1 Review

We have show that a Jordan Canonical Form is unique using dot diagrams for $T_{K_{\lambda}}$ and any eigenvalue λ .

For this purpose we have found a cycle basis for K_{λ} , and, ordering subbases by their sizes with the subbasis of greatest size being the first, we can construct a dot diagram, which has several nice properties.

For example, the number of dots in the diagram is equal to the dimension of K_{λ} , and the number of dots in the first s rows is equal to the nullity of $(T - \lambda I)^s$.

We now can finde a Jordan Canonical basis for the sequences such that, for example,

$$\ker(A - 2i) = \operatorname{span} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Taking $(A-3I)v = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$, we can solve for v, and thus obtain a cycle basis. Having

done that, the JCF is easily found.

Suppose now a dot diagram is given. Starting in the top left, we obtain that for vectors v_1 and v_2 such that $(A-I)v_1$ and $(A-I)v_2$ are in $\ker(A-I)\cap \operatorname{im}(A-I)$. We already saw that $\operatorname{rank}(A-I)=2$, and hence these form a matrix.

We now solve for v_1 and v_2 by noting that they are eigenvectors to obtain $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and

$$v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Extending
$$(A-I)v_1$$
, $(A-I)v_2$ to a basis of $\ker(A-I)$, eg by taking $v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$, we

can see that $[L_A]_{\beta}$ is in JCF.

We can therefore formulate a general strategy for finding Jordan Canonical basis:

- Figure out dot diagrams
- For a fixed eigenvalue λ , working from left to right in the 1st row of the dot diagram (among initial eigenvectorrs.
- Solve for the end vectors by considering the system of the form $(T \lambda I)^{l-1}v =$ initial vectors.

Example 1.1

For the first two initial vectors we have that $(T - \lambda I)^2 v_1$ and $(T - \lambda)^2 v_2 \in \ker(T - \lambda) \cap (\operatorname{im}(T - \lambda I)^2)$.