CONTINUIDAD

Def. Seu funa función de un espacio métrico (\bar{X},d) a otro espacio métrico (\bar{X},g) . Se dice que f es continua en \bar{X} si para cualquier conjunto abiento \bar{Y} , su imagen inversa bajo f:

$$f'(\overline{Y}) = \{ x \in \overline{X} \mid f(x) \in \overline{Y} \}$$

Es un conjunto abierto en X.

EJEMPLOS:

1) La Junción identidad en (\bar{X},d) es continua en (\bar{X},d) , id: $\bar{X} \to \bar{X}$.

2) Cualquier función $f:(X,d) \to (Y,S)$ constante es continua en X: En efecto, seu $y_0 \in Y$ y defina $f(x) = y_0$, $\forall x \in X$

Sea Gun abierto en 7. Entonces:

$$f'(G) = \{ \chi_{\epsilon} \overline{X} \mid f(\chi) \in G \}$$

$$= \{ \chi_{\epsilon} \overline{X} \mid \chi_{\epsilon} \in G \}$$

Si yo ϵ 6, entonces f'(G) = X el Cual es abiento, si yo ϵ $G'(G) = \emptyset$, el cual también es abiento. Por tanto, les continua en X.

3) Cualquier función de un espacio métrico discreto a un espacio métrico es continua

En efecto, sea $f:(X,a) \longrightarrow (Y,P)$, (X,J) un espacio métrico discreto y función. Sea Gun abierto en Y, entonces:

Como (X,d) es un espacio métrico discreto, entonces cualquier conjunto dentro es abierto, as: f'(G) es abierto. Portanto f es continua en \overline{X}

Teorema:

Sea $f:(X,d) \rightarrow (Y,P)$. Son equivalentes las siguientes atirmaciones:

i) Jescontinua en X.

 $\chi \to A \ \forall A \subset X$

iii) Y H cerrado en \(\frac{1}{2} \), f'(H) es cerrado en \(\frac{1}{2} \).

Dem:

$$(i) \Rightarrow (i)$$

Suponga que fes continua en X, y sou $A \subset X$. Sea $y \in f(\bar{A})$, entonces $\exists x \in \bar{A}$ tal que y = f(x).

Debemos probarque $y \in F(A)$, para ello, probaremos que $\forall r>0$, B(y,r) $\bigcap F(A) \neq \emptyset$

Sea r > 0, como $B(y,r) \subset \overline{Y}$ es abierta, entonces f'(B(y,r)) es abierto en \overline{X} por ser f continua en \overline{X} . (laramente $x \in f'(B(y,r))$, pues $f(x) = y \in B(y,r)$. (omo $x \in \overline{A}$, entonces $f'(B(y,r)) \cap A \neq \emptyset$, pues $f'(B(y,r)) \in V$.) Sea $a \in f'(B(y,r)) \cap A$, entonces $f(a) \in B(y,r)$ $y \in F(A)$.

Portanto f(A) < f(A).

$(ii) \Rightarrow (ii)$

Suponga que $f(\bar{A}) \subset f(\bar{A})$, $\forall A \subset \bar{X}$. Sea $H \subset \bar{Y}$ un cerrado, probaremos que f'(H) es cerrado en \bar{X} .

Como F'(H) < \(\text{Z} \), entonces

 $f(f_{\perp}(H)) \subset f(f_{\perp}(H))$

como f(f'(H)) < H. entonces f(f'(H)) < H, asi:

 $f(\underline{f_{-1}(H)}) \subset \underline{H} = H$

pues Hes cerrado. Sea $x \in \overline{f'(H)}$, entonnes $f(x) \in \overline{f'(H)} \subset H$, luego $f(x) \in H \Rightarrow x \in \overline{f'(H)}$. Por tanto

lveyo $f'(H) = \overline{f'(H)}$, por tanto, f'(H) es cerrado en X

Suponga (iii), y sea G un abierto en Y, entonces CG es cerrado en Y. Luego por hipótesis J'(CG) es cerrado en X. Proburemos que J'(CG) = CJ'(G)

En efecto.

Como J'(CG) es rerrado en X, entonces Cf'(CG) es abierto en X, luego f'(G) es abierto en X.

9.e.d.

Def.

Sea $f:(\overline{X},d) \rightarrow (\overline{Y},S)$ function $y \in \overline{X}$. Se dice que f es continua en x_0 . S; $\forall E > 0$ $\exists S > 0$ tal que $\forall x \in \overline{X} \in \overline{$

Entérminos de bolas:

 $f(\beta(x_0, S)) \subset \beta(f(x_0), E)$ o $\beta(x_0, S) \subset f'(\beta(f(x_0), E))$

luego, $\mathcal{F}'(\mathcal{B}(f(x_0), \mathcal{E}))$ es una vecindad de x_0 , pues \mathcal{F} un abiento $G = \mathcal{F}'(\mathcal{B}(f(x_0), \mathcal{E}))$ fal que $\mathcal{B}(x_0, \mathcal{E}) \subset G = \mathcal{F}'(\mathcal{B}(f(x_0), \mathcal{E}))$

Proposición:

Sea $f:(X,d) \to (Y,P)$ y $x_{\bullet} \in X$. Entonces f es continua en $x_{\bullet} \iff \forall \forall \in V(f(x_{\bullet}))$, $f'(\forall) \in V(x_{\bullet}) \iff \forall \forall \in V(f(x_{\bullet}))$ $\exists \forall \in V(x_{\bullet}) \in V(x_{\bullet}) \in V(x_{\bullet})$

f-,(A)

Dem:

$(i,i) \Leftarrow (i)$

Suponya que fes continua en x_0 . Sea $V \in V(f(x_0))$, enfonces $f \in A$ abierto en $f \in A$ tul que $f(x_0) \in A \subset V$. Como $f \in A$ es continua, $f \in A$ tul que $f \in A$ tul que A tul que

Suponya (i) Sea $V \in V(f(x_0))$, entonces $f'(V) \in V(x_0)$. Tome U = f'(V), entonces $f(V) = f(f'(V)) \in V$.

$(i) \Leftarrow (iii)$

Suponya (iii). Sea E>0. (omo $B(f(x_o), E) \in V(f(x_o))$, por hipótesis $\exists U \in V(x_o)$ in $U \in f'(B(f(x_o), E))$. Como U es vecindad de x_o , $\exists G$ abierto en $X \neq G$ que $X_o \in G \subseteq U$. Como $X_o \in G$, $\exists S>0$ in $B(x_o, S) \subseteq G \subseteq U$. Luego $B(x_o, S) \subseteq f'(B(f(x_o), E))$. Ast, f es continua en X_o .

9.e.d.

leoremu:

Sea f una función continua en (X, d) en (X, p) y Sea $x \in X$. Entonces f es continua en x si y sólo si para toda sucesión $\{x_n\}_{n=1}^\infty$ que converja a x en X, la sucesión $\{f(x_n)\}_{n=1}^\infty$ converge a f(x) en (\overline{Y}, p) .

Dem:

=>) Suponya que fes continua en x_0 . Sea $\{x_n\}_{n=1}^{\infty}$ Una sucesión que converge a x_0 . P. robaremos que $\{f(x_n)\}_{n=1}^{\infty}$ Converge a $f(x_0)$.

Sea E > 0. Como Jes continua $\exists 8 > 0$ m $\forall x \in X \in M$ $d(x,x,) < \delta \Rightarrow p(\mathcal{H}x)$, $f(x_0) < E$. Para este 8 > 0 \exists $N \in \mathbb{N}$ m S; $n \ge N$ entonces $d(x_n,x) < 8$, por lo

anterior, esto implica que $p(f(x_n), f(x_0)) < \varepsilon$. Luego $\{f(x_n)\}_{n=1}^{\infty}$ converge a $f(x_0)$.

€) Suponya que f no es continua en x. Se debe probar que $\exists \{x_n\}_{n=1}^{\infty}$ que converje a x., pero $\{f(x_n)\}_{n=1}^{\infty}$ no converge a $f(x_n)$.

Como fino es continua en x., 3 E.>O M & Sn= n, 3 xn tal que d(xn,xo) < Sn

 $\Rightarrow p(f(x_n), f(x_0)) \geqslant \varepsilon_0$

Tome la sucesión formada por estos x_n . Claramente $\{x_n\}_{n=1}^{\infty}$ Converge a x_0 , ppero $\{f(x_n)\}_{n=1}^{\infty}$ no converge a $f(x_0)$.

4.e.U.

Corolario (Principio de ampliación de identidades).

Sean fyg dos funciones de un esp. métrico (X, d) a (Y, p). Si fyg son continuas en (X, d) y toman los mismos valores en todos los puntos de algún conjunto A denso en X, entonces f=g.

Dem:

Sea x 6 X. Como A es denso en X,] una sucesión {xn}n=1 en A que converge a x. Como f y g Son continuas en xo, entonces

 $\lim_{n\to\infty} f(x_n) = f(x_0) \quad \lim_{n\to\infty} g(x_n) = g(x_0)$ pero $f(x_n) = g(x_n)$, $\forall n \in \mathbb{N}$, por tanto $f(x_0) = g(x_0)$.

g.e.d.

leorema.

Una función f de un espacio métrico (X, d) a (Y, p) es continua en X Si y sólo si f es continua en cada punto de X.

Dem:

€) Suponga que f es continua en cada punto de X. Sea G < Y abierto, proburemos que f'(G) es ubierto en X. Seu xo e f'(G), entonces f(xo) e G, como G es abierto, JE>O talque B(f(x.), E) < G. Como fes continua en x., para este 3 8>0 m B(x,8)<f (B(f(x,1)E)). Pero.

f'(B(f(x,0,E)) < f'(G) $\Rightarrow \beta(x_{o}, \delta) \subset f'(G)$

Luego f'(G) es abierto en (\overline{X},d) .

Def. Se dice que una función J de (X,d) en (X,p) es una función lischitziana si 3 K>0 tal que

 $p(J(x), J(y)) \le K \cdot d(x,y), \forall x,y \in X$. Toola función de lipschala la propiedad anterior se le llama propiedad de lipschitz.

EJEMPLOS.

1) Considere un espacio normado (E,N). Entonces la función norma N:E->IR, x -> N(x), R con la distancia usual, es continua en (E,N). En efecto, como: $|N(x)-N(y)| \leq N(x-y) \leq 1 \cdot d(x,y), \forall x,y \in \overline{X}$

luego Nes de lips chitz y por tanto, Nes continua en E.

2) La función f de (lp, Np) en (RN, Np), 1≤p≤∞, definida como

$$f(x) = (\chi(1), \chi\chi(2), \dots, \chi\chi(N)), \forall x = \{\chi(n)\}_{n=1}^{\infty} \in \mathcal{L}_{p}$$

$$N_{\rho}(f(x) - f(y)) = N_{\rho}(x(1) - y(1), 2(x(2) - y(2)), ..., N(x(N) - y(N)))$$

$$= \left(\sum_{i=1}^{n} i^{p} |x(i) - y(i)|^{p}\right)^{1/p} \leq N \cdot \sum_{i=1}^{n} (|x(i) - y(i)|^{e})^{1/p}$$

$$\leq N \cdot \sum_{i=1}^{n} (|x(i) - y(i)|^{p})^{1/p} \leq N \cdot N_{\rho}(x - y)$$

Vx,yelp, con 1≤p<00. Sip=00:

$$N_{oo}(f(x)-f(y)) = \max_{1 \leq i \leq N} |i|x|i|-y(i)| \leq N \cdot \max_{1 \leq i \leq N} |x(i)-y(i)|$$

$$\leq N \cdot \max_{i \in IN} |x(i)-y(i)| \leq N \cdot N_{oo}(x-y), \forall x,y \in L_{oo}$$

En cualquier caso f es de lipschitz y por tunto, f es continua en (1p, Np), 1 \in p \in \incerce.

3) Sea + la función de (12, 1/2) en (1, N,) dada como:

$$f(x) = x^2, \forall x = \{x(n)\}_{n=1}^{\infty} \in l_2$$

donde $x^2 = \{x^2 | n\}\}_{n=1}^{\infty}$ f está bien definida por la definición de la Afirmamos que fes continua.

Sea xely y E>O. Queremos:

Como:

$$\mathcal{N}_{1}(\chi^{2}-y^{2}) = \mathcal{N}_{1}((\chi+y)(\chi-y)) \leq \mathcal{N}_{2}(\chi+y) \cdot \mathcal{N}_{2}(\chi-y) \text{ (des. de Hölder)}.$$

$$\leq \mathcal{N}_{2}(\chi+y) \cdot \leq (\mathcal{N}_{2}(\chi)+\mathcal{N}_{2}(\gamma)) \cdot \leq$$

Si hacemos que

$$N_2(x-y) < 1 \Rightarrow N_2(y) - N_2(x) < 1 \Rightarrow N_2(y) < 1 + N_2(x)$$

asi:

$$N_1(\chi^2-y^2) < (1+2N_2(\chi)) \cdot \delta = \varepsilon$$

Por tanto, tome S=minl1, $\frac{\epsilon}{1+2k_2(x)}$. As: $\int es$ continua en x y el x sue arbitrario. Luego f es continua f f es continua en f.

4) Considere la función y de (12,1/2) en la con la distancia usual dada como:

$$g(\chi) = \sum_{i=1}^{\infty} \chi^{i}(n), \quad \forall \quad \chi = \{\chi(\eta)\}_{\eta=1}^{\infty} \in \mathcal{L}_{2}$$

g es la composición de las funciones $f:(I_2,N_2) \rightarrow (I_1,N_1)$, $f(x)=x^2$ con la función norma de (I_1,N_1) a $(IR,|\cdot|)$, h, i.e $g=h\circ f$. Como g es composición de funciones continuas g es continua.

5) La función de Dirichlet J de IR en IR, con la distancia usual duda por:

$$J(x) = \begin{cases} 1 & \text{Si } x \in \mathbb{Q} \\ 0 & \text{Si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

no es continua en ningún punto de IR. Pero Sla del subespacio (Q, 1·1) de (R, 1·1) en (R, I.I) si es continua, pues

 $\int |Q(x)| = 1, \forall x \in \mathbb{Q}$

6) La función f del subespacio [0,1[U]1,2[de IR con la distancia usual, dada por:

$$\int \langle x \rangle = \begin{cases} x^2 & \text{si } 0 \le x < 1 \\ 2 & \text{si } 1 < x < 2 \end{cases}$$
 [0,1[v]1,2[= E

es continua en [0,1[U]1,2[En efecto.

Seu E>O y x = [0,1[U]1,2[Tenemos 2 casos:

Deu $\varepsilon > U$ y $x \in [0, 1][U]1, LL$ lenemos L casos: a) $x \in [0, 1][E]$ este caso tome $S = \min\{1-x, 1, \frac{\varepsilon}{1+2|x|}\}$. Como $B_{\varepsilon}(x, \delta) \subset B_{\varepsilon}(x, \delta)$ |-x| y $B_{\varepsilon}(x,1-x) \subset [0,1[$, en tonces \forall y $\in \varepsilon$ m $|x-y| < \delta$, entonces f(y) =

Con esto, veamos que

$$|x-y| < \delta \le \frac{\varepsilon}{1+2|x|}$$

=> $|x-y| (1+2|x|) < \varepsilon$
Como $|x-y| < 1 => |y| < 1+|x|, |ueyo$

$$\Rightarrow |x^{2} - y^{2}| = |x - y| \cdot |x + y|$$

$$\leq |x - y| \cdot (|x| + |y|)$$

$$\leq |x - y| \cdot (1 + 2|x|)$$

$$\leq \varepsilon$$

$$\Rightarrow |f(x)\cdot f(y)| < \varepsilon$$

portanto, Jes continua en x.

b) x e]1, 2[

Tome $\delta = \chi - 1$ Enfonces:

$$|x-y| < \delta = x-1$$

$$\Rightarrow x-y < x-1$$

$$\Rightarrow x < y$$

por tanto, J(y) = J(x) = 2, luego:

$$|f(x) - f(y)| = |2 - 2|$$

= 0 < \varepsilon

luego, fes continua en 2.

Por aly hl, fes continua en E.

Sin embargo, no existe ninguna función f continua de IR en IR que sea continua en E. Suponga que 3 y: R-> IR tal que y l= f y y es continua en IR, entonæs es continua en 1.

Tome $\mathcal{E}_0 = \max \{ |g(1) - 1|, |g(1) - 2| \} / 2 > 0, y \text{ Sea } \delta > 0. \text{ Tenemos } 2 \text{ cases}$ a) $\max \{ |g(1) - 1|, |g(1) - 2| \} = |g(1) - 1|$

En este caso, $\mathcal{E}_{0} = \frac{19(1)-1}{2}$, tome $\delta' = m_{1}n_{1}(\delta, 1)$, $\frac{1}{2}x_{8} = 1 - \frac{\delta'}{2} \in E$ tal que $d(1, 1 - \frac{\delta'}{2}) = \frac{\delta'}{2} \leqslant \frac{\delta}{2} \leqslant \delta$, y

$$|g(1)-g(1-\frac{\delta^{1}}{2})| = |g(1)-(1-\frac{\delta^{1}}{2})^{2}|$$

$$= |g(1)-1+\delta^{2}-\frac{\delta^{2}}{4}|$$

$$como \delta^{2} \leq 1, \text{ enfonces } \delta^{2}-\frac{\delta^{2}}{4} \geq 0, \text{ |vego: } (g(1)>\frac{3}{2})$$

$$\geq |g(1)-1| > \frac{|g(1)-1|}{2} = \varepsilon.$$

por lo tanto, y no es continua en 1.

6) $\max\{|g(1)-1|,|g(1)-2|\}=|g(1)-2|$

En este cuso $g(1) < \frac{3}{2}$, $y \in E_0 = \frac{|g(1)-2|}{2}$, Sea $\delta > 0$ y tome $\delta' = min\{1, \delta\}$,

entonces para este $\delta \exists x_{\delta} = 1 + \frac{\delta'}{2} \in E + |q| |q| d(1, x_{\delta}) = \frac{\delta'}{2} < \delta, y$

$$|g(1)-g(x_{\delta})| = |g(1)-2| \ge \frac{|g(1)-2|}{2} = \varepsilon_{\delta}$$

portanto, g no escontinua en 1.

Tanto en a) y b), g no es continua en 1.

q.e.l.

HOMEOMORFISMOS.

- Def. Se dice que una función j de un esp. métrico (X,d) a (Y,p) es una aplicación abierta si para cada conjunto abierto O en X, f(0) es un abierto en Y. Se dice que J es una aplicación cerrada si ocurre lo anterior con cerrados.
- Def. Una función f de un esp. métrico (X,d) en un esp. métrico (Y,p) se dice que es un homomortismo S: f es biyectiva, y tanto f como f son continuas en X Y resp.

Además, se dice que \overline{X} y \overline{Y} son homeomorfos, y se escribe $\overline{X} \cong \overline{Y}$

EJEMPLOS.

1) Los subespacios [0,00[y [0,1[de IR con la distancia usual son homeomorfos. Un homeomorfismo seria:

$$f(x) = \frac{x}{1+x} , \forall x > 0$$

En efecto:

alf es bijectiva

S es biyectiva y su inversa es:

$$\bar{\mathfrak{f}}'(y) = \frac{y}{1-y}, \forall y \in [0,1[$$

donde:

$$\int \left(\int_{-1}^{1} \left(\gamma\right)\right) = \frac{\frac{\gamma}{1-\gamma}}{1+\frac{\gamma}{1-\gamma}} = \frac{\frac{\gamma}{1-\gamma}}{\frac{1}{1-\gamma}} = \gamma = \lambda d\gamma$$

$$\int_{1}^{1} \left(f(\chi) \right) = \frac{\frac{\chi}{1+\chi}}{\frac{1+\chi}{1+\chi}} = \frac{\frac{\chi}{1+\chi}}{\frac{1}{1+\chi}} = \chi = id_{\chi}$$

b) fy f'son continuas.

Solo se probará que f es cont. nua. Sea E>0, para este $\exists \delta = min \frac{1}{2}, E(x+1)(x+\frac{1}{2}) > 0$ tal que:

$$\begin{array}{l} \forall y \geqslant 0 \text{ m} |x-y| < \delta \Rightarrow \chi < \frac{1}{2} + y \text{ y} |x-y| < \mathcal{E}(x+1)(x+1/2) \\ \Rightarrow \chi + \frac{1}{2} < \gamma + 1 \text{ y} |x + \chi \gamma - \gamma - \chi \gamma| < \mathcal{E}(x+1)(x+1/2) \\ \Rightarrow \frac{1 \times + \chi \gamma - \gamma - \chi \gamma}{(\chi + 1)(\gamma + 1)} < \mathcal{E} \\ \Rightarrow |\frac{\chi + \chi \gamma - \gamma - \chi \gamma}{(\chi + 1)(\gamma + 1)}| < \mathcal{E} \\ \Rightarrow |\frac{\chi}{\chi + 1} - \frac{\gamma}{\gamma + 1}| < \mathcal{E} \\ \Rightarrow |f(\chi) - f(\gamma)| < \mathcal{E} \end{array}$$

por tanto, f es continua en [0,+00[

Por aly b), fes homeomorfismo.

Def. Se dice que una función f de un esp. métrico (X,d) a (X,p) es unu isometria si preserva distancias, es decir, se cumple:

 $\mathcal{P}(f(x),f(\lambda)) = q(x,\lambda), \ \beta x,\lambda \in X$

Si existe una isometria suprayectiva de (X,d) en (Y,p), se dice que X y \overline{Y} son espacios isométricos, y se escribe $X = \overline{Y}$.

2) La función f del sistema ampliado de números reales IR en el subespacio [-1,1] de IR con la distuncia usual, es una isometria suprayectiva de IR sobre [-1,1].

3)
$$S: \overline{X} = \overline{Y}$$
, entonces $\overline{X} \cong \overline{Y}$

Dem.

Suponga que $X = \overline{X}$, entonces f de (\overline{X}, d) en (\overline{Y}, p) suprayect: vu tal que $\rho(f(x), f(y)) = d(x, y)$, $\forall x, y \in \overline{X}$

probaremos que f es bijectiva.

a) I es invectivu.

Sean $x,y \in \overline{X}$ mf(x) = f(y), entonces $g(f(x), f(y)) = d(x,y) = 0 \Leftrightarrow x = y$ luego f es injectiva.

Por a) Jes biyectiva Probaremos que es continua y fitambién. Como $p(J(x), J(y)) = 1 \cdot d(x,y), \forall x,y \in X$

Jes de lipschitz, luego Jes continua. Alhora:

 $d(f'(u), f'(v)) = g(u, v), \forall u, v \in \overline{Y}$

luego F'es de lipschitz y, F'es continua.

Por lo anterior, $X \cong Y$

9.e.U.

MÉTRICAS EQUIVALENTES.

Def. Se dice que dos métricus d y p sobre un mismo conjunto \overline{X} son topológicamente equivalentes si inducen una misma topología sobre \overline{X} , es decir, un conjunto G es abierto en (\overline{X}, A) si ysólo si es abierto en (\overline{X}, B) .

Proposición.

Seandyp dos métricus sobre un conjunto \overline{X} . Las atirmuciones son equivalentes:

i) Las métricas dy p son equivalentes.

ii) Toda d-bola contiene una p-bola del mismo centro y viceversa.

La función identidad de (X,d) en (X,p) es un homeomorfismo

Dem:

 $(i) \Rightarrow (ii)$

Suponga que d y p son equivalentes. Sea n>0 y x \(\overline{X}\). Considere los conju

ntos $B_d(x,r)$ y $B_p(x,r)$, los cuales son abiertos en (X,d) y (X,p), respectivamente.

Como d y p son equivalentes, entonces Ba(x,r) y $B_p(x,r)$ son abiertos en (X,p) y (X,d) resp. portanto, $J \in \mathcal{S} > 0$ m $B_p(x,\epsilon) \in Ba(x,r)$ y $Ba(x,\delta) \subseteq B_p(x,r)$, i.e toda d-bola contiene una p-bola de mismo centro y viceversa.

(iii)=>(iii).

de mismo centro

Suponya que toda d-bola contiene una p-bola y viceversa. Probaremos que id: $(X,d) \rightarrow (X,p)$ es un homeomorfismo.

Claramente ides bijectiva.

a) id es continua en (X,d)

Sea $G \subset X$ un abiento en (X, g). Probanemos que id es continua, para lo cual probanemos que id'(6) es abiento en (X, d).

Veamos que:

$$|\vec{a}'(G) = \{ \chi \in X \mid i \mathbf{1}(\chi) \in G \}$$

$$= \{ \chi \in \overline{X} \mid \chi \in G \}$$

$$= G$$

Sea $x \in G$ arbitrario. Como G es abierto en (X, p), f r > 0 m $B_p(x, r)$ CG. Por hipótesis, $f \in S$ 0 m $B_d(x, E) \subset B_p(x, r)$, luego $B_d(x, E) \subset G$. As:, G es abierto en (X, d), i.e id es continua en (X, d).

b) id es continua en (X, p)

Es análogo a a).

Por a) y b), id es homeomortismo.

(i) <= (iii)

Suponya que $id:(X,d) \rightarrow (X,p)$ es un homeomorfismo. Probaremos que

dy & son equivalentes.

=>) Sea G un abierto en (X,d). Como id es homeomorfismo, entonces id':(X,g) -> (X,d) es cont:nua, luego (id') $(G) = \{x \in X \mid id'(x) \in G\} = \{x \in X \mid x \in G\}$ = G es abierto en (X,g).

 \neq) Sea G un abierto en (X,g). Como id es homeomordismo, id: $(X,d) \rightarrow (X,g)$

es continua, entonces id'(G)=G es abjerto en (E,d)

Luego (n es abiento en $(X, d) \Leftarrow$) es abiento en (X, p), luego dy p son equivalentes.

9.e.d.

Continuidad Uniforme.

Det Sea Juna función de un espacio métrico (X, d) en (Z, p). Se dice que fes uniformemente continua en X si Y E>O 3 8>O talque Yu, v EX

 $d(u,v) < \delta \Rightarrow \rho(f(u), f(v)) < \varepsilon$

En particular, toda función uniformemente es continua en X

EJEMPLOS.

1) Toda función Lipschitziana es uniformemente continua. En efecto, sea $f:(X,a) \to (X,g) + al$ que $\exists K \ge 0 + al$ que

 $p(f(x), f(y)) \leq K \cdot q(x, y), \forall x, y \in \overline{X}$

Seu ahora $\varepsilon > 0$ Entonces $\exists 8 = \frac{\varepsilon}{\kappa + \epsilon} > 0$ tal que

 $\forall x,y \in \overline{X} \cap d(x,y) < \delta = \frac{\varepsilon}{\kappa+1} \Rightarrow Kd(x,y) < (K+1)d(x,y) < \varepsilon$ $\Rightarrow p(f(x),f(y)) < \varepsilon$

por tanto, f es uniformemente continua en X.

g.e.L.

Def. Se dicen que dos métricas d y p Sobre un conjunto X son uniformemente equivalentes S: la función identidad de (X,d) sobre (Y,p) y su inversa son funciones uniformemente continuas.

Nota: Si dos métricas son uniformemente equivalentes, entonces son topológicamente equivalentes.

Proposición.

Dos métricas dy p Sobre un conjunto \overline{X} Son uniformemente equivalentes si

 $\exists \alpha, \beta > 0 \text{ toles que}$ $\alpha d(x,y) \leq p(x,y) \leq \beta d(x,y), \forall x,y \in \overline{X}$

Dem:

Sea id: $(X,d) \rightarrow (X,p)$. Probaremos que id e id son uniformemente continuas

Sea $\varepsilon > 0$, $\exists S_1 = \frac{\varepsilon}{B} > 0$ y $S_2 = \alpha \varepsilon > 0$ tales que:

$$d(x,y) < \delta_1 \Rightarrow \rho(x,y) \leq \beta d(x,y) < \mathcal{E}$$

$$\Rightarrow \rho(id(x),id(y)) < \mathcal{E}$$

portanto, id e id' son unitormemente continuas, luego dy p son uniformemente equivalentes.

9.e.d.

EJEMPLO.

1) Las métricas pp, 1 \le p \le \infty, sobre IR sontodas uniformemente equivalentes