MATHEMATICS 1LS3 TEST 3

Day Class	E. Clements, M. Lovrić, O. Sanchez
Duration of Examination: 60 minutes	
McMaster University, 5 November 2014	
FIRST NAME	(please print):
FAMILY NAME	C (please print):
	Student No:

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	6	
2	6	
3	7	
4	7	
5	5	
6	6	
7	3	
TOTAL	40	_

1. Multiple choice questions: circle ONE answer. No justification is needed.

(a)[3] The slope of the tangent to the curve given implicitly by $xy^4 + \cos(\pi x) = 2$ at the point (1,1) is

- (A) $\pi/4$
- (B) $\pi/2$
- (C) 1

(D) -1

- (E) -1/4
- (F) -1/2
- (G) 1/2
- (H) 1/4

(b)[3] It is known that f(4) = 0 and f'(4) = 0. Which statements is/are true for all functions f(x) which satisfy these two conditions?

- (I) f(4) = 0 is a local (relative) minimum of f(x)
- (II) the tangent line to the graph of f(x) at x = 4 is y = 0
- (III) f(4) = 0 is a global (absolute) minimum of f(x) on the interval [-2, 0]
- (A) none
- (B) I only
- (C) II only
- (D) III only

- (E) I and II
- (F) I and III
- (G) II and III
- (H) all three

2. Identify each statement as true or false, or yes or no (circle your choice). You do not need to justify your answer.

(a)[2]
$$x = 0$$
 is a critical point (critical number) of the function $f(x) = \sqrt[3]{x}$.

TRUE FALSE

(b)[2] If
$$f(x) = \arcsin(e^x - x - 1)$$
, then $f'(0) = 1$.

TRUE FALSE

(c)[2] The formula
$$\lim_{h\to 0} \frac{e^{2+h}-e^2}{h} = e^2$$
 is correct.

YES NO

Questions 3-7: You must show work to receive full credit.

3. The graph of the **derivative** f' of a function f is given below.

Answer the following questions. In order to receive credit, you need to justify your answers. (a)[2] On which interval(s) is f decreasing?

(b)[2] On which interval(s) is f concave up?

(c)[3] At which value(s) of x does f have a maximum?

Name:______Student No.: _____

4. (a)[2] Find f'(1), if $f(x) = 2^{\ln x} + (\ln 5)^2$.

(b)[3] Let $h(x) = x \sin(f(x))$. The graph of f(x) is a line shown below. Find h'(5).

(c)[2] Find f'(0) if $f(x) = \ln \frac{ae^x + b}{ce^{-x} + d}$.

Name:	
Student No.:	

5. (a)[2] In the article Migration behaviour of grizzly bears in Northern British Columbia: contribution to a modelling approach. G. Brown et al, Bear Science 4 (June 2012), we find the formula

$$P(t) = \arctan(1.67t) + 4.71$$

where t represents time.

Next, we read "initially, $P(t) \approx 1.67t + 4.71$, which gives a linear relationship." Explain why this statement is correct. [Hint: Think in terms of the linear approximation at t = 0.]

(b)[3] The linear model for the ratio S of cancer cells surviving radiation treatment states that

$$S(x) = e^{-ax+b}$$

where a and b are constants and x is a radiation dose. This formula is sometimes simplified using a quadratic approximation near x = 0. Find that approximation.

6. (a)[2] The function $f(x) = x^2 e^{4x}$ has two critical points. Find them.

(b)[2] Give a statement of the Extreme Value Theorem. Make sure to clearly identify assumption(s) and conclusion(s).

(c)[2] Find the absolute maximum and the absolute minimum of the function $f(x) = x^2 e^{4x}$ on the interval [0, 1].

Name:	
Student No.:	

7. [3] The interstitial fluid pressure p at a location r mm from the centre of a tumour is given by

$$p(r) = 0.267p_i + \frac{2\sinh(0.4r)}{r}$$

where p_i is the atmospheric pressure (assumed constant). Searching Wikipedia, you found that $\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$.

Researchers claim that p is an increasing function of r when r > 2.5. Justify their claim.