平面向量

1.	已知向量 $\vec{a} = (1, m), \vec{b} =$	$=(3,-2), \mathbb{H}\left(\overrightarrow{a}+\overrightarrow{b}\right)\perp \overrightarrow{b}$, 则 <i>m</i> =		()	
	(A) -8	(B) -6	(C) 6	(D) 8			
2.	若向量 a,b,c 满足 $a \# b$	且 $a \bot c$,则 $c \cdot (a + 2b) =$	=		()	
	(A) 4	(B) 3	(C) 2	(D) 0			
3.	若向量 a, b 满足: $ a = 1$, $(a + b) \perp a$, $(2a + b) \perp b$, 则 $ b =$						
	(A) 2	(B) $\sqrt{2}$	(C) 1	$(D) \frac{\sqrt{2}}{2}$			
4.	已知两个非零向量 a,b 满足 $ a+b = a-b $,则下面结论正确的是						
	(A) $a \not\parallel b$		(B) $a \perp b$				
	(C) $ a = b $		(D) $a + b = a - b$				
5.	若向量 a 与 b 不共线, $a \cdot b \neq 0$,且 $c = a - \left(\frac{a \cdot a}{a \cdot b}\right) \cdot b$,则向量 a 与 c 的夹角为)	
	(A) 0	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$			
6.	设向量 \vec{a} , \vec{b} 满足 $\left \vec{a} + \vec{b} \right = \sqrt{10}$, $\left \vec{a} - \vec{b} \right = \sqrt{6}$, 则 $\vec{a} \cdot \vec{b} =$						
	(A) 1	(B) 2	(C) 3	(D) 5			
7.	已知 O, A, B 是平面上的三个点,直线 AB 上有一点 C ,满足 $2\overrightarrow{AC} + \overrightarrow{CB} = 0$,则 $\overrightarrow{OC} =$						
	(A) $2\overrightarrow{OA} - \overrightarrow{OB}$		$(B) - \overrightarrow{OA} + 2\overrightarrow{OB}$				
	(C) $\frac{2}{3}\overrightarrow{OA} - \frac{1}{3}\overrightarrow{OB}$		$(D) - \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$				
8.	设 D 为 $\triangle ABC$ 所在平面内	一点, $\overrightarrow{BC} = 3\overrightarrow{CD}$,则			()	
	$(A) \overrightarrow{AD} = -\frac{1}{3} \overrightarrow{AB} + \frac{4}{3} \overrightarrow{AC}$		(B) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{4}{3}\overrightarrow{AC}$				
	(C) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$		(D) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$				
9.	平面上 O,A,B 三点不共线		()			
	(A) $\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2}$		(B) $\sqrt{\left \boldsymbol{a}\right ^{2}\left \boldsymbol{b}\right ^{2}+\left(\boldsymbol{a}\cdot\boldsymbol{b}\right)^{2}}$				
	(C) $\frac{1}{2}\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2-(\boldsymbol{a}\cdot\boldsymbol{b})^2}$	2	(D) $\frac{1}{2}\sqrt{\left \boldsymbol{a}\right ^{2}\left \boldsymbol{b}\right ^{2}+\left(\boldsymbol{a}\cdot\boldsymbol{b}\right)}$	$\overline{2}$			
10.	设 a , b , c 是单位向量,	且 $\mathbf{a} \cdot \mathbf{b} = 0$,则 $(\mathbf{a} - \mathbf{c})$ ·	(b-c)的最小值为		()	
	(A) -2	(B) $\sqrt{2} - 2$	(C) -1	(D) $1 - \sqrt{2}$			
11.	已知 $\boldsymbol{a} = (\sqrt{3}, 1)$,若将向	量 -2a 绕坐标原点逆时针	├旋转 120° 得到向量 b ,贝	\mathbf{b} 的坐标为	()	
	(A) $(0,4)$		(B) $\left(2\sqrt{3}, -2\right)$				

(D) $\left(2, -2\sqrt{3}\right)$

(C) $\left(-2\sqrt{3},2\right)$

12.	设 m,n 是非零向量,则	"存在负数 λ ,使得 $m=$	λn "是" $m \cdot n < 0$ "的		()		
	(A) 充分而不必要条件		(B) 必要而不充分条件					
	(C) 充分必要条件		(D) 既不充分也不必要条	件				
13.	设 \vec{a} , \vec{b} 是向量,则" $ \vec{a} $	$=\left \overrightarrow{b}\right $ " \mathbb{E} " $\left \overrightarrow{a}+\overrightarrow{b}\right =\left $	$\left \overrightarrow{a} - \overrightarrow{b} \right $ " 的		()		
	(A) 充分而不必要条件		(B) 必要而不充分条件					
	(C) 充分必要条件		(D) 既不充分也不必要条	; 件				
14.	\vec{a} , \vec{b} 为非零向量," \vec{a} 」	。"是"函数 $f(x) = (x\vec{a} - x\vec{a})$	$(x\vec{b} - \vec{a})$ 为一次函	数"的	()		
	(A) 充分而不必要条件		(B) 必要而不充分条件					
	(C) 充分必要条件		(D) 既不充分也不必要条	:件				
15.	设 \vec{a} , \vec{b} 是非零向量," \vec{a} · \vec{b} = $ \vec{a} $ $ \vec{b} $ " 是" \vec{a} // \vec{b} " 的)		
	(A) 充分而不必要条件		(B) 必要而不充分条件					
	(C) 充分必要条件		(D) 既不充分也不必要条	件				
16.	设平面向量 \vec{a} , \vec{b} , \vec{c} 均为	可非零向量,则" $\vec{a}\cdot(\vec{b}$ -	$-\overrightarrow{c}$) = 0" 是 " \overrightarrow{b} = \overrightarrow{c} "	的	()		
	(A) 充分而不必要条件		(B) 必要而不充分条件					
	(C) 充分必要条件		(D) 既不充分也不必要条	:件				
17.	设 E , F 分别是正方形 $ABCD$ 的边 AB , BC 上的点,且 $AE=\frac{1}{2}AB$, $BF=\frac{2}{3}BC$,如果 $\overrightarrow{EF}=m\overrightarrow{AB}+$							
	$n\overrightarrow{AC}(m,n$ 为实数),那么 m		2	o	()		
	$(A) - \frac{1}{2}$	(B) 0	(C) $\frac{1}{2}$	(D) 1				
18.	已知三角形 △ABC 是边长		, E 分别是边 AB, BC 的中	点,连接 <i>DE</i> 并3	延长到,	点		
	F ,使得 $DE = 2EF$,则 \overline{A}	1	(m) 1	(n) 11	()		
	$(A) - \frac{5}{8}$	(B) $\frac{1}{8}$	(C) $\frac{1}{4}$	(D) $\frac{11}{8}$				
19.	$E = \lambda BC, DF = \beta$							
	$\overrightarrow{AE} \cdot \overrightarrow{AF} = 1, \ \overrightarrow{CE} \cdot \overrightarrow{CF} = -1$	9	5	7 · 7	()		
	(A) $\frac{1}{2}$	$(B) \frac{2}{3}$	$(C) \frac{5}{6}$	(D) $\frac{\iota}{12}$				
20.	已知 $\triangle ABC$ 和点 M 满足 \overline{M}	$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 0$. 若存在	E实数 m 使得 $\overrightarrow{AB} + \overrightarrow{AC} = i$	$n\overline{AM}$ 成立,则 $m=$	=()		
	(A) 2	(B) 3	(C) 4	(D) 5				
21.	已知 O 是 $\triangle ABC$ 所在平面	「内一点, <i>D</i> 为 <i>BC</i> 边中点	$, \ \underline{\mathbb{H}} \ 2\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 0$	D . 那么	()		
	$(A) \overrightarrow{AO} = \overrightarrow{OD}$	(B) $\overrightarrow{AO} = 2\overrightarrow{OD}$	$(C) \overrightarrow{AO} = 3\overrightarrow{OD}$	(D) $2\overrightarrow{AO} = \overrightarrow{OD}$				
22.	在平行四边形 ABCD 中,		线段 <i>OD</i> 的中点, <i>AE</i> 的	延长线与 CD 交于	·点 F. ā	片		
	$\overrightarrow{AC} = a$, $\overrightarrow{BD} = b$, $\mathbb{M} \overrightarrow{AF} = a$	=			()		

$$(A) \frac{1}{4}a + \frac{1}{2}b$$

(B)
$$\frac{1}{3}a + \frac{2}{3}b$$

(D) $\frac{2}{3}a + \frac{1}{3}b$

(C)
$$\frac{1}{2}a + \frac{1}{4}b$$

(D)
$$\frac{3}{3}a + \frac{3}{3}b$$

23. 己知平面上三点 A, B, C 满足 $\left|\overrightarrow{AB}\right|=6$, $\left|\overrightarrow{BC}\right|=8$, $\left|\overrightarrow{BC}\right|=10$, 则 $\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB}=($ (A) 48(B) - 48(C) 100

24. 已知 e_1 , e_2 为平面上的单位向量, e_1 与 e_2 的起点均为坐标原点 O, e_1 与 e_2 的夹角为 $\frac{\pi}{3}$,平面区域 D

由所有满足 $\overrightarrow{OP} = \lambda e_1 + \mu e_2$ 的点 P 组成,其中 $\begin{cases} \lambda + \mu \leq 1, \\ \lambda \geqslant 0, \qquad \text{那么平面区域 } D \text{ 的面积为} \\ \mu \geqslant 0. \end{cases}$

(A) $\frac{1}{2}$

25. 如图,在等腰梯形 ABCD 中,AB=8,BC=4,CD=4,点 P 在线段 AD 上运动,则 $|\overrightarrow{PA}+\overrightarrow{PB}|$ 的取 值范围是)

(A) $[6, 4 + 4\sqrt{3}]$

(B) $\left[4\sqrt{2}, 8\right]$

(D) [6, 12]

- 26. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = 1$, $\vec{b} = (2,1)$, 且 $\lambda \vec{a} + \vec{b} = \mathbf{0}$ ($\lambda \in \mathbf{R}$), 则 $|\lambda| = _____.$
- 27. 已知 A, B, C 是圆 O 上的三点,若 $\overrightarrow{AO} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$,则 \overrightarrow{AB} 与 \overrightarrow{AC} 的夹角为______.
- 29. 平面向量 a = (1,2), b = (4,2), c = ma + b $(m \in \mathbb{R})$ 且 c = b 的夹角等于 c = b 的夹角,则 $m = \underline{\hspace{1cm}}$
- 30. 已知点 P 在圆 $x^2 + y^2 = 1$ 上,点 A 的坐标为 (-2,0),O 为原点,则 $\overrightarrow{AO} \cdot \overrightarrow{AP}$ 的最大值为_____.
- 31. 已知单位向量 e_1 与 e_2 的夹角为 α ,且 $\cos \alpha = \frac{1}{3}$,向量 $a = 3e_1 2e_2$ 与 $b = 3e_1 e_2$ 的夹角为 β ,则 $\cos \beta =$
- 32. 在三角形 $\triangle ABC$ 中,点 M, N 满足 $\overrightarrow{AM} = 2\overrightarrow{MC}$, $\overrightarrow{BN} = \overrightarrow{NC}$. 若 $\overrightarrow{MN} = x\overrightarrow{AB} + y\overrightarrow{AC}$,则 $x = \underline{\hspace{1cm}}; y = \underline{\hspace{1cm}}$.
- 33. 已知点 A(1,-1), B(3,0), C(2,1). 若平面区域 D 由所有满足 $\overrightarrow{AP} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$ $(1 \le \lambda \le 2, 0 \le \mu \le 1)$ 的点 P 组成,则 D 的面积为
- 34. 已知正方形 ABCD 的边长为 1,点 E 是 AB 边上的动点,则 $\overrightarrow{DE} \cdot \overrightarrow{CB}$ 的值为_____; $\overrightarrow{DE} \cdot \overrightarrow{DC}$ 的最大值 为____.
- 35. 已知 M 为 $\triangle ABC$ 所在平面内的一点,且 $\overrightarrow{AM} = \frac{1}{A}\overrightarrow{AB} + n\overrightarrow{AC}$. 若点 M 在 $\triangle ABC$ 内部 (不含边界),则实数 n 的取值范围是
- 36. 己知向量序列: $a_1, a_2, a_3, \cdots, a_n, \cdots$ 满足如下条件: $|a_1| = 4 |d| = 2$, $2a_1 \cdot d = -1$ 且 $a_n a_{n-1} = d$ (n = 1) (a_1,a_2,\ldots) . 若 $a_1 \cdot a_k = 0$,则 k =_____; $|a_1|$, $|a_2|$, $|a_3|$, \ldots , $|a_n|$, \ldots 中第_____ 项最小.

37. 如图, $\triangle AB_1C_1$, $\triangle C_1B_2C_2$, $\triangle C_2B_3C_3$ 是三个边长为 2 的等边三角形,且有一条边在同一直线上,边 B_3C_3 上有两个不同的点 P_1 , P_2 ,则 $\overrightarrow{AB_2} \cdot (\overrightarrow{AP_1} + \overrightarrow{AP_2}) =$ _____.

38. 向量 \vec{a} , \vec{b} , \vec{c} 在正方形网格中的位置如图所示,若 $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ $(\lambda, \mu \in \mathbf{R})$,则 $\frac{\lambda}{\mu} = \underline{\qquad}$

39. 在 $\triangle ABC$ 中,点 M,N 满足 $\overrightarrow{AM} = 2\overrightarrow{MC}$, $\overrightarrow{BN} = \overrightarrow{NC}$. 若 $\overrightarrow{MN} = x\overrightarrow{AB} + y\overrightarrow{AC}$, 则 $x = \underline{\hspace{1cm}}$;

40. 如图,在平行四边形 ABCD 中, $AP\bot BD$,垂足为 P,且 AP=3,则 $\overrightarrow{AP}\cdot\overrightarrow{AC}=$ _____.

41. 如图, 在平行四边形 ABCD 中, AC, BD 相交于点 O, E 为线段 AO 的中点,若 $\overrightarrow{BE} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BD} (\lambda, \mu \in \mathbf{R})$,则 $\lambda + \mu =$ _____.

42. 给定两个长度为 1 的平面向量 \overrightarrow{OA} 和 \overrightarrow{OB} ,它们的夹角为 120°. 如图所示,点 C 在以 O 为圆心的圆弧 \overrightarrow{AB} 上变动,若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$,其中 $x, y \in \mathbf{R}$,则 x + y 的最大值是_____.

第4页(共5页)

43. 如图,半径为 $\sqrt{3}$ 的扇形 AOB 的圆心角为 120° ,点 C 在弧 AB 上,且 $\angle COB = 30^\circ$. 若 $\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$,则 $\lambda + \mu = \underline{\qquad}$.

44. 在梯形 ABCD 中, $AB \parallel DC$, $AD \perp AB$, $AD = DC = \frac{1}{2}AB = 2$. 点 $N \not\in CD$ 边上的一动点,则 $\overrightarrow{AN} \cdot \overrightarrow{AB}$ 的 最大值为_____.

- 45. 如图,在直角梯形 ABCD 中, $AB \not\parallel CD$, $AB \bot BC$,AB = 2,CD = 1,BC = a (a > 0),P 为线段 AD 上一个动点,设 $\overrightarrow{AP} = x\overrightarrow{AD}$, $\overrightarrow{PB} \cdot \overrightarrow{PC} = y$,对于函数 y = f(x),给出以下三个结论:
 - ① 当 a = 2 时,函数 f(x) 的值域为 [1, 4];
 - ② $\forall a \in (0, +\infty)$, 都有 f(1) = 1 成立;
 - ③ $\forall a \in (0, +\infty)$,函数 f(x) 的最大值都等于 4.

其中所有正确结论的序号是____.

