Probability & Statistics

Problem set №12. June 2020

Symbol $z \equiv z_{(\cdot)}$ means from now – until revocation – quantile of N(0, 1) distribution. Additionally: exercises 1–10 are classes exercises (1 point each), while exercises 11–16 are of (E1) category each.

- 1. Rejection area is defined by z>2. Significance level α equals: a) 0.2280 b) 0.0228 c) 0.0500 d) 0.1000
- 2. Significance level α which corresponds rejection area |z|>1.55 equals: a) 0.5500 b) 0.0606 c) 0.1211 d) 0.1234
- 3. Level of significance $\alpha=0.075$. Rejection area of the left-tailed hypothesis is given by: a) $z<-1.34\,$ b) $z<-1.38\,$ c) $z<-1.40\,$ d) z<-1.44.
- 4. Find p-value when z = 2.34 and $H_a: \mu \neq \mu_0$: a) 0.0096 b) 0.0101 c) 0.0193 d) 0.0202
- 5. Find p-value when z = -3.05, $H_a: \mu < \mu_0$: a) 0.0011 b) 0.0111 c) 0.0038 d) 0.0001
- 6. Give p-value when z = 1.89, $H_a: \mu > \mu_0$: a) 0.0588 b) 0.1234 c) 0.0249 d) 0.0669
- 7. Tested hypothesis $H_0: \mu = 10$, alternative hypothesis $H_a: \mu \neq 10$, significance level $\alpha = 0.01$. For which of the following 99% confidence interval μ initial hypothesis is rejected? a) (12.1, 15.3) b) (8.8 12.5) c) (5.5, 15.5) d) (9.9 10.5)
- 8. Hypothesis about expected value is tested, based on a large sample.

Which of the following are true? a) Hypothesis H_0 is one-tailed. b) Value of the test statistics equals -22.59. c) Sample size is n = 500. d) Tested value of μ_0 equals 5.51912.

9. During the experiment, the response time to the neurological stimulus was measured.

Which of the following are true? a) Tested hypothesis is two-tailed. b) Complement to 1 of t(14) cdf in point t=3.30 is equal 0.005. c) We have no reason to reject H_0 hypothesis, with significance level $\alpha=0.05$, because 1.5 does not fit with 95% confidence interval (1.665, 2.277). d) 15 is the size of the sample.

10. Below are results of YES-NO question.

```
Test of p = 0.4 vs p not = 0.4   
Sample X N Sample p 95%CI Z-Value P-Value 1 180 400 0.450000 (0.401247,0.498753) 2.04 0.041
```

Which of the following are true? a) 400 persons were surveyed, 180 answers is YES. b) Tested hypothesis was one-sided. c) Significance level is $\alpha = 0.05$. d) cdf in point 2.04, has the value 0.041.

11. **(E1)** 500 people were questioned, the question was of YES-NO type.

	Α	В	С	D	E	
1	0.25	Frequency of YES answer	'=125/500	0		1
2	0.0194	standard error	'=SQRT(C1*(1-C1)	/500)	i
3	1.96	quantile of N(0,1)	'=NORM.	INV(0.975	5,0,1)	i i
4						1
5	0.212	left side of confidence interval	a '=C1-C2*	C3		1
6	0.288	right side of confidence inter	v '=C1+C2	*C3		i
7						1
8	2.7951	value of test statistics	'=(C1-0.2)/SQRT(0	.2*0.8/50	o)
9	0.0052	p-value	'=2*(1-NC	RM.DIST	(C8,0,1,	1))
10			70 30.0			1

Which of the following are true? a) Tested parameters has the value $p_0 = 0.20$ b) 0.0052 is one-sidedp-value. c) Tested p_0 does not fit in 95% confidence interval. d) Because n is large, $np_0 \ge 5$, $nq_0 \ge 5$, we can approximate binomial distribution by normal distribution.

12. **(E1)** We hypothesize that the standard deviation of the variable is less than 5.

	A	В	С	D	E	F
1	70	3.437758	Standard	deviation	=STDEV	(A1:A12)
2	73	5.2	Value of t	est statist	ics =11*E	31^2/25
3	70					
4	72	0.078905	p-value =	CHISQ.D	IST(B2,1:	1,1)
5	74					
6	70	p-value > 0.0	5, do not i	eject H0 l	nypothesi	s
7	74					
8	76					
9	75					
10	80					
11	74					
12	80					
12						

Which of the following are true? a) Sample S^2 has the value 3.43776. b) If significance level is $\alpha = 0.05$ we accept hypothesis H_0 . c) Area under density of $\chi^2(11)$ distribution is 0.078905. d) Test is right-tailed.

- 13. **(E1)** The speed of 100 cars was measured. The 95% confidence interval for standard deviation is determined below.
 - Which of the following are true? a) $S^2=10.64818$ b) Confidence interval of σ^2 is (87.40710, 153.0102)
 - c) Confidence interval of σ is equal (9.349181, 12.36973) d) Area under the density function of $\chi^2(99)$ distribution on the interval (73.3611, 128.4219) equals 0.99.
- 14. **(E1)** Significance level of tested hypothesis $\alpha = 0.05$. Which **p-value** results in rejecting initial hypothesis: a) p-value= 0.05 b) p-value= 0.14 c) p-value= 0.024 d) p-value= 0.34.
- 15. **(E1)** The goal of testing hypotheses is a) describing samples, b) describing the population, c) inferring about the population based on samples, d) inferring about samples based on the population.

	Α	В	С	D	E	
1						
2	10.64818	Standard	deviation	=STDEV	(A15:J24))
3	113.3838	Variance	=A2^2			
4						
5	73.3611	Quantile (0.975 = C	HISQ.INV	(0.025,99))
6	128.4219	Quantile (0.025 = C	HISQ.INV	(0.975,99))
7						
8	87.40719	Left side	of CI for v	ariance =	99*A2/A6	
9	153.0102	Right side	of CI for	variance	=99*A2/A	5
10						
11	9.349181	Left side	of st devia	tion =s	qrt(A8)	
12	12.36973	Right side	of st dev	iation =so	qrt(A9)	
13		10000				
14						

16. **(E1)** We perform t-test about two means. With this, we assume that: a) samples are independent b) samples come from population of normal distribution c) samples come from $t(n_1 + n_2 - 2)$ distribution d) samples are of the same distribution.

Hereby – I revoke the assumption that z means a quantile of N(0,1) distribution.

Witold Karczewski