Machine Learning - CSCI 5622

HW 1 - KNN

Santhanakrishnan Ramani

Friday 2nd September, 2016

Analysis

1. Relationship between the number of training examples and accuracy.

Data Limit	Accuracy
10	0.2553
100	0.6700
500	0.8311
1000	0.8758
5000	0.9401
10000	0.9544
20000	0.9629
25000	0.9669
50000	0.9727

Table 1: Assuming K=3

Table 1 shows that the accuracy increases with number of training examples, although the increase in the accuracy with respect to the sample is high initially, after a certain point the increase is gradual.

2. Relationship between K and accuracy

K	Accuracy
1	0.9712
2	0.9721
3	0.9727
4	0.9739
5	0.9711
6	0.9733
7	0.9708
8	0.9724
32	0.9587
256	0.9170
1024	0.8462
16384	0.2026
32768	0.0764
50000	0.0983

Table 2: Trained using Full Dataset

Table 2 shows that accuracy increases a little initially till K value is 4, then it starts to decrease as K increases. A little wobbling can be seen between adjacent K values, which could be attributed to the median function used for classification as it outputs few values not in the label sets when K is even.

3. Numbers that get confused with each other most easily

Form the confusion matrix, it's evident that the numbers {2,7}, {4,9}, {5,3}, {5,6}, {8,3}, {8,5}, {9,7} gets confused easily which can be attributed to the structural similarity of these numbers while writing.