## IAPZOROSCIGUITO 22 MAR 2006

## 明細書

低鉄損の電磁鋼板を使用するロータ、ロータ製造方法およびレーザピー ニング方法並びにレーザピーニング装置

## 技術分野

- [0001] 本発明は、ロータ素材として低鉄損の電磁鋼板を使用するロータに関する。 背景技術
- [0002] 日本特開2001-16809号に開示されるロータにおいては、スロットの角部で生じる 応力集中を低減すると共に低減した応力集中を外周とスロットの最短部からずれた 部位に生じさせることによって、モータの高速回転を可能とし、モータの小型軽量化 を図っている

日本特開2002-112481号に開示されるロータにおいては、磁石1極を2分割にして中央部にブリッジ部を設ける磁石保持構造によって、遠心力に対する強度を向上させ、モータの高速回転を可能とし、モータの小型軽量化を図っている。 発明の開示

- [0003] しかし、モータの最高回転数は、ロータに使用される電磁鋼板の強度に依存しているため、良好な機械的強度を有する電磁鋼板を使用する必要がある。良好な機械的強度を有する電磁鋼板は、鉄損が大きいため、モータの冷却が問題となる。つまり、ロータやロータ軸を冷却しなければならない問題を生じる。
- [0004] 本発明は、低鉄損の電磁鋼板を使用して、モータの高速回転を可能とするロータと、当該ロータを製造するためのロータ製造方法およびレーザピーニング方法並びにレーザピーニング装置とを提供することを目的とする。
- [0005] さらに詳述すると、本発明の目的は、ロータ素材として低鉄損の電磁鋼板を使用するロータであって、ロータの磁石挿入口の内周面におけるブリッジ部側は、液体を経由してレーザを照射するレーザピーニングを適用することによって、強度が向上しているロータを提供することである。
- [0006] 本発明の別の目的は、ロータ素材として低鉄損の電磁鋼板を使用するロータ製造 方法であって、磁石挿入口の内周面におけるブリッジ部側に、液体を経由してレー

ザを照射するレーザピーニングを適用することによって、前記ブリッジ部側の強度を 向上させるロータ製造方法を提供することである。

- [0007] 本発明の別の目的は、低鉄損の電磁鋼板からなるロータに対し、液体を経由してレーザを照射するレーザピーニング方法であって、レーザの照射スポットに対して前記ロータを相対的に移動させ、前記ロータの磁石挿入口の内周面におけるブリッジ部側に、レーザを照射することによって、前記ブリッジ部側の強度を向上させるレーザピーニング方法を提供することである。
- [0008] 本発明の別の目的は、低鉄損の電磁鋼板からなるロータに対し、液体を経由してレーザを照射するためのレーザ照射装置と、前記ロータの磁石挿入口の内周面におけるブリッジ部側に沿って、レーザが照射されるように、レーザの照射スポットに対して前記ロータを相対的に移動させるための駆動装置とを有するレーザピーニング装置を提供することである。
- [0009] 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示される好ましい実施の形態を参照することによって、明らかになるであろう。 図面の簡単な説明
- [0010] [図1]FEM弾性解析に係るロータの形状を説明するための平面図である。 [図2]ロータの静的強度を測定する方法を説明するための平面図である。 [図3]ブリッジ部の静的強度(引張り特性)の測定結果を説明するためのグラフであり 、A点における変位と荷重との関係を示している。

[図4]実施の形態1に係るレーザピーニング装置を説明するための側面図である。

[図5]レーザの照射スポットの移動経路を説明するための側面図である。

[図6]レーザの照射角度と磁石挿入口の内周面との関係を説明するための断面図である。

[図7]実施の形態1に係るロータを説明するための平面図である。

[図8]図7に示されるロータのブリッジ部の引張り特性(降伏強度)を説明するためのグラフである。

[図9]図7に示されるセンターブリッジ部のIX-IX断面におけるビッカース硬さ分布を示しているグラフである。

[図10]図7に示されるアウターブリッジ部のX-X断面におけるビッカース硬さ分布を示しているグラフである。

[図11]実施の形態2に係るロータを説明するための平面図である。

[図12]図11に示されるセンターブリッジ部の線XII-XIIに関する断面図である。

[図13]図11に示されるアウターブリッジ部の線XIII-XIIIに関する断面図である。

[図14]図11に示されるロータを積層した状態におけるセンターブリッジ部の断面図である。

[図15]図11に示されるロータを積層した状態におけるアウターブリッジ部の断面図である。

[図16]ブリッジ部の引張り特性(降伏強度)と段差との関係を説明するためのグラフである。

[図17]実施の形態3に係るロータ製造方法を説明するための斜視図であり、ロータの ホルダに対する取り付けを示している。

[図18]実施の形態3に係るロータ製造方法を説明するための斜視図であり、図17に続く、ロータに対するレーザピーニングを示している。

[図19]実施の形態3に係るロータ製造方法を説明するための斜視図であり、図18に続く、ホルダからのロータの取外しを示している。

[図20]図18に示されるレーザピーニング装置の要部を説明するための断面図である

[図21]実施の形態4に係るレーザピーニング装置を説明するための側面図である。 [図22]図21に示されるレーザピーニング装置に係るレーザの照射スポットの移動経路を説明するための側面図である。

[図23]図21に示されるレーザピーニング装置に係るロータにおけるビッカース硬さ分布を示しているグラフである。

[図24]レーザピーニングによるアウターブリッジ部の変形を説明するための斜視図である。

[図25]被加工材の厚さとレーザピーニング後の表面圧縮残留応力との関係を示しているグラフである。

[図26]レーザの照射スポットの径と圧縮残留応力層の深さとの関係を示しているグラフである。

発明を実施するための最良の形態

- [0011] 以下、本発明の実施の形態を、図面を参照しつつ説明する。
- [0012] 実施の形態1に係るロータ製造方法においては、ロータ素材として低鉄損の電磁鋼板を使用しており、磁石挿入口の内周面におけるブリッジ部側に、液体を経由してレーザを照射するレーザピーニングを適用することによって、ブリッジ部側の強度を向上させている。
- [0013] ロータは、内部に永久磁石が埋め込まれ、例えば、埋込型永久磁石式同期モータ (IPMモータ)に適用される。IPMモータは、例えば、電気自動車(EV)、ハイブリッド 車(HEV)、燃料電池車(FCV)の駆動用モータとして用いられる。
- [0014] ロータに関する基礎的な解析結果を参照し、レーザピーニングによって強化されるブリッジ部側を説明する。図1は、FEM弾性解析に係るロータの形状を説明するための平面図である。
- [0015] ロータ100は、8極ロータであり、永久磁石を内蔵している。また、ロータ100においては、磁石1極が2個に分割されており、2箇所の磁石挿入口101, 102が形成されている。したがって、ロータ100が回転すると、磁石には遠心力が働くことになる。ロータ100の外周側における磁石を保持する部位105を、アウターブリッジ部、挿入口101, 102の間の部位を、センターブリッジ部106と参照する。
- [0016] ロータ100にFEM弾性解析を適用し、回転状態における、特に磁石に働く遠心力に基づく応力分布を検討した。その結果、アウターブリッジ部105の磁石側と、センターブリッジ部106の付け根部とに、応力集中部が存在していた。
- [0017] 次に、電磁鋼板1枚からなるダミーロータを試作し、ロータ単板スピンテストを適用し、ロータにおける塑性変形の開始および進行を検討した。磁石の挿入口には、ロータ 1枚分に相当するダミー磁石を挿入し、また、放電加工(ワイヤカット)によって、ロータ形状を形成した。
- [0018] ロータ単板スピンテストにおいては、塑性変形の開始および進行に係る回転数を応力解析よって予測し、停止回転数を設定し、複数の水準の回転数で検討した。塑性

変形の度合いは、エッチピット法に基づき、エッチピットの発生している領域の面積の 大きさにより評価した。大気との摩擦熱の影響を排除するため、チャンバー内の空気 を排気し、真空とした状態で、室温で実施した。

- [0019] 塑性変形は、フォンミーゼス応力の分布における、アウターブリッジ部およびセンターブリッジ部の応力集中部から開始していた。最大応力(フォンミーゼス応力)が、引張試験によって得られる材料(ロータ)の降伏応力の値に対応する回転数に達すると、塑性変形が開始した。
- [0020] 塑性変形開始の回転数を越えてからは、回転数の増加に伴って、塑性変形は進行する。外形の寸法変化が明らかに認められるのは、塑性変形が進行し、ブリッジ部を 貫通してからである。これは、例えば、エッチピット発生領域を観察することによって、 確認することができる。
- [0021] 図2は、ロータの静的強度を測定する方法を説明するための平面図である。ロータは、ブリッジ部以外は塑性変形しないので、ブリッジ部の強度によって代表させている。
- [0022] ロータ110は、磁石1極分、この場合、60度の範囲の部位であり、半径方向で拘束される(ロータ1枚)。磁石挿入口111, 115には、磁石形状のツール112, 116が回転自在に配置される。ツール112, 116は、磁石挿入穴111, 115のロータ径方向外側の辺を構成する直線部111A, 115Aとのみ接触している。ツール112, 116の重心位置であるセンタには、ピン穴113, 117が形成されており、ピン114, 118が挿入されている。
- [0023] ブリッジ部の静的強度は、ピン114, 118を上方(ロータ径方向)に引っ張るための荷重(引張力)Fと、A点における変位との関係によって測定される。
- [0024] 図3は、ブリッジ部の静的強度(引張り特性)の測定結果を説明するためのグラフであり、A点における変位と荷重との関係を示している。測定に使用したロータ(比較例)は、磁石6極形状を有しており、電磁鋼板(35A300)を打ち抜いて、外径100mmのロータを作成している。電磁鋼板の厚みは、0.35mmであり、周波数50Hzで最大磁束密度が1.5Tにおける鉄損(W/kg)は、3.00(W
- [0025] 変位-荷重曲線は、応力-歪曲線と似た関係になっており、変位が小さい初期にお

- いて、鋭く直線的に立ち上がるが、その後、直線から外れて、勾配が緩やかになっている。これは、応力集中部において降伏が起こり始める(塑性変形が始まる)からである。また、変位がさらに増加すると、加工硬化しながら塑性変形することになる。
- [0026] 直線と変位-荷重曲線との間に、10 µ mのずれが発生した時点における荷重によって、降伏力(あるいは強度)を、定義する。例えば、図3に示される比較例に係る変位-荷重曲線においては、210Nである。
- [0027] ブリッジ部の静的強度は、ロータ単板スピンテストにおける強度と関係している。例えば、ロータ単板スピンテストにおいては、回転数を増すにつれて、径の永久変形による増加は、指数関数的に増加する。したがって、径が所定量だけ、例えば20μmだけ増加する回転数を、使用限界回転数と定義する場合、ブリッジ部の静的強度に適用されたロータ(比較例)の使用限界回転数は、約2.08×10⁴rpmである。
- [0028] さらに、FEM弾性解析をブリッジ部の静的強度の測定に適用して得られた応力分布は、回転状態における応力分布と類似しており、特に、応力集中部の位置は同一であった。
- [0029] 以上のように、ロータ(電磁鋼板)の磁石挿入口の内周面におけるブリッジ部側は、 応力集中が生じ、モータの高速回転を可能とするためには、強度が必要とされる部 位である。
- [0030] 次に、レーザピーニングを説明する。
- [0031] レーザピーニングにおいては、例えば、グリーンのパルス状のレーザが、水や油などの液体中で、被加工材に照射される。レーザは、被加工材の表面に高圧プラズマを発生させる。プラズマは、液体中にあるため、急激な膨張が抑制され、反力を生じる。反力は、被加工材に衝撃波として伝わり、圧縮残留応力を付与し、被加工材の表面の硬さを増加させる。
- [0032] したがって、ロータにレーザピーニングを施すと、加工硬化により材料強度が向上する。プラズマはレーザと材料表面の相互作用(アブレーション)によって発生するが、プラズマは液体中では短時間で冷却され、金属の微粒子となって材料表面近くに留まることになる。したがって、ホースなどを使用して、液体を材料表面に供給し、液体を流動させることによって、材料表面近くの微粒子をレーザの光路から排除し、散

乱によるエネルギロスを防ぐことが好ましい。

- [0033] 以上のように、レーザピーニングを適用することによって、部材の強度を向上させることが可能である。したがって、実施の形態1に係るロータ製造方法においては、ロータ素材に基材強度の低い低鉄損の電磁鋼板を使用していても、製造されるロータにおいては、モータの高速回転を可能とする必要な強度が確保される。つまり、低鉄損の電磁鋼板を使用して、モータの高速回転を可能とするロータを製造するためのロータ製造方法を提供することができる。なお、トルクや効率等のモータ性能に対する、レーザピーニングによる影響は、殆ど見られない。
- [0034] 図4は、実施の形態1に係るレーザピーニング装置を説明するための側面図である
- [0035] レーザピーニング装置600は、レーザを照射するための本体部(レーザ照射装置) 610と、被加工材200が配置される槽660とを有する。被加工材200は、数枚から数十枚程度の積層されたロータ(低鉄損の電磁鋼板)からなり、1対の押さえ板(押圧部材)220によって位置が変化しないように押し圧状態で保持されている。押さえ板22 0は、ロータ200の磁石挿入口201に対応した位置に、磁石挿入口201と略同一形状の開口部を有する。
- [0036] 本体部610は、レーザ発振器620、出力調整装置630、シャッタ640、レンズ650 を有する。 槽660は、側面に配置される窓部670を有し、レーザが透過する液体である水680を保持して、また、2軸移動テーブル(不図示)が配置されている。
- [0037] レーザ発振器620は、Qスイッチ変調器を有しており、波長1064nmの赤外線レーザ(QスイッチYAGレーザ)を発生させる。QスイッチYAGレーザは、非常に高いピーク出力のパルス発振(パルス幅が数nsから数十ns)が得られる点で好ましい。近赤外領域(波長1064nm)の出力を、水に吸収され難い第2高調波(波長532nm)に変換して使用することが好ましく、エネルギ的に有利となる。
- [0038] レーザ発振器620に適用されるレーザは、QスイッチYAGレーザに限定されず、ガラスレーザ、銅蒸気レーザ、エキシマレーザ等を適用することも可能である。水中を遠距離透過させる必要がある場合、銅蒸気レーザまたはYAGレーザ(第2高調波)による緑色パルスレーザが好ましい。

- [0039] 出力調整装置630は、レーザ発振器620から出射されたレーザ690の出力を調整し、レーザ690のパルス当りのエネルギを所定値に制御するために使用され、例えば、偏光素子とスプリッタとを組み合わせた機構を有する。シャッタ640は、出力調整装置630からのレーザ690を、必要に応じて遮断するための機械的あるいは電気的機構を有する。
- [0040] レンズ650は、シャッタ640を通過したレーザ690の焦点を、磁石挿入口201の内 周面に合わせるために使用される。窓部670は、レーザ690に対する透過性を有す る材料から形成され、レーザ690を槽660の内部に側方から導入するため使用され る。
- [0041] 2軸移動テーブルは、窓部670を通過した側方からのレーザ690が照射されるロータ200を、2次元的に移動させるために使用される。例えば、2軸移動テーブルは、磁石挿入口201の内周面の所定部位に、レーザ690が一様に照射されるように、押さえ板220によって保持されたロータ200を移動させる。この場合、ロータ200を図4の矢印で示される斜め方向に移動させる場合、レーザ690の焦点位置が変化しないため好ましい。
- [0042] つまり、2軸移動テーブルは、ロータ200の磁石挿入口201の内周面におけるブリッジ部側に沿って、レーザ690が照射されるように、レーザ690の照射スポットに対してロータ200を相対的に移動させるための駆動装置である。
- [0043] 以上のように、実施の形態1に係るレーザピーニング装置においては、2軸移動テーブル(駆動装置)を使用することで、ロータの磁石挿入口の内周面におけるブリッジ部側に、本体部(レーザ照射装置)からのレーザを容易に照射することができる。したがって、ブリッジ部側の強度を、レーザの照射によって向上させることが可能であり、レーザピーニング装置により加工された後のロータは、モータの高速回転を可能とする必要な強度を確保することができる。つまり、低鉄損の電磁鋼板を使用して、モータの高速回転を可能とするロータを製造するためのレーザピーニング装置を提供することができる。
- [0044] 次に、レーザピーニング装置の動作を説明する。
- [0045] ロータ200を数枚から数十枚程度積層し、押さえ板220によって位置が変化しない

ように押し圧状態で保持し、槽660内部に配置し、2軸移動テーブルに取付ける。

- [0046] 次に、レーザ発振器620を稼動させ、レーザ690を発生させる。レーザ発振器620 からのレーザ690は、出力調整装置630によって、その出力が調整される。パルス当りのエネルギが所定値に制御されたレーザ690は、シャッタ640を通過する。そして、レーザ690の焦点は、レンズ650によって調整され、窓部670を透過し、槽660の内部に側方から導入される。
- [0047] レーザ690は、磁石挿入口201の内周面におけるブリッジ部側に照射され、高圧プラズマを発生させる。プラズマの発生によって引き起こされる衝撃波は、ブリッジ部側に伝わり、圧縮残留応力を付与し、ブリッジ部側の表面の硬さを増加させる。
- [0048] 押さえ板220によって保持されたロータ200は、2軸移動テーブルによって駆動される。その結果、レーザ690の照射スポットは、ブリッジ部側に沿って移動し、ロータが回転する際に磁石に働く遠心力に基づいて高い応力が発生する部位を加工する。つまり、強度が必要とされる部位の強度が、効率的に向上する。
- [0049] ロータ200は、電気的特性を向上させるための絶縁コーティングが表面に施されており、絶縁層を有する。したがって、ロータ200の表面にレーザ690を直接照射する場合、プラズマによるアブレーションによって絶縁層が破壊される。一方、実施の形態1においては、磁石挿入口201の内周面に、角度 θ の斜め方向からレーザが照射されるため、絶縁層の破壊は端面から3 μ m程度に抑えられる。したがって、ロータ200の絶縁劣化が実質的に防げる。
- [0050] 図5は、レーザの照射スポットの移動経路を説明するための側面図である。
- [0051] レーザ690の照射スポットSは、押さえ板220の側面が基点となり、ロータ200の磁 石挿入孔内周面周方向(内周方向)に移動する。移動ピッチは、例えば、0.149m mである。
- [0052] 所定ピッチの移動を繰り返し、所定距離の加工が終了し、一方の折り返し点に到達すると、レーザ690の照射スポットSは、内周方向に対して直角な方向であるロータ2 00の積層方向に送られる。送りピッチは、例えば、0. 149mmである。所定ピッチの送りが終了すると、レーザ690の照射スポットSは、他方の折り返し点に向かって、ロータ200の内周方向を逆向きに移動する。

- [0053] 上記移動および送り動作を反復し、レーザ690の照射スポットSが、加工を開始した 押さえ板220の逆側に配置される押さえ板220の所定位置に到達することで、加工 が終了する。
- [0054] つまり、レーザ690の照射スポットSは、内周方向に配置される折り返し点に到達する毎に積層方向に送られ、かつ内周方向に沿って所定ピッチの移動を繰り返すように制御されており、強度が必要とされる部位に、レーザ690が照射される。レーザ690の照射スポットの径、送りピッチおよび移動ピッチは、非照射部位(隙間)が生じないように設定される。
- [0055] 押さえ板220の側面を含めてレーザ690を照射することは、磁石挿入口201の内 周面を均一に加工するために好ましい。特に、実施の形態1においては、ロータ200 を積層しているため、一枚ずつ加工する場合と比較して、工数を削減することができ る。また、押さえ板220に照射されるレーザ690の照射回数(パルス数)も削減される ため、レーザ690を有効に利用することができる。
- [0056] 図6は、レーザの照射角度と磁石挿入口の内周面との関係を説明するための断面図である。
- [0057] 磁石挿入口201の大きさおよび形状にも依存するが、3mm厚の押さえ板220を使用し、レーザ690の入射角を60度とした場合、一般的な0.35mm厚のロータのサイズであれば、30〜40枚を積層した状態で、磁石挿入口201の内周面に、レーザを照射することが可能である。
- [0058] レーザ690の照射によって、磁石挿入口201の内周面におけるブリッジ部側が塑性変形し、マクロな歪みが発生する場合、レーザ照射を均一とすることが困難となる恐れがある。そのため、レーザ照射中において、押さえ板220は、5~10kgf/cm²程度の押圧力で、積層されたロータ200を保持し、歪みの発生を抑制することが好ましい。
- [0059] 以上のように、実施の形態1に係るレーザピーニング方法においては、レーザの照射スポットに対してロータを相対的に移動させることで、ロータの磁石挿入口の内周面におけるブリッジ部側に、レーザが容易に照射される。ブリッジ部側の強度が、レーザの照射によって向上するため、レーザピーニング後においては、モータの高速回

転を可能とする必要な強度が確保される。つまり、低鉄損の電磁鋼板を使用して、モータの高速回転を可能とするロータを製造するためのレーザピーニング方法を提供することができる。

- [0060] 全体の位置関係にも依存するが、例えば、焦点距離が200mm程度のレンズ650を使用する場合、レーザの照射位置が±5mm程度移動しても、同等な効果が得られる。したがって、この場合は、ロータ200の移動方向として、上下方向を適用することも可能である。実施の形態1においては、レーザ690の照射スポットを固定して、ロータ200を移動させているが、ロータ200を固定して、レーザ690の照射スポットを移動させることも可能である。
- [0061] レーザ690の照射スポットの移動経路を変更することも可能である。例えば、積層 方向に折り返し点を配置し、レーザ690の照射スポットSが、折り返し点に到達する毎 に内周方向に送り、積層方向に沿って所定ピッチの移動を繰り返すように、制御する ことも可能である。
- [0062] 図7は、実施の形態1に係るロータを説明するための平面図である。
- [0063] ロータ200は、磁石6極形状を有しており、電磁鋼板(35A300)を打ち抜くことで形成されている。ロータ200のサイズは、外径が100mmであり、厚みが0.35mmである。ロータ200は、レーザピーニングの際においては、積層(10枚)されており、一括に加工された。
- [0064] 磁石挿入口201, 202の内周面におけるレーザが照射された部位は、アウターブリッジ部205の磁石挿入口側203と、センターブリッジ部206の磁石挿入口側204である。レーザのエネルギは、60mJである。レーザの照射スポットの径は、Φ0. 4mmである。レーザのパルス密度は、135パルス/mm²である。
- [0065] 図8は、図7に示されるロータのブリッジ部の引張り特性(降伏強度)を説明するため のグラフである。
- [0066] 上記条件で製造されたロータのブリッジ部の降伏応力は、278Nであり、レーザピーニングが施されていない比較例の降伏応力は、210Nである。つまり、ロータ200は、強度が上昇している。ロータ200の使用限界回転数は、約2.4×10<sup>4</sup>rpmであり、比較例の使用限界回転数は、約2.08×10<sup>4</sup>rpmである。

- [0067] 図9は、図7に示されるセンターブリッジ部のIX-IX断面におけるビッカース硬さ分布を示しているグラフ、図10は、図7に示されるアウターブリッジ部のX-X断面におけるビッカース硬さ分布を示しているグラフである。
- [0068] 図9における距離の原点および900 μ mの点は、センターブリッジ部の端面(磁石挿入口側)に対応している。図10における距離の原点および1000 μ mの点は、アウターブリッジ部の端面(磁石挿入口側および外周面)に対応している。ビッカース硬さの測定荷重は、25gfである。硬さ測定は、断面における板中央部において行っている。
- [0069] センターブリッジ部206は、磁石挿入口201, 202によって挟まれており、両側に、レーザピーニングが施された磁石挿入口側204が存在する。そのため、センターブリッジ部206は、端面(原点および900 μ mの点)から0. 3~0. 4mm離れた位置まで、硬化しており、端面において最大硬さを示している。電磁鋼板(35A300)の基材のビッカース硬さは、「200」程度である。
- [0070] アウターブリッジ部205は、一方の端面にのみ磁石挿入口201,202が配置されており、片側のみに、レーザピーニングが施された磁石挿入口側203が存在する。そのため、アウターブリッジ部205は、端面(原点)から0.3~0.4mm離れた位置まで、硬化しており、端面(原点)において最大硬さを示している。なお、レーザピーニングが施されていない端面(1000 μ mの点)から0.2~0.3mm離れた位置まで、硬化している。これは、打ち抜き歪によるものである。
- [0071] 実施の形態1に係るロータを使用したモータと、レーザピーニングが施されていないロータを使用したモータとにおいて、18000rpmかつ60kWでの効率を比較したところ、実施の形態1に係るロータを使用したモータの方が効率の点で優れていた。主な要因は、トルクが増大したためと考えられる。したがって、レーザピーニングに基づくロータコア鉄損の増加は僅少であるといえる。また、焼き嵌め温度、磁石接着剤のキュア温度等のロータを製造する段階で付与される温度およびモータの動作温度は、レーザピーニングに基づく加工硬化を劣化させることはない。
- [0072] 以上のように、実施の形態1に係るロータは、強度の必要とされる磁石挿入口の内 周面におけるブリッジ部の強度が、レーザの照射によって向上している。したがって、

ロータ素材に基材強度の低い低鉄損の電磁鋼板を使用していても、モータの高速回転を可能とする必要な強度は確保されている。つまり、低鉄損の電磁鋼板を使用して、モータの高速回転を可能とするロータを提供することができる。

- [0073] ロータ素材(電磁鋼板)の板厚は、特に0.35mmに限定されず、他の板厚、例えば、0.20mmを適用することも可能である。レーザを斜めから照射しているため、レーザの照射スポットは、楕円状であり、垂直入射の場合に比べて、面積が大きくなる。そのため、レンズ650と磁石挿入口201の内周面との間の距離を調整し、垂直入射の場合と同等の効果が得られるようにすることも可能である。
- [0074] 図11は、実施の形態2に係るロータを説明するための平面図、図12は、図11に示されるセンターブリッジ部の線XII-XIIに関する断面図、図13は、図11に示されるアウターブリッジ部の線XIII-XIIIに関する断面図、図14は、図11に示されるロータを積層した状態におけるセンターブリッジ部の断面図、図15は、図11に示されるロータを積層した状態におけるアウターブリッジ部の断面図である。
- [0075] 実施の形態2に係るロータ300は、ブリッジ部に段差を有する点で、実施の形態1に係るロータ200と概して異なっている。つまり、ロータ300の磁石挿入口301,302の内周面において、アウターブリッジ部305の磁石挿入口側303およびセンターブリッジ部306の磁石挿入口側304の板面の片側に、段差303A,304Aが形成されている。
- [0076] 実施の形態2においては、段差形成前のロータ300の素材厚みtは、0.35mmであり、段差厚み Δ tを素材厚みtで除した比率(段差比率)は、3パーセントである。段差303A,304Aは、例えば、プレスによって形成することが可能である。
- [0077] 図16は、ブリッジ部の引張り特性(降伏強度)と段差との関係を説明するためのグラフである。
- [0078] ロータ300は積層された後で、アウターブリッジ部磁石挿入口側303およびセンターブリッジ部磁石挿入口側304に対して、レーザピーニングが施されている。レーザのエネルギは、60mJである。レーザの照射スポットの径は、Φ0.4mmである。レーザのパルス密度は、45パルス/mm²である。ロータの積層方向に関する照射スポットの送りピッチおよび内周方向に関する照射スポットの移動ピッチは、0.149mmで

ある。

- [0079] 図に示されるように、実施の形態2に係るロータ300は実施の形態1に係るロータ2 00に比べて、降伏強度が向上している。破線は、レーザピーニングが施されていな い比較例を示している。
- [0080] 以上のように、実施の形態2はブリッジ部に段差を有するため、ブリッジ部の強度を さらに向上させることが可能である。段差は、板面の片側に配置されることに限定され ず、両側に配置することも可能である。
- [0081] 図17〜図19は、実施の形態3に係るロータ製造方法を説明するための斜視図であり、図20は、図18に示されるレーザピーニング装置の要部を説明するための断面図である。なお、図17は、ロータのホルダに対する取り付け、図18は、図17に続く、ロータに対するレーザピーニング、図19は、図18に続く、ホルダからのロータの取外しを示している。
- [0082] レーザピーニング装置700は、図18に示されるように、レーザ発生部710と、ミラー720と、照射ヘッド730と、照射ヘッド730の駆動装置735とを有する。レーザ発生部710は、レーザ発振器および出力調整装置を有し、所定のエネルギを有するパルス状のレーザ790を出力する。ミラー720は、レーザ発生部710からのレーザ790の方向を変更し、照射ヘッド730に導入するためのレーザ伝送部品である。レーザ伝送部品は、ミラー720に限定されず、例えば、光ファイバを適用することも可能である。
- [0083] 照射ヘッド730は、図20に示されるように、概して長尺かつ細径の円筒状であり、窓部770、ミラー740、開口部755、給水管750、排気管760を有する。窓部770は、照射ヘッド730の一端に配置されており、ミラー720によって方向が変更されたレーザ790を照射ヘッド730の内部に導入するために使用される。
- [0084] ミラー740は、非球面状であり、照射ヘッド730の他端に配置される。ミラー740は、例えば、銅、アルミニウム、銀、金などの熱伝導性の高い金属で成形され、かつ、反射面に誘電体多層膜コーティングが施されている。 開口部755は、照射ヘッド730の他端近傍の側面に配置され、ミラー740に隣接している。
- [0085] ミラー740は、窓部770を透過したレーザ790を反射することで、その方向を変更しかつ集光させる。反射したレーザ790は、開口部755を経由して、ロータ400の磁石

挿入口401の内周面におけるブリッジ部側403に、照射される。

- [0086] 給水管750は、レーザ790の照射の際に、照射ヘッド730の内部に水780を導入し、開口部755から流出させるために使用される。したがって、レーザ790は、流動している水780を経由して、ブリッジ部側403に照射される。
- [0087] つまり、レーザピーニング装置700は、レーザ790の照射面に位置する液体を流動させるための液体流動装置を有する。そのため、レーザの照射により発生するプラズマに基づいて形成され、ブリッジ部側403の表面近くに浮遊する金属の微粒子が、レーザ790の光路から排除される。したがって、レーザ790の散乱によるエネルギロスを防ぐことが可能である。
- [0088] ロータ400は、図17および図19に示されるように、ホルダ420によって積層された後で、レーザピーニングが施される。ホルダ420は、ロータ400の中心穴410が挿入される円筒部430と、積層された複数のロータ400を、押し圧状態で保持するための押さえ板440とを有する。押さえ板440は、照射ヘッド730を通過可能とするための開口部445を有する。開口部445は、ロータ400の磁石挿入口401と略同一の形状を有し、その配置位置も略同一である。ロータ400の中心穴410は、ロータ400の回転方向の位置決めのための切り欠き(不図示)が予め形成されている。
- [0089] 排気管760は、装置使用開始前に、照射ヘッド730の内部の空気を抜くため、および、連続的な使用によって気泡となって析出した空気を排出するために使用する。
- [0090] 駆動装置735は、照射ヘッド730を軸方向に移動させる機能と、照射ヘッド730を 径方向に回転させる機能とを有し、ロータ400の磁石挿入口401の内周面における ブリッジ部側403に沿って、レーザ790が照射されるように、レーザ790の照射スポッ トに対してロータ400を相対的に移動させるために使用される。照射ヘッド730を軸 方向に移動させるかわりに、ロータ400を上下動させることによっても、同様な機能を 達成することが可能である。
- [0091] 次に、実施の形態3に係るロータ製造方法を説明する。
- [0092] 受け入れられたロータ400は、切り欠きによって回転方向の位置決めがなされる一方、ホルダ420の円筒部430に順次挿入され、所定の積層枚数に達すると、押さえ 板440によって、押し圧状態で保持される(図17参照)。

- [0093] 次に、照射ヘッド730が、軸方向から押さえ板440の開口部445を経由して、積層されたロータ400の磁石挿入口401に挿入される(図18参照)。そして、給水管750から照射ヘッド730の内部に水780が導入される。一方、レーザ発生部710から出力されたレーザ790は、ミラー720、窓部770、照射ヘッド730の内部を経由して、ミラー740で反射および集光される(図20参照)。反射および集光されたレーザ790は、開口部755を経由し、流動している水780を経由して、ブリッジ部側403に照射される。一方、照射ヘッド730は、駆動装置735によって制御され、回転及び軸方向に上下動を繰り返しながら、ブリッジ部側403に沿って移動し、必要な部位の強度を向上させる。
- [0094] 目的とする磁石挿入口401に対する加工が終了すると、照射ヘッド730は、磁石挿入口401から抜き出され、径方向に回転し、次の磁石挿入口401に位置決めされる。そして、照射ヘッド730による上記加工が繰り返される。
- [0095] ロータ400に形成されている全ての磁石挿入口401に対する加工が終了すると、ホルダ420から取外され、出荷される(図19参照)。
- [0096] 以上のように、実施の形態3においても、強度の必要とされる磁石挿入口の内周面 におけるブリッジ部の強度を、レーザの照射によって向上させることが可能である。
- [0097] 図21は、実施の形態4に係るレーザピーニング装置を説明するための側面図である。実施の形態1と同様の機能を有する部材については類似する符号を使用し、重複を避けるため、その説明を省略する。
- [0098] レーザピーニング装置800は、レーザ690の照射スポットに対するロータ850の相対的な位置の検出するための位置検出装置810と、レーザピーニング状態を検出するため状態検出器820とを有する点で、実施の形態1に係るレーザピーニング装置600と概して異なっている。
- [0099] 位置検出装置810は、レーザ690の照射スポットの周辺を光学的に観察するための撮像装置811と、槽660の側面に形成される窓部812とを有する。撮像装置は、例えば、ビデオカメラであり、窓部812に近接して配置される。
- [0100] 位置検出装置810は、窓部812を介して撮像装置811によって観察された映像を 利用し、例えば、フレームを画像解析することで、レーザ690の照射スポットに対する

- ロータ850の相対的な位置を検出することが可能である。撮像装置811の設置位置は、特に限定されず、例えば、槽660の内部や上方に配置することも可能である。
- [0101] 状態検出器820は、レーザ690の照射によって生じるプラズマによって誘起される 音響を測定するための音響測定装置821を有する。音響測定装置821は、例えば、 圧電素子を利用するマイクロフォンであり、ロータ850の近傍に配置される。
- [0102] レーザピーニング状態の差異は、音響に影響を及ぼす。そのため、状態検出器82 0は、音響測定装置821によって測定された音響を利用し、例えば、出力をAD変換 した信号の波形を解析したり、音響をシャドウグラフによって可視化した画像を解析 することで、レーザピーニング状態を検出することが可能である。
- [0103] 一方、レーザピーニング状態は、レーザ690の照射面の構成に影響される。例えば、レーザ690の照射スポットが、ロータ850の板厚の中央部位を移動する場合と、ロータ850の重ね合せ面を含んだ領域を移動する場合とでは、レーザピーニング状態に差異を生じる。
- [0104] したがって、レーザピーニング状態の検出に基づいて、状態検出器820は、レーザ 690の照射スポットに対するロータ850の相対的な位置を、リアルタイムかつ高精度 で把握することが可能である。音響測定装置821の設置位置は、特に限定されず、 例えば、 槽660の外部に配置することも可能である。
- [0105] レーザピーニング装置800は、位置検出装置810および状態検出器820の検出結果を利用して、レーザ690の照射スポットに対してロータ850を相対的に移動させるための駆動装置である2軸移動テーブル(不図示)を制御する。そのため、レーザ690の照射スポットの移動経路を、高精度で管理することが可能である。位置検出装置810および状態検出器820の一方を、必要に応じて適宜省略したり、位置検出装置810および/又は状態検出器820を複数配置することも可能である。
- [0106] レーザピーニング状態は、レーザ690の照射スポットが、ロータ850と押さえ板220 の重ね合せ面を含んだ領域を移動する場合や、押さえ板220の板厚の中央部位を移動する場合や、押さえ板220の外側端面を移動する場合においても、差異を生じる。したがって、レーザピーニング状態を識別するための閾値を適宜設定することで、状態検出器820を、例えば、制御異常の検出器として利用することも可能である。

- [0107] レーザピーニング状態の検出は、音響を利用することに限定されない。例えば、音響測定装置821を、レーザの照射によって生じるプラズマの発光を測定するための光測定装置によって代替することが可能である。光測定装置は、例えば、カラーフィルタ、イメージインテンシファイア、CCD等のデバイスによって構成され、槽660の側面に形成される窓部を介して、プラズマの発光分布を測定できるように配置される。
- [0108] 図22は、図21に示されるレーザピーニング装置に係るレーザの照射スポットの移動経路を説明するための側面図である。
- [0109] 被加工材であるロータ850は、板厚が0.35mmである電磁鋼板(35A230)を打ち抜くことで形成されている。レーザのエネルギは、70mJである。レーザの照射スポットSの径は、Φ0.4mmである。レーザのパルス密度は、50パルス/mm²である。
- [0110] 照射スポットSは、内周方向に配置される折り返し点に到達する毎に積層方向に送られ、かつ内周方向に沿って所定ピッチの移動を繰り返すように制御される。ロータ8 50の積層方向に関する照射スポットSの送りピッチおよび内周方向に関する照射スポットSの移動ピッチは、2種類の条件を設定した。
- [0111] 条件1においては、送りピッチは、0.35mmであり、ロータ850の板厚と略一致しており、移動ピッチは、0.141mmである。条件2においては、送りピッチおよび移動ピッチは、同一の0.141mmである。
- [0112] 条件1においては、照射スポットSが、ロータ850の重ね合せ面に沿った方向に延長するロータ850の板厚中心を通過するように、2軸移動テーブルを制御している。 したがって、照射スポットSは、内周方向に関し、各ロータ850を一回のみ通過する。
- [0113] 図23は、図21に示されるレーザピーニング装置に係るロータにおけるビッカース硬さ分布を示しているグラフである。ビッカース硬さの測定荷重は、50gfである。
- [0114] 条件1および条件2に係るビッカース硬さ分布は、略一致している。条件1の送りピッチは0.35mmであり、条件2の送りピッチは、0.141mmであるため、条件2の送りピッチを、条件1の送りピッチで除した値は、0.402である。したがって、条件1は、条件2に比べて、レーザピーニングの照射回数を約4割に削減することが可能であり、施工時間を短縮することで、製造コストの削減を図ることができる。
- [0115] 図23に示されるビッカース硬さ分布は、図9および図10に示されるビッカース硬さ

分布と若干異なる。しかし、ビッカース硬さは、測定荷重が25gfの場合、50gfの場合に比べて、「10」程度上昇する傾向が存する。電磁鋼板(35A300)の基材のビッカース硬さは、「200」程度であり、電磁鋼板(35A230)の基材の硬さは、「210」程度である。つまり、上記差異は、ビッカース硬さの測定荷重およびロータ850の基材が異なることが要因であると思われる。

- [0116] 以上のように、実施の形態4は、位置検出装置および状態検出器を有するため、レーザの照射スポットに対してロータを相対的に移動させるための駆動装置を、高精度で制御することが可能である。そのため、レーザの照射スポットの移動経路、送りピッチおよび移動ピッチを、高精度で管理することで、レーザピーニングの照射回数を削減し、施工時間の短縮および製造コストの削減を容易に図ることができる。
- [0117] なお、レーザの照射スポットの送りピッチが、ロータの板厚と略一致している場合、 照射スポットの径は、ロータの板厚より大きいことが必要である。また、照射スポットの 淵においては、プラズマの圧力が低下する傾向がある。そのため、照射スポットの径 は、ロータの板厚の1.1倍以上であることが好ましく、1.2倍以上であることがさらに 好ましい。
- [0118] 一方、照射スポットの径を大きくする場合、レーザ発振器の容量が増加して、設備コストの上昇を引き起こす。入手可能なレーザ発振器の容量および価格を考慮すれば、照射スポットの径は、ロータの板厚の3倍以下であることが好ましく、2.5以下であることがさらに好ましい。
- [0119] したがって、照射スポットの径をロータの板厚によって除した値は、1.1~3の範囲内であることが好ましく、1.2~2.5の範囲内であることがさらに好ましい。
- [0120] さらに、レーザ照射スポットの中心が、ロータの板厚に対する中央部で2分の1の幅 の範囲に入ることが好ましい。この場合、必要な強度が、確実に確保される。
- [0121] また、実施の形態1と同様、レーザ690の照射スポットの移動経路を変更することも可能である。積層方向に折り返し点を配置し、レーザ690の照射スポットSが、折り返し点に到達する毎に内周方向に送り、積層方向に沿って所定ピッチの移動を繰り返すように、制御することも可能である。
- [0122] モータの電磁的な性能を向上させるためには、ロータの磁石位置を可能な限りステ

- ータに近づけ、アウターブリッジ部の幅を狭くすることで、電磁特性を向上させるのが 好ましい。一方、モータの高速回転時の強度維持を考慮すると、アウターブリッジ部 の幅は、広いほうが好ましい。そのため、両者の効果を考慮して、アウターブリッジ部 は、約1mm幅としている。
- [0123] 図24は、レーザピーニングによるアウターブリッジ部の変形を説明するための斜視 図である。
- [0124] レーザピーニングにおいて、表面から約1mmに及ぶ深さまで、圧縮残留応力層が 形成される場合がある。したがって、約1mm幅のアウターブリッジ部505を有するロ ータ500の磁石挿入口501の内周面におけるアウターブリッジ部側503に、レーザピ ーニングを施すと、アウターブリッジ部505全体が塑性変形を起こし、周方向に伸展 し、3次元的な変形を起こす虞がある。
- [0125] アウターブリッジ部505が変形すると、ロータの積層率が悪化しかつ全体の剛性が 劣化するため、遠心力による変形が大きくなる。変形は、必ずしも均等に生じないた め、高速回転時のバランスが崩れて振動が発生し、破損の危険性が高くなる。また、 レーザピーニングによって形成された圧縮残留応力が開放され、レーザピーニング の効果が効率的に発揮されない。
- [0126] 図25は、被加工材の厚さとレーザピーニング後の表面圧縮残留応力との関係を示しているグラフである。被加工材の厚さは、3〜14mmであり、同一条件でレーザピーニングを施している。被加工材の材質は、Fe-3%Si合金である。
- [0127] 図に示されるように、被加工材の厚さが薄い場合、変形によって表面圧縮残留応力が開放される。図25のデータを外挿し、幅1mmのアウターブリッジ部におけるアウターブリッジ部側にレーザピーニングを施した場合に当てはめると、100MPa以下の低い表面圧縮残留応力しか期待できない。Fe-3%Si合金からなる被加工材を使用して実行した種々の実験および解析によると、レーザピーニングによる圧縮残留応力層の厚さが、被加工材の厚さの10~20%を超える場合、顕著な変形が引き起こされ、表面圧縮残留応力が開放される。
- [0128] したがって、1mm幅のアウターブリッジ部におけるアウターブリッジ部側に、レーザピーニングを施す場合、変形を抑制するためには、圧縮残留応力層の厚さは、0.2

mm以下に制御することが好ましい。ロータを押し圧状態で保持する場合は、アウターブリッジ部が拘束されるため、レーザピーニングによる圧縮残留応力層の厚さを大きくすることが可能である。ロータを押し圧状態で保持するための押圧力は、例えば、5kgf/cm²以上が好ましく、0.5kgf/cm²以下では効果が顕著ではない。

- [0129] 図26は、レーザの照射スポットの径と圧縮残留応力層の深さとの関係を示している グラフである。なお、Fe-3%Si合金からなる被加工材を使用している。
- [0130] 図に示されるように、圧縮残留応力層の厚さは、照射スポットの径の大きさに略等しい。そのため、レーザのパルスエネルギを20mJとし、照射スポットの径を約0.2mmとした場合、(押し圧状態で保持されていない)アウターブリッジ部の3次元的な変形を十分小さく制御することが可能である。
- [0131] なお、本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲 の範囲内で種々改変することができる。
- [0132] 例えば、実施の形態2に係る段差を、実施の形態1および実施の形態3に係るブリッジ部に適用することも可能である。また、実施の形態1および実施の形態4に係るレーザピーニング装置に、液体流動装置を設けることも可能である。
- [0133] さらに、本出願は、2003年9月22日に出願された日本特許出願番号2003-330 686号および2004年9月21日に出願された日本特許出願番号2004-273677号 に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。

## 請求の節囲

- [1] ロータ素材として低鉄損の電磁鋼板を使用するロータであって、 ロータの磁石挿入口の内周面におけるブリッジ部側は、液体を経由してレーザを照 射するレーザピーニングを適用することによって、強度が向上しているロータ。
- [2] 前記レーザが照射されるブリッジ部側の部位は、ロータが回転する際に磁石に働く 遠心力に基づいて、高い応力が発生する部位である請求項1に記載のロータ。
- [3] 前記ロータにおいては、1極あたりの磁石が複数に分割されている請求項1又は請求項2に記載のロータ。
- [4] 前記ブリッジ部側は、段差(303A, 304A)を有する請求項1〜3のいずれか1項に 記載のロータ。
- [5] 前記段差(303A,304A)は、片側あるいは両側に配置されている請求項4に記載。 のロータ。
- [6] ロータ素材として低鉄損の電磁鋼板を使用するロータ製造方法であって、 磁石挿入口の内周面におけるブリッジ部側に、液体を経由してレーザを照射するレ ーザピーニングを適用することによって、前記ブリッジ部側の強度を向上させるロータ 製造方法。
- [7] 前記レーザが照射されるブリッジ部側の部位は、ロータが回転する際に磁石に働く 遠心力に基づいて、高い応力が発生する部位である請求項6に記載のロータ製造方 法。
- [8] 前記ロータは、複数であり、積層されている請求項6又は請求項7に記載のロータ 製造方法。
- [9] 前記ロータは、押し圧状態で保持される請求項8に記載のロータ製造方法。
- [10] 前記ロータにおいては、1極あたりの磁石が複数に分割されている請求項6〜9の いずれか1項に記載のロータ製造方法。
- [11] 前記ブリッジ部側は、段差(303A, 304A)を有する請求項6〜10のいずれか1項 に記載のロータ製造方法。
- [12] 前記段差(303A, 304A)は、片側あるいは両側に配置されている請求項11に記載のロータ製造方法。

- [13] 前記段差は、プレスによって形成される請求項11又は請求項12に記載のロータ製造方法。
- [14] 前記ロータは、打ち抜きによって形成される請求項6〜13のいずれか1項に記載のロータ製造方法。
- [15] 低鉄損の電磁鋼板からなるロータに対し、液体を経由してレーザを照射するレーザ ピーニング方法であって、

レーザの照射スポット(S)に対して前記ロータを相対的に移動させ、前記ロータの 磁石挿入口の内周面におけるブリッジ部側に、レーザを照射することによって、前記 ブリッジ部側の強度を向上させるレーザピーニング方法。

- [16] レーザの照射面に位置する液体を流動させることによって、前記レーザの照射面に おいて発生する加工屑を、レーザの光路から排除する請求項15に記載のレーザピ ーニング方法。
- [17] 前記ロータは、複数であり、積層されている請求項15又は請求項16に記載のレー ザピーニング方法。
- [18] 前記ロータは、押し圧状態で保持される請求項17に記載のレーザピーニング方法
- [19] 前記レーザの照射スポット(S)は、前記ロータの内周方向に移動しかつ前記ロータ の積層方向に送られており、前記レーザの照射スポット(S)の中心が、前記ロータの 中央部で板厚の2分の1の幅を占める範囲にある請求項18に記載のレーザピーニン グ方法。
- [20] 前記レーザの照射スポット(S)の送りピッチは、前記ロータの板厚と略一致している 請求項19に記載のレーザピーニング方法。
- [21] 前記レーザの照射スポット(S)の径を前記ロータの板厚によって除した値は、1.1 ~3の範囲内に位置する請求項19又は請求項20に記載のレーザピーニング方法。
- [22] 前記レーザの照射スポット(S)に対する前記ロータの相対的な移動は、レーザの照射スポット(S)に対するロータの相対的な位置の検出および/又はレーザピーニング 状態の検出に基づいて制御される請求項15~21のいずれか1項に記載のレーザピーニング方法。

- [23] 前記レーザの照射スポット(S)に対するロータの相対的な位置の検出は、前記レーザの照射スポット(S)の周辺を光学的に観察することで得られる映像を利用する請求項22に記載のレーザピーニング方法。
- [24] 前記レーザピーニング状態の検出は、レーザの照射によって生じるプラズマの発光 を利用する請求項22に記載のレーザピーニング方法。
- [25] 前記レーザピーニング状態の検出は、レーザの照射によって生じるプラズマによって誘起される音響を利用する請求項22に記載のレーザピーニング方法。
- [26] 低鉄損の電磁鋼板からなるロータに対し、液体を経由してレーザを照射するための レーザ照射装置と、

前記ロータの磁石挿入口の内周面におけるブリッジ部側に沿って、レーザが照射されるように、レーザの照射スポット(S)に対して前記ロータを相対的に移動させるための駆動装置と

を有するレーザピーニング装置。

- [27] レーザの照射面に位置する液体を流動させるための液体流動装置を有する請求 項26に記載のレーザピーニング装置。
- [28] 積層された複数のロータを、押し圧状態で保持するための押圧部材を有する請求 項26又は請求項27に記載のレーザピーニング装置。
- [29] 前記駆動装置は、前記レーザの照射スポット(S)を、前記ロータの内周方向に移動させかつ前記ロータの積層方向に送っており、前記レーザの照射スポット(S)の中心が、前記ロータの中心を含んで板厚の2分の1の幅の範囲を占める範囲にあるように、制御される請求項28に記載のレーザピーニング装置。
- [30] 前記レーザの照射スポット(S)の送りピッチは、前記ロータの板厚と略一致している 請求項29に記載のレーザピーニング装置。
- [31] 前記レーザの照射スポット(S)の径を前記ロータの板厚によって除した値は、1.1 〜3の範囲内に位置する請求項28又は請求項29に記載のレーザピーニング装置。
- [32] 前記駆動装置は、前記レーザの照射スポット(S)に対するロータの相対的な位置の 検出および/又はレーザピーニング状態の検出に基づいて制御される請求項26~ 31のいずれか1項に記載のレーザピーニング装置。

- [33] 前記レーザの照射スポット(S)の周辺を光学的に観察するための撮像装置(811)を有し、前記レーザの照射スポット(S)に対するロータの相対的な位置の検出は、前記撮像装置(811)によって観察された映像を利用する請求項32に記載のレーザピーニング装置。
- [34] 前記レーザの照射によって生じるプラズマの発光を測定するための光測定装置を 有し、前記レーザピーニング状態の検出は、前記光測定装置によって測定されたプラズマの発光を利用する請求項32に記載のレーザピーニング装置。
- [35] 前記レーザの照射によって生じるプラズマによって誘起される音響を測定するための音響測定装置(821)を有し、前記レーザピーニング状態の検出は、前記音響測定装置(821)によって測定された音響を利用する請求項32に記載のレーザピーニング装置。



[図2]



[図3]



[図4]



[図5]





[図7]









[図10]



[図11]



[図12]



[図13]



[図14]



[図15]





[図17]





[図18]



[図19]



[図20]



[図21]



[図22]



[図23]







[図25]



[DAM] 代现图新新亚面素

[図26]



## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/013767

| A. | CLASSIFICA<br>Int.Cl <sup>7</sup> | TION OF SUI<br>H02K1/2 | ER |
|----|-----------------------------------|------------------------|----|
|    |                                   |                        |    |

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl<sup>7</sup> H02K1/27

Jitsuyo Shinan Koho

1926-1996

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Toroku Jitsuyo Shinan Koho

1994-2005

15 February, 2005 (15.02.05)

Kokai Jitsuyo Shinan Koho

1971-2005

Jitsuyo Shinan Toroku Koho

1996-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages         | Relevant to claim No.              |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------|
| Y         | JP 2003-116235 A (Matsushita Electric Industrial Co., Ltd.), 18 February, 2003 (18.02.03), | 1-3,6-10,<br>14-18,22-28,<br>32-35 |
| A         | All pages<br>(Family: none)                                                                | 4,5,11-13,<br>19-21,29-31          |
| Y         | JP 7-248397 A (KABUSHIKI KAISHA TOSHIBA),<br>26 September, 1995 (26.09.95),<br>All pages   | 1-3,6-10,<br>14-18,22-28,<br>32-35 |
| A         | (Family: none)                                                                             | 4,5,11-13,<br>19-21,29-31          |
| Y         | JP 2001-318081 A (KABUSHIKI KAISHA TOSHIBA),<br>16 November, 2001 (16.11.01),<br>All pages | 1-3,6-10,<br>14-18,22-28,<br>32-35 |
| A         | (Family: none)                                                                             | 4,5,11-13,<br>19-21,29-31          |
| a1.       |                                                                                            |                                    |

| ×    | Further documents are listed in the continuation of Box C.                                           |      | See patent family annex.                                                                                                           |
|------|------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------|
| *    | Special categories of cited documents:                                                               | "T"  | later document published after the international filing date or priority                                                           |
| "A"  | document defining the general state of the art which is not considered to be of particular relevance |      | date and not in conflict with the application but cited to understand<br>the principle or theory underlying the invention          |
| "E"  | earlier application or patent but published on or after the international filing date                | "X"  | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive |
| "L"  | document which may throw doubts on priority claim(s) or which is                                     |      | step when the document is taken alone                                                                                              |
|      | cited to establish the publication date of another citation or other special reason (as specified)   | "Y"  | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is     |
| "O"  | document referring to an oral disclosure, use, exhibition or other means                             |      | combined with one or more other such documents, such combination                                                                   |
| "P"  | document published prior to the international filing date but later than the priority date claimed   | "&"  | being obvious to a person skilled in the art document member of the same patent family                                             |
| Date | of the actual completion of the international search                                                 | Date | e of mailing of the international search report                                                                                    |

Authorized officer

Telephone No.

Facsimile No. Form PCT/ISA/210 (second sheet) (January 2004)

Japanese Patent Office

Name and mailing address of the ISA/

27 January, 2005 (27.01.05)

## INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/013767

|                  |                                                                                                                       | PCT/JP20    | 004/013767                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|
| C (Continuation) | ). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                |             |                                                                 |
| Category*        | Citation of document, with indication, where appropriate, of the relevant                                             | it passages | Relevant to claim No.                                           |
| Y<br>A           | EP 0724929 A2 (KABUSHIKI KAISHA TOSHIBA),<br>07 August, 1996 (07.08.96),<br>All pages<br>& JP 8-206869 A<br>All pages |             | 1-3,6-10,<br>14-18,22-28,<br>32-35<br>4,5,11-13,<br>19-21,29-31 |
| Y                | EP 1209464 A (GENERAL ERECTRIC CO.),<br>29 May, 2001 (29.05.01),<br>All pages                                         |             | 1-3,6-10,<br>14-18,22-28,<br>32-35                              |
| A                | & JP 2002-236112 A<br>All pages                                                                                       |             | 4,5,11-13,<br>19-21,29-31                                       |
|                  |                                                                                                                       |             |                                                                 |
|                  | ·                                                                                                                     |             |                                                                 |
|                  | •                                                                                                                     |             |                                                                 |
| . :              |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       | ·<br>))     |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
| : :              |                                                                                                                       |             | • • • •                                                         |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
|                  |                                                                                                                       |             |                                                                 |
| 20000            | 10 (continuation of second sheet) (January 2004)                                                                      |             |                                                                 |

A. 発明の属する分野の分類(国際特許分類 (IPC)) Int. Cl7 H02K 1/27 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl 7 H02K 1/27 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996 日本国公開実用新案公報 1971-2005 日本国登録実用新案公報 1994-2005 日本国実用新案登録公報 1996-2005 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー\* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Y JP ·2003-116235 A (松下電器産業株式会社), 1-3, 6-10, 14-18.02.2003, 全頁 (ファミリーなし) 18, 22-28, 32-35 Α 4, 5, 11–13, 19 -21, 29-31Y JP 7-248397 A (株式会社東芝), 1-3, 6-10, 14-26.09.1995,全頁(ファミリーなし) 18, 22-28, 32-Α 4, 5, 11–13, 19 × C棡の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 \* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの。 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査報告の発送日 (10.2.2005) 国際調査を完了した日 27.01.2005 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 13 V 3018 日本国特許庁(ISA/JP) 三島木 英宏 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3356

| C (続き).         | 関連すると認められる文献                                                     | 0 17 0 13 7 0 7                  |
|-----------------|------------------------------------------------------------------|----------------------------------|
| 引用文献の<br>カテゴリー* |                                                                  | 関連する                             |
|                 | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                | 請求の範囲の番号<br>-21, 29-31           |
| Y               |                                                                  | 21, 25 31                        |
| Y               | JP 2001-318081 A (株式会社東芝) ,<br>16.11.2001,全頁 (ファミリーなし)           | 1-3, 6-10, 14-<br>18, 22-28, 32- |
|                 |                                                                  | 35                               |
| A               |                                                                  | 4, 5, 11–13, 19<br>–21, 29–31    |
|                 |                                                                  | 21, 29–31                        |
| Y               | EP 0724929 A2 (KABUASHIKI KAISH<br>A TOSHIBA), 07. 08. 1996, 全頁, | 1-3, 6-10, 14-                   |
|                 | &JP 8-206869 A, 全頁                                               | 18, 22–28, 32–<br>35             |
| A .             |                                                                  | 4, 5, 11–13, 19                  |
|                 |                                                                  | -21, 29-31                       |
| Y               | EP 1209464 A (GENERAL ERECTRIC<br>COMPANY), 29.05.2001, 全頁,      | 1-3, 6-10, 14-                   |
|                 | &JP 2002-236112 A, 全頁                                            | 18, 22–28, 32–<br>35             |
| · A             |                                                                  | 4, 5, 11–13, 19                  |
|                 | 4                                                                | -21, 29-31                       |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  | 1 2 1                            |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  | • .                              |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
|                 |                                                                  |                                  |
| <u> </u>        |                                                                  |                                  |