Appunti di Analisi I

Analisi Matematica - Informatica - 23/24

Federico Zotti

2023-09-30

Indice

Insiemi	3
Notazione	3
Prodotto cartesiano	3
Esempio	4
Insieme delle parti	4
Esempio	4
Funzioni	4
Funzioni Iniettive e Suriettive	5
Immagine e controimmagine	6
Numeri Reali	6
Insiemi numerici	6
Proprietà dei numeri reali	6
Algebriche	7
Di Ordinamento	7
Assioma di Continuità	8
Sottoinsiemi dei reali	8

Indice

Inferiore, Superiore, Massimo e Minimo	8
Estremo superiore ed Estremo inferiore	9
Caratterizzazione di inf e sup	10
Funzioni reali	11
Grafici Injettività e Surjettività	11

Insiemi

Insiemi

Notazione

Per elenco: Prima operazione, poi insieme di partenza

$$A = \{ 1, 2, 3, 4, 5 \}$$

$$B = \{ n^2 \mid n \text{ naturale } \}$$

Per proprietà: Prima insieme che scelgo, poi la proprietà che verifico

$$C = \{ n \text{ naturale } | n \text{ è un quadrato } \}$$

Altri simboli:

$$\label{eq:appartiene} \begin{split} \operatorname{appartiene} &\to a \in A \\ \operatorname{non appartiene} &\to a \notin A \\ \grave{\operatorname{e}} \text{ sottoinsieme} &\to A \subseteq B \\ \grave{\operatorname{e}} \text{ sottoinsieme stretto} &\to A \subset B \\ & \operatorname{insieme vuoto} &\to \varnothing \\ & \operatorname{unione} &\to A \cup B \mid \vee \\ & \operatorname{intersezione} &\to A \cap B \mid \wedge \\ & \operatorname{sottrazione} &\to A \setminus B \\ & \operatorname{cardinalita} &\to |A| \end{split}$$

Prodotto cartesiano

Dati due insiemi A e B, il loro **prodotto cartesiano** è l'insieme delle coppie (a,b) con $a \in A, b \in B$.

Si indica con $A \times B$.

Funzioni

$$|A \times B| = |A| \cdot |B|$$

Esempio

$$A = \{ 1, 2, 3 \}$$

$$A \times A = \{ (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) \}$$

Insieme delle parti

Dato A, $\mathcal{P}(A)$ è l'insieme di tutti i sottoinsiemi di A.

$$|\mathcal{P}(A)| = 2^{|A|}$$

Esempio

$$A = \{ 1, 2 \}$$

$$P(A) = \{ \varnothing, A, \{ 0 \}, \{ 1 \} \}$$

Funzioni

Come si descrive una funzione:

- 1. Un insieme di partenza (A) (dominio);
- 2. Un insieme di arrivo (B) (codominio);
- 3. Una serie di regole che ad ogni elemento di A associa un **unico** elemento di $f(a) \in B$.

$$f:A\to B$$

Il grafico di una funzione è:

Funzioni

$$g = \{ (a, f(a)) \in A \times B \mid a \in A \}$$
$$= \{ (a, b) \in A \times B \mid b = f(a) \}$$

Funzioni Iniettive e Suriettive

Sia $f: A \rightarrow B$ una funzione.

• f si dice **iniettiva** se manda elementi distinti di A in elementi distinti di B.

$$a_1 \in A, a_2 \in A, a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$

ovvero se

$$f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

• f si dice **suriettiva** se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

$$\forall b \in B \,\exists \, a \in A \text{ t.c. } f(a) = b$$

Una funzione si dice **biunivoca** se è sia iniettiva che suriettiva.

Teorema: Una funzione $f:A\to B$ è biunivoca se e solo se è invertibile, cioè se e solo se esiste una funzione $g:B\to A$ t.c.:

$$g(f(a)) = a \,\forall \, a \in A$$

$$f(g(b)) = b \,\forall\, b \in B$$

Osservazione:

$$f:A\to B$$

Numeri Reali

- è iniettiva se ogni elemento di B è ottenuto da al più un elemento di A tramite f;
- ullet è suriettiva se ogni elemento di B è ottenuto da almeno un elemento di A tramite f.

Immagine e controimmagine

Sia $f: A \rightarrow B$ una funzione.

- Se b=f(a) con $a\in A,b\in B$, si dice che b è immagine di a tramite f;
- Sia $C \subseteq A$ un sottoinsieme, si dice *immagine di* C tramite f l'insieme degli elementi di B che sono imamgine di elementi di C. $f(c) = \{f(a) : a \in C\} \subseteq B$
- Immagine di A: $f(A) = \{ f(a) : a \in A \}$
- Sia $D \subseteq B$ un sottoinsieme, si dice **controimmagine di** D tramite f l'insieme di tutti gli elementi di A che hanno immagine contenuta in D.
- Controlmmagine di D: $f^{-1}(D) = \{a \in A : f(a) \in D\}$ (definita anche se f non è invertibile).

Numeri Reali

Insiemi numerici

• Naturali: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

• Razionali: $\mathbb{Z}=\{\, \frac{m}{n}: m\in\mathbb{Z}, n\in\mathbb{N}\setminus\{\,0\,\}\,\}$

lacktriangle Reali: $\mathbb R$

■ Irrazionali: Q

■ Complessi: ℂ

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\subset\mathbb{Q}\subset\mathbb{C}$$

Proprietà dei numeri reali

Sono di tre tipi:

Numeri Reali

- Algebriche;
- Di Ordinamento;
- Assioma di Continuità.

Algebriche

Sui numeri reali sono definite due operazioni + e \cdot , dette somma e prodotto, con le seguenti proprietà:

- Relative alla somma:
 - Commutativa: $a+b=b+a \ \forall \ a,b \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Asociativa: $(a+b)+c=a+(b+c)\ \forall\ a,b,c\in\mathbb{R}$ (n,z,q,r,c)
 - Elemento neutro somma: $\exists 0 \in R \text{ t.c. } a+0=a \ \forall a \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a+b=0 \ (z,q,r,c)$
- Relative al prodotto:
 - Commutativa: $a \cdot b = b \cdot a \ \forall \ a,b \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Associativa: $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall \ a,b,c \in \mathbb{R}$ (n,z,q,r,c)
 - Elemento neutro prodotto: $\exists 1 \in \mathbb{R} \text{ t.c. } a \cdot 1 = a \ \forall \ a \in \mathbb{R} \ (\textit{n,z,q,r,c})$
 - Esistenza dell'inverso: $\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \ \text{t.c.} \ a \cdot b = 1 \ \textit{(q,r,c)}$
- Distributiva: $a \cdot (b+c) = ab + ac \ \forall \ a,b,c \in \mathbb{R}$ (n,z,q,r,c)

Di Ordinamento

Dati due numeri reali x e y, si ah sempre che $x \geq y$ oppure $x \leq y$. Tale ordinamento ha le proprietà:

- Riflessiva: $x \ge x \ \forall \ x \in \mathbb{R}$
- Antisimmetrica: se $x \ge y \land y \ge x$, allora x = y
- Transitiva: se $x \ge y \land y \ge z$, allora $x \ge z$
- se $x \ge y$, allora $x + z \ge y + z \ \forall \ z \in \mathbb{R}$
- se $x \geq y$, allora $x \cdot z \geq y \cdot z \ \forall z \in \mathbb{R}$ con $z \geq 0$

Queste valgono in \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ma non in \mathbb{C} .

Inferiore, Superiore, Massimo e Minimo

Assioma di Continuità

Dati $A,B\subseteq\mathbb{R}$ sottoinsiemi diversi da \varnothing . Diciamo che A sta tutto a sinistra di B se $a\leq b\ \forall\ a\in A,\ \forall\ b\in B.$

L'assioma di continuità dice che se A sta tutto a sinstra di B allora esiste almeno un $c \in \mathbb{R}$ t.c. $c \geq a \ \forall \ a \in A; c \leq b \ \forall \ b \in B.$

c non è obbligato ad essere unico; c può appartenere ad A, a B o anche a entrambi (in questo caso è unico elemento "separatore").

Esempio

$$A = \{ x \in Q : x \ge 0 \land x^2 < 2 \}$$

$$B = \{ x \in Q : x \ge 0 \land x^2 > 2 \}$$
 se $a \in A, b \in B \rightarrow a > b$
$$c^2 = 2$$

Questo è impossibile in Q, quindi l'assioma di continuità non vale in Q.

Conclusione: sui numeri reali, $\sqrt{2}$ è l'elemento separatore tra A e B e si può dimostrare che è unico.

Sottoinsiemi dei reali

 $(a,b) \subseteq \mathbb{R}$ è l'intervallo separato da estremi $a,b \in \mathbb{R}$ (con a < b).

- $[a, b] = \{a, b\} = \{x \in \mathbb{R} \text{ t.c. } a < x < b\}$
- $[a,b] = \{ x \in \mathbb{R} \text{ t.c. } a \leq x \leq b \}$

Inferiore, Superiore, Massimo e Minimo

Sia $A \subseteq \mathbb{R}$ un sottoinsieme *non vuoto*.

 $M \in \mathbb{R}$ si dice **maggiorante** di A se $M \geq a \ \forall \ a \in A$

Inferiore, Superiore, Massimo e Minimo

 $m \in \mathbb{R}$ si dice **minorante** di A se $m \leq a \ \forall \ a \in A$

Minoranti e maggioranti non sono obbligati ad esistere. Ad esempio $A=\mathbb{N}$ ha minoranti ma non ha maggioranti.

Se esiste un maggiorante invece, ne esistono infiniti. Se M è un maggiorante, anche M+1 lo è. Lo stesso vale per i minoranti.

 $A\subseteq\mathbb{R}, A\neq\varnothing$ si dice **superiormente limitato** se ammette un maggiorante e **inferiormente limitato** se ammette un minorante. Si dice **limitato** se è contemporaneamente superiormente e inferiormente limitato.

Esempi:

- $A=(0,+\inf)$ è inferiormente limitato ma non superiormente
- $B = \{\frac{1-n}{2} : n \in \mathbb{N}\}$ è superiormente limitato, ma non inferiormente
- C = (1,7] è limitato

 $M\in\mathbb{N}$ si dice **massimo** di A (e si scrive $M=\max A$) se $M\in A\wedge M\geq a\ \forall\ a\in A$

 $m\in\mathbb{N}$ si dice **minimo** di A (e si scrive $m=\min A$) se $m\in A\wedge m\leq a\;\forall\,a\in A$

max e min non sono obbligati ad esistere, nemmeno per insiemi limitati.

Esempio:

• A = (0,1) non ha nè \max , nè \min

max e min, se esistono, sono unici.

Estremo superiore ed Estremo inferiore

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$.

Si dice che $\sup A = +\inf$ se A non è superiormente limitato o $\sup A = L \in \mathbb{R}$ se lo è e L è il minimo dei maggioranti.

Inferiore, Superiore, Massimo e Minimo

Si dice che $\inf A = -\inf$ se A non è inferiormente limitato o $\inf A = l \in \mathbb{R}$ se lo è e l è il massimo dei minoranti.

Esempi:

- $\sup \mathbb{N} = +\inf$
- $\inf \mathbb{N} = 0$
- $\sup (0,1) = 1$

Teo: Se $A \subseteq \mathbb{R}, A \neq \emptyset$ è superiormente limitato, allora il minimo dei maggioranti esiste.

Dimostrazione: Sia $B = \{ x \in \mathbb{R} \mid x \geq a \ \forall \ a \in A \}$ l'insieme dei maggioranti. Allora A sta tutto a sinistra di B. Per l'assioma di continuità c'è un elemento separatore $c \in \mathbb{R}$, ovvero $c \leq b \ \forall \ b \in B$ e $c \geq a \ \forall \ a \in A \implies c \in B$. Quindi $c = \min B$.

Esercizio per casa #todo/compito: Enunciare e dimostrare il teorema analogo per il massimo dei minoranti.

Caratterizzazione di inf e sup

- $\sup A = +\inf$ se $\forall M \in \mathbb{R} \ \exists \ a \in A \ \text{t.c.} \ a \geq M$ (ovvero se posso trovare elementi di A grandi quanto voglio)
- $\inf A = -\inf \text{ se } \forall M \in \mathbb{R} \ \exists \ a \in A \text{ t.c. } a \leq M$
- $\quad \bullet \quad \sup A = L \in \mathbb{R} \text{ se}$

 - $\ \forall \, \varepsilon > 0 \ \exists \, a \in A \ \text{t.c.} \ a \geq L \varepsilon$
- $\bullet \ \inf A = L \in \mathbb{R} \text{ se}$
 - $-a \ge l \ \forall a \in A \ (l \ \text{è un minorante})$
 - $\ \forall \varepsilon > 0 \ \exists a \in A \ \text{t.c.} \ a \leq l + \varepsilon$

Se esiste $M = \max A$ allora $\sup A = M$. Se esiste $m = \min A$ allora $\inf A = m$. $\sup A$ non è obbligato ad appartenere ad A, ma se vi appartiene è il **massimo**. Stessa cosa per $\inf A$.

Funzioni reali

Funzioni reali

 $f: \mathbb{R} \to \mathbb{R}$ oppure $f: A \to \mathbb{R}$.

Grafico di $f = \{(x, y) \in \mathbb{R}^2 : y = f(x)\}$ ($\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$).

Proprietà di simmetria:

- f si dice pari se $f(x) = f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'asse y)
- f si dice **dispari** se $f(x) = -f(-x) \ \forall x \in \mathbb{R}$ (simmetrica rispetto all'origine)
- f si dice **periodica** se $\exists T > 0$ t.c. $f(x+T) = f(x) \ \forall x \in \mathbb{R}$ (il grafico si ottiene traslando il pezzo [0,T] in [T,2T], [T,3T], ...)

Se $f: \mathbb{R} \to \mathbb{R}$ è dispari, allora f(0) = 0.

Se T è un periodo, anche $2T, 3T, 4T, \ldots$ lo sono. Il **minimo periodo** è il più piccolo T (se esiste) per cui vale $f(x+T)=f(x)\ \forall\ T\in\mathbb{R}$.

Proprietà di monotonia:

- *f* si dice **monotona**:
 - f si dice strettamente crescente se $x>y \implies f(x)>f(y) \ \forall \, x,y\in \mathbb{R}$
 - f si dice strettamente decrescente se $x > y \implies f(x) < f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice **debolmente crescente** se $x > y \implies f(x) \ge f(y) \ \forall \ x, y \in \mathbb{R}$
- f si dice debolmente decrescente se $x>y \implies f(x) \leq f(y) \ \forall \ x,y \in \mathbb{R}$

Se f è strettamente crescente allora è anche debolmente crescente. Se f è strettamente decrescente allora è anche debolmente decrescente.

Se f è sia deb. crescente che deb. decrescente allora è **costante**.

Grafici, Iniettività e Suriettività

- Suriettiva ← in ogni elemento dell'insieme di arrivo termina almeno una freccia (tutto l'asse y è "coperto")
- Iniettiva \iff in ogni elemento dell'insieme di arrivo termina al più (0|1) una freccia (*l'asse y* è "coperto" solo una volta)

Funzioni reali

 $\qquad \hbox{\bf Retta orizzontale:} \ y = \lambda$

 $\bullet \ \ {\rm Grafico} \ {\rm di} \ f \colon y = f(x)$

• Intersezioni: $f(x) = \lambda$

f iniettiva $\iff f(x) = \lambda$ ha al più una soluz. $\forall\, \lambda \in \mathbb{R}$

f suriettiva $\iff f(x) = \lambda$ ha almeno una soluz. $\forall \, \lambda \in \mathbb{R}$

Se f è pari o periodica non è iniettiva. Se f è strettamente crescente o strettamente decrescente allora è iniettiva.