1 General

1.1 Interviewer Considerations

Notes:

- How did the candidate **analyze** the problem?
- Did the candidate miss any special or **edge** cases?
- Did the candidate approach the problem **methodically** and logically?
- Does the candidate have a strong foundation in basic computer science **concepts**?
- Did the candidate produce working code? Did the candidate test the code?
- Is the candidate's code clean and easy to read and maintain?
- Can the candidate **explain** their ideas clearly?

1.2 Steps for Success During the Technical Interview

Summary:

1. Clarify the question

- (a) Understand what the question is asking and gather example inputs and outputs.
- (b) Clarify constraints such as:
 - i. Can numbers be negative or repeated?
 - ii. Are values sorted or do we need to sort them?
 - iii. Can we assume input validity?
- (c) Asking clarifying questions shows communication skills and prevents missteps.

2. Design a solution

- (a) Avoid immediate coding; propose an initial approach and refine it.
- (b) Analyze the algorithm's time and space complexity.
- (c) Consider and address edge cases.
- (d) Think aloud to demonstrate logical reasoning and collaboration.
- (e) Discuss non-optimal ideas to show your thought process.

3. Write your code

- (a) Structure the solution using helper functions.
- (b) Confirm API details when uncertain.
- (c) Use your strongest programming language and full syntax.
- (d) Write complete, working code—not pseudocode.

4. Test your code

- (a) Validate your solution with 1–2 example test cases.
- (b) Walk through each line using inputs.
- (c) Do not assume correctness—prove it through testing.
- (d) Discuss any further optimizations and their trade-offs.

1.3 Common Mistakes to Avoid

Warning:

- 1. Starting to code without clarifying the problem.
- 2. Failing to write or discuss sample inputs and outputs.
- 3. Using pseudocode instead of fully functional code.
- 4. Misunderstanding the problem or optimizing prematurely.

2 Arrays

3 Hashing

3.1 When to Use?

Summary:

Hashing

Algorithm:

3.3 Common Problems

Problem	Description:
1. Two Sum	Given an array of integers, return indices of the two numbers s.t. they add up to a specific target
– If i	e if target - nums[i] is in the map. t is, return the index of the target - nums[i] (from prevMap) and i. prevMap[nums[i]] = i

4 Two Pointers

4.1 When to Use?

Summary:

- If we need to find a pair of elements that satisfy a condition.
- If we need to find a subarray that satisfies a condition.

4.2 Slow and Fast Pointers

Algorithm:

1.

4.2.1 Common Problems

Problem	Description:
15. 3Sum	Given an array of integers, return all the triplets $[nums[i], nums[j], nums[k]]$ s.t. $i != j$, $i != k$, and $j != k$.
• Tricks:	
125. Valid Palindrome	Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.
• s_new = ".join(char.lower() for lowercase.	or char in s if char.isalnum()) to remove non-alphanumeric ar
• Use front and back pointers. If the	y not equal, return False. If equal move both pointers.
167. Two Sum II - Input array is sorted	Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a target.
 Use front and back pointers. If > t 	arget, move back pointer left. If < target, move front pointer right.

4.3 Front and Back Pointers

Algorithm:

1. Initialize two pointers, one at the front and one at the back of the array.

4.3.1 Common Problems

Problem	Description:
15. 3Sum	Given an array of integers, return all the triplets $[nums[i], nums[j], nums[k]]$ s.t. $i != j$, $i != k$, and $j != k$.
• Tricks:	
125. Valid Palindrome	Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.
• s new = " ioin(char lower() fo	or char in s if char.isalnum()) to remove non-alphanumeric as
lowercase.	·
lowercase.	y not equal, return False. If equal move both pointers.
lowercase.	

Sliding Window 5

5.1 Fixed Sliding Window

Summary:

- Find a subarray/substring of a fixed size that satisfies a condition.
- Find the maximum or minimum of a subarray of a fixed size.

Algorithm:

```
initialize window_sum = 0
  initialize max_result (or other required value)
  # Set up initial window
  for i in range(0, k):
      window_sum += arr[i]
  max_result = window_sum # Initialize result
  # Slide the window
  for i in range(k, n):
      window_sum += arr[i] - arr[i - k] # Add new element and remove 1st element of prev window
12
      max_result = max(max_result, window_sum) (or other computation)
13
  return max_result (or other required value)
15
```

5.1.1 Common Problems

Problem	Description:
643. Maximum Average Subarray I	Given an integer array nums and an integer k, return the maximum average value of a subarray of length k.
• Follow template.	

5.2 Dynamic Sliding Window

Summary:

• Find longest or shortest subarray/substring that satisfies a condition.

Algorithm:

```
initialize left = 0
initialize window_state (sum, count, frequency map, etc.)
initialize min_or_max_result

for right in range(n):
    update window_state to include arr[right] # Expand the window

while window_state violates the condition:
    update min_or_max_result (if needed)
    update window_state to exclude arr[left] # Shrink the window
    move left pointer forward

return min_or_max_result
```

5.2.1 Common Problems

Summary:

Problem	Description:
3. Longest Substring Without Repeating Characters	Given a string s, find the length of the longest substring without repeating characters.
 Use a frequency map to track characters in the current window. If a character is repeated, move the left pointer to the right of the last occurrence. 	

6 Binary Search

6.1 When to Use?

Summary:

• If array is sorted.

7 Linked List

Summary: Data structure for storing objects in linear order.

• Object: Data and a pointer to the next object.

7.1 When to Use?

Summary:

- Implement other DS: stacks, queues, hash tables.
- Dynamic memory allocation.

7.2 Operations

Summary	σ.

Operation	Time Complexity
Search	O(n)
Insert	O(1)
Delete	O(1)
Access	O(n)

7.3 Singly Linked List

Algorithm:

7.4 Doubly Linked List

Algorithm:

7.5 Circular Linked List

Algorithm: