Simulação e Modelagem de Sistemas

Exercício para GB

No modelo de uma planta fabril, é necessário modelar a tarefa correspondente ao processamento realizado por uma caldeira. O insumo é processado a partir da adição de um determinado reagente e gera um composto resultante.

O problema atual da gerência de chão de fábrica é determinar o melhor reagente a ser empregado nesta caldeira. Existem 3 reagentes disponíveis (A,B e C); a tabela a seguir mostra a concentração necessária de cada reagente para determinados níveis (índices) de qualidade do composto resultante.

Índice de qualidade do	Reag. A (%)	Reag. B (%)	Reag. C (%)
composto (ppm)			
8	25	19	31
15	28	26	49
25	37	35	62
32	44	41	35
38	52	54	21
44	58	59	42
50	63	63	18
75	69	68	70
90	75	72	37
120	78	74	48

- a) O índice de qualidade necessário para produção é de 200 ppm. Qual a concentração necessária de cada reagente para atingir este nível ?
- **b)** Qual o coeficiente de correlação de cada reagente em função do índice de qualidade ?

Outro fator importante na escolha do reagente é o tempo de reação de cada um. Na tabela a seguir aparecem 10 tempos coletados de duração de reação (em minutos), para cada reagente:

Reag. A	Reag. B	Reag. C
1,7	2,9	0,5
2,8	15,3	1,7
0,9	3,9	12,5
3,5	4,8	4,9
12,6	8,8	14,7
5,8	5,7	6,2
3,9	6,8	8,3
4,3	3,9	10,1
1,2	5,3	2,1
0,8	4,4	5,0

- c) Qual o tempo médio de reação para cada reagente?
- d) Verifique se os tempos de duração de reação de cada reagente podem estar distribuídos exponencialmente. Para isto empregue os testes do χ^2 (5%) e Kolmogorov-Smirnov (10%).

$$F(x) = 1 - e^{-x/_{\beta}}$$

$I(\Lambda)$				
Critical Val	ues For Tl	he Kolmogi	orov-Smirno	v Statistic
Two-tailed	$\alpha =$	0.1	0.05	0.01
n=	1	0.900	0.975	0.995
	2	0.684	0.842	0.929
	3	0.565	0.708	0.829
	4	0.493	0.624	0.734
	5	0.447	0.563	0.669
	6	0.410	0.519	0.617
	7	0.381	0.483	0.576
	8	0.358	0.454	0.542
	9	0.339	0.430	0.513
	10	0.323	0.409	0.489
	11	0.308	0.391	0.468
	12	0.296	0.375	0.449
	13	0.285	0.361	0.432
	14	0.275	0.349	0.418
	15	0.266	0.338	0.404
	16	0.258	0.327	0.392
	17	0.250	0.318	0.381
	18	0.244	0.309	0.371
	19	0.237	0.301	0.361
	20	0.232	0.294	0.352
	25	0.208	0.264	0.317
	30	0.190	0.242	0.29
	35	0.177	0.224	0.269
	40	0.165	0.210	0.252
	Over 40	1.07	1.36	1.63
		\sqrt{n}	\sqrt{n}	\sqrt{n}