1. sup και inf

i) A = (0, 2)

Απόδειξη. (Με Ορισμό)

Έχουμε ότι $\sup A = 2$ και $\inf A = 0$.

- Θα δείξουμε ότι $\sup A=2$. Πράγματι: 2 α.φ. του A, γιατί a<2, $\forall a\in A$. Έστω M α.φ. του A, δηλ. $a\leq M$, $\forall a\in A$. Θ.δ.ο. $2\leq M$ (Με άτοπο). Πράγματι: Έστω M<2. Τότε $(M,2)\neq\emptyset\Rightarrow(M,2)\cap A\neq\emptyset$, άρα $\exists a\in(M,2)$. Δηλαδή $\exists a\in A$ με a>M. άτοπο, γιατί M α.φ. του A.
- $lackbox{\blacksquare}$ Θα δείξουμε ότι inf A=0. Πράγματι: 0 κ.φ. του A, γιατί a>0, $\forall a\in A$. Έστω m κ.φ. του A, δηλ. $a\geq m$, $\forall a\in A$. Θ.δ.ο. $0\geq m$ (Με άτοπο). Πράγματι: Έστω m>0. Τότε $(0,m)\neq\emptyset\Rightarrow(0,M)\cap A\neq\emptyset$, άρα $\exists a\in(0,m)$. Δηλαδή $\exists a\in A$ με a< m, άτοπο, γιατί m κ.φ. του A.
- ii) $A = \{x \in \mathbb{R} : x < 0\}.$

Απόδειξη. (Με Ορισμό)

Έχουμε ότι $\sup A = 0$ και $\inf A = -\infty$.

- Θα δείξουμε ότι $\sup A = 0$. Πράγματι: 0 α.φ. του A, γιατί a < 0, $\forall a \in A$. Έστω M α.φ. του A, δηλ. $a \le M$, $\forall a \in A$. Θ.δ.ο. $0 \le M$ (Με άτοπο). Πράγματι: Έστω M < 0. Τότε $(M,0) \ne \emptyset$, άρα $\exists a \in (M,0)$. Δηλαδή $\exists a \in A$ με a > M, άτοπο, γιατί M α.φ. του A.
- lacktriangle Θα δείξουμε ότι $\inf A = -\infty$. Πράγματι: $A \neq \emptyset$ και A όχι κάτω φραγμένο. Άρα γράφουμε $\inf A = -\infty$.

iii)
$$A = \{\frac{1}{n} : n \in \mathbb{N}\}.$$

Απόδειξη.

Έχουμε ότι $\sup A = 1$ και $\inf A = 0$.

- \blacksquare Θα δείξουμε ότι $\sup A=1$. Πράγματι: $\frac{1}{n}\leq 1,\ \forall n\in\mathbb{N},$ άρα το 1 είναι α.φ. του A και επίσης $1\in A$ (για n=1). Άρα $1=\max A$. Άρα $\sup A=\max A=1$.
- Θα δείξουμε ότι inf A=0. Πράγματι: Προφανώς $0\leq \frac{1}{n}, \ \forall n\in\mathbb{N},$ άρα το 0 κ.φ. του A. Έστω $\varepsilon>0$. Τότε $\exists n_0\in\mathbb{N}$ με $\frac{1}{n_0}<\varepsilon$ τ.ω. $\frac{1}{n_0}<0+\varepsilon$, με $\frac{1}{n_0}\in A$.

iv)
$$A = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}$$

Απόδειξη.

Έχουμε ότι sup A=1 και inf $A=\frac{1}{2}$

- Θα δείξουμε οτι $\sup A=1$. Πράγματι: 1 α.φ. του A, γιατί $\frac{n}{n+1}<1$, $\forall n\in\mathbb{N}$. (Δοκιμή: $1-\varepsilon<\frac{n}{n+1}\Leftrightarrow \varepsilon>1-\frac{n}{n+1}\Leftrightarrow \frac{1}{n+1}<\varepsilon\Leftrightarrow n+1>\frac{1}{\varepsilon}\Leftrightarrow n>\frac{1}{\varepsilon}-1$) Έστω $\varepsilon>0$. Τότε $\exists n_0\in\mathbb{N}$ με $n_0>\frac{1}{\varepsilon}-1$ τ.ω. $1-\varepsilon<\frac{n_0}{n_0+1}$, με $\frac{n_0}{n_0+1}\in A$.
- lacksquare Θα δείξουμε ότι $\inf A = \frac{1}{2}$. Πράγματι: $\frac{1}{2}$ κ.φ. του A, γιατί $\frac{n}{n+1} \geq \frac{1}{2} \Leftrightarrow n+1 \leq 2n \Leftrightarrow n \geq 1, \ \forall n \in \mathbb{N}$ (ισχύει) και $\frac{1}{2} \in A$ (για n=1). Άρα $\frac{1}{2} = \min A$. Άρα $\inf A = \min A = \frac{1}{2}$.

v)
$$A = \{\frac{1}{n} + (-1)^n : n \in \mathbb{N}\}.$$

Απόδειξη.

Παρατηρούμε ότι

$$A = \left\{0, \frac{1}{2} + 1, \frac{1}{3} - 1, \frac{1}{4} + 1, \frac{1}{5} - 1, \dots\right\}$$

$$= \left\{0, \frac{1}{3} - 1, \frac{1}{5} - 1, \dots\right\} \cup \left\{\frac{1}{2} + 1, \frac{1}{4} + 1, \dots\right\}$$

$$= \left\{\frac{1}{2n - 1} - 1 : n \in \mathbb{N}\right\} \cup \left\{\frac{1}{2n} + 1 : n \in \mathbb{N}\right\}$$

$$= A_1 \cup A_2$$

Αν παραστήσουμε τα στοιχεία του $A=\{0,\frac{3}{2},-\frac{2}{3},\frac{5}{4},-\frac{4}{5},\ldots\}$, πάνω στην ευθεία των πραγματικών αριθμών, παρατηρούμε ότι $\inf A=\inf A_1=-1$ και $\sup A=\sup A_2=\max A_2=1+\frac{1}{2}=\frac{3}{2}$. Πράγματι, από γνωστή πρόταση έχουμε ότι $\sup A=\max\{\sup A_1,\sup A_2\}=\max\{0,\frac{3}{2}\}=\frac{3}{2}$ και $\inf A=\min\{\inf A_1,\inf A_2\}=\min\{-1,1\}=-1$ Οπότε αρκεί να αποδείξουμε τα $\sup A_1$ και $\inf A_2$.

- Θα δείξουμε ότι $\sup A_2 = \frac{3}{2}$. Πράγματι: $\frac{3}{2}$ α.φ. του A_2 , γιατί $\frac{1}{2n} + 1 \le \frac{3}{2} \Leftrightarrow \frac{1+2n}{2n} \le \frac{3}{2} \Leftrightarrow 2+4n \le 6n \Leftrightarrow n \ge 1, \ \forall n \in \mathbb{N}$ (ισχύει) και $\frac{3}{2} \in A_2$ (για n=1). Άρα $\frac{3}{2} = \max A_2$. Άρα $\sup A_2 = \max A_2 = \frac{3}{2}$.
- Θα δείξουμε ότι inf $A_1=-1$. Πράγματι: -1 κ.φ. του A_1 , γιατί προφανώς $\frac{1}{2n-1}-1\geq -1$, $\forall n\in\mathbb{N}$. (Δοκιμή: $\frac{1}{2n-1}-1<-1+\varepsilon\Leftrightarrow \frac{1}{2n-1}<\varepsilon\Leftrightarrow 2n-1>\frac{1}{\varepsilon}\Leftrightarrow n>\frac{1/\varepsilon+1}{2}$). Έστω $\varepsilon>0$. Τότε $\exists n_0\in\mathbb{N}$ με $n_0>\frac{1/\varepsilon+1}{2}$ τ.ω. $\frac{1}{2n_0-1}-1<\varepsilon-1$, με $\frac{1}{2n_0-1}-1\in A$.
- vi) $A = \left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\}$ Έχουμε ότι $\sup A = 1$ και $\inf A = -1$.
 - Θα δείξουμε ότι $\inf A = -1$. Πράγματι: -1 κ.φ. του A, γιατί $\frac{1}{n} \frac{1}{m} \ge \frac{1}{n} 1 > -1$, $\forall n \in \mathbb{N}$. Έστω $\varepsilon > 0$. Τότε, $\exists n_0 \in \mathbb{N}$ με $\frac{1}{n_0} < \varepsilon$ ώστε $\frac{1}{n_0} 1 < \varepsilon 1$ με $\frac{1}{n_0} 1 \in A$.
 - lacktriangle Θα δείξουμε ότι A=1. Πράγματι: Παρατηρούμε ότι A=-A, άρα από γνωστή πρόταση έχουμε ότι

$$\inf A = -\sup(-A) = -\sup A$$

Άρα

$$\sup A = -\inf A = -(-1) = 1$$

- 2. Έστω A, B μη-κενά, φραγμένα υποσύνολα του \mathbb{R} . Να δείξετε ότι:
 - i) $A \cup B$ είναι φραγμένο
 - ii) $\sup (A \cup B) = \max \{\sup A, \sup B\}$
 - iii) $\inf(A \cup B) = \min\{\inf A, \inf B\}$
 - iv) Ισχύει κάτι ανάλογο για το sup $(A \cap B)$ και inf $(A \cap B)$;

Απόδειξη.

i) A φραγμένο $\Leftrightarrow \exists M \in \mathbb{R} > 0, \ -M < a < M, \ \forall a \in A$

B φραγμένο $\Leftrightarrow \exists N \in \mathbb{R} > 0, \ -N < b < N, \ \forall b \in B$

Θέτουμε $K = \max\{M, N\}$.

Θα αποδείξουμε (με άτοπο) ότι -K < c < K, $\forall c \in A \cup B$.Πράγματι:

Έστω $c \in A \cup B$ με $|c| \ge K = \max\{M, N\}$. Τότε

$$\left. \begin{array}{l} \operatorname{An} c \in A \text{ τότε } M > |c| \geq \max\{M,N\}, \text{ άτοπο} \\ \operatorname{An} c \in B \text{ τότε } N > |c| \geq \max\{M,N\}, \text{ άτοπο} \\ -K < c < K, \ \forall c \in A \cup B. \end{array} \right\} \Rightarrow$$

 $ii) \begin{array}{c} A \neq \emptyset, \ \text{και άνω φραγμένο} \stackrel{\text{A.II.}}{\Rightarrow} \exists \sup A \\ B \neq \emptyset, \ \text{και άνω φραγμένο} \stackrel{\text{A.II.}}{\Rightarrow} \exists \sup B \\ \chi.\text{β.γ. έστω max} \{\sup A, \sup B\} = \sup A. \end{array} \right\} \Rightarrow$

Θα δείξουμε ότι $\sup(A \cup B) = \sup A$. Πράγματι:

Έστω $c \in A \cup B$. Τότε, αν $c \in A \Rightarrow c \le \sup A$, ενώ αν $c \in B \Rightarrow c \le \sup B \le \sup A$. Άρα σε κάθε περίπτωση $c \le \sup A$, $\forall c \in A \cup B$. Άρα $\sup A$ α.φ. του $A \cup B$.

Ισχύει ότι $\sup(A \cup B) \le \sup A$ (1), γιατί $\sup A$ α.φ. του $A \cup B$. Θα δείξουμε ότι $\sup A \le \sup(A \cup B)$ (2). Πράγματι:

Αρκεί να δείξουμε ότι $\sup(A \cup B)$ α.φ. του A. Πράγματι:

έστω $a \in A \Rightarrow a \in A \cup B \Rightarrow a \leq \sup(A \cup B), \forall a \in A,$ άρα το $\sup A$ α.φ. του A.

Οπότε από τις (1) και (2), προκύπτει το ζητούμενο.

3. Έστω A, B μη-κενά, άνω φραγμένα υποσύνολα του \mathbb{R} .

Aν $A+B=\{a+b\ :\ a\in A,\ b\in B\}$ και $A\cdot B=\{a\cdot b\ :\ a\in A,\ b\in B\}$. Να δείξετε ότι

i)
$$\sup (A+B) = \sup A + \sup B$$
.

ii)
$$\sup (A \cdot B) = \sup A \cdot \sup B$$

Απόδειξη.

$$\left. \begin{array}{l} a \leq \sup A, \ \forall a \in A \\ b \leq \sup B, \ \forall b \in B \end{array} \right\} \Rightarrow a+b \leq \sup A + \sup B, \ \forall a \in A \ \mathrm{kal} \ b \in B.$$

Οπότε $\sup A + \sup B$ α.φ. του $A + B \Rightarrow \sup(A + B) \leq \sup A + \sup B$. Θ.δ.ο. $\sup A + \sup B \leq \sup(A + B)$. Πράγματι:

Έστω $a \in A$ και $b \in B \Rightarrow a + b \leq \sup(A + B) \Leftrightarrow a \leq \sup(A + B) - b, \ \forall a \in A$

Άρα $\sup(A+B)-b$ α.φ. του $A, \forall b \in B,$

άρα $\sup A \le \sup(A+B) - b, \ \forall b \in B \Leftrightarrow b \le \sup(A+B) - \sup A, \ \forall b \in B.$

Άρα $\sup(A+B)-\sup A$ α.φ. του B, και άρα

 $\sup B \le \sup(A+B) - \sup A \Leftrightarrow \sup A + \sup B \le \sup(A+B).$