

Fig. 30.3 The functions $\text{Li}_{3/2}(z)$ and $\text{Li}_{5/2}(z)$. For $z \ll 1$ (the classical regime), $\text{Li}_n(z) \approx z$. Also, $\text{Li}_n(1) = C(n)$

We can perform a corrected analysis of the problem as follows. We separate N into two terms:

$$N = N_0 + N_1, (30.54)$$

where N_0 is

$$N_0 = \frac{1}{1 - e^{\beta \mu}} = \frac{z}{1 - z},\tag{30.55}$$

the number of particles in the ground state, and N_1 is our original integral representing all the other states. Thus above T_c ,

$$N = N_1 = \frac{(2S+1)V}{\lambda_{\rm th}^3} \text{Li}_{3/2}(z), \tag{30.56}$$

but below T_c , N_1 is fixed to be

$$N_1 = \frac{(2S+1)V}{\lambda_{\rm th}^3} \text{Li}_{3/2}(1), \tag{30.57}$$

so that the concentration of particles in the excited state is

$$n_1 \equiv \frac{N_1}{V} = \frac{(2S+1)\zeta(\frac{3}{2})}{\lambda_{\text{th}}^3}.$$
 (30.58)

Any remaining particles must be in the ground state, so that

$$n \equiv \frac{N}{V} = \frac{(2S+1)\zeta(\frac{3}{2})}{\lambda_{\rm th}(T_{\rm c})^3}.$$
 (30.59)