Método de diferencias divididas

El método de diferencias divididas se utiliza para aproximar una función f(x) en un conjunto de puntos $x_0, x_1, ..., x_n$. La idea básica detrás del método es que podemos construir un polinomio interpolante que pase por los puntos dados utilizando las diferencias divididas de la función f(x).

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \dots (x - x_n)$$

Método de diferencias divididas (continuación)

Las diferencias divididas se definen como:

$$f[x_0] = f(x_0)$$

$$f[x_1, x_0] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

$$f[x_2, x_1, x_0] = \frac{f[x_2, x_1] - f[x_1, x_0]}{x_2 - x_0}$$

$$f[x_n,...,x_0] = \frac{f[x_n,...,x_1] - f[x_{n-1},...,x_0]}{x_n - x_0}$$

Algoritmo Diferencias divididas

x	f(x)	First divided differences	Second divided differences	Third divided differences
τ ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
r ₁	$f[x_1]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_1 - x_1}$	$f[x_0, x_1, x_2, x_3] = f[x_1, x_2, x_3] - f[x_0, x_1, x_2, x_3] - f[x_0, x_1, x_2, x_3] - f[x_0, x_1, x_2] - f[x_0, x_1, x$
τ ₂	$f[x_2]$	72 71		
r ₃	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_1 - x_2}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_4]}{x_4 - x_1}$
τ ₄	$f[x_4]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_5}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_5]}{x_5 - x_2}$
4	J [34]	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$	$x_5 - x_3$	
r ₅	$f[x_5]$			

Figure: Diferencias divididas, Burden, R. L., Faires, J. D., Burden, A. M. (2017). Análisis numérico (10a. ed.).

Algoritmo Diferencias divididas

Newton's Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1) distinct numbers x_0, x_1, \ldots, x_n for the function f:

INPUT numbers $x_0, x_1, ..., x_n$; values $f(x_0), f(x_1), ..., f(x_n)$ as $F_{0,0}, F_{1,0}, ..., F_{n,0}$

OUTPUT the numbers $F_{0,0}, F_{1,1}, \ldots, F_{n,n}$ where

$$P_n(x) = F_{0,0} + \sum_{i=1}^n F_{i,i} \prod_{j=0}^{i-1} (x - x_j).$$
 $(F_{i,i} \text{ is } f[x_0, x_1, \dots, x_i].)$

Step 1 For
$$i = 1, 2, ..., n$$

For $j = 1, 2, ..., i$

$$set F_{i,j} = \begin{cases} F_{i,j-1} - F_{i-1,j-1} \\ x_i - x_{i-i} \end{cases}$$

$$(F_{i,j} = f[x_{i-j}, \dots, x_i].)$$

Step 2 OUTPUT
$$(F_{0,0}, F_{1,1}, \dots, F_{n,n});$$

STOP.

Figure: Diferencias divididas, Burden, R. L., Faires, J. D., Burden, A. M. (2017). Análisis numérico (10a. ed.).

Método de diferencias divididas (Ejemplo)

Una vez que se han calculado las diferencias divididas, podemos construir el polinomio interpolante utilizando la siguiente fórmula:

$$P_n(x) = f[x_0] + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1) + \dots$$
$$+ f[x_n, \dots, x_0](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Aquí hay un ejemplo de cómo se puede utilizar el método de diferencias divididas para aproximar la función $\sin(x)$ en el intervalo $[0, \pi/2]$:

Método de diferencias divididas (Ejemplo)

Supongamos que queremos aproximar la función $\sin(x)$ en los puntos x=0, $\pi/4$ y $\pi/2$. Primero calculamos las diferencias divididas:

$$f[0] = \sin(0) = 0$$

 $f[\pi/4] = \sin(\pi/4) = \sqrt{2}/2$

$$f[\pi/2] = \sin(\pi/2) = 1$$

Método de diferencias divididas (continuación)

$$f[\pi/4,0] = \frac{f[\pi/4] - f[0]}{\pi/4 - 0} = \frac{\sqrt{2}}{2\pi}$$
$$f[\pi/2, \pi/4, 0] = \frac{f[\pi/2, \pi/4] - f[\pi/4, 0]}{\pi/2 - 0} = \frac{4\sqrt{2}}{3\pi}$$

Luego construimos el polinomio interpolante:

$$P(x) = 0 + \frac{\sqrt{2}}{2\pi}(x-0) + \frac{4\sqrt{2}}{3\pi}(x-0)(x-\pi/4)$$

Podemos usar este polinomio para aproximar la función $\sin(x)$ en cualquier punto del intervalo $[0, \pi/2]$.