Chien-Te Lee 2020/8/20

- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

### Problem definition

 Given a reader is reading an article on the news website, how to figure out what the reader would like to read for the next article?



### Workflow

Preprocess dataset → Extract latent factors → Train hybrid model



predict next news article for reader

- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

# Preprocess BigQuery dataset

 "cloud-training-demos.GA360\_test.ga\_sessions\_sample" is the Google Analytic data from Austrian news website Kurier.at.



# Preprocess BigQuery dataset

 Use standard SQL to query the public BigQuey dataset, and select customDimensions as content-based features.



# Preprocess BigQuery dataset

#### Selected features:

|   |   | user_id             | item_id   | title                                                | author                | category          | device_brand | article_year | article_month | rating   | next_item_id | fold |
|---|---|---------------------|-----------|------------------------------------------------------|-----------------------|-------------------|--------------|--------------|---------------|----------|--------------|------|
| ( | 0 | 1000196974485173657 | 299910994 | Direktorensprecherin<br>Isabella Zins: So<br>könnte  | Ute Brühl             | News              | unknown      | 2017         | 11            | 1.000000 | 299899819    | 0    |
| , | 1 | 1000196974485173657 | 299930679 | Wintereinbruch naht:<br>Erster Schnee im<br>Osten mö | Daniela Wahl          | News              | unknown      | 2017         | 11            | 1.000000 | 299972194    | 0    |
| 2 | 2 | 1004209053768679755 | 18976804  | Heimskandal - Brigitte<br>Wanker: Die<br>Landesverrä | Georg<br>Hönigsberger | News              | Huawei       | 2013         | 7             | 1.000000 | 299695400    | 0    |
| ; | 3 | 1004555043399129313 | 299837992 | Das erste TV-Interview von Prinz Harry & Megha       | Christina<br>Michlits | Stars &<br>Kultur | unknown      | 2017         | 11            | 0.979912 | 299824032    | 0    |
|   | 4 | 1004555043399129313 | 299836841 | ÖVP will<br>Studiengebühren FPÖ<br>in Verhandlungen  | Raffaela<br>Lindorfer | News              | unknown      | 2017         | 11            | 1.000000 | 299899819    | 0    |

- Use 0.5\*time/median\_time as rating
- Use ABS(MOD(FarmFigerprint(visitor\_id + visit\_time), 10)) as hash\_id

- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

- Collaborative filtering use matrix factorization to split rating matrix into user matrix and item matrix.
- User and item latent factors are variables which represent similarities in high dimensional space.



- Use neural collaborative filtering to predict rating
- Extract embedding as latent factors



 The Generalized Matrix Factorization (GMF) stream represents the matrix factorization.

• The Multi-Layer Perceptron (MLP) stream captures the non-linear relation

between user and item.



#### User latent factors

|   |   | user_id             | u_latent_0 | u_latent_1 | u_latent_2 | u_latent_3 | u_latent_4 | u_latent_5 | u_latent_6 | u_latent_7 | u_latent_8 | <br>u_latent_10 |
|---|---|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|
| ( | ) | 1000163602560555666 | -0.223890  | 0.013522   | -0.197976  | 0.217497   | -0.053681  | -0.006720  | -0.117004  | 0.113265   | 0.187496   | <br>-0.043796   |
| 1 | 1 | 1000196974485173657 | -0.033306  | 0.020547   | 0.104502   | -0.003414  | 0.063732   | 0.086023   | -0.062370  | 0.030699   | -0.115149  | <br>-0.034464   |
| 2 | 2 | 1002090131595000997 | -0.179897  | -0.139295  | 0.073862   | -0.047588  | 0.047952   | -0.000489  | 0.117391   | 0.058213   | -0.077938  | <br>-0.012818   |
| 3 | 3 | 1002109532017576768 | -0.079408  | -0.174885  | 0.014121   | -0.081578  | 0.140167   | -0.137453  | 0.088288   | 0.162533   | -0.106551  | <br>0.016511    |
| 4 | 1 | 1004209053768679755 | -0.000192  | -0.134218  | 0.076557   | -0.169822  | -0.072396  | 0.000815   | -0.026878  | -0.070867  | 0.092746   | <br>0.002242    |

#### Item latent factors

|   | item_id  | i_latent_0 | i_latent_1 | i_latent_2 | i_latent_3 | i_latent_4 | i_latent_5 | i_latent_6 | i_latent_7 | i_latent_8 | <br>i_latent_10 | i_latent_11 | i_latent_12 |
|---|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|-------------|-------------|
| ( | 10017079 | -0.044401  | -0.054478  | -0.024215  | -0.095297  | 0.030977   | -0.051534  | -0.087727  | 0.066595   | -0.116718  | <br>0.027045    | -0.022293   | -0.038569   |
| , | 10029288 | 0.044174   | 0.018957   | -0.020329  | 0.005043   | -0.066686  | -0.046977  | -0.011907  | 0.023122   | -0.024344  | <br>0.048059    | -0.057492   | -0.052943   |
| 2 | 10073515 | 0.004435   | -0.092585  | -0.101787  | -0.067878  | 0.077632   | 0.000198   | -0.068222  | 0.012467   | -0.053971  | <br>-0.001989   | 0.011519    | 0.056933    |
| ; | 10091513 | 0.009406   | 0.015461   | -0.031027  | -0.006515  | 0.015776   | -0.004458  | 0.006125   | -0.020394  | -0.046054  | <br>0.044172    | 0.006846    | -0.025532   |
| 4 | 10109211 | -0.063698  | 0.059048   | 0.049322   | -0.023419  | 0.039215   | 0.036990   | 0.013302   | -0.031852  | -0.001982  | <br>0.043176    | -0.017732   | -0.049217   |

- Concatenate latent factors with preprocessed content-based features
- Each specific user\_id matches with specific user\_latent (INNER JOIN)
- Each specific item\_id matches with specific item\_latent (INNER JOIN)

|   | user_id | item_id | content-based features | user_latent | item_latent |  |  |
|---|---------|---------|------------------------|-------------|-------------|--|--|
| 0 |         |         |                        |             |             |  |  |
| 1 |         |         |                        |             |             |  |  |
| 2 |         |         |                        |             |             |  |  |

- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

- Apply wide & deep network for hybrid model.
- Use content-based features and user, item latent factors as input.
- Predict the probability for each article as next item.



- The deep network takes dense embedding features, and the wide network takes sparse features.
- Dense embedding feature: user\_id, item\_id, author, device\_brand, title (NNLM)
- Sparse feature: author, cross\_date, category, device\_brand



Result: Train [bc\_loss: 4.05, acc: 11.85, top\_10\_acc: 47.35]

Test [bc\_loss: 4.47, acc: 9.71, top\_10\_acc: 42.09]



- The model has 42.09% chance to correctly predict the next news article the reader would like to view if our model provide 10 recommended items.
- If randomly picking 10 items from total 2421 news articles, the top 10 accuracy would be only 0.413%. Our hybrid model has around 100 times better top 10 accuracy than random picking.



- Problem definition and workflow
- Preprocess BigQuery dataset
- Extract latent factors
- Hybrid recommendation system
- Reference

#### Reference

- Neural Collaborative Filtering
- Wide & Deep Learning for Recommender Systems
- Recommendation Systems with TensorFlow on GCP
- End-to-end Machine Learning with TensorFlow on GCP
- Collaborative Filtering using Deep Neural Networks (in Tensorflow)
- Get started with TensorBoard
- Deploying models
- Method: projects.predict
- Simple Matrix Factorization example on the Movielens dataset using Pyspark

# Thank you for your attention!!