第二章: 完备信息静态博弈

授课教师: 雷浩然

湖南大学课程

完备信息静态博弈

静态博弈 = 同时行动博弈。三个基本元素:

- 参与人
- 行动集合
- 效用函数

完备信息静态博弈

静态博弈 = 同时行动博弈。三个基本元素:

- 参与人
- 行动集
- 效用函数

之后我们在介绍动态博弈和不完备信息时,会引入两个新元素:**信息集**和**策略**。

• 对于完备信息静态博弈, 暂时不用引入这两个元素

参与人

- 参与人指的是博弈中的决策主体,它的目的是通过选择行动(或策略)以最大化自己的效用水平
- 经济博弈中的参与人:
 - 消费者,投资者,企业、国家或由若干国家组成的集团
- 数学符号:
 - \circ 参与人构成集合 $N=\{1,...,n\}$
 - 参与人1, 参与人2,..., 参与人 n
- 例子: N = {张三,李四}

行动集

- 对于参与人 i, 用集合 A_i 表示其行动集
- 参与人 i 的某个行动记为 $a_i \in A_i$
- 例:

$$A_1 = A_2 = \{ 石头, 剪刀, 布 \}$$

• 石头剪刀布博弈的 **结果** 表示为向量 $(a_1,a_2)\in A_1\times A_2$

效用函数

• 参与人 i 的效用函数 u_i : 博弈结果到实数的映射

$$u_i:A_1 imes\ldots A_n o \mathbb{R}$$

• 例: 剪刀石头布博弈, 获胜时收益为 1, 失败收益为 -1, 平局为 0

效用函数

• 参与人 i 的效用函数 u_i : 博弈结果到实数的映射

$$u_i:A_1 imes\ldots A_n o \mathbb{R}$$

• 例: 剪刀石头布博弈, 获胜时收益为 1, 失败收益为 -1, 平局为 0

博弈的基本特征: 参与人 1 的最终收益不仅取决于他自己的决策 a_1 , 还取决于其他参与人的决策: $a_2, a_3, ...$

- 我们称这个现象为**策略性互动** (strategic interaction), 或参与人的收益存在"互相依赖"
- 这个概念很类似外部性

例: 囚徒困境

囚徒困境

- 囚徒困境是一个非常经典的 完备信息同时行动博弈
- 两位犯罪嫌疑人(张三和李四)被警方分离开,单独审问
- 面对警方询问, 犯罪嫌疑人会选择合作 (不坦白)或背叛 (坦白)
 - 若两人都选择合作,则两人均 "拘留7天"
 - 若张三选择合作, 而李四背叛. 则张三判刑 5 年,李四无罪释放
 - 若两人都选择背叛,则两人均判刑 1 年

囚徒困境: 博弈描述

- 行为人: $N = \{1, 2\}$. 张三是行为人 1,李四是行为人 2
- 行动集: $A_1 = A_2 = \{ \text{坦白}, \text{不坦白} \}$

囚徒困境: 博弈描述

- 行为人: $N = \{1, 2\}$. 张三是行为人 1,李四是行为人 2
- 行动集: $A_1 = A_2 = \{ \text{坦白}, \text{不坦白} \}$
- 效用函数表示为如下"收益矩阵":

```
张三 \ 李四   坦白     不坦白
坦白     (1 年, 1 年)   (无罪, 5 年)
不坦白     (5 年, 无罪)   (7 天, 7天)
```

囚徒困境: 博弈描述

- 行为人: $N = \{1, 2\}$. 张三是行为人 1,李四是行为人 2
- 行动集: $A_1 = A_2 = \{ 坦白, 不坦白 \}$
- 效用函数表示为如下收益矩阵:

```
张三 \ 李四   坦白   不坦白
坦白   (-5, -5)   (0, -8)
不坦白   (-8, 0)   (-1, -1)
```

• 如果你是张三,你的选择是?

严格劣势策略

- 若李四选则坦白, 张三选择坦白和不坦白的收益分别为: -5, -8
- 若李四选则不坦白,张三选择坦白和不坦白的收益分别为: 0, -1

严格劣势策略

- 若李四选则**坦白**, 张三选择坦白和不坦白的收益分别为: -5, -8
- 若李四选则不坦白, 张三选择坦白和不坦白的收益分别为: 0, -1

结论: 张三应该选坦白, 不应该选不坦白.

- 因为无论李四的选择是什么, 坦白的收益都大于不坦白的收益.
- 不坦白 是张三的(严格)劣势策略
 - 注: 对于完备信息同时行动博弈, "策略"是"行动"的同义词
 - 我们一般不说劣势行动, 只说**劣势策略**

练习: 寻找严格劣势策略 (如果有的话)

1\2	左	右
上	(1,0)	(-1, -3)
下	(-3, -1)	(0,1)

1\2	左	右
上	(1, 0)	(1, -3)
下	(-3,-1)	(0, 1)

练习答案

- 第一个博弈中, 双方参与人均不存在严格劣势策略
- 第二个博弈中,参与人1存在严格劣势策略,参与人2不存在.

这个练习的背景是另一个非常经典的博弈:协调博弈 (coordination game). 有时也把它叫作约会博弈.

严格劣势策略: 定义

对于两人博弈, 若参与人 1 存在两个策略 $a_{\rm th}$ 和 $a_{\rm sh}$, 使得

$$u_1(a$$
优, $a_2)>u_1(a$ 劣, $a_2)$ $orall a$ 名 $a_2\in A_2$

我们称策略 $a_{\rm ff}$ 严格优于 $a_{\rm ff}$. 并称 $a_{\rm ff}$ 是参与人 1 的严格劣势策略.

在具体博弈中, 理性的参与人永远不会选择严格劣势策略.

练习: 对于两人博弈, 若策略 a_2 是参与人2的严格劣势策略, 请描述对应的不等式关系.

练习: 对于两人博弈, 若策略 a_2 是参与人2的严格劣势策略, 请描述对应的不等式关系.

存在某个参与人2的策略 a_2' , 使得下列的不等式对所有参与人1的策略 a_1 都成立:

$$u_2(a_1,a_2')>u_2(a_1,a_2) \quad orall a_1\in A_1$$

劣势策略(暂时了解即可)

对于两人博弈, 若参与人 1 存在两个策略 $a_{\rm th}$ 和 $a_{\rm sh}$, 使得

1.
$$u_1(a_{\mathcal{H}},a_2)\geq u_1(a_{\mathcal{G}},a_2)$$
 $\forall a_2\in A_2$

2. 存在某个参与人2的策略 a_2' 使得不等式严格成立: $u_1(a_{\rm cl},a_2')>u_1(a_{
m s},a_2')$

则称 a_{3} 是参与人 1 的劣势策略.

如果某个劣势策略 a_{3} 不是严格劣势策略, 称它为不严格劣势策略

剔除严格劣势策略

- 博弈论的研究目标之一, 是给出模型中参与人行为的预测.
- 一个基本预测: 理性参与人不会选择严格劣势策略.
 - 因此, 我们可以将所有的严格劣势策略从分析中剔除!
 - 对于囚徒博弈, 双方行为人都不选 不坦白. 因此, 最终的博弈结果一定是双方都选择坦白.

练习:剔除严格劣势策略

1\2	左	右
上	(1, 0)	(1, -3)
下	(-3, -1)	(0, 1)

练习:剔除严格劣势策略

1\2	左	右
上	(1, 0)	(1, -3)
下	(-3,-1)	(0, 1)

- 在原始博弈中,参与人 2 不存在严格劣势策略.
- 剔除了参与人 1 的严格劣势策略 ("下") 之后呢?
 - 重复剔除严格劣策略
 - 给定参与人 1 选 "上",参与人 2 会选 "左".