ECE-UY 4563: Introduction to Machine Learning Midterm 1 Solutions, Fall 2021

Prof. Sundeep Rangan

- The exam is two parts:
 - Written part: This file, three questions
 - Python part: See the Midterm1_2021_Python.ipynb file. Also three questions.
- \bullet Submit answers to all six questions. You have at least 24 hours.
- You may use any resources on the web, class notes, and homework solutions. However, you may not ask friends or other classmates for help.
- Best of luck.

 $1.\ {\it Linear\ Regression}.\ {\it Consider\ the\ model}:$

$$\widehat{y} = f(x) = \begin{cases} c_1 e^{-2x} + c_2 & \text{if } x < 1\\ c_1 e^{-x} + c_3 & \text{if } x \ge 1. \end{cases}$$
 (1)

for parameters $c = (c_1, c_2, c_3)$.

(a) Find **three** basis functions $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$, such that every function in the model (1) can be written as:

$$\widehat{y} = \sum_{j=1}^{3} \beta_j \phi_j(x). \tag{2}$$

Write the β_j 's in terms of the parameters c_j .

(b) Now find **two** basis functions, $\phi'_1(x)$ and $\phi'_2(x)$ for the model (1) with the additional constraint that f(x) is continuous at x = 1.

Model	Training MSE		Test MSE	
	Mean	SE	Mean	SE
1	10	1	10.1	1.1
2	4	0.4	4.1	0.5
3	3	0.3	4.5	0.6

Table 1: Problem 2: Training and test MSE results for the three models

- 2. Model Selection. Consider three models for predicting a scalar y from $x = (x_1, x_2)$ where x_1 is a real valued variable and $x_2 \in \{1, 2, 3, 4\}$. Consider three models:
 - Model 1: $\hat{y} = b + wx_1$ where w is constant and does not depend on x_2 .
 - Model 2: $\hat{y} = b + wx_1$ where w has one value when $x_2 = 1, 2$ and a different value when $x_2 = 3, 4$.
 - Model 3: $\hat{y} = b + wx_1$ where w has one of four values depending on x_2 .

In all cases, the parameter b is constant and does not depend on x_1 or x_2 .

Answer the following with short explanations (e.g., one sentence) for each of the following:

- (a) Using a linear model for each case, what is the minimum number of parameters you need for each model?
- (b) Which model would generally give the lowest training error?
- (c) Which model would generally give the lowest bias error?
- (d) Which model would generally give the lowest variance error?
- (e) The results of K-fold validation are shown in Table 1. Which model would be selected based on the normal rule? Which model would be selected based on the one SE rule?

3. Logistic Regression. Consider a binary logistic classifier on a scalar x of the form

$$P(y=1|x) = \frac{1}{1+e^{-z}}, \quad z=b+wx.$$

- (a) Find w and b such that
 - P(y = 1|x) = 0.8 at x = 3 and
 - P(y=0|x) = 0.8 at x=1.
- (b) Using the values for w and b, what is P(y = 1|x) at x = 4?