Definition 0.0.1. A Riemann surface is a one dimensional complex manifold

Theorem 0.0.2 (Riemann's removable singularity theorem). f is holomorphic on $X \setminus \{a\}$ and bounded near a, then f is holomorphic on X

Theorem 0.0.3 (Principle of analytic continuation). X is connected, $X \xrightarrow{f} Y$ is holomorphic and $f \equiv c$ on some nondiscrete subset of X, then $f \equiv c$ on X

Remark 0.0.4. This does not apply to higher dimensions, for example, f(z, w) = z, but in higher dimensions, we have Theorem ??

Theorem 0.0.5 (Local behaviour of holomorphic maps). $X \xrightarrow{f} Y$ is a nonconstant holomorphic map, $a \in X$, $f(a) = b \in Y$. There are local charts $U \xrightarrow{\phi} \mathbb{C}$, $V \xrightarrow{\psi} \mathbb{C}$ of a, b such that $\psi f \phi^{-1} = z^k$ for some $k \geq 1$

Remark 0.0.6. If the multiplicity k > 1, a is a branch point

Theorem 0.0.7. $X \xrightarrow{f} Y$ is a proper nonconstant holomorphic map between Riemann surfaces, there exists some n such that f take every value $c \in Y$, counting multiplicities, n times

 $\begin{array}{c} \textbf{Theorem 0.0.8 (Rad\'o's theorem). A connected Riemann surface is second countable} \\ & \textbf{Uniformization theorem} \end{array}$

Theorem 0.0.9 (Uniformization theorem). A simply connected Riemann surface is either \mathbb{C} , \mathbb{P} or \mathbb{H}^2