

FIGURE 1

Effect of Peptide 3 with MCP-1 (50ng/ml)

Peptide 3 (µM)

FIGURE

FIGURE 3

FIGURE 4

Figures

<u>TARGET FOR VIRAL ENTRY</u> (HIV VIRUS)

Skin Inflammation Model

Endotoxemia Model

Figure X

FIGURE X 10

A TANK RENEWALING

FIGURE & Z 1

Figure 12

Amino Acid Codon

Phe UUU, UUC

Ser UCU, UCC, UCA, UCG, AGU, AGC

Tyr UAU, UAC Cys UGU, UGC

Leu UUA, UUG, CUU, CUC, CUA, CUG

Trp UGG

Pro CCU, CCC, CCA, CCG

His CAU, CAC

Arg CGU, CGC, CGA, CGG, AGA, AGG

Gln CAA, CAG

Ile AUU, AUC, AUA

Thr ACU, ACC, ACA, ACG

Asn AAU, AAC

Lys AAA, AAG

Met AUG

Val GUU, GUC, GUA, GUG Ala GCU, GCC, GCA, GCG

Asp GAU, GAC

Gly GGU, GGC, GGA, GGG

Glu GAA, GAG

FIGURE 13

Original	Exemplary	Preferred Substitutions
Residue	Substitutions	val
Ala (A)	val; leu; ile	
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; lys; arg	gln
Asp (D)	glu	glu
Cys (C)	ser	ser
Gln (Q)	asn	asn
Glu (E)	asp	asp
Gly (G)	pro	pro
His (H)	asn; gln; lys; arg	arg
Ile (I)	leu; val; met; ala; phe	leu
Leu (L)	norleucine; ile; val; met; ala; phe	ile
Lys (K)	arg; gln; asn	arg
Met (M)	leu; phe; ile	leu
Phe (F)	leu; val; ile; ala	leu
Pro (P)	gly	gly
Ser (S)	thr	thr
Thr (T)	ser	ser
• •	tyr	tyr
Trp (W)	trp; phe; thr; ser	phe
Tyr (Y) Val (V)	ile; leu; met; phe; ala; norleucine	leu

FIGURE 14

Peptide 3

LFL peptide 3(1-12)[MCP-1]: Residues 50-61 of mature hMCP-1 E-I-C-A-D-P-K-Q-K-W-V-Q L amino acids LFL peptide 3(3-12)[MCPI] Residues 52-61 of mature hMCP-1 C-A-D-P-K-Q-K-W-V-Q L amino acids LFL peptide 3(1-6)[MCP1]: residues 50-55 of mature hMCP-1 E-I-C-A-D-P L amino acids LFL peptide 3(7-12)[MCP1]: Residues 56-61 of mature hMCP-1 K-Q-K-W-V-Q L amino acids 12 LFL Leu₄peptide3(1-12)[MCP-1] UT. E-I-C-L-D-P-K-Q-K-W-V-Q 15 L amino acids (0) 1.4 LFL Ser₇peptide3(1-12)[MCP-1] E-I-C-A-D-P-S-Q-K-W-V-Q 13 L amino acids .15 LFL Ile₁₁peptide3(1-12)[MCP-1] 14 nd. E-I-C-A-D-P-K-Q-K-W-I-Q 1 L amino acids LFL Leu, Ile, peptide3(1-12)[MCP-1] E-I-C-L-D-P-K-Q-K-W-I-Q L amino acids $CFL\ Cys_0Leu_4Ile_{11}Cys_{13}peptide3(1-12)[MCP-1]$ C-E-I-C-L-D-P-K-Q-K-W-I-Q-C L amino acids LRD Leu4Ile11 peptide 3(1-12)[MCP-1] q-i-w-k-q-k-p-d-l-c-i-e D amino acids

```
CRD\ Cys_0Leu_4Ile_{11}Cys_{13}peptide\ 3(1-12)[MCP-1]
   c-q-i-w-k-q-k-p-d-l-c-i-e-c
   D amino acids
   LFL Ser_7Glu_8Glu_9peptide3(1-12)[MCP1):Residues 50-61 of mature hMIP1 <math display="inline">\alpha
   E-I-C-A-D-P-S-E-E-W-V-Q
   L amino acids
    LFL peptide3(10-12)[MCP-1]
    W-V-Q
    L amino acids
    CFL Cys<sub>0</sub>Cys<sub>4</sub> peptide3(10-12)[MCP-1]
    C-W-V-O-C
    L amino acids
     LRD peptide3(10-12)[MCP-1]
     D amino acids
     LFL peptide3(7-9)[MCP-1]
     K-Q-K
0
     L amino acids
1.4
     LRD peptide3(7-9)[MCP-1]
1.1
      k-a-k
      D amino acids
13
13
      LFL peptide 3(7-9)[MIP1\alpha](MIP1\alpha specific inhibitor)
      S-E-E
      L amino acids
      LRD peptide3(7-9)[MIP1\alpha] (MIP1\alpha specific inhibitor)
       e-e-s
       D amino acids
       LFL peptide3(7-9)[IL-8](IL-8 specific inhibitor)
       K-E-N
       L amino acids
       LRD peptide3(7-9)[IL-8](IL-8 specific inhibitor)
        n-e-k
        D amino acids
```

in.

```
LFL peptide3(7-9)[SDF-1\alpha](SDF-1\alpha specific inhibitor)
              K-L-K
              L amino acids
              LRD peptide3(7-9)[SDF1\alpha] (SDF-1\alpha specific inhibitor)
               D amino acids
               LFL Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide3(3-12)[MCP-1]
                L-D-P-K-Q-K-W-I-Q-C
                  L amino acids
                  CRD Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide3(3-12)[MCP-1]
                  c-q-i-w-k-q-k-p-d-l-c
                   D amino acids
                   ^3\text{H-Ala} CRD-Leu,
Ile,1 Cys,3 peptide 3(3-12)[MCP-1](D-Ala attached to Asp residue of CRD-11 attached to Asp residue of CRD-12 attached to Asp residue of CRD-13 attached to Asp residue of CRD-13 attached to Asp residue of CRD-13 attached to Asp residue of CRD-14 attached to Asp residue of CRD-14 attached to Asp residue of CRD-15 attached to Asp residue of CRD-15 attached to Asp residue of CRD-16 attached to Asp residue of CRD-17 attached to Asp residue of CRD-17 attached to Asp residue of CRD-17 attached to Asp residue of CRD-18 attached t
                    Leu<sub>4</sub>Ile<sub>11</sub>Cys<sub>13</sub> peptide 3(3-12)[MCP-1])
100
                    <sup>3</sup>H-L-Leu LRD Cys<sub>13</sub> peptide3(3-12)[MCP-1]
                    c-q-i-w-k-q-k-p-d-L-c
  171
                     D and L amino acids
  13
  (5
                      LFL SES
                      S-E-S
                      L amino acids
   LFL KKK
                        K-K-K
                        L amino acids
   113
                        LFL Cys<sub>4</sub> peptide3(10-12)[MCP-1]
                         w-v-o-c
                          L amino acids
                          LRD Cys<sub>4</sub> peptide3(10-12)[MCP-1]
                           c-q-v-w
                           D amino acids
                            LFL Ile<sub>11</sub>Cys<sub>13</sub>peptide3(10-12)[MCP-1]
                             W-I-Q-C
                             L amino acids
```

```
LRD Cys<sub>13</sub>Ile<sub>11</sub>peptide3(10-12)[MCP-1]
   caiw
   D amino acids
   LRD peptide3(7-12)[MCP-1]
   q-v-w-k-q-k
    D amino acids
    CFL Cys<sub>0</sub>Cys<sub>13</sub>peptide3(7-12)[MCP-1]
    C-K-Q-K-W-V-Q-C
    L amino acids
    CRD Cys<sub>0</sub>Cys<sub>13</sub>peptide3(7-12)[MCP-1]
    c-q-v-w-k-q-k-c
    D amino acids
     LFL peptide3(10-12)[RANTES]
     WVR
□ L amino acids
     LRD peptide3(10-12)[RANTES]
50
     rvw
     D amino acids
175
1.4
LFL peptide3(10-12)[SDF-1]
      W-I-Q
L amino acids
                                                Peptide 2
 re.
 000
      LFL peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1
       S-Y-R-R-I-T-S-S-K-C-P-K-E-A-V
       L amino acids
       CFL Cys_0Cys_{16} peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1
       C-S-Y-R-R-I-T-S-S-K-C-P-K-E-A-V-C
       L amino acids
        LRD peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1
        v-a-e-k-p-c-k-s-s-t-i-r-r-y-s
        D amino acids
```

CRD $\text{Cys}_{0}\text{Cys}_{16}\text{peptide 2(1-15)[MCP-1]}$: Residues 28-42 of hMCP-1 c-v-a-e-k-p-c-k-s-s-t-i-r-r-y-s-c D amino acids LFL peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β H-L-K-I-L-N-T-P-N-C-A-L-Q-I-V L amino acids CFL Cys₀Cys₁₆peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 β C-H-L-K-I-L-N-T-P-N-C-A-L-Q-I-V-C L amino acids LRD peptide 2(1-15)[SDF1]: Residues 26-40 of mature hSDF-1 $\!\beta$ v-i-q-l-a-c-n-p-t-n-l-i-k-l-h D amino acids CRD Cys $_0$ Cys $_{16}$ peptide 2(1-15)[SDF1]: Residues 26-40 of mature $hSDF\text{-}1\beta$ c-v-i-q-l-a-c-n-p-t-n-l-i-k-l-h-c D amino acids (3 LFL peptide 2(1-14)[MIP-1 α]: Residues 28-41 of hMIP-1 α D-Y-F-E-T-S-S-Q-C-S-K-P-G-V LT. 10 L amino acids 05 LRD peptide 2(1-14)[MIP1 α]: Residues 28-41 of mature hMIP1 α v-g-p-k-s-c-q-s-s-t-e-f-y-d D amino acids 13 15 LFL peptide 2(1-16)[IL8]: Residues 27-42 of mature hIL8 14 E-L-R-V-I-E-S-G-P-H-C-A-N-T-E-I ré .0 L amino acids LFL Peptide 2(1-10)[MCP-1]: Residues 28-37 of hMCP-1 S-Y-R-R-I-T-S-S-K-C L amino acids LFL peptide 2(10-15)[MCP-1]: Residues 37-42 of hMCP-1 C-P-K-E-A-V L amino acids LFL peptide 2(1-5)[MCP-1]: Residues 28-32 of hMCP-1 S-Y-R-R-I L amino acids

LFL peptide 2(6-10)[MCP-1]: Residues 33-37 of hMCP-1 T-S-S-K-C L amino acids

LFL peptide 2(1-9)[MIP-1 α]: Residues 28-36 of hMIP-1 α D-Y-F-E-T-S-S-Q-C L amino acids

LFL peptide 2(9-14)[MIP-1 α]: Residues 36-41 of hMIP-1 α C-S-K-P-G-V L amino acid

LFL $Cys_0Ser_{10}Cys_{16}$ peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 C-S-Y-R-R-I-T-S-S-K-S-P-K-E-A-V-C L amino acids

CFL $Cys_0Ser_{10}Cys_{16}$ peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 C-S-Y-R-R-I-T-S-S-K-S-P-K-E-A-V-C

L amino acids

0

100

1.4 jui. 000 LRD $\mathrm{Cys_0Ser_{10}Cys_{16}peptide}$ 2(1-15)[[MCP-1]: Residues 28-42 of hMCP-1 c-v-a-e-k-p-s-k-s-s-t-i-r-r-y-s-c

D amino acids

10 CRD Cys $_0$ Ser $_{10}$ Cys $_{16}$ peptide 2(1-15)[MCP-1]: Residues 28-42 of hMCP-1 1 1 c-v-a-e-k-p-s-k-s-s-t-i-r-r-y-s-c

D amino acids

DARC Binding
a)
Sequence

SDF-1a

THP-1 Migration MIP-1a

Syrritsskcpkeav vaekpcksetitrys syrritssk	350 nM 18 µM 222µM	SU SE SE SE SE
	>100µM >100uM	Sri
TSSKC CPKEAV	Mu(001<	SU
HLKILNTPNCALQIV	Mu es	ועבו(טו הצו
DYFETSSQCSKPGV	>100ptivi	SU .

SI.

ã 23

SE š

ns

2

>100µM >100µM

CSKPGV

Mu,001<

vgpkscqsstefyd DYFETSSOC

40µM

Z SE SE Sa

							25.000	8-11	Other Dala	
			Duffy	MCP-1	MIP-1a	RANTES	SDE-IG	<u></u>		
Sequence	Mel Wt.		Binding	ED-50	ED-50	RD-50	RD-50	ED-50		
			RD-SI							
			74.00	Š	Š.		SU	. SI		
POPUATINAPVICC	1302		300mily	2						
SYRRITSSKCPKEAV	1725	*	Mn001	SU	8	١.	SU .	'	•	
				:						
			Mu81	ıls	Su		SI			_
vaekpcksstirtys	1725		7, 0	Z. C	40uM	· ·	7µLM	-		
HERTINIPHCALOIV	1677.3		PALM	TO PROPER						
	6,50		>100µM	, ns	St		2	-	-	_
DYPETSSOCSKPGV	1549		Milool	SH	SII	,	SU			_
vgpkscgsstefyd	1549						Si	Ÿ		
Cao	1097.4		22µM	21	2			L	-	
STHELIBORE	8445		×100µM	SU	22		82	1		
CPKEAV	255	:	×10091M	SII	SE		TIS.		-	$\overline{}$
SYRKI	693.9	1		Ŀ		_		. 1		-
Californ	525.7		×100µM	118	22	-		-		_
TSSM	. 070.7		>100µM	. 115	SE SE		CIS	1	1	τ
DYFETSBOC	10/22		Mu001 <	SI	SU	r	SI			\neg
CSKPGV	289.8]						

						_				-			T								-		
10mM			N SuM		-		1	16µM	Mis	2	3µM		3µM	2µM		3.5µM	IMM		×100µM	Mμ001<		-	
Mus El			 Print.	Amn				18.5µM	20.00	S.SILM	2.5µM		4µM	Mil		4µM	2.05uM		>100µM	>100mM	4-	>100µM	
_				1	•					-	•						Yen's	WindC-1	>100µM	Middle	Thomas and the	>100µM	
	7.5µM	 -	 +	₩пс.9		1		Miloc	11110	SpuM	Mark	NH/	5.5uM		35µM	2itM		7.5µM	>100µM		•	>100µM	
1	8uM 7		 +	8µМ	7.00	Idona	30nM		WINC2	7th		Вим	Mil	· / haller	5.5µM	Wic	CHIN	8µМ	7uM		>100µM	>100µM	
-	Мір	•	 +	•	\vdash	3µM	Mild		1	Misi			100	Zynw Zynw		1	Wilder SoluM	Mul	Milos	Topics .	ML001<	Muon	1
			 1		1			1															
						٠.						4									. :		
	1445		 		1202	204	COC	1305	273	3	816	!	1487	1404		1459	1201	,	431.5	464.5	300 7	1377.4	A25.A
	EICADPROKIAVO 14		•		CADPROKETVO	_	cgwwkgkpdac			BICADP	Operation	NAMAN	BICLDPROKWVQ		RICADPSORMVE	BICADPKOKWIQ		SICIOPROMAK	WVQ	***	WW	SRR	

				_	_	7	_	_		7		1
		Note 1		Note 2								
√100µM		10nM			_							
		350nM		,		٠	1	•				
Mμ001<				,			-		1	,		
>100µM			-									
>100µM			Mul	;	>100µM		Mn01		>100µM >100µM			
>100µM >100µM >100µM			>100µM		,		,		>100µM		>100µM	
									-			
	516.6			1359		1448		1472.2		357.3	,,,,	8.609
	KLK			- Introdudic	TO STANKE TO	S. Contraction of the contractio	COLWAND	of pulmer.	COLUNGATION	der	CHEC	
L		_		_	_	_	_				-	

Note 1: In Vivo effect. Abolishes macrophages in an in vivo rat intradermal study induced by 500 ng MCP-1. 300 µg IV and 10 mg SQ 30 minutes prior to MCP-1. Note 2: In same study as Note 1 above, no effect on macrophages reen.

	. 4			Study Design Ta	ble 💮		
Group	Animal #	N	RX	RX dose/route T=30 min	Dermal Agonist	Dermal AgonistDo se (ng in 50 ul) T=0	Hour of Sacrifice
1	1,2,3	3	PBŞ	200 ul: iv 200 ul: SQ-back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
2	4,5,6	3	NR58-3.14.3	3 ug: iv 100 ug: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
3	7,8,9	3	NR58-3.14.3	30 ug: iv 1 mg: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24
4	10,11,12	3	NR58-3.14.3	300 ug: iv 10 mg: SQ back	PBS LPS MCP-1 MCP-1	0 50 100 500	20-24