

Handwritten Assignments 6

Question 1:

For the circuits in Fig. 1, assume that the transistors have very large β . Some measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents.

Fig. 1

Question 2:

In the circuit shown in Fig.2, current source I is 1.1 mA, and at 25°C v_{BE} = 680 mV at i_E = 1mA. At 25°C with β =100, what currents flow in R1 and R2? What voltage would you expect at node E? Noting that the temperature coefficient of v_{BE} for I_E constant is -2 mV/°C, what is the T_C of v_E ? For an ambient temperature of 75°C, what voltage would you expect at node E? Clearly state any simplifying assumptions you make.

Fig. 2

Question 3:

Using $\beta=\infty$, design the circuit shown in Fig.3 so that the emitter currents of Q_1 , Q_2 , and Q_3 are 0.5 mA, 0.5 mA, and 1 mA, respectively, and $V_3=0$, $V_5=-2$ V, and $V_7=1$ V. For each resistor, select the nearest standard value utilizing the table of standard values for 5% resistors in Appendix J. Now, for $\beta=100$, find the values of V_3 , V_4 , V_5 , V_6 , and V_7 .

Fig. 3