CS112: Data Structures

Lecture 05

Structures for search/add/delete

Review: Recursion

- Recursion is a way of looking at a problem
- EG problem: print pattern like

```
*
```

* *

* * *

* * * *

Recursion

Non-recursive view

A size 4 triangle is four lines, lengths 1, 2,
3, 4

Recursion

Recursive view

- A size 4 triangle is
 - A size 3 triangle, followed by
 - A line of length 4

Recursive Definitions in Math

Factorial

n! = n * (n-1)!
1! = 1
e.g.,
$$3! = 3*2! = 3*(2*1!) = 3*(2*1) = 6$$

- Definition looks circular, but is not
- Two parts:
 - recursive case
 - base case

Recursive Methods

- Example: palindrome
 - same letters backwards as forwards (assume no space or punctuation)
 - e.g, radarmadam im adama man a plan a canal panama
- How can we write a method to test if a string is a palindrome?

Recursive Definition

- A string is a palindrome if
 - first and last characters are the same, and radar
 - rest of string without first and last is a palindrome

ada

• A string of length 0 or 1 is a palindrome

See RecString.java

Integer Power

How many multiplies does it take to calculate 38?

$$3*3 = 9$$
 $9*3 = 27$
 $27*3 = 81$
 $81*3 = 243$
 $243*3 = 729$
 3^{6}
 $729*3 = 2187$
 3^{7}
 $2187*3 = 6561$
 3^{8}

$$3*3=9$$
 $9*9=81$
 3^{4}
 $81*81=6561$
 3^{8}
 $3*'s$

$$3^{9/2}*3^{9/2}=3^{(9/2+9/2)}$$
 $=3^{9}$

Recursive Definition

• y even:
$$x^{y} = x^{y/2} * x^{y/2} = (x^{y/2})^{2}$$

• y odd: $x^{y} = x * x^{\lfloor y/2 \rfloor} * x^{\lfloor y/2 \rfloor}$
 $= x * (x^{\lfloor y/2 \rfloor})^{2}$

- $y = 1: x^y = x$
- y = 0: $x^y = 1$
- See Power.java

- Seeing recursion
 - look at a problem as if it were "pregnant":
 - inside it is a small version of the same problem

Designing Recursive Methods

Print triangle of *s

```
*
**
**
**
```

- Print a triangle size 4,
 - Can you see how solving a similar but smaller problem would help solve this one?

Designing Recursive Methods

Print triangle of *s

- To print triangle size 4,
 - print a triangle of size 3
 - print 4 stars

Ruler Pattern

```
*
**
*
* * *
*
* *
*
***
*
**
*
* * *
*
* *
*
```

Ruler Pattern

• Suppose you have a method that prints

Ruler Pattern

* *

*

- Smaller problem appears twice!
- To do ruler 3:
 - do ruler 2
 - print 3 *s
 - do ruler 2
- See RecString.java

"Recursive" Data Types

- We can look at a reference to a node in two ways
 - It refers to a specific node

It refers to the entire list that the node starts

"Recursive" Data Types

• If a reference to a node means the whole list, then the next field of that node is "the rest" of the list.

 "Next is the first node of the rest of your list."

"Recursive" Data Types

See RecNode2.java

NodeToString

nodeToString(first.next) is "7 -> [end]"

first.data is 4

nodeToString(first) returns "4 -> 7 ->[end]"

InsertInOrder

InsertInOrder

Recursive call

InsertInOrder

InsertInOrder

Recursive call

InsertInOrder

AddAtTail

Reverse

WithoutAll

Recursive call

Original call

Debugging List Code

• See BadList.java

New: Add / Delete / Search

- Basic task:
 - Set of data items
 - E.g. "Al", "Bob", "Cindy"
 - Operations:
 - Add an item
 - Delete an item
 - Search for an item
- Goal: minimize

worst case O(add + delete + search)

Unordered Array

- Insert O(1) if there's space
- Delete O(1) (move last element)
- Search O(n) where n is size of set
- Overall O(n)

Ordered Array

- Insert O(n)
- Delete O(n)
- Search ??
- Overall ??

Searching an ordered array Binary search

- requires sorted values
- each comparison rules out half of the remaining elements
- O(log(n)) we will prove this later
- Find A, find R

Searching an array Performance

- Search among 1 billion entries
- Check 1 million entries per second
 - Sequential search
 - 1 billion operations needed
 - Requires 1000 seconds about 20 minutes
 - Binary search
 - 30 operations needed
 - Requires 30 microseconds
 - 30 million times faster

Ordered Array

- Insert O(n)
- Delete O(n)
- Search O(log n)
- Overall O(n)

Unordered Linked List

- **Insert O**(1)
- **Delete O(1)**
- Search O(n)
- Overall O(n)

Ordered Linked List

- Insert O(n)
- **Delete O(1)**
- Search O(n)
- Overall O(n)

Links Speed Up Add/Delete

- Idea: Use linked list to make add / delete faster
- Problem: Search of linked list is O(n)
 - Why not binary search on linked list?

Links Speed Up Add/Delete

- Idea: Use linked list to make add / delete faster
- Problem: Search of linked list is O(n)
 - Why not binary search on linked list?
- Idea: links to two places

Trees

- Nodes and arcs (edges)
- Relationships:
 - Parent and Child
 - Root and Subtree

Trees

- Root has no parents
- Leaf node has no children
- All nodes except the root have a single parent
- There is exactly one path from root to any node

Trees

Height of tree

• Depth of a node

Binary tree

each node has at most 2 subtrees

left and right subtree

- Examples of binary trees
 - 20 questions game (after animal/vegetable/mineral)
 - Arithmetic expressions

Binary tree

- Strict binary tree
 - only 0 or 2 subtrees
 - why not "only 2 subtrees"?
- Complete binary tree
 - every level but last is full,
 - last filled left-to-right

Recursive Data Structures

- Recursive definition of a binary tree
 - empty (i.e. null)
 - not empty
 - the root
 - a left subtree, which is a binary tree
 - a right subtree, which is a binary tree

Recursive functions

 Common form of function on a tree is recursive

```
f(tree):
   if (tree == null) return "terminal value"
   else return g(data, f(tree.lst), f(tree.rst))
```

Recursive functions height

```
f(tree):
    if (tree == null) return "terminal value"
        else return g(data, f(tree.lst), f(tree.rst))
height(tree):
    if (tree == null) return -1
        else return 1 + max(height(tree.lst, height(tree.rst))
```

g(d, lv, rv) = 1 + max(lv, rv)

Recursive functions height

Recursive functions nodeCount

g(d, lv, rv) = 1 + lv + rv

Recursive functions nodeCount

Recursive functions Sum

f(tree):

if (tree == null) return "terminal value"
else return g(data, f(tree.lst), f(tree.rst))

sum(tree):

You write this!

g(d, lv, rv) = ??

Recursive functions Has 0?

f(tree):

if (tree == null) return "terminal value"
else return g(data, f(tree.lst), f(tree.rst))

has0(tree):

You write this!

g(d, lv, rv) = ??