

Algoritmo Ruso para la multiplicación.

Escribimos los dos multiplicandos al principio de dos columnas. En la izquierda iremos duplicando progresivamente el valor del número obtenido. En la de la derecha iremos dividiendo por dos, redondeando a la baja cuando fuese necesario. Como ejemplo tomemos la multiplicación de 105 x 68:

Tachamos todas las filas en las cuales el número de la derecha es par.

105	68
210	34
420	17
840	8
1680	4
3360	2
6720	1

Sumamos los valores restantes de la columna izquierda: 420 + 6720 = 7140 que es exactamente el valor de 105×68 .

¿Qué hicimos en la columna izquierda?

Hemos multiplicado sucesivamente nuestro valor original por: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$ y $2^6 = 64$.

105 x 2 ⁰	105
105 x 2 ¹	210
105 x 2 ²	420
105 x 2 ³	840
105 x 2 ⁴	1680
105 x 2 ⁵	3360
105 x 2 ⁶	6720

¿Qué hicimos en la columna derecha?

Descomponemos al número (68) en potencias de dos:

	68	0	2 ⁰
68/2	34	0	2 ¹
34/2	17	1	2 ²
17/2	8	0	2 ³
8/2	4	0	24
4/2	2	0	2 ⁵
2/2	1	1	2 ⁶

Obtenemos:

$$68 = 1 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

Nótese que:

 $1000100_{(2)} = 68_{(10)}$

Por lo tanto, al multiplicar 105 x 68:

Tenemos que:

$$68 = (1 \times 2^6) + (1 \times 2^2)$$

Aplicando propiedad distributiva:

$$105 \times 68 = (105 \times 2^6) + (105 \times 2^2)$$

Por la columna izquierda del algoritmo ruso sabemos que:

$$105 \times 2^6 = 6720$$

$$105 \times 2^2 = 420$$

Entonces:

105 x 2 ⁰	105	68	0 x 2 ⁰
105 x 2 ¹	210	34	0 x 2 ¹
105 x 2 ²	420	17	1 x 2 ²
105 x 2 ³	840	8	0×2^{3}
105 x 2 ⁴	1680	4	0 x 2 ⁴
105 x 2 ⁵	3360	2	0 x 2 ⁵
105 x 2 ⁶	6720	1	1 x 2 ⁶

Por lo tanto, este algoritmo es una multiplicación en un sistema de numeración de base 2. Otra forma de ver este procedimiento es como sigue:

Algoritmo ruso para números binarios:

Escribimos los dos multiplicandos al principio de dos columnas.

En la izquierda iremos duplicando progresivamente el valor del número obtenido: agregamos un cero al final.

En la de la derecha iremos dividiendo por dos: se desplaza la coma a la izquierda.

Como ejemplo tomemos la multiplicación de 105 x 68:

 $1101001_{(2)} = 105$

 $1000100_{(2)} = 68$

1101001	1000100
11010010	100010
110100100	10001
1101001000	1000
11010010000	100
110100100000	10
1101001000000	1

Tachamos todas las filas en las cuales el número de la derecha es par:

1101001	1000100
11010010	100010
110100100	10001
1101001000	1000
11010010000	100
110100100000	10
1101001000000	1

Sumamos los valores restantes de la columna izquierda: 1101001000000 + 110100100:

1101001000000

+ 110100100

1101111100100

 $1101111100100_{(2)} = 7140_{(10)}$