Sub-Linear
Lattice-Based
Zero-Knowledge Arguments
for Arithmetic Circuits

Zero-Knowledge Arguments for Arithmetic Circuits

An n-dimensional lattice \mathcal{L} is

- A discrete additive subgroup of \mathbb{R}^n
- Generated by a basis $\mathcal{B} = \{\boldsymbol{b}_1, \dots, \boldsymbol{b}_n\}$
- $\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \boldsymbol{b}_i)$

Zero-Knowledge Arguments for Arithmetic Circuits

Why lattices?

- Quantum-resistant hard problems
- Worst-to-average case reductions
- Efficient operations

Zero-Knowledge Arguments for Arithmetic Circuits

Short Integer Solution (SIS) Problem

- Input: Random matrix $A \in \mathbb{Z}_q^{n \times m}$
- Goal: Find non-trivial $s \in Z^m$ with $As = 0 \mod q$ and $||s||_{\infty} < \beta$

 \boldsymbol{A}

 $=\mathbf{0}\in Z_q^n$

5

Zero-Knowledge Arguments for Arithmetic Circuits

Commitment/hashing from SIS:

- Binding/collision resistant by SIS
- Hiding by Leftover Hash Lemma
- Homomorphic
- Compressing

Zero-Knowledge Arguments

for Arithmetic Circuits

Zero-Knowledge Arguments

for Arithmetic Circuits

Statement

Zero-Knowledge Arguments

for Arithmetic Circuits

Completeness:
An honest prover convinces the verifier.

Zero-Knowledge Arguments

for Arithmetic Circuits

Computational guarantee

-> argument

Soundness:
A dishonest prover never convinces the verifier.

Verifier

Completeness:
An honest prover convinces the verifier.

convinces the verifier.

Zero-Knowledge Arguments

for Arithmetic Circuits

Knowledge Soundness:

The prover must know a witness to convince the verifier.

-> Proof/argument of knowledge

Zero-Knowledge Arguments

for Arithmetic Circuits

Zero-knowledge:

Nothing but the truth of the statement is revealed.

Knowledge Soundness:
The prover must know a witness to convince the verifier.

-> Proof/argument of knowledge 11

Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits

Why arithmetic circuits?

- C to circuit compilers
- Models cryptographic computations
- Witness existence? NP-Complete

Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits

Results Table

Expected # Moves	Communication		Verifier Complexity
0(1)	$O\left(\sqrt{N\lambda\log^3N}\right)$	$O(N \log N (\log^2 \lambda))$	$O(N\log^3\lambda)$

Security parameter λ

Proof of Knowledge

Statement

Witness

Proof of Knowledge

$$\begin{vmatrix} A & \\ s_1 \end{vmatrix} = \begin{vmatrix} t_1 \\ A \end{vmatrix} \qquad \begin{vmatrix} A \\ s_2 \end{vmatrix} = \begin{vmatrix} t_2 \\ k_2 \end{vmatrix} \qquad \cdots \qquad A \qquad \begin{vmatrix} A \\ s_m \end{vmatrix} = \begin{vmatrix} t_m \\ k_m \end{vmatrix}$$

$$m \approx \sqrt{N}$$

 $|s_1| \approx \sqrt{N}$

->Prover knows *N* small hashed integers

Proof of Knowledge

$$A \qquad S_1 = t_1 \qquad A \qquad S_2 = t_2 \qquad \cdots \qquad A \qquad S_m = t_m$$

 λ preimages

Typical Proofs of Knowledge

Completeness:

A

=

t

 $\|s\|_{\infty} < \beta$

Knowledge Soundness:

 \boldsymbol{A}

=2t

None for us*

Simplistic Protocol

$$= 1$$

$$z = c s + y$$

$$c \in \{0,1\}$$

 \boldsymbol{Z}

Check:
$$\|\mathbf{z}\|_{\infty} < B$$

$$z = c s + y$$

$$c \in \{0,1\}$$

$$\mathbf{z} = \sum \mathbf{s_i} \mathbf{c_i} + \mathbf{y} \qquad c_i \in \{0,1\}$$

$$z' = |s_1| + |s_2| c_2 ... + |s_m| c_m + |y|$$
 $z' = |s_2| c_2 ... + |s_m| c_m + |y|$

Extraction guaranteed by 'heavy rows' averaging argument

$$z = \sum s_i c_i^T + y c_i^T \in \{0,1\}^{O(\lambda)}$$

Proof-of-Knowledge Performance

Expected # Moves	Communication		Verifier Complexity
0(1)	$O\left(\sqrt{N\lambda\log^3N}\right)$	$O(N\log^3\lambda)$	$O(\sqrt{N\log^3\lambda})$

A = t N hashed integers

Security parameter λ

Arithmetic Circuit Argument

Matrix Dimensions

Paradigm from Previous Arguments

- Commit to vectors
 ([G09], [S09], [BCGGHJ17])
- Random challenge x
- Prover opens linear combinations
- Verifier conducts polynomial identity test
- AC-SAT in coefficients

Protocol Flow

1. Commit to wire values

2. Commit to polynomial coefficients

3. Commit to mod p correction factors

4. Compute linear combinations, do rejection sampling, proof of knowledge

, Proof of Knowledge

Check size bounds and linear combinations

Protocol Flow VN

 \sqrt{N}

, Rejection Sampling

0(1)

 \searrow

 $y \leftarrow C$

, Proof of Knowledge

Parameter Choice

Small Modulus Issues

- ullet Schwarz-Zippel Lemma over Z_p
- Multivariate polynomial $p(x_1, x_2, ..., x_n)$, total degree d
- Choose random evaluation points $r_1, r_2, ..., r_n$
- DLOG: $p \approx 2^{\lambda}$
- SIS: modulus usually $poly(\lambda)$

$$\Pr[p(r_1, r_2, ..., r_n) = 0] \le \frac{a}{p}$$

Not negligible!

Extension Fields

- $GF(p^k)$ a vector space over GF(p)
- $GF(p^k)$ -multiplications are linear maps on GF(p)
- Homomorphic commitments

$$\Pr[p(r_1, r_2, ..., r_n) = 0] \le \frac{d}{p}$$

Not negligible!

Extension Fields

- $GF(p^k)$ a vector space over GF(p)
- $GF(p^k)$ -multiplications are linear maps on GF(p)
- Homomorphic commitments
- View k commitments as a homomorphic commitment to a $GF(p^k)$ element!
- Run protocol over $GF(p^k)$ (extends [CDK14])

$$\Pr[p(r_1, r_2, ..., r_n) = 0] \le \frac{a}{p^k}$$

Negligible!

Embedding Base Field Operations

• $GF(p^k) = GF(p)[\alpha]$ basis: $\{1, \alpha, \alpha^2, ..., \alpha^k\}$

 $GF(p^k)$ elements

Embedding Base Field Operations

• $GF(p^k) = GF(p)[\alpha]$ basis: $\{1, \alpha, \alpha^2, ..., \alpha^k\}$

 $GF(p^k)$ elements

Future Work: Can we match the $O(\log N)$ proof sizes of DLOG protocols?

Thanks!

Expected # Moves	Communication		Verifier Complexity
0(1)	$O\left(\sqrt{N\lambda\log^3N}\right)$	$O(N \log N (\log^2 \lambda))$	$O(N\log^3\lambda)$

https://eprint.iacr.org/2018/560.pdf

- General Statements
- Sub-linear proofs
- Relies on SIS

