Deutsche KI.: 12 p, 10/10

(I) (II)	Offenlegu	ngsschrift	2 315 801
Ø		Aktenzeichen:	P 23 15 801.2
22		Anmeldetag:	29. März 1973
€3		Offenlegungstag:	11. Oktober 1973
		9	•
	Ausstellungspriorität:	· -	
	Unionspriorität		
9 9 ⊗	Datum:	30. März 1972	
89	Land:	Japan	• •
9	Aktenzeichen:	Sho47-32033	
₩	Bezeichnung:	2-Alkyl-3-acyl-pyrazolo-[1,5 zu ihrer Herstellung und dies Arzneipräparate	·
6	Zusatz zu:	- :.	
®	Ausscheidung aus:	_	
0	Anmelder:	Kyorin Seiyaku K.K., Tokio	-
•	Vertreter gem.§16PatG:	Jung, B., DiplChem. Dr.phi PatAnwälte, 8000 München	l.; Schirdewahn, J., DiplPhys. Dr.rer.nat.;
@	Als Erfinder benannt:		yashi, Masayuki, Ageo; Koshirae, Kikuo; ıtayama, Junji, Kitamoto; Hetsugi, ıan)

DIPL.-GHEM. DR. CLICABETH JURG DIPL.-PHYS. DR. JORGEN SCHIRDEWAHN PATENTANWALTE

B 6451CHEN 40, CLAGENGE HASSE 30 TELEFOR 3450° TELEGRAMA-ADTUSCE: INVENTATIONEN TELEX 6-29 600 2315801

u.Z.: H 340 C (MK/J/k) Case 2805

29. März 1973

KYORIN SEIYAKU KABUSHIEI KAISHA Tokyo, Japan

" 2-Alkyl-3-acyl-pyrazolo-[1,5-a]-pyridine, Vorfahren zu ihrer Herstellung und diese Verbindungen enthaltende Arzneipräparate "

Priorität: 30. März 1972, Japan, Nr. Sho 47-32033

Die Erfludung betrifft 2-Alkyl-3-acyl-pyrazolo- [1,5-e]pyridine mit erweiternder Wirkung auf die Herzkranzgefässe
und die cerebralen Arterien. Die Erfindung betrifft ferner ein
Verfahren zur Herstellung dieser Verbindungen sowie diese Verbindungen enthaltende Arzneipräparate.

Pyrazolo- 1,5-27-pyridin sowie einige Derivate sind aus der Literatur bekannt und Verfahren zu ihrer Herstellung wurden beschrieben. Man findet jedoch keine Angaben über die biologische Aktivität dieser Verbindungen.

Nach Potts und Mitarb. (vgl. J. Org. Chem. 33 (1968), S.3766)
309841/1163

erhält man 2-Methyl-3-acetylpyrazolo-___1,5-a7- pyridin oder 2,7-Dimethyl-3-acetylpyrazolo-___1,5-a7-pyridin in etwa 20-prozentiger Ausbeute durch Umsetzung von 1-Amino-2-methyl-pyridiniumjodid bzw. 1-Amino-2,6-dimethylpyridiniumjodid mit Acetylchlorid.

Uberraschenderweise wurde nun festgestellt, dass einige Pyrazolo-/1,5-a/pyridin-Derivate unerwartete pharmakologische Eigenschaften besitzen; sie erweitern nicht nur die Herzkranzgefässe, die cerebralen und femoralen Arterien, sondern stimulieren auch die Atmung, erweitern die Luftröhre und haben eine hypotensive Wirkung.

in der R_1 einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen, R_2 ein Wasserstoffatom oder eine Methylgruppe, R_3 ein Wasserstoff- oder Halogenatom, eine Methyl-, Methoxy-, Acetoxy- oder Hydroxylgruppe bedeutet, mit der Massgabe, dass, wenn R_1 eine Methylgruppe darstellt,

 ${
m R_2}$ und ${
m R_3}$ keine Wasserstoffatome oder ${
m R_2}$ kein Wasserstoffatom und ${
m R_3}$ keine Methylgruppe in Stellung 7 sein können.

Für R₁ bevorzugt ist die Methyl-, Äthyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl- und Isoamylgruppe.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung der Pyrazolopyridine der allgemeinen Formel (I), das dadurch gekennzeichnet ist, dass man ein N-Amino-2-methylpyridiniumsalz der allgemeinen Formel (II)

in der R_2 und R_3 wie in Formel (I) definiert sind und X ein Anion bedeutet, mit einem reaktiven Derivat einer organischen aliphatischen Carbonsäure mit 2 bis 6 Kohlenstoffatomen in Gegenwart einer basischen Verbindung umsetzt.

Für X geeignet ist ein Halogenid, z.B. ein Chlorid, Bromid oder/oder Arylsulfation, z.B. Benzolsulfonat oder Mesitylensulfonat, oder das Anion einer organischen Carbonsäure, wie Maleinsäure. Die Verbindung der Formel (II) wird mit 2 oder mehr Mol des reaktiven Säurederivats umgesetzt.

Spezielle Beispiele eines reaktiven Derivats einer aliphatischen Carbonsäure mit 2 bis 6 Kohlenstoffatomen sind Essigsäureanhydrid, Propionsäureanhydrid, n-Buttersäureanhydrid, Isobuttersäureanhydrid, n-Valeriansäureanhydrid und Isovalerian-

säurcanhydrid sowie die Acylhalogonide, wie Isobutyrylchlorid.

Als basische Verbindungen werden vorzugsweise Natrium- oder Kaliumacetat, Natrium- oder Kaliumisobutyrat, Natrium- oder Kaliumcarbonat, Triäthylamin oder Pyridin verwendet.

Die Verbindungen werden gegebenenfalls in Gegenwart eines Lösungsmittels, wie Pyridin, Xylol, Tetrachloräthan oder Diäthoxyäthan, bei erhöhter Temperatur, z.B. 80 bis 150°C, umgesetzt.

Die Erfindung betrifft ferner Arzneipräparate, die durch einen Gehalt an mindestens einem Pÿrazolopyridin der allgemeinen Formel (I) als Wirkstoff in Kombination mit pharmakologisch verträglichen Trägerstoffen und/oder Verdünnungsmitteln gekennzeichnet sind.

Die Beispiele erläutern die Erfindung.

Beispiel

2-Isopropyl-3-isobutyrylpyrazolo-__1,5-a7-pyridin.

Ein Gemisch von 115 g 1-Amino-2-methylpyridiniumjodid, 500 g
Isobuttersäureanhydrid und 81 g Kaliumcarbonat wird 8 Stunden
am Rückfluss erhitzt. Nach dem Abkühlen werden die ausgefallenen Kristalle abfiltriert. Das Filtrat wird mit Wasser versetzt, mit Kaliumcarbonat auf pH 11 eingestellt und mit 1000 ml
Äthylacetat extrahiert. Der Extrakt wird mit 400 ml Wasser ge-

waschen, über Natriumsulfat getrocknet und unter vermindertem: Druck eingeengt. Der Rückstand wird destilliert, und man erhält 58 g eines farblosen kristallinen Produkts, Kp./7,5 mm 110 bis 175°C. Nach dem Umkristallisieren aus Hexan erhält man farblose Prismen, Fp. 53,5 bis 54°C.

Analyse	:	C %	н %	n %
	berechnet:	73,01	7,88	12,17
	gefunden:	72,86	7,94	12,09

Anstelle des 1-Amino-2-methylpyridinium jodids kann man in dieser Reaktion mit entsprechenden Ausbeuten auch das Chlorid, Bromid oder Maleat verwenden.

Beispiel 2

2-Propyl-3-butyrylpyrazolo-21,5-a7-pyridin.

Ein Gemisch von 149 g 1-Amino-2-methylpyridiniumjodid, 500 g Buttersäureanhydrid und 86 g Kaliumcarbonat wird unter Rühren 6 Stunden auf 170 bis 190°C erhitzt. Nach dem Abkühlen wird der Niederschlag abfiltriert und mit Äthylacetat und Wasser gewaschen. Nach dem Umkristallisieren aus Äthylacetat erhält man farblose Nadeln, Fp. 87 bis 88°C.

Die organische Phase des Filtrats wird abgetrennt, unter vermindertem Druck eingeengt und mit Wasser versetzt. Das Gemisch wird mit Kaliumcarbonat alkalisch gemacht und mit Dichlormethan extrahiert. Der Extrakt wird mit Wasser gewaschen,

Nugguya am lo 13 2315801 art. Der Rücketand

über Natriumsulfat getroknet und eingeengt. Der Rückständ wird auf Aluminiumoxid mit Dichlormethan als Eluiermittel chromatographiert. Aus der ersten Fraktion erhält man farblose Nadeln. Die Gesamtausbeute beträgt 70,5 Prozent.

Beispiel 3

2-Isobuty1-3-isovalerylpyrazolo-[-1,5-a]-pyridin.

Ein Gemisch von 20 g 1-Amino-2-methylpyridiniumjodid, 65 ml Isovaleriansäurearhydrid und 13,4 g Kaliumcarbonat werden unter Rühren 9 Stunden am Rückfluss erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch in 100 ml Wasser eingegossen, mit Kaliumcarbonat auf pH 10 eingestellt und mit 300 ml Dichlormethan extrahiert. Der Extrakt wird mit 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand wird destilliert; man erhält ein Produkt, Kp./7,5 mm 113 bis 114°C, das nach dem Umkristallisieren aus Hexan farblose Prismen gibt, Fp. 53 bis 54°C. Ausbeute: 18 Prozent.

Analyse	• 3	C %	н %	N %
• •	berechnet;	74,38	8,58	10,84
	gefunden:	74,46	8,52	10,84

Beispiel 4

2-Methyl-3-acetyl-4-brompyrazolo-21,5-a7-pyridin.

1-Amino-2-methyl-3-brompyridiniumchlorid, Essigsäureanhydrid

und wasserfreies Natriumacetat werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus n-Hexan erhält mau farblose Prismen, Fp. 86 bis 87° C.

Analyse:	C %	Н %	n %
berechnet:	47,45	3,58	11,07
gefunden:	47,26	3,45	10,88

Beispiel 5

2-Methyl-3-acetyl-6-brompyrazolo-21,5-a7-pyridin. .

1-Amino-2-methyl-5-brompyridiniumchlorid, Essigsäureanhydrid und wasserfreies Natriumacetat werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus Benzol erhält man farblose Nadeln, Fp. 146 bis 147°C.

Analyse:	C %	н 🖇	n %
berechnet:	47,45	3 , 58	.11,07
qefunden:	47,85	3,37	10,68

Beispiel 6

2,4-Dimethyl-3-acetylpyrazolo-_1,5-a7-pyridin.

1-Amino-2,3-dimethylpyridiniumjodid, Essigsäureanhydrid und wasserfreies Natriumacetat werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Das Produkt hat einen Kp./5 mm von 136 bis 141°C. Ausbeute: 55,7 Prozent.

Beispiel 7

2-Methyl-3-acetyl-4-hydroxypyrazolo-21,5-a7-pyridiu.

1-Amino-2-methyl-5-hydroxypyridiniumchlorid, Essigsäureanhydrid und wasserfreies Natriumacetat werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus Äthylacetat erhält man farblose Nadeln, Fp. 117 bis 119°C.

Analyse	• · · ·	C %	н %	n %
•.	berechnet:	63,15	5,30	14,73
1*	gefunden:	63,20	. 5,24	14,79

Beispiel 8

2,6-Dimethyl-3-acetylpyrazolo-_1,5-a7-pyridin.

1-Amino-2,5-dimethylpyridiniumjodid, Essigsäureanhydrid und wasserfreies Natriumacetat werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus n-Hexan erhält man in 68prozentiger Ausbeute farblose Nadeln, Fp. 141 bis 142°C.

Analy	8e:	C %	Н %	n %
	berechnet;	70,19	6,43	14,88
	gefunden:	70,67	6,21	14,88

Beispiel 9

2-Athyl-3-propionylpyrazolo-/T,5-a7-pyridin.

1-Amino-2-methylpyridiniumjodid, Propionsäureanhydrid und wasserfreies Pyridin werden gemäss Beispiel 3 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus Äthylacetat erhält man farblose Nadeln, Fp. 105,5 bis 106°C.

Analyse:		C %	н %	n %
berecl	hnet	71,26	6,98	13,85
gefun	den:	71,20	7,02	13,82

Beispiel 10

2-Isopropyl-3-isobutyryl-7-methylpyrazolo_1,5-a7-pyridin.

Bin Gemisch von 73 g 1-Amino-2,6-dimethylpyridiniumjodid, 250 g Isobuttersäureanhydrid und 40 g Kaliumcarbonat in 250 g Pyridin werden 13 Stunden am Rückfluss erhitzt. Das Reaktionsgemisch wird dann unter vermindertem Druck eingeengt, mit Wasser versetzt, mit Kaliumcarbonat auf pH 10 eingestellt und mit 1000 ml Dichlormethan extrahiert. Der Extrakt wird mit 400 ml Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand wird destilliert; man erhält 27 g des gewünschten Produkts, Kp./5 mm 169 bis 172°C.

Beispiel 11.

2-Isopropyl-3-isobutyryl-4-methylpyrazolo-\(\int 1,5-a7\)-pyridin.
309841/1163

Beispiel 10 wird mit 1-Amino-2,3-dimethylpyridiniumjodid wiederholt. Das erhaltene Produkt hat einen Kp./6 mm von 145 bis 150°C.

Beispiel 12

2,5,7-Trimethyl-3-acetylpyrazolo-[1,5-a7-pyridin.

1-Amino-2,4,6-trimethylpyridiniumjodid, Essigsäureanhydrid und Kaliumcarbonat werden gemäss Beispiel 1 umgesetzt.und aufgearbeitet. Man erhält ein Produkt mit einem Kp./7 mm von 178 bis 184°C. Nach dem Umkristallisieren aus Benzol/Hexan erhält man farblose Prismen, Fp. 108 bis 109°C.

Analyse:	C %	н %	n %
berechnet:	71,26	6,98	13,85
gefunden;	71,05	6,78	13,89

Béispiel 13

2,5-Dimethyl-3-acetylpyrazolo-__1,5-a7-pyridin.

1-Amino-2,4-dimethylpyridiniumjodid, Essigsäureanhydrid und Kaliumcarbonat werden gemäss Beispiel 1 umgesetzt und aufgearbeitet. Man erhält ein Produkt mit einem Kp./6 mm von 153 bis 165°C. Nach dem Umkristallisieren aus Äthanol erhält man farblose Nadeln, Fp. 130 bis 131°C.

Analyse	:	C %	н %	N %
	berechnet:	70,18	6,43	14,88
	gefunden:	70,06	6,32	14,86

Beispiel 14

2-Nethyl-3-acetyl-4-methoxypyrazolo-_1,5-a7-pyridin.

1-Amino-2-methyl-3-methoxypyridiniumjodid, Essigsäureanhydrid und Natriumacetat werden gemäss Beispiel 1 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus Hexan erhält man schwach-gelbe Nadeln, Fp. 107 bis 108°C.

Analyse	•	C %	н %	n %
•	berechnet:	64,69	5,92	13,72
•	gefunden;	64,84	5,74	13,95

Beispiel 15

2-Methyl-3-acetyl-6-methoxypyrazolo-_1,5-a7-pyridin.

1-Amino-2-methyl-5-methoxypyridiniumjodid, Essigsäureanhydrid und Natriumacetat werden gemäss Beispiel 1 umgesetzt und aufgearbeitet. Nach dem Umkristallisieren aus Hexan erhält man farblose Nadeln, Fp. 123^oC.

Analyse:	C ≸	н 🗲	n %
berechnet:	64,69	5,92	13,72
gefunden:	64,61	6,02	13,92

Beispiel 16

2-Methyl-3-acetyl-6-acetoxypyrazolo-_1,5-a7-pyridin.

1-Amino-2-methyl-5-hydroxypyridiniumjodid, Essigsäureanhydrid und Natriumacetat werden gemäss Beispiel 1 umgesetzt und aufgearboitet. Nach dem Umkristallisieren aus Benzol erhält man farblose Nadeln, Fp. 1730c.

Analyse	•	C %	H %	N %
1	berechnet:	62,06	5,21	12,06
	gefunden:	61,94	5,13	12,07

Beispiel 17

2-Methyl-3-acetyl-6-hydroxypyrazolo-[1,5-a7-pyridin.

Eine Lösung von 2,3 g 2-Methyl-3-acetyl-6-acetorypyrazolo-[1,5-a]-pyridin in 20 ml 30prozentiger wässriger Salzsäure wird auf dem Wasserbad eine Stunde lang erwärmt. Dann wird das Reaktionsgemisch mit Wasser versetzt und über Nacht bei Raumtemperatur stehen gelassen. Die ausgefallenen Kristalle werden abfiltriert und aus Methanol umkristallisiert. Man erhält farblose Nadeln, Fp. 207°C.

Analy	8 e:	C %	н %	n %
٠.	berechnet:	63,15	5,30	14,73
	gefunden:	63,39	5,30	14,52

Pharmakologische Versuche

Die erfindungsgemässen Verbindungen der allgemeinen Formel (I) zeigen im Versuch von Langendorff am isolierten Herz eines

17 112

Meerschweinchens (Körpergewicht 300 bis 450 g) eine bedeutende Erhöhung des Blutflusses in den Herzkranzgefüssen. Der Blutfluss und die Herzfrequenz werden mittels eines elektromagnetischen Blutflussmessers bzw. Herzfrequenzmessers bestimmt.

2 mg der erfindungsgemässen Verbindung werden in 1 ml 30prozentigem Äthanol gelöst.

Im Versuch an der offenen Brust (vergl. Winbury und Mitarb., J. Pharmacol. Exptl. Therap. 99 (1950) Seite 343 und Schofield und Mitarb., J. Physiol. 122 (1953) Seite 489) von 8 bis 15 kg schweren Hunden erhöht 2-Isopropyl-3-isobutyryl-pyrazolo-\(\bigcup 1,5-a\bigcup -pyridin nach intra-arterieller Injektion den Blutfluss in den Herzkranzgefässen um etwa 75 Prozent oder mehr, verglichen mit Adenosin (= 100 Prozent). Bei intravenöser Verabreichung senkt diese Verbindung gleich nach der Injektion den Blutdruck etwas und erhöht den Blutfluss der Koronargefässe für längere Zeit als Papaverin.

Nach der Methode von Hashimoto und Mitarb. (vgl. Japan. J. physiol., 14, (1964), Seite 299) wird an 8 bis 15 kg schweren Hunden der Blutfluss in der Femoralarterie gemessen.

2-Isopropyl-3-isobutyrylpyrazolo-\(\sigma 1,5-a \sigma -pyridin erhöht den Blutfluss nach intra-arterieller Injektion um etwa 88 Prozent, verglichen mit Adenosin (= 100 Prozent).

An männlichen Kaninchen mit einem Körpergewicht von etwa 3 kg wird nach Terasawa (vgl. Japan. Circulation J., <u>25</u> (1961) Seite 1123) der Blutfluss in den Cerebralarterien gemessen.

Die erfindungsgemässen Verbindungen werden intravenös verabreicht und erhöhen den Blutfluss in den Cerebralarterieu um 40 Prozent oder mehr, verglichen mit Adenosin (= 100 Prozent).

Ausserdem erniedrigen 2-Isobutyl-3-isovalerylryrazolo-___1,5-2/pyridin und 2-Methyl-3-acetyl-6-acetoxypyrazolo-___1,5-2/pyridin bei Ratten den Blutdruck in der Femoralarterie.

Die Ergebnisse sind in der folgenden Tabelle zusammengefasst.

,			
Tabelle		Wirkung der Verbindungen der allgemeinen Formel(I) auf den Blutfluss	
-	•.	der	
		Verbindungen	
		der	
		Wirkung	

der Koronargefässe und die Fraquenz des isollerten Meerschweinchenherzens

- Seite 15 -

Kontrak- Herz- tions- kraft frequenz	231580 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Blutfluss Kol in den ti Herskrans- kri Gefässen	## •• ## ## •# ## ## ##
Dosis (3)	52 5
R2 B3	н н н н н н н н н н н н н н н н н н н
ж т	-GE_CGE_CGE_3 -GE_3 -GE_3 -GE_3 -GE_3 -GE_3 -GE_2GE_CGE_3 -GE_3 -G

_	^	à	-	_	_	_
2	3	7	5	8	O	7

+ : Brhöbung - : Senkung

				1	<u> </u>		
H H	R 2	В3	Dosts to	in den Herskrans-	Kontrak- tions-	Herz- frequenz	•
-CH3	4-CH ₃	m	<u> </u>		7 41 +	બન	
-GK (G, 3)	7-CH3		200	‡ ‡		• •	÷
-CH ₃	5-08.3	7-CH3	200 200 100	:	संस न	सा ।	
E	5 GH 3	m	200	· :‡:	प ्रका ः	H 4-	
Ą	6-CH ₃ C00	ш	500	‡ ‡	+ + 	+ <+	16
£.	of HO-7	Ħ	2008	‡‡	• + + 	+1+ 1	
-m3	. HO-9	ш	200		+f	41	•
CH3	6 - ся ₃ о	×	3 3 3	‡‡	H +1+	म संस	
Papaverin		. ;					

.

309841/1163

Patentansprüche

2-Alkyl-3-acyl-pyrazolo-21,5-a7-pyridine der ellgemeinen Formel (I)

$$\begin{array}{c|c}
R_{2} & & & \\
0 & & & \\
R_{1} & & & \\
\end{array}$$

in der R_1 einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 Kohlenstoffatomen, R_2 ein Wasserstoffatom oder eine Methylgruppe, R_3 ein Wasserstoff- oder Halogenatom, eine Methyl-, Methoxy-, Acetoxy- oder Hydroxylgruppe bedeuten, mit der Massgabe, dass, wenn R_1 eine Methylgruppe darstellt, R_2 und R_3 keine Wasserstoffatome oder R_2 kein Wasserstoffatom und R_3 keine Methylgruppe in Stellung 7 sein können.

- 2. 2-Isopropyl-3-isobutyrylpyrazolo-21,5-a7-pyridin.
- 3. 2-n-Propyl-3-n-butyrylpyrazolo-__1,5-a7-pyridin.
- 4. 2-Isobutyl-3-isovaleryl-pyrazolo-__1,5-a7-pyridin.
- 5. 2-Methyl-3-acetyl-4-brompyrazolo-21,5-a7-pyridin.
- 6. 2-Methyl-3-acetyl-6-brompyrazolo-21,5-a7-pyridin.

- 7. 2-Methyl-3-acetyl-4-methylpyrazolo-[1,5-a]-pyridin.
- 8. 2-Methyl-3-acetyl-4-hydroxypyrazolo-/1,5-a/-pyridin.
- 9. 2-Methyl-3-acetyl-6-methylpyrazolo-/1,5-a7-pyridin.
- 10. 2-Athyl-3-propionylpyrezolo-[1,5-a]-pyridin.
- 11. 2-Isopropyl-3-isobutyryl-7-methylpyrazolo-[1,5-a]-pyridin.
- 12. 2-Isopropyl-3-isobutyryl-4-methylpyrazolo-21,5-a7-pyridin.
- 13. 2,5,7-Trimethyl-3-acetylpyrazolo- $\sqrt{1},5$ -a $\sqrt{2}$ -pyridin.
- 14. 2,5-Dimethyl-3-acetylpyrazolo-[1,5-a]-pyridin.
- 15. 2-Methyl-3-acetyl-4-methoxypyrazolo-[1,5-a]-pyridin.
- 16. 2-Methyl-3-acetyl-6-methoxypyrazolo-[1,5-a]-pyridin.
- 17. 2-Methyl-3-acetyl-6-acetoxypyrazolo-_1,5-a7-pyridin.
- 18. 2-Methyl-3-acetyl-6-hydroxypyrazolo-/1,5-a7-pyridin.
- 19. Verfahren zur Herstellung der 2-Alkyl-3-acyl-pyrazolo
 [1,5-a]-pyridine nach Anspruch 1 bis 18, dadurch gekennzeichnet, dass man ein N-Amino-2-methylpyridiviumsalz der
 allgemeinen Formel (II)

309841/1163

(II).

in der R₂ und k₃ wie in Anspruch 1 definiert sind und K ein Anion bedeutet, mit einem reaktiven Derivat einer aliphatischen Carbonsäure mit 2 bis 6 Kohlenstoffatomen in Gegenwart einer basischen Verbindung umsetzt.

- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass man als basische Vorbindungen Natrium- oder Kaliumacetat, Natrium- oder Kaliumisobutyrat, Natrium- oder Kaliumcarbonat, Triäthylamin oder Pyridin verwendet.
- 21. Arzneipräparate, gekennzeichnet durch einen Gehalt an mindestens einem 2-Alkyl-3-acyl-pyrazolo-___1,5-a_7-pyridin nach Anspruch 1 als Wirkstoff in Kombination mit pharma-kologisch verträglichen Trägerstoffen und/oder Verdünnungsmitteln.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS .
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.