DNA Sequencing, Mapping and Assembly

DAVID L. TABB, PH.D.

Overview

- Sequencing chemistry
- Base-calling errors: the Phred algorithm
- Mapping versus Assembly strategies
- Mapping via Burrows-Wheeler algorithm
- Assembly via k-mer graphs
- ■FASTQ, SAM/BAM, FASTA

DNA backbone structure

Sanger sequencing

- •Given a template, generate complementary sequence.
- After dideoxynucleotide is incorporated, no more extension is possible.
- •Fragment ladder is separated through electrophoresis.

Massively parallel sequencing

- Detects nucleotide incorporation during DNA strand synthesis for millions of templates
- Base detection and strand synthesis typically differentiate competing technologies.

How it works:

- Separate millions of single-stranded DNA templates
- •Fix the templates' location on a substrate & amplify
- Detect the incorporation of each base in each location

Sequencing jargon

- A "template" is a piece of DNA to be sequenced, often ends of an "insert."
- A "read" is a sequence corresponding to a single template, output by sequencer.
- "Shotgun sequencing" generates reads at random locations in the target DNA.
- "Fold coverage" divides the sum of read lengths by the target DNA length.

Old sequencing versus new

- Sanger sequencing typically produces longer reads (600 bp versus 150 bp).
- Sanger sequencing produces more accurate base calls for individual reads, but massively parallel sequencing overlaps many reads for each position.
- •Massively parallel sequencing produces sequence from an incomparably larger number of templates in each experiment (millions rather than tens).

Electropherogram output

Model 377 Version 3.0 SemiAdaptive Version 3.0 Uu3 HHH-4348 x 11055-18 Uu3 HHH-4348 x Lane 6

Signal G:56 A.68 T:41 C.60 DTBigD yes{E Set-AnyPrimer} Zebra dRhod Matrix Points 1105 to 14760 Base 1:1105 Page 1 of 2 Tue, Oct 7, 1997 5:10 PM Wed, Jul 16, 1997 4:11 PM Spacing: 13.81{13.81}

Phred: estimate basecalling errors

- Infer sequence from electropherogram
- •Associate each basecall with a probability of error for this letter.
- A good basecall has these properties:
 - ■Peak matches the "beat" of its neighbors.
 - Only one trace is concave down at this call.
 - Highly-probable errors are far away.

B Ewing et al. *Genome Res.* (1998) 8: 175-185.

B Ewing et al. *Genome Res.* (1998) 8: 186-194.

Fourier Transforms shift signal to sums of frequencies

- •FTs decompose signals in time to frequencies.
- •FTs are ubiquitous for recognizing frequencies.
- •MP3 encoding uses FT to compress music.
- Sequencing requires that we recognize frequencies of base calls.

Aligning observed and predicted peaks

Observed locations

Negative log scores help differentiate rare events

- P = probability of base call error, ranging
 from 0 to 1. Proximity to zero matters a lot.
- $Q = -10 \log_{10} P$
- ■If P=.01 (1E-2) (1%) Q=20.
- ■If P=.001 (1E-3) (0.1%) Q=30.
- ■If P=.0001 (1E-4) (0.01%) Q=40.
- •Q is the "Phred score."

FASTQ: the output from DNA sequencers

- ■Line1: '@' followed by a record identifier
- Line2: Sequencing read base calls
- •Line3: '+' means next line is quality scores
- ■Line4: Phred scores, from '!' to '~'; A=32
- A FASTQ typically contains millions of reads and requires compression (.fastq.gz or .fastq.bz2)

FASTQC

UNIVERSITEIT STELLENBOSCH UNIVERSITY

www.bioinformatics.babraham.ac.uk

Intermission

Two chief uses for reads: *Mapping* and *Assembly*

MAPPING

- Determines where each read matches to the annotation
- Basis for exome /WGS variant calling

ASSEMBLY

- Infers large "contig" regions from overlapping reads
- Necessary for nonmodel organisms and for unmapped reads

Why emphasize *mapping*: aligning short reads to reference?

- •Assembling reads de novo is timeconsuming and relatively error-prone.
- •Recognition of sequence variants is easier when annotation provides typical sequence.
- Short read massively parallel sequencers
 (e.g. Illumina) produce >100 Gbp per day.
- •QC, trimming and alignment are assumed for many downstream tools.

Burrows-Wheeler Transform prepares a genome index.

- A suffix array shows all truncations from 5' of sequence.
- ■The array of suffixes is sorted.
- •BW transform stores the letter preceding truncated sequence and where it appears in original.

Suffix array of GATGCGAGAGATG

http://blog.thegrandlocus.com/2016/07/a-tutorial-on-burrows-wheeler-indexing-methods

The index from BWT can be traversed like a tree

If mismatches are allowed, traversal takes longer!

BAM files: Sequence Alignment Maps, in binary

HEADER containing metadata (sequence dictionary, read group definitions etc.) **RECORDS** containing structured read information (1 line per read record)

https://gatk.broadinstitute.org/hc/en-us/articles/360035890791-SAM-or-BAM-or-CRAM-Mapped-sequence-data-formats

MAPQ is mapping quality; CIGAR reflects diffs versus annotation. Mate Info relates paired-end sequences. Basecall PHRED scores are given in single-character format (ASCII-33 through 126).

Sequence Assembly

Why do we need assembly?

- •We have millions of short reads, but we need scaffolds, ideally one per chromosome.
- ■Even if we map our reads to an annotation, many *unmapped reads* may not align to our selected reference annotation.
- •We may work in a non-model organism that lacks a reference genome annotation!

Assembly definitions

- A *contig* is a contiguous length of genomic sequence in which the order of bases is known to a high confidence level.
- Scaffolds are composed of contigs and gaps.
- •Within a scaffold, the ordering and orientation of contigs with respect to each other has been established.

Assembly builds long sequences from many short ones

Paired End Sequencing

Shotgun sequencing of genomes

Given millions of reads of 100 nucleotides, assemble contigs of overlapping sequences. Determine which contigs are neighbors.

Figure courtesy of Jared Roach

Noncoding DNA

ARACHNE assembler: The danger of assembling repeats

- The same repeat appears between genes A and B and between C and D.
- If these two repeats are treated as one sequence, neither upstream nor downstream genes will assemble correctly.

Initial assemblers: Overlap-Layout-Consensus

Each read (a) is a vertex in overlap graph (b). Edges represent overlap.

Old assemblers sought *Hamiltonian Path*, visiting every vertex once. This is *NP-complete*.

Making a "k-mers" catalog

- •Create a sorted list of all k bp sequences along with their positions within reads.
- ■Exclude high-count *k*-mers as repeats.
- Overlapping reads will share k-mers unless:
 - Overlap is less than k in length
 - Base calling errors obfuscate overlap

k-mer traversal yields contig

TGGTTTTGATTATTTGCTGGTTGCC **GGTTTTGATTATTTGCTGGTTGCCA** GTTTTGATTATTTGCTGGTTGCCAA TTTTGATTATTTGCTGGTTGCCAAA TTTGATTATTTGCTGGTTGCCAAAC TTGATTATTTGCTGGTTGCCAAACA TGATTATTTGCTGGTTGCCAAACAT GATTATTTGCTGGTTGCCAAACATC

k-mers of 25bp

Contig of 32bp

TGGTTTTGATTATTTGCTGGTTGCCAAACATC

Eulerian path through de Bruijn graph visits each edge once

Paired reads enable contig linking

If two separate contigs contain each end of a particular insert, those contigs are near each other.

R

A set of neighboring contigs is a *scaffold*.

N50: how "chopped up" is my assembly?

- Sort contigs from big to small. Stack them.
- ■N50 is size of contig at half of length sum.

FASTA "Database" Format

```
>ENSP00000396333.1 pep chromosome:GRCh38:1:154963677:154966490:-1 gene:ENSG00000160691.18 transcript:ENST00000444664.5 gene_symbol:SHC1 description:SHC adaptor protein 1 [Source:HGNC Symbol;Acc:HGNC:10840] XDEEEEEPPDHQYYNDFPGKEPPLGGVVDMRLREGAAPGAARPTAPNAQTPSHLGATLPV GQPVGGDPEVRKQMPPPPPCPGRELFDDPSYVNVQNLDKARQAVGGAGPPNPAINGSAPR DLFDMKPFEDALRVPPPPQSVSMAEQLRGEPWFHGKLSRREAEALLQLNGDFLVRESTTT PGQYVLTGLQSGQPKHLLLVDPEGVRWGFAMLPKLFLNSRAQVIRLPRPPRVLGLQARTT MPSLHIFFCTVYTLLRHANFLQVKKGVYSSQLHSFRADVAFAFSHFTDLSIPTTVSF
```

- •Line 1: '>' + accession + whitespace + description
- Following lines: sequence

Closing thoughts

- Phred helps us to evaluate each basecall.
- •Mapping aligns reads to existing annotation; assembly builds long sequences from reads.
- Mapping speeds increase dramatically when a BWT-based index is available.
- ■De novo assembly starts with a k-mer catalog and seeks a Eulerian path through it.