HKN ECE 110 Review Session Exam 1

COREY SNYDER

What is charge? Current? Voltage? Resistance?

- Electrons carry charge and thus convey electrical energy
 - Units: Coulombs [C]
- Current is the flow of charge
 - Units: Coulombs/second = Amps [A] (Amperes)
- •Voltage is the work done per unit charge. Think of this as the force or pressure on the electrons
 - Units: Joules/ Coulomb = Volts [V]
- Resistance is the opposition to the flow of charge
 - Units: Ohms $[\Omega]$

Energy vs. Power

- Energy is the ability to do work
 - Units: Joules [J]
- Energy can take on many forms
 - Potential Energy Chemical, Electrical, Mechanical
 - Kinetic Energy
- •Energy is always conserved!
- Power is the rate at which energy is transferred
 - Units: Joules/second = Watts [W]

Capacitors

- A capacitor is a device that stores charge
 - Units: Coulombs/Volt = Farads [F]
 - This charge is said to be "coupled"

•
$$E_{capacitor} = \frac{1}{2}CV^2$$

$${}^{\bullet}C = \frac{Q}{V}$$

Ohm's Law, Resistance, and Power

- •Ohm's Law describes the relationship between the voltage *across* and current *through* a resistive element
 - Ohm's law only applies for linear components, i.e. resistors
 - More on linear components with Thevenin/Norton Equivalents (and in ECE 210!)
- •V = IR
- •Resistance of an element can found by: $R = \frac{\rho l}{A}$
- •Power dissipated by an element can be found by: P = IV, $P = I^2R$, $P = \frac{V^2}{R}$
 - You can go between the three forms using Ohm's Law!

Nodes, KVL, and KCL

- •A node is any part of a circuit that is at an equipotential
 - Wires are equipotentials
- Kirchhoff's Voltage Law
 - Conservation of Energy
 - Performed on a loop

•
$$\sum V_{rises} = \sum V_{drops}$$

- Kirchhoff's Current Law
 - Conservation of Charge
 - Performed at a node
 - Bubble method

•
$$\sum I_{in} = \sum I_{out}$$

Series and Parallel Components

•Two components are in series if they share the same current

- •Two components are in parallel if they share the same two nodes
 - As a consequence, they must share the same voltage

Voltage Divider and Current Divider

•We can use voltage divider rule (VDR) in order to find the voltage across individual resistors in series

$$egin{align*} egin{align*} egin{align*}$$

•We can use current divider rule (CDR) in order to find the current through individual resistors in parallel

$$I_1 = rac{R_2}{R_1 + R_2} \, I_s \qquad I_2 = rac{R_1}{R_1 + R_2} \, I_s$$

Root-mean-square Voltage (V_{rms})

•The exact definition of V_{rms} is:

$$V_{rms} = \sqrt{\frac{\left(\int_0^T f^2(t)dt\right)}{T}}$$

- •This is the "square root of the average value of the functions squared"
- •We will mainly ask you to use the following two formulas:

•
$$V_{rms}(sinusoid) = \frac{Amplitude}{\sqrt{2}}$$

- • $V_{rms}(square\ wave) = V_{p-p}\sqrt{\%DC}$
- •We use V_{rms} to determine the power delivered to a load from a time-varying source

•
$$P_{avg} = \frac{V_{rms}^2}{R}$$

Power and Labeling

- •We know that power can be expressed in three ways: $P = IV = I^2R = \frac{V^2}{R}$
- •If the value of power is positive, the element is absorbing power
- •If the value of power is negative, the element is supplying power
- Standard vs. Non-Standard Labeling
- •Standard: P = IV, V = IR, Current goes + to -
- •Non-Standard: P = -IV, V = -IR, Current goes to +

I-V Characteristics

- •We can characterize circuits where the current is a function of the voltage
- •For ECE 110, we typically want to characterize linear circuits, where the I-V Characteristic is of the form
 - $\bullet I = mV + b$
- •In order to obtain this equation, we want to find two points:
 - V_{oc} and I_{sc}
- • V_{oc} is the x-intercept, I_{sc} is the y-intercept

Legit Tips and Tricks to Show Off Your Wits

- Use your note sheet more like a study tool
- Use the practice exam on PrairieLearn
- Do not spend too much time on questions you cannot answer
- Spend your time showing what you know
- Study past exams