b) 约数和 $g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_i^j)$
- 2. 小于 n 且互素的数之和为 $n\varphi(n)/2$
- 3. 若 gcd(n, i) = 1,则 $gcd(n, n i) = 1(1 \le i \le n)$
- 4. 错排公式: $D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^{k} n!}{k!} = \left[\frac{n!}{e} + 0.5\right]$
- 5. 威尔逊定理: $p \text{ is } prime \Rightarrow (p-1)! \equiv -1 \pmod{p}$
- 6. 欧拉定理: $gcd(a, n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- 7. 欧拉定理推广: $gcd(n, p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}$
- 8. 模的幂公式: $a^n \pmod{m} = \begin{cases} a^n \mod m & n < \varphi(m) \\ a^{n\%\varphi(m) + \varphi(m)} \mod m & n \ge \varphi(m) \end{cases}$
- 9. 素数定理: 对于不大于 n 的素数个数 $\pi(n)$, $\lim_{n\to\infty}\pi(n)=\frac{n}{\ln n}$
- 10. 位数公式: 正整数 x 的位数 $N = \log_{10}(n) + 1$
- 11. 斯特灵公式 $n! \approx \sqrt{2\pi n} (\frac{n}{a})^n$
- 12. 设 a > 1, m, n > 0, 则 $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$

13. 设
$$a > b$$
, $gcd(a, b) = 1$, 则 $gcd(a^m - b^m, a^n - b^n) = a^{gcd(m, n)} - b^{gcd(m, n)}$

$$G = \gcd(C_n^1, C_n^2, ..., C_n^{n-1}) = \begin{cases} n, & n \text{ is prime} \\ 1, & n \text{ has multy prime factors} \\ p, & n \text{ has single prime factor } p \end{cases}$$

$$\gcd(Fib(m), Fib(n)) = Fib(\gcd(m, n))$$

- 14. 若 gcd(m, n) = 1, 则:
 - (a) 最大不能组合的数为 m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$

15.
$$(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$$

16. 若
$$p$$
 为素数,则 $(x+y+...+w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$

- 17. 卡特兰数: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 $h(0) = h(1) = 1, h(n) = \frac{(4n-2)h(n-1)}{n+1} = \frac{C_{2n}^n}{n+1} = C_{2n}^n C_{2n}^{n-1}$
- 18. 伯努利数: $B_n = -\frac{1}{n+1} \sum_{i=0}^{n-1} C_{n+1}^i B_i$

$$\sum_{i=1}^{n} i^{k} = \frac{1}{k+1} \sum_{i=1}^{k+1} C_{k+1}^{i} B_{k+1-i} (n+1)^{i}$$

19. 二项式反演:

$$f_n = \sum_{i=0}^n (-1)^i \binom{n}{i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^i \binom{n}{i} f_i$$

$$f_n = \sum_{i=0}^n \binom{n}{i} g_i \Leftrightarrow g_n = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} f_i$$

20. FFT 常用素数

$r 2^k + 1$	r	k	g
3	1	1	2
5	1	2	2
17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5
79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	213
180143985094819841	5	55	6
1945555039024054273	27	56	5

2 String Processing

2.1 KMP

```
1 // 返回y中x的个数
2 const int N = "Edit";
3 int next[N];
4 void initkmp(char x□, int m)
5
       int i = 0, j = next[0] = -1;
6
       while (i < m)
7
8
            while (j != -1 \&\& x[i] != x[j]) j = next[j];
9
10
            next[++i] = ++j;
11
       }
12 }
int kmp(char x□, int m, char y□, int n)
14 {
       int i, j, ans;
15
16
       i = j = ans = 0;
       initkmp(x, m);
17
       while (i < n)
18
19
            while (j != -1 \&\& y[i] != x[j]) j = next[j];
20
            i++, j++;
if (j >= m) ans++, j = next[j];
21
22
23
24
       return ans;
25 }
```

2.2 ExtendKMP

```
1 //next[i]:x[i...m-1]与x[0...m-1]的最长公共前缀
2 //extend[i]:y[i...n-1]与x[0...m-1]的最长公共前缀
3 const int N = "Edit";
4 int next[N], extend[N];
5 void pre_ekmp(char x[], int m)
6
       next[0] = m;
7
8
       int j = 0;
9
       while (j + 1 < m \&\& x[j] == x[j + 1]) j++;
       next[1] = j;
10
       int k = 1;
11
       for (int i = 2; i < m; i++)
12
13
           int p = next[k] + k - 1;
14
           int L = next[i - k];
15
           if (i + L 
16
17
               next[i] = L;
           else
18
19
           {
               j = max(0, p - i + 1);
20
               while (i + j < m \&\& x[i + j] == x[j]) j++;
21
22
               next[i] = j;
23
               k = i;
24
           }
```

```
}
25
26
   void ekmp(char x[], int m, char y[], int n)
27
28
   {
        pre_ekmp(x, m, next);
29
30
        int j = 0;
        while (j < n \&\& j < m \&\& x[j] == y[j]) j++;
31
        extend[0] = j;
32
        int k = 0;
33
        for (int i = 1; i < n; i++)
34
35
36
            int p = extend[k] + k - 1;
            int L = next[i - k];
37
            if (i + L 
38
                extend[i] = L;
39
            else
40
41
            {
42
                j = max(0, p - i + 1);
                while (i + j < n \& j < m \& y[i + j] == x[j]) j++;
43
                extend[i] = j, k = i;
44
            }
45
        }
46
  }
47
```

2.3 Manacher

O(n) 求解最长回文子串

```
1 const int N = "Edit";
2 char s[N], str[N << 1];</pre>
  int p[N << 1];</pre>
3
4 void Manacher(char s□, int& n)
5
   {
        str[0] = '$', str[1] = '#';
6
        for (int i = 0; i < n; i++) str[(i << 1) + 2] = s[i], <math>str[(i << 1) + 3] = '\#';
7
        n = 2 * n + 2;
8
        str[n] = 0;
9
        int mx = 0, id;
10
        for (int i = 1; i < n; i++)
11
12
13
            p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
14
            while (str[i - p[i]] == str[i + p[i]]) p[i]++;
            if (p[i] + i > mx) mx = p[i] + i, id = i;
15
        }
16
17
   }
  int solve(char s[])
18
19
20
        int n = strlen(s);
21
        Manacher(s, n);
        return *max_elememt(p, p + n) - 1;
22
23
   }
```

2.4 Aho-Corasick Automaton

```
const int maxn = "Edit";
   struct Trie
2
3
   {
        int ch[maxn][26], f[maxn], val[maxn];
4
        int sz, rt;
5
        int newnode() { memset(ch[sz], -1, sizeof(ch[sz])), val[sz] = 0; return sz++; }
6
        void init() { sz = 0, rt = newnode(); }
7
        inline int idx(char c) { return c - 'A'; };
8
9
        void insert(const char* s)
10
        {
            int u = 0;
11
12
            for (int i = 0; s[i]; i++)
13
                int c = idx(s[i]);
14
                if (ch[u][c] == -1) ch[u][c] = newnode();
15
                u = ch[u][c];
16
17
            val[u]++;
18
19
        void build()
20
21
            queue<int> q;
22
23
            f[rt] = rt;
24
            for (int c = 0; c < 26; c++)
25
                if (~ch[rt][c])
26
27
                    f[ch[rt][c]] = rt, q.push(ch[rt][c]);
28
                else
29
                    ch[rt][c] = rt;
30
            while (!q.empty())
31
32
33
                int u = q.front();
34
                q.pop();
                // val[u] |= val[f[u]];
35
                for (int c = 0; c < 26; c++)
36
37
38
                    if (~ch[u][c])
                         f[ch[u][c]] = ch[f[u]][c], q.push(ch[u][c]);
39
40
                    else
                         ch[u][c] = ch[f[u]][c];
41
                }
42
            }
43
44
        //返回主串中有多少模式串
45
46
        int query(const char* s)
47
            int u = rt;
48
            int res = 0;
49
50
            for (int i = 0; s[i]; i++)
51
52
                int c = idx(s[i]);
53
                u = ch[u][c];
                int tmp = u;
54
                while (tmp != rt)
55
56
57
                    res += val[tmp];
58
                    val[tmp] = 0;
                    tmp = f[tmp];
59
```

```
}
60
           }
61
62
           return res;
63
       }
64 };
   2.5 Suffix Array
1 //倍增算法构造后缀数组,复杂度O(nlogn)
  const int maxn = "Edit";
3 struct Suffix_Array
4
5
       char s[maxn];
       int sa[maxn], t[maxn], t2[maxn], c[maxn], rank[maxn], height[maxn];
6
7
       void build_sa(int m, int n)
8
       { //n为字符串的长度,字符集的值为0~m-1
9
           n++;
           int *x = t, *y = t2;
10
           //基数排序
11
           for (int i = 0; i < m; i++) c[i] = 0;
12
           for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
13
           for (int i = 1; i < m; i++) c[i] += c[i - 1];
14
           for (int i = n - 1; \sim i; i--) sa[--c[x[i]]] = i;
15
           for (int k = 1; k <= n; k <<= 1)
16
           { //直接利用Sa数组排序第二关键字
17
18
               int p = 0;
19
               for (int i = n - k; i < n; i++) y[p++] = i;
               for (int i = 0; i < n; i++)
20
                   if (sa[i] >= k) y[p++] = sa[i] - k;
21
               //基数排序第一关键字
22
23
               for (int i = 0; i < m; i++) c[i] = 0;
24
               for (int i = 0; i < n; i++) c[x[y[i]]]++;
25
               for (int i = 1; i < m; i++) c[i] += c[i - 1];
               for (int i = n - 1; \sim i; i--) sa[--c[x[y[i]]]] = y[i];
26
               //根据Sa和y数组计算新的x数组
27
28
               swap(x, y);
               p = 1;
29
30
               x[sa[0]] = 0;
31
               for (int i = 1; i < n; i++)
                   x[sa[i]] = y[sa[i - 1]] == y[sa[i]] & y[sa[i - 1] + k] == y[sa[i] + k]
32
33
               if (p >= n) break; //以后即使继续倍增, sa也不会改变, 推出
34
                                   //下次基数排序的最大值
35
           }
36
           n--;
           int k = 0;
37
           for (int i = 0; i <= n; i++) rank[sa[i]] = i;
38
           for (int i = 0; i < n; i++)
39
40
               if (k) k--;
41
               int j = sa[rank[i] - 1];
42
               while (s[i + k] == s[j + k]) k++;
43
               height[rank[i]] = k;
44
           }
45
46
       }
47
       int dp[maxn][30];
48
```

```
void initrmq(int n)
49
50
            for (int i = 1; i <= n; i++)
51
                dp[i][0] = height[i];
52
53
            for (int j = 1; (1 << j) <= n; j++)
                for (int i = 1; i + (1 << j) - 1 <= n; i++)
54
                    dp[i][j] = min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
55
56
       int rmq(int 1, int r)
57
58
            int k = 31 - \_builtin\_clz(r - l + 1);
59
60
            return min(dp[l][k], dp[r - (1 << k) + 1][k]);
61
       }
       int lcp(int a, int b)
62
        { // 求两个后缀的最长公共前缀
63
           a = rank[a], b = rank[b];
64
65
            if (a > b) swap(a, b);
            return rmq(a + 1, b);
66
67
       }
68 };
```

2.6 Suffix Automation

```
const int maxn = "Edit";
2
   struct SAM
3
4
        int len[maxn << 1], link[maxn << 1], ch[maxn << 1][26];</pre>
        int num[maxn << 1]; //每个结点所代表的字符串的出现次数
5
        int sz, rt, last;
6
7
        int newnode(int x = 0)
8
            len[sz] = x;
9
10
            link[sz] = -1;
            memset(ch[sz], -1, sizeof(ch[sz]));
11
            return sz++;
12
13
14
        void init() { sz = last = 0, rt = newnode(); }
15
        void reset() { last = 0; }
16
        void extend(int c)
17
            int np = newnode(len[last] + 1);
18
19
            for (p = last; \sim p \& ch[p][c] == -1; p = link[p]) ch[p][c] = np;
20
21
            if (p == -1)
                link[np] = rt;
22
            else
23
24
            {
                int q = ch[p][c];
25
                if (len[p] + 1 == len[q])
26
27
                    link[np] = q;
                else
28
29
                    int nq = newnode(len[p] + 1);
30
                    memcpy(ch[nq], ch[q], sizeof(ch[q]));
31
                    link[nq] = link[q], link[q] = link[np] = nq;
32
                    for (; \sim p \&\& ch[p][c] == q; p = link[p]) ch[p][c] = nq;
33
34
                }
```

```
35
            last = np;
36
37
        int topcnt[maxn], topsam[maxn << 1];</pre>
38
        void build(const char* s)
39
        { // 加入串后拓扑排序
40
            memset(topcnt, 0, sizeof(topcnt));
41
            for (int i = 0; i < sz; i++) topcnt[len[i]]++;</pre>
42
            for (int i = 0; i < maxn - 1; i++) topcnt[i + 1] += topcnt[i];</pre>
43
            for (int i = 0; i < sz; i++) topsam[--topcnt[len[i]]] = i;</pre>
44
            int u = rt;
45
46
            for (int i = 0; s[i]; i++) num[u = ch[u][s[i] - 'a']] = 1;
            for (int i = sz - 1; ~i; i--)
47
48
                 int u = topsam[i];
49
                if (~link[u]) num[link[u]] += num[u];
50
            }
51
52
        }
53
   };
```

2.7 Palindromic Tree

```
const int maxn = "Edit";
2
   struct Palindromic_Tree
3
4
       int ch[maxn][26], f[maxn], len[maxn], s[maxn];
       int cnt[maxn]; // 结点表示的本质不同的回文串的个数(调用count()后)
5
       int num[maxn]; // 结点表示的最长回文串的最右端点为回文串结尾的回文串个数
6
       int last, sz, n;
7
8
       int newnode(int x)
9
10
           memset(ch[sz], 0, sizeof(ch[sz]));
11
           cnt[sz] = num[sz] = 0, len[sz] = x;
           return sz++;
12
13
       void init()
14
15
16
           sz = 0;
17
           newnode(0), newnode(-1);
           last = n = 0, s[0] = -1, f[0] = 1;
18
19
       int get_fail(int u)
20
21
           while (s[n - len[u] - 1] != s[n]) u = f[u];
22
           return u;
23
24
       void add(int c)
25
       { // c-='a'
26
           s[++n] = c;
27
           int u = get_fail(last);
28
           if (!ch[u][c])
29
30
               int np = newnode(len[u] + 2);
31
               f[np] = ch[get_fail(f[u])][c];
32
               num[np] = num[f[np]] + 1;
33
               ch[u][c] = np;
34
35
           }
```

```
last = ch[u][c];
36
37
             cnt[last]++;
38
        void count()
39
40
             for (int i = sz - 1; ~i; i--) cnt[f[i]] += cnt[i];
41
42
43 };
    2.8 Hash
1 typedef unsigned long long ull;
   const ull Seed_Pool[] = {146527, 19260817};
   const ull Mod_Pool[] = {1000000009, 998244353};
4 struct Hash
   {
5
        ull SEED, MOD;
6
7
        vector<ull> p, h;
        Hash() {}
8
        Hash(const string& s, const int& seed_index, const int& mod_index)
9
10
             SEED = Seed_Pool[seed_index];
11
12
            MOD = Mod_Pool[mod_index];
             int n = s.length();
13
             p.resize(n + 1), h.resize(n + 1);
14
            p[0] = 1;
15
             for (int i = 1; i \le n; i++) p[i] = p[i - 1] * SEED % MOD;
for (int <math>i = 1; i \le n; i++) h[i] = (h[i - 1] * SEED % MOD + s[i - 1]) % MOD;
16
17
        }
18
        ull get(int l, int r) { return (h[r] - h[l] * p[r - l] % MOD + MOD) % MOD; }
19
        ull substr(int l, int m) { return get(l, l + m); }
20
21 };
```

3 Data Structure

3.1 Binary Indexed Tree

$O(\log n)$ 查询和修改数组的前缀和

```
1 // 注意下标应从1开始
2
   template <class T>
  struct BIT
3
   {
4
        vector<T> bit;
5
6
        int n;
        void init(int n)
7
8
9
            this->n = n;
            bit.assign(n + 1, 0);
10
11
12
        void update(int x, T v)
13
            for (; x \le n; x + = x \& -x) bit[x] += v
14
15
        void query(int x)
16
17
        {
            T ret = 0;
18
19
            for (; x; x -= x \& -x) ret += bit[x];
20
            return ret;
        }
21
        // 做权值树状数组时求第k小
22
23
        int kth(int k)
24
25
            int ret = 0, cnt = 0;
            for (int i = 20; \sim i; i--)
26
27
            {
                ret ^= (1 << i);
28
                if (ret > n || cnt + bit[ret] >= k)
29
                     ret ^= (1 << i);
30
                else
31
                    cnt += bit[ret];
32
33
            }
            return ret + 1;
34
        }
35
   };
36
```

3.2 Segment Tree

线段树必须要能够裸写,此处仅留矩形面积周长系列备忘。

3.2.1 Area Combination

```
1 // 矩形面积并
2 map<double, int> Hash;
3 map<int, double> rHash;
4 struct line
5 {
```

```
double 1, r, h;
6
7
       int val;
       line(double l = 0, double r = 0, double h = 0, int val = 0) : l(l), r(r), h(h), val
8
       (val) {}
       bool operator<(const line& A) const { return h < A.h; }</pre>
9
10 };
11 struct Node
12 {
       int cover;
13
14
       double len;
   };
15
   const int maxn = 1000;
16
   Node seg[maxn << 2];
17
   void build(int rt, int l, int r)
18
19
       seg[rt].cover = seg[rt].len = 0;
20
21
       if (l == r) return;
22
       int mid = l + r \gg 1;
       build(lson, l, mid);
23
       build(rson, mid + 1, r);
24
25 }
26 void pushup(int rt, int l, int r)
27 {
28
       if (seg[rt].cover > 0)
29
            seg[rt].len = rHash[r + 1] - rHash[l]; // [l,r)
       else if (l == r)
30
            seg[rt].len = 0;
31
       else
32
            seg[rt].len = seg[lson].len + seg[rson].len;
33
34
   void update(int rt, int l, int r, int L, int R, int val)
   {
36
37
       if (L <= 1 \&\& R >= r)
38
            seg[rt].cover += val;
39
            pushup(rt, l, r);
40
            return;
41
42
       }
       int mid = l + r \gg 1;
43
       if (mid >= L) update(lson, l, mid, L, R, val);
44
       if (mid + 1 \le R) update(rson, mid + 1, r, L, R, val);
45
       pushup(rt, l, r);
46
47
   }
48
   int main()
49
   {
50
       int n, kase = 0;
       while (~scanf("%d", &n))
51
       {
52
            if (!n) break;
53
            double x1, x2, y1, y2;
54
55
            vector<line> a;
            set<double> xval;
56
57
            for (int i = 0; i < n; i++)
58
                scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
59
60
                a.emplace_back(x1, x2, y1, 1);
                a.emplace_back(x1, x2, y2, -1);
61
62
                xval.insert(x1);
63
                xval.insert(x2);
```

```
64
            // 离散化
65
           Hash.clear(), rHash.clear();
66
67
            int cnt = 0;
            for (auto& v : xval)
68
69
            {
70
                Hash[v] = ++cnt;
                rHash[cnt] = v;
71
72
            }
73
            sort(a.begin(), a.end());
74
            build(1, 1, cnt);
75
            double ans = 0;
            for (int i = 0; i < a.size() - 1; i++)</pre>
76
77
                update(1, 1, cnt, Hash[a[i].l], Hash[a[i].r] - 1,
78
                       a[i].val); //[l,r)
79
                ans += (a[i + 1].h - a[i].h) * seg[1].len;
80
            }
81
            printf("Test case #%d\n", ++kase);
82
83
            printf("Total explored area: %.2lf\n\n", ans);
        }
84
  }
85
   3.2.2 Area Intersection
1 // 矩形面积交
  map<double, int> Hash;
  map<int, double> rHash;
3
   struct Lines
4
5
   {
        double 1, r, h;
6
7
        int val;
8
        bool operator<(const Lines& A) const { return h < A.h; }</pre>
9
  };
10 struct Node
11 {
        int cnt;
12
                     // 覆盖次数
13
        double len1; // 覆盖次数大于0的长度
14
        double len2; // 覆盖次数大于1的长度
15
   };
   Node seg[maxn << 2];
16
   void build(int rt, int l, int r)
17
18
   {
        seg[rt].cnt = seg[rt].len1 = seg[rt].len2 = 0;
19
        if (l == r) return;
20
21
        int mid = l + r \gg 1;
22
        build(lson, l, mid);
23
        build(rson, mid + 1, r);
   inline void pushup(int rt, int l, int r)
26
27
        if (seg[rt].cnt > 1)
            seg[rt].len1 = seg[rt].len2 = rHash[r + 1] - rHash[l];
28
29
        else if (seg[rt].cnt == 1)
30
            seg[rt].len1 = rHash[r + 1] - rHash[l];
31
32
            if (l == r)
```

```
seg[rt].len2 = 0;
33
            else
34
                 seg[rt].len2 = seg[lson].len1 + seg[rson].len1;
35
        }
36
        else
37
38
        {
39
            if (l == r)
                 seg[rt].len1 = seg[rt].len2 = 0;
40
            else
41
42
            {
                 seg[rt].len1 = seg[lson].len1 + seg[rson].len1;
43
44
                 seg[rt].len2 = seg[lson].len2 + seg[rson].len2;
            }
45
        }
46
47
   void update(int rt, int l, int r, int L, int R, int val)
48
49
   {
50
        if (L <= 1 \&\& R >= r)
51
            seg[rt].cnt += val;
52
            pushup(rt, l, r);
53
            return;
54
        }
55
        int mid = l + r \gg 1;
56
57
        if (L <= mid) update(lson, l, mid, L, R, val);</pre>
        if (R >= mid + 1) update(rson, mid + 1, r, L, R, val);
58
59
        pushup(rt, l, r);
60
   int main()
61
62
   {
63
        int T;
        scanf("%d", &T);
64
        while (T--)
65
        {
66
            int n;
67
            scanf("%d", &n);
68
            double x1, x2, y1, y2;
69
70
            vector<Lines> line;
            set<double> X;
71
72
            for (int i = 1; i <= n; i++)
73
                 scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
line.push_back({x1, x2, y1, 1});
74
75
76
                 line.push_back(\{x1, x2, y2, -1\});
                 X.insert(x1);
77
78
                 X.insert(x2);
79
            }
            sort(line.begin(), line.end());
80
            int cnt = 0;
81
82
            Hash.clear();
83
            rHash.clear();
84
             for (auto& v : X) Hash[v] = ++cnt, rHash[cnt] = v;
85
            build(1, 1, cnt);
            double area = 0;
86
            for (int i = 0; i < line.size() - 1; i++)</pre>
87
88
89
                 update(1, 1, cnt, Hash[line[i].1], Hash[line[i].r] - 1, line[i].val);
90
                 area += seg[1].len2 * (line[i + 1].h - line[i].h);
91
            }
```

```
92 printf("%.2lf\n", area);
93 }
94 }
```

3.2.3 Perimeter Combination

```
1 // 矩形周长并
  int n, m[2];
  int sum[maxn << 2], cnt[maxn << 2], all[2][maxn];</pre>
5
   {
6
        int 1, r, h, d;
7
        Seg() {}
        Seg(int l, int r, int h, int d) : l(l), r(r), h(h), d(d) {}
8
        bool operator<(const Seg& rhs) const { return h < rhs.h; }</pre>
9
10
   } a[2][maxn];
   #define lson l, m, rt << 1
11
   #define rson m + 1, r, rt << 1 | 1
12
   void pushup(int p, int l, int r, int rt)
13
   {
14
        if (cnt[rt])
15
            sum[rt] = all[p][r + 1] - all[p][l];
16
17
        else if (l == r)
            sum[rt] = 0;
18
19
        else
20
            sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];</pre>
21
   }
   void update(int p, int L, int R, int v, int l, int r, int rt)
22
23
24
        if (L \le 1 \&\& r \le R)
25
            cnt[rt] += v;
26
27
            pushup(p, l, r, rt);
28
            return;
29
30
        int m = 1 + r >> 1;
31
        if (L \le m) update(p, L, R, v, lson);
32
        if (R > m) update(p, L, R, v, rson);
33
        pushup(p, l, r, rt);
34
35
   int main()
36
   {
        while (scanf("%d", &n) == 1)
37
38
            for (int i = 1; i <= n; ++i)
39
40
            {
                int x1, y1, x2, y2;
41
                scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
42
                all[0][i] = x1, all[0][i + n] = x2;
43
44
                all[1][i] = y1, all[1][i + n] = y2;
                a[0][i] = Seg(x1, x2, y1, 1);
45
                a[0][i + n] = Seg(x1, x2, y2, -1);
46
                a[1][i] = Seg(y1, y2, x1, 1);
47
                a[1][i + n] = Seg(y1, y2, x2, -1);
48
            }
49
50
            n <<= 1;
            sort(all[0] + 1, all[0] + 1 + n);
51
```

```
m[0] = unique(all[0] + 1, all[0] + 1 + n) - all[0] - 1;
52
            sort(all[1] + 1, all[1] + 1 + n);
53
            m[1] = unique(all[1] + 1, all[1] + 1 + n) - all[1] - 1;
54
            sort(a[0] + 1, a[0] + 1 + n);
55
            sort(a[1] + 1, a[1] + 1 + n);
56
            int ans = 0;
57
            for (int i = 0; i < 2; ++i)
58
            {
59
                int t = 0, last = 0;
60
                memset(cnt, 0, sizeof cnt);
61
                memset(sum, 0, sizeof sum);
62
63
                for (int j = 1; j <= n; ++j)
64
                    int l = lower_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].l) - all[i];
65
                    int r = lower\_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].r) - all[i];
66
                    if (l < r) update(i, l, r - 1, a[i][j].d, 1, m[i], 1);</pre>
67
68
                    t += abs(sum[1] - last);
                    last = sum[1];
69
                }
70
71
                ans += t;
72
            printf("%d\n", ans);
73
74
75
       return 0;
76 }
   3.3 Splay Tree
   3.3.1 Splay
1 const int INF = 0x7fffffff;
2
   struct Splay {
   #define root t[0].ch[1]
3
       private:
4
            struct Node {
5
6
                int ch[2];
7
                int fa, val, siz, tot;
8
            };
            Node t[N];
9
10
            int cnt, num;
11
            ii id(int x) {
12
                return x == t[t[x].fa].ch[1];
13
14
            iv update(int x) {
                t[x].siz = t[t[x].ch[0]].siz + t[t[x].ch[1]].siz + t[x].tot;
15
16
            ii New(int v, int fa) {
17
                t[++cnt].fa = fa;
18
                t[cnt].val = v;
19
                t[cnt].siz = t[cnt].tot = 1;
20
                return cnt;
21
22
23
            iv destroy(int x) {
                t[x].ch[0] = t[x].ch[1] = t[x].fa = t[x].val = t[x].siz = t[x].tot = 0;
24
25
            iv connect(int fa, int x, int d) {
26
27
                t[x].fa = fa;
```

```
t[fa].ch[d] = x;
28
29
            iv rotate(int x) {
30
                 int f = t[x].fa;
31
                 int ff = t[f].fa;
32
                 int fson = id(x);
33
                 int ffson = id(f);
34
                 int son = t[x].ch[fson ^ 1];
35
                 connect(f, son, fson);
36
                 connect(x, f, fson ^ 1);
37
38
                 connect(ff, x, ffson);
39
                 update(f), update(x);
40
            iv splay(int x, int to) {
41
                 to = t[to].fa;
42
                 while (t[x].fa != to) {
43
                     int f = t[x].fa;
44
                     if (t[f].fa != to) {
45
                         if (id(f) == id(x)) {
46
                              rotate(f);
47
                         } else {
48
49
                              rotate(x);
50
51
52
                     rotate(x);
                 }
53
            }
54
        public:
55
            ii find(int v) {
56
57
                 int x = root;
                 while (x && t[x].val != v) {
58
                     int d = v < t[x].val ? 0 : 1;
59
                     x = t[x].ch[d];
60
61
                 if (x) {
62
                     splay(x, root);
63
64
                 }
65
                 return x;
66
            ii build(int v) {
67
                 ++num;
68
                 if (!root) {
69
                     return root = New(v, 0);
70
71
72
                 int x = root;
73
                 while (1) {
74
                     ++t[x].siz;
                     if (t[x].val == v) {
75
                         ++t[x].tot;
76
77
                         return x;
78
79
                     int d = v < t[x].val ? 0 : 1;
                     if (!t[x].ch[d]) {
80
                         return t[x].ch[d] = New(v, x);
81
82
                     x = t[x].ch[d];
83
84
85
                 return 0;
            }
86
```

```
iv insert(int v) {
87
                 splay(build(v), root);
88
89
             iv del(int v) {
90
                 int x = find(v);
91
                 if (!x) {
92
                     return;
93
                 }
94
95
                 --num;
                 if (t[x].tot > 1) {
96
97
                      --t[x].tot;
98
                      --t[x].siz;
99
                      return;
100
                 if (!t[x].ch[0]) {
101
                      root = t[x].ch[1];
102
                      t[root].fa = 0;
103
104
                 } else {
                      int L = t[x].ch[0];
105
                      int R = t[x].ch[1];
106
                     while (t[L].ch[1]) {
107
                          L = t[L].ch[1];
108
109
                      splay(L, t[x].ch[0]);
110
                      connect(0, L, 1);
111
                      connect(L, R, 1);
112
                      update(L);
113
114
                 destroy(x);
115
116
             ii get_rk(int v) { // 寻找权值为 v 的点的排名
117
                 int x = root, rk = 0;
118
                 while (x) {
119
                      if (v == t[x].val) {
120
                          rk += t[t[x].ch[0]].siz + 1;
121
                          break;
122
123
                      }
                      if (v < t[x].val) {</pre>
124
                          x = t[x].ch[0];
125
                      } else {
126
                          rk += t[t[x].ch[0]].siz + t[x].tot;
127
128
                          x = t[x].ch[1];
                      }
129
130
                 }
                 if (x) {
131
132
                      splay(x, root);
133
                 return rk;
134
135
136
             ii get_val(int rk) { // 寻找排名为 rk 的点的权值
137
                 // if (rk > num) {
138
                      // return INF;
                 // }
139
                 int x = root;
140
                 while (1) {
141
                      int s = t[t[x].ch[0]].siz;
142
                      if (rk <= s) {
143
144
                          x = t[x].ch[0];
                      }
145
```

```
else if (rk \le s + t[x].tot) {
146
147
                         break;
148
                     else {
149
                         rk -= s + t[x].tot;
150
                         x = t[x].ch[1];
151
152
153
                 splay(x, root);
154
                 return t[x].val;
155
156
             ii get_pre(int v) { // 寻找权值为 v 的点的前驱结点
157
                 int x = root, pre = -INF;
158
                 while (x) {
159
                     if (t[x].val < v) {
160
                         pre = t[x].val;
161
                         x = t[x].ch[1];
162
                     } else {
163
                         x = t[x].ch[0];
164
165
                 }
166
167
                 return pre;
168
             ii get_nx(int v) { // 寻找权值为 v 的点的后继结点
169
170
                 int x = root, nx = INF;
                 while (x) {
171
                     if (t[x].val > v) {
172
                         nx = t[x].val;
173
                         x = t[x].ch[0];
174
175
                     } else {
176
                         x = t[x].ch[1];
177
178
                 }
179
                 return nx;
180
181
    #undef root
182 } S;
    3.3.2 Splay_Reverse
 1 #define ls(x) t[x].ch[0]
    #define rs(x) t[x].ch[1]
 3 #define tls(x) t[ls(x)]
 4 #define trs(x) t[rs(x)]
    const int INF = 0x7ffffffff;
 5
    struct Splay {
 6
        int ch[2];
 7
        int fa, val, siz, tag;
 8
   } t[N];
10 int n, m, l, r, rt, cnt;
11 int a[N];
12
    ii id(int x) {
13
        return x == rs(t[x].fa);
14
    iv update(int x) {
        t[x].siz = tls(x).siz + trs(x).siz + 1;
16
17
    }
```

```
iv push_down(int x) {
19
        if (t[x].tag) {
             ls(x) \stackrel{\sim}{} rs(x) \stackrel{\sim}{} ls(x) \stackrel{\sim}{} rs(x);
20
21
             tls(x).tag ^= 1;
22
             trs(x).tag ^= 1;
23
            t[x].tag = 0;
        }
24
25
   }
   iv connect(int fa, int x, int d) {
26
        t[x].fa = fa;
27
28
        t[fa].ch[d] = x;
29
   }
   iv rotate(int x) {
30
        int f = t[x].fa;
31
        int ff = t[f].fa;
32
        push_down(x);
33
        push_down(f);
34
        int fson = id(x);
35
        int ffson = id(f);
36
        int son = t[x].ch[fson ^ 1];
37
        connect(f, son, fson);
38
        connect(x, f, fson ^ 1);
39
        connect(ff, x, ffson);
40
41
        update(f), update(x);
42
   iv splay(int x, int to) {
43
   #define f t[x].fa
44
        while (f != to) {
45
             if (t[f].fa != to) {
46
                 rotate(id(x) == id(f) ? f : x);
47
             }
48
49
            rotate(x);
50
        if (!to) {
51
52
            rt = x;
53
54
   #undef f
55
   }
   int build(int 1, int r, int fa) {
56
        if (l > r) {
57
             return 0;
58
59
        int mid = (l + r) \gg 1;
60
61
        int x = ++cnt;
        t[x].fa = fa;
62
63
        t[x].siz = 1;
64
        t[x].val = a[mid];
        ls(x) = build(l, mid - 1, x);
65
        rs(x) = build(mid + 1, r, x);
66
67
        update(x);
68
        return x;
69
   ii find(int rk) {
70
        int x = rt;
71
72
        while (1) {
73
            push_down(x);
             if (rk == tls(x).siz + 1) {
74
75
                 return x;
             }
76
```

```
if (rk <= tls(x).siz) {</pre>
77
78
                 x = ls(x);
             } else {
79
                 rk = tls(x).siz + 1;
80
81
                 x = rs(x);
82
             }
83
         }
84
    }
    iv reverse(int l, int r) { // 翻转区间(l, r)
85
86
         l = find(l), r = find(r);
87
         splay(l, 0), splay(r, l);
88
         t[ls(rs(rt))].tag ^= 1;
    }
89
    void print(int x) {
90
         push_down(x);
91
92
         if (ls(x)) {
93
             print(ls(x));
94
         if (t[x].val != -INF \&\& t[x].val != INF) {
95
             printf("%d ", t[x].val);
96
97
         if (rs(x)) {
98
99
             print(rs(x));
100
         }
101
    }
102
    int main() {
         n = rd(), m = rd();
103
         for (int i = 1; i \le n; ++i) {
104
             a[i + 1] = i;
105
106
         a[1] = -INF, a[n + 2] = INF;
107
         rt = build(1, n + 2, 0);
108
         while (m--) {
109
             l = rd(), r = rd();
110
             reverse(1, r + 2);
111
         }
112
113
         print(rt);
114
         puts("");
         return 0;
115
    }
116
```

3.4 Functional Segment Tree

静态查询区间第 k 小的值 必要时进行离散化

```
11
       int m = (l + r) >> 1;
       if (p <= m) update(p, Lson);</pre>
12
       else update(p, Rson);
13
14
   int query(int l, int r, int x, int y, int k)
15
16
       if (l == r) return l;
17
       int m = (l + r) >> 1;
18
       int s = sum[lson[y]] - sum[lson[x]];
19
20
       if (s >= k) return query(Lson, k);
21
       else return query(Rson, k - s);
22 }
   3.5 Sparse Table
1 const int maxn = "Edit";
   int dp[maxn][20];
3
  int a[maxn];
4 #define N 100005
5
   int d[N][20];
   void init(int n) {
6
7
       for (int i = 1; i <= n; ++i) {
8
            d[i][0] = a[i];
9
10
       for (int j = 1; j \le lg[N]; ++j) {
            for (int i = 1; i + (1 << j) - 1 <= n; ++i) {
11
                d[i][j] = max(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]);
12
13
            }
       }
14
15
   // 返回[l,r]最大值
17
   int rmq(int 1, int r, int op)
18
   {
        int k = 31 - \_builtin\_clz(r - l + 1);
19
       return max(dp[1][k], dp[r - (1 << k) + 1][k]);
20
21
   二维 RMQ
   void init(int n, int m)
2
   {
        for (int i = 0; (1 << i) <= n; i++)
3
4
            for (int j = 0; (1 << j) <= m; j++)
5
                if (i == 0 \&\& j == 0) continue;
6
                for (int row = 1; row + (1 << i) - 1 <= n; row++)
7
                    for (int col = 1; col + (1 << j) - 1 <= m; col++)
8
9
                            dp[row][col][i][j] = max(dp[row][col][i - 1][j],
10
                                                 dp[row + (1 << (i - 1))][col][i - 1][j]);
11
12
                        else
                            dp[row][col][i][j] = max(dp[row][col][i][j - 1],
13
                                                 dp[row][col + (1 << (j - 1))][i][j - 1]);
14
15
           }
16
   int rmq(int x1, int y1, int x2, int y2)
17
18
   {
       int kx = 31 - \_builtin\_clz(x2 - x1 + 1);
19
```

```
int ky = 31 - __builtin_clz(y2 - y1 + 1);
int m1 = dp[x1][y1][kx][ky];
int m2 = dp[x2 - (1 << kx) + 1][y1][kx][ky];
int m3 = dp[x1][y2 - (1 << ky) + 1][kx][ky];
int m4 = dp[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky];
return max({m1, m2, m3, m4});
}</pre>
```

3.6 Heavy-Light Decomposition

```
#define N "Edit"
2
   struct HLD
3
   {
       int n, dfs_clock;
4
       int sz[maxn], top[maxn], son[maxn], dep[maxn], fa[maxn], id[maxn];
5
       vector int> G[maxn];
6
       // vector<pair<PII, int>> edges; 维护边权时,将其下放为儿子结点的点权
7
       void init(int n)
8
9
       {
            this->n = n, memset(son, -1, sizeof(son)), dfs_clock = 0;
10
            for (int i = 0; i <= n; i++) G[i].clear();</pre>
11
12
       void add_edge(int u, int v) { G[u].push_back(v), G[v].push_back(u); }
13
       void dfs(int u, int p, int d)
14
15
16
            dep[u] = d, fa[u] = p, sz[u] = 1;
17
            for (auto& v : G[u])
18
                if (v == p) continue;
19
20
                dfs(v, u, d + 1);
                sz[u] += sz[v];
21
22
                if (son[u] == -1 \mid | sz[v] > sz[son[u]]) son[u] = v;
23
           }
24
25
       void link(int u, int t)
26
27
            top[u] = t, id[u] = ++dfs\_clock;
28
            if (son[u] == -1) return;
29
            link(son[u], t);
30
            for (auto& v : G[u])
                if (v != son[u] \&\& v != fa[u]) link(v, v);
31
32
        int query_path(int u, int v)
33
34
        { // 数据结构相关操作,一般使用线段树或者树状数组
            int ret = 0;
35
           while (top[u] != top[v])
36
37
            {
                if (dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
38
                ret += query(id[top[u]], id[u]);
39
                u = fa[top[u]];
40
41
            if (dep[u] > dep[v]) swap(u, v);
42
43
           ret += query(id[u], id[v]);
            /* 边权
44
            if (u == v) return ret;
45
46
            if (dep[u] > dep[v]) swap(u, v);
            ret += query(id[son[u]], id[v]);
47
```

```
*/
48
49
            return ret;
50
51 };
   3.7 Link-Cut Tree
   动态维护一个森林
   const int maxn = "Edit";
   struct LCT
2
3
   {
4
       int val[maxn], sum[maxn]; // 基于点权
       int rev[maxn], ch[maxn][2], fa[maxn];
5
       int stk[maxn];
6
       inline void init(int n)
7
8
       { // 初始化点权
9
            for (int i = 1; i <= n; i++) scanf("%d", val + i);
10
            for (int i = 1; i <= n; i++)
                fa[i] = ch[i][0] = ch[i][1] = rev[i] = 0;
11
12
       inline bool isroot(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
13
       inline bool get(int x) { return ch[fa[x]][1] == x; }
14
       void pushdown(int x)
15
       {
16
            if (!rev[x]) return;
17
18
            swap(ch[x][0], ch[x][1]);
            if (ch[x][0]) rev[ch[x][0]] ^= 1;
19
            if (ch[x][1]) rev[ch[x][1]] ^= 1;
20
21
            rev[x] ^= 1;
22
23
       void pushup(int x) { sum[x] = val[x] + sum[ch[x][0]] + sum[ch[x][1]]; }
24
       void rotate(int x)
25
       {
            int y = fa[x], z = fa[fa[x]], d = get(x);
26
            if (!isroot(y)) ch[z][get(y)] = x;
27
            fa[x] = z;
28
29
            ch[y][d] = ch[x][d \land 1], fa[ch[y][d]] = y;
            ch[x][d ^ 1] = y, fa[y] = x;
30
31
           pushup(y), pushup(x);
32
33
       void splay(int x)
34
35
            int top = 0;
            stk[++top] = x;
36
            for (int i = x; !isroot(i); i = fa[i]) stk[++top] = fa[i];
37
            for (int i = top; i; i--) pushdown(stk[i]);
38
            for (int f; !isroot(x); rotate(x))
39
                if (!isroot(f = fa[x])) rotate(get(x) == get(f) ? f : x);
40
41
       }
       void access(int x)
42
43
44
            for (int y = 0; x; y = x, x = fa[x]) splay(x), ch[x][1] = y, pushup(x);
45
46
       int find(int x)
47
           access(x), splay(x);
48
```

```
while (ch[x][0]) x = ch[x][0];
49
50
            return x;
51
       void makeroot(int x) { access(x), splay(x), rev[x] ^= 1; }
52
53
       void link(int x, int y) { makeroot(x), fa[x] = y, splay(x); }
       void cut(int x, int y) { makeroot(x), access(y), splay(y), fa[x] = ch[y][0] = 0; }
54
       void update(int x, int v) { val[x] = v, access(x), splay(x); }
55
       int query(int x, int y)
56
57
            makeroot(y), access(x), splay(x);
58
59
            return sum[x];
60
       }
61
   };
   3.8 Virtual Tree
   const int maxn = "Edit";
   vector<int> vtree[maxn];
   void build(vector<int>& vec)
3
4
       sort(vec.begin(), vec.end(), [&](int x, int y) { return dfn[x] < dfn[y]; });</pre>
5
6
       static int s[maxn];
7
       int top = 0;
       s[top] = 0;
8
       vtree[0].clear();
9
       for (auto& u : vec)
10
        {
11
            int vlca = lca(u, s[top]);
12
            vtree[u].clear();
13
            if (vlca == s[top])
14
                s[++top] = u;
15
            else
16
            {
17
                while (top && dep[s[top - 1]] >= dep[vlca])
18
19
                    vtree[s[top - 1]].push_back(s[top]);
20
21
                    top--;
22
                if (s[top] != vlca)
23
24
                    vtree[vlca].clear();
25
                    vtree[vlca].push_back(s[top--]);
26
27
                    s[++top] = vlca;
28
29
                s[++top] = u;
30
            }
31
       for (int i = 0; i < top; ++i) vtree[s[i]].push_back(s[i + 1]);
32
   }
33
   3.9 Cartesian Tree
1 const int maxn = "Edit";
   int lson[maxn], rson[maxn], fa[maxn];
3 void build(int n)
```

```
{
 4
               stack<int> s;
for (int i = 0; i < n; i++)</pre>
 5
 6
 7
                      int last = -1;
while (!s.empty() && a[i] > a[s.top()]) last = s.top(), s.pop();
if (!s.empty()) rson[s.top()] = i, fa[i] = s.top();
lson[i] = last;
if (~last) fa[last] = i;
 8
 9
10
11
12
                       s.push(i);
13
               }
14
15 }
```

4 Graph Theory

4.1 Shortest Path

```
struct Edge
3
       int from, to, dist;
       Edge() {}
4
       Edge(int u, int v, int d) : from(u), to(v), dist(d) {}
5
   };
   4.1.1 Dijkstra
   struct HeapNode
2
   {
3
       int d, u;
       bool operator<(const HeapNode& rhs) const
4
5
           return d > rhs.d;
6
       }
7
   };
   const int maxn = "Edit";
   struct Dijkstra
10
11
                            // 点数和边数
12
       int n, m;
                            // 边列表
13
       vector<Edge> edges;
       vector<int> G[maxn]; // 每个节点出发的边编号 (从0开始编号)
14
                            // 是否已永久标号
       bool done[maxn];
15
16
       int d[maxn];
                            // S到各点的距离
       int p[maxn];
17
                            // 最短路中的一条边
18
       void init(int n)
19
           this -> n = n;
20
           for (int i = 0; i < n; i++) G[i].clear(); // 清空邻接表
21
22
           edges.clear();
                                                      // 清空边表
23
24
       void AddEdge(int from, int to, int dist)
25
       { // 如果是无向图,每条无向边需调用两次AddEdge
26
           edges.emplace_back(from, to, dist);
27
           m = edges.size();
           G[from].push_back(m - 1);
28
29
       void dijkstra(int s)
30
31
           priority_queue<HeapNode> q;
32
           for (int i = 0; i < n; i++) d[i] = INF;
33
           d[s] = 0;
34
           memset(done, 0, sizeof(done));
35
           q.push({0, s});
36
           while (!q.empty())
37
38
39
               HeapNode x = q.top();
40
               q.pop();
41
               int u = x.u;
               if (done[u]) continue;
42
               done[u] = true;
43
```

```
for (auto& id : G[u])
44
45
                     Edge& e = edges[id];
46
                     if (d[e.to] > d[u] + e.dist)
47
48
                         d[e.to] = d[u] + e.dist;
49
                         p[e.to] = id;
50
                         q.push({d[e.to], e.to});
51
52
                     }
53
                 }
54
            }
55
        }
56
   };
```

4.1.2 Bellman-Ford

```
const int maxn = "Edit";
2
   struct BellmanFord
3
   {
       int n, m;
4
       vector<Edge> edges;
5
       vector<int> G[maxn];
6
7
       bool inq[maxn]; // 是否在队列中
8
       int d[maxn];
                        // S到各个点的距离
9
       int p[maxn];
                        // 最短路中的上一条弧
10
       int cnt[maxn]; // 进队次数
11
       void init(int n)
12
13
            this -> n = n;
14
            for (int i = 0; i < n; i++) G[i].clear();</pre>
            edges.clear();
15
16
       }
17
       void AddEdge(int from, int to, int dist)
18
            edges.emplace_back(from, to, dist);
19
20
            m = edges.size();
            G[from].push_back(m - 1);
21
22
23
       bool bellmanford(int s)
24
            queue<int> q;
25
            memset(inq, 0, sizeof(inq));
26
            memset(cnt, 0, sizeof(cnt));
27
28
            for (int i = 0; i < n; i++) d[i] = INF;
            d[s] = 0;
29
            inq[s] = true;
30
            q.push(s);
31
32
            while (!q.empty())
33
            {
                int u = q.front();
34
35
                q.pop();
                inq[u] = false;
36
37
                for (auto& id : G[u])
38
39
                    Edge& e = edges[id];
                    if (d[u] < INF && d[e.to] > d[u] + e.dist)
40
                    {
41
```

```
d[e.to] = d[u] + e.dist;
42
                          p[e.to] = id;
43
                          if (!inq[e.to])
44
45
                              q.push(e.to);
46
                              inq[e.to] = true;
47
                              if (++cnt[e.to] > n) return false;
48
                          }
49
                     }
50
                 }
51
52
            }
53
            return true;
        }
54
   };
55
```

4.2 Minimal Spanning Tree

4.2.1 Zhu Liu

```
1 const int maxn = "Edit";
   // 固定根的最小树型图, 邻接矩阵写法
  struct MDST
3
4
   {
       int n;
5
6
       int w[maxn][maxn]; // 边权
                          // 访问标记, 仅用来判断无解
7
       int vis[maxn];
                          // 计算答案
8
       int ans;
       int removed[maxn]; // 每个点是否被删除
9
                          // 所在圈编号
       int cid[maxn];
10
       int pre[maxn];
11
                          // 最小入边的起点
12
       int iw[maxn];
                          // 最小入边的权值
13
       int max_cid;
                          // 最大圈编号
14
       void init(int n)
       {
15
           this->n = n;
16
17
           for (int i = 0; i < n; i++)
18
               for (int j = 0; j < n; j++) w[i][j] = INF;
19
20
       void AddEdge(int u, int v, int cost)
21
           w[u][v] = min(w[u][v], cost); // 重边取权最小的
22
23
       // 从S出发能到达多少个结点
24
       int dfs(int s)
25
26
           vis[s] = 1;
27
28
           int ans = 1;
           for (int i = 0; i < n; i++)
29
               if (!vis[i] \&\& w[s][i] < INF) ans += dfs(i);
30
31
           return ans;
       }
32
       // 从u出发沿着pre指针找圈
33
34
       bool cycle(int u)
35
36
           max_cid++;
37
           int v = u;
           while (cid[v] != max_cid)
38
```

```
{
39
               cid[v] = max\_cid;
40
41
               v = pre[v];
42
43
           return v == u;
44
       // 计算u的最小入弧,入弧起点不得在圈C中
45
       void update(int u)
46
47
           iw[u] = INF;
48
            for (int i = 0; i < n; i++)
49
50
               if (!removed[i] && w[i][u] < iw[u])</pre>
51
                    iw[u] = w[i][u];
52
53
                    pre[u] = i;
54
55
       // 根结点为s,如果失败则返回false
56
       bool solve(int s)
57
58
           memset(vis, 0, sizeof(vis));
59
           if (dfs(s) != n) return false;
60
           memset(removed, 0, sizeof(removed));
61
62
           memset(cid, 0, sizeof(cid));
63
            for (int u = 0; u < n; u++) update(u);
           pre[s] = s;
64
           iw[s] = 0; // 根结点特殊处理
65
           ans = max_cid = 0;
66
           for (;;)
67
68
               bool have_cycle = false;
69
               for (int u = 0; u < n; u++)
70
                    if (u != s && !removed[u] && cycle(u))
71
72
73
                        have_cycle = true;
                        // 以下代码缩圈,圈上除了u之外的结点均删除
74
75
                        int v = u;
76
                        do
                        {
77
                            if (v != u) removed[v] = 1;
78
79
                            ans += iw[v];
                            // 对于圈外点i, 把边i->V改成i->u (并调整权值); V->i改为u->i
80
                            // 注意圈上可能还有一个v'使得i->v'或者v'->i存在,
81
82
                            // 因此只保留权值最小的i->u和u->i
                            for (int i = 0; i < n; i++)
83
                                if (cid[i] != cid[u] && !removed[i])
84
85
                                    if (w[i][v] < INF)</pre>
86
                                        w[i][u] = min(w[i][u], w[i][v] - iw[v]);
87
88
                                    w[u][i] = min(w[u][i], w[v][i]);
89
                                    if (pre[i] == v) pre[i] = u;
90
                                }
91
                            v = pre[v];
                        } while (v != u);
92
                        update(u);
93
94
                        break;
95
                if (!have_cycle) break;
96
           }
97
```

```
for (int i = 0; i < n; i++)
98
99
                if (!removed[i]) ans += iw[i];
100
            return true;
        }
101
102 };
    4.3 LCA
    4.3.1 DFS+ST
    DFS+ST 在线算法
    时间复杂度 O(nlogn + q)
 1 const int maxn = "Edit";
 2 vector<int> G[maxn], sp;
 3 int dep[maxn], dfn[maxn];
 4 PII dp[21][maxn << 1];
   void init(int n)
 5
 6
    {
        for (int i = 0; i < n; i++) G[i].clear();</pre>
 7
 8
        sp.clear();
    }
 9
   void dfs(int u, int fa)
10
11
12
        dep[u] = dep[fa] + 1;
        dfn[u] = sp.size();
13
        sp.push_back(u);
14
        for (auto& v : G[u])
15
16
            if (v == fa) continue;
17
18
            dfs(v, u);
19
            sp.push_back(u);
        }
20
21
    }
    void initrmq()
22
23
    {
        int n = sp.size();
24
        for (int i = 0; i < n; i++) dp[0][i] = {dfn[sp[i]], sp[i]};
25
        for (int i = 1; (1 << i) <= n; i++)
26
            for (int j = 0; j + (1 << i) - 1 < n; j++)
27
                dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + (1 << (i - 1))]);
28
29
    }
   int lca(int u, int v)
30
31
        int l = dfn[u], r = dfn[v];
32
        if (l > r) swap(l, r);
33
        int k = 31 - \_builtin\_clz(r - l + 1);
34
        return min(dp[k][l], dp[k][r - (1 << k) + 1]).second;
35
36
   }
```

4.3.2 Tarjan

```
Tarjan 离线算法
   时间复杂度 O(n+q)
1 const int maxn = "Edit";
   int par[maxn];
                            //并查集
3 int ans[maxn];
                            //存储答案
4 vector<int> G[maxn];
                            //邻接表
5 vector<PII> query[maxn]; //存储查询信息
6 bool vis[maxn];
                            //是否被遍历
  inline void init(int n)
7
   {
8
9
       for (int i = 1; i <= n; i++)
10
           G[i].clear(), query[i].clear();
11
12
           par[i] = i, vis[i] = 0;
       }
13
14
   inline void add_edge(int u, int v) { G[u].push_back(v); }
15
   inline void add_query(int id, int u, int v)
17
18
       query[u].emplace_back(v, id);
       query[v].emplace_back(u, id);
19
20
   void tarjan(int u)
21
22
   {
23
       vis[u] = 1;
24
       for (auto& v : G[u])
25
26
           if (vis[v]) continue;
27
           tarjan(v);
28
           unite(u, v);
29
30
       for (auto& q : query[u])
31
32
           int &v = q.X, &id = q.Y;
           if (!vis[v]) continue;
33
           ans[id] = find(v);
34
35
       }
36
  }
```

4.4 Depth-First Traversal

4.4.1 Biconnected-Component

```
1 //割顶的bccno无意义
2 const int maxn = "Edit";
3 int pre[maxn], iscut[maxn], bccno[maxn], dfs_clock, bcc_cnt;
4 vector<int> G[maxn], bcc[maxn];
  stack<PII> s;
   void init(int n)
6
7
   {
8
       for (int i = 0; i < n; i++) G[i].clear();</pre>
  inline void add_edge(int u, int v) { G[u].push_back(v), G[v].push_back(u); }
10
11
   int dfs(int u, int fa)
12
   {
13
       int lowu = pre[u] = ++dfs_clock;
```

```
int child = 0;
14
        for (auto& v : G[u])
15
16
            PII e = \{u, v\};
17
            if (!pre[v])
18
19
            {
20
                //没有访问过V
                s.push(e);
21
22
                child++;
23
                int lowv = dfs(v, u);
                lowu = min(lowu, lowv); //用后代的low函数更新自己
24
25
                if (lowv >= pre[u])
26
                     iscut[u] = true;
27
28
                     bcc_cnt++;
                    bcc[bcc_cnt].clear(); //注意! bcc从1开始编号
29
30
                     for (;;)
31
                     {
32
                         PII x = s.top();
33
                         s.pop();
                         if (bccno[x.first] != bcc_cnt)
34
                             bcc[bcc_cnt].push_back(x.first), bcc[x.first] = bcc_cnt;
35
                         if (bccno[x.second] != bcc_cnt)
36
37
                             bcc[bcc_cnt].push_back(x.second), bcc[x.second] = bcc_cnt;
38
                         if (x.first == u && x.second == v) break;
                    }
39
                }
40
41
            else if (pre[v] < pre[u] && v != fa)</pre>
42
43
                s.push(e);
44
                lowu = min(lowu, pre[v]); //用反向边更新自己
45
46
            }
47
        if (fa < 0 && child == 1) iscut[u] = 0;</pre>
48
        return lowu;
49
   }
50
51
   void find_bcc(int n)
52
        //调用结束后S保证为空, 所以不用清空
53
        memset(pre, 0, sizeof(pre));
54
       memset(iscut, 0, sizeof(iscut));
memset(bccno, 0, sizeof(bccno));
55
56
57
        dfs_clock = bcc_cnt = 0;
        for (int i = 0; i < n; i++)
58
            if (!pre[i]) dfs(i, -1);
59
60 }
   4.4.2 Strongly Connected Component
1 const int maxn = "Edit";
2 vector<int> G[maxn];
3 int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
4 stack<int> S;
5
   inline void init(int n)
6
   {
        for (int i = 0; i < n; i++) G[i].clear();
7
```

```
}
8
   inline void add_edge(int u, int v) { G[u].push_back(v); }
   void dfs(int u)
10
11
   {
        pre[u] = lowlink[u] = ++dfs_clock;
12
        S.push(u);
13
        for (auto& v : G[u])
14
15
            if (!pre[v])
16
17
            {
                dfs(v);
18
19
                lowlink[u] = min(lowlink[u], lowlink[v]);
            }
20
            else if (!sccno[v])
21
                lowlink[u] = min(lowlink[u], pre[v]);
22
23
        if (lowlink[u] == pre[u])
24
25
26
            scc_cnt++;
27
            for (;;)
28
            {
29
                int x = S.top();
                S.pop();
30
31
                sccno[x] = scc_cnt;
32
                if (x == u) break;
            }
33
        }
34
35
   void find_scc(int n)
36
37
   {
        dfs_clock = 0, scc_cnt = 0;
38
        memset(sccno, 0, sizeof(sccno)), memset(pre, 0, sizeof(pre));
39
        for (int i = 0; i < n; i++)
40
            if (!pre[i]) dfs(i);
41
42 }
   4.4.3 2-SAT
   const int maxn = "Edit";
2
   struct TwoSAT
   {
3
4
        int n;
        vector<int> G[maxn << 1];</pre>
5
        bool mark[maxn << 1];</pre>
6
        int S[maxn << 1], c;</pre>
7
        void init(int n)
8
9
        {
            this->n = n;
10
            for (int i = 0; i < (n << 1); i++) G[i].clear();
11
            memset(mark, 0, sizeof(mark));
12
13
14
        bool dfs(int x)
15
            if (mark[x ^ 1]) return false;
16
            if (mark[x]) return true;
17
18
            mark[x] = true;
19
            S[c++] = x;
```

```
for (auto& y : G[x])
20
21
                 if (!dfs(y)) return false;
22
            return true;
23
        //x = xval or y = yval
24
        void add_clause(int x, int xval, int y, int yval)
25
26
            x = (x << 1) + xval;
27
            y = (y << 1) + yval;
28
            G[x \land 1].push_back(y);
29
            G[y \land 1].push_back(x);
30
31
        bool solve()
32
33
            for (int i = 0; i < (n << 1); i += 2)
34
                 if (!mark[i] && !mark[i + 1])
35
36
                     c = 0;
37
                     if (!dfs(i))
38
39
                         while (c > 0) mark[S[--c]] = false;
40
                         if (!dfs(i + 1)) return false;
41
42
43
                 }
44
            return true;
        }
45
   };
46
```

4.5 Eular Path

- 基本概念:
 - 欧拉图: 能够没有重复地一次遍历所有边的图。(必须是连通图)
 - 欧拉路: 上述遍历的路径就是欧拉路。
 - 欧拉回路: 若欧拉路是闭合的(一个圈,从起点开始遍历最终又回到起点),则为欧拉回路。
- 无向图 G 有欧拉路径的充要条件
 - G 是连通图
 - G 中奇顶点(连接边的数量为奇数)的数量等于 0 或 2.
- 无向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点都是偶顶点
- 有向图 G 有欧拉路径的充要条件
 - G 是连通图

- u 的出度比入度大 1, v 的出度比入度小 1, 其他所有点出度和入度相同。(u 为起点, v 为终点)
- 有向图 G 有欧拉回路的充要条件
 - G 是连通图
 - G 中每个顶点的出度等于入度

4.5.1 Fleury

若有两个点的度数是奇数,则此时这两个点只能作为欧拉路径的起点和终点。

```
1 const int maxn = "Edit";
  int G[maxn][maxn];
3 int dea[maxn][maxn];
4 vector<int> ans;
5 inline void init() { memset(G, 0, sizeof(G)), memset(deg, 0, sizeof(deg)); }
6 inline void AddEdge(int u, int v) { deg[u]++, deg[v]++, G[u][v]++, G[v][u]++; }
7 void Fleury(int s)
8
9
       for (int i = 0; i < n; i++)
10
           if (G[s][i])
11
               G[s][i]--, G[i][s]--;
12
13
               Fleury(i);
14
15
       ans.push_back(s);
16 }
```

4.6 Bipartite Graph Matching

- 1. 一个二分图中的最大匹配数等于这个图中的最小点覆盖数
- 2. 最小路径覆盖 =|G|-最大匹配数

在一个 $N \times N$ 的有向图中, 路径覆盖就是在图中找一些路经, 使之覆盖了图中的所有顶点, 且任何一个顶点有且只有一条路径与之关联;

(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.

由上面可以得出:

- (a) 一个单独的顶点是一条路径;
- (b) 如果存在一路径 p_1, p_2,p_k, 其中 p_1 为起点, p_k 为终点,那么在覆盖图中,顶点 p_1, p_2,p_k 不再与其它的顶点之间存在有向边.

最小路径覆盖就是找出最小的路径条数, 使之成为 G 的一个路径覆盖. 路径覆盖与二分图匹配的关系: 最小路径覆盖 =|G|-最大匹配数;

4.6.1 Hungry(Matrix)

```
时间复杂度:O(VE).
   顶点编号从 0 开始
   const int maxn = "Edit";
  int uN, vN;
                     //uN是匹配左边的顶点数, vN是匹配右边的顶点数
3 int g[maxn][maxn]; //邻接矩阵g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
4 int linker[maxn];
  bool used[maxn];
   bool dfs(int u)
6
7
8
       for (int v = 0; v < vN; v++)
           if (g[u][v] && !used[v])
9
10
              used[v] = true;
11
              if (linker[v] == -1 || dfs(linker[v]))
12
13
                  linker[v] = u;
14
15
                  return true;
16
              }
17
          }
18
       return false;
   }
19
   int hungary()
20
21
22
       int res = 0;
23
       memset(linker, -1, sizeof(linker));
       for (int u = 0; u < uN; u++)
24
25
          memset(used, 0, sizeof(used));
26
          if (dfs(u)) res++;
27
28
29
       return res;
30 }
   4.6.2 Hungry(List)
   使用前用 init() 进行初始化
   加边使用函数 addedge(u,v)
1 const int maxn = "Edit";
2 int n;
3 vector<int> G[maxn];
4 int linker[maxn];
5 bool used[maxn];
```

```
inline void init(int n)
7
   {
       for (int i = 0; i < n; i++) G[i].clear();</pre>
8
9
   inline void addedge(int u, int v) { G[u].push_back(v); }
10
   bool dfs(int u)
11
12
   {
       for (auto& v : G[u])
13
14
            if (!used[v])
15
16
               used[v] = true;
17
               if (linker[v] == -1 || dfs(linker[v]))
18
19
                    linker[v] = u;
20
                    return true;
21
               }
22
23
           }
24
25
       return false;
26
   }
27
  int hungary()
28 {
29
       int ans = 0;
30
       memset(linker, -1, sizeof(linker));
       for (int u = 0; u < n; u++)
31
32
           memset(used, 0, sizeof(used));
33
           if (dfs(u)) ans++;
34
35
36
       return ans;
37 }
   4.6.3 Hopcroft-Carp
   复杂度 O(\sqrt{n}*E)
   uN 为左端的顶点数, 使用前赋值 (点编号 0 开始)
1 const int maxn = "Edit";
  vector<int> G[maxn];
   int uN, dis;
   int Mx[maxn], My[maxn];
5
   int dx[maxn], dy[maxn];
   bool used[maxn];
6
   inline void init(int n)
7
8
   {
       for (int i = 0; i < n; i++) G[i].clear();</pre>
9
10
   inline void addedge(int u, int v) { G[u].push_back(v); }
   bool bfs()
12
13
14
       queue<int> q;
15
       dis = INF;
       memset(dx, -1, sizeof(dx)), memset(dy, -1, sizeof(dy));
16
       for (int i = 0; i < uN; i++)
17
           if (Mx[i] == -1) q.push(i), dx[i] = 0;
18
```

```
while (!q.empty())
19
20
             int u = q.front();
21
22
             q.pop();
             if (dx[u] > dis) break;
23
             for (auto& v : G[u])
24
25
                 if (dy[v] == -1)
26
                 {
27
                      dy[v] = dx[u] + 1;
28
29
                      if (My[v] == -1)
30
                          dis = dy[v];
                      else
31
                      {
32
                          dx[My[v]] = dy[v] + 1;
33
                          q.push(My[v]);
34
                      }
35
36
                 }
             }
37
38
        return dis != INF;
39
40
41 bool dfs(int u)
42
   {
43
        for (auto& v : G[u])
44
             if (!used[v] && dy[v] == dx[u] + 1)
45
46
                 used[v] = true;
47
                 if (\overline{My[v]} != -1 \&\& dy[v] == dis) continue;
48
                 if (My[v] == -1 \mid | dfs(My[v]))
49
50
                     My[v] = u, Mx[u] = v;
51
52
                      return true;
53
                 }
             }
54
55
        }
56
        return false;
57
   }
   int MaxMatch()
58
59
        int res = 0;
60
        memset(Mx, -1, sizeof(Mx)), memset(My, -1, sizeof(My));
61
62
        while (bfs())
63
             memset(used, false, sizeof(used));
64
             for (int i = 0; i < uN; i++)
65
                 if (Mx[i] == -1 \&\& dfs(i)) res++;
66
67
68
        return res;
69
   }
    4.6.4 Hungry(Multiple)
1 const int maxn = "Edit";
2 const int maxm = "Edit";
3 int uN, vN;
                         //u,V的数目,使用前面必须赋值
```

```
int g[maxn][maxm]; //邻接矩阵
   int linker[maxm][maxn];
   bool used[maxm];
   int num[maxm]; //右边最大的匹配数
   bool dfs(int u)
8
9
   {
        for (int v = 0; v < vN; v++)
10
            if (g[u][v] && !used[v])
11
12
                used[v] = true;
13
                if (linker[v][0] < num[v])</pre>
14
15
                     linker[v][++linker[v][0]] = u;
16
                     return true;
17
18
                for (int i = 1; i <= num[0]; i++)
19
                     if (dfs(linker[v][i]))
20
21
                         linker[v][i] = u;
22
23
                         return true;
                     }
24
25
        return false;
26
27
   }
28 int hungary()
29
   {
30
        int res = 0;
        for (int i = 0; i < vN; i++) linker[i][0] = 0;
31
        for (int u = 0; u < uN; u++)
32
33
            memset(used, 0, sizeof(used));
34
35
            if (dfs(u)) res++;
36
37
        return res;
38
   }
   4.6.5 Kuhn-Munkres
1 const int maxn = "Edit";
2
  int n;
   int cost[maxn][maxn];
3
   int lx[maxn], ly[maxn], match[maxn], slack[maxn];
int prev[maxn];
   bool vy[maxn];
6
7
   void augment(int root)
8
9
   {
        fill(vy + 1, vy + n + 1, false);
10
        fill(slack + 1, slack + n + 1, INF);
11
12
        int py;
        match[py = 0] = root;
13
        do
14
15
16
            vy[py] = true;
            int x = match[py], yy;
17
            int delta = INF;
18
19
            for (int y = 1; y <= n; y++)
```

```
{
20
21
                if (!vy[y])
22
                     if (lx[x] + ly[y] - cost[x][y] < slack[y])
23
24
                         slack[y] = lx[x] + ly[y] - cost[x][y], prev[y] = py;
                     if (slack[y] < delta) delta = slack[y], yy = y;</pre>
25
26
27
28
            for (int y = 0; y <= n; y++)
29
30
                if (vy[y])
31
                     lx[match[y]] -= delta, ly[y] += delta;
32
33
                     slack[y] -= delta;
34
35
            py = yy;
        } while (match[py] != -1);
36
37
38
39
            int pre = prev[py];
            match[py] = match[pre], py = pre;
40
        } while (py);
41
   }
42
43 int KM()
44
   {
        for (int i = 1; i <= n; i++)
45
46
            lx[i] = ly[i] = 0;
47
            match[i] = -1;
48
            for (int j = 1; j \le n; j++) lx[i] = max(lx[i], cost[i][j]);
49
50
        int answer = 0;
51
        for (int root = 1; root <= n; root++) augment(root);</pre>
52
        for (int i = 1; i \le n; i++) answer += lx[i], answer += ly[i];
53
        return answer;
54
55 }
```

4.7 Network Flow

```
struct Edge
1
2
      int from, to, cap, flow;
3
      Edge(int u, int v, int c, int f)
4
          : from(u), to(v), cap(c), flow(f) {}
5
6 };
  费用流
1 struct Edge
2
      int from, to, cap, flow, cost;
3
4
      Edge(int u, int v, int c, int f, int w)
           : from(u), to(v), cap(c), flow(f), cost(w) {}
5
6 };
```

建模技巧

二**分图带权最大独立集**。给出一个二分图,每个结点上有一个正权值。要求选出一些点,使得这些点之间没有边相连,且权值和最大。

解: 在二分图的基础上添加源点 S 和汇点 T,然后从 S 向所有 X 集合中的点连一条边,所有 Y 集合中的点向 T 连一条边,容量均为该点的权值。 X 结点与 Y 结点之间的边的容量均为无穷大。这样,对于图中的任意一个割,将割中的边对应的结点删掉就是一个符合要求的解,权和为所有权减去割的容量。因此,只需要求出最小割,就能求出最大权和。

公平分配问题。把 m 个任务分配给 n 个处理器。其中每个任务有两个候选处理器,可以任选一个分配。要求所有处理器中,任务数最多的那个处理器所分配的任务数尽量少。不同任务的候选处理器集 $\{p_1, p_2\}$ 保证不同。

解: 本题有一个比较明显的二分图模型,即 X 结点是任务,Y 结点是处理器。二分答案 x,然后构图,首先从源点 S 出发向所有的任务结点引一条边,容量等于 1,然后从每个任务结点出发引两条边,分别到达它所能分配到的两个处理器结点,容量为 1,最后从每个处理器结点出发引一条边到汇点 T,容量为 x,表示选择该处理器的任务不能超过 x。这样网络中的每个单位流量都是从 S 流到一个任务结点,再到处理器结点,最后到汇点 T。只有当网络中的总流量等于 m 时才意味着所有任务都选择了一个处理器。这样,我们通过 $O(\log m)$ 次最大流便算出了答案。

区间 *k* **覆盖问题**。数轴上有一些带权值的左闭右开区间。选出权和尽量大的一些区间,使得任意一个数最多被 *k* 个区间覆盖。

解: 本题可以用最小费用流解决,构图方法是把每个数作为一个结点,然后对于权值为 w 的区间 [u,v) 加边 $u \rightarrow v$,容量为 1,费用为 -w。再对所有相邻的点加边 $i \rightarrow i + 1$,容量为 k,费用为 0。最后,求最左点到最右点的最小费用最大流即可,其中每个流量对应一组互不相交的区间。如果数值范围太大,可以先进行离散化。

最大闭合子图。给定带权图 G (权值可正可负),求一个权和最大的点集,使得起点在该点集中的任意弧,终点也在该点集中。

 \mathbf{M} : 新增附加源 s 和附加汇 t, 从 s 向所有正权点引一条边,容量为权

值;从所有负权点向汇点引一条边,容量为权值的相反数。求出最小割以后, $S - \{s\}$ 就是最大闭合子图。

最大密度子图。给出一个无向图,找一个点集,使得这些点之间的边数除以点数的值(称为子图的密度)最大。

解: 如果两个端点都选了,就必然要选边,这就是一种推导。如果把每个点和每条边都看成新图中的结点,可以把问题转化为最大闭合子图。

4.7.1 EdmondKarp

```
const int maxn = "Edit";
   struct EdmonsKarp //时间复杂度O(v*E*E)
2
3
   {
       int n, m;
4
       vector<Edge> edges; //边数的两倍
5
       vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的序号
6
       int a[maxn];
                             //起点到i的可改进量
7
       int p[maxn];
8
                             //最短路树上p的入弧编号
9
       void init(int n)
10
            for (int i = 0; i < n; i++) G[i].clear();</pre>
11
12
            edges.clear();
13
       void AddEdge(int from, int to, int cap)
14
15
            edges.emplace_back(from, to, cap, 0);
16
17
            edges.emplace_back(to, from, 0, 0); //反向弧
           m = edges.size();
18
           G[from].push_back(m - 2);
19
           G[to].push_back(m - 1);
20
21
       int Maxflow(int s, int t)
22
23
            int flow = 0;
24
25
            for (;;)
26
                memset(a, 0, sizeof(a));
27
                queue<int> q;
28
29
                q.push(s);
                a[s] = INF
30
                while (!q.empty())
31
32
                    int x = q.front();
33
34
                    q.pop();
                    for (int i = 0; i < G[x].size(); i++)</pre>
35
36
                        Edge& e = edges[G[x][i]];
37
38
                        if (!a[e.to] && e.cap > e.flow)
39
40
                            p[e.to] = G[x][i];
                            a[e.to] = min(a[x], e.cap - e.flow);
41
                            q.push(e.to);
42
```

```
}
43
44
                    if (a[t]) break;
45
46
                if (!a[t]) break;
47
                for (int u = t; u != s; u = edges[p[u]].from)
48
49
                    edges[p[u]].flow += a[t];
50
                    edges[p[u] ^1].flow -= a[t];
51
52
53
                flow += a[t];
54
           }
           return flow;
55
       }
56
   };
57
   4.7.2 Dinic
   const int maxn = "Edit";
2
   struct Dinic
3
   {
       int n, m, s, t;
                             //结点数,边数(包括反向弧),源点编号和汇点编号
4
       vector<Edge> edges; //边表。edge[e]和edge[e^1]互为反向弧
5
6
       vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的序号
7
       bool vis[maxn];
                             //BFS使用
8
       int d[maxn];
                             //从起点到i的距离
9
       int cur[maxn];
                             //当前弧下标
10
       void init(int n)
11
12
           this->n = n;
           for (int i = 0; i < n; i++) G[i].clear();</pre>
13
14
           edges.clear();
15
       void AddEdge(int from, int to, int cap)
16
17
18
           edges.emplace_back(from, to, cap, 0);
19
           edges.emplace_back(to, from, 0, 0);
20
           m = edges.size();
21
           G[from].push_back(m - 2);
22
           G[to].push_back(m - 1);
23
       bool BFS()
24
25
           memset(vis, 0, sizeof(vis));
26
           memset(d, 0, sizeof(d));
27
28
           queue<int> q;
29
           q.push(s);
           d[s] = 0;
30
           vis[s] = 1;
31
           while (!q.empty())
32
33
           {
                int x = q.front();
34
35
                q.pop();
                for (int i = 0; i < G[x].size(); i++)
36
37
                    Edge& e = edges[G[x][i]];
38
39
                    if (!vis[e.to] && e.cap > e.flow)
```

```
{
40
                        vis[e.to] = 1;
41
                        d[e.to] = d[x] + 1;
42
43
                        q.push(e.to);
                    }
44
45
                }
46
            }
            return vis[t];
47
48
       int DFS(int x, int a)
49
50
51
            if (x == t | l a == 0) return a;
            int flow = 0, f;
52
            for (int& i = cur[x]; i < G[x].size(); i++)</pre>
53
            { //从上次考虑的弧
54
                Edge& e = edges[G[x][i]];
55
                if (d[x] + 1 == d[e.to] \&\& (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)
56
57
                    e.flow += f;
58
                    edges[G[x][i] \land 1].flow -= f;
59
                    flow += f;
60
                    a -= f;
61
                    if (a == 0) break;
62
                }
63
64
            }
           return flow;
65
66
       int Maxflow(int s, int t)
67
68
            this->s = s, this->t = t;
69
70
            int flow = 0;
           while (BFS())
71
72
            {
                memset(cur, 0, sizeof(cur));
73
                flow += DFS(s, INF);
74
75
76
            return flow;
77
       }
   };
78
   4.7.3 ISAP
   const int maxn = "Edit";
2
   struct ISAP
3
   {
       int n, m, s, t;
                             //结点数,边数(包括反向弧),源点编号和汇点编号
4
       vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
5
       vector<int> G[maxn]; //邻接表, G[i][j]表示结点i的第j条边在e数组中的序号
6
       bool vis[maxn];
7
                             //BFS使用
8
       int d[maxn];
                             //起点到i的距离
       int cur[maxn];
                             //当前弧下标
9
                             //可增广路上的一条弧
10
       int p[maxn];
11
       int num[maxn];
                             //距离标号计数
12
       void init(int n)
13
       {
14
            this -> n = n;
            for (int i = 0; i < n; i++) G[i].clear();</pre>
15
```

```
edges.clear();
16
17
        void AddEdge(int from, int to, int cap)
18
19
            edges.emplace_back(from, to, cap, 0);
20
            edges.emplace_back(to, from, 0, 0);
21
            int m = edges.size();
22
23
            G[from].push_back(m - 2);
24
            G[to].push_back(m - 1);
25
        }
26
        int Augument()
27
            int x = t, a = INF;
28
            while (x != s)
29
30
                 Edge& e = edges[p[x]];
31
32
                 a = min(a, e.cap - e.flow);
33
                 x = edges[p[x]].from;
            }
34
35
            x = t;
            while (x != s)
36
37
                 edges[p[x]].flow += a;
38
39
                 edges[p[x] ^ 1].flow -= a;
40
                 x = edges[p[x]].from;
41
            return a;
42
43
        void BFS()
44
45
            memset(vis, 0, sizeof(vis));
46
            memset(d, 0, sizeof(d));
47
            queue<int> q;
48
            q.push(t);
49
            d[t] = 0;
50
            vis[t] = 1;
51
52
            while (!q.empty())
53
            {
                 int x = q.front();
54
                 q.pop();
55
                 int len = G[x].size();
56
                 for (int i = 0; i < len; i++)
57
58
59
                     Edge& e = edges[G[x][i] ^ 1];
                     if (!vis[e.from] && e.cap > e.flow)
60
                     {
61
62
                         vis[e.from] = 1;
                         d[e.from] = d[x] + 1;
63
                         q.push(e.from);
64
65
                     }
66
                 }
67
            }
68
        int Maxflow(int s, int t)
69
70
71
            this -> s = s;
72
            this->t = t;
            int flow = 0;
73
            BFS();
74
```

```
memset(num, 0, sizeof(num));
75
             for (int i = 0; i < n; i++)
76
                 if (d[i] < INF) num[d[i]]++;</pre>
77
             int x = s;
78
             memset(cur, 0, sizeof(cur));
79
             while (d[s] < n)</pre>
80
             {
81
                 if(x == t)
82
83
                      flow += Augumemt();
84
85
                     X = S;
86
                 int ok = 0;
87
                 for (int i = cur[x]; i < G[x].size(); i++)</pre>
88
89
                      Edge& e = edges[G[x][i]];
90
                     if (e.cap > e.flow && d[x] == d[e.to] + 1)
91
92
                          ok = 1;
93
                          p[e.to] = G[x][i];
94
                          cur[x] = i;
95
96
                          x = e.to;
                          break;
97
98
                     }
99
                 if (!ok) //Retreat
100
101
                      int m = n - 1;
102
                      for (int i = 0; i < G[x].size(); i++)
103
104
                          Edge& e = edges[G[x][i]];
105
106
                          if (e.cap > e.flow) m = min(m, d[e.to]);
107
                     if (--num[d[x]] == 0) break; //gap优化
108
                     num[d[x] = m + 1]++;
109
                      cur[x] = 0;
110
111
                      if (x != s) x = edges[p[x]].from;
112
                 }
             }
113
114
             return flow;
115
         }
    };
116
    4.7.4 MinCost MaxFlow
    const int maxn = "Edit";
    struct MCMF
 2
 3
    {
         int n, m;
 4
         vector<Edge> edges;
 5
         vector<int> G[maxn];
 6
 7
         int inq[maxn]; //是否在队列中
         int d[maxn];
                        //bellmanford
 8
         int p[maxn];
                        //上一条弧
 9
                        //可改进量
         int a[maxn];
 10
         void init(int n)
11
```

12

{

```
13
            this->n = n;
            for (int i = 0; i < n; i++) G[i].clear();</pre>
14
            edges.clear();
15
16
        void AddEdge(int from, int to, int cap, int cost)
17
18
            edges.emplace_back(from, to, cap, 0, cost);
19
            edges.emplace_back(to, from, 0, 0, -cost);
20
            m = edges.size();
21
            G[from].push_back(m - 2);
22
23
            G[to].push_back(m - 1);
24
        bool BellmanFord(int s, int t, int& flow, ll& cost)
25
26
            for (int i = 0; i < n; i++) d[i] = INF;</pre>
27
            memset(inq, 0, sizeof(inq));
28
            d[s] = 0;
29
30
            inq[s] = 1;
31
            p[s] = 0;
            a[s] = INF;
32
            queue<int> q;
33
34
            q.push(s);
            while (!q.empty())
35
36
            {
37
                int u = q.front();
38
                q.pop();
                inq[u] = 0;
39
                for (int i = 0; i < G[u].size(); i++)</pre>
40
41
                     Edge& e = edges[G[u][i]];
42
                     if (e.cap > e.flow && d[e.to] > d[u] + e.cost)
43
44
                         d[e.to] = d[u] + e.cost;
45
                         p[e.to] = G[u][i];
46
                         a[e.to] = min(a[u], e.cap - e.flow);
47
                         if (!inq[e.to])
48
49
                         {
                              q.push(e.to);
50
                              inq[e.to] = 1;
51
52
                         }
                     }
53
                }
54
55
            if (d[t] == INF) return false; // 当没有可增广的路时退出
56
            flow += a[t];
57
            cost += (ll)d[t] * (ll)a[t];
58
59
            for (int u = t; u != s; u = edges[p[u]].from)
60
            {
                edges[p[u]].flow += a[t];
61
62
                edges[p[u] ^1].flow -= a[t];
63
64
            return true;
65
        int MincostMaxflow(int s, int t, ll& cost)
66
67
            int flow = 0;
68
69
            cost = 0;
            while (BellmanFord(s, t, flow, cost));
70
            return flow;
71
```

72 } 73 };

4.7.5 Upper-Lower Bound

上下界网络流建图方法

记号说明

- f(u,v) 表示 $u \to v$ 的实际流量
- b(u,v) 表示 $u \to v$ 的流量下界
- c(u,v) 表示 $u \to v$ 的流量上界

无源汇可行流

建图

- 新建附加源点 S 和 T
- 原图中的边 $u \to v$,限制为 [b,c],建边 $u \to v$,容量为 c-b
- $\dagger \exists \ d(i) = \sum b(u,i) \sum b(i,v)$
- 若 d(i) > 0, 建边 $S \rightarrow i$, 流量为 d(i)
- 若 d(i) < 0, 建边 $i \rightarrow T$, 流量为 -d(i)

求解

- 跑 $S \to T$ 的最大流,如果满流,则原图存在可行流。
- 此时,原图中每一条边的流量为新图中对应边的流量加上这条边的下界。

有源汇可行流

建图

- 在原图中建边 $t \to s$, 流量限制为 $[0,+\infty)$, 这样就改造成了无源汇的 网络流图。
- 之后就可以像求解无源汇可行流一样建图了。

求解 同无源汇可行流

有源汇最大流

建图 同有源汇可行流

求解

- 先跑一遍 $S \to T$ 的最大流, 求出可行流
- 记此时 $\sum f(s,i) = sum_1$
- 将 $t \rightarrow s$ 这条边拆掉, 在新图上跑 $s \rightarrow t$ 的最大流
- 记此时 $\sum f(s,i) = sum_2$
- 最终答案即为 $sum_1 + sum_2$

有源汇最小流

建图 同无源汇可行流

求解

- 求 $S \to T$ 最大流
- 建边 $t \to s$, 容量为 $+\infty$
- 再跑一遍 $S \to T$ 的最大流, 答案即为 f(t,s)

有源汇的最大流和最小流也可以通过二分答案求得,

即二分 $t \to s$ 的下界 (最大流) 和上界 (最小流) 复杂度多了个 $O(\log n)$ 这里不再赘述。

蓝书上的做法

- 先用无源汇可行流建图的方法求出可行流,然后用传统 s-t 增广路算法即可得到最大流。把 t 看成源点,s 看成汇点后求出的 t-s 最大流就是最小流。
- 注意: 原先每条弧 $u \to v$ 的反向弧容量为 0,而在有容量下界的情形中,反向弧的容量应该等于流量下界。

有源汇费用流

建图

- 新建附加源点 S 和 T
- 原图中的边 $u \to v$,限制为 [b,c],费用为 cost,建边 $u \to v$,容量为 c-b,费用为 cost

- $i \exists d(i) = \sum b(u,i) \sum b(i,v)$
- 若 d(i) > 0, 建边 $S \to i$, 流量为 d(i), **费用为** 0
- 若 d(i) < 0, 建边 $i \to T$, 流量为 -d(i), **费用为** 0
- 建边 $t \to s$, 流量为 $+\infty$, 费用为 0。

求解

- 跑 $S \to T$ 的最小费用最大流
- 答案为求出的费用加上原图中边的下界乘以边的费用

5 Computational Geometry

5.1 Basic Function

```
1 #define zero(x) ((fabs(x) < eps ? 1 : 0))
2 #define sqn(x) (fabs(x) < eps ? 0 : ((x) < 0 ? -1 : 1))
3
4 struct point
5 {
       double x, y;
6
       point(double a = 0, double b = 0) { x = a, y = b; }
7
       point operator-(const point& b) const { return point(x - b.x, y - b.y); }
8
       point operator+(const point& b) const { return point(x + b.x, y + b.y); }
9
10
       // 两点是否重合
11
       bool operator==(point& b) { return zero(x - b.x) && zero(y - b.y); }
12
       // 点积(以原点为基准)
       double operator*(const point& b) const { return x * b.x + y * b.y; }
13
       // 叉积(以原点为基准)
14
       double operator^(const point& b) const { return x * b.y - y * b.x; }
15
       // 绕P点逆时针旋转a弧度后的点
17
       point rotate(point b, double a)
18
           double dx, dy;
19
           (*this - b).split(dx, dy);
20
           double tx = dx * cos(a) - dy * sin(a);
21
           double ty = dx * sin(a) + dy * cos(a);
22
23
           return point(tx, ty) + b;
24
       // 点坐标分别赋值到a和b
25
       void split(double& a, double& b) { a = x, b = y; }
26
27
   };
28 struct line
29
   {
30
       point s, e;
31
       line() {}
       line(point ss, point ee) { s = ss, e = ee; }
32
33 };
   5.2 Position
   5.2.1 Point-Point
1 double dist(point a, point b) { return sqrt((a - b) * (a - b)); }
   5.2.2 Line-Line
1 // <0, *> 表示重合; <1, *> 表示平行; <2, P> 表示交点是P;
  pair<int, point> spoint(line l1, line l2)
2
3
4
       point res = l1.s;
       if (sgn((l1.s - l1.e) \wedge (l2.s - l2.e)) == 0)
5
           return {sgn((l1.s - l2.e) ^ (l2.s - l2.e)) != 0, res};
6
       double t = ((11.s - 12.s) \wedge (12.s - 12.e)) / ((11.s - 11.e) \wedge (12.s - 12.e));
7
       res.x += (l1.e.x - l1.s.x) * t;
8
```

```
res.y += (l1.e.y - l1.s.y) * t;
        return {2, res};
10
11 }
   5.2.3 Segment-Segment
   bool segxseg(line l1, line l2)
1
2
3
        return
            max(11.s.x, 11.e.x) >= min(12.s.x, 12.e.x) &&
4
            \max(12.s.x, 12.e.x) >= \min(11.s.x, 11.e.x) &&
5
            max(l1.s.y, l1.e.y) >= min(l2.s.y, l2.e.y) &&
6
            \max(l2.s.y, l2.e.y) >= \min(l1.s.y, l1.e.y) &\& sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e-l1.e) ^ (l1.s - l1.e)) <= 0 &&
7
8
            sgn((11.s - 12.e) \wedge (12.s - 12.e)) * sgn((11.e-12.e) \wedge (12.s - 12.e)) <= 0;
9
10 }
   5.2.4 Line-Segment
1 //11是直线,12是线段
2 bool segxline(line l1, line l2)
3 {
        return sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <=
4
5 }
   5.2.5 Point-Line
   double pointtoline(point p, line l)
1
2
        point res;
3
        double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
        res.x = 1.s.x + (1.e.x - 1.s.x) * t, res.y = 1.s.y + (1.e.y - 1.s.y) * t;
        return dist(p, res);
6
7 }
   5.2.6 Point-Segment
   double pointtosegment(point p, line l)
1
2
3
        point res;
        double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l.s));
4
5
        if (t >= 0 && t <= 1)
            res.x = l.s.x + (l.e.x - l.s.x) * t, res.y = l.s.y + (l.e.y - l.s.y) * t;
6
7
8
            res = dist(p, l.s) < dist(p, l.e) ? l.s : l.e;
9
        return dist(p, res);
10 }
```

5.2.7 Point on Segment

```
bool PointOnSeg(point p, line l)
1
2
3
       return
          sgn((1.s - p) \wedge (1.e-p)) == 0 \&\&
4
          sgn((p.x - l.s.x) * (p.x - l.e.x)) <= 0 &&
5
          sgn((p.y - 1.s.y) * (p.y - 1.e.y)) <= 0;
6
7 }
   5.3 Polygon
   5.3.1 Area
  double area(point p[], int n)
2
   {
3
      double res = 0;
      for (int i = 0; i < n; i++) res += (p[i] ^ p[(i + 1) % n]) / 2;
4
      return fabs(res);
6 }
   5.3.2 Point in Convex
1 // 点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
  // 点的编号: [0,n)
3 // -1: 点在凸多边形外
4 // 0 : 点在凸多边形边界上
  // 1 : 点在凸多边形内
6
  int PointInConvex(point a, point p[], int n)
7
  {
      for (int i = 0; i < n; i++)
8
9
          if (sgn((p[i] - a) \land (p[(i + 1) \% n] - a)) < 0)
10
              return -1;
          else if (PointOnSeg(a, line(p[i], p[(i + 1) % n])))
11
12
              return 0;
      return 1;
13
14 }
   5.3.3 Point in Polygon
1 // 射线法,poly□的顶点数要大于等于3,点的编号0~n-1
2 // -1: 点在凸多边形外
3 // 0 : 点在凸多边形边界上
4 // 1 : 点在凸多边形内
5 int PointInPoly(point p, point poly[], int n)
6
7
      int cnt;
      line ray, side;
8
9
      cnt = 0;
      ray.s = p;
10
11
      ray.e.y = p.y;
      12
```

for (int i = 0; i < n; i++)

13

```
{
14
           side.s = poly[i], side.e = poly[(i + 1) % n];
15
           if (PointOnSeg(p, side)) return 0;
16
17
           //如果平行轴则不考虑
           if (sgn(side.s.y - side.e.y) == 0)
18
               continue;
19
20
           if (PointOnSeg(sid e.s, r ay))
               cnt += (sgn(side.s.y - side.e.y) > 0);
21
           else if (PointOnSeg(side.e, ray))
22
               cnt += (sgn(side.e.y - side.s.y) > 0);
23
24
           else if (segxseg(ray, side))
25
               cnt++;
26
27
       return cnt % 2 == 1 ? 1 : -1;
28
   }
   5.3.4 Judge Convex
1 //点可以是顺时针给出也可以是逆时针给出
  //点的编号1~n-1
3 bool isconvex(point poly[], int n)
4
       bool s[3];
5
       memset(s, 0, sizeof(s));
6
7
       for (int i = 0; i < n; i++)
8
           s[sgn((poly[(i + 1) % n] - poly[i]) ^ (poly[(i + 2) % n] - poly[i])) + 1] = 1;
9
           if (s[0] && s[2]) return 0;
10
11
12
       return 1;
13 }
   5.4 Integer Points
   5.4.1 On Segment
int OnSegment(line l) { return __gcd(fabs(l.s.x - l.e.x), fabs(l.s.y - l.e.y)) + 1; }
   5.4.2 On Polygon Edge
  int OnEdge(point p[], int n)
2
3
       int i, ret = 0;
       for (i = 0; i < n; i++)
           ret += _-gcd(fabs(p[i].x - p[(i + 1) % n].x), fabs(p[i].y - p[(i + 1) % n].y));
5
6
       return ret;
7
   }
```

5.4.3 Inside Polygon

```
int InSide(point p[], int n)
2
   {
       int i, area = 0;
3
       for (i = 0; i < n; i++)
4
           area += p[(i + 1) % n].y * (p[i].x - p[(i + 2) % n].x);
5
       return (fabs(area) - OnEdge(p, n)) / 2 + 1;
6
7 }
   5.5 Circle
   5.5.1 Circumcenter
   point waixin(point a, point b, point c)
1
2
       double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
3
       double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
4
       double d = a1 * b2 - a2 * b1;
5
       return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
6
7 }
   5.6 RuJia Liu's
   5.6.1 Point
1
   struct Point
2
3
       double x, y;
       Point(double x = 0, double y = 0) : x(x), y(y) {}
4
5
   };
6
7
   typedef Point Vector;
8
9 //向量+向量=向量,点+向量=点
10 Vector operator+(Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
11 //点-点=向量
12 Vector operator-(Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); }
13 //向量*数=向量
14 Vector operator*(Vector A, double p) { return Vector(A.x * p, A.y * p); }
15 //向量/数=向量
   Vector operator/(Vector A, double p) { return Vector(A.x / p, A.y / p); }
17
   bool operator<(const Point& a, const Point& b)
18
19
   {
20
       return a.x < b.x | | (a.x == b.x && a.y < b.y);
  }
21
22
   const double eps = 1e-10;
   double dcmp(double x)
25
26
       if (fabs(x) < eps)
27
           return 0;
28
       else
29
           return x < 0 ? -1 : 1;
30 }
31
```

```
32 bool operator==(const Point& a, const Point& b)
33
   {
       return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
34
   }
35
36
37
    * 基本运算:
38
    * 点积
39
    * 叉积
40
    * 向量旋转
41
    */
42
   double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; }
43
   double Length(Vector A) { return sqrt(Dot(A, A)); }
44
   double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
46
   double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
47
   double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
48
49
50 //rad是弧度
51 Vector Rotate(Vector A, double rad)
52 \quad \{
       return Vector(A.x * cos(rad) - A.y * sin(rad),
53
                     A.x * sin(rad) + A.y * cos(rad));
54
55 }
56
57
  //调用前请确保A不是零向量
58 Vector Normal(Vector A)
59
       double L = Length(A);
60
       return Vector(-A.y / L, A.x / L);
61
   }
62
63
64
    * 点和直线:
65
    * 两直线交点
66
    * 点到直线的距离
67
   * 点到线段的距离
68
    * 点在直线上的投影
69
    * 线段相交判定
70
    * 点在线段上判定
71
72
73
74 //调用前保证两条直线P+tv和Q+tw有唯一交点。当且仅当Cross(v, w)非0
   Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
75
76
   {
77
       Vector u = P - Q;
       double t = Cross(w, u) / Cross(v, w);
78
       return P + v * t;
79
80 }
81
82
   double DistanceToLine(Point P, Point A, Point B)
83
   {
       Vector v1 = B - A, v2 = P - A;
84
       return fabs(Cross(v1, v2)) / Length(v1); //如果不取绝对值, 得到的是有向距离
85
   }
86
87
   double DistanceToSegment(Point P, Point A, Point B)
88
89
   {
       if (A == B) return Length(P - A);
90
```

```
Vector v1 = B - A, v2 = P - A, v3 = P - B;
91
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);</pre>
92
        if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
93
        return fabs(Cross(v1, v2)) / Length(v1);
94
    }
95
96
    Point GetLineProjection(Point P, Point A, Point B)
97
98
99
        Vector v = B - A;
         return A + v * (Dot(v, P - A) / Dot(v, v));
100
    }
101
102
103 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
104
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - b1),
      c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
105
106
         return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
107
108
    }
109
110 bool OnSegment(Point p, Point a1, Point a2)
111 {
         return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
112
113 }
    5.6.2 Circle
 1
    struct Line
 2
                     //直线上任意一点
 3
        Point p;
                     //方向向量。它的左边就是对应的半平面
        Vector v;
 4
        double ang; //极角。即从x正半轴旋转到向量v所需要的角 (弧度)
 5
 6
        Line() {}
 7
        Line(Point p, Vector v) : p(p), v(v) { ang = atan2(v.y, v.x); }
        bool operator<(const Line& L) const // 排序用的比较运算符
 8
 9
10
             return ang < L.ang;</pre>
11
12
        Point point(double t) { return p + v * t; }
13
    };
14
    struct Circle
15
16
    {
17
         Point c;
18
        double r:
        Circle(Point c, double r) : c(c), r(r) {}
19
        Point point(double a) { return c.x + cos(a) * r, c.y + sin(a) * r; }
20
21
    };
22
    int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>&
23
        sol)
    {
24
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
25
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
26
        double delta = f * f - 4 * e * g; //判别式
27
        if (dcmp(delta) < 0) return 0;</pre>
28
                                             //相离
        if (dcmp(delta) == 0)
29
30
         {
```

```
t1 = t2 = -f / (2 * e);
31
           sol.push_back(L.point(t1));
32
33
           return 1;
       }
34
       //相交
35
       t1 = (-f - sqrt(delta)) / (2 * e);
36
       t2 = (-f + sqrt(delta)) / (2 * e);
37
       sol.push_back(t1);
38
       sol.push_back(t2);
39
       return 2;
40
   }
41
42
   double angle(Vector v) { return atan2(v.y, v.x); }
43
44
   int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol)
45
46
       double d = Length(C1.c - C2.c);
47
       if (dcmp(d) == 0)
48
49
           if (dcmp(C1.r - C2.r) == 0) return -1; //两圆重合
50
           return 0;
51
52
       if (dcmp(C1.r + C2.r - d) < 0) return 0;
53
54
       if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; //外离
55
       double \ a = angle(C2.c - C1.c); //向量C1C2的极角
56
       double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
57
       //C1C2到C1P1的角
58
       Point p1 = C1.point(a - da), p2 = C1.point(a + da);
59
60
       sol.push_back(p1);
61
       if (p1 == p2) return 1;
62
       sol.push_back(p2);
63
       return 2;
64
   }
65
66
   //过点p到圆C的切线, v[i]是第i条切线的向量, 返回切线条数
67
68
   int getTangents(Point p, Circle C, Vector* v)
69
70
       Vector u = C.c - p;
71
       double dist = Length(u);
       if (dist < C.r)</pre>
72
73
           return 0;
74
       else if (dcmp(dist - C.r) == 0)
       { //p在圆上,只有一条切线
75
           v[0] = Rotate(u, M_PI / 2);
76
77
           return 1;
       }
78
79
       else
80
81
           double ang = asin(C.r / dist);
           v[0] = Rotate(u, -ang);
82
           v[1] = Rotate(u, +ang);
83
84
           return 2;
       }
85
86
   }
87
88 //两圆的公切线
89 //返回切线的条数。-1表示无穷条切线。
```

```
//a[i]和b[i]分别是第i条切线在圆A和圆B上的切点
    int getTangents(Circle A, Circle B, Point* a, Point* b)
91
    {
92
93
        int cnt = 0;
94
        if (A.r < B.r)
95
        {
            swap(A, B);
96
            swap(a, b);
97
98
        }
        int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
99
        int rdiff = A.r - B.r;
100
101
        int rsum = A.r + B.r;
        if (d2 < rdiff * rdiff) return 0; //内含
102
        double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
103
        if (d2 == 0 && A.r == B.r) return -1; //无限多条切线
104
        if (d2 == rdiff * rdiff)
105
        { //内切, 一条切线
106
            a[cnt] = A.point(base);
107
            b[cnt] = B.point(base);
108
            cnt++;
109
            return 1;
110
111
        //有外共切线
112
        double ang = acos((A.r - B.r) / sqrt(d2));
113
114
        a[cnt] = A.point(base + ang);
        b[cnt] = B.point(base + ang);
115
        cnt++;
116
        a[cnt] = A.point(base + ang);
117
        b[cnt] = B.point(base - ang);
118
119
        cnt++;
        if (d2 == rsum * rsum)
120
121
122
            a[cnt] = A.point(base);
            b[cnt] = B.point(M_PI + base);
123
124
            cnt++;
        }
125
126
        else if (d2 > rsum * rsum)
127
            double ang = acos((A.r + B.r) / sqrt(d2));
128
            a[cnt] = A.point(base + ang);
129
            b[cnt] = B.point(M_PI + base + ang);
130
            cnt++;
131
            a[cnt] = A.point(base - ang);
132
133
            b[cnt] = B.point(M_PI + base - ang);
134
            cnt++;
135
136
        return cnt;
137 }
138
139 //三角形外接圆 (三点保证不共线)
140 Circle CircumscribedCircle(Point p1, Point p2, Point p3)
141 {
142
        double Bx = p2.x - p1.x, By = p2.y - p1.y;
143
        double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
        double D = 2 * (Bx * Cy - By * Cx);
144
        double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
145
        double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
146
        Point p = Point(cx, cy);
147
148
        return Circle(p, Length(p1 - p));
```

```
149 }
150
   //三角形内切圆
151
    Circle InscribedCircle(Point p1, Point p2, Point p3)
152
153
        double a = Length(p2 - p3);
154
        double b = Length(p3 - p1);
155
        double c = Length(p1 - p2);
156
        Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
157
        return Circle(p, DistanceToLine(p, p1, p2));
158
159
   }
    5.6.3 Polygon
   typedef vector<Point> Polygon;
    //多边形的有向面积
 3
    double PolygonArea(Polygon po)
 4
    {
 5
        int n = po.size();
        double area = 0.0;
 6
        for (int i = 1; i < n - 1; i++)
 7
            area += Cross(po[i] - po[0], po[i + 1] - po[0]);
 8
 9
        return area / 2;
10
   }
11
12
   //点在多边形内判定
   int isPointInPolygon(Point p, Polygon poly)
13
14
        int wn = 0; //绕数
15
16
        int n = poly.size();
        for (int i = 0; i < n; i++)
17
18
19
            if (OnSegment(p, poly[i], poly[(i + 1) % n])) return -1; //边界上
            int k = dcmp(Cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
20
            int d1 = dcmp(poly[i].y - p.y);
21
22
            int d2 = dcmp(poly[(i + 1) \% n].y - p.y);
23
            if (k > 0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
24
            if (k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn--;
25
        if (wn != 0) return 1; //内部
26
        return 0;
27
                               //外部
28 }
29
30 //凸包(Andrew算法)
   //如果不希望在凸包的边上有输入点,把两个 <= 改成 <
   //如果不介意点集被修改,可以改成传递引用
   Polygon ConvexHull(vector<Point> p)
33
    {
34
        sort(p.begin(), p.end());
35
36
        p.erase(unique(p.begin(), p.end()), p.end());
        int n = p.size(), m = 0;
37
38
        Polygon res(n + 1);
        for (int i = 0; i < n; i++)
39
40
            while (m > 1 \& Cross(res[m - 1] - res[m - 2], p[i] - res[m - 2]) <= 0) m--;
41
42
            res[m++] = p[i];
        }
43
```

```
int k = m;
44
       for (int i = n - 2; i >= 0; i--)
45
46
           while (m > k \& Cross(res[m - 1] - res[m - 2], p[i] - res[m - 2]) <= 0) m--;
47
           res[m++] = p[i];
48
       }
49
50
       m -= n > 1;
       res.resize(m);
51
52
       return res;
   }
53
54
55
  //半平面交
  vector<Point> HalfplaneIntersection(vector<Line>& L)
56
57
       int n = L.size();
58
       sort(L.begin(), L.end()); // 按极角排序
59
60
                          // 双端队列的第一个元素和最后一个元素的下标
       int first, last;
61
       vector<Point> p(n); // p[i]为q[i]和q[i+1]的交点
62
       vector<Line> q(n); // 双端队列
63
       vector<Point> ans; // 结果
64
65
       q[first = last = 0] = L[0]; // 双端队列初始化为只有一个半平面L[0]
66
67
       for (int i = 1; i < n; i++)
68
       {
           while (first < last && !OnLeft(L[i], p[last - 1])) last--;</pre>
69
           while (first < last && !OnLeft(L[i], p[first])) first++;</pre>
70
           q[++last] = L[i];
71
           if (fabs(Cross(q[last].v, q[last - 1].v)) < eps)</pre>
72
           { // 两向量平行且同向,取内侧的一个
73
74
               last--;
75
               if (OnLeft(q[last], L[i].p)) q[last] = L[i];
76
           if (first < last) p[last - 1] = GetLineIntersection(q[last - 1], q[last]);</pre>
77
78
79
       while (first < last && !OnLeft(q[first], p[last - 1])) last--; // 删除无用平面
80
       if (last - first <= 1) return vector<Point>();
81
       p[last] = GetLineIntersection(q[last], q[first]);
                                                                       // 计算首尾两个半平面的
82
       return vector<Point>(q.begin() + first, q.begin() + last + 1);
83
84 }
```

6 Dynamic Programming

memset(dp, 0x3f, sizeof(dp));

return lower_bound(dp, dp + n, INF) - dp;

36

37

38 39 }

6.1 Subsequence

```
6.1.1 Max Sum
```

```
// 传入序列a和长度n, 返回最大子序列和
   int MaxSeqSum(int a[], int n)
3
   {
4
       int rt = 0, cur = 0;
       for (int i = 0; i < n; i++)
5
           cur += a[i], rt = max(cur, rt), cur = max(0, cur);
6
       return rt;
8
  }
   6.1.2 Longest Increase
1 // 序列下标从1开始, LIS()返回长度, 序列存在lis□中
2 const int N = "Edit";
3 int len, a[N], b[N], f[N];
  int Find(int p, int l, int r)
4
5
       while (l <= r)</pre>
6
7
           int mid = (l + r) \gg 1;
8
           if (a[p] > b[mid])
9
               l = mid + 1;
10
           else
11
12
               r = mid - 1;
13
       return f[p] = l;
14
15
16 int LIS(int lis[], int n)
17
   {
       int len = 1;
18
       f[1] = 1, b[1] = a[1];
19
       for (int i = 2; i <= n; i++)
20
21
22
           if (a[i] > b[len])
               b[++len] = a[i], f[i] = len;
23
           else
24
25
               b[Find(i, 1, len)] = a[i];
26
       for (int i = n, t = len; i >= 1 && t >= 1; i--)
27
28
           if (f[i] == t) lis[--t] = a[i];
29
       return len;
   }
30
31
32 // 简单写法(下标从0开始,只返回长度)
  int dp[N];
  int LIS(int a□, int n)
34
35
```

for (int i = 0; i < n; i++) *lower_bound(dp, dp + n, a[i]) = a[i];

6.1.3 Longest Common Increase

```
// 序列下标从1开始
         int LCIS(int a[], int b[], int n, int m)
  2
  3
                      memset(dp, 0, sizeof(dp));
  4
                       for (int i = 1; i <= n; i++)
  5
  6
                                   int ma = 0;
  7
                                   for (int j = 1; j <= m; j++)
  8
  9
                                               dp[i][j] = dp[i - 1][j];
10
                                               if (a[i] > b[j]) ma = max(ma, dp[i - 1][j]);
11
12
                                               if (a[i] == b[j]) dp[i][j] = ma + 1;
13
                                   }
14
                      return *max_element(dp[n] + 1, dp[n] + 1 + m);
15
        }
16
          6.2 Digit Statistics
  1 int a[20];
        11 dp[20][state];
  3
         ll dfs(int pos, /*state变量*/, bool lead /*前导零*/, bool limit /*数位上界变量*/)
  4
  5
                      //递归边界, 既然是按位枚举, 最低位是0, 那么pos==-1说明这个数枚举完了
  6
                      if (pos == -1) return 1;
  7
                      /*这里一般返回1,表示枚举的这个数是合法的,那么这里就需要在枚举时必须每一位都要满足题目条件,
                       也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。*/
  8
  9
                      if (!limit && !lead && dp[pos][state] != -1) return dp[pos][state];
                      /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应*/
10
11
                      int up = limit ? a[pos] : 9; //根据limit判断枚举的上界up
12
                      11 \text{ ans} = 0;
                      for (int i = 0; i \leftarrow up; i \leftarrow u
13
14
15
                                   if () ...
                                   else if () ...
16
17
                                  ans += dfs(pos - 1, /*状态转移*/, lead && i == 0, limit && i == a[pos])
18
                                   //最后两个变量传参都是这样写的
19
                                   /*当前数位枚举的数是i,然后根据题目的约束条件分类讨论
20
                                   去计算不同情况下的个数,还有要根据State变量来保证i的合法性*/
21
                       //计算完,记录状态
22
23
                      if (!limit && !lead) dp[pos][state] = ans;
24
                      /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,
25
                       当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
26
                      return ans;
27
         ll solve(ll x)
28
29
                      int pos = 0;
30
                      do //把数位都分解出来
31
32
                                  a[pos++] = x \% 10;
                      while (x /= 10);
33
                      return dfs(pos - 1 /*从最高位开始枚举*/, /*一系列状态 */, true, true);
34
35
                      //刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0
36 }
```

6.3 Slope Optimization

问题 设 $f(i) = \min(y[k] - s[i] \times x[k]), k \in [1, i-1]$, 现在要求出所有 $f(i), i \in [1, n]$

考虑两个决策 j 和 k, 如果 j 比 k 优,则

$$y[j] - s[i] \times x[j] < y[k] - s[i] \times x[k]$$

化简得:

$$\frac{y_j - y_k}{x_i - x_k} < s_i$$

不等式左边是个斜率,我们把它设为 slope(i,k)

我们可以维护一个单调递增的队列,为什么呢?

因为如果 slope(q[i-1], q[i]) > slope(q[i], q[i+1]),那么当前者成立时,后者必定成立。即 q[i] 决策优于 q[i-1] 决策时,q[i+1] 必然优于 q[i],因此 q[i] 就没有存在的必要了。所以我们要维护递增的队列。

那么每次的决策点 i, 都要满足

$$\begin{cases} \operatorname{slope}(q[i-1], q[i]) < s[i] \\ \operatorname{slope}(q[i], q[i+1]) \ge s[i] \end{cases}$$

一般情况去二分这个 i 即可。

如果 s[i] 是单调不降的,那么对于决策 j 和 k(j < k) 来说,如果决策 k 优于决策 j,那么对于 $i \in [k+1,n]$,都存在决策 k 优于决策 j,因此决策 j 就可以舍弃了。这样的话我们可以用单调队列进行优化,可以少个 \log 。

单调队列滑动窗口最大值

```
// k为滑动窗口的大小
   deque<int> q:
   for (int i = 0, j = 0; i + k \le d; i++)
4
       while (j < i + k)
5
6
            while (!q.empty() && a[q.back()] < a[j]) q.pop_back();</pre>
8
            q.push_back(j++);
9
10
       while (q.front() < i) q.pop_front();</pre>
       // a[q.front()]为当前滑动窗口的最大值
11
   }
12
```

7 Others

7.1 Matrix

7.1.1 Matrix FastPow

```
1 typedef vector<ll> vec;
2 typedef vector<vec> mat;
3 mat mul(mat& A, mat& B)
4
        mat C(A.size(), vec(B[0].size()));
5
        for (int i = 0; i < A.size(); i++)</pre>
6
            for (int k = 0; k < B.size(); k++)</pre>
7
                if (A[i][k]) // 对稀疏矩阵的优化
8
                     for (int j = 0; j < B[0].size(); j++)</pre>
9
                         C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
10
        return C;
11
  }
12
13 mat Pow(mat A, ll n)
   {
14
15
        mat B(A.size(), vec(A.size()));
16
        for (int i = 0; i < A.size(); i++) B[i][i] = 1;</pre>
        for (; n; n >>= 1, A = mul(A, A))
17
            if (n \& 1) B = mul(B, A);
        return B;
19
20 }
```

7.1.2 Gauss Elimination

```
void gauss()
2
   {
3
        int now = 1, to;
        double t;
4
        for (int i = 1; i <= n; i++, now++)</pre>
5
6
            /*for (to = now; !a[to][i] && to <= n; to++);
7
8
            //做除法时减小误差, 可不写
            if (to != now)
9
10
                for (int j = 1; j <= n + 1; j++)
                     swap(a[to][j], a[now][j]);*/
11
            t = a[now][i];
12
            for (int j = 1; j <= n + 1; j++) a[now][j] /= t;
13
            for (int j = 1; j \ll n; j++)
14
                if (j != now)
15
16
                {
17
                     t = a[j][i];
                     for (int k = 1; k \le n + 1; k++) a[j][k] -= t * a[now][k];
18
19
20
        }
21 }
```

7.2 Tricks

7.2.1 Stack-Overflow

```
1 // 解决爆栈问题
2 #pragma comment(linker, "/STACK:1024000000,1024000000")
   7.2.2 Fast-Scanner
1 // 适用于正负整数
   template <class T>
   inline bool scan_d(T &ret)
4
5
       char c;
6
       int sgn;
       if (c = getchar(), c == EOF) return 0; //EOF
7
       while (c != '-' \&\& (c < '0' || c > '9')) c = getchar();
8
       san = (c == '-') ? -1 : 1;
9
       ret = (c == '-') ? 0 : (c - '0');
10
11
       while (c = getchar(), c >= '0' \&\& c <= '9') ret = ret * 10 + (c - '0');
       ret *= sgn;
12
       return 1;
13
14
   inline void out(int x)
15
16 {
       if (x > 9) out(x / 10);
17
       putchar(x % 10 + '0');
18
19 }
   7.2.3 Strok-Sscanf
1 // 空格作为分隔输入,读取一行的整数
2 fgets(buf, BUFSIZE, stdin);
4 char *p = strtok(buf, " ");
5 while (p)
6
   {
       sscanf(p, "%d", &v);
7
       p = strtok(NULL," ");
8
   }
9
   7.3 Mo Algorithm
   莫队算法,可以解决一类静态,离线区间查询问题。分成\sqrt{x}块,分块排序。
1 struct query { int L, R, id; };
   void solve(query node[], int m)
2
3
       memset(ans, 0, sizeof(ans));
4
       sort(node, node + m, [](query a, query b) {
5
           return a.l / unit < b.l / unit</pre>
6
7
                  | | a.l / unit == b.l / unit && a.r < b.r;</pre>
8
       });
       int L = 1, R = 0;
9
       for (int i = 0; i < m; i++)
10
11
           while (node[i].L < L) add(a[--L]);
12
```

7.4 BigNum

7.4.1 High-precision

```
// 加法 乘法 小于号 输出
2
   struct bint
3
        int 1;
4
        short int w[100];
5
        bint(int x = 0)
6
7
8
            l = x == 0, memset(w, 0, sizeof(w));
9
            while (x) w[l++] = x \% 10, x \neq 10;
10
        bool operator<(const bint& x) const</pre>
11
12
            if (l != x.l) return l < x.l;
13
14
            int i = l - 1;
            while (i >= 0 && w[i] == x.w[i]) i--;
15
            return (i >= 0 && w[i] < x.w[i]);
16
17
        bint operator+(const bint& x) const
18
19
            bint ans;
20
21
            ans.l = l > x.l ? l : x.l;
22
            for (int i = 0; i < ans.l; i++)
23
                ans.w[i] += w[i] + x.w[i];
24
25
                ans.w[i + 1] += ans.w[i] / 10;
26
                ans.w[i] = ans.w[i] % 10;
27
28
            if (ans.w[ans.l] != 0) ans.l++;
29
            return ans;
30
        bint operator*(const bint& x) const
31
32
33
            bint res;
            int up, tmp;
34
            for (int i = 0; i < 1; i++)
35
36
            {
                up = 0;
37
                for (int j = 0; j < x.1; j++)
38
39
                     tmp = w[i] * x.w[j] + res.w[i + j] + up;
40
                    res.w[i + j] = tmp \% 10;
41
                    up = tmp / 10;
42
43
                if (up != 0) res.w[i + x.l] = up;
44
45
            res.l = l + x.l;
46
```

```
while (res.w[res.l - 1] == 0 && res.l > 1) res.l--;
47
48
           return res;
49
       void print()
50
51
           for (int i = l - 1; ~i; i--) printf("%d", w[i]);
52
53
           puts("");
       }
54
   };
55
   7.4.2 Complete High-precision
1 import java.math.BigInteger;
   7.5 Misc
   7.5.1 Standard Template Library
   template <class InputIterator, class OutputIterator>
1
     OutputIterator copy (InputIterator first, InputIterator last, OutputIterator result);
2
3
   template <class InputIterator1, class InputIterator2,</pre>
4
             class OutputIterator, class Compare>
5
     OutputIterator merge (InputIterator1 first1, InputIterator1 last1,
6
                            InputIterator2 first2, InputIterator2 last2,
7
                            OutputIterator result, Compare comp);
8
9
   template <class InputIterator, class Function>
10
      Function for_each (InputIterator first, InputIterator last, Function fn);
11
12
   template <class InputIterator, class OutputIterator, class UnaryOperation>
13
     OutputIterator transform (InputIterator first1, InputIterator last1,
14
                                OutputIterator result, UnaryOperation op);
15
16
  template< class ForwardIterator, class T >
17
   void iota( ForwardIterator first, ForwardIterator last, T value );
   7.5.2 Policy-Based Data Structures
   红黑树
   声明/头文件
1 #include <ext/pb_ds/tree_policy.hpp>
2 #include <ext/pb_ds/assoc_container.hpp>
3 using namespace __gnu_pbds;
4 typedef tree<pt, null_type, less<pt>, rb_tree_tag, tree_order_statistics_node_update>
       rbtree;
```

```
使用方法
1 pt
                                     // 关键字类型
                                     // 无映射(低版本g++为null_mapped_type)
2 null_type
                                    // 从小到大排序
3 less<int>
4 rb_tree_tag
                                     // 红黑树 (splay_tree_tag)
5 tree_order_statistics_node_update // 结点更新
6 T.insert(val);
                                    // 插入
7 T.erase(iterator);
                                    // 删除
8 T.order_of_key();
                                    // 查找有多少数比它小
9 T.find_by_order(k);
                                    // 有k个数比它小的数是多少
10 a.join(b);
                                    // b并入a 前提是两棵树的key的取值范围不相交
11 a.split(v, b);
                                    // key小于等于v的元素属于a, 其余的属于b
12 T.lower_bound(x);
                                    // >=x的min的迭代器
                                    // >x的min的迭代器
13 T.upper_bound((x);
   7.5.3 Subset Enumeration
   枚举真子集
1 for (int s = (S - 1) \& S; s; s = (s - 1) \& S)
   枚举大小为 k 的子集
void subset(int k, int n)
2
3
       int t = (1 << k) - 1;
       while (t < (1 << n))
4
5
           // do something
6
           int x = t \& -t, y = t + x;
7
8
          t = ((t \& \sim y) / x >> 1) | y;
       }
9
10 }
   7.5.4 Date Magic
  string dayOfWeek[] = {"Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"};
2
  // converts Gregorian date to integer (Julian day number)
3
   int DateToInt(int m, int d, int y)
4
5
   {
       return 1461 * (y + 4800 + (m - 14) / 12) / 4
6
             + 367 * (m - 2 - (m - 14) / 12 * 12) / 12
7
             - 3 * ((y + 4900 + (m - 14) / 12) / 100) / 4
8
             + d - 32075;
9
10 }
12 // converts integer (Julian day number) to Gregorian date: month/day/year
13 void IntToDate(int jd, int& m, int& d, int& y)
14 {
15
       int x, n, i, j;
       x = jd + 68569;
16
       n = 4 * x / 146097;
17
       x = (146097 * n + 3) / 4;
       i = (4000 * (x + 1)) / 1461001;
```

```
x = 1461 * i / 4 - 31;
20
        j = 80 * x / 2447;

d = x - 2447 * j / 80;
21
22
        x = j / 11;
23
        m = j + 2 - 12 * x;
24
25
        y = 100 * (n - 49) + i + x;
26 }
27
28
  // converts integer (Julian day number) to day of week
   string IntToDay(int jd) { return dayOfWeek[jd % 7]; }
```

7.6 Configuration

7.6.1 Vim

```
1 sy on
   set et nu is sc ai hls cin udf
3 set bs=2 sw=4 scrolloff=999 sts=4 mouse=a cb=unnamed
4
5 colo evening
6 nnoremap 0 ^
7 map<c-y> mmggVG"+y`m
  map<f5> :call Run()<cr>
8
9
10 func! Run()
       exec "w"
11
       exec "!g++ -std=c++11 -02 % -o %<"
12
       exec "!time ./%<"
13
   endfunc
14
15
16 inoremap ( ()<esc>i
17 inoremap { {}<esc>i
18 inoremap [ []<esc>i
19 inoremap {<cr>> {<cr>>}<esc>0
20 inoremap ) <c-r>=ClosePair(')')<cr>
21 inoremap } <c-r>=ClosePair('}')<cr>
22 inoremap ] <c-r>=ClosePair(']')<cr>
23
24 func ClosePair(char)
       if getline('.')[col('.') - 1] == a:char
    return "\<right>"
25
26
27
       else
28
            return a:char
29
       endif
30 endfunc
31
32 vnoremap \\ mm^o^<C-v>I//<ESC>`m
```

33 vnoremap \d mm^o^<C-v>ld<ESC>`m