Capítol 6

Química de Materials

Índex

6	Quí	ímica de Materials			
	6.1	Introd	lucció	3	
	6.2	2 Plàstics i polímers			
		6.2.1	Polimerització	5	
		6.2.2	Conformat dels polímers	12	
		6.2.3	Materials compostos (Composites)	13	
		6.2.4	Cautxú	15	
	6.3	Exerci	<mark>icis</mark>	20	
Bi	ibliog	grafia		22	

6.1 Introducció

Els automòbils moderns han millorat en rendiment, seguretat i eficiència gràcies a materials avançats com la fibra de vidre i de carboni, lleugers però resistents. Aquests materials poden dissipar l'energia dels impactes i no es corroïxen com l'acer. També contribueixen a reduir el consum de combustible. La química és clau en el desenvolupament d'aquests materials d'alta tecnologia.

Plàstics i polímers 6.2

Els materials plàstics van revolucionar literalment la indústria de l'automòbil, principalment perquè ofereixen avantatges mecànics i de fabricació importants respecte a components de fusta i metall. Es poden modelar fàcilment en formes complexes, són gairebé totalment resistents a la corrosió, es poden fabricar en una àmplia gamma de colors sense necessitat de pintar-los, es poden utilitzar en procediments de cromat per fer peces lleugeres, i resisteixen els cops i les fractures. Poden ser molt rígids i resistents, com els policarbonats; tous i duradors, com els poliuretans; i poden ser opacs o transparents, segons el grau de cristallinitat del polímer (veure Figura 6.1). En general, els materials amorfs, com el vidre, són transparents perquè no tenen una disposició ordenada d'àtoms a llarg abast que pugui bloquejar la llum[2, 5].

Entre els inconvenients dels polímers hi ha una resistència menor a altes temperatures que els metalls i la possibilitat de reaccions fotoquímiques que poden degradar l'estructura o la pigmentació del polímer. Tanmateix, el baix cost, la lleugeresa i la facilitat de treballar-los solen compensar aquestes limitacions. Com que els plàstics són polímers orgànics, cal entendre la química dels polímers per parlar de la seva producció. Dos paràmetres importants dels materials són (veure Figura 6.2)[4]:

- Temperatura de fusió (T_m) : És la temperatura a la qual els dominis cristal·lins perden la seva estructura, és a dir, es fonen. A mesura que augmenta la cristallinitat, també augmenta $T_{\rm m}$.
- Temperatura de transició vítria (T_g) : És la temperatura per sota de la qual els dominis amorfs perden la mobilitat estructural de les cadenes del polímer i esdevenen vidres rígids.

També es classifiquen segons la seva estructura[4]:

• Grau de polimerització, segons les condicions de síntesi es poden obtenir longituds de les cadenes moleculars de diferent grandària i, per tant, amb

	Termoplàstics	Termostables	Elastòmers
Temperatura	Fon	No fon	No fon
Dissolvents	Solubles	Insolubles	Insolubles, s'inflen
Estructura	Lineals	Entrecreuades	Poc entrecreuades
Cristal·linitat	Amorfs o cristal·lins	Amorfs	Amorfs
Propietats mecàniques	Rígids a T \leq T $_{\rm g}$ $E{\sim}10^3$ MPa	Rígids $\varepsilon \sim 4 \%$ $E \sim 10^4 \text{ MPa}$	ε~ 100-1000 % Ε baixos~ MPa
Processat	Sense reacció química	Amb reacció química	Amb reacció química
Exemples	PE, PP, PVC, poliamides, polièsters	Resina epoxi, resina fenol-formaldehid	Cautxú, polibutandiè, poliisoprè

Figura 6.1: Característiques polímers termoplàstics, termostables i elastòmers[4].

propietats lleugerament diferents. Una altra característica important és la dels copolímers, polímers formats per més d'un tipus de monòmer. Segons l'ordre de repetició, poden ser:

- Alternats: $(-A-B-A-B-)_n$
- Periòdics: $(A-B-B-A-B-A-A-A-B)_n$
- Estadístics: probabilitat determinada de repetició
- Aleatoris: sense ordre de repetició
- Per blocs: $(A-A-A-B-B-B-A-A)_n$

Els copolímers són frequents en els pneumàtics i altres components elàstics (veure Secció 6.2.4).

- Entramat branching (ramificat), consisteix a crear unions entre differents cadenes del mateix polímer per augmentar la seua duresa i punt de fusió. Per exemple, és el cas del polietilè.
- Unions pont cross-linking (entrecreuat). Un exemple clàssic és la vulcanització del cautxú usant sofre. El cautxú natural és el cispoliisoprè (que és un polímer insaturat) i quan s'afegeix sofre entre 1-5% es produeixen ponts de sofre entre diferents cadenes polimèriques, el que es coneix com vulcanitzat, fenomen que augmenta molt la duresa i resistència al desgast.

Figura 6.2: a) Representació d'un polímer semicristal · lí. Adaptat de The structure and properties of materials, vol. iii, Mechanical behaviour, H. W. Hayden, W.G. Moffatt, and J. Wulff, Ed. Wiley, Nova York b) Gràfica volum específic front a temperatura dels polímers amorf, semicristal·lí i cristal·lí. Adaptat d'Introducción a la ciencia e ingeniería de los materiales, W. D. Callister, Ed. Reverté, Barcelona

El producte de vulcanització completa (40 %) és l'ebonita i és un sòlid dur i rígid.

6.2.1Polimerització

La polimerització és el procés químic pel qual es connecten els blocs constructius coneguts com a monòmers per formar llargues molècules de cadena (veure Figura 6.4). Hi ha dues maneres generals de generar plàstics (Carothers, 1929): polimerització per etapes o per condensació i polimerització en cadena o per addició.

Polimerització per etapes o per condensació

En la polimerització per etapes, dos monòmers es poden enllaçar en qualsevol moment; el creixement pot començar en qualsevol lloc i el monòmer desapareix ràpidament. El pes molecular mitjà augmenta amb el temps. Sovint, aquestes reaccions tenen lloc per condensació, on es perden àtoms de cada monòmer durant l'enllaç. Moltes condensacions alliberen aigua, com quan un grup hidroxil reacciona amb un hidrogen ionitzable d'un àcid carboxílic. La Figura 6.4 mostra exemples de polímers formats per polimerització per etapes. Els polímers formats per reaccions de condensació són generalment més resistents a la calor i a la degradació química que els formats per reaccions d'addició (veure la Secció 6.2.1).

Polyether polyol - Good hydrolytic stability, Poor chemical resistance

Polyester polyol – Good mechanical properties and UV resistance, Poor hydrolytic stability

Polycarbonate polyol - Good UV and hydrolytic stability, high price and limited composition variability

Polyamide polyol -**Excellent mechanical properties** Hydrolytic stability > Polyester UV resistance > Polyether Composition flexibility > Polycarbonate

Figura 6.3: Caracteristiques de diferents polímers de condensació.

Poliamides (Nylons) La primera fibra polimèrica totalment sintètica, el niló-6,6, va ser produïda l'any 1938 per la companyia DuPont. El químic principal de l'equip de DuPont era Wallace H. Carothers, qui va raonar que les propietats de la seda podien imitar-se construint una cadena polimèrica formada per enllaços amida repetits, tal com passa amb les proteïnes de la seda.

El niló-6,6 es crea a partir de la reacció entre l'HOOC $-(CH_2)_4$ -COOH (àcid adípic o 1,6-hexandioic) i l'H₂N-(CH₂)₆-NH₂ (1,6-hexandiamina), que donen lloc a una sal que, un cop escalfada, forma múltiples enllaços amida mitjançant una substitució acil nucleòfila. El producte és una poliamida anomenada niló-6,6. Els números del nom fan referència al nombre de carbonis en cada monòmer: el primer "6" indica els carbonis de la diamina, i el segon "6", els del diàcid. Variant el nombre de carbonis en cada monòmer es poden obtenir molts tipus de nylons diferents.

Els nylons són entre les fibres sintètiques més utilitzades. S'empren en cordes, veles, catifes, roba, pneumàtics, raspalls i paracaigudes. Són coneguts per la seva alta resistència i durabilitat contra l'abrasió. També poden ser modelats en blocs per a l'ús en equips elèctrics, engranatges, coixinets i vàlvules. La força dels nylons deriva en part de la seva capacitat per formar enllaços d'hidrogen forts entre cadenes, de manera similar a les proteïnes.

Formula	Туре	Components	T _g ºC	T _m ºC
~[CO(CH ₂) ₄ CO-OCH ₂ CH ₂ O] _n ~	polyester	HO ₂ C-(CH ₂) ₄ -CO ₂ H	<0	50
		HO-CH ₂ CH ₂ -OH		
0-(CH ₂) ₂ -0	polyester	para HO ₂ C-C ₆ H ₄ -CO ₂ H	70	265
₽ — 0-(CH ₂) ₂ -O _M	Dacron, Mylar	HO-CH ₂ CH ₂ -OH		
		meta HO ₂ C-C ₆ H ₄ -CO ₂ H	50	
O-(CH ₂) ₂ -O	polyester	HO-CH ₂ CH ₂ -OH		240
		(HO-C ₆ H ₄ -) ₂ C(CH ₃) ₂	150	
CH ₃	polycarbonate	(Bisphenol A)		267
, CH3	Lexan	X ₂ C=O		207
,		$(X = OCH_3 \text{ or } CI)$		
~[CO(CH ₂) ₄ CO-NH(CH ₂) ₆ NH] _n ~	polyamide	HO ₂ C-(CH ₂) ₄ -CO ₂ H	45	265
[CO(CH ₂) ₄ CO-NH(CH ₂) ₆ NH] _n	Nylon 66	H ₂ N-(CH ₂) ₆ -NH ₂	45	203
	polyamide			
~[CO(CH ₂) ₅ NH] _n ~	Nylon 6		53	223
	Perlon	Н		
(0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	polyamide	para HO ₂ C-C ₆ H ₄ -CO ₂ H		500
F-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Kevlar	para H ₂ N-C ₆ H ₄ -NH ₂		
(polyamide	meta HO ₂ C-C ₆ H ₄ -CO ₂ H		
ON HH	Nomex	meta H ₂ N-C ₆ H ₄ -NH ₂	273	390

Figura 6.4: Exemples de polímers obtinguts per polimerització per etapes[1].

Polièsters Els enllaços èster també poden formar-se mitjançant substitucions acil nucleòfiles, com a mecanisme principal en els polímers per creixement per etapes. Un polièster es produeix típicament per la reacció entre un diàcid i un diol (Figura 6.4). El producte inicial conté un grup àcid lliure (-COOH) a un extrem i un grup alcohol lliure (-OH) a l'altre. Mitjançant reaccions successives d'esterificació, es forma el polièster. Es genera amb la reacció entre l'àcid tereftàlic (C₆H₄(CO₂H)₂) i l'etilenglicol (HOCH₂CH₂OH), que es pot representar com:

$$nC_6H_4(CO_2H)_2 + nHOCH_2CH_2OH \longrightarrow [(CO)C_6H_4(CO_2CH_2CH_2O)]_n + 2nH_2O$$

Les molècules de polièster són excel·lents per a la producció de fibres i es troben

en molts teixits. Dues de les fibres més comunes són el polièster (PET) i el polièster de butilè (PBT). El PET és un polímer de condensació format per l'àcid tereftàlic i l'etilenglicol, mentre que el PBT es forma a partir de l'àcid tereftàlic i el butilenglicol. Tots dos són polímers semicristal·lins amb una bona resistència química i mecànica, així com una alta estabilitat tèrmica. Com que l'àcid tereftàlic és un diàcid i l'etilenglicol un dialcohol, la cadena de polímers té un grup àcid carboxílic en un extrem i un grup alcohol en l'altre, permetent el creixement de la cadena a ambdós extrems mitjançant el mateix mecanisme de condensació (més informació detallada de les reaccions a https: //www.essentialchemicalindustry.org/polymers/polyesters.html).

PET
$$\begin{array}{c} \begin{array}{c} O \\ C \end{array} \\ \begin{array}{c} O \\$$

Aplicacions del politereftalat d'etilè (PET)

- Envasos i tèxtils: El PET és àmpliament conegut per l'ús en la indústria de l'embalatge, especialment en ampolles de plàstic i recipients per aliments, per la seva resistència, transparència i durabilitat. També és el material principal en fibres sintètiques com el polièster, utilitzades en roba i tapisseria.
- Electrònica: Tot i que el PBT és més habitual en components de precisió, el PET també s'utilitza en aplicacions que requereixen transparència o alta resistència mecànica, com films protectors o carcasses. Es transforma en films com el Mylar. Quan es recobreix magnèticament, la cinta de Mylar s'utilitza en cassets d'àudio i vídeo.

Aplicacions del PBT

• Indústria de l'automòbil: El PBT s'utilitza àmpliament en components automotrius com connectors, sensors i carcasses, gràcies a la seva excel·lent resistència a la calor, als productes químics i a l'estabilitat dimensional.

• Electrònica i maquinària industrial: En el sector electrònic, s'empra en connectors, interruptors i altres components de precisió per la seva baixa absorció d'humitat, alta aïllació elèctrica i cristal·lització ràpida. També es fa servir en la fabricació de peces mecàniques com engranatges i coixinets, on cal flexibilitat, resistència al desgast i tenacitat.

Policarbonats Més enllà dels derivats dels àcids carboxílics, qualsevol reacció entre espècies reactives en dues molècules diferents pot usar-se per a la polimerització per etapes. Una variant implica l'ús de monòmers amb grups carbonat.

Els carbonats actuen com èsters dobles i poden reaccionar amb dos alcohols mitjançant una doble transesterificació per formar compostos amb grups carbonat. Aquestes molècules difuncionals poden reaccionar amb un diol per formar un polímer amb grups carbonat repetits, anomenat policarbonat. Un exemple és el Lexan, format per la reacció entre carbonat de difenil i bisfenol A, un diol. Els policarbonats són materials resistents, durs i, en alguns graus, òpticament transparents. Són fàcilment treballables, modelables i termoformables. Aquestes propietats els fan útils en aplicacions com discos compactes, DVDs i Blu-ray.

El bisfenol A (BPA), principalment usat per fabricar policarbonat, és un dels compostos químics més produïts al món (més de 6 mil milions de lliures anualment). A causa de la seva presència en ampolles de plàstic i revestiments d'envasos alimentaris, hi ha preocupacions sobre la migració de BPA als aliments. Un estudi del CDC (2003-2004) va trobar rastres de BPA en el 93% de les persones analitzades als EUA. Això ha conduït moltes empreses de begudes a substituir els policarbonats per altres plàstics lliures de BPA.

Polimerització en cadena o per addició

La polimerització en cadena es basa en reaccions radicals i no perd àtoms en la formació del polímer. Aquestes reaccions són ràpides i produeixen cadenes de longitud semblant, independentment del temps de reacció. Es coneixen també com a polimeritzacions per addició (Taula 6.1).

Nom (abreviatura)	Fórmula	Monòmer	Propietats	Usos
Polietilè baixa den- sitat (LDPE)	$[-\mathrm{CH_2}\mathrm{-CH_2}\mathrm{-}]_\mathrm{n}$	$CH_2 = CH_2$	Sòlid suau i cerós	Envoltori plàstic, bosses
Polietilè alta densitat (HDPE)	$[-\mathrm{CH}_2\mathrm{-CH}_2\mathrm{-}]_\mathrm{n}$	$CH_2 = CH_2$	Sòlid rígid i translúcid	Aïllament elèctric, ampolles, joguines
Polipropilè (PP)	$[-\mathrm{CH}_2\mathrm{-CH}(\mathrm{CH}_3)-]_{\mathrm{n}}$	$CH_2 = CHCH_3$	Atàctic: sòlid suau i elàstic Isotàctic: sòlid dur i resis- tent	Tapisseries, catifes, similar a LDPE
Poli(clorur de vi- nil) (PVC)	$[-CH_2-CHCl-]_n$	$\mathrm{CH}_2 \mathrm{=} \mathrm{CHCl}$	Sòlid fort i rígid	Canonades, revestiments, paviments
Poli(clorur de vinilidè) (Saran A)	$[-CH_2-CCl_2-]_n$	$CH_2 = CCl_2$	Sòlid dens, alt punt de fusió	Fundes, films protectors
Poliestirė (PS)	$[-\mathrm{CH}_2\mathrm{-CH}(\mathrm{C}_6\mathrm{H}_5)-]_\mathrm{n}$	$CH_2 = CHC_6H_5$	Sòlid dur, rígid, transparent soluble en solvents orgànics	Embalatges, joguines, carcasses
Poliacrilonitril (PAN)	$[-CH_2-CHCN-]_n$	$\mathrm{CH_2}{=}\mathrm{CHCN}$	Sòlid d'alt punt de fusió, soluble en solvents orgànics	Mantes, roba, catifes
Poli(tetrafluoroetilè) (PTFE, Teflon)	$[-\mathrm{CF}_2\mathrm{-CF}_2\mathrm{-}]_\mathrm{n}$	$CF_2 = CF_2$	Sòlid resistent i llis	Superfícies antiadherents, aïllament elèctric
Poli(metil metacri- lat) (PMMA)	$[-\mathrm{CH}_2\mathrm{-C}(\mathrm{CH}_3)(\mathrm{CO}_2\mathrm{CH}_3)-]_n$	$\mathrm{CH_2}{=}\mathrm{C}(\mathrm{CH_3})\mathrm{CO_2}\mathrm{CH_3}$	Sòlid dur i transparent	Lluminàries, rètols, claraboies
Poli(acetat de vi- nil) (PVAc)	$[-\mathrm{CH}_2\mathrm{-CHOCOCH}_3\mathrm{-}]_\mathrm{n}$	$\mathrm{CH}_2 \mathrm{=} \mathrm{CHOCOCH}_3$	Sòlid suau i enganxós	Pintures làtex, adhesius
cis-Poliisoprè (cautxú natural)	$[-\mathrm{CH}_2\mathrm{-CH}\mathrm{=C}(\mathrm{CH}_3)\mathrm{-CH}_2\mathrm{-}]_\mathrm{n}$	$CH_2 = CH - C(CH_3) = CH_2$	Sòlid enganxós i suau, requereix vulcanització	Rodes, productes de cautxú natural
Policloroprè (Neo- prè)	$[-\mathrm{CH}_2\mathrm{-CH}\mathrm{=}\mathrm{CCl}\mathrm{-}\mathrm{CH}_2\mathrm{-}]_\mathrm{n}$	CH_2 = CH - CCl = CH_2	Sòlid dur, tipus cautxú	Cautxú sintètic, resistent a l'oli

Taula 6.1: Alguns polímers d'addició comuns amb les seves estructures, monòmers, propietats i aplicacions.

Química GEA 2024-2025

Els monòmers han de tenir un enllaç doble C=C. El mecanisme general implica:

Iniciació per ruptura homolítica de l'enllaç doble:

$$\begin{split} \mathbf{I} &\longrightarrow \mathbf{R} \, \cdot \, + \mathbf{R} \, \cdot \\ \mathbf{R} \, \cdot \, + \mathbf{M} &\longrightarrow \mathbf{M}_1 \, \cdot \end{split}$$

Propagació:

$$M_1 \cdot + M \longrightarrow M_2 \cdot$$

Terminació:

$$Mn \cdot + Mm \cdot \longrightarrow MnMm$$

 $Mn \cdot + Mm \cdot \longrightarrow Mn + Mm$
 $Mn \cdot + M \longrightarrow Mn + M \cdot$

on M és un monòmer genèric, I és l'iniciador, i els radicals lliures es representen amb punts. La iniciació inclou la formació de radicals i la seva reacció amb monòmers per generar radicals de monòmers. La propagació implica la reacció d'aquests radicals amb més monòmers. La terminació representa la pèrdua del radical actiu, bé per combinació de radicals o per transferència del radical a un altre monòmer.

Polímers habituals formats per aquest mètode i utilitzats en l'automoció inclouen polietilè, polipropilè, clorur de polivinil (PVC) i polimetilmetacrilat (PMMA).

Figura 6.5: Estructures químiques: a) polietile, b) polipropile, c) PVC, d) poliestirè, e) PET, f) poliuretà [3].

6.2.2Conformat dels polímers

Una vegada obtinguts els polímers, bé per addició, bé per condensació, durant el procés de conformat es dona la forma necessària al polímer. La conformació dels materials polimèrics depèn del tipus de polímer: el comportament dels plàstics termoestables és molt diferent al dels termoplàstics. Com a norma general, els termoplàstics es conformen aplicant pressió a elevada temperatura i en qualsevol cas per sobre de la transició vítria i es poden repetir els processos [4].

La conformació dels polímers termoestables es duu a terme en dues etapes:

- 1. Es prepara un polímer lineal (de vegades denominat prepolímer) en fase líquida de baix punt de fusió i s'introdueix en un motlle d'una manera determinada.
- 2. S'endureix el polímer, aquest procés es conegut com curat, pot ser per escalfament, afegint-hi un catalitzador, o sota pressió. Durant el curat hi ha reaccions químiques i estructurals en què s'entrecreuen les cadenes polimèriques i augmenten molt les interaccions intermoleculars (entre cadenes) de naturalesa covalent. Després del curat, es treuen del motlle (encara calent) ja que aquests polímers són estables dimensionalment, no canvien molt de grandària amb la temperatura i, per descomptat, molt menys que els termoplàstics.

Les tècniques (més comunes) d'emmotllament per donar forma als polímers termoplàstics (els més comuns) són les següents:

- Per compressió. S'aplica pressió al polímer en calent que en estat semipastós (parcialment fos) adquireix la forma del motlle.
- Per injecció. Anàleg a l'emmotllament per camisa aïllant en els metalls i és molt utilitzat en els termoplàstics. El polímer granulat es fon i resulta un líquid viscós, que mitjançant un èmbol s'injecta a través d'un filtre en una cavitat (motlle), i s'hi manté la pressió fins que la massa s'hi ha solidificat. Finalment, s'obre el motlle, es retira la peça, es tanca el motlle i es torna a repetir el cicle. Són molt utilitzats perquè tenen una gran velocitat de processament.
- Per bufament. És similar al procés d'obtenció d'ampolles de vidre. Primer s'extrudeix una preforma, en estat semifós la preforma es colloca entre dues peces del motlle que té la forma que es requereix. Es tanca el motlle, s'injecta aire o vapor a pressió dins de la preforma perquè les parets d'aquesta adquirisquen la forma del contorn del motlle.
- Colada. Igual que en el cas dels metalls es fon el material, es diposita en un motlle i al solidificar adquireix la forma del recipient que el contenia

Per fabricar peces plàstiques d'automòbil, el polímer ja produït arriba com a grànuls durs o perles de resina. Sovint ja contenen agents colorants o additius.

6.2.3Materials compostos (Composites)

Els compostos són materials formats per dos o més materials amb propietats físiques molt diferents que, quan es combinen, donen lloc a un material amb característiques diferents de les dels components individuals. En un automòbil hi ha una gran quantitat de materials compostos. Ja hem comentat un exemple quan parlàvem del sistema de frenada: les pastilles de fre. Altres exemples inclouen la fibra de vidre present en el Bondo i en alguns panells de carrosseria lleugers, fibres de carboni per a panells ultralleugers i materials estructurals, vidre laminat de seguretat per a les finestres del vehicle, i els discs d'embragatge tant en transmissions manuals com automàtiques.

En lloc de centrar-nos en els avantatges i desavantatges mecànics d'aquests compostos i les seves aplicacions, aquesta secció es focalitza en la química de fabricació dels materials. La fibra de vidre és un compost que conté fibres de vidre incrustades en una matriu polimèrica, habitualment un polímer que, per si sol, seria fràgil o es trencaria sense deformar-se sota estrès. Quan es forma una esquerda, aquesta es propaga fàcilment a través del polímer fràgil. No obstant això, si aquest polímer conté fibres resistents de vidre, és probable que l'esquerda xoqui contra una fibra i no es pugui propagar més. Així, les fibres ajuden a evitar un col·lapse catastròfic sota estrès moderat. Alhora, les fibres de vidre aporten resistència i una certa flexibilitat al polímer originalment fràgil. Tot i així, sota un estrès molt elevat, els panells de fibra de vidre es trenquen en petits fragments, dissipant millor l'energia d'un impacte, un avantatge important per a aplicacions de competició.

Com la majoria de vidres, les fibres de vidre emprades en aquests compostos són habitualment de sílice (SiO₂), tot i que sovint es barregen amb altres materials inorgànics per reduir la temperatura de treball i millorar la resistència química als àcids o als àlcalis. El tipus més comú de vidre és l'anomenat E-glass, patentat per Owens-Corning el 1943. Es tracta d'un vidre d'aluminoborosilicat format per una mescla d'òxids de sílice, bor, calci, magnesi i alumini. Aquesta mescla fosa s'extrudeix a través de boquilles estretes per formar fibres. Aquestes fibres es poden teixir o tallar en segments curts; aquest darrer format és el més utilitzat en aplicacions automotrius.

La matriu polimèrica de la fibra de vidre pot estar composta de materials com polivinil, poliestirè, acrilats d'èster o metilmetacrilats, o resines d'acrilonitril. També s'empren polímers de condensació com policarbonats, polièsters i òxids de polifenilè. El polímer escollit ha de tenir una forta adhesió a les fibres de vidre, la qual cosa implica (a) formació d'interaccions intermoleculars amb els grups funcionals superficials d'òxid i hidròxid del vidre, i (b) omplir fàcilment els espais entre fibres, evitant la formació de buits que podrien debilitar el material compost.

Normalment, la matriu i les fibres es combinen amb solvents per formar una pasta viscosa que es pot aplicar amb pinzell o modelar i escalfar per eliminar el solvent i curar el polímer, produint un panell sòlid compost.

Els compostos de fibra de carboni representen una altra classe de materials amb aplicacions comercials en el sector automobilístic i un ús extensiu en vehicles de competició. També són compostos polimèrics reforçats amb fibres. En general, ofereixen avantatges similars als de les fibres de vidre, però amb diferències clau: el carboni té una massa molecular menor que el silici, cosa que fa que les fibres de carboni siguin més lleugeres. A més, la seva superfície forma interaccions més fortes amb polímers orgànics hidrofòbics. Tant les fibres de carboni com les de vidre tenen una gran resistència a la tracció, resultant en compostos molt resistents i més flexibles que els polímers purs.

La majoria de fibres de carboni es fabriquen estirant poliacrilonitril o brea fosa de manera similar al procés industrial de les fibres de vidre. En la majoria d'estructures automobilístiques, les fibres es teixeixen en làmines que s'impregnen amb una matriu polimèrica, normalment una resina epoxi que conté el grup funcional epòxid. Aquestes resines, com les resines fenòliques i les novolacs, es curen mitjançant un agent enduridor que obre l'anell epòxid i permet la formació d'enllaços entre monòmers. Els agents curatius més comuns són amines o alcohols. Dissolent la resina en un solvent adequat es redueix la viscositat, facilitant la impregnació de les làmines de fibra. Aquestes es poden apilar, modelar i escalfar per completar el procés de curat.

Xassís monocasc

Els primers vehicles tenien bastidors d'acer soldats que actuaven com a suport estructural. Amb el temps, la tecnologia ha evolucionat cap a dissenys més avançats i segurs gràcies a nous materials estructurals. El màxim exponent d'aquesta evolució és el xassís monocasc de fibra de carboni. En un monocasc, la pell exterior del vehicle forma part del suport estructural, eliminant la necessitat de penjar panells de carrosseria. Això redueix el pes i millora la seguretat. En cas de col·lisió, els panells exteriors absorbeixen i dissipen millor l'energia que els sistemes tradicionals amb panells units només per punts de contacte. Tot i que un monocasc d'acer seria massa pesat per a competició, un de fibra de carboni ofereix una resistència similar amb un pes molt inferior. Actualment s'utilitzen en cotxes de competició com el xassís DW12 d'IndyCar i en cotxes esportius d'alta gamma com el McLaren F1 o el Lamborghini Aventador.

Vidre laminat de seguretat

El vidre de les finestres dels automòbils és també un material compost, conegut com a compost laminat. Cal combinar una elevada resistència a l'impacte amb rigidesa i una transparència pràcticament total. Tant el vidre com el policarbonat són materials adequats, però poden trencar-se de manera fràgil sota impactes forts, generant fragments perillosos. Enlaminant vidre o policarbonat amb un polímer flexible, durador i transparent, s'aconsegueix que el polímer absorbeixi part de l'energia i mantingui les làmines unides. Els polímers utilitzats són habitualment resina de polivinil butiral, uretans alifàtics o làmines de resina transparent curada. Químicament, contenen grups hidroxil i oxigen que formen interaccions fortes amb les funcionalitats del vidre o policarbonat i poden establir enllaços químics durant el procés d'unió.

Discs d'embragatge

Els discs d'embragatge són compostos molt més complexos que els polimèrics reforçats amb fibra o els compostos laminats. Són similars a les pastilles de fre pel que fa a funció: generar fricció elevada quan cal, baixa fricció i resistència quan no s'utilitzen, i ajudar a circular un líquid refrigerant. En transmissions tancades, aquest líquid és el fluid de transmissió. Els discs solen tenir canals per facilitar la circulació del líquid. Si massa lubricant quedés atrapat entre els discs i els engranatges, l'embragatge lliscaria. Els materials de fricció estan formats per fibres orgàniques, càrregues inorgàniques, modificadors de fricció, polímers com cautxú làtex, i una resina polimèrica que actua com a aglutinant. La química esdevé crucial en el curat de la resina, quan el solvent s'evapora i es produeix la polimerització. En alguns casos també hi intervé química de galvanització.

6.2.4 Cautxú

Els cotxes utilitzen cautxú als pneumàtics, mànegues, a la superfície dels pedals, com a juntes per evitar l'entrada d'aigua al vehicle, a les fulles dels eixugaparabrises i en altres aplicacions. Alguns d'aquests cautxús són molt durs, com els que es poden trobar a la suspensió, mentre que d'altres són tous i fàcilment flexibles, com les juntes de les portes i les fulles dels eixugaparabrises. Alguns components tenen fibres trenades o altres materials estructurals intercalats entre capes de cautxú, per exemple, les cintes d'acer i fibra dels pneumàtics. L'adhesió del cautxú a altres materials així com les seves propietats físiques (punt de fusió, elasticitat, resistència tèrmica, etc.) depenen en gran mesura de la química del cautxú.

Els cautxús naturals són làtex de poliisoprè produïts per alguns arbres i altres plantes. Un làtex és una suspensió estable de micropartícules de polímer (amb diàmetres de 100 nm a 100 µm), tot i que en anglès comú, làtex s'ha convertit en sinònim del terme general cautxú. Els làtex naturals sovint són líquids enganxosos i lletosos que varien de color entre blanc pur i marró clar. Com que provenen d'organismes biològics, contenen sucres, proteïnes i altres biomolècules vegetals comunes juntament amb poliisoprè en un dissolvent d'aigua. Quan es deshidrata el làtex, les micropartícules de cautxú coagulen i formen un sòlid feble i tou amb alta elasticitat i resistència a fractures fràgils.

Els làtexs sintètics també es produeixen industrialment, i en aquests materials el polímer orgànic és d'origen petroquímic o sintetitzat a partir de matèries primeres naturals. Els polímers de làtex sintètics comuns inclouen el cautxú estirè-butadè (SBR), polímers acrílics i acetat de polivinil, tot i que la indústria química del cautxú és ara tan avançada que existeixen moltes químiques especialitzades de cautxú documentades en patents (vegeu la patent dels EUA 6,613,838 B1 i les patents referenciades).

Una característica comuna de tots els compostos de cautxú naturals i sintètics és la presència d'enllaços carboni-carboni insaturats (C=C), importants per la rigidesa del polímer i els tipus de reaccions químiques en què poden participar els monòmers i polímers. Des d'una perspectiva automotriu, la química més important relacionada amb els cautxús és el procés de vulcanització. La vulcanització ajuda a fer els cautxús més rígids, més resistents a la calor i els confereix una gran forca promovent la formació d'enllacos químics entre les cadenes de polímer coneguts com a enllaços creuats (cross-links).

L'agent vulcanitzant clàssic per al cautxú natural és el sofre combinat amb calor elevada, tot i que també es poden utilitzar altres curatius químics que contenen sofre (com els sulfenàmids). La vulcanització amb sofre pur és molt lenta, i per això, els agents vulcanitzants es combinen amb acceleradors químics per augmentar la velocitat del procés fins a un ritme industrialment acceptable. Els acceleradors inclouen òxid de zinc i àcid esteàric, tot i que qualsevol substància que pugui obrir els anells S8 del sofre i trencar els enllaços de la cadena de sofre ajudarà a accelerar el procés. Aquests acceleradors redueixen l'energia d'activació per a la formació d'enllaços creuats oferint un mecanisme alternatiu per a l'obertura dels anells de sofre i la ruptura dels enllacos.

Els enllacos creuats en el procés clàssic de vulcanització amb sofre són cadenes d'àtoms de sofre que enllacen els polímers orgànics. Tot i que existeixen moltes teories sobre el mecanisme químic detallat de la vulcanització amb sofre, sembla clar que la presència d'hidrogen al·lícic és crítica (vegeu la Figura 6.2). Un hidrogen al·lícic és aquell unit a un carboni adjacent a un C=C. L'eliminació d'aquest hidrogen, que és el més fàcil d'extreure en un alquè no conjugat, forma un radical polimèric que pot reaccionar amb cadenes de sofre per formar enllaços creuats.

Pàgina 16

La resistència i la resistència tèrmica del cautxú vulcanitzat depenen del nombre d'àtoms de sofre implicats en l'enllaç creuat. Les cadenes curtes d'enllaç creuat proporcionen millor resistència a la calor gràcies a l'energia d'enllac més alta, mentre que les cadenes llargues ofereixen més resiliència i flexibilitat perquè permeten major llibertat de moviment de les cadenes polimèriques sota tensió. Existeixen alternatives al sofre com a agents curatius, com els peròxids, òxids metàl·lics i uretans.

Els farciments reforçadors també són modificadors molt importants del cautxú per a automoció i exerceixen una forta influència sobre el seu rendiment. El més utilitzat tradicionalment ha estat el negre de carboni, que també dóna el color negre al cautxú vulcanitzat. Com a sòlid orgànic, la funcionalitat química de la superfície del negre de carboni facilita la interacció química amb els polímers orgànics del cautxú. Tant els enllaços C-C com $C-S_n-C$ entre el farciment i el polímer proporcionen reforç estructural, mentre que la duresa de les partícules de carboni afavoreix la resistència a l'abrasió i la gestió tèrmica. Així, els negres de carboni petits amb alta àrea superficial que poden formar molts enllaços químics amb el polímer proporcionen els màxims beneficis.

L'altre farciment més utilitzat en la indústria del cautxú és la sílice. Les partícules de sílice són més dures que el negre de carboni i poden proporcionar més rigidesa i menor resistència al rodament, millorant així l'eficiència del combustible en els pneumàtics "verds" rics en sílice. Els grups funcionals de la superfície de la sílice són principalment grups hidroxil que no interaccionen fàcilment amb la fase polimèrica, ja que participen més fàcilment en enllaços d'hidrogen o forces intermoleculars de tipus dípol-dípol i ió-dípol. Per això, les superfícies de la sílice sovint es funcionalitzen amb compostos organosilans més compatibles químicament amb el polímer. Malgrat aquesta funcionalització, les partícules de sílice que es desgasten a la superfície del cautxú poden reexposar els grups hidroxil, cosa que pot millorar la tracció en mullat d'un pneumàtic, així com l'alteració de la tan δ , que és l'energia dissipada durant l'estirament en comparació amb l'energia alliberada durant la relaxació.

Tant la sílice precipitada com la sílice fumada s'utilitzen en la indústria del cautxú. No obstant això, la sílice funcionalitzada és actualment molt més cara que el negre de carboni, i aquesta diferència de cost és el principal motiu pel qual el negre de carboni continua sent el farciment de reforc principal en aplicacions automotrius.

Pneumàtics per a cada estació

En climes freds és habitual trobar pneumàtics d'estiu, d'hivern i tot temps. Els d'estiu funcionen bé en condicions càlides, tant en sec com en mullat. Els d'hivern ofereixen màxima tracció amb neu i gel, mentre que els tot temps ofereixen un rendiment raonable tot l'any. Les diferències són tant d'enginyeria (profunditat de canals, arestes angulars, ranures petites) com químiques. Es fan servir diversos elastòmers com cis-1,4-poli butadiè, cis-1,4-poliisoprè, poli(isobutilèco-isoprè), poli(estirè-co-butadiè), etc. La seva combinació permet ajustar la fricció i resistència al desgast segons la temperatura.

La duresa de la goma depèn de la seva temperatura de transició vítria (T_a) . Per a hivern calen polímers amb $-100\,^{\circ}\text{C} \leq T_g$, com cis-1,4-poli butadiè ($T_g =$ $-100\,^{\circ}$ C) i poliisoprè natural ($T_g = -72\,^{\circ}$ C). Per a estiu, rubbers com el nitril $(-40\,^{\circ}\text{C} \le T_g \le -10\,^{\circ}\text{C})$ i el SBR $(T_g = -25\,^{\circ}\text{C})$ funcionen millor. Pneumàtics d'hivern poden tenir una fricció sobre gel de 2 v a 10 vegades superior a la dels d'estiu en condicions de fred extrem, però es desgasten ràpidament en calor.

Pneumàtics verds

Actualment, els anuncis de pneumàtics destaquen l'eficiència del combustible i la tecnologia "verda", però què fa que un pneumàtic sigui "verd"? Hi ha dues estratègies: una és millorar l'eficiència del combustible reduint la resistència al rodament, cosa que es pot aconseguir substituint el negre de carboni per sílice funcionalitzada. Michelin estima que el 20% del combustible cremat s'utilitza per superar aquesta resistència, responsable del 4% de les emissions de CO₂ antropogèniques.

L'altra estratègia és produir els blocs de construcció del cautxú a partir de fonts renovables. Actualment, el cautxú per a pneumàtics prové d'espècies vegetals concretes o de combustibles fòssils. Tanmateix, Goodyear i Genecor (ara part de DuPont) han produït microbis modificats genèticament que sintetitzen isoprè a partir de sucres cultivables. Aquest isoprè pot ser usat per fabricar poliisoprè sintètic. Ja s'han produït pneumàtics prototipus amb BioIsopreneTM, i Goodyear preveu comercialitzar-los aviat.

Cautxús de silicona

Una altra classe comuna de cautxú sintètic són els basats en silicona i els segellants d'alta temperatura. Els polímers de cautxú de silicona tenen una estructura principal d'enllaços silici-oxigen (-Si-O-Si⁻), i grups funcionals orgànics laterals (metil, fenil, etc.). Aquests grups orgànics determinen les propietats físiques i químiques. Ajuden a fer els polímers més resistents a la humitat i solubles en dissolvents orgànics.

Abans del curat, solen ser líquids o gels enganxosos. Els processos de curat inclouen vulcanització o agents de curat com els peròxids. Són ideals per aplicacions d'alta temperatura i es fan servir en mànegues de radiador, juntes, casquets elèctrics, etc.

Envelliment del cautxú

Amb el temps, el cautxú es degrada per desgast físic o processos químics:

- L'ozó oxida els enllaços C=C, trencant les cadenes polimèriques.
- L'oxigen atmosfèric forma enllaços creuats amb oxigen, endurint el material.
- La vulcanització continua lentament al llarg del temps.
- La llum pot provocar radicals lliures o fotòlisi de l'estructura.

Per prevenir-ho, s'afegeixen antioxidants com amines, compostos fenòlics i organofosfits.

6.3 Exercicis

Exercici 6.1 (Polimerització). Dona l'estructura de la poliamida feta dels monòmers indicats a continuació:

• Àcid isoftàlic (C₆H₄(COOH)₂):

• 1,6-hexà diamina ($C_6H_4(COOH)_2$): H_2N . NH_2

Extret de [1]

Exercici 6.2 (Polimerització). Quin serà l'estructura del polímer que sorgeix dels següents reactius? Adaptat de [1].

Reactiu 1	Reactiu 2
но	но
но	MeO OMe
MeO O OMe	но

Exercici 6.3 (Polimerització). Identifica els monòmers que han estat usats per a la síntesi d'aquests polímers:

Extret de [1].

Bibliografia

- [1] 21.9: Polyamides and Polyesters Step-Growth Polymers. en. Ag. de 2015. URL: https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_ (Morsch_et_al.)/21%3A_Carboxylic_Acid_Derivatives-_Nucleophilic_Acyl_Substitution_Reactions/21.09%3A_Polyamides_and_Polyesters_-_Step-Growth_Polymers (cons. 04-05-2025).
- [2] Geoffrey M. Bowers i Ruth A. Bowers. *Understanding Chemistry through Cars*. en. CRC Press, nov. de 2014. ISBN: 978-1-4665-7184-6. DOI: 10.1201/b17581. URL: https://www.taylorfrancis.com/books/9781466571846.
- [3] Kristina Bule Možar et al. "Potential of Advanced Oxidation as Pretreatment for Microplastics Biodegradation". en. A: Separations 10.2 (febr. de 2023), pàg. 132. ISSN: 2297-8739. DOI: 10.3390/separations10020132. URL: https://www.mdpi.com/2297-8739/10/2/132 (cons. 04-05-2025).
- Juan Bautista Carda Castelló et al. Ciència dels materials: metalls, ceràmiques i polímers. ca. 1a ed. Universitat Jaume I, 2022. ISBN: 978-84-18432-91-0.
 DOI: 10.6035/sapientia181. URL: http://hdl.handle.net/10234/196486 (cons. 01-05-2025).
- [5] Akshat Patil, Arun Patel i Rajesh Purohit. "An overview of Polymeric Materials for Automotive Applications". en. A: Materials Today: Proceedings 4.2 (2017), pàg. 3807-3815. ISSN: 22147853. DOI: 10.1016/j.matpr. 2017.02.278. URL: https://linkinghub.elsevier.com/retrieve/pii/S2214785317304881 (cons. 04-05-2025).