Complexidade II

Estruturas de Dados

- Suponha duas soluções para um mesmo problema
 - Qual delas é a melhor?
- Suponha dois algoritmos que realizem a mesma tarefa
 - Qual deles é o melhor?
 - O mais rápido e que consome menos memória?
 - Em computação existem parâmetros que nos permitem comparar e medir quanto uma solução pode ser melhor do que outra

Limitações

 Medir o tempo de execução de um algoritmo não é uma tarefa imediata já que vários fatores influenciam na medição

Solução

- Considerar uma arquitetura computacional padrão
 - um único processador e acesso randômico de memória (RAM)
- Estimar o tempo de execução de um algoritmo
 - contar o número de vezes que cada linha do algoritmo é executada e o tempo de processamento de cada linha

- Por exemplo
 - Suponha que uma máquina realiza somas, comparações e atribuições em c₁, c₂ e c₃ milissegundos, respectivamente
 - Calcule quantos milissegundos o código para comparar duas sequências de n caracteres (A e B) leva para ser executado

```
    int i = 0;
    while ((i < n) && (A[i] == B[i]))</li>
    i++;
```

• Resposta: $n^*(c_1 + 2^*c_2) + 2^*c_2 + c_3$ milissegundos já que a linha 1 consome c_3 milissegundos e as linhas 2 e 3 consomem $2(n+1)c_2$ e nc_1 milissegundos, respectivamente

- Algumas considerações a respeito do exemplo
 - Se esse algoritmo fosse executado em outra máquina c₁, c₂ e c₃ seriam diferentes, mas o cálculo do tempo de processamento seria o mesmo
 - O tempo de processamento do algoritmo aumenta de acordo com n
 - No pior caso (quando as duas sequências são idênticas) o loop é executado n vezes, mas em outras situações o tempo será menor

- Conclusão
 - Identificar a complexidade computacional de um algoritmo (o consumo de tempo e espaço requerido para sua execução) não é uma tarefa trivial pois depende de:
 - parâmetros de entrada
 - · velocidade de processamento
 - muitas possibilidades a considerar que vão desde o pior até o melhor caso para o processamento

Notação Assintótica

- Com o objetivo de equacionar as dificuldades apontadas acima utiliza-se o que é hoje conhecida como notação assintótica
- Além de desvincular a análise do algoritmo das propriedades da máquina, permite tratar as diferentes possibilidades de desempenho decorrentes do padrão de entrada apresentado
- Viabiliza uma análise desde o pior até o melhor desempenho de um algoritmo

- Utilizada sempre que pretendemos estimar o pior desempenho de um algoritmo
 - Definição
 - Para uma dada função positiva f(n), denotamos como O(f(n)) o seguinte conjunto de funções
 - O(f(n)) = {T(n) | existem constantes positivas $c \in a$ tais que $0 \le T(n) \le c^*$ f(n), para todo $n \ge a$ }
- A notação O dá um limite superior assintótico para uma função

• A figura a seguir mostra a ideia intuitiva que está por trás da definição acima, ou seja, para valores de *n* maiores ou iguais a *a*, o valor de T(*n*) é sempre menor ou igual a uma constante multiplicada por f(*n*)

• Por exemplo, se T(n) é o tempo computacional gasto por um algoritmo para realizar uma determinada tarefa, em que n é o tamanho da entrada, dizer que $T(n) \in O(f(n))$ significa que, não importa qual seja o conjunto de dados de tamanho n escolhido, o tempo consumido pelo algoritmo será sempre menor do que uma constante vezes f(n)

 Considere o código para cálculo da soma dos n primeiros números inteiros não negativos

```
1. x = 0;
2. i = 1;
3. while (i <= n)
4. x += i++;</pre>
```

- Sejam c₁ ,c₂ e c₃ os tempos computacionais na execução das linhas 1, 3 e 4 (a linha 2 consome o mesmo tempo que a linha 1)
- As linhas 3 e 4 serão executadas n+1 e n vezes, respectivamente

Notação O - Exemplo

- O tempo total gasto pelo código será
 - $T(n) = 2c_1 + (n+1)c_2 + nc_3 = n(c_2 + c_3) + 2c_1 + c_2$
- Se tomarmos
 - $c = max(c_2 + c_3, 2c_1 + c_2)$, temos que
 - ∘ $T(n) \le n(c+c/n) \le n(2c), n \ge 1$
- Portanto
 - $T(n) \in O(n)$ ou seja, para qualquer n, T(n) é sempre menor que uma constante (no exemplo acima, 2c) vezes n

Notação O - Exemplo

- Considerações
 - Note que as constantes c₁ ,c₂ e c₃ definidas pela velocidade de processamento da máquina ficam implicitamente embutidas na notação
 - O que a notação está nos dizendo é que o tempo de processamento do algoritmo irá aumentar linearmente com o valor de n, independentemente da máquina

Notação O - Cuidado

- Embora as constantes implicitamente representadas na notação assintótica permitam desprezar as particularidades da máquina, elas podem influenciar no desempenho de um algoritmo
- Suponha que dois algoritmos que desempenham a mesma tarefa para um conjunto de dados de tamanho n sejam
 - Algoritmo $1:T_1(n) \in O(n)$
 - Algoritmo $2:T_2(n) \in O(n^2)$
- Qual deles é o melhor?

Notação O - Cuidado

- Para valores grandes de n
 - O Algoritmo 1 é mais eficiente
- Mas se os valores de n são pequenos esse fato pode não ser verdadeiro. Por exemplo,
 - Se $T_1(n) = 10^3 n e T_2(n) = n^2$
 - O Algoritmo 2 é mais rápido que o Algoritmo 1 para todo $n < 10^3$

Tempos computacionais mais comuns

$$O(1) < O(\log(n)) < O(n) < O(\log(n)) < O(n^2) < O(n^3) < O(2^n)$$

- O(1): o número de operações executados é independente da entrada
- \circ O(n^m): algoritmos polinomiais
- $O(m^n)$ (como é o caso de $O(2^n)$): algoritmos exponenciais

Como as ordens de magnitude das funções apresentadas anteriormente crescem com o valor de *n*

Notação Ω

- Da mesma forma que a notação O fornece um limite superior assintótico para uma função, a notação Ω (ômega) fornece um limite inferior assintótico
 - Definição
 - Para uma dada função positiva f(n), denotamos por $\Omega(f(n))$ o conjunto de funções definido como:
 - $\Omega(f(n)) = \{ T(n) \mid \text{ existem constantes positivas } c \in a \text{ tais } que 0 \le c*f(n) \le T(n), \text{ para todo } n \ge a \}$
- Note que a notação Ω é utilizada para estudo do melhor caso

Notação Ω

• A figura a seguir mostra ideia intuitiva da definição acima, ou seja, para valores de *n* maiores ou iguais a *a*, o valor de T(*n*) é sempre maior ou igual a uma constante multiplicada por f(*n*)

Notação Ω - Exemplo

 Considere o código que procura um número inteiro a em um array A de tamanho n

```
    i = 0;
    while (i < n)</li>
    if (A[i] != a)
    i++;
    else return(i);
    return(-1);
```

Notação Ω - Exemplo

- Sejam $c_1 \dots c_6$ os tempos computacionais para executar as linhas de 1 a 6 do algoritmo apresentado anteriormente
 - Melhor caso: o elemento procurado está na primeira posição do array. Nesse caso as linhas 1, 2, 3 e 5 serão executadas apenas uma vez e
 - $T(n) = c_1 + c_2 + c_3 + c_5$, ou seja, $T(n) = \Omega(1)$
 - Pior caso: o elemento procurado não está no array. Nesse caso as linhas 3 e 4 serão executadas n vezes e a linha 2, n+1 vezes, obtendo T(n) = O(n)

Notação Θ

- Em algumas situações um dado algoritmo pode possuir o mesmo desempenho tanto para o melhor quanto para o pior caso. Esse tipo de comportamento é tratado por uma notação especial, Θ (theta)
- Definição
 - Para uma dada função positiva f(n), denotamos por $\Theta(f(n))$ o conjunto de funções definido como:
 - ∘ $\Theta(f(n)) = \{T(n) \mid \text{ existem constantes positivas } c_1, c_2 \text{ e}$ tais que $0 \le c_1 f(n) \le T(n) \le c_2 f(n)$, para todo $n \ge a\}$

Notação Θ

• A figura a seguir mostra ideia intuitiva da definição acima. Se o tempo computacional de um algoritmo é $T(n) = \Theta(f(n))$ então, o melhor e o pior caso requerem o mesmo tempo computacional, diferindo apenas por constantes

Notação Θ - Cuidado

- Muitos estudantes confundem a notação Θ com a complexidade do caso médio de um algoritmo.
- Porém, a notação Θ não especifica o comportamento médio de um algoritmo. Na verdade, não existe uma notação específica para isso.

Análise do Caso Médio

 A análise de desempenho médio de um algoritmo é uma tarefa crucial em muitas situações, mas ...

O que é uma entrada média para um algoritmo?

Análise do Caso Médio

- Metodologia
 - 1. Encontrar uma distribuição de probabilidades para as entradas do problema,
 - 2. Calcular as complexidades para cada uma dessas entradas e
 - 3. Estimar o comportamento médio como a soma dos produtos de cada complexidade pela probabilidade de sua ocorrência
- Difícil de ser conduzida e até inviável em alguns casos
- Por isso, algumas análises de caso médio simplificam as hipóteses com relação aos dados de entrada visando facilitar a análise

- f(n) = O(1)
 - Algoritmos de complexidade O(1) são ditos de complexidade constante.
 - Uso do algoritmo independe de *n*.
 - As instruções do algoritmo são executadas em um número fixo de vezes.

- $f(n) = O(\log n)$
 - Um algoritmo de complexidade O(log n) é dito ter complexidade logarítmica.
 - Típico em algoritmos que transformam um problema em outros menores.
 - Pode-se considerar o tempo de execução como menor que uma constante grande.
 - Quando n é mil, $\log_2 n \approx 10$, quando n é 1 milhão, $\log_2 n \approx 20$.
 - Para dobrar o valor de $\log n$ temos de considerar o quadrado de n.
 - A base do logaritmo muda pouco estes valores: quando $n \in 1$ milhão, o $\log_2 n \in 20$ e o $\log_{10} n \in 6$.

- f(n) = O(n)
 - Um algoritmo de complexidade O(n) é dito ter complexidade linear.
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
 - É a melhor situação possível para um algoritmo que tem de processar/produzir n elementos de entrada/saída.
 - Cada vez que n dobra de tamanho, o tempo de execução dobra.

• $f(n) = O(n \log n)$

- Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e junta as soluções depois.
- Quando $n \in 1$ milhão, $n\log_2 n$ é cerca de 20 milhões.
- Quando $n \in 2$ milhões, $n \log_2 n$ é cerca de 42 milhões, pouco mais do que o dobro.

- $\bullet \ \mathsf{f}(n) = \mathsf{O}(n^2)$
 - Um algoritmo de complexidade $O(n^2)$ é dito ter complexidade quadrática (polinomial).
 - Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
 - Quando n é mil, o número de operações é da ordem de 1 milhão.
 - Sempre que n dobra, o tempo de execução é multiplicado por 4.
 - Úteis para resolver problemas de tamanhos relativamente pequenos.

- $f(n) = O(n^3)$
 - Um algoritmo de complexidade $O(n^3)$ é dito ter complexidade cúbica (polinomial).
 - Úteis apenas para resolver pequenos problemas.
 - Quando $n \in 100$, o número de operações é da ordem de 1 milhão.
 - Sempre que n dobra, o tempo de execução fica multiplicado por 8.

- $f(n) = O(2^n)$
 - Um algoritmo de complexidade $O(2^n)$ é dito ter complexidade exponencial.
 - Geralmente não são úteis sob o ponto de vista prático.
 - Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
 - Quando n é 20, o tempo de execução é cerca de 1 milhão. Quando n dobra, o tempo fica elevado ao quadrado.

- f(n) = O(n!)
 - Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$.
 - Geralmente ocorrem quando se usa força bruta para a solução do problema.
 - $n = 20 \rightarrow 20! = 2432902008176640000$, um número com 19 dígitos.
 - $n = 40 \rightarrow \text{um número com } 48 \text{ dígitos.}$

Polinomiais X Exponenciais

- Distinção significativa quando o tamanho do problema cresce.
- Por isso, os algoritmos polinomiais são muito mais úteis na prática do que os exponenciais.
- Algoritmos exponenciais são geralmente simples variações de pesquisa exaustiva.
- Algoritmos polinomiais são geralmente obtidos mediante entendimento mais profundo da estrutura do problema.
- Um problema é considerado:
 - o intratável: se não existe um algoritmo polinomial para resolvê-lo.
 - bem resolvido: quando existe um algoritmo polinomial para resolvê-lo.
- Alg. Exponenciais podem ser úteis na prática
- Ex. Simplex para programação linear: possui complexidade de tempo exponencial para o pior caso mas executa muito rápido na prática.

Exemplo de Alg. Exponencial

- Um caixeiro viajante deseja visitar *n* cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez.
- Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem.

O percurso <c1; c3; c4; c2; c1> é uma solução para o problema, e tem distância total = 24.

Exemplo de Alg. Exponencial

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas.
- Há (n 1)! rotas possíveis e a distância total percorrida em cada rota envolve n adições, logo o número total de adições é n!.
- No exemplo anterior teríamos 24 adições.
- Suponha agora 50 cidades: o número de adições seria 50! \approx 10^{64} .
- Em um computador que executa 10^9 adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10^{45} séculos só para executar as adições.
- O problema do caixeiro viajante aparece com frequência em problemas relacionados com transporte, mas também em aplicações importantes relacionadas com otimização de caminho percorrido.