Rapport de projet OS13 Analyse de politique de maintenance

TRAN QUOC NHAT HAN & ADRIEN WARTELLE 9 janvier 2019

Sommaire

1	Ma	intenance basée sur l'âge	1			
	1.1	Rappel	1			
	1.2	Modéliser la durée de vie du système	2			
	1.3	La politique de maintenance basée sur l'âge	5			
2	Ma	intenance basée sur dégradation	6			
	2.1	Rappel	6			
	2.2	Modéliser la dégradation du système	7			
	2.3	La politique de maintenance basée sur dégradation	9			
3	Annexe 10					
	3.1	L'importation de données de pannes	10			
	3.2	Le premier histogramme de distribution de pannes	10			
	3.3	Estimer le mixage de la loi Exponentielle et Gamma	10			
	3.4	Optimiser le coût moyenne sur une durée de temps	12			
	3.5	Importer les valeurs de dégradation	12			
	3.6	Premiers traçes de dégradation	13			
	3.7	Estimation de paramètres de dégradations	13			
		Résumé				

Soient des données liées à la fonctionnement de système, nous déterminons un modèle approprié et puis choisir une politique de maintenance optimal.

Maintenance basée sur l'âge 1

Rappel 1.1

Considérons un système non maintenu. En l'observant, nous obtenons un liste des dates de panne, grâce auquel nous construirerons une politique de remplacement systématique basée sur l'âge : Nous remplaçons lorsque le système tombe en panne ou qu'il survit une durée t_0 .

Le but est de minimiser le coût moyen cumulé.

$$\mathbb{E}(C) = \frac{\mathbb{E}(C(S))}{\mathbb{E}(S)} \tag{1}$$

Où S est la variable aléatoire représentant la date de remplacement et C(S) est le coût de maintenance cumulé à l'instant S (sachant que C(S) est $c_c (= 1200)$ si une maintenance corrective et $c_p (= 800)$ si préventive).

1.2 Modéliser la durée de vie du système

L'importation de données de FailureTimes_5.csv (l'annexe 3.1) expose les dates de pannes de l'ordre grandement variée (300 à 27000) (l'annexe 3.2).

Exponentiel des valeurs extrèmes résulteront Inf, ce qui est indésirable. Alors nous devons forcément les réduire en les divisant par un scalaire scale, prenons par example 1000. (Figure 1)

Premier histogramme

FIGURE 1 – Le premier histogramme de distribution de pannes

Les pannes se concentrent autour de 2 sommets, l'un à [0;0,5] et l'autre à [4,5;5]. Ceci nous fait penser naturellement à un mixage de deux lois.

Nous pouvons remarquer que les valeurs sont positives (étant données que ce sont des temps) et que la distribution semble posséder deux parties importantes. Une dont le sommet se situe près de zéro et qui est suivi d'une pente forte, et l'autre sommet est à une valeur non nulle (5) que la distribution locale en forme de pic. Nous avons donc penser estimer un mixage de loi Exponentielle et Gamma afin de modéliser les données. En effet la première partie correspondrait à une loi exponentielle tandis que la seconde à une loi gamma (Et .

La fonction de densité avec le paramètre $\theta = (p_1, p_2, \lambda, \alpha, \beta)$:

$$f_{\theta}(x) = p_1 f_1(x) + p_2 f_2(x)$$

$$= p_1 \lambda e^{-\lambda x} + p_2 \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
(2)

Où f_1, f_2 désignent réspectivement $exp(\lambda)$ et $\Gamma(\alpha, \beta)$; $p_1, p_2 > 0$: $p_1 + p_2 = 1$.

Nous allons utiliser l'algorithme EM, la méthode la plus efficace pour estimer le MLE de mixage fini.

Soit X la variable aléatoire de durée de vie du système. Soient $(x_1,...,x_N)$ les observations.

Soit la matrice de probabilité d'appartenance (ζ_{ki}) : ζ_{ki} vaut la probabilité que x_i suive la loi f_k .

$$\zeta_{ki} = \frac{p_k f_k\left(x_i\right)}{p_1 f_1\left(x_i\right) + p_2 f_2\left(x_i\right)} \forall k = \overline{1, 2} \forall i = \overline{1, N}$$

$$\tag{3}$$

La fonction de vraisemblance :

$$\ln \Lambda = \sum_{i=1}^{N} \ln f_{\theta}(x_i) = \sum_{i=1}^{N} \ln (p_1 f_1(x_i) + p_2 f_2(x_i))$$
 (4)

Nous cherchons à maximiser $\ln \Lambda$ en la dérivant selon λ, α, β . Pour λ :

$$\frac{\partial}{\partial \lambda} \ln \Lambda = \sum_{i=1}^{N} \frac{p_1 e^{-\lambda x_i} - p_1 \lambda x_i e^{-\lambda x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_1 f_1(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{1}{\lambda} - x_i\right)$$

$$= \frac{1}{\lambda} \sum_{i=1}^{N} \zeta_{1i} - \sum_{i=1}^{N} \zeta_{1i} x_i = 0$$

$$\Leftrightarrow \lambda = \frac{\sum_{i=1}^{N} \zeta_{1i}}{\sum_{i=1}^{N} \zeta_{1i} x_i}$$
(5)

Pour β :

$$\frac{\partial}{\partial \beta} \ln \Lambda = \sum_{i=1}^{N} \frac{p_2 x_i^{\alpha - 1}}{\Gamma(\alpha)} \frac{\alpha \beta^{\alpha - 1} e^{-\beta x_i} - \beta^{\alpha} x_i e^{-\beta x_i}}{p_1 f_1(x_i) + p_2 f_2(x_i)}$$

$$= \sum_{i=1}^{N} \frac{p_2 f_2(x_i)}{p_1 f_1(x_i) + p_2 f_2(x_i)} \left(\frac{\alpha}{\beta} - x_i\right)$$

$$= \frac{\alpha}{\beta} \sum_{i=1}^{N} \zeta_{2i} - \sum_{i=1}^{N} \zeta_{2i} x_i = 0$$

$$\Leftrightarrow \beta = \alpha \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} x_i}$$
(6)

$$\frac{\partial}{\partial \alpha} \ln \Lambda = \sum_{i=1}^{N} \frac{p_{2}e^{-\beta x_{i}}}{p_{1}f_{1}(x) + p_{2}f_{2}(x)} \left(\frac{\beta (\ln \beta + \ln x_{i}) (\beta x_{i})^{\alpha - 1}}{\Gamma(\alpha)} - \beta^{\alpha}x^{\alpha - 1} \frac{\Psi(\alpha)}{\Gamma(\alpha)} \right)$$

$$= \sum_{i=1}^{N} \frac{p_{2}f_{2}(x_{i})}{p_{1}f_{1}(x) + p_{2}f_{2}(x)} (\ln \beta + \ln x_{i} - \Psi(\alpha))$$

$$= \left(\sum_{i=1}^{N} \zeta_{2i} \right) \ln \beta + \sum_{i=1}^{N} \zeta_{2i} \ln x_{i} - \Psi(\alpha) \left(\sum_{i=1}^{N} \zeta_{2i} \right) = 0$$

$$\Leftrightarrow 0 = \ln \alpha + \ln \frac{\sum_{i=1}^{N} \zeta_{2i}}{\sum_{i=1}^{N} \zeta_{2i} x_{i}} + \frac{\sum_{i=1}^{N} \zeta_{2i} \ln x_{i}}{\sum_{i=1}^{N} \zeta_{2i}} - \Psi(\alpha) \text{ (substitué par (6))}$$

$$\Leftrightarrow 0 = \ln \alpha - \Psi(\alpha) - \alpha$$

$$\Leftrightarrow 0 = \ln \alpha - \Psi (\alpha) - c$$

Où
$$c = \ln \left(\frac{\sum\limits_{i=1}^{N} \zeta_{2i} x_i}{\sum\limits_{i=1}^{N} \zeta_{2i}} \right) - \frac{\sum\limits_{i=1}^{N} \zeta_{2i} \ln(x_i)}{\sum\limits_{i=1}^{N} \zeta_{2i}}$$
; Ψ est la fonction digamma.

Selon la méthode de Newton-Rashphon, nous pouvons résoudre α numériquement avec ce formul itératif:

$$\alpha_{r+1} = \alpha_r - \frac{\ln \alpha_r + \Psi(\alpha_r) - c}{\frac{1}{\alpha_r} - \Psi'(\alpha_r)}$$

[1] propose un autre formule convergeant plus vite:

$$\frac{1}{\alpha_{r+1}} = \frac{1}{\alpha_r} + \frac{\ln(\alpha_r) - \Psi(\alpha_r) - c}{\alpha_r^2 \left(\frac{1}{\alpha_r} - \Psi'(\alpha_r)\right)}$$
(7)

Avec Ψ' la fonction trigamma. L'itération part avec $\alpha_0 = \frac{0.5}{c}$. Au final, pour p_k :

$$p_k = \frac{\sum\limits_{i=1}^{N} \zeta_{ki}}{N} \forall k = \overline{1,2}$$
(8)

Etant donné (3), (5), (6), (7) et (8), nous définissons l'algorithme EM:

- 1. **Initialisation**: Choisir θ_0 .
- 2. **Etape E**: Evaluer (ζ_{ki}) sachant θ_c en utilisant (3).
- 3. Etape M : Calculer θ_{c+1} à l'aide des équations (5), (6), (7) et (8). *Note*: Pour α , l'itération se termine quand $|\alpha_{r+1} - \alpha_r| < \varepsilon_{\alpha}$ où ε_{α} est un réel positif fixé à l'initialisation.
- 4. **Evaluation :** Si $\|\theta_{c+1} \theta_c\| < \varepsilon_{\theta}$ (ε_{θ} est un réel positif fixé à l'initialisation), l'algorithme s'arrête et $\theta = \theta_{vieux}$. Sinon, reviens à l'étape E avec $\theta_{vieux} \leftarrow \theta_{nouveau}$.

Avant de lancer l'algorithme nous essayons d'obtenir un ensemble de paramètres initiaux θ_0 qui soient cohérent avec la distribution des données. Nous avons choisi

$$(p_{10}, p_{20}, \lambda_0, \alpha_0, \beta_0) = (0.5; 0.5; 1; 10; 2)$$

Mixage de la loi Exponentielle et Gamma

FIGURE 2 – Mixage de la loi Exponentielle et Gamma : paramètres initiaux

Après l'utilisation de l'algorithme EM, nous avons obtenu le résultat :

$$(p_1, p_2, \lambda, \alpha, \beta) = (0.2194518; 0.7805482; 1.56738; 1.665659; 0.2332427)$$

D'où nous traçons la fonction de densité f_{θ} trouvé (figure 3) et réalisons un test de Kolmogorov-Smirnov qui donne p-value=0,9663111 signifiant 96,63%de nous tromper si nous rejetons ce modèle. Nous l'acceptons alors, quoiqu'il ne génère pas 2 sommets comme la remarque initiale. Le code est trouvable à l'annexe 3.3.

1.3 La politique de maintenance basée sur l'âge

Avec la fonction f_{θ} trouvée, nous construirerons la politique optimale.

Nous avons par définition : $S = \min(X, t_0)$.

Autrement dit, $S = X \mathbb{I}_{\{X < t_0\}} + t_0 \mathbb{I}_{\{X \geqslant t_0\}}$. Traduit au coût : $C(S) = C_c \mathbb{I}_{\{X < t_0\}} + C_p \mathbb{I}_{\{X \geqslant t_0\}}$, avec C_c, C_p les coûts de maintenances correctives et préventives réspectivement.

Le coût moyen:

$$\mathbb{E}\left(C\left(S\right)\right) = c_{c}\mathbb{E}\left(\mathbb{I}_{\left\{X < t_{0}\right\}}\right) + c_{p}\mathbb{E}\left(\mathbb{I}_{\left\{X \geqslant t_{0}\right\}}\right)$$

$$= c_{c}P\left(X < t_{0}\right) + c_{p}P\left(X \geqslant t_{0}\right)$$

$$= c_{c}F_{\theta}\left(t_{0}\right) + c_{p}\left(1 - F_{\theta}\left(t_{0}\right)\right)$$

$$= \left(c_{c} - c_{p}\right)F_{\theta}\left(t_{0}\right) + c_{p}$$

$$(9)$$

Mixage de la loi Exponentielle and Gamma

FIGURE 3 – Mixage de la loi Exponentielle et Gamma : paramètres finaux

La durée moyenne :

$$\mathbb{E}(S) = \mathbb{E}(X\mathbb{I}_{\{X < t_0\}}) + t_0 \mathbb{E}(\mathbb{I}_{\{X \ge t_0\}})$$

$$= \int_0^{t_0} x f_{\theta}(x) dx + t_0 P(X \ge t_0)$$

$$= x F_{\theta}(x) \Big|_0^{t_0} - \int_0^{t_0} F_{\theta}(x) dx + t_0 (1 - F_{\theta}(t_0))$$

$$= t_0 - \int_0^{t_0} F_{\theta}(x) dx$$
(10)

De (9) et (10), nous détaillons le coût moyen sur une durée de temps (1) :

$$\mathbb{E}\left(C\right) = \frac{\mathbb{E}\left(C\left(S\right)\right)}{\mathbb{E}\left(S\right)} = \frac{\left(c_{c} - c_{p}\right)F_{\theta}\left(t_{0}\right) + c_{p}}{t_{0} - \int_{0}^{t_{0}}F_{\theta}\left(x\right)dx}$$

$$(11)$$

L'annexe (3.4) montrer comment chercher l'optimum numériquement. La valeur minimum est $t_0 = 27,29639$ (mille heures), correspondant à un coût moyen de 210,6402. Nous constatons que t_0^{min} est très proche du maximum de durée de vie, indiquant que l'optimisation de t_0 est inutile car le système ne viellit pas.

2 Maintenance basée sur dégradation

2.1 Rappel

En observant multiples systèmes identiques, nous effectuons des mesures de dégradation sur des intervalles de temps réguliers tout au long de leurs durée de vie.

La valeur limite de dégradation est L=20. C'est-à-dire lorsque le niveau de dégradation dépasse L, le système tombe en panne et nous ne pourrons plus le mesurer.

On souhaite de mettre en place une politique de maintenance conditionnelle, basée sur un seuil M inférieur à L et l'intervalle de temps ΔT entre les inspections. Appellons X_t le niveau de dégradation à l'instant t (instant d'une inspection).

- Si $X_t < M$, nous laissons le système tel quel.
- Si $M \leq X_t < L$, un remplacement préventif est réalisé au coût c_p . Et puis X_t est remis à 0.
- Si $X_t \ge L$, un remplacement correctif est fait au coût c_c . Et puis X_t est remis à 0.

Le but est minimiser le coût moyen sur une durée de temps (1) en bien choissisant le seuil M et l'intervalle d'inspection ΔT .

2.2 Modéliser la dégradation du système

Soient les données de $DegradLevel_2.csv$, nous traçons leurs processus de dégrader (figure (2.2)). (Les annexes (3.5) et (3.6))

Comme les temps d'inspection sont de l'ordre millier, il vaudrait de les diviser par un scalaire (par example, scale = 1000) afin d'assurer la précision de calcul numérique.

Nous voyons les accroissements positifs, suggérant un modèle de processus Gamma.

Soit X(t) la variable aléatoire de dégradation du système. Supposons que $X(t) - X(s) \sim \Gamma(a(t-s),b) \, \forall t>s>0$. Nous allons estimer les paramètres a,b en modélisant la distribution des incréments entre deux moments successifs.

Fixons $t-s=\delta=0.8$, car les mesures donnés sont effectués au bout de chaque intervalle de 0.8.

L'histogramme des incréments :

Distribution des accroissements

Figure 4 – Histogramme des incréments de l'intervalle $\delta=0.8$

A l'aide du librairie MASS : $(a;b) = \left(\frac{\alpha}{\delta};\beta\right) = (2.843101;1.140354)$ où (α,β) sont les paramètres estimés par MASS. Le code est mis à l'annexe (3.7).

Un test rapide de Kolmogorov-Smirnov nous donne p-value=0.8651934, indiquant le modèle est acceptable.

FIGURE 5 – Histogramme et la courbe de densité estimé des incréments de l'intervalle $\delta=0.8$

D'autant plus, si nous refaisons les calculs ci-dessus avec $\delta=1.6, 2.4, 3.2, etc.$, nous voyons les valeurs de a et b ne varient pas trop. Alors, nous choisissons le couple (a,b) avec p le plus grand. (δ trop grand réduira nombreux de données, résultant moins précision)

δ	a	b	p
0.8	2.8431009	1.1403540	0.8651934
1.6	3.0207719	1.2091646	0.9919939
2.4	3.0187497	1.1907719	0.1279252
3.2	2.997763	1.185547	0.300610
4.0	3.5036580	1.4061063	0.6307951

Table 1 – Calcul (a,b) avec différents δ

Au final,
$$X(t)-X(s)\sim\Gamma(a(t-s),b) \forall t>s>0$$
 avec
$$(a,b)=(3.0207719;1.2091646)$$

FIGURE 6 – Histogramme et la courbe de densité estimé des incréments de l'intervalle $\delta=1.6$

2.3 La politique de maintenance basée sur dégradation

Cette politique, outre que $c_c=1200$ et $c_p=800$, introduit ainsi le coût d'inspection $c_i=10$.

Soit S la variable aléatoire représentant la date de remplacement; C(S) est le coût de maintenance cumulé à l'instant S, et N(S) le nombre d'inspections depuis la dernière remplacement jusqu'à S.

$$C(S) = c_i N(S) + c_p \mathbb{I}_{\{L > X_t \ge M\}} + c_c \mathbb{I}_{\{X_t \ge L\}}$$
(12)

3 Annexe

3.1 L'importation de données de pannes

```
1 pannes = read.csv(
2     file = "FailureTimes_5.csv",
3     header = TRUE,
4     sep = ",",
5     dec = ".",
6     colClasses = c("NULL", NA)
7 )
8     scale = 1000
9     data = pannes$Heures / scale
10 N = length(data)
```

3.2 Le premier histogramme de distribution de pannes

```
hist(
data,
breaks = 40,
probability = TRUE,
xlab = "Date de pannnes (mille heures)",
ylab = "Pensité",
main = "Premier histogramme"
)
```

3.3 Estimer le mixage de la loi Exponentielle et Gamma

```
1 # Fitting mixture of Exp and Gamma
    # Algorithm EM
   # Initialisation
   k = 2 # number of components
p = c(0.5, 0.5)
 6 lambda = 1
7 alpha = 10
8 beta = 2
   f = list(
10
        '1' = function(x) {
11
             dexp(x, rate = lambda)
12
        '2' = function(x) {
13
             dgamma(x, shape = alpha, rate = beta)
14
16
   # Illustration initial
17
18 f_theta = function(x) {
19  p[[1]] * f[[1]](x) + p[[2]] * f[[2]](x)
20
21 h_theta = hist(
23
24
25
      breaks = 40,
      probability = TRUE,
      main = "Mixage de la loi Exponentielle et Gamma",
xlab = "Dates de panne (mille d'heures)",
26
      ylab = "Densité"
28
29
30
31
      f_theta(x),
      add = TRUE,
col = "violet",
32
      from = min(h_theta$mids),
33
      to = max(h_theta$mids)
35
36 epsilon = list(
37
        alpha = 1e-4,
theta = 1e-4
38
```

```
39|)
 40 zeta = matrix(
 41
         Ο,
          nrow = k,
         ncol = N
 43
 44 )
 45 # Norm
 46 normVec = function(x) sqrt(sum(x^2))
 47 # New value
48 p_new = p
     alpha_new = alpha
 50 beta_new = beta
 51 lambda_new = lambda
    repeat {
    ## E Step
 52
 53
          # Calculate each proba
 54
 55
         for (1 in 1:k) {
 56
               zeta[1,] = p[[1]] * f[[1]](data)
 57
          # Normalize proba
zeta = t(t(zeta) / rowSums(t(zeta)))
## M step
 58
 59
 60
          # Lambda
 62
          lambda_new = sum(zeta[1,]) / sum(zeta[1,] * data)
 63
          # Alpha
 64
          c = log(sum(zeta[2,] * data) / sum(zeta[2,])) - sum(zeta[2,] * log(data))
          / sum(zeta[2,])
alpha_new = 0.5 / c
 65
          alpha_temp = 0
 66
          repeat {
               68
 69
 70
                    break
 71
72
               } else {
                   alpha_new = alpha_temp
 73
               }
 74
75
          alpha_new = alpha_temp
 76
          # Beta
 77
          beta_new = alpha_new * sum(zeta[2,]) / sum(zeta[2,] * data)
          for (1 in 1:k) {
    p_new[[1]] = mean(zeta[1,])
 79
 80
 81
 82
          if (normVec(c(alpha, beta, lambda, p[[1]], p[[2]]) - c(alpha_new, beta_new, lambda_new, p_new[[1]], p_new[[2]])) < epsilon$theta) {
 83
                break
 85
          } else {
               alpha = alpha_new
 86
               beta = beta_new
lambda = lambda_new
 87
 88
               p = p_new
 90
 91 }
 92 # Final value update
93 alpha = alpha_new
94 beta = beta_new
 95 lambda = lambda_new
96 p = p_new

97 # Illustration final

98 f_theta = function(x) {

99 p[[1]] * f[[1]](x) + p[[2]] * f[[2]](x)

100 }
101 h_theta = hist(
      data,
probability = TRUE,
main = "Mixage de la loi Exponentielle et Gamma",
xlab = "Dates de panne (mille d'heures)",
ylab = "Densité"
108
109 curve(
```

3.4 Optimiser le coût moyenne sur une durée de temps

```
1 # Finding optimal t_0
2 # Given F_theta
 2 # Given F<sub>_</sub>
3 c<sub>_</sub>c = 1200
 4 c_p = 800
 5 \mid E_C S = function(x) {
         (c_c - c_p) * F_theta(x) + c_p
   }
 8 E_S = function(x) {
        x - integrate(F_theta,0,x)$value
11 E_C = function(x) {
12
        E_C_S(x) / E_S(x)
13 }
14 o = optimize(
15 E_C,
         c(min(data), max(data)),
17
         tol = 1e-5
18 )
19 d = seq(
20
             min(data),
21
              max(data),
              0.01
23
        )
24
25
26
    plot(
        d,
         lapply(
27
              d,
E_C
29
        ,,
main = "Coût moyenne sur une durée de temps",
xlab = "t_0",
ylab = "",
type = "1"
30
31
32
33
```

3.5 Importer les valeurs de dégradation

```
1  # Import degradation
2  table = read.csv(
3     file = "DegradLevel_2.csv",
4     header = TRUE,
5     sep = ",",
6     dec = "."
7 )
8   scale = 1000
9   time = c(0, table$Temps / scale)
10   nbProcess = length(table) - 2
11   process = matrix(
12     ,
13     nrow = nbProcess,
14     ncol = 1 + length(table[[3]])
15 )
16   for (i in 1:nbProcess) {
```

```
17 process[i,] = c(0, table[[i + 2]]) # degrad = 0 at t = 0
18 }
```

3.6 Premiers traçes de dégradation

```
1 # Plot process curves
 2 L = 20
3 # Colormap
 4 library (RColorBrewer)
     color = brewer.pal(nbProcess, "Paired")
# First process
     plot(
           NULL,
           type = "n",
main = "Traçe de dégradation du système",
xlim = c(min(time), max(time)),
xlab = "Temps (mille heures)",
ylim = c(0, L),
ylab = "Niveau de dégradation"
 9
10
11
12
13
15)
16
     for (i in 1:nbProcess) {
17
           lines(
                x = time,
18
                  y = process[i,],
19
                 type = "s",
col = color[[i]],
lwd = 2
21
22
23
24 }
```

3.7 Estimation de paramètres de dégradations

```
## Estimate parameters for process
   lag = 2
delta = 0.8 * lag
   d = t(diff(t(process), lag))
   # Concatenate into one vector increments = vector(
mode = "numeric",
 8
        length = length(d)
 9)
10 | n = dim(d)[[1]]
11 | 1 = dim(d)[[2]]
12 for (i in 1:n) {
13 increments[((i - 1) * 1 + 1):(i * 1)] = d[i,]
14 }
15 # Filter out NA values
16 increments = increments[!is.na(increments)]
    # Histogram
18 hiso_degrad = hist(
19
         increments,
20
         breaks = 10,
        probability = TRUE,
main = "Distribution des accroissements",
xlab = "dx",
21
22
23
         ylab = "Densité"
24
   # Estimate gamma distribution
27
28
29
   library(MASS)
estim = fitdistr(
         increments,
30
         dgamma,
31
         list(
32
             shape = 1,
33
              rate = 1
34
35
36 # Draw estimated density
```

Références

[1] Minka, Thomas P. (2002). "Estimating a Gamma distribution" https://tminka.github.io/papers/minka-gamma.pdf