Examples with the Pumping Lemma

Logistics

- HW due Soon
- Questions?
- Exam accommodations for various reasons, lemme know/remind me

Last time: The Punified Lemma says:

For all strings in a regular language that are "long enough" (i.e., length p) ...

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

1. for each $i \geq 0$, $xy^i z \in A$,

... these strings must be divisible into three pieces (call them x, y, and z) ...

- **2.** |y| > 0, and
- **3.** $|xy| \le p$.

... where repeating the middle piece y results in a "pumped" string is also in the language

Also, repeating part:

- can't be empty string
- must be in the first *p* characters

tl;dr:

Long enough strings means repeated states

IMPORTANT NOTE:

The pumping lemma **cannot** be used to show that a language is regular, only that is is non-regular

<u>Last time</u>: Equivalence of Contrapositive

• "If X then Y" is equivalent to ...?

X	Υ	X → Y	¬X	¬Y	$Y \rightarrow X$	$\neg X \rightarrow \neg Y$	¬Y → ¬X
T	T	Т	F	F	T	T	T
T	F	F	F	Т	T	T	F
F	T	T	T	F	F	F	T
F	F	Т	Т	Т	Т	Т	T

- "If Y then X" (converse)
- "If not X then not Y" (inverse)
- ✓"If not Y then not X" (contrapositive)

<u>Last time</u>: Equivalence of Contrapositive

- "If X then Y" is equivalent to ...?
 - "If Y then X" (converse)
 - No!
 - "If not X then not Y" (inverse)
 - No!
 - ✓"If not Y then not X" (contrapositive)
 - Yes!
 - Proof by contradiction uses this equivalence

The Pumping Lemma is an If-Then Stmt

... then the language is **not** regular

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

Just need one class of counterexample!

Contrapositive: If (any of) these are not true ...

Ex: Rename. Rephrase. Restate. Reframe.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Express your own meaningful reformulation.

The Pumping Lemma is an If-Then Stmt

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1.
- 2.
- **3.**

```
IF A \in Reg

THEN \exists p \in \mathbb{N}

ST \forall s \in A

IF |s| \ge p

THEN 1, 2, & 3
```

IF $A \in Reg$ THEN $\exists p \in \mathbb{N}$ ST $\forall s \in A$ IF $|s| \ge p$ THEN 1, 2, & 3

```
IF ¬ (∃ p ∈ N "If

ST \forall s ∈ A

IF |s| \ge p that whole big thing is false

THEN 1, 2, & 3)

THEN A \notin Reg then

A isn't regular"
```

```
IF \forall p \in \mathbb{N}
¬ (\forall s \in A

IF |s| \ge p

THEN 1, 2, & 3)

THEN A \notin Reg
```

```
IF \forall p \in \mathbb{N}

∃ s ∈ A

¬ (IF |s| ≥ p

THEN 1, 2, & 3)

THEN A \notin Reg
```

```
IF ∀p∈N
∃s∈A
¬(IF|s|≥p
THEN 1, 2, & 3)
THEN A ∉ Reg
```

(Instead of confirming something about all strings, we're now asked to, for each number, disconfirm something about _some_ string)

```
IF \forall p \in \mathbb{N}

\exists s \in A

|s| \ge p \land \neg (1, 2, \& 3)

THEN A ∉ Reg
```

```
IF \forall p \in \mathbb{N}

∃ s ∈ A

|s| \ge p \land (\neg 1 \lor \neg 2 \lor \neg 3)

THEN A ∉ Reg
```


... But how can we come up with a string for *every* such number?

Parameterize it!

Pumping Lemma: Non-Regularity Example

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

Let B be the language $\{0^n1^n|n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Pumping Lemma: Non-Regularity Example

Let B be the language $\{0^n 1^n | n \ge 0\}$. We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

• Assumption: 0^n1^n is a regular language (must satisfy pumping lemma)

- The class 0^p1^p
 - Is this a class? Or a string?

Parameterize it!

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.

- Possible Split: y = all 0s
- ightharpoons Assumption: 0^n1^n is a regular language (must satisfy pumpi
- Counterexample = $0^p 1^p$

p 0s p 1s

- If xyz chosen so y contains
 - all 0s

But pumping lemma requires **only one** pumpable splitting

So we must show that **every splitting** produces a contradiction

- Pumping y: produces a string with more 0s than 1s
 - This string is <u>not</u> in the language 0^n1^n
 - This means that $0^n 1^n$ does <u>not</u> satisfy the pumping lemma
 - Which means that that 0^n1^n is a <u>not</u> regular lang
 - This is a contradiction of the assumption!

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \le p$.

- Possible Split: y = all 1s
- Assumption: 0^n1^n is a regular language (must satisfy pumping lemma)
- Counterexample = $0^p 1^p$
- If xyz chosen so y contains
 - all 1s

- Is this string pumpable?
 - No!
 - By the same reasoning as in the previous slide

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$.
- Possible Split: y = 0s and 1s
- Assumption: 0^n1^n is a regular language (must satisfy pumping lemma)
- Counterexample = $0^p 1^p$
- If xyz chosen so y contains
 - both 0s and 1s

Did we examine every possible splitting?

Yes. But maybe we don't have to.

- Is this string pumpable?
 - No!
 - Pumped string will have equal 0s and 1s
 - But they will be in the wrong order: so there is still a contradiction!

The Pumping Lemma says:

If A is a regular language, then there is a number p (the Pumping lemma pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- **3.** $|xy| \leq p$.

Also, repeating part *y*:

- can't be empty string
- must be in the first p characters

y must be in here! 416

Pumping Lemma: How to use Condition 3

Let $F = \{ww | w \in \{0,1\}^*\}$. We show that F is nonregular

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following conditions:

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- **3.** $|xy| \le p$.

This is a creative process!

- 1. Is there a sub-language that expresses the non-regularity?
- 2. What's the "essence" of that non-regularity?
- 3. How do you use pumping to exploit the deficiency?

Pumping Lemma: Pumping Down

use the pumping lemma to show that $E = \{0^i 1^j | i > j\}$ is not regular.

Pumping lemma If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s=xyz, satisfying the following conditions:

- **1.** for each $i \ge 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- **3.** $|xy| \le p$.

Check-in Quiz

On gradescope