

SGM3717 4Ω, 400MHz Bandwidth, Dual, SPDT Negative Signal Handling Analog Switch

GENERAL DESCRIPTION

The SGM3717 is a dual, bidirectional, single-pole/double-throw (SPDT) CMOS analog switch designed to operate from a single +2.5V to +5.0V supply. It features high bandwidth (400MHz) and low on-resistance (4 Ω TYP), and the switches can handle negative signal down to -2.0V.

SGM3717 features a guaranteed on-resistance matching of 0.15Ω (TYP) between switches and a guaranteed on-resistance flatness of 1.5Ω (TYP) over the signal range. This ensures excellent linearity and low distortion when switching audio signals.

The SGM3717 is a committed dual single-pole/double-throw (SPDT) switch that consists of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

SGM3717 is available in UTQFN-1.8×1.4-10L package.

FEATURES

- Supply Range: +2.5V to +5.0V
- Negative Signal Swing Capability: -2.0V to V₊
- On-Resistance: 4Ω (TYP) at +5.0V
- High Bandwidth: 400MHz
- Fast Switching Times

 t_{ON} = 15ns (TYP) t_{OFF} = 11ns (TYP)

- High Off-Isolation: -49dB at 10MHz
- Low Crosstalk: -52dB at 10MHz
- 1.8V Logic Control
- Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to +85°C
- Small Package
 Available in Green UTQFN-1.8×1.4-10L Package

APPLICATIONS

Portable Instrumentation
Battery-Operated Equipment
Computer Peripherals
Cell Phones
PDAs
MP3s

PACKAGE/ORDERING INFORMATION

MODEL	ORDERING NUMBER	TEN		PACKAGE MARKING	PACKAGE OPTION
SGM3717	SGM3717YUWQ10G/TR	UTQFN-1.8×1.4-10L	-40℃ to +85℃	A3XX	Tape and Reel, 3000

NOTE: Package marking is defined as the follow:

MARKING INFORMATION

For example: A3BA (2011, January)

ABSOLUTE MAXIMUM RATINGS

V ₊ , IN to GND Analog, Digital Voltage Range ⁽²⁾ (V ₊)	
Continuous Current NO, NC, or COM	
Peak Current NO, NC, or COM	±80mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	260°C
ESD Susceptibility	
HBM	6000V
MM	400V

NOTES:

- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Signals on NC, NO, or COM or IN exceeding V_{+} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

PIN CONFIGURATION (TOP VIEW)

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

NOTE: Switches shown for logic "0" input.

PIN DESCRIPTION

NAME	PIN	FUNCTION
V ₊	1	Power Supply.
GND	6	Ground.
IN1, IN2	4, 8	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
COM1, COM2	3, 9	Common Terminal.
NO1, NO2	2, 10	Normally-Open Terminal.
NC1, NC2	5, 7	Normally-Closed Terminal.

NOTE: NO_X , NC_X and COM_X terminals may be an input or output.

ELECTRICAL CHARACTERISTICS

 $(V_{+}$ = +4.5V to +5.0V, Full = -40°C to +85°C, typical values are at V_{+} = +5.0V, T_{A} = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
ANALOG SWITCH		l					J.	
		2.5V ≤ V ₊ ≤ 3.5V			-2.0		V ₊	
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}	3.5V ≤ V ₊ ≤ 5.0V		Full	(V ₊) - 5.5		V ₊	V
0 0		$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 3$.5V.	+25°C		4	8	
On-Resistance	R _{ON}	I _{COM} = -10mA, Test Circuit 1		Full			8.5	Ω
On-Resistance Match		$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 3$.5V.	+25°C		0.15	0.6	
Between Channels	ΔR_{ON}	I _{COM} = -10mA, Test Circuit 1		Full			0.8	Ω
On-Resistance Flatness	В	$V_{+} = 4.5V, 0V \le V_{NO} \text{ or } V_{N}$	_{VC} ≤ V ₊ ,	+25°C		1.5	3	
On-Resistance Flatness	R _{FLAT(ON)}	I _{COM} = -10mA, Test Circui	t 1	Full			3.5	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 5.0V$, V_{NO} or $V_{NC} = 1$. $V_{COM} = 4.5V/1.0V$.0V/4.5V,	Full			1	μA
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 5.0V$, $V_{COM} = 1.0V/4$. V_{NO} or $V_{NC} = 1.0V/4.5V$ or		Full			1.2	μΑ
Power Off Leakage Current	I _{Power Off}	$V_{+} = 0V$, V_{NO} or $V_{NC} = 0V$,	Full			10	μΑ	
DIGITAL INPUTS								
Input High Voltage	V_{INH}		Full	1.5			V	
Input Low Voltage	V_{INL}		Full			0.6	V	
Input Leakage Current	I _{IN}	$V_{+} = 5.0V$, $V_{IN} = 0V$ or 5.0	Full			1.5	μΑ	
DYNAMIC CHARACTER	ISTICS							
Turn-On Time	ton	V_{NO} or V_{NC} = 3.0V, R_L = 3 C_L = 35pF, Test Circuit 2	300Ω,	+25°C		15		ns
Turn-Off Time	toff	V_{NO} or V_{NC} = 3.0V, R_L = 3 C_L = 35pF, Test Circuit 2	600Ω,	+25°C		11		ns
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or V_{NC1} or $V_{NC2} = 300\Omega$, $C_L = 35pF$, Te		+25°C		6		ns
Skew	t _{skew}	$R_S = 39\Omega$, $C_L = 50pF$, Tes	st Circuit 4	+25°C		1		ns
Off Inclution	0	Signal = 0dBm,	f = 1MHz	+25°C		-70		dB
Off Isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 5	f = 10MHz	+25°C		-49		dB
Channel-to-Channel		Signal = 0dBm,	f = 1MHz	+25°C		-72		dB
Crosstalk	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 6	f = 10MHz	+25°C		-52		dB
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF, Test Circuit 7		+25°C		400		MHz
Charge Injection	Q	V_G = GND, R_G = 0 Ω , C_L = 1.0nF, Test Circuit 8		+25°C		16		рС
Switch ON Capacitance	Con			+25°C		24		pF
Switch OFF Capacitance	C _{OFF}			+25°C		9		pF
POWER REQUIREMENT	S		"		•		•	-
Power Supply Current	I ₊	$V_{+} = 5.0V$, $V_{IN} = 0V$ or V_{+}	Full		0.5	6.0	μA	

ELECTRICAL CHARACTERISTICS

 $(V_+ = +2.7V \text{ to } +3.6V, \text{ Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } V_+ = +3.0V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								I
	., ., .,	2.5V ≤ V ₊ ≤ 3.5V			-2.0		V ₊	
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}	3.5V ≤ V ₊ ≤ 5.0V		Full	(V ₊) - 5.5		V+	V
On Desistance	-	$V_{+} = 2.7V$, V_{NO} or $V_{NC} = 1$.5V.	+25°C		6	10	
On-Resistance	R _{ON}	I _{COM} = -10mA, Test Circuit 1		Full			10.5	Ω
On-Resistance Match	A.D.	V_+ = 2.7V, V_{NO} or V_{NC} = 1.5V, I_{COM} = -10mA, Test Circuit 1		+25°C		0.25	0.85	0
Between Channels	ΔR_{ON}			Full			1.0	Ω
On-Resistance Flatness	R _{FLAT(ON)}	$V_{+} = 2.7V, 0V \le V_{NO} \text{ or } V_{N}$		+25°C		3	5.1	0
On-Nesistance Flatness	NFLAT(ON)	I _{COM} = -10mA, Test Circui	t 1	Full			5.4	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 3.6V$, V_{NO} or $V_{NC} = 0$. $V_{COM} = 3.3V/0.3V$	3V/3.3V,	Full			1	μΑ
Channel ON Leakage Current	$I_{NC(ON)}, I_{NO(ON)}, I_{COM(ON)}$	$V_{+} = 3.6V$, $V_{COM} = 0.3V/3.3$ V_{NO} or $V_{NC} = 0.3V/3.3V$ or		Full			1	μΑ
Power Off Leakage Current	I _{Power Off}	$V_{+} = 0V$, V_{NO} or $V_{NC} = 0V$,	$V_{COM} = 3.0V$	Full			10	μA
DIGITAL INPUTS			1		1	· · · · · · · · · · · · · · · · · · ·		,
Input High Voltage	V _{INH}			Full	1.3			V
Input Low Voltage	V_{INL}		Full			0.5	V	
Input Leakage Current	I _{IN}	$V_{+} = 3.6V, V_{IN} = 0V \text{ or } 3.6V$	Full			1	μΑ	
DYNAMIC CHARACTERI	STICS							
Turn-On Time	ton	V_{NO} or V_{NC} = 1.5V, R_L = 300 Ω , C_L = 35pF, Test Circuit 2		+25°C		24		ns
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 1.5V, R_L = 3 C_L = 35pF, Test Circuit 2	+25°C		15		ns	
Break-Before-Make Time Delay	t_D	V_{NO1} or V_{NC1} = V_{NO2} or V_{NC1} = V_{NO2} or V_{NC1} = V_{NC2} or V_{NC2}		+25°C		10		ns
Skew	t _{SKEW}	$R_S = 39\Omega$, $C_L = 50pF$, Tes	t Circuit 4	+25°C		1		ns
Off Isolation	0	Signal = 0dBm,	f = 1MHz	+25°C		-70		dB
On isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 5	f = 10MHz	+25°C		-49		dB
Channel-to-Channel	.,	Signal = 0dBm,	f = 1MHz	+25°C		-72		dB
Crosstalk	X_{TALK}	$R_L = 50\Omega$, $C_L = 5pF$, Test Circuit 6	f = 10MHz	+25°C		-52		dB
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50 Ω , C_L = 5pF, Test Circuit 7		+25°C		400		MHz
Charge Injection	Q	$V_G = GND, R_G = 0\Omega,$ $C_L = 1.0nF, Test Circuit 8$		+25°C		10		pC
Switch ON Capacitance	C _{ON}			+25°C		24		pF
Switch OFF Capacitance	C _{OFF}			+25°C		9		pF
Total Harmonic Distortion	THD	$\begin{aligned} &V_{+}=3.3\text{V},V_{\text{NC/NO}}=2.0\text{V}_{\text{PP}},R_{\text{L}}=600\Omega\\ &f=20\text{Hz}\text{to}20\text{KHz},\text{Test Circuit}9\\ &V_{+}=3.3\text{V},V_{\text{NC/NO}}=1.0\text{V}_{\text{PP}},R_{\text{L}}=32\Omega\\ &f=20\text{Hz}\text{to}20\text{KHz},\text{Test Circuit}9 \end{aligned}$		+25°C		0.025		%
Total Harmonic Distortion	טחו			+25°C		0.35		70
POWER REQUIREMENTS	S		•		•	'		
Power Supply Current	I ₊	$V_{+} = 3.6V, V_{IN} = 0V \text{ or } V_{+}$	Full		0.5	6.0	μA	

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Switching Times

Test Circuit 3. Break-Before-Make Time Delay (t_D)

TEST CIRCUITS (Cont.)

Test Circuit 4. Output Signal Skew (T_{SKEW})

Test Circuit 5. Off Isolation (O_{ISO})

TEST CIRCUITS (Cont.)

Test Circuit 6. Channel-to-Channel Crosstalk (X_{TALK})

Test Circuit 7. -3dB Bandwidth (BW)

Test Circuit 8. Charge Injection (Q)

TEST CIRCUITS (Cont.)

Test Circuit 9. Total Harmonic Distortion (THD)

APPLICATION

In order to enhance the negative signal swing capability of SGM3717, the circuit in Figure 1 is recommended. R1 and R2 will prevent the device from entering into latch-up state when passing negative signal.

Figure 1. Typical Application Circuit

PACKAGE OUTLINE DIMENSIONS

UTQFN-1.8×1.4-10L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
UTQFN-1.8×1.4-10L	7"	9.0	1.75	2.10	0.70	4.00	4.00	2.00	8.00	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18