ENERGY CONSUMPTION IN RADIO NETWORKS: SELFISH AGENTS AND REWARDING MECHANISMS

CHRISTOPH AMBÜHL, ANDREA CLEMENTI, PAOLO PENNA, GIANLUCA ROSSI, RICCARDO SILVESTRI3

1 DIPARTIMENTO DI MATEMATICA, UNIV. ROMA "TOR VERGATA" 2 DIP. INFORMATICA ED APLICAZIONI, UNIVERSTA DI SALERNO

3 DIPARTIMENTO DI INFORMATICA, UNIV. DI ROMA "LA SAPIENZA"

OVERALL ENERGY:

MULTIHOP > O(m)

ONE HOP >> O(ma)

5. ...t

OVERALL ENERGY:

HULTIHOP > O(m)

ONE HOP >> O(ma)

Ci = POWER FOR TRANSMISSION

$$i \rightarrow j$$
 ONE HOP

 $C_1^2 = d(1,2)^2$ $d = 2$
 $C_1^3 = ol(1,3)^{2,5...}$ RIFRACTION

 $C_1^4 = \infty$ OBSTACLE

 $C_1^4 = \infty$ TOO FAR

$$E = connections = \{(1,2), (1,3),...\}$$
 $cost(E,c) = Power(±) + Power(2) + ...$
 $= Max\{c^2, c^3\} + ...$

RANGE ASSIGNMENT

INPUT:
$$S = \{4,...,m\}$$
 STATIONS
 $C: S \times S \longrightarrow \mathbb{R}^+$

MEASURE: OVERALL ENERGY

$$COST(E,c) := \sum_{i \in S} COST_i(E,c)$$

PREVIOUS WORK

Ci= ol (i,i) a GEOMETRIC INSTANCES 1D POLYNOMIAL [KIROUSIS, KRANAKIS, KRIZANG, PELC 97] 2D NP-HARD [CLEMENTI, P., SILVESTRI 99] 3D APX-HARD [CPS'99] GENERAL COSTS C: 2-APX ALGORITHM [KKKP 197] METRIC CASE CISCIL+CI 1.61-APX ALGORITHM

1.61-APX ALGORITHM
[CALINESCU, ZARAGOZA 'OZ]
NP-HARD
[CPS' 99]

AD-HOC NETWORKS

NO INFRASTRUCTURE

NO "EXTERNAL" ENTITY
IMPOSING ITS OWN WILL
(GOVERNMENTS, PROVIDERS, PRIVATE COMPANIES)

1

SELF-ORGANIZATION

COOPERATION ALTRUISTIC BEHAVIOR

AD-HOC NETWORKS

NO INFRASTRUCTURE

NO "EXTERNAL" ENTITY
IMPOSING ITS OWN WILL
(GOVERNMENTS, PROVIDERS, PRIVATE COMPANIES)

SELF-ORGANIZATION

COOPERATION, ALTRUISTIC BEHAVIOR

DIFFERENT OWNERS > SELFISH STATIONS

THE MODEL

PRIVATE INPUT:

AGENTS:

ALGORITHM ALG COMPUTES

ALG (D=,..., Di,..., Dm)=
$$E$$
 $E = \{E_{1},..., E_{i},..., E_{m}\}$

COST FOR AGENT i

$$COST_{i}(E_{i},C)=MAX\{C_{i}^{i}|(i,i)\in E_{i}\}$$

$$=COST_{i}(D_{i},C_{i},ALG)$$

THE MODEL (CNTD.)

MECHANISM: ALGORITHM
PAYMENT FUNCTION

AGENTS' UTILITY

SELFISH AGENTS: AGENT I WANTS

LIE ONLY IF Ui (Di)>Vi(Ci)

TRUTHFULNESS

YDi,

$$P_{i}^{Al6}(D_{1,...,D_{i-1},C_{i},D_{i+1,...,D_{m}})$$
 $-COST(C_{i},C_{i},Al6) \ge P_{i}^{Al6}(D_{1,...,D_{i-1},D_{i},D_{i+1,...,D_{m}})$
 $-COST(D_{i},C_{i},Al6)$

PARTICIPATION CONSTRAINT

TRUTHFULNESS

PARTICIPATION CONSTRAINT

UTILITARIAN PROBLEMS

$$P_{i}^{ALG}(D_{i},D_{i}) = R_{i}(D_{i}) - \sum_{j \neq i} cost_{j}(ALG(D_{i},D_{i}),D_{j})$$

$$U_{i}(D_{i}) = P_{i}^{AlG}(D_{i}, D_{-i}) - COST_{i}(AlG(D_{i}, D_{-i}), C_{i})$$

$$= R_{i}(D_{-i}) - COST(AlG(D_{i}, D_{-i}), (C_{i}, D_{-i}))$$

UTILITARIAN PROBLEMS

$$P_{i}^{ALG}(D_{i},D_{-i}) = R_{i}(D_{-i}) - \sum_{j \neq i} cost(ALG(D_{i},D_{-i}),D_{i})$$

UTILITARIAN PROBLEMS

$$P_{i}^{ALG}(D_{i},D_{-i}) = R_{i}(D_{-i}) - \sum_{j \neq i} (ALG(D_{i},D_{-i}),D_{i})$$

$$U_{i}(D_{i}) = P_{i}^{ALG}(D_{i}, D_{-i}) - COST_{i}(ALG(D_{i}, D_{-i}), C_{i})$$

$$= R_{i}(D_{-i}) - COST(RLG(D_{i}, D_{-i}), (C_{i}, D_{-i}))$$

$$= SOLUTION$$

THEOREM [VICKREY'61, CLARKE'71, GROVES'73]

M= (ALG, PALG) IS TRUTHFUL IF

THE PROBLEM IS UTILITARIAN AND

ALG COMPUTES THE OPTIMUM

UTILITARIAN PROBLEMS

$$P_{i}^{ALG}(D_{i},D_{-i}) = R_{i}(D_{-i}) - \sum_{j \neq i} cost_{j}(ALG(D_{i},D_{-i}),D_{j})$$

THEOREM [NISAN, RONEN'00]

M= (ALG, PALG) IS TRUTHFUL IF THE PROBLEM IS UTILITARIAN AND ALG IS RESTRICTED OPTIMAL:

OPTIMAL W.R.T. OALG OPLY

UTILITARIAN PROBLEMS

$$P_{i}^{ALG}(D_{i},D_{-i}) = R_{i}(D_{-i}) - \sum_{j \neq i} cost(ALG(D_{i},D_{-i}),D_{i})$$

THEOREM [NR'OD] THERE EXISTS A CLASS OF UTILITARIAN PROBLEMS CMAP S. t.

OUR RESULTS

GENERAL COSTS:

- IN CMAP

- 目 POLY-TIME TRUTHFUL MECHANISM

MHUB = (HUB, PHUB)

(HUB IS RESTRICTED OPTIMAL)

GEOMETRIC CASE

HUB IS O(1)- APX

METRIC CASE CIECK+CK (NP-HARD)

- HUB IS 1.5-APX
- MHUB SATISFIES PARTICIPATION CONSTRAINT

HUB ALGORITHM

FOR ALL SES DO COMPUTE

- ALL-TO-3 SOLUTION
- 3-TO-ALL SOLUTION

RETURN THE BEST "HUB_TREE"

RESTRICTED OPTIMALITY

HUB ALGORITHM

FOR ALL JES DO COMPUTE

- ALL-TO-S SOLUTION
- 3-TO-ALL SOLUTION

OPTIMAL = MST

RETURN THE BEST "HUB_TREE"

RESTRICTED OPTIMALITY

ALGORITHM -

FOR ALL SES DO COMPUTE

- ALL-TO-3 SOLUTION
- 5-TO-ALL SOLUTION

OPTIMAL = MST

3-TO-ALL = 1 HOP

RETURN THE BEST "HUB_TREE"

RESTRICTED OPTIMALITY

APPROXIMATION ANALYSIS

METRIC OR WELL-SPREAD

COST(S-1HOP) = OPTS-TO-ALL . C

well-spread

OPEN PROBLEMS

- 2D GEOMETRIC CASE

 O(1)-APX TRUTHFUL?
- NON VCG-BASED MECHANISH?
- BUDGET BALANCE

- BROADCAST (1-TO-ALL)