

Trabajo Práctico 1

Scheduling

2 de Mayo de 2016

Sistemas Operativos

Integrante	LU	Correo electrónico
Costa, Manuel José Joaquin	035/14	manucos94@gmail.com
Coy, Camila		
Ginsberg, Mario Ezequiel	145/14	ezequielginsberg@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Índice

1.	. Ejercicio 1	3
2.	Ejercicio 2	4
3.	Ejercicio 3	6
4.	Ejercicio 4	7
5.	Ejercicio 5	8
6.	Ejercicio 6	10
7.	Ejercicio 7	11
8.	Ejercicio 8	12

Sistemas Operativos: TP1

Para crear la tarea pedida, creamos un nuevo método en el archivo task.cpp llamado TaskConsola. El código que implementa la solución es sumamente simple.

La tarea itera sobre la cantidad de llamadas bloqueantes que el usuario pasó por parámetro, generando por cada iteración un número pseudoaleatorio, nro_random , y realizando la respectiva llamada de I/O (cuya duración es nro_random).

Notar que para aumentar el grado de aleatoriedad inicializamos el valor de la semilla a partir del tiempo del sistema, en lugar de un valor fijo, cada vez que se llama a TaskConsola.

Es importante que, aunque no se vea en nuestro código, antes de bloquearse la tarea tiene que gastar un ciclo en el CPU, justamente para poder hacer la solicitud de I/O.

La figura 1 nos ayuda a entender mejor el funcionamiento de este tipo de tarea: los procesos 2 y 3 entran juntos en tiempo 0, el 0 y 1 en tiempo 5. Cada par corre en paralelo gracias a que hay dos procesadores, lo que facilita la comparación. El objetivo del primer par es ilustrar el caso en que la duración de las llamadas bloqueantes está prefijada: ambos procesos hacen dos llamadas de I/O cuya duración es exactamente 4 (para lograr esto hacemos que bmin=bmax=4). Por otra parte, los procesos 0 y 1, aunque reciben los mismos parámetros cada uno, muestran comportamientos distintos debido a que el rango de duración de cada bloqueo es de longitud mayor a 0.

Puede verse también que el tiempo que cada proceso pasa en el CPU antes de bloquearse es de exactamente un ciclo, que es lo que tarda en hacer la solicitud de I/O. En el último ciclo de cada proceso se hace el exit. Ambas cosas no dependen directamente de nuestro código, sino de las implementaciones de uso_IO y el simulador.

Figura 1

Sistemas Operativos: TP1

Figura 2

Figura 3

Figura 4

	${\it Latencia}$		
#Procesadores	1	2	4
Tarea 0	5	5	5
Tarea 1	502	6	6
Tarea 2	503	7	6
Tarea 3	503	8	6
Promedio	378.25	6.5	5.75

Tabla 1: Latencia de cada tarea y latencia promedio según la cantidad de procesadores utilizados.

Viendo la tabla 1 resulta clara la principal desventaja de mantener esta política de *scheduling* con un solo procesador: la latencia de los procesos interactivos resulta altísima debido a que deben esperar a que termine el proceso intensivo en CPU, a pesar de que ellas mismas a penas necesitan utilizarlo. Una diferencia de tiempo tan grande entre que las tres tareas se cargan

y efectivamente responden (como puede apreciarse en la figura 2) genera para los usuarios la sensación de que "la máquina se colgó". De hecho cabe la posibilidad de que si un usuario le pidió alguna información al sistema como parte de un protocolo, al momento de recibirlo esta

Sistemas Operativos: TP1

deje de ser útil o válida.

Como contrapartida, vemos que el tener 4 procesadores no aporta grandes ventajas sobre tener 2, pues las diferencias de latencia son marginales como puede verse en la tabla, y de hecho uno de los procesadores se desperdicia completamente realizando la tarea *idle* como se aprecia en la figura 4.

Sistemas Operativos: TP1

Creamos la función TaskBatch en el archivo task.cpp. Nuevamente la implementación es muy sencilla.

Tenemos una variable tiempo_disponible, que guarda el tiempo disponible de la tarea para ser usado en el CPU sin contar el tiempo que se necesita para lanzar las llamadas bloqueantes (el cual es de un ciclo por llamada).

Si los parámetros son coherentes, es decir que no se pide hacer más llamadas bloqueantes de las que es posible con el tiempo dado, entonces se itera sobre la cantidad de bloqueos, pasado por parámetro. En cada iteración se decide, de forma pseudo-aleatoria, cuánto del tiempo disponible del CPU se va a utilizar antes de hacer el respectivo bloqueo. Una vez usado el CPU por dicha cantidad de tiempo, se procede a actualizar $tiempo_disponible$ y se lanza el pedido de I/O.

Una vez que se realizaron todos los bloqueos, se gasta en el CPU el tiempo disponible que pudiera haber sobrado (de no haberlo simplemente se prosigue con la finalización del proceso). La figura 5 ilustra un lote de 4 tareas de este tipo.

Figura 5

Sistemas Operativos: TP1

A continuación detallamos los atributos privados de la clase SchedRR:

- cant_cores: almacena la cantidad de procesadores que tiene el sistema.
- cola_procesos: la cola *FIFO* en la cual se almacenan todos los procesos que están cargados, listos para ejecutar (o sea, en estado *ready*). Dicha cola es global para todos los procesadores.
- quantum_original_cpu: es un vector de longitud cant_cores, tal que quantum_original_cpu[i] indica la duración de un quantum del procesador i.
- quantum_restante_cpu: otro vector de longitud cant_cores, tal que quantum_restante_cpu[i] indica cuántos ciclos le quedan al proceso corriendo en el procesador i antes de agotar su quantum. En el caso en que se esté corriendo la tarea idle este valor no representa nada (pues tal tarea debe correr indefinidamente hasta que aparezca una nueva tarea para ser ejecutada).

Además, la clase cuenta con una función auxiliar, int next(int cpu), que se encarga de devolver el pid del siguiente proceso a ejecutar, removiéndolo de la cola de procesos y reiniciando el quantum disponible para el proceso que llega. Notar que en caso de que no hayan procesos en ready los últimos dos pasos no se ejecutan y simplemente se devuelve el pid de la tarea idle. La clase posee los siguientes métodos públicos:

- void load(int pid): se encarga de cargar el proceso identificado por pid. Notar que esto simplemente consiste en agregarlo a la cola. Luego, eventualmente se ejecutará en un tick de reloj.
- void unblock(int pid): vuelve a cargar una tarea que dejó de estar bloqueada, lo que consiste simplemente en llamar a la función load.
- int tick(int cpu, const enum Motivo m): esta función se divide en tres casos según el motivo con el que se la haya llamado. Tanto en el caso en que la tarea que corría en cpu se haya bloqueado como en el que terminó hacemos lo mismo: sencillamente ponemos a correr a la siguiente tarea disponible (o a idle en caso de no haber ninguna), dejando a la tarea actual fuera del ciclo de ejecución (temporalmente en un caso, permanentemente en el otro). Si no sucedieron ninguna de las dos cosas entonces tenemos nuevamente tres posibles escenarios:
 - 1. La tarea actual es *idle*, en cuyo caso solo queda llamar a **next** y devolver su resultado.
 - 2. La tarea actual no es *idle* pero agotó su *quantum*, por lo que la volvemos a encolar (pues aún no ha terminado) y llamamos a next. Si no había otra tarea se seguirá ejecutando la misma durante otro *quantum*.
 - 3. La tarea actual ni es *idle* ni terminó su *quantum*, así que debe seguir ejecutando pero reducimos en 1 la cantidad de ciclos restantes.

Sistemas Operativos: TP1

Figura 6

Figura 7

Figura 8

	Latencia			
Quantum	2	10	30	
Tarea 0	2	2	2	
Tarea 1	6	14	34	
Tarea 2	10	26	66	
Tarea 3	15	39	99	
Tarea 4	18	42	101	
Promedio	10.2	24.6	60.4	

Tabla 2: Latencia de cada tarea y latencia promedio según la duración del quantum utilizado.

	W	aitin	g tim
Quantum	2	10	30
Tarea 0	?	?	?
Tarea 1	?	?	?
Taron 2	9	?	?

Tabla 3: Tiempo total de ejecución de cada tarea (turn-around) y promedio según la duración del quantum utilizado.

?

Tarea 3

Tarea 4 Promedio ?

?

?

?

?

?

	Turn-around			
Quantum	2	10	30	
Tarea 0	447	279	217	
Tarea 1	450	282	230	
Tarea 2	453	285	243	
Tarea 3	69	165	252	
Tarea 4	72	168	255	
Promedio	298.2	235.8	239.4	

Tabla 4: Tiempo total de ejecución de cada tarea (turn-around) y promedio según la duración del quantum utilizado.

Sistemas Operativos: TP1

Figura 9