Lag plots

Lag features

Contents

WHAT CAN WE LEARN FROM THEM

Scatterplots can help identify if two variables are related

Lag plot is a scatter plot of a time series against a lagged version of itself

Date	У	y Lag 1
2020-02-12	23	NaN
2020-02-13	30	23
2020-02-14	35	30
2020-02-15	30	35

What can we learn from a lag plot?

- A lag plot is a visual tool which can help show if y_t shows a non-random relationship with y_{t-k} .
- If it does then a lag of k could be a useful feature for forecasting.
- Let's look at lag plots for different types of time series to understand what signatures they leave on the lag plot.

What can we learn from a lag plot?

- We shall look at time series with properties:
 - white noise
 - AR(1) process
 - completely periodic (just seasonality)
 - trend
 - trend and seasonality
- We shall illustrate how the lag plot can help identify useful lags as we go along.

White noise

- $y_t = \epsilon_t$ where $\epsilon_t \sim N(0,1)$
- A random timeseries with no correlation between points.
- There is no predictive information in the historic data.

Lag plot: white noise

- No strong relationship in the lag plot, as expected from white noise.
- Let's look at additional lags.

Lag plot: white noise

- No strong relationship in the lag plot, as expected from white noise.
- Let's look at additional lags.

Lag plot: white noise

- No strong relationship in the lag plot, as expected from white noise.
- Let's look at additional lags.
- This shows us what to look for when determining when a lag may not be useful.

AR(1) process

- $y_t = c + \phi_1 y_{t-1} + \epsilon_t$ where $\epsilon_t \sim N(0,1)$
- The timeseries is determined by the previous lag (i.e., lag 1).
- So we expect this time series to be correlated to lagged values.

Lag plot: AR(1) process

- We see a strong linear correlation between y_t and y_{t-1} .
- Let's look at additional lags.

Lag plot: AR(1) process

- We see the correlation between y_t and its lagged values decay as we look at larger lags.
- This shows us that a time series which is determined only by a small number of previous lags (1 in this case) can generate correlations at multiple lags.
- When we discuss the partial autocorrelation function (PACF) we will see how we can identify that lag 1 is the most important.

Seasonality

- $y_t = seasonal_t$
- A time series which repeats exactly every 12 months.
- Any multiple lag of 12 should be the most predictive of future values as the time series is exactly periodic every 12 months.

- $y_t = seasonal_t$
- A time series which repeats exactly every 12 months.
- Any multiple lag of 12 should be the most predictive of future values as the time series is exactly periodic every 12 months.

- $y_t = seasonal_t$
- A time series which repeats exactly every 12 months.
- Any multiple lag of 12 should be the most predictive of future values as the time series is exactly periodic every 12 months.

- We see strong seasonality at lag 12 indicated by the strong linear correlation.
- This shows that a lag of 12 could be a helpful feature.
- Let's look at additional lags.

- y_t is exactly periodic with a seasonal period of 12.
- Therefore, there are only 12 unique values that y_t can take.
- This causes every lag plot to only have 12 data points in different configurations which repeat every 12 lags.
- This will be important when we discuss the autocorrelation function.

 This shows us that any seasonal patterns will appear as a strong linear correlation on the lag plot. This occurs at multiples of the seasonal period (E.g., every 12 lags for yearly seasonality).

Trend

- $y_t = trend_t$
- There is a lot of predictive information in historic data.

Trend

- $y_t = trend_t$
- There is a lot of predictive information in historic data.
- When y_t is small so is y_{t-k} . When y_t is large so is y_{t-k} . Expect a large positive relationship!

Lag plot: trend

- Strong linear relationship in the lag plot, as expected.
- This is seen across multiple lags because of the overall shape of the original time series means that when y_t is relatively large so is y_{t-k} .
- The trend causes correlations at many lags.
 This can make it difficult to identify patterns (e.g., seasonality) which appear as strong correlations only at specific lags.
- This shows that the lag plot does not provide much information about whether a specific lag will be helpful.

Lag plot: trend and seasonality

- $y_t = trend_t + seasonal_t + residual_t$
- There is a lot of predictive information in historic data.
- Will get a combination of effects from the trend, seasonality, and noise in the lag plots.

Lag plot: trend and seasonality

The strong trend results in linear relationships across many lags.

The seasonal component is seen in the seasonal lag as stronger linear relationship.

Lag plot implementation in Pandas

pandas.plotting.lag_plot

```
pandas.plotting.lag_plot(series, lag=1, ax=None, **kwds) ¶

Lag plot for time series.

Parameters: series : Time series

lag : lag of the scatter plot, default 1

ax : Matplotlib axis object, optional

**kwds

Matplotlib scatter method keyword arguments.
```

class:matplotlib.axis.Axes

Returns:

[source]

Lag plot limitations and what's next

- Lag plots are a visual tool which can help identify useful lags but are not scalable.
- If we quantify when y_{t-k} is highly correlated with y_t then it would be easier to identify useful lags.
- Autocorrelation is a method to quantify the correlation of a time series with itself and can be used to understand properties of a time series including useful lags (coming up next!).

Summary

Scatterplots can help identify if two variables are related.

Lag plot is a scatter plot of a time series against a lagged version of itself.

Lag plots can identify lags which are strongly related to the original time series.

Trend, seasonality, autocorrelation, and noise leave their own signatures on a lag plot.