UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES

MEDIDAS ELECTRONICAS I

Manual Interno Reservado

OBJETIVO:

El presente informe tiene como objetivo explicar el funcionamiento interno del instrumento desarrollada.

Grupo 4

N°	Apellido y nombre	Legajo	Mail
1	Ochoa Cruz, David	163-851.8	dochoacruz@frba.utn.edu.ar
2	Pregelj, Nicolas	1674-70.5	npregelj@frba.utn.edu.ar

PROFESOR: Ing. Federico Pérez Gunella JTP: Ing. Hammer, Miguel Rodolfo

NDICE

I.	Int	troducción	2
II.	Dis	seño de circuito	2
	2.1	Diagrama en bloque del circuito	2
	2.2	Esquemáticos	2
	2.3	PCB	4
	2.4	Diseño final	4
Ш		Lógica de programación	5
	3.1	Código de programación	5
	3.2	Diagrama de flujo del algoritmo de programación	6
IV		Calibración	6
	4.1	Instrumento Patrón	6
	4.2	Condiciones de Calibración	7
	4.3	Proceso de calibración	7
	4.4	Cálculo de incertidumbre	8
	4.5	Análisis espectral	9
V	Lis	ita de componentes 1	2

I. Introducción.

En el presente informe vamos a explicar el funcionamiento completo del equipo, iniciando con el diseño del circuito, pasando por la lógica de programación, seguido del proceso de calibración, acompañado del cálculo de incertidumbre, y para finalizar proporcionaremos la lista de componentes utilizados con sus respectivas referencias

II. Diseño de circuito

El equipo está basado en la placa de desarrollo Arduino Uno, microcontrolador que se encargará de llevar a cabo el control y funcionamiento de las mediciones, su procesamiento y posterior visualización. Además, el equipo cuenta con un integrado AD736, que será el encargado de cumplir la función de sensor, es decir, será quien nos proporcione la magnitud a medir, el cual es un conversor de True rms a su correspondiente valor en DC. También contaremos con un display, donde se mostrará al usuario el valor medido por el equipo.

2.1 Diagrama en bloque del circuito

2.2 Esquemáticos

El diseño de los esquemáticos y el pcb se realizaron con el software de Altium Designer.

2.3 PCB

Acompañado a este documento estarán los pdfs tanto de los esquemáticos, como del pcb para una mejor visualización de estos.

2.4 Diseño final

III. Lógica de programación

3.1 Código de programación

El código de programación se realiza en la plataforma de Arduino ID. A continuación, se presentan fragmentos de código más relevantes de la lógica del programa:

```
void loop() {
    switch(estado){
    case LECUTURA:
        LeerDatos();
        estado = PROCESAMIENTO;
        break;
    case PROCESAMIENTO:
        procesarDatos();
        break;
    case VISUALIZACION:
        displayVrms();
        estado = LECUTURA;
        break;
}
```

Una vez inicializado los periféricos en el setup, el programa comienza ejecutando una máquina de estado, el cual consiste, en tres estados:

- Lecutura: Se realiza la lectura analógica, de nuestra magnitud a medir
- Procesameinto: En este punto, se realiza la coversión de las cuentas a tensión, para su posterior filtrado, seguido de las correcciones correspondientes producto de la regresión lineal aplicado
- Visualización: Finalmento con los datos procesados, pasamos a mostrarlos en el display.

La función LeerDatos() es la encargada de leer un número de muestras del adc durante un intervalo de tiempo para luego promediarlo y almacenarlo en una variable global "average"

```
void LeerDatos(){
  float suma = 0.0;
  float average = 0.0;
  for(int i = 0; i<SAMPLE; i++){
    suma += analogRead(adcPin);
    delay(100);
  }
  Vrms = (suma/(float)SAMPLE)*1100.0/1023;
}</pre>
```

```
void actualizarMultiplexor(){
    switch (mux){
    case OFF:
        digitalWrite(EN_PIN, HIGH);
        escala = FULL;
        break;
    case CH1:
        digitalWrite(EN_PIN, HIGH);
        digitalWrite(EN_PIN, LOW);
        escala = ESC_V;
        Serial.print(escala);
        break;
    case CH0:
        digitalWrite(SEL_PIN, LOW);
        escala = ESCmV;
        break;
}
```

El equipo cuenta con un auto rango, el cual se maneja a través un multiplexor analógico. Él mismo es controlado por el Arduino, habilitando o deshabilitando la entrada de la señal de acuerdo con su nivel de tensión que lo determina la parte de procesamiento de datos


```
void procesarDatos(){
    switch (escala){
        case FULL:
        estado = LECUTURA;
        mux = CH1;
        actualizarMultiplexor();
        break;
        case ESC y:
        Serial.println(vrms);
        if(vrms >= umbral){
            mux = OFF;
            actualizarMultiplexor();
        delay(100);
        } else {
        if(vrms < 100){
            mux = CH0;
            actualizarMultiplexor();
        }
    }
    estado = VISUALIZACION;
    break;
    case ESCmV:
    if(vrms >= umbral){
        mux = CH1;
        actualizarMultiplexor();
    }
    estado = VISUALIZACION;
    break;
}
```

Finalmente, el encargado de procesar los datos, es decir, verificar la escala de medición, si está fuera de rango, cambia de canal y actualiza el multiplexor. También es la encargada de autorizar la visualización por el display una vez procesado los datos.

3.2 Diagrama de flujo del algoritmo de programación

IV. Calibración

Para el proceso de calibración, se utilizaron: un generador de señales, un multímetro patrón y el equipo a calibrar.

4.1 Instrumento Patrón

Caracteristicas:

Precisión: ±(% of reading + % of range)

Function	Range	Resolution	Frequecy	1 Year (23°C ± 5°C)
			3 - 5	1,15 + 0,05
			5 - 10	0,45 + 0,05
	100 0000 501/	0,1uV	10 - 20k	0,08 + 0,05
	100,0000 mV	0,100	20k - 50k	0,15 + 0,06
			50k - 100k	0,70 + 0,09
ACV (AC TRMS Voltage)			100k - 300k	4,25 + 0,60
ACV (AC TRIVIS VOILage)			3 - 5	1,10 + 0,04
			5 - 10	0,4 + 0,04
	1,000000 V to	1.0uV to	10 - 20k	0,08 + 0,04
	750,000 V	1mV	20k - 50k	0,14 + 0,06
	·		50k - 100k	0,70 +0,08
			100k - 300k	4,35 + 0,50

Range		Li	Limits of acuracy				
Mange	Test point	Lower limit	Upper limit	Ur			
100 mV	100.0000 mV @ 1 kHz	99.87 mV	100.13 mV	0,13%			
100 mv	100.0000 mV @ 35 kHz	99.79 mV	100.21 mV	0,21%			
1 V	1.000.000 V @ 1 kHz	0.9988 V	1.0012 V	0,12%			
1 V	1.000.000 V @ 35 kHz	0,9988 V	1,002 V	0,20%			

4.2 Condiciones de Calibración

Las condiciones de calibración se establecieron para una señal senoidal con una frecuencia de 1 kHz. Las mediciones se realizaron de manera simultánea con ambos instrumentos, asegurando que la influencia de las incertidumbres del generador de señales estuviera presente en ambos dispositivos. Se varió la amplitud desde 10 mV hasta 100 mV en pasos de 5 mV para la primera escala, y luego desde 100 mV hasta 1000 mV en pasos de 50 mV para la segunda escala.

4.3 Proceso de calibración

Los resultados de la medición bajo las condiciones menciondas en el paso anterior se presentan en las siguientes tablas, donde Vv representa la tensión medida por el multímetro patrón y Vi la tensión medida por el voltímetro a calibrar:

Es	scala de 100 m	١V	Esc	ala de 1000 n	nV
Generador	Vi	Vv	Generador	Vi	Vv
10	7	9,73	110	108,3	110,64
15	12	14,54	150	149	150,51
20	17,1	19,44	200	200,5	201,29
25	22,1	24,34	250	251,7	251,97
30	27,1	29,15	300	302,1	301,8
35	32,2	34,05	350	353,8	352,72
40	37,3	38,96	400	404,5	403,37
45	42,3	43,86	450	455,9	454,11
50	47,4	48,75	500	507,1	504,72
55	52,4	53,63	550	558,2	555,55
60	58,8	59,83	600	600,3	597,52
65	63,9	64,81	650	650,3	647,27
70	69,9	70,61	700	708,5	705,29
75	75,1	75,61	750	758,4	755,19
80	80,2	80,63	800	808,5	805,29
85	85,4	85,62	850	858,2	855,07
90	90,5	90,61	900	907,7	904,9
95	95,6	95,61	950	957,3	954,82
100	100,8	100,61	100	1006,7	1004,82

Con los valores de la tabla anterior procedemos aplicar una regresión lineal, de tal forma que, nos genere una ecuación lineal que permita corregir los valores obtenidos, y de esta manera lograr una mayor exactitud en la medición.

4.4 Cálculo de incertidumbre

Para el calculo de incertidumbre tipo B del instrumento a calibrar se obtuvieron a partir de los siguientes datos:

- $\Delta CAD = 2LSB$
- Error de precisión AD736: 0,3% de la lectura + 0,3mV

Y aplicadas en las siguientes expresiones:

$$u_b(Vi) = \sqrt{\frac{u^2(CAD)}{3} + \frac{u^2(AD736)}{3}} (Incertidumbre \ tipo \ b)$$

$$u(CAD) = \frac{2LSB}{2^N} \cdot \overline{V}_l$$

$$u(AD36) = 0.3\% \ of \ reading + 0.3mV$$

Aplicando la corrección mencionada en el punto anterior, pasamos ahora a realizar el cálculo de incertidumbre, para 10 numeros de mediciones a fondo de escala del instrumento. En nuestro caso temenos una escala de 100mV y otra de 1000 mV. A continuación se presentamos las mediciones obtenidas y el cálculo de sus insertidumbres:

	Escala 100 mV 1KHz	
Medición	Instrumento a Calibrar	Instrumento Patrón
1	99,8	99,9290
2	99,9	99,9210
3	99,8	99,9340
4	99,7	99,9350
5	99,8	99,9200
6	99,9	99,9320
7	99,8	99,9280
8	99,9	99,9150
9	99,7	99,9235
10	99,8	99,9225
Media	99,81	99,9260
Desvío Estándar	0,074	0,00628
Incertidumbre tipo A	0,0233	0,00063
Incertidumbre tipo B	0,673	0,07502
uc(Vi)	0,6	78
U(Vi)	1,3	36
	Vi = (99.8 ± 1,4) mV	

Medición	Instrumento a Calibrar	Instrumento Patrón
1	992	999,0100
2	998	999,2500
3	997	999,3400
4	998	999,3800
5	992	999,8200
6	996	999,3250
7	999	999,0500
8	994	999,0150
9	998	999,2350
10	996	999,0250
Media	998	999,2450
Desvío Estándar	2,539	0,23642
Incertidumbre tipo A	0,8028	0,00749
Incertidumbre tipo B	1,987	0,49040
uc(Vi)	2,1	98
U(Vi)	4,4	10

4.5 Análisis espectral

Ahora pasamos realizar un análisis spectral, teniendo en cuenta que el dispositivo está diseñado para la medición de señales, tanto periódicas como aperiódicas. Se llevaron a cabo pruebas utilizando señales de formas conocidas (senoidal, cuadrada y triangular) con el propósito de caracterizar la respuesta en frecuencia. Este análisis permite comprender el comportamiento y la variación de la tensión en función de la frecuencia. Con estos resultados, podemos determinar el ancho de banda efectivo en el cual las mediciones de tensión son consistentes. Las mediciones se realizaron utilizando una tensión de entrada de 100 mV para cada una de las señales mencionadas y abarcando un rango de frecuencias desde 1 Hz hasta 100 kHz.

Frecuencia		Tensión	
[Hz]	Senoidal	Cuadrada	Triangular
1	32,9	47,8	38,4
2	64,1	64,2	64,7
3	78,7	78,7	79,1
4	85,9	85,9	86,1
5	90	89,4	89,7
6	92,2	92,2	92,3
7	93,7	93,8	93,8
8	94,8	94,8	94,8
9	95,5	95,5	95,5
10	96,2	96,5	96,5
20	98,1	98,1	98,1
30	98,6	98,6	98,6
40	98,7	98,7	98,7
50	98,8	98,8	98,8
60	98,9	98,9	98,9
70	99	98,9	98,9
80	99	99	99
90	99	99	99
100	99,1	99,1	99,1
200	99,2	99,2	99,2
300	99,3	99,3	99,2
400	99,3	99,3	99,3
500	99,3	99,4	99,3
600	99,3	99,4	99,3
700	99,3	99,5	99,3
800	99,3	99,5	99,3
900	99,3	99,6	99,3
1000	99,3	99,5	99,3
2000	99,3	99,8	99,3
3000	99,3	100,1	99,3
4000	99,4	100,4	99,3
5000	99,4	100,6	99,4
6000	99,4	100,8	99,4
7000	99,4	101,1	99,4
8000	99,4	101,3	99,4
9000	99,4	101,5	99,4
10000	99,4	101,8	99,4
20000	99,6	102,6	99,8
30000	100,1	104,5	100,5
40000	101,1	105,6	101,7
50000	102,2	107,8	103,4
60000	103,7	108,4	104,6
70000	105,5	110,6	106,3
80000	106,8	113,3	107,6
90000	109,3	110,2	111,2
100000	112,6	109,1	114,3

Despues de haber corregido, cálculado la incertidumbre de cada escala y determinado el rango de frecuencia, pasamos a verificar mediciones en los extremos de frecuencia para valores intermedios de tension y para las tres señales periódicas:

	Escala de 100 mV - 100 Hz														
	Senoidal					Triangular				Cuadra	ada				
Generador	Vi	Vv	Δν	e%	Vi	Vv	Δγ	e%	Vi	Vv	Δγ	e%			
20	19,4	19,42	0,02	0,10%	19,4	19,48	0,08	0,41%	19,4	19,48	0,08	0,41%			
40	38,9	38,91	0,01	0,03%	38,9	38,97	0,07	0,18%	38,9	39,11	0,21	0,54%			
60	59,7	59,78	0,08	0,13%	59,6	59,65	0,05	0,08%	59,6	59,66	0,06	0,10%			
80	80,4	80,57	0,17	0,21%	79,7	79,77	0,07	0,09%	79,7	79,76	0,06	0,08%			
100	95,3	95,53	0,23	0,24%	95,4	95,54	0,14	0,15%	95,4	95,54	0,14	0,15%			

	Escala 1000 mV - 1 kHz												
	Senoidal					Triangular				Cuadrada			
Generador	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%	
20	19,4	19,43	0,03	0,15%	19,5	19,49	0,01	0,05%	19,5	19,32	0,18	0,93%	
40	38,9	38,95	0,05	0,13%	38,8	38,84	0,04	0,10%	39,1	38,75	0,35	0,90%	
60	59,9	59,85	0,05	0,08%	58,8	58,8	0,00	0,00%	59,6	59,65	0,05	0,08%	
80	80,7	80,67	0,03	0,04%	80,7	80,74	0,04	0,05%	80,1	80,48	0,38	0,47%	
100	95,6	95,65	0,05	0,05%	95,8	95,85	0,05	0,05%	95,9	95,49	0,41	0,43%	

	Escala de 1000 mV - 100 Hz														
		Send	oidal		Triangular					Cuadr	ada				
Generador	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%			
200	200,0	200,45	0,45	0,22%	200,4	200,83	0,43	0,21%	200,8	200,56	0,24	0,12%			
400	402,5	403,11	0,61	0,15%	403,2	403,77	0,57	0,14%	403,5	403,60	0,10	0,02%			
600	596,6	597,20	0,60	0,10%	599,9	600,48	0,58	0,10%	597,7	597,60	0,10	0,02%			
800	803,0	804,75	1,75	0,22%	803,3	804,76	1,46	0,18%	803,9	804,83	0,93	0,12%			
1000	950,6	954,20	3,60	0,38%	951,5	953,48	1,98	0,21%	951,4	953,10	1,70	0,18%			

	Escala de 1000 mV - 100 Hz													
	Senoidal					Triangular				Cuadrada				
Generador	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%	Vi	Vv	Δν	e%		
200	200,6	201,01	0,41	0,20%	200,4	201,17	0,77	0,38%	201,4	201,81	0,41	0,20%		
400	404,0	403,54	0,46	0,11%	403,7	403,59	0,11	0,03%	403,9	403,80	0,10	0,02%		
600	598,7	597,70	1,00	0,17%	601,5	600,95	0,55	0,09%	597,7	597,95	0,25	0,04%		
800	805,8	805,60	0,20	0,02%	805,7	806,07	0,37	0,05%	802,8	804,11	1,31	0,16%		
1000	954,0	955,01	1,01	0,11%	955,1	956,88	1,78	0,19%	949,7	951,71	2,01	0,21%		

En la tabla anterior se puede verificar que los errores relativos de la medición están dentro de las especificaciones obtenidas en la calibración.

V. Lista de componentes

Componente	Detalle	Referencia
AD736	Conversor True RMS to DC	<u>Datasheet</u>
Arduino Uno	Microcontrolador	Datasheet
MCP6002	Amplificador Operacional Rail to Rail	<u>Datasheet</u>
MUX4051	Multiplexo analógico de 8 canales	<u>Datasheet</u>
Display	Oled i2c 0,96'	<u>Datasheet</u>