Mathematics of Cryptography-II Algebraic Structures

Tophan Kumar Jena Assistant Professor, Dept. of CSE Silicon Institute of Technology

Algebraic Structures

☐ Concept of algebraic structures :

Groups

Rings

Fields

 \Box To emphasize on finite fields of type GF(p) and

 $GF(2^n)$ that play significant role in modern

block cipher.

Groups

- A group (G) is a set of elements with a binary operation
 (•) that satisfies four properties (or axioms).
 - **□** Closure
 - **☐** Associativity
 - **☐** Existence of identity
 - **☐** Existence of inverse
- A commutative (abelian) group satisfies an extra property, i.e.
 - **☐** Commutativity

Groups (Contd...)

Although a group involves a single operation, the properties imposed on the operation allow the use of a pair of operations as long as they are inverses of each other.

Example 1

The set Z_n with the addition operator(+), $G = \langle Z_n, + \rangle$, is a commutative group.

Example 2

The set Z_n^* with the multiplication operator(x), $G = \langle Z_n^*, x \rangle$, is also an abelian group.

More on Groups

Finite Group: A group is finite if it has a finite no. of elements

Order of a Group: It is the no. of elements in a group.

Subgroup

A subset H of a group G is a subgroup of G if H itself is a group w.r.t the operation on G.

That means:

- 1. For a and b elements of H, $c = a \circ b$ is also an element of H.
- 2. Both G and H should have the same identity element.
- 3. The inverse of an element *a* in H is also the inverse of the element in G.

What are the subgroups of the group $G = \langle Z_8, + \rangle$?

The subgroups are:
$$H1=\{0, 4\}$$
 and $H2=\{0, 2, 4, 6\}$

Subgroup(Contd...)

Example

Is the group $H = \langle Z_{10}, + \rangle$ a subgroup of the group $G = \langle Z_{12}, + \rangle$?

The answer is no.

- Although H is a subset of G, the operations defined for these two groups are different.
- The operation in H is addition modulo 10; the operation in G is addition modulo 12.

Cyclic Group

- A group G is cyclic if every element of G can be generated by using an element g∈G and applying the group operator repeatedly on it.
- So, g is called the generator of the group.
- We can represent g^0 =e as an identity element.
- We also represent $g^{-n} = (g')^n$, where g' is the inverse element of g within the group.
- So, we represent all the elements as follows:

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where $g^n = e$

Cyclic Group(Contd...)

Example

How many generators are there for the cyclic group $G=\langle Z_6,+\rangle$?

The group $G = \langle Z_6, + \rangle$ is a cyclic group with two generators, g = 1 and g = 5.

Example:

Check whether group $G=\langle Z_{10}^*,x\rangle$ and $G=\langle Z_{12}^*,x\rangle$ are cyclic groups? If yes find out their generators.

 Z_n^* , the multiplicative group modulo n, is cyclic if and only if n is 1 or 2 or 4 or p^k or 2^*p^k for an odd prime number p and $k \ge 1$.

Ring

- A ring is a set *R* having two binary operations (+) and (.) satisfying the following three sets of axioms:
- **R** is an **abelian group** under **addition**. That means:
 - For a, b in R, a + b also in R (i.e., <u>closure</u> under +
 - •(a + b) + c = a + (b + c) for all a, b, c in R (i.e., + is associative)
 - a + b = b + a for all a, b in R (i.e., + is <u>commutative</u>)
 - There is an element 0 in R such that a + 0 = a for all a in R (i.e., 0 is the additive identity)
 - For each a in R there exists -a in R such that a + (-a) = 0 (i.e., -a is the <u>additive inverse</u> of a).

Ring (contd...)

- *R* has following properties under <u>multiplication</u>:
 - For a, b in R, a . b also in R (i.e., <u>closure</u> under .)
 - (a . b) . c = a . (b . c) for all a, b, c in R (i.e., associative under.)
 - distributive with respect to addition. That means:

```
a . (b + c) = (a . b) + (a . c) for all a, b, c in R (left distributivity)  (b + c) \cdot a = (b \cdot a) + (c \cdot a) for all a, b, c in R (right distributivity)
```

• A ring R is said to be commutative if it satisfies the *commutative* property. (a.b = b.a for all a, b in R)

Ring(Contd...) Example

- The set **Z** of integers with two operations, addition and multiplication, is a commutative ring.
- The set **R** of real numbers with two operations, addition and multiplication, is also a commutative ring
- The set of all **square matrices** of a fixed size, with real elements, using the matrix addition and multiplication

Integral domain

- It is a commutative ring with <u>two extra properties</u> as follows:
 - There is an element 1 in \mathbf{R} such that a.1 = 1. a = a for all a in \mathbf{R} (Multiplicative identity)
 - If a, b in R and a.b = 0, then either a = 0 or b = 0 (*No zero divisors*)

Field

- A field F denoted by $\{F, +, .\}$ is a set of elements with two binary operations (+) and (.) often called addition and multiplication respectively satisfy the following axioms:
- F is an integral domain; that is, F satisfies axioms:
 - •Closure w.r.t addition and multiplication
 - Associative w.r.t addition and multiplication
 - •Commutative w.r.t. addition and multiplication
 - Additive identity and Additive inverse exist
 - •Distributivity of multiplication over addition
 - multiplicative identity exists
 - •No zero divisor
- and also Multiplicative inverse exists

Examples: Field

- * The set of all real numbers under the operations of arithmetic addition and multiplication is a field.
- * The set of all rational numbers under the operations of arithmetic addition and multiplication is a field.
- * The set of all complex numbers under the operations of complex arithmetic addition and multiplication is a field.
- What about Z_n and Z_n *?
- What about Z_p and Z_p *?

Examples: NOT a Field

- * The set of all integers under the operations of arithmetic addition and multiplication is NOT a field.
- * The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication is NOT a field.

Finite Fields

Galois showed that for a field to be finite, the number of elements should be p^n , where p is a prime and n is a positive integer.

Note

A Galois field, $GF(p^n)$, is a finite field with p^n elements.

Field: GF(p)

- When n = 1, we have GF(p) field.
- This is also called a <u>Prime field</u>
- This field is consisting of the set $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$, having p elements.
- The binary operations + and . are defined over the set. Therefore, <u>addition</u>, <u>subtraction</u>, <u>multiplication</u>, and <u>division</u> can be performed in the set.
- Each element of the set other than 0 has a multiplicative inverse.

Field: GF(2)

Example

- A very common field in this category is GF(2)
- It can be denoted as $GF(2)=\{0, 1\}$ with two operations, addition(+) and multiplication(×)

+	0	1
0	0	1
1	1	0
A	1 1	

١d	dit	10	n
IU	ui	.11	ш

\times	0	1
0	0	0
1	0	1

Multiplication

Inverses

Field: GF(5)

Example

• We can define GF(5) on the set Z_5 (5 is a prime) with addition and multiplication operations as shown below.

GF(5) $\{0, 1, 2, 3, 4\} + \times$

GF(2ⁿ) FIELDS

- In cryptography, we often need to use four operations(addition, subtraction, multiplication, and division).
- In other words, we need to use fields.
- The finite field GF(2ⁿ) is also called binary extension field and it has a set of 2ⁿ elements.
- Each element in this set is an **n-bit words**.

Example

- Let us define a $GF(2^2)$ field.
- The set has four **2-bit words**: {00, 01, 10, 11}.
- We can redefine addition and multiplication for this field in such a way that all properties of these operations are satisfied.

Addition

	00			
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Identity: 00

So, multiplication under GF(2ⁿ) may need a division with a <u>predefined irreducible</u> <u>polynomial</u> to get the result as an n-bit word.

In $GF(2^2)$, it is 111

Polynomials

A polynomial of degree n-1 is an expression of the form

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x^1 + a_0x^0$$

where x^i is called the ith term and a_i is called coefficient of the *i*th term.

Continued

Example

Represent 8-bit word (10011001) by a polynomial.

8-bit word
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \downarrow & \downarrow \\ 1x^7 + 0x^6 + 0x^5 + 1x^4 + 1x^3 + 0x^2 + 0x^1 + 1x^0 \end{bmatrix}$$

First simplification

$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification

$$x^7 + x^4 + x^3 + 1$$

Continued

Example

Find the bits of a 8bit word whose polynomial is given by: $x^5 + x^2 + x$

To find the 8-bit word related to the polynomial $x^5 + x^2 + x$, we first supply the omitted terms.

Since n = 8, it means the polynomial is of degree 7. The expanded polynomial is

$$0x^7 + 0x^6 + 1x^5 + 0x^4 + 0x^3 + 1x^2 + 1x^1 + 0x^0$$

This is related to the 8-bit word **00100110**.

$GF(2^n)$ Fields

Polynomials representing n-bit words use two fields: GF(2) and $GF(2^n)$.

Modulus in $GF(2^n)$ Fields

- For the sets of polynomials in $GF(2^n)$, a group of polynomials of degree n is defined as the modulus.
- Such polynomials are referred to as irreducible polynomials.

List of irreducible polynomials

Degree	Irreducible Polynomials	
1	(x + 1), (x)	
2	$(x^2 + x + 1)$	
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$	
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$	
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$ $(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$	

Addition and Subtraction in GF(2ⁿ)

Addition and subtraction operations on polynomials are the same operation.

Example

Perform
$$(x^5 + x^2 + x) \oplus (x^3 + x^2 + 1)$$
 in GF(28).

The symbol \oplus denotes polynomial addition.

It is the Exclusive-OR operation.

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \to x^{5} + x^{3} + x + 1$$

Multiplication in GF(2ⁿ)

- 1. The coefficient multiplication is done in GF(2).
- 2. Multiplying x^i by x^j results in x^{i+j} .
- 3. The multiplication may create terms with degree more than n-1, which means the result needs to be reduced using a modulus (irreducible) polynomial.

Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$.

- 1. Do the normal multiplication of polynomials
- 2. Then reduce the resulting higher degree polynomial by dividing the modulus and taking the remainder.

$$\begin{aligned} \mathbf{P}_1 \otimes \mathbf{P}_2 &= x^5 (x^7 + x^4 + x^3 + x^2 + x) + x^2 (x^7 + x^4 + x^3 + x^2 + x) + x (x^7 + x^4 + x^3 + x^2 + x) \\ &= x^{12} + x^9 + x^8 + x^7 + x^6 + x^9 + x^6 + x^5 + x^4 + x^3 + x^8 + x^5 + x^4 + x^3 + x^2 \\ &= (x^{12} + x^7 + x^2) \, \mathrm{mod} \, (x^8 + x^4 + x^3 + x + 1) = x^5 + x^3 + x^2 + x + 1 \end{aligned}$$

Continued

Polynomial division with coefficients in GF(2)

$$x^{4} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{12} + x^{7} + x^{2}$$

$$x^{12} + x^{8} + x^{7} + x^{5} + x^{4}$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$
Remainder
$$x^{5} + x^{3} + x^{2} + x + 1$$

How many elements are there in $GF(2^3)$? Show the addition and multiplication tables for the irreducible polynomial $(x^3 + x^2 + 1)$

The $GF(2^3)$ field has 8 elements.

Note that there are two irreducible polynomials for

degree 3. The other one, $(x^3 + x + 1)$, yields a totally

different table for multiplication.

Addition table for $GF(2^3)$

\oplus	000 (0)	001 (1)	010 (x)	$011 \\ (x + 1)$	(x^2)	$x^2 + 1$	$(x^2 + \mathbf{x})$	$111 \\ (x^2 + x + 1)$
000	000	001 (1)	010 (x)	011 (x + 1)	100 (x ²)	$(x^2 + 1)$	$110 \\ (x^2 + x)$	$(x^2 + x + 1)$
001 (1)	001 (1)	000 (0)	011 (x + 1)	010 (x ²)	$(x^2 + 1)$	$ \begin{array}{c} 100 \\ (x^2 + x) \end{array} $	$(x^2 + x + 1)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $
010 (x)	010 (x)	011 (x + 1)	000 (0)	001 (1)	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	$ \begin{array}{c} 111 \\ (x^2 + x + 1) \end{array} $	$100 \\ (x^2 + x)$	$(x^2 + 1)$
011 $(x + 1)$	011 (x + 1)	010 (x)	001 (1)	000 (0)	$(x^2 + x + 1)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	$(x^2 + 1)$	100 (x ²)
(x^2)	100 (x ²)	$(x^2 + 1)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	$(x^2 + x + 1)$	000 (0)	001 (1)	010 (x)	011 (x + 1)
$(x^2 + 1)$	$(x^2 + 1)$	100 (x ²)	$111 \\ (x^2 + x + 1)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	001 (1)	000 (0)	011 (x + 1)	010 (x)
$110 \\ (x^2 + x)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	$(x^2 + x + 1)$	100 (x ²)	$(x^2 + 1)$	010 (x)	011 (x + 1)	000 (0)	001 (1)
$111 \\ (x^2 + x + 1)$	$(x^2 + x + 1)$	$ \begin{array}{c} 110 \\ (x^2 + x) \end{array} $	$(x^2 + 1)$	100 (x ²)	011 (x + 1)	010 (x)	001 (1)	000 (0)

Multiplication table for $GF(2^3)$

	000	001	010	011	100	101	110	111
\otimes	(0)	(1)	(x)	(x + 1)	(x^2)	$(x^2 + 1)$	$(x^2 + x)$	$(x^2 + x + 1)$
000	000	000	000	000	000	000	000	000
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
001	000	001	010	011	100	101	110	111
(1)	(0)	(1)	(x)	(x + 1)	(x^2)	$(x^2 + 1)$	$(x^2 + x)$	$(x^2 + x + 1)$
010	000	010	100	110	101	111	001	011
(x)	(0)	(x)	(x)	$(x^2 + x)$	$(x^2 + 1)$	$(x^2 + x + 1)$	(1)	(x + 1)
011	000	011	110	101	001	010	111	100
(x + 1)	(0)	(x + 1)	$(x^2 + x)$	(x^2+1)	(1)	(x)	$(x^2 + x + 1)$	(x)
100	000	100	101	001	111	011	010	110
(x^2)	(0)	(x^2)	$(x^2 + 1)$	(1)	$(x^2 + x + 1)$	(x + 1)	(x)	$(x^2 + x)$
101	000	101	111	010	011	110	100	001
$(x^2 + 1)$	(0)	$(x^2 + 1)$	$(x^2 + x + 1)$	(x)	(x + 1)	$(x^2 + x)$	(x^2)	(1)
110	000	110	001	111	010	100	011	101
$(x^2 + x)$	(0)	$(x^2 + x)$	(1)	$(x^2 + x + 1)$	(x)	(x^2)	(x + 1)	$(x^2 + 1)$
111	000	111	011	100	110	001	101	010
$(x^2 + x + 1)$	(0)	$(x^2 + x + 1)$	(x + 1)	(x^2)	$(x^2 + x)$	(1)	$(x^2 + 1)$	(x)

Finding inverse in $GF(2^n)$ Field

Example

In GF (2⁴), find the inverse of $(x^2 + 1)$ modulo $(x^4 + x + 1)$.

The answer is $(x^3 + x + 1)$ as shown in following Table after applying Extended Euclidean algorithm (EEA).

q	r_I	r_2	r	t_I	t_2	t
$(x^2 + 1)$	$(x^4 + x + 1)$	$(x^2 + 1)$	(x)	(0)	(1)	$(x^2 + 1)$
(x)	$(x^2 + 1)$	(x)	(1)	(1)	$(x^2 + 1)$	$(x^3 + x + 1)$
(x)	(x)	(1)	(0)	$(x^2 + 1)$	$(x^3 + x + 1)$	(0)
	(1)	(0)		$(x^3 + x + 1)$	(0)	

Using a Generator

Sometimes it is easier to define the elements of the $GF(2^n)$ field using a generator.

$$\{0, 1, g, g^2, ..., g^N\}$$
, where $N = 2^n - 2$

Example

Generate the elements of the field $GF(2^4)$ using the irreducible polynomial $f(x) = x^4 + x + 1$.

The elements 0, g^0 , g^1 , g^2 , and g^3 can be easily generated, because they are the 4-bit representations of 0, 1, x^1 , x^2 , and x^3 .

Elements g^4 through g^{14} , which represent x^4 though x^{14} need to be divided by the irreducible polynomial.

To avoid the polynomial division, we can take, f(g)=0Then we get, $g^4 + g + 1 = 0 \Rightarrow g^4 = g + 1$

Generating all the elements of GF(24)

```
(0000)
                                                                                    (0001)
                                                                                    (0010)
                                                                                    (0100)
                                                                                    (1000)
                                                                                    (0011)
g(g^4)
               g(g + 1)
                                                                                    (0110)
               g(g^2+g)
                                                                                    (1100)
               g(g^3+g)
                                                                                    (1011)
                                         g^2 + 1
               g\left(g^3+g+1\right)
                                                                                    (0101)
               g(g^2+1)
                                                                                    (1010)
               g(g^3+g)
                                         g^2 + g + 1
                                                                                    (0111)
                                        g^3 + g^2 + g
               g\left(g^2+g+1\right)
g(g^{11})
               g(g^3 + g^2 + g)
                                        g^3 + g^2 + g + 1
               g(g^3 + g^2 + g + 1)
                                        g^3 + g^2 + 1
               g(g^3 + g^2 + 1)
                                                                                    (1001)
```

Compute the following under the field $GF(2^4)$:

a.
$$g^3 + g^{12} + g^7$$

b.
$$g^3 - g^6$$

a.
$$g^3 + g^{12} + g^7 = g^3 + (g^3 + g^2 + g + 1) + (g^3 + g + 1) = g^3 + g^2 \rightarrow (1100)$$

b. $g^3 - g^6 = g^3 + g^6 = g^3 + (g^3 + g^2) = g^2 \rightarrow (0100)$

Compute the following under the field $GF(2^4)$:

a.
$$g^9 \times g^{11}$$

b.
$$g^3 / g^8$$

a.
$$g^9 \times g^{11} = g^{20} = g^{20 \mod 15} = g^5 = g^2 + g \rightarrow (0110)$$

b. $g^3 / g^8 = g^3 \times g^7 = g^{10} = g^2 + g + 1 \rightarrow (0111)$

Note: For multiplication of two elements in the field, use the equality $\mathbf{g^k} = \mathbf{g^{k \, mod(2^{n-1})}}$ for any integer k.