Package 'heimdall'

June 23, 2024

Title Drift Adaptable Models

Version 1.0.717

Description

By analyzing streaming datasets, it is possible to observe significant changes in the data distribution or models' accuracy during their prediction (concept drift). The goal of 'heimdall' is to measure when concept drift occurs. The package makes available several state-of-the-art methods. It also tackles how to adapt models in a nonstationary context. Some concept drifts methods are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.

```
License MIT + file LICENSE
URL https://github.com/cefet-rj-dal/heimdall,
     https://cefet-rj-dal.github.io/heimdall/
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports stats, caret, daltoolbox, ggplot2, reticulate
Config/reticulate list( packages = list( list(package = ``scipy"),
     list(package = ``torch"), list(package = ``pandas"), list(package
     = ``numpy"), list(package = ``matplotlib"), list(package =
     ``scikit-learn"), list(package = ``functools"), list(package =
     ``operator"), list(package = ``sys")))
NeedsCompilation no
Author Lucas Tavares [aut],
     Leonardo Carvalho [aut],
     Diego Carvalho [aut],
     Esther Pacitti [aut],
     Fabio Porto [aut],
     Eduardo Ogasawara [aut, ths, cre]
      (<https://orcid.org/0000-0002-0466-0626>),
     Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ)
      [cph]
```

1

Maintainer Eduardo Ogasawara <eogasawara@ieee.org>

2 dfr_adwin

Contents

dfr adwin	2
dfr_cumsum	3
dfr ddm	
dfr ecdd	5
dfr eddm	6
dfr_hddm	7
dfr_kldist	8
dfr_kswin	10
dfr_mcdd	11
dfr_page_hinkley	12
dist_based	13
drifter	14
error_based	14
fit.drifter	15
inactive	15
metric	16
mt_fscore	16
mt_precision	17
mt_recall	17
multi_criteria	
passive	18
reset_state	19
stealthy	
st_drift_examples	
update_state	20
Index	22

dfr_adwin ADWIN method

Description

Adaptive Windowing method for concept drift detection doi:10.1137/1.9781611972771.42.

Usage

```
dfr_adwin(target_feat, delta = 0.002)
```

Arguments

target_feat Feature to be monitored.

delta The significance parameter for the ADWIN algorithm.

Value

dfr_adwin object

dfr_cumsum 3

Examples

```
#Use the same example of dfr_cumsum changing the constructor to:
#model <- dfr_adwin(target_feat='serie')</pre>
```

dfr_cumsum

Cumulative Sum for Concept Drift Detection (CUMSUM) method

Description

The cumulative sum (CUSUM) is a sequential analysis technique used for change detection.

Usage

```
dfr_cumsum(lambda = 100)
```

Arguments

lambda

Necessary level for warning zone (2 standard deviation)

Value

dfr_cumsum object

```
library(daltoolbox)
library(heimdall)
# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate</pre>
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_cumsum()</pre>
detection <- c()</pre>
output <- list(obj=model, pred=FALSE)</pre>
for (i in 1:length(data$serie)){
 output <- update_state(output$obj, data$serie[i])</pre>
 if (output$pred){
   type <- 'drift'
   output$obj <- reset_state(output$obj)</pre>
 }else{
   type <- ''
 detection <- rbind(detection, list(idx=i, event=output$pred, type=type))</pre>
```

4 dfr_ddm

```
}
detection <- as.data.frame(detection)
detection[detection$type == 'drift',]</pre>
```

dfr_ddm

Adapted Drift Detection Method (DDM) method

Description

DDM is a concept change detection method based on the PAC learning model premise, that the learner's error rate will decrease as the number of analysed samples increase, as long as the data distribution is stationary. doi:10.1007/978-3-540-28645-5_29.

Usage

```
dfr_ddm(min_instances = 30, warning_level = 2, out_control_level = 3)
```

Arguments

```
min_instances The minimum number of instances before detecting change warning_level Necessary level for warning zone (2 standard deviation) out_control_level
```

Necessary level for a positive drift detection

Value

dfr_ddm object

```
library(daltoolbox)
library(heimdall)

# This example assumes a model residual where 1 is an error and 0 is a correct prediction.

data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4

model <- dfr_ddm()

detection <- c()
output <- list(obj=model, pred=FALSE)
for (i in 1:length(data$serie)){
  output <- update_state(output$obj, data$serie[i])
  if (output$pred){</pre>
```

dfr_ecdd 5

```
type <- 'drift'
  output$obj <- reset_state(output$obj)
}else{
    type <- ''
}
detection <- rbind(detection, list(idx=i, event=output$pred, type=type))
}
detection <- as.data.frame(detection)
detection[detection$type == 'drift',]</pre>
```

dfr_ecdd

Adapted EWMA for Concept Drift Detection (ECDD) method

Description

ECDD is a concept change detection method that uses an exponentially weighted moving average (EWMA) chart to monitor the misclassification rate of an streaming classifier.

Usage

```
dfr_ecdd(lambda = 0.2, min_run_instances = 30, average_run_length = 100)
```

Arguments

```
lambda The minimum number of instances before detecting change min_run_instances

Necessary level for warning zone (2 standard deviation)

average_run_length

Necessary level for a positive drift detection
```

Value

```
dfr_ecdd object
```

```
library(daltoolbox)
library(heimdall)

# This example assumes a model residual where 1 is an error and 0 is a correct prediction.

data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4

model <- dfr_ecdd()</pre>
```

6 dfr_eddm

```
detection <- c()
output <- list(obj=model, pred=FALSE)
for (i in 1:length(data$serie)){
  output <- update_state(output$obj, data$serie[i])
  if (output$pred){
    type <- 'drift'
    output$obj <- reset_state(output$obj)
}else{
    type <- ''
}
  detection <- rbind(detection, list(idx=i, event=output$pred, type=type))
}

detection <- as.data.frame(detection)
detection[detection$type == 'drift',]</pre>
```

dfr_eddm

Adapted Early Drift Detection Method (EDDM) method

Description

EDDM (Early Drift Detection Method) aims to improve the detection rate of gradual concept drift in DDM, while keeping a good performance against abrupt concept drift. doi:2747577a61c70bc3874380130615e15aff76339

Usage

```
dfr_eddm(
   min_instances = 30,
   min_num_errors = 30,
   warning_level = 0.95,
   out_control_level = 0.9
)
```

Arguments

```
min_instances The minimum number of instances before detecting change
min_num_errors The minimum number of errors before detecting change
warning_level Necessary level for warning zone
out_control_level
```

Necessary level for a positive drift detection

Value

```
dfr_eddm object
```

dfr_hddm 7

Examples

```
library(daltoolbox)
library(heimdall)
# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate</pre>
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_eddm()</pre>
detection <- c()</pre>
output <- list(obj=model, pred=FALSE)</pre>
for (i in 1:length(data$serie)){
output <- update_state(output$obj, data$serie[i])</pre>
if (output$pred){
   type <- 'drift'
  output$obj <- reset_state(output$obj)</pre>
}else{
   type <- ''
}
detection <- rbind(detection, list(idx=i, event=output$pred, type=type))</pre>
}
detection <- as.data.frame(detection)</pre>
detection[detection$type == 'drift',]
```

dfr_hddm

Adapted Hoeffding Drift Detection Method (HDDM) method

Description

is a drift detection method based on the Hoeffding's inequality. HDDM_A uses the average as estimator. doi:10.1109/TKDE.2014.2345382.

Usage

```
dfr_hddm(
  drift_confidence = 0.001,
  warning_confidence = 0.005,
  two_side_option = TRUE
)
```

8 dfr_kldist

Arguments

```
drift_confidence
Confidence to the drift
warning_confidence
Confidence to the warning
two_side_option
Option to monitor error increments and decrements (two-sided) or only increments (one-sided)
```

Value

dfr_hddm object

Examples

```
library(daltoolbox)
library(heimdall)
\# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate</pre>
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_hddm()</pre>
detection <- c()</pre>
output <- list(obj=model, pred=FALSE)</pre>
for (i in 1:length(data$serie)){
 output <- update_state(output$obj, data$serie[i])</pre>
 \quad \text{if (output\$pred)} \{
   type <- 'drift'
   output$obj <- reset_state(output$obj)</pre>
 }else{
   type <- ''
 }
 detection <- rbind(detection, list(idx=i, event=output$pred, type=type))</pre>
detection <- as.data.frame(detection)</pre>
detection[detection$type == 'drift',]
```

dfr_kldist

KL Distance method

Description

Kullback Leibler Windowing method for concept drift detection.

dfr_kldist 9

Usage

```
dfr_kldist(target_feat, window_size = 100, p_th = 0.9, data = NULL)
```

Arguments

target_feat Feature to be monitored.

window_size Size of the sliding window (must be > 2*stat_size)

p_th Probability the shold for the test statistic of the Kullback Leibler distance.

data Already collected data to avoid cold start.

Value

dfr_kldist object

```
library(daltoolbox)
library(heimdall)
# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate</pre>
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_kldist(target_feat='serie')</pre>
detection <- c()
output <- list(obj=model, pred=FALSE)</pre>
for (i in 1:length(data$serie)){
 output <- update_state(output$obj, data$serie[i])</pre>
 if (output$pred){
   type <- 'drift'</pre>
   output$obj <- reset_state(output$obj)</pre>
 }else{
   type <- ''
 detection <- rbind(detection, list(idx=i, event=output$pred, type=type))</pre>
detection <- as.data.frame(detection)</pre>
detection[detection$type == 'drift',]
```

10 dfr_kswin

dfr_kswin

KSWIN method

Description

Kolmogorov-Smirnov Windowing method for concept drift detection doi:10.1016/j.neucom. 2019.11.111.

Usage

```
dfr_kswin(
   target_feat,
   window_size = 100,
   stat_size = 30,
   alpha = 0.005,
   data = NULL
)
```

Arguments

target_feat Feature to be monitored.

window_size Size of the sliding window (must be > 2*stat_size)

stat_size Size of the statistic window

alpha Probability for the test statistic of the Kolmogorov-Smirnov-Test The alpha pa-

rameter is very sensitive, therefore should be set below 0.01.

data Already collected data to avoid cold start.

Value

dfr_kswin object

```
library(daltoolbox)
library(heimdall)

# This example assumes a model residual where 1 is an error and 0 is a correct prediction.

data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4

model <- dfr_kswin(target_feat='serie')

detection <- c()</pre>
```

dfr_mcdd 11

```
output <- list(obj=model, pred=FALSE)
for (i in 1:length(data$serie)){
  output <- update_state(output$obj, data$serie[i])
  if (output$pred){
    type <- 'drift'
    output$obj <- reset_state(output$obj)
}else{
    type <- ''
  }
  detection <- rbind(detection, list(idx=i, event=output$pred, type=type))
}

detection <- as.data.frame(detection)
detection[detection$type == 'drift',]</pre>
```

dfr_mcdd

Mean Comparison Distance method

Description

Mean Comparison statistical method for concept drift detection.

Usage

```
dfr_mcdd(target_feat, alpha = 0.05, window_size = 100)
```

Arguments

target_feat Feature to be monitored

alpha Probability the shold for all test statistics

window_size Size of the sliding window

Value

dfr_mcdd object

```
library(daltoolbox)
library(heimdall)

# This example assumes a model residual where 1 is an error and 0 is a correct prediction.

data(st_drift_examples)
data <- st_drift_examples$univariate
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
```

12 dfr_page_hinkley

```
model <- dfr_mcdd(target_feat='depart_visibility')

detection <- c()
output <- list(obj=model, pred=FALSE)
for (i in 1:length(data$serie)){
  output <- update_state(output$obj, data$serie[i])
  if (output$pred){
    type <- 'drift'
    output$obj <- reset_state(output$obj)
}else{
    type <- ''
}
  detection <- rbind(detection, list(idx=i, event=output$pred, type=type))
}

detection <- as.data.frame(detection)
detection[detection$type == 'drift',]</pre>
```

dfr_page_hinkley

Adapted Page Hinkley method

Description

Change-point detection method works by computing the observed values and their mean up to the current moment doi:10.2307/2333009.

Usage

```
dfr_page_hinkley(
  target_feat,
  min_instances = 30,
  delta = 0.005,
  threshold = 50,
  alpha = 1 - 1e-04
)
```

Arguments

target_feat Feature to be monitored.

min_instances The minimum number of instances before detecting change

delta The delta factor for the Page Hinkley test threshold The change detection threshold (lambda)

alpha The forgetting factor, used to weight the observed value and the mean

Value

```
dfr_page_hinkley object
```

dist_based 13

Examples

```
library(daltoolbox)
library(heimdall)
# This example assumes a model residual where 1 is an error and 0 is a correct prediction.
data(st_drift_examples)
data <- st_drift_examples$univariate</pre>
data$event <- NULL
data$prediction <- st_drift_examples$univariate$serie > 4
model <- dfr_page_hinkley(target_feat='serie')</pre>
detection <- c()</pre>
output <- list(obj=model, pred=FALSE)</pre>
for (i in 1:length(data$serie)){
output <- update_state(output$obj, data$serie[i])</pre>
 if (output$pred){
   type <- 'drift'</pre>
   output$obj <- reset_state(output$obj)</pre>
 }else{
   type <- ''
 detection <- rbind(detection, list(idx=i, event=output$pred, type=type))</pre>
}
detection <- as.data.frame(detection)</pre>
detection[detection$type == 'drift',]
```

 ${\tt dist_based}$

Distribution Based Drifter sub-class

Description

Implements Distribution Based drift detectors

Usage

```
dist_based(target_feat)
```

Arguments

target_feat Feature to be monitored.

Value

Drifter object

14 error_based

drifter

Drifter

Description

Ancestor class for drift detection

Usage

drifter()

Value

Drifter object

Examples

See ?dd_ddm for an example of DDM drift detector

error_based

Error Based Drifter sub-class

Description

Implements Error Based drift detectors

Usage

```
error_based()
```

Value

Drifter object

Examples

See ?hcd_ddm for an example of DDM drift detector

fit.drifter 15

fit.drifter

Process Batch

Description

Process Batch

Usage

```
## S3 method for class 'drifter'
fit(obj, data, prediction, ...)
```

Arguments

obj Drifter object

data data batch in data frame format prediction prediction batch as vector format

... opitional arguments

Value

updated Drifter object

inactive

Inactive dummy detector

Description

Implements Inactive Dummy Detector

Usage

inactive()

Value

Drifter object

```
# See ?hcd_ddm for an example of DDM drift detector
```

mt_fscore

metric

Metric

Description

Ancestor class for metric calculation

Usage

```
metric()
```

Value

Metric object

Examples

 $\ensuremath{\text{\#}}$ See ?metric for an example of DDM drift detector

mt_fscore

FScore Calculator

Description

Class for FScore calculation

Usage

```
mt_fscore(f = 1)
```

Arguments

f

The F parameter for the F-Score metric

Value

Metric object

Examples

See ?mt_precision for an example of FScore Calculator

mt_precision 17

mt_precision

Precision Calculator

Description

Class for precision calculation

Usage

```
mt_precision()
```

Value

Metric object

Examples

See ?mt_precision for an example of Precision Calculator

mt_recall

Recall Calculator

Description

Class for recall calculation

Usage

```
mt_recall()
```

Value

Metric object

Examples

See ?mt_recall for an example of Recall Calculator

passive passive

multi_criteria

Multi Criteria Drifter sub-class

Description

Implements Multi Criteria drift detectors

Usage

```
multi_criteria()
```

Value

Drifter object

passive

Passive dummy detector

Description

Implements Passive Dummy Detector

Usage

passive()

Value

Drifter object

Examples

See ?hcd_ddm for an example of DDM drift detector

reset_state 19

reset_state

Reset State

Description

Reset Drifter State

Usage

```
reset_state(obj)
```

Arguments

obj

Drifter object

Value

updated Drifter object

Examples

See ?hcd_ddm for an example of DDM drift detector

stealthy

Stealthy

Description

Ancestor class for drift adaptive models

Usage

```
stealthy(model, drift_method, th = 0.5, verbose = FALSE)
```

Arguments

model The algorithm object to be used for predictions

drift_method The algorithm object to detect drifts

th The threshold to be used with classification algorithms

verbose if TRUE shows drift messages

Value

Stealthy object

```
# See ?dd_ddm for an example of DDM drift detector
```

20 update_state

st_drift_examples

Synthetic time series for concept drift detection

Description

A list of multivariate time series for drift detection

• example1: a bivariate dataset with one multivariate concept drift example

#'

Usage

```
data(st_drift_examples)
```

Format

A list of time series.

Source

Stealthy package

References

Stealthy package

Examples

```
data(st_drift_examples)
dataset <- st_drift_examples$example1</pre>
```

update_state

Update State

Description

Update Drifter State

Usage

```
update_state(obj, value)
```

Arguments

obj Drifter object

value a value that represents a processed batch

update_state 21

Value

updated Drifter object

Examples

See ?hcd_ddm for an example of DDM drift detector

Index

```
* datasets
     st_drift_examples, 20
dfr_adwin, 2
dfr_cumsum, 3
dfr_ddm, 4
dfr_ecdd, 5
dfr\_eddm, 6
dfr_hddm, 7
dfr_kldist, 8
\texttt{dfr\_kswin}, \textcolor{red}{10}
dfr_mcdd, 11
dfr_page_hinkley, 12
dist_based, 13
\quad \text{drifter, } 14
\texttt{error\_based}, \textcolor{red}{14}
fit.drifter, 15
inactive, 15
metric, 16
mt_fscore, 16
\mathsf{mt\_precision},\, 17
mt_recall, 17
multi_criteria, 18
passive, 18
reset_state, 19
st\_drift\_examples, 20
stealthy, 19
update\_state, 20
```