

Advanced Interface Bus (AIB) Usage Note

Version 1.2.2, 9/2020

David Kehlet

Research Scientist, Intel

Tim Hoang

Principal Engineer, Intel

1 Introduction

This document describes requirements that a chiplet must meet to interoperate with Stratix 10, or to interoperate with chiplets built for Stratix 10. To interoperate with Stratix 10 a chiplet must implement a profile of AIB capabilities, conform to specific signal assignments and mechanical requirements, and meet additional requirements beyond the AIB specification. Similarly, to interoperate with a chiplet that was built for Stratix 10, a chiplet must implement a Stratix 10-like profile of AIB requirements. This document identifies the requirements for both cases:

- 1) A chiplet with an AIB interface intended to interoperate with Stratix 10; that interface is referred to here as a Stratix 10 AIB Leader interface or a Leader.
- 2) A chiplet with an AIB interface intended to interoperate with a Leader interface, functioning similarly to the AIB of the Stratix 10 itself. That interface is referred to here as a Stratix 10 AIB Follower interface or a Follower.

Note that a chiplet could have both Leader and Follower interfaces.

The **Advanced Interface Bus (AIB) Specification** [1] document, also known as the AIB Spec, is the source of requirement references.

1.1 Stratix 10 AIB Overview

Stratix 10 devices have 1 to 6 AIB interfaces, depending on the specific family member. You can find the number of AIBs for a member by referring to the Stratix 10 Product Tables, finding the "Total full duplex transceiver count" and dividing by 24. A Stratix 10 TX 2800, for example, has 144 total full duplex transceivers supported by 6 AIB interfaces.

Each Stratix 10 AIB interface has 24 data channels; each data channel has 20 Tx and 20 Rx data signals. Each data signal runs up to 2Gbps, producing an aggregate bandwidth per AIB interface of 960Gbps Tx and 960Gbps Rx (1.92Tbps total).

To source and sink data at 2Gbps per AIB data signal, the Stratix 10 FPGA user design must run at 500MHz. Your achievable system bandwidth depends on the FMax and routability of your user design inside Stratix 10, the data source and sink bandwidth of the attached Leader interface chiplet, and the bandwidth capability of the AIB interface.

1.2 Stratix 10 EMIB

The Leader and Follower interfaces in this document are implemented on the Stratix 10 EMIB. This establishes pinout requirements that are included in the descriptions following.

2 AIB Standard, Mode and Channels

The Leader interface and Follower interface implement the AIB Plus requirements of the AIB Spec except as specifically noted in this document. Leader and Follower interfaces use:

- Leader or Follower specific AIB signal to bump assignments in the tables below.
- Leader or Follower specific AIB bump locations in the spreadsheet of section 0.
- VCCIO voltage of 0.75V to 0.97V.

3 Leader and Follower AIB Features

3.1 Leader and Follower AIB IOs

Leader and Follower AIB IOs support Asynchronous mode, SDR from 0.1Gbps to 1Gbps, and DDR from 0.2Gbps to 2Gbps. DLL and DCC per channel are strongly recommended for DDR above 800Mbps.

Redundancy is not required or recommended for Leader or Follower AIB interfaces. Stratix 10 supports redundancy in a legacy (non-standard) mode.

3.2 AIB Interface Signals

A Leader or Follower interface implements the AIB Spec signals in Table 1 in each AIB channel. Near side refers to the chiplet being described; far side refers to the other chiplet of the pair.

Signal	1/0	Description	
tx[19:0]	out	Synchronous data transmitted from the near side.	
ns_fwd_clk/b	out	Near-side transfer clock, forwarded from the near side to the far side for	
		capturing received data. Used by the far side to capture the near side's TX	
		signals.	
ns_fwd_div2_clk/b ¹	out	ns_fwd_clk divided by 2	
ns_rcv_clk/b	out	Receive-domain clock forwarded from the near side to the far side for	
		transmitting data from the far side. Far side uses this to produce fs_fwd_clk.	
ns_rcv_div2_clk/b ¹	out	ns_rcv_clk divided by 2	
rx[19:0]	in	Synchronous data received from the far side.	
fs_fwd_clk/b	in	Far-side transfer clock, forwarded from the far side to the near side for capturing	
		received data. Used by the near side to capture RX signals.	
fs_rcv_clk/b ³	in	Receive-domain clock forwarded from the far side to the near side for	
		transmitting data to the far side. Near side uses this to produce ns_fwd_clk.	
fs_rcv_div2_clk/b ^{1,4}	in	fs_rcv_clk divided by 2	
ns_sr_data	out	Time-multiplexed sideband-control data from near side to far side.	
ns_sr_clk/b	out	Forwarded serial shift register clock from near side to far side chiplet, driven by	
		free running clock.	
ns_sr_load	out	Sideband control load signal from near side to far side.	
fs_sr_data	in	Time-multiplexed sideband-control data from far side to near side.	
fs_sr_clk/b	in	Forwarded serial shift register clock from far side to near side chiplet, driven by	
		free running clock.	
fs_sr_load	in	Sideband control load control signal from far side to near side.	
fs_mac_rdy	in	Ready signal from far side to near side.	
ns_mac_rdy	out	Ready signal from near side to far side.	
fs_adapter_rstn	in	Asynchronous adapter reset signal from far side to near side.	
ns_adapter_rstn ²	out	Asynchronous adapter reset signal from near side to far side.	

^{1.} These clocks are not in the AIB Spec and are not required, however an alternate scheme of providing half rate clocks may be required if these clocks are not used. See section 3.2.1. The DCD specifications of these clocks are the same as their source clocks.

^{2.} See descriptions of ns_adapter_rstn in Table 3 and Table 5, particularly the handling of this output by Open Source versions.

- 3. The AIB spec allows for fs_rcv_clk to be sent by a Follower interface to the Leader, however, this use is not recommended.
- 4. fs_rcv_div2_clk is used by Stratix 10's Follower AIB interface, from a Leader's ns_rcv_div2_clk. Use of fs_rcv_div2_clk is not recommended.
- 5. See Table 5 for the configuration of all other S10 Chiplet IO bumps not listed in Table 1.

3.2.1 Half Rate (Divided by 2) Clocks

The Stratix 10 core often needs clocks to be 500MHz or less, and the AIB spec's transfer and receive clocks can easily exceed 500MHz. Stratix 10 has the capability to use a half rate clock from the same reference (0 PPM difference) as the related transfer or receive clock.

Stratix 10 can be used to generate the half rate clock from the common reference using a Stratix 10 internal PLL. That common reference may enter Stratix 10 through standard clock inputs. Instead, the method used by Stratix 10 is to have a S10 chiplet supply the half rate clocks through specific AIB bumps. Table 1 contains divided-by-2 clocks (see note 1) that come from the S10 chiplet to the Stratix 10 for use by the Stratix 10 core.

A Follower interface other than Stratix 10 should ignore div2 clock inputs and generate all needed div2 clocks itself.

3.2.2 Typical Clock and Data Configurations

Figure 1. Typical Clock and Data Configuration with Stratix 10

Figure 2. Typical Clock and Data Configuration, Leader and Follower

See section 6 for AIB leader and follower pair examples that include AIB MAC/PHY signals, in addition to the AIB signals between die.

3.3 AIB Adapter

3.3.1 Word Marking and Word Alignment

^{*} Even and odd are in quotes here because they are even and odd with respect to the SDR 40bit word, not with respect to the d[77:0] data from the MAC.

Figure 3. 2x Mode and Upper Word Marking

Stratix 10 requires word marking on Rx and outputs word marking on Tx to operate on 80bit quantities at half rate of the AIB clock (example: 2Gbps = double data rate, 1GHz = full rate, 500MHz = half rate). Word marking identifies the upper 40bits uniquely from the lower 40bits, facilitating demultiplexing into an 80bit half rate word. In an 80bit half rate data word, bits 79 and 39 are used for word marking. Figure 3 shows how bits 79 and 39 are marked and how the 78bit user data quantity from the MAC to AIB is sent over the AIB's 20bit wide tx[19:0] signals. Figure 3 and Figure 4 use the AIB Open Source's convention for bit numbering as d[77:0] at the MAC/PHY interface.

DDR to SDR conversion knows which 20bit word is even or odd by the edge of the clock (even is valid before the rising edge, odd valid before the falling edge). By examining the word marking bits, the receiving chiplet can reconstruct the 80bit word from the '0' marked lower 40bit word and the '1' marked upper 40bit word. This is shown in Figure 4.

Figure 4. Reassembling Data Word in 2x Mode

3.3.2 Phase Comp FIFO, 2x Mode and Register Mode

A chiplet design may need a phase compensation FIFO to pass data from the AIB into the chiplet's core, and another phase comp FIFO from the chiplet's core to AIB IO for data going in the chiplet to Stratix 10 direction. The AIB Open Source at https://github.com/chipsalliance/aib-phy-hardware provides a combined phase comp and 2x mode FIFO, as shown in the example in the folder how2use/sim_phasecom. The AIB Open Source in this case performs word marking and word assembly for you.

A chiplet may implement only the simple adapter retiming register as defined in the AIB Spec. The example in the folder how2use/sim_aib_top is a full rate (1GHz) register mode case. The AIB Open Source passes 40b full rate words through both Rx and Tx. If you are building a S10 Chiplet to talk to Stratix 10, and you use register mode, you need to perform word marking prior to sending a word into the AIB Open Source for Tx to Stratix 10. If your 1GHz words are halves of a 78bit quantity then you need to set the lower word bit39 to 0, and upper word bit39 to 1. Otherwise, simply alternate bit39 between 0 and 1. On Rx to your S10 Chiplet, if your 1GHz words are halves of a 78bit quantity then you need to identify the lower word marked with 0 and the following word as the upper word marked with 1. Otherwise you may ignore bit 39.

3.3.3 Channel Alignment across Multiple AIB Channels

If a chiplet sends or receives a data word that is spread over more than one AIB channel, then the sending and receiving chiplets 10 need to engage in a channel alignment procedure. Once each channel's data is resynchronized to a common clock domain, the skew between channels may cause data to arrive on different cycles of the common clock.

A useful channel alignment scheme dedicates a bit out of an 80bit word for each channel to be aligned; this bit is called the strobe bit. At the transmitter the strobe bit is set to 1 in each 80bit word across all channels to be aligned, then for the next several 80bit words the strobe bit is set to 0. The cycle

repeats every N words. Logic at the receiving side can determine alignment by watching the arrival of the words with the strobe bit set to 1 bit set in the receiver's clock domain. Skew between channels is factored out by recording the relative cycle difference between channels and selecting the correct channel word to assemble into a larger bus. Figure 5 is an example of channel alignment using a strobe bit and using FIFOs on the receiving chiplet.

The value of N in the previous paragraph must be greater than the worst skew in 80bit cycles across all channels, and greater than the depth of the alignment FIFO. Typically, N is guard banded heavily for N=16 (repeat every 16 80bit cycles) or N=32 (repeat every 32 80bit cycles).

Figure 5. Channel Alignment

4 AIB Configuration and Control

You should implement the AIB configuration as a register file per channel to control input, output, DDR/SDR and other features. A fixed function may instead hardwire the feature selection, but register control provides more debugging capability.

5 AIB Open Source Signal Names

5.1 Original AIB Signal Names

The AIB Open Source at https://github.com/chipsalliance/aib-phy-hardware now contains Verilog files that translate the original Open Source signal names to the AIB Spec names. See files aib_lib/c3aibadap_wrap/rtl/aib_top_master.sv and how2use/sim_phasecom/c3aib_master.sv which have ports that match the AIB Spec. Table 2 is a mapping of the AIB spec interface names to the original AIB Open Source names for signals at the AIB die-to-die interface.

AIB Spec Interface Signal Name	Original AIB Open Source Signal Name
tx[19:0]	u_rx_data_out[19:0]
ns_fwd_clk/ns_fwd_clkb	u_rx_transfer_clk/u_rx_transfer_clk_n
ns_fwd_div2_clk/ns_fwd_div2_clkb	u_pld_pcs_rx_clk_out/u_pld_pcs_rx_clk_out_n
ns rcv clk/ns rcv clkb	u pma aib tx clk/u pma aib tx clk n

AIB Spec Interface Signal Name	Original AIB Open Source Signal Name
ns_rcv_div2_clk/ns_rcv_div2_clkb	u_pld_pcs_tx_clk_out/u_pld_pcs_tx_clk_out_n
rx[19:0]	u_tx_data_in[19:0]
fs_fwd_clk/fs_fwd_clkb	u_tx_transfer_clk/u_tx_transfer_clk_n
ns_sr_data	u_ssr_data_out
ns_sr_clk/ns_sr_clkb	u_sr_clk_out/u_sr_clk_n_out
ns_sr_load	u_ssr_load_out
fs_sr_data	u_ssr_data_in
fs_sr_clk/fs_sr_clkb	u_sr_clk_in/u_sr_clk_n_in
fs_sr_load	u_ssr_load_in
fs_mac_rdy	u_pld_pma_rxpma_rstb
ns_mac_rdy	u_pld_pma_clkdiv_rx_user
fs_adapter_rstn	u_adapter_rx_pld_rst_n

5.2 AIB v1 and v2 Signal Names

Some signals have been added, deleted or changed with a new open source version "v2." In Table 3 any such signals are designated as v1 or v2 signals.

5.3 AIB Open Source Per Channel MAC/PHY Signal Names

Table 3 lists the AIB MAC/PHY signals that exist for each channel according to the AIB Spec and the Open Source code.

Table 3. AIB Open Source Per Channel MAC/PHY Signals

AIB Spec MAC/PHY Signals as implemented in Open	In (from MAC) Out (to	Signal	
Source .sv files	MAC)	Reference	Description
i_osc_clk	ln	n/a	Used with Leader only. Free running clock (see AIB Spec). In Open Source single channel c3_aib_master.sv i_osc_clk comes from the MAC (instantiating module).
data_in [39:0] (v1) [77:0] (v2)	in	m_ns_fwd _clk (1), m_wr_clk (2)	Data to the other chiplet. For Open Source v1 Leader and Follower, and v2 Leader, this is data for register mode only. For Open Source v2 Follower, this is data for register, FIFO 1x and FIFO 2x modes. (1) Register mode reference clock for both v1 and v2 (2) Open Source v2 FIFO 1x or FIFO 2x mode reference clock
data_in_reg_mode[39:0]	in	m_ns_fwd _clk	Open Source v2 only, Leader only. Data to the other chiplet for register mode.
m_ns_fwd_clk	in	n/a	Transfer clock to the other chiplet
m_ns_fwd_div2_clk (additional to the AIB Spec)	in	n/a	Used with Leader only. Transfer clock to the other chiplet div2
m_wr_clk	in	n/a	Open Source v2 only. data_in reference clock for FIFO 1x or FIFO 2x modes. Must be 0 PPM to m_ns_fwd_clk.
data_out [39:0] (v1) [77:0] or [31:0] (v2)	out	m_fs_fwd _clk (1), m_rd_clk (2)	Data from the other chiplet. For Open Source v1, this is data for register mode only. For Open Source v2, this is data for register, FIFO 1x and FIFO 2x modes. (1) Register mode reference clock for both v1 and v2 (2) Open Source v2 FIFO 1x or FIFO 2x mode reference clock
data_out_reg_mode[39:0]	out	m_fs_fwd _clk	Open Source v2 only, Leader only. Data from the other chiplet for register mode.
m_fs_fwd_clk	out	n/a	Transfer clock from the other chiplet

AIB Spec MAC/PHY Signals as implemented in Open Source .sv files	In (from MAC) Out (to MAC)	Signal Reference	Description
m_fs_fwd_div2_clk (additional to the AIB Spec)	out	n/a	Transfer clock from the other chiplet div2. Derived inside the near side AIB.
m_rd_clk	in	n/a	Open Source v2 only. data_out reference clock for FIFO 1x or FIFO 2x modes. Must be 0 PPM to m_fs_fwd_clk.
m_ns_rcv_clk	in	n/a	Used with Leader only. Receive domain clock sent to the other chiplet for it to send back as fs_fwd_clk. Note there is no m_ns_rcv_div2_clk input. ns_rcv_div2_clk is derived inside the near side AIB.
m_fs_rcv_clk	out	n/a	Used with Follower only. Receive domain clock received from the other chiplet to be set back as m_ns_fwd_clk.
i_rx_elane_data[77:0]* (alternate data_in)	in	i_rx_elane _clk	Open Source v1 only. Data to the other chiplet, 2:1 phase comp FIFO mode. data_in is ignored. You must still provide m_ns_fwd_clk and m_ns_fwd_div2_clk.
i_rx_elane_clk* (alternate data_in clock)	in	n/a	Open Source v1 only. Usually the same input as m_ns_fwd_div2_clk; must be 0 PPM from m_ns_fwd_div2_clk.
o_tx_elane_data[77:0]* (alternate data_out)	out	i_tx_elane _clk	Open Source v1 only. Data from the other chiplet, 2:1 phase comp FIFO mode. data_out should be ignored. You must still provide m_ns_rcv_clk.
i_tx_elane_clk* (alternate data_out clock)	in	n/a	Open Source v1 only. Must be 0 PPM from m_fs_fwd_div2_clk
ns_mac_rdy	in	Async	Indicates near side MAC readiness to the far side.
fs_mac_rdy	out	Async	Indicates far side MAC readiness.
ns_adapter_rstn	in	Async	Open Source v2 only. Resets near side adapter, also sent to far side.
fs_adapter_rstn	n/a	Async	Resets near side adapter, controlled by far side. fs_adapter_rstn is terminated in the adapter and is not brought to the MAC.
ms_rx_dcc_dll_lock_req ms_tx_dcc_dll_lock_req	in	Async	Used with Leader only. Chiplets attached to Stratix 10 should not request calibration. If these signals are implemented, set to "1."
sl_rx_dcc_dll_lock_req sl_tx_dcc_dll_lock_req	in	Async	Used with Follower only. The Follower sets these to 1 to initiate near side and far side datapath calibration. Leave at 1 until a new calibration sequence is needed. These signals are transported to the far side through the follower to leader sideband shift register. Inside the Leader adapter the sl_*x_dcc_dll_lock_req signals are read from the shift register, used and terminated. No action is required of the Leader MAC.
ms_tx_transfer_en ms_rx_transfer_en	out	Async	Indicates that the calibration of the Leader has completed, same as the sideband shift register bit sent by the Leader.
sl_tx_transfer_en sl_rx_transfer_en	out	Async	Indicates that the calibration of the Follower completed, same as the sideband shift register bit sent by the Follower.
ms_sideband[80:0]	out	Async	Leader sideband shift register bits. See Table 50 in the AIB Spec. Reading user defined bits is supported in the open source code.
sl_sideband[72:0]	out	Async	Follower sideband shift register bits. See Table 51 in the AIB Spec. Reading user defined bits is supported in the open source code.
m_rxfifo_align_done	out	Async	Open Source v2 only. Used in 2:1 phase comp FIFO mode. HI means receive FIFO is aligned to incoming word marking bits.

 $^{{\}rm *These\ signals\ are\ in\ the\ folder\ how2use/sim_phasecom/c3aibadapt_wrap,\ not\ in\ aib_top/rtl.}$

5.4 AIB Open Source Application/PHY Signal Names

Table 4 lists the AIB application/PHY signals at the AIB interface level, in contrast to the per-channel signals just described. All signals are asynchronous except the free running clock input.

Table 4. AIB Application/PHY Signal Names

AIB Application/PHY Signals as implemented in Open Source .sv files	In (from application Out (to application)	Description
m_power_on_reset*	out	Used with Leader only. A copy of the por signal from the Follower, qualified by override by i_aibaux_por_vccl_ovrd or m_por_ovrd.
m_power_on_reset_i	in	Open Source v2 only. Used with Follower only. Controls the por signal sent to the Leader.
i_aibaux_por_vccl_ovrd (1) m_por_ovrd* (2)	in	Used with Leader only. The Leader chiplet should receive this signal from a Leader C4 bump and input it to the AIB PHY. (1) Open Source v1. Note polarity is reversed from spec sense. If 0, the Leader is held in por reset. If 1, the Leader uses the por input. (2) Open Source v2. If 0, the Leader is not in por reset. If 1 and the por input is 1, the Leader is held in por reset. The por input is required to have a weak pullup so a por NC will result in a por=1.
m_device_detect*	out	Open Source v2 only. Used with Follower only. A copy of the device_detect signal from the Leader, qualified by m_device_detect_ovrd.
m_device_detect_ovrd*	in	Open Source v2 only. Used with Follower only. The Follower chiplet should receive this signal from a Follower C4 bump and input it to the AIB PHY. A Follower uses this input for test to control the Follower AIB device_detect when not connected to a Leader. If 0, the Follower uses the device_detect from the AUX. If 1, the Follower outputs m_device_detect=1.
dual_mode_select	in	Open Source v2 only. If 1, configure the AIB PHY as Leader. If 0, configure the AIB PHY as Follower.
i_adpt_hard_rst_n (1) i_conf_done (2)	in	Single control to reset all AIB adapters in the interface. LO=reset, HI=out of reset. This same signal from the application should be used to control the chiplet's CONF_DONE pin (LO=CONF_DONE is pulled down, HI=CONF_DONE is not pulled down). (1) Open Source v1. (2) Open Source v2. Note that the application must read the value of the CONF_DONE pin to detect if other chiplets have completed configuration, and that read capability is not defined here.
i_iocsr_rdy_aibaux	in	Open Source v1 only. Reset of AUX channel. Connect to same source as connected to i_adpt_hard_rst_n.

AIB Application/PHY Signals as implemented in Open Source .sv files	In (from application Out (to application)	Description
i_osc_clk	in	A free running clock from the application. You must configure the AIB AUX channel to select this clock instead of the AUX internally generated clock.

^{*} See Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found. for additional descriptions.

6 AIB Leader and Follower Pair Examples with MAC/PHY Signals

Example Master / Slave DDR Register Mode AIB with Master as Clock Source

Figure 6. Example Leader / Follower DDR Register Mode AIB with Leader as Clock Source

Figure 7. Example 2x Mode Leader / 2x Mode Follower DDR Phase Comp FIFO Mode AIB with Leader as clock source. In this example the Leader uses Open Source v1 signal names and the Follower generates MAC/PHY div2 clocks locally. Contrast with a Stratix 10 follower that requires the Leader to send div2 clocks (see section 3.2.1).

Figure 8. Example 1x Mode Leader / 1x Mode Follower DDR Phase Comp FIFO Mode AIB with Leader as clock source

7 AIB Physical Design

7.1 Stratix 10 EMIB

A S10 chiplet uses the Stratix 10 EMIB that connects to the West side of Stratix 10. This defines a S10 chiplet as having AIB on its East side as shown in Figure 9. Figure 1

Figure 9. S10 Chiplet with East Side AIB

7.2 AIB Bump Assignments

7.2.1 Data Channel AIB Bump Assignments and Input/Output Configuration with Stratix 10

You should use the existing Leader or Follower IO configurations of the AIB open source in your design. Since unused pins in an interface may be configured as input or output by Stratix 10, your Leader interface needs to make sure it does not cause driver conflict or allow an input to float. Similarly, your Follower interface needs to make sure it does not cause driver conflict or allow an input to float when connected to a chiplet built for Stratix 10

Table 5. AIB Bump Table with IO Configuration as Used by AIB Open Source

Bump ID	Follower Bump Name	Follower IO ¹	Leader Bump Name	Leader IO ¹
AIB61	unused_AIB61	GND	unused_AIB61	in
AIB50	unused_AIB50	in	unused_AIB50	GND
AIB72	unused_AIB72	GND	unused_AIB72	in
AIB73	unused_AIB73	GND	unused_AIB73	in
AIB75	unused_AIB75	in	unused_AIB75	GND
AIB74	unused_AIB74	GND	unused_AIB74	in
AIB91	unused_AIB91	in	unused_AIB91	GND
AIB90	unused_AIB90	in	unused_AIB90	GND
AIB95	fs_sr_data	in	ns_sr_data	out
AIB94	fs_sr_load	in	ns_sr_load	out
AIB85	fs_sr_clk	in	ns_sr_clk	out
AIB84	fs_sr_clkb	in	ns_sr_clkb	out
AIB76	unused_AIB76	in	unused_AIB76	GND
AIB77	unused_AIB77	in	unused_AIB77	GND
AIB58	unused_AIB58	GND	unused_AIB58	in
AIB63	unused_AIB63	GND	unused_AIB63	in
AIB48	unused_AIB48³	in	ns_rcv_div2_clk	out
AIB55	unused_AIB55³	in	ns_rcv_div2_clkb	out
AIB62	unused_AIB62	in	unused_AIB62	GND
AIB60	unused_AIB60	in	unused_AIB60	GND
AIB53	unused_AIB53³	in	ns_fwd_div2_clk	out
AIB54	unused_AIB54³	in	ns_fwd_div2_clkb	out
AIB49	fs_mac_rdy	in	ns_mac_rdy	out

Bump ID	Follower Bump Name	Follower IO ¹	Leader Bump Name	Leader IO ¹
	fs_adapter_rstn	in	ns adapter rstn ²	out
AIB50	unused AIB51	in	unused AIB51	GND
AIB52	unused_AIB52	in	unused_AIB52	GND
AIB57	ns_rcv_clk	out	fs_rcv_clk	in
AIB59	ns_rcv_clkb	out	fs_rcv_clkb	in
	unused AIB64	GND	unused_AIB64	in
AIB65	ns adapter rstn	out	fs adapter rstn	in
AIB80	unused AIB80	GND	unused AIB80	in
AIB81	unused AIB81	GND	unused AIB81	in
AIB78	unused AIB78	GND	unused AIB78	in
AIB79	unused AIB79	GND	unused AIB79	in
AIB87	fs rcv clk	in	ns rcv clk	out
	fs rcv clkb	in	ns rcv clkb	out
	ns sr clk	out	fs sr clk	in
	ns sr clkb	out	fs sr clkb	in
AIB89	unused AIB89	GND	unused AIB89	in
AIB88	unused_AIB88	GND	unused AIB88	in
AIB93	ns_sr_data	out	fs_sr_data	in
AIB92	ns sr load	out	fs sr load	in
AIB71	unused_AIB71	in	unused_AIB71	GND
AIB70	unused AIB70	in	unused AIB70	GND
AIB68	unused_AIB68	in	unused AIB68	GND
AIB69	unused_AIB69	in	unused AIB69	GND
AIB66	unused AIB66	in	unused AIB66	GND
	unused AIB67	GND	unused AIB67	in
AIB20	tx[0]	out	rx[0]	in
AIB21	tx[1]	out	rx[1]	in
AIB22	tx[2]	out	rx[2]	in
AIB23	tx[3]	out	rx[3]	in
	tx[4]	out	rx[4]	in
—	tx[5]	out	rx[5]	in
-	tx[6]	out	rx[6]	in
-	tx[7]	out	rx[7]	in
	tx[8]	out	rx[8]	in
-	tx[9]	out	rx[9]	in
AIB43	ns_fwd_clk	out	fs_fwd_clk	in
AIB42	ns_fwd_clkb	out	fs fwd clkb	in
	tx[10]	out	rx[10]	in
	tx[11]	out	rx[11]	in
	tx[12]	out	rx[12]	in
	tx[13]	out	rx[13]	in
AIB34	tx[14]	out	rx[14]	in
	tx[15]	out	rx[15]	in
	tx[16]	out	rx[16]	in
-	tx[17]	out	rx[17]	in
	tx[18]	out	rx[18]	in
	tx[19]	out	rx[19]	in
AIB44	ns_mac_rdy	out	fs_mac_rdy	in
AIB45	unused AIB45	GND	unused AIB45	in
AIB18	rx[18]	in	tx[18]	out
AIB19	rx[19]	in	tx[19]	out
AIB16	rx[16]	in	tx[16]	out

Bump ID	Follower Bump Name	Follower IO ¹	Leader Bump Name	Leader IO ¹
AIB17	rx[17]	in	tx[17]	out
AIB14	rx[14]	in	tx[14]	out
AIB15	rx[15]	in	tx[15]	out
AIB12	rx[12]	in	tx[12]	out
AIB13	rx[13]	in	tx[13]	out
AIB10	rx[10]	in	tx[10]	out
AIB11	rx[11]	in	tx[11]	out
AIB41	fs_fwd_clk	in	ns_fwd_clk	out
AIB40	fs_fwd_clkb	in	ns_fwd_clkb	out
AIB8	rx[8]	in	tx[8]	out
AIB9	rx[9]	in	tx[9]	out
AIB6	rx[6]	in	tx[6]	out
AIB7	rx[7]	in	tx[7]	out
AIB4	rx[4]	in	tx[4]	out
AIB5	rx[5]	in	tx[5]	out
AIB2	rx[2]	in	tx[2]	out
AIB3	rx[3]	in	tx[3]	out
AIB0	rx[0]	in	tx[0]	out
AIB1	rx[1]	in	tx[1]	out
AIB46	unused_AIB46	in	unused_AIB46	GND
AIB47	unused_AIB47	in	unused_AIB47	GND

^{1.} GND means set that AIB output to LO (GND).

7.2.2 AUX Channel Bump Assignments

A chiplet AIB interface AUX should only electrically connect to the *power-on_reset* and *device_detect* signals. Any unused AUX microbumps should not be electrically connected on-die, even if a microbump is present on the chiplet for mechanical attachment to the package.

Leader interface chiplets connecting to Stratix 10 should set Stratix 10's unused Follower AUX inputs LO. This can be accomplished by connecting the Leader side package vias to the Stratix 10 EMIB to a "VSSP" ground which is connected to a package ball and to board VSS/GND though a 1K ohm resistor. If you know the Follower is a chiplet that has "no connect" at those locations instead of inputs, you may use "no connect" on the Leader side instead of VSSP.

For Leaders, the two *device_detect* bumps should be connected by Leader on-die wiring after the Leader output buffer. For Leaders, the two *power-on-reset* bumps should be connected by Leader on-die wiring before the Leader input buffer.

For Followers, the two *device_detect* bumps should be connected by Follower on-die wiring before the Follower input buffer. For Followers, the two *power-on-reset* bumps should be connected by Follower on-die wiring after the Follower output buffer.

Table 6. AUX Channel Bump Table with IO Configuration as Used by AIB Open Source

	Follower		Follower-side	Leader	Leader	Leader-side
Bump	Bump	Follower	connection to	Bump	AUX	connection to
ID	Name	AUX IO	Leader Chiplet	Name	10	Follower Chiplet
AIB0	unused_AIB0	n/a	no connect	unused_AIB0	n/a	VSSP ¹

^{2.} In Open Source v1 the Leader signal ns adapter rstn does not exist. The Leader should set this output HI.

^{3.} Stratix 10 uses these div2 clock inputs, however div2 clock usage by a Follower interface is deprecated. A chiplet implementing the Follower interface should not use div2 clocks.

	Follower		Follower-side	Leader	Leader	Leader-side
Bump	Bump	Follower	connection to	Bump	AUX	connection to
ID	Name	AUX IO	Leader Chiplet	Name	10	Follower Chiplet
AIB1	unused AIB1	n/a	no connect	unused AIB1	n/a	VSSP
AIB10	unused AIB10	n/a	no connect	unused AIB10	n/a	VSSP
AIB11	unused AIB11	n/a	no connect	unused AIB11	n/a	VSSP
AIB12	unused AIB12	n/a	no connect	unused AIB12	n/a	VSSP
AIB13	unused AIB13	n/a	no connect	unused AIB13	n/a	VSSP
AIB14	unused AIB14	n/a	no connect	unused AIB14	n/a	VSSP
AIB15	unused AIB15	n/a	no connect	unused AIB15	n/a	VSSP
AIB16	unused AIB16	n/a	no connect	unused AIB16	n/a	VSSP
AIB17	unused AIB17	n/a	no connect	unused AIB17	n/a	VSSP
AIB18	unused AIB18	n/a	no connect	unused AIB18	n/a	VSSP
AIB19	unused AIB19	n/a	no connect	unused AIB19	n/a	VSSP
AIB2	unused AIB2	n/a	no connect	unused_AIB2	n/a	VSSP
AIB20	unused AIB20	n/a	no connect	unused_AIB20	n/a	VSSP
AIB21	unused AIB21	n/a	no connect	unused AIB21	n/a	VSSP
AIB22	unused AIB22	n/a	no connect	unused AIB22	n/a	VSSP
AIB23	unused AIB23	n/a	no connect	unused AIB23	n/a	VSSP
AIB24	unused_/\langleB24	n/a	no connect	unused AIB24	n/a	no connect
AIB25	unused_AIB25	n/a	no connect	unused AIB25	n/a	no connect
AIB26	unused_/\langleB26	n/a	no connect	unused AIB26	n/a	VSSP
AIB27	unused_AIB27	n/a	no connect	unused_AIB27	n/a	no connect
AIB28	unused_AIB28	n/a	no connect	unused AIB28	n/a	no connect
AIB29	unused AIB29	n/a	no connect	unused AIB29	n/a	no connect
AIB3	unused AIB3	n/a	no connect	unused_AIB3	n/a	VSSP
AIB30	unused_AIB30	n/a	no connect	unused AIB30	n/a	no connect
AIB30	unused_AIB30	n/a	no connect	unused_AIB30	n/a	no connect
AIB31	unused AIB32	n/a	no connect	unused AIB32	n/a	no connect
AIB32	unused_AIB32	n/a	no connect	unused AIB33	n/a	no connect
AIB33	unused_AIB33	n/a	no connect	unused_AIB33	n/a	no connect
AIB35	unused_AIB35	n/a	no connect	unused_AIB35	n/a	
AIB35	unused_AIB36	n/a	no connect	unused_AIB36	n/a	no connect
AIB37	unused_AIB37	n/a	no connect	unused_AIB37	n/a	no connect
AIB37	unused_AIB37	n/a	no connect	unused_AIB37	n/a	no connect no connect
AIB39	unused_AIB39	n/a	no connect	unused_AIB39	n/a	
AIB39	unused_AIB39	n/a	no connect	unused_AIB4	n/a	no connect VSSP
	unused_AIB40	· ·		<u> </u>		
AIB40		n/a	no connect	unused_AIB40	n/a	no connect
AIB41	unused_AIB41	n/a	no connect	unused_AIB41	n/a	VSSP
AIB42	unused_AIB42	n/a	no connect	unused_AIB42	n/a	VSSP
AIB43	unused_AIB43	n/a	no connect	unused_AIB43	n/a	VSSP
AIB44	unused_AIB44	n/a	no connect	unused_AIB44	n/a	VSSP .
AIB45	unused_AIB45	n/a	no connect	unused_AIB45	n/a	no connect
AIB46	unused_AIB46	n/a	no connect	unused_AIB46	n/a	no connect
AIB47	unused_AIB47	n/a	no connect	unused_AIB47	n/a	no connect
AIB48	unused_AIB48	n/a	no connect	unused_AlB48	n/a	no connect
AIB49	unused_AIB49	n/a	no connect	unused_AIB49	n/a	no connect
AIB5	unused_AIB5	n/a	no connect	unused_AIB5	n/a	VSSP
AIB50	unused_AIB50	n/a	no connect	unused_AIB50	n/a	no connect
AIB51	unused_AIB51	n/a	no connect	unused_AIB51	n/a	no connect
AIB52	unused_AIB52	n/a	no connect	unused_AIB52	n/a	no connect
AIB53	unused_AIB53	n/a	no connect	unused_AIB53	n/a	no connect
AIB54	unused_AIB54	n/a	no connect	unused_AIB54	n/a	no connect
AIB55	unused_AIB55	n/a	no connect	unused_AIB55	n/a	no connect
AIB56	unused_AIB56	n/a	no connect	unused_AIB56	n/a	VSSP
AIB57	unused_AIB57	n/a	no connect	unused_AIB57	n/a	no connect

	Follower		Follower-side	Leader	Leader	Leader-side
Bump	Bump	Follower	connection to	Bump	AUX	connection to
ID	Name	AUX IO	Leader Chiplet	Name	10	Follower Chiplet
AIB58	unused AIB58	n/a	no connect	unused AIB58	n/a	VSSP
AIB59	unused AIB59	n/a	no connect	unused AIB59	n/a	no connect
AIB6	unused AIB6	n/a	no connect	unused AIB6	n/a	VSSP
AIB60	unused AIB60	n/a	no connect	unused AIB60	n/a	VSSP
AIB61	unused AIB61	n/a	no connect	unused AIB61	n/a	VSSP
AIB62	unused_AIB62	n/a	no connect	unused_AIB62	n/a	VSSP
AIB63	unused_AIB63	n/a	no connect	unused_AIB63	n/a	VSSP
AIB64	unused_AIB64	n/a	no connect	unused_AIB64	n/a	VSSP
AIB65	unused_AIB65	n/a	no connect	unused_AIB65	n/a	VSSP
AIB66	unused_AIB66	n/a	no connect	unused_AIB66	n/a	VSSP
AIB67	unused_AIB67	n/a	no connect	unused_AIB67	n/a	VSSP
AIB68	unused_AIB68	n/a	no connect	unused_AIB68	n/a	VSSP
AIB69	unused_AIB69	n/a	no connect	unused_AIB69	n/a	VSSP
AIB7	unused_AIB7	n/a	no connect	unused_AIB7	n/a	VSSP
AIB70	unused_AIB70	n/a	no connect	unused_AIB70	n/a	VSSP
AIB71	unused_AIB71	n/a	no connect	unused_AIB71	n/a	VSSP
AIB72	unused_AIB72	n/a	no connect	unused_AIB72	n/a	VSSP
AIB73	unused_AIB73	n/a	no connect	unused_AIB73	n/a	VSSP
AIB74	device_detect	in	Follower chiplet input through microbump (AUX case) or C4 bump (No AUX)	device_detect	out	Leader chiplet output through microbump (AUX case) or C4 bump (No AUX)
AIB75	device_detect	n/a	Follower chiplet input through microbump (AUX case) or package connection to AIB74 (No AUX)	device_detect	n/a	Leader chiplet output through microbump (AUX case) or package connection to AIB74 (No AUX)
AIB76	unused_AIB76	n/a	no connect	unused AIB76	n/a	VSSP
AIB77	unused AIB77	n/a	no connect	unused AIB77	n/a	VSSP
AIB78	unused_AIB78	n/a	no connect	unused_AIB78	n/a	VSSP
AIB79	unused_AIB79	n/a	no connect	unused_AIB79	n/a	VSSP
AIB8	unused_AIB8	n/a	no connect	unused_AIB8	n/a	VSSP
AIB80	unused_AIB80	n/a	no connect	unused_AIB80	n/a	no connect
AIB81	unused_AIB81	n/a	no connect	unused_AIB81	n/a	no connect
AIB82	unused_AIB82	n/a	no connect	unused_AIB82	n/a	no connect
AIB83	unused_AIB83	n/a	no connect	unused_AIB83	n/a	no connect
AIB84	unused_AIB84	n/a	no connect	unused_AIB84	n/a	no connect
AIB85	power-on- reset	out	Follower chiplet output through microbump (AUX case) or C4 bump (No AUX)	power-on- reset	in	Leader chiplet input through microbump (AUX case) or C4 bump (No AUX)
AIB86	unused_AIB86	n/a	no connect	unused_AIB86	n/a	no connect
AIB87	power-on- reset	n/a	Follower chiplet output through microbump (AUX case) or package connection to AIB85 (No AUX)	power-on- reset	n/a	Leader chiplet input through microbump (AUX case) or package connection to AIB85 (No AUX)
AIB88	unused_AIB88	n/a	no connect	unused_AIB88	n/a	no connect
AIB89	unused_AIB89	n/a	no connect	unused_AIB89	n/a	no connect
AIB9	unused_AIB9	n/a	no connect	unused_AIB9	n/a	VSSP
AIB90	unused_AIB90	n/a	no connect	unused_AIB90	n/a	no connect
AIB91	unused_AIB91	n/a	no connect	unused_AIB91	n/a	no connect
AIB92	unused_AIB92	n/a	no connect	unused_AIB92	n/a	VSSP
AIB93	unused_AIB93	n/a	no connect	unused_AIB93	n/a	VSSP
AIB94	unused_AIB94	n/a	no connect	unused_AIB94	n/a	VSSP

	Follower		Follower-side	Leader	Leader	Leader-side
Bump	Bump	Follower	connection to	Bump	AUX	connection to
ID	Name	AUX IO	Leader Chiplet	Name	10	Follower Chiplet
AIB95	unused_AIB95	n/a	no connect	unused_AIB95	n/a	VSSP

^{1.} All VSSP may be connected together and pulled down by a single 1K resistor to VSS or GND. If the connected Follower device is known to have no connect at those locations, you may substitute no connect for VSSP.

7.2.3 C4 AUX Channel AIB

With only 4 bumps utilized in the AUX channel, it is anticipated that an AIB interface may be built without a microbump AIB AUX channel. This may be useful in fitting a 24 channel AIB interface into an 8mm maximum die height.

An AUX Leader interface in this case may drive *device_detect* from a C4 bump and receive *power-on-reset* with a C4 bump, each connected to respective Stratix 10 EMIB microbumps through package surface traces. See Figure 10 for an example C4 AUX Leader. To avoid floating inputs to Stratix 10, at the EMIB you should tie those pins to VSSP (1K ohm pulldown to VSS or GND).

Figure 10. C4 AUX Leader Chiplet

A C4 AUX Leader drives *device_detect* and observes *power_on_reset* from C4 bump IOs with the same behavior as described in the AIB Spec. A C4 AUX Follower may similarly be constructed with vias to EMIB routed to C4 bump IOs on the Follower chiplet.

For the microbump AUX case, both power-on-reset bumps should be connected on-die to the same AIB IO buffer. device_detect should be similarly connected on-die to the AIB IO buffer. In the C4 case, connect both EMIB microbump locations to a chiplet C4 bump, which on-die connects to the AIB IO buffer. Again, the similar connection should be made for C4 device_detect.

If I am a user of the module aib top v2m in file aib top v2m.v then I should:

- Connect a wire to the port io_aib_aux74, the port io_aib_aux75 and my C4 bump named mst device detect
- 2. Connect a wire to the port io_aib_aux85, the port io_aib_aux87 and my C4 bump named mst_por

Similarly, If I am a user of the module aib top v2s in file aib top v2s.v then I should:

- Connect a wire to the port io_aib_aux74, the port io_aib_aux75 and my C4 bump named slv_device_detect
- 2. Connect a wire to the port io_aib_aux85, the port io_aib_aux87 and my C4 bump named slv_por The AIB interface provides IO buffers for these signals. The path to the C4 bump is just wire

7.3 Channel Stacking

A Leader uses the East channel stacking as shown in the AIB Spec. A Follower uses the West channel stacking. For compatibility with Stratix 10 both Leader and Follower add two rows of microbumps in gaps between AUX and channel0, channels 5 and 6, 11 and 12, 17 and 18, and above 23 as shown in Figure 11:

Figure 11. AIB Channel Stacking

7.4 AIB Power and Ground

The Alternate Bump Map in the AIB Spec identifies bumps as VCCIO and VCCD.

7.4.1 VCCIO

VCCIO is supplied by Stratix 10. A Stratix 10 chiplet uses VCCIO to power the input and output stages of its AIBIO cells, and draws no more current than the maximum of Table 7, as stated in the AIB Spec.

Table 7. S10 Chiplet Maximum Current Draw from VCCIO

For testability of the S10 chiplet, the S10 chiplet connects VCCIO to C4 bumps, typically 3 per 24 channel AIB interface. Microbumps are typically not probed, and the C4 bumps are a means for test equipment to power the S10 chiplet's VCCIO before assembly.

A Stratix 10 chiplet provides voltage translators between the input and output stages of the AIBIO cells and the rest of the S10 chiplet.

7.4.2 VCCD

VCCD is optionally supplied by a S10 chiplet into the VCCD microbumps on rows AQ through AT, and drawn from the VCCD microbumps on rows Y and Z. The purpose is to supply power to S10 chiplet circuitry in the area under the AIB bump array that is not powered by VCCIO. See Figure 12.

7.4.3 Power and Ground Bumps

The Stratix 10 EMIB connects all the VCCD microbumps together, all the VSS microbumps together and all the VCCIO microbumps together. The multi-chip package of chiplets + Stratix 10 should connect VCCD C4 bumps and microbumps together, also VSS C4 bumps and microbumps together using surface traces. VCCIO microbumps should be connected in the package using surface traces.

Figure 12. Leader (left) and Follower (right) AIB Power Microbumps using Stratix 10 EMIB. Six AIB channels with one power/VSS gap at bottom.

7.4.4 Design Note about Power Supply Sequencing and Open Source code

- a) power_on_reset input to Leader has a dummy aibcr3_bufx1_top hooked up to VCCL(VCCIO) on both supply inputs. The dummy buffx1 provides ESD protection; the signal goes through a custom level shifter (see item b).
- b) power_on_reset input to Leader uses a custom level shifter hooked up to VCCL and VDD. The custom level shifter provides power supply sequencing invariance. See files
- v2_common/aibcr3aux_lib/rtl/aibcr3aux_top_master.v and
- v2_common/aibcr3aux_lib/rtl/aibcr3_lvshift_vcc.v. Note that aibcr3aux_top_master output o_por_vccl

is a dummy. por_vccl is regenerated from por_vcchssi (aka por_aib_vcchssi) in v2_common/ana/aibcr3_frontend.v

- c) device_detect input to Follower goes through an AIB IO cell aibcr3_buffx1_top hooked up to VDD on both supply inputs. Note that Follower has VCCD connected to VCCL. See file ./v2_common/aibcr3aux_lib/rtl/aib_aux_dual.v
- e) device_detect output from Leader is from a buffx1 hooked up to VCCL(VCCIO) on both supply inputs. device_detect is set to 1 inside the Leader AIB IO section; the signal does not come from VCCD domain.

8 AIB Bump Locations and Assignments

The locations of microbumps and surrounding C4 bumps are given in the spreadsheet referenced in section 0. Table 8 gives the spreadsheet's bump names and description, and the translation to the Verilog names of module aib top.

Location Spreadsheet Verilog aib_top signal Pin **Bump type** Pin Type/Function Bump/Pin name direction name AIB{0-95}_CH{0-5}_X0Y0 io_aib_ch{0-5}[95:0] inout μbump AIB signals for channels 0-5 AIB{0-95}_CH{0-5}_X0Y1 io_aib_ch{6-11}[95:0] inout μbump AIB signals for channels 6-11 AIB{0-95} CH{0-5} X0Y2 io aib ch{12-17}[95:0] AIB signals for channels 12-17 inout µbump AIB{0-95}_CH{0-5}_X0Y3 io_aib_ch{18-23}[95:0] inout μbump AIB signals for channels 18-23 AIB_AUX{0-95}_X0Y0 io_aib_aux[95:0] AIB signals for aux channel inout µbump

n/a

n/a

n/a

Table 8. Leader Chiplet AIB Bumps

power

power

ground

C4/µbump

C4/µbump

C4/µbump

Digital supply for AIB and MAC

circuits on chiplet core side of

AIBIO (away from microbumps)
IO supply from Stratix 10

regulated to 0.75V-0.97V for

S10 chiplet AIBIO circuits on microbump side of AIB IO cell

Digital VSS

8.1 AIB Bump Locations Spreadsheet

VCC HSSI

VCCL_HSSI

VSSGND

(AIB Spec uses VCCD)

(AIB Spec uses VCCIO)

(AIB Spec uses VSS)

See the companion file "Stratix 10 Chiplet AIB Profile_v1_0_aib_bump_locations.xlsx" for the Leader pinout. For the Follower pinout, please file a github issue.

8.2 Bump Mechanical

The figure and table below are for chiplets using the existing Stratix 10 EMIB.

Figure 13. S10 Chiplet Bump Centers to Die Edges

Table 9. S10	Chiplet	Feature	Dimensions
---------------------	---------	----------------	-------------------

Feature	Dimension Max	Dimension Min
Α	127.6 um	101.12 um
В	163.48 um	101.12 um
С	241.96 um	123.96 um
D	241.96 um	123.96 um

The dimensions in Table 9 are to the scribe line center. Use the bump locations spreadsheet for the microbump to C4 bump spacing and positions.

9 AIB Initialization

The following steps are a combination of the AIB Spec, Stratix 10 requirements and application of the AIB Open Source.

Table 10. AIB Initialization

Leader AIB Initialization	Follower AIB Initialization				
 Exit chiplet main reset. Set AIB AUX device_detect high. AIB AUX power_on_reset signal from the Follower is used by the Leader interface to keep the Leader AIB outputs in standby mode. 	 Exit chiplet main reset. Read the AIB AUX device_detect signal. If device_detect is LO, there is no Leader attached and the Follower interface should remain in standby state. If device_detect is HI, the Follower drives the AIB AUX power_on_reset signal HI. 				
Common Leader and Follower Initialization					
The applications hold all their local AIB adapters in reset by setting <i>i_conf_done</i> LO.					

- i_conf_done LO also keeps the AIB outputs in standby mode.
- Pull down the open-drain CONF_DONE pin to LO.
- Each MAC sets ns_mac_rdy LO.

Leader AIB Initialization	Follower AIB Initialization		
Wait until AIB AUX power_on_reset is LO.	Each MAC sets ns_adapter_rstn LO. This		
With the Follower designated as the reset	per-channel signal holds the local adapter		
controller, the Leader sets	in reset, and the far side adapter in reset		
ns_adapter_rstn HI (inactive).	(see Leader fs_adapter_rstn).		
Common Leader and	Follower Initialization		
Configure.			
Release CONF_DONE.			
 Monitor CONF DONE for other chiplets that 	may still be pulling CONF_DONE LO. Once		
CONF_DONE is HI, set i_conf_done HI.			
Once local clocks are stable, each MAC sets	ns_mac_rdy HI.		
Leader AIB Initialization	Follower AIB Initialization		
The channel's calibration state machines	The fs_mac_rdy received HI at the		
are held in reset while fs_adapter_rstn is	Follower signals the Follower to let the		
LO.	channels start calibration.		
The Follower releases each Leader	Each MAC sets ns_adapter_rstn HI. This		
adapter from reset when the Leader	releases the local adapter from reset and		
receives fs_adapter_rstn input HI. The	signals the Leader adapter to come out of		
local adapter starts calibration.	reset. The local adapter starts calibration.		
	Follower Initialization		
Calibration completes according to the AB :			
When both the Sideband Control Shift Region			
ms_tx_transfer_en are true, then the link sh			
	, m_rxfifo_align_done=HI means the receive		
FIFO is aligned to the incoming upper word	marking.		
Leader AIB Initialization	Follower AIB Initialization		
At any point, if the AIB AUX signal			
power_on_reset is HI then go back to the			
start.			

9.1 Stratix 10 device_detect workaround

Stratix 10 has an issue with *device_detect* in that it expects unsupported JTAG behavior from the S10 Chiplet if Stratix 10 reads *device_detect* as HI. To work around this issue, in the package disconnect AUX AIB74 and AUX AIB75 between the Leader Chiplet and the Stratix 10 EMIB. Ground those AUX AIB74 and AUX AIB75 Stratix 10 EMIB wires on the package.

10 Additional Information

- [1] "Advanced Interface Bus Specification," Revision 1.2, September 2019, https://github.com/chipsalliance/AIB-specification
- [2] "Advanced Interface Bus Specification," Revision 2.0, July 2020, https://github.com/chipsalliance/AIB-specification

Revision History

6/2019: Updates to initialization, mechanical, added the *ns_mac_rdy* signal from the AIB Spec into the list supported by a S10 Chiplet. Changed the MAC data bit numbering in the Word Marking section to match the AIB Open Source. Clarified 2x FIFO mode MAC/PHY clocking.

- 7/2019: Added por_ovrd with description. Simplified AIB Open Source MAC/PHY Signals table.
- 8/2019: Added Stratix 10 AIB Overview. Added clock reference to signals in the MAC/PHY signals table.
- 9/2019: Updated the bump to edge min and max dimensions.
- 10/2019: Added AIB Slave interface requirements and descriptions. Changed the document title to encompass chiplets that have master and/or slave interfaces. Added v2 MAC/PHY port changes.
- 11/2019: Added m_rxfifo_align_done to MAC/PHY signal list.
- 12/2019: Added Slave bump array. VDD corrected to VCCD. *m_por_ovrd* circuit updated in figures 12 and 13; *m_por_ovrd* description updated in Application/PHY signal table.
- 2/2020: Added data_in_reg_mode and data_out_reg_mode ports to the v2 Master.
- 4/2020: Corrected ns/fs_adapter_rstn names in Table 5. Also removed the div2 clocks as inputs to a Slave interface in Table 5.
- 9/2020: Removed power_on_reset and device_detect information now in the AIB 2.0 spec (github issue 24). Updated Table 10, AIB Initialization. Added information about device_detect and por connection for the C4 AUX case (github issue 32). Added note about power supply sequencing and Open Source code (github issue 37). Renamed AIB sides as Leader and Follower.

This paper contains the general insights and opinions of Intel Corporation ("Intel"). The information in this paper is provided for information only and is not to be relied upon for any other purpose than educational. Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Experience What's Inside, and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. Other marks and brands may be claimed as the property of others.