Computational Analysis of Sound and Music

Environmental Sound Analysis – Sound Event Detection 1

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

- Introduction
- Challenges & Related Tasks
- Pipeline
- Evaluation

Introduction

- Sound event detection → 2 simultaneous tasks
 - Segmentation (detection of temporal boundaries)
 - Classification (type of sound)
- Sound polyphony
 - Number of simultaneous sounds
 - Depends on the acoustic scene composition & sound sources

Introduction

Introduction

Demo-Video

USM dataset [Abeßer, 2022]

Demo of the Urban Sound Monitoring (USM) Dataset for Polyphonic Sound Event Tagging

Introduction

- Sound source categories
 - Humans, animals, vehicles, tools, machines, climate, ...
- Sound hierarchies
 - Based on regional origin & sound characteristics

Challenges

- Sound characteristics
 - Short transients, noise-like signals, harmonic / inharmonic signals
- Sound durations
 - Short (gun shot, door knock) → long / stationary (machines, wind)
- Ill-defined temporal boundaries
 - Complicates annotation & detection

Challenges

- Sound appear in the foreground & background
 - depending on relative sound source position
- Non-local / sparse energy distribution
 - Example: fundamental frequency & overtones

Related Tasks

- Sound event localization & tracking
 - Multichannel audio recordings (e.g., first-order ambisonic microphones)
- Estimate direction-of-arrival (DOA) & track source movement

Related Tasks

- Source separation
 - Facilitates sound event detection (fewer background sounds)
- Chicken-egg problem
 - Alternative: soundinformed sourceseparation

Pipeline

- Supervised learning pipeline
 - Feature extraction & pre-processing
 - Label encoding
 - Acoustic modeling

Pipeline

- Feature extraction
 - 1D features (audio samples) → "end-to-end learning"
 - 2D features (mel-spectrogram, STFT)
- Feature pre-processing
 - Log-magnitude scaling
 - Per-channel energy (PCEN) [Lostanlen, 2019]
 - Dynamic range compression
 - Adaptive gain control
 - Suppresses stationary (background) noise

(a) Logarithmic transformation.

(b) Per-channel energy normalization (PCEN).

Pipeline

- Annotation
 - Quality of "ground truth"? (limited agreement / reliability)
 - Different granularities
 - Tagging / Global level ("weak" labels) → cheap
 - Event-level ("strong" labels) → expensive

ريات.

Pipeline

- Label encoding
 - Binarized sound activity (0/1)
 - Multilabel classification
 - 1 (independent) binary detector per class
 - Temporal resolution (duration of each annotated time frame)

Pipeline

Typical neural network architectures

Evaluation

- Evaluate SED → binary classification results on a frame-level
- Compare reference with predictions
- Count TP/FN/FP → aggregate over time → compute metrics

Fig-E1-15

Evaluation

- Binary classification evaluation
 - True/false positives (TP/FP)
 - True/false negatives (TN/FN)
- Metrics
 - Precision
 - Recall
 - Accuracy
 - F-score

Programming session

Fig-A2-13

References

Images

```
Fig-E1-1: [Virtanen, 2018], p. 15, Fig. 2.1
Fig-E1-2: [Own]
Fig-E1-3: https://urbansounddataset.weebly.com/uploads/4/3/9/4/4394963/3427002 orig.png
Fig-E1-4: [Virtanen, 2018], p. 157, Fig. 6.3
Fig-E1-5: https://towardsdatascience.com/whats-wrong-with-spectrograms-and-cnns-for-audio-processing-311377d7ccd
Fig-E1-6: http://dcase.community/challenge2019/task-sound-event-localization-and-detection, Fig. 1
Fig-E1-7: [Virtanen, 2018], p. 267, Fig. 9.7
Fig-E1-8: http://dcase.community/challenge2020/task-sound-event-detection-and-separation-in-domestic-environments, Fig. 2
Fig-E1-9: [Virtanen, 2018], p. 31, Fig. 2.11
Fig-E1-10: [Lostanlen, 2019], p. 1, Fig. 1
Fig-E1-11: [Virtanen, 2018], p. 154, Fig. 6.2
Fig-E1-12: [Virtanen, 2018], p. 31, Fig. 2.11 (excerpt)
Fig-E1-13 & 14: [Own]
Fig-E1-15: [Virtanen, 2018], p. 169, Fig. 6.6
Fig-E1-16: [Virtanen, 2018], p. 170, Fig. 6.7
```


References

Audio

```
Aud-E1-1: USM v2 dataset, Evaluation Set, Sound ID 2417
```

Aud-E1-2: USM v2 dataset, Evaluation Set, Sound ID 1930

Aud-E1-3: USM v2 dataset, Evaluation Set, Sound ID 339

Aud-E1-4: G_M_D_THREE - CANAL_STREET_NEW_YORK_A011.wav (2018) - CC0 License,

https://freesound.org/people/G_M_D_THREE/sounds/424404

References

References

Abeßer, J. (2022). Classifying Sounds in Polyphonic Urban Sound Scenes. Proceedings of the 152nd AES convention, online

Virtanen, T., Plumbley, M. D., & Ellis, D. (Eds.). (2018). Computational Analysis of Sound Scenes and Events. Cham, Switzerland: Springer International Publishing.

Lostanlen, V., Salamon, J., Cartwright, M., McFee, B., Farnsworth, A., Kelling, S., & Bello, J. P. (2019). Per-Channel Energy Normalization: Why and How. IEEE Signal Processing Letters, 26(1), 39–43.

