

Università di Pisa

Metodi numerici low-rank per l'equazione di Sylvester

Ivan Bioli

Università di Pisa , Dipartimento di Matematica Corso di Laurea in Matematica

16 Luglio 2021

Equazione di Sylvester:

$$AX + XB = C$$

- Solutori, in particolare se $C=C_1C_2^*$ con $C_1\in\mathbb{C}^{n\times s}$, $C_2\in\mathbb{C}^{m\times s}$ e $s\ll\min\{n,m\}$
- Algoritmo di update della soluzione quando A, B, C subiscono aggiornamenti di rango basso
- Applicazione alle Equazioni di Riccati Algebriche
- Sperimentazione numerica

Equazione di Sylvester:

$$AX + XB = C$$

- Solutori, in particolare se $C=C_1C_2^*$ con $C_1\in\mathbb{C}^{n\times s}$, $C_2\in\mathbb{C}^{m\times s}$ e $s\ll \min\{n,m\}$
- Algoritmo di update della soluzione quando A, B, C subiscono aggiornamenti di rango basso
- Applicazione alle Equazioni di Riccati Algebriche
- Sperimentazione numerica

Equazione di Sylvester:

$$AX + XB = C$$

- Solutori, in particolare se $C=C_1C_2^*$ con $C_1\in\mathbb{C}^{n\times s}$, $C_2\in\mathbb{C}^{m\times s}$ e $s\ll \min\{n,m\}$
- Algoritmo di update della soluzione quando A, B, C subiscono aggiornamenti di rango basso
- Applicazione alle Equazioni di Riccati Algebriche
- Sperimentazione numerica

Equazione di Sylvester:

$$AX + XB = C$$

- Solutori, in particolare se $C=C_1C_2^*$ con $C_1\in\mathbb{C}^{n\times s}$, $C_2\in\mathbb{C}^{m\times s}$ e $s\ll \min\{n,m\}$
- Algoritmo di update della soluzione quando A, B, C subiscono aggiornamenti di rango basso
- Applicazione alle Equazioni di Riccati Algebriche
- Sperimentazione numerica

Equazione di Sylvester:

$$AX + XB = C$$

- Solutori, in particolare se $C=C_1C_2^*$ con $C_1\in\mathbb{C}^{n\times s}$, $C_2\in\mathbb{C}^{m\times s}$ e $s\ll \min\{n,m\}$
- Algoritmo di update della soluzione quando A, B, C subiscono aggiornamenti di rango basso
- Applicazione alle Equazioni di Riccati Algebriche
- Sperimentazione numerica

Risultati preliminari: la TSVD

Teorema (Teorema di Eckart-Young)

Sia $A \in \mathbb{C}^{m \times n}$ e sia $A = U \Sigma V^*$ la sua decomposizione ai valori singolari, dove U e V sono unitarie, $\Sigma = \operatorname{diag}(\sigma_1, \dots \sigma_p)$,

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > \sigma_{k+1} = \dots = 0, \qquad p = \min\{m, n\}$$

e sia r un intero positivo minore o uguale a k. Indicando con

$$A_r = \sum_{i=1}^r \sigma_i \, u_i \, v_i^*$$

e con $\mathcal{S} = \{B \in \mathbb{C}^{m \times n} : rk(B) \le r\}$ si ha:

$$\min_{B \in S} ||A - B||_2 = ||A - A_r||_2 = \sigma_{r+1}.$$

Trucated Singular Value Decomposition (TSVD): memorizziamo solo i primi r valori/vettori singolari

Esistenza e unicità della soluzione

L'equazione di Sylvester si può riscrivere come

$$\mathcal{A}x = c$$
 dove $A = I_m \otimes A + B^T \otimes I_n$, $X = \text{vec}(X)$, $C = \text{vec}(C)$.

- $A \in \mathbb{C}^{nm \times nm}$: non efficiente risolvere il sistema
- Teorema (di esistenza e unicità della soluzione): L'equazione di Sylvester ammette soluzione unica per ogni scelta di $C \in \mathbb{C}^{n \times m}$ se e solo se $\operatorname{Spec}(A)$ e $\operatorname{Spec}(-B)$ sono disgiunti.

Esistenza e unicità della soluzione

L'equazione di Sylvester si può riscrivere come

$$\mathcal{A}x = c$$
 dove $A = I_m \otimes A + B^T \otimes I_n,$
 $X = \text{vec}(X), \quad c = \text{vec}(C).$

- $\mathcal{A} \in \mathbb{C}^{nm \times nm}$: non efficiente risolvere il sistema
- Teorema (di esistenza e unicità della soluzione): L'equazione di Sylvester ammette soluzione unica per ogni scelta di $C \in \mathbb{C}^{n \times m}$ se e solo se $\operatorname{Spec}(A)$ e $\operatorname{Spec}(-B)$ sono disgiunti.

Esistenza e unicità della soluzione

L'equazione di Sylvester si può riscrivere come

$$\mathcal{A}x = c$$
 dove $A = I_m \otimes A + B^T \otimes I_n$, $X = \text{vec}(X)$, $C = \text{vec}(C)$.

- $A \in \mathbb{C}^{nm \times nm}$: non efficiente risolvere il sistema
- Teorema (di esistenza e unicità della soluzione): L'equazione di Sylvester ammette soluzione unica per ogni scelta di $C \in \mathbb{C}^{n \times m}$ se e solo se $\operatorname{Spec}(A)$ e $\operatorname{Spec}(-B)$ sono disgiunti.

Problemi di taglia medio-bassa

Algoritmo 1 Algoritmo di Bartels-Stewart

- 1: Calcola le forme normali di Schur: $A^* = URU^*$, $B = VSV^*$
- 2: Risolvi in Y: $R^*Y + YS = U^*CV$
- 3: $X = UYV^*$

Se $\widehat{C} := U^*CV$, l'equazione $R^*Y + YS = U^*CV$ letta sull'elemento (k,j) diventa:

$$\overline{R_{kk}}Y_{kj} + Y_{kj}S_{jj} = \widehat{C}_{kj} - \sum_{i=1}^{k-1} \overline{R_{ik}}Y_{ij} - \sum_{i=1}^{j-1} Y_{ki}S_{ij}$$

e si ricavano gli elementi di Y in sequenza per righe a partire da Y_{11} .

Costo: $\sim 10n^3 + 10m^3 + \frac{5}{2}(n^2m + m^2n)$

Approssimabilità a rango basso

Supponiamo di avere

$$AX + XB = C$$
, $\operatorname{rank}(C) \le k$

Teorema

Siano A, B matrici hermitiane definite positive con spettro contenuto nell'intervallo [a,b] dove $0 < a < b < \infty$. Allora la soluzione X soddisfa:

$$\frac{\sigma_{1+kh}(X)}{\|X\|_2} \le 4\rho^{-h} \qquad \rho := \exp\left(\frac{\pi^2}{\log\left(4b/a\right)}\right).$$

Se le matrici sono soltanto diagonalizzabili, indicati con $\kappa_{eig}(A)$, $\kappa_{eig}(B)$ i numeri di condizionamento delle matrici degli autovettori rispettivamente di A e B, allora

$$\frac{\sigma_{1+kh}(X)}{\|X\|_2} \le 4\kappa_{eig}(A)\kappa_{eig}(B)\rho^{-h}.$$

Approssimabilità a rango basso

Supponiamo di avere

$$AX + XB = C$$
, $\operatorname{rank}(C) \le k$

- X ammette una ε -approssimazione di rango r se esiste Y di rango al più r tale che $\|X-Y\|_2<\varepsilon$
- Equivalente a richiedere che $\sigma_{r+1}(X) < \varepsilon$
- Se k è piccolo ci aspettiamo che X ammetta una buona approssimazione di rango basso

- ullet $\mathcal V$ sottospazio di $\mathbb C^n$ di dimensione k
- $V_k \in \mathbb{C}^{n \times k}$ con colonne base ortonormale di $\mathcal V$
- ullet Cerchiamo una approssimazione X_k della soluzione tale che $\mathcal{R}(X_k)\subset \mathcal{V}$
- $X_k := V_k Y_k$ che verifichi

$$R_k := AX_k + X_k B - C \approx 0.$$

$$0 = V_k^* R_k = V_k^* A V_k Y_k + Y_k B - V_k^* C.$$

- ullet $\mathcal V$ sottospazio di $\mathbb C^n$ di dimensione k
- $V_k \in \mathbb{C}^{n \times k}$ con colonne base ortonormale di $\mathcal V$
- ullet Cerchiamo una approssimazione X_k della soluzione tale che $\mathcal{R}(X_k)\subset \mathcal{V}$
- $X_k := V_k Y_k$ che verifichi

$$R_k := AX_k + X_kB - C \approx 0.$$

$$0 = V_k^* R_k = V_k^* A V_k Y_k + Y_k B - V_k^* C.$$

- ullet $\mathcal V$ sottospazio di $\mathbb C^n$ di dimensione k
- $V_k \in \mathbb{C}^{n \times k}$ con colonne base ortonormale di $\mathcal V$
- Cerchiamo una approssimazione X_k della soluzione tale che $\mathcal{R}(X_k) \subset \mathcal{V}$
- $X_k := V_k Y_k$ che verifichi

$$R_k := AX_k + X_kB - C \approx 0.$$

$$0 = V_k^* R_k = V_k^* A V_k Y_k + Y_k B - V_k^* C.$$

$$\left[\begin{array}{c} A \end{array} \right] \left[X \right] + \left[X \right] \left[B \right] = \left[C \right].$$

- ullet $\mathcal V$ sottospazio di $\mathbb C^n$ di dimensione k
- $V_k \in \mathbb{C}^{n \times k}$ con colonne base ortonormale di $\mathcal V$
- Cerchiamo una approssimazione X_k della soluzione tale che $\mathcal{R}(X_k) \subset \mathcal{V}$
- $X_k := V_k Y_k$ che verifichi

$$R_k := AX_k + X_k B - C \approx 0.$$

$$0 = V_k^* R_k = V_k^* A V_k Y_k + Y_k B - V_k^* C.$$

$$\left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c}X\end{array}\right]+\left[\begin{array}{c}X\end{array}\right]\left[\begin{array}{c}B\end{array}\right]=\left[C_1\right]\left[\begin{array}{c}C_2^*\end{array}\right].$$

- \mathcal{V}, \mathcal{W} sottospazi di \mathbb{C}^n
- ullet $V_k \in \mathbb{C}^{n imes k}$ con colonne base ortonormale di $\mathcal V$
- ullet $W_j \in \mathbb{C}^{n imes j}$ con colonne base ortonormale di \mathcal{W}
- Cerchiamo una approssimazione $\widetilde{X} = V_k Y W_j^* \approx X$
- Ortogonalità del residuo

$$(W_j \otimes V_k)^*(c - \mathcal{A}\tilde{x})$$

$$\downarrow \\ 0 = V_k^* R W_j = V_k^* A V_k Y + Y W_j^* B W_j - (V_k^* C_1)(W_j^* C_2)^*$$

$$\left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c}X\end{array}\right]+\left[\begin{array}{c}X\end{array}\right]\left[\begin{array}{c}B\end{array}\right]=\left[C_1\right]\left[\begin{array}{c}C_2^*\end{array}\right].$$

- \mathcal{V}, \mathcal{W} sottospazi di \mathbb{C}^n
- ullet $V_k \in \mathbb{C}^{n imes k}$ con colonne base ortonormale di $\mathcal V$
- ullet $W_j \in \mathbb{C}^{n imes j}$ con colonne base ortonormale di \mathcal{W}
- ullet Cerchiamo una approssimazione $\widetilde{X} = V_k Y W_j^* pprox X$
- Ortogonalità del residuo

$$(W_j \otimes V_k)^*(c - \mathcal{A}\tilde{x})$$

$$\downarrow \\ 0 = V_k^* R W_j = V_k^* A V_k Y + Y W_j^* B W_j - (V_k^* C_1)(W_j^* C_2)^*$$

$$\left[\begin{array}{c}A\end{array}\right]\left[\begin{array}{c}X\end{array}\right]+\left[\begin{array}{c}X\end{array}\right]\left[\begin{array}{c}B\end{array}\right]=\left[C_1\right]\left[\begin{array}{c}C_2^*\end{array}\right].$$

- \mathcal{V}, \mathcal{W} sottospazi di \mathbb{C}^n
- $V_k \in \mathbb{C}^{n \times k}$ con colonne base ortonormale di $\mathcal V$
- ullet $W_j \in \mathbb{C}^{n imes j}$ con colonne base ortonormale di \mathcal{W}
- ullet Cerchiamo una approssimazione $\widetilde{X} = V_k Y W_j^* pprox X$
- Ortogonalità del residuo

$$(W_j \otimes V_k)^*(c - \mathcal{A}\tilde{x})$$

$$\updownarrow$$

$$0 = V_k^* R W_j = V_k^* A V_k Y + Y W_j^* B W_j - (V_k^* C_1)(W_j^* C_2)^*$$

Per ricavare V da A e C_1 (e similmente per W da B e C_2) si usano:

Spazio di Krylov Standard (a blocchi):

$$\mathcal{V} = \mathcal{K}_k^\square(A, C_1) := \operatorname{range}([C_1, AC_1, A^2C_1, \dots, A^kC_1]).$$

Spazio di Krylov Esteso (a blocchi)

$$\mathcal{V} = \mathcal{EK}_k(A, C_1) := \mathcal{K}_k^{\square}(A, C_1) + \mathcal{K}_k^{\square}(A^{-1}, A^{-1}C_1).$$

usando un processo Processo di Arnoldi Esteso a blocchi.

3 ...

 $\mathsf{ADI} = \mathsf{Alternating} \ \mathsf{Direction} \ \mathsf{Implicit}$

Supponiamo che A, B abbiano autovalori con parte reale positiva e sia q > 0.

$$(qI+A)X(qI+B)-(qI-A)X(qI-B)=2qC, \qquad q\neq 0.$$

Moltiplicando per le inverse

$$X - (qI + A)^{-1}(qI - A)X(qI - B)(qI + B)^{-1} = 2q(qI + A)^{-1}C(qI + B)^{-1}.$$

Posto

$$A = (qI + A)^{-1}(qI - A)$$

$$B = (qI - B)(qI + B)^{-1}$$

$$C = 2q(qI + A)^{-1}C(qI + B)^{-1}$$

si ottiene l'equazione equivalente

$$X - AXB = C$$

$$X - AXB = C$$

ha soluzione la serie (convergente)

$$X = \sum_{k=0}^{\infty} A^k \mathcal{CB}^k$$

e questo porta alla sequenza di approssimazioni successive

$$X_0 = C,$$
 $X_{k+1} = C + AX_kB.$

Si può generalizzare

• scegliendo due parametri p, q > 0 diversi:

$$X - A(p,q)XB(p,q) = C(p,q)$$

dove

$$A(p,q) = (pI + A)^{-1}(qI - A)$$

$$B(p,q) = (pI - B)(qI + B)^{-1}$$

$$C(p,q) = (p+q)(pI + A)^{-1}C(qI + B)^{-1}$$

Si può generalizzare

- scegliendo due parametri diversi ad ogni iterazione, cioè una successione di parametri $\{(p_i, q_i)\}$.
- Il fattore di convergenza di *K* iterazioni accorpate diventa:

$$\prod_{j=1}^K \max_{s \in [a,b], \, t \in [c,d]} \left| \frac{(q_j-s)(p_j-t)}{(q_j+s)(p_j+t)} \right|.$$

$$AX + XA^* = C$$
 $C = C^*$

- La soluzione è esiste ed è unica per ogni scelta di C se e solo se $\lambda_i + \overline{\lambda_j} \neq 0$ per tutti gli autovalori λ_i, λ_j di A (ad esempio se A è stabile)
- Se X è soluzione lo è anche X^*
- Se di taglia ridotta si usa Bartels-Stewart
- Se $C = -C_1 C_1^*$, $C_1 \in \mathbb{C}^{n \times s}$, $s \ll n$ cerchiamo una soluzione di rango basso $\widetilde{X} = ZZ^*$

$$AX + XA^* = C$$
 $C = C^*$

- La soluzione è esiste ed è unica per ogni scelta di C se e solo se $\lambda_i + \overline{\lambda_j} \neq 0$ per tutti gli autovalori λ_i, λ_j di A (ad esempio se A è stabile)
- Se X è soluzione lo è anche X^*
- Se di taglia ridotta si usa Bartels-Stewart
- Se $C=-C_1C_1^*,\ C_1\in\mathbb{C}^{n\times s},\ s\ll n$ cerchiamo una soluzione di rango basso $\widetilde{X}=ZZ^*$

$$AX + XA^* = C$$
 $C = C^*$

- La soluzione è esiste ed è unica per ogni scelta di C se e solo se $\lambda_i + \overline{\lambda_j} \neq 0$ per tutti gli autovalori λ_i, λ_j di A (ad esempio se A è stabile)
- Se X è soluzione lo è anche X*
- Se di taglia ridotta si usa Bartels-Stewart
- Se $C=-C_1C_1^*,\ C_1\in\mathbb{C}^{n\times s},\ s\ll n$ cerchiamo una soluzione di rango basso $\widetilde{X}=ZZ^*$

$$AX + XA^* = C$$
 $C = C^*$

- La soluzione è esiste ed è unica per ogni scelta di C se e solo se $\lambda_i + \overline{\lambda_j} \neq 0$ per tutti gli autovalori λ_i, λ_j di A (ad esempio se A è stabile)
- Se X è soluzione lo è anche X*
- Se di taglia ridotta si usa Bartels-Stewart
- Se $C=-C_1C_1^*,\ C_1\in\mathbb{C}^{n\times s},\ s\ll n$ cerchiamo una soluzione di rango basso $\widetilde{X}=ZZ^*$

$$AX + XA^* = C$$
 $C = C^*$

- La soluzione è esiste ed è unica per ogni scelta di C se e solo se $\lambda_i + \overline{\lambda_j} \neq 0$ per tutti gli autovalori λ_i, λ_j di A (ad esempio se A è stabile)
- Se X è soluzione lo è anche X*
- Se di taglia ridotta si usa Bartels-Stewart
- Se $C = -C_1C_1^*$, $C_1 \in \mathbb{C}^{n \times s}$, $s \ll n$ cerchiamo una soluzione di rango basso $\widetilde{X} = ZZ^*$

Metodo ADI per l'equazione di Lyapunov

• L'iterazione si semplifica

$$X_0 = 0$$

$$(A + s_j I)X_{j-\frac{1}{2}} = C_1 C_1^* - X_{j-1} (A^* - s_j I)$$

$$(A + s_j I)X_j = C_1 C_1^* - (X_{j-\frac{1}{2}})^* (A^* - s_j I), \quad j = 1, \dots, k$$

- Parametri di shift s_1, \ldots, s_N adoperati ciclicamente e calcolati con algoritmo euristico di Penzl. Vengono calcolati dei parametri sub-ottimali risolvendo un problema semplificato.
- Metodo CF-ADI calcola \widehat{Z}_j tale che $X_j = \widehat{Z}_j \widehat{Z}_j^*$ è approssimazione della soluzione:

$$\widehat{U}_{1} = \sqrt{-2\operatorname{Re}(s_{1})}(A + s_{1}I)^{-1}C_{1}, \quad \widehat{Z}_{1} = \widehat{U}_{1}$$

$$\widehat{U}_{k} = \frac{\sqrt{-2\operatorname{Re}(s_{k})}}{\sqrt{-2\operatorname{Re}(s_{k-1})}}(I - (s_{k} + \overline{s}_{k-1})(A + s_{k}I)^{-1})\widehat{U}_{k-1}$$

$$\widehat{Z}_{k} = [\widehat{Z}_{k-1}\widehat{U}_{k}], \quad k = 2, 3, \dots$$

Metodo ADI per l'equazione di Lyapunov

L'iterazione si semplifica

$$X_0 = 0$$

$$(A + s_j I)X_{j-\frac{1}{2}} = C_1 C_1^* - X_{j-1} (A^* - s_j I)$$

$$(A + s_j I)X_j = C_1 C_1^* - (X_{j-\frac{1}{2}})^* (A^* - s_j I), \quad j = 1, \dots, k$$

- Parametri di shift s_1, \ldots, s_N adoperati ciclicamente e calcolati con algoritmo euristico di Penzl. Vengono calcolati dei parametri sub-ottimali risolvendo un problema semplificato.
- Metodo CF-ADI calcola \widehat{Z}_j tale che $X_j = \widehat{Z}_j \widehat{Z}_j^*$ è approssimazione della soluzione:

$$\widehat{U}_{1} = \sqrt{-2\operatorname{Re}(s_{1})}(A + s_{1}I)^{-1}C_{1}, \quad \widehat{Z}_{1} = \widehat{U}_{1}$$

$$\widehat{U}_{k} = \frac{\sqrt{-2\operatorname{Re}(s_{k})}}{\sqrt{-2\operatorname{Re}(s_{k-1})}}(I - (s_{k} + \overline{s}_{k-1})(A + s_{k}I)^{-1})\widehat{U}_{k-1}$$

$$\widehat{Z}_{k} = [\widehat{Z}_{k-1}\,\widehat{U}_{k}], \quad k = 2, 3, \dots$$

Metodo ADI per l'equazione di Lyapunov

L'iterazione si semplifica

$$X_0 = 0$$

$$(A + s_j I)X_{j-\frac{1}{2}} = C_1 C_1^* - X_{j-1} (A^* - s_j I)$$

$$(A + s_j I)X_j = C_1 C_1^* - (X_{j-\frac{1}{2}})^* (A^* - s_j I), \quad j = 1, \dots, k$$

- Parametri di shift s_1, \ldots, s_N adoperati ciclicamente e calcolati con algoritmo euristico di Penzl. Vengono calcolati dei parametri sub-ottimali risolvendo un problema semplificato.
- Metodo CF-ADI calcola \widehat{Z}_j tale che $X_j = \widehat{Z}_j \widehat{Z}_j^*$ è approssimazione della soluzione:

$$\begin{split} \widehat{U}_1 &= \sqrt{-2\mathrm{Re}(s_1)}(A+s_1I)^{-1}C_1, \quad \widehat{Z}_1 = \widehat{U}_1 \\ \widehat{U}_k &= \frac{\sqrt{-2\mathrm{Re}(s_k)}}{\sqrt{-2\mathrm{Re}(s_{k-1})}}(I-(s_k+\overline{s}_{k-1})(A+s_kI)^{-1})\widehat{U}_{k-1} \\ \widehat{Z}_k &= [\widehat{Z}_{k-1}\,\widehat{U}_k], \quad k=2,3,\ldots \end{split}$$

Aggiornamenti di rango basso

 X_0 soluzione dell'equazione di Sylvester

$$A_0 X_0 + X_0 B_0 = C_0 \,,$$

Calcolare una correzione δX tale che $X_0 + \delta X$ risolva l'equazione perturbata

$$(A_0 + \delta A)(X_0 + \delta X) + (X_0 + \delta X)(B_0 + \delta B) = C_0 + \delta C$$

con δA , δB , δC di rango molto più piccolo rispetto a min $\{m, n\}$.

Aggiornamenti di rango basso

$$A_0 X_0 + X_0 B_0 = C_0$$
$$(A_0 + \delta A)(X_0 + \delta X) + (X_0 + \delta X)(B_0 + \delta B) = C_0 + \delta C$$

Sottraendo:

$$(A_0 + \delta A)\delta X + \delta X(B_0 + \delta B) = \delta C - \delta A X_0 - X_0 \delta B.$$

Aggiornamenti di rango basso

$$A_0 X_0 + X_0 B_0 = C_0$$
$$(A_0 + \delta A)(X_0 + \delta X) + (X_0 + \delta X)(B_0 + \delta B) = C_0 + \delta C$$

Sottraendo:

$$(A_0 + \delta A)\delta X + \delta X(B_0 + \delta B) = \delta C - \delta A X_0 - X_0 \delta B.$$

Algoritmo 2 Algoritmo per la risoluzione dell'equazione perturbata

- 1: **procedure** UPDATE-SYLV(A_0 , δA , B_0 , δB , C_0 , δC , X_0)
- 2: Calcola U, V tali che $\delta C \delta A X_0 X_0 \delta B = UV^*$
- 3: $\delta X = \text{Low-Rank-Sylv}(A_0 + \delta A, B_0 + \delta B, U, V)$
- 4: return δX
- 5: end procedure

Aggiornamenti di rango basso: fattorizzazione

Supponiamo di avere

$$\delta A = U_A V_A^*, \quad \delta B = U_B V_B^*, \quad \delta C = U_C V_C^*,$$

allora fattorizziamo $\delta \textit{C} - \delta \textit{AX}_0 - \textit{X}_0 \delta \textit{B} = \textit{UV}^*$ ponendo

$$U = [U_C, -U_A, -X_0U_B], \qquad V = [V_C, X_0^*V_A, V_B]$$

- ullet Conviene comprimere ulteriormente ottenendo UV^* tramite TSVD
- Costo totale $\mathcal{O}((m+n)s^2+s^3)$

Aggiornamenti di rango basso: fattorizzazione

Supponiamo di avere

$$\delta A = U_A V_A^*, \quad \delta B = U_B V_B^*, \quad \delta C = U_C V_C^*,$$

allora fattorizziamo $\delta \textit{C} - \delta \textit{AX}_0 - \textit{X}_0 \delta \textit{B} = \textit{UV}^*$ ponendo

$$U = [U_C, -U_A, -X_0U_B], \qquad V = [V_C, X_0^*V_A, V_B]$$

- ullet Conviene comprimere ulteriormente ottenendo $\widetilde{U}\widetilde{V}^*$ tramite TSVD
- Costo totale $\mathcal{O}((m+n)s^2+s^3)$

Aggiornamenti di rango basso: fattorizzazione

Supponiamo di avere

$$\delta A = U_A V_A^*, \quad \delta B = U_B V_B^*, \quad \delta C = U_C V_C^*,$$

allora fattorizziamo $\delta C - \delta A X_0 - X_0 \delta B = U V^*$ ponendo

$$U = [U_C, -U_A, -X_0U_B], \qquad V = [V_C, X_0^*V_A, V_B]$$

- ullet Conviene comprimere ulteriormente ottenendo $\widetilde{U}\widetilde{V}^*$ tramite TSVD
- Costo totale $\mathcal{O}((m+n)s^2+s^3)$

Equazione di Riccati algebrica

Equazione di Riccati algebrica continua

$$XA + A^*X - XBX = C$$
 $C = C^*, B = B^*$

dove $A, B, C \in \mathbb{C}^{n \times n}$ e l'incognita è $X \in \mathbb{C}^{n \times n}$.

Equazione di Riccati algebrica: metodo di Newton

$$XA + A^*X - XBX = C$$

Definita $F(X) = XA + A^*X - XBX - C$, l'equazione è F(X) = 0 e si ha

$$X_{k+1} = X_k - (F'_{X_k})^{-1} [F(X_k)], \qquad X_0 \in \mathbb{R}^{n \times n}$$

e cioè $H_k = X_{k+1} - X_k$ risolve

$$(A^* - X_k B)H_k + H_k(A - BX_k) = -F(X_k)$$

Equazione di Riccati algebrica: metodo di Newton

$$XA + A^*X - XBX = C$$

Teorema

Supponiamo che $B \succeq 0$, $C \preceq 0$ e che le coppie (A, B) e $(A^*, -C)$ siano stabilizzabili. Se X_0 è una matrice hermitiana tale che $A - BX_0$ è stabile, allora il metodo di Newton genera una successione di matrici hermitiane $\{X_k\}_{k\geq 0}$ tale che:

- \bullet $A BX_k$ è stabile per ogni k
- $2 X_1 \succeq X_2 \succeq \cdots \succeq X_+$
- **1** per ogni norma matriciale $\|\cdot\|$ esiste una costante c>0 tale che

$$||X_{k+1}-X_+|| \le c \cdot ||X_k-X_+||^2 \qquad k \ge 0.$$

Equazione di Riccati algebrica: rango basso

$$XA + A^*X - XBX = C$$
 $B = B_U B_U^*$

Si può scrivere il membro destro dell'iterazione come

$$-F(X_k) = X_k B X_k - X_k A - A^* X_k + C = (X_k - X_{k-1}) B(X_k - X_{k-1})$$

Dopo il calcolo (eventualmente costoso) di X_1 possiamo calcolare gli incrementi $H_k := X_{k+1} - X_k$ attraverso la risoluzione di

$$(A^* - X_k B)H_k + H_k(A - BX_k) = H_{k-1}BH_{k-1} = H_{k-1}B_UB_U^*H_{k-1}$$

Equazione di Riccati algebrica: rango basso

$$XA + A^*X - XBX = C$$
 $B = B_U B_U^*$

Si può scrivere il membro destro dell'iterazione come

$$-F(X_k) = X_k B X_k - X_k A - A^* X_k + C = (X_k - X_{k-1}) B(X_k - X_{k-1})$$

Dopo il calcolo (eventualmente costoso) di X_1 possiamo calcolare gli incrementi $H_k := X_{k+1} - X_k$ attraverso la risoluzione di

$$(A^* - X_k B)H_k + H_k(A - BX_k) = H_{k-1}BH_{k-1} = H_{k-1}B_UB_U^*H_{k-1}$$

Equazione di Riccati algebrica: rango basso

$$XA + A^*X - XBX = C$$
 $B = B_U B_U^*$

Si può scrivere il membro destro dell'iterazione come

$$-F(X_k) = X_k B X_k - X_k A - A^* X_k + C = (X_k - X_{k-1}) B(X_k - X_{k-1})$$

Dopo il calcolo (eventualmente costoso) di X_1 possiamo calcolare gli incrementi $H_k := X_{k+1} - X_k$ attraverso la risoluzione di

$$(A^* - X_k B)H_k + H_k(A - BX_k) = H_{k-1}BH_{k-1} = H_{k-1}B_UB_U^*H_{k-1}$$

Sperimentazione: metodi di Krylov

Figura: Plot in scala semilogaritmica di errore reale e errore "calcolato velocemente" per i metodi di Krylov. Parametri m = n = 1000, s = 1.

(a) Spazi di Krylov Standard

(b) Spazi di Krylov Estesi

Sperimentazione: metodi di Krylov

Figura: Plot in scala semilogaritmica di errore reale e errore "calcolato velocemente" per i metodi di Krylov. Parametri m = n = 1000, s = 1.

(a) Spazi di Krylov Standard

(b) Spazi di Krylov Estesi

Sperimentazione: metodi di Krylov

- Per valori "piccoli" di n, m il metodo più efficacie è Bartels-Stewart
- Al crescere di n, m gli spazi di Krylov Standard sono inefficienti
- Al crescere di s da s=1 a s=5 aumenta notevolmente la complessità in tempo degli algoritmi di Krylov

Sperimentazione: metodo ADI

Figura: Plot in scala semilogaritmica di errore reale e errore "calcolato velocemente" per il Metodo ADI. Parametri: n = 1000, s = 1

Sperimentazione: metodo ADI

- Prestazioni intermedie tra Bartels-Stewart e metodi di Krylov
- Precisione migliore rispetto ai metodi di Krylov
- Minore aumento della complessità in tempo passando da s=1 a s=5

Sperimentazione: algoritmi di update

Equazione di Sylvester

(a) Tempo di esecuzione totale dopo ogni passo di update

(b) Precisione raggiunta ad ogni passo dagli algoritmi di update per l'equazione di Sylvester

Sperimentazione: algoritmi di update

Equazione di Lyapunov

(a) Tempo di esecuzione totale dopo ogni passo di update

(b) Precisione raggiunta ad ogni passo dagli algoritmi di update per l'equazione di Lyapunov

Sperimentazione: metodo di Newton

Performance al variare del rango s di B

Sperimentazione: metodo di Newton

Performance al variare della taglia n del problema

Riferimenti bibliografici principali

- Dario Bini, Milvio Capovani e Ornella Menchi. *Metodi numerici per l'algebra lineare*. Zanichelli, 1988. ISBN: 88-08-06438-7.
- Dario A. Bini, Bruno Iannazzo e Beatrice Meini. *Numerical Solution of Algebraic Riccati Equations*. Society for Industrial e Applied Mathematics, 2011. DOI: 10.1137/1.9781611972092.
- Daniel Kressner, Stefano Massei e Leonardo Robol. «Low-Rank Updates and a Divide-And-Conquer Method for Linear Matrix Equations». In: *SIAM Journal on Scientific Computing* 41.2 (2019), A848–A876. DOI: 10.1137/17M1161038.
- V. Simoncini. «Computational Methods for Linear Matrix Equations». In: *SIAM Review* 58.3 (2016), pp. 377–441. DOI: 10.1137/130912839.