Chapter 5: Integer Compositions and Partitions and Set Partitions

Prof. Tesler

Math 184A Fall 2017

5.1. Compositions

• A *strict composition of n* is a tuple of *positive integers* that sum to *n*. The strict compositions of 4 are

$$(4)$$
 $(3,1)$ $(1,3)$ $(2,2)$ $(2,1,1)$ $(1,2,1)$ $(1,1,2)$ $(1,1,1,1)$

- It's a tuple, so (2, 1, 1), (1, 2, 1), (1, 1, 2) are all distinct.
 Later, we'll consider *integer partitions*, in which we regard those as equivalent and only use the one with decreasing entries, (2, 1, 1).
- A weak composition of n is a tuple of nonnegative integers that sum to n.

(1,0,0,3) is a weak composition of 4.

 If strict or weak is not specified, a composition means a strict composition.

Notation and drawings of compositions

- *Tuple notation:* 3 + 1 + 1 and 1 + 3 + 1 both evaluate to 5. To properly distinguish between them, we represent them as tuples, (3, 1, 1) and (1, 3, 1), since tuples are distinguishable.
- Drawings:

Sum	Tuple	Dots and bars
3+1+1	(3, 1, 1)	.
1 + 3 + 1	(1, 3, 1)	. .
0 + 4 + 1	(0, 4, 1)	.
4 + 1 + 0	(4, 1, 0)	• • • • •
4 + 0 + 1	(4, 0, 1)	.
4 + 0 + 0 + 1	(4,0,0,1)	.

If there is a bar at the beginning/end, the first/last part is 0.
 If there are any consecutive bars, some part(s) in the middle are 0.

How many strict compositions of n into k parts?

- A composition of n into k parts has n dots and k-1 bars.
 - Draw *n* dots:

- There are n-1 spaces between the dots.
- Choose k-1 of the spaces and put a bar in each of them.
- For n = 5, k = 3: $| \bullet \bullet | \bullet \bullet |$
- The bars split the dots into parts of sizes ≥ 1 , because there are no bars at the beginning or end, and no consecutive bars.
- Thus, there are $\binom{n-1}{k-1}$ strict compositions of n into k parts, for $n,k \ge 1$.
- For n = 5 and k = 3, we get $\binom{5-1}{3-1} = \binom{4}{2} = 6$.

Total # of strict compositions of $n \ge 1$ into any number of parts

- 2^{n-1} by placing bars in any subset (of any size) of the n-1 spaces.
- Or, $\sum_{k=1}^{n} \binom{n-1}{k-1}$, so the total is $2^{n-1} = \sum_{k=1}^{n} \binom{n-1}{k-1}$.

How many weak compositions of n into k parts?

Review: We covered this when doing the Multinomial Theorem

- The diagram has n dots and k-1 bars in any order. No restriction on bars at the beginning/end/consecutively since parts=0 is OK.
- There are n + k 1 symbols. Choose n of them to be dots (or k - 1 of them to be bars):

$$\binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

• For n = 5 and k = 3, we have

$$\binom{5+3-1}{5} = \binom{7}{5} = 21$$
 or $\binom{5+3-1}{3-1} = \binom{7}{2} = 21$.

• The total number of weak compositions of n of all sizes is infinite, since we can insert any number of 0's into a strict composition of n.

Relation between weak and strict compositions

- Let (a_1, \ldots, a_k) be a weak composition of n (parts ≥ 0).
- Add 1 to each part to get a strict composition of n + k:

$$(a_1 + 1) + (a_2 + 1) + \cdots + (a_k + 1) = (a_1 + \cdots + a_k) + k = n + k$$

The parts of $(a_1 + 1, \dots, a_k + 1)$ are ≥ 1 and sum to n + k.

- (2,0,3) is a weak composition of 5. (3,1,4) is a strict composition of 5+3=8.
- This is reversible and leads to a bijection between
 Weak compositions of n into k parts
 ←→ Strict compositions of n + k into k parts
 (Forwards: add 1 to each part; reverse: subtract 1 from each part.)
- Thus, the number of weak compositions of n into k parts = The number of strict compositions of n+k into k parts = $\binom{n+k-1}{k-1}$.

5.2. Set partitions

- A partition of a set A is a set of nonempty subsets of A called blocks, such that every element of A is in exactly one block.
- A set partition of $\{1, 2, 3, 4, 5, 6, 7\}$ into three blocks is $\{\{1, 3, 6\}, \{2, 7\}, \{4, 5\}\}.$
- This is a set of sets. Since sets aren't ordered, the blocks can be put in another order, and the elements within each block can be written in a different order:

$$\{\{1,3,6\},\{2,7\},\{4,5\}\} = \{\{5,4\},\{6,1,3\},\{7,2\}\}.$$

- Define S(n, k) as the number of partitions of an n-element set into k blocks. This is called the *Stirling Number of the Second Kind*. We will find a recursion and other formulas for S(n, k).
- Must use capital 'S' in S(n, k); later we'll define a separate function s(n, k) with lowercase 's'.

How do partitions of [n] relate to partitions of [n-1]?

- Define $[0] = \emptyset$ and $[n] = \{1, 2, ..., n\}$ for integers n > 0. It is convenient to use [n] as an example of an n-element set.
- Examine what happens when we cross out n in a set partition of [n], to obtain a set partition of [n-1] (here, n=5):

$$\{\{1,3\},\{2,4,5\}\} \rightarrow \{\{1,3\},\{2,4\}\}$$

$$\{\{1,3,5\},\{2,4\}\} \rightarrow \{\{1,3\},\{2,4\}\}$$

$$\{\{1,3\},\{2,4\},\{5\}\} \rightarrow \{\{1,3\},\{2,4\}\}$$

- For all three of the set partitions on the left, removing 5 yields the set partition $\{\{1,3\},\{2,4\}\}$.
- In the first two, 5 was in a block with other elements, and removing it yielded the same number of blocks.
- In the third, 5 was in its own block, so we also had to remove the block {5} since only nonempty blocks are allowed.

How do partitions of [n] relate to partitions of [n-1]?

• Reversing that, there are three ways to insert 5 into $\{\{1,3\},\{2,4\}\}$:

$$\left\{ \left\{ 1,3,5\right\} ,\left\{ 2,4\right\} \right\} \text{ insert in 1}^{\text{st}} \text{ block;} \\ \left\{ \left\{ 1,3\right\} ,\left\{ 2,4,5\right\} \right\} \text{ insert in 2}^{\text{nd}} \text{ block;} \\ \left\{ \left\{ 1,3\right\} ,\left\{ 2,4\right\} ,\left\{ 5\right\} \right\} \text{ insert as new block.}$$

- Inserting n in an existing block keeps the same number of blocks.
- Inserting $\{n\}$ as a new block increases the number of blocks by 1.

Recursion for S(n, k)

Insert n into a partition of [n-1] to obtain a partition of [n] into k blocks:

• Case: partitions of [n] in which n is not in a block alone:

Choose a partition of [n-1] into k blocks Insert n into any of these blocks

$$(S(n-1,k) \text{ choices})$$

(k choices)

Subtotal: $k \cdot S(n-1,k)$

• Case: partitions of [n] in which n is in a block alone:

Choose a partition of [n-1] into k-1 blocks (S(n-1,k-1) ways) and add a new block $\{n\}$ (one way)

Subtotal:
$$S(n-1, k-1)$$

- Total: $S(n,k) = k \cdot S(n-1,k) + S(n-1,k-1)$
- This recursion requires $n-1 \ge 0$ and $k-1 \ge 0$, so $n, k \ge 1$.

Initial conditions for S(n, k)

When n = 0 or k = 0

n=0: Partitions of \emptyset

- It is not valid to partition the null set as {∅}, since that has an empty block.
- However, it *is* valid to partition it as $\{\} = \emptyset$. There are no blocks, so there are no empty blocks. The union of no blocks equals \emptyset .
- This is the only partition of \emptyset , so S(0,0)=1 and S(0,k)=0 for k>0.

k = 0: partitions into 0 blocks

• S(n,0) = 0 when n > 0 since every partition of [n] must have at least one block.

Not an initial condition, but related:

• S(n,k) = 0 for k > n since the partition of [n] with the most blocks is $\{\{1\}, \ldots, \{n\}\}$.

Table of values of S(n, k): Initial conditions

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$S(n,k)$$
 $k=0$ $k=1$ $k=2$ $k=3$ $k=4$ $n=0$ 1 0 0 0

$$n = 1$$
 0

$$n=2$$
 0

$$n = 3$$
 0

$$n=4$$

Table of values of S(n, k): Recursion

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$S(n,k)$$
 $k=0$ $k=1$ $k=2$ $k=3$ $k=4$ $n=0$ 1 0 0 0

$$n = 1$$
 0

$$n=2$$
 0 $S(n-1,k-1)$ $S(n-1,k)$ $\frac{1}{\sqrt{k}}$ $N=3$ 0 $S(n,k)$

$$n = 4$$

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$S(n,k)$$
 $k = 0$ $k = 1$ $k = 2$ $k = 3$ $k = 4$
 $n = 0$ 1 0 0 0

$$n=1$$
 0 1

$$n=2$$
 0

$$n = 3$$
 0

$$n = 4$$
 0

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$S(n,k)$$
 $k = 0$ $k = 1$ $k = 2$ $k = 3$ $k = 4$
 $n = 0$ 1 0 0 0 0
 $n = 1$ 0 1 0

$$n = 2$$
 0

$$n = 3$$
 0

$$n=4$$

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$n=2$$
 0

$$n=3$$

$$n = 4$$
 0

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$n=3$$

$$n = 4$$
 0

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$n=3$$

$$n = 4$$
 0

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

$$n = 3$$
 0

$$n = 4$$
 0

Compute S(n, k) from the recursion and initial conditions:

n = 4

0

Example and Bell numbers

• S(n,k) is the number of set partitions of [n] into k blocks. For n=4:

• The *Bell number* B_n is the total number of set partitions of [n] into any number of blocks:

$$B_n = S(n,0) + S(n,1) + \cdots + S(n,n)$$

• Total: $B_4 = 1 + 7 + 6 + 1 = 15$

Table of Stirling numbers and Bell numbers

$$S(0,0) = 1$$
 $S(n,k) = k \cdot S(n-1,k)$
 $S(n,0) = 0 \text{ if } n > 0$ $+ S(n-1,k-1)$
 $S(0,k) = 0 \text{ if } k > 0$ if $n \ge 1 \text{ and } k \ge 1$

S(n,k)	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	Row total B_n
n = 0	1	0	0	0	0	0	1
n = 1	0	1	0	0	0	0	1
n = 2	0	1	1	0	0	0	2
n = 3	0	1	3	1	0	0	5
n = 4	0	1	7	6	1	0	15
n = 5	0	1	15	25	10	1	52

Simplex locks

- Simplex brand locks were a popular combination lock with 5 buttons.
- The combination 13-25-4 means:
 - Push buttons 1 and 3 together.
 - Push buttons 2 and 5 together.
 - Push 4 alone.
 - Turn the knob to open.
- Buttons cannot be reused.
- We first consider the case that all buttons are used, and separately consider the case that some buttons aren't used.

Represent the combination 13-25-4 as an ordered set partition

- We may represent 13-25-4 as an *ordered set partition* ({1, 3}, {2, 5}, {4})
 - Block $\{1,3\}$ is first, block $\{2,5\}$ is second, and block $\{4\}$ is third. Blocks are sets, so can replace $\{1,3\}$ by $\{3,1\}$, or $\{2,5\}$ by $\{5,2\}$.
- Note that if we don't say it's ordered, then a set partition is a set of blocks, not a tuple of blocks, and the blocks can be reordered:

$$\{\{1,3\},\{2,5\},\{4\}\} = \{\{5,2\},\{4\},\{1,3\}\}$$

Number of combinations

- Let n = # of buttons (which must all be used) k = # groups of button pushes.
- There are S(n, k) ways to split the buttons into k blocks $\times k!$ ways to order the blocks $= k! \cdot S(n, k)$ combinations.
- The # of combinations on n = 5 buttons and k = 3 groups of pushes is $3! \cdot S(5,3) = 6 \cdot 25 = \boxed{150}$

Represent the combination 13-25-4 as a surjective (onto) function

• Define a function f(i) = j, where button i is in push number j:

$$i=$$
 button number $j=$ push number 1 1 1 2 2 2 2 3 1 4 3 5 2

- This gives a surjective (onto) function $f:[5] \rightarrow [3]$.
- The blocks of buttons pushed are

1st:
$$f^{-1}(1) = \{1, 3\}$$
 2nd: $f^{-1}(2) = \{2, 5\}$ 3rd: $f^{-1}(3) = \{4\}$

$$2^{\text{nd}}: f^{-1}(2) = \{2, 5\}$$

$$3^{rd}: f^{-1}(3) = \{4\}$$

Theorem

The number of surjective (onto) functions $f:[n] \to [k]$ is $k! \cdot S(n,k)$.

Proof.

Split [n] into k nonempty blocks in one of S(n, k) ways.

Choose one of k! orders for the blocks: $(f^{-1}(1), \ldots, f^{-1}(k))$.

How many combinations don't use all the buttons?

- The combination 3-25 does not use 1 and 4.
- Trick: write it as 3-25-(14), with *all* unused buttons in *one* "phantom" push at the end.
- There are three groups of buttons and we don't use the 3rd group.
- # combinations with 2 pushes that don't use all buttons
 = # combinations with 3 pushes that do use all buttons.
- For set partition $\{\{3\}, \{2, 5\}, \{1, 4\}\}$, the 3! orders of the blocks give:

Ordered 3-tuple	Actual combination	+ phantom push
$({3},{2,5},{1,4})$	3-25	3-25-(14)
$({3},{1,4},{2,5})$	3-14	3-14-(25)
$(\{2,5\},\{3\},\{1,4\})$	25-3	25-3-(14)
$(\{2,5\},\{1,4\},\{3\})$	25-14	25-14-(3)
$(\{1,4\},\{3\},\{2,5\})$	14-3	14-3-(25)
$(\{1,4\},\{2,5\},\{3\})$	14-25	14-25-(3)

How many combinations don't use all the buttons?

- Putting all unused buttons into one phantom push at the end gives a bijection between
 - Combinations with k-1 pushes that don't use all n buttons, and
 - Combinations with k pushes that do use all n buttons.

Lemma (General case)

```
For n, k \geqslant 1:
```

The # combinations with k-1 pushes that don't use all n buttons = the # combinations with k pushes that do use all n buttons = $k! \cdot S(n,k)$.

We will count the number of functions $f:[n] \to [k]$ in two ways.

First method

(k choices of f(1)) × (k choices of f(2)) × · · · × (k choices of f(n)) = k^n

Second method: Classify functions by their images and inverses

- Consider $f: [10] \to \{a, b, c, d, e\}$: $i = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ f(i) = \begin{vmatrix} a & c & c & a & c & d & c & a & c & d \end{vmatrix}$
- The *domain* is [10].
- The *codomain* (or *target*) is $\{a, b, c, d, e\}$.
- The *image* is image $(f) = \{f(1), \dots, f(10)\} = \{a, c, d\}$. It's a subset of the codomain.
- The inverse blocks are

$$f^{-1}(a) = \{1, 4, 8\}$$
 $f^{-1}(c) = \{2, 3, 5, 7, 9\}$
 $f^{-1}(d) = \{6, 10\}$ $f^{-1}(b) = f^{-1}(e) = \emptyset$

• $f:[10] \rightarrow \{a,b,c,d,e\}$ is not onto, but $f:[10] \rightarrow \{a,c,d\}$ is onto.

Second method, continued

- Consider $f: [10] \to \{a, b, c, d, e\}$: $i = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ f(i) = \begin{vmatrix} a & c & c & a & c & d & c & a & c & d \end{vmatrix}$
- $f:[10] \rightarrow \{a,b,c,d,e\}$ is not onto, but $f:[10] \rightarrow \{a,c,d\}$ is onto.
- There are $S(10,3) \cdot 3!$ surjective functions $f:[10] \rightarrow \{a,c,d\}$.
- Classify all $f: [10] \rightarrow \{a, b, c, d, e\}$ according to T = image(f).
- There are $\binom{5}{3}$ subsets $T \subseteq \{a, b, c, d, e\}$ of size |T| = 3. Each T has $S(10,3) \cdot 3!$ surjective functions $f: [10] \to T$. So $S(10,3) \cdot 3! \cdot \binom{5}{3}$ functions $f: [10] \to \{a, \ldots, e\}$ have $|\operatorname{image}(f)| = 3$.
- Simplify: $3! \cdot {5 \choose 3} = 3! \cdot \frac{5!}{3! \, 2!} = \frac{5!}{2!} = 5 \cdot 4 \cdot 3 = (5)_3$ So $S(10,3) \cdot (5)_3$ functions $f:[10] \to [5]$ have $|\operatorname{image}(f)| = 3$.

Second method, continued

- In general, $S(n, i) \cdot (k)_i$ functions $f : [n] \rightarrow [k]$ have $|\operatorname{image}(f)| = i$.
- Summing over all possible image sizes i = 0, ..., n gives the total number of functions $f : [n] \rightarrow [k]$

$$\sum_{i=0}^{n} S(n,i) \cdot (k)_{i}$$

Putting this together with the first method gives

$$k^n = \sum_{i=0}^n S(n,i) \cdot (k)_i$$
 for all integers $n, k \geqslant 0$

Second method, continued

$$k^n = \sum_{i=0}^n S(n,i) \cdot (k)_i$$
 for all integers $n, k \geqslant 0$

- $i = |\operatorname{image}(f)| = |\{f(1), \dots, f(n)\}| \leq n$, so $i \leq n$.
- Also, $i \leq k$ since image $(f) \subseteq [k]$.
- In the sum, upper bound i = n may be replaced by k or $\min(n, k)$. Any terms added or removed in the sum by changing the upper bound don't affect the result since those terms equal 0:

$$S(n,i) = 0$$
 for $i > n$
 $(k)_i = 0$ for $i > k$.

Identity for real numbers

The identity

$$k^n = \sum_{i=0}^n S(n,i) \cdot (k)_i$$
 for all integers $n, k \ge 0$

generalizes to

Theorem

$$x^n = \sum_{i=0}^n S(n,i) \cdot (x)_i$$
 for all real x and integer $n \ge 0$.

Identity for real numbers

Theorem

$$x^n = \sum_{i=0}^n S(n,i) \cdot (x)_i$$
 for all real x and integer $n \ge 0$.

Examples

For n=2:

$$S(2,0)(x)_0 + S(2,1)(x)_1 + S(2,2)(x)_2 = 0 \cdot 1 + 1 \cdot x + 1 \cdot x(x-1)$$
$$= 0 + x + (x^2 - x) = x^2$$

For n = 3:

$$S(3,0)(x)_0 + S(3,1)(x)_1 + S(3,2)(x)_2 + S(3,3)(x)_3$$

$$= 0 \cdot 1 + 1 \cdot x + 3 \cdot x(x-1) + 1 \cdot x(x-1)(x-2)$$

$$= 0 + x + 3(x^2 - x) + (x^3 - 3x^2 + 2x)$$

$$= x^3 + (3-3)x^2 + (1-3+2)x = x^3$$

Lemma from Abstract Algebra

Lemma

If f(x) and g(x) are polynomials of degree $\leq n$ that agree on more than n distinct values of x, then f(x) = g(x) as polynomials.

Proof.

- Let h(x) = f(x) g(x). This is a polynomial of degree $\leq n$.
- If h(x) = 0 identically, then f(x) = g(x) as polynomials. Assume h(x) is not identically 0.
- Let x_1, \ldots, x_m (with m > n) be distinct values at which $f(x_i) = g(x_i)$. Then $h(x_i) = f(x_i) - g(x_i) = 0$ for $i = 1, \ldots, m$, so h(x) factors as $h(x) = p(x)(x - x_1)^{r_1}(x - x_2)^{r_2} \cdots (x - x_m)^{r_m} \cdots$

for some polynomial $p(x) \neq 0$ and some integers $r_1, \ldots, r_m \geqslant 1$.

• Then h(x) has degree $\ge m > n$. But h(x) has degree $\le n$, a contradiction. Thus, h(x) = 0, so f(x) = g(x).

Identity for real numbers

Theorem

$$x^n = \sum_{i=0}^n S(n,i) \cdot (x)_i$$
 for all real x and integer $n \ge 0$.

Proof.

- Both sides of the equation are polynomials in x of degree n.
- They agree at an infinite number of values x = 0, 1, ...
- Since $\infty > n$, they're identical polynomials.

5.3. Integer partitions

- The compositions (2,1,1), (1,2,1), (1,1,2) are different. Sometimes the number of 1's, 2's, 3's, ... matters but not the order.
- An *integer partition* of n is a tuple (a_1, \ldots, a_k) of positive integers that sum to n, with $a_1 \ge a_2 \ge \cdots \ge a_k \ge 1$. The partitions of 4 are:

$$(4) \qquad (3,1) \qquad (2,2) \qquad (2,1,1) \qquad (1,1,1,1)$$

• Define p(n) = # integer partitions of n $p_k(n) = \#$ integer partitions of n into exactly k parts

$$p(4) = 5$$

 $p_1(4) = 1$ $p_2(4) = 2$ $p_3(4) = 1$ $p_4(4) = 1$

We will learn a method to compute these in Chapter 8.

Type of a set partition

• Consider this set partition of [10]:

$$\{\{1,4\},\{7,6\},\{5\},\{8,2,3\},\{9\},\{10\}\}$$

- The block lengths in the order it was written are 2, 2, 1, 3, 1, 1.
- But the blocks of a set partition could be written in other orders.
 To make this unique, the *type* of a set partition is a tuple of the block lengths listed in decreasing order: (3, 2, 2, 1, 1, 1).
- For a set of size *n* partitioned into *k* blocks, the type is an integer partition of *n* in *k* parts.

How many set partitions of [10] have type (3, 2, 2, 1, 1, 1)?

- Split [10] into sets A, B, C, D, E, F of sizes 3, 2, 2, 1, 1, 1, respectively, in one of $\binom{10}{3,2,2,1,1,1} = \frac{10!}{3! \ 2!^2 \ 1!^3} = 151200$ ways.
- But $\{A, B, C, D, E, F\} = \{A, C, B, F, E, D\}$, so we overcounted:
 - B, C could be reordered C, B: 2! ways.
 - D, E, F could be permuted in 3! ways.
 - If there are m_i blocks of size i, we overcounted by a factor of m_i !.
- Dividing by the overcounts gives

$$\frac{\binom{10}{3,2,2,1,1,1}}{1!\ 2!\ 3!} = \frac{151200}{1\cdot 2\cdot 6} = \boxed{12600}$$

General formula

For an n element set, the number of set partitions of type (a_1, a_2, \ldots, a_k) where $n = a_1 + a_2 + \cdots + a_k$ and m_i of the a's equal i, is

$$\frac{\binom{n}{a_1,a_2,\ldots,a_k}}{m_1!\,m_2!\,\cdots} = \frac{n!}{(1!^{m_1}\,m_1!)(2!^{m_2}\,m_2!)\cdots}$$

Ferrers diagrams and Young diagrams

Ferrers diagram of (6,3,3,1)

- Consider a partition (a_1, \ldots, a_k) of n.
- Ferrers diagram: a_i dots in the *i*th row.
- Young diagram: squares instead of dots.
- The total number of dots or squares is n.
- Our book calls both of these Ferrers diagrams, but often they are given separate names.

Conjugate Partition

Reflect a Ferrers diagram across its main diagonal:

- This transforms a partition π to its *conjugate partition*, denoted π' .
- The *i*th row of π turns into the *i*th column of π' : the red, green, and blue rows of π turn into columns of π' . Also, the *i*th column of π turns into the *i*th row of π' .
- Theorem: $(\pi')' = \pi$
- **Theorem:** If π has k parts, then the largest part of π' is k. Here: π has 3 parts \leftrightarrow the first column of π has length 3 \leftrightarrow the first row π' is 3 \leftrightarrow the largest part of π' is 3

Theorem

- The number of partitions of n into exactly k parts $(p_k(n))$ = the number of partitions of n where the largest part = k.
- 2 The number of partitions of n into $\leq k$ parts = the number of partitions of n into parts that are each $\leq k$.

Proof: Conjugation is a bijection between the two types of partitions.

Example: Partitions of 6 into 3 or \leq 3 parts

Balls and boxes

Many combinatorial problems can be modeled as placing *balls* into *boxes*:

Indistinguishable balls:

Distinguishable balls:

Indistinguishable boxes:

Distinguishable boxes:

Balls and boxes

Indistinguishable balls

• Integer partitions: (3, 2, 1)

Indistinguishable balls. Indistinguishable boxes.

Compositions: (1, 3, 2)

Indistinguishable balls.

Distinguishable boxes (which give the order).

Balls and boxes

Distinguishable balls

• Set partitions: {{6}, {2, 4, 5}, {1, 3}}

Distinguishable balls.

Indistinguishable boxes (so the blocks are not in any order).

Surjective (onto) functions / ordered set partitions:

Distinguishable balls and distinguishable boxes.

Gives surjective function $f:[6] \rightarrow \{A, B, C\}$

$$f(6) = A$$

$$f(6) = A$$
 $f(2) = f(4) = f(5) = B$ $f(1) = f(3) = C$

$$f(1) = f(3) = C$$

or an ordered set partition $(\{6\}, \{2, 4, 5\}, \{1, 3\})$