Indoor Localisation Based on Wi-Fi Fingerprinting with Fuzzy Sets

Kyeong Soo (Joseph) Kim

Department of Electrical and Electronic Engineering

Centre of Smart Grid and Information Convergence

Xi'an Jiaotong-Liverpool University (XJTLU)

Outline

Overview

• Wi-Fi Fingerprinting

• Plan

• Discussion

Overview

XJTLU Camus Information and Visitor Service System

Service Example: Indoor Localisation/Navigation

Service Example: Location-Aware Service

Wi-Fi Fingerprinting

Location Fingerprint

- A tuple of (\mathcal{L} , \mathcal{F})
 - *L*: Location information
 - Geographic coordinates or a label (e.g., "EB306")
 - \mathcal{F} : Vector/function of RSSs
 - e.g., $(\rho_1, \dots, \rho_N)^T$ where ρ_i is the RSS from i_{th} access point (AP_i) .

Location Estimation

- Deterministic
 - Nearest Neighbour Methods
 - Neural Network Methods
- Probabilistic
 - Bayesian Inference
 - Support Vector Machine (SVM)
 - Gaussian Process Latent Variable Model (GP-LVM)

Nearest Neighbour Methods*

- A simple approach based on the notion of distance in the signal space:
 - Given a fingerprint of $(\mathcal{L}, (\rho_1, \dots, \rho_N)^T)$ and an RSS measurement of $(s_1, \dots, s_N)^T$, the *Euclidean <u>distance</u>* measure between them is defined as

$$\sqrt{\sum_{i=1}^{N} (s_i - \rho_i)^2}$$

• Then, we find a fingerprint providing a minimum distance, \mathcal{L} of which is the estimated location.

Implementation Example - 1

Implementation Example - 2

Start the app and press the 'Find' button.

Results of Wi-Fi scanning.

Find the location and display the picture.

Major Challenges in Large-Scale Implementation

- Scalability
- Localisation accuracy
- Non-stationarity of location fingerprints
 - Incremental/online learning algorithms with pruning/forgetting mechanisms*
- Passive vs. active location estimation
- Integration with other services
- Security/privacy issues

Plan

Work Packages

Theoretical and simulation study

- Build a membership function from RSS measurements.
- Select or newly define a fuzzy similarity measure.
- Apply the proposed scheme to RSS measurement databases available online and analyse its localisation performance.

Prototyping and demonstration

- Build a sample RSS measurement database at XJTLU.
 - e.g., for the 3rd floor of EE building.
- Implement the proposed algorithm and demonstrate indoor localization with the sample database.
 - Offline demonstration with a PC
 - (Optional) Online demonstration with a smartphone

Task 1: Building Fingerprint Database - 1

- How to measure fingerprints?
 - Devices
 - Smartphones
 - Notebooks
 - Arduino & Raspberry Pi
 - ...
 - Measurement techniques
 - Time (e.g. 9 AM, 3 PM) and Frequency
 - Positions and directions
 - ...

Task 1: Building Fingerprint Database - 2

- Where and how to store fingerprints?
 - Format of fingerprint
 - Timestamp
 - (Anonymised) User/device ID
 - RSSI levels
 - ...
 - Structure of DB
 - DB and server implementation
 - Our own server
 - Physical box
 - Virtual private server (VPS): Linode, DigitalOcean, ...
 - Database services from Third Parties
 - <u>ThingSpeak</u> by MathWorks (MATLAB company)

001-520	RSSI levels
521-523	Real world coordinates of the sample points
524	BuildingID
525	SpaceID
526	Relative position with respect to SpaceID
527	UserID
528	PhoneID
529	Timestamp

<u>UJIIndoorLoc D ATABASE</u>

Task 2: Location Estimation Techniques - 1

- Fuzzy similarity measure-based techniques
 - How to build a membership function of a fuzzy set from RSS measurements for a given location?
 - What similarity measure to use in finding the closest match among those fuzzy sets for optimal localisation performance?

Task 2: Location Estimation Techniques - 2

- Artificial neural network-based techniques
 - ANN (especially deep learning) can significantly lower the burden of localization system design.
 - But what ANN architecture and learning algorithm to use?

Task 3: Evaluation and Demonstration

Offline demonstration with a PC.

• Online demonstration with a smartphone inside a building.