5.307 ordered_atleast_nvector

DESCRIPTION	LINKS	GRAPH

Origin

Conjoin atleast_nvector and lex_chain_lesseq.

Constraint

ordered_atleast_nvector(NVEC, VECTORS)

Synonyms

ordered_atleast_nvectors, ordered_atleast_npoint, ordered_atleast_npoints.

Туре

VECTOR : collection(var-dvar)

Arguments

NVEC : dvar

VECTORS : collection(vec - VECTOR)

Restrictions

```
\begin{split} |\text{VECTOR}| &\geq 1 \\ \text{NVEC} &\geq 0 \\ \text{NVEC} &\leq |\text{VECTORS}| \\ \text{required}(\text{VECTORS}, \text{vec}) \\ \text{same\_size}(\text{VECTORS}, \text{vec}) \end{split}
```

Enforces the following two conditions:

- 1. The number of distinct tuples of values taken by the vectors of the collection VECTORS is greater than or equal to NVEC. Two tuples of values $\langle A_1,A_2,\ldots,A_m\rangle$ and $\langle B_1,B_2,\ldots,B_m\rangle$ are distinct if and only if there exist an integer $i\in[1,m]$ such that $A_i\neq B_i$.
- 2. For each pair of consecutive vectors VECTOR_i and $\operatorname{VECTOR}_{i+1}$ of the $\operatorname{VECTORS}$ collection we have that VECTOR_i is lexicographically less than or equal to $\operatorname{VECTOR}_{i+1}$. Given two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \ldots, X_{n-1} \rangle$ and $\langle Y_0, \ldots, Y_{n-1} \rangle$, \vec{X} is lexicographically less than or equal to \vec{Y} if and only if n=0 or $X_0 < Y_0$ or $X_0 = Y_0$ and $\langle X_1, \ldots, X_{n-1} \rangle$ is lexicographically less than or equal to $\langle Y_1, \ldots, Y_{n-1} \rangle$.

Purpose

```
\left(\begin{array}{c} \mathtt{vec} - \langle 5, 6 \rangle\,, \\ \mathtt{vec} - \langle 9, 3 \rangle\,, \\ \mathtt{vec} - \langle 9, 4 \rangle \end{array}\right)
```

Example

The ordered_atleast_nvector constraint holds since:

- 1. The collection VECTORS involves at least 2 distinct tuples of values (i.e., in fact the 3 distinct tuples $\langle 5, 6 \rangle$, $\langle 9, 3 \rangle$ and $\langle 9, 4 \rangle$).
- 2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.

20080921 1923

 ${\bf Typical} \hspace{1.5in} |{\tt VECTOR}| > 1$

 $\mathtt{NVEC} > 0$

$$\begin{split} \text{NVEC} &< |\text{VECTORS}| \\ |\text{VECTORS}| &> 1 \end{split}$$

Symmetry NVEC can be decreased to any value ≥ 0 .

Reformulation The ordered_atleast_nvector constraint can be reformulated as a conjunction of a

atleast_nvector and a lex_chain_lesseq constraints.

See also common keyword: nvector (vector).

comparison swapped: ordered_atmost_nvector.

implied by: ordered_nvector (\geq NVEC replaced by = NVEC).

implies: atleast_nvector, lex_chain_lesseq(NVEC of constraint

ordered_atleast_nvector removed).

used in graph description: lex_less, lex_lesseq.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.

Arc input(s)	VECTORS
Arc generator	$PATH \mapsto collection(vectors1, vectors2)$
Arc arity	2
Arc constraint(s)	${\tt lex_lesseq}({\tt vectors1.vec}, {\tt vectors2.vec})$
Graph property(ies)	NARC = VECTORS - 1
Arc input(s)	VECTORS
Arc input(s) Arc generator	VECTORS PATH→collection(vectors1, vectors2)
•	
Arc generator	$PATH \mapsto \text{collection}(\text{vectors1}, \text{vectors2})$

Graph model

Parts (A) and (B) of Figure 5.645 respectively show the initial and final graph of the second graph constraint associated with the **Example** slot. Since we use the **NCC** graph property in this second graph constraint, we show the different connected components of the final graph. Each strongly connected component corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection. The 3 following tuple of values $\langle 5,6 \rangle$, $\langle 9,3 \rangle$ and $\langle 9,4 \rangle$ are used by the vectors of the VECTORS collection.

Figure 5.645: Initial and final graph of the ordered_atleast_nvector constraint

20080921 1925