```
Tanzini.
N=(2,2) noulinear 2 model
- maps Zaton. general comments on spin
 in this case
- spinors: Dirac modules of Spin (V)
 - Spin acting on SL(Z, F) are
     F= 12 (fos 133), C (fos 154),
         H (for d=0), (for d=10)
-fields of (minimal) susy wouling & model of
      y ∈ ( Zl, n)

y ∈ ( Zl, π S ⊗<sub>F</sub> y* (Th))
- so susy twists the geometry & Dr 21: 2, 25 TI DKD 4 29 K
-IM endowel w left multiplication by F
 - towal only for F=IR
 -for #= C we need almost cpt. structure
  'J:The, J2=-id,
 - for others, some other tensor controls it
 -> we want its covariant derivative to
   vanish, which is >> to V being Levi-Cilita
   -> so tos F=C, Mis kniller,
        for F=HI > M is Hyposkähler
dimp M=zn , holonomy group SO(zn) +00 (n)
din IR houk, _ ii - Sp(K)
The minimal susy wonling 2 models 3 Iff look at

133... M Riemannian

134... M Kähler
     2 door 1 Hyperkähler
```

$$-Q_{+}Q_{+} \text{ sections of } \underbrace{Kz}_{2} \left(kz=T^{V(1,6)}z\right)$$

$$Q_{-}Q_{-} = -K^{V_{2}}Z$$

-however, it turns out only 2 = T2 admits global sections V -> we solve this by top. twist - R-synnetries vector: Q = -id Q2

> aviul: Q+ -> e+id Q2

-topological twists U(1) = = & diag (U(1) & XU(1) V) A-turst diag (U(1) & XU(1) A) B-turst - redefinition of the spin connection 2 + WZ + Az Spin Jung

	2 model			A model	B mode
	U(1) V (1) A (1)				
		·			
φ	G	0	O	4	· ·
4	(l	l	χ i ε Γ (φ* Τ 5° n)	82° 6 (4*(T") 8 (2)
77	l	l	~l	x i 6 [(4 + T 0, 1 h)	-1/2(10+4) = ((4+7°17)
10/2	t	-1	- (V2 (v-y) = [(4+7°1)
74 -	-1	-(- 1	5=16[(47(T1,04)&Ks)	3= G ((4*(T1,0) & Kz)
, , ,					

- $\frac{1}{2}$ $\frac{$

Rula 1/2 automosphism Q-6>Q, Fy6>FA => exchanges A&B molels