COMP 5331 Project Presentation

Learning Language Representations for Sequential Recommendation

Group No.: 3

Group Members: CHEN Xiao, LI Tsz On, XU Congying, CHEN Songqiang,

LU Weiqi, XU Mingshi

(upgrade approved by Raymond)

Project Type: Research implementation (with much better model efficiency!)

Work to Implement: Li et al., Text Is All You Need: Learning Language Representations

for Sequential Recommendation, KDD' 23.

Overview

• Introduction: LU, Weiqi

Methodology:

Model Architecture: CHEN, Xiao

Model Modification: CHEN, Songqiang

Learning Framework: XU, Mingshi

• Evaluation:

Datasets: LU, Weiqi

Setup & Overall Perf: XU, Congying

Ablation Study: LI,Tsz On

Introduction – Sequential Recommendation

- Goal: Model user behavior based on historical interactions.
- An example: A user bought MacBook and Mouse is likely to buy a new iPhone in the future.

Introduction – Related Work

ID-based methods:

- Idea: Learnable embedding tables for item ID encoding.
- Limitations:
 - Cold start problem of new items.
 - Not transferable to new datasets.

Text-based methods:

- Idea: Pre-trained language models for item representation based on texts.
- Limitations:
 - Item representation is sub-optimal for recommendation task.
 - Lack of importance weighting of item attributes.

LU, Weigi

Introduction - Key Idea & Problem Definition

- Recformer
- Main idea: Leverage the generality of pre-trained language models through joint training of:
 - language understanding
 - sequential recommendations,

to build a transferable recommendation model.

LU, Weigi

Introduction – Key Idea & Problem Definition

- Given an item set I and a user's chronological interaction sequence $s = \{i_1, i_2, ..., i_n\}$, predict the next item based on the sequence s.
 - Each item i_k is described by a dictionary D_k with attribute pairs $\{(k_1, v_1), (k_2, v_2), ..., (k_m, v_m)\}.$

Methodology - Base Model Architecture & General Workflow

CHEN, Xiao

Methodology – Model Inputs

Input Processing Steps:

- Flatten the (key, value) pair into sentence for each item
- Generate user's interaction sequence
 - Concatenate each item sentence in order
 - **Reverse** the item sentence sequence
- Add a special token [CLS] at the beginning

$$X = \{ [CLS], T_n, T_{n-1}, \dots, T_1 \}$$

CHEN, Xiao

Methodology – Four Embedding Layers

Word Embedding: $E_w = \text{LayerNorm}(A_w + B_w + C_w + D_w)$ Model Input Embedding: $E_X = [E_{\text{[CLS]}}, E_{w_1}, \dots, E_{w_l}]$

```
(embeddings): RecformerEmbeddings(
  (token_embeddings): Embedding(30522, 256, padding_idx=0)
  (token_position_embeddings): Embedding(1026, 256, padding_idx=0)
  (token_type_embeddings): Embedding(4, 256)
  (item_position_embeddings): Embedding(51, 256)
  (LayerNorm): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
  (dropout): Dropout(p=0.1, inplace=False)
)
```

CHEN, Xiao

9

Methodology - Item/Sequence Representation & Prediction

Item/Sequence Representation:

- $[\mathbf{h}_{[CLS]}, \mathbf{h}_{w_1}, \dots, \mathbf{h}_{w_l}] = \text{Longformer}([\mathbf{E}_{[CLS]}, \mathbf{E}_{w_1}, \dots, \mathbf{E}_{w_l}])$
- The first token h_{CLS} is used as the sequence representation.

Prediction:

- Given a user's interaction sequence s, and a next item i.
- Calculate score: cosine similarity $r_{i,s} = \frac{\mathbf{h}_i^\top \mathbf{h}_s}{\|\mathbf{h}_i\| \cdot \|\mathbf{h}_s\|}$
- Predict next item: highest score $i_s = \underset{i \in I}{\|\mathbf{h}_i\| \cdot \|\mathbf{h}_s\|} i_s = \operatorname{argmax}_{i \in I}(r_{i,s})$

CHEN, Xiao

Methodology – Efficiency Enhancement Beyond Reimplementation

• Efficiency Problem of the Original Model Architecture & Setup:

> The model is huge and takes too much GPU memory and time to run.

	Longformer	Max Input	Datab Si-a	Pre-T	raining	Fine-	Tuning	
_	Size	Length	Batch Size	GPU Mem	Time/Epoch	GPU Mem	Time/Epoch	
Origina	l: Base	1024	16	33,660 MB	49.5 hours	25,656 MB	1800+ sec	
				NV	VIDIA GEFORCE RTX	4090 🗡	* 256 e	
						176 24 GB GDDR63 ROPS MEMORY SIZE MEMORY TYPE	= 128h = (*6	datasets)

Reasons to Enhance the Model Efficiency:

- > We **need to run** the model!
- > We need to do many experiments in the limited time!
- > We will contribute a more practical implementation to the proposed methodology. [WE DID IT!]

Methodology - Efficiency Enhancement Beyond Reimplementation

Modification I: Reduce the Maximum Input Length

- > Truncate the input by 512 (original: 1024) tokens.
- > The fewer tokens input to the model, the fewer hidden states & calculations are needed.

Longformer	Max Input	Datah Si-a	Pre-T	raining	Tuning		
Size	Length	Batch Size	GPU Mem	Time/Epoch	GPU Mem	Time/Epoch	
Base	1024	16	33,660 MB	49.5 hours	25,656 MB	1800+ sec	
Base	512	16	19,958 MB	41 hours	19,966 MB	1600+ sec	
			Runna	ble now.		* 256 epochs = 128h = 4.7 da Time Cost is Still Intolera	•

Methodology - Efficiency Enhancement Beyond Reimplementation

Modification 2: Substitute the Model Architecture

The <u>LM Longformer-Base is huge</u>. Recformer-Base(Recformer-Mini(> Longformer-Base v.s. -Mini: (embeddings): RecformerEmbeddings(# param: 41,794,560 (embeddings): RecformerEmbeddings(# param: 8,090,880 (word embeddings): Embedding(50265, 768) (word embeddings): Embedding(30522, 256) (position embeddings): Embedding(4098, 768) (position embeddings): Embedding(1026, 256) (token type embeddings): Embedding(4, 768) (token type embeddings): Embedding(4, 256) (item position embeddings): Embedding(51, 768) (item position embeddings): Embedding(51, 256) 12 v.s. 6 Transformer layers; (LaverNorm): LaverNorm((768.)) (LayerNorm): LayerNorm((256,)) (encoder): LongformerEncoder(# LongFormer-Base (encoder): LonaformerEncoder(# LonaFormer-Mini (laver): ModuleList((laver): ModuleList(> 768d v.s. 256d hidden state; (0): LongformerLayer(# param: 8,859,648 x 12 ls = 106,315,776 (0): LongformerLayer(# param: $987,136 \times 6$ layers = 5,922,816(attention): LongformerAttention((attention): LongformerAttention **Pre-Training Fine-Tuning** Longformer **Max Input** > GPT (bigger vocal **Batch Size** Size **GPU Mem** Time/Epoch **GPU Mem** Time/Epoch Length (smaller vocab) to Base 33.660 MB 49.5 hours 25.656 MB 1024 1800+ sec Base 19.958 MB 41 hours 19,966 MB 1600+ sec > 12x768d v.s. 6x255,932 MB ~ 1/6 14.5 hours ~ 1/3 6,060 MB < 1/4 Mini states per sample. > 6 v.s. I storage & calculation. (LayerNorm): LayerNorm((768,)) (LayerNorm): LayerNorm((256,)) (1): LongformerLayer(...) (1): LongformerLayer(...) (pooler): RecformerPooler() (pooler): RecformerPooler()

Methodology - Efficiency Enhancement Beyond Reimplementation

Last Modification: Increase the Batch Size

- > To fully utilize the GPU memory and computation resource left.
- > Increase the batch size for higher speedup & more stable convergence guidance.

Max Input	Datab Cina	Pre-T	raining	Fine-		
Length	Batten Size	GPU Mem	Time/Epoch	GPU Mem	Time/Epoch	
1024	16	33,660 MB	49.5 hours	25,656 MB	1800+ sec√	* 256 epochs
512	16	19,958 MB	41 hours	19,966 MB	1600+ sec	= 128h = 5.3 day
512	16	5,932 MB	14.5 hours	6,060 MB	502 sec	(*6 dataset
512	80	20,248 MB	5 hours <mark>~1/</mark>	<mark>10</mark> 17,552 MB	312 sec <mark>∼</mark> ∐	* 256 apochs
	Length 1024 512 512	Batch Size	Length Batch Size I024 I6 33,660 MB 512 I6 I9,958 MB 512 I6 5,932 MB	Batch Size GPU Mem Time/Epoch 1024 16 33,660 MB 49.5 hours 512 16 19,958 MB 41 hours 512 16 5,932 MB 14.5 hours	Length GPU Mem Time/Epoch GPU Mem 1024 16 33,660 MB 49.5 hours 25,656 MB 512 16 19,958 MB 41 hours 19,966 MB 512 16 5,932 MB 14.5 hours 6,060 MB	Length GPU Mem Time/Epoch GPU Mem Time/Epoch 1024 16 33,660 MB 49.5 hours 25,656 MB 1800+ sec 512 16 19,958 MB 41 hours 19,966 MB 1600+ sec 512 16 5,932 MB 14.5 hours 6,060 MB 502 sec

SO OBVIOUS!

Performance? No hurry.

* 256 epochs = 128h = 0.9 days (*6 datasets)

Methodology - Pretraining (Masked Language Modeling Task)

(b) Pretraining

Goal of Pretraining:

obtain a parameter initialization for downstream tasks

Masked Language Modeling (following BERT):

- the training data generator chooses 15% of the token positions at random for prediction.
 - (1) the [MASK] with probability 80%;
 - (2) a random token with probability 10%;
 - (3) the unchanged token with probability 10%.
- Loss Function of MLM:

$$\mathcal{L}_{\text{MLM}} = -\sum_{i=0}^{|\mathcal{V}|} y_i \log(p_i)$$

- Prevent language models from forgetting the word semantics
- Eliminate the language domain gap between a general language corpus and item texts.

XU Mingshi 15

Methodology - Pretraining (Item-Item Contrastive Task)

(b) Pretraining

We adopt in-batch next items as negative instances instead of negative sampling to accelerate the Pre-training process.

Similarity Function:

$$r_{i,s} = \frac{\mathbf{h}_i^{\mathsf{T}} \mathbf{h}_s}{\|\mathbf{h}_i\| \cdot \|\mathbf{h}_s\|}$$

Loss Function of IIC:

$$\mathcal{L}_{\text{IIC}} = -\log \frac{e^{\sin(\mathbf{h}_s, \mathbf{h}_i^+)/\tau}}{\sum_{i \in \mathcal{B}} e^{\sin(\mathbf{h}_s, \mathbf{h}_i)/\tau}}$$

Loss Function for Pre-training:

$$\mathcal{L}_{\text{PT}} = \mathcal{L}_{\text{IIC}} + \lambda \cdot \mathcal{L}_{\text{MLM}}$$

XU Mingshi 16

Methodology – Finetuning

Algorithm 1: Two-Stage Finetuning 1 Input: $D_{\text{train}}, D_{\text{valid}}, \mathcal{I}, M$ ² Hyper-parameters: n_{epoch} 3 Output: M', I'1: $M \leftarrow$ initialized with pre-trained parameters 2: $p \leftarrow$ metrics are initialized with 0 Stage 1 3: **for** n in n_{epoch} **do** 4: $\mathbf{I} \leftarrow \text{Encode}(M, \mathcal{I})$ $M \leftarrow \operatorname{Train}(M, \mathbf{I}, D_{\operatorname{train}})$ $p' \leftarrow \text{Evaluate}(M, \mathbf{I}, D_{\text{valid}})$ if p' > p then $M', I' \leftarrow M, I$ $p \leftarrow p'$ end if 11: end for Stage 2 12: $M \leftarrow M'$ 13: **for** n in n_{epoch} **do** $M \leftarrow \operatorname{Train}(M, \mathbf{I'}, D_{\operatorname{train}})$ $p' \leftarrow \text{Evaluate}(M, \mathbf{I'}, D_{\text{valid}})$ if p' > p then $M' \leftarrow M$ $p \leftarrow p'$ end if 20: end for 21: return M', I'

Item Feature Matrix: $I \in \mathbb{R}^{|I| \times d}$ Item Feature Matrix I is obtained by encoding all items with Recformer

- **Stage I:** Updating **I** by encoding all items with Recformer (line4) per epoch.
 - The reason is although we have pre-trained the model, the representation of the item can still be improved by further training on the downstream dataset.
 - To accelerate the training, we update the I every epoch.
- Stage 2: Freeze I and update only parameters in model M. Loss Function for Finetuning:

$$\mathcal{L}_{FT} = -\log \frac{e^{\sin(\mathbf{h}_s, \mathbf{I}_i^+)/\tau}}{\sum_{i \in I} e^{\sin(\mathbf{h}_s, \mathbf{I}_i)/\tau}}$$

XU Mingshi 17

Evaluation – Datasets

The Amazon Review Dataset (2018)

- Scope: Features 233.1 million product reviews spanning from May 1996 to October 2018.
- Rich Metadata: Includes product descriptions, brands, categories, and image features.
- Significance: Provides a comprehensive view of user preferences over time.

```
7138258879: {'title': 'Elite Mailers 9"x2" i-VTEC SOHC Vinyl Decal Sticker - White - 2 pieces', 'brand': 'Elite Mailers', 'category': 'Automotive Exterior Accessories Bumper Stickers, Decals & Magnets'}
```

The meta data of an item with detailed description (title), brand, and fine-grained category

Evaluation – Datasets

Dataset for Pre-training

- Sampled from seven categories:
 - "Automotive"
 - "Cell Phones and Accessories"
 - "Clothing Shoes and Jewelry"
 - "Electronics"
 - "Grocery and Gourmet Food"
 - "Home and Kitchen"
 - "Movies and TV"
- Size: 3.5 millions of interaction sequences.

Evaluation – Datasets

Six Datasets (Size) for Fine-tuning

- "Arts, Crafts and Sewing" (56210)
- "Industrial and Scientific" (11041)
- "Musical Instruments" (27530)
- "Office Products" (101501)
- "Pet Supplies" (47569)
- "Video Games" (55223)

Evaluation – Setup

Metrics

- > Recall: measures the proportion of relevant items
- > MRR: measures the position of the first relevant item
- > NDCG: measures both the relevance and the position of the items

Baselines

- > ID-only methods: GRU4Rec (2015), SASRec (2018), BERT4Rec (2019), and RecGRU (2021)
- > Text-only methods: ZESRec (2021) and UniSRec (2022).
- > ID-Text methods: FDSA (2019) and S3-Rec (2020)

XU, Congying 21

Evaluation – Overall performance

NO

Motivation: larger model = better model ?

Dataset	Metric	GRU4Rec	SASRec	BERT4Rec	RecGRU	FDSA	S3-Rec	ZESRec	UniSRec	Recformer	Recformer -mini
Scientific	NDCG@10	0.0826	0.0797	0.0790	0.0575	0.0716	0.0451	0.0843	0.0862	0.1027	0.1040
	Recall@10	0.1055	0.1305	0.1061	0.0781	0.0967	0.0804	0.1260	0.1255	0.1448	0.1451
	MRR	0.0702	0.0696	0.0759	0.0566	0.0692	0.0392	0.0745	0.0786	0.0951	0.0967
	NDCG@10	0.0633	0.0634	0.0707	0.0468	0.0731	0.0797	0.0694	0.0785	0.0830	0.0805
Instruments	Recall@10	0.0969	0.0995	0.0972	0.0617	0.1006	0.1110	0.1078	0.1119	0.1052	0.1034
	MRR	0.0707	0.0577	0.0677	0.0460	0.0748	0.0755	0.0633	0.0740	0.0807	0.0780
	NDCG@10	0.1075	0.0848	0.0942	0.0525	0.0994	0.1026	0.0970	0.0894	0.1252	0.1179
Arts	Recall@10	0.1317	0.1342	0.1236	0.0742	0.1209	0.1399	0.1349	0.1333	0.1614	0.1539
	MRR	0.1041	0.0742	0.0899	0.0488	0.0941	0.1057	0.0870	0.0798	0.1189	0.1113
	NDCG@10	0.0761	0.0832	0.0972	0.0500	0.0922	0.0911	0.0865	0.0919	0.1141	0.1114
Office	Recall@10	0.1053	0.1196	0.1205	0.0647	0.1285	0.1186	0.1199	0.1262	0.1403	0.1405
	MRR	0.0731	0.0751	0.0932	0.0483	0.0972	0.0957	0.0797	0.0848	0.1089	0.1055
	NDCG@10	0.0586	0.0547	0.0628	0.0386	0.0600	0.0532	0.0530	0.0580	0.0684	0.0637
Games	Recall@10	0.0988	0.0953	0.1029	0.0479	0.0931	0.0879	0.0844	0.0923	0.1039	0.0989
	MRR	0.0539	0.0505	0.0585	0.0396	0.0546	0.0500	0.0505	0.0552	0.0650	0.0601
	NDCG@10	0.0648	0.0569	0.0602	0.0366	0.0673	0.0742	0.0754	0.0702	0.0972	0.0958
Pet	Recall@10	0.0781	0.0881	0.0765	0.0415	0.0949	0.1039	0.1018	0.0933	0.1162	0.1161
	MRR	0.0632	0.0507	0.0585	0.0371	0.0650	0.0710	0.0706	0.0650	0.0940	0.0922

Light green: outperforming all baselines

Dark green: further outperforming Recformer

- > Recformer-mini almost outperforms all baselines across datasets and metrics.
- > Recformer-mini achieves comparable results to Recformer.

XU, Congying 22

Evaluation – Zero-shot performance

- Motivation: evaluate the knowledge transferability in recommendation scenarios
 - > Measure the contribution of pre-training on downstream tasks.

Dataset	Metric	pretrain only	Con. I Dataset Metric		pretrain only	pretrain & fine-tune	Con.		
	NDCG@10	0.0823	0.1040	79%		NDCG@10	0.0476	0.1114	43%
Scientific	Recall@10	0.1259	0.1451	87%	Office	Recall@10	0.0767	0.1405	55%
	MRR	0.0734	0.0967	76%		MRR	0.0417	0.1055	40%
L.	NDCG@10	0.0436	0.0805	54%		NDCG@10	0.0426	0.0637	67%
Instruments	Recall@10	0.0700	0.1034	68%	Games	Recall@10	0.0685	0.0989	69%
7-	MRR	0.0395	0.0780	51%		MRR	0.0386	0.0601	64%
1.	NDCG@10	0.0692	0.1179	59%		NDCG@10	0.0523	0.0958	55%
Arts	Recall@10	0.1153	0.1539	75%	Pet	Recall@10	0.0771	0.1161	66%
	MRR	0.0591	0.1113	53%		MRR	0.0468	0.0922	51%

Dark green: significant contribution

- > Recformer-mini generally contributes 40%+ ~ 70%+ across datasets and evaluation metrics.
- > On the "Scientific", the contribution is up to 87%.
- > Finding: Recformer-mini can transfer learned knowledge in pre-training to new domains or tasks.

XU, Congying 23

Evaluation – Motivation of Alation Study

- To evaluate the effectiveness of Recformers' components
- Conduct an ablation study with 4 extra model setups (variants)

Evaluation – Ablative Model Variants

Variants	Has training stage	Has fine-tuning stage	Item Embedding for training	Item Embedding for FT
Original	√	✓	Fix	Trainable
Fix	V	√	Fix	Fix
Variable	√	✓	Trainable	Fix
Training-only	√	X	Fix	
Fine-tuning—only	×	✓		Trainable

Evaluation – Ablation Experiment Setup

- **Subjects**: "Industrial and Scientific", "Musical Instruments", "Arts, Crafts and Sewing", "Office Products", "Video Games", and "Pet".
- Environment: NVIDIA GeForce RTX 3090 GPU cards.
- Training configuration: 5 epochs for pre-training, and 20 epochs for fine-tuning.

Evaluation – Ablation Experiment Result

Table 4: Ablation Study with Different Variants of Recformer (Best performance is in green)

Dataset	Metric	Original	Fix	Variable 1	raining-only	FT-only
	NDCG@10	0.0986	0.0984	0.0986	0.0867	0.0294
Scientific	Recall@10	0.1400	0.1394	0.1407	0.1321	0.0413
	MRR	0.0906	0.0903	0.0903	0.0767	0.0392
	NDCG@10	0.0660	0.0625	0.0666	0.0470	0.0162
Instruments	Recall@10	0.0902	0.0870	0.0911	0.0787	0.0314
	MRR	0.0624	0.0588	0.0627	0.0410	0.0143
	NDCG@10	0.1003	0.0789	0.0966	0.0783	0.0536
Arts	Recall@10	0.1462	0.1238	0.1464	0.1230	0.0880
	MRR	0.0900	0.0684	0.0855	0.0689	0.0470
	NDCG@10	0.0892	0.0530	0.0892	0.0538	0.0887
Office	Recall@10	0.1260	0.0831	0.1248	0.0843	0.1275
	MRR	0.0806	0.0473	0.0810	0.0467	0.0797
	NDCG@10	0.0556	0.0831	0.0562	0.0538	0.0195
Games	Recall@10	0.0863	0.0633	0.0865	0.0843	0.0375
	MRR	0.052 4	0.0397	0.0533	0.0400	0.0191
	NDCG@10	0.0886	0.0447	0.0878	0.0443	0.0363
Pet	Recall@10	0.1109	0.0734	0.1097	0.0727	0.0463
	MRR	0.0841	0.0575	0.0834	0.0572	0.0352

Finding I: Original or Variable always outperform other variants.

Evaluation – Ablation Experiment Result

Table 4: Ablation Study with Different Variants of Recformer (Best performance is in green)

Dataset	Metric	Original	Fix	Variable	Training-only	FT-only
	NDCG@10	0.0986	0.0984	0.0986	0.0867	0.0294
Scientific	Recall@10	0.1400	0.1394	0.1407	0.1321	0.0413
	MRR	0.0906	0.0903	0.0903	0.0767	0.0392
	NDCG@10	0.0660	0.0625	0.0666	0.0470	0.0162
Instruments	Recall@10	0.0902	0.0870	0.0911	0.0787	0.0314
	MRR	0.0624	0.0588	0.0627	0.0410	0.0143
	NDCG@10	0.1003	0.0789	0.0966	0.0783	0.0536
Arts	Recall@10	0.1462	0.1238	0.1464	0.1230	0.0880
	MRR	0.0900	0.0684	0.0855	0.0689	0.0470
	NDCG@10	0.0892	0.0530	0.0892	0.0538	0.0887
Office	Recall@10	0.1260	0.0831	0.12 4 8	0.0843	0.1275
	MRR	0.0806	0.0473	0.0810	0.0467	0.0797
	NDCG@10	0.0556	0.0831	0.0562	0.0538	0.0195
Games	Recall@10	0.0863	0.0633	0.0865	0.0843	0.0375
	MRR	0.0524	0.0397	0.0533	0.0400	0.0191
	NDCG@10	0.0886	0.0447	0.0878	0.0443	0.0363
Pet	Recall@10	0.1109	0.0734	0.1097	0.0727	0.0463
	MRR	0.0841	0.0575	0.0834	0.0572	0.0352

Finding 2: Original/Fix/Variable always outperform Training-only or FT-only

Evaluation – Ablation Experiment Result

Table 4: Ablation Study with Different Variants of Recformer (Best performance is in green)

Dataset	Metric	Original	Fix	Variable	Training-only	FT-only
	NDCG@10	0.0986	0.0984	0.0986	0.0867	0.0294
Scientific	Recall@10	0.1400	0.1394	0.1407	0.1321	0.0413
	MRR	0.0906	0.0903	0.0903	0.0767	0.0392
	NDCG@10	0.0660	0.0625	0.0666	0.0470	0.0162
Instruments	Recall@10	0.0902	0.0870	0.0911	0.0787	0.0314
	MRR	0.0624	0.0588	0.0627	0.0410	0.0143
	NDCG@10	0.1003	0.0789	0.0966	0.0783	0.0536
Arts	Recall@10	0.1462	0.1238	0.1464	0.1230	0.0880
	MRR	0.0900	0.0684	0.0855	0.0689	0.0470
	NDCG@10	0.0892	0.0530	0.0892	0.0538	0.0887
Office	Recall@10	0.1260	0.0831	0.1248	0.0843	0.1275
	MRR	0.0806	0.0473	0.0810	0.0467	0.0797
	NDCG@10	0.0556	0.0831	0.0562	0.0538	0.0195
Games	Recall@10	0.0863	0.0633	0.0865	0.0843	0.0375
	MRR	0.0524	0.0397	0.0533	0.0400	0.0191
	NDCG@10	0.0886	0.0447	0.0878	0.0443	0.0363
Pet	Recall@10	0.1109	0.0734	0.1097	0.0727	0.0463
	MRR	0.0841	0.0575	0.0834	0.0572	0.0352

Finding 3: Finding 1 or Finding 2 are applicable to Arts, Office, Games or Pet.

Thanks for Listening! Q&A?

Group No.: 3

Group Members: CHEN Xiao, LI Tsz On, XU Congying, CHEN Songqiang,

LU Weiqi, XU Mingshi

Project Type: Implementation-Oriented (with some modification)

Work to Implement: Li et al., Text Is All You Need: Learning Language Representations

for Sequential Recommendation, KDD' 23.

(BACKUP – PARAMETER TUNING)

Dataset	Metric	GRU4Rec	SASRec	BERT4Rec	RecGRU	FDSA	S3-Rec	ZESRec	UniSRec	Recformer	I512ptlr1e-5 ftlr1e-4	I512ptlr1e-5 ftlr5e-5	I512ptlr5e-5 ftlr5e-5	II024ptlr5e-5 ftlr5e-5	I512ptlr5e-5 ftlr1e-4
'	NDCG@10	0.0826	0.0797	0.0790	0.0575	0.0716	0.045 I	0.0843	0.0862	0.1027	0.1040	0.1034	0.1013	0.1016	0.1024
Scientific	Recall@10	0.1055	0.1305	0.1061	0.0781	0.0967	0.0804	0.1260	0.1255	0.1448	0.1451	0.1420	0.1414	0.1451	0.1459
	MRR	0.0702	0.0696	0.0759	0.0566	0.0692	0.0392	0.0745	0.0786	0.0951	0.0967	0.0968	0.0942	0.0932	0.0943
'	NDCG@10	0.0633	0.0634	0.0707	0.0468	0.0731	0.0797	0.0694	0.0785	0.0830	0.0805	0.0785	0.0788	0.0765	0.0801
Instruments	Recall@10	0.0969	0.0995	0.0972	0.0617	0.1006	0.1110	0.1078	0.1119	0.1052	0.1034	0.1031	0.1029	0.0995	0.1030
	MRR	0.0707	0.0577	0.0677	0.0460	0.0748	0.0755	0.0633	0.0740	0.0807	0.0780	0.0754	0.0758	0.0741	0.0776
'	NDCG@10	0.1075	0.0848	0.0942	0.0525	0.0994	0.1026	0.0970	0.0894	0.1252	0.1179	0.1129	0.1076	0.1155	0.1147
Arts	Recall@10	0.1317	0.1342	0.1236	0.0742	0.1209	0.1399	0.1349	0.1333	0.1614	0.1539	0.1519	0.1449	0.1532	0.1530
	MRR	0.1041	0.0742	0.0899	0.0488	0.0941	0.1057	0.0870	0.0798	0.1189	0.1113	0.1054	0.1001	0.1084	0.1073
	NDCG@10	0.0761	0.0832	0.0972	0.0500	0.0922	0.0911	0.0865	0.0919	0.1141	0.1114	0.0974	0.1008	0.0986	0.1089
Office	Recall@10	0.1053	0.1196	0.1205	0.0647	0.1285	0.1186	0.1199	0.1262	0.1403	0.1405	0.1354	0.1368	0.1348	0.1394
	MRR	0.0731	0.0751	0.0932	0.0483	0.0972	0.0957	0.0797	0.0848	0.1089	0.1055	0.0884	0.0925	0.0902	0.1025
	NDCG@10	0.0586	0.0547	0.0628	0.0386	0.0600	0.0532	0.0530	0.0580	0.0684	0.0637	0.0635	0.0628	0.0628	0.0639
Games	Recall@10	0.0988	0.0953	0.1029	0.0479	0.0931	0.0879	0.0844	0.0923	0.1039	0.0989	0.0976	0.0971	0.0972	0.0982
	MRR	0.0539	0.0505	0.0585	0.0396	0.0546	0.0500	0.0505	0.0552	0.0650	0.0601	0.0602	0.0594	0.0594	0.0603
	NDCG@10	0.0648	0.0569	0.0602	0.0366	0.0673	0.0742	0.0754	0.0702	0.0972	0.0958	0.0938	0.0940	0.0947	0.0966
Pet	Recall@10	0.0781	0.0881	0.0765	0.0415	0.0949	0.1039	0.1018	0.0933	0.1162	0.1161	0.1160	0.1156	0.1166	0.1169
	MRR	0.0632	0.0507	0.0585	0.0371	0.0650	0.0710	0.0706	0.0650	0.0940	0.0922	0.0896	0.0900	0.0905	0.0929

l	. Mars Irraret I an ath	Datah Cina	Pre-T	raining	Fine-Tuning		
Longformer Size	Max Input Length	Batch Size	GPU Mem	Time/Epoch	GPU Mem	Time/Epoch	
Base	1024	16	33,660 MB	49.5 hours	25,656 MB	1800+ sec	
Base	512	8	18,634 MB	66+ hours	13,640 MB	2100 sec	