import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

diabetic_dataset = pd.read_csv('/content/diabetes_prediction_dataset.csv')

 ${\tt diabetic_dataset.shape}$

(100000, 9)

diabetic_dataset.head()

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes	
0	Female	80.0	0	1	never	25.19	6.6	140	0	ılı
1	Female	54.0	0	0	No Info	27.32	6.6	80	0	
2	Male	28.0	0	0	never	27.32	5.7	158	0	
3	Female	36.0	0	0	current	23.45	5.0	155	0	
4	Male	76.0	1	1	current	20.14	4.8	155	0	

diabetic_dataset.tail()

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes	
99995	Female	80.0	0	0	No Info	27.32	6.2	90	0	ılı
99996	Female	2.0	0	0	No Info	17.37	6.5	100	0	
99997	Male	66.0	0	0	former	27.83	5.7	155	0	
99998	Female	24.0	0	0	never	35.42	4.0	100	0	
99999	Female	57.0	0	0	current	22.43	6.6	90	0	

#diabetic_dataset.drop(['gender'],axis=1)

#diabetic_dataset.drop(['smoking_history'],axis=1)

diabetic_dataset.describe()

	age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_level	diabetes	
count	100000.000000	100000.00000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	ılı
mean	41.885856	0.07485	0.039420	27.320767	5.527507	138.058060	0.085000	
std	22.516840	0.26315	0.194593	6.636783	1.070672	40.708136	0.278883	
min	0.080000	0.00000	0.000000	10.010000	3.500000	80.000000	0.000000	
25%	24.000000	0.00000	0.000000	23.630000	4.800000	100.000000	0.000000	
50%	43.000000	0.00000	0.000000	27.320000	5.800000	140.000000	0.000000	
75%	60.000000	0.00000	0.000000	29.580000	6.200000	159.000000	0.000000	
max	80.000000	1.00000	1.000000	95.690000	9.000000	300.000000	1.000000	

diabetic_dataset.isnull().sum()

gender	0				
age	0				
hypertension	0				
heart_disease	0				
smoking_history	0				
bmi	0				
HbA1c_level	0				
blood_glucose_level	0				
diabetes					
dtype: int64					

```
array(['Female', 'Male', 'Other'], dtype=object)
diabetic_dataset['smoking_history'].unique()
     array(['never', 'No Info', 'current', 'former', 'ever', 'not current'],
            dtype=object)
#sns.catplot(x='diabetes',data = diabetic_dataset , kind = 'count')
#plot = plt.figure(figsize = (5,5))
#sns.barplot(x='diabetes', y='age',data = diabetic_dataset)
correlation = diabetic_dataset.corr()
     <ipython-input-19-08d52160405e>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ve
       correlation = diabetic_dataset.corr()
plt.figure(figsize=(8,8))
sns.heatmap(correlation, cbar='True', square='True', fmt='.1f', annot=True, annot_kws={'size':8}, cmap='Blues')
     <Axes: >
                                                                                                              1.0
                                          0.3
                                                     0.2
                                                               0.3
                                                                         0.1
                                                                                   0.1
                                                                                              0.3
                       age
                                                                                                             - 0.8
             hypertension
                                0.3
                                                     0.1
                                                               0.1
                                                                                    0.1
             heart_disease
                                0.2
                                           0.1
                                                               0.1
                                                                         0.1
                                                                                   0.1
                                                                                              0.2
                                                                                                              - 0.6
                                0.3
                                           0.1
                                                     0.1
                                                                         0.1
                                                                                   0.1
                                                                                              0.2
                       bmi
               HbA1c_level -
                                0.1
                                           0.1
                                                     0.1
                                                               0.1
                                                                                   0.2
                                                                                              0.4
                                                                                                              0.4
      blood_glucose_level -
                                0.1
                                           0.1
                                                     0.1
                                                               0.1
                                                                         0.2
                                                                                              0.4
                  diabetes
                                0.3
                                          0.2
                                                     0.2
                                                               0.2
                                                                         0.4
                                                                                   0.4
                                                                                                             - 0.2
                                 age
                                          hypertension
                                                     heart_disease
                                                                         HbA1c_level
                                                                                   blood_glucose_level
                                                               bmi
                                                                                              diabetes
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(le)
     LabelEncoder()
diabetic_dataset['gender'] = le.fit_transform(diabetic_dataset['gender'])
```

diabetic_dataset['gender'].unique()

array([0, 1, 2])

```
diabetic_dataset['smoking_history'] = le.fit_transform(diabetic_dataset['smoking_history'])
diabetic_dataset['smoking_history'].unique()
    array([4, 0, 1, 3, 2, 5])
X = diabetic_dataset.drop('diabetes',axis=1)
print(X)
           gender age hypertension heart_disease smoking_history
                                                                      bmi \
    0
                0 80.0
                                   0
                                                                  4 25.19
                0 54.0
                                   0
                                                                  0 27.32
                1 28.0
                                   0
                                                                 4 27.32
    3
                0 36.0
                                  0
                                                                 1 23.45
                                 1
                                                                 1 20.14
               1 76.0
                                                1
                                                                0 27.32
    99995
              0 80.0
                                 0
    99996
                                                 0
               0 2.0
                                  0
                                                                 0 17.37
               1 66.0
                                                                 3 27.83
    99997
                                  0
                                                 0
    99998
               0 24.0
                                  0
                                                                 4 35.42
    99999
               0 57.0
                                  0
                                                 0
                                                                 1 22.43
           HbA1c_level blood_glucose_level
    0
                  6.6
    1
                   6.6
                  5.7
    2
    3
                  5.0
                                       155
    4
                  4.8
                                      155
    99995
                                       90
                  6.2
    99996
                  6.5
                                       100
    99997
                  5.7
                                       155
    99998
                   4.0
                                       100
    99999
                  6.6
                                        90
    [100000 rows x 8 columns]
Y = diabetic_dataset['diabetes']
print(Y)
    a
    1
             0
    2
             0
    3
             0
    99995
    99996
    99997
    99998
             0
    99999
             a
    Name: diabetes, Length: 100000, dtype: int64
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size = 0.2, random_state = 3)
print(Y.shape, Y_train.shape, Y_test.shape)
    (100000,) (80000,) (20000,)
model = RandomForestClassifier()
model.fit(X_train,Y_train)
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction,Y_test)
print("Accuracy :",test_data_accuracy)
```

```
# Building Prediction System
input_data = (1,67.0,0,1,5,27.32,6.5,200)
input_data_as_numpy_array = np.asarray(input_data)
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = model.predict(input_data_reshaped)
print(prediction)

if(prediction == 1):
    print("Diabetic Patient")
else:
    print("Not a diabetic Patient")
```