Employee Attrition Model Performance Report

1. Overview

This report summarizes the performance of machine learning models used to predict employee attrition in a corporate HR dataset. The goal was to identify employees at risk of leaving and the key drivers behind it.

2. Models Used

- Logistic Regression
- Decision Tree Classifier

3. Data Split

- Training Set: 1176 records

- Test Set: 294 records

- Attrition Distribution (Test):

- No: 247

- Yes: 47

4. Model Performance

Logistic Regression

- Accuracy: 87.4%

- Confusion Matrix:

[[239 8]

[29 18]]

- Classification Report:

- Precision (Yes): 0.69

- Recall (Yes): 0.38

- F1-score (Yes): 0.49

Decision Tree

- Accuracy: 76.2%

- Confusion Matrix:

Employee Attrition Model Performance Report

[[209 38]
[32 15]]
- Classification Report:
- Precision (Yes): 0.28
- Recall (Yes): 0.32
- F1-score (Yes): 0.30
5. Model Comparison
Model Comparison Table:
Model Accuracy F1-score (Yes)
Logistic Regression 87.4% 0.49
Decision Tree 76.2% 0.30
Best performing model: Logistic Regression due to better overall accuracy and precision.
6. SHAP Analysis
Top Features Influencing Attrition:
- OverTime
- MonthlyIncome
- YearsAtCompany
- JobRole
- DistanceFromHome
SHAP analysis was used to provide transparency in predictions and identify the most influential features for attrition.
7. Canalysian

7. Conclusion

The Logistic Regression model is the most reliable for predicting attrition. SHAP analysis helped identify actionable

Employee Attrition Model Performance Report

drivers, aiding HR teams in implementing data-driven retention strategies.

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]: df = pd.read_csv("HR-Employee-Attrition.csv")
 df.head()

Out[2]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Scie
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Scie
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	(
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Scie
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Мє

5 rows × 35 columns


```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1470 entries, 0 to 1469
      Data columns (total 35 columns):
           Column
                                    Non-Null Count Dtype
       ---
           -----
                                    _____
       0
           Age
                                    1470 non-null
                                                   int64
       1
                                    1470 non-null object
           Attrition
       2
           BusinessTravel
                                    1470 non-null object
       3
          DailyRate
                                    1470 non-null
                                                   int64
       4
           Department
                                    1470 non-null
                                                  object
       5
           DistanceFromHome
                                   1470 non-null
                                                  int64
       6
           Education
                                   1470 non-null
                                                   int64
       7
           EducationField
                                    1470 non-null
                                                   object
       8
           EmployeeCount
                                   1470 non-null
                                                   int64
           EmployeeNumber
                                   1470 non-null
                                                   int64
       10 EnvironmentSatisfaction 1470 non-null
                                                   int64
       11 Gender
                                    1470 non-null
                                                   object
       12 HourlyRate
                                    1470 non-null
                                                   int64
       13 JobInvolvement
                                   1470 non-null
                                                   int64
       14 JobLevel
                                    1470 non-null
                                                   int64
                                    1470 non-null
       15 JobRole
                                                   object
       16 JobSatisfaction
                                    1470 non-null
                                                   int64
       17 MaritalStatus
                                    1470 non-null
                                                   object
       18 MonthlyIncome
                                    1470 non-null
                                                   int64
                                                  int64
       19 MonthlyRate
                                    1470 non-null
       20 NumCompaniesWorked
                                    1470 non-null
                                                  int64
       21 Over18
                                    1470 non-null
                                                   object
       22 OverTime
                                    1470 non-null
                                                   object
       23 PercentSalaryHike
                                    1470 non-null
                                                   int64
       24 PerformanceRating
                                    1470 non-null int64
       25 RelationshipSatisfaction 1470 non-null
                                                   int64
       26 StandardHours
                                    1470 non-null
                                                   int64
       27 StockOptionLevel
                                    1470 non-null
                                                  int64
       28 TotalWorkingYears
                                    1470 non-null
                                                   int64
       29 TrainingTimesLastYear
                                    1470 non-null
                                                   int64
       30 WorkLifeBalance
                                    1470 non-null
                                                   int64
       31 YearsAtCompany
                                    1470 non-null
                                                   int64
       32 YearsInCurrentRole
                                    1470 non-null
                                                   int64
       33 YearsSinceLastPromotion 1470 non-null
                                                   int64
       34 YearsWithCurrManager
                                    1470 non-null
                                                   int64
      dtypes: int64(26), object(9)
      memory usage: 402.1+ KB
Out[3]: Attrition
        No
               1233
                237
        Yes
        Name: count, dtype: int64
```

In [4]:

In [5]:

Out[4]: np.int64(0)

plt.show()

df.isnull().sum()
df.duplicated().sum()

sns.countplot(x='Attrition', data=df)

plt.title("Attrition Count")

Attrition Count

In [6]: sns.countplot(x='Department', hue='Attrition', data=df)
plt.title("Department vs Attrition")
plt.show()


```
In [7]: sns.countplot(x='JobRole', hue='Attrition', data=df)
   plt.title("Job Role vs Attrition")
   plt.xticks(rotation=45)
   plt.show()
```



```
In [8]: sns.boxplot(x='Attrition', y='MonthlyIncome', data=df)
plt.title("Income vs Attrition")
plt.show()
```

Income vs Attrition


```
In [9]: sns.countplot(x='OverTime', hue='Attrition', data=df)
   plt.title("OverTime vs Attrition")
   plt.show()
```



```
In [10]: sns.histplot(df['Age'], kde=True)
    plt.title("Age Distribution")
    plt.show()
```

Age Distribution


```
In [11]: from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         df['Attrition'] = le.fit_transform(df['Attrition']) # No = 0, Yes = 1
         df['OverTime'] = le.fit_transform(df['OverTime'])
         df['Gender'] = le.fit_transform(df['Gender'])
In [12]:
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import LabelEncoder
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
In [16]:
         df_{model} = df.copy()
         le = LabelEncoder()
         for col in df_model.select_dtypes(include='object').columns:
             df_model[col] = le.fit_transform(df_model[col])
         # Features & Label
         X = df_model.drop('Attrition', axis=1)
         y = df_model['Attrition']
         # Final split
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(
             X, y, test_size=0.2, random_state=42, stratify=y
In [17]:
         X_train, X_test, y_train, y_test = train_test_split(
```

X, y, test_size=0.2, random_state=42, stratify=y

print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)

```
print("y_train distribution:\n", y_train.value_counts())
         print("y_test distribution:\n", y_test.value_counts())
        X_train shape: (1176, 34)
        X_test shape: (294, 34)
        y_train distribution:
        Attrition
             986
        1
             190
        Name: count, dtype: int64
        y_test distribution:
        Attrition
             247
              47
        Name: count, dtype: int64
In [23]: from sklearn.preprocessing import StandardScaler
         # Scale features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         # Train Logistic Regression
         lr_model = LogisticRegression(max_iter=2000)
         lr_model.fit(X_train_scaled, y_train)
         # Predict
         y_pred_lr = lr_model.predict(X_test_scaled)
In [22]: from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
         print(" \leftarrow Logistic Regression")
         print("Accuracy:", accuracy_score(y_test, y_pred_lr))
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_lr))
         print("Classification Report:\n", classification_report(y_test, y_pred_lr))
        Logistic Regression
        Accuracy: 0.8741496598639455
        Confusion Matrix:
         [[239
                 81
         [ 29 18]]
        Classification Report:
                       precision recall f1-score
                                                       support
                   0
                           0.89
                                    0.97
                                               0.93
                                                          247
                           0.69
                   1
                                     0.38
                                               0.49
                                                           47
                                               0.87
                                                          294
            accuracy
           macro avg
                           0.79
                                               0.71
                                                          294
                                     0.68
                                               0.86
                                                          294
        weighted avg
                           0.86
                                     0.87
In [24]:
         dt model = DecisionTreeClassifier()
         dt_model.fit(X_train, y_train)
         y_pred_dt = dt_model.predict(X_test)
         print(" ◆ Decision Tree")
         print("Accuracy:", accuracy_score(y_test, y_pred_dt))
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_dt))
         print("Classification Report:\n", classification_report(y_test, y_pred_dt))
```

Decision Tree

Accuracy: 0.7619047619047619

Confusion Matrix:

[[209 38] [32 15]]

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.85	0.86	247
1	0.28	0.32	0.30	47
accuracy			0.76	294
macro avg weighted avg	0.58 0.77	0.58 0.76	0.58 0.77	294 294

```
In [25]: !pip install shap
```

import shap

import matplotlib.pyplot as plt

Requirement already satisfied: shap in c:\users\afra\appdata\local\programs\python\python313\l ib\site-packages (0.48.0)

Requirement already satisfied: numpy in c:\users\afra\appdata\local\programs\python\python313 \lib\site-packages (from shap) (2.2.6)

Requirement already satisfied: scipy in c:\users\afra\appdata\local\programs\python\python313 \lib\site-packages (from shap) (1.15.3)

Requirement already satisfied: scikit-learn in c:\users\afra\appdata\local\programs\python\pyt hon313\lib\site-packages (from shap) (1.6.1)

Requirement already satisfied: pandas in c:\users\afra\appdata\local\programs\python\python313 \lib\site-packages (from shap) (2.2.3)

Requirement already satisfied: tqdm>=4.27.0 in c:\users\afra\appdata\local\programs\python\python\python313\lib\site-packages (from shap) (4.67.1)

Requirement already satisfied: packaging>20.9 in c:\users\afra\appdata\local\programs\python\p ython313\lib\site-packages (from shap) (24.2)

Requirement already satisfied: slicer==0.0.8 in c:\users\afra\appdata\local\programs\python\py thon313\lib\site-packages (from shap) (0.0.8)

Requirement already satisfied: numba>=0.54 in c:\users\afra\appdata\local\programs\python\pyth on313\lib\site-packages (from shap) (0.61.2)

Requirement already satisfied: cloudpickle in c:\users\afra\appdata\local\programs\python\pyth on313\lib\site-packages (from shap) (3.1.1)

Requirement already satisfied: typing-extensions in c:\users\afra\appdata\local\programs\pytho n\python313\lib\site-packages (from shap) (4.13.2)

Requirement already satisfied: llvmlite<0.45,>=0.44.0dev0 in c:\users\afra\appdata\local\programs\python\python313\lib\site-packages (from numba>=0.54->shap) (0.44.0)

Requirement already satisfied: colorama in c:\users\afra\appdata\local\programs\python\python3 13\lib\site-packages (from tqdm>=4.27.0->shap) (0.4.6)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\afra\appdata\local\programs \python\python313\lib\site-packages (from pandas->shap) (2.9.0.post0)

Requirement already satisfied: pytz>=2020.1 in c:\users\afra\appdata\local\programs\python\pyt hon313\lib\site-packages (from pandas->shap) (2025.2)

Requirement already satisfied: tzdata>=2022.7 in c:\users\afra\appdata\local\programs\python\p ython313\lib\site-packages (from pandas->shap) (2025.2)

Requirement already satisfied: six>=1.5 in c:\users\afra\appdata\local\programs\python\python3 13\lib\site-packages (from python-dateutil>=2.8.2->pandas->shap) (1.17.0)

Requirement already satisfied: joblib>=1.2.0 in c:\users\afra\appdata\local\programs\python\py thon313\lib\site-packages (from scikit-learn->shap) (1.5.0)

Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\afra\appdata\local\programs\py thon\python313\lib\site-packages (from scikit-learn->shap) (3.6.0)

```
In [26]: explainer = shap.Explainer(lr_model, X_train_scaled)
    shap_values = explainer(X_test_scaled)
```



```
In [30]: shap.initjs()
  index = 5  # you can change this
  shap.force_plot(
        explainer.expected_value,
        shap_values[index].values,
        X_test.iloc[index]
)
```

```
In [33]:
         # Rebuild SHAP Explanation with feature names attached
         shap_values = shap.Explanation(
             values=shap_values.values,
             base_values=shap_values.base_values,
             data=X_test_scaled,
             feature_names=X_test.columns
         shap.plots.bar(shap_values)
                                               +0.7
                       OverTime
                                          +0.4
        EnvironmentSatisfaction
                                          +0.39
                     Department
          YearsWithCurrManager
                                          +0.39
         NumCompaniesWorked
                                          +0.38
        YearsSinceLastPromotion
                                          +0.38
                  JobSatisfaction
                                         +0.35
                                         +0.34
              TotalWorkingYears
                                         +0.33
                             Age
```

1.0

1.5

2.0

mean(|SHAP value|)

2.5

3.0

+3.38

3.5

In []:

Sum of 25 other features

0.0

0.5

ATTRITION DASHBOARD

1470
Total Employees

237

Total Attrition

16.1%

Attrition Rate

Gender	
☐ Female	
☐ Male	
Department	~
☐ Human Resources	
Research & Development	
Sales	
EducationField	~
EducationField Human Resources	×
	~
Human Resources	~
☐ Human Resources ☐ Life Sciences	~
☐ Human Resources☐ Life Sciences☐ Marketing	Ť
☐ Human Resources☐ Life Sciences☐ Marketing	~
☐ Human Resources☐ Life Sciences☐ Marketing☐ Medical	`\ \ `

Employee Attrition Prevention Strategy

Overview

Based on the data analysis and SHAP explainability results from the employee attrition dataset, several high-risk factors have been identified that contribute to employee resignation. These include overtime work, low job satisfaction, low income, long commuting distance, and lack of promotion opportunities.

Workload & Overtime

- Monitor and limit overtime hours with upper caps.
- Introduce flexible working hours or hybrid/remote work options.

Job Satisfaction

- Conduct regular pulse surveys to measure satisfaction.
- Implement employee recognition programs.
- Improve autonomy and role clarity.

Compensation

- Review salary bands for at-risk roles.
- Provide performance-based bonuses or retention incentives.

Commute Issues

- Enable remote or hybrid work for employees who live far away.
- Offer relocation assistance or commuting benefits.

Career Development

- Launch a promotion tracking dashboard.
- Regularly provide training and development programs.
- Assign mentors to employees with longer tenures.

Employee Attrition Prevention Strategy

Retaining Younger Employees

- Offer career planning sessions for employees aged 25-34.
- Create fast-track programs for promotions and development.