Dummit & Foote Ch. 3.5: Transpositions and the Alternating Group

Scott Donaldson

Dec. 2023

1. (12/6/23)

In Exercises 1 and 2 of Section 1.3 you were asked to find the cycle decompositions of some permutations. Write each of these permutations as a product of transpositions. Determine which of these is an even permutation and which is an odd permutation.

In Exercise 1,

$$\sigma = (1,3,5)(2,4) = (1,3)(1,5)(2,4), \text{ odd.}$$

$$\tau = (1,5)(2,3), \text{ even.}$$

$$\sigma^2 = (1,5,3) = (1,3)(1,5), \text{ even.}$$

$$\sigma\tau = (2,5,3,4) = (2,4)(2,3)(2,5), \text{ odd.}$$

$$\tau^2\sigma = (1,3,5)(2,4) = (1,5)(1,3)(2,4), \text{ odd.}$$

In Exercise 2,

```
\begin{split} \sigma &= (1,13,5,10)(3,15,8)(4,14,11,7,12,9) \\ &= (1,10)(1,5)(1,13)(3,8)(3,15)(4,9)(4,12)(4,7)(4,11)(4,14), \text{ even.} \\ \tau &= (1,14)(2,9,15,13,4)(3,10)(5,12,7)(8,11) \\ &= (1,14)(2,4)(2,13)(2,15)(2,9)(3,10)(5,7)(5,12)(8,11), \text{ odd.} \\ \sigma^2 &= (1,5)(3,8,15)(4,11,12)(7,9,4)(10,13) \\ &= (1,15)(3,15)(3,8)(4,12)(4,11)(7,4)(7,9)(10,13), \text{ even.} \\ \sigma\tau &= (1,11,3)(2,4)(5,9,8,7,10,15)(13,14) \\ &= (1,3)(1,11)(2,4)(5,15)(5,10)(5,7)(5,8)(5,9)(13,14), \text{ odd.} \\ \tau\sigma &= (1,4)(2,9)(3,13,12,15,11,5)(8,10,14) \\ &= (1,4)(2,9)(3,5)(3,11)(3,15)(3,12)(3,13)(8,14)(8,10), \text{ odd.} \\ \tau^2\sigma &= (1,2,15,8,3,4,14,11,12,13,7,5,10) \\ &= (1,10)(1,5)(1,7)(1,13)(1,12)(1,11)(1,14)(1,4)(1,3)(1,8)(1,15)(1,2), \\ \text{ even.} \end{split}
```

2. (12/6/23)

Prove that σ^2 is an even permutation for every permutation σ .

Proof. We take as given the homomorphism $\epsilon: S_n \to \{\pm 1\}$ defined in this chapter, which determines the sign of every permutation $\sigma \in S_n$.

If σ is an even permutation, then $\epsilon(\sigma) = 1$. It follows that:

$$\epsilon(\sigma^2) = \epsilon(\sigma)\epsilon(\sigma) = 1 \cdot 1 = 1,$$

and so σ^2 is an even permutation.

If σ is an odd permutation, then $\epsilon(\sigma) = -1$. It follows that:

$$\epsilon(\sigma^2) = \epsilon(\sigma)\epsilon(\sigma) = -1 \cdot -1 = 1,$$

and so σ^2 is an even permutation.

Since for every $\sigma \in S_n$, σ is either an even or an odd permutation, this proves that σ^2 is an even permutation for every permutation σ .

3. (12/6/23)

Prove that S_n is generated by $\{(i, i+1) \mid 1 \le i \le n-1\}$.

Proof. Since any element of S_n may be written as a product of transpositions, it suffices to show that the set $\{(i,i+1) \mid 1 \leq i \leq n-1\}$ can generate any transposition. Writing an arbitrary transposition in S_n as (i,i+a), we will prove this by strong induction on a (where $1 \leq a \leq n-i$).

The base case a=1 is given, since (i,i+1) is a member of the generating set for all $i\in\{1,...,n-1\}$.

Next, suppose that for all $i \in \{1, ..., n-1\}$ and $a \in \{1, ..., n-i\}$, the transposition (i, i+a-1) can be obtained from the generating set. So we have the transpositions (i+a-1, i+a) (in the generating set) and (i, i+a-1) (from the inductive hypothesis). Then:

$$(i+a-1,i+a)(i,i+a-1)(i+a-1,i+a) = (i,i+a),$$

so we can obtain the transposition (i, i + a). This concludes the proof that the set $\{(i, i + 1) \mid 1 \leq i \leq n - 1\}$ can generate any transposition, and therefore generates all of S_n .

4. (12/7/23)

Show that $S_n = \langle (1, 2), (1, 2, 3, ..., n) \rangle$ for all $n \geq 2$.

Proof. Note that:

$$(1,2,3,...,n)(1,2)(1,2,3,...,n)^{-1}$$

= $(1,2,3,...,n)(1,2)(1,n,n-1,...,2)$
= $(2,3)$,

and in general,

$$(1,2,3,...,n)(i,i+1)(1,2,3,...,n)^{-1}$$

$$= (1,2,3,...,n)(i,i+1)(1,n,n-1,...,2)$$

$$= (i+1,i+2)$$

for $1 \le i \le n-1$ (if i=n-1, then the resulting transposition is equal to (1,n)). This shows that every transposition of adjacent integers can be obtained from $\langle (1,2), (1,2,3,...,n) \rangle$, and from the results of Exercise 3, it therefore generates all of S_n .