This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53455 A2

(51) International Patent Classification7: C12N

(21) International Application Number: PCT/US00/35017

(22) International Filing Date:

22 December 2000 (22.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 09/471,275
 23 December 1999 (23.12.1999)
 US

 09/488,725
 21 January 2000 (21.01.2000)
 US

 09/552,317
 25 April 2000 (25.04.2000)
 US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 09/488,725 (CIP)
Filed on 21 January 2000 (21.01.2000)
US 09/596,196 (CIP)
Filed on 17 June 2000 (17.06.2000)
US 09/653,274 (CIP)
Filed on 31 August 2000 (31.08.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenuc, Sunnyvalle, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom

[US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

5

10

15

20

25

30

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA

` 🖁

5

10

15

20

25

30

molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-739. The polypeptides sequences are designated SEQ ID NO: 740-1478. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-739 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-739. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-739 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of SEQ ID NO:1-739.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

5

10

15

20

25

30

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-739; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1 - 739; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-739. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-739; (b) a nucleotide sequence encoding any one of the

amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-739; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein,

5

10

15

20

25

30

and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, *e.g.*, *in situ* hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The

invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products.

Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

5

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid

which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

5

10

15

20

25

30

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-20.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-739. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-

mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

5

10

15

20

25

30

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to

naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

10

15

20

25

30

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

10

15

20

25

30

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134

-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

5

10

15

20

25

30

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences.

Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by

by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

5

10

15

20

25

30

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-739; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:740-1478; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:740-1478. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEO ID NO:1-739; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 740-1478. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptorlike polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification

and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-739 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-739 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-739 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

5

10

15

20

25

30

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-739, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-739, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO:1-739 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-739, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

10

15

20

25

30

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the

nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, *e.g.*, by substituting first with conservative choices (*e.g.*, hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (*e.g.*, hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

10

15

20

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

5

10

15

20

25

30

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-739, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.

In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

10

15

20

25

30

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

5

10

15

20

25

30

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example,

pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-739, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO:740-1478 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-739 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding

region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-739, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine,

pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

30

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a

2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

15

20

25

30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-739). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to

allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup *et al.* (1996) above; Perry-O'Keefe *et al.* (1996) *PNAS* 93: 14670-675.

5

10

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by 15 the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. 20 PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite 25 coupling chemistry, and modified nucleoside analogs, e.g., 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. 30 See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

10

15

20

25

30

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If

linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

5

10

15

20

25

30

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a

suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

10

15

20

25

30

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations

of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

10

15

20

25

30

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEO ID NO:740-1478 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO:1-739 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-739 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO:740-1478 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:740-1478 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:740-1478.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the

disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

5

10

15

20

25

30

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein

which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

5

10

15

20

25

30

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models

that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:740-1478.

5

10

1.5

20

25

30

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other

immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

5

10

15

20

25

30

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTN, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST

(Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

15

20

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprises one or more domains are fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into

pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

10

15

20

25

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states

involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., 5 liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient 10 expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of 15 the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

20

25

30

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression

by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes $car bamyl \ phosphate \ synthase, \ as partate \ transcarbamylase, and \ dihydroorotase) and/or intron$ DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods 10 results in co-amplification of the desired protein coding sequences in the cells.

5

15

20

25

30

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a

tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

20

25

30

5

10

15

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in

disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

5

10

15

20

25

30

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

5

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of

course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or ago of the binding interaction.

Any or all of these research utilities are capable of being developed into reager grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

5

10

25

30

Polynucleotides and polypeptides of the present invention can also be used as

nutritional sources or supplements. Such uses include without limitation use as a protein or
amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source
of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be
added to the feed of a particular organism or can be administered as a separate solid or liquid
preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the

case of microorganisms, the polypeptide or polynucleotide of the invention can be added to
the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic

compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

25

30

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John

Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for reengineering damaged or diseased tissues, transplantation, manufacture of biopharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

10

20

25

30

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune

disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

5

10

15

20

25

30

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds*. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

10

15

20

30

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines
are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. 10 In Culture of Hematopoietic Cells, R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994. 15

4.10.6 TISSUE GROWTH ACTIVITY

20

25

30

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative

disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

20

25

30

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager

syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon);

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

5

10

15

20

30

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the

polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

10

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or

eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

15

20

25

30

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology

154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may

also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

10

15

20

25

30

5

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the

migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

10

15

20

25

30

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al.,

Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);

Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a

polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of

tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition 5 to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, 10 Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), 15 Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

20

25

30

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in

Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp.

Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

10

15

20

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those

described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek,
D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and
Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static
conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987;
Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med.

169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al.,
Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

15

20

25

30

10

5.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3)

combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

5

10

15

20

25

30

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.

Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.* 9(3):205-23 (1998); Hruby et al., *Curr Opin Chem Biol.*, 1(1):114-19 (1997); Dorner et al., *Bioorg Med Chem*, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity

of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins

involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

5

10

15

20

25

30

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not

limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

5

10

15

20

25

30

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
 - (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;

(v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;

- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particularneurotoxins; and

5

15

20

25

30

(viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody

binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

5

10

15

20

25

30

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related

diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

5

10

15

20

25

30

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences

of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

20

5

10

15

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

20

25

30

15

5

10

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity

of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti- inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers

to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

5

10

15

20

25

30

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When coadministered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factors, thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or

cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

5

10

15

20

25

30

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the

pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

10

15

20

25

30

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.

Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

5

10

15

20

25

30

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon

dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

5

10

15

20

25

30

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological

effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

5

10

15

20

25

30

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each

individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone. cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

10

15

20

25

30

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure

proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

5

10

30

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being 15 cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer 20 matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or 25 tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients

(TGF- α and TGF- β), and insulin-like growth factor (IGF).

of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, *e.g.*, amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (*e.g.*, bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating

concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

10

15

20

25

30

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.

In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

20

25

30

5

10

15

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain.

Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 4, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

10

15

20

25

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

10

15

20

25

30

5

5.13.1 Polyclonal Antibodies

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide

primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5.13.2 Monoclonal Antibodies

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or

survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

5

10

15

20

25

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur et al., <u>Monoclonal Antibody Production Techniques and Applications</u>, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures

such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a nonimmunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

20

25

30

15

5

10

5.13.2 Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536

(1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

5.13.3 Human Antibodies

5

10

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>J. Mol. Biol.</u>, <u>227</u>:381 (1991); Marks et al., <u>J. Mol. Biol.</u>, <u>222</u>:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely

inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al. (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

5

10

15

20

25

30

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to

prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab)2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab)2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

5.13.5 Bispecific Antibodies

5

10

15

20

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5

10

15

20

25

30

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).

Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5

10

15

20

25

30

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., <u>J. Immunol.</u> 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody

homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

25

30

5

10

15

20

5.13.6 Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in

vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

20

25

30

5

10

15

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin,

crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

5

10

15

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to

create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

5

10

20

25

30

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO:1-739 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO:1-739 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

5

10

15

20

25

30

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for

commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

10

30

5

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or 15 RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple 20 helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide. 25

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

5

10

15

20

25

30

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein

extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

25

30

20

10

15

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of

the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-739, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid.

 In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds

identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

5

10

15

20

25

30

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or

can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-739. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-739 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection

of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

5

10

15

20

25

30

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent *in situ* hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers.

Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

5

10

15

20

25

30-

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M

1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

5

20

25

30

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6,

incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be in one 96-well plate

(all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8×12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 EXAMPLES

5

10

15

20

25

30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were

spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

10

15

20

25

30

5

5.2 EXAMPLE 2

Novel Contigs

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. Chromatograms were base called and assembled using a software suite from University of Washington, Seattle containing three applications designated PHRED, PHRAP, and CONSED. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-739 and are provided in the attached Sequence Listing. The contigs were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 120, gb pri 120, UniGene version 120, and Genpept 120) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

The nearest neighbor result for the assembled contig was obtained by a FASTA version 3 search against Genpept release 120, using FASTXY algorithm. FASTXY is an improved version of FASTA alignment which allows in-codon frame shifts. The nearest neighbor result showed the closest homologue for each assemblage from Genpept (and

contains the translated amino acid sequences for which the assemblage encodes). The nearest neighbor results for SEQ ID NO: 1-739 are shown in Table 2.

Tables 1, 2, and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO: 1-739. Table 2 shows the nearest neighbor result for the assembled contig. The nearest neighbor result shows the closest homologue for each assemblage and contains the translated amino acid sequences for which the assemblage encodes. Table 2 also shows homologues with identifiable functions for SEQ ID NO: 1-739. The polypeptides were predicted using a software program called FASTY (available from http://fasta.bioch.virginia.edu) which selects a polypeptide based on a comparison of translated novel polynucleotides to known polynucleotides (W.R. Pearson, Methods in Enzymology, Vol. 183: pp. 63-98, (1990), herein incorporated by reference). Table 3 shows the predicted amino acid sequence corresponding to the novel nucleic acid contig sequences.

10

Table 1 - Tissue Sources

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
adult brain	GIBCO	AB3001	28 46 54 62 95 117 134 175 188-189
			324 330 337 356 369 371 378 386
			389 396 432 435-436 468 472-473
			476-477 483 486 518 538-539 543
			545 557 565 571 573 578 582 598
			613-614 619 627 632 634 639 687
			709
adult brain	GIBCO	ABD003	5 12 46 52 57 66 79 91 97 134 144
			148 150 162 164 172 175-176 181
			186 193 250 323 325-327 330 334
			338 362 367 369 371 378-379 386
			388-389 392 396-397 399-401 403
			416 422 435 444 449 451 454 461
			463-464 468 472-473 483 486 494
			506 511 513 516 520 523-524 526
			529 533 536-537 539 545 548 552
			556 558-559 562-563 565 567 569
			573-574 576 579-580 582-584 590
			593-594 598 602 606 613-614 619-
			621 623-624 627 634 637 641 646
			648 659 675 688-689 694 696-698
			703 714 729
adult brain	Clontech	ABR001	57 162 164 227 266 316 334 356 367
		·	385 438 468 512 524 528 557 582
			590 621 627 631 634 689 714
adult brain	Clontech	ABR006	189 228 385 438 571 584 632 650
			677
adult brain	Clontech	ABR008	1 3 5 11-25 31-32 46-47 55-57 59

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	idin oodice	Library	52Q 1D NOS.
Origin		Name	
		Name	61 65 67 60 75 70 01 102 100 111
})	61 65-67 69 75 79 91 103 108 111
			113-114 126 132 150 160 162 164
			171-172 186 188-189 193 202-203
			206 210-212 220 222-224 227-229
			233 235-236 243-247 251-252 257
1			264-266 268 275 313 324 328-331
			334-335 338-339 343 346-347 351
			355 357 359-361 365 367 370-371
		·	378 380 382 386-389 391 396 399-
1			400 402 406 413 419-420 423 426
	,]	432 434 437-438 442 446 448-449
			459-460 465 468 470 472-473 475
1			481-483 487 489-490 495-497 499
			501 503-504 507-509 511 520 524
			526 528 532-533 536 539-540 543-
		ļ	546 551-552 556-557 563 565-567
			569 572-573 576-577 579-580 582
			584 586 590-591 593 595-597 599-
			602 604 610-616 620-621 624-625
		l	627-628 632 634 637-638 641 643-
			644 646-647 650 653-657 660-662
			668 672 675 677-678 680-681 688-
		l	689 691 693 695-696 698 706-707
			709 711 713-727 729 731 733-734
			736 738-739
July breed a	Clontech	ABR011	334 476 634 677
adult brain			
adult brain	BioChain	ABR012	379 587
adult brain	Invitrogen	ABR013	334 634
L			334 634 3 19 57 62 66 75 110 122 150 160
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572
adult brain	Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615
adult brain	Invitrogen Invitrogen	ABR013	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695
adult brain adult brain cultured	Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193
adult brain adult brain cultured preadipo-	Invitrogen Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429
adult brain adult brain cultured	Invitrogen Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511
adult brain adult brain cultured preadipo-	Invitrogen Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557
adult brain adult brain cultured preadipo-	Invitrogen Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615
adult brain adult brain cultured preadipo- cytes	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186
adult brain adult brain cultured preadipo- cytes	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369 383 385 388 392 395 402 406 411
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369 383 385 388 392 395 402 406 411 415 434 454-455 465 468 473 475
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369 383 385 388 392 395 402 406 411 415 434 454-455 465 468 473 475 477 491 498 501 509 511 517 528- 529 532 537-539 542 545 558 560
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369 383 385 388 392 395 402 406 411 415 434 454-455 465 468 473 475 477 491 498 501 509 511 517 528- 529 532 537-539 542 545 558 560 565 567 576-577 586 600 606 615
adult brain adult brain cultured preadipo- cytes adrenal	Invitrogen Invitrogen	ABR013 ABT004 ADF001	334 634 3 19 57 62 66 75 110 122 150 160 162 167 171 176 186 197 203 211 230 232 259 328-331 334 369 382 389 394 400 406 417 426 429 442 457 472 483-484 492 511 514 529 531 534 537 540 553 558 562 572 580 582-584 590 604 611 613 615 622 637 639 643-644 648 688-689 692 695 16 37-39 66 109 120 141 144 193 273 316 331 333 338 389 415 429 442 444 464-465 475 489 501 511 513 531 534 539-540 545-546 557 583-584 590 596 602 607 613 615 619 622 629 632 634 643 4-5 12 48 53 57 162 164 172 186 188 192 196 203 207 213 258 316 330-331 333 339 354 356-357 369 383 385 388 392 395 402 406 411 415 434 454-455 465 468 473 475 477 491 498 501 509 511 517 528- 529 532 537-539 542 545 558 560

Tissue	RNA Source	Тусос	SEQ ID NOS:
Origin	RNA SOUICE	Hyseq Library	ong in Nos.
Origin		Name	
adult heart	GIBCO	AHR001	28 39 57 64-65 75 79 89 97-98 108
adult heart	GIBCO	ARROUT	117 134 144 157 159-160 164-166
			169 171 174 184 192-193 203 207
			220 243 256 258 266-267 281 314
			316 318 328-329 331 338-339 341
			346 348 354 356-357 366-367 369
			371 377-379 382 385-386 388 393
1			395-396 399-401 403 415 420 422
	1		425 431-432 435-436 445 451 459
}			465 472-473 477 483 486 488 490
			496 501 503 508 515 519-520 526
	,		528 531 533-534 537-538 540-541
			544 546 552 556-557 562-563 566-
			571 573 576-581 583-584 586-587
	·		594 602 606 608 611 613-615 618
			620-621 626-628 632 634 641 643
			646 648 653 659 667 676 678 687
			689 696 703-704 708 711 714 729-
_			730
adult	GIBCO	AKD001	3 28-29 48 56-57 67 79 84 93 106
kidney			117 134 138 140 144 156 160-164
			168-170 172 177 183 188-189 192-
	1		193 199 203 207 235 251 257 275
			319 321-323 328-330 337 346-347
		t I	349 354-356 360 367-369 371 375
1	1	ł	378-381 383-386 388-389 392 396-
•		ļ.	397 399 401 404 407 409 411-412
		1	415-416 420-422 427 432 436-437
			439-440 444 451-456 458-459 464-
,			465 468 470 472-473 477 481 483
	1	İ	486-487 492 496 501 503 505-506
		[508 511 513-516 518 524 526 529
			533 535 537-541 543 545-546 548
]	1	552 557 559-560 562-563 565-569
]]		572-574 576-577 579-587 589-591
	}	!	593-594 602 604-607 613-614 617-
			618 620-624 627-628 630 632-635
			637-638 640-642 644-645 652 662
		1	664 667-668 677 682 685 687 689
1	1		694-696 698 703 716 723 728-729
			732 734
adult	Invitrogen	AKT002	l
kidney			353 360 367 376 378-379 386 391
, runcy		[402 409 423 432 449 451 477 490
		1	494 503 526 528 531 534 538-539
		1	541 545-546 559 566 579 584 588
		1	594 602 613 621 624 632 647 652
			689
- d. 1 to 1	CTRCO	AT COOR	56-57 67 69 98 113 134 144 164 172
adult lung	GIBCO	ALG001	
	1	1	191-192 270 321 328 338 369 371
		1	374 378 380 388-389 396 405 411
	1	1	416 424 443-444 456 473-474 482-
		L	483 497 508 518 529 531 534 536

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	.a boarce	Library	5-x 25 1100.
0119111		Name	
		Name	540 552 556 559 563 568 573 579-
			580 585-586 588-589 593 601-602
			606 612-613 618 634 662 667 685
			696 702 726 729-730
lymph node	Clontech	ALN001	28 57 79 113 164 172 179 193 240
			325 332 367 378-379 386 388 402
			485 526 580 586 603 613-614 621-
		·	622 628 634 662 667 686 734
young liver	GIBCO	ALV001	3 24 28 54 60 117 134 137 154 160
			193 196 242 273 316 328-329 334
!			351 354 370-371 388 392 395-396
ļ			401 406 411 415 432 435 439 448
			454-455 477 483 486-487 495 506
			509 514 518 523-524 526 529 531
			534 537-538 540 544 548 566 568
			571 573 579 587-588 591 594 602
1.			621 641 645 686 713 723
adult liver	Invitrogen	ALV002	3 24 27 56-57 65-66 71 79 92 97
			106 134 140 164 192 200 214 220
	ļ		232 240 242 271-272 291 313 316
		ļ	328 347 349-350 353 355 357 368-
			369 371-372 378-379 381-382 385
			397 430 435 448 457 459 471-472
			475 485 487 502 505-506 511 520
	1		530-531 533-534 537 540-541 543
			548 566 574-575 579 582 588 590
•			
			612 623 640 648-649 681 687 689
1.1		2011001	710 714
adult ovary	Invitrogen	AOV001	3 10 14 28 54 56-58 62 65-66 68 73
			75 79 98 127 144 154 162 164-165
			172-174 182 186 188-189 192-196
	·		206 213 224 234-235 241 243 248
			253 261 273 275 289 314 316 321-
			322 325-327 329-331 333-334 336-
			338 340 343 345-348 354-357 367
			369 371-372 378 382 386 388 395-
		1	397 399-402 404 407 411 415-416
			419-420 425 427 429 431 435-437
			441 444 451 453-459 465 468-470
ļ			472-475 481 485 490 494 496 501
			503 509-510 513 517-518 522-524
		1	526 528-529 531-534 537-542 545-
	1		546 548 552 554 556-557 559-560
			562-563 565 567-569 572-579 581-
	[582 584-588 590-591 593-598 602-
		1	604 606 611-615 618 620-623 627
		1	629 631-632 635-638 643 647 652-
			654 657 659 661-662 667 674-675
	1	[677-678 682 684 689 693 695-698
	Į.	l	703 705-707 714 717-718 723 729
	1	1	731 738
adult	Clontech	APL001	172 224 239 363 371 392 437 531
placenta	CTOTICECH	YETOOT.	534 622 690 696
Pracerica	I	L	334 022 030 030

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	KNA SOULCE	Library	SEQ ID NOS:
Origin		Name	
-7	Turni kuraman	APL002	57 66 122 161 172 241 326 329 334
placenta	Invitrogen	APLUUZ	
			369 388 407 427 429 436 459 464 506 508 511 539 541 545 566 573
			, , , , , , , , , , , , , , , , , , , ,
			575 590 597 637 648 690
adult	GIBCO	ASP001	28 57 65 78 93 95 117 134 156-157
spleen			172 186 188 194 214 273 314 319
		'	331 334 338 344 354 371 374 392
		•	436 457 471-473 478-479 481 483
			515 526 528-529 541 548 557 559
			563 565 569 573 585-587 603 606
			613 615 618 621-622 627 632 634
			637 643 654 671 689 696-698 701
			712 739
testis	GIBCO	ATS001	3 67 134 160 192 235 327 329 337
			342 371 375 378 380-381 396 399
			415 431 436 441 451 472 477-478
			483 486 494 496 503 522 524 526
]			531 533-534 538 541-542 546 548
			557 568 573 577 579 581 584 594
			596 618 641 658 662 689 700 714
İ			729-730
adult	Invitrogen	BLD001	28 57 112 161 164 172 192 194 250
bladder			334 354 370 397 404 487 513 526
			531 534 545 572 599 602 620 634
			651 659 672 689 713 725
bone marrow	Clontech	BMD001	10-11 28 31 54 57 62 75 78-83 88
	}		131-133 135-137 141-143 157 159
			164 171-173 176-177 187-189 192
l	į		195 200 202 205 207 218 225 282
]		314-318 325 330 334-335 337 346-
		}	348 367 369 372 378 383 386 388
			395 401 405 412-413 416 422 436
}	ĺ		442-443 447 449 455 465 472 475
1			477 503 516 523 528-529 533-534
1			539 545 551 556 559 563 565-567
			571 573-574 576 579-586 594 601-
İ			602 606 613 620-623 628-629 634
			638 642-643 646 656 659 666 686
	ì		689 691 696 698-699 703 705 714
			720 726 729
bone marrow	Clontech	BMD002	2 15 23 35 49 54 57 59 78 81 114
			156-157 164 171-172 189-190 202
			223 240 325 334 346 357 367 379
		į	381-382 388 397 412 454 465 482
	1		490 509 516 526 535 537 563 566
			579 595 600 638 640-641 654-655
1])	676 689 714
adult colon	Invitrogen	CLN001	48. 79 94 138 162 167 189 333 368-
adult colon	THATCLOGER	CHMOOT	369 375 386 404 409 414 435-436
Į.	!		455 470 525 541 548 553 567 603
	D2 = C1 = 2 ==	OTTY 0 01	634 656 659 689 694 721
adult	BioChain	CVX001	3 28 35 54 57 79 83 95 97 113 117
cervix	<u>l</u> _	L	154 162 164 172 176 220 235 248-

Tissue	RNA Source	Hyseq	
Origin	Tan boarce	Library	SEQ ID NOS:
	į	Name	
		Name	240 221 205 205
			249 321 327 329 333 338 346 348
1		1	354 356 362 367-368 371 374-375
			378-379 386 388-389 395 401-402
		İ	404 407 420 429 431 437 443 451
		1	459 468 475 477 479 483 485 490
	1	i	493-494 496 506 508 511 517 526
			528 531 534 544 550 552 559 566
	j		569 571-573 575-576 581-583 588
			590 593-594 604 606 614 622 628
			631-635 639 661-662 675 689 692
			695 715 718 738
endothelial	Strategene	EDT001	3 28 31 39 54 58 65-66 79 89 144
cells			160 173 187 189 191 193 197-199
			207 220 230 267 273 314 324 326
1			329-331 336 347 354 369 372 378-
ł		ľ	379 384 386 388 391-394 396-397
		}	399 401 407 420 422 429 431-432
			435-437 444 449 451 455 459 465
			472 474-475 481-482 486 490 499-
			501 503 506 511 513 515-517 520
		1	522-524 529 521 524 529 529
	}		522-524 528 531-534 538-539 541
			545-546 548 550 552 557 559-560
			563 565 567 569 571 573 577 579-
			580 583-584 587-590 593-594 596-
		}	597 599 602 611 614-615 618 620-
			621 624 630 632-634 637-638 642-
			643 647-648 651 675 677 680 682
1	[Í	694 696-698 703 708 714 719 724-
Genomic	Genomic		725 728-730 734
clones from	DNA from	EPM001	38 41-45 118-121 164 198 292-312
the short		1	
arm of	Genetic	İ	
	Research		·
chromosome 8			
Genomic	Genomic	EPM003	43 164 295
clones from	DNA from		
the short	Genetic		
arm of	Research	1	
chromosome	}	1	
8)	
Genomic	Genomic	EPM004	121 164 306 482
clones from	DNA from	İ	
the short	Genetic	1	:
arm of	Research	ļ	
chromosome		Ţ.	
8			
Genomic	Genomic	EPM006	293
clones from	DNA from		2,7,5
the short	Genetic		
arm of	Research		
chromosome			
8	1	ĺ	
1	J	1	j

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
esophagus	BioChain	ESO002	513 526
fetal brain	Clontech	FBR001	57 468 563 634
fetal brain	Clontech	FBR004	162 186 254 265 491 582
fetal brain	Clontech	FBR006	1-2 5-6 11-12 22-23 49 57 62 73 94
10001			103 114 162 164 172 189 193 203
			218 240 244 251-252 259 279 330-
1			331 334-335 346-347 351 367 378
1			386 388-389 399 413 420 422 424
	•		434 442 444 448 465 468 470 472-
			473 490 496 501 503-504 511 520
			524 528 532-533 539 544-546 548
			551 553 563 571 573 576 587 591
			601 613 615-616 620-621 628 634
			641 644 648 653 657 662 672-673
			689 691 698 706 714 718 725-728
	ļ		733 735-739
fetal brain	Clontech	FBRs03	444 587
fetal brain	Invitrogen	FBT002	17 66 157 162 164 186 190 193 250
	J		270 324 331 334-335 338 346 354-
1			355 374 382 389-390 426 429-430
			437 442 453 467 471 475 481 485
			491 507-508 513-514 526 528 532
			540 544 548 550 552-553 557-558
			563 565-566 590 593 602 612 615
	,		637 641 648 654 662 672 676 692
			703
fetal heart	Invitrogen	FHR001	57 75 164 547
fetal	Clontech	FKD001	57 164 172 179 188 194 208 218 230
kidney		ŀ	240 250 330 334 369 388 401 413
_			439 454 465 529 546 550 573 576
			581 583 594-596 602 634 648 667
			676 689 698 706
fetal	Clontech	FKD002	2 560
kidney			-
fetal	Invitrogen	FKD007	565 596-597
kidney		•	·
fetal lung	Clontech	FLG001	75 164 355 386 428 455 513 524 528
			631 689
fetal lung	Invitrogen	FLG003	30 157 162 169 188 243 253 256 283
			330 392 400-401 404 407 424 428
			435-436 479 506 508 520 530-531
			534 572 578 584 602 611 613 631
			654 658 662 676 689 701 716
fetal lung	Clontech	FLG004	371
fetal	Columbia	FLS001	2-3 5 26 29 31 35 48 54-58 60 62
liver-	University		65 67 70 74-77 79-80 84-87 89 92
spleen			96 98-100 104 117 122-130 138 140
			144-158 160 162 164 172-173 185-
			186 188-189 192-194 196 199-200
			207 214 218-219 237-238 241 269
			273 280 282 314-316 318-322 324
			327 329-331 334-335 337 340 345
]		·	348-350 354-358 363-364 367-371
		·	·

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	57¥ 12 1108.
011911		Name	
			373 375 377-380 382-383 385-386
•			388 394-396 399 402 409 411-412
			418 420-422 424 427 431 435-437
			440 442 448-451 453 455 459 461
,			464-465 470 472-473 475 477-478
			480-485 488-490 501 503 505-506
			509 511-513 515-518 520 522-524
			526-534 538-539 541 543-547 549-
			550 552-553 556-557 559-564 566-
			567 569 571 573 576 578-580 582-
			587 589 591-594 596-597 599-600
		•	602 611-615 618 620-625 627-628
			631-636 638 641-642 646 648 651
			659-660 662-664 667-668 675-678
			680-681 684 689-690 696-698 709
			714 723 738
fetal	Columbia	FLS002	15 31-32 39-40 47-49 52 56 60 65
liver-	University		69 72 75 78 84 97-98 100 104 115
spleen	_		123 138 140 144 146 152-153 157
_			161 164 172-173 182 188 194 196
			199 220 241-242 246 249 253 255
			266 273-275 280-281 288-291 314-
			316 318-319 321-322 324 329-331
			336-339 343 347-350 353-354 357-
			358 363 367 369-370 372 374 378-
,			380 382-383 386 388-389 393-397
<i>:</i>			399 405 407 409-410 412 421 424
			432 435 439 448 450-451 453-457
			459 461 464-465 470 472-475 477
			479-481 483 485 488 490 497 501
,			503 506 509 511-513 516-518 520
			524 527-528 531-532 534 539 541-
			546 556 559-560 565-566 569 571
			574 576 579 582-586 588 590 597-
			599 602-604 606 615 618 620-621
			623 625 627 632-634 639 641 644
			648 666-668 675-676 681 684 689-
			690 696-697 701 703 714 719 723 734-735
fotal	Columbia	ET CAAS	
fetal	Columbia	FLS003	60 79 157 190 690
liver-	University		
spleen	Tenand have a con-	DT 17000	2.07.25.40.50.55
fetal liver	Invitrogen	FLV001	3 27 35 48 50 56-57 66 75 92 94
			105 157 161 164 176 189 209 220
			243 272 324 328 333 335 353 369-
			370 381 392 396 429-430 435 439-
			440 442 444 465 471 483 487 502
			506 513-514 519 534-535 537 548
1			554 566 568 576-577 580 582 590
			613 621 645 648-649 689
fetal liver	Clontech	FLV002	343
fetal	Invitrogen	FMS001	51 79 97 108-110 166 194 196 266
muscle			341 352 380 389 402 407 444 464
L	L	L	

Tissue	RNA Source	Hyseq	SEQ ID NOS:
1	KNA SOULCE		SEQ ID NOS.
Origin		Library	
1		Name	
			475 501 513 524 546 552 554 560
			570 572 598 605 628 634 649 675
ļ			703-704 714 737
		7747000	
fetal	Invitrogen	FMS002	524
muscle		•	
fetal skin	Invitrogen	FSK001	31 33 35 48 57 63 67 75 112-114
			117 157 162 164 172 178 180 188
		-	196 220 243 254 319 324 328 330
		,	333-334 367 369 371 375 379-383
			386 388-389 400 404 407 412 419-
			420 429 444 455 472-473 491 499
			503 508 511 514 517 522-524 529
			531 534 537 540 542 547 552 554
			556-557 560 563 565 567 571-572
			574 576 579 590 596 599 616 621
			1 - 1
			625 627 631-632 634 639-640 648
İ			653-654 662 689 708 714
fetal skin	Invitrogen	FSK002	501 537
fetal	BioChain	FSP001	465 729
spleen	22001111		
umbilical	BioChain	FUC001	27-28 35 57 68 83 105 136 157 159-
	BioChain	FOCOUL	
cord			160 164 188 191 225 279 315-316
			321 328 334 363 367 369 378-379
			383 386 388-389 392 397 406-407
			413 415-416 427 440 449 455 458
	ļ	1	461 464-465 468 473-475 479 485-
,			486 488 490 496 514 517 522 524
1		ļ	
		· .	526 528-529 531 533-534 538 540
Ì		ì	546 550 552 556-558 572 582 584-
,		ļ	585 587-588 594-597 602 606 613
	}		616 618-619 631 634 637 651 689
+		}	696 698 706 729
fetal brain	GIBCO	HFB001	3 5 22 26 46 53 66 73 94 117 134
Tecar brain	GIBCO	AFBOOL	
}			139 164 172-173 188-189 212 215
	j .		230-231 248 251 262 288-289 316
1	1		325 329-331 334 337-338 348 352
1	1	ĺ	365-367 369 371 377-379 385-386
· .	1	1	388 392 394 396 400 403 420 422
	1	1	429 437 444-446 449 451 455 459
			461-463 466-468 472-473 475 477
1	1		
1.			481 483 485-486 488 490-491 496
]		503-504 506 513 523-524 529 532-
	1	l	533 539-541 545 548 550 552 557-
1	1	1	560 563 565-566 569 571 576-577
1	1	ł	579-580 583-584 586 590 593-594
	[596-599 601-602 604 606 611 613
	1	1	615 618 621-623 627-628 634-635
	1		637 641 643 647 662 664-665 667
	1		675 677 680 689 695-697 703 726
macrophage	Invitrogen	HMP001	97 518 532 569
infant	Columbia	IB2002	28 46 56-57 59 67 75 78 109 117
ľ	ŀ	132002	
brain	University	1	122 129 144 157 162 164-165 172
		<u> </u>	176 180 190 193 212 220 226 236-
	·		

Origin Library Name 237 251 261-262 316 318 324 328-330 334-356 361 364-365 367 369 371-373 377-380 382 385-386 389 392 395 397 400 411 416 421-422 429 432 436 438 444 448 451 456 464-465 469 471- 475 484 486 496 596 504-506 511 520 524 526 529 531 533-534 534 537-540 544-546 548 553 556 558 562 565 567 576 579-580 582 584 586 589- 590 593 597-598 602 613-614 618 620-621 627-628 636 369 721 730 infant Columbia Drain University infant Columbia	Tissue	RNA Source	Hyseq	SEO ID NOS:
Name				55g 15 1.05.
18	J=-J=		_	
330 334-335 337 340 354-356 361 364-365 367 369 371-373 377-380 382 385-386 389 392 395 397 400 411 416 421-422 429 432 436 438 444 448 451 456 464-465 469 471- 475 484 486 496 504-506 511 520 524 526 529 531 533-534 537-540 544-546 548 553 556 558 562 555 567 576 579-580 582 584 586 589- 590 593 597-598 602 613-614 618 620-621 627-628 632 634 636 641 650 654 659 662 667 683 689 721 730				237 251 261-262 316 318 324 328-
364-365 367 369 371-373 377-380 382 385-386 389 392 395 397 400 411 416 421-422 429 432 436 438 444 448 451 456 464-465 469 471-475 484 486 496 504-506 511 520 524 526 529 531 533-514 537-540 544-546 548 553 556 558 562 565 567 576 579-580 582 584 586 589-590 593 597-598 602 613-614 618 620-621 627-628 632 634 636 641 650 654 659 662 667 683 689 721 730				l l
382 385-386 389 392 395 397 400				
11				
A44 448 451 456 464-465 469 471- 475 484 486 496 504-506 511 520 524 526 529 531 533-534 537-540 544-546 548 553 556 558 562 565 567 576 579-580 582 584 586 589-				
A75 484 486 496 504-506 511 520				
S24 526 529 531 533-534 537-540				
S44-546 548 553 556 558 562 565 567 576 579-590 582 584 586 589 589 593 597-598 602 613-614 618 620-621 627-628 632 634 636 641 650 654 659 662 667 683 689 721 730				
S67 576 579-580 582 584 586 589- 590 593 597-598 602 613-614 618 620-621 627-628 632 634 636 641 650 654 659 662 667 683 689 721 730			·	
Second Second				
Columbia IBMO02 September Septembe				
infant Columbia TB2003 46 54 75 109 156 164 220 244 251				
infant brain University				
Drain University 314 324-325 331 335 340 361-362 367 369 377-379 400 408 438 442 456 460 464 469 472 496 506 523-524 526 529 538 540 544-545 547 558 560-562 565 567 569 579 584 598 602 613 615 621 627 632 634 637 639 650 738 630 634 637 639 650 738 630 634 637 639 650 738 630 634 637 639 650 738 630 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 650 634 637 639 630 639 630 639 630 630 630 630 630 630 630 630 630 630				
Drain	infant	Columbia	IB2003	46 54 75 109 156 164 220 244 251
367 369 377-379 400 408 438 442				
456 460 464 469 472 496 506 523- 524 526 529 538 540 544-545 547 558 560-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 558 600-562 565 567 569 579 584 637 639 650 738 1nfant				
S24 526 529 538 540 544-545 547 558 560-562 565 567 569 579 584 598 602 613 615 621 627 632 634 637 639 650 738 infant				
S58 560-562 565 567 569 579 584 598 602 613 615 621 627 632 634 637 639 650 738				
Second Second				
Infant Columbia IBM002 262 340 432 436 438 472 531 534 brain University infant Columbia IBS001 162 231 283 331 369 385 438 444 brain University 1636 689 Lung, Strategene LFB001 28 54 57 65 172 188 233 321 331 369 385 438 401 451 459 475 479 503 511 522 524 532 534 559-560 573 580 583 587 597 615 632 634 638 686 689 708 Lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171-172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378-379 381-382 386 388-390 396 399-404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575-576 579-580 585-588 590-591 593-594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				
Drain University 169 613 634				
Drain University 169 613 634	infant	Columbia	IBM002	262 340 432 436 438 472 531 534
Infant University	brain	University		k .
brain University	infant		IBS001	162 231 283 331 369 385 438 444
lung, fibroblast Strategene LFB001 28 54 57 65 172 188 233 321 331 340 347 367 369 378-379 388 401 451 459 475 479 503 511 522 524 532 534 559-560 573 580 583 587 597 615 632 634 638 686 689 708 lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171-172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378-379 381-382 386 388-390 396 399-404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575-576 579-580 585-588 590-591 593-594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	brain	University		
fibroblast 340 347 367 369 378-379 388 401 451 459 475 479 503 511 522 524 532 534 559-560 573 580 583 587 597 615 632 634 638 686 689 708 lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171- 172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	·	-		1
fibroblast 340 347 367 369 378-379 388 401 451 459 475 479 503 511 522 524 532 534 559-560 573 580 583 587 597 615 632 634 638 686 689 708 lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171- 172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	lung,	Strategene	LFB001	28 54 57 65 172 188 233 321 331
451 459 475 479 503 511 522 524 532 534 559-560 573 580 583 587 597 615 632 634 638 686 689 708 lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171-172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378-379 381-382 386 388-390 396 399-404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575-576 579-580 585-588 590-591 593-594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				340 347 367 369 378-379 388 401
S97 615 632 634 638 686 689 708				
lung tumor Invitrogen LGT002 3 7 21 24 26 28 31 54 56-57 62-63 66 92-93 101 109 112 162 164 171- 172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				532 534 559-560 573 580 583 587
66 92-93 101 109 112 162 164 171- 172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				597 615 632 634 638 686 689 708
66 92-93 101 109 112 162 164 171- 172 176 183 188-189 192-193 196 201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	lung tumor	Invitrogen	LGT002	3 7 21 24 26 28 31 54 56-57 62-63
201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734		_		66 92-93 101 109 112 162 164 171-
201-202 223 230 235 259 273-274 316 321 329-331 333-334 338 345 347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				172 176 183 188-189 192-193 196
347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				
347-348 356 367 369 371-372 378- 379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				316 321 329-331 333-334 338 345
379 381-382 386 388-390 396 399- 404 406 409 416 424-425 427 429 432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				
432 436-437 439 451 455-456 459 464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				
464-465 467 473 475 484-486 490 499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734			İ	404 406 409 416 424-425 427 429
499 502-503 506 508 511 513-514 517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				432 436-437 439 451 455-456 459
517-518 522 524 526 528 531-532 534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				464-465 467 473 475 484-486 490
534-535 538-539 541 543-546 553 557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				499 502-503 506 508 511 513-514
557-559 563 567-568 571 573 575- 576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				517-518 522 524 526 528 531-532
576 579-580 585-588 590-591 593- 594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734				534-535 538-539 541 543-546 553
594 598 601-604 609 611-613 615 621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	1		1	557-559 563 567-568 571 573 575-
621 627-628 631-632 636-637 645 648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	1			576 579-580 585-588 590-591 593-
648 651-652 654 662 667 672 677 681 683 689 698 701-702 714 718 724 726 729 734	1			594 598 601-604 609 611-613 615
681 683 689 698 701-702 714 718 724 726 729 734	1	ļ		621 627-628 631-632 636-637 645
724 726 729 734				
			1	681 683 689 698 701-702 714 718
lymphocytes ATCC LPC001 4 31-32 35 57 65-66 70 110 116 156				724 726 729 734
	lymphocytes	ATCC	LPC001	4 31-32 35 57 65-66 70 110 116 156

Tissue	RNA Source	Hycon	SEQ ID NOS:
	WAY SOUTCE	Hyseq	SEG ID MOS:
Origin		Library	
		Name	
			162 164 230 243 250 282 287 326
		!	328-330 334 336 346-347 359 378
			386 388 397 407 414 416 419 472
			497 520 525 539 545 549 551 582
			590 606 615 618 621 631 634 686
			692 698 701 714
leukocyte	GIBCO	LUC001	4 7 9-11 23 28 31 35 39 54 65 75-
Teurocyce	GIBCO	HOCOUL	76 79 90 97 110 117 134 152 157
			159 162 164-167 171 173 176 188
			193 199 204 207 220 244 253 255
			314 316 318 321 324 326 329-330
			337-339 346-347 352 354 356 367
			369 371 378-379 382 388-389 392
ľ		•	396-397 400-402 405 415-416 420
			422 429 432 435-436 443-444 449
			454-455 457-459 465 479 481-486
			491 497 501 503-504 506 508 511
			514 516 520 523-525 529 532-533
			535 538-539 545 548 552-554 556
			559-560 562-563 565-566 569 571-
			573 576 579 581 585-587 590 593-
			594 598 600-602 604 606-609 613-
			614 618 620-622 624 627 630 632-
			634 636 638 643 645 660-662 667
			678 682 684 686 689 691 693 696-
			698 714 726
leukocyte	Clontech	LUC003	11 54 97 152 164 330 479 546 564-
Teakocyce	CIONICCCII	10000	565 593 613 627 634 646 696 729
	07	MEL004	
melanoma	Clontech	MELOU4	2 57 67 79 164 171-173 188 193 196
from cell			232 321 337 341 346 367 379-380
line ATCC			388 407 427 454 472 477 482 501
#CRL 1424			520 539 545 552 556 579 588 593
			598 611 621 631 648 665 714 730
mammary	Invitrogen	MMG001	3 20-21 29 31 54 56-57 63-66 79 94
gland			109 112-113 117 122 125 138 141
J 3			154 160 162 164 172 176 186 189
			192 204 214 220-221 232 238 251
			255 257 273 276-278 324 326 328-
			331 333 335 337 341-343 347 354-
			355 357 367-371 374-375 379 382-
			386 388-392 397 399-400 404 406-
			408 410-411 425 431 435-436 444
			451 455 457 459 461 464-465 470-
			471 475 479 483 485 487-488 491
			501 506-508 511 513-519 523-524
		'	526 529 531-532 534-535 537 539-
			540 542-545 552-554 557-560 563
			566 569 572 577 580 584 587-588
	'		·
			590 597-598 602 604-605 609 611
			613 615 624 627 631-634 637 639-
			640 643 648-649 654 664 669-670
			672-673 676-679 681 689 691-695
1			697-698 706 714 731 734 737
[

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	J-2 -3 -1.05.
5		Name	
induced	Strategene	NTD001	36 57 164 284 388 397 420 481 485
neuron			501 524 528-529 539 542 545 560
cells			571 579 582 595 602 620 637 654
	1		667 689 730
retinoid	Strategene	NTR001	524 584 693
acid	-		
induced	1		
neuronal			
cells			
neuronal	Strategene	NTU001	36-38 120 204 331 351 354 357 386
cells	!		388 399 411 442 459 516 533 539
		•	545 565 586 606 615 621 637-638
			642 646 648 714 730
placenta	Clontech	PLA003	503 579 690
prostate	Clontech	PRT001	15 40 65 164 187 207 229 337 348
			367 375 377-378 395 406 416 428
			458 468 476 511 524 526 531 534
ļ			538 555 559 563 576 584 597 613
			622 624 631 642 667 672 677 684
			724 734
rectum	Invitrogen	REC001	57 67 164 260 331 343 370-371 380
]	382 384 404 409 436 444 475 485
			498 513 524 526 540 542 552 554
		[581 615 619 624 627 634 654 659
	Clontech	SAL001	671 689 714
salivary gland	Crontecu	SALUUI	21 84 106-107 152 179 238 246 255 273 287 371 378 383 401 407 420
grand			273 267 371 378 383 401 407 420 455 475 477 509 512 515 521 541
			548 565 570-571 573-574 589 606
			628 634 636 652 689 703 738
skin	ATCC	SFB002	192
fibroblast		012002	
skin	ATCC	SFB003	464
skin fibroblast	ATCC	SFB003	464
	ATCC Clontech	SFB003	
fibroblast			57 66 71 98 116 150 164 172 327
fibroblast small			
fibroblast small			57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678
fibroblast small intestine			57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711
fibroblast small intestine			57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325
fibroblast small intestine	Clontech	SINOOL	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552
fibroblast small intestine	Clontech	SINOOL	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738
fibroblast small intestine	Clontech	SINOOL	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604
fibroblast small intestine skeletal muscle	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648
fibroblast small intestine skeletal muscle spinal cord	Clontech	SKM001	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695
fibroblast small intestine skeletal muscle spinal cord	Clontech	SINOO1	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648
fibroblast small intestine skeletal muscle spinal cord	Clontech	SKM001	57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	51g 15 NOS.
0119111	1	Name	
		Ivanic	485 526 532 569 576 579 581 586
	1		
thalamus	Clontech	THA002	603 631 634 677 682 689
Charamus	Crontecu	THAUU2	17 31 57 66 109 127 164 217-218
			262 315-316 324 330 357 369 386
			388 400 406 435 456 459 464 468-
	,	ļ	469 515-516 537 540-541 556 566
			574 590 611 622 631 634 644 648
		٠.	656 677-678 680
thymus	Clontech	THM001	6 15 26 54 79 164 172 187 193 201
	,		264 291 315 329 331 351 356 367
			397-398 401 407 412 424 427 429
			435-436 443 451 474 478 482 549
		1	563 565 567 569 576 578 581-582
			610 615 621 631-632 634 648 662
			667 669 679 689 693 696
thymus	Clontech	THMc02	3-6 8 11 16 18 34 58-59 67 132 149
_			162 164 167 172-173 186 188-189
		}	193 200 203 216 223 232 239 255
			263 265 319-320 331 333-334 355
		1	359 370 373 377-380 382 387-390
			393 395 398-399 402 404 408 420
			427 434 436 467 475-476 503 508
			518 524 526 532 540 560 563 565
			571-572 576-577 579 582 598 601
]	603 612-613 615 621 627 632 634
			639 641 648 651 657 659 662 672
•			1
			677-678 684-686 689 696 699 706
41	01 b b		714-716 722 726-729 732
thyroid	Clontech	THR001	5 29-30 40 54 57 66 72 79 117 144
gland			160 164 166 170 172 176 183 188-
			189 208-209 219 230 285-286 314
		ļ	318 327 331 335 338 344 347 354
			363 367 375 377-380 382 384-386
	ì	}	388 393 397 399 401-403 419 422
			429 436 442 444 451 456 458-461
			464 467-468 470 472-473 476-477
			481 488 494 503 508-509 511 516
			519-521 524 528-529 533 537-538
	1		543 548 557 559-560 563 565-566
		1	571-574 576 582 585 587 590-591
İ	1		593-594 596-597 606 614-615 620-
	1	[621 623-624 627 631-634 640 650-
]		651 653 662 667 669-670 675 679
			689 708 712 714
trachea	Clontech	TRC001	156 164 171 240 375 378 390 400
			422 468 484 565 574 581 585 587
			631 654 689 714
uterus	Clontech	UTR001	65. 77 79 101 164 220 367 369 451
ucerus	0101106011	GIRUUI	468 526 530 533 548 554 559 562
			568 573 582 594 637 648 689
			JOO J/3 J82 J94 03/ 648 689

Table 2 - Nearest Neighbor Results

SEQ	SEQ	Acces-	Species	Description	Smith	9
ID	ID	sion	252222		_	Identity
NO:	NO:	No.			Water	
NO.	in	NO.			man	1
				•	Score	
	USSN			,	Score	1
	09/48					ļ
	8,725					
1	1000	gi70214	Mus musculus	secretory	567	85
	Ì	84		carrier	·	
				membrane		
]			protein 4]	
2	10017	R06463	Homo sapiens	Derived	848	100
			-	protein of		1
		!		clone ICA13		
				(ATCC 40553).		
3	10020	gi10659	Caenorhab-	similar to	325	36
ا ا	10020	67	ditis elegans	other protein		
	1	۱ ۳′	arcia eredans	phosphatases	1	1
		1				
		<u> </u>		1, 2A and 2B	132	
4	10024	G03460	Homo sapiens	Human	439	98
		1		secreted	1	
_				protein,	<u> </u>	
5	10032	¥12505	Homo sapiens	Human 5' EST	136	87
				secreted	1	
				protein		
6	10042	Y29511	Homo sapiens	Human lung	701	100
			1	tumour protein		
				SAL-25 1st	1	ļ
ļ.	1			predicted		1
ì	{			amino acid	ł	į l
			İ	sequence.		j i
	1006	Y92324	Home conjons	Human alpha-	763	100
7	1006	192324	Homo sapiens	2-delta-D	/63	100
	ļ				1	
ŀ	1		,	polypeptide		
ļ	1	}		from splice	ļ]
				variant 1.		
8	10064	gi45893	Homo sapiens	Gab2	425	58
1		75				
9	1007	gi70183	Homo sapiens		151	75
		98				
10	1008	gi89606	Homo sapiens	protein that	1226	99
1		5	1	is immuno-	([
				reactive with	1	i 1
1				anti-PTH	.	
		1		polyclonal		
				antibodies]
	10000	~; 2 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Homo Gariana	Metallo-	1512	98
11	10088	gi37792	Homo sapiens		1314	30
		44	l	protease 1		
12	10089	gi29472	Homo sapiens	membrane	523	100
-	1	32		associated	[
				guanylate		4
				kinase 2	<u> </u>	
13	10091	gi33478	Mus musculus	cAMP-specific	223	54
		63		cyclic		
L				<u> </u>	J	

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	op out co	2000112	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
ļ	8,725		,			
				nucleotide		
ļ				phosphodi-		
				esterase PDE8;		
			· · · · · · · · · · · · · · · · · · ·	MMPDE8		
14	10098	gi69793	Homo sapiens	cysteine-rich	1068	100
		11		repeat-		
}				containing	\	
				protein S52		
 	10102	G01395	Home ganieng	precursor Human	297	88
15	10102	601333	Homo sapiens	secreted	231	60
	1			protein,		
16	10103	gi85473	Rattus	casein kinase	293	84
-0	10103	3	norvegicus	1 gamma 1	-55	•••
	}			isoform		
17	10104	Y60017	Homo sapiens	Human	154	100
			-	endometrium	İ	
				tumour EST		
				encoded		
				protein 77.		<u> </u>
18	10108	G03290	Homo sapiens	Human	215	97
		ĺ		secreted	1	
				protein,		
19	10110	gi72922	Drosophila	CG1271 gene	208	46
20	10111	99 gi45123	melanogaster Rattus	product	822	89
20	10111	34	norvegicus	Ca/calmodulin-	022	69
		3-	liorvegreus	dependent		
		1		protein kinase	Į	
]		kinase alpha,		
		1		CaM-kinase		
		1		kinase alpha	1	
21	10113	Y41694	Homo sapiens	Human PRO382	633	97
1			_	protein	[
				sequence.		
22	10114	gi34907	Rattus	calmodulin-	531	99
		5	norvegicus	binding		
				protein		
23	10116	gi16298	Bos taurus	endozepine-	937	87
	-	1		related		
[l			protein		
24	10121	gi89797	Canis	precursor Band4.1-like5	643	100
24	10121	43	familiaris	protein	543	100
25	10126	Y99420	Homo sapiens	Human PRO1486	607	100
23	10120	155420	LISMO DAPTERS	(UNQ755) amino	•••	
				acid sequence		
26	1013	gi80475	Homo sapiens	protein	614	73
		0	*	tyrosine	1	1
	<u> </u>		·		·	

SEQ	SEQ	Acces-	Species	Description	Smith	
ID	ID	sion	- F		-	Identity
NO:	NO:	No.			Water	
	in	1			man	
	USSN	1			Score	
	09/48					
	8,725					
				phosphatase		
27	10136	W02105	Homo sapiens	Human L-	1243	98
				asparaginase.		:
28	10142	Y35924	Homo sapiens	Extended	862	89
				human secreted		
f		ļ		protein		
	10140			sequence,		
29	10148	gi33349 82	Homo sapiens	R27216_1	329	98
30	1015	G02485	Homo sapiens	Human	120	72
				secreted		
				protein,		
31	10154	gi10798 804	Homo sapiens	sperm antigen	2607	98
32	10175	Y96864	Homo sapiens	SEQ. ID. 37	536	100
		1		from		
				WO0034474.		
33	10196	gi55362 1	Homo sapiens	profilaggrin	346	39
34	10198	gi14190	Mus musculus	odorant	281	53
		16		receptor		
35	10200	Y57903	Homo sapiens	Human	448	100
		[transmembrane		
				protein HTMPN-		
2.5	10000	140504		27.		
36	10208	gi40624 92	Escherichia coli		505	100
37	10212	gi88252	Escherichia	ORF f141	605	
"	10212	9100232	coli	ORF_II41	625	96
38	10213	gi40627	Escherichia	Hypothetical	773	98
		78	coli	protein HI0761		
39	10214	gi66938	Rattus	opioid growth	661	44
		32	norvegicus	factor		
				receptor		
. 40	10227	G01360	Homo sapiens	Human	384	100
				secreted	1	
				protein,		
41	10236	gi16512	Escherichia	•	373	100
<u> </u>	1.00.15	57	coli			
42	10241	gi27692	Escherichia	catabolite	178	96
		62	coli	gene activator		
43	10245	gi17895	Escherichia	protein		
*3	10245	39	coli	orf,	679	98
		3.5	COLL	hypothetical protein		
44	10246	gi88249	Escherichia	ORF_0179	400	
••	10240	2	coli	OKE_OT/3	488	97
45	10247	gi17421	Escherichia	Sn-glycerol-	323	100
1 -		49	coli	3-phosphate	343	100
Ц				- Priochiace	<u>_</u>	

CEC	CEO	7.555	Cooodiaa	Description	Cmith	0.
SEQ	SEQ ID	Acces- sion	Species	Description	Smith	% T-1
NO:	NO:	No.			- Water	Identity
NO:	in	NO.	•		man	•
	USSN				Score	
ļ	09/48			•	20016	
	8,725					
				transport		
1				system		
]	1		permease		
İ		ļ		protein UgpA.	0	
46	10282	Y29817	Homo sapiens	Human synapse	521	96
			_	related		
1				glycoprotein		
}	}			2.	`	
47	1031	gi64351	Mus musculus	putative E1-	990	86
<u> </u>		30		E2 ATPase		
48	1040	gi85412	Homo sapiens	Human giant	471	63
}		4		larvae		
				homologue		
49	1043	gi38822	Homo sapiens	KIAA0782	154	61
<u> </u>	1051	85		protein		100
50	1051	gi17821	Homo sapiens	anion	172	100
-		6		exchange	}	
51	1053	Y76748	Homo sapiens	protein 1 Human protein	180	92
31	1053	1/6/40	Homo sapiens	kinase	180	92
1		Ì		homologue,		
1		ł		PKH-1.		
52	1062	gi96501	Mus musculus	ADAM 4	492	65
		4		protein		
				precursor		
53	1063	gi23938	Drosophila	A-kinase	580	60
1		80	melanogaster	anchor protein		
				DAKAP550	Ì	
54	1066	gi27467	Caenorhabditi	contains	607	35
		88	s elegans	similarity to		
L				transacylases		
55	107	G00357	Homo sapiens	Human	183	77
				secreted		
				protein,		
. 56	1071	gi91059	Xylella	Acetylgluta-	505	36
	1005	37	fastidiosa	mate kinase		
57	1085	R95913	Homo sapiens	Neural thread	257	55
58	1086	Y76332	Homo sapiens	protein. Fragment of	387	58
30	1000	1/0332	TOWO Sabrens	human secreted	30/	50
				protein		
]				encoded by		
				gene 38.		
59	1088	gi45896	Homo sapiens	KIAA0999	873	99
		42	,	protein		
60	109	gi76343	Homo sapiens	KIAA0999	360	85
1		1		protein		
61	1095	Y94907	Homo sapiens	Human	701	97
Ĺ		ĺ		secreted		
	 -	•				

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion		2000225220	-	Identity
NO:	NO:	No.		İ	Water	racinercy
2.0.	in				man	
	USSN				Score	
	09/48			•	30020	
]	8,725]	
	-,			protein clone		
				ca106 19x		
		ļ		protein	•	
				sequence		
62	1102	Y07096	Homo sapiens	Colon cancer	1982	100
ļ	1	}	_	associated	1	
		}		antigen		
				precursor	\	
				sequence.	1	
63	1105	Y84907	Homo sapiens	A human	983	91
			•	proliferation		
ļ		l		and apoptosis	1	
1				related		
l				protein.		
64	1108	gi13989	Mus musculus	Ca2+	1307	89
		03		dependent		
			•	activator		
]	•	protein for	}	
				secretion		
65	1109	Y91524	Homo sapiens	Human	2400	99
	ĺ			secreted		
				protein		
				sequence	i	
}]		encoded by	l	
				gene 74	ŀ	
66	1113	gi16574	Sus scrofa	calcium/cal-	1348	94
İ		62		modulin-	ĺ	
				dependent		
			•	protein kinase	ł	
1				II isoform	}	
<u>.</u>				gamma-E		
67	1117	Y32169	Homo sapiens	Human growth-	2831	97
				associated		
1				protease	'	
].]			inhibitor	[
1				heavy chain		
68	1118	gi30635	Homo sapiens	precursor.	1170	0.0
88	1118	17	nomo sapiens		1138	98
69	1125	gi82482	Homo sapiens	sphingosine	1290	98
-		.85		kinase type 2		
	1			isoform		
70	1132	Y94918	Homo sapiens	Human	437	59
				secreted		
				protein clone		
				dd504 18		
[protein		
])	1		sequence		
71	1143	gi45806	Homo sapiens	prepro-major	209	40
	·	<u> </u>		<u> </u>		

SEO	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.	Til.		Water	- !
i	in]			man	
	USSN				Score	
1	09/48	[,			
	8,725	1				
		77		basic protein		
.				homolog		
72	1146	gi18239	Homo sapiens	focal	131	87
		5		adhesion		
				kinase		
73	1161	W90962	Homo sapiens	Human CSGP-2	931	100
				protein.	`,	
74	117	W69428	Homo sapiens	Human	159	93
				secreted		
1	1	}		protein		1
				bp537_4.		
75	1170	gi34339	Homo sapiens		586	87
76	1175	gi79602	Homo sapiens	SNARE protein	308	100
1		43		kinase SNAK		
77	118	gi53600	Homo sapiens	NY-REN-18	178	96
1		93		antigen		
78	1183	gi29203	Homo sapiens	helix-loop-	361	91
1	1	7		helix		
				phosphoprotein		
79	1193	gi18991	Rattus	polysialyltran	171	76
		86	norvegicus	sferase		
. 80	1195	gi13994	Homo sapiens	serine/threo-	208	71
		62		nine-protein		
				kinase PRP4h		
81	1198	gi18153	Homo sapiens	defensin	150	71
		5		precursor		
82	1201	gi56689	Rattus	plasma	244	73
1		35	norvegicus	membrane Ca2+		
1				ATPase isoform		
			 	1kb	716	0.5
83	1207	gi62248	Homo sapiens	TANK binding kinase TBK1	716	86
	1070	68	Home gandens		242	
84	1210	gi17964	Homo sapiens	complement	242	61
	1227	6	Home gariera	component Cls	296	6 -
85	1211	gil4831 87	Homo sapiens		270	65
-06	1214	gi78006	Streptococcus	PspA	121	37
86	1214	38	pneumoniae	Lahw	121	3'
87	123	Y44810	Homo sapiens	Human	218	93
0'	143	144010	110110 Saptens	Aspartic	210	93
1]			Protease-2	1	
				(NHAP-2).		
88	1259	gi21166	Homo sapiens	EAR-1r	128	70
"	1227	72	Lomo Dapteris	·	·	1
89	1266	gi72431	Homo sapiens	KIAA1372	403	53
39	1 200	25	Lomo Daptens	protein		
90	1270	gi12894	Homo sapiens	diacylglycerol	125	96
1	1270	45		kinase epsilon		
1	1		1	DGK	1	
L		<u> </u>	L	1	L	l

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	1
	USSN				Score	
ļ	09/48					
	8,725	}			i .	1
91	1290	gi14293	Drosophila	ubiquitin-	470	41
		71	melanogaster	specific		
				protease		
92	1291	Y66755	Homo sapiens	Membrane-bound	993	100
			-	protein		
				PRO1185.	ļ	
93	1296	gi96520	Homo sapiens	scavenger	1183	99
1	1	87	_	receptor	``	
				cysteine-rich		i i
	1	1		type 1 protein		<u> </u>
ł	1	1		M160	ł]
	[1		precursor	}	ļ
94	1299	gi73003	Drosophila	CG7683 gene	397	40
		98	melanogaster	product	1	
95	1317	gi36951	Rattus	CL1AA	216	100
		15	norvegicus			
96	132	gi18717	Homo sapiens	12-	176	97
		1		lipoxygenase		
97	1330	Y12482	Homo sapiens	Human 5' EST	65	44
Ì	ļ			secreted		j
				protein		
98	1336	gi10798	Homo sapiens	MLTK-beta	2366	99
		814				
99	135	gi45609	Homo sapiens	effector cell	190	74
	İ	0		protease	1	1
				receptor 1		
100	1356	gi19305	Mus musculus	envelope	131	36
l	1	7	!	polyprotein		1 1
				precursor		
101	1369	gi45865	Homo sapiens	glucocorticoid	596	89
Į		7		receptor	ļ	
				alpha-2	<u></u>	
102	1392	gi84935	Mus musculus	nuclear	145	59
1		19		localization] .]
				signal binding		
103	1400	gi31270	Pattur	protein	156	
103	1408	g131270 51	Rattus · norvegicus	potassium channel	176	84
		31	Thorvegicus	regulatory		
			[protein KChAP		
104	141	gi64536	Mus musculus	putative	204	
104	141	13	ras masculus	putative protein kinase	204	33
105	1424	gi29825	Homo sapiens	neuropathy	769	100
1 103	1424	01	nomo saptens	target	/69	100
		1 1		target esterase		1
106	143	W50033	Homo sapiens	Human immunity	1201	98
100	143	1,30033	110000 saptens	related	1201	70
				factor.		
107	1431	gi10644	Heterodera	hypothetical	133	36
L	1421	3-10044	1 cerodera	117 POCHECT CAT	133	

To To No.	SEQ	SEQ	Acces-	Species	Description	Smith	99
NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO: NO:		_	i	Spools	505011501011	_	_
In USSN 09/48 8,725 565 glycines esophageal gland cell secretory protein 10 1441 gi30440 Myxococcus unknown 149 32 32 32 32 32 32 32 3			1 -			Water	racinercy
USSN 09/48 8,725 565 Glycines esophageal gland cell secretory protein 10 1441 gi30440 Myxococcus xanthus 86 xanthus 2483 Homo sapiens adaptor protein pl30cas 1615 97 97 1615 1615 97 1615 1615 97 1615 1615 97 1615 16	10.		NO.				
09/48 8,725 565 glycines esophageal gland cell secretory protein 10 1441 gi30440 Myxococcus ceretory protein 10 149 32 32 32 32 32 357127 Saturbus 36 31 31 31 31 31 31 31							
8,725 S65 Glycines esophageal gland cell secretory protein 10						SCOLE	
108	1						
108		8,725					
Secretory protein 10 1441 gi30440 Myxococcus unknown 149 32 32 32 32 32 32 33 34 34	}	Ì	565	glycines			
108	l	ł	}		r =		
108							
86					l =		
109	108	1441	gi30440	Myxococcus	unknown	149	32
81		1		xanthus			
110	109	1444	gi72483	Homo sapiens	adaptor	1615	97
110		ļ	81		protein	\	
Telated Polypeptide Poly	1				p130Cas		
111 1457 W19919 Homo sapiens Human Ker-1 (kinase suppressor of Ras) Ras) Ras	110	1447	Y65168	Homo sapiens	Human 5' EST	403	97
111	1			_	related		
111	1	1			polypeptide	1	1
112 1471 G02532 Homo sapiens Human 97 59	111	1457	W19919	Homo sapiens		227	77
Suppressor of Ras). Suppressor of Ras).		113,	112322	nome suprems		557	, ,
Ras .			}		1	1	
112]			1	ĺ
Secreted protein, 113	112	1 4 77	002533	Home ganiens		67	F0 -
113	112	14/1	G02532	HOMO Sapiens		9/	29
113			İ			ŀ	
Table Tabl					I		
Suppressor protein DICE1 114 1474 Y64896 Homo sapiens Human 5 EST related polypeptide 115 1483 gi43621 Homo sapiens KIAA0037 295 76	113	1473	1 -	Homo sapiens		281	100
1474 Y64896 Homo sapiens Human 5' EST related polypeptide		1	1 74				
114			1				·
Telated polypeptide 115							· · · · · · · · · · · · · · · · · · ·
115	114	1474	Y64896	Homo sapiens		197	100
115	İ	ļ	1				
8	L	<u> </u>		·			
116 1486 gi58528 Homo sapiens bridging integrator-2 133 64 117 149 gi33271 Homo sapiens KIAA0674 protein 2243 98 118 1503 gi17367 gi17367 escherichia coli Escherichia coli 1270 97 119 1506 gi40622 escherichia coli YhhI protein 612 90 120 1513 gi40623 escherichia coli 556 94 121 1514 gi21660 escherichia coli PhoQ protein 661 90 122 1523 gi57127 exattus colium transporter carl 1178 90 123 1527 gi18539 exattus morvegicus calcium transporter carl 171 84 123 1527 gi18539 exattus musculus glucocorticoid receptor interacting protein 1 171 84 124 1536 Y17227 Homo sapiens Human 452 100	115	1483	gi43621	Homo sapiens	KIAA0037	295	76
34							
117	116	1486	gi58528	Homo sapiens		133	64
118	}		34		integrator-2		
118	117	149	gi33271	Homo sapiens	KIAA0674	2243	98
85 coli			62		protein		
85 coli	118	1503	gi17367	Escherichia		1270	97
98 coli 120 1513 gi40623 Escherichia coli 121 1514 gi21660 Escherichia phoQ protein 661 90 9 coli 122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 Ration receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100			1 -	coli			
98 coli 120 1513 gi40623 Escherichia coli 121 1514 gi21660 Escherichia phoQ protein 661 90 9 coli 122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 Ration receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100	119	1506	gi40622	Escherichia	YhhI protein	612	90
120 1513 gi40623 Escherichia coli 121 1514 gi21660 Escherichia coli 122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100			1 -	1			
46 coli	120	1513				556	94
121 1514 gi21660 Escherichia coli 122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 80 receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100							
9 coli 122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100	121	1514	1		PhoO protein	661	90
122 1523 gi57127 Rattus calcium transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100			_				1
56 norvegicus transporter CaT1	122	1523			calcium	1178	90
CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100	122	1323					-
123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100			30	1.01 1091000	1		
80 receptor interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100	100	1527	mi10530	Mug meganina		177	01
interacting protein 1 124 1536 Y17227 Homo sapiens Human 452 100	123	127/	_	mus musculus	, -	1 1/1	04
protein 1	1		80				
124 1536 Y17227 Homo sapiens Human 452 100							
secreted	124	1536	Y17227	Homo sapiens		452	100
	L	<u> </u>			secreted		<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	왕
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	-
	in				man	
	USSN				Score	
	09/48					
	8,725	İ				
				protein (clone		
				ya1-1).	٠.	i
125	154	gi85150	Pinus taeda	putative	81	40
		90		arabinogalacta	1	İ
•		[n protein		
126	1544	gi38799	Caenorhabditi	Similarity to	134	34
		33	s elegans	Xenopus F-	(
		}		spondin	\	
		Ì		precursor (PIR		
	į]		Acc. No.		
·				comes from		
				this gene		
127	1554	gi65238	Homo sapiens	S1R protein	255	84
		17				
128	1555	gi66352	Homo sapiens	beta-	210	90
1		05		ureidopropiona		
				se		
129	1556	Y39286	Homo sapiens	Phosphodiester	161	61
1	1			ase 10 (PDE10)	l	1
				clone FB93a.		İ
130	1564	gi89779	Streptomyces	putative	231	45
	ļ	45	coelicolor	secreted		
ļ			A3 (2)	serine	1	
				protease		
131	1576	gi30258	Rattus	signal	183	97
1	,	28	norvegicus	transducer and		i
	Ì	1		activator of		
l	[l		transcription	ļ	
132	1570	gi51065	Wana gandana	transcriptiona	758	98
132	1578	72	Homo sapiens	l activator	/58	98
		12		SRCAP		
133	1579	gi85755	Homo sapiens	toll-like	595	99
133	15/5	27	nomo sapiens	receptor 8	393	33
134	158	gi40605	Mus musculus	protein kinase	168	70
134	130	8	Mas mascaras	process kinase	100	'0
135	1580	gi63340	Gallus gallus	c-Rmil	231	90
136	1588	gi22179	Homo sapiens	PKU-alpha	127	92
-50	1300	31		-110 012	1 -2'	1
137	1589	gi12724	Mus musculus	Phosphoinositi	720	99
-5.		22		de 3-kinase	.20	
138	159	gi22246	Homo sapiens	KIAA0344	215	43
		29				-5
139	1600	gi10160	Rattus	neural cell	543	93
		12	norvegicus	adhesion		
	}		-J	protein BIG-2		
	}	i		precursor		[
140	161	gi66495	Homo sapiens	kidney and	1651	98
		83		liver proline		
L	L	L	L		L	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion		-	-	Identity
NO:	NO:	No.			Water	-
i '	in	Ì			man	
	USSN	ł			Score	
!	09/48	ļ			[
	8,725					
		1.000		oxidase 1		
141	1612	gi40611	Rattus	protein kinase	125	89
142	1615	3 gi21999	norvegicus	I	150	7.0
142	1012	2	Homo sapiens	phSR2	150	78
143	1620	gi57146	Homo sapiens	serine/threo-	126	71
ł		36		nine protein	\	
<u>'</u>	ĺ			kinase Kp78]	
				splice variant CTAK75a		
144	1644	Y13352	Homo sapiens	Amino acid	2542	100
1]		sequence of		
ļ)		protein	/	
				PRO228.		
145	1647	Y99444	Homo sapiens	Human PRO1575	704	100
ļ				(UNQ781) amino		
116	1650	gi37897	Trans sandana	acid sequence	0.71	100
146	1650	1 g13/89/	Homo sapiens	transmembrane receptor UNC5C	271	100
147	1663	W75258	Homo sapiens	Fragment of	163	-96
147	1003	W13238	nomo saprens	human secreted	163	.96
		ł		protein]
•				encoded by		
				gene 26.		
148	1665	gi10432	Homo sapiens	secreted	1428	99
		431		modular		i
				calcium-	}	
				binding		
L				protein		
149	1671	gi67081	Mus musculus	inositol	169	97
		69		phosphatase	ļ	
150	1650	V60993	770	eSHIPD183	1020	
150	1672	Y68773	Homo sapiens	Amino acid sequence of a	1030	99
		1		human		
·		}	ļ	phosphorylatio		
1				n effector		
				PHSP-5.		
151	1678	gi60630	Homo sapiens	tousled-like	132	86
]		17		kinase 1		
152	1680	gi35106	Homo sapiens	nuclear	278	80
		03		receptor co-		
				repressor N-	,	
				CoR		
153	1692	gi15460	Homo sapiens	farnesol	165	100
	1.22	84	0	receptor HRR-1	188	
154	1698	gi52046	Oryctolagus cuniculus	597 aa protein	177	94
		9	Culliculus	related to		
L	L	L		TETALER LO	LJ	

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion			- '	Identity
NO:	NO:	No.			Water	2
	in				man	
	USSN				Score	
	09/48					
	8,725					
	0,723			Na/glucose		
				cotransporters		
155	1702	gi10432	Homo sapiens	COCTAIISPOTCETS	519	95
122	1702	382	nomo sapiens		519	95
	7.004		******	***	214	
156	1704	Y91668	Homo sapiens	Human	214	75
1				secreted	· '	
		[protein		
1 1		1		sequence		
				encoded by		
				gene 73		
157	1708	gi30807	Mus musculus	growth factor	457	78
		57		independence-		
				1B		
158	1716	gi29653	Homo sapiens	putative	220	92
	ļ			oncogene		
159	173	gi34524	Rattus	serine/threo-	699	100
		73	norvegicus	nine protein		
				kinase TAO1		
160	1731	Y27581	Homo sapiens	Human	774	100
1			_	secreted	1	
	İ			protein	1	
	}			encoded by	ł	
1				gene No. 15.	İ	
161	1732	gi96520	Homo sapiens	scavenger	1025	98
		87	-	receptor		
				cysteine-rich	Ì	Ī
1	[type 1 protein	i	
1				M160		
1				precursor	1	
162	174	Y35923	Homo sapiens	Extended	1691	100
			•	human secreted	1	
İ				protein		ļ
			!	sequence,		
163	1740	Y53014	Homo sapiens	Human	337	60
-05				secreted	55.	
1.			[protein clone	i	
		1		fn189 13		
			1	protein		
				sequence		l I
164	1748	gi77702	Homo sapiens	PRO2822	218	93
104	1/40	37	TOUR SAPTETIS	FR02022	410	33
165	1757	gi89798	Homo sapiens	 	306	50
165	1751	25	THOMO Sabrens		300	50
155	1		ITemo conioni		1 2 2 2 4	
166	1755	R95332	Homo sapiens	Tumor	1184	62
Į.	ļ			necrosis	}	
1				factor		
			1	receptor 1		
				death domain		1
L	<u> </u>	<u> </u>	L	ligand (clone	L	<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.			Water	
	in				man	1
ļ	USSN	ĺ			Score	
	09/48					
	8,725			20071		
167	1762	gi73809	Homo sapiens	3TW). Gem-	1545	99
167	1/62	47	nomo saprens	interacting	1313]]
] '		protein		
168	1776	gi59122	Homo sapiens	hypothetical	224	100
100	1	65	nome ouplois	protein		
169	1777	Y70461	Homo sapiens	Human	413	95
		ļ	-	membrane	\	
				channel		
	}			protein-11		
				(MECHP-11).		
170	1781	R26060	Homo sapiens	Growth Factor	398	98
				Receptor Bound	•	1
				protein GRB-		
			<u> </u>	1.	1381	
171	1796	gi10312 169	Homo sapiens	serine	1381	99
	ļ	169		carboxypepti- dase 1		
				precursor		
				protein		
172	180	gi30025	Homo sapiens	neuronal	477	61
	-50	27		thread protein	1	1
· '				AD7c-NTP	ŀ	
173	182	gi73851	Homo sapiens	HBV pX	2066	82
		31		associated		
				protein-8;		
	<u> </u>			XAP-8		
174	1820	G03249	Homo sapiens	Human	370	97
			•	secreted		
175	1822	gi47396	Oryctolagus	protein,	1048	90
175	1822	914/396	cuniculus	members of	1040	30
			Canicaras	sodium-glucose		-
				cotransporter		
				family		İ
176	1829	gi10440	Homo sapiens	FLJ00012	310	96
		355		protein		
177	1832	gi16565	Oryctolagus	phosphorylase	146	96
		0	cuniculus	kinase beta-		
				subunit		
178	1834	W75132	Homo sapiens	Human	423	47
				secreted		
				protein		
		1		encoded by gene 11 clone]
				HCENJ40.		
179	1837	gi60369	Saimiriine	ORF	615	71
''	103,	910000	herpesvirus 2	48~EDLF5~sim.		-
		1		to EBV BRRF2		
L	<u> </u>		L	J	1	L

SEQ	SEQ	Acces-	Species	Description	Smith	9
	. ~	sion	species	Descripcion	SILLCII	
ID	ID				TV - t	Identity
NO:	NO:	No.			Water	
	in	Ì			man	
1	USSN				Score	
ł	09/48					
Į.	8,725	ļ				
180	1859	gi99896	Homo sapiens	ROR2 protein	645	87
		96	_	_		
181	1880	gi73408	Mus musculus	chondroItin	275	40
		47		4-		
}	1	1 -	•	sulfotransfera	[
	[<u> </u>				
100	1001			se		100
182	1881	gi75732	Homo sapiens		298	100
	L	91				
183	1890	gi31499	Homo sapiens	ST1C2	183	94
	İ	50				
184	1899	gi21432	Homo sapiens	Phosphoino-	346	98
1		60		sitide 3-	1	
1 .	ł	ļ		kinase		
185	19	gi18085	Homo sapiens	U2AF1-RS2	224	46
1 -00		82	nomo bapieno	0214 1 102		10
186	192	G03192	Homo sapiens	Human	267	86
186	192	G03192	Homo sapiens	1	267	86
	ì	Ì		secreted		
				protein,		
187	1922	gi48585	Mus musculus	IB3/5-	1206	78
	ļ	8		polypeptide		
188	1945	gi37261	Homo sapiens		1402	97
189	195	W67863	Homo sapiens	Human	551	98
1	ĺ		_	secreted		•
1				protein		
				encoded by		
Ì		ľ		gene 57 clone	ľ	
				HFEBF41.		
190	1957	gi40673	Homo sapiens	Shb	263	44
1 100	1,22,	8	nous saptens	31115	203	7.7
102	1969	1 -	***	77 770500	075	
191	1969	Y41701	Homo sapiens	Human PRO708	975	98
İ		•		protein		
				sequence.		
192	1970	gi39798	Caenorhabditi	Weak	254	49
		17	s elegans	similarity to	1	
1.		1		Human	1	
				tyrosine-		
		1		protein kinase		
1		ļ		CSK		
193	1973	G00796	Homo sapiens	Human	365	98
				secreted		
				protein,		
194	1985	gi45586	Homo sapiens	Putative	1420	99
1 232	1,05	37	TOWN PAPTETTS		1420	
1		3/		homolog of	1	
+				hypoxia		
1				inducible]	
1	į	!		factor three		•
	1			_ 1 _ h _	1	l
				alpha		
195	1986	gi44550	Homo sapiens	host cell	367	50
195	1986	gi44550 15	Homo sapiens		367	50

NO: NO: NO: NO: NO NO: NO NO: NO NO: NO NO: NO NO	15 00 00
NO: NO: NO. NO. NO. NO: NO: NO	00
in USSN 09/48 8,725	00
USSN 09/48 8,725 LCP	00
196 2 G02532 Homo sapiens Human secreted protein, 197 2004 gi10503 Homo sapiens type A calpain-like protease 1075 198 2023 gi16513 Escherichia coli 1075	00
196 2 G02532 Homo sapiens Human secreted protein, 106 8 1075	00
196 2 G02532 Homo sapiens Human secreted protein, 106 8 107	00
197 2004 giloso3 Homo sapiens type A calpain-like protease	00
197 2004 gi10503 Homo sapiens type A calpain-like protease 1 1	00
197 2004 gi10503 Homo sapiens type A calpain-like protease 1075	00
198 2023 gil6513 Escherichia coli 199 2025 Y71069 Homo sapiens Human membrane transport protein, MTRP-14. 200 2038 gi85725 Homo sapiens associated lectin type-C 201 2041 gi37400 Homo sapiens trk-2h polypeptide 202 2043 W75096 Homo sapiens Human secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human secreted protein encoded protein secreted secreted protein secreted	00
198 2023 gi16513 Escherichia 1075 5 5 5 5 5 5 5 5 5	00
198 2023 gil6513 Escherichia coli 1075 107	00
199 2025 Y71069 Homo sapiens Human membrane transport protein, MTRP-14. 200 2038 gi85725 Homo sapiens membrane-associated lectin type-C 201 2041 gi37400 Homo sapiens trk-2h polypeptide 228 polypeptide 228 240 202 2043 W75096 Homo sapiens Human secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human secreted protein, 204 2072 gi21165 Rattus cationic 1025 340 100	00
199 2025 Y71069 Homo sapiens Human membrane transport protein, MTRP-14. 200 2038 gi85725 Homo sapiens membrane-associated lectin type-C 201 2041 gi37400 Homo sapiens trk-2h polypeptide 202 2043 W75096 Homo sapiens Human secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human secreted protein, secreted protein, cationic 1025	
membrane transport protein, MTRP-14.	
transport protein, MTRP-14.	18
200 2038 gi85725 Homo sapiens membrane- associated lectin type-C	ı Q
MTRP-14.	ι Ω
200 2038 gi85725 Homo sapiens membrane- associated lectin type-C	18
201 2041 gi37400 Homo sapiens trk-2h polypeptide	112
lectin type-C	, 0
201 2041 gi37400 Homo sapiens trk-2h polypeptide 228 202 2043 W75096 Homo sapiens Human 290 secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human 595 secreted protein, 204 2072 gi21165 Rattus cationic 1025 30 30 30 30 30 30 30	
202 2043 W75096 Homo sapiens Human 290 Secreted Protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human 595 Secreted Protein	
202 2043 W75096 Homo sapiens Human secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human 595 secreted protein, 204 2072 gi2l165 Rattus cationic 1025	39
Secreted protein encoded by gene 40 clone HNEDJ57. 203 2068 G03394 Homo sapiens Human 595 secreted protein, 204 2072 gi2l165 Rattus cationic 1025	
protein encoded by gene 40 clone HNEDJ57.	38
encoded by gene 40 clone HNEDJ57.	
gene 40 clone HNEDJ57.	
HNEDJ57. 203 2068 G03394 Homo sapiens Human 595 secreted protein, 204 2072 gi2l165 Rattus cationic 1025	
203 2068 G03394 Homo sapiens Human 595 secreted protein, 204 2072 gi21165 Rattus cationic 1025	
Secreted protein,	97
	• •
204 2072 gi21165 Rattus cationic 1025	
204 2072 9121200 1440040	35
52 norvegicus amino acid	
transporter 3	
	39
9 melanogaster	
	94
40	
207 2084 gi96631 Homo sapiens hypothetical 874	99
28 protein	
200 2000 322000	.00
590 bicarbonate	
cotransporter-	•
like protein	•
205 2005 311.050 1101111111111111111111111111111111	•
01 coli binding	98
component of a	98
transport	98
system	• 98
210 2057 170100 110110 1101110 1101110	
membrane	98
channel	

TD No: No: No. No. No. No. No. No. No. No. No. No.	SEQ	SEQ	Acces-	Species	Description	Smith	<u> </u>
NO:	1	· ·		-F	200012601011	_	
In USSN 09/48 8,725 Protein-10 (MECHP-10).	1					Water	
USSN 09/48 8,725						1	
09/48 8,725						i	
8,725						50016	
211 2108 gi32075 Rattus hexokinase 767 74	Į		Į		}	ļ	
MECHP-10 Mechanise Mech	ļ	0,723			protoin-10		
211 2108 gi32075 Rattus norvegicus RTAAl176 3710 99 99 213 2118 W74797 Homo saplens Secreted Protein encoded by gene 68 clone HKIXR69 91 2144 2134 gi17809 Homo saplens branched chain acyl-CoA oxidase 215 2146 gi76881 Homo saplens Miman moded by gene 68 clone HKIXR69 209 97 215 2146 gi22804 Homo saplens hypothetical protein encoded by gene 68 clone HKIXR69 217 2153 gi18424 Rattus ankyrin 592 88 29 norvegicus binding cell adhesion molecule neurofascin 218 2155 gi65267 Homo saplens Epsisk 1126 100 219 2161 gi73004 Drosophila melanogaster Foduct melanogaster Human 186 91 186 220 2163 Y52296 Homo saplens homologue-3 (HiH-3). 221 2173 W34526 Homo saplens homologue-3 (HiH-3). 222 2178 gi33605 Rattus norvegicus human to fragment 261 41 prostate tumor EST fragment derived protein fragment 261 41 prostate tumor EST fragment derived protein fragment 261 41 prostate tumor EST fragment derived protein fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus fragment 261 41 prostate morvegicus morvegicus fragment 261 41 prostate morvegicus fragment 261 41 protein 4 protein 4 protein 4 protein 4 protein 4 protein 4 protein 5 protein 5 protein 5 protein	ļ				. –	ļ	·
08 norvegicus	211	21.00	gi 32075	Pattuc		767	74
212 2111 gi63302 Homo sapiens KIAA1176 3710 99 99 97 100 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 96 156 156 96 156 156 96 156 156 96 15	211	2100	. –	i i	Hexorinase	/ "	/4
33 Homo sapiens Human 156 96	212	2111	t .		WT221176	3.55	
213 2118 W74797 Homo sapiens Human secreted protein encoded by gene 68 clone HKIKR69.	212	2111	-	HOMO Sapiens		3710	99
Secreted protein encoded by gene 68 clone HKIKR69 Secreted protein encoded by gene 68 clone HKIKR69 Secreted protein encoded by gene 68 clone HKIKR69 Secreted protein chain acyl-CoA oxidase hypothetical protein p	0.10	0110			I. -		
Protein encoded by gene 68 clone HKIXR69. Protein chain acyl-CoA oxidase Protein chain acyl-CoA Protein chain acyl-CoA oxidase Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Protein chain acyl-CoA Prote	213	2118	W74797	Homo sapiens	[156	96
Second Strict Second Stric			1		-		}
September Sept	1				1 -		1
HKIXR69 Branched 209 97 97 97 97 97 97 97							
214 2134 gi17809 Homo sapiens branched chain acyl-CoA oxidase 215 2146 gi76881 Homo sapiens hypothetical protein 100 85 100							
91							
Oxidase	214	2134	gi17809	Homo sapiens	branched	209	97
215 2146	1		91		chain acyl-CoA		[
48			l		oxidase	1	
216	215	2146	gi76881	Homo sapiens	hypothetical	1038	100
S					protein		<u> </u>
217 2153 gil8424 Rattus norvegicus binding cell adhesion molecule neurofascin	216	2149	gi22804	Homo sapiens	KIAA0376	917	100
29			85	_			
29	217	2153	gi18424	Rattus	ankyrin	592	88
adhesion molecule neurofascin 218 2155 gi65267 Homo sapiens Eps15R 1126 100 219 2161 gi73004 Drosophila CG7709 gene product 220 2163 Y52296 Homo sapiens Human 186 91 isomerase homologue-3 (HIH-3). 221 2173 W34526 Homo sapiens hTCP protein fragment. 222 2178 gi33605 Rattus Citron-K 299 94 norvegicus kinase 223 2180 Y74008 Homo sapiens Human prostate tumor EST fragment derived protein #195. 224 2184 gi53041 Mus musculus 225 2186 gi40177 Homo sapiens ribosomal protein S6 kinase 3 226 2190 gi57729 Homo sapiens The hal225 gene product is related to			_	norvegicus			
			ļ				
218 2155 gi65267 Homo sapiens Eps15R 1126 100 219 2161 gi73004 Drosophila CG7709 gene product			1		molecule		}
218 2155 gi65267 Homo sapiens Eps15R 1126 100 219 2161 gi73004 Drosophila CG7709 gene product 27			1		neurofascin		
91 2161 gi73004 Drosophila CG7709 gene product 27 melanogaster product 28 2163 Y52296 Homo sapiens Human isomerase homologue-3 (HIH-3). 221 2173 W34526 Homo sapiens hTCP protein fragment. 164 93 93 222 2178 gi33605 Rattus Citron-K 299 94 223 2180 Y74008 Homo sapiens Human prostate tumor EST fragment derived protein #195. 224 2184 gi53041 Mus musculus 225 2186 gi40177 Homo sapiens Tibosomal protein 56 kinase 3 226 2190 gi57729 Homo sapiens The hal225 gene product is related to 100	218	2155	qi65267	Homo sapiens	-	1126	100
27			_				
27	219	2161	gi73004	Drosophila	CG7709 gene	200	33
220 2163 Y52296 Homo sapiens Human isomerase homologue-3 (HIH-3).			-				
isomerase homologue-3 (HIH-3).	220	2163	t		1	186	91
homologue-3 (HIH-3).					ł de la la la la la la la la la la la la la	100	
CHIH-3 .			Ĩ			1	
221 2173 W34526 Homo sapiens hTCP protein fragment. 164 93			Į.		_		
fragment. 222 2178 gi33605 Rattus Citron-K 299 94 12 norvegicus kinase 223 2180 Y74008 Homo sapiens Human prostate tumor EST fragment derived protein #195. 224 2184 gi53041 Mus musculus 130 41 225 2186 gi40177 Homo sapiens ribosomal protein S6 kinase 3 226 2190 gi57729 Homo sapiens The hal225 gene product is related to	221	21.73	W34526	Homo saniene		164	93
222 2178 gi33605 Rattus Citron-K 299 94				Dupicin		104	
12 norvegicus kinase	222	2178	gi33605	Rattus		290	Ω4
223 2180 Y74008 Homo sapiens Human prostate tumor EST fragment derived protein #195. 130 41	1.22	21/0	i -		1	499	²⁴
prostate tumor EST fragment derived protein #195.	223	2180	1	_		261	41
EST fragment derived protein #195. 224 2184 gi53041 Mus musculus 130 41 225 2186 gi40177 Homo sapiens ribosomal 142 64 protein S6 kinase 3 226 2190 gi57729 Homo sapiens The hal225 gene product is related to	""	2100	1,4000	110mo saprens	- · · · · · · · · · · · · · · · · · · ·	201	44
derived protein #195.		1			-		
224 2184 gi53041 Mus musculus 130 41					_		
224 2184 gi53041 Mus musculus 130 41		}					
225 2186 gi40177 Homo sapiens ribosomal 142 64 protein S6 kinase 3 226 2190 gi57729 Homo sapiens The hal225 176 100 gene product is related to	224	2104	G153041	Mug muggeslee	Procern #195.	122	
4 protein S6 kinase 3 226 2190 gi57729 Homo sapiens The hal225 176 100 gene product is related to		_	_				
kinase 3	425	\\ \nabla \tag{1}	1 -	nomo sapiens		142	64
226 2190 gi57729 Homo sapiens The hal225 176 100 gene product is related to			4				
5 gene product is related to			<u></u>		1		
is related to	226	2190	! -	Homo sapiens		176	100
			5		, -		
human alpha-			1		Į.		1 1
					human alpha-]

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.			Water	
	in	ļ			man -	}
	USSN				Score	
	09/48	i i		•		1
	8,725					
				glucosidase.		
227	2210	gi20553	Rattus	transmembrane	620	90
		92	norvegicus	receptor	ļ	l
				UNC5H1	1260	
228	2214	gi78617	Homo sapiens	low density	1360	98
ļ		33		lipoprotein		
]				receptor related	\	
ì				protein-		
				deleted in		
				tumor		
229	2223	gi79591	Homo sapiens	KIAA1464	884	99
229	2223	89	nomo sapiens	protein	001	
230	223	W88627	Homo sapiens	Secreted	300	77
230	223	700027	ITOMO Dapaciis	protein		''
		Ì		encoded by		
				gene 94 clone		1
		1		HPMBO32.		
231	2233	qi78395	Homo sapiens	organic anion	1092	99
232	5555	87		transporting		
		1		polypeptide 14		
232	2237	gi10440	Homo sapiens	FLJ00033	1212	99
		400	-	protein		
233	2251	gi59237	Homo sapiens	zinc metallo-	277	44
		86		protease	ŀ	
1				ADAMTS6		
234	2256	W63698	Homo sapiens	Human secreted	516	100
				protein 18.		
235	2259	gi46787	Homo sapiens	hypothetical	387	36
		22		protein		
236	2262	Y33741	Homo sapiens	Beta-	793	99
		1.000.0		secretase.		- 04
237	2265	gi70185	Homo sapiens	hypothetical protein	608	94
1000	2077	45	Homo sapiens	unknown	684	53
.238	2271	gi41861 83	TOMO Saprens	anniown	004	33
239	2273	gi72430	Homo sapiens	KIAA1327	1031	100
439	22/3	35	1101110 Dapteris	protein	-552	-55
240	2280	gi58096	Homo sapiens	sperm membrane	342	95
230	2200	78		protein BS-63	1	'-
241	2286	gi62246	Homo sapiens	Na+/sulfate	1221	99
		91		cotransporter		
				SUT-1		
242	2291	gi20762	Rattus	úromodulin	345	50
		1	norvegicus			
243	2292	gi72963	Drosophila	CG5274 gene	272	35
		04	melanogaster	product		
244	2294	Y28503	Homo sapiens	HGFH3 Human	320	98
			-	Growth Factor		
<u> </u>			L	 		

SEQ SEQ Acces- Species Desc ID ID sion NO: NO: No.	- Identi	
NO: NO: NO.		Lty
	Water	Į
in	man	
USSN	Score	
09/48		
8,725		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ogue 3.	
	peptide 223 86	
fragme		
encode gene 4		
246 2303 gi71101 Homo sapiens guani		
60 nucleo		
exchan		
factor		
	ım/calmod 576 84	
, , , _ , _	lependent	
1 1 1	n kinase	
· · · · · · · · · · · · · · · · · · ·	alpha	
248 2309 Y95433 Homo sapiens Human	calcium 1203 99	
channe	el soc-	
	C-1 C-	
termin		
	eptide.	
1 , - , - , - , - , - , - , - , - ,	77 gene 689 79	
43 melanogaster produc		
200 200 10000	breast 202 59	
	related	
protei BCRB2.		
251 2329 G01772 Homo sapiens Humar		
251 2529 G01//2 Homo saptems secret		i
protei	1 1	
l l l l l l l l l l l l l l l l l l l	1 PRO1071 886 99	
protei	i	
sequer		
253 2342 gi37864 Caenorhabditi	268 42	
30 s elegans		
254 2350 gi93010 Homo sapiens prote		
4 tyrosi		
	natase	
	nemokine 679 99	
91 CCL28	NAC 357	
1 1 1 -	a-NAC, 357 41	
89 muscle	fic form	
specii gp220	10 101111	
257 2374 G03172 Homo sapiens Humar	1 112 78	
257 2374 GUS172 Hollio Sapielis Hullar secret		
protei	1 1	
258 2387 gil3991 Homo sapiens pyruv		
	rogenase	
	e isoform	
4		
259 2401 G01757 Homo sapiens Human	612 99	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-F		_	Identity
NO:	NO:	No.			Water	1
	in				man	
	USSN				Score	
	09/48					
	8,725					
<u> </u>	0,723			secreted	 	
				protein,	Į	
260	2409	gi18112	Homo sapiens	cleavage	194	86
200	2405	3	nomo bapaono	signal 1	-5-	}
ļ	1		•	protein		l i
261	2431	gi70185	Homo sapiens	hypothetical	473	50
201	2431	47	nomo saprens	protein	1,3	"
262	2432	gi48264	Homo sapiens	Processi	327	39
262	2432	96	nomo saprens		327	3,
262	2467	G03667	Homo sapiens	Human	640	97
263	240/	303667	TOWN Sabrens	secreted	0.50	"
]	j]		protein,	1	
1254	2477	gi76881	Homo sapiens	hypothetical	1284	91
264	2471	1 -	HOMO Sapiens	protein	1204) 31
-	2470	48	Home gamina	1 -	615	90
265	2478	g179081	Homo sapiens	polycystic kidney	012	90
	1	9		1 -		[
İ				disease-		
	1			associated		
				protein		
266	2484	gi33270	Homo sapiens	KIAA0633	1747	99
		80		protein		
267	249	G03793	Homo sapiens	Human	139	65
1				secreted	1	
				protein,		
268	2490	gi64673	Homo sapiens	thyrotropin-	757	98
		71	Ì	releasing	1	1
				hormone		
Ì	i			degrading		
				ectoenzyme		
269	25	G03203	Homo sapiens	Human	137	65
	}			secreted		1
1	l			protein,		
270	2504	gi40977	Homo sapiens	HBV	166	74
ļ		12		associated]
L	l			factor		
271	2506	gi20727	Homo sapiens	Na+/nucleoside	201	95
] _		84		cotransporter		
272	2507	gi59240	Homo sapiens		335	38
1		07			<u> </u>	<u> </u>
273	2510	gi77173	Homo sapiens	beta-site	383	89
	1	85		APP-cleaving		
1				enzyme 2, EC		1
				3.4.23.		<u> </u>
274	2523	gi33970	Homo sapiens	1	150	96
		9				
275	253	gi36615	Homo sapiens	serine/threo-	391	77
				nine protein		ţ
1	ł	1	1	kinase_	1	
276	2533	gi45896	Homo sapiens	KIAA0985	191	61
				<u> </u>		

D	SEQ	SEO	Acces-	Species'	Description	Smith	8
NO: In USSN 09/48 8,725 14	_	ID	1	<u>.</u>			
USSN 09/48 8,725 14	NO:	NO:	No.			Water	1
14		in	İ			man	
8,725	-	USSN				Score	
14		09/48					
2536 gi20886 S5 Selegans Similarity to the CDC2/CDX subfamily of ser/thr protein kinases YSPL-1 form 2 280 80		8,725					
S S S S S S S S S S					<u> </u>		
the CDC2/CDX subfamily of ser/thr protein kinases	277	2536		-		419	55
Subfamily of ser/thr protein kinases			85	s elegans			
Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein kinases Ser/thr protein Ser/thr pr							
Protein Rinases Ratus Protein Rinases Ratus Protein Requested Ratus Protein Protein Protein Protein Protein Protein Protein	1		1				
Name Name			1				
278						\	
25	278	2544	gi 10024	Mus musculus		280	- 00
280 2580 gi30044 Rattus putative 382 49	270	2344		mas mascaras	1371-1 101111 2	280	"
Sequence Sequence	279	2568	Y41738	Homo sapiens		379	49
280 2580 gi30044 82 82 82 82 82 82 82			}]	
82 norvegicus integral membrane transport protein						<u> </u>	
Section Sect	280	2580	•			382	49
281 2593 gi73000 Drosophila respect protein			82	norvegicus			
281 2593 gi73000 Drosophila C34525 gene 582 50	ł		İ				
281 2593 gi73000 A9 melanogaster product melanogaster product 334 90		1			-		
49 melanogaster product	201	2502	m: 73000	Dragonhila	1		
282 2600 gi45304 Homo sapiens thyroid hormone receptor- associated protein complex component TRAP240	201	2593	-	1 -		582	50
37 hormone receptor-associated protein complex component TRAP240	282	2600	1			334	90
receptor-associated protein complex complex component TRAP240	202	2000	1 -	nomo suprens	L.	334	
associated protein complex component TRAP240							
Complex component TRAP240 TRAP24	1		1		ì -		
Component TRAP240 Comp		ł			protein		
TRAP240 TRAP240	ł				complex		
283 2625 gi80996 Homo sapiens toll-like receptor 9 form A 284 2641 gi14801 Escherichia tolA 692 100 285 2667 gi17503 Pseudomonas aeruginosa Phosphate synthetase large subunit 286 2670 gi48834 Mus musculus RNA binding protein 287 2673 Y66656 Homo sapiens Membrane-bound protein PRO943. 288 2676 gi38859 Mus musculus mismatch-specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical protein 280 2670 gi64534 Homo sapiens hypothetical protein		•			component		
S2	Ĺ			<u> </u>		L	
Section Form A	283	2625	_	Homo sapiens	•	761	96
284 2641 gi14801 Escherichia coli 285 2667 gi17503 Pseudomonas Carbamoyl- phosphate synthetase large subunit 286 2670 gi48834 Mus musculus RNA binding protein 287 2673 Y66656 Homo sapiens Membrane- bound protein PRO943. 288 2676 gi38859 Mus musculus mismatch- specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical protein			52		_		
9 coli 285 2667 gi17503 Pseudomonas Carbamoyl- 143 76 87 aeruginosa phosphate synthetase large subunit 286 2670 gi48834 Mus musculus RNA binding protein 287 2673 Y66656 Homo sapiens Membrane- 1869 98 288 2676 gi38859 Mus musculus mismatch- 123 88 78 specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical protein 280 protein			1000				
285 2667 gi17503 Pseudomonas aeruginosa Phosphate synthetase large subunit 286 2670 gi48834 Mus musculus RNA binding protein 287 2673 Y66656 Homo sapiens Membrane-bound protein PRO943. 288 2676 gi38859 Mus musculus mismatch-specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical protein	284	2641	-	1	tolA	692	100
87 aeruginosa phosphate synthetase large subunit 286 2670 gi48834 Mus musculus RNA binding 139 92	285	2667	gi17503		Carbamoyl-	143	76
Synthetase large subunit			_			ľ	·
286 2670 gi48834 Mus musculus RNA binding 139 92					synthetase	1	
37	L						
287 2673 Y66656 Homo sapiens Membrane- bound protein PRO943. 288 2676 gi38859 Mus musculus mismatch- 78 specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical 38 protein	286	2670	1 -	Mus musculus		139	92
bound protein PRO943.			1		1		
PRO943. 288 2676 gi38859 Mus musculus mismatch- specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical 38 protein	287	2673	Y66656	Homo sapiens	1	1869	98
288 2676 gi38859 Mus musculus mismatch- 78 specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical 38 protein]		_]	
specific thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical 465 82 protein	200	2676	di38820	Mus musculus		133	0.0
thymine-DNA glycosylate 289 2680 gi64534 Homo sapiens hypothetical 465 82 protein	~~~	2076	1 -	Mus musculus		123]
glycosylate 289 2680 gi64534 Homo sapiens hypothetical 465 82 38 protein			'				
289 2680 gi64534 Homo sapiens hypothetical 465 82 grotein]		!				
38 protein	289	2680	gi64534	Homo sapiens		465	82
			-				
290 2682 gi18417 Mus musculus GATA-5 527 77	290	2682	gi18417	Mus musculus	GATA-5	527	77

SEQ	SEQ	Acces-	Species	Description	Smith	- ક
ID	ID	sion	_		_	Identity
NO:	NO:	No.	•		Water	_
1	in				man	
	USSN				Score	
	09/48					
	8,725					
		56		cardiac		
ļ	İ	j		transcription		
				factor		
291	2684	gi98449	Homo sapiens	nicotinic	294	88
į		20		acetylcholine		
]				receptor		
ŀ	ĺ			subunit alpha		
				10		
292	2695	gi17897	Escherichia	putative	879	98
L	2.555	64	coli	transport	03.5	
293	2697	gi34922	Escherichia	peripheral	936	99
}		9	coli	membrane		
	2600	-140621	Hack out ab to	protein	737	100
294	2698	gi40621	Escherichia coli	•	/3/	100
205	2700	94 gi52924	Escherichia	homoserine	578	100
295	2700	_	coli	kinase	5 /8	100
296	2704	0 gi15528	Escherichia	hypothetical	420	100
296	2704	31	coli	Hypothetical	420	100
297	2712	gi17896	Escherichia	putative ATP-	262	100
231	2/12	72	coli	binding	202	100
		/ 2	0011	component of a		
· .	ļ	ŀ		transport		
		1		system		
298	2716	gi40624	Escherichia	Transmembrane	382	100
		09	coli	protein dppC		
299	2719	gi30497	Escherichia	matches	921	95
		6	coli	PS00017:		
				ATP_GTP_A and		
	-			PS00301:		
				EFACTOR_GTP;		
				similar		
300	2724	gi14585	Escherichia	nmpC	647	97
		6	coli			
301	2725	gi17894	Escherichia	putative	312	100
		73	coli	transport		
<u></u>		1,005	<u></u>	protein		
302	2728	gi18055	Escherichia		222	97
1-202	2729	61 gi43248	coli Escherichia	·	655	0.7
303	2129	9143248	coli		033	91
304	2744	gi39629	Escherichia	similar to E.	675	100
304	2/44	9139629	coli	coli pyruvate	0/3	100
			5511	formate-lyase		
				activating		
1		1		enzyme		}
305	2749	gi17426	Escherichia		592	100
		48	coli	ļ ·		-30
306	2752	gi40622	Escherichia	Sensor kinase	357	100
		1 3		I		

SEQ	SEQ	Acces-	Species	Description	Smith	ojo
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.		•	Water	
ł	in	į į			man	
	USSN				Score	
Ì	09/48					
	8,725					
		36	coli	CitA		
307	2762	gi17877	Escherichia	putative	342	100
}		95	coli	LACI-type	ļ	
			•	transcriptiona		
300	2764	gi17997	Escherichia	l regulator putative	151	84
308	2/64	43	coli	LACI-type	131	04
		43	COLI	transcriptiona		[[
				l regulator		ļ
309	2768	gi40596	Escherichia	yohG	534	94
309	2700	4	coli	700	334) 1
310	2774	gi40623	Escherichia		387	97
310]	38	coli			'
311	2790	gi40623	Escherichia	·	420	86
		38	coli		ļ	
312	2800	gi17898	Escherichia	putative	572	100
		05	coli	transport	Ĭ	
313	2811	gi53053	Mus musculus	protein	421	49
ŀ	ŀ	33		kinase Myak-S]	}
314	2827	gi10047	Homo sapiens	KIAA1588	531	97
		251		protein		
31/5	2830	G02872	Homo sapiens	Human	185	62
	-			secreted		1
				protein,		
316	2836	gi19117	Cricetulus	cAMP-	1677	97
	İ	5	sp.	dependent	1	
				protein kinase alpha-		
1				catalytic	1	
	j	Ì		subunit		1
317	2851	gi55884	Homo sapiens	BCL2/adeno-	220	61
]		6		virus E1B		
1				19kD-	1	
				interacting		
				protein 3		
318	2856	gi38822	Homo sapiens	KIAA0745	232	93
	1	11_		protein		
319	2866	gi63297	Homo sapiens	KIAA1119	1331	91
	1	08		protein		1
320	2874	gi28530	Mus musculus	tousled-like	203	82
		33		kinase	<u> </u>	
321	2882	gi10185	Schizosacchar	hypothetical	318	42
		134	omyces pombe	zinc-finger		1
		1 000 000	172-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	protein	110	
322	2886	G03797	Homo sapiens	Human secreted	140	69
1	1	1		protein,	1	
323	2899	gi42403	Homo sapiens	KIAA0918	170	53
323	2099	25	nomo saprens	protein	"'] 33
L	1		<u> </u>	_ 		1

D	SEQ	SEQ	Acces-	Species	Description	Smith	<u> </u>
NO:				op		-	•
USSN 09/48 8,725 324 2906 Y94988 Homo sapiens Human secreted protein vll_1, 1926 100 1	NO:	NO:	No.			Water	
09/48 8,725 324 2906 Y94988 Homo sapiens Human secreted protein vll_1, 1926 100		in	l			man	
8,725 2906 Y94988 Homo sapiens Human secreted protein vll_1, 1926 100	1	USSN				Score	
324 2906		09/48					
Secreted Secreted	1	8,725					
	324	2906	Y94988	Homo sapiens	Human	1738	100
325 2920 gi94537 Homo sapiens 35 326 2925 gi64348 Homo sapiens 76 100 10						İ	
35	L				protein vl1_1,		
326 2925 gi64348 Homo sapiens CDK4-binding protein p345EII	325	2920	1 -	Homo sapiens		1926	100
76							
327 2930 gi39413 Schistosoma myosin 208 28	326	2925	1 -	Homo sapiens	. –	1210	100
327 2930 gi39413 Schistosoma myosin 208 28			76		, –	N.	
20	227	2020	G: 20412	Cabiatagona	1 -	200	
328 2934 Y31645 Homo sapiens Human transportassociated protein-7 (TRANP-7). 329 2955 G01165 Homo sapiens Human secreted protein, 330 2967 gi72639 Homo sapiens 60 331 2980 gi45895 Homo sapiens KIAA0943 protein 332 2994 G03812 Homo sapiens Human secreted protein, 333 2996 gi98574 Homo sapiens Human secreted protein, 334 2999 Y66697 Homo sapiens Homo sapiens Human secreted protein, 335 3 gi62890 Homo sapiens Membrane-bound protein PRO1383. 335 3 gi62890 Homo sapiens Human CASB47 protein 930 100 337 3013 gi52626 Homo sapiens Human CASB47 557 92 337 3013 gi52626 Homo sapiens Homo Sapie	327	2930	, –		myosin	208	28
transport- associated protein-7 (TRANP-7). 329 2955 G01165 Homo sapiens Human secreted protein, 330 2967 g172639 Homo sapiens g145895 Homo sapiens Human secreted protein, 331 2980 g145895 Homo sapiens Human secreted protein 332 2994 G03812 Homo sapiens secreted protein, 333 2996 g198574 Homo sapiens secreted protein, 334 2999 Y66697 Homo sapiens Human secreted protein, 2666 98 endothelial marker 1 precursor Membrane- bound protein pR01383. 335 3 g162890 Homo sapiens Human Casea bound protein pR01383. 336 3008 Y45219 Homo sapiens Human Casea protein hypothetical protein. 337 3013 g152626 Homo sapiens HTRM clone 1850120 protein sequence. 339 306 g148684 Mesocricetus As auratus interacting protein kinase pRM 340 3061 g143333 Homo sapiens Brotein- protein- sp	328	2934	1		Human	642	63
associated protein-7 (TRANP-7).	320	2331	151045	nomo saprens	1	042	0.5
Protein-7 (TRANF-7) Protein-7 (TRANF-7) Protein-7 (TRANF-7) Protein-7 (TRANF-7) Protein Protei	1				_		
CRANP-7).			ļ				
329 2955 G01165 Homo sapiens Human secreted protein, 330 2967 gi72639 Homo sapiens KIAA0943 1849 94 94 94 94 94 94 94	l		1		1 =		
	329	2955	G01165	Homo sapiens		528	99
330 2967 gi72639 Homo sapiens 466 100				_	secreted		
331 2980 gi45895 Homo sapiens KIAA0943 protein 332 2994 G03812 Homo sapiens Human secreted protein, 333 2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor 334 2999 Y66697 Homo sapiens Membrane-bound protein PRO1383. 335 3 gi62890 Homo sapiens JM24 protein 930 100 336 3008 Y45219 Homo sapiens Human CASB47 protein. 337 3013 gi52626 Homo sapiens hypothetical protein Protein. 338 3041 Y73335 Homo sapiens HTRM clone 1850120 protein sequence. 339 306 gi48684 Mesocricetus auratus interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein-tyrosine			ļ		protein,		
331 2980 gi45895 Homo sapiens KIAA0943 protein 332 2994 G03812 Homo sapiens Human secreted protein, 333 2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor 334 2999 Y66697 Homo sapiens Membrane- bound protein PRO1383. 335 3 gi62890 Homo sapiens JM24 protein 930 100 336 3008 Y45219 Homo sapiens Human CASB47 557 92 337 3013 gi52626 Homo sapiens hypothetical protein 338 3041 Y73335 Homo sapiens HTRM clone 1315 99 339 306 gi48684 Mesocricetus auratus mx- interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- tyrosine 3934 94	330	2967	gi72639	Homo sapiens		466	100
30 protein							
332 2994 G03812 Homo sapiens Human secreted protein, 124 61	331	2980	1 -	Homo sapiens		1849	94
Secreted protein, 333 2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor 2254 100	220	0004					
333 2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor	332	2994	G03812	Homo sapiens		124	61
333 2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor							
100 endothelial marker 1 precursor	333	2996	ai 98574	Homo saniens		2666	0.0
marker 1 precursor	333	2550	1 -	nomo saprens		2000	36
Precursor					1		
334 2999 Y66697 Homo sapiens Membrane-bound protein PR01383. 335 3 gi62890 Homo sapiens JM24 protein 930 100 72 336 3008 Y45219 Homo sapiens Human CASB47 557 92 92 9337 3013 gi52626 Homo sapiens hypothetical protein 1747 100 1315 99 1850120			1			ŀ	
bound protein PRO1383.	334	2999	Y66697	Homo sapiens		2254	100
335 3 gi62890 Homo sapiens JM24 protein 930 100 336 3008 Y45219 Homo sapiens Human CASB47 557 92 protein. 337 3013 gi52626 Homo sapiens hypothetical protein 78 100 338 3041 Y73335 Homo sapiens HTRM clone 1315 99 1850120 protein sequence. 339 306 gi48684 Mesocricetus Mx- interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- tyrosine 3934 94		,	}	<u>-</u>	bound protein		
72 Homo sapiens Human CASB47 557 92					PRO1383.		
336 3008 Y45219 Homo sapiens Human CASB47 protein. 337 3013 gi52626 Homo sapiens hypothetical protein 338 3041 Y73335 Homo sapiens HTRM clone 1315 99 1850120 protein sequence. 339 306 gi48684 Mesocricetus Mx- interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- tyrosine 3934 94	335	3	gi62890	Homo sapiens	JM24 protein	930	100
protein.	<u></u>		1				
337 3013 gi52626 Homo sapiens hypothetical protein 1747 100 338 3041 Y73335 Homo sapiens HTRM clone 1850120 protein sequence. 339 306 gi48684 Mesocricetus Mx-interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein-tyrosine 3934 94	336	3008	Y45219	Homo sapiens	· ·	557	92
78 protein 338 3041 Y73335 Homo sapiens HTRM clone 1315 99 1850120 protein sequence. 339 306 gi48684 Mesocricetus Mx-interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein-tyrosine 3934 94							
338 3041 Y73335 Homo sapiens HTRM clone 1850120 protein sequence. 339 306 gi48684 Mesocricetus Mx- 1867 95 interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- 3934 94 tyrosine	337	3013		Homo sapiens	,	1747	100
1850120 protein sequence.	335	201-		77			
protein sequence.	338	3041	1/3335	nomo sapiens		1315	99
Sequence. Sequence.		1	1				
339 306 gi48684 Mesocricetus Mx- 43 auratus interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- 8 tyrosine 3934 94					-		
43 auratus interacting protein kinase PKM 340 3061 gi43333 Homo sapiens protein- 3934 94 tyrosine	339	306	gi48684	Mesocricetus		1867	95
protein kinase PKM 340 3061 gi43333 Homo sapiens protein- tyrosine protein kinase PKM 3934 94 tyrosine		550	1 -			1 2007)5
PKM PKM 340 3061 gi43333 Homo sapiens protein- 3934 94 tyrosine	1	1	1				
8 tyrosine					_		
8 tyrosine	340	3061	gi43333	Homo sapiens	protein-	3934	94
	1	1	_	-			
					kinase		

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•		-	Identity
NO:	NO:	No.			Water	2.
	in				man	
	USSN				Score	
	09/48					
•	8,725	į			1	
341	309	Y76145	Homo sapiens	Human	1313	99
				secreted		
				protein		
				encoded by		
				gene 22.		
342	3095	gi73001	Drosophila	CG14899 gene	190	57
		59	melanogaster	product		
343	3098	gi53205	Homo sapiens	protein-	2641	86
		6		tyrosine-		
				phosphatase		
344	3105	gi28598	Homo sapiens	mitochondrial	192	71
		7		outer membrane	[
				protein 19		
345	3118	gi99299	Macaca	hypothetical	180	61
		35	fascicularis	protein		
346	3124	gi81319	Mus musculus	transient	226	100
1		03		receptor		
į				potential-		
			,	related	1	
				protein		
347	3126	Y02370	Homo sapiens	Polypeptide	261	100
			•	identified by		
				the signal		
				sequence trap		
348	3166	- 172000	D	method.	F3.4	
348	3700	gi72908 60	Drosophila melanogaster	CG1531 gene product	534	42
349	3175	gi66495	Homo sapiens	kidney and	1752	95
349	31/3	83	HOMO Saprens	liver proline	1/52	95
		63		oxidase 1	ļ	
350	3176	gi72084	Homo sapiens	long-chain 2-	1048	95
] 330	3170	38	110mo sapiens	hydroxy acid	1040	95
}		30	:	oxidase HAOX2		
351	3188	Y02693	Homo sapiens	Human	243	57
""	3200		nome baptans	secreted	243	3,
} ·		}		protein	1	
<u> </u>				encoded by		
]				gene 44 clone		
				HTDAD22.		
352	3191	gi71059	Homo sapiens	calcium	300	96
		26		channel		
1				alpha2-delta3		
				subunit		
353	3208	gi10334	Homo sapiens	MUCDHL-FL	613	98
		774				
354	3226	Y87209	Homo sapiens	Human	3147	99
		}	-	secreted		
				protein		[
<u> </u>		L		sequence		

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	- -	-	l	Identity
NO:	NO:	No.			Water	•
•,•	in				man	
1	USSN	ļ			Score	
	09/48					
1	8,725				i	
355	3235	gi67151	Homo sapiens	Fanconi	1947	99
		35		anemia,		
	}			complementatio		
				n group F		
356	3257	qi54416	Canis	zinc finger	326	42
		15	familiaris	protein		
357	3282	G03002	Homo sapiens	Human	211	61
			•	secreted	\	
	1	İ		protein,		
358	3289	gi32884	Homo sapiens	PI3-kinase	5832	97
		57				
359	3296	gi77701	Homo sapiens	PRO1722	293	64
		39				
360	3298	gi21988	Ambystoma	electrogenic	1278	52
		15	tigrinum	Na+		
1				bicarbonate		
1	1	!		cotransporter;		
1	l			NBC		
361	3303	qi40280	Homo sapiens	potassium	1881	92
		15		channel		
362	3305	gi59029	Homo sapiens	very large G-	1770	100
		66	-	protein	ł	
1]			coupled		
				receptor-1	•	·
363	3308	gi21994	Homo sapiens	The first in-	3967	86
		4	_	frame ATG		
				codon is		i '
				located at		
1	ł			nucleotides	Ī	
	ļ			NPPase.		
364	3325	gi35102	Homo sapiens	R31237 1,	192	94
		34		partial CDS		
365	3341	W78899	Homo sapiens	Human UNC-5	1614	90
				homologue		i
1.]		UNC5H-1.		:
366	3342	gi14782	Mus musculus	PNG protein	341	70
		05	<u> </u>			
367	3350	gi27394	Bos taurus	regulator of	2263	98
		60		G-protein		
1		L		signaling 7		
368	3372	gi76716	Homo sapiens		375	79
L		63	·			
369	338	Y84322	Homo sapiens	A human	2606	100
]	cardiovascular)
				system]
1		1		associated	1	
		1		protein		
				kinase-3.		
370	3383	gi10441	Homo sapiens	protein	1127	100

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	_	_	-	Identity
NO:	NO:	No.	}		Water	_
	in	1			man	
	USSN				Score	
]	09/48					
<u> </u>	8,725	382		165-000		
371	3395	gi53082	Homo sapiens	kinase epidermal	402	47
3/1	3335	3	1101110 sapteris	growth factor	402	47
l				receptor		
			·	kinase		
	ĺ			substrate		(
372	3405	Y29332	Homo sapiens	Human	1220	94
	1	ļ	_	secreted	``	
}				protein clone	}	1
1				pe584_2		
				protein		
				sequence.		
373	3408	gi33347	Homo sapiens	shal-type	2888	90
		41	·	potassium]
374	345	-: 45305	******	channel NAALADase L	500	
3 /4	345	gi45395	Homo sapiens	protein	600	72
375	346	Y95434	Homo sapiens	Human calcium	1802	99
] 3,3	310	133131	nomo bapiens	channel SOC-	1002	
Ì				3/CRAC-2 C-		
				terminal		
				polypeptide.		
376	3470	gi97984	Homo sapiens	putative	277	100
ł	}	52		capacitative	l	
				calcium		
				channel		
377	3482	gi38185	Homo sapiens	cAMP-specific	2353	96
		72		phosphodiester		
		ĺ	,	ase 8B; PDE8B1; 3',5'-		
}]		cyclic		
				nucleotide		
				phosphodiester		
				ase		
378	3492	gi16658	Homo sapiens		3878	99
<u> </u>		25				
379	3530	gi50510	Homo sapiens	KIAA0066	3637	100
300	3533	0	77			
380	3533	Y32169	Homo sapiens	Human growth-	2860	99
1	1	ļ		associated protease		
		1		protease inhibitor		
	1			heavy chain		
1	ļ			precursor.		
381	3545	gi66241	Homo sapiens	F-CC-LOOI.	449	98
}		33				
382	3549	gi14691	Homo sapiens	The KIAA0135	5374	99
		93	_	gene is		
		L		related to		
		•			·	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	_	_	-	Identity
NO:	NO:	No.			Water]
	in				man	1
•	USSN				Score	{
	09/48					
	8,725				,	
				pim-1		
				oncogene.		
383	3595	gi63301	Homo sapiens	KIAA1169	1893	100
		90	·	protein		
384	3601	gi80891	Homo sapiens	tumor	992	99
1		5		necrosis		
			,	factor	\	
	!	1		receptor type		1
		1		1 associated protein		1
385	3612	gi53054	Mus musculus	SH2-B PH	1439	92
303	3012	9153054	Mus musculus	domain	1233	32
ł		1		containing]
				signaling		
		1		mediator 1		
Ì	l	1	ł	gamma isoform	1	1
386	3613	Y32194	Homo sapiens	Human	1438	100
1			_	receptor		
ļ				molecule (REC)	}	
]				encoded by]	j
				Incyte clone		ļ ļ
				266775.		
387	3621	gi89784	Mus musculus		393	68
}		9		ubiquitinating		
		l .		enzyme E2-230		
200	3.504	54555	777	kDa	2005	
388	3624	R47858	Homo sapiens	Human LDL	2895	100
				receptor Domains 1 and		
	İ			2.	l	1
389	3625	Y57949	Homo sapiens	Human	1868	100
""	"""]	January Suppose	transmembrane	1	100
1				protein HTMPN-		
		ļ		73.	1	
390	3626	W69342	Homo sapiens	Secreted	442	94
			_	protein of		
				clone CJ424_9.		1
391	3627	gi65371	Homo sapiens	putative	982	92
ļ		36		organic anion		
		L		transporter	<u></u>	
392	3630	Y06886	Homo sapiens	НWННJ20	1109	91
				polypeptide.		
393	3642	gi48864	Homo sapiens	hypothetical	570	52
		67		protein		
394	3645	gi95884	Homo sapiens		598	98
1222	3647	02 V12050	IVomo geniana	William C.L. DOM		ļ
395	3647	Y12050	Homo sapiens	Human 5' EST secreted	517	98
		1		protein	l	
L	L	I	L	Procern	L	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	0,000000		_	Identity
NO:	NO:	No.			Water	
	in]			man	
	USSN			1	Score	
	09/48				10016	
ļ	8,725				ļ	j
396	3653	Y70018	Homo sapiens	Human	2232	99
		1	l	Protease and	-552	
				associated		
	Į.			protein-12	l	
			•	(PPRG-12).		
397	3676	W67818	Homo sapiens	Human	338	100
55.]	"0,010	IIIIII Supromo	secreted	330	100
1			ļ	protein	\	
l .				encoded by		
				gene 12 clone		
İ]			HMSJJ74.		
398	3677	gi32093	Homo sapiens	HGMP07J	650	52
399	3681	Y48443	Homo sapiens	Human	803	93
	5552			prostate	303	"
[cancer-		
1				associated]
				protein 140.		
400	3682	gi46917	Homo sapiens	ARF GTPase-	2435	91
		26		activating		
1	1			protein GIT1	ļ	
401	3688	gi66938	Homo sapiens	ubiquitin-	1995	99
		24		specific		
				protease		
402	3689	Y94927	Homo sapiens	Human	530	81
			_	secreted		
	1			protein clone		
ļ				ck213 12		
1	i]		protein	1	
<u> </u>				sequence		
403	3690	gi18716	Oryctolagus	ryanodine	594	95
		12	cuniculus	receptor		
404	3706	gi60027	Homo sapiens	membrane-type	2630	94
		14		serine	}	
1				protease 1		
405	3714	gi26957	Homo sapiens	SPOP	553	81
L		. 08	<u></u>			
406	3720	gi93092	Homo sapiens	asc-type	566	95
''		93		amino acid		1
L				transporter 1		
407	3726	gi10440	Homo sapiens	FLJ00026	1023	69
		381		protein		
408	373	gi57146	Mus musculus	alpha 2 delta	243	95
1		96		calcium	1	
1	[[channel	1	
				subunit	1	
409	3788	gi69112	Homo sapiens	type II	841	100
		19]	membrane		
ĺ		ĺ		serine	1	
L				protease		

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	_	-	Identity
NO:	NO:	No.		Ì	Water	-
	in		,		man	
	USSN				Score	ì
ļ	09/48					
ļ	8,725					
410	3789	Y45023	Homo sapiens	Human sensory	1084	95
				transduction		
	l			G-protein	ļ	
	1			coupled		
		i	•	receptor-B3.		
411	3790	gi15240	Homo sapiens	Polio virus	1508	99
1	1	88	Julius Dapadiis	receptor		
	ļ.			protein	`\	
412	3801	gi67236	Homo sapiens	mitotic	2035	99.
412	3001	75	nomo sapiens	kinase-like	2033]],
1		, , ,		protein-1		
413	3803	gi96897	Homo sapiens	mitotic	332	86
413	3003		nomo saprens	kinase-like	332	
ļ	i	3		protein-1		j
1.7.4		7.5504	772		1988	99
414	3820	gi17704	Homo sapiens	NK receptor	1988	99
		78	***		1493	
415	3831	gi27813	Homo sapiens	•	1493	99
		86			0040	
416	3837	gi93678	Homo sapiens	neuronal	2243	99
1	Ì	40		apoptosis		
İ	ļ	1		inhibitory		1
<u></u>	<u>[</u>	<u> </u>		protein 2		
417	385	gi15269	Homo sapiens	ryanodine	149	96
	<u> </u>	78		receptor 2		
418	3856	gi99565	Homo sapiens	interleukin-	147	100
		4		11 receptor	<u> </u>	
419	386	gi49600	Mus musculus	T2K protein	669	66
L		38		kinase homolog		
420	3861	Y74129	Homo sapiens	Human	842	98
	ĺ			prostate tumor	ļ	j (
	1	Į.		EST fragment	1	
		1		derived		
				protein #316.		
421	3883	gi66352	Homo sapiens	beta-	1576	100
		05		ureidopropiona		
L		<u></u>		se		
422	3898	gi37231	Homo sapiens	DNA	8436	99
1	1		[topoisomerasė	ľ	
				II		
423	3921	gi86488	Homo sapiens	putative	131	100
		81		organic anion		
1				transporter		
424	3932	gi85757	Homo sapiens	KRAB zinc	1935	99
		75	_	finger protein		
425	3934	gi46891	Homo sapiens	SIH003	127	92
		28	1	1		
426	3963	gi32129	Homo sapiens		339	64
		96	_			
427	3974	G03790	Homo sapiens	Human	232	63
<u></u>	ــــــــــــــــــــــــــــــــــــــ		1	L	<u> </u>	<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	•	_	Identity
NO:	NO:	No.			Water	
1.0.	in				man	
	USSN				Score	
İ	09/48	İ			00010	
ļ	8,725					
├	0,723			secreted		
ļ				protein,		
428	3983	gi18197	Homo sapiens	vascular	433	85
12.0]	1		endothelial		"
)		1 -	•	growth factor		
429	3999	gi16574	Sus scrofa	300	484	75
120	3333	64	Dab Borora	calcium/calmod	-0-	
ŀ	Ì	"		ulin-dependent	\	
1				protein kinase		
				II isoform		
				gamma-G		
430	4001	gi65722	Homo sapiens	Janua C	329	100
-30	1 -001	30	TOMO DAPTEIR	·	, ,,,	100
431	4009	gi21432	Homo sapiens		521	99
1		60		phosphoinositi		
				de 3-kinase		
432	401	gi65723	Homo sapiens		1372	56
		79	_			
433	4020	gi28156	Homo sapiens	tumor	1252	100
		24	_	necrosis		
			1	factor		
1 .	I	}		superfamily	Ì	1
	'			member LIGHT	ļ	
434	4024	Y21166	Homo sapiens	Human bcl2	84	40
	j	}		proto-oncogene		
	ļ			mutant protein		
	1			fragment 14.		
435	4040	Y57285	Homo sapiens	Human GPCR	1726	99
1		1		protein		
İ	1			(HGPRP)		ī
			-	sequence	ļ.	
		1		(clone ID		
				2214673).		
436	4057	W74873	Homo sapiens	Human	531	100
		1		secreted		
			}	protein		
		1		encoded by		[
1		l		gene 145	ł	
				clone HFXHL79.		
437	4066	G03714	Homo sapiens	Human	92	70
		1		secreted		
				protein,		
438	4067	gi83317	Homo sapiens	LU1 protein	1077	92
		60		·		
439	4078	Y57900	Homo sapiens	Human	996	100
				transmembrane		
		1		protein HTMPN-		
		 , , , , , , , , , , , , , , , , , , ,		24.		
440	4120	gi18715	Homo sapiens	mitogen-	927	100

ID	
in USSN 09/48 8,725 39 activated protein kinase phosphatase 4 4 4123 gi53601 Homo sapiens NY-REN-58 antigen 604 10 72 443 4133 gi85755 Homo sapiens JM24 protein 604 10 72 444 4166 gi61185 Homo sapiens DEAD-box protein abstrakt 9146 10 10 10 10 10 10 10 10 10 10 10 10 10	тсу
USSN 09/48 8,725 39	
09/48 8,725 39	
8,725 39 activated protein kinase phosphatase 4 441 4123 gi53601 Homo sapiens NY-REN-58 antigen 604 10 72 443 4133 gi62890 Homo sapiens Toll-like 755 10 72 444 4166 gi61185 Homo sapiens DEAD-box protein abstrakt 445 4167 gi38008 Rattus putative four repeat ion channel 446 4172 gi72096 Homo sapiens Potassium 369 10 447 4185 gi53054 Homo sapiens Na+/H+ exchanger isoform 2 448 4197 gi28111 Xenopus Xenopus Xenopus Xenopus Xenopus Xenopus Adenderated Aden	
39	
Protein kinase phosphatase 4	
Phosphatase 4	
441 4123 gi53601 Homo sapiens NY-REN-58 antigen 140 10 10	
25	
442 4130	0
72	
27	0
444 4166 gi61185 Homo sapiens DEAD-box protein abstrakt 445 4167 gi38008 Rattus putative four repeat ion channel 446 4172 gi72096 Homo sapiens potassium 369 10 channel Kv8.1 447 4185 gi53054 Homo sapiens Na+/H+ 1769 10 exchanger isoform 2 448 4197 gi28111 Xenopus NaDC-2 524 6 exchanger isoform 2 449 4203 Q89840 Homo sapiens Human death associated protein DAP-3 3. 450 4262 gi59014 Marmota olfactory 209 9 expressions receptor 451 4276 gi32456 Homo sapiens protein-tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10 Canada	0
S5	
Add Al67 gi38008 Rattus putative four G15 90	0
A45 4167 gi38008 Rattus putative four repeat ion channel	
30 norvegicus repeat ion channel	
Channel Ghan	3
446 4172 gi72096 Homo sapiens potassium 369 10	
76 Channel Kv8.1 447 4185 gi53054 Homo sapiens Na+/H+ 1769 10 05 exchanger isoform 2 448 4197 gi28111 Xenopus NaDC-2 524 6 22 laevis Human death 198 9 449 4203 Q89840 Homo sapiens Human death 198 9 aa1 associated protein DAP- 3 450 4262 gi59014 Marmota olfactory 209 9 78 marmota receptor 451 4276 gi32456 Homo sapiens protein- 3270 9 tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10 10 Channel Kv8.1 The same of the second of the same of the	
447 4185 gi53054 Homo sapiens Na+/H+ exchanger isoform 2 10 448 4197 gi28111 Xenopus 2 laevis NaDC-2 524 6 449 4203 Q89840 Homo sapiens Human death associated protein DAP-3. 198 9 450 4262 gi59014 Marmota marmota marmota receptor 0lfactory 209 9 451 4276 gi32456 Homo sapiens protein - tyrosine phosphatase 3270 9 452 4283 R41231 Homo sapiens GAT-2 477 10	0
05 exchanger isoform 2	
isoform 2	0
448 4197 gi28111 Xenopus NaDC-2 524 6 449 4203 Q89840 Homo sapiens Human death associated protein DAP-3. 198 9 450 4262 gi59014 Marmota receptor 209 9 451 4276 gi32456 Homo sapiens protein- yrosine phosphatase 3270 9 452 4283 R41231 Homo sapiens GAT-2 477 10	
22 laevis 449 4203 Q89840 Homo sapiens Human death associated protein DAP- 3. 450 4262 gi59014 Marmota olfactory 209 99 78 marmota receptor 451 4276 gi32456 Homo sapiens protein- tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 100	
aa1 associated protein DAP- 3. 450 4262 gi59014 Marmota olfactory 209 9 78 marmota receptor 451 4276 gi32456 Homo sapiens protein- tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10	7
protein DAP- 3. 3. 3. 3. 3. 3. 3.	7
3. 3. 450 4262 gi59014 Marmota olfactory 209 99 99 99 99 99 99 9	
450 4262 gi59014 Marmota olfactory 209 99 99 99 99 99 99 9	
78 marmota receptor 451 4276 gi32456 Homo sapiens protein- tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10	
451 4276 gi32456 Homo sapiens protein- tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10	2
tyrosine phosphatase 452 4283 R41231 Homo sapiens GAT-2 477 10	
	9
452 4283 R41231 Homo sapiens GAT-2 477 10	
1 1 1 1 1	
	0
1 1 1 1 1	
gene.	
453 4331 gi31719 Homo sapiens RAMP2 443 9	3
12	
454 4340 gi81182 Homo sapiens unknown 1330 10	U
455 4351 gil7545 Rattus 2050 9	2
15 norvegicus aminopeptidase	
-В	
456 4354 Y57906 Homo sapiens Human 1402 10	0
transmembrane	
protein HTMPN-	
30.	
457 4385 gi55964 Homo sapiens candidate 509 9	7
tumor	
suppressor	
protein NOC2	

1 1	SEQ	Acces-			Smith	%
	ID (sion	Species	Description	_	Identity
	NO:	No.			Water	
	in				man	
	USSN				Score	,
	09/48				Deore	
	8,725					
458	4388	W78140	Wome genieng	Human	100	94
458	4300	W/8140	Homo sapiens		100	24
		[secreted	[
				protein	1	
			•	encoded by		
		1		gene 15 clone		
				HSDES04.		
459	4405	Y48226	Homo sapiens	Human	1246	99
				prostate	,	
				cancer-		
))				associated		}
L				protein 12.		
460	441	gi29153	Bovine	BICP4	106	35
1		6	herpesvirus 1		i	
461	4417	gi65625	Homo sapiens	sialin	939	100
1		33				
462	4419	gi18415	Homo sapiens	NG5	146	33
		55				•
463	4443	gi49613	Mus musculus	AMPA	262	94
		9		selective		
1		<u> </u>		glutamate]	
1 1		1		receptor		
464	4470	gi72483	Homo sapiens	adaptor	2592	100
1		81	-	protein		
				p130Cas	ł	
465	4482	gi73299	Homo sapiens	apoptosis	2071	100
		79	_	regulator		
466	4487	gi67066	Homo sapiens		405	100
1		59	-	ļ		
467	4491	gi98373	Homo sapiens	CamKI-like	1044	100
		41	•	protein kinase	_	
468	4492	Y42751	Homo sapiens	Human calcium	586	99
				binding		
				protein 2	ļ]
				(CaBP-2).		1
469	4497	gi61797	Homo sapiens		352	37
		40		paraneoplastic		1
]]	cancer-testis-]]
				brain antigen		
470	4502	gi63297	Homo sapiens	KIAA1124	327	100
10	1302	42	LOMO DAPTEMS	protein	1 32'	
471	4519	Y99426	Homo sapiens	Human PRO1604	1563	100
-/1	エンエ ク	155420	1101110 Baptells	(UNQ785) amino	1303	
				acid sequence		
472	4526	Y08008	Homo sapiens	Human HLIG-1	4023	99
1 = 12	*320	103008	TOMO Sapiens	protein.	4023	
473	4547	G145005	Homo sapiens	KIAA0959	4165	99
4/3	4547	gi45895	HOMO Saprens	1	4105	1 33
1 1 1	4554	62	No	protein	1364	
474	4554	gi13810	Mus musculus		1164	77
Ll		29	<u></u>	<u> </u>	<u> </u>	l

SEQ	SEQ	Acces-	Species	Description	Smith	9
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
475	4555	gi27923	Homo sapiens	unknown	4461	99
175	4-5-	66	*******	protein IT12	1005	
476	457	Y70551	Homo sapiens	Human latent	1825	100
İ				transforming growth		ļ
}				factor-beta	ļ	
		<u>'</u>		binding		
				protein 3 (I).	\	
477	4571	gi53601	Homo sapiens	NY-REN-45	869	100
		15		antigen	1	
478	4613	Y05868	Homo sapiens	Human Toll	2413	100
			_	protein		
				PRO358.	1	
479	4614	Y27129	Homo sapiens	Human bone	1815	100
				marrow-derived		
	}			polypeptide	ļ	
	•			(clone OAF038-		
				Leu).		
480	4622	G03789	Homo sapiens	Human	173	53
				secreted		
481	4667	gi76736	Danio rerio	protein, Dedd1	446	48
401	4007	38	Danio Terro	Deddi	440	40
482	4670	gi40264	Homo sapiens	c-rel	2309	100
		9				
483	4683	Y68773	Homo sapiens	Amino acid	2234	99
		ł		sequence of a		Į i
İ				human		
				phosphorylatio	i	
				n effector		
	1.500		<u> </u>	PHSP-5.		
484	4698	Y73470	Homo sapiens	Human	746	100
1		1		secreted protein clone		
	J]		yd141 1		
	1			protein] [
				sequence		
485	4724	gi64568	Homo sapiens	hypothetical	1101	99
		46	_	protein		
486	4734	gi33349	Homo sapiens	R27216_1	1151	80
		82	L		L	_
487	4814	gi62744	Homo sapiens	pregnancy-	1348	100
	1	73	1	induced growth	i	
				inhibitor		
488	4819	Y07825	Homo sapiens	Human	117	67
		1		secreted		
	1			protein		
		ł		fragment #4 encoded from		
L	l		<u> </u>	erreorer rrou	L	L

SEQ	SEQ	Acces-	Species	Description	Smith	olo So
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	lin				man	
	USSN	ļ		}	Score	
	09/48	<u> </u>			30010	
	8,725	1				
	0,725			7070 20		
100	1001	1101 400	***	gene 28.	1000	
489	4821	Y81498	Homo sapiens	Human foetal	1200	100
				bone-derived		
١.	}		•	growth		
Í				factor-like		
				protein.		
490	4851	gi56894	Homo sapiens	KIAA1077	4364	99
		91		protein		
491	4872	gi59119	Homo sapiens	hypothetical	3723	99
L		53		protein	<u> </u>	
492	4902	B08917	Homo sapiens	Human	717	100
				secreted		
				protein		
				sequence		
		1		encoded by		
				gene 27		
493	5006	gi43577	Homo sapiens	receptor	385	100
		4	_	tyrosine		
	İ			kinase isoform	1	
				FLT4 long,	l	
		-		FLT41 {C-		
	}	ł		terminal}	1	
494	5007	Y93951	Homo sapiens	Amino acid	804	100
				sequence of a		
	l .			Brainiac-5	l	
Ì	•			polypeptide.	Ī	
495	5027	gi35487	Homo sapiens	R33590 1	1606	100
100	302,	91	nomo bapieno	N33330_1	1000	100
496	5029	gi56895	Homo sapiens	KIAA1095	5722	99
1 400	3023	27	nomo saprens	protein	3722	33
497	5033	Y14482	Homo sapiens	Fragment of	166	
. 437	5033	114402	nomo saprens	human secreted	100	66
				protein		
				encoded by		
400	E040	VOECTO	Tiomo as	gene 17.	050	
498	5040	Y95019	Homo sapiens	Human	258	92
		1		secreted		
466	5051		Decides 1:	protein vql_1,		
499	5061	gi13044	Pseudorabies	EP0	85	38
		34	virus			
500	5081	gi40380	Homo sapiens	vascular	134	100
		81		endothelial		
		1		cell growth		
				inhibitor		
501	5129	gi31691	Homo sapiens	BC269730_2	2340	99
L '		58				
502	5139	gi40628	Homo sapiens	HEXIM1	293	47
		56		protein		
503	5174	gi93685	Homo sapiens	140up gene	576	90

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN	i			Score	
ļ	09/48	ļ			_	
	8,725	ì				
		40		product		
504	524	G00329	Homo sapiens	Human	565	100
ŀ				secreted		
				protein,		
505	5291	Y92515	Homo sapiens	Human OXRE-	1271	98
				12.		
506	5335	gi72961	Drosophila	CG3862 gene	753	46
		58	melanogaster	product		
507	5346	Y94987	Homo sapiens	Human	849	100
	Į	ļ		secreted		
				protein vj1_1,		
508	5379	gi71445	Homo sapiens	cytokine-	1353	99
		06		inducible SH2-	l	
	}	İ		containing		
				protein		
509	5441	gi80965	Homo sapiens	similar to	1516	100
		51	ļ	mouse Ehm2		
510	549	Y22113	Homo sapiens	Human ZSMF-3	294	62
		l		protein		,
511	5543	W76267	Yiona ganiana	sequence.	1066	100
511	5542	Y76267	Homo sapiens	Fragment of human secreted	1000	100
	ļ	j		protein]
		1		encoded by		
1	l	İ		gene 11.		
512	5560	G03790	Homo sapiens	Human	103	36
1 322	3300	000770	liomo bapiono	secreted	100	30
				protein,		
513	5696	gi79203	Homo sapiens	PTOV1	1904	91
		98				i
514	5704	B08930	Homo sapiens	Human	987	100
	Ì	1		secreted		
[protein	1	
1	Ì			sequence		
1.		İ		encoded by	1	İ
				gene 2		
515	5758	W18878	Homo sapiens	Human protein	368	100
		1		kinase C		
				inhibitor,	Ì	
		1		IPKC-1.		
516	5760	gi65621	Homo sapiens	hypothetical	425	100
	<u> </u>	76		protein		
517	5763	¥41706	Homo sapiens	Human PRO381	441	100
	1			protein		}
	<u> </u>	1155555		sequence.	L	
518	5787	Y57907	Homo sapiens	Human	952	100
1	1			transmembrane		
				protein HTMPN-]
	<u> </u>	<u> </u>	L	J	L	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	<u>-</u>	-	_	Identity
NO:	NO:	No.			Water	1
	in				man	
	USSN		•		Score	
	09/48				00010	
	8,725					
519	5823	gi98002	rat	pr5	153	36
ĺ]	42	cytomegalovir			
	l		us Maastricht			
520	5886	gi17810	Mus musculus	neuronal	1135	52
	[37		tyrosine	Í	
}				threonine		
1				phosphatase 1		
521	5924	W69221	Homo sapiens	Human parotid	710	96
	1		•	secretory		
İ	ł .			protein.		i
522	5960	Y91529	Homo sapiens	Human	1300	99
122	3500	151525	nomo sapiens	secreted	1300	
	1				ļ	
	İ	ł	3	protein	ì	{
	1	ļ		sequence		
1	1	1		encoded by	ļ	<u> </u>
				gene 79		
523	5962	W69784	Homo sapiens	Protein	395	100
l	ļ	1		Kinase C	ł	ļ
1		1		Inhibitor-like]	
				Protein		
	İ			(IPKC-2).		
524	5969	Y79141	Homo sapiens	Human	1205	79
			_	haemopoietic	ļ	
				stem cell	1	,
	ĺ			regulatory	Į.	
ł		1		protein		
	ļ			SCM113.	ļ	
525	5976	gi78031	Homo sapiens	natural	1808	91
1 323	33.0	0	liomo bapiono	killer	1 -000	
-	i		ļ	associated	ļ	Ì
1	ļ		ļ	transcript 4	į	}
526	6002	gi21045	Homo sapiens	Clanscript 4	4367	67
520	8002	53	nomo saprens		4367	87
527	6008	Y66765	Homo sapiens	Membrane-	822	100
34/	5008	100/02	Homo sapiens	bound protein	022	100
 .	1	1			ļ	1
	6000	1		PRO1384.	L	
528	6020	gi19115	Homo sapiens	cytochrome c-	322	50
		48		like		
				polypeptide		
529	6036	W71362	Homo sapiens	Human	353	51
				cytokine/stero		[
[{	id receptor		1
				protein.		1
530	6070	Y42750	Homo sapiens	Human calcium	626	100
1		1	_ ,	binding		
			[protein 1		
1				(CaBP-1).		
531	6075	gi10732	Homo sapiens	angiopoietin-	2164	100
	33,3	648		like protein	2.01	-55
L	<u> </u>	1 040	I	Tare process	<u> </u>	<u> </u>

D	SEQ	SEO	Acces-	Species	Description	Smith	
In USSN 09/48 8,725	ID	ID	sion	•	_	-	Identity
USSN 09/48 8,725	NO:	NO:	No.			Water	-
09/48 8,725		in	[man	
Second S	}	USSN				Score	
PP1158						[
S32 6106 gi22179 Homo sapiens p40 1349 96	i	8,725					
70							
Sample S	532	6106	1 -	Homo sapiens	p40	1349	96
brain secreted protein dm26 2.	E22	6420		Homo ganiena	Human adult	929	100
S34 6434 Gil0732 Homo sapiens Angiopoietin-like protein PPl158 S35 6439 Gil8970 Homo sapiens Endothelial Gil growth Factor S36 6463 Y41720 Homo sapiens Human PR0792 360 82 Protein S37 6466 Gi48840 Homo sapiens Hypothetical S38 100 Protein S48 Protein S49	333	0420	1 102000	nomo sapiens	1	727	100
Sate							
S34	1	ł			l =		
S35 S439 Gilegro Homo sapiens endothelial cell growth factor	534	6434	gi10732	Homo sapiens	angiopoietin-	2164	100
S35 6439 gil8970 Homo sapiens endothelial cell growth factor			648	_	like protein	}	
1		,			PP1158		
factor f	535	6439	gi18970	Homo sapiens		376	100
S36	1	<u> </u>	1		-		
protein sequence							
Sequence Sequence	536	6463	Y41720	Homo sapiens	1	360	82
S37					, -		ļ į
S48			<u> </u>				
S38 6508 gi54420 Homo sapiens aminopeptidase 2317 96	537	6466	•	Homo sapiens		538	100
30 aminopeptidase 1591 99 91 1540 6719 91 91 91 91 91 91 91	<u> </u>	6500		Homo ganiong	procern	2217	96
S39 6570 gi59214 Homo sapiens 1591 99	538	6508	1 -	Homo saprens	 aminopentidase	2317	96
91 540 6719 gi31847 Homo sapiens glypican 1625 87 180 53 180 53 180 53 180 1	539	6570	1	Homo sapiens	- aminopoporado	1591	99
541 6772 Y65432 Homo sapiens Human 5' EST related polypeptide 180 53 542 6789 gi53729 Homo sapiens ICH-1L 1556 100 543 6805 gi44547 Homo sapiens HSPC007 634 84 544 6833 gi18906 Homo sapiens protein tyrosine phosphatase receptor omicron 5726 87 545 6834 gi59214 Homo sapiens neuropilin 3968 98 546 6851 gi24076 Homo sapiens neuropilin 3968 98 547 6868 gi67146 Drosophila melanogaster MAP kinase phosphatase 218 49 548 6876 Y13138 Homo sapiens Human secreted protein encoded by 5' EST 55T 549 688 Y73463 Homo sapiens Human secreted 701 98			1 -				
related polypeptide	540			Homo sapiens		1625	87
Polypeptide S42 6789 gi53729 Homo sapiens ICH-IL 1556 100	541	6772	Y65432	Homo sapiens	1	180	53
542 6789 gi53729 Homo sapiens ICH-1L 1556 100 543 6805 gi44547 Homo sapiens HSPC007 634 84 544 6833 gi18906 Homo sapiens protein tyrosine phosphatase receptor omicron 5726 87 545 6834 gi59214 Homo sapiens 1746 88 91 Homo sapiens neuropilin 3968 98 41 Drosophila melanogaster MAP kinase phosphatase 218 49 548 6876 Y13138 Homo sapiens Human secreted protein encoded by 5' EST 549 688 Y73463 Homo sapiens Human secreted 701 98							
2							
543 6805 gi44547	542	6789	1 -	Homo sapiens	ICH-IL	1556	100
02	543	6805		Homo saniens	HSPC007	634	84
tyrosine phosphatase receptor omicron 545 6834 gi59214 Homo sapiens 91 546 6851 gi24076 Homo sapiens neuropilin 3968 98 41 547 6868 gi67146 Drosophila MAP kinase 218 49 41 melanogaster phosphatase 548 6876 Y13138 Homo sapiens Human 414 76 secreted protein encoded by 5' EST 549 688 Y73463 Homo sapiens Human 701 98 secreted	343	0003	1 -	nomo sapiens	l mbreso,	034	04
1746 1746 188 18	544	6833	gi18906	Homo sapiens	protein	5726	87
receptor			60	_	tyrosine		
Substitute	i		1		phosphatase		i
545 6834 gi59214 91 Homo sapiens 91 1746 88 546 6851 gi24076 41 Homo sapiens neuropilin 3968 98 98 547 6868 gi67146 Drosophila melanogaster phosphatase MAP kinase phosphatase 218 49 548 6876 Y13138 Homo sapiens Human secreted protein encoded by 5' EST 414 76 549 688 Y73463 Homo sapiens Human secreted 701 98	ļ				receptor		
91 91 98 98 98 98 98 98	l]		omicron		
546 6851 gi24076 41 Homo sapiens neuropilin 3968 98 547 6868 gi67146 prosophila melanogaster MAP kinase phosphatase 218 phosphatase 49 phosphatase 548 6876 Y13138 Homo sapiens Human secreted protein encoded by 5' EST 549 549 688 Y73463 Homo sapiens Human secreted 701 98 protein secreted	545	6834	1 -	Homo sapiens		1746	88
41	<u></u>		1				
547 6868 gi67146 Drosophila melanogaster MAP kinase phosphatase 218 49 548 6876 Y13138 Homo sapiens Human secreted protein encoded by 5' EST 414 76 549 688 Y73463 Homo sapiens Human secreted 701 98	546	6851	1 -	Homo sapiens	neuropilin	3968	98
41 melanogaster phosphatase	F 437	6060		Drogonh: 12	MAD kinggo	210	1
548 6876 Y13138 Homo sapiens Human 414 76 secreted protein encoded by 5' EST 549 688 Y73463 Homo sapiens Human 701 98 secreted	547	6868	_		1	718	49
secreted protein encoded by 5' EST 549 688 Y73463 Homo sapiens Human 701 98 secreted	549	6876			1	414	76
protein encoded by 5' EST	340	00/0	113130	TOWO Baptens		37.3	'8
encoded by 5' EST	}						
EST							
549 688 Y73463 Homo sapiens Human 701 98 secreted	1		1	1			
secreted	549	688	Y73463	Homo sapiens		701	98
protein clone	1		1	_	secreted		
	1				protein clone		

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	-F		-	Identity
NO:	NO:	No.			Water	
NO.	in	NO.			man	
	USSN				Score	
	1				pcore	
1	09/48]				
	8,725					
	•			yk199_1		
Ī				protein		
				sequence		
550	6897	gi58151	Homo sapiens	unknown	509	97
		80				
551	690	gi10645	Homo sapiens	meningioma-	522	100
		186		expressed		
1		1		antigen 5s	,	
Į	1			splice variant	}	}
552	6909	W78149	Homo sapiens	Human	485	100
			-	secreted		
	1	Í		protein	ł	}
	l			encoded by	ł	
	ŀ			gene 24 clone		1
}	Ì			HSVBF78.	ł	ł
553	6924	Y35923	Homo sapiens	Extended	514	99
333	0524	133323	nome suprems	human secreted	327	
1				protein		
				sequence,		
554	6937	G03798	Homo sapiens	Human	281	70
334	693/	G03798	nomo saprems	secreted	281	, ,
		-451105	YY	protein,	364	95
555	6951	gi51185	Homo sapiens	prostate-	364	95
ļ		7		specific	ĺ	
L		707000	**	antigen		
556	7008	G03200	Homo sapiens	Human	548	98
ļ		'		secreted		
				protein,		
557	7009	Y22213	Homo sapiens	Human V201	856	100
1		1		protein		į
	<u> </u>	<u></u>		sequence.		
558	7057	gi60036	Homo sapiens	brain	1814	100
		54		specific	1]
		1		membrane-		
				anchored]
				protein BSMAP		
559	7098	W27291	Homo sapiens	Human H1075-1	712	100
				secreted	1	
}		Į.		protein 5'	1	}
				end.		l_
560	7114	gi32121	Homo sapiens	prefoldin	534	98
		10		subunit 1	ł	
561	712	gi45586	Homo sapiens	P85B_HUMAN;	470	74
		41	_	PTDINS-3-		
				KINASE P85-		
				BETA		!
562	7215	gi48683	Homo sapiens	delta-6 fatty	2437	100
- 3-		66		acid]	
	1		j	desaturase]	ļ
L	ــــــــــــــــــــــــــــــــــــــ	J	L	1	1	L

D	SEQ	SEQ	Acces-	Species	Description	Smith	9
In USN 09/48 8,725 563 7244 Y12445 Homo sapiens Human 5' EST 428 100 568 7248 gi31137 Homo sapiens Human 5' EST 428 100 565 7252 gi56895 Homo sapiens Human 5' EST 5240 100 566 7292 gi51069 Homo sapiens Human 1974 7306 7306 732201 Homo sapiens Human 1974 95 7306 7332201 Homo sapiens Human 1974 95 7306 7338 Y73880 Homo sapiens Human 1974 95 7307 7308 Homo sapiens Human 1566 100	ID	ID	sion	_	- !	-	Identity
USSN 9/48 8,725 563 7244 Y12445 Homo sapiens Human 5' EST 428 100 564 7248 gi31137 Homo sapiens Humig 633 100 565 7252 gi56895 Homo sapiens Humig 5240 100 protein 566 7292 gi51069 Homo sapiens HSPC040 protein 567 7306 Y32201 Homo sapiens Human receptor molecule (REC) encoded by Incyte clone 2057886 .	NO:	NO:	No.			Water	_
09/48 8,725 563 7244 Y12445 Homo sapiens Human 5' EST secreted protein 564 7248 gi31137 Homo sapiens Humig 633 100 565 7252 gi56995 Homo sapiens KIAA1097 5240 100 100 566 7292 gi51069 Homo sapiens HSPC040 580 100 567 7306 Y32201 Homo sapiens Human receptor molecule (REC) encoded by Incyte clone 2057886. 1974 95 100		in				man	
8,725 100 10		USSN				Score	
Transfer Transfer	ļ	09/48					
Secreted protein Secreted Secreted protein Secreted	1	8,725					
Protein Protein Protein	563	7244	Y12445	Homo sapiens	Human 5' EST	428	100
Section Sect					secreted		
Section Sect					protein		
Second S	564	7248	gi31137	Homo sapiens	Humig	633	100
Second S			_				
Secreted protein Secreted Secreted	565	7252	gi56895	Homo sapiens	KIAA1097	5240	100
98							
Table	566	7292	gi51069	Homo sapiens	HSPC040	580	100
Teceptor Teceptor					protein		
Molecule (REC) encoded by Incyte clone 2057886.	567	7306	Y32201	Homo sapiens		1974	95
encoded by Incyte clone 2057886.						ł	
Incyte clone		1	l				
See					encoded by		
The state of the					Incyte clone		
Prostate tumor EST fragment derived protein #67. 1468 100 1468 100 1468 100 1468 100 1468 100 1468 100 1468 100 1468 100 1468 100 1468 100 1468 1	1				2057886.		
EST fragment derived protein #67.	568	7338	Y73880	Homo sapiens	Human	1566	100
derived protein #67.							
			Ì		-		1
The state of the							
317	L				protein #67.		
Secreted protein, Secreted protein, Secreted protein clone eh80_1.	569	736	_	_		1468	100
	570	737	G00851	Homo sapiens	Human	522	98
The following content of the following conte	1				1	(
protein clone eh80_1.					_		<u> </u>
eh80_1. 572 7400 Y93948 Homo sapiens Amino acid sequence of a lectin ss3939 polypeptide. 573 7415 gi30436 Homo sapiens KIAA0573 protein 574 7429 Y40864 Homo sapiens A human glutathione-Stransferase (hGST) protein. 575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens Homo sapiens 1146 99 577 7526 gi41389 Homo sapiens Promyelocytic leukemia zinc 3571 99 100 1982 98 98 98 98 99 578 7415 Gi30436 Homo sapiens Promyelocytic leukemia zinc 3571 99 579 7526 gi41389 Homo sapiens Promyelocytic leukemia zinc 3571 99 570 S70	571	740	W85610	Homo sapiens		1115	87
Table Tabl	1						
Sequence of a lectin ss3939 polypeptide.							
lectin ss3939 polypeptide.	572	7400	Y93948	Homo sapiens		1982	98
polypeptide.			1	· ·		1	
573 7415 gi30436	1						1
70 protein 574 7429 Y40864 Homo sapiens A human glutathione-S- transferase (hGST) protein. 575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens 11 577 7526 gi41389 Homo sapiens promyelocytic 22 leukemia zinc 578 7429 Y40864 Homo sapiens glutathione-S- transferase (hGST) protein designated BMS6. 579 7516 gi44683 Homo sapiens li46 99 leukemia zinc							
The following form The following The fol	573	7415	_	Homo sapiens		2392	100
glutathione-S- transferase (hGST) protein. 575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens 1146 99 11 146 99 11 577 7526 gi41389 Homo sapiens promyelocytic 3571 99 12 1 1 1 1 1 1 1 1			A		1		
transferase (hGST) protein. 575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens 1146 99 11 577 7526 gi41389 Homo sapiens promyelocytic 3571 99 22 leukemia zinc	574	7429	Y40864	Homo sapiens	t .	1183	99
(hGST) protein. 575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens 1146 99 11 577 7526 gi41389 Homo sapiens promyelocytic 3571 99 22 leukemia zinc				1			
protein.	1			[· ·			
575 7458 Y53643 Homo sapiens A bone marrow secreted protein designated BMS6. 576 7516 gi44683 Homo sapiens 11 1146 99 577 7526 gi41389 Homo sapiens promyelocytic leukemia zinc 3571 99	1						
Secreted protein designated BMS6.		7450	VE2C42	Homo comicas		- CC 4	
protein designated BMS6.	3/5	/458	153643	nomo saptens		334	29
designated BMS6.							
BMS6. BMS6.	1					1	
576 7516 gi44683 Homo sapiens 1146 99 577 7526 gi41389 Homo sapiens promyelocytic 3571 99 22 leukemia zinc							
11	576	7516	gi 44693	Homo ganiero	Driot.	11/6	
22 leukemia zinc			11	_			
	577	7526	_	Homo sapiens		3571	99
, , , , , , , , , , , , , , , , , , ,	}	-	22	}		}	
Inger		<u> </u>	1	<u> </u>	finger		L

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion	Spootes	2000112	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48		i,		50010	
	8,725					
<u> </u>	0,723	1		protein;		
l	1			kruppel-like		
1				zinc finger		
}	Ì			protein; PLZF		
578	7571	G02915	Homo sapiens	Human	209	100
3/6	/3/1	902915	nomo sapiens	secreted	209	100
	7674	117 4 70 6	**	protein,	1879	100
579	7614	W74726	Homo sapiens	Human	18/9	100
1				secreted	İ	
	İ	ĺ		protein		
			·	fg949_3.		
580	7663	gi59125	Homo sapiens		1634	100
		48		777 101	0.50	100
581	7686	gi49297	Homo sapiens	CGI-121	870	100
		11		protein	11122	
582	7714	gi38876	Homo sapiens	phospholipase	4428	99
		5		D ·		
583	7724	G03933	Homo sapiens	Human	570	100
				secreted		
		<u></u>		protein,		
584	7834	gi89191	Homo sapiens	mesenchymal	1133	100
		66		stem cell	1	
				protein DSC92		
585	7855	Y48505	Homo sapiens	Human breast	684	100
	ļ			tumour-		
i	Ì		, The state of the	associated		
				protein 50.		
586	7870	Y13372	Homo sapiens	Amino acid	2559	100
}				sequence of		1
				protein		1
	<u></u>	ļ		PRO223.		
587	7871	Y91689	Homo sapiens	Human	768	100
				secreted		
	1			protein]
		ĺ		sequence		
	ļ			encoded by		
<u> </u>	<u> </u>			gene 93		
588	7892	gi34659	Homo sapiens	macrophage	532	100
				inflammatory		ļ
		1		protein-2alpha		
				precursor		
589	7927	gi32575	Homo sapiens		183	91
590	7944	gi16574	Sus scrofa		2744	100
		58		calcium/calmod		j
	1			ulin-dependent		
				protein kinase		1
	1]	J	II isoform]
	<u> </u>			gamma-B		
591	7947	G01131	Homo sapiens	Human	574	96

SEQ	SEO	Acces-	Species	Description	Smith	9,
ID	ID	sion	<u>-</u>		-	Identity
NO:	NO:	No.			Water	
	in		!		man	
	USSN				Score	
	09/48]			1	
	8,725	1				
				secreted		
	İ			protein,		
592	800	gi30214	Homo sapiens	neutral	167	68
		28		sphingomyelina	l '	
				se		
593	8055	gi49296	Homo sapiens	CGI-84	1038	100
		37		protein		
594	8082	gi46790	Homo sapiens	HSPC014	715	100
		14				
595	8127	gi99556	Homo sapiens	twisted	905	. 95
		93		gastrulation		
}	i	1		protein	1	
596	8174	gi55322	Homo sapiens	MUM2	767	100
	ŀ	94				
597	8178	gi45305	Homo sapiens	TADA1 protein	1132	100
İ		87				
598	8215	R66278	Homo sapiens	Therapeutic	830	100
				polypeptide		
		1		from		
1	ł	1		glioblastoma		į i
				cell line.		
599	8263	Y48371	Homo sapiens	Human	713	98
	ł	İ		prostate		
ĺ	1			cancer-	1	
				associated		
1				protein 68.		
600	827	gi31723	Cavia	phospholipase	955	73
Ì		37	porcellus	В	<u> -</u>	
601	828	¥29517	Homo sapiens	Human lung	833	94
1				tumour protein		
				SAL-82	1	
	1			predicted	Ī	
				amino acid		
L		<u> </u>		sequence.		
602	8294	gi49297	Homo sapiens	CGI-149	1085	100
		67		protein	I	
603	8313	gi57714	Homo sapiens	group IID	852	100
		20		secretory		
]	1		phospholipase]
				A2		
604	832	Y86260	Homo sapiens	Human	319	78
		1		secreted		
		1		protein		ļ
		1	<u> </u>	HELHN47,	154	47
605	8357	gi41913	Mus musculus	claudin-7	164	47
	 	58			1666	100
606	8373	gi19452	Homo sapiens	protein	1000	100
L	1	71	170 0	phosphatase 6	1226	100
607	8379	gi58529	Homo sapiens	<u> 1 </u>	1226	1 100

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	<u>-</u>	_	-	Identity
NO:	NO:	No.			Water	-
	in				man	
i	USSN	1			Score	ł
	09/48					ļ
	8,725					
		81		cardiotrophin-		
ļ		ļ		like cytokine	}	, ,
]				CLC		
608	8380	gi34022	Homo sapiens	protein	974	100
		16				
609	8386	gi38698	Homo sapiens	oncostatin M	1297	99
		8				
610	8418	Y70210	Homo sapiens	Human TANGO	722	98
		İ		130 protein.		
611	8442	G01895	Homo sapiens	Human	490	95
]]			secreted	1	
				protein,		
612	8457	G04048	Homo sapiens	Human	450	98
ł				secreted		
1				protein,		
613	8458	W97119	Homo sapiens	S-adenosyl-L-	1484	100
1				methyltransfer		
1		1		ase (SAM-MT)	1	
		l		protein.		
614	8469	gi71597	Homo sapiens		255	100
		99				
615	8480	gi45895	Homo sapiens	KIAA0943	1998	100
		30		protein		· .
616	8521	gi57262	multiple	unknown	250	82
		35	sclerosis	protein U5/2	ļ	
1			associated retrovirus		1	}
			element		l	
617	857	gi96639	Homo sapiens	cysteinyl	612	99
61/	657	58	HOIIIO Saptells	leukotriene	012]
1		30		CysLT2	j	ļ.
1				receptor		
618	8574	gi68412	Homo sapiens	HSPC305	1049	100
310	03,4	60				
619	8606	gi33677	Homo sapiens	scrapie	544	100
		07		responsive		
				protein 1	1	1
620	8632	G01158	Homo sapiens	Human	502	100
				secreted		
	1			protein,		
621	8646	gi38822	Homo sapiens	KIAA0764	2175	100
		49	_	protein		
622	8666	Y66196	Homo sapiens	Human bladder	1080	95
		1	_	tumour EST		
		1		encoded		
	1	1		protein 54.	1	
623	8675	gi99639	Homo sapiens	NPD009	432	96
		08	_			
624	8683	G04018	Homo sapiens	Human	469	98
						

ID No.	SEO	SEQ	Acces-	Species	Description	Smith	용
NO: NO: NO: NO: Water man Score 09/48 8,725 8708 gil6335 Homo sapiens Secreted protein, 364 98 625 8708 gil6335 Homo sapiens C8 364 98 626 8720 gi82484 Homo sapiens sassciated antigen 56A 191 69 627 8756 Y94984 Homo sapiens Human secreted protein vell_1, Fragment of human secreted protein encoded by gene 2. 628 8765 Y00346 Homo sapiens Human secreted protein encoded by gene No. 123. 1068 97 629 8783 Y27918 Homo sapiens Human secreted protein encoded by gene No. 123. Human SIGIRR protein Human secreted protein encoded by gene No. 123. 630 8804 Y25426 Homo sapiens Human FO01343 (UNQ698) amino acid sequence Human PRO1343 1279 100 (UNQ698) amino acid sequence 631 8838 Y99409 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human secreted protein encoded by gene 60 clone HILC/01. Human secreted protein encoded by gene 60 clone HILC/01.	- 1			-1		-	Identity
in USSN 09/48 8,725		NO:				Water	- 1
Secreted Secreted		in				man	
Secreted Secreted		USSN				Score	
Secreted Secreted		09/48					
Secreted protein, Secreted							
625 8708 gil6335 Homo sapiens C8 364 98 626 8720 gi82484 Homo sapiens hepatocellular carcinoma-associated antigen 56A 627 8756 Y94984 Homo sapiens Human secreted protein vell_1, 628 8765 Y00346 Homo sapiens Fragment of human secreted protein encoded by gene 2. 629 8783 Y27918 Homo sapiens Human secreted protein encoded by gene No. 123. 630 8804 Y25426 Homo sapiens Human SIGIRR protein. 631 8838 Y99409 Homo sapiens Human PRO1343 (UNQ698) amino acid sequence Human secreted protein. 632 8851 W74785 Homo sapiens Human PRO1343 (UNQ698) amino acid sequence Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 634 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJO1. 635 Human secreted protein encoded by gene 60 clone HILCJO1. 636 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJO1. 637 Human secreted protein encoded by gene 60 clone HILCJO1. 638 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJO1. 639 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJO1. 640 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJO1. 650 Human secreted protein encoded by gene 60 clone HILCJO1. 650 Human secreted protein encoded by gene 60 clone HILCJO1. 650 Human secreted protein encoded by gene 60 clone HILCJO1. 650 Human secreted protein encoded by gene 60 clone HILCJO1. 650 Human secreted protein encoded by gene 60 clone HILCJO1.					secreted		
626 8720 gis2484 Homo sapiens hepatocellular carcinoma-associated antigen 56A 627 8756 Y94984 Homo sapiens Human secreted protein vell 1, 628 8765 Y00346 Homo sapiens Fragment of human secreted protein encoded by gene 2. 629 8783 Y27918 Homo sapiens Human secreted protein encoded by gene No. 123. 630 8804 Y25426 Homo sapiens Human SIGIRR protein. 631 8838 Y99409 Homo sapiens Human FRO1343 (UNQ698) amino acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene So. 123. 633 8853 W75116 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Ruman secreted protein encoded by gene 60 clone HILCJ01.					protein,		
626 8720 gi82484 Homo Sapiens hepatocellular carcinoma-associated antigen 56A 627 8756 Y94984 Homo Sapiens Human 369 97 628 8765 Y00346 Homo Sapiens Fragment of human secreted protein encoded by gene 2. 629 8783 Y27918 Homo Sapiens Human secreted protein encoded by gene No. 123. 630 8804 Y25426 Homo Sapiens Human SIGIRR protein encoded by gene No. 123. 631 8838 Y99409 Homo Sapiens Human Human R01343 (UNG698) amino acid sequence 454 100 632 8851 W74785 Homo Sapiens Human Secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo Sapiens Human Secreted protein encoded by gene 56 clone HSAXS65. 634 S853 W75116 Homo Sapiens Human Secreted Protein encoded by gene 60 clone HILCUJOI. 635 Human Sapiens Human Secreted Protein encoded by gene 60 clone HILCUJOI. 636 Human Secreted Protein encoded by gene 60 clone HILCUJOI.	625	8708	gi16335	Homo sapiens	C8	364	98
hepatocellular carcinoma-associated antigen 56A			64	•	1		}
Carcinoma-associated antigen 56A Secreted protein vell_1, Fragment of human secreted protein encoded by gene 2. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene No. 123. Secreted protein encoded by gene S	626	8720	gi82484	Homo sapiens		191	69
associated antigen 56A 369 97			65		hepatocellular		
associated antigen 56A	٠,				carcinoma-]
R756 Y94984 Homo sapiens Human secreted protein vell_1,					associated	`	
Secreted protein Secreted protein Secreted protein Secreted Secreted protein Secreted Protein]		antigen 56A	j]
Protein Protein Protein Protein Protein Protein Pragment of 1068 97	627	8756	Y94984	Homo sapiens	Human	369	97
Vell_l, Vell			ĺ		secreted		
1068 97 1068 97 1068 97 1068 97 1068 97 1068 1068 97 1068					protein		
human secreted protein encoded by gene 2. 629 8783 Y27918 Homo sapiens Human secreted protein encoded by gene No. 123. 630 8804 Y25426 Homo sapiens Human SIGIRR protein. 631 8838 Y99409 Homo sapiens Human PRO1343 (UNQ698) amino acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 643 8853 W75116 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJ01.			Í		ve11_1,	ţ	
Protein encoded by gene 2.	628	8765	Y00346	Homo sapiens		1068	97
encoded by gene 2.	,	1	İ		human secreted	1	
Gene 2. Gene 2. Gene 2. Gene 3. Gene 3. Gene 3. Gene 4. Gene 4. Gene 5. Gene 6. Gene			ļ		protein		1 1
1051 95 1051 95 1051 95 1051 95 1051 95 1051 95 1051 95 1051			1		encoded by		
Secreted protein encoded by gene No. 123.		!			gene 2.		
protein encoded by gene No. 123.	629	8783	Y27918	Homo sapiens	Human	1051	95
encoded by gene No. 123.	İ		Ī		secreted	i	(
Gene No. 123. Gene No. 123	ł		}		protein	1	1
630 8804 Y25426 Homo sapiens Human SIGIRR protein. 631 8838 Y99409 Homo sapiens Human PRO1343 1279 100 (UNQ698) amino acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.					encoded by	1	
Protein.	1	}	}		gene No. 123.	_	
631 8838 Y99409 Homo sapiens Human PRO1343 1279 100 (UNQ698) amino acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.	630	8804	Y25426	Homo sapiens	Human SIGIRR	887	100
(UNQ698) amino acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.					protein.		
acid sequence 632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.	631	8838	Y99409	Homo sapiens	Human PRO1343	1279	100
632 8851 W74785 Homo sapiens Human secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.							
secreted protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human secreted protein encoded by gene 60 clone HILCJ01.	j				acid sequence		
protein encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.	632	8851	W74785	Homo sapiens	Human	454	100
encoded by gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.	[1	1			
gene 56 clone HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.			ļ				
HSAXS65. 633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.	1		Ì			ļ	
633 8853 W75116 Homo sapiens Human 245 95 secreted protein encoded by gene 60 clone HILCJ01.		1	ļ	Į.		1	
secreted protein encoded by gene 60 clone HILCJ01.			1		HSAXS65.		
protein encoded by gene 60 clone HILCJ01.	633	8853	W75116	Homo sapiens		245	95
encoded by gene 60 clone HILCJ01.			J		1]
gene 60 clone HILCJ01.	1		1	1			
HILCJ01.							
					1 -		
634 8857 gi25651 Homo sapiens non- 479 74							
	634	8857	-	Homo sapiens	non-	479	74
96 functional	1		96				
folate binding		}					1 1
protein		<u> </u>			1 -		
635 8859 Y02690 Homo sapiens Human 600 100	635	8859	Y02690	Homo sapiens		600	100
secreted]					
protein							1
encoded by				1			
gene 41c lone	L		<u> </u>		gene 41c lone	L	<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	_
	in.				man	
	USSN				Score	
	09/48					
	8,725					
				HSZAF47.		
636	8901	Y86491	Homo sapiens	Human gene	548	99
ļ				59-encoded		
Ì		Į	,	protein	ļ	
				fragment,		
637	8907	W88745	Homo sapiens	Secreted	2004	99
İ				protein	l 、	
				encoded by	,	
1				gene 30 clone	ļ	,
				HTSEV09.		
638	8934	W75088	Homo sapiens	Human	421	98
Ì		1		secreted		
ļ	l	į		protein		
İ				encoded by	ļ	
				gene 32 clone	1	
				HAGBB70.		
639	8960	Y02693	Homo sapiens	Human	267	72
				secreted	1	
				protein	1	
				encoded by	1	
				gene 44 clone		
· _				HTDAD22.		
640	8979	Y76143	Homo sapiens	Human	1374	98
		ŀ		secreted		
}]		protein	ļ	ļ
		ĺ		encoded by		
643	0000	773 7 4 2 2	77	gene 20.	155	100
641	8980	Y11433	Homo sapiens	Human 5' EST	466	100
1		1		secreted	}	ļ
642	8986	G02626	Homo sapiens	protein Human	306	100
042	0000	G02020	TOMO SAPTEMS	secreted	308	100
		1	1	protein,		
643	8987	G02093	Homo sapiens	Human	486	97
043	1 860	G02093	nomo saprens	}	486] "]
1.				secreted protein,		
644	8995	Y12908	Homo sapiens	Human 5' EST	181	100
0 * *	0,333	112308	TOUC Saprens	secreted	1 .01	1 100
l		1		protein	1]
645	9035	Y71108	Homo sapiens	Human	800	100
0 2 3	7033	1,1100	1101110 Saprens	Hydrolase	300	100
				protein-6		[
[1		(HYDRL-6).	1	
646	9062	gi88860	Homo sapiens		523	100
3.5	5002	05	July Suprois	lysophosphatid	525	
		35		ic acid		
				acyltransferas		
			1	e-delta		[
647	9074	Y25761	Homo sapiens	Human	1366	99
<u> </u>						

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	l organia		_	Identity
NO:	NO:	No.			Water	100110107
110.	in	1.0.			man	
	USSN	ļ			Score	
	09/48				50010	
	8,725					
	0,723	 		secreted	 	
				protein		
				encoded from		
	ł			gene 51.		
640	9075	Y73336	Homo sapiens	HTRM clone	1591	100
648] 90/3	1/3336	HOMO Saprems	1852290] 1331] 100
				protein	ļ	
			,	sequence.	N -	
	0000	755000	Wana anni ann	Human	516	100
649	9098	Y57878	Homo sapiens	· ·	210	100
		,		transmembrane		
				protein HTMPN-		
	0.00			2.	1111	
650	9109	gi23903	Homo sapiens	63kDa protein	1141	97
			77	kinase	2505	<u> </u>
651	911	gi32456	Homo sapiens	protein-	2591	100
				tyrosine	1	
				phosphatase		
652	912	gi11367	Homo sapiens	human P5	212	46
		43				
653	9163	Y34129	Homo sapiens	Human	377	71
				potassium		
· ·				channel	[1
				K+Hnov28.	ļ	
654	9164	Y41324	Homo sapiens	Human	1083	99
1				secreted	1	
ļ	1			protein		
			ļ	encoded by		
				gene 17 clone		
	0170		Manage and a second and	HNFIY77.	631	02
655	9173	gi68512	Mus musculus	protein	631	93
		56		tyrosine	İ	
				phosphatase- like protein		'
		1		PTPLB		
656	9187	Y66721	Homo sapiens	Membrane-	1173	95
.030	310/	100/21	TOWN SAPTETTS	bound protein	1113	95
			1	PRO511.		
657	9190	W40378	Homo sapiens	Human breast	792	81
05/	9130	W-103/6	TOWN SAPTELLS	cancer protein	'32	31
l		1		CH14-2a16-1		
				from 2.0 kB		
				DNA fragment		
			,	#2.		
658	9194	Y02781	Homo sapiens	Human	462	70
538	9134	102/01	110 Sapiens	secreted	102	, ,
J		ļ		protein.	1	
659	9210	G02994	Homo sapiens	Human	166	80
039	7210	302334	LOMO Saprens	secreted	100	"
1				protein,		
L	<u> </u>	<u> </u>	l	Process,	L	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	~	-	Identity
NO:	NO:	No.			Water	
	in				man	
ĺ	USSN				Score	
1	09/48	Į.				}
İ	8,725		İ			
660	9222	G02520	Homo sapiens	Human	186	43
Ì	1			secreted		ł
]		Į i		protein,		
661	9230	gi67065	Homo sapiens	inositol	1315	95
,		54		1,4,5-	1	
1		ļ		trisphosphate	į	
				3-kinase B	L	
662	9258	gi52214	Homo sapiens	B-cell growth	120	56
] .		5		factor		
663	9260	G04072	Homo sapiens	Human	138	51
]				secreted		ļ
[Í	,	protein,		[]
664	9271	gi66900	Homo sapiens	tetraspanin	317	67
	Ì	95		protein	İ	
665	9272	gi16304	Bos taurus	factor	444	72
		2		activating	1	
ļ	Ì	1		exoenzyme S	l	
666	9275	gi40177	Homo sapiens	ribosomal	424	81
1		4		protein S6		
1				kinase 3		
667	930	G02355	Homo sapiens	Human	167	41
		ı		secreted	Ĭ	ļ i
	<u> </u>			protein,		
668	9304	gi89797	Canis	Band4.1-like5	1493	93
		43	familiaris	protein		
669	9346	gi27389	Mus musculus	high mobility	384	89
	,	89		group protein	ļ	
				homolog HMG4		
670	9347	gi36613	Homo sapiens		199	91
		į,		serine/threoni	ĺ	
1				ne protein kinase		
		55410	77		334	57
671	935	gi55418 70	Homo sapiens	QA79 membrane protein,	334) 3/
1		/ /		allelic		j
				variant airm-	Ì	
		}		1b	1	
672	9350	gi33271	Homo sapiens	KIAA0655	757	87
1 " "	1 2330	24	omo Dapaciio	protein		
673	9351	W57260	Homo sapiens	Human	573	95
1 3,3) 5551			semaphorin Y.		_
674	9356	gi59977	Human	tripartite	127	59
1	-550	3-222.	endogenous	fusion		
1			retrovirus	transcript		
1				PLA2L		
675	9363	Y17834	Homo sapiens	Human PRO361	968	92
			[protein		
				sequence.		
676	9366	gi72431	Homo sapiens	KIAA1374	649	96
	ــــــــــــــــــــــــــــــــــــــ			 		

SEO	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	opecies	Description	_	Identity
NO:	NO:	No.	,		Water	raciicacy
NO.	in	NO.			man	
	USSN	ĺ			Score	
1	09/48				00010	
	8,725					İ
	0,723	29	 	protein		
677	9369	G03793	Homo sapiens	Human	222	69
				secreted		
1	}	}		protein,]
678	9378	gi44683	Homo sapiens		163	39
1]	11	_			
679	9393	gi27389	Mus musculus	high mobility	384	89
		89		group protein	`	
1				homolog HMG4	1	[[
680	9444	G01399	Homo sapiens	Human	157	93
				secreted		
{	Ì	1		protein,	l	<u> </u>
681	9467	gi44547	Homo sapiens	HSPC007	230	71
	İ	02				
682	9486	gi10047	Homo sapiens	KIAA1584	605	93
		243		protein		
683	949	Y30895	Homo sapiens	Human	704	99
		}		secreted		j .
ŀ	ļ		Ì	protein		ł
ļ	Į.			fragment		ļ
1	}			encoded from		ł
<u> </u>	L			gene 25.		
684	9499	W36002	Homo sapiens	Human Fchd531 gene product.	2173	96
685	9510	gi16657	Homo sapiens	gene produce.	867	83
003	3310	99	nomo saprens	Į.	007	
686	9523	Y53022	Homo sapiens	Human	1252	89
				secreted		
İ			1	protein clone		
1			1	qf116_2		
1				protein		
L	1			sequence		
687	9534	Y66670	Homo sapiens	Membrane-	998	100
	j	Í	İ	bound protein		
1-2-	1 0555	1205-1-	ļ.,	PRO1180.		
688	9539	Y76144	Homo sapiens	Human	633	100
		,	1	secreted		[[
		1		protein		
		1		encoded by]
689	954	G02490	Homo sapiens	gene 21. Human	160	78
1 689	754	GU2430	HOMO Saptems	secreted	1 200	′°
	1			protein,		
690	9546	gi18112	Homo sapiens	chorionic	616	96
1 090	3340	1	110110 Saptens	somatomammotro	010	
		-		pin		
691	955	gi72431	Homo sapiens	KIAA1361	2042	100
		03		protein		- "
692	9551	gi17723	Homo sapiens	ras-related	341	57
	1	1 3				

SEO	SEQ	Acces-	Species	Description	Smith	%
, ~ ,	ID	sion	-	_	-	Identity
NO:	NO:	No.			Water	_
	in				man	ľ
	USSN				Score	
	09/48				}	}
11	8,725					
		45		GTP-binding		
				protein		
693	9558	W88403	Homo sapiens	Human adult	2252	100
				testis		
1				secreted		
1				protein	l	
		155000	***	ga63_6.	100	
694	9561	gi66900	Herpesvirus	NTR	100	30
	0.55	17 Y86260	papio	Human	319	78
695	957	186260	Homo sapiens	secreted	319	/8
]	•			protein		
				HELHN47,	ļ	
-00	9572	gi97294	Mus musculus	Elf-1	806	92
696	95/2	0	Mus musculus	<u> </u>	808	92
697	9576	gi32490	Homo sapiens	geminin	448	98 ·
1		05				
698	9586	gi28872	Homo sapiens	mRNA cleavage	208	100
		88		factor I 25		
				kDa subunit		
699	9587	G00995	Homo sapiens	Human	726	99
•				secreted	}	}
				protein,		
700	9592	gi49527	Rattus	ribosomal	202	78
	0505	3	norvegicus	protein S15a UBASH3A	453	47
701	9595	gi77999 12	Homo sapiens	protein	453	4'
702	9610	Y07875	Homo sapiens	Human	574	100
1 /02	3010	10/8/3	1101110 Saptells	secreted	7,3	100
1 1				protein		l
1				fragment		
ļ :				encoded from	ł	Ì
				gene 24.	Į.	1
703	9634	Y73325	Homo sapiens	HTRM clone	820	99
}			_	001106 protein	1	1
'				sequence.		İ
704	9639	G00805	Homo sapiens	Human	155	67
		<u> </u>		secreted		
		ļ		protein,	1_	1
705	9647	G03786	Homo sapiens	Human	196	73
				secreted		
[}				protein,		
706	9653	gi38823	Homo sapiens	KIAA0810	523	100
		41		protein		
707	9654	G01924	Homo sapiens	Human	469	100
				secreted	1]
				protein,	ļ	
708	9678	Y99376	Homo sapiens	Human PRO1244	474	100
, ,		1	1	(UNQ628) amino	1	1

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	- <u>-</u>		-	Identity
NO:	NO:	No.	·		Water	-
ł	in	1			man	
Ì	USSN				Score	
Í	09/48	ţ				
{	8,725					
				acid sequence		
709	9709	Y11825	Homo sapiens	Human 5' EST	657	100
Ì				secreted		
			·	protein		
710	9722	gi76774	Mus musculus	GTPase Rab37	189	75
	0.77.7	22 Y12424	77	11	207	100
711	9731	Y12424	Homo sapiens	Human 5' EST	207	100
}		•		secreted		
712	9742	Y57954	Homo sapiens	protein Human	484	100
/12	9/42	13/934	nomo saprens	transmembrane	101	100
ĺ				protein HTMPN-		
1	}			78.		
713	9749	gi36878	Homo sapiens	hT41	386	65
		29				
714	9755	gi20552	Homo sapiens	Similar to a	2583	100
1		95		C.elegans		
ì	ļ	ľ	}	protein in		
				cosmid C14H10		·
715	9762	G03436	Homo sapiens	Human	176	61
			•	secreted		
<u></u>		1		protein,		
716	9763	gi61800 11	Homo sapiens	anaphase-	1016	100
ļ				promoting complex		
ĺ		1		subunit 4		
717	9784	G03570	Homo sapiens	Human	401	96
/ ' '	7704	003370	nomo sapiens	secreted	101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1				protein,		
718	9794	G00803	Homo sapiens	Human	333	69
1]	}	1	secreted		
		1		protein,		
719	9795	gi25162	Mus musculus	Rab33B	669	94
		42				
720	9798	gi55859	Homo sapiens	ZID, zinc	605	96
1		9		finger protein		
]		J		with] .	
				interaction		
<u></u>	0005	705007	Trama as a second	domain		
721	9805	Y25881	Homo sapiens	Human secreted	566	96
		l		protein	!	
[i		fragment]	
1	1	1	1	encoded from		
]		gene 61.		
722	9816	gi53205	Homo sapiens	protein-	384	100
		6		tyrosine-		
				phosphatase		
723	9830	G00857	Homo sapiens	Human	539	96
<u> </u>	L			L		

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	550000	Joseph Land	-	Identity
NO:	NO:	No.			Water	
ļ	in	Ì			man	
	USSN				Score	i
	09/48					
	8,725		Í			
				secreted		
				protein,		
724	9836	G00914	Homo sapiens	Human	527	100
Į ,	į			secreted	}	,
				protein,		
725	9837	gi26620	Homo sapiens	KIAA0409	230	67
		99			833	
726	984	Y29517	Homo sapiens	Human lung	833	94
				tumour protein		
	•	{		SAL-82	ĺ	·
				predicted		}
			· ·	amino acid	Ì	
727	0040	mi 72202	Wome comions	sequence.	140	
121	9849	gi72293 05	Homo sapiens	ZNF264, partial cds	140	90
728	9851	gi52625	Homo sapiens	hypothetical	369	64
128	3027	60	HOMO Saprens	protein	309	64
729	9859	gi38819	Homo sapiens	hypothetical	167	93
1 /23	7837	76	110000 Saprens	protein	107) 33
730	9863	gi72957	Drosophila	CG15433 gene	837	78
/30	5005	07	melanogaster	product	037	, ,
731	9888	gi33196	Homo sapiens	F	209	72
,		77				'-
732	989	gi45571	Rattus	zinc finger	604	92
	ļ	43	norvegicus	protein RIN ZF		}
733	9919	G01843	Homo sapiens	Human	586	100
				secreted		
		 		protein,		
734	9922	W67869	Homo sapiens	Human	551	93
Ì				secreted		
	ļ			protein		
		ĺ		encoded by		
				gene 63 clone HHGDB72.	ļ	
735	9947	W78239	Homo sapiens	Fragment of	251	78
				human secreted		'
		}	}	protein	1	
				encoded by		
		1		gene 3.	1	}
736	9956	Y36203	Homo sapiens	Human	273	77
		ļ	_	secreted		
1]		protein #75.		
737	9961	Y99357	Homo sapiens	Human PRO1190	650	99
[(UNQ604) amino	1	[
				acid sequence	}	}
738	9972	Y12149	Homo sapiens	Human 5' EST	284	100
}		1		secreted	1	Į į
				protein	<u> </u>	[i
739	9977	gi10039	Homo sapiens	osteoblast	822	98

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in	i			man	
}	USSN	1			Score	
-	09/48					
	8,725]				
		439		differentiatio		
1				n promoting		
				factor		

Table 3 - Amino Acids

				· · · · · · · · · · · · · · · · · · ·
SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
1	740	2	557	FVGRLLRLGEALRLRPDPSGGCRLQPALVGETEMSEKENNFPP LPKFIPVKPCFYQNFSDEIPVEHQVLVKRIYRLWMFYCATLGV NLIACLAWWIGGGSGTNFGLAFVWLLLFTPCGYVCWFRPVYKA FRADSSFNFMAFFFIFRSPVCPDRHPGDWLLRLGRVRLAVGNW ILPVQPGRCRGHA
2	741	305	838	FLGAGADIFCAYLRMSSKQATSPFACAADGEDAMTQDLTSREK EEGSDQHVASHLPLHPIMHNKPHSEELPTLVSTIQQDADWDSV LSSQQRMESENNKLCSLYSFRNTSTSPHKPDEGSRDREIMTSV TFGTPERRKGSLADVVDTLKQKKLEEMTRTEQEDSSCMEKLLS KDWKE
	742	12	1315	EGYLTGRPTRPVAVRGKSTADLRMMGRSPGFAMQHIVGVPHVL VRRGLLGRDLFMTRTLCSPGPSQPGEKRPEEVALGLHHRLPAL GRALGHSIQQRATSTAKTWWDRYEEFVGLNEVREAQGKVTEAE KVFMVARGLVREAREDLEVHQAKLKEVRDRLDRVSREDSQYLE LATLEHRMLQEEKRLRTAYLRAEDSEREKFSLFSAAVRESHEK ERTRAERTKNWSLIGSVLGALIGVAGSTYVNRVRLQELKALLL EAQKGPVSLQEAIREQASSYSRQQRDLHNLMVDLRGLVHAAGP GQDSGSQAGSPPTRDRDVDVLSAALKEQLSHSRQVHSCLEGLR EQLDGLEKTCSQMAGVVQLVKSAAHPGLVEPADGAMPSFLLEQ GSMILALSDTEQRLEAQVNRNTIYSTLVTCVTFVATLPVLYML FKAS
4	743	112	745	NLPPLTPQPGPRLAGSGPSHWFSPLSLPVASKAPGTMAQALGE DLVQPPELQDDSSSLGSDSELSGPGPYRQADRYGFIGGSSAEP GPGHPPADLIRQREMKWVEMTSHWEKTMSRRYKKVKMQCRKGI PSALRARCWPLLCGAHVCQKNSPGTYQELAEAPGDPQWMETIG RDLHRQFPLHEMFVSPQGHGQQGLLQVLKAYTLYRPEQG
5	744	99	265	LRGMAAAAAGPAASQRFFQSFSDALIDQDPQAALEVGEPFLLP PLPADPPPSSTA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 758	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) WACFRSAHCSRHLRNRIFMYLYWDKTRSPVCKGPALREERPQP RLKLEDYKDRLKSGEHLNPDQLEAVEKYEEVLHNLEFAKELQK TFSGLSLDLLKAQKKAORREHMLKLEAEKKKLRTILOVOYVLO
				NLTQEHVQKDFKGGLNGAVYLPSKELDYLIKFSKLTCPERNES LRQTLEGSTV
7	746	48	450	XAGVQMKLEFLQRKFWAATRQCSTVDGPCTQSCEDSDLDCFVI DNNGFILISKRSRETGRFLGEVDGAVLTQLLSMGVFSQVTMYD YQAMCKPSSHHHSAAQPLVSPISAFLTATRWLLQELVLFLLEW SVWGSX*
8	747	1	469	CRGRLAQLEEAAVAATMSAGDAVCTGWLVKSPPERKLQRYAWR KRWFVLRRGRMSGNPDVLEYYRNKHSSKPIRVIDLSECAVWKH VGPSFVRKEFQNNFVFIVKTTSRTFYLVAKTEQEMQVWVHSIS QVCNLGHLEDGAADSMESLSYTRSYLQ
9	748	242	409	IPAVPLTSCVTVGSYSLSVRDYDPRQGDTVKHYKIRTL\DKRG FYISP\RSTFSTLQ
10	749	1	1146	KDSVLNIARGKKYGEKTKRVSSRKKPALKC/TSQKQPALKATC DKEDSVPNTATEKKDEQISGTVSSQKQPALKATSDKKDSVSNI PTEIKDGQQSGTVSSQKQPAWKATSVKKDSVSNIATEIKDGQI \RGTVSSQRQPALKA\TGDEKDSVSNIAREIKDGEKSGTVSPQ KQSAQKVIFKKKVSLLNIATRITGGWKSGTEYPENLPTLKATI ENKNSVLNTATKMKDVQTSTPEQDLEMASEGEQKRLEEYENNQ PQVKNQIHSRDDLDDIIQSSQTVSEDGDSLCCNCKNVILLIDQ HEMKCKDCVHLLKIKKTFCLCKRLTELKDNHCEQLRVKIRKLK NKASVLQKRLSEKEEIKSQLKHETLELEKELCSLRFAIQQ
11	750	3	892	SPLRYRAGQSGSTISSSSCAMWRCGGRQGLCVLRRLSGGHAHH RAWRWNSNRACERALQYKLGDKIHGFTVNQVTSVPELFLTAVK LTHDDTGARYLHLAREDTNNLFSVQFRTTPMDSTGVPHILEHT VLCGSQKYPCRDPFFKMLNRSLSTFMNAFTASDYTLYPFSTQN PKDFQNLLSVYLDATFFPCLRELDFWQEGWRLEHENPSDPQTP LVFKGVVFNEMKGAFTDNERIFSQHLQNRLLPDHTYSVVSGGD PLCIPELTWEQLKQFHATHYHPSNARFFTYGNFPLDQH
12	751	367	856	RGAKAKSAVLPPGPPCSSILILSPPAPLTPRSPGTEATRPTAM SKSLKKKSHWTSKVHESVIGRNPEGQLGFELKGGAENGQFPYL GEVKPGKVAYESGSKLVSEELLLEVNETPVAGLTIRDVLAVIK HCKDPLRLKCVKQGESSGLLSVLPGGGTARGAGQ
13	752	144	442	SHRPQPDAWRQGNAFQCVQKEKMQVSSAEVRIGPMRLTQDPIQ VLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKH HEIIVIDHRQTQN
14	753	1	581	FRLAGCGHLLVSLIGLLLLLARSGTRALVCLPCDESKCEEPRN CPGSIVQGVCGCCYTCASQRNESCGGTFGIYGTCDRGLRCVIR PPLNGDSLTEYEAGVCEDENWTDDQLLGFKPCNENLIAGCNII NGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARC EVQFSPRCPEDSVLIEGYAPP

CEC	CEC	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	согге-	corre-	K=Lysine, $L=Leucine$, $M=Methionine$, $N=Asparagine$,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T = Threonine, $V = Valine$, $W = Tryptophan$, $Y = Tyrosine$,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
Ì		residue	residue	(—possible nucleotide insertion)
1		of amino	of amino	
1		acid	acid	,
)	1	sequence	sequence	
15	754	1	219	FRMAANVGSMFQYWKRFDLQQLQRELDATATVLANRQDESEQS
	1]	[RKRLIEQSREFKKNTPEVRRVTIVFALKGS
16	755	313	562	ETLSCRIMDHPSREKDERQRTTKPMAQRSAHCSRPSGSSSSSG
			1	VLMVGPNFRVGKKIGCGNFGELRLGEGLPQVYYFGPCGKY
17	756	273	574	GCCKD*HSGVIGRSWAMLFASGGFQVKLYDIEQQQIRNALENI
1	.50			RWASRRSPEGMEVGLFLSVGLVCHILKAMRICDVTFSSDGYCS
}		1		ASELVKARPTVAGM
18	757	3	390	NSRVDDFVSARPKPRPLPRARGMVVVTGREPDSRRQDGAMSSS
10	/3/	, ,	350	DAEDDFLEPATPTATQAGHAL/PPAAT/GSFLRLFPLTSEGLT
}	ļ		}	SLHACPHCGATKTPCWOPCSVGGTTSPRTPRAGTSSTEMAHTL
				EMC
19	758	98	461	RALWVGGCSGEACGIGMSGLLTDPEQRAQEPRYPGFVLGLDVG
119	/58	96	461	SSVIRCHVYDRAARVCGSSVQKVENLYPQIGWVEIDPDVLWIQ
İ	1	i	1	FVAVIKEAVKAAGIQMNQIVGLGISTQRATFITWN
			731	GLAAEQSMQFVKLWCGCSGEFPTRLRRRTPLTEAMEGGPAVCC
20	759	100	/31	ODPRAELVERVAAIDVTHLEEADGGPEPTRNGVDPPPRARAAS
1	}	Ì	1	~
1 .]	1	1	VIPGSTSRLLPARPSLSARKLSLQERPAGSYLEAQAGPYATGP
	1			ASHISPRAWRRPTIESHHVAISDAEDCVQLNQYKLQSEIGKGA
	L	<u> </u>		YGVVRLAYNESEDRHYAMKVLSKKKLLKQYGFPRRPPP
21	760	2	520	FVYGKPVTLWPTISSVVPSTFLGLGNYEVEVEAEPDVRGPEIV
1	ľ	1	1	TMGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILS
	1	ļ	1	LLPLKFFPIIVIGIIALILALAIGLGIHFDCSGKYRCRSSFKC
		<u> </u>		IELIARCDGVSDCKDGEDEYRCVRVGGQNAALQVFTAASRKTM
22	761	158	470	SLAMPFGCVTLGDKKNYNQPSEVTDRYDLGQVIKTEEFCEIFR
		Ì		AKDKTTGKLHTCKKFQKRDGRKVRKAAKNEIGILKMVKHPNIL
		<u> </u>	<u> </u>	QLVDVFVTRKEYFIFLEL
23	762	1	749	QRRRFRAGLWGGHGLTDGLRRNGGCGCSARVPRVGERLRGHRC
		Į.		PDPLCLLLDMLFLSFHAGSWESWCCCCLIPADRPWDRGQHWQL
İ		1		EMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFY
1			İ	KQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYV
1		1	ł	EEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITS
ļ		1	}	DLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAC
24	763	3	558	SCFKGRTGGRSGSSGDSSRWARCGRHFSASTEEPPLSQPCSAL
				PRSGRRGCAVPSSVTKMLSFFRRTLGRRSMRKHAEKERLREAQ
				RAATHIPAAGDSKSIITCRVSLLDGTDVSVDLPKKAKGQELFD
[QIMYHLDLIESDYFGLRFMDSAQVAHWLDGTKSIKKQVKIGSP
		1.		YCLHLRVKFYSS
25	764	9	424	ESRERSGNRRGAEDRGTCGLQSPSAMLGAKPHWLPGPLHSPGL
}	1			PLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGG
}				AALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVN
				EGGGFDRAS
L	L			

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids •	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 507	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) EDVKSYYTVHLPQLENINSGETRTISHFHYTTWPDFGVPQSPA SFLNFLFKVRESGSLNPDHGPVVIHRSAGTGRSSTFSVVHTCL
				VLMEKGDDINIKQVLLNIRKFQMGLI\QTPDQLRFSYMAITEG AKCVKGDSSIQKRWKELSKE/DLPPAFDHSPNKIMTEKYNR
27	766	84	852	LNRQRCGDQVLVPGTGLAAILRTLPMFHDEEHARARGLSEDTL VLPPASRNQRILYTVLECQPLFDSSDMTIAEWVCLAQTIKRHY EQYHGFVVIHGTDTMAFAASMLSFMLENLQKTVILTGAQVPIH ALWSDGRENLLGALLMAGQYVIPEVCLFFQNQLFRGNRATKVD ARRFAAFCSPNLLPLATVGADITINRELVRKVDGKAGLVVHSS MEQDVGLLRLYPGIPAALVRAFLQPPLKGVVMETFGSGNG
28	767	992	210	LFRLAPGFLRSLARQGYHQIWAFPFLPSGATATWPAASRSRSL AARSLPRSPARPGPNDALLGEHDFRGQGVRAQRFRFSEEPGPG ADGAVLEVHVPQIGAGVSLPGILAAKCGAEVILSDSSELPHCL EVCRQSCQMNNLPHLQVVGLTWGHISWDLLALPPQDIILASDV FFEPEDFEDILATIYFLMHKNPKVQLWSTYQVRSADWSLEALL YKWDMKCVHIPLESFDADKEDIAESTLPGRHTVEMLVISFAKD SL
29	768	23	624	SFIYKHTHRARFGPRAIVASPALTAGPHVSLTASCRVGMWVSC SPSPFLHPTNTLVAVLERDTLGIREVRLFNAVVRWSEAECQRQ QLQVTPENRRKVLGKALGLIRFPLMTIEEFAAGNRARAQGLVW EGSGTQVGIW/CTEDSAPEFTAESLADAWHIQIGRNLACEDAS T/WAIC*PRPGSVPTVHTARPRLSCLSSCF
30	769	100	2	MASTQDAELAVSRXRAIALXPGXQSXXPSQKKK
31	770	158	1957	LLKSCGVLLSGVCIPCEGKGPTVLVIQTAVPQDRPTKSSMRSA AKPWNPAIRAGGHGPDRVRPLPAASSGMKSSKSSTSLAFESRL SRLKRASSEDTLNKPGSTAASGVVRLKKTATAGAISELTESRL RSGTGAFTTTKRTGIPAPREFSVTVSRERSVPRGPSNPRKSVS SPTSSNTPTPTKHLRTPSTKPKQENEGGEK\VRLSPK/FRELL AEAKAKDSEINRLRSELKKYKEKRTLNAEGTDALGPNVDGTSV SPGDTEPMIRALEEKNKNFQKELSDLEEENRVLKEKLIYLEHS PNSEGAASHTGDSSCPTSITQESSFGSPTGNQLSSDIDEYKKN IHGNALRTSGSSSSDVTKASLSPDASDFEHITAETPSRPLSST SNPFKSSKCSTAGSSPNSVSELSLASLTEKIQKMEENHHSTAE ELQATLQELSDQQQMVQELTAENEKLVDEKTILETSFHQHRER AEQLSQENEKLMNLLQERVKNEEPTTQEGKIIELEQKCTGILE QGRFEREKLLNIQQQLTCSLRKVEEENQGALEMIKRLKEENEK LNEFLELERHNNNMMAKTLEECRVTLEGLKMENGSLKSHLQG
32	771	203	514	SQMHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRD ESNHLTDLYRRDETIQVKGNGYVQSPRFPNSYPRNLLLTWRLH SQENTRIQLVFDNQFGL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 713	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) PFKKMTDLLRSVVTVIDVFYKYTKQDGECGTLSKGELKELLEK ELHPVLKNPDDPDTVDVIMHMLDRDHDRRLDFTEFLLMIFKLT
				MACNKVLSKEYCKASGSKKHRRGHRHQEEESETEEDEEDTPGH KSGYRHSSWSEGEEHGYSSGHSRGTVKCRHGSNSRRLGRQGNL SSSGNQEGSQKRYHRSSCGHSWSGGKDRHGSSSVELRERINKS HIK
34	773	209	601	VPKISGPDHIDFIPWDQLFMASSSSVTEFLVLGFSSLGELQLV LFAVFLCLYLIILSGNIIIISVIHLDHSLHTPMYFFLGILSIS EIFYTTVILPKMLINLFSVFRTLSFVSCATQMFYEIVGPGTQE R
35	774	373	987	DHSTETPGIPAAEPVSHGTGKLERAPTLPAGAELPAPAAVPCP TL*VC/LYPQLLGLSVATMVTLTYFGAHFAVIRRASLEKNPYQ AVHQWGTQQRLIQHPESGSEGQSLLGPLRAFSAGLSLVGLLTL GAVLSAAATVREAQGLMAGGFLCFSLAFCAQVQVVFWRLHSPT QVEDAMLDTYDLVYEQAMKGTSHVRRQELAAIQ
36	775	102	466	QPGYSEYDKNRGQGMLLNMMCGRQLSAISLCLAVTFAPLFNAQ ADEPEVIPGDSPVAVSEQGEALPQAQATAIMAGIQPLPEGAAE KARTQIESQLPAGYKPVYLNQLQLLYAARGISCSV
37	776	2	430	RTRAADVYVFSLTGKSRNVSSSTVRRSAVGGMSALALFDLLKP NYALATQVEFTDPEIVAEYITYPSPNGHGEVRGYLVKPAKMSG KTPAVVVVHENRGLNPYIEDVARRVAKAGYIALAPDGLSSVGG YPGNDIKVVSAAA
38	777	106	556	VKQRHGNSLLTTETKCISCRLGVPLSPQRRFQAIRIEEVKLRW FAFLIVLLAGCSSKHDYTNPPWNAKVPVQRAMQWMPISQKAGA AWGVDPQLITAIIAIESGGNPNAVSKSNAIGLMQLKASTSGRD VYRRMGWSGEPTTSELKNSSR
39	778	3	892	HAAGIRHEAKPKRSFYAARDLYKYRHQYPNFKDIRYQNDLSNL RFYKNKIPFKPDGVYIEEVLSKWKGDYEKLEHNHTYIQWLFPL REQGLNFYAKELTTYEIEEFKKTKEAIRRFLLAYKMMLEFFGI KLTDKTGNVARAVNWQERFQHLNESQHNYLRITRILKSLGELG YESFKSPLVKFILHEALVENTIPNIKQSALEYFVYTIRDRRER RKLLRFAQKHYTPSENFIWGPPRKEQSEGSKAQKMSSPLASSH NSQTSMHKKAKDSKNSSSAVHLNSKTAEDKKVAPKEPV
40	779	123	395	ELQVFQPIGGMSDSGSQLGSMGSLTMKSQLQITVISAKLKENK KNWFGPSPYVEVTVDGQSKKTEKCNNTNSPKWKQPLTVIVTPV SKLH
41	780	173	438	IETLSFVIRNWNTHAMSKPIVMERGVKYRDADKMALIPVKNVA TEREALLRKPEWMKIKLPADSTRIQGIKAAMRKNGLHSVCEEA SC
42	781	287	393	PRMVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIPQ
43	782	119	556	GLRISVQERIKACFTESIQTQIAAAEALPDAISRAAMTLVQSL LNGNKILCCGNGTSAANAQHFAASMINRFETERPSLPAIALNT DNVVLTAIANDRLHDEVYAKQVRALGHAGDVLLAISTRGNSRD IVKAVEAAVTRDTTIV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue	Predicted end nucleotide location corre- sponding to first amino acid residue	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
		of amino acid sequence	of amino acid sequence	
44	783	248	554	KQTQHAPGMMKKYLALALIAPLLISCSTTKKGDTYNEAWVKDT NGFDILMGQFAHNIENIWGFKEVVIAGPKDYVKYTDQYQTRSH INFDDGTITIEPIPGT
45	784	77	311	TDRTALNPGQESAMNRLFSGRSDMPFALLLLAPSLLLLGGLVA WPMVSNIEISFLRLPLNPNIESTFVGVSNYVRILS
46	785	184	627	KELVDEKSERGRAMDPVSQLASAGTFRVLKEPLAFLRALELLF AIFAFATCGGYSGGLRLSVDCVNKTESNLSIDIAFAYPFRLHQ VTFEVPTCEGKERQKLALIGDSSSSAEFFVTVAVFAFLYSLAA TGRYIFFHNKNRENNRGPL
47	786	3	742	LGTVSYGADTMDEIQSHVRDSYSQMQSQAGGNNTGSTPLRKAQ SSAPKVRKSVSSRIHEAVKAIVLCHNVTPVYESRAGVTEETEF AEADQDFSDENRTYQASSPDEVALVQWTESVGLTLVSRDLTSM QLKTPSGQVLSFCILQLFPFTSESKRMGVIVRDESTAEITFYM KGADVAMSPIVQYNDWLEEECGNMAREGLRTLVVAKKALTEEQ YQDFEVSRLPGIPSSYDGAFLTLKLVLPVFV
48	787	864	335	EGPHR\RLFQMVKA/LQEAPEDPNQILIGYSRGLVVIWDLQGS RVLYHFLSSQQLENIWWQRDGRLLVSCHSDGSYCQW\PVSSEA QQPEPLRSLVPYGPFPCKAITRILWLTTRQGLPFTIFQGGMPR ASYGDRHCISVIHDGQQTAFDFTSRVIGFTVLTEADPAASRRA SGVGAQG
49	788	410	951	KQGLEVRDLHFKEITSGRALLRVACKRPSMVPGGQLQRAGAGA QARITGLSPALWGARVHGWIPELPAGLPPGACLWPLIPACPSR HWGWVSAPVKG/WAQAILGLALCL/RGEHRGLGAGVSKVRSLK MDRKVWTETLIEVGMPLLATDTWGLPHSTAVWVSQPPPYLSDH STLELERDPL
50	789	1	437	LSCNSEQALLSLVPVQRELLRRRYQSSPAKPDSSFYKGLGTCP SQLRLSEPPPTPRHLSVASVSHHMFPSHRSLCPHLPDFFAAPF PSDNLPYTLQSPFPSPPPATPSDHALILHH\DLNGGPDDPLQQ TGQLFGGLVRDIRRRYP
51	790	1	198	SPSSKLVGMWWAGRAGSSRTTSVSLLCLP/SAPFGASNLLVNP LEPQNADKIKIKIADLGNACWVV
52	791	3	435	RVDPRVRAPRCGDKIKNHMY\KCDCGSLKDCASDRCCETSCTL SLGSVCNTGLCCHKCKYAAPGVVCRDLGGICDLPEYCDGKKEE CPNDIYIQDGTPCSAVSVCIRGNCSDRDMQCQALFGYQVKDGS PACYRKLNRIGNRFGT
53	792	1	728	PGRPTRPDASLAQ/DPRTTMFRIPEFKWSPMHQRLLTDLLFAL ETDVHVWRS\HSTKSVMDFVNSNENIIFVHNTIHLISQMVDNI IIACGGILPLLSAATSPTGSKTELENIEVTQGMSAETAVTFLS RLMAMVDVLVFASSLNFSEIEAEKNMSSGGLMRQCLKLVCCVA VRNCLECRQRQRDRGNKSSHGSSKPQEVPQSVTATAASKTPLE NVPGNLSPIKDPDRLLQDVDINRLRAVVF

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
, reids	Acids	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
ł	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
[1	acid	acid	\=possible nucleotide insertion)
{	{	residue	residue	, i
	ł	of amino	of amino	
		acid	acid	
ļ		sequence	sequence	
54	793	2230	990	NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGKGAA
	}	1	}	AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFAANS
}		1]	DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILEYQA
		1	}	GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFQPDL
1				GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HLELG
1		İ	İ	\SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSASGPH
	i		•	SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRIHFHT
}		}]	LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTSRVS
ļ	1	1	1	LRAPOEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTPVLV
{	1	1		CKDPIRTVGLGDAISAEGLFYSEVHPHY
55	794	249	3	DDSSGWGLEOLVVRWSLALWPRLECSGMISAHCNLCL/LGSSD
"	''-'	1		SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLELL
56	795	2	1176	LGEVLKCQOGVSSLAFALAFLQRMDMKPLVVLGLPAPTAPSGC
130	1 / 2 3	-	1 / 0	LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRAAEP
Į.	[ł	· ·	APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRSVLL
	l	1		DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNLPAD
	1	1	j	LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAASTLL
·]		j	TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNASFGK
	1	į.	l l	KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPYLDK
	1	1	1	FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPWYFK
]		ł		HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHKPAS
		ŀ	1.	DPGS
<u></u>	 	\ <u></u>	774	YHAPALQPGQQSKTLSQEKKNFFRPGAVAHTCNPSTLGGRGGR
57	796	755	374	ITRSGDRDHPG*HGETPSLLKIQKKLAGRDGGRL*SQLLGRLR
ł			1	
L	<u> </u>	<u> </u>	1	QENGVNPGGGGCSEPRLRHCTPAW*QSETISRKKRKKERKY
58	797	2	476	FRPIGIIRQALCSADGHQRRILTLRLGLLVIPFLPASNLFFRV
	}	1	}	GFVVPSVGCCVMLLFGFG/ALRKHTEKKKLIAAVVLGILLS/N
	1]		DAERLRCAVRGGEWRSE/EAVFRGAVSVCPLSAEVRCNIGRNL
	1			AAKGNQTGAIRYHREAVSLNPKTKSSTREFRPC
59	798	3	711	KIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVD
	1		}	IWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMST
]	}		1	ECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFDRLIA
1.	1			ECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQSLRSDAYDH
				YSAIYSLLCDRHKRHKTLRLGALPSMPRALGLSSTSQYP\AEQ
				AGTAMNISVPQVQLINPENQIV
60	799	2	344	AREFLGHRASITWS*ARVHHRFPKAEVA*P/SLLRTDLTEDRT
				KCCHGDLLECADDRADLVEDIWENQDSISTILIECCEKPLLEK
				SHCIAEVENDEMPADLPSLAADFVESKDV
				

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1	110.00	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ļ	acid	acid	\=possible nucleotide insertion)
		residue	residue	*
1		of amino	of amino	
1	ļ	acid	acid	
ŀ	1	sequence	sequence	
61	800	142	594	VPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTAVMQSGR
1	ļ		ļ	PRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTAERIERL
				EVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAAIAHLQQ
	}	ł	i	KILKLTEQIKIAQTARRNRRPGS*KDCTP*KCLRKSDEALNRV
})]		LQQI\RVPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTA
1		1		VMQSGRPRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTA
[1	1		ERIERLEVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAA
1	İ	1		IAHLQQKILKLTEQIKIAQTARRNRRPG
62	801	232	1299	MQTIERLVKERDDLMSALVSVRSSLADTQQREASAYEQVKQVL
"-	***		1000	QISEEANFEKTKALIQCDQLRKELERQAERLEKELASQQEKRA
		}	Ì	IEKDMMKKEITKEREYMGSKMLILSQNIAQLEAQVEKVTKEKI
{		i		
1	l	i	Į.	SAINQLEEIQSQLASREMDVTKVCGEMRYQLNKTNMEKDEAEK
		İ	1	EHREFRAKTNRDLEIKDQEIEKLRIELDESKQHLEQEQQKAAL
j		İ]	AREECLRLTELLGESEHQLHLTRQEKDSIQQSFSKEAKAQALQ
				AQQREQELTQKIQQMEAQHDKTENEQYLLLTSQNTFLTKLKEE
1			ľ	CCTLAKKLEQISQKTRSEIAQLSQEKRYTYDKLGKLQRRNEEL
		l		EEQCVQHGRST*
63	802	3	334	SYPVWWNSPLTAEVPPELLAAAGFFHTGHQDKVRCFFCYGGLQ
		1		SWKRGDDPWTEHAKWFPSCQFLLRSKGRDFVHSVQETHSQLLG
	Ì		1	SWDPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQEPGG
ĺ	Í	1	ĺ	VSPAEAQRAWWVLEPPGARDVEAQLRRLQEERTCKVCLDRAVS
l	<u> </u>	ł		IVFVPCGHLVC\AECAPGLQLCPI\CRSPCGPLRPCLWVP
64	803	70	456	MCSYREKKAEPQELLQLDGYTVDYTDPQPGLEGGRAFFNAVKE
1	ļ	1	}	GDTVIFASDDEQDRILWVQAMYRATGQSHKPVPPTQVQKLNAK
	,	}		GGNVPQLDAPISQFYADRAQKHGMDEFISSNPCNFDHASLFEM
1				*
65	804	2	1376	KQLIVLGNKVDLLPQDAPGYRQRLRERLWEDCARAGLLLAPGH
1	}	1	1	QGPQRPVKDEPQDGENPNPPNWSRTVVRDVRLISAKTGYGVEE
]	}	1		LISALQRSWRYRGDVYLVGATNAGKSTLFNTLLESDYCTAKGS
1		1	1	EAIDRATISPWPGTTLNLLKFPICNPTPYRMFKRHQRLKKDST
1			1	QAEEDLSEQEQNQLNVLKKHGYVVGRVGRTFLYSEEQKDNIPF
	-			EFDADSLAFDMENDPVMGTHKSTKQVELTAQDVKDAHWFYDTP
1	1	1		GITKENCILNLLTEKEVNIVLPTQSIVPRTFVLKPGMVLFLGA
	1	1]	
1				IGRIDFLQGNQSAWFTVVASNILPVHITSLDRADALYQKHAGH
1		1	1	TLLQIPMGGKERMAGFPPLVAEDIMLKEGLGASEAVADIKFSS
	1		[AGWVSVTPNFKDRLHLRGYTPEGTVLTVRPPLLPYIVNIKGQR
	20=	 	1	IKKSVAYKTKKPPSLMYNVRKKKGKINV
66	805	1	874	STVASMMHRQETVECLRKFNARRKLKGAILTTMLVSRNFSAAK
				SLLNKKSDGGVKPQSNNKNSLVSPAQEPAPLQTAMEPQTTVVH
1				NATDGIKGSTESCNTTTEDEDLKAAPLRTGNGSSVPEGRSSRD
	1			RTAPSAGMQPQPSLCSSAMRKQEIIKITEQLIEAINNGDFEAY
			1	TKICDPGLTSFEPEALGNLVEGMDFHKFYFENLLSKNSKPIHT
	1	ŀ		TILNPHVHVIGEDAACIAYIRLTQYIDGQGRPSNPAKSEE\TR
	1		1	VWH\RR\DGKWLNVHYHCSGAPCPHRCSELSHRGF
				<u> </u>

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of ·	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre- sponding	corre- sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine.
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	{	acid	acid	\=possible nucleotide insertion)
		residue	residue	\—possible fracteoriae hisertion)
1	ł	of amino	of amino	
1	1	acid	acid	
		sequence	sequence	
67	806	3	1714	LPKNVVFVLDSSASMVGTKLRQTKDALFTILHDLRPQDRFSII
				GFSNRIKVWKDHLISVTPDSIRDGKVYIHHMSPTGGTDINGAL
į į	}			QRAIRLLNKYVAHSGIGDRRVSLIVFLTDGKPTVGETHTLKIL
	ĺ	[NNTREAARGQVCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHE
{	l ·		1	EEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVVQATKTLFPNY
]	}	1	FNGSEIIIAGKLVDRKLDHLHVEVTASNSKKFIILKTDVPVRP
	[)	QKAGKDVTGSPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQS
ļ	1		l	DDEPEKERLRQRAQALAVSYRFLTPFTSMKLRGPVPRMDGLEE AHGMSAAMGPEPVVQSVRGAGTQPGPLLKKPYQPRIKISKTSV
]	}	ļ		DGDPHFVVDFPLSRLTVCFNIDGQPGDILRLVSDHRDSGVTVN
				GELIGAPAPPNGHKKORTYLRTITILINKPERSYLEITPSRVI
i	ĺ			LDGGDRLVLPCNQSVVVGSWGLEVSVSANANVTVTIQGSIAFV
				ILIHLYKKPAPFORHHLGFYIANSEGLSSNCRVFCESGILIOE
!				LTOOSVAVAGR
68	807	2	841	FFLEQVSQYTFAMCSYREKKSEPQELMQLEGYTVDYTDPHPGL
		j _		QGGCMFFNAVKEGDTVIFASDDEQDRILWVQAMYRATGOSYKP
]			VPAIQTQKLNPKGGTLHADAQLYADRFQKHGMDEFISANPCKL
'				DHAFLFRILQRQTLDHRLNDSYSCLGWFSPGQVFVLDEYCARY
		ĺ		GVRGCHRHLCYLAELMEHSENGAVIDPTLLHYSFAFCAS\HVH
	<u> </u>	i		GNRPDGIGTVSVEEKERFEEIKERLSSLLENQISHFRYCFPFG
		l F		RPEGALKATLSLLERVLMKDIA
69	808	2	757	DGLLHEVLNGLLDRPDWEEAVKMPVGILPCGSGNALAGAVNQH
]			GGFEPALGLDLLLNCSLLLCRGGGHPLDLLSVTLASGSRCFSF
	}			LSVAWGFVSDVDIQSERFRALGSARFTLGTVLGLATLHTYRGR
				LSYLPATVEPASPTPAHSLPRAKSELTLTPDPAPPMAHSPLHR
]		SVSDLPLPLPQPALASPGSPEPLPILSLNGGGPELAGDWGGAG
				DAPLSPDPQLSSPPGSPKAALHSPV*KKAPVIPPDM
70	809	3	530	KGVPTLLMAAGSFYDILAITGFNTCLGIAFSTGSTVFNVLRGV
	1			LEVVIGVATGSVLGFFIQYFPSRDQDKLVCKRTFLVLGLSVLA
				VFSSVHFGFPGSGGLCTLVMAFLAGMGWTSEKAEVEKIIAVAW
)	j			DIFQPLLFGLIG\AEVSI\SSLRPETVGLCVATVGI\AVLIRI
71	010	220	541	FDYIF
71	810	228	541	LLKEVVVQASPVCKTCCSQLVRTPVTFTEVQNV/CRCSAGYLI
i · i	[SVCSYTSSDHNQCYAGTASLALLWIGGILKGCLLWKQFRWTER
73	017	172	404	SHWNFGYWALWSPGNGNGC
72	811	173	404	ICTSTYLQIFPGKPSCFMCKGRLMCIYFILWYLGHYTSLHWNW
73	812	2	586	CRYISDPNVD/ACPDPRNAEVSMTHTVPALMELID LESLPGFKEIVSRGVKVDYLTPDFPSLSYPNYYTLMTGRHCEV
'3	012		200	
				HQMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLWVTLTK AKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSD
				ALDSFKSGRADLAAIYHERIDVEGHHYGPASPORKDALKA\VD
\				TVLKYMTKWIQERGLQDRLNVII
	L	l		TANKTHITUTÖRKONÖNYHIATT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
		acid sequence	acid sequence	
74	813	2	348	ARDFHPKQTLDFLRSDMANSKITEEVKRSIAQQYLDLTVA/LE QVDPDAEVDAAPSTTSSCGH*DSHAGS*RVLSLLGD*GPA*TG ANSMAGKLLLVAWLGFPDPFWGKELSDPAFK
75	814	2	366	KQSGDVTCNCTDGRLAPSCLTCVGHCIFGGYCTMNSKMMPECQ SPPHMTGPRCEEHVFSQHQPGHITSILIPML*LLLLVLVAGVI FCHKRRVQGAKGFQHQRMTNGAMNAQIANPTYKMY
76	815	420	681	TVENAGRWL*EEAEIQAELERLERVRNLHIRELKRINNEDNSQ FKDHPTLNERYLLLHLIGRGGFSEVYKVMYGLFWFFYTNVARI
77	816	37	428	MCEEFLVMGKGCSCVF*ILLSNPQMWWLNDSNPETDNRQESPS QENIDRVSD/MAFVPSAWTASGGVAWGNLGESGSRTGGVRAET LAPRLQV*PAHLRGHPRSNRGQGRPPWKAGKLGKCQEVLFRFA AF
78	817	1	358	FRAMFLAVQHDCRPMDKSAGSGHKSEEKREKMKRTLLKDWKTR LSYFLQNSSTPGKPKTGKKSKQQAFIK*VENPELANINS*LLN *KGEL**A*ANIQNLSCRPSPEEAQLWSEAFDE
79	818	1	169	GFFNFSSPKLKGWKINSSLVLEIRKNILRFLDAERDVSVVKSS FPSKDARHSSVHR*FTQLHWGPPSHTPARP*RGFFNFSSPKLK GWKINSSLVLEIRKNILRFLDAERDVSVVKSSFPSKDARHSSV HR
80	819	55	310	RIDDQQELKRVT*YSQKEYTKKKLHKKCNIIQADIKPDNILDN ESITILKLSDFGSASHVADNDITPSSSQTTSAASSPPRTLRR
81	820	1	134	SSKPWD*SLAPKHSG*TKNMDCYCIIPTCIGRERCYGTCIGDT V
82	821	187	360	NSSKKLVMEHQWKKYLRRNYQRMLNRLITLIGSCGVL*LISTI PTSRLKFLKETGHGTPMEEIPEEELSEDVEQIDHADRELRRGQ NLRCKGIHRLPTHIQVGQN
83	822	208	723	KWMLLHSFKIFCLSLYPQL*CPFEFFSHSATIFHELVYKQTKI ISSNQELIYEGRRLVLEPGRLAQHFPKTTEENPIFVVSREPLN TIGLIYEKISLPKVHPRYDLDGDASMAKAITGVVCYACRIAST LLLYQELMRKGIRWLIELIKDDYNETVHKKTEVVITLGFLVSR
84	823	1	314	GTRKMGPTVSPICLPGTWGDYNLMDGDLGLISGWGRTEKRDRA DRLKAGRSPAAG*RKWEPGRGDPTWEESEEDVHKSKWTRCVDE KGA*C*TDNKRPLRCGVT
85	824	3	302	HELENLIKSAHSYSLY*G*YLHGA*TAEPEASFCPRRGWNRQA GAAGSRMNFRPGVLSSRQLGLPGPPDGPDYTVYYPFHRLAMVT AASRLEREHLTHL
86	825	87	422	PVPLPHPILEVCPGQ*EPQSAISLTAFQVQAGASRASPGPPAP SSSKPGRKAKVASPCPDRPAPPPT*PRPAAAPGSESSPRPPRP RTGRRQQRAHARRAAARTAPWRPSC
87	826	3	289	HEGRRRGWASASQRFLRNWAFLTPSKVRRLKGQKAFGKLPSHS DTSLTSDLGFHHRFNPNASSSFKPSGTKFAIQYGTGRVDGILS EDKLTVSGL
88	827	1	101	GRNIMHYPNGHAICIANGHCIIL*NSHNIKVWV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
89	828	1	535	INLGNTCYMNSVI*ALFMATDFRRQVLSLNLNGCNSLMKKLQH LFAFLAHTQREAYAPRIFFEASRPPWFTPRSQQDCSEYLRFLL DRLHEEEKILKVQASHKPSEILECSETSLQEVASKAAVLTETP RTSDGEKTLIEKMFGGKLRTHIRCLNCTSTSQKVEAFTDLSLA FWPSSS
90	829	1	434	ARDDPRVRLSLSPNFF*LASKLGKQWTPLIILANSLSGTNMGE
91	830	3	782	MHRIKLNDRMTFPEELDMSTFIDVEDEKSPQTESCTDSGAENE GSCHSDQMSNDFSNDDGVDEGICLETNSGTEKISKSGLEKNSL IYELFSVMVHSGSAAGGHYYACIKSFSDEQWYSFNDQHVSRIT QEDIKKTHGGSSGSRGYYSSAFASSTNAYMLIYRLKDPARNAK FLEVDEYPEHIKNLVQKERELEEQEKRQREIERNTCKIKLFCL HPTKQVMMED*IEVHKDKTLKEAVEMAYKMMDLEEVIPLDCCR L
92	831	2	604	SVMPVPALCILWALAMVTRPASAAPMGGPELAQHEELTLLFHG TLQLGQALMGVYRTTEGRLTKARNSLGLYGRTIELLGQEVSRG RDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQKVLR DSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHV QRQRREMVAQQHRLRQIQERLHTAALPA
93	832	16	690	ITSVDPRVRGNASTGYGKIWLDDVSCDGDESDLWSCRNSGWGN NDCSHSEDVGVICSDASDMELRLVGGSSRCAGKVEVNVQGAVG ILCANGWGMNIAEVVCRQLECGSAIRVSREPHFTERTLHILMS NSGCAGGEASLWDCIRWEWKQTACHLNMEASLICSAHRQPRLV GADMPCSGRVEVKHAHTWRSVCDSDFSLHAANVLCRELNCGDA ISLSVGDHFG
94	833	108	727	SNYPSSRFRVAGITGVKLGMRSIPIATACTIYHKFFCETNLDA YDPYLIAMSSIYLAGKVEEQHLRTRDIINVSNRYFNPSGEPLE LDSRFWELRDSIVQCELLMLRVLRFQVSFQHPHKYLLHYLVSL QNWLNRHSWQRTPVAVTAWALLRDSYHGALCLRFQAQHIAVAV LYLALQVYGVEVPAEVEA/DEAVGWQIYAMDTEIP
95	834	118	376	RGSRHAVHGWAFGLLFINKESVVMAYLFTTFNAFQGVF1FVFH CALQKKVRSRRGPGSQPPLETFPGYPGEGGEGGGDSGAPSSPQ
96	835	3	333	ARKDDLPPNMRFHEEKRLDFEWTLKAG*EKG*PSK*NKGWEGQ E***TVRD*GIS**VKPQHLS*\ALQMALKRVYTLLSSWNCLE DFDQIFWGQKSALAGQWFPEVSIIP
97	836	740	951	GKQQRETLRRPSPTISVQRAGSPEHSSASH*HSPCPAPGQRVL PTALCTLMTSKHFHGCPLAGQGRAVTL

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	Iocation	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	ì	residue	residue	
	1	of amino	of amino	
·		acid	acid	,
		sequence	sequence	GUGGI PREGGETTI GUURMAAI AN CITIOTKEERI ARRENIGAGA
98	837	81	1503	GVCGLPRFCGSIILCHYEMSSLGASFVQIKFDDLQFFENCGGG
	1	!		SFGSVYRAKWISQDKEVAVKKLLKIEKEAEILSVLSHRNIIQF
	ł	1		YGVILEPPNYGIVTEYASLGSLYDYINSNRSEEMDMDHIMTWA
		1	i i	TDVAKGMHYLHMEAPVKVIHRDLKSRNVVIAADGVLKICDFGA
	1			SRFHNHTTHMSLVGTFPWMAPEVIQSLPVSETCDTYSYGVVLW
				EMLTREVPFKGLEGLQVAWLVVEKNERLTIPSSCPRSFAELLH
			1	QCWEADAKKRPSFKQIISILESMSNDTSLPDKCNSFLHNKAEW
1	l	1	İ	RCEIEATLERLKKLERDLSFKEQELKERERRLKMWEQKLTEQS
		l		NTPLLLPLAARMSEESYFESKTEESNSAEMSCQITATSNGEGH
		ļ		GMNPSLQAMMLMGFGDIFSMNKAGAVMHSGMQINMQAKQNSSK
}			l	TTSKRRGKKVNMALGFSDFDLSEGDDDDDDDGEEEYNDMDNSE
99	838	185	328	MLWETGCSAACRVTVSPTVTFATFSTRGIDAMRPGPSFLWRQQ
		ļ		LSQG*
100	839	1	348	PTLGDQPDLHSITRASRPKLCTRKNCNPLTITVHDPNSTQ*YY
				GMSWELRFYIPGFDVGTMFTIQKILVSWSPPKPIGPLTDLGDP
				MFQKPPNKVDLTVPPPFLVIKDTLQKFEKI
101	840	1	416	SLNNVTLPQAKTEKDFIQLCTPGVIKQEKLGTVYCQASSPGAN
		1	1	MIGNKMSAISVHGVSTSGGQMYHYDMNTASLSQQ*DQKPIFNV
•	ĺ		'	IPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVSFSFEMES
	1	ĺ		RSVAQAGVQ
102	841	105	354	RHTQECRCPHTHIHTHTHSHTHSHTHSHSHSHTTPRCSHTQPP
		ł		HAQAPALC*S*EDRGQPTWKLCAHRPRLKVIKEGGWLGG
103	842	171	347	NYSLSVYLVRQLTAGTLLQKLRAKGIRNPDHSRALSE*HLSSL
				PHLIWIQVFLALQPS
104	843	2	690	ATYIVDFGFSTTFREGQMLTAFCGMYPYVAPERSLGQACQ*PA
				RDIQSLSVILYFRNTVGRRARTLPFYS/AEASKLQEKILTGRY
1			ļ	HAPPLLALQLDSL/IKLLMLNARKCPSL*LMKNPWVKŚSQKMP
				LIPYEEPL/RGPPQTIQLMVAMGFQAKNISVAIIERKFNYPMA
1				TYLILEHTKQERKCSTIRELSLPPGVPTSPSPSTELSTFPLSL
1	1		[MRAHREPAFNVQPPEESQ
105	844	2	777	AKQELAKLMRIEDPSLLNSRVLLHHAKAGTIIARQGDQDVSLH
				FVLWGCLHVYQRMIDKAEDVCLFVAQPGELVGQLAVLTGEPLI
1		1	1	FTLRAQRDCTFLRISKSDFYEIMRAQPSVVLSAAHTVAARMSP
1		1	!	FVROMDFAIDWTAVEAGRALYRCSSHRAAQARPRGGDLGVVRP
1			1	C*PPRPLRQGDRSDCTYIVLNGRLRSVIQRGSGKKELVGEYGR
1		1		GDLIGVVSATPTH*PLAFSRPVPRQLTRIIPGNPGSGEVFPGA
106	845	3	709	HASGWTPGTTOTLGOGTAWDTVASTPGTSETTASAEGRRTPGA
100] 5-3-5	1	1,00	TRPAAPGTGSWAEGSVKAPAPIPESPPSKSRSMSNTTEGVWEG
				TRSSVTNRARASKDRREMTTTKADRPREDIEGVRIALDAAKKV
				LGTIGPPALVSETLAWEILPQATPVSKQQSQGSIGETTPAAGM
	{		[WTLGTPAADVWILGTPAADVWTSMEAASGEGSAAGDLDAATGD
[[RGPQATLSQTPAV*PWGPPG
L		L		KGLÄUTHOÄTEMAEMGEEG

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110100	Acids	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	ł	residue	residue	,
		of amino	of amino	
ļ		acid	acid	,
		sequence	sequence	
107	846	3	406	AGTSGTGDTGPGNTAVSGTPVVSPGATPGAPGSSTPGEADIGN
[(TSFGKSGTPTVSAASTTSSPVSKHTDAASATAVTISGSKPGTP
	1	1		GTPGGATSGGKITPGIA*PTLDQKSPCFSGYGGYFPVNPHQNP
	ļ	l	ļ	CADSL
108	847	1	565	RAHRCCLPLPSLSCEIQIGFS*SSIFPGQ*ACPCSCCRSCRRN
		1		WPQSPRCPHHPPAPCSLLLSSCLPPPLSCSWRGTSGKPPSQSP
			1	AASRSMRPRCSPRTSSLRGASCRGPGGSAPAAASGPRCRGCSR
	1			SPRRCSRSGCAAASPPRSORRSPPLSPPPFPTSGTLLLKTSRF
	İ	ļ		GSATRE*SSPRPRPRP
109	848	2	987	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV
1 -03	0.10	-		VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSQSASSLEVA
}			ł	GPGREPLELEVAVEALARLQQGVSATVAHLLDLAGSAGATGSW
			}	RSPSEPOEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS
1		1	ŀ	DRALHAKLSROLOKMEDVHOTLVAHGOALDAGRGGSGATLEDL
		†		DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG
ł	1	1		TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME
	}	ł	1	DYDYVHLTGGRRSF*KTQKELLGKRAA
110	849	84	372	MATDEENVYGLEENAQSRQESTRRLILVGRTGAGKSATGNSIL
110	047	1 3 4	3,2	GORRFFSRLGATSVTRACTTGSRRWDKCHVEVVDTPDIFSSQV
]	j	SKTDPGCEERX*
111	850	2	47	TLGLRSLTKEGGGGGDVAAFEVGTGAAASRALGQCGQLQKLIV
+++	030	12	4'	IFIGSLCGLCTKCAVSNDLTQQEIQTPEIQQRNA*CDSRVTFT
1				NEGGRWWG
1	1-051	1.100	1040	FFFLVETRFHHIGOAGLELLTLSIK*SARLGLPKCWDDRREPP
112	851	1192	1040	- · · · · · · · · · · · · · · · · · · ·
	0.50	L	360	YLAGFMI RRSPPPAPPPLPSPLSPPPRAPVSPASTMPILLFLIDTSASMN
113	852	791	362	
ł		1	1	QRSHLGTTYLDTAKGAVETFMKLRARDPASRGDRYMLVTFEEP
1		1	İ	PYAIKAGWKENHATFMNELKNLQAEGLTTLGQSLRTAFDLLNL
	1	l	<u> </u>	NRLVTGIDNYGQVG
114	853	812	348	NCRTYVFCFVLVFRLLFLHGSPLSPSLLSRAGLLCGSAENPTP
]	1	j		FLCGITMAAGVSLLALVVRVILSTAILCPSGASRRQRSSEVEW
1		1		GTDSGVYRLYCWRVGFLGPGGELRLGLSEARGGRVWGRGEKRC
1			1	RVWAVRSLRKGFGSVAALRRGIWAG
115	854	93	170	VTPTPPQYYTCSCVLGFIACSIFLQMSLKPKVMLLTVALVACL
1				VLFNLSQCWQRDCCSQGLGNLTEPSGTNR*GPAAVSWASLPAP
}				SSCR
116	855	1	183	GKAGGAAGLFAKQVQKKFSRAQEK*TRRFGKTCQPEERAREER
		1		QEGPEIEFGFSFFSLSLY
				<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 2400	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) PKRLFLFODVNTLOGGGOPVVTPSVOPSLOPAHPALPOMTSOA
				PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMQAY AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA RQHNTEIRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQNDKISEL IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQEQEK EESSSEEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE
118	857	3	791	SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF
				PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD
120	859	2	373	HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP
121	860	286	495	CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR KGGNVTVFPFTAMYRDGH

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of .	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
	[amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	ļ	residue	residue	
İ	ĺ	of amino	of amino	
		acid	acid	'
122	861	sequence 2	sequence 725	GNTVMFQHLMQKRKHTQWTYGPLTSTLYDLTEIDSSGDEQSLL
122	861	4	/25	ELIITTKKREARQILDQTPVKELVSLKWKRYGRPYFCMLGAIY
Ì	1]	LLYIICFTMCCIYRPLKPRTNNRTSPRDNTLLQQKLLQEAYMT
}	}			PKDDIRLVGELVTVIGALIILLVEVPDIFRMGVTRFFGOTILG
			<u> </u>	GPFHVLIITYAFMVLVTMVMRLISASGEVVPMSFALVLGWCNV
		Ì		MYFARGFOMLGPFTIMIOKMIFGDLM
123	862	1	135	EKAAAANIDEVOKSDVSSTGOGVIDKDALGPMMLEVAHLHFSA
123	802	-	133	VF
124	863	2	364	LEVPSEVTPLGFAMQATKTLLLRTCCLQEFNIMEKNKGWALLG
124	003	2	304	GKDGHLQGLFLLANALLERNQLLAQKVMYLLVPLLNRGNDKHK
	1			LTSAGFFVELLRSPVAKRLPSIYSVARFKDWLQD
125	864	 1	374	RPAPAPSAAPEEAPSP\GVKGRGMAKRRVPAPVWGGAGGGTKS
125	004	-	3/4	ARRAAAAPDTERSEEGGRAVKEAYPSSROPPPPSP*PLRCARR
	1		ł	CHPNLAPSMPISNREGKGKRREEKIRPLSPASTHTSARA
126	865	3	364	LQGVHGSSSTFCSSLSSDFDPLEYCSPKGDPQRVDMQPSVTSR
120	803] 3	304	PRSLDSEVPTGETOVSSHVHYHRHRHHHYKKRFORHGRKPGPE
1	ł	1		TGVPQSRPPIPRTQPQPEPPSPDQQVTRSNSAAP
127	866	2	250	MADPDPRYPRSSIEDDFNYGSSEASDTVHIRMAFLRRVYSILS
127	300	-	250	LQDLLATVTSTDNLAFEDGRTDWLQRPDCVSFKIHVLPM
128	867	194	375	AGMSVVVVPPIGSSYLGLISQEHFPNEFTSGDGKKAHQDFGYF
-20	00,	-3.	3,3	YGSSYVAASDSSRTPGL
129	868	104	339	VAAALTLFPQQLSPPGAWGLGLSACFCCAEGFSRLNQQVLSSS
1	000	1		LLLLSRTNCPCKYSFLDNLKKLTPRRDVPTYPKVR
130	869	2	360	RDDACLYSPASAPEVITVGATNAODOPVTLGTLGTNFGRCVDL
1 - 3 - 3	003	_		FAPGEDIIGASSDCSTCFVSQSGTSQAAAHVAGIAAMMLSAEP
	1	ļ		ELTLAELRORLIHFSAKDVINEAWFPEDORVLT
131	870	2	105	LEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDW
132	871	2	466	EAGDADEDEADANSSDCEPEGPVEAEEPPOEDSSSOSDSVEDR
1	" -		100	SEDEEDEHSEEEETSGSSASEESESEBDAQSQSQADEEEED
1.		İ		DDFGVEYLLARDEEQSEADAGSGPPTPGPTTLGPKKEITDIAA
	ļ		1	AAESLOPKGYTLATTOVKTPIPLLL
133	872	1	354	LKNLRELLLEDNQLPQIPSGLPESLTELSLIQTNIYNITKEGI
	}	_		SRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLS
	1	1		FNSLSHVPPKLPSSLRKLFLSNTQIKYISEED
134	873	59	184	MRSQALGQSAPSLTASLKELSLPRRGSFPVCPNAGRTSPLG*
135	874	1	210	LLCVCLPVGACPSLSLLTAPLNQLMRCLRKYQSRTPSPLLHSV
	1			PSEIVFDFEPGPVFRGSWALLSWSTRP
136	875	131	254	QTPDKKONDORNRKRKAEPYETSQGSNNFVSTKVLNSNVLR
137	876	84	504	YFIIKGMVELVPASDTLRKIQVEYGVTGSFKDKPLAEWLRKYN
-3.				PSEEEYEKASENFIYSCAGCCVATYVLGICDRHNDNIMLRSTG
			1	HMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVINGGEKP
				TIRFOLFVDL
L	1	<u> </u>	<u> </u>	

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ĺ	ł	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
}		acid	acid	\=possible nucleotide insertion)
		residue	residue	, Personal
ļ		of amino	of amino	
		acid	acid	
		sequence	sequence	
138	877	3	215	PSPLPSLSLPPPVAPGGQESPSPHTAEVESEASPPPARPLPGE
l		ļ	<u> </u>	ARLAPISEEGKPQLVGRF\QVTSSK\NRLSLFPCSQHPPLSLV
		1	Ì	LQNLQPLSSLQRAQIQRTV/PGGGPETREALAESDRAAEGLGA
}		ļ]	GVEEEGDDGKEPQVGGSPQPLSHPSPVWMNYSYSSLCLSSEES
	Į.	ļ		ESSGEDEEFWAELQSLRQKHLSEVETLQTLQKKEIEDLYSRLG
	1			KQPPPGIVAPAAMLSSRQRRLSKGSFPTSRRNSLQRSEPPGPG
1			Į.	ETA/GHPASIFSLRPLSVDCFSPGPGGLPRGNRPPLPTSPFLT
1	[ļ	*CSPSPHTAEVESEASPPPARPLPGEARLAPISEEGKPQLVGR
	<u></u>			FPSDFIQGTG
139	878	Ī	337	RRFVSQETGNLYIAKVEKSDVGNYTCVVTNTVTNHKVLGPPTP
1	1	ł		LILRNDGVMGEYEPKIEVQFPETVPTAKGATVKLECFALGNPV
				PTIIWRRADGKPIARKARRHKSRVGK
140	879	72	917	MLRTCYVLCSQAGPRSRGWQSLSFDGGAFHLKGTGELTRALLV
				LRLCAWPPLVTHGLLLQAWSRRLLGSRLSGAFLRASVYGQFVA
	Ì			GETAEEVKGCVQQLRTLSLRPLLAVPTEEEPDSAAKSGEAWYE
			1	GNLGAMLRCVDLSRGLLEPPSLAEASLMQLKVTALTSTRLCKE
٠.	İ			LASWVRRPGASLELSPERLAEAMDSGQNLQVSCLNAEQNQHLR
1		1	İ	ASLSRLHRVAQYARAQHVRLLVDAEYTSLNPALSLLVAALAVR WNSPGEGGPWVWNTYQACLKDTF*
-	1000	210	308	PHHRIAGDTAIDKNIHQSVSEQIKKNFAK
141	880	182	317	OMTNPFFLCFTTMISNCNFFKGPPGPPGEKGDRGPTGESGPRG
142	881	182	31/	FP
143	882	177	341	NGIIASFFLRTFIFCFIHIQGCQAGQTIKVQVSFDLLSLMFTF
143	882	11//	341	
144	1003	3	1447	VSPCTNDLIIH KLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDTNSTDIA
144	883	د ا	1441	LKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAV
			1	AFLYYKSIGPLLSSSDNFLLKPONYDNSEEEERVISSVISVSM
			1	SSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNYSPDTMNGS
	1		1	WSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNI
				LTRITOLGIIISLICLAICIFTFWFFSEIOSTRTTIHKNLCCS
				LFLAELVFLVGINTNTNKLFCSIIAGLLHYFFLAAFAWMCIEG
	1			IHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAALGYRY
	1			YGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFR
	1			HTAGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHA
	1			SVVTAYLFTVSNAFOGMFIFLFLCVLSRKIOEEYYRLFKNVPC
	1			CFGCLR
145	884	+1	429	GTREAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAOEPT
1 43	1 334	-		WLTDVPAAMEFIAATEVAVIGFFODLEIPAVPILHSMVOKFPG
1	1		}	VSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDIESI
	1			DATKLSRFIEINSL
146	885	1	156	DETSGLIVREVSIEISRQQVEELFGPEDYWCQCVAWSSAGTTK
140	555	1	1	SRKAYVRIA
147	886	1.	121	GTRSIHVKLDVGKLHTOPKLAAOLRMVDDGSGKVEGLPGI
1+/	1 000	1	1	CTITOTIVICAD A OFFITT AT LET MANAGEMENT ADDROGUATE CHECK

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of .	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ł		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	i	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
.]		acid	acid	\=possible nucleotide insertion)
	,	residue	residue	
		of amino	of amino	
		acid	acid	·
		sequence	sequence	
148	887	128	652	XCGEDGSFTQVQCHTYTGYCWCVTPDGKPISGSSVQNKTPVCS
		ł		GSVTDKPLSQGNSGRKDDGSKPTPTMETQPVFDGDEITAPTLW
		}		IKHLVIKDSKLNNTNIRNSEKVYSCDQERQSALEEAQQNPREG
		l		IVIPECAPGGLYKPVQCHQSTGYCWCVLVDTGRPLPGTSTRYV
		ļ		MPSX*
149	888	128	273	VLQLIKSQKFLNKLVILVETEKEKILRKEYVFADSKVSDSKLL
			1	KWAVR
150	889	1	948	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ
		İ		RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP
		1	Į.	LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT
		İ	ļ	ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI
	1			HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKVRPRGQGPP
	1	}	l	ILAATCPEAQCGDPLSPPGIRLLRWLKPSHVGKRERAMPSTSP
]	j	GTGLSALPQEQTHTVCHCLAVGIKPTLNSEHQFPSLSNGSVSY
		ļ	İ	LPKCREASGEARGYE
151	890	3	108	HERHEPSPTALAFGDHPIVQPKQLSFKIIQVNDN
152	891	2	208	ARGPSLLSEFHPGSDRPQERRTSYEPIHPGPSPVDHDSLESKR
				PRLEQASDSHYQGHITGESLPGRVH
153	892	1	116	GTRKEEFSAEENFLILTEMATNHVQVLVEFTKKLPGIF
154	893	74	661	HTHKLVAPRPGLPPTSQWPRDAGRQASGGLPSLSTGPPKGPRD
		j	,	GLARGHPAEWLAGSPGNNSPTQGSLPPQLDLYAGALFVHICLG
1		1	l.	WNFYLSTILTLGITALYTIAGMVPAAGRSTQGTCKGVRRPPPP
i.				TGPREOPRKWPOOEPOKFLPVSLLPGARAPSSNLASTGRGPGC
		[{	CNLHGRPADAHHGGGGCHPDNQR
155	894	55	312	MVNHSLQETSEQNVILQHTLQQQQQMLQQETIRNGELEDTQTK
133	"			LEKOVSKLEQELQKQRESSAEKLRKMEEKCESAAHEADLKRQK
1	ļ	1	1	*
156	895	38	185	VCPKWCRFLTMLGHCCYFWHVWPAS*ALSAGPTPTSRSFSPSP
120	""		1203	LRSIST
157	896	37	462	MRGPPVLLLOAAPMECPVPQGIPAGSSPEPAPDPPGPHFLRQE
13/	090	31	102	RSFECRMCGKAFKRSSTLSTHLLIHSDTRPYPCQFCGKRFHQK
				TOT DELICITION INDICATE OF CORRESPONDED
	ł	1	ļ.	CDMKKUTYTHTCEKDHKCOTODEDTMAILCDADKTMAIKAAWY*
3	007	\ <u></u>	175	SDMKKHTYIHTGEKPHKCQTQREPTMVLSPADKTNVKAAWX*
158	897	3	175	HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA
				HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF
158 159	897	3	677	HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF VSVFKNCPMY*ICIFLTKMFCVLII*NKF*VHKKPLQEVEIA
				HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF VSVFKNCPMY*ICIFLTKMFCVLII*NKF*VHKKPLQEVEIA AITHGALQGLAYLHSHTMIHRDIKAGNILLTEPGQVKLADFGS
				HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF VSVFKNCPMY*ICIFLTKMFCVLII*NKF*VHKKPLQEVEIA

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	amino	
	}	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ļ		residue	residue	\=possible nucleotide insertion)
	1	of amino	of amino	
		acid	acid	
ļ		sequence	sequence	
160	899	2	1060	RHARPGGGGHSNORKMSLEQEEETQPGRLLGRRDAVPAFIEPN
		}	ļ	VRFWITERQSFIRRFLQWTELLDPTNVFISVESIENSRQLLCT
]		NEDVSSPASADQRIQEAWKRSLATVHPDSSNLIPKLFRPAAFL
İ				PFMAPTVFLSMTPLKGIKSVILPQVFLCAYMAAFNSINGNRSY
}		}		TCKPLERSLLMAGAVASSTFLGVIPQFVQMKYGLTGPWIKRLL
ļ				PVIFLVQASGMNVYMSRSLESIKGIAVMDKEGNVLGHSRIAGT
ļ]	ļ		KAVRETLASRIVLFGTSALIPEVFTYFFKRTQYFRKNPGSLWI
ļ				LKLSCTVLAMGLMVPFSFSIFPQIGQIQYCSLEEKIQSPTEET
		ļ		EIFYHRGV
161	900	3	564	HASGRLEVFYNGTWGSVGRRNITTAIAGIVCRQLGCGENGVVS
		l		LAPLSKTGSGFMWVDDIQCPKTHISIWQCLSAPWERRISSPAE
[(1	ETWITCEDRIRVRGGDTECSGRVEIWHAGSWGTVCDDSWDLAE
				AEVVCQQLGCGSALAALRDASFGQGTGTIWLDDMRCKGNESFL
1		ł		WDCHAKPWGQSDCG
162	901	1099	2	LGDFPQPQRQRRPGASDLPPHLAGARQWEVRFFRHLPARTLPP
ļ	1	İ	1	SLRMPEGPELHLASQFVNEACRALVFGGCVEKSSVSRNPEVPF
	-	(i	ESSAYRISASARGKELRLILSPLPGAQPQQEPLALVFRFGMSG
	1			SFQLVPREELPRHAHLRFYTAPPGPRLALCFVDIRRFGRWDLG
	ì			GKWQPGRGPCVLQEYQQFRENVLRNLADKAFDRPICEALLDQR
{				FFNGIGNYLRAEILYRLKIPPFEKARSVLEALQQHRPSPELTL
{	1			SQKIRTKLQNPDLLELCHSVPKEVVQLGGRGYGSESGEEDFAA
1	ĺ	1		FRAWLRCYGMPGMSSLQDRHGRTIWFQGDPGPLAPKGRKSRKK
L				KSKATQLSPEDRVEDALPPSK
163	902	3	335	LTWSACYWRDILRIQLWIAADILLRMLEKALLYSEHQNISNTG
1		İ		LSSQGLLIFAELIPAIKRTLARLLVIIASLDYGIEKPHLGTGM
<u></u>			<u> </u>	HRVIGLMLLYLIFANAESVIRVIG
164	903	2	135	FFFEMESRSAAQAGVQWCNLGSLQALPPRFTPFSCLSLPSSWD
165	904	74	645	Y YECEELAKKLENSORDGISRNKLALAELYEDEVKCKSSKSNRP
102	904	/4	043	KATVFKSPRTPPQRFYSSEHEYSGLNIVRPSTGKIVNELFKEA
ŀ				1
1	1	1		REHGAVPLNEATRASGDDKSKSFTGGGYRLGSSFCKRSEYIYG
				ENQLQDVQILLKLWSNGFSLDDGELRPYNEPTNAQFLESVKRG VTLIACMPEIOOLMLEIF
100	905	14	1257	WPCGAAPGLTHASERMFTLTTMIOALAPVMGWDRKPLKMFSSE
166	303	14	125/	~
}			-	EMRGHLHHHHKCLTKILKVEGQVPDLPSCLPLTDNTRMLASIL
				INMLYDDLRCDPERDHFRKICEEYITGKFDPQDMDKNLNAIQT
}	1	1		VSGILQGPFDLGNQLLGLKGVMEMMVALCGSERETDQLVAVEA
1			1	LIHASTKLSRATFIITNGVSLLKQIYKTTKNEKIKIRTLVGLC KLGSAGGTDYGLROFAEGSTEKLAKOCRKWLCNMSIDTRTRRW
				AVEGLAYLTLDADVKDDFVQDVPALQAMFELAKTSDKTILYSV
]	ATTLVNCTNSYDVKEVIPELVOLAKFSKOHVPEEHPKDKKDFI
		[1	DMRVKRLLKAGVISALACMVKADSAILTDQTKELLARVFLALC
1		1	!	DNPKDRGTIVAOGGGKALIPLALEGTD
		J	<u> </u>	THE VANCAGE VALLE TABLESTA

A=Alanine, Acid, =Isoleucine, sparagine, rine, -Tyrosine, cotide deletion,
=Isoleucine, sparagine, rine, -Tyrosine,
sparagine, rine, Tyrosine,
rine, Tyrosine,
Tyrosine,
eotide deletion,
GTESSDDFEE
LRGPAKCREC
LPARTPLFGV
IYRVSGSRVR
QELTEPVIPF
LKTLLVQLPD
FGPTL
ETLVFYLFCL
GPQANGHIES
GIRWGKLGEAH
TVAPGANGMT
QRLFMILWLK
WYVKT
YVEYIGRKKI
YRKKPSSSHR
IDWPTEEGKE
MWLQGGPGGS
DNPVGTGFSY
YTVPFYIFSES
DSWISPVDSVL
GLYREATELW
COTWSLH
SL/DSVAQAE
PPPRPANFLYF
/LSLFFFFEME
SSWDYRRPPP
PPKVLGLQV
QIEEPDPPEM
PKTKKDKRPP
TLESEKPGSP
/GGQSVKKVDL
SMQKSKFKYK
KKKPDSPPKV
AKVAEIRDQK
OTNSKVSKVK
Baaseeeeeke
GYHTALPFAP
F\QDL\DVAL
DFSEDQEEKK
AIDEAIEDDIK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 53.9	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) KRRGSFKMAELDQLPDESSSAKALVSLKEGSLSNTWNEKYSSL QKTPVWKGRNTSSAVEMPFRNSKRSRLFSDEDDRQINTRSPKR
				QKIFVWAGRNISSAVEMPFRNSKRSKLFSDEDDRQINIKSPKK NQRVAMVPQKFTATMSTPDKKASQKIGFRLRNLLKLPKAHKWC IYEWFYSNIDKPLFEGDNDFCVCLKESFPNLKTRKLTRVEWGK IRRLMG
175	914	166	635	MPEYLRKRFGGIRIPIILAVLYLFIYIFTKISVDMYAGAIFIQ QSLHLDLYLAIVGLLAITAVYTVAGGLAAVIYTDALQTLIMLI GALTLMGYSFAAVGGMEGLKEKYFLALASNRSENSSCGLPRED AFHIFRDPLTSDLPWPGVLFGMSIPSLX*
176	915	673	1025	XSASATSLTLSHCVDVVKGLLDFKKRRGHSIGGAPEQRYQIIP VMCCSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSVD FDPSGYQVLAATYNQVAQFWK*
177	916	3	139	QKRFPSNCGRDGKLFLWGQALHITAKLLGKWRRLGMVFFSLLL SY
178	917	1	541	VHVCSSKMGALSTERLQYYTQELGVRERSGHSVSLIDLWGLLV EYLLYQEENPAKLSDQQEAVRQGQNPYPIYTSVNVRTNLSGED FAEWCEFTPYEVGFPKYGAYVPTELFGSELFMGRLLQLQPEPR ICYLQGMWGSAFATSLDEIFLKTAGSGLSFLEWYRGSVNITDD CQKPQLHN
179	918	1	628	EFLGRPTRPAKDEGNDEGKDEGKDEGKDEGKDEGKDERK DEGKDEGKDERKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEG
180	919	27	471	PSLRPAWHEGEDFSYGLQPYCGYSFQVVGEMIRNREVLPCPDD CPAWAYALMIEGWNEFPSRRARFKDIHSRLRAWGNLSNYNSSE QTSGGRNTTQTSSLSTSPLCNVSNAPYVGPKQKVPPFPQTQVI PMKGQIRPMVPPPQLYVP
181	920	2	454	RNSGRHPRVRWILEERKRVMQEACAKYRASSSRRAVTPRHVSR IFVEDRHRVLYCEVPKAGCSNWKRVLMVLAGLASSTADIQHNT VHYGSALKRLDTFDRQGILHRLSTYTKMLFVREPFERLVSAFR DKFEHPNSYYHPVFCMAILAR
182	921	2	378	IMYSISPANSEEGQELYVCTVKDDVNLDTVLLLPFLKEIAVSQ LDQLSPEEQLLVKCAAIIGHSFHIDLLQHLLPGWDKNKLLQVL RALVDIHVLCWSDKSQELPAEPILMPSSIDIIDGTKEKK
183	922	181	513	GPHVVLVLRRCFLLSYFKGVEKAKAMPSPRILKTHLSTQLLPP SFWENNCKVRYQQLPVTEGKVSQPKRVLQTPTQSIRDHLCLST VSDAYQQRENIKFYIQQDIHLNSFK
184	923	32	239	FYYICRLSKEDKAFLWEKRYYCFKHPNCLPKILASAPNWKWVN LAKTYSLLHQWPALYPLIALELLDSK

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	SEQ ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110.00	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	_
		of amino	of amino	
	ł	acid	acid	·
305		sequence	sequence	KMMI*GLFEIQQCPIGKHCNFLQVLRN/PNRDL/WLVSSFGKS
185	924	3	361	SKGRERMGHHDEYYRLRGR/HNPSPDHSYKRNGESERKRKKSH
				*HMSKSQERHNSPSRGRNSDRSGGRCSRSDNGRSRYR
			1	l
186	925	443	1412	PLSLFARVAGSRVEMPEPPGLGDEGRPLLHPGRREAVGSWVSA
	1	!	[FAGDSTPCGPGDLSVPRREPFRLTAL*PHRSPVVRTSLIGLLL
		<u> </u>	<u> </u>	GFSVKEELRGVGWAARTPLGIR
187	926	2	917	FDKRQHEARIQQMENEIHYLQENLKSMEEIQGLTDLQLQEADE
]		EKERILAQLRELEKKKKLEDAKSQEQVFGLDKELKKLKKAVAT
	Ì		1	SDKLATAELTIAKDQLKSLHGTVMKINQERAEELQEAERFSRK
ĺ			1	AAQAARDLTRAEAEIELLQNLLRQKGEQFRLEMEKTGVGTGAN
1	Ì		1	SQVLEIEKLNETMERQRTEIARLQNVLYLTGSDNKGGFENVLE
	Ì		-	EIAELRREGSYQNDYISSMADPFKRRGYWYFMPPPPSSKVSSH
	Ī		1	SSQATKDSGVGLKYSASTPVRKPRPGQQDGKEGSQPPPASGYW
L			}	VYSP
188	927	171	1082	SDASSFKTRVIVVPRPRVFPLGSAITENSLESDSQIGQFGVGF
			}	YSAFLVADKVIVTSKHNNDTQHIWESDSNEFSVIADPRGNTLG
]	į		RGTTITLVLKEEASDYLELDTIKNLVKKYSQFINFPIYVWSSK
1				TETVEEPMEEEEAAKEEKEESDDEAAVEEEEEKKPKTKKVEK
	[}	ł	TVWDWELMNDIKPIWQRPSKEVEEDEYKAFYKSFSKESDDPMA
	ĺ	[YIHFTAEGEVTFKSILFVPTSAPRGLFDEYGSKKSDYIKLYVR
	1			RVFITDDFHDMMPKYLNFVKGVVDSDDLPLNVSRETLQQHKLL
100		710	325	KV CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
189	928	718	275	CGSWMRRALIPPCRGGPSASDRCCSCSPSGFSAGRGRCPVQGC
Ì				LRPHRVQLLRRWGPGSPAGQRLSKGFQLLRWWGPGSPAPEPRK GPFPPPDPPWPVTAVTVMAGSVPSAOSVDALESPGPLALEGPS
}	1]	SPRNLLWREMSIFLPGIF
	000	<u> </u>	L	
190	929	1	550	PGPTPPPRHGSPPHRLIRVETPGPPAPPADERISGPPASSDRL
				AILEDYADPFDVQETGEGSAGASGAPEKVPENDGYMEPYEAQK
1				MMAEIRGSKETATQPLPLYDTPYEPEEDGATPEGEGAPWPRES
				RLPEDDERPPEEYDQPWEWKKERISKAFAVDIKVIKDLPWPPP
	1000	 	F.60	VGQLDSSPSLP
191	930	1	562	QFFSLFLRYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVG
	l	1	1	YSTHMVGKWHLGFYRKECMPTRRGFDTFFGSLLGSGDYYTHYK
1				CDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQILASHN
1	1			PTKPIFLYIAYQAVHSPLQAPGRYFEHYRSIININRRRYAAML
	1	 		SCLDEAINNVTLALK
192	931	3	580	RVRKGRGGERLQSPLRVPQKPERPPLPPKPQFLNSGAYPQKPL
			1	RNQGVVRTLSSSAQEDIIRWFKEEQLPLRAGYQKTSDTIAPWF
				HGILTLKKANELLLSTGMPGSFLIRVSERIKGYALSYLSEDGC
1	-		1	KHFLIDASADAYSFLGVDQLQHATLADLVEYHKEEPITSLGKE
				LLLYPCGQQDQLPDYLELFE

COEC T	CEC	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Amino acid segment containing signat peptide (A=Aianine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acios	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
i i	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
]		acid	acid	\=possible nucleotide insertion)
		residue	residue	,
		of amino	of amino	
,		acid	acid	·
		sequence	sequence	
193	932	3	1641	GSLEKALFQLLKVWGQWAEQTRRLQRLDVSLSVARVRSAGPSC
1	1	{	1	QNKGDLVMEALLEGIQNRGHGGGFLTSCEAELQELMKQIDIMV
])	}	AHKKSEWEGRTHALETCLKIREQELKSLRSQLDVTHKEVGMLH
1	1			QQVEEHEKIKQEMTMEYKQELKKLHEELCILKRSYEKLQKKQM
1	1		1	REFRGNTKNHREDRSEIERLTAKIEEFRQKSLDWEKQRLIYQQ
		İ		OVSSLEAORKALAEQSEIIQAQLVNRKQKLESVELSSQSEIQH
1		1	ſ	LSSKLERANDTICANELEIERLTMRVNDLVGTSMTVLQEQQQK
	l	l	1	EEKLRESEKLLEALQEEKRELKAALQSQENLIHEARIQKEKLQ
	1	1		EKVKATNTOHAVEAISLESVSATCKQLSQELMEKYEELKRMEA
Ì		ļ	ļ	HNNEYKAEIKKLKEQILQGEQSYSSALEGMKMEISHLTQELHQ
1		ł	į	RDITIASTKGSSSDMEKRLRAEMQKAEDKAVEHKEILDQLESL
	ļ	ł	}	KLENRHLSEMVMKLELGLHECSLPVSPLGSIATRFLEEEELRS
1	1			HHILERLDAHIEELKRESEKTVRQFTALK
100	933	159	1053	TGFLGWSQGPSLTPTSLSALYPSQVEETGVVLSLEQTEQHSRR
194	933	123	1023	PIQRGAPSQKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAAD
1		1	1	PRRFCSPDLRRLLGPILDGASVAATPSTPLATRHPQSPLSADL
1	}	1		PDELPVGTENVHRLFTSGKDTEAVETDLDIAQDADALDLEMLA
	1	1	1	PYISMDDDFQLNASEQLPRAYHRPLGAVPRPRARSFHGLSPPA
1	1	ł		LEPSLLPRWGSDPRLSCSSPSRGDPSASSPMAGARKRTLAQSS
		1	1	KDEDEGVELLGVRPPKRSPSPEHENFLLFPLSLSFLLTG
	1		1	
195	934	3	425	ELQDCFDVHDASWEEQIFWGWHNDVHIFDTKTQTWFQPEIKGG
ł	1		1	VPPQPRAAHTCAVLGNKGYIFGGRVLQTRMNDLHYLNLDTWTW
	1	ł	l	SGRITINGESPKHRSWHTLTPIADDKLFLCGGLNAYNMPLSDG
				WIHNVTTHCWK
196	935	2	295	FFFLRTRSHSVTPRWECSDDITAHWQPQPWGSSDPLTFS/RPQ
1		}	}	VVVPPRHTTLCP\ANFFVFCIFCRNRISPCWPGWSRTPWAQLI
1				RLPRPPKVLGLQV
197	936	2	737	PREGQVKQGLLGDCWFLCACAALQKSRHLLDQVIPPGQPSWAD
				QEYRGSFTCRIWQFGRWVEVTTDDRLPCLAGRLCFSRCQREDV
1		1		FWLPLLEKVYAKVHGSYEHLWAGQVADALVDLTGGLAERWNLK
1	}	i		GVAGSGGQQDRPGRWEHRTCRQLLHLKDQCLISCCVLSPRAGE
	1			ARGOHGRAAASVPPTARPQAHCSFLCDWLHSPVRTKWEEVSLF
	1			SRVVSSVCDLPLLSSSRGTWPFSPLTSPFH
198	937	3	638	AECLEASIARYAHRVANSRYTFDGETVTLSPSQGVNQLHGGPE
}	1		1	GFDKRRWQIVNQNDRQVLFALSSDDGDQGFPGNLGATVQYRLT
		1		DDNRISITYRATVDKPCPVNMTNHVYFNLDGEQSDVRNHKLQI
			1	LADEYLPVDEGGIPHDGLKSVAGTSFDFRSAKIIASEFLADDD
	}		1	QRKVKGYDHAFLLQAKGDGKKVAAHVWSADEKLQLKVYT
199	938	69	425	PLSRFLSKESQEDWGMERQSRVMSEKDEYQFQHQGAVELLVFN
133	1 230	"	1 -23	FLILTILTIWLFKNHRFRFLHETGGAMVYDKPPKFAMSREQM
			1	SOSCSHTAHNASLLTDAGPLSCGESRASCLFL
	1	<u> </u>		3Agentivitivanining investigation

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	1 15100	to first	to first	T = Threonine, $V = Valine$, $W = Tryptophan$, $Y = Tyrosine$,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
]	acid	acid	\=possible nucleotide insertion)
	Ì	residue	residue	
1	1	of amino	of amino	
		acid	acid	·
	020	sequence	sequence	DSKEPRLQQLGLLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVL
200	939	3	435	OLLSFTLLAGLLVQVSKVPSSISQEQSRQDAIYQNLTQLKAAV
			ļ	GELSEKSKLQEIYQELTQLKAAVGELPEKSKLQEIYQELTWLK
•	j			AAVGELPEKSKMQE
			4.50	
201	940	657	469	MQSTAWGHRRDRGESPLGWGQESEASPSALTEAPKAAHTTRLG
<u></u>	<u> </u>		77.6	FLAANNPNGHSQPQDSFLL*
202	941	1	714	FETLSMRGIPHMLALGPQQLLAQDEEGDTLLHLFAARGLRWAA
			1	YAAAEVLQVYRRLDIREHKGKTPLLVAAAANQPLIVEDLLNLG
			ĺ	AEPNAADHQGRSVLHVAATYGLPGVLLAVLNSGVQVDLEARDF
ĺ	1.		[EGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ
			1	MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL
				RALEHVTSLLCALRVFCLFLCQL
203	942	3	479	DAWADAWVGTKMADLDSPPKLSGVQQPSEGVGGGRCSEISAEL
1	ł		ł	IRSLTELQELEAVYERLCGEEKVVERELDALLEQQNTIESKMV
ĺ	1		1	TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA
		ļ		KNRLYQAIQRADDILDLKFCMDGVQTALR
2.04	943	1	706	AVEFRVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL
	1			VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV
1	İ			HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA
1	1	İ		ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF
ł		1	1	AVSSALTLMMPYYQLQPESP
	944	1	852	GFHPNTTHYRARAAARAGAGSFVGEVSAVDKDFGPNGEVRYSF
205	944	1	852	EMVOPDFELHAISGEITNTHOFDRESLMRRRGTAVFSFTVIAT
1	· ·		ļ	DOGIPOPLKDOATVHVYMKDINDNAPKFLKDFYQATISESAAN
1			ł	LTOVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT
				LIGKLDYEATPAYSLVIOAVDSGTIPLNSTCTLNIDILDENDN
1				TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY
ì	1	İ		YKFTGTKHPPGTFSISPKHLGVFFLAQK
206	945	3	363	GDCYDLYGGEKFATLAELVOYYMEHHGOLKEKNGDVIELKNPL
200	1 243		333	NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG
				DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK
207	946	218	717	IDSGNONGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA
207	740	"""	/-/	FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL
}	1		1	LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT
	1	1	1	VOFLVPOSISEEMFYQLSNMLPQIFRVSSTLTLTSKH
208	947	3	368	SILPALLYTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV
208	74/		300	GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ
1			l	FLGVREORVTGIIVFILTGISVFLAPILKCIPLPV
209	948	2	575	GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ
209	340	1	,,,,	GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT
}	1			IEGGTOSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV
				LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV
	1		}	ADNVLLENGGHLDINAYGS
L			J	1.1.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ĺ	1	acid	acid	\=possible nucleotide insertion)
<u> </u>		residue	residue	1—possible nucleotide hisertion)
		of amino	of amino	
	ĺ	acid	acid	,
	j	sequence	sequence	
210	949	1	296	FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD
		1		VPVKELLKTIPKYKVMNDLIPEIKATEMPRALFSQSSGFKLYF
			j	GAMFLLTTITAC
211	950	3	594	SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL
	1	ł	}	EDIRTEFDRELDLGSLNPGKQLFEKMISGLYLGELVRLILLKM
				AKAGLLFGGEKSSALHTKGKIETRHVAAMEKYKEGLANTREIL
1		İ		VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRLRE
1	1	1	İ	NKKVERLRTTVGMDGTLYKIHPQY
212	951	2	2167	FVAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG
		l		AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT
		1		CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA
			}	FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF
		-		CSSRFLNATCDEYFTRNNVTEIOGIPGAASGLIKENLWSSYLT
		1		KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY
			[FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV
				VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF
١.			}	STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW
	ļ			ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ
			1	TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM
	1	l		LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP
				HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG
ľ		ŀ	1	SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR
1		Į		DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL
	ł			VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM
			ĺ	LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM
213	952	1	128	FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV
214	953	3	244	RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM
				HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP
215	954	2	609	CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN
1	<u> </u>			FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA
				LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG
	ł	İ		GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP
1				VGPLLRALATCHALSRLQDTPVGDPMDLKM
216	955	292	855	QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF
				EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI
		}		IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV
1				AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT
				RNDANRLQDAIAKGRG
217	956	2	400	ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT
]			VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT
	1			TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS
1	1			KWA
				<u> </u>

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	1	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	,
i		of amino	of amino	
Ì		acid	acid	
		sequence	sequence	
218	957	1	662	LKSTQDEINQARSKLSQLHESRQEAHRSLEQYDQVLDGAHGAS
	1	Į.		LTDLANLSEGVSLAERGSFGAMDDPFKNKALLFSNNTQELHPD
,		l	İ	PFQTEDPFKSDPFKGADPFKGDPFQNDPFAEQQTTSTDPFGGD
		İ	Į	PFKESDPFRGSATDDFFKKQTKNDPFTSDPFTKNPSLPSKLDP
		1	1	FESSDPFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSTI
-		[[EGRRG
219	958	1	752	RTRGGSGNSSQPSLREGHDKPVFNGAGKPHSSTSSPSVPKTSA
1		ļ		SRTOKSAVEHKAKKSLSHPSHSRPGPMVTPHNKAKSPGVROPG
1	ļ]		SSSSAPGOPSTGVARPTVSSGPVPRRONGSSSSGPERSISGS
	ĺ	1	İ	KKPTNDSNPSRRTVSGTCGPGOPASSSGGPGRPISGSVSSARP
				LGSSRGPGRPVSSPHELRRPVSGLGPPGRSVSGPGRSISGSIP
				AGRTVSNSVPGRPVSSLGPGQTVSSSGPTIKPKCT
220	959	439	582	RGKGITPRYHLCISDPHNLKICCRVNGEVVQSSNTNOMVFKTE
220	753	. 433	362	DLIAW
221	960	230	420	VVAVTRWLCENGVSYLRKCVCSACRHGTRCAGEVAAAANNSHC
221	960	230	420	
			100	TVGIAFNAKIGGMGNQLTWM
222	961	311	490	GAPPPFVPTLKSDDDTSNFDEPKKNSWVSSSPCQLSPSGFSGE
	050	<u> </u>		ELPFVGFSYSKALGIL
223	962	2	422	FVERLAHLHAACAPRRKVALLLEVCRDVYAGLARGENQDPLGA
	1	-		DAFLPALTEELIWSPDIGDTQLDVEFLMELLDPDELRGEAGYY
	1	1	}	LTTWFGALHHIAHYQPETDRAPRGLSSEARASLHQWHRRRTLH
			ļ	RKDHPRAQQLD
224	963	385	844	FWMDPYNPLNFKAPFQTSGENEKGCRDSKTPSESIVAISECHT
1		1		LLSCKVQLLGSQESECPDSVQRDVLSGGRHTHVKRKKVTFLEE
	İ			VTEYYISGDEDRKGPWEEFARDGCRFQKRIQETEDAIGYCLTF
	<u> </u>			EHRERMFNRLQGTCFKGLNVLKQC
225	964	3	166	AASTAYSFFGTVENMAPKVVNRPGHTQSADWGSFGGLMGRFEF
1	}	1	 	GIFLKGKEIVK
226	965	1	118	GFVFLPGPMSVGLDFSLPGMEHVYGIPEHADNLRLKVTE
227	966	1	390	GSECQGTDLDTRNCTSDLCVHTASGPEDVALYVGLIAVAVCLV
	1	1		LLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADN
1.		1		PHLLTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPL
				G
228	967	ī	777	LIYNEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQSF
i	1		1	HNVQQMAIDWLTRNLYFVDHVGDRIFVCNSNGSVCVTLIDLEL
1				HNPKAIAVDPIAGKLFFTDYGNVAKVERCDMDGMNRTRIIDSK
				TEQPAALALDLVNKLVYWVDLYLDYVGVVDYQGKNRHAVIQGR
				OVRHLYGITVFEDYLYATNSDSYNIVRISRFNGTDIHSLIKIE
				NAWGIRIYQKRTQPTVRSHACEVDPYGMPGGCSHICLLSSSYT
		1		K
229	968	3	488	SSGNPOPGDSSGGGAGGGLPSPGEQELSRRLORLYPAVNOQET
""	1 200			PLPRSWSPKDKYNYIGLSQGNLRVHYKGHGKNHKDAASVRATH
				PIPAACGIYYFEVKIVSKGRDGYMGIGLSAQGVNMNRLPGWDK
				HSYGYHGDDGHSFCSSGTGQPYGPTFTTGDVI
	<u> </u>	L	J	TOTALUADDAUDE COOGLAGE LA LI LIADAT

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ļ		acid	acid	\=possible nucleotide insertion)
		residue	residue	possion matrices,
]	ļ	of amino	of amino	
		acid	acid	
		sequence	sequence	
230	969	1	228	FFFFKMGSRSVTQAGVQWCDVSSLQAPPPRFTLFCLSLPSSWD
				YRCVPPCPANFFVFLVETGFHRVSQYGLDLLTS
231	970	2	119	QLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS
1	ļ	ł	1	SLVGVIDGSFEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV
ļ	İ			GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV
1				SVMEKSKSKISNECEVDTSSSMWIYVFLGNLLRGIGETPIQPL
			ļ	GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY
				VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE
				EHHHSDREKG
232	971	221	1068	QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN
				SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV
	l			RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV
	ļ			VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM
	ļ]		AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF
				NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL
			L	TCPNASFTDLAEIVSRIEPAKPAM
233	972	133	635	LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD
ĺ			ĺ	KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI
	1			TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK
Ĺ	İ	L		RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF
234	973	1	420	ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE
	l			VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD
				LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD
L		<u> </u>		YVQIDATINYG
235	974	2	860	PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR
1				DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML
	1			QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF
[LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP
]	1			AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE
1	1			ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI
	<u> </u>	<u> </u>	<u> </u>	IAAFLPSVKYPHHTWNIFLQICLFVVSL
236	975	1	467	LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI
				SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL
	ļ			KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ
	<u> </u>			VAMQVLEMHYTPSVKIIPSTPFPQEG
237	976	3	417	YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF
				PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ
	1			MEESELHEVLHHTLTNVDGKAYRTIDGPRSFRQRISPAIA\YT
<u> </u>	<u> </u>	L	<u> </u>	YD\SDILKGN

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110103	Acius	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	F
		of amino	of amino	
		acid	acid	
		sequence	sequence	
238	977	2	740	DQDYKYDSTSDDSNFLNPPRGWDHTAPGHRTFETKDQPEYDST
				DGEGDWSLWSVCSVTCGNGNQKRTRSCGYACTATESRTCDRPN
	ļ	1		CPGIEDTFRTAATEVSLLAGSEEFNATKLFEVDTDSCERWMSC
]		KSEFLKKYMHKVMNDLPSCPCSYPTEVAYSTADIFDRIKRKDF
				RWKDASGPKEKLEIYKPTARYCIRSMLSLESTTLAAQHCCYGD
				NMQLITRGKGAGTPNLISTEFSAELHYKVDV
239	978	2	612	ESEENGES AMDSTVAKEGTNVPLVAAGPCDDEGIVTSTGAKEE
			1	DEEGEDVVTSTGRGNEIGHASTCTGLGEESEGVLICESAEGDS
				QIGTVVEHVEAEAGAAIMNANENNVDSMSGTEKGSKDTDICSS
	1			AKGIVESSVTSAVSGKDEVTPVPGGCEGPMTSAASDQSDSQLE
		1		KVEDTTISTGLVGGSYDVLVSGEVPECEVAH
240	979	79	361	VCIICLIFSYYSFDSALQSAKSSLGGNDELSATFLEMKGHFYM
				YAGSLLLKMGQHGNNVQWRALSELAALCYLIAFQVSLPLGAID
				ISRSLDVF
241	980	2	681	QHPSQEKPQVLTPSPRKQKLNRKYRSHHDQMICKCLSLSISYS
İ		ŀ		ATIGGLTTIIGTSTSLIFLEHFNNQYPASEVVNFGTWFLFSFP
١.	1	1	ł	ISLIMLVVSWFWMHWLFLGCNFKETCSLSKKKKTKREQLSEKR
]				IQEEYEKLGDISYPEMVTGFFFILMTVLWFTREPGFVPGWDSF
				FEKKGYRTDATVSVFLGFLLFLIPAKKPCFGKKNDGENQEHSL
				GTEPIITWKDF ·
242	981	1	491	LEREGDKGTPVLRGFSSVSGSWSRRMPPFLLLTCLFITGTSVS
				PVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYH
		1		FTGMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQA
			İ	CASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSV
243	982	1	983	CGRTMSDIRHSLLRRDALSAAKEVLYHLDIYFSSQLQSAPLPI
		1	•	VDKGPVELLEEFVFQVPKERSAQPKRLNSLQELQLLEIMCNYF
		1	1	OEQTKDSVRQIIFSSLFSPQGNKADDSRMSLLGKLVSMAVAVC
]		Į.	RIPVLECAASWLORTPVVYCVRLAKALVDDYCCLVPGSIQTLK
	1		1	OIFSASPRFCCQFITSVTALYDLSSDDLIPPMDLLEMIVTWIF
			1	EDPRLILITFLNTPIAANLPIGFLELTPLVGLIRWCVKAPLAY
	1			KRKKKPPLSNGHVSNKVTKDPGVGMDRDSHLLYSKLHLSVLQV
	1			LMTLQLHLTEKNLYGPPGADPLRPHG
244	983	32	362	SACSTGPELPGRATRSLTRPANOKGCDGDRLYYDGCAMIAMNG
			1	SVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAVSAP
				VDTCVGCSSKTWKVAPFVRAWWRP
245	984	158	398	APLSRLCFPQVLVNEGGGFDRASGSFVAPVRGVYSFRFHVVKV
	1 222			YNRQTVQVTSALAPIPGSGGWGGGRRGAQLTSGWTLH
246	985	12	707	PHIIGAEDDDFGTEHEQINGQCSCFQSIELLKSRPAHLAVFLR
2-20	1	-	' ' '	HVVSOFDPATLLCYLYSDLYKHTNSKETRRIFLEFHQFFLDRS
,	1			AHLKVSVPDEMSADLEKRRPELIPEDLHRHYIQTMQERVHPEV
	1		1	ORHLEDFROKRSMGLTLAESELTKLDAERDKDRLTLEKERTCA
			1	EOIVAKIEEVLMTAOAVEEDKSSTMOYVILMYMKHLGVKVKEP
	1		1	RNLEHKRGRIGFLPKIKOSM
	<u> </u>		<u> </u>	MADEUVVQVIGLDEKIKÄSM

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	Position Indicated institution
		of amino	of amino	
		acid	acid	
		sequence	sequence	
247	986	18	441	SPGTGRGPGPTSFVCLPTPQCPFIDDFILALHRKIKNEPVVFP
]				EGPEISEELKDLILKMLDKNPETRIGVPDIKLHPWVTKNGEEP
				LPSEEEHCSVVEVTEEEVKNSVRLIPSWTTVILVKSMLRKRSF
				GNPFEPQARMA
248	987	3	732	HASGIKIDKTSDGPKLFLTEEDQKKLHDFEEQCVEMYFNEKDD
	l [.]			KFHSGSEERIRVTFERVEQMCIQIKEVGDRVNYIKRSLQSLDS
	[]	QIGHLQDLSALTVDTLKTLTAQKASEASKVHNEITRELSISKH
	1			LAQNLIDDGPVRPSVWKKHGVVNTLSSSLPQGDLESNNPFHCN
1		1		ILMKDDKDPQCNIFGQDLPAVPQRKEFNFPEAGSSSGALFPSA VSPPELRQRLHGVELLKIFNKKQKKRA
249	000	ļ	460	CCRWIDCFALYDQQEELVRHIEKVHIDQRKGEDFTCFWAGCPR
249	988	3	468	RYKPFNARYKLLIHMRVHSGEKPNKCTFEGCEKAFSRLENLKI
				HLRSHTGEKPYLCQHPGCQKAFSNSSDRAKHQRTHLDTKPYAC
]	OIPGCTKRYTDPSSLRKHVKAHSSK
250	989	356	553	LPLLWTLSDFGGTMDQSGMEIPVTLIIKAPNQKYSDQTISCFL
230	1	333	333	NWTVGKLKTHLSNVYPSKPVSV
251	990	1	895	AGTRMCVVAAAEELVCGA\RGLWMRRTRRPRFVLMNKMDDLNL
] _		HYRFLNWRRRIREIREVRAFRYQERFKHILVDGDTLSYHGNSG
			1	EVGCYVASRPLTKDSNYFEVSIVDSGVRGTIAVGLVPQYYSLD
			1	HQPGWLPDSVAYHADDGKLYNGRAKGRQFGSKCNSGDRIGCGI
1				EPVSFDVQTAQIFFTKNGKRVGSTIMPMSPDGLFPAVGMHSLG
				EEVRLHLNAELGREDDSVMMVDSYEDEWGRLHDVRVCGTLLEY
				LGKGKSIVDVGLAQARHPLSTRSHYFEVEIVDPGEKCYIA
252	991	51	674	QQAEEHLAAYSVSDSDSGKDPSMECCRRATPGTLLLFLAFLLL
				SSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLSSK
			1	SCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYE
				WLPVSNDPDNPCSLKCQAKGTTLVVELAPKVLDGTRCYTESLD
				MCISGLCQVSADLFSFNLSRGFQCLCVNGLHSLTL
253	992	2	554	RLLRQELVVLCHLHHPSLISLLAAGIRPRMLVMELASKGSLDR
				LLQQDKASLTRTLQHRIALHVADGLRYLHSAMIIYRDLKPHNV
	1			LLFTLYPNAAIIAKIADYGIAQYCCRMGIKTSEGTPGFRAPEV
	1			ARGNVIYNQQADVYSFGLLLYDILTTGGRIVEGLKFPNEFDEL
	 	<u> </u>		EIQGKLPDPVKE
254	993	3	437	KASNSTHEFRIGLPEGWESEKKAVIPLGIGPPLTLICLGVLGG
	-			ILIYGRKGFQTAHFYLKDSPSPKVISTPPPPIFPISKEVGPIP
		ì		IKHFPKHVANLHASRGFTEKFETLKKFYQEGQSCTVDLGITAN
	00.	<u> </u>	1-45	SSNHPDNRHRNRSLI
255	994	3	445	SFPDRTASLVLLSVPVGQAGMQQRGLAIVALAVCAALHASPAI
				LPIASSCCTEVSHHISRRLLERVNMCRIQRADGDCDLAAVILH
				VKRRRICVS PHNHTVKQWMKVQAAKKNGKGNVCHRKKHHGKRN
L	L		<u> </u>	SNRAHQGKHETYGHKTPY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 737	Amino acid segment containing signal peptide (A=Alanine; C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) FEQPGNPGDPRVRTPPPWGPHFFALIPSSPKEVPATPSSRRDP IAPTATLLSKKTPATLAPKEALIPPAMTVPSPKKTPAIPTPKE APATPSSKEASSPPAVTPSTYKGAPSPKELLIPPAVTSPSPKE APTPPAVTPPSPEKGPATPAPKGTPTSPPVTPSSLKDSPTSPA
				SVTCKMGATVPQASKGLPAKKGPTALKEVLVAPAPESTPIITA PTRKGPOTKKSSATSPPICPDPSAKNGSKG
255	1005	170	<u> </u>	FFLKIOGLGWARWLTPVIPVLWEAE
257	996 997	79 307	3 475	AGFGYGLPISRLYAKYFQGDLNLYSLSGYGTDAIIYLKVSLEF
258	997	307	4/5	NSKILFLKPLLLL
259	998	26	622	WMRAPMLQKQQAPRMDTPPPEERLEKQNEKLNNQEEETEFKEL
	1			DGLREALANLRGLSEEERSEKAMLRSRIEEQSQLICILKRRSD
				EALERCQILELLNAELEEKMMQEAEKLKAQGEYSRKLEERFMT
				LAANHELMLRFKDEYKSENIKLREENEKLRLENNSLFSQALKD
	ļ			EEAKVLQLTVRCEALTGELETLKERC
260	999	2	241	DPGASHASVQVQVLKEQLFAGRMPSPFRSCALMGMCGSRSADN
				LSCPSPLNVMEPVSFFPLKSLGKGMIQHFRHIVSLV
261	1000	1	620	VTTTTHSVGRGHELQLLNEELRNIELECQNIMQAHRLQKVTDQ
				YGDIWTLHDGGFRNYNTSIDMQRGKLDDIMEHPEKSDKDSSSA
İ				YNTAESCRSTPLTVDRSPDSSLPRVINLTNKKNLRSTMAATQS SSGQSSKESTSTKAKTTEQGCSAESKEKVLEGSKLPDQEKAVS
				EHIPYLSPYHSSSYRYANIPAHARHYQSYMQLIQ
262	1001	3	420	VWGCLATVSTHKKIOGLPFGNCLPVSDGPFNNSTGIPFFYMTA
262	1001	3	420	KDPVVADLMKNPMASLMLPESEGEFCRKNIVDPEDPRCVQLTL
	1		ļ	TGOMIAVSPEEVEFAKQAMFSRHPGMRKWPRQYEWFFMKMRIE
1			ļ	HIWLOKWYG
263	1002	43	441	QAANMAVARVDAALPPGEGSVVNWSGQGLQKLGPNLPCEADIH
				TLILDKNQIIKLENLEKCKRLIQLSVANNRLVRMMGVAKLTLL
	1.			RVLNLPHNSIGCVEGLKELVHLEWLNLAGNNLIAMEQINSCTA
				LQHL
264	1003	3	834	FRAAVGAVPEGAWKDTAQLHKSEEAKRVLRYYLFQGQRYIWIE
				TQQAFYQVSLLDHGRSCDDVHRSRHGLSLQDQMERKAIYGPNV
1				ISIPVKSYPQLLVDEAFSIALWLADHYYWYALCIFLISSISIC
		,		LSLYKTRKQSQTLRDMVKLSMRVCVCRPGGEEEWVDSSELVPG
				DCLVLSQEGGLMPCDAALVAGECMVNDSSLTGESIPVLKTALP
				EGLGPYCAETHRRHTLFCGTLILHARAYVGPHVLAVVTRTGMS REAGLERDPGSAPLKRWS
205	1004	2	670	FVGGGLHLHLCLLLCFMLPEDAAMAVLTASNHVSNVTVNYNIT
265	1004	4	0 / 0	VERMNRMQGLRVSTVPAVLSPNATLALTAGVLVDSAVEVAFLW
				TFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEHNVTHTYAAP
				GEYVLTVLASNAFENRTQQVLIRSGRVPIVSLECVSCKAQAVY
1				EVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETTT
1	1			STGSASM
	<u> </u>	<u> </u>		

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1093	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) PEFLGRLFRGKAATLHVHSDQKPLHDGALGSQQNLVRMKEALR
				ASTMDVTVVLPSGLEKRSVLNGSHAMMDLLVELCLQNHLNPSH HALEIRSSETQQPLSFKPNTLIGTLNVHTVFLKEKVPEEKVKP GPPKVPEKSVRLVVNYLRTQKAVVRVSPEVPLQNILPVICAKC EVSPEHVVLLRDNIAGEELELSKSLNELGIKELYAWDNRRETF RKSSLGNDETDKEKKKFLGFFKVNKRSNSKGCLTTPNSPSMHS RSLTLGPSLSLGSISGVSVKSEMKKRRAPPPPGSGPPVQDKAS EKVSLGSQIDLQKKKRRAPAPPPPQPPPPSPLIPNRTEDKEEN RKSTMVYCCASFPTQAKRF
267	1006	686	400	VQWHNLHSLQPLPAGFK*FLCFSLPSSWDYRCAPPLP/APFFF YFLFLVELGFHHIG*AGLELTSTDLPASAS/ESAGITGMSHRA RPMDFFLLKIL
268	1007	1	453	GRRFRPPSDEEREPWEPWTQLRLSGHLKPLHYNLMLTAFMENF TFSGEVNVEIACRNATRYVVLHASRVAVEKVQLAEDRAFGAVP VAGFFLYPQTQVLVVVLNRTLDAQRNYNLKIIYNALIENELLG FFRSSYVLHGERRFLGVTQFSP
269	1008	333	526	KELDPFYNS*RKIKYLRIYLTKEVKDLYKENYKTLLKEITDDT N/KKHIPSSWTGRINTVKMTIL
270	1009	699	882	VPHPLQAIHEQMNCKEYQEDLALRAQNDAAARRPSEMFKVRLA QGRGLASLSSGIQSGVG
271	1010	16	148	RWNSLTCVVLTFLGHRLLKRFLVPKLRRFLKPQGHPRLLLWFK R
272	1011	1	659	YGEFVTYQGVAVTRSRKEGIAHNYKNETEWRANIDTVMAWFTE EDLDLVTLYFGEPDSTGHRYGPESPERREMVRQVDRTVGYLRE SIARNHLTDRLNLIITSDHGMTTVDKRAGDLVEFHKFPNFTFR DIEFELLDYGPNGMLLPKEGRLEKVYDALKDAHPKLHVYKKEA FPEAFHYANNPRVTPLLMYSDLGYVIHGVSRLLEAPPPGAPSP GSGS
273	1012	146	413	RIPLLRLRSSTYRSKGFDVTVKHSHGSWTGFGGEDLATIPKGL NTYFLVNIATIFESKNFFLPGIKWNGILGLSYATLAKPSSSLE TFF
274	1013	3	251	IKSYSGPNGRSCQIWQRLRWGSRELLLGWKLSHSFSTCPFQFP DIVEFCEAMANAGKTVIVAALDGTFQRKVRRLIQVWSWD
275	1014	326	651	YCFCFDLLH*CIHRDVKPENILITKHSVIKLCDFGFARLLTGP SDYYTDYVATRWYRSPELPVGDTQY\GPPV\DVW\AIGCVSAE \LLSGKCLWWPGKS/DMLDQLYLIRK
276	1015	224	435	RGWALDWIGADLSLHLQEEVETEVAWEECGHVLLSLCYSSQQG GLLVGVLRCAHLAPMDANGYSDPFVRL
277	1016	2	429	GGILAMEYAPGGTLAEFIQKRCNSLLEEETILHFFVQILLALH HVHTHLILHRDLKTQNILLDKHRMVVKIGDFGISKILSSKSKA YTVVGTPCYISPELCEGKPYNQKSDIWALGCVLYELASLKRAF EAANLPALVLKIM

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	1,50.00	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
ļ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
l	!	residue	residue	
İ		of amino	of amino	·
}		acid	acid	·
1000	1017	sequence 1	sequence 262	VOCGGIHQVSGAVVVSGLLQGMMGLLGSPGHVFPHCGPLVLAP
278	1017	+	202	SLVVAGLSAHREVAQFCFTHWGLALLYVSPERRGMVPSGGVWG
Ì		1		1
	1010		480	D PRMTGSTHASAPSYGGSCRNNLFYREETYTPKAETDEMNEVET
279	1018	1	480	APIPEENHVWLOPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDR
				CIGSTCNRYQCPAGCLNHKAKIFGSLFYESFASICRAAIHYGI
		1	ļ	,
				LDDKGGLVDITRNGKVPFFVKSERHGVQSLR
280	1019	271	792	VPQNIICAFFCVPCRFASTIPFWGLTLHLQHLGNNVFLLQTLF GAVTLLANCVAPWALNHMSRRLSQMLLMFLLATCLLAIIFVPQ
				1
			1	EMQTLRVVLATLGVGAASLGITCSTAQENELIPSIIRGRATGI
1	i			TGNFANIGGALASLVMILSIYSRPLPWIIYGVFAILSGLVVLL
				LP
281	1020	2	679	VLVSRDHMKSAQQFFQLVGGSASECDTIPGRQCMASCFFLLKQ
		ļ		FDDVLIYLNSFKSHFYNDDIFNFNYAQAKAATGNTSEGEEAFL
	ļ			LIQSEKMKNDYIYLSWLARGYIMNKKPRLAWELYLKMETSGES
			1	FSLLQLIANDCYKMGQFYYSAKAFDVLERLDPNPEYWEGKRGA
				CVGIFQMIIAGREPKETLREVLHLLRSTGNTQVEYMIRIMKKW
			250	AKENRVSILK
282	1021	3	359	LKVSDELVQQYQIKNQCLSAIASDAEQEPKIDPYAFVEGDEEF
	1	1	1	LFPDKKDRQNSEREAGKKHKVREITVHQRVTVDFVALHIVTLL
				LPQLSHFFCLRIERVIIYLEKPIFARLRWLMP
283	1022	3	538	GVPRNLPSSLEYLLLSYNRIVKLAPEDLANLTALRVLDVGGNC
		İ		RRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSW
			•	LNASWFRGLGNLRVLDLSENFLYKCITKTKAFQGLTQLRKLNL
				SFNYQKRVSFAHLVSGPPFLRGSLGRPLKGAGTWHGNLSFPLH
				FEWGKT
284	1023	3	442	ILFAALIWSSFDENIEASAGGGGGSSIDAVMVDSGAVVEQYKR
				MQSQESSAKRSDEQRKMKEQQAAEELREKQAAEQERLKQLEKE
			1	RLAAQEQKKQAEEAAKQAELKQKQAEEAAAKAAADAKAKAEAD
				AKAAEEAAKKAAADAKK
285	1024	1	119	AMEIVHEPRDLERYMREAVKVSNDSPVLLDRFLNDAIEC
286	1025	67	227	MLSPGYDYGYVCVEFSLLEDAIGCMEANQVALYFGQMMLEGYI
	1			FLYMGREGFK
287	1026	2	1101	PRVRSSGGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRL
İ	1	1		KCVASGHPRPDITWMKDDQALTRPEAAEPRKKKWTLSLKNLRP
1	[ĺ	EDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVLTGTHPVNT
1			1	TVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVG
			1	GQKFVVLPTGDVWSRPDGSYLNKLLITRARQDDAGMYICLGAN
1		1		TMGYSFRSAFLTVLPDPKPPGPPVASSSSATSLPWPVVIGIPA
	1			GAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSG
1			1	DKDLPSLAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLY
	<u> </u>			PKLYT\DIPHHTHTPHPPAN
288	1027	3	96	NFHFTGKCLFMSGLSEVQLTHMDDHTLPGY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 407	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				EGAPLAGSYGCTPHSFPKFQHPSHELLKENGFTQQVYHKYRRR CLSERKRLGIGQSQEMNT
290	1029	1	359	PGSGGSAGGRDGSAYQGALLPREQFAAPLGRPVGTSYSATYPA YVSPDVAQSWTAGPFDGSVLHGLPGRRPTFVSDFLEEFPGEGR ECVNCGALSTPLWRRDGTGHYLCNACGLYHKMN
291	1030	2	513	PDHRHGALWWWYSCGVLPVTVSRNEGDERNQVLTLYLWIRQEW TDAYLRWDPNAYGGLDAIRIPSSLVWRPDIVLYNKYCLS/AAP PLSYPSLDLPLAVGV**SPLPTT*PGCHAALEAFPQDPSKLPS TQPLHGTPTLGYPRPAQAERLLGTYCVVQGRCLNHKGLSRAHF
292	1031	1	595	YALTGALVIVTGMVMGNIADYFNLPVSSMSNTFTFLNAGILIS IFLNAWLMEIVPLKTQLRFGFLLMVLAVAGLMFSHSLALFSAA MFILGVVSGITMSIGTFLVTQMYEGRQRGSRLLFTDSFFSMAG MIFPMIAAFLLARSIEWYWVYACIGLVYVAIFILTFGCEFPAL CSHATKLGTASSYPSLDVVQLRTLNA
293	1032	71	479	MAKVGLKTEHYDRYPHMFSGGQRQRIAIARGLMLDPDVVIADE PVSALDVSVRAQVLNLMMDLQQELGLSYVFISHDLSVVEHIAD EVMVMYLGRCVEKGTKDQIFNNPRHPYTQALLSATPRLNPDDR RERIKLSX*
294	1033	2	427	SATLERVLNHPDETQARRLMTLEDIVSGYSNVLISLADSQGKT VYHSPGAPDIREFTRDAIPDKDAQGGEVYLLSGPTMMMPGHGH GHMEHSNWRMINLPVGPLVDGKPIYTLYIALSIDFHLHYINDL MNKLIMTASVII
295	1034	3	342	VLAYPGIKVSTAEARAILPAQYRRQDCIAHGRHLAGFIHACYS RQPELAAKLMKDVIAEPYRERLLPGFRQARQAVAEIGAVASGI SGSGPTLFALCDKPETAQRVADWLGK
296	1035	2	279	GQQQRVALARALILKPKVLLFDEPLSNLDANLRRSMRDKIREL QKQFDITSLYVTHDQSEAFAVSDTVLVMNKGHIMQIGSPQDLR VRRLNW
297	1036	3	157	AVHYLERVRIAEHAHKFPGQISGGQQQRVAIARSLCMKPKIML FDEPTSAL
298	1037	1	217	APYDAENYFDYDNLNNGPSLQHWFGVDSLGRDIFSRVLVGAQI SLAAGVFAVFIGAAIGTLLGLLAGYYEGW
299	1038	3	570	VFCLIADLDPIDELVDFPIVYASALNGIAGLDHEDMAEDMTPL YQAIVDHVPAPDVDLDGPFQMQISQLDYNSYVGVIGIGRIKRG KVKPNQQVTIIDSEGKTRNAKVGKVLGHLGLERIETDLAEAGD IVAITGLGELNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKEGKFVTSRQI
300	1039	1	366	QGTRAESQGSSKDKTRLAFAGLKFGDYGSIDYGRNYGVAYDIG AWTDVLPEFGGDTWTQTDVFMTQRATGVATYRNNDFFGLVDGL NFAAQYQGKNDRSDFDNYTEGNGHGFGFSATYEYEG
301	1040	3	201	DTYSVSIPLGATINMAGAAITITVLTLAAVNTLGIPVDLPTAL LLSVVASLCACGASGVAGGSLL

CEO	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A—Alatinie,
ID	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO: of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
/icids	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1	[amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
		residue	residue	
l		of amino	of amino	
		acid	acid	
		sequence	sequence	
302	1041	1	140	ANAQQGLPSGITLKLNNLVDKGLVDRLYAASSSGVPVNLLVRG
				TCS
303	1042	2	442	ARMTLIPGTHLLENIHNIWVNGVGTNSAPFWRMLLNSFVMAFS
			}	ITLGKITVSMLSAFAIVWFRFPLRNLFFWMIFITLMLPVEVRI
		1	1	FPTVEVIANLQMLDSYAGLTLPLMASATATFLFRKLNMSGPDK
			1	VVPAARISGYGPRVRKQ
304	1043	2	403	CAKCLRDADECPSGAFERIGRDISLDALEREVMKDDIFFRTSG
		j	}	GGVTLSGGEVLMQAEFATRFLQRLRLWGVSCAIETAGDAPASK
		}	}	LLPLAKLCDEVLFDLKIMDATQARDVVKMNLPRVLENLRLLVS
		į	ĺ	EGVN
305	1044	1	346	YLLLFVCFLVMSLLVGLVYKFTAERAGKQSLDDLMNSSLYLMR
				SELREIPPHDWGKTLKEMDLNLSFDLRVEPLSKYHLDDISMHR
			ļ	LRGGEIVALDDQYTFLQRIPRSHYVLAVG
306	1045	1	207	VELFLSDEGDDVVIEVADQGCGVPESLRDKIFEQGVSTRADEP
300		-		GEHGIGLYLIASYVTRCGGVITLEDN
307	1046	3	213	DATIAPDANALPAAAOAAENLKNDKVAIVGFSTPNVMRPYVER
		-		GTVKEFGLWDVVQQGKISVYVADALQ
308	1047	i	129	YIVVTGKTHCGTPLTTVTGDATQSGYLTLNLPEMWEVSGYNRV
309	1048	271	46	XEGVEPDINASKTRQQLNDVAGKMKIIEARLSALTNNQTKSLK
303	1 2020	1 2		LNPVALPKVASQLLDELGYSLLARRADLQSAHX*
310	1049	16	253	ENIAEEYATKRYRSNVINWGMLPLQMAEVPTFEVGDYIYIPGI
] 310	1025	1 20	1233	KAALDNPGTTFKGYVIHEDAPVTEITLYMESQEART
311	1050	2	299	LQTEIGSMVYAVKPGDGSAREQAASCQRVIGGLANIAEEYATK
1 311	1030	2	233	RYRSNVINWGMLPLOMAEVPTFEVGDYIYILGFKAAKYSPGTA
ł	}	1	}	FTVYAISGYGPRI
312	1051	1	344	TLEDILMALDGEQHLQQQVSEKVLADNVLIAPGSVKPDATFWS
312	1031	-	344	ALIQDRYNVMTCIEKDACVLVEQDLNSDGQAERILFAFNDDRV
[1	IVYGFDSDRKEWDALDMSLLPNEITKEK
333	1050	2	630	ESNSRCRKMPGERCRGGPARLSLLLDLPTRPLPHPRQVIDFGS
313	1052	4	930	ASIFSEVRYVKEPYIQSRFYRAPEILLGLPFCEKVDVWSLGCV
1			1	MDELHLGWPLYPGNNEYDQVRYICETQGLPKPHLLHAACKAHH
1				FFKRNPHPDAANPWOLKSSADYLAETKVRPLERRKYMLKSLDQ
}	{		}	FFRRNPHPDAANPWQLKSSADYLAEIKVRPLEKKRIMLKSLDQ IETVNGGSVASRLTFPDREALAEHADLKSMVEL/MKRLL
	1.053	 	1202	RLVKKRVECROCGKAGRNOSTLKTHMRSHTGEKPYECDHCGKA
314	1053	1	302	
	1	1	-	FSIGSNLNVHRRIHTGEKPYECLVCGEAFSDHSSLRSHVKTHR
L	 		1	GEKLFVSSVWKRLQ
315	1054	1318	730	CGPGFSLSFFFLRWSF\ALVAQAGVQWHDLGSLQPPAPGFKRF
				SSLSLLSRWDYRHAHARLIFVFLVEMGFLHVGQAGLELPTSGD
	1			PPTSASQSARITGVTTPLGTFFFFLRWSFALVAQAGGQCLDLG
1	1	1	1	SLQLPPPGFKRLVCHFQTPQKHRCSCQAPGDCLQESFVMTGCV
ì		İ	1	LRTVSESVQRANAGAGAETVQGL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
316	1055	2486	1429	MGNAAAKKGSEQESVKEFLAKAKEDFLKKWESPAQNTAHLDQ FERIKTLGTGSFGRVMLVKHKETGNHYAMKILD*QKVGKLKQI EHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEM FSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPEN LLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKG YNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRF PSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFATT DWIAIYQRKVEAPFIPKFKGPGDTS\NFDDYEEEEIRV\SINE KFG\KEFSEF
317	1056	867	461	SSSRSSHGDSPPHSQTPCDTNRGLDTKH*/DSQSIEEKDSSQS E*NRIERRKEVERILQTNSDYM*HWSN*PENILPKKFFSKHQK CTATLSMRNTSIM/KKEGLF*AQFPSLLLSHLPAVGLGIYTGT HLTTSTSTF
318	1057	544	784	TFHSSLEKNILQPCR*RRA\ICLPLLL*PSVPLLAPQYFSDLR NSIVNSQPPEKQQAMHLCFENLMEGIERNLLTKNRDR
319	1058	1606	228	GTSGVQQEISRLTNENLDLKELVEKLEKNERKLKKQLKIYMKK AQDLEAAQALAQSERKRHELNRQVTVQRKEKDFQGMLEYHKED EALLIRNLVTDLKPQMLSGTVPCLPAYILYMCIRHA\DYTNDD LKVHSLLTSTINGIKKVLKKHNDDFEMTSFWLSNTC\RLLHCL KQYSGDEGFMTQNTAKQN\EHCLKNFDLTEYRQV\L\SDLSIQ IYQQLIKIAEGVLQPMIVSAMLEN*SIQGLSGVKPTGSQKHSS SMADEDNSYRLEAIIRQMNAFHTVMCDQGLDPEIILQVFKQLF YMINAVTLNDLLLRKDVCSWSTGMQLRYNISQLEEWLRGRNLH QSGAVQTMEPLIQAAQLLQLKKKTQEDAEAICSLCTSLSTQQI VKILNLYTPLNEFEERVTVAFIRTIQAQLQERNDPQQLLLDAK HMFPVLFPFNPSSLTMDSIHIPACLNLEFLNEV
	<u> </u>			QLACDP\YLLHYIQKLVFVSSPAGAAIASTFGVSNSCSSN
321	1060	1332	500	GTTDEIMTRWARVSTTYNKRPLPATSWEDMKKGSFEGTSQNLP KRKQLEANRLSLKNDAPQAKHKKNKKKKEYLNEDVNGFMEYLR QNSQMVHNGQIIATDSEEVREEIAVALKKDSRREGRRLKRQAA KKNAMVCFHCRKPGHGIADCPAALENQDMGTGICYRCGSTEHE ITKCKAKVDPALGEFPFAKCFVCGEMGHLSRSCPDNPKGLYAD GGGCKLCGSVEHLKKDCPESQNSERMVTVGRWAKGMSADYEEI LDVPKPQKPKTKIPKVVNF
322	1061	384	102	DHVRKSLLKNRAENIVNIFKCNVVSLPNLPAFGQAQWLTPVIP ALWEAEVGGS*GQEIETILANAVK/SPFLLKIQKKKISRAWWR AP/VSPRYSGG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, _possible nucleotide insertion)
323	1062		777	SDAWADAWARSLSVSPSSYPELHTEVPLSVLILGLLVVFILSV CFGAGLFVFVLKRRKGVPSVPRNTNNLDVSSFQLQYGSYNTET HDKTDGHVYNYIPPPVVQMCQNPIYMAGREGRPSSLLPKPGKE FQLLGNLEEKKEEPATPAYTISATELLEKQATPREPELLYQNI AE/PSQGTS/TAQA*STITFVPYLKGQFAPSYESRRQNQDRIN KTVLYGTPRKCFVGQSKPNHPLLQAKPQSEPDYLEVLEKQTAI SQL
324	1063	1	1496	ALCHIAVGQQMNLHWLHKIGLVVILASTVVAMSAVAQLWEDEW EVLLISLQGTAPFLHVGAVAAVTMLSWIVAGQFARAERTSSQV TILCTFFTVVFALYLAPLTISSPCIMEKKDLGPKPALIGHRGA PMLAPEHTLMSFRKALEQKLYGLQADITISLDGVPFLMHDTTL RRTTNVEEEFPELARRPASMLNWTTLQRLNAGQWFLKTDPFWT ASSLSPSDHREAQNQSICSLAELLELAKGNATLLLNLRDPPRE HPYRSSFINVTLEAVLHSGFPQHQVMWLPSRQRPLVRKVAPGF QQTSGSKEAVASLRRGHIQRLNLRYTQVSRQELRDYASWNLSV NLYTVNAPWLFSLLWCAGVPSVTSDNSHTLSQVPSPLWIMPPD EYCLMWVTADLVSFTLIVGIFVLQKWRLGGIRSYNPEQIMLSA AVRRTSRDVSIMKEKLIFSEISDGVEVSDVLSVCSDNSYDTYA NSTATPVGPRGGGSHTKTLIERSGR
325	1064	1899	776	NSADYGDGPDSSDADPDSGTEEGVLDFSDPFSTEVKPRILLMG LRRSGKSSIQKVVFHKMSPNETLFLESTNKICREDVSNSSFVN FQIWDFPGQIDFFDPTFDYEMIFRGTGALIFVIDSQDDYMEAL ARLHLTVTRAYKVNTDINFEVFIHKVDGLSDDHKIETQRDIHQ RANDDLADAGLEKIHLSFYLTSIYDHSIFEAFSKVVQKLIPQL PTLENLLNIFISNSGIEKAFLFDVVSKIYIATDSTPVDMQTYE LCCDMIDVVIDISCIYGLKEDGAGTPYDKESTAIIKLNNTTVL YLKEVTKFLALVCFVREESFERKGLIDYNFHCFRKAIHEVFEV RMKVVKSRKVQNRLQKKKRATPNGTPRVLL
326	1065	1181	346	RTRGRDPGAGFRRTANKRCCRRRFLIGCGWLPLRSDWPLVSKM LSKGLKRKREEEEEKEPLAVDSWWLDPGHAAVAQAPPAVASSS LFDLSVLKLHHSLQQSEPDLRHLVLVVNTLRRIQASMAPAAAL PPVPSPPAAPSVADNLLASSDAALSASMASLLEDLSHIEGLSQ APQPLADEGPPGRSIGGAAPSLGALDLLGPATGCLLDDGLEGL FEDIDTSMYDNELWAPASEGLKPGPEDGPGKEEAPELDEAELD YLMDVLVGTQALERPPGPGR

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ĺ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
1		residue	residue	,
1	İ	of amino	of amino	
1		acid	acid	·
		sequence	sequence	
327	1066	1844	337	LQEVKARRNTLHKEKDHLVNDYEQNMKLLQTKYDADINLLKQE
		}		HALSASKASSMIEELEQNVCQLKQQLQESELQRKQQLRDQENK
ĺ				FQMEKSHLKHIYEKKAHDLQSELDKGKEDTQKKIHKFEEALKW KKWRQI*LDPN/LLREKQSKEFLWQLEDIRQRYEQQIVELKLE
		}	ļ	HEQEKTHLLQQHNAEKDSLVRDHEREIENLEKQLRAANMEHEN
				QIQEFKKRDAQVIADMEAQVHKLREELINVNSQRKQQLVELGL
	1	1	ł	LREEEKQRATREHEIVVNKLKAESEKMKIELKKTHAAETEMTL
1	1	1	1	EKANSKLKQIEKEYTQKLAKSSQIIAELQTTISSLKEENSQQQ
1	1	1	1	LAAERRLODVROKFEDEKKOLIRDNDQAIKVLQDELENRSNOV
ł	1		}	RCAEKKLQHKELESQEQITYIRQEYETKLKGLMPASLRQELED
1	ŀ			TISSLKSQVNFLQKRASILQEE/RDYISRQKVQPISR*LHERM
1		•		QRMRISRLCCGTSSSRFEDLDIVNCEISGIF
328	1067	1149	238	VINLVYLISSPRPELKPVDKESEVVMKFPDGFEKFSPPILQLD
1		1		EVDFYYDPKHVIFSRLSVSADLESRICVVGENGAGKSTMLKLL
				LGDLAPVRGIRHAHRNLKIGYFSQHHV\EQL\DLNVQCLWELA
				GHASFPG\RPEEEY\RHQLGFGMGISGEL\AMRPLCQPVLGAR
1.	1			KKPKWPFAQMDYCPAPTFYIL\DEPTN\HLGHGRAIEALGPCL
	1			QTISGVGVILVSHE*SALSRLVCRE\LWVC*G\GGVTRVERKD
	ł	{		FDQYRALLQGTVSAREGFPLGPPRLKDSPRDMGLVSQTPWGHH
		<u> </u>	<u> </u>	VGYPLPGRG
329	1068	26	674	CSAVEVKMAARTAFGAVCRRLWQGLGNFSVNTSKGNTAKNGGL
		ĺ		LLSTNMKWVQFSNLHVDVPKDLTKPVVTISDEPDILYKRLSVL
1	1.	1	ţ	VKGHDKAVLDSYEYFAVLAAKELGISIKVHEPPRKIERFTLLQ
İ			1	SVHIYKKHRVQYEMRTLYRCLELEHLTGSTADVYLEYIQRNLP
	1			EGVAMEVTKFCFFIFL\TQLEQLPEHIKEPIWETLSEEKEESK S
330	1069	2105	1283	DFWDTAGQERFQSMHASYYHKTHACIMVFDVQRKVTHRNLSTW
330	1 1009	1 2 2 0 3	1233	YTELREFRPEIPCIVVANKIDGGAIPAPGC*OFTGDLPSYISS
	1		1	SIPRAGNLO*LVLPPTIRYNPWLVACILPTL*RSQLSRPALFP
			,	RHRSLLTELFLGPVSQSSLPIPLSGMKASSGPPLQTFFPSLDR
			1	QTNVLPSLY\ADINVTQKSFNFAKKFSLPLYFVSAADGTNVVK
	1			LFNDAIRLAVSYKQNSQDFMDEIFQELENFSLEQEEEDVPDQE
	1			QSSSIETPSEEVASPHS
331	1070	1	1109	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL
}	ł			GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW
	· ·			GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF
1				IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF
1	[DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR
1	}			HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK
1	1	1		HCFM\MPQSLGVIGGKPNSAH\YFIG*VG\EELIYLDPHTTQP
1	1	1		AVEPTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLST
		1		QAFGAECCLGMTRKTFGFLRFFFSMLG
332	1071	39	284	ALCVVPFNTFHN\DFLLLDKEGTLDPVMDSFSTHWTTIGPADM
L	1			FFS\FRQHYKNFKSHGTNPSKSVWAHATCQSCAFPNLLGW

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
333	1072	2	1484	TRLAEFGTRDPCAQAPCEQQCEPGGPQGYSCHCRLGFRPAEDD PHRCVDTDECQIAGVCQQMCVNYVGGFECXCSEGHELEADGIS CSPAGAMGAQASQDLGDELLDDGEDEEDEDEAWKAFNGGWTEM PGILWMEPTQPPDFALAYRPSFPEDREPQIPYPEPTWPPPLSA PRVPYHSSVLSVTRPVVVSATHPTLPSAHQPPVIPATHPALSR DHQIPVIAANYPDLPSAYQPGILSVSHSAQPPAHQPPMISTKY PELFPAHQSPMFPDTRVAGTQTTTHLPGIPPNHAPLVTTLGAQ LPPQAPDALVLRTQATQLPIIPTAQPSLTTTSRSPVSPAHQIS VPAATQPAALPTLLPSQSPTNQTSPISPTHPHSKAPQIPREDG PSPKLALWLPSPAPTAAPTALGEAGLAEHSQRDDRWLLVALLV PTCVFLVVLLALGIVYCTRCGPHAPNKRITDCYRWVIHAGSKS PTEPMPPRGSLTGVQTCRTSV
334	1073		1406	LRVRRPPHLPAPPALRARRSDRRSSRAPAAFPPRPPHASPAPG PAMAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPA TTGAVVTISASLVAKDNGSLALPADAHLYRFHWIHTPLVLTGK MEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVL PITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFL KTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAE WEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVLGPTLIQTF QKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAY NLTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVF AFPCATLITVMLAFIMYMTLRNATQQKDMVENPEPPSGVRCCC QMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV
335	1074	1	866	VVEFAFQLSSVSVCLTVSFGWQLGTVSSCLSRDWFLKGNLLII IVSVLIILPLALMKHLGYLGYTSGLSLTCMLFFLVSVIYKKFQ LGCAIGHNETAMESEALVGLPSQGLNSSCEAQMFTVDSQMSYT VPIMAFAFVCHPEVLPIYTELCRPSKRRMQAVANVSIGAMFCM YGLTATFGYLTFYSSVKAEMLHMYSQKDPLILCVRLAVLLA\V TLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILLVLVNV LVICVPTIRDIFGVIGSTSAPSLIFILPSCI
336	1075	3	825	GAGSKSSMMQLMHLESFYEK\PPPGLIKEDDTKPEDCIPDVPG NEHAREFLAHTPTKGLWMPLEKEVKVKH/CTFHWIAS*FLGDG KFIPKATRLKDVWVSN*FTCLFWDLTRFIHDCIFF*NWSLMNK NFNIIY*FFISLR*NTLILQKYFPFSLLLGWHCKWYGHRTGYK ECPFFIKDNQKLQQFRVAHEDFMYDIIRDNKQHEKNVRIQQLK QLLEDSTSGEDRSSSSSSEGKEKHKKKKKKKKKKKKKKKKKKKKKKKKKKKK

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ļ	acid	acid	
	1	residue	residue	\=possible nucleotide insertion)
į		of amino	of amino	
1	ļ	acid	acid	
1	1	sequence	sequence	·
337	1076	3	2451	EIAGAAAENMLGSLLCLPGSGSVLLDPCTGSTISETTSEAWSV
				EVLPSDSEAPDLKQEERLQELESCSGLGSTSDDTDVREVSSRP
·	1	1	ļ	STPGLSVVSGISATSEDIPNKIEDLRSECSSDFGGKDSVTSPD
1			}	MDEITHDFLYILOPKOHFOHIEAEADMRIOLSSSAHOLTSPPS
				QSESLLAMFDPLSSHEGASAVVRPKVHYARPSHPPPDPPILEG
1			[AVGGNEARLPNFGSPMF*LPAEMEAFKQRHS/YTPERLVRSRS
1	l	ļ	1	S\DIVSSVRRPMSDPSWNRRP\GNEERELPPAAAIGATSLVAA
		1	1	PHSSSSSPSKDSSRGETEERKDSDDEKSDRNRPWWRKRFVSAM
				PKAPIPFRKKEKQEKDKDDLGPDRFSTLTDDPSPRLSAQAQVA
		}		EDILDKYRNAIKRTSPSDGAMANYESTEVMGDGESAHDSPRDE
1			}	ALONISADDLPDSASQAAHPQDSAFSYRDAKKKLRLALCSADS
	ļ	İ		VAFPVLT\HSTRNGLPDHTDPEDNEIVCFLKVQIAEAINLQDK
ļ	}	ļ]	NLMAQLQETMRCVCRFDNRTCRKLLASIAEDYRKRAPYIAYLT
ŀ	1			RCROGLOTTQAHLERLLQRVLRDKEVANRYFTTVCVRLLLESK
	ſ	1		EKKIREFIODFOKLTAADDKTAOVEDFLOFLYGAMAQDVIWQN
1	1	ŀ	j	ASEEQLQDAQLAIERSVMNRIFKLAFYPNQDGDILRDQVLHEH
		1		IORLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTP
		İ		RDKVOCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKA
1	ì	1	ł	NPPCLLSTVQYISSFYASCLSGEESYWWMQFTAAVEFIKTIDD
	1		İ	RK
338	1077	536	1305	WPMSLARGHGDTAASTAAPLSEEGEVTSGLQALAVEDTGGPSA
				SAGKAEDEGEGGREETEREGSGGEEAQGEVPSAGGEEPAEEDS
		1		EDWCVPCSDEEVELPADGQPWMPPPSEIQRLYELLAAHGTLEL
1		1		OAEILPRRPPTPEAQSEEERSDEEPEAKEEEEEKPHMPTEFDF
	}	1		DDEPVTPKDSLIDRRRTPGSSARSQKREARLDKVLSDMKRHKK
				LEEOILRTGRDLFSLDSEDPSPASPPLRSSGSSLFPRQRKY
339	1078	2	1771	LGRGTFGOVV*CWKRGTNEIVAIKILKNHPSYAROGQIEVSIL
	- 3 . 3		}	ARLSTESADDYNFVRAYECFQHKNHTCLVFEMLEQNLYDFLKQ
	1	1	1	NKFSPLPLKYIRPVLQQVATALMKLKSLGLIHADLKPENIMLV
		1	1	DPSRQPYRVKVIDFGSASHVSKAVCSTYLQSRYYRAPEIILGL
}		1		PFCEAIDMWSLGCVIAELFLGWPLYPGASEYDQI/RYISQTQG
				LPAEYLLSAGTKTTRFFNRDTDSPYPLWRLKTPDDHEAETGIK
				SKEARKYIFNCLDDMAQVNMTTDLEGSDMLVEKAVRREFIDLL
1	1		1	KKMLSIDSVKRFSPVGSLNHPFVTMSLFLDFPHSTHVKSCFQN
			1	MEICKRRVNMYDTVNQSKTPFITHVAPSTSTNLTMTFNNQLTT
				VHNOPSAASMAAVAQRSMPLQTGTAQICARPDPFQQALIVCPP
	ł			GFOGLOASPSKHAGYSVRMENAVPIVTQAPGAQPLQIQPGLLA
	1			OOAWPSGTOOILLPPAWOOLTGVATHTSVQHAAVIPETMAGTQ
	1			QLADWRNTHAHGSHYNPIMQQPALLTGHVTLPAAQPLNVGVAH
				VMRQQPTSTTSSRKSKQHLYCGRARVSKIASR
L		JL		1.107XX-1-1-001000X

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 2	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 2721	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) EFAICRYPLGMSGGQIPDEDITASSQWSESTAAKYGRLDSEEG DGAWCPEIPVEPDDLKEFLQIDLHTLHFITLVGTQGRHAGGHG IEFAPMYKINYSRDGTRWISWRNRHGKQVLDGNSNPYDIFLKD LEPPIVARFVRFIPVTDHSMNVCMRVELYGCVWLDGLVSYNAP AGQQFVLPGGSIIYLNDSVYDGAVGYSMTEGLGQLTDGVSGLD DFTQTHEYHVWPGYDYVGWRNESATNGYIEIMFEFFRIRNFTT MKVHCNNMFAKGVKIFKEVQCYFRSEASEWEPNAISFPLVLDD VNPSARFVTVPLHHRMASAIKCQYHFADTWMMFSEITFQSDAA MYNNSEALPTSPMAPTTYDPMLKVDDSNTRILIGCLVAIIFIL LAIIVIILWRQFWQKMLEKASRRMLDDEMTVSLSLPSDSSMFN NNRSSSPSEQGSNSTYDRIFPLRPDYQEPSRLIRKLPEFAPGE EESGCSGVVKPVQPSGPEGVPHYAEADIVNLQGVTGGNTYSVP AVTMDLLSGKRCGCGREFPPGKLLTFKEKLGEGQFGEVHLCEV EGMEKFKDKDFALDVSANQPVLVAVKMLRADANKNARNDFLKE IKIMSRLKDPNIIHLLSVCITDDPLCMITEYMENGDLNQFLSR HEPPNSSSSDVRTVSYTNLKFMATQIASGMKYLSSLNFVHRDL ATRNCLVGKNYTIKIADFGMSRNLYSGDYYRIQGRAVLPIRWM SWESILLGKFTTASDVWAFG\VTLWE\TFTFCQRKGPYS\QLS \DETGY*RNTGEFFPRPKGGQTYLPSTSPFVPDSCVIKLMLSC WRRDTKNRPSFQEIHLLLLQQGDERCCQCLAMFLRLRSSLQDL PLTHAYATPSGHLMKLRDRGLFALPSFPGHPHSLPLTHIYFFF
341	1080	916	3	FTLKN CSASPLRPGLLAPDLLYLPGAGOPRRPEAEPGOKPVVPTLYVT
				EAEAHSPALPGLSGPQPKWVEVEETIEVRVKKMGPQGVSPTTE VPRSSSGHLFTLPGATPGGDPNSNNSNNKLLAQEAWAQGTAMV GVREPLVFRVDARGSVDWAASGMGSLEEEGTMEEAGEEEGEDG DAFVTEESQDTHSLGDRDPKILTHNGRMLTLADLEDYVPGEGE TFHCGGPGPGAPDDPPCEVSVIQREIGEPTVG\SLCCSAWGMH WVPEALSASLGLSPMGR\HHRDPRSVALRAPPSSCGRPRLGLW AVLPG
342	1081	862	444	QGLAAEFLQVPAVTRAYTAACVLTTAAVQLELLSPFQLYFNPH LVFRKFQAPFLPWALMGFSLLLGNSILVDLLGIAVGHIYYFLE DVFPNQPGGKRLLQTPGFLGLQSSKAPAGSSLTIWTQQSQGGP GTAGELAAPS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \perpossible nucleotide insertion)
343	1082	3658	337	EKNALEPTVYFGMGV*APQVPRFQQRITGYQYYLQLRKDIWEE GIPCTLEQPIHLAGLAVQAIFGDFDQYESQDFLQKFALFPVGW LQDEKVLEEATQKVALLHQKYRGLTAPDAEMLYMQEVERMDGY GEESYPAKDSQGSDISIGACLEGIFVKHKNGRHPVVFRWHDIA NMSHNKSFFALELANKEETIQFQTEDMETAKYIWRLCVARHKF YRLNQCNLQTQTVTVNPIRRRSSSRMSLPKPQPYVMPPPP\QL HYNGHYTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPAERRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPYPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA
344	1083	6	304	RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE
345	1084	1255	635	SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG
346	1085	116	415	EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS
347	1086	918	760	QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG KPDPDTVPDS

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
, reids	Acids	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
i i	ì	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	ļ	acid	acid	\=possible nucleotide insertion)
1		residue	residue	
[of amino	of amino	,
		acid	acid	
		sequence	sequence	A STATE OF THE PERSON OF THE P
348	1087	1	750	LNPWKNALQDFCLPFLRITSLLQHHLFGEDLPSCQEEEEFSVL
1 1			1	ASCLGLLPTFYQTEHPFISASCLDWPVPAFDIITHWCFEIKSF
			}	TERHAEQGKALLIQESKWKLPHLLQLPENYNTIFQYYHRKTCS
1				VCTKVPKDPAVCLVCGTFVCLKGLCCKQQSYCECVLHSQNCGA
			1	GTGIFLLINASVIIIIRGHRFCLWGSVYLDAHGEEDRDLRRGK
		l	L	PLYICKERYKVLEQQWISHTFDHINKRWGPHYNGL
349	1088	3	1374	KGQLVNLLPPENFPWCGGSQGPRMLRTCYVLCSQAGPRSRGWQ
1	ļ			SLSFDGGAFHLKGTGELTRALLVLRLCAWPPLVTHGLLLQAWS
	ĺ	1	ļ	RRLLGSRLSGAFLRASVYGQFVAGETAEEVKGCVQQLRTLSLR
	1	ł	ļ	PLLAVPTEEEPDSAAKSGEAWYEGNLGAMLRCVDLSRGLLEPP
1	}			SLAEASLMQLKVTALTSTRLCKELASWVRRPGASLELSPERLA
	[1		EAMDSGQNLQVSCLNAEQNQHLRASLSRLHRVAQYARAQHVRL
ŀ	ì	1	Ì	LVDAEYTSLNPALSLLVAALAVRWNSPGEGGPWVWNTYQACLK
1		}	1	DTFERLGRDAEAAHRAGLAFGVKLVRGAYLDKERAVAQL\HG\
		1	1	MEDPPTQADYEATS\QSYS\RCLELMLTHVARHGPMCHLMVAS
1		1	1	HNEESVRQATK\GQAGYVVYKSIPYGSLEEVIPYLIRRAQENR
<u> </u>				SVLQGARREQELLSQKLWRRLLPGCRRIPH
350	1089	1036	306	VVEFGEMSTARAPEGLRWFQLYVHPDLQLNKQLIQRVESLGFK
	1	1	1	ALVITLDTPVCGNRRHDIRNQLRRNLTLTDLQSPKKGNAIPYF
1	į	-	1	QMTPISTSLCWNDLSWFQSITRLPIILKGILTKEDAELAVKHN
	ļ			VQGIIVSNHGGRQLDEVLASIDALTEVGAAE*GNMKYYLDAGV
	\			RTGNDVQKALALGAKCIFLGRPILWGLACKGEHGVKEVLNILT
	<u> </u>			NEFHTSMA\LTGCRSVAEINRNLVQFSRL
351	1090	1229	957	FFLRWSFTL\LPRLE/CQWLNLGSLQPPPPGFK*SSCLRLLSS
}	}		ļ	WGLQVPTSMLG*FFCIFSREGISPCWPGWSQTPKVIHLPRPPR
L			1	VLRLQA
352	1091	1145	365	LLCFVHTALQSFQGELYEPHVVIAIVVFLVKLGICK*RASWRK
			1	KVTLVVK*S/LKICFTKYGSCYHPGEKSSSWLFN*RMVNDCLA
1	1			TSCSNRSFVIQQIPSSNLFMVVVDSSCLCESVAPITMAPIEIR
.				YILLCAGPLTTTETSKGYQW*GNLGEKY*RRKITSFPLLERES
1				S*ESCHCQILTSEMQSRKKQSLETCLNYSQHNESLKCERLKAQ
}	}			KIRRRPESCHGFHPEENARECGGAPSLQAQTVLLLLPLLLMLF
			<u> </u>	SR PROPERTY OF THE PROPERTY OF
353	1092	1140	790	VPSPTHDPKPAEAPMPA*PAPPGPASPGGALEPPAAARAGGSP
	1	}		TAVRSILTKERRPEGGYKAVWFGEDIGTEADVVVLNAPTLDVD
	Ĺ		1	GASDSGSGDEGEGAGRGGGPYDAPGGDDSYI

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	
	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Numbrio	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1—possible flucteoride filsertion)
		of amino	of amino	
1 }		acid	acid	·
! }		sequence	sequence	·
354	1093	3	2293	LISLAGPTDDIOSTGPOVHALNILRALFRDTRLGENIIPYVAD
354	1033	3	2293	GAKAAILGFTSPVWAVRNSSTLLFSALITRIFGVKRAKDEHSK
]	1	, , , , , , , , , , , , , , , , , , , ,
		ł	Ì	TNRMTGREFFSRFPELYPFLLKQLETVANTVDSDMGEPNRHPS
		})	MFLLLLVLERLYASPMDGTSSALSMGPFVPFIMRCGHSPVYHS
		1	1	REMARALVPFVMIDHIPNTIRTLLSTLPSCTDQCFRQNHIHG
		į	1	TLLQVFHLVQAYSDSKHGTNSDFQHELTDITVCTKAKLWLAKR
1		1	ľ	QNPCLVTRAVYIDILFLLTCCLNRSAKDNQPVLESLGFWEEVR
}		}	1	GIISGSELITGFPWAFKVPGLPQYLQSLTRLAIAAVWAAAAKS
}	*		1	GERETNVPISFSQLLESAFPEVRSLTLEALLEKFLAAASGLGE
		ļ	1	KGVPPLLCNMGEKFLLLAMKENHPECFCKILKILHCMDPGEWL
		l]	PQTEHCVHLTPKEFLIWTMDIASNERSEIQSVALRLASKVISH
1 1				HMOTCVENRELIAAELKOWVQLVILSCEDHLPTESRLAVVEVL
1 1				TSTTPLFLTNPHPILELODTLALWKCVLTLLQSEEQAVRDAAT
		1	l	ETVTTAMSQENTCQSTEFAFCQVDASIALALALAVLCDLLQQW
				DOLAPGLPILLGWLLGESDDLVACVESMHOVEEDYLFEKAEVN
] !			1	FWAETLIFVKYLCKHLFCLLSKSGWRPPSPEMLCHLQRMVSEQ
1 !		ſ		C\HLLSQFFRELPPAAEFVKTVEFTRLRIQEERTLACLRLLAF
1 . !		1	1	LEGKEGEDTLVLSVWDSYAESRQLTLPRTEAAC
355	1094	25	1265	HAFRPIALORGVSFRGCSNOYAESRRLOGESGSRAFAHLMESL
355	1094	45	1265	
	1		1	LQHLDRFSELLAVSSTTYVSTWDPATVRRALQWARYLRHIHRR
1	1	ĺ.		FGRHGPIRTALERRLHNQWRQEGGFGRGPVPGLANFQALGHCD
	İ	ĺ	Ì	VLLSLRLLENRALGDAARYHLVQQLFPGPGVRDADEETLQESL
		1	1	ARLARRSAVHMLRFNGYRENPNLQEDSLMKTQAELLLERLQE
)]	}	į .	VGKAEAERPARFLSSLWERLPQNNFLKVIAVALLQPPLSRRPQ
j ']	}	j	EELEPGIHKSPGEGSQVLVHWLLGNSEVFAAFCRALPAGLLTL
1		1	1	VTSRHPALSPVYLGLLTDWGQRLHYDLQKGIWVGTESQDVPWE
1	1		1	ELHNRFQSLCQAPPPLKDKVLTALETCKAQDGDFEEPGLSIWT
	}			DLLLALRSGAFRKRQVLGLSAGLSSV
356	1095	3 .	1027	SHLIQHQRIHT*E*AHECNECGKAFSQTSCLIQHHKMHRKEKS
				YECNEYEGSFSHSSDLILQQEVLTRQKAFDCDVWEKNSSQRAH
	Į.	1		LVQHQSIHTKE/K/PHECNEDGKIF/NQIQA/LIQHLRVHTRE
		1		K\YVCTACGKAFSHSSAIAQHQIIHTREKPSECDE*RKGISVK
1			ŀ	LLIDSC/RIYTSEKSYKCIECGKFFMLLVFSYLSHIWRIHMGI
1				KFHCCNECEKAISORNYLV*YOIHAMOKDYKCN/EACMCVRRF
1	1		j	SHNPTLIQHQRIYT*ENLFGCSK/C/GRSFNRSLTSLCHIRIS
1				I/RROEFDVTOMEKLDTTFOA/STOHRNNGEKIVDYLFMKLLI
1				. ~ ~ ~ ~ ~
		1	1	HSPNLFHCTKI
	<u> </u>	+	1005-	AVEL MANT COMPANY COMPANY COMPANY COMPANY
357	1096	2638	2867	AVTLTAKICSFTPEPSETMSPPAGTNNSRHAALRAVTLPVKVC SFTPEPARSRTHQKEETPNTSEHQKEQTPEAPP

SEQ ID	SEQ ID	Predicted beginning nucleotide	Predicted end nucleotide	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110.00	ricius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	l	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid	\=possible nucleotide insertion)
	ļ	residue	residue	
1		of amino	of amino	
1		acid	acid	·
	7007	sequence	sequence 4550	MAYSWQTDPNPNESHEKQYEHQEFLFVNQPHSSSQVSLGFDQI
358	1097	4747	4550	VDEISGKIPHYESEIDENTFFVPTAPKWDŞTGHSLNEAHQISL
	İ	i	İ	NEFTSKSRELSWHQVSKAPAIGFSPSVLPKPQNTNKECSWGSP
	}	1		IGKHHGADDSRFSILAPSFTSLDKINLEKELENENHNYHIGFE
1	1	ļ	ļ	SSIPPTNSSFSSDFMPKEENKRSGHVNIVEPSLMLLKGSLQPG
		1		MWESTWQKNIESIGCSIQLVEVPQSSNTSLASFCNKVKKIRER
	1	1	l	YHAADVNFNSGKIWSTTTAFPYQLFSKTKFNIHIFIDNSTQPL
	}	1	}	HFMPCANYLVKDLIAEILHFCTNDQLLPKDHILSVWGSEEFLQ
			Ì	NDHCLGSHKMFQKDKSVIQLHLQKSREAPGKLSRKHEEDHSQF
1	{		· ·	YLNOLLEFMHIWKVSRQCLLTLIRKYDFHLKYLLKTQENVYNI
ľ			ł	IEEVKKICSVLGCVETKQITDAVNELSLILQRKGENFYQSSET
	})]	SAKGLIEKVTTELSTSIYQLINVYCNSFYADFQPVNVPRCTSY
1	1	ļ		LNPGLPSHLSFTVYAAHNIPETWVHRINFPLEIKSLPRESMLT
1	1			VKLFGIACATNNANLLAWTCLPLFPKEKSILGSMLFSMTLQSE
}	1	1		PPVEMITPGVWDVSQPSPVTLQIDFPATGWEYMKPDSEENRSN
	}	1		LEEPLKECIKHIARLSQKQTPLLLSEEKKRYLWFYRFYCNNEN
		1		CSLPLVLGSAPGWDERTVSEMHTILRRWTFSQPLEALGLLTSS
		1		FPDQEIRKVAVQQLDNLLNDELLEYLPQLVQAVKFEWNLESPL
1				VQLLLHRSLQSIQVAHRLYWLLKNAENEAYFKSWYQKLLAALQ .
				FCAGKALNDEFSKEQKLIKILGDIGERVKSASDHQRQEVLKKE
	Ì			IGRLEEFFQDVNTCHLPLNPALCIKGIDHDACSYFTSNALPLK
ł	Ì			ITFINANLMGKNISIIFKAGDDLRQDMLVLQLIQVMDNIWLQE
	}		}	GLDMQMIIYRCLSTGKDQRLVQMVPDAVTLAKIHRHSGLIGPL
			1	KENTIKKWFSQHNHLKADYEKALRNFFYSCAGWCVVTFILGVC
			1	DRHNDNIMLTKSGHMFHIDFGKFLGHAQTFGGIKRDRAPFIFT
1	1		1	SEM\EYFITEGG\KNPQHFQDFV\ELCCRAYNIIRKHSQLLL\
}				NLL\EMMLYAG\LPELSGI\QDLKYVYNNLRPQDTDLEATSHF
1	1			TKKIKESLECFPVKLNNLIHTLAQMSAISPAKSTSQTFPQESC
	ĺ			LLSTTRSIERATILGFSKKSSNLYLIQVTHSNNETSLTEKSFE
		1	1	QFSKLHSQLQKQFASLTLPEFPHWWHLPFTNSDHRRFRDLNHY
1		1		MEQILNVSHEVTNSDCVLSFFLSEAGQQTVEESSPVYLGEKFP
		}		DKKPKVQLVISYEDVKLTILVKHMKNIHLPDGSAPSAHVEFYL
				LPYPSEVRRKTKSVPKCTDPTYNEIVVYDEVTELQGHVLMLI
				VKSKTVFVGAINIRLCSVPLDKEKWYPLGNSII*PLLLFYTSN FMOSVLH
359	1098	679	346	FFLRWSLDSVTQAGVQSHDLSSLQPPPPGFKQSSLFGLPSSWE
359	1 2098	10,5		*RWVPPCPANFFVFLVETGFRHVGQAGLELLTSNDLPVSACQS
-			1	AGITGVTTVPQRKSMILYEVTICYP

ID NO: of Nucleic	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
360	1099	2	1601	FVREIRGPAVPRLTSAEDRHRHGPHAHSPELQRTGRDYSLDYL PFRLWVGIWVATFCLVLVATEASVLVRYFTRFTEEGFCALISL IFIYDAVGKMLNLTHTYPIQKPGSSAYGCLCQYPGPGGNESQW IRTRPKDRDDIVSMDLGLINASLLPPPECTRQGGHPRGPGCHT VPDIAFFSLLLFLTSFFFAMALKCVKTSRFFPSVVRKGLSDFS SVLAILLGCGLDAFLGLATPKLMVPREFKPTLPGRGWLVSPFG ANPWWWSVAAALPALLLSILIFMDQQITAVILNRMEYRLQKGA GFHLDLFWVAVLMLLTSALGLPWYVSATVISLAHMDSLRRESR ACAPGERPNFLGIREQRLTGLVVFILTGASIFLAPVLKFIPMP VLYGIFLYMGVAALSSIQFTNRVKLLL\MPAKHQPDLLLLRHV PLTRVHLFTAISFA\CLGLLW\IIKSTPAAIIFPLMLLGLVGV RKALERVFSPQELLWLDELMPEEERSIPEKGLEPEHSFSGSDS EDSELMYQPKAPEINISVN*LE*EFVREIRGPAVPRLTSAEDR HRHGPHAHSPELQRTGRDYSLDYLPFRLWVGIWVATFCLVLVA TEASVLVRYFTRFTEEGFCALISLIFIYDAVGKMLNLTHTYPI QKPGSSAYGCLCQYPGPGGNESQWIRTRPKDRDDIVSMDLGLI NASLLPPPECTRQGGHPRGPGCHTVPDIAFFSLLLFLTSFFFA MALKCVKTSRFFPSVVRKGLSDFSSVLAILLGCGLDAFLGLAT PKLMVPREFKPTLPGRGWLVSPFGANPWWSVAAALPALLLSI LIFMDQQITAVILNRMEYRLQKGAGFHLDLFCVAVLMLLTSAL GLPWYVSATVISLAHMDSLRRESRACAPGERPNFLGIREQRLT GLVVFILTGASIFLAPVLKFIPMPVLYGIFLYMGVAALSSIQF TNRVKLLLDASKTPARPATLAACASDQGPPLHSHQLCPVWGCF GIIKSTPAAIIFPLMLLGLVGVRKALERVFSPQELLWLDELMP EEERSIPEKGLEPEHSFSGSDSEDSELMYQPKAPEINISVN

SEQ SEQ ID ID NO: NO: of of Nucleic Acids Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
361 1100		2636	MGLKARRAAGAAGGGGDGGGGGGAANPAGGDAAAAGDEERKV GLAPGDVEQVTLALGAGADKDGTLLLEGGGRDEGQRRTPQGIG LLAKTPLSRPVKRNNAKYRRIQTLIYDALERPRGWALLYH\AL VFLIVLG\CLILAVL\TTFKEYETVSGDWLLLLETFAIFIFGA EFALRIWAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPV VAVGNQGNVLATSLRSLRFLQILRMLRDGPGEGGTWKLLG\SA ICAHSKELITAWYIGFLTLILSSFLVYLVEKDVPEVDAQGEEM KEEFETYADALWWGLITLATIGYGDKTPKTWEGRLIAATFSLI GVSFFALPAGILGSGLALKVQEQHRQKHFEKRRKPAAELIQAA WRYYATNPNRIDLVATWRFYESVVSFPFFRKEQLEAASSQKLG LLDRVRLSNPRGSNTKGKLFTPLNVDAIEESPSKEPKPVGLNN KERFRTAFRMKAYAFWQSSEDAGTGDPMAEDRGYGNDFPIEDM IPTLKAAIRAVRILQFRLYKKKFKETLRPYDVKDVIEQYSAGH LDMLSRIKYLQTRIDMIFTPGPPSTPKHKKSQKGSAFTFPSQQ SPRNEPYV\ARPST\SEI\EDQRH*WGKFVKSLKGQV\QGLGR KLDFLVDMHMQHMERLQVQVTEYYPTKGTSSPAEAEKKEDNRY SDLKTIICNYSETGPPEPPYSFHQVTIDKVSPYGFFAHDPVNL PRGGPSSGKVQATPPSSATTYVERPTVLPILTLLDSRVSCHSQ ADLQGPYSDRISPRQRRSITRDSDTPLSLMSVNHEELERSPSG FSISQDRDDYVFGPNGGSSWMREKRYLAEGETDTDTDPFTPSG SMP\LSSTGDGISDSVWTPSNKPI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide(A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\= possible nucleotide insertion)
1	Į	residue	residue	1 - possible flucteodide insertion)
	ĺ	of amino	of amino	
	ļ	acid	acid	
		sequence	sequence	
362	1101	1	5433	RTRGIIEFDPKYTAFEVEEDVGLIMIPVVRLHGTYGYVTADFISQSSSASPGG
1	1			VDYILHGSTVTFQHGQNLSFINISIIDDNESEFEEPIEILLTGATGGAVLGRH LVSRIIIAKSDSPFGVIRFLNQSKISIANPNSTMILSLVLERTGGLLGEIQVN
	1	1	}	WETVGPNSQEALLPQNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIEVEE
1		į		TFIIKLHLVKGEAKLDSRAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLA
	1			LEGPLLITFFVRRVKGTFGEIMVYWELSSEFDITEDFLSTSGFFTIADGESEA
				SFDVHLLPDEVPEIEEDYVIQLVSVEGGAELDLEKSITWFSVYANDDPHGVFA LYSDRQSILIGQNLIRSIQINITRLAGTFGDVAVGLRISSDHKEQQIVTENAE
	1	1		ROLVVKDGATYKVDVVPIKNOVFLSLGSNFTLQLVTVMLVGGRFYGMPTILQE
ì		1	}	AKSAVLPVSEKAANSQVGFESTAFQLMNITAGTSHVMISRRGTYGALSVAWTT
1	1			GYAPGLEIPEFIVVGNMTPTLGSLSFSHGEQRKGVFLWTFPSPGWPEAFVLHL SGVQSSAPGGAQLRSGFIVAEIEPMGVFQFSTSSRNIIVSEDTQMIRLHVQRL
1	1	l		FGFHSDLIKVSYQTTAGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQL
	1	1		SEIEEFFYINLTSVEIRGLQKFDVNWSPRLNLDFSVAVITILDNDDLAGMDIS
	ļ	1		FPETTVAVAVDTTLIPVETESTTYLSTSKTTTILQPTNVVAIVTEATGVSAIP
1	1		1	EKLVTLHGTPAVSEKPDVATVTANVSIHGTFSLGPSIVYIEEEMKNGTFNTAE VLIRRTGGFTGNVSITVKTFGERCAQMEPNALPFRGIYGISNLTWAVEEEDFE
	i		-	EQTLTLIFLDGERERKVSVQILDDDEPEGQEFFYVFLTNPQGGAQIVEGKDDT
1			1	GFAAFAMVIITGSDLHNGIIGFSEESQSGLELREGAVMRRLHLIVTRQPNRAF
1	(EDVKVFWRVTLNKTVVVLQKDGVNLMEELQSVSGTTTCTMGQTKCFISIELKP EKVPOVEVYFFVELYEATAGAAINNSARFAQIKILESDESQSLVYFSVGSRLA
1	1	ļ		VAHKKATLISLQVARDSGTGLMMSVNFSTQELRSAETIGRTIISPAISGKDFV
İ	1			ITEGTLVFEPGQRSTVLDVILTPETGSLNSFPKRFQIVLFDPKGGARIDKVYG
		1		TANITLVSDADSQAIWGLADQLHQPVNDDILNRVLHTISMKVATENTDEQLSA
1	ł			MMHLIEKITTEGKIQAFSVASRTLFYEILCSLINPKRKDTRGFSHFAELTENF AFSLLTNVTCGSPGEKSKTILDSCPYLSILALHWYPQQINGHKFEGKEGDYIR
1	1			IPERLLDVQDAEIMAGKSTCKLVQFTEYSSQQWFISGNNLPTLKNKVLSLSVK
				GQSSQLLTNDNEVLYRIYAAEPRIIPQTSLCLLWNQAAASWLSDSQFCKVIEE
1		1		TADYVECACLHMSVYAVYARTDNLSSYNEAFFTSGFICISGLCLAVLSHIFCA RYSMFAAKLLTHMMAASLGTQILFLASAYASPQLAEESCSAMAAVTHYLYLCQ
		1	1	FSWMLIQSVNFWYVLVMNDEHTERRYLLFFLLSWGLPAFVVILLIVILKGIYH
i	1			QSMSQIYGLIHGDLCFIPNVYAALFTAALVPLTCLVVVFVVFIHAYQVKPQWK
	1			AYDDVFRGRTNAAEIPLILYLFALISVTWLWGGLHMAYRHFWMLVLFVIFNSL
				QLL\YPLFYFLLL*DQSSSASPGGVDYILHGSTVTFQHGQNLSFINISIIDDN ESEFEEPIEILLTGATGGAVLGRHLVSRIIIAKSDSPFGVIRFLNQSKISIAN
Ì	1	1		PNSTMILSLVLERTGGLLGEIQVNWETVGPNSQEALLPQNRDIADPVSGLFYF
- [Ì	1		GEGEGGVRTIILTIYPHEEIEVEETFIIKLHLVKGEAKLDSRAKDVTLTIQEF
	}		1	GDPNGVVQFAPETLSKKTYSEPLALEGPLLITFFVRRVKGTFGEIMVYWELSS EFDITEDFLSTSGFFTIADGESEASFDVHLLPDEVPEIEEDYVIQLVSVEGGA
	1	}		ELDLEKSITWFSVYANDDPHGVFALYSDRQSILIGQNLIRSIQINITRLAGTF
				GDVAVGLRISSDHKEQPIVTENAERQLVVKDGATYKVDVVPIKNQVFLSLGSN
	}			FTLQLVTVMLVGGRFYGMPTILQEAKSAVLPVSEKAANSQVGFESTAFQLMNI TAGTSHVMISRRGTYGALSVAWTTGYAPGLEIPEFIVVGNMTPTLGSLSFSHG
		1		EQRKGVFLWTFPSPGWPEAFVLHLSGVQSSAPGGAQLRSGFIVAEIEPMGVFQ
1			1	FSTSSRNIIVSEDTQMIRLHVQRLFGFHSDLIKVSYQTTAGSAKPLEDFEPVQ
1	}	}	1	NGELFFQKFQTEVDFEITIINDQLSEIEEFFYINLTSVEIRGLQKFDVNWSPR LNLDFSVAVITILDNDDLAGMDISFPETTVAVAVDTTLIPVETESTTYLSTSK
	1		ł	TTTILQPTNVVAIVTEATGVSAIPEKLVTLHGTPAVSEKPDVATVTANVSIHG
	}]	TFSLGPSIVYIEEEMKNGTFNTAEVLIRRTGGFTGNVSITVKTFGERCAQMEP
			}	NALPFRGIYGISNLTWAVEEEDFEEQTLTLIFLDGERERKVSVQILDDDEPEG OEFFYVFLTNPOGGAOIVEGKDDTGFAAFAMVIITGSDLHNGIIGFSEESQSG
- 1	Į.		İ	LELREGAVMRRLHLIVTROPNRAFEDVKVFWRVTLNKTVVVLQKDGVNLMEEL
	1	-{	İ	QSVSGTTTCTMGQTKCFISIELKPEKVPQVEVYFFVELYEATAGAAINNSARF
-	1	•	-	AQIKILESDESQSLVYFSVGSRLAVAHKKATLISLQVARDSGTGLMMSVNFST
	- {	1	ł	QELRSAETIGRTIISPAISGKDFVITEGTLVFEPGQRSTVLDVILTPETGSLN SFPKRFOIVLFDPKGGARIDKVYGTANITLVSDADSOAIWGLADQLHQPVNDD
	1	1	1	ILNRVLHTISMKVATENTDEQLSAMMHLIEKITTEGKIQAFSVASRTLFYEIL
		1	}	CSLINPKRKDTRGFSHFAELTENFAFSLLTNVTCGSPGEKSKTILDSCPYLSI
l	}	1	}	LALHWYPQQINGHKFEGKEGDYIRIPERLLDVQDAEIMAGKSTCKLVQFTEYS
l	}			SQQWFISGNNLPTLKNKVLSLSVKGQSSQLLTNDNEVLYRIYAAEPRIIPQTS LCLLWNQAAASWLSDSOFCKVIEETADYVECACLHMSVYAVYARTDNLSSYNE
}			ļ	AFFTSGFICISGLCLAVLSHIFCARYSMFAAKLLTHMMAASLGTQILFLASAY
1		1	1	ASPQLAEESCSAMAAVTHYLYLCQFSWMLIQSVNFWYVLVMNDEHTERRYLLF
-	1			FLLSWGLPAFVVILLIVILKGIYHQSMSQIYGLIHGDLCFIPNVYAALFTAAL VPLTCLVVVFVVFIHAYOVKPOWKAYDDVFRGRTNAAEIPLILYLFALISVTW
{		1	{	LWGGLHMAYRHFWMLVLFVIFNSLQLLVPSVLLFTSMRSTFFSFHTGTLTSRE
ļ				KKSTFVLTCLLSPDSKGLGVLCFLNTEWAFQVH

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acido	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ľ		acid	acid	\=possible nucleotide insertion)
İ		residue	residue	Position institution in the second in the se
	!	of amino	of amino	
1	ļ	acid	acid	,
		sequence	sequence	
363	1102	2	2855	AAGATMERDGCAGGGSRGGEGGRAPREGPAGNGRDRGRSHAAE
		j	i .	APGDPQAAASLLAPMDVGEEPLEKAARARTAKDPNTYKVLSLV
1			ł	LSVCVLTTILGCIFGLKPSCAKEVKSCKGRCFERTFG\NCRCD
	i	1	1	AACVELG\NCCLGLPGGTCI\EP\EHIW\TCNKFRCG\EKRLT
ĺ		ſ	Í	RSLCACSDDCKD\RGDCLPSNLQFLCVQGE\KSWGRKNPCESH
		Ì		LMEP\QCP\AGFETPSLPLLIF/SLDGFRAEYLHTWGGLLPVI
		l .		SKLKKCGTYTKNMRPVYPTKTFPNHYSIVTGLYPESHGIINNK
!	Ì			MYDPKMNASFSLKSKEKFNPEWYKGEPIWVTAKYQGLKSGTFF
1	1	1	1	WPGSDVEINGIFPDIYKMYNGSVPFEERILAVLQWLQLPKDER
			1	PHFYTLYLEEPDSSGHSYGPVSSEVIKALQRVDGMVGMLMDGL
	1	į.		-
1		ľ	Ì	KELNLHRCLNLILISDHGMEQGSCKKYIYLNKYLGDVKNIKVI
[1	<u> </u>	ł	YGPAARLRPSDVPDKYYSFNYEGIARNLSCREPNQHFKPYLKH
]		FLPKRLHFAKSDRIEPLTFYLDPQWQLALNPSERKYCGSGFHG
	1	ı	ļ	SDNVFSNMQALFVGYGPGFKHGIEADTFENIEVYNLMCDLLNL
	[l l	1	TPAPNNGTHGSLNHLLKNPVYTPKHPKEVHPLVQCPFTRNPRD.
1		1	1	NLGCSCNPSILPIEDFQTQFNLTVAEEKIIKHETLPYGRPRVL
			l	QKENTICLLSQHQFMSGYSQDILMPLWTSYTVDRNDSFSTEDF
1			1	SNCLYQDFRIPLSPVHKCSFYKNNTKVSYGFLSPPQLNKNSSG
				IYSEALLTTNIVPMYQSFQVIWRYFHDTLLRKYAEERNGVNVV
1			1	SGPVFDFDYDG\RCDSL\ENLRQKRRVHPVTQENFWIPNSTSF
		1	İ	Y/VVLTSC\KDTSQTPLHC\ENL\DTLGFPFCLHRDWINSETC
Ì				\VHG\KHDSSW\VEEFVKCLHRA\RITGC*GTSLGLSFYQQRK
				EPVSDILKLKTHLPTFSQED
364	1103	657	1	TVPPPPGGPSPAPLHPKRSPTSTGEAELKEERLPGRKASCSTA
1	1	ļ		GSGSRGLPPL\SPMVSSAHNPNKAEIPERRKDSTSTPNNLPPS
1	ţ			MMTRRNTYVCTERPGAERPSLLPNGKENSSGTPRVPPASPSSH
	1	 		SLAPPSGERSRLARGSTIRSTFHGGQVRDRRAGGWGWFFNKHA
}	1	j]	LQRAPRNAGAPSLMPGHRTVLINYGGGQDLKNWETCLAAPPNK
ļ		ļ		HRR
365	1104	† ₁	1313	HTLHHSSPTSEAEEFVSRLSTQNYFRSLPRGTSNMTYGTFNFL
1 303	1	1		GGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDVRLPLA
1	1	1	ļ	GCQTLLSPIVSCGPPG\VLLTRPVILG\MDHCG\EPSPDSW\S
	1	İ	1	LRLKKOSCEGSWEDVLHLGEEAPSHLYYCOLEASACYVFTEQL
		1	1	SRYALVGEALSVAAAKRLKLLLFAPVACTSLEYNILVYCLHDT
		1		HDALNVVVOLEKOLOGOLIOEPLVLHFKDSYHNLRLSIHDVPS
	ĺ			SLWKSKLLVSYOEIPFYHIWNGTORYLHCTFTLERVSPSTSDL
	1		1	ACKLWVWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPAL
		1		
				VGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQKLHLDSHL
				SFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGTGPAGRW
		<u> </u>	<u> </u>	LLSQCSEAEC
366	1105	1	343	GSAAGQVQQQQRRHQQGKVTVKYDRKELRKRLVLEEWIVEQL
	1		1	GQLYGCEEEEMPEVEIDIDDLFDAYSDEQRASKLQEALVDCYK
	1			PTEEFIKELLSRIRGMRKLSP\PQKKSV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end nucleotide location corresponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
367	1106	sequence 2	1398	IMLDGRVRWLTPVISALWEAEMEDVIARMQDEKNGIPIRTVKS FLSKIPSVFSGSDIVQWLIKNLTIEDPVEALHLGTLMAAHGYF FPISDHVLTLKDDGTFYRFQTPYFWPSNCWEPENTDYAVYLCK RTMQNKARLELADYEAESLARLQRAFARKWEFIFMQAEAQAKV DKKRDKIERKILDSQERAFWDVHRPVPGCVNTTEVDIKKSSRM RNPHKTRKSVYGLQNDIRSHSPTHTPTPETKPPTEDELQQQIK YWQIQLDRHRLKMSKVADSLLSYTEQYLEYDPFLLPPDPSNPW LSDDTTFWELEASKEPSQQRVKRWGFGMDEALKDPVGREQFLK FLESEFSSENLRFWLAVEDLKKRPIKEVPSRVQEIWQEFLAPG APSAINLDSKSYDKTTQNVKEPGRYTFEDAQEHIYKLMKSDSY PRFIRSSAYQELLQAKK\KGKSLTSKRLTSLAQSY
368	1107	1	461	GTRDYPRIVNHLDHTYVTAPQAFMMFQYFVKVVPTVYMKVDGE VLTTNQIYVTRHEKAAYVLMGDQGLPGVFILYELSPMMVNLTE IHTFFSLFLTIVGA\TIGGMFFEHFVINYLTHKWGLGFYFKNE NSLQGGHRTLYGVNFFMYWSLRGGS
369	1108	2	1522	SVWWNSQRQFVVRAWGCAGPCGRAVFLAFGLGLGLIEEKQAES RRAVSACQEIQAIFTQKSKPGPDPLDTRRLQGFRLEEYLIGQS IGKGCSAAVYEATMPTLPQNLEVTKSTGLLPGRGPGTSAPGEG QERAPGAPAFPLAIKMMWNISAGSSSEAILNTMSQELVPASRV ALAGEYGAVTYRKSKRGPKQLAPHPNIIRVLRAFTSSVPLLPG ALVDYPDVLPSRLHPEGLGHGRTLFLVMKNYPCTLRQYLCVNT PSPRLAAMMLLQLLEGVDHLVQQGIAHRDLKSDNILVELDPDG CPWLVIADFGCCLADESIGLQLPFSSWYVDRGGNGCLMAPEVS TARPGPRAVIDYSKADAWAVGAIAYEIFGLVNPFYGQGKAHLE SRSYQEAQLPALPESVPPDVRQLVRALLQREASKRPSARVAAN VLHLSLWGEHILALKNLKLDKMVGWLLQQSAATLLANRLTEKC CVETKMKMLFLANLECETLCQAALLLCSWRAAL
370	1109	105	1252	RPLLRLAELPDHCYRMNSSPAGTPSPQPSRANGNINLGPSANP NAQPTDFDFLKVIGKGNYGKVLLAKRKSDGAFYAVKVLQKKSI LKKKEQSHIMAERSVLLKNVRHPFLVGLRYSFQTPEKLYFVLD YVNGGELFFHLQRERRFLEPRARFYAAEVASAIGYLHSLNIIY RDLKPENILLDCQGHVVLTDFGLCKEGVEPEDTTSTFCGTPEY LAPEVL\RKEPYDRAVDWWCLGAVLYEMLHGLPPFYSQDVSQM YENILHQPLQIPGGRTVAACDLLQSLLHKDQRQRLGSKADFLE IKNHVFFSPINWDDLYHKRLTPPFNPNVTGPADLKHFDPEFTQ EAVSKSIGCTPDTVASSSGASSAFLGFSYAPEDDDILDC

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
371	1110	3	1608	VGPQVPLSEPGFRRESQEEPRAVLAQKIEKETQILNCALDDI EWFVARLQKAAEAFKQLNQRKKGKKKGKKAPAEGVLTLRARPP \SEGEFIDCFQKIKLAINLLAKLQKHIQNPSAAELVHFLFGPL DLIVNTCSGPDIARSVSCPLLSRDAVDFLRGHLVPKEMSLWES LGESWMRPRSEWPREPQVPLYVPKFHSGWEPPVDVLQEAPWEV EGLASAPIEEVSPVSRQSIRNSQKHSPTSEPTPPGDALPPVSS PHTHRGYQPTPAMAKYVKILYDFTARNANELSVLKDEVLEVLE DGRQWWKLRSRSGQAGYVPCNILGEARPEDAGAPFEQAGQKYW GPASPTHKLPPSFPGNKDELMQHMDEVNDELIRKISNIRAQPQ RHFRVERSQPVSQPLTYESGPDEVRAWLEAKAFSPRIVENLGI LTGPQLFSLNKEELKKVCGEEGVRVYSQLTMQKAFLEKQQSGS ELEELMNKFHSMNQRRGEDS
372	1111	3	1046	AWHEGLVSSPAIGAYLSASYGDSLVVLVATVVALLDICFILVA VPESLPEKMRPVSWGAQISWKQADPFASLKKVGKDSTVLL\IC ITVCLSYLPEAG\QYSSFF\LYLR\QVIGFG\SVKIAAFIAMV GILSIVAQTAFLSILMRSLGNKNTVLLGLGFQMLQLAWYGFGS QAWMMWAAGTVAAMSSITFPAISALVSRNAESDQQGVAQGIIT GIRGLCNGLGPALYGFIFYMFHVELTELGPKLNSNNVPLQGAV IPGPPFLFGACIVLMSFLAALFIPEYSKASGVQKHSNSSSGSL TNTPERGSDEDIEPLLQDSSIWELSSFEEPGNQCTEL*TRQKV GFCIRHL
373	1112	1.	1950	MAAGLATWLPFARAAAVGWLPLAQQPLPPAPGVKASRGDEVLV VNVSGRRFETWKNTLDRYPDTLLGSSEKEFFYDADSGEYFFDR DPDMFRHVLNFYRTGRLHCPRQECIQAFDEELAFYGLVPELVG DCCLEEYRDRKKENAERLAEDEEAEQAGDGPALPAGSSLRQRL WRAFENPHTSTAALVFYYVTGFFIAVSVIANVVETIPCRGSAR RSSREQPCGERFPQAFFCMDTACVLIFTGEYLLRLFAAPSRCR FLRSVMSLIDVVAILPYYIGLLVPKNDDVSGAFVTLRVFRVFR IFKFSRHSQGLRILGYTLKSCASELGFLLFSLTMAIIIFATVM FYAEKGTNKTNFTSIPAAFWYTIVTMTTLGYGDMVPSTIAGKI FGSICSLSGVLVIALPVPVIVSNFSRIYHQNQRADKRRAQQKV RLARIRLAKSGTTNAFLQYKQNGGLEDSGSGEEQAVCVRNRSA FEQQHHHLLHCLEKTTCHEFTDELTFSEALGAVSPGGRTSRST SVSSQPVGPGSLLSSCCPRRAKRRAIRLANSTASVSRG\SMQE LDMLAGL\RRSHAP\QSRSSL\NAKPHDSLDLNCDSG\DFVAA IISIPTPPANTPDESQPSSPGGGGRAGSTLRNSSLGTPCLFPE
374	1113	4	664	GWGKPFKDWTTGGQDTGGEPALLVGAGEGRAPRLNCPSGQIRS PGPGDLSIYDNWIRYFNRSSPVYGLVP/RSKTSARIYPTYHTA FDTFDYVDKFLDPGEEGDKGHPETRTGEAED*ALALSPCRR\F SSHQAVARTAGSVILRLSDSFFLPLKVSDYSETLRSFLQAAQQ DLGALLEQHSISLGPLVTAVEKFEAEAAALGQRISTLQKGSPD PLQVRML

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
375	1114	1	1147	GIRGGGSLASGGPGPGHASLSQRLRLYLADSWNQCDLVALTCF LLGVGCRLTPGLYHLGRTVLCIDFMVFTVRLLHIFTVNKQLGP KIVIVSKMMKDVFFFLFFLGVWLVAYGVATEGLLRPRDSDFPS ILRRVFYRPYLQIFGQIPQEDMDVALMEHSNCSSEPGFWAHPP GAQAGTCVSQYANWLVVLLLVIFLLVANILLVNLLIAMFSYTF GKVQGNSDLYWKAQRYRLIREFHSRPALAPPFIVISHLRLLLR QLCRRPRSPQPSSPALEHFRVYLSKEAERKLLTWESVHKENFL LARARDKRESDSERLKRTSQKVDLALKQLGHIREYEQRLKVLE REVQQCSRVLGWVAEALSRSALLPPGGPPPPDLPGSKD
376	1115	3	329	LIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN NTLSKPTRY/QGELKEIKQDISSLRYELLEEKSQATGELADLI QQLSEKFGKNLNKDHLRVNKGKDI
377	1116	1	2043	LPLLHAGFNRRFMENSSIIACYNELIQIEHGEVRSQFKLRACN SVFTALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGK ELADLPKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSI QQHVKITPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSG DNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSM ARIHSMTIEAPITKVINIINAAQENSPVTVAEALDRVLEILRT TELYSPQLGTKDEDPHTSDLVGGLMTDGLRRLSGNEYVFTKNV HQSHSHLAMPITINDVPPCISQLLDNEESWDFNIFELEAITHK RPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNA YHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHD VDHPGRTNSFL\CNAGSELAVLYNDT\AV\LESHHTALAFQ\L TVKDTK\CNIFKNID/RGNHYRTLRQAIIDMVLATEMTKHFEH VNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIK CADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPV FDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALMQHLADN YKHWKTLDDLKCKSLRLPSDRLKPSHRGGLLTDKGHCESQ

ID ID NO: NO of of Acids Acids	O: F mino cids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
378 1:	117	1	3585	AFLSKVEEDDYPSEELLEDENAINAKRSKEKNPGNQGRQFDVN LQVPDRAVLGTIHPDPEIEESKQETSMILDSEKTSETAAKGVN TGGREPNTMVEKERPLADKKAQRPFERSDFSDSIKIQTPELGE VFQNKDSDYLKNDNPEEHLKTSGLAGEPEGELSKEDHENTEKY MGTESQGSAAAEPEDDSFHWTPHTSVEPGHSDKREDLLIISSF FKEQQSLQRFQKYFNVHELEALLQEMSSKLKSAQQESLPYNME KVLDKVFRASESQILSIAEKMLDTRVAENRDLGMNENNIFEEA AVLDDIQDLIYFVRYKHSTAEETATLVMAPPLEEGLGGAMEEM QPLHEDNFSREKTAELNVQVPEEPTHLDQRVIGDTHASEVSQK PNTEKDLDPGPVTTEDTPMDAIDANKQPETAAEEPASVTPLEN AILLIYSFMFYLTKSLVATLPDDVQPGPDFYGLPWKPVFITAF LGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTEL VQKLSNYEQKIKESKKHVQETRKQNMILSDEAIKYKDKIKTLE KNQEILDDTAKNLRVMLESEREQNVKNQDLISENKKSIEKLKD VISMNASEFSEVQIALNEAKLSEEKVKSECHRVQEENARLKKK KEQLQQEIEDWSKLHAELSEQIKSFEKSQKDLEVALTHKDDNI NALTNCITQLNLLECESESEGQNKGGNDSDELANGEVGGDRNE KMKNQIKQMMDVSRTQTAISVVEEDLKLLQLKL\RASVSTKC\ NLEDQVKKLEDDRNSLQAAKAGLEDECKTLRQKVEILNELYQQ KEMALQKKLSQEEYERQEREHRLSAADEKAVSAAEEVKTYKRR IEEMEDELQKTERSFKNQIATHEKKAHENWLKARAAERAIAEE KREAANLRHKLLDLTQKMAMLQEEPVIVKPMPGKPNTQNPPRR GPLSQNGSFGPSPVSGGECSPPLTVEPPVRPLSATLNRRDMPR SEFGSLDGPLPHPRWSAEASGKPSPSDPGSGTATMMNSSSRGS SPTRVLDEGKVNMAPKGPPPFPGVPLMSTPMGGPVPPPIRYGP PPQLCGPFGPRPLPPPFGPGMRPPLGLREFAPGVPPGRRDLPL HPRGFLPGHAPFRPLGSLGPREYFIPGTRLPPPTHGPQEYPPP

NO: of Amino carid location corresponding to first amino acid residue of amino acid sequence 379 1118 3 2946 MADSEPESEVPETTDFTTASEWERFISKVEEVLNDWKLIT LGRAPHSDAVLLSESKOLLESVSSANANNTVITQGSLAFTLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESVSLAFTLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESVSLAFTLESDEUCINE KLQMLNCCIERKKARDEGKKTSABOVLNTLLESVSLAFTLESDEVETTDFTTASEWERFISKVEEVLNDWKLIT LGRAPAHSDAVLSESKONLLLSSVSLALGNTGGQVPLFVQIT WRRMYVGECQGPGVRTDFTMASKKTERFASVPITHYLVQEST LGRAPAHSDAVLSESKCNLLLSSVSLALGNTGGQVPLFVQIT WRRMYVGECQGPGVRTDFTMASKLTEPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKKTRKIRGVEESPLNDVLINTLLESPASVPITHILSVSNM AKKGTRKIRGSPEESKENALLSTSABGAHLRARMOSACLLSDME AANPGCSLEDFVRWYSPRDYLEESVLDEKGNVVLKGENDE AANPGCSLEDFVRWYSPRDYLEESVLDEKGNVVLKGENDE AANPGCSLEDFVRWYSPRDYLEESVLDEKGNVVLKGE GEKEDLERTVSCLLEGPEVLVTGARGRHAGRI IHKLIFV RAAANTPPEEELKKRNGSPEERRONSVSDFPPPAGREFILM PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF QEEKEDLERTVSCLLEGPEVLVTGARGRHAGRI IHKLIFV RAAANTPPEEELKKRNGSPEERRONSVSDFPPPAGREFILM LVDRKLDHLHVEVTASNSKKFI LKTIDVFVRPQKAGKOVT RPGGGGGGGTNHIERLWSCHTELESDROCHTRRVHEEEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASQL YDEIRTPLLSDIRIDYPPSSVVQATKTLEFNVFRGSEDAASGL PVVQSVRGAGTQPGPLLKKPYQPRKKISKTSVDGDPBFVV LSRTTVCFNTIOQQGGLLKRPYQPRKKISKTSVDGDPBFVV LSRTTVCFNTIOQQGGLLKRPYQPRKKISKTSVDGDPBFVV LSRTTVCFNTIOQQGGLLKRPYQPRKKISKTSVDGDPBFVV LSRTTVCFNTIOQQGGLLKRPYQPRKKISKTSVDGDPBFVV LSRTTVCFNTIOQQGGLLKRPYQPRKLSLSTPRVLDGGBRIVI NQSVVVQSWGAG	SEQ	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
location of Nucleic Amino Acids location corresponding to first amino acid residue of amino acid sequence sequence	ID	_			C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of Amino Acids Amino Acids of Free Sponding to Girst a mino acid residue of amino acid residue of amino acid sequence se					F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine
Acids Acids Acids Acids Sponding to first amino acid residue of amino acid residue of amino acid sequence Seque	of	of			
to first amino acid residue of amino acid residue of amino acid sequence se		Amino			
amino acid residue of amino acid scidue of amino acid sequence seq	Acids	Acids			
acid residue of amino acid sequence seq	1		2	1	
residue of amino acid sequence 379 1118 3 2946 MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLTG LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQEST EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLREE IAPAAHSDAVLSESKCNILLSSVSTALGHTGCQVPDFVQIF WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLDIFF IGCPLTPLPPVSIAIRFTYVLQDMQQYEWPQQPPDIDALVG VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV DLDDFIQAPHWSVRVRKAENPQCLLGDFVTEFFKLCRKEST ILGRSAFEEGGKETADITHALSKLTEPASVPIHKLSVSNM AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPSESEDYNLVNQFKSAPSDSLTYKLALCLCHINFF GLKGVAHLWGEFVLEMFRFWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSSEEFFFCLSDTEELKGN SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQF PMTEDLLEQSEVLARLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARQRRLFDDTREAEKCHLHLAIG ADLARHLLPCVHAAVLKVKEESLSHISSVKKIIKQIISS KVLHFPNPEDKKLEEIHQITNVEALIARARSLKAKFGTEF QEEKEDLERFYSCLLEQPEVLVTGAGRGHAGRIIHKLFV RAAMTPPEEELKRMGSPEERRQNSVSDFPPAGREFILT GREKELDERFYSCLLEQPEVLVTGAGRGHAGRIIHKLFV RAAMTPPEEELKRMGSPEERRQNSVSDFPPAGREFILT LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVT RPAPYSKALPQRMYSVLTKEDFFLAGAFSSDTSFF PRAPYSKALPQRMYSVLTKEDFFLAGAFSSDTSFF RPAPYSKALPQRMYSVLTKEDFFLAGAFSSDTSFF RPAPYSKALPQRMYSVLTKEDFFLKILNNTREAAK CIFTTGIGNDVDFRLEKKLSTVLGGHTRRVHEEDAGSQLIVDERTPLIKTSTVLTTELLSSWLQSDDEPKERI LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVT RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPKERI RAQALAVSYRFITPFTSMKLRGPVPRMOGLEEAHGMSAAM PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVL LSRLTVCFNIDGGPGDILRLVSDHRDSGVTVNGELGAPAM PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVL LSRLTVCFNIDGGPGDILRLVSDHRDSGVTVNGELGAPAM PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVL LSRLTVCFNIDGGPGDILRLVSDHRDSGVTVNGELGAPAM PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVL LSRLTVCFNIDGGPGDILRLVSDHRDSGVTVNGELGAPAM PVVQSVVGSWGLEVSVSANANVTVTIQGSTAFVILIHLYKKI	1 1		1		
of amino acid sequence sequenc	1		h		\=possible nucleotide insertion)
acid sequence squence	1				
Sequence Sequence			l ·		
379 1118 3 2946 MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLIG LGKPLEKGIFTSGTWEEKSDEISFADFKFSYTHHYLVQEST EGKDELLEDVVPQSMQDLLGMINNDFPPRAHCLVRWYGLREF IAPAAHSDAVLSESKCNLLLSSVS TALGNTGCQVPLFVQII WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFF IGCPLTPLPPVS IAIRFTTVLQDWQQYFWPQOPPDIDALVC VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV DLDPIQAPHWSVRVRKAERPQCLLGDFVTEFFKICRRKEST ILGRSAFEEGKETADITHALSKLTEPASVPIHKLSVSNMV AKKKIRKHRGVEBSPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFFWENNFLIPGLASGPPDLRCCLL KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNIKETDKEKGEVGKSWDSWSDSEEFFFECLSDTEELKGNK SGKKGGPKEMANLRPEGRLYQHGKLTLLHINGEPLYTIPVTQF PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMEE AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISF KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAAFGTEF QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILMT QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILMT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGGTHTLIKIINTTEAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIII LVDRKLDHLHVEVTASNSKKFIILKTDVPPPQKAGKKDVTX RPGGDGEGDTNHIERLWSVLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVGGGTQPGFLLKKPYQPRKISKTSVDGDPHFVVI LSRLIVCFNIDGQPGDILLKVDRRDSGVVVVNGELIGAPAI GHKKQRTVLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANNVTVTQGSIAFVILHIYKUL			acid	acid	
LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQEST EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLREF IAPAAHSDAVLSESKCNLLLSSVS LALGNTGCQVPLFVQIIF WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLDIFF IGCPLTPLPPVSIAIRFTTVLQDWQQYFWPQQPPDIDALVC VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMV AKKKIRKHRGVEESPLNDDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEFFECLSDTEELKGNC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIC AADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEN QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGOTNHIERLWSVLTTKELLSSWLQSDDEPEKENI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILKLVSDHRDSGVTVNGELIGAPAN GHKKQRTVLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILTHLIYKU			sequence		
EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLRER IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIT WRRMYVGECQGPGVRTDFEMVHLKKVPNQYTHLSGLLDIFF IGCPLTPLFPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVC VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV UGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKESI ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNNM AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGI TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTHIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWSPRDYIEBEVIDEKGNVVLKGELSAE IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIC AADLARHLLPCVIHAAVLKVKEEESLENISSVKKIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF GEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERROSVSUSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVPRQKAGKDVTVG RPGGDGEGGTTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTOPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDLIRLVSDHRDSGVTVNGELIGAPAH GHKKQRTYLRTITLLINKPERSYLLITBSRVLLDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI	379	1118	3	2946	MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLIGNS
IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIE WRRMYVGECQGPGVRTDFEMVHLRKVPRQYTHLSGLLDIFF IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALW VGGLEFGKLPFBACEDPISELHLATTW\PHLTEGIIVDNDV VGGLEFGKLPFBACEDPISELHLATTW\PHLTEGIIVDNDV DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRKKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMV AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSITYKLALCCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNC SGKKGGPREMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARQGRLFDDTREAEKVLHYLAI ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEH QEEEKEDLEFFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRNGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIL LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTV RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGFLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAH GHKKQRTYLRTITLLINKPERSPVLLDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVLLIHLYKKI			1	}	LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQESTDK
WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFF IGCPLTPLPPVSIAIRFTYVLQDWQYFWPQQPPDIDALVC VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDL DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMV AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMFFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYTPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIG ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVGATKTLFPNYFNGSEIIL LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTX RPGGDGGGTNHIERLWSYLTTKELLSSWLQSDDEPEKENI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAL GHKKQRTYLRTITLINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFFILIHLYKKI			ļ		EGKDELLEDVVPQSMQDLLGMMNDFPPRAHCLVRWYGLREFVV
WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFF IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVC VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDL DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMV AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMFFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYTPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIG ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLTVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVGATKTLFPNYFNGSEIIL LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTX RPGGDGGGTNHIERLWSYLTTKELLSSWLQSDDEPEKENI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAL GHKKQRTYLRTITLINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFFILLHLYKKI					IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIHHK
IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVG VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDA DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRKEST ILGRSAFEEGKETADITHALSKLTEPASVPIHKLSVSNM AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMFFWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEFFECLSDTEELKGM SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIG ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEF QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGGGUI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPCKAGKDVTX RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSVRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRKIISKTSVDGDPHFVVU LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAF GHKKQRTYLRTITLINKPERSYLETTPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI)				WRRMYVGECQGPGVRTDFEMVHLRKVPNOYTHLSGLLDIFKSK
VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDV DLDPIQAPHWSVRVRAENPQCLLGDFVTEFFKICRRKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNM AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARQRRLFDDTREAEKVLHYLAIC ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEN QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAN GHKKQRTYJLRTITLINKPERSYLEITPSRVILDGGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI					
DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKEST ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNM AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDDJ DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGMC SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEGSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVLKGELSAE IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIC ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILET PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIL LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAE GHKKQRTYJERTITLLINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI					1
ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMMAKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESDYNLYNQFKSAPSDSLTYKLALCLCMINFYGLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLIKLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQTIDNLKETDKEKGEVGKSWDSWSDSEEFFECLSDTEELKGNCSGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQEPMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMESAANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAFIPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIGADLARHLLPCVTHAAVLKVKEEESLENISSVKKIIKQIISHKVLHFPNPEDKKLEEIHQITNVEALIARARSLKAKFGTEFQEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVNRAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRTPRAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFFPRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFFPRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFFCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIYDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIILVUDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTCRPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERIRAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMCPVVQSVRGAGTQFGPLLKKPYQPRIKISKTSVDGDPHFVVLLSRLTVSFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAFGHKQRTYLRTITILINKPERSYLETPSRVILDGGDRLVINQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					•
AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGT TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEFFECLSDTEELKGNG SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAR IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEN QEEEKEDLERFVSCLLEQPEVLYTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILMT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTX RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKENI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI				1	
TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFY GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNG SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEN QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAN GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE]	}	j	
GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLI KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNG SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAE IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIG ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRI PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF OCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIE LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAE GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE				ŀ	
KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQI DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNG SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQI PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAH IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEH QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILET PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAH GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					
DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNO SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAE IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILEN PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIE LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAE GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE			•	ļ	1
SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQE PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAE IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISE KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILET PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTTEAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIE LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAE GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE	1 .	ļ	1		1 -
PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMES AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIC ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISF KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTER QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRI PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIII LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					
AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSAF IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIG ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTER QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRI PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					
IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQ ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEH QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRI PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAH GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE			!	İ	
ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISH KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEH QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILFT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE				ŀ	
KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTER QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVN RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIR LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE			}	<u>'</u>	IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQKP
QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVM RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISHSS
RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRT PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARG CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIR LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					
PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF 380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE		ŀ			QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVNAQ
380 1119 2333 670 SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARC CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIR LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE		<u> </u>			RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRTTV
CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLI YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTO RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMO PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAA GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKK			J	.	PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF
YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE	380	1119	2333	670	SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARGQV
YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIA LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSOLIGF
LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTC RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMC PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE				<u> </u>	
RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERI RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKR		l		1	
RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMG PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAI GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE					
PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVI LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKR		[[[
LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAR GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKR					
GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVI NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKE		İ			
NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKI]	}	1	1	
		· .			
		'		1	
					FORHHLGFYIANSEGLSSNCHGLLGOFLNODARLTEDPAGPSQ
					NLTHPLLLQVGEGPEAVLTVKGHQVPVVWKQRKIYNGEEQIDC
WFARNNAAKLIDGEYKDYLASHPFDTGMTLGQGMSREL	307	1 7 7 7 7	100	100	,
	381	1120	102	426	VPLESLSCSHADNWKQELTKFISPDQLPVEFGGTMTDPDGNPK
		1	1		CLTKINYGGEVPKSYYLCKQVRLQYEHTRSVGRGSSLQVENEI
LFPGCVLRCPEVLQHLQPGSF	L	<u> </u>		<u> </u>	LFPGCVLRCPEVLQHLQPGSF

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
		residue	residue	\=possible nucleotide insertion)
}		of amino	of amino	
]		acid	acid	
1		sequence	sequence	·
382	1121	3	3726	PAAPEHTDPSEPRGSVSCCSLLRGLSSGWSSPLLPAPVCNPNK
302]	3,20	AIFTVDAKTTEILVANDKACGLLGYSSQDLIGOKLTOFFLRSD
				SDVVEALSEEHMEADGHAAVVFGTVVDIISRSGEKIPVSVWMK
Ì		!		RMROERRLCCVVVLEPVERVSTWVAFQSDGTVTSCDSLFAHLH
			İ	GYVSGEDVAGQHITDLIPSVQLPPSGQHIPKNLKIQRSVGRAR
		1	(DGTTFPLSLKLKSOPSSEEATTGEAAPVSGYRASVWVFCTISG
				~
	<u> </u> -			LITLLPDGTIHGINHSFALTLFGYGKTELLGKNITFLIPGFYS
	Ì			YMDLAYNSSLQLPDLASCLDVGNESGCGERTLDPWQGQDPAEG
				GQDPRINVVLAGGHVVPRDEIRKLMESQDIFTGTQTELIAGGQ
1	ł	1	1	LLSCLSPQPAPGVDNVPEGSLPVHGEQALPKDQQITALGREEP
		1		VAIESPGQDLLGESRSEPVDVKPFASCEDSEAPVPAEDGGSDA
			l	GMCGLCQKAQLERMGVSGPSGSDLWAGAAVAKPQAKGQLAGGS
]		1	LLMHCPCYGSEWGLWWRSQDLAPSPSGMAGLSFGTPTLDEPWL
Ì				GVENDREELQTCLIKEQLSQLSLAGALDVPHAELVPTECQAVT
				APVSSCDLGGRDLCGGCTGSSSACYALATDLPGGLEAVEAQEV
		1		DVNSFSWNLKELFFSDQTDQTSSNCSCATSELRETPSSLAVGS
		ļ		DPDVGSLQEQGSCVLDDRELLLLTGTCVDLGQGRRFRESCVGH
				DPTEPLEVCLVSSEHYAASDRESPGHVPSTLDAGPEDTCPSAE
				EPRLNVQVTSTPVIVMRGAAGLQREIQEGAYSGSCYHRDGLRL
	ŀ	1		SIQFEVRRVELQGPTPLFCCWLVKDLLHSQRDSAARTRLFLAS
		j		LPGSTHSTAAELTGPSLVEVLRARPWFEEPPKAVELEGLAACE
			ļ	GEYSQKYSTMSPLGSGAFGFVWTAVDKEKNKEVVVKFIKKEKV
			1	LEDCWIEDPKLGKVTLEIAILSRVEHANIIKVLDIFENQGFFQ
1			[LVMEKHGSGLDLFAFIDRHPRLDEPLASYIFRQVRAG\QSRLV
			1	SAVGYLRLKDIIHRDIKDENIVIAEDFTIKLIDFGSAAYLERG
1				KLFYTFCGTIEYCAPEVLMGNPYRGPELEMWSLGVTLYTLVFE
				ENPFCELEETVEAAIHPPYLVSKELMSLVSGLLQPVPERRTTL
				EKLVTDPWVTQPVNLADYTWEEVFRVNKPESGVLSAASLEMGN
				RSLSDVAQAQELCGGPVPGEAPNGQGCLHPGDPRLLTS
383	1122	177	1365	PGTSAATCRFLSPPVISLSFTGLCISDLVVAVNGVWILVETFM
				LKGGNFFSKHVPWSYLVFLTIYGVELFLKVAGLGPVEYLSSGW
	1	ł	Į.	NLFDFSVTVFAFLGLLALALNMEPFYFIVVLRPLOLLRLFKLK
				ERYRNVLDTMFELLPRMASLGLTLLIFYYSFAIVGMEFFCGIV
1				FPNCCNTSTVADAYRWRNHTVGNRTVVEEGYYYLNNFDNILNS
		1		FVTLFELTVVNNWYIIMEGVTSOTSHWSRLYFMTFYIVTMVVM
				TIIVAFILEAFVFRMNYSRKNODSEVDGGITLEKEISKEELVA
	ļ			VLELYREARGASSDVTRLLETLSQMERYQOHSMVFLGRRSRTK
				SDLSLKMYQEEIQEWYEEHAREQEQQRQLSSSAAPAAQQPPGS
				RORSOTVT
	<u> </u>	J	L	I WXWAT A T

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
384	1123	1	986	LAGVGTQAPPRRPGGEMAAGQNGHEEWVGSAYLFVESSLDKVV LSDAYAHPQQKVAVYRALQAALAESGGSPDVLQMLKIHRSDPQ LIVQLRFCGRQPCGRFLRAYREGALRAALQRSLAAALAQHSVP LQL\DLRAGAERLEALLADEERCLSCILAQQPDRLRDEELAEL EDALRNLKCGSGARGGDGEVASAPLQPPVPSLSEVKPPPPPPP AQTFLFQGQPVVNRPLSLKDQQTFARSVGLKWRKVGRSLQRGC RALRDPALDSLAYEYEREGLYEQAFQLLRRFVQAEGRRATLQR LVEALEENELTSLAEDLLGLTDPNGGLA
385	1124	2409	399	SSKPKLKKRFSLRSVGRSVRGSVRGILQWRGTVDPPSSAGPLE TSSGPPVLGGNSNSNSSGGAGTVGRGLVSDGTSPGERWTHRFE RLRLSRGGGALKDGAGMVQREELLSFMGAEEAAPDPAGVGRGG GVAGPPSGGGQPQWQKCRLLLRSEGEGGGGSRLEFFVPPKAS RPRLSIPCSSITDVRTTTALEMPDRENTFVVKVEGPSEYIMET VDAQHVKAWVSDIQECLSPGPCPATSPRPMTLPLAPGTSFLTR ENTDSLELSCLNHSESLPSQDLLLGPSESNDRLSQGAYGGLSD RPSASISPSSASIAASHFDSMELLPPELPPRIPIEEGPPAGTV HPLSAPYPPLDTPETATGSFLFQG\EPEGGEGDQPLSGYPWFH GMLSRLKAAQLVLTGGTGSHGVFLVRQSETRRGEYVLTFNFQG KAKHLRLSLNEEGQCRVQHLWFQSIFDMLEHFRVHPIPLESGG SSDVVLVSYVPSSQRQQGEQSRSAGEEVPVHPRSEAGSRLGAM RGCAREMDATPNASCTLMPFGASDC\EPTTSHDPPQPPEPPSW TDPPQPGEE\EASR\APGSGGQQAAAAAKERQEKEKAGG\GGV PEE\LVPVV*LVPVGELGEGHRPQAQEAQGRLGPGGDAGVPP\ MVQLQQSPLGG\DGEEGGHPR\AI\NNQYSFV
386	1125	2204	1042	FRAPVGTAARSPQVVIRRLPPGLTKEQLEEQLRPLPAHDYFEF FAADLSLYPHLYSRAYINFRNPDDILLFRDRFDGYIFLDSKDP EYKKFLETYCVEEEKTSANPETLLGEMEAKTRELIARRTTPLL EYIKNRKLEKQRIREEKREERRRRELEKKRLREEEKRRRREEE RCKKKETDKQKKIAEKEVRIKLLKKPEKGEEPTTEKPKERGEE IDTGGGKQESCAPGAVVKARPMEGSLEEPQETSHSGSDKEHRD VERSQEQESEAQRYHVDDGRRHRAHHEPERLSRRSEDEQRWGK GPGQDRGKKGSQDSGAPGEAMERLGRAQRCDDSPAPRKERLAN KDRPALQLYDPGARFRARECGGNRRICKAEGSGTGPEKREEAE
387	1126	176	800	GVWGVCVSGLLQVGSQRAQAWRAWSPMETPLTGTFLWPHIPQG LFFDDSYGFYPGQVLIGPAKIFSSVQWLSGVKPVLSTKSKFRV VVEEVQVVELKVTWITKSFCPGGTDSVSPP/PSVITQENLGRV KRLGCFDHAQR/HAWGALSVCLPSQGRASQDCLGMSRKKLRPG GGLYGQEGEAPVEEAGCADHVMLPRHPVFPGPFHGRPR

SEQ S	SEQ	Predicted	Predicted	Amino paid promote continue to the continue of
- 1	D D	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
	_	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
	of Ai	сотге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	}	acid	acid	\=possible nucleotide insertion)
	ŀ	residue	residue	1—possible indefeddde ffisertion)
	ŀ	of amino	of amino	
	ŀ	acid	acid	
ł I		sequence	sequence	
388 1	1127	1	2017	FRDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAV
-		_		ATCRPDEFQCSDGNCIHGSRQCDREYDCKDMSDEVGCVNVTLC
	ļ			EGPNKFKCHSGECITLDKVCNMARDCRDWSDEPIKECGTNECL
	l			DNNGGCSHVCNDLKIGYECLCPDGFQLVAQRRCEDIDECQDPD
1	1			TCSQLCVNLEGGYKCQCEEGFQLDPHTKACKAVGSIAYLFFTN
	1			RHEVRKMTLDRSEYTSLIPNLRNVVALDTEVASNRIYWSDLSQ
				RMICSTQLDRAHGVSSYDTVISRDIQAPDGLAVDWIHSNIYWT
	1			DSVLGTVSVADTKGVKRKTLFRENGSKPRAIVVDPVHGFMYWT
1				DWGTPAKIKKGGLNGVDIYSLVTENIQWPNGITLDLLSGRLYW
	1			VDSKLHSISSIDVNGGNRKTILEDEKRLAHPFSLAVFEDKVFW
1 1	1			TDIINEAIFSANRLTGSDVNLLAENLLSPEDMVLFHNLTQPRG
				VNWCERTTLSNGGCQYLCLPAPQINPHSPKFTCACPDGMLLAR
				DMRSCLTEG\EAAVATQETSTVRLKVSSTAVRTQHTTTRPVPD
1				TSRLPGATPGLTTVEIVTMSHQALGDVAG\RGN\EKKPSSVRA
1	1			LSIVLPIV\LLVFLCLGVFLLWKNWRLKNINSINFDNPVYQKT
				TEDEVHICHNQDGYSYPSRQMVSLEDDVA
389 1	1128	2299	1148	RIPGLGPPGSPPPPPHVRGMPGCPCPGCGMAGPRLLFLTALAL
1				ELLGRAGGSQPALRSRGTATACRLDNKESESWGALLSGERLDT
] [WICSLLGSLMVGLSGVFPLLVIPLEMGTMLRSEAGAWRLKQLL
				SFALGGLLGNVFLHLLPEAWAYTCSASPGGEGQSLQQQQQLGL
]				WVIAGILTFLALEKMFLDSKEEGTSQAPNKDPTAAAAALNGGH
				CLAQPAAEPGLGAVVRSIKVSGYLNLLANTIDNFTHGLAVAAS
]]	ļ			FLVSKKIGLLTTMAILLHEIPHEVGDFAILLRAGFDRWSAAKL
			•	QLSTALGGLLGAGFAICTQSPKGVEETAAWVLPFTSGGFLYIA
				LVNVLPDLLEEEDPWRSLQQLLLLCAGIVVMVLFSLFVD
390 1	1129	1	523	GKVSAGQAGADRTLRRAPEPRFSQEPTGNSAYPQLRPFLDPQG
				RDLKPSALVPPTRSHTGRRPWLHTQPLPGPQGRAWGPTC/TPA
	1			CVDRVLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYM
	1			LHAEEGLCPDWKAEVEEFSFITQLSGLTDHLPVAMRLMVSSGE
				EEA
391 1	1130	1459	765	PCGGIRLSASEAATLFGYLVVPAGGGGTFLGGFFVNKLRLRGS
-				AVIKFCLFCTVVSLLGILVFSLHCPSVPMAGVTASYGGSLLPE
	ŀ			GHLNLTAPCNAACSCQPEHYSPVCGSDGLMYFSLCHAGCPAAT
	ĺ			ETNVDGQKVSGAAAYRPCPPLDPGKGPPCLPLVIGAIVGLPRC
	l			TETVAVSLRIFPLVLAM\HCREMHFNLSEKAPPSGFHIRCNFL
	ļ			
1303 - 1	,,,,	1660	063	YIPQQHSCTNGNSTMCP
392 1	1131	1668	962	LLRKVGAPGGARGVIRLLDWFERPDGFLLVLERPEPA\QD\LF
				DFITERGALDEPLARRF\FAQVLAAVRHCHSCGVVHRDIKDEN
				LLVDLRSGELKLIDFGSGALLKDTVYTDFDGTRVYSPPEWIRY
				HRYHGRSATVWSLGVLLYDMVCGDIPFEQDEEILRGRLLFRRR
I	ŀ			VSPECQQLIRWCLSLRPSERPSLDQIAAHPWMLGADGGAPESC
I				DLRLCTLDPDDVASTTSSSESL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
ID `	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine.
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
j		acid	acid	\=possible nucleotide insertion)
		residue	residue	•
i		of amino	of amino	
		acid	acid	
		sequence	sequence	
393	1132	3	817	GKNSQKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEKEVLG
Ì	ł		ł	RLKDVFNEDFSNRKPFINREITNYRARHQKCNFRIFYNKHMLD
Ì	1			MDDLATLDGQNWLNDQVINMYGELIMDAVPDKVHFFNSFFHRQ
1		1		LVTKGYNGVKRWTKKVDLFKKSLLLIPIHLEVHWSLITVTLSN
İ			İ	RIISFYDSQGIHFKFCVENIRKYLLTEAREKNR\LNLQGWQTA
				VTKCIPQQKNDSDCGVFVLQYCKCLAL\KQPFOFSOEDMPRVR
				KRIYKELCECRLMD
394	1133	1252	628	PPGG*QGSAAKHR/FP/KGYRHPALEARLGRRRTVOEARALLR
		1		CRRAGISAPVVFFVDYASNCLYMEEIEGSVTVRDYIQSTMETE
			ĺ	K\TPQGLSNLAKTIGQVLARMHDEDLIHGDLTTSNMLLKPPLE
	ļ		1	QLNIVLIDFGLSFISALPEDKGVDLYVLEKAFLSTHPNTETVF
1	1		ļ	EAFLKSYSTSSKKARPVLKKLDEVRLRGKKRSMVG
395	1134	2	1595	RACVFRPEDMMQGEAHPSASLIDRTIKMRKETEARKVVLAWGL
3,55	1134	~	1222	LNVSMAGMIYTEMTGKLISSYYNVTYWPLWYIELALASLFSLN
			1	1
				ALFDFWRYFKYTVAPTSLVVSPGQQTLLGLKTAVVQTTPPHDL
				AATQIPPAPPSPSIQGQSVLSYSPSRSPSTSPKFTTSCMTGYS
			1	PQLQGLSSGGSGSYSPGVTYSPVSGYNKLASFSPSPPSPYPTT
	i			VGPVESSGLRSRYRSSPTVYNSPTDKEDYMTDLRTLDTFLRSE
1				EEKQHRVKLGSPDSTSPSSSPTFWNYSRSMGDYAQTLKKFQYQ
1	1	ł	1	LACRSQAPCANKDEADLSSKQAAEEVWARVAMNRQLLDHMDSW
1				TAKFRNWINETILVPLVQEIESVSTQMRRMGCPELQIGEASIT
		ĺ		SLKQAALVKAPLIPTLNTIVQYLDLTPNQEYLFERIKELSQGG
	Ì	1	Ì	CMSSFRWNRGGDFKGRKWDTDLPTDSAIIMHVFCTYLDSRLPP
			ł	HPKYPDGKTFTSQHFVQTPNKPDVTNENVFCIYQSAINPPHYE
	<u> </u>		L	LIYQRHVYIPAKGQK
396	1135	16	1542	SSAVEFINRNNSVVQVLLAAGADPNLGDDFSSVYKTAKEQGIH
				SLEVLITREDDFNNRLNNRASFKGCTALHYAVLADDYRTVKEL
				LDGGANPLQRNEMGHTPLDYAREGEVMKLLRTSEAKYQEKQRK
				REAEERRRFPLEQRLKEHIIGQESAIATVGAAIRRKENGWYDE
			}	EHPLVFLFLGSSGIGKTELAKQTAKYMHKDAKKGFIRLDMSEF
				QERHEVAKFIGSPPGYVGHEEGGQLTKKLKQCPNAVVLFDEVD
				KAHPDVLTIMLQLFDEGRLTDGKGKTIDCKDAIFIMTSNVASD
1.				EIAQHALQLRQEALEMSRNRIAENLGDVQISDKITISKNFKEN
				VIRPILKAHFRRDEFLGRINEIVYFLPFCHSELIQLVNKELNF
	1			WAKRAKQRHNITLLWDREVADVLVDGYNVHYGARSIKHEVERR
	1			VGNQLAAAYEQDLLP\GGCTLRITVEDSDKQLLKSPELPSPQA
	ŀ			EKRLPKLRLEIIDKDSKTRRLDIRAPLHPEKVCNTI
397	1136	1848	1602	SSCDRERHGSLGMMSGSFILCLALVTRWSPOASSVPLAVYESK
1331	1136	1040	1002	TRKSYRSQRDRDGKDRSQGMGLSLLVETRKLLLSANQG
L	<u> </u>	<u> </u>		TKV9TKPGKDKDACKPÄGMGPPFFAKTFFRAMÖG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
398	1137	1497	717	HTPMA/FFL/SFLSTSET/VYTFVILPKMLINLLSVARTISFN CCALQMFFFLGFAITNCLLLGVMGYDRYAAICHPLHYPTLMSW QVCGKLAAACAIGGFLASLTVVNLVFSLPFCSTNKVNHYFCDI SAVILLACTNTDVNGFVIFICGVLVLVVPFLFICVSYFCILRT ILKIPSAEGRRKAFSTCASHLSVVIVHYGCASFIYLRPTANYV SNKDRLVTVTYTIVTPLLNPMVYSLRNKDVQLAIRKVLGKKGS LKLYN
399	1138	2	1185	RPPAATRYPREKLKSMTSRDNYKAGSREAA\AAAAAVAAAAA AAAAAEPYPVSGAKRKYLEDSDPERSDYEEQQLQEEEEARKVK SGIRQMRLFSQDECAKIEARIDEVVSRAEKGLYNEHTVDRAPL RNKYFFGEGYTYGAQLQKRGPGQERLYPPGDVDEIPEWVHQLV IQKLVEHRVIPEGFVNSAVINDYQPGGCIVSHVDPIHIFERPI VSVSFFSDSALCFGCKFQFKPIRVSEPVLSLPVRRGSVTVLSG YAADEITHCIRPQDIKERRAVIILRKTRLDAPRLETKSLSSSV LPPSYASDRLSGNNRDPALKPKRSHRKADPDAAHRPRILEMDK EENRRSVLLPTHRRRGSFSSENYWRKSYESSEDCSEAAGSPAR KVKMRRH
400	1139	60	1699	VTWHFYFCSDHKNGHYIIPQMADRSRQKCMSQSLDLSELAKAA KKKLQALSNRLFEELAMDVYDEVDRRENDAVWLATQNHSTLVT ERSAVPFLPVNPEYSATRNQGRQKLARFNAREFATLIIDILSE AKRRQQGKSLSSPTDNLELSLRSQSDLDDQHDYDSVASDEDTD QEPLRSTGATRSNRARSMDSSDLSDGAVT\LQEYLELKKALAT SEAKVQQLMKVNSSLSDEL\RRLQREHFAPI\IHKLQAENLQL RQPPGPVPTPPLPSERAEHTPMAPGGSTHRRDRQAFSMYEPGS ALKPFGGPPGDELTTRLQPFHSTELEDDAIYSVHVPAGLYRIR KGVSASAVPFTPSSPLLSCSQEGSRHTSKLSRHGSGADSDYEN TQSGDPLLGLEGKRFLELGKEEDFHPELESLDGDLDPGLPSTE DVILKTEQVTKNIQELLRAAQEFKHDSFVPCSEKIHLAVTEMA SLFPKRPALEPVRSSLRLLNASAYRLQSECRKTVPPEPGAPVD FQLLTQQVIQCAYDIAKAAKQLVTITTREKKQ

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid residue	acid residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	·
401	1140	1	1863	RYLSYGSGPKRFPLVDVLQYALEFASSKPVCTSPVDDIDASSP
		_		PSGSIPSQTLPSTTEQQGALSSELPSTSPSSVAAISSRSVIHK
!				PFTOSRIPPDLPMHPAPRHITEEELSVLESCLHRWRTEIENDT
	1		1	RDLQESISRIHRTIELMYSDKSMIQVPYRLHAVLVHEGQANAG
]		HYWAYIFDHRESRWMKYNDIAVTKSSWEELVRDSFGGYRNASA
}				YCLMYINDKAQFLIQEEFN/K/ETGQPLVGIETLPPDLRDFVE
		1 .		EDNORFEKELEEWDAQLAQKALQEKLLASQKLRESETSVTTAQ
Ì	Ì		ļ	AAGDPKYLEQPSRSDFSKHLKEETIQIITKASHEHEDKSPETV
				LOSAIKLEYARLVKLAQEDTPPETDYRLHHVVVYFIQNQAPKK
ĺ				IIEKTLLEQFGDRNLSFDERCHNIMKVAQAKLEMIKPEEVNLE
ļ			Ì	EYEEWHQDYRKFRETTMYLIIGLENFQRESYIDSLLFLICAYQ
, ,				NNKELLSKGLYRGHDEELISHYRRECLLKLNEQAAELFESGED
				REVNNGLIIMNEFIVPFLPLLLVDEMEEKDILAVEDMRNRWCS
				YLGQEMEPHLQEKLTDFLPKLLDCSMEIKSFHEPPKLPSYSTH
				ELCERFARIMLSLSRTPADGR
402	1141	1	465	AQVYVRMDSFDEDLARPSGLLAQERKLCRDLVHSNKKEQEFRS
1.				IFQHIQSAQSQRSPSELFAQHM\VPIVHHVKEHHFGSSGMTLH
				ERFT\KYLKRG\TEQEAAKNKKSPEIHRRIDISPSTFRKHGLA
	ļ			HDEMKSPREPGYKDGHNSKNELQRVNFY .
403	1142	2	369	TYTFCFSLMI\ILLTIIQGLILEAFGELRDQLDQVKEDMETKC
				FICGIGNDYFDTVPHGFETHTLQEHNLANYLFFLMYLINKDET
				EHTGQESYVWKMYQERCWEFFPAGDCFRKQYEDQLN
404	1143	3115	557	FRRKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKV
	ì			EKHGPGRWVVLAAVLIGLLLVLLGIGFLVWHLQYRDVRVQKVF
				NGYMRITNENFVDAYENSNSTEFVSLASKVKDALKLLYSGVPF
				LGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEE
		i		RVVMLPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLH
				ARGVELMRFTTPGFPDSPYPAHARCQWALRGDADSVLSLTFRS
		!		FDLASCDERGRHLV\TVYNT\LSPMEPHA\LVQLCGTYPPSYN
	ł			LTFHS\S\QNVLLITLITNTERRHPG\FEATFFQLPRMSSCGG
Ì				RLRKAQGTFNSPYYPGHYPPNIDCTWNIEVPNNQHVKVRFKFF
				YLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTSNSNKITVR
			1	FHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRC
				DGWADCTDHSDELNCSCDAGHQFTCKNKFCKPLFWVCDSLNDC
				GDNSDEQGCSCP\AQTFRCSNGKCLSKSQQCNGKDDCGDGSDE
				ASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDE
]	KDCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICG
				ASLISPNWLVSAAHCYIDDRGFRYSDPTQWTAFLGLHDQSQRS
				APGVQERRLKRIISHPFFNDFTFDYDIALLELEKPAEYSSMVR
				PICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVI
			İ	NOTTCENLLPQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEA
		<u></u>	<u> </u>	DGRIFQAGVVSWGDGCAQRNKPGVYTRLPLFRDWIKENTGV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
405	1144	1	424	RHEEDLGNLWENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNA MFEHEMEESKKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMA DNLLAAADKYALERLKVMCEKALCSNLSVENVADTLVLADLHS \AEQLKAQAIDFINRCSVLRQLGCKDGKNWNSNQATDIMETSG GKSMIQSHPHLVAEAFRALASAQGPQFGIPRKRLKQS*NLGNL WENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNAMFEHEMEES KKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMADNLLAAADK YALERLKVMCEKALCSNLSVENVADTLVLADLHSGRTVESTSH RLY
406	1145	1	1021	QRGGIPGKFQEDSGSVDWALGPFWGIFQADFGCMRFYLSAQTS DPVLRM*WGPSPISHPTSLCPGGGGAGQTTGSLCLGQQCCPLS CPNIPSRHKRWRL*AALVAGSRGSCTLRS*R*RTPLPVTRNLP R/CHLHLHPTGDLRVHVHQHCLLHGHVPPGAALLQCGGCDLRG EAAGLLFLGHACLRGSVNLRRDQWLPV\PYSRLCFSGAREGHL PSLLAMIHVRHCTPIPALLVC\PIKVNLLIPVAYLVFWAFLLV FSFISEHMVCGVGVIIILTGVPIFFLGVFWRSKPKCVHRLTES MTHWGQELCFVVYPQDAPEEEENGPCPPSLLPATDKPSKPQ
407	1146	2	1280	AAALVAEYLALLEDHRHLPVGCVSFQNISSNVLEESAISDDIL SPDEEGFCSGKHFTELGLVGLLEQAAGYFTMGGLYEAVNEVYK NLIPILEAHRDYKKLAAVHGKLQEAFTKIMHQSSGWERVFGTY FRVGFYGAHFGDLDEQEFVYKEPSITKLAEISHRLEEFYTERF GDDVVEIIKDSNPVDKSKLDSQKAYIQITYVEPYFDTYELKDR VTYFDRNYGLRTFLFCTPFTPDGRAHGELPEQHKRKTLLSTDH AFPYIKTRIRVCHREETVLTP\VEVAIEDMQKKTRELAFATEQ DPPDAKMLQMVLQGSVGPTVNQGPLEVAQVFLAEIPEDPKLFR HHNKLRLCFKDF*KKCEDALRKNKALIGPDQKEYHRELERNY CRLREALQPLLTQRLPQLMAPTPPGLRNSLNRASFRKADL
408	1147	55	651	GEGQQWQSTPLSPLQPTVADFLNLAWWTSAAAW*VLSGRWVEK VLPGREGSEEK*GMASSSADHLHSAPRALQ\SLFQQLLYGLIY HSWFQAGR*GFGGASSSPGPQSELRRLHGEGGVYD*GRPETLP GSVGGAEALWALADPAEAEGSPETRESSCVMKQTQYYFGSVNA SYNAIIDCGNCSRCWQWGGTRGQGRNL
409	1148	1855	904	VAGIPACFDN/FTEALAETACRQMGYSSKPTFRAVEIGPDQDL DVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGESLKTPRV VGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFR KHTDVFNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDI ALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWGFTKQ NGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYT KVSAYLNWIYNVWKAEL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
410	1149	3	964	TISTVRWNSRIGMVLGVAIQKRAV\PGLY\AFEEAYARADKEA PRPCHKGSWCSSNQLCRECQAFMAHTMPKLKAFSMSSAYNAYR AVYAVAHGLHQLLGCASGACSRGRVYPWQLLEQIHKVHFLLHK DTVAFNDNRDPLSSYNIIAWDWNGPKWTFTVLGSSTWSPVQLN INETKIQWHGKDNQVPKSVCSSDCLEGHQRVVTGFHHCCFECV PCGAGTFLNKS/SYLGKDLPENYNEAKCVTFSLLFNFVSWIAF FTTASVYDGKYLPAANMMAGLSSLSSGFGGYFLPKCYVILCRP DLNSTEHFQASIQDYTRRCGST
411	1150	2	1378	VARGAFHPKMGPSFPSPKPGSERLSFVSAKQSTGQDTEAELQD ATLALHGLTVEDEGNYTCEFATFPKGSVRGMTWLRVIAKPKNQ AEAQKVTFSQDPTTVALCISKEGRPPARISWLSSLDWEAKETQ VSGTLAGTVTVTSRFTLVPSGRADGVTVTCKVEHESFEEPALI PVTLSVRYPPEVSISGYDDNWYLGRTDATLSCDVRSNPEPTGY DWSTTSGTFPTSAVAQGSQLVIHAVDSLFNTTFVCTVTNAVGM GRAEQVIFVRETPNTAGAGATGGIIGGIIAAIIATADA\TGIL ICRQQRKEQTLQGAEEDEDLEGPPSYKPPTPKAKLEAQEMPSQ LFTLGASEHSPLKTPYFDAGASCTEQEMPRYHELPTLEERSGP LHPGATSLGSPIPVPPGPPAVEDVSLDLEDEEGEEEEYLDKI NPIYDALSYSSPSDSYQGKGFVMSRAMYV
412	1151	1	1828	GTRLREDKNHNMYVAGCTEVEVKSTEEAFEVFWRGQKKRRIAN THLNRESSRSHSVFNIKLVQAPLDADGDNVLQEKEQITISQLS LVDLAGSERTNRTRAEGNRLREAGNINQSLMTLRTCMDVLREN QMYGTNKMVPYRDSKLTHLFKNYFDGEGKVRMIVCVNPKAEDY EENLQVMRFAEVTQEVEVARPVDKAICGLTPGRRYRNQPRGP\ IGNEPLVTDVVLQSFPPLPSCEILDINDEQTLPRLIEALEKRH NLRQMMIDEFNKQSNAFKALLQEFDNAVLSKENHMQGKLNEKE KMISGQKLEIERLEKKNKTLEYKIEILEKTTTIYEEDKRNLQQ ELETQNQKLQRQFSDKRRLEARLQGMVTETTMKWEKECERRVA AKQLEMQNKLWVKDEKLKQLKAIVTEPKTEKPERPSRERDREK VTQRSVSPSPVPLLFQPDQNAPPIRLRHRRSRSAGDRWVDHKP ASNMQTETVMQPHVPHAITVSVANEKALAKCEKYMLTHQELAS DGEIETKLIKGDIYKTRGGGQSVQFTDIETLKQESPNGSRKRR SSTVAPAQPDGAESEWTDVETRCSVAVEMRAGSQLGPGYQHHA QPKRKKP
413	1152	1	336	PFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSQMS/KGK STPVSQLGSADFPEAPDPFQPLGADSGDPFQSKKGFGDPFSGK DPFVPSSAAKPSKASASGFADFTSVS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
[acid	acid	\=possible nucleotide insertion)
	!	residue	residue of amino	·
		of amino acid	acid	
		sequence	sequence	·
414	1153	1	1334	MSLMVVSMACVGLFLVORAGPHMGGODKPFLSAWPSAVVPRGG
414	1133	*	1334	HVTLRCHYRHRFNNFMLYKEDRIHIPIFHGRIFQESFNMSPVT
		1	ì	TAHAGNYTCRGSHPHSPTGWSAPSNPVVIMVTGNHRKPSLLAH
		l		PGPLVKSGERVILOCWSDIMFEHFFLHKEGISKDPSRLVGQIH
			{	DGVSKANFSIGPMMODLAGTYRCYGSVTHSPYOLSAPSDPLDI
	1	Į.	l	VITGLYEKPSLSAQPGPTVLAGESVTLSCSSRSSYDMYHLSRE
			ļ	GEAHERRFSAGPKVNGTFQADFPLGPATHGGTYRCFGSFRDSP
				YEWSNSSDPLLVSVTGNPSNSWPSPTEPSSETGNPRHLHVLIG
			ļ	TSVVIILFILLLFFLLHRWCSN\KKNAAVMDQESAGNRTANSE
			1	DSDEODPOEVTYTOLNHCVFTORKITRPSORPKTPPTDIIVYT
1		•		ELPNAESRSKVVSCP
435	1154	1	1570	MSLRVHTLPTLLGAVVRPGCRELLCLLMITVTVGPGASGVCPT
415	1154	*	13/0	ACICATDIVSCTNKNLSKVPGNLFRLIKRLDLSYNRIGLLDSE
				WIPVSFAKLNTLILRHNNITSISTGSFSTTPNLKCLDLSSNKL
		•		KT\VKNAVFOELKVLEVLLLYNNHISYLDPSAFGGLSQLQKLY
		j		LSGNFLTQFPMDLYVGRFKLAELMFLDVSYNRIPSMPMHHINL
		ļ		VPGKOLRGIYLHGNPFVCD\CSLVSLLVFWYRRHFSSVMDFKN
· ·	1			DYTCRLWSDSRHSRQVLLLQDSFMNCSDSIINGSFRALGFIHE
				AOVGERLMVHCDSKTGNANTDFIWVGPDNRLLEPDKEMENFYV
1	1	İ		FHNGSLVIESPRFEDAGVYSCIAMNKQRLLNETVDVTINVSNF
		ŀ		TVSRSHAHEAFNTAFTTLAACVASIVLVLLYLYLTPCPCKCKT
1		ŀ		KROKNMLHOSNAHSSILSPGPASDASADERKAGAGKRVVFLEP
				LKDTAAGONGKVRLFPSEAVIAEGILKSTRGKSDSDSVNSVFS
				DTPFVAST
416	1155	2	1928	ASDFIRSLDHCGYLSLEGVFSHKFDFELQDVSSVNEDVLLTTG
***0		-	1,20	LLCKYTAORFKPKYKFFHKSFOEYTAGRRLSSLLTSHEPEEVT
}	1	}		KGNGYLOKMVSISDITSTYSSLLRYTCGSSVEATRAVMKHLAA
				VYOHGCLLGLSIAKRPLWROESLOSVKNTTEOEILKAININSF
	1			VECGIHLYQESTSKSALSQEFEAFFQGKSLYINSGNIPDYLFD
		1		FFEHLPNCASALDFIKLGFYGGAMASWEKAAEDTGGIHMEEAP
	1	ļ		ETYIPSRAVSLFFNWKQEFRTLEVTLRDFSKLNKQDIRYLGKI
	ļ	1		FSSATSLRLQIKRCAGVAGSLSLVLSTCKNIYSLMVEASPLTI
•				EDERHITSVTNLKTLSIHDLONORLPGGLTDSLGNLKNLTKLI
		1	1	MDNIKMNEEDAIKLAEGLKNLKKMCLFHLTHLSDIGEGMDYIV
				KSLSSEPCDLEEIOLVSCCLSANAVKILAONLHNLVKLSILDL
1			1	SENYLEKDGNEALHELIDRMNVLEQLTALMLPWGCDVQGSLSS
1				LLKHLEEVPOLVKLGLKNWRLTDTEIRILGAFFGKNPLKNFQQ
		}		LNLAGNRVSSDGWLAFMGVFENLKQLVFFDFSTKEFLPDPALV
1			1	RKLSQVLSKLTFLQEARLVGWQFDDDDLSVITGAFKLVTA
417	1156	342	718	ASDRKVAMTCDCFWFRTMLDQHASCMEVGTERERQAG\GLVMF
- T /	1130	7-2	1 - 2	DPSGFPTGEKVLQDDEFTCDLFRFLQLLCEGHNSGL*VPGTSD
1				DTKA*IMFSSO**QEPVSSNYASF*RQQIILEHGSALGSG
L	<u> </u>	<u></u>	<u> </u>	P.I.W. Tell 996. "Apt Agolt 1991. "VÖĞTT IDII GOYDQ99

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
418	1157	1	135	EITHIVGETAAFLCPRLRIRRGGKDGSPKPGFLASVIPVDRRP GE*DITHIVGETAAFLCPRLRIRRGGKDGSPKPGFLASVIPVD RRPGE
419	1158	173	943	SKFIFYVDSQSMIFFFQTPTRHKVLIMEFCPCGSLYTVLEEPS NAYGLPESEFLIVLRDVVGGMNHLRENGIVHRDIKPGNIMRVI GEDGQSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPDMYERA VLRKDHQ\KKYGAT\VDLW\SIGVTFYQGKPTGS\LAI*HPFE GASVRNKASDGIKIITGKGLLGAIS\GVQKSKKNG\PI\DWEW EDMPVSCSPSSGVLRVPNLPPVLA\NILESRSRKKCWGF*PSF LQEN
420	1159	987	500	GSTISCERSLRSLWTAHWALPEMDSRIPYDDYPVVFLPAYENP PAWIPPHERVHHPDYNNELTQFLPRTITLKKPPGAQLGFNIRG GKASQLGIFISKVIPDSDAHRAGLQEGDQVLAVNDVDFQDIEH SKAVEILKTAREISMRVRFFPYNYHRQKERTVH
421	1160	3	890	HEQVSALHRRIKAIVEVAAMCGVNIICFQEAWTMPFAFCTREK LPWTEFAESAEDGPTTRFCQKLAKNHDMVVVSPILERDSEHGD VLWNTAVVISNSGAVLGKTRKNHIPRVGDFNESTYYMEGNLGH PVFQTQFGRIAVNICYGRHHPLNWLMYSINGAEIIFNPSATIG ALSESLWPIEARNAAIANHCFTCAINRVGTEHFPNEFTSGDGK KAHQDFGYFYGSSYVAAPDSSRTPGLSRSRDGLLVAKLDLNLC QQVNDVWNFKMTGRYEMYARELAEAVKSNYSPTIVKE

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID `	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	N=Lysine, L-Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
{		of amino	of amino	
		acid	acid	·
433	1161	sequence 5214	sequence 352	WAY COOCOA CA CIVICOCOA CA CIVIA DA LA CIVIA DEL CIVIA DEL CIVIA DE LA CIVIA DEL CIVIA D
422	1161	5214	354	MAKSGGCGAGAGVGGGNGALTWVNNAAKKEESETANKNDSSKK
				LSVERVYQKKTQLEHILLRPDTYIGSVEPLTQFMWVYDEDVGM
			ì	NCREVTFVPGLYKIFDEILVNAADNKQRDKNMTCIKVSIDPES
				NIISIWNNGKGIPVVEHKVEKVYVPALIFGQLLTSSNYDDDEK
			1	KVTGGRNGYGAKLCNIFSTKFTVETACKEYKHSFKQTWMNNMM
				KTSEAKIKHFDGEDYTCITFQPDLSKFKMEKLDKDIVALMTRR
				AYDLAGSCRGVKVMFNGKKLPVNGFRSYVDLYVKDKLDETGVA
				LKVIHELANERWDVCLTLSEKGFQQISFVNSIATTKGGRHVDY
		l		VVDQVVGKLIEVVKKKNKAGVSVKPFQVKNHIWVFINCLIENP
				TFDSQTKENMTLQPKSFGSKCQLSEKFFKAASNCGIVESILNW
				VKFKAQTQLNKKCSSVKYSKIKGIPKLDDANDAGGKHSLECTL
				ILTEGDSAKSLAVSGLGVIGRDRYGVFPLRGKILNVREASHKQ
				IMENAEINNIIKIVGLQYKKSYDDAQSLKTLRYGKIMIMTDQD
'				QDGSHIKGLLINFIHHNWPSLLKHGFLEEFITPIVKASKNKQE
1				LSFYSIPEFDEWKKHIENQKAWKIKYYKGLGTSTAKEAKEYFA
		}		DMERHRILFRYAGPEDDAAITLAFSKKKIDDRKEWLTNFMEDR
				RQRRLHGLPEQFLYGTATKHLTYNDFINKELILFSNSDNERSI
				PSLVDGFKPGQRKVLFTCFKRNDKREVKVAQLAGSVAEMSAYH
				HGEQALMMTIVNLAQNFVGSNNINLLQPIGQFGTRLHGGKDAA
1		i		SPRYIFTMLSTLARLLFPAVDDNLLKFLYDDNQRVEPEWYIPI
		1		IPMVLINGAEGIGTGWACKLPNYDAREIVNNVRRMLDGLDPHP
1				MLPNYKNFKGTIQELGQNQYAVSGEIFVVDRNTVEITELPVRT
				WTQVYKEQVLEPMLNGTDKTPALISDYKEYHTDTTVKFVVKMT
				EEKLAQAEAAGLHKVFKLQTTLTCNSMVLFDHMGCLKKYETVQ
				DILKEFFDLRLSYYGLRKEWLVGMLGAEFTKLNNQARFILEKI
		!		QGKITI*NRSKKDLIQMLVQRGYESDPVKAWKEAQEKAAEEDE
				TQNQHDDSSSDSGTPSGPDFNYILNMSLWSLTKEKVEELIKQR
				DAKGREVNDLKRKSPSDLWKEDLAAFVEELDKVESQEREDVLA
		1	1	GMSGKAIKGKVGKPKVKKLQLEETMPSPYGRRIIPEITAMKAD
	[l	1	ASKKLLKKKKGDLDTAAVKVEFDEEFSGAPVEGAGEEALTPSV
				PINKGPKPKREKKEPGTRVRKTPTSSGKPSAKKVKKRNPWSDD
				ESKSESDLEETEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDD
		1	1	ADDDDDDNNDLEELKVKASPITNDGEDEFVPSDGLDKDEYTFS
1]	PGKSKATPEKSLHDKKSQDFGNLFSFPSYSQKSEDDSAKFDSN
			1	EEDSASVFSPSFGLKQTDKVPSKTVAAKKGKPSSDTVPKPKRA
1			1	PKQKKVVEAVNSDSDSEFGIPKKTTTPKGKGRGAKKRKASGSE
1				NEGDYNPGRKTSKTTSKKPKKTSFDQDSDVDIFPSDFPTEPPS
				LPRTGRARKEVKYFAESDEEEDDVDFAMFN
423	1162	1	219	KGCLAASFNCIFLYTGELYPTMIR*VEA*WENDSLFLGKDILL
L	L	<u> </u>	L	CTGQTPELNQVHPSPKAPPNTHHCKAHSSH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
424	1163	1454	446	ENSFECKDCGKAFSRGYQLSHHQKIHTGEKPYECKECKKAFRW GNQLTQHQKIHTGEKPYECKDCGKAFRWGSSLVIHKRIHTGEK PYECKDCGKAFRRGDELTQHQRFHTGEKDYECKDCGKTFSRVY KLIQHKRIHSGEKPYECKDCGKAFICGSSLIQHKRIHTGEKPY ECQECGKAFTRVNYLTQHQKIHTGEKPHECKECGKAFRWGSSL VKHERIHTGEKPYKCTECGKAFNCGYHLTQHERIHTGETPYKC KECGKAFIYGSSLVKHERIHTGVKPYGCTECGKSFSHGHQLTQ HQKTHSGAKSYECKECGKACNHLNHLREHQRIHNS
425	1164	826	407	HQYLDDLYPLHVMTILLKSHFFTMLKRPVGSSSFASLPFYHQS ILLRKNQMKRKKTQQDLTHINWTLQAVSIQTCIWLQKKPSSYF HQLPNQVL*PENSGPESCLYDLAAVVVHHGSG
426	1165	464	29	XLDPDTLPAVATLLMDVMFYSNGVKDPMATGDDCGHIRFFSFS LIEGYISLVMDVQTQQRFPSNLLFTSASGELWKMVRIGGQPLG FGPVWESGPTGPTSPLILPVTPSSSHRQAASQVTTTKQGQWLC LKRPSARSPDHTACLG*
427	1166	649	901	EAPLTSVCFSLERRFGSSSNTTSFGTLASQNAPTFGSLSQQTS GFGTQSSGFSGFGSGTGGFSFGSNNS*VSPFLSLTLIKSIK
428	1167	3	340	EEPQGSPIWVWLAGSLTSVSCFLPFQRMRIKPHQGQYIGEMSF LQHHKGECRPQKD*ARQENPCGPCSERRKHLLGQDPKTCKCSC KNTDSRCKARPLELNERTCRCDKPRR
429	1168	355	1312	TLWAGPGLCPQSHSSSSVPAPWEPHVERALRTDRNQGQRPLLS ASWAPAPARPLFLTSPVLLPKSRAIPAARDPS*AGIFCLLEMA GGQASVVIIGSAGVLGCRWGSSGKSHSLSPSRKGNLHLLSQEP QTTVVHNATDGIKGSTESCNTTTEDEDLKVRKQEIIKITEQLI EAINNGDFEAYTKICDPGLTSFEPEALGNLVEGMDFHKFYFEN REWVRAADILLPAPLPLCLCLLLTFSSQLPTFPLFDLRAALLL CMLVPLCPDGCRQAPLKALLLSSKCHSFCSCFVAVPVTTIKLT YFLPGAVAYACNPNTLGG
430	1169	439	728	ERAGAGGAAACRAGTRSGATSRTPWPLHRQLSMMLMLAQSNPQ LFALMGTRAGIARELERVEQQSRLEQLSAAELQSRNQGHWADW LQAYRARLGQ
431	1170		440	NGTLFIMVMHIKDLVSDYKE*WL*RKPLPW*EALLLRDCFFF* VTENGADPNPYVKTYLLPDNHKTSKRKTKISRKTRNPTFNEML VYSGYSKETLRQRELQLSVLSAESLRENFFLGGVTLPLKDFNL SKETVKWYQLTAATYL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	сотте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	_	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
ļ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
	,	of amino	of amino	
		acid	acid	·
432	1171	sequence 433	sequence 1824	LHRIMOLAVVVSQVLENGSSVLVCLEEGWDITAOVTSLVOLLS
432	11/1	433	1024	~ ~
1				DPFYRTLEGFQMLVEKEWLSFGHKFSQRSSLTLNCQGSGFAPV
İ				FLQFLDCVHQVHNQYPTEFEFNLYYLKFLAFHYVSNRFKTFLL
				DSDYERLEHGTLFDDKGEKHAKKGVCIWECIDRMHKRSPIFFN
				YLYSPLEIEALKPNVNVSSLKKWDYYIEETLSTGPSYDWMMLT
1				PKHFPSEDSDLAGEAGPRSQRRTVWPCYDDVSCTQPDALTSLF SEIEKLEHKLNOAPEKWOOLWERVTVDLKEEPRTDRSORHLSR
Ì	•		<u> </u>	SPGIVSTNLPSYQKRSLLHLPDSSMGEEQNSSISPSNGVERRA
				ATLYSQYTSKNDENRSFEGTLYKRGALLKGWKPRWFVLDVTKH
				QLRYYDSGEDTSCKGHIDLAEVEMVIPAGPSMGAPKHTSDKAF
	ŀ			FDLKTSKRVYNFCAQDGQSAQQWMDKIQSCISDA
433	1172	1714	946	EVEGPRRVSPAPETLGMEESVVRPSVFVVDGQTDIPFTRLGRS
133	-1,2	1/17	340	HRRQSCSVARVGLGLLLLLMGAGLAVOGWFLLOLHWRLGEMVT
ŀ	·			RLPDGPAGSWEQLIOERRSHEVNPAAHLTGANSSLTGSGGPLL
				WETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVGCPL
				GLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWD
	}			SSFLGGVVHLEAGEEVVVRVLDERLVRLRDGTRSYFGAFMV
434	1173	16	367	QSAELGPRRREGSRRPSCTKASKPWRRRPGGPTSGLG*GPLSP
1	/ -	1	""	GPYQCRPSLPAQLYPOSLMAAATLRTPTQVSAASSRPHTPSPT
	l		<u> </u>	HVLKPSVRGACSSPRCPGSGTLRRSWVGPFF
435	1174	27	1139	LWWPPLSRHAAHRQWPGPTAPRGLGHKVKGRGASPAAMWSCSW
1				FNGTGLVEELPACQDLQLGLSLLSLLGLVVGVPVGLCYNALLV
1				LANLHSKASMTMPDVYFVNMAVAGLVLSALAPVHLLGPPSSRW
				ALWSVGGEVHVALQIPFNVSSLVAMYSTALLSLDHYIERALPR
ļ				TYMASVYNTRHVCGFVWGGALLTSFSSLLFYICSHVSTRALEC
			•	AKMQNAEAADATLVFIGYVVPALATLYALVLLSRVRREDTPLD
				RDTGRLEPSAHRLLVATVCTQFGLWTPHYLILLGHTVIISRGK
				PVDAHYLGLLHFVKDFSKLLAFSSSFVTPLLYRYMNOSFPSKL
				QRLMKKLPCGDRHCSPDHMGVQQVLA
436	1175	322	756	SESELFTLMPSLPTTNCVHSLQMIPPLSPAPNQELVLGLCYMS
				YLAFLYMTFDFCCLYFSTVYAPSFKYICVHTDTHICVCVCIYL
				SSVVSKSSAEADGVLQPRRHPASLLIVFATSISESSLLIFSFQ
				KTEAKLIVFAVSLAAK
437	1176	2	153	FFFLRQSLTLSPRLECSGATSASPSAGITGMSHHSQPIVNFLR
				ACIPISK
438	1177	1	692	RQHAEERGRRNPKTGLTLERVGPESSPYLLRRHQRQGQEGEHY
				HSCVQLAPTRGLEES/GHGPL/SLAGGPRVGGV/AAAATEAPR
				MEWKVKVRSDGTRYVAKRPVRDRLLKARALKIREERSGMTTDD
[[ĺ	DAVSEMKMGRYWSKEERKQHLIRAREQRKRREFMMQSRLECLR
			,	EQQNGDSKPELNIIALSHRKTMKKRNKKILDNWITIQEMLAHG
1				ARSADGKRVYNPLLSVTTV
			L	

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	сотге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110100	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
}		acid	acid	\=possible nucleotide insertion)
]	residue	residue	, F
		of amino	of amino	
-		acid	acid	
	1	sequence	sequence	
439	1178	2	616	SDRGCSAAAGRNMTAVGVQAQRPLGQRQPRRSFFESFIRTLII
			1	TCVALAVVLSSVSICDGHWLLAEDRLFGLWHFCTTTNQSVPIC
[}	FRDLGQAHVPGLAVGMGLVRSVGALAVVAAIFGLEFLMVSQLC
i		1	İ	EDKHSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGF
1	ļ		<u> </u>	TLMFWCEFTASFLLFLNAISGLHINSITHPWE
440	1179	2	540	QILPNLYLGSARDSANLESLAKLGIRYILNVTPNLPNFFEKNG
			1	DFHYKQIPISDHWSQNLSRFFPEAIEFIDEALSQNCGVLVHCL
	[AGVSRSVTVTVAYLMOKLHLSLNDAYDLVKRKKSNISPNFNFM
1			1	GQLLDFERSLRLEERHSQEQGSGGQASAASNPPSFFTTPTSDG
1)	1	AFELAPT
441	1180	940	463	RKSLHENKLKRLQEKVEVLEAKKEELETENQVLNRQNVPFEDY
771	1100	1 2 40	103	TRLQKRLKDIQRRHNEFRSLILVPNMPPTASINPVSFOSSAMG
			Į	SKHGTTISSSYAGGTTSKGTLSTSQKTRRTGNNTKKTTRGTWI
	l			FRRMMFLENRQIKRGEVGDSVKLDILTCGI
442	1181	1	986	GRPGAGASELFPSVTTDLSVSKQNACLTCVDFVTVHVCMGFWG
442	1101	+	900	IGPGALSTSCIPYPLSHGPGSVKAEMLHMYSQKDPLILCVRLA
	1		j	
	ł			VLLAVTLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILL
	1	ļ		VLVNVLVICVPTIRDIFGVIGSTSAPSLIFILPSIFYLRIVPS
-				EVEPFLSWPKIQALCFGVLGVLFMAVSLGFMFANWATGQSRMS
1	[j	1	GH*SGPAGPGPCAHAHGGVRAAP*GPSCPTCGGGWFP*TWLSE
		i		AGDSRGCRLAHFPPPQGCQAWIMALIPTPTPWEEEEEEEEE
	L	<u> </u>		EEEEEEEEARSWWSLCPAQSSLPPPG
443	1182	460	27	INELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSK
	i	İ	1	KTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPV
	1			LQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTEN
				DSRYNNMYVDSIKQY
444	1183	1682	230	DDPIKTSWTPPRYVLSMSEERHERVRKKYHILVEGDGIPPPIK
		1	:	SFKEMKFPAAILRGLKKKGIHHPTPIQIQGIPTILSGRDMIGI
1	1	1	ł	AFTGSGKTLVFTLPVIMFCLEQEKRLPFSKREGPYGLIICPSR
	1	,		ELARQTHGILEYYCRLLQEDSSPLLRCALCIGGMSVKEQMETI
				RHGVHMMVATPGRLMDLLQKKMVSLDICRYLALDEADRMIDMG
	1			FEGDIRTIFSYFKGQRQTLLFSATMPKKIQNFAKSALVKPVTI
				NVGRAGAASLDVIQEVEYVKEEAKMVYLLECLQKTPPPVLIFA
		1		EKKADVDAIHEYLLLKGVEAVAIHGGKDQEERTKAIEAFREGK
1				KDVLVATDVASKGLDFPAIQHVINYDMPEEIENYVHRIGRTGR
1		ļ	}	SGNTGIATTFINKACDESVLMDLKALLLEAKQKVPPVLQVLHC
1		1		GDESMLDIGGERGCAFCGGLGHRITDCPKLEAMQTKQVSNIGR
				KDYLAHSSMDF
445	1184	1	375	IETTQPSEDTNANSQDNSMQPETSSQQQLLSPTLSDRGGSRQD
		1		AADAGKPQRKFGQWRLPSAPKPISHSVSSVNLRFGGRTTMKSV
	1			VCKMNPMTDAASCGSEVKKWWTRQLTVESDESGDDLLDI
446	1185	2	223	NDRFSACYFTLKLKEAAVRQREALKKLTKNIATDSYISVNLRD
1	1			VYARSIMEMLRLKGRERASTRSSGGDDFWF
1	1		1	· · · · · · · · · · · · · · · · · · ·

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T = Threonine, $V = Valine$, $W = Tryptophan$, $Y = Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	t I	acid	acid	\=possible nucleotide insertion)
İ		residue	residue	
ļ	1	of amino	of amino	
1		acid	acid	'
L	1106	sequence	sequence	FTVFILGITIRPLVEFLDVKRSNKKQQAVSEEIYCRLFDHVKT
447	1186	2	1031	
				GIEDVCGHWGHNFWRDKFKKFDDKYLRKLLLIRENQPKSSIVSL
				YKKLEIKHAIEMAETGMISTVPTFASLNDCREEKIRKVTSSET
				DEIRELLSRNLYQIRQRTLSYNRHSLTADTSERQAKEILIRRR
				HSLRESIRKDSSLNREHRASTSTSRYLSLPKNTKLPEKLQKRR
		[TISIADGNSSDSDADAGTTVLNLQPRARRFLPEQFSKKSPQSY
	1	İ		KMEWKNEVDVDSGRDMPSTPPTPHSREKGTQTSGLLQQPLLSK
			1	DQSGSEREDSLTEGIPPKPPPRLVWRASEPGSRKARFGSEKP
448	1187	3	444	HEEASGLSVWMGKQMEPLHAVPPAAITLILSLLVAVFTECTSN
	ļ	<u> </u>]	VATTTLFLPIFASMSRSIGLNPLYIMLPCTLSASFAFMLPVAT
1				PPNAIVFTYGHLKVADMVKTGVIMNIIGVFCVFLAVNTWGRAI
				FDLDHFPDWANVTHIET
449	1188	3	125	HELENNWLQHEKAPTEEGKKELLALSNANPSLLERHCAYL
450	1189	1	188	GNIIYMYMQPGARSSQDQGKFLTLFYNIVTPLLNPLIYTLRNR
				EVKGALGRLLLGKRELGKE
451	1190	10	1879	PLEQRSNCRVDPRVRTHTMASDTSSLVQSHTYKKREPADVPYQ
				TGQLHPAIRVADLLQHITQMKCAEGYGFKEEYESFFEGQSAPW
	١,			DSAKKDENRMKNRYGNIIAYDHSRVRLQTIEGDTNSDYINGNY
				IDGYHRPNHYIATQGPMQETIYDFWRMVWHENTASIIMVTNLV
İ	1			EVGRVKCCKYWPDDTEIYKDIKVTLIETELLAEYVIRTFAVEK
	1	1		RGVHEIREIRQFHFTGWPDHGVPYHATGLLGFVRQVKSKSPPS
		ļ		AGPLVVHCSAGAGRTGCFIVIDIMLDMAEREGVVDIYNCVREL
İ		ſ	1	RSRRVNMVQTEEQYVFIHDAILEACLCGDTSVPASQVRSLYYD
				MNKLDPQTNSSQIKEEFRTLNMVTPTLRVEDCSIALLPRNHEK
	l		1	NRCMDILPPDRCLPFLITIDGESSNYINAALMDSYKQPSAFIV
1				TQHPLPNTVKDFWRLVLDYHCTSVVMLNDVDPAQLCPQYWPEN
			ŀ	GVHRHGPIQVEFVSADLEEDIISRIFRIYNAARPQDGYRMVQQ
				FQFLGWPMYRDTPVSKRSFLKLIRQVDKWQEEYNGGEGRTVVH
			1	CLNGGGRSGTFCAISIVCEMLRHQRTVDVFHAVKTLRNNKPNM
		1		VDLLDQYKFCYEVALEYLNSG
452	1191	603	342	PLTYNKKYTYPWWGDALGWLLALSSMVCIPAWSLYRLGTLKGP
				FRERIRQLMCPAEDLPQRNPAGPSAPATPRTSLLRLTELESHC
453	1192	120	449	TLSESGALFSLGPPPLSLKSSSAPRPYSTLRDCLEHFAELFDL
				GFPNPLAERIIFETHQIHFANCSLGQPTFSDPPEDVLLAMIIA
				PICLIPFLITLVVWRSKDSEAQA
454	1193	1838	1066	CEEREQEKDDVDVALLPTIVEKVILPKLTVIAENMWDPFSTTQ
				TSRMVGITLKLINGYPSVVNAENKNTQVYLKALLLRMRRTLDD
				DVFMPLYPKNVLENKNSGPYLFFQRQFWSSVKLLGNFLQWYGI
1				FSNKTLQELSIDGLLNRYILMAFQNSEYGDDSIKKAQNVINCF
1				PKQWFMNLKGERTISQLENFCRYLVHLADTIYRNSIGCSDVEK
			<u></u>	RNARENIKQIVKLLASVRALDHAMSVASDHNVKEFKSLIEGK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1361	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
				FGPYVWGRYDLLFMPPSFPFGGMENPCLTFVTPCLLAGDRSLA DVIIHEISHSWFGNLVTNANWGEFWLNEGFTMYAQRRISTILF GAAYTCLEAATGRALLRQHMDITGEENPLNKLRVKIEPGVDPD DTYNETPYEKGFCFVSYLAHLVGDQDQFDSFLKAYVHEFKFRS ILADDFLDFYLEYFPELKKKRVDIIPGFEFDRWLNTPGWPPYL PDLSPGDSLMKPAEELAQLWAAEELDMKAIEAVAISPWKTYQL VYFLDKILQKSPLPPGNVKKLGDTYPSISNARNAELRLRWGQI VLKNDHQEDFWKVKEFLHNQGKQKYTLPLYHAMMGGSEVAQTL AKETFASTASQLHSNVVNYVQQIVAPKGS
456	1195	1	889	CASGSSGWRPVLWAGAFTMASAELDYTIEIPDQPCWSQKNSPS PGGKEAETRQPVVILLGWGGCKDKNLAKYSAIYHKRGCIVIRY TAPWHMVFFSESLGIPSLRVLAQKLLELLFDYEIEKEPLLFHV FSNGGVMLYRYVLELLQTRRFCRLRVVGTIFDSAPGDSNLVGA LRALAAILERRAAMLRLLLLVAFALVVVLFHVLLAPITALFHT HFYDRLQDAGSRWPELYLYSRADEVVLARDIERMVEARLARRV LARSVDFVSSAHVSHLRDYPTYYTSLCVDFMR\NWVRC
457	1196	2	295	PRVRDRLPSTGVRDRKGDKPWKESGGSVEAPRMGFTHPPGHLS GCQSSLASGETGTGSADPPGGPRPGLTRRAPVKDTPGRAPAAD AAPAGPSSCLG
458	1197	1299	682	QGRTSCIGLYTYQRRICKYRDQYNWFFLARPTTFAIIENLKYF LLKKDPSQPFYLGHTIKSGDLEYVGMEGGIVLSVESMKRLNSL LNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGK DVFNTKSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQM HVMMYGVYRLRAFG\HIFNDALVFLPPNGSDND
459	1198	779	61	HEGKPTRGRGRGGSLSTRGRGSEVPDSAHLAPTPLFSESGCCG LRSRFLTDCKMEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVS GFLLFRSLPRHTFGLVQSKLFPFYFHISMGCAFINLCILASQH AWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQT VEKERGLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHG LSSLCNLGCVLSNGLCLA\ALPWK
460	1199	517	815	KQLDKQLRADPSGSLPPLPPSPPPPLEAGGRPPEVP/PRGPSA VPSFPSVSGDWGGPVEAG/EGGQQGRGRARARPCSLPPLLPPS PVCRLSGSRAPLGCDG
461	1200	1	583	RNQLSSQKSVPWVPILKSLPLWAIVVAHFSYNWTFYTLLTLLP TYMKEILRFNVQENGFLSSLPYLGSWLCMILSGQAADNLRAKW NFSTLCVRRIFSLIGMIGPAVFLVAAGFIGCDYSLAVAFLTIS TTLGGFCSSGFSINHLDIAPSYAGILLGITNTFATIPGMVGPV IAKSLTPDMGISLHRPGWSAVA
462	1201	25	383	GPSGTTHASAHSGHPGSPRGSLSRHPSSQLAGPGVEGGEGTQK PRDYIILAILSCFCPMWPVNIVAFAYAVMSRNSLQQGDVDGAQ RLGRVAKLLSIVALVGGVLIIIASCVINLGVYK
463	1202	573	372	SLFLSFPPLSFKMTLNDAMRNKARLSITGSTGENGRVMTPEFP KAVHAVPYVSPGMGMNVSVTDLS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]	to first	to first	
1	Į.	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid residue	acid residue	\=possible nucleotide insertion)
		of amino	of amino	
ļ		acid	acid	·
		sequence	sequence	·
464	1203	2018	491	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV
404	1203	1 2020		VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSOSASSLEVA
	ļ		ł	GPGREPLELEVAVEALARLOQGVSATVAHLLDLAGSAGATGSW
	1			RSPSEPQEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS
	[[DRALHAKLSRQLQKMEDVHQTLVAHGQALDAGRGGSGATLEDL
		ł		DRLVACSRAVPEDAKOLASFLHGNASLLFRRTKATAPGPEGGG
	1]		TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME
]			DYDYVHLOGKEEFEKTOKELLEKGSITROGKSQLELQQLKQFE
[{		RLEQEVSRPIDHDLANWTPAQPLAPGRTGGLGPSDRQLLLFYL
			ļ	EQCEANLTTLTNAVDAFFTAVATNQPPKIFVAHSKFVILSAHK
		1		LVFIGDTLSROAKAADVRSOVTHYSNLLCDLLRGIVATTKAAA
ļ		1]	LOYPSPSAAQDMVERVKELGHSTQQFRRVLGQLAAA
455	1204	299	189	EMEEPOKSYVNTMDLERDEPLKSTGPOISVSEFSCHCCYDILV
465	1204	299	189	NPTTLNCGHSFCRHCLALWWASSKKTECPECREKWEGFPKVSI
				- · · · · · · · · · · · · · · ·
	Ì			LLRDAIEKLFPDAIRLRFEDIQQNNDIVQSLAAFQKYGNDQIP
	ŀ			LAPNTGRANQQMGGGFFSGVLTALTGVAVVLLVYHWSSRESEH
	1	[{	DLLVHKAVAKWTAEEVVLWLEQLGPWASLYRERFLSERVNGRL
		1		LLTLTEEEFSKTPYTIENSSHRRAILMELERVKALGVKPPQNL
Į .	· ·		ļ	WEYKAVNPGRSLFLLYALKSSPRLSLLYLYLFDYTDTFLPFIH
1		1]	TICPLQEDSSGEDIVTKLLDLKEPTWKQWREFLVKYSFLPYQL
1	1]	IAEFAWDWLEVHYWTSRFLIINAMLLSVLELFSFWRIWSRSEL K*VGFRFLRLGVAALGSVEVAGLRGVVKGERPLLYGHGAGARF
1				
155	12005	 	343	PHSVLLLPVAKPLPLPLPRGLC
466	1205	2	242	EKARMIYEDYISILSPKEVSLDSRVREVINRNLLDPNPHMYED
		<u> </u>		AQLQIYTLMHRDSFPRFLNSQIYKSFVESTAGSSSES
467	1206	2	619	LYYSQDEESKIMISDFGLSKMEGKGDVMSTACGTPGYVAPEVL
			1	AQKPYSKAVDCWSIGVIAYILLCGYPPFYDENDSKLFEQILKA
1				EYEFDSPYWDDISDSAKDFIRNLMEKDPNKRYTCEQAARHPWI
1	1			AGDTALNKNIHESVSAQIRKNFAKSKWRQAFNATAVVRHMRKL
		<u> </u>		HLGSSLDSSNASVSSSLSLASQKDCASGTFHAL
468	1207	1	352	RTRGGAVSFEDFIKGLSILLRGTVQEKLNWAFNLYDINKDGYI
]				TKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKN
				KDGVVTIDEFIESCQKDENIMRSMQLFENVI
469	1208	3	1015	PRSPEHHTPAWHEGRSLGPIMASMADRNMKLFSGRVVPAQGEE
1				TFENWLTQVNGVLPDWNMSEEEKLKRLMKTLRGPAREVMRVLQ
				ATNPNLSVADFLRAMKLVFGESESSVTAHGKFFNTLQAQGEKA
		ļ		SLYVIRLEVQLQNAIQAGIIAEKDANRTRLQQLLLGGELSRDL
	1]		RLRLKDFLRMYANEQERLPNFLELIKMVREEEDWDDAFIKRKR
	1	1		PKRSESMVERAVSPVAFQGSPPIVIGSADCNVIEIDDTLDDSD
		1		EDVILVESQDPPLPSWGAPPLRDRARPQDEVLVIDSPHNSRAQ
				FPSTSGGSGYKNNGPGEMRRARKRKHTIRCSYCGEE
470	1209	1543	1351	SVACTVPLRSMSDPDQDFDKEPDSDSTKHSTPSNSSNPSGPPS
				PNSPHRSQLPLEGLEQPACDT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
471	1210	3	952	YSAVEFAERGSGSSGDELREDDEPVKKRGRKGRGRGPPSSSD SEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRVRPEEKQQ AKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKF ALKVDSPDVKRCLNALEELGTLQVTSQILQKNTDVVATLKKIR RYKANKDVMEKAAEVYTRLKSRVLGPKIEAVQKVNKAGMEKEK AEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGES AEDKEHEEGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQE RERARGDSEALDEES
472	1211	5204	2901	LAELSSLSVLRLSHNSISHIAEGAFKGLRSLRVLDLDHNEISG TIEDTSGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLN LGGNAIRSVQFDAFVKMKNLKELHISSDSFLCDCQLKWLPPWL IGRMLQAFVTATCAHPESLKGQSIFSVPPESFVCDDFLKPQII TQPETTMAMVGKDIRFTCSAASSSSSPMTFAWKKDNEVLTNAD MENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITNHFG STYSHKARLTVNVLPSFTKTPHDITIRTTTMARLECAATGHPN PQIAWQKDGGTDFPAARERRMHVMPDDDVFFITDVKIDDAGVY SCTAQNSAGSISANATLTVLETPSLVVPLEDRVVSVGETVALQ CKATGNPPPRITWFKGDRPLSLTERHHLTPDNQLLVVQNVVAE DAGRYTCEMSNTLGTERAHSQLSVLPAAGCRKDGTTVGIFTIA VVSSIVLTSLVWVCIIYQTRKKSEEYSVTNTDETVVPPDVPSY LSSQGTLSDRQETVVRTEGGPQANGHIESNGVCPRDASHFPEP DTHSVACRQPKLCAGSAYHKKPWKAMEKAEGTPGPHKMEHGGR VVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPGGSD QEHSPHHQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKPMAS LDGKGDSSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLV SNGHLPKACDASPESTPLTGQLPGKQRVPLLLAPKS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
473	1212	2	2466	AAAGAARRVSVRCGRSGPGPGRGAAGLSPADIALASEQGASCS VRAPERKLRMKLLWQAKMSSIQDWGEEVEEGAVYHVTLKRVQI QQAANKGARWLGVEGDQLPPGHTVSQYETCKIRTIKAGTLEKL VENLLTAFGDNDFTYISIFLSTYRGFASTKEVLELLLDRYGNL TSPNCEEDGSQSSSESKMVIRNAIASILRAWLDQCAEDFREPP HFPCLQKLLDYLTRMMPGSDPERRAQNLLEQFQKQEVETDNGL PNTISFSLEEEELEGGESAEFTCFSEDLVAEQLTYMDAQLFK KVVPHHCLGCIWSRRDKKENKHLAPTIRATISQFNTLTKCVVS TILGGKELKTQQRAKIIEKWINIAHECRLLKNFSSLRAIVSAL QSNSIYRLKKTWAAVPRDRMLMFEELSDIFSDHNNHLTSRELL MKEGTSKFANLDSSVKENQKRTQRRLQLQKDMGVMQGTVPYLG TFLTDLTMLDTALQDYIEGGLINFEKRRREFEVIAQIKLLQSA CNSYCMTPDQKFIQWFQRQQLLTEEESYALSCEIEAAADASTT SPKPWKSMVKRLNLLFLGADMITSPTPTKEQPKSTASGSSGES MDSVSVSSCESNHSEAEEGYITPMDTPDEPQKKLSESSSYCSS IHSMDTNFLQGMSSLINPLSSPPSCNNNPKIHKRSVSVTSITS TVLPPVYNQQNEDTCIIRISVEDNNGNMYKSIMLTSQDKTPAV IQRAMLKHNLDSDPAEEYELVQVISEDKELVIPDSANVFYAMN SQVNFDFILRKKNSMEEQVKLRSRTSLTLPRTAKRGCWSNRHS KITL
474	1213	1	867	AREKMDSCIEAFGTTKQKRALNTRRMNRVGNESLNRAVAKAAE TIIDTKGVTALVSDAIHNDLQDDSLYLPPCYDDAAKPEDVYKF EDLLSPAEYEALQSPSEAFRNVTSEEILKMIEENSHCTFVIEA LKSLPSDVESRDRQARCIWFLDTLIKFRAHRVVKRKSALGPGV PHIINTKLLKHFTCLTYNNGRLRNLISDSMKAKITAYVIILAL HIHDFQIDLTVLQRDLKLSEKRMMEIAKAMRLKISKRRVSVAA GSEEDHKLGTLSLPLPPAQTSDRLAKRRKIT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
475	1214		2621	LSLFGSRALGRSGARAMAKAKKVGARRKASGAPAGARGGPAKA NSNPFEVKVNRQKFQILGRKTRHDVGLPGVSRARALRKRTQTL LKEYKERDKSNVFRDKRFGEYNSNMSPEEKMMKRFALEQQRHH EKKSIYNLNEDEELTHYGQSLADIEKHNDIVDSDSDAEDRGTL SGELTAAHFGGGGGLLHKKTQQEGEEREKPKSRKELIEELIAK SKQEKRERQAQREDALELTEKLDQDWKEIQTLLSHKTPKSENR DKKEKPKPDAYDMMVRELGFEMKAQPSNRMKTEAELAKEEQEH LRKLEAERLRRMLGKDEDENVKKPKHMSADDLNDGFVLDKDDR RLLSYKDGKMNVEEDVQEEQSKEASDPESNEEEGDSSGGEDTE ESDSPDSHLDLESNVESEEENEKPAKEQRQTPGKGLISGKERA GKATRDELPYTFAAPESYEELRSLLLGRSMEEQLLVVERIQKC NHPSLAEGNKAKLEKLFGFLLEYVGDLATDDPPDLTVIDKLVV HLYHLCQMFPESASDAIKFVLRDAMHEMEEMIETKGRAALPGL DVLIYLKITGLLFPTSDFWHPVVTPALVCLSQLLTKCPILSLQ DVVKGLFVCCLFLEYVALSQRFIPELINFLLGILYIATPNKAS QGSTLVHPFRALGKNSELLVVSAREDVATWQQSSLSLRWASRL RAPTSTEANHIRLSCLAVGLALLKRCVLMYGSLPSFHAIMGPL RALLTDHLADCSHPQELQELCQSTLTEMESQKQLCRPLTCEKS KPVPLKLFTPRLVKVLEFGRKQGSSKEEQERKRLIHKHKREFK GAVREIRKDNQFLARMQLSEIMERDAERKRKVKQLFNSLATQE GEWKALKRKKFKK
476	1215	3	961	LTKQEDCCGSIGTAWGQSKCHKCPQLQYTGVQKPGPVRGEVGA DCPQGYKRLNSTHCQDINECAMPGVCRHGDCLNNPGSYRCVCP PGHSLGPSRTQCIADKPEEKSLCFRLVSPEHQCQHPLTTRLTR QLCCCSVGKAWGARCQRCPTDGTAAFKEICPAGKGYHILTSHQ TLTIQGESDFSLFLHPDGPPKPQQLPESPSQAPPPEDTEEERG VTTDSPVSEERSVQQSHPTATTTPARPYPELISRPSPPTMRWF LPDLPPSRSAVEIAPTQVTETDECRLNQNICGHGECVPGPPDY SCHCNPGYRSHPQHRYCV

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, $Q=Glutamine$, $R=Arginine$, $S=Serine$,
		to first	to first	T = Threonine, $V = Valine$, $W = Tryptophan$, $Y = Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	•
		sequence	sequence	
477	1216	3652	1207	MAGGHCGSFPAAAAGSGEIVQLNVGGTRFSTSRQTLMWIPDSF
				FSSLLSGRISTLRDETGAIFIDRDPAAFAPILNFLRTKELDLR
	ŀ	l .	ł	GVSINVLRHEAEFYGITPLVRRLLLCEELERSSCGSVLFHGYL
	1			PPPGIPSRKINNTVRSADSRNGLNSTEGEARGNGTQPVLSGTG
		[EETVRLGFPVDPRKVLIVAGHHNWIVAAYAHFAVWYRIKESSG
	1	ĺ	1	WQQVFTSPYLDWTIERVALNAKVVGGPHGDKDKMVAVASESSI
	ļ	}		ILWSVQDGGSGSEIGVFSLGVPVDALFFIGNQLVATSHTGKVG
				VWNAVTQHWQVQDVVPITSYDTAGSFLLLGCNNGSIYYIDMQK
				FPLRMKDNDLLVTELYHDPSNDAITALSVYLTPKTSVSGNWIE
				IAYGTSSGAVRVIVQHPETVGSGPQLFQTFTVHRSPVTKIMLS
				EKHLVSVCADNNHVRTWTVTRFRGMISTQPGSTPLASFKILSL
	Ì		1	EETESHGSYSSGNDIGPFGERDDQQVFIQKVVPITNKLFVRLS
				STGKRICEIQAVDCTTISSFTGRECEGSSRMGSRPRRYLFTGH
		İ	ļ	TNGSIQMWDLTTAMDMVNKSEDKDVGGPTEEELLKLLDQCDLS
		ļ		TSRCATPNISPATSVVQHSHLRESNSSLQLQHHDTTHEAATYG
				SMRPYRESPLLARARRTESFHSYRDFQTINLNRNVERAVPENG
İ		ļ	1	NLGPIQAEVKGATGECNISERKSPGVEIKSLRELDSGLEVHKI
		1		AEGFSESKKRSSEDENENKIEFRKKGGFEGGGFLGRKKVPYLA
				SSPSTSDGGTDSPGTASPSPTKTTPSPRHKKSDSSGQEYSL
478	1217	1	1379	RRPTRPILTDELFKRTIQLPHLKTLILNGNKLETLSLVSCFAN
		ļ		NTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLSDSVF
			i	RCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDL
				PGCSHFSRLSVLNIEMNFILSPSLDFVQSCQEVKTLNAGRNPF
			f	RCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLNLRGTRLKDV
				HLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRML
	ļ		ļ	GOCTOTWHRVRKTTQEOLKRNVRFHAFISYSEHDSLWVKNELI
	Ì	1	1	PNLEKEDGSILICLYESYFDPGKSISENIVSFIEKSYKSIFVL
	į	1		SPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIP
1			}	TRYHKLKALLEKKAYLEWPKDRRKCGLFWANLRAAINVNVLAT
			İ	REMYELOTFTELNEESRGSTISLMRTDCL
479	1218	1	1099	PTRPPTRPPTRPLLTPSWTSTGRMWSHLNRLLFWSIFSSVTCR
1		-		KAVLDCEAMKTNEFPSPCLDSKTKVVMKGQNVSMFCSHKNKSL
•]		QITYSLFRRKTHLGTQDGKGEPAIFNLSITEAHESGPYKCKAQ
				VTSCSKYSRDFSFTIVDPVTSPVLNIMVIQTETDRHITLHCLS
			1	VNGSLPINYTFFENHVAISPAISKYDREPAEFNLTKKNPGEEE
				EYRCEAKNRLPNYATYSHPVTMPSTGGDSCPFCLKLLLPGLLL
				LLVVIILILAFWVLPKYKTRKAMRNNVPRDRGDTAMEVGIYAN
	1			ILEKQAKEESVPEVGSRPCVSTAQDEAKHSQELQYATPVFQEV
				APREQEACDSYKSGYVYSELNF
400	1212	 	293	FFFFEERRTGSHSVGHPRMEYSGVSMAHCSLNLLGSSNSPSSA
480	1219	1	293	
				SQDARTTGACQHAQLIGFFFF\VETASPQVTHAG/LKHLVSRN
L	<u> </u>	l	<u> </u>	PSAVTSQSARIKT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
481	1220	1	727	NREGARKIQNKWLRPSPRSHRTPESVSPERYSYGTSSSSKRTE GSCRRRRQSSSSANSQQGQWETGSPPTKRQRRSRGRPSGGAKR RRRGAPAAPQQQSEPARPSSEGKVTCDIRLRVRAEYCEHGPAL EQGVASRRPQALARQLDVFGQATAVLRSRDLGSVVCDIKFSEL SYLDAFWGDYLSGALLQALRGVFLTEALREAVGREAVRLLVSV DEADYEAGRRRLLLMEEEGGRRPTEAS
482	1221	1	1321	APNTAELRICRVNKNCGSVRGGDEIFLLCDKVQKDDIEVRFVL NDWEAKGIFSQADVHRQVAIVFKTPPYCKAITEPVTVKMQLRR PSDQEVSESMDFRYLPDEKDTYGNKAKKQKTTLLFQKLCQDHV ETGFRHVDQDGLELLTSGDPPTLASQSAGITVNFPERPRPGLL GSIGEGRYFKKEPNLFSHDAVVREMPTGVSSQAESYYPSPGPI SSGLSHHASMAPLPSSSWSSVAHPTPRSGNTNPLSSFSTRTLP SNSQGIPPFLRIPVGNDLNASNACIYNNADDIVGMEASSMPSA DLYGISDPNMLSNCSVNMMTTSSDSMGETDNPRLLSMNLENPS CNSVLDPRDLRQLHQMSSSSMSAGANSNTTVFVSQSDAFEGSD FSCADNSMINESGPSNSTNPNSHGFVQDSQYSGIGSMQNEQLS DSFPYEFFQV
483	1222	1	1311	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKIFMFQLLRG LAYCHHRKILHRDLKPQNLLINERGELKLADFGLARAKSVPTK TYSNEVVTLWYRPPDVLLGSTEYSTPIDMWGVGCIHYEMATGR PLFPGSTVKEELHKINRLLGTPTEETWPGVTAFSEFRTYSFPC YLPQPLINHAPRLDTDGIHLLSSLLLYESKSRMSAEAALSHSY FRSLGERVHQLEDTASIFSLKEIQLQKDPGYRGLAFQQPGRGK NRRQSIF
484	1223	807	356	CTPHGSSSSWKIPLWPRHMSPLHSCLPVGTSTSSGPLAVPRDC FHLCCLWGQLLLISCPLACGQGCRVAGGQQHVPGQALGTLSPL VSLLTWAGPSLDWPHPGSLVTPRCPILPAVPVLVKGLGGWPPT RPSRAAPVSGPWDQLPYFPGL
485	1224	1199	370	LISPVWGNIQRSRSVPLFPSGLVLGGIWARGPLLALLASFNII SVLNAECYLKQILHPTSHFTVSETPPLSGNDTDSLSCDSGSSA TSTPCVSRLVTGHHLWASKNGRHVLGLIEDYEALLKQISQGQR LLAEMDIQTQEAPSSTSQELGTKGPHPAPLSKFVSSVSTAKLT LEEAYRRLKLLWRVSLPEDGQCPLHCEQIGEMKAEVTKLHKKL FEQEKKLQNTMKLLQLSKRQEKVIFDQLVVTHKILRKARGNLE LRPGGAHPGTCSPSRPGS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
ID	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
1	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1-possible nacional inscriony
	ľ	of amino	of amino	·
	ľ	acid	acid	·
	ľ	sequence	sequence	
486	1225	2469	1660	LGLFCILPIDTLCAVLERDTLSIRESRLFGAVVRWAEAECQRQ
				QLPVTFGNKQKVLGKALSLIRFPLMTIEEFAAGPAQSGILSDR
			Į	EVVNLFLHFTVNPKPRVEYIDRPRCCLRGKECCINRFQQVESR
				WGYSGTSDRIRFTVNRRISIVGFGLYGSIHGPTDYOVNIOIIE
	ļ			YEKKOTLGONDTGFSCDGTANTFRVMFKEPIEILPNVCYTACA
				TLKGPDSHYGTKGLKKVVHETPAASKTVFFFFSSPGNNGTSI
}		1	1	EDGQIPEIIFYT
487	1226	1193	372	SVWWNSEVKDWMOKKRRGLRNSRATAGDIAHYYRDYVVKKGLG
487	1226	1133	3/2	-
		ŀ		HNFVSGAVVTAVEWGTPDPSSCGAQDSSPLFQVSGFLTRNQAQ
ŀ				QPFSLWARNVVLATGTFDSPARLGIPGEALPFIHHELSALEAA
	Į		ļ	TRVGAVTPASDPVLIIGAGLSAADAVLYARHYNIPVIHAFRRA
			i	VDDPGLVFNQLPKMLYPEYHKVHQMMREQSILSPSPYEGYRSL
		ļ		PRHQLLCFKEDCQAVFQDLEGVEKVFGVSLVLVLIGSHPDLSF
				LPGAG\LTLQWILTSR
488	1227	756	1016	KLRPFIFSNQSLWLHSYEGAELEKTFIKGSWATFWVKVASCWA
				CVLLYLGLLLAPLCWPPTQKPQPLILRRRRHRIISPDNKYPPV
489	1228	1	747	QLIHLSHGYQIHWTDYYNVGTGRPEFGTRAAHKSLAGAELKTL
				KDFVTVLAKLFPGRPPVKKLLEMLQEWLASLPLDRIPYNAVLD
1	ļ]	j	LVNNKMRISGIFLTNHIKWVGCQGSRSELRGYPCSLWKLFHTL
			1	TVEASTHPDALVGTGFEDDPQAVLQTMRRYVHTFFGCKECGEH
1			ĺ	FEEMAKESMDSVKTPDQAILWLWKKHNMVNGRLAGEKPLGMGG
l				SARAEGGPGPGTARTARLPWGLSLSFAASCHPLC
490	1229	4797	2398	HGGATFINAFVTTPMCCPSRSSMLTGKYVHNHNVYTNNENCSS
1	ľ	1	ľ	PSWQAMHEPRTFAVYLNNTGYRTAFFGKYLNEYNGSYIPPGWR
		i	ļ.	EWLGLIKNSRFYNYTVCRNGIKEKHGFDYAKDYFTDLITNESI
		ļ		NYFKMSKRMYPHRPVMMVISHAEPHGPEDSAPQFSKLYPNASQ
				HITPSYNYAPNMDKHWIMQYTGPMLPIHMEFTNILQRKRLQTL
			1	MSVDDSVERLYNMLVETGELENTYIIYTADHGYHIGQFGLVKG
		1	ł	KSMPYDFDIRVPFFIRGPSVEPGSIVPQIVLNIDLAPTILDIA
1			1	GLDTPPDVDGKSVLKLLDPEKPGNRFRTNKKAKIWRDTFLVER
		l		GKFLRKKEESSKNIQQSNHLPKYERVKELCQQARYQTACEQPG
}				QKWQCIEDTSGKLRIHKCKGPSDLLTVRQSTRNLYARGFHDKD
1			1	KECSCRESGYRASRSQRKSQRQFLRNQGTPKYKPRFVHTRQTR
				SLSVEFEGEIYDINLEEEEELOVLOPRNIAKRHDEGHKGPRDL
1		l.		OASSGGNRGRMLADSSNAVGPPTTVRVTHKCFILPNDSIHCER
		1		ELYQSARAWKDHKAYIDEEIEALQDKIKNLREVRGHLKRRKPE
				ECSCSKQSYYNKEKGVKKQEKLKSHLHPFKEAAQEVDSKLQLF
				KENNRRRKKERKEKRRORKGEECSLPGLTCFTHDNNHWQTAPF
	1		1	WILGSFCACTSSINITYWCLRTVNETHIFLFCEFATGFLEYFD
1	1	i	ľ	
1	1		ľ	Ϳͺͺϻϻ·ϻϽϽϒϽͿͺ·ͲϻͲϭϗϥͲϭͿϝϦϹͿͳͺͺϦͿϽͳͺϪͶͳͺϺϜͳͺϽϾϹϽϹϒϔϽϹͶϾͺϷͺϼͺϼͺ
1.				MNTDPYQLTNTVHTVERGILNQLHVQLMELRSCQGYKQCNPRP KNLDVGNKDGGSYDLHRGQLWDGWEG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
491	1230	2480	385	HILIAQELADRVGEGRACWSLGNAYVSMGRPAQALTFAKKHLQ ISQEIGDRHGELTARMNVAQLQLVLGRLTSPAASEKPDLAGYE AQGARPKRTQRLSAETWDLLRLPLEREQNGDSHHSGDWRGPSR DSLPLPVRSRKYQEGPDAERRPREGSHSPLDSADVRVHVPRTS IPRAPSSDEECFFDLLTKFQSSRMDDQRCPLDDGQAGAAEATA APTLEDRIAQPSMTASPQTEEFFDLIASSQSRRLDDQRASVGS LPGLRITHSNAGHLRGHGEPQEPGDDFFNMLIKYQSSRIDDQR CPPPDVLPRGPTMPDEDFFSLIQRVQAKRMDEQRVDLAGGPGA GGRRPARAPAAVPAWCELRPCAHRQAHPAPTPGRRSHSHSHVL PRPLPRTGTGHAAPRPPRPRATGSGQAARGGRACFHPGLAPMA LSFLPSAPAAGRTGPSACRPRPGAVRLPHPLPQALPVLPCPAK CETLLSPSPSPKVSLSRLLGPPRTGPCSVPPELVLGWPCDRHA PPLQLRPGAGLPPSLSPHSPARGQQPQKAPQTTHGRPGCSGSP EVPPAESQGPAGASTGAGPISKAEGMAGHELRHSKTPSQEKGQ GLVLGMLTGSKSSAQSGWEVAPGSVTLTQVGGWSVEAGEASLS STLQTPHMRTPLLPPAGGDDITALSMGRGLTGHQVRDPRTGRT CWSLRWAPGA
492	1231	3	398	NSAADLAIFALWGLKPVVYLLASSFLGLGLHPISGHFVAEHYM FLKGHETYSYYGPLNWITFNVGYHVEHHDFPSIPGYNLPLVRK IAPEYYDHLPQHHSWVKVLWDFVFEDSLGPYARVKRVYRLAKD GL
493	1232	1	214	QESGFSCKGPGQNVAVTRAHPDSQGRRRRPERGARGGQVFYNS EYGELSEPSEEDHCSPSARVTFFTDNSY
494	1233	3	443	VIVHARPIRTRASKYYIPEAVYGLPAYPAYAGGGGFVLSGATL HRLAGACAQVELFPIDDVFLGMCLQRLRLTPEPHPAFRTFGIP QPSAAPHLSTFDPCFYRELVVVHGLSAADIWLMWRLLHGPHGP ACAHPQPVAAGPFQWDS
495	1234	1	897	MASAACSMDPIDSFELLDLLFDRQDGILRHVELGEGWGHVKDQ VLPNPDSDDFLSSILGSGDSLPSSPLWSPEGSDSGISEDLPSD PQDTPPRSGPATSPAGCHPAQPGKGPCLSYHPGNSCSTTTPGP VIQQQHHLGASYLLRPGAGHCQELVLTEDEKKLLAKEGITLPT QLPLTKYEERVLKKIRRKIRNKQSAQESRKKKKEYIDGLETRS CCCPLPSSSSPPSALLAPTKPRALGTLRLYECSPELCTTMLPP AWLLMLCQAPRPQDPDPRLTQPEKSLQEAPGQTGASRTPRT

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
i		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
}		acid	acid	\=possible nucleotide insertion)
1		residue	residue	
		of amino	of amino	
		acid	acid	
		sequence	sequence	
496	1235	4235	940	ARGRRSRPVWAASWGGRGRPAARRRPRGLAATMGFELDRFDGD
, ,			Į.	VDPDLKCALCHKVLEDPLTTPCGHVFCAGCVLPWVVQEGSCPA
				RCRGRLSAKELNHVLPLKRLILKLDIKCAYATRGCGRVVKLQQ
				LPEHLERCDFAPARCRHAGCGQVLLRRDVEAHMRDACDARPVG
				RCQEGCGLPLTHGEQRAGGHCCARALRAHNGALQARLGALHKA
1				LKKEALRAGKREKSLVAQLAAAQLELQMTALRYQKKFTEYSAR
		1		LDSLSRCVAAPPGGKGEETKSLTLVLHRDSGSLGFNIIGGRPS
		1		VDNHDGSSSEGIFVSKIVDSGPAAKEGGLQIHDRIIEVNGRDL
		ĺ	Ì	SRATHDQAVEAFKTAKEPIVVQVLRRTPRTKMFTPPSESQLVD
1		 		TGTQTDITFEHIMALTKMSSPSPPVLDPYLLPEEHPSAHEYYD
				PNDYIGDIHQEMDREELELEEVDLYRMNSQDKLGLTVCYRTDD
				EDDIGIYISEIDPNSIAAKDGRIREGDRIIQINGIEVQNREEA
			ļ	VALLTSEENKNFSLLIARAELQLDEGWMDDDRNDFLDDLHMDM
		<u> </u>		LEEQHHQAMQFTASVLQQKKHDEDGGTTDTATILSNQHEKDSG
'				VGRTDESTRNDESSEQENNGDDATASSNPLAGQRKLTCSQDTL
			ļ	GSGDLPFSNKSFISPECTGAAYLGIPVDECERFRELLELKCQV
	}	ł		KSATPYGLYYPSGPLDAGKSDPESVDKELELLNEELRSIELEC
'				LSIVRAHKMQQLKEQYRESWMLHNSGFRNYNTSIDVRRHELSD
		1		ITELPEKSDKDSSSAYNTGESCRSTPLTLEISPDNSLRRAAEG
1		İ		ISCPSSEGAVGTTEAYGPASKNLLSITEDPEVGTPTYSPSLKE
		l		LDPNQPLESKERRASDGSRSPTPSQKLGSAYLPSYHHSPYKHA
		ļ		HIPAHAQHYQSYMQLIQQKSAVEYAQSQMSLVSMCKDLSSPTP
			l	SEPRMEWKVKIRSDGTRYITKRPVRDRLLRERALKIREERSGM
ł .	ļ	l	1	TTDDDAVSEMKMGRYWSKEERKOHLVKAKEORRRREFMMOSRL
		İ	1	DCLKEQQAADDRKEMNILELSHKKMMKKRNKKIFDNWMTIQEL
				LTHGTKSPDGTRVYNSFLSVTTV
497	1236	2	157	FFFLVEMGFCHVGQGGLTLIGSSNLPASASKSAGITGVSHCAR
				PDFKSCVE
498	1237	1	211	LAGRKVLLFVSGYVVGWGPITWLLMSEVLPLRARGVASGLCVL
	:	-		ASWLTAFVLTKSFLPGGVSVOPOAPGP
499	1238	2	345	FWAPGPPGVGAAVGDASTRSLRESCPSPSPGRLRRTTAPWSSQ
",	1230	"	3=3	ARAAAPAPSSSCRGPDGASSPRDLPWRPWKILRRTPLSGDVEL
				SQVHPDQRILRRFILSRTCGNTIPGMAE
500	1239	 	523	MRRFLSKVYSFPMRKLILFLVFPVVRQTPTQHFKNQFPALHWE
500	1239	1	323	
	1			HELGLAFTKNRMNYTNKFLLIPESGDYFIYSQVTFRGMTSECS
				EIRQAGRPNKPDSITVVITKVTDSYPEPTQLLMGTKSVCEVGS
				NWFQPIYLGAMFSLQEGDKLMVNVSDISLVDYTKEDKTFFGAF
L	L	L	L	LL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
,		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
501	1240	2	1277	FVWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHY
		1	į	AGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKN
				KELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWL
				TLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSK
				WNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINM
				HPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPL
				YFQWYIFYFVIQRKKWVDLAWMITFYVRFFLTYVPLLGLKAFL
				GLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQAT
,				CNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSL
				CAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ
502	1241	999	540	QCGGIPYNTTQFLMNDRDPEEPNLDVPHGISHPGSSGESEAGD
		ĺ		SDGRGRAHGEFQRKDFSETYERFHTESLQGRSKQELVRDYLEL
				EKRLSQAEEETRRLQQLQACTGQQSCRQVEELAAEVQRLRTEN
503	1242	1440	075	QRLRQENQMWNREGCRCDEEPGT
503	1242	1448	875	SPERSSLSVGREKAMEVPPPAPRSFLCRALCLFPRVFAAEAVT
		}		ADSEVLEERQKRLPYVPEPYYPESGWDRLRELFGKD\VTGSLF
· !		1		RINVGLRGLVAGGIIGALLGTPVGGLLMAFQKYSGETVQERKQ KDRKALHELKLEEWKGRLQVTEHLPEKIESSLQEDEPENDAKK
				IEALLNLPRNPSVIDKODKD
504	1243	149	1293	RSLGLAVTEMVPWVRTMGQKLKQRLRLDVGREICRQYPLFCFL
301	2213	111	1233	LLCLSAASLLLNRYIHILMIFWSFVAGVVTFYCSLGPDSLLPN
				IFFTIKYKPKQLGLQELFPQGHSCAVCGKVKCKRHRPSLLLEN
				YQPWLDLKISSKVDASLSEVLELVLENFVYPWYRDVTDDESFV
				DELRITLRFFASVLIRRIHKVDIPSIITKKLLKAAMKHIEVIV
	i	ļ	1	KARQKVKNTEFLQQAALEEYGPELHVALRSRRDELHYLRKLTE
				LLFPYILPPKATDCRSLTLLIREILSGSVFLPSLDFLADPDTV
		ŀ		NHLLIIFIDDSPPEKATEPASPLVPFLQKFAEPRNKKPSVLKL
1				ELKQIREQQDLLFRFMNFLKQEGAVHVLHVLFDCGGI
505	1244	2	1116	QSLAEVLQQLGASSELQAVLSYIFPTYGVTPNHSAFSMHALLV
1	ŀ			NHYMKGGFYPRGVTSEIAFHTIPVIQRAGGAVLTKATVQSVLL
	!	İ		DSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNA
	1]		RCLPGVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVY
		1		YDTDMDQAMERYVSMPREEAAEHIPLLFFAFPSAKDPTWEDRF
		1		PGRSTMIMLIPTAYEWFEEWQAELKGK\RGSDYETFKNSFVEA
				SMSVVLKLFPQLEGKVESVTAGSPLTNQFYL\AAPRGACYGAD
				HDLGRLHPCVMASLRAQSPIPNLYLTGQDIFTCGLVGALQGAL
	101-		0.70	LCSSTILKRNLYSDLKNLDSRIRAQKKKN
506	1245	1759	873	RPQETRVLQVSCGRAHSLVLTDREGVFSMGNNSYGQCGRKVVE
				NEIYSESHRVHRMQDFDGQVVQVACGQDHSLFLTDKGEVYSCG
				WGADGQTGLGHYNITSSPTKLGGDLAGVNVIQVATYGDCCLAV
				SADGGLFGWGNSEYLQLASVTDSTQVNVPRCLHFSGVGKVRQA
		1		ACGGTGCAVLNGEGHVFVWGYGILGKGPNLVESAVPEMIPPTL
				FGLTEFNPEIQVSRIRCGLSHFAALTNKGELFVWGKNIRGCLG
L	L	<u> </u>	L	IGRLEDQYFPWRVTMPGEPVDVACGVDHMVTLAKSFI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 520	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) LPFREWLMIVVSLSAAAVAAAFMAKCRMVLSSRYFCSHFVMSA
				SRARIRSSFSRTSSRRAGALYSGMLAGWPFPCFCWVLSASSSL SSQVRSLRSICSRFSHADCSWVRACCSFSTFSTYACFSRNSSS SLMTLAWALLKAWSRISMCLRWSSLAVRTAANSISNFSFSFKN
508	1247	1	1083	MQAVRATASQSLSCARAPREPTQHALRAHWFPPAAAVQPSPHS GVAAAAGTWSSAFRGEHPLVSSGLLLGVREQSFRLLRSKAGTH MYLEHTSHCPHHDDDTAMDTPLPRPRPLLAVERTGQRPLWAPS LELPKPDMQPLPAGAFLEEVAEGTPAQTESEPKVLDPEEDLLC IAKTFSYLRESGWYWGSITASEARQHLQKMPEGTFLVRDSTHP SYLFTLSVKTTRGPTNVRIEYADSSFRLDSNCLSRPRILAFPD VVSLVQHYVASCTADTRSDSPDPAPTPALPMPKEDAPSDPALP APPPATAVHLKLVQPFVRRSSARSLQHLCRLVINRLVADVDCL PLPRRMADYLRQYPFQL
509	1248	2	841	FVDIFQRWKECRGKSPAQAELSYLNKAKWLEMYGVDMHVVRGR DGCEYSLGLTPTGILIFEGANKIGLFFWPKITKMDFKKSKLTL VVVEDDDQGREQEHTFVFRLDSARTCKHLWKCAVEHHAFFRLR TPGNSKSNRSDFIRLGSRFRFSGRTEYQATHGSRLRRTSTFER KPSKRYPSRRHSTFKASNPVIAAQLCSKTNPEVHNYQPQYHPN IHPSQPRWHPHSPNVRPSFQDDRSHWKASASGDDSHFDYVHDQ NQKNLGGMQSMMYRDKLMTAL
510	1249	2	763	GGIRLIQKLTWRSRQQDRENCAMKGKHKDECHNFIKVFVPRND EMVFVCGTNAFNPMCRYYRVSIFYVICFF*STFLPSLICC*S* NLSAFQ*FVLSLVQ*KNKDRILQMEF*YK*NSIAFKRAR*IDM TLAIYFSFV\LSTL*YDGEEISGLARCPFDARQTNGALFADGK LYSATVADFLASDAVIYRSMGDGSALRTIKYDSKWIKE/PHFL YAIK/Y/GNYVYFSFREIVAT**LG/KAVDS/RVARYEKQLVG PTV
511	1250	1555	629	ARALARERESESARADDVTLGVSAILAVDRGGNLGSA\DGWAY IDVEVRRPWAFVGPGCSRSSGNGSTAYGLVGSPRWLSPFHTGG AVSLPRRPRGPGPVLGVARPCLRCVLRPE\HYEPGSHYSGFAG RDASRAFVTGDCSEAGLVDDVSDLSAAEMLTLHNWLSFYEKNY VCVGRVTGRFYGEDGLPTPALTQVEAAITRGLEANKLQLQEKQ TFPPCNAEWSSARGSRLWCSQKSGGVSRDWIGVPRKLYKPGAK EPRCVCVRTTGPPSGQMPDNPPHRNRGDLDHPNLAEYTGCPPL AITCSFPL
512	1251	1100	798	YFIICRDGVLLFCPGWSQTPGAQAILLHWATQNAGMTDMSHSA QPIYLFIYLIRTRSHYVAQAGQLLDSNDSPNVASQNVGITGMS HHAWLKIVLYFCII

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID `	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	сотте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110.03	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
l		acid	acid	\=possible nucleotide insertion)
		residue	residue	possiolo mario mortion,
		of amino	of amino	
		acid .	acid	,
		sequence	sequence	
513	1252	3	1395	PAARPPSLVRLSPSPPKPRARARAPOSVEPAAPLVARGSSPPA
		1	9	RPAPAMVRPRRAPYRSGAGGPLGGRGRPPRPLVVRAVRSRSWP
1 .			1	ASPRGPQPPR\IRARSAPPMEGARVFGALGPIGPSSPGLTLGG
[ļ			LAVSEHRLSNKLLAWSGVLEWQEKRRPYSDSTAKLKRTLPCQA
			ŀ	The state of the s
)	1			YVNQGENLETDQWPQKLIMQLIPQQLLTTLGPLFRNSQLAQFH
				FTNRDCDSLKGLCRIMGNGFAGCMLFPHISPCEVRVLMLLYSS
		Í		KKKIFMGLIPYDQSGFVSAIRQVITTRKQAVGPGGVNSGPVQI
1		,		VNNKFLAWSGVMEWQEPRPEPNSRSKRWLPSHVYVNQGEILRT
	į			EQWPRKLYMQLIPQQLLTTLVPLFRNSRLVQFHFTKDLETLKS
İ				LCRIMDNGFAGCVHFSYKASCEIRVLMLLYSSEKKIFIGLIPH
	<u> </u>		<u> </u>	DQGNFVNGIRRVIANQQQVLQRNLEQEQQQRGMGG
514	1253	320	964	GRPALGREAPPQAGLSSTPPPCSETCTMGPHSILRTVHCRPTK
1			ŀ	TPPEPSAEPHPLSLLTSSNTSLAGTSLGRDLTPGGGKPPSGQT
1	1]	ļ	PRNPESPRHRLGSPRGRRWLASPTPTGSGRSGPASRGQRRLSC
ļ				AAQDPTSEGASVGAMEAGLGPPTAAPRGVVSEAAESLGGTLSW
1	ļ			GAWGRPPAGPSGLAGRRSRREALRPDRKEASVMMAAVSAIOP
515	1254	704	107	PGVPTHGWPRSRVLTRVRGSRGSGKMAAAVVLAAGLRAARRAV
- ,			1	AATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILD
		*]	KSLPADILYEDQQCLVFRDVAPQAPVHFLVIPKKPIPRISOAE
1		Į.		EEDQQ/LTYVPPLSL*LLGHLLLVAKQTAKAEGLGDGYRLVIN
			ļ	·-
516	1255	2299	924	DGKLGAQSVYHLHIHVLGGRQLQWPPG
210	1255	2299	924	VPNYLPSVSSAIGGEVPQRYVWRFCIGLHSAPRFLVAFAYWNH
	-			YLSCTSPCSCYRPLCRLNFGLNVVENLALLVLTYVSSSEDF/T
İ		İ		WVPG*GRSGEVFPEGTGLPLPHSDLPTSWCGHSLQCGSQSSFP
	ĺ		·	PAIHENAFIVFIASSLGHMLLTCILWRLTKKHTVSQE\DGLSL
				AGAPRQPRRKSRTSVLRIRVMVRWELSSNGNPGRGVLGLGLGL
i	ĺ	•		GNKLRVVGQNLGL*HCVWVVWETGE*KRWRLQMGIE*GVASRR
		1		Q*VRNSVRGLVCHNSSAPPMYMGFFSPTVFGGGVGG*LHVTFI
				LHPPEVEAAGIPLLLGPSLPQRQGREHIVVILAAPACAPFHDR
				*WEPREIRPSP*ELGLRGEPTLSYPASCRVIRQPIP*DRKSYS
ľ	1			WKQRLFIINFISFFSALAVYFRHNMYCEAGVYTIFAILEYTVV
				LTNMAFHMTAWWDFGNKELLITSQPEEKRF
517	1256	3	254	IDLLEIRNGPRSHESFOEMDLNDDWKLSKDEVKAYLKKEFEKH
				GAVVNESHHDALVEDIFDKEDEDKDGFISAREFTYKHDEL
518	1257	2	611	PRVRGRVGKEGAAAKPRSLLRRFQLLSWSVCGGNKDPWVQELM
		-		SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP
				AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA
				15
1				AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS
F1.	1000	1000	47.0	YVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT
519	1258	1002	418	LIISNFLKAKQKPGSTPNLQQKKSQARLAPDIVSASQYRKFDE
				FQTGILIYELLHQPNPFEVRAQLRERDYRQEDLPPLPALSLYS
1.				PGLQQLAHLLLEADPIKRIRIGEAKRVLQCLLWGPRRELVQQP
1				GTSEEALCGTLHNWIDMKRALMMMKFAEKAVDRRRGVELEDWL
				CCQYLASAEPGALLQSLKLLQLL

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre- sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ļ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1—possible indetecting insurance
		of amino	of amino	
		acid	acid	
		sequence	sequence	
520	1259	2	2019	KRGLIVVMAHEMIGTQIVTERGVALLESGTEKVLLIDSRPFVE
				YNTSHILEAININCSKLMKRRLQQDKVLITELIQHSAKHKVDI
1		'		DCSQKVVVYDQSSQDVASLSSDCFLTVLLGRLEKSFNSVHLLA
				GGFAEFSRCFPGLCEGKSTLVPTCISQPCLPVANIGPTRILPN
				LYLGCQRDVLNKELMQQNGIGYVLNASNTCPKPDFIPESHFLR
				VPVNDSFCEKILPWLDKSVDFIEKAKASNGCVLVHCLAGISRS
				ATIAIAYIMKRMDMSLDEAYRFVKEKRPTISPNFNFLGQLLDY
1				EKKIKNQTGASGPKSKLKLLHLEKPNEPVPAVSEGGQKSETPL
				SPPCADSATSEAAGQRPVHPASVPSVPSVQPSLLEDSPLVQAL
				SGLHLSADRLEDSNKLKRSFSLDIKSVSYSASMAASLHGFSSS
				EDALEYYKPSTTLDGTNKLCQFSPVQEL/CGADSRNQS**GGS
			ĺ	Q/PSPRSCRPPGLQTARASDCIRSEPAAVAPPRGPFYLHCIEV GAWRTITTPASFSAFPP\PAAPHEVCWPGP*GLA\PDILAPQT
			ŀ	STPSLTSSWYFATESSHFYSASAIYGGSASYSAYSCSOLPTCG
	İ		1	DQVYSVRRQKPSDRADSRRSWHEESPFEKQFKRRSCQMEFGE
				SIMSENRSREELGKVGSQSSFSGSMEIIEVS
521	1260	20	803	ASSSKRVSROKMLOLWKLVLLCGVLTGTSESLLDNLGNDLSNV
341	1200	20	003	VDKLEPVLHEGLETVDNTLKGILEKLKVDLGVLQKSSAWQLAK
				QKAQEAEKLLNNVISKLLPTNTDIFGLKISNSLILDVKAEPID
		1		DGKGLNLSFPVTANVTEAGPIIDQIIN\LRASLDLLTAVTIET
]				DPQTHHPVAGLGECARDPTSISLCLLDKHSQIINKFVNSVINT
	1			LKSTVSSLLQKEICPLIRIFIHSLDVNVIQQVVDNPQHKTQLQ
				TLI
522	1261	1246	411	CSLRRPRSAAEPDADHVPLLGLLRLQLRAARQPGAMRPQGPAA
			_	SPORLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLY
	1	1	-	NGMCLQGPAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECL
				RESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTKMRSNSAL
			İ	RVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQ
			Į	GSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPK
				GDASTGWNSVSRIIIEELPK
523	1262	2009	921	MHSAMLGTRVNLSVSDFWRVMMRVCWLVRQDSRHQRIRLPHLE
				AVVIGRGPETKITDKKCSRQQVQLKAECNKGYVKVKQVGVNPT
	i			SIDSVVIGKDQEVKLQPGQVLHMVNELYPYIVEFEEEAKNPGL
1				ETHRKRKRSGNSDSIERDAAQEAEAGTGLEPGSNSGQCSVPLK
	1			KGKDAPIKKESLGHWSQGLKISMQDPKMQVYKDEQVVVIKDKY
-				PKARYHWLVLPWTSISSLKAVAR\EHLELLKHMHTVGEKVIVD
				FAGSSKLRFRLGYHAIPSMSHVHLHVISQDFDSPCLKNKKHWN
				SFNTEYFLESQAVIEMVQEAGRVTVRDGMPELLKLPLRCHECQ
				OLLPSIPQLKEHLRKHWTQ

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
524	1263	2067	198	DMSDTSESGAGLTRFQAEASEKDSSSMMQTLLTVTQNVEVPET
				PKASKALEVSEDVKVSKASGVSKATEVSKTPEAREAPATQASS
1	ļ	}]	TTQLTDTQVLAAENKSLAADTKKQNADPQAVTMPATETKKVSH
				VADTKVNTKAQETEAAPSQAPADEPEPESAAAQSQENQDTRPK
				VKAKKARKVKHLDGEEDGSSDQSQASGTTGGRRVSKALMASMA
	1			RRASRGPIAFWARRASRTRLACFGPGEPLLSPWRSP\KARRQR
	1			GFAVRVAKFQ\SSQEPEAPPPW\DVALLQGRAN\DLVKYLLAK
	'	1		DQTKIPIKRS\DMLKDIIKEYTDVYPEII\ERAGYSLE\KVFG
				IQLKEIDKNDHLYILLSTLEPTDAGILGTTKDSPKLGLLMVLL
ì				SIIF\MNGNRS\SEAVIWEVLR/RSLGLRLGIHHS\LLGDVK\
İ				KLITDEV\VKQKYL\DYARVPHSNSP\EYEFFWG\LRSYYEDQ
				QR*KSFKFACK\VQK\KDPK\EWAAQSPPGKAR/ERMEAD\LK
				AAS*GSPWKPRLRAEIKARMGIGLGSENAAGPCNWDEADIGPW
]		AKARIQAGAEAKAKAQESGSASTGASTSTNNSASASASTSGGF
				SAGASLTATLTFGLFAGLGGAGASTSGSSGACGFSYK
525	1264	1	1397	ARPPVCTGSTMSLTVVSMACVGFFLLQGAWPLMGGQDKPFLSA
l ·			1	RPSTVVPRGGHVALQCHYRRGFNNFMLYKEDRSHVPIFHGRIF
}				QESFIMGPVTPAHAGTYRCRGSRPHSLTGWSAPSNPLVIMVTG
				NHRKPSLLAHPGPLLKSGETVILQCWSDIMFEHFFLHKEGISK
ļ				DPSRLVGQIHDGVSKANFSIGPMMLALAGTYRCYGSVTHTPYQ
			1	LSAPSDPLDIVVTGPYEKPSLSAQPGPKVQAGESVTLSCSSRS SYDMYHLSREGGAHERRLPAVRKVNRTFQADFPLGPATHGGTY
	1			RCFGSFRHSPYEWSDPSDPLLVSVTGNPSSSWPSPTEPSSKSG
1	Į			NLRHLHILIGTSVVKIPFTILLFFLLHRWCSNKK\NAAVMDOE
1	1		-	PAGNR\VNSEDSDEODHQEVSYP*LEHCVFTORKITRPSORPK
				TPPTDTSMYIELPNAEPRSKVVFCPRAPOSGLEGIF
		J	L	ILLIDIOHITETHNWELKOVAALCAKWAÖQCREGIL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	l	acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
	İ	acid	acid	
		sequence	sequence	 LHNLRERYFSGLIYTYSGLFCVVVNPYKHLPIYSEKIVDMYKG
526	1265	6657	988	
				KKRHEMPPHIYAIADTAYRSMLQDREDQSILCTGESGAGKTEN
	Ì	ļ		TKKVIQYLAVVASSHKGKKDTSITGELEKQLLQANPILEAFGN
1				AKTVKNDNSSRFGKFIRINFDVTGYIVGANIETYLLEKSRAIR
	1	1		QARDERTFHIFYYMIAGAKEKMRSDLLLEGFNNYTFLSNGFVP
		1		IPAAQDDEMFQETVEAMAIMGFSEEEQLSILKVVSSVLQLGNI
		1	1	VFKKERNTDQASMPDNTAAQKVCHLMGINVTDFTRSILTPRIK
	1	1	ļ	VGRDVVQKAQTKEQADFAVEALAKATYERLFRWILTRVNKALD
	1	1	1	KTHRQGASFLGILDIAGFEIFEVNSFEQLCINYTNEKLQQLFN
		1	İ	HTMFIL\EQEEYQREGIEWNFIDFGLDLQPCIELIERPNNPPG
ł		1	1	VLALLDEECWFPKATDKSFVEKLCTEQGSHPKFQKPKQLKDKT
ļ		1	1	EFSIHYAGKVDYNASAWLTKNMDPLNDNVTSLLNASSDKFVA
				DLWKDVDRIVGLDQMAKMTESSLPSASKTKKGMFRTVGQLYKE
1				QLGKLMTTLRNTTPNFVRCIIPNHEKRSGKLDAFLVLEQLRCN
				GVLEGIRICRQGFPNRIVFQEFRQRYEILAANAIPKGFMDGKQ
			1	ACILMIKALELDPNLYRIGQSKIFFRTGVLAHLEEERDLKITD
		1	1	VIMAFQAMCRGYLARKAFAKRQQQLTAMKVIQRNCAAYIKLRN
				WQWCRLFTKV*PLLQVTRQE*EMQAKEDELQKTKERQQKAENE
	İ			LKELEQKHSQLTEEKNLLQEQLQAETELYAEAEEMRVRLAAKK
		l		QELEEILHEMEARLEEEEDRGQQLQAERKKMAQQMLDLEEQLE
	1			EEEAARQKLQLEKVTAEAKIKKLEDEILVMDDQNNKLSKERKL
		1		LEERISDLTTNLAEEEEKAKNLTKLKNKHESMISELEVRLKKE
		<u> </u>	Į.	EKSRQELEKLKRKLEGDASDFHEQIADLQAQIAELKMQLAKKE
			i	EELQAALARLDDEIAQKNNALKKIRELEGHISDLQEDLDSERA
ł		ł	1	ARNKAEKQKRDLGEELEALKTELEDTLDSTATQQELRAKREQE
				VTVLKR\ALNEETRSHEAQVQEMRQKHAQAVQSLTEQLEQ*K
1	1	1	ł	RAKANLDKNKQTLEKENTD\LAGELRVLGQA\KQEVEHRMKKL
				QAQVQELQSKCSDGERARAELNDKVHK\LQNEVESVTG\MLNE
1		i	1	AEGKAIKLAKDVASLSSQL\QDTQELLQEESRQKLNVST\SLR
		ł	1	\QLEEERNSLQDQLDEEMEAKQNLERHISTLNIQLSDSKKKLQ
ŀ			}	DFASTVEALEEGKKRFQKEIENLTQQYEEKAAAYDKLEKTKNR
				LQQELDDLVVDLDNQRQLVSNLEKKQRKFDQLLAEEKNISSKY
}			1	ADERDRVEAEAREKETKALSL\ARALEEALEAKEELERTNKML
				KA\EMGRPGSASKD\DVGQELSHDL\EKSK\RALGDPRLEEMK
İ]	T\QLEELGRTELASPRRDA\KLRLEVNMQAPSRASFER\DLQA
		1		RTEQNE\ESRR\HLQRQLHEYETELEDERKQRALAAAAKIKLG
				WDPVRTLDL*ADSAIKGRGGKAIKQLRKLQAQMKDFQRELEDA
				\RASRDEIF\ATA\KENEKKAKSLEA\DLMQLQE\DLAAAEEG
1		i		RKQ\ADLE\KEELAEEL\ASSLSGRNALQDEKRRLEARIAQLE
	1			EELEEEQGNMEAMSDRVRKATQQAEQLSNELATERSTAQKNES
	1		1	ARQQLERQNKELRSKLHEMEGAVKSKFKSTIAALEAKIAQLEE
1	1		[QVEQEAREKQAATKSLKQKDKKLKEILLQVEDERKMAEQYKEQ
	1			AEKGNARVKQLKRQLEEAEEESQRINANRRKLQRELDEATESN
İ	1			EAMGREVNALKSKLRRGNETSFVPSRRSGGRRVIENADGSEEE
	1			TDTRDADFNGTKASE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 7.75	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) KLHFAKSLNSELSCSTREAMQDEDGYITLNIKTRKPALVSVGP
				ASSSWRVMALILLILCVGMVVGLVALGIWSVMQRNYLQDENE NRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYG DSCYGFFRHNLTWEESKQYCTDMNATLLKIDNRNIVEYIKAR\ THLIRWVGLSRQKSNEVWKWEDGSVISENMFEFLEDGKGNMNC AYFHNGKMHPTFCENKHYL\MCE\RKAGHDPRWTQLPLMPKRW TG
528	1267	1053	424	NQGLRDVGLCRTCLVNKIFASSILGKSHHHSLVSINQGHNAPW KAAGS\LPLKAAYC\QGFSPCDCLKYG\SWDEKDLMVPQPDTH KGSVLRWISKRGKPLAVEMEEGHCL\CLPLGTECLGVKP\IVH LFNSEMGEK\RPVAG\ARHVGSSAALLFFTPLRCLGGEKHKSG LRARPGIVPSLELNYDIDSFAHMFF/SVDLLLIITLLSYYIPF C
529	1268	1435	1560	MWWRLAPTQAIWRAAGCCMRFSRRRSTCCCLASCIFLLYKIVR GDQPAAKRRQRRRRAAPSAPPQAARLHPPPKLRRFDGVQDPAP YSWAINGKVFDVTQRPANFLRGPRGPETLSDWESQFTFKYHHV GKLLKEGEEPTVYSDEEEPKDESARKND*
530	1269	705	166	GPRMAKFLSQDQINEYKECFSLYDKQQRGKIKATDLMVAMRCL GASPTPGEVQRHLQTHGIDGNGELDFSTFLTIMHMQIKQEDPK KEILLAMLMVDKEKKGYVMASDLRSKLTSLGEKLTHKEV\DDL FRE\ADIEPNGKVKYDEFIHKI/TLLPGRDLLKEENGRASPGP ENLEQLIFL
531	1270	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF WKTWRGRYYPLQATTMLIQPMAAEAAS
532	1271	1276	90	ALDFGDSCQWPRPQDTMKQLPVLEPGDKPRKATWYTLTVPGDS PCARVGHSCSYLPPVGNAKRGKVFIVGGANPNRSFSDVHTMDL GKHQWDLDTCKGLLPRYEHASFIPSCTPDRIWVFGGANQSGNR NCLQVLNPETRTWTTPEVTSPPPSPRTFHTSSAAIGNQLYVFG GGERGAQPVQDTKLHVFDANTLTWSQPETLGNPPSPRHGHVMV AAGTKLFIHGGLAGDRFYDDLHCIDISDMKWQKLNPTGAA\PA GCAS/HTPAVAMGK\HVYI\FGGMTPAGAPGTQCTQYHTEEQH WDPCLKF\DTPSYPPGTIGTHSHVVSFPW\PVTCASEKEDS\N SLTLNHEAEKEDSADKVMSHSGDSHEESQTATLLCLVFGGMNT EGEIYDDCIVTVVD

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	·	residue	residue	,
		of amino	of amino	
	!	acid	acid	
		sequence	sequence	CHO TOWN TODAY ON THE WAY AND ALTHUS LOST DO VIDAMENTE UD TOTA
533	1272	1169	639	GFSIGKATDRMDAFRKAKNRAVHHLHYIERYEDHTIFHDISLR
		İ		FKRTHIKMKKQPKGYGLRCHRAIITICRLIGIKDMYAKVSGSI NMLSLTOGLFRGLSROETHQOLADKKGLHVVEIREECGPLPIV
[VASPRGPLRKDPEPEDEVPDVKLDWEDVKTAQGMKRSVWSNLK
	ļ]	RAAT
534	1273	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI
734	12,3	""	= = = =	PAPRLPKRMSGAPTAGAALMLCAATAVLLSAOGGPVOSKSPRF
			•	ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS
Į	İ			ACOGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH
				KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR
1				LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ
				GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD
Ì				PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL
ļ				GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR
				RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF
				WKTWRGRYYPLQATTMLIQPMAAEAAS
535	1274	23	1102	TLRSRPAGEAGYLGWDPEQAGEGSALSRPGAMAALMTPGTGAP
1				PAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIR
)	ļ	j	ļ	GFVAAVVNGSAQGAQIGAWGGLGVPDPDWEVSPRDFGSLGVRR
ľ				CPTTSTGPRVPHRCGLPPSRVPPHTRG\MLMAIRLRGMDLEET SVLTOALAOSGOOLEWPEAWROOLVDKHSTGGVGDKVSLVLAP
				ALAACGCKVINHLLSRREPIPHMOQPVHPQAAPNLKPGPKPPR
				PYOGFSPPCSPAOFSPPRSPAORLGPLWLQTRPLGAGKRSTDG
ļ]	j		IOTPFPLGPQTAPPREELRTSLPLPQALFPQGQVPTSSPTDTS
	ļ		Ì	OPRKLPFHSLTSWAPL
536	1275	3	439	RALRELRERVTHGLAEAGRDREDVSTELYRALEAVRLONSEGS
550	3			CEPCPTSWLPFGGSCYYFSVPKTTWAEAQGHCADASAHLA/IV
1				GGLGEQDFLSRDTSALEYWIGRRAVQHLRKVQGYSWVDGVPLS
		1	1	FR*/WEG/HPGETWGPQVRL
537	1276	1	564	RWPRSWPPRAGAARGAAEAAMVGALCGCWFRLGGARPLIPLGP
			1	TVVQTSMSRSQVALLGLSLLLMLLLYVGLPGPPEQTSCLWGDP
[NVTVLAGLTPGNSPIFYREVLPLNQAHRVEV\CCFMERPLTLT
1		1	1 .	RGSSWAHCSYCHRGATGPWPLTFQVLGTRHLQRRQAQRQGGQR
	1	1	1	CWSGRCGTWRYRMPCW

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID D	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
İ	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
Į		acid	acid	\=possible nucleotide insertion)
ļ	<u> </u>	residue	residue	
		of amino	of amino	
}		acid	acid	·
538	1277	sequence 102	sequence 1549	OENOLEKKMKFLIFAFFGGVHLLSLCSGKAICKNGISKRTFEE
336	12//	102	1349	IKEEIASCGDVAKAIINLAVYGKAQNRSYERLALLVDTVGPRL
				SGSKNLEKAIQIMYQNLQQDGLEKVHLEPVRIPHWERGEESAV
				MLEPRIHKIAILGLGSSIGTPPEGITAEVLVVTSFDELORRAS
ļ		Ì	1	EARGKIVVYNQPYINYSRTVQYRTQGAVEAAKVGALASLIRSV
				1
			1	ASFSIYSPHTGIQEYQDGVPKIPTACITVEDAEMMSRMASHGI KIVIOLKMGAKTYPDTDSFNTVAEITGSKYPEQVVLVSGHLDS
1			1	WDVGQGAMDDGGGAFISWEALSLIKDLGLRPKRTLRLVLWTAE
			i	EOGGVGAFQYYOLHKVNISNYSLVMESDAGTFLPTGLOFTGSE
]			KARAIMEEVMSLLQPLNITQVLSHGEGTDINFWIQAGVPGASL
				LDDLYKYFFFHHSHGDTMTVHGIQTQMNV\AAAV\WAVVSYV\
	ļ		1	UADMEEMLPRS
539	1278	2438	1148	TKPRKRRHOPASORORPWSSDSTGDLLARGKGRKEENKGSDRV
539	12/8	2430	1140	SLAPPSLRRPMMCQSEARQGPELRAAKWLHFPQLALRRRLGQL
1				SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL
İ				YKSVPTRLLSRAWGRLNOVELPHWLRRPVYSLYIWTFGVNMKE
				AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN
· ·				FGQVKNCEVEQVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF
				KNOLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG
				SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\
1	İ	}		NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMRK
		-		GEHLGEFNLGSTIVLIFEAPKDFNFQLKTGQKI\RFGEALGSL
540	1279	3	1911	LPERAFGPRTPRAPRRRRRRLLLSPPPRPPPPLDREPRAPGPW
310	1			LCPSRAGTAQDPARIRERRGRVAGGAAGPAMELRARGWWLLCA
				AAALVACARGDPASKSRSCGEVRQIYGAKGFSSS\DVPQAEIS
		j	1	GEHLRICPQGYTCCTSEMEENLANRSHAELETALRDSSRVLQA
Į.	İ			MLATQLRSFDDHFQHLLNDSERTLOATFPGAFGELYTQNARAF
				RDLYSELRLYYRGANLHLEETLAEFWARLLERLFKQLHPQLLL
	!			PDDYLDCLGKQAEALRPF\GEAP\RELRLRAT\RA\FVAAR\S
]	FVQGLGVAS\DVVRKVAQVPLG\PEC\SRAVIEAGSYC/ALHC
		1		VGVPGARPCPDYCRNVLKGCLANQADLDAEWRNLLDSMVLITD
			1	KFWGTSGVESVIGSVHTWLAEAINALODNRDTLTAKVIOGCGN
	1	1	1	PKVNPQGPGPEEKRRGKLAPRERPPSGTLEKLVSEAKAOLRD
				VQDFWISLPGTLCSEKMALSTASDDRCWNGMARGRYLPEVMGD
				GLANQINNPEVEVDITKPDMTIRQOIMQLKIMTNRLRSAYNGN
				DVDFQDASDDGSGSGSGDGCLDDLCGRKVSRKSSSSRTPLTHA
	-			LPGLSEQEGQKTSAASCPQPPTFLLPLLLFLALTVARPRWR
541	1280	590	189	ATELTRAGMEASALTKSA\VTSVAKVVR\VASGSAVVLPLARI
				ATSCD*RVGGP/VQAVPMVL\SAMGLQLRAGIASSSIAAKMMS
				AAAIA\NGGGVSPGQPLWLLLQSLGATGL\SGLTKFILGSIGS
1	İ			AIA\AVIARFY
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1415	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) TNGRNLLHHWILGVCGMHPHHQETLKKNRVVLAKQLLLSELLE HLLEKDIITLEMRELIQAKVGSFSQNVELLNLLPKRGPQAFDA FCEALRETKQGHLEDMILITTLSGLQHVLPPLSCDYDLSLPFPV CESCPLYKKLRLSTDTVEHSLDNKDGPVCLQVKPCTPEFYQTH FQLAYRLQSRPRGLALVLSNVHFTGEKELEFRSGGDVDHSTLV TLFKLLGYDVHVLCDQTAQEMQEKLQNFAQLPAHRVTDSCIVA LLSHGVEGAIYGVDGKLLQLQEVFQLFDNANCPSLQNKPKMFF IQACRGGAIGSLGHLLLFTAATASLAL\ETDRGVDQQDGKNHA GSPGCEESDAGKEKLPKMRLPTRSDMICGYACLKGTAAMRNTK RGSWYIEALAQVFSERACDMHVADMLVKVNALIKDREGYAPGT EFHRCKEMSEYCSTLCRHLYLFPGHPPT
543	1282	862	275	VRGKEVMAALCRTRAVAAESHFLRVFLFFRPFRGVGTESGSES GSSNAKEPKTRAGGFASALERHSELLQKVEPLQKGSPKNVESF ASMLRHSPLTQMGPAKDKLVIGRIFHIVENDL\YIDFGGKFHC VCRRPEVDGEKY\QKGTRVR\LRLLDLELTSRFLGATTD\TTV LEANAVLLGIQESKDSRSKEEHLEKYI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids		sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius .	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
Ì		acid	acid	
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
i		1		1
544	1283	sequence 2	sequence 4503	TROLONA BREAT AND BUSINESS OF A COURT PAR CONTRACTOR OF COURT
344	1283	1 2	4503	IPGASPAPRRAAPLRLGLRLASGWARAPGGVSPVPGPGMGGDA
		ļ		PTMARAQALVLELTFQLCAPETETPEVGCTFEEGSDPAVPCEY
1			1	SQAQYDDFQWEQVRIHPGTRAPADLPHGSYLMVNTSQHAPGQR
				AHVIFQSLSENDTHCVQFSYFLYSRDGHSPGTLGVYVRVNGGP
1	,		[LGSAVWNMTGSHGRQWHQAELAVSTFWPNEYQVLFEALISPDR
			1	RGYMGLDDILLLSYPCAKAPHFSRLGDVEVNAGQNASFQCMAA
		1		GRAAEAERFLLQRQSGALVPAAGVRHISHRRFLATFPLAAVSR
1				AEQDLYRCVSQAPRGRGTSLNFAEFMV/KEPPTPIAPPQLLRA
ļ		ļ		GPTYLIIQLNTNSIIGDGPIVRKEIEYRMARGPWAEVHAVSLO
	Ì	1		TYKLWHLDPDTEYEISVLLTRPGDGGTGRPGPPLISRTKCAEP
	{			MRAPKGLAFAEIQARQLTLQWEPLGYNVTRCHTYTVSLCYHYT
		1		LGSSHNQTI\RECVKTEQGVSRYTMKNLLPYRNVHVRLVLTNP
1		1		
	}		}	EGRKEGKEVTFQTDEDVPSGIAAESLTFTPLEDMIFLKWEEPQ
1			İ	EPNGLITQYEISYQSIESSDPAVNVPGPRRTISKLRNETYHVF
}	ļ			SNLHPGTTYLFSVRARTGKGFGQAALTEITTNISAPSFDYADM
İ		i		PSPLGESENTITVLLRPAQGRGAPISVYQVIVEEEQGSRRLRR
			1	EPGGQDCFPVPLTFEAALARGLVDYFGAELAASSLPEAMPFTV
1		ļ	Ì	GDNKTYRGFWNPPLEPRKAYLIYFQAASHLKGETRLNCIRIAR
1	1	Ĭ	1	KAACKESKRPLEVSQRSEEMGLILGICAGGLAVLILLLGAIIV
		1		IIRKGRDHYAYSYYPKPVNMTKATVNYRQEKTHMMSAVDRSFT
	1	,	ļ	DQSTLQEDERLGLSFMDTHGYSTRGDQRSGGVTEASSLLGGSP
			1	RRPCGRKGSPYHTGQLHPAVRVADLLQHINQMKTAEGYGFKQE
				YESFFEGWDATKKKDKVKGSRQEPMPAYDRHRVKLHPMLGDPN
1		1		ADYINANYIDIRINREGYHRSNHFIATQGPKPEMVYDFWRMVW
	1	1]	QEHCSSIVMITKLVEVGRVKCSRYWPEDSDTYGDIKIMLVKTE
	1		1	TLAEYVVRTFALERRGYSARHEVRQFHFTAWPEHGVPYHATGL
	1			LAFIRRVKASTPPDAGPIVIHCSAGTGRTGCYIVLDVMLDMAE
			}	1
1	}	1	1	CEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCGE
		1	[TTIPVSEFKATYKEMIRIDPQSNSSQLREEFQTLNSVTPPLDV
		i		EECSIALLPRNRDKNRSMDVLPPDRCLPFLISTDGDSNNYINA
Ţ.		1		ALTDSYTRSAAFIVTLHPLQSTTPDFWGLVYDYGCTSIVMLNQ
	1		1	LNQSNSAWPCLQYWPEPGRQQYGLMEVEFMSGTADEDLVARVF
	1	1		RVQNISRLQEGHLLVRHFQFLRWSAYRDTPDSKKAFLHLLAEG
		1	1	DKWQAESGDGRTIVHCLNGGGRSGTFCA\CATVLEMIRCHNLV
		1		DVFFAAKTLRNYKPNMVETMDQYHFCYDVALEYLEGLESR
<u> </u>		·		

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
į į		acid		
545	1284	sequence 2443	sequence	TKPRKRRHOPASORORPWSSDSTGDLLARGKGRKEENKGSDRV
545	1284	2443	1122	SLAPPSLRRPMMCOSEAROGPELRAAKWLHFPQLALRRRLGQL
				SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL
				YKSVPTRLLSRAWGRLNQVELPHWLRRPVYSLYIWTFGVNMKE
			i	AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN
			1	FGOVKNCEVEOVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF
	1			KNOLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG
1	1		1	SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT
,			{	NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMAL
1				RGEHLG/OSFNLGSTIVLIFEAPKDFNFOLKTGQKIRFGEALG
i				SL
-	1005	105	3057	AELGLFGSLRFSSLLHFPPRPRSPASACGPGEGRMERGLPLLC
546	1285	185	3057	AVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSE
	1			KCEWLIOAPDPYORIMINFNPHFDLEDRDCKYDYVEVFDGENE
				NGHFRGKFCGKIAPPPVVSSGPFLFIKFVSDYETHGAGFSIRY
	ļ			EIFKRGPECSQNYTTPSGVIKSPGFPEKYPNSLECTYI\VFAP
			1	KMSEIIL\DFESFDLEPDSNPPGGMFCRYDRLEIWDGFPDVGP
	ļ	İ	ĺ	HIGRYCGQKTPGRIRSSSGILSMVFYTDSAIAKEGFSANYSVL
		i i		QSSVSEDFKCMEALGMESGEIHSDQITASSQYSTNWSAERSRL
1				NYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKK
]		ļ	J	KYYVKTYKIDVSSNGEDWITIKEGNKPVLFQGNTNPTDVVVAV
1				FPKPLITRFVRIKPATWETGISMRFEVYGCKITDYPCSGMLGM
1				VSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY
			ļ	INEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSNNG
1			j	SDWKMIMDDSKRKAKSFEGNNNYDTPELRTFPALSTRFIRIYP
1				ERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLVDECDDDQAN
		i		CHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEF
				GWGSHKTFCHWEHDNHVQLKWSVLTSKTGPIQDHTGDGNFIYS
ŀ			1	OADENOKGKVARLVSPVVYSONSAHCMTFWYHMSGSHVGTLRV
)	ļ]		KLRYOKPEEYDOLVWMAIGHQGDHWKEGRVLLHKSLKLYQVIF
			1	1 7 7 7
Ī				EGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKI DETGSTPGYEGEGEGDKNISRKPGNVLKTLEPILITIIAMSAL
				GVLLGAVCGVVLYCACWHNGMSERNLSALENYNFELVDGVKLK
1	· ·			KDKLNTOSTYSEA
FA 7	1200	1 3	-	HEGSALTWASHYOERLNSEQSCLNEWTAMADLESLRPPSAEPG
547	1286	3	521	HEGSALTWASHYQERLINSEQSCLINEWTAMADLESLRPPSAEPG GSVCGGEGLGGGEGRIMQWGAWWRGERAP*LRGSAPRSSEQEQ
	1			MEQAIRAELWKVLDVSDLESVTSKEIRQALELRLGLPLQ/PVP
1			ĺ	15
	})		*LHRQPDAAAGGTAGPSLPHLPPPLPGLRVERSKPGGAAEEQV
L	L	1745	1200	GL
548	1287	1742	1200	MAALDLRAELDSLVIQLLGDLEELEGKRTVLNARVEEGWLSLA KARYAMGAKSVGPLQYASHMEPQVCLHASEAQEGLQKFKVVRA
				The state of the s
	1		1	GVHAPEEVGPREAGLRRRKGPTKTPEPESSEAPQDPLNWFGIL
				VPHSLRQAQASFRDGLQLAADIASLQNRIDWGRSQLRGLQEKL
L	<u> </u>	<u> </u>	<u> </u>	KQLEPGAA*

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
549	1288	1	649	HSDVGAATAVLPLLTAVLGVTVVTRRDTEGPGRAALVHLTGSP RQKVGTSGREGLPGLGASCAESELERETQEPRSRGRCIFGAAR WRQVPLASPQRPFLLSPGPRLHRMGLPVSWAPPALWVLGCCAL LLSLWALCTACRRPEDAVAPRKRARRQRARLQGSATAAEAVSA KLSRGPGWGPQGTDQPSSPPVPTEADPPLLPQQVGHQTARAAP G
550	1289	433	632	LTGPGQRLAGTTEGPRRCRGSSQAPTPTWKLVDTRLCAAAPWL ASRAPGHYSQMLLVN*PCRKDWLVSKWMRTPVCGQSPAMTDRP RSEAGRDHRRAKALPGLIPGSNPNLEACGHQALCSSSVASVQG PWPLLPNASSPPTPGQPQP
551	1290	102	612	KHRLCSLEQLMTLISAAREYEIEFIYAISPGLDITFSNPKEVS TLKRKLDQVSQFGCRSFALLFDDIDHNMCAADKEVFSSFAHAQ VSITNEIYQYLGEPETFLFCPT/EYCI*WLYI*LVFLEYITYK GPWAPFSLHFPPPLVCKSRNLFLEDIFQDPKLEKF*ELINDN
552	1291	269	565	TSALTQGLERIPDQLGYLVLSEGAVLASSGDLENDEQAASAIS ELVSTACGFRLHRGMNVPFKRLSVVFGEHTLLVTVSGQRVFVV KRQNRGREPIDV
553	1292	660	233	AKRAERTSRLQGLQHPSPPYPPATLGVTPGQDRTLQLQHQCPA GRKSRKKKSKATQLSPEDRVEDALPPSKAPSRTRRAKRDLPKR TATQRPEGTSLQQDPEAPTVPKKGRRKGRQAASGHCRPRKVKA DIPSLEPEGTSAS
554	1293	590	323	RKSSWLGAVAHACNPSSLGGPGRQITRSGVRDQPGQYGETPSL LKIQTLAGRGGACL*SHILRRLRQKNRLNLGGRGCSELRSRHC APA
555	1294	1	242	AWNSARGAVSPLWVPGCFLTLSVTWIGAAPLILSRIVGGWECE KHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRK
556	1295	1074	230	AEMADDLGDEWWENQPTGAGSSPEASDGEGEGDTEVMQQETVP VPVPSEKTKQPKECFLIQPKERKENTTKTRKRKKKITDVLAK SEPKPGLPEDLQKLMKDYYSSRRLVIELEELNLPDSCFLKAND LTHSLSSYLKEICPKWVKLRKNHSEKKSVLMLIICSSAVRALE LIRSMTAFRGDGKVIKLFAKHIKVQAQVKLLEKRVVHLGVGTP GRIKELVKQGGLNLSPLKFLVFDWNWRDQKLRRMMDIPEIRKE VFELLEMGVLSLCKSESLKLGLF
557	1296	929	289	RPGTAIWVVECEHGRPIAESEGQEGRGHSPPGPCSVAGFLRGR LGRNLEIMGSTWGSPGWVRLALCLTGLVLSLYALHVKAARARD RDYRALCDVGTAISCSRVFSSRWGRGFGLVEHVLGQDSILNQS NSIFGCIFYTLQLLLGCLRTRWASVLMLLSSLVSLAGSVYLAW ILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1063	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
				APQLGDTQNCQLRCRDRDLGPQPSQAGLEGASESPYDRAVLIS ACERGCRLFSICRFVARSSKPNATQTECEAACVEAYVKEAEQQ ACSHGCWSQPAEPEPEQKRKVLEAPSGALSLLDLFSTLCNDLV NSAQGFVSSTWTYYLQTDNGKVVVFQTQPIVESLGFQGGRLQR VEVTWRGSHPEALEVHVDPVGPLDKVRKAKIRVKTSSKAKVES EEPQDNDFLSCMSRRSGLPRWILACCLFLSVLVMLWLSCSTLV TAPGQHLKFQPLTLEQHKGFMMEPDWPLYPPPSHACEDSLPPY KLKLDLTKL
559	1298	2	485	FPELGTSLSAMRFLAATFLLLALSTAAQAEPVQFKDCGSVDGV IKEVNVSPCPTQPCQLSKGQSYSVNVTFTSNIQSKSSKAVVHG ILMGVPVPFPIPEPDGCKSGINCPIQKDKTYSYLNKLPVKSEY PSIKLVVEWQLQDDKNQSLFCWEIPVQIVSHL
560	1299	1304	919	APETFRCVWRLQGLTFIAFTELQAKVIDTQQKVKLADIQIEQL NRTKKHAHLTDTEIMTLVDETNMYEGVGRMFILQSKEAIHSQL LEKQKIAEEKIKELEQKKSYLERSVKEAEDNIREMLMARRAQ
561	1300	3	799	HSLLLGTRVRDASSKIQGEYTLTLRKGGNNKLSRVFHRDGHYG FSEPLTFCSVVDLINHYRHESLAQYNAKLDTRLLYPVSKYQQV RAGLGAREGSTWLAPGLSFLGRPDQAMHLPSFRHVSP\DQIVK EDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKR TAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGN/QTKEMQ RILLNSERLKSRIA\EIHESPHRSWEQQLLVPRASDNKRD/ID KPH*TSLKPDL
562	1301	1772	301	AAAAAGRGRSSGRRRRRRPGALFASLGVLLGPRPPPGIPRTRA CSMGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVI ERRVYDISRWAQRHPGGSRLIGHHGAEDATDAFRAFHQDLNFV RKFLQPLLIGELAPEEPSQDGPLNAQLVEDFRALHQAAEDMKL FDASPTFFAFLLGHILAMEVLAWLLIYLLGPGWVPSALAAFIL AISQAQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAH WWNFRHFQHHAKPNIFHKDPDVTVAPVFLLGESSVEYGKKKRR YLPYNQQHLYFFLIGPPLLTLVNFEVENLAYMLVCMQWADLLW AASFYARFFLSYLPFYGVPGVLLFFVAVRVLESHWFVWITQMN HIPKEIGHEKHRDWVSSQLAATCNVEPSLFTNWFSGHLNFQIE HHLFPRMPRHNYSRVAPLVKSLCAKHGLSYEVKPFLTALVDIV RSLKKSGDIWLDAYLHQ
563	1302	424	93	KSRATRLRESAEMTGFLLPPASRGTRRSCSRSRKRQTRRRRNP SSFVASCPTLLPFACVPGASPTTLAFPPVVLTGPSTDGIPFAL SLQRVPFVLPSPQVASLPLGHSRG
564	1303	1	414	IQYRSDLELHSITMKKSGVLFLLGIILLVLIGVQGTPVVRKGR CSCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQT CLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKS QRSRQKKTT

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid.
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110.00	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
1	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	possible nacional instition)
	Ì	of amino	of amino	
		acid	acid	
		sequence	sequence	
565	1304	7	3007	IPGSTISCRGCCGKWPVQEADPPRAALRGRFPALLTRHCPSPR
				AEKEKRSLRRCGCRPLLVELAGPAGQAVEVLPHFESLGKQEKI
	ļ	1		PNKMSAFRNHCPHLDSVGEITKEDLIQKSLGTCQDCKVQGPNL
1	ľ		}	
			1	WACLENRCSYVGCGESQVDHSTIHSQETKHYLTVNLTTLRVWC
1			1	YACSKEVFLDRKLGTQPSLPHVRQPHQIQENSVQDFKIPSNTT
1	1			LKTPLVAVFDDLDIEADEEDELRARGLTGLKNIGNTCYMNAAL
				QALSNCPPLTQFFLDCGGLARTDKKPAICKSYLKLMTELWYKS
	ĺ			RPGSVVPTTLFQGIKTVNPTFRGYSQQDAQEFLRCLMDLLHEE
	ļ			LKEQVMEVEEDPQTITTEETMEEDKSQSDVDFQSCESCSNSDR
1	ł	}	l	AENENGSRCFSEDNNETTMLIQDDENNSEMSKDWQKEKMCNKI
İ				NKVNSEGEFDKDRDSISETVDLNNQETVKVQIHSRASEYITDV
				HSNDLSTPQILPSNEGVNPRLSASPPKSGNLWPGLAPPHKKAQ
1		1		SASPKRKKQHKKYRSVISDIFDGTIISSVQCLTCDRVSVTLET
1		ł	ł	FQDLSLPIPGKEDLAKLHSSSHPTSIVKAGSCGEAYAPQGWIA
				FFMEYVKRFVVSCVPSWFWGPVVTLQDCLAAFFARDELKGDNM
]		YSCEKCKKLRNGVKFCKVQNFPEILCIHLKRFRHELMFSTKIS
1		1		THVSFPLEGLDLQPFLAKDSPAQIVTYDLLSVICHHGTASSGH
1	ļ	1	l	YIAYCRNNLNNLWYEFDDQSVTEVSESTVQNAEAYVLFYRKSS
İ			ĺ	EEAQKERRRISNLLNIMEPSLLQFYISRQWLNKFKTFAEPGPI
				SNNDFLCIHGGVPPRKAGYIEDLVLMLPQNIWDNLYSRYGGGP
				AVNHLYICHTCQIEAEKIEKRRKTELEIFIRLNRAFQKEDSPA
			i	TFYCISMQWFREWESFVKGKDGDPPGPIDNTKIAVTKCGNVML
]		RQGADSGQISEETWNFLQSIYGGGPEVILRPPVVHVDPDILQA
		[EEKIEVETRSL
566	1305	28	450	SPSAAGGLAWVSLALGSGSRGRDHSGSGVGTAMAGALVRKAAD
ļ				YVRSKDFRDYLMSTHFWGPVANWGLPIAAINDMKKSPEIISGR
		1		MTFALCCYSLTFMRFAYKVQPRNWLLFACHATNEVAQLIQGGR
]		LIKHEMTKTASA
567	1306	133	1292	LGSRQAAGTMRGQRSLLLGPARLCLRLLLLLGYRRRCPPLLRG
				LVQRWRYGKVCLRSLLYNSFGGSDTAVDAAFEPVYWLVDNVIR
1	1 .	1		WFGVVFVVLVIVLTGSIVAIAYLCVLPLILRTYSVPRLCWHFF
]]		
			,	YSHWNLILIVFHYYQAITTPPGYPPQGRNDIATVSICKKCIYP
ļ				KPARTHHCSICNRCVLKMDHHCPWLNNCVGHYNHRYFFSFCFF
1		1		MTLGCVYCSYGSWDLFREAYAAIEKMKQLDKNKLQAVANQTYH
				QTPPPTFSFRERMTHKSLVYLWFLCSSVALALGALTVWHAVLI
]		}		SRGETSIERHINKKERRRLQAKGRVFRNPYNYGCLDNWKVFLG
				VDTGRHWLTRVLLPSSHLPHGNGMSWEPPPWVTAHSASVMAV
568	1307	66	962	ATRRRAAEAGMAAVLQRVERLSNRVVRVLGCNPGPMTLQGTNT
				YLVGTGPRRILIDTGEPAIPEYISCLKQALTEFNTAIQEIVVT
				HWHRDHSGGIGDICKSINNDTTYCIKKLPRNPQREEIIGNGEQ
			,	QYVYLKDGDVIKTEGATLRVLYTPGHTDDHMALLLEEENAIFS
1				GDCILGEGTTVFEDLYDYMNSLKELLKIKADIIYPGHGPVIHN
				AEAKIQQYISHRNIREQQILTLFRENFEKSFTVMELVKIIYKN
L	L	L		TPENLHEMAKHNLLLHLKKLEKEGKIFSNTDPDKKWKAHL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
569	1308	96	1017	ELHRAGQVAGGARRSRRESMELERTVSAALLAFVQTHLPEADL SGLDEVIFSYVLGVLEDLGPSGPSEENFDMEAFTEMMEAYVPG FAHIPRGTIGDMMQKLSGQLSDARNKENLQPQSSGVQGQVPIS PEPLQRPEMLKEETRSSAAAAADTQDEATGAEEELLPGVDVLL EVFPTCSVEQAQWVLAKARGDLEEAVQMLVEGKEEGPAAWEGP NQDLPRRLRGPQKDELKSFILQKYMMVDSAEDQKIHRPMAPKE APKKLIRYIDNQVVSTKGERFKDVRNPEAEEMKATYINLKPAR KYRFH
570	1309	3	526	FITGKGIVAILRCLQFNETLTELRFHNQRHMLGHHAEMEIARL LKANNTLLKMGYHFELPGPRMVVTNLLTRNQDKQRQKRQEEQK QQQLKEQKKLIAMLENGLGLPPGMWELLGGPKPDSRMQEFFQP PPPRPPNPQNVPFSQRSEMMKKPSQAPKYRTDPDSFRVVKLKR IQ
571	1310	3	1858	GGRAGTQCCWRAGARLRGISPSPALPEAPGLCRVRAGLGAGAL GRSPAGRRRGPRVSSSPAPHPRRVLCRCLLFLFFSCHDRRGD SQPYQALKYSSKSHPSSGDHRHEKMRDAGDPSPPNKMLRRSDS PENKYSDSTGHSKAKNVHTHRVRERDGGTSYSPQENSHNHSAL HSSNFTFFLIPSN*PQGKTFRIAPYDS\ADDW/SLEHISSSGE KYYYNCRTEVSQWGKTPKSGLERGQRQKEANKMAVNSFPKDRD YRREVMQATATSGFASGKSTSGDKPVSHSCTTPSTSSASGLNP TSAPPTSASA\VPVSP\VPQ\SPIPPLLQDPNLLRQLL\PALE ATLQLNNSNVDI\SIINEVLTGDVTQASLQTIIHKCLTAGPSV FKITSLISQAAQLSTQAQASNQSPMSLTSDASSPR\SYVSPRN KAHLKLNTVPIQTFGFSTPPVSSQPKVSTPVVKQGPVSQSATQ QPVTADKQQGHEPVSPRSLQRSSSQRSPSPGPNHTSNSSNASN ATVVPQNSSARSTCSLTPALAAHFSENLIKHVQGWPADHAEKQ ASRLREEAHNMGTIHMSEICTELKNLRSLVRVCEIQATLREQR ILFLRQQIKELEKLKNQNSFMV
572	1311	2	1165	VAPECRGAYPFRAMMPGTALKAVLLAVLLVGLQTATGRLLSGQ PVCRGGTQRPCYKVIYFHDTSRRLNFEEAKEACRRDGGQLVSI ESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPY MFQWNDDRCNMKNNFICKYSDEKPAVPSREAEGEETELTTPVL PEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLVVTTVV CWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIR KQSEADLAETRPDLKNISFRVCSGEATPDDMSCDYDNMAVNPS ESGFVTLVSVESGFVTNDIYEFSPDQMGRSKESGWVENEIYGY

) .

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
573	1312	3	1416	TEWGLSGSCPGCSPLEPGSRGRGAAAWRILRCRRLPEPSPFLT QPNLAQSQPPAPVPVTDPSVTMHPAVFLSLPDLRCSLLLLVTW VFTPVTTEITSLDTENIDEILNNADVALVNFYADWCRFSQMLH PIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYP TLKLFRNGMMMKREYRGQRSVKALADYIRQQKSDPIQEIRDLA EITTLDRSKRNIIGYFEQKDSDNYRVFERVANILHDDCAFLSA FGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWI QDKCVPLVREITFENGEELTEEGLPFLILFHMKEDTESLEIFQ NEVARQLISEKGTINFLHADCDKFRHPLLHIQKTPADCPVIAI DSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDP TDTAPGEQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL
574	1313	928	142	LTPSVGPVFPGRPTRPLASPFPVPLHRCSAGSQPPGPVPEGLI RIYSMRFCPYSHRTRLVLKAKDIRHEVVNINLRNKPEWYYTKH PFGHIPVLETSQCQLIYESVIACEYLDDAYPGRKLFPYDPYER ARQKMLLELFCKVPHLTKECLVALRCGRECTNLKAALRQEFSN LEEILEYQNTTFFGGTCISMIDYLLWPWFERLDVYGILDCVSH TPALRLWISAMKWDPTVCALLMDKSIFQGFLNLYFQNNPNAFD FGLC
575	1314	884	363	NTATNMTQPNAGTRKYSVPAISVHTSSSSFAYDREFLRTLPGF LIVAEIVLGLLVWTLIAGTEYFRVPAFGWVMFVAVFYWVLTVF FLIIYITMTYTRIPQVPWTTVGLCFNGSAFVLYLSAAVVDASS VSPERDSHNFNSWAASSFFAFLVTICYAGNTYFSFIAWRSRTI Q
576	1315	165	944	GLRDPFRRKRRLKPQVKMSNYVNDMWPGSPQEKDSPSTSRSGG SSRLSSRSRSFSRSSRSHSRVSSRFSSRSRRSKSRSRRR HQRKYRRYSRSYSRSRSRSRSRRYRERRYGFTRRYYRSPSRYR SRSRSRSRGRSYCGRAYAIARGQRYYGFGRTVYPEEHSRWR DRSRTRSRSRTPFRLSEKDRMELLEIAKTNAAKALGTTNIDLP ASLRTVPSAKETSRGIGVSSNGAKPEVSILGLSEQNFQKANCQ I

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
577	1316	265	2300	AEGSTMDLTKMGMIQLQNPNHPTGLLCKANQMRLAGTLCDVVI MVDSQEFHAHRTVLACTSKMFEILFHRNSQHYTLDFLSPKTFQ QILEYAYTATLQAKAEDLDDLLYAAEILEIEYLEEQCLKMLET IQASDDNDTEATMADGGAEEKKDRKARYLKNIFISKHSSEESG YASVAGQSLPGPMVDQSPSVSTSFGLSAMSPTKAAVDSLMTIG QSLLQGTLQPPAGPEEPTLAGGGRHPGVAEVKTEMMQVDEVPS QDSPGAAESSISGGMGDKVEERGKEGPGTPTRSSVITSARELH YGREESAEQVPPPAEAGQAPTGRPEHPAPPPEKHLGIYSVLPN HKADAVLSMPSSVTSGLHVQPALAVSMDFSTYGGLLPQGFIQR ELFSKLGELAVGMKSESRTIGEQCSVCGVELPDNEAVEQHRKL HSGMKTYGCELCGKRFLDSLRLRMHLLAHSAGAKAFVCDQCGA QFSKEDALETHRQTHTGTDMAVFCLLCGKRFQAQSALQQHMEV HAGVRSYICSECNRTFPSHTALKRHLRSHTGDHPYECEFCGSC FRDESTLKSHKRIHTGEKPYECNGCGKKFSLKHQLETHYRVHT GEKPFECKLCHQRSRDYSAMIKHLRTHNGASPYQCTICTEYCP SLSSMQKHMKGHKPEEIPPDWRIEKTYLYLCYV
578 579	1317	150	1204	IWEAPTLIFTLAGGRALGHPPMQKGSQGCALPHPLPGASLPAQ PGPADHRGWECRIGGEASVFTHLFCLPHSPT ASGSPAPSSSSAMAAACGPGAAGYCLLLGLHLFLLTAGPALGW NDPDRMLLRDVKALTLHYDRYTTSRRLDPIPQLKCVGGTAGCD SYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGY ESSEDQYVLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFSD YYYKWSSADSCNMSGLITIVVLLGIAFVVYKLFLSDGQYSPPP YSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSGF GSAFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDS WYYPSYPPSYPGTWNRAYSPLHGGSGSYSVCSNSDTKTRTASG YGGTRRR
580	1319	1208	276	GRCGAMAAGLARLLLLLGLSAGGPAPAGAAKMKVVEEPNAFGV NNPFLPQASRLQAKRDPSPVSGPVHLFRLSGKCFSLVESTYKY EFCPFHNVTQHEQTFRWNAYSGILGIWHEWEIANNTFTGMWMR DGDACRSRSRQSKVELACGKSNRLAHVSEPSTCVYALTFETPL VCHPHALLVYPTLPEALQRQWDQVEQDLADELITPQGHEKLLR TLFEDAGYLKTPEENEPTQLEGGPDSLGFETLENCRKAHKELS KEIKRLKGLLTQHGIPYTRPTETSNLEHLGHETPRAKSPEQLR GDPGLRGSL
581	1320	1074	132	NSFWSVLFLVQEETEVARCNAQHRLRQSRDSKPDPSFRSQPID SSISFAGSDIQPLFSFASVDGTQVGEAEEWAGPWAEATLLPGP GNRWPPRAGLSGNWLEEDGDWPSLPEVVGFVSERELFRDALGA GCRILLICEMQLTHQLDLFPECRVTLLLFKDVKNAGDLRRKAM EGTIDGSLINPTVIVDPFQILVAANKAVHLYKLGKMKTRTLST EIIFNLSPNNNISEALKKFGISANDTSILIVYIEEGEKQINQE YLISQVEGHQVSLKNLPEIMNITEVKKIYKLSSQEESIGTLLD AIICRMSTKDVL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
582	1321	5021	7694	QRSWAGPGAGPEAGTRPPARGRRRQPGNVDPRRRAPQLRSQMQ VAMARATTATGNRLWPGLLIMLGSLCHRGSPCGLSTHIEIGHR ALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSICKGG KFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLFG ITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFG GDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVI VDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLVEQFQEYFLGG LDDMAFWSTNIYHLTIFMLENGTSDCNLPENPLFIACGGQQNH TQGSKMQKNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTP DSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPYA RLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGN DLGLPPVDLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVP DLAVGAPSVGSEQLTYKGAVYVYFGSKQGGMSSSPNITISCQD IYCNLGWTLLAADVNGDSEPDLVIGSPFAPGGGKQKGIVAAFY SGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTL LLVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFT ISGDKAMGKLGTSLSSGHVLMNGTLKQVLLVGAPTYDDVSKVA FLTVTLHQGGATRMYALTSDAQPLLLSTFSGDRRFSRFGGVLH LSDLDDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKET TLGDMTGKCKSWITPCPEEKAQYVLISPEASSRFGSSLITVRS KAKNQVVIAAGRSSLGARLSGALHVYSLGSD
583	1322	1	357	SLRNSARGLKMAASAARGAAALRRSINQPVAFVRRIPWTAASS QLKEHFAQFGHVRRCILPFDKETGFHRGLGWVQFSSEEGLRNA LQQENHIIDGVKVQVHTRRPKLPQTSDDEKKDF
584	1323	1205	433	GSSNIHSASTHGFCHWFSSPSTLKRQKQAIRFQKIRRQMEAPG APPRTLTWEAMEQIRYLHEEFPESWSVPRLAEGFDVSTDVIRR VLKSKFLPTLEQKLKQDQKVLKKAGLAHSLQHLRGSGNTSKLL PAGHSVSGSLLMPGHEASSKDPNHSTALKVIESDTHRTNTPRR RKGRNKEIQDLEESFVPVAAPLGHPRELQKYSSDSESPRGTGS GALPSGQKLEELKAEEPDNFSSKVVQRGREFFDSNGNFLYRI
585	1324	134	954	ETRVKTSLELLRTQLEPTGTVGNTIMTSQPVPNETIIVLPSNV INFSQAEKPEPTNQGQDSLKKHLHAEIKVIGTIQILCGMMVLS LGIILASASFSPNFTQVTSTLLNSAYPFIGPFFFIISGSLSIA TEKRLTKLLVHSSLVGSILSALSALVGFIILSVKQATLNPASL QCELDKNNIPTRSYVSYFYHDSLYTTDCYTAKASLAGTLSLML ICTLLEFCLAVLTAVLRWKQAYSDFPGSVLFLPHSYIGNSGMS SKMTHDCGYEELLTS

CCC	CEO	Predicted	Predicted	A 11
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ì		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	\-possible flucteoride filsertion)
		of amino	of amino	
ł	1	acid	acid	
		sequence	sequence	
586	1325	106	1537	EMVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGOP
300	1323	100	133.	LFLTPYIEAGKIOKGRELSLVGPFPGLNMKSYAGFLTVNKTYN
}	Ì	Į		SNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGPYV
			Ì	VTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVN
	Ì			
	!		1	EDDVARDLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIA
	1	1		HLIHSLNPVREVKINLNGIAIGDGYSDPESIIGGYAEFLYQIG
		[1	LLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTS
1				DPSYFQNVTGCSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIH
		1		VGNQTFNDGTIVEKYLREDTVQSVKPWLTEIMNNYKVLIYNGQ
			ļ	LDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVA
	1	1	i	GYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWD
			1	PYVG
587	1326	883	541	RDERAKVPFRSTEG\GRRRRRRMEAVVFVFSLLDCCALIFLSV
		ł	İ	YFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLM
1	l	i	(SLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQL
1		ł		KSHMKEAMIKLGFHLLCFFMYLYSMILALIND
588	1327	1126	732	QSPGHGAPCQLSSSHSRSNRLLSPMARATLSAAPSNPRLLRVA
				LLLLLLVAASRRAAGAPLATELRCQCLQTLQGIHLKNIQSVKV
i	1	ľ	1	KSPGPHCAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGK
1				SN
589	1328	197	330	HPLSLVFLALNTGKEKSHPGGGGERPGLAGQGEPDHPAGARDG
		1		R
590	1329	1	1575	CTPVARSMATTATCTRFTDDYOLFEELGKGAFSVVRRCVKKTS
		_		TQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDS
		1	}	ISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQILE
		1		SVNHIHOHDIVHRDLKPENLLLASKCKGAAVKLADFGLAIEVO
ļ	}	1	Į	GEQQAWFGFAGTPGYLSPEVLRKDPYGKPVDIWACGVILYILL
1				VGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDTVTPEAKNLINQ
	[1	}	MLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECLRKF
				NARRKLKGAILTTMLVSRNFSAAKSLLNKKSDGGVKPQSNNKN
]			
	1			EDLKVRKQEIIKITEQLIEAINNGDFEAYTKICDPGLTSFEPE
	1	1		
	1			ALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPHVHVIGEDA
				ACIAYIRLTQYIDGQGRPRTSQSEETRVWHRRDGKWLNVHYHC
				SGAPAAPLQ
591	1330	17	636	NRRTVKMLLELSEEHKEHLAFLPQVDSAVVAEFGRIAVEFLRR
1			1	GANPKIYEGAARKLNVSSDTVQHGVEGLTYLLTESSKLMISEL
<i>,</i>		1	ŀ	DFQDSVFVLGFSEELNKLLLQLYLDNRKEIRTILSEL\APSLP
1	1			SYHNLEWRLDVQLASRSLRQQIKPAVTIKLHLNQNGDHNTKVL
	1	1		QTDPATLLHLVQQLEQALEEMKTNHCRRVVRNIK
592	1331	1	237	GTSIYLAHRVA\RAWELAQFIHHTSKKADVVLACGDSIVHPED
				LICCPLTGRSCLCDVHLLSSLLARLGRGYAVSLTNL
				

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	A=Onknown, *=Stop Codon, /=possible nucleotide deletion,
	ĺ	residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
Ì		acid	acid	
[1	sequence	sequence	
593	1332	2506	1684	RGCGSCGYKPSAGPAWRPRPPPAVSPLRHPEPAKVLSFSSCPL
i				PALGRTGPSRAARAQSLTMASLFKKKTVDDVIKEQNRELRGTQ
				RAIIRDRAALEKQEKQLELEIKKMAKIGNKEACKVLAKOLVHL
1				RKQKTRTFAVSSKVTSMSTQTKVMNSQMKMAGAMSTTAKTMQA
ł				VNKKMDPQKTLQTMQNFQKENMKMEMTEEMINDTLDDIFDGSD
İ	ł		ļ	DEEESQDIVNQVLDEIGIEISGKMAKAPSAARSLPSASTSKAT
	1		l	ISDEEIERQLKALGVD
594	1333	905	432	STDGNGAERLFAELRKMNARGLGSELKDSIPVTELSASGPFES
1		1		HDLLRKGFSCVKNELLPSHPLELSEKNFQLNQDKMNFSTLRNI
ŀ				QGLFAPLKLQMEFKAVQQVQRLPFLSSSNLSLDVLRGNDETIG
		ļ		FEDILNDPSQSEVMGEPHLMVEYKLGLL
595	1334	111	117	RNMKLHYVAVLTLAILMFLTWLPESLSCNKALCASDVSKCLIQ
				ELCQCRPGEGNCSCCKECMLCLGALWDECCDCVGMCNPRNYSD
				TPPTSKSTVEELHEPIPSLFRALTEGDTQLNWNIVSFPVAEEL
	1		1	SHHENLVSFLETVNQPHHQNVSVPSNNVHAPYSSDK/E*LPTV
		}		DFFHSAPSCGLSM*SIIFFEET
596	1335	817	278	VGGVPTWLEGCGSGNPSPRSGGGPGARLTLPALQMTVHNLYLF
İ		ŀ	ĺ	DRNGVCLHYSEWHRKKQAGIPKEEEYKLMYGMLFSIRSFVSKM
	1	1		SPLDMKDGFLAFQTSRYKLHYYETPTGIKVVMNTDLGVGPIRD
		1		VLHHIYSALYVELVVKNPLCPLGQTVQSELFRSRLDSYVRSLP
				FFSARAG
597	1336	171	881	PGLSQEPSGSMETVVIVAIGVLATIFLASFAALVLVCRORYCR
				PRDLLQRYDSKPIVDLIGAMETQSEPSELELDDVVITNPHIEA
		İ	1	ILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKM
				KTSASVSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTAL
		1		LLSVSHLVLVTRNACHLTGGLDWIDQSLSAAEEHLEVLREAAL
				ASEPDKGLPGPEGFLQEQSAI
598	1337	1078	594	VGMELPAVNLKVILLGHWLLTTWGCIVFSGSYAWANFTILALG
]		VWAVAQRDSIDAISMFLGGLLATIFLDIVHISIFYPRVSLTDT
	1			GRFGVGMAILSLLLKPLSCCFVYHMYRERGGELLVHTGFLGSS
				QDRSAYQTIDSAEAPADPFAVPEGRSQDARGY
599	1338	717	116	PASRPLLGPDTGSVANIFKGLVILPEMSLVIRNLQRVIPIRRA
				PLRSKIEIVRRILGVQKFDLGIICVDNKNIQHINRIYRDRNVP
				TDVLSFPFHEHLKAGEFPQPDFPDDYNLGDIFLGVEYIFHQCK
				ENEDYNDVLTVTATHGLCHLLGFTHGTEAEWQQMFQKEKAVLD
				ELGRRTGTRLQPLTPGPLPEGAEGRVPF
600	1339	1	804	LRNALDVLHREVPRVLVNLVDFLNPTIMRQVFLGNPDKCPVQQ
		1		A/MLEPLGSKTETLDLRAEMPITCPTQNEPFLRTPRNSNYTYP
				IKPAIENWGSDFLCTEWKASNSVPTSVHQLRPADIKVVAALGD
	1		1	SLTTAVGARPNNSSDLPTSWRGLSWSIGGDGNLETHTTLPNIL
				KKFNPYLLGFSTSTWEGTAGLNVAAEGARARDMPAOAWDLVER
				MKNSPDINLEKDWKLVTLFIGGNDLCHYCENPEAHLATEYVQH
]		1	IQQALDILSE
				J

CEO	CCO.	D	Ddiana	
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
[sequence	sequence	·
601	1340	1	860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK
		J ⁻	***	VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
		ł	l	ONKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
	<u> </u>			YLALMOKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
	1		Į.	LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
	}		1	EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
1	1			DERVISAATDRICSLOEEQQQLREQNELIR
602	1341	60	762	KPEGARRVOFVMGLFGKTOEKPPKELVNEWSLKIRKEMRVVDR
002	1341	١٥٥	/02	QIRDIQREEEKVKRSVKDAAKKGQKDVCIVLAKEMIRSRKAVS
	1	İ	ļ	KLYASKAHMNSVLMGMKNQLAVLRVAGSLQKSTEVMKAMQSLV
İ		{	į	KIPEIQATMRELSKEMMKAGIIEEMLEDTFESMDDQEEMEEEA
				EMEIDRILFEITAGALGKAPSKVTDALPEPEPPGAMAASEDEE
			<u> </u>	EEEEALEAMQSRLATLRS
603	1342	3	456	RWNSIMELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPI
İ	<u> </u>	İ	1.	LSYWPYGCHCGLGGRGQPKDATDWCCQTHDCCYDHLKTQGCGI
				YKDYYRYNFSQGNIHCSDKGSWCEQQLCACDKEVAFCLKRNLD
		<u> </u>		TYQKRLRFYWRPHCRGQTPGC
604	1343	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
				INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
		•		FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
605	1344	2	382	LPLTLLLAAPFAHLLLPPGHDQSPCWHPGPALSPGTLGPLSWA
]	ł	MANSGLQLLGYFLALGGWVGIIASTALPQWKQSSYAGDASIQL
		1		RSKVFVLESEWGGDSLGLPRDCGWSCLLHSAVRSEKGFWS
606	1345	2	987	DPRVRPPLLQPPPPLLPRLVILKMAPLDLDKYVEIARLCKYLP
ĺ	Ì	1	1	ENDLKRLCDYVCDLLLEESNVQPVSTPVTVCGDIHGQFYDLCE
				LFRTGGQVPDTNYIFMGDFVDRGYYSLETFTYLLALKAKWPDR
			1	ITLLRGNHESRQITQVYGFYDECQTKYGNANAWRYCTKVFDML
l	}	}	ł	TVAALIDEQILCVHGGLSPDIKTLDQIRTIERNQEIPHKGAFC
İ		1	İ	DLVWSDPEDVDTWAISPRGAGWLFGAKVTNEFVHINNLKLICR
ļ				AHQLVHEGYKFMFDEKLVTVWSAPNYCYRCGNIASIMVFKDVN
†	İ	ļ		TREPKLFRAVPDSERVIPPRTTTPYFL
607	1346	10	768	SFAGAAARPSTPPASGRGAAPGRPGPSPMDLRAGDSWGMLACL
				CTVLWHLPAVPALNRTGDPGPGPSIQKTYDLTRYLEHQLRSLA
1				GTYLNYLGPPFNEPDFNPPRLGAETLPRATVDLEVWRSLNDKL
1	}	1		RLTQNYEAYSHLLCYLRGLNRQAATAELRRSLAHFCTSLQGLL
				GSIAGVMAALGYPLPQPLPGTEPTWTPGPAHSDFLQKMDDFWL
				LKELQTWLWRSAKDFNRLKKKMQPPAAAVTLHLGAHGF
608	1347	114	700	IKISLKKRSMSGISGCPFFLWGLLALLGLALVISLIFNISHYV
338	134/		1 , 33	EKORODKMYSYSSDHTRVDEYYIEDTPIYGNLDDMISEPMDEN
				CYEOMKARPEKSVNKMQEATPSAQATNETOMCYASLDHSVKGK
-			1	
1				RRKPRKQNTHFSDKDGDEQLHAIDASVSKTTLVDSFSPESQAV
L	<u> </u>	<u></u>	L	EENIHDDPIRLFGLIRAKREPIN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
609	1348	2	807	VEFHPQRARAGARAPSMGVLLTQRTLLSLVLALLFPSMASMAA IGSCSKEYRVLLGQLQKQTDLMQDTSRLLDPYIRIQGLDVPKL REHCRERPGAFPSEETLRGLGRRCFLQTLNATLGCVLHRLADL EQRLPKAQDLERSGLNIEDLEKLQMARPNILGLRNNIYCMAQL LDNSDTAEPTKAGRGASQPPTPTPASDAFQRKLEGCRFLHGYH RFMHSVGRVFSKWGESPNRSRRHSPHQALRKGVRRTRPSRKGK RLMTRGQLPR
610	1349	2	418	DFPGRRFRLVWLLVLRLPWRVPGQLDPTTGRRFSEHKLCADDE CSMLMYRGEALEDFTGPDCRFVNFKKGDPVYVYYKLARGWPEV WAGSVGRTFGYFPKDLIQVVHEYTKEELQVPTNETDFVCFDGG RDDFHNYNV
611	1350	823	115	SPLGKEGQEEVRVKIKDLNEHIVCCLCAGYFVDATTITECLHT FCKSCIVKYLQTSKYCPMCNIKIHETQPLLNLKLDRVMQDIVY KLVPGLQDSEEKRIREFYQSRGLDRVTQPTGEEPALSNLGLPF SSFDHSKAHYYRYDEQLNLCLERLSSGKDKNKSVLQNKYVRCS VRAEVRHLRRVLCHRLMLNPQHVQLLFDNEVLPDHMTMKQIWL SRWFGKPSPLLLQYSVKEKRR
612	1351	9	545	LWWYSAHAAVDAMMDVFGVGFPSKVPWKKMSAEELENQYCPSR WVVRLGAEEALRTYSQIGIEATTRARATRKSLLHVPYGDGEGE KVDIYFPDESSEATTRARATRKSLLHVPYGDGEGEKVDIYFPD ESSEALPFFLFFHGGYWQSGRHPGPHGRPGDPQRCVCPEAVSK QQAFSW
613	1352	49	902	GVRMASRGRRPEHGGPPELFYDETEARKYVRNSRMIDIQTRMA GRALELLYLPENKPCYLLDIGCGTGLSGSYLSDEGHYWVGLDI SPAMLDEAVDREIEGDLLLGDMGQGIPFKPGTFDGCISISAVQ WLCNANKKSENPAKRLYCFFASLFSVLVRGSRAVLQLYPENSE QLELITTQATKAGFSGGMVVDYPNSAKAKKFYLCLFSGPSTFI PEGLSENQDEVEPRESVFTNERFPLRMSRRGMVRKSRAWVLEK KERHRRQGREVRPDTQYTGRKRKPRF
614	1353	1960	871	TLICRMAGCGEIDHSINMLPTNRKANESCSNTAPSLTVPECAT CLQTCVHPVSLPCKHVFCYLCVKGASWLGKRCALCRQEIPEDF LDKPTLLSPEELKAASRGNGEYAWYYEGRNGWWQYDERTSREL EDAFSKGKKNTEMLIAGFLYVADLENMVQYRRNEHGRRRKIKR DIIDIPKKGVAGLRLDCDANTVNLARESSADGADSVSAQSGAS VQPLVSSVRPLTSVDGQLTSPATPSPDASTSLEDSFAHLQLSG DNTAERSHRGEGEEDHESPSSGRVPAPDTSIEETESDASSDSE DVSAVVAQHSLTQQRLLVSNANQTVPDRSDRSGTDRSVAGGGT VSVSVRSRRPDGQCTVTEV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
615	1354	5653	4549	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK HCFMMPQSLGVIGGKPNSAHYFIGYVGEELIYLDPHTTQPAVE PTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLSTQAF GAECCLGMTRKTFGFLRFFFSMLG
616	1355	416	65	PTTSNRAITLTAWPKIPFLGICEAKNPRSENMRLATILEVACH HLGSGPPPSWELWEQGPPGNSSRYIEFLNKHTYIKGTLRVYTK KFCMLVIKSFESKSCVCVYDFDSKSSVNVTV
617	1356	2	382	PRVRFRLLHVTSIRSAWILCGIIWILIMASSIMLLDSGSEQNG SVTSCLELNLYKIAKLQTVNYIALVVGCLLPFFTLSICYLLII RVLLKVEVPESGLRVSHRKALTTIIITLIIFFLCFLPYHT
618	1357	3	672	GRHWLGSAQLTDGGSARKPKMAVPAALILRESPSMKKAVSLIN AIDTGRFPRLLTRILQKLHLKAESSFSEEEEEKLQAAFSLEKQ DLHLVLETISFILEQAVYHNVKPAALQQQLENIHLRQDKAEAF VNTWSSMGQETVEKFRQRILAPCKLETVGWQLNLQMAHSAQAK LKSPQAVLQLGVNNEDSKSLEKVLVEFSHKELFDFYNKLETIQ AQLDSLT
619	1358	557	208	EASSAKTKRKEEKGPKAKMKLMVLVFTIGLTLLLGVQAMPANR LSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGCEMI CYCNFSELLCCPKDVFFGPKISFVIPCNNQ
620	1359	335	1735	KMAEAVFHAPKRKRRVYETYESPLPIPFGQDHGPLKEFKIFRA EMINNNVIVRNAEDIEQLYGKGYFGKGILSRSRPSFTISDPKL VAKWKDMKTNMPIITSKRYQHSVEWAAELMRRQGQDESTVRRI LKDYTKPLEHPPVKRNEEAQVHDKLNSGMVSNMEGTAGGERPS VVNGDSGKSGGVGDPREPLGCLQEGSGCHPTTESFEKSVREDA SPLPHVCCCKQDALILQRGLHHEDGSQHIGLLHPGDRGPDHEY VLVEEAECAMSEREAAPNEELVQRNRLICRRNPYRIFEYLQLS LEEAFFLVYALGCLSIYYEKEPLTIVKLWKAFTVVQPTFRTTY MAYHYFRSKGWVPKVGLKYGTDLLLYRKGPPFYHASYSVIIEL VDDHFEGSLRRPLSWKSLAALSRVSVNVSKELMLCYLIKPSTM TDKEMESPECMKRIKVQEVILSRWVSSRERSDQDDL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		acid sequence	acid sequence	
621	1360	5693	4435	RDIWTMNLQRYWGEIPISSSQTNRSSFDLLPREFRLVEVHDPP LHQPSANKPKPPTMLDIPSEPCSLTIHTIQLIQHNRRLRNLIA TAQAQNQQQTEGVKTEESEPLPSCPGSPPLPDDLLPLDCKNPN APFQIRHSDPESDFYRGKGEPVTELSWHSCRQLLYQAVATILA HAGFDCANESVLETLTDVAHEYCLKFTKLLRFAVDREARLGQT PFPDVMEQVFHEVGIGSVLSLQKFWQHRIKDYHSYMLQISKQL SEEYERIVNPEKATEDAKPVKIKEEPVSDITFPVSEELEADLA SGDQSLPMGVLGAQSERFPSNLEVEASPQASSAEVNASPLWNL AHVKMEPQESEEGNVSGHGVLGSDVFEEPMSGMSEAGIPQSPD DSDSSYGSHSTDSLMGSSPVFNQRCKKRMRKI
622	1361	15	678	REQILFIEIRDTAKGGETEQPPSLSPLHGGRMPEMGEGIQSLA RETQSHRGRRQGWDATWVTRCRESLNRGGAGAGKRAGALAHHV FLALIEPNLAEREASEEEVKACSDETVVADLLVKVVYVLGAIL KIFLREGNVLNQHSGMDIEKYSEHYQHDHSPGAEDDAAGGQLR PTAQERRHKEGSRGSPRCKRARKAVGESPGCPRPRVRPRVRPR VRPRV
623	1362	1080	835	GTRGCCREGTAYAKAYQFMASHLSLGKPVSTGSIPRFNKALFN KQAKCKPNHYSFIGLSMLSPENFSIGCKYSVWFSETKGF
624	1363	872	441	GAQGVRVGIGEVGRVQAPRVSLLHSQGVPRGGTGEAVKEEGRG SSLHPPLPPQGLGEYAACQSHAFMKGVFTFVTGTGMAFGLQMF IQRKFPYPLQWSLLVAVVAGSVVSYGVTRVESEKCNNLWLFLE TGQLPKDRSTDQRS
625	1364	1	585	GTSELLCIQRWNWGPAFPPRPGLALAPTLQLLVEMGSAKSVPV TPARPPPHNKHLARVADPRSPSAGILRTPIQVESSPQPGLPAG EQLEGLKHAQDSDPRSPLGKN*GHGWQVGQGSDLGSPQPLPPS ASHL/YSSRASRCSQPPCLSLPWFGVRSSPANTYHVPVTSLCP SPALHYTALQAGIISTSQARAPR
626	1365	36	381	PLLLPRFIDIPCLLCYLTQVTPDDMYAKAFLIKPNTAITGTDR RKL\RADETTDFP\TLGTDQIYELLPGKDELNIVKSNAHKRDA *TAYVSGENHILSEP*KNLYPAVNTLSSYP
627	1366	763	1003	SRQPPPLLTMVFLLEFLFLVFFPGCVNQLLLSYPWQGQGTSLW SSLSFHWLLPQEDSSRLSIFPLRAGSPPQPAQAPQRI
628	1367	296	1199	KSREQSSLFAADAERSWGGKSCCLLRWRFVGKASHFPRLLPLP GEERPETKERAWKMEQTWTRDYFAEDDGEMVPRTSHTA/ASVS LTAFLSDTKDRGPPVQSQIWRSGEKVPFVQTYSLRAFEKPPQV QTQALRDFEKHLNDLKKENFSLKLLIYFLEERMQQKYEASRED IYKRNTELKVEVESLKRELQDKKQHLDKTWADVENLNSQNEAE LRRQFEERQQEMEHVYELLENKMQLLQEESRLAKNEAARMAAL VEAEKECNLELSEKLKGVTKNWEDVPGDQVKPDQYTEALAQRD K

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110103	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	
	ł	of amino	of amino	
	i	acid	acid	
		sequence	sequence	
629	1368	191	1116	TRREGTTWRSPRPRRASTSRPSTRPRGVASWPWETAGTATTGP
1	1			GPSARTRRAARRRRSRPRRRAHGGLSQPAGWQSLLSFTILFL
		ł		AWLAGFSSRLFAVIRFESIIHEFDPWFNYRSTHHLASHGFYEF
			1	LNWFDERAWYPLGRIVGGTVYPGLMITAGLIHWILNTLNITVH
	[i	l .	IRDVCVFLAPTFSGLTSISTFLLTRELWNQGAGLLAACFIAIV
1	İ			PGYISRSVAGSFDNEGIAIFALQFTYYLWVKSVKTGSVFWTMC
	1		1	CCLSYFYMVSAWGGYVFIINLIPLHAFVLVLM/Q/RYSKRVYI
			l	*YSTFYIVG
630	1369	852	214	RRLIVVLSDAFLSRAWCSHSF/RVGPARGWVGPSVAPTPLTVP
1	[1	PRREGLCRLLELTRRPIFITFEGQRRDPAHPALRLLRQHRHLV
ļ			İ	TLLLWRPGSVTPSSDFWKEVQLALPRKVRYRPVEGDPQTQLQD
				DKDPMLILRGRVPEGRALDSEVDPDPEGDLGVRGPVFGEPSAP
l				PHTSGVSLGESRSSEVDVSDLGSRNYSARTDFYCLVSKDDM
631	1370	246	1091	LSHEGWRRGREGERINSSVASLAPLCILPDLPSNMHLARLVGS
	ł	l		CSLLLLIGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALD
1	1]	1	GINSGITHAGREVEKVFNGLSNMGSHTGKELDKGVQGLNHGMD
	ļ	1	ļ	KVAHEINHGIGQAGKEAEKLGHGVNNAAGQAGKEADKAVQGFH
	}		İ	TGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAG
1	1 ''		ļ	KELQNAHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLAS
				GASVNTPFINLPALWRSVANIMP
632	1371	3150	2792	SASGGLGMTVEGPEGSEREHRPPEKPPRPPRPLHLSDRSFRRK
	Ì		ļ	KDSVESHPTWVDDTRIDADAIVEKIVQSQDFTDGSNTEDSNLR
			1	LFVSRDGSATLSGIQLATRVSSGVYEPVVIESH
633	1372	667	993	ERSGWPQPEGTVTAQGPLFWERLSGAVTVSSGYKADMWPSFPQ
	İ			\VRVGSFLFGILFFSFGSSSLPPGLPPPASLLCCAVQWGARAL
			}	FLPCLKERALGMEMRNNTLSFRQ
634	1373	636	2	SSSNLRLSFLINENILGKCFRSGPSCAGPRISPLAAQYECPRP
İ			1	SLLIMASVPKTNKIEPRSYSIIPSCGI\RRLGPALNTLIF\QS
				KRFGPRG\HSAKSIEGAPRGKGRGRAVARLAADRPPAPKIQLR
	1			AF*LQQL*YTLLELELPRLLAPDLPSNGSSLKDLKWTHSNYRA
1	1		_	SKESCIVIF\VTTSPGREWVICALAAFLGCGS\LSQAPSPES
635	1374	61	519	LRIINTYFCFKFLIVNYIHGTTKARKPHVLGESLISAMSRQEP
				KMFVLLYVTSFAICASGQPRGNQLKGENYSPRYICSIPGLPGP
				PGPPGANGSPGPHGRIGLPGRDGRDGRKGEKGEKGTAGLRGKT
				GPLGLAGEKGDQGETGKKGPIGPE
636	1375	129	579	FASAMLGSRVDRPKLSVAPSVVLEEDQVLVSPAVDLEAGCRLR
				DFTEKIMNVKGKVILSMLVVSTVIIVFWEFINSTEGSFLWIYH
	i			SKNPEVDDSSAQKGWWFLSWFNNGIHNYQQGEEDIDKEKGREE
}	1			TKGRKMTQQSFGYGTGLIQT
L	1			I

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1376	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				LSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLE HRSYCSAKARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQI SPVWLQLKRRGREMFEVTGLHDVDQGWMRAVRKHAKGLHIVPR LLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGFVVE VWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWV RACVQVLDPKSKWRSKILLGLNFYGMDYATSKDAREPVVGARY IQTLKDHRPRMVWDSQVSEHFFEYKKSRSGRHVVFYPTLKSLQ VRLELARELGVGVSIWELGQGLDYFYDLL
638	1377	998	48	GREGTGWGPAMSEVTRSLLQRWGASFRRGADFDSWGQLVEAID EYQILARHLQKEAQAQHNNSEFTEEQKKTIGKIATCLELRSAA LQSTQSQEEFKLEDLKKLEPILKNILTYNKEFPFDVQPVPLRR ILAPGEEENLEFEEDEEGGAGAGSPDSFPARVPGTLLPRLPS EPGMTLLTIRIEKIGLKDAGQCINPYITVSVKDLNGIDLTPVQ DTPVASRKEDTYVHFNVDIELQKHVEKLTKGAAIFFEFKHYKP KKRFTSTKCFAFMEMDEIKLGPIVIELYKKPTDFKRKQLQLLT KKPLYLHLHQTLHKE
639	1378	1298	1569	GSITSEPSLDSLQPLPPGFKRFSCLSLPSSWDYRRPPPGLAYF CIFSRDEVSPCWPGCSPSPDLMIRLPRPPSVGITGVSHRAWPT IDNF
640	1379	756	1197	KMPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLW DSDILCLPGDIVPAPGPVLAPTHLQTELVLRCQKETDCDLCLR VAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLS FQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEV RIWSYTQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNV SADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLVRP PPSQVHSHCRP\CLCK\DAVPYQRGSLKRTHPKQGKIGGGTSA FLVSLTLASSSSSLSSPTSFLYLFHRLDRRSLP LRLWNRNQMMHNIIVKELIVTFFLGITVVQMLISVTGLKGVEA
642	1381	631	1278	QNGSESEVFVGKYETLVFYWPSLLCLAFLLGRFLHMFVKALRV HLGWELQVEEKSVLEVHQGEHVKQLLRIPRP KVNRKLRKKGKISHDKRKKSRSKAIGSDTSDIVHIWCPEGMKT
				SDIKELNIVLPEFEKTHLEHQQRIESKVCKAAIATFYVNVKEQ FIKMLKESQMLTNLKRKNAKMISDIEKKRQRMIEVQDELLRLE PQLKQLQTKYDELKERKSSLRNAAYFLSNLKQLYQDYSDVQAQ EPNVKETYDSSSLPALLFKARTLLGAESHLRNINHQLEKLLDQ G
643	1382	1167	755	VWVAMEEPPVREEE*EEGEEDEERDEVGPEGALGKSPFQLTAE DVYDISYLLGRELMALGSDPRVTQLQFKVVRVLEMLEALVNEG SLALEELKMERDHLRKEVEGLRRQSPPASGEWPDSTKRRPRRK KRKRCCGY

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID	beginning	end	C-Cyctains D-Aspartia Asid E-Character Asid
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, $V=$ Valine, $W=$ Tryptophan, $Y=$ Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	,
644	1383	sequence 1	sequence 271	PRNDHRLTQSRRDSSSKTRAFLVPRFLPAHAGVTSEERTAMKR
044	1363	_	2/1	EGGAAHLCSDSLPESQQQDGNHAPNFSSHGSCRRORRRHDKA
				LHAR
645	1384	1	499	THASEKSRATMSSWSRQRPKSPGGIQPHVSRTLFLLLLLAASA
073	1304	-	*,,	WGVTLSPKDCQVFRSDHGSSISCQPPAEIPGYLPADTVHLAVE
)]	FFNLTHLPANLLQGASKLQELHLSSNGLESLSPEFLRPVPQLR
			ļ	VLDLTRNALTGLPPGLFQASATLDTLVLKENOLEVLE
646	1385	178	675	ERPRIMDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLL
040	1303	1,0	10,3	WPINKQLFRKINCRLSYCISSQLVMLLEWWSGTECTIFTDPRA
				YLKYGKENAIVVLNHKF\EI\DFLCGWSLSERFGLLGVSQKCI
				PPCLTHFFGSAPPLVFLLLVIQNLQKNQQSFYLMKWS
647	1386	630	1499	MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNS
047	= 300	030	1 1 1 2 2	CICRDDSGTDDSVDTQQQQAENSAVPTADTRSQPRDPVRPPRR
				GRGPHEPRRKKQNVDGLVLDTLAVIRTLVDNDQEPPYSMITLH
	l .			EMAETDEGWLDVVQSLIRVIPLEDPLGPAVITLLLDECPLPTK
	}	ļ		DALQKLTEILNLNGEVACQDSSHPAKHRNTSAVLGCLAEKLAG
				PASIGLLSPGILEYLLQCLLQSHPTVMLFALIALEKFAQTSEN
•				KLTISESSISDRL\VTLESW\ANDPDYLKRQVG
648	1387	 1 	962	RFGTRGLAKSKGVVLMALCALTRALRSLNLAPPTVAAPAPSLF
				PAAQMMNNGLLQQPSALMLLPCRPVLTSVALNANFVSWKSRTK
				YTITPVKMRKSGGRDHTGRIRVHGIGGGHKQRYRMIDFLRFRP
·		Í		EETKSGPFEEKVIQVRYDPCRSADIALVAGGSRKRWIIATENM
	ŀ			QAGDTILNSNHIGRMAVAAREGDAHPLGALPVGTLINNVESEP
				GRGAQYIRAAGTCGVLLRKVNGTAIIQLPSKRQMQVLETCVAT
				VGRVSNVDHNKRVIGKAGRNRWLGKRPNSGRWHRKGGWAGRKI
		·		RPLPPMKSYVKLPSASAQS
649	1388	291	714	PVQGARCWLDARRNVRVFSGVCCGCGIHGYWAEPCGGCGAMEG
	Ì	1		LRSSVELDPELTPGKLDEEMVGLPPHDASPQVTFHSLDGKTVV
				CPHFMGLLLGLLLLTLSVRNQLCVRGERQLAETLHSQVKEKS
	1			QLIGKKTDCRD
650	1389	874	2220	GARGRPLAETWPFLTAPVLPGQLQITEPTMAEKGDCIASVYGY
				DLGGRFVDFQPLGFGVNGLVLSAVDSRACRKVAVKKIALSDAR
				SMKHALREIKIIRRLDHDNIVKVYEVLGPKGTDLQGELFKFSV
	1	((AYIVQEYMETDLARLLEQGTLAEEHAKLFMYQLLRGLKYIHSA
	1			NVLHRDLKPANIFISTEDLVLKIGDFGLARIVDQHYS\HKGYL
	ł			SEGLVTKWYRSPRLLLSPNNYTKAIDMWAAGCILAEMLTGRML
		1		FAGAHELEQMQLILETIPVIREEDKDELLRVMPSFVSSTWEVK
				RPLRKLLPEVNSEAIDFLEKILTFNPMDRLTAEMGLQHPYMSP
	1	1		YSCPEDEPTSQHPFRIEDEIDDIVLMAANQSQLSNWDTCSSRY
	1	ĺ		PVSLSSDLEWRPDRCQDASEVQRDPRAGSAPLAENVQVDPRKD
		1	1	SHSSSASCQAGRNGVSRYQ
		·	·	l

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
	ID ID	beginning	end	
ID		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	İ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
ł	ł	residue	residue	\=\possible flucteotide insertion)
		of amino	of amino	
1		acid	acid	
		sequence	sequence	·
651	1390	1	2451	MRTLGTCLATLAGLLLTAAGETFSGGCLFDEPYSTCGYSQSEG
031	1330	-	2-32	DDFNWEQVNTLTKPTSDPWMPSGSFMLVNASGRPEGQRAHLLL
<u> </u>]		POLKENDTHCIDFHYFVSSKSNSPPGLLNVYVKVNNGPLGNPI
				~
l	Ì			WNISGDPTRTWNRAELAISTFWPNFYQVIFEVITSGHQGYLAI
1		1		DEVKVLGHPCTRTPHFLRIQNVEVNAGQFATFQCSAIGRTVAG
1				DRLWLQGIDVRDAPLKEIKVTSSRRFIASFNVVNTTKRDAGKY
	j]	ļ	RCMI\RTEGGVGISNYAEL\VVKEPPVPIAPPQLASVGATYLW
1	1			IQLNANSINGDGPIVAREVEYCTASGSWNDRQPVDSTSYKIGH
1				LDPDTEYEISVLLTRPGEGGTGSPGPALRTRTKCADPMRGPRK
1	1	İ	ł	LEVVEVKSRQITIRWEPFGYNVTRCHSYNLTVHYCYQVGGQEQ
ŀ				VREEVSWDTENSHPQHTITNLSPYTNVSVKLILMNPEGRKESQ
				ELIVQTDEDLPGAVPTESIQGSTFEEKIFLQWREPTQTYGVIT
]]	İ	LYEITYKAVSSFDPEIDLSNQSGRVSKLGNETHFLFFGLYPGT
		1		TYSFTIRASTAKGFGPPATNQFTTKISAPSMPAYELETPLNQT
				DNTVTVMLKPAHSRGAPVSVYQIVVEEERPRRTKKTTEILKCY
		1	1	PVPIHFONASLLNSQYYFAAEFPADSLQAAQPFTIGDNKTYNG
			1	YWNTPLLPYKSYRIYFQAASRANGETKIDCVQVATKGAATPKP
· ·		1		VPEPEKOTDHTVKIAGVIAGILLFVIIFLGVVLVMKKRLYKHG
1	1	1		ASICSASGEASGSFQSWRKAKHKQACPMARAGARERAGGCLKL
652	1391	30 .	459	GIROLLOLSRASMAARKSWTALRLCATVVVLDMVVCKGFVQDL
052	1391	30	+37	DESFKENRNDDIWLVHFYAPWCGHCKKLEPIWNEAGLEMKSIG
İ		ļ	1	SPVKAGKMDATSYSSIASEFGVRGYPTIKLALIRPLPSQQMFE
	1		j	HMHKRHRVFFVYV
	1202	1.60	1016	GLVIVISHFSPSPGLLPATQSPAMSDPITLNVGGKLYTTSLAT
653	1392	168	1016	
				LTSFPDSMLGAMFSGKMPTKRDSQGNCFIDRDGKVFRYILNFL
1	1			RTSHLDLPEDFQEMGLLRREADFYQVQPLIEALQEKEVELSKA
			1	EKNAMLNITLNQRVQTVHFTVREAPQIYSLSSSSMEVFNANIF
				STSCLFLKLLGSKLFYCSNGNLSSITSHLQDPNHLTLDWVANV
	1			EGLPEEEYTKQNLKRLWVVPANKQINSFQVFVEEVLKIALSDG
[<u> </u>		FCIDSSHPHALDFMNNKIIRLIRY
654	1393	3	927	SCADNLVAASGGCWFVLGERRAGSLLSASYGTFAMPGMVLFGR
				RWAIASDDLVFPGFFELVVRVLWWIGILTLYLMHRGKLDCAGG
				ALLSSYLIVLMILLAVVICTVSAIMCVSMRGTICNPGPRKSMS
i			1	KLLYIRLALFFPEMVWASLGAAWVADGVQCDRTVVNGIIATVV
1				VSWIIIAATVVSIIIVFDPLGGKMAPYSSAGPSHLDSHDSSQL
1			1	LNGLKTAATSVWETRIKLLCCCIGKDDHTRVAFSSTAELFSTY
-				FSDTDLVPSDIAAGLALLHQQQDNIRNNO\DLPRWSAMPQGAP
			1	RKLIWMON
655	1394	1	716	FRAATAAAKGNGGGGGRAGAGDASGTRKKKGPGPLATAYLVIY
033	1334	*	1,10	NVVMTAGWLVIAVGLVRAYLAKGSYHSLYYSIEKPLKFFOTGA
		Ì	\	LLEILHCAIGIVPSSVVLTSFQVMSRVFLIWAVTHSVKEVQSE
				12
1		1	1	DSVL\FVIAWTITEIIRYSFYTFSLLNHLPYLIKRARYTLFIV
1	1	1		LYPMGVSGELLTIYAALPFVRQAGLYSISLPNSTKKIFLISQV
ľ	l .			WWHMLAVSADAKAAEMPAVLKPGP

NO: of of of white of the control of order of the control of of white of the control of the co	SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
Socion of Nucleic Amino Acids Ac				-	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
Mucleic Acids	1				
Acids Acids Acids by sponding to first amino acid residue of amino acid residue of amino acid complete to first amino acid residue of amino acid sequence se	1		1		K=Lysine, $L=Leucine$, $M=Methionine$, $N=Asparagine$,
Acids to first amino acid residue of amino acid residue of amino acid sequence sequence of amino acid sequence			ŀ	l .	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
amino acid residue of amino acid residue of amino acid sequence se	Acids	Acids		to first	
acid residue of amino acid residue of amino acid sequence sequence of amino acid sequence seq				l .	
residue of amino acid sequence sequence					
		,			\=possible nucleotide insertion)
acid acid sequence sequence sequence sequence					
Sequence	'		į.	4	
	ļ	ļ			
SSSASSLETPVRLYQMMFCSAENCSEETHITAFTVHVSAEE FHFVSQCCEGKECSNTSDALDPPLKNNSNNSCPACVESNOT CRCKPMCYEEGCCPTLVABLKNDIESKSLVLKGCSNVSNAT QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKA LYLLALASLLLRGLLP VPARRRAMEIGTEISRKIRSAIKGKLQELGAYVDEELPDYIM MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTT PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\ATP ARPEKRSRVSTSSQESKTTNVKGTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR 658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL GGGSAP 660 1399 281 736 KSLPLCKHPRSCCEDGLGRGSLSGHSPLTLLIFLTSCALG QOLLPPTSGSLCQESMSGOSCOMSELRLLIGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP ANALLGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP RGTQVGSEGTWESGRODSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNPLPLKKSGSSASST FSSYEDSEBDISSDPERTLDPNSAFLHTLDQXPRVVGSRS TQAGVQWHDIGSLQPLPP/WTQATL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYPLRIICILQKERQEASNLYTSCDFFSPAFFYVIYRI NFKHHWGAVAHTYSPSTLGGGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSENYLHLLQTFATFNKYLNVCVLI IHHKPVVPALGGTNVGGSLEPRRLQQAMIVPLHFGLGNRV PCLKKQOQQQQQQCK 664 1403 1 373 RMETKPVITCLKTLLITYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTVAPYVLLVTGTTIVAYPLV*FFFSYSGFSYII VRLIAGAGLAVVNIVLVVLLRFTLSCHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGBEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGGADTQQMM DCREIFFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	CEC	1205			MI TOUCOL VESTSI SONONEWEYSOVNSIA SECRETANTSOI
FHFVSQCCEGKECSNTSDALDPPLKNVSSNAECPACYESNGT	656	1395	12	/66	I
CRGKPWKCYEEQCVFLVABLKNDIESKSLVLKGCSNVSNAT QFLSGENKTLGGVIFRKECANVNSLTPTSAPTTSHNVGSKA LYLLALSLLIKGGLIP 1396 97 746 VPARRAMEIGTEISRKIRSAIKGKLQELGAYVDEELPDYIM MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTT PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIF ARPEKDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR 658 1397 155 560 ASEVLAAVMGLPWGQPHLGLQMLLLAINWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLKGKRSKSAT NATLGKHVFKSKFSDQTVIKMCQRESWVLKERKVVVIDTPDI SSIACABGKQRNIQHLLELSAP 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALC QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLLKGKRSKSAT NATLGKHVFKSKFSDQTVIKMCQRESWVLKERKVVVIDTPDI SSIACABGKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWGLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPTLKRACSE NIPAVIITDMGTQEGALETGGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQMHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHH RIIFGFLVERGFHHVGQDGLYLLLL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI HHKPVVPATQGTNVGSGLEPRRLIQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITTCLKTLLIIYSFVFWITGVILLAAGVWGKLTLOS ISLIAENSTYAPYVLIVTGTTIIVAYPLV*FFFSYSSGFSYII VRLIAGIALVNYYPRSSSRALVRLVVLLEFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEL NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMP DCREIFFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		ļ	1	}	
QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKA LYLLALASLLIRGILP VPARRAMEIGTE 1SRKIRSAIKGKLQELGAYVDEELPDYIM MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTT PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\ATP ARPEKRDSRVSTSSQESKTTNVRQTYDDGAAFRLMSTV/KPL EPAPSEDVIDIKPBPDDLIDEDLNFVQEKPLSQKKFTVTLTY SSR 658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QTTAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GGGSAP 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGAPPLTLLTFLTSCALG QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKHYFKSKFSDQTIVKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTYSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQCTMEKKGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASST FSSSYEDSEEDISSDPERTLDDNSAPLHTLDQCKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYPLRICITLQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFFSEHYLHLLQTFATFNKYLNVCVLIR 664 1403 1 373 RMETKPVITCLKTLLITYSFVFWITGVILLAAGWKLTLGS FCLKKQQQQQQQCKK 664 1403 1 373 RMETKPVITCLKTLLITYSFVFWITGVILLAAGWKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYIL VRLIAGIALVVNYIPRSSSRALVRLVVLLEFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIECKTEGADTQQMP DCREIFFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	1				1
Tyllalaslilrglip		<u> </u>	1	İ	~
	1				QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS
MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTT PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIP ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR ASRVLAAVMGLPWGQPHLGLQMLLLALMURPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL GGGSAP 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALG QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTONVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDDLPSPELLPQDQDKPFLKRACSF NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSYEDSEDISSDPERTLDPNSAFLHTILDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLLI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM NFKIHUPGAVAHTYSPSTLGGRGRWVT*GREFM NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCKTLLIIYSFVFWITGVILLAAGVWGKLTLGS LILSLPLLYAPVVILVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMCDHOLCQKKALAEHGRDDDMAACMKTVTDQGABL NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMM DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	ĺ		1	Ĭ	LYLLALASLLLRGLLP
PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIP ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR 658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGLCQESMSEQSCQMSELRLLLLIGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEERRSGAPVG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWGGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKAGSAN NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFK:HWPGAVAHTYSPSTLGGRGRWVT*GREFW 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCKTLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS NAEHPGMDRHDLCQKARLAEHAERDDDMAACMKTVTDQGABI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	657	1396	97	746	VPARRRAMEIGTEISRKIRSAIKGKLQELGAYVDEELPDYIMV
ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKNVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWGGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFFSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQATTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVVLLRFILSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTLOGGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL					MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTTE
ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPL EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTY SSR ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKNVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWGGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFFSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQATTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVVLLRFILSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTLOGGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		1		1	PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS
EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTITY SSR ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCCMSELRLLLLGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKFPLKKACSH NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHH RIIFGFLVERGFHHVGQDGLYLLLI 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFFSEHYLHLLQTFATFNKYLNVCVLI THHKPVVPAIQGTNVGGSLEPRRLRQQAMIVPLHFGLGNRV PCLKKQQQQQQQCK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAEEDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL			ļ	Į.	ARPEKRDSRVSTSSOESKTINVROTYDDGAATRLMSTV/KPLR
SSR	1	İ			1
ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYT QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP		ļ	ł		
QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFS ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLTFLTSCALG QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVCG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSF NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHRVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMM DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	658	1397	155	560	
ASRGFQNPETLADIPASPQILTDGHYMTLPLSPDQLPCGDPM GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPEGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALG QQLLPPRTSGSLCQESMSEQSCQMSELRLLLGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRNLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAK RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSF NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHRVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSGFSYIL VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMM DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	1 030	1337	1 = 3 3	300	
GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALG QQLLPPRTSGSLCQESMSEQSCQMSELRLLLGKCRSGKSAN NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQCTMEKAGLAW RGTGVQSEGTWESQRODSDALPSPELLPQDQKPFLRKAGSEN NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHKRPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLLVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQM DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		 			1.7
1398		1	1		~ ~
Table	<u> </u>	1200	47.6	530	
QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSAT NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTYSVQSAESSDALSWSRIPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRALE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAE RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSF NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLLVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		l	1		
NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDI SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYIL VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	660	1399	28T	/36	
SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYIL VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		ļ		1	
661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		ĺ			
RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLE LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSP NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		<u> </u>	ļ	<u> </u>	
LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAW RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYIL VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEL NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	661	1400	2	974	~
RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSE NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL				1	
NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASST FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	Į.	1	İ	1	1
FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRS TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	1	ì	ł		RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHE RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL					NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG
RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL			ļ	1	FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV
662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRI NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	j	}	1	ļ	TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA
NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL		1	ł		RIIFGFLVERGFHHVGQDGLYLLIL
NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	662	1401	232	3	KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY
1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLI IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEL NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	ŀ				NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM
IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRV PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	663	1402	250	556	LILSLPLLYGHLKSYTFPSEHYLHLLOTFATFNKYLNVCVLIF
PCLKKQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	"]	IHHKPVVPAIOGTNVGGSLEPRRLRLOOAMIVPLHFGLGNRVR
664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGS ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	1		İ		~
ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYII VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	664	1402	1	372	
VRLIAGIALVYNYIPRSSSRALVRLVVLLRFILSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	55-3	1 203	-	1 3,3	
665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAEI NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL					
NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMA DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	-	1	 	412	
DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMI DYYRYWL	665	1404	3	413	-
DYYRYWL		1			
		1			DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG
666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGE		<u></u>			DYYRYWL
	666	1405	2	334	GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED
EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGS	-				EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL
GKVYLGKKVSGSDAKQLYAMKVLT		1	1		GKVYLGKKVSGSDAKQLYAMKVLT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
667	1406	2	332	DAAGIRHEAHFGKLECLVQLVRAGA\SLFVSTTRYAQTPA\HI AAFGGHPQCLVWLIQAGANINKPDCEGETPIHKAARSGSLECI SALVANGAHVDNPKKGIRVLEWLFE
668	1407	242	1157	LLKLMFIAELGDYDLAEHSPELVSEFRFVPIQTEEMELAIFEK WKEYRGQTPAQAETNYLNKAKWLEMYGVDMHVVKARDGNDYSL GLTPTGVLVFEGDTKIGLFFWPKITRLDFKKNKLTLVVVEDDD QGKEQEHTFVFRLDHPKACKHLWKCAVEHHAFFRLRGPVQKSS HRSGFIRLGSRFRYSGKTEYQTTKTNKARRSTSFERRPSKRYS RRTLQMKACATKPEELSVHNNVSTQSNGSQQAWGMRSALPVSP SISSAPVPVEIENLPQSPGTDQHDRKWLSAASDCCQRGGNQWN TRAL
669	1408	278	1	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
670	1409	139	646	AEGLGSWAVWAGLGWAGRHMEAGGATGALGVGSKLPSAFCFPG SSVAMDMFQKVEKIGEGTYGVVYKAKNRETGQLVALKKIRLDL *VLGRPLSYPPWAITTWALPDPFPLSWSPRLTPLGAAQQPLPV LSPVHCLLTSLCRGPDCGVWWMTCQGAQVSIAGALVILWG
671	1410	3	442	LCVSVLCSFSYLQNGWTASDPVHGYWFR\AGDHVSRNIPVATN NPVRAVQEETRDRFHLLGDPQNKDCTLSIRDTRESDAGTYVFC VERGNMKWNYKYDQLSVNVTASQDLLSRYRLEVPESVTVQEGL CVSVP/WQCPLPPLQLDCL
672	1411	84	836	QLQLCQNCTKRGECHCVPFDTYIKTKKEKKRLSVLPPTRLMEA RFSPINQILPWCRQDLAISISKAINTQEAPVKEKHARRIILGT HHEKGAFTFWSYAIGLPLPSSSILSWKFCHVLHKVLRDGHPNV LHDCQRYRSNIREIGDLWGHLHDRYGQLVNVYTKLLLTKISFH LKHPQFPAGLEVTDEVLEKAAGTDVNNM*VTLHGYMASSPRLP HSFLPRLTPRRPHGAVGLNESVALLVDAHAPRDRG
673	1412	307	664	AAPHRMPRAPHFMPLLLLLLLSLPHTQAAFPQDPLPLLISDL QGTSPLSWLPSLEDDAVAA*LGLDFQRFLTLNRTLLVAARDHV FSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR*KLTLNRTLL VAARDHVFSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR
674	1413	24	420	HLVPKTRGRGTPSGDQSPVLTLTP*GDPPTILGPQTNQPKEHL TNFKSGKRSFHSLLQPLLLLHPSISPFLNFGSFPFLVETEET CFIHKLKTPALVTPDSLPLVFNHCGDACLIIHPHFRDVEFHHT GN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
675	1414	1	1101	CCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLK PAKGLMSYRIITDFPSLTRNLPSQELPQEDSLLHGQFSQAVTP LAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLFKMDEASAQL LAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTT SATPKPATLL\PTNASVTPSGTSQPQLA\TTAPPVTTVTSQPP TTLISTVFTRAAATLQAMATTAVLTTTFQAPTDSKGSLETIPF TEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPG SSSQGSVPENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRIL SESLRRKRYSRLDYLINGIYVDI
676	1415	178	621	IFAGSGVMRLKISLLKEPKHQELVSCVGWTTAEELYSCSDDHH IVKWNLLTSETTQIVKLPDDIYPIDFHWFPKSLGVKKQTHAES FVLTSSDGKFHLISKLGRVEKSVEAHCGAVLAGRWNYEGTALV TVGEDGQI*IWSKTGMLIS
677	1416	1258	944	ARATTKRHFILLFLFFLRRC\LFLSPRMECNGAILAHCNLHLP GSSSSSASAS*VAGITDVRHHAQLILFVFLVETGFHRVGQAGL KLLTSGDLLTSASQSAGIIMGISHCAQPKKAF*TKTF
678	1417	876	1291	EAGSNDDLAT*KTCGRARPSSRSRQFGSRVWNHRQGVRSSPGE GAGSRSPCRRHRRKHRRNVQSP*RRSRSCSRRSGRCSVALL GACPVAGHSRGKVVCRRAHAITQRRRCCGFDPMVHPKEHRG*R ERSRKWSRS
679	1418	262	539	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
680	1419	104	236	LTVNYVLVFSRDSGLRAIENLMQKKGKFDYILLETTGLADPGK K
681	1420	3	277	HEAALCRTRAVAAERHFLRVFLFFRPFRGVGTESGSESGSSKA KEPRTPSSSYGTAQYRRWPIAQEYKHCTAHNDTGTLCSELREP WRRPQ
682	1421	3	576	EGSSQANTLRSRKENRNNLLACLESHVLR*QFTESHLCSLMGD NPFQPKSNSKMAELFMECEEEELEPWQKKVKEVEDDDDDEPIF VGEISSSKPAISNILNRVNPSSYSRGLKNGALSRGITAAFKPT SQHYTNPTSNPVPASPINFHPESRSSDSSVIGQPFSKPVSVSK TIRPAQGSIGCCLSISTV
683	1422	6	627	CFSLEDILNFFLQGFSAGLFAFYHDKDGNPLTSRFADGLPPFN YSLGLYQWSDKVVRKVERLWDVRDNKIVRHTVYLLVTPRVVEE ARKHFDCPVLEGMELENQGGVGTELNHWEKRLLENEAMTGSHT QNRVLSRITLALMEDTGRQMLSPYCDTLRSNPLQLTCRQDQRA VAV\CNLQKFPKPLPQEYQYFDELSGIPAEDLPYYG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
684	1423	1	1272	AARRRQLVSRRTAE\YPRRRSSPSARPPDVPGQQPKAAKS PSPVQGKKSPRLLCIEKVTTDKDPKEEKEEEDDSALPQEVSIA ASRPSRGWRSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPN TDQLDYDVGEEHQSPGGISSEEEEEEEEMLISEEEIPFKDDP RDETYKPHLERETPKPRRKSGKVKEEKEKKEIKVEVEVEVKEE ENEIREDEEPPRKRGRRKDDKSPRLPKRRKKPPIQYVRCEME GCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLFRLQKQL LRHAKHHTDQRDYICEYCARAFKSSHNLAVHRMIHTGEKPLQC EICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSV VAHKAKSHPEVLIAEALAANAGALITSTDILGTNPES
685	1424	56	526	MTANRLAESLLALSQQEELADLPKDYLLSESEDEGDNDGERKH QKLLEAISSLDGKNRRKLAERSEASLKVSEFNVSSEGSGEKLV LADLLEPVKTSSSLATVKKQLSRVKSKKTVELPLNKEEIERIH REVAFNKTAQVLSKWDPVVLKNRQAEQL*
686	1425	132	344	RIDFMFHSSAMVNSHRKPMFNIHRGFYCLTAILPQICICSQFS VPSSYHFTEDPGAFPVATNGERFPWQELRLPSVVIPLHYDLFV HPNLTSLDFVASEKIEVLVSNATQLIILHSKDLEITNATLQSE EDSRYMKPGKELKVLSYPAHEQIALLVPEKLTPHLKYYVAMDF QAKLGDGFEGFYKSTYRTLGGETRILAVTDFEPTQARMAFPCF DEPLFKANFSIKIRRESRHIALSNMPKVKTIELEGGLLEDHFE TTVKMSTYLVAYI/DL*FPLMGNDFLGRS
687	1426	3	678	RSKIPRSDPRVRTPAPAEAEQGKSQCPSGSTAQSWSAMDILVP LLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNR KMESKKRELFSQIKGLTGASGKVALLELGCGTGANFQFYPPGC RVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDMRQLAD GSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAE PYGSWAFMW
688	1427	240	641	RLQNSSLMDPKLGRMAASLLAVLLLLLLERGMFSSPSPPPALL EKVFQYIDLHQDEFVQTLKEWVAIESDSVQPVPRFRQELFRMM AVAADTLQRLGARVASVDMGPQQLPDGQSLPIPPVILAELGSD PTKG
689	1428	1	116	FFFFEMESCSVTQAGVPWHDLSSLQPPPPRFKRFSCLS
690	1429	75	511	DPKAQLPEPLRVLWTAHLVAMAPGSRTSLLLAFALLCLPWLQE AGAVQTVPLSRLFDHAMLQAHRAHQLAIDTYQEFEETYIPKDQ KYSFLHDSQTSFCFSDSIPTPSNMEETQQKSNLELLRISLLLI ESWLEPVRILMSIVPN

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of.	location	location	
Nucleic	Amino	сотге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	{	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ł	acid	acid	\= possible nucleotide insertion)
	Į	residue	residue	
	j	of amino _	of amino	
	1	acid	acid	•
691	1430	sequence 2	sequence 1364	FVKLIKKHQAAMEKEAKVMSNEEKKFQQHIQAQQKKELNSFLE
691	1430	1 4	1204	SQKREYKLRKEQLKEELNENQSTPKKEKQEWLSKQKENIQHFQ
İ	!		•	AEEEANLLRQRQYLELECRRFKRRMLLGRHNLEQDLVREELN
1		l		KRQTQKDLEHAMLLRQHESMQELEFRHLNTIQKMRCELIRLQH
1			[OTELTNOLEYNKRRERELRRKHVMEVRQQPKSLKSKELQIKKQ
			[FQDTCKIQTRQYKALRNHLLETTPKSEHKAVLKRLKEEQTRKL
			1	AILAEOYDHSINEMLSTQALRLDEAQEAECQVLKMQLQQELEL
			1	LNAYOSKIKMOAEAOHDRELRELEORVSLRRALLEQKIEEEML
			<u> </u>	ALONERTERIRSLLERQAREIEAFDSESMRLGFSNMVLSNLSP
	1	1	ĺ	EAFSHSYPGASGWSHNPTGGPGPHWGHPMGGPPQAWGHPMQGG
ł				POPWGHPS\GPMQ\GVPR/GSSMGVR
692	1431	50	504	LAHGSFGVSDFPAPAAAPAHTLTSFSGSLSPQFRKPLGRAPAM
092	1431	30	30-	PLVRYRKVVILGYRCVGKTSLAHQFVEGEFSEGYDPTVENTYS
		[KIVTLGKDEFHLHLVDTAGQDEYSILPYSFIIGVHGYVLVYSV
1	1	1		TSLHSFQVIESLYQKLHEGHGK
693	1432	130	1671	SSPSRELCFYGFWIASSWWSRWVGSLGPGILPSPPARGRTFAS
653	1432	130	10/1	VSRLPPPWSAGITLTPFLICOSGSVCPGLGAGFGVRSFHHPVA
· ·			ļ	RSAVLLIPLAPAAAODSTOASTPGSPLSPTEYERFFALLTPTW
1	İ			KAETTCRLRATHGCRNPTLVQLDQYENHGLVPDGAVCSNLPYA
1				SWFESFCQFTHYRCSNHVYYAKRVLCSQPVSILSPNTLKEIEA
1	1	1	ļ	SAEVSPTTMTSPISPHFTVTERQTFQPWPERLSNNVEELLQSS
İ			İ	LSLGGQEQAPEHKQEQGVEHRQEPTQEHKQEEGQKQEEQEEEQ
			l .	EEEGKQEEGQGTKEGREAVSQLQTDSEPKFHSESLSSNPSSFA
1	1	l .	ì	PRVREVESTPMIMENIQELIRSAQEIDEMNEIYDENSYWRNQN
1			i	PGSLLOLPHTEALLVLCYSIVENTCIITPTAKAWKYMEEEILG
		1]	FGKSVCDSLGRRHMSTCALCDFCSLKLEQCHSEASLQRQQCDT
1				SHKTPFVSPLLASOSLSIGNQVGSPESGRFYGLDLYGGLHM
694	1433	517	578	VSWVPSKDGDVEGARRPFTRLNTSLGPGLQEGRRRTWLVPIPG
				AVLPGRTOEOPRASPLY*PGAPPCQPQGLVAGPWAQ*AGLRSD
	}		1	GFGPWPW\RLVGTAGPREKKVQKSKCWHFRCGRHPARRSGWAG
				RHASLLATGRPCSSAPSQQPLGTAGDSRQELLRPPLV*VNGAQ
				SSAAGDWGSSPRTAQALARPHRLGHHPAAVAPAARLRTQSGHS
				PRGPLCRSPGSPRRMGTWRGPAGHSHD
695	1434	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
				INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
				FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
696	1435	333	881	GECFIMAAVVQQNDLVFEFASNVMEDERQLGDPAIFPAVIVEH
			1	VPGADILNSYAGLACVEEPNDMITESSLDVAEEEIIDDDDDDI
				TLTVEASCHDGDETIETIEAAEALLNMDSPGPMLDEKRINNNI
	Į]		FSSPEDDMVVAPVTHVSVTLDGIPEVMETQQVQEKYADSPGAS
				SPEQPKRKKK
L				<u> </u>

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
ID ID	ID SEC	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	710.00	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	•
		of amino	of amino	
		acid	acid	· ·
L		sequence	sequence	
697	1436	3	466	HEASGVSRALLQSAPGTPATVGISVGELWPFARCCSHSYVRSL
	[1	Ì	RGLSVSTHLLCFTIYIMNPSMKQKQEEIKENIKTSSVPRRTLK
[ĺ	{	MIQPSASGSLVGRENELSAGLSKRKHRNDHLTSTTSSPGVIVP
				ESSENKNLGGVTQESFDLMIKGMKK
698	1437	50	241	PLPARGKSTLPATFCSPSAPELASMSVVPPNRSQTGWPRGVTQ
}	[İ	FGNKYIQQTKPLTLERTINL
699	1438	1	422	AEGEDVPPLPTSSGDGWEKDLEEALEAGGCDLETLRNIIQGRP
	Ì	Ì		LPADLRAKVWKIALNVAGKGDSLASWDGILDLPEQNTIHKDCL
l	}		1	QFIDQLSVPEEKAAELLLDIESVITFYCKSRNIKYSTSLSWIH
				LLKPLVHLQLP
700	1439	161	413	ALPKFLTHGVKSNERVVVWLFPPSFRAATMVHMNVLPDALKSI
	ļ	ŀ	Į	NNAERRGKPQVLIRLCSKIIIWFLTVMVKYGYIGKFEPTRP
701	1440	211	977	AMAQYGHPSPLGMAAREELYSKVTPRRNRQQRPGTIKHGSALD
l	Ì	1		VLLSMGFPRARAQKALASTGGRSVQAACDWLFSHVGDPFLDDP
1			ļ	LPREYVLYLRPTGPLAQKLSDFWQQSKQICGKNKAHNIFPHIT
		}	İ	LCQFFMCEDSKVDALGEALQTTVSRWKCKFSAPLPLELYTSSN
		i	ł	FIGLFVKEDSAEVLKKFAADFAAEAASKTEVHVEPHKKQLHVT
		1		LAYHFQASHLPTLEKLAQNIDVKLGCDWVATIFSRDIRFA
702	1441	3	408	QTRPASPRTARESVLGVSQNMSFNLQSSKKLFIFLGKSLFSLL
		1		EAMIFALLPKPRKNVAGEIVLITGAGSGLGRLLALQFARLGSV
				LVLWDINKEGNEETCKMAREAGATRVHAYTCDCSQKEGVYRVA
			ĺ	DQVKK
703	1442	708	244	MVARKGOKSPRFRRVTCFLRLGRSTLLELEPAGRPCSGRTRHR
			ļ	ALHRRLVACVTVSSRRHRKEAGRGRAESFIAVGMAAPSMKERQ
	1		1	VCWGARDEYWKCLDENLEDASQCKKLRSSFESSCPQQWIKYFD
]		j	KRRDYLKFKEKFEAGOFEPSETTAKS
704	1443	3	475	PAPAARSRELLKELRNGODMDTVVFEDVVVDFTLEEWALLNPA
]	ORKLYRDVMLETFKHLASVDNEAQLKASGSISQQDTSGEKLSL
			1	KOKIEKFTRKNIWASLLGKNWEEHSVKDKHNTKERHLSRNPRV
				ERPCKSSKGNKRGRTFRKTRNCNRHLRR
705	1444	276	437	CVCGFFVCFETKSCFVAQAGVQWHNLSSLQALPPGFKQFSCLS
1 . 5 5				LLSSWHYRRV
706	1445	2	322	GTRLRRREAVWFEVVNMDFSRLHMYSPPQCVPENTGYTYALS
' "	1	1	1 2 2	SSYSSDALDFETEHKLDPVFDSPRMSRRSLRLATTACTLGDGE
			1	AVGADSGTSSAVSLKNRAAR
707	1446	123	410	DTMOAVVPLNKMTAISPEPOTLASTEONEVPRVVTSGEQEAIL
'''	1440	123	1 3 10	RGNAADAESFRORFRWFCYSEVAGPRKALSOLWELCNOWLRPD
ĺ	1		Ī	IHTKE\QILE
700	11447	 	204	THIKE \QILE PICLFSRPTLRPSRSKVSLIEGRGANMAARWRFWCVSVTMVVA
708	1447	2	384	
1	İ		1	LLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDK
L	<u> </u>	<u> </u>	<u> </u>	FRRLVKAPPRNYSVIVMFTALQLHRQCVVCKYELQLRFKIK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
709	1448	sequence 104	sequence 535	QMRVKDPTKALPEKAKRSKRPTVPHDEDSSDDIAVGLTCQHVS HAISVNHVKRAIAENLWSVCSECLKERRFYDGOLVLTSDIWLC
				LKCGFQGCGKNSESQHSLKHFKSSRTEPHCIIINLSTWIIWWY EWDEKIFTPLNKKG
710	1449	116	479	AKERGEERQGEGGWLSGSRWPLVRSAFVPAPSSLILSMCLSP GIPEAAPDSPLTASAPTP*VMLLGDTGVGKTCFLIQFKDGAFL SGTFIATVGIDFRVRWLQALASSREPGLWLRHGGV
711	1450	2	232	FYPRSSADLPFQTTRCEFQTSVMELAHSLLLNEEALAQITEAK RPVFIFEWLRFLDKVLVAANKVWYCSFFPVALT
712	1451	105	393	MNMKQKSVYQQTKALLCKNFLKKWRMKRESLLEWGLSILLGLC IALFSSSMRNVQFPGMAPQNLGRVDKFNSSSLMVVYTPISNLT QQIMNKTAL
713	1452	2	525	SPQGNGCPDVTGDSVIRVPLTLLVHNLAGLTGLLHHCLSGPLP APSPPPAMSSSRKDHLGASSSEPLPVIIVGNGPSGICLSYLLS GYTPYTKPDAIHPHPLLQRKLTEAPGVSILDQDLDYLSEGLEG RSQSPVALLFDALLRPDTDFGGNMKSVLTWKHRKEHAIPHVVL GR
714	1453		1557	NRRTRAQRCQRGRSCGAREEEVEPGTARPPPAASAMDASLEKI ADPTLAEMGKNLKEAVKMLEDSQRRTEEENGKKLISGDIPGPL QGSGQDMVSILQLVQNLMHGDEDEEPQSPRIQNIGEQGHMALL GHSLGAYISTLDKEKLRKLTTRILSDTTLWLCRIFRYENGCAY FHEEEREGLAKICRLAIHSRYEDFVVDGFNVLYNKKPVIYLSA AARPGLGQYLCNQLGLPFPCLCRVPCNTVFGSQHQMDVAFLEK LIKDDIERGRLPLLLVANAGTAAVGHTDKIGRLKELCEQYGIW LHVEGVNLATLALGYVSSSVLAAAKCDSMTMTPGPWLGLPAVP AVTLYKHDDPALTLVAGLTSNKPTDKLRALPLWLSLQYLGLDG FVERIKHACQLSQRLQESLKKVNYIKILVEDELSSPVVVFRFF QELPGSDPVFKAVPVPNMTPSGVGRERHSCDALNRWLGEQLKQ LVPASGLTVMDLEAEGTCLRFSPLMTAAGKPGLVDIPCFCSGA AG
715	1454	319	873	LCIMDTKEEKKERKQSYFARLKKKKQAKQNAETASAVATRTHT GKEDNNTVVLEPDKCNIAVEEEYMTDEKKKRKSNQLKEIRRTE LKRYYSIDDNQNKTHDKKEKKMVVQKPHGTMEYTAGNQDTLNS IALKFNITPNKLVELNKLFTHTIVPGQVLFVPDANSPSSTLRL SSSSPGATVSPSS
716	1455	60	681	SAGGDSCRAVPMLRFPTCFPSFRVVGEKQLPQEIIFLVWSPKR DLIALANTAGEVLLHRLASFHRVWSFPPNENTGKEVTCLAWRP DGKLLAFALADTKKIVLCDVEKPESLHSFSVEAPVSCMHWMEV TVESSVLTSFYNAEDESNLLLPKLPTLPKNYSNTSKIFSEENS DEIIKLLGDVRLNILVLGGSSGFIELYAYGMFKI
717	1456	357	658	PRDPVTDRARAMPRRGLVAGPDLEYFQRHYFTPAEVAQHNRPE DLWVSYLGRVYDLTSLAQEYKGNLLLKPIVEVAGQDISHWFDP KTRDVSYAGTWDCG

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
/ telus	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ļ	acid	acid	\=possible nucleotide insertion)
		residue	residue	,
		of amino	of amino	
ĺ	1	acid	acid	
		sequence	sequence	
718	1457	2	481	RIPGRRFRAAFVLGSANVASSVRLRCSFPLSLGGPSGPAAASV
İ				ALGPAGPGRSLGRTPDTGDWEMDSVSFEDVAVAFTQEEWALLD
			1	PSQKNLYRDVMQEIFRNLASVGNKSEDQNIQDDFKNPGRNLSS
				HVVERLFEIKEGSQYGETFSQDSNLNLNKI
719	1458	6	469	SLSLSVSPFLRLSLGRVGGMAEEMESSLEASFSSSGAVSGASG
				FLPPARSRIFKIIVIGDSNVGKTCLTYRFCAGRFPDRTEATIG
				VDFRERAVEIDGERIKIQLWDTAGQERFRKSMVQHYYRNVHAV
		<u> </u>		VFVYDMTNMASFHSLPSWIEECKQH
720	1459	82	490	RRPSPGSIVIMAAESDVLHFQFEQQGDVVLQKMNLLRQQNLFC
1	1	Į	}	DVSIYINDTEFQGHKVILAACSTFMRDQFLLTQSKHVRITILQ
İ		Ì	ļ	SAEVGRKLLLSCYTGALEVKRKELLKYLTAASYLQMVHIAEKR
				TEAFVKF
721	1460	48	708	AEGLQSAAGIRIDTKAGPPEMLKPLWKAAVAPTWPCSMPPRRP
1				WDRQAGTLQVLGALAVLWLGSVALICLLWQVPRPPTWGQVQPK
		1	1	DVPRSWEHGSSPAWEPLEAEARQQRDSCQLVLVESIPQDLPSA
1				AGSPSAQPLGQAWLQLLDTAQESVHVASYYWSLTGPDIGVNDS
			ļ	SSQLGEALLQKLQQLLGRNISLAVATSSPTLARTSTDLQVLAA
722	1461	436	677	RKKKMPLPFGLKLKRTRRYTVSSKSCLVARIQLLNNEFVEFTL
	1	1.50]	SVESTGQESLEAVAORLELREVTYFSLWYYNKONORR
723	1462	45	569	LQPLSSWESASEVTRSPVSPEDVKQATSNFENLOKOLARKMKL
				PIFIADAFTARAFRGNPAAVCLLENELDEDMHQKIAREMNLSE
	ŀ			TAFIRKLHPTDNFAQSSCFGLRWFTPASEVPLCGHATLASAAV
				LFHKIKNMNSTLTFVTLSGELRARRAEDGIVLDLPLYPAHPQD
		1	ŀ	FHE*
724	1463	79	530	AADTMOSDDVIWDTLGNKOFCSFKIRTKTOSFCRNEYSLTGLC
				NRSSCPLANSQYATIKEEKGQCYLYMKVIERAAFPRRLWERVR
	1			LSKNYEKALEQIDENLIYWPRFIRHKCKQRFTKITQYLIRIRK
				LTLKRQRKLVPLSKKVERREK
725	1464	2	261	FVERGLGDPALPTLMFEEPEWAEAAPVAAGLGPVISRPPPAAS
1		_		SQNKVSDSREQWELFQAAKRTLVDPSAVCIAGRDTCGTVKGES
726	1465	1	860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK
				VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
				QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
	1			YLALMQKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
				LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
				EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
	1			QERVSAATDRICSLQEEQQQLREQNELIR
727	1466	69	452	GCYAPSPHLGGSLTPRFFPNGVFHRRLPRPRPPOPPSVSSAPT
				LRPLCAHFSLGKLRLRVRKSAEVAPPRTEKGWGSAEPRHSRAP
				LGLQGLRMAASAQVSVTFEDVAVTFTQEEWGQLDAAQRTLY
L	1			Tankon word And II ID AWAIL I DEFM GOTD WWOKILI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
728	1467	1	439	FRGSLSSPSSLRGRRLVTGQTSPRGTWCLYPGFCRSVACAMPC CSHRSCREDPGTSESREMDPVVFEDVAVNFTQEEWTLLDISQK NLFREVMLETFRNLTSIGKKWSDQNIEYEYQNPRRSFRSLIEE KVNEIKEDSHCGETFTQ
729	1468	103	236	LNFANSAAFAVTMPQNEYIELHRKRYGFRLDYHEKKRKKQSRE A
730	1469	213	809	SGDLSPAELMMLTIGDVIKQLIEAHEQGKDIDLNKVKTKTAAK YGLSAQPRLVDIIAAVPPQYRKVLMPKLKAKPIRTASGIAVVA VMCKPHRCPHISFTGNICVYCPGGPDSDFEYSTQSYTGYEPTS MRAIRARYDPFLQTRHRIEQLKQLGHSVDKVEFIEMGGTFMAL PEEYRDYFIRNLHDALSGHTSNNIYE
731	1470	264	799	WESDVGEGLRPPPPPPPPPPRRRTQEPRARDAATVIFACPAALL ETLIAYGSSSPSFCKHRAARPLIFLLHRLTAEATARCPICALE ARNPGRWGICASWPGMKTPFGKAAAGQRSRTGAGHGSVSVTMI KRKAAHKKHRSRPTSQPRGNIVGCIIQHGWKDGDEPLTQWKGT VLDQLL
732	1471	2	763	RDLGVALEAFQWARAGDCGSGAGRAGGEGVDAGRRVPERQHRG RGGGGEPGRRQRGGRRQ\RSSSRRSGGDGGDEVEGSGVGAGEG ETVQHFPLARPKSLMQKLQCSFQTSWLKDFPWLRYSKDTGLMS CGWCQKTPADGGSVDLPPVGHDELSRGTRNYKKTLLLRHHVST EHKLHEANAQESEIPSEEGYCDFNSRPNENSYCYQLLRQLNEQ RKKGILCDVSIVVSGKIFKAHKNILVAGSRFFKTLYCFS
733	1472	82	523	SLRAAAAMADVTARSLQYEYKANSNLVLQADRSLIDRTRRDEP TGEVLSLVGKLEGTRMGDKAQRTKPQMQEERRAKRKRDEDRH DINKMKGYTLLSEGIDEMVGIIYKPKTKETRETYEVLLSFIQA ALGDQPRDILCGAADEVL
734	1473	536	110	CNSAESRMDVLFVAIFAVPLILGQEYEDEERLGEDEYYQVVYY YTVTPSYDDFSADFTIDYSIFESEDRLNRLDKDITEAIETTIS LETARADHPKPVTVKPVTTEPQSP\DL\NDAVSS\LRSPIPL\ LLS\CAFVQVGMYFM
735	1474	2	557	FVRGPGEEQAPAFRKPAPGAMGAQVRLPPGEPCREGYVLSLVC PNSSQAWCEITNVSQLLASPVLYTDLNYSINNLSISANVENKY SLYVGLVLAVSSSIFIGSSFILKKKGLLQLASKGFTRAGQGGH SYLKEWLWWVGLLSILSWNAREKVDL*NITF*PQTSCIFFTIT IEKSTFLSYFPTS
736	1475	127	401	ARGSCPTRPRPANGRMAETKDAAQMLVTFKDVAVTFTREEWRQ LDLAQRTLYREVMLETCGLLVSLGHRVPKPELVHLLKHGQELW IVKRG
737	1476	311	790	YTMLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQ PASTVQKPGGTVILGCVVEPPRMNVTWRLNGKELNGSDDALGV LITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTLASE SAPLPPCHGAVPPHLSHPEAPTIHAASCYS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
738	1477	2	421	WGRRRQLVSEAARAQGDPVCSTMSEEEAAQIPRSSVWEQDQQN VVQRVVALPLVRATCTAVCDVYSAAKDRHPLLGSACRLAENCV CGLTTRALDHAQPLLEHLQPQLATMNSLACRGLDKLEEKLPFL QQPSETVVTS
739	1478	256	1250	AKAFTMAESPGCCSVWARCLHCLYSCHWRKCPRERMQTSKCDC IWFGLLFLTFLLSLSWLYIGLVLLNDLHNFNEFLFRRWGHWMD WSLAFLLVISLLGTYASLLLVLALLLRLCRQPLHLHSLHKVLL LLIMLLVAAGLVGLDIQWQQERHSLRVSL/QDCR*L*TPAVRP *EESGEGHWRRAHLTSSCPQATAPFLHIGAAAGIALLAWPVAD TFYRIHRREPKILLLLLFFGVVLVIYLAPLCISSPCIMEPRDL PPKPGLVGHRGAPMLAPENTLMSLRKTAECGATVFETDVMVSS DGVPFLMHDEHLSRTTNVASVFPTRITAHSS

WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO:1-739, an active domain of SEQ ID NO: 1-739, and complementary sequences thereof.

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:

(a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

- (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-739.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex;
 and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:

 a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO: 1-739, an active domain of SEQ ID NO: 1-739, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-739, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 740-1478, the mature protein portion thereof, or the active domain thereof.

- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEQ ID NO: 1-739.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

SEQUENCE LISTING

```
<110> Hyseq Inc
<120> Novel Nucleic Acids and Polypeptides
<130> 784PCT
<140> To be assigned
<150> US09/488,725
<151> 2000-01-21
<150> US09/552,317
<151> 2000-04-25
<160> 739
<170> Pt_CT_1
<210> 1
<211> 556
<212> DNA
<213> Homo sapiens
```

<400> 1 tttcgtgggc cggttgctaa gacttggcga agcgctgcgc ttgcgcccgg atccctcagg 60 cggctgcagg cttcagcctg cgctggttgg tgaaacagag atgtcagaaa aggagaacaa 120 cttcccgcca ctgcccaagt tcatccctgt gaagccctgc ttctaccaga acttctccga 180 cgagatccca gtggagcacc aggtcctggt gaagaggatc taccggctgt ggatgtttta 240 etgegecace eteggegtea aceteattge etgeetggee tggtggateg geggaggete 300 ggggaccaac ttcggcctgg ccttcgtgtg gctgctcctg ttcacgcctt gcggctacqt 360 gtgctggttc cggcctgtct acaaggcctt ccgagccgac agctccttta atttcatggc 420 gtttttcttc atctttcgga gcccagtttg tcctgaccgt catccaggcg attggcttct 480 coggetgggg cgcgtgcggc tggctgtcgg caattggatt cttccagtac agcccgggcg 540 ctgccgtggt catgct 556

<210> 2 <211> 837 <212> DNA

<213> Homo sapiens

```
<400> 2
gagatgagtc ccagggagta cggagtcagc tctgagccga ggtcaccgca gaagggagct
                                                                      60
cggtcttcgg ccaggaccgg agcagttgga acaaagggaa tgtggaaatg aaagagagag
                                                                      120
ggagagagag gctggcagat gtaatgagac gcggtgaagg tgtacgcaga ctggcactcc
                                                                     180
cactectece ttetgetete actgeagece tgggtaacte geaggetaac acaaacaget
                                                                     240
tttctcccgc agcctgccct ctgtcactgt cactttcatg aattcaaagg caatttacca
                                                                     300
gtgatttctg ggtgctgggg ctgatatttt ttgtgcatat ttaagaatgt cttccaagca
                                                                     360
agceacetet ceatttgeet gtgcagetga tggagaggat gcaatgacee aggatttaae
                                                                     420
ctcaagggaa aaggaagagg gcagtgatca acatgtggcc tcccatctgc ctctgcaccc
                                                                     480
cataatgcac aacaaacctc actctgagga gctaccaaca cttgtcagta ccattcaaca
                                                                     540
```

agatgetgac tgggacageg ttetgteate teageaaaga atggaateag agaataataa 600 gttatgttee etatatteet teegaaatae etetacetea eeacataage etgaegaagg 660 gagtegggac egtgagataa tgaecagtgt taettttgga acceeagage geegeaaagg 720 gagtettgee gatgtgggg acacaetgaa acagaagaag ettgaggaaa tgaeteggae 780 tgaacaagag gatteeteet geatggaaaa actaetttea aaagattgga aggaaac 837

<210> 3 <211> 1562 <212> DNA <213> Homo sapiens

<400> 3 cggaaccgta ggaggggtac ttaaccggac ggcctaccag gcctgtggcc gtgcgcggga 60 agagcactgc agatctcagg atgatggggc gcagccctgg gtttgccatg cagcacatcg 120 tgggtgtgcc ccacgtactg gttcggaggg gcctccttgg aagggacctc ttcatgacca 180 ggactetetg cageecagge ecaagecage eeggagagaa aagacetgag gaggtggeee 240 tggggctgca ccaccgcctc ccagcactgg gaagagccct ggggcacagc attcagcaac 300 gagcgacctc cacagccaag acttggtggg acagatatga agagtttgtt ggactcaacg 360 aggttcgaga ggcccaggga aaggtgacag aggctgagaa agtgttcatg gtggctcgag 420 ggettgteeg agaggetegg gaggaettgg aagtteaeca ggeeaagetg aaggaggtga 480 gggaccgett ggaccgtgte tecagggagg acagteagta ettggaactg getacteteg 540 agcacaggat gctgcaggag gagaagaggc ttcgcacagc ctatctgcgt gcagaagact 600 ctgagcgaga gaagttetee etettetetg cagetgtgeg ggaaagteat gagaaggage 660 gcacaagggc tgagaggacc aagaactggt ccctcattgg ctcagtcctg ggggccctga 720 ttggtgtggc tggctccacc tatgtgaacc gtgtgcgact acaggagctg aaggctttac 780 teetggagge geagaagggg eetgtgagte teeaagagge cattegagaa caggegteta 840 gctactcccg ccagcagagg gacctccaca atctcatggt ggacttgagg ggcctggtac 900 atgctgctgg gccagggcag gactctgggt cacaggcagg tagtcccccg accagagaca 960 gagatgtaga tgtcctttca gctgccttga aagagcagct tagtcattcc aggcaagtcc 1020 attcatgtct agaaggctta cgagagcagc ttgatggcct agaaaagact tgtagccaaa 1080 tggctggggt ggttcagctt gtaaagtctg cagcacaccc aggcctggtg gaaccagcag 1140 acggggctat gcccagcttc ttgctggagc aggggagcat gatcttggca ctgtcagaca 1200 cggagcagag actagaagcc caagtcaaca ggaacaccat ctatagcacc ctggtcacct 1260 gtgtgacatt tgtggccaca ctgcctgtgc tctacatgct attcaaagcc agctaacccc 1320 tggcccctcc tccagagggt ctgaggcaat agctgtgaat gtggatttaa gtagagaatc 1380 gtagcaatga agcgagcctt tgggggcatg tacaacctca atctgaagga gcagtatctg 1440 tgtggctcac cagcaggcat gcttcgcttt gtagacaagg ttcatttaca ttaattatca 1500 aaactttgtg ctaatgtcca attaaaatat cctgagtttt attatttaaa acaaaaaaa 1560 1562

<210> 4 <211> 745 <212> DNA <213> Homo sapiens

<400> 4
agggcttggg gctgggtctc cgtgacagag gcctggcttt tctgtcaggg cagggcctag 60
cccctgcccc cataaaagag gagacatagg gggcttggtg agataccctg aaacctcccc 120

cctctgaccc	cgcagccagg	ccccaggctg	gccgggagtg	gcccctcaca	ctggttctcc	180
ccactttctc	tgcctgtggc	atcgaaggcc	ccgggcacca	tggcccaggc	cctgggggag	240
gacctggtgc	agcctcccga	gctgcaggat	gactccagct	ccttggggtc	cgactcagag	300
ctcagcgggc	ctggcccata	tcgccaggcc	gaccgctatg	gattcattgg	gggcagctca	360
gcagagccag	ggccgggcca	cccacctgca	gacctcatcc	gccaacggga	gatgaagtgg	420
gtggagatga	cctcgcactg	ggagaaaacc	atgtcccggc	ggtacaagaa	ggtaaagatg	480
cagtgccgga	aaggcatccc	gtctgccctg	cgcgcccgat	gctggcccct	gttgtgtggg	540
gcccatgtgt	gccagaagaa	cagccctggc	acctatcagg	. agctggcaga	ggcccctgga	600
gacccacagt	ggatggagac	cattggcagg	gacctgcacc	gtcaattccc	tctgcacgag	660
atgtttgtgt	cgcctcaagg	ccacgggcag	caggggctcc	tgcaggtgct	caaggcctac	720
accctgtatc	gaccggagca	aggct				745

<210> 5 <211> 536 <212> DNA <213> Homo sapiens

<400> 5 acggaagete ggttgatgtt tetgeagaag ttttececet tggteggtgg eggagetget 60 gagegegata gtageagete eggeggeage aacattgaet acgaggaatg geggeggetg 120 cogcaggacc tgcagcatcc cagaggtttt tccagagctt ctcagatgct ctaatcgacc 180 aggaccccca ggcggcgtta gaggtgggag agccttttct gcttcctcca ctcccggctg 240 accegectee ttecageace geetgattag gaeteagget etagtgatge tgegteteag 300 ccccagtatt gagatteteg gteteettte teteteteae ggtageegeg ttaceteaga 360 ctcctgtctt gccctttcca cttccagact cttgcattcc tgaagcttct gagaaaaact 420 tectetattt attgggagea tggttggeat etgeagttgg getgaaagga ttttttttt 480 ttaatgacta aaaaagaaaa ggggactctg ggctcgatga aaattaattt tttctt 536

<210> 6 <211> 780 <212> DNA <213> Homo sapiens

<400> 6 attttatcga ctattccgtc agacgccctc ttgcctttag tgaactgcgg ggacctggcc 60 tttgccggta ggggccagcg cagaaaagcc tgggagatgc gcgtccaggg ccgcgagtgc 120 ggggaagetg egggaeegea gagteegete ggeageeggt agteagggeg eeggggegtt 180 aggetteaga tttaetteaa tgtteetaat gggettgett cagaagtget caetgttete 240 gccacctgag gaaccgcatt ttcatgtatt tgtattggga caagacgcgg agtccggtgt 300 gtaaagggcc tgctttgagg gaagaaaggc cgcagcccag gctcaaactg gaggattata 360 aggatcgcct gaaaagtgga gagcatctta atccagacca gttggaagct gtagagaaat 420 atgaagaagt gctacataat ttggaatttg ccaaggagct tcaaaaaacc ttttctgggt 480 tgagcctaga tctactaaaa gcgcaaaaga aggcccagag aagggagcac atgctaaaac 540 ttgaggctga gaagaaaaag cttcgaacta tacttcaagt tcagtatgta ttgcagaact 600 tgacacagga gcacgtacaa aaagacttca aagggggttt gaatggtgca gtgtatttgc 660 cttcaaaaga acttgactac ctcattaagt tttcaaaact gacctgccct gaaagaaatg 720 aaagtetgag acaaacaett gaaggateta etgtetaaat tgetgaaete aggetatttt 780

```
<210> 7
     <211> 654
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(654)
     <223> n = a,t,c or g
     <400> 7
eteccegtet ettecctgge ettgecetet etetttetge cetgtageeg egggegteea
                                                                      60
aatgaagetg gaatteetee agegeaaatt etgggeggea aegeggeagt geageaetgt
                                                                     120
ggatgggccg tgcacacaga gctgcgagga cagtgatctg gactgcttcg tcatcgacaa
                                                                     180
caacgggttc attctgatct ccaagaggtc ccgagagacg ggaagatttc tgggggaggt
                                                                     240
ggatggtget gteetgaeee agetgeteag catgggggtg tteageeaag tgaetatgta
                                                                     300
tgactatcag gccatgtgca aaccetcgag tcaccaccac agtgcagccc agcccctggt
                                                                     360
cageccaatt tetgeettet tgaeggegae caggtggetg etgeaggage tggtgetgtt
                                                                     420
cetgetggag tggagtgtet ggggeteetg gtacgacaga ggggeegagg ceaaaaqttg
                                                                     480
tettecatea eteccacaaa cacaagaage aggaceeget geageeetge gacaeggagt
                                                                     540
acccegtgtt egtgtaceag eceggecate egggaggeca acggggatte gtggagtgeg
                                                                     600
ggcccttncc agaaagggta tttgttggtg cangcagatt ccnaacatta aact
                                                                     654
     <210> 8
     <211> 469
     <212> DNA
     <213> Homo sapiens
     <400> 8
tgccgtgggc ggctggccca gctggaggaa gcggcggtgg cggccacgat gagtgcgggc
                                                                      60
gacgcagtgt gcaccggctg gctcgttaag tcgcccccg agaggaagct acagcgctac
                                                                     120
                                                                     180
gectggegea agegetggtt tgteeteegg egaggeegea tgageggeaa eeeegatgte
ttggagtact acaggaacaa gcactccagc aagcccatcc gggtgataga cctcagcgag
                                                                     240
tgtgcagtgt ggaagcatgt gggccccagc tttgttcgga aggaatttca gaataatttc
                                                                     300
gtgttcattg tcaagactac ttcccgtaca ttctacctgg tggccaaaac tgagcaagaa
                                                                     360
atgcaggtgt gggtgcacag catcagtcag gtctgcaacc ttggccacct ggaggatggt
                                                                     420
gcagcagatt ccatggagag cctctcttac acgcgctcct acctgcage
                                                                     469
```

```
<210> 9
<211> 409
<212> DNA
<213> Homo sapiens
```

<220>

```
<221> misc_feature
<222> (1)...(409)
<223> n = a,t,c or g
```

<400> 9 agaaaccnaa cagatctgtg gggcaggaaa atgtttcttt tccagctttc acagctctct 60 gagaaggggc atggtgggaa ttttagccga tttaataaaa gctgcagcat gagacctgtg 120 aatcccaccc tgctgcttcc tggatcctgc cacaccccat ccagcagcaa ccaagccagt 180 ctcgcccctg actgggacag agtggctgag aggggctctg gagccagctg cctggatttg 240 aatcccagct gtgccactta ccagctgtt gactgtagga agctactctt tgtccgtgcg 300 agactacgac cctcggcagg gagataccgt gaaacattac aagatccgga cccttgaaca 360 aacggggctt ctacatatcc cccccgaagc accttcagca ctctgcagg

<210> 10 <211> 1145 <212> DNA <213> Homo sapiens

<400> 10 aaagattetg ttttgaatat agecagagga aaaaagtatg gagaaaaaac taagagagtg 60 tettetegga aaaaaccage ettgaagtgt etteteagaa acaaccagea ttgaaggeta 120 tetgtgacaa ggaagattet gtteegaata eggeeaegga aaaaaaggat gaacaaatat 180 ctgggacagt gtcttctcag aaacaaccag ccttgaaggc tacaagtgac aagaaagatt 240 ctgtttcgaa tatacccaca gaaataaagg atggacaaca atctggaaca gtgtcttctc 300 agaaacaacc ggcctggaag gctacaagtg tcaagaaaga ttctgtttcg aatatagcca 360 cagaaataaa ggatggacaa ataccgtggg acagtgtctt ctcagagaca accagccttg 420 aaggettaca ggtgatgaga aagattetgt ttegaatata gecagagaaa taaaggatgg 480 agaaaaatct gggacagtgt ctcctcagaa acaatcggcc cagaaggtta tatttaaaaa 540 gaaagtttct cttttgaata ttgccacaag aataacgggc ggttggaaat ctggaacaga 600 gtatcctgag aatctgccca ccttgaaggc tacaattgaa aataaaaatt ctgttctgaa 660 tacagccacc aaaatgaaag atgtacaaac atccacacca gaacaagact tagaaatggc 720 atcagaggga gagcaaaaga ggcttgaaga atatgaaaat aaccagccac aggtgaaaaa 780 ccaaatacat tctagggatg accttgatga cataattcag tcatctcaaa cagtctcaga 840 ggacggtgac tcgctttgct gtaattgtaa gaatgtcata ttactcattg atcaacatga 900 aatgaagtgt aaagattgtg ttcacctatt gaaaattaaa aagacatttt gtttatgtaa 960 aagattaaca gaacttaaag ataatcactg tgagcaactt aqagtaaaaa ttcgaaaact 1020 gaaaaataag gctagtgtac tacaaaagag actatctgaa aaagaagaaa taaaatcgca 1080 gttaaagcat gaaacacttg aattggaaaa agaactctgt agtttgagat ttgccataca 1140 gcaag 1145

<210> 11 <211> 890 <212> DNA <213> Homo sapiens

<400> 11 gtagtccgct gcggtaccgg gccggacaat ctgggtcgac gatttcgagc tcgtcatgcg 60 caatgtggcg ctgcggcggg cggcagggcc tgtgtgtgct gaggcggctg agcggcggac 120 atgcacacca cagagcgtgg cgatggaaca gtaaccgggc ttgtgagagg gctctgcagt 180 ataaactagg agacaagatc catggattca ccgtaaacca ggtgacatct gttcccgagc 240 tgttcctgac tgcagtgaag ctcacccatg atgacacagg agccaggtat ttacacctgg 300 ccagagaaga cacgaataat ctgttcagcg tgcagttccg taccactccc atggacagta 360 ctggtgttcc tcacattctt gagcataccg tcctttgtgg gtctcagaaa tatccgtgca 420 gagaccettt etteaaaatg ttgaaceggt ceeteteeac gtteatgaac geetteacag 480 ctagtgatta tactctgtat ccattttcca cacaaaatcc caaggacttt cagaatctcc 540 teteggtgta tttggatgee acettttee catgtttaeg egagetggat ttetggeagg 600 aaggatggcg gctggaacat gagaatccga gcgaccccca gacgcccttg gtctttaaag 660 gagtcgtctt taatgagatg aagggagcgt ttacagacaa tgagaggata ttctcccagc 720 accttcagaa cagacttctt cctgaccaca cgtactcagt ggtctccggg ggtgacccac 780 tgtgcatccc ggagcttaca tgggagcagc ttaagcagtt tcatgccact cactatcacc 840 caagcaatgc taggttcttc acgtacggta attttccctt agaccagcat 890

<210> 12 <211> 982 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(982) <223> n = a,t,c or g

<400> 12 tttcgtcaca cacgcacacg caccctgcca ctgcagccgc catggatatc agctaacaac 60 acacacccag gcgcgcgcgc gcgttcccac tcgcaccacq caqqaqtqqc ccccqqcatc 120 cctaccetce ttecceacce ccaccacace eqeteaceaq eteqqetact qeteqetecq 180 getgeegeeg cegeegeege egaegeeace accaetgett cetetgetge ggggeeacag 240 cettgagtgt cattcaaggg acagcacaac ctcatccaag ctctcctacc tctqcccage 300 egtgeetete ateeteeeea tteetegtee acaeteeate caaaqaagaq ggaaagcace 360 gaatagaggg gggcgaaggc aaagtetget gttetteece etgggeecee ttgeteetee 420 atecteatte teteaceace ageceeceta acceeaagga geeeaggaac tgaggegaet 480 cgccccactg ccatgtccaa aagcttgaaa aagaaaagcc actggactag caaagtccat 540 gagagtgtca ttggcaggaa cccggagggc cagctgggct ttgaactgaa ggggggcgcc 600 gagaatggac agttccccta cctgggggag gtgaagcccg gcaaggtggc ctatgagagc 660 ggcagcaaat tggtgtcgga ggagctgctg ctggaggtga acgagacccc cgtggcgggg 720 ctcaccatca gggacgtgct ggccgtgatc aaacactgca aggaccccct ccggctcaag 780 tgtgtcaagc aaggtgagag cagcggcttg ctcagtgttt tgccgggcgg tgggaccgct 840 cggggcgcag ggcaatgaaa gggtggccgc gcatgttgaa gggggtgtgt tgcgcgatga 900 tggggtgggg gccagagagc acccgcagtg caagtgagtt tcgccgggga ttcgacgaaa 960 tegtnneceg ggaatteegg ac 982

<210> 13 <211> 440 <212> DNA <213> Homo sapiens

<400> 13 ccgtgccgga attcccgcgt cgacgatttc gtggctaagg cgccaggcac gggcaccacc 60 agggegecca ggageegece geegeeggea tggaceaget gtactgeeca eegagegegt 120 gccagtcttt tggtaagaac tagtcacaca gacctcaacc tgatgcgtgg agacaaggaa 180 atgettttca gtgtgtccag aaagagaaaa tgcaggtgtc ttctgcggag gtgcgcatcg 240 ggcccatgag actgacgcag gaccctattc aggttttgct gatctttgca aaggaagata 300 gtcagagcga tggcttctgg tgggcctgcg acagagctgg ttatagatgc aatattgctc 360 ggactccaga gtcagccctt gaatgctttc ttgataagca tcatgaaatt attgtaattg 420 atcatagaca aactcagaac 440

<210> 14 <211> 581 <212> DNA <213> Homo sapiens

<400> 14

tttcgtttgg ccggctgcgg gcacctcctg gtctcgctgc tggggctgct gctgctgctg 60
gcgcgctccg gcacccgggc gctggtctgc ctgccctgtg acgagtccaa gtgcgaggag 120
cccaggaact gcccggggag catcgtgcag ggcgtctgcg gctgctgcta cacgtgcgcc 180
agccagagga acgagagctg cggcggcacc ttcgggattt acggaacctg cgaccggggg 240
ctgcgttgtg tcatccgcc cccgctcaat ggcgactccc tcaccgagta cgaagcggc 300

ctgcgttgtg tcatccgcc cccgctcaat ggcgactcc tcaccgagta cgaagcgggc 300 gtttgcgaag atgagaactg gactgatgac caactgcttg gttttaaacc atgcaatgaa 360 aaccttattg ctggctgcaa tataatcaat gggaaatgtg aatgtaacac cattcgaacc tgcagcaatc cctttgagtt tccaagtcag gatatgtgc tttcagcttt aaagagaatt 480 gaagaagaga agccagattg ctccaaggcc cgctgtgaag tccagttctc tccacgttgt 540 cctgaagatt ctgttctgat cgagggttat gctcctcctg g

<210> 15 <211> 693 <212> DNA <213> Homo sapiens

<400> 15 tttcgtatgg cggccaatgt gggatcgatg tttcaatatt ggaagcgctt tgatttacag 60 cagctgcaga gagaactcga tgccaccgca acggtattgg cgaaccggca ggatgaaagt 120 gagcagtcca gaaagcggct tatcgaacag agccgggagt tcaagaagaa cactccagag 180 gtgaggcgcg tgaccatcgt gttcgctttg aagggatctt agaatgctgg tgcatgttca 240 ggcgacgctc cgtgagcgtt tcattttcat cagatgaacg cacggccggc aaacaacccg 300 tttctttccc cagatgtctt cagccccatt tccagcagaa cgcatgccat cctgcaggct 360 gtggggatgt ggaaattgat aggttgtctg gaaatatgaa agtcagagcc aattccaggt 420 gcagatactg gacaagcttg gtctgtaaga acacgtgggc aggtgtgtgg gtgtctcaaa 480 ccctcgagct catcccagac cctgtcccat gtcagttagc aagccaccaa agtccataag 540 ggatectgtg gggtggaagg teegegggge etgetteeet gttgetggtg eaggeggagt 600 gtctgaagge tgcacgcate tgggcatage agtgcgccta acgettettg taaaacagae 660

atttcgcctg ctaagccttt taaatgcctc tct

693

<210> 16 <211> 562 <212> DNA <213> Homo sapiens

<400> 16 tttcgtggaa agagagaaac caccgctgcg ggtgggtaga gaagcacttg gcgcctcggg 60 gaggggaccg cgcccgcctc atttgcgcct tgcagcactg ctggaccagg ttacaagatg 120 ttcacctaag attgagacct agtgactaca tttcctacgg gaacaaataa atggtttttc 180 atctcccgga gatacattac aaacaaatat ggtgctaaaa gaactcctta cctttctctg 240 actacaattt atttggacat acttttgtat tgaagagagg tatacatact gaagctactt 300 gctgtactat aggagactct gtcctgtagg atcatggacc atcctagtag ggaaaaggat 360 gaaagacaac ggacaactaa acccatggca caaaggagtg cacactgctc tcgaccatct 420 ggctcctcat cgtcctctgg ggttcttatg gtgggaccca acttcagggt tggcaagaag 480 ataggatgtg ggaacttcgg agagctcaga ttaggtgaag gtctcccaca ggtgtattac 540 tttggaccat gtgggaaata ta 562

<210> 17 <211> 899 <212> DNA <213> Homo sapiens

<400> 17 tttcgtgcgt ccccggccca accatggcgt cctccgcggc cggctgcgtg gtgatcgttg 60 gcaggaagtc tgaaacagca gttggagtgt agtggttaag aggaaggact caggagtcag 120 attgcttggc ttcatctcat agatccataa cttatcaccc ttgtggactt aattcctcca 180 tgcctcagtt tatcacttat gtaggcttaa ttcctccatg cctcagtttc cctacatata 240 aaatggaaat actaataaca cttatcttgt agggttgttg taaagattaa catagtggag 300 tcattgggcg aagctgggcc atgctgtttg ccagtggagg cttccaggtg aaactctatg 360 acattgagca acagcagata aggaatgccc tggaaaacat caggtgggcc agccggcgct 420 ctccagaagg aatggaagtg ggtctgtttc tctcagttgg tcttgtttgt catatcctca 480 aggctatgag gatctgtgat gtcacatttt cgtctgatgg ctactgcagt gcctctgagt 540 tggtaaaggc caggcctaca gtggctggaa tgtgaattca cactggggaa gggctcccat 600 gggggaggaa acgaccette ttgctaagag gatetgeate aagegtgagt gaetttgeag 660 gettetecag etgtttgeec eggggetgga gggetggggt tteetgette eatetaggea 720 ggaggaactc gcttccagca tgtgacagcc atagctgcag gggcattaca gtttaagaac 780 agaggtcctg cagettgttt tgacctgttg atctagtaat ggtaggaccc aaatgaaaac 840 atcttgaatt ttagttagag gtttagcact catgtgagag gacagaactg gagctgttt 899

<210> 18 <211> 519 <212> DNA

<213> Homo sapiens

<400> 18 ggaatteeeg ggtegaegat ttegteteeg eeegeeegaa geegegeeea etgeeeagag 60 ccagagggat ggtggtagtc acggggcggg agccagacag ccgtcgtcag gacggtgcca 120 tgtccagete tgacgccgaa gacgacttte tggagccgge cacgccgacg gccacgcagg 180 eggggeaege getgeeeetg etgeeaeagg agttteetga ggttgtteee ettaaeateg 240 gaggggctca cttcactaca cgcctgtcca cactgcggtg ctacgaagac accatgttgg 300 cagccatgtt cagtgggcgg cactacatcc ccacggactc cgagggccgg tacttcatcg 360 accgagatgg cacacacttt ggagatgtgc tgaattteet gegeteaggg gaeeteecac 420 ccagggagcg tgttcgagct gtgtacaaag aggcccagta ctatgccatc gggcccctcc 480 tggagcagct ggagaacatg ccgccactga aaggcgaga 519

<210> 19 <211> 460 <212> DNA

<213> Homo sapiens

<400> 19 tttcgtgcag gggccaggcc tctctaggct ctccggctga gccgggttgg ggcccgggtt 60 gggccgcccg gggactctgg agcattggga tttgtagcgc gccctctggg taggcggctg 120 tagcggagag gcgtgcggga tcgggatgtc ggggctgctc acggacccgg agcagagagc 180 gcaggagccg cggtaccccg gcttcgtgct ggggctggat gtgggcagtt ctgtgatccg 240 ctgccacgtc tatgaccggg cggcgcgggt ctgcggctcc agcgtgcaga aggtagaaaa 300 tetttateet caaattgget gggtagaaat tgateetgat gttetttgga tteaatttgt 360 tgccgtaata aaagaagcag tcaaagctgc aggaatacag atgaatcaaa ttgttggtct 420 tggcatttca acacagagag caacttttat tacgtggaac 460

<210> 20 <211> 731 <212> DNA <213> Homo sapiens

<400> 20 gagatcaagg agggctcaga agaggcgatg tctgatctgt cctccaggca gcaaaggaaa 60 gggaggtgtg ttcctggcag aaggcacagc ttgtactgag gcctggcagc agaacagagt 120 atgcaatttg tgaagctgtg gtgtggctgc agtggagagt tcccaacaag gctacgcaga 180 agaaccccct tgactgaagc aatggagggg ggtccagctg tctgctgcca ggatcctcgg 240 gcagagctgg tagaacgggt ggcagccatc gatgtgactc acttggagga ggcagatggt 300 ggcccagagc ctactagaaa cggtgtggac ccccaccac gggccagagc tgcctctgtg 360 atccctggca gtacttcaag actgctccca gcccggccta gcctctcagc caggaagctt 420 tccctacagg agcggccagc aggaagctat ctggaggcgc aggctgggcc ttatgccacg 480 gggcctgcca gccacatctc cccccgggcc tggcggaggc ccaccatcga gtcccaccac 540 gtggccatct cagatgcaga ggactgcgtg cagctgaacc agtacaagct gcagagtgag 600

attggcaagg gtgcctacgg tgtggtgagg ctggcctaca acgaaagtga agacagacac 660 tatgcaatga aagtcctttc caaaaagaag ttactgaagc agtatggctt tccacgtcgc 720 cctcccccga a 731

<210> 21 <211> 519

<212> DNA

<213> Homo sapiens

<400> 21

tttcgtttat gggaagccag taacactgtg gcctactatc tcttccgtgg tgccatctac 60 atttttggga ctcgggaatt atgaggtaga ggtggaggcg gagccggatg tcagaggtcc 120 tgaaatagtc accatggggg aaaatgatcc gcctgctgtt gaagccccct tctcattccg 180 ategettitt ggeettgatg atttgaaaat aagteetgtt geaceagatg eagatgetgt 240 tgctgcacag atcctgtcac tgctgccatt gaagtttttt ccaatcatcg tcattgggat 300 cattgcattg atattagcac tggccattgg tctgggcatc cacttcgact gctcagggaa 360 gtacagatgt cgctcatcct ttaagtgtat cgagctgata gctcgatgtg acggagtctc 420 ggattgcaaa gacggggagg acgagtaccg ctgtgtccgg gtgggtggtc agaatgccgc 480 getecaggtg tteacagetg ettegeggaa gaccatqtq 519

<210> 22

<211> 544

<212> DNA

<213> Homo sápiens

<400> 22

tttcgtgctg gaggttcgct agccgaagcg gctgcatctg gcgccgcgtc tgccccgcgt 60 geteggageg gattetgeec geegteeceg gageectegg egeecegetg ageeegegat 120 cacttectee etgtgaceaa eeggegetge aggttagage etggeaatge egtttgggtg 180 tgtgactctg ggcgacaaga agaactataa ccagccatcg gaggtgactg acagatatga 240 tttgggacag gtcatcaaga ctgaggagtt ttgtgaaatc ttccgqqcca aqqacaaqac 300 gacaggcaag ctgcacacct gcaagaagtt ccagaagcgg gacggccgca aggtgcggaa 360 agetgecaag aacgagatag geateeteaa gatggtgaag eateecaaca teetacaget 420 ggtggatgtg tttgtgaccc gcaaggagta ctttatcttc ctggagctgt gagtgtgggt 480 ctggggaccc aaaattcccc agcgcccagg gctttcacct gtcccaccct ctgcagctaa 540 ggag 544

<210> 23

<211> 749

<212> DNA

<213> Homo sapiens

<400> 23 caacgtcgac gatttcgtgc ggggctgtgg ggagggcacg gactgacaga cggactccgg 60 cggaatgggg ggtgtggctg ctccgccagg gtccccaggg tgggagagcg gctccgcggc 120 caccgatgec eggacecect etgtettetg etagacatge tetteetete gttteatgea 180 ggctcttggg aaagctggtg ctgctgctgc ctgattcccg ccgacagacc ttgggaccgg 240 ggccaacaet ggcagetgga gatggcggae acgagateog tgcacgagae taggtttgag 300 geggeegtga aggtgateea gagtttgeeg aagaatggtt catteeagee aacaaatgaa 360 atgatgetta aattttatag ettetataag eaggeaactg aaggaceetg taaaetttea 420 aggeetggat tttgggatee tattggaaga tataaatggg atgettggag tteactgggt 480 gatatgacca aagaggaagc catgattgca tatgttgaag aaatgaaaaa gattattgaa 540 actatgccaa tgactgagaa agttgaagaa ttgctgcgtg tcataggtcc attttatgaa 600 attgtcgagg acaaaaagag tggcaggagt tctgatataa cctcagatct tggtaatgtt 660 ctcacttcta ctccaaacgc caaaaccgtt aatggtaaag ctgaaagcag tgacagtgga 720 gccgagtctg aggaagaaga ggcgtgtgt 749

<210> 24 <211> 556 <212> DNA <213> Homo sapiens

<400> 24 tttcgtgctt taaggggcgg acgggcggga ggtcggggtc ctccgggggat tcgagccggt 60 gggctcgttg tgggcgccat ttctcggcgt ctaccgagga gccgcccctt tctcagcctt 120 geteggetet teccegetet ggtegeeggg getgegeegt ceccagetea gtgacaaaaa 180 tgctgagttt cttccgtaga acactagggc gtcggtctat gcgtaaacat gcagagaagg 240 aacgactccg agaagcacaa cgcgccgcca cacatattcc tgcagctgga gattctaagt 300 ccatcatcac gtgtcgggtg tcccttctgg atggtactga tgttagtgtg gacttgccaa 360 aaaaagccaa aggacaagag ttgtttgatc agattatgta ccacctggac ctgattgaaa 420 gegactattt tggtetgaga tttatggatt cagcacaagt agcacattgg ttggatggta 480 caaaaagcat caaaaagcaa gtaaaaattg gttcacccta ttgtctgcat cttcgagtta 540 agttttattc ctcaga 556

<210> 25 <211> 422 <212> DNA <213> Homo sapiens

<400> 25 gtcggtgaga atccagggag aggagcggaa acagaagagg ggcagaagac cggggcactt gtgggttgca gagcccctca gccatgttgg gagccaagcc acactggcta ccaggtcccc 120 tacacagtcc cgggctgccc ttggttctgg tgcttctggc cctgggggcc gggtgggccc 180 aggaggggtc agagcccgtc ctgctggagg gggagtgcct ggtggtctgt gagcctggcc 240 gagetgetge aggggggece gggggageag ceetgggaga ggeaeceeet gggegagtgg 300 catttgctgc ggtccgaagc caccaccatg agccagcagg ggaaaccggc aatggcacca 360 gtggggccat ctacttcgac caggtcctgg tgaacgaggg cggtggcttt gaccgggcct 420 422 ct

<210> 26 <211> 506 <212> DNA <213> Homo sapiens

<400> 26 agaagatgtg aagtcgtatt atacagtaca tctaccacaa ttagaaaata tcaatagtgg 60 tgaaaccaga acaatatctc actttcatta tactacttgg ccagattttg gagtccctca 120 atcaccaget teatttetea atttettgtt taaagtgaga gaatetgget cettgaacce 180 tgaccatgga cctgtggtga tccaccgtag tgcaggcact ggacgctcca gcaccttctc 240 tgtggtacac acttgtcttg ttttgatgga aaaaggagat gatattaaca ttaaacaaqt 300 gttactgaac ataagaaaat tccaaatggg tcttatctca gaccccagat caactgaqat 360 teteatacat ggetataaca gaaggagcaa aatgtgtaaa gggagattet agtatacaga 420 aacgatggaa agaactttct aaggaagact ccctcctgct tttgatcatt caccaaacaa 480 aataatgact gaaaaataca atagga 506

<210> 27 <211> 850 <212> DNA

<213> Homo sapiens

<400> 27 caggcetttg tgtaaggcca gaggaggatc acgggtgcca taaaccttca cggggccaag 60 ggctggtgtc ccggggctgg tgacttaaca ggcagagatg tggagaccag gtgcttgtgc 120 ccgggacggg cctggctgcc atcctgagga cactgcccat gttccatgac gaggagcacg 180 cccgagcccg cggcctctct gaggacaccc tggtgctacc cccggccagc cgcaaccaga 240 ggatteteta caccgtgetg gagtgecage ceetettega etceagtgac atgaccateg 300 ctgagtgggt ttgccttgcc cagaccatca agaggcacta cgagcagtac cacggctttg 360 tggtcatcca cggcaccgac accatggcct ttgctgcctc gatgctgtcc ttcatgctgg 420 agaacetgea gaagactgte atceteactg gggeeeaggt geeeateeat geeetgtgga 480 gcgacggccg tgagaacctg ctgggggcac tgctcatggc tggccagtat gtgatcccag 540 aggtetgeet tttetteeag aateagetgt tteggggeaa eegggeaace aaggtagaeg 600 cteggaggtt egeagettte tgeteeeega acetgetgee tetggeeaca gtgggtgetg 660 acatcacaat caacagggag ctggtgcgga aggtggacgg gaaggctggg ctggtggtgc 720 acagcagcat ggagcaggac gtgggcctgc tgcgcctcta ccctgggatc cctgccgccc 780 tggttcgggc cttcttgcag cctcccctga agggcgtggt catggagacc ttcggttcag 840 ggaacggacc 850

<210> 28 <211> 990 <212> DNA

<213> Homo sapiens

```
<400> 28
tttttttttt ttacttgtaa tacgtatttt aatttttgtt tcatatgagt ttaagtgttg
                                                                      60
totaggtgac atcaaaatot aaggcaaaca gacttgacca tottcagacc cactgcattc
                                                                     120
tcaagctgaa gtggtctgct catagtttgt gtgccaggtt gctcatcagt attgatactg
                                                                     180
tcccagaaca ggttgtaggt ataattcaga gactgtcctt tgcaaaggaa atgaccagca
                                                                     240
tttcaactgt atgtcttcct ggaagggtag attctgctat atcttctttg tctgcatcaa
                                                                     300
aagactcaag aggaatgtgg acacatttca tatcccattt gtagagtaaa gcttcaagtg
                                                                     360
accagtcage actectaact tgataagtag accacaattg gaccttggga ttettgtgca
                                                                     420
tcaaaaaata tattgtagcc aaaatgtctt caaaatcttc tggttcaaag aacacatcag
                                                                     480
atgcaaggat aatatettgt ggtggtagag ceagaagate ceaagatata tgaceceatg
                                                                     540
ttagtcctac cacctgcaga tgtggcaggt tattcatttg gcagctttgc cgacagactt
                                                                     600
ccagacagtg aggcagttct gagctgtctg acagtattac ttctgcacca catttggcag
                                                                     660
ccaaaattcc tggaaggctc actccagctc caatctgcgg gacgtggacc tccaggacag
                                                                     720
eccegtegge ecceggacee ggetecteeg agaategaaa gegetgggee eggaceeet
                                                                     780
gteeteggaa ategtgeteg eccagtaggg egtegttggg eccegggegg gegggggaee
                                                                     840
geggaagget eegggetgee agaetgegeg agegggaage egegggeeae gtggeegtag
                                                                     900
cacctgacgg caagaagggg aaagcccaga tctggtgata accctgccgc gctagcgagc
                                                                     960
gaagaaagcc cggagcaagg cgaaagagac
                                                                     990
```

<210> 29 <211> 622 <212> DNA <213> Homo sapiens

```
<400> 29
ttttttttt ttgtgttgat aaagetttat ttataaacac actcacaggg ccagatttgg
                                                                      60
gccacgggcc atagttgcca gcccggcttt aactgctggt cctcacgtta gtctcactgc
                                                                     120
ctcctgcagg gtgggcatgt gggtgtcgtg ttcacccagc cccttcctcc accccacaaa
                                                                     180 .
caccetggtg getgteetgg agegegacae actgggeate egtgaggtge ggetgtteaa
                                                                     240
tgccgttgtc cgctggtccg aggccgagtg tcagcggcag cagctgcagg tgacgccaga
                                                                     300
gaacaggcgg aaggttctgg gcaaggccct gggcctcatt cgcttcccgc tcatgaccat
                                                                     360
cgaggagttc gctgcaggta acagagctcg ggctcagggg ctggtttggg aggggagtgg
                                                                     420
cacacaggtg ggcatctggg taccgaggat agtgcccccg agttcactgc ggaaagcctg
                                                                     480
gcagatgcct ggcatataca gataggaaga aacctggctt gtgaggacgc gtccacaggg
                                                                     540
ccatctgtta gccccggccc ggctctgtcc ccaccgtgca cactgccaga ccccgcctct
                                                                     600
cgtgtctgtc cagctgtttt gg
                                                                     622
```

```
<210> 30
<211> 181
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(181)
<223> n = a,t,c or q
```

```
<400> 30
ttttttttt ttgagacgga gntgngctct gtnacccagg ntagagtgca atggcacgnt ctcggctcac tgcaagctct gcgtcctggg ttgacgccat tctcctgcct cagcctcccg agtagctggg actacaggag cttcgccacc aattccagcc tggggtggac agagtgataa 180
9
```

<210> 31 <211> 1956 <212> DNA <213> Homo sapiens

<400> 31 aaactccgaa cacatccaaa catcagaagg aacaaactcc agacacaccg cctttaagaa 60 ctgttacgct caccgcgagg gtccacggct tcattctcca agtcagacca agaacccacc 120 aattccggac acaaaaggcg tagcgtgcct cctgtgattg ttgaagagct gtggtgtgct 180 gctgagtggc gtgtgtattc catgtgaggg gaagggtcca acagtcctgg tcattcagac 240 tgcagttccc caggacagac ccacgaagtc aagcatgcgg agtgcagcca agccctggaa 300 cccagccatc agagcagggg gccacggccc agaccgggtg cggcctctgc ctgcagcctc 360 ttccggcatg aagagttcta agtcttcaac ttccttggct tttgagtccc gactcagcag 420 gctcaagagg gccagcagtg aggacacgct caacaagcca ggaagtaccg ctgcatcggg 480 ggtggttcgc ctgaagaaga ccgccactgc cggagccatc tcggagctca cggagagccg 540 cctgaggagc ggcacagggg cctttacaac aactaaacgg acaggcattc cagccccacg 600 ggaattttca gtaactgtct caagagagag gtctgtgcca cgtggtccct ccaaccccag 660 gaaatcagtg tecagtecaa ettectecaa cacteccaet eetacgaaac aeetgaggae 720 cccttccaca aagcccaagc aagagaatga aggtggagaa aaggctgcgc ttgagtccca 780 agttcgggaa cttttggcag aagccaaagc aaaagatagt gaaattaaca ggcttcgaag 840 tgaactaaag aaatacaaag agaaaaggac tctgaacgct gaggggactg atgctttggg 900 cccaaatgtc gatggaacat cagtctcccc aggtgacacg gaacctatga taagagctct 960 tgaggagaag aacaagaact ttcagaaaga gctttccgat ctagaggaag aaaaccgggt 1020 cctgaaggag aaactgatct atcttgagca ctccccaaat tcagaagggg cagcaagtca 1080 cactggcgac agcagctgcc caacatccat aactcaagag tcaagcttcg gaagcccaac 1140 tggaaatcag ttgtccagtg acattgatga gtataaaaaa aacatacatg gaaatgcatt 1200 acggacatca ggctcctcaa gtagcgatgt taccaaagct tctttgtcgc cagatgcttc 1260 cgactttgag cacattacag cagagacacc ctcaaggccc ctgtcctcca ccagtaaccc 1320 ctttaagagt tcaaagtgtt ctactgctgg gagttcccca aacagcgtaa gtgaattgtc 1380 cctggcttcc ctcacagaga agatacaaaa gatggaagaa aaccaccata gcactgcaga 1440 agaactacag gctactctac aagaattatc agaccagcaa caaatggtac aggaattgac 1500 agctgaaaat gagaagctgg tggatgaaaa gacgatttta gagacatcct ttcatcagca 1560 tcgagagagg gcagagcagc taagtcaaga aaatgagaag ctgatgaatc ttttacaaga 1620 gcgagtaaag aatgaagagc ccaccactca ggaaggaaaa attattgaac tggagcagaa 1680 gtgcacaggt attettgaac agggccgctt tgaaagagag aagetactca acattcagca 1740 gcagttgacc tgtagcttgc ggaaggttga ggaagaaaac caaggagctt tagaaatgat 1800 taaacgtctg aaggaagaaa atgaaaaact gaatgagttt ctagaactgg aacggcataa 1860 taataacatg atggccaaaa ctttggaaga gtgtagagtt accttggaag ggctaaaaat 1920 ggagaatgga tetttgaagt eteatttgea gggtga 1956

<210> 32

<211> 513

<212> DNA

<213> Homo sapiens

<400>	32					
ctcagcacca	caaggaagtg	cgggacccac	acgcgctcgg	aaagttcagc	atgcatgaag	60
tttggggaga	gctcggcgat	taacacagcg	acccgggcca	gcgcagggcg	agcgcaggcg	120
gcgagagcgc	agggcggcgc	ggcgtcggtc	ccgggagcag	aacccggctt	tttcttggag	180
cgacgctgtc	tctagtcgct	gatcccaaat	gcaccggctc	atctttgtct	acactctaat	240
ctgcgcaaac	ttttgcagct	gtcgggacac	ttctgcaacc	ccgcagagcg	catccatcaa	300
agctttgcgc	aacgccaacc	tcaggcgaga	tgagagcaat	cacctcacag	acttgtaccg	360
aagagatgag	accatccagg	tgaaaggaaa	cggctacgtg	cagagtccta	gattcccgaa	420
cagctacccc	aggaacctgc	tcctgacatg	gcggcttcac	tctcaggaga	atacacggat	480
acagctagtg	tttgacaatc	agtttggatt	aac			513

<210> 33 <211> 712 <212> DNA

<213> Homo sapiens

```
<400> 33
acagacatgg ttccagctct gtagaactga gagaaagaat aaacaagtca cacattagcc
                                                                      60
cttcaaaaag atgaccgacc tettgagaag tgttgtcacc gtaattgatg ttttctacaa
                                                                     120
atacaccaag caagatgggg agtgtggcac actgagcaag ggtgaactaa aggaacttct
                                                                     180
ggagaaagag cttcatccag ttctgaagaa cccagatgat ccagacacag tggatgtcat
                                                                     240
catgcatatg ctggatcgag atcatgacag aagattggac tttactgagt ttcttttgat
                                                                     300
gatattcaag ctgactatgg cctgcaacaa ggtcctcagc aaagaatact gcaaagcttc
                                                                     360
agggtcaaag aagcataggc gtggtcaccg acaccaagaa gaagaaagtg aaacagaaga
                                                                     420
ggatgaagag gatacaccag gacataaatc aggttacaga cattcaagtt ggagtgaggg
                                                                     480
agaggagcat ggatatagtt ctgggcactc aaggggaact gtgaaatgta gacatgggte
caactccagg aggctaggaa gacaaggtaa tttatccagc tctgggaacc aagagggatc
                                                                     600
tcagaaaaga taccacaggt ccagctgtgg tcattcatgg agtggtggca aagacagaca
                                                                     660
tggttccagc tctgtagaac tgagagaaag aataaacaag tcacacatta aa
                                                                     712
```

<210> 34 <211> 600 <212> DNA <213> Homo sapiens

<400> 34
cagatttctc aggtgagctc agatagcaat ccactgtgtt cctttatctc cagcagatat 60
atatcaatat cttgaagcag ttttctactc aatttagaag aacttctggt taaatttaca 120
attcttttt ctcccatg cttgttgtt ctcattcaaa caagactggc atagctactt 180
tatgagggta ggtctccctg aattttaagt tccaaagatc tctggacctg atcatattga 240
ctttattccg tgggatcaac tcttcatggc cagttcttcc tctgtcactg agttcttagt 300
gctgggcttc tctagccttg gggaattgca gcttgtcctc tttgcagtct ttctctgcct 360

ctatttgatt atcttgagtg gaaacatcat catcatctca gtcattcatt tggatcacag 420 cctccacaca cccatgtact tctttctagg tattctttct atctctgaaa tcttctacac 480 aactgttatt ctgcccaaga tgcttatcaa cttattctct gtattcagga cactctcctt tgtgagttgt gccacccaaa tgttctacga aatcgtcggc ccgggaactc aggaacggtc 600

<210> 35 <211> 985 <212> DNA

<213> Homo sapiens

<400> 35 tttegteeta etgteeetgt cetgeeettg cagacatgtg teetgeeett geagacagee 60 gcaggcaggc agggaccacc atgagcaacc ccgtctctcc tcctgagggg cagcacagag 120 cctggaggag gcctgagtgg ggttgaggcc tggggcgagc tggggtggag gggcactggc 180 tgccgggctc cagggatctt ctccccttcc tgccccggag ggtgctggca caggggtggg 240 geteactece acteegtaga cacaatgate agaggteetg ggtgtetggg gaagetggge 300 tgtgcgtgta tgcgtctacc atgtgggggt gcctgtgagt gtgctggggc gtctgcagtg 360 aaggeeteet gagaceaete caeggaaaca eegggaatee etgeagetga geetgtetet 420 cacgggaccg ggaagctgga gagagcccca accctgcccg ctggggccga gctccctgct 480 cctgcagcag tcccgtgccc cacactctga gtctgcccta tccacagctg ctgggcctct 540 ctgtggccac catggtgact cttacctact tcggggccca ctttgctgtc atccgccgag 600 cgtccctgga gaagaacccg taccaggctg tgcaccaatg ggggactcag cagcgactta 660 tecaacatee agagageggg agegagggee agageetget ggggeeacte agggeettet 720 etgeggggtt gageetggtg ggeeteetga etetgggage egtgetgage getgeageea 780 ccgtgaggga ggcccagggc ctcatggcag ggggcttcct gtgcttctcc ctggcgttct 840 gcgcacaggt gcaggtggtg ttctggagac tccacagccc cacccaggtg gaggacgcca 900 tgctggacac ctacgacctg gtatatgagc aggcgatgaa aggtacgtcc cacgtccggc 960 ggcaggagct ggcggccatc cagga 985

<210> 36 <211> 464 <212> DNA <213> Homo sapiens

<400> 36 ccgtatcggc gtttatatac tgaagataag cctgatgagt aacaggcttg ctcgtcatac 60 tttcgtgagt attggcgttg tacaggcaag tcgtaaaata acagcctggc tattcagagt 120 atgataaaaa cagggggcaa gggatgttgc ttaatatgat gtgtggtcgt cagctgtcgg 180 caatcagttt gtgcctggcc gtaacattcg ctccactgtt caatgcgcag gccgatgagc 240 ctgaagtaat ccctggcgac agcccggtgg ctgtcagtga acagggcgag gcactgccgc 300 aggcgcaagc cacggcaata atggcgggga tccagccatt gcctgaaggt gcggcagaaa 360 aagcccgcac gcaaatcgaa totcaattac ccgcaggtta caagccggtt tatottaacc 420 agetteaact gttgtatgee geaegeggta ttteetgeag egtg 464

<210> 37 <211> 429 <212> DNA <213> Homo sapiens

<400> 37 togcacaaga gotgotgatg totatgtott ttogotcacg ggaaaatoto gaaacgtgag 60 ttcctcaacc gtgcggcgaa gtgcggtagg cgggatgtcg gcattagcgt tgtttgattt 120 getcaageca aattatgege tggegaetea ggtagagttt aeegaeeegg aaattgttge 180 tgagtacatc acgtatectt cgccaaatgg tcacggcgag gtgcggggtt atctggtgaa 240 gcccgcaaag atgagcggca aaacgccagc cgtagtggtg gtgcatgaga atcgtggact 300 gaatccgtat atcgaagatg tggcacggcg agtggcgaag gcggggtata tcgccctggc 360 acctgacggc ttaagttccg ttggaggtta tccgggaaat gatataaagg tggtatccgc 420 agcggcccc 429

<210> 38 <211> 556 <212> DNA <213> Homo sapiens

<400> 38 gagaataacc tagacgttat tgacttgatg ccccgcgtcg gtaaggcgct ggataccacg cagogoggeg tgotgtttaa tgoagtaaco ogatggggca attaagtgaa acagagacat 120 ggcaattcct tgctgacaac agaaacgaaa tgtatatcat gccgcttagg tgtgccgttg 180 tcacctcaac ggcgattcca ggctataagg atagaagaag tgaaattgag atggtttgcc 240 tttttgattg tgttattagc gggttgttca tcaaagcatg actatacgaa cccgccgtgg 300 aacgcgaaag ttccggtgca acgtgcgatg cagtggatgc caataagcca gaaagccggt 360 gcagcctggg gcgtcgatcc acaattgatc acggcgatta tcgctatcga atcgggtggt 420 aatccgaacg cggtgagtaa atcgaatgcc attggtttga tgcagttaaa agcttcaacc 480 tecggaegtg atgtttateg cegtatggge tggagtggtg ageegaegae cagegagetg 540 aagaattcct caagac 556

<210> 39 <211> 890 <212> DNA <213> Homo sapiens

<400> 39
 accacgetge aggaattegg cacgaggeea aaccaaagag aagttttat getgecaggg 60
 atttgtacaa gtaccgacac cagtacccaa acttcaaaga tatccgatat caaaatgact 120
 tgagcaatct tegttttat aagaataaaa ttecattcaa gecagatggt gtttacattg 180
 aagaagttet aagtaaatgg aaaggagatt atgaaaaact ggagcacaac cacacttaca 240
 ttcaatgget ttteccctg agagaacaag gettgaactt etatgecaaa gaactaacta 300
 catatgaaat tgaggaatte aaaaaaacaa aagaagcaat tagaagatte eteetggett 360

```
ataaaatgat gctagaattt tttggaataa aactgactga taaaactgga aatgttgctc
                                                                     420
gggctgttaa ctggcaggaa agatttcagc atctgaatga gtcccagcac aactatttaa
                                                                     480
gaatcactcg tattcttaaa agccttggtg agcttggata tgaaagtttt aaatctcctc
                                                                     540
ttgtaaaatt tattcttcat gaagctcttg tggagaatac tattcccaat attaagcaga
                                                                     600
gtgctctaga gtattttgtt tatacaatta gagacagaag agaaaggaga aagctcctgc
                                                                     660
ggttcgccca gaaacactac acgccttcag agaactttat ctggggaccg cctcgaaaag
                                                                     720
aacagtcgga gggaagcaaa gcccagaaaa tgtcttcccc tctcgcctcc agtcataaca
                                                                     780
gtcaaacttc tatgcacaaa aaagccaagg actccaaaaa ttcctcctca gctgttcatt
                                                                     840
taaatagcaa aacagctgaa gacaaaaaag tggcaccaaa agagcctgtg
                                                                     890
```

<210> 40

<211> 393

<212> DNA

<213> Homo sapiens

<400> 40
accggctgcc atcttagtct agggactgag gagtcgccgc cgccccgagt cccggtacca fgcatttcac ggtggccttg tggagacaac gccttaaccc aaggaagtga ctcaaactgt 120
gagaacttca ggttttccaa cctattggtg gtatgtctga cagtggatca caacttggtt 180
caatgggtag cctcaccatg aaatcacagc ttcagatcac tgtcatctca gcaaaactta 240
aggaaaataa gaagaattgg tttggaccaa gtccttacgt agaggtcaca gtagatggac 300
agtcaaagaa gacagaaaaa tgcaacaaca caaacagtcc caagtggaag caacccctta 360
cagttatcgt tacccctgtg agtaaattac att

<210> 41

<211> 437

<212> DNA

<213> Homo sapiens

<400> 41 gcattccttg aaagaaatgt tacagccaga tcacagcgca gaacgataaa atggcacaat 60 ccaacaacaa ttttacattt tcgcgaccgc tttggctgct ttcaggtccg tttcaatgat 120 atactgccag tcgttaattc aaaaatagtt gataattaca acaatctatt gaattgaaac 180 gettteette gtaattegea actggaacae geacgetatg agtaaaceca ttgtgatgga 240 acgcggtgtt aaataccgcg atgccgataa gatggccctt atcccggtta aaaacgtggc 300 aacagagcgc gaagccctgc tgcgcaagcc ggaatggatg aaaatcaagc ttccagcgga 360 ctctacacgt atccagggca tcaaagccgc aatgcgcaaa aatggcctgc attctgtctg 420 cgaggaagcc tcctgcc 437

<210> 42

<211> 392

<212> DNA

<213> Homo sapiens

		•					
	gacctgggtc gtcaggatgc gtgcagtaca acagcggcgt tggcaaaccg	caattttcct atgctgaagc tacagtaata gttgatagcc tatctggctc	gagccaccag cattgatgta ccttcccagg tggagaaagc cgactctcga	gagacacaaa ctgcatgtat tagcgggaag ttataacaga atggttcttg	caaatcgcgc gcgaaagcta gcaaaggacg catatttcgg ggataaccgc tctcattgcc	tgctaaaaca tcacattacc caatccagag gcatggtgct	60 120 180 240 300 360 392
	<210> <211> <212> <213>	555	ns			·	
	ttcaccggga tttaaggatt aattgcggcg gtctctgctc acagcatttt cattgcacta tgaagtgtat	gtcataatgg atgaggttga agcgtgcaag gcagaggcgc aatggcaaca gctgccagca aatactgata gcaaaacagg ggcaacagcc	gtggattaag aaagaattaa ttccggatgc aaatcctctg tgatcaaccg atgttgtctt tgcgggcgct	gatgccttta agcttgcttc catctcccgt ttgtggtaat tttcgaaacg aacggcgatt gggtcatgcg	gccggttcga atggccactc actgaaagca gcagccatga ggaacttccg gagcggccca gccaacgatc ggagatgtat gaagccgccg	ataattaagg ttcaaactca cgctggttca ctgccaatgc gcttacctgc gcttacatga tgttagccat	60 120 180 240 300 360 420 480 540 555
<210> 44 <211> 553 <212> DNA <213> Homo sapiens							
	ctacacaagc cgcaagctgc gagggctata tgcataaaaa gattgcgccg ctgggtcaaa gaacatctgg	attacaattc taaccatgct ttgagcagga cgccggaaga caacacaac ttgctcatct gataccaacg ggcttcaaag cagacccgca	gattaatgaa gatggtcaac taaaaaataa acgcacccgg cctgttcgac gttttgatat aggtggtgat	aagaaactca ttcctgttcg aaacagtgcc aatgatgaaa gaccaaaaaa tctgatgggg cgctggtcct	aaaatgccag acatgatgaa agggtaaaga ggagcacgcc aaatatctcg ggcgatacct caatttgccc aaggactacg ggtacgatta	tgccgagcac ggtgcatatc tccggcaact cgctggcttt ataacgaagc acaatattga tgaaatacac	60 120 180 240 300 360 420 480 540

catccccggg aca

553

<210> 45 <211> 310 <212> DNA <213> Homo sapiens

<400> 45
tctcgttacg acttcgagcg ttggacccgg ggatctctct actatcgctg caagcgagcc 60
agaaaaaact ggatgaactg atcgaacagc actaaaccca ggacaggaat ccgcaatgaa 120
caggcttttt tcaggtcgtt ccgatatgcc ctttgcgctg ctgcttctcg cgcccagctt 180
attactgctg ggcggtctgg tggcgtggcc gatggtgtcg aatatcgaaa tcagtttttt 240
acgtctgccg ctcaatccca acatcgagtc aacgtttgtt ggggtgagca actatgtgcg 300
tatcctctcc

<210> 46 <211> 627 <212> DNA <213> Homo sapiens

<400> 46 ctegetgact egettegett eecegaegeg etgggtteee ggagegeaga geeeagegtt 60 agegggtggg ctccccgagg ccccctgccc tcgccgggct gctccagggt gtcgctcctc 120 180 tggctgctcc cgaaggggct tctggccctg aggacggtgg tgccaagcga acttcatttt 240 taaaaagaac tggtggatga gaagagcgag cgagggcgag ctatggaccc tgtgagtcag 300 ctggcctctg cgggcacctt ccgggtgctg aaggagcccc ttgccttcct gcgagccctg 360 gaattgcttt ttgcaatctt tgcatttgca acatgcggtg gctattctgg aggcctgcgg ctgagtgtgg actgcgtcaa caagacagaa agtaacctca gcatcgacat agcgtttgcc 420 tacccattca ggttgcacca ggtgacgttt gaggtgccca cctgcgaggg aaaggaacgg 480 540 cagaagctgg cattgattgg tgactcctcg tcttcagcag agttcttcgt cactgttgct 600 gtottogcot toototacto tittggotgoo actggtogtt acattitott toacaacaaa 627 aaccgggaaa acaaccgggg cccactg

<210> 47 <211> 998 <212> DNA <213> Homo sapiens

<400> 47
acctgggcac cgtgtcctat ggcgccgaca cgatggatga gatccagagc catgtcaggg 60
actcctactc acagatgcag tctcaagctg gtggaaacaa tactggttca actccactaa 120
gaaaagccca atcttcagct cccaaagtta ggaaaagtgt cagtagtcga atccatgaag 180
ccgtgaaagc catcgtgctg tgtcacaacg tgacccccgt gtatgagtct cgggccggcg 240

```
ttactgagga gactgagttc gcagaggctg accaagactt cagtgatgag aatcgcacct
                                                                      300
accaggette cageceggat gaggtegete tggtgcagtg gacagagagt gtgggeetea
                                                                      360
cgctggtcag cagggacctc acctccatgc agctgaagac ccccagtggc caggtcctca
                                                                      420
gettetgeat tetgeagetg tttecettea ceteegagag caageggatg ggegteateg
                                                                      480
tcagggatga atccacggca gaaatcacat tctacatgaa gggcgctgac gtggccatgt
                                                                      540
ctcctatcgt gcagtataat gactggctgg aagaggagtg cggaaacatg gctcgcgaag
                                                                      600
gactgcggac cctcgtggtt gcaaagaagg cgttgacaga ggagcagtac caggactttg
                                                                      660
aggtgagccg actcccaggc atcccatcct cctacgacgg tgccttcctt acgctgaaat
                                                                      720
tagttettee tgtetttgta tgaaattaga getgggateg etatagteta ggagtgaagg
                                                                      780
cagetteget cageaggage atggggggat cetgtetgea tttetgttte caceatttet
                                                                      840
ccagcttgct ggggaaggag ggttacagaa gcaaagaagt gccagtttcc ttagaattgt
                                                                      900
gcttgataac tcctcaatga tcacacgcca gccgagctga gtacacataa gagtatgtgc
                                                                      960
acataggege etececetet gteeceagag eccatgeg
                                                                      998
```

```
<210> 48
<211> 864
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(864)
<223> n = a,t,c or q
```

```
<400> 48
ttttttttt ttgagacaca gtctggctat gtcacccagg ctgagtacag tagcatgatc
                                                                       60
etggtteget geaaceteea ceteceagge teaagtgate eteceacete ageeteetga
                                                                      120
gtagctagga ctacaggtac gtgccacaac acctggctaa ttttttatt ttttgtagag.
                                                                      180
acaagggtct ccctacgttg tccaggctgg acttgaactc ctgggttcaa gcgatcctac
                                                                      240
caccttggcc tcccacagca ctggggttac aggcaggagc cactgcacct ggccctgtct
                                                                      300
ttactgatgg tcctgcccca tgcctcccac acctaaccct gggcacccac tcccgaagct
                                                                      360
ctcctactgg ctgcagggtc tgcctctgtg aggacagtga agccgatgac acgggaggtg
                                                                      420
aagtcgaagg ccgtctgctg gccatcgtgg atcactgaga tgcagtggcg gtccccgtag
                                                                      480
ctggcccgtg gcatgccacc ctggaagatg gtgaagggca acccctgcct agtggtcagc
                                                                      540
cagaggattc tggtaatcgc tttgcaagga aagggaccgt aaggcacgag gctgcggagg
                                                                     600
ggetetggtt getgggette getggacaeg ggeeeaetgg eagtagetge egteagagtg
                                                                     660
acagetgacg ageaggegge egteeegetg ceaceagatg ttetecagtt getggetget
                                                                     720
gaggaagtgg tagagcacgc ggctgccctg taggtcccag atgacaacga ggcctcggct
                                                                     780
gtagccgatc aggatctggt tggggtcttc aggtgcttcc tgcatgcttt caccatttng
                                                                     840
aacaaacagc cggtgggggc cctc
                                                                     864
```

```
<210> 49
<211> 1327
<212> DNA
<213> Homo sapiens
```

<400> 49
tttcgtgagc atttgagggc tgtttatgat ctatggggta aaactctctg actgactgga

tgaggaaaat	gaaatgcgag	agggttgagc	ccaaggttca	ttcatctgct	caatcgaggc	120
	ggccactgtg					180
	gtggctgtgg					240
ggaagtgtgc	tggggaggcc	ctctctgagg	aggtgacatg	ccagctgaga	tctgaatggc	300
aggaaggagt	ggccatgagg	acatgggtga	tgacagtctg	ggtagaaaga	tgaaggaggg	360
gaagcaggta	aggagttgtg	atctaattct	gggagccact	ggagggtgaa	agcagggatt	420
agaagtcagg	gatttacatt	ttaaagagat	cacctctggc	agggctttgt	taagagtggc	480
ctgcaagagg	ccaagcatgg	ttccaggggg	ccagttgcag	agggctggtg	caggagccca	540
	acggggctca					600
agagctgcca	gcaggcctac	cccctggggc	ctgcctgtgg	cctctcatcc	ctgcctgtcc	660
	tgggggtggg					720
ctggccctgt	gtctacaggg	gagcaccgtg	gcctgggcgc	tggcgtctcc	aaggtgcgga	780
gcctgaagat	ggacaggaag	gtgtggacag	aaacacttat	cgaggtgggg	atgcccctgc	840
ttgccaccga	tacttggggt	ctgccccatt	caacagctgt	ctgggtctcc	cageceete	900
	tgaccacagc					960
ggtggggatt	tcggaaaagc	aatttttggc	aaagtcagca	aactggccag	tgagctaaga	1020
	agttgtaaag					1080
gcagagactg	tatgtgttct	gtaaagccga	aaataattac	tatttcgccc	tttagagaaa	1140
gaatttgcta	acttctgatc	taatttcact	gtcatccatt	gaatagatgt	gtaaactgag	1200
gtcctgggca	gggctgtaat	ctgcctgaga	ttaccctgta	aatgcatatt	gaccaccatc	1260
cctgcctctt	tctgtcccac	ttctgaatga	cccagggcct	tctcccctac	cttgcacagc	1320
ctgtatt						1327

<210> 50 <211> 436 <212> DNA <213> Homo sapiens

<400> 50 ctgtcgtgca attccgagca ggcactgctc agtctggtgc ctgtgcagag ggagctactt 60 cgaaggcgct atcagtccag ccctgccaag ccagactcca gcttctacaa gggcctaggt 120 acctgccctt cccagctgag gctttctgag ccccaccga ccccagaca cctcagcgta 180 gcctctgtct cccatcacat gttcccctct catcgctccc tttgcccaca tcttccagac 240 ttcttcgccg ccccattccc atcagacaat ctcccctaca ccctccagtc ccctttcccc 300 teaceteete cagetaetee etetgaecat getettatee tecaceacag aettaaatgg 360 gggcccagat gaccctctgc agcagacagg ccagctcttc gggggcctgg tgcgtgatat 420 ccggcgccgc tacccc 436

<210> 51 <211> 481 <212> DNA <213> Homo sapiens

<400> 51

tcgcctagca gtaagttggt tggcatgtgg tgggcaggca gggctggcag tagtcggacc 60
acttcagtct ccctgctctg ccttccccag caccattcgg tgcctcgaac ctcctggtga 120
accccctgga gccccaaaat gcagataaga tcaagatcaa gatcgcagac ctgggcaacg 180
cctgctgggt ggtatgagca agtgtgggag agcagagtgg ggggccctgc tccaagggtg 240

gaggcacagg gccgctctt	g gggagcccta	ccccagtctg	cagtgcacgt	gaaccgtcgg	300
ctgggtgggc actggtcct	g cccagtcaac	agcactgggg	ccatggccaa	gggcaggggc	360
cactaggaag ggatcagcc	t cagcctcaga	tcactgggcc	tgtccctctt	ggaggacctg	420
gggaccccga ggctcacag	c aaaccccact	gagetteteg	ggtaggcgga	tcggggtggg	480
a					481

<210> 52

<211> 435

<212> DNA

<213> Homo sapiens

<400> 52

cccgggtcga	cccacgcgtc	cgageteete	gttgtggaga	caagatcaaa	aatcatatgt	60
atagaatgtg	actgtggctc	ccttaaagat	tgtgccagtg	atagatgttg	tgagacctct	120
tgtacccttt	ctcttggcag	tgtttgcaat	acaggacttt	gctgccataa	gtgtaaatat	180
gctgcccctg	gagtggtttg	cagagacttg	ggtggtatat	gtgatctacc	ggaatactgt	240
gatgggaaaa	aggaagagtg	tccaaatgac	atctacatcc	aggatggaac	cccatgttca	300
gcagtatctg	tttgtataag	aggaaactgc	agtgaccgtg	atatgcagtg	tcaagccctt	360
tttggctacc	aagtgaaaga	cggttcccca	gcgtgctatc	gaaaattgaa	taggattggt	420
aaccgatttg	gaacg					435

.<210> 53

<211> 728

<212> DNA

<213> Homo sapiens

<400> 53

ccgggtcgac	ccacgcgtcc	ggacgccagt	ttagcccagg	tccacggact	acaatgtttc	60
gtattcctga	gtttaaatgg	tctccaatgc	accagcggct	tctcactgat	ttactatttg ·	120
cattagaaac	tgatgtacat	gtttggagga	gcccattcta	caaagtctgt	aatggatttt	180
gtcaatagca	atgaaaatat	tatttttgta	cataacacaa	ttcacctcat	ttcccaaatg	240
gtagacaaca	tcatcattgc	ttgtggagga	attttacctt	tgctctctgc	tgctacatca	300
ccaactggtt	ctaagacgga	attggaaaat	attgaagtga	cacaaggcat	gtcagctgag	360
acagcagtaa	ctttcctcag	ccggctgatg	gctatggttg	atgtacttgt	gtttgcaagc	420
tctctaaatt	ttagtgagat	tgaagctgag	aaaaacatgt	cttctggagg	tttaatgcga	480
cagtgcctaa	aattagtttg	ttgtgttgct	gtgagaaact	gtttagaatg	tcggcaaaga	540
cagagagaca	ggggaaataa	atcttcccat	ggaagdagta	aacctcagga	agttcctcaa	600
agtgtgactg	ctacagcagc	ttcgaagact	ccattggaaa	atgttccagg	taacctttct	660
cctattaagg	atccggatag	acttcttcag	gatgttgata	tcaatcgcct	tcgtgctgtt	720
gtctttcg						728

<210> 54

<211> 2228

<212> DNA

<213> Homo sapiens

```
<400> 54
tttttttttt ttcctgaaat gtaaattgtt tttaatatat ttaagagcac acagaagtct
                                                                       60
tgatttataa aaaaataaat atataacatg acaaatttac tgatgatcct ggagctctga
                                                                      120
ggtcaaactc tttaaatgat cagtgaaaac ataaaacatc catgatctgt taacacacac
                                                                      180
aggagcatat tecagttgta aaaaacaaat teettgaagg etcagaacga acaaaaatca
                                                                      240
gtetttatgg cagaaageae ateeaaaget aggeaatgaa gtteageetg ggeeaegtga
                                                                      300
acctttcacc agccagccta taacctatgg agccaggaca ggaaagcatg atccttcagc
                                                                      360
teatgaegee acceaggett ceagacaact geagaatgaa agagteeete agaggeteee
                                                                      420
cageceetge tgecateata aageaeggga gggattgttt tgteettage ggetetgtee
                                                                      480
taaatttgag agcaggagac tgagaaggtt atgctcatta aatattgtca ttgtaacacg
                                                                      540
gaatggaaat catgatcctt gcccatgggc actgagctga aagaaagagg aacctcacat
                                                                      600
gaggetttee tagagaceag gatgttgggt gagtgggegt geaettetea agtgggeaag
                                                                      660
gaagaactgc ttttctccag ctgacatgct ctcaggggtg aagaagttta gcttaaaata
                                                                      720
cctgatggcg ctgcataaac tggggatttg ggaactgagt ttttagctct gtgacacaca
                                                                      780
acataaaaaa caaaaatcca gtctcattag ctaaattcgg attaaaatct gaaatgtttt
                                                                      840
tatggagttg ccaacaggct ggaatgtacc tgatacaatt taatctgctt ttatttcttt
                                                                      900
ggctgtcttc caaaccactt tcttcctgta attcttaagt tggctagttc tccttcctca
                                                                      960
gaaaaattac ccctaagaat cttcctaata gtgagggtgt acttccgaat agaaqaqtcc
                                                                     1020
tteggetgaa atggeatete caaggeetae agttegaatg gggtetttae acaccaatae
                                                                     1080
tggtgtgaag tggaaggata ttccctctct gtgccattct actactggct tgtttgggtt
                                                                     1140
taatacaatc ctggagcctg cctccgaatg ggaagtcatg aactcttggg gtgccctcag
                                                                     1200
agacactogg ctggtgtcta tggtttctgt ggcgcaggcc tgtgtcccag ccacacgagc
                                                                     1260
teetgeagee aeggetgeea getggttgge ceagtgteea teeacagttg ceaggatgtg
                                                                     1320
gtagaccagc gtgtggaaat ggatcctggt gagatccgag gctctgcttt tactcctccc
                                                                     1380
atgttctttc aagatccaga agaggatgtc actgaccatg cccacatcag gaacaccgtt
                                                                     1440
ccaggaagag agagaagagt gaggtccaga ggctgactgg gtgagaaata acagctcctg
                                                                     1500
tteatteage ceaagggaag teacegeggg aaagaeetge tgaaggaaca atgetgetea
                                                                     1560
tgagctccct gttagtcata ctggcccagc tctaggtgaa actggaatac cagtggggat
                                                                     1620
gtcagaaatg gaggttacaa cctccaagag tctcttcctc tggagctcct tgctttgtcc
                                                                     1680
ctccatcatg tgcaatccag agaggccccc caggtctggc tgaaactcct ccaggctaga
                                                                     1740
cacaaacacc tccagcatat tcatggcccc gttggagagg tcgtgagaga agatgaatcg
                                                                     1800
gttggcatgg ggagctttta actggcccca ctcctcccct gcttgatact ctaaaatgag
                                                                     1860
gtggaactca tecaetteet geaatgaete tggtggaaca aagacattgt cateaagaag
                                                                     1920
ctcatgtagc tttggaccaa ctggaccgca aagaagaacc tttaaatctg agttggctgc
                                                                     1980
asatttctgt ccaattaaag ctgcatttcc tcctacatag tgctgggctc ctgggaactc
                                                                     2040
tgacgcaacc tgggcaatgt cgtgaaaagt ttccttatca ctgaagaagc gctcagcagc
                                                                     2100
tgctcccttc cccatgaagt gaatgaaggc ttcttccaga tcattccttg aatgcagaat
                                                                     2160
gctgtgatct ttcccattcc caggactaag gccaagtgcc tgcaagagct tcaccctga
                                                                     2220
ggaattca
                                                                     2228
```

```
<210> 55
<211> 405
<212> DNA
<213> Homo sapiens
```

```
<400> 55
gcaggagttc aagaccaacg tggccaacat ggggaaagcc catcactact aaaaatacaa 60
aaactagcca ggcgtggtga cacacatctg taatcccagc tactcgaggc gctgaggcag 120
gagaatcact tgaaccagga ggcagaggtt gcagtgagcc gagatcatgc cactgcactc 180
cagcctgggc cacagagcaa gactccatct gacaactagc tgttccagcc cccagccact 240
```

tgagtcatct cagctgaggc cccacacac aagaagcaga ggtgagtcta atccacagag 300 ccctggtcag acatgatgac ggtggettca cccgggggtc tccgcacagc ageggcctcg 360 ggtaagcaga acctcgctcc ggggtttaca aatccttcct cgtgc 405

<210> 56 <211> 1652 <212> DNA <213> Homo sapiens

<400> 56 actaggggag gtgctcaagt gccagcaggg cgtatccagt ctggcctttg ccctggcctt 60 ettgeagege atggaeatga ageegetggt ggteetgggg etgeeggeee etaeggetee 120 ctegggetgt ettteettet gggaggeeaa ggegeagetg geeaagaget geaaggtget 180 ggtagacgcg cttcgacaca acgccgccgc tgctgtgcca tttttttggcg gcgggtctgt 240 getacgeget geegageegg etceccatge cagetacgge ggeategtet eggtggagae 300 agacetgetg cagtggtgee tggagteggg cageatecee atectgtgee ceategggga 360 gacggccgcg cgccgctccg tgcttctcga ctccctggag gtgaccgcgt cgctggccaa 420 ggcgctgcgg cccaccaaaa tcatcttcct caataacaca ggcggcctgc gcgacagcag 480 tcataaggtc ctgagtaacg tgaacctgcc cgccgacctg gacctggtgt gcaacqccga 540 gtgggtgage acaaaagaac ggcagcagat gcggctcatc gtggacgtgc tcagccgcct 600 geoceaceae teeteggeeg teateacege egetageaeg etgeteaetg agetetttag 660 caacaagggg teegggacce tgttcaagaa egeegagega atgetaeggg tgegeageet 720 ggacaagctg gaccagggcc gtctagtgga cctggtcaac gccagcttcg gcaagaagct 780 cagggacgac tacctggcct cgctgcgccc gcggctgcac tccatctacg tctccgaggg 840 gtacaacgcc gccgccattc tgaccatgga gcccgtcctg gggggcaccc cgtacctgga 900 960 caaatttgtg gtgageteca geegeeaggg ceaaggetee ggeeagatge tgtgggagtg cctgcggcgg gaccttcaga cacttttctg gcgctcccgg gtcaccaacc ccatcaatcc 1020 ctggtacttc aaacacagtg atggcagctt ctccaacaag cagtggatct tcttctggtt 1080 tggcctggct gatatccggg actcctatga gttggtcaac cacgccaagg gactgccaga 1140 ctcctttcac aagccagctt ctgacccagg cagctgaccc tcaccatgga cactacaggc 1200 cctggaatgg ccagggtgga ccaaaagcca tgcccagctg ggcatgaccc caggcagcca 1260 gccacagget gaaggggget tgttggetga gtgatetgea gaggagaaag cageeeccag 1320 ctctgcccca gaggaggcgc tgaagtggga caagcacagg aaagaagggg accagtctag 1380 gaccccaact tgactcactc taaagctaca accaaatggc cttcgatttt caacctgggg 1440 attaggggag gggagggtgc cttccagggc tcttactcag gacttaaccc ttaagggtga 1500 gettagttte tgteetettg tgettatgtt ttgaggetee ettacccaaa ataataccce 1560 tgcctgcgtg atattctacc attcatttta attcctttgg gtcttgcagt ttttcaggag 1620 gccttgatta aaatgcaaat acttgtctga ga 1652

<210> 57 <211> 1129 <212> DNA <213> Homo sapiens

<400> 57
tttttttttt ttgagacgga gtctcgctct gtggcccagg ctggagtgca gtggcgcgat 60
ctcggctcac tgcaagctcc gcctcccggg ttcacgccat tctcctgcct cagcctcccg 120
agtagctggg actacaggcg cccgctacca cgcccggcta attttttgta tttttagtag 180

agacggggtt to	caccgtgtt	agccaggatg	gtctcgatct	cctgacctcg	tgatccgccc	240
gcctcggcct co	ccaaagtgc	tgggattaca	ggcgtgagcc	accgcgcccg	gcccatttac	300
taaatgttaa gt	ttccttata	attccatctc	tttcagcacc	caatacaggg	gtttacatag	360
aggaagtact ca	aatatttcc	tttcttttt	tcttttttt	ctggagatag	tctcgctctg	420
tcaccagget gg	gagtgcagt	ggcgtaatct	cggctcactg	caacctccac	ctcctgggtt	480
cacgccattc to	cctgcctca	gcctcccgag	tagctgggac	tacaggcgcc	caccatcacg	540
cccggctaat tt	ttttttgta	tttttagtag	agatggggtt	tcaccgtgtt	agccaggatg	600
gtctcgatct co	ctgaccttg	tgatccgccc	gcctcggcct	cccaaagtgc	tgggattaca	660
ggtgtgagcc ac	ccgcgcccg	gcctaaaaaa	atttttttt	tcttgagaca	aagtcttgct	720
ctgttgccca gg	gctgaagtg	caggggcatg	atatcagctc	attgcaacct	ccacctcccg	780
ggttcaagcg at	ttctcctgc	ctcagcctcc	cgagtagctg	ggattacagg	tgccctccgc	840
cacgtccagc ta	aattttctg	ttttttagta	gagacggggt	ttcaccgtgt	tagccaggat	900
ggtctcgatc to	cctgacctc	gtgatccacc	tgcctcagcc	tcccaaagtg	ctgggattac	960
aggcgtgagc ca	actgagece	agccccattt	tatttcattt	ctctaacagc	aatgatatat	1020
atacatccca ta	agtatatcc	tactgatata	atagcccctt	tececattea	acacctgtgt	1080
aatcaggaaa ta	aaaaccctc	gtgcagcatt	ggcgtctgga	tagtcctcg		1129

<210> 58 <211> 475

<212> DNA <213> Homo sapiens

<400> 58

gttccgccca attggcataa tacgccaagc cctgtgctct gcagacggcc accagagaag 60 gatecttact etgegeetgg gattgetegt tatecegttt eteceegeaa gtaacetgtt 120 180 cticcgagtg ggcttcgtgg tcccgagcgt ggggtgctgt gtgatgctgc tttttggatt cggagcctgc gcaaacacac cgagaaaaag aagctcatcg ctgccgtggt gctgggaatc 240 ctactcagca agatgctgag aggctgagat gcgcggtgcg cggcggcgag tggcggagcg 300 360 aggggggtt ttcagaggcg ctgtgtctgt gtgtcccctc agtgctgagg ttcgctgcaa 420 catcggcaga aacctggctg ctaaaggcaa ccaaacgggc gccatcagat accaccggga agetgtaage ttaaateeca agaegaaate gtegacaegg gaatteegge ettge 475

<210> 59 <211> 711 <212> DNA

.<213> Homo sapiens

<400> 59

ggaaaatagc agattttggg ttcagtaacc tcttcactcc tgggcagctg ctgaagacct 60 ggtgtggcag ccctccctat gctgcacctg aactctttga aggaaaagaa tatgatgggc 120 ccaaagtgga catctggagc cttggagttg tcctctacgt gcttgtgtgc ggtgccctgc 180 catttgatgg aagcacactg cagaatctgc gggcccgcgt gctgagtgga aagttccgca 240 tcccattttt tatgtccaca gaatgtgagc atttgatccg ccatatgttg gtgttagatc 300 ccaataagcg cctctccatg gagcagatct gcaagcacaa gtggatgaag ctaggggacg 360 cegateceaa etttgaeagg ttaatagetg aatgecaaca aetaaaggaa gaaagaeagg 420 tggacccct gaatgaggat gtcctcttgg ccatggagga catgggactg gacaaagaac 480 540 agacactgca gtcattaaga tcagatgcct atgatcacta tagtgcaatc tacagcctgc tgtgtgatcg acataagaga cataaaaccc tgcgtctcgg agcacttcct agcatgcccc 600

gagccctggg cctttcaagc accagtcaat atccaggcgg agcaggcagg tactgctatg 660 aacatcagcg ttccccaggt gcagctgatc aacccagaga accaaattgt g 711

<210> 60 <211> 344 <212> DNA <213> Homo sapiens

<400> 60
ggcacgagaa tttttaggcc accgagcttc tataacatgg tcatgagctc gggtgcacca 60
tagatttccc aaagctgagg ttgcataacc cctctgctga ggacagatct taccgaagat 120
cgcacgaagt gctgccatgg agatctgctt gaatgcgctg atgacagggc agaccttgtc 180
gaggatatct gggaaaatca agattcaatc tccactatac tgattgaatg ctgtgaaaaa 240
cctctgttgg aaaaatccca ctgcattgcc gaagtggaaa atgatgagat gcctgctgac 300
ttgccttcat tagctgctga ttttgttgaa agtaaggatg tttg

<210> 61 <211> 594 <212> DNA <213> Homo sapiens

<400> 61 gettgagete gagegaegge getggeggag aegeeggetg etecteecet eeeegeeget 60 tttcctaaaa ggattgtaca ccttagaagt gcttaaggaa gagtgatgaa gctctgaatc 120 gtgtcctgca gcagattctg agtgccaccc aagatgaaga gagggacaag cttgcatagt 180 aggcggggca agccagaggc cccaaaggga agtccccaaa tcaacaggaa gtctggtcag 240 gagatgacag ctgttatgca gtcaggccga cccaggtctt catccacaac tgatgcacct 300 acceggetetg ctatgatgga aatagettgt getgetgetg etgetgetge tgeatgteta 360 ccaggagagg agggaactgc ggagcggatc gaacggttqg aaqtaagcaq ccttqcccaa 420 acatecagtg cagtggcete cagtaccgat ggcagcatec acacagaete tgtggatgga 480 acaccagacc ctcagcqcac aaaqqctqcc attqctcacc tqcaqcaqaa qatcctqaaq 540 ctcacagaac aaatcaagat tgcacaaaca gcccgacgaa atcgtcgacc cggg 594

<210> 62 <211> 1609 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1609) <223> n = a,t,c or g

```
<400> 62
egaagttatg geetteetta taaggaaaag gggtggattg gaggaatege caattgaagt
                                                                      60
ttcgaaggat cgctttagct gaatatcaga gaaccttgtg aagatcttaa agaqcaacta
                                                                      120
aagcataaag aatttettet ggetgetaat acttgtaace qtgttqqtqq tetttqtttq
                                                                      180
aaatgtgctc agcatgaagc tgttctttcc caaacccata ctaatgttca tatgcagacc
                                                                      240
ategaaagae tggttaaaga aagagatgae ttgatgtetg cactagttte egtaaggage
                                                                      300
agcttggcag atacgcagca aagagaagca agtgcttatg aacaggtgaa acaagttttg
                                                                      360
caaatatctg aggaagccaa ttttgaaaaa accaaggctt taatccagtg tgaccagttg
                                                                      420
aggaaggagc tggagaggca ggcggagcga cttgaaaaaag aacttgcatc tcagcaagag
                                                                      480
aaaagggcca ttgagaaaga catgatgaaa aaggaaataa cgaaagaaag ggagtacatg
                                                                      540
ggatcaaaga tgttgatctt gtctcagaat attgcccaac tggaggccca ggtggaaaag
                                                                      600
gttacaaagg aaaagatttc agctattaat caactggagg aaattcagag ccagctggct
                                                                      660
tetegggaaa tggatgteae aaaggtgtgt ggagaaatge getateaget gaataaaace
                                                                      720
aacatggaga aggatgaggc agaaaaggag cacagagagt tcagagcaaa aactaacagg
                                                                      780
gatcttgaaa ttaaagatca ggaaatagag aaattgagaa tagaactgga tgaaagcaaa
                                                                      840
caacacttgg aacaggagca gcagaaggca gccctggcca gagaggagtg cctgagacta
                                                                    . 900
acagaactgc tgggcgaatc tgagcaccaa ctgcacctca ccagacagga aaaagatagc
                                                                      960
atteageaga getttageaa ggaageaaag geecaageee tteaggeeca geaaagagag
                                                                     1020
caggagetga cacagaagat acagcaaatg gaggeecage atgacaaaac tgaaaatgaa
                                                                     1080
cagtatttgt tgctgacctc ccagaataca tttttgacaa agttaaagga agaatgctgt
                                                                     1140
acattageca agaaactgga acaaatetet caaaaaacca gatetgaaat ageteaacte
                                                                     1200
agtcaagaaa aaaggtatac atatgataaa ttgggaaagt tacagagaag aaatgaagaa
                                                                     1260
ttggaggaac agtgtgtcca gcatgggagg agtacatgag acgatgaagc aaaggctaag
                                                                     1320
gcaggtggat aagcacaggc aggccacagc ccaggaggtg gtgcaggtcc ccagaagcag
                                                                     1380
gaccngcttc ttccnggaga gggagggnct gtcggaagag gtgggnccgn cttggggncc
                                                                     1440
nngttaccca gnatnencaa tettttttgg ttgacceggt tggacagggt ggacttnant
                                                                     1500
gttttncaaa ggngnttttt cattccanct tgttttngct taatttngcn caacgnaccc
                                                                     1560
acggcctncc cggnntgaaa ccccccnccc tgagggggg ttntccccc
                                                                     1609
```

```
<210> 63
<211> 615
<212> DNA
<213> Homo sapiens
```

```
<400> 63
catectatec egtgtggtgg aattegeege tgaetgetga ggtgeeaeee gagetgetgg
                                                                       60
ctgctgccgg cttcttccac acaggccatc aggacaaggt gaggtgcttc ttctgctatg
                                                                      120
ggggcctgca gagctggaag cgcggggacg acccctggac ggagcatgcc aagtggttcc
                                                                      180
ccagctgtca gttcctgctc cggtcaaaag gaagagactt tgtccacagt gtgcaggaga
                                                                      240
ctcactccca gctgctgggc tcttgggacc cgtgggaaga accggaagac gcagccctg
                                                                      300
tggccccctc cgtccctgcc tctgggtacc ctgagctgcc cacacccagg agagaggtcc
                                                                      360
agtctgaaag tgcccaggag ccaggagggg tcagtccagc cgaggcccag agggcgtggt
                                                                      420
gggttettga gececcagga gecagggatg tggaggegea getgeggegg etgeaggagg
                                                                      480
agaggacgtg caaggtgtgc ctggaccgcg ccgtgtccat cgtctttgtg ccgtgcggcc
                                                                      540
acctggtctg tggctgagtg tgcccccggc ctgcagctgt gccccatctg gcagaagccc
                                                                      600
ccgtcccgca gccgg
                                                                      615
```

<210> 64 <211> 839

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(839)
<223> n = a,t,c or g
```

<400> 64 aagaatgtct ggaagagatg gaagaaaagg ttttttgtat tggtgcaggt cattcagtac 60 acgtttgcca tgtgcagtta tcgggagaag aaagcggagc ctcaggaact tctacaattg 120 gatggctaca ctgtggatta caccgacccc cagccaggtt tggagggtgg ccgagccttc 180 ttcaatgctg tcaaggaggg agacaccgtg atatttgcca gtgacgatga acaaqaccqc 240 atcctgtggg tccaggccat gtatcgggcc acggggcagt cacacaagcc tgtgcccccg 300 acccaagtcc agaaactcaa cgccaaggga ggaaatgtac ctcagctgga tgcccctatc 360 teteaatttt aegeagatag ageteaaaaa catggeatgg atgaatttat etetteeaae 420 ccctgtaact ttgaccacgc ttccctcttt gagatggtac aacgccttac tttggatcac 480 agacttaatg attectatte ttgcctggge tggttcagte etggccaggt gtttgtacta 540 gacgagtatt gcgcccgaaa tggagtccgg gggtgtcacc gacatctctg ctacctcaga 600 gacttgcttg aacgggcaga aaatggcgcc atgatcgacc ccacccttnt tcactacagc 660 tttgccttct gtgcatccca tgtccatggg aacaggcctg atggaattgg gaactgttga 720 ctgttgaaga aaaggaacgt tttttgaagg aaatcaaaag aggaggnttc cgnagttctg 780 ctaagaaaaa tcaggttaca acattttagg naattgcttt tcccatttgg gtcgaacct 839

<210> 65 <211> 1678 <212> DNA <213> Homo sapiens

<400> 65 caagcagctg atcgtgctgg gaaacaaagt ggacctcctg ccccaggatg ctcctggcta 60 ccggcagagg ctgcgggagc gactgtggga ggactgtgcc cgcgccgggc tcctgctggc 120 ccctggccac caagggccac agcgccccgt caaggacgag ccacaggacg gggagaatcc 180 gaatccgccg aactggtccc gcacagtggt cagggacgtg cggctgatca gcgccaagac 240 cggctatgga gtggaagagt tgatctctgc ccttcagcgc tcctggcgct accgtgggga 300 cgtctactta gtgggcgcca ccaacgccgg caaatccact ctctttaaca cgctcctgga 360 gtccgattac tgcactgcca agggctccga ggccatcgac agagccacca tctccccttg 420 gccaggtact acattaaacc ttctgaagtt tcctatttgc aacccaactc cttacagaat 480 gtttaaaagg catcaaagac ttaaaaaaga ttcaactcaa gctgaagaag atcttagtga 540 gcaagaacaa aatcagctta atgtcctcaa aaagcatggt tatgtcgtag gaagagttgg 600 aaggacattc ttgtattcag aagaacagaa ggataacatt ccctttgagt ttgatgctga 660 ttcacttgcc tttgacatgg aaaatgaccc tgttatgggt acacacaaat ccaccaaaca 720 agtagaattg actgcacaag atgtgaaaga tgcccactgg ttttatgaca cccctggaat 780 tacaaaagaa aattgtattt taaatcttct aacagaaaaa gaagtaaata ttgttttgcc 840 aacacagtcc attgttccaa gaacttttgt gcttaaacca ggaatggttc tgtttttggg 900 tgctataggc cgcatagatt tcctgcaggg aaatcagtca gcttggttta cagtcgtggc 960 ttccaacatc ctccctgtgc atatcacctc cttggacagg gcagacgctc tgtatcagaa 1020 gcatgcaggt catacgttac tccagattcc aatgggtgga aaagaacgaa tggcaggatt 1080 teeteetett gttgetgaag acattatgtt aaaagaagga etgggggeat etgaageagt 1140 ggccgacatc aagttttcct ctgcaggttg ggtttcagta acacctaatt ttaaggacag 1200 actgcatctc cgaggctata cacctgaagg aacagttttg accgtccggc cccctctctt 1260 gccatatatt gttaacatca aaggacagcg catcaagaaa agtgtggcct ataaaaccaa 1320

```
gaageeteetteeettatgtacaaegtgaggaagaagaaaggaaagataaatgtatgagacegaeettgtteaeteeagatattaaetgtattgaaeacaacaaaatacattgaatttgtattaaacatataaegeataaataaageteecattettaeeettaaaaataaaaggagaatgaaaaaaaaaagatgeeaataggeatataegtggttttgggtatteeggggtetteeegtggtetgtteaetttgeggtggtggtgatatattaggeagteggggegeetgatgtaegeettettatagaggtacatggttggatgeagegtettgaegtgggattegetttatteegee
```

<210> 66 <211> 1888 <212> DNA <213> Homo sapiens

<400> 66 tccacggtgg catccatgat gcatcgtcag gagactgtgg agtgtttgcg caagttcaat 60 gcccggagaa aactgaaggg tgccatcctc acgaccatgc ttgtctccag gaacttctca 120 gctgccaaaa gcctattgaa caagaagtcg gatggcggtg tcaagccaca gagcaacaac 180 aaaaacagtc tcgtaagccc agcccaagag cccgcgccct tgcagacggc catggagcca 240 caaaccactg tggtacacaa cgctacagat gggatcaagg gctccacaga gagctgcaac 300 accaccacag aagatgagga ceteaaaget geeeegetee geaetgggaa tggeageteg 360 gtgcctgaag gacggagete cegggacaga acageceeet etgeaggeat geageceeag 420 cettetetet geteeteage catgegaaaa caggagatea ttaagattae agaacagetg 480 attgaagcca tcaacaatgg ggactttgag gcctacacga agatttgtga tccaggcctc 540 acttectttg agectgagge eettggtaae etegtggagg ggatggattt eeataagttt 600 tactttgaga atctcctgtc caagaacagc aagcctatcc ataccaccat cctaaaccca 660 cacgtccacg tgattgggga ggacgcagcg tgcatcgcct acatccgcct cacccagtac 720 ategacggge agggteggee ttegaaccea gecaagteag aagaagacee gggtetggea 780 cccgtcggga atggcaagtg gctcaatgtc cactatcact gctcaggggc cccctgcccg 840 caccyctgca gtgagctcag ccacaggggc ttttaggaga ttccagccgg aggtccgaac 900 cttcgcagcc agtggctctg gagggcctga gtgacagcgg ccagtcctgt ttgtttgaag 960 gtttaaaaca attcaattac aaaageggea ageagecaat geaegeeest geatgeagee 1020 ctcccgcccg cccttcgtgt ctgtctctgc tgtaccgagg tgttttttac atttaagaaa 1080 aaaaaaaaag aaaaaaagat tgtttaaaaa aaaaaggaat ccataccatg atgcgtttta 1140 aaaccaccga cagcccttgg gttggcaaga aqqcaqqaqt atqtatqaqq tccatcctqq 1200 catgageagt ggeteaceca ceggeettga agaggtqaqe ttggeetete tgqteeceat 1260 ggacttaggg ggaccaggca agaactctga cagagctttg ggggccqtga tgtqattqca 1320 geteetgagg tggeetgett acceeaggte taggaatgaa ettetttgga acttgeatag 1380 gcgcctagaa tggggctgat gagaacatcg tgaccatcag acctacttgg gagagaacgc 1440 agageteeca geetgetgtg gaggeagetg agaagtggtg geeteaggae tgagageeeg 1500 gacgttgctg tactgtcttg tttagtgtag aagggaagag aattggtgct gcagaagtgt 1560 accegecatg aageegatga gaaacetegt gttagtetga catgeactea eteateeatt 1620 tetataggat geacaatgea tgtgggeeet aatattgagg eettateeet geagetagga 1680 gggggagggg ttgttgctgc tttgcttcgt gttttcttct aacctgggca aggagagac 1740 caggecetgg geaaggetee egtgeegeet ttgggtteet tgttttettg ttgettgate 1800 tggaccatct ttgtctttgc cttttcacgg tagggtcccc atgctgaccc tcatcttggg 1860 cctgggcctc ttgccaaagt tgcccctg 1888

<210> 67 <211> 1712 <212> DNA <213> Homo sapiens

<400> 67 ctttacccaa gaatgtggta ttcgtgcttg acagcagtgc ttctatggtg ggaaccaaac 60 teeggeagae caaggatgee etetteacaa ttetecatga ceteegaeee caggacegtt 120 tcagtatcat tggattttcc aaccggatca aagtatggaa ggaccacttg atatcagtca 180 ctccagacag catcagggat gggaaagtgt acattcacca tatgtcaccc actggaggca 240 cagacatcaa cggggccctg cagagggcca tcaggctcct caacaagtac gtggcccaca 300 gtggcattgg agaccggaga gtgtccctca tcgtcttcct gacggatggg aagcccacgg 360 teggggagac gcacacecte aagateetea acaacaceeg agaggeegee egaggeeaag 420 tetgeatett caccattgge ateggeaacg acgtggaett caggetgetg gagaaactgt 480 cgctggagaa ctgtggcctc acacggcgcg tgcacgagga ggaggacgca ggctcgcagc 540 tcatcgggtt ctacgatgaa atcaggaccc cgctcctctc tgacatccgc atcgattatc 600 ccccagctc agtggtgcag gccaccaaga ccctgttccc caactacttc aacggctcgg 660 agatcatcat tgcggggaag ctggtggaca ggaagctgga tcacctgcac gtggaggtca 720 ccgccagcaa cagtaagaaa ttcatcatcc tgaagacaga tgtgcctgtg cggcctcaga 780 aggeagggaa agatgteaca ggaageeeca ggeetggagg egatggagag ggggaeacea 840 accacatoga gogtototgg agotacotoa coacaaagga gotgotgago tootggotgo 900 aaagtgacga tgaaccggag aaggagcggc tgcggcagcg ggcccaggcc ctggctgtga 960 getacegett ceteaetece tteaeeteca tgaagetgag ggggeeggte ceaeqeatqq 1020 atggcctgga ggaggcccac ggcatgtcgg ctgccatggg acccgaaccg gtggtgcaga 1080 gcgtgcgagg agctggcacg cagccaggac ctttgctcaa gaagccatac cagccaagaa 1140 ttaaaatctc taaaacatca gtggatggtg atccccactt tgttgtggat ttccccctga 1200 gcagactcac cgtgtgcttc aacattgatg ggcagcccgg ggacatcctc aggctggtct 1260 ctgatcacag ggactctggt gtcacagtga acggagagtt aattggggca cccgccctc 1320 caaatggcca caagaaacag cgcacttact tgcgcactat caccatcctc atcaacaagc 1380 cagagagatc ttatctcgag atcacaccga gcagagtcat cttggatggt ggggacagac 1440 tggtgctccc ctgcaaccag agtgtggtgg tggggagctg ggggctggag gtgtccgtgt 1500 etgecaaege caatgteace gteaceatee agggeteeat ageetttgte atecteatee 1560 acetetacaa aaageeggeg eeetteeage gacaceacet gggtttetac attgccaaca 1620 gcgagggcct ttccagcaac tgcagggtct tctgtgagtc tggcatcctg attcaggaac 1680 tgacccagca gtccgtggca gttgctggtc ga 1712

```
<210> 68
<211> 839
<212> DNA
```

<213> Homo sapiens

```
<400> 68
gttttttctc gagcaggtta gccaatatac ctttgctatg tgcagttata gagaaaagaa
                                                                       60
gtctgaacca caagaattaa tgcagcttga aggctatact gtggattata ccgatccca
                                                                     120
cccaggcctt cagggtggtt gtatgttctt taatgctgtt aaagaaggag atactgtaat
                                                                     180
ctttgccagt gatgatgaac aggacagaat attatgggtt caagccatgt atagggccac
                                                                     240
aggtcaatca tataaaccag ttcctgcaat tcaaacccag aaactgaatc ctaaaggagg
                                                                     300
aactctccat gcagatgctc agctttatgc agatcgtttt cagaaacatg gtatggatga
                                                                     360
gtttatttct gcaaacccct gcaagcttga tcatgccttc ctttttagaa tactccagag
                                                                     420
gcagactttg gatcacagac tgaatgattc ctattcttgc ttgggatggt ttagccctgg
                                                                     480
ccaagtcttt gtgttagatg agtactgtgc ccgttatggt gtgagaggct gtcacagaca
                                                                     540
tetetgetae ettgeagaac tgatggaaca tteagaaaat ggtgetgtea ttgaccetae
                                                                     600
cetgetecat tacagetttg cattetgtge eteteqatqt qeaeqqcaac aqqeetqatq
                                                                     660
gaattgggac tgtttcagtg gaagaaaaag aaagatttga ggagataaaa gagagactct
                                                                     720
cttccctttt agaaaatcag ataagccatt tcagatactg ttttcccttt ggacgacctg
                                                                     780
aaggtgctct aaaagctaca ctttcattac ttgaaagggt tttaatgaaa gatattgcc
                                                                     839
```

```
<210> 69
<211> 801
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(801)
<223> n = a,t,c or g
```

<400> 69 agacgggctg ctccatgagg tgctgaacgg gctcctagat cgccctgact gggaggaagc 60 tgtgaagatg cctgtgggca tcctcccctg cggctcgggc aacgcgctgg ccggagcagt 120 gaaccagcac gggggatttg agccagccct gggcctcgac ctgttgctca actgctcact 180 gttgctgtgc cggggtggtg gccacccact ggacctgctc tccgtgacgc tggcctcggg 240 ctcccgctgt ttctccttcc tgtctgtggc ctggggcttc gtgtcagatg tggatatcca 300 gagegagege tteagggeet tgggeagtge cegetteaca etgggeaegg tgetgggeet 360 egecacactg cacacctace geggacgeet etectacete ecegecactg tggaacetge 420 ctegeceace cetgeceata geetgeeteg tgecaagteg gagetgaeee taaccecaga 480 cccagccccg cccatggccc actcacccct gcatcgttct gtgtctgacc tgcctcttcc 540 cetgecceag cetgecetgg cetetectgg etegecagaa eccetgecca teetgteeet 600 caacggtggg ggcccagagc tggctgggga ctggggtggg gctggggatg ctccactgtc 660 eceggaecca cagetgtett caceteetgg eteteccaag geagetetae acteaecegt 720 ctaaaaaaaag gcccccgtaa ttccccccga catgnnnccc cgctctagag gatcaagcaa 780 ctacgcggcg gctcacgacg c 801

<210> 70 <211> 531 <212> DNA <213> Homo sapiens

```
<400> 70
agaagggtgt cccaaccttg ctcatggcag ctggcagctt ctatgacatt ctggccatca
                                                                      60
ctggcttcaa cacatgcttg ggcatagcct tttccacagg ctctactgtc tttaatgtcc
                                                                     120
tragaggagt tttggaggtg gtaattggtg tggcaactgg atctgttctt ggatttttca
                                                                     180
ttcagtactt tccaagccgt gaccaggaca aacttgtgtg taagagaaca ttccttgtgt
                                                                     240
tggggttgtc tgtgctagct gtgttcagca gtgtgcattt tggtttccct ggatcaggag
                                                                     300
gactgtgcac gttggtcatg gctttccttg caggcatggg atggaccagc gaaaaggcag
                                                                     360
aggttgaaaa gataattgca gttgcctggg acatttttca gccccttctt tttggactaa
                                                                     420
ttgggagcag aggtatctat ttgcatctct cagaccagaa actgtaggcc tttgtgttgc
                                                                     480
caccgtagge atttgcagta ttgatacgaa tttttgacta cattttctga a
                                                                     531
```

<210> 71 <211> 540 <212> DNA

<213> Homo sapiens

<400>	71	•				
tgtgcgagga	attcgaatca	ggtaatggag	aggactggca	tgaagggggc	acaggactgt	60
gaaaacctga	gtgattctgt	ccttccctca	tcctctatcc	ctgaaccagg	gcagacatag	120
atggaatcag	agcaggagtt	ggtgttgatg	tggtttcagg	tccacctatc	agagtttgag	180
agatttaggc	catgaaccat	tatgaatata	gatgagaacc	tttgtaattg	ctgaaggagg	240
tagtagtgca	ggcaagtcct	gtgtgcaaga	cctgctgctc	ccagttagta	cggacccctg	300
tgacattcac	agaagttcag	aatgtctgag	atgctctgca	ggctacctta	tctccgtctg	360
cagctacacc	tccagtgatc	acaatcagtg	ctacgctggc	acagccagcc	tggccctgct	420
		agggctgctt				480
gagccactgg	aattttgggt	actgggcctt	atggtcaccc	gggaatggga	atggctgctg	540

<210> 72 <211> 428 <212> DNA <213> Homo sapiens

<400> 72 eggaegegte egeceaegeg teegeceaeg egteegetag aaatttetgt ggaacteeat 60 ttgactttct atctgtgaaa tccaaactgt ctctgaagaa ataagaaaaa tagtgttttg 120 acttttagga gacaactatg tttattattt tgccttgcaa attaatgtct aaatttgtac 180 aagcacctat ctacagattt ttccaggtaa accatcatgt tttatgtgta aaggtagatt 240 gatgtgcatt tactttatac tttggtactt aggccattac acatctttgc actggaattg 300 gtgcagatat ataagtgatc ctaatgttga tgctgcccag accccaggaa tgcagaggtg 360 agcatgacac acacagtccc tgccctgatg gagctcatag actagtgaag gaatagggct 420 ctatgacc 428

<210> 73 <211> 584 <212> DNA <213> Homo sapiens

gctggagtca ttgcctggtt tcaaagagat tgtgagcagg ggagtaaaag tggattactt 60 gactccagac ttccctagtc tctcgtatcc caattattat accctaatga ctggccgcca 120 ttgtgaagtc catcagatga tcgggaacta catgtgggac cccaccacca acaagtcctt 180 tgacattggc gtcaacaaag acagcctaat gcctctctgg tggaatggat cagaacctct 240 gtgggtcact ctgaccaagg ccaaaaggaa ggtctacatg tactactggc caggctgtga 300 ggttgagatt ctgggtgtca gacccaccta ctgcctagaa tataaaaatg tcccaacgga 360 tatcaatttt gccaatgcag tcagcgatgc tcttgactcc ttcaagagtg gccgggccga 420 cctggcagcc atataccatg agcgcattga cgtggaaggc caccactacg ggcctgcatc 480 teegeagagg aaagatgeee teaaggetgg tagacactgt cetgaagtae atgaccaagt 540 ggatccagga gcggggcctg caggaccgcc tgaacgtcat tatt

<210> 74 <211> 348 <212> DNA <213> Homo sapiens <400> 74 ggcacgagat tttcatccaa aacaaacact ggacttcctg cggagtgaca tggctaattc 60 gaaaatcaca gaagaggtga aaaggagtat agcacaacag tatctagatt tgacagtagc 120 ccggaacaag tggaccctga tgccgaagtc gatgcagccc catctaccac atcttcatgt 180 ggacattgag attcacacgc tggctcctga agggtgctca gtctccttgg tgattaaggt 240 cctgcttgaa ctggtgccaa ctccatggca gggaagttgc ttttggttgc ctggctgggt 300 ttcccagatc ccttctgggg caaggagcta tcagaccctg ctttcaag 348 <210> 75 <211> 365 <212> DNA <213> Homo sapiens <400> 75 caagcaaagt ggggatgtca cctgcaactg cactgatggg cgcttggccc ccagctgcct 60 gacctgcgtc ggccactgca tttttggcgg ctactgtacc atgaacagca aaatgatgcc 120 tgaatgccag agcccacccc acatgacagg gccccggtgt gaggagcacg tcttcagcca 180 gcatcagcca ggacatataa cctccatcct aatccctatg ctgtagctgc tgctgctggt 240 tctggtggcc ggagtgatat tctgccataa acggcgagtc caaggggcta agggcttcca 300 gcaccaacgg atgaccaacg gggccatgaa cgcgcagatt gcaaacccca cctacaagat 360 365 <210> 76 <211> 700 <212> DNA <213> Homo sapiens <400> 76 caagaaccat cagcaccaac acaaatgtat ctttgcagac cgaaggaatc agctaaacaa 60 tttacagtca tctcaatctc tactaaaaca aaaatcacat ccaacatgcc acctgacacc 120 atttetttet etetetetet tttgeteett gegatgagge atteatetet eettgageet 180

240

300

360

ccgttctgaa gagataacag tatagcaaca actctgccac tgaaatcctg ttctctgacc

gatattggca cctgcaaaga gaaacaacca gtaacaggca gcagcagcat cagtattaat

cttccatgat gaaatettta caggtcaaga acaagtacac agetettte teacteette

acagtggacc atgcaactag ttgaggtgga agacaatgga ttgtctacaa gccttttgaa 420 cagtggagaa tgcagggcgt tggctttagg aagaggcaga aatccaggca gaacttgaac 480 gtttggaaag agtcagaaat cttcacatac gtgagctgaa aagaataaac aatgaagata 540 attcacagtt caaagatcac ccaacattaa atgaaagata tttattactt catctgcttg 600 gtagaggtgg ctttagtgaa gtgtataagg taatgtagg tttattctgg ttttttaca 660 ctaatgtagc aaggatatag gagtatgtgg ttaagaaggtg

<210> 77 <211> 426 <212> DNA

<213> Homo sapiens

<400> 77

ttgcctagca	catggcaggg	tgcagcgcct	gtctgaatgt	gtgaagagtt	cttagtgatg	60
ggtaaagggt	gttcctgtgt	gttttagatt	ctgctcagca	atcctcagat	gtggtggtta	120
aatgattcca	atcctgaaac	cgacaaccgt	caagaaagtc	cttcccagga	aaacattgac	180
cgagtgagtg	acaggccttt	gtgccctcag	cttggacagc	ctcgggtggg	gttgcttggg	240
gtaacctggg	tgaatcaggc	agcaggactg	ggggagtccg	tgctgaaacc	ttggctccca	300
ggctccaggt	gtaacctgcc	cacctcagag	gccacccacg	cagtaacaga	gggcagggga	360
ggcctccttg	gaaagcagga	aaactgggga	agtgtcagga	agttctcttt	aggtttgctg	420
cctttg						426

<210> 78 <211> 358 <212> DNA

<213> Homo sapiens

<400> 78

tttcgtgcta	tgttcttggc	tgttcaacac	gactgcagac	ccatggacaa	gagcgcaggc	60
agtggccaca	agagcgagga	gaagcgagaa	aagatgaaac	ggaccctttt	aaaagattgg	120
aagacccgtt	tgagctactt	cttacaaaat	tcctctactc	ctgggaagcc	caaaaccggc	180
aaaaaagca	aacagcaagc	tttcatcaag	taagttgaga	atcctgagct	tgcaaatatc	240
aatagttagc	tgctgaactg	aaaaggggaa	ctctgatgag	cgtaagctaa	catacagaac	300
ctctcttgca	ggccttctcc	tgaggaagca	cagctgtggt	cagaagcatt	tgacgagg	358

<210> 79

<211> 322

<212> DNA

<213> Homo sapiens

<400> gggtttttca	atttttccag	cccaaagtta	aaaggttgga	aaatcaattc	ctctttggtc gtcagtggtc	60
aagagcagtt ctgcattggg tctgcgcaaa	ttccaagcaa gaccgccctc ggcagcgcaa tttcatactg	agacgccaga tcatactcca gccgttggga	cactccagtg gccaggccgt	tgcaccggta gacgtgaccg	gttcacccaa acctccgact	120 180 240 300
CCattacacc	cccacactg	cg				322
1	•					
<210> <211>						
<212> <213>	DNA Homo sapie	ns				
	-					
<400>		22242222				
gatgatcaac	ccagaaaaca aagaattaaa	acgcgtaaca	tagtatagtc	aaaaaqaata	cacqaaaaaq	60 120
aatgaatcca	aaaaatgcaa taactattct	aaagcttagc	gattttgggt	cggcttcaca	tqttqcqqat	180 240
aatgacataa ctacgccgcg	caccttcatc	ttctcagacc	acateegetg	catcatcgcc	cccgcggacg	300 310
<210> <211>						
<212>		ne				
	nome supre					
<400>		(
tcgagtaaac gactgctatt	catgggacta gcataatacc	aagcttggct aacgtgcatt	ccaaagcatt ggacgagaac	caggctgaac gatgctatgg	gaaaaacatg aacctgcata	60 120
ggcgacacgg	tcgg			2 3 33		134
<210>	. 82					,
<211> <212>	358					
	Homo sapier	ıs				
		'				
<400>	82 gaaagactaa	tagacaga+	cccattectt	cattootooo	antactores	60
tactctcacc	acttttaata ctaagttcat	cctttagtat	tacaqttqat	cagattacct	ttacttgata	120 180

gtttaaaatt	cctcaaagaa	actggtcatg	gaacaccaat	ggaagaaata	cctgaggagg	240
aattatcaga	ggatgttgaa	cagattgatc	acgctgatag	ggagttgcgg	cgtggccaaa	300
acttgaggtg	caaaggaatt	catagattgc	ctactcatat	acaagtaggg	caaaatcq	358

<210> 83 <211> 723 <212> DNA <213> Homo sapiens

> <400> 83 tacacacaca cacacacaca cacacacact cactetetea gaggagagaa aatattaaga 60 atogtgtatt ttacacaggt atccaaacat aaaaatactt tagaattgct tactgtatgg 120 acaggttata tggaatggag tttgtagtat ccacattaac aaagcaagtt tatatqqact 180 ggttatgata ttagggatat gaattagaaa tggatgttgt tgcactcatt taaaatattt 240 tgcctctcac tttatcccca gttatagtgt ccttttgaat ttttctcaca cagtgctact 300 atatttcatg aactggtata taaacaaacc aaaattattt cttcaaatca agaacttatc 360 tacgaagggc gacgettagt ettagaaeet ggaaggetgg cacaacattt eectaaaet 420 actgaggaaa accctatatt tgtagtaagc cgggaacctc tgaataccat aggattaata 480 tatgaaaaaa tttccctccc taaagtacat ccacgttatg atttagacgg ggatgctagc 540 atggctaagg caataacagg ggttgtgtgt tatgcctgca gaattgccag taccttactg 600 ctttatcagg aattaatgcg aaaggggata cgatggctqa ttqaattaat taaagatgat 660 tacaatgaaa ctgttcacaa aaagacagaa gttgtgatca cattgggatt tctqqtatcc 720 723

<210> 84 <211> 407 <212> DNA <213> Homo sapiens

<210> 85 <211> 342 <212> DNA <213> Homo sapiens

atctacacgg atagacaagc ggcaacttgg atcgacttgc	85 cgaaaattta agcctagaca tggagctgct actcccagga catggtgact atacaatgga	gccgaaccag ggctcccgga cctcctgacg gctgcctcac	aggetteett tgaattteag gteetgaeta gattggageg	ttgtccaaga acctggggtt tactgtttac tgaacacctt	agaggatgga ctcagctcca tacccgttcc	60 120 180 240 300 342
<210> <211> <212> <213>	420	ıs				
cccctagcgg gccctggcca gcgccagccg cgaaagtggc cagccgcacc	86 gtttagcacc ttttaaccgc gtaggagcca tgcctcacca ctcgccatgt tgggtccgag gcacgctcga	teetgaceag caaagegega ggteeacegg ceagacegge teategeege	tecegttgee ttageeteae etecgageag eageteeee ggeegeeaeg	gcaccccatc tgcatttcag cagcaagccc gcctacctga gccccgcaca	ttggaagtat gtacaggccg ggtcggaaag ccccgcccg ggaaggcggc	60 120 180 240 300 360 420
<210> <211> <212> <213>	392	ıs ,				
cttttctgac cctcccacag atgcctccag gggtagatgg cctcgagcct	87 gagaaggegg accetcaaag tgacacetet eteettcaag aateetgagt gggagaacce eetgageega	gtcagaaggt ctgacttctg cccagtggga gaggacaagc tgttgtctaa	taaaggggca acctagggtt ccaagtttgc tgactgtgag gatcatctgg	gaaggcattc ccaccaccgc cattcagtat tggcctttga	ggaaagetee tteaateeea ggaaetggge eteeaggaag	60 120 180 240 300 360 392

<210> 88 <211> 332 <212> DNA

<213> Homo sapiens

atcatcttgt ggccagtatt agcagttgga ttataaaaga	taatgcatta gaaatagtca gatgctattt attttatgtt	taacattaaa tttcccttac tgttgttcta gtgtgtttct	gtttgggtat ctatcagact ttttgtctat ttttttcttt	gtattgcaaa agtagttagc ctttcaaaga tatgaattgt ttaaactgta	atattttcat gaaaagaggg gacaaaacca	60 120 180 240 300 332
<210> <211> <212> <213>	535	ıs				
gatttcagga ttacagcatc ttctttgagg tacctcagat tcacacaagc aaagcagcag aaaatgtttg	gaaatacatg gacaagtatt tttttgcctt cttccagacc ttctccttga cttctgaaat tactaacaga gaggaaaact	atctttaaat tctggccat tccatggttt caggctccat tctggaatgc gacccctcgt acgaactcac	ctaaatgggt acacagaggg actcccagat gaagaagaaa agtgaaactt acaagtgacg atacgttgtt	aagcettgtt gcaattcatt aagcatacgc cacagcaaga agatettgaa ctttacagga gtgagaagac tgaactgcac ggeettectc	aatgaaaaaa acctcggata ctgttctgaa agttcaggcc agtagctagt tttaatagaa gagtacctca	60 120 180 240 300 360 420 480 535
<210> <211> <212> <213>	432	1 5				
agcagcgtaa gatgacttat taatttctga actagtatag tgcttttcat	acccacgcgt tgggctgcat ctagaataat ggttcccttc tttttatttc ctttaagata	tactagtgag gtagaagaga cattcttaga agcaaattat ctaaaccttt	ttccttatgt attaaacatt attctttgat aacaccattg tcactcatgg	actttctaat gagtgtgcga gaatgggagc ttttatattg ttctcaaggc caattttttt caactctctt	gcatatgctg ttaaattagt aattgagaga atggaaaatg tagctagcct	60 120 180 240 300 360 420

<210> 91

atatgggaga ag

432

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(780)
<223> n = a,t,c or g
```

<211> 780

<400> 91 ccatgcatag gattaaactg aatgatcgaa tgacatttcc cgaggaacta gatatgagta 60 cttttattga tgttgaagat gagaaatctc ctcagactga aagttgcact gacagtggag 120 cagaaaatga aggtagttgt cacagtgatc agatgagcaa cgatttctcc aatgatgatg 180 gtgttgatga aggaatctgt cttgaaacca atagtggaac tgaaaagatc tcaaaatctg 240 gacttgaaaa gaattccttg atctatgaac ttttctctgt tatggttcat tctgggagcg 300 ctgctggtgg tcattattat gcatgtataa agtcattcag tgatgagcag tggtacagct 360 tcaatgatca acatgtcagc aggataacac aagaggacat taagaaaaca catqqtqqat 420 cttcaggaag cagaggatat tattctagtg ctttcgcaag ttccacaaat gcatatatgc 480 tgatctatag actgaaggat ccagccagaa atgcaaaatt tctagaagtg gatgaatacc 540 cagaacatat taaaaacttg gtgcagaaag agagagagtt ggaagaacaa gaaaagagac 600 aacgagaaat tgagcgcaat acatgcaaga taaaattatt ctgtttgcat cctacaaaac 660 aagtaatgat ggaaaantaa attgaggttc ataaggataa gacattaaag gaagcagtag 720 aaatggctta taagatgatg gatttagaag aggtaatacc cctggattgc tgtcgccttg

<210> 92 <211> 867 <212> DNA <213> Homo sapiens

```
<400> 92
ctcagtcatg ccagtgcctg ctctgtgcct gctctgggcc ctggcaatgg tgacccggcc
                                                                       6 Q
tgcctcagcg gcccccatgg gcggcccaga actggcacag catgaggagc tgaccctgct
                                                                      120
ettecatggg accetgcage tgggccagge cetcaacggt gtgtacagga ccacggaggg
                                                                      180
acggctgaca aaggccagga acagcctggg tetetatggc cgcacaatag aactcctggg
                                                                      240
gcaggaggtc agccggggcc gggatgcagc ccaggaactt cgggcaagcc tgttggagac
tcagatggag gaggatattc tgcagctgca ggcagaggcc acagctgagg tgctggggga
                                                                      360
ggtggcccag gcacagaagg tgctacggga cagcgtgcag cggctagaag tccagctgag
                                                                      420
gagegeetgg etgggeeetg eetacegaga atttgaggte ttaaaggete acgetgacaa
                                                                      480
gcagagccac atcctatggg ccctcacagg ccacgtgcag cggcagaggc gggagatggt
                                                                      540
ggcacagcag categgetge gaeagateea ggagagaete cacacagegg egeteecage
                                                                     600
ctgaatctgc ctggatggaa ctgaggacca atcatgctgc aaggaacact tccacgcccc
                                                                     660
gtgaggcccc tgtgcaggga ggagctgcct gttcactggg atcagccagg gcgccgggcc
                                                                     720
ccacttttga gcacagagca gagacagacg caggcgggga caaaggcaga ggatgtagcc
                                                                     780
ccattgggga ggggtggagg aaggacatgt accetttcat gcccacacac ccctcattaa
                                                                     840
agcagagtca aggcatctca aaaaaaa
                                                                     867
```

<210> 93 <211> 690

<212> DNA

<213> Homo sapiens

<400> 93 teggaacege cetgaattae etetgtegae ceaegegtee ggggaaacge ttetacagga 60 tatggaaaaa tttggctcga tgatgtttcc tqtgatggag atgaqtcaqa tctctqqtca 120 tgcaggaaca gtgggtgggg aaataatgac tgcagtcaca gtgaagatgt tggagtgatc 180 tgttctgatg catcggatat ggagctgagg cttgtgggtg gaagcagcag gtqtqctqqa 240 aaagttgagg tgaatgtcca gggtgccgtg ggaattctgt gtgctaatgg ctggggaatg 300 aacattgctg aagttgtttg caggcaactt gaatgtgggt ctgcaatcag ggtctccaga 360 gageeteatt teacagaaag aacattacae atettaatqt eeaattetqq etqeqetqqa 420 ggggaagcet etetetggga ttgtataega tgggagtgga aacagaetge gtgteattta 480 aatatggaag caagtttgat ctgeteagee cacaggcage ccaggetggt tggagetgat 540 atgccctgct ctggacgtgt tgaagtgaaa catgcacaca catggcgctc tgtctgtgat 600 tetgatttet etetteatge tgeeaatgtg etgtgeagag aattaaactg tggagatgee 660 atatctcttt ctgtgggaga tcactttggg 690

<210> 94 <211> 948 <212> DNA

<213> Homo sapiens

```
<400> 94
cgagtggcga ggttcatcat ggaggcagac ggagtctcgc tctgttggcc aggctggagt
                                                                      60
gcaggggggt gatctcggct cactgcaacc tccgtctccc ggactaaagc aattatcctt
                                                                     120
cctcacgctt ccgagtagct ggaattacag gtgtcaagct agggatgcgg tccattccca
                                                                     180
ttgccactgc ttgcaccatt taccataagt tcttttgcga gaccaacctg gacgcctatg
                                                                      240
accettacet gattgecatg tetteaattt acttggeegg caaagtggaa gageageace
                                                                     300
tgcggactcg tgacatcatc aatgtgtcca acaggtactt taacccaagc ggtgagcccc
                                                                     360
tggaattgga ctcccgcttc tgggaactcc gggacagcat cgtgcagtgt gagcttctca
                                                                      420
tgctgagagt tctgcgcttc caggtctcct tccagcatcc acacaaqtac ctgctccact
                                                                     480
acctggtttc cctccagaac tggctgaacc gccacagctg gcagcggacc cctgttgccg
                                                                     540
teacegeetg ggeeetgetg egggacaget accatgggge getgtgeete egetteeagg
                                                                     600
cccagcacat cgccgtggcg gtgctctacc tggccctgca ggtctacgga gttgaggtgc
                                                                     660
ccgccgaggt cgaggctgag aagccgttgg gtggcagatt tatgccatgg acacagagat
                                                                     720
cccctaaggt cctggcccag gcctgcccaa agagaagcca catctgcgtt tgtcctttga
                                                                     780
gaggactttg actacaatac aggcatgaca tcaatgaaag gaaagtcatg aaatcgatga
                                                                     840
gactgaatcc ctacggattt cttaaaagcc agatttgtag ggagaatgaa tgtgcaacgt
                                                                     900
ggctgaaatc tattttgtgt aataaaaggt gatacaagtc aaaaaaaa
                                                                     948
```

<210> 95 <211> 541 <212> DNA <213> Homo sapiens

(213) HOMO Sapiens

ttagtttata aagaaaagac atttaattgg ctdatagtte tgcaggetgt acaggaagca 60 tagtagette tgcttetggg gaggeeteag gaaacttaca atcacagcag aaggtgaagg 120 ggaagcagge acgeegtaca tggetggget tteggeetee tetteateaa caaggagteg gtggteatgg cetatetett caccacette aacgeettee agggggtett catettegte 240 ttteaetgge cetacagaa gaaggtgagg tegaggeggg gteetgggte acageeteec 300
tagtagette tgettetggg gaggeeteag gaaacttaca ateacageag aaggtgaagg ggaageagge acgeegtaca tggetggget tteggeetee tetteateaa caaggagteg gtggteatgg cetatetett caccacette aaegeettee agggggtett catettegte ttteactgeg cettacagaa gaaggtgagg tegaggeggg gteetgggte acageetee 300
gtggtcatgg cctatctctt caccaccttc aacgccttcc agggggtctt catcttcgtc 240 tttcactgcg ccttacagaa gaaggtgagg tcgaggcggg gtcctgggtc acagcctccc 300
tttcactgcg ccttacagaa gaaggtgagg tcgaggcggg gtcctgggtc acagcctccc 300
tttcactgcg ccttacagaa gaaggtgagg tcgaggcggg gtcctgggtc acagcctccc 300
ttggagacgt ttcctgggta cccaggagaa ggcggcgagg gtggagggga ctcaggggct 360
ccctcaagcc cccagtgagt gctgcagggc ttctgtggtc aggtctgcgt cccccgggag 420
gggagcacga gctcagggtt agggagggtt taaccacggg tgaagagggt tctgttgaca 480
gacgetgagg cegeaaaege teeteetete tetteacaet egeeaaeaee geggtggege 540
t 541

<210> 96 <211> 603 <212> DNA <213> Homo sapiens

<400> 96 cagecegtaa ggatgateta eetecaaata tgagatteea tgaggagaag aggetggaet 60 ttgaatggac actgaaggca gggtgagaaa aaggctagcc ctcgaagtga aataagggct 120 gggagggcca agaatgatga tagacggtga gggactgagg gatcagctga tgagttaagc 180 ctcaacacct gtcctagggc tttgcagatg gccctcaaac gtgtttacac cctcctgagc 240 tcctggaact gcctagaaga ctttgatcag atcttctggg gccagaagag tgccctggct 300 ggtcagtggt tccccgaggt ctccataatc ccttaatggc ccctctggat gactcatcac 360 actocacagt coccogtaac totttgcaag aagagacett atcatatetg gtcaactcag 420 agaggeettg agaatgaaaa egeagaaget gggtteaggg agggttatat acetgaacee 480 ctggggtaga ttttggagaa gggatatgca ggctgtggta catatatcct cctttcaccg 540 cccaccaaag agaacgttcg ccagtgctgg caggatgatg agttgttcag cttccctcgt 600 gcc 603

<210> 97 <211> 1385 <212> DNA <213> Homo sapiens

<400> 97 tettteagea aggtgggge aageagaatg ceteceagga ttteacacet gageeetgee 60 ccaccctgct gagaaaacac tccgccacgt gaagagacag aggaggatgg caggagttac 120 ctcgggaaac aaacaggatc ttctctgccc tgctccagtc gagttggcct gacccgcttg 180 gatcagtgac catttgctgg cagacagggg agagcagctt ccagcctggg tcagaagggg 240 tgggcgagcc cctcggcccc tcaccctcca ggctgctgtg agagtgtcaa gtgtgtaagg 300 gcccaaactc aggttcagtg cagaaccagg tcagcaggta tgcccgcccg tacgttaagg 360 gggccctcta aaccccttgc ctggcctcac ctggccagct cacccctttt gggtgtaggg 420 gaaaagaatg cctgaccctg ggaaggctcc ctggtagaat acaccacact tttcaggttg 480 ttgcaacaca ggtcctgagt tgacctctgg ttcagccaag gaccaaagaa ggtgtgtaag 540 tgaagtggtt ctcagtcccc agacatgtgc ccctttgctg ctggctacca ctcttcccca 600 gagcagcagg ccccgagccc cttcaggccc agcactgccc cagactcgct ggcactcagt 660

teceteatet gtaaaggtga agggtgatge aggatatgee tgacaggaac agtetgtgga 720 tggacatgat cagtgctaag gaaagcagca gagagagacg ctccggcgcc ccagccccac 780 tatcagtgtc cagcgtgctg gttccccaga gcacagctca gcatcacact gacactcacc 840 ctgccctgcc cctggccaga gggtactgcc gacggcactt tgcactctga tgacctcaaa 900 960 caagccagga gatggggtga agggacacag tettgagetg tecaeatgca tgtgaeteet 1020 caaacctctt ccagatttct ctaagaatag caccccttc cccattgccc cagcttagcc 1080 tetteteeca ggggagetae teaggaetea egtageatta aateagetgt gaategteag 1140 ggggtgtetg ctageetcaa ceteetgggg caggggaege egagaeteeg tgggagaage 1200 tcattcccac atcttgccaa gacagecttt gtccagetgt ccacattgag tcagactgct 1260 cccggggaga gagccccggc ccccagcaca taaagaactg cagccttggt actgcagagt 1320 ctgggttgta gagaactctt tgtaagcaat aaagtttggg gtgatgacaa atgttaaaaa 1380 1385

<210> 98 <211> 2191 <212> DNA <213> Homo sapiens

<400> 98

accaccaccc gtgcgggggg atatctgagc catttctctg tgggcttttg tttttcaaag 60 actgggcagg ttgttgttga ggtgtgtgtg ggctgccacg attttgtgga agtataatac 120 tttgtcatta tgagatgtcg tctctcggtg cctcctttgt gcaaattaaa tttgatgact 180 tgcagttttt tgaaaactgc ggtggaggaa gttttgggag tgtttatcga gccaaatgga 240 tatcacagga caaggaggtg getgtaaaga agctcctcaa aatagagaaa gaggcagaaa 300 tactcagtgt cctcagtcac agaaacatca tccagtttta tggagtaatt cttgaacctc 360 ccaactatgg cattgtcaca gaatatgctt ctctgggatc actctatgat tacattaaca 420 gtaacagaag tgaggagatg gatatggatc acattatgac ctgggccact gatgtagcca 480 aaggaatgca ttatttacat atggaggctc ctgtcaaggt gattcacaga gacctcaagt 540 caagaaacgt tgttatagct gctgatggag tattgaagat ctgtgacttt ggtgcctctc 600 ggttccataa ccatacaaca cacatgtcct tggttggaac tttcccatgg atggctccag 660 aagttatcca gagtctccct gtgtcagaaa cttgtgacac atattcctat ggtgtggttc 720 tctgggagat gctaacaagg gaggtcccct ttaaaggttt ggaaggatta caagtagctt 780 ggcttgtagt ggaaaaaaac gagagattaa ccattccaag cagttgcccc agaagttttg 840 ctgaactgtt acatcagtgt tgggaagctg atgccaagaa acggccatca ttcaagcaaa 900 teattteaat cetggagtee atgteaaatg acaegageet teetgacaag tgtaacteat 960 tcctacacaa caaggcggag tggaggtgcg aaattgaggc aactcttgag aggctaaaga 1020 aactagagcg tgatctcagc tttaaggagc aggagcttaa agaacgagaa agacgtttaa 1080 1140 agatgtggga gcaaaagctg acagagcagt ccaacaccc gcttctcttg cctcttgctg caagaatgtc tgaggagtct tactttgaat ctaaaacaga ggagtcaaac agtgcagaga 1200 tgtcatgtca gatcacagca acaagtaacg gggagggcca tggcatgaac ccaagtctgc 1260 aggccatgat gctgatgggc tttggggata tcttctcaat gaacaaagca ggagctgtga 1320 tgcattctgg gatgcagata aacatgcaag ccaagcagaa ttcttccaaa accacatcta 1380 agagaagggg gaagaaagtc aacatggctc tggggttcag tgattttgac ttgtcagaag 1440 gtgacgatga tgatgatgat gacggtgagg aggagtataa tgacatggat aatagtgaat 1500 1560 gaaagcagaa agcaaagtaa taaaatcaca aatgtttgga aaacacaaaa gtaacttgtt 1620 tateteagte tgtacaaaaa cagtaaggag geagaaagee aageaetgea tttttaggee 1680 aatcacattt acatgaccgt aatttettat caattetaet tttatttttg ettacagaaa 1740 aacgggggga gaattaagcc aaagaagtat atttatgaat cagcaaatgt ggtgcctgat tatagaaatt tgtgatccta tatacaatat aggactttta aagttgtgac attctggctt 1800 1860 tttcttttaa tgaatacttt ttagtttgta tttgacttta tttcctttat tcaaatcatt 1920 tttaaaaact tacattttga acaaacactc ttaactccta attgttcttt gacacgtagt aattotgtga catacttttt ttttottata goaatacaot gtaatatoag aaatggttgg 1980 2040 cctgagcaac ctagtaagac ctcgtctcta ctaataatta aaaaactagc tggcatggta gcacacacct gtagtcccag atacttggga ggccaaggca ggaggattgc ttgagaccta 2100 2160 gcaatcagtc agggctgcag tgagccatga tggcaccact gcactctagc ctgggcaaga

gaacaagatc ctgtctcaaa aaacagggaa a

2191

<210> 99
<211> 335
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(335)
<223> n = a,t,c or g

<400> 99

ggcacgaggc tgaacttcag gtggatgatg agacaaaata gaccgatagg aatcgtctgg 60
ctatatactc cttgttgcca ctgctgagtg actagactgg cccagagatc cgcggtgcac 120
atgctggccg ctcctccctc agaaaaaggc aatggcctaa atactgttta aatgacctga 180
ctcgatgctg tgggaaactg gctgctctgc tgcatgccgt gtgactgtca gtccaaccgt 240
tacatttgcc acgttctcca cacgggggat agacgcaatg cgcccaggtc ccagtttct 300
ttggaggcag cagctctcgc agggctgaat gttgn
335

<210> 100 <211> 348 <212> DNA <213> Homo sapiens

<400> 100
cctactctgg gggatcaacc agatcttcat tccataactc gtgcttctcg tcctaaatta 60
tgtactagaa aaaattgtaa tcctcttact ataactgtcc atgaccctaa ttcaactcag 120
tagtattatg gcatgtcatg ggaattaaga ttttatatcc caggatttga tgttgggact 180
atgttcacca tccaaaaaat cctggtctca tggagcccac ccaagccaat cgggccttta 240
actgatctag gtgaccctat gttccagaaa ccccctaaca aagttgattt aactgttcct 300
ccaccattct tagtcataaa agatacactc caaaagttcg agaaaatc 348

<210> 101 <211> 416 <212> DNA <213> Homo sapiens

<400> 101
agcctcaata atgtaacact gccccaagcg aaaacagaaa aagatttcat ccaactctgc

acccetgggg taattaagea agagaaactg ggcacagttt actgtcagge aagetetect 120 ggagcaaata tgattggtaa taaaatgtet gccatttetg tteacggtgt gagtacetet 180 ggaggacaga tgtaccacta tgacatgaat acagcatece ttteteaaca gtaggatcag 240 aageetattt ttaatgteat eccacaatt eccgttggtt etgaaaattg gaataggtgt 300 caaggatetg gagatgacaa ettgacttee ttggggaete tgaattteee tggtegaacg 360 gtttetttt ettttgagat ggagtetege tetgtegeee aggetggagt geagtg 416

<210> 102 <211> 352

<212> DNA

<213> Homo sapiens

<400> 102

acgcgtccga	caaaaacaac	aacagatggg	gaaactgaaa	gtgcatagca	caaaatgcgg	60
actaattctg	aaatcaccaa	tatgtatctg	tgcttgggaa	atagaggcat	acacaggaat	120
gcagatgccc	acacactcac	attcacactc	acactcactc	tcacactcac	tctcacactc	180
actctcactc	gcactctcac	actacaccga	gatgctcaca	cactcagcct	ccccatgccc	240
aggcccctgc	tctttgttaa	tcataagaag	accgtggaca	acccacctgg	aaactatgtg	300
cccacagacc	cagactgaag	gtgataaaag	agggtggctg	gcttgggggc	tg	352

<210> 103

<211> 702

<212> DNA

<213> Homo sapiens

<400> 103

aaagcaggtg	cctggaaaag	cctgctgagg	gtgaagggga	accatccagt	gtcctgggtt	60
ggggaagcat	tttcctcttt	atgagtctgt	ctctggtcct	catggaacaa	aagtgggcag	120
tggtggtatg	agaagcagag	gctaattgtc	taccccctgc	ctccaagtag	aattactcct	180
tgtctgtgta	cctggtgagg	cagttgactg	caggaaccct	tctacaaaaa	ctcagagcaa	240
agggtatccg	gaacccagac	cactcgcggg	cactgagtga	gtaacatctt	tectetette	300
cccacctgat	ctggattcaa	gtcttcctgg	ccctccagcc	ttcataatta	aacccatacc	360
		cccttctcac				420
accagtcttc	cagtctttat	agttgaagtt	ggaccactcc	caggcaccct	tgaatttcca	480
		ctcacagtcc				540
tccggactgg	aaagaatctt	aggggtcctc	taatctaacc	ctcacatgat	gcttcaactc	600
ctccagatca	tctctaacat	agccagagtg	tcacgctatg	tttaagcatc	ttcagggatg	660
ggaaaatccc	ccacacccat	gtattgcggc	cgctctagag	ga		702

<210> 104

<211> 689

<212> DNA

<213> Homo sapiens

<400> 104 ggcaacatac attgtggact ttggcttcag tacaacattc agagaggggc agatgctgac 60 agetttttgt ggeatgtaee eetaegtgge eecagaaege teeetgggee aggeatgeea 120 gtgacccgcc agggacatac aaagcctcag tgtcatactg tatttcagga atacagtagg 180 tagaagggcc aggactttgc ccttttactc agggaagcct ccaaacttca agaaaaaatt 240 ctcacaggaa gatatcatgc cccaccactt cttgcccttc aacttgactc attaaaaaaat 300 tactaatgct gaacgccagg aagtgtcctt cactgtaact gatgaaaaat ccatgggtga 360 aaagtagcca gaagatgcca ctgataccat acgaagagcc actcctggac caccccaaac 420 aatccagctc atggtggcca tgggatttca ggccaagaac atctctgtgg caatcataga 480 aagaaaattc aactatccca tggccaccta cctcatttta gagcacacaa aacaagagag 540 gaagtgetee accateagag aactgteest tecteeeggg gtteecacet etectteece 600 atccactgaa ctttccacct tccctctctc actgatgcgg gctcataggg agccagcttt 660 taacgttcag cctcccgaag aaagccagg 689

<210> 105 <211> 776 <212> DNA <213> Homo sapiens

<400> 105 agcaaagcag gagctggcca agctgatgcg gattgaggac ccctccctcc tgaacagcag 60 agtettgetg caccaegeca aagetggeae cateattgee egecagggag accaggaegt 120 gagcctgcac ttcgtgctct ggggctgcct gcacgtgtac cagcgcatga tcgacaaggc 180 ggaggacgtg tgcctgttcg tagcgcagcc cggggaactg gtggggcagc tggcggtgct 240 cactggcgaa ceteteatet teacactgeg ageceaaege gaetgeaeet teetgeggat 300 ctccaagtcc gacttctatg agatcatgcg cgcacagccc agtgtggtgc tgagtgcggc 360 gcacacggtg gcagccagga tgtcgccctt cgtgcgccag atggacttcg ccatcgactg 420 gactgcagtg gaggcgggac gcgcgctgta caggtgcagc tcccaccgcg ctgctcaggc 480 ccggcctagg ggtggggacc tgggggtggt cagaccttqc tqacctccac qcccactcaq 540 gcagggcgac cgctccgact gcacttacat cgtgctcaat qggcggctgc gtaqcqtgat ccagcgaggc agtggcaaga aggagctggt gggcgagtac ggccgcggcg acctcatcgg egtggtgage gegaeeceea eccaetgaee tetggeettt teeaggeeag teeeteggea 720 actcacacgc atcatcccgg gtaatccagg gagtggtgaa gtttttcccg gggctc 776

<210> 106 <211> 707 <212> DNA <213> Homo sapiens

```
<400> 106

cccacgcgtc cggatggacc ccaggaacca cccagacctt aggacagggg acagcatggg 60
acacagttgc ttccactcca ggaaccagcg agactacagc ttcagctgag ggaagacgaa 120
ccccaggagc aaccaggcca gcagctccag ggacaggcag ctgggcagag ggttctgtca aagcacctgc tccgattcca gagagtccac cttcaaagag cagaagcatg tccaatacaa 240
```

```
cagaaggtgt ttgggagggc accagaagct cggtgacaaa cagggctaga gccagcaagg
                                                                     300
acaggaggga gatgacaact accaaggctg ataggccaag ggaggacata gagggggtca
                                                                     360
ggatagetet tgatgeagee aaaaaggtee taggaaceat tgggeeacea getetggtet
                                                                     420
cagaaacttt ggcctgggaa atcctcccac aagcaacgcc agtttctaag caacaatctc
                                                                     480
agggttccat tggagaaaca actccagctg caggcatgtg gaccttggga actccagctg
                                                                     540
cagatgtgtg gatcttggga actccagctg cagatgtgtg gaccagcatg gaggcagcat
                                                                     600
ctggggaagg aagcgctgca ggggacctag atgctgccac tggagacaga ggtccccaag
                                                                     660
caacactgag ccagaccccg gcagtatgac cctggggacc ccctggg
                                                                     707
```

<210> 107 <211> 485 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(485) <223> n = a,t,c or g

<400> 107 ccgctggaac atcaggtact ggggacactg gccctggtaa cacagcagtc tcaggcacac 60 ctgtggtatc acctggagca actcctggag ctccaggtag cagcacccct ggggaaqcaq 120 acattggaaa caccagtttt ggaaaatcag ggaccccaac agtatctgct gcctcaacta 180 ccagtagccc tgtgagtaaa cacaccgatg cagcctcagc cacaqcaqtq acaatctctq 240 gaagcaaacc aggtacacct ggaacaccag gtggtgcaac tagtggaggc aaaattacac 300 ctggaattgc atgacccacc ctggaccaaa agagcccctg cttctccggg tatqqaqqtt 360 atttccctgt aaatcctcac cagaacccat gtgctgattc cctgtaatct tcccacaata 420 aatttttagc agctctgnnn nnnnnnnnn nggggcgccc gttttaaggg acccaccttt 480 actcg 485

<210> 108 <211> 565 <212> DNA <213> Homo sapiens

<400> 108 cgggctcacc gctgctgtct cccgctccca agtctttctt gtgaaatcca aattggattc 60 tettgatett ceatettee agggeagtga gettgteett gtteetgetg cagaagttgt 120 agaaggaact ggcctcagag cccacgctgt cctcatcatc ctcccgcacc ctgctccctg 180 cttctgagct cctgtctgcc gcctcctctc tcttgctctt ggcgtggtac ctccgggaag 240 cctccttctc aatctccagc agectctcgt tccatgcgtc ccaggtgctc tccgaggaca 300 tcgagtctgc gcggcgcctc ctgccgtggt ccgggcggtt cagctccagc tgctgcttca 360 ggacccagat gtcgtggctg ctcacgctct cccaggcgct gctctcgctc agggtgcgcc 420 geogeeteec caeegaggag ceagegtege teteeteete ttteteetee teeetteece 480 acctccggta cccttctgct aaaaacctct cgtttcggct ctgccactcg tgaatgatcc 540 tctccacgtc ctcgtcctcg acccg 565

```
<210> 109
<211> 986
<212> DNA
<213> Homo sapiens
```

<400> 109 ggatgacgtg ccgccccgg ctcctgacct ctacgacgtg ccccctggct tgcggcggcc 60 tggcccgggc accetgtacg atgtgccccg tgaacgggtg cttcctcctg aggtggctga 120 tggtggcgtg gtcgacagtg gtgtgtatgc ggtgcctccc ccagctgaac gtgaagcccc 180 ggcagagggc aagcgcctgt cggcctccag caccggcagc acacgcagca gccagtctgc 240 gtcctccttg gaggtggcag ggccgggccg ggaacccctg gagctggaag ttgctqtqqa 300 ggccctggca cggctgcagc agggtgtgag cgccaccgtt gcccaccttc tggacctqqc 360 aggeagegee ggtgegaetg ggagetggeg tageceetet gagecacagg ageegetggt 420 geaggacetg caggetgetg tggeegeegt ceagagtgee gtecacgage tgttggagtt 480 tgcccgcage gcggtgggca atgctgccca cacatetgac cgtgccctgc atgccaaget 540 tagccggcag ctgcagaaga tggaggacgt gcaccagacg ctggtggcac atggtcaggc 600 cctcgacgct ggccggggag gctctggagc cacccttgag gacctggacc ggctggtggc 660 ctgctcgcgg gctgtgcccg aggacgccaa gcagctggcc tccttcctgc acggcaatgc 720 ctcactgctc ttcagacgga ccaaggccac tgccccgggg cctgaggggg gtggcaccct 780 gcaccccaac cccactgaca agaccagcag catccagtca cgacccctgc cctcacccc 840 taagttcacc tcccaggact cgccagatgg gcagtacgag aacagcgagg ggggctggat 900 ggaggactat gactacgtcc accttacagg gggaaggagg agtttttaga agacccagaa 960 ggagcttctg ggaaaaaggg cagcat 986

```
<210> 110
<211> 414
<212> DNA
<213> Homo sapiens
```

<400> 110
cgaagggaaa gcagcaggtt ggggcttctt gtggccaact tcagagcctg tcaccaggaa 60
aggtaagcat gggaggaagg aagatggcga cagatgaaga aaatgtctat ggtttagaag 120
agaacgctca gtcccggcag gagtccacgc ggaggctcat ccttgttggg agaacagggg 180
ccgggaagag cgccactggg aacagcatcc tgggccagag acggttcttc tccaggctgg 240
gggccacgtc tgtgaccagg gcctgcacca cgggcagccg caggtgggac aagtgccacg 300
tggaagtcgt ggacactccg gacattttca gctcccaagt gtccaagaca gatcctggct 360
gtgaggagag aggtcactgc tacctgctct cggcccccgg accccacgcg ctgg 414

```
<210> 111
<211> 419
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
```

<222> (1)...(419) <223> n = a,t,c or q

<210> 112 <211> 1191 <212> DNA <213> Homo sapiens

<400> 112

gtgcaaggtg ctgtcactca cgtgtgccct cqaccctccc qttcacccqc aqccttctca 60 gegeetetee etgggeegga ggeeteetea ceageetaee tqttgetetq qaaaaaaate 120 cegteeceeg acteegteec tacceceagt etteggeegg etetggeece tqqqqaqqqq 180 getgeaeggt ggaaggagge tggetatggg eeeggetgee egetgeatgt accteeteet 240 ccacccateg cetettgeet gggggtaact ttgcctgggg ctcattettt ggttaagetg 300 aagetgeegt gggtggeeaa acegeagatt etttgeaaat tetgagetgg eagagetege 360 agccgggagc cggccgggga agaggagact tgcgcgccgc aagccgcctg cctccaccct 420 getetecate tecegeteta gaagggetgg gaagetegeg geeggggtte cacetggaag 480 ctgcttgcat ggctgaaccc agcttaggtc cctgacgggg ctgctggtgg aattctcccc 540 cttcgaagct ggggaggttt aggagggga aggcttctgt gaagctctca aaccactaat 600 agageeeet eeecaacagt gaeggegeag atgeteeee tittettagt tgacaceaee 660 aggcagette etggeegttg gtaggtteet geagetgget gagggaacag ggaeeggeag 720 gggactttgt taggggaggg ttgggatggg cagtgggccc ctgaaagtta atatattgga 780 acctageteg agtgtegtte tttecaatte egaaagtaga aagagtaaaa ataggggtga 840 ttggggtggg gttagtagaa tgcctctctc agggcgctcc cccctccccc accgttttag 900 agagetagge etcagecagt ettgecacte ceateteagt getteetgaa gaggetgttt 960 tgagtgttga tgaaaagcaa tqcaattatq ccaaacaqta ttqaqcaqaa taatttattt 1020 cttttttttc ttttgcttta aatcatqaat cccqccaqqt acqqtqqctc acqcctqtca 1080 teccageact ttgggaggee aaggegggeg gattaettaa taettaaggt eaggagtteg 1140 agaccageet ggeegatatg gtgaaacete gtetetacea aaaaaaaaaa a 1191

<210> 113 <211> 1240 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1) . . . (1240)

<223> n = a,t,c or q

<400> 113 agaacacgaa ctagtgtctc taagccacta taatagttgc acatacaaca tgagtgtggt 60 gtggtaggat gcttttcctt ttaggtcttt actgaacttt caagggatta aaaccaatgt 120 atgtcaactt tatagcaaaa gattcagatt ctaatcctga ataccaatgc attttagagg 180 gggaaaaaat gagggatgta aaatatatat agtagggtaa gagttttgcc tttgaacaat 240 gtgcatattc tattttaatt tggaatgttt tatacttgca tttcatgtta tgtagttttt 300 ggactggact gtgtttttcc acaaaatgaa aaatcaacta ttttgccacc ttattattca 360 acctacctgc ccatagttgt ctatgccagt tactaatcta tttaaattta ataaatcaaa 420 agetyteett agggattyge caagagteyt aagteettea geetyaaggt titteaatte 480 atteataaac gttgeatggt tttettteea teeageettg atageatagg geggetette 540 gaaagtgacc agcatatacc tgtctcctct gctggcaggg tcccgggcac ggagcttcat 600 gaaggtetet accgegeett tggeegtgte caggtaggtg gtgeecagat ggetgegetg 660 gttcatagag gcagacgtgt ctatcaggaa cagtaagatg ggcatagtgc tggccgggga 720 caccggggcc cgaggtggtg gagaaagagg agatggtaga ggtggaggcg ccggtggcgg 780 egacegeege tageggggeg ggggageaeg geeceeggga ggaaaaeaet gtetgggtet 840 ttcctccggc tgcggggaat tcctcccccg atagttgaga ggaaactccc cagacccagt 900 geteccegte gtacencege etecgeetee teetgeetge etgecegetg gggegggege 960 ccagccgtct gtctgtcggt tcgtcccccc cgcctcgggg gtcccgtccc cgctcccggc 1020 ecetgtgtgt gteceagegg gagaegggee tggeteecea eeceaeceee ggtacaggag 1080 tggggacctg ggagctggcg aagaggggag tgggctgagg gaagattggc cctggggctg 1140 ttgggagaag tttcagggac tccctccgca caccggcggt gtcaccactt tctcagcccc 1200 tctcgcggac gcgtgggtcg cgccggggtt tccgcaggca 1240

<210> 114 <211> 810 <212> DNA <213> Homo sapiens

<400> 114 aatagaattc cgtcggcaca cgcacgcgta cctaggatcq tatagagcgg ccgcaataca 60 tgccgtcttc ttaaatcaac tcctctctct caaaaagcct ttctttccgt gtcgcgaata 120 teatecetee ggteetgtee egeagegagt teeceggegt tgggettete tattatgeeg 180 gccagcggag tccaattggt ctgacttcac tgtccggaga atcctctcgc tcccaaacct 240 ccetgagaga cgacetttaa ccgtgccage cggacetgce tacaaagace etcetettea 300 acctgtcccc tgtgttactc cacaaaacgg acacagaagt tcgtcaacct gcccagatac 360 cacgcctcaa ageggcaaca gagecgaace cettteteag getteggaeg geceagaeee 420 ggcatctctt ttctcctctt ccccagaccc ttccacctct ggcctccgag agccccagcc 480 teagtteece teeaggeest aggaacesta eteteeagea gtacagtetg tagaceeceg 540 aatcagttcc ccactcaacc tcagaactcc tctggcgccg actggcccca ctcgggcaaa 600 ggatggcggt ggataggatg acccgaacca ccagagccag caaacttacc ccagccgcca 660 tggtgattcc gcaaagaaag ggggtggggt tctcggcgct gccgcaaagt aagcccgccc 720 gggagagaag ggaggggaa agaggagagc cgtggagaaa cagcagccga aaaacgagga 780 cgaaacagaa gacatacgta cgacagttcg 810

<210> 115 <211> 320 <212> DNA

<213> Homo sapiens

caagaggagg cctgcagctg caaaggtcat agtgctggca	115 atgctgaage tgatgatgeg tgtcetggge gctgctgaca gegggactge	gecetgteet tteattgeet gtggeeetgg tgeageeaag	gagtgacacc gctccatctt tggcctgtct	aacccctccc cttgcagatg cgtgctcttc	cagtactaca agcctgaagc aacctctccc	60 120 180 240 300 320
<210> <211> <212> <213>	456	ns		j		
gcccaggaga gaagaaagac tattaagccc ttagaagcat aagtggagca tttatcagca	116 gcggcgcggc agtagacaag aagaaggacc aacctgcctt ttggatgaac ctgctttgag gaaaactgat tattttctat	gcggtttggg tgagatagag ctacaacgga agctctgctt ccctgggaag ggaatgtaga	aagacatgtc tttgggtttt gaagttttgg accaactgaa gcttaaaggc tgtagctcct	agccagaaga ccttttttc ttttctaaga atatccctat aaccagctct	aagagcgagg tctctctctt gctgatggac tatcttctaa cccgagttga	60 120 180 240 300 360 420 456
<210> <211> <212> <213>	2398	as				
gtccgtccag acctcagcca tctcgattcc	117 cggtcagcct tttcaggatg ccctctcttc tctgttactg cactcagctg gcttatccc	tgaacactct agccggccca ggctccaggc tatctggaaa	gcaaggaggt tccagcgtta accttctgct tgcccaatcc	gggcagcctg ccacagatga gccttaatgc tttcagccct	tggtgactcc cctcacaggc aagtgtcatc atgcaggtat	60 120 180 240 300 360

420

480

540

600

660

720

780

tttgtaccca gcaccgctct ctcagcctcc ccatttccaa ggatcaggtg atatggcttc

atttctcatg actgaagccc ggcaacataa cactgaaatt cgaatggcag tcagcaaagt

ggctgataaa atggatcatc tcatgactaa ggttgaagag ttacagaaac atagtgctgg

caattccatg cttattccta gcatgtcagt tacaatggaa acaagcatga ttatgagcaa

catccagcga atcattcagg aaaatgaaag attgaagcaa gagatccttg aaaagagcaa

tcggatagaa gaacagaatg acaagattag tgaactaatt gaacgaaatc agaggtatgt

tgagcagagt aacctgatga tggagaagag gaacaactca cttcagacag ccacagaaaa

cacacaggca	agagtattgc	atgctgaaca	agagaaggcc	aaggtgacag	aggagttagc	840
agcggccact	gcacaggtct	ctcatctgca	gctgaaaatg	actgctcacc	aaaaaagga	900
aacagagctg	cagatgcagc	tgacagaaag	cctgaaggag	acagatette	tcaggggcca	960
gctcaccaaa	gtgcaggcaa	agctctcaga	gctccaagaa	acctctgagc	aagcacagtc	1020
caaattcaaa	agtgaaaagc	agaaccggaa	acaactggaa	ctcaaggtga	catccctgga	1080
ggaggaactg	actgaccttc	gagttgagaa	ggagtccttg	gaaaagaacc	tctcagaaag	1140
gaaaaagaag	tcagctcaag	agcgttctca	ggccgaggag	gagatagatg	aaattcgcaa	1200
gtcataccag	gaggaattgg	acaaacttcg	acagetettg	aaaaagactc	gagtgtccac	1260
agaccaagca	gctgcagagc	agctgtcttt	agtacaggct	gagctacaga	cccagtggga	1320
agcaaaatgt	gaacatttgt	tggcctccgc	caaggatgag	cacctgcage	agtaccagga	1380
ggtgtgcgca	cagagagatg	cctaccagca	gaagctggta	caacttcagg	aaaagtctgt	1440
ttgttttgca	gtgtttagcc	ctccaggccc	aaatcacagc	tctcaccaag	caaaatgaac	1500
agcacatcaa	ggaactagag	aagaacaagt	cccagatgtc	tggggttgaa	gctgctgcat	1560
ctgacccctc	agagaaggtc	aagaagatca	tgaaccaggt	gttccagtcc	ttacggagag	1620
agtttgagct	ggaggaatct	tacaatggca	ggaccattct	gggaaccatc	atgaatacga	1680
tcaagatggt	gactcttcag	ctgttaaacc	aacaggagca	agagaaggaa	gagagcagca	1740
gtgaagaaga	agaagaaaaa	gcagaagagc	ggccacgaag	accttcccag	gagcagtcag	1800
cctcagccag	ttctgggcag	cctcaagcac	ccctgaatag	ggagaggcca	gagtccccca	1860
tggtgccctc	agagcaggtg	gtcgaggaag	ctgtcccgtt	gcctcctcag	gccctcacca	1920
cttcccagga	tggacacaga	aggaaagggg	actcagaagc	tgaggcactc	tcagagataa	1980
aagatggttc	ccttccaccc	gaactgtctt	gcatcccatc	ccacagagtt	ctagggcccc	2040
cgacttcaat	tccacctgag	cccctaggcc	ctgtatccat	ggactctgag	tgtgaggagt	2100
cacttgctgc	cagcccaatg	gcagctaaag	cccgacaacc	catcagggaa	aggtctgtgt	2160
tcaggggaag	taggcaccag	atgggcccac	ttacaaggaa	aggttccaca	agattgttcc	2220
ctggatttca	ggaccccgag	ggaggggac	ccactggcct	tagggcttga	aaagcccagg	2280
gagagcctca	gcctccacag	cttcaaggaa	aggttgatgt	tcactaggtt	ccaccggttc	2340
cccacaaggg	agcttttcaa	gaacaggagg	gcaggtttcc	acagttttgc	agggagca	2398

<210> 118

<211> 800

<212> DNA

<213> Homo sapiens

```
<400> 118
agegaaacgg cgcagcaaat tatcgaccgt ctgcgcgtaa aactggcgaa agaaccgggg
                                                                      60
gcgaatctgt teetgatgge ggtacaggat attegegttg gtgggegtea gtcgaacgee
                                                                      120
agctaccagt acacgttgtt atccgacgac ctggcggcac tgcgagaatg ggagccgaaa
                                                                     180
atccgcaaaa aactggcgac gttgccggaa ctggcggacg tgaactccga tcagcaggat
                                                                     240
aacggcgcgg agatgaatct ggtttacgac cgcgacacca tggcacggct gggaatcgac
                                                                     300
gtacaagccg ccaacagtct gttaaataac gccttcggtc agcggcaaat ctcgaccatt
                                                                     360
taccagccga tgaaccagta taaagtggtg atggaagtgg atccgcgcta tacccaggac
                                                                     420
atcagtgcgc tggaaaaaat gttcgttatc aataacgaag gcaaagcgat cccgctgtca
                                                                     480
tatttegeta aatggeaace ggegaatgee ceactategg tgaateatea gggattateg
                                                                     540
geggeettga ceatttegtt taacetgeeg aceggaaaat egetetegga egecagtgeg
                                                                     600
gegategate gegeaatgag ceagettggt gtgeettega eggtgegegg eagttttgee
                                                                     660
ggcccggcgc aggtgttcca ggagaccatg aactcgcagg tgatcctgat tattgccgcc
                                                                     720
ategecaegg tgtatategt getgggaate cettaegaga ggtaegtaea teegeegaeg
                                                                     780
attctcttgt gaaggccgcc
                                                                     800
```

<210> 119

<211> 427

<212> DNA

<213> Homo sapiens

<400>	119					
aaatcatcac	acctgatgcg	atgggttgcc	agaaagatat	tgcagagaag	atacaaaaac	60
agggaggtga	ttatttattc	gctgtaaaag	gaaaccaggg	gcggcttaat	aaagcctttg	120
aggaaaaatt	tccgctgaaa	gaattaaata	atccagagca	tgacagttac	gcaatcagtg	180
aaaagagtca	cggcagagaa	gaaatccgtc	ttcatattgt	ttgcgatgtc	cctgatgaac	240
ttattgattt	cacgtttgaa	tggaaagggc	tgaagaaatt	atgcgtggca	gtctcctttc	300
ggtccataat	agcagaacaa	aagaaagagc	cagaaatgac	ggtcagatac	aatatcagtt	360
agttgggtat	cgccggggat	atatcagtca	cagcgatctc	cgggacggac	gattgaatct	420
cgtaatc						427

<210> 120 <211> 378 <212> DNA <213> Homo sapiens

<400> 120
ccattatttg aaaatgctca ctcaggcgcg gcgggaagtg attatcgcca acgcctactt 60
cttccccggc tatcgatttt tacacgcctt gcgtaaagcg gcacggcgcg gggtgcggat 120
caaactgatc attcagggcg aaccggatat gccgattgtc agagtcggtg cgcgcttgct 180
gtataactat ctggttaaag gcggcgttca ggtttttgag taccgccgcc gcccgctcca 240
cggcaaagtg gcattgatgg acgatcactg ggcgacagta gggtccagta atctccatcc 300
ggtcagttag tcggggaatc tccaagcaaa tgtcatcctc cacgttctac gggtaccgac 360
attgaatccg taatcatg

<210> 121 <211> 508 <212> DNA <213> Homo sapiens

<400> 121 ctgccgcctg gtgaagttta cgccccatcg aagccctggc aaaagaagtc cgtgaactga 60 aataacatac tcgttaattg ctcaatccag ccacaacgcg agaactgacc agtctgggac 120 gaaacctgaa ccgattgtta aaaagtgaac gcgaacgtta cgacaaatac cgtacgacgc 180 teacegacet gacecatagt etgaaaaege caetggeggt getgeaaagt aegetgegtt 240 ctctgcgtag tgaaaagatg agcgtcagtg atgctgagcc ggtaatgctg gagcaaatca 300 gccgcatttc acagcaaatt ggctactacc tgcatcgtgc cagtatgcgc ggcgggacat 360 tgctcagccg cgagctgcat ccggtcgccc cactgctgga caatctcacc tcagcgctga 420 tcaaaggcaa gccgcgtaaa gggggcaacg tcactgtttt tccattcaca gcgatgtaca 480 gggacggaca ttgaatccgt gatcagtg 508

<210> 122 <211> 724 <212> DNA <213> Homo sapiens

<400> 122 gggtaacact gtgatgtttc agcacctgat gcagaagcgg aagcacaccc agtggacgta 60 tggaccactg acctcgactc tctatgacct cacagagatc gactcctcag gggatgagca 120 gtecetgetg gaaettatea teaceaceaa gaagegggag geteqeeaqa teetqqaeea 180 gacgccggtg aaggagctgg tgagcctcaa gtggaagcgg tacgggcggc cgtacttctq 240 catgetgggt gccatatate tgctgtacat catetgette accatgtget gcatetaceq 300 cccctcaag cccaggacca ataaccqcac gagcccccqg gacaacaccc tcttacaqca 360 gaagetaett caggaageet acatgaceee taaggaegat atceggetgg teggggaget 420 ggtgactgtc attggggcta tcatcatcct gctggtagag gttccaqaca tcttcaqaat 480 gggggtcact cgcttctttg gacagaccat ccttgggggc ccattccatq tcctcatcat 540 cacctatgcc ttcatggtgc tggtgaccat ggtgatgcgg ctcatcagtg ccagcgggga 600 ggtggtaccc atgtcctttg cactcgtgct gggctggtgc aacgtcatgt acttcgcccg 660 aggattccag atgctaggcc ccttcaccat catgattcag aagatgattt ttggcgacct 720 gatg 724

<210> 123 <211> 435 <212> DNA <213> Homo sapiens

<400> 123 gagaaagcag cagctgccaa catagatgaa gtgcagaagt cagatgtatc ctctacaggg 60 cagggtgtca tegacaagga tgegetgggg cetatgatge ttgaggtage acatetteat 120 tttagtgctg tattttaaaa tcttgttgat cttcacatta ttacatttaa tttcaggtga 180 atataattta aggagaatee acactagtae tagtaetatg gaeetettga gettgetgat 240 atgeetgtgt gtetetatgt atgttttgge teetgetgee agtatatgtq tgtttqaaat 300 taacatagaa ttaaattaac tagattagag tagacattgg caagttgtaa ttgccagttg 360 agcatttatt tgaaaaactg tattcacaag tcctactaaa ttctgtgttg attttagctt 420 gaaatgttct caaaa 435

<210> 124 <211> 363 <212> DNA <213> Homo sapiens

<400> 124
actggaagtg ccttcagagg tcaccccttt gggctttgcc atgcaggcta caaagactct

60

cctcctcaga	acatgctgct	tgcaggaatt	caacatcatg	gaaaagaata	aaggatgggc	120
tctcctggga	ggaaaagatg	gccatcttca	gggactattt	ctccttgcca	acgcattgct	180
ggaaagaaat	cagctccttg	cacagaaggt	catgtactta	ttagtccctc	ttcttaaccg	240
		tcacatctgc				300
agtggccaag	agactgccca	gcatatactc	tgttgcccgc	tttaaagact	ggctacaaga	360
tgg						363

<210> 125

<211> 373

<212> DNA

<213> Homo sapiens

<400> 125

agaccggccc	cegetecete	agctgcgccg	gaggaggcgc	ccagtcctcg	gggtgaaggg	60
		gagtgcccgc				120
gaagtccgcc	cgccgcgccg	ccgccgcgcc	tgacaccgag	cggagcgagg	aaggaggacg	180
agcggtgaag	gaagcctacc	cttccagccg	tcagccgccg	ccgccgtcgc	cgtgacccct	240
gcgttgcgcc	cggcgctgcc	acccgaactt	agccccctcg	atgccaattt	caaataggga	300
aggaaaaggg	aaaàgaaggg	aagagaaaat	ccggccgctg	agtcccgcgt	ccactcacac	360
ctccgctcgt	gcc					373

<210> 126

<211> 362

<212> DNA

<213> Homo sapiens

<400> 126

gcctacaggg	ggtccatggc	agcagttcta	ctttctgcag	ctccctaagc	agtgactttg	60
accccctaga	gtactgcagc	cctaaagggg	atccccagcg	agtggacatg	cagcctagtg	120
tgacctctcg	gcctcgttcc	ttggactcgg	aggtgcccac	aggggaaacc	caggtttcca	180
gccatgtcca						240
gcaggaagcc	tggcccagaa	accggagtcc	cccagtccag	gcctcctatt	cctcggacac	300
agccccagcc	agagccacct	tctcctgatc	agcaagtcac	cagatccaac	tcagcagccc	360
ct .						362

<210> 127

<211> 351

<212> DNA

<213> Homo sapiens

cagcagcgag cattctatct ggatggacgg gccaatgtga	127 cccgaccccc gcctccgaca ctgcaggatc actgactggc cggtattaag agtgacgagg	ccgtgcacat tcttagctac tgcaaaggcc aggaggggcc	tcgaatggcc tgtgacttcg tgactgtgtc ttagaggggg	tttctgagaa acagataatt tccttcaaaa attagatcct	gagtctacag tagcctttga ttcatgtgct gaaaggtcct	60 120 180 240 300 351
<210> <211> <212> <213>	374	ıs				
gggctggctg ttccagctca tctggctgag tggtcttatt	aaggcaccat ctcagcagga ccttaactgt tgagctggaa tcacaggagc tttggctact	gtgtttaata ttcctggctg tgagtgtagt acttcccgaa	agcacttaat actcgcctct ggtagtgcca cgagtttacc	tgcccggtga cggcctgatt cctataggtt tcgggagatg	gtacagacca gccctgctca cctcttacct gaaagaaagc	60 120 180 240 300 360 374
<210> <211> <212> <213>	392	ıs				
ggtcagaggt tctttcccc ttgctgtgct tctctctagg tcctcgacgc	cccagcccca	atcaggaatt gtcccccgg ccagactgaa cctgtaagta cttacccaa	ttgcttcaag ggcttggggg tcagcaggtc cagttttttg ggtaagatga	tgagttgctg ttgggtttgt ctcagctcat gataacctca	ctgccctgac cagcttgctt ctctgctcct agaagttgac	60 120 180 240 300 360 392

<210> 130 <211> 359 <212> DNA <213> Homo sapiens

<400> 130 ccgggacgat gcctgcctct actccccagc ctcagctccc gaggtcatca cagtaggggc 60 caccaatgcc caggaccagc cggtgaccct ggggactttg gggaccaact ttggccgctg 120 tgtggacctc tttgccccag gggaggacat cattggagcc tccaqcgact gcaqcacctg 180 ctttgtgtca cagagtggga catcacaggc tgctgcccac gtggctggca ttgcagccat 240 gatgetgtet geegageegg ageteaceet ggeegagttg aggeagagae tgatecaett 300 ctctgccaaa gatgtcatca atgaggcctg gttccctgag gaccagcggg tactgaccc 359 <210> 131 <211> 389 <212> DNA <213> Homo sapiens <400> 131 gttagaaatc aagtttttgg agcaggtgga tcaattctat gatgacaact ttcccatgga 60 aatteggeat etgttggeec aatggattga aaateaagae tqqtaqqate aaacatattt 120 tccctagaag ttgatgcaca aatgtctgat gctctatcca tgtgaattta ttttatggtc 180 cactttttac tcagtagatg cattcttttc aggtaaagaa ctttctcaag gatttgaaag 240 ccttcccaaa gaaggggaat aattgtcctt tctggttcca ttcattgtaa atgaaaagtt 300 aatggttcca gtgcttcttt tctctgtaaa caaaaaccca aataattttt catgtattaa 360 aaaaagaagc aaatcaattg attgtcagt 389 <210> 132 <211> 465 <212> DNA <213> Homo sapiens <400> 132 ggaggcagga gatgcggatg aagatgaggc tgatgctaat agctctgact gtgaaccaga 60 ggggcccgtg gaagcggaag agcctcctca ggaggatagt agcagtcagt cagactctgt 120 ggaggaccgg agtgaggatg aggaagatga acattcagag gaggaagaaa caagtggaag 180 ttcagcatca gaggaatctg agtctgaaga gtctgaggat gcccaatcac agagccaagc 240 agatgaagag gaggaagatg atgattttgg ggtggagtac ttgcttgcca gggatgaaga 300 gcagagtgag qcagatgcag gcagtqqqcc tcctactcca qgqcccacta ctctaqqtcc 360 aaagaaagaa attactgaca ttgctgcagc agctgaaagt ctccagccca agggttacac 420 gctggccacg acccaggtaa agacgcccat tcccctgctt ctgcg 465

<210> 133 <211> 354 <212> DNA <213> Homo sapiens

ttgccagagt gagggcattt aacaaagttt gagttgctat	taagggagtt ctttgacaga caagacttat gcgagaaaac cactatcttt tttttctgag	acttagtcta aaacttgaaa taacatagaa caattctctt	attcaaacca aatctctatt gatggagtat tcacacgtgc	atatatacaa tggcctggaa ttgaaacgct cacccaaact	cataactaaa ctgctatttt gacaaatttg gccaagctcc	6(12(18(24(30(354
<220> <221> <222>	326	ce				
gegeageeag teteeceaga atgaattgee geegttttaa	134 cggngacagg gccctgggcc agaggaagtt accacattaa aggacccttg gggagccgaa	agteggegee teeetgtgtg ataaaatata ggggggeeaa	ctcgctcacc tccaaatgct tccaaagctc	gccagcctga gggagaacat nnnnnnnnn	aggagctgag cacccettgg nnnngggggg	60 120 180 240 300 326
<210> <211> <212> <213>	210	ıs				
ttgaaccagc cattctgtcc	135 tetgtettee tgatgegetg ceagtgaaat tttettggte	tcttcggaaa agtgtttgat	taccaatccc	ggactcccag	teceetecta	6(12(18(21(

<211> 310 <212> DNA <213> Homo sapiens

<210> 136

tgtatactca aggtatttaa tgaaccatat	acacatataa ctgcttttcc cagactcccg gaaactagcc agatagaatt	taacgtgaaa acaaaaagca aaggtagtaa	aatttaccaa gaatgatcag taatttcgta	aatgctaatt cgaaatcgga tcaacaaaag	gtgacttata aaagaaaagc tactcaattc	60 120 180 240 300 310
<210> <211> <212> <213>	502	ns				
agagacagtt cttccgatac aaccacttgc cagagaactt gtgatcgaca ttggaaagtt ttgtgctgac	137 aatttaaaaa ttacatagct cctcaggaaa agagtggcta tatctattcc caatgacaat tttgggacat ctctgatatg tgtggacctc	taatattta atccaagtgg aggaaataca tgtgctggat ataatgcttc gcacagatgt gcatatgtca	tcattaaagg aatatggtgt atccctctga gctgtgtagc gaagcacggg ttggcagctt	catggtggag gacaggatcc agaagaatat cacctatgtt acacatgttt caaaagggat	ctggttcctg tttaaagata gaaaaggctt ttaggcatct cacattgact	60 120 180 240 300 360 420 480 502
<210> <211> <212> <213>	963	ıs				
gcccttcacc tcccagggga gtttcccaag cccactctct acagaggaca gcagctgagg gttgggggca agcagcctgt gctgagctgc cagaaaaaag gtggccccag	138 cctccctage ccacacaget agccaggetg tgacttcate ctggttetee gtgetggagg gtetggagg gtetggagg gtetgagaga gtetgageag agagtetteg aaattgaaga ctgetatget gcaacageet	gaggtggaga gegeceatet caaggaaceg aaaacettea egggecagag tggagttgag cetgagecat egaggagtea geagaageac tttgtacage gtecageege	gtgaggcete ctgaagaggg getgagcete acceetcage accagggaag gaggaaggag cccageccag gaaageagtg ttgtcagagg eggetgggga cagegeegee	accacctect aaagccgcag ttcccttgca tcacttcaga ctctggctga atgatggaaa tgtggatgaa gggaagatga tggaaacact agcagcccc tctccaaggg	geteggeeee ettgttggge gecaacatee gageteagat gagegaeegt ggaaceecaa etacteetae ggagttetgg acagacacta acegggtatt eagetteeee	60 120 180 240 300 360 420 480 540 600 660 720 780

```
WO 01/53455
                                                            PCT/US00/35017
accoagette catettttee etgagacece tttetgtega etgtttttet eeaggeeetg
                                                                      840
qqqqtctqcc ccqqqqqaat agaccccctc tccccacctc ccctttcctc acttaqtqct
                                                                      900
ctccttcccc catcctggct ccaggcatca tgcgaaggaa ctctctgagt ggcagcagca
                                                                      960
ccg
                                                                      963
     <210> 139
     <211> 376
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
    <222> (1)...(376)
     <223> n = a,t,c or g
     <400> 139
cgccgctttg tttctcaaga gactgggaat ctgtatattg ccaaagtaga aaaatcagat
                                                                       60
gttgggaatt atacctgtgt ggttaccaat accgtgacaa accacaaggt cctggggcca
                                                                      120
                                                                      180
cctacaccac taatattgag aaatgatgga gtgatgggtg aatatgagcc caaaatagaa
gtgcagttcc cagaaacagt tccgactgca aaaggagcaa cggtgaagct ggaatgcttt
                                                                      240
                                                                      300
getttaggaa atccagtace aactattate tggcgaagag etgatggaaa gecaatagea
aggaaagcca gaagacacaa gtcaagagtg gggaaanntc ttgagaaatc ccttaatttt
                                                                      360
                                                                      376
tcagcaggga ggatgc
```

```
<210> 140
<211> 968
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(968)
<223> n = a,t,c or g
```

<400> 140 60 gcaaggggca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc agggacccag gatgeteegg acetgttaeg tgetetgtte ccaagetggt ceeegeteea 120 180 ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc 240 tgacacgggc cttgctggtt ctccggctgt qtgcctggcc cccactcgtc actcacgggc 300 tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc 360 gagcatccgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg 420 tgcagcaget gcggaccete agcetecgae cactgctgge agtgcccact gaggaggage 480 eggactetge tgccaagagt ggtgaggegt ggtatgaggg gaaceteggt getatgetge 540 ggtgtgtgga cctgtcacgg ggcctcctgg agccccccag cctggctgag gccagcctca 600 tgcagctgaa ggtgacggcg ctgaccagta ctcggctctg taaggagcta gcctcgtggg 660 tcagaaggcc aggagcctcc ttggagctga gccccgagag gctggctgaa gctatggact 720 ctgggcagaa cctccaggtc tcctgcctca atgctgagca gaaccagcac ctccgggcct 780 eceteageeg cetgeategg gtggcacagt atgeeeggge eeageaegtg eggeteetgg

tgcgctggaa	gtacacetea cagecegggt attetagegg	gaaggcgggc	cctgggtgtg	gaacacctac	caggcctgtc	840 900 960 968

<210> 141

<211> 306

<212> DNA

<213> Homo sapiens

<400> 141
agacggctga aaagggaggg gtattgaggg cggttcagag ggcgaggag ggggcgtaga 60
gaacctgtgg agaagaagtt cactggaggg gcattaggcc tcgcactatg tatccagatc 120
atcagtaggg gaagagaaa gatgggcaat atgtatagtc agacgagaag tgggatcaaa 180
cagagggctc atggagaagt aggctaccca ccacataacc ccatcatagg attgcaggag 240
atacagctat agataagaat atccaccagt cggtgagtga gcagatcaag aagaactttg 300
ccaaga

<210> 142

<211> 316

<212> DNA

<213> Homo sapiens

<400> 142
ccacactcac atttaatata ctgttaggtt gtttactttg aggcaatgtc atcctcatta 60
gtatagggca ttatattcct gaatagcaga atactcctcc attcatgaag ttcagtatta 120
tacattctta ttattgcaca acaaatagaa gactttggat ttccttatat aagtaccttg 180
acagatgact aacccatttt tcctatgctt tacaactatg atcagtaact gtaatttttt 240
taaaggtcct cctggacccc cgggtgaaaa aggagatcga ggtcccactg gagaaagtgg 300
tccacgagga tttcca

<210> 143 <211> 339 <212> DNA

<213> Homo sapiens

<400> 143
gacaatacca aatgaatgaa cgtgactgtg ttccaacaaa actttattta caaaaacagg 60
gatgggccgg atgtagccag aggccataat ttgccaaccc ctgatttaga cgaaggaaag 120
gagcagtgct tcactgcttt taaattaatt ctgtattctc acaaggccta cattgaaatg 180

gaattatagc	ctcattttt	cttagaacct	ttatattttg	ttttattcat	atacagggtt	240
gtcaagctgg	acagactatt	aaagttcaag	tctcctttga	tttgcttagt	ctgatgttta	300
catttgtaag	tccatgtacc	aacgatttaa	tcatacacg			339

<210> 144 <211> 2018 <212> DNA <213> Homo sapiens

						•
<400>	144					
acaagttatc	tgtgaatcat	aggagaacac	atcttacaaa	actcatgcac	actgttgaac	60
aagctacttt	aaggatatcc	cagagettee	aaaagaccac	agagtttgat	acaaattcaa	120
cggatatagc	tctcaaagtt	ttcttttttg	attcatataa	catgaaacat	attcatcctc	180
atatgaatat	ggatggagac	tacataaata	tatttccaaa	gagaaaagct	gcatatgatt	240
caaatggcaa	tgttgcagtt	gcatttttat	attataagag	tattggtcct	ttqctttcat	300
catctgacaa	cttcttattg	aaacctcaaa	attatgataa	ttctgaagag	gaggaaagag	360
tcatatcttc	agtaatttca	gtctcaatga	gctcaaaccc	acccacatta	tatgaacttg	420
aaaaaataac	atttacatta	agtcatcgaa	aggtcacaga	taggtatagg	agtetatgtg	480
cattttggaa	ttactcacct	gataccatga	atggcagctg	gtcttcagag	ggctgtgagc	540
tgacatactc	aaatgagacc	cacacctcat	gccgctgtaa	tcacctgaca	cattttqcaa	600
ttttgatgtc	ctctggtcct	tccattggta	ttaaagatta	taatattctt	acaaggatca	660
ctcaactagg	aataattatt	tcactgattt	gtcttgccat	atgcattttt	accttctggt	720
tcttcagtga	aattcaaagc	accaggacaa	caattcacaa	aaatctttgc	tgtagcctat	780
ttcttgctga	acttgttttt	cttgttggga	tcaatacaaa	tactaataag	ctcttctgtt	840
caatcattgc	cggactgcta	cactacttct	ttttagctgc	ttttgcatgg	atgtgcattg	900
aaggcataca	tctctatctc	attgttgtgg	gtgtcatcta	caacaaggga	tttttgcaca	960
agaatttta	tatctttggc	tatctaagcc	cagccgtggt	agttggattt	tcggcagcac	1020
taggatacag	atattatggc	acaaccaaag	tatgttggct	tagcaccgaa	aacaacttta	1080
tttggagttt	tataggacca	gcatgcctaa	tcattcttgt	taatctcttg	gcttttggag	1140
tcatcatata	caaagttttt	cgtcacactg	cagggttgaa	accagaagtt	agttgctttg	1200
agaacataag	gtcttgtgca	agaggagccc	tegetettet	gttccttctc	ggcaccacct	1260
ggatctttgg	ggttctccat	gttgtgcacg	catcagtggt	tacagcttac	ctcttcacag	1320
tcagcaatgc	tttccagggg	atgttcattt	ttttattcct	gtgtgtttta	tctagaaaga	1380
ttcaagaaga	atattacaga	ttgttcaaaa	atgtcccctg	ttgttttgga	tgtttaaggt	1440
aaacatagag	aatggtggat	aattacaact	gcacaaaaat	aaaaattcca	agctgtggat	1500
gaccaatgta	taaaaatgac	tcatcaaatt	atccaattat	taactactag	acaaaaagta	1560
ttttaaatca	gtttttctgt	ttatgctata	ggaactgtag	ataataaggt	aaaattatgt	1620
atcatataga	tatactatgt	ttttctatgt	gaaataggtc	ctgtccaaaa	atagtattgg	1680
ccagatattt	gggaaaagta	aattgggttt	cctcagggag	tgatatcccc	ttgcacccaa	1740
gggaaaagat	tttctttcta	acacgagaag	tatatgaatg	tcctgaaggg	aaaccctggg	1800
ccttgatatt	tctgtgactc	gtgttgcctt	tgaaactagt	cccctaccac	ctcggtaatg	1860
agctccatta	cagaaagtgg	aacataagag	aatgaagggg	cagaatatca	aacagtgaaa	1920
agggaatgat	aagatgtatt	ttgaatgaac	tgttttttct	gtagactagc	tgagaaattg	1980
ttgacataaa	ataaagaatt	gaagaaacaa	aaaaaaa			2018

<210> 145

<211> 429

<212> DNA

<213> Homo sapiens

<400> 145 ggcacgaggg aagctgcccc gtccaggttc atgttcctct tatttctcct cacgtgtgag 60 ctggctgcag aagttgctgc agaagttgag aaatcctcag atggtcctgg tgctgcccag 120 gaacccacgt ggctcacaga tgtcccagct gccatggaat tcattgctgc cactgaggtg 180 gctgtcatag gcttcttcca ggatttagaa ataccagcag tgcccatact ccatagcatg 240 gtgcaaaaat tcccaggcgt gtcatttggg atcagcactg attctgaggt tctgacacac 300 tacaacatca ctgggaacac catctgcctc tttcgcctgg tagacaatga acaactgaat 360 420 ttagaggacg aagacattga aagcattgat gccaccaaat tgagccgttt cattgagatc aacagcctc 429

<210> 146 <211> 717 <212> DNA <213> Homo sapiens

<400> 146 60 gatgaaactt ccggtctcat tgtccgggaa gtgagcattg agatttcgcg ccagcaagtg 120 gaagaactet ttggacetga agattactgg tgccagtgtg tggcctggag ctcagcgggt accacaaaga gccggaaggc gtatgtgcgc attgcatagg aactcatgac ctgacatcca 180 ttagcagagt catcagagtc atctggctgc tgtgttgaga atggaccatg ctgggcaagg 240 ggagaaqcag gaagaccagt gatgagactg cagctatgag agatgttaag ctactgtaga 300 360 ttggaagcag tggaggtggt gaggccagga tttcagatat atttaaaagt agagataaca 420 gcttttgttg agaccttgga tgtgtgatgt gagagaaaga agagaaagga tgattttgaa agggectaag cetttateca aggatttett teaaatgtet ttagtgaage catteetgee 480 tcacagaggg aggaggctgg gcattccttt ctcaatactt tcagagcagt ttgtccatac 540 ccctaatata gtgcttgtct catttcgaat tatattcact cgtaaaattt gtgtttcatg 600 ccagtgagtt ccatgagatc aagaattcta ttgtacttaa ttttatatct ctcctgctta 660 gcacaatacc tagagtatca cagatgttta acaattttct tgaattaaaa ctgttat 717

<210> 147 <211> 367 <212> DNA <213> Homo sapiens

<400> 147
ggcacgagat cgattcatgt aaagctggac gtgggcaagc tgcacaccca gcctaagtta 60
gcggcccagc tcaggatggt ggacgacggc tctgggaagg tggagggcct acctgggatt 120
tgaccagagt ccgcctggct ccaggctctg ccacccacag gaagaagaaa ctacactgac 180
agatgtgaga cagtgtttcc ccttcagtct ttgaacaggc tttgtgtttt ctaaatgaca 240
ctggataaaa gggaattcat tcaagagctc caaggcttcc ctttccgccc ggcttctgtt 300
gccctggcct gagcagcgag cagctggag gggactgaac tgcccctaac cagggttgtg 360
gctggcg

```
<210> 148
<211> 791
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (791)
<223> n = a,t,c or g
```

<400> 148 cgagaccega ccctgggcgt ggtgcatcga ggtagatgca aagatgctgg ccagagcaag 60 tgtcgcctgg agcgggctca agccctggag caagccaaga agcctcagga agctgtgttt gtcccagagt gtggcgagga tggctccttt acccaggtgc agtgccatac ttacactggg 180 tactgctggt gtgtcacccc ggatgggaag cccatcagtg gctcttctgt gcagaataaa 240 actectgtat gttcaggttc agtcaccgac aagcecttga gccagggtaa ctcaggaagg 300 aaagatgacg ggtctaagcc gacacccacg atggagaccc agccggtgtt cgatggagat 360 gaaatcacag ccccaactct atggattaaa cacttggtga tcaaggactc caaactgaac 420 aacaccaaca taagaaattc agagaaagtc tattcgtgtg accaggagag gcagagtgcc 480 ctggaagagg cccagcagaa tccccgtgag ggtattgtca tccctgaatg tgcccctggg 540 ggactctata agccagtgca atgccaccag tccactggct actgctggtg tgtgctggtg 600 gacacaggge gecegetgee tgggacetee acacgetacg tgatgeecag ttgtgagage 660 gacgccaggg ccaagactac agaggcggat gaccccttca aggacaggga gctaccaggc 720 tgtccagaag ggaagaaaat ggagtttatc accagcctac tggatgctct caccactgac 780 atggntcagg g 791

<210> 149 <211> 335 <212> DNA <213> Homo sapiens

```
    <400> 149
    ggcacgagca aactegggge teagettggg gacgggagtt gatagteagg tgeetggaac 60
    ataatggaga cegtecatat tggttgaatg agtggatgaa tgaattaatg aatttettt 120
    ctettaagte etgeagetga ttaagteaca gaaatttetg aataagttgg tgatettggt 180
    ggaaacggag aaggaagaa teetgeggaa ggaatatgtt tttgetgaet eeaagtaag 240
    tgacagcaaa ettetaaagt gggetgtgag gtagggaggg gacacaageg ttttgagget 300
    egetgtgtge eagggagtgt atcattaget eacte
```

<210> 150 <211> 1293 <212> DNA <213> Homo sapiens

<400> 150 cgacgcctgt ccctcttaga cttgcagete ggtcctcttg gcagagaccc cccgcaggag 60 tgcagcacct tctccccaac agacagcggg gaggagccgg ggcagctctc ccctggcgtg 120 cagttccagc ggcggcagaa ccagcgccgc ttctccatgg aggacgtcag caagaggctc 180 tetetgeeca tggatateeg cetgeeceag gaatteetae agaagetaea gatggagage 240 ccagatetge ccaageeget cageegeatg teeegeeggg cetecetgte agacattgge 300 tttgggaaac tggaaacata cgtgaaactg gacaaactgg gagagggcac ctatgccaca 360 gtcttcaaag ggcgcagcaa actgacggag aaccttgtgg ccctgaaaga gatccggctg 420 gagcacgagg agggagcgcc ctgcactgcc atccgagagg tgtctctgct gaagaacctg 480 aagcacgcca atattgtgac cctgcatgac ctcatccaca cagatcggtc cctcaccctg 540 gtgtttgagt acctggacag tgacctgaag cagtatctgg accactgtgg gaacctcatg 600 agcatgcaca acgtcaaggt gaggcctcgg gggcagggtc cccccatctt ggcagccacc 660 tgtccagaag cccagtgtgg ggacccactc tcaccaccag ggatccggct gctgaggtgg 720 780 ctcaaacctt cccacgtagg aaagagggag agggcaatgc catcaacgag tccaggaact gggttgagcg ctttacccca agaacagaca cacactgtct gccactgtct agctgttggt 840 ataaaaccca ctctcaactc tgaacatcag tttcccagtc tgtcaaatgg gagtgtgagc 900 tacctgccaa aatgcaggga ggcttctggg gaagctcggg gttatgaatg acctctcctg 960 gtgtttgtta aagaatcaag actgggcatg gtggcccacg cctgtaatcc cagcactggg 1020 aggecaagge aggaagatgg ettgagecea ggagtttgag accageetgg geaacatgge 1080 aagacctcat ctctactaaa aattgaaaaa ttagccgggc acagtagcgt gcacccatag 1140 teccagetge ttgagagget gaggeaggag ggeeacttga geeegggagg ttgaggetge 1200 agtgagccat gatcacacca ctgcactcca gcatgggtga cagagtaaaa ccctgacatg 1260 . tattgcgggc gctctagagg ataacaagca tac 1293

<210> 151 <211> 349 <212> DNA <213> Homo sapiens

<400> 151
ggcacgageg gcacgagect tetectactg cattageatt tggggaccac cetattgtac 60
aaccaaagea attateettt aaaattatte aggtaaatga taattaaaat gttttttet 120
atggetteta agaaaccatt gactaactta etaacaacta agatgtetgt ttgttttata 180
tgtagteata aageagaatt acacateaag aaagataact tactaaacaa aaacaacaga 240
atttgtagga aggagtgaga aactgaaaca cacaatttae tateagettt ttaaacaace 300
gttaacatgt cagttetgtt tactgattet ttetgaactt aatttecag 349

<210> 152 <211> 324 <212> DNA <213> Homo sapiens

<400> 152
ggcacgagga ccttccttgc tttcagaatt tcacccaggg tctgacaggc ctcaagaaag 60
gagaactagt tatgaaccga ttcatccagg cccatcccca gtggatcatg attcactgga 120
atcgaagcga ccacgtctgg aacaggcttc tgattctcat tatcagggtc acatcactgg 180
cgaatcccta ccaggacgtg tacactagca gctcctcact gtggaatctg atgggcaatg 240

ccatggtgat tacccactat atccgtctta ccccatatgt tcaaagtaaa ctcggttccc 300 tagggaacct gatgccatgt tacc 324

<210> 153 <211> 377 <212> DNA <213> Homo sapiens

<210> 154 <211> 1224 <212> DNA

<213> Homo sapiens

<400> 154 ggtttttttt ttttttttt tgggaaagge attggccact ttggacttta ttagcaacag taatqtcccc tgacatacqc acaagcttqt agctccacgg ccaggtcttc ccccaacctc 120 acaatggccc cgtgatgcag gcaqgcaggc gagtgggggt ctcccctcct tatccacagg 180 gecacegaaa ggeccaegag aeggeettge eegaggteac eeageggagt ggettgetgg 240 gagecetggg aataacagte ceacacaagg eteteteeet eegeagetgg acetgtaege 300 gggggctctg tttgtgcaca tctgcctggg ctggaacttc tacctctcca ccatcctcac 360 gctcggcatc acagccctgt acaccatcgc aggtatggtg cctgcagcag ggaggtccac 420 ccaggggacg tgtaaagggg tcagaaggcc acctcccct acaggcccga gggagcagcc 480 540 caggaagtgg ccccagcagg agccccagaa gttcctcccc gtgtccctcc tccctggggc cagggccccc tccagcaacc ttgcttccac tggcaggggg cctggctgct gtaatctaca 600 cggacgccct gcagacgctc atcatggtgg tgggggctgt catcctgaca atcaaaggtg 660 720 aggacagagt ctgtggccat ggcggggctg tccccacagc gagccctttg gagtctggca 780 ctgcccggca ctgtgcagga ttcatgccgt tggggttctg ggtagcatcg ctgggagtgg 840 gtgggttcag gaggttgagc cactaggcag tcagccccc tgctggcccc tcagggactg ccctggctgg tagaggctac ccaccctgct gccccgctgt taccagctct ggccctggca 900 aggagetgae teaggaacte agggeeagee acaccegeat tggeteageg ettgatggtg 960 aggtggggct gtaggcggt gtgaaggcac acaaccagga ggccataaaa ctgcctgggc 1020 agetecteca attgtttaaa ageatgtaca aaatgecaag aggtgatget aceteetgea 1080 ggacaaaggc cagggaggaa agaagagac tgggagagat tggcgatact agtctggaac 1140 agataggaaa ctcacagggc tgcccggaga gagcgtgagc tcaccgtccc tggaagtatg 1200 taagcagagc caggagctcg tgcc 1224

```
<210> 155
     <211> 345
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc_feature
     <222> (1)...(345)
     \langle 223 \rangle n = a,t,c or g
     <400> 155
ggcacgagcg gcacgagatc tgaagaggta tattgcttac agaaagagcg ggagatggta
                                                                   60
aatcacagtc ttcaagagac ttctgagcaa aacgttattc tacagcatac tcttcagcaa
                                                                  120
cagcagcaaa tgttacaaca agagacaatt agaaatggag agctagaaga tactcaaact
                                                                  180
aaacttgaaa aacaggtgtc aaaactggaa caagaacttc aaaaacaaag ggaaagttca
                                                                  240
gctgaaaagt tgagaaaaat ggaggagaaa tgtgaatcag ctgcacatga agcagatttg
                                                                  300
aaaaggcaaa aagtgattga gcttactggc actgccaggc aagtn
                                                                  345
    <210> 156
    <211> 340
    <212> DNA
    <213> Homo sapiens
    <400> 156
ggcacgagct tctacttgta caggaaaggt tacttgagtt tgtccaaagt ggtgccgttt
                                                                  60
teteactatg etgggaeatt getgetaett etggeaegtg tggeetgeet eetaggeatt
                                                                  120
180:
tacctgacgt cataactcta tatgcatgtt atgcggtcca tcttagtctt ctaaaaaggc
                                                                  240
cattttagct tacctgccat caagctatac atgtggaaat atacactgta ttattttccc
                                                                  300
tttccaggtg attacttacc tcatctgttc ttatatctgc
                                                                  340
    <210> 157
    <211> 478
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1)...(478)
    <223> n = a,t,c or g
```

<400> 157
gagactccaa gccccagttt cacctcagag gcagagatga ggggtccccc ggtcctgctc 60

```
etccaggccg ccccaatgga gtgtcctgtt ccgcagggga tcccggccgg gtccagtcct 120 gagcctgcac ctgaccccc ggggcctcat ttcctccggc aggagcgcag cttcgagtgc 180 cgcatgtgcg gcaaggcctt caagcgctcg tccacgctgt ccacccacct gctcatccac 240 tcagacacgc ggccctacac ctgccagttc tgcggcaagc gtttccacca gaagtccgac 300 atgaagaagc acacctacat ccacacaggt gagaagccgc acaagtgcca ggtgtgcgga 360 aaggccttca gccagagctc caacctcatc acccacagac tcagagagaa cccaccatgg tgctgtctcc tgccgacaag accaacgtca aggccgcctg gngtaagggt cgcgcgca 478
```

<210> 158 <211> 332 <212> DNA <213> Homo sapiens

<400> 158
ggcacgagca gctcaccaac aacacagcca ctgcccctc tgccacgccc gtgtttgggc 60
aagtggcagc cagcaccgca ccaagtctgt ttgggcagca gactggtatc acagccagca 120
cagcagttgc cactccacag gtaatcagct caaggttcat taatctagat ttttagtata 180
tagtattatt gaatatatat aatgtttat aatattagact ttatacttga gacataggaa 240
ataatttatg tataactgtt aattaaattt tatatttgct agattagaa attctattaa 300
tttattaatg aattatatct aattagtga ca 332

<210> 159 <211> 868 <212> DNA <213> Homo sapiens

<400> 159 cccacgcgtc cggaataaag agagaactct gttactattg tttttacatc accaaataat 60 tatttaatat cgttagctaa gagaagaatt ggctatgaac tgtactttaa caactgacac 120 aactgcatac aagttataaa gtttaataat ctttatcatc ttggaaaata aatctcttct 180 tgctaagtat cagtttttaa aaattgcccc atgtattaga tatgtatttt tttaacaaaa 240 atgttctgtg tattaattat tttgaaataa attttaagtt cacaaaaagc cattacaaga 300 agtggaaata gcagcaatta cacatggtgc tcttcaggga ttagcctact tacattctca 360 tactatgatt catagagata tcaaagcagg aaatatcctt ctgacagaac caggccaggt 420 gaaacttgct gactttggct ctgcttccat ggcatcacct gccaattcct ttgtgggaac 480 gccgtattgg atggccccag aagtaatttt agccatggat gaaggacaat atgatggcaa 540 agtagatgtg tggtctcttg gaataacatg tattgaacta gcggaaagga agcctccttt 600 atttaatatg aatgcaatga gtgccttata tcacatagcc caaaatgaat cccctacact 660 acagtctaat gaatggtgag tattgttaat atatatattg ctcagtgttg aataaatgaa 720 atgctttttc ataatctgtt atcaaagtga tttaatttca gttaggtaaa atgtatcacc 780 ttataagata ttaaaataga tgtattttac ccttttaaat atatttattc tttatcatgt 840 ttccatttca tggcatacgt ataactgg 868

```
<211> 1404
<212> DNA
<213> Homo sapiens
```

<400> 160 gegecaegeg eggeetggeg geggeggeea etetaaceag egcaaaatgt eeetggaaca 60 ggaggaggaa acgcaacctg ggcggctcct aggacgcaga gacgccgtcc ccgccttcat 120 tgagcccaac gtgcgcttct ggatcaccga gcgccaatcc tttattcgac gatttcttca 180 atggacagaa ttattagatc ctacaaatgt gttcatttca gttgaaagta tagaaaactc 240 gaggcaacta ttgtgcacaa atgaagatgt ttccagccct gcctcggcgg accaaaggat 300 acaggaagct tggaagcgga gtcttgcaac agtgcatccc gacagcagca acctgatccc 360 caagettttt cgacetgeag cgtteetgee ttteatggeg ceeaeggtat ttttgteaat 420 gacgccactg aaagggatca agtccgtgat tttacctcag gttttcctct gtgcctacat 480 ggcagcgttc aacagcatca atggaaacag aagttacact tgtaagccac tagaaagatc 540 attactaatg gegggageeg ttgettette aactttetta ggagtaatee etcagtttgt 600 ccagatgaag tatggcctga ctggcccttg gattaaaaga ctcttacctg tgatcttcct 660 cgtgcaagcc agtggaatga atgtctacat gtcccgaagt cttgaatcca ttaaggggat 720 tgcggtcatg gacaaggaag gcaatgtcct gggtcattcc agaattgctg ggacaaaggc 780 tgttagagaa acgctagcat ccagaatagt gctgtttggg acctcagctc tgattcctga 840 agtetteace tacttttta aaaggaceca gtattteagg aaaaacecaq qqteattqtq 900 gattttgaaa ctgtcttgta ctgtcctggc aatgggactg atggtgccat tttcttttaq 960 tatatttcca cagattggac agatacagta ctgtagtctt gaagagaaaa ttcaqtctcc 1020 aacagaagaa acagaaatct tttatcacag aggggtgtag gccgtgagtt ttaggtgaat 1080 ttatgtggtt ccctgcttga aaaccttccc cctctcccag gttcggttta gagaactttg 1140 cccacaggtc ttctggggac cccagaggtg tctgtgctga caaggcgact tcagattcca 1200 tactgagatc gttcccaggc tggcgtctct ggggttttta aggctggctg gagaagacag 1260 tgggaagggt gccccgtctg acacccctgg ggttgctgag ggaacggttg gagtggggat 1320 cggcctgcga aaggatactg tgaaatcact aattaactaa taaacctqtc tcaaqttqaq 1380 gatttgaaga aaaaaaaaaa aaag 1404

```
<210> 161
<211> 562
<212> DNA
<213> Homo sapiens
```

```
<400> 161
cccacgcgtc cgggagattg gaagtcttct ataacgggac ctggggagc gtcggcagga
                                                                      60
ggaacatcac cacagccata gcaggcattg tgtgcaggca gctgggctgt ggggagaatg
                                                                     120
gagttgtcag cctcgccct ttatctaaga caggctctgg tttcatgtgg gtggatgaca
                                                                     180
ttcagtgtcc taaaacgcat atctccatat ggcagtgcct gtctgcccca tgggagcgaa
                                                                     240
gaatctccag cccagcagaa gagacctgga tcacatgtga agatagaata agagtgcgtg
                                                                     300
gaggagacac cgagtgctct gggagagtgg agatctggca cgcaggctcc tggggcacag
                                                                     360
tgtgtgatga ctcctgggac ctggccgagg cggaagtggt gtgtcagcag ctgggctgtg
                                                                     420
getetgetet ggetgeeetg agggaegett egtttggeea gggaaetgga accatetggt
                                                                     480
tggatgacat gcggtgcaaa ggaaatgagt catttctatg ggactgtcac gccaaaccct
                                                                     540
ggggacagag tgactgtgga ca
                                                                     562
```

<210> 162

```
<211> 1812
<212> DNA
<213> Homo sapiens
```

<400> 162 geettgettg gaggeaaage gteeteeact etgteeteag gaeteagetg tgtggeettg 60 gatttetttt tgegggaett gegeeetttg ggtgeeaacg gteeaggate eeeetggaac 120 cagatggtac ggccatgccg gtcctgcagg gagctcatgc ctggcatgcc ataqcaqcqc 180 agecaggete gaaaggeage aaagteetee teeeegetet etgaceegta geceetgeee 240 cccaactgga ccacttcctt gggcactgag tgacatagct ccagcaggtc tqqattctqc 300 agettggtcc ttatcttctg gctcagggtc agetccgggc tcggcctgtg ctgctgcagg 360 gcctccagga ccgagcgggc cttctcaaag ggggggatct tcagccqgta caqgatctct 420 gcccgcagat agttgccaat gccattgaag aacctctggt ccaggagggc ctcgcagatg 480 ggccggtcaa aggccttatc cgctaggttt cgtagcacat tctccctgaa ctgctggtac 540 teetgeaaga cacagggeee geggeeegge tgecaettte ceceaaggte ecageggeeg 600 aaccggcgga tgtccacgaa acatagggcg agccgggggc caggcggggc cgtgtaaaag 660 cgcaggtggg catggcgtgg cagctcctcg cggggcacca gctgaaaaga gccggacatg 720 cegaagegga agaccaggge cagtggetee tgttgggget gggeeceagg cagagggete 780 agtateagge geageteett geegeggget gaagetgaga tgeggtagge actgetetea 840 aagggcacet cagggttgeg getgacagag gactteteca egeageegee gaacaceage 900 gccctgcagg cctcattcac aaactggctg gccaggtgca gctcggggcc ctcaggcatc 960 ctgagggagg gtggcagagt cctggctggg aggtggcgga agaacctgac ttcccactgc 1020 ctggcgccgg cgagatgcgg gggcaggtct gaggccccgg gtcgccgctg tctctgcggt 1080 tgggggaagt cacccagcta gcgtgggaca gggtcggcac ccccagcagg aaacagcagc 1140 gacgagccag agcggagtcg cctgcagctg cgcgcaggac gtgcacaggt gcgcggtacg 1200 cacaggccct agggacccgg tggggatctt aagcaccaac gaacagtcag acctaactca 1260 taaacaaaca tcatcacggc ctgccctgtc agaagcgcag ccaagcaaca acaacaacaa 1320 aaaaaggcga ggaggtagac ccacttgaga tggttctgtt gcggagagtc tctgaaatca 1380 gaaagcgcca gtccgcaaaa acgaggaaac ccgacgtgtc cggcggaagg aaccgccagt 1440 acaaaggccc tgaggcgaga aaqaqattgg tcactqaaaq aactcaaaqa aqtcctqtqt 1500 ggctggagta tagctgcggg ttagtgctgq caqqtqaaqa caqaqaaqca aacccaqqtc 1560 aggtccggtt gggcctcggg agggcctccg tgtggagtct gcacttcatt ctaagtgtat 1620 acctaaccca tegecaegat tteceeteet teacaetaee etgetaegte teettattag 1680 gcgtaataaa attatgtggc tttgtaagaa attggttttt aqaqatgcat gttaaaqtat 1740 tgggtatgaa atgtcatgat ttgtctaatt tactttaaaa tacttctgcc ataataaatg 1800 aatagaatta ac 1812

```
<210> 163
<211> 333
<212> DNA
<213> Homo sapiens
```

```
<400> 163
agctgacgtg gtctgcctgt tattggagag atatattaag aatccagttg tggattgcag 60
ctgatattct tttgcgaatg cttgaaaaag cacttcttta tagtgaacac cagaacatca 120
gcaacactgg actgtcatcc caaggcttat tgatatttgc ggagttgatt cctgccatta 180
agaggacgtt ggctcgcctt ctcgtgatca ttgcgagcct ggactatggc attgagaaac 240
ctcatttagg aacaggcatg caccgtgtga tcggactgat gctctatac ttaatctttg 300
caaatgctga aagcgtgatt agagtcattg ggg
333
```

<210> 164 <211> 134 <212> DNA <213> Homo sapiens

<400> 164
ttttttttt gagatggagt ctcgctctgc tgcccaggct ggagtgcagt ggtgcaatct tggctcactg caagctctgc ctcccaggtt cacgccattc tcctgcctca gcctcccgag 120
tagctgggac taca 134

<210> 165 <211> 839 <212> DNA <213> Homo sapiens

<400> 165 cetgageceg gegageagga gaggaggtet teegggeege ggeeteegag egegegggat 60 ttgcagaact taatatgaat gtgaagaact tgcaaagaaa cttgaaaaca gccaaaggga 120 tggcatatca agaaataaat tggccttggc agaattgtat gaagatgaag tgaagtgcaa 180 atcttccaag tctaatagac ctaaagccac agtcttcaag agcccacgga caccacctca 240 acggttttac tcaagtgaac atgaatacag tggattaaat atagttcgac cttcaactgg 300 gaaaattgtg aatgaacttt tcaaagaggc aagggaacat ggggctgtcc ctctgaatga 360 agccacaaga gcttcaggtg atgataaatc taagtcattt acaggtggag gatacagatt 420 gggtagttct ttttgtaagc ggtctgaata tatctatgga gaaaatcagc tgcaagatgt 480 tragattttg cttaaactgt ggagcaatgg tttcagttta gatgatggag aattgagacc 540 ttacaatgaa ccaacaaatg ctcaatttct ggagtctgtt aagagagggg tgactctcat 600 tgcatgtatg cctgaaattc agcaacttat gttagaaatc ttttaatgtg gcattactgc 660 tggcagaaga tttcaaaagg ttagtttgaa gttataattt gtgaaagtaa actcagatat 720 tragtgetet cacceatrea aagaarattg taacttarea getettettg ctaaaggatg 780 aggaatcaag tgattttgct atgataataa aagcttttct gtgttatgat taaaaaaaa 839

<210> 166 <211> 1256 <212> DNA <213> Homo sapiens

tga	acccggag	cgcgatcact	tccgcaagat	ctgtgaggaa	tatatcacgg	gcaagtttga	360
CCC	cccaggac	atggacaaga	acttgaatgc	catccagaca	gtgtcaggga	tcctgcaggg	420
CCC	cctttgac	ctgggcaacc	agctgctggg	actgaaaggt	gtgatggaga	tgatggtggc	480
act	tatgtggc	tcagagcgcg	agacggacca	gctggtggcc	gtggaggccc	tcatccatgc	540
cto	ccacgaag	ctcagccgcg	ccaccttcat	catcaccaat	ggagtgtcac	tgctcaaaca	600
gat	tctacaag	accaccaaaa	atgagaagat	caagatccgc	acactggtgg	gactctgtaa	660
gct	teggetet	gcaggtggca	cagactacgg	tctcaggcag	tttgcggaag	ggtcgacaga	720
aaa	aactggcc	aaacagtgtc	gcaagtggct	gtgcaatatg	tccatagaca	ctcggacccg	780
				cacgctggac			840
tgt	tccaggac	gtccctgccc	tgcaggccat	gtttgagctg	gccaagacca	gtgacaagac	900
cat	tcctgtac	tcggtggcca	ccaccctggt	gaactgcacc	aacagctacg	atgtcaagga	960
ggt	ccatccca	gagcttgtcc	agctcgccaa	gttctccaag	cagcatgtgc	ccgaggaaca	1020
ccc	ccaaggac	aagaaggact	ttatagacat	gcgggtgaag	cggcttctga	aggcgggtgt	1080
cat	tctctgcc	ctggcttgca	tggtgaaagc	agatagtgcc	atcctcactg	accagaccaa	1140
gga	agctgctg	gccagggtat	tcctggcact	gtgtgacaac	ccaaaggacc	gaggcaccat	1200
tgt	tggctcaa	ggtggtggca	aggccctgat	tcccctggct	ttggagggca	cagatg	1256

<210> 167 <211> 892 <212> DNA

<213> Homo sapiens

<400>	167					
atgtggacag	cgtgggtggc	ggcagcgagt	ctcggtccct	ggactcaccc	acttccagcc	60
caggcgctgg	cacgaggcag	ctggtgaagg	cttcgtccac	aggcactgag	tcctcagatg	120
actttgagga	gcgagaccct	gacctgggag	acgggctgga	gaatgggctg	ggcagcccct	180
tcgggaagtg	gacactgtcc	agcgcggctc	agacccacca	gctgcggcga	ctgcggggcc	240
cagccaagtg	ccgcgagtgc	gaagccttca	tggtcagcgg	gacggagtgt	gaggagtgct	300
ttctgacctg	ccacaagcgc	tgcctggaga	ctctcctgat	cctctgtgga	cacaggcggc	360
tcccagcccg	gacacccctt	tttggggttg	acttcctgca	gctacccagg	gacttcccgg	420
aggaggtacc	ctttgtggtc	acgaagtgca	cggctgagat	agaacaccgt	gccctggatg	480
tgcagggcat	ttaccgggtc	agcgggtccc	gggtccgtgt	ggagcggctg	tgccaggctt	540
tcgagaatgg	ccgagcgttg	gtggagctgt	cggggaactc	gcctcatgac	gtctcgagtg	600
tcctcaagcg	atttcttcag	gagctcaccg	agcccgtgat	ccccttccac	ctctacgacg	660
ccttcatctc	tctggctaag	accttgcatg	cagaccctgg	ggacgaccct	gggaccccca	720
gccccagccc	tgaggttatc	cgctcgctga	agaccctctt	ggtacagctg	cctgactcta	780
actacaacac	cctgcggcac	ctggtggccc	atctgttcag	ggtggctgca	cgatttatgg	840
aaaacaagat	gtctgccaac	aacctgggca	ttgtgtttgg	gccgacactg	ct	892

<210> 168 <211> 394 <212> DNA <213> Homo sapiens

<400> 168

ggactccatg tcatctctct gcacagcgct gatggtcgtc actgggagga tcccctttct 60
gagcttgaca gtgaacgtgt gtctgcattt cttgtcactg agaccctggt gttctatttg 120
ttctgtctcc ttgcagatga aaccgtcgtg ccaccagatg ttccaagcta cctcttct 180

caggggaccc tttctgaccg acaagaaacc gtggtcagga ccgagggtgg ccctcaggcc 240
aatgggcaca ttgagagcaa tggtaaggcc tcagtaaccg tgaagcagag ctctgctgtg 300
actgtgtctc tgggtgctgg aggtggcctc caggtcttta cagggcaggt acctggcatt 360
agatggggca aacttggtga agcccacgcg tccg 394

<210> 169 <211> 550 <212> DNA <213> Homo sapiens

<400> 169 ctgtgacacc tccgggcagc ccggcacttg ttgctcccac gacctqttqt cattccctta acceggettt eccegtggee eccegeetee teceggette geteetttte atgtgageat 120 ctgggacact gatctctcag accccgctgc tcgggctgga gaatagatgg ttttgtgaaa 180 aattaaacac cgccctgaag aggagccccg ctgggcagcg gcaggagcgc agagtgctgg 240 cccaggtgct gcagaggtgg cgcctccccg gcccgggacg gtagccccgg gcgccaacgg 300 catgacagac tcggcgacag ctaacgggga cgacagggac cccgagatcg agctctttgt 360 gaaggetgga ategatggag aaageategg caactgteet tteteteage geetetteat 420 gatectetgg etgaaaggag tegtgtteaa tgteaceaet gtggatetga aaagaaagee 480 agetgacetg egeaacetag eeceeggaac geaceegeec tttetggeet teaactggta 540 cgtgaagaca 550

<210> 170 <211> 422 <212> DNA <213> Homo sapiens

<400> 170 cttggattca gtgatggaca ggaagccagg cctgaagaaa ttggctggtt aaatggctat 60 aatgaaacca caggggaaag gggggacttt ccgggaactt acgtagaata tattggaagg 120 aaaaaaatct cgcctcccac accaaagccc cggccacctc ggcctcttcc tgttgcacca 180 ggttcttcga aaactgaagc agatgttgaa caacaagtgc tctacaagta tagaaagaag 240 ccticctctt cccaccgtcc ccagacacca cataatggaa aaagcaaqaa ttttctqcat 300 aagcaaggcc ttaaaaaaaa aaaagccagc ctctgatggg acttttttcc tqccaaaaat 360 cccactggtc cactgtcgca atttttacaa aaggccacga taaaagagta aggcccattt 420 tg 422

<210> 171 <211> 1042 <212> DNA <213> Homo sapiens

```
<400> 171
cggacgcgtg gggtcatgga gctggcactg cggcgctctc ccgtcccgcg gtggttgctq
                                                                      60
ctgctgccgc tgctgctggg cctgaacgca ggagctgtca ttgactggcc cacagaggag
                                                                      120
ggcaaggaag tatgggatta tgtgacggtc cgcaaggatg cctacatgtt ctggtggctc
                                                                      180
tattatgcca ccaactcctg caagaacttc tcagaactgc ccctqqtcat qtqqcttcaq
                                                                      240
ggcggtccag gcggttctag cactggattt ggaaactttg aggaaattgg gccccttqac
                                                                      300
agtgatetea aaccaeggaa aaccaectgg etceaggetg ecagteteet atttgtggat
                                                                      360
aatcccgtgg gcactgggtt cagttatgtg aatggtagtg gtgcctatgc caaggacctg
                                                                      420
getatggtgg etteagaeat gatgggtete etgaagaeet tetteagttg ecacaaagaa
                                                                      480
ttccagacag ttccattcta cattttctca gagtcctatg gaggaaaaat ggcagctggc
                                                                      540
attggtctag agctttataa ggccattcag cgagggacca tcaagtgcaa ctttgcgggg
                                                                      600
gttgccttgg gtgattcctg gatctccctt gttgattcgg tgctctcctq qqqaccttac
                                                                      660
ctgtacagca tgtctcttct cgaagacaaa ggtctggcag aggtgtctaa ggttgcagag
                                                                      720
caagtactga atgccgtaaa taaggggctc tacagagagg ccacagagct gtgggggaaa
                                                                      780
gcagaaatga tcattgaaca ggtaaaaagg ggaaacactc agaggcgagc ctgcttggct
                                                                      840
ttttctggtg ggtacagggc ccatggttgg tgttgtcaaa cttggagtct acactgaggc
                                                                      900
tccccacata tctgcaaatg attgcatgct ggataataaa tctcttgggt ctaagcagtg
                                                                      960
atgtagtggc tccttacaga gtcagaaagc cacccaggcc tgcaagactt gcttgtcctt
                                                                     1020
cactaaatgt aaaaattcta tt
                                                                     1042
```

<210> 172 <211> 890 <212> DNA <213> Homo sapiens

<400> 172 aaagtagtag gttggtgcaa acgtagtaat aaattggttt ggccctgttt tcatagaact atagaggttg gacctttgtc cccttccaga tgcctacaaa caaactgatg tttttgattt 120 ttttttcttt ttaaattttg gttgccacta attcttataa aaatcctcac acaaggctgg 180 gctcagtggc tcacacctgt aatcccagca ctttgggagg ctgaggcagg cggatcacga 240 ggtcaggaga tcgagaccat cctggctaac acggtgaaac ccccgtctct actaaaaata 300 caaaaaaatt agccgggcgt ggtggcgggc gcctgtagtc ccagctactc gggaggctga 360 ggcaggagaa tggcgtgaac ccgggaggca gagcttgcag tgagccgaga tagcgccact 420 480 ctgtaatccc agcactttgg gaggccgagg caggcggatc acgaggtcag gagatcgaga 540 ccatcctggc taacacggtg aaaccccgtc tctactaaaa atacaaaaaa ttagctgggc 600 gtggtggcgg gcacctgtag tcccagctac ctgggaggct gaggcaggag aatggcgtga 660 acccaggagg cggagcttgc agtgagcgga gatcatgcca ctgcacttca gcctgggcga 720 780 atagaaaaat aataatagtt ttaagcacct ctaaagtaca gatattgtgc caagcaattt 840 atgtgaattg attagattga taactctaaa aatagtttcc ctaatcaact 890

<210> 173 <211> 1922 <212> DNA

<213> Homo sapiens

<400> 173 tttctttctt catccaaaat agtagagatg tctttcccac gatgacctgt gatggtggag 60 atatetttte eteggeeaac teeteeteea teggettett tgatgteate tteaataget 120 tcatcaattg cttcatcaaa ctcatcaaat ctgtaqctta tacatttcct tqttcttqtt 180 gacctccttt caaagcaagt ttgctttgga tttttttgaa tcttttttct tttcttcttg 240 atcttcagaa aagtctggct ctttgtggag gaatgatgtt ttcaatactg gataccaaca 300 tacaccaage gttcttttcc ttcgttccgg caacgctctt tccttcttta aggcaacatc 360 ccaaatcctg gaaactggtc ctctaatttt tccaacaaga gcaagtttaa tgttgggcaa 420 aaggtggggc aagaacccat cctcccatct ggggatggat catcagagga ggggcgaaag 480 gcagggcagt atggtatcca ctatcgcaag agtcacacag aagaattagc tcaggatggt 540 ttggaaggcc acattttttg catggttcat catcatctgc taggatggct tcttcacttt 600 cettttette etectettet gaagetgeag atgatttte actgecagae cetteaettt 660 catcattgct ggaatatttc catctgccac gtgtccgaga accaqtccat cqaactttqc 720 ctttgggttt taccttgctt actttagaat ttgtatcttt ctctqatttt ttcaaaattt 780 cetttttgte agttttttge aaagetgttg actettette caceteatet teteetteee 840 ctcttttttt atcagctttc tgatctctga tctcagccac ttttgcagtg ggtctagata 900 ttcttggaga tcttcttaaa gtacgaccca catttgtttt ctcctcttcc ttttctgtct 960 tetettgett gttttetggt tetagaactt tggggggaga ategggette ttttteegae 1020 ttgatatect gattgttaat ttgatgeeet ettetgeet tteagaggtt atetetgtat 1080 tttctgaggc agtggtttct tcttcaggaa ccaacttata tttgaatttg cttttttgca 1140 tagaaccctt tgtctcagaa ggctcctcta tgccagaggt ctgggcattg tccagattat 1200 ccatttctac ctttgtgaac tcagaatcct cttttagggt ttctaggtct actttttca 1260 cagactggcc accaacagta cttgtactct ggcattctac cacttctttt tctgaggcta 1320 gtttctcaca gtggtcaatg atattagatg gtggagaagt ttcagctgcc tcaggagagc 1380 caggetttte tgaetetaga gtaetetttg gaacttette tggtattgga eteaatettt 1440 gtgcgtcctt atcaagaaaa gtctttttgg acttctctaa cttttcaaga cattctagga 1500 ttggtgggcg cttatccttc ttagttttgg gagacttctc ttcacctttc atggtacacg 1560 actcggtgga agataaagca gtttttgaag agagatcttt tgccatctca gaagaatcaa 1620 gagaagtttc catttctgga ggatcgggtt cctctatttg tgctttttga ctatggatct 1680 ctaagactga tattgaacta tctgcatctt tcctcaaagg ggctgtttct ttctcaagct 1740 cacctgtttt catacttggt tatgacagaa tttaaggact ctgttccatt tccctccgtg 1800 atgatatttc tgtccttagg ggggctatag ctctcttcct ttgtctcata aaactttgtc 1860 totacttggt totgtottaa aatttggago taccotttca toactaactt otcoatttac 1920 1922

```
<210> 174
<211> 537
<212> DNA
<213> Homo sapiens
```

<400> 174

```
aaaagcggcg cggctcgttc aagatggcgg agctcgacca gttgcctgac gagagctctt
                                                                      60
cagcaaaagc ccttgtcagt ttaaaagaag gaagcttatc taacacgtgg aatgaaaagt
                                                                     120
acagttettt acagaaaaca eetgtttgga aaggeaggaa tacaagetet getgtggaaa
                                                                     180
tgcctttcag aaattcaaaa cgaagtcgac ttttttctga tgaagatgat aggcaaataa
                                                                     240
atacaaggtc acctaaaaga aaccagaggg ttgcaatggt tccacagaaa tttacagcaa
                                                                     300
caatgtcaac accagataag aaagcttcac agaagattgg ttttcgatta cgtaatctgc
                                                                     360
tcaagcttcc taaagcacat aaatggtgta tatacgagtg gttctattca aatatagata
                                                                     420
aaccactttt tgaaggtgat aatgactttt gtgtatgtct aaaggaatct tttcctaatt
                                                                     480
tgaaaacaag aaagttaaca agagtagaat ggggaaaaat tcggcggctt atgggaa
                                                                     537
```

```
<210> 175
<211> 659
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(659)
<223> n = a,t,c or g
```

<400> 175 tetetetttg ecagtaatgt tggaagtgga eattteattg geetggeagg gteaggtget 60 gctacgggca tttctgtatc agcttatgaa cttaatggct tgttttctgt gctgatgttg 120 180 eggaageget teggtggeat cagaateece atcateetgg etgtacteta cetatttate 240 tacatettea ceaagatete ggtagaeatg tatgegggtg ceatetteat ceageagtet 300 ttgcacctgg atctgtacct ggccatagtt gggctactgg ccatcactgc tgtatacacg 360 gttgetggtg geetggetge tgtgatetae aeggatgeee tgeagaeget gateatgett 420 ataggagege teacettgat gggetaeagt ttegeegegg ttggtgggat ggaaggaetg 480 aaggagaagt acttcttggc cctggctagc aaccggagtg agaacagcag ctgcgggctg 540 ccccgggaag atgcctttca tatttttcga gatccgctga catctgatct cccgtggccq 600 ggggtcctat ttggaatgtc catcccatcc ctctggtact ggngcacgga tcaggtgaa 659

```
<211> 1033
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1033)
<223> n = a,t,c or q
```

<210> 176

```
<400> 176
cccacgcgtc cggatgtgtg ctcacacttg ggggacctga ttggggcttc agaccttggg
                                                                       60
ggcctgtccg cagggtctcc tccatccttc ttgatttgcc tgtcattgag gctgcccgct
                                                                      120
etgggegeea tteeceagee taacacetet teteagtett teettgeagg teeetggagt
                                                                      180
ccaggccttg gggcagtgaa gaaaccgtgg ggaggggcat gagatgccag tccccaaagt
                                                                      240
cettgggage cettgtggge caagtcattg taggacacae ceteteetgg geattgetga
                                                                      300
ggtcacccag tgagcctagg ctccccctc ctcccatccc cagcctgggg gaaccttcag
                                                                      360
cgtctctcct ccctgtaggc cccggctcag cttcccagga acttttgttg gtgggtacta
                                                                      420
gtagggtaag gcagttette ceateatgag ggagaeettg ggagaettte attaccaaat
                                                                      480
ccattgctgc cccgaccttc ctgggactga tctgggtcac cctggtctcc tgatcttgga
                                                                      540
gaagtcaagt tettateeca gaettgagag gttacaagee tecaggtete tggcaaagtg
                                                                      600
tggagatgat ggacagccat ttgtacacac accagccagt cccttagcat atctctcttg
                                                                     660
gttttgtctc aggtctgcct cagccacctc cctgacgctg tcccactgtg tggatgtggt
                                                                      720
gaaggggctt ctggatttta agaagaggag aggtcactca attgggggag cccctgagca
                                                                      780
gcgataccag atcatccctg tgtgtgtggc tgcccgactt cctacccggg ctcaggatgt
                                                                      840
                                                                      900
getgeageet cetggeeact ggaggggetg accgeetgat ceacetetgg aatgttgtgg
gaagtcgcct ggaggccaac cagaccctgg agggagctgg tggcagcatc accagtgtgg
                                                                     960
actttgaccc ctcgggctac caggttttag cagcaactta caaccaggtt gcccagtttt
                                                                    1020
ggaaggtngg gga
                                                                    1033
```

<210> 177 <211> 335 <212> DNA <213> Homo sapiens

<400> 177
gtcaaaaacg atttcctagc aactgtggcc gtgatggaaa actgtttctt tggggacaag 60
cacttcatat catcgcaaaa ctcctgggta agtggagaag attgggaatg gtatttttt 120
ccttgttatt aagctattag aaataaatat gcctttgctg gcacataata gtactttggt 180
acaacaggat atcctatgga gtttaaaaat aagtatttaa aatataacaa atctgtatta 240
gtccattctc atgctactaa taaagatata cccaagactg ggtaatttat aaaggaagga 300
gttttaatgg cctcacagtt ccgtcgacgc gggcg
335

<210> 178
<211> 556
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (556)
<223> n = a,t,c or g

<400> 178 gttcacgtct gcagcagtaa gatgggagct ttgtccacgg agcggctaca gtactacact 60 caggaactgg gggtccggga gcgcagtggc cacagcgtgt ccctcatcga cctctggggc 120 ctccttgttg agtatetect gtaccaggag gagaaccetg ccaagetgte tgaccaacag 180 gaggeggtcc gccagggtca gaacccttac cccatttaca ccagtgtcaa cgtccgcacc 240 aacttgagtg gggaagattt tgcagagtgg tgcgagttca cgccctatga ggttggcttc 300 cccaagtacg gggcttatgt tcccaccgag ctcttcggct cagaactctt catgggacga 360 ttgctgcagc tccagcctga accceggatc tgttacctgc aaggtatgtg gggcagcgcc 420 480 tttgccacca gcctggatga gatcttccta aagaccgccg gctcgggcct cagcttcctg gagtggtaca gaggcagtgt gaatatcaca gacgactgcc agaagcctca gctgcacaac 540 556 ncctcgacgc gggaat

<210> 179 <211> 631 <212> DNA <213> Homo sapiens

<400> 179 gaatttctgg gtcgtcccac gcgtcccgca aaggatgagg gaaacgatga gggaaaggat 60 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 120 gagagaaagg atgagggaaa ggatgaggga aaggatgaga gaaaggatga gggaaaggat 180 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 240 gagggaaagg atgagggaaa cgatgaggga aaggatgagg gaaaggatga gggaaaggat 300 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaacgatga gggaaacgat 360 gagggaaacg atgagggaaa ggatgaggga aaggatgaga gaaacgatga gggaaaggat 420 gagggaaagg atgagggaaa ggatgaggga aaggatgaga gaaacgatga gggaaaggat 480 gagagaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 540 gagggaaagg atgagggaaa cgatgaggga aaggatgaga gaaaggatga gggaaaggat 600 gagggaaagg atgagggaaa ggataagtaa g 631

<210> 180 <211> 469 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(469) <223> n = a,t,c or q

<400> 180 ggcggggctc ntttgagacc tgatgaccat cattacgccc agcttggcac gagggggagg 60 acttcagcta cggcctgcag ccctactgcg ggtactcctt ccaggttgtg ggggagatga 120 teeggaaceg ggaggtgetg cettgeeceg atgactgtee egeetgggeg tatgeetea 180 tgatcgaggg ctggaacgag ttccccagcc ggagggcccg ctttaaggac atccacagcc 240 ggctccgagc ctggggcaac ctttccaact acaacagctc ggagcagacc tcggggggca 300 gaaacaccac gcagaccagc tccctgagca ccagcccact gtgcaatgtg agcaacgccc 360 cctacgtggg gcccaagcag aaggtcccgc cctttccaca gacccaggtc atccccatga 420 agggccagat cagacccatg gtgcccccgc cgcagctata cgtccccgg 469

<210> 181 <211> 453 <212> DNA <213> Homo sapiens

<400> 181 caggaattcc gggcgccacc cacgcgttcg atggatcctg gaagagcgca agcgggtgat 60 gcaggaggcc tgcgccaagt accgggcgag cagcagccgc cgggccgtca cgcccgcca 120 cgtgtcccgt atcttcgtgg aggaccgcca ccgcgtgctc tactgcgagg tgcccaaggc 180 cggctgctcc aattggaage gggtgctcat ggtgctggcc ggcctggcct cgtccactgc 240 cgacatccag cacaacaccg tccactatgg cagcgctctc aagcgcctgg acaccttcga 300 ccgccagggt atcttgcacc gtctcagcac ctacaccaag atgctctttg tccgcgagcc 360 cttcgagagg ctggtgtccg ccttccgcga caagtttgag caccccaaca gctactatca 420 cccggtcttc tgcatggcca tactggcccg gta 453

<210> 182 <211> 377 <212> DNA <213> Homo sapiens

<400> 182
cataatgtat agtattctc ctgccaactc tgaggaaggc caggaacttt atgtctgcac 60
agtcaaggat gatgtgaact tggatacagt acttctccta ccctttttga aagaaatagc 120
agtaagccaa ctggatcaac tgagcccaga ggaacagttg ctggtcaagt gtgctgcaat 180
cattggtcac tccttccata tagatttgct gcagcacctc ctgcctggct gggataaaaa 240
taagctactt caggtcttga gagctcttgt ggatatacat gtgctctgct ggtctgacaa 300
gagccaagag cttcctgctg agcccatatt aatgccttcc tctatcgaca tcattgatgg 360
aaccaaagag aagaaga

<210> 183 <211> 621 <212> DNA <213> Homo sapiens

<400> 183 ctcatcctta aagtgacaga gtaaattaac tctaaggccc catccaggac tcaagctgtg 60 tgattttaca aaaatgaaaa ttatattaat aatcccattg taaaatccca aaaqaaagtc 120 aagagactag cagaaagaca ggtgggtgat gggatgtcct ggacagagcc tggatcatga 180 ggtccccatg tagtgcttgt actacgcaga tgtttcctct tgagctattt taaaggtgtg 240 gaaaaagcca aagcaatgcc ctctccacgg atactaaaga ctcacctttc cactcagctg 300 ctgccaccgt ctttctggga aaacaactgc aaggtaagat accaacagct ccctgtgaca 360 gaagggaaag taagccaacc aaagcgagtc ctgcagaccc caacgcagag cattcgtgat 420 cacctttgcc tctccactgt ctctgatgct taccagcaaa gagaaaacat aaagttctac 480 attcagcagg acattcacct gaacagtttc aaataggaca tgaaggcagg atccagattg 540 aatgtttgga gggaactaga gacatgggga ggcagtgagt gcagtaagcg tagctgtgaa 600 atgaaggga gaagatggtg g 621

<210> 184 <211> 415 <212> DNA <213> Homo sapiens

<400> 184
accgggacga cccacgcgtc cgggaattta attctattat atatgcagac tttctaaaga

agataaagct tttttatggg agaaacgtta ttattgcttc aaacacccaa attgtcttcc 120 taaaatatta gcaagcgccc caaactggaa atgggttaat cttgccaaaa cttactcatt 180 gcttcaccag tggcctgcat tgtacccact aattgcattg gaacttcttg attcaaagta 240 agtcaaatac atttattgc tcttgtttta ttgtcagttt ttccagtaag gtatgttgcc 300 agaagtattt cctttccttt taacatgaaa gcaattcaat ataatccaaa tgtgtaaatg 360 tatatttata caaacatatc ttctgcattg aagttgtcaa taaagcattg catgt 415

<210> 185 <211> 359 <212> DNA

<213> Homo sapiens

<400> 185
 ggaaaatgat gatttgaggt ttatttgaaa tacaacaatg tccaatagga aaacactgca 60
 actttcttca ggtgttgaga aatccaatag agacctctgc ttgtctcctc ctttggcaag 120
 agctccaagg ggagagagag gatgggcac cacgatgaat actacaggct gcggggaagg 180
 ataaaccctag tccagaccat tcctacaaaa gaaatgggga atccgaaagg aaaaggaaga 240
 aatctcacta gcacatgtca aagagccagg agaggcacaa ttcaccaagc agaggaagaa 300
 atagtgaccg cagcggggc cggtgcagcc gcagtgataa cggtcggagc cgttacagg 359

<210> 186 <211> 1616 <212> DNA <213> Homo sapiens

<400> 186 ggaggttgcg gcggcggctg cggcgcagcc cggggcggcg ggtgggaaga ggactaccag 60 aggggcctgc gggagaccca gggtcggacc cataggagtc ctgtcgtcag gacctccttg 120 atcggtette tgettgggtt etcggtgaag gaggagette ggggtgtegg etgggetgeg 180 cggactcctc ttgggatccg atgatggatc ccacccggtg atcgggaatg gggttacaat 240 gcagtgaggc ggaaaggctc tcgccggggc acagaaagat ccccagggcc gcaaggcgtg 300 ctgtcgcctg caaaggcact gacccacgag cccactgcct ccctccttcc tgggtggagc 360 aggggcctgc cttcatctcc aaggcccggg ggctccggca tctcgacgcg gcttccggcg 420 acacgggcaa agagagacag aggctagtcc gagccggagc cagtgtgacc acacgtggca 480 ctgacgtccc ccaagagcac atgcagtgag cctgtgtctc tgaggccgta gtgggcgacg 540 acgagacgga cagtgatgtc caggcctgcg cccgggggcc actggagacc tgcccctcaa 600 ageggaggaa aegecaaget cacetgaaaa cetgegagae agggeetgtg cacgagteca 660 gtactcctac ttcgccaagt ctcagggacc catccccgag caacggtggc ggcgcagaga 720 agagcacggc gccggcgcag gtgcagagag acaggaggct gatgggggga agttgaggca 780 cctggggcag agaaaaaaat gcattgccaa gaggtttctg ggtcatctac tgacgaaaat 840 gtcttcccat cagcccttgc gctggtcccc agggaccctg gcatccgtcg ttggcgccca 900 gggtgcgcgt cgggccacta ggggtacccc aactcggaca gaaggcccat gagttgaatt 960 tgaagtttgt gggaatagag gtgaggcacc aggggcagaa aaaaaacagg agacctcgcc 1020 tcagacaagc ggggcctggg tcccccatgg atgaaagtgc cttcccatta tgctgtaccc 1080 tgggcagagt ggacagtgac gaccctggtt cgagcccagg gtgcgcttcg ggaccgcttg 1140 cggttaccag aaagcgaaca aatggtccat gagcggaagg tgaggcacct gaggcagaga 1200 aagtaaagaa acgcgccgcc gagaagcagt gcctgggtcc ctcacggagg aaattgtctt 1260 ctccttagcc cgttcgcttg gcagtgaggt ccctggcgtc.cctggtttga tcccagggta 1320

```
cgcctcgggc cactagtgtt accccaaggt gggcagaaag cccataaggg gaaggcgagg 1380 cacctggggc agagaaaaa aaaaacttcg ccgcaaagaa gcgcggcctg attccccacg 1440 gacgaaagtg tcttcccatc agtccctgca ctgggacccg gggaccctgg tgtccctggt 1500 tcgagctcag ggtgtgcctc agccgctacg tgcaccccaa ggggagcttt gggagcccaa 1560 aagccaataa gggaaagtaa tttttaaggc ccccagtggt gaggccctg tcacaq 1616
```

<210> 187 <211> 916 <212> DNA <213> Homo sapiens

<400> 187 ttttgataag aggcaacatg aagcaagaat ccagcaaatg gagaatgaaa ttcactattt 60 gcaagaaaat ctaaaaagta tggaggaaat ccaaggcctt acagatctcc aacttcagga 120 agetgatgaa gagaaggaga gaattetgge ccaacteega gagttagaga aaaagaagaa 180 acttgaagat gccaaatctc aggagcaagt ttttggttta gataaagaac tgaagaaact 240 aaagaaagcc gtggccacct ctgataagct agccacagct gagctcacca ttgccaaaga 300 ccagctgaag tcccttcatg gaactgttat gaaaattaac caggagcgag cagaggagtt 360 gcaggaagca gagaggttca gcagaaaggc agcacaagca gccagagatc tcacccgagc 420 agaagctgag atcgaactcc tgcagaatct cctcaggcag aagggggagc agtttcgact 480 tgagatggag aaaacaggtg taggtactgg agcaaactca caggtcctag aaattgagaa 540 actgaatgag acaatggaac gacaaaggac agagattgca aggctgcaga atgtactata .600 cctcactgga agtgacaaca aaggaggctt tgaaaatgtt ttagaagaaa ttgctgaact 660 tegacgtgaa ggttettate agaatgatta cataagcage atggcagate ettteaaaag 720 acgaggetat tggtacttta tgccaccacc accatcatca aaagtttcca qccataqttc 780 ccaggccacc aaggactctg gtgttggcct taagtactca gcctcaactc ctgttaqaaa 840 accacgccct gggcagcagg atgggaagga aggcagtcaa cctcccctg cctcaggata 900 ctgggtttat tctccc 916

<210> 188 <211> 1080 <212> DNA <213> Homo sapiens

<400> 188 cetetactge agetteatea teagattett etttetgtte ttggggtget tettetteet 60 ccatgggctc ctcaacagtt tcagtcttgc tgctccatac ataaatagga aagtttatga 120 actgtgaata ttttttgacg agatttttaa ttgtatccaa ttcaaggtaa tcagatgctt 180 cttcttttaa gacaagggta attgtcgttc cccgtcctag agtgtttcct cttgggtcag 240 caattacaga aaattcattg gagtcagact cccagattgg ccagtttggt gtcggtttct 300 attocgcott cottgtagca gataaggtta ttqtcacttc aaaacacaac aacqataccc 360 agcacatotg ggagtotgac tocaatqaat tttotqtaat tqotqaccca aqaqqaaaca 420 ctctaggacg gggaacgaca attacccttq tcttaaaaga agaagcatct gattaccttq 480 aattggatac aattaaaaat ctcgtcaaaa aatattcaca gttcataaac tttcctattt 540 atgtatggag cagcaagact gaaactgttg aggagcccat ggaggaagaa gaagcagcca 600 aagaagagaa agaagaatct gatgatgaag ctgcagtaga ggaagaagaa gaagaaaaga 660 aaccaaagac taaaaaagtt gaaaaaactg tctgggactg ggaacttatg aatgatatca 720 aaccaatatg gcagagacca tcaaaagaag tagaagaaga tgaatacaaa gctttctaca 780

aatcatttte aaaggaaagt gatgacccca tggettatat teaetttaet getgaagggg 840
aagttaeett caaateaatt ttatttgtae eeacatetge teeaegtggt etgtttgaeg 900
aatatggate taaaaagage gattaeatta agetetatgt gegeegtgta tteateacag 960
aegaetteea tgatatgatg eetaaataee teaattttgt eaagggtgtg gtggaeteag 1020
atgateteee ettgaatgtt teeegegaga etetteagea acataaactg ettaaggtga 1080

<210> 189 <211> 1344 <212> DNA <213> Homo sapiens

<400> 189 tttttttttt ttgctgctgg gtcgggtttt atttcaaatg cagccacaga ggcggtttct 60 geacaggtac gtgatecgac tecacaaget eccaceaggg getececatg accegeaatg 120 acgetgtgtg gggtcaaagg aaaacaggee acagecagge ceetegatgg acgeaggeag 180 gggaccagga atgcggccca cgcaggggga tcgggaatca ggcggaaggt gcaggtttgc 240 agctggcggg aggagccagc atgccccaat ctctaaaata ttcccggtag aaaaaatagac 300 atttecetee aaageagatt eetggggetg gagggteeet eeaaggeeag gggteegggt 360 420 gattccagag catccacgct ctgcgctgaa ggcactgaac ctgccatcac tgtcacagcc 480 gtcaccggcc aaggagggtc tggaggaggg aaggggccct tgcgaggctc tggtgctggt qatcccqqcc cccaccaccq qaqqaqctga aagcccttqc tcaqccqctg ccctgctggt 540 qaacccgqcc cccaccgccg gaggagctgc accctgtgtg gtctgaggca gccctgcact 600 qqqcagcqgc cccqccccgc gctgaaccca ctaggagagc agctgcagca cctgtcggat 660 gegetgggee etecceggea gggggggate agagecetee teatceaget ecegcateag 720 780 ggetteegee ttetgeaceg teageteteg ggeeeggeee tgeageeeet eeaggtagge cagcagggtg gagaagtgct catcgggaac cttgtcactg tcatacatgt gcagcaggag 840 900 ccaegtetge etegtettet gaaaceteca gttettgtge ttttgggeec atetgeagag gtagtccagg gccagttcgg cccccgagcg cctggcaggc gggtgctggg ccacaaggcc 960 tgcctcccgc agacgctgcc tctcctcttt cttccgttcc tttttcagct tcctttccag 1020 gaccetetge teetetgggg acagetetgg etetgegtee agecegggee tgageacage 1080 ttegeeettg gageeggete ettegeeact tggtgeagee teagggeeea geagtggeee 1140 ctctgctgac gccttcttca gctttttgtt ctttttctct gtcacttcag gaacttttct 1200 cttctgtttt gccatcctgc gcccacctgc gcccacgtcg cccacctaag cgtgaacagc 1260 tgegtegegg aegeegeett eeggeaggga eeegggaeg egtgggtega eeeggeaaaa 1320 cgggtccaac ctagggcgtc gagg 1344

<210> 190 <211> 550 <212> DNA <213> Homo sapiens

<400> 190
 cccggaccca cgcccccc gcgcaccgc tctcccccac accgcttat tcgggtcgag 60
 accccgggcc ccccggcgcc gcctgctgat gagcggatct ccggacccc cgccagcagc 120
 gataggctag ctatcctaga agactatgcg gacccgtttg atgttcagga gactggcgaa 180
 ggctcagcag gagcttcagg agccccagag aaggtccctg aaaatgatgg ctacatggag 240
 ccctatgagg ctcaaaagat gatggcgag atccggggct ccaaggagac agcaactcag 300
 cccttgcctc tgtatgacac accctatgag ccagaggagg atggggcac cccggaaggt 360

gagggggcc cetggcccg ggagtcccg ctgccagagg atgatgagag gcccctgag 420 gagtatgacc agccctggga gtggaagaag gagcggattt ccaaagcctt tgcagttgac 480 attaaggtca tcaaagacct accttggcct ccacctgtgg gacagctgga cagcagccc 540 tccctgcctg

<210> 191 <211> 562 <212> DNA <213> Homo sapiens

<400> 191 caatttttt ctctttctt aaggtatcag atacacaccg gacttcaaca ttctatcata 60 agacctaccc aacccaactg tttacctctg gacaatgcca ccctacctca gaaactgaag 120 gaggttggat attcaacgca tatggtcgga aaatggcact tgggttttta cagaaaagaa 180 tgcatgccca ccagaagagg atttgatacc ttttttggtt cccttttggg aagtggggat 240 tactatacac actacaaatg tgacagtcct gggatgtgtg gctatgactt gtatgaaaac 300 gacaatgctg cctgggacta tgacaatggc atatactcca cacagatgta cactcagaga 360 gtacagcaaa tettagette eeataaceee acaaageeta tattttata tattgeetat 420 caagetgtte atteaceact geaageteet ggeaggtatt tegaacacta cegatecatt 480 atcaacataa acaggaggag atatgctgcc atgctttcct gcttagatga agcaatcaac 540 aacgtgacat tggctctaaa aq 562

<210> 192 <211> 2171 <212> DNA <213> Homo sapiens

<400> 192

cacgcgtccg gaaaggaaga ggcggtgaga ggctgcaaag ccccttgcgt gttccgcaga 60 aaccagaaag accteceett ceacceaage eteagtteet aaacteaggg geatateete 120 aaaaacctct tagaaatcag ggagtggtga ggacactgtc cagctctgcc caagaggaca 180 teateeggtg gtttaaagag gageagetae caettegage qgqetaccaq aaaaceteaq 240 acaccatage eccetggtte catggaatte teacacteaa gaaageaaat gaacttette 300 tgagcacagg catgcccggc agttttctca tccgagtcag tgaaaggatc aaaggctatg 360 ccctgtccta tctgtcggag gacggctgta aacatttcct catcgatgcc tctgcagacg 420 cctacagett cctgggcgtg gaccagetac agcatgccac cttggcggat ttggtggaat 480 atcacaagga ggaacccatc acttccctgg ggaaggagct ccttctctat ccctgtggtc 540 agcaggacca gctgcctgac tacctggagc tgtttgagtg acagcctcca tcagggtcat 600 cctacagect ccaageggge tttcccctgg acaaatgeca ctgcaacatt tatgtgtgaa 660 gccaaaatca ccctgcagca gagccaatac tgatcaactg aaagtatcca tggagtcctc 720 attgacacct cttttctgca caaatactgg aattcaatgt caagagaaaa tgacctctgc 780 tcaaaaggga gaagagtctc aatttcagca agtacctgtc atgaagggta tgaccttaat 840 gatgtacata aaataaaaca aatgaagaaa tggaaaactt ttagaaatta aggtgtactt 900 gaaaacgagt atctatcata tgacccctgc actccctctg tatcatctca ggaggtttca 960 ggggcctgtt gacatgaagt ttcgaagttt catgttggct ttggaatggt agcaaaagcc 1020 tttcctggct gagatgatgc ttaaaacaca cctcacttat tgtacatgtt ggaaccagga 1080 catgagagac atagaaaaac agaagtcatg aatgtaaatt gaatgagagg cttaacatgc 1140 atgaaaatac agatggacct gcaggaaagt gagcaaacat cgctgagttt gttttcttgt 1200

tcgggagaat ggggccgggg ctggcctggc ctcccctgga tatactctat agtgcaccaa 1260 aaggataaag catctgtaca tgtatttttt tattttttat cagaagtgct tagacaagaa 1320 cagaataagc aggctgtttg gatgctactt gtggttgaat tgtgttcccc caaaatatat 1380 ggtgaagtet taacccccat ccccgtgaat gggaccttgt ttggaaatag ggtctttgca 1440 gatatagtca agatgaggtc acattggatt agggtgggcc ccaaatccaa tgactggcat 1500 ccttaggaga agagaggtt ttggtaatag acacaaatgc agtgggaaga agaccagggg 1560 1620 ccagcagaag ccagcagaga ggcatgggac aggttcccca caagccttag aaggaagcat 1680 ggccctgact tcagaattcc agactccaga actggaagaa taaatgtctg ttgttttaag 1740 ctgcttagtt catgctgagt tcatgctgac ttgttactat agccccagaa agctaataca 1800 gtcgtttatg taattacata acctgacaca caagatcgac ccattcactg ctgcccagtc 1860 caccattttc ataatgaagt agaaatggga ggtaagaaaa acattccagc cagttctgtt 1920 tagecetggg acacatattt gteeegteag gaatettatg eeeteetgga acceeegeee 1980 acctcagtcc agtcccagtc aggcgaacgg cctctggaca gggactgagg tggctttgag 2040 ccactggaga tcatttttct tggaggatgg agattggcta gtacctctgg cctaactgtg 2100 taggtcaata ctcttttaca ttgccttcta ataaaagcag aatgatacag cagtgttgtt 2160 aaaaaaaaa a 2171

<210> 193 <211> 2095 <212> DNA <213> Homo sapiens

<400> 193 ggggaagtet ggagaaggea ttgtttcaat tattaaaagt gtgggggcag tgggeggaac . 60 aaacgcgccg actacagagg ctggacgtaa gcttatcggt ggcgcgcgtg cgcagcgccg 120 gcccgagttg ccaaaacaaa ggggatttgg tgatggaggc tttgttagaa ggaatacaaa 180 atcgagggca tggtggggga tttttgacat cttgtgaagc agaactacag gagctcatga 240 aacagattga cataatggtg gctcataaaa aatctgaatg ggaaggacgt acacatgctc 300 tagaaacttg cttgaaaatc cgtgaacagg aacttaagag tcttaggagt cagttggatg 360 tgacacataa ggaggttgga atgttgcatc agcaggtaga agaacatgaa aaaatcaagc 420 aagagatgac catggaatat aagcaggagt tgaagaaact acatgaagaa ttatgcatac 480 tgaagagaag ctatgaaaag cttcagaaaa agcaaatgag ggaattcaga ggaaatacca 540 aaaatcacag ggaagatcgg tctgaaattg agaggttaac tgcaaaaata gaggaattcc 600 gtcagaaatc gctggactgg gagaagcaac gcttgattta tcagcaacag gtatcttcac 660 tggaggcaca aaggaaggct ctggctgaac aatcagagat aattcaggct cagcttgtca 720 atcggaaaca gaaattagag tctgtggaac tttctagcca atcagaaatt caacacttaa 780 gcagtaaact ggagcgggct aatgacacta tctgtgccaa tgagttggaa atagagcgcc 840 tcaccatgag ggtcaatgac ttggttggaa ccagtatgac tgtcctacag gagcagcagc 900 aaaaagaaga aaaattgagg gaatctgaaa aactattaga ggctctgcag gaagaaaaga 960 gagaattgaa ggcagctctt cagtctcaag aaaatctcat acatgaggcc agaatacaaa 1020 aggagaagtt acaagaaaaa gtaaaggcaa ctaacactca acatgctgta gaagctataa 1080 gtttggaatc tgtgagtgca acgtgtaaac agctgagcca agaactaatg gaaaaatatg 1140 aagaactgaa gaggatggaa gcacataaca atgaatacaa agcagagatt aagaagttga 1200 aagaacagat tttacagggt gaacaaagtt acagttctgc actagaagga atgaagatgg 1260 aaatctccca tctaactcag gagttacatc agcgagatat cactattgct tccaccaaag 1320 gttcttcctc agacatggaa aagcgactca gagcagagat gcaaaaggca gaagacaaag 1380 cagtagagca taaggagatt ttggatcagc tggagtcact caaattagaa aatcgtcatc 1440 tttctgaaat ggtgatgaaa ttggaattgg gtttacatga gtgttccttg cctgtatctc 1500 cccttggttc aatagctacc agatttttgg aagaggagga actgaggtct catcacattc 1560 tagagcgctt ggatgcccat attgaagaac taaaaagaga gagtgaaaag acagtgagac 1620 aattcacagc cttaaagtag cctcttaaaa aaatcacaat cttggaaata aaaataaaca 1680 ccaaagagtt actgtcatct gaagtagcag ctctttaaaa acatgaagag ataaaattat 1740 aaaaatgata catctaaagc agtggtgaag aaagctgaaa aactgatact tttgataggc 1800 attttctctg cactggtttt tttaaaggac ttcttccagc aataagttga aagaataaac 1860 cactttgcta gacttttttc tcatacgaat atttattatc ataaagtgat acttaccttg 1920

ctgacttaaa tgtgaatagc tatgtactaa ttgaaataag gattttatga tacatgttga 1980 aaataaagta actgcaggaa ctttctttag gggaaatgtg tagaagcatg gatttagggg 2040 tcaaacatac ctggatcgat agactggttt tgccacttac cagccaacgg ggctt 2095

<210> 194 <211> 1051 <212> DNA <213> Homo sapiens

<400> 194 gagaccttgt cttaaaaaaa taaaatgctg tcagaataaa aagcagtcaa cagaaatgaa 60 accettataa gagacaaata aatgtgggca attattttet gcaaaatgee etecaaqeee 120 ctgggcgcca ttgccttctg taataggaca tcacctgaac aggctttctg ggctggagcc 180 aaggaccete cetgacteec acetecettt etgeettgta eeceageeag gtggaagaga 240 ccggagtggt gctgtccctg gagcaaacgg agcaacactc tcgcagaccc attcagcggg 300 gegeeecte teagaaggae acceetaace etggggaeag cettgaeace cetggeecee 360 ggatecttge ettectgeae eegectteee tgagegagge tgeeetggee getgaeeeee 420 geogtttetg cagecetgae etcegtegee teetgggaee cateetggat ggggetteag 480 tagcagccac teccagcace eegetggeea caeggeacee ecaaagteet ettteggetg 540 atctcccaga tgaactacct gtgggcaccg agaatgtgca cagactcttc acctccggga 600 aagacactga ggcagtggag acagatttag atatagctca ggatgctgat gctctggatt 660 tggagatgct ggccccctac atctccatgg atgatgactt ccagctcaac gccagcgagc 720 agetacccag ggcctaccac agacctctgg gggctgtccc ccggccccgt gctcggagct 780 tocatggcct gtcacctcca gcccttgagc cctccctgct accccgctgg gggagtgacc 840 cccggctgag ctgctccagc ccttccagag gggacccctc agcatcctct cccatggctg 900 gggctcggaa gaggaccctg gcccagagct caaaggacga ggacgaggga gtggagctgc 960 tgggagtgag acctcccaaa aggtccccca gcccagaaca cgaaaacttt ctgctctttc 1020 ctctcagcct gagtttcctt ctgacaggag g 1051

<210> 195 <211> 423 <212> DNA <213> Homo sapiens

<400> 195 gtgaactcca agactgtttt gatgttcatg atgcatcttg ggaagagcag atattctggg 60 gatggcataa tgatgtccac atatttgaca caaagacaca gacttggttt caaccagaaa 120 ttaaaggtgg agttccacca cagccacgag ccgcgcatac gtgtgcagtt cttggaaata 180 agggttatat ctttggcgga cgtgttctgc aaactaggat gaatgatttg cactatctaa 240 acctagacac ctggacttgg tctggaagga ttactattaa tggagaaagc ccaaaacatc 300 ggtcatggca tactttaaca cctatagctg atgataaact tttcctatgt ggtggactaa 360 atgcatataa tatgccatta agtgatggtt ggattcataa tgtcacaaca cattgttgga 420 423

<210> 196 <211> 411 <212> DNA <213> Homo sapiens

<400> 196

tttttttttt ttgaggacaa ggtctcactc tgtcacccca aggtgggagt gcagtgacga 60
catcacagct cactggcagc ctcaaccctg gggttcaagt gatcctctca ccttcagcct 120
ccccaagtag ttgtgcctcc taggcacaca acactatgcc ccggcaaatt tttttgtatt 180
ttgtattttt tgtagaaaca ggatttcgcc atgttggcca ggctggtctc gaacaccctg 240
ggctcaactg atccgcctgc ctcggcctcc caaagtgctg ggattacagg tgtgagccac 300
cctgctcaac caggttttat tatttaagtt agttaaactt tggatagatt gtataatata 360
tagtttaatg taatcatgct catattttt aaataaataa aacactatac t 411

<210> 197 <211> 751 <212> DNA <213> Homo sapiens

<400> 197 cccacgggaa gggcaggtga agcaggggct gctgggggat tgctggttcc tgtgtgcctg 60 egeegegetg cagaagagea ggeaceteet ggaceaggte attecteegg gacageegag 120 ctgggccgac caggagtacc ggggctcctt cacctgtcgc atttggcagt ttggacgctg 180 ggtggaggtg accacagatg accgcctgcc gtgccttgca gggagactct gtttctcccg 240 ctgccagagg gaggatgtgt tctggctccc cttactggaa aaggtctacg ccaaggtcca 300 tgggtcctac gagcacetgt gggccgggca ggtggcggat gccctggtgg acctgaccgg 360 cggcctggca gaaagatgga acctgaaggg cgtagcagga agcggaggcc agcaggacag 420 gccaggccgc tgggagcaca ggacttgtcg gcagctgctc cacctgaagg accagtgtct 480 gatcagetge tgegtgetea geceeagage aggtgaggea egtggeeage atgggaggge 540 tgcagccagc gtgcccccca ctgccaggcc tcaggcacac tgtagctttt tatgtgactg 600 gctacacagc cctgtcagga ctaagtggga agaagtaagc ttgttctcaa gggtggtgtc 660 ctcagtttgt gaccttcccc tgctgtcctc ttccagaggg acgtggccct tctctcccct 720 gaccagtcct ttccactagt gcgaggcagg g 751

<210> 198 <211> 636 <212> DNA <213> Homo sapiens

<400> 198

gggccgagtg tctggaggcc tctattgccc gatatgccca ccgtgtcgcc aatagccgtt 60
atacctttga cggtgaaacc gtgacgcttt cgccaagtca gggcgttaac cagctgcacg 120
gcgggccgga agggttcgac aaacgtcgct ggcagattgt gaaccagaac gatcgtcagg 180
tgctgtttgc cctgagttca gatgatggtg atcagggctt cccgggtaat ctcggcgcga 240

```
eggtgcaata tegtetgace gacgataace gtatetecat tacttatege gecacagttg
                                                                      300
ataaaccttg cccggtgaat atgactaatc acgtctattt caatcttgac ggcgagcagt
                                                                     360
ctgacgtgcg caatcacaag ttgcagattc tggcggacga atatctgccg gttgatgaag
                                                                     420
geggeattee geacgaegge etgaaatetg tegeeggaac gtettttgat tteegeageg
                                                                      480
ccaaaatcat cgccagtgag tttcttgccg acgacgatca gcgcaaagtg aaaggttacg
                                                                      540
atcacgcatt cttgttacag gccaaaggcg atggcaagaa agtggcggcg catgtctggt
                                                                      600
cagcagatga aaaattgcag ctgaaggtct acacca
                                                                     636
```

<210> 199 <211> 690 <212> DNA <213> Homo sapiens

<400> 199 aaagtggcag tgtttcttct gaaattctca ggcaqtcaqa ctqtcttaqq caaatcttqa 60 taaaatagcc cttatccagg tttttatcta aggaatccca agaagactqq qqaatqqaqa 120 gacagtcaag ggttatgtca gaaaaggatg agtatcaqtt tcaacatcaq gqaqcqqtgq 180 agotgottgt ottoaatttt ttgotoatoo ttaccatttt gacaatctgg ttatttaaaa 240 atcatcgatt ccgcttcttg catgaaactg gaggagcaat ggtgtatgac aaqccqccga 300 aatttgccat gtcacgagag caaatgtcac agtcatgttc tcacacggca cataatgcaa 360 gtctgttgac agatgcgggt ccattgtcat gtggggagtc gagggcgagc tgtttgtttt 420 tgtaacgatg ttgggaagtg atggctctgc agtcacaaag agcagccttc tctcactggc 480 tgcaccgatg aacattacga agttctagaa caaacatcac ttcaaaatgc ctggagtaat 540 toctottata toaactaatt toaagaagaa aacetgoaga aactaaccco accoototoa 600 acgagaatat tgtgtccacg tcctctttac ttatacgacc cgtctcttat tctcttataa 660 cacaacgtca taactaaacg agcacaacac 690

<210> 200 <211> 433 <212> DNA

<213> Homo sapiens

<400> 200 gtgactccaa ggaaccaaga ctgcagcagc tgggcctcct ggaggaggaa cagctgagag 60 gccttggatt ccgacagact cgaggataca agagcttagc agggtgtctt ggccatggtc 120 ecctggtget geaactecte teetteaege tettggetgg geteettgte eaagtgteea 180 aggtccccag ctccataagt caggaacaat ccaggcaaga cgcgatctac cagaacctga 240 cccagcttaa agctgcagtg ggtgagctct cagagaaatc caagctgcag gagatctacc 300 aggagetgae ceagetgaag getgeagtgg gtgagettee agagaaatet aagetgeagg 360 agatetacca ggagetgace tggetgaagg etgeagtggg tgagetteca gagaaateta 420 agatgcagga gag 433

<210> 201 <211> 782

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(782)
<223> n = a,t,c or q
```

<400> 201 gaagaagggg aaaagaggct ccaggcccct tctccaatca ctccctgcca ccctttctcc tttggattcc ttggctgctt tagcaggtct tcctagaggc taactttgat ctttcttqct 120 gcagtttctt tttgggagag ctagtcagtc ccacagagtg gtatccctag aagggagaag 180 taaggattgc cctcttcttt aaaatgaaag ccagctattt ttcacgccct ttaactgcag 240 gtctgctcta ttttcttttc tctctctgga gctgagagtc agagggccct tctcctcctc 300 ctttcagccc ccaacactaa gctgatggat tgataaatac ctcagcccct cgcctttctc 360 aacceacctg gcaagtette ttaggatetg atcccagttt tetggaagea atcctaccee 420 ageceattet teccagagte gageettaat cetteteact tetcagtgte agageagaaa 480 tgaatcctgg ggttgactgt gtccattcgg gttattagca gctaagaagc ccagacgagt 540 agtgtgagct gccttgggag cctcagtgag ggcactggga ctggcctcac tctcttgccc 600 ccagcctagt gggctttctc ctctgtctct ccggtggccc caggcaatcg actgcatcac 660 gcanggacgt gagttggagc ggccacgtgc ctgcccacca gaggtctacg ccatcatgcc 720 gggctgctgg gcagcggagc cccagcaacg ccacagcatc aaggatgtgc acgcccgctg 780 ca 782

```
<210> 202
<211> 714
<212> DNA
<213> Homo sapiens
```

```
<400> 202
ttcgagaccc tatccatgag gggaattcct cacatgctgg ctttggggcc acagcagctg
                                                                      60,
ctggcccagg atgaggaggg ggacacgctc cttcacctgt ttgcggctcg ggggctgcgc
                                                                     120
tgggcggcat atgctgcggc tgaggtgctc caggtgtacc ggcgtcttga cattcgtgag
                                                                     180
cataagggca agacccctct cctggtggcg gctgctgcca accagcccct gattgtggag
                                                                     240
gatctgttga acctgggagc agagcccaat gccgctgacc atcagggacg ttcggtcttg
                                                                     300
cacgtggccg ctacctacgg gctcccagga gttctcttgg ctgtgcttaa ctctggggtc
                                                                     360
caggttgacc tggaagccag agacttcgag ggcctcaccc cgctccacac ggccatcctg
                                                                     420
gecettaacg ttgctatgeg cectteegae etetgteece gggtgetgag cacacaggee
                                                                     480
cgagacaggc tggattgtgt ccacatgttg ctgcaaatgg gtgctaatca caccatccag
                                                                     540
gtgagcgggg atgtgggcgg tcagaccctg ggagattgtg tggaatgggg ccacttggat
                                                                     600
gtccgggagc tccaggcaaa tgctgacttt gcctcttcct tgctgcgtgc ccttgaacat
                                                                     660
gttacttcac ttctctgtgc cttaagggtt ttttgcttgt ttctttgtca qtta
                                                                     714
```

<210> 203 <211> 477 <212> DNA <213> Homo sapiens

<400> 203 eggacgegtg ggeggacgeg tgggtgggga ccaagatgge ggacettgat tegeeteega 60 agetgtcagg ggtgcagcag ccgtctgagg gggtgggagg tggccgctgc tccgaaatct 120 ccgctgagct cattcgctcc ctgacagagc tgcaggagct ggaggctgta tacgaacggc 180 tctgcggcga ggagaaagtg gtggagagag agctggatgc tcttttggaa cagcaaaaca 240 ccattgaaag taagatggtc actetccacc gaatgggtcc taatctgcag ctgattgagg 300 gagatgcaaa gcagctggct ggaatgatca cctttacctg caacctggct gagaatgtgt 360 ccagcaaagt tcgtcagctt gacctggcca agaaccgcct ctatcaggcc attcagagag 420 ctgatgacat cttggacctg aagttctgca tggatggagt tcagactgct ttgagga 477

<210> 204 <211> 706 <212> DNA

<213> Homo sapiens

```
<400> 204
geggtggaat teegggttee eegttetggt teggeatate tetacageta tgteaetgtg
                                                                       60
ggtgaactct gggccttcac cactggctgg aacctcatcc tctcctatgt cattggtaca
                                                                      120
gccagtgtgg cccgggcctg gagctctgct tttgacaacc tgattgggaa ccacatctct
                                                                      180
aagactctgc aggggtccat tgcactgcac gtgccccatg tccttgcaga atatccagat
                                                                      240
ttetttgett tgggeetegt gttgetgete actggattgt tggetetegg ggetagtgag
                                                                      300
teggeeetgg ttaccaaagt gttcacagge gtgaacettt tggttcttgg gttegtcatg
                                                                      360
atctctggct togttaaggg ggacgtgcac aactggaagc tcacagaaga ggactacgaa
                                                                      420
ttggccatgg ctgaactcaa tgacacctat agcttgggtc ctctgggctc tggaggattt
                                                                      480
gtgcctttcg gcttcgaggg aattctccgt ggagcagcga cctgtttcta tgcatttgtt
                                                                      540
ggtttcgact gtattgctac cactggagaa gaagcccaga atccccagcg ttccatcccg
                                                                      600
atgggcattg ggateteact gtetgtetge tttttggegg attttgetgt etettetgea
                                                                      660
ctcaccctga tgatgcctta ctaccagctt cagcctgaga gccctg
                                                                      706
```

<210> 205 <211> 852 <212> DNA <213> Homo sapiens

<400> 205 ggettecate etaataegae teaetatagg getegagegg eegeeeggge aggtgetggg 60 tcgtttgtgg gcgaagtaag tgctgtagat aaagactttg ggccaaatgg agaagtaagg 120 tattettttg aaatggtgea geeagatttt gagttgeatg ecateagtgg ggaaattaca 180 240 aatactcatc agtttgacag ggagtctctt atgaggcgga gagggactgc tgtgtttagc 300 tttacagtca tagcaacaga tcaggggatc cctcagcctc tcaaggatca ggccactgta catgittaca tgaaggatat aaatgataat gctcccaaat ttttaaaaga cttttaccaa 360 gctacaatat cagaatcagc agccaatctg acacaagtgt taagagtatc tgcctcagat 420 gttgatgaag gtaataatgg acttattcac tattctataa taaaaggaaa tgaagaaaga 480. cagtttgcta tagacagtac ctctggtcag gtaacactaa ttggcaaatt agactatgaa 540

gcaacacctg cctattccct tgtaattcaa gcagtggatt cagggacaat ccccctcaat tcaacgtgta ctttaaatat tgatatttta gatgaaaatg acaatacccc tttctttccc taaatcaaca cttctttgtt gatgttttgg aaaacatgag aattggtgaa ctcggggcct ctggtactgc aactgattcc cgattcaggt gacattgctg atttatatta caagtttact gggactaaac accccccgg aacttttagc attagccca aacacttggg agtatttttc ttggcccaaa aa 852

<210> 206 <211> 361 <212> DNA

<213> Homo sapiens

<400> 206
ctggtgattg ctatgacctg tatggagggg agaagtttgc cactttggct gagttggtcc 60
agtattacat ggaacatcat gggcaattaa aagagaagaa tggagatgtt attgagctta 120
aaaatcctct gaactgtgca gatcctactt ctcaaaggtg gtttcatgga cacctctctg 180
gaaaagaagc agagaaattg ttaactgaaa aaggaaagca tagtagcttt cttgtacgag 240
agagccagag ccaccctgga gattttgttc tctccgtgtg caccggtgat gacaaaggag 300
agagcaatga cggcaagtct aaagtgactc atgtcatgat tcactgtcag gaactgaaat 360
c

<210> 207 <211> 2483 <212> DNA

<213> Homo sapiens

<400> 207 ataaaatgga catagtagta ggacttacct cccagggctg tggttataga ggttttgtaa 60 gaattaaatg acatcatcca tgtaaagcat atagcagaat gcctggcaca tagatgccct 120 tagtgaattt ttgctgttgt tgtgattctt ttgggagcag tcatagtaac atattctcat 180 atgttggtat gttctttcat attgcattgt cttatgaata gattctggaa accaaaatgg 240 aggaaatgat gataagacta agaatgctga gaggaactat ttaaatgttt tacctgggga 300 attitatatt acacggcatt ctaatctctc agaaatccat gttgctttcc atctctgtgt 360 ggatgaccat gtgaaatcgg gaaacatcac tgctcgtgat cctgccatta tgggactccg 420 480 aaatatactc aaagtttgct gtacccatga catcacaaca ataagcattc ctctcttgct ggtacatgat atgtcagagg aaatgactat accctggtgc ttaaggagag cggaacttgt 540 gttcaagtqt gtcaaaqqtt tcatqatqqa aatggcttca tgggatggag gaatttctag 600 gacagtgcaa tttctagtac cacagagtat ttctgaagaa atgttttatc aacttagtaa 660 catgettece cagatettee gagtateate aacacteaet etgacateca ageactaaac 720 cettatagat tgacatgetg geagaagatg attgttaaac tetecaggaa ettgtgetat 780 gctgggaatc tgtcaagcaa aagatgccca gaaagagaac ttgcagctca atccacaaat 840 900 caagatacat gtgtgtgaaa cccattccaa aaatttatat actggcacaa actggtggat caacccctaa cttaaacact taaagtctct ttatgaattt ctctttttt cttctctgtg 960 ttacctgtgg aatattaggt aatctaaaac tttttattta ttcacacagg gacacttggg 1020 1080 gggaaaggga aacttgatta tatttacatg ggagggcatt tgactttttt caaggagggc ttggacttcg tcttcaggtg gcaatcctta attaaacata caaacaaaat tttcctttta 1140 1200 ctttctttgc caaaacaaaa tgtaaaagca ctgaaatata cattgcaagt acaaatttcc 1260 tgtgaaaatc tttttataga aacacaaatg tataagacaa atgtgcttgt tcttttaaat

```
tetectgttt cagaatetet ttttaateta etectaagga tgtacaagtt agagteagaa
gacgttttgg attttttccc tctctctcat cctcccgctg tgcccttgca cttqcatatt
                                                                    1380
aataacattt catggactgg gaaatagtgt tottttttgc aagottgatg toaaqttagt
                                                                    1440
ctaaaccagc acctggcagt attttagtgc tcatcaacat tgtgacaatc acacaaggaa
                                                                    1500
gateatttet acatttetgt cetecetgeg ttetcagett gettaaccat tectetacet
                                                                    1560
cttgcatttt tttgcggata aatgtatece catttetget tetetgttte eceteetttt
                                                                    1620
ccattgtttt tccttatggt actactttct caggtgctac atatcatata tttqtcccat
                                                                    1680
ctataacata tttaaatgct ataagtagta actccattaa acaaaggcat ttacaaaagc
                                                                    1740
acacaggigt tiagaaaagc aatagittca tcaattccaa gitaiqiqqa tattqtaact
                                                                    1800
ggccacaaga atgaaatgga gggcatttgg tgtcataaga tggcatgtct tgatgacaag
                                                                    1860
aaacaaaacg cccttcatta atatgcctca gtgtaataac tattatagaa actgttggca
                                                                    1920
agcagagtgc tttcctataa cagaatgtgt cttaattttc tacttgaggg aaaggtttgt
                                                                    1980
ccaggtaaca acactaaaga caaccctaag aacacccact ccagcagtat gtccattaga
                                                                    2040
cactaaaact ctccaaatta tttgtcaggg agcctggcga ttctgccaag aaggcaggtg
                                                                    2100
ttttgccctt agagcctata cagttctctt ggagaaattg tctttcaggc accactgtta
                                                                    2160
atcactgaga ctgattctaa tgcaaagcag ggaagacaga ggcagaaacc aggagagtgg
                                                                    2220
tagatcagtg cagcccagat atcggaatgg aggagcaaag tttcattcac ggatgtttgt
                                                                    2280
tgaatgctgc tgcccaactc ttcctttgtc acctctaggc tattccacta agttacttat
                                                                    2340
aaactggtgg ctttaactga gggctgtgta aaggtactat ttggcatgtg aagtcaggat
                                                                    2400
aaatttateg aatgteegtt tteeacatge aactgtgtta cagaagtagt aaaattggaa
                                                                    2460
gaatcatgtt tatggtgtta cca
                                                                    2483
```

<210> 208

<211> 366

<212> DNA

<213> Homo sapiens

<400> 208
caagcatcct gcccgccctg ctggtgacca tcctgatctt catggaccag cagatcactg 60
ccgtcattgt caaccggaag gagaacaaac tgaagaaggc tgccggctac catctggacc 120
tgttctgggt gggcatcctc atggctttgt gctcctttat ggggctcccc tggtacgtgg 180
ctgccacggt catctccatc gcccacatcg acagcctcaa gatggagaca gagaccagtg 240
cccctgggga gcagcccag tttctgggag tcagggaaca gagagtaacc ggcatcatcg 300
tcttcatcct gacgggaatc tctgtcttcc tggctccat cctaaagtgt atcccctgc 360
cggtgc

<210> 209

<211> 574

<212> DNA

<213> Homo sapiens

```
tgttattgaa gtttattctg gtggcgtgct tgatgttagg ggtggtacgg caacaaatgt 420 tacccagcac gatggtgcaa ttttaaaaac taacactaac ggtacgacgg tgagcggtac 480 gaatagtgaa ggtgcattct ccatccacaa tcacgtggca gacaatgtgt tgctggaaaa 540 cggtggtcat ttagacataa acgcatatgg ttcg 574
```

<210> 210 <211> 383 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(383) <223> n = a,t,c or g

<400> 210

tttttctctt ccatccagct gactgatgat cagggccccg tcctgatgac cactgtagcc 60
atgcctgtgt ttagtaagca gaacgaaacc agatcgaagg gcattcttct gggagtggtt 120
ggcacagatg tcccagtgaa agaacttctg aagaccatcc ccaaatacaa ggtaatgaat 180
gacctaatcc ctgaaatcaa agcaacagag atgcccagag ccttgttttc acaaagttca 240
ggcttcaaac tctactttgg agcgatgtt ttgctcacca ctattacagc ctgttagctt 300
gtctttatac catctgcaca gttatttaaa aggnnnnnnn nnnattattt acaaggactg 360
gctgtttttc ttatttacct cct

<210> 211 <211> 592 <212> DNA <213> Homo sapiens

<400> 211 tttcgtgttc aggaactggc accaatgcgt gttacatgga ggacatgagc aacattgacc 60 tggtggaggg cgacgagggc aggatgtgca tcaacacaga gtggggggcc ttcggggacg 120 acggggccct ggaggacatt cgcactgagt tcgacaggga gctggacctc ggctctctca 180 acccaggaaa gcaactgttc gagaagatga tcagtggcct gtacctgggg gagcttgtca 240 ggcttatctt gctgaagatg gccaaggctg gcctcctgtt tggtggtgag aaatcttctg 300 ctctccacac taagggcaag atcgaaacac ggcacgtggc tgccatggag aagtataaag 360 aaggeettge taatacaaga gagateetgg tggaeetggg tetggaaceg tetgaggetg 420 actgcattgc cgtccagcat gtctgtacca tcgtctcctt ccgctcggcc aatctctgtg 480 cagcagetet ggeggecate etgacaegee teegggagaa caagaaggtg gaaeggetee 540 ggaccacagt gggcatggac ggcaccctct acaagataca ccctcagtac cc 592

<210> 212 <211> 2166 <212> DNA

<213> Homo sapiens

```
<400> 212
tttcgttgca attgcaacga atggtgttgt gcctgctggt ggctcctact acatgatttc
                                                                      60
caggtetetg ggeecagagt ttgggggtge cgtgggeete tgettetaec tgggeactae
                                                                      120
ctttgcagga gccatgtaca tcctgggcac catcgaaatc ctgctggctt acctcttccc
                                                                      180
agccatggcc atcttcaagg cagaagatgc cagtggggag gcagcagcca tgctgaacaa
                                                                      240
catgcgtgtt tacggcacct gtgtgctcac ctgcatggcc actgtggtgt ttgtgggtgt
                                                                      300
caaqtatgtc aacaagtttg cccttgtctt cctgggttgt gtcatcctct ccatcctggc
                                                                     360
catctatgct ggggtcatca agtctgcctt cgacccaccc aacttcccga tctgcctcct
                                                                     420
qqqtaaccgc acgctgtctc gccatggctt tgatgtctgt gccaagctgg cttgggaagg
                                                                     480
aaatgagacg gtgaccacac ggctatgggg ccttttctgc tcctctcgct tcctcaacgc
                                                                     540
cacctgtgat gaatacttca cccgaaacaa tgtcacagag atccagggca tccctggtgc
                                                                     600
tgccagtggc ctcatcaaag agaacctctg gagctcctac ctgaccaagg gcgtgattgt
                                                                     660
ggagaggagt gggatgacct cggtgggcct ggccgatggc actcctatcg acatggacca
                                                                     720
cccttatgtc ttcagtgata tgacctccta cttcaccctg ctggttggca tctacttccc
                                                                     780
ctcagtcaca gggatcatgg ctggttctaa ccgctctggg gacctgaggg atgcccagaa
                                                                     840
gtcaatcccc actggcacca tectggccat egecaccace tetgetgtet acatcagete
                                                                     900
cgttgttctg tttggggcct gcattgaggg ggtcgtcctg cgggacaagt ttggcgaagc
                                                                     960
tgtgaatggc aacctcgtgg tgggcactct ggcctggcca tctccatggg taattgtcat
                                                                    1020
eggatectte ttetecaect gtggggetgg getgeagage eteaeggggg eeceaegeet
                                                                    1080
getgeaggee atetegaggg atggeattgt gecetteetg caggtetttg gecatggeaa
                                                                    1140
ggccaatgga gagccgacct gggccctgct cctgactgcc tgcatctqcq aqattqqcat
                                                                    1200
cctcattgca tccctcgacg aggtggcccc catcctctct atgttcttcc tgatgtgcta
                                                                    1260
catgtttgtg aatctggcct gtgcagtgca gacgctgctg aggacaccca actgqaqqcc
                                                                    1320
acgctttcga tattaccact ggaccctctc cttcctgggc atgagcctct gcctggccct
                                                                    1380
catgttcatc tgctcctggt attatgcact ggtagccatg ctcattgctg gactcatcta
                                                                    1440
caagtacatt gagtaccgtg gggcaaagaa ggagtggggc gatgggatac gaggtctgtc
                                                                    1500
tctcagtgcg gctcgctatg ccctcttacg cctggaggaa gggcccccac acaccaagaa
                                                                    1560
ctggaggcca cagctgctgg tgctggtgcg tgtggaccaa gaccagaatg tggtgcaccc
                                                                    1620
ccagctgctc tcactgacct cccagctgaa ggcagggaag ggcctgacca tcgtgggctc
                                                                    1680
tgtccttgag ggcacctttc tggaaaatca tccacaggcc cagcgggcag aagagtctat
                                                                    1740
caggegeetg atggaggeag agaaggtgaa gggettetge caggtggtga teteetceaa
                                                                    1800
cttgcgtgat ggcgtgtccc atctgatcca gtctgggggc ctcggggggc tgcagcacaa
                                                                    1860
cactgtgctt gttggctggc cccgcaactg gcgccagaaq gaaqatcatc aqacqtqqaq
                                                                    1920
gaacttcatt gagctggtcc gggaaaccac agctggccac ttagccctgc tggtcaccaa
                                                                    1980
gaacgtttcc atgtttcctg ggaaccctga gcgcttctct gaaggcagca tcgaccgttg
                                                                    2040
ggggattggg cacgatggag gcatgctcat gctggtgccc ttcctgctgc ggcaccacaa
                                                                    2100
ggtctggcgg aagtgcaaga tgcgtatctt cactgtggcc cagatggttg acatgcatgc
                                                                    2160
catgag
                                                                    2166
```

```
<210> 213
<211> 392
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(392)
<223> n = a,t,c or g
```

	ggctactgtc					60
gttgacttta	atttgatgga	tcctaaactc	ttggcttcag	gttctgatga	tgcaaaaggt	120
actgtttgaa	tctctttctc	agcacctcct	tctccctggc	cctcttaact	gtaattcctt	180
tcatcggcag	aaatacaaat	atttactcaa	actcatgtca	gtcctttgtg	attactgatt	240
attattattc	${\tt cccannnnn}$	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	360
nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nn			392

<210> 214

<211> 425

<212> DNA

<213> Homo sapiens

<400> 214

ggcggaattc aaaagca	atg cacaggtett	cctgtgacgg	gccgctactc	tctctgccct	60
cagtgggacg gtcagcc					120
ggcggggcat gcacgct	ttt attgtgccaa	tccggagtct	tcaggaccac	accccactgc	180
caggtaagcc cataatg	ctc cctcaaggaa	ccctgccagg	aggagagccc	aggtggcctc	240
cetgacetgg ggcccca	gag ggccacagga	gtagctaaga	catgtctccc	ttgggcaggg	300
agcggtccag ttggacag	gac ttggtgctaa	ctggctaggt	gaacttgagc	aagatttagc	360
atctttctga cctcagc	ttg ttcacctgca	aaataggtac	aataatccca	gtgtcacagg	420
ctgct				**	425

<210> 215

<211> 608

<212> DNA

<213> Homo sapiens

<400> 215

ctgcgggacc	ctcatcttgc	aggcccgggc	ctatgtggga	ccgcacgtcc	tggcagtggt	60
gacccgcaca	gggttctgca	cggcaaaagg	gggcctggtg	agctccatct	tgcacccccg	120
		ataaacacag				180
ggctctcctc	ggcaccatct	acagcatctt	catcctctac	cgaaaccggg	tgcctctgaa	240
tgagattgta	atccgggctc	tcgacctggt	gaccgtggtg	gtgccacctg	ccctgcctgc	300
tgccatgact	gtgtgcacgc	tctacgccca	gagccgactg	cggagacagg	gcattttctg	360
catccaccca	ctgcgcatca	acctgggggg	caagctgcag	ctggtgtgtt	tcgacaagac	420
gggcaccctc	actgaggacg	gcttagacgt	gatgggggtg	gtgcccctga	aggggcaggc	480
attcctgccc	ctggtcccag	agcctcgccg	cctgcctgtg	gggcccctgc	tccgagcact	540
ggccacctgc	catgccctca	gccggctcca	ggacaccccc	gtgggcgacc	ccatggactt	600
gaagatgt						608

<210> 216

<211> 858

<212> DNA

<213> Homo sapiens

<400>	216					
ctatctggtc	actggccact	gtggctttgt	attcctctaa	cgtggctgcc	aaggctgctt	60
ttcctttctg	ctcagactca	ataattcgct	ccatatggtg	actgcgttct	ttgagtgccc	120
ctatcatttc	ttgagcttcc	ttattgtctt	gttctgccat	tttcaaagta	ttgcttaaat	180
gctgctggac	accaagaagc	tgctcccgtt	caaaacgggc	attctcagcg	aggtccatgt	240
				ttcatctatg		300
				tcatagatga		360
				tcgctgagaa		420
				atactttgaa		480
				aagaacgcag		540
				tggcagccac		600
				gcctgaaggc		660
				actctggaga		720
				aagcagagac		780
				atcgattaca		840
gctaaaggta						858

<210> 217 <211> 399 <212> DNA

<213> Homo sapiens

<400>	217					
agcacgctac	cgctttaccc	tcagcgccag	gacgcaggtg	ggctctgggg	aagccgtcac	60
	ccagcacccc					120
cccgactacc	gtgggtgcga	cgggcgctgt	gagcagtacc	gatgctactg	ccattgctgc	180
caccaccgaa	gccacaacag	tccccatcat	cccaactgtc	gcacctacca	ccatggccac	240
caccaccacc	gtcgccacaa	ctactacaac	cactgctgcc	gccaccacca	ccacggagag	300
tcctcccacc	accacctccg	ggactaagat	acacgaatcc	gcccctgatg	agcagtccat	360
atggaacgtc	acggtgctcc	ccaacagtaa	atgggccaa			399

<210> 218 <211> 662 <212> DNA <213> Homo sapiens

<400> 218
 ctgaagtcaa cgcaagacga aatcaaccag gcaaggagca aactgtccca gctgcatgaa 60
 agccgccagg aggcccacag gagcctggag cagtatgacc aggtgctcga tggagcccat ggcgacctg agcgaaggcg tctccctggc agagaggggc 180
 agttttggag ccatggatga tcctttcaaa aataaagcct tgttatttag caacaacacg 240
 caagagttgc atccggatcc tttccagaca gaagacccct tcaaatctga cccatttaaa 300

```
ggagetgace cetteaaagg egaceegtte cagaatgace cetttgeaga acageagaca 360 actteaacag atecatttgg aggggaceet tteaaagaaa gtgaceeatt eegtggetet 420 gecactgacg acttetteaa gaaacagaca aagaatgace catttacete ggateeatte 480 acgaaaaace etteettace ttegaagete gaceeetttg aatecagtga tecetttea 540 teeteeagtg teteeteaaa aggateagat eeetttggaa eetteagate etteggaagt 600 gggteettea atagtgetga aggetttgee gactteagea etattgaagg tegaegegge 660 eg
```

<210> 219

<211> 752 <212> DNA

<213> Homo sapiens

<400> 219

cggacgcgtg	ggggatctgg	caatagctcc	caaccctcac	ttcgtgaggg	ccacgacaaa	60
cctgttttta	atggagctgg	aaagcctcat	tccagcacct	cttcaccaag	tgtcccaaag	120
acttctgcta	gcaggactca	gaaatctgct	gttgagcaca	aagccaaaaa	atctctgtcc	180
catcctagcc	attccaggcc	tgggcccatg	gtcaccccac	acaataaggc	taagagtcca	240
ggtgtcaggc	agccaggcag	cagctctagc	tcagcccctg	ggcagcccag	cacaggggtt	300
gctcgaccca	cagttagttc	tggccctgtg	cctaggcgcc	agaatggcag	ctccagctca	360
ggacctgagc	gatcaatcag	tgggtccaag	aagccaacca	atgactcaaa	tccctctagg	420
cggacagtca	gtggtacatg	tggccctgga	caacctgcaa	gcagctcagg	tggccctggg	480
cgacccatca	gtggttcagt	tagttctgca	agacccttgg	gcagctctcg	tggccctggc	540
cggcctgtga	gcagtccaca	tgaacttcga	cgaccagtga	gtggcttggg	cccccgggg	600
cggtctgtca	gtggccctgg	gagatccata	agtggctcaa	ttccagctgg	acggactgtc	660
agtaattcag	tcccaggaag	accagtgagc	agcttgggac	ctgggcaaac	agttagtagc	720
tcaggtccca	ctataaagcc	taagtgcact	gt			752

<210> 220

<211> 582

<212> DNA

<213> Homo sapiens

<400> 220

```
ttattattat tttgcataga gacaagcact cactqtgtta cccaggctgg ttttgaactc
                                                                      60
ctgagettaa teagttetea eetgetttge eeteecaaag tgetatgatt acaggtgtga
                                                                      120
gccaccacge ttggccctgc ccaggagtca tttttqtatc tacaggtatc ttcctatgct
                                                                     180
gtagacagat gccctttttc aaggcaaaaa ccctagccat ttttctcttc tccttcagag
                                                                     240
totgcaacat cototcaact catccaaqtq actactgcct gqtgctcttg gggatgcagg
                                                                     300
gaggectgag aaggecaatg tetatacaqa aaqttetaac atagtgeact gagteaatgt
                                                                     360
                                                                     420
gggcacttta aagccctttc acctgccaaq tcacqaaqca cccctatagt tgtgtttgta
aaatactggg gggtttgaag gggaaaaqqq ataactccaa ggtaccatct ttgcatttca
                                                                     480
gatccacaca acttaaagat ctgctqtcqa qtqaatqqgg aagtggtcca gagcagcaac
                                                                     540
accaaccaga tggtattcaa gacagaggac ctgatagcct gg
                                                                     582
```

```
<210> 221
<211> 440
<212> DNA
<213> Homo sapiens
```

<400> 221 ggaattcgat cagtagaagt ttggggggata tagaaacgaa ggttttctaa cttttagctt 60 tcaaggagat tgtccggttg ggaaagcaag atatgaaaaa taaatatgtc aagaatataa 120 tccaaaacaa tctaattaag tgctagaagt ttgccatgga cagacaaagt gctacttggg 180 aaggaagttc cagaaacacc acagctgggt acattcttca ccactctgag tggtggcagt 240 gacgcgttgg ctttgtgaga atggtgtgtc ttacttgaga aagtgtgtgt gttctgcctg 300 caggcatggg actcgctgtg ctggagaagt ggcagccgct gcaaacaatt cgcactgcac 360 agtoggaatt gotttcaacg ccaagatogg aggtatggga aaccaactca cgtggatgta 420 gaaatgcgcc agttagctct 440

<210> 222 <211> 489 <212> DNA <213> Homo sapiens

<400> 222 ccgacgattt cgtgaggcgg cagccaggtg gggttccagc cagagcacgc acgcacggag 60 ccgggagcat gcagcctgca ctgcggggga tgtgatgctc ggctctaact cgcctggctg 120 gcccgccacg gacgcctcag cttgcaacca tggtaacgtt tctggcgggg gacacccccg 180 ggagcccacc gcgatgggca gcctcctggt gactgatgga cgagtgtcca cctcccagac 240 cgagagcgct tagtaggtcg gaggaagtgg agaggatgta acacgcccc agccgggagt 300 gaagecetga ggageteete ecceettegt teccaecete aagtetgaeg atgacaecte 360 caatittgat gaaccaaaga agaattcgtg ggtttcatcc tctccgtgcc agctgagccc 420 ctcaggcttc tcgggtgaag aactgccgtt tgtggggttt tcgtacagca aggcactggg 480 gattcttgg 489

<210> 223 <211> 493 <212> DNA <213> Homo sapiens

ccagtggcac cgcaggcgga cgctgcacag aaaggatcat cccagagccc aacagctgga 420 ctgaccctgg ctggtcgaag agccctggcc agatgtcctg tggacagacc caatttctgg 480 cctcgtctgc tgg

<210> 224 <211> 883 <212> DNA <213> Homo sapiens

<400> 224 agtgacctgg aaacaagttc tgatccagaa ggtgaggatt gggatgagga agctgaggat 60 gatggttttg atagtgatag ctcactgtca gactcagacc ttgaacaaga ccctgaaggg 120 cttcaccttt ggaactcttt ctgcagtgta gatccttata atccccagaa ctttacagca 180 acaattcaga ctgctgccag aattgttcct gaagagcctt ctgattcaga gaaggatttg 240 tctggcaagt ctgatctaga gaattcctcc cagtctggaa gccttcctga gacccctgag 300 catagttctg gggaggaaga tgactgggaa tctagtgcaq atqaaqcaqa qaqtcttcaa 360 actgtgggaa cttcattctg ttaattctgg atggacccct acaacccttt aaattttaag 420 gctccttttc aaacatcagg ggaaaatgag aaaggctgtc gtgactcaaa gaccccatct 480 gagtccattg tggccatttc tgagtgtcac accttacttt cttgtaaggt gcagctgttg 540 gggagccaag aaagtgaatg tccagactcg gtacagcgtg acgttctttc tggaggaaga 600 cacacacatg tcaaaagaaa aaaggtaacc ttccttgaag aagttactga gtattatata 660 agtggtgatg aggatcgcaa aggaccatgg gaagaatttg caagggatgg atgcaggttc 720 cagaaacgaa ttcaagaaac agaagatgct attqgatatt qcttqacatt tqaacacaqa 780 gaaagaatgt ttaatagact ccagggaaca tgcttcaaag gacttaatgt tctcaagcaa 840 tgttgagttg gcagcctgta gtcctagcta gcatacacta cct 883

<210> 225 <211> 389 <212> DNA <213> Homo sapiens

<400> 225
cggccgcgtc tacggcatat tctttttttg gaactgtgga gaatatggct ccaaaagtgg 60
ttaatcgtcc aggtcatact cagagtgctg actgggggtc ttttggggggg ttaatgggaa 120
ggtttgaatt tgggatttt ttaaagggga aggagattgt taagtgagga tcaacaggga 180
atggtaaaga aactgggggt tttattttct ttattttatg ccctatgtaa taaataacca 240
aaaaacatta ttgcgtgcag tataaaagga ctatgaaatc tgttagctgc gtctatctca 300
tcctaatttg aaagggcaaa aaaaaatatt accatagatt tcctgctaat agtaacaatc 360
taaagcatta atggtgttgg gtcttttgg

<210> 226 <211> 412 <212> DNA <213> Homo sapiens

gagcatgtct gtcctatggt tgggtgtgca tttggtgata tgtctgtgga	ttettecagg atgggatece gacateagga tattggatac gaaaattttt gtggtgttag	tgagcatgca agatggaggt tctaggcaag tgagaaagga catataacgc	gacaacctga gggcaggaag catgggtcat caagaggagc agcctggggc	acttetetet ggetgaaggt gagteaggee ttettgtgte etttgettat eagttageag aatttggatg	cactgagtga tttagggaga cagaatcacc ctctcacctg cccaagtctg	60 120 180 240 300 360 412
<210> <211> <212> <213>	390	ıs				
cacactgett tgeetggtee gaeteagatg cecageaaag accacetace	gccagggcac ctggccctga tgctgctgct tggctgactc cagacaaccc	ggacgtggcc tgtcctcatc gtccattctc ccatctgctc ctgtccccgg	ctctatgtgg ctcgtttatt acctcaggct accatccagc	gtaccagtga gcctcatcgc gccggaagaa tccagcccgt cggacctcag ccagccccaa	cgtggccgtc ggaggggctg cagcatcaag caccaccacc	60 120 180 240 300 360 390
<210> <211> <212> <213>	777	ıs			,	
aaatgtatcc caatccttcc gtggaccatg ctgattgatc cttttcttta aaccgaacaa gtcaacaaat caaggaaaaa actgtgtttg agccgattta cgaatttatc	atgaagatat agataacaaa acaatgtgca tcggtgaccg tggagcttca ctgactacgg ggataattga tggtttactg atagacacgc aagattattt atgggactga aaaaaagaac	agcaggagga acaaatggcg gatctttgtt caatcctaaa gaatgtcgcc ttcaaagaca ggtagatctt tgtcattcaa gtatgcaacc tattcactca tcaaccaaca	ttaacagatg attgactggc tgtaattcca gcaatagcag aaagtggaga gagcagccag tacttggact ggcagacaag aattctgata ttaattaaaa gtcagaagcc	gagaatcttc aatggacaat tcactcgaaa acggttctgt tagatccaat gatgtgacat ctgcactggc atgtgggagt tcagacatct gctacaatat ttgagaatgc atgcatgtga gcagcagtta	caatattett tetetatttt atgtgteace ageaggaaaa ggatgggatg actagaceta agtggactat ttatggtata cgtaaggata ttggggaate agtgggate	600 120 180 240 300 360 420 480 540 600 720 777

<210> 229 <211> 486 <212> DNA <213> Homo sapiens <400> 229 tttcgtctgg gaacccgcag cctggggact cctccggcgg gggcgctggg ggcgggctgc cgtcccctgg ggagcaggag ctgagccggc gcttgcagcg cctgtatccc gcggtcaacc 120 agcaagagac teegetgeeg egeteetgga geeceaagga caaatacaac tacattggte 180 tctcccaggg caacctccgc gtccactaca aaggtcatgg caaaaatcac aaagatgcgg 240 ceteagtgeg tgccaccac eccatacetg etgcetgtgg catttattac tttqaaqtga 300 agattgtcag caaaggaaga gatggttaca tgggaatagg actctcggct caaggcgtca 360 acatgaacag acttcctggt tgggacaaac attcctatgg ttaccatggt gatgatgggc 420 attegttetg eteetegggg aetggeeage cetatggtee caeatteace acaggagaeg 480 tgatcg 486 <210> 230 <211> 396 <212> DNA <213> Homo sapiens <400> 230 ttttttttt ttaagatggg gtctcgctct gtcacccagg ctggagtgca gtggtgtgat 60 gtcagctcac tgcaagctcc gcctcccagg ttcacactat tctgcctcag cctcccaagt 120 agctgggact acaggtgcgt gccaccatgc ccggctaatt tttttgtatt tttagtagag 180 acggggtttc accgtgttag ccagtatggt cttgatctcc tgacctcgtg atccacctgc 240 ctcggcctcc caaaagtgct gggattacag gtgtgagctg ctgcgcctgg cttatgagtc 300 gtatgttctg atcctccctc ttgaagttgc cttctgtggt ctaaggaggg cctgaaggtt 360 caggtaaaaa cttcagggtg accttcactg ggggtg 396 <210> 231 <211> 713 <212> DNA <213> Homo sapiens <400> 231 tcagctcagc ttggcacgag gaaaggtgtt cttgtgtgcc ttgtcttttg tttactttgc 60 caaagcattg gcagaaggct atctgaagag caccatcact cagatagaga gaagggttga 120

180

240

tatecettet teactggtgg gagttattga tggtagtttt gaaattggga atetettagt

tataacattt gttagctact ttggagccaa acttcacagg ccaaaaataa ttggagcagg

```
gtgtgtaatc atgggagttg gaacactgct cattgcaatg cctcagttct tcatggagca
                                                                      300
gtacaaatat gagagatatt ctccttcctc caattccact ctcagcatct ctccgtgtct
                                                                      360
cctagagtca agcagtcaat taccagtttc agttatggaa aaatcaaaat ccaaaataag
                                                                      420
taacgaatgt gaagtggaca ctagctcttc catgtggatt tatgttttcc tgggcaatct
                                                                      480
tettegtgga ataggagaaa eteccattea geetttggge attgeetaee tggatgattt
                                                                      540
tgccagtgaa gacaatgcag ctttctatat tgggtgtgtg cagacggttg caattatagg
                                                                      600
accaatcttt ggtttcctgt taggctcatt atgtgccaaa ctatatgttg acattggctt
                                                                      660
tgtaaaccta gtcattttta ggtggaagca tgttacagca cattatcgag gaa
                                                                      713
```

<210> 232 <211> 1067 <212> DNA

<213> Homo sapiens

<400> 232 cagcetteca aggtagggca caccaaggce taaggaatca gaaagggcee gagggtggge 60 tgtgtcctgg ctttcaggcc ctggggcgac caccagcctc tgctcactct gaggctccag 120 ccagggcgcc aagcctcagg accgtgggtg gggcccaagg acactctgga cccccgttcc 180 attcatgaga ggccctcagc acgccacgtg tctgctgtga cagcccgcag ggagggtgga 240 agecttetgt aaatteeaca tgtgggeega gggeatgaeg teettgatga aggeegeget 300 ggaceteace taccceatea egtecatgtt eteeggagee ggetteaaca geageatett 360 cagcgtette aaggaceage agategagga cetgtggatt cettattteg ceateaceae 420 cgacatcaca gcctcggcca tgcgggtcca caccgacggc tccctgtggc ggtacgtgcg 480 tgccagcatg tccctgtccg gttacatgcc ccctctctgt gacccgaagg acggacacct 540 gctgatggac gggggctaca tcaacaacct cccagcggat gtggcccggt ccatgggggc 600 aaaagtggtg atcgccattg acgtgggcag ccgagatgag acggacctca ccaactatgg 660 ggatgcgctg tctgggtggt ggctgctgtg gaaacgctgg aaccccttgg ccacgaaagt 720 caaggtgttg aacatggcag agattcagac gcgcctggcc tacgtgtgtt gcgtgcgca 780 getggaggtg gtgaagagea gtgactactg cgagtacetg cgcccccca tcgacageta 840 cagcaccetg gactteggea agtteaaega gatetgegaa gtgggetaee ageaegggeg 900 cacggtgttt gacatctggg gccgcagcgg cgtgctggag aagatgctcc gcgaccagca 960 ggggccgagc aagaagcccg cgagtgcggt cctcacctgt cccaacgcct ccttcacgga 1020 ccttgccgaa attgtgtctc gcattgagcc cgccaagccc gccatgg 1067

<210> 233 <211> 704 <212> DNA <213> Homo sapiens

<400> 233 tttcgtgtga gggagagccg agggaaccag cgcggtgcct agcggaactc cagggctgga 60 120 atcccgagac acaagtgcat ctgctagctg ttagcacttg gcagacggag ttctcctcta gggtagttct aactttgggt aataatgttt gtcagctacc tgatattaac attgctccac 180 gttcaaacag cagtgttagc aagacctggg ggagagagca ttggctgtga tgactactta 240 ggctccgaca aagtcgtgga caaatgtggg gtgtgtggag gagacaacac gggctgtcag 300 gttgtgtcgg gcgtgtttaa gcatgccctc accagcctgg gctaccaccg cgtcgtggag 360 420 attoccgagg gagccacgaa aatcaacatc acggagatgt acaagagcaa caactatttg gccctgagaa gtcgttctgg acgctccatc atcaatggga actgggcaat tgatcgacca 480

ggaaaatacg agggcggagg gaccatgttc acctacaagc gtccaaatga gatttcgagc 540 actgccggag agtccttttt ggcggaaggt cccaccaacg agatcttgga tgtctacgtg 600 agtttggatg tttctggact gttctttgga tttttgaatct tgtcacttct aaggaacata 660 ctctgaacaa ataagcaaca aatcattgcc catactcaat aaaa 704

<210> 234 <211> 420

<212> DNA

<213> Homo sapiens

<400> 234
atttcaggag ggaccagaag cgcaggcccg ctcaggagga attacaactt catcgccgcg 60
gtggtggaga aggtggcgcc atcggtggtt cacgtgcagc tgtggggcag gaaccagcag 120
tggattgagg tggtgctcca gaatggggcc cgttatgaag ctgttgtcaa ggatattgac 180
cttaaattgg atcttgcggt gattaagatt gaatcaaatg ctgaacttcc tgtactgatg 240
ctgggaagat catctgacct tcgggctgga gagtttgtgg tggctttggg cagcccattt 300
tctctgcaga acacagctac tgcaggaatt gtcagcacca aacagcgagg gggcaaagaa 360

420

ctggggatga aggattcaga tatggactac gtccagattg atgccacaat taactatggg

<210> 235

<211> 1057

<212> DNA

<213> Homo sapiens

<400> 235 cccacgcgtc cgagaactca aagaaattct ggataggaaa gggcatttct cagagaatga 60 gacaaggtgg atcattcaaa gtctcgcatc agctatagca tatcttcaca ataatgatat 120 tgtacataga gatctgaaac tggaaaatat aatggttaaa agcagtctta ttgatgataa 180 caatgaaata aacttaaaca taaaggtgac tgattttggc ttagcggtga agaagcaaag 240 taggagtgaa gccatgctgc aggccacatg tgggactcct atctatatgg cccctgaagt 300 tatcagtgcc cacgactata gccagcagtg tgacatttgg agcataggcg tcgtaatgta 360 catgttatta cgtggagaac cacccttttt ggcaagctca gaagagaagc tttttgagtt 420 aataagaaaa ggagaactac attttgaaaa tgcagtctgg aattccataa gtgactgtgc 480 taaaagtgtt ttgaaacaac ttatgaaagt agatcctgct cacagaatca cagctaagga 540 actactagat aaccagtggt taacaggcaa taaactttct tcggtgagac caaccaatgt 600 attagagatg atgaaggaat ggaaaaataa cccagaaagt gttgaggaaa acacaacaga 660 agagaagaat aagccgtcca ctgaagaaaa gttgaaaagt taccaaccct ggggaaatgt 720 ccctgagacc aattacactt cagatgaaga ggaggaaaaa caggtaggaa gaatcattgc 780 tqcatttctc ccaagtgtaa aataccctca ccacacctgg aacatttttt tgcaaatctg 840 tctttttgtt gttagtttgt aacaaaggcc gagcgttata tagcaagtaa agttctttct 900 gccttataag gctagcatga tttagcgagg tggcctacat gtttatttta aggttggtga 960 ttatgtaggg caggtgtctg caaacttttt ctgtaaggga acaaacagta aatattttag 1020 gctttgtggg ccctagtagt ctttgtcaca actactc 1057

<210> 236 <211> 467 <212> DNA <213> Homo sapiens

<400> 236 ttgagtatta gtgtcagtga tgtgtctctc tctgatgaag gacagtacac ctgttcttta 60 tttacaatgc ctgtcaaaac ttccaaggca tatctcaccg ttctgggtgt tcctgaaaaq 120 ceteagatta gtggattete ateaceagtt atggagggtg acttgatgea getgaettge 180 aaaacatctg gtagtaaacc tgcagctgat ataagatggt tcaaaaaatga caaagagatt 240 aaagatgtaa aatatttaaa agaagaggat gcaaatcgca agacattcac tgtcagcagc 300 acactggact tccgagtgga ccggagtgat gatggagtgg cggtcatctg cagagtagat 360 cacgaatccc tcaatgccac ccctcaggta gccatgcagg tgctagaaat gcactataca 420 ccatcagtta agattatacc atcgactcct tttccacaag aaggacg 467

<211> 416 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(416) <223> n = a,t,c or g

<210> 237

<400>237ggtacaaccagaaagtggatctcttcagcctgggaattatcttctttgagatgtcctatc60accccatggtcacggcttcagaaaggatctttgttctcaaccaactcagagatcccactt120cgcctaagtttccagaagactttgacgatggaagcatgcaaagcagaaatcagtcatct180cctggctgttgaaccacgatccagcaaaacggcccacagccacagaactgctcaagagtg240agctgctgcccccaccccagatggaggagtcagagctgcatgaagtgetgcaccacacgc300tgaccaacgttgatggaaaggcctaccgcaccattgatgggcccagatcttttcggcagc360gcatctcccctgccatcgntttacacctatgaccagcgacatattgaagggcaact416

<210> 238 <211> 739 <212> DNA <213> Homo sapiens

<400>238ggaccaggactacaagtacgacagtaceteagacgacageaactteeteaaccecccagggggtgggaccatacagececaggecaceggaettttgaaaccaaagateagecagaata120tgattecacagatggegagggtgactggagtetetggtetgtetgeagegteacetgegg180gaacggeaaccagaaacggaceeggtettgtggetacgegtgcactgcaacagaatcgag240

gacctgtgac cgtccaaact gcccaggaat tgaagacact tttaggacag ctgccaccqa agtgagtctg cttgcgggaa gcgaggagtt taatgccacc aaactgtttg aagttgacac agacagctgt gagcgctgga tgagctgcaa aagcgagttc ttaaagaagt acatgcacaa 420 ggtgatgaat gacctgccca gctgcccctg ctcctacccc actgaggtgg cctacagcac 480 ggccgacate ttcgaccgca tcaagcgcaa ggacttccgc tggaaggacg ccaqcqqqcc 540 caaggagaag ctggagatct acaagcccac tgcccggtac tgcatccgct ccatgctgtc 600 cctggagagc accacgctgg cggcacagca ctgctgctac ggcgacaaca tgcagctcat 660 caccaggggc aaggggggg gcacgcccaa cctcatcagc accgagttct ccgcggagct 720 ccactacaag gtggacgtc 739

<210> 239 <211> 611 <212> DNA

<213> Homo sapiens

<400> 239 ggaatcggaa gaaaatggag agagtgcaat ggacagcaca gtggccaaag aaggcactaa tgtaccatta gttgctgctg gtccttgtga tgatgaaggc attgtgacta gcacaggcgc 120 180 tgggcatgct tcaacttgta cagggttagg agaagaaagt gaaggggtct tgatttgtga 240 aagtgcagaa ggggacagtc agattggtac tgtggtagag catgtggaag ctgaggctgg 300 agetgecate atgaatgeaa atgaaaataa tgttgacaqe atqaqtqqea caqaqaaaqq 360 aagtaaagac acagatatet getecagtge aaaagggatt gtagaaagea qtqtqaccaq 420 tgcagtctca ggaaaggatg aagtgacacc agttccagga ggttgtgagg gtcctatgac 480 tagtgctgca tctgatcaaa gtgacagtca gctcgaaaaa gttgaagata ccactatttc 540 cactggcctg gtcgggggta gttacgatgt tcttgtatct ggtgaagtcc cagaatgtga 600 agttgctcac a 611

<210> 240 <211> 1090 <212> DNA <213> Homo sapiens

<400> 240 ttttttttt ttaagcttga aataaaattt ttattttgtt ttgaattaaa tcaaccatga 60 ttattcacag tgcagtaagt gtgtatcatc tgtttgatat tttcatatta cagttttgat 120 agtgctcttc agtctgcgaa atcttctttg ggtggaaatg atgaactgtc agctactttc 180 ttagaaatga aaggacattt ctatatgtat gctggttctc tgctcttgaa gatgggtcag 240 catggtaata atgttcaatg gcgagctctt tctgagctgg ctgcgttgtg ctatctcata 300 gcatttcagg taagtcttcc acttggagca attgacattt cacggagtct tgatgtgttt 360 taaatgaagg tgtgctctgg tatgtaatga caatatgtga acaaacctgt ggaattaaag 420 ttaaaatgaa atagtcaatt tgatacagtg gaaaataact aagcatacac aatactggtg 480 aggctggtga aacagggatg ttgaatgcac tcttgtcgaa agcctgcatt gccatgattt 540 gtttgtagac aaatttgaag agtttgatct ttttactctg ccatttttgg gaacatgata 600 aagatgtaat ctcgtattat gggtaaagct tgattcaaaa agatgtgtta cttggacaaa 660 atcctaataa gtagacgtag ggcaatggct ttatagccta tgatagaaga atatgattgc 720 aatttaacat gttaattgaa acacatgtat ataacattta tqactgtatt gtgtatatgt 780 aacagtatat ctattaatct ttgaaaacat aaaacctttt cttatttttt attttttat

```
tttttttga gaccaagtet etetetgteg ceaggetgga gtgeagtggt gtgatetegg 900 eteaetgeag eeteeaete etgggttega gtgatetee tgeeteagee teeegagtag 960 etgggactae aggeeeatge taccaageee agetaatttt ttgtattttt aatagagatg 1020 gggttteaee atgttggeea ggatggtege aatetettga eetettgate tacctgeett 1080 ggteteeeaa 1090
```

<210> 241 <211> 680 <212> DNA <213> Homo sapiens

<400> 241 gcaacaccca tcccaggaaa agccacaagt cctgaccccc agccccagga agcagaagct 60 gaacagaaag tacaggtccc accatgacca gatgatctgc aagtgcctct ccctgagcat 120 atcetactee getaceattg geggeetgae caccateate ggeaceteea ceageeteat 180 cttcctggaa cacttcaaca accagtatcc agcctcagag gtggtgaact ttggcacctg 240 gtteetette agetteecea tateeeteat catgetggtg gteagetggt tetggatgea 300 ctggctgttc ctgggctgca attttaaaga gacctgctct ctgagcaaga agaagaagac 360 caaaaagggaa cagttgtcag agaagaggat ccaagaagaa tatgaaaaac tgggaqacat 420 tagctaccca gaaatggtga ctggattttt cttcatcctg atgaccgtac tgtggtttac 480 ccgggagcct ggctttgtcc ctggctggga ttctttcttt gaaaagaaag gctaccgtac 540 tgatgccaca gtctctgtct tccttggctt cctcctcttc ctcattccag cgaagaagcc 600 ctgctttggg aaaaagaatg atggagagaa ccaggagcac tcactgggga ccgagcccat 660 catcacgtgg aaggacttcc 680

<210> 242 <211> 491 <212> DNA <213> Homo sapiens

<400> 242 cttgaaagag aaggggacaa aggaacacca gtattaagag gattttccag tgtttctggc 60 agttggtcca gaaggatgcc tccattcctg cttctcacct gcctcttcat cacaggcacc 120 teegtgteac cegtggeect agateettgt tetgettaca teageetgaa tgageeetgg 180 aggaacactg accaccagtt ggatgagtct caaggtcctc ctctatgtga caaccatgtg 240 aatggggagt ggtaccactt cacgggcatg gcgggagatg ccatgcctac cttctgcata 300 ccagaaaacc actgtggaac ccacgcacct gtctggctca atggcagcca ccccctagaa 360 ggcgacggca ttgtgcaacg ccaggcttgt gccagcttca atgggaactg ctgtctctgg 420 aacaccacgg tggaagtcaa ggcttgccct ggaggctact atgtgtatcg tctgaccaag 480 cccagcqttt q 491

<210> 243 <211> 983 <212> DNA

<213> Homo sapiens

```
<400> 243
                                                                      60
tqcgqccqca ccatgagcga catccgccac tcgctgctgc gccgcgatgc gctgagcgcc
                                                                     120
qccaaggagg tgttgtacca cctggacatc tacttcagca gccagctgca gagcgccg
ctgcccatcg tggacaaggg ccccgtggag ctgctggagg agttcgtgtt ccaggtgccc
                                                                     180
aaggagegea gegegeagee caagagaetg aatteeette aggagettea aettettgaa
                                                                     240
atcatgtgca attatttcca ggagcaaacc aaggactctg ttcggcagat tatttttca
                                                                     300
tcccttttca gccctcaagg gaacaaagcc gatgacagcc ggatgagctt gttgggaaaa
                                                                     360
ctggtctcca tggcggtggc tgtgtgtcga atcccggtgt tggagtgtgc tgcctcctgg
                                                                     420
cttcaqcqqa cqcccqtqqt ttactqtqtq aggttagcca aggcccttgt agatgactac
                                                                     480
tqctqtttqq tqccqqqatc cattcaqacg ctqaagcaga tattcagtgc cagcccgaga
                                                                     540
ttctgctgcc agttcatcac ctccgttacc gcgctctatg acctgtcatc agatgacctc
                                                                     600
attccaccta tggacttgct tgaaatgatt gtcacctgga tttttgagga cccaaggttg
                                                                     660
atteteatea etttttaaa taeteegatt geggeeaate tgeeaatagg attettagag
                                                                     720
                                                                     780
ctcaccccqc tcqttqqatt qatccqctqq tgcgtgaagg cacccctggc ttataaaagg
aaaaaqaaqc ccccttatc caatqqccat qtcagcaaca aggtcacaaa ggacccgggc
                                                                     840
qtqqqqatqq acaqaqactc ccacctcttg tactcaaaac tccacctcag cgtcctgcaa
                                                                     900
                                                                     960
qtqctcatqa cqctqcaqct qcacctgacc gagaagaatc tgtatgggcc gcctggggct
                                                                     983
gatectette gaccacatgg tee
```

<211> 526 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(526) <223> n = a,t,c or g

<210> 244

<400> 244 60 eggetegtee nnatttgaac ceettetttg ateggeetge agtaceggge eggaattace cggtcgagcc acgcgttcgc tcacgcgtcc ggccaaccag aagggttgcg acggggaccg 120 cctgtactac gacggctgtg ccatgatcgc catgaacgga agcgtctttg ctcaaggatc 180 ccagttttct ctggatgacg tggaagtcct gacggccacg ctggatctgg aggacgtccg 240 gagetacagg geggagattt catetegaaa cetggeggtg agtgeteeag tagacacetg 300 tgtgggatgc tcatcaaaga cgtggaaagt ggccccattc gtgcgggcct ggtggaggcc 360 420 gtgagggtgc agtgcctgaa aagtctgaca gggaagttcc ggacttcccg agcgtggaaa ggggetggtg ecgeagacag aacetgette catetgttee ecgteateet etgettggge 480 caggccctga gctggggtga gctggggaca ggcaggcagg tgtatt 526

<210> 245 <211> 418 <212> DNA . <213> Homo sapiens

catcotatt caccotaga geatggetg tectocage ceatteett teatetett footectatt caccotage ceategget tectocage ceatteett teatetett footectatt caccotage ceatggeat tectogage ceategge geoteteget footectage ceatggeat tectogage ceategget geoteteget cettogage ceatgget cettogage geoteteget cettogage cectogage geoteteget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage cectogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget cettogage geotetegget geotegage geotetegget geotegage geotetegget geotegage geotegage geotegage geotetegget geotegage g

<210> 246 <211> 706 <212> DNA <213> Homo sapiens

<400> 246 acctcatatt attggagcag aagatgatga ttttggtact gaacatgaac agatcaatgg 60 acagtgcagc tgtttccaga gcattgaatt gctaaaatct cgcccggctc atttggctgt 120 tttettacge catgtagttt cacaatttga ccctgcgact ttgetttgtt atctctatte 180 agacetgtat aaacatacca attecaaaga aactegtege atetteettg agttteatea 240 gttctttcta gatcgatcag cacacctgaa agtttctgtt cctgatgaaa tgtctgcaga 300 tctagaaaag agaagacctg agctcattcc tgaggatctg catcgccact atatccaaac 360 tatgcaagaa agagtccatc cagaagttca aaggcactta gaagattttc ggcagaaacg 420 tagtatggga ctgaccttgg ctgaaagcga gctgactaaa cttgatgcag agcgagacaa 480 ggaccgattg actttggaga aggagcggac atgtgcagaa cagattgttg ccaaaattga 540 agaagtattg atgactgctc aggctgtaga ggaagataag agctccacca tgcagtatgt 600 tatteteatg tatatgaage atttgggagt aaaagtgaaa gageetegaa atttggagea 660

706

caaacggggt cggattggat ttcttcccaa aatcaagcaa agtatg

<210> 247 <211> 439 <212> DNA <213> Homo sapiens

<400> 247 caagggaggg gggttgatcc cctggcacag gtcgaggccc tggacccaca tcctttgtct 60 geeteeceae eccacagtge cegtteateg acgattteat cetggeecte cataggaaga 120 tcaagaatga gcccgtggtg tttcctgagg ggccagaaat cagcgaggag ctcaaggacc 180 tgatcctgaa gatgttagac aagaatcccg agacgagaat tggggtgcca gacatcaagt 240 tgcaccettg ggtgaccaag aacggggagg agcccettce ttcggaggag gagcactgca 300 gcgtggtgga ggtgacagag gaggaggtta agaactcagt caggctcatc cccagctgga 360 ccacggtgat cctggtgaag tccatgctga ggaagcgttc ctttgggaac ccgtttgagc 420 cccaagcacg aatggcgaa 439

<210> 248 <211> 730 <212> DNA <213> Homo sapiens

<400> 248 eccaegegte eggaataaag atagataaga etteegatgg accaaaaett ttettaacag 60 aagaagatca aaagaaactt catgattttg aagagcagtg tgttgaaatg tatttcaatg 120 aaaaagatga caaatttcat tctgggagtg aagagagaat tcgtgtcact tttgaaagag 180 tggaacagat gtgcattcag attaaagaag ttggagatcg tgtcaactac ataaaaagat 240 cattacaatc attagattct caaattggcc atttgcaaga tctttcagcc ctgacggtag 300 atacattaaa aacactcact gcccagaaag cgtcggaagc tagcaaagtt cataatgaaa 360 tcacacgaga actgagcatt tccaaacact tggctcaaaa ccttattgat gatggtcctg 420 taagaccttc tgtatggaaa aagcatggtg ttgtaaatac acttagctcc tctcttcctc 480 aaggggatct tgaaagtaat aatccttttc attgtaatat tttaatgaaa gatgacaaag 540 atccccagtg taatatattt ggtcaagact tacctgcagt accccagaga aaagaattta 600 attttccaga ggctggttcc tcttctggtg ccttattccc aagtgctgtt tcccctccag 660 aactgcgaca gagactacat ggggtagaac tcttaaaaat atttaataaa aaacaaaaaa 720 aaagggcggc 730

<210> 249 <211> 466 <212> DNA <213> Homo sapiens

<400> 249 attgctgccg ctggatcgac tgctttgcct tgtacgacca gcaggaggag ctcgtgcggc 60 acategagaa ggtecacate gaccagegea aaggggagga etteacttge ttetgggeeg 120 gttgccctcg aagatacaag cccttcaacg cccgctataa actgctgatc cacatgagag 180 tccactctgg ggagaagccc aacaagtgta cgtttgaagg ttgcgagaag gccttttcaa 240 ggcttgaaaa tctcaagatc cacttgcgga gccacacagg cgagaagccg tatttgtgcc 300 agcatccggg ttgtcagaag gccttcagta actccagtga ccgcgccaaa caccagcgga 360 cgcatctgga cactaaacct tatgcttgtc aaattccagg atgtaccaaa cgctacacag 420 acccaagttc cctaagaaag catgtgaagg cacattcttc caaaga 466

<210> 250 <211> 963 <212> DNA <213> Homo sapiens

<400> 250
ggagcggctg ccacggaaaa cgcctggccg gacggtggct ggcggccctg cctgggcgcg

60

```
gagggeggeg gtggegggee eegeggeett eteteagett eettteteet eaegaeggee
                                                                      120
tccacagtcc ggagcccggc ggagcccgga cctggogggg agagctgcct ccacggccgg
                                                                      180
gcacccagac cccaccgtcg cagtcgccac cacctcagtc catccttggt accggcaatg
                                                                      240
                                                                      300
ggcttcgtat cctccagtgc acttgtaact gacttggaca cggaatacta agaactcact
                                                                      360
totgtoctca toccagtogo googgoggtg accatotogg ctottttggg ottaactgco
                                                                      420
geteetetgg actetgtetg actttggggg caccatggac caaagtggga tggagattee
tgtgaccete atcattaaag caccgaatca gaaatacagt gaccagacta ttagetgett
                                                                      480
cttgaactgg accgtgggga aactaaaaac gcatctatct aacgtttacc ctagcaaacc
                                                                      540
agtaagtgtg taaaagctgg gggcagctgc totgadcagc agcttttcgt gccgtgtacc
                                                                      600
                                                                      660
ctcctttttc ctgcttctcc cctccagtct tgaatgaaat aggtctcttt tggtagaccg
                                                                      720
cgaggtattt tgagttctga ggttgtgtct cctgagtgtt cgaaccatca ttaatatttt
                                                                      780
cctgatgagg ttcagttaat tagtaagagg aagcagaaat atcaagggac ttaagaattg
                                                                      840
gcaggcaaag accgggcgcg gtggctcacg cctgtaatcc cagcactttg ggaggccaag
gcgggcggat cacgaggtca ggagttcgag accagcetta ccggcatggt gaaaccetgt
                                                                      900
                                                                      960
gtctactgaa aatacaaaaa ttaactgggc gtggtggcgc atgcttgtaa tcccagctac
                                                                      963
```

<210> 251 <211> 894 <212> DNA

<213> Homo sapiens

```
<400> 251
                                                                      60
geggggaeee ggatgtgtgt ggtggeggeg geegaagage ttgtgtgegg agetgagagg
                                                                     120
cctatggatg aggaggacge ggeggeeeeg gtttgttete atgaacaaga tggatgacet
caacetgeac taceggttte tgaattggeg ceggoggate egggagatte gagaggteeg
                                                                     180
agettteega tateaggaga ggtteaaaca tategttgta gatggagata etttaagtta
                                                                     240
tcatggaaac tctggtgaag ttggctgcta cgtggcttct cgacccctga ccaaggacag
                                                                     300
                                                                     360
caattatttt gaggtgtota ttgtggacag tggagtccgg ggcaccattg ctgtggggct
                                                                     420
ggtccctcag tactacaget tggatcacca geetggetgg ttgcctgact etgtageeta
                                                                      480
ccatgctgat gatggcaage tgtacaatgg ccgagccaag ggccgccagt ttgggtcaaa
                                                                      540
gtgcaactcc ggggaccgga ttggctgtgg cattgagcct gtgtcctttg atgtgcagac
cgcccagate ttetteacea aaaatgggaa gegggtggge tetaccatea tgcccatgte
                                                                      600
cccagatgga ctgttcccag cagtgggcat gcactccctg ggtgaggagg tgcggctgca
                                                                      660
cctcaacgct gagctgggcc gtgaggacga cagcgtcatg atggtggaca gttacgagga
                                                                     720
tgaatggggc cggctacatg atgtcagagt ctgtgggact ctgctggagt acttagggaa
                                                                     780
                                                                     840
gggcaaaagc atcgtggatg tggggctggc ccaggcccgg cacccactca gcacccgcag
ccactacttc gaggtggaga tcgtggaccc tggagagaaa tgctacatcg ccct
                                                                     894
```

<210> 252 <211> 861 <212> DNA <213> Homo sapiens

```
gttecaggac egeaegetee gaggaggace gggaeggeet atggggatgee tggggeecat
                                                                     240
ggagtgaatg ctcacgcacc tgcgggggag gggcctccta ctctctgagg cgctgcctga
                                                                     300
gcagcaagag ctgtgaagga agaaatatcc gatacagaac atgcagtaat gtggactgcc
                                                                     360
caccagaagc aggtgatttc cgagctcagc aatgctcagc tcataatgat gtcaagcacc
                                                                     420
atggccagtt ttatgaatgg cttcctgtgt ctaatgaccc tgacaaccca tgttcactca
                                                                     480
agtgccaagc caaaggaaca accetggttg ttgaactagc acctaaggtc ttagatggta
                                                                     540
cgcgttgcta tacagaatct ttggatatgt gcatcagtgg tttatgccaa gtaagtgctg
                                                                     600
attigttete atteaactig teeagagggt tieaatgtet tigtgtaaat ggtttacata
                                                                     660
gtctcactct ctgaatcact catctttaca ctttttagag tttgtaaatg gtgaaagatt
                                                                     720
tgaaaattaa ggtatgattt cagtgaaaag taccaagtgt tgtattgtgc gaaggaaaag
                                                                     780
tagactagag ttattttct ttccttgagt gtcacttgaa tataaaagaa taaaaatttt
                                                                     840
tgaatagtgt taaaaaaaaa a
                                                                     861
```

<210> 253

<211> 556

<212> DNA

<213> Homo sapiens

<400> 253 caggetgtta agacaagage ttgtggtget ttgccacett caccacecca gtttgatate 60 tttgctggca gctgggattc gtccccggat gttggtgatg gagttagcct ccaaqqqttc 120 cttggatcgc ctgcttcagc aggacaaagc cagcctcact agaaccctac agcacaggat 180 tgcactccac gtagctgatg gtttgagata cctccactca gccatgatta tataccgaga 240 cctgaaaccc cacaatgtgc tgcttttcac actgtatccc aatgctgcca tcattgcaaa 300 gattgctgac tacggcattg ctcagtactg ctgtagaatg gggataaaaa catcagaggg 360 cacaccaggg tttcgtgcac ctgaagttgc cagaggaaat gtcatttata accaacaggc 420 tgatgtttat tcatttggtt tactactcta tgacattttg acaactggag gtagaatagt 480 agagggtttg aagtttccaa atgagtttga tgaattagaa atacaaggaa aattacctqa 540 tccagttaaa gaatag 556

<210> 254 <211> 435 <212> DNA <213> Homo sapiens

<400> 254 caaaggccag taatagtacc catgagtttc gtattggcct acctgagggg tgggaatccg 60 aaaaaaaggc agttatcccc ctggggatcg ggccacccct gactttaatc tgcctagggg 120 ttctgggggg tattctcatc tacgggagga aaggcttcca aactgcccac ttttacttaa 180 aggacagtee atecectaaa gtaatateea eeeeteeace acetatettt eeaattteaa 240 aggaggtcgg accaattcca ataaagcact ttccaaagca tgtggcaaat ttacatgcaa 300 gtagggggtt tactgaaaaa tttgaaacac tgaaaaagtt ttaccaggaa gggcaaagct 360 gtactgttga cttaggtatt acagcaaaca qctccaacca cccaqacaac aqqcacaqqa 420 atcgatcctt aattg 435

```
<210> 255
<211> 698
<212> DNA
<213> Homo sapiens
```

<400> 255 cctcatttcc tgatcgaaca gcctcacttg tgttgctgtc agtgccagta gggcaggcag 60 gaatgcagca gagaggacte gecategtgg cettggetgt etgtgeggee etacatgeet 120 caccagccat acttcccatt gcctccagct gttgcacgga ggtttcacat catatttcca 180 gaaggctcct ggaaagagtg aatatgtgtc gcatccagag agctgatggg gattgtgact 240 tggctgctgt catccttcat gtcaagcgca gaagaatctg tgtcagcccg cacaaccata 300 ctgttaagca gtggatgaaa gtgcaagctg ccaagaaaaa tggtaaagga aatgtttgcc 360 acaggaagaa acaccatggc aagaggaaca gtaacagggc acatcagggg aaacacgaaa 420 catacggcca taaaactcct tattagagag tctacagata aatctacaga gacaattcct 480 caaqtggact tggccatgat tggttagtct cgctctgtca cacaggctgg agggcagtgg 540 cgggatctcg gttcacccca acctttgcct cacgggttca agggattctc gtgcctcagc 600 cttccaagtg gctgggattg caggtgtgcg ccagtacgcc tggctagttt tagtattttt 660 tgttacagac ggggtttcac catgttggct gggctggt 698

<210> 256 <211> 736 <212> DNA <213> Homo sapiens

<400> 256 gtttgaacag cccggaaacc cgggcgaccc acgcgtacga actccgcccc catgggggcc 60 ccactttttc gctttgattc cttcttcccc caaagaggtc ccagctaccc catcctccag 120 aagggacccc attgccccaa caqcgactct tctctctaaa aaqaccccaq caactctaqc 180 ccccaaagag gccctcattc ccccagctat gactgttccc tcccctaaaa agaccccagc 240 aattccaacc cccaaagaag ccccagctac cccatcctcc aaagaggcct ccagtccccc 300 agcagtgact ccttccactt acaaaggggc cccatccccc aaagagctcc tcattccacc 360 agetgtgact teteetteec ccaaagagge acetacteet ccagetgtga eteeteeate 420 ccccgaaaag ggcccagcaa ctccagcccc caaagggact cccacttccc cacctgtgac 480 tecttectee etcaaagact eccetaette eccagettet qteacatqta aaatqqqqqe 540 cactgttcct caagcatcta aagggcttcc agcaaagaaa qqccccacaq ctctqaaaqa 600 agtacttgtt gccccagctc cagaaagcac gccaatcatc acagctccca ctcggaaagg 660 tccacagacc aaaaagagtt ctgctacttc acctcctata tqcccaqatc cctcagctaa 720 gaatggttct aaagga 736

<210> 257 <211> 77 <212> DNA <213> Homo sapiens

```
ctccgcctcc caaagtactg ggattacagg tgtgagccac cgtgcccagc caagaccttg
tatctttaaa aaaaaaa
                                                                      77
     <210> 258
     <211> 499
     <212> DNA
     <213> Homo sapiens
     <400> 258
aatgeteett tggtaagaac aattatatgg etaaattaat eteageeace tagttetaaa
                                                                      60
tgtagagcaa ggattgcaag ggattattta gacaagttca tcaattaagt aaaattagac
                                                                      120
atgaaqqata taaqaatgaa tgataaagca agctaaaaat ggtgaaacaa gggatgtctq
                                                                      180
attqqaaqta qaaqatattt atttaggttc taggacatta gtatcagtga ggacagtaat
                                                                      240
tteetgettg tttgtattte agtgateaca tacaettett tacetgataa egtetetett
                                                                      300
ctctaggctq gttttqgtta cggcttgcca atttctcgtc tgtatgccaa gtactttcaa
                                                                      360
ggagatetga atetetaete tttateagga tatggaaeag atgetateat etaettaaag
                                                                      420
gtatecettg aatteaatag caaaateetg tttetaaaac cattgeteet tttatageee
                                                                      480
tgagtgctat ggtccggag
                                                                      499
     <210> 259
     <211> 621 .
     <212> DNA
     <213> Homo sapiens
     <400> 259
tttcgtgact gtagtcagcc cttagtggat gagagcgcct atgcttcaga aacagcaggc
                                                                      60
teccaggatg gacaceeege eeeetgaaga aegettagag aageaaaatg aaaaaetgaa
                                                                      120
caaccaggaa gaggagacgg agtttaagga actggacggt ctgagggaag ccttggcaaa
                                                                      180
cctccgggga ctgtcagagg aggagaggag cgagaaggct atgcttcgct cccgcattga
                                                                      240
agageagtee cageteatet geateetqaa qegqaqqtea gatqaqqeee tggageqetg
                                                                      300
ccagatccta gagctgctca atgcagagct ggaggagaag atgatgcagg aggctgagaa
                                                                      360
gctcaaggcc cagggtgagt acagtcggaa actaqaggaa cgctttatga ccctagcagc
                                                                      420
caaccacgag ttgatgctcc gcttcaagga tgaatacaag agtgagaaca tcaagctgag
                                                                      480
ggaggagaat gagaagctga ggctggagaa taacagcctc ttcagccagg ctctgaagga
                                                                      540
tgaggaggeg aaagtattac agctcacagt ccggtgtgag gccctcactg gggagctaga
                                                                      600
aacgctgaag gagaggtgtg c
                                                                      621
```

<210> 260 <211> 414 <212> DNA

<213> Homo sapiens

PCT/US00/35017 WO 01/53455

tgggcgtatg cgctgataac tcttaaatca gatgaaatat ctttcacctt	260 gcgagccacg ccttcaccct ttgtcatgcc ctggggaagg atgtttattt tgaaagtcca ctttctgact	tccgctcctg cttctccatt gaatgataca taaatacata ttgctgtctg	cgcactcatg gaatgtaatg acatttcaga atttgataaa aagccactag	ggaatgtgtg gaaccagtaa cacatagttt ttattgttga aaagccacct	gcagtagaag gcttctttcc ccctagttta ttggaagtga gaattgcaat	60 120 180 240 300 360 414
<210> <211> <212> <213>	620	ıs	•			
ctgagaaaca acagaccagt agcatagata aaggacagtt gaccgttccc agaagcacaa accaaagcca ggcagcaagc taccacagct	261 ctactcatag ttgagcttga atggagacat tgcaaagggg ctagtgctta ctgacagttc tggcagccac aaaccactga ttcctgatca cctcatatag taattcaacg	gtgtcagaat ctggacattg aaagctagat caacacagct ccttccaagg ccagtcctct gcaaggttgt agagaaggca	atcatgcagg catgatggag gacatcatgg gagagctgca gtgatcaacc tccggacaga agcgctgaaa gtcagcgaac	ctcacaggct gattccggaa agcatccaga gaagtactcc tcaccaataa gcagtaaaga gcaaggagaa acatccctta	ccagaaagtg ttataacacc aaagtctgac gctcactgta gaaaaacctg gtcgacctcc ggttttagaa cctctctcct	60 120 180 240 300 360 420 480 540 600
<210> <211> <212> <213>	418	ns				
ggaactgcct acatgacagc tgctgccaga gatgtgtcca ttgccaagca	262 ctgcctggcc gcccgtcagt caaggacccc atcagaaggg gttaacgctc agccatgttt tatgaagatg	gatggcccct gtggtggctg gagttctgca actggccaga tcaaggcacc	tcaacaatag atctgatgaa gaaaaaacat tgatcgcagt cagggatgag	cactgggatt gaaccccatg cgttgatccg gtctccagaa gaagtggcct	cctttcttct gcctcgctga gaagatcccc gaagtagaat cgtcaatatg	60 120 180 240 300 360 418

aatggttctt tatgaagatg aggatagaac atatctggct tcagaaatgg tatggagg

<210> 263 <211> 441 <212> DNA <213> Homo sapiens

<400> 263 tttcgtcaga gccgcgggag gacggttgcc tggtattatt agcaagcagc aaatatggcg 60 gtggcgcgcg tggacgcggc tttgcctccc ggagaaggat cagtggtcaa ttggtcagga 120 cagggactac agaaattagg tecaaattta eeetgtgaag etgatattea eaetttgatt 180 ctgqataaaa atcagattat taaattggaa aatctggaga aatgcaaacg attaatacag 240 ttatcagtag ctaataatcg gctggttcgg atgatgggtg tggccaagct gacgttgctt 300 cgtgtattaa atttgcctca taatagcatt ggctgtgtgg aagggctaaa ggaactagta 360 catctggaat ggctgaattt ggcaggaaat aatcttatag ccatggaaca gatcaatagc 420 tgcacageté tacageatet e 441

<210> 264 <211> 832 <212> DNA <213> Homo sapiens

<400> 264 tatttcgagc ggcagttggg gcggtaccag agggtgcctg gaaggatacg gcccagctcc 60 acaagagega ggaggegaag egggtgetge ggtattacet ettecaggge eagegetata 120 tetggatega gacceageaa geettetaee aggteageet eetggaceat ggeegetett 180 gtgacgacgt ccaccgctcc cgccatggcc tcagcctcca ggaccaaatg gagaggaagg 240 ccatttacgg ccccaacgtg atcagcatac cggtcaagtc ctacccccag ctgctggtgg 300 acgaggeett cagcategeg etgtggetgg etgaceaeta etaetggtae geeetgtgea 360 tetteeteat tteeteeate teeatetgee tgtegetgta caagaccaga aagcaaaqee 420 agactctaag ggacatggtc aagttgtcca tgcgggtgtg cgtgtgccgg ccagggqqag 480 aggaagagtg ggtggactcc agtgagctag tgcccggaga ctgcctggtg ctgtcccagg 540 agggtgggct gatgccctgt gatgccgccc tggtggccgg cgagtgcatg gtgaatgata 600 getetetgae aggagagage attecagtge tgaagacgge actgeeggag gggetgggge 660 cctactqtqc aqaqacacac cqqcqqcaca cactcttctq cqqaaccctc atcttqcatq 720 cccgggccta tgtgggaccg cacgtcctgg cagtggtgac ccgcacaggt atgagccggg 780 aggetggget tgagagagat eegggeteag eaccettgaa gaggtggagt gg 832

<210> 265 <211> 714 <212> DNA <213> Homo sapiens

<400> 265
tttcgtcggg gqcgggctcc accttcacct ctgccttctq ctctgcttca tgctgcccga

ggacgctgcc	atggctgtgc	tgacggcctc	caaccacgtg	agcaacgtca	ccgtgaacta	120
caacatcacc	gtggagcgga	tgaacaggat	gcagggcctg	cgggtctcta	cagtgccagc	180
cgtgctgtcc	cccaatgcca	cgctggcact	gacggcgggc	gtgctggtgg	actcggccgt	240
ggaggtggcc	ttcctgtgga	cctttgggga	tggggagcag	gccctccacc	agttccagcc	300
tccatacaac	gagtccttcc	cggttccaga	cccctcggtg	gcccaggtgc	tggtggagca	360
caatgtcacc	cacacctacg	ctgccccagg	tgagtacgtc	ctgaccgtgc	tggcatctaa	420
tgccttcgag	aaccggacgc	agcaggtgct	gatccgcagt	ggccgggtgc	ccattgtgtc	480
cttggagtgt	gtgtcctgca	aggcacaggc	cgtgtacgaa	gtgagccgca	gctcctacgt	540
gtacctggag	ggccgctgcc	tcaattgcag	cagcggctcc	aagcgagggc	ggtgggctgc	600
acgtacgttc	agcaacaaga	cgctggtgct	ggatgagacc	accacatcca	cgggcagcgc	660
aagcatgtga	ctggtgctgc	ggcggggcgt	gctgcgggac	ggcgagggat	acac	714

<210> 266 <211> 1872 <212> DNA <213> Homo sapiens

<400> 266

cccggaattc ctgggtcgac tatttcgtgg aaaggctgcc actctgcatg tgcacagtga 60 ccagaagccc cttcacgatg gggccctcgg gtcgcagcag aacttggttc gcatgaagga 120 ggegetgagg geeageacea tggaegteac cgtggteetg cetagtggge tggagaagag 180 gagcgtgctc aatgggagcc atgcgatgat ggacctactg gttgaacttt gccttcagaa 240 ccacctgaat ccatcccacc atgcccttga aattcggtct tcagaaaccc aacaaccttt 300 gagttttaag ccaaatactt tgattgggac cctgaatgtg catactgtgt ttctgaaaga 360 aaaagttcct gaagagaagg ttaagcctgg tccccctaag gtgcctgaga aatctgtgcg 420 tttggtcgtg aattacctgc ggacacaaaa agctgttgtg cgtgtgagcc ctgaggttcc 480 tctccagaat attctcccag tcatttgtgc aaagtgtgag gtcagcccag agcacgtggt 540 tetecteagg gacaacattg ceggagagga getggagetg tecaagteec tgaacgaget 600 cgggataaag gagctctacg cgtgggacaa cagaagagaa acctttagga aatcatcact 660 tggcaatgat gagacagata aagagaagaa aaaatttctg ggatttttca aagttaataa 720 aagaagcaat agtaaggget gtttaacgac ceccaactee ceatecatge acteaegtte 780 tettacgetg ggtccatece tetegetggg cagcatetea ggggtgteeg tgaagtegga 840 gatgaagaag cgccgagccc ctcctcctcc aggttcaggg ccacctgtgc aagacaaggc 900 ateggaaaag gtatetettg ggteaeagat tgatttaeag aagaagaage ggegagegee 960 agetececet ccaccacage caccaccace gagtecectg atececaace gcactgagga 1020 taaggaggag aacaggaaga gcacgatggt ttattgctgt gcgtcattcc ctactcaggc 1080 caagegette tgatggaegg geetetteet qaeeteqqae ettteecagt gtetettetq 1140 ccctggctct gattttcctg ttgttcttcc tcctttcagg ataaaagggc tcattgtata 1200 cccagaattt acttcctttg gggtttacat ataaatgcat taataacaga gatttgtttg 1260 attgaggttt atatttttt gaaggaggta aattatatgc aaattttagg ttgataatat 1320 teacetgtet gaaatteact gataettgga aatgtteetg tgaagaacte tgetttattt 1380 taattcatta ttaattcatg tttttcttat tggatattca gttccagaat ttattgccaa 1440 tttttcttaa aactagattg tatccataaa ttgaccagta tagtcaattt ggatagaact 1500 gaaactttct gtctacctgg taaaactaag tgcctaaaaa catgaactat aaatgtagtt 1560 actaggaact cacaacttat atatactatc cattcaatga tacataggac ccaatgtctt 1620 tgtgtttttg aggttttcct gttactgtgt actttgccat tttacatagt tcactaaaaa 1680 gaaagaagtg ggagaagaag gggggtctat tcattattct atattatqat tctcttcatt 1740 attetgttet etteattatt etatteattt etteacecat ttatteacta aacagtgaca 1800 tagtacttac ttgatgctag gtattacacc agttttgtgg gctataagag tgaataacaa 1860 gcacgtgacc tt 1872

<211> 684 <212> DNA

<213> Homo sapiens

<400> 267 tgtagataca gagtagctaa ttctaaaatt catatggaag gcaaagaaac taaattagcc aaaacaattt tgaaaaagat ttcaaaaaaa ttttgaagga atcatgctgc ccagttttaa 120 gacttactat aaagctgtga taatcaaggc aatctggtat ttatgaaagg ataaacacat 180 agatcaatgg aataaagtcc aaaaccagac tcacataaat agcaattgat ttctgacaaa 240 ggtgaaaaga caactcaatg gggaatggag agtttttcaa cagatgattt taaaacaact 300 gaacatccat atgcaaaaaa ataaacctac ctaaatttca cagcttatac aaaaattaac 360 ctaaaatgga tcacggatct aaatgtagaa ctaaatttat aaaatttta gaagaaaaaa 420 atccatagge egggeaeggt ggeteatgee tgtaateeea geaetteaga ggetgaggeg 480 540 actaaaaata aaaaataaaa aaaaaatggg ctgggagtgg tggtgcacac ctgtagtccc 600 agctacttgg gagactgaag cacaagaatc acttgaaccc agcaggcaga ggttgcagtg 660 agtggagatt gtgccactgc accc 684

<210> 268

<211> 453

<212> DNA

<213> Homo sapiens

<400> 268 ggtcgacgat ttcgcccgcc gtcggacgag gagcgggagc cgtgggagcc gtggacgcag 60 etgegeetgt egggeeacet gaageegetg cactacaate tgatgeteac egeetteatg 120 gagaacttca ccttctccgg ggaggtcaac gtggagatcg cgtgccggaa cgccacccgc 180 tacgtagtgc tgcacgcttc ccgagtggcg gtggagaaag tgcagctggc cgaggaccgg 240 gegttegggg etgteeetgt ageeggtttt tteetetace egeaaaceca ggtettagtg 300 gtggtgctga ataggacact ggacgcgcag aggaattaca atctgaagat tatctacaac 360 gcgctcatcg agaatgagct cctgggcttc tttcgcagct cctatgtgct ccacggggag 420 agaagattcc ttggggttac tcagttttcg cct 453

<210> 269

<211> 525

<212> DNA

<213> Homo sapiens

<400> 269
ggcacgagaa ctggtgctta atttaatgcc aattcatgat gtaggtttct aagcagcaca 60
taaaaggggc tttttaggta gcactgagta ctttactaaa aatacaaaaa ttagccaggg 120
gggggggtgc acgtctttaa tcccagctac tcagggcggg ggccaggggg tggggtaggg 180
tgggggctga gacaggagaa gcacttgaac ccaggaggcg gaggttgcag tgagctgaga 240
ttgtgctact gtactccaac ctgggcaaca aacagagtga gacactgtct caaataaata 300

aataaataga taaataaaat aaaataaaat aaaaagaact cgaccctttt tacaatagct 360 aaaggaaaat aaaatactta agaatatact taaccaagga ggtgaaagac ctctacaaag 420 aaaactacaa aacactgctg aaagaaatca cagatgacac aaacaaaaac acatcccaag 480 ctcatggaca ggtagaatca atactgtgaa aatgactata ctgcc 525

<211> 880 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(880) <223> n = a,t,c or g

<400> 270

<210> 270

cccagtccca cattgagccc tgatcccatc caagtccata gacttggcct ctgaccaaac 60 ctgaccetge acttgteact taaggtggte ccatatteag etcagaccet gaaccgaget 120 ctgaccctgg cttctgactg aatctgtgac agactaaggc ctgaccctgg ccctatacca 180 cgtctccacc cgtgtcctca actgagtgct gaccccaaac ctagacagcc ctacctgatc 240 cttcccccag gcctgtcccc gccgcttcat ctcaaaagtt gaaggtgagg agccggtaaa 300 caqqtctqqa qcctqqtctc aqactcaqcc tqaqcaaqct caqtctqqqq tcattqqqcc 360 tqtaaccccq qqcaqqccct tqttagggat qcaqqqtctc accctaqqqq tataaqqqat 420 480 nnnnnnnnn nnnnnnnnn attttgctgt tagcatatgt gatgaccttg acttcacctc 540 cctggcgcca atatcctctt ctgtaaaatg gcttatgcat tacaaagtga ggtcctgcca 600 gtgactacac ctagaggcat taagtgcctt tgtggactcc tgccctgcac ctcacctctc 660 ccagcttttt aaccccctga ggaaccttct taccttgagt ccctcacccg ctacaggcca 720 tccatgagca gatgaactgc aaggagtatc aggaggacct ggccctgcgg gctcagaacg 780 atgeggetge eeggeggeeg teagagatgt ttaaggtgag getggeteag ggtegtggee 840 tagcatcttt aagttctggg atccagtctg gggtagggag 880

<210> 271 <211> 1066 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1) ... (1066) <223> n = a,t,c or q

<400> 271

```
acaaagcagc atctttgtgg tgtttcacca gttcttagtc ccagttacag caggtgactg
                                                                      360
tggtggacga aaactggact caacagtttc ctccattcag ggatcccagg ccatggagca
                                                                      420
aggagggccc gaatcagtac ctccctcaga tcacctggac agtgtgagac aaaaagccgc
                                                                      480
agggaccatc cetggagggg gattcagcag getcgatcgg ggtccaggtg ctggtatttt
                                                                      540
tcattagcct ccaggggatt ctgatgtagc cagcagcgtc cttggacaac agtttgagat
                                                                      600
ctgctgcttt tcaaactgga ttccttggag cgctggaaat ctcagcgatg tcacagggca
                                                                     660
ggagagggag gttgtggagg gaaaattcag acttcccgcc cagcccacca tttcaccagg
                                                                     720
cagctctaaa tttatgtgtt ttataagcca aggttcacac aaaaaagaaa attcgctggg
                                                                     780
gggaaaaaaa cagtttctat ggcttaaaaa aaagtctgaa gaccaccagt ctatttcaat
                                                                     840
actctatttt gttgatgaag aagctggtga ccaaagatac ccaaagacta agtcagggg
                                                                     900
atgcaggggt acaggggtgc ctctcacttt cccaaagtga gatccacata ccacagcaaa
                                                                     960
atgatttgag ccagcctgtg gatgaacaca tttaaaattt tatttataaa tacatttact
                                                                    1020
gttacatttg acttctcttt attaaataca tttgtgattt ataaaa
                                                                    1066
```

<210> 272

<211> 659

<212> DNA

<213> Homo sapiens

<400> 272 tacggggaat tcgtcaccta ccaaggggtg gctgtgacgc ggagccggaa agaaggcatc 60 gcacacaact acaaaaatga gacggagtgg agagcgaaca tcgacacagt gatggcgtgg 120 ttcacagagg aggacetgga tetggtcaca etetaetteg gggageegga etecaeqqqe 180 240 gtgggctacc teegggagag categegege aaccacetea cagacegeet caacetgate 300 atcacatecg accaeggeat gacgaeegtg gacaaaeggg etggegaeet ggttgaatte 360 cacaagttcc ccaacttcac cttccgggac atcgagtttg agctcctgga ctacggacca 420 aacgggatgc tgctccctaa agaagggagg ctggagaagg tgtacgatgc cctcaaggac . 480 gcccacccca agctccacgt ctacaagaag gaggcgttcc ccgaggcctt ccactacgcc 540 aacaacccca gggtcacacc cctgctgatg tacagcgacc ttggctacgt catccatggg 600 gtgagtcgcc tgctggaggc accacctcca ggggctccct ccccaggctc tgggtcttc 659

<210> 273

<211> 412

<212> DNA

<213> Homo sapiens

<400> 273
acgcgacttc tcgggtcgac ccacgcgtcc gcacatataa cacatcacgc accttttgag 60
tggctacctt ggttctcgcc tttctttca agagaccatt cttcaacaga actgtaagga 120
ttcttcttgg ctgaatcaga tgtgacgcat cccacttctg cgtttgaggt ctagcacata 180
ccgctccaag ggctttgacg tcacagtgaa gcactcacac ggaagctgga cgggcttcgg 240
tggggaagac ctcgccacca tccccaaagg gttgaatact tattttcttg tcaacattgc 300
cactattttt gaatcaaaga atttcttttt gcctgggatt aaatggaatg gaatacttgg 360
cctatcttat gccacacttg ccaagccatc aagttctctg gagaccttct tc 412

<210> 274 <211> 522 <212> DNA <213> Homo sapiens

<400> 274 gaattaagag ttactccggg ccaaatggcc ggagttgtca gatctggcag cgtcttcgct 60 ggggctccag ggagctgctg ctggggtgga agctctcaca ctctttctcc acgtgccctt 120 tecagttece tgacategtg gagttetgeg aggeeatgge caacgeeggg aagacegtaa 180 ttgtggctgc actggatggg accttccaga ggaaggtaag gcgtctgatc caggtctgga 240 gctgggattg aggagggcaa gaggcttctg gatgggcaca gagacaccag ctctgggtga 300 ccagggetea gecaccacag ggttaeggee gagetgetea ggeettgget gagecaaggg 360 actccatggt ctgtgcagac tgcgtgccat ctgttgcggc aggtgctttg aattggcaaa 420 gggacagagc cgggcatggt gctctggggg ttgggggaag gactaaggtc agagcaaact 480 ctcctggctt cagtacttgt gaatcagagg gtttaaaaga aa 522

<211> 650 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(650) <223> n = a,t,c or g

<210> 275

<400> 275 gaattetget tatgeaceaa tttgcagete etgeaaceat gatgeageet caceeggace tttcaacatt ttccctttca cctaaaactg tatttttctc tqctaaqacc qqctacccta 120 ctttcatttt cctttcactc ttcttggctc ttttgggcct tttaggaatt tgggatgatt 180 caggetetga caggeatggt actagattta ttttaggetg etettttget gttgtecaac 240 aggccaagga gagatttaaa tgatttatcc aatatttgct aaatagtcat gtgtttcatt 300 tateceatat atagtteage ettaatattg tttttgtttt gatttgttae actagtgeat 360 acatagagac gtgaagccag aaaatatcct catcacgaaa cattccgtga ttaagctttg 420 tgactttgga tttgctcggc ttttgactgg accgagtgac tactatacag actacgtggc 480 taccaggtgg taccgctccc ctgagctgcn ggtgggggac acgcagtacc ggcccccgg 540 tgggatgttt ggggcaattg gctgtgtctn tgctgagctn gctgtcaggg aagtgcctct 600 ggtggccagg aaaatcggaa tgttggatca gctgtatctg attaggaaga 650

<210> 276 <211> 497 <212> DNA <213> Homo sapiens

<400>	276					
cccttgatga	ccatctagtc	agtgcggtgg	aattcccatg	acagacgtat	ctgactggtc	60
atgtggtcag	caagcctcgc	ctttggtcag	gccctggagg	gtacagctga	cccatagggc	120
cacttccatg	gcactgggca	agtggctgta	ttggaaatga	agtcgttgcc	cccgatttct	180
ttggggccag	gttgagcttt	cctgcccaga	gcacggaggc	taaagggggt	gggctttgga	240
ctggattggg	gctgacctca	gcctacacct	gcaggaggag	gtggagacag	aggtggcctg	300
ggaggaatgt	gggcacgtcc	tactgtcact	gtgctacagc	tctcagcagg	gtggcttgct	360
ggtaggtgtg	ctgcgctgcg	cccacctggc	ccccatggat	gccaatggtt	actcggaccc	420
cttcgtgcgc	ctgtgagtga	actggggtag	gcaggcggga	ggtgaggata	aggcggtgac	480
tcctcacctc	tccaggg					497

<210> 277 <211> 428 <212> DNA

<213> Homo sapiens

<400> 277 tggtggaatt ctcgccatgg aatatgcacc aggcggcact ctggctgagt tcatccaaaa 60 gcgctgtaat tccctgctgg aggaggagac catcctgcac ttcttcgtgc agatcctgct 120 tgcactgcat catgtgcaca cccacctcat cctgcaccga gacctcaaga cccagaacat 180 cctgcttgac aaacaccgca tggtcgtcaa gatcggtgat ttcggcatct ccaagatcct 240 tagcagcaag agcaaggcct acacggtggt gggtacccca tgctatatct cccctgagct 300 gtgtgagggc aagccctaca accagaagag tgacatctgg gccctgggct gtgtcctcta 360 cgagctggcc agcctcaaga gggctttcga ggctgcgaac ttgccagcac tggtgctgaa 420 gatcatgg 428

<210> 278 <211> 427 <212> DNA <213> Homo sapiens

<400> 278 gtccagtgtg gtggaattca ccaggtgtcc ggggcagtgg tagtatctgg gctgctgcag 60 ggcatgatgg ggctgctggg gagtcccggc cacgtgttcc cccactgtgg gcccctggtg 120 ctggctccca gcctggttgt ggcagggctc tctgcccaca gggaggtagc ccagttctgc 180 ttcacacact gggggttggc cttgctgtac gtgagtcctg agaggcgtgg gatggtgccc 240 agtgggggtg tatgggggga ctaggggagg gcagaactgc tggtcctatc agattcagca 300 gcgactggaa tagggacata ttttatattt ggaatccaag acttttcctt gattcatctg 360 gtctccttga atttcacact gttttctgct gtcccccaag gtcacttcct attccttcca 420 tgggagt 427

<211> 561 <212> DNA

<213> Homo sapiens

<400> 279 cccagaatga ccgggtcgac ccacgcgtcc gcacccagct atggaggcag ctgcaggaac aacttgtttt accgagaaga aacctacact ccaaaagctg agacggacga gatgaatgag 120 gtggaaacgg ctcccattcc tgaagaaaac catgtttggc tccaaccqaq qqtqatqaqa 180 cccaccaagc ccaagaaaac ctctgcggtc aactacatga cccaagtcgt cagatgtgac 240 accaagatga aggacaggtg catagggtcc acgtgtaaca ggtaccagtg cccagcaggc 300 tgcctgaacc acaaggcgaa gatctttgga agtctgttct atgaaagctt cgctagcata 360 tgccgcgccg ccatccacta cgggatcctg gatgacaagg gaggcctggt ggatatcacc 420 aggaacggga aggtcccctt cttcgtgaag tctgagagac acggcgtgca gtccctcagg 480 taactactet gtgategggg etetgtgaaa eggtttteet gtttatgaeg gtgttgttga 540

561

<210> 280 <211> 792 <212> DNA <213> Homo sapiens

aattttqaaa aataccacac a

<400> 280 atttttgatg ccatgtggct acattggttt tagaatacta ataaaatcca ttgcttttaa 60 aataaataaa taaaccccat agcacatcct ccatacaaca tctgttgtcc ctcaagatac 120 aattgttacc actatcatct aaccattatt ttatgataac tttaaaatat caacttggca 180 agaaaatatt ccacaaaaca cactctgcct ttttacttta aagagtcctt ggctacctgg 240 gccaatatta ttctcatttg taggatttag gttccacaga atataatatg tgccttttc 300 tgtgttccct gcagatttgc aagtaccatc cctttttggg gccttacttt gcacctccag 360 catctgggaa acaatgtttt cctgttgcag actctctttg gtgcagtcac cctcctggcc 420 aattgtgttg caccttgggc actgaatcac atgagccgtc gactaagcca gatgcttctc 480 atgttcctac tggcaacctg cettetggcc atcatatttg tgcctcaaga aatgcagacc 540 ctgcgtgtgg ttttggcaac cctgggtgtg ggagctgctt ctcttggcat tacctgttct 600 actgcccaag aaaatgaact aattccttcc ataatcaggg gaagagctac tggaatcact 660 ggaaactttg ctaatattgg gggagccctg gcttccctcg tqatqatcct aaqcatatat 720 tetegacece tgeeetggat catetatgga gtetttgeea teetetetgg cettqttgte 780 ctcctccttc cg 792

<210> 281 <211> 1047 <212> DNA <213> Homo sapiens

<400> 281
ggtcttggtt tcaagggatc atatgaaaag tgcccagcag ttcttccagt tggtgggagg 60

```
atcagctagt gaatgtgata caataccagg gaggcagtgc atggcttcct gtttcttcct
                                                                     120
gettaageaa titgatgatg tittgattta eetcaactea titaagagee aettetataa
                                                                     180
tgatgacatc tttaacttta attatgccca agccaaagct gcaacaggca ataccagtga
                                                                     240
gggcgaagag gcgttcctct tgatccaaag tgagaagatg aaaaatgatt acatttacct
                                                                     300
cagctggtta gctcggggct atattatgaa taagaaacca agactagcct gggaacttta
                                                                     360
tettaagatg gaaaceteeg gegagteett eagtetetta eageteattg etaatgaetg
                                                                     420
ctacaagatg ggccagtttt actattctgc caaagctttt gatgtccttg agaggctgga
                                                                     480
tectaaceet gaatattggg aaggeaaaeg gggtgeetgt gtgggeattt tecagatgat
                                                                     540
catagctggg agagaaccca aagagaccct tcgagaagtg ctccatttac tgagaagcac
                                                                     600
aggtaacacc caagtagaat acatgatccg gatcatgaag aaatgggcca aagaaaacag
                                                                     660
agtgtccatc ctaaaatagc gccagtgcac taggaaccag cttctacttt gacataaaac
                                                                     720
tggaaatcat tttcactcca gctttaatct gtgatacagg gctctgtttt attgacattt
                                                                     780
teetteettg etetttaage eteaaggtea gagaetgaet tgetgagaet tagteteetg
                                                                     840
gctgaacaga gtgccatagt ctgtgaccct gtatgatcct agtagcaata agattttgga
                                                                     900
cttatctggt gcctttcttc caaaaatgct cagagtactt ttatgcaatt tactgacttt
                                                                     960
aaggaaaaca gtataacttt tttttgttag cattttatgg cattgtctcc tggctgcaat
                                                                    1020
aacaaacatc tttgatgttc aagaatc
                                                                    1047
```

<210> 282 <211> 357 <212> DNA <213> Homo sapiens

<400> 282
ctttaaaagt ttctgatgaa ttagtgcagc aatatcaaat taaaaaccag tgtctttcag 60
caatagcatc tgatgcagaa caagaaccta aaattgatcc atatgcattt gttgaaggag 120
atgaggaatt ccttttcct gataaaaaag atagacaaaa tagtgaggag gaagctggaa 180
aaaaacacaa ggtaagagaa atcacagtac accaaagggt cactgttgat tttgtagcac 240
tgcatatagt aacactctta ctaccacagt tatctcactt cttttgtctt agaatagaaa 300
gagtaatcat ttatttagaa aaacctattt ttgcccggct gcggtggctc atgcctg

<210> 283 <211> 536 <212> DNA <213> Homo sapiens

<400> 283 ctggggtgcc ccgcaacctg ccttccagcc tggagtatct gctgttgtcc tacaaccgca 60 tcgtcaaact ggcgcctgag gacctggcca atctgaccgc cctgcgtgtg ctcgatgtgg 120 geggaaattg cegeegetge gaccaegete ceaacecetg catggagtge cetegteact 180 tececcaget acatecegat acetteagee acetgageeg tettgaagge etggtgttga 240 aggacagttc teteteetgg etgaatgeea gttggtteeg tgggetggga aaceteegag 300 tgctggacct gagtgagaac ttcctctaca aatgcatcac taaaaccaag gccttccagg 360 gectaacaca getgegeaag ettaacetgt cetteaatta eeaaaagagg gtgteetttg 420 cccaccttgt ctctgggccc cctttccttc ggggaagcct gggtcgcccc ttgaagggag 480 ctgggacatg gcacggcaat ctttctttcc cgctccactt cgaatggggg aagacc 536

<210> 284 <211> 440 <212> DNA <213> Homo sapiens <400> 284 60 gtatettatt tgeggegetg atetggagtt egttegatga gaatatagaa getteageeg gaggeggegg tggttcgtcc atcgacgetg tcatggttga ttcaggtgcg gtagttgagc 120 180 agtacaaacg catgcaaagc caggaatcaa gcgcgaagcg ttctgatgaa cagcgcaaga tgaaggaaca gcaggctgct gaagaactgc gtgagaaaca agcggctgaa caggaacgcc 240 300 tgaagcaact tgagaaagag cggttagcgg ctcaggagca gaaaaagcag gctgaagaag 360 ccgcaaaaca ggccgagtta aagcagaagc aagctgaaga ggcggcagcg aaagcggcgg 420 cagatgctaa agcgaaggcc gaagcagatg ctaaagctgc ggaagaagca gcgaagaaag 440 cggctgcaga cgcaaagaaa <210> 285 <211> 119 <212> DNA <213> Homo sapiens <400> 285 gcgatggaaa tcgtccacga gccgcggac ctcgagcgtt acatgcgcga ggccgtgaag gtgtcgaacg attcgccggt gctgctcgac cgcttcctga acgacgcgat cgagtgcga 119 <210> 286 <211> 398 <212> DNA <213> Homo sapiens <400> 286 aaacagggga tttaagtgtg tcttttgtgt ttgcaaggca ctaacaccac tcccgtctgt 60 120 atttaaatgc tgtccccagg ttacgactat ggctatgtct gcgtggagtt ttcactcttg gaagatgcca teggatgcat ggaggccaac caggttgctt tatacttegg tcaaatgatg 180 240 ctggaaggat atatttttt atatatgggg agggagggtt tcaaatgatt ttactttgga 300 aaggtacaag aagtctatct gtggagcata ctgtattcca accatcggtt gtgaggaaaa 360 tctttaaaaa ggctggaaag ctttctctag aaaacttaat gggcacagag tgcattttaa 398 aagctagagc ccagttgctt ttggactaga ttccaaaa

```
<210> 287
<211> 1177
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (1177)
<223> n = a,t,c or g
```

<400> 287 cccacgcgtc cgctcctctg ggggtcaaga ggaccccgcc agccaqcaqt qqqcacqacc 60 gegetteaca cageceteca agatgaggeg cegggtgate geaeggeeeg tgggtagete 120 cgtgcggctc aagtgcgtgg ccagcgggca ccctcggccc gacatcacgt ggatgaagga 180 cgaccaggcc ttgacgcgcc cagaggccgc tgagcccagg aagaagaagt ggacactgag 240 cctgaagaac ctgcggccgg aggacagcgg caaatacacc tgccgcgtgt cgaaccgcgc 300 gggcgccatc aacgccacct acaaggtgga tgtgatccag cggacccgtt ccaagcccgt 360 geteacagge aegeaceeeg tgaacaegae ggtggaette ggggggaeea eqteetteea 420 gtgcaaggtg cgcagcgacg tgaagccggt gatccagtgg ctgaagcgcg tggagtacgg 480 cgccgagggc cgccacaact ccaccatega tgtqqqcqqc caqaaqtttq tqqtqctqcc 540 cacgggtgac gtgtggtcgc ggcccgacgg ctcctacctc aataagctgc tcatcacccg 600 tgcccgccag gacgatgcgg gcatgtacat ctgccttggc gccaacacca tgggctacag 660 cttccgcagc gccttcctca ccgtgctgcc agacccaaaa ccgccagggc cacctgtggc 720 etectegtee teggecacta geetgeegtg geeegtggte ateggeatee cageeggege 780 tgtcttcatc ctgggcaccc tgctcctgtg gctttgccag gcccagaaga agccgtgcac 840 eccegegeet geceeteece tgeetgggea ecgeeggeg gggaeggeec gegaecgeag 900 cggagacaag gacetteeet cgttggeege cetcageget ggeeetggtg tggggetgtg 960 tgaggagcat gggtctccgg cagcccccca gcacttactg ggcccaggcc cagttgctgg 1020 ccctaagttg taccccaaac tctacacagg acattccaca ccacacacat acacacacc 1080 cccaccctcc tgccaattaa acagtagcca ttccccnaaa atnnnnnnn nnnnnnnnn 1140 nnnnnnnn nnnnctegg cecegeeta tteaceg . 1177

```
<210> 288
<211> 100
<212> DNA
<213> Homo sapiens
```

```
<400> 288
tgaattttca ttttacaggg aagtgtttgt ttatgtcagg gctcagtgag gtccagctga 60
cccatatgga tgatcacact ctaccagggt attgaagctc 100
```

```
<210> 289
<211> 406
<212> DNA
<213> Homo sapiens
```

<400> 289 cggcacgagc ggcacgagag tcagagggtt ttaatttact tgtgaagctc acactattga 60 aactaattgc aatgcttgac tttattttct ttagagtcca agaaagagaa aaacaaggca 120 tagcacaaat cccctctag agtgcatgt tggttgggta atggattcca gagaccatgg 180 gccaggaaca tcctctgtca gcacttcaaa tgcttcacct tcagaaggcg caccactagc 240 aggaagttat ggatgtactc ctcattcatt cccaaagttc cagcatcctt ctcatgaact 300 tttgaaggaa aatggcttta cccaacaagt gtaccacaag tatcgtcgaa gatgcctaag 130 tgagagaaaaa cgcttgggaa ttggtcagtc ccaagaaatg aatacc 406

<210> 290 <211> 359 <212> DNA <213> Homo sapiens

<400> 290

cccggcagcg gcggcagcgc ggggggccga gacggcagtg cctaccaggg cgcgctgttg 60

cctcgagaac agttcgcggc cccgcttggg cggccggtgg ggacctcgta ctccgcacc 120
tacccggcct acgtgagccc cgacgtggcc cagtcctgga ctgccgggcc cttcgatggc 180
agcgtcctgc acggcctccc aggccgagg cccaccttcg tgtccgactt cttggaggag 240
ttcccgggtg agggtcgta gtgtgcaac tgcggggcc tgtccacac gctgtggcgc
cgagatggca ccggccacta cctgtgcaat gcctgcggcc tctaccaca gatgaatgg 359

<210> 291 <211> 954 <212> DNA <213> Homo sapiens

<400> 291 cccagatcat cgacatggtg cgttgtggtg gtggtacagc tgtggagtct tacctgtcac agtgtcaaga aatgaagggg atgaacggaa ccaggtgctg accctgtatc tgtggatacg 120 gcaggagtgg acagatgcct acctacgatg ggaccccaat gcctatggtg gcctggatgc 180 catccgcatc cccagcagtc ttgtgtggcg gccagacatc gtactctata acaagtactg 240 cetatetggg ecceteetet etettacece tetetagaet tgeeettage tgtgggggtg 300 tagtgatece etetecetae cacataacet ggttgecaeg etgecetgga agettttece 360 caggaccett ctaagetgee aageacteag eccetecatg geaceeceae tttaggetat 420 cccaggccag cccaggctga acgtctcctc ggaacctact gtgtggtcca gggcagatgt 480 ctgaatcaca agggcetete tagggcacae ttttagetet aagtetetea gggeteecee 540 aagageetgt etaagggtet ettteeteea ggacatagee etetggaaca etgetttatg 600 teteettgae eagtteegtg teteeeagee ageacatage tetgeatatt ttetetgggg 660 720 cccttctaca agttttgcag atgtcccca agggaagtca ctgtgtgtcc cggagctacc tetgggttet geagaggeet ttttataeat cetetggeta egtetgtgte eettetggeg 780 cetteaggea ceacecette caggeetega aaggeagegg gtetetetag gtgeacteea 840 ccctctgtgt tgctttgttc tgaaaacaag aatcaaatta acgaaaaaaa aacaagcaca 900 agtttattta tttatttgag acacagcctg ggcaagagag tgagacttca tctc 954

```
<210> 292
<211> 595
<212> DNA
<213> Homo sapiens
```

<400> 292 tacgcactga ctggtgcgtt ggttattgtc accgggatgg tgatgggaaa tatcgccgat 60 tatttcaatc tgcctgtttc cagtatgagt aataccttca ccttcctcaa cgccggcatt 120 ttaatctcta tcttcctcaa cgcctggctg atggaaatcg tcccgttgaa aacgcagtta 180 cgttttggct ttctcctgat ggtgctggcg gttgccggtt tgatgttcag ccacagcctg 240 gegetgttet eggeggegat gtteattete ggggtggtea geggeateae catgtegatt 300 ggtacattcc tggtaacaca aatgtatgaa gggcgtcagc gcggttcccg cctgttattt 360 accgactcct tcttcagtat ggctgggatg attttcccaa tgatcgccgc gtttctactg 420 gcgcgcagca ttgagtggta ctgggtttat gcctgcatcg ggctggtgta tgtcgctatt 480 tttattctga ccttcggctg tgagttcccg gcgctgtgca gccatgcgac taagttgggt 540 accgccagta gttatcccag tctggacgtt gtacagctac ggacattgaa tgcgt 595

```
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(552)
<223> n = a,t,c or g
```

<210> 293

<400> 293 tettgaagag eegetgetga teaacaceag ettaageaaa gaacagegte gggaaaaage 60 cctgtcgatg atggcgaaag tcggcctgaa aaccgagcac tatgaccgct atccgcatat 120 gttctccggc ggtcagcgtc agcgtatcgc catcgcccgt ggtctgatgc tcgacccgga 180 tgtggtgatt gccgatgaac cggtttccgc gctggatgtt tcagtgcgcg cgcaggtgct 240 gaatctgatg atggatttgc agcaggagtt ggggctgtct tatgtcttta tctcccacga 300 cctgtcggtg gtggagcaca ttgctgatga agtgatggtg atgtacctgg gccgctgcgt 360 ggagaaggga acgaaagacc aaatettcaa taacccgcgc catccgtaca ctcaggcgct 420 acttteegeg acgeegegee tgaaccegga egategeege gagegeatea ageteagegg 480 tgaactacca agcccactga atccaccgcc gggttgcgcc ttcaacgccc gctgttgtcg 540 gcgnttcgqc cc 552

```
<210> 294
<211> 426
<212> DNA
```

<213> Homo sapiens

gacgctggaa gggtaaaacg catacccgat gatgccaggc ggttggcccg	cttgaacggg gatatcgtca gtgtatcact aaagacgctc cacggtcacg ttggtggacg	tactaaatca gtggttattc cccccggtgc agggtggcga ggcatatgga gcaaaccgat atgatttgat	caatgtgttg gccggatatc ggtgtatctc acacagcaac ttatacgctc	atttcctgg cgcgagttta ctttccggcc tggcggatga tacatcgcgc	cagatagtca cgcgtgacgc cgacgatgat ttaacttgcc tttcgatcga	60 120 180 240 300 360 420
<210> <211> <212> <213>	340	ns				
cgcagtatcg cctgctattc cctaccgtga gcgcggtagc	gtatccgggg ccgccaggat ccgtcagcct acggttactg gagcggtatc	attaaagtct tgcattgcgc gagcttgccg ccaggcttcc tccggctccg gccgactggt	acgggcgaca cgaagctgat ggcaggcgcg gcccgacctt	tctggcaggc gaaagatgtt gcaggcggtc	ttcattcacg atcgctgaac gcggaaatcg	60 120 180 240 300 340
<210> <211> <212> <213>	281	ıs				
gtttgatgag ccgcgagttg agcctttgcg	cagcgcgtgg ccgttgagta caaaagcagt gtttctgata	cgctggcccg acctcgacgc ttgatatcac ctgtgctggt tacggagatt	caacctgcgt ctcgctgtac gatgaacaag	cgcagcatgc gtcacccacg gggcacatca	gcgacaagat atcagagcga	60 120 180 240 281

<210> 297

<211> 155

<212> DNA

<213> Homo sapiens

```
<400> 297
tggcggtgca ttacctagag cgggtgagaa ttgccgaaca tgcgcataag tttcccggac
                                                                      60
agatttcagg tggtcagcag caacgcgttg ccattgcgcg ttcgctgtgt atgaagccga
                                                                      120
aaattatgtt gtttgatgag ccaacgtcgg cgctc
                                                                      155
     <210> 298
     <211> 217
     <212> DNA
     <213> Homo sapiens
     <400> 298
getecetatg aegeegaaaa ttattttgat tatgacaate tgaataaegg acettetttg
                                                                      60
cagcactggt ttggcgtcga ttcactgggg cgtgacattt tcagccgtgt cctggttggt
                                                                     120
gcgcaaatct cgctggcggc gggcgtgttt gccgtgttta tcggtgcggc gatcgggacg
                                                                     180
ttgctgggct tgctcgctgg atattatgaa ggctggt
                                                                     217
     <210> 299
     <211> 568
     <212> DNA
     <213> Homo sapiens
    <400> 299
aggtattetg tetgateget gacettgace egategatga gettgtggae ttecegateg
                                                                      60
tttacgette tgegetgaac ggtategegg gtetggacca egaagatatq geggaaqaca
                                                                     120
tgaccccgct gtaccaggcg attgttgacc acgttcctgc gccggacgtt gaccttgacg
                                                                     180
gtccgttcca gatgcagatt tctcagctcg attacaacag ctatgttggc gttatcggca
                                                                     240
ttggccgcat caagcgcggt aaagtgaagc cgaaccagca ggtcactatc atcgatagcg
                                                                     300
aaggcaaaac ccgcaacgcg aaagtcggta aagtgctggg ccacctcggt ctggaacgta
                                                                     360
tegaaacega tetggeggaa getggegata tegttgegat caegggeett ggegaactga
                                                                     420
acatttctga caccgtttgc gacacgcaaa acgttgaagc gctgccggca ctctccgttg
                                                                     480
atgageegae egtttetatg ttettetgeg ttaacacete geegttetge ggtaaagaag
                                                                     540
gtaagttcgt aacgtctcgt cagatcct
                                                                     568
    <210> 300
    <211> 366
    <212> DNA
    <213> Homo sapiens
```

ggcctgaaat gacatcggtg gacgtgttca ggtctggttg	300 gcgctgaatc tcggtgacta cgtggactga tgactcaacg atggtctgaa acactgaagg	cggctccatc cgtcctgcca tgcaactggt ctttgctgct	gattacggcc gaattcggtg gttgcaacct cagtaccaag	gtaactacgg gtgacacttg atcgtaacaa gcaaaaacga	tgtagcatac gactcaaacc cgacttcttt tcgtagcgat	60 120 180 240 300 360 366
<210> <211> <212> <213>	199	ıs				
tcactattac	ttccgtttct cgtgttgacg gctgttgagc	ctggctgcgg	ttaatacgct	gggtattccg	gtcgatctgc	60 120 180 199
<210> <211> <212> <213>	140	ıs	·			
	agcaagggct ttgatcgtct					60 120 140
<210> <211> <212> <213>	441	s				

<400>	303					
cgcgcgaatg	acgctcatcc	ccggcacaca	tctgctggaa	aacatccaca	acatctgggt	60
gaacggggta	ggcacgaata	gcgcgccgtt	ctggcggatg	ttgcttaaca	gctttgtgat	120

```
ggcgttcagc attacgctcg gcaaaattac cgtctcgatg ctctcggcat ttgccattgt 180 ctggtttcgt tttccgctac gtaacctctt cttctggatg atttttatca ccctgatgct 240 gccggttgaa gtacgtatct tcccgacggt ggaagtcatc gccaacctgc agatgctcga 300 cagctacgcc ggtttaacgc tgccgctgat ggcctcggcg accgctactt tcctgttccg 360 caagttaaat atgtcggggc cggacaaggt ggtgccagcc gcgcggatct ccgggtacgg 420 acctagagtt cgtaagcaag a
```

<210> 304

<211> 402

<212> DNA

<213> Homo sapiens

<400> 304

ctgtgcgaaa tgtttgcgtg atgcggatga atgcccctcc ggggcgtttg aacggattgg 60
tcgcgatatc agccttgacg ctctggaacg ggaagtgatg aaagatgaca ttttctttcg 120
cacgtccggc ggcggcgtca cgctttctgg cggcgaagtg ttaatgcagg cggagtttgc 180
tacccgtttt ttacagcgac tgcggctgtg gggtgtgtca tgcgccattg aaactgccgg 240
agacgcacca gccagcaagc tattaccgct ggcgaaattg tgcgatgaag tgttgttcga 300
tttaaaaaatt atggacgca ctcaggcgcg ggatgtggtg aagatgaacc tgccacgcgt 360
gctggagaat ctgcgtttgc tggtgagtga gggcgtcaac gt

<210> 305

<211> 346

<212> DNA

<213> Homo sapiens

<400> 305

tacctgttat tgtttgtctg cttccttgtg atgtctctgc tggttgggct ggtgtacaaa 60

tttaccgccg aacgcgcggg caaacagtcg ctggatgatt tgatgaacag ttcgctgtat 120

ctgatgcgca gcgaattgcg tgagatcccc ccacacgact ggggtaaaaac tctgaaagag 180

atggatttaa atctctttt cgatctgcgt gtcgagccac tgagtaaata ccatcttgat 240

gatatttcca tgcaccgact gcgtggcggc gaaattgtcg ccctggacga tcagtacacg 300

tttttgcagc gtatcccgcg cagccactac gtgctggcag ttggtc 346

<210> 306

<211> 207

<212> DNA

<213> Homo sapiens

<400> 306

tgcggcgttc gacgagcccg	teeteagega cagagtetet gtgaacatgg teactetega	acgagacaaa cattgggttg	atatttgago	agggggtcag	tacgcgtgct	60 120 180 207
<210> <211> <212> <213>	214	າຮ				
acttgaaaaa atgtagagcg	307 tatcgccccc tgacaaagta cggcacggtg tgtggcggat	gcgattgtcg aaagaatttg	gattcagtac gcctgtggga	gccaaatgtg	atgcgcccgt	60 120 180 214
<210> <211> <212> <213>	129	ıs				
<400> tacatcgtag gcaacgcaat aaccgtgtt	308 tgacggggaa cgggttatct	aacacattgc gacgctgaac	ggtacgccac ctgcctgaaa	ttactaccgt tgtgggaagt	tacaggagac gtcaggttat	60 120 129
<220> <221> <222>	358	e				
aaatctgccc	309 cegcateaat g geegggeeag egaceggatt a	taaggagtac	cccagttcat	caagaagctg	gcttgccact	60 120 180

aacegtgeet caataatttt catttteece gegacategt tgagetgetg cegggttttg 240 ctggcattaa tatcgggttc cacaccttca actgaagaag taatcccgtt ctgatatagc 300 tggcgatcgg tcgcgataat ggcgntctgc tctttttcta tttgctgcaa gaccgtgg 358 <210> 310 <211> 253 <212> DNA <213> Homo sapiens <400> 310 tggcggcctt cctgagagaa tattgccgag gagtacgcga ctaaacgcta tcgttctaac 60 gtcatcaact gggggatgtt accgctgcaa atggcggaag taccaacctt tgaagtgggg 120 gattacattt acatccctgg cattaaagcg gcgctggata atccgggtac gacgtttaaa 180 ggttatgtga tccatgaaga tgcgccggta acggaaatta cgctctatat ggaaagtcag 240 gaagccagaa cag 253 <210> 311 <211> 304 <212> DNA <213> Homo sapiens <400> 311 gctgcaaact gaaattggca gcatggtcta tgcggtgaaa ccaggcgatg gttctgcgcg tgaacaggcg gcgagctgcc agcgtgtgat tggcggtctg gcgaatattg ccgaggagta 120 cgcgactaaa cgctatcgtt ctaacgtcat caactggggg atgttaccgc tgcaaatggc 180 ggaagtacca acctttgaag tgggggatta catttacatc cttggcttta aagcggctaa 240 gtatagteeg ggeaeggegt ttaeagteta tgegatetee gggtaeggae etegaatetg 300 304 <210> 312 <211> 344 <212> DNA <213> Homo sapiens <400> 312 actctagagg atctgctgat ggcgttagat ggagagcaac atcttcagca acaggtatcg 60 gaaaaagtat tagccgataa tgtgttaatt gcccctggtt ctgttaaacc tgatgcgaca 120 ttctggtcgg ccttaatcca ggatcgctat aacgtgatga cctgtattga aaaagacgcc 180

240

300

tgcgtcctgg tcgagcaaga tctgaatagt gatggtcagg cggagcggat cctgtttgct

tttaatgatg acagagtcat tgtctatggc tttgactcag acagaaaaga atgggacgcg

cttgatatga gtttacttcc gaacgaaata acgaaagaaa aatt

344

<210> 313 <211> 630 <212> DNA <213> Homo sapiens

<400> 313 agagtcaaat agcagatgca ggaagatgcc aggtgaaaga tgccggggtg gcccagctcg 60 gctgtccctg ctgcttgacc tgcccactcg ccctcttccc cacccccgac aggtgattga 120 ctteggatec gecageattt teagegaggt gegetaegtg aaggageeat acatecagte 180 gcgcttctac cgggcccctg agatcctgct ggggctgccc ttctgcgaga aggtggacgt 240 gtggtccctg ggctgcgtca tggatgagct gcacctgggc tggcctctct accccggcaa 300 caacgagtac gaccaggtgc gctacatctg cgaaacccag ggcctgccca agccacacct 360 gttgcacgcc gcctgcaagg cccaccactt cttcaagcgc aacccccacc ctgacgctgc 420 caaccectgg cageteaagt ceteggetga etacetggee gagaegaagg tgegeecatt 480 ggagcgccgc aagtatatgc tcaagtcgtt ggaccagatt gagacagtga atggtggcag 540 tgtggccagt cggctaacct tccctgaccg ggaggcgctg gcggagcacg ccgacctcaa 600 gagcatggtg gagctgataa gcgcctgctc 630

<210> 314 <211> 2285 <212> DNA <213> Homo sapiens

<400> 314

cgccttgtaa agaaacgagt tgagtgtagg cagtgtggga aggccggcag gaaccagtca 60 acgctgaaga cgcacatgcg aagccacacg ggggagaaac cgtacgaatg cgatcactgt 120 ggtaaggcct tcagcatagg ctccaacctg aatgtgcaca ggcggatcca caccggggag 180 aagecetaeg aatgeettgt etgeggggaa geetteageg accaeteate eeteaggage 240 cacgtgaaaa ctcaccgggg agagaagctc tttgtgtcat ccgtgtggaa aaggctccag 300 tgagcgcccc tgctttagag acacaggatg attcagaccg gaaacagacc tcgtgggtgt 360 aagaggaagc ctctgtgagc tcgcacctta ctgggtgcaa aagaatccac ggaacttggg 420 agaagtccag ttcctgtaaa aactgggaag acgaggcgtt ctcatcccat aggaggtttg 480 tgagaactca cgccgggggt gaaaatgtac gtctgtagca tggagaagcc ttcagggtac 540 attcagetet taacaaacae aggaggaett aatggeaget tggeatttaa tgteaaaate 600 caagecgtgg catttaatgt caaaatgact tcagaccact tctagecttc tgggcccatg 660 agtaataatg agcacactag ggagcatctc tgtaaacaca gtggctgggg aaacccttcc 720 tagteteact tgatteetea tgaeggaaat cacactaaag agagaaatea gtgaagtaag 780 gaacgtggaa ggtcatgaat gggccgcaaa ccacggccag ctgcttgtct ttgtatggct 840 tgccagctaa caatagtggt tccatcttta aggaagaaga atgtttgatg gagaaaattt 900 gtggccaatg aagtctgaaa tacttcctgt catctgcccc tttccagaaa aacttggccg 960 accettggte tacageaegg gtteteagte gggegaegat ttggetgtgt aggegteatt 1020 tggcaatgtc tagagacatt tttggtagtt agaatggggg gaagatactc ctgacttgta 1080 ataagaagac atcagagatg ctgctaagtc ggctccagca cacaggagcc ccccacaacg 1140 aagagttagt gcccccaaac gtcactgttg ctgaggttga aaataatcat gcagtcattc 1200 ctcaattact gcctccagca attcctccat ttttatgaat cttgtgagca cttacgctag 1260 gagaaatttc ttttacaaaa cttttaaaaat acagttagtg ctgataattc ctatgtggaa 1320

```
atgattccag ccatggtccc ctcacttgag catgtgaata ttctcacgga gagaagcccc
                                                                    1380
agcgagattt tccggtgaat acgggattgc acttactctt tcatcacgga aacagacccc
                                                                    1440
cgagagaagc cccaacgaga ttttccggtg aatacgggac tgcacgtact ctatcatcat
                                                                    1500
gaaaacagag ccccgttcat aaatttttca tctttatttt taaggttata ctcctctaaa
                                                                    1560
taaccettaa geeteateaa gaaaggtttg tttatagtat ttttactata getteateet
                                                                    1620
tgataacgtc ctaatttcct tctggacaac ctccttgacc aatggcatat tgagatctat
                                                                    1680
gtgacatgag gatatttctc agtaccactt tgttactggt acctgatgca cacggattgc
                                                                    1740
gaccagagca tgatgcctcc atcaagtggt aatatgtttg cagcctgctg tccagccaag
                                                                    1800
agtgacagat acttctagtg acttccccgg tatccactct catcttcttc caatatcaag
                                                                    1860
agaatccagg ttctgtcaga ttagtaaggt gtgctaatct aaattttaaa aaatctctta
caggittict tgcagctggt accatccatg tctcacagcc ctggccactg acagatcagc
                                                                    1980
agatgtcacc acatgggett ctgagaaagc tettgaatgg ggategttet taaacatgaa
                                                                    2040
ttcctccctg tatgttttgt tctttgcttt acttttcacc ttgcaaaqaq atccaqtacc
                                                                    2100
tagtattgga agatccacct taacgaccgt gcatatgaaa accacagtct aaggaagtga
                                                                    2160
ctgcagaaag ctcacagcga ccctggcctc ccctgtggcc tctttqaqtq tctqcagcag
                                                                    2220
ccctggactt ccagacttct atcacatgag aaaaaataaa actgattatt ggtttaaaaa
                                                                    2280
                                                                    2285
```

<210> 315 <211> 1316 <212> DNA <213> Homo sapiens

<400> 315

ggctgtctat cagtggataa ggtgggggct gtctatcagg ggagaaggtg ggggctgtct 60 atcagtggag aaggtggggg ctgtctgtca gtggagatgg tgggggctgt ctgtcagtgg 120 agatggtggg ggctgtctgt cggtggagat ggtgggggct gtctgtcggt gtagatggtg 180 ggggctgtct gtcggtggag atggtggggg ctgtctgtcg gtggagatgg tgggggctgt 240 ctgtcggtgg agaaggtgga agcttgtact cagagcaggg gatatttaga cttgaagggg 300 ccagggagga aggtactggt tctactaagc cccatgttca ctgggcagcc actaagttag 360 ggaccgtgtg tgtaccgagt ggattccgac aaagaagctg tctcaggagc cccagccagc 420 tgcagagggg ggcccaagct ccaaggctgg gtgtcaggtt tgccaggtgc tggctccgct 480 540 gccagctgta gttgcagcgg tcagctgccg ctctctggcc ccatgcgaac tgctgtgcca 600 ggtgcaccct gggggaccag gctgcctggg cttcctggaa ctggtgaagc tgccgccact 660 tectetatge tgtetecage aggeaattet gggtaaacga tetteatttg cetataaage 720 tgcacagete acaggeettg gaccgtttet geeccageee cageattgge cetttggaca 780 gactetgaaa eegtgegeag aacgeaceet gteattacaa atgacteetg gaggeagtee 840 ccgggggcct ggcaggagca cctgtgtttc tgtggggtct gaaaatgaca gaccaatcgc. 900 ttgaacccgg gaggcggaag ttgcagtgag ccgagatcga gacattgccc tccagcctgg 960 gcaacaagag caaaactcca tctcaaaaaa aagaaaaaag tgccgagtgg agtcgtcacg 1020 cccgtaatcc tagcactttg ggaggcagag gtgggcggat cacctgaggt cgggagttcg 1080 agaccagect gaccaacatg gagaaacccc atetetacta aaaacacaaa aattageegg 1140 gcgtgtgcat gcctgtaatc ccacctactc aggaggctga gggaggagaa tcgcttgaaa 1200 ccgggagccg gaggttgcag tgagccgaga tcgtgccatt gcactccagc ctgggcaaca 1260 agagcaaaaa ctccatctca aaaaaaaaaa ggagagagag aaaccgggac cgcaag 1316

<210> 316 <211> 2486

<212> DNA

<213> Homo sapiens

```
<400> 316
ttttttttt ttaaacaaaa ctttattggt aatagttttc aaatatgttt acaacagcac
                                                                       60
actgttcaag aggaagtete gteettegea geacacaggt tgaategeee eegeacecae
                                                                      120
ccggggcccc accccaggcc tgagaactcc tcctgggatg gggagaagtt atgagagggg
                                                                      180
gaaatacggg gatgaatggg gtggctcccc agcggctccc cacttttcta ttacgagaga
                                                                      240
aaaaagcaca aatgagaaag tgggggagag gtgatggaca gctgacagct aagctggagg
                                                                      300
aggggcgccc aggatggggg aggcggaagc tggtgggtga gtaaaacagg cagccctcc
                                                                      360
ccagcagete tageettgaa eccegggeeg tggettgggg ggaettggee tettetgtte
                                                                      420
cettttgcag ggatgccctc cccactcagc tgagggaagg ctggacgtta aaatctagcg
                                                                      480
gagaataaaa ttaaggagtt ggggggaaac gctgctggga ggaaagactt gggcttgggg
                                                                      540
cteccectet gtetttttgg gggatgaete etetttggea gggagagggg cagetgettt
                                                                      600
gtctggcttt caaagcccaa gggtgaagac aggtctgttg gggaaaaaga gagcggaggc
                                                                      660
ttcctaaagg ggcctagacc ctcgcaggat tggcagagag gattccccgg ggaggggccc
                                                                     720
aggggagatt agcagcgggg aggttcaaac cccagcgcct ccctttccaa agtcagtctg
                                                                      780
cttctcttta aaatggattt gaggaatggg gggacatggg aggggtggga gtagaggaag
                                                                      840
gagggaggga ggcactggtg gaacttaaat aagattttaa attgttgttt ttttaaaaaa
                                                                      900
attetageaa geaaceeact gaacatgtea etaaaaatet eteetteeea ggeaggatta
                                                                     960
ctccgaaagg aaggttggcg cttcgttcat ttgcccttag caagtggggc ctgtggttgg
                                                                    1020
gtgggatggg ggtgtgggtg ggggetggag ttaagegtga geceetettt ecataceetg
                                                                    1080
tecetggata caccageaag acetggtetg actggagttg agaaactegt ttaaaacagg
                                                                    1140
cagaagtggg ctgggagggc tgaggggctg gggggctgtg gggaaagaga aagggaaaag
                                                                    1200
tgggagaggg ggcaggaggg tgaaggggat gagggggagc agctggtgtt tctgtccctc
                                                                    1260
tgattatetg ggetteetge tecceetace eetggagggt ggggtggggg tgaaattaga
                                                                    1320
tgcaaggaac tctggggccc tctggctgtt caatccaacc ctcccacccc cccgaccaaa
                                                                    1380
aaaaagaaaa aagaaaaaag aaaacccatg ggggcacagg catgccccta aaactcagaa
                                                                    1440
aacteettge ceaaacttet cattgatgga aaacceggat ttettettee teatagtegt
                                                                    1500
caaagttaac tegtateece agggeettta aactttggta tgaagggage ttecaeette
                                                                    1560
ctctggtaga tggcaatcca gtcagttgtg gcaaaccact tgtggttctt gatatcgttg
                                                                    1620
accccattet tgaggttece aaagegettg gtgagateta cetgeaggag gtteegeage
                                                                    1680
aggtccttca agtcagagct gaagtgggaa gggaagcgca ccttcccaga gacgatcttc
                                                                    1740
tcatagatct ggatgggctg gtctgcgaag aagggcgggt agccagcggc catttcatag
                                                                    1800
ataagaaccc ccagggccca ccagtccacg gccttgttgt agcctttgct caggataatc
                                                                    1860
tcaggggcca ggtactcagg ggtgccgcac aaggtccaag tgcggccctt cacgcgcttg
                                                                    1920
gegaaacega agtetgteae etgaatgtag eeetgetggt caatgageag atteteegge
                                                                    1980
ttcaggtccc tgtagatgag atccagcgag tgcagatact caaaggtcag gacgatctgg
                                                                    2040
geogegtaga aacgggcatg gggctcactg aaccttccga tccgccgtag gtgtgagaac
                                                                    2100
atctccccgc cgggcacgta ctccatgacc atgtataagt ttgagttgtc cttgaaggag
                                                                    2160
aactcgagtt tgacgaggaa cggaaagttg acagcttgca ggatgcgctt ttcattcagg
                                                                    2220
gtgtgttcga tctgtttcag tttccccacc ttctgttagt cgaggatctt catggcatag
                                                                    2280
tggttcccgg tctccttgtg tttcaccagc atcacccgcc cgaaggagcc cgtgccgagg
                                                                    2340
gtcttgattc gttcaaactg atccaagtgg gctgtgttct gagcgggact ttcccatttt
                                                                    2400
ttaagaaaat cttctttggc tttggctaag aattctttca cgctctcctg ctcgctgccc
                                                                    2460
ttcttggcgg cggcggcgtt gcccat
                                                                    2486
```

```
<210> 317 <211> 867
```

<212> DNA

<213> Homo sapiens

<400> 317
tttttttttaa gtttatataa ctttattata agtattaatt tgtttgaatt aagtttatat 60
aactttaata taagcattaa tttgtttgaa atataaagta ttataaaata ttgtaattaa 120

```
gcttacagat aatttttaaa atatatacat tatgactaat ataccaaaat tatttatatq
tacacattta tatttaatac ccaaagaaaa tttactacca cattgctaca gtagatatta
                                                                     240
acctgacatg tttattaatt gatcctatag gtataattat aggtcagcat aattttacag
                                                                      300
tctattcttt tattttacta aattaggaat gccactattc ccggacaaat aaatgcaggt
                                                                      360
gatgtggcca cccaagaatc atagtagctc ttcaqttagc tatcttgcaa tctctgatat
                                                                      420
aattetacta tgtgaataga gtgaatteca attetteate aaaaaqtqet qqtqqaqqtt
                                                                      480
gtcaggtgtg ttccagtata gattcccaat ccaacggccg gcagatggga gagcagcaga
                                                                      540
gatggaaatt gtgctcagaa taagccctct ttctcataat acttgtattt ctcatgctga
                                                                      600
gagtagctgt gcacttttgg tgtttagaga agaacttctt tggaagaata ttttctggtc
                                                                      660
aatttgacca atgttacatg taatctgaat tagtctgtaa gattctttca acctcttttc
                                                                     720
ttctctcaat acggttttac tcagactgag agctgtcttt ctcttcaatg ctttgggaat
                                                                     780
teagtgettt gtgtetaage eectattagt ateacatggt gtetgtgagt gaggggget
                                                                     840
gtcaccgtga gaactcctgg agctgct
                                                                     867
```

<210> 318 <211> 1683

<212> DNA

<213> Homo sapiens

<400> 318 ggcacgaggt aggaaccagt ggtctatgtc ccgaccacta cttggcttga tagggcttaa 60 tgaaaaggtg agagagccag ctccctggtg ccaacccaga agcagtggca accacgcact 120 tggtatcacc aagccctggg agaaatgtgt atagaaacac cccacggtgg tgaaacaggg 180 aaaatgggtc atttactgag caagtcccat ttgtgctttc agtatcacat aatcatttaa 240 ctgttagaag tcagcatgtg tggtagctca cagacacagg ataaaggagt gtttccccta 300 ggcagtaaga gaaacctttc aaggaaataa tgtacctggg tatcagagga cctaagacct 360 aagttetagt tetagetetg etataaacaa gtettgagat tetggtaaaa gaaaggtetg 420 gataagatga cccttttaaa gtgctttaca atttaaaaat tcttgatatt cttagtagga 480 tgaagccata ttatcccaca agtgcttgcc tgaatttctt ttttaagggt ccaattttag 540 tagacattcc attectectt agagaagaac attetteaac cetgeagatg acggagget 600 aatctgcctt cccctgcttc tctaaccttc tgttccactc cttgccccac aqtatttttc 660 tgacctaaga aacagtattg tgaacagcca gccaccggag aagcagcagg ccatgcacct 720 gtgttttgag aacctgatgg aaggcatcga gcqaaatctt cttacqaaaa acaqaqacaq 780 gtgagtataa agcgtcctgc ctagaaatct cagacaattq ctatttttca aatcaacqaa 840 acaggcagtt gctttaaagt ctttgacatc tgtgtttgga ggccatctaa agcaatgcaa 900 tccaatagaa aagtgagcca tgttaaacag gcaaaattca ttttaataat atattttatt 960 taacccattg tatctaaaat attgtatcag tgtgtaatca gtattttaaa attgtqqqtt 1020 ttcacattct ttttgtacta catttccaaa atcctgtgta ctttacattt aacagcatat 1080 ctcagttcat acgttttcat cagaaatact tgatctgtat ttagatttca taaatttaca 1140 gttgacaaag tagattcctg taatacccag attgtttcaa acacacctag ggactttcca 1200 gtaactgcat tgagtatctg ggctttgcaa ttaactttta aattttattt aattttaatt 1260 aatttaaaac aaggcatttt aatttaaaat taagatgcag ttggggagct gaatgttaaa 1320 ttgtatttaa tttggattca tgttctcagt cacactggcc ataattcagg ggcacggtag 1380 ccatatgtgg ttaggcagcc gccctattgg gacaggcata gcactgcacc acctgqgtct 1440 tgctggcatt aaggaaatga ggatgggctt cattgggctt tactggccct tcacgtgtga 1500 gggcaacttc ctacttctgt cagtgagatt tcttttgtgc tgccatgagc ccaaqqtaqc 1560 cotcagggcc ccagatttga ccagatctct aagccaactt ttctcttaga gtcttaagac 1620 tgaaattaac tgatctttga aacagaaccc atcaattcat acattctact tcccatgctt 1680 1683

<210> 319 <211> 1606

<212> DNA <213> Homo sapiens

```
<400> 319
tttttttttt ttcgtatttc aagggttttt attctgagca gtaggtacaa aaaataatga
                                                                       60
catagitiging totaaticing tatagitican geaeceteea canggetigiea atetetqati
                                                                      120
tgatctactt ttaccagatt taacagatcc ttgaatttac tttactgtat atacttcctt
                                                                      180
cttgctcaca ttgggaatca aactaatgct ggaaacatgc atcttcagac ttcattgagg
                                                                      240
aattccagat tgagacacgc tgggatgtgg attgagtcca tggttagaga agatggatta
                                                                      300
aatggaaaca aaacaggaaa catgtgcttg gcatctaata gcagttgctg agggtcattc
                                                                      360
cgctcttgta gttgtgcctg gattgttcgt ataaaggcca ctgttacccg ttcttcaaat
                                                                      420
tcattcaggg gagtataaag gtttaaaatt ttgacaatct gctgggtgct gagggaggta
                                                                      480
cacagggage agatageete tgegteetee tgggttttet tetttaattg caggagetgg
                                                                      540
gctgcttgga tcagaggttc catggtctga actgctccac tctggtgaag gtttcttccc
                                                                      600
cgaagccact cctcaagctg acttatattg tacctgagtt gcatgcctqt qctccaaqaq
                                                                      660
cagacgtcct tccgcaggag caggtcatta agagtcactg cgttgatcat gtagaagagc
                                                                      720
tgtttgaata cctgcaggat gatctcaggg tccaagccct ggtcacacat gactgtatga
                                                                      780
aaggcattca tetggeggat gatagettee aggeggtatg agttateete atetgeeatg
                                                                      840
ctggaggagt gcttctggga gccagtgggc ttcacaccag atagaccctg aatgctctaa
                                                                      900
ttttccaaca tggcagaaac tatcatcggc tgtaacacac cctcggcaat tttaatgagc
                                                                      960
tgctggtaga tctgaatgga aaggtcacgt caggcacctg acggtattcg gtgaggtcaa
                                                                     1020
aattottaag acagtgttca attotgcttt gcagtgttct gagtcatgaa gccctcatcc
                                                                     1080
ccgctgtact gcttcagaca gtgaagaagg cgggcaggtg ttggataacc agaatgacgt
                                                                     1140
catctcaaag tcatcattgt getttttcag gactttctta atgccgttga tggtggaggt
                                                                     1200
cagcagggag tgcaccttga gatcgtcgtt ggtgtagtcc cgcgtgccgg atgcacatgt
                                                                     1260
agaggatgta ggcggggaga cagggcactg tgcccgacag catctqqqqc ttcaaqtctq
                                                                     1320
teaccaggtt ceggatgagg agggeetegt cetetttgtg gtactecage atgeeetgga
                                                                     1380
aatcettete ttteegetgg acegtgacet geetgttgag eteatggege tteeteteae
                                                                    1440
tctgggccaa tgcctgggca gcttctaggt cctgggcttt cttcatgtaa atcttcagtt
                                                                    1500
gctttttgag cttcctctca ttcttttcca gcttttctac cagttcttta aggtccagat
                                                                     1560
tctcgttggt cagccgggat atttcctgct gaacgccgct cgtgcc
                                                                     1606
```

```
<210> 320
<211> 676
<212> DNA
<213> Homo sapiens
```

```
<400> 320
ggcacgagga gaatactatt cttaaagctg ctgaagtgca ggtcccacca aaatgagtag
                                                                       60
taacacctga agcaaaggcg tttatttgac gatgtttggc ctaccaaaag gaggactgca
                                                                      120
ttgatgccca gcaactggcc tgtgaccccc tacttgctgc attatatcca aaaattggtc
                                                                      180
tttgtgagta gccctgctgg ggctgctatt gcatcaacct ttggggtgtc caacagctgt
                                                                      240
tettegaatt gagaetgaet ecaaggeeac aaactgttea acacacacaa agtggacaaa
                                                                      300
tagcatttag cagcaggttt ggaacgtaga gaatctqaat qqatctqatq aaacctqaac
                                                                      360
caggtgctta ttttgttgct tttttcccat ccactgagca tgacagcatg gattctcttt
                                                                      420
aaggagaaac catgggcagc tccagccagg cctcatagga aaaggcccgg catgaggttc
                                                                      480
tggcgtcaat ggccactgtg tatggctgct ctgagtgagg aaaaaactaa aaagaaaaac
                                                                     540
tggttccatg tactgtgaac ttgaaaacat gcagactcac gggggttcct gatgcaatgc
                                                                     600
ttcagatgaa gattgtggac ttgaaaatac agactagaag gccgggcaca gtggctcatg
                                                                     660
cctgtaatct cagcac
                                                                     676
```

```
<210> 321
<211> 1502
<212> DNA
<213> Homo sapiens
```

<400> 321 ttttttttt ttttctattg cttaatagaa aacatatttt tattccgtac tttaaaaaata 60 tagactttct agcaacttat aaatttctat tataataata aattgatact ttgagccaag 120 aaaacaatat aaccaaaaat tcatttgttc cctttgttta ggggtgtttt acatttatgc 180 ataattttgc ttttataaaa gatgattgtt acaatcaggt atacaactac ttggttatgt 240 ctaagttctg tctcttaaaa tatgttcttt tagagaattc atttaatcat cttattcttt 300 tcttcaattt tctccaaaca gtggtagaag tactatttga tagacagaat aaagaaaatt 360 gtttttggcc acacccagat catactgata tctacagcat agtcctggct acaggggagc 420 tcaactctaa ctcgtgaagc gggcctggtt tagaaagtaa caatgaggta gtaactcatg 480 540 gtttaggtac atccaaaatt tcttcatagt ctgcactcat tccctttgcc cagcqaccaa 600 ctgtgaccat tcgctctgaa ttctgacttt cagggcaatc tttctttaaa tgttccacag 660 agccacaaag tttgcaaccg ccaccatcag catagagtcc tttgggatta tcaggacaag 720 atctagacag gtgccccatt tctccacaaa caaaacattt tgcaaaagga aattcgccaa 780 gageegggte tactttagee ttacacttgg ttatttegtg etetgtggae ceacacetgt 840 aacatateee agtgeeeatg tettgatttt caagggegge ggggeaatet geaatteeat 900 gaccaggttt totacaatgg aaacacacca ttgcattttt ctttgccgct tgtctttta 960 atcttcttcc ttcccgtcga ctgtctttct ttaaagcaac tgcaatttct tcccttactt 1020 ceteactgte tgttgetata atttgeeeat tgtgaaceat etgtgaatte tgtettaggt 1080 attccatgaa tccattcaca tcttcattta agtactcttt tttctttttg ttctttttat 1140 gttttgcttg gggtgcatca tttttgaggg atagcctatt ggcttcaagt tgtttacgct 1200 ttggtaggtt ttggcttgtt ccctcaaagg atcccttctt catgtcctcc catgatgttg 1260 caggcaaggg totottgtta tatgtggtac taactcgggc ccacctggtc ataatttcat 1320 cagtggtacc ttatcaattt ttaagacaag caggggtggt tagccatcaa caacaaaaac 1380 aacaaaacta aagagacatg ctatatcact atatgtcaca tatgcccata tgttaaactt 1440 ttaattatta aaacactttt tatttcagtt agatatctgt atacatattt aatggctata 1500 1502

```
<210> 322
<211> 989
<212> DNA
<213> Homo sapiens
```

```
<400> 322
gttggggtet caetetgteg cetaggetgg agtgcagtgg cgtggatete tgetcaetge
                                                                      60
aagctccgcc tcccgggttc atgccattct cctgactcag cctccggagt agcggggact
                                                                     120
acaggcgcac gccaccaggc ccggctaatt ttttttttt gtatttttag tagaaacggg
                                                                     180
gtttcaccgc gttagccaga atggtttcta tctcctgacc tcatgatccg cccacctcgg
                                                                     240
cctcccaaag tgctgggatt acaggcgtga gccactgtgc ctggccaaac gctggtaggt
                                                                     300
ttgggagtga gaccacatta catttaaata tatttacaat gttttctgct ctattcttta
                                                                     360
gtagactttt cctcacgtgg tcctacgcat ttctttctaa gtttattttc atatagccta
                                                                     420
tccctgtcta caatttaaat tgggatcttc tatattctag ttattatttg taaataagaa
                                                                     480
aactactgac ttttttctag tatattttct cagaatagga ttttctattt ttctataaaa
                                                                     540
tgaccaatgt tatgaagctt cgtaagtttt gtcaaagtga tacacacata cagcaaaaaa
                                                                     600
```

tcaaatagta	cagaagtata	aaagcaacaa	cctctgcctt	gccccttctc	caccttcagg	660
tccccttccc	agatacaata	atttttagct	ttttatttt	aattattctg	gttgttacct	720
	gggcaatatg					780
accttgatga	attctcttgt	ttctagtagt	ttttctttag	ggttttaaag	ggatacaatc	840
ataccatttg	cagttagtaa	ccattttatc	tcctcttatt	tccaacttcg	tactgttttc	900
tcttgtctaa	tttgttttta	attggtgggt	acttctagaa	caaggttaaa	taaaagtggt	960
gttggtgggc	gtccttattt	ctgatatta				989

<210> 323 <211> 1106 <212> DNA

<213> Homo sapiens

<400> 323

teggaegegt gggeggaege gtgggetegg tegettagtg tgteteetag tteetateet 60 gaactacaca ctgaagttcc actgtctgtc ttaattctgg gattgcttqt tqttttcatc 120 ttatctgtct gttttggggc tggtttattc gtctttgtct tgaaacgccg aaagggagtg 180 ccgagcgttc ccaggaatac caacaactta gacgtaagct cctttcaatt acagtatggg 240 tettacaaca etgagaetea egataaaaca gaeggeeatg tetacaacta tateeecea agcetattae egaaacetgg caaggagttt cagetattag geaacetgga ggagaaaaaa 420 gaagagccag ccacacctgc ttacacaata agtgccactg agctgctaga aaagcaggcc 480 acaccaagag agcctgagct gctgtatcaa aatattgctg agcgagtcaa ggaacttccc 540 agegeaggee tagteeacta taacttttgt accttaceta aaagggeagt ttgeeectte 600 ctatgaatct cgacgccaaa accaagacag aatcaataaa accgttttat atggaactcc 660 caggaaatgc tttgtggggc agtcaaaacc caaccaccct ttactgcaag ctaagccgca 720 atcagaaccg gactacctcg aagttctgga aaaacaaact gcaatcagtc agctgtgaag 780 ggaaatcatt tacaacccta aggcatcaga ggatgctgct ccgaactgtt ggaaacaagg 840 acattagett ttgtgtttgt ttttgttete eettteecag tgttaatggg ggaetttgaa 900 aatgtttggg agataggatg aagtcatgat tttgcttttg caagttttcc tttaaattat 960 ttctctctcg ctctcctctt cccactccca cactgaaaaa caaagaagaa aaaagaaaca 1020 aaaccataaa caaaatctat gaagaaatgc attgtagaaa cattcatgtc cactgatggt 1080 tcctaagaag agaagggaaa aagaaa 1106

<210> 324 <211> 2366 <212> DNA <213> Homo sapiens

gcactatgtc acattgccgt ggggcagcag atgaacctgc actggctgca caagatcggg 60 ctggtggtca tcctggcttc cacggtggtg gccatgtcgg ccgtggccca gctgtgggag 120 gacgagtggg aggtgctgct gatctccctg cagggcacag cgccattcct gcatgtgggg 180 gctgtggcag cagtcaccat gctctcctgg atcgtggcag gacagttcgc ccgtgcagag 240 cggacctcct cccaggtgac cattctctgt accttcttca ccgtggtgtt tgccctctac 300 etggeceete teaceatete etetecetge ateatggaga agaaagaeet eggeceeaag 360 cetgetetea ttggccaccg cggggccccc atgctggctc cagagcacac.gctcatgtcc 420 ttccggaagg ccctcgagca gaagctgtac gggctccagg ctgacattac catcagcctg 480

```
gaeggegtge cetteeteat geatgaeace accetgegge geaceaceaa egtggaggag
                                                                      540
                                                                      600
gagttcccgg agctggcccg caggcctgcc tccatgctta actggaccac cctgcagaga
                                                                      660
ctcaacgctg gccagtggtt cctgaagact gacccttct ggacagccag ctccctgtca
ccctccgacc acagagaggc ccagaaccag tccatctgca gcctggcaga gctcctggag
                                                                      720
ctggccaagg gcaatgccac actgctgctc aacctgcgtg acccgccccg ggagcacccc
                                                                      780
taccgcagca gttttatcaa cgtgactctg gaggccgtgc tgcactccgg cttcccccag
                                                                      840
                                                                      900
caccaggica tgtggctgcc tagcaggcag aggcccctgg tgcggaaggt ggctcccggc
ttecaacaga cateaggete caaggaggea gtegecagee tgeggagagg ceacatecag
                                                                      960
                                                                     1020
eggetgaace tgegetacae teaggtgtee egecaggage teagggaeta egegteetgg
aacctgagtg tgaacctcta cacagtcaac gcaccgtggc tettetecet gctgtggtgt
                                                                     1080
                                                                     1140
gegggggtee cateegteae etetgaeaae teeeaeaeee tgteeeaggt geetteeeee
                                                                     1200
etetggatea tgeceeegga egagtaetgt eteatgtggg teaetgeega eetggtetee
ttcaccctca tcgtgggcat cttcgtgctc cagaagtggc gcctgggtgg catacggagc
                                                                     1260
tacaaccetg agcagateat getgagtget geggtgegee ggaccageeg ggacgteage
                                                                     1320
atcatgaagg agaagcttat tttctcagag atcagcgatg gtgtagaggt ctccgatgtg
                                                                     1380
ctctccgtat gttcagacaa cagttatgac acatatgcca acagcaccgc cacccctgtg
                                                                     1440
ggcccccgag ggggtggcag ccacaccaag accetcatag ageggagtgg gegttagetg
                                                                     1500
aagacatgte tgteecacet gtaeetgaea cagaagetgg ggageetagg agagetggtg
                                                                     1560
gaagtgtgtc tgaactegga gtgetetggg agegggetee acageeteet tgtgggetee
                                                                     1620
ageceettgt cageegeage etetettgag ggggaeteee tgteteetga ggeeeagetg
                                                                     1680
ggecaggact ccatecttte agatgeceet geaggeetgg ggeteettet gggaagtatg
                                                                     1740
                                                                     1800
gggcctaggg cttggtcccc ctcttctgag gccctctcct gtatcccgac ctggaagctt
                                                                     1860
tgatgggtca tgggccatgc cataccccct gtggcaatgg agtgtgtgga tgctcacctg
tgccatctgt cetectgtet gtgccaggag gcacctgagt tetetgetgt tatectgeec
                                                                     1920
caagggcctg ggccgagcct ctacctgaag caactctgct cttcctgtca gtctcaaagc
                                                                     1980
acaaggaggt teageceagg aggaagecag etgeaatgtg gagacaegte etecteeca
                                                                     2040
acceacetea tgccacegec aaccecetge cecaggageg ggcctgagec aegteeceta
                                                                     2100
ggagcagctg gagatggcca aaagagtgag ctcaggacta ctggatccca tgcccaggtg
                                                                     2160
tccagcagac ctcaaggcag aagggtcacc taacccagga gttccacaga ctgatgtgac
                                                                     2220
ctcaggttcc cacatcagtg gccaccaggc agggcccacc tggtagaagt gttctggata
                                                                     2280
tggcccaggg tgggtgtgtg gctaagtggg cctgaacaga gggaacccta gggcccttgg
                                                                     2340
ccaatgtgat taaagctgcc atcttg
                                                                     2366
```

```
<210> 325
<211> 1925
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1925)
<223> n = a,t,c or g
```

<400> 325 ttttttgaaa tctggtccca aagtttcaaa agaatactaa tgcaacaaaa agaaataacc 60 tctctgtata aagtgattat agagatgtgt gttgaggtaa acagcttcat aaaaaccgtt 120 gagcagggaa gcacagccac tgctatagaa atttttaggt aagtctggtg ctagcattat 180 tetacaaaac tgtttacacc cattataaat aggggacagt tettattget cetggagett 240 gtagetecaa tetgttecag etecaetgaa aaatgatttt teteaacaat tggtageaaa 300 gatttccaaa tttacaaaaa gtcattacca atgcatcact ttttgattaa tttctgattg 360 ccatatagat atggactaca gtatgcatgt ccttgacacc aagtacagaa aaaaagctta 420 gaaaagtegt tttatcaaag tteagtteaa tgagaaacat gaaaaagtge aaaatatgta 480 540 caattcctgg cagttctcac acgggatttt tttgactaca gaccataaaa gtttacattt 600 gtgtaatgaa atgacgatgg atttcacatc actgttaata tacaagtttt tgcttcaaag 660 tgcttacttt atttataaaa gagaagatca agagggttgc aggaattttt ttttttaac aacaaatcaa tggtatgtgt cccaatctcc ttcttcctct tcctttagtg caacatggcg 720

cagcagcctc	atggataagg	tctgatttca	aaagacattc	ctgaaacctc	acctacagca	780
gcactctagg	ggtcccatta	ggggtggctc	tctttttctt	ctgcagccga	ttctgaacct	840
ttcgagattt	tactactttc	attctcacct	caaaaacttc	atgaatggcc	ttccggaagc	900
aatgaaaatt	atagtcaatt	agcccttttc	tttcaaagct	ttcctctctg	acaaagcaaa	960
cgagagccag	gaactttgtc	acctctttta	aataaagcac	ggttgtatta	ttaagcttta	1020
tgatggctgt	ggattccttg	tcataggggg	ttcctgctcc	atcttctttg	agaccataaa	1080
tacaagagat	gtcaataacc	acatctatca	tatcacagca	gagctcatag	gtttgcatat	1140
ccaccggagt	actatcagtt	gcaatataaa	ttttactgac	cacatcaaat	agaaatgcct	1200
tttcaattcc	agaatttgag	ataaagatgt	tcagcaaatt	ctccagagtt	gggagttgtg	1260
gaatcagttt	ctgaacaact	ttgctaaaag	cttcaaatat	tgaatgatca	tatatgcttg	1320
tcagataaaa	gctgaggtga	attttttcta	atccagcatc	tgcaaggtca	tegtttgece	1380
tctggtgaat	atctctttgg	gtttcaattt	tgtggtcatc	tgacagacca	tccactttat	1440
gaataaacac	ctcgaagttg	atgtcagtat	tcactttgta	ggccctggtc	accgtgaggt	1500
ggagcctggc	cagggcttcc	atgtaatcat	cctgtgagtc	aatgacaaat	atcagtgctc	1560
ctgttccccg	gaagatcatc	tcatagtcaa	atgtagggtc	aaaaaagtca	atctgtcctg	1620
ggaagtccca	aatctgaaaa	ttgacaaagg	agctgttgga	aacatcttcc	cggcatatct	1680
tattagtgct	ctccaagaac	agagtttcgt	tgggagacat	tttgtgaaag	acaactttct	1740
gaatagacga	cttgccgctt	ctcctcaggc	ccatgagcag	gattctcggc	ttcacttcag	1800
tgctgaaggg	gtcactgaag	tccagaactc	cctcctctgt	gccgctgtcc	ggatcggcgt	1860
cggaggagtc	gggcccgtct	ccgtagtccg	ctgaattccn	ccgcngtgac	tgagtctcat	1920
tccca						1925

<210> 326

<211> 1181

<212> DNA

<213> Homo sapiens

<400> 326 tttttttttt ttgagatttc ccaggactgg ctttaatttg aaaaatctga ttggggtctc 60 ttcccgtatc agagaaggaa cagcccaagc tatgacccca gggccaggga attcagtccc 120 caccagacce tgtcattcca tcactagggg gtaattccag geteceectg ccageectga 180 gacaggagga cggatgtgaa gttgcccagg actagattct gtctctccaa agtggcccaa 240 geoctgttet etgtactagg gaagecaget gtgtetttte gaggacagtt ggtecageca 300 gcaggetcag ttcagatacc agacaaccat tccagcacga gggctcagcg ccctggcccc 360 ggeggteget ceagtgeetg tgtgeeeace ageacateea tgaggtagte caatteggee 420 tegtecaget ceggagette etecttgece ggeccateet cagggeetgg tttgaggeec 480 tcagaggctg gtgcccaaag ttcattgtca tacatagagg tgtcaatatc ctcaaacagg 540 ccctcaagcc catcgtccag tagacagcca gtggctgggc ccagcaggtc caaggcaccq 600 aggetgggeg etgetecece gatgetaegg eetggtggee eetegtetge caagggttgg 660 ggagcctgac tcaggccctc aatgtggctg aggtcctcca ggaggctggc catggaggct 720 gaaagggcag cgtccgagct tgccagtaag ttgtcagcca cactgggggc tgcaggtggg 780 ctaggcacag gtggcagggc agccgcgggt gccatggacg cctggatgcg ccgcagagtg 840 900 ttcacgacca gcaccaggtg ccgcaggtcc ggctcactct gctgcaggct gtggtggagc ttgagcactg agaggtcaaa gagggagcta gaggccacgg ccgggggtgc ctgtgccacc 960 gctgcgtggc caggatctag ccaccaggag tcgactgcca gaggttcctt ctcctcctc 1020 tectecegtt teegetteag accettgete ageatettge teactagegg ceaateagaa 1080 cgaagaggta gccacccaca accaatcagg aaacggcggc ggcagcatcg cttgttggct 1140 gtcctccgga aacccgcgcc tgggtcgcgc ccacgcgtcc g 1181

<210> 327

<211> 1842

<212> DNA

<213> Homo sapiens

```
<400> 327
aagtacaaaa taatatttta ataacatagg aacatgaaca tgaaaacaat gtaaacaggt
                                                                       60
tagaattttt ggatatgata cctaccaaac gtgatttgga accgtaccgc aactgggtaa
                                                                      120
aatttctatg gcaaaaggat taaccaaggc atatcatagg aaatccactt tgcccaatat
                                                                      180
aagcagttet cagcacatae teaaatgeae acaaacatga aaateggaaa taaaggaatg
                                                                      240
ttaaaaaaat aacttaggca gacacaaata aaaccacccc actagtgtat gaatgatgcc
                                                                      300
acgtttctta tgatcttaat tacatttaag gatttaaaaa atgccactga tctcacagtt
                                                                      360
tacaatatcc aaatcttcaa acctgctgga agaagtccca cagcacagcc tggaaattcg
                                                                      420
cateegttge attetetegt geagttacet gettatggge tgtacettet geettgatat
                                                                      480
gtagtcagtt cttcctgaag gatggaagct ctcttttgca gaaaattaac ctgtgatttt
                                                                      540
agggaggaaa tggtgtcttc aagttcttgt cttagggatg ctggcatcaa tcctttcaat
                                                                      600
tttgtttcat attcttgtcg tatgtaagtt atctgttcct gtgactccaa ttctttgtgt
                                                                      660
tgtaattttt tctctgcaca tcgcacctga ttagaacggt tttctaattc atcttgtaaa
                                                                      720
accttgattg cttggtcatt atctctaatc agctgcttct tctcatcttc aaacttttgt
                                                                      780
ctaacatect ggageegeet ttetgeagea agetgetget ggetgttete ttettteaga
                                                                      840
gaggaaatgg ttgtctgaag ttctgctatg atctgtgaag atttggcaag cttctgagtg
                                                                      900
tattccttct caatctgctt cagcttgctg ttggcctttt ccagtgtcat ctctgtctca
                                                                      960
gcagcatgag tettttcag etetatttc atetttctg attcagcett cagtttattq
                                                                     1020
acgacaatct catgttccct tgtagccctt tgcttttcct cttcacgaag aagaccaagc
                                                                     1080
tctaccagct gctgtttccg ctgtgagttc acattgatca attcttctct caacttgtga
                                                                    1140
acctgggcct ccatgtcggc aataacctgt gcatctcgtt tcttgaactc ctgaatttga
                                                                     1200
ttttcgtgct ccatattggc agcgcgaagc tgttttcca ggttttcaat ttcccgttca
                                                                     1260
tggtctcgga ctaggctatc cttctctgcg ttatgctgct gtaataggtg cgtcttctcc
                                                                     1320
tgttcatgct ccagcttcag ctctactatc tgttgttcat accgctgtct gatgtcctcc
                                                                     1380
agttgccata aaaactcctt tgattgtttc tcacgaagag atttggatct agttagatct
                                                                     1440
geotecactt tttecattte aaagetteet caaatttatg aattttettt tgagtatett
                                                                     1500
cttttccttt atcaagttca ctctgcaagt catgagcctt tttttcatag atgtgtttta
                                                                     1560
gatgactttt ctccatctga aacttatttt cttgatccct tagttgttgc tttctttgaa
                                                                     1620
gttctgattc ctgtaactgc tgttttaatt gacagacatt ctgctctaat tcttcaatca
                                                                     1680
tactagatgc cttagaagct gaaagagcat gttcttgttt tagaaggttt atatcagcat
                                                                    1740 .
catatttggt ttgtaacagt ttcatgtttt gctcataatc atttacaaga tggtccttct
                                                                    1800
ctttatgcag tgtgttacgc cttgccttta cttcttgtaa tt
                                                                    1842
```

```
<210> 328

<211> 1293

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(1293)

<223> n = a,t,c or g
```

```
    <400> 328
    ttttttttt ttttt ttgacgcggg gagagattta atttacatag cagccacttg gggtccagtc
    agagctgggg cagtggggga atctataacc ccagagggta cccccagac ccccacccc
    gggagaccag tcctcaccaa cccttggatg ggctccaag gttgtgcaga agatgctcca
    gtcaaaagga tagagacatt tgggaaataa aggctgtcc caaagttggg gggaangtcc
    acggcctggg agtggatagc ctacatggtg gcccagggg gtctgagaga ccagtccat
    gggcggaaac
    300
    gtccctgggc gagtccttca
    gcctgggtgg ccctagagga aagccttcgc gggcggaaac
    360
```

tgttccctgg aggagggcgc ggtactggtc aaaatccttc ctttccacac gggtgacgcc 420 gccttcctta gcatacccac aacttcccgg cacaccagcc ttgataaagc gcttcattcg 480 tgggacacca gaatcacacc aacccctgaa attgtttgaa ggcaaggccc cagagcctca 540 atggetetee catgteeaag gtgggtttgt gggtteatee cagaatgtag aaagttgggg 600 cagggcaata gtccatctga gcaaaaggcc acttcggctt ctttctggcc cccaagacag 660 gctggcaaag aggacgcatg gcccagttct ccggagatgc ccataccgaa cccaagctgg 720 tgacnggtac tecteeteag geegeeeeag gaaaaettge gtgeeeagea agtteeeaca 780 agcactgaac gtttaggtcc cagctgctcc cacatggtgc tggctgaaat agccaatctt 840 cagatteetg tgagegtgte tgatgeeeeg aacaggtgee aggteeeca aaagcagett 900 cagcatggta gactteccag ecceattete tecaaceaca cagatgegag actegagate 960 agcagacaca gagaggegac tgaagatgac gtgcttegga tegtagtaga aatccacete 1020 atctagctgc agaattggcg gcgagaactt ctcaaaccca tcagggaact tcattacgac 1080 ctctgattcc ttgtccacag gcttcagctc aggcctggga gaagagatga ggtagactag 1140 atttattact taaaaaaata acttcctaca cgagtaatat atgttcagag aaaacttaga 1200 aagggettgt actectacea eteaggtate attactttag agtecattet teteatttae 1260 tgtatgctaa aaaatagaat taggcttttt gtg 1293

<210> 329 <211> 1734 <212> DNA <213> Homo sapiens

<400> 329 aaatttgtat ttcgataacc attagtgcag tgcggtggaa gtcaagatgg cggcgcggac 60 agegtteggt getgtgtgee ggegeetetg geagggattg gggaattttt etqtaaacae 120 ttctaagggc aatacagcca aaaatggtgg cttgcttctc agtaccaata tgaagtgggt 180 acagttttca aacctacacg ttgatgttcc aaaggatttg accaaacctg tggtaacaat 240 ctctgatgaa ccagacatat tatataagcg cctctcggtt ttggtgaaag gtcacgataa 300 ggctgtattg gacagttatg aatattttgc tgtgcttgct gctaaagaac ttggtatctc 360 tattaaagta catgaacctc caaggaaaat agagcgattt actcttctcc aatcagtgca 420 tatttacaag aagcacagag ttcagtatga aatgagaaca ctttacagat gtttagagtt 480 agaacatcta actggaagca cagcagatgt ctacttggaa tatattcagc gaaacttacc 540 tgaaggggtt gccatggaag taacaaagtt ttgtttcttt atttttttag acacaattag 600 aacagttacc agaacacatc aaggagccaa tctgggaaac actatcagaa gaaaaagaag 660 aaagcaagtc ataaagcctc agggaggcca tttttgccta aatttgaaat gagggtgggc 720 cagatgagta tgtttaagtg gagagtgctt ccagctgaga tgatttgagt ctgtcctaac 780 tgctccattg agttctcgtg ccctcatcag ctgagggcag ggaatggaac tttaatggaa 840 gaaccacttt tatctattct ttttattcat tgtttcagtt ctgatttcag caaacatgag 900 caaaccactt tgactgaaag cagaaagagt gaaaattcta ttttgttacg ctactggtgt 960 tcaattatta gtttgtacca tttttaattt atgtcagttg atgcatctga aaataagtgc 1020 ttggagtgtt cgtaccctta tttttttta agattcctag aaggaatctt tggttaattc 1080 agattgagca gttaaagttt ttgctattta cctttgtgca ggctggcata tgctaatttg 1140 ggggtggtaa ccaaccgatt ttatctcatg taagcattac attttgaaga ctgaatatac 1200 ttcacagcag atcaaacaca tttatggcat gcactgacct cttcttggag cccagaactt 1260 tatagagttg cctaccaggg ttactgtaat ggaatttatg atcttaagaa attactagtt 1320 gtattattta tcctatgatt cattcattca ataagctttt actgcataaa ctttacatcc 1380 agcactgtag ttaagtaccc aaaattgaat agaaataatg gcttttgaaa attgcacaaa 1440 gcaggccagg cacggtggct cacgcctgta atcccagcac tttgggaggc cgaggcaggc 1500 ggatcacgag gtcaagagat ccagaccatc ctggctaaca cggtgaaacc ccgtctctaa 1560 taaaaataca aaaattagct ggacatggtg gcacgtgcct gtaatcccag ctactcagga 1620 ggctgaggca ggagaatcgc gtgaacccgg gcccggtgga ggctgcagtg agacgagatc 1680 gegecaetge aetecageet ggegacagag egagacaceg tetcaaaaaa aaaa 1734

```
<210> 330
<211> 2105
<212> DNA
<213> Homo sapiens
```

<400> 330 ttttttttt ttatgtcatt cagcctttac tgtaaaaaag gaaacaataa aaacaaaacc 60 ctattaataa acacaatgca aacaatgccc gagattatca taaaaacata ctagcaagcc 120 acaagtacca gagaggggtg aacaggcata tetgetaget etectettge agteetcage 180 ctcccacagg aggcacaagg tccaaactat tcctcaaaaa aaaggacagc ctctttatgc 240 tgaaatagga actttaaagg aagctcttct tgtagtccaa atggacgtac cttgtggtat 300 ggctgtaagg actcgatttt acggcttgtg tattcctaac tatagctagg cctgtcacct 360 gctgttcctg tgatctcagc tttacctaga agagctcctg aaacagaatg ggtacacgaa 420 aatctggaat gaatagctat ctgctcaaaa acgattgttt aaaaacagat gattggggcc 480 gggcgcggtg gctcatgcct gtaatcccag cactttggga ggccgaggcg ggcggatcac 540 gaggtgagga gatcgagacc atcctgggca acatggtgaa accccgtctc tactaaaaat 600 acaaaaatta gctgggcgtg gtgatgccag ccactcggga ggctgaggca ggagaatcgt 660 ttgaaccagg gagtcagagg ttgcagcgag ccgagactgc gccactgcac tccagcctgg 720 cgacagagcg agactccgtc tcagaacgaa caaagaaaca aacaaaccag atgactggga 780 gactgaagag gaaaaaagat gggagaaaac gtagggaaag gatggggcct cacagactca 840 gctgtgggtg ggggggtaaa tcattacctc aggagaagcc caaggaattg tccccgaggt 900 gagetttgga aagaaaacaa aaacaaaaac aaaaacacca aaaaacacct aaattteetq 960 tattaaagtg acacataatc atgttttctg attctcttca ctgtctgcct gcggggaggg 1020 ggtggggaag gtgttaatga tgctgatccc tacttctgct tcaaggagat ctggtgggga 1080 attettecae cagtecagag tttgetggtg etgaceteat ecetgtatea egggeetaga 1140 atgtgggagg ctaataggat gggtgggttg caggaggtag aagaggggat ggcctagaga 1200 1260 cacccctagc cccagcccct cagctgtggg gagaggccac ctcctctgat ggggtctcga 1320 tgctgctgct ctgttcctgg tctggcacgt cctcctcttc ctgctccaag ctgaagttct 1380 cgagctcctg aaaaatctca tccatgaagt cctgggagtt ctgtttgtaa gacacagcta 1440 atcgaattgc atcattgaag agcttcacaa cattggtacc atcagcagcc gagacgaaat 1500 acaggggcag ggagaacttc ttggcaaaat tgaagctttt ttgggtcacg tttatgtctg 1560 ctgtagagag aaggtaggac attggtctgt ctgtcaaggg aagggaagaa ggtttggagg 1620 ggggggccac tggaggcctt cattccagaa agtgggatag gcagggatga ttgggaaaca 1680 ggtcctagaa agagctcagt taatagggat ctgtgtcttg gaaagagggc aggtcggctt 1740 agetggette tttataaggt gggaagaatg caagcaacca accaagggtt gtatettate 1800 gtgggaggga ggaccaatca ctgaaggttg cctgcccggg gaatggagga ggaaatgtat 1860 gagggcaggt ccccagtgaa ttgctaacac ccaggtgcag ggatggcccc accatcaatt 1920 ttattggcca ccacgatgca tgggatctct ggcctgaact cccgaagctc tgtataccag 1980 gtgctcaggt tcctatgggt gactttcctc tggacatcaa acaccatgat gcaagcgtgg 2040 gtcttgtggt agtaggaggc atgcatgctc tggaaccgtt cctggcctgc cgtgtcccaa 2100 aagtc 2105

```
<210> 331
<211> 5654
<212> DNA
<213> Homo sapiens
```

```
<400> 331
ggagcgacgc cgctcgggtc agtcggcggc cggactggga agatggacgc agctactctg 60
acctacgaca ctctccggtt tgctgagttt gaagattttc ctgagacctc agagcccgtt 120
```

tggatactgg	gtagaaaata	cagcattttc	acagaaaagg	, acgagatett	gtctgatgtg	180
				ccattggggg		240
acctcggaca	caggetgggg	ctgcatgctg	cggtgtggac	agatgatctt	tgcccaagcc	300
ctggtgtgcc	ggcacctagg	ccgagattgg	aggtggacac	: aaaggaagag	gcagccagac	360
				acagttacta		420
				gccagtggta		480
actgtcgccc	aggtcctgaa	gaagettget	gtcttcgata	cgtggagctc	cttaacaatc	540
cacattqcaa	tggacaacac	tattataata	gaggaaatca	gaaggttgtg	caggaccagg	600
attecetata	rcaggegeeac	tacatttcct	gcagattccg	accggcactg	caacggattc	660
cctqccqqaq	ctgaggtcac	caacaggccg	tcaccataga	gacccctggt	acttctcatt	720
cccctacaca	tagaactcac	ggacatcaac	gaggeetaeg	tggagacgct	gaaggactgc	. 780
ttcatggatg	cccagtcc	tgggcgtcat	cadadaaaaa	cccaacagcg	cccacttatt	840
tcatcggcta	agttgggtga	ggageteate	tacctggacc	cccacaccac	acaaccaacc	900
gtggagggga	ctgatggctg	cttcatcccq	gacgagagct	tccactgcca	acaccacca	960
taccacataa	acaticacaaa	acttaaccca	tccatcacta	tggtacgtgg	caaccaacta	1020
agcacacago	catttggtgg	tgaatgetgt	ttaaaaataa	cgaggaaaac	tttcaaattt	1080
ttacatttt	ttttcaggat	attaggetge	atactatatt	cacgtggttg	ggaett	1140
aaatataaaa	accadaacta	tatacttaca	ccctcacatc	cctccccag	ggaaccegaa	1200
ctatacaaca	ttcatoocct	transataara	cacacacac	gtgtctggat	gtaccacctc	1260
						1320
				ggtgagtgtg tgcaccacct		
cacatttaaa	cacacacacgg	geggeeeeee	acceaecce	gcaccacctt	tegteacacc	1380
gaggeedaa	cttgaggggg	atagagaatt	tagtaggag	gagetteect	enthana	1440
						1500
atatttaata	gagaaaaaa	ccctggtgtg	gactiacge	agacctgcct	geeeteaaat	1560
ctcacccgatg	gggaaagagg	ccaaaaaacc	tatattata	tcatgaatga	eggtgacatg	1620
ggaag	cagttaaccg	aaceggggge	coughtgugg	atgeteegee	ccatttagga	1680
ggaagaagge	agatetggge	cigaaatggg	acggreterg	agctgtggcg	cagececaga	1740
gracacacca	getecatge	accidentigg	cagggtggca	gtagtgggga	acatgggctg	1800
tagagagaga	gereacaerr	tagarasta	tgtttgttt	tgagacggag	teteactetg	1860
tegeceagge	cggagcgcag	tggegegate	teggeteact	gcaagctccg	cctcccaggt	1920
gataataa	ttttatatat	ageetetgga	ttagetggga	ctacaggcac	ccgccaccac	1980
geetggetaa	ttttetgtat	ttttaataga	gacgggtttt	cactgtgtta	gccaggatgg	2040
cettgatete	etgaeeteat	gatecaceca	cctcggcctc	ccaaagtgct	gggattacag	2100
gegegageea	ctgegegeag	cetggegeae	acticttacc	agaacctagt	cacgaattcc	2160
ttgccgaact	agaattaggt	atgtttgtta	ctgtaaacgc	agcttggtgg	cttacagtga	2220
				ccgcagacag		2280
				gataactgtc		2340
aggaggagga	atgreeeetg	reeeeggggg	agagtgetee	tacaccagcg	ccgaggcggc	2400
agaatggtgt	cttcagggga	agagagtgcc	cagtttgage	ttctccccc	atttcgtttc	2460
gagagagat	aacatetgeg	catciggcag	cgttgagaat	tcctagtgac	tgtcattaca	2520
ggeggeaget	ctaaggatgt	gattgeeggt	gaccettgge	cggtcccctg	teteetgget	2580
ceteageagg	aggeteeetg	tgtcacggtg	tccttgggca	gttctcggtg	gcctttgccg	2640
ccaagettee	agggagetge	tgggcgaagg	ctgagaccca	gcggccctgt	ctcacagtca	2700
cagagagaag	ageteeeae	ttggccctaa	ctcataacct	gccccaatcc	cggaacactc	2760
ggtgaggttt	gagagatgca	caccacgtaa	catctcgtgg	gcgaatcaag	gcacagcaac	2820
geagtggage	ccgagggag	eegggeaetg	gtgcagggga	ccatgcacag	ggcaccctcg	2880
gageteeatt	ceeggecaca	ggagccaagg	caggctggaa	tgtccagcac	ctgcatgctg	2940
ggggcctctg	ctgcgccact	ggcagtggga	atggaagccc	ccacctctta	tccgactgca	3000
gargggggrg	regtgitetg	eccategica	tttcgtttta	ggggttttc	tgtaagactg	3060
aagatgactt	cagrgattgg	tgccagcaag	tcaaaaagct	gtctctgctt	ggaggtgccc	3120
tgeecatgtt	tgagetggtg	gagcagcagc	cttcacatct	ggcctgcccc	gacgtcctga	3180
acctgtccct	aggtgagagc	tgccaagtcc	aggtggggtc	cctcggaggt	acgatctgtg	3240
cccttgcttc	cccagtcctg	gcccccttgg	ttttgaccat	taaggtgtgt	gtgagcctga	3300
gccgtgagca	cttggcagtg	gttcgcctgt	gagaccaggt	atggagtgga	gegteceete	3360
ctccaagett	gcgcccagca	gcccaggacc	cacctcgtct	tccccaccag	cgctgcctgc	3420
cggggcgctg	tggagctggg	cgtgctacca	tggagtcctc	aggggtctgg	agcagacaga	3480
acatgcaggc	tctgtggtga	cgcagtcctg	ggtggggac	tggttcactt	gggcaccact	3540
ggccatgggt	ggcgtagacc	cctcggacca	tggccagcgt	gccgcaggag	ccggcctggg	3600
ctcgtgcagt	gaagtgagtg	gccgtgagcg	cgtcctcctc	atctctgtct	ccctgtggga	3660
aactctacaa	acaaggcaat	ggcaatggaa	ccactcctga	tgaccacgag	ggtcagacgc	3720
gggacagagg	cccctcaggc	ctgagattgt	gccggccgcc	ccctgccctc	ctcaccctgc	3780
cctgctcctc	ttctctgctc	cctccccca	tattcgcagg	tctgcacaac	ccccggacct	3840
gttcacaccc	gcatggggac	agctgtctgt	gggctgcaga	gcaggcactg	ctcagtctgc	3900
cccacgccaa	gggcccttga	ctcacaccca	ggtggcccac	ccaagatgcc	tgatgcgcta	3960

```
tqtcctgttc cttctagatt cttctgatgt agagcgactg gaaagattct tcgactcaga
                                                                  4020
agatgaagac tttgaaatcc tgtccctttg aaaatcctgg ggtcgggggt ggcacctgtg
                                                                  4080
agagectggg geteetggtg cegetgegtt teatecatee egecegeteg cetgeegagg
                                                                  4140
getgegeece gtgetgeete ecceeagagg gecaceeget gtgetegtgg actgaggetg
                                                                  4200
cgctgcccgg gaggccttac tgcttggtgt cagactgccc agctcagagt gcccgtcagg
                                                                  4260
geetgtgeat eegeaegegg ageegtetgt taggagette cagagegtte tetegaeact
                                                                  4320
gccagccccg tgttagcacc tgggcctcag tcccacttgc tcccaggcgc cggttctgtg
                                                                  4380
gttggtttgg aattaaagtc ctgtttgaag ttgtcagaca cagacatgaa tttctggggc
                                                                  4440
gctccctgag tcagtctcag aagacctgtg caggctggcg tgagaggagc ggcagccaca
                                                                  4500
ctgcggcccc acgcccaagg actgggctgc tctcgagggg ggcgcgccca ccgctgtgtc
                                                                  4560
etetetgeee ageetggett accaaggget accteagtgg gagatgaggt tggaggaacg
                                                                  4620
aaggcgaggt teeteettge tttggggaga aaagtattea ggaagtgggt gtgtgggaaa
                                                                  4680
cctgaagatg gcgtgcacag gacacagcgt ggtcggcctg ggcagaaggg cggctggctg
                                                                  4740
tectggaget getgetggag cetgecetea gagtgteeet ttecagtget gtggeattet
                                                                  4800
4860
ggcttgaggg tggacggcgt gcctctccca ggagccttcc ccatgtcctt gccttgctga
                                                                  4920
gaattgccct cccatgccgc tgaggtgtta ggtggtttag ggccaaaagg ggaaaaccac
                                                                  4980
ttgagtcttg tggtgtgtgg tgggcagaca ccacagggtg gcatcacctg gtggcatttc
                                                                  5040
cagaacctca geocogatte cageacccae cacegeetga ceetgtgtaa eetgetgtee
                                                                  5100
cgggtcccag agtgcactct gccccactgc tctgctgcct gtcctgggaa agtagctttg
                                                                  5160
ccccactagg aaatgtaaac aggagggett ggggagcgtg ggcacttttc tcatgagcag
                                                                  5220
ctactgcggc gttggcagga ctcgctgctg ctgctgctgc tgcttgtgta ggtcggggag
                                                                  5280
ccggagatcc ccgaggacgc gcgccggaca gtcggcactg accggcccat ctggtagcag
                                                                  5340
aggacacccc cagcccccca agcattgaag acatagtgta tttcctcgta tcctttctcc
                                                                  5400
ettgggtgta gttggggtgg ggaagcaggg aaggetggtg egatetecat teettggget
                                                                  5460
ccgcgtccga gttcatggtg cgccgctgtg ctgggagctg cagtgggaat gtqtqqaca
ccttgaccaa aggggagctt tgtctcgtgt gttttgaaaa aggcttaatg aagagaatgt
                                                                  5580
tgttcattct tagtagtata gtttgcaatt cttaatggca aataataagt ttcagtagaa
                                                                  5640
acccaaaaaa aaaa
                                                                  5654
```

<210> 332 <211> 283 <212> DNA <213> Homo sapiens

<400> 332
ggagccaccg cgcccccgc caaatttaga ctttttgagc tctgtgcgtt gtgcctttca 60
acacttttca caatggattt tctgcttctt gataaggaag gcacccttga tcctgtcatg 120
gattcattta gcacacattg gaccacgata ggccctgctg acatgtttt ttcattgtag 180
acagcattat aagaacttta aatctcacgg cacaaacccc tcgaagtctg tctgggcaca 240
tgccacatgc caatcttgtg cctttcccaa ccttcttggt tgg 283

<210> 333 <211> 1759 <212> DNA <213> Homo sapiens

<400> 333

gacccgcctt gcggaattcg gcacgaggga cccctgtgcc caggctccgt gcgagcagca 60 gtgtgagccc ggtgggccac aaggctacag ctgccactgt cgcctgggtt tccggccagc 120 ggaggatgat ccgcaccgct gtgtggacac agatgagtgc cagattgccg gtgtgtgcca 180 gcagatgtgt gtcaactacg ttggtggctt cgagtgttat tgtagcgagg gacatgagct ggaggetgat ggcateaget geagecetge aggggeeatg ggtgeeeagg etteecagga cctcggagat gagttgctgg atgacgggga ggatgaggaa gatgaagacg aggcctggaa 360 ggccttcaac ggtggctgga cggagatgcc tgggatcctg tggatggagc ctacgcagcc 420 gcctgacttt gccctggcct atagaccgag cttcccagag gacagagagc cacagatacc 480 ctacceggag eccacetgge cacceeget cagtgeecee agggteecet accaetecte 540 agtgetetee gteaccegge etgtggtggt etetgeeacg cateceacae tgeettetge 600 ccaccagect ectgtgatec etgecacaca eccagetttg tecegtgace accagatece 660 cgtgatcgca gccaactatc cagatctgcc ttctgcctac caacccggta ttctctctgt 720 ctctcattca gcacagcete etgeceacca geecectatg ateteaacca aatateegga 780 getetteeet geceaecagt eecceatgtt tecagacace egggtegetg geaeccagae 840 caccactcat ttgcctggaa tcccacctaa ccatgcccct ctggtcacca ccctcqgtgc 900 ccagctaccc cctcaagccc cagatgccct tgtcctcaga acccaggcca cccagcttcc 960 cattatecca actgeceage cetetetgae caccacetee aggteceetg tgteteetge 1020 ccatcaaatc tetgtgeetg etgecaceca geeegeagee etececacec teetgeeete 1080 tcagagecee actaaccaga cetcaeccat cagecetaca catececatt ccaaagecee 1140 ccaaatccca agggaagatg gccccagtcc caagttggcc ctgtggctgc cctcaccagc 1200 teccaeagea geceeaaeag eeetgggga ggetggtett geegageaea geeagaggga 1260 tgaccggtgg ctgctggtgg cactcctggt gccaacgtgt gtctttttgg tggtcctgct 1320 tgcactgggc atcgtgtact gcacccgctg tggcccccat gcacccaaca agcgcatcac 1380 tgactgctat cgctgggtca tccatgctgg gagcaagagc ccaacagaac ccatgcccc 1440 caggggcagc ctcacagggg tgcagacctg cagaaccagc gtgtgatggg gtgcagaccc 1500 ccctcatgga gtatggggcg ctggacacat ggccggggct gcaccaggga cccatgggg 1560 ctgcccagct ggacagatgg cttcctgctc cccaggccca gccagggtcc tctctcaacc 1620 actagacttg gctctcagga actctgcttc ctggcccagc gctcgtgacc aaggatacac 1680 caaagccctt aagacctcag ggggcgggtg ctggggtctt ctccaataaa tggggtgtca 1740 accttaccca aaaaaaaaa 1759

<210> 334 <211> 2852 <212> DNA <213> Homo sapiens

<400> 334 ctacgagtac gtcggcgcc gcacctcccc gcaccgcccg cgctgcgcgc ccggaggagc gaccgccgca gttctcgagc tccagctgca ttccctccgc gtccgcccca cgcttctccc 120 gctccgggcc ccgcaatggc ccaggcagtg tggtcgcgcc tcggccgcat cctctggctt 180 gectgeetee tgeeetggge eeeggeaggg gtggeegeag geetgtatga acteaatete 240 accaccgata gecetgeeae cacgggageg gtggtgaeea teteggeeag cetggtggee 300 aaggacaacg gcagcctggc cctgcccgct gacgcccacc tctaccgctt ccactggatc 360 cacaccccgc tggtgcttac tggcaagatg gagaagggtc tcagctccac catccgtgtt 420 gtcggccacg tgcccgggga attcccggtc tctgtctggg tcactgccgc tgactgctgg 480 atgtgccage ctgtggccag gggctttgtg gtcctcccca tcacagagtt cctcgtgggg 540 gaccttgttg tcacccagaa cacttcccta ccctggccca gctcctatct cactaagacc 600 gtcctgaaag tctccttcct cctccacgac ccgagcaact tcctcaagac cgccttgttt 660 ctctacaget gggaettegg ggaegggaee eagatggtga etgaagaete egtggtetat 720 tataactatt ccatcategg gaccttcace gtgaagetca aagtggtgge ggagtgggaa 780 gaggtggagc cggatgccac gagggctgtg aagcagaaga ccggggactt ctccgcctcg 840 ctgaagctgc aggaaaccct tcgaggcatc caagtgttgg ggcccaccct aattcagacc 900 ttccaaaaga tgaccgtgac cttgaacttc ctggggagcc ctcctctgac tgtgtgctgg 960 egtetcaage etgagtgeet eeegetggag gaaggggagt geeaceetgt gteegtggee 1020 agcacagegt acaacetgac ccacacette agggacectg gggactactg etteageate 1080 cgggccgaga atatcatcag caagacacat cagtaccaca agatccaggt gtggccctcc 1140

```
agaatccagc cggctgtctt tgctttccca tgtgctacac ttatcactgt gatgttggcc
                                                                    1200
ttcatcatgt acatgaccct geggaatgcc actcagcaaa aggacatggt ggagaacccg
                                                                    1260
gagecaceet etggggteag gtgetgetge cagatgtget gtgggeettt ettgetggag
                                                                    1320
actecatetg agtacetgga aattgttegt gagaaceaeg ggetgeteee geecetetat
                                                                    1380
aagtetgtea aaacttacae egtgtgagea etecceetee eeaceeeate teagtgttaa
                                                                    1440
ctgactgctg acttggagtt tccagcaggg tggtgtgcac cactgaccag gaggggttca
                                                                    1500
tttgegtggg getgttggee tggateatee ateeatetgt acagtteage caetgecaca
                                                                    1560
agecectece tetetgteae ecetgaceee agecatteae ecatetgtae agtecageca
                                                                    1620
ctgacataag ccccactogg ttaccacccc cttgaccccc tacctttgaa gaggcttcgt
                                                                    1680
gcaggacttt gatgcttggg gtgttccgtg ttgactccca ggtgggcctg gctgcccact
                                                                    1740
geceatteet eteatattgg cacatetget gtecattggg ggtteteagt tteeteece
                                                                    1800
agacagccct acctgtgcca gagagctaga aagaaggtca taaagggtta aaaatccata
                                                                    1860
actaaaggtt gtacacatag atgggcacac tcacagagag aagtgtgcat gtacacacac
                                                                    1920
                                                                    1980
cacacacaca cacacaca cacacagaga aatataaaca catgcgtcac atgggcattt
cagatgatca gctctgtatc tggttaagtc ggttgctggg atgcaccctg cactagagct
                                                                    2040
gaaaggaaat ttgacctcca agcagccctg acaggttctg ggcccgggcc ctccctttgt
                                                                    2100
gettigtete tgeagttett gegeeettta taaggeeate etagteeetg etggetggea
                                                                    2160
gggggctgga tggggggcag gactaatact gagtgattgc agagtgcttt ataaatatca
                                                                    2220
ccttatttta tcgaaaccca tctgtgaaac tttcactgag gaaaaggcct tgcagcggta
                                                                    2280
gaagaggttg agtcaaggcc gggcgcggtg gctcacgcct gtaatcccag cactttggga
                                                                    2340
ggccgaggcg ggtggatcac gagatcagga gatcgagacc accctggcta acacggtgaa
                                                                    2400
accocgtete tactaaaaaa atacaaaaag ttagccggge gtggtggtgg gtgcctgtag
                                                                    2460
                                                                    2520
teccagetae tegggagget gaggeaggag aatggtgega accegggagg eggagettge
agtgagccca gatggcgcca ctgcactcca gcctgagtga cagagcgaga ctctgtctcc
                                                                    2580
aaaaaaaaa aggccgggcg cggtggctca cgcttgtaat cccagcactt tgggaggccg
                                                                    2640
aggegggegg atcaegaggt caggagateg agaceatect ggetaacaeg gtgaaacece
                                                                    2700
gtctctacta aaaatacaaa aaaaattagc cgggcgtgat ggtgggcgcc tgtagtccca
                                                                    2760
tetaeteggg aggetgagge aggagaatgg egtgaaceeg ggaggtggag gttgcagtga
                                                                    2820
geegagattg egeeactgea etceegeetg gg
                                                                    2852
```

```
<210> 335
```

<213> Homo sapiens

<400> 335

```
gtegtggaat tegeetteea getgtettet gtgagtgtet geetgacagt tteetttgge
                                                                       60
tggcagctag gcactgtgtc ttcctgtctc tctagggact ggttcttgaa gggaaacctc
                                                                      120
ctcatcatca tcgtcagtgt gttaatcatc ctgcccctcg ccctcatgaa acacttgggc
                                                                      180
tacctggggt acaccagtgg tetetetetg acctgcatge tgtttteet tgttteggte
                                                                     240
atctacaaga agttccaact tggctgtgct ataggccaca atgaaacagc aatggagagt
                                                                      300
gaageteteg tgggaeteee cagecaagga etcaacagea getgtgagge ceagatgtte
                                                                     360
acagttgact cacagatgtc ctacacagtg cccattatgg cttttgcttt tgtctgccac
                                                                      420
cctgaggtgc tgcccatcta tacggagetc tgccggccct ccaagcgcag gatgcaggcc
                                                                      480
gtggccaacg tgtccattgg ggccatgttc tgcatgtatg ggctcacagc aacctttgga
                                                                      540
tacctcacct tctacagcag tgtgaaggcg gagatgctgc acatgtacag ccagaaggac
                                                                     600
cogetcatee tetgtgtgeg cetggccgtg ctgctcgcgg gtgaccctca ctgtgccagt
                                                                     660
egtgetgtte ectateegee gggeeetgea geagetgett tteeeaggea aggeetteag
                                                                     720
ctggccacga catgtggcca tagctctgat cctgcttgtt ttggtcaatg tccttgtcat
                                                                     780
etgtgtgcca accateeggg atatetttgg agttateggg tecaceteag ecceeageet
                                                                     840
catcttcatc ctccccagct gtatt
                                                                     865
```

<211> 865

<212> DNA

```
<210> 336
<211> 1126
<212> DNA
<213> Homo sapiens
```

```
<400> 336
gtggcgccgg gagcaaaagc agcatgatgc agctcatgca cctggagtcc ttttatgaaa
                                                                   60
aaacctcctc ctgggcttat caaggaagat gacactaagc cagaagactg cataccagat
                                                                  120
gtaccaggca atgaacatgc cagggaattt ctggctcaca caccaactaa aggactttgg
                                                                  180
atgccactgg agaaagaagt caaagttaag cacttacttt tcattggatt gcttcataat
                                                                  240
                                                                  300
ttcttggtga tggaaaattc attcctaaag caacaagatt aaaggatgtt tgggtaagca
attagtttac ctgtcttttc tgggacctta cacggttcat ccatgattgc attttctttt
                                                                  360
agaattggag tttaatgaat aaaaacttta atataatcta ctgattcttt atctcactaa
                                                                  420
ggtgaaacac tcttatctta cagaaatatt tccccttttc tttgctttta ggttggcatt
                                                                  480
gcaaatggta cggtcaccga acaggctaca aagaatgccc tttctttatc aaagacaacc
                                                                  540
aaaagttaca acagttcaga gtagcacatg aggatttcat gtatgacatc atacgagaca
                                                                  600
ataaacaaca tgaaaagaat gtaaggatac agcagttaaa acagttactg gaggattcta
                                                                  660
cctcaggtga agataggagc agctccagtt cctctgaagg taaagagaaa cacaagaaaa
                                                                  720
780
agcacaaatc ttccaagtca aatgagggtt ctgactcaga gtgacaagga tgtgacttgt
                                                                  840
                                                                  900
tcaacattct cttctcaaac actgaccaag gaacagagga agatgcagtc agagaaagca
gcaggataga gacgccgaga gaggagtata tgtgggtcac agcagtgagc tcccacccgc
                                                                  960
cttgcagtga agatgtgacc ccaggagagg gagtgtctcc ttccaggtgc tagctctgga
                                                                 1020
cagcagctga ttttaggcag gaaagtttct tcatcgttgt cctccctgct ggtcacatga
                                                                 1080
gtttacgatt cctttgaagt gtctcccaca gggtggcagg actggg
                                                                 1126
```

```
<210> 337
<211> 4280
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(4280)
<223> n = a,t,c or g
```

```
<400> 337
aagaaattgc aggtgctgca gcagagaaca tgttaggcag tttgctgtgc ctcccaggtt
                                                                      60
cagggtcagt gcttcttgac ccctgcactg gttctaccat atcagagaca acaagtgaag
                                                                     120
                                                                     180
cttggagtgt agaggtattg ccaagtgact cagaggcccc agacctaaag caggaggagc
gtctgcaaga actggagagc tgttctggac tgggtagcac atctgatgat acggatgtca
                                                                     240
                                                                     300
gggaggtcag ttcccgcccc agcacaccag gcctcagtgt tgtgtccggc ataagtgcaa
cctctgagga tattcccaat aagattgaag acctgagatc tgagtgcagc tctgattttg
                                                                     360
ggggtaaaga ttctgtcact agtccagaca tggatgaaat aactcacgat tttctttata
                                                                     420
tacttcagcc aaaacaacat tttcaacaca ttgaagcaga agcagacatg agaatccagc
                                                                     480
                                                                     540
tgtcttctag tgcccaccag ctgacctctc ctccttctca gtcagagtct ctgctggcca
                                                                     600
tgtttgatcc actgtcttca catgaagggg cttctgctgt ggtaaggcca aaggttcact
atgctaggcc atcgcatcca ccaccagatc ccccaatcct ggaaggagct gtgggaggaa
                                                                     660
                                                                     720
atgaggccag gttgccaaac tttggttccc ccatgtttta actcccagct gaaatggagg
cattcaagca aaggcattcc ttacccctga gagactagtt cgaagcagga gctctgaata
                                                                     780
                                                                     840
tagtatette tgteeggaga eccatgagtg acceeagetg gaaceggegt eccaggaaat
gaagagcgag aactccctcc agctgcagcc attggtgcta cttctttggt ggctgcacct
                                                                     900
```

	cttcatcccc					960
	atgagaaatc					1020
-	aagctcctat		-	-	_	1080
	ctgacagatt					1140
caagctcagg	tggctgagga	tattctggac	aaatacagga	atgccattaa	acggaccagc	1200
cccagtgatg	gagcaatggc	aaactatgaa	agtacagagg	ttatgggtga	tggtgaaagt	1260
gcacatgatt	ctccccgtga	cgaagcactg	cagaacatct	cggctgatga	tctcccagac	1320
tctgcaagcc	aagcagccca	cccgcaggat	tcagctttct	cttacagaga	tgcaaaaaag	1380
aaactgaggc	ttgctctttg	ctctgcggac	tctgttgcct	tcccagtgct	gaccccattc	1440
aacaaggaat	ggtttaccag	accacacaga	cccagaagac	aatgaaattg	tatgcttctt	1500
aaaagttcaa	atagctgaag	caattaattt	acaagataag	aatctaatgg	ctcaacttca	1560
agaaacaatg	cgctgtgtgt	gccgttttga	taataggact	tgtaggaaac	tgctggcttc	1620
	gactacagaa					1680
aggactacag	accacacagg	ctcacctgga	aaggctattg	caaagagttt	tgcgggacaa	1740
agaagtggcc	aatcgatact	ttaccactgt	ctgtgtgaga	ttactgcttg	agagcaaaga	1800
aaagaagatc	agggaattca	ttcaagactt	tcagaaactc	accgcagctg	acgataaaac	1860
tgctcaggta	gaagattttc	tgcagtttct	ttatggtgca	atggcccagg	atgtcatatg	1920
	agtgaagaac					1980
	ttcaagctcg					2040
	gaacatatcc				_	2100
	gaggtttatc					2160
	gcttataaaa					2220
	aacctcctga					2280
	ttggtgtttg					2340
	agtagctttt					2400
	gcagcagtag					2460
	aaggcagcag					2520
	aggctgaaga					2580
	ctaaacaggt					2640
	gttgcatatt					2700
	ttttcaagta					2760
tgtctagacc	tccattcttg	gattcccttt	ctttcctttt	attttaaaaa	agaacagtac	2820
	agatgctgtc					2880
	tagaatagtg					2940
	gaaggaaatg					3000
	taataaacaa					3060
	cttgacaaaa					3120
	ttaaaatgta					3180
	tttaatgagt					3240
tttgtgagcc	tgcattagga	gatagactga	ttaccataca	tgacataaaa	aggaacagtg	3300
gatagctcat	actttatggt	ggttcttctc	ctccgaaata	atatactgca	gaaatcccag	3360
	ttacaaacct					3420
cacagaccaa	gaattcagtg	aatgtcattt	tttaaaaaac	taatttgtat	tgtctgctct	3480
	gttttactag					3540
aaaatatcta	ttttggcagg	tttctgtgcc	tttatttccc	tcttctgaaa	aaaagtctgt	3600
gttttcatag	tttggtttgc	attgtatatc	aataattaat	caggaatggg	ttttggtgcc	3660
tgaaaaattg	gccatggagg	cacaccaaag	cttcaagcac	aagtcttgta	catgggccat	3720
cactgtctgg	tttcacttcg	tgtgtttcct	aaacacattt	agctgctttt	ttaacaaact	3780
	cttgagtccc					3840
	gcctcgggca					3900
	gaatgcctaa					3960
	gagacagagt					4020
	caacctccac					4080
	tacaggcgca					4140
	tttcaccatg					4200
	ttngggcttc					4260
agccagaaat						4280

<210> 338 <211> 1796

<212> DNA <213> Homo sapiens

```
<400> 338
tggccatctt tactgtgggc tgaagcctgt gegettacte gegeatgtge aagcetteee
                                                                       60
tegettteet etteeaagta geettgeeta gageggagee teeeggegeea tttetqtqcq
                                                                      120
cetgegtage gtgaccetge geageetggg aggegggtet tageteeagg tgegtacqge
                                                                      180
atctgacttg acgtggccca caactgaaag gtctggggag aaggcgccgt qtccqqqtqt
                                                                      240
ggagaggggc gtcgtggaag cgagaagagt ggcccgtccc tctcctcccc ctttccctct
                                                                      300
tteggaaagt ggtttetgeg gggeeeggga geeteggagt acegaacete gateteeggg
                                                                      360
geggggteet tggtggggae tgagegeeee eteeegggga egggeggtet ggeeqeqqaq
                                                                      420
teccetgegg gagegtgatt ggetggaaac ggteeegaac eeceagggga geeegateee
                                                                      480
tggggggaccc tggcttcgga ctccagtatc tgtcgtcgca gggtccctgc cctagtggcc
                                                                      540
tatgtccctt gctcggggcc atggagacac tgcggccagt acggcggcgc ctctgtctga
                                                                      600
agaaggggaa gtgacctccg gcctccaggc tctggccgtg gaggataccg gaggcccctc
                                                                      660
tgcctcggcc ggtaaggccg aggacgaggg ggaaggaggc cgagaggaga ccgagcgtga
                                                                      720
ggggtccggg ggcgaggagg cgcagggaga agtccccagc gctgggggag aagagcctgc
                                                                      780
egaggaggae teegaggaet ggtgegtgee etgeagegae gaggaggtgg agetgeetge
                                                                      840
ggatgggcag ccctggatgc ccccgccctc cgaaatccag cggctctatg aactgctggc
                                                                      900
tgcccacggt actctggagc tgcaagccga gatcctgccc cgccggcctc ccacgccgga
                                                                      960
ggcccagagc gaagaggaga gatccgatga ggagccggag gccaaagaag aggaagagga
                                                                     1020
aaaaccacac atgcccacgg aatttgattt tgatgatgag ccagtgacac caaaggactc
                                                                     1080
cctgattgac cggagacgca ccccaggaag ctcagcccgg agccagaaac gggaggcccg
                                                                     1140
cctggacaag gtgctgtcgg acatgaagag acacaagaag ctggaggagc agatccttcg
                                                                     1200
taccgggagg gacctettca gcctggactc ggaggacccc agccccgcca gcccccact
                                                                     1260
cegatectee gggagtagte tetteceteg geageggaaa taetgattee caetgeteet
                                                                     1320
gcctctaggg tgcagtgtcc gtacctgctg gagcctgggc cctccttccc cagcccagac
                                                                     1380
attgagaaac ttgggaagaa gagagaaacc tcaagctccc aaacagcacg ttgcgggaaa
                                                                     1440
gaggaagaga gagtgtgagt gtgtgtgtgt gtttttttcta ttgaacacct gtagagtgtg
                                                                     1500
tgtgtgtgtt ttctattgaa cacctataga gagagtgtgt gtgttttcta ttgaacatct
                                                                     1560
atatagagag agtgtgtgag tgtgtgtttt ctattgaaca cctattcaga gacctggact
                                                                     1620
gaattttctg agtctgaaat aaaagatgca gagctatcat ctcttaaaag gaggggctgt
                                                                     1680
agctgtagct caacagttag gccccacttg aagggagagg cagaattgta ctcacccaga
                                                                     1740
ttggaaaatg aaagccagat gggtagaggt gccctcagtt agcacctgtc ccatct
                                                                     1796
```

<210> 339 <211> 1771 <212> DNA <213> Homo sapiens

<400> 339 cttgggccga gggacgtttg ggcaagtggt ttagtgctgg aaacggggca ccaatgagat 60 cgtagccatc aagatcctga agaaccaccc atcctatgcc cgacaaggtc agattgaagt 120 gagcatectg geceggttga geaeggagag tgeegatgae tataaetteg teegggeeta 180 cgaatgcttc cagcacaaga accacacgtg cttggtcttc gagatgttgg agcagaacct 240 ctatgacttt ctgaagcaaa acaagtttag ccccttgccc ctcaaataca ttcgcccagt 300 tctccagcag gtagccacag ccctgatgaa actcaaaagc ctaggtctta tccacgctga 360 ceteaaacca gaaaacatca tgetggtgga tecatetaga caaccataca qagteaaggt 420 catcgacttt ggttcagcca gccacgtctc caaggctgtg tgctccacct acttgcagtc 480 cagatattac agggcccctg agatcatcct tggtttacca ttttgtgagg caattgacat 540 gtggtccctg ggctgtgtta ttgcagaatt gttcctgggt tggccgttat atccaggagc 600 ttctgagtat gatcagattc gtatatttca caaacacagg gtttgcctgc tgaatattta 660

ttaagcgccg ggacaaagac aactaggttt ttcaaccgtg acacggactc accatatcct ttgtggagac tgaagacacc agatgaccat gaagcagaga cagggattaa gtcaaaagaa 780 gcaagaaagt acattttcaa ctgtttagat gatatggccc aggtgaacat gacgacagat 840 ttggaaggga gcgacatgtt ggtagaaaag gctgtccggc gggagttcat tgacctgttg 900 aagaagatgc tgtccattga ttctgtcaag agattctctc cagtcggatc cctgaaccat 960 ccctttgtca ccatgtcact ctttctcgat tttccccaca gcacacacgt caaatcatgt 1020 ttccagaaca tggagatctg caagcgtcgg gtgaatatgt atgacacggt gaaccagagc 1080 aaaacccctt tcatcacgca cgtggccccc agcacgtcca ccaacctgac catgaccttt 1140 aacaaccagc tgaccactgt ccacaaccag ccctcagcgg catccatggc tgcagtggcc 1200 cageggagea tgeccetgea gacaggaaca geccagattt gtgeccggee tgaccegtte 1260 cagcaagete teategtgtg teeceeegge ttecaagget tgeaggeete teectetaag 1320 cacgctggct actcggtgcg aatggaaaat gcagttccca tcgtcactca agccccagga 1380 gctcagcctc ttcagatcca accaggtctg cttgcccagc aggcttggcc aagtgggacc 1440 cagcagatcc tgcttccccc agcatggcag caactgactg gagtggccac ccacacatca 1500 gtgcagcatg ccgccgtgat tcccgagacc atggcaggca cccagcagct ggcggactgg 1560 agaaatacgc atgctcacgg aagccattat aatcccatca tgcagcagcc tgcactattg 1620 accggtcatg tgacccttcc agcagcacag cccttaaatg tgggtgtggc ccacgtgatg 1680 eggcagcagc caaccagcac cacctcctcc eggaagagta agcagcacct gtattgegge 1740 cgcgctagag tatccaagat tgcgtctcgc t 1771

<210> 340 <211> 2725 <212> DNA

<213> Homo sapiens

<400> 340

ggaattcgct atatgccgct atcctctggg catgtcagga ggccagattc cagatgagga 60 catcacaget tecagteagt ggteagagte caeagetgee aaatatggaa ggetggaete 120 agaagaaggg gatggagcct ggtgccctga gattccagtg gaacctgatg acctgaagga 180 gtttctgcag attgacttgc acaccctcca ttttatcact ctggtgggga cccaggggcg 240 ccatgcagga ggtcatggca tcgagtttgc ccccatgtac aagatcaatt acagtcggga 300 tggcactcgc tggatctctt ggcggaaccg tcatgggaaa caggtgctgg atggaaatag 360 taacccctat gacattttcc taaaggactt ggagccgccc attgtagcca gatttgtccg 420 gttcattcca gtcaccgacc actccatgaa tgtgtgtatg agagtggagc tttacggctg 480 tgtctggcta gatggcttgg tgtcttacaa tgctccagct gggcagcagt ttgtactccc 540 tggaggttcc atcatttatc tgaatgattc tgtctatgat ggagctgttg gatacagcat 600 gacagaaggg ctaggccaat tgaccgatgg tgtgtctggc ctggacgatt tcacccagac 660 ccatgaatac cacgtgtggc ccggctatga ctatgtgggc tggcggaacg agagtgccac 720 caatggctac attgagatca tgtttgaatt tgaccgcatc aggaatttca ctaccatgaa 780 ggtccactgc aacaacatgt ttgctaaagg tgtgaagatc tttaaggagg tacagtgcta 840 cttccgctct gaagccagtg agtgggaacc taatgccatt tccttccccc ttgtcctgga 900 tgacgtcaac cccagtgctc ggtttgtcac ggtgcctctc caccaccgaa tggccagtgc 960 catcaagtgt caataccatt ttgcagatac ctggatgatg ttcagtgaga tcaccttcca 1020 atcagatget geaatgtaca acaactetga agecetgece aceteteeta tggcacceae 1080 aacctatgat ccaatgctta aagttgatga cagcaacact cggatcctga ttggctgctt 1140 ggtggccatc atctttatcc tcctggccat cattgtcatc atcctctgga ggcagttctg 1200 gcagaaaatg ctggagaagg cttctcggag gatgctggat gatgaaatga cagtcagcct 1260 ttccctgcca agtgattcta gcatgttcaa caataaccgc tcctcatcac ctagtgaaca 1320 agggtccaac tcgacttacg atcgcatctt tccccttcgc cctgactacc aggagccatc 1380 caggetgata cgaaaactee cagaatttge tecaggggag gaggagteag getgeagegg 1440 tgttgtgaag ccagtccagc ccagtggccc tgagggggtg ccccactatg cagaggctga 1500 catagtgaac ctccaaggag tgacaggagg caacacatac tcagtgcctg ccgtcaccat 1560 ggacctgctc tcagggaaaa gatgtggctg tgggagggag tttcccccag ggaaactcct 1620 1680 aactttcaaa gagaagctgg gagaaggaca gtttggggag gttcatctct gtgaagtgga gggaatggaa aaattcaaag acaaagattt tgccctagat gtcagtgcca accagcctgt 1740 cctggtggct gtgaaaatgc tccgagcaga tgccaacaag aatgccagga atgattttct 1800

taaggagata	aagatcatgt	ctcggctcaa	ggacccaaac	atcatccatc	tattatctgt	1860
gtgtatcact	gatgaccctc	tctgtatgat	cactgaatac	atggagaatg	gagatctcaa	1920
	tcccgccacg					1980
	ctgaagttta					2040
	gttcaccgag					2100
	gctgactttg					2160
	gcagtgctcc					2220
	gcaagtgatg					2280
	gaaaaggccc					2340
	gttcttcccg					2400
	tgactcctgt					2460
	ctcattccaa					2520
	cctggccatg					2580
	tgccactcca					2640
ctttgccctc	ttttcctggt	cacccccact	ccctacccct	gactcatata	tactttttt	2700
tttttacatt	aaagaactaa	aaaaa				2725

<210> 341 <211> 916 <212> DNA

<213> Homo sapiens

<400> 341 cgtccaggga gcactgccca caggccgagc cggggcctcc cgcaagagga aggaggtgcc 60 ctcaaggeta cggacctggg gtcccggtgg tggacgcccc atgggggctca ggcctaaaga 120 ggccgagagg gcctcgggga cccagtgcat gccccacgct gagcagcaca ggctgccca 180 ccgtgggctc cccgatctct ctctggatca ccgagacctc gcagggaggg tcatcagggg 240 cgccaggccc agggccacca cagtggaagg tctccccttc cccaggcacg taatcttcca 300 ggtcagccag tgtcagcatg cggccgttgt gcgtgaggat cttggggtca cgatccccaa 360 ggctgtgtgt gtcctgggac tcctccgtca caaaggcgtc tccgtcttcc ccctcttcct 420 ctecegeete etecatggtg ceeteeteet eeaggetgee catgeeagaa geageecagt 480 ccacactgcc tetggcatec acgeggaaga caaggggete tetgacgeeg accatggetg 540 tgccctgggc ccaggcctcc tgggccagca gcttgttgtt ggagttgttg gaattggggt 600 cccctccggg ggtcgcaccg ggcagtgtga agagatgccc cgatgagctc ctgggcacct 660 ctgtggtggg agacacaccc tgcgggccca tcttcttcac ccggacttca atggtctcct 720 ccacctccac ccacttgggc tggggccccg agagtccggg cagagctgga gagtgggcct 780 eggeeteegt cacatacagt gtgggeacea egggettetg geetggttet geeteeggee 840 tgcggggctg gccagcacct ggcaggtaca gcaggtcggg ggccagtagg cctggcctca 900 gcgggctggc agagca 916

<210> 342 <211> 860 <212> DNA <213> Homo sapiens

<400> 342
caagatcccg acaggcttaa tcgctccctt aaggaaaaag ttattccttg catccgcggt 60
aaacttgggc cccccaagg atcctttaaa cgggccgcc ctttttttt ttttcaattt 120

```
180
cttcaacagg tcatgttcaa tttcttcaaa gttttaacat aaaaataatg agagccagga.
qtqqqqccgg qgcctggggg gacgaaggtg gtatgtgaaa caaggttggc acacaggcct
                                                                      240
                                                                      300
caccetecte tgeetcagat teccaagtgg geaggtgggg gtgaatgggg etecgggtag
                                                                      360
cacctcaget cetetcaget ecectcagee tgtteteett ecagacecag agagetgaga
                                                                      420
agagtagetg tgaggeteag ggeagagget etetgeettt caggaacage eettaaceet
geteceettg ettgggeete aggaaggtge egegagetet eetgeegtee etgggeegee
                                                                      480
ctggctctgc tgtgtccaga tggtcaggct actgccagct ggggccttgc tgctctgaag
                                                                      540
                                                                      600
teccaggaag ceaggggtet geaggageet ettgeeteea ggetggttgg ggaagaegte
                                                                      660
ctccaggaag tagtagatat ggcccaccgc aatccccagc aggtccacga ggatggagtt
                                                                      720
gcccagcagc agcgagaagc ccatgagcgc ccaaggcagg aacggtgcct ggaacttccg
qaacacaagg tgcgggttga agtagagttg aaaggggctg aggagctcca gctgcaccgc
                                                                      780
ggcggtggtg aggacacagg ctgcggtgta agcccgcgtc accgccggca cctgcaggaa
                                                                      840
                                                                      860
ctcggccgct agtccctgcc
```

```
<210> 343

<211> 3658

<212> DNA

<213> Homo sapiens

<220> .

<221> misc_feature

<222> (1)...(3658)

<223> n = a,t,c or g
```

<400> 343 60 ttttttttt tttaagatag aaatctatgc actttaatga ttgccagaat tgcccagcat 120 agcttcagta aaatagagaa ttgtctagaa aatacaatct ccaaaatgtg tgcaagtact gcaaaccgga cagaccgggg cagggcaagg cccttgaaac caagtcctcc ttgagcacct 180 ttcccaggtt agaaacccct cttcagcctg tgcttcgcac gtttccttca gcgtgccgcc 240 catteagact gegecaactt aegteeceag tgeecaegee tgngtggate aagtgteeaa 300 cgggaaagta tgagttaggg caagcgcttt ttttttaagc tgtaaacgct tcacatgact 360 gggccccgta aggaaattgt ggggagctta ggatgagcct gggagctttt tcagggactt 420 ggatgaggac tetgtacaca aatgtgtact ggcagagagt etgcaccage atcattetet 480 gttgccctca gcatgtccag cactctcggg atgtccagca cctcattgtg ttccaggcag 540 gegateatga teteegacaa aateaceaeg ceagteette etaeeeeage actgeagtgg 600 accaacaacg gagggttggg gctttgggga tcacttgtgc tatttgtatg gcgtcgaaca 660 720 gactggatct cttcaagata tgataaaaat cccttgaggt cttctggaca gccatgttca ggccagtctg tgtattggag gtgccagacg gtcctctctt gcccggtaag gaggtgcttc 780 atcttcaggc ctgtggtggc atagcagcca gagtctgtgc ggaaccgggt cgtgatctta 840 900 aaccttccat aggtgacagt gttgtgcctg gaaccaagtc gtggccagta cctaaagctc 960 ttetecette caccetecte ttetgetgte accattgeta taattgeaat teeetgttee 1020 cataccatct gccaaaaatc ttgacaggta ttctgtaatg gtccctgtgt ggcaatataa 1080 teccattega ttecaetgae agagacetta atatgtgatg egttgatgta accagtgttg 1140 ttttctttag ttgggaccaa ctccactctc acatcatcat aaggaagaac atcttggaat 1200 cgatttcttt ctgcattttc agggagtcgt gctgttgagc actccccatc aactagccgt 1260 ttcttaagaa ttctttcata ttctgtgaat accattcctt gttctaatcg ttgttccaga 1320 attttacacc tttcatcatt cgttgctctg gtagccactt cctttccttc atcaggcaga ggcactcgag atagggagag tccatttagg gcagccagtt taagaggacc aattttttt 1380 1440 gcatctactc gagtettttt cattececet agaggeggga gecetteeac gatgttette ttcccagaga gaaggtccga caccggcctt ttcttcagag agtccctccg ggctcggtag 1500 cggcctgacg tggtgaggtc ggactccgac atggagggca tcagcagccc gtctctccag 1560 ggccgctggg cctctgcggt cgtgcggacg gggctgctgt ccatcatcct cttctccgcg 1620 1680 tctgggacgt gggccttggg ctccaggatg tgcaggggcc cggcgagcag gacgcgaggg 1740 cagccaggtg ggtcctgggc caggccgggc cgaggctcgc gcgcacgtgc agggggcgcc 1800 egggeeegg teteeteete gaagteeteg teeteeteet eetegetget gtggattage 1860 atggtggcgt ccgacaggga cttcttatgg ccgtacctca agccctccgc ctcctccggc

```
cetteteget gtgteetete ggtgaaaaeg etggggetgg gageeeaeeg agaeggeteg
                                                                    1920
cggcgcccac ctctgccgcc gacgcggata gggtgcgctc cttgagccgc aggccctcca
                                                                    1980
ggccgtggct gagcccggcc acctcgatgc tgttccgttt gtgcagctgc gcgtggcgcg
                                                                    2040
cggcggtgag gggctcgctg acctcctgca gcgagtgcgc cacgggcagg ctgtcctcct
                                                                    2100
ggaacgtttg caccgagtgg tgcacgcgcc gcgtgatgag gtcggggttg ctgctgctga
                                                                    2160
tgtaaaggtg gcgggacagg tctggcgtgc tgttggcggg cctggggggc gggtagggtg
                                                                    2220
ggggtggccg gtacacctgc gtccgcatga tgttgggaga cgggtagtcc tgcgcctgca
                                                                    2280
gctgcgcatt ggtcagctcc ggcacgctga ccgcgcccac cacgggccgc cgctcqqcaq
                                                                    2340
ggtaggggta gggagacggg ctgtggaagc tgtagctcag gctgaacggg cagtgtgcqq
                                                                    2400
ccgctggcga ggggagctgt gcgtgctcgc ggatctcggg ctggctgtag accagcqccq
                                                                    2460
cgggcctgct gtaggcgtac gagctgccga tgttgaggtt tcgcagcgag tggctctgcc
                                                                    2520
gttccgcatg caccaggece ctgttgaget gettcatcac agtetcatag tetggggtgg
                                                                    2580
ggcggtagga cgggggtatc acggcgctgt gccgatggga cgqgaqqtaq tcaqqcctca
                                                                    2640
tgacgtcact cccggtgatg ctagggttgg acgacatcgg cqaqgqctqc aaqtaqqqct
                                                                    2700
gaggattatt taaggagttg gtgctgtgtg cactgtagac actggcattt acggatccga
                                                                    2760
ccgttgaagt caatctgggc tctattcaag cttgtctgaa attgaccata gtatcccttc
                                                                    2820
ctggttgggc acaaagaggt tatcttggga agaagcatat ggttctgtat aatgtccatt
                                                                    2880
atagtgcaac tggcggtggg ggaggcatca cgtagggctg gggtttaggc agagacatcc
                                                                    2940
ttgaagaaga cctcctcctg attgggttca ctgtgacagt ctgagtttgc aggttacact
                                                                    3000
ggtttagtct gtaaaacttg tgtcgcgcaa cacagagtct ccaaatgtat tttgctgttt
                                                                    3060
ccatgtette agtttgaaat tgaatggtet cetetttatt tgecagetet aatgcaaaaa
                                                                    3120
aggacttgtt gtgggacatg ttggcaatgt catgccacct aaataccaca ggatgccttc
                                                                    3180
cattettqtq tttcacaaag atacettcaa gacaegetee aatggatatg teaetteett
                                                                    3240
ggctatcctt agcagggtag ctctcttctc catagccatc cattctctct acctcctgca
                                                                    3300
tgtacagcat ttcagcatca ggagctgtga gccctctgta tttctgatgt agtaaggcca
                                                                    3360
ctttttgggt tgcttcttcc aatacttttt catcttgtaa ccatcccaca ggaaacaagg
                                                                    3420
caaatttctg aagaaagtcc tgggattcat actgatcaaa gtcaccaaaa atcgcttgaa
                                                                    3480
cagctaagcc tgctaggtga attggctgtt ccaaggtaca agggatacct tcttcccaga
                                                                    3540
tatccttcct cagttgcaga taatactggt acccggtaat cctctgctgg aagcgaggaa
                                                                    3600
cctgaggcgc ttaaaccccc attccaaaat agacggtagg ttccaaggcg ttttttc
                                                                    3658
```

```
<210> 344
<211> 419
<212> DNA
```

<213> Homo sapiens

```
    <400> 344
    aataaagaaa gaaacagaag ctggccgagg agtgagttga gctttccaag ttagctgacc 60
    ttaaagatgc tgaagctgtc cagaaattct tcctggaaga gatatagctt tggtgaagag 120
    atcctagcta aaggtgtaga ccacctgaca aatccaagtg ctgtgtgtgg acagccacag 180
    tggttactgc aagtgttaca acaaactctt ccactaccag tgatccagat gcttctgaca 240
    aagcccctac cagttaatca gagacttgta agtgctggcg cttggccaaa gacgatgtgg 300
    aatgagaaac aaatgtcaac ataataaaat ctcagttaaa atacttgaaa aattcttaac 360
    ttggtagttg agcagaaggg caaatatgct tgttatgaac tattctacat tgaaatcta 419
```

<210> 345 <211> 1253 <212> DNA <213> .Homo sapiens

<400> 345 ggaattcctc tgtcccgcca tacacagggt gggacggggc agggcgggca ttgagctttg 60 tgtcctgggg tcagggtgct tcccctgccg gcctcacccc accaagcgga tctcatggtg 120 ctcctctggc tgggcccacc cgcagtggta tccttctggg ggcccttatg ggagcctgcc 180 gggggtgcag atcctgccgg gggtgcagag cctgctgggg gtgcagatga tttctgggtc 240 ccaggaccat gaggggctg ctctacacac agccggaaga tgctgcggac ccaaactggc 300 cctttccctc ccacaccacc ccaggaccaa tgggctggct ggaggccacc catgctaaaa 360 taggeteaag ggeetaettt agettetggg caaaggtett ggeetgggee tgaetetgtg 420 gccttcctga gctgcctccc cagtaggcct cagtgctggg ctacaggcct cctccattcc 480 ctccattcat gtgaccccac ccctcccagc agaaactctc ttccgtagcc caggagcagc 540 tgttgagggt ttcacctgcc catgccccag cctaaggccg gcttccccag agcagacggg 600 ttgcactctc ctgcccctca ggcccactct gtcatccaac aagctcactg caactggccc 660 atcttaaaaa caacaccggc tggtcacgct ggctcacacc tgtaatccca gcgctgtggg 720 aggccggggc ggggggatca cttaaagtca ggagtttaag accagcctgg gcaacatggt 780 gaaacccgag ctccactaaa aacacaaaaa caaattaagg caccctgagt ggtggtggt 840 gcctgtggtc ccagcgactc gggaggctga ggcagaattg cttgagccca ggaggtggag 900 gctgcagtga gccacgatcg catcacgcac tccagcccgg gcaacctggc aagaccctga 960 ctctaaaaag aaaaaaacaa caaaaaaaaa aagcccacgt tcaagggcag cactattcaa 1020 aagagggaag caactcagga atccaaacgc gcaggaggga acacatcggg gttcatccac 1080 aggggaacac gattcaccca aaaaaaggaa ggaaaccggc ccggccccgg gacttgaatg 1140 cacctggagg agactgtgat gaacaaaagc acccaaaccc aaaagggcag ggacggggtg 1200 atctgactga ggtgaggacc ccagccagcc aaattcatgg agacagaaag aag 1253

<210> 346 <211> 807 <212> DNA

<213> Homo sapiens

```
<400> 346
tttcgtcgga ggcgggcgcg ggcgcgtccc tgtggccagt cacccggagg agttggtcgc
                                                                      60
acaattatga aagactcggc ttctgctgct agcgccggag ctgagttagt tctgagaagg
                                                                      120
tttccctggg cgttccttgt ccggcggcct ctgctgccgc ctccggagac gcttcccqat
                                                                      180
agatggctac aggccgcgga ggaggaggag gtggagttgc tgcccttccg gagtccgccc
                                                                      240
cgtgaggaga atgtcccaga aatcctggat agaaagcact ttgaccaaga gggaatgtgt
                                                                      300
atatattata ccaagttcca aggaccctca cagatgcctt ccaggatgtc aaatttgtca
                                                                      360
gcaactcgtc agacggggtt tcactgtgtt agccaggatg gtctcgatct cctgacctcg
                                                                      420
tgatccaccc gcctcggctt cccaaagtgc tgggattaca ggcgtgagcc accacgcccg
                                                                      480
gccaatattt tgtaattttt agtagagatg gggtttcact atgttggcca ggctagtctt
                                                                      540
asactectgt cetegtgate etcecacete ggeeteccaa agtgetgaga ttacaqqtqt
                                                                      600
gagccactgc atccagccaa taatatgctc tttaacaaac aatggatcaa aggaqaaatc
                                                                      660
acaagggaaa tagaaaaata cttaaaaatq aatqaacatq aaaqaaaaca taccaaacqt
                                                                      720
atgggaaaca gtgaaaacag tgcaaacgag gcaatttata gctatacacc attaaattta
                                                                      780
aagataagaa agacgtcaaa ccaacaa
                                                                      807
```

<210> 347 <211> 918 <212> DNA <213> Homo sapiens

<400> 347 ttttttttt ttagaatata tttcatttta ttataaagca gtgctcccaa acttttcaca 60 gcgtacacct cgagggtgga gaactaacat ccaagcacac ctggatggtg gatgggaccc 120 acttctgggt aacctgatga ggaagctcta gtgaagaaat tcaggacgcg gtcttcagag 180 cagagggctt ggttcaagtc cctgttctgc cacttactaa ctgcatgacc ttgagcaagc 240 cacttaattt ctctgctcct tctctgtgaa atgggtacaa tgtggtcagc agtaaaggaa 300 ctaatacatg tacagcactc agcacaaagc ctggcacaca gcaggctctc accaggtgcc 360 atteteagea caactgettg gttgagetae tgtggeagtg geaggttgtg eeccaagggg 420 gtgggctcag gagcccgtgc agcaagaggc agtgaccaag gaggcagggg acaatagccc 480 tatcttttca ggatctctgc cttggacctg gagaatggag agactttgct cctatcacgt 540 cccaagttgg gaaaactaag gacgaagccg gtgactgaca tctgaaatgg aatcctctgc 600 atctccaagt ggccctatac ctgacaatat cattactagt gaaaaccaag tgacaaacac 660 actectegae eccaagttet tecacatgte ceattgagga gageacagee aataacqeaq 720 agtgtattta tgcgcagggc tggctaaaca ggctggctac gagtccggaa cagtgtcagg 780 atctggcttc ccattggccg acatgacaga atccttctcg cgttgctctc tgatgtactg 840 gtccaacagg gtggtcagct ggaggggctg gtgctggagc agggagtggg tctgggctgt 900 gaggcaggtg gagttctg 918

<210> 348 <211> 1893 <212> DNA <213> Homo sapiens

<400> 348 ctgaatccat ggaaaaacgc tttacaggac ttctgcttac cttttctcag aatcaccagc 60 cttcttcagc accacctttt tggggaagat ttacctagct gccaggaaga agaagaattt 120 teagttettg ceagetgeet gggaettetg ceaacgtttt accaaacaga acatecatte 180 atcagtgcct cctgtctgga ttggccagtt ccagcatttg atattataac tcattggtgt 240 tttgagataa aatcatttac tgaaagacat gcagaacaag gaaaggcctt gcttatccaa 300 gagtcaaaat ggaaattacc acacctacta cagttgcctg agaattataa caccattttt 360 cagtactacc acagaaaaac ctgtagtgtc tgcaccaagg ttcctaaaga tcctgctgtt 420 tgccttgtgt gtggtacttt tgtatgcctg aaaggacttt gctgcaagca acaaagttac 480 tgtgaatgtg tactgcactc tcagaactgt ggtgcaggaa caggtatttt ccttttgatc 540 aatgcatcgg taattatcat cattcgaggt caccgcttct gcctctgggg ttccgtgtat 600 ttggatgctc atggagagga agaccgggat cttaggcgag gcaaacctct ctacatttgt 660 aaggaaagat acaaagttct tgagcaacag tggatttctc atacttttga tcacatcaat 720 aaaagatggg gtccacatta caatgggctg tgactctcca cctcagcatt gcatcgtatc 780 atcattttcg ctacgaattt atttttcaac aataagcttt aacttaattt gggggattaa 840 cacttttgct gagggagaaa aagaaaacat acattatgaa gcctttccaa aattaggtgc 900 ttggtaatca cgttaatggt ataatttttt ttttttaata tctggagaac attaataaca 960 agttaaatta ttctttagtg gtcatttttt aagtgcacaa ttaataagaa gcacaacttg 1020 ttcacaaact cattcagaaa tgattctccc aacaatgcat atcagctatt cattgatact 1080 tagagtgggt gtgatttatt tgacatttta ctgcttcttt ctgtctgtgt gttttaattt 1140 gcatctgcca agcataatgc atcttttttc ctctgccatt cttgtgttga ttggagaatt 1200 tttctgtatg taattagaaa aaaatgtaaa acatgattta tgtgaaatac tgtatagtaa 1260 aagttggtct aatagtagaa ctttaaaatt ttttcttatt gtgaggaatc tgttaaaagt 1320 ttaaagettt getgaaaact gaatteatte teaggaattt cataaatett etecceaggt 1380 aaataattga aatagctgta aaataagtag atagctgctg ttaatataat acagtacatt 1440 ttggggggca tatgtgtggt tggggggtcc ttaaaaatca aaatttgcca tttcagttgg 1500 atgaattact agaggtaata acaaatctta ctataaaatc aagaggttta agaacataca 1560 ctgggcagat gttgattccg tgcatgccca ccttttatta ccaaacaagg ttttgtttat 1620 atgattgtat tagaaatgct cagacttccc cagaaatgaa ccataaattt tggaacttcc 1680 tttcagctca agaggttcag ctatattgta tttgtgcagt ggtaatcact acctatttct 1740

ggctcgggtt tccctaaaag gaaaaaaag gcggcagtgg gtgatgaccc tcatggaatg 1800 agccacgctt cctgcattcc tccttaggaa ctggctgtgg aaaaccaatt tatggtttgc 1860 aggggtttaa aaatccagta aaaatggggg atg 1893

<210> 349 <211> 1433 <212> DNA <213> Homo sapiens

<400> 349

gcaaggggca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc 60 agggacccag gatgeteegg acetgttaeg tgetetgtte ceaagetggt eeeegeteea 120 ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc 180 tgacacgggc cttgctggtt ctccggctgt gtgcctggcc cccactcgtc actcacgggc 240 tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc 300 gagcatccgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg 360 tgcagcagct gcggaccctc agcctccgac cactgctggc agtgcccact gaggaggagc 420 cggactctgc tgccaagagt ggtgaggcgt ggtatgaggg gaacctcggt gctatgctgc 480 ggtgtgtgga cctgtcacgg ggcctcctgg agccccccag cctggctgag gccagcctca 540 tgcagctgaa ggtgacggcg ctgaccagta ctcggctctg taaggagcta gcctcgtggg 600 tcagaaggcc aggagcctcc ttggagctga gccccgagag gctggctgaa gctatggact 660 ctgggcagaa cctccaggtc tcctgcctca atgctgagca gaaccagcac ctccgggcct 720 ccctcagccg cctgcatcgg gtggcacagt atgcccgggc ccagcacgtg cggctcctgg 780 tggatgcgga gtacacctca ctgaaccctg cgctctcgct gctggtggct gccctggctg 840 tgcgctggaa cagcccgggt gaaggcgggc cctgggtgtg gaacacctac caggcctgtc 900 taaaggacac attcgagcgg ctggggaggg atgcagaggc tgcgcacagg gccggcctgg 960 ccttcggagt gaagctggta cgaggtgcat atctggacaa ggagagagcg gtggcccagc 1020 teccatggaa atggaagace eccecatea ggetgaetat gaggecacea gtteagagtt 1080 acageceget geetggaact gatgetgaeg eacgtggeee geeatggeee eatgtgeeae 1140 ctcatggtgg cttcccacaa tgaggaatct gttcgccagg caaccaagcg ggcaggccgg 1200 ctatgtagtg tataagtcca ttccctatgg ctccttggag gaggtaatcc cctacctgat 1260 ccggagggcc caggagaacc ggagcgtgct tcagggtgcc cgcagggaac aggagctgct 1320 cagccaaaaa ctgtggcggc ggctgctgcc aggatgccga aggatacccc actagcaccc 1380 ctgagggggt catgtggtca ataaaagtcc ttaggtgctg cctaaaaaaa aaa 1433

<210> 350 <211> 1062 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1062) <223> n = a,t,c or g

<400> 350
tttttttttt ttccagtcat taatgatetg tccttttgag atcttttact tcagaggaag 60
atttaggcaa gagagcaaca tataatagtc agtgatacaa agaagggcat ggaacatttg 120

PCT/US00/35017 WO 01/53455

gggaacacag gggtttggag ggcctgaagc acaggggtgg tggtattaga aatgtgggaa 180 atatgggcca tgagcctccg gacagaatgg ggtccaggaa ggacagcatc acacactggt 240 gctggaattt ggggatcctt ctgtgggcaa cctcagcagt ctggttattg gccctttttt 300 cttacagcct ggaaaactgg accaagtttc tattgatctc agcgaccqac cggcagcctg 360 taaggggcca tggaagtgtg gaactcattt gttaaaatgt tcaaaacttc cttaacacca 420 tgttcaccct tgcaggcaag gccccatagg attggtctcc caagaaaaat gcacttagct 480 ccaagggcca gagccttctg cacatcattg ccagttctga ccccggcatc caggtagtac 540 ttcatqttcc cctattcaqc aqctcctact tctqtcaaaq catcaattqa aqcaaqaacc 600 tcatcaagct gcctcccacc atggttggaa acaatgatac cctqgacatt gtgcttcaca 660 gctaactctg catcctcttt tgtcaaaatc cctttcagga tgatgggcaa tcgagttatg 720 ctctgaaacc aggagagatc attccagcag agagaagtgc tgataggagt catctggaaa 780 taaggtattg catttccctt tttaggtgat tgaagatctg ttagtgttaa gttcctcctc 840 aactggtttc gaatgtcatg tcgcctgttg ccacatacag gtgtatccaa agttattacc 900 aaagetttga aacetaggga ttetaceete tggatcaact gtttgtteag etgeaggtet 960 ggatgcacat agagttgqaa ccatcqqaqq ccttcqqqaq ctcttqctgt gctcatttcc 1020 ccgaattcca ccacnctgga ctagtgttct caaaannntc ga 1062

<210> 351 <211> 1227 <212> DNA <213> Homo sapiens

<400> 351 cagttttttt tttttttt tgctgcatga ttttattact ataaatatac agtaaaaacg 60 aaccaacgat gagcccatct gagcacatca gacggcagca catgggagtc ccagcgggcc 120 actctgcggc ccgaacttca cgcaaagctc tggcaccagg actgatggcc agaggctggg 180 gccttggtgg gggcggggg cgggcggtgc agggggctgt gtgtgttgtt ggggagaggt 240 gcatgggggg agagaggtgc ttgggqtggg gtaqaqqtgc gtqqqagatg ctcgqtccqa 300 gtgcacacac atgcatggga acatgtgcag gagtatgtgc gtgtgtgtat gcgtqacagc 360 atgtgtgagc gtgagtgtgc atgtgtgaac gtgtgcgtga gcatgtgcaa gtggqcqtgc 420 atttgtgtgt gtgtacgtgt gagcgcatct gcgtgcctgt gcacgagcgg gaggggtggc 480 tggcctgggt gtgcagggag ctgggtgtga ggaccgtgct gtccactgct gggtctcgcc 540 caggaggcag agctcatgct cggagccacc gtgagcctca gggagggtac tgagctgccc 600 cacagoogac ctgtccccag gcccccactg cagggcagcc ctccagagcc aggtgagcag 660 720 cagacacett geetggeeca aggeteegea ggggtggate catgeectgg gtcaccaegg cccaggcact ccctttgcca tctgcggccc caggaggttt acctataaaa aaaacaaaca 780 aacaaacaaa caaaacagga cgaggtcgcc cagaggccaa gcctccccgg ccgggacccc 840 attecceagg tgtgctgctg gcttcctcct ccctgggccc agcctgccac agaaagcctg 900 agacagaaca aaccaaatca gagagaactg caagggggcc gggcgcggag gctcacgcct 960 gtaatctcag cactctggga ggccgaggca ggtggatgac cttaggagtt tgagaccagc 1020 ccggccaaca tggtgaaatc ccttctctac taaaaataca aaaaaattag ccgaqcatqc 1080 tggtaggcac ctgtaatccc cagctactca ggagcctaag gcaggacgat cacttgaacc 1140 cgggaggcgg aggttgcagt gacccgagat tgagccactg cactccagcc tgggcagcaa 1200 gagtgaaact ccatctcaaa aaaaaaa

1227

<210> 352 <211> 1194 <212> DNA <213> Homo sapiens

<400> 352 tttttttttt ttatgatttt aatatacttt atttatttaa aaagtacaca gttttaaatt 60 ggtttcaata ggtttcaagc agaagggaca ctgcctacca cttgcggtcc catttctgat 120 gaagggtgat tatcatgtgg caaactcaca tttgcatgac tggcaaagta aaaagataga 180 taactttttg tcaacatatc tttaagagtt tatatcacgc acagtttaaa atcatgacga 240 gatgctgatg gttggactat attcatgtct cgtatgttgc accatatttt ggttcacagt 300 ttatccatga tttagcatgc caagagaaca tctcagtcag taagagaaca tctcagtcag 360 tgtcaccttg agaagagcat caaaagcaga gggagcagaa ggaggaccgt ctgggcttgg 420 agacteggeg cacceccaca etecetegea ttetecteag gatggaagee atgacaagat 480 tctgggcgcc ttctgatctt ctgggccttt agacgttcac acttaaggga ttcattatgt 540 tgactgtagt taaggcatgt ttccaaggat tgctttttc tactctgcat ttcagaggtc 600 aaaatttggc aatgacaact ctcttaacta ctctctctc ccaacagtgg aaaggatgta 660 attttccttc tctaatattt ctcccccagg tttccttacc actgataccc cttactggtt 720 tccgtggtag tgagtggacc tgcacacaaa aggatatacc tgatttcaat gggtgccatg 780 gtgatggggg ccacagattc acagaggcag ctgctgtcca ccaccaccat gaacaggttg 840 ctgcttggga tttgctggat gacaaaggac ctgttggaac aagaggtagc gaggcagtca 900 tttaccatcc gtcaattaaa gagccatgag gaagacttct ctcctgggtg gtagcaacta 960 ccatattttg taaagcaaat tttggagact attttactac taatgttacc ttctttctcc 1020 atgaggetet teacttacaa atacetaget teactaggaa aacaacaata getatgaega 1080 catgoggete atacaactea cettggaaag actgaagtge tgtatgtaca aaacacaaga 1140 gtcagagttg gctgaatcac ctgttcccaa ggtttaagag gtcagacttt caaa 1194

<210> 353 <211> 1140

<212> DNA <213> Homo sapiens

<400> 353 actctcacaa ttaaaacatt tggaaaggaa ttaatggtgt atttccatta gggaaagtgc 60 tgacaageeg caagggatee ettgatggtt etgggeatgg gegeeeagee tgggetetgg 120 ctttgggagc agcgagggga atgtgtctct cacccctagg cctcctggtc tggctcctgc 180 tcaggccaca cggcgcaccc accccagcg cgcctcagtc caggtcactg ggcagggtgt 240 ttactgctgc gctccaaccc aagcatgtag atttcagaag gggactagga cccccggcag 300 gtgtttgaga ccaccggctc ccaagtgcgt cgccttgggg gtttgcatcg gctcctcagc 360 ctccccaggc aatctctgtg tagggtcggg agcgggaggt ctgagttgag ccgggtgcct 420 gagatetecg gtgcaggteg ggggagggga geceeeteg ggetgtggtt agagegggag 480 aggaacttcc cagactagct ggcacagagc ctcgggaagg cggcgggcac tgcaggtggt 540 ttacgggaag tgctgcagcc ttggggtggg gacagcgtgg ccagacccac cgcctcatct 600 gcacacctgg gctcaagcgc taatgacgac aggggactga gtgaatggga cccccatgga 660 eccgegegee tgeeceaege catggeetgg gtttegggag cettgettta ttetgeeteg 720 ggtcggaggc tgggggagcg agacctccag tgcccgtgcg gctgggggag agggtggagg 780 ggccacttag atgtaggagt catcaccacc gggcgcatcg tagggacccc cacccctccc 840 cgcgccctcg ccctcatcgc cgctgccgga gtcactggcg ccatccacgt ccagggtggg 900 cgcgttgaga acgaccacgt ctgcctccgt cccgatgtcc tcgccaaacc agacagcctt 960 gtaccegece tetggeegee geteettggt caggatggae etcacegeeg tggggettee 1020 gccagctcgg gccgctgcgg ggggctcaag ggcaccgcct ggggaggcag ggccggggg 1080 tgcgggctat gcgggcatcg gtgcctccgc gggcttgggg tcgtgcgtgg ggctggggac 1140

<210> 354 <211> 2401

<212> DNA <213> Homo sapiens

```
<400> 354
agttaatctc tttggctggg cctacagatg acatacagag tacaggcccc caggttcatg
                                                                       60
ctttaaatat ccttagagca ttgttcagag atacgcgcct gggagaaaat attattcctt
                                                                      120
atgttgctga tggagctaag gctgcaattc tgggttttac atcaccggtc tgggcagtgc
                                                                      180
gaaattcatc cacacttctc tttagtgcct tgatcacaag aatttttgga gttaaaaggg
                                                                      240
caaaggatga acattccaaa acaaatagaa tgacagggag agagtttttc tctcgtttcc
                                                                      300
cagaactcta tccttttctt ctcaaacagt tggaaactgt agccaataca gtagacagtg
                                                                      360
atatgggaga accaaatcgt catccaagca tgtttctctt acttttggtg ttggagagac
                                                                      420
totacgette eeegatggat ggtacttett etgeteteag catgggacet tttgtteeet
                                                                      480
tcattatgag gtgtggtcac tcacctgtct accactcccg tgaaatggca gctcgtgcct
                                                                      540
tggtcccatt tgttatgata gatcacattc ctaataccat tcgaactctq ttqtccacac
                                                                      600
tccccaqctg cactgaccag tgtttccggc aaaaccacat tcatgggaca cttctccagg
                                                                      660
tttttcattt ggtgcaagcc tactcagact ccaaacacgg aacgaattca gacttccagc
                                                                      720
acgagetgae tgaeateaet gtttgtaeca aagecaaaet etggetggee aagaggeaaa
                                                                      780
atccatgttt ggtgaccaga gctgtatata ttgatattct cttcctattg acttqctgcc
                                                                      840
tcaacagatc tgcaaaggac aaccagccag ttctggagag tcttggcttc tgggaggaag
                                                                      900
tcagagggat tatctcagga tcagagctga taacgggatt cccttgqgcc ttcaaqgtgc
                                                                      960
caggectgee ceagtacete cagageetea ceagactage cattgetgea gtgtgggeeg
                                                                     1020
cggcagccaa gagtggagag cgggagacga atqtccccat ctctttctct cagctqttag
                                                                     1080
aatctgcctt ccctgaagtg cgctcactaa cactggaagc cctcttqqaa aaqttcttaq
                                                                     1140
cagcagcete tggaettgga gagaagggeg tgecaccett getgtgcaac atgggagaga
                                                                     1200
agttettatt gttggccatg aaggaaaate acccagaatg ettetgcaag atactgaaaa
                                                                    1260
ttctccactg catggaccct ggtgagtggc ttccccagac ggagcactgt gtccatctga
                                                                    1320
ccccaaagga gttcttgatc tggacgatgg atattgcttc caatgaaaga tctgaaattc
                                                                    1380
agagtgtage tetgagaett gettecaaag teattteeca ceacatgeag acatgtgtgg
                                                                    1440
agaacaggga attgatagct gctgagctga agcagtgggt tcagctggtc atcttgtcat
                                                                    1500
gtgaagacca tcttcctaca gagtctaggc tggccgtcgt tgaagtcctc accagtacta
                                                                    1560
caccactttt cctcaccaac ccccatccta ttcttgagtt gcaggataca cttgctctct
                                                                    1620
ggaagtgtgt ccttaccctt ctgcagagtg aggagcaagc tgttagagat gcagccacgg .
                                                                    1680
aaaccgtgac aactgccatg tcacaagaaa atacctgcca qtcaacagaq tttqccttct
                                                                    1740
gccaggtgga tgcctccatc gctctggccc tggccctggc cgtcctgtgt gatctgctcc
                                                                    1800
agcagtggga ccagttggcc cctggactgc ccatcctgct gggatggctg ttgggagaga
                                                                    1860
gtgatgacct cgtggcctgt gtggagagca tgcatcaggt ggaagaagac tacctgtttg
                                                                    1920
aaaaagcaga agtcaacttt tgggccgaga ccctgatctt tgtgaaatac ctctgcaagc
                                                                    1980
acctettetg teteetetea aagteegget ggegteeece aageeetgag atgetetgte
                                                                    2040
accttcaaag gatggtgtca gagcagtgcc cacctcctqt ctcaqttctt cagagagctt
                                                                    2100
ccaccagctg ctgagtttqt gaagacagtq qaqttcacaa qactacqcat tcaaqaqqaa
                                                                    2160
aggactitgg citgcttgag gctqctqqcc titttqqaaq qaaaqqaaqq qqaaqacacc
                                                                    2220
ctagttctca gtgtttggga ctcttatgca qaatcqaqqc aqttaactct tccaaqaaca
                                                                    2280
gaagcggcat gttgaagaaa atctggggga ttgggatggg ggtatgtgtg gatttttcct
                                                                    2340
ccactaaatc tgcaggaaac atgttgaaca taaattcaaa aattttatcc caaaaaaaaa
                                                                    2400
                                                                    2401
```

<210> 355 <211> 2186 <212> DNA

<213> Homo sapiens

```
cggataaaga cgctgggaga ttgacatgca tttcgaccaa tagcattqca qaqaqqcqta
                                                                      60
tcatttcgcg gatgttccaa tcagtacgca gagagtcgcc gtctccaagg tgaaagcgga
                                                                      120
agtagggeet tegegeacet catggaatee ettetgeage acetggateg etttteegag
                                                                      180
cttctggcgg tctcaagcac tacctacgtc agcacctggg accccgccac cgtgcgccgg
                                                                      240
geettgeagt gggegegeta cetgegeeae atecategge getttggteg geatggeeee
                                                                      300
attcgcacgg ctctggagcg gcggctgcac aaccagtgga ggcaagaggg cggctttggg
                                                                      360
cggggtccag ttccgggatt agcgaacttc caggccctcg gtcactgtga cgtcctgctc
                                                                      420
tetetgegee tgetggagaa cegggeeete ggggatgeag etegttacea cetggtgeag
                                                                      480
caactettte ceggeeeggg egteegggae geegatgagg agacacteea agagageetg
                                                                      540
gcccgccttg cccgccggcg gtctgcggtg cacatgctgc gcttcaatgg ctatagagag
                                                                      600
aacccaaatc tccaggagga ctctctgatg aagacccagg cggagctgct gctggagcqt
                                                                      660
ctgcaggagg tggggaaggc cgaageggag cgtcccgcca ggtttctcag cagcctgtqg
                                                                     720
gagegettge etcagaacaa etteetgaag gtgatagegg tggegetgtt geageegeet
                                                                     780
ttgtctcgtc ggccccaaga agagttggaa cccggcatcc acaaatcacc tggagagggg
                                                                     840
agccaagtgc tagtccactg gcttctgggg aattcggaag tctttgctgc cttttgtcgc
                                                                     900
gccctcccag ccgggctttt gactttagtg actagccgcc acccagcgct gtctcctgtc
                                                                     960
tatctgggtc tgctaacaga ctggggtcaa cgtttgcact atgaccttca gaaaggcatt
                                                                    1020
tgggttggaa ctgagtccca agatgtgccc tgggaggagt tgcacaatag gtttcaaagc
                                                                    1080
ctctgtcagg cccctccacc tctgaaagat aaagttctaa ctgccctgga gacctgtaaa
                                                                    1140
gcgcaggatg gagattttga agaacctggt cttagcatct ggacagacct cttattagct
                                                                    1200
cttcgtagtg gtgcatttag gaaaagacaa gttttgggtc tcagcgcagg cctcagttct
                                                                    1260
gtataggcaa tgctgtgtta ttacttgaat atagaatata tagtttacaa aatgaaaatt
                                                                    1320
ccaatgttct caccaaatat atgccttcgt gtgtccaaag tataattatt ttagatgcta
                                                                    1380
attttgaata gtttattaaa cagttataaa tatgcaaagt agctggcatg tagtgtcacg
                                                                    1440
gattttctgg atagaggaag tgattggaag tattccactt aaagccatgg aattagcaat
                                                                    1500
agtttgcttt ttaatagaag gcccatttgt aagaatgttg aaaatatgtg taccgtttaa
                                                                    1560
agaaaaagca gctttaaagt gacaaacaaa ataccctttt tcttttagta tgggttattt
                                                                    1620
ttctaggttt tctgtccctc cctcagtagt gaagagtttt ctttattcct ggcagtgtca
                                                                    1680
ggaatattgg tttgaaaagc tgttggccta tctggagttt ggccttgtta acctagtatt
                                                                    1740
ctaaccagtt aaccagcctt agtatgcatt aaaattgtat tgttcagaaa gtttgtttct
                                                                    1800
cattttctgc aaattcttac tttgaaaatg aatcaccaca tagtatgtcc ctttaaaqca
                                                                    1860
ttgacgcaca gacaaatgtt taaagcacag taaatacaaa tatatgcctt tggatattaa
                                                                    1920
attaatgctt gatgataaaa gaatcaaact ttttttttt tgaaagggag tctcgctttg
                                                                    1980
tcacccaaac tggagggcag gggggggatc actgttaagg gcaacctttg cctcccagga
                                                                    2040
tcaagcaatt ttgactcacc ctcccaagta gctgggatta caggggcagg ccaccatgcc
                                                                    2100
cggctaattt tttgtatttt tagtaaaaac ggggtttaac catgctggcc aggctggtct
                                                                    2160
caaacacctg accttgggat ccgtcc
                                                                    2186
```

<210> 356 <211> 1142 <212> DNA <213> Homo sapiens

<400> 356 attcacatct tattcagcat caaagaattc acacatgaga gtaagcacat gaatgtaatg 60 aatgtggaaa agctttcagt caaacctcat gccttattca gcatcacaaa atgcatagga 120 aagagaaatc gtatgaatgt aatgagtatg agggcagttt cagtcatagc tcagatctta 180 tcctgcaaca agaagtcctc accagacaga aagcctttga ttgtgatgta tgggaaaaga 240 actccagtca gagagcacat ctagttcaac atcagagcat tcataccaaa gagaactcat 300 gaatgtaatg aagatgggaa gatatttatc aaattcaggc ttcattcagc atctgagagt 360 tcacaccagg gagaaatcat gtatgtactg catgtggtaa agccttcagt catagctcag 420 ccattgctca gcatcagata attcacacca gagagaaacc ctctgaatgt gacgaatgaa 480 gaaaaggtat tagtgttaaa ctcttaatcg actcctgcaa atctatacca gtgagaaatc 540 ttacaaatgt attgaatgtg gcaaattttt catgctatta gtattttcat accttagtca 600 catttggaga attcacatgg gaataaaatt ccattgctgc aatgaatgtg aaaaagccat. 660 cagtcaaaga aactaccttg tttagtatca aattcacgcc atgcaaaaag attataaatg 720

```
taataagcat gtatgtgtg gaggagatte agteataace caaegeteat teaacateaa 780
agaatttata eetaagagaa ettatttggg tgtagtaaat ggeagatett teaataggag 840
tttaactagt etttgteata teagaatate catagtagae aagaatttga tgtaaegeaa 900
atggaaaaac tegacaceae attteagget ttacecaaca tegaaataat ggagagaaaa 960
ttgttgatta tttgtttatg aaattgttaa tacatagtee caatetttt cattgeacaa 1020
aaatetaggg ttgaettggt aaatgeagtg acattttete atggagttee tttattaat 1080
atgtatteta agtaggtaeg tttatttta etttttatt ataattttga tattaaaaag 1140
aa
```

<210> 357 <211> 3167 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(3167) <223> n = a,t,c or g

<400> 357

ggaattegeg agegeaggge geatgaetgg caggeagete caectgeage cetggtgeeg 60 gatecaetag gtgaageeag etgggeteet gagtetggtg gggaegtgga gagtetttat 120 atctagetca gggattataa acacaccaat cagcaccetg tgtetagete aaggtttgtg 180 agtgcaccaa tcgacactgt atctagctgc tctggtgggg ccttggagaa cctttatgcc 240 tagctcaggg attgtaaata caccaatcag caccctgtgt ttagctcaag gtttgtgaat 300 gcaccaatcg acactctgta tctagctgcc ctgatgggga cgtggagaac ctttgtatct 360 ageteaggga ttggaaacge accaateage geeetgaega aacaggeeac teggetetae 420 caatcagcag gatgtaggtg gggccagata agagaataaa agcgggctgc ccgagccagc 480 attggcaacc cgctcgggtc cccttccaca ctgtggaagc tttgttcttt cgctctttgc 540 aataaatctt gctactgttc actctttggg tccacactgc ttttatgagc tataacactc 600 accgcaaagg tctgcagctt cactcctgaa gccagcgaga ccacaagccc actgggagga 660 acgaacaact ccaggcgcgc aatgaacaac tccaggcgcg ccgccttaag agctgtaaca 720 ctcaccgcga aggtctgcag tttcactcct aagccagcga gaccacgaac ccaccagaag 780 gaagaaactc caaacacatc tgaacattag aaggaacaaa ctccagatgc gccaccttaa 840 gagctgtaac actcaccgcg agggtccacg gcttcattct tgaagtcagt gagagaccaa 900 gaacccacca attccggaca cattttggcg accatgaagg gactttcgcc tattgccaag 960 cggtgagaca atcgctgagc agtgagacca tcacctattg ccgagcggtg agaccattgc 1020 ctatcgccaa gcaaatcgag gccatcaagc tacagatggt cttacaaatg gaaccccaaa 1080 tgagttcaac taacaacttc taccgaggac ccctggactg accagctggt cctggcactt 1140 cccctggcct agagagttcc cctctqaaqq acactacaac tqcaaaqccc cttcttcqcc 1200 cctatccagc aggaagtagc tagagcagtc atcggccaaa ttcccaacag cagttggggt 1260 gtcctgttga ttgaggggtg acagcatgct ggcagtcctc acagccctca ctcgctcgct 1320 cactetegge accteetetg cetgggetee cactttggea geacttgagg agecetteag 1380 ctctgtatct agctactctg atgggtcctt ggagaacctt tatgtctagc tcagggattg 1440 taatacacca tcagcaccct gtgtctagct caggtttgtg aatgcaccaa tggacactct 1500 gtatctagct actctggtgg ggccttggag aaccttgtgt caacactctg tatctaacta 1560 acctggtggg gatgtggaga accttgtgtc tagctcaggg atgtaaacgc accaatcagt 1620 gccctgtcaa accactcggc tctaccaatc agcaggatgt gggtggggcc agataagaga 1680 ataaaagcag gctgcccgag ccagcagtgg caacccgctc aggtcccctt ccacactgtg 1740 gaagetttgt tettttgete tttgcaataa atettgtaet geteaetett tgggteecea 1800 ctgcttttat gagctgtaac actcactgcg aaggtctgca gcttcactcc tgagccagtg 1860 aaaccatgaa cccaccagaa ggaagaaacg ctgaacacac ctgaacatca gaagaaacaa 1920 actecagaeg egecacetta agagetggaa caettacege aagggteegt ggetteatte 1980 ttgaagtcag tgagaccaag aaccccccaa ttccggatac aatatcgaca aaacatgcat 2040 ctttgatgtc tgatagttac agagagaaga aattagttcc tgtggtttac ccccattcta 2100 gcactccctc cttccagtaa ttcctggaag gagggagtgc accaatcgac actctgtatc 2160

tatctactct ggtggggcct tggagaacct ttatgtctag ctcagggatt gtaaatgcac 2220 caattggcac tetgtateta geteaaggtt tgtaaacaca ecaatcagca eeetgtgtet 2280 agctcagggt ttgtgaatgc accaattgac actctgtatc tagctgctct ggtggggcct 2340 tggagaacct ttatgtcgac actctgtatc tagctaatct ggaggggatg tggagaaact 2400 ttgtgtctag ctcagggatt gtaaacgcac caatcagcgc cctgtcaaaa caggccactc 2460 agetetacca atcagcagga tgtgggtggg gccagataag agaataaaag caggetgeec 2520 caaccagcat tggcaacccc gctcgggtcc ccttgcacac tgtggaagct ttgttctttc 2580 gctctttgca ataaatcttg caactgctca ctctttgggt ccacgctgct tttatgagct 2640 gtaacactca ccgcgaagat ctgcagcttc actcctgagc ccagcgagac catgagccca 2700 ccggcaggaa cgaacaactc cagacacgct gccttaagag ctgtaacact ccccgtgaag 2760 gtctgcagct tcactcctga gccagcgaga tcacgaaccc accagaagga agaaactccg 2820 aacacatccg aacatcagaa ggaacaaact ccggaggcgc caccttaaaa gctgtagcac 2880 tcactgcgag ggtccgcggc ttcattcttg aagtcagtga gaccaagaac ccaccaattc 2940 cggacacaaa accetgtete tactaaaaaa tacaaaaaaa ttagegeggt ggggtggeeg 3000 gcgcctgtag tccggctact cangaggctg aggcaggaga atggcgggaa cccgggaggc 3060 ggagcttgca gtgagccaag atggcaccac tgcactccag cctggtggac agagtgacat 3120 tctgtctcan aaaaaaaaa aaaaaaaccc attggttaaa aacaaaa 3167

<210> 358 <211> 4747 <212> DNA <213> Homo sapiens

<400> 358 ttttttttt ttgaattaat tgatgaggtt tatttgattg tctttcttat aaaatacatt 60 aaaaatactg cttttaactg taggcacaca attaaaacaa atgtaaacct atgtttaatt 120 taaaaatatat taaaaatgatt taataaaggt cttttattat tttacacatc aaatttcatg 180 caatcagtac tccactgaag gagaaaagga ttatgaaaaa acaatgaaag cacagggtag 240 gaaaataaac aacacaaaag actaattctg gattttttt ctgtgtcctt aataccctgt 300 gctgtctttg acaacaaaga tgccttactt atgtgattca gaggcccgga agtgaaaaaa 360 atacaagtag ttaatgaata atgcatatgt tcatagcaat ggtcaaatta tactgtttcc 420 taatggatac catttttctt tatcgagtgg gacactacag agtcggatgt taattgctcc 480 cacaaataca gttttactct tcacaataag cattaagaca tgtccttgga gctctgtgac 540 ttcatcatat actacaattt cattgtaagt ggggtccgta cattttggaa caqattttqt 600 tttcctccta cgaacttcac tgggatatgg taaaagataa aattcaacat gtgcactggg 660 cgcagagcca tctgggagat gaatgttttt catgtgtttc actagtatgg tcagcttcac 720 atcctcgtag gatatgacta actgcacctt aggcttcttg tctggaaact tctcacctag 780 gtacacaggt gatgattett caactgtttg ttgcccagcc tcagagagga aaaagctaag 840 tacacaatca ctgtttgtaa cttcatgtga tacatttaat atctgttcca tgtaatgatt 900 tagatetetg aatettetgt gatetgaatt tgtaaaaggt aggtgeeace aatgaggaaa 960 ctctgggaga gtcagtgatg caaactgctt ctgaagttgg ctgtgaagtt ttgaaaactg 1020 ctcaaatgat ttttctgtca ggcttgtttc gttgttgctg tgtgtcacct ggatcagata 1080 cagattactg gatttcttgc tgaaccctaa aattgttgct ctttcaatcg acctagttgt 1140 actcagcaaa caggattcct gaggaaaagt ctgtgaagta gatttggcag ggcttatggc 1200 tgacatttgt gcaagtgtgt ggatcaagtt attcaattta acagggaaac actccagact 1260 ttcctttatt ttcttggtaa aatgacttgt tgcttccagg tctgtgtctt gtggacgaag 1320 attattatac acatatttca ggtcttgaaa tcccacttag ctcaggcagt ccctgcatac 1380 agcatcattt cccagcaggt tccaagagca gttggctgtg ctttctgata atattataag 1440 cacgacagca aagttcccac aaaatcttga aaatgctgtg ggtttttccc caccctctgt 1500 aataaagtat toccatotot gaagtaaaaa tgaaaggago toggtooott tttatoooto 1560 caaatgtttg tgcatgacct aagaattttc caaagtcaat atgaaacatg tggcccgact 1620 ttgtcagcat gatattatca ttgtgacggt cacatactcc caggatgaat gttaccacac 1680 accagecage acaggagtag aaaaagttee teaaggeett tteataatet geetttaagt 1740 ggttgtgctg actgaaccac tttttaatgg tattttcttt caatggtcct atcagtccag 1800 aatggcgatg aatctttgct agggtcacag catcaggtac catctgcacc aatcgttggt 1860 cttttcctgt ggatagacat ctataaatga tcatttgcat atccaagcct tcctgcagcc 1920

aaatattgtc catcacttga ataagctgca gaacaagcat atcctgacga agatcatctc 1980 cagcettaaa aataatgetg atgtttttge ceateagatt ageattgatg aaagtaatet 2040 tcaatggcaa agcattagat gtaaaatatg aacatgcatc gtgatcaatc ccttttatac 2100 atagggcagg gttcagagga agatgacaag tatttacatc ttgaaagaac tcttctagtc 2160 tgccaatttc tttcttcagt acctcctgtc tttgatggtc actggcagac ttgactcttt 2220 ccccaatatc tcccagaatt ttgataagtt tctgctcctt ggaaaactca tcattcaagg 2280 ctttacctgc acagaattgg agagcagcta gtagcttctg ataccagctt ttaaaataag 2340 cttcattttc tgcatttttt agcagccagt aaagacgatg ggcaacctgg atgctctgca 2400 aggagcggtg gagtagaagt tgcactaaag gactctcaag gttccattca aacttgacag 2460 cctgaactag ctgtgggaga tattccagta gttcatcatt caagaggttg tctaattgtt 2520 gaactgccac tttacgaatt tcttgatctg gaaaactgga agtcaaaagc ccaagagcct 2580 ctaaaggttg agaaaatgtc catcttctca aaatggtatg catttctgaa acagtccttt 2640 catcccatcc aggggcacta cccaggacta aaggaaggga gcagttttca ttattgcagt 2700 agaagcgata aaaccataaa tatcttttct tttcttcaga gagtagtagg ggagtctgtt 2760 totgtgaaag totggcaata tgttttatac actootttag tggotottca agattactto 2820 tattctcttc agaatcaggt ttcatatact cccacccagt agctggaaaa tcaatctqca 2880 gggtcaccgg ggatggctga cttacatccc acactcctgg agttatcatt tctacgggag 2940 gctcactctg taatgtcatg ctgaacagca tagacccgag aatggatttt tcttttggaa 3000 acagtggaag acaagtccac gccagtaaat ttgcattgtt ggttgcacag gcaatcccaa 3060 acagttttac agtgagcatg gattcccttg gaagtgactt tatttcaagg ggaaaattga 3120 tcctgtgcac ccaggtttct ggaatgttgt gtgctgcata cactgtgaag ctgaggtggg 3180 aaggaagccc gggatttaga taggaagtgc atctaggtac atttacaggc tgaaaatctg 3240 cataaaagct gttacagtag acattgatta gctggtagat ggatgtggat agttcagttg 3300 ttaccttctc tatcaagcct tttgctgaag tctctgaact ttgataaaaa ttctctcctt 3360 ttctctgaag aattagactt agttcattta ctgcatctgt aatttgtttg gtttccacac 3420 accetagaac actgeatatt tttttaactt etteaataat attatacaeg tttteetggg 3480 ttttcaatag gtatttcagg tggaagtcat attttctgat gagtgttaag agacattqtc 3540 tggatacttt ccaaatatgc ataaattcta gaagttgatt cagataaaac tgactgtggt 3600 cctcttcatg ctttcgagat agctttcctg gagcttccct acttttctgc aggtggagct 3660 gaataacaga tttatctttt tgaaacattt tgtggctccc caaacagtgg tcgttttgta 3720 aaaattcttc agagccccat acacttagaa tatgatcttt ggggagtagc tggtcatttg 3780 tgcaaaaatg cagaatttct gcaattagat ctttgacaag ataattagca catggcataa 3840 aatgaagagg ttgtgttgag ttatcaataa aaatatgtat attaaacttg gtcttagaaa 3900 agagetgata eggaaatget gtagtagtge tecagatett eecagaattg aaattaacat 3960 cagctgcatg atatctttct ctgatttttt ttactttgtt gcaaaaagag gccagactcg 4020 tattgctgct ttgaggtact tccactagct gaatggaaca acctattgac tctatattct 4080 tctgccatgt actttcccac attccgggtt gaagagagcc tttcaaaagc atcaaagatg 4140 gttccacaat gttcacatgt ccactccttt tattctcttc tttcggcatg aagtcacttg 4200 agaaggatga atttgttgga ggaatgctac tttcaaatcc tatatggtag ttatgatttt 4260 cattttctaa ttctttctct agattaattt tatccaaact tgtgaatgat ggagctaaaa 4320 tactgaatct ggaatcatca gcaccatgat gttttcctat ggggcttccc caggagcatt 4380 ctttattcgt attttgaggt tttggtaaca cagaaggact aaaaccaatt gctggtgctt 4440 tgctaacttg atgccaggag agttcacggc ttttagaagt gaattcattc aaggatattt 4500 ggtgtgcttc atttaatgaa tgccctgttg agtcccattt tggtgcagtg ggcacaaaaa 4560 aggigtitte atcaattica etetegtagt qiqqaattit qecactqate teatetacta 4620 totgatcaaa accoagactg acttggctag aagaatgggg ttgatttaca aagagaaatt 4680 cttggtgttc atactgcttt tcgtgtgatt cattaggatt tggatccgtt tgccaagaat 4740 atgccat 4747

<210> 359 <211> 679

<212> DNA

<213> Homo sapiens

<400> 359
ccagacatca tcctagcact taaggagctg gaagcagagg tatcatttaa actacttcct

ctgcttccag	acatcatcct	agcacttaag	gagctggaag	gttgaacaga	aattcttctt	120
ggaatccttg	aaggtttaga	ctccattctt	aaagattgga	ttctgaatat	caggtaacat	180
ttttatttgg	aatatatgta	tacagccttt	ttcaaaatcc	ctagggccac	tcttttgggg	240
gtatttaaaa	aatgtgttag	ctggatctga	ggcatcctgt	aatcaaaacc	aatatatatg	300
tagcaaaatg	aataacattt	ttcaaacttt	ttggacttca	gaattatgga	taacagattg	360
taacctcata	taaaatcata	cttttgcgct	ggggaacggt	cgtcacgcct	gtaatcccag	420
cactttggca	ggctgagact	ggcagatcat	ttgaggtcag	gagttcgaga	ccagcctggc	480
caacatgacg	aaaccccgtc	tcgactaaaa	atacaaaaaa	attagctgga	catggtggca	540
cccatctcta	ctcccagcta	cttgggaggc	cgaagaggga	ggattgcttg	aacccaggag	600
gtggaggttg	cagtgagctg	agatcatgag	actgcactcc	agcctgggtg	acagagtcga	660
gactccatct						679

<210> 360 <211> 2017 <212> DNA <213> Homo sapiens

<400> 360 tttcgtgcgg gagatcagag gtcccgccgt cccgcgcctg acctcggctg aggacaggca 60 ccgccatggg ccacacgcac acagcccgga gttgcagcgg accggcagag attacagcct 120 ggactacetg ecetteegee tatgggtggg catetgggtg getacetttt geetggtget 180 ggtggccaca gaggccagtg tgctggtgcg ctacttcacc cgcttcactg aggaaggttt 240 ctgtgccctc atcagcctca tcttcatcta cgatgctgtg ggcaaaatgc tgaacttgac ccatacctat cctatccaga agcctgggtc ctctgcctac gggtgcctct gccaataccc 360 aggcccagga ggaaatgagt ctcaatggat aaggacaagg ccaaaagaca gagacgacat 420 cgtaagcatg gacttaggcc tgatcaatgc atcettgctg ccgccacctg agtgcacccg 480 gcagggaggc caccetegtg gccetggetg teatacagte ccagacattg cettettete 540 cottetecte tteettaett etttettett tgetatggee etcaagtgtg taaagaccag 600 ccgcttcttc ccctctgtgg tgcgcaaagg gctcagcgac ttctcctcag tcctggccat 660 cctgctcggc tgtggccttg atgctttcct gggcctagcc acaccaaagc tcatggtacc 720 cagagagttc aagcccacac tccctgggcg tggctggctg gtgtcacctt ttggagccaa 780 cccctggtgg tggagtgtgg cagctgccct gcctgccctg ctgctgtcta tcctcatctt 840 catggaccaa cagatcacag cagtcatcct caaccgcatg gaatacagac tgcagaaggg 900 agctggcttc cacctggacc tcttctgtgt ggctgtgctg atgctactca catcagcgct 960 tggactgcct tggtatgtct cagccactgt catctccctg gctcacatgg acagtcttcg 1020 gagagagage agageetgtg cccccgggga gcgccccaac ttcctgggta tcagggaaca 1080 gaggetgaca ggeetggtgg tgttcatect tacaggagee tecatettee tggcacetgt 1140 gctcaagttc attccaatgc ctgtgctcta tggcatcttc ctgtatatgg gggtggcagc 1200 gctcagcagc attcagttca ctaatagggt gaagctgttg cttgatgcca gcaaaacacc 1260 agccagacct gctactcttg cggcatgtgc ctctgaccag ggtccacctc ttcacagcca tcagctttgc cctgtctggg gctgctttgg gataatcaag tctacccctg cagccatcat 1380 cttccccctc atgttgctgg gccttgtggg ggtccgaaag gccctggaga gggttttttc 1440 accacaggaa ctcctctggc tggatgagct gatgccagag gaggagagaa gcatccctga 1500 gaaggggctg gagccagaac actcattcag tggaagtgac agtgaagatt cagagctgat 1560 gtatcagcca aaggctccag aaatcaacat ttctgtgaat tagctggagt aggagtctgg 1620 gagtggagac cccaggaaac agcatgaggt gcttactcag gaagtcagga catttttggc 1680 ctttggctta acttccagat gctcagtcgg cttgggggaag gactgaaggg cagctgccaa 1740 gacctcagtt acctcctgac ctgagggtgg agagtggcag gaagcaagca tgtttgctgt 1800 gcacttagga aaggctggtg agccagaggg actgatcagg ccccattcac tctctactca 1860 ttaaaaaggtc ctgagccacg aagcgcttcc cattttgaac tttctgtcct cacagattct 1920 gtttgacaga atctaagggc catcagggaa ctcttttcat cttgcaaaga gaaaaagcca 1980 gtctttccag aataaatatt catctgtttg aaataaa 2017

<210> 361 <211> 2900 <212> DNA <213> Homo sapiens

<400> 361

cttctaggat aaaaaaaaa

atggggctca aggcgcgcag ggcggcgggg gcggctggcg gcggcggcga cgggggggg 60 ggaggcggcg gggcggctaa cccagccgga ggggacgcgg cggcgggccgg cgacgaggag 120 cggaaagtgg ggctggcgcc cggcgacgtg gagcaagtca ccttggcgct cggggccgga 180 gccgacaaag acgggaccct gctgctggag ggcggcggcc gcgacgaggg gcagcggagg 240 accoegcagg gcateggget cetggecaag acceegetga geegeccagt caagagaaac 300 aacgccaagt accggcgcat ccaaactttg atctacgacg ccctggagag accgcggggc 360 tgggcgctgc tttaccacag cgttggtgtt cctgattgtc ctaggggtgc ttgattctgg 420 ctgtcctgga ccacattcaa ggagtatgag actgtctcgg gagactggct tctgttactg 480 gagacatttg ctattttcat ctttggagcc gagtttgctt tgaggatctg ggctgctgga 540 tgttgctgcc gatacaaagg ctggcggggc cgactgaagt ttgccaggaa gcccctgtgc 600 atgttggaca tctttgtgct gattgcctct gtgccagtgg ttgctgtggg aaaccaaggc 660 aatgttetgg ecaceteect gegaageetg egetteetge agateetgeg eatgetgegg 720 gatggaccgg gagaaggtgg cacctggaag cttctggggc tcagccatct gtgcccacag 780 caaagaactc atcacggcct ggtacatcgg tttcctgaca ctcatccttt cttcatttct 840 tgtctacctg gttgagaaag acgtcccaga ggtggatgca caaggagagg agatgaaaga 900 ggagtttgag acctatgcag atgccctgtg gtggggcctg atcacactgg ccaccattgg 960 ctatggagac aagacaccca aaacgtggga aggccgtctg attgccgcca ccttttcctt 1020 aattggcgtc tecttttttg ceettecage gggcatectg gggtceggge tggccetcaa 1080 1140 ggtgcaggag caacaccgtc agaagcactt tgagaaaagg aggaagccag ctgctgagct cattcaggct gcctggaggt attatgctac caaccccaac aggattgacc tggtggcgac 1200 atggagattt tatgaatcag tcgtctcttt tcctttcttc aggaaagaac agctggaggc 1260 agcatccagc caaaagctgg gtctcttgga tcgggttcgc ctttctaatc ctcgtggtag 1320 caatactaaa ggaaagctat ttacccctct gaatgtagat gccatagaag aaagtccttc 1380 taaagaacca aagcetgttg gettaaacaa taaagagegt tteegeacgg cetteegeat 1440 gaaagcctac getttetgge agagttetga agatgeeggg acaggtgace ecatggegga . 1500 agacaggggc tatgggaatg acttccccat cgaagacatg atccccaccc tgaaggccgc 1560 catecgagec gtcagaattc tacaatteeg tetetataaa aaaaaattea aggagaettt 1620 gaggccttac gatgtgaagg atgtgattga gcagtattct gccgggcatc tcgacatgct 1680 ttccaggata aagtacette agacgagaat agatatgatt ttcacccctg gacctccctc 1740 1800 cacgccaaaa cacaagaagt ctcagaaagg gtcagcattc accttcccat cccagcaatc teccaggaat gaaccatatg taggecagac catecacatt cagaaatteg aagaccaaag 1860 gcattgatgg gggaagtttg ttaaaagttt gaaaggacag gtttcaggga ctggggagga 1920 agctggactt cctcgtggat atgcacatgc aacacatgga acggttgcag gtgcaggtca 1980 cggagtatta cccaaccaag ggcacctcct cgccagctga agcagagaag aaggaggaca 2040 acaggtattc cgatttgaaa accatcatct gcaactattc tgagacaggc cccccggaac 2100 caccetacag ettecaccag gtgaccattg acaaagtcag eccetatggg ttttttgcac 2160 atgaccetgt gaacctgeec cgagggggac ccagttetgg aaaggtteag geaacteete. 2220 cttcctcagc aacaacgtat gtggagaggc ccacggtcct gcctatcttg actcttctcg 2280 actoccgagt gagetgccac tcccaggetg acctgcaggg cccctactcg gaccgaatct 2340 cccccggca gagacgtagc atcacgcgag acagtgacac acctctgtcc ctgatgtcgg 2400 tcaaccacga ggagctggag aggtctccaa gtggcttcag catctcccag gacagagatg 2460

2520

2580

2640

2700

2760

2820 2880

2900

attatgtgtt cggccccaat ggggggtcga gctggatgag ggagaagcgg tacctcgccg

agggtgagac ggacacagac acggacccct tcacgcccag cggctccatg ccctctgtcg

tccacagggg atgggatttc tgattcagta tggacccctt ccaataagcc catttaaaag

aggtcactgg ctgacccctc cttgtaatgt agacagactt tgtatagttc acttactctt

acaccegacg cttaccageg gggacaccaa tggctgcatc aaatgcatgc gtgtgcgtgg

tggccccacc caggcagggg cttcccacaq cctcttcctc cccatqtcac cacaacaaag

tgcttccttt tcagcatggt ttgcatgact ttacactata taaatggttc ccgctaatct

<210> 362 <211> 5433 <212> DNA <213> Homo sapiens

<400> 362 cggacgcgtg ggatcattga atttgaccca aagtatactg ccttcgaagt ggaggaagat 60 gttgggctga tcatgatccc agtggtgagg ctacatggaa cttatggcta tgtgacagct 120 gatttcatct ctcagagetc ctctgccagt cccggaggtg ttgattacat tttgcatggc 180 agtacagtca cctttcagca tgggcaaaac ttaagtttta taaatatctc catcattgat 240 gacaatgaaa gtgaatttga ggagcccatt gaaattctac tcactggagc tactggagga 300 geggteettg ggegeeacet agtgageaga atcataatag etaagagtga etetecettt 360 ggagttataa ggtttctcaa tcaaagcaaa atttctattg ctaatcccaa ttccacaatg 420 attttatcac tggtgctgga gcggactgga ggactcttgg gagagattca ggtgaactgg 480 gagacagtag gacccaactc tcaagaagcc ttactgccac agaatagaga cattgcagac 540 ccagtgagcg ggttgttcta ttttggagaa ggagaaggag gagtgagaac cataattctg 600 acaatctatc ctcatgaaga aattgaagtt gaagagacat tcattattaa acttcatctt 660 gtgaaaggag aagctaaatt agactccaga gctaaagatg ttacattaac catacaagag 720 tttggtgacc caaatggagt tgttcagttt gctcctgaaa ctttgtctaa gaagacttat 780 tcagagcctc tggctctgga agggcccctg ctcattacct tctttgtcag aagagtcaag 840 ggcacctttg gagagattat ggtttactgg gaattaagta gtgagtttga cattactgaa 900 gactttcttt ccaccagtgg atttttcacc attgctgatg gagagagtga agctagcttt 960 gatgttcatt tgctaccaga tgaggtacct gagatagagg aagattatgt gatccagctt 1020 gtttctgtag agggaggagc cgaactggat ctggagaaga gtatcacatg gttctctgtt 1080 tatgcaaatg atgacccaca tggagtattt gccctgtatt cggatcgcca gtcaatactt 1140 attgggcaga accttattag atccatccaa attaacataa cccggcttgc tggaacattt 1200 ggagatgtgg ctgttgggct tcgaatatca tcggatcata aagaacagcc gattgttacc 1260 gaaaatgcag agaggcagct ggtggtcaaa gatggtgcca catataaagt ggacgtggtg 1320 ccaataaaga atcaggtctt cctatcactg ggctctaatt tcactttgca actggtgact 1380 gtgatgcttg tcggtggacg tttctatgga atgccaacaa ttcttcagga agcaaaatct 1440 getgteette cagtetetga gaaagetgee aatteteagg teggatttga atceaetget 1500 tttcaactca tgaacatcac tgctggcaca agccacgtta tgatttctag gagaggcaca 1560 tatggagete teteggttge etggaceaet ggatatgete etgggttaga aatteetgaa 1620 ttcattgttg ttggcaacat gaccccaaca ctggggagcc tttcattttc ccacggtgaa 1680 caaaggaaag gagttttcct gtggacgttt cctagccctg gttggccaga ggcctttgtt 1740 ettcacctat caggagtgca gagcagtgct cctggcggag ctcaactccg atcaggtttc 1800 attgttgctg aaattgaacc aatgggcgtc ttccaatttt ccactagctc aagaaatatc 1860 atagtgtcag aagatacaca gatgatcaga ttacatgtac aaagactatt tgggttccac 1920 agcgatctta ttaaagtttc ttatcagacc actgcaggaa gcgccaagcc actggaagat 1980 tttgagcctg ttcagaatgg ggaactgttt tttcaaaaat tccaaactga ggttgatttt 2040 gaaataacca ttattaatga tcagctttct gagatagaag aattttttta cattaacctt 2100 acttcagtag aaattagggg attacaaaag tttgatgtta attggagccc acgcctgaat 2160 ctagatttca gtgttgcagt gattacaata ttggataatg atgacctggc aggaatggat 2220 atttccttcc ccgagacaac tgtggctgta gcagttgaca caactctcat tcctgtagaa 2280 actgaatcca ccacatacct cagcacaagc aagacgacta ccattctgca gccaaccaac 2340 gtggttgcca ttgttactga ggcaactggt gtatctgcca tccctgagaa acttgtcacc 2400 cttcatggca cacctgctgt gtctgaaaag cctgatgtgg ccactgtaac tgccaatgtt 2460 tccattcatg gaacattcag ccttgggcca tccattgttt atattgaaga ggagatgaag 2520 aatggcacat tcaacactgc agaagttctt atccgaagaa ctggtgggtt tactggcaat 2580 gtcagcataa cagttaaaac tttcggtgaa agatgtgctc agatggaacc aaatgcattg 2640 ccctttcgtg gtatctatgg gatttccaac ctaacatggg cagttgaaga agaagacttt 2700 gaagaacaaa ctcttaccct tatattccta gatggagaaa gagaacgtaa agtatcagtt 2760 caaattttgg atgatgatga gcctgagggg caggaattct tctacgtgtt tctcacaaac 2820 cctcaagggg gagcacagat tgtggagggg aaggatgata ctggatttgc agcttttgcc 2880 atggttatta ttacagggag tgaccttcac aatggcatca taggattcag tgaggagtcc 2940 cagagtggac tagaactcag ggaaggagct gttatgagaa gattgcacct tattgtcaca 3000 agacagccaa acagggcctt tgaagatgtc aaggtctttt ggcgagtcac acttaacaaa 3060 acagtcgtcg tgctccagaa ggatggggta aacctgatgg aggaacttca gtctgtgtca 3120 gggaccacaa cctgtacaat gggtcaaaca aaatgcttta tcagcattga actcaaacca 3180

gaaaaggtac	cacaggttga	agtgtatttt	tttgtggaac	tatatgaagc	tactgctgga	3240
gcagcaataa	acaacagtgc	cagattcgca	cagattaaaa	tcttagaaag	tgatgaatct	3300
caaagccttg	tgtattttc	tgtgggttct	cggctggcag	tggctcacaa	gaaggccact	3360
ttaatcagtc	tgcaggtggc	cagagattct	gggacaggac	taatgatgtc	tgttaacttt	3420
agtacccagg	agttgaggag	tgctgaaaca	attggtcgta	ccatcatatc	tccagctatt	3480
tctggaaagg	attttgtgat	aactgaaggc	acattggtct	ttgaacctgg	ccagagaagc	3540
actgtattgg	atgtcatcct	aacgccagag	acaggatctt	taaattcatt	tcctaaacgc	3600
ttccagattg	tcctttttga	cccaaaaggt	ggtgccagaa	ttgataaagt	gtatgggact	3660
gccaacatca	ctcttgtctc	agatgcagat	tcgcaggcca	tttgggggct	tgcagatcag	3720
ctacatcagc	ctgtgaatga	tgatattctc	aacagagtgc	tccataccat	cagcatgaaa	3780
gtggccacag	aaaacacaga	tgaacaactc	agtgccatga	tgcatctaat	agaaaagata	3840
actactgaag	gaaaaattca	agctttcagt	gttgccagcc	gaactctttt	ctatgagatt	3900
ctttgttctc	ttattaaccc	aaagcgcaag	gacactaggg	gattcagtca	ctttgctgaa	3960
ttgactgaga	attttgcctt	ttctctgctg	actaatgtta	cttgcggctc	tcctggtgaa	4020
aaaagcaaaa	ccatccttga	tagttgccca	tatttgtcaa	tattggctct	tcactggtat	4080
cctcagcaaa	tcaatggaca	caagtttgaa	ggaaaggaag	gagattacat	tcgaattcca	4140
gagaggctac	tggatgtcca	ggatgcagaa	ataatggctg	ggaaaagtac	atgtaaatta	4200
gtccagttta	cagagtatag	cagccaacag	tggtttataa	gtggaaacaa	tcttcctacc	4260
ctaaaaaata	aggtattatc	tttgagtgtg	aaaggtcaga	gttcacaact	cctgactaat	4320
gacaatgagg	ttctctacag	gatttatgct	gctgagccta	gaattattcc	tcagacatct	4380
ctgtgtctcc	tttggaatca	ggctgctgca	agctggttgt	ctgacagtca	gttttgcaaa	4440
gtgattgagg	aaactgcaga	ctatgtggaa	tgtgcctgtt	tacacatgtc	tgtgtatgct	4500
gtctatgctc	ggactgacaa	cttgtcttca	tacaatgaag	ccttcttcac	ttctggattt	4560
atatgtatct	caggtctttg	cttggctgtt	ctttcccata	tcttctgtgc	caggtactcc	4620
atgtttgcag	ctaaacttct	gactcacatg	atggcagcca	gcttaggtac	acagattctg	4680
tttctggcgt	ctgcatacgc	aagtccccaa	ctcgctgagg	agagctgttc	agctatggct	4740
gctgtcacac	attacctgta	tctttgccag	tttagctgga	tgctcattca	gtctgtgaat	4800
	tgctggtgat					4860
	ggggactacc					4920
	agagcatgtc					4980
ccaaacgtct	atgctgcttt	gttcactgca	gctcttgttc	ctttgacgtg	cctcgtggtg	5040
gtgttcgtgg	tgttcatcca	tgcctaccag	gtgaagccac	agtggaaagc	atatgatgat	5100
	gaaggacaaa		-			5160
	catggctttg				-	5220
	tcattttcaa					5280
	caacattttt					5340
	tacttacatg			aaggccttgg	ggttctatgt	5400
ttccttaaca	ctgaatgggc	tttccaagtg	cat			5433

<210> 363

<211> 3569

<212> DNA

<213> Homo sapiens

<400> 363

```
ageggeeggg geeacgatgg agegegaegg etgegegggg ggegggagee geggeggega
                                                                      60
gggcgggcgc gctccccggg agggcccggc ggggaacggc cgcgatcggg gccgcagcca
                                                                      120
cgctgccgag gcgcccgggg acccgcaggc ggccgcgtcc ttgctggccc ctatggacgt
                                                                     180
gggggaggag ccgctggaga aggcggcgcg cgcccgcact gccaaggacc ccaacaccta
                                                                     240
taaagtactc tcgctggtat tgtcagtatg tgtgttaaca acaatacttg gttgtatatt
                                                                     300
tgggttgaaa ccaagctgtg ccaaagaagt taaaagttgc aaaggtcgct gtttcgagag
                                                                     360
aacatttggg gaactgtcgc tgtgatgctg cctgtgttga gcttgggaaa ctgctgttta
                                                                     420
ggattaccag gggggacgtg cataggaacc aggaacatat atgggacttg caacaaattc
                                                                     480
aggtgtgggt gagaaaaggt tgaccagaag cctctgtgcc tgttcagatg actgcaagga
                                                                     540
ccaggggcga ctgcctgcca tccaacctac agttcctgtg tgtccaaggt gaagaaaagt
                                                                     600
tggggtagaa agaacccatg tgagagccat ttaatggagc ccacagtgcc ccagcagggt
                                                                     660
```

ttgaaacgcc	ctccctaccc	CCCCCCATC	tcctttggat	ggattcaggg	cagaatattt	720
acacacttgg	ggtggacttc	tteetgttat	tagcaaacta	aaaaaatgtg	gaacatatac	780
taaaaacatg	agaccggtat	atccaacaaa	aactttcccc	aatcactaca	gcattgtcac	840
cggattgtat	ccagaatctc	atggcataat	caacaataaa	atgtatgatc	ccaaaatgaa	900
tgetteettt	tcacttaaaa	gtaaagagaa	atttaatcct	gagtggtaca	aaggagaacc	960
aatttgggte	acagctaagt	atcaaggcct	caagtctggc	acatttttct	ggccaggatc	1020
agatgtggaa	attaacggaa	ttttcccaga	catctataaa	atgtataatg	gttcagtacc	1080
atttgaagaa	aggattttag	ctgttcttca	gtggctacag	cttcctaaag	atgaaagacc	1140
acacttttac	actctgtatt	tagaagaacc	agattcttca	ggtcattcat	atggaccagt	1200
cagcagtgaa	gtcatcaaag	ccttgcagag	ggttgatggt	atggttggta	tgctgatgga	1260
tggtctgaaa	gagctgaact	tgcacagatg	cctgaacctc	atccttattt	cagatcatgg	1320
catggaacaa	ggcagttgta	agaaatacat	atatctgaat	aaatatttgg	gggatgttaa	1380
aaatattaaa	gttatctatg	gacctgcagc	tcgattgaga	ccctctgatg	tcccagataa	1440
atactattca	tttaactatg	aaggcattgc	ccgaaatctt	tcttgccggg	aaccaaacca	1500
gcacttcaaa	ccttacctga	aacatttctt	acctaagcgt	ttgcactttg	ctaagagtga	1560
tagaattgag	cccttgacat	tctatttgga	ccctcagtgg	caacttgcat	tgaatccctc	1620
	tattgtggaa					1680
agccctcttt	gttggctatg	gacctggatt	caagcatggc	attgaggctg	acacctttga	1740
aaacattgaa	gtctataact	taatgtgtga	tttactgaat	ttgacaccgg	ctcctaataa	1800
cggaactcat	ggaagtctta	accaccttct	aaagaatcct	gtttatacgc	caaagcatcc	1860
caaagaagtg	caccccctgg	tacagtgccc	cttcacaaga	aaccccagag	ataaccttgg	1920
ctgctcatgt	aacccttcga	ttttgccgat	tgaggatttt	caaacacagt	tcaatctgac	1980
tgtggcagaa	gagaagatta	ttaagcatga	aactttaccc	tatggaagac	ctagagttct	2040
ccagaaggaa	aacaccatct	gtcttctttc	ccagcaccag	tttatgagtg	gatacagcca	2100
agacatctta	atgccccttt	ggacatccta	taccgtggac	agaaatgaca	gtttctctac	2160
ggaagacttc	tccaactgtc	tgtaccagga	ctttagaatt	cctcttagtc	ctgtccataa	2220
atgttcattt	tataaaaata	acaccaaagt	gagttacggg	ttcctctccc	caccacaact	2280
aaataaaaat	tcaagtggaa	tatattctga	agctttgctt	actacaaata	tagtgccaat	2340
gtaccagagt	tttcaagtta	tatggcgcta	ctttcatgac	accctactgc	gaaagtatgc	2400
tgaagaaaga	aatggtgtca	atgtcgtcag	tggtcctgtg	tttgactttg	attatgatgg	2460
accgttgtga	ttccttaaga	gaatctgagg	caaaaaagaa	gagtccatcc	cgtaacccaa	2520
gaaaattttt	ggattcccaa	ctccacttcc	ttttattggt	gctaacaagc	tgttaaagat	2580
acatctcaga	cgcctttgca	ctgtggaaaa	cctaggacac	cttaggcttt	ccattttgcc	2640
ttcacaggga	ctggattaac	agcgagacgt	gtggtgcatg	gggaagcatg	actcctcatg	2700
gggttgaaga	attcgttaaa	tgtttacaca	gagcaccgga	tcacaggatg	ttgaggcaca	2760
tcacttggac	tcagcttcta	tcaacaaaga	aaagagccag	tttcagacat	tttaaagttg	2820
aaaacacatt	tgccaacctt	tagccaagaa	gactgatatg	ttttttatcc	ccaaacacca	2880
tgaatctttt	tgagagaacc	ttatattta	tatagtcctc	tagctacact	attgcattgt	2940
tcagaaactg	tcgaccagag	ttagaacgga	gccctcggtg	atgcggacat	ctcagggaaa	3000
cttgcgtact	cagcacagca	gtggagagtg	ttcctgttga	atcttgcaca	tatttgaatg	3060
tgtaagcatt	gtatacattg	atcaagttcg	ggggaataaa	gacagaccac	acctaaaact	3120
gcctttctgc	ttctcttaaa	ggagaagtag	ctgtgaacat	tgtctggata	ccagatattt	3180
gaatctttct	tactattggt	aataaacctt	gatgggcatt	ggggcaaaca	gtagacttat	3240
agtagggttg	gggtagccca	tgttatgtga	ctatctttat	gaggaatttt	aaagtggttc	3300
tggatatctt	ttaacttgga	gtttcatttc	ttttcattgt	aatcaaaaaa	aaaaaattaa	3360
gcagaagcca	aaatactttt	gagaccttgt	ttcaatcttt	gctgtatatc	ccctcgaaaa	3420
tccaagttat	taatcttatg	tgttttcgtt	ttaaattttt	tgattgggag	tttctttaga	3480
ttttaatggt	tccaaaggag	ttcaactttt	gaggggacga	tctttgaata	tacttaccta	3540
ttataaaatc	ttactttgta	tttgtattt				3569

<210> 364 <211> 832

<212> DNA

<213> Homo sapiens

tccttctatg	cttattcgga	ggggcggcaa	ggcatgtttc	ccagttttta	agatcttgcc	60
ccccccata	atttatgagg	accgttctgt	gtccgggcat	cagtgatggt	gcccctgcat	120
ttcggggtgc	tctttggagg	gcgtgtttgt	tgaaaaacca	ccccaaccc	cctgcccgcc	180
ggtcccggac	ctggccacca	tggaaggtgc	tgcggatggt	ggatccgcgt	gccaggcggc	240
tccgctcccc	tgatgggggt	gccaggctgt	gactggaggg	ggaggcaggg	ggcacccgtg	300
gggtgcctga	gctgttttct	ttcccatttg	gcaacagtga	cgggcgctca	gcccccgggc	360
gttctgtgca	aacgtaggtg	ttcctgcggg	tcatcatgct	aggagggagg	ttgttggggg	420
tgctcgtgct	gtccttccgc	cgctctggga	tctctgcctt	gttggggttg	tgggcgctgc	480
tgaccatggg	gctgaagggg	gggcagccct	cgactcccac	tccccgcggt	gctgcagctc	540
gccttccggc	ctggcagccg	ctcctccttc	agctccgcct	ccccgtgct	cgtcgggctg	600
cgtttggggt	gcaggggtgc	aggggatggg	ccacctgggg	gagggggtac	cgtttagagc	660
tggcatcacc	acggaaaccc	agaactgact	ctgggggatc	gttggaacct	gagaattcct	720
cacgtgggtt	gcaatctctg	tgtgggccat	tctgacaata	tctgtcaaaa	ttacctcaag	780
attaccaacg	cacatatact	gacttagaaa	ctccaaatca	atgacatcat	gc	832

<210> 365 <211> 1321 <212> DNA <213> Homo sapiens

<400> 365

cacacactgc	accacagete	tcccacctct	gaggccgagg	agttcgtctc	ccgcctctcc	60
acccagaact	acttccgctc	cctgccccga	ggcaccagca	acatgaccta	tgggaccttc	120
aacttcctcg	ggggccggct	gatgatccct	aatacaggaa	tcagcctcct	catccccca	180
gatgccatac	cccgagggaa	gatctatgag	atctacctca	cgctgcacaa	gccggaagac	240
gtgaggttgc	ccctagctgg	ctgtcagacc	ctgctgagtc	ccatcgttag	ctgtggaccc	300
cctgggcgtc	ctgcttaccc	ggccagtcat	cctggggtat	ggaccactgt	gggggagccc	360
agccctgaca	gctgggagcc	tgcgcctcaa	aaagcagtcg	tgcgagggca	gctgggagga	420
	ctgggcgagg					480
tgcctgctac	gtcttcaccg	agcagctgag	ccgctatgcc	ctggtgggag	aggccctcag	540
cgtggctgcc	gccaagcgcc	tcaagctgct	tctgtttgcg	ccggtggcct	gcacctccct	600
cgagtacaac	atactggtct	actgcctgca	tgacactcac	gatgcactca	acgtagtggt	660
gcagctggag	aagcagctgc	agggacagct	gatccaggag	ccactggtac	tgcacttcaa	720
ggacagttac	cacaacctgc	gcctatccat	ccacgatgtg	cccagctccc	tgtggaagag	780
taagctcctt	gtcagctacc	aggagatccc	cttttatcac	atctggaatg	gcacgcagcg	840
gtacttgcac	tgcaccttca	ccctggagcg	tgtcagcccc	agcactagtg	acctggcctg	900
caagctgtgg	gtgtggcagg	tggagggcga	cgggcagagc	ttcagcatca	acttcaacat	960
	acaaggtttg					1020
cctggtgggc	cccagtgcct	tcaagatccc	cttcctcatt	cggcagaaga	taatttccag	1080
cctggaccca	ccctgtaggc	ggggtgccga	ctggcggact	ctggcccaga	aactccacct	1140
	ctcagcttct					1200
	cggcacttcc					1260
	gcaggacggt					1320
g						1321

<210> 366 <211> 777

<212> DNA

<213> Homo sapiens

<400> 366 gggtccgctg cagggcaggt tcagcagcaa cagcagcggc gacaccagca gggaaaagtg 60 acagtgaaat acgatcgtaa ggagcttcgg aagcggctgg tgctggagga atggatcgtg 120 gagcagctgg gtcagctcta cggctgcgag gaagaagaaa tgccagaggt agaaattgac 180 attgatgatc tttttgatgc atacagtgat gaacagagag cttcaaaatt acaggaagct 240 cttgtagact gctacaaacc aacagaggaa tttatcaaag agctgctttc tcggataaga 300 ggcatgagga aactgagccc ctccgcagaa gaagagtgta tgattctgga acagggtgaa 360 actotoccag agatgaagaa agagtootgg gatttgtact toatgaagac ttttgtgaaa 420 gaataggtgt ccttatgaac aacgtttttg ttttttttt ttctttttg ggggtaaagg 480 tgggggggtc tattagacat ttattcaaga gcgttctttt ttgggtttta aaggtttttg 540 ttaatgtaat atttaaatac caaaaatatc ttgactttag ccacagccta cccagggttt 600 atcaagggag ggggaccctc agggaagggc ccccccaggt tgcgtttcct gcagggactc 660 aaatgttaat teeettatga teeeggaaaa atagtttttt tacaagaagt tgggcaaaat 720 ttttttccta aagttggaca ttggactcaa ttggcaaatt tttcaacctg gtatttt 777

<210> 367 <211> 2056 <212> DNA <213> Homo sapiens

<400> 367 aattatgtta gatggccggg tgcggtggct cacgcctgta atctcagcac tttgggaggc 60 cgagatggaa gacgtcatag cacggatgca agatgaaaaa aatggaattc ctattcgtac 120 ggtcaaaagc tttctttcca agatacctag cgtcttctct ggttcagaca ttgttcaatg 180 gttgataaag aacttaacta tagaagatcc agtggaggcg ctccatttgg gaacattaat 240 ggctgcccac ggctacttct ttccaatctc agatcatgtc ctcacactca aggatgatgg 300 caccttttac cggtttcaaa ccccctattt ttggccatca aattgttggg agccggaaaa cacagattat gccgtttacc tctgcaagag aacaatgcaa aacaaggcac gactggagct cgcagactat gaggctgaga gcctggccag gctgcagaga gcatttgccc ggaagtggga gttcattttc atgcaagcag aagcacaagc aaaagtggac aagaagagag acaagattga 540 aaggaagatc cttgacagcc aagagagagc gttctgggac gtgcacaggc ccgtgcctgg 600 atgtgtaaat acaactgaag tggacattaa gaagtcatcc agaatgagaa acccccacaa 660 aacacggaag tctgtctatg gtttacaaaa tgatattaga agtcacagtc ctacccacac 720 acccacaca gaaactaaac ctccaacaga agatgagtta caacaacaga taaaatattg 780 gcaaatacag ttagatagac atcggttaaa aatgtcaaaa gtcgctgaca gtctactaag 840 ttacacggaa cagtatttag aatacgaccc gtttcttttg ccacctgacc cttctaaccc 900 atggctgtcc gatgacacca ctttctggga acttgaggca agcaaagaac cgagccagca 960 gagggtaaaa cgatggggtt ttggcatgga cgaggcattg aaagacccag ttgggagaga 1020 acagtteett aaatttetag agteagaatt cageteggaa aatttaagat tetggetgge 1080 agtggaggac ctgaaaaaga ggcctattaa agaagtaccc tcaagagttc aggaaatatg 1140 gcaagagttt ctggctcccg gagcccccag tgctattaac ttggattcca agagttatga 1200 caaaaccaca cagaacgtga aggaacctgg acgatacaca tttgaagatg ctcaggagca 1260 catttacaaa ctgatgaaaa gtgattcata cccacgtttt ataagatcca gtgcctatca 1320 ggagetteta caggeaaaga aaagagggga aateteteac gtecaagagg ttaacaagee 1380 ttgctcagtc ttactaaacg gatcatcttg tagcatgaat gcagactgga gtcactgcac 1440 acactttgta gctcaatgtt gtgacctgga gcagaggaca ttagaacaag atgttgcatg 1500 agcaaaggac ctaaattgtt atttttgtgt gtacattcca tctccaatgg actcttccgt 1560

1620

1680

1740

1800

1860

1920

1980

ctcaatgcct ccattccaaa ctgttgtctg ctttctttct ccttctacta tgctggatct

gtgtctcttc ctttttaaca agttcaagtg aagtaaaacc ttttctttt ttccttctt

etetetetet eteteteaaa getteagtta gacacacagt teaetgaaaa tteagteagt

caaaaactgg aagaactgta aaagaaaaaa gtatatatca ataagtatac atgtggcttc

acatttatta aacaataaat toogoacaga aagtttoatt toaccaatgt gtoacagtoa

gaaacaaact catgtcttcg gtctgttgtc tgtacattct ccgttaatgt ttctcgcatt

tatttttata ccatatttaa agaagaaaca ccttttactc caaatgtatt aaagttgatc

ccttctctgt aaatttgtgt atgtttatat tgttgtttta tctttcatta aaagatgtca 2040 gaatctcaaa aaaaaa 2056

<210> 368 <211> 460 <212> DNA <213> Homo sapiens

<400> 368 ggcacgaggg actatccacg cattgtgaac cacctggacc acacctatgt cactgcgccc 60 caagcettca tgatgttcca gtactttgtg aaggtggtge ceactgtgta catgaaggtg 120 gacggagagg tactgacgac aaatcagatc tatgtgacca gacatgagaa ggctgcctat 180 gtgctgatgg gcgaccaagg ccttcccgga gtcttcatcc tctatgagct ctcqcccatq 240 atggtgaacc tgacggagat acacacgttc ttctctctct tcctgacaat tgtgggcgct 300 caccataggt ggcatgttct ttgagcattt tgtcattaat tacttaaccc ataagtgggg 360 gcttgggttc tatttcaaaa atgaaaactc tttacagggt ggccatagga ctttatatgg 420 agtgaacttt tttatgtatt ggagtttacg ggggggctct 460

<210> 369 <211> 2355 <212> DNA <213> Homo sapiens

<400> 369 gtccgtgtgg tggaattcgc agcggcagtt cgtggtgcgg gcctggggct gcgcgggccc 60 ttgcggccgg gcagtctttc tggccttcgg gctagggctg ggcctcatcg aggaaaaaca 120 ggcggagagc cggcgggcgg tctcggcctg tcaggagatc caggcaattt ttacccagaa 180 aagcaagccg gggcctgacc cgttggacac gagacgcttg cagggctttc ggctggagga 240 gtatctgata gggcagtcca ttggtaaggg ctgcagtgct gctgtgtatg aagccaccat 300 gcctacattg ccccagaacc tggaggtgac aaagagcacc gggttgcttc cagggagagg 360 cccaggtacc agtgcaccag gagaagggca ggagcgagct ccgggggccc ctgccttccc 420 cttggccatc aagatgatgt ggaacatctc ggcaggttcc tccagcgaag ccatcttgaa 480 cacaatgagc caggagctgg tcccagcgag ccgagtggcc ttggctgggg agtatggagc 540 agtcacttac agaaaatcca agagaggtcc caagcaacta gcccctcacc ccaacatcat 600 ccgggttctc cgcgccttca cctcttccgt gccgctgctg ccaggggccc tggtcgacta 660 ccctgatgtg ctgccctcac gcctccaccc tgaaggcctg ggccatggcc ggacgctgtt 720 cctcgttatg aagaactatc cctgtaccct gcgccagtac ctttgtgtga acacacccag 780 cccccgcctc gccgccatga tgctgctgca gctgctggaa ggcgtggacc atctggttca 840 acagggcatc gcgcacagag acctgaaatc cgacaacatc cttgtggagc tggacccaga 900 cggctgcccc tggctggtga tcgcagattt tggctgctgc ctggctgatg agagcatcgg 960 cctgcagttg cccttcagca gctggtacgt ggatcggggc ggaaacggct gtctgatggc 1020 cccagaggtg tccacggccc gtcctggccc cagggcagtg attgactaca gcaaggctga 1080 tgcctgggca gtgggagcca tcgcctatga aatcttcggg cttgtcaatc ccttctacgg 1140 ccagggcaag gcccaccttg aaagccgcag ctaccaagag gctcagctac ctgcactgcc 1200 cgagtcagtg cctccagacg tgagacagtt ggtgagggca ctgctccagc gagaggccag 1260 caagagacca tctgcccgag tagccgcaaa tgtgcttcat ctaagcctct ggggtgaaca 1320 tattctagcc ctgaagaatc tgaagttaga caagatggtt ggctggctcc tccaacaatc 1380 ggccgccact ttgttggcca acaggctcac agagaagtgt tgtgtggaaa caaaaatgaa 1440

```
gatgetettt etggetaace tggagtgtga aacgetetge eaggeageee teeteetetq
                                                                1500
ctcatggagg gcagccctgt gatgtccctg catggagctg gtgaattact aaaagaactt
                                                                1560
1620
gcgcagagag ggctggttag ccggaaaagg cctcgggctt ggcaaatgga agaacttgag
                                                                1680
tgagagttca gtctgcagtc ctgtgctcac agacatctga aaagtgaatg gccaagctgg
                                                                1740
tctagtagat gaggctggac tgaggagggg taggcctgca tccacataga ggatccaggc
                                                                1800
caaggcactg gctgtcagtg gcagagtttg gctgtgacct ttgcccctaa cacgaggaac
                                                                1860
tcgtttgaag ggggcagcgt agcatgtctg atttgccacc tggatgaagg cagacatcaa
                                                                1920
catgggtcag cacgttcagt tacgggagtg ggaaattaca tgaggcctgg gcctctgcgt
                                                                1980
teccaagetg tgegttetgg accagetact gaattattaa teteaettag egaaagtgae
                                                                2040
ggatgagcag taagtaagta agtgtgggga tttaaacttg agggtttccc tcctqactag
                                                                2100
cctctcttac aggaattgtg aaatattaaa tgcaaattta caactgcaga tqacqtatgt
                                                                2160
gccttgaact gaatatttgg ctttaagaat gattcttata ctctgaaggt gagaatattt
                                                                2220
tgtgggcagg tatcaacatt ggggaagaga tttcatgtct aactaactaa ctttatacat
                                                                2280
gatttttagg aagetattge etaaateage gteaacatge agtaaaggtt gtetteaact
                                                                2340
gaaaaaaaa aaaaa
                                                                2355
```

<210> 370 <211> 1333 <212> DNA <213> Homo sapiens

<400> 370 gccaggccgg caccaggcac agacacttat gcccttgttg ggagaacaga gagaggctct 60 cttgtccact gcctgtcttc ggttccaact gctggttctc ctagaggcct ctcctcagac 120 tcgcagagct gcctgatcat tgctacagaa tgaactctag cccagctggg accccaagtc 180 cacagccctc cagggccaat gggaacatca acctggggcc ttcagccaac ccaaatgccc 240 ageccaegga ettegaette etcaaagtea teggeaaagg gaactaeggg aaggteetae 300 tggccaagcg caagtctgat ggggcgttct atgcagtgaa ggtactacag aaaaagtcca 360 tettaaagaa gaaagageag ageeacatea tggeagageg cagtgtgett etgaagaaeg 420 tgeggcaccc cttcctcgtg ggcctgcgct actccttcca gacacctgag aagctctact 480 tcgtgctcga ctatgtcaac gggggagagc tcttcttcca cctgcagcgg gagcgccggt 540 tcctggagcc ccgggccagg ttctacgctg ctgaggtggc cagcgccatt ggctacctgc 600 actocotoaa catoatttac agggatotga aaccagagaa cattotottg gactgocagg 660 gacacgtggt gctgacggat tttggcctct gcaaggaagg tgtagagcct gaagacacca 720 catccacatt ctgtggtacc cctgagtact tggcacctga agtgcttctg gaaagagcct 780 tatgatcgag cagtggactg gtggtgcttg ggggcagtcc tctacgagat gctccatggc 840 ctgccgccct tctacagcca agatgtatcc cagatgtatg agaacattct gcaccagccg 900 ctacagatcc ccggaggccg gacagtggcc gcctgtgacc tcctgcaaag ccttctccac 960 aaggaccaga ggcagcggct gggctccaaa gcagactttc ttgagattaa gaaccatgta 1020 ttcttcagcc ccataaactg ggatgacctg taccacaaga ggctaactcc acccttcaac 1080 ccaaatgtga caggacctgc tgacttgaag cattttgacc cagagttcac ccaggaagct 1140 gtgtccaagt ccattggctg tacccctgac actgtggcca gcagctctgg ggcctcaagt 1200 gcattcctgg gattttctta tgcgccagag gatgatgaca tcttggattg ctagaagaga 1260 aggacetgtg aaactactga ggccagetgg tattagtaag gaattacett cagetgetag 1320 gaagagctgt att 1333

<210> 371

<211> 2457

<212> DNA

<213> Homo sapiens

<400> 371 agcggccgca gaccctgaag ggacaccagg agaagattcg gcagcggcag tccatcctgc 60 ctcctcccca gggcccggcg cccatcccct tccagcaccg cggcggggat tccccggagg 120 ccaagaatcg cgtgggcccg caggtgccac tcagcgagcc aggtttccgc cgtcgggagt 180 cgcaggagga gccgcgggcc gtgctggctc agaagataga gaaggagacg caaatcctca 240 actgcgccct ggacgacatc gagtggtttg tggcccggct gcagaaggca gccgaggctt 300 tcaagcagct gaaccagcgg aaaaagggga agaagaaggg caagaaggcg ccagcagagg 360 gegteeteae actgegggea eggeeeeee tetgagggeg agtteatega etgetteeag 420 aaaatcaagc tggcgattaa cttgctggca aagctgcaga agcacatcca gaaccccagc 480 gccgcggagc tcgtgcactt cctcttcggg cctctggacc tgatcgtcaa cacctgcagt 540 ggcccagaca tegcacgete egteteetge ecaetgetet ecegagatge egtggactte 600 ctgcgcggcc acctggtccc taaggagatg tcgctgtggg agtcactggg agagagctgg 660 atgoggcccc gttccgagtg gccgcgggag ccacaggtgc ccctctacgt gcccaagttc 720 cacagogget gggagcetec tgtggatgtg ctgcaggagg ccccctggga ggtggagggg 780 ctggcgtctg cccccatcga ggaggtgagt ccagtgagcc gacagtccat aagaaactcc 840 cagaagcaca gccccacttc agagcccacc cccccggggg atgccctacc accagtcagc 900 tecceacata etcacagggg etaccageca acaccageca tggecaagta egtcaagate 960 ctgtatgact tcacagcccg aaatgccaac gagctatcgg tgctcaagga tgaggtccta 1020 gaggtgctgg aggacggccg gcagtggtgg aagctgcgca gccgcagcgg ccaggcgggg 1080 tacgtgccct gcaacatcct aggcgaggcg cgaccggagg acgccggcgc cccgttcgag 1140 caggooggto agaagtactg gggooccgco agoocgacco acaagctaco cocaagctto 1200 ccggggaaca aagacgagct catgcagcac atggacgagg tcaacgacga gctcatccgg 1260 aaaatcagca acatcagggc gcagccacag aggcacttcc gcgtggagcg cagccagccc 1320 gtgagccagc cgctcaccta cgagtcgggt ccggacgagg tccgcgcctg gctggaagcc 1380 1440 aaggcettca geeegeggat egtggagaac etgggeatee tgaeegggee geagetette teceteaaca aggaggaget gaagaaagtg tgeggegagg agggegteeg egtgtacage 1500 cagctcacca tgcagaaggc cttcctggag aagcagcaaa gtgggtcgga gctggaagaa 1560 ctcatgaaca agtttcattc catgaatcag aggaggggg aggacagcta ggcccagctg 1620 cettgggetg gggcetgegg aggggaagce cacccacaat gcatggagta ttattttat 1680 atgtgtatgt attttgtatc aaggacacgg agggggtgtg gtgctggcta gaggtccctg 1740 cccctgtctg gaggcacaac gcccatcctt aggccaaaca gtacccaagg cctcagccca 1800 caccaagact aatctcagcc aaacctgctg cttggtggtg ccagcccctt gtccaccttc 1860 tettgaggee acagaactee etggggetgg ggeetettte tetggeetee eetgtgeace 1920 tggggggtcc tggcccctgt gatgctcccc catccccacc cacttctaca tccatccaca 1980 ccccagggtg agctggagct ccaggctggc caggctgaac ctcgcacaca cgcagagttc 2040 tgctccctga ggggggcccg ggaggggctc cagcaggagg ccgtgggtgc cattcggggg 2100 aaagtggggg aacgacacac acttcacctg caagggccga caacgcaggg gacaccgtgc 2160 eggetteaga cacteceage geceactett acaggeceag gaetggaget ttetetggee 2220 aagtttcagg ccaatgatcc ccgcatggtg ttgggggtgc tggtgtgtct tggtgcctgg 2280 acttgagtct caccctacag atgagaggtg gctgaggcac cagggctaag caattaaacc 2340 agttaagtct caaaaaaaa aaaaaggggg ggccgtttta aagaaccctt gggggggccc 2400 aagttaacgc gggctggcaa ggtaaaagtt ttttccttat agggagccgt ataaaac 2457

<210> 372 <211> 1333 <212> DNA <213> Homo sapiens

<400> 372
aagcttggca cgagggtctt gtcagcagcc cggccattgg agcatatctt tctgccagtt 60
acggagacag cctcgttgtg ctggtggcca cagtggtggc tcttctggac atctgcttca 120
tcttagtggc tgttccagaa tctctgcctg agaaaatgag accggtttcc tggggagctc 180

```
agatttettg gaaacaagca gaccettttg egtegttgaa gaaagttgga aaagatteta
                                                                      240
ctgtcttact aaatctgcat caccgtgtgt ctttcatacc ttcctgaagc tgggacagta
                                                                      300
ttcaagtttt ttttctctat ctcagggcag gtcatagggt ttgggatctg ttaaaattgc
                                                                      360
agcattcata gctatggtag gaattctgtc tattgtggct cagacggcct ttcttagcat
                                                                      420
cttgatgaga tcattaggaa ataagaatac tgtcctcctt ggcttgggct tccagatgct
                                                                      480
ccagttagcc tggtacggtt ttggatcaca ggcctggatg atgtgggcag cagggaccgt
                                                                      540
ggetgecatg tecageatca egttteegge aateagtgee etegtetete ggaatgeaga
                                                                      600
gtcagatcag caaggagttg cccaggggat cataactgga ataagaggac tatgcaatgg
                                                                      660
cctggggcca gcactgtatg gcttcatatt ctacatgttc catgtggaac tgactgagtt
                                                                      720
gggcccgaaa ttgaattcta acaacgttcc cctgcaggga gctgtcatcc caggcccgcc
                                                                      780
gtttttattt ggggcatgta tagtccttat gtcttttctg gctgccttat tcattcctga
                                                                      840
atacagtaaa gccagtggag ttcaaaaaaca cagtaacagc agcagcggca gcctgaccaa
                                                                      900
caccccagaa cggggcagtg atgaggacat tgagccacta ctgcaagaca gcagcatctg
                                                                      960
ggagctctct tcatttgagg agcctgggaa tcagtgcact gagctgtaaa ctcggcagaa
                                                                     1020
agtgggattc tgcatacgcc atctctgaga gccatggagg gagccacacc cctggtgact
                                                                     1080
tcatggtgct ggatgggaga cgctagcggc atccttcagg gccaagtttg ataaatacca
                                                                     1140
cogocatcat totgotcatc ctcctcctgt ttttttttt ctcttacatt ctttttttt
                                                                     1200
tcccggttaa tccttaaaac cagaaaaaaa ttggaaaaac ttctttgcaa aaagggggca
                                                                     1260
actcccaggg ggaacctcaa ataaaaaaag cattcttttg tgaaaaaagg agggcttcct
                                                                     1320
tgaaaggaca aaa
                                                                     1333
```

<210> 373

<211> 2578

<212> DNA

<213> Homo sapiens

<400> 373 atggcggcag gcctggccac gtggctgcct tttgctcggg cagcagcagt gggctggctg 60 cccctggccc agcaacccct gcccccggca ccgggggtga aggcatctcg aggagatgag 120 gttctggtgg tgaacgtgag cggacggcgc tttgagactt ggaagaatac gctggaccgc 180 tacccagaca ccttgctggg cagctcggag aaggaattct tctacgatgc tgactcaggc 240 gagtacttct tcgatcgcga ccctgacatg ttccgccatg tgctgaactt ctaccgaacg 300 gggcggctgc attgcccacg gcaggagtgc atccaggcct tcgacgaaga gctggctttc 360 tacggcctgg ttcccgagct agtcggtgac tgctgccttg aagagtatcg ggaccgaaag 420 aaggagaatg ccgagcgcct ggcagaggat gaggaggcag agcaggccgg ggacggccca 480 gecetgecag caggeagete cetgeggeag eggetetgge gggeettega gaatecaeae 540 acgageaccg cagecetegt tttetactat gtgacegget tetteatege egtgteggte 600 atcgccaatg tggtggagac catcccatgc cgcggctctg cacgcaggtc ctcaagggag 660 cagecetgtg gegaaegett eccaeaggee tttttetgea tggacaeage etgtgtaete 720 atattcacag gtgaatacct cetgeggetg tttgeegeee eeageegttg eegetteetg 780 eggagtgtea tgageeteat egaegtggtg gecateetge eetaetaeat tgggettttg 840 gtgcccaaga acgacgatgt ctctggcgcc tttgtcaccc tgcgtgtgtt ccgggtgttt 900 cgcatcttca agttctccag gcactcacag ggcttgagga ttctgggcta cacactcaag 960 agctgtgcct ctgagctggg ctttctcctc ttttccctaa ccatggccat catcatcttt 1020 gccactgtca tgttttatgc tgagaagggc acaaacaaga ccaactttac aagcatccct 1080 gcggccttct ggtataccat tgtcaccatg accacgcttg gctacggaga catggtgccc 1140 agcaccattg ctggcaagat tttcgggtcc atctgctcac tcagtggcgt cttggtcatt 1200 gccctgcctg tgccagtcat tgtgtccaac tttagccgca tctaccacca gaaccagcgg 1260 gctgacaagc gccgagcaca gcagaaggtg cgcttggcaa ggatccgatt ggcaaagagt 1320 ggtaccacca atgccttcct gcagtacaag cagaatgggg gccttgagga cagcggcagt 1380 ggcgaggaac aggctgtttg tgtcaggaac cgttctgcct ttgaacagca acatcaccac 1440 ttgctgcact gtctagagaa gacaacgtgc catgagttca cagatgagct caccttcagt 1500 gaagcectgg gagccgtete geegggtgge egeaceagee gtagcacete tgtgtettee 1560 cagecagtgg gacceggaag cetgetgtet tettgetgee etegeaggge caagegeege 1620 gecateegee ttgecaacte caetgeetea gteageegtg geaggeatge aggagetgga 1680 catgctggca gggcttgcgc aggagccatg ccccttcaga gccgctccag ccttcaatgc 1740

caagccccat	gacagccttg	acctgaactg	cgacagcggg	ggacttcgtg	gctgccatta	1800
tcagcatccc	tacccctcct	gccaacaccc	cagatgagag	ccaaccttcc	tcccctggcg	1860
gcggtggcag	ggccggcagc	accctcagga	actccagcct	gggtacccct	tgcctcttcc	1920
ccgagactgt	caagatctca	tccctgtgag	gggtaggcct	gctgattcag	agggtcctct	1980
tcatttttgg	gaactccttt	ccaaagccat	atttttggga	ggcagagagg	ggcaggcttg	2040
ggcacccctt	ctgcccccc	cactgagaac	tatgcaatgg	agtttcatga	aatggtccac	2100
atagtgggga	agtagccagg	aaatgagaaa	cttcctccca	ccccagacat	ttttcctggt	2160
gggagctgaa	gcactgggct	tccacaggcc	cctggcctcc	ttgccctagc	acactgggac	2220
	ctcccagctg					2280
	atccgacatc					2340
	ggatatggag			-		2400
	gaggtcctca					2460
	acaggettea					2520
	gagggggttc					2578
				_		

<210> 374

<211> 664

<212> DNA

<213> Homo sapiens

<400> 374

1.007	•					
tgaggctggg	gcaagccttt	taaggactgg	accacgggtg	ggcaggatac	cgggggagaa	60
cccgccctgt	tagttggggc	tggggagggc	cgcgcaccga	gactaaattg	tccttccggg	120
cagatccgct	caccaggccc	tggcgacctg	agcatctacg	acaactggat	ccggtacttc	180
aaccgcagca	gcccggtgta	cggcctggtc	cccagagcaa	gacttcagcc	aggatctacc	240
ccacctacca	cacagccttt	gacacctttg	actatgtgga	caagtttttg	gacccgggtg	300
aggagggaga	caaggggcat	cctgagacca	ggacaggaga	ggctgaagac	tgagccctgg	360
ccttgtcacc	ttgccgcagg	cttcagcagc	catcaggctg	tggcccggac	agcggggagt	420
gtgattctcc	ggctcagtga	cagcttcttc	ctgcccctca	aagtcagtga	ctacagtgag	480
acactccgca	gcttcctgca	ggcagcccag	caagatcttg	gggccctgct	ggagcagcac	540
agcatcagcc	tggggcctct	ggtgactgca	gtggagaagt	ttgaggcaga	agctgcagcc	600
ttgggccaac	gcatatcaac	actgcagaag	ggcagccctg	accccctgca	ggtccggatg	660·
ctca						664

<210> 375

<211> 1495

<212> DNA

<213> Homo sapiens

<400> 375

```
ggaattcgag gcggggcag cctcgccagc gggggccccg ggcctggcca tgcctcactg
                                                                     60
agccagcgcc tgcgcctcta cctcgccgac agctggaacc agtgcgacct agtggctctc
                                                                    120
acctgcttcc tcctgggcgt gggctgccgg ctgaccccgg gtttgtacca cctgggccgc
                                                                    180
actgtcctct gcatcgactt catggttttc acggtgcggc tgcttcacat cttcacggtc
                                                                    240
aacaaacagc tggggcccaa gatcgtcatc gtgagcaaga tgatgaagga cgtgttcttc
                                                                    300
ttcctcttct tcctcggcgt gtggctggta gcctatggcg tggccacgga ggggctcctg
                                                                    360
aggccacggg acagtgactt cccaagtatc ctgcgccgcg tcttctaccg tccctacctg
                                                                    420
cagatetteg ggeagattee eeaggaggae atggaegtgg eeeteatgga geacageaae
                                                                    480
```

tgctcgtcgg	agcccggctt	ctgggcacac	cctcctgggg	cccaggcggg	cacctgcgtc	540
			ctcctcgtca			600
atcctgctgg	tcaacttgct	cattgccatg	ttcagttaca	cattcggcaa	agtacagggc	660
aacagcgatc	tctactggaa	ggcgcagcgt	taccgcctca	tccgggaatt	ccactctcgg	720
			tcccacttgc			780
tgcaggcgac	cccggagccc	ccagccgtcc	tecceggeee	tcgagcattt	ccgggtttac	840
			acgtgggaat			900
			agcgactccg			960
cagaaggtgg	acttggcact	gaaacagctg	ggacacatcc	gcgagtacga	acagcgcctg	1020
			agccgcgtcc			1080
			gggccgccac			1140
			gagaagcccc			1200
gagtaaggct	catctgggcc	teggeeeeg	cacctggtgg	ccttgtcctt	gaggtgagcc	1260
			cctttgggag			1320
gcatgcccgg	ctcctcccag	aaccagtccc	agcctgggag	gatcaaggcc	tggatcccgg	1380
			ttggggtaac			1440
cactcacaga	ttcctcacac	tggggaaata	aagccatttc	agaggaaaaa	aaaaa	1495

<210> 376

<211> 373

<212> DNA

<213> Homo sapiens

<400> 376 gcctcataaa actctgcaaa tctaaggcca aaagctgtga aaatgacctt gaaatgggca 60 tgctgaattc caaattcaag aagactcgct accaggctgg catgaggaat tctgaaaatc 120 tgacagcaaa taacactttg agcaagcca ccagatacca ggcgagctga aggaaatcaa 180 gcaagatatc tccagcctgc gctatgagct tcttgaggaa aaatctcaag ctactggtga 240 gctggcagac ctgattcaac aactcagcga gaagtttgga aagaacttaa acaaagacca 300 cctgagggtg aacaagggca aagacattta gcagcccaca tcggcgtctg tgacttctac 360 cagcattcca agg

<210> 377 <211> 2867 <212> DNA <213> Homo sapiens

<400> 377 cttcctcttc tccacgcagg cttcaacagg agatttatgg agaatagcag cataattgct 60 tgctataatg aactgattca aatagaacat ggggaagttc gctcccagtt caaattacgg 120 gcctgtaatt cagtgtttac agcattagat cactgtcatg aagccataga aataacaagc 1.80 gatgaccacg tgattcagta tgtcaaccca gccttcgaaa ggatgatggg ctaccacaa 240 ggtgagctcc tgggaaaaga actcgctgat ctgcccaaaa gcgataagaa ccgggcagac 300 cttctcgaca ccatcaatac atgcatcaag aagggaaagg agtggcaggg ggtttactat 360 gccagacgga aatccgggga cagcatccaa cagcacgtga agatcacccc agtgattggc 420 caaggaggga aaattaggca ttttgtctcg ctcaagaaac tgtgttgtac cactgacaat 480 aataagcaga ttcacaagat tcatcgtgat tcaggagata attctcagac agagcctcat 540 tcattcagat ataagaacag gaggaaagag tccattgacg tgaaatcgat atcatctcga 600

ggcagtgatg caccaageet geagaategt egetateegt ecatggegag gatecaetee 660 atgaccateg aggeteceat cacaaaggtt ataaatataa teaatgeage eeaagaaaae 720 agcccagtca cagtagcgga agccttggac agagttctag agattttacg gaccacagaa 780 ctgtactccc ctcagctggg taccaaagat gaagatcccc acaccagtga tcttgttgga 840 ggcctgatga ctgacggctt gagaagactg tcaggaaacg agtatgtgtt tactaagaat 900 gtgcaccaga gtcacagtca ccttgcaatg ccaataacca tcaatgatgt tcccccttgt 960 atctctcaat tacttgataa tgaggagagt tgggacttca acatctttga attggaagcc 1020 attacgcata aaaggccatt ggtttatctg ggcttaaagg tetteteteg gtttggagta 1080 tgtgagtttt taaactgttc tgaaaccact cttcgggcct ggttccaagt gatcgaagcc aactaccact cttccaatge ctaccacaac tccacccatg ctgccgacgt cctgcacgcc 1200 accgctttct ttcttggaaa ggaaagagta aagggaagcc tcgatcagtt ggatgaggtg 1260 gcagccctca ttgctgccac agtccatgac gtggatcacc cgggaaggac caactctttc 1320 ctcctgcaat gcaggcagtg agcttgctgt gctctacaat gacacctgct gttcctggag 1380 agteaceaca cegecetgge ettecageet caeggteaag gacaceaaaa tgeaacattt 1440 tcaagaatat tgacaaggga accattatcg aacgctgcgc caggctatta ttgacatggt 1500 tttggcaaca gagatgacaa aacactttga acatgtgaat aagtttgtga acagcatcaa 1560 caagccaatg gcagctgaga ttgaaggcag cgactgtgaa tgcaaccctg ctgggaagaa 1620 cttccctgaa aaccaaatcc tgatcaaacg catgatgatt aagtgtgctg acgtggccaa 1680 cccatgccgc cccttggacc tgtgcattga atgggctggg aggatctctg aggagtattt 1740 tgcacagact gatgaagaga agagacaggg actacctgtg gtgatgccag tgtttgaccg 1800 gaatacctgt agcatcccca agtctcagat ctctttcatt gactacttca taacagacat 1860 gtttgatget tgggatgeet ttgcacatet accageeetg atgeaacatt tggetgacaa 1920 ctacaaacac tggaagacac tagatgacct aaagtgcaaa agtttgaggc ttccatctga 1980 caggctaaag ccaagccaca gagggggcct cttgaccgac aaaggacact gtgaatcaca 2040 gtagcgtaaa caagaggcct tcctttctaa tgacaatgac aggtattggt gaaggagcta 2100 atgtttaata tttgaccttg aatccattcc aagtccccca aatttccatt ccttagaaag 2160 ttatgttccc atgaagaaaa atatatgttc cttttgaata cttaaatgac agaacaaata 2220 cttgggcaaa ctccctttgc tctgcctgtc atccctgtgt acccttgtca atcccatggg 2280 ggctggttca ctgtaactag caggccacag ggaaggcaaa gccttgggtg cctgtgagct 2340 catctcccgg gatgggtgac taagtaggct taggctaggt gatcagctca tcctttacca 2400 taaaagtcat cattgctgtt tagcttgact gttttcctca agaacatcga tctgaaggat 2460 tcataaggag cttatctgaa cagatttatc taagaaaaaa aaaaaaccga cttaaaatag 2520 gggaagcaac taggaccaaa ttacagataa actagttagc ttcacagcct ctatggctac 2580 atggttette tggeegatgg tatgacacet aagttagaac acageettgg etgggggtg 2640 ccctctctag actggtatca gcagcctgtg taaccccttt cctgtaaaag gggttcatct 2700 taacaaagtc atccatgatg agggaaaaag tggcatttca tttttgggga atccatgagc . 2760 ttcctttatt tctggctcac agaggcagcc acgaggcact acaccaagta ttatataaaa 2820 gccattaaat ttgaatgccc ttggacaagc ttttcttaaa aaaaaaa 2867

```
<210> 378
<211> 8053
<212> DNA
```

<213> Homo sapiens

<400> 378 gctttccttt ctaaagtaga agaggatgat tatccctctg aagaactact agaggatgaa 60 aacgctataa atgcaaaacg gtctaaagaa aaaaaccctg ggaatcaggg caggcagttt 120 gatgttaatc tgcaagtccc tgacagagca gttttaggga ccattcatcc agatccagaa 180 attgaagaaa gcaagcaaga aactagtatg attttggata gtgaaaaaac aagtgagact 240 gctgccaaag gggtcaacac aggaggcagg gaaccaaata caatggtgga aaaagaacgc 300 cctctggcag ataagaaagc acagagacca tttgaacgaa gtgacttttc tgacagcata 360 aaaattcaga ctccagaatt aggtgaagtg tttcagaata aagattctga ttatctgaag 420 aacgacaacc ctgaggaaca tctgaagacc tcagggcttg caggggagcc tgagggagaa 480 ctctcaaaag aggaccatga gaacacagag aagtacatgg gcacagaaag ccaggggtct 540 getgetgeag aacetgaaga tgactegtte caetggaete caeatacaag tgtagageea 600 gggcatagtg acaagaggga ggacttactt atcataagca gcttctttaa agaacaacag 660

tctttgcagc ggttccagaa gtactttaat gtccatgagc tggaagcctt gctacaagaa 720 atgtcatcaa aactgaagtc agcgcagcag gagagcctgc cctataatat ggaaaaagtc 780 ctagataagg tcttccgtgc ttctgagtca caaattctga gcatagcaga aaaaatgctt 840 gatactcgtg tggctgaaaa tagagatctg ggaatgaacg aaaataacat atttgaagag 900 gctgcagtgc ttgatgacat tcaagacctc atctattttg tcaggtacaa gcactccaca 960 gcagaggaga cagccacact ggtgatggca ccacctctag aggaaggctt gggtggagca 1020 atggaagaga tgcaaccact gcatgaagat aatttctcac gagagaagac agcagaactt 1080 aatgtgcagg ttcctgaaga acccacccac ttggaccaac gtgtgattgg ggacactcat 1140 gcctcagaag tgtcacagaa gccaaatact gagaaagacc tggacccagg gccagttaca 1200 acagaagaca ctcctatgga tgctattgat gcaaacaagc aaccagagac agccgccgaa 1260 gagccggcaa gtgtcacacc tttggaaaac gcaatccttc taatatattc attcatgttt 1320 tatttaacta agtcgctagt tgctacattg cctgatgatg ttcagcctgg gcctgatttt 1380 tatggactgc catggaaacc tgtatttatc actgccttct tgggaattgc ttcgtttgcc 1440 attttcttat ggagaactgt ccttgttgtg aaggatagag tatatcaagt cacggaacag 1500 caaatttctg agaagttgaa gactatcatg aaagaaaata cagaacttgt acaaaaattg 1560 tcaaattatg aacagaagat caaggaatca aagaaacatg ttcaggaaac caggaaacaa 1620 aatatgatto tototgatga agcaattaaa tataaggata aaatcaagac acttgaaaaa 1680 aatcaggaaa ttctggatga cacagctaaa aatcttcgtg ttatgctaga atctgagaga 1740 gaacagaatg tcaagaatca ggacttgata tcagaaaaca agaaatctat agagaagtta 1800 aaggatgtta tttcaatgaa tgcctcagaa ttttcagagg ttcagattgc acttaatgaa 1860 gctaagctta gtgaagagaa ggtgaagtct gaatgccatc gggttcaaga agaaaatgct 1920 aggettaaga agaaaaaaga geagttgeag eaggaaateg aagaetggag taaattacat 1980 gctgagctca gtgagcaaat caaatcattt gagaagtctc agaaagattt ggaagtagct 2040 cttactcaca aggatgataa tattaatgct ttgactaact gcattacaca gttgaatctg ttagagtgtg aatctgaatc tgagggtcaa aataaaggtg gaaatgattc agatgaatta 2160 gcaaatggag aagtgggagg tgaccggaat gagaagatga aaaatcaaat taagcagatg 2220 atggatgtct ctcggacaca gactgcaata tcggtagttg aagaggatct aaagctttta 2280 cagettaage teaagageet eegtgteeae taaatgtaaa eetggaagae eaggtaaaga 2340 aattggaaga tgaccgcaac tcactacaag ctgccaaagc tggactggaa gatgaatgca 2400 aaaccttgag gcagaaagtg gagattctga atgagctcta tcagcagaag gagatggctt 2460 tgcaaaagaa actgagtcaa gaagagtatg aacggcaaga aagagagcac aggctgtcag 2520 ctgcagatga aaaggcagtt tcggctgcag aggaagtaaa aacttacaag cggagaattg 2580 aagaaatgga ggatgaatta cagaagacag agcggtcatt taaaaaccag atcgctaccc 2640 atgagaagaa agctcatgaa aactggctca aagctcgtgc tgcagaaaga gctatagctg 2700 aagagaaaag ggaagctgcc aatttaagac acaaattatt agatttaaca caaaagatgg 2760 caatgctgca agaagaacct gtgattgtaa aaccaatgcc aggaaaacca aatacacaaa 2820 accetecacg gagaggteet etgagecaga atgggtettt tggeecatee eetqtqaqtq 2880 gtggagaatg ctcccctcca ttgacagtgg agccacccgt gagacctctc tctgctactc 2940 tcaatcgaag agatatgcct agaagtgaat ttggatcatt ggacgggcct ctacctcatc 3000 ctcgatggtc agctgaggca tctgggaaac cctctccttc tgatccagga tctggtacag 3060 ctaccatgat gaacagcagc tcaagaggct cttcccctac cagggtactc gatgaaggca 3120 aggttaatat ggctccaaaa gggccccctc ctttcccagg agtccctctc atgagcaccc 3180 ccatgggagg ccctgtacca ccacccattc gatatggacc accacctcag ctctgcggac 3240 cttttgggcc tcggccactt cctccaccct ttggccctgg tatgcgtcca ccactaggct 3300 taagagaatt tgcaccaggc gttccaccag gaagacggga cctgcctctc caccctcggg 3360 gatttttacc tggacacgca ccatttagac ctttaggttc acttggccca agagagtact 3420 ttattcctgg tacccgatta ccaccccaa cccatggtcc ccaggaatac ccaccaccac 3480 ctgctgtaag agacttactg ccgtcaggct ctagagatga gcctccacct gcctctcaga 3540 gcactagcca ggactgttca caggctttaa aacagagccc ataaaactat gacctctgag 3600 gtttcattgg aaagaaagtg tactgtgcat tatccattac agtaaaggat ttcattggct 3660 tcaaaatcca aaagtttatt ttaaaaggtt tgttgttaga actaagctgc cttggcagtg 3720 tgcatttttg agccaaacaa ttcaaaaatg tcatttcttc cctaaataaa aatcaccttt 3780 taagctagag cgtccttaca actttgaaat gtgcaataaa gaatacctgt gttttagcta 3840 atgtagcata tgtaattgca aaatgattta gaatgtcatg aaaaatatga acatttcctg 3900 tggaaatgct ttaagaacat gtatttccat tatcctattt ttagtgtaca ccagctgaat 3960 acggagcaat ggtgtttata agcgtttttt taaactatct ggtcacaaag actgttacgc 4020 taaaaaatgtt tactaaaaga tcactaaact atctcccctc ttgctgaagt tctttgtagt 4080 aatagctcat aaaaatttgt ttattaatat ttcccaagtg tctgttgact cattggactg 4140 ttatgaggct tgtgccattt ggggaacatg taaactcagg ctcccagaac tgaagatggt 4200 ggctggtggc acacttccgg ctgctcctcc gtcacctgtg aactctacaa gtgacgtctt 4260 tttatttcaa agaagtttta tttccccact tgtaatagca ttccacatgc ctttccttta 4320 cgatcctcat tgtcctattt gagaatggtt ttcctgagag tgagtttacc attagtagcc 4380 aagagttgtt tgaccctgat gttcccattg tttttaccca ttccctgtag aaaaagggtg 4440 ccacaacaga aaaatgaaaa tgatgtgtca tggccgtaaa agtatagaaa tctttaaaaa 4500

ttttaaaatg	tacagtccct	tatctatctt	tcccattcct	tgccactgat	ttttgaggaa	4560
tataataaaa	agattggaag	agtataatgc	catgagaaag	aatgatttag	gactgtgagg	4620
	gccctaggtc					4680
	gacagatatt					4740
	aaatcagtaa					4800
ttactacact	gtctttaaaa	caatgtttct	ttaaatactc	tacaacgttt	ctaagaacga	4860
acttcagaca	ttttaattac	agtaataata	gcactccttt	taaggagttt	cagatccaca	4920
	aatcataaaa				-	4980
	cctatgatgt		-			5040
	gattaagaat					5100
	atactaaaca					5160
	ctgtcaaagt					5220
	cctcccgttt					5280
_	gccactttta	_			•	5340
	tcaatatctc					5400
	tcatttaagt					5460
	ttttaaaatt					5520
	tgtatctgac					5580
	aagttgtgag					5640
	cagcaaaccc					5700
	ccctcagcc					5760
	catctccaac					5820
	agcaatattc					5880
	gattttttc					5940
	acttcaagat					6000
	cacccagtgt				-	6060
	actatactta					6120
	cttatggttt				-	6180
	tttttttta					6240
	tactccacag					6300
	atgcgcctct					6360
	gaactgggca					6420
	tagaatttgg					6480
	ttcaggctcg					6540
	actgaaagta					6600
	cttattttaa					6660
tagtttaaaa	ataggccagg	tactgacact	gcattcccct	catgactagg	tratttaaaa	6720
	taaaatatgt					6780
	aaatatccac					6840
	attatagtaa					6900
	ggaaataaat				-	6960
	gcatactcct					7020
	aaaaacagca					7080
	cattgtttag					7140
	aatgttaacc			_	_	7200
	tcgacatgac					7260
	acagctacaa					7320
	taagcaggaa					7380
	acatccagac					7440
	cactacccta					7500
	aaagtgaaca					7560
	gcacatccta					7620
	aaaatagact					7680
			_		_	7740
	taaacctgta ggtacagctt					7800
	ctgttgaagg					7860
	acagaagttc					7920
	agataaagtg					7920
						8040
gaaagcaaaa	ttgtatagtt	ccaccacac	eggeceagg t	claaciccat	ccacccccac	8053
Janageanaa	540					0033

<210> 379 <211> 4455 <212> DNA <213> Homo sapiens

<400> 379 agatggctgc cgacagtgag cccgaatccg aggtatttga gatcacggac ttcaccactg 60 cctcggaatg ggaaaggttt atttccaaag ttgaagaagt cttgaatgac tggaaactga 120 ttggaaactc tttgggaaag ccactcgaaa agggtatatt tacttctggc acatgggaag 180 agaaatcaga tgaaatttcc tttgctgact tcaagttctc agtcactcat cattatcttg 240 tacaagagtc cactgataaa gaaggaaagg atgagttatt agaggatgtt gttccacaat 300 ctatgcaaga tttgctgggt atgaataatg actttcctcc aagagcacat tgcctggtaa 360 gatggtatgg gctacgtgag ttcgtggtga ttgcccctgc tgcacacagt gacgctgttc 420 tcagcgaatc taagtgcaac cttcttctga gttctgtttc tattgccttg ggaaacactg 480 gctgtcaggt gccactcttt gtgcaaattc accacaaatg gcgaagaatg tatgtaggag 540 aatgtcaagg tcctggtgta cgaactgatt tcgaaatggt tcatcttaga aaagtgccaa 600 atcagtacac tcacttatca ggtctgctgg atatcttcaa atcaaagatt ggatgtcctt 660 taactccatt gcctccagtt agtattgcta ttcgatttac ctatgtactt caagattggc 720 agcagtattt ttggcctcag caacctccag acatagatgc ccttgtagga ggagaagttg 780 gaggettgga gtttggcaag ttaccatttg gtgcctgcga agatcctatt agtgaactcc 840 atttagctac tacatggcac tcatctgacc gaagggatca ttgtggataa tgatgtttat 900 totgatttgg atcotattca agotcoacat tggtctgtta gagttcgaaa agotgagaat 960 cctcagtgtt tgctaggtga ttttgtcact gaatttttta aaatttgccg tcgaaaggag 1020 tcaactgatg agattcttgg acgatctgca tttgaggaag aaggcaaaga aactgctgat 1080 ataactcatg ctttgtcaaa attgacagag ccggcatcag ttccaattca taaattatca 1140 gtttcaaata tggtacacac tgcaaagaag aaaatccgaa aacacagagg tgtagaggag 1200 tcaccgctaa ataatgatgt tcttaatact attctcctgt tcttattccc tgatgctgtt 1260 tctgagaaac cattagatgg aactacttca acagataata ataatcctcc atcagagagt 1320 gaagactata atctctacaa tcagttcaag tctgcaccat ctgacagttt aacatacaaa 1380 ctggctttgt gtctctgtat gatcaatttt taccatggag ggttgaaagg agtggcacac 1440 ctctggcagg aatttgttct tgaaatgcgt ttccgatggg aaaacaactt tctgattcca 1500 ggattagcaa gtggaccccc agatctgagg tgttgtttac tgcatcagaa actacagatg 1560 ttaaattgtt gtattgaaag aaagaaggca cgtgatgagg ggaaaaagac aagtgcttca 1620 gatgtcacta atatatatcc aggggatgct ggaaaagcag gagaccagtt ggtgccagat 1680 aatctaaaag aaacagataa ggaaaaggga gaggtaggaa aatcttggga ttcctggagt 1740 gacagcgaag aagaattttt tgaatgccta agtgatactg aagaacttaa aggaaatgga 1800 caagagagtg gcaagaaagg aggacctaag gagatggcaa atttaaggcc ggaaggacgg 1860 ctctatcagc atgggaaact tacactgctg cataatggag aacctctcta cattccagta 1920 acccaggaac cagcacctat gacagaagat ctgctagaag agcagtctga agttttagct 1980 aaattaggta catcggcaga gggggctcac cttcgagcac gcatgcagag tgcctgtctg 2040 ctctcagata tggagtcttt taaggcagct aatccaggtt gctccctgga agattttgtg 2100 aggtggtatt caccccggga ttatattgaa gaggaggtga ttgatgaaaa gggcaatgtg 2160 gtgctgaaag gagaactgag tgcccggatg aagattccaa gcaatatgtg ggtagaagcc 2220 tgggaaacag ctaagccaat tcctgctaga aggcaaagga gactcttcga tgatacacgg 2280 gaagcagaaa aggtgctgca ctatctggca atccagaaac ctgcagacct tgctcggcac 2340 ctgttacctt gtgtgattca tgcagctgta ctcaaggtaa aggaagaaga aagtctcgaa 2400 aacatttett cagttaagaa gateataaag cagataatat eecatteeag taaagttttg 2460 cacttcccca atccagaaga caagaaattg gaagaaatca ttcaccagat tactaatgtg 2520 gaagctctca ttgccagagc tcggtcacta aaagccaagt ttggaactga gaaatgtgaa 2580 caggaggagg aaaaggaaga tottgaaagg tttgtgagtt gootgotgga goagcotgaa 2640 gtgttagtca ccggtgcagg aagaggacat gctggcagga tcattcacaa gctgtttgtg 2700 aatgcccaga gggctgcagc tatgactcca ccagaggagg aattgaagag aatgggctcc 2760 ccagaggaaa gaaggcagaa ctccgtgtca gacttcccac cccctgctgg ccgggaattc 2820 attttgcgca ccactgtgcc gcgccctgct ccctactcca aagctctgcc tcagcggatg 2880 tacagtgttc tcaccaaaga ggactttaga cttgcaggtg ccttttcatc agatacttcc

ttettetgat tettetagea ttactegttg gtggetteag agacagtget geeteeteet

gagggaggga aggtaccagg gagaacctgg gaggtcctgg agagggccct gtccagttgg

gtgatcagga atcaaaccag catcggaaag acttcccagc accaagcttg agctgtgtcg

tttcgtggag ggggcagcga ggatgggctt gagctgttga gagatttctg ccctagagat

2940

3000

3060

3120

3180

ggcctttgta	tatggggggg	tggtggggg	acacaaacac	atcagacact	ccgtcctcac	3240
actggcagga	cggtgttcat	cgcattctct	tctgtgacca	gcctctaggc	tageggetge -	3300
attcgtggtc	tgtgcaaaca	cttcgtggtt	ctatatatca	gcagcaagtg	tgcaaaataa	3360
aggacctgtt	aactcagatt	tctggatatt	ttggtggtag	cttctagtcc	cagaatctgt	3420
gtttttaaaa	tactacatga	cattctgtct	attcaatcac	ctggtggtca	tctttcttgt	3480
actaattaac	tgttgatgag	cattttggat	attctaggag	aaagcctata	atttcacata	3540
gtttctcttt	ttcatgtaac	tgtaacctaa	atgtattact	tctgataaaa	ctatatatca	3600
aatgtcactg	caaattagtt	ttatatctgt	catgtgagat	ttgtcttact	tatttttctt	3660
ttggttgcca	tggaagttat	ggccctgaaa	atcgtctccc	tccccttctc	ttgctgtaca	3720
gcatgcgttc	tctttttgtg	gttgctggct	gggtactgta	tttaatgaag	tagagaatag	3780
cacttgcaaa	aatacagtct	tggtacctag	agactgtcat	gcagatagta	taatttggta	3840
tatgtgctaa	tgcattgagt	agaggattat	tttaacacac	tattttgctt	ttgtatttta	3900
gttaaaataa	tcgatgggga	tgtgtagccc	ccccgtgtga	ggatgacatc	accacatttc	3960
tagtttcatg	gagctcaaga	tgtcttgtgt	ctgtgtggct	agatggcctc	tgcttggtaa	4020
tcttatttt	aggcctaaaa	ttcccactta	aatccaaagt	aaaaatggtt	atactgaagc	4080
ataaaccttg	cctgtgtaat	tttaaaaaat	taatagagct	gtgcaaaccc	tgttattttt	4140
gtaaaaaaaa	aaaaaataca	tatctatata	taatatgtgt	gtgtgtgtga	catatgcaca	4200
cgtctctgtg	tatgtgaagt	aggggaggcc	ctgggggatg	acctcccagc	ctttatgaat	4260
cttttctcta	tgctgctgga	cttcattctt	actggtcacg	cgatgcaggc	ggcctgaggc	4320
cagtgctgta	ccaagtagaa	gacggttcct	aaggacagag	tttgtctgtt'	ttctaacaaa	4380
gaaaaattct	acaaaggagt	ggttaaagtt	acaaaggcat	tgtgaatcta	ataaaaggaa	4440
aggtgtcgct	taaaa					4455

<210> 380 <211> 2333 <212> DNA

<213> Homo sapiens

<400> 380 tttttttttt ttctattttc aatcaaattt ctttttaatg aaaactaatt tttaagggca 60 agataccaca gcagaagaaa aacgtcttgc aagaaaagac ttcatggttt acaacgatca 120 aatgtatggg ctatttgcct gattggtggc ctggactcag caagagattc ctttgcagca 180 gaggttggcc acacatctgg gggctgcaac accactgaaa agacagcttt ctaagcatta 240 gtgtaaggca aaaagcagag tgcctaaact tggccatttc caccaagaaa aaaagtttca 300 tagcaacctt ccttcaccag aaaggcttac tttatgatat gctaacagaa cagaaaagca 360 ggttgggaca agatacagac tttgttgcat ttagctatga cccttctctc ccctctgtgg 420 atgtgggcag ggtggggaga ggcaggaaga ggcagtagag ggaaatgaca tttgcactca 480 ggetteeege eectaceeae eectaceett egeecagaca gaegteggat etatgetgea 540 ccaggggtgg gtcatggagt ccagctaatt gccaggagct gaggcgtgta caagccatga 600 aaagagetge cecaeggeet ecceacatea etgteettea tgeaettgea tetttaagge 660 tgccagcttc agagctccct ggacattccc tggccaagtg tcatccctgt gtcaaatgga 720 tgggatgcca ggtaatcctt gtactccccg tcaatcagtt tggcggcatt gttcctggca 780 aaccagcagt ctatctgctc ttccccgttg taaatcttcc tttgcttcca gaccactggg 840 acttggtggc ctttcactgt taggacggcc tcaggcccct ctcccacctg aaggagcaga 900 gggtgagtga ggttctggct gggccctgca gggtcttctg tgagtctggc atcctgattc 960 aggaactgac ccagcagtcc gtggcagttg ctggaaaggc cctcgctgtt ggcaatgtag 1020 aaacccaggt ggtgtcgctg gaagggcgcc ggctttttgt agaggtggat gaggatgaca 1080 aaggctatgg agccctggat ggtgacggtg acattggcgt tggcagacac ggacacctcc 1140 agccccagc tccccaccac cacactctgg ttgcagggga gcaccagtct gtccccacca 1200 tccaagatga ctctgctcgg tgtgatctcg agataagatc tctctggctt gttgatgagg 1260 atggtgatag tgcgcaagta agtgcgctgt ttcttgtggc catttggagg ggcgggtgcc 1320 ccaattaact ctccgttcac tgtgacacca gagtccctgt gatcagagac cagcctgagg 1380 atgtccccgg gctgcccatc aatgttgaag cacacggtga gtctgctcag ggggaaatcc 1440 acaacaaagt ggggatcacc atccactgat gttttagaga ttttaattct tggctggtat 1500 ggcttcttga gcaaaggtcc tggctgcgtg ccagctcctc gcacgctctg caccaccggt 1560 tegggteeca tggcageega catgeegtgg geeteeteea ggccateeat gegtgggaee 1620

```
ggccccctca gcttcatgga ggtgaaggga gtgaggaagc ggtagctcac agccagggcc
tgggcccgct gccgcagccg ctccttctcc ggttcatcgt cactttgcag ccaggagctc
                                                                    1740
agcagetect ttgtggtgag gtagetecag agaegetega tgtggttggt gtececetet
                                                                    1800
ceategeete caggeetggg getteetgtg acatetttee etgeettetg aggeegeaca
                                                                    1860
ggcacatctg tcttcaggat gatgaatttc ttactgttgc tggcggtgac ctccacgtgc
                                                                    1920
aggtgatcca gcttcctgtc caccagcttc cccgcaatga tgatctccga gccgttgaag
                                                                    1980
tagttgggga acagggtett ggtggeetge accaetgage tggggggata ategatgegg
                                                                    2040
atgtcagaga ggagcggggt cctgatttca tcgtagaacc cgatgagctg cgagcctgcg
                                                                    2100
tectectect egtgeaegeg cegtgtgagg ceaeagttet ceagegaeag ttteteeage
                                                                    2160
agcctgaagt ccacgtcgtt gccgatgcca atggtgaaga tgcagacttg gcctcgggcg
                                                                    2220
gcctctcggg tgttgttgag gatcttgagg gtgtgcgtct ccccgaccgt gggcttgcct
                                                                    2280
teegteagga agacgatgag ggacaegete eggteteeeg taegegtggg ega
                                                                    2333
```

<210> 381 <211> 607 <212> DNA

<213> Homo sapiens

<400> 381 cetgggegtg etececeggg cacetactee taagagtace cattacatat cagttteeet 60 caccaagete agreecetet geeetetggt gagteteetg agreecettg gagtecetet 120 cttgctccca tgcagacaac tggaagcagg agctgacaaa attcatcagc cccgaccagc 180 tgcctgtgga gtttgggggg accatgactg accccgatgg caaccccaag tgcctgacca 240 agatcaacta tgggggtgag gtgcccaaga gctactacct gtgcaagcag gtgaggctgc 300 agtatgagca cacgaggtcc gtgggccgcg gctcctccct gcaggtggag aacgagatcc 360 tgttcccggg ctgtgtgctc agatgtcctg aggttttaca acacctacag cctggttcat 420 tetaaaegea teagetaeae egtggaggta etgeteeeag accaaaeett eatggagaag 480 atggagaaat tctaggtgaa cctcatggtc cccacaccct cctctttgat ctctgaatcc 540 acaatgagtt cacagcette cetggecaga ceetgtteaa ceteteagga acagggatte 600 tacaaca 607

<210> 382 <211> 4197 <212> DNA <213> Homo sapiens

<400> 382 gccctgctgc ccctgagcac acggacccgt ccgaaccgcg gggcagtgtg tcctgctgct 60 ccctgctgcg gggactgtcc tcagggtggt cctcacctct gcttccggcc cctgtgtgca 120 accetaacaa ggecatette acggtggatg ccaagaceae agagateete gttgetaacg 180 acaaagettg egggeteetg gggtacagea geeaggaeet gattggeeag aageteaege 240 agttetttet gaggteagat tetgatgtgg tggaggeeet eagegaggag cacatggagg 300 ccgacggcca cgctgcggtg gtgtttggca cggtggtgga catcatcagc cgtagtggg 360 agaagattcc agtgtctgtg tggatgaaga ggatgcggca ggagcgccgc ctatgctgcg 420 tggtggtcct ggagcccgtg gagagggtct cgacctgggt cgctttccag agcgatggca 480 ccgtcacgtc atgtgacagt ctctttgctc atcttcacgg gtacgtgtct ggggaggacg 540 tggctgggca gcatatcaca gacctgatcc cttctgtgca gctccctcct tctggccagc 600 acateccaaa gaateteaag atteagaggt etgttggaag ageeagggae ggtaccaeet 660

tccctctgag	cttaaagctg	aaatcccaac	ccagcagcga	ggaggcgacc	accggtgagg	720
		cgggcatctg				780
		accatccacg				840
		ctcctgggca				900
		tacaacagct				960
		gggtgtgggg				1020
		gatccaagga				1080
		aagctgatgg				1140
ctgagctgat	tactagaaac	cagctccttt	cctacctata	acctcacct	gggacccaga	1200
		agcctgccag				1260
		agagaggaac				1320
		gaaccagtgg				1380
orgaageree	agteceaget	gaggatgggg	geagegatge	Lggcatgtgt	ggeetgtgte	1440
agaaggccca	getagagegg	atgggagtca	gragreecag	cgggtcagac	crrrddderd	1500
		caggccaagg				1560
		gaatggggct				1620
		ctctcgtttg				1680
		gagctgcaga				1740
		gatgtccccc				1800
ctgtcaccgc	tcctgtgtcg	tcctgcgatc	tgggaggcag	agacctgtgc	ggtggctgca	1860
cgggcagctc	ctcagcctgc	tatgccttgg	ccacggacct	ccctgggggc	ctggaagcag	1920
tggaggccca	ggaggttgat	gtgaattcgt	tttcctggaa	cctcaaggaa	ctctttttca	1980
gtgaccagac	agaccaaacg	tcatcaaatt	gttcctgtgc	tacgtctgaa	ctcagagaga	2040
		ggctccgatc				2100
		gagctgttac				2160
		agctgtgtgg				2220
		tatgcagcaa				2280
		gaggacacgt				2340
tccaggtcac	ctccacqccc	gtgatcgtga	tacacaaaac	tactaaccta	caqcqqqaqa	2400
		gggagctgct				2460
		gagetecagg				2520
tgaaagacct	cctccacage	caacgcgact	cagccgccag	gacccaccta	ttccttqcca	2580
acctacccaa	ctccacccac	tctaccgctg	ctgageteac	cadacccadc	ctaataaaa	2640
tactcagage	cagaccctgg	tttgaggagc	cccccaaggd	tatagaacta	asaaaattaa	2700
cgacctatga	gggcgagtac	tcccaaaagt	acagtaccat	asacccacta	aacsataaaa	2760
ccttcaactt	catatagact	gctgtggaca	aggaaaaaaa	caargaggtg	ataataaat	2820
ttattaagaa	ggagaaggtc	ttggaggatt	attagattaa	ggatccaaa	cttaggaage	2880
ttactttaga	gatcgcaatt	ctatccaggg	tagaggacaga	caatatcatc	aaratattaa	2940
atatatttga	aaaccaaddd	ttcttccagc	ttataataa	assacaca	tecagactea	3000
acctcttcgc	tttcatcgac	cgccacccca	aactaastas	gaagcacggc	acatacatat	3060
						3120
aaggacatga	tocaccataa	ccagagccgt	gagagagatag	tastagaga	congegerry	. 3180
atcaactca	tagactttag	catcaaggat	tagttggaa	gategeega	ggacttcaca	3240
ttttataaa	ccatccacta	ctcggccgcc ctgtgcaccg	gaagttataa	tagagaataa	attitatatt	
						3300
		tctgggagtc				3360
anagage	agetggagga	gaccgtggag	getgecatae	accegecata	cctggtgtcc	3420
adagaacca	Lgageettgt	gtctgggctg	ctgcagccag	tecetgagag	acgcaccacc	3480
traggagaage	tggtgacaga	cccgtgggta	acacageetg	tgaatcttgc	tgactataca	3540
cyggaagagg	Lgtttcgagt	aaacaagcca	gaaagtggag	ttetgteege	tgcgagcctg	3600
gagacgggga	acaggagcct	gagtgatgtg	gcccaggctc	aggagetttg	tgggggcccc	3660
gttccaggcg	aggeteetaa	tggccaaggc	tgtttgcatc	ccggggatcc	ccgtctgctg	3720
accagctaaa	caccaatttc	ttcctgcttt	tctccacttg	gtttggaaaa	tcacacagtt	3780
ttcaggctcc	atctgtttgg	agaaaataca	ttctgaagca	tccccaattc	accttctaaa	3840
aactcatgtg	caggtttgat	aaacaccaga	acagaagaca	gtgatgctgt	attattttag	3900
atttattaca	tagatttgga	attcactttt	ttcatgacct	agaaaaaaac	attccagtgt	3960
tcaactgttt	tatattatta	aagggctttt	aatttgtgaa	cttctgaagg	catgagtgtt	4020
ttctctttct	acttttgtat	atgtgcatgt	tttgtttcct	ctgacttggt	atatgctcat	4080
ctgagtgacg	gatatgtgaa	atttgtagaa	ctggttagtc	aaatggccag	actatttcat	4140
taatttattt	cctcaaatgc	ttttcaaatt	aaagcacctt	tgttagtaaa	cagttaa	4197
			-	-		

```
<210> 383
<211> 1843
<212> DNA
<213> Homo sapiens
```

<400> 383 ctggtattca tacagtgaca gagggagtgt ttttagaaat ttatagctgt ttctaggtga 60 aaacactggt tgatttagct cccttggtaa gagcactgag cagaaagaag ttccctatca 120 aatgggtgtg tggagcagcc ctgttctccc catcccgtag agctccagga agttaaccag 180 ggacttcagc tgcgacctgc agatttctaa gcccccctgt tatttctctg tcttttacgg 240 geetgtgtat tteagaettg gtggtggeag teaacggggt etggateete gtggagaeat 300 ttatgctgaa aggtgggaac ttcttctcca agcacgtgcc ctggagttac ctcgtctttc 360 taactateta tggggtggag etgtteetga aggttgeegg eetgggeeet gtggagtaet 420 tgtcttccgg atggaacttg tttgacttct ccgtgacagt gttcgccttc ctgggactgc 480 tggcgctggc cctcaacatg gagcccttct atttcatcgt ggtcctgcgc cccctccagc 540 tgctgaggtt gtttaagttg aaggagcgct accgcaacgt gctggacacc atgttcgagc 600 tgctgccccg gatggccagc ctgggcctca ccctgctcat cttttactac tccttcgcca 660 tcgtgggcat ggagttcttc tgcgggatcg tcttccccaa ctgctgcaac acgagtacag 720 tggcagatgc ctaccgctgg cgcaaccaca ccgtgggcaa caggaccgtg gtggaggaag 780 gctactatta tctcaataat tttgacaaca tcctcaacag ctttgtgacc ctgtttgagc 840 tcacagttgt caacaactgg tacatcatca tggaaggcgt cacctctcag acctcccact 900 ggagccgcct ctacttcatg accttttaca ttgtgaccat ggtggtgatg acgatcattg 960 togoctttat cotogaggee ttogtottoe gaatgaacta cagoogcaag aaccaggact 1020 cggaagttga tggtggcatc accettgaga aggaaatete caaagaagag ctggttgccg 1080 tcctggagct ctaccgggag gcacgggggg cctcctcgga tgtcaccagg ctgctggaga 1140 ccctctccca gatggagaga taccagcaac attccatggt gtttctggga cggcgatcaa 1200 ggaccaagag cgacctgagc ctgaagatgt accaggagga gatccaggag tggtatgagg 1260 agcatgccag ggagcaagag cagcagcgac aactcagcag cagtgcagcc cccgccgccc 1320 agcageeece aggeageege cagegeteee agacegttae etageeeage geeegaaage 1380 cgtctcttct atgcaataac acaatagtat tactctactg cgatgtacgg aactgcggtg 1440 tgtgtacaca tactcacgta tatgcacata tttatataca ggaagaaaaa agacagacaa 1500 gatggggctt ggtttataac caccttgccc tgtcttcctt aactccagaa gccagtttgg 1560 tgaggggtgg gggtgcggcc accaggtctg agctcttcct actgtggaag gctccagaag 1620 gcccttcaca aggagacccc tcacctggat ccagtcgact gcggggcttg cccctcatgt 1680 gggctggcct ccatcggcca cgtccaaagc tgtcactgct actgcttcag gctcacatcc 1740 eccegacetg atggegtgee egececetet ecctgeggge catgecacag gtttetgtgt 1800 tttgctttag ggacagaacc acttaggaag gaaagaactc ccg 1843

```
<210> 384
<211> 1459
<212> DNA
<213> Homo sapiens
```

```
<400> 384
ctggcgggcg tgggaaccca ggccccgccg aggcggccag gaggtgagat ggcagctggg
                                                                       60
caaaatgggc acgaagagtg ggtgggcagc gcatacctgt ttgtggagtc ctcgctggac
                                                                      120
aaggtggtcc tgtcggatgc ctacgcgcac ccccagcaga aggtggcagt gtacagggct
                                                                      180
ctgcaggctg ccttggcaga gagcggcggg agcccggacg tgctgcagat gctgaagatc
                                                                      240
caccgcagcg acccgcagct gatcgtgcag ctgcgattct gcgggcggca gccctgtggc
                                                                      300
cgcttcctcc gcgcctaccg cgagggggcg ctgcgccgcg cgctgcagag gagcctggcg
                                                                      360
gccgcgctcg cccagcactc ggtgccgctg caactggtat ctgcgcgccg gcgccgagcg
                                                                      420
gctggaggct ttgctggcgg acgaggagcg ctgtttgagt tgcatcctag cccagcagcc
                                                                      480
```

```
cgaccggctc cgggatgaag aactggctga gctggaggat gcgctgcgaa atctgaagtg
                                                                     540
cggctcgggg gcccggggtg gcgacgggga ggtcgcttcg gcccccttgc agcccccggt
                                                                     600
geoctetetg teggaggtga ageogeogee geogeogea cetgeceaga ettttetgtt
                                                                     660
ccagggtcag cctgtagtga atcggccgct gagcctgaag gaccaacaga cgttcgcgcg
                                                                     720
ctctgtgggt ctcaaatggc gcaaggtggg gcgctcactg cagcgaggct gccgggcgct
                                                                     780
gcgggacccg gcgctggact cgctggccta cgagtacgag cgcgagggac tgtacgagca
                                                                     840
ggccttccag ctgctgcggc gcttcgtgca ggccgagggc cgccgcgcca cgctgcagcg
                                                                     900
cctggtggag gcactcgagg agaacgagct caccagcctg gcagaggact tgctgggcct
                                                                     960
gaccgatccc aatggcggcc tggcctagac caggggtgca gccagctttt ggagaacctg
                                                                    1020
gatggcctta gggttccttc tgcggctatt gctgaacccc tgtccatcca cgggaccctg
                                                                    1080
aaactccact tggcctatct gctggacctg ctggggcaga gttgattgcc ttccccagga
                                                                    1140
gccagaccac tgggggtgca tcattgggga ttctgcctca ggtactttga tagagtgtgg
                                                                    1200
ggtgggggg acctgctttg gagatcagcc tcaccttctc ccatcccaqa aqcqqqctt
                                                                    1260
                                                                    1320
acagccagcc cttacagttt cactcatgaa gcaccttgat ctttggtgtc ctggacttca
tectgggtgc tgcagatact gcagtgaagt aaaacaggaa tcaatcttqc ctqccccaq
                                                                    1380
ctcacactca gcgtgggacc ccgaatgtta agcaatgata ataaagtata acacggattt
                                                                    1440
tgatgtgaga aaaaaaaa
                                                                    1459
```

<210> 385 <211> 2408 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(2408) <23> n = a,t,c or g

<400> 385 tttttttttt ttcgagataa acctttttat ttatttatgc ttctccattt tgtttaaaac 60 aacaacaaca accaccttaa tgtaactgac agcccttccc cctcaccctg cctcgggctg 120 ggggtagtta atggggaaat ggcccccagg gtggggctga ccagaagagc ccctcaagga 180 gctcatggag cccaaatccc ctgccctggg gaggggacct gtagtgtgtg acgggagcct 240 ctcccgagcc tctgcttgta ccatcaaaga tgcccttggc caacaagggt caggaagcat 300 gggggaggga tttcggcctc ctctgtccct acccagccca atctcacgag cagggctggg 360 gggtttaaaa agggtggagc gggtggggtt ggctcacacg aaggagtact ggttgttaaa 420 tggcccctgg ggtggccccc ttcctctcca tcacccccct agtggtgact gctgcagctg 480 caccaattgg gggcaccccc gcgtccccac caggacccag gcgcccttgg gcctcttgag 540 cctggggcct atggccctct cccaattcac ccaccgggac cagctaaacc acggggacca 600 gcctcttccg ggacccctcc acccgcccgc tttctctttc tcttgcctct ctttggctgc 660 tgcggctgcc tnttgcccgc cacttcctgg cgcccctcga cgcctctttc ttccccaggc 720 tgtgggggat ctgtccatga agggggttca gggggctggg gtgggtcatg ggaggtggtc 780 ggttacacag tcactcgctc cgaagggcat gagggtgcag gaggcattcg gggtggcatc 840 catchecete geacacecee geatggetee cageetgete eeggeeteae ttettgggtg 900 cacgggcacc tcctcccctg cagacctgct ctgctcaccc tgctgtcgct gggaggatgg 960 gacatagctg acaaggacaa catcactgga gcctcccgac tccaaaggga tggggtgcac 1020 ccggaagtgc tcgagcatat cgaaaatgga ctggaaccac aggtgctgga cccggcactg 1080 accetecteg theagegaca aacgeaggtg ettggeettg ceetggaagt tgaaggtgag 1140 gacgtattca ccccgccttg tctcactctg gcgcaccagg aagacaccgt gggagccagt 1200 gccgccagtc agcaccaact gtgcagcctt gagccgagag agcatcccgt ggaaccaagg 1260 ataccetgag aggggetggt ceceteace geeetetgge tececeetgg aacaggaagg 1320 accetgtgge tgttteegga gtgteeaagg gagggtaggg ggetgagagg ggatgaactg 1380 tccctgctgg gggtccctct tcaatgggga tgcggggggg caactctggg ggaagcagtt 1440 ccatcgagtc aaaatgggag gcggcaatgg aggcagagct gggggagatg gatgccgagg 1500 ggcggtctga gaggccccca tatgccccct gcgacaggcg gtcattgctc tcgctgggtc 1560 caagcagcag gtcctggctg ggtagactct ccgagtgatt caggcaggac agctccaggc 1620

tgtctgtgtt ctcccttgta aggaatgagg tcccaggggc cagagggagg gtcatggggc 1680 ggggactggt agcagggcag ggtcctgggc tcaggcattc ttggatgtca gacacccagg 1740 cetteacatg etgggeatee actgteteca tgatatacte ggatggacet tecacettaa 1800 ccacaaacgt gttctcccgg tcaggcatct ccagggctgt ggttgtccgg acgtctgtga 1860 tagaagagca ggggatgctg agtcggggcc gagaggcctt gggtggtaca aagaactcca 1920 ggcgacttcc tcctcctcct tctccttcac ttcgaagcag caggcgacac ttctgccact 1980 gaggetgeee teeteeeet gaaggaggee cagecaceee teeteeegg eccaeteegg 2040 ctgggtcagg ggctgcctcc tcagccccca tgaaactcag cagctcttcc ctctgcacca 2100 tecetgetee atcetteaag gegeeecete eeegactgag teteageete teaaaaeggt 2160 gagtccatct ttccccaggg gacgttccat cactgaccag tcccctacca acggtcccag 2220 ccccgccaga ggagttggag ttgctgtttc cacctaagac tggggggcct gacgaggtct 2280 ccaggggccc agcggaggag ggagggtcaa cggtcccccg ccactgcagg atgccacgga 2340 ctgagcctcg gacagagcga cccactgaac gcagggaaaa gcgcttcttg agcttcggct 2400 tggaggag 2408

<210> 386 <211> 2204 <212> DNA <213> Homo sapiens

<400> 386

ttggggaacc cccagggttt tcccatcccc ccggtgtaaa accgcggccc aggaaatgga 60 ttttgggggc cccataaaaa aacttttgcg ttgccagccc ccggacgtta acctggatcc 120 tttaaaacgg ccccccttt ttttttttt tctttaacaa aattttatt taataaatgg 180 ttaaaatcgc agtgccaaaa atacattgac atttagcaat ttcactgaaa ggaagaaact 240 acagaatgca cggtttcaga aagctatttt aagttattta caaataaagt atctaaaact 300 caaaaacagg ctctgtatgc tatatctagt ttatcccttc ccgaacaaaa tttctgttat 360 ttgggcaaat tcttaaacca tggtttaaac cgtaatggtt acaaaccaca aacacatcca 420 tccagagact gaaaccgttt ctatccggtc agtggcaaaa ctgttgaaag ggcaatagtt 480 gaagctgttg ggttttatat agtgtgaact ctgataaata ttcctaccag gactaaaaca 540 cagcacgctt tgcgggcatg gctgactcac aaaggttgta acaaacaaga actactcttc 600 actcgacacc atggctcaga ggccaccgag aagcacgagt gactgacagc tcctctgctt 660 acaaacgaat gaaacccaaa gtggatgtcg ttctcacagc actgaaagtg cttcaggact 720 cacactgatc caatactaac tttcttccct attttacaca tattttcta ctgtccagtg 780 gaaatcattt tctgttttgg ctaaacaaca aatactagtt tataacagga atggtaaaat 840 ctgtgagaat tctgctcaat ttaatacaag atcactactt tctttagaat ggtttctgcg 900 tgtttctacg tcaccctctg tatttttagc ttccagtttc ctggtaagga ataagttctc 960 cttcccagtc acactcgggg tcatttacac gtttctggga tgcccttgct cgtccatgga 1020 ggccaggtgc gtgcagtgac tcactctgcc tcttccctct tctcaggacc agtccccgaa 1080 ccttctgcct tgcagatcct cctgtttccg ccacactctc gcgctcggaa gcgagctcct 1140 ggatcataca gctgcaaggc tggccggtcc ttgtttgcca gtcgctcttt tctgggtgct 1200 ggactgtcgt cacacctctg cgctcttccc agtctctcca tggcctcccc cggagccccg 1260 ctgtcctggc tccccttctt ccctctgtct tggccaggtc ctttccccca tctctgctca 1320 tcctcactcc ttctggaaag ccgttcaggc tcgtggtgag ctctgtgcct cctgccgtca 1380 tccacatggt atctttgtgc ttcagattct tgttcttgag atctctccac atccctgtgc 1440 tetttateae tgeegetgtg tgaegtetee tggggeteet ceagegagee tteeatggge 1500 . ctggctttta cgactgcacc gggggcacag gattcctgct tgccacctcc agtatcaatc 1560 tectetete tttettttgg tttetetgtg gttggtteet etecettte tggtttetta 1620 agaagettaa teettaette tttetetgea attttettet gtttatetgt etetttttt 1680 ttgcatcttt cttcttctct tcttcttctt ttttcctctt cccgcaaacg tttctttct 1740 aactetetee teeteegtte ttetegette tettetegaa ttetetgett ttetaatttt 1800 ctatttttaa tatattccaa aagaggtgtg gttcttctag caatgagctc tcttgtcttc 1860 1920 taggtttcta aaaacttctt atattctgga tctttgctgt caaggaagat atatccatca 1980 aaacgatctc taaaaagaag gatgtcatca ggattcctaa aattaatgta tgctcttgag 2040 tagagatgag gataaagact caggtcggcg gcgaagaact cgaagtagtc gtgtgctggc 2100

agcgggcgca gctgctcctc cagctgctcc ttggtgaggc ccggaggcag gcggcggatg 2160 accacctgcg gggagcgcg ggccgttccc accggggcac gaaa 2204

<210> 387 <211> 798 <212> DNA <213> Homo sapiens

<400> 387 tttcgtagca aacaggtttc acgaccactg ctctctggag tcttattcct caqaqtatqa 60 gcccttgacc aaggagcatg gaatgcatca cctatgtttg aacaagggcg ccaqatgacc 120 totgoggaco cagggtttgg gaagtgotga tgtggagoca caggacttgt tttagggoqt 180 gtggggcgtg tgtgtgagtg ggcttctgca ggtgggcagc cagcgggcac aggcgtqgaq 240 agcatggtca cccatggaga caccgctcac ggggactttc ctttggcccc acatcccgca 300 gggtctcttc ttcgatgatt cctatggctt ctacccaggc caggtgctca ttggccctgc 360 caagatette tecagegtee agtggetgte aggtgteaag eeegtgetea geaceaagag 420 caagttccga gtggtggtgg aagaggtgca ggttgtagag ttgaaagtta catggattac 480 caagagtttc tgtccagggg gcacggacag cgtcagcccc ccacgtctgt catcacccag 540 gaaaacctag gcagggtgaa gcgtctcgga tgctttgacc atgctcagcg gcagcttggg 600 gagcgctgtc tgtatgtctt cccagccaag gtagagccag ccaagattgc ctgggaatgt 660 720 ccagaaaaaa actgcgccca gggggagggc tctatggcca agaaggtgaa gcgcctgttg aagaagcagg ttgtgcggat catgtcatgc tccccagaca cccagtgttc ccgggaccat 780

798

<210> 388 <211> 4530 <212> DNA <213> Homo sapiens

<400> 388

tccatggaag acccagac

tttcgtgaca gtagccctg ctcggccttc gagttccact gcctaagtgg cgagtgcatc 60 cactccagct ggcgctgtga tggtggcccc gactgcaagg acaaatctga cgaggaaaac 120 tgcgctgtgg ccacctgtcg ccctgacgaa ttccagtgct ctgatggaaa ctgcatccat 180 ggcagccggc agtgtgaccg ggaatatgac tgcaaggaca tgagcgatga agttggctgc 240 gttaatgtga cactetgega gggacccaac aagttcaagt gtcacagegg cgaatgcatc 300 accetggaca aagtetgeaa catggetaga gaetgeeggg aetggteaga tgaacceate 360 aaagagtgcg ggaccaacga atgcttggac aacaacggcg gctgttccca cgtctgcaat 420 gaccttaaga teggetacga gtgcetgtge eecgaegget teeagetggt ggeecagega 480 agatgcgaag atatcgatga gtgtcaggat cccgacacct gcagccagct ctgcgtgaac 540 ctggagggtg gctacaagtg ccagtgtgag gaaggcttcc agctggaccc ccacacgaag 600 gcctgcaagg ctgtgggctc catcgcctac ctcttcttca ccaaccggca cgaggtcagg 660 aagatgacgc tggaccggag cgagtacacc agcctcatcc ccaacctgag gaacgtggtc 720 780 gctctggaca cggaggtggc cagcaataga atctactggt ctgacctgtc ccagagaatg atotgoagoa cocagottga cagagoccao ggogtotott cotatgacao cgtoatcago 840 agagacatec aggeecega egggetgget gtggaetgga tecacageaa catetaetgg 900 accgactctg tcctgggcac tgtctctgtt gcggatacca agggcgtgaa gaggaaaacg 960 1020 ttattcaggg agaacggctc caagccaagg gccatcgtgg tggatcctgt tcatggcttc atgtactgga ctgactgggg aactcccgcc aagatcaaga aagggggcct gaatggtgtg 1080

gacatctact	cgctggtgac	tgaaaacatt	cagtggccca	atggcatcac	cctagatctc	1140
		ggttgactcc				1200
aatgggggca	accggaagac	catcttggag	gatgaaaaga	ggctggccca	ccccttctcc	1260
ttggccgtct	ttgaggacaa	agtattttgg	acagatatca	tcaacgaagc	cattttcagt	1320
		cgatgtcaac				1380
		cctcacccag				1440
accetgagea	atggcggctg	ccagtatctg	tgcctccctg	ccccgcagat	caacccccac	1500
tcgcccaagt	ttacctgcgc	ctgcccggac	ggcatgctgc	tggccaggga	catgaggagc	1560
		ctgcagtggc				1620
ggtcagctcc	acagccgtaa	ggacacagca	cacaaccacc	cggcctgttc	ccgacacctc	1680
ccggctgcct	ggggccaccc	ctgggctcac	cacggtggag	atagtgacaa	tgtctcacca	1740
agctctgggc	gacgttgctg	gcaagaggaa	attgagaaga	agcccagtag	cgtgagggct	1800
ctgtccattg	tcctccccat	cgttgctcct	cgtcttcctt	tgcctggggg	tcttccttct	1860
atggaagaac	tggcggctta	agaacatcaa	cagcatcaac	tttgacaacc	ccgtctatca	1920
gaagaccaca	gaggatgagg	tgcacatttg	ccacaaccag	gacggctaca	gctacccctc	1980
gagacagatg	gtcagtctgg	aggatgacgt	ggcgtgaaca	tctgcctgga	gtacagtaca	2040
tgcccagaac	ccttcctgag	acctcgccgg	ccttgtttta	ttcaaagaca	gagaagacca	2100
		ttgttttata				2160
		ggcttgggtt				2220
ggataagaga	aacaggcccg	gggggaccag	gatgacacct	ccatttctct	ccaggaagtt	2280
		acacaatcct				2340
tcaggcccag	agaagcaagt	ggctttcaac	acacaacagc	agatggcacc	aacgggaccc	2400
cctggccctg	cctcatccac	caatctctaa	gccaaacccc	taaactcagg	agtcaacgtg	2460
tttacctctt	ctatgcaagc	cttgctagac	agccaggtta	gcctttgccc	tgtcaccccc	2520
gaatcatgac	ccacccagtg	tctttcgagg	tgggtttgta	ccttccttaa	gccaggaaag	2580
ggattcatgg	cgtcggaaat	gatctggctg	aatccgtggt	ggcaccgaga	ccaaactcat	2640
tcaccaaatg	atgccacttc	ccagaggcag	agcctgagtc	actggtcacc	cttaatattt	2700
		ggttaccttg				2760
		ctggtgccca				2820
gtggtctcct	tgcactttct	cagttcagag	ttgtacactg	tgtacatttg	gcatttgtgt	2880
tattattttg	cactgttttc	tgtcgtgtgt	gttgggatgg	gatcccaggc	cagggaaagc	2940
ccgtgtcaat	gaatgccggg	gacagagagg	ggcaggttga	ccgggacttc	aaagccgtga	3000
tcgtgaatat	cgagaactgc	cattgtcgtc	tttatgtccg	cccacctagt	gcttccactt	3060
ctatgcaaat	gcctccaagc	cattcacttc	cccaatcttg	tcgttgatgg	gtatgtgttt	3120
aaaacatgca	cggtgaggcc	gggcgcagtg	gctcacgcct	gtaatcccag	cactttggga	3180
		gaggtcagga				3240
		acaaaaaatt				3300
ccagctactc	gggaggctga	ggcaggagaa	tggtgtgaac	ccgggaagcg	gagcttgcag	3360
tgagccgaga	ttgcgccact	gcagtccgca	gtctggcctg	ggcgacagag	cgagactccg	3420
tctcaaaaaa	aaaaaccaaa	aaaaaccctt	gcttggggca	tcagcagccc	ttggcctctg	3480
gccaggcatg	gcgaggctga	ggtgggagga	tggtttgagc	tcaggcattt	gaggctgtcg	3540
		gctttccagc				3600
		acaggtgcct				3660
tgagctggat	cacttgagtt	caggagttgg	agaccaggcc	tgagcaacaa	agcgagatcc	3720
catctctaca	aaaaccaaaa	agttaaaaat	cagctgggta	cggtqgcacq	tgcctgtgat	3780
cccagctact	tgggaggctg	aggcaggagg	atcgcctgag	cccaggaggt	ggaggttgca	3840
gtgagccatg	atcgagccac	tgcactccag	cctgggcaac	agatgaagac	cctatttcag	3900
aaatacaact	ataaaaaaat	aaataaatcc	tccagtctgg	atcqtttqac	gggacttcag	3960
gttctttctg	aaatcgccgt	gttactgttg	cactgatgtc	cqqaqaqaca	gtgacagcct	4020
ccgtcagact	cccgcgtgaa	gatgtcacaa	gggattggca	attqtcccca	gggacaaaac	4080
actgtgtccc	ccccagtgca	gggaaccgtg	ataagccttt	ctggtttcgg	agcacgtaaa	4140
tgcgtccctg	tacagatagt	ggggatttt	tqttatqttt	gcactttgta	tattggttga	4200
aactgttatc	acttatatat	atatatatat	atacacacat	atatataaaa	tctatttatt	4260
tttgcaaacc	ctggttgctq	tatttgttca	gtgactattc	teggggccct	gtgtagggg	4320
ttattgcctc	tgaaatgcct	cttctttatg	tacaaaqatt	atttqcacqa	actggactgt	4380
gtgcaacgct	ttttgggaga	atgatgtccc	cgttqtatqt	atgagtggct	tctqqqaqat	4440
gggtgtcact	ttttaaacca	ctgtatagaa	ggtttttata	gcctgaatgt	cttactqtqa	4500
	ttcttaaatg			J : 2 : J J C	-	4530
	3					

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(2343)
<223> n = a,t,c or g
```

<211> 2343

<400> 389 tttttttttt ttatqtqqat aatatttatt tgtatcttat ctataqaaca aatatttaca 60 gatacaaacg gaatcacagc aaagttgcta taaaaccatc cagacctctc gatggccact 120 tctgaaaaca tccacggtga agggcagggc caggcctggc tgtggagtgg gccagctgag 180 tacctgggcg tcagccaagg gaaatggttg gggattatgg cttcagcact ctgccggagc 240 acattectga gegetgacaa egtggageee teacegeeee cacetaceee aaceteaatg 300 gggaaggaaa ggggcctgag ctgggcaggg ctgcccgggc tcactatgtg cctgctccag 360 gagtecetgg eccetgtget ggeaggagea tecetgaget ggaeegggag geetetetgg 420 cctggggctg ctccctgccc ggcaggctgc tgtttggcag ctggaggtgg caagagctgc 480 tggtgctgcc agggcgtgtt ggccaggaat gagctcccag ggcagccctg aggaaagggt 540 cttaggaagc gcctcccagc tcactactag gagctgggga ctgtcagtgc tgagtggggc 600 tggggtacag gagcacctgc ctctcctttc tttggcttag aagtggggaa ggaagggcca 660 ggaaaaggga ccaaagccgc cccagccttg gcccctaggc cgcctqqqqa ctqtqtqt 720 gctgaggggg cagtgggagg tgggcagctc tggagttccc tgcaccctgg gatccttggg 780 ctgctctcac tcccggggtc ccagcagggc aaggcctctg cttgggacca gtgctgctct 840 tcctcgctgc ttactccagg aggtgaaggt gacagggcgg caaggagagg taaccacagc 900 atggctgggg acaggcgcta cactgggccc cggacccagc acagggatca cagtgtcggt 960 ctcgcgcaca cacctctggc cacatgtgca caccacatac atccacacgc acctcctcc 1020 tgtctggcgg gaggctcatt ctctctcgca gccactcgcc ctctctgcct ctcacatatg 1080 cggtcacaga gtgaatccga gcatcttatt gctgcagggg gcaggggggt cggcatcagg 1140 gaaagttaat ccacgaagag cgagaacagc accattacca cgatgcccgc acagagcaga 1200 agcagetget geagggageg ceaegggtee tettetteea agaggteagg gageaegtte 1260 accaaggega tgtagagaaa geegeeagag gtgaagggea ggaeeeagge tgeegtetee 1320 totactccct tgggggactg ggtacagatg gcgaagccag cgcccagtag gcccccagc 1380 gctgttgaga gttgcagctt ggctgcgctc catcggtcaa agccggcccg gagcaggatg 1440 gcaaagtcgc ccacctcatg ggggatctca tgcaggagga tggccatggt tgtcaggagc 1500 ccgatcttct tgctcacaag gaagctggca gccacagcca gcccgtgggt gaagttatcg 1560 atggtgttgg ccagcaggtt gaggtagccg ctgactttga tgctccggac cacggcaccg 1620 aggccgggct ctgcagccgg ctgggccaga cagtggcctc cattgagcgc ggcggcagca 1680 gcagtggggt ctttgttggg ggcctggctg gtcccctcct ccttgctgtc caggaacatc 1740 ttctccaacg ccaggaaggt caggatgcca gcaatgaccc acagccccag ctgttgctgc 1800 tgctgcaggc tctgcccctc accaccaggg ctggcgctgc acgtgtaggc ccaggcttcg 1860 ggcagcagat gcagaaacac attgcccaag agtcccccca gggcgaagct gagcagctgc 1920 ttcaggcgcc aggccccagc ttctgagcgc agcatggtcc ccatctctag gggaatgaca 1980 agcaacggga agaccccact gagccccacc atgagggaac ccaggaggga gcagatccag 2040 gtgtccagcc gctctccgct cagcagagcc ccccaggact cgctttcctt gttgtccagg 2100 cgacaggccg tcgcagtccc ccggctccgg agggccggct gggaaccccc agcccttccc 2160 aagageteea gggeaaggge agtgaggaag aggageettg ggeeegeeat geeacageea 2220 gggcagggac atccaggcat gccacgtacg tgcggcggcg gcggcggcga tccgggcggc 2280 cccagcccgg gaattcggtn ncggtcgtcg tgcgtacggc ttcaatnatc aaanngnggc 2340 acg 2343

```
<210> 390
<211> 1325
<212> DNA
<213> Homo sapiens
```

<400> 390 gggaaagtga gtgctggcca ggctggggcg gacagaacac ttcgacgggc tccggagccc 60 agattcagee aggaacecae aggeaacteg geetacecee agetgaggee etttttggae 120 ccgcagggga gagatettaa acccageget ttggteecae ccaecegete ccaeaetggg 180 aggagaccat ggctccacac acagcccctg ccaggcccac aggggcgggc atgggggccc 240 acctgcctcc tgcatgtgtg gacagggtcc tggagagtga ggagggccgc agggagtacc 300 tggcgtttcc caccagcaag agctcgggcc agaaggggcg gaaggagctg ctgaagggca 360 acggccggcg catcgactac atgctgcatg cagaggaggg gctgtgccca gactggaagg 420 ccgaggtgga agaattcagt tttatcaccc agctgtccgg cctgacggac cacctgccag 480 tagccatgcg actgatggtg tcttcggggg aggaggcatagaccgtc cggagcagtg 540 gggcctctgc cagcccttgc agctgcagcc catccctggg ccatgtcccc tccatcgagt 600 gcccggtgct tgggggagga gggcagggac agggagggag ccacagtcag tgcccgggaa 660 cctggaaget gegetgetet gegeetetgg geeteactgt ggacagagga gteaggeeeg 720 ccccaggage ctccagetge ctaaccagtg ccattettte acaacaegat tttctacaaa 780 tctacagcac aaccgagttt gtaacccgtg ggttagtatg aggaccgggt tcgtgtactc 840 tetgtatete etettaaget tegteeaggg ttetttattt ttgtetgetg ceaatgtegt 900 ctegeatgee tgeacceteg catgeacget geoegeatge caegtgecae getgtageca 960 cagacccctt gctcgggcct cacccaaggc caaactccaa acacaatcag aaccagccaa 1020 agaagcactt cctgggcacg gccaccagct ctcccgcctc cagtgtgggc cggctcctgc 1080 agggtccgag ggctgcatct ctaccagcca gcccagggct cttcccaggg tctcgcattc 1140 aagggcaatt acattttaaa aagaaaaaca gaaaaaggtt aatcacaaaa ccaaccctca 1200 cttcacaggg tctgtaagtc actcatagaa ctttgctctt cccgagacag ggtcccttcc 1260 ccagctcagg cacaacagag tctggcaggc tctggcaccc tgggcctcct ccgggagcct 1320 cccat 1325

```
<210> 391
<211> 1458
<212> DNA
<213> Homo sapiens
```

<400> 391 tttttttttt ttcaggctta aataacaaaa tatatttcag atatgcacag ttttaactga 60 ggactacaca agcetteete gggetgeagg ecegeegeee teecagtggg atteacagee 120 cctgcggagt ttgtcctcac gcacaccaca cacgatcggg tataaaacac attctataaa 180 cacgttctga tgcaaactgt gtgtccataa atatatattt atgcaagttc ctcccaccca 240 ctgcagggcc gtacagctct ggggacagga ggtcacagcc gactttaaac cacaggttaa 300 gtagaaggtt gcaggtcaaa tagaagttcc cgtgtgattg catcacccaa cggcactgtt 360 ctgtcatcag gaaatgctga gtgcccgccg tggccgggtg ggcgcgggcg gtggtcagac 420 gctgctctgg agctggctat ctgtggcact gtcaggggct gaggactggc tgggcagaca 480 agtttccagg ccatctgaag actccgacag gggcttgtat aagaagcagg ctatggcaaa 540 gaagaggacg cccagcacct tgtacaggag ccccatgatg agtatgtagc ggctcatggc 600 cgaattctgg tacaccaagc aggagccctg ctggccacac tggtcctgcc acagcagaca 660 ggccttgtcg atcacccagc cgaaggcgat gggccccggg atgcccccta gtattctaac 720 tacaatccac tggattccca gggcaaagga tctctgaggg tcacggacac atcgtagagt 780 tgccgttagt gcaggaatgc tgctgaggaa tgtaaagaaa attacaacga atatgaaaac 840 cagaaggagg ggctttctct gacaagttga agtgcatttc cctgcagtgg catggccaaa 900 accagaggaa agattetgag ggatacaget acagtetegg tacacetggg aageecaaca 960 atageteega ttacaagggg aaggeaeggg ggeeeettee eagggteeag gggaggaeag 1020 gggcggtagg cagcggctcc actcaccttc tggccgtcca cattcgtctc cgtggctgca 1080 gggcaccctg cgtggcacag tgagaagtac atgaggccgt ccgagccgca cacagggctg 1140 tagtgttctg gctggcagct gcaggcagcg ttgcagggag ccgttaggtt caggtggcct 1200 tcgggcagga ggctcccgcc gtagctggct gtgacgcccg ccatgggcac actggggcag 1260

tgcagtgaga agacgaggat gcccagcagg ctgacaacgg tgcagaacag gcagaacttg 1320 atgaccgcgg agccccggag cctgagcttg ttcacaaaga agccgcccag gaaggtgccg 1380 ccaccacccg ctggcaccac caggtaccca aacaaggtgg cagcttctga ggcactcagg 1440 cgaattccac cacacgga 1458

<210> 392 <211> 1667 <212> DNA <213> Homo sapiens

<400> 392 ttttttttt ttctatgtac aaaaacattt taattgaaat acctgtataa aaaaatatga 60 tctccagaca tctcactttt gaactgaaag aacccccatc tgcgatgcct gcacacaccg 120 cattcacaca aacacaggta ctgaataaat taaacgctca ggctctggcc ccaccccagc 180 tttcagagcc cacaagcaga ctgtacaaag tcaataattt aaaacccaaa ccctgggcac 240 agtgcctgga agtgtcaggg tcacccactc cccttaagtt agccactata catgttcatc 300 ttctgacagg cggggccagg acagacgcca ggcacaggaa tcagggcctg gggtccctgg 360 accacageca eccetecee tgeeteceea etgteceetg gggettggga gaggeagaet 420 gctcagagga aataacctca acaaataaat taaacaataa atagccccgg tgggccgagg 480 gcacctccag ggggtcacac cataaataac agagttggcg gcgggtacgg ctcgcgtggg 540 cgggcgggcg cggaggccag gacttgcatt gtgtgtgcag gacgtgccca gacgcacacc 600 gcaggactga gggcgggagg tgggcttggg accetgcgcc ggcggaaaga gctccgggtg 660 ggcaggcaga tgggaaggcc gcctccggac acagcagcac agaggggcgt ctggggttca 720 agtatccacc cagggcaggc gggacctcga ccggagcgtc tttggacaga cagagcttga 780 gaaaaccaag tcccgcggga ccagcgttca aaaggcactc aaagcgaagg tcaccagggg 840 tcagaggtca ctgcttccgc aggaggagac ggcccacgca ggaaaaagtc agggtctggg 900 ggcgtcccag gtctggccaa ggcaggtggt cccctagctc ccagtcaggt gcagctcctc 960 acaagetete getgetggae gtggtgetgg ceaegteate agggtegagg gtgeaeagee 1020 gcaggtcaca gctctccggg gcgcccccgt cagcccccag catccaggga tgggccgcaa 1080 tetgatecag egaeggeege tetgagggee geagggaeag geaecaeegg ateagetget 1140 ggcactctgg agagaccctc ctccggaaga gcaggcggcc tcggaggatc tcctcgtcct 1200 gctcgaaggg gatgtcccca cacaccatat cgtagagaag cacgcccagc gaccacacgg 1260 tggccgagcg cccgtggtag cggtggtagc ggatccactc cgggggggctg tacactcggg 1320 tgccgtcgaa gtcggtgtag accgtgtcct tgagcagcgc acccgaaccg aagtcgatga 1380 gcttgagctc tccggagcgc aggtccacaa gcagattttc gtccttaatg tcgcggtgca 1440 cgaccccgca gctgtggcag tggcgcacgg cggccagcac ctgcgcgaag aaagcggcgc 1500 gccagcggct cgtccagggc gccgcgctcc gtgataaagt cgaagatggt cctagcgccq 1560 gctcgggccg ctccagcacc agcaggaagc cgtcgggccg ctcgaaccag tccagcaggc 1620 ggatgacgcc gcgcgcccg cccggcgcgc ccaccttgcq cagcagc 1667

<210> 393 <211> 1938 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1938) <223> n = a,t,c or q

```
<400> 393
gtggaaagaa cagtcagaaa gcctctcctg tggatgatga acagctgtca gtctgtcttt
                                                                      60
ctggattcct agatgaggtt atgaagaagt atggcagttt ggttccactc agtgaaaaag
                                                                      120
aagtoottgg aagattaaaa gatgtottta atgaagactt ttotaataga aaaccattta
                                                                      180
tcaataggga aataacaaac tatcgggcca gacatcaaaa atgtaacttc cgtatcttct
                                                                      240
ataataaaca catgctggat atggacgacc tggcgactct ggatggtcag aactggctga
                                                                      300
atgaccaggt cattaatatg tatggtgagc tgataatgga tgcagtccca gacaaagttc
                                                                      360
acttetteaa cagetttttt catagacage tggtaaccaa aggatataat ggagtaaaaa
                                                                      420
gatggactaa aaaggtggat ttgtttaaaa agagtcttct gttgattcct attcacctgg
                                                                      480
aagtccactg gtctctcatt actgtgacac tctctaatcg aattatttca ttttatgatt
                                                                      540
cccaaggcat tcattttaag ttttgtgtag agaatataag aaagtatttg ctgactgaag
                                                                      600
ccagagaaaa aaatagacct gaatcttcag ggttggcaga ctgctgttac gaagtgtatt
                                                                      660
ccacaacaga aaaacgacag tgactgtgga gtctttgtgc tccagtactg caagtgcctc
                                                                      720
gcccttagag cagcctttcc agttttcaca agaagacatg ccccgagtgc ggaagaggat
                                                                      780
ttacaaggag ctatgtgagt gccggctcat ggactgaaac tcagcaggga ctctgggaag
                                                                      840
tctgaccaag ttggagcaga tggtttgtta cttgaatctc caaacactta gttgaatttt
                                                                      900
tacagatatt tcagatcagt gggtgttggg gccactattg ttacctccaa attttattt
                                                                      960
ttgcccttaa ttccatttct cccagctacc atgtactatt gtttaatgtt cagtttggtt
                                                                     1020
tcatttttaa ttttatggtt ctgtgcgtcc cccatattta atatttatta ttcaaacgca
                                                                     1080
tgcatataga cagagcatgc agtgaagagt attaaaaaaa aaagcttagt agatttggtg
                                                                    1140
cagettttga aaettaggtt agaegtgaaa etgaaataea ggttteaaat ttaetteece
                                                                    1200
agaacctaaa aatgcaagat gtttttgata ccaaccataa cctcctgaga atagtaagtg
                                                                    1260
ttcccccggg gcattaaggg taagcctggg ggtggttttt gaccaaatcc cagtccctgt
                                                                     1320
tttaccttta cccageggca actttcaccc aacttcccct ctcccaagtg agtcttagag
                                                                    1380
agtgcagtcc cattcctttt tgaagggtga gatggaagtg gtcgtaaact gactggtgtc
                                                                    1440
ttctgtttct gggaggcaca cttgtaaggc acagtggctg ctttgggagg agtaaggtgt
                                                                    1500
gagaaaaagc aaccttggag gccagtaaca atgacagatt tcaatcgtgg ttttaggaat
                                                                    1560
tataatacgt ggcatacatc tcataaaggc ttttgctggg atattgaatt ccctgaattt
                                                                    1620
ttctgttttc gacctgttaa aaaaatctta acatccatca aactagtggt caaacaaatg
                                                                    1680
agaatgcagc tgttctcaga gtaattttta agttgtcatt tccctgtgtt gcctcccaat
                                                                    1740
tggaagaagt taaggtttac caaatgcatt tctatttcaa gggtatctga aacgtaaaca
                                                                    1800
ttcaaaactg aaggctgact gacttnagat gttttgcagg tggctggaga gaacagggaa
                                                                    1860
ggtaatagag acacacttag tcccatggga agcgcagcac cgttgtaggt tctttctcct
                                                                    1920
gtcccattag cgacctca
                                                                    1938
```

```
<210> 394

<211> 1283

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(1283)

<223> n = a,t,c or g
```

```
<400> 394
gatttcagtt gcctgaaagc tgtaagtctg cttttttaaa agagaaattg gagttaagca
                                                                      60
gacttttcat tttttgatca tgaccctgga aagagaaata tatttgacat caaaactcag
                                                                      120
cacatatect tggtetatat atacacatga aagttteata aaacaataca etgatatttt
                                                                      180
ccatgctgta ttctattca ttttttaaaa tgctggttgt atcccattaa actggtttca
                                                                      240
aaataaatat aacatgtaca caacaacaac aaaaaaaaac actgggttag agggccagta
                                                                     300
ageteagega gtateageaa etgagaette ateettgtet cacaaggaet aaaaagagaa
                                                                     360
taatgttctc attatgtggt tcaatgccac acccatgtat ctgagatata catgtcacaa
                                                                     420
tctgggagaa gcctgtcctc aatttacttt aaatacccaa ttctgcctag aacatgaatt
                                                                     480
```

agacacatag taago	ctcttg agtgaagtgo	agatgataat	gacacgatca	cataccactt	540
aaaaatatct taaca					600
tactttgaaa aaaga	gcttc actgtgtgtg	gttgtcatac	acattcttct	acccaaccat	660
ggacctcttt tttcc	tctca ggcgcactto	atctaatttt	tttagcactg	gcctggcctt	720
tttggaggag gtgga	igtagc tcttcagaaa	ggcttcaaac	acagtttcag	tgttgggatg	780
ggtactgagg aaggc	cttct ccaggacata	gaggtctact	cccttatcct	ctggaagtgc	840
tgaaatgaaa ctcag	rcccaa agtctatgag	r cacaatgttc	agctgttcca	gggggggttt	900
caggagcatg ttgga	iggtgg tgagatcaco	: atgaatgagg	tcttcatcgt	gcattcgagc	960
caaaacctgc ccaat	tgtct tggctaagtt	ggagagaccc	tggggagttt	ttttcagtct	1020
ccatagtgga ctgaa	itataa totogaacag	f tcactgagcc.	ttcaatttct	tccatatata	1080
agcagttgga agcat	agtcc acaaaaaaga	caactggggc	agatattcca	gcgcggcgac	1140
agcggaggag cgccc	gggcc tcctgcaccg	tccgccgtct	gccaagccgc	gcctccagcg	1200
ccgggtgccg gtagc	cttgg gaagcggtgc	ttnnttncnn	ggccttgcta	gccccctggc	1260
tcattnnccc cggcc	eggte tee				1283

<210> 395 <211> 2149 <212> DNA

<213> Homo sapiens

<400> 395

acgagectge gtttteegge cagaggaeat gatgeagggg gaggeaeace ctagtgette 60 cettattgae agaaccatca agatgagaaa agaaacagag getaggaaag tggtettage 120 ctggggactc ctaaatgtat ctatggctgg aatgatatat actgaaatga ctggaaaatt 180 gattagttca tactacaatg tgacatactg gcccctctgg tatattgagc ttgcccttgc 240 atctctcttc agccttaatg ccttatttga tttttggaga tatttcaaat atactgtggc 300 accaacaagt ctggttgtta gtcctggaca gcaaacactt ttagggttga aaacagctgt 360 tgtacagact acgcctccac atgatctggc agcaacccaa atccctcccg ctccaccttc 420 cccttcaatt cagggtcaga gtgtgttgag ttatagccct tctcgttcgc ccagtaccag 480 teceaagtte accaceaget gtatgactgg ttacageeet cagetgeaag gtetgteete 540 aggtggcagt ggttcttata gccctggagt gacctactcg cccgtcagtg gttataataa 600 gttggcgagc tttagcccct ctcctccttc tccgtaccct accactgttg gaccagtgga 660 gagcagtgga ttgagatete getacegtte tteacetace gtetacaact cacetactga 720 caaagaagac tacatgaccg acctacgaac tttggatact tttctcagaa gtgaagaga 780 gaaacagcat agggttaagc tggggagccc agattctacc tctccttcca gcagtcctac 840 tttctggaac tatagtcgtt ctatggggga ttatgcacaa actttaaaga agtttcagta 900 tragettgee tgtaggtete aggeceeatg tgetaacaaa gatgaageeg ateteagete 960 taaacaagcc gcagaagagg tctgggcaag agtggctatg aatagacaac ttcttgatca 1020 tatggattca tggacagcta aatttagaaa ttggatcaat gagacaatat tagtgccact 1080 tgttcaagag attgagtctg tcagcacaca gatgagacga atgggttgtc cagagctaca 1140 gataggagag gctagtatta ctagcttgaa acaagctgcc ctggttaaag cgcctctcat 1200 tecgaetttg aacacaateg tteagtatet agaeettaet eeaaateagg aataettgtt 1260 tgaaaggatc aaagaactat ctcagggagg ttgtatgagc tcatttcgat ggaacagagg 1320 tggcgacttc aaaggacgaa agtgggatac agacctgccc accgattctg ctatcatcat 1380 gcatgtattt tgcacctacc ttgattccag attacctcca catccgaagt atcccgacgg 1440 aaaaactttt acttctcagc actttgttca gacaccaaat aaaccagatg ttacaaatga 1500 gaatgttttt tgcatttatc agagtgctat caaccctccc cattatgagc tcatctacca 1560 gcgtcatgta tacatacctg ccaaagggca gaaataatat gtttcataca ttgttgatgt 1620 ttctctacat cataaagacc aaagagtcag gaatgcttgg gagagttaat cttggtctat 1680 ctggtgtgaa tatattgtgg atctttggcg agtagcaagt catatattta attctgacat 1740 ttagactatt tcactgaacc agaagtcgaa actaaacatc tctgagccac tgactcttct 1800 gaaataaaat acacatgggt gtatgttaca gactctttag atttaacaga aaatgtagct 1860 gttatgaaat gtaattgtaa aaatatgtcc cgtatcttct atatcgagac attgccttta 1920 attttatatc gcttttcaga aatttcagtt gactacaaaa ctgcaaccct tcggattttt 1980 attgactcaa aatagtgcca ttccccttaa tqaaatagat tttgagtctt tttttcattq 2040 taacccccaa atgagaatca tctacctgat tcttgtacca aaaaaaaatt tttttcagtc 2100

ttttttttt ttaaagaggg tttttgccaa cccaaactgg agggcaggg

2149

```
<210> 396
<211> 1895
<212> DNA
<213> Homo sapiens
```

<400> 396

```
actgtagacc attagtccag tgcggtggaa ttcatcaacc gaaacaacag tgtggtacag
                                                                       60
gtcctgcttg ctgctggggc tgatccaaac cttggagatg atttcagcag tgtttacaag
                                                                      120
actgccaagg aacagggaat ccattctttg gaagtcctga tcacccgaga ggatgacttc
                                                                      180
aacaacaggc tgaacaaccg cgccagtttc aagggctgca cggccttgca ctatgctqtt
                                                                      240
cttgctgatg actaccgcac tgtcaaggag ctgcttgatg gaggagccaa ccccctgcag
                                                                      300
aggaatgaaa tgggacacac accettggat tatgcccgag aaggggaagt gatgaagett
                                                                      360
ctgaggactt ctgaagccaa gtaccaagag aagcagcgga agcgtgaggc tgaggagcgg
                                                                     420
cgccgcttcc ccctggagca gcgactaaag gagcacatca ttggccagga gagcgccatc
                                                                      480
gccacagtgg gtgctgcgat ccggaggaag gagaatggct ggtacgatga agaacaccct
                                                                     540
ctggtcttcc tcttcttggg atcatctgga ataggaaaaa cagagctggc caagcagaca
                                                                     600
gccaaatata tgcacaaaga tgctaaaaag ggcttcatca ggctggacat gtccgagttc
                                                                     660
caggagcgac acgaggtggc caagtttatt gggtctccac caggctacgt tggccatgag
                                                                     720
gagggtggcc agctgaccaa gaagttgaag cagtgcccca atgctgtggt gctctttgat
                                                                     780
gaagtagaca aggcccatcc agatgtgctc accatcatgc tgcagctgtt tgatgagggc
                                                                     840
cggctgacag atggaaaagg gaagaccatt gattgcaagg acgccatctt catcatgacc
                                                                     900
tccaatgtgg ccagcgacga gatcgcacag cacgcgctgc agctgaggca ggaagctttg
                                                                     960
gagatgagcc gtaaccgtat tgccgaaaac ctgggggatg tccagataag tgacaagatc
                                                                    1020
accatctcaa agaacttcaa ggagaatgtg attcgcccta tcctgaaagc tcacttccgg
                                                                    1080
agggatgagt ttctgggacg gatcaatgag atcgtctact tcctccctt ctgccactcg
                                                                    1140
gageteatee aactegteaa caaggaacta aacttetggg ccaagagage caagcaaagg
                                                                    1200
cacaacatca cgctgctctg ggaccgcgag gtggcagatg tgctggtcga cggctacaat
                                                                    1260
gtgcactatg gcgcccgctc catcaaacat gaggtagaac gccgtgtggg gaaccagctg
                                                                    1320
gcagcagcct atgagcagga cctgctgccc agggggctgt actttgcgca tcacggtgga
                                                                    1380
ggactcagac aagcagctac tcaaaagccc agaactgccc tcaccccagg ctgagaagcg
                                                                    1440
cctccccaag ctgcgtctgg agatcatcga caaggacagc aagactcgca gactggacat
                                                                    1500
ccgggcacca ctgcaccctg agaaggtgtg caacaccatc tagcagccac ctgcctgctc
                                                                    1560
ctatgtgccc tcaccatcca ataaaggccc cttggctgtg gcatggcaaa aaaaaaaaa
                                                                    1620
agggggggcc gtttaaaaga acccttgggg ggcccaaatt taacccgggc gggcaaggaa
                                                                    1680
aaatttttt ccttatgggg ggccgaataa aaaccaacct gggaattttg ggaaagaacc
                                                                    1740
cttattttgg gggggggaca aattgggcca acctccctac aaaaattaaa ggctttaggg
                                                                    1800
aaaaaaaaaa tttttaaggg gaaaaggggg aaaaacaacc ggcataccct ggcggttgga
                                                                    1860
aagttttgtt tacggagtat gatttagaaa aattt
                                                                    1895
```

```
<210> 397

<211> 2416

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(2416)

<223> n = a,t,c or g
```

<400> 397 ttttttttt ttttttca caagttatat tttattttaa cacgaggatt aacatatagt 60 tacaaggtca atacaagcct ccagtggaag ctctttattt ggtttaattc catctccaga 120 gacaaacagg caactctagg acctttacag tggcgatcgg cctccacnac agcaaaatgc 180 ctccaaagtt tagaattagt gcaacacaca tacgaacgtt ttaaaggtgc tcaacatcag 240 gttaaaatag aattotggac otttttaaaa agtttttgga tgatataago acaggaggca 300 gagccaataa gaaacatgaa accaatattt ctggaaaaac acttagcatg aacgtcactt 360 tttgaegteg tgtaaaettt ettetgeaat gaeggatgtt accaaaagge attgagacet 420 ttgcgctgcg ctggttagac aagccgcagg cttatctcca cggtgagcag gataaaaacc 480 cccaaggaac agcccatgac aaccttctgt gcctttttat actttcccat cctacaaagg 540 aaaaactggg taaaggacaa gttcctccct ttcattgcgt ttctaagaac ttttcagggc 600 aggttctttt aaaattagtc atcttacaac acaacagtat tctagcacgg tggcgaagtg 660 acaggcggca gatacggggg aggaaggaga cgttcacggg aaattccaca ttctactcta 720 tgtgaactgc tccagaaaaa tacagacatg atttcacagt aggattccca gagtaaatga 780 tgatacatag gacaactgac ctcctctaag aagcccggct ggggcagcag tgagcttttc 840 atggagccac gcagactggc ccggaagcaa cacccaggtt caacatttaa gagcactcgc 900 tataacattc tttttggacg caggtggtgg aaaagtttaa aaaacaggcg gaggagtgac 960 ggggggatac aagcatatcc tatactgggg gtgacggtca ttcaaagagc aaattactgc 1020 agettatate ttttccaeta tgttgcaaga aatgaateta teetgaeeca taatatqaaa 1080 gatgcgacgc acatgcattc ccgaggctct aaaatcccat tttaaagaac cgtttcacat 1140 cctcgtggag tggagagtgg tccacttgac ttggtgaggt cagaagttcc tgaagatccc 1200 tgtcgtcccc gttggcgggg gagcccattg tggagctgtg gggactgcca cactcaccat 1260 gcacctgttg gtttgcaggg acagaggtgc ggccttgact cttctcaccc tgtgtcatcc 1320 gggettgtet ttegtetgte aagteagtee teetgegtga etgatgqgtq caecaeqett 1380 aggtcacccg ttgcagggac cggaagtcca tggctctgcc gcaaccctga gcggtttgca 1440 gtccccccg gggaagaagc agtcagagag gctcacgctc acctacttta aaaacccaaa 1500 gccacttcct cttcacctgc ctgggcctca gcgtctctgc gcttgtggtt tctcgtcccc 1560 gagggctgac tgagctgctc cggaagggtg gtgtgtggtc aaccttggtt ggctgagagg 1620 agcaatttcc tggtttccac aagtaaagac agccccatcc cttgggacct gtcctttccg 1680 tccctgtccc tttggcttct ataggacttc cttgtcttag attcataaac agcaagaga 1740 actgaggatg cttgagggga ccacctagtt accaaagcca agcaaagaat aaagctgccc 1800 gacatcatcc ccaggettcc gtggcgctct cggtcacagg agetttaggc caatggttcc 1860 tcttgactgt ttttgcccca aatgagagga ggggctgctt tgctttaagg cgtggcggcg 1920 ggggggggt ggtggccaca gattagggga cctcaggttt tcctcaaaaa cccacacagg 1980 gaaagaaact tggctctaaa agcaaactca acgaattcca catgccctga agagcacgtg 2040 ataaaataca agggtggtgg cggcgggatc cctcaaagga ccacgagagg cacggggtct 2100 ttggtgatga aagtgctaac ctcggcgggg tgcggtagct cacacctgta atctcagcac 2160 tttgggaggc tgaggcgggc ggatcacctg aggtcaggag tttgagacca gcctgaccaa 2220 cacggtgaaa ccctgtctct actaaaaata caaacattag ccgggcgtgg tggtgcacgc 2280 ctgtaatcac agctatttgg gaggctgagg caggagaatc gctggaaccc aggaggtgga 2340 ggttgtagtg agccgagatc atgccactgc actccagtct gaacaataga gcgagactcc 2400 cgtctcaaaa aaaaaa 2416

```
<210> 398
<211> 1495
<212> DNA
<213> Homo sapiens
```

<400> 398

tggccattta ggaaaaattg tccttgggga tcctctaaaa aatccttttg tgtccaatag 60
caccttaaaa aacctgggcc ccagataatt gttgaacctc agatttagga aggaaaattt 120
ccaagctgtc agctaaaggc agtttccccc atttcacaga atatgtggta gaagttccga 180
gtaaggaatt ttttcagcag ccatgaaagc tccctgcata aggaagactc agtgtgcaac 240

atctgaaagc agtattgcca gagcatgact gtggcaatga agcaaaatgt tccctccacc 300 tatecetece teccatgtat aatgettgaa gggteagtee etgaaataag tagagagaaa 360 agtgtttgct gaaagagcta atacataagt caaccttcac tggtaccaat gaaggcttcc 420 cagttcaaaa ttcaacaccc agaaaaggca gaaattttag ctttaaatta agtttaaatt 480 ttcagttatc ccagtggact aggcatttaa atctgaggag ttccctgaga ttccatatga 540 ggaaatgaaa aacattagct tgtggattaa atttaaagag actgtaagga gaaaaacata 600 ttttatgaca tgcctcttaa ggactcctat tatttcaatg aatttgttac agttataata 660 tgcttgtgat aaaaaggcat tatttattaa gaaatctaaa atgtaataat atttcaatta 720 tatagtttta gagaacettt ettgeecaae aettttetga tageaagttg gaeateettg 780 tttctgaggc tataaaccat ggggtttagt aatggagtga caatcgtgta tgtcaccgtc 840 accagectgt ctttgttgga cacatagttt getgtaggee teaggtagat gaaggaagea 900 cagccataat gaacaataac aacactgagg tgagaggcgc aggtggaaaa cgctttccgt 960 ctgccctcag ctgagggaat cttcaggata gtcctcagaa tgcagaaata agaaacacag 1020 ataaacagaa agggaaccac aagtacaaga actccacaaa tgaatatcac aaatccgtta 1080 acatctgtgt tggtacaagc cagaagaatg actgctgaga tgtcacagaa gtaatgattg 1140 actttgttgg tgctacaaaa agggaggctg aaaactaaat ttactactgt aagagaggcc 1200 aagaagccac caattgcaca ggcagctgcc agttttccac acacctgcca gctcataaga 1260 gtggggtaat gcagagggtg acaaatggca gcatagcgat cataacccat cacacccaat 1320 agcaggcagt tggtaatggc aaaaccaagg aagaagaaca tttgaagagc acaacagttg 1380 aaggagattg tcctggccac agaaagtaga ttgatgagca tcttgggtag aatgacaaag 1440 gtgtagaagt ctcagatgtt gagagaaagc caggaagagg ccattggtgt gtgga 1495

<210> 399 <211> 2752

<212> DNA

<400> 399

<213> Homo sapiens

gcgaccgcca gcggctacac ggtacccgcg tgagaagctc aagtccatga cgtcccggga 60 caactataag gegggeagee gggaggeege gegeegetge egeageegee gtageegeeg 120 cagoogcago egoogotgoo googaacott accotgtgto egggqocaag eqcaaqtato 180 tggaggactc ggaccccgag cgcagcgact atgaggagca gcagctgcag gaggaggagg 240 aggcgcgcaa ggtgaagagc ggcatccgcc agatgcgcct cttcagccag gacgagtgcg 300 ccaagatcga ggcccgcatt gacgaggtgg tgtcccgcgc tgagaagggc ctgtacaacg 360 agcacacggt ggaccgggcc ccactgcgca acaagtactt cttcggcgaa ggctacactt 420 acggcgccca gctgcagaag cgcgggcccg gccaggagcg cctctacccg ccgggcgacg 480 tggacgagat ccccgagtgg gtgcaccagc tggtgatcca aaagctggtg gagcaccgcg 540 tcatccccga gggcttcgtc aacagcgccg tcatcaacga ctaccagccc ggcggctgca 600 toqtgtetca cgtggacccc atccacatet tcgagcgccc catcgtgtcc gtgtecttet 660 ttagcgactc tgcgctgtgc ttcggctgca agttccagtt caagcctatt cgggtgtcgg 720 aaccagtget tteeetgeeg gtgegeaggg gaagegtgae tgtgeteagt ggatatgetg 780 ctgatgaaat cactcactgc atacggcctc aggacatcaa ggagcgccga gcagtcatca 840 tecteaggaa gacaagatta gatgeaceee ggttggaaae aaagteeetg ageageteeg 900 tgttaccacc cagctatgct tcagatcgcc tgtcaggaaa caacagggac cctgctctga 960 aacccaagcg gtcccaccgc aaggcagacc ctgatgctgc ccacaggcca cggatcctgg 1020 agatggacaa ggaagagaac cggcgctcgg tgctgctgcc cacacaccgg cggaggggta 1080 getteagete tgagaactae tggegeaagt catacgagte etcagaggae tgetetgagg 1140 cagcaggcag ccctgcccga aaggtgaaga tgcggcggca ctgagtctac ccgccgccct 1200 cctgggaact ctggctcatc cttacgtagt tgcccctcct tttgttttga gggttttgtt 1260 tttgttcatt ggggggtttt tgttttttgg tttttgtttt ttttgattct atatattttt 1320 ccttggtttt gttgcctgtt aaggctgaac aatagaattg gccaggacct aggttctcat 1380 attettggta tteeteetgg atggaaagge tgttggeate aataggggae agaggetgat 1440 gctggagtgg ccagtagagg tggtggagca gagcacccat cttttaagtg gggctgtatc 1500 aggctgggtt tatttaaaag caacaaaatg ttttggttaa gaaaattatt ttgctttcag 1560

1620

1680

tgtaaatett egeagtgtte taaacaaagt teagtettet gettgeeeet tteeeteact

gatgtctgca cttggttgag gtctcctgga gcctcacagg ctctgctgtt ctccacttct