1. Úvod do bezpečnosti

1.1 Základní pojmy

- Aktiva: cokoliv, co je majitelem považováno za cenné

- *Hrozba*: možnost ztráty aktiv, popsána:

- nositelem hrozby (konkurenční firma)

objektem hrozby (zákaznická db)

mechanismem hrozby (krádež db, kopírování dat)

- Ochrana: opatření snižující četnost nebo velikost ztrát aktiv

různý charakter (administrativní, organizační, personální, technické opatření)

– Bezpečnost: stav, kdy ztráta aktiv nepřekračuje stanovenou míru nemůže být absolutní (nelze ochránit před všemi hrozbami)

- Zabezpečení: ucelený systém ochran – komplexní, systematická a efektivní

- Slabina: zranitelné místo

Riziko: pravděpodobnost využití zranitelného místa

- *Incident*: jakákoliv realizace hrozby

- *Průnik*: dopad

pokud při incidentu došlo ke ztrátě aktiv, rozsah škod, důsledek útoku

- Počítačová síť: technické prostředky realizující spojení, výměnu informací mezi PC a umožňují uživatelům komunikaci
- Bezpečnost sítě: neustálý proces (není to stav), kterým má být dosaženo uspokojivého zabezpečení sítě a toto zabezpečení udrženo
 - k zajištění užíváme bezpečnostní služby:
 - autentizace oveření identity
 - *řízení přístupu* autorizace
 - důvěrnost přenášených dat
 - $\quad integrita$
 - nepopiratelnost ochrana proti odmítnutí původu
 - užití kryptografických mechanismů a zařízení k zajištění těchto služeb
- Role: legitimní Alice, Bob (od Rona Rivesta, 1978)
 útočníci Eve, Mallory, Oscar, Trudy (eavesdropper, adversary, opponent)

1.2 Síťové útoky

- dlouhou dobu ignorována, nepředpokládalo se masivní propojení pc Internet
- současnou motivací je malware ekonomické ztráty
- mají nejednotné dělení (aktivní/pasivní útoky, aktivní/pasivní útočník, sw/hw útoky)
- vnitřní útoky (škody způsobené nedbalostí, útok z řad zaměstnanců)
- *vnější útoky* (náhodný či promyšlený útok zvenku)
- pasivní útočník (základní prostředky, odposlech komunikace, hádání údajů)
 - odposlech dat (zachycení a přečtení dat na kom. lince)
 - analýza provozu komunikace (pro šifrovanou komunikaci, četnost dat, interval vysílání a přijímání, potvrzovací zprávy, hlavičky)
 - útok na slabou autentizaci (bruteforce)
 - social engineering (využití neznalosti uživatelů)
 - skenování (nalezení dostupných systémů a služeb pomocí ICMP echo, sken portů TCP,
 UDP, získání seznamu aktivních serverů a služeb)
- aktivní útočník (pokročilé prostředky výpočetní, komunikační, sofistikované útoky)
 - modifikace dat (zachycení přenášených dat, cílená modifikace k vyvolání chyby či nesprávné odezvy)
 - útok opakováním replay attack (zaznamenání komunikaci a znovuposlání)
 - MITM (spoofing, ARP, DHCP, SSL, atd.)
 - DoS (útok na dostupnost služeb, vyřazení z činnosti pomocí vyčerpání komunikační, výpočetní, paměťové kapacity, chyby v implementaci TCP/IP – SynFlood, Ping of Death, atd.)
 - DDoS (účast velkého množství počítačů)
 - ochrana využitím *IPS Intrusion Prevention Systems* a FW
 - útoky postranním kanálem (na dosud bezpečné kryptografické algoritmy, např. AES, RSA, typicky na čipových kartách, mikro kontrolerech, telefonech, cílí na implementaci algoritmu)

2. Konfigurace přepínačů a směrovačů

2.1 Bezpečná konfigurace přepínače

- přepínač (switch), 2. vrstva modelu ISO/OSI
- zabezpečení LAN
- L3 přepínače pracují i se 3. vrstvou
- útoky uvnitř sítě:
 - MAC address spoofing (neautorizovaný příjem cizích zpráv změnou zdrojové adresy MAC na přepínači)
 - ARP poisoning (úprava ARP cache MITM útok)
 - Rogue DHCP server/spoofing (útočník řídí falešný DHCP server a rychleji odpoví na request klientům, podvrhne svou bránu – MITM, DNS nebo přiřadí neroutovatelnou IP – DoS)
 - DHCP starvation (útočník zaplaví DHCP server velkým počtem DHCP requests a snaží se vyčerpat pool IP adres)
 - STP manipulation (Spanning Tree Protocol, útočník se nastaví jako root bridge)
 - MAC address table overflow (či address flooding attack, záplava falešnými zprávami o MAC adresách vyčerpání tabulky MAC adres na přepínači a ten degraduje na HUB)

- $LAN\ storm\ ($ přepínače posílají broadcast všemi porty degradace LAN záplavou paketů, vytížení CPU DoS)
- VLAN útoky
 - *VLAN hopping* (spoofing DTP zpráv, d*ouble-Tagging VLAN* (vnoření extra hlavičky do dat)
- postup bezpečné konfigurace:
 - zabezpečení fyzického přístupu k prvku
 - nastavení bezpečného lokálního přístupu (uživatelé a privilegia)
 - nastavení bezpečného vzdáleného přístupu (SSH klíče RSA 2048b, HTTPS)
 - vypnutí nepotřebných služeb a portů
 - zapnutí dalších bezpečnostních funkcí (DHCP snooping, port security)
 - zajištění záloh konfigurace
 - kontrola konfigurace, testování, ověrování
- konfigurace Cisco přepínače:
 - metody obrany:
 - dynamic ARP inspection
 - port security (omezení počtu MAC adres na port)
 - switchport mode access, switchport port-security, switchport port-security maximum value
 - DHCP snooping (omezení rogue DHCP a DHCP starvation)
 - PortFast (spanning-tree portfast default)
 - Root guard (posiluje umístění root bridge pomocí limitace portů)
 - BPDU guard (blokuje BPDU tam, kde by neměl chodit měl by chodit jen od SW, ne od PC na access portech, spanning-tree portfast bpduguard default)
 - Storm Control (proti LAN storm, storm-control)
 - zmírnění LAN hoppingu (vypnutí trunkingu na portech, nepoužívat VLAN1 pro vše)
 - Private VLAN funkce PVLAN Edge (izolace portů v rámci VLAN, provoz přeposílán jen přes L3 assety)
 - SPAN Switched Port Analyzer (zrcadlení provozu pro sondy IPS)
- shrnutí:
 - bezpečný přístup ke konfiguraci (SSH)
 - port security
 - uživatelské porty na non-trunking switchport mode access
 - PortFast na non-trunking porty
 - BPDU guard na non-trunking porty
 - Root guard na STP root porty
 - manuálně nastavit trunk porty a zakázat DTP na nich
 - konfigurace DHCP snoopingu
 - užití CDP (Cisco Discovery protocol) jen pokud je to nutné
 - nadefinovat vlastní VLAN
 - zakázat nepoužívané porty a přiřadit nepoužívané VLAN
 - PVLAN Edge
 - Vyšší verze SNMP (3) a autentizace u VTP
 - zapezpečit ARP/MAC/IP (DAI, IP Source Guard)

2.2 Bezpečná konfigurace směrovače

- směrovač (router), 3. vrstva ISO/OSI
- hraniční směrovač (edge router)
 - mezi vnitřní sítí a nedůvěryhodnou sítí (vnější)
 - paketová filtrace
 - nutnost fyzické bezpečnosti (uložení, UPS uninterruptible power suply, bezpečnost OS aktualizace, patche, záloha conf, bezpečná konfigurace router hardening bezpečná administrace, zakázání neužívaných portů, služeb, logování)
 - zabezpečení sítě pomocí funkcí směrovače a filtrování provozu
- útoky na směrovače:
 - průnik do nastavení (defaultní hesla)
 - routing table poisoning (změna routovací tabulky pomocí spoofingu routing protokolů)
 - hit-and-run attack (škodlivé pakety na směrovač v náhodných intervalech)
 - $DoS/DDoS\ attack$ (zaplavením pakety a vytížení CPU/RAM, logické útoky Xmas)
 - Packet mistreating attack (implementace škodlivého kódu a špatné zpracování paketů, tvoření smyček, DoS)
- postup bezpečné konfigurace:
 - zabezpečení směrovače (router hardening, fyz. bezpečnost, aktualizace, patch)
 - router hardening:
 - zabezpečit administrativní přístup
 - zobrazit upozornění
 - konfigurovat SSH
 - konfigurovat privilegia uživatelů
 - vypnutí neužitých rozhraní
 - zrušení nepotřebných služeb
 - zákaz skenů (blok ICMP), vypnout CDP u hraničních směrovačů
 - definovat paketovou filtraci (ACL)
 - standardní a rozšířené u Cisco
 - iptables Mikrotik
 - bezpečnostní funkce a protokoly (AAA, IPS, VPN)
 - bezpečný management sítě (restrikce SNMP v3 s autentizací a šifrováním)
 - monitorovat, logovat, kontrolovat logy (syslog)
 - zálohovat, testovat, skenovat odolnost vůči pentestům
 - zabezpečit směrovačem síť (ACL, NAT, bezpečné směrování)
 - konfigurovat další bezp. funkce (modul firewall, VPN brána, podpora AAA, IPS, monitoring, load balancing)
- zabezpečení administrativního přístupu:
 - lokální přístup (konzole, bezp. hesla, chránit i privilegované režimy)
 - vzdálený přístup (SSH, 2048b RSA)
 - autentizace pomocí AAA serverů (TACACS+, RADIUS)
- autentizační protokoly
 - PAP Password Authentication Protocol (slabé, pouze sdílené heslo)
 - CHAP Challenge-Handshake Authentication Protocol (ochrana proti replay, náhodná výzva, sdílené heslo)
 - EAP Extensible Authentication Protocol (autentizační framework, různé verze)
- zabezpečení přístupu pro protokoly a ostatní zařízení:

- EAP autentizace pro servery a služby (device-to-device)
- CHAP/EAP pro přenos Point-to-Point Protocol PP
- autentizace routovacích protokolů (MD5 otisk při sdíleném heslu OSPF, RIPv2)
- autentizace SNMP v3 a NTP v3
- konfigurace Cisco směrovače:
 - jednoduché směrovače mají automatizované procedury, které samy nastaví věci:
 - AutoSecure (auto secure)
 - nastavení základní úrovně zabezpečení (vypnutí globálních služeb, služeb na rozhraních, service password-encryption, logování, banner, login heslo)
 - CLI
 - One-step Lockdown
 - GUI, Security Device Manager
 - NEdělá na rozdíl od AutoSecure:
 - nevypne NTP
 - nekonfiguruje TCP přerušení
 - nekonfiguruje AAA
 - nekonfiguruje ACL antispoofing na vnějších rozhraních
 - nekonfiguruje SPD hodnoty
 - nepodporuje konfiguraci SNMP v3
 - AAA:
 - metody autentizace:
 - non€
 - s heslem (line local)
 - Kerberos 5 (krb5)
 - Radius (group radius)
 - Tacacs+ (group tacacs+)
 - autorizace a accounting pomocí serveru (trackování, logování, shromažďování dat)
 - ACL:
 - zmírňují síťové útoky, kontrola provozu v síti
 - standardní ACL (co nejblíže cílovému uzlu, založeno jen na zdrojových adresách)
 - rozšířené ACL (co nejblíže ke zdroji, který je filtrován)
 - VPN:
 - site-to-site VPN
 - remote-access VPN
 - metody:
 - Cisco IOS SSL VPN (spojení přes prohlížeč a nativní SSL modul)
 - Generic Routing Encapsulation (GRE, zapouzdřuje spojení přes IP, podpora více protokolů, vhodné pro site-to-site VPN)
 - Internet Protocol Security (IPsec, tunelující protokol nad IP, šifrování dat a autentizace stran)
- bezpečnost na Mikrotik směrovačích:
 - Mikro Tik Router
OS, přístup přes GUI – $\mathit{Winbox},$ SSH, Telnet, at
d.
 - funkce: FW, VPN brána, routing, proxy, bridge, hotspot, syslog, trafficmonitor server
 - konfigurace:
 - změna přístupových údajů na admina
 - omezení přístupu podle IP adresy, atd.
 - FW: založen na *linux iptables* (input, output, forward, accept/reject/drop)

3. Bezpečná konfigurace bezdrátových sítí

- signál přenášen volným prostorem, pomocí elektromagnetického vlnění nejčastěji
- podle dosahu (WPAN, WLAN, WMAN, WWAN)
- nejrozšířenější WLAN technologie IEEE 802.11 WiFi
 - řada rozšíření normy, nové funkcionality
 - zvýšení přenosové rychlosti (802.11a, 802.11b)
 - nová frekvenční pásma (802.11n)
 - komplexní zabezpečení *IEEE 802.11i*
- motivace zabezpečení bezdr. sítí:
 - možnost odposlechnutí kýmkoliv v rozsahu (nelze omezit přístup k médiu), nutná implementace bezpečnostních mechanismů
 - autentičnost (authentication), ověření autora zprávy
 - důvěrnost (confidentiality), utajení informace před neoprávněnými uživateli
 - integrita dat (integrity), rozpoznání modifikace při přenosu
 - nepopiratelnost (non-repuditation), odesílatel nemůže popřít, že danou zprávu odeslal

3.1 Zabezpečení

- skrytí SSID:
 - mylně označováno za zabezpečení, přináší správci obtíže a ne bezpečnost
- MAC filtr:
 - filtrování MAC adres klientů
 - vytvoření seznamu povolených MAC adres na AP
 - jednoduše se dá obejít
 - nevýhody pro správce při výměně koncových stanic
- WEP (Wired Equivalent Privacy):
 - již využívá implementace kryptografických algoritmů, což je správná cesta
 - první volitelný způsob zabezpečení
 - snadno prolomitelný:
 - nevhodná implementace šifrovacího algoritmu
 - chybějící management klíčů
 - předvídatelnost obsahu
 - dva typy autentizace:
 - open system (2-way handshake, je autentizován uživatel, který odeslal požadavek na autentizaci se správně vyplněným SSID)
 - shared-key (4-way handshake, účastník odešle požadavek na autentizaci, AP v odpovědi pošle náhodně vygenerovaný řetězec, účastník zašifruje sdíleným WEP klíčem, AP dešifruje a porovná řetězec)

Open System

Shared-Key

- slabiny autentizace:
 - jednostranná (jen strana uživatele)
 - autentizováno zařízení, ne uživatel
 - možnost zachycení výzvy a odpovědi během autentizace, určení tajného klíče
 K pomocí kryptoanalýzy
- důvěrnost:
 - proudová šifra RC4 klíčem $\mathrm{KP} = \mathrm{IV} \mid\mid \mathrm{K}$
 - IV (24b) pro každý paket generován
 - norma 802.11 definovala WEP klíč délky 64b s efektivní délkou 40 (24b IV)
 - RC4 navrhl Ron Rivest z RSA Laboratories
 - jednoduchá struktura, implementace v SW i HW
 - základní požadavek nabezpečnost:
 - IV plus klíč nesmí být stejné pro dvě zprávy
 - WEP nespecifikuje $zm\check{e}nu\ IV$, délka 24b 2^{24} , porušení bezpečnosti RC4
 - klíče jsou zadávány staticky
- integrita dat
 - ICV (integrity check value)
 - CRC-32
 - data nejsou chráněna proti úmyslné modifikaci útočník změní data a přepočítá CRC
 - pouze detekce chyb vzniklých při přenosu či zpracování
- shrnutí slabin WEP:
 - nekompletní implementace kryptografických technik
 - statické klíče, vkládají se ručně, není mechanismus distribuce klíčů
 - efektivní délka klíče 40b je zcela nedostatečná
 - jednostranná autentizace
 - zachycení výzvy a odpovědi možnost získat klíč
 - není specifikováno, jak se generuje IV opakování IV, útok
 - zajištění integrity pouze pomocí CRC
- WPA (WiFi Protected Access)
 - Mezikrok mezi WEP a doporučením 802.11i
 - r. 2002 byly publikovány vybrané části
 - řeší největší problémy WEP při zachování kompatibility

- vlastnosti:
 - autentizace pomocí IEEE 802.1x nebo PSK (Pre-Shared Key)
 - důvěrnost pomocí TKIP (Temporal Key Integrity Protocol)
 - integrita pomocí MIC (Message Integrity Code)
 - kompatibilita se stávajícími zařízeními upgrade firmware
 - pracovní režimy: firemní vs osobní řesení

Režim	Wi-Fi Protected Access-WPA		
Reziii	Autentizace	Šifrování	
Enterprise Mode (firemní mód)	802.1x / EAP	TKIP / MIC	
Personal Mode (osobní mód)	PSK	TKIP / MIC	

- hierarchie a distribuce klíčů:
 - využívá kolekce klíčů
 - základem je výstup úspěsné autentizace, získání hlavního klíče *PMK* (*Pairwise Master Key*), závisí na metodě autentizace, nikdy se nepoužije k šifrování
 - 802.1x PMK z autentizačního serveru z MK
 - PSK PSK = PMK
 - další klíče jsou derivovány z hlavního PMK
 - KCK (Key Confirmation Key) pro MIC během 4-way handshake (4WH)
 - KEK (Key Encryption Key) zajištění důvěrnosti (šifrování) během 4WH
 - *TK* (Temporary Key) šifrování dat (TKIP, CCMP)
 - TMK (Temporary MIC Key) k autentizaci dat, pouze u algoritmu Michael s TKIP
 - autentizace 802.1x:
 - autentizace na portech
 - bezpečnostní rámec pro autentizaci v metalických LAN
 - při autentizaci AP zprostředkovává spojení mezi uživatelem a autentizačním serverem AS (Radius nebo Kerberos)
 - tři entity žadatel, autentizátor, autentizační server
 - jádro je tvořeno protokolem EAP

- 1. žadateli je umožněna komunikace přes EAP, zbytek blokován, startovací rámec
- 2. autentizátor pošle žadateli rámec s žádostí na indentifikaci
- 3. rámec s identif. údaji
- 4. na základě údajů vyšle AS výzvu
- 5. žadatel odpoví
- 6. AS ověří správnost, AP přenastaví řízený port na povolen/odepřen

u EAP-TLS je v poslední zprávě předán MK, MK = hash(PMS, Snonce, ASNonce)

- autentizace PSK:
 - v AP a stanicích je 256b klíč, v dalších fázích má funkci PMK
 - PSK se nezadává přímo, ale místo něj se $zadá\ heslo$ passphrase 8-64 zn.
 - passphrase se převede na PSK/PMK pomocí hashovací funkce PBKDF2
 (Password-Based Key Derivation Function)
 - 4 way handshake

- 1. AP vygeneruje náhodné číslo ANonce, otevřeně odesláno uživateli
- uživatel generuje náhodné SNonce, vypočítá PSK-PTK, odvodí dočasné klíče, s využitím KCK posílá AP zprávu obsahující SNonce a MIC otevřeně, AP přijme zprávu, pomocí SNonce vypočítá PTK s dočasnými klíči, vypočte MIC a ověří shodu (autentizace uživatele, passphrase)
- 3. AP zašle klientovi zprávu s GTK, zašifrované pomocí KEK, uživatel ověří MIC (autentizace AP)
- 4. závěrečná zpráva od uživatele k AP potvrzuje dokončení 4WH

- TKIP:

- protokol navržen k *řešení známých nedostatků WEP*
- proudová šifra RC4 (zpětně kompatibilní)
- MIC nahradí CRC
- generování IV nedefinovaný způsob
- mixování klíče pro každý paket, statické klíče
- distribuce a správa klíčů, příme použití klíče
- integrita dat pomocí MIC:
 - jednocestná hashovací funkce Michael
 - kompromis mezi bezpečností a náročností (bitové posuny, XOR)
 - výstupem 64b kontrolní součet MIC
- generování a užití IV:
 - délka 48b
 - IV jako sekvenční čítač, eliminace možnosti příjmu rámce s jinou než očekávanou hodnotou
- mixování klíčů:
 - každý paket jiný klíč
 - pomocí nelineární substituce S-box

- slabiny:
 - použití PSK lze vypočíst ze znalosti passphrase
 - po odchycení 4WH hádání passphrase a kontrola symetrickým podpisem
 - odchycení nonce, hádání hesla PSK -> PMK -> PTK
 - ověření MIC druhé zprávy
 - jestli najde shodu -> nalezen PTK
 - přenos důležitých hodnot v opentextu obě nonce
 - KRACK přenastavení klíčů, replay attack, znovu resetování nonce
- WPA2 (802.11i):
 - komplexní zajištění informační bezpečnosti pro bezdrátové sítě (IEEE 802.11b/g/a/h/n)
 - navazuje na WPA
 - jiný šifrovací algoritmus RC4 nahrazen standardem AES
 - MIC vypuštěn, integrita zajištěna režimem CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol)
 - hierarchie a distribuce klíčů:
 - stejná jako u WPA
 - kratší délka PTK (Pairwise Temporal Key) KCK (128b) KEK (128 b) TK (128b)
 - dva režimy:
 - personal
 - enterprise
 - PSK nebo 801.x (EAP)

Režim	Wi-Fi Protected Access 2-WPA2		
Reziiii	Autentizace	Šifrování	
Enterprise Mode (firemní mód)	802.1x / EAP	CCMP-AES	
Personal Mode (osobní mód)	PSK	CCMP-AES	

- slabiny:
 - stejná problematika hesla jako u WPA
 - útok na chybně zvolené heslo
 - problém podpory WPS:
 - je ve většině nových routerů ve firmware
 - cílem je zjednodušit nastavení zabezpečení bezdr. sítě
 - 8 místné číslo PIN náchylný na bruteforce, router odpoví, která půlka byla správně – snížení počtu kombinací, poslední číslo je kontrolní součet předchozích sedmi
 - celkově tedy max 11k pokusů, řád hodin
 - díky jádru AES nejsou známé útoky

	Metoda zabezpečení bezdrátové sítě WLAN					
	WEP	WPA (PSK)	WPA	WPA2 (PSK)	WPA2	
Autentizace	nulová	PSK	802.1x	PSK	802.1x	
			(PEAP)		(PEAP)	
Šifrování	WEP	TKIP	TKIP	CCMP	CCMP	
	(RC4)	(RC4)	(RC4)	(AES)	(AES)	
Podnikové	nevhodné	nevhodné	velmi dobrá	nevhodné	nejlepší	
sítě			úroveň		úroveň	
Domácí a	nevhodné	velmi	nevhodné	nejvhodnější	nevhodné	
malé sítě		vhodné	(AS)	(silné heslo)	(AS)	

3.2 Testování bezpečnosti

- WEP, útoky užívají slabinu IV:
 - aktivní (generování provozu obs. IV ARP dotaz, aireplay-ng, Chopchop attack, Caffe Latte attack)
 - pasivní (odposlech komunikace, airodump-ng)
- WPA, útoky užívající slabé heslo:
 - bruteforce (airodump-ng, aircrack-ng)
 - dictionary attack
 - rainbow tables, GPU (hashcat) zrychlení výpočtu hashování PBKDF2 (WPA2 sůl v podobě SSID – předpočteno pro nejvíce používané SSID)
 - WPS zranitelnost
- WPA, zmatení uživatele (social engineering)
 - naslouchání provozu a vytvoření falešného AP
 - vyzrazení hesla
- celkové testování
 - wifite
 - fluxion

4. Firewally a aplikační filtry

4.1 Firewally

- síťový bezpečnostní systém (zařízení, program), monitoruje a kontroluje síťový provoz na základě definovaných pravidel
- omezení příchozího a odchozího provozu pomocí filtračních pravidel
- pojmy:
 - DMZ (demilitarizovaná zóna)
 - část sítě na perimetru mezi vnější a vnitřní sítí
 - bezpečnější umístění serverů a služeb poskytovaných do Internetu
 - pro FW rozhraní se stupněm důvěrnosti mezi vnitřní a vnější sítí
 - honeypot
 - falešná návnada
 - systém nebo SW na serveru vypadá zranitelně a má přitahovat útoky
 - součástí IDS často
- historie FW:
 - paketové filtry (IP a porty): 3. a 4. vrstva ISO/OSI
 - zkoumají IP adresu, hlavičku, porty
 - využití acl
 - rychlost, jednoduchost, nízká cena
 - nižší úroveň zabezpečení, nechrání proti spoofu, ...
 - stavové paketové filtry, stavová inspekce (stateful packet inspection): 3. a 4. vrstva
 - jako paketový fw, ale rozhoduje se ještě podle stavu (nové spojení, existující)
 - ukládá info o stavu jednotlivých spojení do paměti, např. povolit jen odpovědi, atd.
 - ukládá info o socketech (src IP, dest IP, src port, dest port, TCP/UDP)
 - rychlost, jednoduchost, vyšší bezpečnost než paketový fw
 - nižší zabezpečení než aplikační filtry, nechrání proti některým útokům a je náchylný na DDoS

- aplikační brány/proxy firewally: 3., 4. a 7. vrstva
 - aplikační firewall
 - Next Generation FW (NGFW) s deep packet inspection
 - vyšší bezpečnost, prevence proti červům, trojanům, mitigace DDoS
 - vyšší zpoždění, výpočetní náročnost, periodický update a revize, složitost může způsobit vznik chyby či zranitelnosti
 - virtuální firewall
 - provoz mezi virtuálními stroji
 - osobní firewall
 - v OS na 2. až 7. vrstvě
 - součástí OS + IPS/IDS
 - proxy server
 - prostředník v komunikaci, sám vystupuje jako klient
- moderní fw (fw + deep packet inspection na aplikační vrstvě)
- rozšíření dnešních fw IPS, integrace uživatelských entit (ID s IP a MAC), WAF
- load balancing vyvážení zátěže provozu (kombinace fw, stavový F1 a aplikační F2)

- konfigurace firewallu:
 - přímá/vzdálená přes CLI/WebUI
 - $\quad \textit{WebUI} = \textit{dashboard} = \textit{GUI}$
 - SSH či HTTPS přístupy, jiné zakázat
- pracovní režimy:
 - *směrovací režim* (pracuje jako směrovač, propojuje rozhraní podsítě a pakety jsou směrovány podle pravidel a NAT)
 - transparentní režim (bridging mode, pracuje jako přepínač, pouze kontroluje bezpečnostní pravidla)
 - tap režim (pouze monitoring provozu pomocí mirroringu)
 - virtual wire režim (monitoring provozu přímo na spojení + pravidla)
- základní funkce:
 - filtrace a zabezpečení komunikace
 - uplatnění pravidel na IP adresy, protokol, typ provozu, uživatele, zóna původu a cíle (trusted, untrusted, DMZ), seznam zhora dolů podle priorit"
 - akce: povolit/allow/accept, zakázat/reject a poslat ICMP, zahodit/deny/drop bez
 ICMP a další
 - metody pokročilé detekce a filtrace:
 - znalost *signatur útoku* (databáze příznaků)
 - behaviorální analýza a AI

- logování událostí a paketů
- překlad adres (NAT, PAT), šifrovaná spojení (VPN), IDS, autentizace a autorizace, správa šířky pásma, atd.
- NGFW funkce (detekce malware, ochrana proti útokům na L3–L7, signatury, behaviorální analýza, sledování prahů, strojové učení, DDoS ochrana)
- port knocking:
 - otevření přístupu/služby z externího nedůvěryhodného uzlu do sítě chráněné FW
 - port služby se otevře po zaslání správné sekvence o připojení na skupinu předem specifikovaných portů
 - sekvenci hlídá *démon*, vyhodnocuje se i *pasivní autentizace* (hash tagy zabraňují replay útokům)
 - předcházení exploitů na permanentně otevřených portech
- strategie konfigurace:
 - mít přehled zařízení a služeb v síti
 - pravidla: zakázat vše a pomolit málo, horší donastavování, vyšší bezpečnost
 povolit vše a zakázat málo, jednodušší nastavování, nižší bezpečnost
 - pravidelné testování konfigurace a FW
 - aktualizovat, sledovat aktuální hrozby

4.2 Hardwarové firewally

- samostatná síťová zařízení, umístění v racku
- stavové a paketové, aplikační
- různý počet rozhraní
- bezpečnostní zařízení pro ochranu sítí
 - monitoring, detekce IPS/IDS a AV modulů, filtrace, proti škodlivému kódu a kyberútokům
 behaviorální analýza, strojové učení
 - VPN brány, AAA servery
- CISCO fw:
 - součástí přepínačů a směrovačů jsou ACL moduly
 - starší: PIX (Private Internet Exchange)
 - novější: ASA (Adaptive Security Appliance)
- Check Point fw
- Juniper fw
- Palo Alto fw:
 - NGFW ochrana koncových prvků (traps sledování procesů Cyber Kill Chain a ochrana proti útokům), automatická cloud ochrana (Wildfire proti malware a zerodays, Autofocus korelace bezpečnostních služeb, db a údajů o útocích v rámci cloudu a upozorňování na útoky v síti)
- $\quad \textit{Hillstone fw}$
- FortiGate (Fortinet)
- $\qquad Mikrotik$
- Dell SonicWall
- $\quad Barracuda$
- ZyWALL (ZyXel)
- Watch Guard

4.3 Softwarové firewally

- firewally bežící na OS Win, Linux, MAC, na platformách chytrých zařízení
- větší ochrana aplikační vrstvy
- Windows fw:
 - Win10: Windows Filtering Platform (WFP)
 - pracuje se stackem TCP/IP
 - prohledává vnitřní strukturu paketů a klasifikuje a filtruje provoz
 - public/private/domain profily
- UNIX a Linux fw:
 - IPFilter stavový fw a NAT balíček
 - PF stavový paketový filtr, součást všech hlavních programů
 - NetFilter/iptables součástí Linux Kernel
 - *Nftables* následník iptables
 - *ipfirewall* IP paketový filtr (Mac OS X)
- sw fw pro nasazení do sítě:
 - běžící na klasickém HW a mající aspoň dvě rozhraní
 - iptables jako core
 - kolekce tabulek obsahujících chains, což jsou sady rules
 - princip:
 - chains: INPUT, OUTPUT, FORWARD, PREROUTING, POSTROUTING
 - tabulky: filter, nat, mangle

Zápis ve formě: iptables [tabulka] [akce] [chain] [ip.část] [match] [target/jumps] [target.info] Základní příkazy [akce] s chainy:

- A chain přidá pravidlo na konec chainu,
- -I chain přidá pravidlo do chainu na začátek nebo na určené místo.
- -D chain zmaže pravidlo,
- -N chain vytvoří nový chain,
- -P chain nastaví defaultní politiku firewallu.

Parametry [match]: -p (protokol), -s (zdroj - adresa/maska), -d (cíl), -i (in-interface), -o (out-interface), ... [target/jumps]: -j ACCEPT/DROP/REJECT/LOG

- virtuální fw:
 - běžně dostupný HW využívají
 - Vyatta: virt. stav. fw a router pro IPv6, cli nebo web conf, Debian, i VMware
 - pfSense: open source fw/router, na pc nebo virtuální stroj
- aplikační filtry:
 - 7. vrstva
 - často součástí mnoha fw, ale mohou fungovat i samostatně
 - náročné na výpočetní výkon
 - větší zpoždění
 - mitigace a blokace malware
 - dělení:
 - filtry pro sítě (WAF)
 - monitorují provoz
 - web služby a aplikace
 - filtry pro hosty
 - monitorují u aplikací vstupní, výstupní a systémová volání
 - ochrana aplikacím

- filtrování podle ID procesu
- náročnější na výkon
- Mandatory Access Control, Sandboxing, ...
- speciální filtry a fw:
 - webové filtry: kontrola aktivity uživatelů v síti podle přístupu na webové stránky (shoda dle URL)
 - distribuované firewally: separované části fyzicky rozmístěny v různých místech sítě
 - cloud-based WAF

5. Penetrační testování

5.1 Základní pojmy

- penetrační test: posouzení úrovně bezpečnosti metodou pokusu o průnik

technická forma, zkušenosti, inteligence, při nalezení zranitelnosti je napravena

nutnost povolení majitele systému

- zranitelnost: slabé místo systému

- exploit: využití zranitelnosti, exploit nese payload

– payload: náklad, umožní kontrolu nad systémem (Metasploit – Meterpreter)

- vulnerability assessment: není penetrační test samotný, pouze odhaluje zranitelnosti, čistě

mechanická a strojová záležitost nesoucí false-positives

neobnáší demonstraci nalezených slabin

- bezpečnostní audit: zhodnocení stavu vůči normě
- nutno balancovat šířku a hloubku testů
- testováno musí být vše, u čeho hrozí riziko nežádoucího průniku
- dělení:
 - obecně:
 - externí testy: vnější hrozby, útok crackera z internetu
 - interní testy: z vnitřní strany, potenciální útočník, co získal přístup do vnitřní sítě či neloajální zaměstnanec
 - podle znalostí o systému:
 - black-box testy:
 - jsou známy pouze vstupy a výstupy systému, není známa vnitřní struktura
 - white-box testy:
 - jsou k dispozici všechny možné informace o systému
 - topologie, zařízení, údaje, zdrojové kódy atd.
 - grey-box testy:
 - kombinace above
 - podle způsobu provedení:
 - manuální (testy na míru pro specifické podmínky, nutné mít rozsáhlé znalosti)
 - automatizované (nelze jimi otestovat úplně všechno)
 - semiautomatizované (kombinují výhody obou způsobů above)
 - podle cíle:
 - síťová infrastruktura
 - WWW aplikace
 - mobilní zařízení
- metologie testování:
 - plánování: počáteční fáze, časový plán a sestavení týmu, stanovení detailních cílů

- sběr informací: co nejvíce info o cílové síti/systému, rozsahy IP, otevřené porty, služby
 - nmap, zenmap
- odhalování zranitelností: síťové služby, porovnání verzí s db zranitelností, chybné konfigurace, specializované nástroje
 - Nessus
 - Security Focus
 - ExploitDB
 - OpenVas
- zneužití chyb (exploitace): využití nalezených zranitelností, už existuje řada exploitů možnost otevření nové služby či cesty, postup začne od začátku
 - Metasploit Framework
 - výběr a konfig exploitu
 - kontrola zranitelnosti cíle
 - kontrola a konfig payloadu
 - volba šifrovací techniky (obcházení IPS)
 - execution
 - Armitage
 - Rapid7
- report: předání výsledků penetračních testů
 nalezené zranitelnosti včetně řešení
 výsledky min. do 6 měsíců (jinak ztratí vypovídací hodnotu)
 zaslat šifrovaně, psát neutrálně
- metodiky:
 - Open Source Security Testing Methodology Manual
 - NIST 800-115
 - OWASP (dokumentace, iso, návody)

6. Útoky DDoS, testování bezpečnosti a výkonnosti sítě

6.1 DoS a DDoS

- *DoS*: odepření dostupnosti služby
- DDoS: DoS od více uzlů, vyšší intenzita
- DDoS botnet: kompromitované uzly zapojeny do sítě botnetu

zisk uzlů pomocí distribuce malware, trojan (Zeus botnet, Mirai)

DDoSaaS (as a service, na objednávku)

- principy a vlastnosti:
 - vytvoření (infikace) zombie pc
 - bot se připojí ke kontrolnímu serveru (C&C server, botmaster)
 - komunikace klient server
 - DNS, IRC, IM nebo $\rm HTTP/HTTPS$
 - dále i bitcoin mining, spam
- dělení:
 - záplavové/volumetrické (flooding attacks)
 - vytížení komunikační, paměťové, výpočetní kapacity
 - TCP flood, UDP flood, HTTP flood, ICMP flood
 - ARP flood:
 - falešné dotazy ARP

- reset flood:
 - pakety s falešnou src IP, příznak RST resetuje spojení
 - skutečná komunikace je neoprávněně ukončena
- syn flood:
 - otevření několika polootevřených spojení a čekání na potvrzující zprávu, která od útočníka nepřijde
- HTTP flood:
 - ze zombie klientů, zaslání legitimních požadavků http GET nebo POST
 jsou náročnější
- UDP flood:
 - velký počet IP paketů s UDP datagramy
- PingSweep:
 - ICMP echo s podvrženou src IP
- Smurf:
 - ICMP se spoofovanou adresou oběti zaslány na broadcast
- logické útoky (logical attacks)
 - útok na slabinu v programu/protokolu/OS
 - protokolové
 - aplikační
 - ping of death, land attack, Slowloris, R-U-Dead-Yet (RUDY), Apache Range Header attack
 - Teardrop:
 - fragmenty paketů přesahující falešně nastavený offset jsou zasílány cíli
 - cíl nezvládne sestavit paket nazpět a spadne
 - Land:
 - TCP-SYN jsou podvrženy, stejná src i dest IP, nekonečná smyčka
 - Ping of death:
 - Ping o velikosti vyšší než 65 535 B
 - Regular expression Dos (ReDoS):
 - Zatížení procesu zpracování výrazů (dlouhé divné username a heslo)
 - RandomUnreachableHost:
 - poslání ICMP host unreachable na náhodné IP adresy, přerušení některých spojení v síti
 - UnreachableHost:
 - ukončení legitimních spojení pomocí ICMP host unreachable
 - Slowloris:
 - generuje a opakovaně posílá částečné http požadavky, ale neukončí je
 - cíl otevírá další a další spojení
 - XMasTree:
 - generování paketů, kde jsou příznaky FIN, URG, PSH v TCP hlavičce a jsou náročné na zpracování
- DoS využívající traffic amplification by reflecting:
 - útočník využívá legitimní servery v síti, zašle jim dotaz se zdrojovou adresou oběti a požaduje odpověď
 - \quad odpovědi jsou v řádu kB, dotazy malé v B
 - faktor amplifikace 28 až 10k

- motivace:
 - poškodit společnosti
 - vydírání
 - protesty
 - demonstrace síly
 - zakrytí hlavního útoku
- detekce:
 - signatur (znalost útoku, sestavení příznaku/signatury)
 - anomálií (v síťovém provozu překročení prahu pro hustotu provozu)
 - heuristická/prahová detekce
- mitigace:
 - použití fw, IDS, honeypoty
 - redundantní linky, servery
 - black a white list
 - Tarpit akce (netfilter, mikrotik)
 - udržet příchozí podezřelé spojení v open state ale snížit TCP window na 0 a neumožnit tím přenos dat
 - filtry a DDoS pračky
 - rate limiting na routerech
 - podle reputace zdroje/geolokace/služby
 - pračky:
 - jednoduchá pravidla, čištění provozu, prahy pro IP adresy

6.2 Testování sítí

- testování výkonnosti odhalí bottlenecky, špatné konfigurace a limity sítě
- zátěžové testování mimo provoz díky saturování sítě
- testování emulované sítě přenesení konfigurace a test virtuální sítě
- stress test (zátěžový test)
- vulnerability test
- blackbox test
- whitebox test
- pentest

6.3 Testování výkonnosti a odolnost proti DDoS

- testují se sítě a síťové prvky
- zjištění limitů a bottlenecků
- generování zátěže (HW a SW testery)
- analýza provozu (monitoring chování segmentů, sondy provozu)
- $\quad metodologie:$
 - definice testování (specifikace)
 - příprava testování (zvolení doby, zálohování služeb a aplikací, nastavení testeru)
 - realizace testování (monitorování testování, opakování)
 - vyhodnocení testování (dokumentace)
- typy testů zátěžového testování:
 - výkonnostní test (performance test) definovaná zátěž a změření chování
 - test hraniční zátěže (load/stress test) nalezení limitu, kdy aplikace překročí požadavky

- test odolnosti (soak test) dlouhodobé testy, nedostatky aplikace při nepřetržitém provozu
- test selhání (failover test) oveření chování systému v případě selhání a nahrazení záložním systémem, zotavení
- test části infrastruktury (targeted infrastructure test) zaměřený na konkrétní úroveň architektury řešení, zjištění nejslabšího místa
- test objemu dat (volume test) chování aplikace při nárůstu objemu dat
- hardwarové zátěžové testy:
 - zařízení s více síťovými rozhraními
 - emulace síťových klientů a serverů
 - Spirent Avalanche
- softwarové zátěžové testy:
 - SW aplikace umožnují nastavovat a generovat data
 - levné a snadné na konfiguraci
 - jMeter
 - trafgen
 - Low Orbit Ion Cannon (LOIC) open source
 - hping3
- potřebná výbava:
 - zátěžový tester (HW, SW, který umí generovat DDoS)
 - emulátor provozu a DDoS útoků
- zhodnocení:
 - zjištění limitů zařízení, sítí, služeb
 - ověření správnosti konfigurace a propustnosti sítě, služeb, zařízení

7. Systémy IDS a IPS

7.1 Základní pojmy

- průnik (intrusion): realizace útoku, při které došlo ke ztrátě aktiv
 - škodlivé i neškodlivé průniky
- detekce průniku: proces monitorování událostí a analýza (alarm při pokusech, incidentech)
- IDS (detection): sw nebo hw řešení, automatizace procesu detekce průniku
- IPS (prevention): všechny funkce IDS a zároveň ještě dokáže blokovat nežádoucí incidenty
 - vylepšená verze IPS, které je zastaralé
- cíl IDS/IPS:
 - vyhlášení alarmu, potlačení útoku, jen pokud jde o skutečný incident
 - vyvážit nastavení false-positives vs funkčnost

7.2 Logy

- logování (záznamová data, logovací zpráva, log je soubor záznamů popisující konkrétní události, které nastaly ve sledovaném systému)
 - informační (popisují stavy, události)
 - ladící (při vývoji)
 - varovné (chybějící funkce, součást systému)
 - *chybové* (chyby ohrožující funkčnost systému)
 - pohotovostní (označující události spojení s bezpečností)

- formát logu:
 - textový
 - binární
- obsah logu:
 - kdo (jaké prvky)
 - kde (lokální text/db, vzdálené, kombinace)
 - jaké události (chyby při autentizaci, chyby systému, detekované anomálie)
 - co log obsahuje (čas, zdroj, uživatel, událost; závažnost, návratová hodnota, nesmí být klíče a hesla)
 - minimální příklad:
 - časové razítko
 - zdroj
 - vlastní data
- agregace logů:
 - logovací server (malé podniky)
 - centrální sběrné místo a logovací server (redundance a šifrování)
 - centrální sběrné místo, logovací server a externí úložiště (bezpečnější decentralizované)
- ochrana logů:
 - uložení:
 - monitoring volného místa, detekce změn, záloha read only, řízení přístupu, nastavení zpráv, rotace logů
 - přenos:
 - zajištění důvěrnosti a autentičnosti dat
- cíle analýzy logů:
 - detekce známých událostí
 - detekce neznámých událostí (pomocí detekce anomálií)
 - techniky analýz:
 - ruční jednoduchá
 - automatická
 - agregace (stahování záznamů na jedno místo)
 - filtrace (analýza raw dat a rozhodnutí, která data jsou potřebná)
 - normalizace (záznamy na společný formát, kategorizace)
 - korelace (nejkritičtější a nejvíce problematický blok)
 - na základě pravidel detekce signatur (nepříznivé známé události)
 - pravidla v programovacím jazyce
 - SIEM, doprogramovat korelace
 - vkládání ručně
 - problém neschopnosti definice důležitých událostí a korelací
 - na základě modelu detekce anomálií (nepříznivé neznámé eventy)
 - frekvenční model (výskyt za daný okamžik)
 - referenční model (odchylky od normálu)
 - model strojového učení
 - klasifikace dat do tříd
 - regrese
 - shlukování dat s podobnými vlastnostmi
 - algoritmus k-nejbližších sousedů
 - reportování

- IDS/IPS umístěné na síti:
 - odchytávání paketů (packet sniffing) a analýza, jsou inline jako firewally, promiskuitní if
 - komplexní zařízení/sw řešení/cloudové řešení
- IDS/IPS umístěné na hostiteli:
 - softwarový agent na monitorovaném zařízení
 - kontrola vstupních/výstupních paketů, logování souborového systému, webu, přihlašování, systému
 - často na kritické systémy nasazováno
- jedna komponenta vs vícevrstvá architektura (3 vrstvy, manažer, agent, senzor)
- SNORT:
 - opensource IDS/IPS
 - packet detector, preprocesor, detection engine, logging and alerting systém, output modules
- Suricata:
 - nejužívanější, aktualizace signatur
 - rychlejší než Snort paralelní zpracování dat
 - jsou na ní založeny komerční zařízení

8. Analýza škodlivého provozu

- cílem analýzy je poskytnutí informací k:
 - vytvoření důkazního materiálu
 - obraně proti stejnému incidentu v budoucnu
- malware:
 - vir (šíření v rámci výpočetní jednotky)
 - červ (šíření mezi výpočetními jednotkami, přes síť)
 - trojan (tváří se jako užitečný, nese škodlivý payload)
 - rootkit (zakryje stopy malware v napadeném prostředí)
 - spyware (shromažďuje informace o uživateli bez jeho vědomí)
 - ransomware (šifrování souborů, blokace služby, vymáhání výkupného)
 - Locky (.doc, makra, .locky, RSA 2048, AES 128)
- další incidenty:
 - DoS
 - minery
 - malvertising (prostřednictvím real time bidding)
- analýza:
 - statická (pochopit strukturu programu bez spuštění)
 - sken antiviry
 - podle otisku obfuskační techniky komprimační, šifrovací
 - PEiD
 - freeware nástroj, základ statické analýzy, GUI, sken adresářů a souborů
 - výsledkem je detekce .exe, kompilátorů a nástrojů pro šifrování
 - *GT2*
 - CLI, detekuje COM/různé EXE modifikátory, kompilátory podle binárního podpisu
 - Dependency Walker, HexDive (extraktor řetězců), strings (řetězce z binárního souboru), DIE (identifikace vzorku), pestudio (informace pro dekompilování a debugování), IDA (dekompilace), debugging (x32dbg)

- dynamická (spuštění programu v sandboxu kontrolovaném prostředí)
 - bezpečné prostředí = odpojené od sítě, virtualizace a spuštění
 - rozlišit mezi normálními změnami a změnami způsobenými škodlivým kódem
 - dělení nástrojů:
 - hook-based (do API funkcí, zaznamenání změn), největší škála možností
 - difference-based (instalační monitory, obraz systému a registrů) Regshot
 - notification-based (oznámení systému při určité události vytvoření složky, smazání souboru)
- metody detekce změn systému:
 - sledování API funkcí
 - logování neúspěšných událostí
 - logování dočasných souborů
 - rozlišování mezi typy modifikací
 - ukázka změn v reálném čase
 - zobrazení procesů které způsobily změny
 - zobrazení změn v časové ose
- Process Monitor:
 - zachycení Windows API funkcí
 - hybrid mezi hook-based a notification-based
 - event tracing pro Windows
 - filtrování

9. Bezpečnostní protokoly a útoky v sítích

9.1 IPsec protokol

- účel a princip:
 - end-to-end bezpečnost
 - šifrování a autentizace na úrovni síťové vrstvy = zabezpečení síťové vrstvy
- součásti:
 - authentication header protocol (AH)
 - integrita a autentičnost IP paketů (MAC funkce)
 - sekvenční číslo, ochrana proti replay attacks
 - encapsulating security payloads protocol (ESP)
 - důvěrnost dat pomocí šifrování
 - autentizace pouze ESP částí a dat, ne IP hlavičky
 - security association (SA)
 - formálně popisuje spojení mezi dvěma stranami a parametry použité pro zabezpečení
 - aktivní spojení v db SAD
 - SA management a pravidla jsou uložena v SPD
 - SA parametry v SAD sekvenční čísla, AH informace, ESP informace, životnost
 SA, IPsec protokol mód, max velikost paketu, security parameter index (SPI, 32b)
- módy:
 - transportní mód: ochrana payloadu paketu, IP není šifrovaná, mezi hosty
 - tunelující mód: ochrana celého paketu (IP hlavička a data), paket se stane payloadem v novém paketu s novou hlavičkou, mezi hosty, bránami (překlad IP)

- ustanovení klíče:
 - PSK
 - IKE1 a IKE2
 - Internet Key Exchange (sada autentizačních schémat včetně certifikátů)
 - implementace pomocí knihoven Strongswan, Libreswan, Openswan
 - Kerberos

9.2 TLS protokol

- chová se jako bezpečné TCP, lze zabezpečit protokoly nad TCP
- zabezpečení transportní vrstvy
- součásti:
 - handshake protocol (inicializace, autentizace stran, ustanovení klíče)
 - record protocol (datový přenos šifrovaných data MAC autentizace)
 - alert protocol (notifikace chyb a varování)
- ideální ciphersuite:
 - ustanovení klíče s dočasnými klíči (ECDHE, DHE)
 - bezpečný podpis (RSA, DSS, ECDSA)
 - bezpečné šifrování a mód (AES-GCM)
 - bezpečná hashovací funkce (SHA-256, 384)

9.3 Virtual Private Networks

- musí být šifrováno point to point
- šifrování/autentičnost pomocí IPsec, TLS, proprietární, HW zařízení jako VPN brány
- typy:
 - site-to-site (Intranet VPN), propojení dvou sítí jedné instituce, více spojení
 - vzdálený přístup (klient-server), many to one

9.4 Útoky v sítích

- typy:
 - na přenos (odposlech dat, MITM, replay, ARP spoof, routing útoky, SSL strip)
 - na koncové prvky (pomocí malware)
 - na síť (nepovolené průniky do sítě)
 - odepření služeb (DoS, DDoS)
 - zneužití fyz. osob (social engineering, phishing)
- metody obrany:
 - bezpečná konfigurace
 - aktivní prvky
 - sestavení a dodržování pravidel
 - zabezpečení koncových prvků
 - nasazení správné kryptografie, obran a protokolů
 - testování obecných zranitelností
 - celkový audit
 - školení uživatelů a dohled
- netechnické útoky:
 - využití oklamání uživatele
 - psychologická manipulace

- dokážou překonat i lepší technická zabezpečení
- typy:
 - social engineering
 - phishing (pokus o zisk citlivých údajů maskováním se za legitimní entitu)
 - vektory útoku: maily, sociální sítě, web portály, IM
 - techniky: manipulace URL, vyhnutí filtru (obrázek místo textu),
 padělání web stránek, skryté přesměrování, vishing (voice phishing), zlé dvojče (evil twin falešné AP)
 - spear phishing (konkrétní lidi, konkrétní zpráva)
 - clone phishing (výroba phishing zpráv z legitimních zpráv)
 - whaling (cílené na starší vlivné představitele firem a organizací,
 předvolání od vyšší autority finančák, jiná firma aj.)
 - baiting (reálný trojský kůň, zanechání malware na médiu, flashka před budovou)
 - quid pro quo (volání do firmy a vydávání se za technickou podporu)
 - tailgating (průnik do chráněných prostor s pomocí legitimního uživatele, podržení dveří například)
 - insider threats (hrozby od vnitřního uživatele)
 - neautorizovaný fyzický přístup (fyz. přístup útočníka do chráněných prostor k stanici, serveru, síťovému rozhraní)
- metody obrany:
 - autentizace
 - bezpečnost, antispyware, školení, monitoring, antiviry