Counting Defective Parking Functions

Thomas Prellberg

Queen Mary, University of London

Libra Visiting Professor of Diversity, University of Maine

Combinatorics Seminar

University of Florida November 25, 2008

- A parking problem (defective parking functions)
- Enumeration (generating functions)
- 3 Asymptotics (limit distributions)
- 4 Conclusion and outlook

- A parking problem (defective parking functions)
- Enumeration (generating functions)
- Asymptotics (limit distributions)
- Conclusion and outlook

• Consider *n* parking spaces in a *one-way street*

• Drivers of *m* cars choose their preferred parking space

- Drivers of *m* cars choose their preferred parking space
 - If the space is free, the driver parks the car there
 - If the space is occupied, the driver parks in the next free space
 - If no free space is available, the driver leaves

- Drivers of *m* cars choose their preferred parking space
 - If the space is free, the driver parks the car there
 - If the space is occupied, the driver parks in the next free space
 - If no free space is available, the driver leaves
- n^m sequences of choices

- Drivers of *m* cars choose their preferred parking space
 - If the space is free, the driver parks the car there
 - If the space is occupied, the driver parks in the next free space
 - If no free space is available, the driver leaves
- n^m sequences of choices
- If all drivers park successfully, the sequence is called a parking function

- Drivers of *m* cars choose their preferred parking space
 - If the space is free, the driver parks the car there
 - If the space is occupied, the driver parks in the next free space
 - If no free space is available, the driver leaves
- n^m sequences of choices
- If all drivers park successfully, the sequence is called a parking function
- If k drivers fail to park, the sequence is called a defective parking function of degree k

• n = 2 parking spaces, m = 2 cars:

- n = 2 parking spaces, m = 2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22

- n = 2 parking spaces, m = 2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22
- n = 3 parking spaces, m = 3 cars:

- n = 2 parking spaces, m = 2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22
- n = 3 parking spaces, m = 3 cars:
 - k = 0: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321

- n=2 parking spaces, m=2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22
- n = 3 parking spaces, m = 3 cars:
 - k = 0: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
 - k = 1: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332

- n=2 parking spaces, m=2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22
- n = 3 parking spaces, m = 3 cars:
 - k = 0: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
 - k = 1: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332
 - k = 2: 333

- n = 2 parking spaces, m = 2 cars:
 - k = 0: 11, 12, 21
 - k = 1: 22
- n = 3 parking spaces, m = 3 cars:
 - k = 0: 111, 112, 121, 211, 113, 131, 311, 122, 212, 221, 123, 132, 213, 231, 312, 321
 - k = 1: 133, 313, 331, 222, 223, 232, 322, 233, 323, 332
 - k = 2: 333

Every permutation of a defective parking function of degree k is also a defective parking function of degree k.

The counting problem

Enumerate the number

of assignments of m drivers to n spaces such that exactly k drivers leave

The counting problem

Enumerate the number

of assignments of m drivers to n spaces such that exactly k drivers leave

The probabilistic question

What is the probability

$$p_{n,m}(k) = \frac{1}{n^m} \operatorname{cp}(n, m, k)$$

that for a randomly chosen assignment exactly k drivers leave? In particular, are there interesting limiting distributions?

Many equivalent or related formulations, for example

Hashing with linear probing

```
[Konheim and Weiss, 1966]
```

[Flajolet, Poblete and Viola, 1998]

Drop-push model for percolation

[Majumdar and Dean, 2002]

Many equivalent or related formulations, for example

Hashing with linear probing

```
[Konheim and Weiss, 1966]
[Flajolet, Poblete and Viola, 1998]
```

Drop-push model for percolation

[Majumdar and Dean, 2002]

Connections to other combinatorial objects:

 labelled trees, major functions, acyclic functions, Prüfer code, non-crossing partitions, hyperplane arrangements, priority queues, Tutte polynomial of graphs, inversion in trees

- A parking problem (defective parking functions)
- 2 Enumeration (generating functions)
- Asymptotics (limit distributions)
- Conclusion and outlook

cp(n, n, k)	k = 0	1	2	3	4	5	6
n=1	1						
2	3	1					
3	16	10	1				
4	125	107	23	1			
5	1296	1346	436	46	1		
6	16807	19917	8402	1442	87	1	
7	262144	341986	173860	41070	4320	162	1

cp(n, n, k): the number of car parking assignments of n cars to n spaces such that k cars are not parked.

For $m \leq n$,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

For m < n,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak (m = n), 1974).

• Consider a circular car park with m cars and spaces $(1, \ldots, n, n+1)$.

For m < n,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak (m = n), 1974).

- Consider a circular car park with m cars and spaces $(1, \ldots, n, n + 1)$.
- There are $(n+1)^m$ choices of sequences.

For m < n,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak (m = n), 1974).

- Consider a circular car park with m cars and spaces $(1, \ldots, n, n + 1)$.
- There are $(n+1)^m$ choices of sequences.
- A sequence will be a parking function for the original problem on (1, ..., n) if and only if space n + 1 remains empty.

For m < n,

$$cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$$

Proof (adapted from Pollak (m = n), 1974).

- Consider a circular car park with m cars and spaces $(1, \ldots, n, n+1)$.
- There are $(n+1)^m$ choices of sequences.
- A sequence will be a parking function for the original problem on (1, ..., n) if and only if space n + 1 remains empty.
- Space n+1 is empty with probability (n+1-m)/(n+1).

Definition

For $r, s, k \in \mathbb{N}_0$ let a(r, s, k) denote the number of choices for which r spaces remain empty, s spaces are occupied in the end and k people drive home.

Definition

For $r, s, k \in \mathbb{N}_0$ let a(r, s, k) denote the number of choices for which r spaces remain empty, s spaces are occupied in the end and k people drive home.

- n = s + r parking spaces, m = s + k drivers
- cp(n, m, k) = a(n m + k, m k, k)

Lemma (A recursion)

For $r, s, k \in \mathbb{N}_0$, the number of assignments of s + k drivers to s + r spaces such that r spaces remain empty, s spaces are occupied and k drivers leave is recursively defined by

$$a(r, s, k) =$$

Lemma (A recursion)

For $r, s, k \in \mathbb{N}_0$, the number of assignments of s + k drivers to s + r spaces such that r spaces remain empty, s spaces are occupied and k drivers leave is recursively defined by

$$a(r,s,k) = \begin{cases} 1 & \text{if } r = s = k = 0, \\ \sum_{i=0}^{k+1} {s+k \choose k+1-i} \cdot a(r,s-1,i) & \text{if } k > 0, \\ \\ a(r-1,s,0) + & \text{if } k = 0 \text{ and} \\ \sum_{i=0}^{k+1} {s+k \choose k+1-i} \cdot a(r,s-1,i) & (r > 0 \text{ or } s > 0). \end{cases}$$

Lemma (A functional equation)

Let A be the formal power series in the three variables u, v, and t defined by

$$A(u,v,t) := \sum_{r,s,k\geq 0} a(r,s,k) \cdot u^r \frac{v^s t^k}{(s+k)!}.$$

Then A(u, v, t) is the unique solution of

$$0 = \left(\frac{v}{t}e^t - 1\right) \cdot A(u, v, t) + \left(u - \frac{v}{t}\right) \cdot A(u, v, 0) + 1$$

in the ring of formal power series in u, v and t.

$$0 = \left(\frac{v}{t}e^{t} - 1\right) \cdot A(u, v, t) + \left(u - \frac{v}{t}\right) \cdot A(u, v, 0) + 1$$

with the Kernel Method:

$$0 = \left(\frac{v}{t}e^{t} - 1\right) \cdot A(u, v, t) + \left(u - \frac{v}{t}\right) \cdot A(u, v, 0) + 1$$

with the Kernel Method:

• Setting the *kernel* $K(v,t) = \frac{v}{t}e^t - 1$ equal to zero gives $v = te^{-t}$

$$0 = \left(\frac{v}{t}e^{t} - 1\right) \cdot A(u, v, t) + \left(u - \frac{v}{t}\right) \cdot A(u, v, 0) + 1$$

with the Kernel Method:

• Setting the *kernel* $K(v,t) = \frac{v}{t}e^t - 1$ equal to zero gives $v = te^{-t}$

• This is solved by t = T(v) where T is the tree function

$$T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^{i}$$

$$0 = \left(\frac{v}{t}e^{t} - 1\right) \cdot A(u, v, t) + \left(u - \frac{v}{t}\right) \cdot A(u, v, 0) + 1$$

with the Kernel Method:

• Setting the *kernel* $K(v,t) = \frac{v}{t}e^t - 1$ equal to zero gives $v = te^{-t}$

• This is solved by t = T(v) where T is the tree function

$$T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^{i}$$

Now we can solve

$$0 = (u - \frac{v}{T(v)}) \cdot A(u, v, 0) + 1$$

for A(u, v, 0).

Lemma (The explicit generating function)

The generating function for the car parking problem is given by

$$A(u, v, t) = \frac{1}{1 - \frac{v}{t}e^{t}} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t}e^{t}} \cdot \frac{e^{T(v)}}{1 - ue^{T(v)}},$$

where $T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i$ is the tree function $(T(v) = ve^{T(v)})$.

Lemma (The explicit generating function)

The generating function for the car parking problem is given by

$$A(u, v, t) = \frac{1}{1 - \frac{v}{t}e^{t}} + \frac{u - \frac{v}{t}}{1 - \frac{v}{t}e^{t}} \cdot \frac{e^{T(v)}}{1 - ue^{T(v)}},$$

where $T(v) = \sum_{i=1}^{\infty} \frac{i^{i-1}}{i!} \cdot v^i$ is the tree function $(T(v) = ve^{T(v)})$.

Now extract the coefficients a(r, s, k) ...

Theorem

The number of car parking assignments of m cars on n spaces such that at least k cars do not find a parking space is given by

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}.$$

Theorem

The number of car parking assignments of m cars on n spaces such that at least k cars do not find a parking space is given by

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}.$$

•
$$S(n, m, k) = \sum_{j=k}^{m} \operatorname{cp}(n, m, j)$$

Theorem

The number of car parking assignments of m cars on n spaces such that at least k cars do not find a parking space is given by

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}.$$

- $S(n, m, k) = \sum_{i=k}^{m} \operatorname{cp}(n, m, j)$
- The car parking numbers cp(n, m, k) are given by

$$cp(n, m, k) = S(n, m, k) - S(n, m, k + 1)$$

• Remembering that $cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$, we can rewrite

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \operatorname{cp}(n-m+k+i-1, i, 0) \cdot (m-k-i)^{m-i}.$$

• Remembering that $cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$, we can rewrite

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \operatorname{cp}(n-m+k+i-1, i, 0) \cdot (m-k-i)^{m-i}.$$

• If at least k cars do not find a parking space, then there are at least r = n + k - m empty parking spaces, and we rewrite

$$S(n, m, r+m-n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r+i-1, i, 0) \cdot (n-r-i)^{m-i}.$$

• Remembering that $cp(n, m, 0) = (n + 1 - m)(n + 1)^{m-1}$, we can rewrite

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \operatorname{cp}(n-m+k+i-1, i, 0) \cdot (m-k-i)^{m-i}.$$

• If at least k cars do not find a parking space, then there are at least r = n + k - m empty parking spaces, and we rewrite

$$S(n, m, r+m-n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r+i-1, i, 0) \cdot (n-r-i)^{m-i}.$$

This expression leads to a direct combinatorial proof.

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

Proof.

• Assuming the r-th empty space occurs at position r+i, there are i cars successfully parked in the r+i-1 spaces to the left of it, which is counted by $\operatorname{cp}(r+i-1,i,0)$.

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot cp(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

- Assuming the r-th empty space occurs at position r+i, there are i cars successfully parked in the r+i-1 spaces to the left of it, which is counted by $\operatorname{cp}(r+i-1,i,0)$.
- Selecting these *i* cars out of all *m* cars can be done in $\binom{m}{i}$ different ways.

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot \operatorname{cp}(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

- Assuming the r-th empty space occurs at position r+i, there are i cars successfully parked in the r+i-1 spaces to the left of it, which is counted by $\operatorname{cp}(r+i-1,i,0)$.
- Selecting these *i* cars out of all *m* cars can be done in $\binom{m}{i}$ different ways.
- The remaining m-i cars are assigned to the n-r-i rightmost spaces in $(n-r-i)^{m-i}$ different ways.

The number of car parking assignments of m cars on n spaces such that at least r parking space remain empty is given by

$$S(n, m, r + m - n) = \sum_{i=0}^{n-r} {m \choose i} \cdot \operatorname{cp}(r + i - 1, i, 0) \cdot (n - r - i)^{m-i}.$$

- Assuming the r-th empty space occurs at position r+i, there are i cars successfully parked in the r+i-1 spaces to the left of it, which is counted by $\operatorname{cp}(r+i-1,i,0)$.
- Selecting these *i* cars out of all *m* cars can be done in $\binom{m}{i}$ different ways.
- The remaining m-i cars are assigned to the n-r-i rightmost spaces in $(n-r-i)^{m-i}$ different ways.
- Sum over all possible values of i.

Notice that

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}$$

are partial sums occurring in

Lemma (Abel's Binomial Identity, 1826)

For all $a, b \in \mathbb{R}, m \in \mathbb{N}_0$,

$$\sum_{i=0}^{m} {m \choose i} \cdot a \cdot (a+i)^{i-1} \cdot (b-i)^{m-i} = (a+b)^{m}$$

Notice that

$$S(n, m, k) = \sum_{i=0}^{m-k} {m \choose i} \cdot (n-m+k) \cdot (n-m+k+i)^{i-1} \cdot (m-k-i)^{m-i}$$

are partial sums occurring in

Lemma (Abel's Binomial Identity, 1826)

For all $a, b \in \mathbb{R}, m \in \mathbb{N}_0$,

$$\sum_{i=0}^{m} {m \choose i} \cdot a \cdot (a+i)^{i-1} \cdot (b-i)^{m-i} = (a+b)^m$$

• In fact, $S(n, m, 0) = n^m$ gives a combinatorial proof for Abel's identity for a = n - m and b = m.

- A parking problem (defective parking functions)
- Enumeration (generating functions)
- 3 Asymptotics (limit distributions)
- Conclusion and outlook

 Consider the distribution of the probability of a parking function with defect k,

$$p_{n,m}(k) = \frac{1}{n^m} \operatorname{cp}(n, m, k) ,$$

for n (parking spaces) or m (cars) large.

 Consider the distribution of the probability of a parking function with defect k,

$$p_{n,m}(k) = \frac{1}{n^m} \operatorname{cp}(n, m, k) ,$$

for n (parking spaces) or m (cars) large.

- Different regimes:
 - $m \ll n$: cars park with probability 1
 - $m \sim \lambda n$, $\lambda < 1$: discrete limit law
 - $(\sqrt{m} \ll m n \ll m$: exponential distribution)
 - $m-n \sim \lambda \sqrt{m}$: linear-exponential distribution
 - $(\sqrt{m} \ll n m \ll m$: exponential distribution)
 - $m \sim \lambda n$, $\lambda > 1$: discrete limit law
 - $m \gg n$: cars leave with probability 1

$$P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^m p_{n,m}(j)$$

•
$$m \ll n$$
: $P_{n,m}(k) \rightarrow 0$

$$P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^m p_{n,m}(j)$$

- $m \ll n$: $P_{n,m}(k) \rightarrow 0$
- $m \sim \lambda n$, $\lambda < 1$: discrete limit law

$$P_{n,m}(k) \to (1-\lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l+1)^{k-l}}{(k-l)!} \lambda^{k-l} e^{\lambda(l+1)}$$

$$P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^m p_{n,m}(j)$$

- $m \ll n$: $P_{n,m}(k) \rightarrow 0$
- $m \sim \lambda n$, $\lambda < 1$: discrete limit law

$$P_{n,m}(k) \to (1-\lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l+1)^{k-l}}{(k-l)!} \lambda^{k-l} e^{\lambda(l+1)}$$

• $m \sim \lambda n$, $\lambda > 1$: discrete limit law

$$P_{n,m}(n-m+k) \rightarrow k \sum_{l=0}^{\infty} \frac{(l+k)^{l-1}}{l!} \lambda^l e^{-\lambda(l+k)}$$

$$P_{n,m}(k) = \frac{1}{n^m} S(n, m, k) = \sum_{j=k}^m p_{n,m}(j)$$

- $m \ll n$: $P_{n,m}(k) \rightarrow 0$
- $m \sim \lambda n$, $\lambda < 1$: discrete limit law

$$P_{n,m}(k) \to (1-\lambda) \sum_{l=0}^{k} (-1)^{k-l} \frac{(l+1)^{k-l}}{(k-l)!} \lambda^{k-l} e^{\lambda(l+1)}$$

• $m \sim \lambda n$, $\lambda > 1$: discrete limit law

$$P_{n,m}(n-m+k) \rightarrow k \sum_{l=0}^{\infty} \frac{(l+k)^{l-1}}{l!} \lambda^l e^{-\lambda(l+k)}$$

• $m \gg n$: $P_{n,m}(k) \rightarrow 1$

The interesting scaling regime $m - n \sim \lambda \sqrt{m}$

The interesting scaling regime $m - n \sim \lambda \sqrt{m}$

Theorem

Let $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$. Then the limiting probability that in a random assignment of $n + \lfloor y \sqrt{n} \rfloor$ drivers to n spaces at least $\lfloor x \sqrt{n} \rfloor$ drivers fail to park is

$$\lim_{n\to\infty} P_{n,n+\lfloor y\sqrt{n}\rfloor}(\lfloor x\sqrt{n}\rfloor) = \begin{cases} e^{-2x(x-y)} & \text{if } x>y, \\ 1 & \text{otherwise.} \end{cases}$$

The interesting scaling regime $m - n \sim \lambda \sqrt{m}$

Theorem

Let $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$. Then the limiting probability that in a random assignment of $n + \lfloor y \sqrt{n} \rfloor$ drivers to n spaces at least $\lfloor x \sqrt{n} \rfloor$ drivers fail to park is

$$\lim_{n\to\infty} P_{n,n+\lfloor y\sqrt{n}\rfloor}(\lfloor x\sqrt{n}\rfloor) = \begin{cases} e^{-2x(x-y)} & \text{if } x>y, \\ 1 & \text{otherwise.} \end{cases}$$

Therefore we have approximately

$$\frac{\operatorname{cp}(n,m,k)}{n^m} \approx \frac{2}{n} \cdot (2k-m+n) \cdot e^{-2k(k-m+n)/n}$$

Proof.

Approximate the expression for S(n, m, k) by an integral

$$\lim_{n \to \infty} P_{n,n+\lfloor y\sqrt{n} \rfloor}(\lfloor x\sqrt{n} \rfloor)$$

$$= \int_0^1 \frac{x-y}{\sqrt{2\pi\alpha^3(1-\alpha)}} \cdot \exp\left(-\frac{(x-(1-\alpha)y)^2}{2\alpha(1-\alpha)}\right) d\alpha.$$

Proof.

Approximate the expression for S(n, m, k) by an integral

$$\lim_{n \to \infty} P_{n,n+\lfloor y\sqrt{n} \rfloor}(\lfloor x\sqrt{n} \rfloor)$$

$$= \int_0^1 \frac{x-y}{\sqrt{2\pi\alpha^3(1-\alpha)}} \cdot \exp\left(-\frac{(x-(1-\alpha)y)^2}{2\alpha(1-\alpha)}\right) d\alpha.$$

Under the substitution $\alpha = \frac{u(x-y)}{x+u(x-y)}$ this integral simplifies to

$$= \frac{1}{\sqrt{2\pi}} \cdot \int_0^\infty \sqrt{\frac{x(x-y)}{u^3}} \cdot \exp\left(-x \cdot (x-y) \cdot \frac{(1+u)^2}{2u}\right) du$$
$$= \exp(-2x(x-y)).$$

Proof.

Approximate the expression for S(n, m, k) by an integral

$$\lim_{n \to \infty} P_{n,n+\lfloor y\sqrt{n} \rfloor}(\lfloor x\sqrt{n} \rfloor)$$

$$= \int_0^1 \frac{x-y}{\sqrt{2\pi\alpha^3(1-\alpha)}} \cdot \exp\left(-\frac{(x-(1-\alpha)y)^2}{2\alpha(1-\alpha)}\right) d\alpha.$$

Under the substitution $\alpha = \frac{u(x-y)}{x+u(x-y)}$ this integral simplifies to

$$= \frac{1}{\sqrt{2\pi}} \cdot \int_0^\infty \sqrt{\frac{x(x-y)}{u^3}} \cdot \exp\left(-x \cdot (x-y) \cdot \frac{(1+u)^2}{2u}\right) du$$
$$= \exp(-2x(x-y)).$$

NB: neither Maple nor Mathematica can do the above integral!

Less cars than parking spaces (n > m):

$$\frac{\operatorname{cp}(n,m,k)}{n^m} \approx \frac{2}{n} \cdot (2k-m+n) \cdot e^{-2k(k-m+n)/n}$$

Equal number of cars and parking spaces (n = m):

$$\frac{\operatorname{cp}(n,m,k)}{n^m} \approx \frac{2}{n} \cdot (2k-m+n) \cdot e^{-2k(k-m+n)/n}$$

More cars than parking spaces (n < m):

$$\frac{\operatorname{cp}(n,m,k)}{n^m} \approx \frac{2}{n} \cdot (2k-m+n) \cdot e^{-2k(k-m+n)/n}$$

The approximation is surprisingly accurate:

What is the probability that the car park is full?

What is the probability that the car park is full?

Theorem

Let $\lambda \in \mathbb{R}^+$. Then the limiting probability that in a random assignment of $\lfloor \lambda n \rfloor$ drivers to n spaces all spaces are occupied is

$$\lim_{n \to \infty} \frac{\operatorname{cp}(n, \lfloor \lambda n \rfloor, \lfloor \lambda n \rfloor - n)}{n^{\lfloor \lambda n \rfloor}} = \begin{cases} 0 & \text{if } \lambda \le 1, \\ 1 - \frac{1}{\lambda} \cdot T(\lambda e^{-\lambda}) & \text{if } \lambda > 1. \end{cases}$$

$$n = 10, 20, \infty$$
:

$$\frac{\operatorname{cp}(n,m,m-n)}{n^m}\bigg|_{m=\lfloor \lambda n \rfloor} \approx 1 - \frac{1}{\lambda} T(\lambda e^{-\lambda})$$

Reference for this work:

P. J. Cameron, D. Johannsen, T. Prellberg, and P. Schweitzer, "Counting defective parking functions", Electron.
 J. Combinat. 15 (2008) R92 (arXiv:0803.0302v2) (submitted to EJC on March 3, 2008)

Reference for this work:

P. J. Cameron, D. Johannsen, T. Prellberg, and P. Schweitzer, "Counting defective parking functions", Electron.
 J. Combinat. 15 (2008) R92 (arXiv:0803.0302v2) (submitted to EJC on March 3, 2008)

Related work by Alois Panholzer, TU Wien:

- "Limiting distribution results for a discrete parking problem", GOCPS 2008 (talk presented on March 5, 2008)
- "On a discrete parking problem", AofA 2008 (talk presented on April 17, 2008)

- A parking problem (defective parking functions)
- 2 Enumeration (generating functions)
- Asymptotics (limit distributions)
- 4 Conclusion and outlook

Summary:

- Introduced interesting and apparently new parking problem
- Solved the counting problem (Kernel method)
- Discussed limiting probability distributions

Summary:

- Introduced interesting and apparently new parking problem
- Solved the counting problem (Kernel method)
- Discussed limiting probability distributions

Outlook:

- So far only "weak limit laws" can refine analysis
- Extension to several generalised parking problems in the literature possible

The End

