NOIP8102 模拟赛

不愿意透露姓名的网友

October 19, 2018

题目名称	冒泡排序	大括号	区间
源程序文件名	bubble	brace	interval
输入文件名	bubble.in	brace.in	interval.in
输出文件名	bubble.out	brace.out	interval.out
每个测试点时限	1s	1s	7s
内存限制	512MB	512MB	512MB
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型
是否有附加文件	否	否	否

注意事项:

666623333是个质数。

某些题目的读入量或者输出量可能过大,建议使用fread和fwrite优

化。

下发文件中有附带fread和fwrite模板的样例程序。 交程序时不要建子文件夹,直接一个文件夹放三份源程序。 评测开启O2优化。

1 冒泡排序(bubble)

1.1 Description

最近,网友对冒泡排序产生了浓厚的兴趣。为了问题简单,网友只研究对0到n-1的排列的冒泡排序。

冒泡排序的C++代码是这样的:

```
1 void bubble_sort(vector<int> &p) {
2   int n = p.size();
3   for (int i = 0; i < n; ++i) {
4     for (int j = 0; j + 1 < n; ++j) {
5      if (p[j] > p[j + 1]) {
6         swap(p[j], p[j + 1]);
7      }
8     }
9   }
10 }
```

如果你不会C++,请现在转C++。

冒泡排序的交换次数被定义为交换过程的执行次数。可以证明交换次数的一个下界是 $\frac{1}{2}\sum_{i=0}^{n-1}|i-p_i|$,其中 p_i 是排列p中第i个位置的数字。如果你对证明感兴趣,请自己证明。

网友开始专注于研究长度为n的排列中,满足交换次数等于 $\frac{1}{2}\sum_{i=0}^{n-1}|i-p_i|$ 的排列(在后文中,为了方便,我们把所有这样的排列叫网友排列)。 他进一步想,这样的排列到底多不多?它们分布的密不密集?

网友想要计算长度为n的排列,第a个位置为b的网友排列个数。但是他不会做,于是求助于你,希望你帮他解决这个问题,考虑到答案可能会很大,因此只需输出答案对666623333取模的结果。

1.2 Task

1.2.1 Input

第一行包含一个正整数T,表示数据组数。对于每组数据,一行三个整数n, a, b。

1.2.2 Output

对于每组数据,输出一行一个整数表示答案。

1.3 Sample

1.3.1 Input

1 3 0 2

1.3.2 Output

1

1.4 Constraint

对于20%的数据,有 $1 \le n \le 10^2$ 。 对于40%的数据,有 $1 \le n \le 10^3$ 。 对于60%的数据,有 $1 \le n \le 10^4$ 。 对于80%的数据,有 $1 \le n \le 10^5$ 。 对于100%的数据,有 $1 \le T \le 10^6$, $1 \le n \le 10^6$ 0 $1 \le a$ 0, $1 \le a$ 0 $1 \le a$

2 大括号(brace)

2.1 Description

众所周知,世界上有两种网友:大括号换行的和大括号不换行的。数轴上有n个网友,大括号换行的网友记为L,他们会以相同的速度向左走;大括号换行的网友记为R,他们会以相同的速度向右走。

当大括号换行的网友和大括号不换行的网友相遇时,他们会打一架。 大括号换行的网友有 $\frac{p}{p+q}$ 的概率获胜,不换行的网友有 $\frac{q}{p+q}$ 的概率获胜。被 打败的网友会因为过于自闭而离开数轴,获胜的网友会按照原来的方向继 续走下去。

显然足够长的时间之后,不会有网友再打架了。求此时有a个网友向左走,b个网友向右走的概率。考虑到实数太麻烦了,因此只需输出答案对666623333取模的结果。

2.2 Task

2.2.1 Input

第一行五个整数n, p, q, a, b。

第二行一个长度为n,只由L和R组成的字符串S表示初始每个网友的位置。

2.2.2 Output

一行一个整数表示答案。

2.3 Sample

2.3.1 Input

4 1 1 1 1

RLRL

2.3.2 Output

499967500

2.4 Constraint

对于20%的数据,有 $1 \le n \le 50$ 。 对于40%的数据,有 $1 \le n \le 500$ 。 对于100%的数据,有 $1 \le n \le 5000, 0 \le p, q \le 10^6, p+q \ge 1, 0 \le a, b \le n, 1 \le a+b \le n$ 。

3 区间(interval)

3.1 Description

网友喜欢区间,所以网友给了你一个长度为n的区间序列,第i个是 $[l_i, r_i]$ 。

网友喜欢区间的区间,网友认为,一个区间[L,R]的网友值是序列中[L,R]的所有区间求并之后在数轴上覆盖的长度。

网友喜欢区间的区间的区间,所以他希望知道,对于一组给定的A, B,从所有 $A \le L \le R \le B$ 中等概率地选择[L, R],期望的网友值是多少。

网友给了你*m*个询问。考虑到答案太大,实数太麻烦了,因此只需输出答案对666623333取模的结果。

3.2 Task

3.2.1 Input

第一行两个正整数n, m。 接下来n行,每行两个正整数 l_i, r_i 。 接下来m行,每行两个正整数A, B。

3.2.2 Output

*m*行,每行一个整数表示答案。

3.3 Sample

3.3.1 Input

2 1

1 5

4 8

1 2

3.3.2 Output

5

3.4 Constraint

```
对于20%的数据,有1 \le n, m \le 5 \times 10^2。
对于40%的数据,有1 \le n, m \le 5 \times 10^3。
对于60%的数据,有1 \le n, m \le 5 \times 10^4。
对于100%的数据,有1 \le n, m \le 5 \times 10^5, 0 < l_i < r_i < 666623333, 1 \le A \le B \le n。
```