Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond

Xuechen Li^{1,2}, Denny Wu^{1,2}, Lester Mackey³, Murat A. Erdogdu^{1,2}
University of Toronto¹, Vector Institute², Microsoft Research³
{lxuechen, dennywu, erdogdu}@cs.toronto.edu,lmackey@microsoft.com

Abstract

Sampling with Markov chain Monte Carlo methods often amounts to discretizing some continuous-time dynamics with numerical integration. In this paper, we establish the convergence rate of sampling algorithms obtained by discretizing smooth Itô diffusions exhibiting fast Wasserstein-2 contraction, based on local deviation properties of the integration scheme. In particular, we study a sampling algorithm constructed by discretizing the overdamped Langevin diffusion with the method of stochastic Runge-Kutta. For strongly convex potentials that are smooth up to a certain order, its iterates converge to the target distribution in 2-Wasserstein distance in $\tilde{\mathcal{O}}(d\epsilon^{-2/3})$ iterations. This improves upon the best-known rate for strongly log-concave sampling based on the overdamped Langevin equation using only the gradient oracle without adjustment. In addition, we extend our analysis of stochastic Runge-Kutta methods to uniformly dissipative diffusions with possibly non-convex potentials and show they achieve better rates compared to the Euler-Maruyama scheme in terms of the dependence on tolerance ϵ . Numerical studies show that these algorithms lead to better stability and lower asymptotic errors.

1 Introduction

Sampling from a probability distribution is a fundamental problem that arises in machine learning, statistics, and optimization. In many situations, the goal is to obtain samples from a target distribution given only the unnormalized density [2, 27, 40]. A prominent approach to this problem is the method of Markov chain Monte Carlo (MCMC), where an ergodic Markov chain is simulated so that iterates converge exactly or approximately to the distribution of interest [43, 2].

MCMC samplers based on numerically integrating continuous-time dynamics have proven very useful due to their ability to accommodate a stochastic gradient oracle [65]. Moreover, when used as optimizations algorithms, these methods can deliver strong theoretical guarantees in non-convex settings [50]. A popular example in this regime is the unadjusted Langevin Monte Carlo (LMC) algorithm [51]. Fast mixing of LMC is inherited from exponential Wasserstein decay of the Langevin diffusion, and numerical integration using the Euler-Maruyama scheme with a sufficiently small step size ensures the Markov chain tracks the diffusion. Asymptotic guarantees of this algorithm are well-studied [51, 26, 42], and non-asymptotic analyses specifying explicit constants in convergence bounds were recently conducted [14, 11, 18, 7, 20, 9].

To the best of our knowledge, the best known rate of LMC in 2-Wasserstein distance is due to Durmus and Moulines [18] – $\tilde{\mathcal{O}}(d\epsilon^{-1})$ iterations are required to reach ϵ accuracy to d-dimensional target distributions with strongly convex potentials under the additional Lipschitz Hessian assumption, where $\tilde{\mathcal{O}}$ hides insubstantial poly-logarithmic factors. Due to its simplicity and well-understood theoretical properties, LMC and its derivatives have found numerous applications in statistics and machine learning [65, 15]. However, from the numerical integration point of view, the Euler-Maruyama

scheme is usually less preferred for many problems due to its inferior stability compared to implicit schemes [1] and large integration error compared to high-order schemes [46].

In this paper, we study the convergence rate of MCMC samplers devised from discretizing Itô diffusions with exponential Wasserstein-2 contraction. Our result provides a general framework for establishing convergence rates of existing numerical schemes in the SDE literature when used as sampling algorithms. In particular, we establish *non-asymptotic* convergence bounds for sampling with *stochastic Runge-Kutta* (SRK) methods. For strongly convex potentials, iterates of a variant of SRK applied to the overdamped Langevin diffusion has a convergence rate of $\tilde{\mathcal{O}}(d\epsilon^{-2/3})$. Similar to LMC, the algorithm only queries the gradient oracle of the potential during each update and improves upon the best known rate of $\tilde{\mathcal{O}}(d\epsilon^{-1})$ for strongly log-concave sampling based on the overdamped Langevin diffusion without Metropolis adjustment, under the mild extra assumption that the potential is smooth up to the third order. In addition, we extend our analysis to *uniformly dissipative* diffusions, which enables sampling from non-convex potentials by choosing a non-constant diffusion coefficient. We study a different variant of SRK and obtain the convergence rate of $\tilde{\mathcal{O}}(d\delta^{3/4}m^2\epsilon^{-1})$ for general Itô diffusions, where m is the dimensionality of the Brownian motion. This improves upon the convergence rate of $\tilde{\mathcal{O}}(d\epsilon^{-2})$ for the Euler-Maruyama scheme in terms of the tolerance ϵ , while potentially trading off dimension dependence.

Our contributions can be summarized as follows:

- We provide a broadly applicable theorem for establishing convergence rates of sampling algorithms based on discretizing Itô diffusions exhibiting exponential Wasserstein-2 contraction to the target invariant measure. The convergence rate is explicitly expressed in terms of the contraction rate of the diffusion and local properties of the numerical scheme, both of which can be easily derived.
- We show for strongly convex potentials, a variant of SRK applied to the overdamped Langevin diffusion achieves the improved convergence rate of $\tilde{\mathcal{O}}(d\epsilon^{-2/3})$ by accessing only the gradient oracle, under mild additional smoothness conditions on the potential.
- We establish the convergence rate of a different variant of SRK applied to uniformly dissipative diffusions. By choosing an appropriate diffusion coefficient, we show the corresponding algorithm can sample from certain non-convex potentials and achieves the rate of $\tilde{\mathcal{O}}(d^{3/4}m^2\epsilon^{-1})$.
- We provide examples and numerical studies of sampling from both convex and non-convex potentials with SRK methods and show they lead to better stability and lower asymptotic errors.

1.1 Additional Related Work

High-Order Schemes. Numerically solving SDEs has been a research area for decades [46, 32]. We refer the reader to [3] for a review and to [32] for technical foundations. Chen et al. [5] studied the convergence of smooth functions evaluated at iterates of sampling algorithms obtained by discretizing the Langevin diffusion with high-order numerical schemes. Their focus was on convergence rates of function evaluations under a stochastic gradient oracle using asymptotic arguments. This convergence assessment pertains to analyzing numerical schemes in the weak sense. By contrast, we establish non-asymptotic convergence bounds in the 2-Wasserstein metric, which covers a broader class of functions by the Kantorovich duality [28, 62], and our techniques are based on the mean-square convergence analysis of numerical schemes. Notably, a key ingredient in the proofs by Chen et al. [5], i.e. moment bounds in the guise of a Lyapunov function argument, is assumed without justification, whereas we derive this formally and obtain convergence bounds with explicit dimension dependent constants. Durmus et al. [19] considered convergence of function evaluations of schemes obtained using Richardson-Romberg extrapolation. Sabanis and Zhang [53] introduced a numerical scheme that queries the gradient of the Laplacian based on an integrator that accommodates superlinear drifts [54]. In particular, for potentials with a Lipschitz gradient, they obtained the convergence rate of $\tilde{\mathcal{O}}(d^{4/3}\epsilon^{-2/3})$. In optimization, high-order ordinary differential equation (ODE) integration schemes were introduced to discretize a second-order ODE and achieved acceleration [68].

Non-Convex Learning. The convergence analyses of sampling using the overdamped and underdamped Langevin diffusion were extended to the non-convex setting [9, 39]. For the Langevin diffusion, the most common assumption on the potential is strong convexity outside a ball of finite radius, in addition to Lipschitz smoothness and twice differentiability [9, 38, 39]. More generally, Vempala and Wibisono [61] showed that convergence in the KL divergence of LMC can be derived assuming a log-Sobolev inequality of the target measure with a positive log-Sobolev constant holds. For general Itô diffusions, the notion of *distant dissipativity* [30, 22, 23] is used to study convergence

Table 1: Convergence rates in W_2 for algorithms sampling from strongly convex potentials by discretizing the overdamped Langevin diffusion. "Oracle" refers to highest derivative used in the update. "Smoothness" refers to Lipschitz conditions. Note that faster algorithms exist by discretizing high-order Langevin equations [13, 8, 9, 47, 56] or applying Metropolis adjustment [21, 6].

Method	Convergence Rate	Oracle	Smoothness
Euler-Maruyama [18]	$\tilde{\mathcal{O}}(d\epsilon^{-2})$	1st order	gradient
Euler-Maruyama [18]	$\tilde{\mathcal{O}}(d\epsilon^{-1})$	1st order	gradient & Hessian
Ozaki's [11] ¹	$\tilde{\mathcal{O}}(d\epsilon^{-1})$	2nd order	gradient & Hessian
Tamed Order 1.5 [53] ²	$\tilde{\mathcal{O}}(d^{4/3}\epsilon^{-2/3})$	3rd order	1st to 3rd derivatives
Stochastic Runge-Kutta (this work)	$\tilde{\mathcal{O}}(d\epsilon^{-2/3})$	1st order	1st to 3rd derivatives

to target measures with non-convex potentials in the 1-Wasserstein distance. Different from these works, our non-convex convergence analysis, due to conducted in W_2 , requires the slightly stronger uniform dissipativity condition [30]. In optimization, non-asymptotic results for stochastic gradient Langevin dynamics and its variants have been established for non-convex objectives [50, 67, 24, 69].

Notation. We denote the p-norm of a real vector $x \in \mathbb{R}^d$ by $\|x\|_p$. For a function $f: \mathbb{R}^d \to \mathbb{R}$, we denote its ith derivative by $\nabla^i f(x)$ and its Laplacian by $\Delta f = \sum_{i=1}^d \partial^2 f_i(x)/\partial x_i^2$. For a vector-valued function $g: \mathbb{R}^d \to \mathbb{R}^m$, we denote its vector Laplacian by $\vec{\Delta}(g)$, i.e. $\vec{\Delta}(g)_i = \Delta(g_i)$. For a tensor $T \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_m}$, we define its operator norm recursively as $\|T\|_{\text{op}} = \sup_{\|u\|_2 \le 1} \|T[u]\|_{\text{op}}$, where T[u] denotes the tensor-vector product. For f sufficiently differentiable, we denote the Lipschitz and polynomial coefficients of its ith order derivative as

$$\mu_0(f) = \sup_{x \in \mathbb{R}^d} \|f(x)\|_{\mathrm{op}}, \ \ \mu_i(f) = \sup_{x,y \in \mathbb{R}^d, x \neq y} \frac{\left\|\nabla^{i-1}f(x) - \nabla^{i-1}f(y)\right\|_{\mathrm{op}}}{\|x - y\|_2}, \ \text{and} \ \pi_{i,n}(f) = \sup_{x \in \mathbb{R}^d} \frac{\left\|\nabla^{i-1}f(x)\right\|_{\mathrm{op}}^n}{1 + \|x\|_2^n},$$

with the exception in Theorem 3, where $\pi_{1,n}(\sigma)$ is used for a sublinear growth condition. We denote Lipschitz and growth coefficients under the Frobenius norm $\|\cdot\|_F$ as $\mu_1^F(\cdot)$ and $\pi_{1,n}^F(\cdot)$, respectively.

Coupling and Wasserstein Distance. We denote by $\mathcal{B}(\mathbb{R}^d)$ the Borel σ -field of \mathbb{R}^d . Given probability measures ν and ν' on $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$, we define a coupling (or transference plan) ζ between ν and ν' as a probability measure on $(\mathbb{R}^d \times \mathbb{R}^d,\mathcal{B}(\mathbb{R}^d \times \mathbb{R}^d))$ such that $\zeta(A \times \mathbb{R}^d) = \nu(A)$ and $\zeta(\mathbb{R}^d \times A) = \nu'(A)$ for all $A \in \mathcal{B}(\mathbb{R}^d)$. Let couplings (ν, ν') denote the set of all such couplings. We define the 2-Wasserstein distance between a pair of probability measures ν and ν' as

$$W_2(\nu, \nu') = \inf_{\zeta \in \text{couplings}(\nu, \nu')} \left(\int \|x - y\|_2^2 \, d\zeta(\nu, \nu') \right)^{1/2}.$$

2 Sampling with Discretized Diffusions

We study the problem of sampling from a target distribution p(x) with the help of a candidate Itô diffusion [37, 44] given as the solution to the following stochastic differential equation (SDE):

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t, \quad \text{with} \quad X_0 = x_0, \tag{1}$$

where $b: \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times m}$ are termed as the drift and diffusion coefficients, respectively. Here, $\{B_t\}_{t\geq 0}$ is an m-dimensional Brownian motion adapted to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$, whose ith dimension we denote by $\{B_t^{(i)}\}_{t\geq 0}$. A candidate diffusion should be chosen so that (i) its invariant measure is the target distribution p(x) and (ii) it exhibits fast mixing properties. Under mild conditions, one can design a diffusion with the target invariant measure by choosing the drift coefficient as (see e.g. [37, Thm. 2])

$$b(x) = \frac{1}{2p(x)} \langle \nabla, p(x)w(x) \rangle$$
, where $w(x) = \sigma(x)\sigma(x)^{\top} + c(x)$, (2)

¹ We obtain a rate in W_2 from the discretization analysis in KL [11] via standard techniques [50, 61].

² Sabanis and Zhang [53] use the Frobenius norm for matrices and the Euclidean norm of Frobenius norms for 3-tensors. For a fair comparison, we convert their Lipschitz constants to be based on the operator norm.

 $c(x) \in \mathbb{R}^{d \times d}$ is any skew-symmetric matrix and $\langle \nabla, \cdot \rangle$ is the divergence operator for a matrix-valued function, i.e. $\langle \nabla, w(x) \rangle_i = \sum_{j=1}^d \partial w_{i,j}(x)/\partial x_j$ for $w: \mathbb{R}^d \to \mathbb{R}^{d \times d}$. To guarantee that this diffusion has fast convergence properties, we will require certain dissipativity conditions to be introduced later. For example, if the target is the Gibbs measure of a strongly convex potential $f: \mathbb{R}^d \to \mathbb{R}$, i.e., $p(x) \propto \exp\left(-f(x)\right)$, a popular candidate diffusion is the (overdamped) Langevin diffusion which is the solution to the following SDE:

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t, \quad \text{with} \quad X_0 = x_0.$$
 (3)

It is straightforward to verify (2) for the above diffusion which implies that the target p(x) is its invariant measure. Moreover, strong convexity of f implies uniform dissipativity and ensures that the diffusion achieves fast convergence.

2.1 Numerical Schemes and the Itô-Taylor Expansion

In practice, the Itô diffusion (1) (similarly (3)) cannot be simulated in continuous time and is instead approximated by a discrete-time numerical integration scheme. Owing to its simplicity, a common choice is the Euler-Maruyama (EM) scheme [32], which relies on the following update rule,

$$\tilde{X}_{k+1} = \tilde{X}_k + h \, b(\tilde{X}_k) + \sqrt{h} \, \sigma(\tilde{X}_k) \xi_{k+1}, \quad k = 0, 1, \dots,$$
 (4)

where h is the step size and $\xi_{k+1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d)$ is independent of \tilde{X}_k for all $k \in \mathbb{N}$. The above iteration defines a Markov chain and due to discretization error, its invariant measure $\tilde{p}(x)$ is different from the target distribution p(x); yet, for a sufficiently small step size, the difference between $\tilde{p}(x)$ and p(x) can be characterized (see e.g. [42, Thm. 7.3]).

Analogous to ODE solvers, numerical schemes such as the EM scheme and SRK schemes are derived based on approximating the continuous-time dynamics locally. Similar to the standard Taylor expansion, Itô's lemma induces a stochastic version of the Taylor expansion of a smooth function evaluated at a stochastic process at time t. This is known as the Itô-Taylor (or Wagner-Platen) expansion [46], and one can also interpret the expansion as recursively applying Itô's lemma to terms in the integral form of an SDE. Specifically, for $g: \mathbb{R}^d \to \mathbb{R}^d$, we define the operators:

 $L(g)(x) = \nabla g(x) \cdot b(x) + \frac{1}{2} \sum_{i=1}^{m} \nabla^2 g(x) [\sigma_i(x), \, \sigma_i(x)], \quad \Lambda_j(g)(x) = \nabla g(x) \cdot \sigma_j(x), \quad (5)$ where $\sigma_i(x)$ denotes the ith column of $\sigma(x)$. Then, applying Itô's lemma to the integral form of the SDE (1) with the starting point X_0 yields the following expansion around X_0 [32, 46]:

mean-square order 1.0 stochastic Runge-Kutta update

$$X_t = \underbrace{X_0 + t \, b(X_0) + \sigma(X_0) B_t}_{\text{Euler-Maruyama update}} + \sum_{i,j=1}^m \int_0^t \int_0^s \Lambda_j(\sigma_i)(X_u) \, \mathrm{d}B_u^{(j)} \, \mathrm{d}B_u^{(i)} + \int_0^t \int_0^s L(b)(X_u) \, \mathrm{d}u \, \mathrm{d}s$$

$$+ \sum_{i=1}^{m} \int_{0}^{t} \int_{0}^{s} L(\sigma_{i})(X_{u}) du dB_{s}^{(i)} + \sum_{i=1}^{m} \int_{0}^{t} \int_{0}^{s} \Lambda_{i}(b)(X_{u}) dB_{u}^{(i)} ds.$$
 (6)

The expansion justifies the update rule of the EM scheme, since the discretization is nothing more than taking the first three terms on the right hand side of (6). Similarly, a mean-square order 1.0 SRK scheme for general Itô diffusions – introduced in Section 4.2 – approximates the first four terms. In principle, one may recursively apply Itô's lemma to terms in the expansion to obtain a more fine-grained approximation. However, the appearance of non-Gaussian terms in the guise of iterated Brownian integrals presents a challenge for simulation. Nevertheless, it is clear that the above SRK scheme will be a more accurate local approximation than the EM scheme, due to accounting more terms in the expansion. As a result, the local deviation between the continuous-time process and Markov chain will be smaller. We characterize this property of a numerical scheme as follows.

Definition 2.1 (Uniform Local Deviation Orders). Let $\{\tilde{X}_k\}_{k\in\mathbb{N}}$ denote the discretization of an Itô diffusion $\{X_t\}_{t\geq 0}$ based on a numerical integration scheme with constant step size h, and its governing Brownian motion $\{B_t\}_{t\geq 0}$ be adapted to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$. Suppose $\{X_s^{(k)}\}_{s\geq 0}$ is another instance of the same diffusion starting from \tilde{X}_{k-1} at s=0 and governed by the Brownian motion $\{B_{s+h(k-1)}\}_{s\geq 0}$. Then, the numerical integration scheme has local deviation $D_h^{(k)} = \tilde{X}_k - X_h^{(k)}$ with uniform orders (p_1, p_2) if

$$\mathcal{E}_{k}^{(1)} = \mathbb{E}\left[\mathbb{E}\left[\|D_{h}^{(k)}\|_{2}^{2}|\mathcal{F}_{t_{k-1}}\right]\right] \leq \lambda_{1}h^{2p_{1}}, \quad \mathcal{E}_{k}^{(2)} = \mathbb{E}\left[\|\mathbb{E}\left[D_{h}^{(k)}|\mathcal{F}_{t_{k-1}}\right]\|_{2}^{2}\right] \leq \lambda_{2}h^{2p_{2}}, \quad (7)$$

for all $k \in \mathbb{N}_+$ and $0 \le h < C_h$, where constants $0 < \lambda_1, \lambda_2, C_h < \infty$. We say that $\varepsilon_k^{(1)}$ and $\varepsilon_k^{(2)}$ are the local mean-square deviation and the local mean deviation at iteration k, respectively.

In the SDE literature, local deviation orders are defined to derive the mean-square order (or strong order) of numerical schemes [46], where the mean-square order is defined as the maximum half-integer p such that $\mathbb{E}[\|X_{t_k} - \tilde{X}_k\|_2^2] \leq Ch^{2p}$ for a constant C independent of step size h and all $k \in \mathbb{N}$ where $t_k < T$. Here, $\{X_t\}_{t \geq 0}$ is the continuous-time process, $\tilde{X}_k(k=0,1,\dots)$ is the Markov chain with the same Brownian motion as the continuous-time process, and $T < \infty$ is the terminal time. The key difference between our definition of *uniform* local deviation orders and local deviation orders in the SDE literature is we require the extra step of ensuring the expectations of $\mathcal{E}_k^{(1)}$ and $\mathcal{E}_k^{(2)}$ are bounded across all iterations, instead of merely requiring the two deviation variables to be bounded by a function of the previous iterate.

3 Convergence Rates of Numerical Schemes for Sampling

We present a user-friendly and broadly applicable theorem that establishes the convergence rate of a diffusion-based sampling algorithm. We develop our explicit bounds in the 2-Wasserstein distance based on two crucial steps. We first verify that the candidate diffusion exhibits exponential Wasserstein-2 contraction and thereafter compute the uniform local deviation orders of the scheme.

Definition 3.1 (Wasserstein-2 rate). A diffusion X_t has Wasserstein-2 (W_2) rate $r : \mathbb{R}_{\geq 0} \to \mathbb{R}$ if for two instances of the diffusion X_t initiated respectively from x and y, we have

$$W_2(\delta_x P_t, \delta_y P_t) \le r(t) \|x - y\|_2$$
, for all $x, y \in \mathbb{R}^d$, $t \ge 0$,

where $\delta_x P_t$ denotes the distribution of the diffusion X_t starting from x. Moreover, if $r(t) = e^{-\alpha t}$ for some $\alpha > 0$, then we say the diffusion has exponential W_2 -contraction.

The above condition guarantees fast mixing of the sampling algorithm. For Itô diffusions, uniform dissipativity suffices to ensure exponential W_2 -contraction $r(t) = e^{-\alpha t}$ [24, Prop. 3.3].

Definition 3.2 (Uniform Dissipativity). A diffusion defined by (1) is α -uniformly dissipative if

$$\langle b(x) - b(y), x - y \rangle + \frac{1}{2} \|\sigma(x) - \sigma(y)\|_{\mathrm{F}}^2 \le -\alpha \|x - y\|_2^2, \quad \text{for all } x, y \in \mathbb{R}^d.$$

For Itô diffusions with a constant diffusion coefficient, uniform dissipativity is equivalent to one-sided Lipschitz continuity of the drift with coefficient -2α . In particular, for the overdamped Langevin diffusion (3), this reduces to strong convexity of the potential. Moreover, for this special case, exponential W_2 -contraction of the diffusion and strong convexity of the potential are equivalent [4]. We will ultimately verify uniform dissipativity for the candidate diffusions, but we first use W_2 -contraction to derive the convergence rate of a diffusion-based sampling algorithm.

Theorem 1 (W_2 -rate of a numerical scheme). For a diffusion with invariant measure ν^* , exponentially contracting W_2 -rate $r(t) = e^{-\alpha t}$, and Lipschitz drift and diffusion coefficients, suppose its discretization based on a numerical integration scheme has uniform local deviation orders (p_1, p_2) where $p_1 \geq 1/2$ and $p_2 \geq p_1 + 1/2$. Let ν_k be the measure associated with the Markov chain obtained from the discretization after k steps starting from the dirac measure $\nu_0 = \delta_{x_0}$. Then, for constant step size k satisfying

$$h < 1 \wedge C_h \wedge \frac{1}{2\alpha} \wedge \frac{1}{8\mu_1(b)^2 + 8\mu_1^{\mathrm{F}}(\sigma)^2},$$

where C_h is the step size constraint for obtaining the uniform local deviation orders, we have

$$W_2(\nu_k, \nu^*) \le \left(1 - \frac{\alpha h}{2}\right)^k W_2(\nu_0, \nu^*) + \left(\frac{8\left(16\mu_1(b)\lambda_1 + \lambda_2\right)}{\alpha^2} + \frac{2\lambda_1}{\alpha}\right)^{1/2} h^{p_1 - 1/2}.$$
 (8)

Moreover, if $p_1 > 1/2$ and the step size additionally satisfies

$$h < \left(\frac{2}{\epsilon} \sqrt{\frac{64(16\lambda_1 \mu_1(b) + \lambda_2)}{\alpha^2} + \frac{2\lambda_1}{\alpha}}\right)^{-1/(p_1 - 1/2)},$$

then $W_2(\nu_k, \nu^*)$ converges in $\tilde{\mathcal{O}}(\epsilon^{-1/(p_1-1/2)})$ iterations within a sufficiently small positive error ϵ .

Theorem 1 directly translates mean-square order results in the SDE literature to convergence rates of sampling algorithms in W_2 . The proof deferred to Appendix A follows from an inductive argument

over the local deviation at each step (see e.g. [46]), and the convergence is provided by the exponential W_2 -contraction of the diffusion. To invoke the theorem and obtain convergence rates of a sampling algorithm, it suffices to (i) show that the candidate diffusion is uniformly dissipative and (ii) derive the local deviation orders for the underlying discretization. Below, we demonstrate this on both the overdamped Langevin and general Itô diffusions when the EM scheme is used for discretization, as well as the underdamped Langevin diffusion when a linearization is used for discretization [8]. For these schemes, local deviation orders are either well-known or straightforward to derive. Thus, convergence rates for corresponding sampling algorithms can be easily obtained using Theorem 1.

Example 1. Consider sampling from a target distribution whose potential is strongly convex using the overdamped Langevin diffusion (3) discretized by the EM scheme. The scheme has local deviation of orders (1.5, 2.0) for Itô diffusions with constant diffusion coefficients and drift coefficients that are sufficiently smooth 3 (see e.g. [46, Sec. 1.5.4]). Since the potential is strongly convex, the Langevin diffusion is uniformly dissipative and achieves exponential W_2 -contraction [18, Prop. 1]. Elementary algebra shows that Markov chain moments are bounded [24, Lem. A.2]. Therefore, Theorem 1 implies that the rate of the sampling is $\tilde{\mathcal{O}}(d\epsilon^{-1})$, where the dimension dependence can be extracted from the explicit bound. This recovers the result by Durmus and Moulines [18, Thm. 8].

Example 2. If a general Itô diffusion (1) with Lipschitz smooth drift and diffusion coefficients is used for the sampling task, local deviation orders of the EM scheme reduce to (1.0, 1.5) due to the approximation of the diffusion term [46] – this term is exact for Langevin diffusion. If we further have uniform dissipativity, it can be shown that Markov chain moments are bounded [24, Lem. A.2]. Hence, Theorem 1 concludes that the convergence rate is $\tilde{\mathcal{O}}(d\epsilon^{-2})$. We note that for the diffusion coefficient, we use the Frobenius norm for the Lipschitz and growth constants which potentially hides dimension dependence factors. The dimension dependence worsens if one were to convert all bounds to be based on the operator norm using the pessimistic inequality $\|\sigma(x)\|_{\rm F} \leq (d^{1/2} + m^{1/2}) \|\sigma(x)\|_{\rm op}$. Appendix D provides a convergence bound with explicit constants.

Example 3. Consider sampling from a target distribution whose potential is strongly convex using the underdamped Langevin diffusion:

$$dX_t = V_t dt$$
, $dV_t = -\gamma V_t dt - u\nabla f(X_t) dt + \sqrt{2\gamma u} dB_t$.

Cheng et al. [8] show that the continuous-time process $\{(X_t, X_t + V_t)\}_{t \geq 0}$ exhibits exponential W_2 -contraction when the coefficients γ and u are appropriately chosen [8, Thm. 5]. Moreover, the scheme devised by linearizing the degenerate SDE has uniform local deviation orders $(1.5, 2.0)^4$ [8, Thm. 9]. Theorem 1 implies that the convergence rate is $\mathcal{O}(d^{1/2}\epsilon^{-1})$, where the dimension dependence is extracted from explicit bounds. This recovers the result by Cheng et al. [8, Thm. 1].

While computing the local deviation orders of a numerical scheme for a single step is often straight-forward, it is not immediately clear how one might verify them uniformly for each iteration. This requires a uniform bound on moments of the Markov chain defined by the numerical scheme. As our second principal contribution, we explicitly bound the Markov chain moments of SRK schemes which, combined with Theorem 1, leads to improved rates by only accessing the first-order oracle.

4 Sampling with Stochastic Runge-Kutta and Improved Rates

We show that convergence rates of sampling can be significantly improved if an Itô diffusion with exponential W_2 -contraction is discretized using SRK methods. Compared to the EM scheme, SRK schemes we consider query the same order oracle and improve on the deviation orders.

Theorem 1 hints that one may expect the convergence rate of sampling to improve as more terms of the Itô-Taylor expansion are incorporated in the numerical integration scheme. However, in practice, a challenge for simulation is the appearance of non-Gaussian terms in the form of iterated Itô integrals. Fortunately, since the overdamped Langevin diffusion has a constant diffusion coefficient, efficient SRK methods can still be applied to accelerate convergence.

³In fact, it suffices to ensure the drift is three-times differentiable with Lipschitz gradient and Hessian.

⁴Cheng et al. [8] derive the uniform local mean-square deviation order. Jensen's inequality implies that the local mean deviation is of the same uniform order. This entails uniform local deviation orders are (2.0, 2.0) and hence also (1.5, 2.0) when step size constraint $C_h \le 1$; note $p_2 \ge p_1 + 1/2$ is required to invoke Theorem 1.

4.1 Sampling from Strongly Convex Potentials with the Langevin Diffusion

We provide a non-asymptotic analysis for integrating the overdamped Langevin diffusion based on a mean-square order 1.5 SRK scheme for SDEs with constant diffusion coefficients [46]. We refer to the sampling algorithm as SRK-LD. Specifically, given a sample from the previous iteration \tilde{X}_k ,

$$\tilde{H}_{1} = \tilde{X}_{k} + \sqrt{2h} \left[\left(\frac{1}{2} + \frac{1}{\sqrt{6}} \right) \xi_{k+1} + \frac{1}{\sqrt{12}} \eta_{k+1} \right],
\tilde{H}_{2} = \tilde{X}_{k} - h \nabla f(\tilde{X}_{k}) + \sqrt{2h} \left[\left(\frac{1}{2} - \frac{1}{\sqrt{6}} \right) \xi_{k+1} + \frac{1}{\sqrt{12}} \eta_{k+1} \right],
\tilde{X}_{k+1} = \tilde{X}_{k} - \frac{h}{2} \left(\nabla f(\tilde{H}_{1}) + \nabla f(\tilde{H}_{2}) \right) + \sqrt{2h} \xi_{k+1},$$
(9)

where h is the step size and $\xi_{k+1}, \eta_{k+1} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_d)$ are independent of \tilde{X}_k for all $k \in \mathbb{N}$. We refer the reader to [46, Sec. 1.5] for a detailed derivation of the scheme and other background information.

Theorem 2 (SRK-LD). Let ν^* be the target distribution with a strongly convex potential that is four-times differentiable with Lipschitz continuous first three derivatives. Let ν_k be the distribution of the kth Markov chain iterate defined by (9) starting from the dirac measure $\nu_0 = \delta_{x_0}$. Then, for a sufficiently small step size, 1.5 SRK scheme has uniform local deviation orders (2.0, 2.5), and $W_2(\nu_k, \nu^*)$ converges within ϵ error in $\tilde{\mathcal{O}}(d\epsilon^{-2/3})$ iterations.

The proof of this theorem is given in Appendix B where we provide explicit constants. The basic idea of the proof is to match up the terms in the Itô-Taylor expansion to terms in the Taylor expansion of the discretization scheme. However, extreme care is needed to ensure a tight dimension dependence. **Remark.** For large-scale Bayesian inference, computing the full gradient of the potential can be costly.

Fortunately, SRK-LD can be easily adapted to use an unbiased stochastic oracle, provided queries of the latter have a variance not overly large. We provide an informal discussion in Appendix E.

We emphasize that the 1.5 SRK scheme (9) only queries the gradient of the potential and improves the best available W_2 -rate of LMC in the same setting from $\tilde{\mathcal{O}}(d\epsilon^{-1})$ to $\tilde{\mathcal{O}}(d\epsilon^{-2/3})$, with merely two extra gradient evaluations per iteration. Remarkably, the dimension dependence stays the same.

4.2 Sampling from Non-Convex Potentials with Itô Diffusions

For the Langevin diffusion, the conclusions of Theorem 1 only apply to distributions with strongly convex potentials, as exponential W_2 -contraction of the Langevin diffusion is equivalent to strong convexity of the potential. This shortcoming can be addressed using a non-constant diffusion coefficient which allows us to sample from non-convex potentials using uniformly dissipative candidate diffusions. Below, we use a mean-square order 1.0 SRK scheme for general diffusions [52] and achieve an improved convergence rate compared to sampling with the EM scheme.

We refer to the sampling algorithm as SRK-ID, which has the following update rule:

$$\tilde{H}_{1}^{(i)} = \tilde{X}_{k} + \sum_{j=1}^{m} \sigma_{l}(\tilde{X}_{k}) \frac{I_{(j,i)}}{\sqrt{h}}, \qquad \tilde{H}_{2}^{(i)} = \tilde{X}_{k} - \sum_{j=1}^{m} \sigma_{l}(\tilde{X}_{k}) \frac{I_{(j,i)}}{\sqrt{h}},
\tilde{X}_{k+1} = \tilde{X}_{k} + hb(\tilde{X}_{k}) + \sum_{i=1}^{m} \sigma_{i}(\tilde{X}_{k}) I_{(i)} + \frac{\sqrt{h}}{2} \sum_{i=1}^{m} \left(\sigma_{i}(\tilde{H}_{1}^{(i)}) - \sigma_{i}(\tilde{H}_{2}^{(i)})\right), \tag{10}$$

where $I_{(i)} = \int_{t_k}^{t_{k+1}} \mathrm{d}B_s^{(i)}$, $I_{(j,i)} = \int_{t_k}^{t_{k+1}} \int_{t_k}^s \mathrm{d}B_u^{(j)} \mathrm{d}B_s^{(i)}$. We note that schemes of higher order exist for general diffusions, but they typically require advanced approximations of iterated Itô integrals of the form $\int_0^{t_0} \cdots \int_0^{t_{n-1}} \mathrm{d}B_{t_n}^{(k_n)} \cdots \mathrm{d}B_{t_1}^{(k_1)}$.

Theorem 3 (SRK-ID). For a uniformly dissipative diffusion with invariant measure ν_* , Lipschitz drift and diffusion coefficients that have Lipschitz gradients, assume that the diffusion coefficient further satisfies the sublinear growth condition $\|\sigma(x)\|_{\text{op}} \leq \pi_{1,1}(\sigma) \left(1 + \|x\|_2^{1/2}\right)$ for all $x \in \mathbb{R}^d$. Let ν_k be the distribution of the kth Markov chain iterate defined by (10) starting from the dirac measure $\nu_0 = \delta_{x_0}$. Then for a sufficiently small step size, iterates of the 1.0 SRK scheme have uniform local deviation orders (1.5, 2.0), and $W_2(\nu_k, \nu^*)$ converges within ϵ error in $\tilde{\mathcal{O}}(d^{3/4}m^2\epsilon^{-1})$ iterations.

The proof is given in Appendix C where we present explicit constants. We note that the dimension dependence in this case is only better than that of EM due to the extra growth condition on the diffusion. The extra m-dependence comes from the 2m evaluations of the diffusion coefficient at $\tilde{H}_1^{(i)}$ and $\tilde{H}_2^{(i)}$ ($i=1,\ldots,m$). In the above theorem, we use the Frobenius norm for the Lipschitz and growth constants for the diffusion coefficient which potentially hides dimension dependence. One may convert all bounds to be based on the operator norm with our constants given in the Appendix.

In practice, accurately simulating both the iterated Itô integrals $I_{(j,i)}$ and the Brownian motion increments $I_{(i)}$ simultaneously is difficult. We comment on two possible approximations based on truncating an infinite series in Appendix H.2.

5 Examples and Numerical Studies

We provide examples of our theory and numerical studies showing SRK methods achieve lower asymptotic errors, are stable under large step sizes, and hence converge faster to a prescribed tolerance. We sample from strongly convex potentials with SRK-LD and non-convex potentials with SRK-ID. Since our theory is in W_2 , we compare with EM on W_2 and mean squared error (MSE) between iterates of the Markov chain and the target. We do not compare to schemes that require computing derivatives of the drift and diffusion coefficients. Since directly computing W_2 is infeasible, we estimate it using samples instead. However, sample-based estimators have a bias of order $\Omega(n^{-1/d})$ [64], so we perform a heuristic correction whose description is in Appendix G.

Figure 1: (a) Estimated asymptotic error against step size. (b) Estimated error against number of iterations. (c) MSE against number of iterations. Legends of (a) and (c) denote "scheme (dimensionality)". Legend of (b) denotes "scheme (step size)".

5.1 Strongly Convex Potentials

Gaussian Mixture. We consider sampling from a multivariate Gaussian mixture with density

$$\pi(\theta) \propto \exp\left(-\frac{1}{2}\|\theta - a\|_{2}^{2}\right) + \exp\left(-\frac{1}{2}\|\theta + a\|_{2}^{2}\right), \quad \theta \in \mathbb{R}^{d},$$

where $a \in \mathbb{R}^d$ is a parameter that measures the separation of two modes. The potential is strongly convex when $\|a\|_2 < 1$ and has Lipschitz gradient and Hessian [11]. Moreover, one can verify that its third derivative is also Lipschitz.

Bayesian Logistic Regression. We consider Bayesian logistic regression (BLR) [11]. Given data samples $X = \{x_i\}_{i=1}^n \in \mathbb{R}^{n \times d}, \ Y = \{y_i\}_{i=1}^n \in \mathbb{R}^n$, and parameter $\theta \in \mathbb{R}^d$, logistic regression models the Bernoulli conditional distribution with probability $\Pr(y_i = 1 | x_i) = 1/(1 + \exp(-\theta^\top x_i))$. We place a Gaussian prior on θ with mean zero and covariance proportional to Σ_X^{-1} , where $\Sigma_X = X^\top X/n$ is the sample covariance matrix. We sample from the posterior density

$$\pi(\theta) \propto \exp(-f(\theta)) = \exp\left(\mathbf{Y}^{\mathsf{T}}\mathbf{X}\theta - \sum_{i=1}^{n} \log(1 + \exp(-\theta^{\mathsf{T}}x_i)) - \frac{\alpha}{2} \|\Sigma_{\mathbf{X}}^{1/2}\theta\|_2^2\right).$$

The potential is strongly convex and has Lipschitz gradient and Hessian [11]. One can also verify that it has a Lipschitz third derivative.

To obtain the potential, we generate data from the model with the parameter $\theta_* = \mathbf{1}_d$ following [11, 21]. To obtain each x_i , we sample a vector whose components are independently drawn from the

Rademacher distribution and normalize it by the Frobenius norm of the sample matrix X times $d^{-1/2}$. Note that our normalization scheme is different from that adopted in [11, 21], where each x_i is normalized by its Euclidean norm. We sample the corresponding y_i from the model and fix the regularizer $\alpha = 0.3d/\pi^2$.

To characterize the true posterior, we sample 50k particles driven by EM with a step size of 0.001 until convergence. We subsample from these particles 5k examples to represent the true posterior each time we intend to estimate squared W_2 . We monitor the kernel Stein discrepancy 5 (KSD) [29, 10, 36] using the inverse multiquadratic kernel [29] with hyperparameters $\beta = -1/2$ and c = 1 to measure the distance between the 100k particles and the true posterior. We confirm that these particles faithfully approximate the true posterior with the squared KSD being less than 0.002 in all settings.

When sampling from a Gaussian mixture and the posterior of BLR, we observe that SRK-LD leads to a consistent improvement in the asymptotic error compared to the EM scheme when the same step size is used. In particular, Figure 1 (a) plots the estimated asymptotic error in squared W_2 of different step sizes for 2D and 20D Gaussian mixture problems and shows that SRK-LD is surprisingly stable for exceptionally large step sizes. Figure 1 (b) plots the estimated error in squared W_2 as the number of iterations increases for 2D BLR. We include additional results on problems in 2D and 20D with error estimates in squared W_2 and the energy distance [58] along with a wall time analysis in Appendix H.

5.2 Non-Convex Potentials

We consider sampling from the non-convex potential

$$f(x) = (\beta + ||x||_2^2)^{1/2} + \gamma \log(\beta + ||x||_2^2), \quad x \in \mathbb{R}^d,$$

where $\beta, \gamma > 0$ are scalar parameters of the distribution. The corresponding density is a simplified abstraction for the posterior distribution of Student's t regression with a pseudo-Huber prior [30]. One can verify that when $\beta + \|x\|_2^2 < 1$ and $(4\gamma + 1) \|x\|_2^2 < (2\gamma + 1)\sqrt{\beta + \|x\|_2^2}$, the Hessian has a negative eigenvalue. The candidate diffusion, where the drift coefficient is given by (2) and diffusion coefficient $\sigma(x) = g(x)^{1/2}I_d$ with $g(x) = \left(\beta + \|x\|_2^2\right)^{1/2}$, is uniformly dissipative if $\frac{1}{2} - |\gamma - \frac{1}{2}| \frac{2}{\beta^{1/2}} - \frac{d}{8\beta^{1/2}} > 0$. Indeed, one can verify that $\mu_1(g) \leq 1$, $\mu_2(g) \leq \frac{2}{\beta^{1/2}}$, and $\mu_1(\sigma) \leq \frac{1}{2\beta^{1/4}}$. Therefore,

$$\begin{aligned} \langle b(x) - b(y), x - y \rangle + \frac{1}{2} \|\sigma(x) - \sigma(y)\|_{\mathrm{F}}^2 &\leq -\left(\frac{1}{2} - |\gamma - \frac{1}{2}|\mu_2(g) - \frac{d}{2}\mu_1(\sigma)^2\right) \|x - y\|_2^2, \\ &\leq -\left(\frac{1}{2} - |\gamma - \frac{1}{2}|\frac{2}{\beta^{1/2}} - \frac{d}{8\beta^{1/2}}\right) \|x - y\|_2^2. \end{aligned}$$

Moreover, b and σ have Lipschitz first two derivatives, and the latter satisfies the sublinear growth condition in Theorem 3.

To study the behavior of SRK-ID, we simulate using both SRK-ID and EM. For both schemes, we simulate with a step size of 10^{-3} initiated from the same 50k particles approximating the stationary distribution obtained by simulating EM with a step size of 10^{-6} until convergence. We compute the MSE between the continuous-time process and the Markov chain with the same Brownian motion for 300 iterations when we observe the MSE curve plateaus. We approximate the continuous-time process by simulating using the EM scheme with a step size of 10^{-6} similar to the setting in [52]. To obtain final results, we average across ten independent runs. We note that the MSE upper bounds W_2 due to the latter being an infimum over all couplings. Hence, the MSE value serves as an indication of the convergence performance in W_2 .

Figure 1 (c) shows that for $\beta=0.33, \gamma=0.5$ and d=1, when simulating from a good approximation to the target distribution with the same step size, the MSE of SRK-ID remains small, whereas the MSE of EM converges to a larger value. However, this improvement diminishes as the dimensionality of the sampling problem increases. We report additional results with other parameter settings in Appendix H.2.2. Notably, we did not observe significant differences in the estimated squared W_2 values. We suspect this is due to the discrepancy being dominated by the bias of our estimator.

Acknowledgments

MAE is partially funded by NSERC [2019-06167] and CIFAR AI Chairs program at the Vector Institute.

⁵Unfortunately, there appear to be two definitions for KSD and the energy distance in the literature, differing in whether a square root is taken or not. We adopt the version with the square root taken.

References

- [1] David F Anderson and Jonathan C Mattingly. A weak trapezoidal method for a class of stochastic differential equations. *arXiv preprint arXiv:0906.3475*, 2009.
- [2] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. *Handbook of Markov chain Monte Carlo*. CRC press, 2011.
- [3] Kevin Burrage, PM Burrage, and Tianhai Tian. Numerical methods for strong solutions of stochastic differential equations: an overview. *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences*, 460(2041):373–402, 2004.
- [4] Simone Calogero. Exponential convergence to equilibrium for kinetic Fokker-Planck equations. *Communications in Partial Differential Equations*, 37(8):1357–1390, 2012.
- [5] Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In *Advances in Neural Information Processing Systems*, pages 2278–2286, 2015.
- [6] Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients. arXiv preprint arXiv:1905.12247, 2019.
- [7] Xiang Cheng and Peter Bartlett. Convergence of Langevin MCMC in KL-divergence. *arXiv* preprint arXiv:1705.09048, 2017.
- [8] Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped Langevin MCMC: A non-asymptotic analysis. *arXiv preprint arXiv:1707.03663*, 2017.
- [9] Xiang Cheng, Niladri S Chatterji, Yasin Abbasi-Yadkori, Peter L Bartlett, and Michael I Jordan. Sharp convergence rates for Langevin dynamics in the nonconvex setting. *arXiv preprint arXiv:1805.01648*, 2018.
- [10] Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of fit. JMLR: Workshop and Conference Proceedings, 2016.
- [11] Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79(3):651–676, 2017.
- [12] Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient. *Stochastic Processes and their Applications*, 2019.
- [13] Arnak S Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using kinetic Langevin diffusions. *arXiv preprint arXiv:1807.09382*, 2018.
- [14] Arnak S Dalalyan and Alexandre B Tsybakov. Sparse regression learning by aggregation and Langevin Monte-Carlo. *Journal of Computer and System Sciences*, 78(5):1423–1443, 2012.
- [15] Nan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D Skeel, and Hartmut Neven. Bayesian sampling using stochastic gradient thermostats. In *Advances in neural information processing systems*, pages 3203–3211, 2014.
- [16] V Dobrić and Joseph E Yukich. Asymptotics for transportation cost in high dimensions. *Journal of Theoretical Probability*, 8(1):97–118, 1995.
- [17] RM Dudley. The speed of mean Glivenko-Cantelli convergence. *The Annals of Mathematical Statistics*, 40(1):40–50, 1969.
- [18] Alain Durmus and Eric Moulines. High-dimensional Bayesian inference via the unadjusted Langevin algorithm. *arXiv preprint arXiv:1605.01559*, 2016.
- [19] Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, and Gaël Richard. Stochastic gradient Richardson-Romberg Markov chain Monte Carlo. In *Advances in Neural Information Processing Systems*, pages 2047–2055, 2016.

- [20] Alain Durmus, Eric Moulines, and Marcelo Pereyra. Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets moreau. *SIAM Journal on Imaging Sciences*, 11(1):473–506, 2018.
- [21] Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-Hastings algorithms are fast! *arXiv preprint arXiv:1801.02309*, 2018.
- [22] Andreas Eberle. Reflection couplings and contraction rates for diffusions. *Probability theory and related fields*, 166(3-4):851–886, 2016.
- [23] Andreas Eberle, Arnaud Guillin, and Raphael Zimmer. Couplings and quantitative contraction rates for Langevin dynamics. arXiv preprint arXiv:1703.01617, 2017.
- [24] Murat A Erdogdu, Lester Mackey, and Ohad Shamir. Global non-convex optimization with discretized diffusions. In Advances in Neural Information Processing Systems, pages 9694–9703, 2018.
- [25] R'emi Flamary and Nicolas Courty. POT python optimal transport library, 2017. URL https://github.com/rflamary/POT.
- [26] Saul B Gelfand and Sanjoy K Mitter. Recursive stochastic algorithms for global optimization in r²d. SIAM Journal on Control and Optimization, 29(5):999–1018, 1991.
- [27] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari, and Donald B Rubin. *Bayesian data analysis*. Chapman and Hall/CRC, 2013.
- [28] Ivan Gentil, Christian Léonard, and Luigia Ripani. About the analogy between optimal transport and minimal entropy. *arXiv preprint arXiv:1510.08230*, 2015.
- [29] Jackson Gorham and Lester Mackey. Measuring sample quality with kernels. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pages 1292–1301. JMLR. org, 2017.
- [30] Jackson Gorham, Andrew B Duncan, Sebastian J Vollmer, and Lester Mackey. Measuring sample quality with diffusions. *arXiv preprint arXiv:1611.06972*, 2016.
- [31] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. *Journal of Machine Learning Research*, 13(Mar):723–773, 2012.
- [32] Peter E Kloeden and Eckhard Platen. *Numerical solution of stochastic differential equations*, volume 23. Springer Science & Business Media, 2013.
- [33] Peter E Kloeden, Eckhard Platen, and IW Wright. The approximation of multiple stochastic integrals. *Stochastic analysis and applications*, 10(4):431–441, 1992.
- [34] Dmitriy F Kuznetsov. Explicit one-step strong numerical methods of order 2.5 for Itô stochastic differential equations, based on the unified Taylor-Itô and Taylor-Stratonovich expansions. *arXiv* preprint arXiv:1802.04844, 2018.
- [35] Adrien Laurent and Gilles Vilmart. Exotic aromatic b-series for the study of long time integrators for a class of ergodic SDEs. *arXiv preprint arXiv:1707.02877*, 2017.
- [36] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit tests. In *International Conference on Machine Learning*, pages 276–284, 2016.
- [37] Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient MCMC. In *Advances in Neural Information Processing Systems*, pages 2917–2925, 2015.
- [38] Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan. Sampling can be faster than optimization. *arXiv preprint arXiv:1811.08413*, 2018.
- [39] Yi-An Ma, Niladri Chatterji, Xiang Cheng, Nicolas Flammarion, Peter Bartlett, and Michael I Jordan. Is there an analog of Nesterov acceleration for MCMC? *arXiv* preprint *arXiv*:1902.00996, 2019.

- [40] David JC MacKay and David JC Mac Kay. *Information theory, inference and learning algorithms*. Cambridge university press, 2003.
- [41] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007.
- [42] Jonathan C Mattingly, Andrew M Stuart, and Desmond J Higham. Ergodicity for SDEs and approximations: locally lipschitz vector fields and degenerate noise. *Stochastic processes and their applications*, 101(2):185–232, 2002.
- [43] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward Teller. Equation of state calculations by fast computing machines. *The journal of chemical physics*, 21(6):1087–1092, 1953.
- [44] Sean P Meyn and Richard L Tweedie. *Markov chains and stochastic stability*. Springer Science & Business Media, 2012.
- [45] GN Milstein and Michael V Tretyakov. Quasi-symplectic methods for Langevin-type equations. *IMA journal of numerical analysis*, 23(4):593–626, 2003.
- [46] Grigori Noah Milstein and Michael V Tretyakov. *Stochastic numerics for mathematical physics*. Springer Science & Business Media, 2013.
- [47] Wenlong Mou, Yi-An Ma, Martin J Wainwright, Peter L Bartlett, and Michael I Jordan. High-order Langevin diffusion yields an accelerated MCMC algorithm. *arXiv preprint arXiv:1908.10859*, 2019.
- [48] Bernt Øksendal. Stochastic differential equations. In *Stochastic differential equations*, pages 65–84. Springer, 2003.
- [49] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. *Foundations and Trends*® *in Machine Learning*, 11(5-6):355–607, 2019.
- [50] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient Langevin dynamics: a nonasymptotic analysis. arXiv preprint arXiv:1702.03849, 2017.
- [51] Gareth O Roberts, Richard L Tweedie, et al. Exponential convergence of Langevin distributions and their discrete approximations. *Bernoulli*, 2(4):341–363, 1996.
- [52] Andreas Rößler. Runge–kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM Journal on Numerical Analysis, 48(3):922–952, 2010.
- [53] Sotirios Sabanis and Ying Zhang. Higher order Langevin Monte Carlo algorithm. arXiv preprint arXiv:1808.00728, 2018.
- [54] Sotirios Sabanis and Ying Zhang. On explicit order 1.5 approximations with varying coefficients: the case of super-linear diffusion coefficients. *Journal of Complexity*, 50:84–115, 2019.
- [55] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu, et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. *The Annals of Statistics*, 41 (5):2263–2291, 2013.
- [56] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling. arXiv preprint arXiv:1909.05503, 2019.
- [57] Marvin K Simon. Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Springer Science & Business Media, 2007.
- [58] Gábor J Székely. E-statistics: The energy of statistical samples. Bowling Green State University, Department of Mathematics and Statistics Technical Report, 3(05):1–18, 2003.
- [59] Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based on distances. *Journal of statistical planning and inference*, 143(8):1249–1272, 2013.

- [60] Veeravalli S Varadarajan. On the convergence of sample probability distributions. *Sankhyā: The Indian Journal of Statistics* (1933-1960), 19(1/2):23–26, 1958.
- [61] Santosh S Vempala and Andre Wibisono. Rapid convergence of the unadjusted Langevin algorithm: Log-sobolev suffices. *arXiv preprint arXiv:1903.08568*, 2019.
- [62] Cédric Villani. *Optimal transport: old and new*, volume 338. Springer Science & Business Media, 2008.
- [63] Gilles Vilmart. Postprocessed integrators for the high order integration of ergodic SDEs. *SIAM Journal on Scientific Computing*, 37(1):A201–A220, 2015.
- [64] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance. arXiv preprint arXiv:1707.00087, 2017.
- [65] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In *Proceedings of the 28th international conference on machine learning (ICML-11)*, pages 681–688, 2011.
- [66] Magnus Wiktorsson et al. Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. *The Annals of Applied Probability*, 11 (2):470–487, 2001.
- [67] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin dynamics based algorithms for nonconvex optimization. In *Advances in Neural Information Processing Systems*, pages 3122–3133, 2018.
- [68] Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct Runge-Kutta discretization achieves acceleration. In *Advances in Neural Information Processing Systems*, pages 3904–3913, 2018.
- [69] Difan Zou, Pan Xu, and Quanquan Gu. Sampling from non-log-concave distributions via variance-reduced gradient Langevin dynamics. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 2936–2945, 2019.