## CLUSTERING

NADILA IMAARAH

**D4 SAINS DATA TERAPAN A** 

### 1. DATASET: TRANSACTION.CSV

### **MENGIMPOR LIBRARY**

```
import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage, fcluster
from scipy.spatial.distance import pdist
import numpy as np
import matplotlib.pyplot as plt
```

### **MENGECEK MISSING VALUE**

| print(data   | aset.isna().sum()) |
|--------------|--------------------|
| InvoiceNo    | Ø                  |
| StockCode    | 0                  |
| Qty          | 0                  |
| InvoiceDate  | 0                  |
| CustomerID   | 0                  |
| Country      | 0                  |
| dtype: int64 |                    |

### LOAD DATASET

| <pre>dataset = pd.read_csv('transaction.csv') dataset</pre> |                        |             |     |                 |            |                      |
|-------------------------------------------------------------|------------------------|-------------|-----|-----------------|------------|----------------------|
|                                                             | InvoiceNo              | StockCode   | Qty | InvoiceDate     | CustomerID | Country              |
| 0                                                           | 537626                 | 22725       | 830 | 12/7/2010 14:57 | 12347      | Iceland              |
| 1                                                           | 537626                 | 22729       | 948 | 12/7/2010 14:57 | 12347      | Iceland              |
| 2                                                           | 537626                 | 22195       | 695 | 12/7/2010 14:57 | 12347      | Iceland              |
| 3                                                           | 542237                 | 22725       | 636 | 1/26/2011 14:30 | 12347      | Iceland              |
| 4                                                           | 542237                 | 22729       | 536 | 1/26/2011 14:30 | 12347      | Iceland              |
|                                                             |                        |             |     |                 |            |                      |
| 10541                                                       | 543911                 | 21700       | 455 | 2/14/2011 12:46 | 17829      | United Arab Emirates |
| 10542                                                       | 543911                 | 22111       | 578 | 2/14/2011 12:46 | 17829      | United Arab Emirates |
| 10543                                                       | 543911                 | 22112       | 163 | 2/14/2011 12:46 | 17829      | United Arab Emirates |
| 10544                                                       | 564428                 | 23296       | 545 | 8/25/2011 11:27 | 17844      | Canada               |
| 10545<br>0546 ro                                            | 564428<br>ws × 6 colum | 23294<br>ns | 643 | 8/25/2011 11:27 | 17844      | Canada               |

Dataset yang digunakan adalah dataset transaction yang terdiri dari beberapa fitur yakni InvoiceNO, StockCode, Qty, InvoiceDate, CustomerID dan country. Setelah itu saya mengecek missing value terlebih dahulu, didapatkan bahwa tidak ada missing value

## 2. COUNTRY = BERAPA KEMUNCULAN TIAP NEGARA PADA DATASET, DAN TAMPILKAN

country\_counts = dataset["Country"].value\_counts()
country\_counts

| Country              |      |
|----------------------|------|
| Germany              | 2269 |
| France               | 2109 |
| EIRE                 | 1620 |
| Netherlands          | 634  |
| Spain                | 539  |
| Belgium              | 486  |
| Switzerland          | 434  |
| Portugal             | 367  |
| Australia            | 356  |
| Norway               | 239  |
| Italy                | 190  |
| Channel Islands      | 184  |
| Finland              | 152  |
| Cyprus               | 113  |
| Sweden               | 109  |
| Denmark              | 98   |
| Japan                | 92   |
| Austria              | 88   |
| Poland               | 80   |
| Israel               | 61   |
| USA                  | 47   |
| Singapore            | 45   |
| Unspecified          | 44   |
| Canada               | 36   |
| Iceland              | 35   |
| Greece               | 33   |
| United Arab Emirates | 23   |
| Malta                | 15   |
| RSΔ                  | 1/   |

| RSA                       | 14 |
|---------------------------|----|
| Brazil                    | 8  |
| Lithuania                 | 8  |
| Lebanon                   | 5  |
| European Community        | 5  |
| Czech Republic            | 4  |
| Bahrain                   | 3  |
| Saudi Arabia              | 1  |
| Name: count, dtype: int64 |    |

disini saya menhitung jumlah kemunculan nama tiap negara. Disini saya akan menggunakan kolom country saja lalu menggunakan fungsi value\_counts() yang akan secara otomatis menghitung banyak kemunculan masing-masing nama negara di kolom country

## 3. TRANSAKSI = HITUNGLAH BANYAKNYA TRANSAKSI PADA TIAP NEGARA (1 KODE INVOICENO =1 TRANSAKSI)

```
trans_by_country = dataset.groupby('Country')['InvoiceNo'].nunique().reset_index()
trans_by_country.columns = ['Country', 'TransactionCount']
print("\nJumlah transaksi per negara:")
print(trans_by_country)
```

Disini saya akan mengelompokkan data berdarakan negara di kolom country dengan menggunakan fungsi groupby, setelah dikelompokkkan per negara akan dilakukan menghitung jumlah Invoice No setiap negara dengan menggunakan fungsi nunique(). InvoiceNo ini yang dihitung yang nilainya unik tidak duplikat

| 19 | Japan                | 14 |
|----|----------------------|----|
| 20 | Lebanon              | 1  |
| 21 | Lithuania            | 2  |
| 22 | Malta                | 2  |
| 23 | Netherlands          | 76 |
| 24 | Norway               | 28 |
| 25 | Poland               | 17 |
| 26 | Portugal             | 43 |
| 27 | RSA                  | 1  |
| 28 | Saudi Arabia         | 1  |
| 29 | Singapore            | 4  |
| 30 | Spain                | 72 |
| 31 | Sweden               | 26 |
| 32 | Switzerland          | 41 |
| 33 | USA                  | 5  |
| 34 | United Arab Emirates | 2  |
| 35 | Unspecified          | 8  |

| Jumlah | transaksi per nega | ra:              |
|--------|--------------------|------------------|
|        | Country            | TransactionCount |
| 0      | Australia          | 44               |
| 1      | Austria            | 12               |
| 2      | Bahrain            | 1                |
| 3      | Belgium            | 84               |
| 4      | Brazil             | 1                |
| 5      | Canada             | 3                |
| 6      | Channel Islands    | 21               |
| 7      | Cyprus             | 16               |
| 8      | Czech Republic     | 2                |
| 9      | Denmark            | 18               |
| 10     | EIRE               | 224              |
| 11     | European Community | 3                |
| 12     | Finland            | 26               |
| 13     | France             | 344              |
| 14     | Germany            | 377              |
| 15     | Greece             | 5                |
| 16     | Iceland            | 6                |
| 17     | Israel             | 4                |
| 18     | Italy              | 31               |

### 4. CLUSTER = LAKUKAN CLUSTERING PADA TRANSAKSI DENGAN AVERAGE LINKAGE, DENGAN K=3

```
Z = linkage(trans_by_country[['TransactionCount']], method='average')
clusters = fcluster(Z, 3, criterion='maxclust')
trans_by_country['Cluster'] = clusters
```

Selanjutnya dilakukan pengihitungan jarak atau kemiripan antar negara yang berdasarkan kolom TransactionCount dengan menggunakan metode average. Setelah itu akan dilakukan clusterisas, di sini saya akan membagi data menjadi 3 cluster. Dan label cluster ini akan saya tambahkan ke kolom baru pada dataframe

### 5. CENTROID = TENTUKAN POSISI CENTROID DARI SETIAP CLUSTER

```
centroids = trans_by_country.groupby('Cluster')['TransactionCount'].mean().reset_index()
centroids.columns = ['Cluster', 'Centroid']
centroids
```

|   | Cluster | Centroid   |
|---|---------|------------|
| 0 | 1       | 18.787879  |
| 1 | 2       | 360.500000 |
| 2 | 3       | 224.000000 |

Selanjutnya data akan di kelompokkan berdasarkan cluster akan dihitung nilai centroid dari setiap cluster. Berdasarkan output cluster 1 menunjukan centroid yang paling kecil hanya sebesar 18.79 kemudian cluster 2 memiliki nilai rata-rata sebesar 360.500 dan cluster 3 memiliki nilai rata-rata sebesar 224.000

### 6. SORTED = LAKUKAN PENGURUTAN POSISI CENTROID SECARA ASCENDING

```
sorted_centroids = centroids.sort_values('Centroid').reset_index(drop=True)
print(sorted_centroids)

O.Os
```

|   | Cluster | Centroid    |
|---|---------|-------------|
| 0 | 1       | 18.787879   |
| 1 | 3       | 224.0000000 |
| 2 | 2       | 360.500000  |

Hasil centroid sebelumnya akan diurutkan pada tahap ini. Pengurutan didasarkan pada value dari transaksi dengan metode pengurutan ascending (dari kecil ke besar).

# 7. INDEKS TERDEPAN DARI CENTROID SETELAH PENGURUTAN, MENGINDIKASIKAN CLUSTER TRANSANKSI RENDAH HINGGA TERTINGGI.TAMPILKAN NEGARA MANA SAJA YANG TRANSAKSINYA RENDAH, SEDANG DAN TINGGI

```
level_labels = ['Rendah', 'Sedang', 'Tinggi']
cluster_level_map = {
    cluster_id: level
    for cluster_id, level in zip(sorted_centroids['Cluster'], level_labels)
}
trans_by_country['Level'] = trans_by_country['Cluster'].map(cluster_level_map)
remap_cluster_id = {old: new for old, new in zip(sorted_centroids['Cluster'], [1, 2, 3])}
trans_by_country['Cluster'] = trans_by_country['Cluster'].map(remap_cluster_id)
```

|    | il clustering semua ne        | •                | c1+ | 1      |
|----|-------------------------------|------------------|-----|--------|
|    |                               | TransactionCount |     | Level  |
| 2  | Bahrain                       | 1                | 1   | Rendah |
| 4  | Brazil                        | 1                | 1   | Rendah |
| 28 | Saudi Arabia                  | 1                | 1   | Rendah |
| 27 | RSA                           | 1                | 1   | Rendah |
| 20 | Lebanon                       | 1                | 1   | Rendah |
| 8  | Czech Republic                | 2                | 1   | Rendah |
| 22 | Malta                         | 2                | 1   | Rendah |
| 21 | Lithuania                     | 2                | 1   | Rendah |
| 34 | United Arab Emirates          | 2                | 1   | Rendah |
| 5  | Canada                        | 3                | 1   | Rendah |
| 11 | European Community            | 3                | 1   | Rendah |
| 17 | Israel                        | 4                | 1   | Rendah |
| 29 | Singapore                     | 4                | 1   | Rendah |
| 33 | USA                           | 5                | 1   | Rendah |
| 15 | Greece                        | 5                | 1   | Rendah |
| 16 | Iceland                       | 6                | 1   | Rendah |
| 35 | Unspecified                   | 8                | 1   | Rendah |
| 1  | Austria                       | 12               | 1   | Rendah |
| 19 | Japan                         | 14               | 1   | Rendah |
| 7  | Cyprus                        | 16               | 1   | Rendah |
| 25 | Poland                        | 17               | 1   | Rendah |
| 9  | Denmark                       | 18               | 1   | Rendah |
|    |                               |                  |     |        |
| 3  | Belgium                       | 84               | 1   | Rendah |
| 10 | EIRE                          | 224              | 2   | Sedang |
| 13 | France                        | 344              | 3   | Tinggi |
| 14 | Germany                       | 377              | 3   | Tinggi |
|    | out is truncated. View as a s |                  |     |        |

Pada tahap ini akan dilakukan labeling berdasarkan nilai centroid yang telah di dapatkan di tahap sebelumnya. Dan membuat rules jika cluster 1 menunjukkan negara tersebut memiliki jumlah transaksi yang sedikit dan masuk ke kategori rendah, cluster 2 menunjukkan negara tersebut memiliki jumlah transaksi yang sedang dan cluster 3 menunjukkan negara tersebut memiliki jumlah cluster yang banyak dan masuk ke kategori tinggi. Berdasarkan output negara yang termasuk cluster sedang yakni EIRE dan negara yang termasuk cluster tinggi yakni France dan

Germany

## 8. VISUALISASI DENGAN WARNA YANG BERBEDA UNTUK HASIL CLUSTER (NO. 7), DIMANA SUMBU X=URUTAN COUNTRY DAN SUMBU Y=TRANSAKSI

```
level_order = ['Rendah', 'Sedang', 'Tinggi']
trans_by_country['Level'] = pd.Categorical(trans_by_country['Level'], categories=level_order, ordered=True)
trans_by_country_sorted = trans_by_country.sort_values(['Level', 'TransactionCount'], ascending=[True, False])

color_map = {'Rendah': 'blue', 'Sedang': 'yellow', 'Tinggi': 'red'}
colors = trans_by_country_sorted['Level'].map(color_map)
plt.figure(figsize=(12, 6))
plt.bar(trans_by_country_sorted['Country'], trans_by_country_sorted['TransactionCount'], color=colors)
plt.xticks(rotation=90)
plt.xlabel('Country')
plt.ylabel('Jumlah Transaksi')
plt.title('Clustering Transaksi per Negara (Average Linkage)')
plt.tight_layout()
plt.show()
```



Setelah menambahkan label cluster dan melakuakn sorting cluster maka disini saya juga menampilkan visualisasi. Dapat disimpulkan bahwa Sebagian besar negara berada pada cluster 1 yang menunjukan cluster rendah. Hanya ada satu negara yang masuk cluster 2 yang menunjukkan kategori sedang dan hanya ada dua negara yang masuk ke cluster 3 yang menunjuukan kategori tinggi

## TERIMA KASIH