Mining Correlated Patterns in Transactional Databases

What is correlated pattern mining?

Frequent pattern mining aims to discover all interesting patterns in a transactional database that have **support** no less than the user-specified **minimum support** (**minSup**) constraint and **all-confidence** no less than the user-specified **minimum all confidence** (**minAllConf**). The **minSup** controls the minimum number of transactions that a pattern must appear in a database. The **confidence** indicates how reliable the rule is by knowing how frequently rule head occurs among all the groups containing the rule body.

What is the transactional database?

A transactional database is a collection of transactions, where each transaction contains a transaction-identifier and a set of items.

A hypothetical transactional database containing the items **a**, **b**, **c**, **d**, **e**, **f**, **and g** as shown below

tid	Transactions		
1	a b c g		
2	b c d e		
3	a b c d		
4	a c d f		
5	a b c d g		
6	c d e f		
7	a b c d		
8	a e f		
9	a b c d		
10	b c d e		

Note: Duplicate items must not exist in a transaction.

about:srcdoc Page 1 of 5

Acceptable format of transactional databases in PAMI

Each row in a transactional database must contain only items. PAMI algorithms implicitly consider the row number as the transactional-identifier to reduce storage and processing costs.

abcg
bcde
abcd
acdf
abcdg
cdef
abcd
aef
abcd

Understanding the statisctics of database

To understand about the database. The below code will give the detail about the transactional database.

- Total number of transactions (Database size)
- Total number of unique items in database
- Minimum lenth of transaction that existed in database
- Average length of all transactions that exists in database
- Maximum length of transaction that existed in database
- Standard deviation of transaction length
- Variance in transaction length
- Sparsity of database

The sample code

import PAMI.extras.dbStats.transactionalDatabaseStats as stats

obj = stats.transactionalDatabaseStats('sampleInputFile.txt', ' ')
obj.run()
obj.printStats()

about:srcdoc Page 2 of 5

What is the input to correlated pattern mining algorithms

Algorithms to mine the correlated patterns requires transactional database, minSup and minAllConf, (specified by user).

- Transactional database in following formats:
 - In string format
 (/Users/Likhitha/Downlaods/sampleInputFile.txt)
 - In URL format (https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/tra
 - In DataFrame format (dataframe variable with heading Transactions)
- minSup should be mentioned in count (beween 0 to length of database) or
 __percentage (multiplied with length of database)
- minAllConf should be mentioned between 0 to 1
- Specify the seperator of input file.

What is the output of correlated pattern mining algorithms

The output of these algorithms is in two ways:

- Saving the patterns in user specified output file.
- Returns the patterns in dataframe variable.

How to run the frequent pattern algorithm in terminal

- Download the code from github.
- Navigate to PAMI folder where you downloaded the file.
- Go to correlatedPattern/basic folder
 Execute the following command on terminal.

python3 algorithmName.py path of Sample input file path of output file minSup minAllConf seperator

about:srcdoc Page 3 of 5

Sample command to execute the CPGrowth code in frequentPattern/basic folder

python3 CPGrowth.py /Users/Donwloads/inputFile.txt
/Users/Downloads/outputFile.txt 3 0.4 ' '

How to implement the code by importing PAMI package

Import the PAMI package executing: pip3 install PAMI

Run the below sample code by making simple changes

- Replace sampleInputFile name or path in place of iFile and sampleOutputFile name or path in place of oFile
- Specify the minimum support (like 10 or 0.1) in place of minSup
- Specify the minimum all confidenceAll (between 0 to 1) in place of minAllConf
- Specify the seperator of input file after minSup. (If no seperator is specified the default tab seperator is considered for input file)

import PAMI.correlatedPattern.basic.CPGrowth as alg
obj = alg.CPGrowth(iFile, minSup, minAllConf, ' ')
obj.startMine()
obj.savePatterns(oFile) (to store the patterns in file).
Df = obj.getPatternsAsDataFrame() (to store the patterns in dataframe)
obj.printStats()

What is the output of frequent pattern mining algorithms

Returns the pattern, support and confidence respectively with \$minSup\$ = 6 and \$minAllConfidence\$ = 0.7 from above sample database

The output in file format:

about:srcdoc Page 4 of 5

d:8:1.0

c:9:1.0 b:7:1.0

b d: 6: 0.75

a:7:1.0

a c: 6: 0.666666666666666

The output in DataFrame format:

	Patterns	Support	Confidence
0	d	8	1.0
1	d c	8	0.8
2	С	9	1.0
3	b	7	1.0
4	bс	6	0.66
5	b d	6	0.75
6	bcd	6	0.66
7	а	7	1.0
8	ас	6	0.66

about:srcdoc Page 5 of 5