Estatística aplicada

Lino Costa

Departamento de Produção e Sistemas Escola de Engenharia Iac@dps.uminho.pt

Ano letivo 2015/2016

Sumário

População e amostra

- 1. Amostragem aleatória
 - População e amostra
 - Amostra representativa
 - Planos de amostragem
 - Aleatoriedade
 - Tipos de dados e escalas de medida

População e amostra

População (ou Universo)

conjunto de indivíduos ou objetos que apresentam uma ou mais características em comum que se pretende analisar

Amostra

subconjunto da população, que se observa com o objetivo de se obter informação sobre características desconhecidas da população de onde foi retirada

Variável

qualquer característica (populacional) da unidade que constitui a população

População e amostra

Exemplo

Foi feito um inquérito a um grupo de 40 compradores de carros novos de uma certa marca para determinar quantas reparações ou substituições de peças foram feitas durante o primeiro ano de utilização dos carros.

- população: todos os compradores de carros novos da marca
- amostra: os 40 compradores de carros novos da marca
- variável: o número de reparações ou substituições de peças feitas durante o primeiro ano de utilização dos carros

Parâmetro e estatística

Parâmetro

características numéricas que descrevem a população, em geral, desconhecidas

Estatística

característica numérica que descreve a amostra, calculada a partir dos valores observados na amostra

Estimação

utiliza-se a estatística para estimar o parâmetro desconhecido da população

Estatística descritiva e estatística inferencial

Estatística descritiva

resumir a informação contida na amostra em tabelas, gráficos e estatísticas

Estatística inferencial

tirar conclusões acerca da população com base na amostra, utilizando técnicas estatísticas convenientes

Recenseamento ou censo

Estudo científico de um universo de pessoas, instituições ou objetos físicos com o propósito de adquirir conhecimentos, observando todos os seus elementos, e fazer juízos quantitativos acerca das características importantes desse universo.

Exemplo

XV Recenseamento Geral da População Portuguesa (2011) (httt://www.ine.pt)

Sondagem

Estudo científico de uma parte de uma população com o objectivo de estudar atitudes, hábitos e preferências da população relativamente a acontecimentos, circunstâncias e assuntos de interesse comum.

Fases de uma sondagem

- Amostragem
- Obtenção de informação
- Análise dos dados
- Relatório final

Exemplo

- Sondagens para obter informação acerca da atitude dos eleitores
- Sondagens para testar as preferências dos consumidores

Representatividade da amostra

A amostra deve ser tão representativa quanto possível da população que se está a estudar, evitando o enviesamento.

Exemplo

Amostras enviesadas ou tendenciosas

- Amostragem por conveniência
 - utilizar uma amostra de sócios do FCP para estudar a qualidade da arbitragem do último Benfica-Porto
 - utilizar uma amostra de alunos de um curso para tirar conclusões acerca do aproveitamento dos alunos universitários
- Amostragem por resposta voluntária
 - "sondagens" realizadas pelas estações de televisão utilizando respostas voluntárias, por exemplo, por SMS

Amostra aleatória simples

Dada uma população, uma amostra aleatória simples de dimensão n é um conjunto de n unidades da população, tal que qualquer outro conjunto de n unidades teria igual probabilidade de ser selecionado.

Características a.a.s.

- minimiza o enviesamento
- tem em conta o princípio da aleatoriedade
- corresponde a uma recolha sem reposição
- ullet os n elementos da amostra são independentes entre si
- todos os n elementos da amostra têm igual distribuição de probabilidade

Amostra aleatória simples

Exemplo

Discuta o seguinte procedimento de amostragem: "A opinião pública acerca da contracepção é estudada telefonando a lares selecionados aleatoriamente durante os dias da semana entre as 8h e as 17h."

- números de telefone selecionados aleatoriamente (amostra aleatória simples)
- a amostra pode ser tendenciosa porque a população ativa não está em casa durante os dias da semana entre as 8h e as 17h
- os resultados do estudo podem n\u00e3o refletir a verdadeira opini\u00e3o da popula\u00e7\u00e3o

Amostra aleatória estratificada

As unidades, donde se vai retirar a amostra, são divididas por grupos ou estratos, escolhidos pelo interesse especial que esses grupos representam ou pela semelhança das unidades dentro de cada grupo. De seguida, retira-se uma a.a.s. de cada grupo e combinam-se todas as amostras para construir a amostra aleatória estratificada.

Ficha Técnica

Estudo de opinião efectuado pela Eurosondagem, S.A. para o Expresso, SIC e Rádio Renascença, de 20 a 25 de Outubro de 2011. O universo é a população com 18 anos ou mais, residente em Portugal Continental e habitando em lares com telefone da rede fixa A amostra foi estratificada por região (Norte – 19,9%; A.M. do Porto – 14,3%; Centro - 29,9%; A.M. de Lisboa – 26,1%; Sul – 9,8%), e aleatória no que concerne ao sexo e faixa etária, donde resultou feminino (51,1%), masculino (48,9%) e 18/30 anos (17,4%), 31/59 anos (47,4%) e 60 anos ou mais (35,2%), num total de 1.032 entrevistas telefónicas validadas, que correspondem a uma taxa de resposta de 77,2%. O objecto da sondagem foi a intenção de voto para eleições legislativas, a actuação de órgãos de soberania e líderes partidários, e questões de âmbito político e social da actualidade. O resultado projectado da intenção de voto é calculado mediante um exercício meramente matemático, presumindo que os 21,5% respondentes "Ns/Nr" se abstêm. O erro máximo da amostra é de 3,05%, para um grau de probabilidade de 95,0%.

Dados estatísticos

Dados

- qualitativos informação que identifica alguma qualidade, categoria ou característica, não suscetível de medida, mas de classificação, assumindo várias modalidades
- quantitativos informação resultante de características suscetíveis de serem medidas, apresentando-se com diferentes intensidades
 - natureza discreta pode tomar um número finito (ou infinito numerável) de valores distintos
 - natureza contínua pode tomar todos os valores numéricos, compreendidos no seu intervalo de variação

Dados estatísticos

Dados

- qualitativos cor dos olhos, desporto preferido, sexo..
- quantitativos
 - natureza discreta número de acidentes, resultado do lançamento de um dado, número de irmãos...
 - natureza contínua peso, altura, nível de colesterol no sangue, idade...

Escalas de medição

A medição de uma propriedade significa atribuir uma quantidade numérica para a representar.

Tipos de escala

- nominal a medição apenas define a que classe a unidade pertence, em relação àquela propriedade
- ordinal a medição também esclarece quando uma unidade tem mais da propriedade do que outra unidade
- intervalar a medição também diz que uma unidade é diferente por uma certa quantidade da propriedade, de outra unidade
- proporcional a medição diz que uma unidade tem tantas vezes mais da propriedade do que outra unidade

Escalas de medição

Tipos de escala

- nominal raça, situação profissional, sexo... Pode-se atribuir um código a cada categoria (por exemplo para o sexo: feminino-0, masculino-1 ou feminino-1, masculino-0; o valor em si não é importante).
- ordinal opinião (má, aceitável, boa), pontuação de um júri (1 - mais fraca a 10 - mais forte)... A ordem dos números atribuídos às categorias tem significado, mas o valor dos números não tem significado (por exemplo, a pontuação 8 não é duas vezes melhor do que a 4).
- intervalar temperatura (°C)... Uma temperatura de 40°C não é duas vezes mais quente do que uma de 20°C.
- proporcional o tempo de reação (s), o comprimento (cm)... Um comprimento de 4cm é duas vezes maior do que um de 2cm e o 0 tem o seu significado.

Sumário

Estatística descritiva

- 1. Métodos numéricos ou quantitativos
 - medidas de localização
 - medidas de dispersão
- 2. Dados agrupados em classes
- 3. Métodos gráficos
 - gráficos de barra
 - gráficos circulares
 - histograma de frequências
 - gráfico de extremos e quartis

Amostra de n observações: x_1, x_2, \ldots, x_n

Medidas de localização

média

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 mediana - valor que divide as observações ordenadas em duas metades iguais

$$Med = egin{cases} rac{x\left(rac{n}{2}
ight)^{+x}\left(rac{n}{2}+1
ight)}{2} & ext{se } n ext{ par} \ x\left(rac{n+1}{2}
ight) & ext{se } n ext{ impar} \end{cases}$$

• moda - valor mais frequente

múltiplas modas (multimodal)

Amostra de n observações: x_1, x_2, \ldots, x_n

Medidas de dispersão

variância - indica a dispersão dos dados em relação à média

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

desvio padrão

$$s = \sqrt{s^2}$$

amplitude

$$R = \max_{i=1,\dots,n} x_i - \min_{i=1,\dots,n} x_i$$

Amostra de n observações: x_1, x_2, \ldots, x_n

Medidas de dispersão

• quartis (Q_1, Q_2, Q_3) - dividem os dados ordenados por ordem crescente em quatro partes iguais

$$Q_i = x_{\left((n+1) \times \frac{i}{4}\right)}$$

• amplitude inter-quartil (AIQ)

$$AIQ = Q_3 - Q_1$$

• percentis (P_i com 0 < i < 100) - indica o valor abaixo do qual estão i% dos dados

$$P_i = x_{\left((n+1) \times \frac{i}{100}\right)}$$

Dados discretos classificados de acordo k valores da variável x_j , frequência absoluta f_j , frequência relativa fr_j com $j=1,\ldots,k$, sendo $n=\sum_{i=1}^k f_i$

Medidas de localização

média

$$\bar{x} = \sum_{j=1}^{k} fr_j x_j = \frac{1}{n} \sum_{j=1}^{k} f_j x_j$$

Medidas de dispersão

variância

$$s^{2} = \frac{n}{n-1} \sum_{j=1}^{k} fr_{j} (x_{j} - \bar{x})^{2} = \frac{1}{n-1} \sum_{j=1}^{k} f_{j} (x_{j} - \bar{x})^{2}$$

Dados contínuos agrupados em k classes com valor médio M_j , frequência absoluta f_j , frequência relativa fr_j com $j=1,\ldots,k$, sendo $n=\sum_{j=1}^k f_j$

Medidas de localização

média

$$\bar{x} pprox \sum_{j=1}^k fr_j M_j = \frac{1}{n} \sum_{j=1}^k f_j M_j$$

Medidas de dispersão

variância

$$s^2 \approx \frac{n}{n-1} \sum_{j=1}^k fr_j (M_j - \bar{x})^2 = \frac{1}{n-1} \sum_{j=1}^k f_j (M_j - \bar{x})^2$$

Organização dos dados

- Tabelas de frequências (absolutas e relativas)
- Representações gráficas
 - gráfico de barras (dados qualitativos ou quantitativos discretos)
 - gráfico circulares (dados qualitativos ou quantitativos discretos)
 - diagrama de caule-e-folhas (dados quantitativos discretos ou contínuos)
 - histograma (dados quantitativos contínuos)
 - gráficos de extremos e quartis ou "Boxplot" (dados quantitativos discretos ou contínuos)

Construção de um histograma

Histograma é uma representação gráfica dos dados formado por uma sucessão de rectângulos adjacentes, tendo cada um por base um intervalo de classe e por área a frequência relativa (ou a frequência absoluta). Deste modo a área total será igual a 1 (ou igual a n, a dimensão da amostra).

- calcular o número de classes (k): $k = 1 + 3.3 \log(n)$ (regra de Sturges)
- calcular a amplitude (R): $R = \max x_i \min x_i$ para i = 1, ..., n
- calcular o intervalo de classe (w): $w > \frac{R}{L}$
- calcular o limite inferior da primeira classe (l) e o limite superior da última classe (u): $l = \min x_i \frac{kw R}{2}$ para $i = 1, \ldots, n$ e u = l + kw
- construir tabela de frequências

Construção de um "Boxplot"

"Boxplot" é uma representação gráfica dos dados que representa, simultaneamente, localização central, dispersão, simetria e "outliers".

- Caixa: primeiro quartil (Q₁), segundo quartil (Q₂ = Med) e terceiro quartil (Q₃)
- Fios: menor observação dentro de $1.5 \times AIQ$ a partir de Q_1 e maior observação dentro de $1.5 \times AIQ$ a partir de Q_3
- "Outliers": observações menores do que $Q_1 1.5 \times AIQ$ e observações maiores do que $Q_3 + 1.5 \times AIQ$

Simetria da distribuição

- analisada através da comparação das medidas de localização moda, mediana e média
- observável em representações gráficas como o histograma e o diagrama de extremos e quartis ("Boxplot")
- medidas do grau de simetria ("skewness")

Construção de histograma e "Boxplot"

Exemplo

Os seguintes dados são os tempos de espera numa fila de supermercado de 60 sujeitos selecionados aleatoriamente:

4	18	8	25	5.5	7	7	26	8	16	2	1
12	3	2	9	16	4	21	7	13	27	8	8
34.5	4	27	19	7	5	18	9	12	16	2	6
12	10	7	21	3	1	0.5	11	10	13	4	5
20	1.5	5	7	12	2	8.5	12	5	10	18	0.5

- o tempo de espera é uma variável (x) quantitativa contínua de escala proporcional
- tamanho da amostra n = 60
- número de classes (k): $k = 1 + 3.3 \log(60) = 6.87 \approx 7$
- amplitude (R): R = 34.5 0.5 = 34
- intervalo de classe (w): $w > \frac{34}{7} = 4.86 \approx 5 \log w = 5$
- limite inferior da primeira classe (*l*): $l=0.5-\frac{7\times5-34}{2}=0$; limite superior da última classe (*u*): $u=0+7\times5=35$

Construção de histograma e "Boxplot"

Exemplo

Tabela de frequências

Histograma (SPSS)

Classe	M_j	f_{j}
$0 \le x < 5$	2.5	15
$5 \le x < 10$	7.5	19
$10 \le x < 15$	12.5	11
$15 \le x < 20$	17.5	7
$20 \le x < 25$	22.5	3
$25 \le x < 30$	27.5	4
$30 \le x < 35$	32.5	1

Construção de histograma e "Boxplot"

Exemplo

"Boxplot" (SPSS)

•
$$Q_1 = x_{(15.25)} = 4.25$$

•
$$Q_2 = \frac{x_{(30)} + x_{(31)}}{2} = 8$$

•
$$Q_3 = x_{(45.75)} = 15.25$$

•
$$AIQ = Q_3 - Q_1 = 15.25 - 4.25 = 11$$

$$\begin{array}{ll} \bullet & Q_1 - 1.5 \times AIQ = -12.25; \\ Q_3 + 1.5 \times AIQ = 31.75 \\ \log ox_{(60)} = 34.5 > 31.75 \text{ \'e} \\ \text{um "outlier"} \end{array}$$

•
$$\min x_i = x_{(1)} = 0.5$$

•
$$\max x_i = x_{(59)} = 27$$
 (excluindo $x_{(60)}$)

Medidas descritivas

Exemplo

- $\bar{x} = 10.2667$
- $Med = Q_2 = 8$
- $s^2 = 60.004$
- s = 7.74622
- $\min x_i = 0.5$
- $\max x_i = 34.5$
- R = 34
- AIQ = 11
- Assimetria à direita (Skewness = 1.041 > 0)

Medidas descritivas (SPSS)

	Descrip			
			Statistic	Std. Error
Tempo de espera	Mean		10.2667	1.0000
	95% Confidence Interval for	Lower Bound	8.2656	
	Mean	Upper Bound	12.2677	
	5% Trimmed Mean	9.7315		
	Median	8.0000		
	Variance		60.004	
	Std. Deviation		7.74622	
	Minimum	.50		
	Maximum	34.50		
	Range		34.00	
	Interquartile Range		11.00	
	Skewness		1.041	.31
	Kurtosis		.695	.61

Distribuição gaussiana ou normal

- tem forma de "sino" e é caracterizada completamente pela média (μ) e desvio padrão (σ)
- a distribuição normal padrão tem média 0 e desvio padrão 1
- é simétrica em relação à média μ
- unimodal com máximo em μ
- tende para 0 quando a variável tende para $+\infty$ ou $-\infty$
- tem dois pontos de inflexão nas abcissas $\mu \sigma$ e $\mu + \sigma$ (a distribuição normal padrão tem pontos de inflexão em -1 e +1)