Facit til eksamen i Diskret Matematik

Mandag den 6. juni 2011, kl. 9.00-13.00.

Opgave 1

Definér $f:A\mapsto B$ ved f(x)=3x+6. For $y\in B$ har f(x)=y entydig løsning $x=\frac{y-6}{3}$. Løsningen tilhører A. f er derfor en bijektion og |A|=|B|.

Opgave 2

Vis at $f(x) = x^3 - 2x + 1$ er $O(x^3)$. Hvis x > 2 er $x^3 - 2x + 1 > 0$ og dermed er $|f(x)| = |x^3 - 2x + 1| = x^3 - 2x + 1 < x^3 + 1 < 2x^3 = 2|x^3|$. Så med K = 2, C = 2 er $|f(x)| < C|x^3|$ for alle x > K.

Opgave 3

$$k \in \mathbb{N} \quad \land \quad k \le n \quad \land \quad s = k^2.$$
 (1)

Før første gennemløb af løkken er k=0 og s=0 og dermed er (1) sand. 1. Antag (1) er sand før et gennemløb. Betingelsen k < n er også sand. Efter gennemløbet:

 $k_{\text{ny}} = k + 1 \le n \text{ og } k_{\text{ny}} \in \mathbb{N} \text{ da } k < n \text{ og } k \in \mathbb{N}$ $s_{\text{ny}} = (s + k) + k_{\text{ny}} = s + 2k + 1 = k^2 + 2k + 1 = (k + 1)^2 = k_{\text{ny}}^2.$

- (1) er altså sand for de nye værdier af k og s. Dermed er (1) en invariant.
- 2. Når while-løkken standser er betingelsen k < n falsk, men (1) er sand. Derfor er k = n og $s = k^2 = n^2$.

Opgave 4

$$(x-y)^5 = {5 \choose 0} x^5 + {5 \choose 1} x^4 (-y) + {5 \choose 2} x^3 (-y)^2 + {5 \choose 3} x^2 (-y)^3 + {5 \choose 4} x (-y)^4 + {5 \choose 5} (-y)^5 = x^5 - 5x^4y + 10x^3y^2 - 10x^2y^3 + 5xy^4 - y^5.$$

Opgave 5

$$66 = 54 + 12$$

$$54 = 4 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$

$$12 = 66 - 54$$

$$6 = 54 - 4 \cdot 12 = 54 - 4(66 - 54) = 5 \cdot 54 - 4 \cdot 66$$

Altså $gcd(54, 66) = 6 = 5 \cdot 54 - 4 \cdot 66, s = 5, t = -4.$

Opgave 6

- 1. $a_3 = 2a_2 + a_1 = 27$, $a_4 = 2a_3 + a_2 = 67$.
- 2. Vis at $a_n \leq 3^n$ for alle $n \geq 3$.

Bevis ved stærk induktion.

Basisskridt: sandt for n = 3 og n = 4.

Induktionsskridt: Lad $k \geq 4$ og antag at $a_n \leq 3^n$ for alle n, hvor $3 \leq n \leq k$. Så er

$$a_{k+1} = 2a_k + a_{k-1} \le 2 \cdot 3^k + 3^{k-1} \le 2 \cdot 3^k + 3^k = 3^{k+1}.$$

Påstanden er også sand for n = k + 1 og dermed for alle $n \ge 3$.

Opgave 7

Vis at

$$n(T) = 2\ell(T) - 1.$$

(Bemærk at dette følger af sætning 10.1.4(iii), men i opgaven skal vi give et bevis ved hjælp teorien fra afsnit 4.3.)

Bevis ved strukturel induktion.

Basisskridt: Hvis T er træ der består af ét punkt (roden) så er n(T) = 1 og $\ell(T) = 1$. Dermed er $n(T) = 2\ell(T) - 1$.

Rekursionsskridt: Lad T_1 og T_2 være fulde binære træer og antag at $n(T_1) = 2\ell(T_1) - 1$ og $n(T_2) = 2\ell(T_2) - 1$.

Lad T være det fulde binære træ $T = T_1 \cdot T_2$. Så er

$$n(T) = 1 + n(T_1) + n(T_2) = 1 + 2\ell(T_1) - 1 + 2\ell(T_2) - 1 = 2(\ell(T_1) + \ell(T_2) - 1 = 2\ell(T) - 1.$$

Topfylder altså også påstanden, som dermed er sand for alle fulde binære træer.

Opgave 8

Da $1234 \equiv 4 \pmod{10}, 4567 \equiv 7 \pmod{10}$ og $5555 \equiv 5 \pmod{10}$ er $(1234 \cdot 4567 + 5555) \equiv 4 \cdot 7 + 5 \equiv 33 \equiv 3 \pmod{10}$. Altså $(1234 \cdot 4567 + 5555) \mod{10} = 3$.

Opgave 9

a	b	c	d	e	f	g	S
0	∞	∞	∞	∞	∞	∞	
	3	1			5		$\mid a \mid$
	2			3			c
			4				b
					4		e
						8	d
						6	f
							$\left \begin{array}{c} s \\ g \end{array}\right $
		0	$\begin{array}{ccc} 0 & \infty & \infty \\ & 3 & 1 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Længden af en korteste vej fra a til g er 6.

Opgave 10

Kanter tilføjes f.eks. i denne rækkefølge: $\{a, c\}, \{b, c\}, \{d, e\}, \{e, f\}, \{b, d\}, \{f, g\}.$

Opgave 11

Hvis punkterne nævnes i rækkefølgen a,b,c,d,e,f,g er nabomatricen:

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Opgave 12

$$\begin{array}{ll} 7=1\cdot 5+2 & 2=7-5 \\ 5=2\cdot 2+1 & 1=5-2\cdot 2=5-2(7-5)=3\cdot 5-2\cdot 7 \\ 2=2\cdot 1+0 & \text{Altså gcd}(5,7)=1=3\cdot 5-2\cdot 7. \end{array}$$

En løsning:

$$x=2\cdot 3\cdot 5-3\cdot 2\cdot 7=-12$$

En anden løsning:

$$x = -12 + 5 \cdot 7 = 23.$$

Generelt: x er løsning hvis og kun hvis $x \equiv 23 \pmod{35}$.