CSCE 222: Discrete Structures for Computing Section 503 Fall 2016

Joseph Martinsen

October 23, 2016

Problem Set 8

Due: 23 October 2016 (Sunday) before 11:59 p.m. on eCampus (ecampus.tamu.edu). You must show your work in order to recieve credit.

Problem 1. (30 points)

Find the language recognized by the given DFA:

1.

2.

3.

Solution.

1.

$$(0,1)^*$$
 From s_1
 λ From s_0
 $L(m) = 1(0,1)^* | \lambda$

2.

$$1^* \quad \text{from } s_2$$

$$\lambda \quad \text{from } s_0$$

$$L(m) = 01^* \mid \lambda$$

3.

1*0 from
$$s_0$$

0+ from s_1
(0,1)+ from s_3
 $L(m) = 1*0^+ | 1*0^+1(0,1)^+$

Problem 2. (20 points)

Show that the following grammar generates the language $\{a^nb^nc^n \mid n \geq 0\}$.

$$S ::= aST \mid \lambda$$

$$T ::= BC$$

$$CB ::= BC$$

$$aB ::= ab$$

$$bB ::= bb$$

$$bC ::= bc$$

$$cC ::= cc$$

Solution.

$$S ::= aST \mid \lambda$$
 from this it can be seen the case when $n = 0$ for a, b, c is true. Also, if not (1) λ the S string will continue to repeat itself thus the string must start with a^n (2) $a^nB^nC^n$ from $T ::= BC$ (3) $a^nb^nC^n$ from $aB ::= ab$ (4) $a^nb^nc^n$ from $bC ::= bc$ (5)

Aggie Honor Statement: On my honor as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment.

Checklist: Did you...

- 1. abide by the Aggie Honor Code?
- 2. solve all problems?
- 3. start a new page for each problem?
- 4. show your work clearly?
- 5. type your solution?
- 6. submit a PDF to eCampus?