Examenul național de bacalaureat 2021

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ŞI DE NOTARE

Testul 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a+ib-2(a-ib)=-2+6i \Leftrightarrow -a+3ib=-2+6i$, unde $z=a+ib$, $a,b \in \mathbb{R}$	3 p
	a = 2 şi $b = 2$, deci $z = 2 + 2i$	2p
2.	$f^{2}(1) = f(0) \cdot f(2) \Leftrightarrow (1+m)^{2} = m(4+m) \Leftrightarrow m^{2} + 2m + 1 = 4m + m^{2}$	3 p
	$2m = 1$, deci $m = \frac{1}{2}$, care convine	2p
3.	$(x-1)^2 = 3x+1 \Rightarrow x^2 - 5x = 0$	3p
	x = 0, care nu convine; $x = 5$, care convine	2p
4.	Mulțimea $A = \{0,1,2,,20\}$ are 21 de elemente, deci sunt 21 de cazuri posibile	2p
	Numerele din mulțimea A al căror pătrat aparține mulțimii A sunt 0 , 1 , 2 , 3 și 4 , deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{21}$	1p
5.	$\overrightarrow{AD} - \overrightarrow{BD} = \overrightarrow{AC} - \overrightarrow{AD}$	2p
	$\overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AC} + \overrightarrow{DA} \Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}$	3 p
6.	$\frac{BC}{\sin A} = 2R \text{, unde } R \text{ este raza cercului circumscris triunghiului}$	2p
	Cum $\sin A = \frac{1}{2}$, obținem $2BC = 2R$, deci $BC = R$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(m) + A(-m) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \text{ pentru orice număr real } m$	2p
	$\det(A(m) + A(-m)) = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 8 - 0 = 8, \text{ pentru orice număr real } m$	3 p
b)	$A(m) \cdot A(m) = \begin{pmatrix} 1 & 0 & 0 \\ 2m & 1 & 0 \\ m^2 & 2m & 1 \end{pmatrix}, \text{ pentru orice număr real } m$	3p
	$A(m) \cdot A(m) = A(0) \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 2m & 1 & 0 \\ m^2 & 2m & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Leftrightarrow m = 0$	2p

c)	$A(2k-1)-A(2k) = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \text{ pentru orice număr natural nenul } k$	2p
	$A(1) - A(2) + A(3) - A(4) + \dots + A(2n-1) - A(2n) = n \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} = n(A(-1) - A(0)), \text{ pentru}$	3 p
	orice număr natural nenul <i>n</i>	
2.a)	$\frac{1}{2} * \frac{3}{2} = \left(\frac{1}{2}\right)^2 + 4 \cdot \frac{1}{2} \cdot \frac{3}{2} + \left(\frac{3}{2}\right)^2 =$	3 p
	$= \frac{1}{4} + 3 + \frac{9}{4} = \frac{11}{2}$	2p
b)	$x*(-x)=(-x)*x=-2x^2$, pentru orice număr real x	2p
	$\left(-2x^2\right)*\left(-2x^2\right) = 24x \Leftrightarrow 24x^4 = 24x$, de unde obţinem $x = 0$ sau $x = 1$	3p
c)	$x * \frac{1}{x} = x^2 + 4 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = x^2 + 4 + \frac{1}{x^2}$, pentru orice număr real nenul x	2p
	$\left(x * \frac{1}{x}\right) - 6 = x^2 + 4 + \frac{1}{x^2} - 6 = x^2 - 2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 \ge 0 \text{ , deci } x * \frac{1}{x} \ge 6 \text{ , pentru orice număr real nenul } x$	3p

SUBIECTUL al III-lea

(30 de puncte)

	· · · ·	
1.a)	$f'(x) = \frac{\sqrt{x^2 + 2} - (x + 2) \cdot \frac{x}{\sqrt{x^2 + 2}}}{x^2 + 2} =$	3 p
	$=\frac{x^2+2-x^2-2x}{\left(x^2+2\right)\sqrt{x^2+2}}=\frac{2(1-x)}{\left(x^2+2\right)\sqrt{x^2+2}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} (f(x))^{2x} = \lim_{x \to +\infty} \left(\frac{(x+2)^2}{x^2+2} \right)^x = \lim_{x \to +\infty} \left(\frac{x^2+4x+4}{x^2+2} \right)^x = \lim_{x \to +\infty} \left(1 + \frac{4x+2}{x^2+2} \right)^x =$	3 p
	$= \lim_{x \to +\infty} \left(\left(1 + \frac{4x+2}{x^2+2} \right)^{\frac{x^2+2}{4x+2}} \right)^{\frac{x(4x+2)}{x^2+2}} = e^4$	2p
c)	$f'(x) \ge 0$, pentru orice $x \in (-\infty, 1] \Rightarrow f$ este crescătoare pe $(-\infty, 1]$ și $f'(x) \le 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$ și, cum $f(1) = \sqrt{3}$, obținem că $f(x) \le \sqrt{3}$, pentru orice număr real x	3p
	$f(e^x) \le \sqrt{3} \Rightarrow \frac{e^x + 2}{\sqrt{e^{2x} + 2}} \le \sqrt{3} \Rightarrow \frac{e^x + 2}{\sqrt{3}} \le \sqrt{e^{2x} + 2}$, pentru orice număr real x	2p
2.a)	$\int_{1}^{\sqrt{2}} (f(x) + \ln x) dx = \int_{1}^{\sqrt{2}} x^{3} dx = \frac{x^{4}}{4} \Big _{1}^{\sqrt{2}} =$	3p
	$= \frac{4}{4} - \frac{1}{4} = \frac{3}{4}$	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

b)	$\int_{1}^{e} x \left(x^{3} - f(x) \right) dx = \int_{1}^{e} x \ln x dx = \frac{x^{2}}{2} \ln x \left \frac{e}{1} - \int_{1}^{e} \frac{x^{2}}{2} \cdot \frac{1}{x} dx = \frac{e^{2}}{2} - \frac{x^{2}}{4} \left \frac{e}{1} \right = 1$	3p
	$=\frac{e^2}{2} - \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4}$	2p
c)	$\int_{1}^{e^{2}} \frac{1}{x} f(\sqrt{x}) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \left(\sqrt{x} - \frac{1}{2} \cdot \frac{1}{x} \ln x \right) dx = \left(\frac{2}{3} \sqrt{x^{3}} - \frac{1}{4} \ln^{2} x \right) \Big _{1}^{e^{2}} = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} \frac{1}{x} \left(\left(\sqrt{x} \right)^{3} - \ln \sqrt{x} \right) dx = \int_{1}^{e^{2}} $	3р
	$= \frac{2}{3}e^3 - \frac{2}{3} - \frac{1}{4}\ln^2(e^2) = \frac{2}{3}e^3 - \frac{2}{3} - \frac{1}{4} \cdot 4 = \frac{2e^3 - 5}{3}$	2p