INTRODUCTION & REVIEW INTERNET PROTOCOL AND SERVICES

Some slides have been taken from: Computer Networking: A Top Down Approach Featuring the Internet, 3rd edition. Jim Kurose, Keith Ross. Addison-Wesley, July 2004. All material copyright 1996-2004. J.F Kurose and K.W. Ross, All Rights Reserved.

1

Contents

- Internet protocol stack
- Application layer
- TCP & UDP
- Internet layer

What's the Internet?

- Internet: "network of networks"
 - · Interconnected ISPs
- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

3

What's the Internet?

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

What's a protocol?

human protocols:

- · "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

5

TCP/IP protocol stack

- application: supporting network applications
 - FTP, SMTP, STTP
- transport: host-host data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - · IP, routing protocols
- link: data transfer between neighboring network elements
 - PPP, Ethernet
- physical: bits "on the wire"

application
transport
network
link
physical

Application layer

- E-mail
- Web
- Instant messaging
- · Remote login
- P2P file sharing
- Multi-user network games
- Streaming stored video clips

- · Internet telephone
- Real-time video conference
- Massive parallel computing

R

Creating a network app

Write programs that

- run on different end systems and
- · communicate over a network.
- e.g., Web: Web server software communicates with browser software

No software written for devices in network core

- Network core devices do not function at app layer
- This design allows for rapid app development

9

Application architectures

- Client-server
- Peer-to-peer (P2P)
- · Hybrid of client-server and P2P

Hybrid of client-server and P2P

BitTorrent

- · File transfer P2P
- · File search centralized:
 - Peers register content at central server
 - Peers query same central server to locate content

Instant messaging

- Chatting between two users is P2P
- Presence detection/location centralized:
 - User registers its IP address with central server when it comes online
 - User contacts central server to find IP addresses of buddies

Processes communicating

Process: program running within a host.

- within same host, two processes communicate using inter-process communication (defined by OS).
- processes in different hosts communicate by exchanging messages

Client process: process that initiates communication

Server process: process that waits to be contacted

■ Note: applications with P2P architectures have client processes & server processes

Processes communicating

- Client process: sends request
- Server process: replies response
- · Typically: single server multiple clients
- The server does not need to know anything about the client
- The client should always know something about the server
 - · at least the socket address of the server

App-layer protocol defines

- Types of messages exchanged, eg, request & response messages
- Syntax of message types: what fields in messages & how fields are delineated
- Semantics of the fields, ie, meaning of information in fields
- Rules for when and how processes send & respond to messages

17

What transport service does an app need?

Data loss

- some apps (e.g., audio) can tolerate some loss
- other apps (e.g., file transfer, telnet) require 100% reliable data transfer

Timing

 some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

Bandwidth

- some apps (e.g., multimedia) require minimum amount of bandwidth to be "effective"
- other apps ("elastic apps") make use of whatever bandwidth they get

Transport services and protocols

- provide logical communication between app processes running on different hosts
- transport protocols run in end systems
 - send side: breaks app messages into segments, passes to network layer
 - rcv side: reassembles segments into messages, passes to app layer
- more than one transport protocol available to apps
 - Internet: TCP and UDP

19

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, orconnection setup,

UDP: User Datagram Protocol [RFC 768]

- "no frills," "bare bones"
 Internet transport protocol
- "best effort" service, UDP segments may be:
 - lost
 - delivered out of order to app
- · connectionless:
 - no handshaking between UDP sender, receiver
 - each UDP segment handled independently of others

Why is there a UDP?

- no connection establishment (which can add delay)
- simple: no connection state at sender, receiver
- small segment header
- no congestion control: UDP can blast away as fast as desired

23

UDP demultiplexing

 Create sockets with port numbers:

mySocket = socket(AF_INET,
 SOCK DGRAM, 0)

 UDP socket identified by twotuple:

(dest IP address, dest port number)

- When host receives UDP segment:
 - checks destination port number in segment
 - directs UDP segment to socket with that port number
- IP datagrams with different source IP addresses and/or source port numbers directed to same socket

TCP Connection Management: Setup

Recall: TCP sender, receiver establish "connection" before exchanging data segments

- initialize TCP variables:
 - seq. #s
 - buffers, flow control info (e.g. RcvWindow)
- client: connection initiatorconnect()
- server: contacted by client
 - accept()

Three way handshake:

<u>Step 1:</u> client host sends TCP SYN segment to server

- specifies initial seq #
- no data

<u>Step 2:</u> server host receives SYN, replies with SYNACK segment

- · server allocates buffers
- · specifies server initial seq. #

<u>Step 3:</u> client receives SYNACK, replies with ACK segment, which may contain data

27

Connection-oriented demux

- TCP socket identified by 4-tuple:
 - source IP address
 - source port number
 - dest IP address
 - dest port number
- recv host uses all four values to direct segment to appropriate socket
- Server host may support many simultaneous TCP sockets:
 - each socket identified by its own 4-tuple
- Web servers have different sockets for each connecting client

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

31

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

IP addressing: "class-less"

CIDR: Classless InterDomain Routing

- · subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

37

Address Allocation for Private Internets

• RFC1918

Private address	10.0.0.0/8
	172.16.0.0/16 → 172.31.0.0/16
	192.168.0.0/24 → 192.168.255.0 /24
Loopback address	127.0.0.0 /8
Multicast address	224.0.0.0
	~239.255.255.255

• Link local address: 169.254.0.0/16

NAT: network address translation

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

NAT: network address translation

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #)
 in dest fields of every incoming datagram with
 corresponding (source IP address, port #) stored in NAT
 table

NAT: network address translation

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

43

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration

