2019W2_ELEC_221_201

Figure 4

Assignment Problem_Set_1 due 01/21/2020 at 11:59pm PST

Determine whether or not each of the signals below are periodic or aperiodic. If the signal is periodic, find its period. Else, answer "NA".

	Signal	Periodic/Aperiodic		
1	$13 + 18sin(3\pi t + \frac{\pi}{3})$	[?/Periodic/Aperiodic]		
2	$2sin^2(9t)$	[?/Periodic/Aperiodic]		
3	$e^{-t}cos(11t)$	[?/Periodic/Aperiodic]		
4	$21\cos^2(6\pi t + \frac{\pi}{13})$	[?/Periodic/Aperiodic]		
5	$\frac{10\cos(t)}{\sin(3t)}$	[?/Periodic/Aperiodic]		
6	$8\cos(4\pi t + 10\pi) + 14\sin(10\pi t + \frac{\pi}{5})$	[?/Periodic/Aperiodic]		
7	$10\cos(9t) - 11\sin(10\pi t + \frac{\pi}{4})$	[?/Periodic/Aperiodic]		
8	$1 + \cos(7t) + e^{j6t}$	[?/Periodic/Aperiodic]		

Express the signal x(t) shown in the figure below in terms of the

• u(t+4)-1*u(t)+(-2)*u(t-1)+1*u(t-2)+(-2)*u(t-6)

For each signal y(t) (in blue) shown in the figures 1 to 4, find the coefficients a, b, c and d so that y(t) = a + bx(ct - d).

Correct Answers:

- Periodic
- 0.666667
- Periodic
- 0.349066
- Aperiodic
- NA
- Periodic
- 0.166667
- Periodic
- 3.14159
- Periodic
- 1
- Aperiodic
- NA
- Periodic
- 6.28319

unit step function, u(t).

 $x(t) =_{-}$

Correct Answers:

Figure 1:

Period

 $a = _{-}, b = _{-}, c = _{-}, d = _{-}$

Figure 3

Figure 2:

a =____, *b* =____, *c* =____, *d* =____

Figure 3:

a =___, *b* =___, *c* =___, *d* =___

Figure 4:

a =___, *b* =___, *c* =___, *d* =___

Correct Answers:

- -4
- 2
- -
- 2
- 2
- 2

3A signal, x(t) is given in the figure below.

−4−2

• 3

- 2.
- 2
- -2
- -
- 1
- /
- -4

For the signal
$$x(t) = \begin{cases} -t & -12 \le t \le 0 \\ t & 0 \le t \le 12 \\ 0 & otherwise \end{cases}$$

a) determine z(t) so that x(t) = |t|z(t). Hint: Write answers in terms of u(t)

$$z(t) =$$

b) calculate and give the expression for $y(t) = \frac{d[x(t)]}{dt}$.

$$y(t) =$$

In your answers, use D(t) instead of $\delta(t)$ for the Dirac-delta function.

Correct Answers:

- u(t+12)-u(t-12)
- 12*D(t+12)-u(t+12)+2*u(t)-u(t-12)-12*D(t-12) or t/

x(t) is given as a periodic signal with a fundamental period of $T_0 = T$.

(a) For each of the signals y(t) given in the table below, determine whether or not they are periodic. If they are, find their period. And if they aren't, enter "NA".

	Signal, $y(t)$	Periodic/Aperiodic	
1	-7.5x(8t)	[?/Periodic/Aperiodic]	
2	$-1.5 + x(\frac{t}{5})$	[?/Periodic/Aperiodic]	
3	$\frac{5}{x(t)}$	[?/Periodic/Aperiodic]	
4	15[x(t) + x(-t)] and $x(t)$ is even	[?/Periodic/Aperiodic]	

(b) Knowing that the signal y'(t) = -7.5x'(8t) is periodic, we can conclude that x'(t) is periodic as well. Find the fundamental period of x'(t) if the period of y'(t) is 1. Enter "NA" otherwise.

Correct Answers:

- Periodic
- T/8
- Periodic
- 5*T
- Periodic
- 1
- Periodic
- T
- 8

Determine the power and energy of each of the signals given in the table below. Enter "INF" for infinity.

	Signal	Energy	Power
1	$e^{-2t}u(t)$		
2	$3\cos(8t) + 2\cos(7t)$		

Correct Answers:

- 0.25
- 0
- infinity
- 6.5

Note from JY Jan 13, 2020: The original problems with this question have been addressed.

The equation for a causal full-wave rectified signal is given by $x(t) = 16|\sin(10\pi t)|u(t)$

- a) The even component of x(t) is shown by $x_e(t)$.
 - 1) Find the equation for $x_e(t)$.
- $x_e(t) =$ Period

2) From the figures 1 to 4 shown below, select the graph that matches $x_e(t)$.

Figure:[?/1/2/3/4]

- 3) Is $x_e(t)$ causal?[?/Yes/No]
- 4) Is $x_e(t)$ periodic?[?/Yes/No]
- **b)** The odd component of x(t) is shown by $x_o(t)$.
 - 1) Find the equation for $x_o(t)$.
- $x_o(t) =$ _____

2) From the figures 1 to 4 shown below, select the graph that matches $x_o(t)$.

Figure: [?/1/2/3/4]

- 3) Is $x_o(t)$ causal?[?/Yes/No]
- 4) Is $x_o(t)$ periodic?[?/Yes/No]

Parts **a.2** to **a.4** will only be marked correct if part **a.1** is correct. Parts **b.2** to **b.4** will only be marked correct if part **b.1** is correct.

 $Generated\ by\ \textcircled{c}WeBWorK, http://webwork.maa.org, Mathematical\ Association\ of\ America$

Correct Answers:

- 8.00*[|sin(10.00*pi*t)|*u(t)+|sin(-10.00*pi*t)|*u(-t)] or
- 4
- No
- Yes
- 8.00*[|sin(10.00*pi*t)|*u(t)-|sin(-10.00*pi*t)|*u(-t)]
- 2
- No
- No