## Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Gradient Descent: extensiones

## Momentum



Idea: adaptar el  $\gamma$  según consistencia (tener en cuenta steps anteriores)  $\to$  agregar memoria.

$$\begin{cases} v_t = \alpha v_{t-1} - \gamma \cdot g \\ \theta_{t+1} = \theta_t + v_t \end{cases}$$

•  $\alpha \in (0,1)$  es la *viscosidad* (en términos físicos) o retención de memoria de valores anteriores.

Observar que

Si en GD el gradiente controla la velocidad que se mueve sobre el espacio de parametros, en Momentum controla la aceleracion

$$\theta_{t+1} = \theta_t - \gamma (g_t + \alpha g_{t-1} + \alpha^2 g_{t-2} + \dots) = \theta_t - \gamma \sum_{i=0}^t \alpha^i g_{t-i}$$
60:  $\Delta \Theta$ : -  $\gamma$ :

## **RMSProp**



Idea: "reescalar" el gradiente para tener más estabilidad. El reescalamiento se hace a nivel de *feature* para que variaciones grandes sobre un feature no anulen a otros que aún no variaron.

$$\begin{cases} s_t = \lambda s_{t-1} + (1-\lambda)g^2 \\ \theta_{t+1} = \theta_t - \frac{\gamma}{\sqrt{s_t + \epsilon}} \odot g \\ \text{Es como dividir por el desvio estandar} \end{cases}$$
 con  $^2$  y  $\surd$  aplicados  $element$ - $wise$ , e.g.  $g^2 = g \odot g = (g_1^2, g_2^2, \dots, g_n^2)$ .

- $\lambda \in (0,1)$  es la retención de memoria de valores anteriores.
  - $0 < \epsilon \ll 1$  es una constante para estabilidad numérica. Valores típicos rondan  $10^{-6}$ .

rondan 
$$10^{-6}$$
.

GD:  $\Delta D = -\gamma \cdot g_{\zeta} = -\gamma \cdot \left(g_{t}^{(4)}, g_{t}^{(4)}, \dots, g_{\zeta}^{(n)}\right)$ 

Rusing:  $\Delta D = -\gamma \cdot \frac{g_{t}}{\sqrt{\epsilon_{n}}} = -\gamma \cdot \left(\frac{g_{t}^{(4)}}{\sqrt{\epsilon_{n}^{(4)}}}, \frac{g_{t}^{(n)}}{\sqrt{\epsilon_{n}^{(n)}}}, \dots\right) \frac{g_{t}^{(n)}}{\sqrt{\epsilon_{n}^{(n)}}}$ 

## Visualización GD vs RMSProp





Idea: Momentum y RMSProp hacen cosas distintas y ambas están buenas ¡Mezclemos!

$$\begin{cases} v_t = \beta_1 v_{t-1} + (1-\beta_1)g) & \text{from.} \\ s_t = \beta_2 s_{t-1} + (1-\beta_2)g^2 & \text{Rhsh} \\ v_t' = \frac{v_t}{1-\beta_1^t} \\ s_t' = \frac{s_t}{1-\beta_2^t} & \text{rescaling} \\ \theta_{t+1} = \theta_t - \frac{\gamma}{\sqrt{s_t'} + \epsilon} & \text{v}_t' & \text{from.} \end{cases}$$

- $\beta_1, \beta_2 \in (0, 1)$  son la retención de memoria de valores anteriores de media y variabilidad del gradiente. Valores default son  $\beta_1 = 0.99, \beta_2 = 0.999$ .
- 0 <  $\epsilon \ll 1$  es una constante para estabilidad numérica. Valor default es  $10^{-8}$ .