Συναρτήσεις Ρυθμός Μεταβολής

Κωνσταντίνος Λόλας

Τα μαθηματικά είναι ωραία γιατί:

- ακολουθούν κανόνες

Συναρτήσεις 2/21

Τα μαθηματικά είναι ωραία γιατί:

- ① ακολουθούν κανόνες
- είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- ④ δεν είναι για όλους, αλλά κυρίως
- 💿 ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Τα μαθηματικά είναι ωραία γιατί:

- Φ ακολουθούν κανόνες
- είναι σαφώς ορισμένα
- δεν δίνουν διαφορετικές ερμηνίες
- Φ δεν είναι για όλους, αλλά κυρίως
- ⑤ ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Τα μαθηματικά είναι ωραία γιατί:

- ① ακολουθούν κανόνες
- είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- 💿 ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Τα μαθηματικά είναι ωραία γιατί:

- Φ ακολουθούν κανόνες
- ② είναι σαφώς ορισμένα
- ③ δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- 💿 ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Τα μαθηματικά είναι ωραία γιατί:

- ακολουθούν κανόνες
- είναι σαφώς ορισμένα
- δεν δίνουν διαφορετικές ερμηνίες
- δεν είναι για όλους, αλλά κυρίως
- 💿 ενώ θα ήταν βαρετά από μόνα τους, εφαρμόζουν ΠΛΗΡΩΣ στη φυσική

Ρυθμός μεταβολής

Ρυθμός μεταβολής του μεγέθους A

Είναι το πηλίκο

$$\frac{\Delta A}{\Delta t}$$

Λόλας Συναρτήσεις 3/21

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

Τι γίνεται με τη στιγμιαία ταχύτητα, επιτάχυνση, δύναμη κτλ?

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

Τι γίνεται με τη στιγμιαία ταχύτητα, επιτάχυνση, δύναμη κτλ?

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

Τι γίνεται με τη στιγμιαία ταχύτητα, επιτάχυνση, δύναμη κτλ?

Λόλας Συναρτήσεις 4/21

Καλός ο ορισμός αλλά μιλάει για μεταβολή ή πιο σωστά για μέση μεταβολή, π.χ.

- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{\Delta v}{\Delta t}$
- 3 δύναμη $F = \frac{\Delta P}{\Delta t}$

Τι γίνεται με τη στιγμιαία ταχύτητα, επιτάχυνση, δύναμη κτλ?

1 ταχύτητα
$$v=\dfrac{dx}{dt}=\lim_{\Delta t \rightarrow 0}\dfrac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$$

- $oldsymbol{2}$ επιτάχυνση $lpha=rac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- 1 ταχύτητα $v=\dfrac{dx}{dt}=\lim_{\Delta t \rightarrow 0}\dfrac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- ② επιτάχυνση $\alpha = \frac{dv}{dt}$
- $3 δύναμη <math>F = \frac{dP}{dt}$

- 1 Taxúthta $v=\frac{dx}{dt}=\lim_{\Delta t \rightarrow 0}\frac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{dv}{dt}$

- $ext{ }$ ταχύτητα v(t)=x'(t)=1
- - δύναμη F=P'(t)

- 1 Taxúthta $v=\frac{dx}{dt}=\lim_{\Delta t \rightarrow 0}\frac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{dv}{dt}$
- $3 δύναμη <math>F = \frac{dP}{dt}$

- ② επιτάχυνση $a(t)=v'(t)=rac{dv}{dt}$
- 3 δύναμη F = P'(t)

- 1 Taxúthta $v=\frac{dx}{dt}=\lim_{\Delta t \rightarrow 0}\frac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{dv}{dt}$
- $3 δύναμη <math>F = \frac{dP}{dt}$

- 1 Tacúthta $v(t)=x'(t)=\dfrac{dx}{dt}$
- 2 επιτάχυνση $a(t)=v'(t)=\dfrac{dv}{dt}$
- 3 δύναμη F=P'(t)

- $\mathbf{1}$ ταχύτητα $v=rac{dx}{dt}=\lim_{\Delta t o 0}rac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- $\mathbf{1}$ ταχύτητα $v=rac{dx}{dt}=\lim_{\Delta t o 0}rac{x(t_0+\Delta t)-x(t_0)}{\Delta t}$
- $\mathbf{2}$ επιτάχυνση $\alpha = \frac{dv}{dt}$
- 3 δύναμη $F = \frac{dP}{dt}$

- 3 δύναμη F = P'(t)

Επιστροφή στα μαθηματικά!

Αν και δεν μου αρέσει, στα μαθηματικά ορίζεται

Ρυθμός μεταβολής του μεγέθους A ως προς την μεταβλητή B Είναι το πηλίκο

$$A'(B) = \frac{dA}{dB}$$

ή αλλιώς η παράγωγος του Α ως προς το Β

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολή
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από THN μεταβλητή

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από THN μεταβλητή

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από THN μεταβλητή

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - $\bullet \ x' = x'$
 - $(x^2)' = 2xx$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x$

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x$

- Αρα κάθε συνάρτηση αφού έχει παράγωγο έχει και ρυθμό μεταβολής
- Δεν υπάρχει άλλη μεταβλητή πέρα από αυτή που παραγωγίζουμε
- Αρα όλα είναι συναρτήσεις εκτός από ΤΗΝ μεταβλητή
 - x' = x'
 - $(x^2)' = 2xx'$
 - $(xy + y^3 \ln x)' = x'y + xy' + 3y^2y' \ln x + y^3 \frac{1}{x}x'$

Κύριε μας μπερδεύει ο συμβολισμός

Πολλοί, για να είναι σίγουροι κρατάνε το $x'(t)=\dfrac{dx(t)}{dt}$ και γράφουνε πάντα τις συναρτήσεις. π.χ.

$$(x^{2}(t))' = \frac{dx^{2}(t)}{dt} = \frac{dx^{2}(t)}{dx(t)} \frac{dx(t)}{dt} = 2x(t)x'(t)$$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

Δίνεται η συνάρτηση $f(x) = x^3 - 3x^2 + 1$

- Να βρείτε το ρυθμό μεταβολής της f ως προς το x στο σημείο με x=1

Λόλας Συναρτήσεις 9/21

Δίνεται η συνάρτηση $f(x) = x^3 - 3x^2 + 1$

- Να βρείτε το ρυθμό μεταβολής της f ως προς το x στο σημείο με x=1
- Να βρείτε τις τιμές του x, που ο ρυθμός μεταβολής της f ως προς το xείναι αρνητικός

Λόλας Συναρτήσεις 9/21

Το εμβαδό ${
m E}$ ενός τετραγώνου αυξάνει. Η πλευρά του lpha σε cm, που αυξάνει, δίνεται από τον τύπο $\alpha = 3t + 2$, όπου t ο χρόνος σε sec.

- Να αποδείξετε ότι $E = E(t) = (3t + 2)^2$

Λόλας Συναρτήσεις 10/21

Το εμβαδό ${f E}$ ενός τετραγώνου αυξάνει. Η πλευρά του ${f lpha}$ σε cm, που αυξάνει, δίνεται από τον τύπο $\alpha = 3t + 2$, όπου t ο χρόνος σε sec.

- Nα αποδείξετε ότι $E = E(t) = (3t + 2)^2$
- Να βρείτε το ρυθμό μεταβολής του εμβαδού Ε του τετραγώνου, όταν t=2 sec.

Λόλας Συναρτήσεις 10/21

Δύο κινητά A και B ξεκινούν συγχρόνως από την αρχή των αξόνων O. Το Aκινείται στον ημιάξονα Ox με ταχύτητα 6cm/sec και το B στον ημιάξονα Oyμε ταχύτητα 8cm/sec.

- Να βρείτε τις συναρτήσεις θέσεως των Α και Β

Λόλας Συναρτήσεις 11/21

Δύο κινητά A και B ξεκινούν συγχρόνως από την αρχή των αξόνων O. Το Aκινείται στον ημιάξονα Ox με ταχύτητα 6cm/sec και το B στον ημιάξονα Oyμε ταχύτητα 8cm/sec.

- Να βρείτε τις συναρτήσεις θέσεως των Α και Β
- Να βρείτε τη χρονική στιγμή που η απόσταση των A και B είναι 50cm

Λόλας Συναρτήσεις 11/21

Δύο κινητά A και B ξεκινούν συγχρόνως από την αρχή των αξόνων O. Το Aκινείται στον ημιάξονα Ox με ταχύτητα 6cm/sec και το B στον ημιάξονα Oyμε ταχύτητα 8cm/sec.

- Να βρείτε τις συναρτήσεις θέσεως των Α και Β
- Να βρείτε τη χρονική στιγμή που η απόσταση των A και B είναι 50cm
- Να αποδείξετε ότι η απόσταση d = (AB) των δύο κινητών αυξάνεται με σταθερό ρυθμό τον οποίο και να προσδιορίσετε.

Λόλας Συναρτήσεις 11/21

Ενα κινητό ${\bf M}$ κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το ${\bf O}$ και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- ① Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή t, $t \geq 0$ δίνεται από τον τύπο x(t) = 4t.
- ② Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4,2)
- (3) Να βρείτε το ρυθμό μεταβολής της τεταγμένης του M καθώς περνάει από το σημείο B(16,4)

Λόλας Συναρτήσεις 12/21

Ενα κινητό \mathbf{M} κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το Ο και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή t, t > 0 δίνεται από τον τύπο x(t) = 4t.
- Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4, 2)

Λόλας Συναρτήσεις 12/21

Ενα κινητό \mathbf{M} κινείται κατά μήκος της καμπύλης $y=\sqrt{x}$ ξεκινώντας από το Ο και η τετμημένη του x αυξάνεται με ρυθμό 4cm/sec

- Να αποδείξετε ότι η τετμημένη του κινητού για κάθε χρονική στιγμή t, t > 0 δίνεται από τον τύπο x(t) = 4t.
- Να βρείτε το χρόνο που χρειάζεται το κινητό να φθάσει στο σημείο (4, 2)
- Να βρείτε το ρυθμό μεταβολής της τεταγμένης του Μ καθώς περνάει από το σημείο B(16,4)

Λόλας Συναρτήσεις 12/21

Οι διαστάσεις x και y ενός ορθογωνίου μεταβάλλονται. Το x αυξάνει με ρυθμό 2cm/sec και το y ελαττώνεται με ρυθμό 3cm/sec. Να βρείτε το ρυθμό μεταβολής:

- Της περιμέτρου

Λόλας Συναρτήσεις 13/21

Οι διαστάσεις x και y ενός ορθογωνίου μεταβάλλονται. Το x αυξάνει με ρυθμό 2cm/sec και το y ελαττώνεται με ρυθμό 3cm/sec. Να βρείτε το ρυθμό μεταβολής:

- Της περιμέτρου
- Του εμβαδού E του ορθογωνίου τη χρονική στιγμή που είναι x=10cmκαι y = 12cm

Λόλας Συναρτήσεις 13/21

Εστω \to το εμβαδό του τριγώνου OAM που περικλείεται από την ευθεία $\varepsilon:y=x$, το άξονα x'x και την ευθεία $x=\lambda$, $\lambda>0$.

- $oldsymbol{1}$ Να αποδείξετε ότι $\mathrm{E}=rac{1}{2}\lambda^2$
- ② Αν το λ αυξάνεται με ρυθμό 3cm/s, να βρείτε το ρυθμό μεταβολής του εμβαδού ${\bf E}$, όταν $\lambda=2cm$

Λόλας Συναρτήσεις 14/21

Εστω E το εμβαδό του τριγώνου OAM που περικλείεται από την ευθεία $\varepsilon: y = x$, το άξονα x'x και την ευθεία $x = \lambda$, $\lambda > 0$.

- Να αποδείξετε ότι $\mathrm{E}=rac{1}{2}\lambda^2$
- Αν το λ αυξάνεται με ρυθμό 3cm/s, να βρείτε το ρυθμό μεταβολής του εμβαδού E, όταν $\lambda = 2cm$

Λόλας Συναρτήσεις 14/21

Ενα σημείο ${\bf M}$ κινείται κατά μήκος της καμπύλης $y=x^2$, $x\geq 0$ ξεκινώντας από την αρχή των αξόνων ${\bf O}.$

- Φ Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου \mathbf{M} είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο $\mathbf{B}(4,16)$
- ② Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του $\mathbf M$ είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t)>0, για κάθε $t\geq 0$
- ③ Καθώς το ${\bf M}$ περνάει από το ${\bf A}(2,4)$, η τετμημένη του ελαττώνεται με ρυθμό 3cm/s. Να βρείτε το ρυθμό μεταβολής της τεταγμένης y του ${\bf M}$ τη χρονική στιγμή που περνάει από το ${\bf A}$

Λόλας Συναρτήσεις 15/21

Ενα σημείο \mathbf{M} κινείται κατά μήκος της καμπύλης $y=x^2$, $x\geq 0$ ξεκινώντας από την αρχή των αξόνων Ο.

- **1** Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου M είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο B(4, 16)
- Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του \mathbf{M} είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t) > 0, για κάθε t > 0

Λόλας Συναρτήσεις 15/21

Ενα σημείο ${\bf M}$ κινείται κατά μήκος της καμπύλης $y=x^2$, $x\geq 0$ ξεκινώντας

από την αρχή των αξόνων O. $\ \ \,$ Αν ο ρυθμός μεταβολής x'(t) της τετμημένης του σημείου M είναι 2cm/s, να βρείτε το χρόνο που θα χρειαστεί για να φτάσει στο σημείο B(4,16)

- ② Να βρείτε σε ποιο σημείο της καμπύλης ο ρυθμός μεταβολής της τεταγμένης y του $\mathbf M$ είναι διπλάσιος του ρυθμού μεταβολής της τετμημένης του x αν υποτεθεί ότι x'(t)>0, για κάθε $t\geq 0$
- ③ Καθώς το ${\bf M}$ περνάει από το ${\bf A}(2,4)$, η τετμημένη του ελαττώνεται με ρυθμό 3cm/s. Να βρείτε το ρυθμό μεταβολής της τεταγμένης y του ${\bf M}$ τη χρονική στιγμή που περνάει από το ${\bf A}$

Λόλας Συναρτήσεις 15/21

Ενα κινητό κινείται σε ελλειπτική τροχιά με εξίσωση $4x^2+y^2=4$. Καθώς περνάει από το σημείο $\mathrm{A}(\frac{1}{2},\sqrt{3})$ η τετμημένη του x ελαττώνεται με ρυθμό 2 μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της τεταγμένης του y τη χρονική στιγμή που το κινητό περνάει από το A .

Λόλας Συναρτήσεις 16/21

Ενα κινητό κινείται στη καμπύλη $C:y=e^x$. Καθώς το $\mathbf M$ περνάει από το σημείο A(0,1), η τετμημένη του x αυξάνει με ρυθμό 3 μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της απόστασης $l=(\mathrm{OM})$ τη χρονική στιγμή που το κινητό περνάει από το Α.

> Λόλας Συναρτήσεις 17/21

Ενα κινητο ${\bf M}$ κινείται στην καμπύλη $C:y=x^3$. Καθώς το ${\bf M}$ περνάει από το σημείο ${\bf A}(1,1)$, η τετμημένη του x ελαττώνεται με ρυθμό 2 μονάδες το δευτερόλεπτο. Να βρείτε το ρυθμό μεταβολής της γωνίας $\theta={\bf M}{\bf \hat O}x$ τη χρονική στιγμή που το κινητό περνάει από το ${\bf A}$.

Λόλας Συναρτήσεις 18/21

Μία σκάλα μήκους 5m είναι τοποθετημένη σ' έναν τοίχο. Το κάτω μέρος της σκάλας B γλιστράει στο δάπεδο με σταθερό ρυθμό 0,3m/s. Τη χρονική στιγμή t_0 που η κορυφή της σκάλας απέχει από το δάπεδο 3m, να βρείτε τη ταχύτητα με την οποία πέφτει η κορυφή Α της σκάλας.

> Λόλας Συναρτήσεις 19/21

Μία γυναίκα ύψους 2m απομακρύνεται από τη βάση ενός φανοστάτη ύψους 10cm με ταχύτητα 0,5m/s. Με ποια ταχύτητα αυξάνεται ο ίσκιος της?

> Λόλας Συναρτήσεις 20/21

Δίνεται η συνάρτηση $f(x)=x^2$, $x\leq 0$.

- Nα βρείτε την τετμημένη του σημείο τομής ${\bf M}$ της εφαπτομένης της C_f στο σημείο της ${\bf A}(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Εστω ότι το σημείο A κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου M του προηγούμενου ερωτήματος τη χρονική στιγμή που το A έχει τετμημένη -2

Λόλας Συναρτήσεις 21/21

Δίνεται η συνάρτηση $f(x) = x^2$, $x \le 0$.

- ① Να βρείτε την τετμημένη του σημείο τομής ${\bf M}$ της εφαπτομένης της C_f στο σημείο της ${\bf A}(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Εστω ότι το σημείο ${\bf A}$ κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου ${\bf M}$ του προηγούμενου ερωτήματος τη χρονική στιγμή που το ${\bf A}$ έχει τετμημένη -2
- ③ Να βρείτε το ρυθμό μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη της C_f στο $\mathbf A$ με τον x'x την ίδια χρονική στιγμή με το 2. ερώτημα

Λόλας Συναρτήσεις 21/21

Δίνεται η συνάρτηση $f(x)=x^2$, $x\leq 0$.

- Nα βρείτε την τετμημένη του σημείο τομής ${\bf M}$ της εφαπτομένης της C_f στο σημείο της ${\bf A}(a,f(a))$, $a\neq 0$ με τον άξονα x'x.
- ② Εστω ότι το σημείο ${\bf A}$ κινείται κατά μήκος της C_f και ο ρυθμός μεταβολής του a(t) δίνεται από τον τύπο a'(t)=2a(t). Να βρείτε το ρυθμό μεταβολής της τετμημένης του σημείου ${\bf M}$ του προηγούμενου ερωτήματος τη χρονική στιγμή που το ${\bf A}$ έχει τετμημένη -2
- ③ Να βρείτε το ρυθμό μεταβολής της γωνίας θ που σχηματίζει η εφαπτομένη της C_f στο $\mathbf A$ με τον x'x την ίδια χρονική στιγμή με το 2. ερώτημα

Λόλας Συναρτήσεις 21/21