Killing form

Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra with basis $\{b_1, b_2, \dots b_m\}$. Then \mathfrak{g} is a \mathfrak{g} -module under the adjoint action: x acts on \mathfrak{g} by

$$\operatorname{ad}_x: \mathfrak{g} \to \mathfrak{g}$$
$$y \mapsto [x, y].$$

The Killing form is the associative bilinear form $K(,): \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ defined by

$$K(x, y) = \text{Tr}(\text{ad}_x \text{ad}_y).$$

It is associative in the sense that K([x,y],z) = K(x,[y,z]). This is equivalent to the property ad-invarience, that K([x,y],z) = -K(y,[x,z]). The Killing form is also nondegenerate, i.e.

$$S := \{x \in \mathfrak{g} \mid K(x,y) \text{ for all } y \in \mathfrak{g}\} = 0,$$

precisely when \mathfrak{g} is semisimple (note: this depends on the fact that char $\mathbb{C} = 0$. When char F = p, we have nondegenerate \Rightarrow semisimple, but semisimple \Rightarrow nondegenerate). To show this, it is useful to note that the associative property of K implies that S is an *ideal* of \mathfrak{g} .

1 Humphrey's treatment of trace forms and existence of K

Recall a Lie algebra $\mathfrak g$ is solvable if $\mathfrak g^{(l)}=0$ for some k, where $\mathfrak g^{(0)}=\mathfrak g$ and $\mathfrak g^{(i)}:=[\mathfrak g^{(i-1)},\mathfrak g^{(i-1)}].$

Theorem 1.1 (Cartan's Critereon). Let \mathfrak{g} be a subalgebra of $\mathfrak{gl}(V)$, $\dim V = n$. Suppose that $\operatorname{Tr}(xy) = 0$ for all $x \in [\mathfrak{g}, \mathfrak{g}], y \in \mathfrak{g}$. Then \mathfrak{g} is solvable.

We can use this to show that every semisimple \mathfrak{g} has a nondegenerate (non-trivial) Killing form. More generally, if $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ is a faithful (injective) representation of \mathfrak{g} , then we can define a similar form $\beta : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ by

$$\beta(x,y) = \text{Tr}(\varphi(x)\varphi(y)).$$

Then β is all the beautiful things we wish of it: it's symmetric (clearly), ad-invarient (associative), and nondegenerate ($\varphi(S) \cong S$ is a solvable ideal, so is in Rad $\mathfrak{g} = 0$). In fact, the Killing form is just β in the special case that $\varphi = \mathrm{ad}!$

Let \mathfrak{g} be one of the classical Lie algebras (type A, B, C or D), and let x_V be the image of $x \in \mathfrak{g}$ under the defining representation. Then our favorite form on \mathfrak{g} is he form $\langle, \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ by

$$\langle x, y \rangle = \text{Tr}(x_V y_V),$$

It can be shown that

$$K(x,y) = \begin{cases} 2(r+1)\langle x,y\rangle & \text{in type } \mathfrak{sl}_{r+1}, \, \mathfrak{sp}_{2r} \\ (2r-1)\langle x,y\rangle & \text{in type } \mathfrak{so}_{2r+1}, \\ 2(r-1)\langle x,y\rangle & \text{in type } \mathfrak{so}_{2r}. \end{cases}$$

References

[Hum] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1997.

[Ser] J.P. Serre, Complex Semisimple Lie Algebras, Springer, New York 1987.