

Vorlesung Grundlagen adaptiver Wissenssysteme

Prof. Dr. Thomas Gabel
Frankfurt University of Applied Sciences
Faculty of Computer Science and Engineering
tgabel@fb2.fra-uas.de

Vorlesungseinheit 9

Die optimale Q-Funktion

Lernziele

- vollständige Ersetzung des Modells
- praktisch einsetzbare und oft verwendete Lernalgorithmen kennenlernen
- Verfahren, die in Interaktion mit der Umwelt einsetzbar sind

Überblick

1. Motivation

- 1. Motivation
- 2. On-Policy- vs. Off-Policy-Lernen

- 1. Motivation
- 2. On-Policy- vs. Off-Policy-Lernen
- 3. Der Sarsa-Algorithmus

- 1. Motivation
- 2. On-Policy- vs. Off-Policy-Lernen
- 3. Der Sarsa-Algorithmus
- 4. Der Q-Lernalgorithmus

- 1. Motivation
- On-Policy- vs. Off-Policy-Lernen
- Der Sarsa-Algorithmus
- 4. Der Q-Lernalgorithmus

Ziel: Modellfreies Lernen

- Typische Lernsituation
 - Steuere einen Prozess, für den kein explizites Modell vorhanden ist
 - nur auf Basis von Beobachtung der Simulation oder des realen Prozesses

Ziel: Modellfreies Lernen

- Typische Lernsituation
 - Steuere einen Prozess, für den kein explizites Modell vorhanden ist
 - nur auf Basis von Beobachtung der Simulation oder des realen Prozesses
- Value Iteration / Policy Iteration benötigen Modell an zwei Stellen:

Ziel: Modellfreies Lernen

- Typische Lernsituation
 - Steuere einen Prozess, für den kein explizites Modell vorhanden ist
 - nur auf Basis von Beobachtung der Simulation oder des realen Prozesses
- Value Iteration / Policy Iteration benötigen Modell an zwei Stellen:
 - Schätzen des Kostenwerts:

$$V_{k+1}(i) = \min_{a \in A(i)} \sum_{j=0}^{n} p_{ij}(a) (c(i, a) + V_k(j))$$

Bestimmung der Strategie:

$$\pi(i) = \arg\min_{a \in A(i)} \sum_{i=0}^{n} p_{ij}(a) (c(i, a) + V_k(j))$$

Definition (Zustands-Aktions-Wertfunktion Q)

Für eine gegebene Strategie π ist eine Zustands-Aktions-Wertfunktion $Q^{\pi}: S \times A \to \mathbb{R}$ definiert als

$$Q^{\pi}(i,a) := \sum_{j=0}^{n} p_{ij}(a) \left(c(i,a) + Q^{\pi}(j,\pi(j)) \right)$$

für alle $i \in S = \{0, ..., n\}$ und alle $a \in A$.

Erläuterung:

Eine Q-Funktion schätzt die erwarteten Kosten des Agenten ab, wenn dieser im Zustand i die Aktion a wählen würde und sich danach gemäß Strategie π verhalten würde.

■ Es gilt $V^{\pi}(i) = Q^{\pi}(i, \pi(i))$ (VE8) und daher lässt sich die Q-Funktion (sh. vorige Folie) auch ausdrücken als:

$$Q^{\pi}(i,a) := \sum_{j=0}^{n} p_{ij}(a) \left(c(i,a) + V^{\pi}(j) \right)$$

Es gilt $V^{\pi}(i) = Q^{\pi}(i, \pi(i))$ (VE8) und daher lässt sich die Q-Funktion (sh. vorige Folie) auch ausdrücken als:

$$Q^{\pi}(i,a) := \sum_{j=0}^{n} p_{ij}(a) \left(c(i,a) + V^{\pi}(j) \right)$$

Eine Strategie π' ist bekanntermaßen gierig (VE7) bezogen auf V^{π} , wenn

$$\pi'(i) = \arg\min_{a \in A} \sum_{j=0}^{n} p_{ij}(a) (c(i, a) + V^{\pi}(j))$$

- Durch Einsetzen ergibt sich damit: $\pi'(i) = \arg\min_{a \in A} Q^{\pi}(i, a)$
- Das bedeutet: Auf Basis von einer Q-Funktion ist das gierige Verbessern einer Strategie auch ohne Modell möglich.

Achtung:

■ Diese Erkenntnisse sagen noch nichts darüber aus, wie man eine Q-Funktion ermittelt (Strategiebewertung).

Achtung:

- Diese Erkenntnisse sagen noch nichts darüber aus, wie man eine Q-Funktion ermittelt (Strategiebewertung).
 - $lue{}$ also bspw. die Q-Funktion Q^{π} zur Bewertung der Strategie π
- In VE8 haben wir eine Möglichkeit kennengelernt, wie man eine Q-Funktion auch ohne Modell ermittelt kann.
 - auf Basis von

Achtung:

- Diese Erkenntnisse sagen noch nichts darüber aus, wie man eine Q-Funktion ermittelt (Strategiebewertung).
 - also bspw. die Q-Funktion Q^{π} zur Bewertung der Strategie π
- In VE8 haben wir eine Möglichkeit kennengelernt, wie man eine Q-Funktion auch ohne Modell ermittelt kann.
 - auf Basis von Monte-Carlo-Methoden

Somit:

Die Gleichung auf der vorangegangenen Folie gilt für beliebige Strategien π . Insbsd. also auch für die optimale Strategie π^* :

$$Q^*(i,a) := \sum_{j=0}^n p_{ij}(a) (c(i,a) + V^*(j))$$

Demzufolge gilt auch: $V^*(i) = \min_{a \in A} Q^*(i, a)$

Achtung:

- Diese Erkenntnisse sagen noch nichts darüber aus, wie man eine Q-Funktion ermittelt (Strategiebewertung).
 - lacksquare also bspw. die Q-Funktion Q^π zur Bewertung der Strategie π
- In VE8 haben wir eine Möglichkeit kennengelernt, wie man eine Q-Funktion auch ohne Modell ermittelt kann.
 - auf Basis von Monte-Carlo-Methoden

Somit:

Die Gleichung auf der vorangegangenen Folie gilt für beliebige Strategien π . Insbsd. also auch für die optimale Strategie π^* :

$$Q^*(i,a) := \sum_{i=0}^n p_{ij}(a) \left(c(i,a) + V^*(j) \right)$$

- Demzufolge gilt auch: $V^*(i) = \min_{a \in A} Q^*(i, a)$
- Ziel: Iterative Algorithmen finden, die die optimale Q-Funktion Q* ermitteln k\u00f6nnen.

- Motivation
- 2. On-Policy- vs. Off-Policy-Lernen
- 3. Der Sarsa-Algorithmus
- 4. Der Q-Lernalgorithmus

Monte-Carlo versus Temporal Difference

- Im Kapitel zu zeitlichen Differenzmethoden (TD) wurden MC-Verfahren (TD(1)) und TD-Verfahren (TD(0) als Extreme gegenübergestellt.
- Erkenntnisse:
 - Zeitliche Differenzmethoden (TD(λ) mit λ < 1) bieten gewisse Vorteile gegenüber reinen Monte-Carlo-Verfahren.
 - u.a. niedrigere Schwankungen in den Ergebnissen, keine vollständigen Episoden müssen durchlaufen werden, Aktualisierung schon nach einzelnen Schritten

Kernidee:

- Nutzung von TD-Ideen anstatt von MC-basierter
 Strategiebewertung, wenn es darum geht, die optimale
 Strategie komplett ohne Modell zu erlernen.
- Realisierung mit iterativen Algorithmen

Grundsätzliche Überlegung:

Der lernfähige Agent interagiert mit der Umwelt, wählt im Zustand i eine Aktion a und gelangt so unter Erhalt von Kosten c(i, a) in den Folgezustand j.

Grundsätzliche Überlegung:

- Der lernfähige Agent interagiert mit der Umwelt, wählt im Zustand i eine Aktion a und gelangt so unter Erhalt von Kosten c(i, a) in den Folgezustand j.
- Wenn es darum geht, eine modellfreie Strategiebewertung für eine gegebene Strategie π vorzunehmen, also Q^{π} zu ermitteln, so gibt es dafür zwei prinzipielle Möglichkeiten:

Definition (On-Policy-Lernen vs. Off-Strategie-Lernen)

1. On-Policy: Der Agent interagiert gemäß der zu bewertenden Zielstrategie mit der Umwelt.

Grundsätzliche Überlegung:

- Der lernfähige Agent interagiert mit der Umwelt, wählt im Zustand i eine Aktion a und gelangt so unter Erhalt von Kosten c(i, a) in den Folgezustand j.
- Wenn es darum geht, eine modellfreie Strategiebewertung für eine gegebene Strategie π vorzunehmen, also Q^{π} zu ermitteln, so gibt es dafür zwei prinzipielle Möglichkeiten:

Definition (On-Policy-Lernen vs. Off-Strategie-Lernen)

- 1. On-Policy: Der Agent interagiert gemäß der zu bewertenden Zielstrategie mit der Umwelt.
- 2. Off-Policy: Der Agent verhält sich gemäß einer anderen Strategie, will aber trotzdem etwas über π lernen (also π bewerten).

Frage: Warum kann Off-Policy-Lernen überhaupt nützlich sein?

- um aus den Verhaltensweisen von Menschen oder von anderen Agenten zu lernen
- um Zustandsübergänge, die mit früheren Strategien generiert worden sind $(\pi_1, \pi_2, ...)$ wiederzuverwenden

Frage: Warum kann Off-Policy-Lernen überhaupt nützlich sein?

- um aus den Verhaltensweisen von Menschen oder von anderen Agenten zu lernen
- um Zustandsübergänge, die mit früheren Strategien generiert worden sind $(\pi_1, \pi_2, ...)$ wiederzuverwenden
- um etwas über die optimale Strategie zu lernen, während gerade eine andere, explorative Strategie verfolgt wird

Frage: Warum kann Off-Policy-Lernen überhaupt nützlich sein?

- um aus den Verhaltensweisen von Menschen oder von anderen Agenten zu lernen
- um Zustandsübergänge, die mit früheren Strategien generiert worden sind $(\pi_1, \pi_2, ...)$ wiederzuverwenden
- um etwas über die optimale Strategie zu lernen, während gerade eine andere, explorative Strategie verfolgt wird
- um gleichzeitig über mehrere Strategien etwas zu lernen (d.h. mehrere Strategien zu bewerten, $Q^{\pi_1}, Q^{\pi_2}, \ldots$ simultan lernen), während aktuell eine andere Strategie verfolgt wird

Frage: Warum kann Off-Policy-Lernen überhaupt nützlich sein?

- um aus den Verhaltensweisen von Menschen oder von anderen Agenten zu lernen
- um Zustandsübergänge, die mit früheren Strategien generiert worden sind $(\pi_1, \pi_2, ...)$ wiederzuverwenden
- um etwas über die optimale Strategie zu lernen, während gerade eine andere, explorative Strategie verfolgt wird
- um gleichzeitig über mehrere Strategien etwas zu lernen (d.h. mehrere Strategien zu bewerten, $Q^{\pi_1}, Q^{\pi_2}, \ldots$ simultan lernen), während aktuell eine andere Strategie verfolgt wird

Nächste Schritte:

- Sarsa-Algorithmus für On-Policy-Lernen
- Q-Lernalgorithmus für Off-Policy-Lernen

- 1. Motivation
- On-Policy- vs. Off-Policy-Lernen
- 3. Der Sarsa-Algorithmus
- 4. Der Q-Lernalgorithmus

Modellfreies On-Policy-Lernen (1)

der optimalen Wertfunktion

Kernideen

- verwende TD-artige Aktualisierung anstatt MC-basierter Strategiebewertung
- d.h. berücksichtige den (aktuellen) Einzelschritt, der als 5-Tupel vorliegt (i, a, c, j, a')

Modellfreies On-Policy-Lernen (1)

der optimalen Wertfunktion

Kernideen

- verwende TD-artige Aktualisierung anstatt MC-basierter Strategiebewertung
- d.h. berücksichtige den (aktuellen) Einzelschritt, der als 5-Tupel vorliegt (i, a, c, j, a')
- Wenn man, wie auch oft in der Literatur, Zustände mit s bezeichnet und von Belohnungen r (rewards) anstatt von Kosten c spricht, so nimmt das 5-Tupel folgende Form an:

 Diese Buchstaben dienten der Namensgebung beim SARSA-Algorithmus.

Modellfreies On-Policy-Lernen (2)

der optimalen Wertfunktion
Kernideen (Fortsetzung)

- $lue{}$ verfolge während des Lernens eine arepsilon-gierige Strategie
- führe Aktualisierungsschritte nach jedem Zustandsübergang durch

Zweiphasiges Verfahren, wobei beide Phasen in jedem Schritt abwechseln

- weiterhin: Strategieverbesserung dank Q-Funktionen ohne Modell möglich
- Strategiebewertung mit Sarsa, d.h. Q ≈ Q^π
- Strategieverbesserung in jedem Schritt dank ε-gieriger Auswertung der aktuellen Wertfunktion Ω

Sarsa-Algorithmus

Initialisiere $Q_0(s, a)$ beliebig; k = 0REPEAT // Schleife, bis Lernziel erreicht

Sarsa-Algorithmus

```
Initialisiere Q_0(s,a) beliebig; k=0

REPEAT // Schleife, bis Lernziel erreicht

Initialisiere Startzustand s_0; t=0

Wähle Aktion a_0 := \arg\min_{a \in A} Q_k(s_0,a)

oder a_0 gemäss Explorationsstrategie beliebig

REPEAT // Schleife für aktuelle Episode
```


Sarsa-Algorithmus

```
Initialisiere Q_0(s,a) beliebig; k=0
REPEAT // Schleife, bis Lernziel erreicht
Initialisiere Startzustand s_0; t=0
Wähle Aktion a_0 := \arg\min_{a \in A} Q_k(s_0,a)
oder a_0 gemäss Explorationsstrategie beliebig
REPEAT // Schleife für aktuelle Episode
Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t,a_t)
Wähle Aktion a_{t+1} := \arg\min_{a \in A} Q_k(s_{t+1},a)
oder a_{t+1} gemäss Explorationsstrategie beliebig
```


Sarsa-Algorithmus

```
Initialisiere Q_0(s, a) beliebig; k = 0
REPEAT // Schleife, bis Lernziel erreicht
  Initialisiere Startzustand s_0; t = 0
  Wähle Aktion a_0 := \arg \min_{a \in A} Q_k(s_0, a)
     oder an gemäss Explorationsstrategie beliebig
  REPEAT // Schleife für aktuelle Episode
     Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t, a_t)
     Wähle Aktion a_{t+1} := \arg\min_{a \in A} Q_k(s_{t+1}, a)
        oder a<sub>t+1</sub> gemäss Explorationsstrategie beliebig
     Führe Lernschritt durch:
     Q_{k+1}(s_t, a_t) := (1 - \alpha)Q_k(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma Q_k(s_{t+1}, a_{t+1}))
```


Sarsa-Algorithmus

```
Initialisiere Q_0(s, a) beliebig; k = 0
REPEAT // Schleife, bis Lernziel erreicht
  Initialisiere Startzustand s_0; t = 0
  Wähle Aktion a_0 := \arg \min_{a \in A} Q_k(s_0, a)
     oder an gemäss Explorationsstrategie beliebig
  REPEAT // Schleife für aktuelle Episode
     Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t, a_t)
     Wähle Aktion a_{t+1} := \arg\min_{a \in A} Q_k(s_{t+1}, a)
        oder a<sub>t+1</sub> gemäss Explorationsstrategie beliebig
     Führe Lernschritt durch:
     Q_{k+1}(s_t, a_t) := (1 - \alpha)Q_k(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma Q_k(s_{t+1}, a_{t+1}))
     t := t + 1; k := k + 1; passe Lernrate \alpha an
  UNTIL Terminalzustand erreicht
```

UNTIL Strategie optimal
Prof. Dr. Thomas Gabel | Vorlesung | Grundlagen adaptiver Wissenssysteme

Der Sarsa-Algorithmus (2)

Bemerkungen:

- Lernrate α muss im Laufe des Lernvorgangs kontinuierlich abgesenkt werden
- Explorationsstrategie kann ε -gierig sein, wobei die Explorationswahrscheinlichkeit im Laufe des Lernvorgangs kontinuierlich abgesenkt werden sollte gemäß der GLIE-Definition aus VE8 (Greedy in the Limit with Infinite Exploration)

Der Sarsa-Algorithmus (2)

Bemerkungen:

- Lernrate α muss im Laufe des Lernvorgangs kontinuierlich abgesenkt werden
- Explorationsstrategie kann ε-gierig sein, wobei die Explorationswahrscheinlichkeit im Laufe des Lernvorgangs kontinuierlich abgesenkt werden sollte gemäß der GLIE-Definition aus VE8 (Greedy in the Limit with Infinite Exploration)
- Nach jedem Schritt wird k um eins erhöht: Nach jedem Zustandsübergang ("zweiphasiges Verfahren") wird die Q-Funktion aktualisiert.
 - Es wird keine perfekte Strategiebewertung durchgeführt, sondern Bewertung und (gierige) Verbesserung alternieren Schritt für Schritt. $\rightarrow k$ ist weglassbar

Konvergenz von Sarsa

Theorem

Der Sarsa-Algorithmus konvergiert zur optimalen Wertfunktion, d.h. $Q(s,a) \to Q^*(s,a) \forall s,a$ bzw. $\lim_{k \to \infty} Q_k(s,a) = Q^*(s,a) \forall s,a$, wenn die folgenden Bedingungen erfüllt sind:

- Die von der Q-Funktion abgeleitete und durch den Agenten verwendete Strategie ist GLIE.
 - Alle Zustands-Aktions-Paare werden unendlich oft besucht und die Strategie konvergiert zu einer deterministischen Strategie.

Konvergenz von Sarsa

Theorem

Der Sarsa-Algorithmus konvergiert zur optimalen Wertfunktion, d.h. $Q(s,a) \to Q^*(s,a) \forall s,a$ bzw. $\lim_{k\to\infty} Q_k(s,a) = Q^*(s,a) \forall s,a$, wenn die folgenden Bedingungen erfüllt sind:

- Die von der Q-Funktion abgeleitete und durch den Agenten verwendete Strategie ist GLIE.
 - Alle Zustands-Aktions-Paare werden unendlich oft besucht und die Strategie konvergiert zu einer deterministischen Strategie.
- Die Lernrate α_k erfüllt die Robbins-Monroe-Bedingungen der stochastischen Approximation^a

$$\sum_{k=0}^{\infty} \alpha_k = \infty \text{ und } \sum_{k=0}^{\infty} \alpha_k^2 < \infty$$

Zustands-Aktions-Paar protokolliert werden muss.

19/27 Prof. Dr. Thomas Gabel | Vorlesung | Grundlagen adaptiver Wissenssysteme

^az.B. $\alpha_m = \frac{1}{m}$, wobei mit *m* die Anzahl der Aktualisierungen für jedes

Die optimale Q-Funktion

Überblick

- 1. Motivation
- On-Policy- vs. Off-Policy-Lernen
- 3. Der Sarsa-Algorithmus
- 4. Der Q-Lernalgorithmus

der optimalen Wertfunktion

Kernideen:

■ Ziel ist das Lernen der optimalen Wertfunktion *Q**, für die gilt

$$Q^*(i,a) = \sum_{i=0}^{n} \rho_{ij}(a) (c(i,a) + \gamma V^*(j))$$

der optimalen Wertfunktion

Kernideen:

■ Ziel ist das Lernen der optimalen Wertfunktion Q*, für die gilt

$$Q^{*}(i, a) = \sum_{i=0}^{n} p_{ij}(a) (c(i, a) + \gamma V^{*}(j))$$

$$= \sum_{i=0}^{n} p_{ij}(a) \left(c(i, a) + \gamma \min_{b \in A} Q^{*}(j, b) \right)$$

der optimalen Wertfunktion

Kernideen:

■ Ziel ist das Lernen der optimalen Wertfunktion *Q**, für die gilt

$$Q^{*}(i, a) = \sum_{i=0}^{n} p_{ij}(a) (c(i, a) + \gamma V^{*}(j))$$

$$= \sum_{i=0}^{n} p_{ij}(a) \left(c(i, a) + \gamma \min_{b \in A} Q^{*}(j, b) \right)$$

Bei Sarsa wurde in der Aktualisierungsvorschrift für den aktuellen und für den folgenden Schritt eine Aktion gemäß aktueller ε-gieriger Strategie angenommen.

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}))$$

der optimalen Wertfunktion

Kernideen:

■ Ziel ist das Lernen der optimalen Wertfunktion Q*, für die gilt

$$Q^{*}(i, a) = \sum_{i=0}^{n} p_{ij}(a) (c(i, a) + \gamma V^{*}(j))$$
$$= \sum_{i=0}^{n} p_{ij}(a) \left(c(i, a) + \gamma \min_{b \in A} Q^{*}(j, b) \right)$$

Bei Sarsa wurde in der Aktualisierungsvorschrift für den aktuellen und für den folgenden Schritt eine Aktion gemäß aktueller ε-gieriger Strategie angenommen.

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}))$$

■ Beim nun vorgestellten Q-Lernen wird a_{t+1} durch eine alternative Aktion a^* ersetzt werden.

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma Q(s_{t+1}, a^*))$$

der optimalen Wertfunktion

Aktualisierung der Q-Funktion beim Q-Learning

Q-Lernen passt die Wertfunktion für den aktuellen Schritt unter der Annahme an, dass der Agent im Folgeschritt die bestmögliche (gierige) Aktion wählen würde.

der optimalen Wertfunktion

Aktualisierung der Q-Funktion beim Q-Learning

Q-Lernen passt die Wertfunktion für den aktuellen Schritt unter der Annahme an, dass der Agent im Folgeschritt die bestmögliche (gierige) Aktion wählen würde.

- Fakt: Aufgrund der Erfordernis nach Exploration wird der Agent dies im Folgezustand jedoch nur mit einer gewissen Wahrscheinlichkeit tun (z.B. mit 1ε).
- Aktualisierungsvorschrift:

$$Q_{k+1}(i,a) := (1-\alpha) \ Q_k(i,a) + \alpha \left(c(i,a) + \min_{a' \in A(j)} Q_k(j,a') \right)$$

der optimalen Wertfunktion

Aktualisierung der Q-Funktion beim Q-Learning

Q-Lernen passt die Wertfunktion für den aktuellen Schritt unter der Annahme an, dass der Agent im Folgeschritt die bestmögliche (gierige) Aktion wählen würde.

- Fakt: Aufgrund der Erfordernis nach Exploration wird der Agent dies im Folgezustand jedoch nur mit einer gewissen Wahrscheinlichkeit tun (z.B. mit 1ε).
- Aktualisierungsvorschrift:

$$Q_{k+1}(i,a) := (1-\alpha) \ Q_k(i,a) + \alpha \left(c(i,a) + \min_{a' \in A(i)} Q_k(j,a')\right)$$

Bezug zur "alternativen Aktion" (sh. vorige Folie): $a^* = \arg \min_{a' \in A(i)} Q_k(j, a')$

der optimalen Wertfunktion

Bemerkungen:

■ Während bei Sarsa ein 5-Tupel ((i, a, c, j, a') bzw. (s, a, r, s', a') bzw. (s_t, a_t, r, s_{t+1}, a_{t+1})) erforderlich war,

der optimalen Wertfunktion

Bemerkungen:

■ Während bei Sarsa ein 5-Tupel ((i, a, c, j, a') bzw. (s, a, r, s', a') bzw. (s_t, a_t, r, s_{t+1}, a_{t+1})) erforderlich war, genügt für eine Aktualisierung der Q-Funktion beim Q-Lernen ein 4-Tupel (i, a, c, j) (bzw. (s, a, r, s') bzw. (s_t, a_t, r, s_{t+1})).

der optimalen Wertfunktion

Bemerkungen:

- Während bei Sarsa ein 5-Tupel ((i, a, c, j, a') bzw. (s, a, r, s', a') bzw. (s_t, a_t, r, s_{t+1}, a_{t+1})) erforderlich war, genügt für eine Aktualisierung der Q-Funktion beim Q-Lernen ein 4-Tupel (i, a, c, j) (bzw. (s, a, r, s') bzw. (s_t, a_t, r, s_{t+1})).
- Der Folgezustand j und die Kosten c(i, a) werden durch
 Beobachtung des Systems (real oder Simulation) bestimmt.
- Q-Lernen repräsentiert ein Verfahren stochastischer Approximation mit Lernrate α.

Algorithmus Q-Learning

Initialisiere $Q_0(s, a)$ beliebig; k = 0REPEAT // Schleife, bis Lernziel erreicht

Algorithmus Q-Learning

Initialisiere $Q_0(s, a)$ beliebig; k = 0REPEAT // Schleife, bis Lernziel erreicht Initialisiere Startzustand s_0 ; t = 0REPEAT // Schleife für aktuelle Episode

Algorithmus Q-Learning

```
Initialisiere Q_0(s,a) beliebig; k=0
REPEAT // Schleife, bis Lernziel erreicht
Initialisiere Startzustand s_0; t=0
REPEAT // Schleife für aktuelle Episode
Wähle Aktion a_t := \arg\min_{a \in A} Q_k(s_t,a)
oder a_t gemäss Explorationsstrategie beliebig
Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t,a_t)
```


Algorithmus Q-Learning

```
Initialisiere Q_0(s,a) beliebig; k=0
REPEAT // Schleife, bis Lernziel erreicht
Initialisiere Startzustand s_0; t=0
REPEAT // Schleife für aktuelle Episode
Wähle Aktion a_t := arg min_{a \in A} Q_k(s_t,a)
oder a_t gemäss Explorationsstrategie beliebig
Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t,a_t)
Führe Lernschritt durch:
```

$$Q_{k+1}(s_t, a_t) := (1 - \alpha)Q_k(s_t, a_t) + \alpha \left(c(s_t, a_t) + \gamma \min_{b \in A} Q_k(s_{t+1}, b)\right)$$

Algorithmus Q-Learning

```
Initialisiere Q_0(s, a) beliebig; k = 0
REPEAT // Schleife, bis Lernziel erreicht
  Initialisiere Startzustand s_0; t = 0
  REPEAT // Schleife für aktuelle Episode
     Wähle Aktion a_t := \arg \min_{a \in A} Q_k(s_t, a)
        oder at gemäss Explorationsstrategie beliebig
     Wende a_t auf System an, beobachte s_{t+1} und Kosten c(s_t, a_t)
     Führe Lernschritt durch:
     Q_{k+1}(s_t, a_t) := (1 - \alpha)Q_k(s_t, a_t)
                                  +\alpha \left(c(s_t, a_t) + \gamma \min_{b \in A} Q_k(s_{t+1}, b)\right)
     t := t + 1; k := k + 1; passe Lernrate \alpha an
  UNTIL Terminalzustand erreicht
Until Strategie optimal
```


Erläuterungen:

Die Lernrate α muss wieder so gewählt werden, dass sie den Bedingungen der stochastischen Approximation genügt, also z.B. wähle α umgekehrt proportional zur Anzahl der Aktualisierungen von Zustands-Aktionspaar (i, a).

Erläuterungen:

- Die Lernrate α muss wieder so gewählt werden, dass sie den Bedingungen der stochastischen Approximation genügt, also z.B. wähle α umgekehrt proportional zur Anzahl der Aktualisierungen von Zustands-Aktionspaar (i, a).
- Q-Learning ist eine Variante des optimistischen TD(0)-Algorithmus für den modellfreien Fall (d.h. simulationsbasiertes inkrementelles Ausführen der Value-Iteration-Vorschrift).
- Es existieren auch Varianten von Q-Learning, die die Idee des $TD(\lambda)$ -Verfahrens aufgreifen: $Q(\lambda)$.

Konvergenz des Q-Lernens

Voraussetzungen:

- Jedes Paar (i, a) wird unendlich oft besucht
- und es gilt $\sum_{t=0}^{\infty} \alpha_t(i, a) = \infty$
- sowie $\sum_{t=0}^{\infty} \alpha_t(i, a)^2 < \infty$

Konvergenz des Q-Lernens

Voraussetzungen:

- Jedes Paar (i, a) wird unendlich oft besucht
- und es gilt $\sum_{t=0}^{\infty} \alpha_t(i, a) = \infty$
- sowie $\sum_{t=0}^{\infty} \alpha_t(i, a)^2 < \infty$

Diskontierte vs. SKP-Problem

- Wir haben Q-Lernen in seiner diskontierten Version kennengelernt (Diskontierungsfaktor γ mit γ < 1).
- Q-Lernen funktioniert auch für (undiskontierte) SKP-Probleme; dann ist γ = 1:

$$Q(i, a) := (1 - \alpha) Q(i, a) + \alpha (c(i, a) + \min_{a' \in A(i)} Q(j, a'))$$

 Voraussetzung zur Konvergenz bei SKP: Entweder alle Strategien sind erfüllend oder es gibt eine erfüllende Strategie und alle nicht erfüllenden Strategien erzeugen unendliche Kosten

Zusammenfassung

- Q-Funktion beschreibt Pfadkosten für Zustands-Aktions-Paare.
- Q-Lernen: stochastische Approximation der optimalen Pfadkosten Q*(i, a) – Dafür wird kein Modell benötigt!

Zusammenfassung

- Q-Funktion beschreibt Pfadkosten für Zustands-Aktions-Paare.
- Q-Lernen: stochastische Approximation der optimalen Pfadkosten Q*(i, a) – Dafür wird kein Modell benötigt!
- Optimale Strategie ist durch Greedy-Auswertung der optimalen Q-Funktion

$$\pi^*(i) = \operatorname{arg\,min}_{a \in A} Q^*(i, a)$$

gegeben. - Dafür wird kein Modell benötigt!

Zusammenfassung

- Q-Funktion beschreibt Pfadkosten für Zustands-Aktions-Paare.
- Q-Lernen: stochastische Approximation der optimalen Pfadkosten Q*(i, a) – Dafür wird kein Modell benötigt!
- Optimale Strategie ist durch Greedy-Auswertung der optimalen Q-Funktion

$$\pi^*(i) = \operatorname{arg\,min}_{a \in A} Q^*(i, a)$$

gegeben. - Dafür wird kein Modell benötigt!

- Konvergenzvoraussetzung: Alle Zustands-Aktionspaare werden unendlich oft angepasst ⇒ Exploration notwendig!
- Praktische Erwägungen: Gute Ergebnisse können in bestimmten Umgebungen auch mit abweichenden Einstellungen erreicht werden.
 - **z**.B. konstante Lernrate von α = 0.1 oder α = 1.0 in deterministischen Umgebungen