Insper

Sistemas Hardware-Software

Aula 1 - Introdução + Inteiros na CPU

Ciência da Computação

Carlos Menezes <carlosedm@insper.edu.br>

Professor

Carlos Eduardo Dantas de Menezes

Aulas

- Aulas
 - Quartas, 15h45 às 17h45
 - ●Sextas, 15h45 às 17h45

Atendimento

- Presencial: Sala 513
 - ●Sextas, 14h15 às 15h45

Hoje

- Resumo rápido do curso
- Inteiros na CPU

Critérios para Avaliação

Exercícios práticos (atividades e labs)

- Série de exercícios práticos de implementação
- Complexidade crescente
- Testes automatizados quando possível
 - Facilitar correção
 - Criar espaços para conversar da matéria

Exercícios práticos (entrega)

- Github classroom
 - Testes automatizados para alguns exercícios
 - Ver link e tutorial em Conteúdos (Blackboard) para cadastro

Avaliação

• Média Final (MF) se cumpridas as condições:

A: Atividades (atv)

PI: prova intermediária

PF: prova final

L: laboratórios (labs)

C: prova mutirão C

Média Final (MF) se NÃO cumpridas as condições:

$$MF = min(A, PI, PF, L, C)$$

• Condições:

Avaliação (DELTA provas)

- 1. Aluno faz uma nova prova PD no dia da SUB relativa a avaliação em que tirou nota menor que 4.
- 2. Critério de barreira de provas é cumprido se PD >= 5.

Ferramentas

- ●GCC 9.3 (ou superior) -- C99
- ●Linux (Preferencialmente ubuntu 22.04)
- ●PC x86-64

Não há suporte a outros sistemas. Instalem direto ou usem uma VM. Se usar VM, veja se funciona com proctorio.

Resumo do curso

Objetivo de Sistemas Hardware-Software

Entender como um programa roda em um PC

- Representação de dados na memória
- Linguagem Assembly x86 (processadores Intel e AMD)
- Sistemas Operacionais (Linux)
 - programas, processos
 - entrada/saída

Aula!

O que é isto?!

Representação de inteiros na CPU

Bits e Bytes

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Bits e Bytes

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Bits e Bytes

Agrupamos 8 bits em 1 byte

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Inteiros (decimal)

Número **9153**

Inteiros (decimal)

Número **9153**

$$9000 + 100 + 50 + 3 = 9 \times 10^3 + 1 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$$

- 1. Cada dígito multiplica uma potência de 10
- 2. O dígito mais significativo é 9 (multiplica a maior potência)
- 3. O dígito menos significativo é 3 (multiplica a menor potência)

Inteiros (binário)

Número **1010011** (base 2)

Inteiros (binário)

Número **1010011** (base 2)

$$2^6 + 2^4 + 2^1 + 2^0 = 83$$
 (base 10)

- 1. Cada dígito multiplica uma potência de 2
- 2. O dígito mais significativo é 1 (multiplica a maior potência)
- 3. O dígito menos significativo é 0 (multiplica a menor potência)

Conversão Binário -> Decimal: Exercício

Converta o número abaixo para decimal

1100 0010

Conversão Decimal -> Binário

Fazemos agora o caminho inverso: dividimos sucessivamente por 2 e guardamos o resto

75 (base 10)

Conversão Decimal -> Binário: Exercício

Agora é sua vez:

165

Conversão Decimal -> Binário

Forma bônus:

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	
2	short	
4	int	
8	long	

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	256
2	short	65536
4	int	2 ³²
8	long	2 ⁶⁴

Inteiros sem sinal

Representação para números positivos somente (modificador unsigned)

Tamanho em bytes	Tipo em C	Menor número	Maior Número
1	char	0	
2	short	0	
4	int	0	
8	long	0	

Inteiros sem sinal

Representação para números positivos somente (modificador unsigned)

Tamanho em bytes	Tipo em C	Menor número	Maior Número
1	char	0	255
2	short	0	65535
4	int	0	2 ³² - 1
8	long	0	264 - 1

Inteiros com sinal (Complemento de dois)

Dado um inteiro $\mathbf{b_2}$ com \mathbf{w} bits, seu valor em decimal é

$$b_{10} = -2^{w-1}b_{w-1} + \sum_{i=0}^{w-2} 2^{i}b_{i}$$

- 1. Somamos todos os bits normalmente
- 2. Menos o último, que ao invés de somar subtrai

Inteiros com sinal (Complemento de dois)

Na notação em complemento de dois, o dígito mais à esquerda é utilizado para representar o sinal: em um número negativo, ele é 1, e num número positivo, é 0.

Um algoritmo para representar um número negativo em binário:

- 1) Escreva o módulo (positivo) do valor em binário.
- 2) Inverta todos os bits.
- 3) Some 1 ao resultado.

Inteiros com e sem sinal

Qual o valor de 0100 0101 (base2) em base 10?

Sem sinal:

Com sinal:

Inteiros com e sem sinal

Qual o valor de 0100 0101 (base2) em base 10?

Sem sinal:

$$2^6 + 2^2 + 2^0 = 71$$
 (base 10)

Com sinal:

$$2^6 + 2^2 + 2^0 = +71$$
 (base 10)

Inteiros com e sem sinal - Exercício

Qual o valor de 0101 1010 (base2) em base 10?

Sem sinal:

Inteiros com e sem sinal

Qual o valor de 11 0001 (base 2)?

Sem sinal:

Inteiros com e sem sinal

Qual o valor de 11 0001 (base 2)?

Sem sinal:

$$2^5 + 2^4 + 2^0 = 49$$
 (base 10)

$$-2^5 + 2^4 + 2^0 = -32 + 17 = -15$$
 (base 10)

Inteiros com e sem sinal - Exercício

Qual o valor de 1 0101 0001 (base 2)?

Sem sinal:

Os dois números abaixo são o mesmo? Se não qual o bit diferente?

1001110011101110

1001110111101110

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Objetivo: facilitar a leitura de números binários

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Ideia:

- agrupar 4 em 4 bits em um dígito que vai de 0 a 15
- letras para os dígitos maiores que 10

Binário	Hexa	Binário	Hexa
0000	0×0	1000	0x8
0001	0×1	1001	0×9
0010	0×2	1010	0xA
0011	0×3	1011	0xB
0100	0×4	1100	0xC
0101	0×5	1101	0xD
0110	0×6	1110	0xE
0111	0×7	1111	0xF

Exercício

Converta para binário: 0xDE9 (base 16)

Converta para hexadecimal: 1100 1110 0011 1010 (base 2)

Exercício

Converta para binário: 0xDE9 (base 16)

1101 1110 1001 (base 2)

Converta para hexadecimal: 1100 1110 0011 1010 (base 2)

0xCE3A (base 16)

Conversões de tipos

Conversões de tipos inteiros

Duas regras:

- 1. O valor é mantido quando convertemos de um tipo menor para um tipo maior
 - char -> int
- 2. A conversão de um tipo maior para um tipo menor é feita pegando o X bits menos significativos
 - int -> char pega os 8 bits menos significativos, o restante é descartado

Conversões de tipos inteiros - sinal

Atividade prática

Conversão de números: bases e sinal

- 1. rodar programa bases_e_sinais
- 2. colocar sua solução em solucao.txt
- 3. verificar se tudo está ok rodando

./bases e sinais < solucao.txt</pre>

Atividade Extra (Não será cobrada)

Atividade extra para os curiosos!

Pesquise como o computador representa números reais. Qual o padrão utilizado?

Git

https://insper.github.io/SistemasHardwareSoftwareBCC/

https://github.com/Insper/SistemasHardwareSoftwareBCC

Insper

www.insper.edu.br