

Description

The VST20N1450 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =200V, I_D =18A $R_{DS(ON)}$ =145m Ω (typical) @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Application

- LED backlighting
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST20N1450-T2	VST20N1450	TO-252	-	-	-

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V _{GS} ±20		V	
Drain Current-Continuous	I _D	18	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	12.7	А	
Pulsed Drain Current	I _{DM}	72	А	
Maximum Power Dissipation	P _D	140	W	
Derating factor		0.93	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	80	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	T _J ,T _{STG} -55 To 175		

Thermal Characteristic

Thermal Résistance, Junction-to-Case ^(Note 2)	R _{θJC}	1.07	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	200	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.5	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =18A	-	145	155	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =18A	15	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -100\/\/ -0\/	-	483		PF
Output Capacitance	C _{oss}	V_{DS} =100V, V_{GS} =0V, F=1.0MHz	-	42		PF
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	1		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	4	-	nS
Turn-on Rise Time	t _r	V_{DD} =100V, RL=8 Ω	-	5	-	nS
Turn-Off Delay Time	$t_{d(off)}$	V_{GS} =10 V , R_{G} =3 Ω	-	10	-	nS
Turn-Off Fall Time	t _f		-	2	-	nS
Total Gate Charge	Q_g	V _{DS} =100V,I _D =18A,	-	9.2	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = 100V, I_{D} = 10A,$ $V_{GS} = 10V$	-	3.8	-	nC
Gate-Drain Charge	Q_{gd}	VGS-10V	-	2.3	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =18A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	18	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =18A	-	25	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	110	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance