Google Cloud Platform

Google Colab

Introduction

- A free, cloud-based platform that offers an interactive environment for writing and executing Python code.
- Provides a Jupyter Notebook-like interface.

- A managed machine learning (ML) platform provided by Google Cloud Platform (GCP) for building, deploying, and serving ML models.
- Formerly known as AI Platform.

Google Colab

- Offers free access to GPU and TPU.
- Limited to 12 hours of continuous runtime.

Cost

- Costs vary based on resource usage (e.g., training hours, prediction requests, storage).
- Offers a more flexible and scalable environment for large-scale ML projects.

Runtime and Limitations

- Sessions can run for a maximum of 12 hours.
- Idle timeouts can occur.
- Limited resources compared to dedicated cloud instances.

- No such limitations on runtime.
- Customizable and scalable resources based on project needs.

Customization and Flexibility

• Limited in terms of customizing the underlying infrastructure.

 Highly customizable, allowing users to choose specific machine types, accelerators, and configurations for their tasks.

Collaboration

• Supports real-time collaboration similar to other Google Docs.

 Designed for enterprise-level collaboration with role-based access control and other security features.

Model Deployment

Not designed for model deployment or serving.

• Provides tools for easy model deployment, scaling, and serving with prediction capabilities.

• Standard Google Drive security.

Security

 Enterprise-grade security features, including encryption, IAM roles, and VPC Service Controls.

User Base and Use Cases

 Ideal for students, researchers, and individuals looking for a quick way to run Python code, especially for ML/DL experimentation.

 Targeted towards businesses and ML professionals seeking an end-to-end platform for building, training, deploying, and serving ML models at scale.

Exploring TensorFlow & Deep Learning

Journey into the world of deep learning with TensorFlow.

Machine Learning Landscape

The Broad Spectrum of Machine Learning

Foundational Models: Linear and Logistic Regression

Advanced Structures: Neural Networks and Deep Learning

Why Not More Regression?

TensorFlow

Handles Complex Calculations

Logistic Regression

Why Not More Regression?

- Multi-layered Neural Networks
- GPU Acceleration
- Beyond Simple Models

Importance of Regression Foundations

- Regression as the bedrock of ML
- Essential for understanding advanced topics

What is it?

- Definition: A linear approach to modeling the relationship between a dependent variable and one or more independent variables.
- It's a line of best fit.
- Used for prediction and explaining variance.

Simple Linear Regression

• This is used when there's only one independent variable

$$y = b0 + b1 * X + \varepsilon$$

- y is the dependent variable.
- X is the independent variable.
- b0 is the y-intercept (constant term).
- b1 is the coefficient of the independent variable.
- ε is the error term, representing the variability in y that is not explained by the model.

$$y = b0 + b1 * X + \varepsilon$$

Example

House Size (X)	Price (y)
1400	250000
1600	300000
1700	320000
1875	350000
1100	200000

Cost function

- The cost function (also known as the loss function) quantifies the error between the predicted values and the actual values in the training dataset.
- The Mean Squared Error (MSE) is commonly used as the cost function. It calculates the average squared difference between predicted and actual values.
- Optimizers, such as Gradient Descent, are used to iteratively update the model's parameters (coefficients) to minimize the cost function.

Multiple Linear Regression

• This is used when there are mutiple independent variables

$$y = b0 + b1 * X1 + b2 * X2 + ... + bn * Xn + \varepsilon$$

- y is the dependent variable.
- X1, X2, ..., Xn are the independent variables.
- b0 is the y-intercept.
- b1, b2, ..., bn are the coefficients of the independent variables.
- ε is the error term, as in simple linear regression.

What is it?

- Dependent Variable: House Price
- Independent Variables: Number of Bedrooms, Size in Square Feet, Proximity to City Center.
- Price = β 0 + β 1(Number of Bedrooms) + β 2(Size) + β 3(Proximity to City Center) + ϵ

Bedrooms (X1)	Size (X2)	Distance (X3)	Salary (y)
2	1200	12	50000
5	1600	16	75000
6	1400	14	60000
4	1800	18	90000
3	1300	13	55000

How much rain is expected?

Will it rain tomorrow?

Logistic function

$$f(x) = 1/(1 + e^{(-x)})$$

- Its output is always between 0 and 1, making it useful for modeling probabilities
- It is a non-linear function, which allows us to model more complex relationships between the dependent and independent variables.

Logistic vs Linear

$$P(Y = 1) = \frac{1}{(1 + e^{-(\beta 0 + \beta 1X)})}$$

- Y is either 0 or 1 (For e.g. student admitted or not, It will rain or not)
- P(Y=1) is the probability that the dependent variable Y is equal to 1.

Odds and Log Odds

- Odds Definition: Odds represent the ratio of the probability that an event will occur to the probability that it will not occur.
- Formula: Odds = Probability of Success / Probability of Failure
- **Example**: If the probability of success is 0.8, the probability of failure is 0.2, leading to odds of 4 (0.8 / 0.2).
- Log Odds (Logit Function): Log odds, or the logit function, is the natural logarithm of the odds.

Logistic vs Linear

$$P(Y = 1) = \frac{1}{(1 + e^{-(\beta 0 + \beta 1X)})}$$

$$Ln\left(\frac{P}{1 - P}\right) = \beta 0 + \beta 1X$$

- Y is either 0 or 1 (For e.g. student admitted or not, It will rain or not)
- P(Y=1) is the probability that the dependent variable Y is equal to 1.

Maximum Likelihood Estimation

$$Ln\left(\frac{P}{1-P}\right) = \beta 0 + \beta 1X$$

• MLE finds the values for the model's parameters (coefficients) that make the predicted probabilities as close as possible to the actual outcomes (0 or 1) for the observed data.

Example

Exam Score (X)	Admission Status (Y)		
75	0		
82	1		
88	1		
92	1		
69	0		

$$Ln\left(\frac{P}{1-P}\right) = \beta 0 + \beta 1X$$

Help John

John

Analytics Manager at STA Retailers

STA Retailers owns hundreds of grocery stores across the country. John's team invests a large amount of time and effort in analyzing different localities to find a location for new stores. John has recently completed a course in Analytics and Machine Learning, and he thinks that STA can use Machine Learning to use past data to create data-driven process for selecting new store locations.

Data Sample

Type of Location	City type	Marketing Sales Investment	Estimated Population in vicinity	Average Household Income	Sales
Commercial	Non-Metro	55,523.00	13134	11400	71,406.58
Residential	Metro	57,081.00	16716	10800	68,005.87
Residential	Metro	60,347.00	10348	16800	76,764.02
Residential	Metro	49,010.00	16119	19800	82,092.39
Residential	Metro	57,879.00	14726	19200	73,878.10
Residential	Non-Metro	54,340.00	14527	18600	59,950.89
Residential	Non-Metro	60,298.00	8358	27600	66,602.34
Residential	Non-Metro	49,944.00	11144	22200	57,768.44
Residential	Metro	53,124.00	7960	22200	70,083.30
Residential	Non-Metro	51,141.00	9353	36000	85,648.48
Residential	Metro	49,497.00	9950	15000	74,914.15
Commercial	Non-Metro	50,197.00	13134	37200	85,219.39

Help Tim

Tim

Analytics Manager at STA Telecom

STA Telecom provides 4G and 5G services all over India. STA currently offers services including fixed-line broadband, and voice services.

Tim has been tasked to reduce customer attrition. He thinks that STA can use Machine Learning to use past data to create data-driven process for reducing customer churn.

Data Sample

PhoneService	Contract	PaperlessBilling	PaymentMethod	Tenure	MonthlyCharges	TotalCharges	Churn
No	Month-to-month	Yes	Electronic check	1	29.85	29.85	No
Yes	One year	No	Mailed check	34	56.95	1889.5	No
Yes	Month-to-month	Yes	Mailed check	2	53.85	108.15	Yes
No	One year	No	Bank transfer (automatic)	45	42.3	1840.75	No
Yes	Month-to-month	Yes	Electronic check	2	70.7	151.65	Yes
Yes	Month-to-month	Yes	Electronic check	8	99.65	820.5	Yes
Yes	Month-to-month	Yes	Credit card (automatic)	22	89.1	1949.4	No
No	Month-to-month	No	Mailed check	10	29.75	301.9	No
Yes	Month-to-month	Yes	Electronic check	28	104.8	3046.05	Yes
Yes	One year	No	Bank transfer (automatic)	62	56.15	3487.95	No

