

FAST School of Computing

CS2001 – Data Structures FALL 2021

Instructor Name: Abeeda Akram TA Name: Muhammad Zubair Khan

abeeda.akram@lhr.nu.edu.pk

Office Location: Old-Admin Block Exam Hall

Office Hours: Monday- Wednesday 12:00 to 02:00 PM

Course Information

Program: BS (CS) Credit Hours: 3+ 1 for Lab Type: Core

Pre-requisites: Object Oriented Programming

Class Meeting Time: BCS-3A Tue- Thu 10:00 – 11:30 AM **BCS-3B** Tue- Thu 11:30 – 1:00 PM

Class Venue: CS-10

Course Description/Objectives/Goals:

Introduce students with data structures and their associated algorithms.

• Introduce the concept of efficient data structures and how this efficiency can be measured.

Prepare students to select appropriate data structure for a given computational problem.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:	Domain	BT* Level
Understand data structures and their use.	С	2
Select efficient and appropriate data structures for different applications.	С	3

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

Bloom's taxonomy Levels: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis, 6. Evaluation

Course Textbooks:

- Mark Allen Weiss, Data structures and algorithm analysis, Pearson Education, 2007.
- Adam Drozdek, Data structures and algorithms in C++, Course technology, 2004.
- Nell Dale, C++ Plus Data Structures, 3rd Edition, Jones and Bartlett, 2003.
- Michael T. Goodrich, Roberto Tamassia and David M. Mount, Data structures and algorithms, 2nd Edition, John Wiley & Sons, 2011.

Tentative Weekly Schedule

Lecture	Topics			
Count				
1	Introduction			
3	Time Complexity Analysis and Asymptotic Bounds			
4	Review of Pointers and class Templates			
	Linked Lists:			
	Singly linked lists, doubly linked lists, circular lists and			
	corresponding iterators.			
	Skip List (optional)			
2	Stacks (Expression Evaluation), Queues			
Mid 1				
2	Recursion with Time complexity Analysis			
3	Trees:			
	Binary trees and their traversals			
	Binary search trees (Insertion, Deletion and Search)			
3	Height Balanced Binary Search Trees (AVL Trees)			
2	Priority Queues Or Heaps and heap sort			
Mid 2				
1	Data compression and Huffman coding			
4	Hashing:			
	Hash tables and hash functions			
	Collision resolution methods			
	Universal hashing			
	Bit vectors and bloom filters			
3	Graph:			
	Breadth first search and Depth first search			
	Finding Paths, Cycles			

(Tentative) Grading Criteria:

1.	Assignments	(15 %)
2.	Quizzes	(10 %)
3.	Midterms	(30 %)
4	Final Fxam	(45 %)

Grading scheme for this course is **Absolute** under application of CS department's grading policies.

Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- o Quizzes may be announced or surprise.
- o All assignments and course work must be done individually.
- Plagiarism in any work (Labs, Quiz, Assignment, Midterms, and Final Exam) from any source, Internet or a Student will result in F grade or deduction of absolute marks.
- No Late Submissions or Makeup Quizzes.
- o 80% attendance is required for appearing in the Final exams.