WEBINAIRE

REPRODUCTIBILITÉ EN APPRENTISSAGE AUTOMATIQUE

3 MAI 2022

OBJECTIFS DE LA PRÉSENTATION

- Inciter l'intégration des solutions permettant une meilleure reproductibilité dans vos solutions d'affaires et académiques.
- Améliorer la reproductibilité de vos projets.
- Améliorer votre productivité.

VOTRE CONFÉRENCIER

DAVID BEAUCHEMIN Candidat au doctorat Département d'informatique et de génie logiciel

- Introduit à la recherche reproductible en 2016 (R Markdown et git)
- Participation à REPROLANG de la conférence LREC [Garneau et al., 2020]
- Membre actif dans le développement d'une librairie facilitant la reproductibilité (Poutyne)
- Mise en production de modèle d'apprentissage automatique (Deepparse)

AU MENU

on version Productivité

Présenter

Réutiliser

C'EST QUOI LA REPRODUCTIBILITÉ?

La reproductibilité est le principe qui dit qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des **personnes différentes**.

Par contre, en apprentissage automatique, la reproductibilité correspond (surtout) soit à être capable de reproduire des résultats, soit d'obtenir des résultats similaires en réexécutant un code source[Pineau et al., 2020].

POURQUOI S'Y INTÉRESSER?

70 % 1

POURQUOI S'Y INTÉRESSER?

50 %1

POURQUOI S'Y INTÉRESSER?

40 % 2

Productivité

Productivité

Transfert

Productivité

Transfert

Se faire connaître

Les barrières à la reproductibilité

Figure 1: From Uber Engineering

Figure 2: The need for Agile machine learning

AU MENU

Présenter

Réutiliser

Version

Gestion des versions

Gestion des versions

Étapes prétraitement

Data Version Control

Dask

Version

Différence

Différence

Divergences

GitHub

GitLab

Bitbucket

Version

Conflits

Conflits

Installation

Conda

Différents environnements

Différents environnements

Changer

Différents environnements

Changer

Version des dépendances

Conda

AU MENU

Gestion version

Productivité

Présenter

Réutiliser

DÉMARER UN PROJET

Rapide

DÉMARER UN PROJET

ML Cookiecutter

Réinventer

Simplification

Réinventer

Simplification

Facilite

PyTorch Lightning

Scikit-learn

Gensim

AllenNLP

Allen NLP

Version de l'entraînement

Version de l'entraînement

Résultats

Version de l'entraînement

Résultats

Visualisation

Version de l'entraînement

Résultats

Visualisation

Erreurs d'entraînement

AU MENU

Gestion version

Productivité

Présenter

Réutiliser

Tableau des résultats

Tableau des résultats

Mise à jour

Tableau des résultats

Mise à jour

Visualisation configuration

- 1. Ou en HTML avec Pandas
- 2. I don't like notebooks Joel Grus
- 3. New York Oil and Gas

AU MENU

Productivité

Présenter

Réutiliser

GESTION DE L'ASSURANCE QUALITÉ

Détection d'erreurs de code

GESTION DE L'ASSURANCE QUALITÉ

Détection d'erreurs de code

Niveau de qualité

GESTION DE L'ASSURANCE QUALITÉ

Voir aussi Continuous Machine Learning

GESTION DES ENVIRONNEMENTS

Différents environnements

GESTION DES ENVIRONNEMENTS

Différents environnements

Réutilisation

ENVIRONNEMENT

Docker

Kubernetes

Itérations d'expérimentations

POUR ALLER PLUS LOIN (EN ORDRE)

- Un aperçu des outils à utiliser pour développer un projet de ml davantage reproductible
- Gestion de la configuration et des résultats avec MLflow, Hydra et Poutyne
- Différence entre les outils de gestion des expérimentations
- Clean code
- Faire des tests unitaires!
- Continuous Machine Learning
- Reproducibility in ML: Why it Matters and How to Achieve it
- Writing Code for NLP Research [Gardner et al., 2018]
- Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program [Pineau et al., 2020]
- Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
- SOLID

PÉRIODE DE QUESTIONS

WEBINAIRE

MERCI DE VOTRE

ÉCOUTE!

REFERENCES i

1,500 Scientists Lift the Lid on Reproducibility.

Nature News, 533(7604):452.

Gardner, M., Neumann, M., Grus, J., and Lourie, N. (2018).

Writing Code for NLP Research.

In Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts.

Garneau, N., Godbout, M., Beauchemin, D., Durand, A., and Lamontagne, L. (2020).

A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual Mappings of Word Embeddings: Making the Method Robustly Reproducible as Well.

REFERENCES ii

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d'Alché Buc, F., Fox, E., and Larochelle, H. (2020).

Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program).

Raff, E. (2019).

A Step Toward Quantifying Independently Reproducible Machine Learning Research.