Conversione dei numeri binari a virgola mobile in decimale

Riccardo Montagnin

Prima di iniziare dobbiamo tenere sempre in mente come un numero binario in virgola mobile viene rappresentato. Ogni numero infatti viene rappresentato nel seguente formato:

bit segno | bit esponente polarizzato | bit mantissa

dove i bit dell'esponente rappresentano l'esponente polarizzato, ovvero il valore dell'esponente al quale è stato aggiunto un valore fisso detto polarizzazione che equivale a

$$2^{k-1}-1$$

dove k è il numero di bit usato per rappresentare l'esponente. Detto questo possiamo iniziare.

Ecco come convertire un numero da notazione binaria in virgola mobile a notazione decimale:

1. Dividi in campi.

La prima cosa da fare è dividere in campi il numero che abbiamo.

Es.

Bit segno: 0

2. Scrivi il numero nel formato corretto.

Ogni numero decimale viene rappresentato nel seguente formato:

 $\pm 1.mantissa \cdot 2^{esponente}$

quindi dovremo andare a sistemare i bit dell'esponente e della mantissa nei giusti posti, ricordando che il bit di segno è $\mathbf{0}$ se il segno e +, ed è $\mathbf{1}$ se il segno è -. Inoltre alla mantissa posso venir tolti tutti gli 0 inutili.

Es.

Bit segno: 0

3. Converti la mantissa.

Converti la mantissa, ricordandoti che i bit dopo il . rappresentano potenze di 2 **negative**.

$$0.100011 = 0.[1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5} + 1 \cdot 2^{-6}] = 0.\left[\frac{1}{2^1} + \frac{1}{2^5} + \frac{1}{2^6}\right] = 0.546875$$

4. Converti l'esponente

Converti l'esponente in numero decimale, come si è soliti fare con gli interi.

Es.

10001100 = 140

5. Aggiungi la polarizzazione

Aggiungi la polarizzazione all'esponente, ricordandoti che vale sempre $2^{k-1} - 1$ e che, nello standard IEEE 754, k = 8.

Es.

140-127 = 13

6. Esegui i conti.

Moltiplica il significando per l'esponente, e avrai trovato il numero rappresentato.

Es.

Conversione dei numeri decimali in binario a virgola mobile

Riccardo Montagnin

Prima di iniziare dobbiamo tenere sempre in mente come un numero decimale viene rappresentato in notazione binaria nel formato a virgola mobile. Ogni numero infatti viene rappresentato nel seguente formato:

$$\pm 1.mantissa \cdot 2^{esponente}$$

dove l'esponente è polarizzato, ovvero gli viene aggiunto un valore fisso definito polarizzazione che equivale a

$$2^{k-1} - 1$$

dove k è il numero di bit usato per rappresentare l'esponente. Detto questo possiamo iniziare.

Ecco come convertire un numero da notazione decimale a notazione binaria in virgola mobile:

1. Converti la parte intera in binario.

Converti la parte intera in notazione binaria, come si è soliti fare.

Es.

$$-30.375$$

$$(30)_{dec} = (11110)_{bin}$$

2. Converti la parte decimale in binario.

Converti la parte decimale del numero, ma fa attenzione che le posizioni rappresentano potenze di 2 negative.

Es.
$$-30.375$$

$$(0.375)_{dec} = (0.011)_{bin} \text{ perchè } (0.011)_{bin} = 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 0 \cdot \frac{1}{21} + 1 \cdot \frac{1}{22} + 1 \cdot \frac{1}{23} = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8}$$

3. Unisci tutto quello fatto fin'ora.

Unisci parte intera e decimale convertite, scrivendo il numero in notazione binaria.

Es

$$(-30.375)_{dec} = (-11110 + .011)_{bin} = (-11110.011)_{bin}$$

4. Sposta la virgola.

Ora bisogna spostare la virgola a sinistra fino ad ottenere un numero nel formato 1. xxxxx, e di conseguenza moltiplicare il tutto per $2^{n.posizioni}$, ovvero bisogna normalizzare il risultato.

 $\mathbf{E}_{\mathbf{S}}$

$$(-30.375)_{dec} = (-11110.011)_{bin} = (-1.1110011 \cdot 2^4)_{bin}$$

Abbiamo spostato la virgola a sinistra di 4 posizioni, e abbiamo moltiplicato per 2⁴

5. Aggiungi la polarizzazione.

Aggiungi la polarizzazione all'esponente, ricordandoti che vale sempre $2^{k-1} - 1$ e che, nello standard IEEE 754, k = 8.

Es.
$$(-30.375)_{dec} = (-1.1110011 \cdot 2^4)_{bin} = (-1.1110011 \cdot 2^{4+127})_{bin} = (-1.1110011 \cdot 2^{131})_{bin}$$

6. Converti l'esponente in binario.

Converti l'esponente polarizzato in notazione binaria, come si è soliti fare con gli interi.

Es. $(-30.375)_{dec} = (-1.1110011 \cdot 2^{131})_{bin} \rightarrow (131)_{dec} = (10000011)_{bin}$ $\Rightarrow (-30.375)_{dec} = (-1.1110011 \cdot 2^{100000011})_{bin}$

7. Scrivi il tutto nel formato corretto.

Scrivi i vari bit nel formato corretto, ovvero:

bit segno | bit esponente polarizzato | bit mantissa

Ricordando che i bit della mantissa sono tutti i bit dopo la virgola (o il punto) e che, per raggiungere la lunghezza desiderata della mantissa (standard IEEE 754 = 23 bit) si deve estendere la mantissa con tutti 0 a destra

Es. $-30.375 = -1.1110011 \cdot 2^{10000011}$ Bit di segno: 1 (segno -) Bit esponente: 10000011 Bit mantissa: 1110011 = 1110011000000000000000000

Notazione finale:

 $1\ 10000011\ 111001100000000000000000$