¿Qué es Natural Language Processing (NLP/PNL)?

→ Modelo →

→ Modelo →

@NLP_en_ES

Generación de Texto

hf.co/blog/few-shot-learning-gpt-neo-and-inference-api

Generación de Texto

Example prompt:

Hoy es un buen día en San Juan, la capital del estado de Puerto Rico, donde las calles se han convertido en una de las tres grandes avenidas del mundo. El sábado, cuatro mil habitantes abandonan la ciudad, para irse a la isla de Navidad, a la cual el president

Y otros dominios

Y otros dominios

DALLE: text to image

TEXT PROMPT

an armchair in the shape of an avocado. . . .

AI-GENERATED IMAGES

Edit prompt or view more images \downarrow

https://openai.com/blog/dall-e/

Word Embeddings

Hay

un

león

corriendo

Se tiene una tabla que mapea cada palabra del vocabulario a la posición de su word embedding.

0100000...

representación de una palabra

256 números por palabra

10000 word embeddings

león gato hay Incendio parque sol fuego río UNK

El caracter especial UNK se suele utilizar para palabras fuera del vocabulario (out-of-vocabulary)

One-hot Encoding

Vocabulario: Hola, Sol, Playa

One-hot Encoding

Sol [0, 1, 0, 0] Playa [0, 0, 1, 0] Hola [1, 0,0,0] Feliz [0, 0, 0, 1]

Vocabulario: Hola, Sol, Playa

One-hot Encoding: Este es un ejemplo en el que el vocabulario sólo tiene las palabras de la oración, pero el vocabulario suele ser mucho más grande.

Ejemplo: Hoy es un buen día

```
[
[0, 0, 0, 0, 0,..., 1, 0],
[1, 0, 0, ,....,0, 0, 0],
[0,..., 1, 0, 0, 0, 0],
[0, 0, 1, 0, ...,0, 0],
[0, 0, 0, 1, 0, ...,0]
]
```


One-hot Encoding: Este es un ejemplo en el que el vocabulario sólo tiene las palabras de la oración, pero el vocabulario suele ser mucho más grande.

Ejemplo: Hoy es un buen día

```
[
[0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0]
]
```


El plato de **pachamanca** en la mesa. Es demasiada **pachamanca** para mí La **pachamanca** es típica en los Andes.

El plato de **pachamanca** en la mesa. Es demasiada **pachamanca** para mí La **pachamanca** es típica en los Andes.

El plato de pachamanca en la mesa.
Es demasiada pachamanca para mí
La pachamanca es típica en los Andes.

Contexto

¿Cómo supieron?

 Aunque nunca habían visto esa palabra antes, sí habían visto palabras en contextos similares.

El plato de **arroz** en la mesa. Es demasiada **hamburguesa** para mí La **quinoa** es típica en los Andes.

¿Cómo ponemos información de estos contextos en nuestras representaciones?

- Co-ocurrencias usando una ventana
- Información Mutua Puntual (PPMI)
- Y muchos métodos más

Word2vec

... Hoy es un gran día ...

Word2vec

Word2vec

... Hoy creo es un gran día para ...

Ventana de 5

Variantes de Word2vec

• Skip-Gram: predice el contexto dada una palabra central

 Continuous Bag of Words (CBOW): predice la palabra central sumando los vectores de contexto

¿Cómo sabemos si el word embedding es bueno?

Dadas las métricas al entrenarlo.

Utilizándolo para entrenar un modelo en una tarea (por ejemplo, clasificación)

Propiedades - estructura linear

Relaciones semánticas y sintácticas son lineares en el espacio vectorial

$$V(reyes) - v(rey) + V(reina) = V(reinas)$$

semantic:
$$v(king) - v(man) + v(woman) \approx v(queen)$$

syntactic:
$$v(kings) - v(king) + v(queen) \approx v(queens)$$

https://lena-voita.github.io/nlp_course/word_embeddings.html

Sesgos

Extreme she occupations

1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist
10. housekeeper	11. interior designer	12. guidance counselor

Extreme he occupations

1. maestro	2. skipper	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. figher pilot	12. boss

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (2016), Bolukbasi et. al.

Enlaces útiles

@nlp-en-es/nlp-de-cero-a-cien

#nlp-de-cero-a-cien

@nlp en es

@company/nlp-en-es/

