The group G is isomorphic to the group labelled by [240, 90] in the Small Groups library. Ordinary character table of $G \cong SL(2,5)$: C2:

	1a	2a	4a	3a	6a	5a	10a	2b	8a	8b	6b	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ_3	6	6	-2	0	0	1	1	0	0	0	0	0
χ_4	4	4	0	1	1	-1	-1	2	0	0	-1	-1
χ_5	4	4	0	1	1	-1	-1	-2	0	0	1	1
χ_6	5	5	1	-1	-1	0	0	1	-1	-1	1	1
χ_7	5	5	1	-1	-1	0	0	-1	1	1	-1	-1
χ_8	4	-4	0	-2	2	-1	1	0	0	0	0	0
χ_9	4	-4	0	1	-1	-1	1	0	0	0	$E(3) - E(3)^2$	$-E(3) + E(3)^2$
χ_{10}	4	-4	0	1	-1	-1	1	0	0	0	$-E(3) + E(3)^2$	$E(3) - E(3)^2$
χ_{11}	6	-6	0	0	0	1	-1	0	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	0	0
χ_{12}	6	-6	0	0	0	1	-1	0	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	0

Trivial source character table of $G \cong SL(2.5)$: C2 at p = 5:

Trivial source character table of $G \equiv SL(2,3)$: C2 at $p=3$:																		
Normalisers N_i	N_1									N_2								
p-subgroups of G up to conjugacy in G		P_1								P_2								
Representatives $n_j \in N_i$	1a 2b	3a	8a	6b	4a	8b	6c	6a	2a	1 <i>a</i>	8a	4b	2a	8d	8c	4a	8 <i>b</i>	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	5 3	2	1	0	1	1	0	2	5	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	5 - 3	3 2	-1	0	1	-1	0	2	5	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$			0	-1	-2	0	-1	1	10	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		2 1	0	1	-2	0	1	1	10	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	5 1	-1	-1	1	1	-1	1	-1	5	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$			1	-1	1	1	-1	-1	5	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$				0	0	$-E(8) - E(8)^3$	0	2	-10	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$				0	0	$E(8) + E(8)^3$	0	2	-10	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	10 0	1	$-E(8) - E(8)^3$	$E(3) - E(3)^2$	0	$E(8) + E(8)^3$	$-E(3) + E(3)^2$	-1	-10	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	10 0	1	$E(8) + E(8)^3$	$-E(3) + E(3)^2$	0	$-E(8) - E(8)^3$	$E(3) - E(3)^2$	-1	-10	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1 –	1 1	-1	-1	1	-1	-1	1	1	1	-1	1	1	-1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		0	0	0	-2	0	0	0	6	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		0	0	0	-2	0	0	0	6	1	E(4)	-1	1	-E(4)	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$		0	$E(8) + E(8)^3$	0	0	$-E(8) - E(8)^3$	0	0	-6	1		-E(4)	-1	E(8)	$-E(8)^{3}$	E(4)	-E(8)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$		0	$-E(8) - E(8)^3$	0	0	$E(8) + E(8)^3$	0	0	-6	1	` /	-E(4)	-1	-E(8)	$E(8)^{3}$	E(4)	E(8)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$		0	$E(8) + E(8)^3$	0	0	$-E(8) - E(8)^3$	0	0	-6	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^{3}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	$\begin{vmatrix} 6 & 0 \end{vmatrix}$	0	$-E(8) - E(8)^3$	0	0	$E(8) + E(8)^3$	0	0	-6	1	-E(8)	E(4)	-1	$-E(8)^{3}$	E(8)	-E(4)	$E(8)^3$	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 14, 15, 18, 27)(2, 26, 36, 22, 29)(3, 30, 25, 16, 8)(4, 34, 7, 20, 21)(5, 38, 23, 24, 32)(6, 40, 19, 37, 17)(9, 31, 39, 11, 13)(10, 12, 33, 35, 28)]) \cong C5$

 $N_1 = Group([(2,4)(3,6)(5,7)(8,14)(9,16)(10,18)(11,20)(12,22)(13,24)(15,21)(17,23)(25,33)(26,35)(28,37)(29,38)(30,39)(32,34), (1,2,5,10,19,13,7,3)(4,8,15,26,24,28,17,9)(6,11,21,30,18,29,23,12)(14,22,32,33,37,39,34,25)(16,27,36,38,35,40,31,20)]) \cong SL(2,5): C2$ $N_2 = Group([(1,14,15,18,27)(2,26,36,22,29)(3,30,25,16,8)(4,34,7,20,21)(5,38,23,24,32)(6,40,19,37,17)(9,31,39,11,13)(10,12,33,35,28), (1,2,5,10,19,13,7,3)(4,8,15,26,24,28,17,9)(6,11,21,30,18,29,23,12)(14,22,32,33,37,39,34,25)(16,27,36,38,35,40,31,20)]) \cong SL(2,5): C2$