Exercise Sheet 5

Exercise 1: Neural Network Regularization $(5 \times 20 \text{ P})$

For a neural network to generalize from limited data, it is desirable to make it sufficiently invariant to small local perturbations. This can be done by limiting the gradient norm $\|\partial f/\partial x\|$ for all x in the input domain. As the input domain can be high-dimensional, it is impractical to minimize the gradient norm directly. Instead, we can minimize an upper-bound of it that depends only on the model parameters.

We consider a two-layer neural network with d input neurons, h hidden neurons, and one output neuron. Let W be a weight matrix of size $d \times h$, and $(b_j)_{j=1}^h$ a collection of biases. We denote by $W_{i,j}$ the ith row of the weight matrix and by $W_{i,j}$ its jth column. The neural network computes:

$$a_j = \max(0, W_{:,j}^{\top} \boldsymbol{x} + b_j)$$
 (layer 1)
$$f(\boldsymbol{x}) = \sum_j a_j$$
 (layer 2)

The first layer detects patterns of the input data, and the second layer performs a pooling operation over these detected patterns.

(a) Show that the gradient norm of the network can be upper-bounded as:

$$\left\| \frac{\partial f}{\partial \boldsymbol{x}} \right\| \le \sqrt{h} \cdot \|W\|_F$$

Hint: Use the Cauchy-Schwarz inequality.

- (b) Show that the well-known weight decay procedure $(W^{(t+1)} \leftarrow (1-\gamma) \cdot W^{(t)})$ for some $\gamma > 0$ can be interpreted as a gradient descent of $||W||_F$ or some related quantity.
- (c) Let $||W||_{\text{Mix}} = \sqrt{\sum_i ||W_{i,:}||_1^2}$ be a ℓ_1/ℓ_2 mixed matrix norm. Show that the gradient norm of the network can be upper-bounded by it as:

$$\left\| \frac{\partial f}{\partial \boldsymbol{x}} \right\| \le \|W\|_{\text{Mix}}$$

- (d) Show that the bound is tighter than the one based on the Frobenius norm, i.e. show that $||W||_{\text{Mix}} \le \sqrt{h} \cdot ||W||_F$.
- (e) Show that the gradient of the squared mixed norm is given by

$$\frac{\partial}{\partial W_{ii}} \|W\|_{\operatorname{Mix}}^2 = 2 \cdot \|W_{i,:}\|_1 \cdot \operatorname{sign}(W_{ij}).$$