Структурна теорія цифрових автоматів Лабораторна робота №1

Тема: Проектування комбінаційних схем на мікросхемах різного ступеню інтеграції

Куценко Євгеній, ІПС-31

1

Bapiaht: 11 (0001011) $a_7 = 0$, $a_6 = 0$, $a_5 = 0$, $a_4 = 1$, $a_3 = 0$, $a_2 = 1$, $a_1 = 1$

Табл. 1: таблиця icтинності функцій у ma \overline{y}

x_1	x_2	x_3	x_4	y	\overline{y}
0	0	0	0	1	0
0	0	0	1	0	1
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	1
1	1	1	1	0	1

2

Для заданої функції та її заперечення знайдемо МДН Φ та запишемо представлення у всіх нормальних формах.

Роглянемо функцію у:

ДДНФ: $y = \overline{x_1 x_2 x_3 x_4} \lor \overline{x_1 x_2} x_3 \overline{x_4} \lor \overline{x_1 x_2} x_3 x_4 \lor \overline{x_1} x_2 \overline{x_3} x_4 \lor x_1 \overline{x_2} x_3 \overline{x_4} \lor x_1 \overline{x_2} x_3 \overline{x_4} \lor x_1 \overline{x_2} \overline{x_3} x_4$

Мінімізуємо методом Карно-Вейча:

	21		$x_{3}x_{4}$							
	y	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
x	11	0	1	0	0					
	10	1	0	0	1					

Табл. 2: діаграма Вейча функції у

 $MДH\Phi: y = \overline{x_2x_4} \vee \overline{x_1x_2}x_3 \vee x_2\overline{x_3}x_4$

Отримаємо наступні представлення у у нормальних формах:

$$y = \overline{x_2x_4} \vee \overline{x_1x_2}x_3 \vee x_2\overline{x_3}x_4 = \qquad \text{(I/ABO)}$$

$$= \overline{\overline{x_2x_4}} \vee \overline{x_1x_2}x_3 \vee x_2\overline{x_3}x_4 =$$

$$= \overline{(\overline{x_2x_4})} \cdot \overline{(\overline{x_1x_2}x_3)} \cdot \overline{(x_2\overline{x_3}x_4)} = \qquad \text{(I-HI/I-HI)}$$

$$= \overline{(x_2 \vee x_4)} \cdot (x_1 \vee x_2 \vee \overline{x_3}) \cdot \overline{(x_3} \vee x_3 \vee \overline{x_4}) = \qquad \text{(ABO/I-HI)}$$

$$= \overline{(x_2 \vee x_4)} \vee \overline{(x_1 \vee x_2 \vee \overline{x_3})} \vee \overline{(\overline{x_3} \vee x_3 \vee \overline{x_4})} \qquad \text{(ABO-HI/ABO)}$$

Роглянемо функцію \overline{y} :

ДДНФ:

$$\overline{y} = \overline{x_1 x_2 x_3} x_4 \vee \overline{x_1} x_2 \overline{x_3 x_4} \vee \overline{x_1} x_2 x_3 \overline{x_4} \vee \overline{x_1} x_2 x_3 x_4 \vee \\ \vee x_1 \overline{x_2 x_3} x_4 \vee x_1 \overline{x_2} x_3 x_4 \vee x_1 x_2 \overline{x_3 x_4} \vee x_1 x_2 x_3 \overline{x_4} \vee x_1 x_2 x_3 x_4 \end{aligned}$$

Мінімізуємо методом Карно-Вейча:

\overline{y}			x_3x_4							
	g	00	01	11	10					
	00	0	1	0	0					
x_1x_2	01	1	0	1	1					
x	11	1	0	1	1					
	10	0	1	1	0					

Табл. 3: $\partial iaграма \ Beйча \ функції \ \overline{y}$

МДНФ: $\overline{y} = x_2x_3 \lor x_1\overline{x_2}x_4 \lor x_2\overline{x_4} \lor \overline{x_2x_3}x_4$

Отримаємо наступні представлення у у нормальних формах:

$$y = \overline{x_2 x_3 \vee x_1 \overline{x_2} x_4 \vee x_2 \overline{x_4} \vee \overline{x_2 x_3} x_4} = (I/ABO-HI)$$

$$= \overline{(x_2 x_3)} \cdot \overline{(x_1 \overline{x_2} x_4)} \cdot \overline{(x_2 \overline{x_4})} \cdot \overline{(\overline{x_2} x_3} x_4) = (I-HI/I)$$

$$= (\overline{x_2} \vee \overline{x_3}) \cdot (\overline{x_1} \vee x_2 \vee \overline{x_4}) \cdot (\overline{x_2} \vee x_4) \cdot (x_2 \vee x_3 \vee \overline{x_4}) = (ABO/I)$$

$$= \overline{(\overline{x_2} \vee \overline{x_3})} \cdot \overline{(x_1} \vee x_2 \vee \overline{x_4}) \cdot \overline{(x_2} \vee x_4) \cdot \overline{(x_2} \vee x_3 \vee \overline{x_4}) =$$

$$= \overline{(\overline{x_2} \vee \overline{x_3})} \vee \overline{(\overline{x_1} \vee x_2 \vee \overline{x_4})} \vee \overline{(\overline{x_2} \vee x_4)} \vee \overline{(x_2} \vee x_3 \vee \overline{x_4}) = (ABO-HI/ABO-HI)$$

3

Необхідно побудувати схеми, що реалізують операторне представлення, використовуючи елементи:

- 1. 3I/2ABO (час затримки сигналів: 24ms/22ms), з використанням елемента HI (час затримки 24ms)
- 2. 2I-НІ (час затримки сигналів: 20ms)

3.1 3I/2AБO + HI

$$y = \overline{x_2}\overline{x_4} \vee \overline{x_1}\overline{x_2}\overline{x_3} \vee x_2\overline{x_3}\overline{x_4} = (\overline{x_2}\overline{x_4}\overline{x_4} \vee \overline{x_1}\overline{x_2}\overline{x_3}) \vee x_2\overline{x_3}\overline{x_4}$$

Рис. 1: Реалізація функції на елементах 3I/2AEO + HI

3.2 2I-HI

$$y = \overline{(\overline{x_2x_4})} \cdot \overline{(\overline{x_1x_2x_3})} \cdot \overline{(x_2\overline{x_3}x_4)} = \overline{A} \cdot \overline{B} \cdot \overline{C};$$

$$A = \overline{(\overline{x_2x_4})} = \overline{(\overline{x_2} \cdot \overline{x_4})};$$

$$B = \overline{(\overline{x_1x_2}x_3)} = \overline{(\overline{x_1x_2})x_3} = \overline{(\overline{\overline{x_1}} \cdot \overline{x_2})} \cdot \overline{x_3} = \overline{(\overline{x_1} \cdot \overline{x_2})} \cdot x_3;$$

$$C = \overline{(x_2\overline{x_3}x_4)} = \overline{(x_2x_4)\overline{x_3}} = \overline{(\overline{x_2} \cdot \overline{x_4})} \cdot \overline{\overline{x_3}} = \overline{(\overline{x_2} \cdot \overline{x_4})} \cdot \overline{x_3};$$

$$y = \overline{A} \cdot \overline{B} \cdot \overline{C} = \overline{(A} \cdot \overline{B}) \cdot \overline{C} = \overline{(\overline{A} \cdot \overline{B})} \cdot \overline{C} = \overline{(\overline{(\overline{x_2}} \cdot \overline{x_4})} \cdot \overline{(\overline{x_1} \cdot \overline{x_2})} \cdot x_3)} \cdot \overline{(\overline{x_2} \cdot \overline{x_4})} \cdot \overline{x_3};$$

Рис. 2: Реалізація функції на елементах 2I-HI

4

Визначимо складність та швидкодію отриманих у попередньому пункті схем. Для визначення складності використовуються наступні оцінки:

- 1. К (складність за Квайном) сумарне число входів усіх логічних елементів схеми;
- $2. \ M$ число логічних елементів схеми;
- 3. $N = \sum_{i=1}^r \frac{m_i n_i}{14}$ число умовних корпусів мікросхем, де r число типів мікросхем, m_i кількість мікросхем і-го типу, n_i число виводів (входів і виходів) мікорсхеми і-го типу;

$4.1 \quad 3I/2ABO + HI$

$$K = 4 \cdot 1 + 3 \cdot 3 + 2 \cdot 2 = 17$$

$$M = 4 + 3 + 2 = 9$$

$$N = \frac{4 \cdot (1+1)}{14} + \frac{3 \cdot (3+1)}{14} + \frac{2 \cdot (2+1)}{14} = 26/14 = 13/7$$

Середній час затримки сигналів: $T = 1 \cdot 24 + 1 \cdot 24 + 2 \cdot 22 = 92ms$

4.2 2I-HI

$$K = 14 \cdot 2 = 28$$

$$M = 14$$

$$N = \frac{14 \cdot (2+1)}{14} = 42/14 = 3$$

Середній час затримки сигналів: $T = 7 \cdot 20 = 140$

Отже схема на елементах 3I/2ABO+HI є вигіднішою як за значеннями складності, так і за значенням затримки сигналів.

5

Табл. 4: таблиця вхідної та вихідної інформації перетворювача кодів

	на в	ході			на в	иході	
x_1	x_2	x_3	x_4	f_1	f_2	f_3	f_4
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	1
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	1
1	0	1	0	1	1	0	1
1	0	1	1	1	1	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	1
1	1	1	1	0	0	1	0

ДДНФ функцій f_1, f_2, f_3, f_4 :

 $f_1 = \overline{x_1} x_2 \overline{x_3} x_4 \vee \overline{x_1} x_2 x_3 \overline{x_4} \vee \overline{x_1} x_2 x_3 x_4 \vee x_1 \overline{x_2} x_3 \overline{x_4} \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} \vee x_1 \overline{x_2}$

Повна множина елементраних кон'юнкцій отриманої системи: $\{\overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}(3,4), \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}(2,4), \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}(2,4), \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}(2,3), \overline{x_1}\overline{x_2}\overline{x_3}\overline{x_4}(2,3,4),$

```
\overline{x_1}x_2\overline{x_3}x_4(1), \overline{x_1}x_2x_3\overline{x_4}(1,4), \overline{x_1}x_2x_3x_4(1,3), x_1\overline{x_2}x_3\overline{x_4}(1,3,4), x_1\overline{x_2}x_3\overline{x_4}(1,2,4),
x_1\overline{x_2}x_3\overline{x_4}(1,2,4), x_1\overline{x_2}x_3x_4(1,2,3), x_1x_2\overline{x_3}x_4(1,2,3,4), x_1x_2x_3\overline{x_4}(4), x_1x_2x_3x_4(3)
```

Будуємо нову функцію γ , ДДНФ якої складається з елементів вище вказаної множини: $\gamma = \frac{1}{x_1 x_2 x_3 x_4} (3,4) \vee \frac{2}{x_1 x_2 x_3} x_4 (2,4) \vee \frac{3}{x_1 x_2} x_3 x_4 (2,4) \vee \frac{4}{x_1 x_2} x_3 x_4 (2,3) \vee \frac{5}{x_1 x_2} x_3 x_4 (2,3) \vee$ $\vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} (1, 2, 4) \vee x_1 \overline{x_2} \overline{x_3} x_4 (1, 2, 3) \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} (1, 2, 3, 4) \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4} (4) \vee x_1 \overline{x_2} \overline{x_3} x_4 (3)$

Мінімізуємо використовуючи модифікований алгоритм Квайна. Виконуємо склеювання:

```
1 \lor 2 = \overline{x_1 x_2 x_3}(4) \lor \overline{x_1 x_2 x_3 x_4}(3,4) \lor \overline{x_1 x_2 x_3} x_4(2,4)
1 \vee 3 = \overline{x_1 x_2 x_4}(4) \vee \overline{x_1 x_2 x_3 x_4}(3,4) \vee \overline{x_1 x_2} x_3 \overline{x_4}(2,4)
1 \lor 5 = \overline{x_1 x_3 x_4}(3,4) \lor \overline{x_1 x_2 x_3 x_4}(3,4) \lor \overline{x_1} x_2 \overline{x_3 x_4}(2,3,4)
1 \vee 9 = \overline{x_2 x_3 x_4}(3,4) \vee \overline{x_1 x_2 x_3 x_4}(3,4) \vee x_1 \overline{x_2 x_3 x_4}(1,3,4)
2 \vee 4 = \overline{x_1 x_2} x_4(2) \vee \overline{x_1 x_2 x_3} x_4(2,4) \vee \overline{x_1 x_2} x_3 x_4(2,3)
2 \vee 10 = \overline{x_2 x_3} x_4(2,4) \vee \overline{x_1 x_2 x_3} x_4(2,4) \vee x_1 \overline{x_2 x_3} x_4(1,2,4)
3 \lor 4 = \overline{x_1 x_2} x_3(2) \lor \overline{x_1 x_2} x_3 \overline{x_4}(2,4) \lor \overline{x_1 x_2} x_3 x_4(2,3)
3 \vee 7 = \overline{x_1}x_3\overline{x_4}(4) \vee \overline{x_1}\overline{x_2}x_3\overline{x_4}(2,4) \vee \overline{x_1}x_2x_3\overline{x_4}(1,4)
3 \vee 11 = \overline{x_2} x_3 \overline{x_4}(2,4) \vee \overline{x_1} \overline{x_2} x_3 \overline{x_4}(2,4) \vee x_1 \overline{x_2} x_3 \overline{x_4}(1,2,4)
4 \vee 8 = \overline{x_1}x_3x_4(3) \vee \overline{x_1}\overline{x_2}x_3x_4(2,3) \vee \overline{x_1}x_2x_3x_4(1,3)
4 \vee 12 = \overline{x_2}x_3x_4(2,3) \vee \overline{x_1x_2}x_3x_4(2,3) \vee x_1\overline{x_2}x_3x_4(1,2,3)
5 \vee 7 = \overline{x_1} x_2 \overline{x_4}(4) \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4}(2,3,4) \vee \overline{x_1} x_2 \overline{x_3} \overline{x_4}(1,4)
5 \vee 13 = x_2 \overline{x_3 x_4}(2,3,4) \vee \overline{x_1} x_2 \overline{x_3 x_4}(2,3,4) \vee x_1 x_2 \overline{x_3 x_4}(1,2,3,4)
6 \vee 8 = \overline{x_1}x_2x_4(1) \vee \overline{x_1}x_2\overline{x_3}x_4(1) \vee \overline{x_1}x_2x_3x_4(1,3)
7 \vee 8 = \overline{x_1}x_2x_3(1) \vee \overline{x_1}x_2x_3\overline{x_4}(1,4) \vee \overline{x_1}x_2x_3x_4(1,3)
7 \vee 14 = x_2 x_3 \overline{x_4}(4) \vee \overline{x_1} x_2 x_3 \overline{x_4}(1,4) \vee x_1 x_2 x_3 \overline{x_4}(4)
8 \lor 15 = x_2 x_3 x_4(3) \lor \overline{x_1} x_2 x_3 x_4(1,3) \lor x_1 x_2 x_3 x_4(3)
9 \lor 10 = x_1 \overline{x_2 x_3}(1,4) \lor x_1 \overline{x_2 x_3 x_4}(1,3,4) \lor x_1 \overline{x_2 x_3} x_4(1,2,4)
9 \vee 11 = x_1 \overline{x_2 x_4}(1,4) \vee x_1 \overline{x_2 x_3 x_4}(1,3,4) \vee x_1 \overline{x_2} x_3 \overline{x_4}(1,2,4)
9 \vee 13 = x_1 \overline{x_3 x_4}(1,3,4) \vee x_1 \overline{x_2 x_3 x_4}(1,3,4) \vee x_1 x_2 \overline{x_3 x_4}(1,2,3,4)
10 \lor 12 = x_1 \overline{x_2} x_4(1,2) \lor x_1 \overline{x_2} x_3 x_4(1,2,4) \lor x_1 \overline{x_2} x_3 x_4(1,2,3)
11 \lor 12 = x_1 \overline{x_2} x_3(1,2) \lor x_1 \overline{x_2} x_3 \overline{x_4}(1,2,4) \lor x_1 \overline{x_2} x_3 x_4(1,2,3)
11 \vee 14 = x_1 x_3 \overline{x_4}(4) \vee x_1 \overline{x_2} x_3 \overline{x_4}(1, 2, 4) \vee x_1 x_2 x_3 \overline{x_4}(4)
12 \vee 15 = x_1 x_3 x_4(3) \vee x_1 \overline{x_2} x_3 x_4(1,2,3) \vee x_1 x_2 x_3 x_4(3)
13 \lor 14 = x_1 x_2 \overline{x_4}(4) \lor x_1 x_2 \overline{x_3} \overline{x_4}(1, 2, 3, 4) \lor x_1 x_2 x_3 \overline{x_4}(4)
```

Після проведення поглинань отримуємо:

Після проведення поглинань отримуємо:
$$\gamma = \overline{x_1 x_2 x_3} \ (4) \lor \overline{x_1 x_2 x_4} \ (4) \lor \overline{x_1 x_3 x_4} \ (3,4) \lor \overline{x_2 x_3 x_4} \ (3,4) \lor \overline{x_1 x_2} x_4 \ (2) \lor \lor \overline{x_2 x_3} x_4 \ (2,4) \lor \overline{x_1 x_2} x_3 \ (2) \lor \overline{x_1 x_3} \overline{x_4} \ (4) \lor \overline{x_2 x_3} \overline{x_4} \ (2,4) \lor \overline{x_1 x_3} x_4 \ (3) \lor \lor \overline{x_2 x_3} x_4 \ (2,3) \lor \overline{x_1 x_2} \overline{x_4} \ (4) \lor x_2 \overline{x_3} \overline{x_4} \ (2,3,4) \lor \overline{x_1 x_2} x_4 \ (1) \lor \overline{x_1 x_2} x_3 \ (1) \lor \lor \overline{x_2 x_3} \overline{x_4} \ (4) \lor x_2 \overline{x_3} x_4 \ (3) \lor x_1 \overline{x_2} \overline{x_3} \ (1,4) \lor x_1 \overline{x_2} \overline{x_4} \ (1,4) \lor x_1 \overline{x_3} \overline{x_4} \ (1,3,4) \lor \lor \overline{x_1 x_2} \overline{x_4} \ (1,2) \lor x_1 \overline{x_2} \overline{x_3} \ (1,2) \lor x_1 \overline{x_3} \overline{x_4} \ (4) \lor x_1 \overline{x_3} x_4 \ (3) \lor x_1 \overline{x_2} \overline{x_4} \ (4) \lor \lor \overline{x_1 x_2} \overline{x_3} \overline{x_4} \ (1,2,4) \lor \overline{x_1 x_2} \overline{x_3} \overline{x_4} \ (1,2,4) \lor x_1 \overline{x_2} \overline{x_3} \overline{x_$$

$$\vee x_1 \frac{30}{x_2} x_3 x_4 (1,2,3) \vee x_1 x_2 \frac{31}{x_3 x_4} (1,2,3,4)$$

Виконуємо склеювання:

$$1 \vee 18 = \overline{x_2 x_3}(4) \vee \overline{x_1 x_2 x_3}(4) \vee x_1 \overline{x_2 x_3}(1,4)$$

$$2 \vee 12 = \overline{x_1 x_4}(4) \vee \overline{x_1 x_2 x_4}(4) \vee \overline{x_1} x_2 \overline{x_4}(4)$$

$$2 \vee 19 = \overline{x_2 x_4}(4) \vee \overline{x_1 x_2 x_4}(4) \vee x_1 \overline{x_2 x_4}(1,4)$$

$$3 \lor 8 = \overline{x_1 x_4}(4) \lor \overline{x_1 x_3 x_4}(3,4) \lor \overline{x_1} x_3 \overline{x_4}(4)$$

$$3 \lor 20 = \overline{x_3} \overline{x_4} (3, 4) \lor \overline{x_1} \overline{x_3} \overline{x_4} (3, 4) \lor x_1 \overline{x_3} \overline{x_4} (1, 3, 4)$$

$$4 \vee 6 = \overline{x_2 x_3}(4) \vee \overline{x_2 x_3 x_4}(3,4) \vee \overline{x_2 x_3} x_4(2,4)$$

$$4 \vee 9 = \overline{x_2 x_4}(4) \vee \overline{x_2 x_3 x_4}(3,4) \vee \overline{x_2} x_3 \overline{x_4}(2,4)$$

$$4 \vee 13 = \overline{x_3 x_4}(3,4) \vee \overline{x_2 x_3 x_4}(3,4) \vee x_2 \overline{x_3 x_4}(2,3,4)$$

$$5 \vee 21 = \overline{x_2}x_4(2) \vee \overline{x_1}\overline{x_2}x_4(2) \vee x_1\overline{x_2}x_4(1,2)$$

$$6 \vee 11 = \overline{x_2}x_4(2) \vee \overline{x_2}\overline{x_3}x_4(2,4) \vee \overline{x_2}x_3x_4(2,3)$$

$$7 \vee 22 = \overline{x_2}x_3(2) \vee \overline{x_1}\overline{x_2}x_3(2) \vee x_1\overline{x_2}x_3(1,2)$$

$$8 \vee 23 = x_3 \overline{x_4}(4) \vee \overline{x_1} x_3 \overline{x_4}(4) \vee x_1 x_3 \overline{x_4}(4)$$

$$9 \lor 11 = \overline{x_2}x_3(2) \lor \overline{x_2}x_3\overline{x_4}(2,4) \lor \overline{x_2}x_3x_4(2,3)$$

$$9 \lor 16 = x_3\overline{x_4}(4) \lor \overline{x_2}x_3\overline{x_4}(2,4) \lor x_2x_3\overline{x_4}(4)$$

$$10 \lor 24 = x_3 x_4(3) \lor \overline{x_1} x_3 x_4(3) \lor x_1 x_3 x_4(3)$$

$$11 \lor 17 = x_3 x_4(3) \lor \overline{x_2} x_3 x_4(2,3) \lor x_2 x_3 x_4(3)$$

$$12 \vee 25 = x_2\overline{x_4}(4) \vee \overline{x_1}x_2\overline{x_4}(4) \vee x_1x_2\overline{x_4}(4)$$

$$13 \lor 16 = x_2\overline{x_4}(4) \lor x_2\overline{x_3}\overline{x_4}(2,3,4) \lor x_2x_3\overline{x_4}(4)$$

$$18 \lor 22 = x_1 \overline{x_2}(1) \lor x_1 \overline{x_2} \overline{x_3}(1,4) \lor x_1 \overline{x_2} \overline{x_3}(1,2)$$

$$19 \lor 21 = x_1 \overline{x_2}(1) \lor x_1 \overline{x_2} \overline{x_4}(1,4) \lor x_1 \overline{x_2} x_4(1,2)$$

$$19 \lor 25 = x_1 \overline{x_4}(4) \lor x_1 \overline{x_2} \overline{x_4}(1,4) \lor x_1 x_2 \overline{x_4}(4)$$

$$20 \lor 23 = x_1 \overline{x_4}(4) \lor x_1 \overline{x_3} \overline{x_4}(1,3,4) \lor x_1 x_3 \overline{x_4}(4)$$

Після проведення поглинань отримуємо:

$$\gamma = \frac{1}{x_{2}x_{3}} (4) \vee \frac{2}{x_{1}x_{4}} (4) \vee \frac{3}{x_{3}x_{4}} (3,4) \vee \frac{4}{x_{2}x_{4}} (4) \vee \frac{5}{x_{2}} x_{4} (2) \vee$$

$$\vee \frac{6}{x_{2}x_{3}} (2) \vee x_{3} \frac{7}{x_{4}} (4) \vee x_{3} x_{4} (3) \vee x_{2} \frac{9}{x_{4}} (4) \vee x_{1} \frac{10}{x_{2}} (1) \vee$$

$$\vee x_{1} \frac{11}{x_{4}} (4) \vee \frac{12}{x_{2}x_{3}} x_{4} (2,4) \vee \frac{13}{x_{2}} \frac{14}{x_{3}} (2,4) \vee \frac{14}{x_{2}x_{3}} x_{4} (2,3) \vee x_{2} \frac{15}{x_{3}} \frac{1}{x_{4}} (2,3,4) \vee$$

$$\vee \frac{16}{x_{1}x_{2}x_{4}} (1) \vee \frac{17}{x_{1}x_{2}} \frac{17}{x_{2}} (1) \vee x_{1} \frac{18}{x_{2}} \frac{1}{x_{3}} (1,4) \vee x_{1} \frac{19}{x_{2}} \frac{1}{x_{4}} (1,4) \vee x_{1} \frac{20}{x_{3}} \frac{1}{x_{4}} (1,3,4) \vee$$

$$\vee x_{1} \frac{21}{x_{2}} x_{4} (1,2) \vee x_{1} \frac{22}{x_{2}} x_{3} (1,2) \vee \frac{23}{x_{1}} \frac{23}{x_{2}} \frac{1}{x_{3}} \frac{1}{x_{4}} (1,4) \vee \frac{24}{x_{1}} \frac{24}{x_{2}} \frac{1}{x_{3}} \frac{25}{x_{4}} (1,2,4) \vee$$

$$\vee x_{1} \frac{26}{x_{2}} \frac{1}{x_{3}} \frac{27}{x_{4}} (1,2,3) \vee x_{1} \frac{28}{x_{2}} \frac{27}{x_{3}} \frac{1}{x_{4}} (1,2,3) \vee x_{1} \frac{28}{x_{2}} \frac{1}{x_{3}} \frac{1}{x_{4}} (1,2,3,4)$$

Виконуємо склеювання:

$$2 \vee 11 = \overline{x_4}(4) \vee \overline{x_1x_4}(4) \vee x_1\overline{x_4}(4)$$

$$3 \vee 7 = \overline{x_4}(4) \vee \overline{x_3}\overline{x_4}(3,4) \vee x_3\overline{x_4}(4)$$

$$4 \vee 9 = \overline{x_4}(4) \vee \overline{x_2x_4}(4) \vee x_2\overline{x_4}(4)$$

Після проведення поглинань отримуємо:

$$\gamma = \frac{1}{x_4} (4) \vee \frac{2}{x_2 x_3} (4) \vee \frac{3}{x_3 x_4} (3, 4) \vee \frac{4}{x_2 x_4} (2) \vee \frac{5}{x_2 x_3} (2) \vee \\ \vee x_3^6 x_4 (3) \vee x_1^7 \overline{x_2} (1) \vee \frac{8}{x_2 x_3} x_4 (2, 4) \vee \overline{x_2} x_3 \overline{x_4} (2, 4) \vee \overline{x_2} x_3 x_4 (2, 3) \vee$$

$$\vee x_{2} \overline{x_{3}x_{4}} (2,3,4) \vee \overline{x_{1}} \overline{x_{2}} x_{4} (1) \vee \overline{x_{1}} \overline{x_{2}} x_{3} (1) \vee x_{1} \overline{x_{2}} \overline{x_{3}} (1,4) \vee x_{1} \overline{x_{2}} \overline{x_{4}} (1,4) \vee x_{1} \overline{x_{2}} \overline{x_{4}} (1,4) \vee x_{1} \overline{x_{2}} \overline{x_{4}} (1,3,4) \vee x_{1} \overline{x_{2}} \overline{x_{4}} (1,2) \vee x_{1} \overline{x_{2}} \overline{x_{3}} (1,2) \vee \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,4) \vee \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,3) \vee x_{1} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,2,4) \vee x_{1} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,2,4) \vee x_{1} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,2,3) \vee x_{1} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} (1,2,3,4)$$

Подальші ск
леювання та поглинання неможливі, а отже ми отримали скорочену ДНФ функції
 $\gamma.$

\$\tau_1x2x3x4	က						*																		
$\underline{t}\underline{x}$ $\underline{t}\underline{x}$ $\underline{t}\underline{x}$	4	*																							
	4	*		*								*					*								*
twc.m7.m1.m	က			*								*					*								*
$x_1x_2\overline{x_3x_4}$	2											*													*
	\vdash																*								*
	3						*				*													*	
$vx \overline{x} x \overline{x} x \overline{x}$	2				*	*					*							*	*					*	
								*										*	*					*	
	4	*								*						*							*		
$x^{1}x^{2}x^{2}$	2					*				*									*				*		
	-							*								*			*				*		
	4		*						*						*							*			
tx \underline{t} \underline{x} \underline{t} \underline{x}	2				*				*									*				*			
	-							*							*			*				*			
	4	*	*	*											*	*	*								
$1x^{2}x^{2}x^{3}x^{4}$	က			*													*								
	П														*	*	*								
tx	က						*														*				
	-												*	*							*				
$\underline{t}\underline{x}$ $\underline{t}\underline{x}$	4	*																		*					
	П													*						*					
$vx_{\overline{1}}x_{\overline{2}}x_{\overline{1}}x_{\overline{1}}$	-												*												
	4	*		*								*													
$\underline{t}\underline{x}\underline{t}\underline{x}$	က			*								*													
	2											*													
vx2 x 2 x 4	က						*				*														
	2				*	*					*														
$\underline{v}\underline{x}\underline{v}\underline{x}\underline{x}\underline{x}\underline{x}$	4	*								*															
	2					*				*															
vx	4		*						*																
	2				*				*																
$\underline{v}x$ 2 x 2 x 1 x	4	*	*	*																					
	က			*																					
		$\overline{x_4}(4)$	$\frac{3}{4}$	3, 4)	(2)	$^{3}(2)$	$_{4}(3)$	$\overline{2}(1)$	2, 4)	(2, 4)	(2,3)	3,4)	$_{4}(1)$	3(1)	1, 4)	1, 4)	3,4)	1, 2)	[1, 2]	1,4)	1, 3)	(2, 4)	(2, 4)	2, 3)	3, 4)
		\overline{x}	$\overline{x_2x_3}(4)$	$\overline{x_3x_4}(3,4)$	$\overline{x_2}x_4(2)$	$\overline{x_2}x_3(2)$	$x_3x_4(3)$	$x_1\overline{x_2}(1)$	$\overline{x_2x_3}x_4(2,4)$	$\overline{x_2} x_3 \overline{x_4} (2, 4)$	$\overline{x_2}x_3x_4(2,3]$	$x_2\overline{x_3}\overline{x_4}(2,3,4)$	$\overline{x_1}x_2x_4(1)$	$\overline{x_1}x_2x_3(1)$	$x_1\overline{x_2}\overline{x_3}(1,4)$	$x_1 \overline{x_2} \overline{x_4} (1, 4)$	$x_1\overline{x_3}\overline{x_4}(1,3,4)$	$x_1\overline{x_2}x_4(1,2)$	$x_1\overline{x_2}x_3(1,2)$	$\overline{x_1}x_2x_3\overline{x_4}(1,4)$	$\overline{x_1}x_2x_3x_4(1,3)$	$x_1\overline{x_2x_3}x_4(1,2,4)$	$x_1\overline{x_2}x_3\overline{x_4}(1,2,4)$	$x_1\overline{x_2}x_3x_4(1,2,3)$	$x_1 x_2 \overline{x_3 x_4} (1, 2, 3, 4)$
				$\overline{x_3}$					$\overline{v_2x_3}$	$\overline{v_2}x_3$	$\overline{v_2}x_3$	x_3x_4	$\overline{x_1}$	$\overline{x_1}$	$\overline{v_1}\overline{x_2}$	$\overline{v_1}\overline{x_2}$	x_3x_4	$\overline{v_1}\overline{x_2}$	$\overline{v_1}\overline{x_2}$	v_2x_3	v_2x_3	$\overline{x_3}x_4$	$x_3\overline{x_4}$	x_3x_4	$\overline{x_4}(1$
									162	162	103	$x_2^{\overline{i}}$, s	,	x_1	.2	(3	$\overline{x_1}$	$\overline{x_1}$	$1\overline{x_2}$	$1\overline{x_2}$	$1\overline{x_2}$.	$2\overline{x_3}$
																						x	x	x	x_1x
																									لـــــ

Отже, МДН Φ функції γ :

$$\gamma = \overline{x_4}(4) \vee \overline{x_3} \overline{x_4}(3,4) \vee \overline{x_2} x_3(2) \vee x_3 x_4(3) \vee x_1 \overline{x_2}(1) \vee \overline{x_2} \overline{x_3} x_4(2,4) \vee x_2 \overline{x_3} \overline{x_4}(2,3,4) \vee \overline{x_1} x_2 x_4(1) \vee \overline{x_1} x_2 x_3(1) \vee x_1 \overline{x_3} \overline{x_4}(1,3,4);$$

Тоді мінімальна система даних функцій має вигляд:

$$f_1 = x_1 \overline{x_2}(1) \vee \overline{x_1} x_2 x_4(1) \vee \overline{x_1} x_2 x_3(1) \vee x_1 \overline{x_3} \overline{x_4}(1,3,4);$$

$$f_2 = \overline{x_2}x_3(2) \vee \overline{x_2}\overline{x_3}x_4(2,4) \vee x_2\overline{x_3}\overline{x_4}(2,3,4)$$

$$f_3 = \overline{x_3x_4}(3,4) \lor x_3x_4(3) \lor x_2\overline{x_3x_4}(2,3,4) \lor x_1\overline{x_3x_4}(1,3,4);$$

$$f_4 = \overline{x_4}(4) \vee \overline{x_3x_4}(3,4) \vee \overline{x_2x_3}x_4(2,4) \vee x_2\overline{x_3x_4}(2,3,4) \vee x_1\overline{x_3x_4}(1,3,4);$$

Знаходимо операторні представлення заданих функцій на елементах 3І-НІ:

$$f_{1} = x_{1}\overline{x_{2}}(1) \vee \overline{x_{1}}x_{2}x_{4}(1) \vee \overline{x_{1}}x_{2}x_{3}(1) \vee x_{1}\overline{x_{3}}\overline{x_{4}}(1,3,4) =$$

$$= \overline{x_{1}\overline{x_{2}}(1) \vee \overline{x_{1}}x_{2}x_{4}(1) \vee \overline{x_{1}}x_{2}x_{3}(1) \vee x_{1}\overline{x_{3}}\overline{x_{4}}(1,3,4)} =$$

$$= \overline{(x_{1}\overline{x_{2}})(1) \cdot \overline{(x_{1}}x_{2}x_{4})(1) \cdot \overline{(x_{1}}x_{2}x_{3})(1) \cdot \overline{(x_{1}}\overline{x_{3}}\overline{x_{4}})(1,3,4)} =$$

$$= \overline{((x_{1}\overline{x_{2}})(1) \cdot \overline{(x_{1}}x_{2}x_{4})(1) \cdot \overline{(x_{1}}x_{2}x_{3})(1)) \cdot \overline{(x_{1}}\overline{x_{3}}\overline{x_{4}})(1,3,4) \cdot \overline{(x_{1}}\overline{x_{3}}\overline{x_{4}})(1,3,4)} =$$

$$= \overline{((x_{1}\overline{x_{1}}\overline{x_{2}})(1) \cdot \overline{(x_{1}}x_{2}x_{4})(1) \cdot \overline{(x_{1}}x_{2}x_{3})(1))} \cdot \overline{(x_{1}}\overline{x_{3}}\overline{x_{4}})(1,3,4) \cdot \overline{(x_{1}}\overline{x_{3}}\overline{x_{4}})(1,3,4)};$$

$$f_{2} = \overline{x_{2}}x_{3}(2) \vee \overline{x_{2}}\overline{x_{3}}x_{4}(2,4) \vee x_{2}\overline{x_{3}}\overline{x_{4}}(2,3,4) =$$

$$= \overline{\overline{x_{2}}x_{3}(2) \vee \overline{x_{2}}\overline{x_{3}}x_{4}(2,4) \vee x_{2}\overline{x_{3}}\overline{x_{4}}(2,3,4)} =$$

$$= \overline{(\overline{x_{2}}x_{3}x_{3})(2) \cdot (\overline{x_{2}}\overline{x_{3}}x_{4})(2,4) \cdot (\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})(2,3,4)};$$

$$f_{3} = \overline{x_{3}x_{4}}(3,4) \lor x_{3}x_{4}(3) \lor x_{2}\overline{x_{3}x_{4}}(2,3,4) \lor x_{1}\overline{x_{3}x_{4}}(1,3,4) =$$

$$= \overline{x_{3}x_{4}}(3,4) \lor x_{3}x_{4}(3) \lor x_{2}\overline{x_{3}x_{4}}(2,3,4) \lor x_{1}\overline{x_{3}x_{4}}(1,3,4) =$$

$$= \overline{(\overline{x_{3}x_{4}})(3,4) \cdot (\overline{x_{3}x_{4}})(3) \cdot (\overline{x_{2}}\overline{x_{3}x_{4}})(2,3,4) \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4)} =$$

$$= \overline{(\overline{(\overline{x_{3}x_{4}})(3,4) \cdot (\overline{x_{3}x_{4}})(3) \cdot (\overline{x_{2}}\overline{x_{3}x_{4}})(2,3,4))} \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4) \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4) =}$$

$$= \overline{(\overline{(\overline{x_{3}x_{3}x_{4}})(3,4) \cdot (\overline{x_{3}x_{3}x_{4}})(3) \cdot (\overline{x_{2}}\overline{x_{3}x_{4}})(2,3,4))} \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4) \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4) \cdot (\overline{x_{1}}\overline{x_{3}x_{4}})(1,3,4);$$

$$f_{4} = \overline{x_{4}}(4) \vee \overline{x_{3}}\overline{x_{4}}(3,4) \vee \overline{x_{2}}\overline{x_{3}}\overline{x_{4}}(2,4) \vee x_{2}\overline{x_{3}}\overline{x_{4}}(2,3,4) \vee x_{1}\overline{x_{3}}\overline{x_{4}}(1,3,4) =$$

$$= \overline{x_{4}}(4) \vee \overline{x_{3}}\overline{x_{4}}(3,4) \vee \overline{x_{2}}\overline{x_{3}}\overline{x_{4}}(2,4) \vee x_{2}\overline{x_{3}}\overline{x_{4}}(2,3,4) \vee x_{1}\overline{x_{3}}\overline{x_{4}}(1,3,4) =$$

$$= \overline{(\overline{x_{4}})}(4) \cdot \overline{(\overline{x_{3}}\overline{x_{4}})}(3,4) \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,4) \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,3,4) \cdot \overline{(\overline{x_{1}}\overline{x_{3}}\overline{x_{4}})}(1,3,4) =$$

$$= \overline{(\overline{x_{4}}\overline{x_{4}}\overline{x_{4}})}(4) \cdot \overline{(\overline{x_{3}}\overline{x_{3}}\overline{x_{4}})}(3,4) \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,4) \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,3,4) \cdot \overline{(\overline{x_{1}}\overline{x_{3}}\overline{x_{4}})}(1,3,4) =$$

$$= \overline{(\overline{(\overline{x_{4}}\overline{x_{4}}\overline{x_{4}})}(4) \cdot \overline{(\overline{x_{3}}\overline{x_{3}}\overline{x_{4}})}(3,4) \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,4)} \cdot \overline{(\overline{x_{2}}\overline{x_{3}}\overline{x_{4}})}(2,3,4) \cdot \overline{(\overline{x_{1}}\overline{x_{3}}\overline{x_{4}})}(1,3,4) ;$$

Введемо деякі позначення для заперечень кон'юнкцій МДНФ функції у:

$$A = \frac{\overline{(x_4 x_4 x_4)}}{\overline{(x_4 x_4 x_4)}} \quad (4)$$

$$B = \frac{\overline{(x_3 x_3 x_4)}}{\overline{(x_2 x_3 x_3)}} \quad (2)$$

$$D = \frac{\overline{(x_2 x_3 x_4)}}{\overline{(x_2 x_3 x_4)}} \quad (3)$$

$$E = \frac{\overline{(x_2 x_3 x_4)}}{\overline{(x_2 x_3 x_4)}} \quad (2, 4)$$

$$G = \frac{\overline{(x_2 x_3 x_4)}}{\overline{(x_2 x_3 x_4)}} \quad (2, 3, 4)$$

$$H = \frac{\overline{(x_1 x_2 x_4)}}{\overline{(x_1 x_2 x_3)}} \quad (1)$$

$$I = \overline{(x_1 \overline{x_3 x_4})} \quad (1, 3, 4)$$

Тоді:
$$f_1 = \overline{(\overline{E \cdot H \cdot I})} \cdot J \cdot J;$$

$$f_2 = \overline{C \cdot F \cdot G};$$

$$f_3 = \overline{(\overline{B \cdot D \cdot G})} \cdot J \cdot J;$$

$$f_4 = \overline{(\overline{A \cdot B \cdot F})} \cdot G \cdot J;$$

Рис. 3: Реалізація перетворювача кодів на елементах 3І-НІ

Рис. 4: Результат роботи схеми у NI Multisim

Визначимо складність та швидкодію отриманої схеми:

$$K = 24 \cdot 3 = 72$$

$$M = 24$$

$$N = \frac{24 \cdot (3+1)}{14} = 24 \cdot 4/14 = 48/7$$

Нехай час затримки сигналу одного елемента 20ms,

тоді час затримки сигналів схеми: $T = 5 \cdot 20 = 100 ms$

6

Побудуємо схему для реалізації функції, заданої у таблиці 1 з використанням мультиплексора з двома керуючими входами. Шукаємо змінні, при виключенні яких можна отримати найпростішу схему:

	y		$x_{3}x_{4}$							
	g	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
x	11	0	1	0	0					
	10	1	0	0	1					

	21		x_3x_4							
	y	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
<i>x</i>	11	0	1	0	0					
	10	1	0	0	1					

	21	x_3x_4							
	y	00	01	11	10				
	00	1	0	1	1				
x_1x_2	01	0	1	0	0				
x	11	0	1	0	0				
	10	1	0	0	1				

	y		x_3x_4							
	g	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
x	11	0	1	0	0					
	10	1	0	0	1					

	y		x_3x_4							
	g	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
x	11	0	1	0	0					
	10	1	0	0	1					

	21		x_3x_4							
	y	00	01	11	10					
	00	1	0	1	1					
x_1x_2	01	0	1	0	0					
x	11	0	1	0	0					
	10	1	0	0	1					

$$x_1x_2$$
:
 $f_0 = x_3 \lor \overline{x_4}$
 $f_1 = \overline{x_3}x_4$
 $f_2 = \overline{x_4}$
 $f_3 = \overline{x_3}x_4$

$$x_1x_3$$
:
 $f_0 = \overline{x_2}x_4 \lor x_2x_4$
 $f_1 = \overline{x_2}$
 $f_2 = \overline{x_2}x_4 \lor x_2x_4$
 $f_3 = \overline{x_2}x_4$

$$x_1x_4$$
:
 $f_0 = \overline{x_2}$
 $f_1 = \overline{x_2}x_3 \lor x_2\overline{x_3}$
 $f_2 = x_2\overline{x_3}$
 $f_3 = \overline{x_2}$

$$x_2x_3:$$

$$f_0 = \overline{x_4}$$

$$f_1 = \overline{x_1} \vee \overline{x_4}$$

$$f_2 = x_4$$

$$f_3 = 0$$

$$x_2x_4:$$

$$f_0 = 1$$

$$f_1 = \overline{x_1}x_3$$

$$f_2 = 0$$

$$f_3 = \overline{x_3}$$

$$x_3x_4:$$

$$f_0 = \overline{x_2}$$

$$f_1 = x_2$$

$$f_2 = \overline{x_2}$$

$$f_3 = \overline{x_1x_2}$$

Виключаємо змінні x_2 та x_3 , побудуємо операторні представлення функцій f_0 , f_2 , f_3 , f_4 для побудови схеми:

Hа елементах 2ABO + HI: Hа елементах 2I-HI: $f_0 = \overline{x_4}$ $f_1 = \overline{x_1} \vee \overline{x_4}$ $f_2 = x_4$ $f_3 = 0$ $f_2 = x_4$ $f_3 = 0$

Рис. 5: Реалізація функції на елементах 2АБО + НІ з використанням мультиплексора

Рис. 6: Реалізація функції на елементах 2І-НІ з використанням мультиплексора

Оцінка складності:

2ABO + **HI**:

$$K = 2 \cdot 1 + 1 \cdot 2 + 1 \cdot 7 = 11$$

 $M = 4$
 $N = \frac{2 \cdot 2}{14} + \frac{1 \cdot 3}{14} + \frac{1 \cdot 9}{14} = 16/14 = 8/7$
2I-HI:
 $K = 2 \cdot 2 + 1 \cdot 7 = 11$
 $M = 3$
 $N = \frac{2 \cdot 3}{14} + \frac{1 \cdot 9}{14} = 15/14$

7

Побудуємо перетворювач кодів по таблиці 4 з використанням елементів ЗІ-НІ і чотиривходового дешифратора з інверсними виходами.

Приклад перетворення:

$$\begin{split} f &= a \vee b \vee c \vee d \vee e \vee f \vee g \vee h = \\ &= \overline{a \vee b \vee c \vee d \vee e \vee f \vee g \vee h} = \\ &= \overline{a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} \cdot \overline{e} \cdot \overline{f} \cdot \overline{g} \cdot \overline{h}} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c} \cdot (\overline{d} \cdot \overline{e} \cdot \overline{f}) \cdot (\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{d} \cdot \overline{e} \cdot \overline{f})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{c})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{b})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{b})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{b})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline{h})} = \\ &= \overline{(\overline{a} \cdot \overline{b} \cdot \overline{b})} \vee \overline{(\overline{g} \cdot \overline{h} \cdot \overline$$

$$f_{1} = 5 \vee 6 \vee 7 \vee 8 \vee 9 \vee 10 \vee 11 \vee 12 = \underbrace{\overline{(\overline{5} \cdot \overline{5} \cdot \overline{6})} \cdot \overline{(\overline{7} \cdot \overline{8} \cdot \overline{11})} \cdot \overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{f_{2} = 1 \vee 2 \vee 3 \vee 4 \vee 9 \vee 10 \vee 11 \vee 12 = \underbrace{\overline{(\overline{1} \cdot \overline{2} \cdot \overline{4})} \cdot \overline{(\overline{3} \cdot \overline{3} \cdot \overline{11})} \cdot \overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{f_{3} = 0 \vee 3 \vee 4 \vee 7 \vee 8 \vee 11 \vee 12 \vee 15 = \underbrace{\overline{(\overline{0} \cdot \overline{3} \cdot \overline{4})} \cdot \overline{(\overline{7} \cdot \overline{8} \cdot \overline{11})} \cdot \overline{(\overline{12} \cdot \overline{12} \cdot \overline{15})}}_{f_{4} = 0 \vee 1 \vee 2 \vee 4 \vee 6 \vee 8 \vee 9 \vee 10 \vee 12 \vee 14 = \underbrace{(\overline{1} \cdot \overline{2} \cdot \overline{4}) \cdot (\overline{0} \cdot \overline{6} \cdot \overline{8}) \cdot (\overline{9} \cdot \overline{10} \cdot \overline{12}) \cdot (\overline{14} \cdot \overline{14} \cdot \overline{14}) \cdot (\overline{14} \cdot \overline{14} \cdot \overline{14})}_{= \underbrace{(\overline{1} \cdot \overline{2} \cdot \overline{4}) \cdot \overline{(\overline{0} \cdot \overline{6} \cdot \overline{8})} \cdot \overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})} \cdot \overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}}_{= \underbrace{(\overline{(\overline{1} \cdot \overline{2} \cdot \overline{4})} \cdot \overline{(\overline{0} \cdot \overline{6} \cdot \overline{8})} \cdot \overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})} \cdot \overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}}_{= \underbrace{(\overline{(\overline{1} \cdot \overline{2} \cdot \overline{4})} \cdot \overline{(\overline{0} \cdot \overline{6} \cdot \overline{8})} \cdot \overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{\overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}}_{= \underbrace{(\overline{(\overline{1} \cdot \overline{2} \cdot \overline{4})} \cdot \overline{(\overline{0} \cdot \overline{6} \cdot \overline{8})}_{\overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{\overline{(\overline{9} \cdot \overline{10} \cdot \overline{12})}}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{(\overline{14} \cdot \overline{14} \cdot \overline{14})}_{\overline{$$

Оцінка складності схеми наведеної нижче:
$$N = \frac{24 \cdot (3+1)}{14} + \frac{1 \cdot (16+5)}{14} = \frac{96+21}{14} = \frac{117}{14}$$

Рис. 7: Реалізація перетворювача кодів на елементах 3І-НІ з використанням дешифратора

Рис. 8: Результат роботи схеми у NI Multisim