Niesamowity kot Zuzol

SmolPreoi 2024Kod zadania:zuzDzień 2 – 15.12.2024Limit pamięci:128 MiB

Zuzol prosi Cię o pomoc! Nie oprzesz się temu spojrzeniu...

Poznajcie niesamowitego kota Zuzola! Mieszka on w domu, w którym są tylko jedne drzwi (w pokoju 1) i n pokoi, ponumerowanych od 1 do n, połączonych n-1 korytarzami równej długości, w taki sposób, że z każdego pokoju da się dojść do każdego innego. Co więcej, Zuzol bardzo lubi się po tym domu przechadzać. Niestety stresuje go przebywanie z dala od drzwi (odległość od wybranego pokoju do drzwi to liczba korytarzy, którymi trzeba przejść, aby dostać się z tego pokoju do pokoju 1), ponieważ w każdej chwili ktoś może przyjść i trzeba będzie przebiec mu między nogami i zacząć eksplorację podwórka go przywitać. Dlatego chciałby, żeby odległość od drzwi do najdalszego pokoju była jak najmniejsza.

Jak wiadomo Zuzol jest niesamowitym kotem, a co za tym idzie jego miauknięcia również są niesamowite i potrafią modyfikować rzeczywistość. Gdy Zuzol miauknie w pewnym pokoju, to korytarz, którym da się dojść do drzwi wejściowych zniknie i na jego miejsce pojawi się bezpośrednie przejście do pokoju 1. Jest jednak pewien haczyk, otóż Zuzol nie może miauknąć więcej niż k razy, ponieważ wtedy rozboli go gardło (do czego oczywiście nie możemy dopuścić).

Niesamowity kot Zuzol potrzebuje Twojej pomocy! Właśnie narysował pazurem plan domu i zastanawia się jak wykorzystać swoje niesamowite miauknięcia. Pomóż mu!

Wejście

W pierwszym wierszu wejścia standardowego znajdują się dwie liczby całkowite n oraz k ($0 \le k < n \le 2 \cdot 10^5$), oznaczające kolejno liczbę pomieszczeń w domu, oraz maksymalną liczbę miauknięć, po których niesamowitego kota Zuzola nie będzie jeszcze bolało gardło. W następnych n-1 wierszach znajdują się po dwie liczby całkowite u_i oraz v_i ($1 \le u_i$, $v_i \le n$, $u_i \ne v_i$), oznaczające, że pomiędzy pokojami o numerach u_i i v_i istnieje korytarz.

Wyjście

W jedynym wierszu wyjścia standardowego powinna znaleźć się jedna liczba całkowita – najmniejsza możliwa liczba korytarzy, przez które będzie musiał przejść Zuzol z najbardziej oddalonego pokoju do drzwi wejściowych.

Przykłady

Wejście dla testu zuz0a:					
6	1				
1	2				
2	3				
3	4				
4	5				
5	6				

Wyjście dla testu zuz0a:	
3	

Wyjaśnienie do przykładu: Odpowiedzią jest 3, usuwamy korytarz między pokojami 4 i 5, zamiast niego łączymy pokoje 1 i 5, wtedy pokój 4 jest oddalony od 1 o 3 korytarze.

Wejście dla testu zuz0b:					
4	3				
1	2				
1	3				
1	4				

٧	Nyjście	dla	testu	zuz0	b:			
	1							

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	k = 0	2 s	5
2	$n \le 20$	2 s	10
3	$n \le 2000$	2 s	20
4	odległości pokojów od drzwi wejściowych są parami różne	2 s	10
5	jeżeli odległość od drzwi wejściowych do pewnych dwóch pokojów	2 s	10
	jest taka sama, to żeby przejść z jednego do drugiego, Zuzol musi po		
	drodze przejść przez pokój 1		
6	brak dodatkowych ograniczeń	2 s	45

2/2