4-1. What is the minimum spring compression δ necessary to cause m_2 to leave the floor after m_1 is suddenly released with zero velocity? Measure δ from the unstressed position of the spring and assume that all motion is in the vertical direction.

Thus we get.
$$X_{St} = \frac{1}{2} \left(X_{max} + X_{min} \right)$$

From:
$$\delta = x_{\text{min}} - \frac{1}{K} m_1 J = \frac{1}{2} \left(\frac{m_2 J}{K} - \delta \right)$$

And then.
$$-\delta = -\underbrace{2mg}_{K} - \underbrace{m_{2}g}_{K}$$

Thus we obtain
$$\delta = \frac{2m_1g + m_2g}{\kappa} = \frac{(2m_1 + m_2)j}{\kappa}$$

4-2. A chain of length L and mass m rests on a horizontal table. If there is a coefficient of friction μ between the chain and the table top, find the velocity of the chain as it leaves the table. Assume that it is released from the position x = a, where $a > \mu L/(1 + \mu)$, and the chain is guided without friction around the corner.

Figure P4-2

From the work and energy Principle

$$T_i + V_i = T_f + V_f + W_f$$

The initial kinetic energy (T_i)
 $w_0 = 0$ thus: $T_i = 0$

Initial of potential energy (V_i)

From linear density $p = m$

Thus $V_i = \frac{1}{2}p_2a^2 = -\frac{1}{21}m_2a^2$ at. $\times (0) = a$

And then the final of kinetic energy (T_f)
 $T_f = \frac{1}{2}mV^2$

The final potential energy. (V_f)

We have energy Lost in friction

$$= \int_{\alpha}^{L} \frac{u m_{2} \cdot (L-x)}{L} dx = \frac{u m_{2} \cdot x^{2}}{2L} dx = \frac{u m_{2} \cdot (L-\alpha)^{2}}{2L}$$

From equation 1

4-4. Particles $m_1 = m$ and $m_2 = 2m$ are connected by a massless string and undergo free planar motion. Initially they rotate about each other with a constant separation l_0 and an angular velocity ω_0 . Then a device in m_1 reels in the connecting string until its length is $\frac{1}{2}l_0$ and is again constant. At this later time, find: (a) the angular velocity ω ; (b) the tension in the string.

Using conservation of angular momentum about the center of mans

Thus we get
$$\left[m \left(\frac{q}{3} L \right)^2 + 2m \left(\frac{1}{3} L \right)^2 \right] W = \frac{2}{3} m L_0^4 U_0$$
; L. L. $\left[m \left(\frac{q}{3} \cdot \frac{1}{2} \right)^4 L_0^4 + 2m \left(\frac{1}{3} \cdot \frac{1}{2} \right)^2 L_0^4 \right] W = \frac{2}{3} m L_0^4 W_0$

$$\frac{\left(\frac{1}{9} + \frac{2}{36}\right) \text{M L}^{2} \cdot \text{W}}{\left(\frac{\cancel{K}^{1}}{\cancel{9}^{6}}\right) \text{M L}^{2} \cdot \text{W}} = \frac{2}{3} \text{M L}^{2} \cdot \text{W}}{3} \cdot \text{M L}^{2} \cdot \text{W}}$$