MA705 Data science Final Project Customer Value Analysis

—— Carol Yu

- Dataset Introduction
- Project Goals
- Executive Summaries
- Math and Python behind

Dataset Introduction

Data Source

From Kaggle, the final dataset is merged with two data frames, namely, customers and orders.

Data Overviews

After preprocessing, the suitable final dataset consists of 16 variables and 161,581 rows, contains KPIs reflecting customer ordering behaviors and demographic information.

Data Justification

Real word marketing data sourced from Instacart, an online delivery service, is ideal for addressing and exploring real-world business questions.

- Dataset Introduction
- Project Goals
- Executive Summaries
- Statistic and math behind

Project Goals

Data explorations and visualizations to identify patterns and trends.

- Understand the overview of customers.
- Know the busiest days of the week and hours of the day to perform marketing strategies timely.

Applying logistic regression to identify the factors that impact customer value.

- Utilizing a binary variable to categorize customer value according to their historical order behavior.
- identify the factors that impact customer value.

- Dataset Introduction
- Project Goals
- Executive Summaries
- Statistic and math behind

Understand the overview of customers

- The age range of Instacart customers spans from young to old.
- Customers' annual income levels exhibit a wide range, from \$20,000 to \$180,000.
- Instacart has a significant customer base with small order amounts (less than 12 orders in total), encompassing almost half of the customer population.
- A substantial portion of customers also opts for a longer waiting period, exceeding 28 days before placing the next order, constituting nearly half of the customer population.

Know the busiest days of the week and hours of the day to perform marketing strategies timely

- **Sunday** experiences the highest level of order activity during the week, particularly in the afternoon between 12pm and 6pm. Followed with **Saturday and Monday**, during the same time slot.
- The Marketing team could schedule ads at times when there are fewer orders based on the findings

Utilizing a binary variable to categorize customer value according to their historical order behavior.

Categorizing customers based on their
historical order count, those who have made
more than 12 orders are labeled as more
valuable, while those with fewer than 12
orders are categorized as less valuable for
the logistic regression model fitting.

identify the factors that predict customer value in logistic regression model.

All factors have meaningful impacts on weather a customer can be identified as more valuable or less valuable for the business.

	coef
Age	0.0047
income	3.395e-06
n_dependants	0.1691
days_since_prior_order	-0.0540
fam_status_single	0.3963
Gender_Male	0.0806

 When customer are a bit older

 When customer has higher income level

 When someone has more dependents (like family members) When customer take shorter to make the second order

What is a

valuable

customer

like?

When customer is single

When customer is a male

Code Notebook

what I performed to find out the busiest days of the week and hours of the day

The initial dataset includes two columns: "order_dow," indicating the day of the week when a customer placed an order, and "order_hour_of_day," indicating the specific time of day when the order occurred.

user_id int64	order_hour_of_day i	days_since_prior
26711	16	22
33890	18	28
65803	9	16
125935	10	23

day_of_week object	time_period object	usercount int64
Friday	Afternoon	10333
Friday	Evening	3922
Friday	Morning	7115
Friday	Night	482

- Dataset Introduction
- Project Goals
- Executive Summaries
- Statistic and math behind

Data Merge

df_customers

	user_id int64	First Name object	Surnam object	Gender object	STATE object	Age int64
	€↓ Sorted asc ⊗					
134	1	Linda	Nguyen	Female	Alabama	31
318	2	Norma	Chapman	Female	Alaska	68
36	3	Janice	Fry	Female	Arizona	33
45	4	Bobby	Reed	Male	Arkansas	31
112	5	Janet	Lester	Female	California	75
100	6	Alice	Blevins	Female	Colorado	48
156	7	Peter	Villegas	Male	Connecticut	39
64	8	Anna	Allison	Female	Delaware	32
192	9	Nicole	Conrad	Male	District of Colum	79
106	10	Stephen	Oconnell	Male	Florida	34

df_orders

	order_id int64	user_id int64	eval_set object	order_number int64	order_dow int64	order_hour_of_day i
		≞↓ Sorted asc ⊗				
0	2539329	1	prior	1	2	8
10	1187899	1	train	11	4	8
9	2550362	1	prior	10	4	8
7	3108588	1	prior	8	1	14
6	550135	1	prior	7	1	9
8	2295261	1	prior	9	1	16
4	431534	1	prior	5	4	15
3	2254736	1	prior	4	4	7
2	473747	1	prior	3	3	12
1	2398795	1	prior	2	3	7
5	3367565	1	prior	6	2	7

How and Why merge?

Final dataset is merged on the shared column user_id of two data frames.

Blending customer shopping
 behaviors with their demographic
 details to uncover additional
 insights for identifying their values.

EDA Check List

Data Collection:

Collected from Kaggle, merged on the unique key from both data frames

Data Cleaning:

Identify and handle missing values, outliers, and any inconsistencies in the dataset.

Perform data removing for irrelevant data points

Descriptive Statistics:

Compute statistical summaries to gain an overall understanding of the data's central tendencies and variability.

Examine and visualized individual variables one at a time.

Feature Engineering:

Create binary variable for logistic regression Create aggregated variables for plot

EDA Check List

Data Cleaning:

Univariate Analysis:

Descriptive Statistics:

Summar	y Statistics:			
	user_id	Age	n_dependants	income \
count	206209.000000	206209.000000	206209.000000	206209.000000
mean	103105.000000	49.501646	1.499823	94632.852548
std	59527.555167	18.480962	1.118433	42473.786988
min	1.000000	18.000000	0.000000	25903.000000
25%	51553.000000	33.000000	0.000000	59874.000000
50%	103105.000000	49.000000	1.000000	93547.000000
75%	154657.000000	66.000000	3.000000	124244.000000
max	206209.000000	81.000000	3.000000	593901.000000
	order_number	order_dow	order_hour_of_	day days_since_prior_order
count	206209.000000	206209.000000	206209.000	000 206209.000000
mean	16.590367	2.773957	13.585	304 17.061782
std	16.654774	2.123616	4.221	405 10.672178
min	4.000000	0.000000	0.000	000 0.000000
25%	6.000000	1.000000	10.000	000 7.000000
50%	10.000000	3.000000	14.000	000 15.000000
75%	20.000000	5.000000	17.000	000 30.000000
max	100.000000	6.000000	23.000	000 30.000000

Feature Engineering:

user_status object	user_status_nume		day_of_week obj ✓	time_period object	usercount int64
		0	Friday	Afternoon	10333
Lless_value	0	1	Friday	Evening	3922
more_value	1	2	Friday	Morning	7115
more_value	1	3	Friday	Night	482
Lless_value	0	4	Monday	Afternoon	11272
_	1				« < F
more_value	1				

Statistical Analysis

The primary statistical analysis conducted in this study revolves around fitting a logistic regression model.

Explanation: The reason behind this approach is rooted in the column "total_order_number" in the dataset. This column can be split into binary values (1 for more valuable customers and 0 for less valuable customers). Subsequently, a logistic regression prediction is performed based on additional columns capturing customers' demographic information and shopping behaviors.

Statistical Analysis

Model Summary:

Due to significant p-value, factors have meaningful impacts on weather a customer can be identified as more valuable or less valuable for the business.

Model:

```
X = merged_df[['Gender','Age','fam_status','income','n_dependants','days_since_prior_order']]
y = merged_df['user_status_numeric']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
```

	coef	std err	Z	P> z	[0.025	0.975]
Age	0.0047	0.000	14.998	0.000	0.004	0.005
income	3.395e-06	1.58e-07	21.434	0.000	3.08e-06	3.71e-06
n_dependants	0.1691	0.006	29.196	0.000	0.158	0.180
days_since_prior_order	-0.0540	0.001	-99.963	0.000	-0.055	-0.053
fam_status_single	0.3963	0.015	27.103	0.000	0.368	0.425
Gender_Male	0.0806	0.011	7.087	0.000	0.058	0.103

Statistical Analysis

Model validation:

the model have moderate performance in prediction customer value

Small VIF indicates there is no multicollinearity among the predictor variables. the predictor variables are providing unique and independent information to the regression model.

AUC = 0.66 indicates the model is performing better than random guessing to distinct between the positive and negative classes in binary variable.

Confusion Matrix: [[8846 6220] [5516 11735]

The model correctly identified 11,735 cases as positive.

It correctly identified 8,846 cases as negative.

It incorrectly predicted 6,220 cases as positive when they were actually negative. It incorrectly predicted 5,516 cases as negative when they were actually positive.

Accuracy = 63%

Variable	VIF
const	23.615028
Age	1.287260
income	1.230264
n_dependants	1.953196
days_since_prior_order	1.000841
fam_status_single	2.012192
Gender_Male	1.000021

THANKS

Presented by Carol Yu