Topics in Heterogeneous Agent Macro: Finite-Difference Methods

Lecture 3

Andreas Schaab

Outline

- 1. Recap: HJB Equations
- 2. X
- 3. X
- 4. X
- 5. X
- 6. X

HJB Equations

Generic Hamilton-Jacobi-Bellman (HJB) Equation

Recall generic deterministic optimal control problem

$$v\left(x_{0}\right) = \max_{\left\{\alpha\left(t\right)\right\}_{t \geq 0}} \int_{0}^{\infty} e^{-\rho t} r\left(x\left(t\right), \alpha\left(t\right)\right) dt$$

subject to the law of motion for the state

$$\dot{x}(t) = f(x(t), \alpha(t))$$
 and $\alpha(t) \in A$

for $t \ge 0$, $x(0) = x_0$ given

- $\rho \geq 0$: discount rate
- $x \in X \subseteq \mathbb{R}^N$: state vector
- $\alpha \in A \subseteq \mathbb{R}^M$: control vector
- $r: X \times A \to \mathbb{R}$: instantaneous return function

Example: Neoclassical Growth Model

$$v(k_0) = \max_{\{c(t)\}_{t \ge 0}} \int_0^\infty e^{-\rho t} u(c(t)) dt$$

subject to

$$\dot{k}(t) = F(k(t)) - \delta k(t) - c(t)$$

for $t \ge 0$, $k(0) = k_0$ given

- Here the state is x = k and the control $\alpha = c$
- $r(x, \alpha) = u(\alpha)$
- $f(x,\alpha) = F(x) \delta x \alpha$

Generic HJB Equation

- How to analyze these optimal control problems? Here: "cookbook approach"
- Result: the value function of the generic optimal control problem satisfies the Hamilton-Jacobi-Bellman equation

$$\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x) \cdot f(x, \alpha)$$

• In the case with more than one state variable $N>1,\,v'(x)\in\mathbb{R}^N$ is the gradient of the value function

Example: Neoclassical Growth Model

"cookbook" implies:

$$\rho v(k) = \max_{c} u(c) + v'(k)(F(k) - \delta k - c)$$

Proceed by taking first-order conditions etc

$$u'(c) = v'(k)$$

- Time periods of length Δ
- discount factor

$$\beta(\Delta) = e^{-\rho\Delta}$$

- Note that $\lim_{\Delta \to 0} \beta(\Delta) = 1$ and $\lim_{\Delta \to \infty} \beta(\Delta) = 0$
- Discrete-time Bellman equation:

$$v(k_t) = \max_{c_t} \ \Delta u(c_t) + e^{-\rho \Delta} v(k_{t+\Delta}) \quad \text{s.t.}$$

$$k_{t+\Delta} = \Delta (F(k_t) - \delta k_t - c_t) + k_t$$

• For small Δ (will take $\Delta \to 0$), $e^{-\rho\Delta} = 1 - \rho\Delta$

$$v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \rho \Delta) v(k_{t+\Delta})$$

• For small Δ (will take $\Delta \to 0$), $e^{-\rho\Delta} = 1 - \rho\Delta$

$$v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \rho \Delta) v(k_{t+\Delta})$$

• Subtract $(1 - \rho \Delta)v(k_t)$ from both sides

$$\rho \Delta v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \Delta \rho)(v(k_{t+\Delta}) - v(k_t))$$

• For small Δ (will take $\Delta \to 0$), $e^{-\rho\Delta} = 1 - \rho\Delta$

$$v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \rho \Delta) v(k_{t+\Delta})$$

• Subtract $(1 - \rho \Delta)v(k_t)$ from both sides

$$\rho \Delta v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \Delta \rho)(v(k_{t+\Delta}) - v(k_t))$$

Divide by ∆ and manipulate last term

$$\rho v(k_t) = \max_{c_t} u(c_t) + (1 - \Delta \rho) \frac{v(k_{t+\Delta}) - v(k_t)}{k_{t+\Delta} - k_t} \frac{k_{t+\Delta} - k_t}{\Delta}$$

• For small Δ (will take $\Delta \to 0$), $e^{-\rho\Delta} = 1 - \rho\Delta$

$$v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \rho \Delta)v(k_{t+\Delta})$$

• Subtract $(1 - \rho \Delta)v(k_t)$ from both sides

$$\rho \Delta v(k_t) = \max_{c_t} \Delta u(c_t) + (1 - \Delta \rho)(v(k_{t+\Delta}) - v(k_t))$$

• Divide by Δ and manipulate last term

$$\rho v(k_t) = \max_{c_t} \ u(c_t) + (1 - \Delta \rho) \frac{v(k_{t+\Delta}) - v(k_t)}{k_{t+\Delta} - k_t} \frac{k_{t+\Delta} - k_t}{\Delta}$$

• Take $\Delta \rightarrow 0$

$$\rho v(k_t) = \max_{c_t} u(c_t) + v'(k_t)\dot{k}_t$$

Connection Between HJB Equation and Hamiltonian

Hamiltonian

$$\mathcal{H}(x,\alpha,\lambda) = r(x,\alpha) + \lambda f(x,\alpha)$$

HJB equation

$$\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x) f(x, \alpha)$$

• Connection: $\lambda(t) = v'(x(t))$, i.e. co-state = shadow value

Connection Between HJB Equation and Hamiltonian

Hamiltonian

$$\mathcal{H}(x,\alpha,\lambda) = r(x,\alpha) + \lambda f(x,\alpha)$$

HJB equation

$$\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x) f(x, \alpha)$$

- Connection: $\lambda(t) = v'(x(t))$, i.e. co-state = shadow value
- Bellman can be written as $\rho v(x) = \max_{\alpha \in A} \mathcal{H}(x, \alpha, v'(x)) \dots$
- ... hence the "Hamilton" in Hamilton-Jacobi-Bellman

Connection Between HJB Equation and Hamiltonian

Hamiltonian

$$\mathcal{H}(x,\alpha,\lambda) = r(x,\alpha) + \lambda f(x,\alpha)$$

HJB equation

$$\rho v(x) = \max_{\alpha \in A} r(x, \alpha) + v'(x) f(x, \alpha)$$

- Connection: $\lambda(t) = v'(x(t))$, i.e. co-state = shadow value
- Bellman can be written as $\rho v(x) = \max_{\alpha \in A} \mathcal{H}(x, \alpha, v'(x)) \dots$
- ... hence the "Hamilton" in Hamilton-Jacobi-Bellman
- Mathematicians' notation: in terms of maximized Hamiltonian H

$$\rho v(x) = H(x, v'(x))$$

$$H(x, p) := \max_{\alpha \in A} r(x, \alpha) + pf(x, \alpha)$$

Poisson Uncertainty

- Easy to extend this to stochastic case. Simplest case: two-state Poisson process
- Example: RBC Model. Production is $Z_tF(k_t)$ where $Z_t \in \{Z_1, Z_2\}$ Poisson with intensities λ_1, λ_2
- · Result: HJB equation is

$$\rho v_i(k) = \max_{c} \ u(c) + v_i'(k) [Z_i F(k) - \delta k - c] + \lambda_i [v_j(k) - v_i(k)]$$

for $i = 1, 2, j \neq i$.

Derivation similar as before

Existence and Uniqueness of Solutions to (HJB)

Recall Hamilton-Jacobi-Bellman equation:

$$\rho v(x) = \max_{\alpha \in A} \left\{ r(x, \alpha) + v'(x) \cdot f(x, \alpha) \right\}$$
 (HJB)

Two key results, analogous to discrete time:

- Theorem 1 (HJB) has a unique "nice" solution
- Theorem 2 "nice" solution equals value function, i.e. solution to "sequence problem"

Existence and Uniqueness of Solutions to (HJB)

Recall Hamilton-Jacobi-Bellman equation:

$$\rho v(x) = \max_{\alpha \in A} \left\{ r(x, \alpha) + v'(x) \cdot f(x, \alpha) \right\} \tag{HJB}$$

Two key results, analogous to discrete time:

- Theorem 1 (HJB) has a unique "nice" solution
- Theorem 2 "nice" solution equals value function, i.e. solution to "sequence problem"
- Here: "nice" solution = "viscosity solution"
- See supplement "Viscosity Solutions for Dummies" http://www.princeton.edu/~moll/viscosity_slides.pdf
- Theorems 1 and 2 hold for both ODE and PDE cases, i.e. also with multiple state variables ...
- ... also hold if value function has kinks (e.g. from non-convexities)
- Remark re Thm 1: in typical application, only very weak boundary conditions needed for uniqueness (≤'s, boundedness assumption)

- **Finite-Difference Methods**

Finite Difference Methods

- See http://www.princeton.edu/~moll/HACTproject.htm
- Explain using neoclassical growth model, easily generalized to other applications

$$\rho v(k) = \max_{c} \ u(c) + v'(k)(F(k) - \delta k - c)$$

Functional forms

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \quad F(k) = k^{\alpha}$$

- Use finite difference method
 - Two MATLAB codes http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

Barles-Souganidis

- There is a well-developed theory for numerical solution of HJB equation using finite difference methods
- Key paper: Barles and Souganidis (1991), "Convergence of approximation schemes for fully nonlinear second order equations

```
https://www.dropbox.com/s/vhw5qqrczw3dvw3/barles-souganidis.pdf?dl=0
```

- Result: finite difference scheme "converges" to unique viscosity solution under three conditions
 - 1. monotonicity
 - 2. consistency
 - 3. stability
- Good reference: Tourin (2013), "An Introduction to Finite Difference Methods for PDEs in Finance."

Finite Difference Approximations to $v'(k_i)$

- Approximate v(k) at I discrete points in the state space, k_i , i=1,...,I. Denote distance between grid points by Δk .
- Shorthand notation

$$v_i = v(k_i)$$

- Need to approximate $v'(k_i)$.
- Three different possibilities:

$$v'(k_i)pprox rac{v_i-v_{i-1}}{\Delta k}=v'_{i,B}$$
 backward difference $v'(k_i)pprox rac{v_{i+1}-v_i}{\Delta k}=v'_{i,F}$ forward difference $v'(k_i)pprox rac{v_{i+1}-v_{i-1}}{2\Delta k}=v'_{i,C}$ central difference

Finite Difference Approximations to $v'(k_i)$

Finite Difference Approximation

FD approximation to HJB is

$$\rho v_i = u(c_i) + v_i'[F(k_i) - \delta k_i - c_i] \tag{*}$$

where $c_i = (u')^{-1}(v'_i)$, and v'_i is one of backward, forward, central FD approximations.

Two complications:

- 1. which FD approximation to use? "Upwind scheme"
- 2. (*) is extremely non-linear, need to solve iteratively: "explicit" vs. "implicit method"

Strategy for next few slides:

- what works
- at end of lecture: why it works (Barles-Souganidis)

Which FD Approximation?

- Which of these you use is extremely important
- Best solution: use so-called "upwind scheme." Rough idea:
 - forward difference whenever drift of state variable positive
 - backward difference whenever drift of state variable negative

Which FD Approximation?

- · Which of these you use is extremely important
- Best solution: use so-called "upwind scheme." Rough idea:
 - forward difference whenever drift of state variable positive
 - backward difference whenever drift of state variable negative
- · In our example: define

$$s_{i,F} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,F}), \quad s_{i,B} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,B})$$

Approximate derivative as follows

$$v_i' = v_{i,F}' \mathbf{1}_{\{s_{i,F} > 0\}} + v_{i,B}' \mathbf{1}_{\{s_{i,B} < 0\}} + \bar{v}_i' \mathbf{1}_{\{s_{i,F} < 0 < s_{i,B}\}}$$

where $\mathbf{1}_{\{\cdot\}}$ is indicator function, and $\bar{v}'_i = u'(F(k_i) - \delta k_i)$.

Which FD Approximation?

- Which of these you use is extremely important
- Best solution: use so-called "upwind scheme." Rough idea:
 - forward difference whenever drift of state variable positive
 - backward difference whenever drift of state variable negative
- In our example: define

$$s_{i,F} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,F}), \quad s_{i,B} = F(k_i) - \delta k_i - (u')^{-1}(v'_{i,B})$$

Approximate derivative as follows

$$v_i'=v_{i,F}'\mathbf{1}_{\{s_{i,F}>0\}}+v_{i,B}'\mathbf{1}_{\{s_{i,B}<0\}}+\bar{v}_i'\mathbf{1}_{\{s_{i,F}<0< s_{i,B}\}}$$
 where $\mathbf{1}_{\{\cdot,\cdot\}}$ is indicator function, and $\bar{v}_i'=u'(F(k_i)-\delta k_i)$.

- Where does \bar{v}_i' term come from? Answer:
 - since v is concave, $v'_{i|F} < v'_{i|B}$ (see figure) $\Rightarrow s_{i,F} < s_{i,B}$
 - if $s'_{i,F} < 0 < s'_{i,B}$, set $s_i = 0 \Rightarrow v'(k_i) = u'(F(k_i) \delta k_i)$, i.e. we're at a steady state.

Sparsity

Discretized HJB equation is

$$\rho v_i = u(c_i) + \frac{v_{i+1} - v_i}{\Delta k} s_{i,F}^+ + \frac{v_i - v_{i-1}}{\Delta k} s_{i,B}^-$$

- Notation: for any x, $x^+ = \max\{x, 0\}$ and $x^- = \min\{x, 0\}$
- Can write this in matrix notation

$$\rho \mathbf{v} = \mathbf{u} + \mathbf{A}\mathbf{v}$$

where **A** is $I \times I$ (I= no of grid points) and looks like...

Visualization of A (output of spy(A) in Matlab)

The matrix A

- FD method approximates process for k with discrete Poisson process, A summarizes Poisson intensities
 - entries in row i:

$$\begin{bmatrix} \underbrace{-\frac{s_{i,B}^-}{\Delta k}}_{\text{inflow}_{i-1} \geq 0} & \underbrace{\frac{s_{i,B}^-}{\Delta k} - \frac{s_{i,F}^+}{\Delta k}}_{\text{outflow}_i \leq 0} & \underbrace{\frac{s_{i,F}^+}{\Delta k}}_{\text{inflow}_{i+1} \geq 0} \end{bmatrix} \begin{bmatrix} v_{i-1} \\ v_i \\ v_{i+1} \end{bmatrix}$$

- negative diagonals, positive off-diagonals, rows sum to zero:
- tridiagonal matrix, very sparse

The matrix A

- FD method approximates process for k with discrete Poisson process, $\mathbf A$ summarizes Poisson intensities
 - entries in row i:

$$\begin{bmatrix} \underbrace{-\frac{s_{i,B}^{-}}{\Delta k}}_{\text{inflow}_{i-1} \geq 0} & \underbrace{\frac{s_{i,B}^{-}}{\Delta k} - \frac{s_{i,F}^{+}}{\Delta k}}_{\text{outflow}_{i} \leq 0} & \underbrace{\frac{s_{i,F}^{+}}{\Delta k}}_{\text{inflow}_{i+1} \geq 0} \end{bmatrix} \begin{bmatrix} v_{i-1} \\ v_{i} \\ v_{i+1} \end{bmatrix}$$

- negative diagonals, positive off-diagonals, rows sum to zero:
- tridiagonal matrix, very sparse
- A (and u) depend on v (nonlinear problem)

$$\rho \mathbf{v} = \mathbf{u}(\mathbf{v}) + \mathbf{A}(\mathbf{v})\mathbf{v}$$

Next: iterative method...

Iterative Method

• Idea: Solve FOC for given \mathbf{v}^n , update \mathbf{v}^{n+1} according to

$$\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^n = u(c_i^n) + (v^n)'(k_i)(F(k_i) - \delta k_i - c_i^n) \tag{*}$$

- Algorithm: Guess v_i^0 , i = 1, ..., I and for n = 0, 1, 2, ... follow
 - 1. Compute $(v^n)'(k_i)$ using FD approx. on previous slide.
 - 2. Compute c^n from $c_i^n = (u')^{-1}[(v^n)'(k_i)]$
 - 3. Find \mathbf{v}^{n+1} from (*).
 - 4. If \mathbf{v}^{n+1} is close enough to \mathbf{v}^n : stop. Otherwise, go to step 1.
- See http://www.princeton.edu/~moll/HACTproject/HJB_NGM.m
- Important parameter: Δ = step size, cannot be too large ("CFL condition").
- Pretty inefficient: needs 5,990 iterations (though quite fast)

Efficiency: Implicit Method

Efficiency can be improved by using an "implicit method"

$$\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^{n+1} = u(c_i^n) + (v_i^{n+1})'(k_i)[F(k_i) - \delta k_i - c_i^n]$$

Each step n involves solving a linear system of the form

$$\frac{1}{\Delta}(\mathbf{v}^{n+1} - \mathbf{v}^n) + \rho \mathbf{v}^{n+1} = \mathbf{u} + \mathbf{A}_n \mathbf{v}^{n+1}$$
$$((\rho + \frac{1}{\Delta})\mathbf{I} - \mathbf{A}_n) \mathbf{v}^{n+1} = \mathbf{u} + \frac{1}{\Delta} \mathbf{v}^n$$

- but A_n is super sparse \Rightarrow super fast
- See http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m

Efficiency: Implicit Method

Efficiency can be improved by using an "implicit method"

$$\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^{n+1} = u(c_i^n) + (v_i^{n+1})'(k_i)[F(k_i) - \delta k_i - c_i^n]$$

Each step n involves solving a linear system of the form

$$\frac{1}{\Delta}(\mathbf{v}^{n+1} - \mathbf{v}^n) + \rho \mathbf{v}^{n+1} = \mathbf{u} + \mathbf{A}_n \mathbf{v}^{n+1}$$
$$((\rho + \frac{1}{\Delta})\mathbf{I} - \mathbf{A}_n) \mathbf{v}^{n+1} = \mathbf{u} + \frac{1}{\Delta} \mathbf{v}^n$$

- but A_n is super sparse \Rightarrow super fast
- See http://www.princeton.edu/~moll/HACTproject/HJB_NGM_implicit.m
- In general: implicit method preferable over explicit method
 - 1. stable regardless of step size Δ
 - 2. need much fewer iterations
 - 3. can handle many more grid points

Implicit Method: Practical Consideration

- In Matlab, need to explicitly construct A as sparse to take advantage of speed gains
- Code has part that looks as follows

```
X = -min(mub,0)/dk;
Y = -max(muf,0)/dk + min(mub,0)/dk;
Z = max(muf,0)/dk;
```

Constructing full matrix – slow

```
for i=2:I-1
A(i,i-1) = X(i);
A(i,i) = Y(i);
A(i,i+1) = Z(i);
end
A(1,1)=Y(1); A(1,2) = Z(1);
A(I,I)=Y(I); A(I,I-1) = X(I);
```

Constructing sparse matrix – fast

```
A = \operatorname{spdiags}(Y,0,I,I) + \operatorname{spdiags}(X(2:I),-1,I,I) + \operatorname{spdiags}([0;Z(1:I-1)],1,I,I);
```

Non-Convexities

Non-Convexities

· Consider growth model

$$\rho v(k) = \max_{c} u(c) + v'(k)(F(k) - \delta k - c)$$

But drop assumption that F is strictly concave. Instead: "butterfly"

$$F(k) = \max\{F_L(k), F_H(k)\},$$

 $F_L(k) = A_L k^{\alpha},$
 $F_H(k) = A_H((k-\kappa)^+)^{\alpha}, \quad \kappa > 0, A_H > A_L$

Non-Convexities

Figure: Convex-Concave Production

Standard Methods

· Discrete time: first-order conditions

$$u'(F(k) - \delta k - k') = \beta v'(k')$$

no longer sufficient, typically multiple solutions

Continuous time: Skiba (1978)

Instead: Using Finite-Difference Scheme

Nothing changes, use same exact algorithm as for growth model with concave production function http://www.princeton.edu/~moll/HACTproject/HJB_NGM_skiba.m

Barles-Souganidis

- · Here: version with one state variable, but generalizes
- Can write any HJB equation with one state variable as

$$0 = G(k, v(k), v'(k), v''(k))$$
(G)

Corresponding FD scheme

$$0 = S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1})$$
(S)

- · Here: version with one state variable, but generalizes
- Can write any HJB equation with one state variable as

$$0 = G(k, v(k), v'(k), v''(k))$$
 (G)

Corresponding FD scheme

$$0 = S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1})$$
(S)

Growth model

$$G(k, v(k), v'(k), v''(k)) = \rho v(k) - \max_{c} u(c) + v'(k)(F(k) - \delta k - c)$$

$$S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = \rho v_i - u(c_i) - \frac{v_{i+1} - v_i}{\Delta k} (F(k_i) - \delta k_i - c_i)^+$$

$$- \frac{v_i - v_{i-1}}{\Delta k} (F(k_i) - \delta k_i - c_i)^-$$

1. Monotonicity: the numerical scheme is monotone, that is S is non-increasing in both v_{i-1} and v_{i+1}

- 1. Monotonicity: the numerical scheme is monotone, that is S is non-increasing in both v_{i-1} and v_{i+1}
- 2. Consistency: the numerical scheme is consistent, that is for every smooth function \boldsymbol{v} with bounded derivatives

$$S(\Delta k, k_i, v(k_i); v(k_{i-1}), v(k_{i+1})) \to G(v(k), v'(k), v''(k))$$

as $\Delta k \to 0$ and $k_i \to k$.

- 1. Monotonicity: the numerical scheme is monotone, that is S is non-increasing in both v_{i-1} and v_{i+1}
- 2. Consistency: the numerical scheme is consistent, that is for every smooth function \boldsymbol{v} with bounded derivatives

$$S(\Delta k, k_i, v(k_i); v(k_{i-1}), v(k_{i+1})) \to G(v(k), v'(k), v''(k))$$

as $\Delta k \to 0$ and $k_i \to k$.

3. Stability: the numerical scheme is stable, that is for every $\Delta k > 0$, it has a solution $v_i, i = 1, ..., I$ which is uniformly bounded independently of Δk .

Theorem (Barles-Souganidis)

If the scheme satisfies the monotonicity, consistency and stability conditions 1 to 3, then as $\Delta k \to 0$ its solution v_i , i=1,...,I converges locally uniformly to the unique viscosity solution of (G)

Theorem (Barles-Souganidis)

If the scheme satisfies the monotonicity, consistency and stability conditions 1 to 3, then as $\Delta k \to 0$ its solution v_i , i=1,...,I converges locally uniformly to the unique viscosity solution of (G)

- Note: "convergence" here has nothing to do with iterative algorithm converging to fixed point
- Instead: convergence of v_i as $\Delta k \to 0$. More momentarily.

Intuition for Monotonicity

Write (S) as

$$\rho v_i = \tilde{S}(\Delta k, k_i, v_i; v_{i-1}, v_{i+1})$$

· For example, in growth model

$$\tilde{S}(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = u(c_i) + \frac{v_{i+1} - v_i}{\Delta k} (F(k_i) - \delta k_i - c_i)^+ + \frac{v_i - v_{i-1}}{\Delta k} (F(k_i) - \delta k_i - c_i)^-$$

- Monotonicity: $\tilde{S} \uparrow \text{ in } v_{i-1}, v_{i+1} \ (\Leftrightarrow S \downarrow \text{ in } v_{i-1}, v_{i+1})$
- Intuition: if my continuation value at i-1 or i+1 is larger, I must be at least as well off (i.e. v_i on LHS must be at least as high)

Checking the Monotonicity Condition in Growth Model

Recall upwind scheme:

$$S(\Delta k, k_i, v_i; v_{i-1}, v_{i+1}) = \rho v_i - u(c_i) - \frac{v_{i+1} - v_i}{\Delta k} (F(k_i) - \delta k_i - c_i)^+ - \frac{v_i - v_{i-1}}{\Delta k} (F(k_i) - \delta k_i - c_i)^-$$

- Can check: satisfies monotonicity: S is indeed non-increasing in both v_{i-1} and v_{i+1}
- c_i depends on v_i 's but doesn't affect monotonicity due to envelope condition

Meaning of "Convergence"

Convergence is about $\Delta k \to 0$. What, then, is content of theorem?

- have a system of I non-linear equations $S\left(\Delta k, k, v_i; v_{i-1}, v_{i+1}\right) = 0$
- need to solve it somehow
- Theorem guarantees that solution (for given Δk) converges to solution of the HJB equation (G) as Δk .

Meaning of "Convergence"

Convergence is about $\Delta k \to 0$. What, then, is content of theorem?

- have a system of I non-linear equations $S\left(\Delta k, k, v_i; v_{i-1}, v_{i+1}\right) = 0$
- need to solve it somehow
- Theorem guarantees that solution (for given Δk) converges to solution of the HJB equation (G) as Δk .

Why does iterative scheme work? Two interpretations:

- 1. Newton method for solving system of non-linear equations (S)
- 2. Iterative scheme ⇔ solve (HJB) backward in time

$$\frac{v_i^{n+1} - v_i^n}{\Delta} + \rho v_i^n = u(c_i^n) + (v^n)'(k_i)(F(k_i) - \delta k_i - c_i^n)$$

in effect sets v(k, T) = initial guess and solves

$$\rho v(k,t) = \max_{c} u(c) + \partial_k v(k,t)(F(k) - \delta k - c) + \partial_t v(k,t)$$

backwards in time. $v(k) = \lim_{t \to -\infty} v(k, t)$.