QUADRATURA NUMERICA

Prof. Luisa D'Amore

Se y=f(x) è la funzione che rappresenta la curva, a tale figura R si dà il nome di

RETTANGOLOIDE

ed inoltre

Area(R) =
$$I(f) = \int_{a}^{b} f(x) dx$$

ESEMPI:

$$Area(R) \cong Area(U) = f(a) (b-a)$$

FORMULA RETTANGOLARE FORMULA DEL PUNTO MEDIO

ESEMPI:

Area(R)
$$\cong$$
 Area(T)=
$$[f(a)+f(b)] \frac{(b-a)}{2}$$

FORMULA TRAPEZOIDALE

Area(R)
$$\cong$$
 Area(S) \equiv
[f(a)+ 4f(m)+f(b)] $\frac{(b-a)}{6}$

FORMULA DI SIMPSON

ESEMPIO:

SOMMA DI RIEMANN

$$S_{m}[f] = \sum_{j=1}^{m} f(\xi_{i})(t_{j} - t_{j-1})$$
 $\xi_{j} \in [t_{j-1}, t_{j}]$

$$S_{m}[f] = \sum_{j=1}^{m} f(\xi_{i})(t_{j} - t_{j-1})$$
 $\xi_{j} \in [t_{j-1}, t_{j}]$

$$\lim_{m\to\infty} S_m[f] = \int_a^b f(x)dx$$

$$t_{j}-t_{j-1}\to 0$$

$$I[f]$$

L'approccio più naturale per il calcolo di un integrale è quello di approssimare

$$I[f] = \int_{a}^{b} f(x) \, dx$$

con combinazioni lineari della funzione integranda

FORMULE DI QUADRATURA

- > Formula Rettangolare
- > Formula del Punto Medio
- > Formula Trapezoidale
- > Formula di Simpson
- > Somme di Riemann

sono tutte combinazioni lineari della funzione integranda, ovvero

$$Q[f] = A_1 f(x_1) + \dots + A_n f(x_n) \simeq \int_a^b f(x) dx = I[f]$$

 A_1, A_2, \ldots, A_n sono detti pesi o coefficienti

 x_1, x_2, \ldots, x_n sono detti nodi

FORMULE DI QUADRATURA

ESEMPIO:

$$\overline{PQ} = \sqrt{2}$$

$$Area(B) = \overline{PQ}^2 = 2$$

Calcolo dell'area del cerchio Ω di raggio 1 in un sistema aritmetico floating-point con $\beta=10$ e t=5 (Area(Ω) = π = 3,1415926....)

Dividiamo il cerchio Ω in un quadrato B, ed in 4 calotte circolari. Area(Ω) = Area(B)+4Area(D)

Come calcolare l'area delle calotte ?

AREA DELLA CALOTTA CIRCOLARE D

Per la simmetria della calotta D

$$Area(D) =$$

$$Area(V) + Area(W) = 2Area(V)$$
.

Quindi per avere l'equazione dell'arco di circonferenza s, è sufficiente sottrarre $\sqrt{2}/2$, ottenendo:

$$f(x) = y = \sqrt{1 - x^2} - \frac{\sqrt{2}}{2}$$
 $(0 \le x \le \sqrt{2}/2)$

$$Area(D)/2 = Area(V) = I[f] =$$

$$\int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{1-x^{2}} - \frac{\sqrt{2}}{2} dx = \frac{\pi-2}{8} = 0.142699075...$$

APPLICHIAMO LA FORMULA TRAPEZOIDALE

$$I[f] \cong Q[f] = \frac{\sqrt{2}}{4} \left[f(0) + f\left(\frac{\sqrt{2}}{2}\right) \right] \cong 0.10355 \times 10^{0}$$

Ma il valore ad infinite cifre (esatto) di I[f] è

I[f]=0.14269...

ERRORE = I[f] - Q[f]

$$I[f] - Q[f] =$$

$$\int_a^b f(x)dx - \sum_{i=1}^n A_i f(x_i)$$

è detta ERRORE DI DISCRETIZZAZIONE

della FORMULA DI QUADRATURA

INTERPRETAZIONE GEOMETRICA DELL'ERRORE DI DISCRETIZZAZIONE

$$I[f] = Q[f] + E[f]$$

Nota

Dalla definizione segue che l'errore di dicretizzazione, può essere POSITIVO

Nota

Dalla definizione segue che l'errore di dicretizzazione, può essere NEGATIVO

Relativamente all'esempio dell'area della semicalotta circolare V . . .:

Applicando la FORMULA TRAPEZOIDALE sull'intero intervallo $[0\sqrt{2}/2]$ si è ottenuto:

I[f] =
$$0.14269 \times 10^{\circ}$$
 Q[f] = $0.10355 \times 10^{\circ}$ E[f]= 0.39149×10^{-1}

Applicando invece la FORMULA TRAPEZOIDALE

nei due sottointervalli $\left[0, \frac{\sqrt{2}}{4}\right]$ e $\left[\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}\right]$, si ottiene

$$E_2[f] = \left(\frac{\pi - 2}{8} - 0.13250 \times 10^{\circ}\right) \cong 0.10199 \times 10^{-1}$$

Ricordando che $E[f] = 0.39149 \times 10^{-1}$

si ha

$$E_2[f] \cong \frac{1}{4} E[f]$$

DIMEZZANDO L'AMPIEZZA
DEGLI INTERVALLI
L'ERRORE SI E' RIDOTTO
DI CIRCA 4 VOLTE!

Un modo per ridurre l'errore di discretizzazione di una formula di quadratura è quello di applicarla più volte su sottointervalli di ampiezza più piccola

ESEMPIO

Formula trapezoidale su 1 sottointervallo

Formula trapezoidale su 2 sottointervalli

Dimezzando ancora l'ampiezza dei sottointervalli

$$Q_4[f] =$$
Area(T_1)+
Area(T_2)+
Area(T_3)+
Area(T_4) =

$$= \left[\frac{\sqrt{2}}{16} \left(f(0) + f\left(\frac{\sqrt{2}}{8}\right) \right) + \dots + \frac{\sqrt{2}}{16} \left(f\left(\frac{3\sqrt{2}}{8}\right) + f\left(\frac{\sqrt{2}}{2}\right) \right) \right] \cong 0.14014 \times 10^{\circ}$$

$$E_4[f] = \left(\frac{\pi - 2}{8} - 0.14014 \times 10^{\circ}\right) \approx 0.25591 \times 10^{-2}$$

Ricordando ancora che

 $E[f] = 0.39149 \times 10^{-1}$ $E_2[f] = 0.10199 \times 10^{-1}$

si ha

DIMEZZANDO L'AMPIEZZA
DEGLI INTERVALLI
L'ERRORE SI E' RIDOTTO
ANCORA DI 4 VOLTE!

IDEA: FORMULE COMPOSITE

Applicare
la FORMULA TRAPEZOIDALE
su m sottointervalli di [a,b].

DEFINIZIONE:

Suddiviso l'intervallo [a,b] in m sottointervalli [
$$t_0$$
, t_1], [t_1 , t_2],..., [$t_{(m-1)}$, t_m] di uguale ampiezza $h=(b-a)/m$ mediante gli $m+1$ punti $a = t_0 < t_1 < ... < t_m = b$ SI DEFINISCE $T_m[f]$

FORMULA TRAPEZOIDALE COMPOSITA

$$T_{m}[f] = \frac{h}{2}[f(t_{0})+f(t_{1})] + \dots + \frac{h}{2}[f(t_{(m-1)})+f(t_{m})] = h\left(\frac{f(t_{0})}{2} + \sum_{j=1}^{m-1}f(t_{j}) + \frac{f(t_{m})}{2}\right)$$

L'esempio precedente ha messo in luce che raddoppiando il numero dei sottointervalli l'errore della formula si riduce di circa quattro volte.

TEOREMA

IPOTESI

- \succ f(x) funzione integrabile
- > T_m[f] formula trapezoidale composita su [a,b]
- \geq E_m[f]=I[f]-T_m[f], errore di discretizzazione di T_m[f]
- > h=(b-a)/m, ampiezza dei sottointervalli di [a,b]

$$T_m[f] = h\left(\frac{f(t_0)}{2} + \sum_{j=1}^{m-1} f(t_j) + \frac{f(t_m)}{2}\right)$$

TESI

La famiglia
$$\{T_m[f]\}_{m=1,2,...}$$
è CONVERGENTE

cioè
$$\lim_{m\to\infty} E_m[f]=0$$

Dimostrazione:

Applichiamo la formula base T[f] nell'intervallo $[t_{j-1}, t_j]$

$$\int_{t_{j-1}}^{t_j} f(x) dx \cong \frac{(b-a)}{2m} [f(t_{j-1}) + f(t_j)]$$

Sommando su tutti gli intervalli $[t_{j-1}, t_j]$, si ottiene

$$T_m[f] = \sum_{j=1}^m \frac{(b-a)}{2m} (f(t_{j-1}) + f(t_j))$$

SOMME DI RIEMANN

$$\frac{1}{2} \left(\sum_{j=1}^{m} \frac{(b-a)}{m} f(t_{j-1}) + \sum_{j=1}^{m} \frac{(b-a)}{m} f(t_{j}) \right)$$

Poichè f(x) è integrabile tutte le somme di Riemann convergono, quindi

$$\lim_{m\to\infty}\sum_{j=1}^m\frac{(b-a)}{m}f(t_{j-1})=\lim_{m\to\infty}\sum_{j=1}^m\frac{(b-a)}{m}f(t_j)=\int_a^bf(x)dx=I[f]$$

ricordando che in generale $E_m = I - T_m$, abbiamo

$$\lim_{m\to\infty} \mathsf{E}_{\mathsf{m}}[\mathsf{f}] = \mathsf{I}[\mathsf{f}] - \lim_{m\to\infty} \mathsf{T}_{\mathsf{m}}[\mathsf{f}] =$$

$$= I[f] - \frac{1}{2}2I[f] = 0$$

L'errore di discretizzazione è stato definito come

$$\mathsf{E}[\mathsf{f}] = \underline{\mathsf{I}[\mathsf{f}]} - \mathsf{Q}[\mathsf{f}]$$

I[f] NON E' NOTO

PROBLEMA: Come determinare una stima calcolabile dell'errore di discretizzazione $E_m[f]$ della Formula Trapezoidale Composita $T_m[f]$?

Indichiamo con $T_m[f]$ la Formula Trapezoidale Composita su [a,b] con m sottointervalli. Per l'errore di $T_m[f]$ vale:

$$\mathsf{E}_{\mathsf{m}}[\mathsf{f}] = \mathsf{I}[\mathsf{f}] - \mathsf{T}_{\mathsf{m}}[\mathsf{f}]$$

Indichiamo con $T_{2m}[f]$ la Formula Trapezoidale Composita su [a,b] con 2m sottointervalli. Per l'errore di $T_{2m}[f]$ vale:

$$\mathsf{E}_{2\mathsf{m}}[\mathsf{f}] = \mathsf{I}[\mathsf{f}] - \mathsf{T}_{2\mathsf{m}}[\mathsf{f}]$$

$$E_{2m} = I - T_{2m}$$
errore di $T_m[f]$

Sottraendo $E_m[f]$ da $E_{2m}[f]$, otteniamo

$$E_{2m}-E_{m}=I-T_{2m}-(I-T_{m})=I-T_{2m}-I+T_{m}=T_{m}-T_{2m}$$

$$E_{2m}[f]-E_{m}[f]=T_{m}[f]-T_{2m}[f]$$
 (A)

$$E_m = I - T_m$$
errore di $T_m[f]$

$$E_{2m} = I - T_{2m}$$
errore di $T_m[f]$

$$E_{2m}[f]-E_{m}[f]=T_{m}[f]-T_{2m}[f]$$
 (A)

$$E_m[f] \cong 4E_{2m}[f] \qquad (B)$$

Sostituendo (B) in (A), e passando ai valori assoluti,...

Ricordando che
raddoppiando i
sottointervalli
l'errore diventa
circa un quarto,

$$|T_m[f]-T_{2m}[f]| = |E_m[f]-E_{2m}[f]| \cong |4E_{2m}[f]-E_{2m}[f]|$$

$$|T_m[f]-T_{2m}[f]| \cong 3|E_{2m}[f]|$$

STIMA CALCOLABILE DELL'ERRORE

$$|E_{2m}[f]| \cong |T_m[f]-T_{2m}[f]| / 3$$

OSSERVAZIONE:

Se la Formula Trapezoidale Composita T_m è già stata calcolata, utilizzando la formula T_{2m} si hanno 2 VANTAGGI:

 Un miglioramento dell'accuratezza dovuto all'aumento del numero dei nodi.

RIDUZIONE DELL'ERRORE DI DISCRETIZZAZIONE

 la funzione integranda è valutata solo nei punti medi degli m sottointervalli di T_m RISPARMIO SULLE VALUTAZIONI DI FUNZIONE

RISPARMIO SULLE VALUTAZIONI DI FUNZIONE

Sia [a,b] l'intervallo di integrazione.

Per il calcolo di T_m sono utilizzati i nodi:

* Nodi di T_m

a name

RISPARMIO SULLE VALUTAZIONI DI FUNZIONE

Sia [a,b] l'intervallo di integrazione.

Per il calcolo di T_{2m} sono utilizzati i nodi:

* Nodi di T_m

o Nodi di T_{2m}

40

RISPARMIO SULLE VALUTAZIONI DI FUNZIONE

Sia [a,b] l'intervallo di integrazione.

* Nodi di T_m

o Nodi di T_{2m}

DEFINIZIONE:

Una coppia di formule di quadratura $(T_m[f], T_{2m}[f])$, in cui l'insieme dei nodi della prima formula è contenuto nell'insieme dei nodi della seconda formula è detta:

COPPIA DI FORMULE INNESTATE

ESEMPIO:

Se m è un qualsiasi numero naturale la coppia di Formule Trapezoidali Composite $(T_m[f], T_{2m}[f])$, è una coppia di FORMULE INNESTATE.

PROBLEMA:

Progettare un ALGORITMO per il CALCOLO di

$$I[f] = \int_{a}^{b} f(x) dx$$

corretto a meno di una tolleranza fissata TOL con la Formula Trapezoidale Composita.

SOLUZIONE:

Si dimezza progressivamente l'intervallo [a,b], applicando la Formula Trapezoidale Composita su un numero crescente di sottointervalli, finché:

> La stima dell'errore è minore di TOL.

Si è raggiunto un numero massimo di valutazioni per la funzione integranda MAXVAL (in questo caso si avvisa con un messaggio di errore IFLAG.)

ESEMPIO DI ROUTINE PER IL CALCOLO APPROSSIMATO DI UN INTEGRALE

```
procedure Trapez1 (input:a,b,Tol,f,Maxval; output:Int,Err,Iflag)
/* SCOPO: calcolo di un integrale definito con la formula
   trapezoidale composita a meno di una tolleranza assegnata. */
/* SPECIFICHE: */
    var: a,b,Tol,Int,Err,h,x,oldint,sum real
    var: Maxval, Iflag, m, fval integer
    external function f real
/* ESECUZIONE: */
    m:=2
    h:=(b-a)/m
    x := (a+b)/m
    oldint:=h*(f(a)+f(b))
    Int:=oldint/2+h*f(x)
    fval:=3
    Err:=|Int-oldint|/3
 /* ciclo di iterazione principale con test sull'errore */
    while (Err > Tol and fval<Maxval) do
```

```
m:=2*m
     h:=h/2
     sum:=0
/* calcolo della formula trapezoidale composita su m punti medi */
                     for k=1,m,2
x:=a+k*h
                            sum := sum + f(x)
                            fval:= fval+1
                     endfor
                     oldint:= Int
                     Int:=oldint/2+h*sum
                     /* stima dell'errore */
                     Err:=|Int-oldint|/3
              endwhile
              /* definizione della variabile Iflag */
               if (fval<Maxval) then
               Iflag:=0
               else
              Iflag:=1
               endif
               Return Int, Err, Iflag
```

ESEMPIO:

VOGLIAMO CALCOLARE

$$I[f] = \int_{-5}^{5} (f(x))dx$$

UTILIZZANDO LA PRECEDENTE ROUTINE

APPROSSIMAZIONE DI I[f] SU 5 SOTTOINTERVALLI (T₅[f])

APPROSSIMAZIONE DI I[f] SU 10 SOTTOINTERVALLI (T10[f])

