EXERCISES ON THE FIRST 5 CLASSES: REGULAR LANGUAGES

Exercise 1: Give a DFA accepting the following languages over the alphabet $\{0,1\}$:

- a) The set of all strings ending in 00;
- b) The set of all strings with three consecutive 0's;
- c) The set of all strings such that every block of five consecutive symbols contains at least two 0's:
- d) The set of all strings beginning with a 1 which, interpreted as the binary representation of an integer, is congruent to zero modulo 5.

Exercise 2: Describe in words the languages accepted by the following DFAs:

Then, write down two regular expressions equivalent to the automata above.

Exercise 3: Give a NFA accepting the languages of all binary sequences that contain two 0's that are separated by a string whose length is 4i, for some i > 0.

Exercise 4: Construct the DFA's equivalent to the following NFA's:

a)
$$(\{p,q,r,s\},\{0,1\},\delta_a,p,\{s\})$$
 b) $(\{p,q,r,s\},\{0,1\},\delta_b,p,\{q,s\})$

where δ_a and δ_b are defined as follows:

Exercise 5: Given two alphabets Σ and Γ , let us define a *(regular) substitution* to be a function $f: \Sigma \to REG(\Gamma)$

i.e. a function that associates a regular language on Γ to every character of Σ . Substitutions are extended to strings as follows:

$$f(\varepsilon) = \varepsilon$$
 $f(wa) = f(w) f(a)$

and, consequently, are extended to languages by having $f(L) = \{ f(w) \mid w \in L \}$.

Prove that regular languages are closed under regular substitutions, i.e., if L is regular and f is a regular substitution, then also f(L) is regular.

Exercise 6: Write regular expressions for each of the following languages over the alphabet $\{0,1\}$:

- 1. The set of strings with at most one pair of consecutive 0s and at most one pair of consecutive 1s
- 2. The set of strings in which every pair of adjacent 0s appears before any pair of adjacent ls
- 3. The set of all strings not containing 101 as a substring.

Exercise 7: Construct a (deterministic or nondeterministic) automata equivalent to the following regular expressions:

a)
$$10 + (0 + 11)0*1$$

b)
$$01[((10)* + 111)* + 0]*1$$

Exercise 8: Construct a regular expression equivalent to the following DFA:

Then, build the NFA associated to the regular expression found, by using the construction used for passing from REs to NFA.

Exercise 9: Construct a left-linear and a right-linear grammar for the languages:

a)
$$(0+1)*00(0+1)*$$

b)
$$0*(1(0+1))*$$

c)
$$(((01+10)*11)*00)*$$

For all right linear grammars devised, write down the associated equivalent NFA.

Exercise 10: Give a regular grammar equivalent to the following DFA:

Exercise 11: Prove that $\{0^n 1^m 0^{n+m} \mid n, m > 0\}$ is not regular.

Exercise 12: Are $\{0^{2n} \mid n > 0\}$ and $\{0^{2^n} \mid n > 0\}$ regular? Justify your answer, by either providing a non-regularity proof or by providing a grammar/automaton/regular expression that generate these languages.