Fisica II

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1		oduzione Campo e forza	2 2	
2	Forza elettrostatica			
	2.1	Materia	3	
	2.2	Elettrificazione	3	
	2.3	Elettrostatica nel vuoto	4	
		2.3.1 Interazione di Coulomb	4	
		2.3.2 Sistema di più cariche	5	

1 Introduzione

L'oggetto dello studio prinicpale di questo costo è la forza elettromagnetica \vec{F}_{em} , più precisamente la **teoria di campo**.

Definizione utile 1.1. La forza è l'interazione tra due oggetti.

In natura esistono solo 4 forze che governano tutto ciò che è misurabile in natura:

- Forza di gravità: osservata quando negli oggetti interagenti c'è massa
- Forza elettromagnetica
- Forza elettronucleare forte
- Forza elettronucleare debole

Le ultime due riguardano la materia microscopica. Le prime due invece riguardano la materia macroscopica e sono forze **a lungo raggio**, cioè ha effetto anche a distanza.

Lo studio della forza elettromagnetica si può studiare con attraverso degli strumenti che approssimano il comportamento delle entità a livello macroscopico senza preoccuparci della natura microscopica.

1.1 Campo e forza

In fisica 1 si sono studiati i concetti delle forze, cioè ciò che agisce su un corpo con una massa, ad esempio la caduta di un grave che è attratto dalla Terra per la forza di gravità. La visione dei campi è una visione più generale e rappresenta la proprietà di un ambiente di interagire con un corpo, ad esempio un **campo** di gravità.

2 Forza elettrostatica

Facendo esperimenti che non sono analizzabili con i concetti della fisica 1 si arriva a capire che c'è una nuova interazione, la **forza elettrostatica** che ha 2 forme:

- Forza attrattiva
- Forza repulsiva

Gli oggetti sono divisi in due classi:

- Carica positiva
- Carica negativa

Gli oggetti della stessa classe si respingono, mentre quelli di classe diversa si respingono.

Definizione 2.1 (Carica elettrica). È chiamata **carica elettrica** q la proprietà che ha il corpo di esprimere questa forza. Le proprietà di questa carica elettrica sono **indipendenti** dal meccanismo che l'ha generata, cioè può essere generata

in modo diverso, ma ha sempre le stesse proprietà. Questo implica che la carica è **preesistente** in natura.

2.1 Materia

L'atomo è formato da un nucleo centrale formato da protoni, carichi positivamente, e da neutroni, senza carica. Intorno al nucleo si ha una regione in cui si ha la probabilità di trovare un'altra particella, carica negativa, chiamata elettrone. Il nucleo ha dimensione $\approx 10^{-15} m$ e l'atomo ha dimensione $\approx 10^{-10} m$. La carica totale dell'atomo è nulla, quindi è **neutro** e quindi la carica del nucleo è uguale alla carica degli elettroni, per la precisione il numero di protoni è uguale al numero di elettroni. Z è il numero atomico, cioè il numero di protoni.

Elettrone e protone hanno, in modulo, la stessa carica:

$$|q_{e^-}| = q_{p^+}$$

L'elettrone è una **particella elementare**, indivisibile e la sua carica è detta **carica elementare**, cioè la più piccola unità di carica osservabile e vale:

$$e^- = 1.6 \times 10^{-19} \text{C}$$

La carica elettrica in natura è quindi quantizzata, ovvero deve essere un multiplo della carica dell'elettrone. Inoltre la carica non si può generare, si può solo trasferire.

Definizione 2.2 (Legge di conservazione della carica). In un sistema isolato, cioè non interagisce con altri sistemi, la carica totale Q si conserva.

I componenti della materia hanno due comportamenti:

- Conduttore: ad esempio il metallo, in cui gli elettroni sono liberi di muoversi
- **Dielettrico** (isolante): ad esempio il vetro, in cui le cariche non sono libere di muoversi, quindi vincolate, cioè non si riesce a strappare gli elettroni dall'atomo. Se si avvicina una carica positiva al dielettrico si avrà una deformazione delle cariche, ma non si ha una separazione di carica:

2.2 Elettrificazione

L'elettrificazione è il trasferimento di carica da un corpo all'altro. Ci sono 3 meccanismi di elettrificazione:

 Strofinio Si prende una bacchetta di vetro e un panno di lana e si strofina la bacchetta. La bacchetta non è carica e meccanicamente con lo strofinia si strappa meccanicamente dagli atomi gli elettroni. La bacchetta diventa carica positivamente e il panno negativamente. Si avranno quindi le cariche q⁺ della bacchetta e q⁻ del panno. Per la legge di conservazione della carica si ha:

$$|q^-| = q^+$$

• Induzione elettrostatica Con la precedente bacchetta caricata positivamente si avvicina un oggetto metallico e si nota che le cariche negative -Q del metallo si avvicinano il più possibile alla bacchetta respingendo le cariche positive +Q creando una separazione di carica per induzione. La carica totale rimane nulla perchè non sono migrati elettroni.

$$|-Q| = +Q$$

Se si allontana l'oggetto metallica si avrà una separazione meno potente.

L'**elettroscopio** si usa per misurare la carica elettrica. È un oggetto metallico collegato a delle lamelle metalliche chiamate foglie:

Si misura la carica avvicinando la bacchetta e si osserva la forza repulsiva tra le foglie: Se si allontana la bacchetta la separazione delle foglie diminuisce.

Contatto Se prendiamo un oggetto metallico caricato positivamente e si mette a contatto con un filo conduttore si elettrifica il filo: Se si attacca il filo a terra si scarica l'oggetto perchè le cariche migrano verso la terra, cioè un conduttore immensamente più grande e quindi la carica si distribuisce su tutta la superficie della terra e sull'oggetto metallico rimane una carica approssimativamente nulla.

2.3 Elettrostatica nel vuoto

Fatti sperimentali:

Si crea un esperimento che permette di osservare il fenomeno che si vuole modellare. Si prende una bilancia di torsione formata da un filo torcente a cui è appesa un'asta con una carica q_1^+ su un'estremità. Se si avvicina una carica dello stesso segno q_2^- si osserva che viene applicata una forza repulsiva F che fa torcere il filo con un momento torcente

$$au_{\mathsf{filo}} = (k\theta) = au_{\mathsf{el}} = \vec{d} imes \vec{\mathsf{F}}$$

2.3.1 Interazione di Coulomb

Dai fatti sperimentali si nota che il modulo della forza è proporzionale al prodotto delle cariche e inversamente proporzionale al quadrato della distanza tra le cariche:

$$|F_{el}| = k \frac{q_1 q_2}{r^2}$$

Si osserva anche che la forza elettrica F_{el} è una forza **centrale**, cioè la forza è diretta lungo la retta che congiunge le due cariche.

k è la costante di Coulomb e vale:

$$k = \frac{1}{4\pi\epsilon_0}$$

dove ε_0 è la costante dielettrica del vuoto. L'unità di misura della carica è il Coulomb:

$$[q] = C$$

Consideriamo la terna cartesiana con due cariche positive q_1^+ e q_2^+ descritte dai raggi vettori \vec{r}_1 e \vec{r}_2 . Sulla carica q_2^+ viene applicata una forza \vec{F}_{12} Notazione:

- Chiamo il vettore che va da \vec{r}_1 a \vec{r}_2 \vec{r}_{12} .
- Il versore è indicato con r̂ e rappresenta il vettore unitario:

$$\hat{r} = \frac{\vec{r}}{|\vec{r}|}$$

Calcoliamo la forza \vec{F}_{12} che agisce su q_2^+ da q_1^+ :

$$\vec{F}_{12} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{(\vec{r}_2 - \vec{r}_1)^2} \frac{(\vec{r}_2 - \vec{r}_1)}{|\vec{r}_2 - \vec{r}_1|} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r_{12}^2} \cdot \hat{r}_{12} \quad [N]$$

2.3.2 Sistema di più cariche

Con più cariche si osserva che vale il principio di sovrapposizione, cioè due fenomeni si sommano in modo lineare; e vale la terza legge di Newton, cioè l'azione-reazione $\left(\vec{F}_{12}=-\vec{F}_{21}\right)$.

Consideríamo un sistema discreto con n cariche q_1, q_2, \ldots, q_n e osserviamo la carica q_0 . Ognuna di queste cariche sarà descritta dal suo raggio vettore. La forza che la carica q_i agisce su q_0 è:

$$\vec{F}_{i0} = \frac{q_i q_0}{4\pi\epsilon_0} \cdot \frac{\hat{r}_{i0}}{r_{i0}^2}$$

dove $\vec{r}_{i0} = \vec{r}_0 - \vec{r}_i$.

Applichiamo questa formula osservando una ad una tutte le cariche come fatto per q_0 per calcolare la forza totale applicata sulla carica q_0 :

$$\vec{F}_{tot} = \sum_{i=1}^{n} \frac{q_i q_0}{4\pi\epsilon_0} \cdot \frac{\hat{r}_{i0}}{r_{i0}^2} \quad [N]$$

Questa forza ha direzione uguale alla somma delle forze.