last two weeks: bilinear forms β

[what does β alternating mean?]

 β is alternating iff, for all v, we have $\beta(v, v) = 0$

[what does β nondegenerate mean?]

 β is nondegenerate iff, for all v, (β (v, -) zero or β (-, v) zero) implies v = **0**

Df a bilinear form β is definite iff, for all v in V, $\beta(v, v) = 0$ implies $v = \mathbf{0}$

[which implies which?]

if β is definite, then β is nondegenerate if β is alternating, then $V = \{0\}$ or β is not definite

Ex take $\beta((a, c), (b, d)) = ad - bc$ is it definite? no is it nondegenerate? yes [why?]

> over R: $\beta((a, c), (-c, a)) = a^2 + c^2$ over C: $\beta((a, c), (-c^*, a^*)) = |a|^2 + |c|^2$

[takeaways:]

- nondegenerate does not imply definite
- R versus C sometimes matters

(Axler §6A) let V be a real vector space

Df a bilinear form β on V is positive iff $\beta(v, v) \ge 0$ for all v in V

<u>Df</u> an inner product on V is a positive, definite, symmetric bilinear form

Rem for inner products, we usually write <, > in place of β but this is NOT the evaluation pairing

[how to check that < , > is an inner product?]

- positivity, definiteness, symmetry
- <a u + u', v> = a <u, v> + <u', v> [as symmetry takes care of the 2nd coord]

[easiest ex?]

Ex the dot product on R^n is always an inner product

[why care? let us measure length:]

<u>Df</u> a norm on a (real or complex) vec. sp. V is a map N : V to $R_{\geq 0}$ s.t.

- 1) N(v) = 0 implies v = 0
- $2) \quad N(a \cdot v) = |a| N(v)$
- 3) $N(u + v) \le N(u) + N(v)$ [triangle \le]

Thm if < , > is an inner product on (real) V, then $||v|| := \sqrt{\langle v, v \rangle}$ is a norm on V

Pf of Thm || || is valued in R_{≥ 0} by positivity

- 1) ||v|| = 0 implies $< v, v> = ||v||^2 = 0$ so v = 0 by definiteness
- 2) <a v, a v> = a^2<v, v> so taking sqrts, ||a • v|| = |a| ||v||

3) [harder:] want $||u + v|| \le ||u|| + ||v||$

since $|| || \ge 0$, this is equivalent to

$$||u + v||^2 \le ||u||^2 + 2 ||u|| ||v|| + ||v||^2$$

LHS is $||u||^2 + 2 < u, v > + ||v||^2$ so need:

<u>Lem</u> (Cauchy–Schwarz) $|\langle u, v \rangle| \le ||u|| ||v||$ [what's the intuition?]

<u>Ex</u> if $V = R^n$ and < , > is the dot product then ||v|| is the Euclidean length of v

check: if $u, v \neq \mathbf{0}$ and α is the angle btw them then $u \cdot v = ||u|| \ ||v|| \cos \alpha$

[draw picture]

Pf of Lem if v = 0 then done else $v \neq 0$

let $u' = (\langle u, v \rangle / \langle v, v \rangle) v$, the projection of u onto v then $\langle u', v \rangle = \langle u, v \rangle$ so $\langle u - u', v \rangle = 0$ now u = u' + (u - u') where u' is a multiple of v (projection) u - u' is orthogonal to v (complement) so u - u' is also orthogonal to u'

[Pythagoras:] $||u||^2 = ||u'||^2 + ||u - u'||^2$ $\ge ||u'||^2$ $= < u, v > ^2/||v||^2$

<u>Summary</u> inner product < , > on V gives us:

- notion of orthogonality
- orthogonal projections + complements
- Pythagorean identity [for orthogonal vec's]
- Cauchy–Schwarz inequality
- triangle inequality
- norm || ||

the pair (V, < , >) is called an <u>inner product space</u> but often use this term for V itself

$$\underline{Ex}$$
 let V = R^2 and = u^t M v

where
$$M = 1 -1/2 -1/2 1$$

it turns out that < , > is another inner product hence || || : R^2 to R_{≥ 0} def by

$$||(x, y)|| = \sqrt{(x^2 - xy + y^2)}$$

is another norm

<u>Q</u> how to classify inner product spaces?

A [next time] can always reduce general case to R^n under the dot product, after finding a new basis

Q how to generalize from R to C? the dot product on C^n is not positive [same issue with the norm]

let V now be a complex vector space

 \underline{Df} a skew-linear or sesquilinear functional on V is a map η : V to C s.t.

$$\eta(v + v') = \eta(v) + \eta(v')$$
$$\eta(a \cdot v) = a^* \eta(v)$$

for all v, v' in V and a in C

a skew-linear form on V is a map < , > : V x V to C s.t.

define positivity and definiteness like before define conjugate-symmetry to be

$$<$$
U, V $>$ = $<$ V, U $>$ *

<u>Df</u> an inner product on V (over C) is a positive, definite, conjugate-symmetric skew-linear form

<u>Ex</u> the skew dot product $\langle u, v \rangle = u \cdot v^*$

with this defn, everything before still works:

- orthogonality
- Pythagoras
- Cauchy–Schwarz and triangle inequalities
- $||v|| := \langle v, v \rangle$ is a norm