Representasi Data

Konsep Teknologi Informasi

Representasi Data

- Data adalah sesuatu yang belum mempunyai arti bagi penerimanya
- Data masih memerlukan adanya suatu pengolahan.
- Wujud Data
 - berwujud suatu keadaan
 - Gambar
 - Suara
 - Huruf
 - Angka
 - bahasa ataupun simbol-simbol lainnya yang bisa kita gunakan sebagai bahan untuk melihat lingkungan

- Dalam komputer terdapat tiga tipe data dasar
 - Bilangan bulat atau integer
 - Bilangan pecahan atau floating point
 - Boolean
 - Karakter

Integer

Interger adalah data numerik yang tidak mengandung pecahan, dan disajikan dalam memori komputer sebagai angka bulat. Mengacu pada obyek data dengan range - 32768 s/d 32767. Operasi yang dapat dilaksanakan :

- Penambahan (+)
- Pengurangan ()
- Perkalian (*)
- Pembagian Integer (/)
- Pemangkatan (^)
- ▶ dII

2. Pecahan

- Data numerik yang mengandung pecahan digolongkan dalam jenis data Real (floating point). Operasi yang berlaku pada bilangan integer juga berlaku pada bilangan real. Selain itu ada operasi lainnya seperti :
- ▶ INT: membulatkan bilangan real, misal INT(34.67) = 35

3. Boolean

- " Logical Data Types", digunakan untuk melakukan pengecekan suatu kondisi dalam suatu program.
- Elemen d:True dan False, biasanya dinyatakan pula sebagai I dan 0.
- Operatornya AND, OR, NOT.
- Dalam urutan operasi, Not mendapat prioritas pertama, kemudian baru AND dan OR kecuali bila diberi tanda kurung.
- Depart : < , > , <= , >= , =
- Ex. 6 < 12 :True ,</p>
- A <>A : False.

4. Karakter dan String

- Type karater mempunyai elemen sebagai berikut :
- ► (0,1,2,3,...,9,A,B,C,...,X,Y,Z,?,*,/,...)
- Data type majemuk yang dibentuk dari karakter disebut STRING.
- Suatu string adalah barisan hingga simbol yang diambil dari himpunan

Sistem Bilangan

- Bilangan memiliki basis.
- Yang biasa dipergunakan adalah basis 10 atau decimal

```
Diberikan sebuah bilangan : 5736

Artinya :

5736 = 5000 + 700 + 30 + 6

= 5 \cdot 1000 + 7 \cdot 100 + 3 \cdot 10 + 6 \cdot 1

= 5 \cdot 10^3 + 7 \cdot 10^2 + 3 \cdot 10^1 + 6 \cdot 10^0
```

- Contoh sederhana basis bilangan lain
- sistem bilangan jam, menggunakan basis 12
- perhitungan hari, menggunakan basis 7 (misalnya jika dianggap Ahad=1, Senin=2, ... Sabtu =0)

Sistem Bilangan

- Sistem bilangan komputer, logika di komputer diwakili oleh bentuk elemen dua keadaan yaitu off (tidak ada arus) dan on (ada arus).
- Konsep inilah yang dipakai dalam sistem bilangan binary yang mempunyai dua macam nilai untuk mewakili suatu besaran nilai.
- Selain system bilangan biner, komputer juga menggunakan system bilangan octal dan hexadesimal.

Sistem Bilangan

- ▶ Pada sistem bilangan dengan basis N, digunakan angkaangka 0, I, .. N-I.
- Sistem bilangan desimal (basis 10) menggunakan angka 0,1,2,3,..9
- Sistem bilangan biner (basis 2) menggunakan angka 0 dan
- Sistem octal berbasis 8 menggunakan angka 0,1,2,3,4,5,6,7
- Sistem bilangan hexadecimal berbasis 16 menggunakan angka 0,1,2,3,4,6,7,8,9,A,B,C,D,E,F

Bilangan Desimal

- Sistem ini menggunakan 10 macam symbol yaitu 0,1,2,3,4,5,6,7,8,dan 9.
- System ini menggunakan basis 10.
- Bentuk nilai ini dapat berupa integer desimal atau pecahan.

Bilangan Desimal

Integer desimal:

nilai desimal yang bulat, misalnya 8598 dapat diartikan :

Bilangan Desimal

- Pecahan desimal:
- Adalah nilai desimal yang mengandung nilai pecahan dibelakang koma, misalnya nilai 183,75 adalah pecahan desimal yang dapat diartikan :
- Example : ->

$$1 \times 10^{2} = 100$$
 $8 \times 10^{1} = 80$
 $3 \times 10^{0} = 3$
 $7 \times 10^{-1} = 0,7$
 $5 \times 10^{-2} = 0,05$

Bilangan Biner

- Sistem bilangan binary menggunakan 2 macam symbol bilangan berbasis 2 digit angka, yaitu 0 dan 1.
- Contoh bilangan 1001 dapat diartikan :

Bilangan Oktal

- Sistem bilangan Oktal menggunakan 8 macam symbol bilangan berbasis 8 digit angka, yaitu 0,1,2,3,4,5,6,7.
- Position value system bilangan octal adalah perpangkatan dari nilai 8.

Jadi 10 (10)

Bilangan Hexadesimal

- Sistem bilangan Hexadesimal menggunakan 16 macam symbol, yaitu 0,1,2,3,4,5,6,7,8,9,A,B,C,D,Edan F
- Dimana A = 10, B = 11, C= 12, D = 13, E = 14 dan F = 15
- Position value system bilangan octal adalah perpangkatan dari nilai 16.

- Setiap nilai / besaran tertentu dapat direpresentasikan dengan berbagai sistem bilangan.
- Setiap nilai dapat pula dilakukan perubahan basis bilangan.
- ▶ 342₈ akan diubah menjadi basis 10

```
342_8 = 3*8^2 + 3*8^1 + 3*8^0
= 3*64+4*8+2*1
= 192+32+2
= 226
```


▶ 2AF₁₆ akan diubah menjadi basis 10

```
2AF_{16} = 2*16^2 + A*16^1 + F*16^0
= 2*16^2 + 10*16^1 + 15*16^0
= 2*256 + 10*16 + 15*1
= 512 + 160 + 15
= 687
```

▶ 001 110 akan diubah menjadi basis 10

DARI BASIS 10 KE BASIS N

 dilakukan dengan operasi division (pembagian bulat) dan modulus (sisa pembagian bulat) N.

```
971 akan diubah menjadi basis 8

971 div 8 = 121, modulus (sisa) = 3

121 div 8 = 15, modulus = 1

15 div 8 = 1, modulus = 7

971 = 17138
```


29 akan diubah menjadi basis 2

```
29 div 2 = 14, modulus = 1

14 div 2 = 7, modulus = 0

7 div 2 = 3, modulus = 1

3 div 2 = 1, modulus = 1

27 = | | | | 0 | 2
```


- Untuk digit di belakang koma pada bilangan pecahan, perubahan basis dilakukan dengan mengalikan fraksi pecahan dengan basisnya.
- ▶ Hasil perkaian tersebut kemudian diambil fraksi bulatnya

0.625 akan diubah menjadi basis 2

$$0.625 \times 2 = 1.25$$

$$0.25 \times 2 = 0.5$$

$$0.5 \times 2 = 1.0$$

$$0.625 = 0.1012$$

Aritmatika Basis N

- Operasi penjumlahan dan pengurangan dapat dilakukan pada dua bilangan dengan basis yang SAMA.
- Perhitungan aritmetika pada basis N dilakukan serupa dengan pada basis 10.

```
1
253<sub>6</sub>
<u>421<sub>6</sub> +</u>
1114<sub>6</sub>
```

```
1 1
110011<sub>2</sub>
11010<sub>2</sub> +
1001101<sub>2</sub>
```


contoh:

Penjumlahan Biner

Dasar penujmlahan biner adalah : 1111 0 + 0 = 0 10100 + 10 + 1 = 1 100011

$$| + 0 = |$$

I + I = 0

karena digit terbesar Binari I, maka harus dikurangi dengan 2 (basis), jadi 2-2=0 dengan carry of I

dengan carry of I, yaitu I + I = 2,

Pengurangan Biner

Bilangan biner dikurangkan dengan cara yang sama dengan pengurangan bilangan desimal.

	Contoh :
	11101
0 - 0 = 0	1011 -
1 - 0 = 1	10010
1 - 1 = 0	10010
0 – 1 = 1 —	dengan borrow of 1, (pijam 1 dari posisi sebelah
kirinya).	

Perkurangan Biner contoh

H

Desimal	Biner
14	1110
12 x	1100 x
28	0000
14	0000
	1110
+	1110 +
168	10101000

- Pembagian Biner
- dilakukan juga dengan cara yang sama dengan bilangan desimal. Pembagian biner 0 tidak mempunyai arti, sehingga dasar pemagian biner adalah :
- 0:1=0
- ▶ | : | = |

Desimal	Biner
5 / 125 \ 25	101 / 1111101 \ 11001
<u>10 -</u>	<u>101 - </u>
25	101
25 -	101 -
0	0101
	<u>101 -</u>
	0

Penjumlahan OCTAL

- Langkah-langkah penjumlahan octal :
 - tambahkan masing-masing kolom secara desimal
 - rubah dari hasil desimal ke octal
 - tuliskan hasil dari digit paling kanan dari hasil octal
 - kalau hasil penjumlahan tiap-tiap kolom terdiri dari dua digit, maka digit paling kiri merupakan carry of untuk penjumlahan kolom selanjutnya.

Contoh:

Desimal	Oktal
21 87 + 108	Oktal 25 127 + 154 5 10 + 7 10 = 12 10 = 14 8 2 10 + 2 10 + 1 10 = 5 10 = 5 8
	1 10 = 1 8

Pengurangan Octal

Contoh:

Desimal Oktal 108 87- 21 48-78 +88 (borrow of) = 58 58-28-18 = 28 18-18 = 08	+		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Desimal	Oktal
		87 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Perkalian Octal
- Langkah langkah :
 - kalikan masing-masing kolom secara desimal
 - rubah dari hasil desimal ke octal
 - tuliskan hasil dari digit paling kanan dari hasil octal
 - kalau hasil perkalian tiap kolol terdiri dari 2 digit, maka digit paling kiri merupakan carry of untuk ditambahkan pada hasil perkalian kolom selanjutnya.

Contoh:

* D	OL4-1
<u>Desimal</u>	Oktal
	16
14	14 x
12 x	70
28	↑
14 +	4 10 x 1 10 + 3 10 = 7 10 = 7 8
168	

Latihan

Kerjakan soal berikut dengan benar! Konversikan bilangan berikut:

```
a. 11001(2) = \dots (10)
b. 137(8) = \dots (10)
c. 7A9F(16) = \dots (10)
d. 125(10) = \dots (2)
e. 23600(10) = \dots (16)
f. 1327(10) = \dots (8)
```

Pengumpulan: http://bit.ly/TugasMg10

PDF:ABSEN_NAMA

Batas Waktu: 30-10-2019 jam 07.00

Konversi Bilangan Biner Ke Desimal

1	Χ	2 ⁴	=	16
1	Χ	2 ³	=	8
0	X	2 ²	=	0
0	Χ	2 ¹	=	0
1	Χ	2^{0}	=	_1+
		desim		25

Konversi Bilangan Octal Ke Desimal

1 X
$$8^2 = 64$$

3 X $8^1 = 24$
7 X $8^0 = 7 +$
Nilai dalam desimal: 95

Konversi Bilangan Hexadesimal Ke Desimal

Soal: 7A9F₍₁₆₎= ... (10)

7	Χ	16 ³	=	28672	
A = 10	Χ	16 ²	=	2560	
9	Χ	16 ¹	=	144	
F = 15	Χ	16°	=	15	+
Nilai dalam desimal:				31391	

Konversi Bilangan Desimal Ke Biner

Soal: 125₍₁₀₎= ... (2)

Pembagi Hasil bagi Sisa bagi

Bilangan BINER dari 125₍₁₀₎

1 1 1 1 1 0 1

Konversi Bilangan Desimal Ke Hexadesimal

Soal: 23600₍₁₀₎= ... ₍₁₆₎ Pembagi Hasil bagi Sisa bagi 23600 16: =0 1475 16: = 3 92 16: = 12=C Bilangan HEXA dari 23600₍₁₀₎ adalah:

Konversi Bilangan Desimal Ke Octal

Bilangan OCTAL dari 1327₍₁₀₎ 2 4 5 7 adalah:

Tanda Bilangan

- dilakukan dengan menambahkan bit lain pada bilangannya yang disebut bit tanda atau sign bit
- Konvensi umum :
 - Description of the property of the property
 - I pada sign bit menyatakan bilangan negatip.
- Sign bit digunakan untuk menunjukkan apakah bilangan biner yang disimpan adalah positif atau negatif

Tanda Bilangan

- Untuk bilangan-bilangan positif, bit-bit selebihnya (selain sign bit) selalu digunakan untuk menyatakan besarnya bilangan dalam bentuk biner.
- untuk bilangan-bilangan negatif ada tiga bentuk yang digunakan untuk menyatakan besarnya bilangan biner
 - true-magnitude
 - bentuk komplemen ke 1
 - bentuk komplemen ke 2

true-magnitude

- Besar bilangan yang sebenarnya diberikan dalam bentuk biner.
- Bit pertama selalu merupakan sign bit

komplemen ke 1

- Bentuk komplemen ke I dari bilangan biner
 - mengubah setiap 0 di dalam bilangan tersebut menjadi 1
 - setiap I di dalam bilangan menjadi 0
- Contoh:
 - ▶ komplemen ke | dari | 0 | $101 \rightarrow 010010$
 - komplemen ke | dari 0||10||0 → 100||0||
- sign bit tidak dikomplemenkan tetapi dipertahankan tetap

```
Sign bit

-57 = 1 111001 (true magnitude form)

= 1 000110 (bentuk komplemen ke 1)
```


Komplemen Ke 2

- Bentuk komplemen ke 2 dari bilangan biner :
 - mengambil komplemen ke I dari bilangannya
 - menambahkan I pada posisi least significant bit.

```
1 1 1 0 0 1 komplemenkan tiap bit untuk membentuk komplemen ke 1

1 1 1 0 0 1 komplemenkan tiap bit untuk membentuk komplemen ke 1

1 0 0 0 1 1 0

1 tambah 1 kepada LSB untuk membentuk komplemen ke 2

0 0 0 1 1 1
```

▶ Biner III0 komplemen-2 ???

1	1	1	1	0	0	1	True magnitude
1	0	0	0	1	1	0	Komplemen ke 1
1	0	0	0	1	1	1	Komplemen ke 2

- Ketiga bentuk diatas sekarang digunakan dalam sistemsistem digital.
- Pada hampir semua mesin-mesin digital modern, untuk operasioperasi aritmetik bilangan-bilangan negatifnya ada dalam komplemen ke 1 atau bentuk komplemen ke 2.
- Saat ini representasi komplemen ke 2 paling banyak digunakan

Komplemen Menjadi Biner

- komplemen ke l menjadi biner mengkomplemenkan lagi setiap bit-nya.
- komplemen ke 2 menjadi mengkomplemenkan setiap bit dan kemudian menambah 1 pada LSB nya.

Dua Bilangan Positif

perhatikan bahwa yang ditambah dan yang menambah mempunyai jumlah bit yang sama. Ini harus selalu dilakukan dalam sistem komplemen ke 2.

- Bilangan Positip dan Bilangan Negatip yang Lebih Kecil
- Misal penjumlahan +9 dan -4.
 - -4 akan ada dalam bentuk komplemen ke 2.
 - Jadi, +4 (00100) harus diubah menjadi -4 (11100)

- Bilangan Positif dan Bilangan Negatif yang Lebih Besar
- Contoh penjumlahan -9 dan +4

 Hasil penjumlahan adalah negatif, maka merupakan bentuk komplemen ke 2

Dua Bilangan Negatip

Sekali lagi hasil ini adalah negatip dan dalam bentuk komplemen ke 2 dengan sign bit 1.

Bilangan yang sama dan berlawanan

Pengurangan Komplemen 2

- Cari komplemen ke 2 dari pengurang, termasuk dengan sign bit-nya.
 - Apabila pengurangnya positif, maka harus dirubah ke suatu bilangan ngatif dalam bentuk komplemen ke 2.
 - Apabila pengurangnya merupakan bilangan negatif, ini akan mengubahnya menjadi bilangan positip dalam bentuk biner sebenarnya.
- Setelah menemukan komplemen ke 2 dari pengurang, tambahkan kepada yang dikurangi. Bilangan yang dikurangi tersebut dipertahankan dalam bentuk aslinya.

- Yang dikurangi (9) 01001
- Pengurang (+4) 00100

Komplemen Desimal

- Pada sistem bilangan desimal :
- Kompelemen 9 (9s complement)
 - ▶ Rⁿ R^{-m} N
 - Dilakukan dengan cara mengurangkan angka 9 untuk masingmasing digit dalam bilangan pengurangan
 - ► Komplemen 9 dari 71345 adalah 99999 71345 = 28654
- Komplemen 10 (10s complement)
 - Komplemen 10 dari bilangan desimal adalah hasil komplemen 9 ditambah 1
 - $ightharpoonup R^n N$
 - **Komplemen 9** dari 71345 = 28654 + 1 = 28655

▶ Pola komplemen pada komplemen 9 dan komplemen 1

Desimal		Biner		
Bilangan	Komplemen 9	Bilangan	Komplemen 1	
0	9	0	1	
1	8	1	0	
2	7			
3	6			
4	5			
5	4			
6	3			
7	2			
8	1			
9	0			

Pengurangan komplemen

Konvensional	Komplemen 9	Komplemen 10
67	67	67
24	75	76
	+	+
43	1 42 > 1	1 43
	+	
	43	

Pengurangan komplemen

Pengurangan desimal cara biasa	Komplemen 9
859 523 336	859 476 1 335 1 335 1 336 + dari 999 - 523

Pengurangan desimal cara biasa	Komplemen 10		
859 523	859 477		
336	1 336 dibuang		

