Sequence-Level Knowledge Distillation for Class-Incremental End-to-End Spoken Language Understanding

Umberto Cappellazzo^{1,3}, Muqiao Yang², Daniele Falavigna³, Alessio Brutti³

Motivation: the real world is dynamic

- The brittle *i.i.d.* assumption is far from what really happens in real scenarios.
- After training, the model must be able to cope with shifts in the data distribution or adapt to new objects/categories. <u>Retraining from scratch</u> the model is almost always unfeasible!
- However, DNNs fail to learn novel concepts sequentially because they overwrite the existing knowledge in favor of the new data.

Class-Incremental Learning

- Class-Incremental Learning (CIL) setup: non-overlapping classes arrive sequentially (i.e., "tasks"), and the model needs to learn to classify all the classes incrementally.
- Following the learning process for each task, the model's performance is assessed across all the classes (past + new).

CIL for joint ASR-SLU

- Spoken Language Understanding (SLU): intent classification + entity classification (aka slot-filling).
- In our setting new intent classes emerge sequentially.
- Intent/entities predicted along with the real transcription using an ASR encoder-decoder model.

How can we mitigate forgetting for an enc-dec ASR system?

 Unlike standard enc + classifier pipeline used for CL, our system includes an ASR decoder.

How can we mitigate forgetting for an enc-dec ASR system?

- Unlike standard enc + classifier pipeline used for CL, our system includes an ASR decoder.
- Main focus of our work:
 alleviate forgetting at the decoder side.

Proposed Approach

- We use a rehearsal memory to store a small fraction of samples from the previous tasks.
- We propose two knowledge distillation (KD) based approaches operating at the decoder side: 1) Token-KD 2) Sequence-KD.
- The two proposed KD losses are applied only to the rehearsal samples!

ASR objective function:

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta)$$

ASR objective function:

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta)$$

Rehearsal data: \mathcal{R}_t

Current data:

 ${\cal D}_t$

ASR objective function:

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta)$$

Rehearsal data: ${\cal R}_t$ Current data: ${\cal D}_t$

Student model distr. : $p(\mathbf{y}|\mathbf{x}; \theta_t)$ Teacher model distr. : $p(\mathbf{y}|\mathbf{x}; \theta_{t-1})$

ASR objective function:

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y}|\mathbf{x};\theta)$$

Rehearsal data:

 \mathcal{R}_t

Current data:

 ${\cal D}_t$

Student model distr. :

 $p(\mathbf{y}|\mathbf{x}; \theta_t)$

Teacher model distr. :

 $p(\mathbf{y}|\mathbf{x}; \theta_{t-1})$

Standard CE loss at task *t*:

$$\mathcal{L}_{\text{CE}}^t = -\sum_{\mathbf{x} \in \mathcal{D}_t \cup \mathcal{R}_t} \log(p(\mathbf{y}|\mathbf{x}; \theta_t))$$

Objective: we try to match the **student** predictions to that of the **teacher** for each token during the decoding process. We encourage the transfer of knowledge "*locally*" (for each position of the target sequence).

Objective: we try to match the **student** predictions to that of the **teacher** for each token during the decoding process. We encourage the transfer of knowledge "*locally*" (for each position of the target sequence).

$$\mathcal{L}_{\text{tok-KD}}^{t} = -\sum_{\mathbf{x} \in \mathcal{R}_{t}} \sum_{j=1}^{J} p(y_{j} | \mathbf{x}, \mathbf{y}_{< j}; \theta_{t-1}) \underbrace{\log(p(y_{j} | \mathbf{x}, \mathbf{y}_{< j}; \theta_{t}))}_{\text{Content to the content of the state of the state$$

Student token-level distribution

Objective: we try to match the **student** predictions to that of the **teacher** for each token during the decoding process. We encourage the transfer of knowledge "locally" (for each position of the target sequence).

$$\mathcal{L}_{\text{tok-KD}}^{t} = -\sum_{\mathbf{x} \in \mathcal{R}_{t}} \sum_{j=1}^{J} p(y_{j} | \mathbf{x}, \mathbf{y}_{< j}; \theta_{t-1}) \underbrace{\log(p(y_{j} | \mathbf{x}, \mathbf{y}_{< j}; \theta_{t}))}_{\text{Student token-level distribution}}$$

Student token-level distribution

Note: the distributions are over the BPE tokens.

Token-KD limitations

- Token distributions are optimal "locally", not globally. Initial errors can be propagated forward.
- Ideally, we would like the student to mimic the teacher's behaviour at the sequence-level!
- The sequence distribution conveys more <u>fine-grained</u> and <u>stable</u> information.

$$\mathcal{L}_{\text{seq-KD}}^t = -\sum_{\mathbf{x} \in \mathcal{R}_t} \sum_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta_{t-1}) \underbrace{\log(p(\mathbf{y} | \mathbf{x}; \theta_t))}_{\text{Student sequence-level distribution}}$$

$$\mathcal{L}_{\text{seq-KD}}^t = -\sum_{\mathbf{x} \in \mathcal{R}_t} \sum_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta_{t-1}) \underbrace{\log(p(\mathbf{y} | \mathbf{x}; \theta_t))}_{\text{Student sequence-level distribution}}$$

Note: we are summing over all possible sequences \rightarrow intractable!

$$\mathcal{L}_{\text{seq-KD}}^t = -\sum_{\mathbf{x} \in \mathcal{R}_t} \sum_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta_{t-1}) \underbrace{\log(p(\mathbf{y} | \mathbf{x}; \theta_t))}_{\text{Student sequence-level distribution}}$$

Note: we are summing over all possible sequences → intractable!

Approximation: we just use the sequence generated by using beam search with the teacher network!

$$\mathcal{L}_{\text{seq-KD}}^t = -\sum_{\mathbf{x} \in \mathcal{R}_t} \sum_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta_{t-1}) \underbrace{\log(p(\mathbf{y} | \mathbf{x}; \theta_t))}_{\text{Student sequence-level distribution}}$$

Note: we are summing over all possible sequences → intractable!

$$\mathcal{L}_{ ext{seq-KD}}^{t} pprox - \sum_{\mathbf{x} \in \mathcal{R}_{t}} \sum_{\mathbf{y} \in \mathcal{Y}^{*}} \mathbb{1}\{\mathbf{y} = \tilde{\mathbf{y}}\} \log(p(\mathbf{y}|\mathbf{x}; \theta_{t}))$$

$$\mathcal{L}_{\text{seq-KD}}^t = -\sum_{\mathbf{x} \in \mathcal{R}_t} \sum_{\mathbf{y} \in \mathcal{Y}^*} p(\mathbf{y} | \mathbf{x}; \theta_{t-1}) \underbrace{\log(p(\mathbf{y} | \mathbf{x}; \theta_t))}_{\text{Student sequence-level distribution}}$$

Note: we are summing over all possible sequences → intractable!

$$\mathcal{L}_{\text{seq-KD}}^{t} \approx -\sum_{\mathbf{x} \in \mathcal{R}_{t}} \sum_{\mathbf{y} \in \mathcal{Y}^{*}} \mathbb{1}\{\mathbf{y} = \tilde{\mathbf{y}}\} \log(p(\mathbf{y}|\mathbf{x}; \theta_{t}))$$
$$= -\sum_{\mathbf{x} \in \mathcal{R}_{t}} \log(p(\tilde{\mathbf{y}}|\mathbf{x}; \theta_{t}))$$

Sequence-KD in practice

- At the end of previous task t-1, we run beam search decoding over the rehearsal and we store the resulting pseudo-transcripts.
- During current task t, we compute the seq-KD loss using the previous equation and we minimize it (together with the CE loss).

Main Results

Method	SLURP-3				SLURP-6			
	Avg Acc	Last Acc	Avg WER	SLU F1	Avg Acc	Last Acc	Avg WER	SLU F1
Offline	85.84	-	20.46	70.59	85.84	<u> </u>	20.46	70.59
Fine-tuning	46.27	18.36	35.82	49.25	33.56	12.42	46.26	37.88
Rehe-5% rand Rehe-1% rand	79.79 71.30	74.82 61.47	25.79 29.13	65.85 60.05	77.12 66.11	73.11 59.37	28.87 34.77	63.22 55.33
Rehe-1% iCaRL [1]	71.49	61.66	28.62	60.23	67.55	62.55	33.82	56.09
+ audio-KD [2]	72.14	63.03	28.68	61.08	68.40	62.83	32.04	58.15
+ token-KD	71.79	61.54	28.82	61.88	68.36	62.53	32.47	58.20
+ seq-KD	76.12	68.94	28.56	61.50	71.56	64.82	32.50	58.29

^[1] Rebuffi et al., iCaRL: Incremental Classifier and Representation Learning, 2016.

^[2] Cappellazzo et al., An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding, 2023.

Ablation Study: Combining Multiple Losses

Combination	Avg Acc	Last Acc	Avg WER	SLU F1
audio + token	68.13	61.50	32.46	57.30
audio + seq	72.48	65.25	31.37	60.00
seq + token	72.07	63.46	33.08	58.25
audio + seq + token	71.83	65.45	32.55	58.48

Accuracy Trend Task by Task

Conclusion and Future Work

- We proposed two losses that operate at the decoder side to attenuate forgetting
- The *seq-KD* provides interesting gain for the evaluating metrics
- Its combination with the *audio-KD* results in the best results
- The proposed losses are applied only to the rehearsal data, which is a tiny fraction of the entire dataset (1%) → limited additional compute time.
- What's next? Better approx of the seq-KD method is possible: multiple hypotheses
 with corresponding probs can be used! However, storage requirements scale linearly
 with the # of hypotheses → a tradeoff is needed!

Thank you for your attention! Questions?

CIL for joint ASR-SLU

- Spoken Language Understanding (SLU): intent classification + entity classification (aka slot-filling).
- In our setting new intent classes emerge sequentially.
- Intent/entities predicted along with the real transcription using an ASR encoder-decoder model.

email_sendemail _SEP person _FILL charlotte _SEP reply email to charlotte