Fabric resiliency at scale Spectrum-X enabled fabric for AI training OCT 15-17, 2024 SAN JOSE, CA

Networking

Fabric resiliency at scale

Jeff Tantsura , Omer Shabtai NVIDIA

When wires get tired, Global AR keeps AI infra team hired

- Large AI workloads are sensitive to fabric failures
 - Long running jobs
 - Large scale and tightly coupled jobs
 - Demanding high bisectional BW
- Each link / switch failure can cause job crush
 - Losing all training progress until last check point
 - minutes to hours
 - Large job re-initialization time
- Performance drop due to fabric a-symmetry
 - A Non-linear, where a single link down will severely harm the training speed

Resiliency KPIs special in AI training

- 1. Convergence time
 - Al workloads are tightly coupled and can reach significant scale
 - Fabric issues cause Job failure (during Llama3 training 35 link/switch failed)
 - Collective can fail after several seconds of bad connectivity → On a failure the fabric must converge as fast as possible

- 2. Performance guaranties at steady state
 - Job can progress only as fast as the weakest link
 - Measure P01 BW under full bisection traffic

High level overview

SETUP - 3X32 ENDPOINTS

Leaves: 3x16 Nodes - 3x32 NIC's

Spines: 4 spines, 8 parallel links

Traffic: 3x16 RDMA pairs, Bi-directional traffic

• Failures Configuration:

Test case	Spine 1	Spine 2	Spine 3	Spine 4
1 Failure	7	8	8	8
2 Failures	6	8	8	8
4 Failures	4	8	8	8
2+1 Failure	6	7	8	8
2+2+2+2	6	6	6	6

Bisection BW under link Failures

3 SU * 28 Nodes, 4 spines, 14 parallel links

Resiliency - challenges

All to All Collective performance for asymmetric fabric

- Baseline Non-linear degradation grows with a-symmetry
- On a large scale topology with few parallel links much worse

Resilient Adaptive Routing Performance

Link Failures on Traditional Ethernet Led to Outsized Drop in AI Performance

Spectrum-X utilizes Global AR to rebalance NCCL flows and avoid failed paths

Call to Action

- Start AI Cloud POC with Spectrum-X
- Use NVIDIA AIR Simulation environment with SONiC today
- More Information on Spectrum-X
 - Spectrum-X Platform https://www.nvidia.com/en-us/networking/spectrumx/
 - Spectrum-X Video https://www.youtube.com/watch?v=nKqfi3q4S51
 - BlueField DPU https://www.nvidia.com/en-us/networking/products/data-processing-unit/
 - Spectrum Switches https://www.nvidia.com/en-us/networking/ethernet-switching/
 - NVIDIA SAI https://developer.nvidia.com/networking/ethernet-switch-sdk

Open Discussion

