Data Mining and Applications

Association Rules Mining

Outline

- ☐ Introduction
- ☐ Frequent itemset mining
- ☐ Association Rule Mining Task
- ☐ Generating Association Rules from Frequent Itemsets
- ☐ Interestingness Measure for Association Rules

References

- [1] Tan, Steinbach, Karpatne, Kumar, Introduction to Data Mining, 2nd Edition, 2018.
- [2] Jiawei Han, Micheline Kamber, "Data Mining: Concepts and Techniques", Second Edition, Morgan Kaufmann Publishers, 2006.
- [3] R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", *Proc. of the 20th Int'l Conference on Very Large Databases*, 1994.

- ☐ Many retail stores collect data about customers.
- **e.g.** customer transactions
- ☐ Need to analyze this data to understand customer behavior
- \square Why?
 - for marketing purposes,
 - inventory management,
 - customer relationship management

Discovering patterns and associations

- Discovering interesting relationships hidden or frequent pattern (a pattern is a set of items, subsequences, substructures, etc.) that occurs frequently in large databases.
 - **beer and diapers are often sold together**
- **pattern mining** is a fundamental data mining problem with many applications in various fields.
- First introduced by Agrawal (1993) in the context of frequent itemsets and association rule mining
- Many extensions of this problem to discover patterns in graphs, sequences, and other kinds of data.

- ☐ Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Frequent itemset mining

 \square Let $I = \{I_1, I_2, I_3, ..., I_n\}$ be the set of items (products) that appear (sold) in the database (in a retail store).

e.g., *I*= {pasta, lemon, bread, orange, cake}

☐ A transaction database D is a set of transactions.

$$D = \{T1, T2, \dots Tr\}$$
 such that $Ta \subseteq I \ (1 \le a \le r)$.

Number of transaction in D denoted |D|

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

☐ Each transaction has a unique identifier called its **Transaction ID** (TID).

e.g. the transaction ID of T4 is 4.

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

A transaction is a set of items (an itemset).

e.g. $T2=\{pasta, lemon\}$

An **item** (a symbol) may not appear or appear once in each transaction. Each transaction is unordered.

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
T3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

A transaction database can be viewed as a binary matrix:

Transaction	pasta	lemon	bread	orange	cake
T1	1	1	1	1	0
T2	1	1	0	0	0
T3	1	0	0	1	1
T4	1	1	0	1	1

- Asymetrical binary attributes (because 1 is more important than 0)
- There is no information about purchase quantities and prices.

Let I bet the set of all items:

```
I= {pasta, lemon, bread, orange, cake}

There are 2<sup>|I|</sup> – 1 = 2<sup>5</sup> – 1 = 31 subsets:

{pasta}, {lemon}, {bread}, {orange}, {cake}

{pasta, lemon}, {pasta, bread} {pasta, orange}, {pasta, cake}, {lemon, bread}, {lemon orange},

{lemon, cake}, {bread, orange}, {bread cake}

...

{pasta, lemon, bread, orange, cake}
```

- ☐ Itemset is a set of one or more items
 - E.g.: {pasta, lemon, bread}
- \square An itemset is said to be of size k, if it contains k items.
 - Itemsets of size 1:

```
{pasta}, {lemon}, {bread}, {orange}, {cake}
```

- Itemsets of size 2:

```
{pasta, lemon}, {pasta, bread} {pasta, orange}, {pasta, cake}, {lemon, bread}, {lemon orange}, ...
```

The **support** (**frequency**) of an itemset X is the number of transactions that contains X.

```
\sup(X) = |\{T \mid X \subseteq T \land T \in D\}|
```

For example: The support of {pasta, orange} is 3.

which is written as: $sup(\{pasta, orange\}) = 3$

Transaction	Items appearing in the transaction	
T1	{pasta, lemon, bread, orange}	
T2	{pasta, lemon}	
T3	{pasta, orange, cake}	
T4	{pasta, lemon, orange, cake}	

The **support of an itemset** X can also be written as a ratio (*absolute support*).

Example: The support of {pasta, orange} is 75% because it appears in 3 out of 4 transactions.

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
T3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

The problem of frequent itemset mining

- ☐ Let there be a numerical value *minsup*, set by the user.
 - ☐ Frequent itemset mining (FIM) consists of enumerating all **frequent itemsets**, that is itemsets having a support greater or equal to *minsup*.

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

Example

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
T3	{pasta, orange, cake}
T4	{pasta, lemon, orange cake}

For minsup = 2, the frequent itemsets are:

{lemon}, {pasta}, {orange}, {cake}, {lemon, pasta}, {lemon, orange}, {pasta, orange}, {cake}, {orange, cake}, {lemon, pasta, orange}

For the user, choosing a high *minsup* value,

- □ will reduce the number of frequent itemsets,
- will increase the speed and decrease the memory required for finding the frequent itemsets

The problem of frequent itemset mining

 \square Example: Let $I = \{A, B, C, D, E, F\}$ and a transaction database as:

T ₁	{A, B, C, D}
T ₂	{A, C, E}
T ₃	{A, E}
T ₄	{A, E, F}
T ₅	{A, B, C, E, F}

With
$$X = \{A, E\}$$
, $minsup=60\%$
 $\Rightarrow sup(X) = 4$
 $or sup(X) = 4/5 = 80\%$
 $\Rightarrow X$ is frequent itemset

The problem of frequent itemset mining

Given I = { Beer, Bread, Jelly, Milk, PeanutButter} and a transaction database as:

TID	Items
10	Bread, Jelly, PeanutButter
20	Bread, PeanutButter
30	Bread, Milk, PeanutButter
40	Beer, Bread
50	Beer, Milk

minsup = 60%

Find the support for each below itemset and which itemset is frequent itemset

```
X1= {Bread,PeanutButter}
```

$$X_2 = \{Bread\}$$

$$X_3 = \{PeanutButter\}$$

$$X_4 = \{Milk\}$$

Several algorithms

- ☐ Algorithms:
 - Apriori, AprioriTID (1993)
 - **E**clat (1997)
 - FPGrowth (2000)
 - Hmine (2001)
 - LCM, ...
 - ...
- Moreover, numerous extensions of the FIM problem: uncertain data, fuzzy data, purchase quantities, profit, weight, time, rare itemsets, closed itemsets, etc.

Algorithms

Naïve approach

- \square If there are n items in a database, there are 2^n-1 itemsets may be frequent.
- □ Naïve approach: count the support of all these itemsets.
- To do that, we would need to read each transaction in the database to count the support of each itemset.
- ☐ This would be inefficient:
 - need to perform too many comparisons
 - requires too much memory

Search space

Search space

How to find the frequent itemsets?

Two challenges:

- ☐ How to count the support of itemsets in an efficient way (not spend too much time or memory)?
- ☐ How to reduce the search space (we do not want to consider all the possibilities)?

Frequent Itemset Generation Strategies

- ☐ Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- ☐ Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- ☐ Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

The APRIORI algorithm (Agrawal & Srikant, 1993/1994)

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. Research Report RJ 9839, IBM Almaden Research Center, San Jose, California, June 1994.

Apriori is a famous algorithm

- which is not the most efficient algorithm,
- but has inspired many other algorithms!
- has been applied in many fields,
- ☐ has been adapted for many other similar problems.

Apriori is based on two important properties

Apriori property: Let there be two itemsets X and Y. If $X \subseteq Y$, the support of Y is less than or equal to the support of X.

Example:

- The support of {pasta} is 4
- The support of {pasta, lemon} is 3
- The support of {pasta, lemon, orange} is 2

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

(support is anti-monotonic)

Illustration

This property is useful to reduce the search space. Example:

This property is useful to reduce the search space. **Example:**

Property 2: Let there be an itemset Y.

If there exists an itemset $X \subseteq Y$ such that X is infrequent, then Y is infrequent.

Example:

- Consider {bread, lemon}.
- If we know that {bread} is infrequent, then we can infer that {bread, lemon} is also infrequent.

Transaction	Items appearing in the transaction
T1	{pasta, lemon, bread, orange}
T2	{pasta, lemon}
Т3	{pasta, orange, cake}
T4	{pasta, lemon, orange, cake}

The Apriori algorithm

- ☐ I will now explain how the Apriori algorithm works
- □ Input:
 - minsup
 - a transactional database
- Output:
 - all the frequent itemsets

Consider minsup = 2.

Apriori Algorithm

- $\blacksquare F_k$: frequent k-itemsets
- \blacksquare L_k: candidate k-itemsets
- □Algorithm
 - \blacksquare Let k=1
 - Generate $F_1 = \{ \text{frequent 1-itemsets} \}$
 - \blacksquare Repeat until F_k is empty
 - **Candidate Generation**: Generate L_{k+1} from F_k
 - **Candidate Pruning**: Prune candidate itemsets in L_{k+1} containing subsets of length k that are infrequent
 - □**Support Counting**: Count the support of each candidate in L_{k+1} by scanning the DB
 - **Candidate Elimination**: Eliminate candidates in L_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Step 1: scan the database to calculate the support of all itemsets of size 1. e.g.

```
{pasta} support = 4
{lemon} support = 3
{bread} support = 1
{orange} support = 3
{cake} support = 2
```

Step 2: eliminate infrequent itemsets.

```
e.g.
{pasta} support = 4
{lemon} support = 3
{bread} support = 1
{orange} support = 3
{cake} support = 2
```

Step 2: eliminate infrequent itemsets.

```
e.g.
```

```
{pasta} support = 4
{lemon} support = 3
{orange} support = 3
{cake} support = 2
```

Step 3: generate candidates of size 2 by combining pairs of frequent itemsets of size 1.

Step 4: Eliminate candidates of size 2 that have an infrequent subset (Property 2) (none!)

```
Frequent items

{pasta}

{pasta, lemon}

{orange}

{orange}

{cake}

Candidates of size 2

{pasta, lemon}

{pasta, orange}

{pasta, cake}

{lemon, orange}

{lemon, cake}

{orange, cake}
```

Step 5: scan the database to calculate the support of remaining candidate itemsets of size 2.

```
Candidates of size 2
{pasta, lemon} support: 3
{pasta, orange} support: 3
{pasta, cake} support: 2
{lemon, orange} support: 2
{lemon, cake} support: 1
{orange, cake} support: 2
```

Step 6: eliminate infrequent candidates of size 2

Candidates of size 2

```
{pasta, lemon} support: 3
{pasta, orange} support: 3
{pasta, cake} support: 2
{lemon, orange} support: 2
{lemon, cake} support: 1
{orange, cake} support: 2
```

Step 6: eliminate infrequent candidates of size 2

```
Frequent itemsets of size 2

{pasta, lemon} support: 3

{pasta, orange} support: 3

{pasta, cake} support: 2

{lemon, orange} support: 2

{orange, cake} support: 2
```

Step 7: generate candidates of size 3 by combining frequent pairs of itemsets of size 2.

```
Frequent itemsets of size 2
{pasta, lemon}

{pasta, orange}

{pasta, orange}

{pasta, orange, cake}

{pasta, cake}

{lemon, orange, cake}

{orange, cake}
```

Step 8: eliminate candidates of size 3 having a subset of size 2 that is infrequent.

```
Frequent itemsets of size 2
{pasta, lemon}

{pasta, orange}

{pasta, orange}

{pasta, orange, cake}

{pasta, cake}

{lemon, orange}

{lemon, orange, cake}

Because {lemon, cake} is infrequent!
```

Step 8: eliminate candidates of size 3 having a subset of size 2 that is infrequent.

Candidates of size 3

Step 9: scan the database to calculate the support of the remaining candidates of size 3.

```
Candidates of size 2
{pasta, lemon, orange} support: 2
{pasta, orange, cake} support: 2
```

Step 10: eliminate infrequent candidates (none!)

```
frequent itemsets of size 3
{pasta, lemon, orange} support: 2
{pasta, orange, cake} support: 2
```

Step 11: generate candidates of size 4 by combining pairs of frequent itemsets of size 3.

```
Frequent itemsets of size 3
{pasta, lemon, orange}
{pasta, orange, cake}

{pasta, orange, cake}
```

Step 12: eliminate candidates of size 4 having a subset of size 3 that is infrequent.

Frequent itemsets of size 3 {pasta, lemon, orange} {pasta, orange, cake} {pasta, orange, cake}

Step 12: Since there is no more candidates, we cannot generate candidates of size 5 and the algorithm stops.

Candidates of size 4

{pasta, lemon, orange, cake}

Result \rightarrow

Final result

```
{pasta}
                         support = 4
{lemon}
                         support = 3
{orange}
                         support = 3
                         support = 2
{cake}
{pasta, lemon}
                         support: 3
{pasta, orange}
                         support: 3
{pasta, cake}
                         support: 2
{lemon, orange}
                         support: 2
{orange, cake}
                         support: 2
{pasta, lemon, orange}
                         support: 2
{pasta, orange, cake}
                        support: 2
```

Technical details

Combining different itemsets can generate the same candidate.

Example:

$$\{A, B\}$$
 and $\{A, E\}$ \rightarrow $\{A, B, E\}$

$$\{B, E\}$$
 and $\{A, E\}$ \rightarrow $\{A, B, E\}$

problem: some candidates are generated several times!

Technical details

Combining different itemsets can generate the same candidate.

Example:

$$\{A, B\}$$
 and $\{A, E\}$ \rightarrow $\{A, B, E\}$

$$\{B, E\}$$
 and $\{A, E\}$ \rightarrow $\{A, B, E\}$

Solution:

- Sort items in each itemsets (e.g. by alphabetical order)
- Combine two itemsets only if all items are the same except the last one.

Candidate Generation: Merge Fk-1 and F1 itemsets

Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- ☐ Create a candidate itemset of size k, by joining two itemsets of size k-1 if their first (k-2) items are identical
- \square Example: $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - Join($\underline{\mathbf{AB}}\mathbf{C}, \underline{\mathbf{AB}}\mathbf{D}$) = $\underline{\mathbf{AB}}\mathbf{CD}$
 - Join($\underline{\mathbf{AB}}\mathbf{C}, \underline{\mathbf{AB}}\mathbf{E}$) = $\underline{\mathbf{AB}}\mathbf{CE}$
 - Join($\underline{\mathbf{AB}}$ D, $\underline{\mathbf{AB}}$ E) = $\underline{\mathbf{AB}}$ DE
 - Do not join(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

Alternate Fk-1 x Fk-1 Method

- \square Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- \square $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - $\blacksquare \text{ Merge}(A\underline{BC}, \underline{BC}D) = A\underline{BC}D$
 - $\blacksquare \text{ Merge}(ABD, BDE) = ABDE$
 - $\blacksquare \text{ Merge}(A\underline{CD}, \underline{CD}E) = A\underline{CD}E$
 - $\blacksquare \text{ Merge}(B\underline{CD}, \underline{CD}E) = B\underline{CD}E$

Candidate Pruning

- ☐ For each candidate k-itemset create all subset (k-1)-itemsets
- ☐ Remove a candidate if it contains a subset (k-1)-itemset that is not frequent
- Example:
 - Let $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$ be the set of frequent 3-itemsets
 - $L_4 = \{ABCD, ABCE, ABDE\}$ is the set of candidate 4-itemsets generated (from previous slide)
 - Candidate pruning
 - ☐ Prune ABCE because ACE and BCE are infrequent
 - ☐ Prune ABDE because ADE is infrequent
 - After candidate pruning: $L_4 = \{ABCD\}$

The Apriori Algorithm—An Example

Apriori vs the naïve algorithm

- ☐ The Apriori property can considerably reduce the number of itemsets to be considered.
- ☐ In the previous example:
 - Naïve approach:
 - $2^{5}-1 = 31$ itemsets are considered
 - By using the Apriori property:
 - 18 itemsets are considered

Factors Affecting Complexity of Apriori

- ☐ Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- ☐ Dimensionality (number of items) of the data set
 - More space is needed to store support count of itemsets
 - if number of frequent itemsets also increases, both computation and I/O costs may also increase
- ☐ Size of database
 - run time of algorithm increases with number of transactions
- Average transaction width
 - transaction width increases the max length of frequent itemsets
 - number of subsets in a transaction increases with its width, increasing computation time for support counting
- ☐ Solution: Mine *closed patterns* and *max-patterns*

Maximal Frequent Itemset

- ☐ An itemset X is maximal frequent if it is frequent and none of its immediate supersets is frequent (Bayardo SIGMOD'98)
- Example:

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F

Minsupp=2

- {B, C, D, E}, {A, C, D} maximal frequent itemsets
- $\{B, C, D\}$ non-maximal frequent itemset

Maximal Frequent Itemset

Closed Itemset

 \square An itemset X is closed if none of its immediate supersets has the same support as the itemset X.

 \square X is not closed if at least one of its immediate supersets has

support count as X.

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

Minsupp=2

{A}	4 5
()	5
{B}	J
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE
3	

Maximal Frequent vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

Exercise

Exercise 1: Let $I = \{A, B, C, D, E, F\}$ and a transaction database as:

T1	{A, B, C, F}
T2	{A, B, E, F}
T3	{A, C}
T4	{D, E}
T5	{B, F}

- 1. Apply Apriori algorithm to find all frequent itemsets with minsupp = 25%
- 2. List all maximal frequent itemsets and closed frequent itemsets.

Exercise

Exercise 2: Given $I = \{A, B, C, D, E, F\}$ and a transaction database as:

T1	{D, E}	
T2	{A, B, D, E}	
T3	{A, B, D}	
T4	{C, D, E}	
T5	{F}	
T6	{B, C, D}	

- 1. Apply Apriori algorithm to find all of frequent itemsets with minsupp = 20%
- 2. List all maximal frequent itemsets and closed frequent itemsets.