UNIVERSIDAD NACIONAL DE COLOMBIA

SEDE MEDELLÍN, FACULTAD DE MINAS

Taller 6: Selección de variables condicionantes

Materia:

Cartografía Geotécnica

Docente:

Edier Aristizábal

Presentado por:

David Alejandro Higinio Jiménez, estudiante de Ingeniería Geológica

25/10/2022

Para el caso de la pendiente, el contraste de pixeles de la cuenca y los pixeles fuera de la cuenca (menores a 0), muestra aparentemente que la cuenca tiene valores de 0. Esto se corrige asignándole un valor de No Data a los valores menores a 0, de esta forma, pueden ser interpretados adecuadamente en Python. Esto se hace para cada una de las variables teniendo en cuenta los valores que esta toma.

- Pendiente

- Aspecto

- Curvatura

- Geología

Luego, importamos el inventario y utilizando como mascara la pendiente, asignándole un valor de 0 para pixeles sin movimientos en masa y 1 para pixeles con movimientos en masa.

Se genera un diccionario y luego se crea el Dataframe.

	inventario	pendiente	curvatura	aspecto	geologia
0	0.0	5.878250	1.92	240.945404	11.0
1	0.0	7.253561	1.92	135.000000	11.0
2	0.0	14.880050	2.56	109.798874	11.0
3	0.0	8.878142	-0.00	230.194427	11.0
4	0.0	9.365159	3.20	194.036240	11.0

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 548839 entries, 0 to 548838
Data columns (total 5 columns):
    Column
                Non-Null Count
                                 Dtype
0
    inventario 548839 non-null float64
    pendiente 548839 non-null float32
1
                548839 non-null float32
 2
    curvatura
                548839 non-null float32
    aspecto
    geologia
                548839 non-null float64
dtypes: float32(3), float64(2)
memory usage: 14.7 MB
```

Se realiza un muestreo ya que no es necesario utilizar todos los pixeles sin movimientos en masa y también para optimizar el procesamiento de los datos.

	count	mean	std	min	25%	\
inventario	54951.0	0.001347	0.036672	0.000000	0.000000	
pendiente	54951.0	24.312931	10.630425	0.000000	16.235792	
curvatura	54951.0	-0.006511	1.638452	-16.639999	-1.280000	
aspecto	54951.0	196.369461	104.215248	-1.000000	105.043427	
geologia	54951.0	9.704792	1.938692	3.000000	9.000000	
	5	0% 7	′5% r	nax		
inventario	0.0000	00 0 . 0000	000 1.0000	300		
pendiente	24.0948	43 31 . 8987	739 71.3657	723		
curvatura	0.0000	00 1.2800	000 17.2800	001		
aspecto	214.1596	98 286.9275	521 359 . 5018	801		
geologia	11.0000	00 11.0000	000 11.0000	000 000		

11.0
11.0
11.0
11.0
11.0

Se crea un Dataframe con las variables predictoras, excepto la geología.

	pendiente	curvatura	aspecto
0	5.878250	1.92	240.945404
1	7.253561	1.92	135.000000
2	14.880050	2.56	109.798874
3	8.878142	-0.00	230.194427
4	9.365159	3.20	194.036240

Se realiza el análisis de todas las variables

Se presenta la correlación lineal entre las variables, donde no se muestra una correlación muy marcada entre ellas.

Análisis univariado para la pendiente

Análisis multivariado entre curvatura y aspecto

Análisis multivariado entre curvatura y pendiente

Análisis multivariado entre aspecto, pendiente e inventario

Análisis multivariado entre curvatura, pendiente e inventario

Se realiza la correlación con la variable dependiente, mostrándose la media para cada variable en relación con los pixeles con y sin movimientos en masa del inventario.

```
geologia
            pendiente
                                     aspecto
                       curvatura
inventario
0.0
                                  196.079803
            24.291746
                       -0.000178
                                              9.708358
1.0
            25.043358
                        0.657297
                                  169.867416
                                              8.662162
0.0
       548765
1.0
Name: inventario, dtype: int64
```

Se crean dos Dataframe, uno con MenM y otro sin MenM. Esto se hace con el objetivo de empezar a analizar la capacidad de separación y predicción de MenM de cada variable.

- Pendiente

Al realizar la prueba de hipótesis para la pendiente, se observa un valor mayor al 5%, mostrando que no hay una diferencia estadísticamente significativa para diferenciar poblaciones con MenM y sin MenM.

- Curvatura

Al realizar la prueba de hipótesis para la curvatura, se observa un valor menor al 5%, mostrando que hay una diferencia estadísticamente significativa para diferenciar poblaciones con MenM y sin MenM.

Ttest_indResult(statistic=-3.407427070959239, pvalue=0.0006558313395328068)

- Aspecto

Al realizar la prueba de hipótesis para el aspecto, se observa un valor menor al 5%, mostrando que hay una diferencia estadísticamente significativa para diferenciar poblaciones con MenM y sin MenM.

Ttest_indResult(statistic=2.159237431718768, pvalue=0.030832183289939436)

- Geología

Al realizar la prueba de hipótesis para la geología, se observa un valor menor al 5%, mostrando que hay una diferencia estadísticamente significativa para diferenciar poblaciones con MenM y sin MenM.

Ttest_indResult(statistic=4.661768799380958, pvalue=3.1357681664330825e-06)

