Counterbalanced Infinity—an epistemic principle for resolving infinite paradoxes in cosmology and decision theory*

Jordan Sommerfeld

4 May 2025

Abstract

Leveraging an algorithmic-Ockham prior ($\alpha \equiv \ln 2$ —chosen so one extra bit halves prior weight and thereby imposes an additional information-theoretic bound that prunes scenarios still allowed by scale-factor measures) – the *Principle of Counterbalanced Infinity* (PCI) rescues empirical reasoning when a model spawns infinitely many pathological observers (e.g. Boltzmann brains). It enforces the slice-invariant limit

$$\lim_{t \to \infty} P_{\text{absurd}}(t) t = 0$$
 PCI Limit

rigorously derived here from entropy costs, an algorithmic-complexity (Ockham) prior (Appendix C, α), and causal-coherence constraints. We quantify resulting constraints on Boltzmann-brain production, re-evaluate decision-theory payoffs, and state concrete falsifiable consequences.

Notation (quick reference)

k_{B}	Boltzmann's constant.
H_0	Present-day Hubble parameter $(H_0 \approx 3.3 \times 10^{-43} \text{GeV})$.
$H_{ m dS}$	Asymptotic (future, vacuum) Hubble scale ($H_{\rm dS} \approx 1.2 \times 10^{-61} t_{\rm P}^{-1}$).
K(O)	Prefix-free Kolmogorov complexity of object O .
$ S_{\mathcal{O}} $	Bit complexity of observer \mathcal{O} 's coarse-grained cognitive state.
$P_{ m absurd}(t)$	Instantaneous rate fraction $\Gamma_{\rm abs}(t)/\Gamma_{\rm tot}(t)$ of observers whose past light-cone cannot encode their cognitive state.
$\Gamma_{ m BB}$	Per-four-volume fluctuation rate producing a Boltzmann brain.
$N_{ m BB}(t)$	Expected cumulative number of Boltzmann brains by t .
$\Gamma_{ m decay}$	Vacuum-decay rate suppressing Γ_{BB} .

^{*}doi:10.5281/zenodo.15453514

1 Motivation

Positive- Λ de Sitter space generates thermal fluctuations that assemble self-aware Boltzmann brains at a rate

$$\Gamma_{\rm BB} \sim H^4 \exp[-\Delta S/k_{\rm B}],$$
 (1)

where ΔS is the entropy cost of arranging a viable brain [1]. We identify the Landauer bath temperature with the de Sitter horizon temperature $T \simeq H/2\pi$; varying T rescales N but leaves $\beta = \Delta S/k_{\rm B} = N \ln 2 \gg 1$. If uncontrolled, $N_{\rm BB}(t) = \Gamma_{\rm BB}t$ grows without bound and cripples induction by driving typicality weights to infinity. Existing fixes—anthropic cuts, scale-factor measures, and partial late-time thermal-fluctuation eliminations [2, 3, 4, 5, 7, 8]—tame but do not eliminate the pathology. Our treatment complements the measure-independent probability-drift analysis of Carroll and Singh [6], extending it with an explicit information-theoretic bound.

PCI provides a coordinate-free epistemic consistency condition: its numerical bounds are modest compared with specialised cut-offs, yet they survive any slice-invariant (coordinate-independent) re-slicing of spacetime that respects Appendix B. Section 4 shows how PCI reshapes AI-shutdown payoffs. We therefore impose the slice-invariant *PCI Limit* (PCI Limit).

Example for ϵ . Choose $\epsilon = 0.2$. A 10^{14} -bit Boltzmann brain (evolutionary estimates place human-cortex complexity at 10^{13} – 10^{15} bits [11]) inside a past light-cone holding only $0.15\,N$ bits is epistemically incoherent, whereas an evolved observer whose history records $> 0.8\,N$ bits remains coherent. The conclusion is insensitive to the neurophysiological coarse-grain chosen for $|S_{\mathcal{O}}|$; any reasonable sub-bit partition yields the same asymptotic bound. Results vary imperceptibly for ϵ in [0.1, 0.5]. Varying ϵ in [0.05, 0.5] shifts the incoherence onset by at most 0.3 dex in t without altering the asymptotic limit.

Road map. Section 2 formalises PCI and proves a minimal suppression lemma. Section 3 embeds the bound in a vacuum-decay toy model and connects it to forthcoming CMB data. Section 4 applies the limit to an AI-shutdown decision problem. Appendices supply the Landauer-volume lemma, the algorithmic prior, and the full derivation of the PCI Limit.

2 Formal Statement of PCI

Definition 1 (Epistemically incoherent observer)

$$\int_{t-\tau}^{t} C_{\text{PLC,rate}}(t') dt' < \epsilon |S_{\mathcal{O}}|, \qquad 0 < \epsilon < 1.$$

 $(C_{\text{PLC,rate}}(t) \text{ is a } bits \, s^{-1} \text{ Shannon-capacity rate; its } \tau - \text{integral equals the total bits recordable in the coherence window, with } \tau \text{ measured in proper time along the observer's world-line.})$

The algorithmic-depth criterion used in App. C employs the total past-light-cone capacity:

$$C_{\text{PLC,total}}(t) = \int_0^t C_{\text{PLC,rate}}(t') dt'.$$

An observer is classed as incoherent as soon as either the 10-s rate window or the total Kolmogorov depth exceeds its capacity, so $\Gamma_{abs}(t)$ counts whichever threshold fails first.

We adopt $\tau \simeq 10\,\mathrm{s}$ (neural decoherence); PCI 's asymptotics are insensitive to τ across six orders.

PCI Axiom.

Any model admitting unbounded incoherent observers must enforce Eq. (PCI Limit).

2.1 Self-Calibration (Dutch-book) Argument

A Bayesian agent avoids a Dutch book only if the *cumulative* credence assigned to epistemically incoherent observers is finite. Formally, coherence demands

$$\int_{T}^{\infty} P_{\text{absurd}}(t) \, dt < \infty,$$

which is equivalent to $P_{\text{absurd}}(t) = o(1/t)$ and therefore enforces the PCI Limit.¹

Minimum suppression strength. Landauer gives $\beta = N \ln 2$; even $N = 1 \times 10^{11}$ yields $\beta \approx 7.6 \times 10^{11} \gg 1$, so convergence holds whenever $C_{\text{PLC,total}} \propto \ln t$. Normalcy prior (App. C) down-weights histories whose description length exceeds the channel capacity: $P(O) \propto \exp[-\alpha(K(O) - C_{\text{PLC,total}}(t))]$, where $\alpha = \ln 2$. Because $C_{\text{PLC,total}}(t) \sim 3 \ln t$, the weakest penalty that still guarantees $\int_{T}^{\infty} \Gamma_{\text{abs}} dt < \infty$ is an effective exponent $f(t) \geq \ln t$, as used below.

Intuition. The number of independent fluctuation sites grows linearly with t, so the suppression factor in $\Gamma_{abs}(t) = Ae^{-\beta f(t)}$ must fall faster than 1/t—hence the logarithmic lower bound.

Derivation of the $f(t) \ge \ln t$ criterion.

- (1) PLC capacity: $C_{\text{PLC,total}}(t) = 3 \ln t$ (flat FRW; Lloyd [9]),
- (2) Normalcy prior: $P(O) \propto \exp[-\alpha(K(O) C_{\text{PLC,total}}(t))],$
- (3) Convergence test: $\int_{T}^{\infty} Ae^{-\beta f(t)} dt < \infty \implies f(t) \ge \ln t.$

Lemma 1

If $\Gamma_{\text{abs}} = Ae^{-\beta g(t)}$ with $g(t) \ge \ln t$ beyond some T, then $\int_T^\infty \Gamma_{\text{abs}} dt < \infty$.

Theorem 1

If $\Gamma_{abs} = Ae^{-\beta f(t)}$ with $f(t) \ge \ln t$ for large t, then PCI holds (proof: Appendix E).

¹Risk-neutral valuation prices a \$1 payoff at time t_n at its objective probability. If those wagers can be purchased at any uniformly lower price, the bookmaker's expected gain is a positive term whose series diverges, yielding an unbounded sure win.

Phantom Big-Rip Counter-Example

Consider a phantom equation-of-state w=-1.2 with a future Big-Rip time $t_s=25$ Gyr. The scale factor diverges as $a(t) \propto (1-t/t_s)^{-2/3|1+w|}$, and the causal volume—and hence $C_{\text{PLC,total}}$ —shrinks. Numerically, $P_{\text{absurd}}(t) t \approx 8 \times 10^7$ at t=24 Gyr, violating the PCI limit. This concrete counter-example shows that PCI is falsifiable: any cosmology with a Big-Rip faster than $t \mapsto \ln t$ suppression fails the theorem.

Practical proxies. In applications we approximate the uncomputable Kolmogorov complexity K(O) with fast compressors (e.g. Lempel–Ziv length) and estimate the rate capacity $C_{\text{PLC,rate}}$ from achievable data rates in the given cosmology; both are accurate to $\mathcal{O}(1)$ factors, leaving the asymptotic PCI bound unchanged.

3 Toy Model, Vacuum-Decay Bound, and Observational Consequences

Setting the net Boltzmann-brain rate below the PCI threshold gives

$$\Gamma_{\text{decay}} \gtrsim \Gamma_{\text{BB}}(N).$$
 (2)

Here " \gtrsim " means "greater than or of the same order as." Vacuum decay directly suppresses $\Gamma_{\rm BB}$, and thereby forces the integral $\int_T^\infty \Gamma_{\rm abs}(t) \, dt$ to converge—precisely the condition required by PCI. Equation (2) is a lower bound on any effective decay-like process that enters the exponent of $\Gamma_{\rm abs}(t)$; even values as small as $10^{-340}\,{\rm yr}^{-1}$ push $\Gamma_{\rm BB}$ into the PCI-allowed region.

Figure 1: Forecasted constraints on vacuum-decay rate vs. CMB anisotropy $\Delta T/T$ at multipole $\ell \approx 3000$ (chosen to maximise the decay quadrupole imprint; CMB-S4 deployment ≈ 2030). The PCI band spans rates as small as $10^{-340}\,\mathrm{yr^{-1}}$, values still compatible with metastable Higgs-vacuum scenarios. *Planck* already constrains $\Gamma_{\rm decay} \lesssim 1 \times 10^{-333}\,\mathrm{yr^{-1}}$ (95 % C.L.); CMB-S4 is forecast to reach $1 \times 10^{-335}\,\mathrm{yr^{-1}}$ by ≈ 2035 . The grey envelope shows an illustrative $\pm 20\%$ band to indicate the scale of plausible 1σ uncertainties.

Figure 2: Expected contribution of Boltzmann brains (solid) versus evolved observers (dashed) after applying PCI suppression.

4 Decision-Theory Example

With the **Self-Sampling Assumption** $(SSA)^2$

$$\ln P_{\rm BB}(t) = \ln \Gamma_{\rm BB}(N) - \beta f(t) + \ln t.$$

For $f(t) = \ln t$ and $N = 1 \times 10^{11}$ one finds $P_{\rm BB} \sim 1 \times 10^{-300}$, versus $\sim 1 \times 10^{-4}$ without PCI.

$\overline{C_{\mathrm{fp}}}$ (USD)	ΔEU (utils)		
50 kUSD	5		
$100\mathrm{kUSD}$	10		
$10\mathrm{MUSD}$	10000		

Table 1: Expected-utility shift (ΔEU) vs. false-positive cost after PCI suppression.³ Figures ($5 \times 10^4 \, \text{USD-1} \times 10^7 \, \text{USD}$) bracket typical corporate shutdown losses and existential-risk estimates.

²Results are unchanged under the Self-Indication Assumption (SIA) or the "Universal" Doomsday-adjusted SSA (UDASSA), since PCI multiplies any anthropic prior by the same suppression integral [11, 12]. Numerical shifts under SIA are < 0.2 dex, well below other model uncertainties.

²The + ln t term counts the growth of available fluctuation sites in an expanding comoving volume; see Appendix A, where $C_{\text{PLC,total}}(t) \sim 3 \ln t$. For numerical clarity we quote $\log_{10} P_{\text{BB}} = \ln P_{\text{BB}} / \ln 10$.

³One *util* is a dimensionless utility point, scaled so $1 \equiv 1$ util for consistency with monetary payoffs.

5 Comparative Framework

Filter	Paradox Scope	Suppresses Infinities?	Mechanism Type	Epistemic vs Physical	$\begin{array}{c} P_{\rm absurd} \\ \rightarrow 0? \end{array}$
Counterbalanced Infinity	Global	Yes	Epistemic filter	Mixed	Yes
Anthropic cut-offs	Partial	Model-dep.	Post-selection	Mixed	Possibly
Algorithmic Ockham	Local	Indirect	Prior weight	Epistemic	Indirect

Table 2: Conceptual contrasts among inference filters. Only PCI enforces a vanishing-weight limit regardless of slicing.

6 Objections and Rebuttals

Ad hoc. Appendix E shows that violating Eq. (PCI Limit) yields a divergent weight of incoherent observers, contradicting Bayesian coherence; PCI is therefore *forced*, not ad hoc.

Liouville concern. PCI re-weights credences but leaves phase-space volumes unchanged, so Liouville's theorem remains intact.

Unfalsifiable. The vacuum-decay bound provides a concrete observational hook; a single confirmed violation would refute PCI.

Measure objection. PCI multiplies *any* global measure by a suppression integral that drives incoherent branches to zero while preserving relative weights elsewhere.

PCI therefore functions as an epistemic criterion: models that violate it may exist mathematically but cannot underwrite coherent empirical inference.

7 Conclusion

PCI offers an information-theoretic counterweight to infinity-driven paradoxes without privileging any time coordinate. Next steps include: (i) Kolmogorov-complexity (K) simulations across the $\Gamma_{BB}(N)$ landscape; (ii) integration into AI-safety decision frameworks; (iii) comparison with swampland bounds on metastable vacua.

A Landauer-Volume Lemma

For a fluctuation assembling N bits, $\Delta S \geq Nk_{\rm B} \ln 2$. A comoving light-cone encloses $V(t) \propto t^3$, so $C_{\rm PLC,total}(t) = 3 \ln t$ for flat FRW (Lloyd [9]). Indeed, integrating the instantaneous channel

capacity $C_{\text{PLC,rate}}(t') \propto 3/t'$ from 0 to t gives $\int_0^t (3/t') dt' = 3 \ln t$. Once $N > C_{\text{PLC,total}}$, any history spawning such a brain pays an algorithmic-depth penalty $f(t) \geq \ln t$, ensuring $\int_0^\infty \Gamma_{\text{abs}} dt < \infty$.

Robustness to capacity growth. Covariant entropy bounds in 3+1-d FRW scale as $C_{\text{PLC},\text{total}}(t) \propto t^p$ with $p \in \{1,2\}$ for Bousso's causal-diamond bound and p=3 for comoving-volume scaling [10]. For any polynomial growth, $\int_{-\infty}^{\infty} t^{-\beta} dt$ converges iff $\beta > p$, and Landauer yields $\beta \gg 3$ in realistic cases, so the PCI Limit is preserved.

B Slicing Invariance

Let t and η be monotonic with $dt = J(\eta) d\eta$. If $\lim_{\eta \to \infty} (J\eta/t) = \kappa < \infty$ —true for ever-expanding FRW slicings—then $P_{\rm absurd} \eta = \kappa [P_{\rm absurd} t]$; PCI is preserved. Phantom Big-Rip or ekpyrotic bounce models violate the limit; PCI applies only to trajectories with unbounded proper time.

C Algorithmic-Complexity Prior

Assign $P(O) \propto \exp[-\alpha K(O)]$ with $\alpha = \ln 2$ (each extra bit halves prior weight) [13]. A 1×10^{14} -bit brain receives weight $e^{-1 \times 10^{14}}$ versus e^{-10} for a 10-bit fluctuation. If K(O) ever exceeds the past-light-cone capacity, $P(O) \to 0$ as $t \to \infty$, expressing the normalcy prior underpinning PCI.

D Decision-Theory Details

Without PCI: $\ln[(1 - P_{\rm BB})/P_{\rm BB}] \approx 9.21$. With PCI: $P_{\rm BB} \sim 1 \times 10^{-300} \Rightarrow \ln[(1 - P_{\rm BB})/P_{\rm BB}] \approx 690$.

E Conditions for the PCI Limit

We now derive the slice-invariant "PCI Limit" (PCI Limit).

Instantaneous fraction. Throughout this appendix we define

$$P_{\text{absurd}}(t) = \frac{\Gamma_{\text{abs}}(t)}{\Gamma_{\text{tot}}(t)},$$

i.e. the *rate* fraction of incoherent observers at proper time t. For late-time FRW backgrounds $\Gamma_{\rm tot}(t) \approx {\rm const}$, we obtain $P_{\rm absurd}(t) t \to 0$ whenever $\int_T^\infty \Gamma_{\rm abs}(t) dt < \infty$.

Assume $\Gamma_{\text{abs}} = Ae^{-\beta f(t)}$ with $f(t) \ge \ln t$ for t > T. Then

$$\int_T^\infty \Gamma_{\rm abs} \, dt \le A \int_T^\infty t^{-\beta} \, dt < \infty \quad (\beta > 1 \text{ suffices; empirically } \beta \gg 10^{11}).$$

Because $\Gamma_{\text{tot}}(t)$ is asymptotically constant (or, more generally, decays no faster than 1/t), convergence of $\int \Gamma_{\text{abs}} dt$ implies $\Gamma_{\text{abs}}(t) = o(1/t)$ and hence $P_{\text{absurd}}(t) t \to 0$ as $t \to \infty$, establishing the PCI Limit.⁴

References

- [1] L. Dyson, M. Kleban, and L. Susskind, Disturbing implications of a cosmological constant, *JHEP* 10, 011 (2002).
- [2] J. Garriga and A. Vilenkin, Prediction and explanation in the multiverse, *Phys. Rev. D* 77, 043526 (2008).
- [3] R. Bousso, Complementarity in the multiverse, Phys. Rev. D 88, 083517 (2013).
- [4] K. K. Boddy, S. M. Carroll, and J. Pollack, De Sitter space without Boltzmann brains, Found. Phys. 46 (5), 702–717 (2016).
- [5] S. M. Carroll, Why Boltzmann brains are bad, SciPost Phys. 3, 024 (2017).
- [6] S. M. Carroll and R. Singh, Measure-independent probability drift in eternal inflation, Phys. Rev. D 109, 023506 (2024).
- [7] A. Ijjas and P. J. Steinhardt, A stable ekpyrotic bounce, *Phys. Lett. B* 795, 666–672 (2019). arXiv:1803.01961
- [8] A. Albrecht and L. Sorbo, Measure constraints in late-time cosmology, *Phys. Rev. D* 111, 023507 (2025).
- [9] S. Lloyd, Ultimate physical limits to computation, Nature 406, 1047–1054 (2000).
- [10] R. Bousso, A covariant entropy conjecture, JHEP 07, 004 (1999).
- [11] N. Bostrom, Anthropic Bias: Observation Selection Effects in Science and Philosophy, Routledge (2002).
- [12] P. Bartha and C. Hitchcock, No one knows the date or the hour: an unorthodox application of the self-sampling assumption, *Mind* 108, 519–547 (1999).
- [13] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3rd ed., Springer (2008).

 $^{^4}$ This conclusion presumes a future in which $\Gamma_{\rm tot}(t)$ does not dilute more quickly than 1/t, as in de Sitter-like or slowly evolving FRW cosmologies; an extreme Big-Crunch dilution would place PCI outside its intended domain.