ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2008 Môn thi: TOÁN, khối B

ĐỀ CHÍNH THỨC

Thời gian làm bài 180 phút, không kể thời gian phát đề

PHẦN CHUNG CHO TẤT CẢ THÍ SINH

Câu I (2 điểm)

Cho hàm số $y = 4x^3 - 6x^2 + 1$ (1).

- 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
- 2. Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết rằng tiếp tuyến đó đi qua điểm M(-1;-9).

Câu II (2 điểm)

- 1. Giải phương trình $\sin^3 x \sqrt{3}\cos^3 x = \sin x \cos^2 x \sqrt{3}\sin^2 x \cos x$.
- 2. Giải hệ phương trình $\begin{cases} x^4 + 2x^3y + x^2y^2 = 2x + 9 \\ x^2 + 2xy = 6x + 6 \end{cases} (x, y \in \mathbb{R}).$

Câu III (2 điểm)

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1).

- 1. Viết phương trình mặt phẳng đi qua ba điểm A,B,C.
- 2. Tìm tọa độ của điểm M thuộc mặt phẳng 2x + 2y + z 3 = 0 sao cho MA = MB = MC. **Câu IV** (2 điểm)
 - 1. Tính tích phân $I = \int_{0}^{\frac{\pi}{4}} \frac{\sin\left(x \frac{\pi}{4}\right) dx}{\sin 2x + 2(1 + \sin x + \cos x)}.$
 - 2. Cho hai số thực x, y thay đổi và thỏa mãn hệ thức $x^2 + y^2 = 1$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = \frac{2(x^2 + 6xy)}{1 + 2xy + 2y^2}$.

PHẦN RIÊNG — Thí sinh chỉ được làm 1 trong 2 câu: V.a hoặc V.b — Câu V.a. Theo chương trình KHÔNG phân ban (2 điểm)

- 1. Chứng minh rằng $\frac{n+1}{n+2} \left(\frac{1}{C_{n+1}^k} + \frac{1}{C_{n+1}^{k+1}} \right) = \frac{1}{C_n^k}$ (n, k là các số nguyên dương, $k \le n$, C_n^k là số tổ hợp châp k của n phần tử).
- 2. Trong mặt phẳng với hệ tọa độ Oxy, hãy xác định tọa độ đỉnh C của tam giác ABC biết rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm H(-1;-1), đường phân giác trong của góc A có phương trình x-y+2=0 và đường cao kẻ từ B có phương trình 4x+3y-1=0.

Câu V.b. Theo chương trình phân ban (2 diểm)

- 1. Giải bất phương trình $\log_{0,7} \left(\log_6 \frac{x^2 + x}{x + 4} \right) < 0.$
- 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA = a, $SB = a\sqrt{3}$ và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa hai đường thẳng SM, DN.

	Псі	
Thí sinh không được sử dụ	ng tài liệu. Cán bộ coi th	hi không giải thích gì thêm.

Họ và tên thí sinh: Số báo danh: