

CSC/CPE 138 - Computer Network Fundamentals

Network Layer: Control Plane

The presentation was adapted from the textbook: *Computer Networking: A Top-Down Approach* 8th edition Jim Kurose, Keith Ross, Pearson, 2020

Network layer: "control plane" roadmap

- introduction
- routing protocols
 - link state
 - distance vector
- intra-ISP routing: OSPF
- routing among ISPs: BGP
- SDN control plane
- Internet Control MessageProtocol

- network management, configuration
 - SNMP
 - NETCONF/YANG

Distance vector algorithm

Based on *Bellman-Ford* (BF) equation (dynamic programming):

Bellman-Ford Example

Suppose that u's neighboring nodes, x,v,w, know that for destination z:

Bellman-Ford equation says:

$$D_{u}(z) = \min \{ c_{u,v} + D_{v}(z), c_{u,x} + D_{x}(z), c_{u,w} + D_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

node achieving minimum (x) is next hop on estimated leastcost path to destination (z)

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from any neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c_{x,v} + D_v(y)\}$$
 for each node $y \in N$

under minor, natural conditions, the estimate D_x(y) converge to the actual least cost d_x(y)

Distance vector algorithm:

each node:

wait for (change in local link cost or msg from neighbor)

recompute DV estimates using DV received from neighbor

if DV to any destination has changed, *notify* neighbors

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed, self-stopping: each node notifies neighbors *only* when its DV changes

- neighbors then notify their neighbors – only if necessary
- no notification received, no actions taken!

Distance vector: example

- All nodes have distance estimates to nearest neighbors (only)
- All nodes send their local distance vector to their neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

.... and so on

Let's next take a look at the iterative computations at nodes

Distance vector example: computation

b receives DVs from a, c, e

DV in a:

 $D_{a}(a)=0$ $D_{a}(b) = 8$ $D_{a}(c) = \infty$ $D_{a}(d) = 1$ $D_{a}(e) = \infty$ $D_{a}(f) = \infty$ $D_{a}(g) = \infty$ $D_{a}(h) = \infty$

 $D_a(i) = \infty$

 $D_{b}(a) = 8$

 $D_{b}(c) = 1$

 $D_b(d) = \infty$

 $D_b(f) = \infty$

 $D_{b}(g) = \infty$

 $D_b(h) = \infty$

DV in c:

$$D_{c}(a) = \infty$$

$$D_{c}(b) = 1$$

$$D_{c}(c) = 0$$

$$D_{c}(d) = \infty$$

$$D_{c}(e) = \infty$$

$$D_{c}(f) = \infty$$

$$D_{c}(g) = \infty$$

$$D_{c}(h) = \infty$$

$$D_{c}(i) = \infty$$

DV in e:

 $D_e(a) = \infty$

$$D_{e}(b) = 1$$

 $D_{e}(c) = \infty$
 $D_{e}(d) = 1$
 $D_{e}(e) = 0$
 $D_{e}(f) = 1$
 $D_{e}(g) = \infty$
 $D_{e}(h) = 1$
 $D_{e}(i) = \infty$

Distance vector example: computation

t=1

b receives DVs from a, c, e, computes:

$$D_{a}(a)=0$$

$$D_{a}(b) = 8$$

$$D_{a}(c) = \infty$$

$$D_{a}(d) = 1$$

$$D_{a}(e) = \infty$$

$$D_{a}(f) = \infty$$

$$D_{a}(g) = \infty$$

$$D_{a}(h) = \infty$$

$$D_{a}(i) = \infty$$

DV in a:

$$D_{a}(d) = 8$$

$$D_{a}(c) = \infty$$

$$D_{a}(d) = 1$$

$$D_{a}(e) = \infty$$

$$D_{a}(f) = \infty$$

$$D_{a}(g) = \infty$$

$$D_{a}(h) = \infty$$

$D_b(a) = \min\{c_{b,a} + D_a(a), c_{b,c} + D_c(a), c_{b,e} + D_e(a)\} = \min\{8, \infty, \infty\} = 8$

$$D_b(c) = min\{c_{b,a} + D_a(c), c_{b,c} + D_c(c), c_{b,e} + D_e(c)\} = min\{\infty, 1, \infty\} = 1$$

$$D_b(d) = \min\{c_{b,a} + D_a(d), c_{b,c} + D_c(d), c_{b,e} + D_e(d)\} = \min\{9, \infty, 2\} = 2$$

$$D_b(e) = min\{c_{b,a} + D_a(e), c_{b,c} + D_c(e), c_{b,e} + D_e(e)\} = min\{\infty, \infty, 1\} = 1$$

$$D_b(f) = \min\{c_{b,a} + D_a(f), c_{b,c} + D_c(f), c_{b,e} + D_e(f)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(g) = \min\{c_{b,a} + D_a(g), c_{b,c} + D_c(g), c_{b,e} + D_e(g)\} = \min\{\infty, \infty, \infty\} = \infty$$

$$D_b(h) = \min\{c_{b,a} + D_a(h), c_{b,c} + D_c(h), c_{b,e} + D_e(h)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(i) = \min\{c_{b,a} + D_a(i), c_{b,c} + D_c(i), c_{b,e} + D_e(i)\} = \min\{\infty, \infty, \infty\} = \infty$$

DV in b:

$$\begin{array}{ll} D_b(a) = 8 & D_b(f) = \infty \\ D_b(c) = 1 & D_b(g) = \infty \\ D_b(d) = \infty & D_b(h) = \infty \\ D_b(e) = 1 & D_b(i) = \infty \end{array}$$

DV in e:

DV in c:

 $D_c(a) = \infty$

 $D_{c}(b) = 1$

 $D_c(c) = 0$

 $D_c(d) = \infty$

 $D_c(e) = \infty$

 $D_c(f) = \infty$

 $D_c(g) = \infty$

 $D_c(h) = \infty$

 $D_c(i) = \infty$

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = 2$
 $D_b(c) = 1$ $D_b(g) = \infty$
 $D_b(d) = 2$ $D_b(h) = 2$
 $D_b(e) = 1$ $D_b(i) = \infty$

Distance vector example: computation

t=1

c receives DVs from b

DV in a:

$$D_a(a)=0$$

$$D_a(b) = 8$$
$$D_a(c) = \infty$$

$$D_a(d) = 1$$

$$D^{a}(e) = \infty$$

$$D_a(f) = \infty$$

$$D_a(g) = \infty$$

$$D_a(h) = \infty$$

$$D_a(i) = \infty$$

DV in c:

$$D_c(a) = \infty$$

 $D_b(f) = \infty$

 $D_{b}(g) = \infty$

 $D_b(h) = \infty$

 $D_b(i) = \infty$

 $D_{b}(a) = 8$

 $D_{b}(c) = 1$

 $D_b(d) = \infty$

 $D_{b}(e) = 1$

$$D_{c}(b) = 1$$

$$D_c(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_e(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_e(h) = 1$$

$$D_e(i) = \infty$$

t=1

c receives DVs from b computes:

$$\begin{array}{ll} D_b(a) = 8 & D_b(f) = \infty \\ D_b(c) = 1 & D_b(g) = \infty \\ D_b(d) = \infty & D_b(h) = \infty \\ D_b(e) = 1 & D_b(i) = \infty \end{array}$$

DV in c:

$$D_{c}(a) = \infty$$

$$D_{c}(b) = 1$$

$$D_{c}(c) = 0$$

$$D_{c}(d) = \infty$$

$$D_{c}(e) = \infty$$

$$D_{c}(f) = \infty$$

$$D_{c}(g) = \infty$$

$$D_{c}(h) = \infty$$

$$D_{c}(i) = \infty$$

$$D_c(a) = min\{c_{c,b} + D_b(a)\} = 1 + 8 = 9$$

$$D_c(b) = min\{c_{c,b} + D_b(b)\} = 1 + 0 = 1$$

$$D_c(d) = min\{c_{c,b}+D_b(d)\} = 1+\infty = \infty$$

$$D_c(e) = min\{c_{c,b} + D_b(e)\} = 1 + 1 = 2$$

$$D_c(f) = min\{c_{c,b} + D_b(f)\} = 1 + \infty = \infty$$

$$D_c(g) = \min\{c_{c,b} + D_b(g)\} = 1 + \infty = \infty$$

$$D_c(h) = min\{c_{bc,b} + D_b(h)\} = 1 + \infty = \infty$$

$$D_c(i) = \min\{c_{c,b} + D_b(i)\} = 1 + \infty = \infty$$

DV in c:

$$D_{c}(a) = 9$$

$$D_c(b) = 1$$

$$D_c(c) = 0$$

$$D_c(d) = 2$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

* Check out the online interactive exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation DV in b:

t=1

e receives DVs from b, d, f, h

DV in d:

$$D_{c}(a) = 1$$

$$D_c(b) = \infty$$

 $D_c(c) = \infty$

$$D_c(d) = 0$$

$$D_{c}(e) = 1$$

$$D_c(f) = \infty$$

$$D_{c}(g) = 1$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in h:

$$D_c(a) = \infty$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = \infty$$

$$D_c(g) = 1$$

$$D_{c}(h) = 0$$

 $D_{b}(a) = 8$

 $D_{b}(c) = 1$

 $D_b(d) = \infty$

 $D_{b}(e) = 1$

 $D_b(f) = \infty$

 $D_h(g) = \infty$

 $D_b(h) = \infty$

 $D_h(i) = \infty$

d-**⊆**g_ ⊆h-

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_{e}(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

DV in f:

$$D_c(a) = \infty$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = 0$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = 1$$

Distance vector: state information diffusion

Iterative communication, computation steps diffuses information through network:

- t=0 c's state at t=0 is at c only
- c's state at t=0 has propagated to b, and may influence distance vector computations up to **1** hop away, i.e., at b
- c's state at t=0 may now influence distance vector computations up to 2 hops away, i.e., at b and now at a, e as well
- c's state at t=0 may influence distance vector computations up to **3** hops away, i.e., at b,a,e and now at c,f,h as well
- c's state at t=0 may influence distance vector computations up to 4 hops away, i.e., at b,a,e, c, f, h and now at g,i as well

Distance vector

$$D_x(x) = 0$$

$$D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} = \min\{2 + 0, 7 + 1\} = 2$$

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} = \min\{2 + 1, 7 + 0\} = 3$$

Node x table

cost to					cost to					cost to					
		Х	У	Z		_		Х	У	Z			X	У	Z
from	X	0	2	7		from x		0	2	3	_	X	0	2	3
	у	∞	∞	∞				2	0 1	from	у	2	0	1	
	Z	∞	∞	∞	+		7	1	0	4	Z	3	1	0	
					1	-71		1			1				

Node y table

	cost to	X	X	cost to			cost to			
	x y z		*	x y z	١/	\	x y z			
_ x	∞ ∞ ∘	/ V	_ x	0 2 7	V.	_ x	0 2 3			
o y	2 0 1	> 1	y y	2 0 1	Y	о у	2 0 1			
∓ z	∞ ∞ ∘	Ŋ Λ'	∓ Z	7 1 0	V	Z	3 1 0			
	I	ΛM	*		Λ	4				

Node z table

	cost to	/ X \	cost to		cost to		
	x y z	\	x y z			x y z	
from x	∞ ∞ ∞ ∞ ∞ ∞ 7 1 0	from x	0 2 7 2 0 1 3 1 0	from	x y z	0 2 3 2 0 1 3 1 0	

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates local DV
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- "bad news travels slow" count-to-infinity problem:

- y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y computes "my new cost to x will be 6, via z); notifies z of new cost of 6 to x.
- z learns that path to x via y has new cost 6, so z computes "my new cost to x will be 7 via y), notifies y of new cost of 7 to x.
- y learns that path to x via z has new cost 7, so y computes "my new cost to x will be 8 via y), notifies z of new cost of 8 to x.
- z learns that path to x via y has new cost 8, so z computes "my new cost to x will be 9 via y), notifies y of new cost of 9 to x.

• • •

see text for solutions. Distributed algorithms are tricky!

Comparison of LS and DV algorithms

message complexity

LS: n routers, $O(n^2)$ messages sent

DV: exchange between neighbors; convergence time varies

speed of convergence

LS: $O(n^2)$ algorithm, $O(n^2)$ messages

may have oscillations

DV: convergence time varies

- may have routing loops
- count-to-infinity problem

robustness: what happens if router malfunctions, or is compromised?

LS:

- router can advertise incorrect link cost
- each router computes only its own table

DV:

- DV router can advertise incorrect path cost ("I have a really low cost path to everywhere"): black-holing
- each router's table used by others: error propagate thru network