Reg. No.:						

Question Paper Code: 4023220

M.E. / M.Tech. DEGREE EXAMINATIONS, NOV/ DEC 2024 Third Semester CAD/CAM

т :	CAD/CAM P20CC324 – APPLIED MATERIAL ENGIN (Regulation 2020)	
11me:	Three Hours	Maximum: 100 Marks
	Answer ALL questions	
	PART – A	$(10 \times 2 = 20 \text{ Marks})$
1.	Compare elasticity in metals with polymers.	
2.	Define super plasticity.	
3.	State Griffith theory.	
4.	Outline the effects of surface and metallurgical paramet	ers on fatigue.
5.	List any two wear resistance materials.	
6.	Define Creep.	
7.	Classify modern metallic materials.	
8.	Compare Quasi with nano crystal material.	
9.	How polymer structure is produced?	
10.	Outline the benefits of adhesives and coatings.	

(16)

11. (a)	List and explain any two strengthening mechanisms with diagram. (1	l 6)
	(OR)	
(b)	Explain the effect of temperature, strain and strain rate on plastic behaviors wi example. (1	ith 6)
12. (a)	Identify the toughening mechanisms in ductile and brittle with diagram. (1	6)
	(OR)	
(b)	Construct and explain the crack initiation and propagation mechanisms using fatigue test.	ng [6)
13. (a)	Examine the mechanical properties of material selection with example. (1	16)
	(OR)	
(b)	Explain material selection in the automobile sector as a case study. (1	6)
14. (a)	Summarize the concept in Transformation Induced Plasticity (TRIP) with example (1	e. l 6)
	(OR)	
(b)	(ii) Explain the potential future advancements in the composition of shape memory	(8) ory 8)
15. (a)	Explain the fundamental properties of advanced structural ceramics that matthem suitable for high-performance applications. (1	ke .6)
	(OR)	
(b)	Examine the potential challenges and opportunities in replacing tradition	ıal

-----XXXX-----

materials with engineering polymers in aerospace or automotive industries.