Ngoc Ha

HW 4 - ST 557

Problem 1

```
In [1]: reading_data <- read.csv('ReadingTest.csv')
head(reading_data)</pre>
```

Subject	PRE1	PRE2	POST1	POST2
1	4	3	5	4
2	6	5	9	5
3	9	4	5	3
4	12	6	8	5
5	16	5	10	9
6	15	13	9	8

```
In [2]: pre <- cbind(reading_data$PRE1, reading_data$PRE2)
   post <- cbind(reading_data$POST1, reading_data$POST2)</pre>
```

```
In [3]: preMean <- c(mean(pre[,1]),mean(pre[,2]))
    postMean <- c(mean(post[,1]),mean(post[,2]))
    cat("Before:", preMean, "\n")
    cat("After: ", postMean)</pre>
```

Before: 9.787879 5.106061 After: 8.075758 6.712121

(1a)

Paired test is appropriate to test the hypothesis $H_0: \mu_1=\mu_2$ vs $H_1: \mu_1\neq \mu_2$, because test scores before and after come from the same sample, under 2 different conditions.

(1b)

Test statistic: 74.94971 Critical level: 6.178845 Reject Null: TRUE

cat("Reject Null:", decision)

(1c)

```
In [6]: alpha_Bon = alpha/p
    test1_bon <- t.test(diff[,1],alternative=c("two.sided"),conf.level=1-alpha_Bon
    )
    test2_bon <- t.test(diff[,2],alternative=c("two.sided"),conf.level=1-alpha_Bon
    )
    cat("95% simultaneous Bonferroni confidence intervals:\n")
    cat("Test 1:", test1_bon$conf, "Test 2:", test2_bon$conf)</pre>
```

95% simultaneous Bonferroni confidence intervals: Test 1: 0.8629862 2.561256 Test 2: -2.473941 -0.7381799

(1d)

```
In [8]: scale1 \leftarrow sqrt(eiDec\$values[1]*p*(n-1)/(n*(n-p))*df(1-alpha, df1=p, df2=n-p)) scale2 \leftarrow sqrt(eiDec\$values[2]*p*(n-1)/(n*(n-p))*df(1-alpha, df1=p, df2=n-p))
```

```
In [9]:
        options(repr.plot.width=5, repr.plot.height=5)
         muTest.1 <- seq(min(diff[,1]), max(diff[,1]), 0.1)</pre>
         muTest.2 <- seq(min(diff[,2]), max(diff[,2]), 0.1)</pre>
         Tstats <- matrix(0, nrow=length(muTest.1), ncol=length(muTest.2))</pre>
         for(i in 1:length(muTest.1)){
             for(j in 1:length(muTest.2)){
                 muTest <- c(muTest.1[i], muTest.2[j])</pre>
                 Tstats[i,j] <- n*t(sampDiffMean - muTest) %*% solve(sampDiffCov) %*% (</pre>
         sampDiffMean - muTest)
             }
         }
         par(mar=c(4,4,1,1))
         # Plot the data, and superimpose the confidence ellipsoids
         # using the contour() function.
         plot(diff, xlab="Test 1", ylab="Test 2")
         points(mu1, mu2, pch=16, col=2)
         contour(muTest.1, muTest.2, Tstats, levels=(n-1)*p/(n-p)*qf(1-alpha, p, n-p),
         drawlabels=T, add=T, labels=95)
```


Test 1

Problem 2

(2a)

```
In [10]: tempData <- read.csv('TempData.csv')</pre>
                                 head(tempData)
                                   X1950s X1960s X1970s X1980s X1990s X2000s
                                                                                     11.006
                                                                                                             11.220
                                                                                                                                                             11.466
                                     10.903
                                                            10.999
                                                                                                                                     11.661
                                     11.319
                                                             11.405
                                                                                     11.360
                                                                                                             11.462
                                                                                                                                     11.980
                                                                                                                                                             11.825
                                     10.927
                                                             10.873
                                                                                    10.854
                                                                                                            10.980
                                                                                                                                     11.330
                                                                                                                                                             11.086
                                      11.303
                                                             11.271
                                                                                     11.108
                                                                                                             11.316
                                                                                                                                     11.869
                                                                                                                                                             11.599
                                      11.138
                                                             11.239
                                                                                     11.196
                                                                                                             11.602
                                                                                                                                     11.945
                                                                                                                                                             11.767
                                        9.448
                                                               9.620
                                                                                       9.321
                                                                                                               9.532
                                                                                                                                       9.774
                                                                                                                                                               9.734
In [11]: n <- dim(tempData)[1]</pre>
                                q <- dim(tempData)[2]</pre>
In [12]: | alpha = 0.05
                                 sampMean <- apply(tempData,2,mean)</pre>
                                 covar <- var(tempData)</pre>
                                 C \leftarrow rbind(c(1, -1, 0, 0, 0, 0), c(1, 0, -1, 0, 0, 0), c(1, 0, 0, -1, 0, 0), c(1, 0, 0, 0, 0, 0), c(1
                                 (1, 0, 0, 0, -1, 0), c(1, -1, 0, 0, 0, -1))
In [13]: Tstat <- n*t(sampMean)%*%t(C)%*%solve(C%*%covar%*%t(C))%*%C%*%sampMean</pre>
                                 critLevel <- (q-1)*(n-1)/(n-q+1)*qf(1-alpha, df1=q-1, df2=n-q+1)
                                 decision = Tstat>crit
                                 cat("Test statistic:", Tstat, "Critical level:", crit, "\n")
                                 cat("Reject Null:", decision)
                                Test statistic: 2612.187 Critical level: 6.178845
                                Reject Null: TRUE
```

(2b)

```
In [14]:
         alpha Bon <- alpha/q
          test1_bon <- t.test(tempData[,2]-tempData[,1],alternative=c("two.sided"),conf.</pre>
          level=1-alpha Bon)
          test2 bon <- t.test(tempData[,3]-tempData[,1],alternative=c("two.sided"),conf.</pre>
          level=1-alpha Bon)
          test3_bon <- t.test(tempData[,4]-tempData[,1],alternative=c("two.sided"),conf.</pre>
          level=1-alpha Bon)
          test4 bon <- t.test(tempData[,5]-tempData[,1],alternative=c("two.sided"),conf.</pre>
          level=1-alpha Bon)
          test5_bon <- t.test(tempData[,6]-tempData[,1],alternative=c("two.sided"),conf.</pre>
          level=1-alpha Bon)
          cat("Bonferroni simultaneous interval 1:", test1_bon$conf, "\n")
          cat("Bonferroni simultaneous interval 2:", test2_bon$conf, "\n")
         cat("Bonferroni simultaneous interval 3:", test3_bon$conf, "\n")
          cat("Bonferroni simultaneous interval 4:", test4_bon$conf, "\n")
          cat("Bonferroni simultaneous interval 5:", test5_bon$conf, "\n")
         Bonferroni simultaneous interval 1: 0.08955848 0.2316415
         Bonferroni simultaneous interval 2: -0.07257532 0.1199753
```

Bonferroni simultaneous interval 1: 0.00535040 0.2510415 Bonferroni simultaneous interval 2: -0.07257532 0.1199753 Bonferroni simultaneous interval 3: 0.1652247 0.4388753 Bonferroni simultaneous interval 4: 0.5795466 0.8806534 Bonferroni simultaneous interval 5: 0.4245939 0.7960061

95% CI for $H_0: \mu_3 - \mu_1 = 0$ includes 0. No other CI contains 0.

Conclusion: average temperature in Corvallis does not stay constant over the past 60 years.

Problem 3

(3a)

```
In [15]: baseball <- read.csv('BaseballData.csv')
head(baseball)</pre>
```

FreeAgent	BatAvg	OBP	Runs	Hits	Doubles	Triples	HRs	RBI	Walks	StrikeOuts	SB	Errc
0	0.260	0.292	59	128	22	7	12	50	23	64	21	
0	0.273	0.346	87	169	28	5	8	58	70	53	3	
0	0.228	0.279	16	38	7	2	3	21	11	32	2	
0	0.250	0.327	40	61	11	0	1	18	24	26	14	
0	0.203	0.240	39	64	10	1	10	33	14	96	13	
0	0.262	0.283	7	38	5	0	0	10	5	18	2	

A paired test is not appropriate because the data comes from different, independent players (i.e. they don't come in pairs). A two-sample test would be more appropriate.

(3b)

```
In [16]: baseball0 <- baseball[baseball$FreeAgent == 0, 2:ncol(baseball)]
baseball1 <- baseball[baseball$FreeAgent == 1, 2:ncol(baseball)]</pre>
```

Errors 0.045063405 0.028763887

	BatAvg	ОВР	Runs	Hits	Doubles	Triples	
BatAvg	0.001681337	0.001593887	0.4020978	0.871891	0.1622746	0.02232954	0
ОВР	0.001593887	0.002272110	0.5567157	0.927463	0.1762044	0.02075187	0
Runs	0.402097766	0.556715725	776.7007267	1361.935327	250.7841779	44.96768766	144
Hits	0.871890967	0.927463005	1361.9353265	2741.478808	494.2825684	84.29434717	250
Doubles	0.162274570	0.176204409	250.7841779	494.282568	108.1292982	13.12963956	52
Triples	0.022329537	0.020751866	44.9676877	84.294347	13.1296396	6.78447057	3
HRs	0.064828196	0.106463737	144.1820221	250.066185	52.9903673	3.33912110	60
RBI	0.379077867	0.471553456	661.0559186	1279.440155	249.4052822	31.46059113	185
Walks	0.238480832	0.559351778	530.4561040	919.795347	169.0643077	23.40008779	113
StrikeOuts	0.129073989	0.270392869	676.0398966	1269.080110	240.5384822	37.71192021	190
SB	0.070165854	0.095360630	183.0638931	301.258060	46.8771887	19.54482271	11
Errors	0.027357948	0.026698337	80.7989806	170.895454	29.8011023	4.40455055	10
	BatAvg	ОВР	Runs	Hits	Doubles	Triples	
BatAvg	BatAvg 0.001384682	OBP 0.001328429	Runs 0.6062737	Hits 1.222733	Doubles 0.2119166	Triples 0.03226899	0.
BatAvg OBP						-	0. 0.
_	0.001384682	0.001328429	0.6062737	1.222733	0.2119166	0.03226899	
ОВР	0.001384682 0.001328429	0.001328429 0.001994757	0.6062737 0.7503599	1.222733 1.101477	0.2119166 0.1869919	0.03226899 0.02553877	0.
OBP Runs	0.001384682 0.001328429 0.606273651	0.001328429 0.001994757 0.750359948	0.6062737 0.7503599 755.9731231	1.222733 1.101477 1109.447368	0.2119166 0.1869919 205.1219280	0.03226899 0.02553877 30.81405005	0. 183.
OBP Runs Hits	0.001384682 0.001328429 0.606273651 1.222733083	0.001328429 0.001994757 0.750359948 1.101477444	0.6062737 0.7503599 755.9731231 1109.4473684	1.222733 1.101477 1109.447368 2057.424812	0.2119166 0.1869919 205.1219280 377.8157895	0.03226899 0.02553877 30.81405005 47.71428571	0. 183. 261.
OBP Runs Hits Doubles	0.001384682 0.001328429 0.606273651 1.222733083 0.211916564	0.001328429 0.001994757 0.750359948 1.101477444 0.186991864	0.6062737 0.7503599 755.9731231 1109.4473684 205.1219280	1.222733 1.101477 1109.447368 2057.424812 377.815789	0.2119166 0.1869919 205.1219280 377.8157895 97.8272360	0.03226899 0.02553877 30.81405005 47.71428571 7.14151049	0. 183. 261. 58.
OBP Runs Hits Doubles Triples	0.001384682 0.001328429 0.606273651 1.222733083 0.211916564 0.032268993	0.001328429 0.001994757 0.750359948 1.101477444 0.186991864 0.025538772	0.6062737 0.7503599 755.9731231 1109.4473684 205.1219280 30.8140501	1.222733 1.101477 1109.447368 2057.424812 377.815789 47.714286	0.2119166 0.1869919 205.1219280 377.8157895 97.8272360 7.1415105	0.03226899 0.02553877 30.81405005 47.71428571 7.14151049 5.98069801	0. 183. 261. 58.
OBP Runs Hits Doubles Triples HRs	0.001384682 0.001328429 0.606273651 1.222733083 0.211916564 0.032268993 0.083334586	0.001328429 0.001994757 0.750359948 1.101477444 0.186991864 0.025538772 0.125793233	0.6062737 0.7503599 755.9731231 1109.4473684 205.1219280 30.8140501 183.9135338	1.222733 1.101477 1109.447368 2057.424812 377.815789 47.714286 261.823308	0.2119166 0.1869919 205.1219280 377.8157895 97.8272360 7.1415105 58.8984962	0.03226899 0.02553877 30.81405005 47.71428571 7.14151049 5.98069801 1.32330827	0. 183. 261. 58. 1.
OBP Runs Hits Doubles Triples HRs	0.001384682 0.001328429 0.606273651 1.222733083 0.211916564 0.032268993 0.083334586 0.464127146	0.001328429 0.001994757 0.750359948 1.101477444 0.186991864 0.025538772 0.125793233 0.502980922	0.6062737 0.7503599 755.9731231 1109.4473684 205.1219280 30.8140501 183.9135338 601.7707328	1.222733 1.101477 1109.447368 2057.424812 377.815789 47.714286 261.823308 1007.864662	0.2119166 0.1869919 205.1219280 377.8157895 97.8272360 7.1415105 58.8984962 211.4084839	0.03226899 0.02553877 30.81405005 47.71428571 7.14151049 5.98069801 1.32330827 11.67197845	0. 183. 261. 58. 1. 106.

28.0742902

67.233083

8.3514757 0.88744249

6.

```
In [18]: det(covar0)
    det(covar1)
    sum(diag(covar0)) #trace
    sum(diag(covar1))

    536625347621.708
    1236170570008.94
    6212.72009254831
    5738.6350144968
```

The covariance matrices do *not* appear to be similar.

(3c)

(3d)

The decision did not change.

(3e)

Not reasonable to always perform both tests for equal and unequal covariance matrices, since that would double the probability of making a type I error.

(3f)

For this problem, it doesn't matter which critical level is used.

Problem 4

(4a)

```
In [24]: skull <- read.csv("SkullData.csv")
head(skull)</pre>
```

Year	MB	вн	BL	NH
-4000	131	138	89	49
-4000	125	131	92	48
-4000	131	132	99	50
-4000	119	132	96	44
-4000	136	143	100	54
-4000	138	137	89	56

```
In [25]: BC4000 <- skull[skull$Year==-4000,2:5]</pre>
          BC3300 <- skull[skull$Year==-3300,2:5]
          BC1850 <- skull[skull$Year==-1850,2:5]
          BC200 <- skull[skull$Year==-200,2:5]
          AD150 <- skull[skull$Year==150,2:5]
In [26]: | covar1 <- var(BC4000)</pre>
          covar2 <- var(BC3300)</pre>
          covar3 <- var(BC1850)</pre>
          covar4 <- var(BC200)</pre>
          covar5 <- var(AD150)</pre>
In [27]: | det(covar1)
          det(covar2)
          det(covar3)
          det(covar4)
          det(covar5)
          96431.2959853298
          61827.9461650085
          74729.0725238389
          35211.6575797549
          189666.581818259
```

The covariance matrices do not seem to be similar.

(4b)

```
In [28]: p = 4; k = 5; n = dim(skull)[1];
n1 = dim(BC4000)[1]; n2 = dim(BC3300)[1]; n3 = dim(BC1850)[1]; n4 = dim(BC200)
[1]; n5 = dim(AD150)[1]
mu = apply(skull[,2:ncol(skull)],2,mean); mu1 = apply(BC4000[,2:ncol(BC4000)],
2,mean);
mu2 = apply(BC3300[,2:ncol(BC3300)],2,mean); mu3 = apply(BC1850[,2:ncol(BC1850)],2,mean);
mu4 = apply(BC200[,2:ncol(BC200)],2,mean); mu5 = apply(AD150[,2:ncol(AD150)],2,mean);
```

```
In [29]: alpha = 0.05
W = (n1-1)*covar1 + (n2-1)*covar2 + (n3-1)*covar3 + (n4-1)*covar4 + (n5-1)*cov
ar5
T = (n-1)*var(skull[2:5])
gamma <- det(W)/det(T)
tstat <- -(n-1-(p+k)/2)*log(gamma)
crit_level <- qchisq(1-0.05,p*(k-1))
reject <- tstat > crit_level
cat("Test statistic:", tstat, "\nCritical level:", crit_level, "\nReject Nul
l:", reject)
Test statistic: 59.25903
```

Test statistic: 59.25903 Critical level: 26.29623 Reject Null: TRUE

FALSE

Based on the test, we can conclude that skull size changed over this period of time. Therefore, **there is evidence** of interbreeding.

(4c)

```
In [30]: | alpha_Bon <- alpha/p</pre>
                                               ssw <- matrix(0, 4, 1)</pre>
                                               for (i in c(1:4)){
                                                                  ssw[i] <- (n1-1)*var(BC4000[,i])+(n2-1)*var(BC3300[,i])+(n3-1)*var(BC1850[,i])+(n3-1)*var(BC1850[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var(BC3100[,i])+(n3-1)*var
                                                ,i])+(n4-1)*var(BC200[,i])+(n5-1)*var(AD150[,i])
                                               sst <- matrix(0,4,1)</pre>
                                               for (j in c(1:4)){
                                                                  sst[j] <- (n-1)*var(skull[,j+1])</pre>
                                               ssb <- sst-ssw
                                               cbind(ssw,ssb,sst)
                                                  3061.067 502.8267 3563.893
                                                  3405.267 229.9067 3635.173
                                                  3505.967 803.2933 4309.260
                                                  1472.133
                                                                                       61.2000 1533.333
In [31]:
                                            Tstats \langle -(ssb/(k-1))/(ssw/(n-k))\rangle
                                               crit_level <- qf(1-alpha_Bon,k-1,n-k)</pre>
                                               reject <- Tstats > crit level
                                               reject
                                                    TRUE
                                                  FALSE
                                                     TRUE
```

The Null is rejected (reject = TRUE) in 2 of the 4 univariate ANOVAs.

$$\alpha* = \frac{\alpha}{p}$$

Probability of Type I error is:

$$egin{aligned} P_{H_0}(RejectH_0) &= P_{H_0}(Reject\ at\ least\ one\ of\ H_{0j}) \ &\leq \sum_{j=1}^p P_{H_0}(RejectH_{0j}) \ &= \sum_{j=1}^p rac{lpha}{p} \ &= lpha \end{aligned}$$

Probability of type I error is controlled at level lpha

Problem 5

```
In [32]: pollution <- as.matrix(read.csv('PollutionData.csv'))
    head(pollution)</pre>
```

Wind	SolarRad	NO2	О3
8	98	12	8
7	107	9	5
7	103	5	6
10	88	8	15
6	91	8	10
8	90	12	12

(5a)

```
In [33]: | n = nrow(pollution)
         x <- cbind(1,pollution[,1:2])</pre>
         y <- pollution[,3:4]</pre>
         p \leftarrow ncol(x)-1
         m < - ncol(y)
         mlr \leftarrow lm(y \sim x)
         sum <- summary(mlr)</pre>
         sum
         Response NO2:
         Call:
         lm(formula = NO2 \sim x)
         Residuals:
                      1Q Median
             Min
                                      3Q
                                             Max
         -5.7521 -2.2053 -0.5917 1.6852 10.4623
         Coefficients: (1 not defined because of singularities)
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept) 10.11454
                                 3.62607
                                           2.789 0.00813 **
                           NA
                                             NA
                                                       NA
         Х
                                      NA
         xWind
                     -0.21129
                                 0.33917 -0.623 0.53694
         xSolarRad 0.02055
                                 0.03094 0.664 0.51042
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 3.416 on 39 degrees of freedom
         Multiple R-squared: 0.02311, Adjusted R-squared: -0.02698
         F-statistic: 0.4614 on 2 and 39 DF, p-value: 0.6338
         Response 03:
         Call:
         lm(formula = 03 \sim x)
         Residuals:
             Min
                      1Q Median
                                      3Q
         -7.9527 -3.5053 -0.2998 1.4703 14.7123
         Coefficients: (1 not defined because of singularities)
                     Estimate Std. Error t value Pr(>|t|)
         (Intercept) 8.27619
                                 5.58044
                                           1.483
                                                   0.1461
         Х
                           NA
                                      NA
                                              NA
                                                       NA
         xWind
                     -0.78682
                                 0.52198 -1.507
                                                   0.1398
         xSolarRad
                    0.09518
                                 0.04761 1.999 0.0526 .
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 5.257 on 39 degrees of freedom
         Multiple R-squared: 0.1513, Adjusted R-squared: 0.1078
         F-statistic: 3.476 on 2 and 39 DF, p-value: 0.04082
```

```
In [34]: betaMat <- solve(t(x)%*%x) %*% t(x) %*% y</pre>
          round(betaMat, 3)
                      NO<sub>2</sub>
                               O3
                     10.115 8.276
              Wind -0.211 -0.787
           SolarRad 0.021 0.095
          sigHat \leftarrow t(y-x\%*\%betaMat) \%*\% (y-x\%*\%betaMat)
In [35]:
          round(sigHat, 1)
                 NO<sub>2</sub>
                          O3
           NO2 455.1
                         82.9
                 82.9 1078.0
            O3
In [36]: x1 <- x[,2]
          x2 < -x[,3]
In [37]: q <- 1
          alpha = 0.05
          betaMat1 <- solve(t(x1)%*%x1) %*% t(x1) %*% y
          sigHat1 <- t(y-x1%*\%betaMat1) %*% (y-x1%*%betaMat1)
          Lambda1 <- det(sigHat)/det(sigHat1)</pre>
          stat1 < -(n-p-1-0.5*(m-p+q+1))*log(Lambda1)
          crit <- qchisq(1-alpha,m*(p-q))</pre>
          reject1 <- stat1 > crit
          cat("Reject Null:", reject1)
```

Reject Null: TRUE

Conclusion: $\beta_2 = 0$ is not plausible

(5b)

```
In [38]: q <- 1
    betaMat2 <- solve(t(x2)%*%x2) %*% t(x2) %*% y
    sigHat2 <- t(y-x2%*%betaMat2) %*% (y-x2%*%betaMat2)
    Lambda2 <- det(sigHat)/det(sigHat2)
    stat2 <- -(n-p-1-0.5*(m-p+q+1))*log(Lambda2)
    crit <- qchisq(1-alpha,m*(p-q))
    reject2 <- stat2 > crit
    cat("Reject Null:", reject1)
```

Reject Null: TRUE

Conclusion: $eta_1=0$ is not plausible

(5c)

```
In [39]: q <- 2
  betaMat3 <- lm(y~1)$coef
  sigHat3 <- t(y-x[,1]%*%betaMat2) %*% (y-x[,1]%*%betaMat2)
  Lambda3 <- det(sigHat)/det(sigHat3)
  stat3 <- -(n-p-1-0.5*(m-p+q+1))*log(Lambda3)
  crit <- qchisq(1-alpha,m*(p-q))
  reject3 <- stat3 > crit
  cat("Reject Null:", reject1)
```

Reject Null: TRUE

Conclusion: $eta_1=eta_2=0$ is not plausible. This is consistent with (a) and (b).

```
In [ ]:
```