MSML610: Advanced Machine Learning

Causal Inference

Instructor: Dr. GP Saggese - gsaggese@umd.edu

References:

- Easy:
 - Hurwitz, Thompson: Causal Artificial Intelligence: The Next Step in Effective Business AI, 2024
- Medium / Difficult
 - AIMA
 - Facuce

Causal AI

- Why Causal AI?
- Concepts in Causal AI
- Variables
- Paths
- The Ladder of Causation
- Correlation vs Causation Models
- Business Processes Around Data Modeling

- Causal Al
 - Why Causal AI?
 - Concepts in Causal AI
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Big Data and Traditional Al

- For the past 10 years, the focus of Al and advanced analytics has been:
 - · Organize and analyze massive amounts of data
 - Data analytics (e.g., dashboards, models, reports)
 - Run machine learning, AI on data
- Problems with traditional AI
 - Makes prediction based on observed correlations
 - · Can't tell why a particular outcome occurred
- Al in decision making
 - Organizations need to understand the impact of decision making
 - E.g., what happens if a product price is reduced by 10%?
 - Will more customers buy?
 - If revenue suddenly decreases, what to do?
 - Why are customers leaving? Is it because of quality issue? Is it because an emerging competitor?

What Are Data Analytics?

Collections of data

- Aggregated and organized data sets for analysis
- E.g., customer purchase histories stored in a CRM system

Dashboards

- Visual displays of key metrics for quick insights
- E.g., dashboard showing quarterly revenue and expenses

Descriptive statistics

- Summary metrics like mean, median, mode, and standard deviation
- E.g., calculating the average sales per quarter to understand performance trends

Historical reports

- Detailed examination of past performance
- E.g., monthly sales reports for the past fiscal year

Models

- Statistical representations to forecast or explain phenomena
- E.g., a predictive model to anticipate customer churn based on behavioral data

Data Analytics Sophistication

Business Question	Methodology
What happened? What will happen? What should we do?	Descriptive statistics Predictive models Prescriptive programs
What's the best we can do?	Simulation + optimization

Explainability

- Regulators require that if you are making decisions using ML / Al, you should be able to defend the results of your analysis
 - E.g., decide who to hire, how to set up a policy
- Organizations can:
 - Be fined by regulatory authorities
 - Face backlash from customers and activists
- E.g., neural networks are "black boxes"
 - Humans can't understand how inputs are combined into a conclusion
 - Cannot explain to shareholders why certain decisions were made
 - Lack of explainability
 - Bias
 - E.g., using age, race, sex as a feature can introduce bias
- Explainable AI allow users to:
 - Comprehend
 - Explain
 - Trust the results by the machine

Correlation is Not Causation!

- Correlation is a statistical method for understanding relationships between data
 - Pros
 - Use past outcomes to predict future outcomes by finding patterns and anomalies in data
 - Cons
 - Doesn't explain the cause of the results
 - Two variables may move together due to coincidence or a hidden factor
- Causation explains how / why changing one variable influences the other,
 - This cannot be concluded from correlation alone
- Data does not understand causes and effects
 - Only humans can identify variables and relationships (cause-effect) based on their understanding of context of data
 - Without causation, you can't make intelligent decisions
- Al needs to augment the power of humans to understand the world

Causal Al

- Causal AI solves the previous problems
- Understands the why
 - Determines cause-and-effect between variables
 - E.g., determining whether a marketing campaign increased sales
- Identify interventions
 - Identifies variables and interventions to change outcomes
 - E.g., determining which lifestyle changes can reduce blood pressure
- Predicting counterfactuals
 - Hypothesizes what could happen under different circumstances
 - E.g., estimating student grades if they attended a different school
- Avoiding bias
 - Traditional AI is biased by training data and ignored variables
 - Ensure fairness by accounting for confounding variables
- Improving decision-making
 - Provides a deeper understanding of relationships for better decisions
 - Ex improving supply chain by understanding logistic impact

- Causal Al
 - Why Causal AI?
 - Concepts in Causal Al
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Causal DAG

- A Causal DAG is a directed acyclic graph that represents causal relationships between variables
 - Directed: Arrows show direction of cause \rightarrow effect
 - Acyclic: No feedback loops
 - Causal relationships assume a temporal order: cause happens before effect
 - A cycle would imply a variable is both a cause and effect of itself (paradox)
- Structure:
 - Nodes represent variables (e.g., income, education)
 - Edges represent causal influences (e.g., education \rightarrow income)
 - E.g., education causally affects income through job skill

$$Education
ightarrow JobSkill
ightarrow Income$$

- Benefits
 - DAGs encode causal rather than associative links
 - Enables reasoning about interventions and counterfactuals
 - Supports fair, explainable AI models
- Limitations:
 - Requires domain knowledge to specify structure
 - Assumes all relevant variables are included (no hidden confounders)

Structural Causal Model

- A Structural Causal Model (SCM) translates a graphical model / DAG into mathematical equations
 - DAGs show structure (variables and arrows)
 - SCMs add equations that define how variables interact
- Structure of SCMs
 - Variables: $X_1, X_2, ..., X_n$ represent quantities in the system
 - Structural equations

$$X_i = f_i(PA_i, U_i)$$

where:

- f_i : function describing how X_i is determined
- PA_i: parent variables (direct causes)
- *U_i*: exogenous (external, unobserved) variables
- SCMs can:
 - Explain causal relationships between variables
 - Make predictions on how relationships change if conditions changed

Structural Causal Model: Example

 SCM expresses the relationship between the state of the world and how the variables interact

Explanatory variables

- You can manipulate or observe when changes are applied
- E.g., "does a large cup of coffee before an exam help with a test?"

Outcome variables

- Result of the action (independent variables)
- E.g., "by how much did the score test improve?"

Unobserved variables

- Not seen and more difficult to account
- E.g., "temperature of the room, which makes students sleepy and less alert"

- Causal Al
 - Why Causal AI?
 - Concepts in Causal AI
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Observed vs Unobserved Variables

Observed variables

- Aka "measurable" or "visible" variables
- Variables directly measured or collected in a dataset
- E.g.,
 - Age
 - Income
 - Blood pressure
 - Product price

Unobserved variables

- Aka "latent" or "hidden" variables
- Variables that exist but are not measured or included in the data
- E.g.,
 - Patient's stress level
 - Trust in a brand
 - Company culture
- Unobserved variables, when ignored, can distort causal relationships creating spurious correlations or biased results, e.g.,
 - Observed: IceCreamSales and DrowningRates
 - Unobserved: Temperature
 - Misleading conclusion without unobserved variable: IceCream causes Drowning

Endogenous Vs. Exogenous Variables

Endogenous variables

- Variables whose values are determined within the model
 - I.e., dependent on other variables in the system
- Represent the system's internal behavior and outcomes
 - E.g., in a model of Education → Income, Income is endogenous since it is affected by Education level

Exogenous variables

- Variables that originate outside the system being modeled
 - I.e., not caused by other variables in the model
- Often represent background conditions or external shocks
- E.g.,
 - Natural talent
 - Economic policy
 - Weather

Endogenous / Exogenous vs Observed / Unobserved Variables

• In Structural Causal Models (SCMs)

$$X_i = f_i(PA_i, U_i)$$

where:

- X_i is endogenous
- PA_i: its parent variables (causes within the model)
- *U_i*: exogenous noise term (outside causes)
- Typically
 - Endogenous variables: focus for prediction and intervention
 - Exogenous variables: capture randomness or unknown external factors

Variable Type	Observability	Example
Endogenous	Observed	Sales
Exogenous	Observed	Marketing Budget
Endogenous	Unobserved	Motivation
Exogenous	Unobserved	Macroeconomic shocks

Counterfactuals

- A counterfactual describes what would have happened under a different scenario
 - "What would the outcome have been if X had been different?"
 - "If kangaroos had no tails, they would topple over"
 - "What if we had two suppliers of our product, rather than one? Would we have more sales?"
 - "Would customers be more satisfied if we could ship products in one week, rather than three weeks?"
- Causal reasoning:
 - Goes beyond correlation and association
 - Requires a causal model (like an SCM) to simulate alternate realities
 - E.g.,
 - Actual: A student received tutoring and scored 85%
 - Counterfactual: What if the student didn't receive tutoring?
 - Causal model estimates the alternative outcome (e.g., 70%)
- Challenges:
 - Requires strong assumptions and accurate models
 - Difficult to validate directly since counterfactuals are unobservable

Confounder Variable

A confounder

- Is a variable in a causal graph that influences multiple variables
- Can lead to spurious associations

Example

- "Eating Ice Cream" and "Drowning" are associated
- There is no cause-effect, since "Summer" is a confounder

Collider

- A collider is a variable A with incoming edges from variables B, C in a causal DAG (i.e., influenced by multiple variables)
- A collider complicates understanding relationships between variables B, C and those it influences, X

Collider: Examples

- Study the relationship between Exercise and HeartDisease
 - Diet and Exercise influence BodyWeight
 - BodyWeight influences HeartDisease
 - BodyWeight is a collider

Collider Bias

- Aka "Berkson's paradox"
- Conditioning on a collider can introduce a spurious association between its parents by "opening a path that is blocked"
- Consider the variables:
 - Diet (D)
 - Exercise (E)
 - BodyWeight (W)
 - HeartDisease (D)
- Without conditioning on W
 - E and D are independent
 - E.g., knowing someone's exercise level E doesn't give information about diet D, and vice versa
 - The collider W blocks any association between E and D
- After conditioning on W
 - E.g., looking for individuals with specific body weight
 - You introduce a dependency between E and D
 - Since W is fixed, any change in E must be

Mediator Variable

 A mediator variable M lies on the causal path between a treatment X and an outcome Y

- E.g.,
 - Study the effect of a training program (X) on employee productivity (Y)
 - Job satisfaction (M) could be a mediator variable

Moderator variable

 Moderator variable affects the strength or direction between two other variables

• E.g.,

- Study the relationship between stress X and job performance Y
- The level of social support an individual receives M could be a moderator
 - If social support is high, the negative effect of stress on job performance might be weaker
 - If social support is low, the negative effect might be stronger

- Causal Al
 - Why Causal AI?
 - Concepts in Causal AI
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Fork Structure in Causal Diagrams

- A fork occurs when a single variable causally influences two or more variables
 - Formally: $X \to C$ and $X \to D$
- X is a common cause (confounder) of C and D
- Forks induce statistical dependence between C and D
 - Even if C and D are not causally linked
- Conditioning on X blocks the path and removes spurious correlation
- Example:
 - Lifestyle factors as confounders
 - Lifestyle affects both Weight and BloodPressure
 - These outcomes may appear correlated due to shared cause

Inverted Fork in Causal Diagrams

- An inverted fork occurs when two or more arrows converge on a common node
 - Also known as a collider
- Colliders block associations unless the collider or its descendants are conditioned on
- Conditioning on a collider "opens" a path, inducing spurious correlations
- Example: is the basis of selection bias
 - Sales influenced by multiple independent causes
 - MarketingSpend and ProductQuality both influence Sales
 - Conditioning on Sales can induce false dependence between MarketingSpend and ProductQuality

Path connecting unobserved variables

- Unobserved variables affect the model but we don't have a direct measure of it
- E.g., consider the causal DAG
 - A retailer does market research, expecting Price to influence Sales in a predictable way
 - A retailer sets the Price of a new product based on market research
 - The retailer can observe and measure Behavior, e.g.,
 - Discounts
 - Promotional campaign
 - There are unobserved vars that influence the model, e.g.,
 - Social media buzz
 - Word-of-mouth recommendation

Front-door Paths in Causal Inference

- A front-door path reveals causal influence through an observable mediator
 - The causal effect flows: $A \rightarrow P \rightarrow S$
- Requirements for identifiability:
 - All confounders of $A \rightarrow P$ and $P \rightarrow S$ are observed and controlled
 - There are no back-door paths from A to S through unobserved variables
- Enables causal estimation when back-door adjustment is infeasible
- Example:
 - Advertising impacts sales through customer perception of price
 - A: Advertising, P: Price perception, S: Sales
- Pearl's front-door criterion provides a formal method for adjustment
 - Estimate P(P|A), P(S|P,A), and P(A) from data to compute causal effect

Back-Door Paths

A company wants to understand the causal effect of price on sales

- ullet Price o Sales is the front-door path
- A confounder is Advertising spend since it can affect both:
 - The price the company can set (e.g., the cost increases to cover advertisement costs and the product is perceived as more valuable)
 - The sales (directly)
- The back-door path goes from Sales to Price via Advertising spend

Frontdoor and Backdoor Paths

- Question: Will increasing our customer satisfaction increase our sales?
 - Assume that the Causal DAG is

 Front-door path (i.e., a direct causal relationship): CustomerSatisfaction → Sales

• Backdoor path:

ProductQuality is a common cause (confounder) of both CustomerSatisfaction and Sales

- To analyze the relationship between customer satisfaction and sales, we need to:
 - Control for ProductQuality to close the backdoor path
 - Eliminate the confounding effect
- In reality there are more confounding effects (e.g., price)

- Causal Al
 - Why Causal AI?
 - · Concepts in Causal AI
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Causal AI vs Traditional AI

- "The next revolution of data science is the science of interpreting reality, not of summarizing data" (Judea Pearl)
- The current approach of AI uses statistics and ML to analyze data, identifying patterns and anomalies to make predictions
 - Models depend on the quality of the data
 - ullet Biased or unclean data \Longrightarrow poor model

The Ladder of Causation

• Pearl provided a 3-layer framework for understanding causality

Level	Symbol	Typical Activity	Typical Questions	
 Association Intervention Counterfactuals 		Seeing), ZDoing, Intervening ') Imagining, Retrospection	What is? What if? Why?	

Rung 1: Association

- Pr(Y|X): how would seeing X change our belief in Y?
- It is just "passive observation" to determine if two things are related
 - Traditional AI and ML is based on this
- E.g.,
 - "The tree has green leaves during spring"
 - "What does a symptom tell me about a disease?"
 - "What does a survey tell us about the election results?"

Rung 2: Intervention

- Pr(Y|do(X), Z): what happens to Y if we do X?
- Not just passively observing but understanding the impact of change
 - Association is purely observational and is not model based
 - E.g., "tree has green leaves" vs "spring makes the tree leaves turn green"
 - Interventions are about "doing something" and require a causal model
- E.g.,
 - "Why did the headache go away?"
 - "Because the pain reliever" or "Because you ate food after skipping lunch"
 - "What if I take aspirin, will my headache be cured?"
 - "What if we ban sodas?"

Level 3: Counterfactuals

- $Pr(Y_X|x',y')$: was X that caused Y?
- Determine what would occur if a new condition were applied to a situation
 - "Imaging what will happen if facts were different"
 - Counterfactuals establish causal relationships
 - Predicting an outcome is the highest form of reasoning, since it requires to understand relationships between cause and effect
- E.g.,
 - "What if I had acted differently?"
 - "What if I had not been drinking sodas for 2 years?"
 - Scientific experiments: "What if we give a child an adult dose of a drug?"
 - Litigation: "What would the jury conclude?"
 - Marketing: "Why did my marketing campaign fail to generate sales?"

- Causal Al
 - Why Causal AI?
 - Concepts in Causal AI
 - Variables
 - Paths
 - The Ladder of Causation
 - Correlation vs Causation Models
- Business Processes Around Data Modeling

Correlation vs Causation Model

- Correlation = identify how variables are related to each other
- Causality = determine whether one variable causes another variable
- Both:
 - Accept inputs and transform them
 - Identify how variables are related to each other
- Correlation-based AI is best when there is abundant historical and observational data
- Causal-based AI first creates a business-focused model before integrating data

Correlation-Based Model Process

- Correlation-based AI is "data first"
- The more data collected the better.
- Many Al projects fail because
 - Cultural and organizational issues
 - Models are opaque
 - Lack explainability
 - Spurious correlations

Correlation-based model process

- Correlation-based AI is "data first"
- The more data collected the better
- Many Al projects fail because
 - Cultural and organizational issues
 - Models are opaque
 - Lack explainability
 - Spurious correlations

Causation-based model process

- Causal-based Al is "model first"
- Understand business question before ingest and transform the data

Building a DAG

- Causal models visually represent complex environments and relationships
- Nodes are like "nouns" in the model:
 - E.g., "price", "sales", "revenue", "birth weight", "gestation period"
 - Variables can be endogenous/exogenous and observed/unobserved
 - Complex relationships between variables:
 - Parents, children (direct relationships)
 - Descendants, ancestors (along the path)
 - Neighbors
- Iterative Refinement:
 - Models are continuously updated with new variables and insights
- Modeling as a Communication Tool:
 - A shared language that bridges gaps between technical and non-technical team members
- Unobservable Variables:
 - Supports inclusion of variables not empirically observed but known to exist
 - E.g., trust or competitor activity can be modeled despite lack of direct data

Heart Attack: Example

- What's the relationship between stress and heart attacks?
 - Stress is the treatment
 - Heart attack is the outcome
 - Stress is not a direct cause of heart attack
 - E.g., a stressed person tend to have poor eating habits

Weights

- Weights can be assigned to paths to represent the strength of the causal relationship
 - Weights can be estimated using statistical methods
- Sign represents the direction

- Causal Al
- Business Processes Around Data Modeling
 - Modeling Processes
 - Roles

- Causal Al
- Business Processes Around Data Modeling
 - Modeling Processes
 - Roles

Digital Transformation

- Integration of Digital Technology
 - Embed digital tools (AI, cloud, IoT, automation) into all business areas to enhance efficiency and value delivery
- Cultural & Organizational Change
 - Encourage innovation, agility, and a data-driven mindset to adapt to new digital workflows and business models
- Customer-Centric Approach
 - Use digital solutions (e.g., personalized experiences, Al-driven insights) to enhance customer engagement and satisfaction
- Process Automation & Optimization
 - Streamline operations through AI, robots, and analytics to reduce costs and improve decision-making
- Data-Driven Decision Making
 - Leverage big data, machine learning, and real-time analytics to make smarter, faster, and more strategic business decisions

Causal Modeling Process

The overall modeling process looks like:

Step 1: What Are the Intended Outcomes?

- What is the process/environment we are interested in analyzing?
- What will happen if a course of action is (or not) taken?
- What outcomes are positive, negative, unacceptable, optimal?
- What are the possible / feasible interventions?
- What confounding factors might be correlated with outcomes and treatments?
- What factors exist but we cannot accurately measure?
- What related data sets can be combine / leverage?

Step 2: What Are the Proposed Interventions?

- We will make reference to a use case of customer marketing
- Can we introduce a new product?
- Should we buy one or more competitors?
- Does bundling multiple products improve sales?
- Does bundling multiple products inhibit long-term sales?
- Should advertisement focus on quality of our product vs other options?
- Should we divest the product line?
- Should we discontinue the product?
- Should we add more variations of the same product?

Marketing example: price intervention

 Assume price is our intervention and the Causal DAG is:

- What happens to sales when we change the price often?
- What pricing interventions are optimal?
 - Should we increase the price and how much?
 - Should we decrease the price and how much?
 - Should price change in one-time or over time?
- Should we adopt a dynamic pricing model?
- Should we develop individual pricing model for each customer?

Step 3: What are the confounding factors?

There can be a variable W that affects both X and Y

- E.g.,
 - Competitive offers
 - Distance to store
 - Amount of product
 - Time to consume product
- A confounder can:
 - Make it difficult to understand the relationship between variables
 - Mute or inflate a relationship

Marketing Example: Effect of Confounder

- E.g.,
 - Intervention = a marketing campaign to sell winter jackets
 - A confounding variable can be "running the campaign in the middle of the winter, after customers have already purchased their jackets"
 - A confounding var can be "a warm winter"

Step 4: What Are the Factors Creating the Effects and Changes?

- Total causal effect
 - Effect of all factors in the environment or model that modify the outcome
- Direct effect
 - Effect introduced through an intervention
- Indirect effect
 - Effect introduced by environment or it is a byproduct of the intervention in a way that was not planned

Step 5: Build Causal DAG

- Causal models
 - Simplify complex systems without losing key relationships
 - Focus on essential variables and their interactions
- Visual models (e.g., DAGs) help abstract complexity into interpretable formats
 - · Highlight direction and strength of influence between variables
- Simplicity
 - Aids communication between technical and non-technical stakeholders
 - Promotes shared understanding and collaborative refinement
 - · Reduces cognitive overload by excluding irrelevant details or noise
 - Guides data collection by identifying the most impactful variables
 - Supports hypothesis testing through counterfactual and intervention scenarios
- Balance is key
 - Too much simplicity loses insight
 - Too much complexity loses clarity

Step 7: Data Acquisition and Integration

- You can use the data collected for correlation-based ML
- Data collection can be done specifically for causal Al
 - Treating, conditioning, transforming data

Step 8: Model Modification

- Once the DAG is designed, use software packages to build models
 - Refine the initial DAG and causal model to reduce bias and improve reliability
 - Clarify variables as confounders, mediators, or outcomes
- Avoid common pitfalls:
 - Do not control for mediators or effects, which can distort results
 - Control for direct and indirect confounders to prevent biased estimates
- Implementation tools:
 - Use libraries to operationalize models
 - Test models against technical and business objectives
- D-separation:
 - Identifies conditional independence relationships in a DAG
 - Determines necessary controls to isolate causal effects
 - Based on Judea Pearl's definition: independence = separation in the graph
 - Prevent unintentional inclusion of bias
 - Ensure causal assumptions align with data and domain logic
 - Improve model interpretability and predictive power
- Goal: Ensure final models are technically valid and business-relevant before proceeding to data transformation and testing stages

Step 10: Data Transformation

- Prepare the data to match the refined causal model
 - Clean, normalize, and align data with model assumptions
- Transformations include:
 - Mapping observed variables to nodes in the DAG
 - Encoding categorical variables appropriately
 - Handling missing or unobserved data (e.g., imputation or exclusion)
 - Normalizing or scaling values to align with model expectations
- Control for bias and confounding:
 - Apply methods like propensity score matching or stratification
 - Exclude or adjust for variables that introduce bias per d-separation insights
- Goal: Ensure the data structure supports causal estimation
 - Consistent with assumptions made in model refinement
 - Aligned with theoretical model
 - Fit for downstream tasks like estimation, inference, and simulation

Step 11: Preparing for Deployment in Business

- Operationalize the causal model within a business context
 - Transition from experimentation to integration with decision-making processes
 - Validate the model against real-world business data and outcomes
 - Ensure stakeholders understand and trust the causal logic and assumptions
- Model packaging:
 - Develop user-friendly interfaces or dashboards for business users
 - Automate data pipelines for timely updates and monitoring
 - Embed the model within decision-support tools or policy engines
- Governance and monitoring:
 - Establish metrics for performance tracking and drift detection
 - Create feedback loops to refine and improve models post-deployment
- Documentation and training:
 - Provide clear model documentation for auditors and users
 - Train stakeholders on interpreting causal results and making informed decisions
- Goal: A deployable causal Al solution that supports strategic decisions and delivers measurable business value

- Causal Al
- Business Processes Around Data Modeling
 - Modeling Processes
 - Roles

Why ML / Al Projects Fail?

- Al projects fail because they approach problems only from a ML perspective
 - Data scientists:
 - Use data to create models
 - Work in isolation from business users and internal data teams
 - Black-box models unable to produce solutions to real-world problems

How to Make ML / Al Project Succeed

- 1. Create a hybrid team
 - Organizations are complex in structure and offerings
 - A single group lacks the knowledge / skills to tackle difficult problems
 - Need an hybrid team:
 - Represents all aspects of the business problem
 - Uses a collaborative framework
 - Communicates with a single language (e.g., through DAGs)
 - Team size depends on company size and project complexity
- 2. Meet regularly to ensure project continuity
- 3. Find an executive sponsor for the project
 - Someone who understands the project's goals and potential
- 4. Initial pilot
 - Small team for a targeted problem
 - Demonstrate the merit of the AI approach

Roles in Hybrid Teams

Role	Responsibilities	
Business Strategists	Align modeling with business goals	
	Sponsor projects	
	Communicate insights to stakeholders	
Subject-Matter Experts	Provide domain expertise	
	Identify relevant variables and assumptions	
	Validate DAGs	
Data Experts	Source and clean data	
	Map data to model variables	
	Handle missing values	
Data Scientists	Construct and validate DAGs	
	Apply causal inference methods	
	Simulate decisions	
Software Developers	Build tools and interfaces	
	Create data pipelines	
IT Professionals	Provide infrastructure and governance	
	Ensure model execution	
	Integrate with enterprise systems	
Project Managers	Coordinate collaboration and timelines	
	Manage documentation	
	Ensure alignment with strategic goals	

Steps for a Hybrid Team Project

- Establish a Phased, Collaborative Approach
 - Align strategic goals with technical efforts
 - Emphasize early stakeholder engagement and shared ownership
- Strategic Kickoff Meeting
 - Unite business, technical, and operational roles
 - · Clarify problems, outcomes, responsibilities, success metrics
- Define Team Goals
 - Use SMART objectives aligned with business strategy
 - Focus on outcomes and supported decisions, not tools
- Target a Project
 - Choose a bounded, feasible, high-value use case
 - Prioritize early wins for trust and momentum
- Define the Hypothesis
 - Translate business problems into testable causal assumptions
 - Build a preliminary DAG with experts' input
- Incremental Model Development
 - Build the model in small, reviewable stages
 - Iterate with regular feedback, refining scope and variables
- Embrace Iteration and Continuous Refinement
 - Keep progress collaborative and aligned with business needs
 - Add complexity gradually to manage risk and enhance understanding

The Importance of Explainability

- Managers rely on AI systems to automate decision-making
 - Decisions rely on complex algorithms and data
- Understanding Al-based models is growing in importance
 - How do ML models make decisions?
 - How can they be trusted?
 - Are they biased?
- Management often faces demands to prove code validity
 - Loss of trust, regulation violations, fines, additional development costs, lawsuits
 - E.g., a false negative in a medical screening for cancer
- Well-designed AI systems must foster trust, transparency, and user confidence
- Humans in the loop
 - Al systems lack true reasoning and contextual understanding
 - Human involvement ensures interpretation and context are considered

Techniques for Interpretability

- Local Interpretable Model-agnostic Explanations (LIME)
 - Focuses on a single prediction (local fidelity)
 - Approximates the model locally with an interpretable model
 - Perturbs input data and observes changes in predictions
- Partial Dependence Plots (PDP)
 - Show the marginal effect of one or two features on the predicted outcome
 - Vary the value of one feature while keeping others constant
 - Plot feature values against the average predicted outcome
- Individual Conditional Expectation (ICE)
 - Show the relationship between a feature and the prediction for individual instances
- SHapley Additive exPlanations (SHAP)
 - Quantify the contribution of each feature to a specific prediction

Causal AI in Interpretable AI

- Causal AI helps understand causes, effects, and potential solutions
 - Uses causal graphical models to present variables, relationships, and strengths
 - Counterfactual analysis predicts outcomes of different actions or policies before deployment
 - Model output is understandable to humans and non-experts
 - Removing confounding variables prevents skewed causal estimates due to hidden influences
 - Hybrid teams (technical + domain experts) enhance context awareness and reduce blind spots

The Iterative Causal Al Pipeline

- Similar to the DevOps infinity loop, the causal AI pipeline has 8 stages, which are circular and iterative
- 1. Define business objectives
 - Identify goals and key performance indicators (KPI)
- 2. Model development
 - Establish causal relationships among variables
 - Develop causal AI model using graphical models, potential outcomes, do-calculus
- 3. Data identification and collection
 - Gather data with causal relationships and potential confounders
- 4. Model validation
 - Test and validate model to ensure it provides accurate causal insights, e.g.,
 - Measure performance against KPIs
 - · Assess model generalizability
- 5. Deployment / production
 - Integrate validated AI model into existing systems for decision-making
- 6. Monitor and evaluate
 - Track performance of deployed model
 - Assess impact on decision-making process
- 7. Update and iterate

Define Business Objectives

- Use one of the systems
 - SMART goals
 - MoSCoW method
 - Kano model
- Goals
 - Establish a shared understanding of the project's goals among stakeholders, business leaders, data scientists, and exports
 - Enhances clarity, focus, and motivation
 - Improves performance tracking and outcome evaluation
 - Facilitates effective communication and collaboration

SMART Goals

- SMART is an acronym for Specific, Measurable, Achievable, Relevant, Time-bound
- Specific
 - Clearly defines what is to be achieved
 - E.g., "Increase website traffic by 15%"
- Measurable
 - Includes criteria to track progress and success
 - E.g., "Track visits using Google Analytics"
- Achievable
 - Realistic based on resources and constraints
 - E.g., "Based on historical growth rates, 15% is attainable"
- Relevant
 - Aligns with broader organizational or personal objectives
 - E.g., "Traffic increase supports lead generation goals"
- Time-bound
 - Specifies a deadline or timeframe
 - E.g., "Achieve by end of Q3"

Moscow Method

- Framework for prioritization of features to:
 - Focus on critical features
 - Ensure stakeholders are aligned on priorities
 - Support agile and iterative development by delivering value in phases

Priority	Description	Example
Must- have	Essential requirements	A login system for a banking app
Should- have	Important but not critical features	Multi-factor authentication to enhance security
Could- have	Enhance user experience but are not essential	Dark mode for a mobile app
Won't- have	Excluded features due to low priority	Al-powered chat assistant

Kano Model

• Framework for product development and customer satisfaction analysis to prioritize features

Category	Description	Examples
Must-have	Expected features; absence causes dissatisfaction	Keyboard and screen on a laptop Calling and texting on a cellphone
Performance	The better, the more satisfied customers are	Faster battery charging Longer battery life
Delighters	Unexpected features that wow customers and build loyalty	Free cloud storage with a laptop Novel camera
Indifferent	Features that do not affect customer satisfaction	5 power adapter options for laptop Color of phone internals
Reverse features	Features liked by some but disliked by others	Touchscreen instead of touchpad Excessive automation

Decision Matrix

- Tool to evaluate options based on criteria for objective comparison
- Goals
 - Eliminate biases by quantifying decisions
 - Clarify priorities
 - Enable comparison between options

Approach

- 1. List alternatives
 - E.g., laptop A, laptop B
- 2. Define criteria
 - E.g., price, performance, battery life
- 3. Assign weight to each criterion
- 4. Score each option
 - Rate 1-5 for each criterion
- 5. Calculate weighted score
 - Weighted sum of scores for each alternative
- 6. Compare totals
 - E.g., choose the alternative with the highest score

Key Performance Indicators (KPIs): General Overview

- What are KPIs?
 - Quantitative metrics that reflect how well an individual, team, or organization is achieving key objectives
- Purpose of KPIs
 - Provide focus for strategic and operational improvement
 - Serve as benchmarks for progress and performance evaluation
- Categories of KPIs
 - Financial KPIs: Revenue, profit margin, cost per acquisition
 - Customer KPIs: Customer satisfaction, churn rate
 - Process KPIs: Efficiency, cycle time, error rate

Investors from attacked along in the decima are each

- People KPIs: Employee engagement, turnover rate, training hours
- Characteristics of Effective KPIs
 - Specific and clearly defined
 - Measurable with reliable data
 - Achievable and realistic
 - Relevant to the business goals
 - Time-bound for periodic evaluation
- Developing KPIs
 - Align with strategic goals

The Importance of Synthetic Data in Causal Al

- Synthetic data is artificially generated to simulate real-world data properties
 - Created using algorithms or simulations based on real data distributions

Key Benefits

- Enhances data availability when real data is limited, biased, or sensitive
- Enables experimentation without risking privacy breaches
- Protects identities by not using real personal data
- Helps comply with data privacy regulations like GDPR and HIPAA
- Allows rebalancing of underrepresented groups or scenarios
- Facilitates fairer model training and evaluation

Use in Causal Modeling

- Simulates counterfactual scenarios to test causal hypotheses
- Assists in validating causal assumptions and interventions

Challenges

- Ensuring synthetic data accurately reflects key patterns and relationships
- Avoiding distortion of causal dependencies or overfitting to synthetic features

Best Practices

- Combine with real data for validation
- Use domain knowledge to guide synthetic data generation and use

Digital Twin

- A digital twin is a virtual representation of a physical system or process created using data and software
 - Used to simulate and identify potential problems under different conditions
 - Used to generate synthetic data

The Future of Causal Al

- Causal AI:
 - Is moving out of academia into the commercial world
 - Is a departure from the 2000 approach of a purely data-driven AI systems
 - Is a reflection of the reality of how humans think, analyze, and make decisions and how the real world works
- · Causal, traditional AI, deep learning, and generative techniques will merge

Causal Networks

- Bayesian networks represent the joint distribution function, independently of how the nodes are ordered
- E.g., a Bayesian network with *Fire* and *Smoke*, which are dependent
 - We can specify it as $Fire \rightarrow Smoke$
 - We need Pr(Fire) and then Pr(Smoke|Fire), to compute Pr(Fire, Smoke)
 - The same distribution can also be represented as Smoke → Fire
 - Then we need Pr(Smoke) and Pr(Fire|Smoke)
 - These two networks are equivalent and convey the same information
 - There is an asymmetry in nature that we need to capture
 - Extinguishing the fire will stop the smoke
 - Clearing the smoke won't affect the fire

Causal (Bayesian) Networks

- Causal networks are Bayesian networks that forbids any variable ordering that is not causal
- Instead of using probabilistic reasoning (e.g., "are *Smoke* and *Fire* variables correlated?"), we use judgement rooted in how nature works (e.g., "what causes what, *Smoke* or *Fire*?")
- "Dependency in nature" is similar to assignment in programming language
 - E.g., it's like if nature assigns a value to *Smoke* based on the value of *Fire*:

$$Smoke = f(Fire)$$

• A structural equation describes a stable mechanism in nature that remain invariant to changes in the environment and measurements

$$x_i = f(x_j) \iff X_j \to X_i$$

We will see that "intervention" action affect a causal network only locally

Structural Equation: Sprinkler Example

- Consider the Sprinkler example
- The joint distribution of the five variables can be expressed as a product of conditional distributions according to the causal DAG topology

$$Pr(c, r, s, w, g) = Pr(c) Pr(r|c) Pr(s|c) Pr(w|r, s) Pr(\xi)$$

The structural equations for this model look like:

$$C = f_C(U_C)$$

$$R = f_R(C, U_R)$$

$$S = f_S(C, U_S)$$

$$W = f_W(R, S, U_W)$$

$$G = f_G(W, U_G)$$

- The unmodeled variables U-variables represent error terms
 - E.g., U_W is another source of wetness besides Sprinkler and Rain (e.g. MorningDew)

Intervention in structural equations and joint probability

- The structural equations:
 - Model the system
 - Allow to predict how interventions will affect the system, which is not easily represented by the joint distribution
- The intervention $do(X_j = x_j)$ causes $X_j = f_j(Parents(X_j), U_J)$ to become $X_j = x_j$ in the structural equations
 - The causal network is "mutilated" by removing the edge
 - Then the joint distribution can be derived from the causal network
- Multiple interventions are the superposition of the individual interventions
 - In practice we can

Adjustment Formula in Causal Networks

- Estimate the effect of an intervention $do(X_j = x_{jk})$ on another variable X_i in a causal network
- The Basic Adjustment Formula
 - Derived from the modified joint distribution after intervention:

$$Pr(X_i = x_i | do(X_j = x_{jk})) = \sum_{parents(X_i)} Pr(x_i | x_{jk}, parents(X_j)) Pr(parents(X_j))$$

- Omits the causal mechanism for X_i and treats it as fixed
- Interpretation
 - Weighted average of the effect of X_i and its parents on X_i
 - Weights are given by the prior probabilities of the parent values
- Causal Inference via Graph Surgery
 - "Mutilate" the network by cutting incoming edges to X_j
 - Replace X_i 's structural equation with $X_i = x_{ik}$
- E.g., (Sprinkler Network)
 - To evaluate Pr(GreenerGrass|do(Sprinkler = true)):

Intervention and Structural Equations: Sprinkler Example

- We "intervene" and turn the sprinkler on
- This is modeled in Do-calculus as do(Sprinkler = T)
- Now the sprinkler variable s is not dependent on whether it's a cloudy day c
- The causal network is "mutilated"

 The structural equations after the intervention become:

$$C = f_C(U_C)$$

$$R = f_R(C, U_R)$$

$$S = True$$

$$W = f_W(R, S, U_W)$$

$$G = f_G(W, U_G)$$

• Then the Pr(s|c) = 1 and Pr(w|r,s) = Pr(w|r,s = T) and the joint probability becomes:

Intervention vs Observation

- Intervention "breaks" the normal causal link between Weather and Sprinkler
 - From the causal graph we know that there is no influence of Sprinkler on Weather
- There is a difference between do(Sprinkler = T) (intervention) and Sprinkler = T (observation)
 - If we observe that the sprinkler is on:
 - We can deduce that it's less likely that the weather is cloudy
 - If we turn on the sprinkler:
 - · The weather is not affected and so the probability of cloudy is unaffected

Back Door

- A causal network can predict the effect of an intervention using the adjustment formula
- The problem is that it requires accurate knowledge of the conditional distributions of the model
- E.g., in the Sprinkler example, why does someone turn on the sprinkler?
 Maybe they check the weather, but how do they make their decision?
- Besides the direct route, we needs to take in account the "back door" route

Problem

- In experimental settings, randomization ensures that X is not confounded so that we can directly estimate its causal effect on Y
- Problem:
 - In observational data, we don't have randomization and confounding variables can create spurious correlations between X and Y
 - Consider the causal graph

where U is a common cause (confounder) of both X and Y

- Solution:
 - Controlling for a set of Z that satisfies the backdoor criterion, we can
 estimate the causal effect of variable X on Y
 - This allows to "simulate" a randomized experiment

TBD

- We want to estimate the effect of Sprinkler on GreenerGrass
 - We intervene and set *Sprinkler = True*
- Besides the direct route, we needs to take in account the "back door" route Cloudy → Rain

Backdoor Path

- Z blocks all backdoor paths from X to Y
- A backdoor path is any path from X to Y that starts with an arrow pointing into X. These paths create confounding relationships that can bias the estimate of X's effect on Y

Backdoor Criteria: Condition

- Variables Z satisfy the backdoor criterion for X and Y in a causal network if:
 - 1. No element of Z is a descendant of X
 - Z do not capture the effect of X on Y through any causal pathway
 - 2. Z "blocks" every path from X to Y
- The idea is to estimate the causal effect of X on Y without confounding relationships, by controlling variables Z satisfying the backdoor criterion
- Then we can use non-experimental (i.e., observational data), assigning X randomly

