Niveles de abstracción de un diseño

- Sistema
 - Partición HS-SW, memoria, Dynamic Power Management (DPM), Interfaces
- Algoritmos
 - Complejidad, concurrencia, paralelismo
- Arquitectura
 - Concurrencia, paralelismo, pipelining, tipo de datos, Power Management.
- Diseño del circuito
 - Mapeo, lógica, codificación, rutas, glitches
- Tecnología
 - Proceso de fabricación (V threshold), escalado

Eliminación de glitches

- Gate freezing (F-gate)
- Gate sizing and path balancing
- Multiple threshold transistor

- Eliminar azares
- Codificar en Gray
- Disminuir profundidad de lógica con FF

Deshabilitar parte de un circuito

- Power Gating
- Clock Gating, Clock Enable
- Data Gating, Blocking inputs
- Latches (transparents)

Power Gating

Libro:

Low Power Methodology Manual: For System-on-Chip Design

Keating, M., Flynn, D., Aitken, R., Gibbons, A., Shi,

New York, NY: Springer, 2008.

ARM+Synopsys Ejemplos

 Activity profile without power gating

 Activity profile with power gating

Realistic power gating

Power gating transistor structures

Basic Header-Switch structure:

Basic Footer-Switch structure:

Clock gating

J.P. Oliver, J. Curto, D. Bouvier, M. Ramos, and E. Boemo, "Clock gating and clock enable for FPGA power reduction", in Proc. 2012 VIII Southern Conference on Programmable Logic (SPL), Page(s): 1-5. IEEE: 2012

Lógica

- Máquinas de estados
 - Asignación de estados, codificación
 - Partición de máquinas de estados
- Conmutatividad
- Profundidad lógica

Máquinas de estados

- Asignación de estados (codificación binaria de cada estado)
 - Binario, Gray, Out-oriented, One-hot, Two-hot

G. Sutter, E. Todorovich, S. Lopez-Buedo, and E. Boemo, "Low-Power FSMs in FPGA: Encoding Alternatives", Lecture Notes in Computer Science, Vol.2451, pp.363-370, Berlin: Springer-Verlag 2002.

	FSM characterist.			Bin (ОН		Area Out-O		Area T-H		Delay (ns)			Po	Power mW/MHz		/MHz	Power Saving		
Circuits	inputs	outpts	rules	states	CLBs	I) I)	CLBs	FF	CLBs	FF	CLBs	FF	Bin	ОН	Out-O	Т-Н	Bin	ОН	Ont-O	T-H	60%
bbara	4	2	42	7	11	3	8	7	10	3	15	4	30.0	25.6	29.4	31.2	1.39	1.38	1.8	87 1.46	40%
bbsse	7	7 2	808	13	36	4	26	13	27	4	36	5	43.1	36.2	34.6	40.1	4.02	3.37	3.	14 3.43	20%
bbtas	2	2	24	6	4	3	4	6	3	3	4	3	16.8	12.7	16.7	15.5	1.08	0.95	0.	77 0.97	
beecoun	3	4	20	4	7	2	10	4	7	2	12	4	21.1	18.6	16.4	28.9	1.33	1.62	1.3	33 2.36	0%
cse	7	7	91	16	52	4	42	16	48	4	53	5	54.9	39.1	47.4	47.9	3.73	3.50	2.9	99 3.83	-20%
dk14	3	5	56	7	27	3	26	7	25	3	27	4	34.1	32.5	31.7	37.8	4.15	3.88	4.0	08 3.92	-40%
dk15	3	5	32	4	18	2	20	4	20	2	20	4	29.2	28.2	25.6	32.8	3.32	3.02	3.2	28 3.85	•
dk16	2	3 1	08 2	27	59	5	31	27	50	5	57	7	52.1	35.0	43.3	44.0	8.09	3.73	6.0	67 6.64	-60%
dk17	2	3	32	8	12	3	10	8	13	3	14	4	24.2	27.8	27.3	24.5	2.30	1.94	2.2	27 2.28	
dk27	1	2	14	7	3	3	4	7	3	3	4	4	12.6	20.2	18.6	18.8	0.88	1.08	0.9	95 1.36	One-Hot versus Binary
dk512	1	3	30	15	14	4	10	14	9	4	16	5	20.8	20.4	26.0	23.9	2.46	1.54	1.8	85 2.48	•
ex2	2	2	56	14	21	4	17	11	12	4	22	5	31.0	21.3	24.4	27.4	3.60	2.03	1.8	88 3.23	
ex3	2	2	20	5	6	3	8	5	7	3	7	3	19.2	18.1	16.7	13.7	1.38	1.52	1.:	51 1.44	60% -
ex4	6	9	21	14	22	4	15	14	19	4	18	5	31.2	29.4	27.0	27.2	2.51	1.66	2.	10 2.11	4000
ex5	2	2	16	4	1	2	5	4	4	2	7	4	8.8	20.1	17.7	25.8	0.55	1.26	0.9	98 1.39	40%
ex6	5	8	34	8	34	3	28	8	29	3	35	4	40.0	31.4	33.6	47.6	4.25	3.59	3.	71 4.86	20%
ex7	2	2	16	4	2	2	5	4	2	2	7	4	10.2	14.5	9.5	18.3	0.62	1.16	0.0	64 1.49	0%
keyb	7	2 1	70	19	57	5	42	19	50	5	53	6	58.1	41.7	54.9	62.3	6.55	5.05	4.4	43 6.02	10 1 0 1 0 1 0 1 0 1 0 1 0
kirkman	12	6 3	70	16	45	4	43	16	45	4	57	5	38.3	36.2	38.9	36.6	4.14	4.00	3.	73 5.21	-20%
lion9	2	1	16	4	2	2	2	4	2	2	5	4	8.8	15.1	8.8	25.5	0.44	0.54	0.4	43 1.04	-40%
mark1	5	16 1	80	12	19	4	15	12	17	4	17	5	30.2	24.6	24.1	30.5	2.50	1.79	2.	11 2.41	-60%
opus	5	6	29	9	23	4	15	9	20	4	18	4	31.1	33.0	27.8	28.1	2.95	1.74	2.	16 2.45	-00/0
planet	7	19 1	15	48 1	13	6	65	48	106	6	99	10	60.6	41.3	54.3	61.1	14.4	6.23	13	3.2 11.7	
prep3	8	8	29	8	13	3	14	8	12	3	18	4	33.3	26.9	26.5	30.9	1.66	2.04	1.4	42 1.99	One-Hot versus Out-oriented
prep4	8	8	78	16	39	4	37	16	35	4	41	5	45.9	31.4	41.5	37.7	5.47	5.29	4.3	37 4.92	One not versus out onemed

Resultados asignación de estados

- Hasta 57% reducción de consumo
- Hasta 8 estados → codificación binaria
- Más de 15 estados → One-hot

Partición de máquinas de estado

- Dividir la máquina original en máquinas chicas
- Deshabilitar las máquinas que no operan
- Al ser chicas, menos lógica combinatoria, se puede aumentar la velocidad de reloj
- Existen herramientas para hacer esto a nivel de VHDL o Verilog
- Ahorros de hasta 42% pero hay veces que empeora!

		ginal SM	Oı		ioned Encod	ed	I	P			
Sample	НО	Bin	Arch1	Arch2	No Blk	Blk and	Arch1	Arch2	No Blk	Blk and	Power Improvement
Bbsse	3,90	4,70	3,80	3,95	4,04	4,34	3,55	3,76	4,23	3,91	9,0%
Cse	3,85	4,10	3,24	3,46	4,29	5,30	3,00	2,88	3,83	3,59	25,3%
Dk16	3,88	10,00	5,80	5,76	5,81	6,34	7,50	7,01	9,09	9,96	-32,8%
Dk512	1,84	2,80	2,46	2,79	2,44	2,14	2,24	2,51	2,16	1,94	-5,2%
Ex1	7,09	8,56	6,73	6,53	8,11	8,16	6,53	6,11	7,90	7,79	13,8%
Ex2	2,51	4,10	3,40	3,09	2,69	3,26	3,09	2,88	3,58	3,46	-6,5%
Keyb	5,50	7,06	4,73	4,31	7,88	7,69	3,66	4,65	5,25	6,81	33,4%
Kirkman	4,50	4,61	4,90	4,66	4,49	4,50	4,80	4,49	4,83	4,80	0,3%
Mark1	2,70	3,30	3,01	3,01	3,31	3,09	2,66	2,78	2,63	2,88	2,8%
Planet	8,04	16,80	9,18	9,29	10,23	10,01	10,88	11,81	15,18	16,99	-12,4%
Prep4	4,66	5,71	5,44	5,38	6,86	7,55	5,11	4,66	6,86	6,44	0,0%
S386	4,23	4,84	4,08	4,45	4,98	4,98	4,21	4,21	5,55	4,59	3,6%
S820	7,84	9,28	5,81	5,44	8,43	7,98	4,51	4,65	8,83	7,30	42,4%
S832c	7,01	10,21	5,08	5,00	7,64	6,60	4,73	5,04	7,55	6,75	32,6%

Table 2. Power consumption expressed in mW / MHz.

G. Sutter, E. Todorovich, S. Lopez-Buedo, and E. Boemo, "FSM Decomposition for Low Power in FPGA", Lecture Notes in Computer Science, Vol.2438, pp.350-359. Berlin: Springer-Verlag 2002.

Propiedad Conmutativa

- Circuitos digitales aritméticos (p.ej. multiplicador)
 - Cumplen propiedad conmutativa en el resultado
 - Pero consumen distintoPower (AxB) ≠ Power (BxA)

Table 5. Dynamic Power consumption of A×B and B×A in mW/MHz. 16 multiplier set.

16 bits		MaxTog					
Circuits	P (A×B)	$P(B \times A)$	PR				
Core16	7,57	5,43	28,2%				
Exp16	6,42	6,98	-8,1%				
Leo16	7,69	6,01	21,8%				
Syn16	5,82	7,63	-23,7%				
Xst16	7,21	6,06	15,9%				
		AvgTog					
Core16	2,45	2,20	10,5%				
Exp16	2,41	2,53	-4,5%				
Leo16	2,53	2,26	10,7%				
Syn16	2,18	2,37	-8,2%				
Xst16	2,40	2,30	4,0%				

Table 6. Dynamic Power consumption of A×B and B×A in mW/MHz. 32-bits multiplier set.

32 bits	MaxTog							
Circuits	P(A×B)	P(B×A)	PR					
Core32	34,12	27,77	16,7 %					
Exp32	23,81	29,39	-6,5 %					
Leo32	31,40	27,87	9,3 %					
Syn32	32,31	35,12	-16,4 %					
Xst32	32,29	29,45	9,3 %					
		AvgTog	5					
Core32	11,92	9,94	18,6 %					
Exp32	9,56	10,22	-19,0 %					
Leo32	11,70	10,62	11,3 %					
Syn32	10,04	12,00	-8,0 %					
Xst32	11,71	10,62	8,8 %					

E. Boemo, G. Sutter, "AxB is different of BxA in terms of power consumption: Some examples on FPGAs". In 2007 III Southern Conference on Programmable Logic, IEEE Press, 2007.

Pipelining

Figure 1. Summary of power reduction by pipeline in 35 published results.

Figure 2. Histogram of the best results reported about the effect of pipeline

(All papers: simulation and measurement results)

Figure. 4. Power reduction factor vs. different levels of moderated pipelining degree (Xilinx FPGAs)

Fig. 5. Power reduction factor versus different levels of moderated pipelining degree (Altera and Actel FPGAs)

E. Boemo, J.P. Oliver, and G. Caffarena, "Tracking the Pipelining-Power Rule along the FPGA Technical Literature", Proc. ACM 2013 FPGA World, Stockholm, Sweden. September, 2013

Registrar I/O

- Poner FF fundamentalmente en las patas de salida
- Glitches con capacidades más altas que en el circuito interno
- Experimentos en Xilinx muestran que quitar el FF del pin de salida puede aumentar en consumo en un 20% al 45%

Algoritmo

- Cambios en el algoritmo puede influenciar mucho el consumo
- Ejemplo: Multiplicadores modulares
 - Operación muy usada en criptografía necesaria para calcular exponenciales
 - Dados x < m, y < m, $m < 2^n$ calcular z = x.y mod m

Algoritmo

- Se analizan 3 versiones del algoritmo
 - Multiply and Reduce
 - Shift and Add
 - Montgomery multiplier
- Versiones combinatorias y secuenciales

Resultados

Area-Time-Power of the combinational multipliers

	M_r	s_a	mont.
Energy (nJoules)	96,0	186,4	92,7
Area (CLBs)	85	157	102
Time (ns)	186	201	167

Area-Time-Power of the sequential multipliers

	m_r	s_a	mont.
Dynamic Energy (nJoules)	71,5	52,4	38,6
Synchronization Energy (nJoules)	46,8	26,2	27,2
Combinational Energy (nJoules)	24,7	26,2	11,1
Area (CLBs)	57	33	34
Flip - Flops	67	37	31
Total Time (ns)	320	465	249

G. Sutter, J. Deschamps, and E. Boemo, "Area-Time-Power of Modular Multipliers implemented in FPGA", Jornadas de Computación Reconfigurable y Aplicaciones, JCRA 2004, Barcelona, España, 13-15 de Septiembre de 2004.

Arquitectura y sistema

- Paralelism
- Pipelining (segmentación)
- Time-Multiplexed Architectures
- Power Management
- Partitioning SW-HW
- Data representation
- Memory optimization

Reduction in clocking frequency

(a) Reference:

Capacitance = C Frequency = f

Voltage = \

Power = $P \propto CV^2f$

(b) Parallel:

Capacitance ~ NC

Frequency = f/N

 $\forall oltage \qquad ~ \lor /N \ \ (neglecting \ \lor_t)$

Power ~ P/N²

Landman, Paul Eric. "Low-power architectural design methodologies." PhD diss., University of California, Berkeley, 1994.

Voltage scaling and pipelining for low power

(a) Reference:

Capacitance = C Frequency = f Voltage = V Power = $P \propto CV^2f$

(b) Pipelined:

Capacitance ~ C
Frequency = f
Voltage ~ V/N
Power ~ P/N²

Generalized Low-Power Design Flow Design Phase Low-Power Design Activities

System-Level Design

- Explore architectures and algorithms for power efficiency
- Map functions to s/w and/or h/w blocks for power efficiency
- Choose voltages and frequencies
- Evaluate power consumption for different operational modes
- Generate budgets for power, performance, area

RTL Design

- Generate RTL to match system-level model
- Select IP blocks
- Analyze and optimize power at module level and chip level
- Analyze power implications of test features
- Check power against budget for various modes

Implementation

- Synthesize RTL to gates using power optimizations Floorplan, place, and route design
- Optimize dynamic and leakage power
- Verify power budgets and power delivery

¿Cómo seguir?

- Modelado y estimación
 - Modelos
 - Herramientas
- Medidas
 - Técnicas
 - Equipos
- Medidas vs Estimaciones