Departamento de Ciência de Computadores Algoritmos (CC4010)

FCUP 2019/20

Exame (07.02.2020)	duração: 3h (+30')
N.º Nome	
1. [2.0] Usando a definição matemática a) $n^2 + 3n \log n \in O(500n)$	das ordens de grandeza, prove a veracidade ou falsidade de:
b) $\Omega(n^2) \cup \Omega(n^2 \log n) = \Omega(n^2 \log n)$	
a k num grafo $G = (V, E, \omega)$, dados G, s ,	se existe um caminho de s para t de comprimento maior ou igual t e k , com $\omega(e) \in \mathbb{Z}^+$, para $e \in E$. Seja B o problema de decidir primento menor ou igual a k em G , dados G , s , t e k . Seja C of Hamilton num grafo G dado.
Assumindo que $P \neq NP$, quais dos problem (ii) a B ? Refira apenas os distintos do indicado. Ju	mas A, B, C e 3-SAT se podem reduzir polinomialmente: (i) a A (iii) a C? (iii) a 3-SAT? stifique sucintamente a resposta.
efetuando uma sequência de n increment	r operação quando incrementamos um <i>contador binário</i> de 0 a n os de uma unidade é $\Theta(1)$. O contador é definido por um $array$ 2^k e o custo real de cada $flip \ (0 \to 1 \text{ ou } 1 \to 0)$ é 1 .

4. Sejam A_1, A_2, \ldots, A_n matrizes de inteiros, tendo A_k dimensão $d_k \times d_{k+1}$, para $1 \le k \le n$. Pretendemos efetuar o produto $A_1A_2\cdots A_n$ com número mínimo de multiplicações , usando a definição usual de produto de matrizes mas explorando a associatividade. Por exemplo, para $A_1: 2\times 3, A_2: 3\times 5$ e $A_3: 5\times 2$, se usarmos $A_1(A_2A_3)$ efetuamos $30+12=42$ multiplicações e se usarmos $(A_1A_2)A_3$ efetuamos $30+20=50$. Recorde que se $C=A_1A_2$ então C tem dimensão $d_1\times d_3$ e no cálculo de $C[i,j]=\sum_{p=1}^{d_2}A_1[i,p]\times A_2[p,j]$ efetuamos d_2 multiplicações, para $1\le i\le d_1, 1\le j\le d_3$. a) [1.2] Apresente a recorrência que define o número mínimo de multiplicações para calcular $A_kA_{k+1}\ldots A_m$, com $1\le k\le m\le n$, e o número de soluções ótimas alternativas. Represente-os por N_{km} e S_{km} .				
b) [0.3] Use a recorrência para calcular o número de soluções ótimas de uma instância com $d=[2,2,2,2,2]$ e $n=2$.				
c) [1.0] Escreva uma função (em pseudocódigo) para calcular o valor do mínimo para $A_1A_2\cdots A_n$ e o número de soluções ótimas alternativas, sendo dados n e o $array\ d$ de dimensões como parêmetros. A função imprime os valores pedidos. Pode implementar funções auxiliares. Deve seguir uma abordagem de programação dinâmica .				
5. [2.5] Caraterize a complexidade temporal de algoritmos/implementações (eficientes), no melhor caso (caixa à esquerda) e no pior caso (caixa à direita) para:				
a) extrair o valor mínimo de uma $heap$ de mínimo, com n inteiros;				
b) localizar um ponto relativamente a um polígono convexo com n vértices;				
\mathbf{c}) ordenar um vetor de n inteiros por um método comparativo eficiente;				
d) Jarvis march (gift-wraping) para obter o invólucro convexo de n pontos em \mathbb{R}^2 .				

DCC/FCUP -	- Algoritmos (CC4010)	Exame (07.02.2020
N.°	Nome	
Justifique sucinta	amente a resposta para <u>uma</u> das alíneas da questão 5	
	e o problema <i>unit task scheduling</i> , em que todas as tar forem realizadas para lá desses prazos.	refas têm duração 1, prazos limite
	nstância seguinte, sendo d_i o prazo limite para execução r se executar a tarefa após esse prazo.	io da tarefa i sem penalização e p_i
	$i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10$	$0\mid 11\mid 12\mid$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$p_i \mid 21 \mid 20 \mid 22 \mid 15 \mid 20 \mid 25 \mid 10 \mid 5 \mid 18 \mid 30 \mid 25 \mid 20 \mid 25 \mid 25 \mid 20 \mid 25 \mid 25 \mid 2$	
-	efas que serão realizadas dentro do prazo pela ordem	em que são escolhidas no algoritn
,	em caso de empate, opte pela tarefa com índice menor) dário para execução das 12 tarefas, com penalização o	mínima, que resulta de alocar cao
tarefa o mais tar	rde possível, à medida que o algoritmo as vai proces	ssando, sem ultrapassar 12 slots o
tempo	. Ind	ique a penalização
	goritmo referido em 6a) em pseudocódigo. Deve ter	-
propriedades es	struturais que o algoritmo explora e que permitem just	tificar a sua correção.

7. [2.0] A recorrência $T(n) = T(n/5) + T(7n/10) + c$ seleção ordinal determinístico "mediana das medianas	s de 5". Explique porquê e apresente a prova de que
$T(n) \in \Theta(n)$ usando a árvore de recursão. Pode assum	$\begin{array}{c} \text{nir que } n \text{ \'e m\'ultiplo de 5.} \\ \hline \end{array}$
8. [2.0] Considere a função QUICKSORT definida por	
QUICKSORT(x,a,b)	
Se $a < b$ então $t \leftarrow MYPARTITION(x, a, b)$	
QUICKSORT $(x, a, t - 1)$	
QUICKSORT $(x, t+1, b)$	
sendo x é um $array$ de n inteiros $x[1],\ldots,x[n]$, e a e b inteiros tais que $1\leq a\leq b\leq n$.	
Escreva MyPartition em pseudocódigo, de modo	
que $QUICKSORT(x, 1, n)$ ordene o vetor por ordem decrescente . Demonstre a correção do programa.	

11. [1.0] Explique em que consiste o algoritmo de Ghosh para o problema de cobertura de polígonos com número mínimo guardas (colocados em vértices) e ilustre a sua aplicação ao polígono indicado, cujos vértices são (3,0), (9,3), (6,2), (8,4), (6,5), (6,6), (2,6), (2,4), (0,3), (1,2), (3,2).

Master theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Stirling's approximation:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta(1/n)\right) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{\alpha_n}, \quad \text{with } 1/(12n+1) < \alpha_n < 1/(12n)$$

Some useful results:

$$\log(\prod_{k=1}^{n} a_k) = \sum_{k=1}^{n} \log a_k \qquad \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}, \text{ for } |x| < 1$$

If $(u_k)_k$ is an arithmetic progression (i.e., $u_{k+1} = r + u_k$, for some constant $r \neq 0$), then $\sum_{k=1}^n u_k = \frac{(u_1 + u_n)n}{2}$.

If $(u_k)_k$ is a geometric progression (i.e., $u_{k+1} = ru_k$, for some constant $r \neq 1$), then $\sum_{k=1}^n u_k = \frac{u_{n+1} - u_1}{r-1}$.

If $f \ge 0$ is continuous and a monotonically increasing function, then

$$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$$