WHAT IS CLAIMED IS:

1	Substitute 1. A method of recovering a clock signal and data from a data signal
2	comprising:
3	receiving the data signal having a first data rate;
4	receiving the clock signal having a first clock frequency, and alternating
5	between a first level and a second level;
6	generating a first signal by passing the data signal when the clock signal is at
7	the first level, and storing the data signal when the clock signal is at the second level;
8	generating a second signal by passing the data signal when the clock signal is
9	at the second level, and storing the data signal when the clock signal is at the first level;
10	generating a third signal by passing the first signal when the clock signal is at
[] []11	the second level, and storing the first signal when the clock signal is at the first level;
12 12 13	generating a fourth signal by passing the second signal when the clock signal
13	is at the first level, and storing the second signal when the clock signal is at the second level;
្ជា ្រ្គ14	generating an error signal by taking an exclusive-OR of the first signal and the
<u></u> 15	second signal; and
16	generating a reference signal by taking an exclusive-OR of the third signal and
<u>1</u> 7	the fourth signal,
1 8	wherein the first data rate is twice the first clock frequency.
1	2. The method of claim 1 further comprising:
2	applying the error signal and the reference signal to a charge pump to generate
3	a charge pump output.
1	The method of claim 2 wherein the generating the first signal is done
2	by a first latch, the generating the second signal is done by a second latch, the generating the
3	third signal is done by a third latch, and the generating the fourth signal is done by a fourth
4	latch.
1	4. The method of claim 3 wherein the generating the error signal and the
2	generating the reference signal is done by an exclusive-OR gate.
1	5. The method of claim 1 wherein the third signal and the fourth signal
2	are demultiplexed data outputs.

	1	6. The method of claim 3 wherein the clock signal has approximately a
	2	fifty percent duty cycle.
	1	7. The method of claim 5 wherein the clock signal is generated by a ring
	2	oscillator.
		A second of forms and the firms a second defectional
	1	8. An apparatus for recovering data from a received data signal
	2	comprising:
	3	a first storage device configured to generate a first signal by receiving the
	4	received data signal, and either passing the received data signal or storing the received data
:"1	5	signal;
Ü	6	a second storage device configured to generate a second signal by receiving
ŭ	7	the received data signal, and either passing the received data signal or storing the received
	8	data signal;
Ó	9	a third storage device configured to generate a third signal by receiving the
12.5	10	first signal, and either passing the first signal or storing the received first signal;
5	11 12	a fourth storage device configured to generate a fourth signal by receiving the
u L	12	second signal, and either passing the second signal or storing the second signal;
U	13	a first logic gate configured to perform an exclusive-OR of the first signal and
	14	the second signal; and
	15	a second logic gate configured to perform an exclusive-OR of the third signal
	16	and the fourth signal,
	17	wherein when the first storage device passes the received data, the second
	18	storage device stores the received data, the third storage device stores the first signal, and the
	19	fourth storage device passes the second signal, and when the first storage device stores the
	20	received data, the second storage device passes the received data, the third storage device
:	21	passes the first signal, and the fourth storage device stores the second signal.
	1	9. The apparatus of claim 8 wherein the first storage device either passes
	2	or stores the received data signal under control of a clock signal, the second storage device
	3	either passes or stores/the received data under control of the clock signal, the third storage
	4	device either passes or stores the first signal under control of the clock signal, and the fourth
	5	storage device either passes or stores the second signal under control of the clock signal.

receive a differential signal.

2

3	wherein the charge pump generates an output signal by subtracting the second
4	signal from the first signal.
1	23. The apparatus of claim 22 wherein the clock signal has approximately
2	a fifty percent duty cycle.
1	24. The apparatus of claim 22 wherein the voltage controlled oscillator
2	comprises a ring oscillator.