Disclaimer

В данном документе собраны лекции по динамике системы материальных точек, прочитанные Евгенией Зиновьевной Грибовой на первом курсе радиофизического факультета ННГУ.

Лекции набраны с частичным сокращением материала (убраны примеры в лекциях).

Документ оптимизирован для подготовки к экзамену, оговорены важные моменты, определения, теоремы и проч.

Разрешено копирование и распространение данного документа с обязательным указанием первоисточника.

Автор набора и верстки - Сарафанов Ф.Г.

Содержание

L.	Дин	намика	а системы материальных точек (СМТ)	2
	1.1.	Закон	ы сохранения для системы материальных точек	2
		1.1.1.	Теорема о изменении импульса СМТ	2
		1.1.2.	Теорема о движении центра масс системы материальных точек	3
		1.1.3.	Динамика тел переменной массы. Уравнение Мещерского	5
		1.1.4.	Теорема о изменении момента импульса СМТ	6
		1.1.5.	Закон сохранения момента импульса	7
		1.1.6.	Связь моментов импульса в лабораторной и центромассовой системах	
			отсчета	9
		1.1.7.	Уравнение моментов относительно оси	9
	1.2.	Энерг	етические соотношения для СМТ	11
		1.2.1.	Связь между W_{kc} в различных системах отсчета. Теорема Кёнига	11
		1.2.2.	Потенциальная энергия СМТ. Закон сохранения механической энер-	
			гии для СМТ	12
		1.2.3.	Понятие внутренней энергии	13
		1.2.4.	Связь законов сохранения импульса, момента импульса, энергии в	
			СМТ с свойствами пространства и времени	13
	1.3.	Приме	енение законов сохранения. Явления удара	15
		1.3.1.	Абсолютно неупругий удар «АНУ»	15
		1.3.2.	Абсолютно упругий удар «ААУ»	16
		1.3.3.	Лобовой (центральный) удар	16
		1.3.4.	Нецентральное столкновение шаров (косой удар). Диаграмма импуль-	
			COB	18
	1.4.	Закон	Бернулли для стационарного потока идеальной жидкости	19

1. Динамика системы материальных точек (СМТ)

1.1. Законы сохранения для системы материальных точек

1.1.1. Теорема о изменении импульса СМТ

По определению,

$$\vec{p_i} = m_i \vec{v_i} \tag{1}$$

Введем:

$$\vec{p_c} = \sum_{i=1}^{N} \vec{p_i} \tag{2}$$

Можем расписать как

$$\frac{d\vec{p}_i}{dt} = \vec{F}_i = \vec{F}_i^{\text{внутр}} + \vec{F}_i^{\text{внеш}} \tag{3}$$

Где

$$\vec{F}_i^{\text{внутр}} = \vec{F}_{1,i} + \vec{F}_{2,i} + \dots + \vec{F}_{i-1,i} + \vec{F}_{i+1,i} + \dots + \vec{F}_{N,i}$$
(4)

Будем рассматривать $\vec{F}_i^{\text{внутр}}$ для $\forall i$:

$$i = 1: \vec{F}_{2,1} + \dots$$

 $i = 2: \vec{F}_{1,2} + \dots$ (5)

По третьему закону Ньютона:

$$\vec{F}_{i,j} + \vec{F}_{j,i} = 0 \tag{6}$$

Тогда

$$\sum_{i=1}^{N} \vec{F}_i^{\text{внутр}} = 0 \tag{7}$$

Подействуем оператором суммы на левую и правую части уравнения (3):

$$\sum_{i=1}^{N} \frac{d\vec{p}_i}{dt} = \underbrace{\sum_{i=1}^{N} \vec{F}_i^{\text{внутр}}}_{\equiv 0} + \underbrace{\sum_{i=1}^{N} \vec{F}_i^{\text{внеш}}}_{\equiv \vec{F}_i^{\text{внеш}}}$$
(8)

Перепишем левую часть, вытащив дифференцирование из-под суммы:

$$\frac{d}{dt} \sum_{i=1}^{N} \vec{p_i} = \frac{d\vec{p_c}}{dt} \tag{9}$$

И правую:

$$\sum_{i=1}^{N} \vec{F}_i^{\text{внеш}} = \vec{F}_c^{\text{внеш}} \tag{10}$$

Тогда получаем **теорему о изменении импульса СМТ в дифференциальной** форме:

$$\frac{d\vec{p}_c}{dt} = \vec{F}_c^{\text{внеш}} \tag{11}$$

Интегрируя, получим **теорему о изменении импульса СМТ в интегральной** форме:

$$\vec{p}_c(t) - \vec{p}_c(t_0) = \int_{t_0}^t \vec{F}_c^{\text{внеш}} \cdot dt$$
(12)

Рассматриваются следующие важные случаи.

Случай первый. Внешняя сила $\vec{F}_i = 1$ равна нулю при любых i. Тогда система называется *изолированной*. Такое состояние достигнуть очень сложно: оно, скорее, является гипотетическим.

$$\vec{F}_i^{\text{внеш}} = 1 \quad \forall i \tag{13}$$

Тогда

$$\vec{F}_c^{\text{внеш}} = 0 \Rightarrow \vec{p}_c = const$$
 (14)

Случай второй. Произвольно выбранная внешняя сила может быть не равна нулю, но сумма внешних сил $\vec{F_c}$ равна нулю. Это уже более реальный случай, чем предыдущий.

$$\vec{F}_c^{\text{внеш}} = 0 \Rightarrow \vec{p}_c = const$$
 (15)

Случай третий. Сумма внешних сил $\vec{F}_c^{\text{внеш}}$ не равна нулю, но сохраняется её направление.

Тогда можно выбрать такую ось x, что в проекции на неё

$$F_{cx}^{\text{внеш}} = 0 \Rightarrow p_{cx} = const \tag{16}$$

Случай четвертый. Сумма внешних сил $\vec{F}_c^{\text{внеш}}$ не равна нулю, но если выполняется система условий:

$$\begin{cases} |\vec{F}_c^{\text{внеш}}| \neq \infty \\ \Delta t \to 0 \end{cases} \tag{17}$$

Тогда

$$\vec{p_c} = const \tag{18}$$

1.1.2. Теорема о движении центра масс системы материальных точек

Разберемся с геометрическим местом центром масс СМТ.

Пусть мы имеем систему двух МТ $m_1 = m_2$, тогда интуитивно $x_c = \frac{x_1 + x_2}{2}$:

Теперь пусть $m_1 \neq m_2$, тогда интуитивно $x_c = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$:

Теперь обобщаем на систему из N материальных точек с произвольными массами:

$$m_1$$
 C m_2 x_c

Рис. 1: Система из двух МТ с равными массами

Рис. 2: Система из двух МТ с разными массами

$$\begin{cases} x_c = \frac{\sum_{i=1}^{N} m_i x_i}{\sum_{i=1}^{N} m_i} = \frac{\sum_{i=1}^{N} m_i x_i}{m_c} \\ y_c = \frac{\sum_{i=1}^{N} m_i y_i}{\sum_{i=1}^{N} m_i} = \frac{\sum_{i=1}^{N} m_i y_i}{m_c} \\ z_c = \frac{\sum_{i=1}^{N} m_i z_i}{\sum_{i=1}^{N} m_i} = \frac{\sum_{i=1}^{N} m_i z_i}{m_c} \end{cases}$$
(19)

Определение. Центр масс - это такая точка, которая задается радиус-вектором

$$\vec{R}_c = \frac{\sum_{i=1}^{N} m_i \vec{r}_i}{m_c} \tag{20}$$

Нужно задастся вопросом: *сменится ли положение центра масс от смены точки отсчета (полюса) О?*

Геометрически очевидно, что

$$\vec{r_i} = \vec{r_i}' + \vec{\rho} \tag{21}$$

Тогда

$$\vec{R}_c = \frac{\sum_{i=1}^{N} m_i \vec{r}_i}{m_c} + \vec{\rho} \frac{\sum_{i=1}^{N} m_i}{m_c}$$
 (22)

И получаем что и требовалось найти:

$$\vec{R}_c = \vec{R}_c' + \vec{\rho} \tag{23}$$

Положение центра масс не зависит от положения полюса.

Определение. Скорость центра масс задается как:

$$\vec{V}_c = \frac{d\vec{R}_c}{dt} \tag{24}$$

Oговорка: $v \ll c \Rightarrow m_i = const.$ Тогда

$$\vec{V}_c = \frac{1}{m_c} \sum_{i=1}^{N} m_i \frac{d\vec{r}_i}{dt} = \frac{\sum_{i=1}^{N} m_i \vec{v}_i}{m_c}$$
(25)

$$\vec{a}_c = \frac{d\vec{V}_c}{dt} = \frac{d}{dt} \left(\frac{\sum_{i=1}^N m_i \vec{v}_i}{m_c} \right) \middle| \cdot m_c$$
 (26)

$$m_c \vec{a}_c = \frac{d}{dt} \left(\sum_{i=1}^N m_i \vec{v}_i \right) = \frac{d\vec{p}_c}{dt} = \vec{F}_c^{\text{внеш}}$$
(27)

По сути, весь «размазанный» по пространству импульс системы мы можем причислить κ одной точке — uenmpy масс системы.

$$m_c \vec{a}_c = \vec{F}_c^{\text{внеш}} \tag{28}$$

Это и есть теорема о движении центра масс системы материальных точек.

Мы получили важный результат: внутренние силы не могут создать ускорения СМТ!

1.1.3. Динамика тел переменной массы. Уравнение Мещерского

(a) Момент времени t_0

(b) Момент времени $t_0 + \Delta t$

Пусть M – масса «основного» тела, Δm_1 – то, что «отвалится» ($\Delta m_1 > 0$), Δm_2 – то, что присоединится.

Запишем импульс системы до и после изменения конфигурации:

$$\vec{p}_0 = \vec{p}(t_0) = M\vec{v} + \Delta m_2 \vec{v}_2 = M\vec{v} + \Delta m_2 (\vec{v} + \vec{u}_2) \tag{29}$$

$$\vec{p}(t) = (M - \Delta m_1 + \Delta m_2)[\vec{v} + \Delta \vec{v}] + \Delta m_1([\vec{v} + \Delta \vec{v}] + \vec{u}_1)$$
(30)

Тогда изменение импульса будет

$$\Delta \vec{p} = \vec{p}(t) - \vec{p}_0 = (M - \Delta m_1 + \Delta m_2)[\vec{v} + \Delta \vec{v}] + \Delta m_1([\vec{v} + \Delta \vec{v}] + \vec{u}_1) - M\vec{v} - \Delta m_2(\vec{v} + \vec{u}_2)$$
(31)

Теперь нужно аккуратно раскрыть скобки:

$$\Delta \vec{p} = \vec{p}(t) - \vec{p}_0 = M\vec{v} - \Delta m_1 \vec{v} + \Delta m_2 \vec{v} + \\
+ M\Delta \vec{v} - \Delta m_1 \Delta \vec{v} + \Delta m_2 \Delta \vec{v} + \\
+ \Delta m_1 \vec{v} + \Delta m_1 \Delta \vec{v} + \Delta m_1 \vec{u}_1 - \\
- M\vec{v} - \Delta m_2 \vec{v} - \Delta m_2 \vec{u}_2$$
(32)

Величинами вида $\Delta \cdot \Delta$ пренебрежем, как величинами более высокого порядка малости, чем Δ . Приведем подобные:

$$\Delta \vec{p} = \vec{p}(t) - \vec{p}_0 = M\vec{v} - \Delta m_1 \vec{v} + \Delta m_2 \vec{v} + \tag{33}$$

$$+M\Delta \vec{v} + \Delta m_1 \vec{v} + \Delta m_1 \vec{u}_1 - \tag{34}$$

$$-M\vec{v} - \Delta m_2 \vec{v} - \Delta m_2 \vec{u}_2 \tag{35}$$

Тогда можем, наконец, окончательно записать изменение импульса:

$$\Delta \vec{p} \simeq M \Delta \vec{v} + \Delta m_1 \vec{u}_1 - \Delta m_2 \vec{u}_2 \tag{36}$$

Физика оперирует не бесконечно малыми величинами, а дискретными. Отсюда следует

$$\Delta t \to 0 \quad \Rightarrow \quad \frac{\Delta \vec{p}}{\Delta t} \to \frac{d\vec{p}}{dt}$$
 (37)

Переходя к дифференциалам, равенство запишем строгим:

$$\frac{d\vec{p}}{dt} = M\frac{d\vec{v}}{dt} + \frac{dm_1}{dt}\vec{u}_1 - \frac{dm_2}{dt}\vec{u}_2 \tag{38}$$

Под импульсом мы понимали импульс системы, поэтому его производная - равнодействующая внешних сил. Перепишем формулу:

$$M\frac{d\vec{v}}{dt} = \vec{F}^{\text{внеш}} - \frac{dm_1}{dt}\vec{u}_1 + \frac{dm_2}{dt}\vec{u}_2 \tag{39}$$

Это то, к чему мы стремились - уравнение Мещерского.

$$\vec{F}^{\text{peakt}} = -\frac{dm_1}{dt}\vec{u}_1 + \frac{dm_2}{dt}\vec{u}_2 \tag{40}$$

1.1.4. Теорема о изменении момента импульса СМТ

Определение. Момент импульса *i*-й материальной точки СМТ

$$\vec{N}_i = [\vec{r}_i \times m_i \vec{v}_i] \tag{41}$$

Определение. Момент импульса СМТ

$$\vec{N}_c = \sum_{i=1}^{N} [\vec{r}_i \times m_i \vec{v}_i] \tag{42}$$

Ранее мы доказали, что $\frac{d\vec{N}}{dt} = \vec{M}$. Зададимся вопросом, так ли это для СМТ? Для i-й материальной точки СМТ

$$\frac{d\vec{N_i}}{dt} = \vec{M_i} = [\vec{r_i} \times \vec{F_i}] \quad \forall i \tag{43}$$

Тогда

$$\sum_{i=1}^{N} \frac{d\vec{N}_{i}}{dt} = \sum_{i=1}^{N} [\vec{r}_{i} \times \vec{F}_{i}] = \sum_{i=1}^{N} [\vec{r}_{i} \times (\vec{F}_{i}^{\text{внеш}} + \vec{F}_{i}^{\text{внутр}})]$$
(44)

Распишем:

$$\vec{F}_i^{\text{внутр}} = \vec{F}_{1,i} + \vec{F}_{2,i} + \dots + \vec{F}_{j-1,i} + \vec{F}_{j+1,i} + \dots + \vec{F}_{N,i}$$
(45)

$$\vec{F}_{i,j} = -\vec{F}_{j,i} \tag{46}$$

Для взаимодействия i-й и j-й точек:

$$[\vec{r}_i \times \vec{F}_{j,i}] + [\vec{r}_j \times \vec{F}_{i,j}] = [(\vec{r}_i - \vec{r}_j) \times \vec{F}_{j,i}] = [\vec{r}_{i,j} \times \vec{F}_{j,i}] \equiv 0$$
(47)

Это значит, что все $\vec{M}_i^{\text{внутр}} = 0.$

$$\sum_{i=1}^{N} \frac{d\vec{N}_i}{dt} = \sum_{i=1}^{N} [\vec{r}_i \times \vec{F}_i^{\text{внеш}}]$$

$$\tag{48}$$

Получили **теорему**: Момент импульса СМТ меняется за счет **только** момента внешних cun.

$$\frac{d\vec{N_c}}{dt} = \vec{M_c}^{\text{внеш}} \tag{49}$$

1.1.5. Закон сохранения момента импульса

Случай первый. Внешняя сила $\vec{F}_i = 1$ равна нулю при любых i.

$$\vec{F}_i^{\text{внеш}} = 1 \quad \forall i \Rightarrow \vec{M}_c^{\text{внеш}} = 0$$
 (50)

Тогда

$$\vec{N}_c = const \tag{51}$$

Случай второй. Произвольно выбранная внешняя сила может быть не равна нулю, но момент внешних сил $\vec{M}_c^{\text{внеш}}$ равен нулю.

$$\vec{M}_c^{\text{внеш}} = 0 \Rightarrow \vec{N}_c = const$$
 (52)

Случай третий. Произвольно выбранный момент внешней силы может быть не равна нулю, но момент внешних сил $\vec{M}_c^{\text{внеш}}$ равен нулю.

$$\vec{M}_c^{\text{внеш}} = 0 \Rightarrow \vec{N}_c = const$$
 (53)

Случай четвертый. Момент внешних сил $\vec{M}_c^{\text{внеш}}$ не равен нулю, но сохраняет направление.

Тогда можно выбрать такую ось x, что в проекции на неё

$$M_{cx}^{\text{внеш}} = 0 \Rightarrow N_{cx} = const$$
 (54)

Случай пятый. Запишем теорему о изменении момента импульса в интегральной форме.

$$\Delta \vec{N_c} = \vec{N_c}(t) - \vec{N_c}(t_0) = \int_{t_0}^t \vec{M_c}^{\text{BHeIII}}$$
 (55)

Тогда если выполняется система условий:

$$\begin{cases} |\vec{M}_c^{\text{внеш}}| \neq \infty \\ \Delta t = t - t_0 \to 0 \end{cases}$$
 (56)

To

$$\vec{N}_c = const \tag{57}$$

Нужно задастся вопросом: что зависит от смены точки отсчета (полюса) О?

$$\vec{\rho} = \vec{OO'} \tag{58}$$

$$\vec{r_i} = \vec{\rho} + \vec{r'_i} \tag{59}$$

$$\vec{N}_{O'i} = [\vec{r'}_i \times \vec{p}_i] \tag{60}$$

$$\vec{N}_{Oi} = [\vec{r}_i \times \vec{p}_i] = [\vec{r'}_i \times \vec{p}_i] + [\vec{\rho} \times \vec{p}_i]$$

$$(61)$$

$$\vec{N}_{Oi} = \vec{N}_{O'i} + [\vec{\rho} \times \vec{p}_i] \tag{62}$$

$$\vec{N}_O = \vec{N}_{O'} + \sum_{i=1}^{N} [\vec{\rho} \times \vec{p}_i]$$
 (63)

$$\vec{N}_O = \vec{N}_{O'} + [\vec{\rho} \times \vec{p}_c] \tag{64}$$

Если мы найдем такую CO, где импульс системы равен нулю, то в ней момент импульса не зависит от выбора точки отсчета.

Такая СО - **центромассовая**, и если мы в ней – сопровождающая. Будем обозначать величины в ИМСО звездочкой:

$$\vec{p}_c^* = 0 \tag{65}$$

1.1.6. Связь моментов импульса в лабораторной и центромассовой системах отсчета

O – начало отсчета в ЛСО (лабораторной системе отсчета), O' – в ЦМСО (центромассовой системе отсчета).

$$\vec{r_i} = \vec{r_i}^* + \vec{\rho} \tag{66}$$

$$\vec{v_i} = \vec{v_i}^* + \vec{v_c} \tag{67}$$

$$\vec{N_i} = [\vec{r_i} \times m_i \vec{v_i}] \tag{68}$$

$$\vec{N_c} = \sum_{i=1}^{N} [\vec{r_i} \times m_i \vec{v_i}] = \sum_{i=1}^{N} [(\vec{r_i}^* + \vec{\rho}) \times m_i (\vec{v_i}^* + \vec{v_c})] =$$
(69)

$$= \underbrace{\sum_{i=1}^{N} [\vec{r}_{i}^{*} \times m_{i} \vec{v}_{i}^{*}]}_{\equiv \vec{N}_{c}^{*}} + \underbrace{\sum_{i=1}^{N} [\vec{r}_{i}^{*} \times m_{i} \vec{v}_{c}]}_{\equiv [\vec{\rho} \times \vec{p}_{c}^{*}]} + \underbrace{\sum_{i=1}^{N} [\vec{\rho} \times m_{i} \vec{v}_{i}^{*}]}_{\equiv [\vec{\rho} \times \vec{p}_{c}^{*}]} + \underbrace{\sum_{i=1}^{N} [\vec{\rho} \times m_{i} \vec{v}_{i}^{*}]}_{\equiv [\vec{\rho} \times \vec{p}_{c}^{*}]} = 0$$
(70)

$$= \vec{N}_c^* + [\vec{r}_c^* \times \vec{p}_c] + [\vec{\rho} \times \vec{p}_c] =$$
 (71)

$$= \vec{N}_c^* + [(\vec{r}_c^* + \vec{\rho}) \times \vec{p}_c] =$$
 (72)

$$= \vec{N}_c^* + [\vec{r}_c \times \vec{p}_c] \tag{73}$$

Причем здесь первое слагаемое отвечает за вращение СМТ относительно центра масс, а второе - за вращение центра масс относительно ЛСО.

1.1.7. Уравнение моментов относительно оси

Введем сферическую систему координат с центром O, ортонормированным базисом $\{\vec{e}_r,\vec{e}_\tau,\vec{e}_\phi\}$

$$\vec{v} = \vec{v}_{\tau} + \vec{v}_{r} + \vec{v}_{\phi} \tag{74}$$

Можем записать

$$\vec{v}_{\phi} = [\omega \times \vec{r}] = [\omega \times \vec{r}_{\perp}] \tag{75}$$

Запишем момент импульса по определению:

$$\vec{N} = [\vec{r} \times m\vec{v}] = m([\vec{r} \times \vec{v}_{\tau}] + [\vec{r} \times \vec{v}_{r}] + [\vec{r} \times \vec{v}_{\phi}]) \tag{76}$$

Формально запишем его проекцию на z:

$$[\vec{N}]_z = [\vec{r} \times m\vec{v}_\phi] = m[\vec{r} \times [\vec{\omega} \times \vec{r}_\perp]] \tag{77}$$

Откуда по бессмертному «бац минус цаб»

$$N_z = m\omega_z(\vec{r}, \vec{r}_\perp) - m\underbrace{(\vec{r}_\perp)_z}_{=0}(\vec{r}, \omega) = m\omega_z r_\perp^2$$
(78)

Все вышеизложенные выкладки были для одной материальной точки. Для СМТ:

$$N_{cz} = \sum_{i=1}^{N} m_i \omega_{zi} r_{\perp i}^2 \tag{79}$$

В частном случае, когда все точки тела вращаются с одной угловой скоростью (твердое тело),

$$\omega_{zi} = \omega_z \quad \forall i \Rightarrow N_{cz} = \omega_z \sum_{i=1}^{N} m_i r_{\perp i}^2$$
 (80)

Определение. Момент инерции - это мера инертности вращательного движения, выражающаяся как

$$I = \sum_{i=1}^{N} m_i r_{\perp i}^2 \tag{81}$$

$$N_{cz} = I\omega_z \tag{82}$$

Можем записать закон сохранения момента импульса в таком виде:

$$I_1 \cdot \omega_{1z} = I_2 \cdot \omega_{2z} \tag{83}$$

1.2. Энергетические соотношения для СМТ

Для точки нам известно:

$$W_k = \frac{mv^2}{2} \tag{84}$$

$$\Delta W_k = W_k^{\text{кон}} - W_k^{\text{нач}} = A_{1-2}^{\text{всех}} = \int_{(1)}^{(2)} (\vec{F}, d\vec{l}) = \int_{(1)}^{(2)} F_l \cdot dl$$
 (85)

$$W_{kc} = \sum_{i=1}^{N} \frac{m_i v_i^2}{2} \tag{86}$$

$$\Delta W_{ki} = A_i^{\text{BCEX}}, \quad \forall i$$
 (87)

$$\Delta W_{kc} = \sum_{i=1}^{N} \Delta W_{ki} = \sum_{i=1}^{N} A_i^{\text{BCEX}}$$
(88)

Поставим себе задачу: $nonpoбовать избавиться (no аналогии с импульсом и моментом импульса) от внутренних сил в «<math>A^{scex}$ »

$$\vec{F}_{ij} = -\vec{F}_{ji}$$

$$dA_i = \vec{F}_{ji} \cdot d\vec{l}_i$$

$$dA_j = \vec{F}_{ij} \cdot d\vec{l}_j$$

$$dA_i + dA_j = \vec{F}_{ji} (d\vec{l}_i - d\vec{l}_j)$$

$$(92)$$

Печально, но это – **не ноль в общем случае**. Избавиться от внутренних сил в « $A^{\rm Bcex}$ » не удалось.

1.2.1. Связь между W_{kc} в различных системах отсчета. Теорема Кёнига

Как всегда, нас будет интересовать выделенная система отсчета. Обозначим K – лабораторную систему отсчета, K' – движущуюся относительно ЛСО со скоростью \vec{u} .

$$\vec{v} = \vec{v}' + \vec{u} \tag{93}$$

$$W_k = \frac{mv^2}{2} = \frac{mv'^2}{2} + \frac{mu^2}{2} + m(\vec{v}', \vec{u})$$
(94)

Для системы материальных точек

$$W_{kc} = \sum_{i=1}^{N} W_{ki} = \underbrace{\sum_{i=1}^{N} \frac{m_i v_i'^2}{2}}_{\equiv W_{kc}'} + \underbrace{\sum_{i=1}^{N} \frac{m_i u^2}{2}}_{\equiv m_c u^2} + \underbrace{\sum_{i=1}^{N} m_i (\vec{v_i}', \vec{u})}_{\equiv (\vec{p}'_c, \vec{u})}$$
(95)

Если движущаяся система – ЦМСО, тогда $\vec{p'}_c = \vec{p}_c^* = 0, u = v_c$ и выполняется **теорема** Кёнига:

$$W_{kc} = W_{kc}^* + \frac{m_c v_c^2}{2} \tag{96}$$

1.2.2. Потенциальная энергия СМТ. Закон сохранения механической энергии для СМТ

Для материальной точки нам известно:

$$\underbrace{W_{\Pi}^{\text{Haq}} - W_{\Pi}^{\text{кон}}}_{-\Delta W_{\Pi}} = A_{1-2}^{\text{конс}} \tag{97}$$

$$W_{\text{Mex}} = W_{\text{II}} + W_{\text{K}} \tag{98}$$

По нашему определению,

$$W_{nc} = \sum_{i=1}^{N} W_{ni} \tag{99}$$

$$W_{\text{Mex}_c} = \sum_{i=1}^{N} W_{\text{Mex}_i} \tag{100}$$

$$-\Delta W_{\text{п}c} = \sum_{i=1}^{N} A_{1-2}^{\text{конс}} = A_c = A_c^{\text{внеш,конс}} + A_c^{\text{внутр,конс}}$$
(101)

Пусть все силы будут консервативными. Тогда

$$A_c = A_c^{\text{внеш,конс}} + A_c^{\text{внутр,конс}} = -\Delta W_{\text{п}c}$$
 (102)

$$A_c = \Delta W_{kc} \tag{103}$$

Иначе говоря,

$$-\Delta W_{\rm nc} = \Delta W_{kc} \tag{104}$$

$$\Delta(W_{\rm nc} + \Delta W_{kc}) = 0 \tag{105}$$

Получили закон сохранения механической энергии для СМТ:

$$W_{\text{Mex}_c} = \text{const}$$
 (106)

1.2.3. Понятие внутренней энергии

Рассмотрим систему материальных точек, изолированную в силовом отношении $(\vec{F}^{\text{внеш}} = 0)$:

$$\Delta W_{\text{Mex}} = \underbrace{A_{\text{BHem}}^{\text{Bcex}}}_{0} + A_{\text{Bhyrp}}^{\text{Bcex}} = \underbrace{A_{\text{Bhyrp}}^{\text{Kohc}}}_{-\Delta W_{\text{n}}} + A_{\text{Bhyrp}}^{\text{Hekohc}}$$
(107)

Энергия не исчезает: за счет работы $A_{\rm внутр}^{\rm неконс}$ в системе появляется немеханическая энергия.

$$A_{ ext{внутр}}^{ ext{неконс}} \longrightarrow U$$
 — внутренняя энергия (108)

В роли такой энергии может выступать кинетическая энергия молекул, энергия взаимодействия молекул.

1.2.4. Связь законов сохранения импульса, момента импульса, энергии в СМТ с свойствами пространства и времени

Почему сохраняется импульс? Нам будет проще рассуждать, если мы будем рассматривать только консервативные силы, с которыми связано понятие потенциальной энергии.

Рассмотрим случай взаимодействия всего двух материальных точек.

$$W_{\pi}(\vec{r_1}, \vec{r_2}) = W_{\pi}(x_1, x_2) = W_{\pi}(x_1 - x_2) \tag{109}$$

Нам известно, что

$$F_x = -\frac{\partial W_{\pi}}{\partial x} \tag{110}$$

Иногда именно так определяется потенциальная энергия.

$$F_{x1} = -\frac{\partial W_{\pi}}{\partial x_1} = -\frac{\partial W_{\pi}(x_1 - x_2)}{\partial x_1}$$
(111)

Из свойств дифференцирования следует:

$$F_{x2} = -\frac{\partial W_{\pi}(x_1 - x_2)}{\partial x_2} = -\left(-\frac{\partial W_{\pi}(x_1 - x_2)}{\partial x_1}\right) = -F_{x1}$$
 (112)

Мы получили третий закон Ньютона, на базе которого доказали закон сохранения импульса:

$$\vec{F}_1 = -\vec{F}_2 \tag{113}$$

Это соответствует однородности пространства.

Почему сохраняется момент импульса? Опять таки, нам будет проще рассуждать, если момент внешних сил будет равен нулю: $\vec{M}_{\text{внеш}} = 0$.

Отметим, что на микроуровне силы фундаментальных взаимодействий – центральны

Введем вектор $\vec{r}_{12} = \vec{r}_1 - \vec{r}_2$.

$$\vec{M}_{\text{внутр}} = [\vec{r}_{12} \times \vec{F}_{21}] = 0$$
 (114)

Если мы повернем всю систему, развернутся и силы, и момент останется равным нулю: $\vec{M}'_{\text{внутр}} = \vec{M}_{\text{внутр}} = 0$

Из этого факта следует закон сохранения момента импульса. Это соответствует **изотропности пространства**.

Почему сохраняется механическая энергия? Мы будем рассуждать для нерелятивистского случая, когда масса не зависит от скорости.

$$W_{\text{Mex}} = W_{\text{II}} + W_{\text{k}} \tag{115}$$

Нам известно:

$$W_{\mathbf{k}} = \frac{mv^2}{2} \tag{116}$$

А теперь запишем потенциальную энергию:

$$W_{\pi} = W_{\pi}(\vec{r}, t) \tag{117}$$

Вот это неожиданно. Но тем не менее, предположим, что потенциальная энергия явно зависит от времени.

Найдем следующую производную:

$$\frac{dW_{\text{Mex}}}{dt} = \frac{dW_{\text{K}}}{dt} + \frac{dW_{\text{II}}}{dt} \tag{118}$$

$$v \cdot dv = (\vec{v}, d\vec{v}) \tag{119}$$

$$\frac{dW_{\kappa}}{dt} = mv\frac{dv}{dt} = (\vec{v}, m\frac{d\vec{v}}{dt}) = (\vec{v}, \vec{F})$$
(120)

$$\frac{dW_{\pi}}{dt} = \frac{\partial W_{\pi}(\vec{r}, t)}{d\vec{r}} \cdot \frac{d\vec{r}}{dt} + \frac{\partial W_{\pi}(\vec{r}, t)}{dt} \cdot 1 \tag{121}$$

$$\vec{F} = -\frac{\partial W_{\pi}}{\partial \vec{r}} \qquad \frac{\partial \vec{r}}{\partial t} = \vec{v} \tag{122}$$

Тогда

$$\frac{dW_{\text{Mex}}}{dt} = (\vec{v}, \vec{F}) + (\vec{v}, -\vec{F}) + \frac{\partial W_{\pi}(\vec{r}, t)}{dt}$$
(123)

И окончательно

$$\frac{dW_{\text{Mex}}}{dt} = \frac{\partial W_{\text{II}}(\vec{r}, t)}{dt} \tag{124}$$

Тогда из однородности времени будет следовать сохранение механической энергии.

1.3. Применение законов сохранения. Явления удара

Удар — это **кратковременный** процесс, когда состояние тел, участвующих в нём, сильно меняется по сравнению с начальным состоянием.

В качестве идеализаций рассматриваются **абсолютно упругий** (АУУ) и **абсолютно неупругий** (АНУ) удары.

В реальности наблюдается явление не вполне упругого удара.

1.3.1. Абсолютно неупругий удар «АНУ»

Удар называется АНУ, когда после взаимодействия материальные точки движутся как одно тело с одной скоростью.

$$\begin{array}{c|c}
\Delta t \to 0 \\
F^{\text{BHeIII}} < \infty
\end{array} \qquad \Rightarrow \begin{array}{c}
\vec{p_c} = const \\
W_{\text{Mex}} \neq const
\end{array} \tag{125}$$

$$m_1$$
 \vec{v}_1 m_2 \vec{v}_2

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_c \vec{u} \tag{126}$$

$$\vec{u} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_c} \tag{127}$$

Пусть $\vec{v}_2 = 0$, т.е. $\vec{u} = \vec{v}_1 \cdot \frac{m_1}{m_2}$ $\left(\frac{m_1}{m_2} < 1\right)$

$$\Delta W_{\text{Mex}} = \Delta W_{\text{k}} = \frac{m_c u^2}{2} - \frac{m_1 v_1^2}{2} = -\frac{m_1 m_2}{m_1 + m_2} \cdot \frac{v^2}{2}$$
 (128)

1.3.2. Абсолютно упругий удар «ААУ»

При АУУ

$$\begin{array}{c|c}
\Delta t \to 0 \\
F^{\text{внеш}} < \infty
\end{array} \Rightarrow \begin{array}{c}
\vec{p_c} = const \\
W_{\text{Mex}} = W_k = const
\end{array} \tag{129}$$

1.3.3. Лобовой (центральный) удар

При центральном ударе центры соударяющихся тел находятся на одной прямой (и до удара, и после).

$$\begin{cases}
 m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2 \\
 m_1 v_1^2 + m_2 v_2^2 = m_1 u_1^2 + m_2 u_2^2
\end{cases}$$
(130)

Решить можно, например, следующим образом. Сгруппируем слагаемые с одинаковыми массами:

$$\begin{cases}
 m_1(\vec{v}_1 - \vec{u}_1) = m_2(\vec{u}_2 - \vec{v}_2) \\
 m_1(v_1^2 - u_1^2) = m_2(u_2^2 - v_2^2)
\end{cases}$$
(131)

Запишем систему в проекциях на x:

$$\begin{cases}
 m_1(v_{1x} - u_{1x}) = m_2(u_{2x} - v_{2x}) \\
 m_1(v_{1x}^2 - u_{1x}^2) = m_2(u_{2x}^2 - v_{2x}^2)
\end{cases}$$
(132)

Поделим второе уравнение на первое:

$$v_{1x} + u_{1x} = v_{2x} + u_{2x} \tag{133}$$

Теперь домножим последнее уравнение на m_1 и сложим с первым уравнением системы (132):

$$+ m_1(v_{1x} - u_{1x}) = m_2(u_{2x} - v_{2x})$$

$$+ m_1(v_{1x} + u_{1x}) = m_1(v_{2x} + u_{2x})$$

$$(134)$$

Получаем

$$2m_1v_{1x} = u_{2x}(m_1 + m_2) + v_{2x}(m_1 - m_2)$$
(135)

Откуда

$$u_{2x} = \frac{2m_1v_{1x} + v_{2x}(m_2 - m_1)}{m_1 + m_2} \tag{136}$$

Так как движение вдоль оси x, то

$$\vec{u}_2 = \frac{2m_1\vec{v}_1 + (m_2 - m_1)\vec{v}_2}{m_1 + m_2} \tag{137}$$

Аналогично (только нужно не сложить вышеприведенные уравнения, а вычесть) получается скорость \vec{u}_1 :

$$\vec{u}_2 = \frac{2m_1\vec{v}_2 + (m_1 - m_2)\vec{v}_1}{m_1 + m_2} \tag{138}$$

Рассмотрим некоторые важные случаи центрального удара.

1) $m_1 = m_2$, $\vec{v}_2 = 0$

$$\vec{u}_1 = 0$$
 $\vec{u}_2 = \vec{v}_1$ \Rightarrow обмен скоростями (139)

2) $m_2 \gg m_1$

$$\vec{u}_1 \simeq \frac{2m_2\vec{v}_2 - m_2\vec{v}_1}{m_2} = 2\vec{v}_2 - \vec{v}_1 \quad | \Rightarrow \quad \text{Если } \vec{v}_2 \uparrow \downarrow \vec{v}_1$$

$$\vec{u}_2 = \vec{v}_2 \quad | \Rightarrow \quad \text{то } u_1 > v_1$$

$$(140)$$

3) $\vec{v}_2 = 0$. Найдем коэффициент передачи энергии k:

$$k = \frac{W_{k1}^{\text{\tiny HAЧ}} - W_{k1}^{\text{\tiny KOH}}}{W_{k1}^{\text{\tiny HAЧ}}} \tag{141}$$

$$k = 1 - \left(\frac{u_1}{v_1}\right)^2 = 1 - \left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2 = 4\frac{m_1 m_2}{(m_1 + m_2)^2}$$
(142)

$$k = 4\frac{\varkappa}{(1+\varkappa)^2},\tag{143}$$

где $\varkappa = \frac{m_1}{m_2}$

Рис. 5: Зависимость $k(\varkappa)$

Большое практическое значение данная задача играет в атомных реакторах.

Для замедления быстрых нейтронов необходимо применять материалы c большим k.

Реально применяется графит (k = 0.28), бериллий (применение бериллия ограничено его высокой стоимостью).

Несмотря на то, что коэффициент кажется небольшим, этого достаточно: за несколько прогонов (на каждом соударении происходит потеря энергии нейтронов) можно получить необходимую энергию нейтронов.

1.3.4. Нецентральное столкновение шаров (косой удар). Диаграмма импульсов

Косой удар – это удар, при котором центры соударяющихся **шаров** движутся по разным прямым.

$$\vec{p_c} = const, \quad W_k = const$$
 (144)

Пусть $\vec{v}_1 \neq 0$, $\vec{v}_2 = 0$.

$$\vec{v}_c = \frac{m_1}{m_1 + m_2} \vec{v}_1 \tag{145}$$

Найдем скорость шаров в центромассовой системе отсчета:

$$\vec{v}_{1} = \vec{v}_{c} + \vec{v}_{1}^{*}
\vec{v}_{2} = \vec{v}_{c} + \vec{v}_{2}^{*}$$

$$\Rightarrow \begin{array}{c}
\vec{v}_{1}^{*} = \vec{v}_{1} - \vec{v}_{c} = \vec{v}_{1} \frac{m_{2}}{m_{1} + m_{2}} \\
\Rightarrow \vec{v}_{2}^{*} = -\vec{v}_{c} = -\vec{v}_{1} \frac{m_{1}}{m_{1} + m_{2}}
\end{array}$$
(146)

Тогда импульсы в ЦМСО

$$\vec{p}_1^* = \vec{v}_1 \frac{m_1 m_2}{m_1 + m_2} \qquad \vec{p}_2^* = -\vec{v}_1 \frac{m_1 m_2}{m_1 + m_2} \tag{147}$$

А в лабораторной системе отсчета импульсы перепишем:

$$\vec{p}_{1-\text{hob}} = \vec{p}_{1-\text{hob}}^* + m_1 \vec{v}_c \tag{148}$$

$$\vec{p}_{2-\text{hob}} = \vec{p}_{2-\text{hob}}^* + m_2 \vec{v}_c \tag{149}$$

Их сумма будет сохраняться:

$$\vec{p}_c^* = \vec{p}_1^* + \vec{p}_2^* = 0 = const \tag{150}$$

$$\vec{p}_{c-\text{hob}}^* = \vec{p}_{1-\text{hob}}^* + \vec{p}_{2-\text{hob}}^* = 0 = const$$
 (151)

Отсюда

$$\vec{p}_{1-\text{HOB}}^* = -\vec{p}_{2-\text{HOB}}^* \quad \text{if} \quad \vec{p}_1^* = -\vec{p}_2^*$$
 (152)

Запишем закон сохранения энергии. Для удобства, будем записывать его через импульсы по следующей формуле:

$$W = \frac{mv^2}{2} = \frac{p^2}{2m} \tag{153}$$

Тогда ЗСЭ для шаров:

$$\frac{\vec{p}_1^{*2}}{m_1} + \frac{\vec{p}_2^{*2}}{m_2} = \frac{\vec{p}_{1-\text{HOB}}^{*2}}{m_1} + \frac{\vec{p}_{2-\text{HOB}}^{*2}}{m_2} \tag{154}$$

С учетом (152):

$$\vec{p}_1^{*2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right) = \vec{p}_{1-\text{hob}}^{*2} \left(\frac{1}{m_1} + \frac{1}{m_2} \right) \tag{155}$$

Отсюда

$$|\vec{p}_1^{*2}| = |\vec{p}_{1-\text{HOB}}^{*2}| \tag{156}$$

Итак, теперь все готово для построения векторной диаграммы импульсов. Остается собрать формулы.

Из уравнения (147) имеем

$$|\vec{p}_1^*| = m_2 v_c \tag{157}$$

Из уравнения (156) дополняется предыдущее равенство:

$$|\vec{p}_1^*| = |\vec{p}_{1-\text{hob}}^*| = m_2 v_c \tag{158}$$

Из (152):

$$\vec{p}_{1-\text{HOB}}^* = -\vec{p}_{2-\text{HOB}}^* \quad \text{if} \quad \vec{p}_1^* = -\vec{p}_2^*$$
 (159)

Из (148,149):

$$\vec{p}_{1-\text{HOB}} = \vec{p}_{1-\text{HOR}}^* + m_1 \vec{v}_c \tag{160}$$

$$\vec{p}_{2-\text{HOB}} = \vec{p}_{2-\text{HOB}}^* + m_2 \vec{v}_c \tag{161}$$

Возьмем случай, когда $m_1 > m_2$:

Это и есть диаграмма импульсов.

1.4. Закон Бернулли для стационарного потока идеальной жидко-

Определение 1. Жидкость называется **идеальной**, если в ней отсутствует вязкое трение $(\eta=0)$

Определение 2. Частицей среды называется малый элемент объема, в пределах которого характеристики течения (скорость, давление) можно считать постоянными.

Определение 3. Поле скоростей – это распределение скоростей в пространстве и времени.

$$\vec{v} = \vec{v}(\vec{r}, t) \tag{162}$$

Определение 4. Течение называется **стационарным**, если в нем скорость и давление не зависят от времени.

$$\vec{v} = \vec{v}(\vec{r}) \qquad p = p(\vec{r}) \tag{163}$$

Определение 5. Линия тока жидкости – это линия, касательная к которой в каждой из её точек совпадает с вектором скорости в этой точке.

Определение 6. Трубка тока – это трубка, составленная из линий тока, проходящих через точки небольшого замкнутого контура.

Определение 7. Несжимаемой жидкостью называется жидкость, плотность которой постоянна.

Мы будем выводить формулы для несжимаемой жидкости.

$$\Delta W_{\text{Mex}} = \Delta W_{\text{Mex}}^{2-2'} + \Delta W_{\text{Mex}}^{1-1'} = \frac{\Delta m_2 v_2^2}{2} - \frac{\Delta m_1 v_1^2}{2} + \Delta m_2 g h_2 - \Delta m_1 g h_1$$
 (164)

Из стационарности будет следовать $\Delta m_1 = \Delta m_2$, из несжимаемости – $\rho_1 = \rho_2$

$$A = A_{\text{давл1}} + A_{\text{давл2}} = F_{g1} \cdot \Delta l_1 - F_{g2} \cdot \Delta l_2 = p_1 S_1 \Delta l_1 - p_2 S_2 \Delta l_2 \tag{165}$$

Так как

$$S_1 \Delta l_1 = \Delta V_1 = \frac{\Delta m_1}{\rho_1} \tag{166}$$

To

$$A = (p_1 - p_2) \frac{\Delta m}{\rho} \tag{167}$$

$$\frac{\Delta m_2 v_2^2}{2} + \Delta m_2 g h_2 - \frac{\Delta m_1 v_1^2}{2} - \Delta m_1 g h_1 = p_1 \frac{\Delta m}{\rho} - p_2 \frac{\Delta m}{\rho}$$
 (168)

После совсем небольших преобразований мы получим закон Бернулли:

$$\frac{\rho v_1^2}{2} + \rho g h_1 + p_1 = \frac{\rho v_2^2}{2} + \rho g h_2 + p_2 \tag{169}$$

Закон справедлив вдоль выбранной линии тока.

- 1) p_1 внешнее (дополнительное) давление
- 2) ρgh гидростатическое давление
- 3) $\frac{\rho v^2}{2}$ динамическое давление (динамический напор)

Попутно получили уравнение неразрывности несжимаемой жидкости:

$$v_1 S_1 = v_2 S_2 \tag{170}$$