Géométrie et Espaces de Formes - TP1

Tong ZHAO (tong.zhao@eleves.enpc.fr)

1 Noyaux reproduisants et interpolation

Exo 1. Tout d'abord on montre que $\forall f \in H^1_{\sigma}, \langle f, K(\cdot, x) \rangle_{H^1_{\sigma}} = f(x)$.

$$\langle f, K(\cdot, x) \rangle_{H^{1}_{\sigma}} = \int_{\mathbb{R}} f(t)K(t, x) + \sigma^{2} f'(t)K'(t, x)dt$$

$$= \int_{-\infty}^{x} \frac{1}{2\sigma} f(t)e^{\frac{t-x}{\sigma}} + \sigma^{2} f'(t)\frac{1}{2\sigma^{2}}e^{\frac{t-x}{\sigma}}dt + \int_{x}^{\infty} \frac{1}{2\sigma} f(t)e^{\frac{x-t}{\sigma}} + \sigma^{2} f'(t)\frac{1}{2\sigma^{2}}e^{\frac{x-t}{\sigma}}dt$$

En utilisant l'intégration par parties, on a:

$$\int_{-\infty}^{x} \frac{1}{2\sigma} f(t) e^{\frac{t-x}{\sigma}} + \sigma^{2} f'(t) \frac{1}{2\sigma^{2}} e^{\frac{t-x}{\sigma}} dt = \frac{1}{2\sigma} \int_{-\infty}^{x} \frac{1}{2\sigma} f(t) e^{\frac{t-x}{\sigma}} dt + \frac{1}{2} \left(f(t) e^{\frac{t-x}{\sigma}} \Big|_{-\infty}^{x} - \int_{-\infty}^{x} \frac{1}{\sigma} f(t) e^{\frac{t-x}{\sigma}} dt \right)$$

$$= \frac{1}{2} f(x)$$

$$\int_{x}^{\infty} \frac{1}{2\sigma} f(t) e^{\frac{x-t}{\sigma}} + \sigma^{2} f'(t) \frac{1}{2\sigma^{2}} e^{\frac{x-t}{\sigma}} dt = \frac{1}{2\sigma} \int_{x}^{\infty} \frac{1}{2\sigma} f(t) e^{\frac{x-t}{\sigma}} dt + \frac{1}{2} \Big(f(t) e^{\frac{x-t}{\sigma}} \big|_{x}^{\infty} - \int_{x}^{\infty} \frac{1}{\sigma} f(t) e^{\frac{x-t}{\sigma}} dt \Big)$$

$$= \frac{1}{2} f(x)$$
On en déduit que $\langle f, K(\cdot, x) \rangle_{H_{\sigma}^{1}} = f(x)$ et donc H_{σ}^{1} est un espace à noyau reproduisant dont le

On en déduit que $\langle f, K(\cdot, x) \rangle_{H^1_{\sigma}} = f(x)$ et donc H^1_{σ} est un espace à noyau reproduisant dont le noyau est la fonction $K_{\sigma} : \mathbb{R}^2 \to \mathbb{R}$ définie par:

$$\forall x, y \in \mathbb{R}, K_{\sigma}(x, y) = \frac{1}{2\sigma} e^{-\frac{|x-y|}{\sigma}}$$

Exo 2. On prend $\sigma = 2$ et calcule plusieurs valeurs de fonctions en utilisant deux méthodes. Le résultat est comme suit:

x	Noyau	Fonction
0.5	0.778797	0.778801
1.5	0.105403	0.105399
2.5	0.00193054	0.00193045

On observe que la propiété se tient numériquement.

Exo 3. La fonction est écrite comme suit:

```
def KernelMatrix(x, y, h):
    x = np.expand_dims(x, axis = 1)
    y = np.expand_dims(y, axis = 0)
    return h(np.linalg.norm(x - y, axis = -1))
```

Exo 4. La fonction est écrite comme suit:

```
def Interp(x, y, c, h):
   Kh_yy = KernelMatrix(y, y, h)
   A = np.linalg.solve(Kh_yy, c)
   Kh_xy = KernelMatrix(x, y, h)
   return Kh_xy.dot(A)
```

Exo 5. On utilise tout d'abord le noyau gaussien et on pose $\sigma \in \{0.2, 2, 4, 10\}$.

Après on teste le noyau de Cauchy.

Exo 6. On vérifie numériquement que la norme de la solution produite par le noyau $K_{\sigma}(x,y) = \frac{1}{2\sigma}e^{-\frac{|x-y|}{\sigma}}$ dans H^1_{σ} est toujours inférieure à la norme d'autres solutions. Ici on compare la norme de trois noyaux: K_{σ} , K_{gauss} et K_{cauchy} :

norm of h1 kernel: 4.219232 norm of gauss kernel: 4.663408 norm of cauchy kernel: 4.557497

Exo 7. On choisit 10 points y_i dans $[0,1]^2$ et on interpole la fonction sur une grille uniforme de 100×100 . Le résultat est comme suit:

Exo 8. La solution du problème est sous forme de $f(y_i) = \sum_{j=1}^n K(y_i, y_j) \alpha_j$ où les $\alpha_j \in \mathbb{R}$ sont solutions du système linéaire:

$$\forall i, 1 \le i \le n, \sum_{j=1}^{n} K(y_i, y_j) \alpha_j = c_i$$

Donc on a:

$$J(f) = \lambda ||f||_H^2 + \sum_{i=1}^n \left(f(y_i) - c_i \right)^2$$

= $\lambda \sum_{i=1}^n \alpha_i \sum_{j=1}^n K_H(y_i, y_j) \alpha_j + \sum_{i=1}^n \left(c_i - \sum_{j=1}^n K_H(y_i, y_j) \alpha_j \right)^2$

On calcule le gradient par rapport à α_i :

$$DJ_{\alpha_k}(h_k) = 2\lambda \sum_{i=1}^n K_H(x_i, x_k) \alpha_i h_k + 2\sum_{i=1}^n \left(c_i - \sum_{j=1}^n K_H(x_i, x_j) \alpha_j \right) \cdot \left(-K_H(x_k, x_i) h_k \right)$$

Le gradient est égale à 0 si et seulement si:

$$\forall i, 1 \le i \le n, \left(\lambda + \sum_{j=1}^{n} K(x_i, x_j)\right) \alpha_j = c_i$$

Donc on a: $(\lambda Id + \mathbb{K})\alpha_j = c_I$.

On utilise le noyau gaussien et on pose $\sigma \in \{0.1, 0.25\}$ et $\lambda = 0.001$. Le résultat est comme suit.

Maintenant on fixe $\sigma = 0.1$ et on pose $\lambda \in \{0, 0.0001, 0.001, 0.1\}$ et le résultat est comme suit.

Exo 10. On teste la fonction InterpGrid2D avec d=m=2. On génère trois vecteurs et on évalue sur une grille uniforme de taille 20×20 . Le résultat est comme suit.

2 Appariement de points labellisés

Exo 11. On prend deux ensembles de points \mathcal{Y} et \mathcal{Z} . En posant $\gamma_i = z_i - y_i$, on retrouve le problème d'interpolation vectorielle en grille. On visualise un résultat:

Exo 12. On labelise deux ensembles de points C_1 et C_2 à la main et on transforme C_1 à C_2 en utilisant le méthode d'appariement.

