Mathematics for Machine Learning

Linear Algebra: Eigenvalues, Eigenvectors, Eigenspaces, Cholesky
 Decomposition & Diagonalization

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

- Matrix decomposition or matrix factorization.
- Three matrix decompositions will be introduced.

Outline

- Eigenvalues & Eigenvectors
- Cholesky Decomposition
- 3 Eigendecomposition & Diagonalization

Outline

- Eigenvalues & Eigenvectors
- 2 Cholesky Decomposition
- 3 Eigendecomposition & Diagonalization

Characteristic Polynomial

Characteristic Polynomial

For $\lambda \in \mathbb{R}$ and a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

$$p_{\mathbf{A}}(\lambda) := \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= (-1)^{n}(\lambda - \lambda_{1}) \cdots (\lambda - \lambda_{n})$$

$$= c_{0} + c_{1}\lambda + \cdots + c_{n-1}\lambda^{n-1} + (-1)^{n}\lambda^{n},$$

for $c_0, \ldots, c_{n-1} \in \mathbb{R}$, is called the characteristic polynomial of A.

Note that

- $c_0 = \det(A)$.
- $c_{n-1} = (-1)^{n-1} \operatorname{tr}(\mathbf{A})$.

Example

Given
$$\mathbf{A} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
,

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & 0 \\ 8 & -1 - \lambda \end{vmatrix} = (3 - \lambda)(-1 - \lambda).$$

Given
$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
,

$$\det(\boldsymbol{B} - \lambda \boldsymbol{I}) = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 4 & -17 & 8 - \lambda \end{vmatrix} = -\lambda^3 + 8\lambda^2 - 17\lambda + 4.$$

Eigenvalue Equation

Eigenvalues & Eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then

- $\lambda \in \mathbb{R}$ is an eigenvalue of **A** and
- $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ is the corresponding eigenvector of A

if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \iff (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

Equivalent statements:

- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- There exists an $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ (i.e., $(\mathbf{A} \lambda \mathbf{I}_n)\mathbf{x} = \mathbf{0}$) that can be solved non-trivially (i.e., $\mathbf{x} \neq \mathbf{0}$).
- $\operatorname{rank}(\boldsymbol{A} \lambda \boldsymbol{I}_n) < n$.
- $\det(\mathbf{A} \lambda \mathbf{I}_n) = 0$.

Remark

- Eigenvectors are NOT unique.
- Suppose **x** is an eigenvector of **A** w.r.t. eigenvalue λ , then for any $c \in \mathbb{R} \setminus \mathbf{0}$ }

$$\mathbf{A}(c\mathbf{x}) = c\mathbf{A}\mathbf{x} = c\lambda\mathbf{x} = \lambda(c\mathbf{x}).$$

Theorems (or Definitions)

$\mathsf{Theorem}$

 $\lambda \in \mathbb{R}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$ if and only if λ is a root of the characteristic polynomial $p_{\mathbf{A}}(\lambda)$ of \mathbf{A} .

Algebraic Multiplicity

Let a square matrix \boldsymbol{A} have an eigenvalue λ_i . The algebraic multiplicity of λ_i is the number of times the root appears in the characteristic polynomial.

Eigenspace

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, the set of all eigenvectors of \mathbf{A} associated with the eigenvalue λ spans the eigenspace of \mathbf{A} (denoted by E_{λ}).

The set of all eigenvalues of \boldsymbol{A} is called the eigenspectrum (or spectrum) of \boldsymbol{A} .

The Case of the Identity Matrix

The Case of the Identity Matrix

For $I_n \in \mathbb{R}^{n \times n}$,

- what is $p_I(\lambda)$?
- What are its eigenvalues and the associated eigenvectors?
- What are the eigenspaces?

Useful Properties (1/4)

- \boldsymbol{A} and \boldsymbol{A}^{\top} possess the same eigenvalues but not necessarily the same eigenvectors.
- The eigenspace E_{λ} is null($\mathbf{A} \lambda \mathbf{I}$).

$$egin{aligned} m{A} \mathbf{x} &= \lambda \mathbf{x} &\Leftrightarrow & m{A} \mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \ &\Leftrightarrow & (m{A} - \lambda m{I}) \mathbf{x} &= \mathbf{0} \ &\Leftrightarrow & \mathbf{x} \in \ker(m{A} - \lambda m{I}). \end{aligned}$$

 Symmetric, positive definite matrices always have positive, real eigenvalues.

Useful Properties (2/4)

Theorem (4.13)

The eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues $\lambda_1, \dots, \lambda_n$ are linearly independent.

Theorem (4.14)

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can always obtain a symmetric, positive semidefinite matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ by defining

$$S := A^{\top}A.$$

If $rank(\mathbf{A}) = n$, then $S := \mathbf{A}^{\top} \mathbf{A}$ is symmetric, positive definite.

Useful Properties (3/4)

Theorem

If \boldsymbol{A} is symmetric, then eigenvectors to different eigenvalues are orthogonal.

Proof.

- Assume that $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ and $\mathbf{A}\mathbf{w} = \mu\mathbf{w}$ for two eigenvectors $\mathbf{v}, \mathbf{w} \in V$ corresponding to eigenvalues λ and μ such that $\lambda \neq \mu$.
- $\begin{array}{lll} ^{\bullet} & \lambda \langle \mathbf{u}, \mathbf{w} \rangle & = & \langle \lambda \mathbf{u}, \mathbf{w} \rangle = \langle \mathbf{A} \mathbf{v}, \mathbf{w} \rangle = (\mathbf{A} \mathbf{v})^{\top} \mathbf{w} = \mathbf{v}^{\top} \mathbf{A}^{\top} \mathbf{w} = \langle \mathbf{v}, \mathbf{A}^{\top} \mathbf{w} \rangle \\ & = & \langle \mathbf{v}, \mathbf{A} \mathbf{w} \rangle = \langle \mathbf{v}, \mu \mathbf{w} \rangle = \mu \langle \mathbf{v}, \mathbf{w} \rangle. \end{array}$

The equalities hold only if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

Useful Properties (4/4)

Theorem (4.15; Spectral Theorem)

If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, then there exists an orthonormal basis, consisting of eigenvectors of A, of the corresponding vector space V, and each eigenvalue is real.

Theorem (4.16)

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$, where λ_i 's are the eigenvalues of \mathbf{A} .

Theorem (4.17)

For a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$, where λ_i 's are the eigenvalues of \mathbf{A} recall?

A Practical Example

- Google uses the eigenvector corresponding to the maximal eigenvalue of a matrix A to determine the rank of a page for search.
 - The PageRank algorithm was developed at Stanford University by Larry Page and Sergey Brin in 1996.
- Websites are represented as a huge directed graph (pages: vertices; links: edges).
- Compute the weight (importance) $x_i \ge 0$ for a website a_i and get \mathbf{x} .
 - The number of pages pointing to a_i .
- A transition matrix **A** (prob.): modeling the navigation behavior of a user.
- Goal: \mathbf{x} , $A\mathbf{x}$, $A^2\mathbf{x}$, ..., $\mathbf{x}^* \Rightarrow A\mathbf{x}^* = \mathbf{x}^* \Rightarrow$ Turning to probabilities (normalization).

Outline

- Eigenvalues & Eigenvectors
- Cholesky Decomposition
- 3 Eigendecomposition & Diagonalization

Cholesky Decomposition

Cholesky Decomposition

A symmetric, positive definite matrix \mathbf{A} can be factorized into a product $\mathbf{A} = \mathbf{L} \mathbf{L}^{\top}$, where \mathbf{L} is a lower-triangular matrix with positive diagonal elements.

Example of Cholesky Factorization

$$\boldsymbol{A} = \left[\begin{array}{ccc} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{array} \right] = \boldsymbol{L} \boldsymbol{L}^\top = \left[\begin{array}{ccc} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{array} \right] \left[\begin{array}{ccc} \ell_{11} & \ell_{21} & \ell_{31} \\ 0 & \ell_{22} & \ell_{32} \\ 0 & 0 & \ell_{33} \end{array} \right].$$

We have

$$\textbf{\textit{A}} = \left[\begin{array}{ccc} \ell_{11}^2 & \ell_{21}\ell_{11} & \ell_{31}\ell_{11} \\ \ell_{21}\ell_{11} & \ell_{21}^2 + \ell_{22}^2 & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} \\ \ell_{31}\ell_{11} & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} & \ell_{31}^2 + \ell_{32}^2 + \ell_{33}^2 \end{array} \right]$$

Finally, solve $\ell_{11}, \ldots, \ell_{33}$.

Motivations of Using Cholesky Decomposition

- Symmetric positive definite matrices require frequent manipulation.
 - E.g., Covariance matrix of a multivariate Gaussian variable.
 - The Cholesky factorization of the covariance matrix allows us to generate samples from a Gaussian distribution.
- Computing gradients in deep stochastic models such as variational auto-encoder (VAE).
- Compute determinants efficiently.
 - $\det(\mathbf{A}) = \det(\mathbf{L}) \det(\mathbf{L}^{\top}) = \det(\mathbf{L})^2$.
 - Note: det(L) can be computed efficiently (: triangular).

Outline

- Eigenvalues & Eigenvectors
- Cholesky Decomposition
- 3 Eigendecomposition & Diagonalization

Motivation of Diagonalization

- Diagonalization is an important application of basis change and eigenvalues.
- Diagonalization allow fast computation of determinants, powers and inverses of matrices. A diagonal matrix is like

$$\mathbf{D} = \left[\begin{array}{ccc} c_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_n \end{array} \right].$$

• Question: What are the determinant, cubic, and inverse of **D**?

Similarity

Similarity

Two matrices A and $B \in \mathbb{R}^{n \times n}$ are similar if there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ such that $A = S^{-1}BS$.

Diagonalizable

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix...

• $\exists \mathbf{D} \in \mathbb{R}^{n \times n}$, such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$.

Eigenvectors & Diagonalization

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\lambda_1, \dots, \lambda_n$ be a set of scalars.
- Let $\mathbf{p}_1, \dots, \mathbf{p}_n$ be a set of vectors in \mathbb{R}^n .
- Let $\mathbf{D} \in \mathbb{R}^{n \times n}$ be a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$.

We can show that

$$AP = PD$$
.

if and only if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of \boldsymbol{A} and $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_n$ are the corresponding eigenvectors of \boldsymbol{A} .

Proof of the Claim

We can see that

$$AP = A[p_1, \dots, p_n] = [Ap_1, \dots, Ap_n],$$

and

$$PD = [\mathbf{p}_1, \dots, \mathbf{p}_n] \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{bmatrix} = [\lambda_1 \mathbf{p}_1, \dots, \lambda_n \mathbf{p}_n].$$

Thus,

$$\mathbf{A}\mathbf{p}_1 = \lambda_1\mathbf{p}_1$$
 \vdots
 $\mathbf{A}\mathbf{p}_n = \lambda_n\mathbf{p}_n$

Therefore, the columns of P are eigenvectors of A.

Eigendecomposition

Theorem [Eigendecomposition]

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factored into

$$A = PDP^{-1}$$
,

where $P \in \mathbb{R}^{n \times n}$ and D is a diagonal matrix whose diagonal entries are the eigenvalues of A

if and only if

the eigenvectors of \mathbf{A} form a basis of \mathbb{R}^n .

Put it concisely

Theorem

For a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the following statements are equivalent:

- A is diagonalizable.
- **A** has *n* linearly independent eigenvectors.

Remark

The spectral theorem tells us that:

We can find an orthonormal basis of the corresponding vector space consisting of eigenvectors of of a symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$.

$\mathsf{Theorem}$

A symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ can be always diagonalized.

Example

Compute the eigendecomposition of
$$\mathbf{A} = \frac{1}{2} \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$
.

Compute the eigenvalues and eigenvectors.

$$\det(\mathbf{A}-\lambda\mathbf{I}) = \det\left(\left[\begin{array}{cc} \frac{5}{2}-\lambda & -1 \\ -1 & \frac{5}{2}-\lambda \end{array}\right]\right) = \left(\lambda - \frac{7}{2}\right)\left(\lambda - \frac{3}{2}\right).$$

Set
$$\lambda_1 = \frac{7}{2}, \lambda_2 = \frac{3}{2}$$
.

2 Solving $\mathbf{A}\mathbf{p}_1 = \frac{7}{2}\mathbf{p}_1$ and $\mathbf{A}\mathbf{p}_2 = \frac{3}{2}\mathbf{p}_2$.

$$\textbf{p}_1 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ -1 \end{array} \right], \ \ \textbf{p}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

Example

Compute the eigendecomposition of $\mathbf{A} = \frac{1}{2} \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$.

$$\mathbf{p}_1 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \\ -1 \end{array}
ight], \ \mathbf{p}_2 = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \\ 1 \end{array}
ight].$$

- $\textbf{ 0} \ \, \mathsf{Check} \ \, \mathsf{for} \ \, \mathsf{independency} \ \, \mathsf{of} \ \, \{\textbf{p}_1,\textbf{p}_2\}. \implies \checkmark$
- **3** Construct $P: \Longrightarrow P = [\mathbf{p}_1, \ \mathbf{p}_2] = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$.
- * Note that $\{\mathbf{p}_1, \mathbf{p}_2\}$ forms an orthonormal basis $\mathbf{P}^{-1} = \mathbf{P}^{\top}$. (Exercise)

Finally we obtain $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.

Remark On the Efficiency

•
$$\mathbf{A}^k = (\mathbf{PDP}^{-1})^k = (\mathbf{PDP}^{-1})(\mathbf{PDP}^{-1}) \cdots (\mathbf{PDP}^{-1}) = \mathbf{PD}^k \mathbf{P}^{-1}$$
.

•
$$\det(\mathbf{A}) = \det(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) = \det(\mathbf{P})\det(\mathbf{D})\det(\mathbf{P}^{-1}) = \det(\mathbf{D}) = \prod_i d_{ii}$$
.

Discussions