Une introduction au SCMA

C. Poulliat

Accès Non orthogonal pour la 5G

- Accès 1G -> 4G: accès orthogonal.
- Accès 4G: OFDMA/(TDMA) pour downlink et SC-FDMA pour Uplink
 - Accès orthogonale et ordonnancement des utilisateurs sur un pavé temps-fréquence.
 - Gain de multiplexage obtenu pour une efficacité raisonnable en réception
- 5G et au-delà: nécessité de considérer les accès non orthogonaux pour accroître le nombre de connections et améliorer la latence.
- Accès multiple partagé par codage par superposition à l'émission et décodage par élimination successive d'interférence (SIC)

Accès Non orthogonal pour la 5G, Etalement pour améliorer le Cas Uplink

- L'accès non orthogonal permet de connecter simultanément plus d'utilisateurs.
- Permet un accès sans permission préalable par relaxation de la contrainte de la stricte orthogonalité des ressources.
- "Létalement"/répétition permet d'avoir une meilleure robustesse aux collisions (accès non othogonal).

 Accès non orthogonale par superposition avec "étalement" préalable

Formes d'onde d'accès multiple candidates pour la 5G

Schemes	Characteristics	Advantages	Disadvantages
Power-domain	Power domain multiplexing	High SE	Need user pairing
NOMA	rower domain indruplexing	Compatible to other techniques	Error propagation in SIC
LDS-CDMA	Sparse spreading	No need of CSI	Redundancy from coding
	CDMA	Near-optimal MPA detector	
LDS-OFDM	Sparse spreading OFDM	No need of CSI	Redundancy from coding
		Near-optimal MPA detector	
		More fit for wideband than LDS-CDMA	
SCMA	Sparse spreading Multi-dimensional constellation	No need of CSI Near-optimal MPA detector More diversity than simple LDS	Redundancy from coding Difficult to design optimal codebook
PDMA	Sparse spreading Multiplexing in power, code, and spatial domains	More diversity Near-optimal MPA detector Low-complexity receiver	Redundancy from coding Difficult to design optimal patterns
BOMA	Tiled building block	Simple structure Compatible to current system Low-complexity receiver	Need user pairing Not very flexible
LPMA	Multilevel lattice code Multiplexing in power and code domains	No need for user clustering	Specific channel coding

Accès Non orthogonal : Sparse Code Multiple Accès (SCMA)

- Le SCMA est une des techniques envisagées pour l'accès montant non orthogonal.
- C'est une généralisation du cas LDS-OFDM.
- Principe: Chaque utilisateur associe à un symbole de log2(M) bits
- •un dictionnaire complexe parcimonieux de dimension K de taille M. Au final, 2^M*N bits sont codés par un vecteur reçu de dimension K.

Accès Non orthogonal pou: SCMA Emetteur

S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, "Sparse code multiple access: An energy efficient uplink approach for 5g wireless systems," in 2014 IEEE Global Communications Conference (GLQBECOM), pp. 4782–4787, Dec 2014.

Accès Non orthogonal pour la 5G: Sparse Code Multiple Accès – Dictionnaires

- Le design des dictionnaires est non trivial.
- Plusieurs méthodes dérivées des codes sur les réseaux de points furent proposées.

Accès Non orthogonal pour la 5G: SCMA Dictionnaires - Exemple

SCMA Codebook index	SCMA codebook for each layer
, CB_1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -0.1815 - 0.1318i & -0.6351 - 0.4615i & 0.6351 + 0.4615i & 0.1815 + 0.1318i \\ 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \end{bmatrix}$
CB_2	$\begin{bmatrix} 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ 0 & 0 & 0 & 0 \\ -0.1815 - 0.1318i & -0.6351 - 0.4615i & 0.6351 + 0.4615i & 0.1815 + 0.1318i \\ 0 & 0 & 0 & 0 \end{bmatrix}$
CB_3	$ \begin{bmatrix} -0.6351 + 0.4615i & 0.1815 - 0.1318i & -0.1815 + 0.1318i & 0.6351 - 0.4615i \\ 0.1392 - 0.1759i & 0.4873 - 0.6156i & -0.4873 + 0.6156i & -0.1392 + 0.1759i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $
CB_4	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ -0.0055 - 0.2242i & -0.0193 - 0.7848i & 0.0193 + 0.7848i & 0.0055 + 0.2242i \end{bmatrix}$
CB_5	$\begin{bmatrix} -0.0055 - 0.2242i & -0.0193 - 0.7848i & 0.0193 + 0.7848i & 0.0055 + 0.2242i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0.6351 + 0.4615i & 0.1815 - 0.1318i & -0.1815 + 0.1318i & 0.6351 - 0.4615i \end{bmatrix}$
CB_6	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0.7851 & -0.2243 & 0.2243 & -0.7851 \\ 0.1392 - 0.1759i & 0.4873 - 0.6156i & -0.4873 + 0.6156i & -0.1392 + 0.1759i \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Représentation par un graphe de décodage sur lequel on peut appliquer un algorithme de type message passing, comme BP.

Mise à jour des noeuds de contraintes

Mise à jour noeuds de variables.

Calcul probabilité à posteriori.

Accès Non orthogonal pour la 5G: SCMA – Performances AWGN et Rayleigh.

