Dispositivo di gestione di un parcheggio

Elaborato SIS - Relazione

Ghellere Nicolò, Milli Manuel, Sacchetto Riccardo

15 febbraio 2023

Indice

Architettura del dispositivo	3
La FSM	3
Il DataPath	6
Gestione dei registri	7

Architettura del dispositivo

Lo scopo del dispositivo descritto in questa relazione e realizzato sotto forma di circuito digitale in formato BLIF per SIS è quello di gestire un parcheggio con ingresso e uscita automatizzati, ricevendo in input l'azione dell'utente (ingresso o uscita) e il settore d'interesse (A, B o C) e aprendo la sbarra d'ingresso o uscita a patto che il settore selezionato non sia, rispettivamente, pieno o vuoto.

L'input è costituito da cinque bit: due per l'azione (ingresso=01, uscita=10) e tre per il settore (A=100, B=010, C=001); l'output è invece costituito da sei bit: uno che rappresenta la scelta di un settore non valido, due che comunicano quando aprire la sbarra d'ingresso (10) o quella d'uscita (01) e tre che segnalano i settori pieni (il primo per A, il secondo per B e il terzo per C).

I due componenti logici del dispositivo sono la FSM con i cinque stati che rappresentano le fasi del ciclo di funzionamento e il datapath che si occupa di memorizzare, aggiornare e analizzare la quantità di veicoli nei vari settori, tenendo conto che in A e B ci possono essere fino a un massimo di 31 veicoli e in C un massimo di 24.

La FSM

La FSM che funge da controller per il circuito di controllo del parcheggio presenta cinque stati diversi:

- OFF: Rappresenta lo stato d'inattività del dispositivo. Finchè si trova in questo stato il circuito attenderà la sequanza di avvio 11111 ignorando ogni altro input e ponendo a 0 ogni bit di output
- **READA**: Primo stato di avvio. L'input ricevuto in questo stato verrà interpretato come il numero di veicoli posizionatisi nel settore A durante l'inattività del sistema di controllo
- **READB**: Secondo stato di avvio. L'input ricevuto in questo stato verrà interpretato come il numero di veicoli posizionatisi nel settore B durante l'inattività del

sistema di controllo

- **READC**: Terzo stato di avvio. L'input ricevuto in questo stato verrà interpretato come il numero di veicoli posizionatisi nel settore C durante l'inattività del sistema di controllo
- RDY: Normale stato di funzionamento. Finchè si trova in questo stato il dispositivo risponderà alle richieste d'ingresso o uscita degli utenti, alzando e abbassando le sbarre e comunicando i settori pieni. Il sistema tornerà nello stato OFF quando riceverà la squenza 00000

Internamente, al fine di comunicare con il datapath e di controllarne il funzionamento la FSM utilizzerà i seguenti segnali:

- WA: Segnala al datapath quando interpretare l'input come numero di posti occupati in A durante la notte. Posto a 1 solo in READA
- WB: Segnala al datapath quando interpretare l'input come numero di posti occupati in B durante la notte. Posto a 1 solo in READB
- WC: Segnala al datapath quando interpretare l'input come numero di posti occupati in C durante la notte. Posto a 1 solo in READC
- OPENPARKS: Segnala quando il dispositivo è pronto a ricevere le query degli utenti aprendo le sbarre in risposta a esse. Posto a 1 da RDY
- SHOWFULLA: Segnala al datapath quando mostrare se il settore A è pieno. Posto a 1 da tutti gli stati consecutivi a READA
- SHOWFULLB: Segnala al datapath quando mostrare se il settore B è pieno. Posto a 1 da tutti gli stati consecutivi a READB
- SHOWFULLC: Segnala al datapath quando mostrare se il settore C è pieno. Posto a 1 da tutti gli stati consecutivi a READC
- INVSEC: Mappato al primo bit dell'output generale, segnala quando l'utente ha immesso un settore non valido. Può essere posto a 1 da RDY

Per meglio comprendere il funzionamento del controller segue il digramma degli stati della FSM che lo costituisce. I bit di input sono elencati come da specifica mentre quelli di output sono nell'ordine descritto dall'elenco appena riportato:

II DataPath

Come è possibile notare osservando il diagramma riportato, il datapath è composto da due parti principali: la logica di caricamento e di gestione dei registri e la logica di

aggiornamento del conteggio d'interesse per la richiesta effettuata dall'utente.

Le due parti sono separate dal one-hot multiplexer a tre ingressi collocato al centro del diagramma, il quale riceve in input tutti e tre i conteggi salvati al ciclo precedente e trasmette alla logica di calcolo solo quello che corrisponde al parcheggio d'interesse dell'utente.

Gestione dei registri

Nel datapath d'inserimento dei dati, l'operatore ha il compito di introdurre il numero di veicoli presenti nel parcheggio. Ad ogni ciclo di clock, i registri che memorizzano il numero dei veicoli per ogni settore vengono revisionati e modificati in base alle istruzioni fornite. Queste istruzioni possono prevedere un aumento, un decremento o la manutenzione del numero corrente di veicoli in un determinato settore.

Il datapath di calcolo del nuovo numero di parcheggi occupati dopo un ingresso o un'uscita è una componente fondamentale del sistema di gestione del parcheggio. In primo luogo, si considera il numero di automobili presenti in un parcheggio perché, se il parcheggio è pieno, il numero non può aumentare e quindi il risultato rimarrà uguale nel registro. Se invece si verifica una diminuzione del numero, questo si ridurrà di un'unità e il registro del contatore relativo a quel settore sarà aggiornato con il nuovo numero. D'altra parte, se il parcheggio è vuoto, il numero può solo aumentare e non diminuire. In tutti gli altri casi, il numero può essere modificato. Infine, se tutte le informazioni inserite sono corrette, l'output cambierà. Al contrario, se ad esempio il settore è errato, viene segnalato un errore tramite un bit di controllo. In questo modo, il datapath di calcolo garantisce la corretta gestione delle informazioni e l'aggiornamento costante del numero di parcheggi occupati.