

НОВ БЪЛГАРСКИ УНИВЕРСИТЕТ

Департамент Информатика

Проект "Modyлна аритметика" към курс CSCB109 Програмиране

гл. ас. д-р Марияна Райкова mariana_sokolova@yahoo.com гл. ас. д-р Стоян Боев stoyan@nbu.bg

Въведение

Математиката като наука се дели на два основни дяла - чиста и приложна математика. Частта от математиката, разглеждаща целите числа и техните свойства, се нарича теория на числата и до началото на 20 век се е приемала като "най-чистата" област от чистата математика. С откриването на компютъра и развитието на техниките за криптиране и декриптиране на информация теорията на числата добива все по-голяма актуалност и се отнася все повече към приложната математика.

Ако е дадено едно цяло число m, то съществуват безбройно много цели числа, които дават един и същ остатък при деление с m. Например числата 2, 7, 12, -3 и -8дават един и същ остатък 2 при деление с 5, а множеството от всички нечетни числа $\{\ldots, -5, -3, -1, 1, 3, 5, \ldots\}$ се състои от всички цели числа, които дават остатък 1 при деление с две. Често пъти в практиката се интересуваме не от самото число, а именно от
остатъка, който то дава при деление с дадено цяло число m. Така например, ако сега е 14.00 часа, то след 50 часа ще бъде 16.00 часа, т.е. интересува ни остатъка при деление с 24, колкото часа е едно денонощие. Ако в джоба имаме 3 лева и 60 стотинки и ни върнат 1 и 50 стотинки, то казваме, че разполагаме с 5 лева и 10 стотинки, а не с 4 лева и 110 стотинки. Цифрите, с които изписваме числата в двоична, троична или десетична бройна система са именно остатъците при деление с 2, 3 и 10 съответно.

Постановка

Изготвянето на проекта предполага реализация на C++ на редица функции, свързани с понятията остаточен пръстен и остаточно поле.

Остатъчен пръстен \mathbb{Z}_n

Множеството $\mathbb{Z}_n = \{0, 1, \dots, n\}$ от остатъци *по модул п* (т.е. при деление с n) с дефинирани операции събиране (+), изваждане (-) и умножение (\times) по модул n наричаме остатъчен пръстен.

Пример. Ако разгледаме множеството от остатъците по модул 7 (т.е. при деление на 7)

$$\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\},\$$

то резултатът от операциите+,-и \times винаги ще бъде остатък при деление на 7, т.е. елемент от \mathbb{Z}_7 :

$3 + 4 \equiv_7 0$	$2-5 \equiv_7 4$	$2 \times 6 \equiv_7 1$
$2 + 6 \equiv_{7} 1$	$1 - 3 \equiv_{7} 5$	$4 \times 4 \equiv_7 2$
$4 + 5 \equiv_{7} 2$	$4-5 \equiv_{7} 6$	$5 \times 5 \equiv_7 4$

Задача 1. Да се дефинира C++ функция, която запълва масив с елементите на остатъчния пръстен \mathbb{Z}_n .

Задача 2. Да се дефинира C++ функция, която изпълнява операция **събиране** на елементи от остатъчния пръстен \mathbb{Z}_n .

Задача 3. Да се дефинира C++ функция, която изпълнява операция **изваждане** на елементи от остатъчния пръстен \mathbb{Z}_n .

Задача 4. Да се дефинира C++ функция, която изпълнява операция **умножение** на елементи от остатъчния пръстен \mathbb{Z}_n .

Деление в \mathbb{Z}_n

В остатъчния пръстен $\mathbb{Z}_n = \{0, 1, \dots, n\}$ операцията деление (/) се дефинира посредством операцията умножение (×) с реципрочния елемент на делителя. С други думи,

$$a:b=a\times(1/b),$$

където 1/b е реципрочния елемент на b от пръстена \mathbb{Z}_n , т.е. числото, което умножено с b дава 1. Важно е да се отбележи, че това не е възможно, ако реципрочен елемент не съществува. Понякога реципрочния елемент на b се нарича обратен и се бележи с b^{-1} .

Пример. В остатъчния пръстен \mathbb{Z}_7 имаме

1/0	1/1	1/2	1/3	1/4	1/5	1/6
-	1	4	5	2	3	6

и следователно

$$2: 3 \equiv_7 2 \times (1/3) \equiv_7 2 \times 5 \equiv_7 3$$

 $5: 6 \equiv_7 5 \times (1/6) \equiv_7 5 \times 6 \equiv_7 2$

$$3: 4 \equiv_7 3 \times (1/4) \equiv_7 3 \times 2 \equiv_7 6.$$

Тук не можем да делим само на 0. В същото време, в остатъчния пръстен \mathbb{Z}_6 имаме

1/0	1/1	1/2	1/3	1/4	1/5	1/6
_	1	_	_	_	5	_

и следователно не можем да делим на 0, 2, 3, 4 и 6.

Забележка. Ако m и n са взаимно прости естествени числа, т.е. (m,n)=1, то от тъжеството на Безу знаем, че съществуват цели числа s и t, такива че sm+tn=1. Тогава s се оказва реципрочният елемент на m в \mathbb{Z}_n . В същото време, ако m и n не са взаимно прости естествени числа, то m няма обратен елемент в \mathbb{Z}_n .

Пример. Нека $m=3,\ n=7.$ От тъждеството на Безу следва, че 5m-2n=5.3-2.7=1 и следователно $5\times 3\equiv_7 1,$ т.е. $1/3\equiv_7 5.$ Ако обаче n=6, то понеже 3 и 6 не са взаимно прости числа, то 3 няма реципрочен елемент в $\mathbb{Z}_6.$

Задача 5. Да се дефинира C++ функция, която намира двойките реципрочни елементи в \mathbb{Z}_n . Намерените елементи да се запишат в двумерен масив.

Задача 6. Да се дефинира C++ функция, която намира **реципрочен (обратен)** на зададен от потребителя елемент от множеството \mathbb{Z}_n , ако такъв съществува. Използвайте образувания двумерен масив в горния пример.

Задача 7. Да се дефинира C++ функция, която намира **реципрочен (обратен)** на зададен от потребителя елемент от множеството \mathbb{Z}_n , ако такъв съществува. Използвайте тъждеството на Безу и обобщения алгоритъм на Евклид. Сравнете бързодействието с предходното решение.

Задача 8. Да се дефинира C++ функция, която изпълнява операция **деление** на елементи от остатъчния пръстен \mathbb{Z}_n и връща резултат -1, ако не е допустимо.

Степенуване в \mathbb{Z}_n

Едни от най-ефективните алгоритми в криптографията изискват повдигане на висока степен на елементи от пръстена \mathbb{Z}_n . С други думи, ако $a \in \mathbb{Z}_n$, а m е голямо естествено число, то целта е да пресметнем a^m за оптимално време. Има два подхода:

1) Намираме най-малкото естествено число k, за което $a^k \equiv_n 1$ и пресмятаме

$$a^m \equiv_n a^{m \bmod k}$$
.

Пример. Нека n=7, a=3, m=100. Пресмятаме в \mathbb{Z}_7 последователно

и достигаме до извода, че k=6. Тогава

$$3^{100} \equiv_7 3^{100 \mod 6} \equiv_7 3^4 \equiv_7 4.$$

2) Представяме m в двоична бройна система и пресмятаме последователно $a, a^2, a^{2^2}, a^{2^3}, \dots, a^{2^k}$, където k е старшият значещ разряд в двоичното представяне на m.

Пример. Нека $n=7,\,a=3,\,m=100.$ Тогава $100_{10}=64+32+4=(1100100)_2$ и последователно пресмятаме:

Тогава

$$3^{100} = 3^{64+32+4} \equiv_7 4.2.4 \equiv_7 4.$$

Задача 9. Да се дефинира C++ функция, която извършва **бързо степенуване** на база на въведени остатъчен пръстен, основа и степен от потребителя, използвайки първия подход.

Задача 10. Да се дефинира C++ функция, която извършва бързо степенуване на база на въведени остатъчен пръстен, основа и степен от потребителя, използвайки втория подход. Сравнете бързодействието с предходното решение.

Логаритмуване в \mathbb{Z}_n

Елементът $g \in \mathbb{Z}_n$ наричаме *примитивен корен* по модул n, ако множеството $G = \{g, g^2, g^3, \ldots\}$ съдържа всички числа $b \in \mathbb{Z}_n$, които са взаимно прости с n. Ако означим с $\varphi(n)$ броят на числата ненадминаващи n и взаимно прости с n, то $G = \{g, g^2, \ldots, g^{\varphi(n)} = 1\}$.

Пример. В остатъчния пръстен \mathbb{Z}_9 елементът g=2 е примитивен корен, защото

$$g^1 \equiv_9 2$$
, $g^2 \equiv_9 4$, $g^3 \equiv_9 8$, $g^4 \equiv_9 7$, $g^5 \equiv_9 5$, $g^6 \equiv_9 1$

и $G = \{1, 2, 4, 5, 7, 8\}$ е множеството от всички елементи на \mathbb{Z}_9 , взаимно прости с 9. Но лесно може да се провери, че например в \mathbb{Z}_8 или \mathbb{Z}_{12} няма примитивен корен.

Ако g е примитивен корен в \mathbb{Z}_n , то от горната дефиниция следва, че сравнението

$$g^x \equiv_n b$$

има единствено решение $x \in \{1, 2, ..., \varphi(n)\}$ за произволно $b \in \mathbb{Z}_n$ и b взаимно просто с n. Това решение наричаме дискретен логаритьм от b при основа g и означаваме с $dlog_qb$. По презюмпция $dlog_q1 = 0$, а не $\varphi(n)$.

Пример. Ако n=7, то $\varphi(n)=6$ и g=3 и 5 са всички примитивни корени в \mathbb{Z}_7 , защото

g	g^2	g^3	g^4	g^5	g^6
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

Тогава $dlog_34 = 4$, $dlog_36 = 3$, $dlog_53 = 5$, $dlog_51 = 0$.

Задача 11. Да се дефинира C++ функция, която **проверява** дали дадено число е примитивен корен в \mathbb{Z}_n .

Задача 12. Да се дефинира C++ функция, която **намира всички** примитивни корени в \mathbb{Z}_n .

Задача 13. Да се дефинира C++ функция, която изчислява **дискретен логаритъм** в \mathbb{Z}_n при дадени основа и елемент от \mathbb{Z}_n и връща -1, ако това не е допустимо.

Остатъчно поле \mathbb{F}_n

Ако n е просто число, то пръстенът \mathbb{Z}_n наричаме остатвчно поле и бележим с \mathbb{F}_n . Едно от най-важните свойства на \mathbb{F}_n е, че всеки елемент различен от 0 има реципрочен (обратен). С други думи, \mathbb{F}_n е затворено относно операциите събиране, изваждане, умножение и степенуване по подобие на множеството на рационалните числа \mathbb{Q}_n , което обаче е безкрайно. Също така се оказва, че във \mathbb{F}_n винаги има поне един примитивен корен, т.е. \mathbb{F}_n е затворено и относно операцията логораритмуване при основа този корен.

Задача 14. Да се дефинира C++ функция, която проверява дали даден остатъчен пръстен е остатъчно поле.

Задача 15.* Да се създаде десктоп приложение за *модулен калкулатор*, който дава възможност за извършване на модулна аритметика в зададено остатъчно поле \mathbb{F}_n с включенни операции - събиране, изваждане, умножение, деление, степенуване и логаритмуване.