BEAMER 模板

示例: 概率论基础

刘岩

武汉大学经管学院金融系

2021年9月26日

本讲内容

- 1 概率空间
- 2 1-元随机变量
- ③ 多元随机变量
- 4 独立性

符号体系

- 数字: a,b,c 或 α,β,γ
- 数系:实数 ℝ,有理数 Q,整数 Z,自然数 N
- 向量-矩阵:列向量 x,矩阵 X,转置 x^T,X^T,行列式 det X
- 集合: 简单情形时, 如 A, B; 多类符号混用时, 如 A, B
- 集合运算:交A∩B,并A∪B,补A^c,空集Ø
- 函数: f(·), F(·) 或 Φ(·)
- 概率算符: 概率 P, 期望 E, 方差 var, 协方差 cov
- 一般算符: 如滞后算符 £
- 数学表达: 任意 ∀, 存在 ∃, 属于 ∈, 包含于 ⊂

概率空间

- 1 概率空间
- 2 1-元随机变量
- 3 多元随机变量
- 4 独立性

概率空间: 样本空间

概率空间 (probability space),即三元组 $(\Omega, \mathcal{F}, \mathbb{P})$

- ① Ω : <u>样本空间</u> (sample space),一个集合,其元素为各种可能发生的随机状况
 - 如拋硬币, Ω = {H,T}, 正面、反面; 又如 GDP 增速(百分比), Ω = [-100,∞)
 - 样本空间中的点一般记做 ω ∈ Ω, 称为<u>样本点</u> (sample point) 或随机元 (random point)
 - 从经济、金融角度看, ω 称为 $\underline{$ χ $\underline{}$ χ (state), Ω 称为 $\underline{}$ χ χ χ (state space) 更合适

1-元随机变量

- 1 概率空间
- 2 1-元随机变量
- 3 多元随机变量
- 4 独立性

1-元随机变量

随机变量: 定义

给定概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$

- 随机变量 (random variable, r.v.) $X \in \mathcal{A}$ 及 到实数的一个函数, $X:\Omega \to \mathbb{R} \cup \{\pm \infty\}$
 - R∪{±∞}表示随机变量可以取值正负无穷;但后续不考虑
 - 抛硬币示例: ω = H,T,定义 X(H) = 0,X(T) = 1,则 X 的
 0-1 取值反映正负面
 - GDP 增速示例: $\omega \in [-100, \infty)$, 定义 $X(\omega) = \omega$, 则 ω 即表示状态又表示 GDP 增速随机变量的取值
- 这个函数需要满足可测 (measurable) 的要求:

$$\underbrace{\{\omega: X(\omega) \le x\}}_{\text{\sharp $\rlap{$+$}$}} \in \mathcal{F}, \quad \forall x \in \mathbb{R}$$

练习 上面两个例子满足可测性吗?

多元随机变量

- 1 概率空间
- 2 1-元随机变量
- ③ 多元随机变量
- 4 独立性

多元随机变量

多元随机变量: 联合分布

给定 $(\Omega, \mathcal{F}, \mathbb{P})$ 及其上定义的 $n \wedge r.v. X_1, \ldots, X_n$

• 多元随机事件: $\{X_1 \le x_1, \dots, X_n \le x_n\}$ 表示 $\{X_1 \le x_1\}, \dots, \{X_n \le x_n\}$ n 个事件同时发生,即

$$\{X_1 \le x_1, \dots, X_n \le x_n\} = \bigcap_{1 \le i \le n} \{X_i \le x_i\} \in \mathcal{F}$$

• $\forall x_1, ..., x_n \in \mathbb{R}$, $X_1, ..., X_n$ 的联合累积分布函数 (joint CDF) 定义为

$$F(x_1,\ldots,x_n)=\mathbb{P}(X_1\leq x_1,\ldots,X_n\leq x_n)$$

简称为联合分布 (joint distribution)

- 1 概率空间
- 2 1-元随机变量
- 3 多元随机变量
- 4 独立性

独立性

随机变量独立性: 定义

• 给定 $(\Omega, \mathcal{F}, \mathbb{P})$,两个事件 $A, B \in \mathcal{F}$ 若满足

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

则称为独立 (independent) 事件

• 给定 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的两个 r.v. $X, Y, \overset{\cdot}{z} \forall x, y \in \mathbb{R}$ 满足

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

则称两个 r.v. 相互独立

$$F(x, y) = F_X(x)F_Y(y)$$

CLT: Monte Carlo 模拟示例

模板: 概率基础