1 Énoncé

- I - Normes sur l'espace des fonctions polynomiales réelles sur [0,1]

On désigne par E le \mathbb{R} -espace vectoriel des fonctions polynomiales réelles sur [0,1]. On identifiera polynôme et fonction polynomiale.

On note respectivement $\|\cdot\|_{\infty}\,,\,\|\cdot\|_1$ et $\|\cdot\|_2$ les normes usuellement définies sur E par :

$$\forall P \in E, \ \|P\|_{\infty} = \sup_{x \in [0,1]} |P(x)|, \ \|P\|_{1} = \int_{0}^{1} |P(x)| \, dx, \ \|P\|_{2} = \sqrt{\int_{0}^{1} |P(x)|^{2} \, dx}$$

Pour tout entier naturel n, et toute fonction polynomiale $P \in E$, on note :

$$\nu_n(P) = \int_0^1 P(x) x^n dx$$

1. Montrer que :

$$\forall P \in E, \lim_{n \to +\infty} \nu_n(P) = 0$$

2. Montrer que l'application :

$$\nu: P \mapsto \nu\left(P\right) = \sup_{n \in \mathbb{N}} |\nu_n\left(P\right)|$$

définit une norme sur E.

- 3. Montrer que, pour tout polynôme $P \in E$, il existe un entier $n_0 \in \mathbb{N}$ tel que $\nu(P) = |\nu_{n_0}(P)|$ (le sup est atteint).
- 4. Montrer que, pour tout polynôme $P \in E$, on a :

$$\nu(P) \le ||P||_1 \le ||P||_2 \le ||P||_{\infty}$$
 (1)

- 5. Quels sont les polynômes P pours lesquels :
 - (a) $||P||_1 = ||P||_2$?
 - (b) $||P||_2 = ||P||_{\infty}$?
 - (c) $\nu(P) = ||P||_1$?
- 6. Soit N l'une des normes $\nu, \|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$ sur E.
 - (a) Soit $(P_n)_{n\in\mathbb{N}}$ la suite de fonctions polynomiales définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

Montrer que cette suite est de Cauchy dans (E, N).

- (b) L'espace normé (E, N) est-il complet?
- 7. On rappelle que deux normes N_1 et N_2 sur un espace vectoriel réel E sont équivalentes s'il existe deux constantes $\alpha > 0$ et $\beta > 0$ telles que :

$$\forall x \in E, \ \alpha N_1(x) \le N_2(x) \le \beta N_1(x)$$

Montrer que les assertions suivantes sont équivalentes :

- (a) les normes N_1 et N_2 sur E sont équivalentes;
- (b) une suite est de Cauchy dans (E, N_1) si, et seulement si, elle est de Cauchy dans (E, N_2) ;
- (c) une suite est convergente dans (E, N_1) si, et seulement si, elle est convergente dans (E, N_2) .
- 8. Montrer que si N_1 et N_2 sont deux normes équivalentes sur E, alors (E, N_1) est complet si, et seulement si, (E, N_2) est complet.

9.

- (a) Montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_\infty$ [resp. $\|\cdot\|_2$ et $\|\cdot\|_\infty$] ne sont pas équivalentes.
- (b) Montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_2$ ne sont pas équivalentes.
- (c) Montrer que les normes ν et $\|\cdot\|_{\infty}$ ne sont pas équivalentes.
- 10. Pour tout réel $\alpha \in [0,1]$, on désigne par ℓ_{α} la forme linéaire définie sur E par :

$$\forall P \in E, \ \ell_{\alpha}(P) = P(\alpha)$$

- (a) Soient $\|\cdot\|$ une norme sur E et $\alpha \in [0,1]$. Montrer que ℓ_{α} est continue si, et seulement si, il existe une constante réelle $M_{\alpha} > 0$ telle que $|\ell_{\alpha}(P)| \leq M_{\alpha} \|P\|$ pour tout $P \in E$.
- (b) Existe-til une une norme $\|\cdot\|$ sur E telle que toutes les formes linéaires ℓ_{α} soient continues.
- (c) Soit N l'une des normes $\nu, \|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$ sur E. Déterminer l'ensemble C_N des réels $\alpha \in [0,1]$ tels que ℓ_{α} soient continue de (E,N) dans \mathbb{R} .
- 11. On désigne par N_1 et N_2 les applications définies sur E par :

$$\forall P \in E, \ N_1(P) = \sum_{n=0}^{+\infty} |P^{(n)}(n)|, \ N_2(P) = \sup_{t \in [0,1]} |P(e^{2i\pi t})|$$

- (a) Montrer que N_1 et N_2 définissent des normes sur E.
- (b) L'espace (E, N_1) est-il complet?
- (c) L'espace (E, N_2) est-il complet?

- II - Un résultat de géométrie euclidienne

Ici $(E, \langle \cdot | \cdot \rangle)$ est un espace euclidien de dimension $n \geq 2$.

On note $\|\cdot\|_2$ la norme euclidienne correspondante.

 $\mathcal{B}=(e_i)_{1\leq i\leq n} \text{ est une base orthonormée de } (E,\langle\cdot\mid\cdot\rangle) \text{ et } \|\cdot\|_1 \text{ est la norme définie sur } E \text{ par : }$

$$\forall x = \sum_{i=1}^{n} x_i e_i \in E, \ \|x\|_1 = \sum_{i=1}^{n} |x_i|$$

On note $S^1=\{x\in E\mid \|x\|_1=1\}$ la sphère unité de $(E,\left\|\cdot\right\|_1)$.

On se propose de montrer le résultat suivant.

Si F est un sous-espace vectoriel de E de dimension r comprise entre 1 et n-1, on a alors:

$$\sqrt{r} \le \max_{x \in F \setminus \{0\}} \frac{\|x\|_1}{\|x\|_2}$$

1. Pour tout $\varepsilon \in \left\{-1,1\right\}^n$, on désigne par e_ε le vecteur :

$$e_{\varepsilon} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i e_i$$

et par H_{ε} le sous-ensemble de E défini par :

$$H_{\varepsilon} = \left\{ x \in E \mid \langle x \mid e_{\varepsilon} \rangle = \frac{1}{\sqrt{n}} \right\}$$

- (a) Montrer que H_ε est un hyperplan affine de E.
- (b) Montrer que $S^1 \subset \bigcup_{\varepsilon \in \{-1,1\}^n} H_{\varepsilon}$.
- 2. Soit F un sous-espace vectoriel de E de dimension r comprise entre 1 et n-1 et $(a_i)_{1 \leq i \leq n-r}$ une base orthonormée de F^{\perp} .

Pour tout $\varepsilon \in \{-1,1\}^n$, on note :

$$\delta_{\varepsilon} = \left\{ \begin{array}{l} +\infty \text{ si } H_{\varepsilon} \cap F = \emptyset \\ d\left(0, H_{\varepsilon} \cap F\right) \text{ si } H_{\varepsilon} \cap F \neq \emptyset \end{array} \right.$$

où $d(0, H_{\varepsilon} \cap F)$ est la distance euclidienne du vecteur nul à $H_{\varepsilon} \cap F$.

On utilise la convention $\frac{1}{+\infty} = 0$.

- (a) Justifier, dans le cas où $H_{\varepsilon} \cap F \neq \emptyset$, l'existence d'un vecteur $x \in E$ tel que $\delta_{\varepsilon} = \|x\|_{2}$.
- (b) Précisément, dans le cas où $H_{\varepsilon} \cap F \neq \emptyset$, montrer que :

$$x = \sum_{i=1}^{n-r} \lambda_i a_i + \lambda e_{\varepsilon}$$

où:

$$\lambda = \frac{1}{\sqrt{n} \left(1 - \sum_{i=1}^{n-r} \left\langle a_i \mid e_{\varepsilon} \right\rangle^2 \right)}$$

et:

$$\lambda_i = -\lambda \langle a_i \mid e_{\varepsilon} \rangle \ (1 \le i \le n - r)$$

(c) Montrer, dans tous les cas, que :

$$\frac{1}{\delta_{\varepsilon}^{2}} = n \left(1 - \sum_{i=1}^{n-r} \left\langle a_{i} \mid e_{\varepsilon} \right\rangle^{2} \right)$$

(d) Montrer que:

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \frac{1}{\delta_\varepsilon^2} = r$$

(e) Déduire de ce qui précède que :

$$\sqrt{r} \le \max_{x \in F \setminus \{0\}} \frac{\|x\|_1}{\|x\|_2}$$

- III - Normes sur ℓ^1

On désigne par ℓ^1 l'ensemble des suites réelles $x=(x_n)_{n\in\mathbb{N}}$ telles que la série $\sum x_n$ soit absolument convergente.

On note $\left\| \cdot \right\|_1$ la norme sur ℓ^1 définie par :

$$\forall x = (x_n)_{n \in \mathbb{N}} \in \ell^1, \ ||x||_1 = \sum_{n=0}^{+\infty} |x_n|$$

- 1. Montrer que ℓ^1 est un espace vectoriel.
- 2. Montrer que pour toutes suites $x=(x_n)_{n\in\mathbb{N}}$ et $y=(y_n)_{n\in\mathbb{N}}$ dans ℓ^1 , la série $\sum x_ny_n$ est absolument convergente et que l'application :

$$(x,y) \mapsto \langle x \mid y \rangle = \sum_{n=0}^{+\infty} x_n y_n$$

définit un produit scalaire sur E. On note $\lVert \cdot \rVert_2$ la norme associée.

- 3. Les normes $\|\cdot\|_1$ et $\|\cdot\|_2$ sont-elles équivalentes sur ℓ^1 ?
- 4. Montrer que $(\ell^1, ||\cdot||_1)$ est complet.
- 5. L'espace $(\ell^1, \|\cdot\|_2)$ est-il complet?
- 6. Pour tout entier $n \in \mathbb{N}$, on désigne par π_n l'application qui à $x = (x_n)_{n \in \mathbb{N}} \in \ell^1$ associe le réel $\pi_n(x) = x_n$. Montrer que les applications π_n sont des formes linéaires continues sur $(\ell^1, \|\cdot\|_1)$ et sur $(\ell^1, \|\cdot\|_2)$.
- 7. Une forme linéaire ℓ sur ℓ^1 qui est continue pour $\|\cdot\|_1$, est-elle combinaison linéaire de π_n ?
- 8. Étudier, du point de vue algébrique et topologique, l'application * définie sur $\ell^1 \times \ell^1$ par :

$$\forall n \in \mathbb{N}, \ (x * y)_n = \sum_{k=0}^n x_k y_{n-k}$$

Les deux questions qui suivent sont difficiles.

- 9. On désigne par $\mathcal{F}(\mathbb{N}, \mathbb{R})$ l'ensemble des suites réelles et pour tout entier $n \geq 0$, on note $S_n = \{0, 1, \dots, n\}$. Montrer que si $(x^{(k)})_{1 \leq k \leq p}$ est une famille libre dans $\mathcal{F}(\mathbb{N}, \mathbb{R})$, il existe alors un entier n_0 tel que la famille $(x^{(k)}|_{S_n})_{1 \leq k \leq p}$ soit libre dans $\mathcal{F}(S_n, \mathbb{R})$, où $\mathcal{F}(S_n, \mathbb{R})$ est l'ensemble des applications de S_n dans \mathbb{R} et, pour toute suite $x \in \mathcal{F}(\mathbb{N}, \mathbb{R})$, $x_{|S_n}$ est la restriction de x à S_n .
- 10. Soit V un sous-espace vectoriel de ℓ^1 . Montrer que s'il existe un réel $\alpha > 0$ tel que :

$$\forall x \in V, \ \|x\|_1 \le \alpha \|x\|_2$$

l'espace V est alors de dimension finie et dim $(V) \leq \alpha^2$.

2 Solution

- I Normes sur l'espace des fonctions polynomiales réelles sur $\left[0,1\right]$
- 1. Pour tout polynôme $P \in E$ et tout entier $n \ge 1$, on a :

$$|\nu_n(P)| \le ||P||_{\infty} \int_0^1 x^n dx = \frac{||P||_{\infty}}{n+1} \underset{n \to +\infty}{\to} 0$$

2. Comme la suite $(\nu_n(P))_{n\in\mathbb{N}}$ est convergente, elle est bornée et le réel $\nu(P)$ est bien défini. Il est clair que ν est valeurs positive.

Si $\nu(P) = 0$, on a alors $\nu_n(P) = \int_0^1 P(x) x^n dx = 0$ pour tout, ce qui équivaut du fait de la linéarité de l'intégrale à $\int_0^1 P(x) Q(x) dx = 0$ pour tout $Q \in E$. En particulier, on a

 $\int_{0}^{1} P^{2}\left(x\right) dx = 0 \text{ et } P = 0 \text{ puisque } P^{2} \text{ est continue positive.}$ Avec $\left|\nu_{n}\left(\lambda P\right)\right| = \left|\lambda\right| \left|\nu_{n}\left(P\right)\right| \text{ et :}$

$$|\nu_{n}(P+Q)| = \left| \int_{0}^{1} (P(x) + Q(x)) x^{n} dx \right|$$

$$= \left| \int_{0}^{1} P(x) x^{n} dx + \int_{0}^{1} Q(x) x^{n} dx \right|$$

$$\leq \left| \int_{0}^{1} P(x) x^{n} dx \right| + \left| \int_{0}^{1} Q(x) x^{n} dx \right| = |\nu_{n}(P)| + |\nu_{n}(Q)|$$

pour tout $n \in \mathbb{N}$, P,Q dans E et $\lambda \in \mathbb{R}$, on déduit que $\nu(\lambda P) = |\lambda| \nu(P)$ et $\nu(P+Q) \le \nu(P) + \nu(Q)$.

En définitive, ν est une norme sur E.

3. Si $\nu(P) = 0$, on a alors P = 0 et $n_0 = 0$ (ou n'importe quel entier) convient. Si $\nu(P) > 0$, comme $\lim_{n \to +\infty} \nu_n(P) = 0$, il existe un entier $r \ge 0$ tel que:

$$\forall n > r, \ 0 \le |\nu_n(P)| \le \frac{\nu(P)}{2}$$

et:

$$\nu\left(P\right) = \sup_{0 \le n \le r} \left| \nu_n\left(P\right) \right|$$

est atteint (c'est le plus grand élément d'un ensemble fini).

4. On a:

$$|\nu_n(P)| = \left| \int_0^1 P(x) x^n dx \right| \le \int_0^1 |P(x)| dx = ||P||_1$$

En utilisant l'inégalité de Cauchy-Schwarz, on a :

$$||P||_1 = \int_0^1 |P(x)| \cdot 1 dx \le ||P||_2 ||1||_2 = ||P||_2$$

Enfin:

$$||P||_2^2 = \int_0^1 |P(x)|^2 dx \le ||P||_\infty^2$$

est clair.

5.

(a) L'égalité $\|P\|_1 = \|P\|_2$ est réalisée si, et seulement si, il y a égalité dans l'inégalité de Cauchy-Schwarz $\langle |P| \mid 1 \rangle \leq \|P\|_2 \|1\|_2$, ce qui équivaut à dire qu'il existe un réel λ tel que $|P| = \lambda \cdot 1 = \lambda$. Si $\lambda = 0$, on a alors P = 0, sinon le théorème des valeurs intermédiaires nous dit que $P = \lambda$ ou $P = -\lambda$.

Dans tous les cas, $||P||_1 = ||P||_2$ si, et seulement si, P est constant.

(b) L'égalité $\|P\|_2 = \|P\|_\infty$ est réalisée si, et seulement si :

$$\int_{0}^{1} (\|P\|_{\infty}^{2} - |P(x)|^{2}) dx = 0$$

la fonction $\|P\|_{\infty}^2 - |P(x)|^2$ étant positive continue, ce qui équivaut à $|P| = \|P\|_{\infty}$ et P est constante.

(c) Si P = 0, on a bien $\nu\left(P\right) = \|P\|_1$.

Soit $P \neq 0$ tel que $\nu(P) = ||P||_1$.

Comme il existe un entier $n_0 \in \mathbb{N}$ tel que $\nu(P) = |\nu_{n_0}(P)|$, l'égalité $\nu(P) = ||P||_1$ se traduit par :

$$\int_{0}^{1} |P(x)| \, dx = \left| \int_{0}^{1} P(x) \, x^{n_0} dx \right|$$

Si $n_0 = 0$, cela signifie que :

$$\left| \int_0^1 P(x) \, dx \right| = \int_0^1 |P(x)| \, dx$$

soit:

$$\int_{0}^{1} P(x) dx = \pm \int_{0}^{1} |P(x)| dx$$

ou encore:

$$\int_{0}^{1} (|P(x)| \pm P(x)) dx = 0$$

la fonction $|P| \pm P$ étant continue positive, ce qui équivaut à $P = \pm |P|$ et P a un signe constant.

Si $n_0 \ge 1$, on a:

$$\int_{0}^{1} |P(x)| dx = \left| \int_{0}^{1} P(x) x^{n_0} dx \right| \le \int_{0}^{1} |P(x)| x^{n_0} dx$$

soit:

6.

$$\int_{0}^{1} (1 - x^{n_0}) |P(x)| dx \le 0$$

et comme on a aussi $\int_0^1 (1-x^{n_0}) |P(x)| dx \ge 0$, il en résulte que :

$$\int_{0}^{1} (1 - x^{n_0}) |P(x)| dx = 0$$

ce qui équivaut à $(1-x^{n_0})|P(x)|=0$ pour tout $x\in[0,1]$, puisque cette fonction est continue positive, donc P(x)=0 pour tout $x\in[0,1[$ puisque $1-x^{n_0}>0$ pour $n_0\geq 1$ et $x\in[0,1[$. Par continuité, on en déduit que P=0 sur [0,1].

En définitive, si $\nu(P) = ||P||_1$, la fonction polynomiale P est de signe constant sur [0,1]. Réciproquement si P est de signe constant sur [0,1], on a alors en supposant $P \ge 0$ (on s'y ramène en remplçant P par -P):

$$||P||_1 = \int_0^1 P(x) dx \le \nu(P)$$

et $\nu(P) = ||P||_1$ puisqu'on a toujours l'autre inégalité.

(a) Avec les inégalités (1), il nous suffit de vérifier que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(E, \|\cdot\|_{\infty})$. Pour $m>n\geq 0$ et $x\in[0,1]$, on a :

$$0 \le P_m(x) - P_n(x) = \sum_{k=n+1}^{m} \frac{x^k}{k!} \le \sum_{k=n+1}^{+\infty} \frac{1}{k!}$$

donc:

$$||P_m - P_n||_{\infty} \le \sum_{k=n+1}^{+\infty} \frac{1}{k!} \underset{n \to +\infty}{\to} 0$$

et $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(E, \|\cdot\|_{\infty})$, donc dans (E, N).

(b) Avec les inégalités (1), il nous suffit de vérifier que $(P_n)_{n\in\mathbb{N}}$ est divergente dans dans (E,ν) pour montrer qu'elle diverge dans chacun des (E,N) et aucun de ces espaces n'est de Banach.

Supposons que $(P_n)_{n\in\mathbb{N}}$ converge vers $P\in E$ dans (E,ν) . On a alors $\lim_{n\to+\infty}\nu\left(P_n-P\right)=0$ et avec :

$$0 \le \nu_k \left(P_n - P \right) \le \nu \left(P_n - P \right)$$

pour tout entier naturel k, on déduit que :

$$\forall k \in \mathbb{N}, \ \lim_{n \to +\infty} \nu_k \left(P_n - P \right) = 0$$

et:

$$\forall k \in \mathbb{N}, \lim_{n \to +\infty} \int_{0}^{1} (P_n(x) - P(x)) x^k dx = 0$$

Sachant que la suite $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction exponentielle sur [0,1] (c'est une série entière de rayon de convergence infinie), on en déduit que :

$$\forall k \in \mathbb{N}, \int_{0}^{1} (e^{x} - P(x)) x^{k} dx = 0$$

et par linéarité de l'intégrale :

$$\forall Q \in E, \int_{0}^{1} (e^{x} - P(x)) Q(x) dx = 0$$

Prenant pour polynômes Q les polynômes P_n , on a :

$$\forall n \in \mathbb{N}, \ \int_0^1 \left(e^x - P(x)\right) P_n(x) dx = 0$$

et faisant tendre n vers l'infini, par convergence uniforme, on a :

$$\int_0^1 \left(e^x - P(x) \right) e^x dx = 0$$

qui combiné avec $\int_0^1 (e^x - P(x)) P(x) dx = 0$ nous donne $\int_0^1 (e^x - P(x))^2 dx = 0$ et $\exp = P \in E$, ce qui n'est pas (sinon $P^{(k)}(0) = 1$ pour tout entier $k \ge 0$, avec P polynomiale, ce qui n'est pas possible).

On aurait aussi pu utiliser le théorème des moments qui nous dit si une fonction $f \in \mathcal{C}^0([0,1])$ est telle que $\int_0^1 f(x) \, x^k dx = 0$ pour tout entier $k \geq 0$, c'est alors la fonction nulle (c'est une conséquence du théorème de Stone-Weierstrass).

Remarque : en utilisant le théorème de Baire, on peut montrer qu'un espace de Banach de dimension infinie ne peut avoir de base dénombrable, ce qui résout la question immédiatement.

7. Supposons que N_1 et N_2 sur E soient équivalentes. Si $(x_n)_{n\in\mathbb{N}}$ est une suite d'éléments de E qui est de Cauchy dans (E, N_1) [resp. dans (E, N_2)], avec :

$$0 \le N_2 \left(x_m - x_n \right) \le \beta N_1 \left(x_m - x_n \right)$$

resp.
$$0 \le N_1 (x_m - x_n) \le \frac{1}{\alpha} N_2 (x_m - x_n)$$

on déduit que $(x_n)_{n\in\mathbb{N}}$ est de Cauchy dans (E,N_2) [resp. dans (E,N_1)]. Donc $(a)\Rightarrow (b)$.

Supposons (b) vérifiée et soit $(x_n)_{n\in\mathbb{N}}$ une suite convergente dans (E,N_1) vers $x\in E$. On lui associe la suite $(y_n)_{n\in\mathbb{N}}$ définie par $y_{2n}=x_n$ et $y_{2n+1}=x$ pour tout $n\in\mathbb{N}$. La suite $(y_n)_{n\in\mathbb{N}}$ converge vers x dans (E,N_1) , elle est donc de Cauchy dans (E,N_1) et aussi dans (E,N_2) si (b) est vérifié. Pour tout $\varepsilon>0$, on peut donc trouver un entier n_0 tel que pour tous p,q supérieurs à n_0 on ait $N_2(y_q-y_p)<\varepsilon$, ce qui nous donne :

$$\forall n \ge \frac{n_0}{2}, \ N_2(y_{2n+1} - y_{2n}) = N_2(x - x_n) < \varepsilon$$

et signifie que $(x_n)_{n\in\mathbb{N}}$ converge vers x dans (E, N_1) . Donc $(b) \Rightarrow (c)$.

Supposons (c) vérifiée. Il s'agit de montrer que les fonctions $\frac{N_1}{N_2}$ et $\frac{N_2}{N_1}$ sont majorées sur $E \setminus \{0\}$. Si $\frac{N_1}{N_2}$ n'est pas majorée (la démonstration est analogue pour $\frac{N_2}{N_1}$), pour tout entier $n \ge 1$, il existe $x_n \in E \setminus \{0\}$ tel que $\frac{N_1(x_n)}{N_2(x_n)} \ge n^2$. En désignant par $(y_n)_{n \in \mathbb{N}^*}$ la suite définie par $y_n = \frac{n}{N_1(x_n)}x_n$, on a :

$$N_1(y_n) = n \underset{n \to +\infty}{\longrightarrow} +\infty$$

et:

$$0 \le N_2(y_n) \le \frac{1}{n^2} N_1(y_n) = \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$$

donc $\lim_{n\to+\infty}y_n=0$ dans (E,N_2) et $(y_n)_{n\in\mathbb{N}^*}$ doit converger dans (E,N_1) si (c) est vérifié, ce qui est incompatible avec $(N_1(y_n))_{n\in\mathbb{N}}$ non bornée.

- 8. Résulte immédiatement de ce qui précède.
- 9.
- (a) Soit $(P_n)_{n\in\mathbb{N}}$ la suite d'éléments de E définie par $P_n(x)=x^n$ pour tout $n\in\mathbb{N}$ et tout $x\in[0,1]$. Avec $\|P_n\|_1=\frac{1}{n+1}$ et $\|P_n\|_2=\frac{1}{\sqrt{2n+1}}$, on voit que $(P_n)_{n\in\mathbb{N}}$ tend vers 0 dans E muni

 $n+1 \qquad \sqrt{2n+1}$ de $\|\cdot\|_1$ et $\|\cdot\|_2$ et avec $\|P_n\|_{\infty} = 1$, on voit que ce n'est pas le cas pour $\|\cdot\|_{\infty}$.

- Donc $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ [resp. $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$] ne sont pas équivalentes.
- (b) En utilisant l'exemple précédent, on a :

$$\frac{\|P_n\|_2}{\|P_n\|_1} = \sqrt{2n+1}$$

donc la fonction $\frac{\|\cdot\|_2}{\|\cdot\|_1}$ n'est pas majorée sur $E\setminus\{0\}$ et les normes $\|\cdot\|_1$ et $\|\cdot\|_2$ ne sont pas équivalentes.

(c) Avec $\nu \leq \|\cdot\|_1 \leq \|\cdot\|_2 \leq \|\cdot\|_{\infty}$, on déduit qu'une suite convergente pour $\|\cdot\|_{\infty}$ converge toujours vers $\|\cdot\|_1$ et l'équivalence entre ν et $\|\cdot\|_{\infty}$ entraı̂nerait qu'une suite convergente pour $\|\cdot\|_1$, va converger vers ν , donc vers $\|\cdot\|_{\infty}$, ce qui contredit la non équivalence de $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$.

De manière analogue, on voit que ν et $\|\cdot\|_2$ ne sont pas équivalentes.

10.

(a) C'est du cours et valable pour toute forme linéaire ℓ sur E. Si ℓ est continue sur E, elle est alors continue en 0 et il existe un réel $\eta > 0$ tel que :

$$P \in E$$
, $||P|| \le \eta \Rightarrow |\ell(P)| = |\ell(P) - \ell(0)| \le 1$

Pour tout $P \in E \setminus \{0\}$, on a $\left\| \frac{\eta}{\|P\|} P \right\| = \eta$ et $\left| \ell \left(\frac{\eta}{\|P\|} P \right) \right| \leq 1$ revient à dire que $|\ell(P)| \leq M \|P\|$ avec $M = \frac{1}{\eta}$, ce qui est encore valable pour P = 0.

Réciproquement s'il existe M > 0 tel que $|\ell(P)| \le M ||P||$ pour tout $P \in E$, l'application linéaire ℓ est lipschitzienne, donc continue et même uniformément continue.

(b) Soit $\|\cdot\|$ l'application définie sur E par :

$$\forall P \in E, \ \|P\| = \sum_{n=0}^{+\infty} |P^{(n)}(0)|$$

Comme $P^{(n)}$ pour n assez grand, cette application est bien définie. Elle est à valeurs positives et $\|\lambda P\| = |\lambda| \|P\|$, $\|P + Q\| \le \|P\| + \|Q\|$ pour tous $\lambda \in \mathbb{R}$ et P, Q dans E. En utilisant la formule de Taylor pour les polynômes, on voit que $\|P\| = 0$ si, et seulement si, P = 0. Donc $\|\cdot\|$ est une norme sur E.

Pour tout $\alpha \in [0,1]$ et tout $P \in E$, on peut écrire en utilisant la formule de Taylor pour les polynômes que :

$$|\ell_{\alpha}(P)| = |P(\alpha)| = \left| \sum_{n=0}^{+\infty} \frac{P^{(n)}(0)}{n!} \alpha^{n} \right| \le \sum_{n=0}^{+\infty} |P^{(n)}(0)| = ||P||$$

(on peut aussi prendre $\alpha \in \mathbb{R}$ et avec $\lim_{n \to +\infty} \frac{\alpha^n}{n!}$, on déduit que la suite $\left(\frac{\alpha^n}{n!}\right)_{n \in \mathbb{N}}$ est bornée, donc $|\ell_{\alpha}(P)| \leq M_{\alpha} ||P||$ avec $M_{\alpha} = \sup_{n \in \mathbb{N}} \frac{|\alpha|^n}{n!}$).

(c) Avec $|\ell_{\alpha}(P)| = |P(\alpha)| \le ||P||_{\infty}$, on déduit que $C_{\|\cdot\|_{\infty}} = [0,1]$. Supposons qu'il existe $\alpha \in [0,1]$ tel que ℓ_{α} soit continue pour $\|\cdot\|_{1}$. Il existe alors $M_{\alpha} > 0$ tel que $|\ell_{\alpha}(P)| \le M_{\alpha} ||P||_{1}$ pour tout $P \in E$. Prenant P = 1, on déduit que $M_{\alpha} \ge 1$.

Le théorème de Stone-Weierstrass nous dit que pour toute fonction $f \in \mathcal{C}^0([0,1])$, il existe une suite $(P_n)_{n\in\mathbb{N}}$ dans E qui converge uniformément vers f sur [0,1]. On a alors $\lim_{n\to+\infty}\ell_{\alpha}(P_n)=\lim_{n\to+\infty}P_n(\alpha)=f(\alpha)$ (convergence simple) et $\lim_{n\to+\infty}\|P_n\|_1=\|f\|_1$ (conséquence de la convergence uniforme) et en conséquence :

$$|f(\alpha)| = \lim_{n \to +\infty} |\ell_{\alpha}(P_n)| \le M_{\alpha} \lim_{n \to +\infty} ||P_n||_1$$
$$\le M_{\alpha} ||f||_1 = M_{\alpha} \int_0^1 |f(x)| dx$$

Mais pour $f \in \mathcal{C}^0([0,1])$ affine par morceaux telle que f(x) = 0 pour $x \notin [0,1] \cap \left[\alpha - \frac{1}{4M_\alpha}, \alpha + \frac{1}{4M_\alpha}\right]$, $f(\alpha) = 1$ et f affine sur $[0,1] \cap \left[\alpha - \frac{1}{4M_\alpha}, \alpha\right]$ et $[0,1] \cap \left[\alpha, \alpha + \frac{1}{4M_\alpha}\right]$ (faire un dessin), cela donne :

$$|f(\alpha)| = 1 \le M_{\alpha} \int_{0}^{1} |f(x)| dx \le M_{\alpha} \frac{1}{4M_{\alpha}} = \frac{1}{4}$$

ce qui est faux.

On a donc $C_{\|\cdot\|_1} = \emptyset$.

On voit de même que $C_{\|\cdot\|_2} = \emptyset$.

Avec $\nu \leq \|\cdot\|_1$, on déduit que $C_{\nu} \subset C_{\|\cdot\|_1}$ et $C_{\nu} = \emptyset$.

11.

(a) Comme $P^{(n)}$ pour n assez grand, l'application N_1 est bien définie. Elle est à valeurs positives et $N_1(\lambda P) = |\lambda| N_1(P)$, $N_1(P+Q) \le N_1(P) + N_1(Q)$ pour tous $\lambda \in \mathbb{R}$ et P, Q dans E.

Si $N_1(P) = 0$, on a alors $P^{(n)}(n) = 0$ pour tout entier $n \ge 0$.

Montrons, par récurrence sur $p \ge 0$, que si $P \in \mathbb{R}_p[X]$ est tel que $P^{(n)}(n) = 0$ pour tout entier n > 0, on a alors P = 0.

Pour p = 0, c'est clair.

Supposons le sultat acquis au rang $p-1 \ge 0$ et soit $P \in \mathbb{R}_p[X]$ tel que $P^{(n)}(n) = 0$ pour tout entier $n \ge 0$. Le polynôme Q(X) = P'(X+1) est dans $\mathbb{R}_{p-1}[X]$ avec $Q^{(n)}(n) = P^{(n+1)}(n+1) = 0$ pour tout $n \ge 0$, donc Q = 0 et P est constant égal à P(0) = 0.

On peut aussi procéder comme suit.

L'application $\varphi_p: P \mapsto (P(0), P'(1), \dots, P^{(p)}(p))$ est linéaire de $\mathbb{R}_p[X]$ dans \mathbb{R}^{p+1} et sa matrice dans la base canonique est :

$$A_{p} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 2 & \cdots & p \\ 0 & 0 & 2! & \cdots & p (p-1) 2^{p-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & p! (p-1) \\ 0 & 0 & 0 & \cdots & p! \end{pmatrix}$$

Comme det $(A_p) \neq 0$, cette application réalise un isomrphisme de $\mathbb{R}_p[X]$ sur \mathbb{R}^{p+1} et en particulier, $N_1(P) = 0$ qui équivaut à $\varphi_p(P) = 0$ nous donne P = 0.

L'application N_1 est donc une norme sur E.

L'application $t \mapsto P\left(e^{2i\pi t}\right)$ étant continue sur le segment [0,1] y est bornée et atteint ses bornes, donc N_2 est bien définie. Cette application est à valeurs positives avec $N_2\left(\lambda P\right) = |\lambda| N_2\left(P\right), N_2\left(P+Q\right) \leq N_2\left(P\right) + N_2\left(Q\right)$ pour tous $\lambda \in \mathbb{R}$ et P,Q dans E.

Si $N_2(P) = 0$, on a alors $P(e^{2i\pi t}) = 0$ pour tout $t \in [0, 1]$ et P a une infinité de racines sur le cercle unité du plan complexe, c'est donc le polynôme nul.

L'application N_2 est donc bien une norme sur E.

(b) En utilisant les isomorphismes φ_n de la question précédente, on peut construire une suite $(P_n)_{n\in\mathbb{N}}$ d'éléments de E telle que :

$$\forall n \in \mathbb{N}, \ P_n \in \mathbb{R}_n [X] \text{ et } \forall k \in \{0, \dots, n\}, \ P_n^{(k)} (k) = \frac{1}{2^k}$$

Pour $m > n \ge 0$, on a :

$$N_{1}(P_{m} - P_{n}) = \sum_{k=0}^{+\infty} |P_{m}^{(k)}(k) - P_{n}^{(k)}(k)|$$

$$= \sum_{k=n+1}^{m} P_{m}^{(k)}(k) = \sum_{k=n+1}^{m} \frac{1}{2^{k}} \le \sum_{k=n+1}^{+\infty} \frac{1}{2^{k}} \underset{n \to +\infty}{\to} 0$$

ce qui signifie que la suite $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(E,N_1)\,.$

Supposons qu'elle converge dans (E, N_1) vers un polynôme P. Avec $\left|P^{(k)}\left(k\right) - P_n^{(k)}\left(k\right)\right| \le N_1\left(P - P_n\right)$ pour tout entier $k \ge 0$, on déduit que :

$$\forall k \in \mathbb{N}, \ \lim_{n \to +\infty} P_n^{(k)}(k) = P^{(k)}(k)$$

Mais, pour k fixé et tout $n \ge k$, on a $P_n^{(k)}(k) = \frac{1}{2^k}$, c'est-à-dire que la suite $\left(P_n^{(k)}(k)\right)_{n \in \mathbb{N}}$ est stationnaire sur $\frac{1}{2^k}$ à partir du rang k et :

$$\forall k \in \mathbb{N}, \ P^{(k)}(k) = \frac{1}{2^k} \neq 0$$

ce qui est impossible.

La suite $(P_n)_{n\in\mathbb{N}}$ est donc divergente dans (E, N_1) et (E, N_1) n'est pas complet.

(c) Soit $(P_n)_{n\in\mathbb{N}}$ la suite de fonctions polynomiales définie par :

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

Pour $m > n \ge 0$ et $t \in [0, 1]$, on a :

$$\left| P_m \left(e^{2i\pi t} \right) - P_n \left(e^{2i\pi t} \right) \right| = \left| \sum_{k=n+1}^m \frac{e^{2i\pi kt}}{k!} \right| \le \sum_{k=n+1}^{+\infty} \frac{1}{k!}$$

donc:

$$N_2(P_m - P_n) = \sup_{t \in [0,1]} \left| P_m(e^{2i\pi t}) - P_n(e^{2i\pi t}) \right| \le \sum_{k=n+1}^{+\infty} \frac{1}{k!} \underset{n \to +\infty}{\to} 0$$

et la suite $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans (E, N_2) .

Supposons qu'elle converge dans (E, N_2) vers un polynôme P. Avec $|P(e^{2i\pi t}) - P_n(e^{2i\pi t})| \le N_2(P - P_n)$ pour tout $t \in [0, 1]$, on déduit que :

$$\forall t \in [0, 1], \lim_{n \to +\infty} P_n\left(e^{2i\pi t}\right) = P\left(e^{2i\pi t}\right)$$

Mais on a aussi $\lim_{n\to+\infty} P_n\left(e^{2i\pi t}\right) = \exp\left(e^{2i\pi t}\right)$, donc :

$$P\left(e^{2i\pi t}\right) = \exp\left(e^{2i\pi t}\right)$$

soit $P(z) = e^z$ pour tout z sur le cercle unité complexe et $P \neq 0$. En désignant par p le degré de P et en tenant compte de :

$$\int_0^1 e^{2i\pi kt} dt = 0$$

pour tout $k \in \mathbb{Z}$, on a pour tout entier n > p:

$$\int_0^1 P\left(e^{2i\pi t}\right)e^{-2i\pi nt}dt = 0$$

et:

$$\int_0^1 \exp\left(e^{2i\pi t}\right) e^{-2i\pi nt} dt = \sum_{k=0}^{+\infty} \int_0^1 \frac{1}{k!} e^{2i(k-n)\pi t} dt = \frac{1}{p!} \neq 0$$

(convergence uniforme ou coefficients de Fourier), soit une impossibilité. Donc (E, N_2) n'est pas complet.

- II - Un résultat de géométrie euclidienne

1.

- (a) L'application $\varphi_{\varepsilon}: x \mapsto \langle x \mid e_{\varepsilon} \rangle$ étant une forme linéaire sur E, l'ensemble $H_{\varepsilon} = \varphi_{\varepsilon}^{-1} \left(\frac{1}{\sqrt{n}}\right)$ est un hyperplan affine de direction $\ker (\varphi_{\varepsilon}) = (\mathbb{R}e_{\varepsilon})^{\perp}$. Comme φ_{ε} est une forme linéaire non nulle, elle est surjective, donc H_{ε} est non vide et pour x_0 fixé dans H_{ε} , un vecteur $x \in E$ est dans H_{ε} si, et seulement si, $x - x_0 \in \ker (\varphi_{\varepsilon})$, donc $H_{\varepsilon} = x_0 + \ker (\varphi_{\varepsilon})$.
- (b) Si $x = \sum_{i=1}^{n} x_i e_i \in S^1$, on a alors $\sum_{i=1}^{n} |x_i| = 1$ et en désignant pour tout i compris entre 1 et n par ε_i le signe de x_i (avec la convention $\operatorname{sgn}(0) = 1$), on a :

$$\langle x \mid e_{\varepsilon} \rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i \varepsilon_i = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |x_i| = \frac{1}{\sqrt{n}}$$

et $x \in H_{\varepsilon}$.

2.

(a) En supposant que $H_{\varepsilon} \cap F \neq \emptyset$, on se donne par x_0 dans $H_{\varepsilon} \cap F$. On a :

$$H_{\varepsilon} \cap F = (x_0 + \ker(\varphi_{\varepsilon})) \cap F = x_0 + \ker(\varphi_{\varepsilon}) \cap F$$

et:

$$d(0, H_{\varepsilon} \cap F) = \inf_{z \in H_{\varepsilon} \cap F} ||z||_{2} = \inf_{y \in \ker(\varphi_{\varepsilon}) \cap F} ||x_{0} - y||_{2}$$
$$= d(x_{0}, \ker(\varphi_{\varepsilon}) \cap F) = ||x_{0} - p_{\ker(\varphi_{\varepsilon}) \cap F}(x_{0})||_{2}$$

où $p_{\ker(\varphi_{\varepsilon})\cap F}(x_0) \in \ker(\varphi_{\varepsilon}) \cap F$ est la projection orthogonale de x_0 sur $\ker(\varphi_{\varepsilon}) \cap F$ $(x_0 - p_{\ker(\varphi_{\varepsilon})\cap F}(x_0))$ est unique et c'est la projection orthogonale de 0 sur $H_{\varepsilon} \cap F$). On a donc $\delta_{\varepsilon} = d(0, H_{\varepsilon} \cap F) = ||x||_2$ avec :

$$x = x_0 - p_{\ker(\varphi_{\varepsilon}) \cap F}(x_0) \in (\ker(\varphi_{\varepsilon}) \cap F)^{\perp}$$

et:

$$(\ker(\varphi_{\varepsilon}) \cap F)^{\perp} = (\ker(\varphi_{\varepsilon}))^{\perp} + F^{\perp} = ((\mathbb{R}e_{\varepsilon})^{\perp})^{\perp} + F^{\perp}$$
$$= \mathbb{R}e_{\varepsilon} + F^{\perp}$$

(b) Le vecteur $x \in H_{\varepsilon} \cap F$ s'écrit donc :

$$x = \sum_{i=1}^{n-r} \lambda_i a_i + \lambda e_{\varepsilon}$$

Comme $x \in F$ et $(a_i)_{1 \leq i \leq n-r}$ est une base orthonormée de F^{\perp} , on a :

$$\langle x \mid a_i \rangle = \lambda_i + \lambda \langle e_{\varepsilon} \mid a_i \rangle = 0 \ (1 \le i \le n - r)$$

donc:

$$\lambda_i = -\lambda \langle a_i \mid e_{\varepsilon} \rangle \ (1 \le i \le n - r)$$

et comme $x \in H_{\varepsilon}$, on a :

$$\langle x \mid e_{\varepsilon} \rangle = \sum_{i=1}^{n-r} \lambda_i \langle a_i \mid e_{\varepsilon} \rangle + \lambda = \frac{1}{\sqrt{n}}$$

soit:

$$\lambda \left(1 - \sum_{i=1}^{n-r} \left\langle e_{\varepsilon} \mid a_i \right\rangle^2 \right) = \frac{1}{\sqrt{n}}$$

ce qui impose $\sum_{i=1}^{n-1} \langle e_{\varepsilon} | a_i \rangle^2 \neq 1$ et :

$$\lambda = \frac{1}{\sqrt{n} \left(1 - \sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right)}$$

(c) Pour $H_{\varepsilon} \cap F \neq \emptyset$, on a donc :

$$\delta_{\varepsilon}^{2} = \|x\|_{2}^{2} = \left\langle x \mid \sum_{i=1}^{n-r} \lambda_{i} a_{i} + \lambda e_{\varepsilon} \right\rangle = \lambda \left\langle x \mid e_{\varepsilon} \right\rangle$$
$$= \frac{\lambda}{\sqrt{n}} = \frac{1}{n \left(1 - \sum_{i=1}^{n-r} \left\langle a_{i} \mid e_{\varepsilon} \right\rangle^{2} \right)}$$

 $(x \in H_{\varepsilon} \cap F)$. Pour $H_{\varepsilon} \cap F = \emptyset$, on a $e_{\varepsilon} \in F^{\perp}$ (sinon il existe $y \in F$ tel que $\alpha = \langle y \mid e_{\varepsilon} \rangle \neq 0$ et $\left\langle \frac{1}{\alpha \sqrt{n}}y \mid e_{\varepsilon} \right\rangle = \frac{1}{\sqrt{n}}$, donc $\frac{1}{\alpha \sqrt{n}}y \in H_{\varepsilon} \cap F$ et cela se voit sur un dessin), donc :

$$\sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 = \|e_{\varepsilon}\|_2^2 = 1$$

et:

$$\frac{1}{\delta_{\varepsilon}^2} = 0 = n \left(1 - \sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right)$$

(d) Comme card $(\{-1,1\}^n) = 2^n$, on a :

$$\sum_{\varepsilon \in \{-1,1\}^n} \frac{1}{\delta_{\varepsilon}^2} = n \sum_{\varepsilon \in \{-1,1\}^n} \left(1 - \sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right)$$
$$= n2^n - n \sum_{\varepsilon \in \{-1,1\}^n} \left(\sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right)$$

Dans la base orthonormée $\mathcal{B} = (e_i)_{1 \leq i \leq n}$, on a :

$$a_i = \sum_{j=1}^n a_{ij} e_j$$
 et $e_{\varepsilon} = \frac{1}{\sqrt{n}} \sum_{j=1}^n \varepsilon_j e_j$

donc:

$$\langle a_i \mid e_{\varepsilon} \rangle^2 = \frac{1}{n} \left(\sum_{j=1}^n a_{ij} \varepsilon_j \right)^2 = \frac{1}{n} \left(\sum_{j=1}^n a_{ij}^2 + 2 \sum_{1 \le j < k \le n}^n a_{ij} a_{ik} \varepsilon_j \varepsilon_k \right)$$
$$= \frac{1}{n} \left(1 + 2 \sum_{1 \le j < k \le n}^n a_{ij} a_{ik} \varepsilon_j \varepsilon_k \right)$$

et:

$$\sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 = \frac{n-r}{n} + \frac{2}{n} \sum_{i=1}^{n-r} \left(\sum_{1 \le j < k \le n}^{n} a_{ij} a_{ik} \varepsilon_j \varepsilon_k \right)$$
$$= \frac{n-r}{n} + \frac{2}{n} \sum_{1 \le j < k \le n}^{n} \varepsilon_j \varepsilon_k \left(\sum_{i=1}^{n-r} a_{ij} a_{ik} \right)$$

En notant $b_{j,k} = \sum_{i=1}^{n-r} a_{ij}a_{ik}$, on a:

$$\sum_{\varepsilon \in \{-1,1\}^n} \left(\sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right) = \frac{n-r}{n} 2^n + \frac{2}{n} \sum_{1 \le j < k \le n}^n b_{jk} \sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_j \varepsilon_k$$

avec:

$$\sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_j \varepsilon_k = 0 \ (1 \le j < k \le n)$$

Par exemple pour (j,k) = (1,2), cette somme est :

$$\sum_{(1,\varepsilon_2,\cdots,\varepsilon_n)} \varepsilon_2 - \sum_{(-1,\varepsilon_2,\cdots,\varepsilon_n)} \varepsilon_2 = 0$$

Il en résulte que :

$$\sum_{\varepsilon \in \{-1,1\}^n} \left(\sum_{i=1}^{n-r} \langle a_i \mid e_{\varepsilon} \rangle^2 \right) = \frac{n-r}{n} 2^n$$

et:

$$\sum_{\varepsilon \in \{-1,1\}^n} \frac{1}{\delta_{\varepsilon}^2} = n2^n - n \frac{n-r}{n} 2^n = r2^n$$

(e) On a:

$$r = \frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \frac{1}{\delta_{\varepsilon}^2} \le \max_{\varepsilon \in \{-1,1\}^n} \frac{1}{\delta_{\varepsilon}^2}$$

et en conséquence, il existe $\varepsilon \in \{-1,1\}^n$ tel que $\frac{1}{\delta_{\varepsilon}^2} \ge r$, soit $\delta_{\varepsilon}^2 \le \frac{1}{r}$. En désignant par $x = \sum_{i=1}^n x_i e_i \in H_{\varepsilon} \cap F$ la projection orthogonale de 0 sur $H_{\varepsilon} \cap F$, on a :

$$||x||_1 = \sum_{i=1}^n |x_i| \ge \sum_{i=1}^n x_i \varepsilon_i = \sqrt{n} \langle x \mid e_{\varepsilon} \rangle = 1$$

et:

$$||x||_2 = \delta_{\varepsilon} \le \frac{1}{\sqrt{r}}$$

ce qui nous donne :

$$\frac{\|x\|_1}{\|x\|_2} \ge \sqrt{r}$$

avec $x \in F \setminus \{0\}$. Il en résulte que :

$$\sup_{x \in F \backslash \{0\}} \frac{\|x\|_1}{\|x\|_2} \geq \sqrt{r}$$

Il reste à prouver que cette borne supérieure est atteinte (c'est un max d'après l'énoncé). Pour ce faire, on remarque, en désignant par S^2 la sphère unité de $(E, \|\cdot\|_2)$, que :

$$\sup_{x \in F \setminus \{0\}} \frac{\|x\|_1}{\|x\|_2} = \sup_{x \in S^2 \cap F} \|x\|_1$$

 $(\frac{\|x\|_1}{\|x\|_2} = \frac{\|\lambda x\|_1}{\|\lambda x\|_2} \text{ pour } \lambda = \frac{1}{\|x\|_2}), \text{ la fonction } x \mapsto \|x\|_1 \text{ étant continue sur le compact } S^2 \cap F \text{ (on est en dimension finie), donc la borne supérieure est atteinte.}$

- III - Normes sur ℓ^1

- 1. Il s'agit de montrer que ℓ^1 est un sous-espace vectoriel de l'espace $\mathcal{F}(\mathbb{N}, \mathbb{R})$ des suites réelles. La suite nulle est dans ℓ^1 et pour x, y dans ℓ^1 , λ dans \mathbb{R} , on a $|x_n + \lambda y_n| \le |x_n| + |\lambda| |y_n|$, donc $\sum_{n=0}^{+\infty} |x_n + y_n| < +\infty \text{ et } x + \lambda y \in \ell^1.$
- 2. Si $y \in \ell^1$, on a $\lim_{n \to +\infty} y_n = 0$, donc la suite y est bornée et pour $x \in \ell^1$, on a $|x_n y_n| \le ||y||_{\infty} |x_n|$, ce qui implique l'absolue convergence de $\sum x_n y_n$. On peut donc définir l'application $\langle \cdot | \cdot \rangle$. Il est clair que cette application est symétrique, bilinéaire et positive. Enfin l'égalité $\langle x | x \rangle = 0$ équivaut à $x_n = 0$ pour tout n, soit à x = 0. On a donc un produit scalaire sur E.
- 3. Pour $x \in \ell^1$ et tout entier n > 0, on a :

$$\left(\sum_{k=0}^{n} |x_k|\right)^2 = \sum_{k=0}^{n} x_k^2 + 2\sum_{0 \le j \le k \le} |x_k| |x_j| \ge \sum_{k=0}^{n} x_k^2$$

et faisant tendre n vers l'infini, on en déduit que $\|x\|_1^2 \ge \|x\|_2^2$, soit $\|x\|_1 \ge \|x\|_2$. Mais il n'est pas possible de trouver une constante $\alpha > 0$ telle que $\|x\|_1 \le \alpha \|x\|_2$. Si c'était le cas, en considérant pour tout entier $r \ge 1$, la suite $x^{(r)} \in \ell^1$ définie par $x_k^{(r)} = 1$ pour $0 \le k \le r - 1$ et $x_k^{(r)} = 0$ pour $k \ge r$, on aurait :

$$\forall r \ge 1, \ \|x^{(r)}\|_1 = r \le \|x^{(r)}\|_2 = \sqrt{r}$$

ce qui impossible.

Ces deux normes ne sont donc pas équivalentes.

4. Soit $(x^{(r)})_{r \in \mathbb{N}}$ une suite de Cauchy dans $(\ell^1, \|\cdot\|_1)$. Avec $\left|x_k^{(s)} - x_k^{(r)}\right| \leq \left\|x^{(s)} - x^{(r)}\right\|_1$ pour tout entier k, on déduit que chaque suite réelle $\left(x_k^{(r)}\right)_{r \in \mathbb{N}}$ est de Cauchy, donc convergente (\mathbb{R} est complet). En note $x_k = \lim_{r \to +\infty} x_k^{(r)}$ pour tout k et $x=(x_n)_{n\in\mathbb{N}}$. La suite $(x^{(r)})_{r\in\mathbb{N}}$ étant de Cauchy dans $(\ell^1,\|\cdot\|_1)$ y est bornée. Il existe donc un réel M>0tel que $||x^{(r)}||_1 \leq M$ pour tout $r \geq 0$. Pour tout entier $n \geq 0$, on a alors :

$$\sum_{k=0}^{n} |x_k| = \lim_{r \to +\infty} \sum_{k=0}^{n} |x_k^{(r)}| \le ||x^{(r)}||_1 \le M$$

et la série $\sum |x_n|$ est convergente, donc $x \in \ell^1$. Comme $(x^{(r)})_{r \in \mathbb{N}}$ est de Cauchy dans $(\ell^1, \|\cdot\|_1)$, pour tout réel $\varepsilon > 0$, on peut trouver un entier n_{ε} tel que :

$$\forall s > r \ge n_{\varepsilon}, \ \left\| x^{(s)} - x^{(r)} \right\|_{1} = \sum_{k=0}^{+\infty} \left| x_{k}^{(s)} - x_{k}^{(r)} \right| < \varepsilon$$

Pour $s > r \ge n_{\varepsilon}$ et $n \ge 0$, on a :

$$\sum_{k=0}^{n} \left| x_k^{(s)} - x_k^{(r)} \right| \le \left\| x^{(s)} - x^{(r)} \right\|_1 < \varepsilon$$

et fait tendre s vers l'infini à $r \geq n_{\varepsilon}$ fixé, on en déduit que :

$$\sum_{k=0}^{n} \left| x_k - x_k^{(r)} \right| \le \varepsilon$$

et:

$$||x - x^{(r)}||_1 = \sum_{k=0}^{+\infty} |x_k - x_k^{(r)}| \le \varepsilon$$

ce qui sgnifie que la suite $(x^{(r)})_{r\in\mathbb{N}}$ converge vers x dans ℓ^1 . L'espace $(\ell^1, \|\cdot\|_1)$ est donc complet.

5. Soit $(x^{(r)})_{r>1}$ la suite d'éléments de ℓ^1 définie par $x_k^{(r)} = \frac{1}{k+1}$ pour $0 \le k \le r-1$ et $x_k^{(r)} = 0$ pour $k \geq r$.

Pour $s > r \ge 1$, on a :

$$||x^{(s)} - x^{(r)}||_2^2 = \sum_{k=r}^{s-1} \frac{1}{(k+1)^2} \le \sum_{k=r+1}^{+\infty} \frac{1}{k^2} \underset{r \to +\infty}{\longrightarrow} 0$$

donc $\left(x^{(r)}\right)_{r\geq 1}$ est de Cauchy dans $(\ell^1,\left\|\cdot\right\|_2)$. Supposons qu'elle converge vers $x \in \ell^1$, soit :

$$\lim_{r \to +\infty} \|x - x^{(r)}\|_{2}^{2} = \sum_{k=0}^{+\infty} \left(x_{k} - x_{k}^{(r)}\right)^{2} = 0$$

avec $\sum_{k=0}^{\infty} |x_k| < +\infty$. Tenant compte de $\left|x_k - x_k^{(r)}\right| \le \left\|x - x^{(r)}\right\|_2$, on déduit que $\lim_{r \to +\infty} \left|x_k - x_k^{(r)}\right| = 0$ 0 pour tout $k \ge 0$, soit $\lim_{r \to +\infty} x_k^{(r)} = x_k$ avec $x_k^{(r)} = \frac{1}{k+1}$ pour $r \ge k+1$, ce qui signifie que $x_k = \frac{1}{k+1}$ pour tout $k \ge 0$, mais contredit le fait $x \in \ell^1$ et $\sum_{k=1}^{+\infty} \frac{1}{k+1} = +\infty$.

L'espace $(\ell^1, \|\cdot\|_2)$ n'est donc pas complet.

- 6. Les projections π_n sont linéaires et avec $|\pi_n(x)| = |x_n| \le ||x||_j$ pour j = 1, 2, on déduit qu'elles sont continues.
- 7. Soit ℓ la forme linéaire définie sur ℓ^1 par $\ell(x) = \sum_{k=0}^{+\infty} x_k$ (une série absolument convergente est convergente). Avec $|\ell(x)| \leq \sum_{k=0}^{+\infty} |x_k| = ||x||_1$, on déduit que ℓ est continue.

Supposons qu'il existe un entier $n \geq 0$ tel que $\ell = \sum_{k=0} \lambda_k \pi_k$. En prenant pour $x \in \ell^1$ la suite définie par $x_{n+1} = 1$ et $x_k = 0$ pour $k \neq n+1$, on a $\ell(x) = 1$ et $\sum_{k=0}^{n} \lambda_k \pi_k(x) = 0$, ce qui est

- contradictiore. Donc ℓ ne peut s'écrre comme combinaison linéaire (finie) de π_n .
- 8. L'application * est le produit de Cauchy, ou produit de convolution, de deux séries absolument convergentes. Muni de cette loi et de l'addition, ℓ^1 est une algèbre de Banach (c'est du cours).
- 9. A faire
- 10. A faire