Machine Learning

Lec # 4
Gender Identification using Scikit-Learn

Introduction

Aim

■ The main aim of this tutorial is to explain the task of gender identification using Scikit-Learn Machine Learning toolkit.

Task

- Learn Input-Output Function
- Given a human as input predict its gender (output)

Introduction

- Goal
 - The problem of gender prediction is treated as a supervised learning problem.
 - We need
 - Labelled data
 - High quality data
 - Large amount of data

Input and Output

Input:

- Human
 - Represented as set of attributes (Height, Weight, Hair Length, Beard, Scarf)

Output:

- Gender of human
- Represented as Gender attribute (Male/Female)

Goal:

Learn from Input to predict Output

Three Phases of Machine Learning

Training

Use subset of data (called Train data) to train model (learning)

Testing

 Use subset of data (called Test Data) to evaluate train model

Application

Use your learned/trained model in real world applications

PHASES 1 & 2: TRAINING AND TESTING

Step 1: Import Libraries

Step 2: Read, Understand and Pre-process Train/Test Data

Step 2.1: Read Data

Step 2.2: Understand Data

Step 2.3: Pre-process Data

PHASES 1 & 2: TRAINING AND TESTING

Step 3: Label Encoding for Train/Test Data

Step 4: Feature Extraction – Values of Attributes

Step 5: Train Machine Learning Algorithms using Train Data

Step 6: Evaluate Machine Learning Algorithms using Test Data

Step 7: Selection of Best Model

PHASE 3: APPLICATION PHASE

Step 8: Application Phase

Step 8.1: Combine Data (Train + Test)

Step 8.2: Train Best Model (see Step 7) on all data (Train + Test)

Step 8.3: Save the Trained Model as Pickle File

PHASE 3: APPLICATION PHASE

Step 9: Make prediction on unseen/new data

Step 9.1: Load the Trained Model (saved in Step 8.3)

Step 9.2: Take Input from User

PHASE 3: APPLICATION PHASE

Step 9.3: Convert User Input into Feature Vector (Same as Feature Vector of Trained Model)

Step 9.4: Apply Trained Model on Feature Vector of Unseen Data and Output Prediction (Male/Female) to User

Step 1: Import Libraries

```
import re
import string
import scipy
import pickle
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import *
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import BernoulliNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
from prettytable import PrettyTable
from astropy.table import Table, Column
```

Step 2: Read, Understand and Pre-process Train/Test Data

Read, Understand and Pre-process Train/Test Data

Train Dataset:

index	height	weight	hair	beard	scarf	gender
0	180.3000	196	Bald	Yes	No	Male
1	170.0000	120	Long	No	No	Female
2	178.5000	200	Short	No	No	Male
3	163.4000	110	Medium	No	Yes	Female
4	175.2222	220	Short	Yes	No	Male
5	165.0000	150	Medium	No	Yes	Female

```
Train Dataset Columns:
Index(['height', 'weight', 'hair', 'beard', 'scarf', 'gender'], dtype='object', name='index')
Number of instances in Train Dataset:
Train instances: 6
```

Test Dataset:

index	height	weight	hair	beard	scarf	gender
0	179.1	185	Long	Yes	No	Male
1	160.5	130	Short	No	No	Female
2	177.8	160	Bald	No	No	Male
3	161.1	100	Medium	No	No	Female

```
Test Dataset Columns:

Index(['height', 'weight', 'hair', 'beard', 'scarf', 'gender'], dtype='object', name='index')

Number of instances in Test Dataset:

Test instances: 4
```

3 Train instances having label 'Male':

index	height	weight	hair	beard	scarf	gender
0	180.3000	196	Bald	Yes	No	Male
2	178.5000	200	Short	No	No	Male
4	175.2222	220	Short	Yes	No	Male

3 Train instances having label 'Female':

index	height	weight	hair	beard	scarf	gender
1	170.0	120	Long	No	No	Female
3	163.4	110	Medium	No	Yes	Female
5	165.0	150	Medium	No	Yes	Female

2 Test instances having label 'Male':

```
index height weight hair beard scarf gender 179.1 185 Long Yes No Male 177.8 160 Bald No No Male
```

2 Test instances having label 'Female':

```
index height weight hair beard scarf gender 1 160.5 130 Short No No Female 3 161.1 100 Medium No No Female
```


Understanding Data via

GRAPH is easy.

Let's Go!

Total number of 'Males' and 'Females' in Train Dataset <matplotlib.axes._subplots.AxesSubplot at 0xc275160>

Total number of 'Males' and 'Females' in Test Dataset <matplotlib.axes._subplots.AxesSubplot at 0xba97b00>

Number of people having various hair length in Train dataset:

<matplotlib.axes._subplots.AxesSubplot at 0xc2d4c18>

Number of people having various hair length in Test dataset:

<matplotlib.axes._subplots.AxesSubplot at 0xc46af28>

Number of people have/haven't beard in Train dataset:

<matplotlib.axes._subplots.AxesSubplot at 0xc300be0>

Number of people have/haven't beard in Test dataset:

<matplotlib.axes._subplots.AxesSubplot at 0xc4d2cc0>

Step 2.3: Pre-Process Data

Train dataset before pre-processing:

Train dataset after pre-processing:

index	height	weight	hair	beard	scarf	gender	index	height	weight	hair	beard	scarf	gender
0	180.3000	196	Bald	Yes	No	Male	0	180.30	196	Bald	Yes	No	Male
1	170.0000	120	Long	No	No	Female	1	170.00	120	Long	No	No	Female
2	178.5000	200	Short	No	No	Male	2	178.50	200	Short	No	No	Male
3	163.4000	110	Medium	No	Yes	Female	3	163.40	110	Medium	No	Yes	Female
4	175.2222	220	Short	Yes	No	Male	4	175.22	220	Short	Yes	No	Male
5	165,0000	150	Medium	No	Yes	Female	5	165.00	150	Medium	No	Yes	Female

Please convert data to a form that I can understand

Gender Attribute Encoding in Train Dataset:

index	gender	encoded_gender
0	Male	1
1	Female	0
2	Male	1
3	Female	0
4	Male	1
5	Female	0

Scarf Attribute Encoding in Train Dataset:

Beard Attribute Encoding in Train Dataset:

```
index beard encoded_beard

0 Yes 1

1 No 0

2 No 0

3 No 0

4 Yes 1

5 No 0
```

Hair Attribute Encoding in Train Dataset:

index	hair	encoded_hair
0	Bald	0
1	Long	1
2	Short	3
3	Medium	2
4	Short	3
5	Medium	2

Original Train Data:							Train	Data aft	er Label	Encod	ing:		
index	height	weight	hair	beard	scarf	gender	index	height	weight	hair	beard	scarf	gender
0	180.30	196	Bald	Yes	No	Male	0	180.30	196	0	1	0	1
1	170.00	120	Long	No	No	Female	1	170.00	120	1	0	0	0
2	178.50	200	Short	No	No	Male	2	178.50	200	2	0	0	1
3	163.40	110	Medium	No	Yes	Female	3	163.40	110	3	0	1	0
4	175.22	220	Short	Yes	No	Male	4	175.22	220	2	1	0	1
5	165.00	150	Medium	No	Yes	Female	5	165.00	150	3	0	1	0

Original Test Data:

Test Data after Label Encoding:

index	height	weight	hair	beard	scarf	gender	index	height	weight	hair	beard	scarf	gender
0	•	185				•	0	179.1	185	1	1	0	1
1	160.5	130	Short	No	No	Female	1	160.5	130	2	0	0	0
2	177.8		Bald				2	177.8	160	0	0	0	1
3	161.1	100	Medium	No	No	Female	3	161.1	100	3	0	0	0

Step 5: Train ML Algorithms using Train Data

Parameters and their values:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
```

Step 5: Train ML Algorithms using Train Data

Parameters and their values:

Step 5: Train ML Algorithms using Train Data

Parameters and their values:

```
LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
    intercept_scaling=1, loss='squared_hinge', max_iter=1000,
    multi_class='ovr', penalty='12', random_state=None, tol=0.0001,
    verbose=0)
```

Step 5: Train ML Algorithms using Train Data

Parameters and their values:

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)

Prediction using Logistic Regression:

index	height	weight	hair	beard	scarf	gender	predicted_gender
0	179.1	185	Long	Yes	No	Male	Male
1	160.5	130	Short	No	No	Female	Female
2	177.8	160	Bald	No	No	Male	Female
3	161.1	100	Medium	No	No	Female	Female

Accuracy score = 0.75

Prediction using RandomForestClassifier:

index	height	weight	hair	beard	scarf	gender	predicted_gender
0	179.1	185	Long	Yes	No	Male	Male
1	160.5	130	Short	No	No	Female	Female
2	177.8	160	Bald	No	No	Male	Male
3	161.1	100	Medium	No	No	Female	Female

Accuracy score = 1.0

Prediction using LinearSVC:

index	height	weight	hair	beard	scarf	gender	predicted_gender
0	179.1	185	Long	Yes	No	Male	Male
1	160.5	130	Short	No	No	Female	Female
2	177.8	160	Bald	No	No	Male	Female
3	161.1	100	Medium	No	No	Female	Female

Accuracy score = 0.75

Prediction using BernoulliNB:

index	height	weight	hair	beard	scarf	gender	predicted_gender
0	179.1	185	Long	Yes	No	Male	Male
1	160.5	130	Short	No	No	Female	Female
2	177.8	160	Bald	No	No	Male	Male
3	161.1	100	Medium	No	No	Female	Female

Accuracy score = 1.0

Step 7: Selection of Best Model

Step 8: Application Phase

PHASE 3: APPLICATION PHASE

Step 8.1: Combine Data (Train+Test)

Train Features in form of Dataframe:

index	height	weight	hair	beard	hair	gender
0	180.30	196.0	0.0	1.0	0.0	1
1	170.00	120.0	1.0	0.0	0.0	0
2	178.50	200.0	2.0	0.0	0.0	1
3	163.40	110.0	3.0	0.0	1.0	0
4	175.22	220.0	2.0	1.0	0.0	1
5	165.00	150.0	3.0	0.0	1.0	0

Step 8.1: Combine Data (Train+Test)

Test Features in form of Dataframe:

index	height	weight	hair	beard	hair	gender
0	179.1	185.0	1.0	1.0	0.0	1
1	160.5	130.0	2.0	0.0	0.0	0
2	177.8	160.0	0.0	0.0	0.0	1
3	161.1	100.0	3.0	0.0	0.0	0

Step 8.1: Combine Data (Train+Test)

All Features in form of DataFrame:

index	height	weight	hair	beard	hair	gender
0	180.30	196.0	0.0	1.0	0.0	1
1	170.00	120.0	1.0	0.0	0.0	0
2	178.50	200.0	2.0	0.0	0.0	1
3	163.40	110.0	3.0	0.0	1.0	0
4	175.22	220.0	2.0	1.0	0.0	1
5	165.00	150.0	3.0	0.0	1.0	0
0	179.10	185.0	1.0	1.0	0.0	1
1	160.50	130.0	2.0	0.0	0.0	0
2	177.80	160.0	0.0	0.0	0.0	1
3	161.10	100.0	3.0	0.0	0.0	0

Step 8.2: Train Best Model on All Data

Step 9: Make Predictions on Unseen/New Data

Making Predictions on Unseen/New Data

Step 9.1: Load the Trained Model (saved in Step 8.3)

Step 9.2: Take Input from User

```
Please enter your Height here (centimeter): 170
Please enter your Weight here(kg): 120
Please enter your Hair Length here (Bald/Long/Short/Medium): Long
Do you have beard? (Yes/No): No
Do you wear Scarf? (Yes/No): No
```

Step 9.3: Convert User Input into Feature Vector (Same ss Feature Vector of Trained Model)

```
User input in Actual DataFrame form:
```

```
Height Weight Hair Beard Scarf
0 170.0 120 Long No No
```

Step 9.3: Convert User Input into Feature Vector (Same ss Feature Vector of Trained Model)

```
User input in Encoded DataFrame form:
```

```
Height Weight Hair Beard Scarf
0 170.0 120 1 0 0
```

Step 9.3: Convert User Input into Feature Vector (Same ss Feature Vector of Trained Model)

```
User input in Actual DataFrame form: User input in Encoded DataFrame form:

Height Weight Hair Beard Scarf Height Weight Hair Beard Scarf
0 170.0 120 Long No No 0 170.0 120 1 0 0
```

Step 9.4: Apply Trained Model on Feature Vector of Unseen Data and Output Prediction to User

Prediction: Female