

Electrical and Computer Engineering Department

Written by:

Group K

Brandon Contreras

Daniele Ricciardelli

ECE 2200L:

Experiment Number 10

MOSFET Transistor Current-Voltage characteristics

Professor Mostafa Yazdy

Fall 2024

Thursday

November 7th, 2024

Background Information:

A MOSFET is a different type of FET. It stands for metal oxide semiconductor field effect transistor.

Objective:

To study the transfer characteristic and output characteristics of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) through Spice simulations.

Evidence:

Proof of work approved

<u>Pre-Lab:</u>

- 1) Capture the circuit of Figure 1 in PSpice.
- 2) Run simulation (DC sweep) changing $V_{\!gs}$ from 0 to 2.5V or 3V with increments of 0.1V
- 3) Determine the Threshold voltage \emph{V}_{TH}

Lab Report:

Figure 1:

1. Determine the Transfer Characteristics of Figure 1.

Part 1 Part 2&3

Using ammeter

Vtn = 2V	' ; R =	299.4;	Vgs = 0
----------	---------	--------	---------

Vgs	ld	
0	0	
0.25	0	
0.5	0	
0.75	0	
1	0	
1.25	1.60E-07	u
1.5	4.22E-06	u
1.75	1.13E-04	u
2	2.03E-03	m
2.25	1.35E-02	m
2.5	3.15E-02	m
2.75	3.25E-02	m
3	3.26E-02	m

Vdd	Vd	ld
0	0.00E+00	0.00E+00
1	1.00E+00	0.00E+00
2	2.00E+00	0.00E+00
3	3.00E+00	0.00E+00
4	4.00E+00	0.00E+00
5	5.00E+00	0.00E+00
6	6.00E+00	0.00E+00
7	7.00E+00	0.00E+00
8	8.00E+00	0.00E+00
9	9.00E+00	0.00E+00
10	1.00E+01	0.00E+00
11	1.10E+01	0.00E+00
12	1.20E+01	0.00E+00
13	1.30E+01	0.00E+00
14	1.40E+01	0.00E+00
15	1.50E+01	0.00E+00

Part 1 Graph – Using ammeter

- 2. Find the Output characteristics Curve (done before)
- 3. Do the same but with 0.2, 0.4, 0.6 volts increments

Vgs = 0.2 Vgs = 0.4 Vgs = 0.6

Vdd		Vd	ld
	0	0.00E+00	0.00E+00
	1	5.05E-02	3.17E-03
	2	1.37E-01	6.22E-03
	3	0.539	8.22E-03
	4	1.48	8.41E-03
	5	2.42	8.61E-03
	6	3.31	8.98E-03
	7	4.25	9.18E-03
	8	5.13	9.58E-03
	9	6.06	9.82E-03
	10	6.95	1.02E-02
	11	7.87	1.05E-02
	12	8.7	1.10E-02
	13	9.62	1.13E-02
	14	10.51	1.17E-02
	15	11.3	1.24E-02

Vdd	Vd	ld
0	0.00E+00	0.00E+00
1	2.96E-02	3.24E-03
2	6.21E-02	6.47E-03
3	1.00E-01	9.68E-03
4	1.44E-01	1.29E-02
5	2.01E-01	1.60E-02
6	2.89E-01	1.91E-02
7	0.5	2.17E-02
8	1.11	2.30E-02
9	1.87	2.38E-02
10	2.6	2.47E-02
11	3.4	2.54E-02
12	4.1	2.64E-02
13	4.8	2.74E-02
14	5.5	2.84E-02
15	6.23	2.93E-02

Vdd	Vd	ld
0	0	0
1	2.25E-02	0.003264
2	4.57E-02	0.006525
3	7.00E-02	0.009783
4	9.51E-02	0.013038
5	1.23E-01	0.016282
6	1.52E-01	0.019526
7	1.83E-01	0.02276
8	2.19E-01	0.02598
9	2.58E-01	0.02919
10	3.05E-01	0.032372
11	3.58E-01	0.035531
12	4.30E-01	0.038631
13	0.537	0.041613
14	0.77	0.044174
15	1.2	0.046077

4. Determine the K ("Gain Factor") for the MOSFET.

- ullet From the above graph and data, we can estimate that $V_{DS}pprox 10V$ at $I_{DS}pprox 1mA$
- $\bullet \quad V_{GS} = V_{TH} + 0.2$

•
$$I_D = \frac{K}{2} [V_{GS} - V_{TH}]^2 \Rightarrow K = \frac{2I_D}{[V_{GS} - V_{TH}]^2} = 0.052$$

Conclusion:

In this lab, we worked with a MOSFET and studied the current-voltage characteristics. We calculated the value of K at the end of the experiment.