## LABORATORIO DE ELECTRÓNICA 2018

## TRABAJO PRÁCTICO #1

Osciloscopios / Analizador de Impedancias / Circuitos RC Fecha de Entrega: martes 28/08

• Utilizando el osciloscopio se pide:



a) Armar el circuito de la figura 1. Utilizando  $V_1$  de **tipo y amplitud conveniente**, encontrar la frecuencia de de corte del circuito y medir  $|V_1|$  y  $|V_{C1}|$ . Calcular  $C_1$  en base a los valores medidos y completar la siguiente tabla:

| $ V_1 $ | $ V_{C1} $ | R          | $C_{Calculado}$ | $C_{\text{Medido}}$ | Error % |
|---------|------------|------------|-----------------|---------------------|---------|
|         |            | R. Teórico |                 |                     |         |
|         |            | R. Medido  |                 |                     |         |

NOTA: R. Teórico y R. Medido significa que se realicen los cálculos utilizando como valor de R el teórico o el medido en cada caso. El error es siempre respecto del C medido con el Analizador de Impedancias.

- b) Medir el ángulo de fase entre I y  $V_{C1}$ . Realizar el diagrama fasorial. Comprobar que  $\overline{V_{R1}} + \overline{V_{C1}} = \overline{V_1}$ utilizando las mediciones anteriores.
- c) Calcular analíticamente  $H(s) = V_{C1}(s)/V_1(s)$  y graficar el diagrama de Bode en función de la frecuencia (Utilizando los valores de  $R_1$  y  $C_1$  medidos con el analizador de impedancias). ¿Cómo se comporta el circuito respecto a la frecuencia?
- d) Excitando al circuito con una onda sinusoidal,  $V_1(t) = A \cos(\omega t)$ , (donde A se elige convenientemente) completar la siguiente tabla con al menos 20 valores, tales que permitan una correcta apreciación de la función transferencia, variando la frecuencia desde 10 Hz hasta 1 MHz:

| f | $ V_1 $ | $ V_{C1} $ | $V_{C1}/V_1$ [dB] | φ1 [grados] | φ <sub>2</sub> [grados] |
|---|---------|------------|-------------------|-------------|-------------------------|
|   |         |            |                   | Modo Δt     | Modo X/Y                |
|   |         |            |                   |             |                         |

e) Graficar Bode con los datos obtenidos y comparar superponiendo los mismos con los valores teóricos calculados. Explicar las diferencias observadas.

- f) Excitando el circuito con una onda cuadrada, observar y mostrar la forma de onda a la salida, al variar la frecuencia en el rango indicado en d). Mostrar 3 gráficos representativos y sacar conclusiones. En el caso más apropiado medir la respuesta transitoria y demostrar analíticamente lo obtenido.
- g) Calcular  $V_{R1}$  con los datos medidos y graficar en función de la frecuencia. ¿Qué se observa?
- h) Repetir 1-a) sin C<sub>1</sub>, es decir conectando solo la punta del osciloscopio en lugar del mismo, tanto en x1 como en x10.
- i) CONCLUSIONES.
- 2 Con los componentes anteriores, disponer la entrada y la salida de la siguiente manera:



- a) Calcular analíticamente  $H(s) = V_{R1}(s)/V_1(s)$  y graficar el diagrama de Bode en función de la frecuencia. ¿Cómo se comporta el circuito respecto a la frecuencia?
- b) Excitando al circuito con una onda sinusoidal,  $V_1(t) = A \cos(\omega t)$ , (donde A se elige convenientemente) completar la siguiente tabla. Utilice el rango y la cantidad de valores que considere necesario para poder obtener una correcta representación del Bode del Circuito:

| f | $ V_1 $ | $ V_{R1} $ | $V_{R1}/V_1$ [dB] | φ <sub>1</sub> [grados]            |
|---|---------|------------|-------------------|------------------------------------|
|   |         |            |                   | Modo Δt / XY Según sea conveniente |
|   |         |            |                   |                                    |

- c) Graficar Bode con los datos obtenidos superponiendo los mismos con los valores teóricos calculados y con el cálculo de  $V_{R1}$  del ej.  $\bullet$ . Comparar y explicar diferencias.
- d) Excitando el circuito con una onda triangular, observar y dibujar la forma de onda a la salida, al variar la frecuencia en el rango indicado en c). Mostrar 3 gráficos representativos y sacar conclusiones. En el caso más apropiado medir la respuesta transitoria y demostrar analíticamente lo obtenido.

- Utilizando el barrido automático del generador y el osciloscopio, visualizar en forma aproximada, la respuesta en frecuencia del circuito de la figura 1 en un rango de frecuencias tal que permita la correcta apreciación de la respuesta en frecuencia, utilizando los siguientes métodos:
  - a) Utilizando el modo XY del osciloscopio y una rampa para generar el barrido en el canal X.
  - b) Utilizando el modo normal del osciloscopio disparado acordemente.
- Medir la respuesta en frecuencia del osciloscopio con el filtro AC y el BW activado.

| Grupo | $R_1$                  | $C_1$  |
|-------|------------------------|--------|
| 1     | 1.8 kΩ                 | 3.9 nF |
| 2     | 2.2 kΩ                 | 3.3 nF |
| 3     | $2.7~\mathrm{k}\Omega$ | 2.7 nF |
| 4     | 3.3 kΩ                 | 2.2 nF |
| 5     | $3.9~\mathrm{k}\Omega$ | 1.8 nF |
| 6     | $4.7~\mathrm{k}\Omega$ | 1.5 nF |

Valores asignados de componentes para las figuras 1 y 2 Guardar los mismos para el examen oral