常微分方程数值解

差分格式的稳定性 线性多步法 常微分方程组的有限差分法 高阶常微分方程的有限差分法

稳定性

定义 若一种数值方法在节点值 y_n 上大小为 δ 的扰动,对于以后各节点值 $y_m(m>n)$ 上产生的偏差均不超过 δ ,则称该方法是稳定。

以欧拉法为例考察计算稳定性.

例 考察初值问题

$$\begin{cases} y' = -100 \ y, \\ y(0) = 1. \end{cases}$$

其准确解 $y(x)=e^{-100x}$ 是一个按指数曲线衰减得很快的函数,如下图所示:

用欧拉法解方程 y' = -100y 得

$$y_{n+1} = (1-100h)y_n$$
.

若取 h=0.025,则欧拉公式的 具体形式为

$$y_{n+1} = -1.5y_n,$$

可以看到,欧拉方法的解 y_n (图中用×号标出)在准确值 $y(x_n)$ 的上下波动,计算过程明显地不稳定.

但若取 h=0.005,则计算过程稳定.

再考察欧拉隐式方法, 取 h=0.025 时计算公式为

$$y_{n+1} = \frac{1}{3.5} y_n$$
.

计算结果如下,这时计算过程是稳定的.

计算结果对比

节点	欧拉方法	欧拉隐式方法
0.025	-1.5	0.2857
0.050	2.25	0.0816
0.075	- 3.375	0.0233
0.100	5.0625	0.0067

线性多步法的一般公式

如果计算 y_{n+k} 时,除用 y_{n+k-1} 的值,还用到 y_{n+i} (i=0,1,2,...,k-2) 的值,则称此方法为线性多步法.

一般的线性多步法公式可表示为

$$y_{n+k} = \sum_{i=0}^{k-1} \alpha_i y_{n+i} + h \sum_{i=0}^{k} \beta_i f_{n+i},$$

其中 y_{n+i} 为 $y(x_{n+i})$ 的近似, $f_{n+i} = f(x_{n+i}, y_{n+i})$, $x_{n+i} = x_0 + ih$ α_i , β_i 为常数, α_0 及 β_0 不全为零,则称为线性 k 步法.

计算时需先给出前面 k个近似值 $y_0, y_1, y_2, ..., y_{k-1}$,再逐次求出

 $y_k, y_{k+1}, y_{k+2}, \dots$

阿当姆斯显式与隐式公式

考虑形如

$$y_{n+k} = y_{n+k-1} + h \sum_{i=0}^{k} \beta_i f_{n+i}$$

的 k 步法,称为阿当姆斯 (Adams)方法.

 β_k =0为显式方法, $\beta_k \neq 0$ 为隐式方法,通常称为阿当姆斯显式与隐式公式,也称Adams-Bashforth公式与Adams-Monlton公式.

阿当姆斯显式公式

\overline{k}	p	公式	
1	1	$y_{n+1} = y_n + hf_n$	
2	2	$y_{n+1} = y_n + h f_n$ $y_{n+1} = y_n + \frac{h}{2} (3f_n - f_{n-1})$	
3	3	$y_{n+1} = y_n + \frac{h}{12}(23f_n - 16f_{n-1} + 5f_{n-2})$	
4	4	$y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$	

$$\begin{cases} y' = -y \ln y, \\ y(0) = 1/2. \end{cases}$$

精确解为:

$$y=e^{(-\ln 2)e^{-t}}.$$

$n = h^{-1}$	二阶Adams	四阶Adams
8	0.28474335730512E-02	0.19742002576040E-05
16	0.67170745938105E-03	0.12099205870530E-06
32	0.16212367000479E-03	0.72652883709168E-08
64	0.39755173993794E-04	0.44197434601045E-09
128	0.98386454340238E-05	0.27204238861600E-10
256	0.24469431793017E-05	0.16866508190105E-11
512	0.61013351659867E-06	0.10536016503693E-12
1024	0.15233231 l 98675E-06	0.76605388699136E-14

阿当姆斯隐式公式

\overline{k}	p	公 式
		$y_{n+1} = y_n + \frac{h}{2}(f_{n+1} + f_n)$
2	3	$y_{n+1} = y_n + \frac{h}{12} (5 f_{n+1} + 8 f_n - f_{n-1})$
3	4	$y_{n+1} = y_n + \frac{h}{24} (9 f_{n+1} + 19 f_n - 5 f_{n-1} + f_{n-2})$
4	5	$ y_{n+1} = y_n + \frac{h}{720} (251 f_{n+1} + 646 f_n - 264 f_{n-1} + 106 f_{n-2} - 19 f_{n-3}) $
		$+106 f_{n-2} - 19 f_{n-3}$

一阶常微分方程组的有限差分法

$$\begin{cases} \frac{dy_i}{dx} = f_i(x, y_1, y_2, \dots, y_m), & x > x_0 \\ y_i(x_0) = y_i^0, & \\ \end{cases}, (i = 1, 2, \dots, m).$$

引入向量记号:

$$\overline{y}(x) = (y_1, y_2, \dots, y_m)^T$$

$$\overline{f}(x, \overline{y}) = [f_1(x, \overline{y}), f_2(x, \overline{y}), \dots, f_m(x, \overline{y})]^T$$

$$\overline{y}_0(x) = (y_1^0, y_2^0, \dots, y_m^0)^T$$

则上面的初值问题可写为:

则上面的初值问题可写为:

$$\begin{cases} \frac{d\overline{y}}{dx} = \overline{f}(x, \overline{y}), & x > x_0 \\ \overline{y}(x_0) = \overline{y}^0 \end{cases}$$

欧拉显示格式:

$$\overline{y}_{n+1} = \overline{y}_n + h\overline{f}(x_i, \overline{y}_n)$$

预估-校正格式:

$$\begin{cases} \overline{y}_{n+1} = \overline{y}_n + h\overline{f}(x_n, \overline{y}_n) \\ \overline{y}_{n+1} = \overline{y}_n + \frac{h}{2}[\overline{f}(x_n, \overline{y}_n) + \overline{f}(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

例1考虑经典的Lotka-Volterra模型:

$$\begin{cases} y_1' = y_1 - y_1 y_2 + \sin \pi t, & y_1(0) = 2, \\ y_2' = y_1 y_2 - y_2, & y_2(0) = 1. \end{cases}$$

将右端写为如下形式:

$$\begin{cases} f_1(t, y_1, y_2) = y_1 - y_1 y_2 + \sin \pi t, \\ f_2(t, y_1, y_2) = y_1 y_2 - y_2. \end{cases}$$

利用欧拉显式格式计算如下:

$$\begin{cases} y_{1,n+1} = y_{1,n} + hf_1(t_n, y_{1,n}, y_{2,n}), \\ y_{2,n+1} = y_{2,n} + hf_2(t_n, y_{1,n}, y_{2,n}). \end{cases}$$

$$\begin{cases} y_1' = y_1 - y_1 y_2 + \sin \pi t, & y_1(0) = 2, \\ y_2' = y_1 y_2 - y_2, & y_2(0) = 1. \end{cases}$$

二阶预估-校正法 的计算格式如下:

$$\begin{cases} \tilde{y}_{n+1} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \tilde{y}_{n+1})] \end{cases}$$

$$\begin{cases}
\overline{y}_{1,n+1} = y_{1,n} + hf_1(t_n, y_{1,n}, y_{2,n}), \\
\overline{y}_{2,n+1} = y_{2,n} + hf_2(t_n, y_{1,n}, y_{2,n}), \\
y_{1,n+1} = y_{1,n} + \frac{h}{2} \left[f_1(t_n, y_{1,n}, y_{2,n}) + f_1(t_n + h, \overline{y}_{1,n+1}, \overline{y}_{2,n+1}) \right], \\
y_{2,n+1} = y_{2,n} + \frac{h}{2} \left[f_2(t_n, y_{1,n}, y_{2,n}) + f_2(t_n + h, \overline{y}_{1,n+1}, \overline{y}_{2,n+1}) \right].
\end{cases}$$

二阶常微分方程的有限差分法

$$\begin{cases} y'' + p(x)y' + q(x)y = f(x), & a < x < b, \\ y(a) = \alpha, & y(b) = \beta. \end{cases}$$

直接离散,

$$y'(x_i) = \frac{y(x_{i+1}) - y(x_{i-1})}{2h} + O(h^2),$$

$$y''(x_i) = \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2} + O(h^2)$$

直接离散有

$$\frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + p_i \frac{y_{i+1} - y_{i-1}}{2h} + q_i y_i = f_i$$

二阶常微分方程的有限差分法

$$\begin{cases} y'' + p(x)y' + q(x)y = f(x), & a < x < b, \\ y(a) = \alpha, & y(b) = \beta. \end{cases}$$

整理有:

$$\begin{cases} \left(1 - \frac{h}{2} p_{i}\right) y_{i-1} - 2\left(1 - \frac{h^{2}}{2} q_{i}\right) y_{i} + \left(1 + \frac{h}{2} p_{i}\right) y_{i+1} = h^{2} f_{i} \\ i = 1, 2, \dots, N - 1 \end{cases}$$

$$y_{0} = \alpha, \qquad y_{N} = \beta$$

该方程组为三对角方程组.

例2考虑二阶方程:

$$\begin{cases} y'' - 2(9x+2)y = -2(9x+2)e^x, 0 < x < 1. \\ y(0) = 0, \quad y(1) = 1. \end{cases}$$

取:
$$x_0 = 0$$
, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, $x_3 = \frac{3}{4}$, $x_4 = 1$. 微分方程离散为:

$$\begin{cases} \frac{y_{n-1} - 2y_n + y_{n+1}}{h^2} - 2(9x_n + 2)y_n = -2(9x_n + 2)e^{x_n}, n = 1, 2, 3, \\ y_0 = 0, \quad y_4 = 1. \end{cases}$$

在每个内点列方程得.

$$\begin{cases}
-2.5312y_1 + y_2 &= -0.6821 \\
y_1 - 2.8125y_2 + y_3 &= -1.3396 \\
y_2 - 3.0938y_3 = -3.3156
\end{cases}$$

二阶常微分方程的有限差分法

$$\begin{cases} y''(x) = f(x, y, y'), & x > x_0 \\ y(x_0) = y_0, \\ y'(x_0) = y'_0. \end{cases}$$

引入新变量: z(x) = y'(x)则可将上面的方程化为:

$$\begin{cases} z'(x) = f(x, y, z), & x > x_0 \\ y'(x) = z(x), & x > x_0 \\ y(x_0) = y_0, \\ z(x_0) = y'_0. \end{cases}$$

二阶常微分方程的有限差分法

对于方程组形式:

$$\begin{cases} z'(x) = f(x, y, z), & x > x_0 \\ y'(x) = z(x), & x > x_0 \\ y(x_0) = y_0, \\ z(x_0) = y'_0. \end{cases}$$

欧拉显示格式:

$$\begin{cases} z_{n+1} = z_n + hf(x_n, y_n, z_n), \\ y_{n+1} = y_n + hz_n. \end{cases}$$

预估-校正格式:

$$\begin{cases} z'(x) = f(x, y, z), & x > x_0 \\ y'(x) = z(x), & x > x_0 \\ y(x_0) = y_0, \\ z(x_0) = y'_0. \end{cases}$$

$$\begin{cases} \widetilde{z}_{n+1} = z_n + hf(x_n, y_n, z_n), \\ \widetilde{y}_{n+1} = y_n + hz_n, \\ z_{n+1} = z_n + \frac{h}{2} [f(x_n, y_n, z_n) + f(x_{n+1}, \widetilde{y}_{n+1}, \widetilde{z}_{n+1})], \\ y_{n+1} = y_n + \frac{h}{2} [z_n + \widetilde{z}_{n+1}]. \end{cases}$$

高阶常微分方程的有限差分法

$$y^{(n)} = g(t, y, y', y'', \dots, y^{(n-1)})$$

$$\begin{cases} w_{1}' = w_{2}, & w_{1}(0) = y_{0}, \\ w_{2}' = w_{3}, & w_{2}(0) = y_{0}', \\ w_{3}' = w_{4}, & w_{3}(0) = y_{0}'', \\ \vdots = \vdots \\ w_{n}' = g(t, w_{1}, w_{2}, \dots, w_{n-1}, w_{n}), & w_{n}(0) = y_{0}^{(n-1)}. \end{cases}$$

写成向量形式:

$$\begin{cases} \mathbf{w} = \mathbf{f}(t, \mathbf{w}), \\ \mathbf{w}(0) = \mathbf{w}_0. \end{cases}$$

其中:

$$f(t, \mathbf{w}) = \begin{pmatrix} w_2 \\ w_3 \\ w_4 \\ \vdots \\ g(t, w_1, w_2, w_3, \dots, w_n) \end{pmatrix}, \quad \mathbf{w}_0 = \begin{pmatrix} y_0 \\ y_0' \\ y_0' \\ \vdots \\ y_0'^{(n-1)} \\ y_0' \end{pmatrix}.$$

