KLEON

Korean Lake Ecological Observatory Network

- Data viewer and management -

Bu-Young Ahn¹, Young Jin Jung¹, Kum Won Cho¹,

Choong-Kyo Jeong², and Bomchul Kim³

Dept. of Cyber Environment Development,

Korea Institute of Science and Technology Information¹

Dept. of Computer Science & Engineering², Dept. of Environmental Science³,

Kangwon National University

Content

- Motivation
- Goal & Organization
- Installed sensors
- Data management of KLEON
- Expected Effect
- Pictures

Major Research

SuperComputing

- ❖ Advancement of Supercomputing Infrastructure
 - : Strategic establishment of state-of-the art CI environment by using diversified information resources in the existing systems including supercomputers

Performance

- Creating a World Class Cyber-infrastructure
 - Purchasing the 4th supercomputer (360.6TFlops), to be one of world top 10 supercomputers
 - Establishing the supercomputing utilization system in Korea (SNU, BNU, and KIST)
- Developing National Science & Technology Research Network
 - Linking with 14 networks in Korea and 100 networks in 70 other countries
 - Managing domestic and international high-performance research networks for S&
- Developing of E-science Research Environment
 - Establishing the cyber research environment beyond time & space
 - Developing the research environment for e-Science, high energy physics group, to be able to analyze Switzerland CERN data and U.S. Fermi data
- Supporting SMEs' technology development with Supercomputers
 - Creating and managing effective technology support systems tailed to SMEs
- Providing 24 hours Information Security Services for 38 domestic research institutes
 - Establishing web-based security monitoring systems

Motivation

1) Limnologists and Ecologists need

- the data acquisition to understand the lake ecology such as high accuracy sensors
- the data manager to handle the various kinds of lake ecological observation
- the data analysis & prediction tools to estimate the ecological health assessment in lakes and reservoirs
- the international community to discuss their research

2) The goal of KLEON is to support

- the lake ecological research environment to share the observations and to discuss their opinion with international cooperation
- the ecosystem education to spread the ecological information
- the environment preservation policy such as the green development and the pollution prevention

Goal of KLEON

Establishment of ecological observatory network in lakes and rivers

Organization of KLEON

- > Collection of Global Lake/Reservoir Observation Data
- ➤ Construction of Global Joint Research Network
 - With Global e-Science Gateway

Goal for 2010

1) KISTI

- IT support
 - Ecological sampling data management
 - Sensor information management with SensorML
 - Google earth based user interface
- International cooperation (GLEON)

2) KNU

- Construction of Sensor Network (Data collection)
- Lake ecosystem health assessment with water quality models
- Building Web service
- International cooperation (GLEON)

Domestic Observation

Table 1. Sensor type, Data collection method, and Analysis

Target Place	Sensor type	Data collection method	Analysis
1 Lake Soyang	Troll multiprobe (Water temperature, DO, Electrical Conductivity)	Real time data transmission RF-modem	Eutrophication Evaluation
2 Lake Euiam	combination sensor (Water temperature, DO, Electrical Conductivity, Turbidity)	Real time data transmission RF-modem	Eutrophication Evaluation, Turbid water evaluation
3 Anyang River	Troll multiprobe (Water temperature, DO, pH, Electrical Conductivity)	Real time data transmission CDMA modem	Analysis of causes of Fish Kill by Oxygen deficit
4 Swamp Upo	Hydrolab (Water temperature, DO, Electrical Conductivity)	Regular download	Eutrophication Evaluation
5 Soyang River	Hydrolab (Water temperature, Electrical Conductivity, Turbidity)	Regular download	Turbid water evaluation
6 Han River	Hydrolab (Water temperature, Electrical Conductivity)	Regular download	Long term Ecological Research, Climate Change, Eutrophication Evaluation,
7 Gapyeong River	Hydrolab (Water temperature, Electrical Conductivity)	Regular download	Long term Ecological Research, Climate Change

Installed sensors

Buoy in Lake Soyang

2 Sensors in Lake Euiam

Utilized sensors: Temperature (Air, Water), Thermometer, Dissolved Oxygen (YSI 55), Turbidity, Conductivity (miniCHEM), Data logger,

Sensor information management

< The relation information of the sensor >

```
<characteristics>
   <swe:DataRecord definition="urn:x-ogc:def:property:physicalProperties">
      <swe:field name="physicalProperties">
           <swe:DataRecord>
               <swe:field name="weight">
                  <swe:Quantity definition="urn:x-ogc:def:property:weight">
                      <swe:uom xlink:href="urn:ogc:unit:gram"/>
                      <swe:value>128</swe:value>
                  </swe:Quantity>
               </swe:field>
               <swe:field name="diameter">
                  <swe:Quantity definition="urn:x-ogc:def:property:diameter">
                      <swe:uom xlink:href="urn:ogc:unit:mm"/>
                      <swe:value>6.5</swe:value>
                  </swe:Quantity>
               </swe:field>
               <swe:field name="length">
                  <swe:Quantity definition="urn:x-ogc:def:property:length">
                      <swe:uom xlink:href="urn:ogc:unit:mm"/>
                      <swe:value>32</swe:value>
                  </swe:Quantity>
               </swerfield>
          </swe:DataRecord>
       </swe:field>
   </swe:DataRecord>
 characteristics>
```

Sensor ML (Open Geospatial Consortium)

Observation

Data management

Data management - Lake

- Function: management of lake information
 - Lake selection for lake ecosystem health assessment
 - attributes :
 - Name, position, extent, maximum depth, mean depth, maximum length, etc.

Data management - Site

<Site Information Management>

- Function: management of site information
 - Site selection for getting water to analyze water quality
 - Site types: sampling and buoy (sensors)
 - attributes :
 - Name, position, Project id, bottom depth, period, note, etc.

Data viewer - Sampling data

Site

Variables per

- Function: search and download sampling data
 - Download sampling data (CSV file) from the selected site
 - 34 types of observations (DO, BOD, COD, Turbidity, Conductivity, etc.)
 - Graph for observation

Data management - Sensor

<SensorML>

- Function: management of sensor information
 - Sensor selection for getting sensor data
 - Download sensorML (Sensor Model Language)
 - attributes:
 - Model no. name, sampling interval, error rate, etc.

Data viewer - Sensor data

<Sensor data viewer>

- Function: search and download sensor data
 - Download sensor data (CSV file) from the selected site (buoy)
 - XML format to describe the observations
 - Graph for observation

Data management - Dam

- Function: management of dam information
 - Dam selection for getting floodgate data
 - attributes :
 - Name, position, extent, spill way, tailrace, power plant, etc.

Data management - Floodgate

Lake Soyang

< Floodgate data download>

Dam

• Function: search and download floodgate data

- Download floodgate data (CSV file) from the selected dam
- Attributes: water level, inflow rate, power generation outflow rate, spill way outflow rate

Variables per

CSV

Data management - Weather

Lake Soyang

< Weather Data Search >

CSV file

- Function: search and download weather data
 - Download floodgate data (CSV file) from the selected city
 - Attributes: total cloud cover, solar radiation, air temperature, dew point temperature, Wind speed and direction

Data management - 2010

Data management:

- Observation: Water quality (sampling and sensor data)
- Observatory: dam, floodgate, weather, and sensors (sensorML)

Data management - 2011

Data management:

- Observation: Water quality (sampling and sensor data)
- Observatory: dam, floodgate, weather, and sensors (sensorML)
- Analysis tools: improvement of the accuracy of water quality model
- Visualization: representation of pollution

7. Expected Effect

Community	National Policy	
Global Cooperation & IT supportKorea : KEONGlobal: GLEON	Environment preservation policyGreen DevelopmentPollution prevention	
Science	IT	
 Environment/Ecology Research development (data accumulation & modeling) Improving the accuracy of water quality model Teaching Resource 	 Real time data management for Ecological Research Data standardization Data integration with Climate data Visualization & Simulation 	

Pictures

Buoy in Lake Soyang

• February 22, 2010

