

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Clustering I

CS 422 vgurbani@iit.edu

 K-means and hierarchical clustering do not gracefully handle non-globular clusters as

shown on the left.

 They will find clusters, but the resulting clusters may not be what we need.

Density-based clustering: Miscellaneous

• Hierarchical clustering do on globular data:

• Observations:

- Hierarchical clustering is not able to eliminate what would be called "noise" points in DBSCAN. So these become part of a cluster.
- With 5 clusters hierarchical clustering is unable to discern the two nested clusters. It considers them as one.

Code: hierarchical-clustering-globular-data.Rmd

- DBSCAN is a density-based clustering algorithms parameterized by:
 - A radius (eps, ε, calculated empirically), or a neighbourhood;
 - Number of neighbouring points (*MinPts*, specified by user).

- ϵ -Neighbourhood: Objects within a radius ϵ from a source object: $N_{\epsilon}(p): \{q \mid d(p,q) \leq \epsilon\}$
- **Density**: If ε-neighbourhood of a source point (object) contains at least MinPts other points (object), then the source point is in a "high-density" area.

- Density of p is high (MinPts = 4)
- Density of q is low (MinPts = 3)

- DBSCAN divides all points in:
 - Core point: a point that has at least *MinPts* within an ϵ .
 - Border point: a point that is not a core point, but is in the neighbourhood of a core point.

Noise point: Points that are neither core or border

points.

Schubert et al. (2017), "DBSCAN Revisited, Revisited: Why and how you should (still) use DBSCAN," ACM Transactions of Database systems 42(3), 2017.

```
DBSCAN(DB, distFunc, eps, minPts) {
   C = 0
                                                           /* Cluster counter */
   for each point P in database DB {
      if label(P) ≠ undefined then continue
                                                        /* Previously processed in inner loop */
      Neighbors N = RangeQuery(DB, distFunc, P, eps)
                                                         /* Find neighbors */
                                                           /* Density check */
      if |N| < minPts then {</pre>
         label(P) = Noise
                                                           /* Label as Noise */
         continue
      }
      C = C + 1
                                                           /* next cluster label */
      label(P) = C
                                                           /* Label initial point */
      Seed set S = N \setminus \{P\}
                                                           /* Neighbors to expand */
                                                           /* Process every seed point */
      for each point Q in S {
         if label(Q) = Noise then label(Q) = C
                                                           /* Change Noise to border point */
         if label(Q) ≠ undefined then continue
                                                          /* Previously processed */
         label(0) = C
                                                           /* Label neighbor */
         Neighbors N = RangeQuery(DB, distFunc, Q, eps) /* Find neighbors */
                                                           /* Density check */
         if |N| ≥ minPts then {
            S = S \cup N
                                                           /* Add new neighbors to seed set */
        }
                             RangeQuery(DB, distFunc, Q, eps) {
                                Neighbors = empty list
                                for each point P in database DB {
                                                                                    /* Scan all points in the database */
                                   if distFunc(Q, P) ≤ eps then {
                                                                                     /* Compute distance and check epsilon */
                                      Neighbors = Neighbors u {P}
                                                                                      /* Add to result */
                                return Neighbors
```

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

CS 422 vgurbani@iit.edu

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Resources:

- 1. https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
- 2. Code: dbscan-clust.r

- Complexity:
 - Space: O(m), where m is number of points.
 - Time:
 - O(m * time to find points in eps-neighbourhood), in worst case $O(m^2)$.
 - In low-dimension spaces using kd-tree data structure, $O(m \log m)$.

Density-based clustering: Practical issues in dbscan

- How do choose MinPts (or define the neighbourhood)?
 - If neighbourhood is too small, then a sparse cluster may be erroneously labeled as noise.
 - If the neighbourhood is too large, then dense clusters may be merged together, and small clusters may be labeled as noise.
 - Original dbscan used minPts = 4; suffices for 2 dimensions.
 - For > 2 dimensions: *MinPts* = 2*dimensions (Sander et al. 1998, "Density based clustering in spatial databases: The algorithm GDBSCAN and its applications", Journal of Data Mining and Knowledge Discovery, 2(2), June 1998).
 - Schubert et al. 2017 suggests large *MinPt*s for large and noisy datasets.
 - Schubert et al. 2017: Clusters too large: decrease ε; too much noise: increase ε.
 - Generally domain expertise (or magic) required to choose the right k.

Density-based clustering: Practical issues in dbscan

- How to choose eps?
 - Calculate the average of the distances of every point to its k nearest neighbours.
 - k-dist small for core points and border points in a cluster.
 - k-dist large for noise points.
 - Plot the k-distances in increasing order, and look for the knee to get the value of eps at that k.

Clusters are in the eye of the beholder.

- Validation is the process of evaluating the goodness of clustering algorithm results.
- Why validate?
 - Avoid finding random patterns in data;
 - Compare two clusters (how does k-means compare when k = 2 versus k = 3?);
 - Compare two clustering algorithms (e.g., how does single linkage compare against complete linkage?);

- Types of validations
 - Internal: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE), for example.
 - External: Match cluster result with external results (class labels).
 - Relative: Used to compare two different clustering algorithms or clusters.

- Types of validations
 - Internal: Used to measure the goodness of a clustering structure without respect to external information.
 - Two measures: cohesion (how close are objects in the same cluster, measured by within cluster SSE) and separation (how well separated are the clusters).

- Measuring separation
 - Silhouette value: measures the degree of confidence in the clustering assignment of a particular observation, with well-clustered observations having values near 1 and poorly clustered observations having values near -1.
 - Silhouette width for the ith point, S_i , is defined as:

$$S_i = (b_i - a_i)/max(b_i, a_i)$$

- a_i is the average distance from the ith point to all other points in the same cluster as the ith point.
- For the ith point and any cluster not containing that point, calculate the ith point's average distance to all the points in the given cluster. Find the minimum such value with respect to all the clusters; this value is b_i.

- The silhouette width, S_i, lies in the interval [-1,1] and should be maximized.
 - Large S_i: observations are well clustered.
 - Small S_i : observations lies between two clusters.
 - Negative S_i : observations probably placed in wrong cluster.

Sample code to get Silhouette widths:

• Silhouette width example:

Data: $\{(0,0), (0,1), (2,3)\} \rightarrow \text{Cluster 1} > \text{dist(df, method="manhattan", } \{(3,3), (3,4)\} \rightarrow \text{Cluster 2} + \text{diag} = T, \text{upper} = T)$

```
> dist(df, method="manhattan",
+          diag = T, upper = T)
        1 2 3 4 5
1 0 1 5 6 7
2 1 0 4 5 6
3 5 4 0 1 2
4 6 5 1 0 1
5 7 6 2 1 0
```

Silhouette of observation 1: $S_1 = (b_1 - a_1)/max(b_1, a_1)$

$$a_1 = (1+5)/2 = 6/2 = 3$$

$$b_1 = (6+7)/2 = 13/2 = 6.5$$

$$S_1 = (6.5 - 3)/6.5 = 3.5/6.5 = 0.538$$

Silhouette of observation 2: $S_2 = (b_2 - a_2)/max(b_2, a_2)$

$$a_2 = (1+4)/2 = 5/2 = 2.5$$

$$b_2 = (5+6)/2 = 11/2 = 5.5$$

$$S_2 = (5.5 - 2.5)/5.5 = 3/5.5 = 0.545$$

• • •

• Silhouette width example:

Data: $\{(0,0), (0,1), (2,3)\} \rightarrow \text{Cluster 1} > \text{dist(df, method="manhattan", } \{(3,3), (3,4)\} \rightarrow \text{Cluster 2} + \text{diag} = T, \text{upper} = T)$

Silhouette of observation 1: $S_1 = (b_1 - a_1)/max(b_1, a_1)$

$$a_1 = (1+5)/2 = 6/2 = 3$$

$$b_1 = (6+7)/2 = 13/2 = 6.5$$

$$S_1 = (6.5 - 3)/6.5 = 3.5/6.5 = 0.538$$

Silhouette of observation 2: $S_2 = (b_2 - a_2)/max(b_2, a_2)$

$$a_2 = (1+4)/2 = 5/2 = 2.5$$

$$b_2 = (5+6)/2 = 11/2 = 5.5$$

$$S_2 = (5.5 - 2.5)/5.5 = 3/5.5 = 0.545$$

• • •

Silhouette table

Point	Cluster	Neighbour	Sil. width
1	1	2	0.538
2	1	2	0.545
3	1	2	-0.667
4	2	1	0.750
5	2	1	0.800

Avg. Sil. width Cluster 1: 0.139 Avg. Sil. width Cluster 2: 0.775 Overall avg. Sil. Width: 0.457

 The Dunn index is the ratio of the smallest distance between observations not in the same cluster (min.separation) to the largest intra-cluster distance (maximum diameter)

D = min.separation/max.diameter

- Has a value between 0 and ∞ and should be maximized.
- Code on next page shows how to get the Dunn index.
- Drawback: high computational cost as the number of clusters and dimensionality of the data increase.

Code to get various cluster metrics:

