Usando mais Classificadores

Serão necessários 1.220.500 treinos diferentes para testar todas as opções (10*20*100)+(100*5)+(10*2*1000*20*3)

Supondo que cada configuração de cada classificador leve 1 minuto para treino

2,3 Anos!

Auto ML

Uma técnica de Auto ML deve conter:

- 1. Espaço de busca
- 2. Estratégia de busca
- 3. Medida de Performance

1. Espaço de busca

Espaço de Busca: 1.220.500

2. Espaço de busca

Espaço de Busca: 1.220.500

Novo Espaço de Busca: 120.050

2. Estratégias de Busca

Auto ML busca otimizar a busca pela melhor combinação de hiper parâmetros Grid Search

Especifica um subconjunto de valores para cada hiper parâmetro

Todas as combinações são testadas

Random Search

- Especifica um subconjunto de valores para cada hiper parâmetro
- Algumas combinações são testadas até um limite de tempo

Otimizador Bayesiano

- Entre os melhores modelos de otimização
- > Iterativo
- ➤ Utilizam modelo substituto, que tem um custo menor de otimização
- Avaliam resultados dos modelos resultantes antes de escolher os novos hiper parâmetros para os próximos modelos

Algoritmos Genéticos

Gerações de hiper parâmetros são testadas

Depois do treino, passam pelos processos de elitismo, mutação e crossover

Novas gerações tendem a ter melhor performance

CMA-ES

Convariance matrix evolutionary strategy

3. Medida de Performance

Como avaliar se estamos melhorando?

- Uma métrica de performance do modelo:
 - MPE
 - RMSE
 - MSE

Multi-Fidelity

Cross-Validation

Partições: 10

Na prática, os dados passaram pela RNA

EPOCHS x INSTÂNCIAS X PARTICOES

E se eu treinar o modelo com um subconjunto de partições?

Dados

Cada vez mais dados

E se eu treinar o modelo com um subconjunto de dados?

Epochs

Epochs, ou Iterações

E se usarmos poucas iterações?

Atributos

E SE TREINARMOS O MODELO COM UM SUBCONJUNTO DE ATRIBUTOS?

Hiper parâmetro

E SE TREINARMOS O MODELO NO DOMINO DE APENAS UM HIPER PARÂMETRO?

Multi-Fidelity

Usar subconjunto de partições

Parte dos dados, ou dados simplificados (imagens)

Poucas iterações

Poucos atributos

Testar domínio de apenas um hiper parâmetro

Curva de Aprendizado

Em vez de testar todos os hiper parâmetros possíveis...

- Ele vai até um limite tempo/aprendizado e congela
- Posteriormente pode-se decidir por quais configurações continuar
- Freeze-Thaw Bayesian Configuration

Hyper Band: Seleciona configurações aleatórias

BOBH: Bayesian Optimization and Hyper Band

Curva de Aprendizado

