

1

SEQUENCE LISTING

<110> KIKUTANI, HITOSHI
KUMANOGOH, ATSUSHI
HORI, AKIRA

<120> SCREENING METHOD USING CD100

<130> 46342/56,721

<140> 10/009,330

<141> 2001-12-03

<150> PCT/JP00/03558

<151> 2000-06-01

<150> JP 157111/1999

<151> 1999-06-03

<160> 10

<170> PatentIn Ver. 2.1

<210> 1

<211> 861

<212> PRT

<213> Mus sp.

<400> 1

Met Arg Met Cys Ala Pro Val Arg Gly Leu Phe Leu Ala Leu Val Val
1 5 10 15

Val Leu Arg Thr Ala Val Ala Phe Ala Pro Val Pro Arg Leu Thr Trp
20 25 30

Glu His Gly Glu Val Gly Leu Val Gln Phe His Lys Pro Gly Ile Phe
35 40 45

Asn Tyr Ser Ala Leu Leu Met Ser Glu Asp Lys Asp Thr Leu Tyr Val
50 55 60

Gly Ala Arg Glu Ala Val Phe Ala Val Asn Ala Leu Asn Ile Ser Glu
65 70 75 80

Lys Gln His Glu Val Tyr Trp Lys Val Ser Glu Asp Lys Lys Ser Lys
85 90 95

Cys Ala Glu Lys Gly Lys Ser Lys Gln Thr Glu Cys Leu Asn Tyr Ile
100 105 110

Arg Val Leu Gln Pro Leu Ser Ser Thr Ser Leu Tyr Val Cys Gly Thr
115 120 125

Asn Ala Phe Gln Pro Thr Cys Asp His Leu Asn Leu Thr Ser Phe Lys
130 135 140

Phe Leu Gly Lys Ser Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro
145 150 155 160

Ala His Ser Tyr Thr Ser Val Met Val Gly Gly Glu Leu Tyr Ser Gly
 165 170 175
 Thr Ser Tyr Asn Phe Leu Gly Ser Glu Pro Ile Ile Ser Arg Asn Ser
 180 185 190
 Ser His Ser Pro Leu Arg Thr Glu Tyr Ala Ile Pro Trp Leu Asn Glu
 195 200 205
 Pro Ser Phe Val Phe Ala Asp Val Ile Gln Lys Ser Pro Asp Gly Pro
 210 215 220
 Glu Gly Glu Asp Asp Lys Val Tyr Phe Phe Thr Glu Val Ser Val
 225 230 235 240
 Glu Tyr Glu Phe Val Phe Lys Leu Met Ile Pro Arg Val Ala Arg Val
 245 250 255
 Cys Lys Gly Asp Gln Gly Gly Leu Arg Thr Leu Gln Lys Lys Trp Thr
 260 265 270
 Ser Phe Leu Lys Ala Arg Leu Ile Cys Ser Lys Pro Asp Ser Gly Leu
 275 280 285
 Val Phe Asn Ile Leu Gln Asp Val Phe Val Leu Arg Ala Pro Gly Leu
 290 295 300
 Lys Glu Pro Val Phe Tyr Ala Val Phe Thr Pro Gln Leu Asn Asn Val
 305 310 315 320
 Gly Leu Ser Ala Val Cys Ala Tyr Thr Leu Ala Thr Val Glu Ala Val
 325 330 335
 Phe Ser Arg Gly Lys Tyr Met Gln Ser Ala Thr Val Glu Gln Ser His
 340 345 350
 Thr Lys Trp Val Arg Tyr Asn Gly Pro Val Pro Thr Pro Arg Pro Gly
 355 360 365
 Ala Cys Ile Asp Ser Glu Ala Arg Ala Ala Asn Tyr Thr Ser Ser Leu
 370 375 380
 Asn Leu Pro Asp Lys Thr Leu Gln Phe Val Lys Asp His Pro Leu Met
 385 390 395 400
 Asp Asp Ser Val Thr Pro Ile Asp Asn Arg Pro Lys Leu Ile Lys Lys
 405 410 415
 Asp Val Asn Tyr Thr Gln Ile Val Val Asp Arg Thr Gln Ala Leu Asp
 420 425 430
 Gly Thr Phe Tyr Asp Val Met Phe Ile Ser Thr Asp Arg Gly Ala Leu
 435 440 445
 His Lys Ala Val Ile Leu Thr Lys Glu Val His Val Ile Glu Glu Thr
 450 455 460

Gln Leu Phe Arg Asp Phe Glu Pro Val Leu Thr Leu Leu Leu Ser Ser
 465 470 475 480

Lys Lys Gly Arg Lys Phe Val Tyr Ala Gly Ser Asn Ser Gly Val Val
 485 490 495

Gln Ala Pro Leu Ala Phe Cys Glu Lys His Gly Ser Cys Glu Asp Cys
 500 505 510

Val Leu Ala Arg Asp Pro Tyr Cys Ala Trp Ser Pro Ala Ile Lys Ala
 515 520 525

Cys Val Thr Leu His Gln Glu Glu Ala Ser Ser Arg Gly Trp Ile Gln
 530 535 540

Asp Met Ser Gly Asp Thr Ser Ser Cys Leu Asp Lys Ser Lys Glu Ser
 545 550 555 560

Phe Asn Gln His Phe Phe Lys His Gly Gly Thr Ala Glu Leu Lys Cys
 565 570 575

Phe Gln Lys Ser Asn Leu Ala Arg Val Val Trp Lys Phe Gln Asn Gly
 580 585 590

Glu Leu Lys Ala Ala Ser Pro Lys Tyr Gly Phe Val Gly Arg Lys His
 595 600 605

Leu Leu Ile Phe Asn Leu Ser Asp Gly Asp Ser Gly Val Tyr Gln Cys
 610 615 620

Leu Ser Glu Glu Arg Val Arg Asn Lys Thr Val Ser Gln Leu Leu Ala
 625 630 635 640

Lys His Val Leu Glu Val Lys Met Val Pro Arg Thr Pro Pro Ser Pro
 645 650 655

Thr Ser Glu Asp Val Gln Thr Glu Gly Ser Lys Ile Thr Ser Lys Met
 660 665 670

Pro Val Gly Ser Thr Gln Gly Ser Ser Pro Pro Thr Pro Ala Leu Trp
 675 680 685

Ala Thr Ser Pro Arg Ala Ala Thr Leu Pro Pro Lys Ser Ser Ser Gly
 690 695 700

Thr Ser Cys Glu Pro Lys Met Val Ile Asn Thr Val Pro Gln Leu His
 705 710 715 720

Ser Glu Lys Thr Val Tyr Leu Lys Ser Ser Asp Asn Arg Leu Leu Met
 725 730 735

Ser Leu Leu Leu Phe Ile Phe Val Leu Phe Leu Cys Leu Phe Ser Tyr
 740 745 750

Asn Cys Tyr Lys Gly Tyr Leu Pro Gly Gln Cys Leu Lys Phe Arg Ser
 755 760 765

Ala Leu Leu Leu Gly Lys Lys Thr Pro Lys Ser Asp Phe Ser Asp Leu
 770 775 780

Glu Gln Ser Val Lys Glu Thr Leu Val Glu Pro Gly Ser Phe Ser Gln
 785 790 795 800

Gln Asn Gly Asp His Pro Lys Pro Ala Leu Asp Thr Gly Tyr Glu Thr
 805 810 815

Glu Gln Asp Thr Ile Thr Ser Lys Val Pro Thr Asp Arg Glu Asp Ser
 820 825 830

Gln Arg Ile Asp Glu Leu Ser Ala Arg Asp Lys Pro Phe Asp Val Lys
 835 840 845

Cys Glu Leu Lys Phe Ala Asp Ser Asp Ala Asp Gly Asp
 850 855 860

<210> 2

<211> 2769

<212> DNA

<213> Mus sp.

<400> 2

gaattcggca cgaggccatc catgtgtgcc cgttgctgaa ggcctcggtg gcccctgccc 60
 atgaggatgt gtgcggccgt tagggggctg ttcttgccc tgggtggtagt gttgagaacc 120
 gcggtgtggcat ttgcacctgt gcctcggtc acctggaaac atggagaggt aggtctggtg 180
 cagtttcaca agccaggcat cttaactac tcggccctgc tgatgagtgaa ggacaaagac 240
 actctgtatg taggcgccccg ggaagcagtc tttgcagtga atgcgctgaa catctctgag 300
 aagcaacatg aggtatattg gaaggctctt gaagacaaaa aatccaagtg tgcagagaag 360
 gggaaatcaa agcagacggg atgcctaaac tacattcgg tactacagcc actaagcagc 420
 acttccctct atgtgtgtgg gaccaatgcg ttccagccca cctgtgacca cctgaacttg 480
 acatccttca agtttctggg gaaaagtgaa gatggcaaag gaagatgccc cttcgacccc 540
 gcccacagct acacatcgt catggttggg ggcgagctct actctggac gtcctataat 600
 ttcttgggca gtgaacccat catctctcga aactttccc acagtccctt gaggacggag 660
 tatgccatcc cgtggctgaa cgagccttagc ttctgtttt ctgacgtgat ccagaaaagc 720
 ccagatggtc cggagggtga agatgacaag gtctacttct tttttacgga ggtatccgtg 780
 gactacgaat tgcgttcaa gttgatgatc ccgcgagttg ccagggtgtg caagggcgcac 840
 caggggccgc tgcggacttt gcaaaaaaag tggacccctt tcctaaaggc caggctgatc 900
 tgcgttccaa cagacagtgg cctggcttcc aacatacttc aggatgtt tgcgtgagg 960
 gccccgggccc tcaaggagcc tgggttctat gcggttccat ccccacagct gaacaatgtg 1020
 ggtctgtcag cgggtgtgcgc ctacacactg gccacgggtgg aggcaatgtt ctccctgtgg 1080
 aagtacatgc agagtccac agtggagcag ttcacacca atgggggtcg ctacaatggc 1140
 ccagtggccca ctccccgacc tggagcgtgt atcgacagtg aggccccggc agccaactac 1200
 accagctcct tgaatctccc agacaaaaaca ctgcagttt taaaagacca ccctttgatg 1260
 gatgactcag tgaccccgat agacaacaga cccaaagctga tcaaaaaaga tggataactac 1320
 acccagatag tggtagacag gacccaggcc ctggatggga ctttctacga cgtcatgtt 1380
 atcagcacag accggggcgc tctgcataaa gcagtcattc tcacaaaaaga ggtgcattgc 1440
 atcgaggaga cccaaactt ccgggactt gaaccggtcc taactctgt gctatgtca 1500
 aagaagggga ggaagttgt ctatgcaggc tccaaactctg gagtggtcca agcgccccgt 1560
 gcattctgcg aaaagcacgg tagctgtgaa gactgtgtgt tagcacggga cccctactgt 1620
 gcctggagcc cagccatcaa ggcctgtttt accctgcacc aggaagaggc ctccagcagg 1680
 ggctggatcc aggacatgag cggtgacaca tcctcatgcc tggataagag taaagaaagt 1740
 ttcaaccaggc atttttcaa gcacggccgc acagcggaaac tcaaatgtt caaaaagtcc 1800
 aacctagccc gggtgttatg gaagttccag aatggcgagt tgaaggccgc aagtcccaag 1860
 tacggcttg tggcaggaa gcacctgctc atcttcaacc tgcggacgg agacagcggc 1920
 gtgtaccagt gcgtgtcaga ggaaagggtg aggaataaaa cggtctccca gctgctggcc 1980

aagcacgttc tggaagtcaa gatggtacct cggacccccc cctcacctac ctcagaggat 2040
 gttcagacag aaggttagtaa gatcacatcc aaaatgcccgg ttggatctac ccaggggtcc 2100
 tctcccccta ccccggtctt gtggcaacc tccccagag ccgccacccct acctcccaag 2160
 tcctcctccg gcacatcctg tgaaccaaag atggcatca acacggtccc ccagctccac 2220
 tcagagaaga cggtgtatct caagtccagt gacaaccgcc tgctcatgtc tctcctccct 2280
 ttcatctttg tcctcttctt ctgcctctt tcctacaact gctacaaggg ctacctgcc 2340
 ggacagtgt taaaattccg cttagccctg ctgcttgaa agaaaacacc caagttagac 2400
 ttctctgacc tggagcagag tgtgaaggag acactggtcg agcctggag cttctccag 2460
 cagaacggcg accaccccaa gccagccctg gatacgggct atgaaacgga gcaggacaac 2520
 atcaccagca aagtccacac ggatcgtgag gactcgcaac ggatcgtatga actctctgcc 2580
 cgggacaaac cgttttagt caagtgtgaa ctgaagttt cagattcggg tgctgacggg 2640
 gactgaggcc agcgtgtccc agcccatgcc cctctgtctt cgtggagagt gttgtgtga 2700
 gcccatttag tagccgagtc ttgtcactct gtgcagcct cagtcctgtg tccccctttt 2760
 ctctggttt 2769

<210> 3
 <211> 862
 <212> PRT
 <213> Homo sapiens

<400> 3
 Met Arg Met Cys Thr Pro Ile Arg Gly Leu Leu Met Ala Leu Ala Val
 1 5 10 15

Met Phe Gly Thr Ala Met Ala Phe Ala Pro Ile Pro Arg Ile Thr Trp
 20 25 30

Glu His Arg Glu Val His Leu Val Gln Phe His Glu Pro Asp Ile Tyr
 35 40 45

Asn Tyr Ser Ala Leu Leu Leu Ser Glu Asp Lys Asp Thr Leu Tyr Ile
 50 55 60

Gly Ala Arg Glu Ala Val Phe Ala Val Asn Ala Leu Asn Ile Ser Glu
 65 70 75 80

Lys Gln His Glu Val Tyr Trp Lys Val Ser Glu Asp Lys Lys Ala Lys
 85 90 95

Cys Ala Glu Lys Gly Lys Ser Lys Gln Thr Glu Cys Leu Asn Tyr Ile
 100 105 110

Arg Val Leu Gln Pro Leu Ser Ala Thr Ser Leu Tyr Val Cys Gly Thr
 115 120 125

Asn Ala Phe Gln Pro Ala Cys Asp His Leu Asn Leu Thr Ser Phe Lys
 130 135 140

Phe Leu Gly Lys Asn Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro
 145 150 155 160

Ala His Ser Tyr Thr Ser Val Met Val Asp Gly Glu Leu Tyr Ser Gly
 165 170 175

Thr Ser Tyr Asn Phe Leu Gly Ser Glu Pro Ile Ile Ser Arg Asn Ser
 180 185 190

Ser His Ser Pro Leu Arg Thr Glu Tyr Ala Ile Pro Trp Leu Asn Glu
 195 200 205

Pro Ser Phe Val Phe Ala Asp Val Ile Arg Lys Ser Pro Asp Ser Pro
 210 215 220

Asp Gly Glu Asp Asp Arg Val Tyr Phe Phe Thr Glu Val Ser Val
 225 230 235 240

Glu Tyr Glu Phe Val Phe Arg Val Leu Ile Pro Arg Ile Ala Arg Val
 245 250 255

Cys Lys Gly Asp Gln Gly Gly Leu Arg Thr Leu Gln Lys Lys Trp Thr
 260 265 270

Ser Phe Leu Lys Ala Arg Leu Ile Cys Ser Arg Pro Asp Ser Gly Leu
 275 280 285

Val Phe Asn Val Leu Arg Asp Val Phe Val Leu Arg Ser Pro Gly Leu
 290 295 300

Lys Val Pro Val Phe Tyr Ala Leu Phe Thr Pro Gln Leu Asn Asn Val
 305 310 315 320

Gly Leu Ser Ala Val Cys Ala Tyr Asn Leu Ser Thr Ala Glu Glu Val
 325 330 335

Phe Ser His Gly Lys Tyr Met Gln Ser Thr Thr Val Glu Gln Ser His
 340 345 350

Thr Lys Trp Val Arg Tyr Asn Gly Pro Val Pro Lys Pro Arg Pro Gly
 355 360 365

Ala Cys Ile Asp Ser Glu Ala Arg Ala Asn Tyr Thr Ser Ser Leu
 370 375 380

Asn Leu Pro Asp Lys Thr Leu Gln Phe Val Lys Asp His Pro Leu Met
 385 390 395 400

Asp Asp Ser Val Thr Pro Ile Asp Asn Arg Pro Arg Leu Ile Lys Lys
 405 410 415

Asp Val Asn Tyr Thr Gln Ile Val Val Asp Arg Thr Gln Ala Leu Asp
 420 425 430

Gly Thr Val Tyr Asp Val Met Phe Val Ser Thr Asp Arg Gly Ala Leu
 435 440 445

His Lys Ala Ile Ser Leu Glu His Ala Val His Ile Ile Glu Glu Thr
 450 455 460

Gln Leu Phe Gln Asp Phe Glu Pro Val Gln Thr Leu Leu Leu Ser Ser
 465 470 475 480

Lys Lys Gly Asn Arg Phe Val Tyr Ala Gly Ser Asn Ser Gly Val Val
 485 490 495

Gln Ala Pro Leu Ala Phe Cys Gly Lys His Gly Thr Cys Glu Asp Cys
 500 505 510

Val Leu Ala Arg Asp Pro Tyr Cys Ala Trp Ser Pro Pro Thr Ala Thr
 515 520 525

Cys Val Ala Leu His Gln Thr Glu Ser Pro Ser Arg Gly Leu Ile Gln
 530 535 540

Glu Met Ser Gly Asp Ala Ser Val Cys Pro Asp Lys Ser Lys Gly Ser
 545 550 555 560

Tyr Arg Gln His Phe Phe Lys His Gly Gly Thr Ala Glu Leu Lys Cys
 565 570 575

Ser Gln Lys Ser Asn Leu Ala Arg Val Phe Trp Lys Phe Gln Asn Gly
 580 585 590

Val Leu Lys Ala Glu Ser Pro Lys Tyr Gly Leu Met Gly Arg Lys Asn
 595 600 605

Leu Leu Ile Phe Asn Leu Ser Glu Gly Asp Ser Gly Val Tyr Gln Cys
 610 615 620

Leu Ser Glu Glu Arg Val Lys Asn Lys Thr Val Phe Gln Val Val Ala
 625 630 635 640

Lys His Val Leu Glu Val Lys Val Val Pro Lys Pro Val Val Ala Pro
 645 650 655

Thr Leu Ser Val Val Gln Thr Glu Gly Ser Arg Ile Ala Thr Lys Val
 660 665 670

Leu Val Ala Ser Thr Gln Gly Ser Ser Pro Pro Thr Pro Ala Val Gln
 675 680 685

Ala Thr Ser Ser Gly Ala Ile Thr Leu Pro Pro Lys Pro Ala Pro Thr
 690 695 700

Gly Thr Ser Cys Glu Pro Lys Ile Val Ile Asn Thr Val Pro Gin Leu
 705 710 715 720

His Ser Glu Lys Thr Met Tyr Leu Lys Ser Ser Asp Asn Arg Leu Leu
 725 730 735

Met Ser Leu Phe Leu Phe Phe Val Leu Phe Leu Cys Leu Phe Phe
 740 745 750

Tyr Asn Cys Tyr Lys Gly Tyr Leu Pro Arg Gln Cys Leu Lys Phe Arg
 755 760 765

Ser Ala Leu Leu Ile Gly Lys Lys Lys Pro Lys Ser Asp Phe Cys Asp
 770 775 780

Arg Glu Gln Ser Leu Lys Glu Thr Leu Val Glu Pro Gly Ser Phe Ser
 785 790 795 800

Gln Gln Asn Gly Glu His Pro Lys Pro Ala Leu Asp Thr Gly Tyr Glu
805 810 815

Thr Glu Gln Asp Thr Ile Thr Ser Lys Val Pro Thr Asp Arg Glu Asp
820 825 830

Ser Gln Arg Ile Asp Asp Leu Ser Ala Arg Asp Lys Pro Phe Asp Val
835 840 845

Lys Cys Glu Leu Lys Phe Ala Asp Ser Asp Ala Asp Gly Asp
850 855 860

<210> 4
<211> 4157
<212> DNA
<213> *Homo sapiens*

<210> 5
<211> 361
<212> PRT
<213> Mus sp.

<400> 5
Met Ala Asp Ala Ile Thr Tyr Ala Asp Leu Arg Phe Val Lys Val Pro
1 5 10 15

Leu Lys Asn Ser Ala Ser Asn His Leu Gly Gln Asp Cys Glu Ala Tyr
20 25 30

Glu Asp Gly Glu Leu Thr Tyr Glu Asn Val Gln Val Ser Pro Val Pro
35 40 45

Gly Gly Pro Pro Gly Leu Ala Ser Pro Ala Leu Ala Asp Lys Ala Gly
50 55 60

Val Gly Ser Glu Gln Pro Thr Ala Thr Trp Ser Ser Val Asn Ser Ser
65 70 75 80

Ala Leu Arg Gln Ile Pro Arg Cys Pro Thr Val Cys Leu Gln Tyr Phe
85 90 95

Leu Leu Gly Leu Leu Val Ser Cys Leu Met Leu Gly Val Ala Val Ile
 100 105 110
 Cys Leu Gly Val Arg Tyr Leu Gln Val Ser Arg Gln Phe Gln Glu Gly
 115 120 125
 Thr Arg Ile Trp Glu Ala Thr Asn Ser Ser Leu Gln Gln Gln Leu Arg
 130 135 140
 Glu Lys Ile Ser Gln Leu Gly Gln Lys Glu Val Glu Leu Gln Lys Ala
 145 150 155 160
 Arg Lys Glu Leu Ile Ser Ser Gln Asp Thr Leu Gln Glu Lys Gln Arg
 165 170 175
 Thr His Glu Asp Ala Glu Gln Gln Leu Gln Ala Cys Gln Ala Glu Arg
 180 185 190
 Ala Lys Thr Lys Glu Asn Leu Lys Thr Glu Glu Glu Arg Arg Arg Asp
 195 200 205
 Leu Asp Gln Arg Leu Thr Ser Thr Arg Glu Thr Leu Arg Arg Phe Phe
 210 215 220
 Ser Asp Ser Ser Asp Thr Cys Cys Pro Cys Gly Trp Ile Pro Tyr Gln
 225 230 235 240
 Glu Arg Cys Phe Tyr Ile Ser His Thr Leu Gly Ser Leu Glu Glu Ser
 245 250 255
 Gln Lys Tyr Cys Thr Ser Leu Ser Ser Lys Leu Ala Ala Phe Asp Glu
 260 265 270
 Pro Ser Lys Tyr Tyr Tyr Glu Tyr Leu Ser Asp Ala Pro Gln Val Ser
 275 280 285
 Leu Pro Ser Gly Leu Glu Glu Leu Leu Asp Arg Ser Lys Ser Tyr Trp
 290 295 300
 Ile Gln Met Ser Lys Lys Trp Arg Gln Asp Ser Asp Ser Gln Ser Arg
 305 310 315 320
 His Cys Val Arg Ile Lys Thr Tyr Tyr Gln Lys Trp Glu Arg Thr Ile
 325 330 335
 Ser Lys Cys Ala Glu Leu His Pro Cys Ile Cys Glu Ser Glu Ala Phe
 340 345 350
 Arg Phe Pro Asp Gly Ile Asn Leu Asn
 355 360

<210> 6
 <211> 1337
 <212> DNA
 <213> Mus sp.

<400> 6

tggaaagactg tgaaggcagag ggcgtccagg ctatggctga cgcttatc acg tatgcagacc 60
 tgcgccttgc gaaagtgc ccc ctgaagaaca ggcgcattca ccatcttagga caggactgtg 120
 aggccatctga agatggggaa ctcacactacg agaatgtgca agtgcctcca gtcccaggag 180
 ggccaccagg cttggcttcc cctgcactag cggacaaagc aggggtcggg tcagagcaac 240
 caactgcac ctggagctct gtgaactcg tgcctctca gcaattccc cgctgtcc 300
 cagtctgctt gcaataacttc ttgcttgcc ttctctgtc ctgtctgatg tttaggggtgg 360
 ctgtcatctg cctgggagtt cgctatctgc aggtgtctcg gcagttccag gaggggacca 420
 gatattggga agccaccaat agcagcctgc agcagcagct cagggagaag ataagtca 480
 tggggcagaa ggaggtggag cttcagaagg ctcgaaaaga gctgatctcg agccaggaca 540
 cattacagga gaagcagagg actcacgagg acgctgagca gcaactacaa gcctgccagg 600
 ctgagagagc gaagaccaag gagaacactga aaactgagga ggagcggagg agggacctgg 660
 accagaggtt gacaagc acg cgggagacac tgaggcgtt cttctctgtat tcacatcagaca 720
 cctgctgtcc atgcggatgg attccatatac aggaaagggtg ctttacatc tcacatacc 780
 tcggaaagtct ggaggagagc caaaaataact gcacatctct gtccctccaaa ctggcagcat 840
 tcgatgaacc ttctaagtat tactatgaag ttctctgtcc cagcggctta gagggagttgc 900
 tagatcggtt gaagtcataat tggatacaga tgagcaagaa gtggaggcag gactctgact 960
 ctc当地agccg acattgtgtc aggataaaaa catattacca gaagtgggaa agaacaattt 1020
 ccaagtgtgc agagcttcac ccctgcattt gtgagtcgga ggcttcagg tttcctgtat 1080
 gatcaatctt gaaactgaaac ggacacttga acaagacattt gtgacactaca tccttaacct 1140
 acggcctgcc aatttttaag actgctatcc ctccagcact ccctcactct cgggcatgcc 1200
 cagctaaggg atgacctgct gcttgcgtga aagctgctcc agaaactgga cttctttgg 1260
 gaagagtaaaa gaagcctcca gaaaagacattt gacccctt aagaacttcc caaactagag 1320
 atgggtcagg ggaggc 1337

<210> 7

<211> 359

<212> PRT

<213> Homo sapiens

<400> 7

Met	Ala	Glu	Ala	Ile	Thr	Tyr	Ala	Asp	Leu	Arg	Phe	Val	Lys	Ala	Pro
1				5					10				15		

Leu	Lys	Lys	Ser	Ile	Ser	Ser	Arg	Leu	Gly	Gln	Asp	Pro	Gly	Ala	Asp
				20				25				30			

Asp	Asp	Gly	Glu	Ile	Thr	Tyr	Glu	Asn	Val	Gln	Val	Pro	Ala	Val	Leu
				35			40				45				

Gly	Val	Pro	Ser	Ser	Leu	Ala	Ser	Ser	Val	Leu	Gly	Asp	Lys	Ala	Ala
				50			55			60					

Val	Lys	Ser	Glu	Gln	Pro	Thr	Ala	Ser	Trp	Arg	Ala	Val	Thr	Ser	Pro
	65				70				75			80			

Ala	Val	Gly	Arg	Ile	Leu	Pro	Cys	Arg	Thr	Thr	Cys	Leu	Arg	Tyr	Leu
				85				90			95				

Leu	Leu	Gly	Leu	Leu	Leu	Thr	Cys	Leu	Leu	Leu	Gly	Val	Thr	Ala	Ile
				100				105			110				

Cys	Leu	Gly	Val	Arg	Tyr	Leu	Gln	Val	Ser	Gln	Gln	Leu	Gln	Gln	Thr
				115			120			125					

Asn	Arg	Val	Leu	Glu	Val	Thr	Asn	Ser	Ser	Leu	Arg	Gln	Gln	Leu	Arg
				130			135			140					

Leu Lys Ile Thr Gln Leu Gly Gln Ser Ala Glu Asp Leu Gln Gly Ser
 145 150 155 160

Arg Arg Glu Leu Ala Gln Ser Gln Glu Ala Leu Gln Val Glu Gln Arg
 165 170 175

Ala His Gln Ala Ala Glu Gly Gln Leu Gln Ala Cys Gln Ala Asp Arg
 180 185 190

Gln Lys Thr Lys Glu Thr Leu Gln Ser Glu Glu Gln Gln Arg Arg Ala
 195 200 205

Leu Glu Gln Lys Leu Ser Asn Met Glu Asn Arg Leu Lys Pro Phe Phe
 210 215 220

Thr Cys Gly Ser Ala Asp Thr Cys Cys Pro Ser Gly Trp Ile Met His
 225 230 235 240

Gln Lys Ser Cys Phe Tyr Ile Ser Leu Thr Ser Lys Asn Trp Gln Glu
 245 250 255

Ser Gln Lys Gln Cys Glu Thr Leu Ser Ser Lys Leu Ala Thr Phe Ser
 260 265 270

Glu Ile Tyr Pro Gln Ser His Ser Tyr Tyr Phe Leu Asn Ser Leu Leu
 275 280 285

Pro Asn Gly Gly Ser Gly Asn Ser Tyr Trp Thr Gly Leu Ser Ser Asn
 290 295 300

Lys Asp Trp Lys Leu Thr Asp Asp Thr Gln Arg Thr Arg Thr Tyr Ala
 305 310 315 320

Gln Ser Ser Lys Cys Asn Lys Val His Lys Thr Trp Ser Trp Trp Thr
 325 330 335

Leu Glu Ser Glu Ser Cys Arg Ser Ser Leu Pro Tyr Ile Cys Glu Met
 340 345 350

Thr Ala Phe Arg Phe Pro Asp
 355

<210> 8
 <211> 1531
 <212> DNA
 <213> Homo sapiens

<400> 8
 agtcacagag ggaacacaga gcctagttgt aaacggacag agacgagagg ggcaagggag 60
 gacagtggat gacagggaaag acgagtgaaa gcagagctgc tcaggaccat ggctgaggcc 120
 atcacctatg cagatctgag gtttgtgaag gctccccctga agaagagacat ctccagccgg 180
 ttaggacagg acccaggggc tgatgatgat gggaaaatca cctacgagaa tgttcaagtg 240
 cccgcagtcc taggggtgcc ctcaagcttg gcttcttctg tactagggaa caaagcagcg 300
 gtcaagtccg agcagccaac tgcgtcctgg agagccgtga cgtcaccacg tgcggggcg 360
 attctccctt gcccacaac ctgcctgcga tacctcctgc tcggcctgct cctcacctgc 420
 ctgctgttag gagtgaccgc catctgcctg ggagtgcgcgt atctgcagggt gtctcagcag 480

ctccagcaga cgaacagggt tctggaagtc actaacagca gcctgaggca gcagctccgc 540
 ctcaagataa cgcgactggg acagagtgc gaggatctgc aggggtccag gagagagctg 600
 gcgcgactc aggaagact acaggtaaa cagagggttc atcaggccgc cgaaggccag 660
 ctacaggcct gccaggcaga cagacagaag acgaaggaga ctttgcggaa tgaggagcaa 720
 cagaggaggg ctttgagca gaagctgac aacatggaga acagactgaa gccccttcc 780
 acatgcggct cagcagacac ctgctgtccg tcggatggtaatgcata gaaaagctgc 840
 ttttacatct cacttacttc aaaaaattgg caggagagcc aaaaacaatg tgaaactctg 900
 tcttccaagg tggccacatt cagtggaaatt tatccacaat cacacttta ctacttctt 960
 aattcactgt tgccaaatgg tggttcaggg aattcatatt ggactggct cagctctaacc 1020
 aaggattgga agttgactga tgatacacaa cgcacttagga cttatgcata aagctcaaaa 1080
 tgtaacaagg tacataaaac ttggtcatgg tggacactgg agtcagagtc atgtagaagt 1140
 tctcttcctt acatctgtga gatgacagct ttcagggttc cagatttagga cagtccttgc 1200
 cactgagttg acactcatgc caacaagaac ctgtggccct ctttcttaac ctgaggccctg 1260
 gggttccctca gaccatctcc ttcattctgg gcagtggccag ccacccggctg acccacacct 1320
 gacacttcca gccagtcgtc tgcctgcctt ctcttcgtaa aactggactg ttctggaa 1380
 aagggtgaaag ccacctcttag aaggggacttt ggctccccca aagaacttc ccatggtaga 1440
 atgggggtggg ggaggagggc gcacgggctg agcggatagg ggcggcccg agccagccag 1500
 gcagtttat tgaatcttt ttaataatt g 1531

<210> 9
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 9
 gctgtcgact gtgtggccgt tgctgaaggc ct

32

<210> 10
 <211> 53
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 10
 gacggatccct acttacttttgc ttgtggataca ccgtttctc tga

53