ZILFIMIAN

KNN2/KNN (Q9L10)

79% (15/19)

- ✓ 1. KNN is
 - A data-driven method
 - (B) model-driven method
 - (c) I do not know
- ✓ 2. The dependent variable of the classification is
 - A categorical
 - (B) numeric
 - C I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - B) No
 - (c) I do not know
- 4. In the case of KNN classification we use
 - A average of outcomes
 - B majority voting scheme
 - C I do not know
- ✓ 5. Which of these errors will increase constantly by increasing k?
 - A train error
 - B test error
 - (c) both
 - D I do not know
- 6. This function can be used to perform KNN classificationin R
 - A knn()
 - B k_nn()
 - (c) knnreg()
 - D knearneib()
 - (E) I do not know

×	10. In the case of small k we have		
	(A) overfitting		
	B underfitting		
	c it depends on the situation		
	D I do not know		
/	11. Why do we need scaling in KNN?		
	(A) to avoid overfitting		
	B to avoid underfitting		
	to have "equal" weights for variables		
	D I do not know		
/	12. Let k = n, (n- number of observations), K-NN is same as		
	(A) random guessing		
	B everything will be classified as the most probable class (in total)		
	c everything will be classified as the least probable class (in total)		
	D I do not know		
		D 0 6 6	
	Hasmik	Page 2 of 4	

7. With the increase of k, the decision boundary will be

8. KNN algorithm is sensitive to outliers

A is a supervised learning algorithm.

B is an unsupervised learning algorithm.

simplified

more complex

I do not know

I do not know

I do not know

unchanged

True False

9. KNN

/	13. This function can be used to perform K-NN regression in R
	A knn.reg
	B knnforreg
	C regknn
	(D) knnforregression
	E I do not know
X	14. Do you need to worry about scaling with one explanatory variable?
	(A) No
	B Yes
	C I do not know
	15. n - the number of observation, m - the number of explanatory variables
	When n=k, m=1, the decision boundary for regression is
	A a line
	B a stepwise constant function
	C a stepwise quadratic function
	D I do not know
X	16. Which of these algorithms can be used to fill the missing values
	(A) KNN for regression
	B KNN for classification
	© both
	D I do not know
	47 Which are in bottom WNN varyageing as Lineau varyageing
	17. Which one is better: KNN regression or Linear regression?
	A KNN outperform LR if the parametric form that has been selected is close to the true form of f
	B LR outperform KNN if the parametric form that has been selected is close to the true form of f
	C KNN will always outperform the LR
	D I do not know

Hasmik Page 3 of 4

/	18.	Which one is the Disadvantage of KNN?
	A	required assumptions
	B	cannot be applied for regression
	C	difficult to perform
	D	the problem of high dimensional data
	E	I do not know
×	19.	The best k for train set equals to
	A	1
	В	2
	(c)	0
		I do not know

20. What is the Parzen window

Hasmik Page 4 of 4