浙江工业大学 线性代数期末试卷 (2019~2020第二学期)

任课教师:	学院班级:	
学号:	姓名:	
	1	

题号	_	11	Ξ	四
得分				

一. 填空题(每空 3 分, 共 30 分)

本题得分

- 1. 排列 2, 4, 6, 7, 3, 1, 5 的逆序数是____10____
- 2. 矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$, 则矩阵 A 的秩 $R(A) = \underline{\qquad 3 \qquad}$.
- 3. 行列式 $\begin{vmatrix} 2 & -1 & 0 & 3 \\ 1 & 2 & 2 & -3 \\ -1 & 0 & 1 & 1 \\ -3 & 3 & -2 & 2 \end{vmatrix}$ 中元素 a_{ij} 的代数余子式为 A_{ij} ,则

$$A_{31} + 2A_{32} + A_{33} - 3A_{34} = \underline{-46}.$$

4. 设三阶矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$, 三维列向量 $\boldsymbol{\beta} = (a, 1, 1)^T$, 已知 $\mathbf{A}\boldsymbol{\beta} = \boldsymbol{\beta}$ 线性相

美,则 *a*=______.

5. 矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$, $\mathbf{A}^* \not\in \mathbf{A}$ 的伴随矩阵,则 $(\mathbf{A}^*)^{-1} = \begin{pmatrix} 0.1 & 0 & 0 \\ 0.2 & 0.2 & 0 \\ 0.3 & 0.4 & 0.5 \end{pmatrix}$

1

- 6. 设矩阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$, B 为三阶非零矩阵, AB = O,则 $t = \underline{ 3}$.
- 7. 设向量 $\alpha = (1 \ 1 \ 0 \ -1)^{T}$,则 $\|\alpha\| = \sqrt{3}$ 。若向量 $\beta = (1 \ k \ 1 \ 0)^{T}$ 与 α 的夹角 是 45 度,则 k = 2 。
- 8. 设矩阵 $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & a \\ 6 & -6 & b \end{pmatrix}$ 的特征值为 $\lambda_1 = \lambda_2 = -2$, $\lambda_3 = 4$,则 $a = \underline{3}$, $b = \underline{4}$.
- 二. 单项选择题(每小题 2 分,共 10 分)

1. 已知行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 3, \quad D_1 = \begin{vmatrix} 2a_{11} & 2a_{12} & 2a_{13} \\ 2a_{31} & 2a_{32} & 2a_{33} \\ 2a_{21} & 2a_{22} & 2a_{23} \end{vmatrix}, \quad \mathbb{A} \triangle D_1 = (D).$$

- 2. 设A为n阶可逆矩阵,则(C).
 - (A) $AA^T = E$
- (B) $(2A)^{-1} = 2A^{-1}$ (C) $[(A^{-1})^{-1}]^T = [(A^T)^{-1}]^{-1}$
- (D) $\left[(A^T)^T \right]^{-1} = \left[(A^{-1})^{-1} \right]^T$
- 3. 下列命题正确的是(D).
 - (A)若 A 是 n 阶方阵,且 A ≠ O ,则 A 可逆。
 - (B) 若 A 、 B 都是 n 阶可逆方阵,则 A+B 也可逆。
 - (C) 若 AB=O,且 $A \neq O$,则必有 B=O。
 - (D) 若A是n阶可逆方阵,则 A^T 可逆。
- 4. A 为 $m \times n$ 矩阵,则关于 $Ax = b(b \neq 0)$ 的解的命题正确的是 (A

 - (C) 若 R(A) = n,则 Ax = b一定有解 (D) 若 R(A:b) = n,则 Ax = b一定有解
- 5. 设 $A \in m \times n$ 矩阵, $C \in n$ 阶可逆矩阵,A的秩为 r_1 , B = AC的秩为 r_2 ,则 (C).

(A)
$$r_2 > r_1$$

- (A) $r_2 > r_1$ (B) $r_2 < r_1$ (C) $r_2 = r_1$ (D) $r_2 与 r_1$ 的关系不确定

三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 求行列式
$$D = \begin{vmatrix} 2 & 1 & 4 & 1 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 5 & 0 & 6 & 2 \end{vmatrix}$$
 的值。

$$M$$
:
 $D = -$

$$\begin{vmatrix} 1 & 2 & 3 & 2 \\ 3 & -1 & 2 & 1 \\ 2 & 1 & 4 & 1 \\ 5 & 0 & 6 & 2 \end{vmatrix} = -$$

$$\begin{vmatrix} 1 & 2 & 3 & 2 \\ 0 & -7 & -7 & -5 \\ 0 & -3 & -2 & -3 \\ 0 & -10 & -9 & -8 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 2 & 3 \\ 7 & 7 & 5 \\ 10 & 9 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 7 & 5 \\ 0 & 7 & 5 \end{vmatrix}$$

=0

2. 已知矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$, X 满足 $AX + B = X$, 求矩阵 X .

解: 由 AX + B = X 得 (E - A)X = B

从而得 $X = (E - A)^{-1}B$

$$(E-A)^{-1} = \frac{1}{3} \begin{pmatrix} 0 & 2 & 1 \\ -3 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

3. 求向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_4 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
的秩以及它的一个极大无关

组,并用该极大无关组表示其余向量。

解:
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 3 & 2 & 0 \\ 1 & 4 & 4 & 1 \\ -1 & -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 $R(\alpha_1, \alpha_2, \alpha_3, \alpha_4)=2$

------6 分

极大无关组: α_1 , α_2

-----8分

$$\begin{cases} \alpha_3 = -4\alpha_1 + 2\alpha_2 \\ \alpha_4 = -3\alpha_1 + \alpha_2 \end{cases}$$
------10 \(\frac{1}{2}\)

4. 线性方程组

$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1\\ \lambda x_1 - x_2 + x_3 = 2\\ 4x_1 + 5x_2 - 5x_3 = -1 \end{cases}$$

在ル取何值时无解、有唯一解、有无穷多解,并在有无穷多解时求其通解。

解:
$$\begin{vmatrix} 2 & \lambda & -1 \\ \lambda & -1 & 1 \\ 4 & 5 & -5 \end{vmatrix} = (\lambda - 1)(5\lambda + 4)$$

则
$$\lambda_1 = 1$$
, $\lambda_2 = -\frac{4}{5}$

-----4 分

(1) 当 $\lambda \neq 1$ 且 $\lambda \neq -\frac{4}{5}$ 时有唯一解。

(2) 当 $\lambda = -\frac{4}{5}$ 时,R(A) = 2 < 3 = R(A|b), 无解。

(3) 当*λ*=1时,有无穷多解。

$$\begin{cases} 2x_1 + x_2 - x_3 = 1 \\ x_1 = 1 \end{cases}$$

通解:
$$x = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + k \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 $k \in R$

------10 分

5. 设矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & 0 & -4 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$
,

- (1) 求 A 的特征值和特征向量;
- (2) A 能不能对角化?请说明理由。

解: (1) A 的特征多项式
$$|A-\lambda E| = \begin{vmatrix} -2-\lambda & 0 & -4 \\ 1 & 2-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{vmatrix} = -(\lambda+1)(\lambda-2)^2$$

A的特征值为 $\lambda_1 = -1$, $\lambda_2 = \lambda_3 = 2$

对于 $\lambda_1 = -1$, $(A+E)x = \theta$

$$A+E = \begin{pmatrix} -1 & 0 & -4 \\ 1 & 3 & 1 \\ 1 & 0 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

基础解系
$$p_1 = \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix}$$
, $k_1 p_1 (k_1 \neq 0)$ 是 $\lambda_1 = -1$ 的全部特征向量。

-----6分

对于 $\lambda_2 = \lambda_3 = 2$, $(A - 2E)x = \theta$

$$A - 2E = \begin{pmatrix} -4 & 0 & -4 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

基础解系
$$p_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
, $p_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $k_2 p_2 + k_3 p_3 \left(k_2, k_3$ 不全为零 $\right)$ 是 $\lambda_2 = \lambda_3 = 2$ 的全部特征

向量。

------8分

(2) A 能对角化,因为A 有三个线性无关的特征向量 p_1, p_2, p_3 。

-----10 分

四、证明题(共10分)

1 2 本题总得分

1. (6 分) 已知向量组 a_1, a_2, a_3 线性无关,证明: 向量

组 \boldsymbol{a}_1 + $\boldsymbol{\alpha}_2$, \boldsymbol{a}_2 + $\boldsymbol{\alpha}_3$, \boldsymbol{a}_3 + \boldsymbol{a}_1 线性无关。

证明: $\diamondsuit k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = \theta$

-----2分

 $\mathbb{AI}\left(k_1+k_3\right)\boldsymbol{a}_1+\left(k_1+k_2\right)\boldsymbol{a}_2+\left(k_2+k_3\right)\boldsymbol{a}_3=\boldsymbol{\theta}$

因为 $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$ 线性无关,

所以 $k_1 + k_3 = k_1 + k_2 = k_2 + k_3 = 0$

得 $k_1 = k_2 = k_3 = 0$

所以向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 线性无关。

-----6分

2. (4 分)设向量 α 与向量 β 都是n维非零列向量,矩阵 $A=\alpha\beta^T$ 。证明 R(A)=1证明:因为 α 是非零列向量,由 $A=\alpha\beta^T$ 得 $R(A)=R(\alpha\beta^T) \le R(\alpha)=1$ 又 α 与 β 都是非零列向量,所以 $A \ne O$,则 $R(A) \ge 1$ 从而有R(A)=1

-----4分