	14	/6C	٠.
+ 1	/ 1	n	١+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	olume total d'eau
du circuit?		
L		
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	_f _p _j

+2	/1	156	: +

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du	volume total d'eau
du circuit?		_f _p _j
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330$	

Variables: n est un nombre entier naturel
Variables: a est un nombre réèl
n prend la valeur 0 ;
a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5 Exprimer u_n en fonction de n.

__f __p _____

Question 6 En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0,75^n$

f	р	

Question 7 On cherche à savoir si, un jour donné, les deux bassins peuvent avoir, au mètre cube près, le même volume d'eau. Proposer une méthode pour répondre à ce questionnement.

+3/1	/EQ :
±.5 / I	ノコノナ

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	olume total d'eau
du circuit?		☐f ☐p ☐j
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	$\square f \square p \square j$

Question 5 Exprimer u_n en fonction de n.

Question 6 En déduire que pour tout entier naturel n, $a_n = 1320 - 520 \times 0,75^n$

7f	n	П	

On cherche à savoir si, un jour donné, les deux bassins peuvent avoir, au mètre Question 7 cube près, le même volume d'eau. Proposer une méthode pour répondre à ce questionnement

0101111	CIIICII	
f	р	i

BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$ Question 8

+4	14	/ /	\sim
+44	<i>'</i> 'I '	74	\times +

On a donc $a_0 = 800$ et $b_0 = 1400$.

fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du volu	ume total d	l'eau
du circuit?		fp [ј
Question 2	Justifier que, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fp [j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

Question 5	Exprimer u_n en fonction de n .	$\square f \square p \square j$
Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0,75^n$	fpj

_ /	
+5/1	I /44+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	lume total d'eau
du circuit?		_f _p _j
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330$.	☐f ☐p ☐j

17.	ariables: n est un nombre entier naturel
	ariables : a est un nombre réèl
	prend la valeur 0;
	prend la valeur 800;
3 Ta	ant que $a < 1100$ faire
4	a prend la valeur;
5	n prend la valeur;
6 Fi	
Sc	ortie : Afficher n;
de lac	estion 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir quelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet ethme.
	our tout entier naturel n , on note $u_n = a_n - 1320$.
	stion 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier et la raison. $f \Box p \Box j$

Question 5 Exprime	her u_n en fonction de n .	_f _p _j
Question 6 En dédu	ire que pour tout entier naturel $n, a_n = 1320 - 520 \times 10^{-5}$	$(0,75^n \text$
	A A N	
	erche à savoir si, un jour donné, les deux bassins jume d'eau. Proposer une méthode pour répondre	
cuso pros, to memo vote	and a call 110posor and messore pour reposition	

Question 8	BONUS: Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$	_f _p _j

16/1	I /40+

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du volume total d'eau
du circuit?	$\prod f \prod p \prod j$
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0, 75 \times a_n + 330$.

Question 5 Exprimer u_n en fonction de n. \mathbf{p}

Question 6 En déduire que pour tout entier naturel n, $a_n = 1320 - 520 \times 0,75^n$

On cherche à savoir si, un jour donné, les deux bassins peuvent avoir, au mètre Question 7 cube près, le même volume d'eau. Proposer une méthode pour répondre à ce questionnement.

f p j

BONUS : Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots = \frac{11}{10}$ Question 8

_			
+7	/1	/36	4

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A ;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

Question 1	Par quelle relation entre a_n et b_n traduit-on la conservation du vo	olume total d'eau
du circuit?		
L		
Question 2	Justifier que, pour tout entier naturel $n, a_{n+1} = 0,75 \times a_n + 330.$	_f _p _j

Question 6	En déduire que pour tout entier naturel $n, a_n = 1320 - 520 \times 0,75^n$	fpj

+8	/1	/32+

${ m TES4}$	TANTAN tata
Vendredi 20.12.2019	
	réparti entre deux bassins A et B. Le bassin A refroid ermique on crée un courant d'eau entre les deux bassin
— tous les jours, 15% du volume d'eau transferé vers le bassin A;	bassins de la facon suivante : 3 d'eau et le bassin B contient $1400m^3$ d'eau ; i présent dans le bassin B au début de la journée e i présent dans le bassin A au début de la journée e
fonctionnement;	contenu dans le bassin A à la fin du n -ième jour contenu dans le bassin B à la fin du n -ième jour c
On a donc $a_0 = 800$ et $b_0 = 1400$.	
Question 1 Par quelle relation entre a_n du circuit?	et b_n traduit-on la conservation du volume total d'ea

Variables: n est un nombre entier naturel
Variables: a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n ;
Question 3 L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir
de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes de cet
algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Question 4 Montrer que la suite (u_n) est une suite géométrique dont on précisera le premier
terme et la raison.

