	T	T	
Analytische Geometrie			
0. Vektoren			
Mitte einer Strecke AB	Mittelwert der zwei Ortsvektoren	A(2 3 6), B(-4 5 2)	
A M _{AB}	$\overrightarrow{m_{AB}} = \frac{1}{2} \left(\vec{a} + \vec{b} \right)$	Lösung: M($\left(\frac{1}{2}(2-4) \left \frac{1}{2}(3+5) \right \frac{1}{2}(2+6)\right) = M(1 4 4)$	
■ Verbindungsvektor \overrightarrow{AB} B	Spitze – Anfang: $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$	A(2 3 6), B(-4 5 2)	
A		$ Lösung: \overrightarrow{AB} = \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix} $	
Schwerpunkt eines Dreiecks ABC	Mittelwert der drei OVn	Bsp: A(1 2 4), B(4 5 2), C(-3 2 -2)	
A B	$\overrightarrow{s_{AB}} = \frac{1}{3} (\vec{a} + \vec{b} + \vec{c})$	Lösung: $\vec{s} = \frac{1}{3} \cdot \begin{pmatrix} 1+4-3 \\ 2+5+2 \\ 4+2-2 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 3 \\ 4/3 \end{pmatrix}$	
■ Lineare Abhängigkeit von zwei Vektoren u und v.	Zwei Vektoren sind linear abhängig, wenn einer ein Vielfaches vom anderen ist: $\vec{v} = k \cdot \vec{u}$	Bsp: $\vec{u} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}, \vec{v} = \begin{pmatrix} -2 \\ 4 \\ -4 \end{pmatrix}$ Lösung: $\vec{v} = -2 \cdot \vec{u}$, deshalb sind sie l.a.	
		200 mg. V = 2 d., doorland direction.d.	
Bedingung dafür, dass das Viereck ABCD ein Trapez ist. D C B B	Die Differenzvektoren von zwei gegenüberliegenden Seiten sind linear abhängig.	Bsp: A(4 6 0), B(4 0 3), C(2 0 5), D(2 10 0). Lösung: $\overrightarrow{AB} = \begin{pmatrix} 0 \\ -6 \\ 3 \end{pmatrix}$ und $\overrightarrow{DC} = \begin{pmatrix} 0 \\ -10 \\ 5 \end{pmatrix}$ sind lin. abhängig, d.h. ABCD ist ein Trapez.	

		T	
1.	Geraden		
	Gerade h durch den Punkt A in Richtung ū	Der OV \vec{x} eines beliebigen Geradenpunktes X ist die Summe aus \vec{a} und einem Vielfachen des RVs \vec{u} .	Bsp: Punkte A(2 3 1), Richtung $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ Lösung: g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $t \in R$
	Spurpunkt der Geraden g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR \text{ mit der } x_1x_2\text{-}$ Ebene.	$ \text{Im LGS} * \begin{cases} x_1 = a_1 + tu_1 \\ x_2 = a_2 + tu_2 \\ x_3 = a_3 + tu_3 \end{cases} x_3 = 0 \text{ setzen,} $ Gleichung lösen und Lösung in andere Gleichungen von (*) einsetzen	Bsp: g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$ Lösung: $1 + \lambda = 0$ ergibt $S_1 (-2 \mid 5 \mid 0)$
-	Spurpunkt der Geraden g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$ mit der x_2x_3 -Ebene.	Im LGS (*) $x_1 = 0$ setzen	Bsp : g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$ Lösung: $S_2 (0 \mid 3,5 \mid 0,5)$
	Spurpunkt der Geraden g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$ mit der x_1x_3 -Ebene.	Im LGS (*) x ₂ = 0 setzen	Bsp: g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$ Lösung: $S_3 (8 \mid 0 \mid 4)$
	Liegt der Punkt P auf der Geraden g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$? (Punktprobe)	In der Geradengleichung statt \vec{x} den OV \vec{p} des Punktes P einsetzen und entstandenes LGS lösen. Wenn sich kein Widerspruch ergibt, folgt $P \in g$.	Bsp: P(-2 5 -1), g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$ Lösung: -2 = 2 + 2 λ 5 = 3 - λ -1 = 1 + λ $\lambda = -2$, d.h. $P \in g$.

Gerade h durch P und parallel	OV p als Stützvektor von h und RV u	$\begin{pmatrix} 2 \end{pmatrix} \qquad \begin{pmatrix} 2 \end{pmatrix}$
$\mathbf{zu}\ \mathbf{g}:\ \vec{\mathbf{x}}=\vec{\mathbf{a}}+t\vec{\mathbf{u}},t\inIR$	von g ebenfalls als RV von h wählen:	Bsp: P(-2 5 -1), g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$
		(1) (1)
<u>g</u>	h: $\vec{x} = \vec{p} + t \cdot \vec{u}, t \in IR$	(-2) (2)
P	,	Lösung: h: $\vec{x} = \begin{pmatrix} -2 \\ 5 \\ -1 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$
h		Losung. II. X = 3 +t' = 1, k \in II
		(-1) (1)
■ Gerade h durch P und	OV p als Stützvektor von h und	Bsp : E_1 : 2 x_1 + 3 x_2 – 4 x_3 = 12, $P(-2 \mid 5 \mid -1)$
orthogonal zur Ebene E: $\vec{n}\vec{x} = d$	Normalenvektor n von E als RV von h	Lösung:
h h	wählen	$\left(-2\right)$ $\left(2\right)$
	, warmon	h: $\vec{x} = \begin{pmatrix} -2 \\ 5 \\ -1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \lambda \in IR$
	h: $\vec{x} = \vec{p} + \lambda \cdot \vec{n}, \lambda \in IR$	$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} -4 \end{pmatrix}$
TP		
• Gerade g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$ als	$P_t (a_1 + tu_1 \mid a_2 + tu_2 \mid a_3 + tu_3)$	Bsp: $g: \vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in IR$
Punkt geschrieben	Die 3 Zeilen der Parametergleichung	Bsp: g: $\vec{x} = \begin{vmatrix} 3 \end{vmatrix} + \lambda \cdot \begin{vmatrix} -1 \end{vmatrix}, \lambda \in IR$
	nebeneinander als Koordinaten	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
	schreiben	Lösung: Pt(2+2t 3 -t 1+t)
Die Punkte P _t liegen auf einer Ogwaden	P_t ($a_1 + tu1$. $.a_2 + tu_2 a_3 + tu_3$)	Bsp : P _t (4 - t 2 + 2t -t)
Geraden.	Die Koordinaten als die 3 Zeilen der	
	Parametergleichung schreiben und	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$
	in Vektorschreibweise aufspalten	Losung: $g: x = \begin{vmatrix} 2 \\ 1 \end{vmatrix} + t \cdot \begin{vmatrix} 2 \\ 1 \end{vmatrix}, t \in \mathbb{R}$
		Lösung: g: $\vec{x} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, t \in IR$
2. Lage von zwei Geraden		
Lage von zwei Geraden Jacobson Lage von zwei Geraden Jacobson Lage von Lage von Lage von Zugen Lage von Zugen Lage von Zugen Lage von Lage vo	1. Schritt: u ,v linear abhängig?	Bsp: (1) (0)
g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$ und	Ja. Parallel oder identisch. Nein. 2. Schritt: Gleichsetzen	g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$; h: $\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$
h: $\vec{x} = \vec{b} + \vec{sv}, \vec{s} \in IR$ zueinander	$\begin{cases} a_1 + tu_1 = b_1 + sv_1 \end{cases}$	$g: X = \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 4 \end{bmatrix}; n: X = \begin{bmatrix} -2 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
	LGS $\{a_2 + tu_2 = b_2 + sv_2 \text{lösen.} \}$	
	$a_3 + tu_3 = b_3 + sv_3$	Lösung:
	Es gibt Lösung → SchnittP	u,v linear unabhängig, also g und h nicht parallel.
	Keine Lösung → windschief	$2+2\lambda = 1$
	Achtung: LGS mit 3 Gleichungen und 2 Var. !	3 - λ = -2+ μ hat keine Lösung. Damit haben
	z.B. Teil-LGS lösen und Probe in 3 Gl.	$1 + \lambda = 1 + 3\mu^{-3}$ g und h keinen Schnittpunkt, d.h. g, h windschief.
		g and it tomor commeparite, a.m. g, it will do their
	l	

•	Mittelparallele s der parallelen Geraden g und h	OV des Mittelpunkts M der Strecke AB als Stützvektor und RV von g bzw. h als RV wählen.	g: $\vec{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, h: $\vec{x} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$	
g -		Für g: $\vec{x} = \vec{a} + t\vec{u}, t \in IR$ und	(3) (2)	
s		h: $\vec{x} = \vec{b} + \vec{sv}, \vec{s} \in IR$ ist dann die Mittel-	Lösung: s: $\vec{x} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$	
h	В	parallele s: $\vec{x} = \frac{1}{2} (\vec{a} + \vec{b}) + r\vec{u}, r \in R$	(2) (1)	
3.	Ebenen	_		
•	Parametergleichung der Ebene	Der Ortsvektor x eines beliebigen	E: $\vec{x} = \vec{p} + \lambda \cdot \vec{u} + \mu \cdot \vec{v}, \lambda, \mu \in IR$	
		Ebenenpunkts X ist die Summe aus	E: $X = p + \lambda \cdot u + \mu \cdot V, \lambda, \mu \in \mathbb{R}$	
		dem Ortsvektor p eines		
	→ \ E	Ebenenpunktes P und passenden Vielfachen der Spannvektoren		
	p \	l 		
	V	ú und v .		
-	Koordinatengleichung der	E: $a x_1 + b x_2 + c x_2 = d$	$2 x_1 - 2 x_2 - x_3 = 9$	
	Ebene ∱ n̄	(a)		
	E	Normalenvektor: $\vec{n} = \begin{bmatrix} b \\ c \end{bmatrix}$	$\begin{pmatrix} 2 \\ -2 \end{pmatrix} \vec{x} = 9$	
		Normalenform der Ebene $\vec{n}\vec{x} = d$		
•	Parametergleichung →	Parametergleichung dreizeilig	E: $\vec{X} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \lambda \in IR$	Drei beliebige, nicht
	Koordinatengleichung	schreiben und dann die Parameter eliminieren	E: $\vec{x} = \begin{vmatrix} 2 \\ +\lambda \end{vmatrix} 1 + \mu \begin{vmatrix} 0 \\ \lambda \in IR \end{vmatrix}$	kollineare Punkte der Ebene bestimmen und in
			$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	$ax_1 + bx_2 + cx_3 = 1$
		oder		einsetzen, LGS lösen.
		siaha OTD. Caalla	Lösung: $-2x_1 + 3x_2 + x_3 = 7$	Dann möglichst
		siehe GTR - Spalte		ganzzahlige Koeffizienten a,b,c herstellen durch
		oder: Normalenvektor bestimmen, als Koeffizienten nutzen und mit einem Punkt Absolutglied berechnen		Multiplikation der entstandenen Gleichung.
•	Spurpunkte der Ebene	Achsenabschnittsform herstellen durch	E: $2x_1 + 3x_2 - 4x_3 = 12$	The second of the second secon
	E: $ax_1 + bx_2 + cx_3 = d$	Division der Koordinatengleichung		
	sind die Schnittpunkte von E mit den Koordinatenachsen	durch d. Die Koordinaten der Spurpunkte	Lösung: Division durch 12 liefert	
	den Noordinatenatiisen	lassen sich an den entstandenen	$\frac{x_1}{6} + \frac{x_2}{4} + \frac{x_3}{-3} = 1$ und damit die Spurpunkte	
		Nennern ablesen.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			$S_1(0 \mid 0 \mid 0)$, $S_2(0 \mid 4 \mid 0)$, $S_3(0 \mid 0 \mid -3)$.	
		l		

_		T .	,	
4				
	Ebenengleichungen			
•	Ebene E durch die drei Punkte A,	Zum Beispiel den Ortsvektor von A als	A(3 2 0), B(4 4 2) und C(5 2 -1)	
	B und C	Stützvektor und die Vektoren	Lösung:	
	≜ B	\overrightarrow{AB} und \overrightarrow{AC} als Richtungsvektoren		
	/ A ▶ \ C/*/	wählen	(3) (1) (2)	
		Wallieff	$ E: \vec{x} = 2 + r \cdot 2 + s \cdot 0 $, $r, s \in IR$	
			$E: \vec{x} = \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, r, s \in IR$	
	\bigvee		(0) (2) (-1)	
•	Ebene E, die die Gerade g und	Voraussetzung ist hier, dass P nicht	(1) (2)	
	den Punkt P enthält	auf der Geraden liegt.	$ g: \vec{x} = 2 + \lambda 1 , \lambda \in IR, P(4 2 2)$	
		Zuna Baianial dan Ortavalitan van Bala	g: $\vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \lambda \in IR, P(4 2 2)$	
		Zum Beispiel den Ortsvektor von P als Stützvektor und den Richtungsvektor		
	y		Lösung:	
	Q * *P	von g und den Vektor \overrightarrow{QP} als	(4) (2)	
		Spannvektoren wählen.	$E: \vec{x} = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix} + r \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}, r, s \in IR$	
			E: $x = 2 + r \cdot 1 + s \cdot 0 , r, s \in IR$	
			(2) (1) (-1)	
	·			
-	Ebene E, die die beiden Geraden	Voraussetzung ist hier, dass die	(1) (2) (1) (0)	
	g und h enthält	Geraden sich schneiden	Reprigiry $= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ high $\vec{y} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
			Bsp: g: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, h: \vec{x} = \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$	
	E/	Zum Beispiel den Stützvektor von g		
	A	als Stützvektor von E und die	Lösung:	
	/ h	Richtungsvektoren von g und h als		
	g	Spannvektoren wählen	(1) (2) (0)	
	\		E: $\vec{X} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \lambda, \mu \in IR$	
			3 1 2	
Ŀ	Thoma C die die beiden neurallalau	_	(4) (2) (2)	
•	Ebene E, die die beiden parallelen Geraden g und h enthält	Zum Beispiel den Stützvektor p von g	Bsp: g: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$, h: $\vec{x} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 1 \\ -2 \end{pmatrix}$	
	Geraden g und n entrialt	als Stützvektor von E und als	Bsp: g: $\vec{x} = 2 + \lambda -1 $, h: $\vec{x} = 2 + \mu 1 $	
	() () () () () () () () () ()	Spannvektoren den Vektor PQ und	$\begin{bmatrix} 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 \end{bmatrix}$	
	h/	den Richtungsvektor von g wählen.	Lösung:	
		den Montangsvertor von g wanten.		
	P/		$E: \vec{X} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \lambda, \mu \in IR$	
	\		$ \exists : X = 2 + \lambda -1 + \mu \cup \lambda, \mu \in IR$	
1	\		(3) (2) (-2)	

Ebene E, die die Gerade g enthält und parallel zu h ist h g	Zum Beispiel den Stützvektor von g als Stützvektor von E und die Richtungsvektoren von g und h als Spannvektoren wählen	Bsp: g: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$; h: $\vec{x} = \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ Lösung: $E: \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \lambda, \mu \in IR$	
Ebene E durch A und orthogonal zur Geraden g g + A	E hat den Richtungsvektor von g als Normalenvektor und geht durch den Punkt A.	Bsp: A(3 2 -5), g: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}, \lambda \in IR,$ Lösung: E: $\begin{bmatrix} \vec{x} - \begin{pmatrix} 3 \\ 2 \\ -5 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} = 0$	
5. Lage von Gerade g und Ebene E zueinander			
Die Gerade g ist parallel zur Ebene E g	Der Normalenvektor von E und der Richtungsvektor von g sind orthogonal.	Bsp: g: $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, E: $x_1 + 4x_2 - 3x_3 = 2$ Lösung: $\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ -3 \end{pmatrix} = 2 \cdot 1 + 1 \cdot 4 + 2 \cdot (-3) = 0$ d.h. E und g sind parallel.	
Symmetrieebene F der Punkte A und B A B	F hat den Vektor AB als Normalenvektor und geht durch den Mittelpunkt der Strecke AB	Bsp: A(3 2 -5), B(5 4 1) Lösung: $F: \begin{bmatrix} \vec{x} - \begin{pmatrix} 4 \\ 3 \\ -2 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix} = 0 \text{ bzw. } F: x_1 + x_2 + 3x_3 = 1$	

6. Lage von Ebenen zueinander			
Parallelität zweier Ebenen	E₁ und E₂ haben linear abhängige	Bsp : E ₁ : x_1+2 x_2-3 $x_3=2$,	
E_1 und E_2	Normalenvektoren	E ₂ : $-2x_1 - 4x_2 + 6x_3 = 12$	
E_1 E_2		Lösung: Die Normalenvektoren sind das (-2)-fache voneinander, die Absolutglieder das 6-fache, d.h. E ₁ und E ₂ sind parallel und verschieden.	
■ Orthogonalität zweier Ebenen E ₁	E ₁ und E ₂ haben orthogonale	Bsp: E ₁ : x_1+2 x_2-3 $x_3=2$,	
und E₂	Normalenvektoren	E_2 : 5 x_1 +2 x_2 + 3 x_3 = 11	
E_1 E_2		Lösung: $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} = 0$, d.h. $E_1 \perp E_2$	
7. Schnitt von Ebenen / Geraden			
■ Schnittgerade zweier Ebenen E ₁	Aus beiden Ebenengleichungen eine	Bsp: E ₁ : x_1+2 x_2-3 $x_3=2$, (1)	
und E ₂	Gleichung herstellen, die nur 2 Variablen enthält.	E_2 : x_1+3 x_2 + $x_3 = -1$ (2)	
E	Darin eine Variable durch den		
E_2	Parameter λ ersetzen und die anderen Variablen ebenfalls durch λ ausdrücken. Die entstandenen drei Gleichungen als Vektorgleichung schreiben.	Lösung: $x_2 + 4x_3 = -3$ (3) = (2) - (1) Für $x_3 = \lambda$ folgt $x_2 = -3 - 4\lambda$ und $x_1 = 8 + 11\lambda$ ergibt Schnittgerade	
	$x_1 = 8 + 11\lambda$	$\overrightarrow{a}: \overrightarrow{x} = \begin{vmatrix} 3 \\ -3 \end{vmatrix} + \lambda \cdot \begin{vmatrix} -4 \end{vmatrix}$	
	$ \begin{cases} x_2 = -3 - 4\lambda \\ x_3 = \lambda \end{cases} $	$g: \vec{x} = \begin{pmatrix} 8 \\ -3 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 11 \\ -4 \\ 1 \end{pmatrix}$	
 Schnittpunkt einer Geraden g mit einer Ebene E 	Die drei "Zeilen" der Parametergleichung der Geraden in die Koordinatengleichung der Ebene einsetzen, entstandene Gleichung	Bsp: E: $2x_1 + 3x_2 = 9$; g: $\vec{x} = \begin{pmatrix} -5 \\ 2 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} -8 \\ 1 \\ -1 \end{pmatrix}$	
E	nach dem Parameter auflösen. Dieser in die Parametergleichung eingesetzt liefert die Koordinaten des Schnittpunkts.	Lösung: $2(-5-8t) + 3(2+t) = 9$ ergibt $t = -1$ und den Schnittpunkt S(3 1 5)	

8.	Skalarprodukt			
•	Länge der Strecke AB	$\overline{AB} = \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a} = \sqrt{(\overrightarrow{b}_1 - \overrightarrow{a}_1)^2 + (\overrightarrow{b}_2 - \overrightarrow{a}_2)^2 + (\overrightarrow{b}_3 - \overrightarrow{a}_3)^2}$	Bsp: A(3 1 -5), B(5 4 1) Lösung: $\overrightarrow{AB} = \overrightarrow{AB} = \sqrt{(5-3)^2 + (4-1)^2 + (1-(-5))^2} = \sqrt{49} = 7$	
•	Bedingung dafür, dass das Viereck ABCD ein Quadrat ist.	Die Diagonalen sind gleich lang, orthogonal und halbieren sich.	Bsp : A(1 -2 1), B(3 -4 2), C(4 -2 4) und D(2 0 3). Lösung : $ \overrightarrow{AC} = \sqrt{18} = \overrightarrow{BD} $, $\overrightarrow{AC} \cdot \overrightarrow{BD} = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix} = 0$ und M _{AC} =M _{BD} = $\left(\frac{5}{2} - 2 \frac{5}{2} -2 \frac{5}{2} $	
•	Gerade g steht auf dem Quadrat ABCD senkrecht und geht durch die Quadratmitte.	Vektor n bestimmen, der zu (z.B.) AC und BD orthogonal ist. Gleichung der Gerden durch M _{AC} mit Richtungsvektor n aufstellen.	Bsp : A(1 -2 1), B(3 -4 2), C(4 -2 4) und D(2 0 3). Lösung : $3n_1 + 3n_3 = 0$ und $-n_1 + 4n_2 - n_3 = 0$ bzw. $n_1 = -n_3$, $n_2 = 0.25 \cdot (n_1 + n_3)$ führt auf $\vec{n} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $M_{AC}(2.5 -2 2.5)$; g: $\vec{x} = \begin{pmatrix} 2.5 \\ -2 \\ 2.5 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	
•	Bedingung dafür, dass das Viereck ABCD eine Raute ist.	Die Diagonalen schneiden sich rechtwinklig und halbieren sich: $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0 \ \ \text{und} \ \ M_{AC} = M_{BD}$	Bsp: A(2 3 1), B(5 7 1), C(5 11 4) und D(2 7 4). Lösung: $\overrightarrow{AC} \cdot \overrightarrow{BD} = \begin{pmatrix} 3 \\ 8 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix} = 0$, $M_{AC} = M_{BD} = \begin{pmatrix} 7 \\ 2 \end{pmatrix} 7 \begin{vmatrix} 5 \\ 2 \end{pmatrix}$	

	1		
 Abstand paralleler Ebenen 	Beliebigen Punkt P der Ebene E ₁ bestimmen	Bsp: E ₁ : $2 x_1 + 2 x_2 - x_3 = 2$, E ₂ : $2 x_1 + 2 x_2 - x_3 = 7$	
E ₁ + P	Abstand von P zu E ₂ mit HNF berechnen	Lösung: P(1 0 0) ∈ E ₁ ;	
		HNF von E ₂ : $\frac{1}{3}(2x_1 + 2x_2 - x_3 - 7) = 0$	
E ₂		$ d(P;E_2) = \left \frac{1}{3} (1 + 2 \cdot 0 - 0 - 7) \right = \frac{7}{3}$	
 Abstand Punkt – Gerade 	Für den allemeinen Geradenpunkt Q _t den Vektor $\overrightarrow{PQ_t}$ berechnen	Bsp: P(3 2 -1), g: $\vec{x} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, t \in IR$	E 2x+y-2z=10
g	Bedingung $\overrightarrow{PQ_t} \cdot \overrightarrow{u} = 0$ (\overrightarrow{u} ist der RV	(2) (−2) Lösung:	g in E 2(3+2t)+(-1+t)-2(2-2t)=10
Qt	von g) ergibt Gleichung in t, diese lösen		t=1
₽P u	Lösung für t in Gleichung von g eingesetzt ergibt die Koordinaten des	$Q_{t}(3+2t \mid -1+t \mid 2-2t) \in g; \overrightarrow{PQ_{t}} = \begin{pmatrix} 2t \\ -3+t \\ 3-2t \end{pmatrix}$	weiter wie nebenstehend
	Lotfußpunkt Q. Die Entfernung PQ ist der gesuchte Abstand.	Bed. $\overrightarrow{PQ_t} \cdot \overrightarrow{u} = 0$ liefert $\begin{pmatrix} 2t \\ -3+t \\ 3-2t \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = 0$ bzw.	
	oder: Ebene E senkrecht zu g durch P; Durchstoßpunkt Q berechnen d= PQ	$4t - 3 + t - 6 + 4t = 0 \Leftrightarrow t = 1 \text{ und damit Q}(5 0 0)$	
		$\overline{PQ} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \sqrt{4+4+1} = 3$	
Abstand paralleler Geraden	Beliebigen Punkt P ∈ g bestimmen,	Bsp: g: $\vec{x} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$, h: $\vec{x} = \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$	
g————	dessen Abstand von h berechnen (siehe Abstand Punkt – Gerade)	Lösung: P(3 I −1 I 2) ∈ g; Q _t (2+2 λ I 1+ λ I 6-2 λ) ∈ h;	
h	oder Ebene E senkrecht zu g und h durch P Durchstoßpunkt von h durch E	Bed. $\overrightarrow{PQ_t} \cdot \overrightarrow{u} = 0$ liefert $\begin{pmatrix} 2\lambda - 1 \\ \lambda + 2 \\ -2\lambda + 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = 0$ bzw.	
		$4\lambda - 2 + \lambda + 2 + 4\lambda - 8 = 0 \iff \lambda = \frac{8}{9}$	
		$\overline{PQ} = \begin{vmatrix} \frac{1}{9} \begin{pmatrix} 7 \\ 26 \\ -20 \end{vmatrix} = \frac{1}{9} \sqrt{7^2 + 26^2 + 20^2} = \frac{1}{9} \sqrt{1125} \approx 3,7$	

Abstand windschiefer Geraden

Für die allgemeinen Geradenpunkte **g und h** mit Fußpunkten P und Q $| P_r \in g$ und $Q_t \in h$ den Vektor P_rQ_t bestimmen

Bedingungen $\overrightarrow{P_rQ_t} \cdot \overrightarrow{u} = 0$ und

 $\overrightarrow{P_rQ_t} \cdot \overrightarrow{v} = 0$ (\overrightarrow{u} , \overrightarrow{v} RVn von g bzw. h) führen zu LGS, dieses lösen. Die Lösungen in die Gleichungen von g bzw. h eingesetzt ergeben die Koordinaten der Lotfußpunkte P und Q.

 $\overrightarrow{PQ} = |\overrightarrow{PQ}|$ ist der gesuchte Abstand.

$$\begin{cases}
\overrightarrow{P_rQ_t} \cdot \overrightarrow{u} = 0 \\
\overrightarrow{P_rQ_t} \cdot \overrightarrow{v} = 0
\end{cases}$$

Bsp: : g: $\vec{x} = \begin{vmatrix} 0 \\ +r \end{vmatrix} - 2 \begin{vmatrix} 1 \\ +t \end{vmatrix} + t \begin{vmatrix} -1 \\ -1 \end{vmatrix}$. 11

Lösung:

Für $P_r(-1+2r \mid -2r \mid 1+r)$ und $Q_t(5+2t \mid 1-t \mid 6)$

ist
$$\overrightarrow{P_rQ_t} = \begin{pmatrix} 6+2t-2r\\1-t+2r\\5-r \end{pmatrix}$$
 und die Bed.

führen zum LGS
$$\begin{cases} 12+4t-4r-2+2t-4r+5-r=0\\ 12+4t-4r-1+t-2r=0 \end{cases}$$

bzw.
$$\begin{cases} 5 + 2t - 3r = 0 \\ 11 + 5t - 6r = 0 \end{cases}$$
 mit der Lösung $\begin{cases} r = 1 \\ t = -1 \end{cases}$

Lotfußpunkte P(1 I –2 I 2), Q(3 I 2 I 6)

$$\overrightarrow{PQ} = |\overrightarrow{PQ}| = \sqrt{(3-1)^2 + (2+2)^2 + (6-2)^2} = \sqrt{36} = 6$$

Abstand windschiefer Geraden ohne Fußpunkte

Ebene H durch h parallel zu g legen, Koordinatengleichung von H berechnen

Beliebigen Punkt A ∈ g bestimmen. Der Abstand von A zur Ebene H (HNF!) ist der gesuchte Abstand der windschiefen Geraden

Bsp: g:
$$\vec{x} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + r \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
; h: $\vec{x} = \begin{pmatrix} 5 \\ 1 \\ 6 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$.

Lösung: H: $x_1 + 2x_2 + 2x_3 - 19 = 0$

HNF von H: $\frac{1}{3}$ ($x_1 + 2x_2 + 2x_3 - 19$) = 0

Für den Punkt A(-1 I 0 I 1) ∈ g ist dann

$$d(A;H) = \left| \frac{1}{3} (-1 + 2 \cdot 0 + 2 \cdot 1 - 19) \right| = 6$$

Bestimmung von H 3 beliebige Punkte der Ebene H wählen, z.B. (51116), (71016) und (7 I -1 I 7), diese in $ax_1 + bx_2 + cx_3 = 1$ (*) einsetzen und LGS lösen. (Im Menü EQUA SIML (F1), dann F2 für 3 Unbekannte wählen);

Lösungen in (*) einsetzen und Gleichung mit 19 multiplizieren

Flächeninhalt eines	Abstand h des Punktes S von der	Bsp : P(1 2 4), Q(4 5 2),	
Parallelogramms PQRS	Geraden (PQ) bestimmen	R(-3 2 -2) und S(-6 -1 0).	
S R	Inhalt A = PQ ⋅ h	Lösung: $F_{t}(1+3\lambda \mid 3+3\lambda \mid 4-2\lambda) \in (PQ)$ $\overrightarrow{SF_{t}} \cdot \overrightarrow{u} = \begin{pmatrix} 7+3\lambda \\ 3+3\lambda \\ 4-2\lambda \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix} = 21+9\lambda+9+9\lambda-8+4\lambda=0$ $\text{ergibt } \lambda = -1 \text{ und damit } F(-2\mid -1\mid 6)$	
P Q		$ h = \overrightarrow{SF} = \begin{pmatrix} 4 \\ 0 \\ 6 \end{pmatrix} = \sqrt{52} = 2\sqrt{13}$ $ A = \overrightarrow{PQ} \cdot A = \sqrt{22} \cdot 2 \cdot \sqrt{13} \approx 33.8$	
Flächeninhalt eines Trapezes	Abstand h des Punktes S von der	Bsp : P(1 2 4), Q(4 5 2),	
PQTS.	Geraden (PQ) und Länge m der Strecke M₁M₂ berechnen	T(-4,5 0,5 -1) und S(-6 -1 0).	
	Lange in der otreeke winnig bereenmen	Lösung: h = d(S;(PQ)) = $2\sqrt{13}$ (siehe Flächeninhalt Parallelogramm)	
S T	Inhalt A = m⋅h	$M_1(-2,5 \mid 0,5 \mid 2), M_2(-0,25 \mid 2,75 \mid 0,5)$	
M_1 M_2 Q		$ \mathbf{m} = \overrightarrow{\mathbf{M}_1 \mathbf{M}_2} = \begin{vmatrix} 2.25 \\ 2.25 \\ -1.5 \end{vmatrix} = \sqrt{\frac{99}{8}} = \frac{3}{2} \sqrt{\frac{11}{2}}$	
		A = m·h = $\frac{3}{2}\sqrt{\frac{11}{2}} \cdot 2\sqrt{13} \approx 25,4$	