Base de données - CM2

Inès de Courchelle 2021-2022

Rappel

Exemple d'un MCD complet

Du MCD au MLD?

Mais Pourquoi?

- Vérifier l'intégrité des entités et des attributs
 - chaque propriété doit être élémentaire
 - chaque information ne doit apparaître qu'une seule fois dans une entité donnée
 - chaque propriété doit prendre une et une seule valeur
- Éviter la redondance d'information
- Avoir un langage se rapprochant de la machine

Comment passer du MCD au MLD?

Plan

- 1. Vérification de notre MCD
- 2. Règles de passage du MCD au MLD3. Élaboration des dépendances fonctionnelles

Comment passer du MCD au MLD?

Plan

- 1. Vérification de notre MCD
- 2. Règles de passage du MCD au MLD3. Élaboration des dépendances fonctionnelles

Plusieurs cas

- 1. Propriété élémentaire
- 2. Intégrité référentielle
- 3. Attribut multiple
- 4. Attribut dérivé
- 5. Fusion/suppression

Objectif

Vérifier si notre modèle est correcte et apporter les corrections

Propriété élémentaire

Explication

Ici, l'attribut membres peut prendre plusieurs valeurs

id	nom	dateDeFormation	membres
01	Led Zeppelin	1968	{Jimmy Page, Robert Plant, John Paul Jones, Bonzo }
02	Les Nuls	1987	{Alain Chabat, Chantal Lauby, Dominique Farrugia, Bruno Carette}

Solution

- L'attribut membre est un ensemble/tableau
- Il faut créer une entité

Propriété élémentaire

Contrainte d'intégrité

Explication

Quelle est le rapport entre l'âge et l'appelation d'une matière?

Solution

- Il ne faut pas pas mélanger les torchons et les serviettes
- Il ne faut pas pas mélanger des choux et des carottes
- ...
- C'est pas de l'informatique, c'est du rangement !

Contrainte d'intégrité

Attribut multiple

Pareil que la contrainte d'intégrité

Entité

Transposition

id	nom	prénom	numéroTel1	numéroTel2
01	Neill	Sam	05 59 42 54 54	06 58 54 45 54
02	Goldblum	Jeff	05 59 66 66 66	06 66 66 66 66

- Si Neill change de numéro de téléphone. Lequel, je change ?
- Si Jeff Goldblum possède un 3ieme numéro de téléphone. Je le rajoute, où ?

Attribut multiple

Attribut dérivé

La règle

Il est interdit de mettre de stocker des attributs que l'on peut calculer

Fusion/suppression

<u>id</u>

nom

prénom

Dentiste

id

non

prénom

Medecin

<u>id</u> nom

prénom

type

Dermatologue

id

nom

prénom

Comment passer du MCD au MLD?

Plan

- 1. Vérification de notre MCD
- 2. Règles de passage du MCD au MLD
- 3. Élaboration des dépendances fonctionnelles

Passage du MCD au MLD

Objectifs

- Reprendre le contenu du MCD mais préciser la structure et l'organisation des données
- Formater les données pour les convertir à un format << Ordinateur >>

Format

- Une ligne = Une relation
- Les attributs sont entre parenthéses
- Les clés sont soulignées

Passage du MCD au MLD

Vocabulaires

Clé est un ensemble minimal des attributs de la relation dont les valeurs identifient à coup sûr une occurrence

Clé primaire est une des clés candidates

Clé étrangère est formée d'un ou plusieurs attributs qui constituent une clé primaire dans une autre relation

Objectif

- Rendre une spécialisation d'une entité unique
- l'id ? nan ?

On l'a déjà vu ?

Dans notre cas

Mais comment?

Comment différencier les deux personnes

Dans notre cas

Mais comment?

Le numéro de téléphone ?

Mauvaise idée s'ils changent ?

Dans notre cas

Mais comment?

Ajouter une clé unique par entité

Du coup?

La clé primaire est donc la clé que l'on soulignait dans le MCD

Comment on la représente dans le MLD?

Pareil on la souligne (on va voir ça après)

Ojectifs

- faire un lien avec une autre entité
- récuperer toutes les informations d'une entité

Format

- Elle doit forcement être liée à une clé primaire
- Exemple de son utilité

Exemple 1 - MCD

- Une voiture appartient à une seule personne
- Une personne peut avoir plusieurs voiture

Les informations

id	designation	marque
01	Twingo	Renault
02	Polo	volkswagen
03	Polo	volkswagen
04	206	Peugeot

id	nom	prénom
01	Dansletas	Alphonse
02	Enfaillite	Mélusine
03	Tuzzmanie	Gédéon
04	Micotton	Milaine

Comment dire que Mélusine possède la Polo dont l'id est 02 ?

La solution

On rajoute une colonne dans le tableau des voitures

id	designation	marque	idPersonne
01	Twingo	Renault	01
02	Polo	volkswagen	02
03	Polo	volkswagen	01
04	206	Peugeot	03

id	nom	prénom
01	Dansletas	Alphonse
02	Enfaillite	Mélusine
03	Tuzzmanie	Gédéon
04	Micotton	Milaine

- La personne 01 possède la voiture 01 et la voiture 03
- La personne 02 possède la voiture 02
- La personne 03 possède la voiture 04
- La personne 04 possède aucune voiture!

Exemple 2

Les informations

idActeur	nom	prenom
01	Radcliffe	Daniel
02	Grint	Rupert
03	Grant	Hugh
04	Rickman	Alan

idFilm	titre	dateSortie
01	Harry Potter 1	05/12/2021
02	Raison et sentiments	28/02/1996
03	Love Actually	03/12/2003
04	Harry Potter 2	04/12/2002

Comment je peux lier un acteur et un film?

Comment je peux lier un acteur et un film?

réponse : via la clé étrangère

idActeur	nom	prenom
01	Radcliffe	Daniel
02	Grint	Rupert
03	Grant	Hugh
04	Rickman	Alan

idFilm	titre	dateSortie
01	Harry Potter 1	05/12/2021
02	Raison et sentiments	28/02/1996
03	Love Actually	03/12/2003
04	Harry Potter 2	04/12/2002

Solution

On va relier les ids de l'acteur et du film

#idFilm	#idActeur
01	01
01	02
01	04
03	03
04	03

Les règles

C'est partie!

Maintenant qu'on a compris le principe on va utiliser les règles officielles

R1

Toute entité est représentée par une relation. Chaque attribut de l'entité devient un attribut de la relation. La clé est conservé en tant que clé primaire de la relation.

MCD

MLD

Médecin(<u>id</u>,nom,prénom,type)

C'est pas compliqué, je recopie quoi ?!

R2

Toute association qui associe plus de deux entités (ternaire et au-delà) est représentée par une relation. La clé de chaque entité devient primaire et étrangére.

MCD

MLD

Film(<u>idFilm</u>,titre)
Comedien(<u>idComedien</u>,nom)
Realisateur(<u>idRealisateur</u>,nom)
Tourner(#idFilm,#idComedien,#idRealisateur)

ATTENTION : Incomplet car il faut obligatoirement une clé primaire !

R2

- Il y a une seule clé primaire composée des 3 clés
- Il y a 3 clés étrangéres

MLD

Film(idFilm,titre)

Comedien(<u>idComedien</u>,nom)

Realisateur(<u>idRealisateur</u>,nom)

Tourner(<u>#idFilm</u>,<u>#idComedien</u>,<u>#idRealisateur</u>)

R3

Toute association binaire dont les cardinalités maximales sont n de chaque coté devient une relation. La clé de chaque entité devient primaire et étrangére.

MCD

MLD

- Concert(idConcert,titre)
- Musicien(idMusicien,nom)
- Jouer(<u>#idConcert,#idMusicien</u>,date)

TIPS Quand une association a un attribut il y a toujours une relation qui est créée (et les cardinalités max sont toujours N et N des deux cotés)

MCD

MLD

- Concert(<u>idConcert</u>,titre)
- Musicien(<u>idMusicien</u>,nom)
- Jouer(<u>#idConcert,#idMusicien</u>,date)

Ici la relation Jouer est éronnée d'un point de vue sémantique

Si un musicien joue dans un festival à plusieurs dates différentes!

R3 + affinités

idConcert	titre
01	Woodstock
02	Monterey Pop Festival
03	Hellfest
04	Garorock

idMusicien	nom
01	Lemmy
02	Country Joe
03	Steel Panther
04	Canned Heat

Comment faire apparaitre le fait que lemmy est joué plusieurs fois au hellfest?

<u>#idConcert</u>	<u>#idMusicien</u>	date
01	02	1969
02	04	1967
03	03	2017
03	01	2015

<u>#idConcert</u>	<u>#idMusicien</u>	date
04	05	2013
03	01	2005
03	03	2019
03	0	2010

Problème : 2 clés primaires identiques

Ai-je le droit d'avoir 2 clés primaires identiques?

NON

Quel est l'objectif d'une clé primaire?

L'unicité

Comment vais je faire?

Une solution => la clé primaire n'est plus un duo mais un trio

R3 + affinités

- La clé primaire n'est plus un duo mais un trio
- Comme cela la clé primaire est unique dans tous les cas

- Concert(<u>idConcert</u>,titre)
- Musicien(<u>idMusicien</u>,nom)
- Jouer(<u>#idConcert,#idMusicien,date</u>)

<u>#idConcert</u>	<u>#idMusicien</u>	<u>date</u>
01	02	1969
02	04	1967
03	03	2017
03	01	2015

<u>#idConcert</u>	<u>#idMusicien</u>	<u>date</u>
04	05	2013
03	01	2005
03	03	2019
03	01	2010

R4

Toute association binaire dont les cardinalités maximales sont 1 (d'un côté) et n (de l'autre), n'est par représentée par une relation.

MCD

MLD

- Sorcier(<u>idSorcier</u>,nom,prénom,age)
- Baguette(<u>idBaguette</u>,taille,couleur,prix,description,#idSorcier)

R4

Un autre exemple!

MCD

MLD

- Personnage(<u>idPerso</u>,nom,#idJoueur)
- Joueur(<u>idJoueur</u>,nom)

R4

Nous considérons le schèma suivant :

Joueur

idJoueur	nom
01	Sasha
02	Ondine
03	Pierre

Equipe

idEquipe	intitulé
01	bleu
02	rouge
03	jaune

Comment lier Equipe et Joueur ? 3 possibilités que l'on va tester

- 1. Créer une nouvelle relation
- 2. Mettre la clé étrangère idJoueur dans Equipe
- 3. Mettre la clé étrangère de idEquipe dans Joueur

Solution 1 - Créer une nouvelle relation 1/2

Appartenir(<u>#idJoueur,#idEquipe</u>)

Nous obtiendrons un tableau suivant :

#idJoueur	#idEquipe
01	01
02	02
03	01
01	02

Ligne 1

- Le joueur 01 appartient à l'équipe 01
- Si on relie les clés étrangères avec les clés primaires associées
- Sasha appartient à l'équipe bleu

Ligne 2

- Le joueur 02 appartient à l'équipe 02
- Si on relie les clés étrangères avec les clés primaires associées
- Ondine appartient à l'équipe rouge

Ligne 3

- Le joueur 03 appartient à l'équipe 01
- Si on relie les clés étrangères avec les clés primaires associées
- Pierre appartient à l'équipe bleu

Ligne 4

- Le joueur 01 appartient à l'équipe 02
- Si on relie les clés étrangères avec les clés primaires associées
- Sasha appartient à l'équipe rouge

Solution 1 - Créer une nouvelle relation 2/2

Appartenir(<u>#idJoueur,#idEquipe</u>)

Nous obtiendrons un tableau suivant :

#idJoueur	#idEquipe
01	01
02	02
03	01
01	02

SQLment parlant

- c'est juste!
- il n'y aura pas de doublons dans la table Appartenir

Cardinalement parlant

- c'est faux !
- Un joueur ne peut appartenir à plusieurs équipes!

Sasha appartient déjà à l'équipe Bleu.

Solution 2 - idJoueur dans Equipe 1/2

Equipe(idEquipe,intitule,#idJoueur)

Nous obtiendrons un tableau suivant :

idEquipe	intitule	#idJoueur
01	Bleu	{01,02}
02	Rouge	{03,02}
03	Jaune	{03,02,01}

Ligne 1

l'équipe 01 a pour intitulé Bleu et contient le joueur 01 et le joueur 02

Ligne 2

l'équipe 02 a pour intitulé Rouge et contient le joueur 03 et le joueur 02

Ligne 3

l'équipe 03 a pour intitulé Jaune et contient le joueur 03, le joueur 02, et le joueur 01

Solution 2 - idJoueur dans Equipe 2/2

Equipe(idEquipe,intitule,#idJoueur)

Nous obtiendrons un tableau suivant :

idEquipe	intitule	#idJoueur	
01	Bleu	{01,02}	
02	Rouge	{03,02}	
03	Jaune	{03,02,01}	

SQLment parlant

- c'est faux !
- il n'est pas possible des valeurs multiples!

Cardinalement parlant

- c'est faux
- Aucun moyen de vérifier si un joueur n'apparaît pas plusieurs fois!

Donc cette solution est fausse!

Solution 3 - idEquipe dans Joueur 1/2

Joueur(idJoueur, nom,#idEquipe)

Nous obtiendrons un tableau suivant :

idJoueur	nom	#idEquipe
01	Sasha	01
02	Ondine	02
03	Pierre	03
04	Chen	01
05	Jessie	02
06	James	02

Ligne 1

le joueur 1 appartient à l'équipe 01

Ligne 2

le joueur 2 appartient à l'équipe 02

Ligne 3

le joueur 3 appartient à l'équipe 03

Ligne 6

le joueur 6 appartient à l'équipe 02

Solution 3 - idEquipe dans Joueur 2/2

Joueur(idJoueur, nom,#idEquipe)

Nous obtiendrons un tableau suivant :

idJoueur	nom	#idEquipe
01	Sasha	01
02	Ondine	02
03	Pierre	03
04	Chen	01
05	Jessie	02
06	James	02

SQLment parlant

• c'est Juste!

Cardinalement parlant

- c'est Juste!
- un joueur appartient à une seule et unique équipe et une équipe peut avoir plusieurs joueurs

Cas particulier

Il faut faire des choix parfois!

MCD

MLD

- Citoyen(<u>idCitoyen</u>,nom,prénom,age)
- Candidat(<u>idCandidat</u>,parti,#idCitoyen)

Comment passer du MCD au MLD?

Plan

- 1. Vérification de notre MCD
- 2. Règles de passage du MCD au MLD3. Élaboration des dépendances fonctionnelles

Dépendance Fonctionnelle

Définition

- Liens entre deux attributs présent dans la BD
- Deux données sont en dépendance fonctionnelle :

si la connaissance d'une valeur de A détermine la valeur de B

Dépendance Fonctionnelle

- Un numéro de sécurité social determine un seul nom de famille,
 - celui du titulaire du numéro
 - car plusieurs personnes peuvent avoir le même nom
- Au nom de Etcheverry correspond plusieurs **N° de secu** : 290106402 et 298106405
 - Le **nom** ne permet pas de trouver le **N° de sécu**
 - Le **N° de secu** permet de trouver le **nom** d'une personne
 - N° secu -> nom

N° secu	nom	prenom	téléphone
290106402	Etcheverry	Gisèle	0602234598
298106405	Etcheverry	Gertrude	0555456512
245026407	Etchegaray	Germaine	0514325324
299076489	Etchegaray	Maité	0765325656

De manière générique!

Définition

- Soit A et B deux groupes d'attributs d'une relation R(A,B,...)
 - on dit que A -> B (<< A détermine B >>)
 - si à une valeur donnée de A correspond tout au plus une valeur de B

Dépendance Fonctionnelle

Les différentes propriétés

- Réflexivité
- Augmentation
- Transitivité
- Union
- Pseudo-transitivité
- Décomposition

Objectifs

- Trouver les liens entre les attributs
- Trouver les liens entres les relations
- Factoriser de l'information
- •

Dépendance Fonctionnelle

N° skate	type	marque	taille	couleur	N° secu
123	maga deck	Primitive	7'8	rose	290106402
546	deck 2	Zoo york	8,2	vert	245026407
789	red	Birdhousse	8,44	bleu	298106405
159	komodo	Jart	8	rouge	298106405

Réflexivité

Définition

Tout ensemble d'attribut détermine lui même (ou une partie de lui-même)

- X -> X
- A,B -> A

N° skate -> N° skate	123 ->123
N° skate, type -> N° skate	123,komodo->123

Augmentation

Définition

- **SI** X -> Y
- **ALORS** X,Z -> Y

SI type -> marque	komodo -> Jart
ALORS taille, type -> marque	8,komodo-> Jart

Transitivité

Définition

- **SI** X-> Y et Y -> Z
- ALORS X->Z

SI N° skate -> type et type -> marque	123 -> komodo et komodo -> Jart
ALORS N° skate -> marque	123-> Jart

Union

Définition

- **SI** X -> Y et X -> Z
- **ALORS** X -> Y,Z

SI N° skate -> type et N° skate -> marque	123 -> komodo et 123 -> Jart
ALORS N° skate -> type,marque	123-> komodo,Jart

Autres

Pseudo-transitivité

- **SI** X -> Y et Y,W -> Z
- **ALORS** X,W -> Z

Décomposition

- **SI** X -> Y,Z
- **ALORS** X-> Y et X -> Z

Les types de DFs

La liste

- DF Elémentaire
- DF Directe

Objectif

Utiliser les différentes propriétés (Réfléxivité, Augmentation, Union, ...) pour simplifier, soulever des problèmes, améliorer le MCD et/ou le MLD

DF élémentaire (DFE)

Définition 1

X -> Y est une DF élementaire

- Si Y ne dépend pas d'un sous-ensemble de X (X est la plus petite quantité d'information déterminant Y)
- NB: Y est un attribut unique n'appartenant pas à X (Y ne contient pas X) et il n'existe pas X' contenant X tel que X' -> Y

Définition 2

AB -> C est une DF élementaire Si ni A et ni B pris seul ne définissent C

Par définition, les DF à deux rubriques (A -> B) sont toujours élémentaires

DF élémentaire (DFE)

Exemples

DF Élémentaires

- réferenceProduit -> libProduit : élémentaire car deux rubriques
- numFacture, réferenceProduit -> quantitéFacturée est élémentaire : ni la référence produit seule, ni le numéro de facture seul permettent de déterminer la quantité
- I -> J : élémentaire car deux rubriques

DF Non Élémentaires

- numFacture, réferenceProduit -> libProduit : non élémentaire car la référence du produit suffit à déterminer le libellé
- AB -> CB : non élémentaire car CB n'est pas un attribut, mais un groupe d'attributs
- N°SS -> Nom, Prénom : non élémentaire car c'est un groupe d'attributs
- AB -> A: non élémentaire car A est incluse dans AB

Graphe des DFE

Formalisme

- Noeuds = attributs
- Arcs = DF
- Graphe orienté dont les noeuds sont les attributs et les arcs sont les DFE

Objectif

Déterminer la clé de la relation

Exemple

Soit la relation R(A,B,C,D,E) avec les DFE:

- A-> B,C
- A,D -> E

Les clés : R(<u>A, D</u>, B,C,E)

Dépendance fonctionnelle Directe

Définition

E -> F est directe

• s'il n'existe pas G tel que E -> G et G -> F

Exemples

Voiture(<u>id</u>, marque, type, puissance, couleur)

DF Directes

- id -> type : direct
- id -> couleur : direct

DF Non directes

id -> marque : non direct car id -> type et type -> marque

Conclusion

La morale

Un bon schéma relationnel doit être issu de la décomposition universelle (normalisation)

Différence entre MCD et MLD

- Dans MCD, il y a un C comme dans carré
- Dans MLD, il y a un L comme dans ligne