
AIRBNB CUSTOMER SATISFACTION

Group 11

Rachana Aithal Vanesa Alcantara Ambarish Narayan Medha Nalamada Kapish Krishna Ayaan Khan

Table of Contents

01

Introduction

Briefly state the problem and its significance

04

Variable Selection

Explain how features were created or selected

02

Data

Describe the dataset used and any preprocessing steps

05

Models

Outline the machine learning or statistical models employed

03

EDA

Summarize key insights and patterns found in the data

06

Proposal

Concisely present the main findings and insights

The Context - Airbnb

Founded in 2008, Airbnb is an online platform that facilitates short-term lodging and rentals

We aim to use machine learning models to predict guest satisfaction for Airbnbs in Europe.

Understanding guest satisfaction can inform many avenues of business decisions.

Problem Statement

Predicting guest satisfaction targeted towards helping two primary stakeholders:

Airbnb and Hosts

ADVERTISING CAMPAIGN FOR AIRBNB

New campaign to advertise offers with high guest satisfaction ratings

METRIC INFORMATION FOR POTENTIAL HOSTS

Important areas for hosts to consider before offering property to ensure success

IMPROVEMENT SUGGESTIONS FOR CURRENT HOSTS

Focusing on improving certain features to maintain satisfied customer base

Data

Location Related	Hosting related	Ratings
City	Price	Cleanliness Rating
City Centre	Day	Attraction Index
Metro Distance	Person Capacity	Restaurant Index
	Superhost	
	Bedrooms	
	Room Type	
	Multiple Rooms	

Exploratory Data Analysis

Cleaning the Data

Variables Target categories - Initial variables include room type - Some categories have low materiality and one variable for each. - Split the target in five categories from - Airbnbs with 0 bedrooms (Studios) low(20) to high(100) satisfaction. Middle High Ex high Ex low Low Normalizing Categorical transformation For Linear and Logistic -Flags for binary variables regression and KNN -Median or flags for multiclasses

Most of the properties have a very high customer satisfaction rating

Among the cities Lisbon has the lowest guest satisfaction while Athens has the highest

Shared rooms have lower average rating as compared to private

Lisboa, Paris and Barcelona have higher % of low guest satisfaction

Properties of "superhost" owners have a higher guest satisfaction rating; while owners having multiple properties have a lower rating

Higher cleanliness rating directly transforms to a higher customer rating

Customer Satisfaction is independent of day of the week during the stay, person capacity as well as presence of multiple room in the property

In contrast to other cities, shared properties in Budapest have higher guest satisfaction

While people in Barcelona and Berlin prefer smaller capacity, those in Athens, Amsterdam and Lisbon have slight inclination towards higher capacity rooms

Customers in Budapest, Lisbon and Barcelona prefer multiple rooms

Although cleanliness directly affects customer rating, there are some exceptions

Parameters such as price, distance from nearest metro/city center do not have strong relationship with customer rating

Correlation Matrix

4. Models

Regression

0	Ex low
1	Low
2	Middle
3	High
4	Ex high

Logistic Regression, Ridge, Lasso and Linear regression are all very interpretable Best Accuracy: 53%

Feature importance

Performance per class

	precision	recall	f1-score	support
0	0.00	0.00	0.00	18
1	0.18	0.17	0.17	18
2	0.37	0.31	0.34	114
3	0.15	0.86	0.25	770
4	0.98	0.48	0.65	7423
accuracy			0.51	8343
macro avg	0.33	0.36	0.28	8343
weighted avg	0.89	0.51	0.60	8343

Confusion Matrix

	Extremely Low	Low	Medium	High	Extremely High
Extremely Low	0	9	7	1	1
Low	0	3	13	2	0
Medium	0	5	35	64	10
High	0	0	36	661	73
Extremely High	0	0	3	3830	3590

KNN

Non parametric tool . The best model have precision from 36% to 92% with 10 nearest neighbors

Accuracy

Performance per class

	0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
precision	47.62%	60.00%	36.00%	48.99%	92.45%
recall	50.00%	10.34%	8.41%	23.32%	98.48%
f1-score	48.78%	17.65%	13.64%	31.60%	95.37%

Confusion Matrix

	0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
0.EX_LOW	10	0	6	2	2
1.LOW	8	3	4	7	7
2.MEDIUM	3	1	9	55	39
3.HIGH	0	1	6	170	552
4.EX_HIGH	0	0	0	113	7345

Balancing the model by oversampling didn't improve the results in KNN

Accuracy

Performance per class

	0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
precision	40.91%	19.23%	16.54%	25.60%	94.89%
recall	45.00%	17.24%	19.63%	51.03%	85.44%
f1-score	42.86%	18.18%	17.95%	34.10%	89.92%

Confusion Matrix

	0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
0.EX_LOW	9	2	5	3	1
1.LOW	6	5	2	11	5
2.MEDIUM	5	5	21	57	19
3.HIGH	0	6	33	375	315
4.EX_HIGH	2	8	67	1013	6368

Decision Tree Regressor

- Deep decision tree max_depth = 46 training mse = 0.0 test mse = 28.92
- CV (k = 5)
 depth = 6
 training mse = 29.01
 test mse = 31.31

Variable Importance for Decision Tree Regressor (Max Depth = 6)

Decision Tree Classifier

- Deep decision tree max_depth = $35 \rightarrow 100\%$ training accuracy. But, 93% test accuracy.
- CV depth = 5 with k = 5, training accuracy = 91.19% test accuracy = 91.21%

Precision per class:

	0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
precision	85.71%	100.00%	31.58%	56.69%	93.63%
recall	75.00%	13.64%	14.46%	36.13%	97.88%
f1-score	80.00%	24.00%	19.83%	44.14%	95.71%

Confusion Matrix:

Prediction

		0.EX_LOW	1.LOW	2.MEDIUM	3.HIGH	4.EX_HIGH
	0.EX_LOW	18	0	4	1	1
	1.LOW	2	3	7	8	2
	2.MEDIUM	1	0	12	43	27
AC	3.HIGH	0	0	12	271	467
	4.EX_HIGH	0	0	3	155	7306

Random Forest

0	Ex low
1	Low
2	Middle
3	High
4	Ex high

The Random Forest model efficiently predicted Guest Satisfaction classes and identified significant predictors

Feature importance

Performance per class

Accuracy: 0.8	3929417961548	591		
Classification	on Report:			
	precision	recall	f1-score	support
0	0.73	0.90	0.81	21
1	0.36	0.71	0.48	14
2	0.46	0.41	0.44	78
3	0.46	0.64	0.54	692
4	0.96	0.92	0.94	6789
accuracy			0.89	7594
macro avg	0.60	0.72	0.64	7594
weighted avg	0.91	0.89	0.90	7594

Hyperparameters

n trees	150
Max depth	None
Min obs leaf	10

Using ten fold cross validation

XGBoost

0	Ex low
1	Low
2	Middle
3	High
4	Ex high

Feature Importance

- Captures non-linear relationships
- High precision (95%) and recall (95%)
- Low interpretability of variables
- Increased number of parameters

Performance per Class

	precision	recall	f1-score	support
0 1 2 3 4	1.00 0.95 0.92 0.83 0.96	0.85 0.62 0.51 0.63 0.99	0.92 0.75 0.66 0.71 0.98	20 29 107 729 7458
accuracy macro avg weighted avg	0.93 0.95	0.72 0.95	0.95 0.80 0.95	8343 8343 8343

Hyper-Parameters

Regularization	0.3
Trees	3000
Subsample	1.0
Colsample	0.3
Max Depth	12

Model Summary

0	Ex low		
1	Low	ow Bad	
2	Middle		
3	High	Good	
4	Ex high	3000	

	Accuracy	Accuracy - good	Accuracy - bad
Linear regression (bin)	51.4%	51.8%	24.2%
KNN	87.7%	88.57%	41.95%
Random Forest	89.2%	91.6%	48.1%
Trees	91.2%	91.5%	56.5%
XGBoost	94.9%	94.9%	93.3%

Proposals

The best model selected was XGBoost

Most Important Features
Superhost and Cleanliness Rating

Model Accuracy 94.9%

Airbnb:

Filter out offers on these two categories and create a new campaign to advertise them to increase customer satisfaction and revenue!

Current Hosts:

Focus more on keeping the house clean to ensure satisfaction!
Aim for more bookings and verification to become a Superhost.

Potential Hosts:

Gauge the probability of success early on and strategize/make improvements before listing!

Thank you!
Questions?