

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

HARVARD COLLEGE

SCIENCE CENTER LIBRARY

-					
	•				
		•			
					•
			-		
					-
			,		
		•		-	
	•				
		•		•	
		•			
					•
		,		•	
		,			

. . .

Smithsonian Miscellaneous Collections Vil. Aray . mois

ŞMITHSONIAN

PHYSICAL TABLES

PREPARED BY
THOMAS GRAY

FOURTH REVISED EDITION

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION
1908

Phys 442.3. 14

PRESS WORK BY JUDD & DETWEILER, INC., WASHINGTON, D. C.

ADVERTISEMENT TO REVISED EDITION.

THE edition of the Smithsonian Physical Tables issued in 1896 having become exhausted, a careful reëxamination of the original work has been made at my request by the author, Professor Gray, and the few changes found necessary have been made in the plates.

S. P. LANGLEY,

Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY, October 30, 1897.

ADVERTISEMENT TO SECOND REVISED EDITION.

THE revised edition of the Smithsonian Physical Tables issued in 1897 having become exhausted, and the demand continuing, a second revised edition is now issued. The author, Professor Gray, has again examined the work and made a few corrections in the plates, table 283 in particular being rewritten to agree with the recent report of the International Committee on Atomic Weights.

S. P. LANCLEY,

Secretary.

SMITHSONIAN INSTITUTION, WASHINGTON CITY, January, 1903.

ADVERTISEMENT TO THIRD REVISED EDITION.

The second revised edition of the Smithsonian Physical Tables issued in January, 1903, having become exhausted, and the demand for the work continuing, a third revised edition is now published, in which the author has made a few corrections to agree with the latest researches.

S. P. LANGLEY,

Secretary.

SMITHSONIAN INSTITUTION,
WASHINGTON CITY April 2004.

ADVERTISEMENT TO FOURTH REVISED EDITION.

The third revised edition of the Smithsonian Physical Tables issued in 1901 having become exhausted, a fourth revised edition is now published, in which the author, Professor Gray, has made a few corrections, particularly in the tables of equivalents of metric and British Imperial weights and measures, which are here brought up to date. The other changes from the third edition are in Table 36, page 27, 2.3349 × 10⁻² for 2.3349; Table 100, page 89, coal gas, 0.320 for 0.340, 0.740 for 0.450, 0.000414 for 0.000421, 0.000957 for 0.000558, 0.02583 for 0.02628, and 0.05973 for 0.03483; Table 102, page 92, Temperature 20°, 2126 for 4126; Table 104, page 94, Temperature 46° to 95°, 1.01014, etc., for 1.00014, etc., and 100°, 1.02312 for 1.00312; footnote to Table 133, page 120, t', and a(t'-t) the correction for temperature, for t' and at the correction for temperature; Table 174, page 162, .0118421 for .0184210; Table 175, page 162, .16058 for .16858; Table 227, page 220, 414 × 10⁵ ergs per gramme degree for 414.0 ergs per gramme degree; Table 268, page 258, Less than $\frac{1}{100}$ for Less than $\frac{1}{100}$.

CHAS. D. WALCOTT.

Secretary.

SMITHSONIAN INSTITUTION,
WASHINGTON CITY, June, 1908.

ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and was published in 1852. A second edition was issued in 1857, and a third edition, with further amendments, in 1859. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that, after twenty-five years of valuable service, the work was again revised and a fourth edition was published in 1884. In a few years the demand for the tables exhausted the edition, and it appeared to me desirable to recast the work entirely, rather than to undertake its revision again. After careful consideration I decided to publish a new work in three parts - Meteorological Tables, Geographical Tables, and Physical Tables - each representative of the latest knowledge in its field, and independent of the others, but the three forming a homogeneous series. Although thus historically related to Dr. Guyot's Tables, the present work is so entirely changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

The first volume of the new series of Smithsonian Tables (the Meteorological Tables) appeared in 1893, and so great has been the demand for it that a second edition has already become necessary. The second volume of the series (the Geographical Tables), prepared by Prof. R. S. Woodward, was published in 1894. The present volume (the Physical Tables), forming the third of the series, has been prepared by Prof. Thomas Gray, of the Rose Polytechnic Institute, Terre Haute, Indiana, who has given to the work the results of a wide experience.

S. P. LANGLEY, Secretary.

• . · •

PREFACE.

In the space assigned to this book it was impossible to include, even approximately, all the physical data available. The object has been to make the tables easy of reference and to contain the data most frequently required. In the subjects included it has been necessary in many cases to make brief selections from a large number of more or less discordant results obtained by different experimenters. I have endeavored, as far as possible, to compile the tables from papers which are vouched for by well-known authorities, or which, from the method of experiment and the apparent care taken in the investigation, seem likely to give reliable results.

Such matter as is commonly found in books of mathematical tables has not been included, as it seemed better to utilize the space for physical data. Some tables of a mathematical character which are useful to the physicist, and which are less easily found, have been given. Many of these have been calculated for this book, and where they have not been so calculated their source is given.

The authorities from which the physical data have been derived are quoted on the same page with the table, and this is the case also with regard to explanations of the meaning or use of the tabular numbers. In many cases the actual numbers given in the tables are not to be found in the memoirs quoted. In such cases the tabular numbers have been obtained by interpolation or calculation from the published results. The reason for this is the desirability of uniform change of argument in the tables, in order to save space and to facilitate comparison of results. Where it seemed desirable the tables contain values both in metric and in British units, but as a rule the centimetre, gramme, and second have been used as fundamental units. In the comparison of British and metric units, and quantities expressed in them, the metre has been taken as equal to 39.37 inches, which is the legal ratio in the United States. It is hardly possible that a series

iv Preface.

of tables, such as those here given, involving so much transcribing, interpolation, and calculation, can be free from errors, but it is hoped that these are not so numerous as to seriously detract from the use of the book.

I wish to acknowledge much active assistance and many valuable suggestions during the preparation of the book from Professors S. P. Langley, Carl Barus, F. W. Clarke, C. L. Mees, W. A. Noyes, and Mr. R. E. Huthsteiner. I am also under obligations to Professors Landolt and Börnstein, who kindly placed an early copy of their "Physikalisch-Chemische Tabellen" at my disposal.

THOMAS GRAY.

Rose Polytechnic Institute,
Terre Haute, Ind., July 13, 1896.

TABLE OF CONTENTS.

																				PAGE
				its of m																xv
				ent, ge													•		•	XV
I		ion fo		e for dy														•		xvii
	"		46		at un													•	. X	xiii
	"			ric and														•		XXV
	"	fo	rmula	e in ele																xvi
	44		46	" ele																xix
P	ractica	ıl unit	ts of e	lectricit	y, leg	aliza	tion	of			• . •	•	•	•	•	•	•	•	X	xiii
A BL	E																			
ı.	Form	ulæ fo	or con	version	facto	rs:														
	(a)	Fund	lamen	ıtal unit	s .						•				•	•		•		2
	(b)	Deri	ved u	nits .							•	•			•	•	•			2
		I.	Geom	etric ar	nd dy	namio	uni	ts			•	•				•	•			2
			Heat																	3
		III.	Magn	etic an	d elec	etric 1	ınits					,		•						3
2.				etric ar																
	(1)	Metr	ic to i	imperia	l		•				•	•				•	•		•	5
				metric																6
	(3)	Impe	erial to	o metric			•	•												7
				imperia												•	•			8
3⋅				rting U																
	(1)	Cust	omary	to met	ric .			•			•	•								9
				customa																10
4.	Facto	rs for	the c	onversi:																11
5.	"	"	"	66		areas														II
6.	46	"	"	"		volu											•	•	•	I 2
7.	"	"	"	"		capa													•	12
8.	44	"	"	46	"	mass	ses				•		•			•	•			13
9.	46	**	"	66		mom											-	-		13
Ю.	66	"	"	"		angle														14
II.	"	"	"	66		time														14
2.	"	"	"	66		linea											•			15
13.	66	"	44	44		angu														15
4.	66	66	66	46		mom														16
5.	46	"	"	44	66	mon	ents	of	mo	me	ntu	m				•		•		16

16.	Factors	for	the	conversion	of	forces	17
17.	"	"	"	46	"	linear accelerations	17
18.	"	"	66	66	"	angular accelerations	18
19.	"	"	"	"	"	linear and angular accelerations	18
20.	"	"	44	44		stress or force per unit of area, gravitation	
						units	19
21.	"	"	66	•4	"	power, rate of working, or activity, gravi-	
						anding waite	19
22.	"	"	"	44	"	• • • • • • • • • • • • • • • • • • • •	20
23.	"	66	66	"		C1	20
24.	"	"	"	44	"	power, rate of working or activity, absolute	
						units	2 I
25.	66	"	"	60	66		2 I
2 6.	"	"	"	44	"	stress or force per unit of area, absolute	
						units	22
27.	"	"	64	66	"	film or surface tension, absolute units	22
28.	"	"	"	66	"	• • • •	23
29.	"	"	66	66	"	specific electrical resistance	23
30.	44	"	46	66	"	electrolytic deposition	24
31.	66	"	"	"	"	heat units	24
32.	66	44	"	66	66	thermometer scales	25
33.	66	"	"	"	66	electric displacement and other quantities	
						of dimensions M ¹ L ⁻¹	25
34.	"	"	"	46	"	surface density of magnetization and other	
						quantities of dimensions $M^{\frac{1}{2}}L^{-\frac{1}{2}}$	26
35.	46	"	"	"	"	intensity of magnetization and other quan-	
						tities of dimensions $M^{\frac{1}{2}}L^{\frac{1}{2}}$	26
36 .	"	"	46	-16	"	electric potential and other quantities of	
						dimensions M ¹ L ¹	27
37 ·	66	"	"	66	66	magnetic moment and other quantities of	
						dimensions $M^{\frac{1}{2}}$ $L^{\frac{1}{2}}$	27
28.	Values	of É	*e	⊸ (hyperbo	lic	sines) for values of x from 0 to 5	28
			_				
30.	"	" <u>e</u>	*+e	(hyperbo	lic	cosines) for " " "	29
40.	Logarit	hms	of	e_e_ "		" " "	30
-				4			
4 1.	46		of :	e ^x +e ^{-x} "			31
42.							32
43.					"		3 3
43.							3 3
44.			_	uu e	"		34
45.	44	" e	$\frac{\sqrt{x}}{4}x$	and e	66	"	34
46 .				d e⁻*	"		35
47.				errors of ob	ser	_	35
48.	"	-7	66	"		16	36

	TABLE OF CONTENTS.	vii
49.	Values of 0.6745 $\sqrt{\frac{1}{n-1}}$	36
50.	" " $0.6745\sqrt{\frac{1}{n(n-1)}}$	37
51.	" " $0.8453\sqrt{\frac{1}{n(n-1)}}$	37
52 .	" " $0.8453 \frac{1}{n\sqrt{n-1}} \dots $	37
53.	" the logarithm of the gamma function $\Gamma(n)$ for values of n	
	between 1 and 2	38
54	the first seven zonal narmonics from v=0 to v=90	40
55 ·	" $\log M/4\pi\sqrt{aa^i}$ for facilitating the calculation of the mutual inductance between two coaxial circles	42
5 6 .	" " $\int_0^{\pi} (1-\sin^2\theta \sin^2\phi)^{\pm i} d\phi$ for different values of θ with the loga-	
	rithms of these integrals	43
57.	Cross section and weight of copper, iron, and brass wire of different	
	diameters, British units	44
5 8 .	Cross section and weight of copper, iron, and brass wire of different	
	diameters, metric units	46
59.	Cross section and weight in various units of aluminium wires of differ-	
e -	ent diameters	48
00 .	Cross section and weight in various units of platinum wires of different	50
61	diameters	50
V 1.	diameters	52
62.	Cross section and weight in various units of silver wires of different	3-
	diameters	54
63.	Weight, in grammes per square metre, of sheet metal	56
64.	" " various British units, of sheet metal	57
65.	Size, weight, and electrical constants of copper wire according to Brown	
	and Sharp's gauge and British measure	58
	Same data as 65, but in metric measure	60
67.	" " " but British standard wire gauge	
68.	" " 67, but in metric measure	64
69 .	" " 65, but Birmingham wire gauge	66
70.	og, but in inetric inexistre	68
71.	Strength of materials:	
	(a) Metals and alloys	70
	(b) Stones and bricks	70
70	(c) Timber	70
	Effect of the reduction of section produced by rolling on the strength of	71
13.	bar iron	72
74	Effect of diameter on the strength of bar iron	72 70
14.	LANCOT OF CHAINCES OF CHECKER OF DAT HOLL	72

75∙	Strength of copper-tin alloys (bronzes)	73
76.	" copper-zinc alloys (brasses)	73
77.	" " copper-zinc-tin alloys	73
78 .	Moduli of rigidity	74
79.	Young's modulus of elasticity	75
8o.	Effect of temperature on rigidity	76
81.	Values of Poisson's ratio	76
82.	Elastic moduli of crystals, formulæ	77
83.	" " " numerical results	78
84.	Compressibility of nitrogen at different pressures and temperatures .	79
85.	" "hydrogen " " " " " .	79
86.	" "methane " " " " " .	79
87.	" " ethylene " " " " " .	79
88.	" "carbon dioxide" " " value of pv	80
8 9.	" " " " " values of	
_	the ratio pv/p_1v_1	80
90.	" air, oxygen, and carbon monoxide at different pres-	
•	sures and ordinary temperature	80
gı.	" sulphur dioxide at different pressures and tempera-	
•	tures	81
92.	" ammonia at different pressures and temperatures .	81
93.	" and bulk moduli of liquids	82
94.	" " " solids	83
95.	Density of various solids	84
96.	" " alloys	85
97.	" " metals	86
98.	" " woods	87
99.	" " liquids	88
99. 100.	" " gases	89
101.	" " aqueous solutions of salts	90
102.	" " water between o° and 32° C	92
103.	Volume of water at different temperatures in terms of its volume at	9"
.03.	temperature of maximum density	93
104.		93
	4° C	94
105.	" " mercury at different temperatures	95
106.		96
107.	Density of aqueous methyl alcohol	97
	Variation of density of alcohol with temperature	98
	Velocity of sound in air, principal determinations of	99
110.		100
111.		101
112.		101
[13. [14.	Value of gravity at stations occupied by U. S. C. & G. Survey in 1894.	103
L14. L15.		104
•	•	105
· IU.	TRUE CONTRACTORS OF THE TENERAL OF THE MELONIUM DEBUUMUM	

TABLE OF CONTENTS.

Data for wind pressure and values of Fin $P_a = F_a P_{90}$ 108 Data for the soaring of planes	117.	Miscellane	ous data	as to the earth and planets
Data for the soaring of planes	1 18.			
magnetism, total intensity	1 IQ.	• •		
" dip	I 20.	Terrestrial		
" secular variation of dip	121.	46	"	secular variation of total intensity
" horizontal intensity	122.	66	"	dip
" secular variation of horizontal intensity	123.	44	46	secular variation of dip
formulæ for value and secular variation of declination	124.	"	46	horizontal intensity
lination	125.	"	"	secular variation of horizontal intensity 11
" secular variation of declination (eastern stations) 114 " " " " (central stations) 115 " " " " (western stations) 116 " position of agonic line in 1800, 1850, 1875,	126.	66	"	
" " " " (central stations) 115 " " " " " (western stations) 116 " position of agonic line in 1800, 1850, 1875,	127.	46	"	
" " " " (western stations) 116 " position of agonic line in 1800, 1850, 1875, and 1890	128.	44	44	
" position of agonic line in 1800, 1850, 1875, and 1890	129.	"	64	•
and 1890	130.	"	66	
date of maximum east declination at various stations	-30.			-
stations	131.	"	44	
computing pressure of mercury and of water, British and asures	-3			
of barometric height to standard temperature	122	Tables for	compu	
of barometric height to standard temperature	- 3	metric n	_	
of barometer to standard gravity, British and metric mea	122.			
of barometer to latitude 45°, British scale				
of barometer to latitude 45°, British scale	-34.			
" " " metric scale	T25.			
of barometer for capillarity, metric and British measures . 124 of gases by liquids	13 6 .	"		
of gases by liquids		Correction	of baro	
sures				
and surface tension, water and alcohol in air 128	_	-	_	· ·
	•	"		
•	-	"	46 4	•
	•	44	"	
	-10;			<u>-</u>
" " liquids in contact with air, water, or	144.	66	"	
" " liquids in contact with air, water, or mercury	145.	66	"	
" " liquids in contact with air, water, or mercury		Colors of	thin plate	•
 " liquids in contact with air, water, or mercury	147.		-	•
" " liquids in contact with air, water, or mercury	148.	"	• "	
" " liquids in contact with air, water, or mercury		Coefficient	s of frict	_
" " liquids in contact with air, water, or mercury				
" " liquids in contact with air, water, or mercury	-			
" " liquids in contact with air, water, or mercury				•
" " liquids in contact with air, water, or mercury	153.	"	-	
" " liquids in contact with air, water, or mercury	154.	66	66 6	
" " liquids in contact with air, water, or mercury	155.	"	66 66	
" " liquids in contact with air, water, or mercury	15 6 .	44	66 66	
" " liquids in contact with air, water, or mercury	157.	"	"	•
•	139. 140. 141. 142.	Vapor pres Capillarity "	ssures . and sur	face tension, water and alcohol in air
	143.	44	"	" liquids in contact with air, water, or
	10.			<u>-</u>
" " liquids in contact with air, water, or	144.	66	"	
" " liquids in contact with air, water, or mercury		66	"	
" " liquids in contact with air, water, or mercury		Colors of	thin plate	•
 " liquids in contact with air, water, or mercury	-		-	•
" " liquids in contact with air, water, or mercury		44		
" " liquids in contact with air, water, or mercury		Coefficient	e of frict	_
" " liquids in contact with air, water, or mercury	149.	Coefficient	s of frict	:ion
" " liquids in contact with air, water, or mercury				
" " liquids in contact with air, water, or mercury	150.	Specific vi	scosity o	f water at different temperatures
" " liquids in contact with air, water, or mercury	-			
" " liquids in contact with air, water, or mercury	151.	Coefficient	s of visc	
" " liquids in contact with air, water, or mercury				•
" " liquids in contact with air, water, or mercury				•
" " liquids in contact with air, water, or mercury	-	-	-	
" " liquids in contact with air, water, or mercury		66	66 6	
" " liquids in contact with air, water, or mercury	-	44	66 66	
" " liquids in contact with air, water, or mercury		44	"	
" " liquids in contact with air, water, or mercury	-	44		
" " liquids in contact with air, water, or mercury	-3/-			## ## ## ## ## ## ## ## ## ## ## ## ##

158.	Specific viscosity of gases and vapors			145
159.	" " formulæ for temperature variation			146
160.				147
161.	" "vapors			148
162.	" " gases and vapors			140
163.	Isotonic coefficients and lowering of the freezing-point			150
164.	Osmotic pressure			150
165.				151
166.	" " " (Regnault and Broch)			154
167.				155
168.	" " grammes of " " " metre of " "			155
169.	Pressure of aqueous vapor at low temperatures			156
170.	Hygrometry, vapor pressure in the atmosphere			157
171.	" dew-points			158
172.	Values of 0.378e in atmospheric pressure equation h=B-0.378e			160
173.	Relative humidity			160
174.	Table for facilitating the calculation of $h/760$			162
175.	• • • • • • • • • • • • • • • • • • • •			162
176.	_ · · · · · · · · · · · · · · · · · · ·			
-	(a) For values of t between o° and 10° C. by tenths			164
	(b) " " t " —90° and +1990° C. by tens			165
	(c) Logarithms for t " -49° and $+399^{\circ}$ C. by units			166
	(d) " " t "			
177.	Determination of heights by barometer	•	•	169
177. 178.	<u> </u>			169
				169
	Barometric pressures corresponding to different temperatures of		e	169
	Barometric pressures corresponding to different temperatures of boiling-point of water:	th	e	
	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th		170 171
178.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th		170 171 172 175
178.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175
178. 179. 180.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175
178. 179. 180. 181.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175
178. 179. 180. 181.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176
178. 179. 180. 181. 182.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 176
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 176
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 176 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 176 177
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 176 177 177 178 178 178
178. 179. 180. 181. 182. 183.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178 179 179 179
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178 178 179 179
178. 179. 180. 181. 182. 183. 184.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178 179 179 179 180
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178 179 179 179 180
178. 179. 180. 181. 182. 183. 184. 185.	Barometric pressures corresponding to different temperatures of boiling-point of water: (a) British measure	th	· · · · · · · · · · · · · · · · · · ·	170 171 172 175 176 177 177 178 178 179 179 179 180

	TABLE OF CONTENTS.	xi
188.	Index of refraction of rock salt, various authorities	182
189.	" " " sylvine	182
190.	" " " " fluor-spar	183
191.	" " " various monorefringents	184
192.	" " " Iceland spar	185
193.		186
194.		187
195.		187
196.	" " " solutions of salts and acids:	•
•	(a) Solutions in water	188
	(b) Solutions in alcohol	188
	· ·	188
197.	• • •	189
198.		190
199.	Rotation of plane of polarized light by solutions	
200.	" " " " " sodium chlorate and by quartz.	
201.		192
202.	Vapor-pressures of solutions of salts in water	194
203.	Raising of boiling-points by salts in solution	196
204.	P771 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	197
205.	· · · · · · · · · · · · · · · · · · ·	r98
206.		198
207.		198
208.	and the state of t	198
209.	Property of the second	199
210.	Catalan Annual Control of the Contro	200
211.	Track of sometiments	201
212.	44 44 1 1	202
213.	Toward hard of some to at	204
214.		206
215.	Malaban a data of all and all all and all all and all all and all all and all all all and all all all all and all all all all all all all all all al	207
	Dalling materials of the transfer of the trans	207
217.		208
	The state of the s	210
219.	36.14	211
220.	Densities, melting-points, and boiling-points of some organic com-	
	pounds:	
	(a) Paraffin series	212
	(1) (1) (1)	212
	(A Annual area a 1	212
	(-) Manager 1 1 1 1 1	213
	ZA A1- 1 11	213
	(A Ed. 1 a)	213
221.		214
222.	" " " miscellaneous substances	215
223.	" cubical expansion of crystalline and other solids	
224	46 46 46 46 46 11m.ida	

TABLE OF CONTENTS.

225.	Coefficients of cubical expansion of gases
226 .	Dynamical equivalent of the thermal unit
227.	" " " " historical table 220
22 8 .	Specific heat of water, descriptive introduction
228.	Specific heat of water
229.	Ratio of specific heats of air, various determinations
230.	Specific heats of gases and vapors
231.	Vapor pressure of ethyl alcohol
232.	" " methyl "
233.	Vapor pressures and temperatures of various liquids:
	(a) Carbon disulphide
	(b) Chlorobenzene
	(c) Bromobenzene
	(d) Aniline
	(e) Methyl salicylate
	(f) Bromonaphthaline
	(g) Mercury
234.	Thermometers, comparisons of mercury in glass and air thermometers 228
235.	" comparison of various kinds with hydrogen thermometer 229
23 6.	" " " " air thermometer 229
237.	" change of zero due to heating (Jena glass)230
238.	" " " " " (various kinds of glass). 230
239.	" " " " effect of composition of
	glass 231
240.	" slow change of zero with time
241.	" correction for mercury in stem
242.	• •
	sures
243.	Emissivity of polished and blackened surfaces in air at different pres-
	sures
	Constants of emissivity from various substances to vacuum 235
245.	Effect of absolute temperature of surface on the emissivity, constants
_	of bright and blackened platinum wire
246.	Radiation of bright platinum wire to copper envelope across air of dif-
	ferent pressures
	Effect of pressure on radiation at different temperatures 236
	Properties and constants of saturated steam, metric measure 237
249.	Ditish measure 230
250.	Ratio of the electrostatic to the electromagnetic unit of electricity, dif-
	ferent determinations of
251.	Dielectric strength:
	(a) Medium air and terminals flat plates
	Dans of different diameter 244
	(i) Dan's comparison of the results of the
0=0	ferent observers
	Dielectric strength of gases, effect of pressure on
253.	

	TABLE OF CONTENTS.	xiii
254.	Data as to electric battery cells:	
	(a) Double fluid batteries	246
	(1) (2) 1 (1) 1 (1)	247
	4	247
		247
255.		248
256.		
257.	Thermoelectric neutral point of various metals relative to lead	
258.		
259.		
260.		250
261.		
262.	Conductivity of three-metal and miscellaneous alloys	251
263.		252
264.	Specific resistance of metallic wires, various dimension units	254
265.		255
266.		
267.	Effect of elastic and permanent elongation on resistance of metallic	
	wires	258
268.	Resistance of wires of different diameter to alternating currents	258
	Conductivity of dilute solutions proportional to amount of dissolved salt	259
270.	Electrochemical equivalent numbers and densities of approximately nor-	
	mal solutions	259
271.	Specific molecular conductivities of solutions	260
272.	Limiting values of specific molecular conductivities	26 I
273.	Temperature coefficients of dilute solutions	261
274.	Various determinations of the ohm, the electrochemical equivalent of	
	silver and the electromotive force of the Clark cell	262
	Specific inductive capacity of gases	263
276.		264
277.		265
278.	Contact difference of potential, solids with liquids and liquids with	
	liquids in air	266
279.	Contact difference of potential, solids with solids in air	268
280.	Potential difference between metals in various solutions	269
281.	Resistance of glass and porcelain at different temperatures	270
282.	Relation between thermal and electrical conductivities:	
		27 T
		27 I
		27 I
_	(d) Kohlrausch's results	27 I
283.	Electrochemical equivalents and atomic weights of the chemical ele-	
_		272
		274
285.	Permeability of transformer iron:	
		274
	(b) " " " 6 "	275

TABLE OF CONTENTS.

	(c) Spec					No. 4 tran			•		•			275
	(d)	"	Tho	omso	n-Hou	iston 1500-	watt t	ransf	orme	r.				275
28 6.	Composition	on and m	agne	etic p	roper	ties of iron	and s	teel						276
287.	Permeabili	ty of sor	ne sj	pecin	nens i	n Table 28	6.							278
	Magnetic	propertie												278
289.	"	66,	66	steel	at o°	and 100°	C							278
2 90.	"	"	46	coba	lt at 1	100° C								279
29 I.	"	u	66	nick	el at 1	100° C								279
292.	"	44	"	mag	netite									279
29 3.	44	44	"	Low	moor	wrought ir	on in i	inten	se fie	lds				279
294.	"	44				ool st ee l in								279
295.	"	"	"	Had	field's	manganes	se stee	l in i	ntens	e fie	elds			279
2 96.	Saturation	values f	or di	iffere	nt ste	els						٠.		279
297.	Magnetic 1													280
2 98.	Dissipation	n of ener	gy in	the	cyclic	magnetiza	tion of	mag	netic	sub	sta	nce	es	280
299.	• •	"	"	"	"	44	44	cabl	e tra	nsfo	rme	ers		280
300.	44	66 46	66	"	"	46	44	vari	ous s	ubst	tano	es		281
301.	"		66	"	"	66	"	tran	sforn	ner (core	es		282
302.	"	" "	44	"	"	"	44	vari	ous s	peci		ns (of	
302.	66	" "	"	"	"	46	46		ous s _i ft iro		mei	ns c		283
302.	" Magneto-o		-					80	ft iro	n	mei •			283 284
302. 303.			tion,	Ver	rdet's olids .	constant		 	ft iro	n	mei • •		•	_
	Magneto-o	ptic rota	tion,	Ver	rdet's olids . iquids	constant		 	ft iro	• • •	mei		•	284
303.	Magneto-o	ptic rota	tion,	Ver	rdet's olids . iquids	constant	 	so 	ft iro	on	mei • • •		•	284 285
303. 304.	Magneto-o	ptic rota "	tion,	Ver	rdet's olids . iquids	constant	and s	so alts i	ft iro	on ter	mei			284 285 286
303. 304. 305.	Magneto-o	ptic rota	tion,	Ver in s "]; " s	rdet's olids . iquids olutio "	constant	and s	so alts i	ft iro	on ter	mei	•	•	284 285 286 288
303. 304. 305. 306.	Magneto-o " " " " " "	ptic rota	tion,	Ver in s "!" " s	rdet's solids. iquids solutio " "	constant	and s in alcohoric :	so alts i ohol acid	ft iro	ter	mei	•	•	284 285 286 288 290
303. 304. 305. 306. 307.	Magneto-o " " " " "	ptic rota	tion,	, Ver in s " l; " s " " g f Ver	rdet's folids. iquids folution " " rases rdet's	constant ns of acids " salts in hydrocl and Kund	and s in alco	so alts i ohol acid stant	ft iro	on	mei	•		284 285 286 288 290 290
303. 304. 305. 306. 307. 308. 309. 310.	Magneto-o " " " " Miscellane	ptic rota "" "" "" cous valu	tion,	Ver in s " s " s " g f Ver	rdet's colids . iquids colutio " gases rdet's coeptib	constant ns of acids " salts in hydrock and Kund	and s in alcohoric : t's conquids a	so alts i ohol acid	ft iro	ter	mei	•		284 285 286 288 290 290
303. 304. 305. 306. 307. 308. 309. 310. 311.	Magneto-o " " " " Miscellane " Kerr's con	ptic rota "" "" cous valu stants fo	es o	Ver in s " li " s " g f Ver ' sus	rdet's colids. iquids colutio " cases rdet's cceptilickel,	constant ns of acids " salts in hydrocl and Kund pility for lice	and s in alco hloric t's con quids a	so alts i ohol acid	ft iro	ter	mer			284 285 286 288 290 290 291 291
303. 304. 305. 306. 307. 308. 309. 310.	Magneto-o " " " Miscellane " Kerr's con	ptic rota "" cous valu stants for	es of	y Ven in s " s " s " g f Ven ' sus on, ni	rdet's colids. iquids colutio " rases rdet's cceptiblickel,	constant ns of acids " salts in hydrocl and Kund oility for lic cobalt, and	and s in alcoholoric : t's conquids a d magn	so	ft iro	ter	mer			284 285 286 288 290 290 291 291 292 292
303. 304. 305. 306. 307. 308. 309. 310. 311.	Magneto-o " " " " Miscellane " Kerr's con Effect of resistan	eous valu stants formagnetic ce of one	es of	in s in s in s if	rdet's colids. iquids colutio " cases rdet's ceptiblickel, the creero	constant and Kund bility for lic cobalt, and electric res	and s in alco hloric t's con quids a magn sistanc	so alts i ohol acid stant and g netite	ft iro	ter	(in			284 285 286 288 290 290 291 291 292
303. 304. 305. 306. 307. 308. 309. 310. 311.	Magneto-o " " " Miscellane " Kerr's con Effect of resistan Effect of	eous valu stants for magnetic ce of one magnetic	es of	y Ven in s " l' " s " g f Ven ' suson, ni d on m for d on	rdet's colids. iquids colution " rases rdet's ceptiblickel, the creation that creation the creatio	constant	and s in alco hloric t's con quids a magn sistanc various sistanc	so alts in acid acid acid stant and genetite acite	ft iro	ter	mer	· · · · · · · · · · · · itia		284 285 286 288 290 291 291 292 292
303. 304. 305. 306. 307. 308. 309. 310. 311. 312.	Magneto-o " " " Miscellane " Kerr's con Effect of resistan Effect of resistan	eous valu stants for magnetic ce one co	es of	y Ver in s " s " s " g f Ver ' sus on, n d on m for d on for z	rdet's solids. iquids solution " "asses rdet's sceptiblickel, the correction the sero ficero	constant	and s in alcohoric t's con quids a d magn sistanc various sistanc nperat	so	ft iro	ter	mer	· · · · · · · · · · · · itia		284 285 286 288 290 291 291 292 292
303. 304. 305. 306. 307. 308. 309. 310. 311. 312.	Magneto-o " " " " Miscellane " Kerr's con Effect of resistan Effect of resistan Specific he	eous valu stants formagnetic ce of one magnetic ce one of	es of iron, iron iron iron iron iron iron iron iron	" y y y y y y y y y y y y y y y y y y y	rdet's solids. iquids solutio " "asses rdet's sceptilickel, the care records and the care fields and the care of t	constant ns of acids " salts in hydrocl and Kund bility for lic cobalt, and electric res field and velectric res eld and ter d liquids	and s in alco hloric t's con quids a d magn sistanc various sistanc mperat	so	ft iro	ter	mer	· · · · · · · · · · · · itia		284 285 286 288 290 291 291 292 292

INTRODUCTION.

UNITS OF MEASUREMENT AND CONVERSION FORMULÆ.

Units. — The quantitative measure of anything is a number which expresses the ratio of the magnitude of the thing to the magnitude of some other thing of the same kind. In order that the number expressing the measure may be intelligible, the magnitude of the thing used for comparison must be known. This leads to the conventional choice of certain magnitudes as units of measurement, and any other magnitude is then simply expressed by a number which tells how many magnitudes equal to the unit of the same kind of magnitude it contains. For example, the distance between two places may be stated as a certain number of miles or of yards or of feet. In the first case, the mile is assumed as a known distance; in the second, the yard, and in the third, the foot. What is sought for in the statement is to convey an idea of the distance by describing it in terms of distances which are either familiar or easily referred to for comparison. Similarly quantities of matter are referred to as so many tons or pounds or grains and so forth, and intervals of time as a number of hours or minutes or seconds. Generally in ordinary affairs such statements appeal to experience; but, whether this be so or not, the statement must involve some magnitude as a fundamental quantity, and this must be of such a character that, if it is not known, it can be readily referred to. We become familiar with the length of a mile by walking over distances expressed in miles, with the length of a yard or a foot by examining a yard or a foot measure and comparing it with something easily referred to, - say our own height, the length of our foot or step, — and similarly for quantities of other kinds. This leads us to be able to form a mental picture of such magnitudes when the numbers expressing them are stated, and hence to follow intelligently descriptions of the results of scientific work. The possession of copies of the units enables us by proper comparisons to find the magnitude-numbers expressing physical quantities for ourselves. The numbers descriptive of any quantity must depend on the intrinsic magnitude of the unit in terms of which it is described. Thus a mile is 1760 yards, or 5280 feet, and hence when a mile is taken as the unit the magnitude-number for the distance is 1, when a yard is taken as the unit the magnitude-number is 1760, and when a foot is taken it is 5280. Thus, to obtain the magnitude-number for a quantity in terms of a new unit when it is already known in terms of another we have to multiply the old magnitudenumber by the ratio of the intrinsic values of the old and new units; that is, by the number of the new units required to make one of the old.

Fundamental Units of Length and Mass. — It is desirable that as few different kinds of unit quantities as possible should be introduced into our measurements, and since it has been found possible and convenient to express a large number of physical quantities in terms of length or mass or time units and combinations of these they have been very generally adopted as fundamental units. Two systems of such units are used in this country for scientific measurements, namely, the British and the French, or metric, systems. Tables of conversion factors are given in the book for facilitating comparisons between quantities expressed in terms of one system with similar quantities expressed in the other. In the British system the standard unit of length is the yard, and it is defined as follows: "The straight line or distance between the transverse lines in the two gold plugs in the bronze bar deposited in the Office of the Exchequer shall be the genuine Standard of Length at 62° F., and if lost it shall be replaced by means of its copies." [The authorized copies here referred to are preserved at the Royal Mint, the Royal Society of London, the Royal Observatory at Greenwich, and the New Palace at Westminster.]

The British standard unit of mass is the pound avoirdupois, and is the mass of a piece of platinum marked "P. S. 1844, 1 lb.," which is preserved in the Exchequer Office. Authorized copies of this standard are kept at the same places as those of the standard of length.

In the metric system the standard of length is defined as the distance between the ends of a certain platinum bar (the mètre des Archives) when the whole bar is at the temperature o° Centigrade. The bar was made by Borda, and is preserved in the national archives of France. A line-standard metre has been constructed by the International Bureau of Weights and Measures, and is known as the International Prototype Metre. This standard is of the same length as the Borda standard. A number of standard-metre bars which have been carefully compared with the International Prototype have lately been made by the International Bureau of Weights and Measures and furnished to the various governments who have contributed to the support of that bureau. These copies are called National Prototypes.

Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the metre bar was made by Borda. The metre is not now defined as stated above, but as the length of Borda's rod, and hence subsequent measurements of the length of the meridian have not affected the length of the metre.

The French, or metric, standard of mass, the kilogramme, is the mass of a piece of platinum also made by Borda in accordance with the same decree of the Republic. It was connected with the standard of length by being made as nearly as possible of the same mass as that of a cubic decimetre of distilled water at the temperature of 4° C., or nearly the temperature of maximum density.

As in the case of the metre, the International Bureau of Weights and Measures

has made copies of the kilogramme. One of these is taken as standard, and is called the International Prototype Kilogramme. The others were distributed in the same manner as the metre standards, and are called National Prototypes.

Comparisons of the French and British standards are given in tabular form in Table 2; and similarly Table 3, differing slightly from the British, gives the legal ratios in the United States. In the metric system the decimal subdivision is used, and thus we have the decimetre, the centimetre, and the millimetre as subdivisions, and the dekametre, hektometre, and kilometre as multiples. The centimetre is most commonly used in scientific work.

Time. — The unit of time in both the systems here referred to is the mean solar second, or the 86,400th part of the mean solar day. The unit of time is thus founded on the average time required for the earth to make one revolution on its axis relatively to the sun as a fixed point of reference.

Derived Units. - Units of quantities depending on powers greater than unity of the fundamental length, mass, and time units, or on combinations of different powers of these units, are called "derived units." Thus, the unit of area and of volume are respectively the area of a square whose side is the unit of length and the volume of a cube whose edge is the unit of length. Suppose that the area of a surface is expressed in terms of the foot as fundamental unit, and we wish to find the area-number when the yard is taken as fundamental unit. The yard is 3 times as long as the foot, and therefore the area of a square whose side is a vard is 3×3 times as great as that whose side is a foot. Thus, the surface will only make one ninth as many units of area when the yard is the unit of length as it will make when the foot is that unit. To transform, then, from the foot as old unit to the yard as new unit, we have to multiply the old area-number by 1/9, or by the ratio of the magnitude of the old to that of the new unit of area. This is the same rule as that given above, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the above case, since on the method of measurement here adopted an area-number is the product of a length-number by a length-number the ratio of two units is the square of the ratio of the intrinsic values of the two units of length. Hence, if I be the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of area is l^2 . Similarly the ratio of two units of volume will be 18, and so on for other quantities.

Dimensional Formulæ. — It is convenient to adopt symbols for the ratios of length units, mass units, and time units, and adhere to their use throughout; and in what follows, the small letters, l, m, t, will be used for these ratios. These letters will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by l, m, t are known, and the powers of l, m, and t involved in any particular unit are also known, the factor for transformation is at once obtained. Thus, in the above example, the value of l was 1/3 and the power of l involved in the expression for area is l^2 ; hence, the factor for transforming from square feet to square yards is 1/9. These factors

have been called by Prof. James Thomson "change ratios," which seems an appropriate term. The term "conversion factor" is perhaps more generally known, and has been used throughout this book.

Conversion Factor. — In order to determine the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, and time are involved in the quantity. Thus, a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or L/T, an acceleration by a velocity-number divided by an interval of time-number, or L/T^2 , and so on, and the corresponding ratios of units must therefore enter to precisely the same degree. The factors would thus be for the above cases, l/t and l/t^2 . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called "dimensional equations." Thus

$$E = ML^2T^{-2}$$

is the dimensional equation for energy, and ML*T-2 is the dimensional formula for energy.

In general, if we have an equation for a physical quantity

$$Q = CL^aM^bT^c$$

where C is a constant and LMT represents length, mass, and time in terms of one set of units, and we wish to transform to another set of units in terms of which the length, mass, and time are $L_i M_i T_i$, we have to find the value of $\frac{L_i}{L}, \frac{M_i}{M}, \frac{T_i}{T}$, which in accordance with the convention adopted above will be $l_i m_i t_i$, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_i = Ll$, $M_i = Mm$, $T_i = Tl$, and if Q_i be the new quantity-number

$$Q_{i} = CL_{i}^{a}M_{i}^{b}T_{i}^{c}$$

$$= CL_{i}^{a}M^{b}m^{b}T^{c}t^{c} = Q_{i}^{a}m^{b}t^{c},$$

or the conversion factor is P^am^bF , a quantity of precisely the same form as the dimension formula $L^aM^bT^c$.

We now proceed to form the dimensional and conversion factor formulæ for the more commonly occurring derived units.

r. Area. — The unit of area is the square the side of which is measured by the unit of length. The area of a surface is therefore expressed as

$$S = CL^2$$

where C is a constant depending on the shape of the boundary of the surface and L a linear dimension. For example, if the surface be square and L be the length of a side C is unity. If the boundary be a circle and L be a diameter $C = \pi/4$, and so on. The dimensional formula is thus L^2 , and the conversion factor I^2 .

2. Volume. — The unit of volume is the volume of a cube the edge of which is measured by the unit of length. The volume of a body is therefore expressed as

$$V = CL^{s}$$
.

where as before C is a constant depending on the shape of the boundary. The dimensional formula is L² and the conversion factor l².

3. Density. — The density of a substance is the quantity of matter in the unit of volume. The dimension formula is therefore M/V or ML^{-8} , and conversion factor ml^{-8} .

Example. — The density of a body is 150 in pounds per cubic foot: required the density in grains per cubic inch.

Here m is the number of grains in a pound = 7000, and l is the number of inches in a foot = 12; $ml^{-8} = 7000/12^8 = 4.051$. Hence the density is 150 \times 4.051 = 607.6 in grains per cubic inch.

NOTE. — The specific gravity of a body is the ratio of its density to the density of a standard substance. The dimension formula and conversion factor are therefore both unity.

4. Velocity. — The velocity of a body at any instant is given by the equation $v = \frac{dL}{dT}$, or velocity is the ratio of a length-number to a time-number. The dimension formula is LT⁻¹, and the conversion factor lt^{-1} .

Example. — A train has a velocity of 60 miles an hour: what is its velocity in feet per second?

Here l = 5280 and t = 3600; $l = \frac{5280}{3600} = \frac{44}{30} = 1.467$. Hence the velocity = $60 \times 1.467 = 88.0$ in feet per second.

- 5. Angle. An angle is measured by the ratio of the length of an arc to the length of the radius of the arc. The dimension formula and the conversion factor are therefore both unity.
- 6. Angular Velocity. Angular velocity is the ratio of the magnitude of the angle described in an interval of time to the length of the interval. The dimension formula is therefore T^{-1} , and the conversion factor is t^{-1} .
- 7. Linear Acceleration. Acceleration is the rate of change of velocity or $z = \frac{dv}{dt}$. The dimension formula is therefore VT⁻¹ or LT⁻², and the conversion factor is lt^{-2} .

Example:— A body acquires velocity at a uniform rate, and at the end of one minute is moving at the rate of 20 kilometres per hour: what is the acceleration in centimetres per second per second?

Since the velocity gained was 20 kilometres per hour in one minute, the acceleration was 1200 kilometres per hour per hour.

Here l=100000 and t=3600; $lt^{-2}=100000/3600^2=.00771$, and therefore acceleration=.00771 \times 1200=9.26 centimetres per second.

8. Angular Acceleration. — Angular acceleration is rate of change of angu-

lar velocity. The dimensional formula is thus $\frac{\text{angular velocity}}{T}$ or T^{-2} , and the conversion factor t^{-2} .

- 9. Solid Angle. A solid angle is measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle to the square of radius of the spherical surface, the centre of the sphere being at the vertex of the cone. The dimensional formula is therefore $\frac{ar \cdot a}{L^2}$ or 1, and hence the conversion factor is also 1.
- ro. Curvature. Curvature is measured by the rate of change of direction of the curve with reference to distance measured along the curve as independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L⁻¹, and the conversion factor is l^{-1} .
- 11. Tortuosity. Tortuosity is measured by the rate of rotation of the tangent plane round the tangent to the curve of reference when length along the curve is independent variable. The dimension formula is therefore $\frac{\text{angle}}{\text{length}}$ or L^{-1} , and the conversion factor is l^{-1} .
- 12. Specific Curvature of a Surface. This was defined by Gauss to be at any point of the surface, the ratio of the solid angle enclosed by a surface formed by moving a normal to the surface round the periphery of a small area containing the point, to the magnitude of the area. The dimensional formula is therefore $\frac{\text{solid angle}}{\text{surface}}$ or L^{-2} , and the conversion factor is thus I^{-2} .
- 13. Momentum. This is quantity of motion in the Newtonian sense, and is, at any instant, measured by the product of the mass-number and the velocity-number for the body.

Thus the dimension formula is MV or MLT⁻¹, and the conversion factor mlt⁻¹.

Example. — A mass of 10 pounds is moving with a velocity of 30 feet per second: what is its momentum when the centimetre, the gramme, and the second are fundamental units?

Here m = 453.59, l = 30.48, and t = 1; $mlt^{-1} = 453.59 \times 30.48 = 13825$. The momentum is thus $13825 \times 10 \times 30 = 4147500$.

- 14. Moment of Momentum. The moment of momentum of a body with reference to a point is the product of its momentum-number and the number expressing the distance of its line of motion from the point. The dimensional formula is thus ML^2T^{-1} , and hence the conversion factor is ml^2t^{-1} .
- 15. Moment of Inertia. The moment of inertia of a body round any axis is expressed by the formula $\sum mr^2$, where m is the mass of any particle of the body

and r its distance from the axis. The dimension formula for the sum is clearly the same as for each element, and hence is ML^2 . The conversion factor is therefore ml^2 .

- 16. Angular Momentum. The angular momentum of a body round any axis is the product of the numbers expressing the moment of inertia and the angular velocity of the body. The dimensional formula and the conversion factor are therefore the same as for moment of momentum given above.
- 17. Force. A force is measured by the rate of change of momentum it is capable of producing. The dimension formulæ for force and "time rate of change of momentum" are therefore the same, and are expressed by the ratio of momentum-number to time-number or MLT^{-2} . The conversion factor is thus mlt^{-2} .

NOTE. — When mass is expressed in pounds, length in feet, and time in seconds, the unit force is called the poundal. When grammes, centimetres, and seconds are the corresponding units the unit of force is called the dyne.

Example. Find the number of dynes in 25 poundals.

Here m = 453.59, l = 30.48, and l = 1; $mll^{-1} = 453.59 \times 30.48 = 13825$ nearly. The number of dynes is thus $13825 \times 25 = 345625$ approximately.

- 18. Moment of a Couple, Torque, or Twisting Motive. These are different names for a quantity which can be expressed as the product of two numbers representing a force and a length. The dimension formula is therefore FL or ML^2T^{-2} , and the conversion factor is ml^2t^{-2} .
- 19. Intensity of a Stress. The intensity of a stress is the ratio of the number expressing the total stress to the number expressing the area over which the stress is distributed. The dimensional formula is thus FL^{-2} or $ML^{-1}T^{-2}$, and the conversion factor is $ml^{-1}t^{-2}$.
- 20. Intensity of Attraction, or "Force at a Point."—This is the force of attraction per unit mass on a body placed at the point, and the dimensional formula is therefore FM⁻¹ or LT⁻², the same as acceleration. The conversion factors for acceleration therefore apply.
- 21. Absolute Force of a Centre of Attraction, or "Strength of a Centre." This is the intensity of force at unit distance from the centre, and is therefore the force per unit mass at any point multiplied by the square of the distance from the centre. The dimensional formula thus becomes FL^2M^{-1} or L^8T^{-2} . The conversion factor is therefore l^2t^{-2} .
- 22. Modulus of Elasticity.— A modulus of elasticity is the ratio of stress intensity to percentage strain. The dimension of percentage strain is a length divided by a length, and is therefore unity. Hence, the dimensional formula of a modulus of elasticity is the same as that of stress intensity, or $ML^{-1}T^{-2}$, and the conversion factor is thus also $ml^{-1}l^{-2}$.

23. Work and Energy. — When the point of application of a force, acting on a body, moves in the direction of the force, work is done by the force, and the amount is measured by the product of the force and displacement numbers. The dimensional formula is therefore FL or ML²T⁻².

The work done by the force either produces a change in the velocity of the body or a change of shape or configuration of the body, or both. In the first case it produces a change of kinetic energy, in the second a change of potential energy. The dimension formulæ of energy and work, representing quantities of the same kind, are identical, and the conversion factor for both is ml^2t^{-2} .

- 24. Resilience. This is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimension formula is therefore $ML^2T^{-2}L^{-8}$ or $ML^{-1}T^{-2}$, and the conversion factor $ml^{-1}t^{-2}$.
- 25. Power, or Activity. Power or, as it is now very commonly called, activity is defined as the time rate of doing work, or if W represent work and P power $P = \frac{dw}{dt}$. The dimensional formula is therefore WT⁻¹ or ML²T⁻³, and the conversion factor ml^2t^{-3} , or for problems in gravitation units more conveniently flt^{-1} , where f stands for the force factor.
- Examples. (a) Find the number of gramme centimetres in one foot pound. Here the units of force are the attraction of the earth on the pound * and the gramme of matter, and the conversion factor is fl, where f is 453.59 and l is 30.48.

Hence the number is $453.59 \times 30.48 = 13825$.

- (b) Find the number of foot poundals in 1 000 000 centimetre dynes. Here m = 1/453.59, l = 1/30.48, and t = 1; $ml^2t^{-2} = 1/453.59 \times 30.48^2$, and $10^6ml^2t^{-2} = 10^6/453.59 \times 30.48^2 = 2.373$.
- (c) If gravity produces an acceleration of 32.2 feet per second per second, how many watts are required to make one horse-power?

One horse-power is 550 foot pounds per second, or $550 \times 32.2 = 17710$ foot poundals per second. One watt is 10^7 ergs per second, that is, 10^7 dyne centimetres per second. The conversion factor is ml^2t^{-8} , where m = 453.59, l = 30.48, and t = 1, and the result has to be divided by 10^7 , the number of dyne centimetres per second in the watt.

Hence,
$$17710 \, ml^2 t^{-8} / 10^7 = 17710 \times 453.59 \times 30.48^2 / 10^7 = 746.3$$
.

(d) How many gramme centimetres per second correspond to 33000 foot pounds per minute?

The conversion factor suitable for this case is $f(t^{-1})$, where f is 453.59, l is 30.48, and t is 60.

Hence, 33000 $l^{-1} = 33000 \times 453.59 \times 30.48/60 = 7604000$ nearly.

* It is important to remember that in problems like that here given the term "pound" or gramme" refers to force and not to mass.

HEAT UNITS.

1. If heat be measured in dynamical units its dimensions are the same as those of energy, namely ML^2T^{-2} . The most common measurements, however, are made in thermal units, that is, in terms of the amount of heat required to raise the temperature of unit mass of water one degree of temperature at some stated temperature. This method of measurement involves the unit of mass and some unit of temperature, and hence if we denote temperature-numbers by Θ and their conversion factors by θ the dimensional formula and conversion factor for quantity of heat will be $M\Theta$ and $m\theta$ respectively. The relative amount of heat compared with water as standard substance required to raise unit mass of different substances one degree in temperature is called their specific heat, and is a simple number.

Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being then called thermometric units. The dimensional formula is in that case changed by the substitution of volume for mass, and becomes $L^{2}\Theta$, and hence the conversion factor is to be calculated from the formula $l^{2}\theta$.

For other physical quantities involving heat we have: -

- 2. Coefficient of Expansion. The coefficient of expansion of a substance is equal to the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal) to the change of temperature. These ratios are simple numbers, and the change of temperature is inversely as the magnitude of the unit of temperature. Hence the dimensional and conversion-factor formulæ are Θ^{-1} and θ^{-1} .
- 3. Conductivity, or Specific Conductance. This is the quantity of heat transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore, with H as quantity of heat,

$$K = \frac{H}{\frac{\Theta}{L}L^{2}T}$$

and the dimensional formula $\frac{H}{\Theta LT} = \frac{M}{LT}$, which gives $ml^{-1}l^{-1}$ for conversion factor.

In thermometric units the formula becomes L^2T^{-1} , which properly represents diffusivity. In dynamical units H becomes ML^2T^{-2} , and the formula changes to $MLT^{-2}\Theta^{-1}$. The conversion factors obtained from these are l^2t^{-1} and $mlt^{-2}\theta^{-1}$ respectively.

Similarly for emission and absorption we have —

4. Emissivity and Immissivity. — These are the quantities of heat given off by or taken in by the body per unit of time per unit of surface per unit difference of temperature between the surface and the surrounding medium. We thus get the equation

$$EL^{2}OT = H = MO.$$

The dimensional formula for E is therefore ML-TT-1, and the conversion factor

- $ml^{-2}l^{-1}$. In thermometric units by substituting l^{2} for m the factor becomes ll^{-1} , and in dynamical units $ml^{-2}l^{-1}$.
- 5. Thermal Capacity. This is the product of the number for mass and the specific heat, and hence the dimensional formula and conversion factor are simply M and m.
- 6. Latent Heat. Latent heat is the ratio of the number representing the quantity of heat required to change the state of a body to the number representing the quantity of matter in the body. The dimensional formula is therefore $M \in /M$ or Θ , and hence the conversion factor is simply the ratio of the temperature units or θ . In dynamical units the factor is $\ell^2 \ell^{-2}$.*
- 7. Joule's Equivalent. Joule's dynamical equivalent is connected with quantity of heat by the equation

$$ML^2T^{-2} = JH$$
 or $JM\Theta$.

This gives for the dimensional formula of J the expression $L^2T^{-2}\Theta^{-1}$. The conversion factor is thus represented by $I^2t^{-2}\theta^{-1}$. When heat is measured in dynamical units J is a simple number.

- 8 Entropy. The entropy of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is thus $M\Theta/\Theta$ or M, and the conversion factor is m. When heat is measured in dynamical units the factor is $ml^2l^{-2}\theta^{-1}$.
- Examples. (a) Find the relation between the British thermal unit, the calorie, and the therm.

Neglecting the variation of the specific heat of water with temperature, or defining all the units for the same temperature of the standard substance, we have the following definitions. The *British thermal unit* is the quantity of heat required to raise the temperature of one pound of water 1° F. The *calorie* is the quantity of heat required to raise the temperature of one kilogramme of water 1° C. The *therm* is the quantity of heat required to raise the temperature of one gramme of water 1° C. Hence:—

- (1) To find the number of calories in one British thermal unit, we have m = .45399 and $\theta = \frac{4}{3}$; $m\theta = .45399 \times 5/9 = .25199$.
- (2) To find the number of therms in one calorie, m = 1000 and $\theta = 1$; $\therefore m\theta = 1000$.
- It follows at once that the number of therms in one British thermal unit is $1000 \times .25199 = 251.99$.
- (b) What is the relation between the foot grain second Fahrenheit-degree and the centimetre gramme second Centigrade-degree units of conductivity?

The number of the latter units in one of the former is given by the for-

* It will be noticed that when Θ is given the dimension formula L^2T^{-2} the formulae in thermal and dynamical units are always identical. The thermometric units practically suppress mass.

mula $ml^{-1}l^{-1}\theta^{\circ}$, where m = .064799, l = 30.48, and l = 1, and is therefore = $.064799/30.48 = 2.126 \times 10^{-8}$.

- (c) Find the relation between the units stated in (b) for emissivity.
- In this case the conversion formula is $ml^{-3}l^{-1}$, where ml and t have the same value as before. Hence the number of the latter units in the former is $0.064799/30.48^2 = 6.975 \times 10^{-5}$.
- (d) Find the number of centimetre gramme second units in the inch grain hour unit of emissivity.

Here the formula is $ml^{-2}l^{-1}$, where m = 0.064799, l = 2.54, and l = 3600. Therefore the required number is $0.064799/2.54^2 \times 3600 = 2.790 \times 10^{-6}$.

(e) If Joule's equivalent be 776 foot pounds per pound of water per degree Fahrenheit, what will be its value in gravitation units when the metre, the kilogramme, and the degree Centigrade are units?

The conversion factor in this case is $\frac{l^{n}t^{-1}\theta^{-1}}{lt^{-1}}$ or $l\theta^{-1}$, where l = .3048 and $\theta^{-1} = 1.8$; $\therefore 776 \times .3048 \times 1.8 = 425.7$.

(f) If Joule's equivalent be 24832 foot poundals when the degree Fahrenheit is unit of temperature, what will be its value when kilogramme metre second and degree-Centigrade units are used?

The conversion factor is $l^{t}t^{-l}\theta^{-1}$, where l = .3048, t = 1, and $\theta^{-1} = 1.8$; $\therefore 24832 \times l^{2}t^{-2}\theta^{-1} = 24832 \times .3048^{2} \times 1.8 = 4152.5$.

In gravitation units this would give 4152.5/9.81 = 423.3.

ELECTRIC AND MAGNETIC UNITS.

There are two systems of these units, the electrostatic and the electromagnetic systems, which differ from each other because of the different fundamental suppositions on which they are based. In the electrostatic system the repulsive force between two quantities of static electricity is made the basis. This connects force, quantity of electricity, and length by the equation $f = a \frac{qq_1}{r^2}$, where f is force, a a quantity depending on the units employed and on the nature of the medium, q and q_1 quantities of electricity, and l the distance between q and q_1 . The magnitude of the force f for any particular values of q, q_1 and l depends on a property of the medium across which the force takes place called its inductive capacity. The inductive capacity of air has generally been assumed as unity, and the inductive capacity of other media expressed as a number representing the ratio of the inductive capacity of the medium to that of air. These numbers are known as the specific inductive capacities of the media. According to the ordinary assumption, then, of air as the standard medium, we obtain unit quantity of electricity when in the above equation $q = q_l$, and f, a, and l are each unity. A formal definition is given below.

In the electromagnetic system the repulsion between two magnetic poles or

quantities of magnetism is taken as the basis. In this system the quantities force, quantity of magnetism, and length are connected by an equation of the form

$$f = a \frac{mm_l}{l^2},$$

where m and m_i are in this case quantities of magnetism, and the other symbols have the same meaning as before. In this case it has been usual to assume the magnetic inductive capacity of air to be unity, and to express the magnetic inductive capacity of other media as a simple number representing the ratio of the inductive capacity of the medium to that of air. These numbers, by analogy with specific inductive capacities for magnetism. They are usually called permeabilities. (*Vide* Thomson, "Papers on Electrostatics and Magnetism," p. 484.) In this case, also, like that for electricity, the unit quantity of magnetism is obtained by making $m = m_i$, and f_i a, and f_i each unity.

In both these cases the intrinsic inductive capacity of the standard medium is suppressed, and hence also that of all other media. Whether this be done or not, direct experiment has to be resorted to for the determination of the absolute values of the units and the relations of the units in the one system to those in the other. The character of this relation can be directly inferred from the dimensional formulæ of the different quantities, but these can give no information as to the relative absolute values of the units in the two systems. Prof. Rücker has suggested (Phil. Mag. vol. 27) the advisability of at least indicating the existence of the suppressed properties by putting symbols for them in the dimensional formulæ. This has the advantage of showing how the magnitudes of the different units would be affected by a change in the standard medium, or by making the standard medium different for the two systems. In accordance with this idea, the symbols K and P have been introduced into the formulæ given below to represent inductive capacity in the electrostatic and the electromagnetic systems respectively. In the conversion formulæ k and p are the ordinary specific inductive capacities and permeabilities of the media when air is taken as the standard, or generally those with reference to the first medium taken as standard. The ordinary formulæ may be obtained by putting K and P equal to unity.

ELECTROSTATIC UNITS.

1. Quantity of Electricity. — The unit quantity of electricity is defined as that quantity which if concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity repels it, or is repelled by it, with unit force. The medium or dielectric is usually taken as air, and the other units in accordance with the centimetre gramme second system.

In this case we have the force of repulsion proportional directly to the square of the quantity of electricity and inversely to the square of the distance between the quantities and to the inductive capacity. The dimensional formula is therefore the same as that for [force \times length² \times inductive capacity] or $M^{\dagger}L^{\dagger}T^{-1}K^{\dagger}$, and the conversion factor is $m^{\dagger}l^{\dagger}t^{-1}k^{\dagger}$.

- 2. Electric Surface Density and Electric Displacement. The density of an electric distribution at any point on a surface is measured by the quantity per unit of area, and the electric displacement at any point in a dielectric is measured by the quantity displaced per unit of area. These quantities have therefore the same dimensional formula, namely, the ratio of the formulæ for quantity of electricity and for area or $M^{\dagger}L^{-\dagger}T^{-1}K^{\dagger}$, and the conversion factor $m^{\dagger}l^{-\dagger}l^{-1}k^{\dagger}$.
- 3. Electric Force at a Point, or Intensity of Electric Field. This is measured by the ratio of the magnitude of the force on a quantity of electricity at a point to the magnitude of the quantity of electricity. The dimensional formula is therefore the ratio of the formulæ for force and electric quantity, or

$$\frac{MLT^{-2}}{M^{1}L^{1}T^{-1}K^{1}} = M^{1}L^{-1}T^{-1}K^{-1},$$

which gives the conversion factor $m^{i}l^{-i}t^{-1}k^{-i}$.

4. Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is therefore the ratio of the formulæ for work and electric quantity, or

$$\frac{ML^{2}T^{-2}}{M^{i}L^{i}T^{-1}K^{i}} = M^{i}L^{i}T^{-1}K^{-i},$$

which gives the conversion factor $m^{i} l^{i} t^{-1} k^{-i}$.

5. Capacity of a Conductor. — The capacity of an insulated conductor is proportional to the ratio of the numbers representing the quantity of electricity in a charge and the potential of the charge. The dimensional formula is thus the ratio of the two formulæ for electric quantity and potential, or

$$\frac{M^{i}L^{i}T^{-1}K^{i}}{M^{i}L^{i}T^{-1}K^{-i}} = LK,$$

which gives *lk* for conversion factor. When K is taken as unity, as in the ordinary units, the capacity of an insulated conductor is simply a length.

- 6. Specific Inductive Capacity. This is the ratio of the inductive capacity of the substance to that of a standard substance, and hence the dimensional formula is K/K or 1.*
- 7. Electric Current. Current is quantity flowing past a point per unit of time. The dimensional formula is thus the ratio of the formulæ for electric quantity and for time, or

$$\frac{M^{i}L^{j}T^{-1}K^{i}}{T} = M^{i}L^{j}T^{-2}K^{i},$$

and the conversion factor $m^{i}l^{i}t^{-2}k^{i}$.

* According to the ordinary definition referred to air as standard medium, the specific inductive capacity of a substance is K, or is identical in dimensions with what is here taken as inductive capacity. Hence in that case the conversion factor must be taken as I on the electrostatic and as in the electrostatic and as in the electromagnetic system.

8. Conductivity, or Specific * Conductance. — This, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is therefore

$$\frac{M^{i}L^{i}T^{-1}K^{i}}{L^{2}\frac{M^{i}L^{i}T^{-1}K^{-i}}{T}} = T^{-1}K, \text{ or } \frac{\text{electric quantity}}{\text{area} \times \text{potential gradient} \times \text{time}}.$$

The conversion factor is $t^{-1}k$.

- 9. Specific * Resistance. This is the reciprocal of conductivity as above defined, and hence the dimensional formula and conversion factor are respectively TK^{-1} and tk^{-1} .
- ro. Conductance. The conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the numbers representing the current flowing through it and the difference of potential between its ends. The dimensional formula is thus the ratio of the formulæ for current and potential, or

$$\frac{M^{i}L^{i}T^{-2}K^{i}}{M^{i}L^{i}T^{-1}K^{-i}} = LT^{-1}K,$$

from which we get the conversion factor lt-1k.

11. Resistance.—This is the reciprocal of conductance, and therefore the dimensional formula and the conversion factor are respectively $L^{-1}TK^{-1}$ and $I^{-1}tk^{-1}$.

EXAMPLES OF CONVERSION IN ELECTROSTATIC UNITS.

- (a) Find the factor for converting quantity of electricity expressed in foot grain second units to the same expressed in c. g. s. units.
- By (1) the formula is $m^{i}l^{i}t^{-1}k^{i}$, in which in this case m = 0.0648, l = 30.48, t = 1, and k = 1; ... the factor is $0.0648^{i} \times 30.48^{i} = 4.2836$.
- (b) Find the factor required to convert electric potential from millimetre milligramme second units to c. g. s. units.
- By (4) the formula is $m^{\frac{1}{2}l}t^{-1}k^{-\frac{1}{2}}$, and in this case m = 0.001, l = 0.1, t = 1, and k = 1; \therefore the factor $= 0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}} = 0.01$.
- (c) Find the factor required to convert from foot grain second and specific inductive capacity 6 units to c. g. s. units.
- By (5) the formula is lk, and in this case l=30.48 and k=6; ... the factor $=30.48 \times 6 = 182.88$.
- * The term "specific," as used here and in 9, refers conductance and resistance to that between the ends of a bar of unit section and unit length, and hence is different from the same term in specific heat, specific inductivity, capacity, etc., which refer to a standard substance.

ELECTROMAGNETIC UNITS.

As stated above, these units bear the same relation to unit quantity of magnetism that the electric units do to quantity of electricity. Thus, when inductive capacity is suppressed, the dimensional formula for magnetic quantity on this system is the same as that for electric quantity on the electrostatic system. All quantities in this system which only differ from corresponding quantities defined above by the substitution of magnetic for electric quantity may have their dimensional formulæ derived from those of the corresponding quantity by substituting P for K.

- r. Magnetic Pole, or Quantity of Magnetism. Two unit quantities of magnetism concentrated at points unit distance apart repel each other with unit force. The dimensional formula is thus the same as for [force \times length² \times inductive capacity] or $M^{1}L^{1}T^{-1}P^{1}$, and the conversion factor is $m^{1}l^{1}t^{-1}P^{1}$.
- 2. Density of Surface Distribution of Magnetism. This is measured by quantity of magnetism per unit area, and the dimension formula is therefore the ratio of the expressions for magnetic quantity and for area, or $M^{\dagger}L^{-\dagger}T^{-1}P^{\dagger}$, which gives the conversion factor $m^{\dagger}l^{-\dagger}l^{-\dagger}P^{\dagger}$.
- 3. Magnetic Force at a Point, or Intensity of Magnetic Field. The number for this is the ratio of the numbers representing the magnitudes of the force on a magnetic pole placed at the point and the magnitude of the magnetic pole.

The dimensional formula is therefore the ratio of the expressions for force and magnetic quantity, or

$$\frac{MLT^{-1}}{M^{1}L^{1}T^{-1}P^{1}} = M^{1}L^{-1}T^{-1}P^{-1},$$

and the conversion factor $m^{i}l^{-i}t^{-1}p^{-i}$.

4. Magnetic Potential. — The magnetic potential at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is thus the ratio of the formula for work and magnetic quantity, or

$$\frac{ML^{9}T^{-9}}{M^{1}L^{1}T^{-1}P^{1}} = M^{1}L^{1}T^{-1}P^{-1},$$

which gives the conversion factor $m^{i} \ell^{i} t^{-1} p^{-i}$.

- 5. Magnetic Moment. This is the product of the numbers for pole strength and length of a magnet. The dimensional formula is therefore the product of the formulæ for magnetic quantity and length, or $M^{i}L^{i}T^{-1}P^{i}$, and the conversion factor $m^{i}I^{i}t^{-1}p^{i}$.
- 6. Intensity of Magnetization. The intensity of magnetization of any portion of a magnetized body is the ratio of the numbers representing the magni-

tude of the magnetic moment of that portion and its volume. The dimensional formula is therefore the ratio of the formulæ for magnetic moment and volume, or

$$\frac{M^{i}L^{i}T^{-1}P^{i}}{L^{8}}\!=\!M^{i}L^{-i}T^{-1}P^{i}.$$

The conversion factor is therefore $m^{i} l^{-1} t^{-1} p^{i}$.

- 7. Magnetic Permeability,* or Specific Magnetic Inductive Capacity.

 This is the analogue in magnetism to specific inductive capacity in electricity. It is the ratio of the magnetic induction in the substance to the magnetic induction in the field which produces the magnetization, and therefore its dimensional formula and conversion factor are unity.
- 8. Magnetic Susceptibility. This is the ratio of the numbers which represent the values of the intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is therefore the ratio of the formulæ for intensity of magnetization and magnetic field or

$$\frac{M^{i}L^{-i}T^{-i}P^{i}}{M^{i}L^{-i}T^{-1}P^{-i}} \text{ or } P.$$

The conversion factor is therefore p, and both the dimensional formula and conversion factor are unity in the ordinary system.

- 9. Current Strength. A current of strength c flowing round a circle of radius r produces a magnetic field at the centre of intensity $2\pi c/r$. The dimensional formula is therefore the product of the formulæ for magnetic field intensity and length, or $\mathbf{M}^{i}\mathbf{L}^{i}\mathbf{T}^{-1}\mathbf{P}^{-i}$, which gives the conversion factor $\mathbf{M}^{i}\mathbf{P}^{i}\mathbf{r}^{-1}\mathbf{P}^{-i}$.
- 10. Current Density, or Strength of Current at a Point. This is the ratio of the numbers for current strength and area. The dimensional formula and the conversion factor are therefore $M^{i}L^{-i}T^{-1}P^{-i}$ and $m^{i}l^{-i}l^{-1}e^{-i}$.
- 11. Quantity of Electricity. This is the product of the numbers for current and time. The dimensional formula is therefore $M^{i}L^{i}T^{-1}P^{-i} \times T = M^{i}L^{i}P^{-i}$, and the conversion factor $m^{i}l^{i}p^{-i}$.
- 12. Electric Potential, or Electromotive Force. As in the electrostatic system, this is the ratio of the numbers for work and quantity of electricity. The dimensional formula is therefore

$$\frac{ML^{2}T^{-2}}{M^{i}L^{i}P^{-i}} = M^{i}L^{i}T^{-2}P^{i},$$

and the conversion factor $m^i l^i t^{-2} p^i$.

• Permeability, as ordinarily taken with the standard medium as unity, has the same dimension formula and conversion factor as that which is here taken as magnetic inductive capacity. Hence for ordinary transformations the conversion factor should be taken as I in the electromagnetic and J-28 in the electrostatic systems.

13. Electrostatic Capacity. — This is the ratio of the numbers for quantity of electricity and difference of potential. The dimensional formula is therefore

$$\frac{M^{i}L^{i}P^{-i}}{M^{i}L^{i}T^{-2}P^{i}} = L^{-1}T^{2}P^{-1},$$

and the conversion factor $l^{-1}t^2p^{-1}$.

14. Resistance of a Conductor. — The resistance of a conductor or electrode is the ratio of the numbers for difference of potential between its ends and the constant current it is capable of producing. The dimensional formula is therefore the ratio of those for potential and current or

$$\begin{array}{l} M^{i}L^{i}T^{-2}P^{i} \\ \bar{M}^{i}\bar{L}^{i}\bar{T}^{-1}P^{-i} \end{array} = LT^{-1}P.$$

The conversion factor thus becomes $\mathcal{U}^{-1}p$, and in the ordinary system resistance has the same conversion factor as velocity.

- 15. Conductance. This is the reciprocal of resistance, and hence the dimensional formula and conversion factor are respectively $L^{-1}\Gamma P^{-1}$ and $l^{-1}p^{-1}$.
- 16. Conductivity, or Specific Conductance. This is quantity of electricity transmitted per unit of area per unit of potential gradient per unit of time. The dimensional formula is therefore derived from those of the quantities mentioned as follows:—

$$\frac{\frac{M^{i}L^{i}P^{-i}}{L^{2}\frac{M^{i}L^{i}T^{-2}P^{i}}{L}} = L^{-2}TP^{-1}.$$

The conversion factor is therefore $l^{-2}tp^{-1}$.

- 17. Specific Resistance. This is the reciprocal of conductivity as defined in 15, and hence the dimensional formula and conversion factor are respectively $L^{2}T^{-1}P$ and $l^{2}t^{-1}p$.
- 18. Coefficient of Self-Induction, or Inductance, or Electro-kinetic Inertia. These are for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is therefore the product of the formulæ for electromotive force and time divided by that for current or

$$\frac{M^iL^iT^{-2}P^i}{M^iL^iT^{-1}P^{-i}}\times T=LP.$$

The conversion factor is therefore p, and in the ordinary system is the same as that for length.

19. Coefficient of Mutual Induction. — The mutual induction of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula and the conversion factor are therefore the same as those for self-induction.

- 20. Electro-kinetic Momentum. The number for this is the product of the numbers for current and for electro-kinetic inertia. The dimensional formula is therefore the product of the formulæ for these quantities, or $M^iL^iT^{-1}P^{-i} \times LP$ = $M^iL^iT^{-1}P^i$, and the conversion factor is $m^iP^iT^{-1}P^i$.
- 21. Electromotive Force at a Point. The number for this quantity is the ratio of the numbers for electric potential or electromotive force as given in 12, and for length. The dimensional formula is therefore $M^{i}L^{i}T^{-2}P^{i}$, and the conversion factor $m^{i}P^{i}t^{-2}P^{i}$.
- 22. Vector Potential. This is time integral of electromotive force at a point, or the electro-kinetic momentum at a point. The dimensional formula may therefore be derived from 21 by multiplying by T, or from 20 by dividing by L. It is therefore $M^{\dagger}L^{\dagger}T^{-1}P^{\dagger}$, and the conversion factor $m^{\dagger}I^{\dagger}I^{-1}P^{\dagger}$.
- 23. Thermoelectric Height. This is measured by the ratio of the numbers for electromotive force and for temperature. The dimensional formula is therefore the ratio of the formulæ for these two quantities, or $M^{i}L^{j}T^{-2}P^{i}G^{-1}$, and the conversion factor $m^{i}I^{j}t^{-2}P^{i}G^{-1}$.
- 24. Specific Heat of Electricity. This quantity is measured in the same way as 23, and hence has the same formulæ.
- 25. Coefficient of Peltier Effect. This is measured by the ratio of the numbers for quantity of heat and for quantity of electricity. The dimensional formula is therefore

$$\frac{M\Theta}{M^{i}L^{i}P^{-i}} = M^{i}L^{-i}P^{i}\Theta,$$

and the conversion factor $m^{i}l^{-i}\rho^{i}\theta$.

EXAMPLES OF CONVERSION IN ELECTROMAGNETIC UNITS.

- (a) Find the factor required to convert intensity of magnetic field from foot grain minute units to c. g. s. units.
- By (3) the formula is $m^{i}l^{-i}t^{-1}p^{-i}$, and in this case m = 0.0648, l = 30.48, t = 60, and p = 1; ... the factors = $0.0648^{i} \times 30.48^{-i} \times 60^{-1} = 0.00076847$.

Similarly to convert from foot grain second units to c. g. s. units the factor is $0.0648^{1} \times 30.48^{-1} = 0.046 \text{ 108}$.

- (b) How many c. g. s. units of magnetic moment make one foot grain second unit of the same quantity?
- By (5) the formula is $m^i l^i l^{-1} p^i$, and the values for this problem are m = 0.0648, l = 30.48, l = 1, and p = 1; \therefore the number = $0.0648^i \times 30.48^i = 1305.6$.
- (c) If the intensity of magnetization of a steel bar be 700 in c. g. s. units, what will it be in millimetre milligramme second units?

- By (6) the formula is $m^{i/t} l^{-1} p^{i}$, and in this case m = 1000, l = 10, t = 1, and p = 1; \therefore the intensity $= 700 \times 1000^{i} \times 10^{i} = 70000$.
- (d) Find the factor required to convert current strength from c. g. s. units to earth quadrant 10^{-11} gramme and second units.
- By (9) the formula is $m^{\frac{1}{2}}(t^{-1}p^{-1})$, and the values of these quantities are here $m=10^{11}$, $l=10^{-1}$, t=1, and p=1; ... the factor $=10^{\frac{11}{2}} \times 10^{-\frac{1}{2}} = 10$.
- (e) Find the factor required to convert resistance expressed in c. g. s. units into the same expressed in earth-quadrant 10⁻¹¹ grammes and second units.
- By (14) the formula is $lt^{-1}p$, and for this case $l = 10^{-4}$, t = 1, and p = 1; \therefore the factor $= 10^{-4}$.
- (f) Find the factor required to convert electromotive force from earth-quadrant 10^{-11} gramme and second units to c. g. s. units.
- By (12) the formula is $m^{i}/(-p^{i})$, and for this case $m = 10^{-11}$, $l = 10^{0}$, t = 1, and p = 1; ... the factor = 10^{0} .

PRACTICAL UNITS.

In practical electrical measurements the units adopted are either multiples or submultiples of the units founded on the centimetre, the gramme, and the second as fundamental units, and air is taken as the standard medium, for which K and P are assumed unity. The following, quoted from the report to the Honorable the Secretary of State, under date of November 6th, 1893, by the delegates representing the United States, gives the ordinary units with their names and values as defined by the International Congress at Chicago in 1893:—

"Resolved, That the several governments represented by the delegates of this International Congress of Electricians be, and they are hereby, recommended to formally adopt as legal units of electrical measure the following: As a unit of resistance, the international ohm, which is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electro-magnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice 14.4521 grammes in mass, of a constant cross-sectional area and of the length of 106.3 centimetres.

"As a unit of current, the *international ampère*, which is one tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications,* deposits silver at the rate of 0.001118 of a gramme per second.

- * "In the following specification the term 'silver voltameter' means the arrangement of apparatus by means of which an electric current is passed through a solution of nitrate of silver in water. The silver voltameter measures the total electrical quantity which has passed during the time of the experiment, and by noting this time the time average of the current, or, if the current has been kept constant, the current itself can be deduced.
- "In employing the silver voltameter to measure currents of about one ampère, the following arrangements should be adopted:—

- "As a unit of quantity, the *international coulomb*, which is the quantity of electricity transferred by a current of one international ampère in one second.
- "As a unit of capacity, the *international farad*, which is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity.†
- "As a unit of work, the *joule*, which is equal to 10⁷ units of work in the c. g. s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampère in an international ohm.
- "As a unit of power, the *watt*, which is equal to 10⁷ units of power in the c. g. s. system, and which is represented sufficiently well for practical use by the work done at the rate of one joule per second.
- "As the unit of induction, the *henry*, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampère per second.
- "The Chamber also voted that it was not wise to adopt or recommend a standard of light at the present time."

By an Act of Congress approved July 121h, 1894, the units recommended by the Chicago Congress were adopted in this country with only some unimportant verbal changes in the definitions.

By an Order in Council of date August 23d, 1894, the British Board of Trade adopted the ohm, the ampere, and the volt, substantially as recommended by the Chicago Congress. The other units were not legalized in Great Britain. They are, however, in general use in that country and all over the world.

- "The kathode on which the silver is to be deposited should take the form of a platinum bowl not less than 10 centimetres in diameter and from 4 to 5 centimetres in depth.
- "The anode should be a plate of pure silver some 30 square centimetres in area and 2 or 3 millimetres in thickness.
- "This is supported horizontally in the liquid near the top of the solution by a platinum wire passed through holes in the plate at opposite corners. To prevent the disintegrated silver which is formed on the anode from falling on to the kathode, the anode should be wrapped round with pure filter paper, secured at the back with sealing wax.
- "The liquid should consist of a neutral solution of pure silver nitrate, containing about 15 parts by weight of the nitrate to 85 parts of water.
- "The resistance of the voltameter changes somewhat as the current passes. To prevent these changes having too great an effect on the current, some resistance besides that of the voltameter should be inserted in the circuit. The total metallic resistance of the circuit should not be less than 10 ohms."
- * "A committee, consisting of Messrs. Helmholtz, Ayrton, and Carhart, was appointed to prepare specifications for the Clark's cell. Their report has not yet been received."
- † The one millionth part of the farad is more commonly used in practical measurements, and is called the microfarad.

FUNDAMENTAL AND DERIVED UNITS.

(a) Fundamental Un	ITS.	
Name of Unit.	Symbol.	Conversion Factor.
Length. Mass. Time. Temperature. Electric Inductive Capacity. Magnetic Inductive Capacity.	L. M T O K P	! m t t p

(b) DERIVED UNITS.

I. Geometric and Dynamic Units.

Name of Unit.	Conversion Factor.
Area,]2
Volume.	78
Angle.	ì
Solid Angle.	I
Curvature.	/ −¹
Tortuosity.	<i>}</i> −1
Specific curvature of a surface.	<i>}</i> −9
Angular velocity.	f-1
Angular acceleration.	1 t-2
Linear velocity.	l t-1
Linear acceleration.	1 t-2
Density.	m !—8
Moment of inertia.	m /2
Intensity of attraction, or "force at a point."	1 t-2
Absolute force of a centre of attraction, or "strength of a centre."	Į* f−2
Momentum.	$m l t^{-1}$
Moment of momentum, or angular momentum.	m l2 t-1
Force.	m / t ⁻²
Moment of a couple, or torque.	m l2 t-2
Intensity of stress.	m l-1 t-2
Modulus of elasticity.	m /-1 t-2
Work and energy.	$m / 2 t^{-2}$
Resilience.	$m l^{-1} t^{-2}$
Power or activity.	m l2 t-2

II. Heat	Units.	
Name of Unit.		Conversion Factor.
Quantity of heat (thermal units). " " (thermometric units). " " (dynamical units). Coefficient of thermal expansion. Conductivity (thermal units). " (thermometric units), or " (dynamical units). Emissivity and imissivity (thermal unit). " " (thermometric) " " (dynamical units). Thermal capacity. Latent heat (thermal units). " " (dynamical units). " " (dynamical units). Joule's equivalent. Entropy (heat measured in thermal units). " " (" " dynamical	diffusivity. ts). ic units). units).	m \theta \ \ \land{\text{\$\text{\$\land{\text{\$m\$} \$\land{\text{\$\naintert{\$\tang{\text{\$\tang{\text{\$\tang{\text{\$\tang{\text{\$\tiny{\$\tiny{\$\tiny{\$\tiny{\$\tiny{\$\tang{\text{\$\tiny{\$\tiny{\$\tinx{\$\tiny{\$\ti}
III. Magnetic and	Conversion factor for electrostatic system.	Conversion factor for electromagnetic system.
Magnetic pole, or quantity of magnetism. Density of surface distribution of magnetism. Intensity of magnetic field. Magnetic potential. Magnetic moment. Intensity of magnetisation. Magnetic permeability. Magnetic susceptibility and magnetic inductive capacity. Quantity of electricity. Electric surface density and electric displacement. Intensity of electric field. Electric potential and e. m. f. Capacity of a condenser. Inductive capacity. Specific inductive capacity. Electric current.	mi li k-i mi li t-2 ki mi li t-2 ki mi li t-2 ki mi li k-i mi li k-i 1 1-2 t2 k-1 mi li t-1 ki mi l-i t-1 ki mi l-i t-1 k-i mi li t-1 k-i li k k I mi li t-2 ki	m' l' t-1 p' m' l' t-1 p' m' l' t-1 p-1 m' l' t-1 p' m' l' t-1 p' l' p-1 m' l' p-1 m' l' t-2 p'

TABLE 1.

FUNDAMENTAL AND DERIVED UNITS.

III. Magnetic and	l Electric Units.	
Name of Unit.	Conversion factor for electrostatic system.	Conversion factor for electromag- netic system.
Conductivity. Specific resistance. Conductance. Resistance. Coefficient of self induction and coefficient of mutual induction. Electrokinetic momentum. Electromotive force at a point. Vector potential. Thermoelectric height and specific heat of electricity. Coefficient of Peltier effect.	t-1 k t k-1 t t-1 k t-1 t k-1 t-1 t k-1 t-1 t k-1 m t k-1 m t-1 t-1 k-1 m t-1 k-1 m t-1 t-1 k-1 m t-1 t-1 k-1 m t-1 t-1 k-1	l-2 t p-1 l ² t-1 p l-1 t p-1 l t-1 p l p mi li t-1 pi mi li t-2 pi mi li t-1 pi mi li t-2 pi θ-1

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.*

(I) METRIC TO IMPERIAL.

```
LINEAR MEASURE.
                                                      MEASURE OF CAPACITY.
                                                1 millilitre (ml.) (.001 } = 0.0610 cub. in.
ı millimetre (mm.) } __
                           0.03937 in.
  (.oo1 m.)
                                                   litre)
                                     "
                           0.39370
r centimetre (.or m.) =
                                                                            0.61024 "
                           3.93701 "
1 decimetre (.1 m.) =
                                                I centilitre (.o. litre)
                                                                           0.070 gill.
                        39.370113 "
                           3.280843 ft.
I METRE (m.)
                                                I decilitre (.I litre).
                                                                      · = 0.176 pint.
                          1.0936143 yds.
                                                I LITRE (1,000 cub.)
                                                                        = 1.75980 pints.
I dekametre
                                                   centimetres or 1 }
                         10.93614
   (10 m.)
                                                    cub. decimetre)
I hectometre (
                                                1 dekalitre (10 litres) . = 2.200 gallons.
                                                I hectolitre (100 ") . = 2.75 bushels.
I kilolitre (1,000 ") . = 3.437 quarters.
                       109.36143
   (100 m.)
1 kilometre
                          0.62137 mile.
   (1,000 m.) §
1 myriametre
   nyriametre {
(10,000 m.) }
                          6.21372 miles.
                                                     APOTHECARIES' MEASURE.
I micron . . .
                          0.001 mm.
                                                r cubic centi-
metre (1) = 0.03527 fluid ounce.
c.28219 fluid drachm.
gramme w't) 15.43235 grains weight.
                                                1 cub. millimetre = 0.01693 minim.
         SQUARE MEASURE.
I sq. centimetre .
                            0.1550 sq. in.
                                                       AVOIRDUPOIS WEIGHT.
1 sq. decimetre
                           15.500 sq. in.
   (100 sq. centm.)
                                                1 milligramme (mgr.)
                                                                        . = 0.01543 grain.
                      = { 10.7639 sq. ft.
                                                1 centigramme (.o. gram.) = 0.15432
I sq. metre or centi-
                                                I decigramme (.I ") = 1.54324 grains.
   are (100 sq. dcm.)
                           1.1960 sq. yd.
                                                                        \dot{} = 15.43235 "

\dot{} = 5.64383 drams.
I ARE (100 sq. m.)
I hectare (100 ares)
                                                I GRAMME
                      = 119.60 sq. yds.
                                                1 dekagramme (10 gram.) =
                            2.4711 acres.
                                                i hectogramme (100 ") =
   or 10,000 sq. m.) §
                                                                              3.52739 oz.
                                                                             ( 2.2046223 lb.
                                                I KILOGRAMME (1,000 " ) =
                                                                             15432.3564
                                                                               grains.
          CUBIC MEASURE.
                                                1 myriagramme (10 kilog.) = 22.04621 lb.
                                                1 quintal
                                                                       ) = 196841 \text{ cwt.}
                                                              (100 "
                                                I millier or tonne }
(1,000 kilog.) }
                                                                     . = 0.9842 \text{ ton.}
I cub. centimetre
   (c.c.) (1,000 cubic = 0.0610 cub. in
   millimetres)
I cub. decimetre
                                                            TROY WEIGHT.
   (c.d.) (1,000 \text{ cubic}) = 61.024
                                                                      0.03215 oz. Troy.
   centimetres)
I CUB. METRE )
                                                I GRAMME
                                                                      o.64301 pennyweight.
                       § 35.3148 cub. ft.
   or stere . .
                                                                    (15.43236 grains.
                       1.307954 cub. yd.
   (1,000 c.d.))
                                                      APOTHECARIES' WEIGHT.
                                                                           0.25721 drachm.
                                                                           0.77162 scruple.
                                                I GRAMME
                                                                         ( 15.43235 grains.
```

NOTE.—The METRE is the length, at the temperature of oo C., of the platinum-iridium bar deposited

The KILOGRAMME is the weight in vacuo at o° C. of the platinum-iridium weight deposited with the Board of Trade.

The LIFER contains one kilogramme weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimetres.

The present legal equivalent of the metre is 39 370113 inches, as above stated. If a brass metre is, however, compared, not at its legal temperature (o° C. or 32°F.), but at the temperature of 62° F., with a brass yard at the temperature also of 62° F., then the apparent equivalent of the metre would be nearly 39 38; inches.

^{*}In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897. SMITHBONIAN TABLES.

TABLE 2.
EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

					=				-
	L	INEAR MI	EASURE.			M	EASURE OF	CAPACITY	7.
	Millimetre to inches.	Metres to feet.	Metres to yards.	Kilo- metres to miles.		Litres to pints.	Dekalitres to gallons.	Hectolitres to bushels.	Kilolitres to quarters.
2 3 4 5 6 7 8	0.0787402 0.1181103 0.1574804 0.1968505 0.2362206 0.2755907 0.3149600	3.28084 9.84253 5.56169 9.84253 5.513.12337 616.40421 819.68506 922.96590 026.24674 229.52759	2.18723 3.28084 4.37446 5.46807 6.56169 7.65530 8.74891	0.62137 1.24274 1.86412 2.48549 3.10686 3.72823 4.34760 4.97098 5.59235	1 2 3 4 5 6 7 8 9	1.7598c 3.51961 5.27941 7.03921 8.79901 10.5588c 12.3186c 14.07842 15.8382c	4.39951 6.59926 8.79902 10.99877 2 13.19852 2 15.39828 2 17.59803	2.74969 5.49938 8.24908 10.99877 13.74846 16.49815 19.24785 21.99754 24.74723	3.43712 6.87423 10.31135 13.74846 17.18558 20.62269 24.05981 27.49692 30.93404
	S	QUARE M	EASURE.			,	WBIGHT (Av	oirdupois).	
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kilogrammes to grains.	Kilo- grammes to pounds.	Quintals to hundred- weights.
1 2 3 4 5 6 7 8 9	0.31000 0.46500	10.76393 21.52786 32.29179 43.05572 53 81965 64.58358 75.34751 86.11144 96.87537	1.19599 2 39198 3.58798 4 78397 5.97996 7.17595 8.37195 9.56794 10.76393	2.4711 4.9421 7.4132 9.8842 12.3553 14.8264 17.2974 19.7685 22.2395	1 2 3 4 5 6 78 9	0.01 543 0.03086 0.04630 0.06173 0.07716 0.09259 0.10803 0.12346 0.13889	15432.356 30864.713 46297.069 61729.426 77161.782 92594.138 108026.495 123458.851 138891.208	4.40924 6.61386 8.81849 11.02311 13.22773 15.43235 17.63698	1.96841 3.93683 5.90524 7.87365 9.84206 11.81048 13.77889 15.74730 17.71572
	CUBIC	C MEASUR	E.	APOTHE- CARIBS' MEASURE.	A	VOIRDUPOIS (cont.)	Troy V	Veight.	Apothe- Caries' Weight.
	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.	Cub. centimetres to fluid drachms.		Milliers o tonnes to tons.		Grammes to penny- weights.	Grammes to scruples.
11 - 1	61.02390 122.04781 183.07171 244.09561 305.11952	70.62952 105.94427 141.25903 176.57379	2.61591 3.92386 5.23182 6.53977	0.56314 0 84471 1.12627 1.40784	1 2 3 4 5	0.98421 1.96841 2.95262 3.93682 4.92103	0.06430 0.09645 0.12860 0.16075	0.64301 1.28603 1.92904 2.57206 3.21507	0.77162 1.54323 2.31485 3.08647 3.85809
7 8	427. : 6732 488. 19122	211.88855 247.20331 282.51806 317.83282	9.15568	2.25255	6 7 8 9	5.90524 6.88944 7.87365 8.85785	0.22506	3.85809 4.50110 5.14412 5.78713	4.62970 5.40131 6.17294 6.94455

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

MEASURE OF CAPACITY. LINEAR MEASURE. ∫ 25.400 milli-I gill = 1.42 decilitres. I pint (4 gills) . . = 0.568 litre. I quart (2 pints) . = 1.136 litres. I GALLON (4 guarts) i inch $\dots = \{$ metres. 0.30480 metre. 1 foot (12 in.) . . = I GALLON (4 quarts) = 4.5459631 " I peck (2 galls.) . = 9.092 " I bushel (8 galls.) . = 3.637 dekalitres. I quarter (8 bushels) = 2.909 hectolitres. 0.914399 " 1 YARD (3 11., 1 pole (5½ yd.) . . = 5.027-1 chain (22 yd. or) = 20.1168 " I YARD (3 ft.) 5.0292 metres. I furlong (220 yd.) = 201.168 1 mile (1,760 yd.) . = { 1.6093 kilometres. AVOIRDUPOIS WEIGHT. $=\{^{64.8} \text{ milli-}$ SQUARE MEASURE. ı grain . . . grammes. 6.4516 sq. cen-1.772 grammes. 1 square inch . . == ı dram . timetres. 9.2903 sq. deci- $1 \text{ ounce } (16 \text{ dr.}) \cdot . = 28.350$ 1 POUND (16 oz. or) = 0 45359243 kilogr. 1 sq. ft. (144 sq. in.) = metres. 7,000 graum, 1 stone (14 lb.) . = 6.350 1 quarter (28 lb.) . = 12.70 1 hundredweight (112 lb.) = {50.80 0.506 7,000 grains) 1 SQ. YARD (9 sq. ft.) = { 0.836126 sq. metres. = 6.350" i perch (30½ sq. yd.) = { 25.293 sq. metres. 12.70 " 0.5080 quintal. 1 rood (40 perches) = 10.117 ares. o.40468 hectare. I ACRE (4840 sq. yd.) == (1.0160 tonnes or 1016 kilo-1 sq. mile (640 acres) = $\{259.00 \text{ hectares.}\}$ 1 ton (20 cwt.) . == grammes. TROY WEIGHT. CUBIC MEASURE. I Troy OUNCE (480 } = 31.1035 grammes. 1 cub. inch = 16.387 cub. centimetres. $\begin{cases} 1 \text{ cub. foot } (1728) \\ \text{cub. in.} \end{cases} = \begin{cases} 0.028317 \text{ cub. me-} \\ \text{tre, or } 28.317 \end{cases}$ 1 pennyweight (24) = 1.5552 tre, or 28.317 cub.decimetres. grains) I CUB. YARD (27) = 0.76453 cub. metre. Norie. — The Troy grain is of the same weight as the Avoirdupois grain. cub. ft.) APOTHECARIES' MEASURE. APOTHECARIES' WEIGHT. I gallon (8 pints or) = 4.5459631 litres. = {28.4123 cubic 1 ounce (8 drachms) = 31.1035 grammes. $\begin{array}{ll} \text{If drachm, 3 i (3 scru-)} = 3.888 \end{array}$ I fluid ounce, f 3 } (8 drachms) centimetres. ples) I fluid drachm, f 3 } = { 3.5552 cubic centimetres. scruple, Di (20) = 1.296 grains) 1 minim, m (0.91146) = { o.05925 cubic centimetres.

NOTE. — The YARD is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The POUND is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., and which is also deposited with the Board of Trade.

The GALLON contains 10 lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at 30 inches. The weight of a cubic inch of water is 252.286 grains.

grain.

form. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois

grain weight)

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

TABLE 2.

EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS
AND MEASURES.

(4) IMPERIAL TO METRIC.

					=				
	LI	NEAR MEA	SURE.			MEA	SURE OF	CAPACITA	r.
	Inches to centimetre	Feet to metres.	Yards to metres.	Miles to kilo- metres.		Quarts to litres.	Gallons to litres.	Bushels to dekalitres.	Quarters to hectolitres.
1 2 3 4 5 6 7 8 9	2.539995 5.079995 7.619993 10.159991 12.699989 15.239987 17.779984 20.319981 22.859979	0.60960 0.91440 1.21920 1.52400 7.1.82880 2.13360 2.43840	0.91440 1.82880 2.74320 3.65760 4.57200 5 48640 6.40080 7.31520 8.22960	1.60934 3.21869 4.82803 6.43737 8.04671 9.65606 11.26540 12.87474 14.48408	1 2 3 4 5 6 7 8 9	1.13649 2.27298 3.40947 4.54596 5.68245 6.81894 7.95544 9.09193 10.22842	4.54596 9.09193 13 63789 18.18385 22.72982 27.27578 31.82174 36.36770 40.91367	3.63677 7.27354 10.91031 14.54708 18.18385 21.82062 25.45739 29.09416 32.73093	2.90942 5.81883 8.72825 11.63767 14.54708 17.45650 20.36591 23.27533 26.18475
	sQ	UARE MEA	SURE.			WI	EIGHT (Av	OIRDUPOIS).	
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to			weights to
1 2 3 4 5 6 7 8	6.45159 12.90318 19.35477 25.80636 32.25794 38.70953 45.16112 51.61271	9.29029 18.58058 27.87086 37.16115 46.45144 55.74173 65.03202 74.32230	0.83613 1.67225 2.50838 3.34450 4.18063 5.01676 5.85288 6.68901	0.40468 0 80937 1.21405 1.61874 2.02342 2.42811 2.83279 3.23748	1 2 3 4 5 6 7 8	64.7989 129.5978 194.3967 259.1956 323.9945 388.7935 453.5924 518.3913	56.699 56.85.048 8 113.398 9 141.747 1 170.097 3 198.446 5 226.796	05 0.9071 158 1.3607 1.8143 163 2.2679 16 2.7215 169 3.1751 162 3.6287	7 2.03209 6 2.54012 6 3.04814 5 3.55617 4 4.00419
9	58.06430 CUBIC	83.61259 MEASURE	7.52513	APOTHE- CARIES' MEASURE.	9 A	583.1902 VOIRDUPOIS (cont.).	7 255.145 Troy W	74 4.0823.	APOTHE- CARIES' WEIGHT.
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Fluid drachms to cubic centi- metres.		Tons to milliers or tonnes.	Ounces to grammes.	Penny- weights to grammes.	Scruples to grammes.
	16.38702 32.77404 49.16106 65.54809 81.93511 98 32213 114.70915	o.o5663 o.c8495 o.11327 o.14158 o.16990 c.19822	0.76455 1.52911 2.29366 3.05521 3.82276 4.58732 5.35187	3.55153 7.10307 10.65460 14.20614 17.75767 21.30920 24.86074	1 2 3 4 5 6 78	1.01605 2.03210 3 04814 4.06419 5 08024 6.09629 7.11233 8.12838	31.10348 62.20696 93.31044 124.41392 155.51741 186.62089 217.72417	3.11035 4.66552 6.22070 7.77587 9.33104 10.88622	2.59196 3.88794
II _ I	131.0961 7 147.48319	0.22653	6.11642 6 88098	28.41227 31.96381	9	9.14443	248.82785 279.93133	12.44139	20.00

TABLE 3. TABLES FOR CONVERTING U. S. WEICHTS AND MEASURES.

(I) CUSTOMARY TO METRIC.

		LINEA	R.				CAPAC	CITY.	
	Inches to millimetres.	Feet to metres.	Yards to metres.	Miles to kilometres.		Fluid drams to millimetres or cubic centimetres.	Fluid ounces to millilitres.	Quarts to litres.	Gallons to litres.
1 2 3 4 5 6 7 8 9	25.4001 50.8001 76.2002 101.6002 127.0003 152.4003 177.3004 203.2004 228.6005	0.304801 0.609601 0.914402 1.219202 1.524003 1.828804 2.133604 2.438405 2.743205	0.914402 1.82864 2.743205 3.657607 4.572009 5.486411 6.400813 7.315215 8.229616	1.60935 3.21869 4.82804 6.43739 8.04674 9.65608 11.26543 12.87478 14.48412	1 2 3 4 5 6 78 9	3.70 7.39 11.09 14.79 18.48 22.18 25.88 29.57 33.27	29.57 59.15 88.72 118.29 147.87 177.44 207.02 236.59 266.16	0.94636 1.89272 2.83908 3.78543 4.73179 5.67815 6.62451 7.57087 8.51723	3.78543 7.57087 11.35630 15.14174 18.92717 22.71261 26.49804 30.28348 34.06891
		SQUAR	E.				WEIG	нт.	
	Square inches to square centimetres.	Square feet to square decimetres.	Square yards to square metres.	Acres to hectares.		Grains to milli- grammes.	Avoirdu- pois ounces to grammes.	Avoirdu- pois pounds to kilo- grammes.	Troy ounces to grammes.
1 2 3 4 5 6 7 8 9	6.452 12.903 19.355 25.807 32.258 38.710 45.161 51.613 58.065	0.290 18.581 27.871 37.161 46.452 55.742 65.032 74.323 83.613	0.836 1.672 2.508 3.344 4.181 5.017 5.853 6.689 7.525	0.4047 0.8094 1.2141 1.6187 2.0234 2.4281 2.8328 3.2375 3.6422	1 2 3 4 5 6 7 8 9	64.7989 129.5978 194.3968 259.1957 323.9946 388.7935 453.5924 518.3914 583.1903	28.3495 56.6991 85.0486 113.3981 141.7476 170.0972 198.4467 226.7962 255.1457	0.45359 0.90719 1.36078 1.81437 2.26796 2.72156 3.17515 3.62874 4.08233	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
		CUBI	С.						
	Cubic inches to cubic centimetres.	Cubic feet to cubic metres.	Cubic yards to cubic metres.	Bushels to hectolitres.		1 Gunter's		20.1168 259.000	metres.
1 2 3 4 5 6 7 8 9	16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	0.02832 0.05663 0.08495 0.11327 0.14158 0.16990 0.19822 0.22654 0.25485	0.765 1.529 2.294 3.058 3.823 4.587 5.352 6.116 6.881	0.35239 0.70479 1.05718 1.40957 1.76196 2.11436 2.46675 2.81914 3.17154	15	I fathom I nautical I foot I avoir. po	ound =		metres. metres. metre. gramme. logramme.

The only authorized material standard of customary length is the Troughton scale belonging to the United States Office of Standard Weights and Measures, whose length at 50°.62 Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7,000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The British gallon = 4-54346 litres.

The British bushel = 36.3477 litres.

The British bushel = 36.3477 litres.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

Quoted from sheets issued by the United States Office of Standard Weights and Measures. SMITHSONIAN TABLES.

TABLE 3. TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES. (2) METRIC TO CUSTOMARY.

Г		LINEA	R.		Γ		C/	PAC	ITY.	<u> </u>	╗
	Metres to inches.	Metres to feet.	Metres to yards.	Kilometres to miles.		Millilitres or cubic centi- metres to fluid drams.	Centi- litres to fluid ounces.	Li	tres litr to to arts.	es litres to	
1 2 3 4 5 6 7 8 9	39.3700 78.7400 118.1100 157.4800 196.8500 236.2200 275.5900 314.9600 354-3300	3.28083 6.56167 9.84250 13.12333 16.40417 19.68500 22.96583 26.24667 29.52750	1.093611 2.187222 3.280833 4.374444 5.468056 6.561667 7.655278 8.748889 9.842500	0.62137 1.24274 1.86411 2.48548 3.10685 3.72822 4.34959 4.97096 5.59233	1 2 3 4 5 6 7 8 9	0.27 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43	0.338 0.676 1.014 1.353 1.691 2.029 2.367 2.705 3.043	2.1 3.1 4.2 5.2 6.3 7.3	134 5.2	085 14.188 502 17.026 919 19.864 336 22.701	5207 529
		SQUAR	E.				W	EIG	HT.		
	Square centimetres to square inches.	Square metres to square feet.	Square metres to square yards.	Hectares to acres.		Milli- grammes to grains.	Kild grams to grain	nes	Hecto- grammes to ounces avoirdupoi	to pound	ls
1 2 3 4 5	0.1 550 0.3100 0.4650 0.6200 0.7750	10.764 21.528 32.292 43.055 53.819 64.583	1.196 2.392 3.588 4.784 5.980 7.176	2.471 4.942 7.413 9.884 12.355	I 2 3 4 5 6	0.01543 0.03086 0.04630 0.06173 0.07716	1543 3086 4629 6172 7716 9259	4.71 7.07 9.43 1.78	3.5274 7.0548 10.5822 14.1096 17.6370	4.4092 6.6138 8.8184 11.0231	7 9 1
7 8 9	1.0850 1.2400 1.3950	75.347 86.111 96.875	8.372 9.568 10.764	17.297 19.768 22.239	7 8 9	0.10803 0.12346 0.13889	10802 12345 13889	6.49 8.85	24.6918 28.2192 31.7466	15.4323 17.6369	8
		CUBIC	C.				W	EIG	нт.		=
	Cubic centimetres to cubic inches.	Cubic decimetres to cubic inches.	Cubic metres to cubic feet.	Cubic metres to cubic yards.			tals to ds av.		lilliers or es to pound av.	Kilogramme to ounces Troy.	
1 2 3 4 5	0.0610 0.1220 0.1831 0.2441 0.3051	61.023 122.047 183.070 244.094 305,117	35.314 70.629 105.943 141.258 176.572	1.308 2.616 3.924 5.232 6.540	1 2 3 4 5	44 66 88	0.46 0.92 1.39 1.85 2.31	1	2204.6 4409.2 661 3.9 8818.5	32.1507 64.3015 96.4522 128.6030 160.7537	
6 7 8 9	0.3661 0.4272 0.4882 0.5492	366.140 427.164 488.187 549.210	211.887 247.201 282.516 317.830	7.848 9.156 10.464 11.771	6 7 8 9	1 54 176	2.77 3.24 3.70 4.16	1	3227.7 5432.4 7637.0 9841.6	192.9044 225.0552 257.2059 289.3567	

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards owinght and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept in the Office of Standard Weights and Measures in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The liter is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

TAMAN 4. - Conversion Posters for Repression of Longtha.

		CONVE
ė	Log.	5.206650 5.267939 1.961137 1.484016 0.404835
Centimetre.	No.	1.6933 × 10 ⁴ 1.85327 × 10 ⁴ 9.14400 × 10 3.04801 × 10 2.54000
	Log.	4.801815 4.863104 1.556302 1.079181 1.595165
Inch.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Log	3.722634 3.783923 0.477121 0 2.920819 2.515984
Foot	No.	5.28000 × 10 ⁴ 6.08027 × 10 ⁴ 3.00000 8.33333 × 10 ⁻⁴ 3.28083 × 10 ⁻⁴
	Log.	3.245513 3.306802 0 1.522879 2.443697 2.038863
Yard.	No.	1.76000 × 10 ⁴ 3 2.02676 × 10 ⁴ 3 3.3333 × 10 ⁻¹ 1 2.77778 × 10 ⁻⁴ 2 1.09361 × 10 ⁻² 2
ile.	Log.	1.938711 0 4.693198 4.216077 5.136896 6.732061
Nautical mile.	No.	8.68382 × 10 ⁻¹ 4.93393 × 10 ⁻⁴ 1.54466 × 10 ⁻⁴ 1.37055 × 10 ⁻⁴ 5.3957 × 10 ⁻⁴
ું	Log.	0 0.061289 4.77366 5.198185 6.793350
Statute mile.	No.	1.15157 5.68182 × 10 ⁻⁴ 1.89394 × 10 ⁻⁴ 1.57828 × 10 ⁻⁴ 6.21370 × 10 ⁻⁴

* In accordance with the United States Standards the metre is taken as = 39-37 inches.

M.H 6. — Conversion Parters for Repression of Areas.

Dunematoria Lr.	ij	Log	15.708540 9.217515 8.262272 6.104910 5.295241
Authens	Circular mil.	No.	5.11141 × 10 ¹⁶ 1.65012 × 10 ⁴ 1.82925 × 10 ⁴ 1.37324 × 10 ⁴ 1.97352 × 10 ⁴
	metre.	Log	10.413299 3.922274 2.958032 0.809669 6.704759
	Square centimetre.	No.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	ch.	Log.	9-603630 3-112605 2-158362 0
	Square inch.	No.	40149 × 10° 1.29600 × 10° 1.44000 × 10° 1.53000 × 10° 7.85398 × 10°7
	5	Log.	7.445268 0.954242 3.641637 3.031968 9.737727
	Square foot	No.	2.78784 × 10 ⁷ 9.00000 1.07639 × 10 ⁻⁸ 1.07639 × 10 ⁻⁸ 5.46673 × 10 ⁻⁹
	1 2	Log.	6491025 0 1.045757 4.887395 4.077726 10.782485
	Square yard.	No	3.09760 × 10 ⁴ 1.11111 × 10 ⁻¹ 7.71605 × 10 ⁻⁴ 1.19596 × 10 ⁻⁴ 6.06017 × 10 ⁻¹⁰
	alle.	Log.	0 7.508975 8.554732 110.395370 111.586700 16.291460
	Square rulle.	No.	1.22831 × 10 ⁻⁷ 3.58701 × 10 ⁻⁸ 2.49598 × 10 ⁻¹⁰ 3.86101 × 10 ⁻¹¹ 1.95641 × 10 ⁻¹⁸

Dimensions = L8.

CONVERSION FACTORS.

Dimensions = L3.

TABLE 6. — Conversion Pacture for Expression of Volumes.

imetre.	Log.	15.619948 5.883410 4.452046 1.214502
Cubic centimetre.	No.	4.16825 × 10 ¹⁶ 7.64555 × 10 ⁴ 2.83168 × 10 ⁴ 1.63871 × 10
45	Log.	14-405445 4.668907 3.237544 0 2.785498
Cubic inch.	No.	11.167902 2.4358 \times 104 1431364 4.66560 \times 104 1.72800 \times 104 4.762456 5.547954 6.10236 \times 10-2
jt.	Log.	11.167902 1.431364 0 4.762456 5.547954
Cubic foot.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
÷	Log.	9736338 0 2.568636 5.331092 6.116590
Cubic yard.	No.	545178 × 10° 1.370370 × 10° 2.14334 × 10° 1.30795 × 10°
ai ai	Log.	0 10.263462 12.832098 15.594555 16.380052
Cubic mile.	No.	1.83426 × 10 ⁻¹⁰ 6.79357 × 10 ⁻¹² 3.94071 × 10 ⁻¹³ 2.40796 × 10 ⁻¹⁴

TABLE 7. — Conversion Pacturs for Expression of Oapsoities.

Cubic foot.	-13	Cubic inch.	뵨	United States gallon.	gallon.	British gallon.	op.	Litres.	
No.	Log.	No	Log.	No.	Log.	No.	Log.	No.	Log.
2,78704 × 10 ⁻⁴ 1,33681 × 10 ⁻¹ 1,60569 × 10 ⁻¹ 3,53147 × 10 ⁻²	0 4.762456 1.126068 1.205661 2.547954	1.72800 × 10³ 2.31000 × 10³ *2.77463 × 10³ 6.10236 × 10	3.237544 0 2.363612 2.443205 1.785498	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.873932 3.636388 0 0.079593 1.421886	6.22785 3.60408 × 10 ⁻⁸ 8.32544 × 10 ⁻¹ 2.19934 × 10 ⁻¹	0.794339 3.556795 1.920407 0 1.342292	2.83168 × 10 1.63872 × 10 ⁻² 3.78542 4.54682	1.452046 2.214502 0.578114 0.657707

• Founded on weight of one cubic inch of water at 63° F. = 352.286 grains, and one British gallon = 10 pounds Avoirdupois.

TABLE 8. — Conversion Pactors for Expression of Masses."

Dimensions = M.

British or Long	g Ton.	U. S. or Short Ton. (2000 lbs.)	t Ton.	Pound.		Grain.		Gramme	a
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
8,928,57 × 10 ⁻¹ 4,46429 × 10 ⁻⁴ 6,37755 × 10 ⁻³ 9,84205 × 10 ⁻⁷	0 7.950782 4.649752 8.804654 7.993086	1.12000 2 5.00000 × 10 ⁻⁴ 7.14286 × 10 ⁻⁶ 1.10231 × 10 ⁻⁶	0.049218 0.049218 4.698970 8.853872 6.042304	2.24000 × 10 ⁸ 2.00000 × 10 ⁸ 1 1.42857 × 10 ⁻⁴ 2.20462 × 10 ⁻⁸	3.350248 3.301030 4.154902 3.343334	1.56800 × 10 ⁷ 1.40000 × 10 ⁷ 7.00000 × 10 ⁸ 1.54324 × 10	7.195346 7.146128 3.845098 0	1.01605 × 10° 9.07186 × 10° 4.53593 × 10° 6.47989 × 10°³	6.006914 5.957696 2.650666 2.811568

• The French tonne = 1000 kilogrammes = 10° grammes. The troy pound = 5760 grains. The troy runce = 480 grains. The avoirdupois out.ce = 437.5 grains. Troy weight is used for gold, silver, and jewels, except diamonds and pearls, for which the grain is 0.8 troy grain. One carat = 3.2 troy grains.

TABLE 9. — Conversion Pactors for Expression of Moments of Inertia.

Foot Pound Units.	Inch Pound Units.	Units.	Foot Grain Units.	Jnits.	Centimetre Gramme Units.	me Units.
Log.	· No.	Log.	No.	Log.	No.	Log.
0 3.841637 4.154902 6.375302	1.44000 × 10 ³ 2.05714 × 10 ⁻³ 341715 × 10 ⁻⁴	2.158362 0 <u>2</u> .313264 4533664	7.00000 × 108 4.86111 × 10 1 1.66111 × 10-8	3.845098 1.686735 0 2.220400	4.21402 × 10 ⁵ 2.92640 × 10 ³ 6.02005 × 10	\$ 624698 3.466336 1.779600

TABLE 10. — Conversion Pactors for Expression of Angles.

r			
Dimension == 1.	umference.	10g	1.201819 1-443697
	Hundredth of Circumference.	No.	1.59155 × 10 2.77778 × 10 ⁻¹
		Log.	0.556302
TABLE 10: — CONTRIBUTE FROMES	Degree	No.	5.72958 × 10 3.60000
OT GREEK		Log.	0 2.241878 2.798180
	Radian.	No.	1.74533 × 10 ⁻² 6.28319 × 10 ⁻²

TARGE 11. — Genversion Pactors for Expression of Intervals of Pina.

1		===	
Dimensions = T.	Second.	Log.	4.935326 4.936514 3.556302 1.778151
Dimer	Mean Solar Second.	No.	3.15715 8.61641 × 10 ⁴ 3.158302 8.64000 × 10 ⁴ 1.778151 3.60000 × 10 ³ 0.00000 × 10 2.221849
	linute.	Log.	3.157175 3.158362 1.778151 0 2.221849
	Mean Solar Minute.	No.	1.43607 × 10 ³ 3 1.44600 × 10 ³ 3 6.00000 × 10 1 1.66667 × 10 ⁻² 2
	four.	ľog.	1.379024 1.380211 0 <u>2</u> .221849 4.443697
	Mean Solar Hour.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Day.	Log.	1.998813 0 2.619789 4.841637 5.063486
	Mean Solar Day.	No.	997270 × 10 ⁻¹ 1.998813 2.39345 × 10 4 16667 × 10 ⁻² 2.619.89 1.66667 × 10 ⁻² 6.9444 × 10 ⁻⁴ 4.841637 1.66667 × 10 ⁻² 1.15741 × 10 ⁻⁵ 5.063436 2.77778 × 10 ⁻⁴
	y.*	Log.	0.001187 2.620976 4.842825 5.064674
	Sidereal Day.*	No.	1.00274 4-17807 × 10 ⁻² 6-96346 × 10 ⁻⁴ 1.16058 × 10 ⁻⁶

• The sidereal year = 3/5.2563578 mean solar days.

PARLS 12. -- Conversion Pactors for Aryresplen of Velection.

Dimensions = L/T.

Miles per hour.	df.	Feet per second.	ond.	Kilometres per hour.	r hour.	Metres per minute.	inute.	Centimetres per second.	second.
Z, o	Log.	No.	Log.	No.	, Log.	No.	Log.	No.	Log.
6.81828 × 10 ⁻¹ 6.21371 × 10 ⁻¹ 3,72821 × 10 ⁻² 2.23694 × 10 ⁻²	0 1.833669 1.793350 2.571501 2.349653	1.46667 1.9411344 × 10 ⁻¹ 5.46807 × 10 ⁻² 3.28084 × 10 ⁻²	0.166331 0 1.959681 2.737833 2.515984	1.6934 1.09727 6.00000 × 10 ⁻² 3.60000 × 10 ⁻²	5.206650 5.040318 0 2.778151 2.556302	2.68224 X 10 1.428499 1.82896 X 10 1.262167 1.66667 X 10 1.21849 6.00000 X 10 ⁻¹ 1.778151	1.428499 1.262167 1.221849 0 1.778151	4.47040 × 10 3.04801 × 10 2.77778 × 10 1.66667	1.650347 1.484016 1.443697 0.221849

PARLE 19. -- Conversion Pasters for Expression of Angular Velecties (angle / time).

				Salan Lo. — Convenient Emerce of Capitations of Anglesis Vectories (Angles / Line).				Dimensi	Dimensions $= 1/T$.
Revolutions per hour.	ır hour.	Revolutions per minute.	minute.	Revolutions per second.	second.	Radians per minute.	ninute.	Radians per second.	second.
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	rog.
1 6.0000 X 10 3.6000 X 10³ 9.54944 5.72958 X 10³	0 1.778151 3.556303 0.979972 2.758123	1.66667 × 10 ⁻² 1.60000 × 10 1.59155 × 10 ⁻¹ 9.54944	7.221849 0 1.778151 7.201820 0.979972	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.443697 2.221849 0 3.423669 1.201820	1.04720 × 10 ⁻¹ 6.28319 3.76998 × 10 ⁴ 6.00000 × 10	7.020028 0 798180 3.576331 0	288 1.74533 × 10 ⁻⁸ 3. 180 1.04720 × 10 ⁻¹ 1. 331 6.28319 0. 1.66667 × 10 ⁻² 2.	1.020028 1.020028 0.798180 2.221849 0

Dimensions = ML/T.

Dimensions = ML^2/T .

TARLE 14. - Conversion Pactors for Expression of Momentum.

Framme inits.	Log.	7.608044 4.14068 2 0.295584 5.000000
Centimetre Gramme Second Units.	No.	4.05549 × 10 ⁷ 1.38255 × 10 ⁴ 1.97508 1.00000 × 10 ⁶
amme nits.	Log.	2.608044 1.140682 5.295584 0 5.000000
Metre Kilogramme Second Units.	No.	4.05549 × 10° 1.38255 × 10 ⁻¹ 1.97508 × 10 ⁻⁸ 1.00000 × 10 ⁻⁶
econd	Log	7.312459 3.845098 6 4.704416 1.704416
Foot Grain Second Units.	No.	2.05333 × 10 ⁷ 7.00000 × 10 ³ 3.00300 × 10 ⁴ 5.00309 × 10 ⁴ 5.00309 × 10 ⁻¹
Second	Log.	3.467361 0 4.154902 0.859318 5.859318
Foot Pound Second Units.	No	2.93333 × 10 ⁸ 1.42857 × 10 ⁻⁴ 7.23300 7.23300 × 10 ⁻⁶
· Units. > bs.)	Log.	0 4 .532639 8 .637541 3 .391956 8 .391956
Mile Ton Hour Units. (One ton == 2000 lbs.)	No.	1,40909 × 10 ⁻⁴ 4,87013 × 10 ⁻⁸ 2,46580 × 10 ⁻⁸ 2,46580 × 10 ⁻⁸

TABLE 15. — Conversion Pactors for Expression of Moments of Momentum.

	λĠ	8,5,8,8
Gramme Units.	Log.	5.624698 3.466336 1.779600 7.000000
Centimetre Gramme Second Units.	No.	4.21402 × 10 ⁶ 2.92640 × 10 ³ 6.02002 × 10 1.00000 × 10 ⁷
ramme nits.	Log.	2.624698 4.466336 6.779600 7.000000
Metre Kilogramme Second Units.	No.	4.21402 × 10 ⁻² 2.92640 × 10 ⁻⁴ 6.02002 × 10 ⁻⁴ 1.00000 × 10 ⁻⁷
Me	Z	
in its.	Log.	3.845098 1.686736 0 5.220400
Foot Grain Second Units.	·	
<i>3</i> 2	No.	7.0000 × 10 ⁸ 4.86112 × 10 1.66112 × 10 ⁸ 1.66112 × 10 ⁻⁸
nd nits.	Log.	2.158362 0 2.313263 3.533664 4.533664
Inch Pound Second Units.		144000 X 10 ² 1.05714 X 10 ⁻² 141716 X 10 ⁻² 141716 X 10 ⁻¹
S	No.	1.44000 × 10 ² 2.05714 × 10 ⁻² 3.41716 × 10 ³ 3.41716 × 10 ⁴
is.	Log.	0 3-841637 4-154902 1.375302 6.375302
Foot Pound Second Units.		7 7 2 2 2 2 X X X X
s	No.	6,9444 × 10 ⁻³ 3 1.42857 × 10 ⁻⁴ 4 2.37302 × 10 ⁻¹

FARLS 16. — Conversion Pactors for Repression of Pures or Pine Rate of Change of Momentum. Dimensions $= ML/T^2$.

Dynes. (Cm. Gr. Sec. Units.)	Unita.)	Millimetre Milligramme Second Units.	igramme nits.	Poundals. (Foot Pound Second Units.)	s. ond Units.)	Foot Grain Second Units.	rain Joits.
δN	Log.	No.	Log.	No	Log.	, o'X	Log.
1.00000 × 10 ⁻⁴ 1.38255 × 10 ⁴ 1.97507	0 4.140682 0.295584	1.38255 × 10 ⁴ 1.38255 × 10 ⁴ 1.97507 × 10 ⁴	4.000000 0 8.140682 4.295584	7.23300 × 10 ⁻⁶ 7.23300 × 10 ⁻⁹ 1.42854 × 10 ⁻⁴	5.859318 9.859318 0 4.154902	5.06310 × 10 ⁻¹ 5.06310 × 10 ⁻⁶ 7.00000 × 10 ⁸	1.704416 5.704416 3.845098

TABLE 17. — Conversion Pactors for Expression of Linear Asselerations.

	1 sec.	Log.	1.650347 1.872196 1.484016 1.443697 1.665546
	Der sec., per sec.	No.	1.94801 0.20650 74507 × 10 ⁻¹ 1.818470 3.04801 × 10 1.778151 2.77778 × 10 4.62963 × 10 ⁻¹ 0.334454
	r, per min.	Log.	1.984801 0.206650 1.818470 1.778151 0
	Kilom. per min., per min.	No.	0.206650 9.65606 × 10 1.084801 4.47040 × 10 2.428408 1.60934 0.206650 7.45067 × 10 0.040318 6.58368 × 10 1.818470 3.04801 × 10 0 6.00000 × 10 1.778151 2.77778 × 10 2.221849 1.6000 0.334454 1.334454
	, per hour.	Log.	0.206650 2.428498 0.040318 0 2.221849 2.556302
	Kilom. { per sec., per sec.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	:r 86C	Log.	0.166331 2.388180 0 1.959681 2.181530 2.515984
4	per sec., per sec.	No.	1.778151 0 1.611820 1.511820 1.791502 1.791350 1.51891 × 10 ⁻¹ 1.99681 1.793350 1.51891 × 10 ⁻² 2.181530 1.51893 × 10 ⁻² 2.181530
	, per mm.	Log.	1.7781 0 1.61182 1.57156 1.7933 0.12786
	Miles { per min., per min.	No.	6,0000 × 10 1 4,09091 × 10 3,7284 × 10 6,21371 × 10 ⁻¹ 1,34216
	per hour.	Log.	
	Miles { per sec., per hour.	No.	1 0 1.66667 × 10 ⁻² 2.21849 6.81818 × 10 ⁻¹ 1.833669 6.21371 × 10 ⁻¹ 1.79335 1.03362 × 10 ⁻² 2.015199 2.23694 × 10 ⁻² 2.349653

PARLE 12. -- Conversion Pasters for Brymanium of Angular Associatestions.

er min.,	Rev. { per min., per sec.	Revolutions per min., per min	ns r min.	Revolutions per sec., per sec.	508	Radians { per min., per sec.	in., per sec. ec., per mis.	Radians per min., per min.	er min.	Radians per sec., per sec.	s r sec.
ė,	Log	ď	ž,	No.	Log.	No.	No Log.	No.	Log.	No.	Log
1.66667 × 10-2 5000000 × 10-1 1.59155 × 10-1 2.6525 × 10-2 5.6930	0 5.221849 1.778151 1.201820 5.423669	6.00000 × 10 3.60000 × 10 ⁴ 9.54930 1.59155 × 10 ⁻¹ 572955 × 10 ⁻¹	1.778154 0 3.556303 0.979971 1.201820 2.758123	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.221849 4.443697 0 3.423669 5.645517 1.201820	1.04720 3.76995 3.76995 1.66667 1.00000.00	0.798180 1.020028 2.576331 0 1.2.221849 1.778151	3.76991 × 10 ² 6.28319 2.26195 × 10 ⁴ 6.00000 × 10 1 .60000 × 10 ⁸	2.576331 0.798180 4.354482 1.778151 0 3.556303	1 1.047.20 × 10 ⁻¹ 1.020029 10 1.74533 × 10 ⁻⁸ 3.24877 10 6.28319 1.66667 × 10 ⁻⁸ 2.27849 2.77778 × 10 ⁻⁴ 4.443997	1.020029 3.241877 0.798180 2.221849 4-443697

Dimensions = 1/TLARCA 19.—Conversion Pastura for Expression of Linear and Angelax Assoluted

Mean Solar Day.	Day.	Mean Solar Hour.	Hour.	Mean Solar Minute.	Minute.	Mean Selar Second.	econd	Sidereal Day.	ay.	Sidereal Second.	econd.
No.	Log.	No.	Log	No.	Log	No.	Log.	No.	Log.	No.	Log.
2.76000 x 10² 2.760422 2.07360 x 10² 6.316723 7.46496 x 10² 9.873027 1.00548 0.00237 7.50589 x 10² 9.875402	2.760422 6.316725 9.873027 9.875402	1.73611 × 10° 1 360000 × 10° 1.29600 × 10° 1.74503 × 10° 1.30311 × 10° 1	3-55957 3-556302 7-112605 3-241952 7-114980	48223 × 10 ⁻⁷ 2.77778 × 10 ⁻⁷ 3.60000 × 10 ⁸ 4.84897 × 10 ⁻⁷ 3.61974 × 10 ⁻⁷	7.683275 4.443697 3.556302 7.685650 3.558677	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.887395 4.43697 0.002375	6.126972 994447 × 10 ⁻¹ 1.997625 6.887395 5.72859 × 10 ² 2.758048 / 443697 2.06229 × 10 ³ 6.314350 / 7.42425 × 10 ³ 9.879653 / 0.002375 7.46496 × 10 ³ 9.87307	1.997625 2.758048 6.314350 9.870653 9.873027	1.33229×10 ⁻¹ 1 10.124598 2.76253×10 ⁻⁴ 8.88,9220 2.76263×10 ⁻⁴ 4.44133 9.94547×10 ⁻¹ 1.997625 1.33961×10 ⁻¹⁰ 10.126972	10.124598 8.885020 4.441323 1.997625 10.126972

TABLE 20. -- Carversion Pacture for Expression of Stress or Porce per Unit Ares. (Greetiniton Measure.)

r			
	mercury	Log.	4.063847 2.555236 0.713599 2.866602 0.404834
Duneusions - M/LL.	Centimetres of mercury at o Cent.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	reury nt.	Log	3.659013 2.150402 0.308765 2.461768 0 1.595166
	Inches of mereury at o Cent	No.	5.197245 4.56050 × 10* 3.659013 1.688634 1.41385 × 10* 2.150402 1.846997 2.03594 0.308765 0.289579 × 10** 2.461768 1.538232 2.0394 0.00000000000000000000000000000000000
	equare e.	Log.	5.197245 1.688634 1.846997 0 1.538232 1.133398
	Grammes per square centimetre.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	quare	Log.	3.350248 3.841637 0 2.153003 1.691235 1.286401
	Pounds per square inch.	No.	2.24000 × 10 ⁴ 6.94444 × 10 ⁻⁸ 1.42234 × 10 ⁻⁸ 4.91174 × 10 ⁻¹ 1.93376 × 10 ⁻¹
	rquare	Log.	5.508610 0 2.158362 0.311365 1.849598 1.444764
	Pounds per equare foot.	No.	3.22560 × 10 ⁵ 1.44000 × 10 ³ 2.04817 7.07.290 × 10 2.78461 × 10
	re inch. 140 lbs.	Log.	0 6-491389 4-649752 6-802755 4-340987 5-936153
	Tons per square inch. One ton == 2240 lbs.	No.	1 446429×10 ⁻⁴ 6.34973×10 ⁻⁴ 2.19274×10 ⁻¹ 8.63283×10 ⁻⁶
-			P

TABLE 21. — Conversion Pacture for Expression of Power, Rate of Working, or Activity. (Geneticitien Reserve.)

	\$65. \$61. \$61. \$9
Log	6.8810 4.1406 2.3625 6.8750 3.2218
	<u> </u>
ž	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Į,	659196 918833 140682 653213 0
	8 78 T
No.	X XX X
	4.562, 1.382, 1.382, 4.500,
Log.	005984 265621 487470 0 346787 124939
	2 4 7 7 7 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1
No.	28 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	1.0138 1.8434 3.0724 2.2222 1.3333
Log.	18514 0 0 12530 12532 137479
	41. 4.016.
Ģ.	X X X X X X X X X X X X X X X X X X X
	3-3000 6-0000 3-2548 7-23327 4-33990
ľog.	40363 0 21849 34379 81166 59319
	2 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
<u>6</u>	X XXXX
Z	5.50000 1.66667 5.4247 1.20550 7.23300
39	~ ~ ~ + 10
	144444 144444
.6	
Z	1.81818 × 10 ⁻⁸ 3-25953 3-0303 × 10 ⁻⁸ 3-481488 9-86319 × 10 ⁻¹ 1-994016 2-19182 × 10 ⁻¹ 4-34680 1.31509 × 10 ⁻⁷ 7-118955
	No. Log. No. Log. No. Log. No. Log. No. Log.

• One force de cheval = 75 kilogramme metres per second.

TABLE 22. -- Conversion Pactors for Expression of Work or Benery. (Gravitation Reserve.)

Dimensions = ML3/T3.

Foot Tons. (One ton == \$140 lbs.)	ns. 40 lbs.)	Foot Tons. (One ton == 2000 lbs.)	as. co lbs.)	Foot Pounds.	ds.	Foot Grains.	ź	Kilogramme Metres.	Metres.	Gramme Centimetres.	timetres.
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.	, o	Log.
8.92857 × 10 ⁻¹ 1.959782 4.46429 × 10 ⁻¹ 4.6497.52 6.37755 × 10 ⁻¹ 8.894654 3.22902 × 10 ⁻¹ 3.59979	0 4.649752 8.804654 3.509070 8.509070	1.12000 \$.00000 \text{10}^4 7.1428 \text{5} \text{10}^8 3.61650 \text{5} \text{10}^8 3.61650 \text{10}^8	0.049218 0 4.698970 8.853872 3.558288 8.558288	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.350248 3.301030 0 4.154902 5.859318 5.859318	1.5680×10 ⁷ 1.4000×10 ⁷ 7.0000×10 ⁸ 1.506310×10 ⁴ 5.06310×10 ⁴ 5.06310×10 ⁴	7.195346 7.146128 3.845098 4.704416 1.704416	3.09691 × 103 2.76510 × 103 1.38255 × 10 ⁻¹ 1.97507 × 10 ⁻⁶ 1.00000 × 10 ⁻⁶	2.490930 2.441712 5.295584 6.00000	3-09691 × 10 ⁷ 2.76510 × 10 ⁷ 1.38253 × 10 ⁴ 1.97597 1.00000 × 10 ⁵	7.490930 7.441712 4.140682 0.295584 5.000000

TABLE 23. — Conversion Factors for Expression of Pilm or Surface Tension. (Gravitation Measure.)

Dimensions = M/T³.

	38	1.172650 2.251832 2.406734 0
Grammes per linear centimetre.	No.	1.48816 × 10 1.78579 × 10 ³ 2.5 2.55113 × 10 ⁻⁸ 2.6
Grains per linear inch.	Log	2.765917 3.845098 0 1.593266
Grains per	No.	5.8333 × 10 ² 7.00000 × 10 ³ 3.91983 × 10
ear inch.	Log.	2.920819 0 4.154902 3.748168
Pounds per linear inch.	No.	8.33333 × 10 ⁻² 1.42854 × 10 ⁻⁴ 5.59976 × 10 ⁻⁸
ear foot.	Log.	0 1.079181 3.234083 2.827349
Pounds per linear foot.	No.	1.20000 × 10 1.71428 × 10 ⁻³ 6.71971 × 10 ⁻²

TABLE 24.—Conversion Pactors for Expression of Power, Rate of Working or Activity. (Absolute Measure.) Dimensions = ML2/T2.

(1g6 – 3)	Log.	\$757969 10-133271 3-133271 0-005984
Force de cheval. (g = 981)	No.	5.72755 × 10 ⁻⁶ 1.35916 × 10 ⁻¹⁰ 1.35916 × 10 ⁻¹⁰ 1.01387
(186 = 8)	Log.	\$751985 10.127287 3.127287 0 1.994016
Horse power. (g = 981)	No.	5.64917 × 10 26 1.34056 × 10 ⁻¹⁰ 1.34056 × 10 ⁻³ 9.86319 × 10 ⁻¹
	Log.	2.624698 7.000000 0 2.872713 2.866730
Watts.	No.	4.21403 × 10 ⁻² 1.00000 × 10 ⁻⁷ 3 7.45956 × 10 ² 7.35750 × 10 ³
s or Ergs d.	Log.	5.624698 0 7.000000 9.872713 9.866730
Centimetre Dynes or Ergs per second.	No.	4.21403 × 10 ⁴ 5.624698 1.00000 × 10 ⁷ 7.0000 7.45956 × 10 ⁸ 9.856733
r second.	Log.	6.375302 1.375302 4.248015 4.242031
Foot Poundals per second.	No.	2.37302 × 10 ⁻⁶ 2.37302 × 10 1.77013 × 10 ⁴ 1.74595 × 10 ⁴

TABLE 25.—Conversion Pactors for Expressing Work or Burryy. (Absolute Measure.)

10	JK5.		
Dimensions = M.L. / 1.	imetres.	Log.	2.633029 3.008331 4.008331 4.140082 0
Umensions	Gramme Centimetres.	No.	4.29565 × 103 1.01937 × 107 1.01937 × 104 1.38255 × 104
	= 32.18504)	Log.	2.492347 8.867649 1.867649 0 5.859318
	Foot Pounds. (g = 32.18504)	No.	3.10704 × 10 ⁻² 7.37308 × 10 ⁻⁶ 7.37308 × 10 ⁻¹ 7.23299 × 10 ⁻⁶
		Log.	2.624698 7.000000 0 0.132351 5.991669
	Joules.	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	re Dynes.	Log.	5.624698 0 7.000000 7.132351 2.991669
	Ergs or Centimetre Dynes.	No.	
	als.	Log.	6.375302 1.375302 1.507653 3.366971
	Foot Poundals.	No.	2.37302 × 10 ⁻⁶ (2.37302 × 10 3.31850 × 10 2.32794 × 10 ⁻⁸

TABLE 26. — Conversion Pasters for Beyerseles of Stress or Pures per Ouit of Arve. (Absolute Measure.)

Dimensions = M / LT3.

Poundals per square foot.	are foot.	Poundals per square inch.	are inch.	Dynes per square centimetre.	centimetre.	Megadynes per square metre.	uare metre.
No.	Log.	No.	ZoT	No.	Log.	No.	Log.
1.44000×10² 6.71971×10⁻² 6.71971	2.1 58362 2.827349 0.827349	6.9444 × 10-8 4.66646 × 10-4 4.66646 × 10-3	3.841638 0 4.668987 2.668987	1.48816×10 2.14295×10 ⁴ 1.00000×10 ²	1.172651 3.331013 0 2.00000	1.48816×10 ⁻¹ 2.14295×10 2.00000×10 ⁻³	1.172651 1.331013 2.000000

TABLE 97. — Conversion Pacture for Represeden of Plus or Surface Fundon. (Absolute Measure.)

Poundals per linear inch.	ear inch.	Dynes per linear cm.	ear cm.	Grains per linear inch. (g = 981 cms. per sec., per sec.)	ar inch. c., per sec)	Grammes per linear em. (g = 981 cms, per sec., per sec.)	nes per linear em.
No.	Log.	No.	Log	No.	Log.	No.	Log
1.83723 × 10 ⁻⁴ 4.59786 × 10 ⁻³ 1.80228 × 10 ⁻¹	0 4.264152 3.662556 1.255821	5.44312 × 10 ⁸ 2.50267 × 10 ⁻¹ 9.81000 × 10 ³	3.735848 0 7.398403 2.991669	2.17490×10 ³ 3.99573×10 ³ 3.91981×10	2.337445 2.601597 0 1.593266	5.54854 1.01937 × 10 ⁻⁸ 2.55114 × 10 ⁻⁸	9.744179 3.008331 8.406734

TABLE 18. -- Conversion Proters for Expression of Densities.

Log. No. Log. R.12.80.5	2 P	No. Log.	soco pounds = 1 tos. Pounds pe No. Log. No.
No.	Log.	No. Log.	No.
X 20	8.123128		
24.72 X X X X	3-237 544 1-392446 1-428 1-795380 3-612	1.35872×10° 8.133128 7.864 1.7280×10° 3.2754 2.46857×10° 1.392446 1.428 6.24281×10° 1.795380 3.613	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 29. - Conversion Pacture for Expression of Specific Electrical Conductance.

_			
$= L/\mu T$.	of a Cubic	Log.	4.501891 7.256378 5.104910 4.104910
Dimensions = $L/\mu T$.	Conductance of a Cubic	No.	0.396981 3.17607 × 10 ⁴ 7 3.151468 1.80459 × 10 ⁴ 7 1.000000 1.27344 × 10 ⁴ 5 0 1.27324 × 10 ⁴ 4 5.895090
	n.)	Log.	0.396981 3-151468 1.000000 0 5-895090
	Conductance of a M (d = 1 mm.)	No.	2.49448 1.41732 × 10³ 1.00000 × 10 1 7.85398 × 10-6
	Cilometre.*	.gor	1.396981 2.151368 0 1.000000 6.895090
	Conductance of a Yard.* Conductance of a Kilometre.* Conductance of a Metre.* (d = one mil.)	No.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	a Yard.• nil.)	Log.	3.245513 0 3.848532 4 848532 8.743622
	Conductance of a Y (d = one mil.)	No.	0 1.76000 × 10 ⁻³ 3.245513 2 2.754487 1 0 0 1 0.603019 7.05557 × 10 ⁻⁴ 3.848532 1 0.603019 7.05557 × 10 ⁻⁴ 4.848532 1 5.498109 5.54143 × 10 ⁻⁸ 8.743622 7
	a Mile.*	Log.	2.754487 0.603019 1.603019 5.498109
	Conductance of a Mile.* (d = 1 inch.)	No.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

· Taken as unit.

TABLE 30. — Conversion Pactors for Expression of Electrolytic Deposition.

•			
Dimensions = M/T.	er minute.	Log.	3 589719 1.656666 2.778151
Dimen	Kilogrammes per minute.	No.	3.88793 × 10 ⁻⁶ 4.53593 × 10 ⁻¹ 6.00000 × 10 ⁻²
	second.	Log.	2.811568 0.878515 0 1.221849
	Grammes per second.	No.	3 647989 × 10 ⁻² 7-55988 5 1.66667 × 10
	linute.	Log.	3-933053 0 7.121485 0.343334
	Pounds per minute.	No.	8.57143×10 ⁻⁸ 1.3227×10 ⁻¹ 2.20462
	cond.	Log.	2.066947 1.188432 2.410281
	Grains per second.	No.	1.16667 × 10³ 1.54323 × 10° 2.57206 × 10³

TABLE 31. -- Conversion Pactors for Expression of Quantities of Heat.

Dimensions = Me.	æ C.)	Log.	0.343334 3.343334 1.745727
Dim	(Pound degree C.)	No.	2.20462 2.20462×10-1 5.56836×10 ⁻¹
	al Unit. ee F.)	Log.	o.598607 3-598607 0 0.254273
	British Thermal Unit. (Pound degree F.)	No.	3.96832 3.96832 × 10-² 1.79586
	Calorie. ee C.)	Log.	3.000000 0 2.401393 2.656666
	Therm, or Small Calorie. (Gramme degree C.)	No.	1.00000 × 10 ⁸ 1 2.51996 × 10 ⁹ 4.53593 × 10 ⁹
	:gree C.)	Log.	0 3.00000 1.401393 1.65666
	Calorie. (Kilogramme degree C.)	No.	1.00000×10 ⁻⁸ 2.51996×10 ⁻¹ 4-53593×10 ⁻¹

TABLE 32. — Conversion Pactors for Expression of Temperatures.

Dimension $= \theta$.

Centigrad	le.	Fahr	renheit.*	Réaumi	ır.
. No.	Log.	No.	Log.	No.	Log.
1 5.55556 × 10 ⁻¹ 1.25000	0 1.744727 0.096910	1.80000 1 2.25000	0.255272 0 0.352182	8.00000 × 10 ⁻¹ 4.44444 × 10 ⁻¹	ī.903090 ī.647817 O

^{*} The zero of the Fahrenheit scale is 32° below the freezing point of water.

In many of the derived units for the measurement of physical quantities, the unit of time may be taken as constant, because it is seldom that any other unit than the second is used. This is the case, in particular, for the electric and magnetic units. Tables 33-37 below, giving the factors for the conversion of units depending on different dimensional equations in M and L from one set of fundamental units to another, will be found sufficient for almost all cases.

TABLE 33. — Electric Displacement, etc.

Dimensions = $M^{\frac{1}{2}}L^{-\frac{n}{2}}T^n$.

Foot Gra Second Un		Metre Gra Second U		Centimetre Gramme or \ Second Millimetre Milligramme \ Units.		
No.	Log.	No.	Log.	No.	Log.	
1 6.61058 × 10 ⁻¹ 6.61058 × 10 ²	0 1.820240 2.820240	1.51273 1 1.00000 × 108	0.179760 0 3.000000	1.51273 × 10 ⁻⁸ 1.00000 × 10 ⁻⁸	3.179760 3.000000 0	

TABLE 94. — Surface Denatty of Magnetten, etc.

Dimensions = M'L'T'.	Centimetre Gramme Millimetre Miligramme Second Units.	Log. No. Log.	1 2.663776 4.61079 0.663776 1.000000 1.000000 1.000000 10 2.000000 1.00000 1.00000 10 2.000000 10 1.000000 10 10 10 10 10 10 10 10 10 10 10
	Centimeta Second	No.	461079 × 10 ⁻⁸ 1.00000 × 10 ⁻¹ 1.00000 × 10 ⁻⁸
	nme iits.	Log.	1.663776 0 1.00000 1.00000
	Metre Gramme Second Units.	No.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	g. 55	Log	0.33624 1.33624 1.33624 1.33624
	Foot Grain Second Units.	No.	1 2.16882 2.16882 × 10 2.16882 × 10 ⁻¹

TABLE 38. — Intensity of Magnetization,* on.

				TOTAL OF - THERESE IS THE TANK OF THE TANK	:	Dimensions	$D_{\rm imensions} = M^{\dagger} L^{\dagger} T^{\alpha}.$
Foot Grain Second Units.	in its.	Metre Gramme Second Units.	nine xits.	Centimetre Gramme Second Units.	ramme ius,	Millimetre Milligramme Second Units.	iligramme Juits.
No.	Log.	No.	Log.	No	Log.	No.	Log.
7.11554 7.11554 × 10 ⁻¹ 7.11554 × 10 ⁻⁸	0 0.852208 1.852208 3.852208	1.40538 × 10 ⁻¹ 1.00000 × 10 ⁻¹ 1.00000 × 10 ⁻⁸	1.147792 0 1.000000 3.000000	1.40538 1.00000 × 10 1 1.00000 × 10 ⁻⁸	0.147792 1.000000 0 2.000000	1.40538 × 10 ³ 1.00000 × 10 ³ 1.00000 × 10 ³	2.147792 3.00000 2.000000 0

• In electrostatic units. For electromagnetic units take table 34.

TABLE S6. - Heatrie Petential, etc.

Foot Grain Second Units.	e si	Metre Gramme Second Units.	itte.	Centimetre Gramme Second Units.	ramme its.	Millimetre Milligramme Second Unita.	lligramme Inita.
No.	Log	No.	Log.	No.	Log	No.	Log.
1 3349 × 10 3349 × 10* 3349 × 10*	0 1.368192 0.368192 <u>5</u> 368192	4.28359 × 10 ⁻⁴ 2.631808 1.00000 × 10 ⁻⁴ 3.000000 1.00000 × 10 ⁻⁴ 6.000000	2.631808 0 1.000000 6.000000	4.28359 × 10 1.00000 × 10 ⁴ 1.00000 × 10 ⁻⁴	0 0 0 0 0 0 0 0 0	4.28359 × 104 1.00000 × 104 1.00000 × 103	4631808 6.000000 3.000000 0

HLB 87. — Magnetio Mement, etc.

Metre Gramme Second Units.
No. Log.
1.30564 \times 10 ⁻⁴ $\stackrel{?}{=}$ 111,623 1.00000 \times 10 ⁻⁴ $\stackrel{?}{=}$ 1.00000 1.00000 \times 10 ⁻⁴ $\stackrel{?}{=}$ 5.000000

27

HYPERBOLIC FUNCTIONS.*

Hyperbolic sines.

Values of $\frac{e^{\sigma}-e^{-\sigma}}{2}$.

æ	0	1	2	3	4	5	6	7	8.	9
0.0	0.0000	0010.0	0.0200	0.0300	0.0400	0.0500	0.0600	0.0701	0.0801	0.0901
0.0	.1002	.1102	.1203				1 -	.1708	.1810	
0.2	.2013	.2115	.2218	.1304	.1405	.2526			.2837	
0.3	.3045	.3150	-3255	.3360	.3466	.3572	1 - 5	-2733 -3785	2802	-4000
0.4	.4108	.4216	.4325	•4434	.4543		.4764	.4875	.3892 .4986	.5098
J.,	.4.00	i i	173-3	1777			17,54	1 4-73	17,500	13232
0.5	0.5211	0.5324	0.5438	0.5552	0.5666	0.5782	0.5897	0.6014	0.6131	0.6248
0.6	.6367	.6485	0.5438 .6605	1.6725	.6846	0.5782 .6967	.7090			
0.7	.7586	.7712	.7838	.6725 .7966	.8094	.8223	.8353	.7213 .8484	.7336 .8615	8748
0.8	.8881	.9015	.9150	.9286	.9423	.956ī	.9700	.9840	.9981	.0122
0.9	1.0265	1.0409	1.0554	1.0700	1.0847	1.0995	1.1144	1.1294	1.1446	1.1598
1.0	1.1752	1.1907	1.2063	1.2220	1.2379	1.2539	1.2700	1.2862	1.3025	1.3190
1.1	.3356	.3524	.3693	3863	-4035	.4208	.4382	.4558	-4735	.4014
1.2	.5005	.5276	.5460	.5645	.5831	.6019	.6209	.6400	.6593	.6788
1.3	.5095 .6984	.7182	.7381	.7583	.5831 .7786	.7991	.8198	.8406	.8617	.8829
1.4	.9043	.9259	-9477	9697	.9919			2.0597	2.0827	2.1059
							• •		· •	"
1.5	2.1293	2.1529	2.1768	2.2008	2.2251	2.2496	2.2743	2.2993	2.3245	2.3499
1.6	.3756	.4015	.4276	-4540	.4806	.5075	.5346 .8202	.5620 .8503	.5896	.6175
1.7	.6456	.6740	.7027	.7317	.7609	.7904			.8866	.9112
1.8	.9422	.9734	3.0049	3.0367	3.0689	3.1013	3.1340	3.1671	3.2005	3.2341
1.9	3.2682	3.3025	-3372	.3722	-4075	-4432	-4792	.5156	·5523	.5894
2.0	3.6269	3.6647	3.7028	3.7414	3.7803	3.8196	3.8593	3.8993	3.9398 4.3666 4.8372	3.9806
2.1	4.0219	4.0635	4.1056	4.1480	4.1909	4.2342	4.2779	4.3221	4.3666	4.4117
2.2	4.4571	4.5030	4.5494	4.5962	4.6434	4.6912	4.7394	4.7880	4.8372	4.8868
2.3	4.9370	4.9876	5.0387	5.0903	5.1425	5.1951	5.2483	5.3020 5.8689	5.3562	5.4109
2.4	5.4662	5.5221	5.5785	5.6354	5.6929	5.7510	5.8097	5.8689	5.9288	5.9892
2.5	6.0502	6.1118	6.1741	6.2369	6.3004	6.3645	6.4293	6.4946	6.5607	6.6274
2.6	6.6947	6.7628	6.8315	6.9009	6.9709	7.0417	7.1132	7.1854	7.2583	
2.7	7.4063	7.4814	7.5572	7.6338	7.7112	7.7894	7.8683	7.9480	8.0285	7.3319 8.1098
2.8	8.1919	8.2749	8.3586	8.4432	8.5287	7.7894 8.6150	8.7021	8.7902	8.8791	8.9689
2.9	9.0596	9.1512	9-2437	9-3371	94315	9.5268	9.6231	9-7203	9.8185	9-9177
3.0	10.018	10.119	10.221	10.324	11.429	11.534	11.640	11.748	11.856	11.966
3.1	11.076	11.188	11.301	11.415	11.530	12.647	12.764	12.883	12.003	12.124
3.2	12.246	12.369	12.494	12.620	12.747	12.876	13.006	13.137	13.269	13.403
3.3	13.538	13.674	13.812	13.951	14.092	14.234	14.377	14.522	14.668	14.816
3-4	14.965	15.116	1 5.268	15.422	I 5.577	1 5.734	15.893	16.053	16.214	16.378
3.5	16.543	16.709	16.877	17.047	17.219	17.392	17.567	17.744	17.923	18.103
3.6	18.285	18.470	18.655		19.033	19.224	19.418	19.613	19.811	20.010
	20.211	20.415	20.620	18.843 20.828	21.037	21.249	21.463	21.679	21.897	22.117
1 5 5 1	22.339	22.564	22.791	23.020	23.252	23.486	23.722	23.961	24.202	24.445
	24.691	24.939	25.190	25-444	25.700	25.958	26.219	26.483	26.749	27.018
4.0	27.290	27.564	27.842	28.122	28.404	28.690	28.979	29.270	29.564	29.862
	30.162	30.465	30.772	31.081	31.393	31.709	32.028	32.350	32.675	33.004
		33.671	34.000		34.697	35.046	35.398	35.754	36.113	36.476
4.3	33.336 36.843	37.214	37.588	34.351 37.966	38.347	38.733	39.122	39.515	39.913	40.314
	40.719	41.129	41.542	41.960	42.382	38.733 42.808	43.238	43.673	44.112	44.555
4.5	45.003	45-455	45.912	46.374	46.840	47.311	47.787	48.267	48.752	49.242
	49.737	50.237	50.742	51.252	51.767	52.288	52.813	53-344	53.880	54.422
	54.969	55.522	56.080	56.643	57.213	57.788	58.369	58.955	50.548	60.147
4.7 4.8	60.751	61.362	61.979	62.601	63.231	63.866	64.508	65.157	59.548 65.812	66.473
	67.141	67.816	68.498	69.186	69.882	70.584	71.293	72.010	72.734	73.465
'				,	, = "		. /3			.5 4.5

^{*} Tables 38-41 are quoted from "Des Ingenieurs Taschenbuch," herausgegeben vom Akademischen Verein (Hütte).

HYPERBOLIC FUNCTIONS.

Hyperbelic cosines.

Values of $\frac{e^a+e^{-a}}{2}$.

æ	0	1	2	3	4	5	6	7	8	9
			ļ		:				ŀ	
0.0	1.0000	1.0001	1.0002	1.0005	1.0008	1.0013	1.0018	1.0025	1.0032	1.0041
0.1	.0050	.0061	.0072	.0085 .0266	.0098	.0113 .0314	.0128	.0145	.0162	.0181
0.3	.0453	.0484	.0243	.0549	.0584	.0514	.0340	.0692	.0395	.0423
0.4	.0811	.0852	.0516 .0895	.0939	.0984	.1030	.1077	.1125	.1174	.1225
			,	10,55	1.25.4		""	,	111,74	
0.5	1.1276	1.1329	1.1383	1.1438	1.1494	1.1551	1.1609	1.1669	1.1730	1.1792
0.6	.1855	.1919	.1984	.2051	.2119		.2258	.2330	.2402	.2476
0.7	.2552	.2628	.2706	.2785	.2865	.2947	.3030	.3114	.3199	.3286
0.8	-3374	-3464	-3555	.3647	.3740	.3835 .4862	-3932	.4029	.4128	.4229
0.9	-4331	4434	-4539	.4645	-4753	.4002	-4973	.5085	.5199	-5314
1.0	1.5421	1.5540	1.5669	1.5790	1.5913	1.6038	.6164	1.6292	1.6421	1.6552
1.1	1.5431 .6685	1.5549 .6820	.6956	.7093	.7233		.7517	.7662	.7808	.7956
1.2	.8107	.8258	.8412	.7093 .8568	8725	·7374 .8884	.9045	.9208	-9373	.9540
1.3	.9709	.9880	2.0053	2.0228	2.0404	2.0583	2.0764	2.0947	2.1132	2.1320
1.4	2.1509	.1700	.1894	.2090	.2288	.2488	.2691	.2896	.3103	.3312
									1	اا
1.5	2.3524	2.3738	2.3955	2.4174	2.4395	2.4619	2.4845	2.5073	2.5305	2.5538 -8020
I.6 I.7	·5775 -8283	.6013 .8549	.6255 .8818	.6499	.6746	.6995 .9642	-7247	.7502 3.0206	.7760	3.0782
1.8	3.1075	3.1371	3.1669	.9090 3.1972	.9364 3.2277	3.2585	.9922 3.2897	.3212	3.0492	.3852
1.9	-4177	.4506	-4838	.5173	.5512		.6201	.6551	.3530 .6904	.7261
	4-77			-5-75	.33.2	. , , ,	1	1000	1.5954	,,,,,,
2.0	3.7622	3.7987 4.1847	3.8355 4.2256 4.6580	3.8727	3.9103	3.9483	3.9867	4.0255	4.0647	4.1043
2.1	4.1443	4.1847	4.2256	4.2668	4.3085	4.3507	4.3932 4.8437	4.4362	4-4797	4.5236 4.9881
2.2	4.5679	4.6127	4.6580	4.7037	4.7499	4.7966	4.8437	4.8914	4.9395 5.4487	4.9881
2.3	5.0372	5.0868	5.1370 5.6674	5.1876	5.2388	5.2905	5.3427 5.8951	5.3954	5.4487	5.5026
2.4	5.5569	5.6119	5.0074	5.7235	5.7801	5.8373	5.8951	5-9535	60125	6.0721
2.5	6.1323	6.1931	6.2545	6.3166	6.3793	6.4426	6.5066	6.5712	6.6365	6.7024
2.6	6.7690	6.8363	6.9043		7.0423	7.1123	7.1831	7.2546	7.3268	7.3998
2.7	7.4735	7.5479	7.6231	7.6990	7.7758	7.8533	7.9136	7.0106	8.0905	8.1712
2.8	8.2527	7·5479 8·3351	8.4182	8.5022	7.7758 8.5871	7.8533 8.6728	8.7594	8.8469	8.9352	9.0244
2.9	9.1146	9.2056	9.2976	9.3905	9.4844	9.5791	9.6749	9.7716	9.8693	9.9680
										i l
3.0	10.068	10.168	10.270	10.373	10.476	10.581	10.687	10.794	10.902	11.011
3.1	11.121	12.233	11.345	11.459	11.574	11.689	11.806	11.925	12.044	12.165
3.2 3-3	13.575	13.410	12.534 13.848	13.987	14.127	12.915	13.044 14.412	13.175 14.556	13.307 14.702	13.440 14.850
3-4	14.999	15.149	15.301	15.455	15.610	15.766	15.924	16.084	16.245	16.408
	- 4.223	- 3 79	- 5-5	- 3.433	- 3.5.5	3,755	- 3.3-4			- 2-4-5
3.5	16.573	16.739	16.907	17.077	17.248	17.421	17.596	17.772	17.951	18.131
3.6	18.313 20.236	18.497	18.682	18.870	19.059	19.250	19.444	19.639	19.836	20.035
3.7 3.8		20.439	20.644	20.852	21.061	21.272	21.486	21.702	21.919	22.139 24.466
3.8	22.362	22.586	22.813	23.042	23.273	23.507	23.743 26.238	23.982	24.222	
3-9	24.711	24.959	25.210	25.463	25.719	25.977	20.230	26.502	26.768	27.037
4.0	27.308	27.582	27.860	28.139	28.422	28.707	28.996	29.287	20.581	29.878
4.1	30.178	30.482	30.788	31.097	31.409	31.725	32.044	32.365	29.581 32.691	33 019
4.2		33.686	34.024	34.366	34.711	35.060	35.412	35.768	36.127	36.490
4-3	33.351 36.857	37.227	37.601	37.979	38.360	38.746	39.135	39.528 43.684	39.925	40.326
4.4	40.732	41.141	41.554	41.972	42.393	42.819	43.250	43.684	44.123	44.566
				.6 -0 -				.0	18 760	40.000
4.5	45.014	45.466	45.923	46.385	46.851	47.321	47.797	48.277	48.762	49.252
4.6	49-747 54-978	50.247	50.752 56.089	51.262 56.652	51.777 57.221	52.297 57.796	52.823 58.377	53·354 58·964	53.890	54.431 60.155
4.7 4.8	60.759	55.531 61.370	61.987	62.609	63.239	63.874	64.516	65.164	59.556 65.819	66.481
4.9	67.149	67.823	68.505	69.193	69.889	70.591	71.300	72.017	72.741	73.472
1 7.9	7,575	.,	ردرد	7-33	,,,,,,,		. 5	•		
								_==		

TABLE 40.

HYPERBOLIC FUNCTIONS.

Genmon logarithms + 10 of the hyperbolic sines.

7		7		,						
æ	0	1	2	3	4	5	6	7	8	9
0.0	8	0000	2011	4880	6022	6000		0	0006	21.8
0.0	0007	0423	3011	4772 1152	1475	6992 1777	7784 2060	8455	9036 2576	9548 2814
0.2			3459	3656	3844	4025		2325 4366	4528	4685
0.3	3039 4836	3254 4983	5125	5264	3844 5398	5529	4199 5656	5781 6880	5902	6020
0.4	9.6136	6249	6355	6463	6574	5529 6678	6780	688o	6978	7074
0.5	9.7169	7262	7354 8199	7444	7533 8354 9082	7620	7707	7791 8581	7875	7958
0.6	8039	8119	8199	8277	8354	8431	8506	8581	8655	8728
0.7 0.8	8800	8872	8942	9012		9150	9218	9286	9353	9419
0.9	9485	9550	9614 0234	9678 0294	9742 0353	9805 0412	9868 0470	9930 0529	9992 0586	0053 0644
	·			1	1	l .			_	0044
1.0	10.0701	0758	0815	0871	0927	0982	1038	1093	1148	1203
1.1	1257 1788	1311	1365	1419	1472	1525	1578	1631.	1684	1736
I.2 I.3	2300	1840	1892 2401	1944 2451	1995 2501	2046 2551	2098 2000	2148 2650	2199 2699	2250 2748
I.4	2797	2351 2846	2895	2944	2993	3041	3090	3138	3186	3234
H ' I		•								3-34
1.5	10.3282	3330 3805	3378 3852	3426	3474	3521	3569	3616	3663	3711
1.6	3758		3852	3899	3946	3992	4039	4086	4132	4179
1.7	4225 4687	4272	4318 4778	4364 4824	4411 4870	4457 4915	4503 4961	4549 5007	4595 5052	4641 5098
1.9	5143	4733 5188	5234	5279	5324	5370	5415	5460	5505	5550
1										
2.0	10.5595	5640 6089	5685	5730	5775 6223	5820	5865	5910	5955	599 9
2. I 2.2	6044		6134 6580	6178 6624	6668	6268	6312	6357 6802	6401 6846	6446
2.2	6491 6935	6535 6979	7023	7067	7112	6713 7156	6757 7 200		7289	6890 7333
2.4	7377	7421	7465	7509	7553	7597	7642	7244 7686	7730	7774
2.5	10.7818	7862	7906	7050	7004	8038	8032	8126	8169	8213
2.6	8257	8301	8345	7950 8389	7994 8433	8477	8521	8564	8608	8652
2.7	8696	8740	8784	8827	8871	8915	8959	9003	9046	9090
2.8	9134	9178	Q221	9265	9309	9353	9396	9440	9484	9527
2.9	9571	9615	9658	9702	9746	9789	9833	9877	9920	9964
3.0	8000.11	0051	0095	0139	0182	0226	0270	0313	0357	0400
3.1	0444 0880	0488	0531	0575	6190	0662	0706	0749	0793	0 836
3.2		0923	0967	1011	1054	1098	1141	1185	1228	1272
3.3	1316	1359	1403 1838	1446 1881	1490	1533	1 577 201 2	1620	1664	1707
3.4	1751	1794			1925	1900	2012	2056	209 9	2143
3.5	11.2186	2230	2273	2317	2360	2404	2447	2491	2534 2969	2578
3.6	2621	2665	2708	2752 3186	2795	2839	2882	2925	2969	3012
3.7 3.8	3056	3099	3143	3180 3621	3230 3665	3273 3708	3317	3360	3404 3838	3447 3882
3.0	3491 3925	3534 3969	3578 4012	4056	4099	4143	3752 4186	3795 4230	3030 4273	3002 4317
1										i i
4.0	11.4360	4403 4838	4447 4881	4490	4534 4968	4577	4621	4664	4708	4751 5186
4.I 4.2	4795	4838 5273	5316	4925	4900	5012	5055 5490	5099	5142	5186 5620
4-3	5229 5664		5750	5359 5794	5403 5837	5446 5881	5924	5533 5968	5577 6011	
44	6098	5707 6141	5750 6185	5794 6228	6272	6315	6359	6402	6446	6055 6489
4.5	11.6532	6576	6619	6663	6706	6750	6793	6836	688o	6923
4.6	11.6532	7010		7097	7141	6750 7184	7227	7271	7314	7358
4-7 4-8	7401		7054 7488	7531 7966	7575 8009	7618	7662	7705 8140	7749 8183	7792
4.8	7836	7445 7879	7922	7966		8053 8487	8096		8183	7792 8226
4-9	8270	8313	8357	8400	8444	8487	8530	8574	8617	8661
<u></u>										

TABLE 41.

HYPERBOLIC FUNCTIONS.

Common legarithms of the hyperbolic cosines.

æ	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0000	1000	0002	0003	0005	0008	1100	0014	8100
0.1	0022	0026	0031	0037	0042	0049	0055	0062	0070	0078
0.2	0086	0095	0104	0114	0124	0134	0145 0276	01 56	0168	0180
0.3	0193	0205	0219	0232	0246	Q261		0291	0306	0322
0.4	0339	0355	0372	0390	0407	0426	0444	0463	0482	0502
0.5	0.0522	0542	0562	0583	0605	0626	0648	0670	0693	0716
0.6	0739	0762	0786	0810	0835	0859	0884	0910	0935	0961
0.7 0.8	0987 1263	1013 1292	1321	1067 1350	1094 1380	1122 1410	1149	1177 1470	1206	1234
0.9	1563	1594	1625	1657	1689	1721	1753	1785	1818	1532 1851
1.0	0.1884	1917	1950	1984	2018	2051	2086	2120	2154	2189
1.1	2223	2258	2293	2328 2688	2364	2399		2470	2506	2542
1.2	2578	2615	2651		2724	2761	2435 2798	2835	2872	2909 3288
1.3	2947	2984	3022	3059	3097 3481	3135	3173	3211	3249	3288
1.4	3326	3365	3403	3442	3401	3520	3559	3598	3637	3676
1.5	0.3715	3754	3794	3833	3873	3913	3952	3992	4032	4072
1.6	4112	4152	4192	4232 4637	4273 4678	4313 4719	4353 4760	4394 4801	4434 4842	4475 4883
1.7	4515 4924	4556 4965	4597 5006	5048	5089	5130	5172	5213		5296
1.9	5337	5379	5421	5462	5504	5545	5587	5629	5254 5671	5713
2.0	0.5754	5796	5838	588o	5922	5964	6006	6048	6090	6132
2.1	0175	6217	6259 6682	6301	6343	6386 6809	6428	6470	6512	6555
2.2	6597	6640		6724	6767	6809	6852	6894	6937	6979
2.3	7022 7448	7064 7491	7107 7534	7150 7577	7192 7619	7235 7662	7278 7705	7320 7748	7363 7791	7406 7833
<u> </u>		/491		_						į.
2.5	0.7876 8305	7919 8348	7962 8391 8821	8005	8048	8091	8134 8563	8176 8606	8219	8262
2.7	. 8735	8778	8821	8434 8864	8477 8907	8520 8051	8994		8649 9080	8692 9123
2.8	8735 9166	9209	9252 9684	9295	9338	8951 9382 9813		9037 9468	9511	0554
2.9	9597	9641	9684	9727	9770	9813	9425 9856	9900	9943	9986
3.0	1.0029	0073	0116	01 59	0202	0245 0678	0289	0332	0375 0808	0418
3.1	0462	0505	0548	0591	0635	o 6 ₇ 8	0721	0764		0851
3.2	0894 1327	0938	0981 1414	1024 1457	1067 1501	1111	1154 1587	1197 1631	1241 1674	1284 1717
3-4	1761	1371 1804	1847	1891	1934	1977	2021	2064	2107	2151
3.5	1.2194	2237	2281	2324	2367	241 I	2454	2497	2541	2584.
2.6	2628	2671	2714	2758	2801	2844	2454 2888	2931	2974	3018
3.7 3.8	3061	3105	3148	3191	3235 3669	3278	3322	3365	3408	3452 3886
3.9	3495 3929	3538 3972	3582 4016	3625 4059	3669 4103	3712 4146	3755 4189	3799 4233	3842 4278	3886 4320
			•				, ,			
4.0	1.4363 4797	4406 4840	4450 4884	4493 4927	4537 4971	4580 5014	4623 5057	4667 5101	4710 5144	4754 5188
4.I 4.2	5231	5274	5318	5361	5405	5448	5492	5535	5578	5622
4-3	5665	5709	5752 6186	5795	5839	5448 5882	5926	5909	5578 6012	6056
4-4	6099	6143	6186	6230	6273	6316	6360	6403	6447	6490
4.5	1.6533 6968	6577	6620	6664	6707	6751 7185	6794	6837	688ı	6924
4.6		1107	7055 7489	7098	7141	7185	7228	7272	7315	7358
4-7 4-8	7402 7836	7445 7880	7489 7923	7532 7966	7576 8010	7619 8053	7662 8097	7706 8140	7749 8184	7793 8227
4.9	8270	8314	8357	8401	8444	8487	8531	8574	8618	8661
	<u> </u>			<u> </u>	J	<u> </u>		<u> </u>	<u></u>	l

TABLE 42.

EXPONENTIAL FUNCTIONS.

Values of e^{-} and of e^{-z} and their logarithms.

Values of en and en for values of x intermediate to those here given may be found by adding or subtracting the values of the hyperbolic cosine and sine given in Tables 38-39.

æ	ex	log ex	- x	ex	log ex	l ac	e-x	log e-x
0.1	1.1052 1.2214	0.04343 08686	5.1	164.03 181.27	2.21490 25833	0.1	0.90484 81873	ī.95657 91314
3	1.3499	13029	3	200.34	30176	3	74082	86971
4 5	1.4918	17372	4	221.41 244.69	34519 38862	4	67032 60653	82628 78285
1	, ,	21715	5	244.09	30002	5	l	70203
0.6	1.8221 2.0138	0.26058 30401	5.6	270.43 298.87	2.43205	0.6	0.54881 49659	1.73942 69599
7 8	2.2255	34744	7 8	330.30	47548 51891	7 8	44033	65256
1.0	2.4596 2.7183	39087	9 6.0	365.04	56234	1.0	40657 36788	60913 56570
		43429		403.43	60577	11	1	
1.1	3.0042 3.3201	0.47772 52115	6.1	445.86 492.75	2.64920 69263	1.1	0.33287 30119	1.52228 47885
3	3.6693	56458	3	545.57 601.85	73606	3	27253	43542
4	4.0552 4.4817	60801	4	601.85	77948	4	24660	39199
5	4.4017	65144	5	665.14	82291	5	22313	34856
1.6	4.9530	0.69487	6.6	735.10 812.41	2.86634	1.6	0.20190	ī.30513
7 8	5·47 39 6.0496	73830 78173	7 8	897.85	90977 95320	8	16530	2617 0 21827
9	6.6859	82516	9	992.27	99663	9	14957	17484
2.0	7.3891	86859	7.0	1096.63	3.04006	2.0	13534	13141
2.1	8.1662	0.91202	7.1	1212.0	3.08349	2.1	0.12246	7.08798
2	9.0250	95545 99888	2	1339.4	12692	2	11080	04455
3	9.9742 11.0232	1.04231	3	1480.3 1636.0	17035 21378	3	10026 09073	00112 2.95769
5	12.1825	08574	5	1808.0	25721	5	08208	91426
2.6	13.463	1.12917	7.6	1998.2	3.30064	2.6	0.074274	2.87083
7 8	14.880	17260	7 8	2208.3	31407	7 8	067205	82740
9	16.445 18.174	21602	8	2440.6 2697.3	38750 43093	9	060810 055023	78398
3.0	20.086	25945 30288	8.6	2981.0	47436	3.0	049787	74055 69712
3.1	22.198	1.34631	8.1	3294.5	3.51779	3.1	0.045049	2.65369
2	24.533	38974	2	3641.0	56121	2	040762	61026
3 4	27.113 29.964	43317 476 6 0	3	4023.9 4447.1	60464 64807	3	036883	56683 52340
5	33.115	52003	5	4914.8	69150	5	033373 030197	47997
3.6	36.598	1.56346	8.6	5431.7	3.73493	3.6	0.027324	2.43654
7 8	40.447	60689	7 8	5431.7 6002.9	77836 82179	7 8	024724	39311
9	44.701 49.402	65032 69375	8	6634.2 7332.0	82179 86522	8	022371	34968 30625
4.0	54.598	73718	9.0	8103.1	90865	4.0	018316	26282
4.1	60.340	1.78061	9.1	8955.	3.95208	4.1	0.016573	2.21939
2	66.686	82404	2	9897.	99551 4.03894	2	014996	17596
3	73.700 81.451	86747 91090	3	10938. 12088.	4.03894 08237	3	013569 012277	13253 08910
5	90.017	95433	5	13360.	12580	5	011109	04567
4.6	99.48	1.99775	9.6	14765.	4.16923	4.6	0.010052	2.00225
7 8	109.95	1.99775	7	16318.	21266	7 8	009095 008230	3.95882
8	121.51 134. 2 9	08461 12804	8	18034. 19930.	25609 29952	8	008230 007447	91539 87196
5.0	148.41	17147	10.0	22026.	34295	5.0	00/44/	82853
			<u> </u>	l		<u> </u>	'•	

EXPONENTIAL FUNCTIONS.

Value of σ^{-2} and σ^{-a^2} and their logarithms.

The equation to the probability curve is $y=e^{-x}$, where x may have any value, positive or negative, between zero and infinity.

æ	exa	log ex	ايرس	log e-xª
0.1 2 3 4 5	1.0101 1.0408 1.0904 1.1735 1.2840	0.00434 01737 03909 06949 10857	0.99005 96079 91393 85214 77880	ī.99566 98263 96091 93051 89143
0.6 7 8 9 1.0	1.4333 1.6323 1.8965 2.2479 2.7183	0.15635 21280 27795 35178 43429	0.69768 61263 52729 44486 36788	ī.84365 78720 72205 64822 56571
1.1 2 3 4 5	3·3535 4·2207 5·4195 7·0993 9·4877	0.52550 62538 73396 85122 97716	0.29820 23693 18452 14086 10540	ī.47450 37462 26604 14878 02284
1.6 7 8 9 2.0	1.2936 × 10 1.7993 " 2.5534 " 3.6996 " 5.4598 "	1.11179 25511 40711 56780 73718	0.77306 × 10 ⁻¹ 55576 " 39164 " 27052 " 18316 "	2.88821 74489 59289 43220 26282
2.1 2 3 4 5	8.2269 " 1.2647 × 10 ² 1.9834 " 3.1735 " 5.1802 "	1.91524 2.10199 29742 50154 71434	0.12155 " 79070 X 10 ⁻² 50418 " 31511 " 19304 "	2.08476 3.89801 70258 49846 28566
2.6 7 8 9 3.0	8.6264 " 1.4656 × 10 ⁸ 2.5402 " 4.4918 " 8.1031 "	2.93583 3.16601 40487 65242 90865	0.11592 " 68233×10^{-8} 39367 " 22263 " 12341 "	3.06417 4.83400 59513 34758 09135
3.1 2 3 4 5	1.4913 × 10 ⁴ 2.8001 " 5.2960 " 1.0482 × 10 ⁵ 2.0898 "	4.17357 44718 72947 5.02044 32011	0.67055 × 10 ⁻⁴ 357 ¹ 3 " 18644 " 95402 × 10 ⁻⁶ 47851 "	5.82643 55283 27053 6.97956 67989
3.6 7 8 9 4.0	4.2507 " 8.8205 " 1.8673 × 10 ⁸ 4.0329 " 8.8861 "	5.62846 94549 6.27121 60562 94871	0.23526 " 11337 " 53554 × 10 ⁻⁶ 24796 " 11254 "	6.37154 _ 05451 7.72879 39438 05129
4.1 2 3 4 5	1.9976 × 10 ⁷ 4.5809 " 1.0718 × 10 ⁸ 2.5583 " 6.2297 "	7.30049 66095 8.03011 40796 79447	0.50062 × 10 ⁻⁷ 21829 " 93303 × 10 ⁻⁸ 39088 " 16052 "	8.69951 33905 9.96989 59204 20553
4.6 7 8 9 5.0	1.5476 × 10 ⁹ 3.9228 " 1.0143 × 10 ¹⁰ 2.6755 " 7.2005 "	9.18967 59357 10.00615 42741 85736	0.64614 × 10 ⁻⁹ 25494 " 98595 × 10 ⁻¹⁰ 37376 " 13888 "	10.81033 40643 11.99385 57259 14264

TABLE 44.

EXPONENTIAL FUNCTIONS.

Values of $\theta^{\frac{\pi}{4}}$ and $\theta^{-\frac{\pi}{4}}$ and their logarithms.

æ	6 4 .	log 8 4	θ −π.	log € - #
1	2.1933	0.34109	0.45594	ī.65891
2	4.8105	.68219	.20788	.31781
3	1.0551 × 10	1.02328	.94780 × 10 ⁻¹	2.97672
4	2.3141 "	.36438	.43214 "	.63562
5	5.0754 "	.70547	.19703 "	.29453
5 7 8 9	1.1132 × 10 ² 2.4415 " 5.3549 " 1.1745 × 10 ⁸ 2.5760 "	2.04656 .38766 .72875 3.06985 .41094	0.89833 × 10 ⁻² .40958 " .18674 " .85144 × 10 ⁻⁸ .38820 "	3.95344 .61234 .27125 4.93015 .58906
11	5.6498 " 1.2392 × 10 ⁴ 2.7168 " 5.9610 " 1.3074 × 10 ⁶	3.7 5204	0.17700 "	4.24796
12		4.09313	.80699 X 10 ⁻⁴	5.90687
13		-43422	.36794 "	.56578
14		-77 532	.16776 "	.22468
15		5.11641	.76487 X 10 ⁻⁵	6. 88359
16	2.8675 " 6.2893 " 1.3794 × 10 ⁶ 3.0254 " 6.6356 "	5.457 51	0.34873 "	6.54249
17		.79860	.15900 "	.20140
18		6.1 3969	.72495 X 10 ⁻⁶	7.86031
19		.48079	.33053 "	.51921
20		.82189	.15070 "	.17812

TABLE 45.

EXPONENTIAL FUNCTIONS.

Values of $\theta^{\frac{\sqrt{\pi}}{4}}$ and $\theta^{-\frac{\sqrt{\pi}}{4}}$ and their logarithms.

æ	$\theta^{\frac{\sqrt{\pi}}{4}}$	$\log \theta^{\frac{\sqrt{\pi}}{4}}$	$e^{-\frac{\sqrt{\pi}}{4}s}$	$\log e^{-\frac{\sqrt{\pi}}{2}}$
1	1.4429	0.19244	0.64203	ī.807 56
2	2.4260	.38488	.41221	.61 51 2
3	3.7786	.57733	.26465	.42267
4	5.8853	.76977	.16992	.23023
5	9.1666	.96221	.10909	.03779
6	14.277	1.15465	0.070041	2.84535
7	22.238	.34709	.044968	.65291
8	34.636	.53953	.028871	.46047
9	53.948	.73198	.018536	.26802
10	84.027	.92442	.011901	.07558
11 12 13 14 15	130.87 203.85 317.50 494.52 770.24	2.11686 .30930 .50174 .69418 .88663	0.0076408 .0049057 .0031496 .0020222 .0012983	3.88314 .69070 .49826 .30582
16	1199.7	3.07907	0.00083355	4.92093
17	1868.5	.271 51	.00053517	.72849
18	2910.4	.46395	.00034360	.53605
19	4533.1	.65639	.00022060	.34361
20	7000.5	.84883	.00014163	.15117

EXPONENTIAL FUNCTIONS. Value of o" and o" and their legarithms.

æ	6*	log 🕶	6	log e−•
1/64	1.0157	0.00679	0.98450	ī.99321
1/32	.0317	.01357	.96923	.98643
1/16	.0645	.02714	.93941	.97286
1/10	.1052	.04343	.90484	.95657
1/9	.1175	.04825	.89484	.95175
1/8 1/7 1/6 1/5	1.1331 .1536 .1814 .2214 .2840	0.05429 .06204 .07238 .08686 .10857	0.88250 .86688 .84648 .81873 .77880	ī.94571 .93796 .92762 .91314 .89143
1/3	1.3956	0.14476	0.71653	ī.85524
1/2	.6487	.21715	.60653	.78285
3/4	2.1170	.32572	-47237	.67428
I	.7183	.43429	.36788	.56571
5/4	3.4903	.54287	.28650	.45713
3/2	4.4817	0.65144	0.22313	ī.34856
7/4	5.7546	.76002	.17377	.23998
2	7.3891	.86859	.13535	.13141
9/4	9.4877	.97716	.10540	.02284
5/2	12.1825	1.08574	.08208	2.91426

TABLE 47.

LEAST SQUARES.*

Values of
$$P = \frac{2}{\sqrt{\pi}} \int_0^{hx} e^{-(hx)^2} d(hx)$$

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when k is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{kx} e^{-(kx)^2} d(kx)$

Ace	1	2	3	4	5	6	7	8	9	10
0.0 0.1 0.2 0.3 0.4	.01128 .12362 .23352 .33891 .43797	.02256 .13476 .24430 .34913 -44747	.03384 .14587 .25502 .35928 .45689	.04511 .15695 .26570 .36936 .88623	.05637 .16800 .27633 .37938 .47548	.06762 .17901 .28690 .38933 .48466	.07886 .18999 .29742 .33921 -49375	.09008 .20094 .30788 .40901	.10128 .21184 .31828 .41874 .51167	.11246 .22270 .32863 .42839 .52050
0.5 0.6 0.7 0.8 0.9	.52924 .61168 .68467 .74800 .80188	.53790 .61941 .69143 .75381 .80677	.54646 .62705 .69810 .75952 .81156	·55494 .63459 .70468 .76514 .81627	.56332 .64203 .71116 .77067 .82089	.57162 .64938 .71754 .77610 .82542	.57982 .65663 .72382 .78144 .82987	.58792 .66378 .73001 .78669 .83423	.59594 .67084 .73610 .79184 .83851	.60386 .67780 .74210 .79691 .84270
1.0 1.1 1.2 1.3 1.4	.84681 .88353 .91296 .93606 .95385	.85084 .88679 .91553 .93807 .95538	.85478 .88997 .91805 .94001 .95686	.85865 .89308 .92051 .94191 .95830	.86244 .89612 .92290 .94376 .95970	.86614 .89910 .92524 .94556 .96105	.86977 .90200 .92751 .94731 .96237	.87333 .90484 .92973 .94902 .96365	.87680 .90761 .93190 .95067 .96490	.88020 .91031 .93401 .95229 .96610
1.5 1.6 1.7 1.8 1.9	.96728 .97721 .98441 .98952 .99309	.96841 .97804 .98500 .98994 .99338	.96952 .97884 .98558 .99035 .99366	.97059 .97962 .98613 .99074 .99392	.97162 .98038 .98667 .99111	.97263 .98110 .98719 .99147 .99443	.97360 .98181 .98769 .99182 .99466	.97455 .98249 .98817 .99216 .99489	.97 546 .98 31 5 .98864 .99248 .9951 1	.97635 .98379 .98909 .99279 .99532

^a Tables 47-52 are for the most part quoted from Howe's "Formulæ and Methods used in the application of Least Squares."

TABLE 48.

LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

æ	0	1	2	3	4	5	6	7	8	9
0.0	.00000	.00538	.01076 .06451	.01614	.02512	.02690 .08059	.03228	.03766	.04303	.04840
0.2 0.3	.10731	.11264	.11796 .17088	.12328 .17614	.12860	13391 .18662	.13921	.14451	.14980	.15508
0.4 0.5	.21268 .26407	.21787	.22304	.22821	.23336	.23851 .28934	.24364	.24876	.25388	.25898
0.6 0.7	.31430 .36317	.31925 .36798	.32419 .37277	.32911 ·37755	.33402 .38231	.33892 .38705	.34 38 0 .39178	.34866 .39649	.35352 .40118	.35835 .40586
0.8	.41052 .45618	.41517 .46064	.41 9 79 .46 5 09	.42440 .46952	.42899 -47393	-43357 -47832	.43813 .48270	.44267 48605	.44719 .49139	.45169
1.0 I.I I.2 I.3	.50000 .54188 .58171 .61942	.50428 .54595 .58558 .62308	.50853 .55001 .58942 .62671	.51 277 .55404 .59325 .63032	.51699 .55806 .59705 .63391	.52119 .56205 .60083 .63747	.52537 .56602 .60460 .64102	.52952 .56998 .60833 .64554	.53366 .57391 .61205 .64804	.53778 .57782 .61575 .65152
1.4 1.5 1.6 1.7	.65498 .68833 .71949 .74847	.65841 .69155 .72249 .75124	.66182 .69474 .72546 .75400	.66521 .69791 .72841 .75674	.66858 .70106 .73134 .75945	.67193 .70419 .73425 .76214	.67 526 .70729 .73714 .76481	.67856 .71038 .74000 .76746	.68184 .71344 .74285 .77009	.68510 .71648 .74567 .77270
1.8 1.9 2.0	.77528 .79999 .82266	.77785 .80235 .82481	.78039 .80469 .82695	.78291 .80700 .82907	.78542 .80930 .83117	.78790 .81158 .83324	.79036 .81383 .83530	.79280 .81607 .83734	.79522 .81828 .83936	.79761 .82048 .84137
2.I 2.2 2.3 2.4	.84335 .86216 .87918 .89450	.84531 .86394 .88078 .89595	.84726 .86570 .88237 .89738	.84919 .86745 .88395 .89879	.85109 .86917 .88550	.85298 .87088 .88705	.85486 .87258 .88857 .90293	.85671 .87425 .89008	.85854 .87591 .89157	.86036 .87755 .89304 .90694
2.5 2.6 2.7	.90825 .92051 .93141	.90954 .92166 .93243	.91082 .92280 .93344	.91208 .92392 .93443	.91332 .92503 .93541	.91456 .92613 .93638	.91 578 .92721 .93734	.91698 .92828 .93828	.91817 .92934 .93922	.91935 .93038 .94014
2.8	.94105 -94954	.94195 .95033	.94284 .95111	.94371 .95187	.94458 .95263	.94543 .95338	.94627 .95412	.94711 .95484	·94793 ·95557	.94874 .95628
	0	1	2	3	4	5	6	7	8	9
3	.95698 .9930 2	.96346 .99431	.96910 .99539	·97397 99627	.9781 7 .997 00	.98176 .99760	.98482 .99808	.98743 .99848	.98962 .99879	.99147
5	.99926	.99943	.99956	.99966	.99974	.99980	.99985	.99988	.99991	.99993

TABLE 49.

LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n-1}}$.

This factor occurs in the equation $e_a = 0.6745 \sqrt{\frac{3y^2}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	=	1	2	3	4	5	6	7	8	9
00 10 20 30 40	0.2248 .1547 .1252 .1080	0.2133 .1508 .1231 .1066	0.6745 .2029 .1472 .1211	0.4769 .1947 .1438 .1192 .1041	0.3894 .1871 .1406 .1174 .1029	0.3372 .1803 .1377 .1157	0.3016 .1742 .1349 .1140	0.2754 .1686 .1323 .1124 .0994	0.2549 .1636 .1298 .1109 .0984	0.2385 .1590 .1275 .1094
50 60 70 80 90	0.0964 .0878 .0812 .0759	0.0954 .0871 .0806 .0754 .0711	0.0944 .0864 .0800 .0749 .0707	0.0935 .0857 .0795 .0745 .0703	0.0926 .0850 .0789 .0940 .0699	0.0918 .0843 .0784 .0736 .0696	0.0909 .0837 .0778 .0731 .0692	0.0901 .0830 .0773 .0727 .0688	0.0893 .0824 .0768 .0723 .0685	0.0886 .0818 .0763 .0719 .0681

LEAST SQUARES.

Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $\epsilon_m = 0.6745 \sqrt{\frac{\Sigma p^2}{m(m-1)}}$ for the probable error of the arithmetic mean.

*	=	1	2	3	4	5	6	7	8	9
00 10 20 30	0.0711	0.0643 .0329	0.4769 .0587 .0314	0.2754 .0540 .0300	0.1947 .0500 .0287	0.1 508 .0465 .0275	0.1231 .0435 .0265	0.1041 .0409 .0255	0.0901 .0386 .0245	0.0795 .0365 .0237
3 49 59	.0171	.0167	.0163	.01 59 .01 28	.01 55 .01 26	.0152	.0148	.0145	.0142	.0139

LEAST SQUARES.

TABLE 51.

Values of the factor 0.8453 $\sqrt{\frac{1}{n(n-1)}}$.

This factor occurs in the equation $s_a = 0.8453 \frac{\Sigma_y}{\sqrt{\pi(\pi-1)}}$ for the probable error of a single observation.

*	=	1	2	3	4	5	6	7	8	9
00 10 20	0.0891 .0434	0.08 0 6 .0412	o.5978 .0736 .0393	0.3451 .0677 .0376	0.2440 .0627 .0360	0.1890 .0583 .0345	0.1 543 .0546 .0332	0.1304 .0513 .0319	0.1130 .0483 .0307	0.0996 .0457 .0297
30 40 50	0.0287 .0214 .0171	0.0277 .0209 .0167	0.0268 .0204 .0164	0.0260 .0199 .0161	0.0252 .0194 .0158	0.0245 .0190 .0155	0.0238 .0186 .0152	0.0232 .0182 .01 5 0	0.0225 .0178 .0147	0.0220 .0174 .0145

TABLE 52.

LEAST SQUARES.

Values of 0.8453 $\frac{1}{n\sqrt{n-1}}$.

This table gives the average error of the arithmetic mean when the probable error is one.

24	=	1	2	3	4	5	6	7	8	9
00 10 20	o.o282 .oog7	0.0243	0.4227 .0212 .0084	0.1993 .0188 .0078	0.1220 .0167 .0073	0.0845 .0151 .0069	0.0630 .0136 .0065	0.0493 .0124 .0061	0.0399 .0144 .0058	0.0332 .0105 .0055
30 40 50	0.0052 .0034 .0024	0.0050 .0033 .0023	0.0047 .0031 .0023	0.0045 .0030 .0022	0.0043 .0029 .0022	0.0041 .0028 .0021	0.0040 .0027 .0020	0.0038 .0027 .0020	0.0037 .0026 .0019	0.0035 .0025 .0019

TABLE 53.

CAMMA FUNCTION.

Value of
$$\log \int_0^{\infty} e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_0^\infty e^{-sx^{n-1}dx} \operatorname{or} \log \Gamma(n) + 10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

1	1						<u> </u>	T	Ī	
	0	1	2	3	4	5	6	7	8	•
1.00	9.99	07.407	05001	02512	00070	87555	85087	82627	80173	727.27
1.01	75287	97497 72855	95001 70430	92512	90030 65600	63196	60799	58408	56025	77727 53648
1.02	51279	48916	46561	44212	41870	39535	37207	34886	32572	30265
1.03	27964	25671	23384	21104	18831	16564	14305	12052	09806	07567
1.04	05334	03108	00889	98677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	537 57	51690	49630	47577	45530	43489
1.07	41469	39428	37407	35392	537 57 33384	31382	29387	27398	25415	23449
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	89856	87100	85250
1.10	9.9783407	81570	79738	77914	76095	74283	72476	70676	68882	67095
1.11	65313	63538	61768	60005	58248	56497	54753 37638	53014	51281	49555
1.12	47834	46120	44411	42709	41013	39323	37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14639	13094	11505	09922	08345	06774	05209	03650	02096	∞549
1.15	9.9599007	97471	95941	94417	92898	91386	89879	88378	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	69390	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51 366	50019	48677	47341	46011	44867	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	1 5748	14556	13369	12188	11011	00841	08675 97318		06361
1.22	05212	04068	02930	01796	00669	99546	98430	97318	07515 96212	95111
1.23	594015	92925	91840	90760	89685	88616	87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53604	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32439	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20395	19732	10073	18419	17770	17125
1.32	16485	15850	15220	14595	13075	13359 07466	12748	12142	11540	10944
1.33	10353	09766	09184	08606	08034		06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01 532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044	92617	92194	91776	91362	90953
1.37	90549	90149	89754	89363	88977	88595	88218	87846	87478	87115
1.33	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81 348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	783 0 8
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	7608i	75905	75733	75565	75402	75243	75089	74030	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	93574	73746
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728
لسيطا										

Quoted from Carr's "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

GAMMA FUNCTION.

<u> </u>									· · · · · · · · · · · · · · · · · · ·	
-	0	1	2	3	4	5	6	7	8	9
1.45	9.9472677	72630	72587	72549	72514	72484	72459	72437	72419	72406
1.46	72397	72393	72392	72396	72404	72416	72432	72452	72477	72506
1.47	72539	72576	72617	72662	72712	72766	72824	72886	72952	73022
1.48	73097	73175	73258	73345	73436	7353 <u>I</u>	73630	73 734	73841	73953
1.49	74068	74188	74312	74440	74572	74708	74848	74992	75141	75 ² 93
1.50	9-9475449	75610	75774	75943	76116	76292	76473	76658	76847	77040
1.51	77237	77438	77642	77851	78064	78281	78502	78727	78956	79189
1.52	79426	79667	79912	80161	80414	80671	80932	81196	81465	81735
1.53	82015	82295	82580	82868	83161	83457	83758	84062	84370	84682
1.54	84998	85318	85642	85970	86302	86638	86977	87321	87668	88019
1.55	9.9488374	88733	89096	89463	89834	90208	90587	90969	91355	91745
1.56	92139	92537	92938	93344	93753	94166	94583	95004	95429	95 <u>857</u>
1.57	95289	96725	97165	97609	98c 56	98508	98963	99422	99885	00351
1.58	05733	01296	01774 06760	02255	02741 07803	03230 08330	03723	04220	04720	10475
1	33/33		,		.,	•		-2323	-7733	4/5
1.60	9.9511020	11569	12122	12679	13240	13804	14372	14943	15519	16098
1.61	16680	17267	17857	18451	19048	19650	20254	20862	21475	22091
1.62 1.63	22710 29107	23333 29767	23960	24591 31097	25225 31767	25863 32442	26504 33120	27149 33801	27798 34486	28451
1.64	35867	36563	30430 37263	37966	38673	39383	40097	40815	41536	35175 42260
1								` `		
1.65	9.9542989	43721	44456	45195	45938	46684	47434	48187	48944	49704
1.66	50468 58303	51236	52007	52782 60723	53560 61536	54342	55127 63174	55916	56708 64826	57 504
1.68	66491	59106 67329	59913 68170	69015	69864	62353 70716	71571	63998	73293	65656 74159
1.69	75028	75901	76777	77657	78540	79427	80317	81211	82108	83008
	0		0	966	0	00.0.				_
1.70	9.9583912	84820 94083	85731 95028	86645	87536 96929	88484 97884	89409	90337	91268	92203
1.71 1.72	93141 602712	03688	04667	95977 05650	06636	07625	98843 98618	09614	10613	01740
1.73	12622	13632	14645	1 5661	16681	17704	18730	19760	20793	21830
1.74	22869	23912	24959	26009	27062	28118	29178	30241	31308	32377
1.75	9.9633451	34527	35607	36690	27776	38866	39959	41055	42155	43258
1.76	44364	45473	46586	47702	37776 48821	49944	51070	52200	53331	54467
1.77	55606	56740	57894	59043	60195	61350	62509	63671	64836	66004
1.78	67176	6835í	69529	70710	71895	73082	74274	75468	76665	77866
1.79	79070	80277	81488	82701	83198	85138	86361	87588	88818	90051
1.80	9.9691287	92526	93768	95014	96263	97515	98770	00029	01291	02555
1.81	703823	05095	06369	07646	08927	10211	11498	12788	14082	15378
1.82	16678	17981	19287	20596	21908	23224	24542	25864	27189	28517
1.83	29848 43331	31182 44697	32520 46065	33860 47437	35204 48812	36551 50190	37900 51571	39254 52955	40610 54342	41969 55733
	+3334		4~~0	4/43/	40012	30.90	3.3/.	3-933		
1.85	9.9757126	58522	59922	61325	62730	64140	65551	66966	68384	69805
1.86	71230	72657	74087 88559	75521	76957	78397	79839	81285	82734	84186
1.87	85640 800356	87098 01844		90023 04830	91490 06327	92960 07827	94433 09331	95910	97389 12346	98871 13859
1.89	15374	16893	03335	19939	21466	22996	24530	26066	27606	29148
		1								
1.90	9-9830693	32242 47890	33793	35348	36905 52642	38465	40028	41 595	43164	44736 60622
1.91	62226	63834	49471 65445	51055 67058	68675	54232 70294	55825 71917	57421 73542	59020 75170	76802
1.93	78436	80073	81713	83356	85002	86651	88302	73542 89957 66663	91614	93275
1.94	94938	96605	98274	99946	01621	03299	04980	o6663	68 <u>35</u> 6	10039
1.95	0.0077777	12400		16826	18120	20227	21047	23659	25775	27007
1.96	9.9911732 28815	13427 30539	15125 32266	33995	18530 35728	20237 37464	21947 39202	40943	² 5375 42688	27093 44435
1.97	46185	47937	49693	51451	53213	54977	56744	58513	60286	62002
1.98	63840	65621	67405	69192	70982	72774	74570	76368	78169	79972
1.99	81779	83588	85401	87216	89034	90854	92678	94504	96333	98165
<u> </u>	<u> </u>	!	L	l	<u> </u>	<u> </u>	L		<u> </u>	L

TABLE 53.

CAMMA FUNCTION.

Value of
$$\log \int_0^{\infty} e^{-s} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function) $\int_{0}^{\infty} e^{-\alpha} x^{\alpha-1} dx \text{ or log } \Gamma(n) + 10$ for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$.

			1			1	1	1	T	
"	0	1	2	3	4	5	6	7	8	9
1.00	0.00	07.407	05001	03510	00000	82555	8 508 5	82627	80177	
1.01	75287	97497 72855	95001 70430	92512 68011	90030 65600	87555 63196	85087	58408	56025	77727 53648
1.02	51279	48916	46561	44212	41870	39535	37207	34886		30265
1.03	27964	25671	23384	21104	18831	16564	14305	12052	32572 09806	07567
1.04	05334	03108	00889	93677	96471	94273	92080	89895	87716	85544
1.05	9.9883379	81220	79068	76922	74783	72651	70525	68406	66294	64188
1.06	62089	59996	57910	55830	537 57	51690	49630	47 57 7	45530	43489
1.07	41469	39428	37407	35392	537 57 33384	31 382	29387	27398	25415	23449
1.08	21469	19506	17549	15599	13655	11717	09785	07860	05941	04029
1.09	02123	00223	98329	96442	94561	92686	90818	89856	87100	85250
1.10	9.9783407	81570	79738	77914	76095 58248	74283	72476	70676	68882	67095
11.11	65313	63538	61768	60005	58248	56497	547 53	53014	51 281	49555
1.12	47834	46120	44411	42709	41013	39323	547 53 37638	35960	34288	32622
1.13	30962	29308	27659	26017	24381	22751	21126	19508	17896	16289
1.14	14639	13094	11505	09922	08345	06774	05209	03650	02096	00549
1.15	9.9599007	97471	95941	94417	92898	91 386	89879	88378 73686	86883	85393
1.16	83910	82432	80960	79493	78033	76578	75129	73686	72248	70816
1.17	6939 0	67969	66554	65145	63742	62344	60952	59566	58185	56810
1.18	55440	54076	52718	51366	50019	48677	47341	46011	44867	43368
1.19	42054	40746	39444	38147	36856	35570	34290	33016	31747	30483
1.20	9.9629225	27973	26725	25484	24248	23017	21792	20573	19358	18150
1.21	16946	15748	14556	13369	12188	11011	00841	08675 97318	07515	06361
1.22	05212	04068	02930	01796	00669	99546 88616	98430	97318	96212	95111
1.23	594015	92925	91840	90760	89685		87553	86494	85441	84393
1.24	83350	82313	81280	80253	79232	78215	77204	76198	75197	74201
1.25	9.9573211	72226	71246	70271	69301	68337	67377	66423	65474	64530
1.26	63592	62658	61730	60806	59888	58975	58067	57165	56267	55374
1.27	54487	53/104	52727	51855	50988	50126	49268	48416	47570	46728
1.28	45891	45059	44232	43410	42593	41782	40975	40173	39376	38585
1.29	37798	37016	36239	35467	34700	33938	33181	32439	31682	30940
1.30	9.9530203	29470	28743	28021	27303	26590	25883	25180	24482	23789
1.31	23100	22417	21739	21065	20395	19732	19073 12748	18419	17770	17125
1.32	16485	15850	1 5220	14595 08606	1 3975	13359 07466	12748	12142	11540	10944
1.33	10353	09766	09184		08034		06903	06344	05791	05242
1.34	04698	04158	03624	03094	02568	02048	01 532	01021	00514	00012
1.35	9.9499515	99023	98535	98052	97573	97100	96630	96166	95706	95251
1.36	94800	94355	93913	93477	93044 88977	92617	92194	91776	91 362	90953
1.37	90549	90149	89754	89363		88595	88218	87846	87478	87115
1.33	86756	86402	86052	85707	85366	85030	84698	84371	84049	83731
1.39	83417	83108	82803	82503	82208	81916	81630	81 348	81070	80797
1.40	9.9480528	80263	80003	79748	79497	79250	79008	78770	78537	78308
1.41	78084	77864	77648	77437	77230	77027	76829	76636	76446	76261
1.42	76081	75905	75733	75565	75402	75243	75089	74939	74793	74652
1.43	74515	74382	74254	74130	74010	73894	73783	73676	93574	73746
1.44	73382	73292	73207	73125	73049	72976	72908	72844	72784	72728
										

Quoted from Carr's "Synopsis of Mathematics," and is there quoted from Legendre's "Exercises de Calcul Intégral," tome ii.

ELLIPTIC INTEGRALS.

$\forall \text{almos of } \int_0^{\frac{\pi}{2}} (1-\sin^2\theta \sin^2\phi)^{\frac{1}{12}} \, d\phi,$

This table gives the values of the integrals between 0 and $\pi/2$ of the function $(i-\sin^2\theta\sin^2\phi)^{\frac{1}{2}\frac{1}{2}}$ d ϕ for different values of the modulus corresponding to each degree of θ between 0 and 90.

8	Jo (1-	dφ sin²θsin²φ)½	J ₀ ² (1-5	$in^2\theta sin^2\phi)^{\frac{1}{2}}d\phi$	θ	J ₀ (1-1	$\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$	J ₀ 2 (1-1	$\sin^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
00	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
1	5709	196153	5707	196087	6	8691	271644	3418	127690
2	5713	196252	5703 5697	195988 195822	8	8848	275267 279001	3329	124788
3 4	5727	196649	5689	195591	9	9180	282848	3238 3147	118836
50	1.5738	0.196947	1.5678	0.195293	50°	1.9356	0.286811	1.3055	0.115790
6	5751	197312	5665	194930	1	9539	290805	1.3055	112698
7 8	5767	197743	5649	194500	2	9729	295101	2870	109563
9	5785 5805	197241	5632	194004 193442	3 4	9927	299435 303901	2776 2681	106386
100	1.5828	0.199438	1.5589	0.192815	550		0.308504	1.2587	1.25
1	5854	200137	5564	192121	6	2.0347 0571		2492	0.099915
2	5854 5882	200904	5537	191302	7 8	0804	313247 318138	2397	093303
3	5913	201740	5507 5476	189646	8 9	1300	323182 328384	2301	089950
	5081	0.203615	All land	0.188690	60°				
	0	204657	1.5442	187668	1	2.1565	0.333753 339295	2015	0.083164
		205768	5367	186581	2	2132	345020	1920	076293
		206948	5326 5283	185428 184210	3 4	2435 2754	350936 357053	1826 1732	072834
1			1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
			10,	181580	6		369940	1545	062412
				180168	7 8	3439 3809	376736	1453	058937
				178691	9	4198	383787 391112	1362	055472
		1		-	700	2.5046	0.398730	1.1184	0.048589
					1	5507	406665	1096	045183
197		3000	1			5998	414943 423596	0927	038481
TA.	T	1. 4	>			180	4,32560	0844	035200
	Spring.		/						0.031976
in.	1	10						_	10
post	0						85907		
b	/						-498777	Do.	
/						1	512591	035	
						3099	527613	0274	
						19	562514	0172	
				43995		- 1	0.583396	1.0127	4
			15	141414			007751	0086	
			3680	136086			637355 676027	0053	
	-	-	3594	133340			T35192		
1		68127	1.3506	0.130541			10		
		_	-						
				- 14	43				
						100			1

TABLE 54.

ZONAL HARMONICS.*

The values of the first seven zonal harmonics are here given for every degree between $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$.

1° 0.9998 0.9995 0.9991 0.9985 0.9977 0.9672 0.993 2 .9994 .9982 .9963 .9939 .9909 .9872 .983 3 .9986 .9959 .9918 .9863 .9795 .9913 .9613 5 .9962 .9886 .9773 .9623 .9437 .9216 .892 6° .9945 .9836 .9674 .9459 .9194 .881 .852 7 .9923 .9777 .9557 .9267 .8911 .8476 .793 8 .9903 .9799 .9423 .9248 .8589 .8653 .751 .685 10 .9848 .9548 .9106 .8532 .7840 .7045 .616 11° .9816 .9454 .8923 .8238 .7417 .6483 .546 12 .9:816 .9454 .8923 .823 .72417 .6469 .5273 .399 .47	θ	z 1	Z ₂	E8	Z 4	2 6	26	2 7
2 9994	0 °	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	10	0.0008	0 0005	0.0001	0.9985	0.0077	0 0067	0.9955
3			.0082					.9829
49976		.0086						.9617
6° .9945 .9836 .9674 .9459 .9194 .8881 .852 7 .9925 .9777 .9557 .9267 .8911 .8881 .852 8 .9903 .9770 .9557 .9267 .8911 .8859 .8053 .744 9 .9877 .9633 .9273 .8803 .8232 .7571 .683 10 .9848 .9548 .9106 .8532 .7840 .7045 .616 11° .9816 .9454 .8923 .8232 .7571 .683 .542 12 .9816 .9454 .8923 .8238 .7417 .6483 .542 13 .9744 .9241 .8511 .7582 .6489 .5273 .393 15 .9659 .8995 .8042 .6844 .4937 .3322 .166 16° .9613 .8860 .7787 .6454 .4937 .3322 .166 16°								
7		.9962	.9886					.8961
7	6°	-9945	.9836	.9674	.9459	.9194		.8522
8	7				.9267	.8911	.8476	.7986
9	8						.8053	.7448
10 .9848 .9548 .9106 .8532 .7840 .7045 .616 11° .9816 .9454 .8923 .8238 .7417 .6483 .546 12 .9781 .9352 .8724 .7920 .6966 .5892 .472 13 .9744 .9241 .8511 .7582 .6489 .5273 .394 14 .9703 .9122 .8283 .7224 .5990 .4635 .321 15 .9659 .8995 .8042 .6847 .5471 .3982 .245 16° .9613 .8860 .7787 .6454 .4937 .3322 .160 18 .9511 .8568 .7240 .5624 .3836 .2002 .028 19 .9455 .8410 .6930 .5192 .3276 .1347 .044 20 .9336 .8074 .6338 .43c0 .2156 .0107 .1160 21° .9295 <td>9</td> <td></td> <td></td> <td></td> <td>.8803</td> <td>.8232</td> <td>.7571</td> <td>.6831</td>	9				.8803	.8232	.7571	.6831
12 .9,81 .9352 .8724 .7920 .6966 .5892 .473 13 .9744 .9241 .8511 .7582 .6489 .5273 .394 14 .9703 .9122 .8283 .7224 .5999 .4635 .321 15 .9659 .8995 .8042 .6847 .5471 .3982 .248 16° .9613 .8860 .7787 .6454 .4937 .3322 .166 17 .9563 .8718 .7519 .6046 .4391 .2660 .006 18 .9511 .8568 .7240 .5624 .3336 .2002 .028 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8074 .6333 .4300 .2156 .0107 .1160 21° .9336 .8074 .6333 .4300 .1057 .1138 .2652 .9275 .7518 .5					.8532	.7840		.6164
12 .9781 .9352 .8724 .7920 .6966 .5892 .473 13 .9744 .9241 .8511 .7582 .6489 .5273 .394 14 .9703 .9122 .8283 .7224 .5999 .4635 .321 15 .9659 .8995 .8042 .6847 .5471 .3982 .248 16° .9613 .8860 .7787 .6454 .4937 .3322 .166 17 .9563 .8718 .7519 .6046 .4391 .2660 .006 18 .9511 .8568 .7240 .5624 .3836 .2002 .002 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8074 .6333 .4300 .2156 .0107 .1160 21° .9336 .8074 .6333 .4300 .2156 .0107 .160 22 .9272	11°	.9816	-9454	.8923	.8238	.7417	.6483	.5461
13 .9744 .9241 .8511 .7582 .6489 .5273 .394 14 .9703 .9122 .8283 .7224 .5990 .4635 .321 15 .9659 .8995 .8042 .6847 .5471 .3982 .245 16° .9613 .8860 .7787 .6454 .4937 .3322 .160 17 .9563 .8718 .7519 .6046 .4391 .2660 .096 18 .9511 .8568 .7240 .5624 .3836 .2002 .028 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8074 .6338 .4300 .2156 .0107 .1160 21° .9336 .8074 .6338 .4300 .2156 .0107 .1160 22 .9272 .7895 .6019 .3845 .1602 .0481 .222 23 .9205 <td>12</td> <td></td> <td></td> <td>.8724</td> <td>.7920</td> <td>.6966</td> <td></td> <td>47.32</td>	12			.8724	.7920	.6966		47.32
14 .9703 .9122 .\$283 .7224 .5999 .4635 .321 15 .9659 .8995 .8042 .6847 .5471 .3982 .245 16° .9613 .8860 .7787 .6454 .4937 .3322 .166 17 .9563 .8718 .7519 .6046 .4391 .2602 .038 18 .9511 .8568 .7240 .5624 .3836 .2002 .038 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8074 .6338 .4300 .2156 .0107 .1160 21 .9336 .8074 .6338 .4300 .2156 .0107 .1160 22 .9272 .7895 .6019 .3845 .1602 .0481 .220 23 .9205 .7710 .5692 .33N6 .1057 .1038 .268 24 .9135	13			.8511	.7582	.6489		.3940
15 .9659 .8995 .8042 .6847 .5471 .3982 .245 16° .9613 .8860 .7787 .6454 .4937 .3322 .166 17 .9563 .8718 .7519 .6046 .4391 .2660 .096 18 .9511 .8568 .7240 .5624 .3836 .2002 .028 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8874 .6338 .4300 .2156 .0107 .104 21 .9336 .8874 .6338 .4300 .2156 .0107 .1602 22 .9272 .7895 .6619 .3845 .1602 .0481 .220 23 .9205 .7710 .5692 .3386 .1057 .1038 .268 24 .9135 .7518 .5357 .2926 .0525 1559 .390 25 .9063		.9703	.9122	.8283	.7224	.5990		.3219
17 .9563 .8718 .7519 .6046 .4391 .2660 .006 18 .9511 .8568 .7240 .5624 .3836 .2002 .028 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .935, .8245 .6649 .4750 .2715 .0719 107 21° .9336 .8074 .6338 .4300 .2156 .0107 1602 22 .9272 .7895 .6019 .3845 .1602 0481 220 23 .9205 .7710 .5692 .3386 .1057 1038 268 24 .9135 .7518 .5357 .2926 .0525 1559 302 25 .9003 .7321 .5016 .2465 .0009 2278 3569 26° .8988 .7117 .4670 .2007 0489 2478 371 27				.8042	.6847		.3982	·2454
17 .9563 .8718 .7519 .6046 .4391 .2660 .096 18 .9511 .8568 .7240 .5624 .3836 .2002 .038 19 .9455 .8410 .6950 .5192 .3276 .1347 .044 20 .9336 .8074 .6338 .43c0 .2156 .0107 160 21 .9336 .8074 .6338 .43c0 .2156 .0107 160 22 .9272 .7895 .6019 .3845 .1602 0481 220 23 .9205 .7710 .5692 .3380 .1057 1038 268 24 .9135 .7518 .5357 .2926 .0525 1559 302 25 .9063 .7321 .5016 .2465 .0009 2278	16°	.9613	.886o	.7787	.6454	-4937	.3322	.1699
19 .9455 .8410 .6950 .5192 .3276 .1347 044 20 .935, .8245 .6649 .4750 .2715 .0719 107 21° .9336 .8074 .6338 .43c0 .2156 .0107 166 22 .9272 .7895 .6019 .3845 .1602 0481 226 23 .9205 .7710 .5692 .33N6 .1057 1038 268 24 .9135 .7518 .5357 .2926 .0525 1559 .300 25 .9063 .7321 .5016 .2465 .0009 2278 .371 27 .8910 .6908 .4319 .11553 0964 22869 392 28 .8829 .6694 .3964 .1105 1415 3211 405 30 .8660 .6250 .3248 .0234 2233 3740 416 31°	17		.8718		.6046		.2660	1000.
19 .9455 .8410 .6950 .5192 .3276 .1347 044 20 .936, .8245 .6649 .4750 .2715 .0719 107 21° .9336 .8074 .6338 .43c0 .2156 .0107 166 22 .9272 .7895 .6019 .3845 .1602 0481 222 23 .9205 .7710 .5692 .33N6 .1057 1038 262 24 .9135 .7518 .5357 .2926 .0525 1559 .302 25 .9063 .7321 .5016 .2465 .0009 2478 371 26° .8988 .7117 .4670 .2007 0489 2478 371 27 .8910 .6084 .3964 .1105 1415 3211 405 28 .8829 .6694 .3964 .1105 1415 3211 405 30	18		.8568		.5624		.2002	.0289
20 .935, .8245 .6649 .4750 .2715 .0719 107 21° .9336 .8074 .6338 .4300 .2156 .0107 160 22 .9272 .7895 .6019 .3845 .1602 0481 220 23 .9205 .7710 .5692 .3380 .1057 1038 268 24 .9135 .7518 .5357 .2926 .0525 1559 300 25 .9003 .7321 .5016 .2405 .0009 2478 371 26° .8988 .7117 .4670 .2007 0489 2478 371 27 .8910 .6908 .4319 .1553 0964 2869 392 28 .8829 .6694 3964 115 1415 3211 403 30 .8660 .6250 2887 0185 2595 3923 401							.1347	0443
22 .9272 .7895 .6019 .3845 .1602 0481 2202 23 .9205 .7710 .5692 .3386 .1057 1038 268 24 .9135 .7518 .3357 .2926 .0525 1559 302 25 .9063 .7321 .5016 .22465 .0009 2053 346 26° .8988 .7117 .4670 .2007 0489 2478 371 27 .8910 .6908 4319 1553 0964 2869 392 28 .8829 6694 3964 1105 1415 3211 402 29 8746 6474 3607 0665 1839 3803 411 30 8660 6250 3248 0234 2293 4052 387 31 8572 6021 2887 0185 2595 3924								1072
22 .9272 .7895 .6619 .3845 .1662 —.0481 —.2262 23 .9205 .7710 .5692 .3386 .1057 —.1038 —.2662 24 .9135 .7518 .5357 .2926 .0525 —.1559 —.3662 25 .9063 .7321 .5016 .2465 .0009 —.2253 —.3462 26° .8988 .7117 .4670 .2007 —.0489 —.2478 —.371 27 .8910 .6098 .4319 .1553 —.0964 —.2869 —.392 28 .8829 .6694 .3964 .1105 —.1415 —.3211 —.405 29 .8746 .6474 .3607 .0665 —.1839 —.3503 —.4116 31° .8572 .6021 .2887 —.0185 —.2595 —.3924 —.402 32 .8480 .5758 .2527 —.0591 —.2923 —.4052 —.387 <t< td=""><td>21°</td><td>.9336</td><td>.8074</td><td>.6338</td><td>.4300</td><td>.2156</td><td>.0107</td><td>1662</td></t<>	21°	.9336	.8074	.6338	.4300	.2156	.0107	1662
23 .9205 .7716 .5692 .3386 .1057 —1038 —268 24 .9135 .7518 .5357 .2926 .0525 —1559 —305 25 .9003 .7321 .5016 .2465 .0009 —2053 —346 26° .8988 .7117 .4670 .2007 —0489 —2478 —371 27 .8910 .6908 .4319 .1553 —0964 —2869 —392 28 .8829 .6694 .3964 .1105 —1415 —3211 —402 29 .8746 .6474 .3607 .0665 —1839 —3393 —411 30 .8660 .6250 .3248 .0234 —2233 —3740 —410 31° .8572 .6021 .2887 —0185 —2595 —3924 —402 32 .8480 .5788 .2527 —0591 —2923 —4052 —38 33 .8387	22		7895			.1602	0481	2201
24 .9135 .7518 .5357 .2926 .0525 1559 306 25 .9063 .7321 .5016 .2465 .0009 2053 346 26° .8988 .7117 .4670 .2007 0489 2478 371 27 .8910 .6908 .4319 .1553 0964 2869 392 28 .8829 .6694 .3964 .1105 1415 3211 405 29 .8746 .6474 .3607 .0665 1839 3503 411 30 .8660 6250 3248 0234 2233 3740 410 31° 8572 6021 2887 0185 2595 3924 402 32 4880 5788 2527 0591 2923 4052 38- 33 8387 551 2167 0982 3216 4126	23		.7710	.5692		.1057	1038	2681
25 .9003 .7321 .5016 .2465 .0009 2053 346 26° .8988 .7117 .4670 .2007 0489 2478 371 27 .8910 .6908 .4319 .1553 0964 2869 392 28 .8829 .6694 .3964 .1105 1415 3211 405 29 .8746 .6474 3607 .0665 1839 3503 411 30 .8660 .6250 3248 0234 2233 3740 410 31° 8572 6021 2887 0185 2595 3924 402 32 8480 5788 2527 0591 2923 4052 367 34 8290 5310 1809 1357 3473 4126 369 35 8192 5065 1454 1714 3691 4115<					.2926			3095
27 .8910 .6908 .4319 .1553								—.ǯ₄́6ǯ
27 .8910 .6908 .4319 .1553 0964 2869 392 28 .8829 .6694 .3964 .1105 1415 3211 405 29 .8746 .6474 .3607 .0665 1839 3503 411 30 .8660 .6250 .3248 .0234 2233 3740 410 31° .8572 .6021 .2887 0185 2595 3924 402 32 .8480 .5788 .2527 0591 2923 4052 387 33 .8387 .5551 .2167 0982 3216 4126 307 34 .8290 .5310 .1809 1357 3473 4148 340 35 .8192 .5065 .1454 1714 3691 4115 309 36° .8090 .4518 .1102 2052 3871 4031 273	26°	.8988	.7117	.4670	.2007	0489	2478	3717
28 .8829 .6694 .3964 .1105 1415 3211 405 29 .8746 .6474 .3607 .0665 1839 3503 411 30 .8660 .6250 .3248 .0234 2233 3740 410 31° .8572 .6021 .2887 0185 2595 3924 402 32 .8480 .5788 2527 0591 2923 4052 383 33 .8387 5551 2167 0982 3216 4126 367 34 8290 5310 809 1357 3473 4148 34 35 8192 5065 1454 1714 3691 4115 309 36° 8090 4518 1102 2052 3871 4031 273 37 7986 4567 0755 2370 4011 <	27	.8910	.6908	.4319	.1553	0964		3921
29 .8746 .6474 .3607 .0665 1839 3503 411 31° .8660 .6250 .3248 .0234 2233 3740 410 31° .8572 .6021 .2887 0185 2595 3924 402 32 .8480 .5788 2527 0591 2923 4052 38 33 .8387 5551 2167 0982 3216 4126 367 34 8290 5310 1809 1357 3473 4148 340 35 8192 5065 1454 1714 3691 4115 309 36° 8090 4318 1102 2052 3871 4031 273 37 7986 4567 0755 2370 4011 3898 234 38 7880 4314 0413 2666 4112	28		.6694	.3964				4052
30 .8660 .6250 .3248 .0234 2233 3740 410 31° .8572 .6021 .2887 0185 2595 3924 402 32 .8480 .5788 .2527 0591 2923 4052 387 33 .8387 .5551 .2167 0982 3216 4126 367 34 .8290 .5310 .1809 1357 3473 4148 340 35 .8192 .5065 .1454 1714 3691 4115 309 36° .8090 .4818 .1102 2052 3871 4031 273 37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3497 146 40 .7660 .3802 0252 3190 4174 3497 146	2Q	.874Ć	.6474	.3607	.0665			4114
32 .8480 .5788 .2527 —.0591 —.2923 —.4052 —.38-387 33 .8387 .5551 .2167 —.0982 —.3216 —.4126 —.367 34 .8290 .5310 .1809 —.1357 —.3473 —.4148 —.340 35 .8192 .5065 .1454 —.1714 —.3691 —.4115 —.309 36° .8090 .4818 .1102 —.2052 —.3871 —.4031 —.273 37 .7986 .4567 .0755 —.2370 —.4011 —.3898 —.234 38 .7880 .4314 .0413 —.2666 —.4112 —.3719 —.194 40 .7660 .3802 —.0252 —.3190 —.4197 —.3234 —.100 41° .7547 .3544 —.0574 —.3416 —.4181 —.2938 —.053 42 .7431 .3284 —.0887 —.3616 —.4128 —.2611 —.066 <t< td=""><td></td><td></td><td></td><td>.3248</td><td>.0234</td><td></td><td></td><td>4101</td></t<>				.3248	.0234			4101
32 .8480 .5788 .2527 —.0591 —.2923 —.4052 —.38- 33 .8387 .5551 .2167 —.0982 —.3216 —.4126 —.367 34 .8290 .5310 .1809 —.1357 —.3473 —.4148 —.347 35 .8192 .5065 .1454 —.1714 —.3691 —.4115 —.309 36° .8090 .4518 .1102 —.2052 —.3871 —.4031 —.273 37 .7986 .4567 .0755 —.2370 —.4011 —.3898 —.234 38 .7880 .4314 .0413 —.2666 —.4112 —.3719 —.194 40 .7660 .3802 —.0252 —.3190 —.4197 —.3234 —.100 41° .7547 .3544 —.0574 —.3416 —.4181 —.2938 —.053 42 .7431 .3284 —.0887 —.3616 —.4128 —.2611 —.066	31°	.8572		.2887	—.o185	2595	3924	4022
33 .8387 .5551 .2167 0982 3216 4126 367 34 .8290 .5310 .1809 1357 3473 4148 340 35 .8192 .5065 .1454 1714 3691 4115 309 36° .8090 .4818 .1102 2052 3871 4031 273 37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3719 194 40 .7660 .3802 0252 3190 4174 3497 146 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .036	32	.8480	.5788	.2527				38-6
34 .8290 .5310 .1809 1357 3473 4148 346 35 .8192 .5065 .1454 1714 3691 4115 309 36° .8090 .4818 1102 2052 3871 4031 273 37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3719 101 39 .7771 .4059 .0077 2940 4174 3497 146 40 .7660 .3802 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 064 43 .7314 .3023 1191 3791 4038 2255 036 </td <td></td> <td>8387</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3670</td>		8387						3670
36° .8090 .4318 .1102 2052 3871 4031 273 37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3719 191 39 .7771 .4059 .0077 2940 4174 3497 146 40 .7660 .3802 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .030				.1809		. •		3409
37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3719 191 39 .7771 .4059 .0077 2940 4174 3497 146 40 .7660 .3802 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .033				.1454			4115	—.309 6
37 .7986 .4567 .0755 2370 4011 3898 234 38 .7880 .4314 .0413 2666 4112 3719 191 39 .7771 .4059 .0077 2940 4174 3497 146 40 .7660 .3802 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .033		.8090		.1102	2052	3871	4031	2738
38 .7880 .4314 .0413 2666 4112 3719 191 39 .7771 .4059 .0077 2940 4174 3497 146 40 .7660 .3802 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .033	37	.7986	.4567	.0755	2370	4011		2343
39	38	.7880			2666			—.19i8
40 .7660 .3862 0252 3190 4197 3234 100 41° .7547 .3544 0574 3416 4181 2938 053 42 .7431 .3284 0887 3616 4128 2611 066 43 .7314 .3023 1191 3791 4038 2255 .033		.7 7 7 [.0077	2940	4174		1469
42 .7431 .3284		.76 60	.3802	0252	3190	4197		1003
43 .7314 .30231191379140382255 .039			·3544	0574	3416			0534
$43 \mid .7314 \mid .3023 \mid1191 \mid3791 \mid4038 \mid2255 \mid .039$	42	.7431			- .3616			0 c65
44 .7193 .2762 1485 3940 3914 1878 .084	43	.7314	.3023		— .3791	4038		.0395
	44		.2762	1485	3940	3914		.0846
	45 !	.707 [.2500	1768	—.4062	─ -37 57	1485	.1270

^{*} Calculated by Prof. Perry (Phil. Mag. Dec. 1891). See also A. Gray, "Absolute Measurements in Electricity and Magnetism," vol. ii., part 2.

TABLE 54.

ZONAL HARMONICS.

		,					7
0	E 1	E ₂	18	2 4	E,	E 6	4 7
46°	0.6947	0.2238	2040	4158	3568	1079	0.1666
47	.6820	.1977	2300	4252	3350	0645	.2054
48	.6601	.1716	2547	4270	3105	0251	.2349
49	.6561	.1456	—.2781	—.4286	—.2836	.0161	.2627
50	.6428	.1198	—.3002	—.4275	—.2545	.0563	.2854
51°	.6293	.0941	3209	4239	—.2235	.0954	.3031
52	.6157	.0686	3401	4178	—.1910	.1 326	.3153
53	.6018	.0433	3578	4093	—.1571	.1677	.3221
54	.5878	.0182	3740	3984	—.1223	.2002	.3234
55	.5736	—.0065	3886	3852	—.0868	.2297	.3191
56°	.5592	—.0310	4016	3698	—.0510	.2559	.3095
57	.5446	—.0551	4131	3524	—.0150	.2787	.2949
58	.5299	—.0788	4229	3331	.0206	.2976	.2752
59	.5150	—.1021	4310	3119	.0557	.3125	.2511
60	.5000	—.1250	4375	2891	.0898	.3232	.2231
61°	.4848	1474	—.4423	—.2647	.1229	.3298	.1916
62	.4695	1694	—.4455	—.2390	.1545	.3321	.1571
63	.4540	1908	—.4471	—.2121	.1844	.3302	.1203
64	.4384	2117	—.4470	—.1841	.2123	.3240	.0818
65	.4226	2321	—.4452	—.1552	.2381	.3138	.0422
66°	.4067	2518	4419	—.1256	.2615	.2906	.0021
67	.3907	2710	4370	—.0955	.2824	.28 • , f	0375
68	.3746	2896	4305	—.0650	.3005	.2605	0763
69	.3584	3074	4225	—.0344	.3158	.2361	1135
7°	.3420	3425	4130	—.0038	.3281	.2089	1485
71°	.3256	3410	4021	.0267	.3373	.1786	1811
72	.3090	3568	3898	.0568	.3434	.1472	2099
73	.2924	3718	3761	.0864	.3463	.1144	2347
74	.2756	3860	3611	.1153	.3461	.0795	2559
75	.2588	3995	3449	.1434	.3427	.0431	2730
76°	.2419	4112	3275	.1705	.3362	.0076	2848
77	.2250	4241	3090	.1964	.3267	—.0284	2919
78	.2079	4352	2894	.2211	.3143	—.0644	2943
79	.1908	4454	2688	.2443	.2990	—.0989	2913
80	.1736	4548	2474	.2659	.2810	—.1321	2835
81°	.1 564	4633	—.2251	.2859	.2606	—.1635	2709
82	.1392	4709	—.2020	.3040	.2378	—.1926	2536
83	.1219	4777	—.1783	.3203	.2129	—.2193	2321
84	.1045	4836	—.1539	.3345	.1861	—.2431	2067
85	.0872	4886	—.1291	.3468	.1577	—.2638	1779
86° 87 88 89 90	.0698 .0523 .0349 .0175 .0000	4927 4959 4982 4995 5000	—.1038 —.0781 —.0522 —.0262 —.0000	.3569 .3648 .3704 .3739 .3750	.1278 .0969 .0651 .0327	—.2811 —.2947 —.3045 —.3105 —.3125	1460 1117 0735 0381 0000

MUTUAL INDUCTANCE.*

Values of $\log \frac{M}{4\pi \sqrt{\alpha \alpha'}}$

Table of values of $\log \frac{M}{4\pi \sqrt[4]{aa'}}$ for facilitating the calculation of the mutual inductance M of two coards circles of radii a, a', at distance apart b. The table is calculated for intervals of b' in the value of $\cos^{-1}\left\{\left(\frac{a-a'}{a-a'}\right)^2+b^2\right\}^{\frac{1}{2}}$ from b^{0} to b^{0} .

	oʻ	6′	12′	18′	24′	30′	36′	42′	48′	54′
60°	ī.4994783	5022651	5050505	5078345	5106173	5133989	5161791	5189582	5217361	5245128
61						5411498				
62	5549864	5577510	5605147	5632776	5660398	5688011	571 5618	5743217	5770809	5798394
63						5963782				
64	6101472	6128998	61 56 522	6184042	6211560	6239076	62 6658 9	6294101	6321612	6349121
65°	ī.6376629	6404137	6431645	6459153	6486660	6514169	6541678	6569189	6596701	662421
66	6651732	6679250	6706772	6734296	6761824	6789356	6816891	6844431	6871976	6899526
67						7064949				
68						7341287				
69						7618735				
70°	ī.77 58000	7785003	781 3823	7841762	7869720	7897696	7925692	7953709	7981745	800980
71	8037882	8065983	8004107	8122253	8150423	8178617	8206836	8235080	8263 349	829164
72	8319967	8348316	8376603	8405099	8433534	8461998	8490493	8519018	8547575	8576164
73	8604785	8633440	8662129	8690852	8719611	8748406	8777237	8806106	8835013	8863948
74	8892943									
75°	T.9185141	0214613	0244135	027 3707	0303330	93 3300 5	0362733	0302515	0422352	0452246
76	9482196									
77	9785079									
	0.0094959	0126385	01 57896	0189494	0221181	0252959	0284830	0316794	0348855	0381014
79	0413273									
900	0.0741816	0775316	0808044	0842702	0876502	0010610	0044784	0070001	1013542	104814
81	1082893									
82	1439539									
83	181 5890									
84	2217823									
85°	0.2654152	27001 56	2746655	2793670	2841221	2880320	2038018	2087312	3037238	308782
86	31 39097									
87	3698153									
88	4385420									
89	5360007									

Quoted from Gray's "Absolute Measurements in Electricity and Magnetism," vol. ii., p. 852.

ELLIPTIC INTEGRALS. Values of $\int_0^T (1-\sin^2\theta\sin^2\phi)^{\frac{1}{12}}d\phi$.

This table gives the values of the integrals between o and $\pi/2$ of the function $(r-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}$ def for different values of the modulus corresponding to each degree of θ between o and go.

•	S (i-	d∳ sin² Øsin² ∳.}}	J ;	in ** sin**) [†] #		\int_0^\frac{7}{(z-1)}	₫φ sin²θ sin² φ)³	S [‡] (1-	sin²€sin²∳) [}] dj
	Number.	Log.	Number.	Log.		Number.	Log.	Number.	Log.
0°	1.5708	0.196120	1.5708	0.196120	45°	1.8541	0.268127	1.3506	0.130541
ı	5709	196153	5707	196087	6	80QT	271644	3418	127690
2	5713	196252	5703	195988	8	8848	275267	3329	124788
3	5719	196418	5697	195822	8	9011	279001	3238	121836
4	5727	196649	5689	195591	9	9180	282848	3147	118836
5°	1.5738	0.196947	1.5678	0.195293	50°	1.9356	0.286811	1.3055 2963	0.115790
6	5751 5767	197312	5665	194930	I	9539	290895	2963	112698
7 8	5707	197743	5649	194500	2	9729	295101	2870	109563
	5785	197241	5632	194004	3	9927	299435	2776	106386
9	5805	198806	5611	193442	4	2.0133	303:301	2681	103169
10°	1.5828	0.199438	1.5589	0.192815	55°	2.0347	0.308504	1.2587	0.099915
I	5854 5882	200137	5564	192121	6	0571 0804	31 3247	2492	096626
2		200904	5537	191302	7 8		318138	2397	093303
3	5913	201740	5507	190537	_	1047	323182	2301	089950
4	5946	202643	5476	189646	9	1300	328384	2206	086569
15°	1.5981	0.203615	1.5442	0.188690	60°	2.1 565	0.333753	1.2111	0.083164
6	6020	204657	5405	187668	I	1842	339295	2015	079738
7 8	6061	205768	5367	186581	2	2132	345020	1920	076293
	6105	206948	5320	185428	3	2435	350936	1826	072834
9	6151	208200	5283	184210	4	2754	357053	1732	069364
20°	1.6200	0.209522	1.5238	0.182928	65°	2.3088	0.363384	1.1638	0.065889
T.	6252	210916	5191	181580	6	3439 3809	369940	1545	062412
2	6307	212382	5141	180168	7 8	3809	376736	1453	058937
3	6365	213921	5090	178691	L	4198	383787	1362	055472
4	6426	21 5533	5037	177150	9	4610	391112	1272	052020
25°	1.6490	0.217219	1.4981	0.175545	70°	2.5046	0.398730	1.1184	0.048589
6	6557	218981	4924	173876	1	5507	406665	1096	045183
	6627	220818	4924 4864	172144	2	5008	414943	1011	041812
7 8	6701	222732	4803	170348	3	6521	423596	0927	038481
9	6777	224723	4740	168489	4	7081	43266o	0844	035200
30°	1.6858	0.226793	1.4675	0.166567	75°	2.7681	0.442176	1.0764	0.031976
1	6941	228943	4608	164583	6	8327	452196	0686	028819
2	7028	231173	4539	162537		9026	462782	0611	025740
3	7119	233485	4469	160429	7 8	9786	474008	0538	022749
4	7214	235880	4397	158261	9	3.0617	485967	0468	019858
35°	1.7312	0.238359	1.4323	0.156031	80°	3.1534	0.498777	1.0401	0.017081
6	7415	240923	4248	153742	1	2553	512591	0338	014132
7 8	7522	243575	4171	151393	2	3699	527613	0278	011927
	7633	246315	4092	148985	3	5004	544120	0223	009584
9	7633 7748	249146	4013	146519	4	6519	562514	0172	007422
40°	1.7868	0.252068	1.3931	0.143995	85 °	3.8317	0.583396	1.0127	0.005465
I	7992 8122	255085	3849	141414	6	4.0528	607751	0086	003740
2		258197	3765	138778	7 8	3387	637355	∞53	002278
3	8256	261406	368o	136086	8	7427	676027	0026	001121
4	8396	264716	3594	133340	9	5-4349	735192	0008	000326
45°	1.8541	0.268127	1.3506	0.130541	90°	∞	∞	1.0000	

TABLE 57.

BRITISH UNITS.

Gross sections and weights of wires.

This table gives the cross section and weights in British units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide section and weights by 100. For ten times the diameter multiply by 100, and so on.

ſ			<u></u>	- Deneit		,	Domino	- 0-	Brass — Density 8.56.			
ı	in .	Area of	Coppe	r — Densit	y 8.90.	1ron -	— Density	7.80.	Brass	- Density	8.50.	
I	Diam. ii Mils.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	
l	10	78.54 95.03	.000303 0367	4.48150 .56429	3300. 2727.	.0002656 03214	4.42420 .50697	3765. 3112.	.0002915 03527	4.46458 54735	3431. 2836. 2383.	
ı	12	113.10	0436	.63986	2291.	03825	.58257 .65208	2615.	04197	62295	2383.	
ı	13	132.73	0512	.70939	1953. 1683.	04488	.65208	2228.	04926	69246	2030.	
١	14	1 53.94	0594	.77376	1003.	05206		1921.	05713	7 5 6 8 4	1750.	
l	15	176.71	.000682	4.83368	1467.	.0005976	4.77637	1674	.0006558	4.81675	1525.	
l	16	201.06 226.98	0776 0876	.88974	1289.	06799 07675	.83244 .88510	1471.	07461 08423	.87282	1340. 1187.	
1	17 18	254.47	0982	.94240 .99205	1142. 1018.	08605	.93475	1 303. 1 162.	09443	.92548	1059.	
ı	19	283.53	1094	3.03902	914.	09588	.98171		.0010522	3.02209	950.	
ı	20	314.16	.001212	3.08357	825.1	.001062	3.02626	941.4	.001166	3.06664	857.7	
1	21	346.36	1336	.12594	748.3	1171	.06864	853.8	1285	.10902	778.0	
۱	22	380.13	1467	.16634	681.8	1286	.10904	777.8	1411	.14942	708.9	
ł	23	415.48	1603	.20496	623.8	1405	.14766	711.7	1542	.18804	648.6	
١	24	452.39	1746	.24192	572.9	1530	.18463	653.7	1679	.22500	595.7	
I	25	490.87	.001894	3.27738	528.0	.001660	3.22008	602.4	.001822	3.26046	549.0	
1	26	530.93	2046	.31146	488.1	1795	.25415	557.0	1970	.29453	507.5	
i	27 28	572.56	2209	.34423 .37583	452.6	1936 2082	.28693	516.5	2125 2285	.32731	470.6	
I	29	61 5.7 5 660.52	2376 2549	.40630	420.9 392.4	2032	.31852 .34900	480.3 447.7	2451	.38938	437.6	
Į	-		-			•	"				·	
l	30	706.82	.002727	3-43575	366.7	.002390	3.37845	418.4	.002623 2801	3.41882	381.2	
ı	31 32	7 54-77 804.2 5	2912 3103	.46424 .49181	343·4 322.2	2552 2720	.40693 .43450	391.8 367.7	2985	.44731 .47488	357.0 335.1	
۱	33	855.30	3300	.51854	303.0	2892	.46123	345.8	3174	.50161	315.1	
l	34	907.92	3503	.54446	285.4	3070	.48716	325.7	3369	·52754	296.8	
l	35	962.11	.003712	3.56964	269.4	.003253	3.51233	307.4	.003570	3.55271	280.1	
ı	36	1017.88	4927	.59412	254.6	3442	.53681	290.5	3777	.57719	264.7	
ı	37	1075.21	4149	.61791	241.0	3636	.56061	27 5.0 260.2	3990	.60098	250.6	
۱	38 39	1134.11	4376 4 60 9	.64108 .66364	228.5 216.9	3844 4040	.58476 .60633	247.6	4218 4433	.62514 .64671	237.I 225.6	
Į	40	1256.64	.004849	3.68563	206.2	.004240	3.62833	235-3	.004664	3.66871	214.4	
١	41	1 320.25	5094	.70708	196.3	4465	.64977	224.0	4900	.69015	204.I	
ı	42	1385.44	5346	.72801	187.1	4685	.67070	213.5	5141	.71108	194.5	
l	43	1452.20	5603	.74845	178.5	4911	.69114	203.6	5389	.731 52	185.6	
١	44	1 520.53	5867	.76842	170.4	5142	.71111	194.5	5643	.75149	177.2	
١	45	1590.43	.006137	3.78793	162.9	.005378	3.73063	185.9	.005902	3.77101	169.4	
I	46	1661.90	6412	.80703	155.9	5620	.74972	177.9	6167	.79010	162.1	
ı	47 48	1734.94 1809.56	6694 6982	.82569	149.4	5867 6119	.76840 .78669	170.5 163.4	6438	.80878	155.3 148.9	
١	49	1885.74	7276	.84399 .86289	143.2 137.4	6377	.80459	156.8	6715 6 9 98	.82706 .84497	142.9	
ı	50	1963.50	.007 576	3.87945	132.0	.006640	3.82214	1 50.6	.007287	3.86252	137.2	
I	51	2042.82	7882	.89664	126.9	6908	.83934	144.8	7581	.87972	131.9	
I	52	2123.72	8194	.91352	I 22.Ó	7181	.85621	139.2	788ı	89659	126.9	
١	53	2206.18	8512	.93005	117.5	7460	.87275	134.0	8187	.91313	122.1	
	54	2290.22	8837	.94630	113.2	7744	.88899	129.1	8499	·9 2 937	117.7	
١	55	2375.83	.009167	3.96223	109.1	.008034	3. 9 0493	124.5	.008817	3.94531	113.4	
ľ												

TABLE 57.
BRITISH UNITS.
Cross sections and weights of wires.

<u>.</u>	Area of	Сорре	r — Densit	y 8.90.	Iron ·	— Density	7.80.	Brass	- Density	8.56.
Diam. ir Mila.	section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.	Pounds per Foot.	Log.	Feet per Pound.
55	237 5.83 2463.01	.009167	3.96223 .97789	109.1	.008034	3.90493 .92058	124.5 120.1	.008817	3.94531 .96096	I13.4 109.4
57	2551.76	09846	99325	101.6	08629	·93595	115.9	09470	.97633	105.6
57 58	2642.08	10195	2.00837	98.1	08934	.95106	111.9	09805	.99144	102.0
59	² 733-97	10549	.02320	94.8	09245	.96591	108.2	10146	2.00629	98.6
60	2827.43	.01091	2.03782	91.66	.00956	3.98050	104.59	.01049	2.02088	95.30
61	2922.47	1128	.05216	88.68	0988	99486	101.19	1085	.03524	92.21
62 63	3019.07	1165	.08019	85.84 83.14	1021	2.00898 .02288	97.95 94.87	1120	.04936	89.25 86.45
64	3117.25 3216.99	1203	.00319	80.56	1088	.03656	91.83	1157	.07694	83.77
65	3318.31	.01280	2.10732	78.11	.01122	2.05003	89.12	.01231	2.09041	81.21
66	3421.19	1320	.12061	75.76	1157	06329	86.44	1270	.10367	78.76
67	3525.65	1360	.13367	73.51	1192	.07635	83.88	1308	.11673	76.43
68	3631.68	1401	.14655	71.36	1228	.08922	81.42	1348	.12960	74.20
69	3739.28	1443	.1 5924	69.30	1264	.10190	79.09	1388	.14228	72.06
70	3848.45	.01485	2.17174	67.34	.01302	2.11451	76.82	.01429	2.1 5489	70.00
71	3959.19	1 528	.18404	65.46	1339	.12672	74.69	1469	.16710	68.06
72	4071.50	1571 1615	.19618	63.65	1377	.13887	72.63 70.66	1511	.17925	66.19
73	4185.39 4300.84	1660	.22000	61.92 60.26	1415 1454	.15085	68.76	1 5 5 3 1 5 9 6	.19123	64.38 62.66
75		l i				,	ľ		_	
76	4417.86 4536.46	.01705 1751	2.23165 .24317	58.66 57.13	.01494 1534	2.17432 .18583	66.95 65.19	.01639 1684	2.21460 .22621	61.01 59.40
77	4656.63	1797	.25453	55.65	1575	.19718	63.50	1728	.23756	57.87
78	4778.36	1844	.26574	54.23	1616	.20839	63.50 61.89	1773	.24877	56.39
79	4901.67	1892	.27681	52.87	1658	.21946	60.33	1819	-25974	54.99
80	5026.55	.01939	2.28769	51.56	.01700	2.23038	58.83	.01865	2.27076	53.61
81	51 53.00	.01939 1988	.29848	50.29	1743 1786	.24117	57.39	1912	.28155	52.29
82	5281.02	2038	.30914	49.07	1786	.25183	56.00	1960	.29221	51.03
83 84	5410.61	2088	.31966	47.90	1830 1874	.26236	54.66	2008	.30274	49.80 48.63
	5541.77	2138	.33006	46.77		.27276	53.36	2057	.31314	40.03
85	5674.50 5808.80	.02189	2.34034	45.67	.01919	2.28304	52.11	.02106	2.32342	47.49
86 87		2241	.35050	44.62	1964	.29320	50.91	2156 2206	.33358	46.39
88	5944.68 6082.12	2294 2347	.36054 .37047	43.60 42.61	2010	.30324	49.75 48.62	2200 2257	.34362	45.33 44.30
89	6221.14	2400	.38028	41.66	2104	.32298	47.54	2309	·35355 ·36336	43.31
90	6361.73 6503.88	.02455	2.38999	40.74	.02151	2 .33269	46.49	.02360	2.37297	42.37
91	6503.88	2509	.39958	39.85	2199	.34228	45-47	2414	.38266	41.43
92	6647.61	2565	.40908	38.99	2248	.35178	44.49	2467	.39216	40.54
93 94	6792.91 6939.78	2621 2678	.41847 .42775	38.15	2297 2347	.36116 .37046	43.54 42.61	2521 2575	.40154 .41084	39.67 38.83
	,			37-35		_	,		_ `	
95 96	7088.22 7238.23	.02735	2.43694 .44604	36.56 35.81	.02397	2.37965	41.72 40.86	.02630 2686	2.42003 .42012	38.02
97	7230.23 7389.81	2793 2851	.45404	35.01	2448 2499	.38874 ·39775	40.00	2742	.43812	37·37 36·46
98	7542.96	2910	.46395	34.36	2551	.40665	39.20	2799	.44703	35.72
99	7697.69	2970	·47277	33.67	2603	.41 547	38.42	2857	45585	35.01
100	7853.98	.03030	2 .481 50	33.00	.02656	2 .42420	37.65	.02915	2.46458	34.31

TABLE 58.

METRIC UNITS.

Gross sections and weights of wires.

This table gives the cross section and the weight in metric units of copper, iron, and brass wires of the diameters given in the first column. For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and 80 on.

thou- of a cm.		Сорре	r — Densit	y 8.90.	Iron	— Density	7.80.	Bras	s — Density	8.56.
Diam. in the	Area of cross section.	Grammes per Metre.	Log.	Metres jver Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes Per Metre.	Log.	Metres per Gramme.
10 11 12 13 14	78.54 95.03 113.10 132.73 153.94	.084 5 8 .100 6 5 .1181 3	2.84448 .92725 1.00285 .07236 .13674	14.306 11.823 9.935 8.465 7.299	0.06126 .07412 .08822 .10353 .12008		16.324 13.492 11.335 9.659 8.328	0.06723 .08135 .09681 .11362 .13177	2.82756 .91034 .98594 1.05544 .11983	14.874 12.293 10.330 8.801 7.589
15 16 17 18 19	176.71 201.06 226.98 254.47 283.53	.1789 .2020 .2265	ī.19665 .25272 .30538 .35503 .40199	6.358 5.588 4.951 4.415 3.963	0.1378 .1568 .1770 .1985 .2212	ī.13936 .19542 .24808 .29773 .34469	7.255 6.376 5.648 5.038 4.522	0.1513 .1721 .1943 .2178	ī.17974 .23580 .28846 .33811 .38507	6.611 5.810 5.147 4.591 4.120
20 21 22 23 24	314.16 346.36 380.13 415.48 452.39	.3083 .3383 .3698	1.44654 .48892 .52932 .56794 .60490	3.577 .244 2.956 .704 .484	0.2450 .2702 .2965 .3241 .3529	ī.38925 .43162 .47203 .51064 .54761	4.081 3.701 .373 .086 2.834	0.2689 .2965 .3254 .3557 .3872	1.42963 .47200 .51241 .55103 .58799	3.719 -373 .073 2.812 .582
25 26 27 28 29	490.87 530.93 572.56 61 5.75 660.52	.4725 .5096 .5480	ī.64036 .67443 .70721 .73880 .76928	2.289 .116 1.962 .825 .701	0.3829 .4141 .4466 .4803 .5152	ī.58306 .61713 .64992 .68150 .71198	2.612 .415 .239 .082 1.941	0.4202 ·4545 ·4901 ·5271 ·5654	ī.62344 .65751 .69030 .72188 .75236	2.380 .200 .040 1.897 .769
31 32 33 34	706.86 754.77 804.25 855.30 907.92	0.6291 .6717 .7158 .7612 .8081	ī.79872 .82721 .85478 .85151 .90744	1.590 .489 .397 .314 .238	0 5514 .5887 .6273 .6671 .7082	ī.74143 .76991 .79749 .82421 .85014	1.814 .699 .594 .499 .412	0.6051 .6461 .6884 .7321 .7772	ī.78181 .81029 .83787 .86459 .89052	1.653 .548 -453 .366 .287
35 36 37 38 38 39	962.11 1017.88 1075.21 1134.11 1194.59	o.856 .906 .957 1.012 .063	7.93261 .95709 .98088 0.00504 .02661	1.168 .104 .045 0.988 .941	0.7504 .7939 .83\\\7 .8866 .9318	7.87531 .89979 .92359 .94775 .96931	1.333 .260 .192 .128	0.8236 .8713 .9204 .9730 1.0230	ī.91570 .94017 .96397 .98813 0.00969	1.214 .148 .087 .028 0.978
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	1.118 .175 .233 .292 .353	0.04861 .07005 .09098 .11142 .13139	0.8941 .8511 .8110 .7738 .7389	0.980 1.030 .081 .133 .186	7.99131 0.01275 .03368 .05412 .07409	1.0200 0.9711 .9254 .8828 .8432	1.076 .130 .186 .243 .302	0.03169 .05313 .07406 .09450	0.9296 .8849 .8432 .8044 .7683
45 46 47 48 49	1590.43 1661.90 1734.94 1809.56 1885.74	1.415 -479 -544 .611 .678	0.1 5091 .17000 .18868 .20696	0.7065 .6761 .6476 .6209 .5958	1.241 .296 ·353 .411 .471	0.09361 .11270 .13138 .14967 .16758	0.8061 .7714 .7389 .7085 .6799	1.361 .423 .485 .549 .614	0.13399 .15308 .17176 .19005 .20796	0.7345 .7029 .6734 .6456 .6195
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	1.748 .818 .890 .964 2.038	0.24242 .25962 .27649 .29303 .30927	0.5722 .5500 .5291 .5093 .4906	1.532 .593 .657 .721 .786	0.18513 .20232 .21919 .23574 .25197	0.6530 .6276 .6037 .5811 .5598	1.681 .753 .818 .888 .960	0.22551 .24371 .25957 .27612 .29235	0.5950 .5705 .5501 .5295 .5101
55	2375.83	2.114	0.32521	0.4729	1.853	0.26791	0.5396	2.034	0.30829	0.4917

METRIC UNITS.

Grees sections and weights of wires.

										
thou- of a cm.	. d.	Сорре	r — Densit	y 8.90.	Iron	— Density	7.80.	Bras	— Density	8.56.
Diam. in the	Area of cre section.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.	Grammes per Metre.	Log.	Metres per Gramme.
55 56 57 58 59	237 5.83 2463.01 2551.76 2642.08 2733.97	2.114 .192 .271 .351 -433	0.32521 .34086 .35623 .37134 .38618	.4729 .4562 .4403 .4253 .4112	1.853 .921 .990 2.061 .132	0.26791 .28356 .29893 .31404 .32889	.5396 .5205 .5024 .4852 .4689	2.034 .108 .184 .262	0.30829 .32394 .33931 .35442 .36927	.4917 .4743 .4578 .4422 .4273
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	2.516 .601 .687 .774 .863	0.40078 .41514 .42926 .44316 .45684	·3974 ·3845 ·3722 ·3604 ·3493	2.205 .280 .355 .431 .509	0.34349 .35784 .37196 .38587 .39954	.4534 .4387 .4246 .4113 .3985	2.420 .502 .584 .668 .760	0.38387 .39823 .41235 .42625 .44092	.4132 ·3997 ·3869 ·3748 ·3623
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	2.953 3.045 .138 .232 .328	0.47031 .48357 .49663 .50950 .52218	.3386 -3284 .3187 .3094 .3005	2.588 .669 .750 .833 .917	0.41301 .42627 .43933 .45220 .46488	.3864 •3747 •3636 •3530 •3429	2.840 .929 3.018 .109	0.45339 .46665 .47971 .49258 .50526	.3521 .3415 .3313 .3217 .3124
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	3.426 .524 .624 .725 .828	0.53479 .54700 .55915 .57113 .58294	.2919 .2838 .2759 .2685 .2612	3.003 .088 .176 .265	0.47749 .48970 .50185 .51383 .52565	.3330 .3238 .3149 .3063 .2981	3.295 .389 .485 .583 .682	0.51787 .53008 .54223 .55421 .56603	.3035 .2951 .2869 .2791 .2716
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	3.932 4.037 .144 .253 .362	0.59460 .60611 .61746 .62867 .63974	.2543 .2477 .2413 .2351 .2292	3.446 .538 .632 .727 .823	0.53731 .54881 .56017 .57137 .58244	.2902 .2826 .2753 .2683 .2615	3.782 .883 .986 4.090	0.57769 .58919 .60056 .61175 .62283	.2644 .2575 .2509 .2445 .2394
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	4.474 .586 .700 .815 .932	0.65066 .66145 .67211 .68264 .69304	.2235 .2180 .2128 .2077 .2027	3.921 4.019 .119 .220 .323	0.59336 .60415 .61481 .62534 .63574	.2550 .2488 .2428 .2369 .2313	4.303 .411 .521 .631 .744	0.63375 .64454 .65519 .66572 .67612	.2324 .2267 .2212 .2159 .2108
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	5.050 .170 .291 .413 .537	0.70332 .71348 .72352 .73345 .74326	.1980 .1934 .1890 .1847 .1806	4.426 .531 .637 .744 .852	0.64602 .65618 .66622 .67615 .68596	.2259 .2207 .2157 .2108 .2061	4.857 .972 5.089 .206 .325	0.68640 .69656 .70660 .71653 .72634	.2059 .2011 .1965 .1921 .1878
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	5.662 .788 .916 6.046 .176	0.7 §297 .76256 .77206 .78144 .79074	.1766 .1728 .1690 .1654 .1619	4.962 5.073 .185 .298 .413	0.69567 .70527 .71476 .72414 .73344	.2015 .1971 .1929 .1887 .1847	5.446 .567 .690 .815 .940	0.73605 .74565 .75514 .76452 .77382	.1836 .1796 .1757 .1720 .1683
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	6.309 -442 -577 -713 -851	0.79993 .80902 .81802 .82693 .83575	.1 58 5 .1 552 .1 520 .1 490 .1 460	5.529 .646 .764 .884 6.004	0.74263 .75173 .76073 .76964 .77846	.1809 .1771 .1735 .1670 .1665	6.068 .196 .326 .457 .589	0.78301 .79211 .80111 .81002 .81884	.1648 .1614 .1581 .1549 .1518
100	7853.98	6.990	0.84448	.1431	6.126	0.78718	.1632	6.723	0.82756	.1487

Oross sections and weights of wires.

The cross section and the weight, in different units, of Aluminium wire of the diameters given in the first column.

For one tenth the diameter divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

<u> </u>										
1	Area of				Aluminium	— Density	2.67.			
표	cross section	Pounds	1	Feet	Ounces	1	Feet	Grammes		Metres
Diam. Mila	in Sg. Mils.	per Foot.	Log.	per Pound.	per Foot.	Log.	per Ounce.	per Metre.	Log.	per Gramme.
			ļ							
10	78.54	.0000909	<u>5</u> .95862	11000.	.001455 01760	3.16274		.02097	2.32160	47.69
11	95.03	01100	4.04139	9091.		.24551	602.4	.02537	-40437	39.41
13	113.10	01 309 01 536	.11699	7638. 6509.	02095 02458	.32111	477·4 406.8	.03020 .03544	·47997 ·54948	33.11 28.22
14	153.94	01782	.25088	5612.	02851	.45500	350.8	.04110	.61 386	24.33
15	176.71	.0002045	4.31079	4889.	.003273	3.51491	305.6	.04718	2.67377	21.19
16	201.06	02327	.36685	4297	03724	.57097 .62364	268.5	05368	72984	18.63
17	226.98	02627	.41952	3876.	04204	.62364	237.9	.06060	.78250	16.50
19	254.47	02946 03282	.46917 .51613	3395	04713	.67329	212.2	.06794	.83215	14.72
1	283.53	_		3047.	05251	.72025	190.4	.07570	.87911	13.21
20	314.16	.0003636		2750.	.005818	3.76480 .80718	171.9	.08388	2.92366	11.922
2I 22	346.36 380.13	04009	.60306 .64346	2494. 2273.	06415 07040	.84758	155.9 142.0	.09248	.96604 T.00644	10.813 9.853
23	415.48	04809	68208	2079.	07697	.88630	129.9	.11093	.04506	9.014
24	452.39	05237	.71904	1910.	08378	.92316	119.4	.12079	.08202	
25	490.87	.0005682	4.75450 .78867	1760.	.00909	3.95862	110.00	.1311	ī.11748	7.630
26	530.93	06147	.78867	1627.	0983	99269	101.70	.1418	.15155	7.054
27	572.56	06628	.82135	1 509.	1060	2.02547	94.30	.1529	.18433	6.541
28 29	61 5.75 660.52	07127 07646	.85293 .88341	1403. 1308.	1140	.05705	87.69 81.75	.1644 .1764	.21592	6.083 5.670
	_			-		_			_ ` :	3.0/0
30	706.86	.0008182	4.91 286	1222.	.01 309	2.11698	76.39	.1887	1.27 584	5.299
31 32	754·77 804.25	08737 09309	.94134	1145.	1398	.14546 .17304	71.54 66.89	.2015	.30433	4.962 .657
33 33	855.30	09900	99565	1010.	1584	.19977	63.13	.2284	.35863	.379
34	907.92	10509	3.021 58	952.	1681	.22570	59-47	.2424	.38456	.125
35	962.11	.001114	3.04675	897.9	.01782	2.25087	56.12	.2569	ī.40973	3.803
36	1017.88	1178	.07123	848.8	1885	.27535	53.05	.2718	-43421	3.893 .680
37 38	1075.21	1245	.09502	803.5	1991	.29914	50.22	.2871	.45800 .48216	.483
30	1134.11	1316 1383	.11918	760.0 723.2	2105 2212	.32329 . 34 487	47.50	.3035 .3190		.295
				. •			45.20		-50373	.135
40	1256.64	.001455 1528	3.16275	687.5	.02327	2.36687	42.97	-3355	1.52573	2.980
41 42	1320.25 1385.44	1520	.18419	654.4 623.6	2445 2566	.38831	40.90 38.97	.3525 .3699	.54717 .56810	.837 .704
43	1452.20	1681	.22556		2690	.42968	37.18	.3877	.58854	-579
44	1 520.53	1760	.24552	594.9 568.2	2816	.44964	35.51	.4060	.60851	.463
45	1 590.43	.001841	3.26504	543.2	.02946	2 .46916	33.95	.4246	ī.62803	2.355
46	1661.90	1924	.28413	519.8	3078	.48825	32.49	-4437	.64712	-254
47 48	1734.94 18 0 9.56	2008 2095	.30281	498.0	3213	.50693	31.12 29.84	.4632	.66580 .68408	.159
49	1885.74	2183	.33901	477-4 458.1	3351 3492	.52522 .54313	28.63	.4832 .5035	.70199	.070 1.986
50		_								
1	1963.50 2042.82	.002273 2365	3.35656	440.0	.03636	2.56068	27.50	-5243	1.71954	1.907
51 52	2123.72	2305 2458	.37376 .39063	422.9 406.8	3783 3033	.57788 .59475	26.43 25.42	.5454 .5670	.73674 .75361	.833 .764
53	2206.18	2554	.40717	394.2	3933 4086	.61129	24.47	.5891	.77015	.698
54	2290.22	2651	.42341	377.2	4242	.62753	23.57	.6115	.78639	.635
55	237 5.83	.002750	3·43934	3 63.6	.04400	2 .64346	22.73	.6343	ī.80233	1.576
					<u></u>		L			

^{*} Diameters and sections in terms of thousandths of a centimetre.

Grees sections and weights of wires.

	Area of				Aluminiu	ım — Dens	ity 2.67.			
Diam. in Mila.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
55 56 57 58 59	237 5.83 2463.01 2551.76 2642.08 2733.97	.0027 50 28 51 29 54 30 58 31 65	3.43934 .45500 .47037 .48547 .50032	363.6 350.8 338.6 327.0 316.0	.04400 .04562 .04726 .04893 .05063	2.64346 .65912 .67449 .68959 .70444	22.73 21.92 21.16 20.44 19.75	0.6343 .6576 .6813 .7054 .7300	ī.80233 .81798 .83335 .84846 .86331	1.576 .521 .468 .418 .379
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	.003273 3383 3495 3608 3724	3.51492 .52928 .54340 .55730 .57098	305.5 295.6 286.2 277.1 268.5	.05236 .05413 .05591 .05773 .05958	2.71904 .73340 .74752 .76142 .77510	19.10 18.48 17.88 17.32 16.78	0-7549 -7803 -8061 -8323 8589	ī.87790 .89226 .90638 .92028 .93396	1.325 .282 .241 .201 .164
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	.003841 3960 4081 4204 4328	3.58445 .59771 .61077 .62364 .63632	260.3 252.5 245.0 237.9 231.0	.06146 .06336 .06530 .06726 .06925	2.78857 .80183 .81489 .82777 .84044	16.27 15.78 15.31 14.87 14.44	0.8860 .9135 .9413 .9697 .9984	ī.94743 .96069 .97375 .98662 .99930	1.129 .095 .062 .031 .002
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	.004456 4583 4713 4845 4978	3.64893 .66114 .67328 .68526 .69708	224.4 218.2 212.2 206.4 200.9	.07129 .07333 .07541 .07751 .07965	2.85305 .86526 .87740 .88938 .90120	14.03 13.64 13.26 12.90 12.55	1.028 .057 .087 .117 .148	0.01191 .02412 .03627 .04825 .06006	0.9730 .9460 .9199 .8949 .8708
75 76 77 78 79	4417.86 4536.46 4656.63 4778.36 4901.67	.005114 5251 5390 5531 5674	3-70874 -72025 -73160 -74281 -75387	195.5 190.4 185.5 180.8 176.2	.08182 .08402 .08624 .08850 .09078	2.91286 -92437 -93572 -94693 -95799	11.90 11.60 11.30	1.180 .211 .243 .276 .309	0.07172 .08323 .09458 .10579	0.8477 .8256 .8043 .7838 .7641
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	.005818 5965 6113 6263 6415	3.76480 .77559 .78625 .79678 .80718	171.9 167.6 163.6 159.7 155.9	.09309 .09544 .09781 .10021 .10264	2.96892 .97971 .99037 1.00090 .01130	10.479 10.224 9.979	.376 .410 •445	0.12778 .13857 .14923 .15976 .17016	.7268 .7092 .6922
85 86 87 88 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	.006568 6724 6881 7040 7201	3.81746 .82762 .83766 .84758 .85740	152.2 148.7 145.3 142.0 138.9	.1051 .1076 .1101 .1126 .1152	7.021 58 .03174 .04178 .05170 .06152	9.515 9.295 9.082 8.878 8.679		0.18044 .19060 .20064 .21057 .22038	0.6600 .6448 .6300 .6158 .6020
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	.007364 7528 7695 7863 8033	3.86710 .87670 .88619 .89558 .90487	135.8 132.8 130.0 127.2 124.5	.1178 .1205 .1231 .1258 .1285	7.07122 .08082 .09031 .09970 .10899	8.302 8.122	.814	0.23009 .23968 .24918 .25856 .26786	0.5887 ·5759 ·5634 ·5514 ·5397
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	.008205 8378 8554 8731 8910	3.91407 .92316 .93216 .94107 .94989	121.9 119.4 116.9 114.5 112.2	.1313 .1341 .1369 .1397 .1426	7.11819 .12728 .13628 .14519 .15401		.933 .973 2.014	0.27705 .28614 .29514 .30405 .31287	.5174 .5068 .4965
100	7853.98	.009091	3.95862	110.0	.1455	ī.16274	6.875	2.097	0.32160	0.4769

^{*} Diameters and sections in terms of thousandths of a centimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Platinum wire of the diameters given in the first column.

For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

					Platinum	— Density	21.50.			
Diam. in Mils.	Area of cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.0007321	4.86455	1366.0	.01171	2 .06867	85.38	0.1689	ī.22753	5.922
I	95.03	008858	94732	1129.0 948.6	.01417	.15144	70.56	.2043	.31030	4.894
12 13	113.10	01054	3.02292	808.3	.01687 .01979	.22704	59.29	.2432 .2854	.38590	4.113 3.504
14	132.73 153.94	01237 01435	.09243 .15681	696.9	.02296	.36093	50.52 43.56	.3310	.45541 .51979	3.021
15	176.71	.001647	3.21672	607.1	.02635	2.42084	37.95	0.3799	ī.57970	2.632
16	201.06	01874	.27278	533.6	.03005	47799	33.27	.4323 .4880	.63576 .68843 .73808	2.311
17 18	226.98	02116	-32544	472.7	.03385	.52956	29.54		.08843	2.049 1.828
	254.47	02372	.37 509	421.6	.03795	.57921 .62618	26.35	.5471 .6096	.73000	1.640
19	283.53	02643	42206	378.4	.04228		23.65	-	.78504	'
20	314.16	.002928	3.46661	341.5	.04685	2.67073	21.34	0.6754	T.82959	1.481
21 22	346.36	03228	.50898	309.7 282.2	.05165	.71310	19.36	·7447	.87197	·343 ·224
23	380.13 415.48	03543 03873	.54939 .58801	258.2	.05669 .06196	.75351 .79213	17.64	.8173 .8933	.91237 .95099	.110
24	452.39	04217	.62497	237.2	.06747	.82909	14.82	.9726	.98795	.028
25	490.87	.004575	3.66042	218.6	.07321	2.86454	13.66	1.055	0.02341	0.9475
26	530.93	04949	.69449	202.I	.07918	.89861	12.63	.142	.05748	8760
27 28	572.56	05324	.72628	187.8	.08539	.93140	11.71	.231	.09026	.8124
	615.75	05739	.7 5886	174.2	.09183	.96298	10.89	-324	.12184	·7553
29	660.52	06157	.78934	162.4	.09851	.99346	10.15	.420	.1 5232	.7042
30	706.86	.006589	3.81879	151.8	.1054	1.02291	9.486	1.520	0.18177	0.6580
31	754.77	07035 07496	84727	142.1	.1126	.05139	8.884	.623	.21025	.6162
32	804.25		.87485	I 33.4	.1199	.07897	8.338 7.840	.729 .839	.23783	.5783 .5438
33 34	855.30 907.92	07972 08463	.901 57 .927 50	125.4	.1276 .1354	.10569 .13162	7.385		.26456 .29049	-5438
						_		.952		.5123
35	962.11	.008968	3.95268	111.52	.1435	ī.1 5680 .18127	6.970	2.069 .188	.031 566	0.4834
36	1017.88	09488	.97715 2.00095	105.41 99.78	.1510	.20507	6.588 6.236	.312	.34014 .36393	.4569 .4326
37 38	1134.11	10595	.02511	04.28	.1695	.22923	5.899	.444	.38809	.4092
39	1194.59	11134	.04668	94.38 89.81	.1782	.25080	5.613	·444 ·568	.40966	.3893
40	1256.64		2.0686 ₇	85.38	.1874	ī.27279	5.336	2.702	0.43166	0.3701
41	1320.25	1231	11000.	81.26	.1969	.29423	5.079	.839	.45309	-3523
42 43	1385.44 1452.20	1291 1354	.11104	77.44 73.88	.2066 .2166	.31516 .33560	4.840 4.617	.979 3.122	.47403 .49446	.3346 .3203
43	1520.53	1417	.15145	70.56	.2268	·35557	4.410	.269	.51443	.3059
45	1 590.43		2.17097	67.46	.2372	ī.37509	4.216	3.419	0.53395	0.2924
46	1661.90	1549 1617	19006	64.56 61.84	.2478	-39418	4.035	-573	.55304	.2799
47	1734-94	1617	.20874		.2587	.41286	3.865	.730 .891	.57172	.2681
48	1809.56	1687	.22703	59.29	.2699	.43115	3.705		.59001 .60792	.2570
49	1885.74	1758	·24494	56.89	.2812	.44906	3.556	4.054		.2467
50	1963.50	.01830	2.26249	54.64	.2928	7.46661	3.415	4.222	0.62547	0.2369
51	2042.82	1904	.27969	52.52	.3047	.48381	3.282	.392	.64267	.2277
52	2123.72 2206.18	1979	.29655	50.52 48.63	.3167	.50067	3.157	.566	.65954 .67608	.2190 .2108
53 54	2200.10	2056 2135	.31310 -32933	46.84	.3290 .3415	.51722 ·53345	3.039 2.928	.743 .924	.69232	.2031
55	2375.83	.02214	2.34527	45.16	-3543	ī.54939	2.822	5.108	0.70825	0.1958
	-3/3~3		J-13~/	750	.0340	6061-0		J	3.,3023	5950

^{*} Diameters and sections in terms of thousandths of a centimetre.

Gross sections and weights of wires.

	Area of				Platinum	— Density	21.50.			
Diam. in Mile.	cross section in Sq. Mils.	Pounds per Foot.	Log.	Feet per Pound.	Ounces per Foot.	Log.	Feet per Ounce.	Grammes per Metre.*	Log.	Metres per Gramme.
55	237 5.83	.02214	2.34527	45.16	0.3543	ī.54939	2.822	5.108	0.70825	.1958
56	2463.01	2296	.36092	43.56	.3673	.56504	.722	.295	.72390	.1888
57	2551.76	2378	.37630	42.04	.3806	.58042	.628	.486	.73928	.1823
58	2642.08	2463	.39140	40.61	.3940	.59552	.538	.680	.75438	.1760
59	2733.97	2548	.40625	39.24	.4077	.61037	.453	.878	.76923	.1701
60	2827.43	.02635	2.42085	37.94	0.4217	ī.62497	2.372	6.079	0.78383	.1645
61	2922.47	2724	.43521	36.71	.4358	.63933	.294	.283	.79819	.1592
62	3019.07	2814	.44933	35.54	.4502	.65345	.221	.491	.81231	.1541
63	3117.25	2906	.46323	34.42	.4649	.66735	.151	.702	.82621	.1492
64	3216.99	2999	.47691	33.35	.4798	.68103	.084	.917	.83989	.1446
65	3318.31	.03093	2.49037	32.33	0.4949	7.69449	2.021	7.134	0.85336	.1402
66	3421.19	3189	.50363	31.36	.5102	.70775	1.960	.356	.86662	.1360
67	3525.65	3286	.51670	30.43	.5258	.72082	.902	.580	.87968	.1319
68	3631.68	3385	.52956	29.54	.5416	.73368	.846	.808	.89255	.1281
69	3739.28	3485	.54224	28.69	.5577	.74636	.793	8.039	.90523	.1244
70	3848.45	.03588	2.55485	27.87	0.5741	7.75897	1.742	8.276	0.91784	.1208
71	3959.19	3690	.56706	27.10	.5904	.77118	.694	.512	.93004	.1175
72	4071.50	3795	.57921	26.35	.6072	.78333	.647	.754	.94219	.1142
73	4185.39	3901	.59119	25.63	.6242	.79531	.602	.999	.95417	.1111
74	4300.84	4009	.60301	24.95	.6414	.80713	.559	9.247	.96599	.1081
75	4417.86	.04118	2.61467	24.28	0.6589	7.81879	1.518	9.498	0.97765	.10528
76	4536.46	4228	.62617	23.65	.6765	.83029	.478	9.753	.98916	.10253
77	4656.63	4340	.63753	23.04	.6945	.84165	.440	10.012	1.00051	.09988
78	4778.36	4454	.64874	22.45	.7126	.85286	.403	10.273	.01172	.09734
79	4901.67	4569	.65980	21.89	.7310	.86392	.368	10.539	.02278	.09489
80	5026.55	.04685	2.67073	21.34	o.7496	ī.87485	1.334	10.81	1.03371	.09253
81	5153.00	4803	.68152	20.82	.7685	.88564	.301	11.08	.04450	.09026
82	5281.02	4922	.69217	20.32	.7876	.89629	.270	11.35	.05516	.08807
83	5410.61	5043	.70270	19.83	.8069	.90682	.239	11.63	.06568	.08596
84	5541.77	5165	.71310	19.36	.8265	.91722	.210	11.91	.07609	.08393
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	.05289 5414 5541 5669 5799	2.72338 ·73354 ·74358 ·75351 ·76333	18.91 18.47 18.05 17.64	0.8463 .8663 .8866 .9070 .9278	ī.92750 .93766 .94770 .95763 .96745	1.182 .154 .128 .102 .078	12.20 12.49 12.78 13.08	1.08637 .09652 .10657 .11649 .12631	.08197 .08007 .07807 .07647 .074 7 7
90	6361.73	.05930	2.77303	16.86	0.9487	1.97715	1.0541	13.68	1.13601	.07311
91	6503.88	6062	.78263	16.50	.9699	.98675	.0310	13.98	.14561	.07152
92	6647.61	6196	.79212	16.14	.9914	.99624	.0087	14.29	.15510	.06997
93	6792.91	6332	.80151	15.79	1.0130	0.00563	0.9871	14.60	.16449	.06847
94	6939.78	6469	.81080	15.46	.0350	.01492	.9661	14.92	.17378	.06702
95	7088.22	.06607	2.81999	15.14	1.057	0.02411	0.9460	15.24	1.18298	.06562
96	7238.23	6747	.82909	14.82	.079	.03321	.9264	15.56	.19207	.06426
97	7389.81	6888	.83809	14.52	.102	.04221	.9074	15.89	.20107	.06294
98	7542.96	7031	.84700	14.22	.125	.05112	.8890	16.22	.20998	.06166
99	7697.69	7175	.85582	13.94	.148	.05994	.8711	16.55	.21880	.06042
100	7853.98	.07321	2.86455	13.66	1.171	0.06867	0.8538	16.89	1.22753	.05922

^{*} Diameters and sections in terms of thousandths of a millimetre.

Cross sections and weights of wires.

The cross section and the weight, in different units, of Gold wire of the diameters given in the first column.

For one tenth the diameters divide sections and weights by 100. For ten times the diameter multiply by 100, and so on.

_										
	Area of				Gold —	Density 19.	.30.			
Diam. in Mils.	cross section in Sq. Mils,	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10	78.54	.00958	3.98152	104.35	4.600	0.66276	.2174	0.1516	ī.18065	6.597
11	95.03	.01160	2.06429	86.24	5.566 6.624	·74553	.1797	.1834	.26342	5.452 4.581
I2 I3	113.10	.01380	.13989	72.46 60.34	7.774	.82114	.1286	.2562	.33902 .40853	3.904
14	153.94	.01657 .01878	.27378	53.24	9.016	.95503	.1109	.2971	.47291	3.366
15	176.71	.02156	2.33369	46.38	10.35 11.78	1.01493	.09662	0.3411 .3880	ī.53282 .58888	2.932
16	201.06 226.98	.02453	.38976	40.76 36.11	11.78	.07100 .12366	.08492 .07522	.3880	.58888	·577
18	254.47	.02770	.44242 .49207	32.21	14.90	.17331	.06710	.4911	.69119	.036
19	283.53	.03460	.53903	28.90	16.61	.22027	.06022	.547,2	.73816	1.827
20	314.16	.03833	2 .58358	26.09	18.40	1.26482	.05435	0.6063	1.78271	1.649
21 22	346.36 380.13	.04226 .04638	.62596 .66636	23.66 21.56	20.29 22.26	.30720 .34761	.04939 .04492	.6685	.82509 .86549	.496 .363
23	415.48	.04954	.69498	20.18	24.33	.38622	.04109	.7337 .8019	.90411	.248
24	452.39	.05520	.74194	18.12	26.50		.03774	.8731	.94107	.145
25	490.87	.05990	2.77740	16.70	28.75	1.45865	.03478	0.9474	ī.97652	1.0555
26 27	530.93	.06478 .06986	.81147 .84425	15.44 14.31	31.10	.49271	.03216	1.0247 .1050	.04338	0.9759
28	572.56 615.75	.07513	.87 584	13.31	33·53 36.06	.52549 .55708	.02982	.1884	.07496	9050 .8415
29	660.52	.08060	.90632	12.41	38.69	.58756	.02585	.2748	.10544	.7844
30	706.86	.08625	2.93577	11.594 10.858	41.40	1.61701		1.364	0.13489	0.7330
31	754·77 804.25	.09210	.96425 99182	10.050	44.21 47.10	.64549 .67306	.02262	·457	.16337	.6912 .6442
3 ²	855.30	.10436	ī.01855	9.582	50.09	.69979	.02123	.552 .651	.21768	.6058
34	907.92	.11078	.04448	9.027	53.18	.72572	18810.	.752	.24360	.5707
35	962.11	.1174	ī.06965	8.518	56.35	1.75089	.01775	1.857	0.26878	0.5385
36	1017.88	.1242	.09413	8.051	59.62 62.97	.77537	.01677	.965	.29325	.5090
37 38	1075.21	.1312	.11792	7.622	62.97	.79917 .823 3 2	.01 588	2.070	.31605	.4830
38	1134.11	.1387 .1458	.14208 .16365	7.210 6.861	66.58 69.97	.82332	.01 502 .01429	.194 .306	.34121	.4558
1 -	1194.59					., ,		_		-4337
40 41	1256.64	.1533 .1611	ī.18565 .20709	6.521 6.207	73.60	1.86689 .88833	.01359 .01293	2.425	0.38478 .40621	0.4123
42	1385.44	.1691	.22802	5.915	77·33 81.14	.90926	.01232	2.425 .548 .674	.42715	.3924 .3740
43	1452.20	.1772	.24846	5.643	85.05		.01176	.803	.44758	.3568
44	1520.53	.1855	.26843	5.390	89.06	.94967	.01123	.935	.46755	.3408
45	1 590.43	.1941	ī.28795	5.153	93.15	1.96919	.010735	3.070	0.48707	0.3258
46	1661.90	.2028	.30704	4.931	97.34	.98828	.010273	.207	.50616	8115.
47 48	1734.94 1809.56	.2117	.32572	4.724	101.61	2.00696	.009842	.348	.52484	.2986
49	1885.74	.2301	.344 0 0 .36191	4.529 4.346	105.99	.02525	.009435	.49 2 .639	.54313 .56104	.2863 .2748
50	1963.50 2042.82	.2396	ī.37946	4-174	115.0	2.06070	.008696	3.790	0.57859	0.2639
51		.2493	.39666	4.012	119.6	.07790	.008358	.943	.59579	.2537
52	2123.72	.2591 2692	.41353	3.859	124.4	.09477	.008039	4.099	.61265	.2440
53 54	2290.18	.2795	.43007 .44631	3.715 3.578	129.2 134.1	.11131	.007739 .007455	.258 .420	.62920 .64543	.2349
55	2375.83	.2899	ī.46225	3 -449	139.2	2.14349	.007 186	4.585	0.66137	0.2181

[•] Diameters and sections in terms of thousandths of a centimetre.

Oross sections and weights of wires.

Section Council Coun		A of				Gold -	- Density 1	9.30.			
55 2463-01 3005 47790 327 144-3 15914 6932 4-754 67702 2210 58 2442-08 3224 50838 1.02 154-7 18062 6462 5.009 7.0750 1.06 59 2733.97 3336 5.52323 2.998 160.1 2.0447 6245 5.277 7.2235 189 660 2827.43 3.356 5.5238 2.899 165.6 2.21906 0.06039 5.457 0.73695 183 61 2922.47 3.356 5.5218 8.04 171.2 2.2332 5842 5.040 7.5131 1.77 62 3019-07 3684 5.6630 7.15 176.8 2.4754 5655 5.827 7.6543 1.76 63 311.72 3.364 5.6630 6.92 182.6 2.2144 5477 6.016 7.7931 1.16 63 321.19 4.175 6.0201 3.95 200.4 3.0185 4991 6.603 8.3280 1.47 6.0201 3.95 200.4 3.0185 4991 6.603 8.3280 1.47 6.0201 3.95 200.4 3.0185 4991 6.603 8.3280 1.47 6.0201 3.95 200.4 3.0185 4.991 6.603 8.3280 1.47 6.063 3.3143 6.4654 2.257 212.7 3.2778 4.701 7.010 8.4566 1.42 7.13 3.0592 3.0592 3.0592 3.0528	Diam. in Mila.	section in	Ounces	Log.	per Troy		Log.	рег	ner	Log.	Metres per Gramme.
Sp. 2551.76 .3114 .49327 .212 .149.5 .17451 .6691 .4925 .5924 .203 .58 264228 .3224 .50838 .102 .1547 .18962 .6462 .5099 .7959 .196 .195 .											.2181
\$8 2642.28 .3224 .50838 .102 194.7 .18962 6462 5.099 .70750 .1056 .59218 .59217 .72235 .1896 .59217 .72235 .1896 .59218 .804 .171.2 .23342 .5842 .5040 .75131 .177 .62231 .62247 .3366 .55218 .804 .712 .23342 .5842 .5040 .75131 .177 .633 .317.7 .53804 .58020 .6228 .5828 .5481 .8844 .27512 .5307 .6.209 .79301 .161 .63311.9 .4175 .6.2061 .395 .2004 .30185 .6.204 .58020 .643321.9 .4175 .6.2061 .395 .2004 .30185 .4991 .6.2061 .813335 .666 .4431 .6.4054 .257 .2127 .32778 .4701 .7010 .8456 .142 .266 .3318.31 .4049 .6.654 .257 .2127 .32778 .4701 .7010 .8456 .142 .266 .3331.68 .4431 .6.654 .257 .2127 .32778 .4701 .7010 .8456 .142 .266 .3339.84 .456 .6.6921 .192 .192 .190 .33046 .4566 .7217 .8935 .143 .6804 .070 .2319 .3528 .4312 .7041 .88316 .130 .724 .4071.50 .4968 .6.6619 .013 .2384 .37743 .4195 .7858 .89531 .130 .724 .4300.84 .5248 .71998 .905 .251.9 .40123 .3370 .80865 .8.526 .0.3077 .128 .74315 .8074 .7449 .80867 .76571 .715 .270.9 .44091 .3331 .9045 .9072 .123 .7041 .88316 .130 .7456.63 .5831 .76571 .715 .270.9 .44695 .3573 .9222 .05688 .103 .70571 .715 .270.9 .44695 .3573 .9222 .05688 .00583 .103 .3084 .4778 .3066 .8087 .90759 .105 .8851.06 .6602 .81686 .515 .3160 .5002 .3156 .0.444 .108 .552 .3003 .3433 .47973 .3313 .9495 .99752 .105 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .10888 .005 .00	50		.3005	47790	.327			6932			
59 2733-97 -3336 -52323 2-998 160.1 -20447 6245 5-277 -72235 189	28	2042.08		.50828			.18062	6462			.1961
61 2922-47 .3366 .55218 .864 .771.2 .23342 5842 .5640 .75131 .177 62 3117.25 .3804 .56500 .715 176.8 .24754 .5655 .5827 .76543 .717 63 3117.25 .3804 .58020 .629 .182.6 .26144 .2475 .507 .6200 .77933 .166 64 3216.99 .3925 .59388 .548 188.4 .27512 .5307 .6209 .79301 .161 65 3318.31 .4049 .160735 .2470 .194.4 .22850 .005145 .600 .81973 .151 66 3421.19 .4175 .62061 .395 .200.4 .30185 .4901 .603 .81973 .151 67 3525.65 .4302 .63367 .324 .265.5 .31491 .4843 .6805 .83280 .147 68 3031.68 .4431 .64534 .257 .212.7 .3478 .4701 .7.010 .84566 .142 69 3739.28 .4563 .65922 .192 .219.0 .34046 .4566 .7.217 .85835 .138 70 3848.45 .4607 .767183 .2.129 .225.5 .235307 .004435 .7.429 .87066 .142 67 373 4185.39 .5107 .70817 .1958 .2451 .38941 .4079 .8.078 .90729 .123 73 4185.39 .5107 .70817 .1958 .2451 .38941 .4079 .8.078 .90729 .123 74 4300.84 .5535 .74315 .807 .265.7 .42439 .3704 .8755 .994227 .114 75 4417.86 .5535 .74315 .807 .265.7 .42439 .3704 .8755 .994227 .114 76 4336.46 .5535 .75657 .7768 .672 .287.1 .44881 .3483 .9460 .97590 .0958 .31178 .78770 .608 .508 .77678 .672 .287.1 .44881 .3483 .9460 .97590 .0958 .31513.00 .6288 .79849 .590 .301.8 .47973 .3313 .9945 .99752 .0088 .35117 .6762 .8308 .79849 .590 .301.8 .47973 .3313 .9945 .99752 .0088 .0088 .5153 .300.9 .348.2 .51132 .3081 .0696 .02921 .0938 .0966 .3483 .3460 .35172 .0988 .0988 .3524 .1144 .332.4 .25160 .003009 .095 .098683 .103 .0916 .003009 .095 .098683 .0038 .00	59			.52323		160.1					.1895
02 3019-07 -3684 -36030 -715 170.8 -24754 5055 5827 -70543 -716 63 3117-25 -3804 -38030 -629 -82030 -629 -79301 -161 65 -79331 -161 65 -79331		2827.43	.3450	T.53782				.006039			.1833
63 3117-25			.3566	.55218							·1773
64 3216.99 .3925 .59388 .548 188.4 .27512 5307 6.209 .79301 .161 65 3318.31 .4049	62		-3004	.50030			26144				1662
Color Colo	64		.3925	.59388							
Color Colo			.4049	1.60735	2.470	194.4		.005145			.1561
68 3631.68 .4431 .64654 .257 .212.7 .32778 4701 7.010 .84566 .142 .1444 .322.4 .2563 .4563 .65922 .192 .219.0 .34046 .4566 .7.217 .85835 .138 .70 .3488.45 .4697 .68404 .070 .231.9 .36528 .4312 .7.641 .889316 .130 .72 .4071.50 .4968 .69619 .013 .238.4 .37743 .4195 .7.858 .89531 .127 .73 .4185.39 .5107 .70817 .1988 .245.1 .38941 .4079 .8078 .90729 .123 .74 .4300.84 .5248 .71998 .905 .251.9 .40123 .3970 .8301 .91911 .120 .75 .4417.86 .5331 .7.7316 .807 .275.7 .42439 .3764 .8.755 .94227 .114 .7656.5 .5682 .74315 .807 .275.7 .43574 .3666 .8.987 .94227 .114 .7840 .5831 .70571 .715 .279.9 .44695 .3573 .9222 .99484 .108 .709 .4001.67 .3981 .77078 .672 .287.1 .45801 .3483 .9.460 .97590 .105 .825281.02 .6444 .80915 .5522 .309.3 .49039 .3233 .10.92 .00868 .0988 .625281.02 .6444 .80915 .5523 .309.3 .49039 .3233 .10.92 .100828 .098 .83541.77 .6762 .83008 .479 .324.6 .51132 .3081 .10.696 .02921 .093 .885 .594.68 .7254 .88095 .373 .324.6 .51132 .5316 .0666 .02921 .093 .886 .5808.8 .7936 .8960 .317 .340.2 .55172 .5992 .51173 .88090 .317 .364.4 .56154 .2741 .2010 .09668 .0969 .096 .886 .593.8 .7936 .3090 .347 .366.2 .55173 .5802 .12.28 .09803 .0960 .095 .09603 .087 .09603 .087 .09604 .089 .0960 .09604 .0960		3421.19		.62061		200.4		4991	6.603	81973	.1514
69 3739.28 4563 .65922 .192 219.0 .34046 4566 7.217 .85835 .138 70 3848.45 .4697 .167183 .2129 .225.5 .235307 .004435 7.429 .0.87096 .134 71 3959.19 .4831 .68404 .070 .231.9 .36528 .4312 7.641 .88316 .130 72 4071.50 .4968 .69619 .013 .238.4 .37743 .4195 7.858 .89531 .138 73 4185.39 .5107 .70817 .1938 .245.1 .38041 .4079 .8078 .90729 .123 74 4300.84 .5248 .71998 .905 .251.9 .40123 .3970 .8301 .91911 .120 75 4417.86 .5391 .73164 .1855 .288 .241288 .003865 .8.526 .0.93077 .117 76 4536.46 .5535 .74315 .807 .265.7 .42439 .3764 .8.755 .94227 .114 77 4656.63 .5831 .76571 .715 .272.7 .43574 .3666 .8.987 .93363 .113 79 4901.67 .5981 .77678 .672 .287.1 .45801 .3483 .9.460 .97590 .105 80 5026.55 .6133 .7.8770 .1.630 .294.4 .46894 .003401 .9.701 .0.98683 .103 81 5153.00 .6288 .80915 .552 .300.3 .49039 .3233 .10.192 .1.0886 .095 82 5281.02 .6444 .80915 .552 .300.3 .49039 .3233 .10.192 .1.0886 .095 83 5410.61 .6602 .81968 .515 .316.9 .50092 .316 .0.442 .1.880 .095 84 5541.77 .6762 .83008 .479 .324.6 .51132 .3081 10.696 .0.2921 .0.938 85 5674.50 .6924 .7.84036 .441 .340.2 .53176 .2939 .11.41 .0.9664 .085 .095 .096 .85 .096 .9304 .976 .985 .9966 .9264 .9096 .365 .5515 .3096 .317 .364.4 .56154 .2744 .12.01 .0.9743 .081 .096 .085 .9966 .9966 .9966 .92778 .181 .406.5 .60902 .2460 .13.39 .12690 .074 .079 .073 .079 .073 .079 .079 .073 .079 .	27							4843	0.805		.1470
70 3848.45 .4697								4566	7.010		
71 3959.19 .4831 .68404 .070 231.9 .36528 4312 7.641 .88316 .130 72 4071.50 .4968 .69619 .013 .238.4 .37743 .4195 7.858 .89531 .127 .4185.39 .5107 .70817 .1958 .245.1 .38441 .4079 .8.078 .90729 .123 .2072 .123 .2072 .213 .213	70	3848.45	.4697	ī.67 183	2.129	225.5	2.35307	.004435	7.429	0.87096	1
73 4185.39 .5107 .70817 .7198 .905 251.9 .40123 3970 8.078 .90729 .123 74 4300.84 .5248 .71998 .905 251.9 .40123 3970 8.301 .91911 .120 75 4417.86 .5391			.4831	.68404		231.9	.36528		7.641	.88316	.1309
74 4300.84 .5248 .71998 .905 251.9 .40123 3970 8.301 .91911 .120 75 4417.86 .5391		4071.50	.4968						7.858	.89531	.1273
75		4185.39	.5107								
76 4536.46 .5535 .74315 .807 265.7 .42439 3764 8.755 .94227 .114 77 4656.63 .5682 .75450 .760 272.7 .43574 3666 8.987 .95363 .111 78 4778.36 .5831 .76571 .715 .279.9 .44695 .3573 9.222 .96484 .108 79 4901.67 .5981 .77678 .672 287.1 .44695 .3573 9.222 .96484 .108 80 5026.55 .6133	H .			_	1		•			"	'
77 4656.63 .5682 .75450 .766 272.7 .43574 3666 8.987 .95363 .111 78 4778.36 .5831 .76571 .715 279.9 .44695 3573 9.222 .9688 .108 79 4901.07 .5981 .77678 .672 287.1 .45801 3483 9.460 .97590 .105 80 5026.55 .6133					807			2764	8.755		
78 4778.36 .5831 .76571 .715 279.9 .44895 3573 9.222 .96484 .108 79 4901.67 .5981 .77678 .672 287.1 .45801 3483 9.460 .97590 .105 80 5026.55 .6133	77		.5682					3666	8.987		
80 5026.55 .6133 T.78770 1.630 294.4 2.46894 .003401 9.701 0.98683 1.03 81 5153.00 .6288 .79849 .590 301.8 .47973 3313 9.945 .99762 .100 82 5281.02 .6444 .80915 .552 309.3 .49039 3233 10.192 1.0628 .098 84 5541.77 .6762 .83008 .479 324.6 .51132 3081 10.696 .02921 .093 85 5674.50 .6924 T.84036 1.444 332.4 2.52160 .003009 10.95 1.03948 .091 86 5808.80 .7088 .85052 .411 340.2 .53176 2939 11.21 .04964 .089 87 5944.68 .7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 88 6082.12 .7421 .87049 .347	78	4778.36	.5831	.76571	.715	279.9	.44695				
81 \$153.00 .6288 .79849 .590 301.8 .47973 3313 9.945 .99762 .100 82 \$281.02 .6444 .80915 .552 309.3 .49039 3233 10.192 1.00828 .098 83 \$410.61 .6602 .81968 .515 316.9 .5092 3156 10.422 .01880 .095 84 \$541.77 .6762 .83008 .479 324.6 .51132 3081 10.696 .0221 .093 85 \$674.50 .6924 \$86.85 .479 348.2 .53176 2939 11.21 .04964 .089 86 \$588.80 .7088 .85052 .411 340.2 .53176 2939 11.21 .04964 .089 87 \$944.68 .7254 .86056 .379 348.2 .5\$180 2872 11.47 .05969 .087 88 6082.12 .7421 .87049 .347 356.2	79	4901.67	.5981	.77678	.672	287.1	.45801	3483	9.460	.97590	.1057
82 5281.02 .6444 .80915 .552 309.3 .49039 3233 10.192 1.0828 .098 83 5410.61 .6602 .81968 .515 316.9 .50092 3156 10.442 .01880 .095 84 5541.77 .6762 .83008 .479 324.6 .51132 3081 10.696 .02921 .093 85 5674.50 .6924 I.84036 I.444 332.4 2.52160 .003009 10.95 I.03948 .091 86 5808.80 .7088 .85052 .411 340.2 .53176 2039 11.21 .04964 .089 87 5944.68 .7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 88 60221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .081 90 6361.73 .7763 I.89001 1.288 <td< th=""><th></th><th></th><th>.61 33</th><th></th><th>1.630</th><th>294.4</th><th>2.46894</th><th>.003401</th><th>9.701</th><th></th><th></th></td<>			.61 33		1.630	294.4	2.46894	.003401	9.701		
83 5410.61 .6662 .81968 .515 316.9 .50092 3156 10.442 .01880 .095 84 5541.77 .6762 .83008 .479 324.6 .51132 3081 10.696 .02921 .093 85 5674.50 .6924 Ī.84036 I.444 332.4 2.52160 .003009 10.95 I.03948 .091 86 5808.80 .7088 .85052 .411 340.2 .53176 2039 11.21 .04964 .089 87 5944.68 .7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 89 6221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .083 90 6361.73 .7763 Ī.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .081 91 6503.88 .7936 .89960 .260		51 53.00	.6288	.79849				3313	9.945		.10055
84 5541.77 .6762 .83008 .479 324.6 .51132 3081 10.696 .02921 .093 85 5674.50 .6924 Ī.84036 I.444 332.4 2.52160 .003009 10.95 I.03948 .091 86 5808.80 .7088 .85052 .411 340.2 .53176 2939 11.21 .04964 .089 87 5944.68 '.7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 89 60221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .083 90 6361.73 .7763 Ī.89001 1.288 372.6 2.57125 .002684 12.28 1.08013 .081 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .99010 .233	82			81068	.552			3233	10.192		
86 5808.80 .7088 .85052 .411 340.2 .53176 2939 11.21 .04964 .089 87 5944.68 .7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 88 6082.12 .7421 .87049 .347 356.2 .55173 2807 11.74 .05961 .085 89 6221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .083 90 6361.73 .7763 1.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .081 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .99010 .233 389.3 .59934 2568 12.83 .10822 .077 94 6939.78 .8468 .92778 .181 406.5	84			.83008				3081	10.696		.09349
87 5944.68 .7254 .86056 .379 348.2 .54180 2872 11.47 .05969 .087 88 6082.12 .7421 .87049 .347 356.2 .55173 2807 11.74 .05961 .085 89 6221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .083 90 6361.73 .7763 T.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .081 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .90910 .233 389.3 .59934 2568 12.83 .10822 .077 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649 T.93697 1.156 415		5674.50	.6924	ī.84036	1.444	332.4	2.52160	.003000	10.95	1.03948	.09131
88 6682.12 .7421 .87649 .347 336.2 .55173 2807 11.74 .06961 .085 90 6361.73 .7763 T.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .081 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .90010 .233 389.3 .59034 2568 12.83 .10822 .071 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649 T.93697 1.156 415.2 2.61821 .002409 13.68 1.13609 .073 96 7238.23 .8832 .94606 .132 423.9 .62731 2359 13.97 .14519 .071 97 7389.81 .9017 .95507 .109 432.8 .63631 2310 14.26 .15419 .070 98			.7088	.85052	-411	340.2	.53176	2020	11.21	.04964	.08919
89 6221.14 .7591 .88030 .317 364.4 .56154 2744 12.01 .07943 .083 90 6361.73 .7763 T.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .081 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 93 6792.91 .8291 .91858 .206 397.9 .59972 2513 13.11 .11761 .076 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649 T.93697 1.156 415.2 2.61821 .002409 13.68 1.13609 .073 96 7238.23 .8832 .94606 .132 423.9 .62731 2359 13.97 .14519 .071 97 7389.81 .9017 .95507 .109 432.8 .63631 2310 14.26 .15419 .070 98	87			.86056		348.2		2872	11.47	.05969	.08716
90 6361.73 .7763 T.89001 1.288 372.6 2.57125 .002684 12.28 1.08913 .8813 91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .90910 .233 389.3 .59034 2568 12.83 .10822 .077 93 6792.91 .8291 .91858 .206 397.9 .59972 2513 13.11 .11761 .076 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649 T.93697 1.156 415.2 2.61821 .002409 13.68 1.13609 .073 96 7238.23 .8832 .94606 .132 423.9 .62731 2359 13.97 .14519 .071 97 7389.81 .9017 .95507 .109 <	89			.88030		350.2 364.4	.56154				.08328
91 6503.88 .7936 .89960 .260 380.9 .58085 2625 12.55 .09873 .079 92 6647.61 .8111 .90910 .233 389.3 .59034 2568 12.83 .10822 .077 93 6792.91 .8291 .91858 .206 3397.9 .59972 2513 13.11 .11761 .076 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649		6361.72									.08145
92 6647.61		6503.88	.7936				.58085	2625	12.55		.07967
93 6792.91 .8291 .91858 .206 397.9 .59972 2513 13.11 .11761 .076 94 6939.78 .8468 .92778 .181 406.5 .60902 2460 13.39 .12690 .074 95 7088.22 .8649	92	6647.61	.8111	.90910				2568	12.83	.10822	-07794
95 7088.22 .8649 \$\overline{1}\$.93697 1.156 415.2 2.61821 .002409 13.68 1.13609 .073 96 7238.23 .8832 .94666 .132 423.9 .62731 2359 13.97 .14519 .071 97 7389.81 .9017 .95507 .109 432.8 .63631 2310 14.26 .15419 .070 98 7542.06 .9204 .96397 .086 441.8 .64521 2263 14.56 .16310 .0680 99 7697.69 .9393 .97279 .065 450.9 .65403 2218 14.86 .17192 .067						397.9	-59972	2513			.07628
96 7238.23 .8832 .94666 .132 423.9 .62731 2359 13.97 .14519 .071 97 7389.81 .9017 .95507 .109 432.8 .63631 2310 14.26 .15419 .070 98 7542.96 .9204 .96397 .086 441.8 .64521 2263 14.56 .16310 .068 99 7697.69 .9393 .97279 .065 450.9 .65403 2218 14.86 .17192 .067				92778	181.	400.5	.00902	2400	13.39	.12090	.07466
97 7389.81 .9017 .95507 .109 432.8 .63631 2310 14.26 .15419 .070 98 7542.96 .9204 .96397 .086 441.8 .64521 2263 14.56 .16310 .0681 99 7697.69 .9393 .97279 .065 450.9 .65403 2218 14.86 .17192 .067			.8649								.07310
98 7542.96 .9204 .96397 .086 441.8 .64521 2263 14.56 .16310 .068 99 7697.69 .9393 .97279 .065 450.9 .65403 2218 14.86 .17192 .067		7235.23				423.9					.07158
99 7697.69 .9393 .97279 .065 450.9 .65403 2218 14.86 .17192 .067	8					432.8					.06869
		7697.69									.06731
100 7853.98 .9583 1.98152 1.043 460.0 2.66276 .002174 15.16 1.18065 .0659	100	7853.98	.9583	ī.98152	1.043	460.0	2.66276	.002174	15.16	1.18065	.06597

[•] Diameters and sections in terms of thousandths of a centimetre.

TABLE 62.

BRITISH AND METRIC UNITS.

Oross sections and weights of wires.

The cross section and the weight, in different units, of Silver wire of the diameters given in the first column. For one tenth the diameters divide the section and weights by 100. For ten times the diameter muliply by 100, and so on.

	Area of				Silver	— Density	10.50.			
Diam. in Mils.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
10 11 12 13	78.54 95.03 113.10 132.73 153.94	.005214 .006308 .007508 .008811	3.71715 .79992 .87553 .94503 2.00942	191.79 158.52 133.19 113.49 97.86	2.503 3.028 3.604 4.229 4.905	0.39839 .48117 .55677 .62627 .69066	.3996 .3302 .2775 .2364 .2039	0.08247 .09978 .11876 .13937 .16164	2.91628 .99905 1.07465 .14416 .20854	12.126 10.022 8.420 7.175 6.186
15 16 17 18 19	176.71 201.06 226.98 254.47 283.53	.01507	2.06932 .12539 .17805 .22770 .27466	85.24 74.92 66.37 59.20 53.13	5.631 6.407 7.233 8.109 9.034	0.75057 .80663 .85929 .90894 .95590	.1776 .1561 .1383 .1233	0.1855 .2111 .2383 .2672 .2977	ī.26845 .32452 .37718 .42683 .47379	5.389 4.737 4.196 3.743 3.359
20 21 22 23 24	314.16 346.36 380.13 415.48 452.39	.02299 .02523	2.31921 .36159 .40200 .44061 .47758	47.95 43.49 39.63 36.26 32.99	10.01 11.04 12.11 13.24 14.42	1.00046 .04283 .08324 .12186 .15882	.09990 .09060 .08256 .07553 .06937	0.3299 .3637 .3991 .4363 .4750	ī.51834 .56072 .60112 .63974 .67670	3.031 2.750 .505 .292 .105
25 26 27 28 29	490.87 530.93 572.56 615.75 660.52	.03259 .03525 .03801 .04088 .04385	2.51303 .54710 .57988 .61147 .64195	30.69 28.37 26.31 24.46 22.81	15.64 16.92 18.24 19.62 21.05	1.19427 .22834 .26113 .29271 .32319	.06425 .05911 .05481 .05097 .04751	0.5154 ·5575 .6012 .6465 .6935	ī.71216 .74623 .77901 .81059 .84108	1.940 •794 .663 •547 •442
30 31 32 33 34	706.86 754.77 804.25 855.30 907.92	.04692 .05010 .05339 .05678 .06027	2.67140 .69988 .72745 .75418 .78011	21.31 19.96 18.73 17.61 16.59	22.52 24.05 25.63 27.25 28.93	1.35264 .38112 .40870 .43542 .46135	.04440 0.41 58 0.3902 0.3669 0.3457	0. 7422 .7925 .8445 .8981 .9533	ī.87052 .89900 .92658 .95331 .97924	1.347 .262 .184 .113 .049
35 36 37 38 39	962.11 1017.88 1075.21 1134.11 1194.59		2.80528 .82976 .85356 .87772 .89928	15.66 14.80 14.01 13.25 12.61	30.66 32.43 34.26 36.22 38.06	1.48653 .51100 .53480 .55896 .58052	.03262 .03083 .02919 .02761 .02627	1.010 .069 .129 .194 .254	0.00441 .02889 .05268 .07684 .09841	0.9899 .9356 .8857 .8378 .7973
40 41 42 43 44	1256.64 1320.25 1385.44 1452.20 1520.53	.08342 .08764 .09197 .09640 .10094	2.92128 .94272 .96365 .98409 1.00406	11.99 11.41 10.87 10.37 9.91	40.04 42.07 44.15 46.27 48.45	1.60252 .62396 .64489 .66533 .68530	.02497 .02377 .02265 .02161 .02064	1.319 .386 .455 .525 .597	0.12041 .14185 .16278 .18322 .20318	0.7 579 .721 3 .6874 .6558 .6263
45 46 47 48 49	1 590.43 1661.90 1734 94 1809.56 1885.74	.1103 .1152 .1201	ī.02358 .04267 .06135 .07964 .09755	9.471 9.065 8.683 8.325 7.988	50.68 52.96 55.28 57.66 60.09	1.70482 .72391 .74259 .76088 .77879	.01973 .01888 .01809 .01734 .01664	1.670 .745 .822 .900 .980	0.22270 .24179 .26047 .27876 .29667	0.5988 .5731 .5489 .5263 .5050
50 51 52 53 54	1963.50 2042.82 2123.72 2206.18 2290.22	.1356 .1410 .1465	î.11509 .13229 .14916 .16570 .18194	7.672 7.374 7.093 6.828 6.578	62.57 65.09 67.67 70.30 72.99	1.79634 .81354 .83040 .84695 .86328	.01598 .01536 .01478 .01422 .01370	2.062 .145 .230 .316 .405	0.31422 .33142 .34829 .36483 .38107	0.4850 .4662 .4484 .4317 .4158
55	2375.83	.1 577	ī.19788	6.340	75.70	1.87912	.01321	2.495	0.39700	0.4009

^{*} Diameters and sections in terms of thousandths of a centimetre.

Oross sections and weights of wires.

	Area of				Silve	er — Densit	y 10.50.			
Diam. in Mila.	cross section in Sq. Mils.	Troy Ounces per Foot.	Log.	Feet per Troy Ounce.	Grains per Foot.	Log.	Feet per Grain.	Grammes per Metre.*	Log.	Metres per Gramme.
55 56 57 58	2375.83 2463.01 2551.76	0.1577 .1635 .1694	ī.19788 .21353 .22890	6.340 .116 5.903	75.70 78.48 81.31	1.87912 .89477 .91014	.01321 1274 1230 1188	2.495 .586 .679	0.39700 .41266 .42803	0.4009 .3867 .3732
58 59	2642.08 2733.97	.1754 .1815	.24401 .25886	.701	84.19 87.12	.92525 .94010	1148	.774 .871	.44314 .45798	.3605 .3484
60 61 62 63 64	2827.43 2922.47 3019.07 3117.25 3216.99	0.1877 .1940 .2004 .2069	ī.27346 .28781 .30193 .31584 .32951	5.328 .155 4.990 .832 .683	90.09 93.12 96.20 99.33 102.51	1.95470 .96906 .98318 .99708 2.01075	.01110 1074 1040 1007 0975	2.969 3.069 .170 .273 .378	0.47258 .48694 .50106 .51496 .52864	0.3368 ·3259 ·3155 ·3055 ·2961
65 66 67 68 69	3318.31 3421.19 3525.65 3631.68 3739.28	0.2203 .2271 .2340 .2411 .2482	ī,34298 .35624 .36930 .38217 .39485	4.540 .403 .273 .148 .029	105.7 109.0 112.3 115.7	2.02422 .03748 .05054 .06341	.009457 09173 08903 08642 08393	3.484 .592 .702 .813	0.54211 -55537 -56843 -58130 -59398	0.2870 .2784 .2701 .2622 .2547
70 71 72 73 74	3848.45 3959.19 4071.50 4185.39 4300.84	0.2555 .2628 .2703 .2778 .2855	ī.40746 .41967 .43182 .44380 .45560	3.913 .805 .700 .599 .502	122.7 126.2 129.7 133.4 137.0	2.08870 .10091 .11306 .12504 .13686	.0081 53 07926 07708 07498 07297	4.042 .157 .275 .395 .516	o.60659 .61880 .63094 .64293 .65474	0.2474 .2406 .2339 .2275 .2214
75 76 77 7 8 79	4417.86 4536.46 4656.63 4778.36 4901.67	0.2933 .3011 .3091 .3172 .3254	ī.46728 .47878 .49014 .50134 .51241	3.410 .321 .235 .152 .073	140.8 144.6 148.4 152.3 156.2	2.14852 .16002 .17138 .18258 .19365	.007104 06918 06739 06568 06402	4.639 .763 .889 5.017 .147	0.66640 .67791 .68926 .70047 .71153	0.2156 .2099 .2045 .1993 .1943
80 81 82 83 84	5026.55 5153.00 5281.02 5410.61 5541.77	0.3337 .3421 .3506 .3592 .3679	ī.52333 .53412 .54478 .55531 .56571	2.997 .923 .852 .784 .718	160.2 164.2 168.3 172.4 176.6	2.20458 .21537 .22602 .23655 .24695	.006243 06090 05942 05800 05663	5.278 .411 .545 .681 .819	0.72246 -73325 -74391 -75444 -76484	0.1895 .1848 .1803 .1760 .1719
85 86 87 88 89	5674.50 5808.80 5944.68 6082.12 6221.14	0.3767 .3856 .3946 .4038 .4130	ī.57599 .58615 .59619 .60612 .61593	2.655 -593 -534 -477 -421	180.8 185.1 189.4 193.8 198.2	2.25723 .26739 .27743 .28736 .29717	.005531 05403 05279 05160 05045	5.958 6.099 .242 .386 .532	0.77512 .78528 .79532 .80524 .81506	0.1678 .1640 .1602 .1566 .1531
90 91 92 93 94	6361.73 6503.88 6647.61 6792.91 6939.78	0.4223 .4318 .4413 .4509 .4607	ī.62564 .63524 .64473 .65411 .66341	2.368 .316 .266 .218	202.7 207.2 211.8 216.4 221.1	2.30688 .31648 .32597 .33535 .34465	.004933 04825 04721 04620 04522	6.680 .829 .980 7.132 .287	0.82476 .83436 .84385 .85324 .86254	0.1497 .1464 .1433 .1402 .1372
95 96 97 98 99	7088.22 7238.23 7389.81 7542.96 7697.69	0.4705 .4805 .4906 .5007 .5110	ī.67260 .68170 .69070 .69961 .70842	2.125 .081 .038 1.997 -957	225.9 230.6 235.5 240.4 245.3	2.35384 .36294 .37194 .38085 .38967	.004428 04336 04247 04161 04077	7.443 .600 .759 .920 8.083	o.87173 .88082 .88982 .89873 .90755	0.1344 .1316 .1289 .1263 .1237
100	7853.98	0.5214	1.71715	1.918	250.3	2.39839	.003996	8.247	0.91628	0.1213

^{*} Diameters and sections in terms of thousandths of a centimetre.

WEIGHT OF SHEET METAL.

TABLE 63.—Weight of Shoot Metal. (Metric Measure.)
This table gives the weight in grammes of a plate one mere square and of the thickness stated in the first column.

Iron. Copper. Brass.	Brass.	Aluminium.	Platinum.	Gold.	Silver.
89.0	85.6	26.7	215.0	193.0	105.0
178.0	171.2	53.4	430.0	386.0	210.0
267.0	256.8	80.1	645.0	579.0	315.0
326.0	342.4	8.901	860.d	772.0	4200
445.0	428.0	133.5	1075.0	965.0	\$25.0
468.0 534.0 513.6	\$13.6	 160.2	1290.0	1158.0	630.0
623.0	5992	186.9	1505.0	1351.0	735-0
712.0	684.8	213.6	1720.0	15440	840.0
801.0	770.4	240.3	1935.0	1737.0	9450
890.0	856.0	 0.702	21 50.0	1930.0	1050.0

* Gold and silver are given in Troy ounces.

TABLE 64.—Weight of Short Metal. (British Measure.)

Thickness	Iron.	Copper.	Brass.	Aluminium	nium.	Platinum	dun	Gold	**	Silver.	er.•
in Mils.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.	Pounds per Sq. Foot.	Ounces per Sq. Foot.	Ounces per Sq. Foot.	Grains per Sq. Foot	Ounces per Sq. Foot.	Grains per Sq. Foot.
-	.04058	.04630	.04454	.01389	.2222	6111.	1.790	1.4642	702.8	0,1967	382.4
8	91180.	.09260	80080.	.02778	-4445	.2237	3.579	2.9285	1405.7	1.5933	765.8
60	.12173	3890	.13363	04107	2000	-3350	5.300	4.3927	2108.5	2.3000	1147.2
4	10231	.16520	.17017	-05550	9	-4474	7.150	5.0570	2011.3	3.1907	15290
'n	.20289	.23150	.22271	.06945	1.1112	.5593	8.948	7.3212	3514.2	3.9833	1912.0
9	.24347	.27780	.26725	.08334	1.3335	11/9.	10.738	8.7854	4217.0	4.7800	2294.4
7	.28405	.32411	.31179	.09723	1.5557	.7830	12.527	10.2497	4919-8	5.5767	26768
.∞	.32463	.37041	.35634	21111.	1.7780	.8948	14.317	11.7139	5622.7	6.37.34	3059.2
0	36520	.41671	40088	.12501	2.0002	1.0067	16.106	13.1782	6325.5	7.1700	3441.6
.0	40578	.46301	-44542	.13890	2.2224	1.1185	17.896	14.6424	7028.3	2.9667	38240

TABLE 65.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
0000 000 00	o.4600 .4096 .3648 .3249	0.2116 .1678 .1331 .1055	0.1662 .1318 .1045 .0829	0.6412 .5085 .4033 .3198	ī.80701 .70631 .60560 .50489	1.560 1.967 2.480 3.127
1	0.2893	0.08369	0.06573	0.2536	ī.40419	3.943
2	.2576	.06637	.05213	.2011	.30348	4.972
3	.2294	.05263	.04134	.1595	.20277	6.270
4	.2043	.04174	.03278	.1265	.10206	7.905
5	.1819	.03310	.02600	.1003	.00136	9.969
6 7 8 9	0.1620 .1443 .1285 .1144 .1019	0.02625 .02082 .01651 .01309 .01038	0.02062 .01635 .01297 .01028 .00815	0.07955 .06309 .05003 .03968 .03146	2.90065 .79994 .69924 .59853 .49782	12.57 15.85 19.99 25.20 31.78
11	0.09074	0.008234	0.006467	0.02495	2.39711	40.08
12	.08081	.006530	.005129	.01979	.29641	50.54
13	.07196	.005178	.004067	.01569	.19570	63.72
14	.06408	.004107	.003225	.01244	09499	80.35
15	.05707	.003257	.002558	.00987	3.99429	101.32
16	0.05082	0.002583	0.002028	0.007827	3.89358	127.8
17	.04526	.002048	.001609	.006207	.79287	161.1
18	.04030	.001624	.001276	.004922	.69217	203.2
19	.03589	.001288	.001012	.003904	.59146	256.2
20	.03196	.001021	.000802	.003096	.49075	323.1
21	0.02846	0.0008101	0.0006363	0.002455	3.39004	408.2
22	.02535	.0006424	.0005046	.001947	.28934	513.6
23	.02257	.0005095	.0004001	.001544	.18863	647.7
24	.02010	.0004040	.0003173	.001224	.08792	816.7
25	.01790	.0003204	.0002517	.000971	4.98722	1029.9
26	0.01594	0.0002541	0.0001996	0.0007700	4.88651	1298.
27	.01419	.0002015	.0001583	.0006107	.78580	1638.
28	.01264	.0001598	.0001255	.0004843	.68510	2065.
29	.01126	.0001267	.0000995	.0003841	.58439	2604.
30	.01003	.0001005	.0000789	.0003046	.48368	3283.
31	0.008928	0.00007970	0.00006260	0.0002415	4.38297	4140.
32	.007950	.00006321	.00004964	.0001915	.28227	5221.
33	.007080	.00005013	.00003937	.0001519	.18156	6583.
34	.006304	.00003975	.00003122	.0001205	.08085	8301.
35	.005614	.00003152	.00002476	.0000955	5.98015	10468.
36 37 38 39 40	0.005000 .004453 .003965 .003531 .003145	0.00002500 .00001983 .00001372 .00001247 .0000989	0.00001963 .00001557 .00001235 .00000979	o.coco7 576 .coco6co8 .coco4765 .coco3778 .coco2996	5.87944 .77873 .67802 .57732 .47661	1 3200. 16644. 20988. 26465. 33372.

CONSTANTS OF COPPER WIRE.

according to the American Brown and Sharp Gauge. British Measure. Temperature o^o C. Density 8.90.

Electrical Constants.

	1	Resistance and Co	nductivity.		ļ
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.
0.00004629	<u>5</u> .66551	21601.	0.00007219	13852.	0000
.00005837	.76622	17131.	.00011479	8712.	000
.00007361	.86693	13586.	.00018253	5479-	00
.00009282	.96764	10774.	.00029023	3445.	0
0.0001170	4.06834	8544.	0.0004615	2166.8	1
.0001476	16905	6775.	.0007338	1362.8	2
.0001861	.26976	5373-	.0011668	8 ₅₇ .0	3
.00 02347	.37046	4261.	.0018552	539.0	4
.0002959	-47117	3379	.0029499	339.0	5
0.0003731	4.57188	2680.	0.004690	213.22	6
.0004705	.67259	2125.	.007458	134.08	7 8
.0005933	.77329	1685.	.011859	84.32	8
.0007482	.87400	1 337.	.018857	53.03	و ا
.0009434	.97471	1 337. 1060.	.029984	33-35	10
0.001190	3.07541	840.6	0.04768	20.973	11
.001 500	.17612	666.6	.07 581	13.191	12
.001892	.27683	528.7	.12054	13.191 8.296	13
.002385	·37753	419.2	.19166	5.218	14
.003008	.47824	332.5	.30476	3.281	15
0.003793	3.57895	263.7	0.4846	2.0636	16
.004783	.67966	. 209.I	-7705	1.2979	17
.006031	.78036	165.8	1.2252	0.8162	18
.007604	.88107	131.5	1.9481	.5133	19
.009589	.98178	104.3	3.0976	.3228	20
0.01209	2.08248	82.70	4.925	0.20305	21
.01 52 5	.18319	65.59	7.832	.12768	22
.01923	.28390	52.01	12.453	.08030	23
.02424	38461	41.25	19.801	.05051	24
.03057	.48531	32.71	31.484	.03176	25
0.03855	2.58602	25.94	50.06	0.019976	26
.04861	.68673	20.57	79.60	.012563	27
.06130	.78743	16.31	126.57	.007901	28
.07729	.88814	12.94	201.26	.004969	29
.09746	.98885	10.26	320.01	.003125	30
0.1229	ī.08955	8.137	508.8	0.0019654	31
.155ó	.19526	6.452	809.1	.0012359	32
.1954	.29097	5.117	1286.5	.0007773	33
.2464	.39168	4.058	2045.6	.0004889	34
-3107	.49238	3.218	3252.6	.0003074	35
0.3918	ī.59309	2.552	5172.	0.0001934	36
.4941	.69386	, 2.024	8224.	.0001216	37
.6230	-79450	1.605	13076.	.0000765	38
.7856	.89521	1.273	20792.	.0000481	39
.9906	.99592	1.000	33060.	.0000303	40

SIZE, WEICHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1684	1.3652	1.0722	954-3	2.97966	0.001048
000	.0405	.0826	0.8503	756.8	.87896	.001322
00	0.9266	0.8586	.6743	600.1	.77825	.001666
0	.8251	.6809	.5348	475-9	.67754	.002101
1	0.7348	0.5400	0.4241	377-4	2.57684	0.002649
2	.6544	.4282	.3363	299-3	.47613	.003341
3	.5827	.3396	.2667	237-4	.37542	.004213
4	.5189	.2693	.2115	188-2	.27472	.005312
5	.4621	.2136	.1677	149-3	.17401	.006699
6 7 8 .9	0.4115 .3665 .3264 .2906 .2588	o.16936 .13431 .10651 .08447 .06699	0.13302 .10549 .08366 .06634 .05261	118.39 93.88 74.45 59.04 46.82	2.07330 1.97259 .87189 .77118 .67047	0.00845 .01065 .01343 .01694 .02136
11	0.2305	0.05312	0.04172	37.13	1.56977	0.02693
12	.2053	.04213	.03309	29.45	.46906	.03396
13	.1828	.03341	.02624	23.35	.36835	.04282
14	.1628	.02649	.02081	18.52	.26764	.05400
15	.1450	.02101	.01650	14.69	.16694	.06809
16	0.12908	0.016663	0.013087	11.648	1.06623	0.0859
17	.11495	.013214	.010378	9.237	0.96552	.1083
18	.10237	.010479	.008231	7.325	.86482	.1365
19	.09116	.008330	.006527	5.809	.76411	.1721
20	.08118	.006591	.005176	4.607	.66340	.2171
21	0.07229	0.005227	0.004105	3.653	0.56270	0.2737
22	.06438	.004145	.003255	2.898	.46199	.3450
23	.05733	.003287	.002582	2.298	.36128	.4352
24	.05106	.002607	.002047	1.822	.26057	.5488
25	.04545	.002067	.001624	1.445	.15987	.6920
26	0.04049	0.0016394	0.0012876	1.1459	o.05916	0.873
27	.03606	.0013001	.0010211	.9088	1.95845	1.100
28	.03211	.0010310	.0008098	.7207	.85775	1.388
29	.02859	.0008176	.0006422	.5715	.75704	1.750
30	.02546	.0006484	.0005093	.4532	.65633	2.206
31	0.02268	0.0005142	0.0004039	0.3594	ī.55562	2.782
32	.02019	.0004078	.0003203	.2850	.45492	3.508
33	.01798	.0003234	.0002540	.2261	.35421	4.424
34	.01601	.0002565	.0002014	.1793	.25350	5.578
35	.01426	.0002034	.0001597	.1422	.15280	7.034
36	0.01270	0.0001613	0.0001267	0.1127	1.05209	8.87
37	.01131	.0001279	.0001005	.0894	2.95138	11.18
38	.01007	.0001014	.0000797	.0709	.85068	14.10
39	.00897	.0000804	.0000632	.0562	.74997	17.78
40	.00799	.0000638	.0000501	.0446	.64926	22.43

CONSTANTS OF COPPER WIRE.

speccording to the American Brown and Sharp Gauge. Metric Measure. Temperature of C. Density 8.90.

Electrical Constants.

Resistance and Conductivity.					
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001 519 .000191 5 .000241 5 .0003045	4.18150 .28221 .38191 .48362	6584. 5221. 4141. 3284.	0.0000001 592 .0000002531 .000004024 .000006398	6283000. 3951000. 2485000. 1563000.	0000 000 00
0.0003840	4-58433	2604.	0.000001017	982900.	1
.0004842	-68503	2065,	.000001618	618200.	2
.0006106	-78574	1638.	.000002572	388800.	3
.0007699	-88645	1299.	.000004090	244500.	4
.0009709	-98715	1030.	.000006504	153800.	5
0.001224 .001544 .001947 .002455 .003095	3.08786 .18857 .28928 .38998 .49069	816.9 647.8 513.7 407.4 323.1	0.00001034 .00001644 .00002615 .00004157 .00006610	96700. 60820. 38250. 24050. 15130.	6 7 8 9
0.003903	3.59140	256.2	0.00010511	9514.	11
.004922	.69210	203.2	.00016712	5984.	12
.006206	.79281	161.1	.00026574	3763.	13
.007826	.89352	127.8	.00042254	2367.	14
.009868	.99423	101.3	.00067187	1488.	13
0.01244	2.09493	80.37	0.001068 3	936.1	16
.01569	.19564	63.73	.0016987	588.7	17
.01979	.29635	50.54	.0027010	370.2	18
.02495	.39705	40.08	.0042948	232.8	19
.03146	.49776	31.79	.0068290	146.4	20
0.03967	2.59847	25.21	0.010859	92.09	21
.05002	.69917	19.99	.017266	57.92	22
.06308	.79988	15.85	.027454	36.42	23
.07954	.90059	12.57	.043653	22.91	24
.10030	T.00130	9.97	.069411	11.88	25
0.12647	T.10200	7.907	0.11037	9.060	26
.15948	.20271	6.270	.17549	5.698	27
.20110	.30342	4.973	.27904	3.584	28
.25358	.40412	3.943	.44369	2.254	29
.31976	.50483	3.127	.70550	1.417	30
0.4032	ī.60554	2.480	1.1218	0.8914	31
.5084	.70624	1.967	1.7837	.5606	32
.6411	.80695	1.560	2.8362	.3526	33
.8085	.90766	1.237	4.5097	.2217	34
1.0194	0.00837	0.981	7.1708	.1394	35
1.2855	0.10907	0.7779	11.376	0.08790	36
1.6210	.20978	.6169	18.130	.05516	37
2.0440	.31049	.4892	28.828	.03469	38
2.5775	.41119	.3880	45.838	.02182	39
3.2501	.51190	.3076	72.885	.01372	40

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Inches.	Square of Diameter (Circular Inches).	Section in Sq. Inches.	Pounds per Foot.	Log.	Feet per Pound.
7-0 6-0	0.500 .464	0.2500	0.1963 .1691	0.75760 .65243	ī.87944 .81453	1.320 1.583
5-0	0.432	0.1866	0.1466	0.56554	Ī.75247	1.768
4-0	.400	.1600	.1257	-48486	.68562	2.062
3-0 2-0	.372 .348	.1384	.1087	.41936 .36699	.62258 .56466	2.385 2 725
0	•324	.1050	.0825	.31812	.50259	3.143
1	0.300	0.09000	0.07069	0.27274	ī.43574	3.667
2	.276	.07618	.05953	.23064	.36332	4.332
3 4	.252 .232	.06350 .05382	.04983	.19244 .16310	.28430	5.196 6.131
5	.212	.04494	.03530	.13620	.13417	7.342
6	0.192	0.03686	0.02895	0.11171	ī.04810	8.95
7 8	.176	.03098	.02433	.09387	2.97252	10.65
8 9	.160 .144	.02560 .02074	.02010	.07758 .06284	.79522	12.89
10	.128	.01638	.01287	.04965	.69592	15.91 20.14
ıı	0.116	0.01 3456	0.010568	0.04078	2.61041	24.52
12	.104	.010816	.008495	.03278	-51 557	30.51
13	.092 .080	.008464 .006400	.006648	.02565	.40907	38.99
14	.072	.005184	.005027	.01939 .01571	.19616	51.56 63.66
16	0.064	0.004096	0.003217	0.012412	2.09386	80.6
17	.056	.003136	.002463	.009503	3.97787	105.2
18	.048	.002304	.01810	.006982	.84398	143.2
19 20	.040 .036	.001600 .001296	.001257	.004849 .003927	.68502	206.2 254.6
21	0.032	0.0010240	0.0008042	0.003103	3.4918o	322.3
22	.028	.0007840	.0006157	.002376	.37581	420.9
23 24	.024	.0005760 .0004840	.0004524 .0003801	.001 7 46 .001467	.24192 .16634	572.9 681.8
25	.020	.0004000	.0003141	.001212	.08356	824.9
26	0.0180	0.0003240	0.0002545	0.0009818	4.99209	1018.
27 28	.0104	.0002630	.0002112	.0008151	.91119	1227.
29	.0148 .0136	.0002190 0781000.	.0001728 .0001453	.0006638 .0005605	.82202 .74858	1 506. 1 784.
30	.0124	.0001533	.0001208	.0004660	.66834	2146.
31	0.0116	0.00013456	0.00010568	0.0004078	4.61041	2452.
32	8010.	19911000	.00009161	.0003535	.54835	2829.
33 34	.0100	.00010000 .00008464	.00007854 .00006648	.0003030 .0002565	.48150 .40907	3300. 3899.
35	.0084	.00007056	.00005542	.0002138	.33006	4677.
36	0.0076	0.00005776	0.00004536	0.0001750	4.24313	5713.
37	.0068	.0000.4624	.00003632	.0001404	.14752	7120.
38 39	.0060 .0052	.000035c0 .00002704	.00002827 .00002124	.0001001	.03780 3.91351	9167. 12200.
40	.0048	.00002704	.00001810	.0000682	.84398	14660.
41	0.0044	0.00001936	0.00001521	0.00005867	5.76840	17050.
42	.0010	.000010000	.00001257	.00004849	68562	20620.
43	.0036	.00001296 .00001024	.00001018	.00003927 .00003103	.59410 .49180	25460. 32230.
45	.0028	.00000784	.00000616	.00002381	.37681	41990.
46	0.0024	0.00000576	0.00000452	0.00001746	5.24192	57290.
47	.0020	.00000400	.00000314	.00001212	.08356	82490.
48 49	.0016	.00000256	.00000201	.00000776 .00000436	6.88974 .63986	128900.
50	.0010	.00000144	.00000079	.00000303	.48150	229200. 330000.
						30

CONSTANTS OF COPPER WIRE.

according to the British Standard Wire Gauge. British Measure. Temperature oo C. Density 8.90.

the British Standard Wire Gauge. British Messure. Temperature of C. Dennity 8.9 Electrical Constants.

Resistance and Conductivity.						
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.	
0.00003918	<u>5</u> .59310	25520.	0.000051719	19335.	7-0	
.00004550	.65799	21980.	.000069736	14339.	6-0	
0.00005249 .00006122 .00007078	5.72006 .78691 .84994	19050. 16330.	0.00009281 .00012627 .00016880	1077 5. 7920.	5-0 4-0	
.00003331	.90787 .96994	14130. 12360. 10720.	.00022040 .00029333	5924. 4537. 3409.	3-0 2-0 0	
0.0001088	4.03679	9188.	0.0003991	2505.8	1 2	
.0001286	.10921	7777•	.0005570	1795.2		
.0001 543	.18823	6483.	.0008015	1247.7	3	
.0001820	.26005	5495.	.0011158	896.2	4	
.0002180	.33836	4588.	.0016002	624.2	5	
0.0002657	4.42443	3763.	0.0023786	420.4	6	
.0003162	.50000	3162.	.0033688	296.9		
.0003826	.58279 .67430	2613. 2117.	.0049323 .0075176	202.7 133.0	7 8 9	
0.000 5979	.77661	1673.	.0084978	117.7	11 12	
0.000 7280	4.86211	1373.6	0.017853	56.013		
.000 90 56	.95696	1104.2	.027631	36.191		
.0011573 .0015305 .0018896	3.06345 .18485	864.1 653.4	.045121 .078927	22.163 12.669	13 14	
0.002391	.27636 3.37867	529.2 418.1	.120282 0.1926 7 .32868	8.314 5.1902	16	
.003124	.49465	320.2	.32006	3.0423	17	
.004252	.62855	235.2	.60893	1.6423	18	
.006122	.78691	163.3	1.26268	0.7919	19	
.007 558	87842	132.3	1.92451	.5196	20	
0.00957	398073	104.54	3.0827	0.32439	21	
.01249	2.0967 I	80.04	5.2599	.19011	22	
.01701	.23061	58.80	9.7429	.10264	23	
.02024	.30618	49.41	13.7988	.07246	24	
.02506	.38897	39.91	20.2028	.04951	25	
0.03023	2.48048	33.08	30.792	0.032478	26	
.03642 .04472	.56134 .65051	27.46 22.36 18.88	56.254 67.373 94.488	.017778 .014843	27 28	
.05296 .06371 0.07449	.72395 .80419 2.87211	15.70 13.42	136.724 182.68	.010583 .007314 0.005474	30 31	
.08398	.92418	11.91	237.59	.004209	32	
.09796		10.21	323.25	.003094	33	
.11573	.14247	8.64 7.20	451.21 649.25	.002216 .001540	34 35 36	
0.16959 .21184 .27210	1.22940 .32601 .43473	5.897 4.720 3.675	968.9 1 508.3 2494.2	0.0010321 .0006630 .0004009	37 38	
.36226	.55902	2.760	4421.0	.0002262	39	
-4251 5	.62855	2.352	6089.3	.0001642	40	
0.5060	ī.70412	1.976	8624.	0.00011596	41	
.6122	.78691	.633	12627.	.00007919	42	
.7558	.87842	.323	19245.	.00005196	43	
.9566	.98073	.045	30827.	.00003244	44	
1.2494	0.09671	0.800	52468.	.00001906	45	
1.7006 2.5059	0.23061	0.5880 .3991	97429. 202028.	0.000010264 .000004950	46 47 48	
3.8264	.58279	.2613	493232.	.000002027	48	
6.8025	.83267	.1470	1558851.	.000000642	49	
9.7956	.99103	.1021	3232451.	.000000196	50	
	1,,,,,,					

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cn.s.	Grammes per Metra.	Log.	Metres per Gramme.
7-0 6-0	1.2700 .1786	1.6129 .3890	1.267	1127.4 970.9	3.05209 2.98719	0.000887
				1 2 2		0.001188
5-0 4-0	1.0973	1.2040	0.9456	841.6 721.6	.85827	.001188
3-0	0.9449	.0323 0.8928	.7012	624.1	.79524	.001602
2-0	.8839	.7815	.6136	546.3	.73741	.001831
ō	.8230	.6773	.5319	484.4	.68524	.002064
1	0.7620	0.58065	0.4560	405.9	2.60839	0.002464
2	.7010	.49157	.3858		53607	.002910
3	.6401	-40970	.3218	343.6 286.4	.45605	.003492
4	.5893	.34725	.2727	242.7	.38512	.004120
5	.5385	.28996	.2277	202.7	.30682	.004934
6	0.4877	0.23783	0.18679	166.25	2.22075	0.006015
	-4470	.19984	.15696	139.69	.14517	.007159
7 8	.4064	.16516	.12973	115.45	.06239	.008662
9	.3658	.133 7 8	.10507	93.51	1.07087	.010694
10	.3251	.10570	.08302	73.89	.86857	.013533
11	0.2946	0.08681	0.06818	60.68	1.78307	0.01648
12	.2642	.06978	.05480	48.78	.68822	.02051
13	.2337	.05461	.04289	38.17	.58172	.02620
14	.2032	.04129	.03243	28.86	.46033	.03465
15	.1829	.03344	.02627	23.38	.36881	.04278
16	0.16256	0.026426	0.020755	18.514	1.26751	0.05401
17 18	.14224	.020233	.01 5890	14.142	.1 5053	.07071
	.12192	.014865	.011675	10.390	.01663	.09625
19	.10160	.010323	.008107	7.216	0.85827	.13858
20	.09144	.008361	.006567	5.845	.76675	.17109
21	0.08128	0.006606	0.005188	4.618	0.66445	0.2165
22	.07112	.005058	.003972	3.536	.54847	.2828
23	.06096	.003716	.002922	2.598	·41457	.3850
24	.05588	.003123	.002452	2.183	.33899	.4581
25	.05080	.002581	.002027	1.804	.25621	·5544
26	0.04572	0.0020903	0.0016417	1.4625	0.16509	0.6838
27	.04166	.0017352	.0013628	.2129	08384	.8245
28	.03759	.0014132	.0011009	0.9878	1.99467	1.0123
29	.03454	.0011922	.0009363	.8333 6024	.92083 .84099	.2000
30	.03150	.0009920	.0007791	.6934		.4422
31	0.02946	0.0008681	0.0006818	0.6068	1.78307	1.648
32	.02743	.0007 52 5 .00064 52	.0005910	.5260	.72100	1.901
33	.02540 .02337	.0005461	.000 5067 .0004289	.4510 .3817	.65415	2.217 2.620
34 35	.02134	.0004552	.0003575	.3182	.50271	3.143
36	1			· ·	_ ' ' _	
	0.01930	0.0003726	0.0002927	0.2605 .2090	1.41578 .31917	3.839 4.784
37 38	.01524	.0002323	.0002343 .0001824	.1623	.21045	6.160
39	.01321	.0001746	.0001370	.1219	.08616	8.201
40	.01219	.0001486	.0001167	.1039	.01663	9.625
41	0.01118	0.0001249	0.0000082	0.0873	2.94105	11.45
42	91010	.0001032	.0000813	.0722	.85827	13.86
43	.00914	.0000836	.0000656	.0584	.76675	17.11
44	.00813	1500000.	.0000519	.0462	.66445	21.65
45	.00711	.0000506	.0000397	.0354	.54847	28.28
46	0.00610	0.00003716	0.0000292	0.0260	2.41457	38.5
47	.00508	.00002581	.0000203	.0180	.25621	55.4 86.6
48	.00406	.00001652	.0000129	.0115	06239	
49	.00305	.00000929	.0000073	.0065	3.81251	154.0
50	.0 0254	.00000645	.0000051	.0045	.65415	221.8
					L	

TABLE 68.

CONSTANTS OF COPPER WIRE.

according to the British Standard Wire Gauge. Metric Measure. Temperature o° C. Density 8.90.

Electrical Constants.

			rical Constants.		,
		Resistance	and Conductivity.		Gauge
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Number.
0.0001286	4.10907 .17398	7779- 6699.	0.0000001140	8770000. 6504000.	7-0 6-0
0.0001722 .0002000	4.23605 .30289	5814. 4979-	0.0000002046 .0000002784	4887000. 3592000.	5-o
.0002322	.36593	4306.	.0000003721	2687000.	4-0 3-0
.0002653	.42376	3769.	.0000004857	2059000.	2-0
.0003061	.48592 7 55373	3266. 2801.	.0000006319 0.0000008798	1583000. 1137000.	° 1
0.0003571	4.55277 .62510	2371.	.0000012275	814700.	2
.0005061	.70421	1976.	.0000017671	565900.	. 3
.000 597 1	.77604 .85434	167 5. 1398.	.0000024600	406500. 283500.	5
0.0008718	<u>4</u> .94041	1147.1	0.000005244	190700.	6
.0010375	3.01 599	963.9	.000009350	107000.	7 8
.0012554 .0015499	.09877 .19029	796.6 645.2	.000010874 .000016573	91960.	8
.0019615	.29259	509.8	.000026547	60340. 37670.	10
0.002388	3.37810	418.7	0.00003936	25410.	11
.002978	•47295 • 5 7934	335.8 263.4	.00006092 .00009945	16420. 10060.	12 13
.005022	.70083	199.1	.00017398	5748.	14
.006199	·79235	161.3	.00026518	3771.	15
0.007846	3.89465	127.45	0.0004238	2359.6	16
.010248 .013949	2.01064 .14453	97.58 71.69	· .0007246 .0013425	1380.1 744.9	17 18
.020086	.30289	49.79	.0027837	359.2	19
.024798	-39441	40.32	.0042428	² 35.7	20
0.03138	2.49671 .61270	31.86 24.39	0.005398 .011594	185.25 86.25	21 22
		17.92	.021479	46.56	23
.05579 .06640	.74659 .82217	15.06	.030421	32.87	24
.08034	•90495.	12.45	.044539 0.06782	22.45	25
0.09919	2.99647 1.07733	8.369	.09851	14.745 10.151	26 27
.14672	.16649	6.816	.14853	6.732	28
.17391	.24034	5-750	.20869	4.792	29
.20901 0.2388	.32017 T.37810	4-784 4-187	.30142 0.3036	3.318	30 31
.2755	.44017	3.629	0.3936 .5238	2.5407 1.9091	32
.3214	.50701	3.112	.7126	1.4033	33
·3797 -4555	·57944 ·65846	2.634 2.196	.9947 1.4313	1.0053 0.6987	34 35
0.5564	ī.74539	-	2.136	0.46816	36
.6950	.84200	1.7973 -4388	3-333	.30003	37
.8927 1.1885	.95070 0.07501	.1202 0.8414	7.019 9.747	.14247 .10260	38 39
·39 4 9	·14453	.7169	13.424	.07449	40
1.660	0.22011	0.6024	19.01	0.05260	41
2.009 2.480	.30289 .39441	-4979 -4033	27.84 42.43	.0359 2 .02357	42 43
3.138	.49671	.4033 .3186	67.96	.01471	44
4.099	.61270	.2440	115.94	.00863	45
5.579 8.034	0.74659 .90495	0.1792 -1245	210.4 445-4	0.004753 .002245	46 47
12.554	1.09877	.0797	1087.4	.000920	47 48
22.318 32.138	.34865 .50701	.0448	3436.7 7126.3	.000291 .000140	49° 50
3==3=	- 55/00	3	,		

TABLE 69.

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Cauge Number: Diameter (Circular Inches) Sections in Sq. Inches Pounds per Foot. Log. Feet per Pound.							
coo 1425 380 .1806 .1440 .14186 .11341 .5474 .4376 .64107 .64107 2.285 2.285 1 0.300 2 0.00000 .0566 .05335 0.2727 .2444 .3814 .38814 4.091 .4091 .4091 .4091 .4091 .41238 .0566 .05359 .0233 .233 .30810 .4091 .409	Gauge Number.		Diameter (Circular			Log.	l per
coo .425 .1866 .14186 .5474 .73828 .1828 .1828 .2285 .380 .340 .1136 .39099 .3503 .54446 .2855 .2855 .340 .3503 .54446 .2855 .320 .06708 .05335 .2444 .38814 .4091 .3286 .3228 .05664 .04399 .2033 .30810 .4999 .4238 .05664 .04449 .1717 .23465 .5826 .5826 .03327 .1467 .16634 .6818 .6818 .220 .04840 .03801 .1467 .16634 .6818 .6818 .2924 .003237 .012488 .09649 .8.088 .2924 .0185 .2920 .01647 .12121 .2165 .220 .04121 .003237 .012488 .29024 .10.185 .29204 .0185 .29204 .0185 .29204 .0185 .29204 .0185 .29204 .0185 .2920 .01647 .12121 .109 .1148 .02190 .01720 .06638 .82202 .15.065 .2021 .205 .2018 .2020 .2020 .2	0000	0.454	0.2061	0,16188	0.6246	ī.79561	1.601
00 .386 .1440 .11341 .4376 .64107 22.285 1 0.300 0.09000 0.07069 0.2727 Ī.43574 3.666 2 .284 .08065 .06335 .2444 .38814 4.091 3 .259 .06708 .05269 .2033 .30810 4.919 4 .238 .05664 .04449 .1717 .23655 5.86 5 .220 .04840 .03801 .1467 .16034 6.818 6 .0203 .04121 .03237 0.12488 Ī.09649 8.088 8 .165 .02723 .02138 .08250 .01647 12121 9 .148 .02190 .01720 .06638 .82202 15.065 10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0014400 .0.01310 .0.04364 2.63986 22.91 12 .100 <	000	.425	.1806	.14186		.73828	1.827
0 .340 .1150 .09079 .3503 .5444b 2.855 1 0.300 0.09000 0.07069 0.2727 T.43574 3.666 2 .284 .08065 .05309 .2033 .30810 4-919 4 .238 .05664 .04449 .1717 .23465 5.826 5 .220 .04840 .03801 .1467 .16634 6.818 6 0.203 .04121 .003237 .012488 7.0649 8.088 7 .180 .03240 .02545 .0818 2.99204 10.185 8 .165 .02723 .02138 .08250 .01647 12.121 9 .148 .02190 .01410 .05441 .73371 18.379 11 .0.120 .0014400 .0.011310 .0.4364 2.63986 22.91 12 .109 .011881 .00931 .03600 .55635 27.77 13 .05	∞	.380	.1440				2.285
3 .259 .00708 .05269 .2033 .30810 4.919 4 .238 .05664 .04449 .1717 .23465 5.826 5 .220 .04840 .03801 .1467 .16634 5.826 6 0.203 0.04121 0.03237 0.12488	0	.340	.1156			-54446	2.855
3 .259 .00708 .05269 .2033 .30810 4.919 4 .238 .05664 .04449 .1717 .23465 5.826 5 .220 .04840 .03801 .1467 .16634 5.826 6 0.203 0.04121 0.03237 0.12488	, ,			0.00060		ors.	2666
3 .259 .00708 .05269 .2033 .30810 4.919 4 .238 .05664 .04449 .1717 .23465 5.826 5 .220 .04840 .03801 .1467 .16634 5.826 6 0.203 0.04121 0.03237 0.12488		0.300		1 4 -		1.435/4	
4 .238 .05664 .04449 .1717 .23465 5.826 5 .220 .04840 .03801 .1467 .16634 6.818 6 0.203 .0.04121 .0.03237 .12488 1.09649 8.008 7 .180 .02120 .02545 .00818 2.99204 10.185 8 .165 .02723 .02138 .08250 .91647 12.121 10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0014400 .011310 .04364 2.63986 22.91 12 .109 .011881 .009331 .03600 .55635 27.77 13 .005 .009225 .007088 .02735 .43695 36.56 14 .083 .006889 .005411 .02088 .31965 47.90 15 .072 .005184 .00402 .01571 .19616 63.65 16 0.065 <th></th> <th></th> <th></th> <th></th> <th></th> <th>30814</th> <th></th>						30814	
5 .220 .04840 .03801 .1467 .16634 6.818 6 0.203 0.04121 0.03237 0.12488 T.09649 8.008 7 .180 .03240 .02545 .09818 2.99204 10.185 8 .165 .02723 .02138 .08250 .91647 12.121 9 .148 .02190 .01720 .06638 .82202 15.065 10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0.014400 .0.01310 .0.4364 7.03571 18.379 12 .109 .0.01881 .0.09331 .0.3600 .55635 27.77 13 .0.05 .0.09025 .0.09331 .0.3600 .55635 27.77 13 .0.05 .0.0925 .0.09331 .0.3000 .55635 27.77 13 .0.05 .0.005889 .0.05411 .0.2088 .31905 47.90 15		228	05664			22465	1 73.2
6 0.203 0.04121 0.03237 0.12488 T.09649 8.008 7 .180 .03240 .02545 .09818 2.99204 10.185 8 .165 .02723 .02138 .08250 .91647 12.121 9 .148 .02190 .01720 .06638 8.2202 15.065 10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0014400 .011310 .0.04364 \$\tilde{2}.63986 22.91 12 .109 .011881 .009331 .03600 .55635 27.77 13 .095 .00925 .007088 .02735 .43695 36.56 14 .083 .006889 .005411 .02088 .31965 47.90 15 .072 .005184 .004072 .01571 .19616 63.65 16 .0.065 .0.004225 .0.003183 .0.012803 \$\tilosin6 36.86 177.44 </th <th></th> <th></th> <th>04840</th> <th></th> <th></th> <th>16624</th> <th></th>			04840			16624	
7	ا د اا	.220	.04040	.0300.	/		55.5
7 1.80	6 1	0.203	0.04121	0.03237	0.12488	1.09649	8.008
8 .165 .02723 .02138 .08250 .01647 12.121 9 .148 .02190 .01720 .06638 .82202 15.065 10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0014400 .0011310 .004364 2.63986 22.91 12 .109 .011881 .009331 .03600 .55635 27.77 13 .095 .009025 .007088 .02735 .43695 36.56 14 .083 .006889 .005411 .02088 .31965 47.90 15 .072 .005184 .004072 .01571 .19616 63.65 16 0.065 0.004225 .0033183 .0012803 2.10733 78.10 17 .058 .003364 .002401 .0018857 .007276 3.86189 137.44 19 .042 .001764 .001384 .005346 .72800 187.06 <	7 1	.18ŏ	.03240		.09818	2.99204	10.185
9	8	.165	.02723		.08250	.91647	12.121
10 .134 .01796 .01410 .05441 .73571 18.379 11 0.120 .0014400 .0011310 .004364 2.63986 22.91 12 .109 .011881 .009331 .03600 .55635 27.77 13 .095 .009025 .007088 .02735 .43695 36.56 14 .083 .006889 .005411 .02088 .31965 47.90 15 .072 .005184 .004072 .01571 .19616 63.65 16 .0.065 .0.04225 .0.033183 .0.12803 2.10733 78.10 17 .0.58 .003364 .0026421 .010194 .00835 98.10 18 .049 .002401 .0018857 .007276 3.86189 137.44 19 .042 .001764 .0013854 .005346 .72800 187.06 20 .035 .00125 .0009621 .003103 3.49180 322.3 <	9	.148	.02190		.06638	.82202	15.065
12	10	.134	.01796	.01410		·73571	18.379
12	ıı	0.120	0.014400	0.011310	0.04364	2.63086	22.01
13					.03600		
14 .083 .006889 .005411 .02088 .31965 47.90 15 .072 .005184 .004072 .01571 .19616 63.65 16 0.065 0.004225 0.003183 0.012803 2.10733 78.10 17 .058 .003364 .0026421 .010194 .00835 98.10 18 .049 .002401 .001857 .007276 3.86189 137.44 19 .042 .001764 .0013854 .005346 .72800 187.06 20 .035 .001225 .0009621 .003103 3.49180 322.3 21 0.032 0.001024 0.000842 0.003103 3.49180 322.3 22 .028 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .000409 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8				.007088	.02735	.43605	
15		.083	.006880		.02088	31965	
17 .058 .003364 .002621 .010194 .0835 98.10 18 .049 .002401 .0018857 .007276 3.86189 137.44 19 .042 .001764 .0013854 .005346 .72800 187.06 20 .035 .001225 .0009621 .003103 3.49180 322.3 21 .0032 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.99204 1018. 27 .016 .000256 .0002011 .0007758 .88974 1280. 28 .014 .000196 .0001327 .0005121 .70039 1953.						.19616	
17 .058 .003364 .002621 .010194 .0835 98.10 18 .049 .002401 .0018857 .007276 3.86189 137.44 19 .042 .001764 .0013854 .005346 .72800 187.06 20 .035 .001225 .0009621 .003103 3.49180 322.3 21 .0032 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.99204 1018. 27 .016 .000256 .0002011 .0007758 .88974 1280. 28 .014 .000196 .0001327 .0005121 .70039 1953.	16	0.065	0.004225	0.0033182	0.012803	2,10722	78.10
18 .049 .002401 .0018857 .007276 3.86189 137.44 19 .042 .001764 .0013854 .005346 .72800 187.06 20 .035 .001225 .0009621 .003712 .56963 269.40 21 .0.032 .0001024 .0008042 .003103 3.49180 322.3 22 .028 .000784 .006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.99204 1018. 27 .016 .000256 .000211 .0007758 .88974 1289. 28 .014 .000196 .0001327 .0005121 .70039 1953. <t< th=""><th> </th><th>.058</th><th>.003364</th><th></th><th></th><th>.00835</th><th></th></t<>		.058	.003364			.00835	
19	18	.040	.002401	.0018857		7.86180	
20 .035 .001225 .000621 .003712 .56963 269.40 21 0.032 0.001024 0.0008042 0.003103 3.49180 322.3 22 .028 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .10634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.09204 1018. 27 .016 .000256 .0002011 .0007758 .88974 1289. 28 .014 .000196 .0001539 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70939 1953. 30 .012 .000144 .0001131 .0004364 .63986 2292. 31 0.010 0.000100 0.000103 .0004364 .63986 2292. 31 0.010 0.000100 0.00005027 .0004364 .38998 4074. 33 .008 .000064 .00005027 .0001395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.				.0013854			187.06
22 .028 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.09204 1018. 27 .016 .000256 .000211 .0007738 .88974 1289. 28 .014 .000196 .0001327 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70939 1953. 30 .012 .000144 .0001131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.000330304 4.48150 3300. 32 .009 .00081 .0006362 .00024546 .38998 4074.		.035	.001225	.0009621		56963	269.40
22 .028 .000784 .0006158 .002376 .37581 420.9 23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.09204 1018. 27 .016 .000256 .000211 .0007738 .88974 1289. 28 .014 .000196 .0001327 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70939 1953. 30 .012 .000144 .0001131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.000330304 4.48150 3300. 32 .009 .00081 .0006362 .00024546 .38998 4074.	21	0.032	0.001024	0.0008042	0.003103	3.40180	322.3
23 .025 .000625 .0004909 .001894 .27738 528.0 24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.09204 1018. 27 .016 .000256 .000211 .0007738 .88974 1289. 28 .014 .000196 .0001539 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70039 1953. 30 .012 .000144 .0001131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.0003304 4.48150 3300. 32 .009 .00081 .0006362 .00024546 .38998 4074. 33 .008 .00064 .0005027 .00019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.	22	.028	.000784			37 581	
24 .022 .000484 .0003801 .001467 .16634 681.8 25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.99204 1018. 27 .016 .000256 .0002011 .0007758 .88974 1280. 28 .014 .000196 .0001539 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70939 1953. 30 .012 .000144 .000131 .0004364 .63986 2292. 31 0.010 0.000100 0.00007854 0.00030304 4.48150 3300. 32 .009 .000081 .00006362 .00024546 .38998 4074. 33 .008 .000064 .00003027 .00019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734.	23		.000625			1 .27738	528.ó
25 .020 .000400 .0003142 .001212 .08356 824.9 26 0.018 0.000324 0.0002545 0.0009818 4.99204 1018. 27 .016 .000256 .0002011 .0007758 .88974 1289. 28 .014 .000196 .0001539 .0005940 .77375 1684. 29 .013 .000169 .0001327 .0005121 .70930 1953. 30 .012 .000144 .000131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.00030304 4.48150 3300. 32 .009 .000081 .000063 .0004364 .38998 4074. 33 .008 .000064 .000527 .00019395 .28768 5156. 34 .007 .000049 .0003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200. </th <th></th> <th></th> <th>.000484</th> <th>0003801</th> <th>.001467</th> <th>.16624</th> <th>8.185</th>			.000484	0003801	.001467	.16624	8.185
27	25	.020		.0003142	.001212	.08356	824.9
27	26	0.018	0.000324	0.0002545	0.0009818	4.99204	
28	27				.0007758	.88974	
29 .013 .000169 .0001327 .0005121 .70939 1953. 30 .012 .000144 .0001131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.00030304 4.48150 3300. 32 .009 .000081 .0006362 .00024546 .38998 4074. 33 .008 .000064 .00005027 .00019395 .28768 5156. 34 .007 .000049 .0003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.	28			I .			
30 .012 .000144 .000131 .0004364 .63986 2292. 31 0.010 0.000100 0.0007854 0.00033304 4.48150 3300. 32 .009 .000081 .00006362 .00024546 .38998 4074. 33 .008 .000064 .00005027 .00019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.			.000169			.70939	
32 .009 .000081 .00006362 .000245466 .38998 4074. 33 .008 .000064 .00005027 .0019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.	30		.000144		.0004364	.63986	
32 .009 .000081 .00006362 .000245466 .38998 4074. 33 .008 .000064 .00005027 .0019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.	31	0.010	0.000100	0.00007854	0.00030304	4.481 to	3300
33 .008 .000064 .00005027 .00019395 .28768 5156. 34 .007 .000049 .00003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.						38008	
34 .007 .00049 .0003848 .00014849 .17169 6734. 35 .005 .000025 .00001963 .00007576 5.87944 13200.						.28768	
35 .005 .000025 .00001963 .00007576 5.87944 13200.		.007	.000049		.00014849		
36 0.004 0.000016 0.00001257 0.00004849 \(\bar{3}.68562\) 20620.							
	36	0.004	0.000016	0.00001257	0.00004849	<u>5</u> .68562	20620.

CONSTANTS OF COPPER WIRE.

according to the Birmingham Wire Gauge. British Measure. Temperature oo C. Density 8.90.

Electrical Constants.

	. 1	Resistance and Co	nductivity.		
Ohms per Foot.	Log.	Feet per Ohm.	Ohms per Pound.	Pounds per Ohm.	Gauge Number.
0.00004752	<u>5</u> .67692	21040.	0.0000761	13140.	0000
.00005423		18440.	10000001	10000.	000
.00006784	.73425 .83146	14740.	.0001550	6451.	00
.00008474	.92807	11800.	.0002419	4134.	0
8801000.0	4.03679	9188.	0.0003991	2505.8	1
.0001214	.08439	8234.	.0004969	2012.5	2
.0001460	.16443	6848.	.0007183	1392.2	3
.0001729	.16443 .23788	5783.	.0010074	992.6	1 4
.0002024	.30618	494ĭ.	.001 3799	724.7	5
0.000#3##	4 .37604	4207.	0.001003	202.06	6
0.0002377 .0003023	.48048	3308.	0.001903	525.26 224.76	
.0003598	.55606	2779.	.003079 .004361	324.76 229.30	7 8
.0004472	.65051	2236.	.006737	148.43	9
.0005455	.73682	1833.	.010025	99-75	10
0.00		1033	.0.025	99 /3	
0.0006802	4.83267	1470.2	0.01 559	64.148	11
.0008245	.91618	1212.9	.02290	43.670	12
.0010854	3 .035 5 8	921.3	.03969 .08811	25.195	13
.0014219	.1 5287	703.3		14.682	14
.co18896	.27636	529.2	.1 2028	8.314	15
0.002318	3.36520	431.3	0.1811	5.5225	16
.002980	-47417	335.6	.2923	3.4211	17
.0 04ó80	.61064	245.1	. 5607	1.7835	18
.005553	-74453	180.1	1.ŏ388	0.9627	19
.007996	.90289	125.1	2.1541	-4643	20
0.009566	3.98073	104.54	3.083	0.32439	21
-012494	2.0967 I	80.04	5.259	.19015	22
.01 5709	.19515	63.66	8.275	.12085	23
.020239	.30618	49.41	13.799	.07246	24
.02448g	.38897	40.83	20.203	.04950	25
0.02887	2 .46048	34.64	29.41	0.034006	26
.03826	.58279	26.13	49.32	.020275	27
.04998	.69877	20.01	84.14	.011885	28
.05796	.76314	17.25	113.18	.008835	29
.06862	.83266	14.70	1 55.88	.006415	30
0.09796	2.99103	10.200	323.2	0 .0030936	31
.12095	1.08254	8.269	492.7	.0020290	32
·15306	.18485	6.533	789.2	.0012671	33
.19991	.30083	5.002	1346.3	.0007420	34
.39182	.59309	2.552	5171.9	.0001933	35
0.61222	ī.78691	1.663	12627.	0.00007920	36

SIZE, WEIGHT, AND ELECTRICAL

Size, Weight, and Electrical Constants of pure hard drawn Copper Wire of different numbers

Size and Weight.

Gauge Number.	Diameter in Centimetres.	Square of Diameter (Circular Cms.).	Section in Sq. Cms.	Grammes per Metre.	Log.	Metres per Gramme.
0000	1.1532	1.3298 .1653	1.0444 .9152	929. 5 814.6	2.96826 .91093	0.001076
0	0.9652 .8636	0.9316 .7458	.7317 .5858	651.2 521.3	.81372 .71711	.001536 .001918
1 2	0.7620	0.5806 .5216	0.4560 .4387	405.9 363.7	2.60839 .56079	0.002464 .002749
3	.6579	.4328	·3399 .2870	302.5	48075	.003306
5	.6045 .5588	.3655 .3123	.2870 .2452	255.4 218.3	.40730 .33899	.003915 .004581
6	0.5156	0.2659	0.20881 .16417	185.84 146.11	2.26914 .16469	0.005381
7 8	.4572 .4191	.2090 .1756	13795	122.78	.08912	.008145
9	-3759	.1413	.11099	98.78	1.99467	.010124
10	.3404	.1 i 58	.09098	80.98	.90836	.012349
11	0.3048	0.09290	0.07297	64.94	1.81251	0.01540
12	.2769	.07665	.06160	54.83	.73900 .60960	.01824
13	.2413	.05823 .04445	.04573 .03491	40.70 31.07	.49231	.02457 .03219
15	.1829	.03345	.02627	23.43	.36981	.04268
16 17	0.16510 .14732	0.027258	0.021409 .017046	19.054 15.171	1.27998	0.05248 .06592
18	.12446	.01 5490	.01/040	10.828	.03454	.00592
19	.10658	.011381	.00 8938	7.955	0.90065	.12571
20	.08890	.007903	.006207	5.524	.74229	.18103
21	0.08128	0.006606	0.005189	4.618	0.66445	0.2165
22	.07112	.005058	.003973	3.536 2.820	.54847	.2828
23 24	.06350 .05588	.004032 .003123	.003167 .002452	2.820 2.183	.45003 .33899	.3547 .4581
25	.05080	.002581	.002027	1.804	.25621	·5544
26	0.04572	0.0020903	0.0016418	1.4611	0.16469	0.6°44 .8662
27 28	.04064 .03556	.001651 6 .0012645	.0012972 .0009932	0.8839	.06239 1.94641	.5002 1.1313
29	.03302	0010903	.0008563	.7621	.88204	.3122
30	.03048	.0009290	.0007297	.6494	.81251	•5399
31	0.02540	0.0006452	0.0005067	0.4510	ī.65415	2.217
32	.02286	.0005226	.0004104	.3653	.56263	2.738
33	.02032 .01778	.0004129	.0003243	.2886 .2210	.46033	3.465
34 35	.01776	.0003161 .0001613	.0002483 .0001267	.1127	·34435 .05209	4.525 8.870
36	0.01016	0.0001032	0.0000811	0.0722	2.85827	13.861
-						-5-7-

CONSTANTS OF COPPER WIRE.

according to the Birmingham Wire Gauge. Metric Measure. Temperature oo C. Density 8.90.

Electrical Constants.

		Resistance and Co	nductivity.		
Ohms per Metre.	Log.	Metres per Ohm.	Ohms per Gramme.	Grammes per Ohm.	Gauge Number.
0.0001 559	4.19290	6414.	0.0000001677	5962000.	0000
.0001779	.25024	5620.	.0000002184	4578000.	000
.0002226	-34745	4493.	.0000003418	2926000.	00
.0002780	-4440 ó	3597.	.00000053333	1875000.	0
0.0003571	4-55277	2800.	0.0000008798	1137000.	1
.0003985	.60038	2510.	.0000010955	912800.	2
.0004791	.68041	2087.	.000001 5837	631400.	3
.0005674	·75386	1763.	.0000022210	450200.	4
.0006640	.82217	1 506.	.0000030420	328700.	5
0.0007799	· 4.89202	1282.2	0.000004196	238300.	6
.0009257	.99647	1080.3	.000006780	147300.	7
.0011804	3.07205	847.2	.000009615	104000.	7 8
.0014672	.16649	681.6	.000014853	67 330.	9
.0017898	.25280	558.7	.000022103	45240.	10
0.002232	3.34865	448.1	0.00003437	29100.	11
.002643	.42216	278.2	.00004822	20740.	12
.003561		378.3 280.8	.00008749	11430.	13
.004665	.55157 .66886	214.4	.00015016	6660.	14
.006185	.79135	161.7	.00026396	3789.	15
0.007607	3.88119	131.46	0.0003992	2504.9	16
.009553	.98016	104.68	.0006297	1 588.ó	17
.013385	2.12662	74.71	.0012362	808.q	18
.013385 .018219	.26052	54.80	.0022902	436.6	19
.026235	.41888	38.12	.0047489	210.6	20
0.03138	2.4967 i	31.86	0.006796	147.14	21
.04099	.61270	24.39	.011594	86.25	22
.05142	.71113	19.45	.018243	54.82	23
.06640	.82217	15.06	.030421	32.87	24
-08034	.90495	12.45	.044539	22.45	25
0.09919	2.00647	10.08	0.06789	14.731	26
.12583	1.09877	7.947	.10874	9.196	27
.16397	.21476	6.099	.18550	5.391	28
.19016	.27913	5.259	.24951	4.008	29
.22138	.34865	4.517	.34367	2.910	30
0.3214	ī.50701	3.112	0.7126	1.4032	31
.3968	.59853	2.520	1.0862	0.9206	32
.5022	.70083	1.991	1.7398	.5748	33
.6559	.81682	1.525	1.7398 2.9861	-3349	34
1.2855	0.10907	0.778	11.4020	.0877	35
2.0086	0.30289	0.498	27.8370	0.0359	36

IABLE /1.											
				(a) I	иет	ALS	•				
		Na	me of r	netal.							Tensile strength in pounds per sq. in.
Aluminium wire Brass wire, hard di Bronze, phosphor, " silicon Copper wire, hard d Gold † wire Iron,† cast " wire, hard d " " anneal	hard d drawn rawn	" ·			:						3000-40000 5000-150000 11000-140000 95000-115000 60000-70000 38000-41000 13000-29000 80000-120000 50000-60000
Lead, cast or draw Palladium † Platinum † wire Silver † wire Silver † wire Steel, mild, hard dr " hard " hard Tin, cast or drawn Zinc, cast " drawn	rawn		:	:	•						2600-3300 39000 50000 42000 100000-200000 150000-33000 4000-5000 7000-13000 22000-30000
(b) STONES AND BRICKS.											
	Name of substance.										Resistance to crushing in pounds per sq. in.
Basalt Brick, soft				:		:	•	•			18000-27000 300-1500 1500-5000 9000-26000 17000-26000 4000-9000 9000-22000 4500-8000 11000-30000
				<u> </u>		n E D					
	Nar	me of wo		(c) 1	I IMI	BER.		Ter	sile s pour	strength ds per in.	Resistance to crushing in pounds per sq. in.
Ash								111 122 100 122 100 153 80 80 113 122 200	000- 000- 000- 000- 000- 000- 000- 000	21000 18000 18000 13000 16000 25000 12000 14000 20000 16000 25000 15000 14000	6000-9000 9000-10000 5000-7000 4000-6000 6000-10000

^{*} The strength of most materials is so variable that very little is gained by simple tabulation of the results which have been obtained. A few approximate results are given for materials of common occurrence, mainly to indicate the simits between which the strength of fairly good specimens may lie. Some tables are also given indicating the relation of strength to composition in the case of alloys. It has not been thought worth while to state these results in other than the ordinary inch pound units.

† On the authority of Wertheim.

† The crushing strength of cast iron is from 5.5 to 6.5 times the tensile strength.

Notes. — According to Boys, quartz fibres have a tensile strength of between 116000 and 167000 pounds per square inch.

	Percentages of									strength†	Modulus	yield pounds.	to rupture unds + 100.	er cent.
s.	P.	Si.	C.	Mn.	Cu.	Co.	Ni.	Sb.	Strength at yield point + 100.	Ultimate stre + 100.	Young's Mod	Resilience to yield point in inch pounds	Resilience to re in inch pounds	Elongation per cent.
.004 .009 .011 .027	.014 .084 .109 .247 .029	.145 .163 .168 .216	.257 .009 .042 .036 .161	.020 .020 .051 .072	.002 .023 .028 .027 .001	.008 .021 .028 .048 trace	.010 .016 .044 .070, trace		216 252 276 322 317	379 434 481 529 534	246 260 234 243 277	9.5 12.3 17.4 24.7 18.4	106 129 119 117 151	30.9 32.6 27.5 24.9 32.0
trace .008 .056 .004 .058	.039 .034 .113 .024 .128	.084 .073 .007 .087 .013	.234 .316 .139 .447 .254	.000 .064 .165 .072 .341	.014 .008 .364 .005 .278	.036 .016 .076 .018	.057 .023 .107 .023 .065	.115	260 419 478 461 487	605 649 687 755 785	250 263 261 271 293	15.6 37.9 46.3 46.0 55.0	110 130 110 124 91	20.8 22.3 18.1 18.6 15.5
.066 .002 .008 .041 .062	.099 .022 .062 .125	.016 .123 .071 .028 .018	.326 •595 •447 •355 •390	.525 .124 .493 .404 .584	.306 .001 .007 .253 .344	.054 .007 .040 .049	.078 .006 .065 .102		549 480 484 543 565	793 828 859 880 953	255 267 284 254 259	58.0 42.7 38.2 55.9 73.7	38 151 174 49 44	5.6 21.0 22.7 6.7 5.6
.002 .002 .043 .028 .003	.020 .026 .104 .065 .031	.096 .164 .074 .028 .204	.652 .935 .756 .690 .929	.061 .099 .465 -459 .129	.030 .004 .346 .022 .007	.007 .018 .052 .000	.018 .016 .120 .000		510 557 652 516 590	955 957 1010 1022 1050	269 278 237 285 284	50.2 65.3 94.6 55.6 62.1	112 123 14 37 148	13.7 16.6 1.7 4.6 16.0
.038 .001 .000 .014	.092 .015 .019 .063	.070 .1 50 .192 .043	.387 .971 1.105 .681	.625 .074 .226 .625	.210 .003 .001 .038	.050 .003 .002 .000	.115 .015 .004 .000		631 555 668 614	1112 1171 1254 1288	279 262 272 260	83.2 65.6 82.7 82.2	135 99 93 108	13.7 9.9 9.0 9.9
				·s	TEEL	CONTA	INING	Снко	MIUM.					
trace .001 trace —	.020 .019 .007 —	.116 .136 .154 —	.461 .454 .639 .600 1.100	.027 .023 .050	trace .000 .008 —	.000 .000 trace —		Cr.	370 495 500 675 1770	810 915 967 1030 1778	275 287 281 —	28.3 44.8 56.1	110 157 25 —	15.6 19.1 3.5 19.9 7.5
				s	TEEL	CONTA	INING	Tung	STEN.					
Same	after	.09 .05 heatin	1.99 2.06 ig to di 1.20		6.73 and q	" " uenchi	t tungs ng in o t tungs	il .		1464 760 940 19 0 0	<u>-</u>			0.0 0.0 0.0 0.75
				Sı	TREL C	ONTAI	ning l	MANGA	NESE.					
.06	.08	-37	.72	9.8		test ther te	 st	: :	_	1065 1190	=	=	=	22.0 28.9

The samples here given are arranged in the order of ultimate strength. The table illustrates the great complexity of the problem of determining the effect of any given substance on the physical properties. It will be noticed that the specimens containing moderately large amounts of copper are low in ductility, — that high carbon or high sum of carbon and manganese generally gives high strength. The first specimen seems to indicate a weakening effect of silicon when a moderate amount of carbon is present. It has to be remembered that no table of this kind proves much unless nearly the same amount of work has been spent on the different specimens in the process of manufacture. Most of the lines give averages of a number of tests of similar steels. The table has been largely compiled from the Report of the Board on Testing Iron and Steel, Washington, 1881, and from results quoted in Howe's "Metallurgy of Steel."

1 The strengths and elasticity data here given refer to har or plate of moderate thickness and are in youndeness.

of Steel."

† The strengths and elasticity data here given refer to bar or plate of moderate thickness, and are in pounds per square inch. Mild steel wire generally ranges in strength between 100000 and 200000 pounds per square inch, with an elongation of from 8 to 4 per cent. Thoroughly annealed wire does not differ greatly in strength from the data given in the table unless it has been subjected to special treatment for the purpose of producing high density and fine-grained structure. Drawing or stretching and subsequent rest tend to increase the Young's Modulus.

TABLE 73.

ELASTICITY AND STRENGTH OF IRON.*

Area of cross section of the bar in percentage of the area of the cross section of the pile.	Relative values of ultimate strength.	Relative values of the stress at the yield point.	_
1 2 3 4 5 7	125 112 106 104 103 101 100 98	194 170 144 140 130 114	The variation of the yield point is not regular, and seems to have been much affected by the temperature of rolling.

TABLE 74.

APPROXIMATE VARIATION OF THE STRENGTH OF BAR IRON, WITH VARIATION OF SECTION.

Diameter in inches.	Strength per sq. in, in pounds.	Total strength of bar.	Diameter · in inches.	Strength per sq. in. in pounds.	Total strength of bar.
2.2	59000	224000	1.1	54300	52000
2. I	58500	203000	1.0	54000	42000
2.0	58000	182000	0.9	53700	34000
1.9	57600	163000	0.8	53300	27000
1.9 1.8	57100	145000	0.7	• 53000	20000
1.7	56700	129000	0.6	52700	14900
i.6	56300	113000	0.5	52400	10300
1.5	55900	99000	0.4	52100	6600
1.4	55500	85000	0.3	51900	3700
1.3	55100	73000	0.2	51600	1600
1.2	54700	62000	0.1	51300	400

^{*} This table was computed from the results published in the Report of the U. S. Board on Testing Iron and Steel, Washington, 1881, and shows approximately the relative effect of different amounts of reduction of section from the pile to the rolled bar. A reduction of the pile to 10 per cent of its original volume is taken as giving a strength of 100, and the others are expressed in the same units.

NOTES. — The stress at the yield point averages about 60 per cent of the ultimate strength, and generally lies between 50 and 70 per cent. The variation depends largely on the temperature of rolling if the iron be otherwise fairly

According to the experiments of the U. S. Board for Testing Iron and Steel, above referred to, a bar of iron which has been subject to tensile stress up to its limit of strength gains from 10 to 20 per cent in strength if allowed to rest free from stress for eight days or more before breaking. The effect of stretching and subsequent rest in raising the elastic limit and tensile strength was discovered by Wöhler, and has been investigated by Bauschinger, who shows that the modulus of elasticity is also raised after rest. The strengthening effect of stretching with rest, or continuous very slowly increased loading, has been rediscovered by a number of experimenters.

[†] The strength of bar fron may be taken as ranging from 15 per cent above to 15 per cent below the numbers here given, which represent the average of a large number of tests taken from various sources.

EFFECT OF RELATIVE COMPOSITION ON THE STRENGTH OF ALLOYS OF COPPER, TIN, AND ZINC.*

TABLE 75. — Copper-Tin Alloys. (Bronses.)

TABLE 76. -- Copper-Eine Alloys. (Brasses.

Percentage of copper.	Percentage of tin.	Crushing + strength.		Percentage elongation.	Percentage compression.	
100	o o	28000	14000	42000	8.	44
95	5	31000	17000	46000	10.	41
90	10	29000	21000	54000	4.	31
85	15	33000	26000	74000	1.6	24
8 0	20	32000	28000	124000	0.5	14
75	25	18000	18000	1 50000	0.0	8
70	30	6500	6500	143000	0.0	2
65	35	2800	280 0	75000	0.0	4

Percentage of copper.	Percentage of zinc.	Tensile strength.	y ber squa	Crushing tarength.	Percentage elongation,
100 95 90 85 80 75 70 65 60 45	0 5 10 15 20 25 30 35 40 45 50 55	27000 28000 30000 32000 34000 37000 41000 46000 49000 44000 30000 14000	14000 12000 10000 9000 8000 9000 10000 13000 17000 20000 24000 14000	41000 28000 29000 33000 39000 46000 54000 63000 74000 90000 116000 126000	7 12 18 25 338 38 33 19 10 4

TABLE 77. - Copper-Zinc-Tin Alloys.§

	Percentage of		Tensile strength		Tensile strength		
Copper.	Zinc.	Tin.	in pounds per sq. in.	Copper.	Zinc.	Tin.	in pounds per sq. in.
45 50 50 55 60	50 45 40 43 40 35 30 37 35 30 20 25	5 5 10 2 5 10 15 3 5 10 20 5 10	15000 50000 15000 65000 62000 32500 15000 60000 52500 40000 10000 50000 42000 30000	70 75 80 85	25 20 15 10 5 20 15 10 5 15 10 5 15 10	5 10 15 20 25 5 10 15 20 5 10	45000 44000 37000 30000 24000 45000 45000 45000 45000 47500 47500 46500
	15	20 25	18000 12000	90	5 .	5	42000

[•] These tables were compiled from the results published by the U. S. Board on Testing of Metals. The numbers refer to unwrought castings, and are subject to large variations for individual specimens.

[†] The crushing strengths here given correspond to 10 per cent compression for those cases where the total compression exceeds that amount.

[‡] For crushing strength, 10 per cent compression was taken as standard.

[§] This table covers the range of triple combinations of these three metals which contain alloys of useful strength and moderate ductility. The weaker cases here given, and those lying outside the range here taken, are generally weak and brittle. The absolute strength may of course be varied by the method of fusing and casting, and certainly can be greatly increased by working. The object of the table is to show relative values, and to give an idea of the strength of sound castings of these alloys.

TABLE 78.

ELASTIC MODULI.

Rigidity Modulus.*

	Modulus	of Rigidity.	
Substance.	Pounds per square inch	Grammes per square centimetre : 105.	Authority.
Metals:— Aluminium Brass and Bronze wire Copper, drawn "" German silver "" "" Iron, soft "" drawn Platinum "" Silver "" "" "" Steel, cast "" Tin Zinc "" Glay rock Granite Marble	3.4-4.8 4.6-5.8 5.6-6.7 5.0 6.2 7.1 5.6 4.0 9.4 3.8 3.6 3.8 10.6 11.8 2.2 5.1 5.4 3.3 3.9	241-335 320-410 393-473 352 432 496 395 281 671 700-800 622 663 270 255 746 829 154 360 382 235 273	Thomson†-Katzenelsohn. Various. Thomson.† Katzenelsohn. Gray. Katzenelsohn. Thomson.† Wertheim. Various. Thomson.† Pisati. Baumeister. Wertheim. Pisati. Kiewiet. Thomson.† Kiewiet. Wertheim. Kowalski. Gray &
Slate	3.2 1.5 .117	229 102 7–12	Milne. Gray.

^{*} The modulus of rigidity as used in this table may be shortly defined by the following equation: -

 $\label{eq:Modulus} \begin{tabular}{ll} Modulus of rigidity &= & Intensity of tangential stress. \\ \hline Distortion in radians. \\ \end{tabular}$

To interpret the equation imagine a cube of the material, to four consecutive faces of which a tangential stress of uniform intensity is applied, the direction of the stress being opposite on adjacent faces. The modulus of rigidity is the number obtained by dividing the numerical value of the tangential stress per unit of area by the number representing the change of the angles on the nonstressed faces of the cube measured in radians.

† Lord Kelvin.

ELASTIC MODULI.

Young's Modulus.*

	Young's	Modulus.	
Substance.	Pounds per square inch ÷ 10 ⁸ .	Grammes per square centimetre ; 108.	Authority.
Metals: —			
Brass and bronze, cast	8.6-10	600-700	Various.
Brass, drawn	14-17	1000-1200	64
Copper, drawn	16-18	1150-1250	4
annealed	15	1052	Wertheim.
German silver, drawn	17-20	1209-1400	Various.
Gold, drawn	12-14	813-980	4
" annealed	18	558	Wertheim.
Iron, cast	8–17†	550-I 200	Various.
_ " wrought	24-30	1700-2100	"
Iron wire	" "	"	"
Lead, cast or drawn	2.2-2.9	1 56-200	••
Palladium, soft	14	979	Wertheim.
4 hard	17	1176	4
Platinum, drawn	23-26	1600-1700	Various.
soft	22	1552	Wertheim.
Silver, drawn	10-10.7	700-750	Various.
Steel	23-30‡	1600-2100	"
	27-30	1900-2100	Various.
Tin	16	417	Wertheim.
	12-14	870–960	Various.
Bone abt.	2.3	160	Pasta
	2.2-3.6 8.6-11.4	151-255	Beetz. Various.
7		600-800	various.
Stone: —	7-10	500-700	
Clay rock	1 49	220	1
Comite	4-7 5-9	329 416	Gray
Morble		400	l Gray
Slate	5-7 9-8	686	Milne.
Tuff	2.7	180	
Whalebone abt.	0.85	66	' _
Wood	1.0-2.2	70-154	Various.

^{*} The Young's Modulus of elasticity is used in connection with elongated bars or wires of elastic material. It is the ratio of the number representing the longitudinal stress per unit of area of transverse section to the number representing the elongation per unit of length produced by the stress, or: —

Young's Modulus — Intensity of longitudinal stress.

Elongation per unit length.

In the case of an isotropic substance the Young's Modulus is related to the elasticity of form (or rigidity modulus) and the elasticity of volume (or bulk modulus) in the manner indicated in the following equation:—

$$E = \frac{9\pi k}{1 k + \pi}$$

where E is Young's Modulus, n the rigidity modulus and k the bulk modulus.

The bulk modulus is the ratio of the number expressing the intensity of a uniform normal stress applied all over the bounding surface of a body (solid, liquid or gas) to the number expressing the change of volume, per unit volume, produced by the stress.

- † The modulus for cast iron varies greatly, not only for different specimens, but in the same specimen for different intensities of stress. It is diminished for tension stress by permanent elongation.
 - \$ See also Table 72.

TABLES 80, 81.

ELASTIC MODULI.

TABLE 80. — Variation of the Rigidity of Metals with Temperature.*

The modulus of rigidity at temperature t is given by the equation $n_t = n_0 (t + at + \beta t^0 + \gamma t^0)$.

N	letal.	•		n _o	•	β	γ	Authority.
Brass		•	•	320 × 10 ⁸ 265 × 10 ⁹	000455	00000136 0000048	_	K. & L. Pisati.
Copper	:	:	:	397 × 106	002158 002716	+.00000023	0000000032 0000000047	**
Iron	:	:	:	390 X 10 ⁶ 694 X 10 ⁶	000572 000483	00000028 00000012	=	K. & L.
" Platinum		•	•	811 × 10 ⁶	000206 000111	61000000° —	1100000000.+	Pisati.
Silver	٠.	:	:	257 × 106	000387	00000038	—·0000000011	"
Steel	•	•	•	829 × 10 ⁸	000187	00000059	+.00000000009	66

TABLE 81. — Ratio ρ of Transverse Contraction to Longitudinal Extension under Tensile Stress (Poisson's Ratio).

					(Fullson						
Nan	ne of su	ibstanc	œ.		Range value	of the of p.	Mean of each range.		Final mean.		Authority.
Brass "" "" Copper Iron "" "" Lead Steel, hard "" "" "" "" "" Lead Ivory Paramin Cork Caoutchouc Jelly					0.340- 	-0.441 -0.441 -0.420 -0.268 -0.295 -0.328 -0.303 	0.469 0.420 0.387 0.325 0.315 0.226 0.348 0.332 0.310 0.253 0.375 0.294 0.294 0.306 0.253 0.333 0.205 about		0.357 0.340 0.277 0.375 0.295 0.299 0.205 0.500 0.500 0.502 0.502	Bau Kir. Mal Wee Litt Mal Bau Litt Mal Kir. Oka Sch Oka Sch Mal Goo Mal	rett. Imeister. Ichhoff. Ilock. Itheim. Imann. Ilock. Imann. Ilock. Imeister. Imann. Ilock. Imann. Ilock. Inchhoff. Itheim. Ilock. Itheim. Ilock. Itheim. Ilock. Itheim. Ilock. Itheim. Ilock.
Katzenelsohr	gives	the fol			ogether wi	th the pe	rcentage var	iatio			<u> </u>
			Su	bstance.						· 	8
Aluminium Brass . German silv Gold . Iron . Platinum Silver .	er	• • •		:				•	0. 0. 0.	17 27 16	15.7 3-9 3-4 2.5 3-7 5-5

^{*} According to the experiments of Kohlrausch and Loomis (Pogg. Ann. vol. 141), and of Pisati (N. Cim. (3) vols. 4, 5).

76

ELASTICITY OF CRYSTALS.*

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols $\alpha \beta \gamma, \alpha_1 \beta_1 \gamma_1$ and $\alpha_2 \beta_2 \gamma_2$ represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grammes per square centimetre.

Barite.
$$\frac{10^{10}}{E} = 16.13a^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.75\beta^5\gamma^3 + 15.21\gamma^2a^2 + 8.88a^2\beta^3)$$

$$\frac{10^{10}}{T} = 69.52a^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.29\gamma^2a^2 + 127.35a^2\beta^3)$$
Beryl (Emerald).
$$\frac{10^{10}}{E} = 4.325\sin^4\phi + 4.619\cos^4\phi + 13.328\sin^2\phi\cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675\cos^4\phi_3 - 17.536\cos^2\phi\cos^2\phi$$
where $\phi \phi_1 \phi_2$ are the angles which the length, breadth, and thickness of the specimen make with the principal axis of the crystal.

Fluor spar.
$$\frac{10^{11}}{E} = 13.05 - 6.26(a^4 + \beta^1 + \gamma^4)$$

$$\frac{10^{11}}{T} = 58.04 - 50.08(\beta^2\gamma^2 + \gamma^2a^3 + a^2\beta^3)$$
Pyrites.
$$\frac{10^{10}}{E} = 5.08 - 2.24(a^4 + \beta^1 + \gamma^4)$$

$$\frac{10^{11}}{T} = 18.60 - 17.95(\beta^2\gamma^2 + \gamma^2a^2 + a^2\beta^2)$$
Rock salt.
$$\frac{10^{10}}{T} = 154.58 - 77.28(\beta^2\gamma^2 + \gamma^2a^2 + a^2\beta^2)$$
Sylvine.
$$\frac{10^{10}}{T} = 306.0 - 192.8(\beta^3\gamma^2 + \gamma^2a^2 + a^2\beta^3)$$
Topaz
$$\frac{10^{10}}{E} = 4.341a^4 + 3.466\beta^4 + 3.771\gamma^4 + 2(3.879\beta^2\gamma^2 + 28.56\gamma^2a^2 + 2.39a^2\beta^2)$$

$$\frac{10^{10}}{T} = 14.88a^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2a^2 + 43.51a^2\beta^2$$
Quartz.
$$\frac{10^{11}}{E} = 12.734(1 - \gamma^2)^2 + 16.693(1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.466\beta\gamma(3a^3 - \beta^2)$$

$$\frac{10^{10}}{T} = 19.665 + 9.060\gamma 3^2 + 22.984\gamma^2\gamma 3^2 - 16.920[(\gamma\beta + \beta\gamma_1)(3aa_1 - \beta\beta_1) - \beta_2\gamma_2)]$$

^{*} These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated.

			==					===		===
			(a) REGULAR	R System.*	•				
Subst	ance.	E _a		E,	E,		T,		At	thority.
Fluor spar Pyrites . Rock salt " Sylvine . Sodium ch Potash alu Chrome al Iron alum	loride .	1473 × 1 3530 × 1 416 × 1 403 × 1 401 × 1 372 × 1 405 × 1 181 × 1 186 × 1	రీ రీ రీ రీ రీ రీ రీ రీ	1008 × 10/ 2530 × 10/ 346 × 10/ 339 × 10/ 209 × 10/ 196 × 10/ 319 × 10/ 177 × 10/	2310 × 311 × 5 6 7 8 8 8 8	106	345 > 1075 > 129 > 655 >	< 10 ⁶ < 10 ⁶	Voig Koch Voig Koch Beck	1-‡ t.
			(6) Кномвіс	System.			•		
Substance.	E,	E,		E ₈	E,		E ₅	F	E ₆	Authority.
Barite . Topaz .	620 × 10 ⁶ 2304 × 10 ⁶			959 × 10 ⁶ 2652 × 10 ⁶			02 × 10 ⁶ 03 × 10 ⁶		× 10 ⁶	Voigt.
	Substance.		Т	T1 = T21	$T_{1.5} = T_{3}$	1	T28=	- T _{3 2}	A	uthority.
Barite . Topaz .	::::	:::		283 × 10 ⁶ 336 × 10 ⁶	293 × 1 1353 × 1			× 10 ⁶	V	igt.

In the MONOCLINIC SYSTEM, Coromilas (Zeit. für Kryst. vol. 1) gives

$$\begin{aligned} & \text{Gypsum} \left\{ \begin{aligned} & \text{E}_{\text{max}} = 887 \times 10^6 \text{ at } 21.9^{\circ} \text{ to the principal axis.} \\ & \text{E}_{\text{min}} = 313 \times 10^6 \text{ at } 75.4^{\circ} & \text{``} & \text{``} \end{aligned} \right. \\ & \text{Mica} \quad \left\{ \begin{aligned} & \text{E}_{\text{max}} = 2213 \times 10^6 \text{ in the principal axis.} \\ & \text{E}_{\text{min}} = 1554 \times 10^6 \text{ at } 45^{\circ} \text{ to the principal axis.} \end{aligned} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
, $E_{45} = 1706 \times 10^6$, $E_{90} = 2312 \times 10^6$

 $\begin{array}{lll} E_0=2165\times 10^6, & E_{45}=1796\times 10^6, & E_{90}=2312\times 10^6, \\ T_0=667\times 10^6, & T_{90}=883\times 10^6. & \text{The smallest cross dimension of the} \end{array}$ prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRIC System, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
, $E_{-45} = 1305 \times 10^6$, $E_{+45} = 850 \times 10^6$, $E_{00} = 785 \times 10^6$,

 $T_0 = 508 \times 10^6$, $T_{90} = 348 \times 10^6$.

Baumgarten ¶ gives for calcspar

$$E_0 = 501 \times 10^6$$
, $E_{-45} = 441 \times 10^6$, $E_{+45} = 772 \times 10^6$, $E_{90} = 790 \times 10^6$.

<sup>In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.
† Voigt, "Wied. Ann." vol. 31, 34-35.
† Koch, "Wied. Ann." vol. 18.
§ Beckenkamp, "Zeit. für Kryst." vol. 10.
§ The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress are in the three principal planes at angles of 45° to the corresponding axes.
¶ Baumgarten, "Pogg. Ann." vol. 152.</sup>

COMPRESSIBILITY OF CASES.*

These tables give the relative values of the product for different pressures and temperatures, and hence show the departure from Boyle's law. The pressures are in metres of mercury, or in atmospheres, the volume being arbitrary. The temperatures are in centigrade degrees.

TABLE 84. - Mitrogen.

Pressure in	Relative values of pv at								
metres of mercury.	170.7	30°.1	50°.4	75°-5	1000.1				
30 60	2745	2875	3080	3330	3575				
100	2740 2700	2875	3100	3360 3445	3610 3695				
140	2890	3040	3275	3550	3820				
180	3015	3150	3390	3675	3950				
230	3140	3285	3530	3820	4090				
260	3290	3440	3685	3975	4240				
300	3450	3600	3840	4130	4400				
320	3525	3675	3915	4210	4475				

TABLE 85. — Hydrogen.

Pressure in	Relative values of pv at —								
metres of mercury.	170.7	40°.4	60°.4	810.1	100°.1				
30 60 100 140 180 220 260 300 320	2830 2885 2985 3080 3185 3290 3400 3500 3550	3045 3110 3200 3300 3420 3520 3625 3730 3780	3 ² 35 3 ² 95 3 ⁴ 00 3500 36 ² 0 37 ² 5 3 ⁸ 30 3935 3990	3430 3500 3620 3710 3830 3930 4040 4140 4200	3610 3680 3780 3880 4010 4110 4220 4325 4385				

TABLE 86. - Mothane.

Pressure in	Relative values of pv at -									
metres of mercury.	140.7	29°-5	40°.6	60°.1	79°.8	1000.1				
30 60 100 140 180 220	2580 2400 2275 2260 2360 2510	2745 2590 2480 2480 2560 2690	2880 2735 2640 2655 2730 2840	3100 2995 2935 2940 3015 3125	- 3230 3180 3190 3260 3360	- 3460 3435 3460 3525 3625				

TABLE 87. — Bthylene.

Pressure in										
metres of mercury.	16°.3	20°.3	30°. I	40°.0	50 ⁰ .0	60°.0	70°.0	79 ⁰ -9	89°.9	1000.0
30 60	1950	2055 900	2220 1190	2410 1535	2580 1875	2715	2865 2310	2970 2500	3090 2680	3 ²²
90	1065	1115	1195	1325	1510	1710	1930	2160	2375	2569
120	1325	1370	1440	1540	1660	1780	1950	2115	2305	2470
150	1 590	1625	1690	1785	1880	1990	2125	2250	2390	2540
150 180	1855	189ŏ	1945	2035	2130	2225	234Ö	2450	2565	2700
210	2110	2145	2200	2285	2375	2470	2570	2680	2790	2910
240	2360	2395	2450	2540	2625	2720	2810	2910	3015	312
270	2610	2640	2710	2790	2875	2965	3060	3150	3240	334
300	2860	2890	2960	3040	3125	3215	3300	3380	3470	3560
320	3035	3065	3125	3200	3285	3375	3470	3545	3625	3710

^{*} Tables 84-89 are from the experiments of Amagat; "Ann. de chim. et de phys.," 1881, or "Wied. Bieb.," 1884,

COMPRESSIBILITY OF CASES.

TABLE 88. — Carbon Dioxide.

Pressure in	Relative values of fro at											
metres of mercury.	180.2	35°.1	40 ⁷ -2	50°.0	60°.0	70 °.0	60`.0	90°.0	100°-0			
30	liquid	2360	2460	2590	2730	2870	2995	3120	3225			
	-	1725	1900	2145	2330	2525	2685	2845	2980			
50 80	625	750	825	1200	1650	1975	2225	2440	2635			
110	825	930	980	1090	1275	1550	1845.	2105	2325			
140	1020	1120	1175	1250	1360	1525	1715	1950	2160			
170	1210	1310	1 360	1430	1520	1645	178ō	1975	2135			
200	1405	1 500	1550	1615	1705	1810	1930	2075	2215			
230	1590	1690	1730	1800	1890	1990	2090	2210	2340			
260	1770	1870	1920	1985	207 0	2166	2265	2375	2490			
290	1950	2060	2100	2170	2260	2340	2440	2550	2655			
320	2135	2240	2280	2360	2440	2525	2620	2725	2830			

TABLE 89. — Carbon Dioxide.*

Pressure in	Value of the ratio pv/p_1v_1 at —									
atmospheres.	50°	1000	200°	250 ⁰						
0.725	1.0037	1.0021	1.0009	1.0003						
1.440 2.850	1.0075	1.0048	1.0025	1.0015						
2.850	1.1045	1.0087	1.0040	1.0020						

TABLE 90. - Air, Oxygen, and Carbon Monoxide at Temperature between 18° and 22°.

The pressure p is in metres of mercury; the product pv is simply relative.

A	ir.	Оху	gen.	Carbon monoxide.		
þ	þυ	Þ	þυ	Þ	po	
24 07	26968	24.07	26843 26614	24.06	27147	
34.90 45.24	26908 26791	34.89	- `	34.91 45.25	27102 27007	
55.30	26789	55.50	26185 26050	55.52	27025	
64.00 72.16	26778 26792	64.07 72.15	25858	64.00 72.17	27060 2707 I	
84.22	26840	84.19	25745	84.21	27158	
133.89	27041 27008	133.88	25639 25671	101.48	24420 2809 2	
177.00	28540	177.58	25891	177.61	29217	
214.54	29585	214.52	26536	214.54 250.18	30467 31722	
250.18 304.04	3057.2 32488	303.03	28756	304.05	33919	

Similar experiments made on air showed the ratio ρυ/ρ₁υ₁ to be practically constant,
 Amagat, "Compte Rendu," 1879.

RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.*

TABLE 91. - Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in nos.	Correspon perimen	ding Volunts at Tempe	ne for Ex-	Volume.	Pressure Experime	in Atmosphents at Temp	heres for erature —
Pressure Atmos.	58°.0	99 ⁰ .6	183°.2	volume.	58°.0	99°.6	183°.2
10 12 14 16 18 20 24 28 32 36 40 50 60 70 80 90 100 140	8560 6360 4040 - - - - - - - - - - - - - -	9440 7800 6420 5310 4405 4030 3345 2780 2305 1935 1450 - - -	- - - - - 3180 2640 2260 2040 1640 1375 1130 930 790 680 545	10000 9000 8000 7000 6000 5000 4000 3500 3000 2500 2000 1 500	9.60 10.40 11.55 12.30 13.15 14.00 14.40	9.60 10-35 11-85 13-05 14-70 16-70 20-15 23-00 26-40 30-15 35-20 39-60	- - - - - - 29.10 33.25 40.95 55.20 76.00
160		_	325	500	-	_	117.20

TABLE 92. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

ure in		ding Volunts at Tempe		Volume.	Pressure	in Atmosph at Tempe	eres for Experature —	eriments
Pressure Atmos.	46°.6	99 ⁷ .6	183°.6	volume.	30 ⁰ .2	46°.6	99°.6	183°.0
10	9500	-	_	10000	8.85	9.50		_
12.5	7245	7635	-	9000	9.60	10.45		-
15,	5880	6305	.0	8000	10.40	11.50	12.00	_
20 25	_	4645 3560	4875 3835	7000	11.05	13.00	13.60	_
30	_	2875	3185	6000	11.80	14.75	15.55	_
35	-	2440	2680	5000	12.00	16.60	18.60	19.50
40	-	2080	2345	4000	_	18.35	22.70	24.00
45 50	_	1795	2035 1775	3500	_	18.30	25.40	27.20
55	_	1250	1590	3000	_		29.20	31.50
55 60	-	975	1450	2500	_	_	34.25	37.35
70 80	-	-	1245	2000	_	_	41.45	45.50
80 90	_	_	1125	1500	_	_	49.70	58.00
100	_		950	1000	_	_	59.65	93.60

[•] From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

TABLE 93.

COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

		ssion vol- atmo.	pres-		Calculated bulk mod	d values of dulus in —
Liquid.	Temp. C.	Con pression per unit vol- ume per atmo. X 10 ⁶ .	Pressure or range of pressure in at- mospheres.	Authority.	Grammes per sq. cm.	Pounds per sq. in.
Acetone	14	110	8.7-35.4	Amagat	94 × 105	1.34 × 10 ⁵
denzene	15.4	90 87.1	8.12-37.2 1-4	Pagliani & Palazzo	115 "	1.64 "
"	50.1	111	1-4	"	93 "	1.32 "
Carbon bisulphide	ō	78		Colladon & Sturm	133 "	1.89 "
" "	15	62.6	-	Quincke	165 "	2.35 "
" "	15.6	87.2 174	8-35 8-35	Amagat	119 " 59 "	1.69 " 1.84 "
Chloroform	8.5	62.5	1.267	Grassi	165 "	2.35 "
"	9.2	62.6	4.247	"	165 "	2.35 "
. "	12	64.8	1.309		159 "	2.26 "
Ether	13	168	8-30	Amagat	61 " 18.6 "	0.87 "
"	99 99	555 523	8.6-13.5 8.6-36.5	"	19.8 "	0.28 "
"	99 63	300	8.57-22.29	"	34.4 "	0.49 "
"	63	293	8.57-34.33	"	35.3 "	0.50 "
W	25.4	190	8.46-34.22	C-11-1 9 Chi-	54.4 "	0.77 "
Ethyl alcohol	10 12	94.5	1-2	Colladon & Sturm	109	1.55
4 4	14	73-3 101	1–456 8.5–37.12	Amagat	140 " 102 "	2.00 " 1.45 "
""	28	86	150-200	Barus	120 "	1.71 "
" "	28	81	1 50-400	"	127 "	1.81 "
""	65	110	1 50-200	"	94 "	1.34 "
" " • • •	65 100	168	150-400	"	103	1.47
" "	100	132	1 50-200 1 50-400		61 " 78 "	0.87 "
""	185	320	150-200	"	32 "	0.46 "
" "	185	274	150-300	"	38 "	0.54 "
	185	245	150-400		42 "	0.60 "
	310	4200 2200	150-200		2.5	0.036 "
" "	310 310	1530	1 50-300 1 50-400	"	4.7 " 6.7 "	0.067 "
Ethyl chloride	12.8	156	8.53-13.9	Amagat	66.3 "	0.94 "
" "	12.8	151	8.53-36.45	"	68.5 "	0.97 "
	61.5	256	12.65-34.36	"	40.3 "	0.57 "
	99	510	12.79-19.63		20.3	0.29
Glycerine	99 20.53	495 25.1	12.79-34.47	Ouincke	20.9 " 411.2 "	0.30 " 5.85 "
Mercury	0	3.38	1-30	Colladon & Sturm	3058.o "	43.5 "
"	0	3.92	_	Amagat	2629.0 "	37-4 "
Methyl alcohol	13.5	90.4	1.012	Grassi	114.5 "	1.63 "
	13.5	91.1	7.513 8.68-22.22	- • • • •	113.1	1.61 "
Nitric acid	20.3	221 338.5	8.68-37.32 1-32	Amagat	046.3 " 030.2 "	0.43 "
Oils: Almond	17	55.19		Quincke	187.7 "	2.67 "
Olive	20.5	63.32		"	163.0 "	2.32 "
Paraffine .	14.84	62.69		De Metz	164.5 "	2.34 "
Petroleum . Rock	16.5	69.58		Martini	140.3	2.11
Rock	19.4 20.3	74.58 59.61	_	Quincke	138.4 "	1.97 " 2.48 "
Turpentine.	19.7	79.14	_	"	130.7 "	1.86 "
Sulphur dioxide .	0	302.5	1-16	Colladon & Sturm	034.4 "	0.49 "
Toluene	10	70	_	De Heen	1 30.7 "	1.86 "
Xylene	10	73.8	_	*	140.0 "	1.99 "
·						

TABLE 93. COMPRESSIBILITY AND BULK MODULI OF LIQUIDS.

		T	ssion vol- atmo.	pres-		Calculated bulk mode	
Liqu	id.	Temp. C.	Compression per unit volume per atmo	Pressure or range of pressure in atmospheres.	Authority.	Grammes per sq. cm.	Pounds per sq. in.
Water	y sea	12 0 17.6 0 10 20 30 40 50	44* 47* 49.65 42.9 50.3 47.0 44.5 42.5 40.9 39.7 38.9	I I-24 I-262 I-5 I-5 I-5 I-5 I-5	Tait	234.8 × 10 ⁵ 220.0 " 208.0 " 241.1 " 206.0 " 220.0 " 232.0 " 243.2 " 253.1 " 265.0 "	3.34 × 10 ⁵ 3.13 " 2.96 " 3.43 " 2.93 " 3.30 " 3.46 " 3.46 " 3.70 " 3.77 "
44 44 44	"	70 80 90 100	39.6 39.6 40.2 41.0	1-5 1-5 1-5	44 44	264.3 " 260.8 " 257.3 " 252.4 "	3.76 " 3.71 " 3.66 " 3.59 "

TABLE 94. COMPRESSIBILITY AND BULK MODUL! OF SOLIDS.

- ***	ssion vol-		Calculated values of bulk modulus in —		
Solid.	Compres per unit ume per X 10.	Authority.	Grammes Pound per sq. cm.		
Crystals: Barite	1.93 0.747 1.20 1.14 2.67 4.2† 7.45† 0.61 0.113 0.95	Voigt	535 × 10 ⁶ 1384 " 860 " 906 " 387 " 246 " 138 " 1694 " 9140 " 1202 "	7.61 × 10 ⁶ 19.68 " 12.24 " 12.89 " 5.50 " 3.50 " 1.97 " 24.11 " 130.10 "	
Delta metal	1.02 2.76 0.68 2,2-2.9	Amagat .	374 " 1518 " 405 "	14.41 " 5.32 " 21.61 " 5.76 "	

Tait finds for fresh water the value .0072 (1 — 0.034 p) and for sea water .00666 (1 — 0.034 p) where p is the pressure in tons per square inch. The range of variation of p was from 1 to 3 tons.
 † Röntgen and Schneider by piezometric experiments obtained 5.0 × 10-6 for rock salt and 5.6 × 10-6 for sylvine

⁽Wied. Ann., vol. 31).

TABLE 95.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS
PER CUBIC FOOT OF VARIOUS SOLIDS.*

Substance. Grammes Pounds Foot Coulimetre. Pounds Coulimetre. Pounds Coulimetre. Pounds P			COBIC		F VARIOUS SULID		
Alabaster:	Substance.		per cubic	per cubic	Substance.	per cubic	per cubic
Carbonate 2.69-2.78 168-173 Common 2.4-2.8 150-175		•	2.5-2.7	1 -		1.88	119
Sulphate 2.26-2.32			2.69-2.78	168-173		2.4-2.8	150-175
Alum, potash 1.7 1.06 1.1 1.06 1.1 1.06 1.1 1.06 1.1 1.06 1.1 1.06 1.1 1.07			2.26-2.32		Flint		180-280
Amber 1.66-1.11 66-69 Glue 1.27 80 Anthractic 1.4-1.8 Apalitic 3.16-3.22 197-201 187 Arsponite 3.0	Alum, potash .		1.7	106	Glauber's salt		87-93
Apatite 3.16-3.22 197-201 187 360-358 187 350-358 187 350-358 187 350-358 129-175 120-140		•					8o
Arsenic		•					150-168
Arsenic 57-5.72 356-358 Grave 1.2-1.75 375-358 Asphaltum 1.1-1.2 123-175 69-75 Barite 4.75 4.75 329-30 180-185 Basalt 2.7-3.1 168-193 60-61 17-2.0 60-61 17-1.8 106-112 106-125	Apatite	•					
Asbestos 20-2-8 725-175 Green stone 2-9-30 180-185 Resawax 0.96-0.97 Bole 2-2-2.5 137-156 Bone 1.7-2.0 Bone 1.7-2.0 106-125 Borax 1.7-1.8 Borax 1.7-1.8 Borax 1.7-1.8 Borax glass 2.6 162-175 Butter 0.86-0.87 181-187 Borax glass 2.6 162-137 Butter 0.86-0.87 157-180 Butter 0.86-0.87 175-180 Butter 0.86-0.87 175-180 Butter 0.86-0.87 175-180 Butter 0.88-0.91 157-180 Butter 0.88-0.91 158-180 Butter 0.88-0.91 158-180 Butter 0.88-0.91 158-180 Butter 0.88-0.91 158-180 Butter	Aragonite	•					
Asphaltum		•		350-350			
Barite 4-5		:					
Basalt 2,7-3.1 168-193 Gunpowder: Loose 0.9 56		•		281			80-85
Beeswax 0.96-0.97 60-61 137-156 130-155 130-				168-193		1 3 1 7	
Bole		•	0.96-0.97	60-61	Loose		56
Bone 1,7-2.0 Boracite 2.9-3.0 Borax 1.7-1.8 106-125 Borax 1.7-1.8 106-112 Ce 0.88-0.01 Sporms glass 2.6 167-168 Brick 2.0-2.2 167-168 Lava			2.2-2.5	137-156	Tamped	1.75	109
Borax glass 2.6 162 167 168 16		•				1.81	
Borax glass 2.6 162 167 168 16		•				3.0	
Boron 2.68-2.69 167-168 Ivory 1.83-1.92 114-120 137 Brick 2.0-2.2 137 Standard Standar		•					55-57
Brick 2.0-2.2 0.86-0.87 5.3-54 Lava 2.2-2.2 137 Calcamine 4.1-4.5 2.5-280 162-175 Calcaspar 2.6-2.8 Calcaspa		•					309
Butter					Kaolin		
Calamine 4.1-4.5 255-280 Basaltic 2.8-3.0 175-185 Carbon. See Graphite, etc. Caoutchouc 0.92-0.99 57-62 Leather: 2.4 150 Celestine 3.9 243 Line: 1.02 64 Pulverized loose Pressed 1.85 115 175-17 72-105 Mortar 1.65-1.78 103-111 Set 2.7-3.0 168-187 Lime: 1.03-114 81-87 114-200 Cetin 0.88-0.94 55-59 Lime: 1.04-2.86 154-178 168-187 Lime: 1.03-111 81-87 142-200	Butter			53-54			-31
Calcaspar . 2.60-2.8 162-175 Trachytic 2.00-2.7 125-168 150 See Graphite, etc. 2.92-0.99 57-62 Celestine 3.9 243 Cement: Pulverized loose 1.15-1.7 72-105 Set 2.7-3.0 168-187 Lime 2.3-3.2 144-200 Cetin 0.88-0.04 55-59 Limestone 2.40-2.86 154-178 Chalk 1.9-2.8 118-175 Lime 2.3-3.2 144-200 Chalk 0.57 35 Natural 7.8-8.0 489-492 Charcoal: 0.28-0.44 17.5-27.5 Magnesite 3.0 187 Charcoal: 0.28-0.44 17.5-27.5 Magnesite 3.0 187 Charcoal: 0.28-0.44 17.5-27.5 Magnesite 3.0-187 Charcoal: 0.8-0.91 1.2-1.5 75-94 Coal, soft 1.2-1.5 75-94 Coal soft 1.0-1.7 65-71 Coxoa butter 0.89-0.91 56-57 Coxoa butter 0.89-0.91 56-57 Coxoa butter 0.89-0.91 56-57 Coxoa butter 0.89-0.91 56-71 Coxoal soft 1.04-1.14 65-71 Corundum 3.9-4.0 3.5-3.6 1.60 1.04-1.14 Corundum 3.9-4.0 3.5-3.6 1.60 104 Dolomite 2.8-3.1 175-181 Dolomite 2.8-3.1 175-181 Dolomite 2.8-3.1 175-181 Dolomite 2.8-3.1 175-181 Emery 40 250 Opinient 3.6-3.5 Emery 40 250 Opinient 3.6-3.5 Emery 40 250 Opinient 3.6-3.5 Emery 40 250 Opinient 3.4-3.5 Emery 40 2.6 1.62 Emery 40 2.6 1.64 Emery 40 2.6 2.3-2.5 Emery 40 2.6 1.64 Emery 40 2.6 2.3-2.5 Emery 40 2.6	Calamine		4.1-4.5	255-280	Basaltic	2.8-3.0	175-185
Leather: Dry 0.86 54		• ,	2.6-2.8	162-175			125-168
Caoutchouc 0.92-0.99 57-62 Dry 0.86 54 64 64 Cement: Pulverized loose 1.15-1.7 72-105 I.85 I.15-1.7 I.85 I.15-1.7 IIS-1.7 Mortar 1.65-1.78 103-111 81-87 Set 2.7-3.0 168-187 Lime 2.2-3-3.2 114-200 154-178 Chalk 0.88-0.94 55-59 118-175 Lime stone 2.40-2.86 154-178 Charcoal: 0.57 35 Limestone 2.40-2.86 154-178 Chrome yellow 6.00 374 Magnesia 3.2 200 Chrome yellow 6.00 374 Magnesia 3.2 200 Clay 1.8-2.6 1.5-1.5 Magnesia 3.2 200 Clayslate 2.8-2.9 175-180 Magnesia 3.7-4.1 231-256 Cocoa butter 6.4-7.3 400-455 66-71 Marl 1.6-2.5 157-177 Copal 1.0-1.14 66-71 245						2.4	150
Celestine Cement: 3.9 243 Gréased 1.02 64 Pulverized loose Pressed 1.85 1.72-105 Mortar 1.65-1.78 103-111 Set 2.7-3.0 1.85 115 Slaked 1.3-1.4 81-87 Cetin 0.88-0.94 1.9-2.8 Lime 2.3-3.2 144-200 Chalk 1.9-2.8 118-175 Limestone 2.46-2.86 154-178 Charcoal: 0.57 35 Litharge: Artificial 9.3-9.4 580-585 Chrome yellow 6.00 374 Magnesia 3.2 200 Chrome yellow 6.00 374 Magnesite 3.0 187 Clay 1.8-2.6 122-162 Magnesite 3.0 187 Clay slate 1.2-1.5 50-7 Malachite 3.7-4.1 231-256 Clay slate 1.0-1.7 65-59 Marl 1.6-2.5 150-11 Cook 1.0-1.7 65-59 Marl 1.6-2.5 150-15 <t< td=""><td></td><td>с.</td><td></td><td>- C-</td><td></td><td>- 04</td><td> _ </td></t<>		с.		- C-		- 04	_
Cement: Pulverized loose 1.15-1.7 72-105 Fressed 1.85 115 115 185 115 185 115 185 115 185 115 186 187 181		•					
Pulverized loose		•	3.9	2 43		1.02	V4
Pressed			1.15-1.7	72-105		1.65-1.78	103-111
Set				115		1.3-1.4	
Cetin 0.88-0.94 55-59 Limestone 2.46-2.86 154-178 Chalk 1.9-2.8 118-175 Litharge: Artificial 9.3-9.4 580-585 Charcoal: 0.57 35 Natural 7.8-8.0 489-492 Pine 0.28-0.44 17.5-27.5 Magnesia 3.2 200 Chrome yellow 6.00 374 Magnesia 3.2 200 Cinnabar 8.12 507 Magnesia 3.2 200 Clay 1.8-2.6 122-162 Magnesite 4.9-5.2 306-324 Clayslate 2.8-2.9 175-180 Red ore 3.46 216 Cobaltite 6.4-7.3 400-455 Magnesite 3.74-1 231-256 Cobaltite 6.4-7.3 400-455 Marble 2.5-2.8 157-177 Cobal Limestone 1.0-1.7 62-105 Magnesia 3.2 200-2.2 200-2.2 Clay 1.0-1.7 60-105 Malachite 3.74-1 216-2.2	Set	.	2.7-3.0	168-187		2.3-3.2	
Charcoal: Oak . 0.57 35 Artificial . 9.3-9.4 580-585 489-492 Pine . 0.28-0.44 17.5-27.5 Magnesia . 3.2 200 Chrome yellow . 6.00 374 Magnesia . 3.2 200 Cinary . 1.8-2.6 122-165 Magnesia . 3.2 306-324 Magnesia . 3.2 3.0 187 Magnesia . 3.2 306-324 Magnesia . 3.2 306-324 Magnesia . 3.7-4.1 316-23 Magnesia . 3.4 3.2 316-23 Magnesia </td <td></td> <td></td> <td>0.88-0.94</td> <td>55-59</td> <td>Limestone</td> <td>2.46-2.86</td> <td></td>			0.88-0.94	55-59	Limestone	2.46-2.86	
Oak . 0.57 Pine 35 O.28-0.44 Natural 7.8-8.0 489-492 Pine . 0.28-0.44 17.5-27.5 Magnesia . 3.2 200 Chrome yellow . 6.00 374 Magnesia . 3.2 200 Cinnabar . 8.12 507 Magnesite . 3.0 187 Clay . 1.8-2.6 122-162 Malachite . 3.7-4.1 231-256 Clay . 1.2-1.5 75-94 Malachite . 3.7-4.1 231-256 Coolal soft . 1.2-1.7 60-105 Marl . 1.6-2.5 157-177 Coke . 1.0-1.7 62-105 Marl . 1.6-2.5 157-177 Coval undum . 3.9-4.0 245-250 Mesorry . 1.85-2.3 116-144 Corundum . 3.01-3.25 188-203 Mortar . 1.75 109 Diorit		•	1.9-2.8	118-175			1
Pine 0.28-0.44 17.5-27.5 Magnesia 3.2 200 Chrome yellow 6.00 374 Magnesite 3.0 187 Cinnabar 1.8-2.6 122-162 Magnesite 4.9-5.2 306-324 Clay 1.8-2.6 122-162 Malachite 3.7-4.1 231-256 Clayslate 2.8-2.9 175-180 Magnesite 3.7-4.1 231-256 Coal, soft 1.2-1.5 75-94 Red ore 3.46 216 Cobaltite 0.89-0.91 56-57 Red ore 3.9-4.1 243-256 Coxoa butter 0.89-0.91 56-57 Marble 2.5-2.8 157-17 Coke 1.0-1.7 62-105 Marl 1.6-2.5 100-156 Copal 1.04-1.14 65-71 Masonry 1.85-2.3 116-144 Corundum 3.9-4.0 245-250 Meerschaum .99-1.28 61.8-79.9 Diorite 1.66 104 Mica 1.75 109 Diorite						9.3-9.4	
Chrome yellow 6.00 374 Magnesite 3.0 187 Cinnabar . 8.12 507 Magnetite . 4.9-5.2 36-324 Clay . 1.8-2.6 122-162 Magnetite . 4.9-5.2 36-324 Clayslate . 2.8-2.9 175-180 Magnetite . 3.7-4.1 231-256 Coal, soft . 1.2-1.5 75-94 Red ore . 3.46 216 Cobaltite . 0.89-0.91 65-57 Marl . 1.6-2.5 100-1156 Coxea . 1.04-1.14 65-71 Masonry . 1.85-2.3 110-156 Corundum . 3.9-4.0 245-250 Meerschaum . .99-1.28 61.8-79.0 Diamond . 3.6-3.2 188-203 Mortar 1.75 109 Diorite . 2.8-3.1 175-193 Mud . 1.6 102 Ebonite .		• 1	0.57	35			
Cinabar 8.12 507 Magnetite 4.9-5.2 306-324 Clay 1.8-2.6 122-162 Malachite 3.7-4.1 231-256 Clayslate 2.8-2.9 175-180 Magnetite 3.46 216 Coal, soft 1.2-1.5 75-94 400-455 Black ore 3.9-4.1 243-256 Cocoa butter 0.89-0.91 56-57 Marble 2.5-2.8 157-177 Cobal 1.0-1.7 62-105 Marble 2.5-2.8 157-177 Corundum 3.9-4.0 245-250 Meerschaum .99-1.28 116-144 Corundum 3.5-3.6 120-225 Meerschaum .99-1.28 16.8-79.9 Anthracitic 1.66 104 Mica 2.6-3.2 165-200 Carbonado 3.01-3.25 188-203 Mortar 1.75 109 Doirite 2.8-3.1 175-193 Nitroglycerine 1.6 102 Emery 4.0 250 250 2.2 137 22 <td></td> <td>: </td> <td></td> <td></td> <td>Magnesite</td> <td></td> <td></td>		:			Magnesite		
Clay 1.8-2.6		: l			Magnetite		
Clayslate	Clay				Malachite		
Coal, soft 1.2-1.5 75-94 Red ore 3.46 216 Cobaltite 6.4-7.3 400-455 Black ore 3.9-4.1 243-256 Cocoa butter 0.89-0.91 56-57 Marble 2.5-2.8 157-177 Coke 1.0-1.7 62-105 Marble 2.5-2.8 157-177 Copal 1.04-1.14 65-71 Masonry 1.85-2.3 116-144 Corundum 3.9-4.0 245-250 Meerschaum .99-1.28 16.8-79.9 Anthracitic 1.66 104 104 106-124 Mica 2.6-3.2 165-200 Carbonado 3.01-3.25 175-193 Mud 1.6 109 Dolomite 3.8-2.9 175-181 Nitroglycerine 1.6 99 Earth, dry 1.6-1.9 100-120 Ochre 3.5 218 Emery 4.0 250 250 Orpinent 3.4-3.5 212-218 Epsom salts: 1.7-1.8 166-112 162 Paraffin <t< td=""><td>Clayslate</td><td></td><td></td><td></td><td>Manganese:</td><td></td><td></td></t<>	Clayslate				Manganese:		
Cobaltite . 6.47-7.3 (0.49-4.5) Black ore 3.9-4.1 (2.5-2.8) 243-256 (157-177) Cocoa butter . 0.89-0.91 (0.2-15) 56-57 (0.2-105) Marble . 2.5-2.8 (157-177) Cobe . 1.0-1.7 (0.2-15) 62-105 (0.2-15) Marble . 1.6-2.5 (100-156) Copal . 1.04-1.14 (0.2-15) Masonry . 1.85-2.3 (116-144) Corundum . 3.9-4.0 (245-250) Meerschaum . .99-1.28 (18-79.9) Anthracitic . 1.66 104 (16-14) Mica . 2.6-3.2 (165-200) Carbonado 3.01-3.25 (188-203) 175-193 (175-193) Mud . 1.6 102 (162-100) Dolomite . 3.8-2.9 (175-181) Nitroglycerine . 1.6 (102-100) . <td>Coal, soft</td> <td></td> <td>1.2-1.5</td> <td>75-94</td> <td>Red ore</td> <td></td> <td></td>	Coal, soft		1.2-1.5	75-94	Red ore		
Coke . 1.04-1.7 62-105 Marl . 1.6-2.5 100-156 Copal . 1.04-1.14 65-71 Masonry . 1.85-2.3 116-144 Corundum . 3.9-4.0 245-250 Meerschaum		•	6.4-7.3	400-455		3.9-4.1	
Copal . 1.04-1.14 of 5-71 of 7.3 of		•		50-57		2.5-2.8	
Corundum 3.9-4.0 Diamond 3.9-4.0 J.5-3.6 load Diamond 245-250 Meerschaum Meerschaum .99-1.28 load Diamond 61.8-79.9 load Diamond 61.2 load Diamond 61.8-79.9 load Diamo		.					
Diamond 3.5-3.6 220-225 Melaphyre 2.6 162 Anthracitic 1.66 104 Mica 2.6-3.2 165-200 Diorite 2.8-3.1 175-193 Mortar 1.75 109 Dolomite 3.8-2.9 175-181 Nitroglycerine 1.6 99 Earth, dry 1.6-1.9 100-120 Ochre 3.5 218 Ebonite 1.15 72 Orpiment 2.2 137 Emery 4.0 250 Orpiment 3.4-3.5 212-218 Epsom salts: 1.7-1.8 106-112 Paraffin 0.87-0.91 54-57 Paper 0.87-0.91 54-57 Peat 0.84 52 Fliot 2.63 158-161 Porcelain 2.3-2.5 143-156 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61.8-70.0</td>							61.8-70.0
Anthracitic . 1.66		:			Melaphyre		162
Carbonado 3.01-3.25 188-203 175-193 180-203 175-193 175-			ĭ.66	104	Mica		
Diorite . 2.8-3.1 Dolomite . 3.8-2.9 I75-193 Mud . 1.6 J02 J15-181	Carbonado .	.	3.01-3.25	188-203		1.75	
Dolomite 3.8-2.9 175-181 Nitroglycerine 1.6 99 Earth, dry 1.6-1.9 100-120 Ochre 3.5 218 Ebonite 1.15 72 Orpiment 3.4-3.5 212-218 Emery 4.0 250 Orpiment 3.4-3.5 212-218 Epsom salts 1.7-1.8 106-112 Paraffin 0.87-0.91 54-57 Anhydrous 2.6 162 Peat 0.84 52 Feldspar 2.53-2.58 158-161 Peat 0.84 52 Flint 2.63 164 Pitch 1.07 67 Fluor spar 3.14-3.18 196-198 Porcelain 2.3-2.5 143-156 Gabronite 2.9-3.0 181-187 Portash 2.26 141 Galena 7.3-7.6 460-470 Pyrites 4.9-5.2 306-324 Ochre 1.6 99 Ochre 1.6 90 Ochre 1.6 90 Ochre 1.6 13-5 Opal 0.2 2.2 Orpiment 0.87-0.91 54-57 Paraffin 0.87-0.91 54-57 Portash 1.82 114 Portash 2.26 162-181 Portash 2.26 141 Pyrites 4.9-5.2 306-324		.]	2.8-3.1	175-193		1.6	
Ebonite		•	3.8-2.9	175–181			
Emery		•			Ochre	3.5	I .
Epsom salts: Crystalline		•			Orniment		137
Crystalline Anhydrous 1.7–1.8 106–112 Paraffin 0.87–0.91 54–57 Anhydrous 2.6 162 Peat 0.84 52 Feldspar 2.53–2.58 158–161 Phosphorus, white 1.82 114 Flint 2.63 164 Pitch 1.07 67 Fluor spar 3.14–3.18 196–198 Porcelain 2.3–2.5 143–156 Gabronite 2.9–3.0 181–187 Porphyry 2.6–2.9 162–181 Gamboge 4.2 75 Potash 2.26 141 Galena 7.3–7.6 460–470 Pyrites 4.9–5.2 306–324		.	4.0	250			
Anhydrous . 2.6 162 Peat			1.7-1.8	106-112			
Feldspar 2.53-2.58 158-161 Phosphorus, white		.					
Flint		- 1					
Gabronite	Flint		2.63	164	Pitch		67
Gamboge 4.2 75 Potash 2.26 141 Galena 7.3-7.6 460-470 Pyrites 4.9-5.2 306-324							143-156
Galena 7.3-7.6 460-470 Pyrites 4.9-5.2 306-324							1
		•		75			
Carnet 3.0-3.0 230-335 Pytotusite 3.7-4.0 231-207		•	7.3-7.0				
	Gainet		J.U-J.O	250-335	i yrorusite	3./-4.0	251-20/

^{*} For metals, see Table 97.

DENSITY OF VARIOUS SOLIDS.

Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.	Substance.	Grammes per cubic centimetre.	Pounds per cubic foot.
Pumice stone Quartz Resin Rock crystal Rock salt Sal ammoniac Saltpetre Sand: Dry Damp Sandstone Selenium Serpentine Shale Silicon Silicous earth Slag, furnace Slate Snow, loose	0.37-0.9 2.65 1.07 2.6 2.28-2.41 1.5-1 6 1.95-2.08 1.40-1.65 1.90-2.05 2.2-2.5 4.2-4.8 2.43-2.66 2.0-2.5 2.66 2.5-3.0 2.6-2.7 0.125	23-56 165 67 162 142-150 94-100 122-130 87-103 119-128 137-156 262-300 152-166 162 125-156 166 156-187 162-168 7.8	Soapstone, Steatite Soda: Roasted Crystalline Spathic iron ore Starch Stibnite Strontianite Syenite Sugar Talc Tallow Tellurium Tile Tinstone Topaz Tourmaline Trachyte Trap	2.6–2.8 2.5 1.45 3.7–3.9 1.53 4.6–4.7 3.7 2.6–2.8 1.61 2.7 .91–.97 6.38–6.42 1.4–2.3 6.4–7.0 3.5–3.6 2.94–3.24 2.7–2.8 2.6–2.7	162-175 156 90 231-243 95 287-293 231 162 100 168 570-605 398-401 87-143 399-437 219-223 183-202 168-175 162-170

TABLE 96.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS
PER CUBIC FOOT OF VARIOUS ALLOYS (BRASSES AND BRONZES).

			Alloy.							Grammes per cubic centimetre.	Pounds per cubic foot.
Brasses	: Yello	w, 70Cu + 30	Zn, cast	•						8.44	527
44	44	.,,	rolled	1.						8.56	534
44	44	• •	draw	n						8.70	542
44	Red,	90Cu + 10Zr								8.6o	536
44		e, 50Cu + 50								8.20	511
Bronzes	: goCu	+ 10Sn .								8.78	548
44	85Cu	+ 15Sn .								8.89	555
44	8ŏCu	+ 20Sn .								8.74	545
44	75Cu	∔ 25Sn .								8.83	551
German	Silver:	Chinese, 26.	3Cu + 36	5.6Zn	+36.8	8 Ni				8.30	518
44	44	Berlin (1) 5:	Cu + 26	Zn +	22Ni					8.45	527
44	66	" (2) 50	Cu + 30	Zn 🕂	11Ni					8.34	520
44	44	" (3) 6 ³	Cu + 30	Zn 🕂	6Ni					8.30	518
46	44	Nickelin	. , ,		•					8.77	547
Lead an	d Tin:	87.5Pb + 12	.5Sn .							10.60	66 r
"	- "	84Pb + 16S	n .							10.33	644
"	66	77.8Pb + 22	.2Sn .							10.05	627
66 66	66	63.7 Pb + 36								9.43	588
44 44	- 44	46.7 Pb + 53	.3Sn .	-	•					8.73	545
44 44	66	30.5Pb + 69	.rSn .	-	-					8.24	514
Bismuth	. Lead.	and Tin: 53	Bi + 40Pl	b 1 2	Cd					10.56	659
Wood's	Metal:	50Bi + 25P	b + 12.50	'd '+'	12.5S1	1				9.70	605
Cadmiu	m and T	Γin: 32Cd+	68Sn .	·- '			•			7.70	4 8ŏ
Gold an	d Copp	er: o8Au +	2Cu .							18.84	1176
" "		96Au +		•						18.36	1145
46 44	"	94Au +		-	-	_				17.95	1120
66 66	"	92Au +	SCu .	-						17.52	1093
46 66	44	goAu +	roCu .					-	-	17.16	1071
66 66	44	88Au +		-						16.81	1049
£6 66	44	86Au +		Ċ						16.47	1027
Alumini	nm and	Copper: 10.		11						7.69	480
44	44		4i + 95C							8.37	522
"	66	" 3	AI + 97C)1	•			-		8.69	542
Alumini	ium and	Zinc : 91 Al	± 02n	-	•	-	-	-		2.80	175
Platinur	n and I	ridium: 90Pt	+ 101	•					-	21.62	1348
1 Intiliul			+ 15Ir	•	•	:	•			21.62	1348
44	46	" 66.6°	Pt + 33.	22Tr	•	•	•	-	•	21.87	1364
44	44	" "D+	+ 95Ir))**	•	•	•	•	-	22.38	1396

TABLE 97.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.*

When the value is taken from a particular authority that authority is given, but in most cases the extremes or average from a number of authorities are given.

Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C.†	Authority.
Aluminium	Cast	2.56-2.58 2.65-2.80 6.70-6.72 About 6.22 3.75-4.00 9.70-9.90 9.673 10.004 8.54-8.57 8.670 8.366 7.989 1.88-1.90 1.580 6.62-6.72 6.52-6.73	160-161 165-175 418-419 388 234-250 605-618 604 624 533-535 541 522 498 117 98.6 475-482 407-420	271 271 318 318	Vincentini and Omodei. Vincentini and Omodei.
Cobalt Columbium Copper " Didymium Gallium Germanium Glucinium Glucinium Glucinium Glucinium	Cast	8.50-8.70 9.100 7.10-7.40 8.80-8.95 8.85-8.95 8.217 6.540 5.930 5.460 1.86-2.06 19.26-19.34 19.33-19.34 7.27-7.42	530-542 563 443-462 549-558 552-558 513 408 370 341 116-127 1202-1207 454-463	24 20	Roberts & Wrightson. Lecoq de Boisbaudran. Winkler.
Iridium Iron " " Lanthanum Lead " Lithium Magnesium Manganese Mercury	Gray cast White cast Wrought	21.78-22.42 7.03-7.13 7.58-7.73 7.58-7.73 7.80-7.90 6.880 6.05-6.16 11.340 11.360 11.005 10.645 0.590 1.69-1.75 6.86-8.03 Av. abt. 7.4	1359-1399 439-445 473-482 485-493 429 377-384 708 709 686 664 39 105-109 428-501 462 848	24 24 325 325	Roberts & Wrightson. Hildebrand & Norton. Reich. '' Vincentini and Omodei.
Molybdenum . Nickel . Osmium . Palladium . Platinum . Potassium . " " Rhodium . Ruthenium . Silver . "		8.40-8.60 8.30-8.90 21.40-22.40 11.00-12.00 21.20-21.70 0.86-0.88 0.8510 0.8298 11.00-12.10 11.00-11.40 10.40-10.50 10.555-10.57 9.500	524-536 517-555 1335-1398 686-749 1322-1354 54-55 53-7 53-8 686-755 686-711 649-655 658-659 593	62.1 62.1	

^{*} This table has been to a large extent compiled from Clark's "Constants of Nature," and Landolt & Börnstein's "Phys. Chem. Tab."
† When the temperature is not given, ordinary atmospheric temperature is to be understood.

DENSITY OR MASS IN CRAMMES PER CUBIC CENTIMETRE AND POUNDS PER CUBIC FOOT OF THE METALS.

Metal.	Physical state.	Grammes per cubic centi- metre.	Pounds per cubic foot.	Temp. C.	Authority.
Sodium " " " Strontium Thallium Tin " " " " Titanium † Thorium ‡ Tungsten Uranium Zinc " " Zirconium	Solid	0.97-0.99 0.9519 0.9287 0.7414 2.50-2.58 11.8-11.9 7.290 7.300 6.97-7.18 7.1835 6.988 5.300 9.4-10.1 19.120 18.33-18.65 7.04-7.16 7.190 6.480 4.140	605-618 59-4 58-0 46-3 156-161 736-742 455 455 435-448 454 436 341 587-630 1193 1143-1163 439-447 449 404 258	97.6 97.6 226 226	Vincentini and Omodei. Ramsay. Matthieson. Vincentini and Omodei. Roscoe. Roberts & Wrightson. Froost.

TABLE 98.

MASS IN CRAMMES PER CUBIC CENTIMETRE AND IN POUNDS PER CUBIC FOOT OF DIFFERENT KINDS OF WOOD.

The wood is supposed to be seasoned and of average dryness.

Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.	Wood.	Grammes per cubic centimetre.	Pounds per cubic foot.
Alder Apple Ash Basswood. See Linden. Beech Biue gum Birch Box Bullet tree Butternut Cedar Cherry Cork Ebony Elm Fir or Pine, American White Larch Fitch Red Scotch Spruce Yellow	0.42-0.68 0.66-0.84 0.65-0.85 0.70-0.90 0.84 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 1.11-1.33 0.54-0.60 0.35-0.56 0.83-0.85 0.48-0.70 0.43-0.53 0.48-0.70 0.37-0.60	26-42 41-52 40-53 43-56 52 32-48 59-72 65 24 30-35 43-56 14-16 69-83 34-37 22-31 31-35 52-53 30-44 27-33 30-44 27-33	Greenheart Hazel Hickory Iron-bark Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Poplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow	1.03 0.92 0.68-1.00 1.17-1.33 0.32-0.59 0.67-0.71 0.56 0.85 0.62-0.75 0.60-0.90	58-65 37-49 37-58 64 57 42-62 73-83 20-37 42-44 35 53 39-47 37-55 61 40-43 62 24-37

When the temperature is not given, ordinary atmospheric temperature is to be understood.
 † The density of titanium is inferential, and actual determination a year or two ago gave a lower value.
 ‡ The lower value for thorium represents impure material.

DENSITY OF LIQUIDS.

Density or mass in grammes per cubic centimetres and in pounds per cubic foot of various liquids.

I	iquid.					Grammes per cubic centimetre.	Pounds per cubic foot.	Temp. C.
Acetone						0.792	49-4	O ₂
Alcohol, ethyl .						0.791	49.4	0
" methyl .						0.810	50.5	o
" proof spirit						0.916	57.2	0
Anilin						1.035	64.5	0
Benzene						0.899	56.ĭ	0
Bromine						3.187	199.0	0
Carbolic acid (crude)						0.950-0.965	59.2-60.2	15
Carbon disulphide						1.293	80.6	15
Chloroform						1.480	92.3	18
Ether						0.736	45.9	0
Glycerine						1.260	78.6	0
Mercury						13.596	836.0	o
Naphtha (wood) .						0.848-0.810	52.9-50.5	ō
Naphtha (petroleum e	ther) .					0.665	41.5	15
Oils: Amber .					·	0.800	49.9	15
Anise-seed .				-		0.996	61.1	16
Camphor .					•	0.910	56.8	
Castor .		:		•	-	0.969	60.5	15
Cocoanut .			-		-	0.925	57.7	
Cotton seed		·		•	•	0.926	5/·/ 60.2	15 16
Creosot .		•	-	•	•	1.040-1.100	64.9-68.6	15
Lard .		•	•	•	•	0.920	57.4	15
Lavender .		•	•	•	•	0.877	54-7	61
Lemon .		•	•	•	•	0.844	52.7	16
Linseed (boiled	٠ .	•	•	•	•	0.942	58.8	15
Mineral (lubrica		•	•	•	•	0.900-0.925	56.2-57.7	20
Olive		•	•	•	•	0.918	57.3	15
Palm		•	•	•	•	0.905	56.5	15
Pine		•	•	•	•	0.850-0.860	53.0-54.0	15
Poppy .		•	•	•	•	0.924		13
Rapeseed (crud	٠ .	•	•	•	•	0.915	57∙7 57•1	15
" (refine		•	•	•	•	0.913	57.0	15
Resin .	α, .	•	•	•	•	, ,	59.6	
Train or Whale		•	•	•	•	0.955	59.0	15
Turpentine	•	•	•	•	•	0.918-0.925	57-3-57-7	15 16
Valerian .		•	•	•	•	0.965	54.2 60.2	16
Petroleum		•	•	•	•	0.905	54.8	0
" (light) .		•	•	•	•		106-500	_
Pyroligneous acid		•	•	•	•	0.795-0.805	49.6-50.2	15
Sea water		•	•	•	•		49.9	0
Sea water Soda lye	• •	•	•	•	•	1.025	64.0	15
		•	•	•	•	1.210	75.5	17
Water		•	•	•	•	1.000	62.4	4

DENSITY OF CASES.

The following table gives the specific gravity of gases at 0° C. and 76 centimetres pressure relative to air at 0° and 76 centimetres pressure, together with their mass in grammes per cubic centimetre and in pounds per cubic foot.

	Ga	s.					Sp. gr.	Grammes per cubic centimetre.	Pounds per cubic foot.
Air				•			1.000	0.001293	0.08071
Ammonia .		•	•				0.597	0.000770	0.04807
Carbon dioxide		•	•	•	•		1.529	0.001974	0.12323
Carbon monoxide		•	•	•	•		0.967	0.001234	0.07704
Chlorine		•	•	•			2.422	0.003133	0.19559
Coal gas					(fro	m	0.320	0.000414	0.02583
Coargas	•	•	•	•	to		Q.740	0.000957	0.05973
Cyanogen .				•			1.806	0.002330	0.14546
Hydrofluoric acid					•		2.370	0.002937	0.18335
Hydrochloric acid					•		1.250	0.001616	0.10088
Hydrogen .				•			0.0696	0.000090	0.00562
Hydrogen sulphide				•			1.191	0.001476	0.09214
Marsh gas .		•					0.559	0.000727	0.04538
Nitrogen .			•				0.972	0.001257	0.07847
Nitric oxide, NO							1.039	0.001343	0.08384
Nitrous oxide, N2O	٠.			•			1.527	0.001970	0.12298
Oxygen		.•		•			1.105	0.001430	0.08927
Sulphur dioxide							2.247	0.002785	0.17386
Steam at 100° C.		•		•	•		0.469	0.000581	0 .03627

Smithsonian Tables.

TABLE 101.

DENSITY OF AQUEOUS SOLUTIONS.*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grammes per cubic centimetre. For brevity the substance is indicated by formula only.

	-				-			- Inducate			,======
Substance.	. w	eight of	the diss		ubstance e solutio		parts by	y weigh	of	i i	Authority.
	5	10	15	20	25	30	40	50	60	Temp.	
K ₂ O KOH	1.047	1.098	1.153	1.214	1.284	1.354	1.503	1.659	1.809	15.	Schiff.
KOH NagO	1.040	1.002	1.027	1.070	1.229	1.280	1.410	1.538	1.000	15.	"
	1.058	1.114	1.169	1.224	1.279	1.331	1.436	1.539	1.642	15.	"
		0.949	0.940	0.924	0.909	0.896	2	-		1 6 .	Carius.
NH4Cl			1.044				-	-	-	15.	Gerlach.
KCl NaCl	1.031	1.005	1.099	1.135	7 701	_	-	<u>-</u>	-	15. 15.	"
LiCl	1.035	1.057	1.085	1.116	1.147	1.181	1.255	_	-	15.	u
		1.086	1.132	1.181	1.232	1.286	1.402	-	-	15.	**
CaCl ₂ + 6H ₂ O									1.276		Schiff.
AlCla			1.111				1.340	-	_	15.	Gerlach.
MgCl ₂ MgCl ₂ +6H ₂ O	1.014		1.130				1.141	1.182	1.222	15. 24.	Schiff.
ZnCl ₂	1.043	1.089	1.135	1.184	1.236	1.289	1.417	1.563	1.737	19.5	
CdCl ₂	1.043	1.087	1.138	1.193	1.254	1.319	1.469	1.653	1.887		"
SrCl ₂	1.044	1.092	1.143	1.198	1.257	1.321	-		-	15.	Gerlach.
$SrCl_2 + 6H_2O$ BaCl ₂	1.027	1.053	1.002	1.111	1.042	1.174	1.242	1.317	-	15.	и
$BaCl_2 + 2H_2O$	1.035	1.075	1.119	1.166	1.217	1.273	-	-	-	21.	Schiff.
CuCl ₂	1.044	1.091	1.155	1.221	1.291	1.360	1.527	-	-	17.5	
NCl ₂ HgCl ₂			1.15/	1.223	1.299	-	_	_	_	17.5	Mendelejeff.
Fe ₂ Cl ₆	1.041	1.086	1.130	1.179	1.232	1.290		1.545	1.668		
PtCl4									-	-	Precht.
SnCl ₂ + 2H ₂ O	1.032	1.067	1.104	1.143	1.185	1.229	1.329	1.444	1.580		Gerlach.
SnCl ₄ + 5H ₂ O LiBr	1.029	1.050	1.111	1.154	1.157	1.193	1.2/4	1.305	1.467	15. 19.5	Kremers.
KBr	1.035	1.073	1.114	1.157	1.205	1.254	1.364	-		19.5	"
NaBr	1.038	1.078	1.123	1.172	1.224	1.279	1.408	1.563	-	19.5	44
MgBr ₂	1.041	1.085	1.135	1.189	1.245	1.308	1.449	1.623	- 8	19.5	66
$ZnBr_2$ $CdBr_2$	1.043	1.088	1.194	1.107	1.258	1.320	1.473	1.678	1.873	19.5	"
CaBr ₂			1.137							19.5	46
			1.142							19.5	
SrBr ₂	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953		4
KI	1.036	1.076	1.118	1.164	1.216	1.269	1.394	1.544			86 86
LiI NaI	1.030	1.077	1.122 1.126	1.170	1.222	1.278	1.412	1.573	1.775		
NaI ZnI ₂	1.033		1.138			1.366					
CdI ₂	1.042	1.086	1.136	1.192	1.251	1.317	1.474	1.678	-	19.5	"
MgI ₂	1.041	1.086	1.137	1.192	1.252	1.318	1.472	1.666	1.913	19.5	44
Cal ₂ SrI ₂	1.042	1.080	1.138	1.108	1.258	1.319	1.475	1.003	1.908	19.5	"
Bal ₂	1.043	1.089	1.140	1.199	1.263	1.331	1.493	1.702	1.968	19.5	"
NaClO ₈	1.035	1.068	1.106	1.145	1.188	1.233	1.329	_	_	19.5	«
NaBrO ₈	1.039	180.1	1.127	1.176	1.229	1.287	-	-	-	19.5	" C11
KNO ₈ NaNO ₈	1.031		1.099				-	6	_	15. 20.2	Gerlach. Schiff.
AgNO ₈	1.031	1.000	1.101 1.140	1.105	1.100	1.222 1.322	1.470	1.675	1.018		Kohlrausch.
				- ,3							

^{*} Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27.

**Smithsonian Tables.

DENSITY OF AQUEOUS SOLUTIONS.

Substance.	w	eight of	the dis	solved s	ubstancie soluti	e in 100	parts b	y weigh	t of	ij	Authoris
Substance.	5	10	15	20	25	30	40	50	60	Temp.	Authority.
NH ₄ NO ₈ ZnNO ₈ ZnNO ₈ +6H ₂ O .	1.020			1.085 1.201 1.113		1.325	1.456	1.229 1.597 1.329	-	17.5 17.5	
Ca(NO ₈) ₂ Cu(NO ₈) ₂	1.037 1.044	1.075	1.118			1.260	1.367	1.482			Gerlach.
Sr(NO ₂) ₂ Pb(NO ₃) ₂ Cd(NO ₂) ₂ Co(NO ₃) ₂ Ni(NO ₃) ₂	1.039 1.043 1.052 1.045	1.091	1.137	1.199 1.212 1.192	1.262 1.283 1.252	1.332 1.355 1.318 1.318	1.536 1.465	1.759		19.5 17.5 17.5 17.5	Gerlach. Franz.
Fe ₂ (NO ₃) ₆ Mg(NO ₃) ₂ +6H ₂ O Mn(NO ₃) ₃ +6H ₂ O K ₂ CO ₃ K ₂ CO ₃ + 2H ₂ O .	1.039	1.076 1.038 1.052 1.092	1.117 1.060 1.079 1.141	1.160 1.082 1.108	1.210 1.105 1.138 1.245	1.261 1.129 1.169 1.300	1.373 1.179 1.235 1.417	1.496 1.232 1.307	1.386	17.5	Schiff. Oudemans. Gerlach.
Na ₂ CO ₃ 10H ₂ O . (NH ₄) ₂ SO ₄ . Fe ₂ (SO ₄) ₈ FeSO ₄ + 7H ₂ O . MgSO ₄	1.019 1.027 1.045	1.038 1.055 1.096 1.053	1.057 1.084 1.150 1.081	1.077 1.113 1.207	1.098 1.142 1.270 1.141	1.118 1.170 1.336	1.226	_	-	15. 19. 18. 17.2	" Schiff. Hager. Schiff. Gerlach.
MgSO + 7H ₂ O . Na ₂ So ₄ + 10H ₂ O . CuSO ₄ + 5H ₂ O . MnSO ₄ + 4H ₂ O . ZnSO ₄ + 7H ₂ O .	1.025 1.019 1.031 1.031 1.027	1.050	1.075 1.059 1.098	1.101 1.081 1.134 1.135	I.129 I.102 I.173 I.174		_ _ 1.303	1.278 - 1.398 1.351	- - - - I.443	15. 15. 18. 15. 20.5	" Schiff. Gerlach. Schiff.
Fe ₂ (SO) ₈ +K ₂ SO ₄ +2 ₄ H ₂ O Cr ₂ (SO) ₈ +K ₂ SO ₄	1.026	1.045	1.066	1.088	1.112		-	-	-	17.5	Franz.
$ \begin{array}{c} + 24 H_2 O \\ Mg S O_4 + K_2 S O_4 \end{array} $		1.033	- 1	_	1.099	1.126	1.188	1.287	1.454		
+6H ₂ O (NH ₄) ₂ SO ₄ + FeSO ₄ + 6H ₂ O				1.122	- 1.154 1.225				-	15.	Schiff.
K ₂ Cr ₂ O ₇ Fe(Cy) ₆ K ₄ Fe(Cy) ₆ K ₈	1.035 1.028 1.025	1.071 1. 0 59	- 1	1.126	- - -	1.279 - - -	1.397 - - -	-	111	19.5 19.5 15. 13	Kremers. Schiff.
$\begin{array}{c} Pb(C_2H_3O_2)_2 + \\ 3H_2O \cdot \cdot \cdot \cdot \\ 2NaOH + As_2O_5 \end{array}$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426	-	15.	Gerlach.
+ 24H ₂ O	1.020	1.042	1.066	1.089	1.114	1.140	1.194			14.	Schiff.
	5	10	15	2 0	· 30	40	60	8o 	100		
SO ₂	1.021	1.084 1.028 1.069 1.047 1.038	1.070	1.063 1.141 1.096	1.217 1.150	1.207	- [.422 -	1.840 1.506	-	15. 4. 15. 15.	Brineau. Schiff. Kolb. Gerlach.
Cane sugar	1.025		1.075 1.114 1.118	1.101	1.151 1.257 1.271	1.200 1.376 1.400	1.289 - - - 1.501	- - - - 1.732	- - - 1.838	17.5 15. 14. 13.	Kolb. Topsö e . " Kolb.
H ₂ SiFl ₆	1.027	1.077	1.086	1.167	1.271 1.188 1.184	1.264	1.438	- - 1.459 1.075	- - 1.528 1.055	17.5 17.5 15. 15.	Stolba. Hager. Schiff. Kolb. Oudemans.

TABLE 102.

DENSITY OF WATER AT DIFFERENT TEMPERATURES BETWEEN 0° AND 32° C.*

The following table gives the relative density of water containing air in solution, — the maximum density of water free from air being taken as unity. The correction required to reduce to densities of water free from air are given at the foot of the table. For all ordinary purposes the correction may be neglected. The temperatures are for the hydrogen thermometer.

1	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
_o	0.9998742	8678	8613	8547	8478	8408	8336	8263	8188	8111
+0	0.9998742	8804	8864	8922	8979	9035	9088	9140	9191	9240
1	9287	9332	9376	9419	9460	9499	9536 9825	9572	9607	9640
2	9671	9701	9729	9755	9780	9803		9846	9864	9881
3	9897	9911	9923	9934	9944	9952	9958	9963	9966	9968
4	9968	9900	9964	9959	9953	9946	9933	9927	9915	9901
5	0.9999886	9870	9852	9833	9812	9790	9766	9740	9714	9685
6	9656	9625	9592	9558	9522	9485	9446	9407	9365	9322
7 8	9278	9232	9185	9137	9087	9035	8982	8928	8873	8815
	87 58	8697	8636	8573	8509	8443	8376	8308	8238	8167
9	8095	8021	7946	7869	7791	7712	7631	7549	7466	738I
10	0.9997295	7208	7119	7029	6937	6844	6750	6654	6558	6459
11	6360	6259	6157	6053	5949	5842	5735	5626	5516	5405
12	5292	5178	5063	4947	4829	4710	4590	4468	4345	4221
13	4096	3969	3841	3712	3581	3450	3317	3182	3047	2910
14	2772	2633	2493	2351	2208	2064	1919	1772	1624	1475
15	0.9991325	1174	1021	0867	0712	0556	0399	0240	0080	9919
16	897 5 7	7594	9429	9264	9097	8929	8760	8589	8418	8245
17	8071	7896	7720	7543	7365	7185	7004	6823	6640	6456
18	6270	6084	5897	5708	5518	5328	5136	4943	4749	4553
19	4357	4160	3961	3762	3561	3359	31 57	2953	2748	2542
20	0.9982335	2126	1917	1707	1496	1283	1070	0855	0640	0423
21	0205	9987	9767	9546	9325	9102	8878	8653	8427	8200
22	77972	7744	7514	7283	7051	6818	6584	6340	6114	5877
23	5639	5400	5160	4920	4678	4435	419i	3947	3701	3455
24	3207	2959	2709	2459	2208	1956	1702	1448	1193	0937
25	0.9970681	0423	0164	9904	9644	9382	QI 20	8857	8592	8327
26	68061	7794		7258	6988	6718	6447	6175	5901	5628
27	5353	5077	7527 4801	4523	4245	3966	3686	3405	3124	2841
28	2558	2274	1989	1703	1416	1129	ŏ840	0551	0261	9971
29	59679	9387	9094	8800	8505	8209	8913	7616	7318	7019
30	0.9956720	6419	6118	5816	5514	5210	4906	4601	4296	3989
31	3682	3374	3066	2756	2446	2135	1823	1511	1198	0884
from air,	at D', for the	ollowin	g correc	tions on	the abo	ove table	e to red	uce to p	ure wate	er : —
t=				3 4	5	6	7	8	9	10
10 ⁷ (D _t -D'	·) = 25	27 2	29 3	1 32	33	33	34	34	33	32
_t=	. 11			.4 15		17	18	19	20 —	
10 (D,-D'	a) = 3t	29 2	27 2	22	19	16	12	8	4 ne	gligible.

^{*} This table is given by Marek in "Wied. Ann.," vol. 44, p. 172, 1891.

VOLUME IN CUBIC CENTIMETRES AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETRE OF WATER AT THE TEMPERATURE OF MAXIMUM DENSITY.*

The water in this case is supposed to be free from air. The temperatures are by the hydrogen thermometer-

Temp. C.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0 °	1.000127	120	114	108	102	096	091	o86	080	075
1	070	066	061	057	052	048	044	040	037	033
2	030	027	024	021	019	017	014	012	010	009
] 3	∞7	006	004	००३	002	002	001	100	000	000
4	000	000	100	100	100	002	∞3	004	005	007
5	1.000008	010	012	014	016	018	020	023	026	029
6	032	035	038	041	045	049	053	057	061	065
7 8	069	074	079	084	o 89	094	099	105	110	116
8	122	128	134	141	147	154	160	167	174	181
9	189	196	204	211	219	227	235	244	252	260
10	1.000260	278	287	296	305	314	324	334	243	353
11	363		383	394	405	415	426	437	343 448	
12	471	373 482	494	505	517	529		553	566	459 578
13	591	603	616	629	642	655	541 668	553 681	695	709
14	722	736	750	765	779	794	809	823	838	853
15	1.000\$68	884	899	914	930	045	196	977	993	009
16	1025	042	058	075	091	945 108	125	142	993	177
17	194	211	229	247	265	283	301	319	1 59 338	356
18	374	393	412	431	450	469	488	507	527	546
19	566	585	605	625	645	666	686	707	727	748
20	1.001768	780	810	831	852	<u>874</u>	Sor	916	028	060
21	1.001/08	<u>789</u> ∞3	025	047	069	092	895 114		938	960 182
22	2205	228	251	274	297	320		1 37 367	1 59 391	414
23	428	462	486	510			343 583	607	632	657
24	438 682	707	732	757	53 4 782	559 807	833	858	884	910
0.5		- (-								
25 26	1.002935	961	987	014 280	040	<u>066</u>	092	119	146	172
	3199	226	² 53 528		307	335 612	362	389	417	445
27 28	472	500	528 812	556 841	584		641	669	697	726
	754	783			870	899	928	957	987	016
29	4045	075	105	134	164	194	224	254	284	315
30	1.004345	37.5 684	406	436	467	498	529	560	591	622
31	653	684	716	748	780	811	843 166	875	907	939 264
3 2	971	003	636	o6 8	101	133	166	199	907 231	264
33	5297	330 665	363	396	430	463	497	530	564	597
34	631	665	699	733	767	801	835	870	904	939
35	1.005973	008	042	077	III	146	181	217	252	287

^{*} The table is quoted from Landolt and Börnstein's "Physikalische Chemie Tabellen," and depends on experiments by Thiesen, Scheel, and Marek.

TABLE 104.

DENSITY AND VOLUME OF WATER.*

The mass of one cubic centimetre at 4° C. is taken as unity.

Temp. C.	Density.	Volume.	Temp. C.	Density.	Volume.
-10°	0.998145	1.001858	25°	0.99712	1.00289
— o	8427	1575	26	687	314
- 9	8685	1317	27	66o	341
	1108	1089	28	633	368
— 7 — 6	9118	0883	29	605	396
_5	0.999298	1.000702	30	0.99577	1.00425
-4	9455	0545	31	547	455
-3	9590	0410	32	517	486
$-3 \\ -2$	9703	0297	33	485	518
— I	9797	0203	34	452	551
0	0.999871	1.000129	35	0.99418	1.00586
I	9928	0072	36	383	621
2	9969	0031	37	347	657
3	9991	0009	38	310	694
4	1.000000	0000	39	² 73	732
5	0.999990	1.000010	40	0.99235	1.00770
6	9970	0030	41	197	809
7	9933	0067	42	158	849
7 8	6886	0114	43	118	889
9	9824	0176	44	078	929
10	0.999747	1.000253	45	0.99037	1.00971
11	9655	0345	46	8996	1014
12	9549	0451	1 47 1	954	1057
13	9430	0570	48	910	1101
14	9299	0701	49	\$ 65	1148
15	0.999160	1.000841	50	0.98820	1.01195
16	9002	0999	55	582	439
17	8841	1166	55 60	338	69í
18	8654	1348	65	074	964
19	8460	1542	70	779 4	256
20	0.998259	1.001744	75	0.97498	1.01566
21	8047	1957	8o	194	887
22	7826	2177	85	6879	221
23	. 7601	2405	90	556	567
24	7367	2641	95	219	931
25	0.997120	1.002888	100	0.95865	1.02312

^{*} Rossetti, "Berl. Ber." 1867.

DENSITY OF MERCURY.

Density or mass in grammes per cubic centimetre, and the volume in cubic centimetres of one gramme of mercury. The density at o° is taken as $13.5956,^{\circ}$ and the volume at temperature t is $V_t = V_0 (1 + .000181792 t + 175 \times 10^{-13} f^3 + 35116 \times 10^{-13} f^3).$

Temp. C.	Mass in grammes per cub. cm.	Volume of 1 gramme in cub. cms.	Temp. C.	Mass in grammes per cub. cm.	Volume of gramme in cub. cma.
-10°	13.6203	0.0734195	30°	13.5218	0.0739544
-9	6178	4329	31	5194	9678
-8	6153	4463	32	5169	9812
-6 -7 -6	6129 6104	4596 4730	33 34	5145 5120	9945 40079
-5	13.6079	0. 07 34864	35	13.5096	0.0740213
-4	6055	4997	36	5071	0346
-3	6030	5131	37	5047	0480
-2	6005	5265	38	5022	0614
0	5981	5398	39	4998	0748
0	13.5956		40	13-4974	0.0740882
1 2 3 4	5931 5907 5882 5857	0.0735532 5666 5800 5933 6067	50 60 70 80	4731 4488 4246 4005	2221 3561 4901 6243
5 6 7 8	13.5833	0.0736201	90	13.3764	0.0747586
	5868	6334	100	3524	8931
	5783	6468	110	3284	50276
	5759	6602	120	3045	1624
	5734	6736	130	2807	2974
10	13.5709	0.0736869	140	13.2569	0.0754325
11	5685	7003	150	2331	5679
12	5660	7137	160	2094	7035
13	5635	7270	170	1858	8394
14	5611	7404	180	1621	9755
15 16 17 18	13.5586 5562 5537 5513 5488	0.0737538 7672 7805 7939 8073	190 200 210 220 230	13.1385 1150 0915 0680 0445	0.0761120 2486 3854 5230 6607
20	13-5463	0.0738207	240	13.0210	0.0767988
- 21	5439	8340	250	12.9976	9372
22	5414	8474	260	9742	70760
23	5390	8608	270	9508	1252
- 24	5365	8742	280	9274	3549
25	13-5341	0.0738875	290	12.9041	0.0774950
26	5316	9009	300	8807	6355
27	5292	9143	310	8573	7765
28	5267	9277	320	8340	9180
29	5243	9411	330	8107	80600
30	13.5218	0.0739544	340 350 360	12.7873 7640 7406	0.0782025 3455 4891

Marek, "Trav. et Mém. du Bur. Int. des Poids et Més." 2, 1883.

[†] Broch, l. c.

TABLE 106.

SPECIFIC GRAVITY OF AQUEOUS ETHYL ALCOHOL.

	temperatur 0	1	2	3	4	5	6	7	8	9									
Percentage of alcohol by weight.		Speci	ific gravity	at 15°.56	C. in term	ns of water	r at the sa	me tempe	rature.										
0	0000.1	.9981	.9965	-9947	.0020	.9914	.9898	.9884	.9869	.9855									
10	.9841	9828	.9815	.9802	.9930	.9778	.9766	9753											
20	.9716	.9703	.9691	.9678	.9665	.9652	.9638	.9623	.9609	9593									
30	.9578	.9560	.9544	.9528	.9511	.9490	.9470	.9452		.9416									
40	.9396	.9376	.9356	-9335	.9314	.9292	.9270	.9249	.9228	.9206									
50	0.9184	.9160	.9135	.9113	.9090	.9069	.9047	.9025											
60	.8956	.8932	.8908	.8886	.8863	.8840	.8816	.8793											
70 80	.8721	.8696	.8672	.8649 .8408	.8625	.8603	8581	8557	.8533	.8508									
90	.8483 .8228	.8459 .8199	.8434 .8172	.8145	.8382 .8118	.8357 .8089	.8331 .8061	.8305 .8031	.8279 .8001	.7969									
alcohol weight.	C.; temp	ollowing are the values adopted by the "Kaiserlichen Normal-Aichungs Kommission." They are on Mondelejeff's formula, † and are for alcohol of specific gravity .79425, at 15 C., in terms of water C.; temperatures measured by the hydrogen thermometer.																	
A SA		Sp	eific grav	ity at 15° (C. in term	s of water	at the san	ne temper	ature.										
0	1.00000	.99812	,99630	-99454	.99284	.99120	.98963	.98812	.98667	.98528									
10	.98393	498262	.98135	.98010	.97888	.97768	.97648	.97 528	97408	.97287									
20	.97164	497040	.96913	.96783	.96650	.96513	.96373	.96228	.96080	.95927									
30	.95770	.95608	-95443	.95273	.95099	.94920	.94738	.94552	.94363	.94169									
40	-93973	.93773	.93570	.93365	.931 57	.92947	.92734	.92519	.92303	.92088									
50	0.91865	.91644	.91421	.91197	.90972	.90746	.90519	.90292	.90063	.89834									
60	89604	.89373 .87028	.89141	.88909	.88676	.88443	.88208	87974	87738	.87502									
70 80	87265	.87028	.86789	.86550	.86310	.86070	.85828	85586	.85342 .82832	.85098									
	84852	.84606	.84358 84363	.84108	.83857 .81207	.83604	83349	.83091	80040	.82569									
90	82304	.82036	.81763	.81488	.0120/	.80923	.80634	.80339	.80040	·79735									
(0) The	following v	alues have	the same	authority ature 15°.	as the las 56 C. on t	t; the per he mercur	centage of y in Thur	alcohol b ingian gla	eing given	by volumemeter; the									
speci	fic gravity o	1	2	3	4	5		7	0 1 2 3 2 5 6 7 8 9										
speci	fic gravity o	1	2	8	4		e ater at som		ture.										
Percentage of alcohol by volume.	0	1 Sp	2 ecific grav	3 rity at 15°.	4		e ater at san	ne tempera	 1										
Percentage of alcohol by volume.	0	Sp .99847	ecific grav	3 rity at 15°.	56 C. in to	.99279	.99147	.90019	.98895	.98774									
Percentage of alcohol by volume.	1.00000 .98657	Sp .99847 .98543	ecific grav .99699 .98432	sity at 15°.	.99415	.99279 .98114	.99147 .98011	.90019	.98895 .97808	.97708									
Percentage of alcohol by volume.	1.00000 .98657 .97608	.99847 .98543 .97507	.99699 .98432 .97405	99555 98324 97304	.99415 .98218 .97201	.99279 .98114 97097	.99147 .98011 .96991	.90019 .97909 .96883	.98895 .97808 .96772	.97708 .96658									
Percentage of alcohol by volume.	1.00000 .98657	Sp .99847 .98543	ecific grav .99699 .98432	sity at 15°.	.99415	.99279 .98114	.99147 .98011	.90019	.98895 .97808	.97708									
Percentage Of alcohol by volume.	1.00000 .98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97405 .96298 .94863	99555 -98324 -97304 -96172 -94704	.99415 .98218 .97201 .96043 .94536	.99279 .98114 97097 .95910 .94364	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824	.97708 .96658 .95338 .93636									
Percentage 0.00 of alcohol 0 of alcohol 0 by volume.	1.00000 .98657 .97608 .96541 .95185	\$p\$47 .98543 .97504 .96421 .95029	.99699 .98432 .97405 .96298 .94863	99555 -98324 -97304 -96172 -94704	.99415 .98218 .97201 .96043 .94536	.99279 .98114 97097 .95910 .94364	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824	.97708 .96658 .95338 .93636									
Percentage of alcohol	1.00000 .98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	99699 .99699 .98432 .97405 .96298 .94863	.99555 .98324 .97304 .96172 .94704 .92850 .90678	.99415 .98218 .97201 .96043 .94536	.99279 .98114 97097 .95910 .94364 .92439	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824 .91799 .89499	.97708 .96658 .95338 .93636 .91580									
Percentage O 10 20 30 40 40 A0 40 60 60 60 60 60 60 60 60 60 60 60 60 60	1.00000 .98657 .97608 .96541 .95185	.99847 .98543 .97507 .96421 .95029	.99699 .98432 .97405 .96298 .94863	99555 -98324 -97304 -96172 -94704	.99415 .98218 .97201 .96043 .94536	.99279 .98114 97097 .95910 .94364	.99147 .98011 .96991 .95773 .94188	.90019 .97909 .96883 .95632 .94008	.98895 .97808 .96772 .95487 .93824	.97708 .96658 .95338 .93636									

[•] Fownes, "Phil. Trans. Roy. Soc." 1847. † "Pogg. Ann." vol. 138, 1869.

DENSITY OF AQUEOUS METHYL ALCOHOL.

Densities of aqueous methyl alcohol at o^o and 15.56 C., water at 4^o C. being taken as 100000. The numbers in the columns a and b are the coefficients in the equation $p_0 = p_0 - at - bt^0$ where p_t is the density at temperature. This equation may be taken to hold between o^o and ao^o C.

Percentage of CH ₄ O.	Density at o° C.	Density at 15° .56 C.	. 39	ŏ	Percent- age of CH ₄ O.	Density at o° C.	Density at 15°.56 C.	•
0	99987	99907	-6.0	0.705	50	92873	91855	65.41
I	99806	99729	- 5-4 4-8	.694	51	92691	91661	66.19
2	99631	99554		.68i	52	92507	91465	66.95
3	99462	99554 99382	3 .9	.670	53	92320	91267	67.68
4	99299	99214	— 3.0	.659	54	92130	91066	68.39
5	99142	99048	2.2	0.648	55	91938	90863	69.07
6	98990	98893	— 1.2	.634	56	91742	90657	69.72
7 8	98843	98726	-0.2	.621	57 58	91 544	90450	70.35
	98701	98569	+ 0.9 2.1	.609 .596	50	91 343	90239	70.96
9	98563	98414	2.1		59	91139	90020	71.54
10	98429	98262	3.3 4.8	0.581	60	90917	89798	71.96
11 12	98299 98171	98111 97962	6.2	.569	62	90706	89580 89358	72.37
13	98048	97814	7.8	.552 .536	63	90492	89133	72.91
14	97926	97668	9.5	.519	64	90056	88905	73-45 73-98
15	97806	97523	11.0	0.500	65	89835	88676	ł
16	97689	97379	12.5	.480	66	89611	88443	74.51 75.05
	97573	97235	14.5	.461	67	89384	88443 88208	75.57
17 18	97459	97093	16.2	-440	68	80144	87970	76.10
19	97346	96950	18.3	.420	69	88922	87714	76.62
20	97233	96808	20.0	0.398	70	88687	87487	77.14
21	97120	96666	22.2	·373	71	88470	87262	77.66
22	97007	96524	24.3	.350	72	88237	87021	78.18
23	96894	9638i	26.4	.321	73	88003	86779	78.69
24	96780	96238	29.0	.291	74	87767	86535	79.20
25	96665	96093	31.3	0.261	75	87530	86290	79.71
26	96549	95949	31.3 33.8	.230	76	87290	86042	80.22
27 28	96430	95802	36.0	.191	77 78	87049	85793	80.72
	96310	95655	38.8	.151		86806	85542	81.23
29	96187	95506	41.1	.106	79	86561	85290	81.73
	Equation	P = P0 - 4	u!		80	86314	85035	82.22
30	06057	05265	44.26	i	81 82	86066 85816	84779	82.72
	96057	95367	44.36 45.66		83	85564	84521 84262	83.21
31 32	95921 95783	95053	46.93	İ	84	85310	84001	84.19
33	95643	94894	48.17	1	-7	1 23.5		-49
34	95500	94732	49-39	l	85	85055	83738	84.67
	1		1	ì	86	84798	83473	85.16
35	95354	94567	50.58	1	87 88	84539	83207	85.64
36	95204	94399	51.75 52.89	<u> </u>		84278	82938 82668	86.12
37 38	95051	94228		€	89	84015	02000	86.59
39	94734	94055	54.01 55.10	negligible	90	83751	82396	87.07
. 37	777.37	35011	l	🛐	91	83485	82123	87.54
.40	94571	93697	56.16	S	92	83218	81849	1 88.01
41	94400	93510	57.20	1 -	93	82948	81572	88.48
42	94239	93335	58.22	Term	94	82677	81293	88.94
43 44	94076 93911	93155 92975	59.20	ļ Ļ	95	82404	81013	89.40
H	737	3-3/3	/		96	82120	80731	89.86
46	93744	92793	61.10	1	97	81853	80448	90.32
46	93575	92610	62.01	1 .	97 98 99	81 576	80164	90.78
46 47 48	93403	92424	62.90	ľ.	99	81295	79872	91.23
48	93229	92237	63.76		700	8.0.	20.580	0.69
49	93052	92047	64.60	1	, 100	81015	79589	91.68
<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>'</u>	1	

Quoted from the results of Dittmar & Fawsitt, "Trans. Roy. Soc. Edin." vol. 33.

VARIATION OF THE DENSITY OF ALCOHOL WITH TEMPERATURE.

	(a) The density of alcohol at t^0 in terms of water at 4^0 is given b by the following equation: $d_t = 0.80025 - 0.0008340t - 0.0000020t^2.$ From this formula the following table has been calculated.													
J C		Density or Mass in grammes per cubic centimetre.												
Temp.	0	1	2	8	4		5	6	7	8	•			
0 10 20 30	.80625 .79788 .78945 .78097	19788 .79704 .79620 .79535 .79451 .79367 .79283 .79198 .79114 .79029 8945 .78860 .78775 .78691 .78606 .78522 .78437 .78352 .78267 .78182												
				at 	sity of wa	ken as ur	ilty.f			of alcohol	l. Water			
Percen age of alcohol weight	by		osity at ten	10° C.	300	Percen age of alcohol weight	by -		zo°	t temp. C.	300			
0 5 10 15 20 25 30 35 40 45	0.999 .991 .984 .979 .975 0.971 .965 .957	35 .99 93 .98 95 .97 66 .97 15 0.96 40 .95 84 .95 39 .94	113 .9 409 .9 816 .9 263 .9 672 0.9 998 .9 174 .9 255 .9	9831 8945 8195 7527 6877 6185 5403 4514 3511	0.99579 .98680 .97892 .97142 .96413 0.95628 .94751 .93813 .92787	50 55 60 65 79 75 80 85 90 95	.90 .89 .88 0.87 .86 .84	848 742 595 420 245 035 789 482	0.92182 0.91074 0.89944 0.88790 0.87613 0.86427 0.85215 0.83967 0.82665 0.81291	0.91400 .90275 .89129 .97961 .86781 0.85580 .84366 .83115 .81801	0.90577 .89456 .88304 .87125 .85925 0.84719 .83483 .82232 .80918 .79553			
50	0.929			1400	0.90577	100	0.80		.79788	0.78945	0.78096			

SMITHEORIAN TABLES.

Mendelsjeff, "Pogg. Ann." vol. 138.
 † Quoted from Landolt and Börnstein, "Phys. Chem. Tab." p. 223.

VELOCITY OF SOUND IN AIR.

Rowland has discussed (Proc. Am. Acad. vol. 15, p. 144) the principal determination of the velocity of sound is atmospheric air. The following table, together with the footnotes and references, are quoted from his paper. Some later determinations will be found in Table 111, on the velocity of sound in gases.

Observer. (See References below.)	Date.	Place of determination.	Number of observations hade.	Temperature observed.	Velocity observed.	Velocity reduced to o C. and ordi- nary air.	Velocity reduced to oo and dry air.	Velocity approxi- mately reduced to oo C, and dry air (mean).*	Estimated weight of observation.
1 2 3 4 5 6 7 8 9 10	1830	France Düsseldorf India { France Austria	40 120 70 30 88 22 shots 14 " 51 - 34 149	5°-7°.5 C. 	172.56 T. 1149.2 ft. 1131.5 ft. 340.89 m. 340.37 339.27 336.50 338.01	332.9m. 333.7 b 333.0 ° 329.6 ° 331.36 332.96 333.62 332.62 332.27 332.20° 332.11	332.82d	332.6m. 332.7 330.9 330.8 332.5 - - 332.0 331.8	2 2 4 3 7 1 1 4

General mean deduced by Rowland, 331.75.

Correcting for the normal carbonic acid in the atmosphere, this becomes 331.78 metres per second in pure dry air at oo C.

REFERENCES.

- 1 French Academy: "Mém. de l'Acad. des Sci." 1738, p. 128.
- 2 Benzenburg: Gibberts's "Annalen," vol. 42, p. 1.
- 3 Goldingham: "Phil. Trans." 1823, p. 96.
- 4 Bureau of Longitude: "Ann. de Chim." 1822, vol. 20, p. 210; also, "Œuvres d'Arago," "Mem. Sci." ii. 1.
- 5 Stampfer und Von Myrbach: "Pogg. Ann." vol. 5, p. 496.
- 6 Moll and Van Beek: "Phil. Trans." 1824, p. 424.
- 7 Parry and Foster: "Journal of the Third Voyage," 1824-5, App. p. 86; "Phil. Trans." 1828, p. 97.
- 8 Savant: "Ann. de Chim." ser. 2, vol. 71, p. 20. Recalculated.
- 9 Bravais and Martins: "Ann. de Chim." sér. 3, vol. 13, p. 5.
- 10 Regnault: "Rel. des Exp." iii. p. 533.
- a I believe that I calculated these reduced numbers on the supposition that the air was rather more than half saturated with moisture.
 - b Reduced to oo C. by empirical formula.
 - c Wind calm.
- d Moll and Van Beek found 332.049 at 0° C. for dry air. They used the coefficient .00375 to reduce. I take the numbers as recalculated by Schröder van der Kolk.
 - An error of 0.21° C. was made in the original. See Schröder van der Kolk, "Phil. Mag." 1865.
- f Corrected for wind by Galbraith.
- Recalculated from Savart's results.
- This is given as 1864 in Rowland's table. The original paper is in "Mém. de l'Institut," vol. 37, 1868.

TABLE 110.

VELOCITY OF SOUND IN SOLIDS.

The numbers given in this table refer to the velocity of sound along a bar of the substance, and hence depend on the Young's Modulus of elasticity of the material. The elastic constants of most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
Metals: Aluminium		5104	16740	Masson.
Brass	_	3500	11480	Various.
Cadmium	_	2307	7570	Masson.
Cobalt	_	4724	15500	46
Copper	20	3560	11670	Wertheim.
	100	3290	10800	"
	200	2950	9690	66 46
Gold (soft)	20	1743	57 17	"
"	100	1720	5640	4
	200	1735	5691	Various.
Gold (hard) Iron and soft steel .	-	5000	6890 16410	various.
Iron	20	5130	16820	Wertheim.
*	100	5300	17390	44
"	200	4720	15480	"
" cast steel	20	4990	16360	44
	100	4920	16150	46
	200	4790	15710	
Magnesium	-	4602	15100	Melde.
Nickel	_	4973	16320	Masson.
Palladium Platinum		3150	10340	Various. Wertheim.
	20 100	2690 2570	8815	wertheim.
	200	2460	8437 8079	44
Silver	20	2610	8553	"
	100	2640	8058	"
"	200	2480	8127	"
Tin	-	2500	8200	Various.
Zinc	-	3700	12140	
Various: Brick	-	3652	11980	Chladni.
Clay rock	-	3480	11420	Gray & Milne.
Granite Marble	-	3950	12960	"
Class		3810	12500 14800	66
Tuff	_	4510 2850	9350	46
(from	_	5000	16410	Various.
Glass } "to"	_	6000	19690	
Ivory	-	3013	9 886	Ciccone & Campanile.
Vulcanized rubber	0	54	177	Exner.
(black) ∫	50	31	102	
" " (red) .	0	69	226	46
	70	34	111	.,
Woods: Ash, along the fibre . " across the rings .		4670	15310	Wertheim.
" along the rings .	-	1390	4570 4140	46
Beech, along the fibre.	_	3340	10060	. 46
" across the rings	_	1840	6030	66
" along the rings	_	1415	4640	46
Elm, along the fibre .	-	4120	13516	44
" across the rings .	-	1420	4665	44
" along the rings .	-	1013	3324	
Fir, along the fibre	-	4640	15220	16 64
maple	-	4110	13470	44
Dina 4	_	3850	12620	u .
Time	_	3320 4280	10900	et
Sycamore "	_	4460	14640	44
		7755	-4240	1
- 	,			

TABLE 111.

VELOCITY OF SOUND IN LIQUIDS AND CASES.

Substance.	Temp. C.	Velocity in metres per second.	Velocity in feet per second.	Authority.
Liquids: Alcohol	8.4	1264	4148	Martini.
4	23	1160	3806	Wertheim.
Ether	ا م	1159	3803	"
Oil of turpentine	24	1212	3977	"
Water (Lake Geneva) .	9	1435	4708	Colladon & Sturm.
" (from Seine river)	15	1437	4714	Wertheim.
" " " "	30	1528	5013	"
44 44 44	60	1724	5657	46
Water	3.9	1399	4591	Martini.
44	13.7	1437	4714	44
"	25.2	1457	4780	66
Gases: Air	-3	333	1002	Dulong.
"	o	331.6	1087	Wertheim.
"	o	333	1002	Masson.
44	ه ا	330.7	1085	Le Roux.
и	٥	332.1	1080	Schneebeli.
44	0	332.5	1001	Kayser.
4	ŏ	331.9	1080	Wullner.
4	١٥	331.7	1088	Blaikley.
"	ő	331.2	1086	Violle & Vautier.
" : : : :	— 10.Q	326.1	1070	Greely.
"	- 25.7	317.1	1040	arecry.
. "	-37.8	309.7	1016	44
	- 45.6	305.6	1002	44
44	43.0	332.4	1001	Stone.
Ammonia	0	415	1361	Masson.
Carbon monoxide	0	337.1	1106	Wullner.
" "	0	337.4	1107	Dulong.
" dioxide	0	261.6	858	"
Carbon disulphide	Ö	189	606	Masson.
Chlorine	0	206.4	677	Martini.
"	0	205.3	674	Strecker.
Ethylene	0	314	1030	Dulong.
Hydrogen	0	1269.5	4165	Bulong.
"	0	1286.4	4221	Zoch.
Illuminating gas	ŏ	490.4	1600	"
Methane	0	422	1385	Masson.
Nitric oxide	0	325	1066	44
Nitrous oxide	ŏ	261.8	859	Dulong.
Oxygen	ŏ	317.2	1041	uiong.
Vapors: Alcohol	ő	230.6	756	Masson.
Ether	0	179.2	588	44
Water	Ö	401	1315	46
"	06	410	1345	44
• • • •	, ,,,	4.0	י כייני	

TABLE 112. FORCE OF CRAVITY FOR SEA LEVEL AND DIFFERENT LATITUDES. This table has been calculated from the formula $g_{\phi} = g_{48} [t - .002662 \cos 2\phi]$, where ϕ is the latitude.

Lati- tude ø.	g in cms. per sec. per sec.	Log.	g in inches per sec. per sec.	Log.	g in feet per sec. per sec.	Log.
~			.0	a aC a . = 0		
O°	977.989	2 990334	385.034	2.555498	32.0862	1.506318
5	8.029	0352	.050	5517	.0875	6336
10	.147	0404	.095	5570	.0916 .0977	6388
15 20	.339 .600	0490 0605	.173 .275	5655	.1062	6474
20		0003	.2/3	5771	.1002	6590
25	978.922	2.990748	3° ;402	2.585914	32.1168	1.506732
30	9.295	0913	.548	6079	.1290	6898
31	.374	0949	.580	6114	.1316	6933
32	.456	0985	.612	6150	.1343	6969
33	.538	1021	.644	6187	.1370	7005
34			-0 - 6		22.000	
	979.622	2.991059	385.677	2.586224 6262	32.1398	1.507043 7080
35 36	.707	1095	.711	6300	.1425	7000
30	-793 -880	1135	.745 .779		.1454	7167
37 38	.968	1212	.813	6339 6377	.1490	7196
ا تح	.900			93/1		7.90
39	980.057	2.991251	385.849	2.586417	32.1540	1.507236
40	.147	1391	.884	6457	1570	7275
41	.237	1331	.919	6496	.1607	7325
42	-327	1372	.955	6537	.1630	7356
43	.418	1411	.9,0	6577	.1659	7395
44	080 500	0.005.450	386.026	2.586617	32.1688	
	980.509 .600	2.991452 1493	.062	2.500017	.1719	1.507436 7476
45 46	.631	1532	.003	6698	.1748	7516
47	.732	1573	.134	6738	.1778	7557
47 48	.873	1613	.170	6778	.1808	7597
		5	•			. , , , , ,
49	980.963	2.991653	386.205	2.586818	32.1838	1.507637
50	1.053	1693	.241	6858	.1867	7677
51	.143	1732	.276	6898	.1896	7716
52	.231	1772	.311	6917	.1924	7756
53	.318	1810	-345	6975	.1954	7794
54	981.407	2.991849	386 3%a	2.587014	32.1983	1.507833
	·493	1837	.414	7053	.2011	7871
55 56	578	1925	-417	7090	.2039	7909
57	.662	1962	480	7127	.2067	7946
57 58	.744	1993	.513	7164	.2094	7983
li - I			'	, ,	''	
59	981.825	2.992034	386 545	2.587200	32.2121	1.508018
60	.925 2.278	2070	.576	7235	.2147	8054
65		2234	·723	7400	.2276	8229
70	.600 .861	2377	.849	7542	.2375	8361
75	.001	2492	.952	7657	.2460	8476
80	983 053	2.992577	387.028	• 2.587742	32.2523	1.508561
85	.171	2629	.074	7794	.2562	8613
90	.210	2646	.090	7812	.2575	8631
				•	J. J. J	-

The constant .0.2562 is based on data given by Harkness (Solar Parallax and Related Constants, Washington, 1891). The force of gravity for any latitude ϕ and elevation above sea level h is very nearly expressed by the equation $\mathcal{E}\phi = \mathcal{E}_{45}\left(1 - .002662\cos 2\phi\right) \left[1 - \frac{2h}{R}\left(1 - \frac{3\delta}{4\Delta}\right)\right],$

where R is the earth's radius, δ the density of the surface strata, and Δ the mean density of the earth. When $\delta = 0$ we get the formula for elevation in air. For ordinary elevations on land $\frac{\delta}{\Delta}$ is nearly $\frac{1}{2}$, which gives for the correction at latitude 45° for elevated portions of the earth's surface

or the earth's surface
$$\mathcal{E}_{48} \frac{.5k}{4R} = 980.6 \times \frac{.5k}{4R} = 1225.75 \frac{k}{R} \text{ in dynes.}$$

$$= 386.062 \times \frac{.5k}{4R} = 482.562 \frac{k}{R} \text{ in inch pound units.}$$

$$= 32.1719 \times \frac{.5k}{4R} = 40.2149 \frac{k}{R} \text{ in poundals.}$$

CRAVITY.

In this table the results of a number of the more recent gravity determinations are brought together. They serve to show the degree of accuracy which may be assumed for the numbers in Table 112. In general, gravity is a little lower than the calculated value for stations far inland and slightly higher on the coast line.

Place	Latitude.	Elevation	Gravity	in dynes.	Refer-
Piaco	N. +, S	in metres.	Observed.	Reduced to sea level.	ence.
Singapore	1° 17′	14	978.07	978.07	,
Georgetown, Ascension	-7 56		978.24	978.24	2
Green Mountain, Ascension	-7 57 -8 49	686	978 o8	978.21	2
Loanda, Angola		46	978.14	978.15	2
Caroline Islands	— 10 oo	2	978.36	978.36	3 2
Bridgetown, Barbadoes	13 04	18	978.16	978.16	
Jamestown, St. Helena	— 15 55	10	978.66	978 66	2
Longwood, "	- 15 57	533	978.52	978.58	2
Pakaoao, Sandwich Islands	20 43	3001	978.27	978.84	3
Haiki " "	20 52 20 56	3	978.85 978.90	978.85 978.92	3 3 3
Honolulu. " "	21 18	117	978.96	978.92	ا ع
St. Georges, Bermuda	32 23	3 2	979.75	979-75	3 2
Sidney, Australia	-33 52	43	979-67	979.68	ī
Cape Town	$-33 \ 56$	13	979.61	97961	2
Tokio, Japan	35 41	6	979-94	979.94	1
Auckland, New Zealand	- 36 52	43	979 67	979.68	,
Mount Hamilton, Cal. (Lick Obs.)	37 20	1282	979.64	979-89	4
	37 20	1282	979.68	979.92	5
San Francisco, Cal	37 47	114	979-95	979-97	4
	37 47 38 53	114	980.02	980.04	5 4
Washington, D. C.	38 53	10	980.10	980.10	4
Denver, Colo	39 54 39 58	1645	979.68	979.98	5 6
York, Pa		122	980.12	580.14	0
Ebensburgh, Pa	40 27	651	980.c8	980.20	6
Allegheny, Pa		348	980.c9 980.26	980.15 980.26	0
Salt Lake City, Utah	40 44 40 46	1288	979.82	980.20 980.05	4
Chicago, Ill.	41 49	165	980.34	980.37	2
Pan paluna, Spain	42 49	450	980.34	680.42	3
Montreal, Canada	45 31	100	980.73	980.75	'5
Geneva, Switzerland	46 12	405	(80.58	980 64	8
4 4	46 12	405	ς8c δ ο	98o.66	4557589998
Berne, "	46 57	572	∮80.61	980.69	9
Zurich, "	47 23	466	ç8o.67	980.74	9
Paris, France	48 50	67	98c 96	980.97	8
Kew, England	51 28	7	981.20	981.20	8
Berlin, Germany	52 30	49	981.26	981.27	8
Port Simpson, B. C.	54 3 4	6	581.45	981.45	4
Burroughs Bay, Alaska	55 59 56 28	0	981.49	981.49	4
Wrangell, "		7 8	981.19 83.180	981.59 981.68	4
Sitka. "	57 03	12	981.66	981.66	4
St. Paul's Island, "	57 07 58 18	5	981.73	981.73	4
Pyramid Harbor. "	59 10	5	981.81	981.73	4
Yakutat Bay, "	59 32	4	981.82	981.82	4
l	37 3-	7	,	,	•

¹ Smith: "United States Coast and Geodetic Survey Report for 1884," App. 14.
2 Preston: "United States Coast and Geodetic Survey Report for 1860," App. 12.

² Preston: "United States Coast and Geodetic Survey Report for 1860," App. 12.
3 Preston: Ibid. 1888, App. 14.
4 Mendenhall: Ibid. 1891, App. 15.
5 Defforges: "Comptes Rendus," vol. 118, p. 231.
6 Pierce: "U. S. C. and G. S. Rep. 1883," App. 19.
7 Cebrian and Los Arcos: "Comptes Rendus des Séances de la Commission Permanente de l'Association Géodesique International," 1893.
8 Pierce: "U. S. C. and G. S. Report 1876, App. 15, and 1881, App. 17."
9 Messerschmidt: Same reference as 7.

[•] In all the values given under references 1-4 gravity at Washington has been taken at 980.100, and the others derived from that by comparative experiments with invariable pendulums. SMITHSONIAN TABLES.

TABLE 114. SUMMARY OF RESULTS OF THE VALUE OF CRAVITY (0) AT STATIONS-IN THE UNITED STATES, OCCUPIED BY THE U. S. COAST AND GEODETIC SURVEY DURING THE YEAR 1894.*

Atlantic Coast. Boston, Mass. Cambridge, Mass. Cable, Cable	Station.			Latitude.	Longitude.	Elevation.	g observed.
Boston, Mass. 42 21 33 71 03 50 22 980.382 Cambridge, Mass. 42 22 48 71 07 45 14 980.384 Princeton, N. J. 40 20 57 74 39 28 64 980.164 Philadelphia, Pa. 39 57 06 75 11 40 16 980.182 Washington, C. & G. S. 38 53 13 77 00 32 14 980.098 Washington, Smithsonian 38 53 20 77 01 32 10 980.1001 Appalachian Elevation. 1thaca, N. Y. 42 27 04 76 29 00 247 980.286 Charlottesville, Va. 38 02 01 78 30 16 166 979.924 Deer Park, Md. 39 25 02 79 19 50 770 979.921 Central Plains. Cleveland, Ohio 41 30 22 81 36 38 210 980.227 Cincinnati. Ohio 39 08 20 84 25 20 245 979.990 Terre Haute, Ind. 39 28 42 87 23 49 151 980.058 Chicago, Ill. 41 47 25 87 36 03 182 980.264 St. Louis, Mo. 38 38 03 90 12 13 154 979.987 Kansas City, Mo. 39 05 50 94 35 21 278 979.976 Ellsworth, Kan. 38 43 43 98 13 32 469 979.912 Wallace, Kan. 38 54 44 101 35 26 1005 979.74f Colorado Springs, Col. 38 35 044 104 49 02 1841 979.476 Denver, Col. 39 40 36 104 56 55 1638 979.595 Grand Canyon, Wyo. 44 43 16 110 29 44 2386 979.985 Norris Geyser Basin, Wyo. 44 43 16 110 29 44 2386 979.936 10.0 of Geyser Basin, Wyo. 44 43 21 110 46 2191 979.498 10 42 02 104 60 2191 979.498 106 60 60 60 60 60 60 60 60 60 60 60 60 6	AN die Coort			0 / 1/	0 / //	Matros	Dunes
Cambridge, Mass.							
Princeton, N. J		. •	•				
Philadelphia, Pa		•	•				
Washington, C. & G. S. 38 53 13 77 00 32 14 980.098 Washington, Smithsonian. 38 53 20 77 01 32 10 980.1001 Appalachian Elevation. 11 4 2 27 04 76 29 00 247 980.286 Charlottesville, Va. 38 02 01 78 30 16 166 979.924 980.286 Deer Park, Md. 39 25 02 79 19 50 770 979.921 979.921 Central Plains. Cleveland, Ohio 41 30 22 81 36 38 210 980.227 Cincinnati, Ohio 39 08 20 84 25 20 245 979.990 779.990 Terre Haute, Ind. 39 28 42 87 23 49 151 980.058 980.058 Chicago, Ill. 41 47 25 87 36 03 182 980.264 980.264 St. Louis, Mo. 38 38 03 90 12 13 154 979.987 880.264 Kansas City, Mo. 38 43 43 98 13 32 469 979.912 979.912 Wallace, Kan. 38 43 43 98 13 32 469 979.912 979.912 Wallace, Kan. 38 54 44 101 35 26 1005 979.74f 2005 979.74f Colorado Springs, Col. 38 50 44 104 49 02 1841 979.476 979.476 Denver, Col. 38 50 20 105 02 02 4293 978.940 Rocky Mountains. 978.940 Pike's Peak, Col. 38 50 20 105 02 02 4293 978.940 Grand Junction, Col. 38		•	•		7 . 02		
Washington, Smithsonian. 38 53 20 77 01 32 10 980.1001 Appalachian Elevation. 1 thaca, N. Y. 42 27 04 76 29 00 247 980.286 Charlottesville, Va. 38 02 01 78 30 16 166 979.924 Deer Park, Md. 39 25 02 79 19 50 770 979.921 Central Plains. Cleveland, Ohio 41 30 22 81 36 38 210 980.227 Cincinnati, Ohio 39 08 20 84 25 20 245 979.990 779.990 779.990 Terre Haute, Ind. 39 28 42 87 23 49 151 980.058 980.264 St. Louis, Mo. 41 47 25 87 36 03 182 980.264 980.264 St. Louis, Mo. 38 38 03 90 12 13 154 979.987 Kansas City, Mo. 38 50 50 94 35 21 278 979.976 Ellsworth, Kan. 38 43 43 98 13 32 469 979.912 Wallace, Kan. 38 54 44 101 35 26 1005 979.74f Colorado Springs, Col. 38 50 44 104 49 02 1841 979.476 Denver, Col. 38 50 44 104 49 02 1841 979.476 Denver, Peak, Col. 38 32 33 106 56 02 2340 979.328 Grand Junction, Col. 38 32 33 106 56 02 2340 979.328 Grand Canyon, Wyo. 44 43 16 110 29 44 2386 979.622 Grand Canyon, Wyo. 44 43 16 110 29 44 2386 979.835		•	•				
Appalachian Elevation. Ithaca, N. Y			•				
Ithaca, N. V. 42 27 04 76 29 00 247 980.286 Charlottesville, Va. 38 02 01 78 30 16 166 979.924 Deer Park, Md. 39 25 02 79 19 50 770 979.921 Central Plains. 28 1 36 38 210 980.227 Cincinnati, Ohio 39 08 20 84 25 20 245 979.990 Terre Haute, Ind. 39 28 42 87 23 49 151 980.058 Chicago, Ill. 41 47 25 87 36 03 182 980.264 St. Louis, Mo. 38 38 03 90 12 13 154 979.987 Kansas City, Mo. 39 05 50 94 35 21 278 979.976 Ellsworth, Kan. 38 43 43 98 13 32 469 979.976 Wallace, Kan. 38 54 44 101 35 26 1005 979.476 Denver, Col. 39 40 36 104 49 02 1841 979.476 Denver, Col. 38 50 20 105 02 02 4293 978.940 Gunnison, Col. 38 50 20 105 02 02 4293 978.940 Grand Junction, Col. 38 59 23 110 09 56		•	•	38 53 20	77 01 32	10	980.1001
Charlottesville, Va							-006
Deer Park, Md. 39 25 02 79 19 50 770 979-921		•	•	42 27 04			
Central Plains. 41 30 22 81 36 38 210 980.227 Cincinnati, Ohio 39 08 20 84 25 20 245 979.990 Terre Haute, Ind. 39 28 42 87 23 49 151 980.058 Chicago, Ill. 41 47 25 87 36 03 182 980.264 St. Louis, Mo. 38 38 03 90 12 13 154 979.987 Kansas City, Mo. 39 05 50 94 35 21 278 979.976 Ellsworth, Kan. 38 43 43 98 13 32 469 979.912 Wallace, Kan. 38 54 44 101 35 26 1005 979.74f Colorado Springs, Col. 38 50 44 104 49 02 1841 979.476 Denver, Col. 39 40 36 104 56 55 1638 979.595 Rocky Mountains. 7ike's Peak, Col. 38 50 20 105 02 02 4293 978.940 Grand Junction, Col. 38 32 33 106 56 02 2340 979.328 Grand Junction, Col. 38 59 23 110 09 56 1243 979.619 Grand Canyo		•	•				
Cleveland, Ohio		•	•	39 25 02	79 19 50	770	979-921
Cincinnati, Ohio							
Terre Haute, Ind		•	•	-41 30 22		210	
Chicago, Ill			•	39 08 20		245	
St. Louis, Mo. 38 38 03 90 12 13 154 979.987 Kansas City, Mo. 39 05 50 94 35 21 278 979.976 Ellsworth, Kan. 38 43 43 98 13 32 469 979.912 Wallace, Kan. 38 54 44 101 35 26 1005 979.747 Colorado Springs, Col. 38 50 44 104 49 02 1841 979.476 Denver, Col. 39 40 36 104 56 55 1638 979.595 Rocky Mountains. 186 979.595 105 02 02 4293 978.940 Gunnison, Col. 38 32 33 106 56 02 2340 979.328 Grand Junction, Col. 39 04 09 108 33 56 1308 979.619 Green River, Utah 38 59 23 110 09 56 1243 979.622 Grand Canyon, Wyo. 44 43 16 110 29 44 2386 979.885 Norris Geyser Basin, Wyo. 44 43 32 111 04 80 2206 979.936 I.ower Geyser Basin, Wyo. 44 33 21 110 48 08 2200 979.918 Pleasant Valley, Jct., Utah 39 50 47 111 00 46 2191 979.498 <td>Terre Haute, Ind</td> <td></td> <td></td> <td>39 28 42</td> <td></td> <td></td> <td></td>	Terre Haute, Ind			39 28 42			
Kansas City, Mo	Chicago, Ill			41 47 25	87 36 o3	182	980.264
Ellsworth, Kan	St. Louis, Mo			38 38 03	90 12 13	154	979.987
Ellsworth, Kan	Kansas City, Mo			39 05 50	94 35 21	278	979.976
Colorado Springs, Col	Ellsworth, Kan				98 13 32	469	979.912
Colorado Springs, Col	Wallace, Kan			3S 54 44	101 35 26	1005	979.74
Denver, Col. 39 40 30 104 56 55 1038 979-595	Colorado Springs, Col			38 50 44	104 49 02	1841	979.476
Rocky Mountains. 38 50 20 105 02 02 4293 978.940 Gunnison, Col. 38 32 33 106 56 02 2340 979.328 Grand Junction, Col. 39 04 09 108 33 56 1398 979.619 Green River, Utah 38 59 23 110 09 56 1243 979.622 Grand Canyon, Wyo. 44 43 16 110 29 44 2386 979.885 Norris Geyser Basin, Wyo. 44 44 09 110 42 02 2276 979.936 Lower Geyser Basin, Wyo. 44 33 21 110 48 08 2200 979.918 Pleasant Valley, Jct., Utah 39 50 47 111 00 46 2191 979.448	Denver, Col						
Pike's Peak, Col. .] 55 5	. 5- 55		7.7 373
Gunnison, Col				38 50 20	105 02 02	4203	978.940
Grand Junction, Col							
Green River, Utah							
Grand Canyon, Wyo							
Norris Geyser Basin, Wyo 44 44 09 110 42 02 2276 979.936 Lower Geyser Basin, Wyo 44 33 21 110 48 08 2200 979.918 Pleasant Valley, Jct., Utah 39 50 47 111 00 46 2191 979.498				0 0, 0			
Lower Geyser Basin, Wyo 44 33 21 110 48 08 2200 979.918 Pleasant Valley, Jct., Utah 39 50 47 111 00 46 2191 979.498							
Pleasant Valley, Jct., Utah 39 50 47 111 00 46 2191 979-498							
						1	
1 132 9/9/709							
11 1. 1.	i Dan Lake City, Clair	•	•	40 40 04	111 33 40	13-2	9/3-/09

TABLE 115. LENGTH OF SECONDS PENDULUM AT SEA LEVEL FOR DIFFERENT LATITUDES.

Latitude.	Length in centimetres.	Log.	Length in inches.	Log	Latitude.	Length in centimetres.	Log.	Length in inches.	Log.
0 5 10 15 20	99.0910 .0950 .1079 .1265 .1529	1.996034 6052 6104 6190 6306	39.0121 .0137 .0184 .0261 .0365	1.591200 1217 1270 1356 1471	50 55 60 65 70	99.4014 -4459 -4876 -5255 -5581	1.997393 7587 7770 7935 8077	39.1344 .1520 .1683 .1832 .1960	1.592558 2753 2935 3100 3242
25 30 35 40 45	99.1855 .2234 ,2651 .3096 .3555	1.996448 6614 6796 6991 7192	39.0493 .0642 .0806 .0982	1.591614 1779 1962 2157 2357	75 80 85 90	99.5845 .6040 .6160 .6200	1.998192 8277 8329 8347	39.2065 .2141 .2188 .2204	1.593358 -3442 -3494 -3512

^{*} G. R. Putnam, Phil. Soc. of Washington, Bull. vol. xiii † Taken as standard. The other values were obtained from this by means of invariable pendulums. ‡ Calculated from force of gravity table by the formula $t=x/\pi^2$. For each 100 feet of elevation subtract 0.000506 centim-trees, or 0.000335 inches, or 0.000196 feet.

LENGTH OF THE SECONDS PENDULUM.

Date of determination.	of observations	Range of latitude included by the stations.	Length of pendulum in metres for latitude φ.	Correspond- ing length of pendulum for lat. 45°.	Reference.
1799 1816 1821 1825 1827 1829 1830 1833 1866 1884	15 31 8 25 41 5 49 - 51 73 123	From + 67° 05′ to — 33° 56′ " + 74° 53′ " — 51° 21′ " + 38° 40′ " — 60° 45′ " + 79° 50′ " — 12° 59′ " + 79° 50′ " — 51° 35′ " + 79° 51′ " — 51° 35′ " + 79° 50′ " — 51° 35′ " + 79° 50′ " — 62° 56′ " + 79° 50′ " — 62° 56′ e above results	0.990631 + .005637 sin² ¢ 0.990743 + .005466 sin² ¢ 0.990880 + .005340 sin² ¢ 0.990977 + .005142 sin² ¢ 0.991026 + .005072 sin² ¢ 0.991026 + .005072 sin² ¢ 0.990555 + .005679 sin² ¢ 0.991017 + .005087 sin² ¢ 0.990970 + .005185 sin² ¢ 0.990910 + .005105 sin² ¢ 0.990918 + .005262 sin² ¢ 0.990910 + .005290 sin² ¢	0.993450 0.993550 0.993550 0.993548 0.993502 0.993500 0.993512 0.993554 0.993553 0.993555	1 2 3 4 5 6 7 8 9 10 11

In 1884, from the series of observations used by Dr. Fischer, Dr. G. W. Hill 18 found

```
l = 0.9927148 \text{ metre} \\ + 0.0050890 \rho^{-4} (\sin^2 \phi - \frac{1}{3}) \\ + 0.000979 \rho^{-6} \cos^2 \phi \cos(2\omega' + 29^\circ 04') \\ - 0.000355 \rho^{-6} (\sin^3 \phi - \frac{3}{3} \sin) \phi \\ + 0.0005421 \rho^{-6} (\sin^3 \phi - \frac{3}{3} \sin) \phi \\ + 0.0005421 \rho^{-6} \sin \phi \cos^2 \phi \cos(2\omega' + 4^\circ 49') \\ + 0.0001248 \rho^{-6} \cos^4 \phi \cos(3\omega' + 110^\circ 24') \\ + 0.0001248 \rho^{-6} (\sin^4 \phi - \frac{1}{3} \sin^2 \phi + \frac{3}{3} \sin^2 \phi) \\ + 0.0007386 \rho^{-6} (\sin^3 \phi - \frac{1}{3} \sin \phi) \cos \phi \cos(\omega' + 3^\circ 02') \\ + 0.0002175 \rho^{-6} (\sin^2 \phi - \frac{1}{3}) \cos^2 \phi \cos(2\omega' + 262^\circ 17') \\ + 0.0003126 \rho^{-6} \sin \phi \cos^3 \phi \cos(3\omega' + 148^\circ 20') \\ + 0.0003126 \rho^{-6} \cos^4 \phi \cos(4\omega' + 248^\circ 19') \\ \text{where } \phi \text{ is the geocentric latitude, } \omega' \text{ the geographical longitude, and } \rho \text{ a factor, varying with the latitude, such that the radius of the earth at latitude <math>\phi is \alpha \rho where \alpha is the equatorial radius of the earth.
                                                                                                                            /= 0.9927148 metre
```

torial radius of the earth.

- 1 Laplace: "Traité de Mécanique Céleste," T. 2, livre 3, chap. 5, sect. 42.
 2 Mathieu: "Sur les expériences du pendule;" in "Connaissance des Temps 1816," Additions, pp. 314-341, p. 332.
 3 Biot et Arago: "Recueil d'Observations géodésiques, etc." Paris, 1821, p. 575.
- 4 Sabine: "An Account of Experiments to determine the Figure of the Earth, etc., by Sir Edward Sabine." London, 1825, p. 352.
- Sir Edward Sabine." London, 1825, p. 352.

 5 Saigey: "Comparaison des Observations du pendule à diverses latitudes; faites par MM. Biot, Kater, Sabine, de Freycinet, et Duperry;" in "Bulletin des Sciences Mathématiques, etc.," T. 1, pp. 31-43, and 171-184. Paris, 1827.

 6 Pontécoulant: "Théorie analytique du Système du monde," Paris, 1829, T. 2, p. 466.

 7 Airy: "Figure of the Earth;" in "Encyc. Met." 2d Div. vol. 3, p. 230.

 8 Poisson: "Traité de Mécanique," T. 1, p. 377; "Connaissance des Temps," 1834, pp. 32-33; and Puissant: "Traité de géodésie," T. 2, p. 464.

 9 Unferdinger: "Das Pendel als geodätisches Instrument;" in Grunert's "Archiv," 1869, p. 316.

 10 Fischer: "Die Gestalt der Erde und die Pendelmessungen;" in "Ast. Nach." 1876, col. 87.

- col. 87.
- 11 Helmert: "Die mathematischen und physikalischen Theorieen der höheren Geodäsie, von Dr. F. R. Helmert," II. Theil. Leipzig, 1884, p. 241.
 - 12 Harkness.
- 13 Hill, Astronomical paper prepared for the use of the "American Ephemeris and Nautical Almanac," vol. 3, p. 339.

^{*} The data here given with regard to the different determinations which have been made of the length of the seconds pendulum are quoted from Harkness (Solar Parallax and its Related Constants, Washington, 1891).
† Calculated from a logarithmic expression given by Unferdinger.

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.

Length of the seconds pendulum at sea =/= 39.012540 + 0.208268 sin² φ inches. = 3.251045 + 0.017356 sin² φ feet. = 0.9609910 + 0.005290 sin- φ metres. level Acceleration produced by gravity per second per second mean solar time. $= g = 32.086528 + 0.171293 \sin^2 \phi \text{ feet.}$ $= 977.9800 + 5.2210 \sin^2 \phi \text{ centimetres.}$ Equatorial semidiameter = $a = 20925293 \pm 409.4$ feet. = 3963.124 ± 0.078 miles. = 6377972 ± 124.8 metres. . = $b = 20$55590 \pm 325.1$ feet. = 3949.922 \pm 0.062 miles. = 6356727 \pm 99.09 metres. Polar semidiameter . $= 393775819 \pm 4927$ inches. $= 32814652 \pm 410.6$ feet. $= 6214.896 \pm 0.078$ miles. $= 10001816 \pm 125.1$ metres. One earth quadrant . Flattening $=\frac{a-b}{a} = \frac{1}{300.205 \pm 2.964}$ Eccentricity = $\frac{a^2 - b^3}{a^2}$ = 0.006651018. Difference between geographical and geocentric latitude = $\phi - \phi'$ = 688.2242" sin 2 $\phi - 1.1482$ " sin 4 $\phi + 0.0026$ " sin 6 ϕ . Mean density of the Earth = 5.576 ± 0.016 . Surface density of the Earth = 2.56 ± 0.16 . Moments of inertia of the Earth; the principal moments being taken as A, B, and C, and C the greater: $\frac{C-A}{C} = 0.00326521 = \frac{1}{306.259};$ $C-A = 0.001064767 Ea^{3};$ $A = B = 0.325029 Ea^{2};$ $C = 0.326094 Ea^{2};$ where E is the mass of the Earth and a its equatorial semidiameter. Length of sidereal year = 365.2563578 mean solar days; = 365 days 6 hours 9 minutes 9.314 seconds. Length of tropical year = $365.242199870 - 0.0000062124 \frac{t - 1850}{100}$ mean solar days; = 365 days 5 hours 48 minutes $\left(46.069 - 0.53675 \frac{t - 1850}{100}\right)$ seconds. Length of sidereal month $= 27.321661162 - 0.0000026240 \frac{t - 1800}{100} days;$ = 27 days 7 hours 43 minutes $\left(11.524 - 0.022671 \frac{7 - 1800}{100}\right)$ seconds. Length of synodical month = 29.530588435 - 0.00000030696 $\frac{t-1800}{100}$ days; = 29 days 12 hours 44 minutes $\left(2.841 - 0.026522 \frac{t - 1800}{100}\right)$ seconds. Length of sidereal day = 86164 09965 mean solar seconds.

N. B. — The factor containing t in the above equations (the epoch at which the values of

the quantities are required) may in all ordinary cases be neglected.

^{*} Harkness, "Solar Parallax and Allied Constants."

MISCELLANEOUS DATA WITH RECARD TO THE EARTH AND PLANETS.

MASSES OF THE PLANETS.

Reciprocals of the masses of the planets relative to the Sun and of the mass of the Moon relative to the Earth:

Mercury = 8374672 ± 1765762 . Venus = 408968 ± 1874 . Earth * = 327214 ± 624 . Faith = $37/214 \pm 024$.

Mars = 3093500 ± 3295 .

Jupiter = 1047.55 ± 0.20 .

Saturn = 3501.6 ± 0.78 .

Uranus = 22600 ± 36 .

Neptune = 18780 ± 300 .

Moon = 81.068 ± 0.238 .

Mean distance from Earth to Sun = 92796950 ± 59715 miles; = 149340870 ± 96101 kilometres.

Eccentricity of Earth's orbit $= e_1$

= 0.016771049 - 0.0000004245 (
$$t-1850$$
) - 0.000000001367 $\left(\frac{t-180}{100}\right)^2$.

Solar parallax = $8.80905'' \pm 0.00567''$.

Lunar parallax = $3422.54216'' \pm 0.12533''$.

Mean distance from Earth to Moon = 60.269315 ± 0.002502 terrestrial radii; = 238854.75 ± 9.916 miles; = 384396.01 ± 15.958 kilometres.

Lunar inequality of the Earth = $L = 6.52294'' \pm 0.01854''$.

Parallactic inequality of the Moon = $Q = 124.95126'' \pm 0.08197''$.

Mean motion of Moon's node in 365.25 days = μ = -19° 21' 19.6191" + 0.14136" $\frac{f}{f}$

Eccentricity and inclination of the Moon's orbit $= \epsilon_2 = 0.054899720$.

Delaunay's $\gamma = \sin \frac{1}{2} / = 0.044886793$. $I = 5^{\circ} 08' 43.3546''$.

Constant of nutation = $9.22054'' \pm 0.00859'' + 0.00000904'' (t - 1850)$.

Constant of aberration = $20.45451'' \pm 0.01258''$.

Time taken by light to traverse the mean radius of the Earth's orbit $=498.00595 \pm 0.30834$ seconds.

Velocity of light = 186337.00 ± 49.722 miles per second. = 299877.64 ± 80.019 kilometres per second.

* Earth + Moon.

AERODYNAMICS.

The pressure on a plane surface normal to the wind is for ordinary wind velocities expressed by $P = \vec{k}wv^2$

where k is a constant depending on the units employed, w the mass of unit volume of the air, a the area of the surface and v the velocity of the wind.* Engineers generally use the table of values of P given by Smeaton in 1759. This table was calculated from the formula

$$P = .00492 v^2$$

and gives the pressure in pounds per square foot when v is expressed in miles per hour. The corresponding formula when v is expressed in feet per second is

$$P = .00228 v^4$$
.

Later determinations do not agree well together, but give on the average somewhat lower values for the coefficient. The value of w depends, of course, on the temperature and the barometric pressure. Langley's † experiments give kw = .00166 at ordinary barometric pressure and 10° C. temperature.

For planes inclined at an angle a less than 90° to the direction of the wind the pressure may be expressed as $P_a = F_a P_{90}$.

Table 118, founded on the experiments of Langley, gives the value of F_a for different values of a. The word aspect, in the headings, is used by him to define the position of the plane relative to the direction of motion. The numerical value of the aspect is the ratio of the linear dimension transverse to the direction of motion to the linear dimension, a vertical plane through which is parallel to the direction of motion.

	in. × 4.8 in. 6 (nearly).		in. X 12 in. ect 1.	Plane 6 in. × 24 i Aspect }.		
a	Fa	a	F_a	•	Fa	
0°	0.00	00	0.00	00	0.00	
5	0.28	5	0.15	5	0.07	
5 10	0.44	5	0.30	5 10	0.17	
15	0.55	15	0.44	15	0.29	
20	0.62	20	0.57	20	0.43	
25	0.66	25	0.69	25	0.58	
30	0.69	30	0.78	30	0.71	
30 35 40	0.72	35	0.78 0.84	-	<u>-</u>	
40	0.74	40	0.88	-	-	
45	0.76	45	0.91	-	-	
50	0.78	50	_	_	_	

TABLE 118. - Values of Pa in Equation Pa=PaPer.

The pressure on a spherical surface is approximately 0.36 that on a plane circular surface of the same diameter as the sphere; on a cylindrical surface with axis normal to the wind, about 0.5 that on a rectangular surface of length equal to the length, and breadth equal to the diameter of the cylinder.

[†] The data here given on Professor Langley's authority were communicated by him to the author.

AERODYNAMICS.

On the basis of the results given in Table 118 Langley states the following condition for the soaring of an aeroplane 76.2 centimetres long and 12.2 centimetres broad, weighing 500 grammes,—that is, a plane one square foot in area, weighing 1.1 pounds. It is supposed to soar in a horizontal direction, with aspect 6.

TABLE 119. - Data for the Searing of Planes 76.2 × 12.2 cms. weighing 500 Grammes, Aspect 6.

Inclination to the hori-	Soaring s	peed v.	Work expend (acti	ed per minute vity).	Weight of planes of like form, capable of soaring at speed v with the expenditure of one horse power.		
	Metres per Feet per sec.				Kilogrammes.	Pounds.	
2° 5 10 15 30 43	20.0 15.2 12.4 11.2 10.6 11.2	66 50 41 37 35 37	24 41 65 86 175 336	174 297 474 623 1268 2434	95.0 55.5 34.8 26.5 13.0 6.8	209 122 77 58 29	

In general, if
$$\rho = \frac{\text{weight}}{\text{area}}$$

Soaring speed $v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_a \cos a}}$

Activity per unit of weight $= v \tan a$

The following data for curved surfaces are due to Wellner (Zeits. für Luftschifffahrt, x., Oct. 1893).

Let the surface be so curved that its intersection with a vertical plane parallel to the line of motion is a parabola whose height is about $\frac{1}{13}$ the subtending chord, and let the surface be bounded by an elliptic outline symmetrical with the line of motion. Also, let the angle of inclination of the chord of the surface be α , and the angle between the direction of resultant air pressure and the normal to the direction of motion be β . Then $\beta < \alpha$, and the soaring speed is

$$v = \sqrt{\frac{\rho}{k} \cdot \frac{1}{F_a \cos \beta}}$$
, while the activity per unit of weight $= v \tan \beta$.

The following series of values were obtained from experiments on moving trains and in the wind.

Angle of inclination
$$a = -3^{\circ}$$
 0° $+3^{\circ}$ 6° 9° 12° Inclination factor $F_a = 0.20$ 0.50 0.75 0.90 1.00 1.05 $\tan \beta = 0.01$ 0.02 0.03 0.04 0.10 0.17

Thus a curved surface shows finite soaring speeds when the angle of inclination a is zero or even slightly negative. Above $a = 12^{\circ}$ curved surfaces rapidly lose any advantage they may have for small inclinations.

TERRESTRIAL MACNETISM.

TABLE 120. - Total Intensity of the Terrestrial Magnetic Pield.

This table gives in the top line the total intensity of the terrestrial magnetic field for the longitudes given in the first column and the latitudes given in the body of the table. Under the headings 13, 13.5, and 13.75 there are sometimes several entries for one longitude. This indicates that these lines of total force cut the same longitude line more than once. The isodynamic lines are peculiarly curved and looped morth of Lake Ontaries. The values are for the epoch January 1, 1885, and the intensities are in British and C. G. S. units.

Longi- tude.	10.5 or .4841	11.0 or .5072	11.5 or 5304	12.0 or •5533	12.5 Of .5704	13.0 01	-5994		13.5 0	r .6225		13.75	or .6 340
0	•	•	0	U	0	0	0	•	, 0	0	0	0	1 0
67	-	-	-	-	-	44 5	45.5	-	-	i –	-	-	1 - 1
68	-	l –	-	_	-	43.1	48.2	-	-	-	- ·	-	-
70	-	-	-	-	-	41.9	-	_	-	-	-	-	-
72	-	-	-	-	-	40.6	-		-	-	-	-	-
75	-	-	-	-	-	36.7	-	-	-	-	-	-	-
										l			
76	-	-	-	-	-	36.4	-	44.7	-	-	-	-	-
77 7 8 80 81	-		-	-	-	36.0	-	43.6	45.4	-	_	-	-
78	-	22.6	24.5	-	-	34.1	-	43.3	45.2	-	-	_	-
80	-	22.8	24.5	27.9	31.2	35.1	-	43.9	44.6	-		-	-
81	-	22.8	24.5	27.1	31.2	35.5	-	41.4	41.9	44-3	45.8	-	-
82	-	22.8	24.6	26.4	31.3	35.5	_	41.2	42.1	43.6	45.8	_	_
83	_	22.7	24.8	26.6	31.2	35.2	_	41.0	46.2	_	-	_	i - i
82 83 85 86 87	19.6	22.2	25.0	27.9	30.8	34-4	_	40.8	47.6	i -		45.5	46.1
86	19.8	22.3	_	28.3	30.6	35.3	-	41.1	48.0	-	-	45.2	47-4
87	20.0	22.5	-	28.3 28.6	30.4	35-5	-	41.9	48.4	-	-	43.2	47.7
90	20.1	22.5	_	29.9	31.9	36.6		41.6	49.1	-	_	43.2	48.2
92	20. I	22.3	-	20.3	33.3	37.4	-	41.7	50.2	-	l –	44.7	48.2
95	20.0	22.3	-	28.3	33.1	37.2	-	41.2	_	-	-	43.7	-
100	20.0	22.8	-	30.0	34.1	39.0		41.4	-	-	-	42.7	-
105	21.7	24.4	-	33.1	36.1	39.8	-	43.6		-	-	44.8	-
110	23.2	26.9	31.2	34-4	37.7	41.6	_	45.2	_	_	_	47.0	_
115	-	29.í	31.8	35.2	40.1	44-5	_	-	_	-	¦ -	· · -	-
120	~	30.7	34.7	37.8	42.3	46.4	-	-	_	-	_	-	-
124	~	-	J.,	39.6	44.2	'-'	-	-	-	-	-	-	-
				·-						<u> </u>	<u> </u>		

TABLE 121. — Secular Variation of the Total Intensity.

Values in British units of total intensity of terrestrial magnetic force at stations given in the first column and epochs

January 1 of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1879	1880	1305
Cambridge	13.48	13.33	13.21	13.22	13.37	13.45	13.49	13.39	13.14	12.79
New Haven .	13.47	13.40	13.25	13.11	13.20	13.33	13.41	13.41	13.20	13.05
New York .	13 56	1351	13.39	13.27	13.32	13.36	13.36	13.31	13.19	12.99
Sandy Hook.	13.70	13.59	13.36	13.17	13.23	13.35	13.40	13.39	13.30	13.13
Albany	13.68	13.65	13.72	13.80	13.87	13.93	13.92	13.82	13.61	13.27
Philadelphia .	13 52	13.44	13.45	13.47	13.51	13.55	13.58	13.57	13.49	13.25
Baltimore	13.56	1345	13.38	13.37	13.44	13.46	13.48	13.48	13.38	I 3.22
Washington .	13.43	13.36	13.31	13.34	13.39	13.42	13.4?	13.38	13.29	13.20
Toronto	14.03	13.93	13.95	13.91	1382	13.82	13.77	13.78	13.78	13.76
Cleveland .	13.85	13.78	13.76	12.75	13.78	13.83	13.84	13.81	13.74	13.61
Detroit	13.85	13.80	13.71	13.68	13.72	13.75	13.76	13.78	13.73	13.60

Tables 120-125 have been compiled from a very full discussion of the magnetic dip and intensity for the United States and adjacent countries, given in Appendix 6 of the Report of the United States Coast and Geodetic Survey for 1885. Later Reports of the survey have been consulted, particularly in connection with the antrapolation of the values of horizontal intensity to 1890 and 1895, but most of the data are taken from Mr. Schott's Appendix to the 1885 Report.

TERRESTRIAL MACNETISM. TABLE 122. — Values of the Magnetic Dip.

This table gives for the epoch January 1, 1885, the values of the magnetic dip, stated in first column, corresponding to the longitudes given in the top line and the latitudes given in the body of the table. Thus, for longitude 95° and latitude 30° the dip was 50° on January 1, 1885. The longitudes are west of Greenwich. For positions above the division line in the table the dip was increasing, and for positions below that line decreasing, in 1885.

					Lo	ngitudes	west of	Greenw	rich.				
Dip.	66°	70°	75°	80 ³	85°	90°	95°	100°	105°	1100	115°	1200	1240
0	•	- 0	-	0	-	0	-	-	-	0	-	-	
44	_	-	_	_	_	17.9	18.4	19.1	19.6		_	-	-
45	_	_	_	_	_	18.7	19.2	19.8	20.3	_	_	_	_
6	_		-	-	-	19.2	19.8	20.6	21.1	-	_	_	_
7	-	-	-	-		20.0	20.5	21.2	21.8	-	-	-	- [
8	-	-	17.9	-	-	20.5	21.2	21.9	22.5	23.3	-	-	-
9	-	-	18.7	-	-	21.2	21.9	22.6	23.2	24.0	-	-	-
50	-	-	-	-	21.4	22.I	22.7	23.5	24.I	24.7	-	-	- 1
I	-	-	-	-	22.2	22.8	23.6	24.3	24.8	25.5	-	-	-
2	-	-	-	22.4	23.0	23.7	24.4	25.F	25.6	26.3	27.4	-	-
3	-	_	_	23.3	23.9	24.5	25.2	25.9	26.5	27.1 28.1	28.2	_	-
4	-	_	_	24.0	24.7	25.3	26.0	26.7	27.2		29.0	-	- 1
55	-		-	24.8	25.5	26.1	26.8	27.5	28.1	28.9	29.9	-	-
6	-	-	24.7	25.6	26.3	26.9	27.5	28.i	28.9	29.7	30.6	-	-
7	-	_	- 1	26.4	27.1	27.7	28.3	28.9	29.7	30.6	31.4	-	-
8	_	1 1	_	27.3 28.0	27.9 28.7	28.5	29.1	29.8	30.5	31.4	32.3	-	-
9	-	_	_			29.4	30.0	30.6	31.5	32.4	33-3	34-4	_
60	-	_	-	28.6	29.6	30.2	30.8	31.5	32.4	33-4	34.3	35.3	-
I	-	-	-	29.9	30.3	30.9	31.7	32-4	33-3	34.2	35.3	.36.2	-
2	-	-	-	30.6	31.3	31.9	32.5	33.3	34.3	35.2	36.3	37.1	-
3	_	_	_	31.6	32.0	32.7	33.6	34.2	35.2	36.2	37.1 38.1	38.1	39.0
4	-	-	-	32.7	33.2	33.6	34-5	35.2	36.1	37.2	-	39.0	40.3
65	-	-	-	33.5	34.0	34.6	35.5	36.2	37.1	38.2	39.2	40.3	41.5
6	_	_	25.	34.3	35.0	35.8 36.6	36.5	37.2 38.2	38.1	39.2 40.2	40.3	41.5	42.5
7 8	=		35.1 35.8	35.3 36.0	35.9 36.6	37.5	37.2	39.2	39.1 40.0	41.2	42.4	42.5 43.6	43.6 44.7
9	_	_	37.0	37.5	37.6	38.5	39.2	40.0	41.2	42.2	43.5	44.6	45.7
70	l	_	38.0	38.5	39.0	39.6	40.4	41.0	42.1	43.3	44.5	45.6	46.0
70		-	39.1	39.5	39.8	40.7	41.1	41.8	43.2	44.3	45.7	47.2	47.9
2	_	-	40.4	40.3	40.9	41.6	42.I	43.1	44.3	45.5	47.1	48.6	49.2
ll 3	-	41.7	41.2	41.9	42.2	42.7	43-4	44-4	45.5	46.9	48.6	50.0	<u> </u>
4	43.5	43.1	42.9	43.1	43.4	43.9	44.5	45.6	46.7	48.3	49.7	-	-
75	44.9	44.5	44.3	44.0	44-5	45.0	45.7	46.7	48.0	49.5	51.0	-	-
6	45.7	45.9	45.5	45.4	45.5	46.1	47.1	48.2	49.5	50.7	-	-	-
7 8	47.3	47.6	46.7	46.9	47.0	47.4	48.3	49-4	50.6	i -	-	-	-
	-	-	-	48.2	48.0	48.8	49-7	50.7	51.8	-	-	-	-
9	-	-	-	49-3	49.3	-	51.0	51.9	_	-	-	-	-
80	-	_	-	50.4	50.4				-	_	-		_

TABLE 123. — Secular Variation of the Magnetic Dip.

Values of magnetic dip at stations given in the first column, and epochs, January 1, of the years given in the top line.

Station.	1840	1845	1850	1855	1860	1865	1870	1875	1880	1885
Cambridge .	74-25	74.29	74·35	74.40	74.42	74.38	74.26	74.02	73.65	73.12
New Haven	73-47	73.51	73·56	73.61	73:64	73.62	73.54	73.38	73.11	72.72
New York .	72-75	72.73	72·75	72.78	72.80	72.78	72.71	72.56	72.31	71.93
Sandy Hook	72.63	72.61	72.63	72.66	72.68	72.66	72.59	72.44	72.19	73.99
Albany	74.75	74.80	74.88	74.96	75.02	75.02	74.95	74.77	74.46	
Philadelphia	71.99	72.02	72.08	72.15	72.20	72.21	72.16	72.02	71.77	71.38
Baltimore .	71.74	71.66	71.66	71.69	71.74	71.77	71.76	71.67	71.48	71.16
Washington	71.39	71.39	71.38	71.36	71.32	71.25	71.15	71.00	70.80	70.55
Toronto Cleveland . Detroit	75.28	75.25	75.32	75.39	75.41	75.35	75.27	75.20	75.03	74.88
	73.22	73.19	73.21	73.24	73.28	73.29	73.27	73.18	73.03	72.78
	73.61	73.61	73.63	73.66	73.68	73.69	73.67	73.60	73.47	73.28

TABLES 124, 125.

TERRESTRIAL MACNETISM.

TABLE 194. — Merisontal Intensity.

This table gives, for the epoch January 1, 1885, the horizontal intensity, H, corresponding to the longitudes in the top line and the latitudes in the body of the table. At epoch 1885 the force was increasing for positions above the division line, and was decreasing for positions below the division line.

Н					Long	itudes	west of	Green	wich.					H
in British units.	65°	70°	75°	80°	85°	900	95°	100°	105°	1100	1150	1300	1240	in C.G.S units.
	0	0	•	•	0	0	•	•	•	0	•	•	•	
2.50	-	-	-	-	49.8	~_	-	-	-	_	-	-	-	.1153
2.75	_	-		48.5	48.8	498	-	l	-	-	-	-	-	.1268
3.00	48.3	47.3	46.6	47.2	47.6	48.5	49.1	50.1	-	-	_	-	-	.1 383
3.25	45.5	45.6	45.5	45.8	46.1	46.7	47.6	48.5	-	_	-	-	-	.1498
3.50	43.2	43.8	43.6	44.0	44.6	45.I	45.8	47.2	-	-	-	-	-	.1614
3.75	-	42.2	42.5	42.6	43.2	43.6	44.6	45.8	47.3	48.4	49-4	-	-	.1729
4.00	-	40.7	41.2	41.5	42.1	42.4	43.4	44.6	45.7	46.8	47.7	48.7	49.6	.1844
4.25	-	-	39.6	40.2	40.4	41.0	41.8	43.0	44.2	45-4	46.3	47.0	47.6	.1959
4.50	-	-	38.1	38.7	39-2	39.7	40.4	41.6	42.8	43.8	44.6	45.2	45.7	.2075
4.75	-	-	36.6	37-4	37.6	38-4	39.1	39-9	41.0	42.0	42.8	43.6	44.2	.2190
5.00	_	_	35.1	35.8	36.2	36.9	37.8	38.5	39-3	40.3	41.1	41.9	42.6	.2305
5.25	-	-	35	34.6	35.2		35.9	37.0	38.0	37.7	39.2	39.6	39.8	.2422
5.50	_	-	-	33.0	33.8	33.8	34.5	35.3	36.3	36.7	37.2	37.7	37-4	.2536
5.75	_	- '	-	31.0	32.2	32.1	32.7	33.6	34.7	34.8	35.2	35.6	-	.2651
6.00	-	-	-	28.8	30.6	30.3	31.0	31.6	31.9	32.3	33.1	33.6	-	. 276 6
6.25	-	_	- 1	27.4	29.2	28.1	29.8	29.9	_	_	31.1	_	_	.2881
6.50	- 1	_	24.I	25.8	27.3	27.3	27.7	28.0	28.2	28.4	28.6	-	_	.2997
6.75	- 1	- 1	-	23.6		-		-	_	26.1	-	-	_	.3112
7.00	-	_	18.2	20.8	22.I	22.5	22.8	23.0	23.2	24.0	-		_	.3228
7.25	-	- i	- 1	-	-	19.5	19.9	20.3	20.5	21.2	-	_	_	.3343

TABLE 125. - Secular Variation of the Herizontal Intensity.

Values of the horizontal intensity, H, in British units, for stations given in first column and epochs given in top line. The values for 1890 and 1895 have been extrapolated from the values up to 1885. The epochs are for January 1 of the different years given.

Station.	1840	1845	1850	1855	1960	1865	1870	1875	1880	1885	1890	1895
Cambridge	3.66 3.83 4.02 4.09 3.60 4.18 4.25	3.61 3.80 4.01 4.06 3.58 4.15 4.23	3.56 3.75 3.97 3.99 3.58 4.14 4.21	3.55 3.70 3.93 3.92 3.58 4.13 4.20	3·59 3·72 3·94 3·94 3·58 4·13 4·21	3.62 3.76 3.95 3.98 3.60 4.14 4.21	3.66 3.80 3.97 4.01 3.61 4.16 4.22	3.68 3.83 3.99 4.04 3.63 4.19 4.24	3.70 3.86 4.01 4.07 3.64 4.22 4.25	3.71 3.87 4.03 4.10 3.66 4.23 4.27	3·73 3·87 4·05 4·13 3·67 4·24 4·28	3-74 3-86 4-07 4-16 3-69 4-24 4-30
Washington	4.28 3.56 4.00	4.26 3.54 3.98	3.53 3.97	4.26 3.51 3.96	3.48 3.96	3.49 3.97	4·33 3·50 3·98	4.35 4.52 3.99	4.37 3.56 4.01	4.39 3.58 4.03	4.41 4.60 4.05	4.42 4.61 4.07
Detroit	3.91 6.12 5.87 5.63 5.49	3.89 6.19 5.93 5.71 5.54	3.86 6.22 5.94 5.75 5.56	3.85 6.25 5.95 5.77 5.57	3.85 6.26 5.96 5.76 5.59	3.86 6.24 5.95 5.75 5.59	3.87 6.20 5.94 5.72 5.58	3.89 6.15 5.92 5.69 5.54	3.90 6.10 5.88 5.66 5.51	3.92 6.07 5.84 5.65 5.49	3.93 6.04 5.80 5.64 5.47	3-94 6-03 5-77 5-63 5-45
Fort Vancouver	4.44	4.51	4.55	4.56	4.58	4.58	4.57	4.56	4.54	4.53	4.52	4-52

TERRESTRIAL MACNETISM.

Secular Variation of Declination in the Form of a Function of the Time for a Number of Stations.

More extended tables will be found in App. 7 of the United States Coast and Geodetic Survey Report for 1888, from which this table has been compiled. The variable as is reckoned from the epoch 1850 and thus = t - 1850.

Station.		Latitude.	West longitude.	The magnetic declination (D) expressed as a function of time.							
	(a)	Eastern S	eries of St	ations.							
		0 /	0 /	0 0 0							
St. Johns, N. F Quebec, Canada	•	47 34.4 46 48.4	52 41.9	$21.94 + 8.89 \sin (1.05m + 63.4)$							
Quebec, Camada	•	40 40.4	71 14.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Charlottetown, P. E. I.		46 14.0	63 27.0	$15.95 + 7.78 \sin(1.2 m + 49.8)$							
Montreal, Canada	•	45 30-5	73 34.6	11.88 + 4.17 sin (1.5 m - 18.5)							
Bangor, Me		44 82.2	68 46.9	$+ 0.36 \sin (4.9 m + 19.0)$ 13.86 + 3.55 sin (1.30 m + 8.6)							
Halifax, N. S		44 39.6	63 35.3 73 45.8	$16.18 + 4.53 \sin(1.00 m + 46.1)$							
Albany, N. Y	•	42 39 2	73 45.8	$8.17 + 3.02 \sin (1.44 m - 8.3)$							
Cambridge, Mass	•	42 22.9	71 07.7	9.54 + 2.69 sin (1.30 m + 7.0) + 0.18 sin (3.20 m + 44.0)							
New Haven, Conn		41 18.5	72 55.7	7.78 + 3.11 sin (1.40 m - 22.1)							
New York, N. Y	•	40 42.7	74 00.4	$7.04 + 2.77 \sin (1.30 m - 18.1)$							
Harrisburg, Pa	_	40 15.9	70 52.6	+ 0.14 sin (6.30 m + 64.0) 2.93 + 2.98 sin (1.50 m + 0.2)							
Philadelphia, Pa.	•	39 56.9	75 09.0	$5.36 + 3.17 \sin (1.50 m - 26.1)$							
Weshington D.C.				$+ 0.19 \sin (4.00 m + 14.6)$							
Washington, D. C	•	38 53. 3	77 00.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Cape Henry, Va		36 55.6	76 00.4	$2.42 + 2.25 \sin(1.47 m - 30.6)$							
Charleston, S. C	•	32 46.6	70 55.8	$-1.82 + 2.75 \sin (1.40 m - 12.1)$ *							
Paris, France	•	48 50.2	† 2 20.2	$6.479 + 16.002 \sin (0.765 m + 118.77) + [0.85 - 0.35 \sin (0.69 n)] \sin [(4.04)]$							
St. George's Town, Bermuda		32 23.0	64 42.0	$+0.0054 n + .000035 n^{2} n^{2} + 0.0145 m + 0.00056 m^{2}$							
Rio de Janeiro, Brazil .	•	—22 54.8	43 09.5	$2.19 + 9.91 \sin (0.80 m - 10.4)$ *							
	(b)	Central S	eries of St	ations.							
York Factory, B. N. A		56 59.9	92 26.0	7.34 + 16.03 sin (1.10 m - 97.9)							
Fort Albany, B. N. A.	•	52 22.0	82 38.0	$15.78 + 6.95 \sin(1.20 m - 99.6)$ *							
Sault Ste Marie, Mich	•	46 29.9	84 20.1	$\begin{array}{c c} 1.54 + 2.70 \sin (1.45 m - 58.5) \\ 3.60 + 2.82 \sin (1.40 m - 44.7) \end{array}$							
Toronto, Canada	•	43 39-4	79 23.5	3.60 + 2.82 sin (1.40 m - 44.7)							
				$+ 0.09 \sin (9.30 m + 136)$ $+ 0.08 \sin (19.00 m + 247)$							
Chicago, Ill	•	41 50.0	87 36.8	$-3.77 + 2.48 \sin(1.45 m - 62.5)$							
Cleveland, Ohio	•	41 30.4	81 41.5	$0.47 + 2.39 \sin (1.30 m - 14.8)$							
Denver, Colo	:	39 45·3 39 19.0	104 59.5 82 02.0	$-15.30 + 0.011 m + 0.0005 m^2$ $-1.51 + 2.63 \sin (1.40 m - 24.7)$							
Cincinnati, Ohio		39 08.4	84 25.3	$\begin{array}{l} -2.59 + 2.43 \sin{(1.42 m - 37.9)} \\ -5.91 + 3.00 \sin{(1.40 m - 51.1)} \end{array}$							
St. Louis, Mo	•	3 8 38.0	90 12.2	$-5.91 + 3.00 \sin (1.40 m - 51.1)$							
New Orleans, La	•	29 52.2 24 33.5	90 03.9 81 48.5	$-5.20 + 2.98 \sin (1.40 m - 0.9.8)$ $-4.31 + 2.86 \sin (1.30 m - 23.9)$							
Kingston, Port Royal, Jamaic	a.	17 55-9	76 50.6								
(b) Stations on the Pacific Coast, etc.											
City of Mexico, Mex.		19 26.0	99 11.6	$= 5.24 + 3.28 \sin (1.00 m - 87.0)$							
Cerros Island, Lower Cal., M	ex.	28 04.0	115 12.0	$\begin{array}{lll} - & 5.34 + 3.28 \sin (1.00 m - 87.9) \\ - & 7.40 + 4.61 \sin (1.05 m - 107.0) \end{array}$							
San Francisco, Cal	•	37 47 5	122 27.3	$-13.94 + 2.05 \sin (1.05 m - 135.5)$							
Vancouver, Wash.	•	45 37.5	122 39.7	$-17.93 + 3.12 \sin (1.35 m - 134.1)$							
Citles Alocks											
Sitka, Alaska	:	57 02.9 60 20.7	135 19.7 146 37.6	$\begin{array}{c} -25.79 + 3.30 \sin (1.30 m - 101.2) \\ -23.71 + 7.89 \sin (1.35 m - 80.9) \end{array}$							

^{*} Approximate expression. † East longitude. † Compiled from a series of observations extending back to 1541. The primary wave follows the sum of the constant and first periodic term closely. The period seems to be about 470 years. In the expression for the secondary wave x = t - 1700.

TABLE 127.

TERRESTRIAL MAGNETISM. Secular Variation of the Declination. — Bastern Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900
St. Johns, N. F Quebec, Canada Charlottetown,	o 23.5 12.1	o 25.0 12.1	o 26.5 12.3	0 28.0 12.9	° 29.0 13.8	o 29.9 14.9	35.0 16.0	° 30.8 16.9	o 30.8 17.4	o 30.5 17.5	3 29.9 17.5
P. E. I	- 8.0 13.2	7.8 14.0	- 7.9 14.8	19.3 8.4 15.6	20.7 9.4 16.4	21.9 10.7 17.1	22.8 12.0 17.8	23.4 13.0 18.3	23.7 13.8 18.7	23.7 14.4 18.9	23.3 15.0 19.0
Bangor, Me Halifax, N. S Burlington, Vt Hanover, N. H Portland, Me	10.9 15.9 7.3 5.8 8.5	11.4 16.7 7.2 6.0 8.9	12.1 17.4 7.5 6.5 9.5	12.8 18.2 8.1 7.2 10.1	13.6 18.9 8.9 7.9 10.8	14.4 19.4 9.7 8.8 11.6	15.2 19.9 10.3 9.8 12.3	15.9 20.3 11.0 10.8 13.0	16.5 20.6 11.9 11.7 13.6	16.9 20.7 12.8 12.5 14.1	17.3 20.7 13.5 13.1 14.4
Rutland, Vt Portsmouth, N. H Chesterfield, N. H Newburyport, Mass. Williamstown, Mass.	6.3 7.4 - 7.3 5.7	6.2 7.7 6.0 7.6 5.9	6.5 8.1 6.4 8.1 6.3	6.9 8.7 7.0 8.6 6.8	7.6 9.5 7.7 9.3 7.4	8.5 10.3 8.5 10.0 8.1	9.4 11.1 9.4 10.7 8.8	10.4 11.9 10.3 11.4 9.6	11.3 12.7 11.2 12.0 10.3	12.3 13.3 12.0 12.5 10.9	13.0 13.7 12.6 12.8 11.4
Albany, N. Y Salem, Mass Oxford, N. Y Cambridge, Mass Boston, Mass	- 6.3 3.0 7.1 6.9	5.4 6.6 3.1 7.5 7.3	5.8 7.2 3.4 8.0 7.8	6.3 7.9 3.9 8.6 8.4	7.0 8.7 4.5 9.3	7·7 9.6 5.1 10.0 9·7	8.5 10.6 5.9 10.6 10.3	9.2 11.5 6.6 11.2 10.9	9.9 12.3 7.4 11.6 11.5	10.5 13.0 8.0 11.9 11.9	10.9 13.5 8.6 12.0 12.2
Provincetown, Mass. Providence, R. I Hartford, Conn New Haven, Conn. Nantucket, Mass.	7.2 6.5 5.2 4.7 6.8	7·7 6.5 5.2 4·7 7·2	8.2 6.7 5.5 5.0 7.7	8.9 7.3 5.8 5.4 8.7	9.6 8.2 6.2 5.9 9.0	10.2 9.2 6.8 6.6 9.6	10.9 9.8 7.4 7.3 10.1	11.5 10.2 8.0 8.1 10.6	12.0 10.8 8.6 8.8 11.0	12.4 11.6 9.2 9.5 11.3	12.6 12.1 9.8 10.1 11.5
Cold Spring Harbor, N. Y New York, N. Y Bethlehem, Pa Huntingdon, Pa New Brunswick,	4.7 4.3 2.6 1.0	4.9 4.5 2.3 0.8	5.2 4.6 2.3 0.9	5.6 5.0 2.5 1.1	6.1 5.6 2.9 1.5	6.7 6.3 3.5 2.1	7·3 6.9 4·2 2·7	7·9 7·4 5.0 3·5	8.4 7.9 5.8 4.2	8.9 8.5 6.7 4 .9	9.3 9.1 7.4 5.6
N. J	2.5	2.9	3.4	4.0	4-7	5.3	6.0	6.6	7.1	7-5	7.9
Jamesburg, N. J Harrisburg, Pa Hatboro, Pa Philadelphia, Pa Chambersburg, Pa	3.1 0.0 1.8 2.1 —0.3	3.1 0.3 2.0 2.2 —0.5	3.4 0.8 2.5 2.4 —0.3	3.8 1.4 3.0 2.9 0.2	4-3 2.2 3-7 3-4 0-7	4.9 2.9 4.3 4.1 1.4	5.6 3.7 5.0 4.7 2.0	6.3 4.4 5.7 5.4 2.7	7.0 5.0 6.7 6.2 3.4	7.6 5.5 7.6 7.0 4.2	8.2 5.8 8.0 7.7 5.0
Baltimore, Md	0.6 0.2 0.8 —0.2 0.2	0.7 0.2 0.9 —0.3 0.2	0.9 0.4 1.1 —0.2 0.2	1.2 0.7 1.5 0.0 0.5	1.7 1.1 2.0 0.4 0.8	2.3 1.8 2.6 0.9 1.3	2.9 2.5 2.4 1.5	3.5 2.9 4.1 2.1 2.4	4.2 3.7 4.9 2.7 2.9	4·7 4·3 5·6 3·3 3·5	5.2 4.6 6.2 3.9 3.9
New Berne, N. C. Milledgeville, Ga. Charleston, S. C. Savannah, Ga. Paris, France	-1.9 -5.0 -4.5 -22.6	-1.9 -5.3 -4.4 -4.7 22.3	—1.6 —5.6 —4.0 —4.7 21.9	-1.2 -5.6 -3.6 -4.5 21.8	-0.7 -5.5 -3.0 -4.2 21.8	-0.2 -5.3 -2.4 -3.8 20.9	0.5 5.0 1.7 3.3 19.1	1.1 -4.5 -1.1 -2.7 17.5	1.7 4.0 0.4 2.1 16.6	2.3 -3.4 0.1 -1.4 15.1	2.7 —2.7 0.5 —0.9
St. George's Town,	_	-	_	6.9	6.9	6.9	7.1	7-5	7.9	8.4	
Rio de Janeiro, Brazil	—5.4	-4 .5	-3.4	-2.2	-0.9	0.4	1.8	3.1	4.5	5.8	

^{*} This table gives the secular variation of the declination since the year 1800 for a series of stations in the Eastern States and adjacent countries. Compiled from a paper by Mr. Schott, forming App. 7, Report of the United States Coast and Geodetic Survey for 1888. The minus sign indicates eastern declination.

TERRESTRIAL MAGNETISM.

Secular Variation of the Declination. — Central Stations.*

Station.	1800	1810	1820	1830	1840	1850	1860	1870	1860	1890	1900
York Factory, Brit. N. A	0.1 13.4	—2.5 12.1	-4.7 10.9		—7.8 9.3	8.9	8.8	_	9.6	10.3	11.4
Superior City, Wis. Sault Ste. Marie, Mich.	} - 0.5	- -0.9	-1.1	-ı.6	1.0	—9.8 —0.8	—10.0 —0.3	—10.1 0.2	—10.1 8.0	9.9 1.5	-9.5 2.2
Pierrepont Manor, N. Y Toronto, Canada . Grand Haven, Mich. Milwaukee, Wis Buffalo, N. Y	- - - 0.2	- - - 0.2	2.6 5.0 0.4	6.8 5.2	1.3 -5.2	1.6 4.9 7.4	2.2 -4.4 -6.9	2.7 -3.7 -6.2	3.6 2.7		4.8 -3.6
Detroit, Mich Ypsilanti, Mich Erie, Pa Chicago, Ill Michigan City, Ind.	3.2 0.5 	-3.1 -4.1 -0.5	-2.9 -3.6 -0.4 -6.2	—3.0 —0.1	-2.2 0.4 -6.2	-1.4 0.9 -6.0	-0.6 1.6 5.6	0.2 2.3 5.1	0.9 3.0 —4.6	3.6 —4.0	0.9 1.9 4.2 —3.3 —2.3
Cleveland, Ohio . Omaha, Neb Beaver, Penn Pittsburg, Pa Denver, Colo	-1.9 -1.1 -	-12.5	—I 2.Ğ	I 2.6	-0.6 -12.4 -0.8 0.2	—12.0 —0.3	0.2	—10.9 0.9 1.9	-10.2 1.5 2.5	-9.5 2.2 3.1	2.3 -8.7 2.8 3.5
Marietta, Ohio Athens, Ohio Cincinnati, Ohio St. Louis, Mo Nashville, Tenn	- -4.1 -4.9 -	-2.9 -4.1 -5.0	3.9	-3.6 -4.8 -8.9	8.6	-2.6 -4.1 -8.2	—7.7	-1.4 -3.0 -7.1	-0.7 -2.4 -6.4	-0.1 -1.8 -5.6	1.4 0.4 1.3 4.9 3.6
Florence, Ala Mobile, Ala Pensacola, Fla New Orleans, La San Antonio, Texas	-5.8 -6.8 -7.1	— 7.2	6.7 7.5	—7.6 —7.6 —8.1	-7.4 -8.2	—7.0 —7.1 —8.0	 7.7	-6.4 -6.0 -7.2	—5.8 —5.3 —6.6	-5.2 -4.6 -5.9	-3.8 -4.6 -3.8 -5.2 -8.1
Key West, Fla Havana, Cuba Kingston, Port	- _{7.0}	1		− 6.3	-5.8	—5.3		4.2		3.0	-2.4 -2.5
Royal, Jamaica . Barbadoes, Car. Isl. Panama, New Gra- nada	6.0 3.4 7.9	— <u>3</u> .0	-2.5	2.0	-i.5	— 0.9	—3.8 —0.4 —6.3	0.1	0.5	-	

[•] This table gives the secular variation of the declination since the year 1800 for a series of stations in the Central States and adjacent countries. The minus sign indicates eastern declination. Reference same as Table 127.

TABLE 129.

TERRESTRIAL MACNETISM.

Secular Variation of the Declination. — Western Stations.*

			1			7				_	
Station.	1800	1810	1820	1830	1840	1850	1860	1870	1880	1880	1900
	•	0		0	٥	0		•	0		0
Acapulco, Mex	7.6	8.1	8.5	8.7	8.9	8.9	8.7	8.5	8.1	7.6	7.1
Vera Cruz, Mex	8.6	9.0	9.3	9.3	9.2	8.9	8.4	7.8	7.0	6.2	5.3
City of Mexico, Mex	7.5	7.9	8.2	8.5	8.6	8.6	8.5	8.4	8.r	7.8	7.4
San Blas, Mex	7.1	7.8	8.4	8.9	9.3 8.8	9.4	94	9.3	9.0	8.5	7.9
Cape San Lucas, Mex	6.2	6.9	7.6	8.3	8.8	9.2	9.5	9.6	9.6	9.4	9.0
Magdalena Bay, L. Cal.	6.6	7.4	82	8.9	9.5	10.0	10.3	10.5	10.5	10.3	10.0
Ceros Island, Mex	9.0	9.8	10.5	11.0	11.5	11.8	12.0	12.0	11.9	11.6	11.2
El Paso, Mex	-	-	-	-	-	12.3	12.5	12.4	12.3	11.9	11.4
San Diego, Cal	10.3	8.01	11.4	11.9	12.3	12.7	13.0	13.2	13.3	13.3	13.2
Santa Barbara, Cal	11.6	12.3	12.9	13.4	13.9	14.3	14.6	14.8	14.8	14.8	14.6
Monterey, Cal	12.3	12.9	13.4	13.9	14.4	14.9	15.3	16.6	15.9	16.0	16.1
San Francisco, Cal	13.6	14.1	14.5	15.0	15.4	15.8	16.1	16.3	16.5	16.6	16.6
Cape Mendocino	15.1	15.6	16.0	16.5	16.9	17.2	17.4	17.6	17.7	17.7	17.6
Salt Lake City, Utah	-	-	_	_		16.0	16.4	16.6	16.6	16.3	15.7
Vancouver, Wash	16.8	17.5	18.2	18.9	19.6	20.2	20.6	20.9	21.0	21.0	20.8
Walla Walla, Wash	-	-	-	-	-	20.4	20.8	21.0	21.1	21.0	20.8
Cape Disappointment,		_	_						ا ـ ا	_	- 1
Wash	17.7	18.2	18.7	19.2	19.8	20.3	20.8	21.2	21.6	21.8	21.9
Seattle, Duwanish Bay,		. (٠								
Wash	-	~		-		21.3	21.8	22.I	22.3	22.2	22.1
Port Townsend, Wash	18.1	18.8	19.6	20.3	20.9	21.4	21.7	21.8	21.8	21.5	21.1
Nee-ah Bay, Wash	18.3	18.9	19.6	20.3	21.0	21.6	22.I	22.5	22.7	22.7	22.6
Nootka, Vancouver Island Captain's and Iliuliuk Har-	19.6	20.1	20.7	21.3	22.0	22.5	23.0	23.5	23.8	23.9	24.0
bors, Unilaska Island	19.3	19.6	19.7	19.8	19.7	19.7	19.5	19.3	18.0	18.6	18.2
Sitka, Alaska	26.4	27.1	27.8	28.3	28.7	29.0	29.1	29.0	28.8	28.4	27.9
St. Paul, Kadiak Island .	25.5	26.4	27.0	27.3	27.4	27.1	26.6	25.9	25.0	23.9	22.7
Port Mulgrave, Yakutat	-3.3		-,	-/-3	-,			- 3-5	- 3.3	-3-5	,
Bay, Alaska	27.8	29.2	30.4	31.2	31.7	31.8	31.4	30.7	29.7	28.4	26.8
Port Etches, Alaska	27.8	29.3	30.4	31.2	31.6	31.5	31.0	30.1	28.8	27.3	25.5
Port Clarence, Alaska Chamisso Island, Kotze-	-	-	26.6	27.0	26.9	26.4	25.6	24.4	22.9	21.2	19.5
bue Sound	_	-	31.1	31.3	31.1	30.5	29.6	28.3	26.8	25.2	23.5
Petropavlovsk, Kamchatka, Siberia			۱ ا		٠		· 1			١ ١	1
Siberia	5.7	5.2	4.7	4.1	3.4	2.7	2.I	1.5	1.0	0.7	0.5

This table gives the secular variation of the declination since the year 1800 for a series of stations in the Western States and adjacent countries. The declinations are all east of north. Reference same as Table 127.

TERRESTRIAL MACNETISM.

Agenie Lines.*

The line of no declination is moving westward in the United States, and east declination is decreasing west of, while west declination is increasing east of the agonic line.

	Longitudes of the agonic line for the years —									
Lat. N.	1860	1850	1875	1890						
0	•	0	0	0						
25	-	-	-	75.5						
30	-	-	-	78.6						
35	-	76.7	79.0	79-9						
6	75.2	77.3	79-7	80.5						
7	76.3	77-7	80.6	82.2						
8	76.7	78.3	81.3	82.6						
9	76.9	78.7	81.6	82.2						
40	77.0	79-3	81.6	82.7						
1	7 7.9	80.4	81.8	82.8						
2	79.1	81.0	82.6	83.7						
3	79-4	81.2	83.1	84.3						
4	79-8	-	83.3	84.9						
45	-	-	83.6	85.2						
6	-	-	84.2	84.8						
7	_	-	85.1	85.4						
8	-	-	86.o	85.9						
9	_	_	86.5	86.3						

[•] Reference same as Table 127.

TABLE 131.

TERRESTRIAL MACNETISM.

Date of Maximum Bast Declination.*

This table gives the date of maximum east declination for a number of stations, beginning at the northeast of the United States and ex-tending down the Atlantic coast to New York and west to the Pacific.

Station.				Date.
Halifax,† N. S.	•	•		1714
Eastport, Me				1753
Bangor, Me			•	1774
Portland, Me			•	1779
Boston, Mass				1780
New Haven, Conn.				1800
New York, N. Y.				1784
Jamesburg, N. J				1802
Philadelphia, Pa				1802
Pittsburg, Pa				1808
Cincinnati, Ohio .				1814
Florence, Ala				1821
St. Louis, Mo				1822
Nashville, Tenn				1834
Chicago, Ill			•	1831
Denver, Colo	•			1839
Salt Lake, Utah .			•	1873
Vancouver, Wash.	•			1883
Cape Mendocino, Cal				1886
San Francisco, Cal.	•		•	1893

^{*} Reference same as Table 127.
† The opposite phase of maximum west declination is now located at Halifax.

TABLE 132.

PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at 0° C. for mercury and at 4° C. for water.

			n ————		
	METRIC MEAS	SURE.		BRITISH MEAS	URE.
Cms. of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of Hg.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	13.5956	0.193376	1	34-533	0.491174
2	27.1912	0.386752	2	69.066	0.982348
3	40.7868	0.580128	3	103.598	1.473522
4	54.3824	0.773504	4	138.131	1.964696
5	67.9780	0.966880	5	172.664	2.455870
6	81.5736	1.160256	6	207.197	2.947044
7	95.1692	1.353632	7	241.730	3.438218
8	108.7648	1.547008	8	276.262	3.929392
9	122.3604	1.740384	9	310.795	4.420566
10	135.9560	1.933760	10	345.328	4.911740
Cms. of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.	Inches of H ₂ O.	Pressure in grammes per sq. cm.	Pressure in pounds per sq. inch.
1	I	0.0142234	1	2.54	0.036227
2	2	0.0284468	2	5.08	0.072255
3	3	0.0426702	3	7.62	0.108382
4	4	o.o5689 3 6	4	10.16	0.144510
5	5	0.0711170	5	12.70	0.180637
6	6	0.0853404	6	15.24	0.216764
7	7	0.0995658	7	17.78	0.252892
8	8	0.1137872	8	20.32	0.289019
9	9	0.1280106	9	22.86	0.325147
10	10	0.1422340	10	25.40	0.361274

TABLE 133. REDUCTION OF BAROMETRIC HEICHT TO STANDARD TEMPERATURE.

	or brass scale and a measure.		r brass scale and measure.		or glass scale and measure.
Height of barometer in inches.	in inches for temp. F.	Height of barometer in mm.	in mm. for temp. C.	Height of barometer in mm.	in mm. for temp. C.
15.0 16.0	0.00135 .00145	400 410	0.0651 .0668	50 .	0.0086
17.0	.00154	420	.0684		.0172
17.5	.00154	430	.0700	1 50 200	.0258
18.0	.00163	440	.0716	250	.0345
18.5	.00167	450	.0732	300	.0431 .0517
19.0	.00172	460	.0749	350	.0603
19.5	.00176	470	.0765	330	.0003
''''	,	480	.0781	400	0.0689
20.0	0.00181	490	.0797	450	.0775
20.5	.00185	"	,,,	500	.0861
· 21.0	. 0 0190	500	0.0813	520	.0898
21.5	.00194	510	.0830	540	.0934
22.0	.00199	520	.0846	560	.0971
22.5	.00203	530	.0862	580	.1007
23.0	.00208	540	.0878	-	
23.5	.00212	550	.0894	600	0.1034
		560	.0911	610	.1051
24.0	0.00217	570	.0927	620	.1068
24.5	.00221	580	.0943	630	.1085
25.0	.00226	590	.0959	640	.1103
25.5 26.0	.00231			650 660	.1120
	.00236	600	0.0975	660	.1137
26.5	.00240	610	.0992	l I	
27.0	.00245	620	.1008	670	0.1154
27.5	.00249	630	.1024	680	.1172
1 000		640	.1040	690	.1189
28.0	0.00254	650 660	.1056	700	.1206
28.5	.00258 .00263	670	.1073	710	.1223
29.0		680	.1089	720	.1240
29.2	.00265	690	.1105	730	.1258
29.4 29.6	.00268	090	.1121	740	
29.8	.00206	700	0.1127		0.1275
30.0	.00270	710	0.1137	750 760	.1292
ا سی ا	.002/2	720	.1154	770	.1309
30.2	0.00274	730	.1186	780	.1327
30.4	.00276	740	.1202	790	-1344 1261
30.6	.00277	750	.1218	800	.1361 .1378
30.8	.00279	760	.1235		3/0
31.0	.002/9	779	.1251	850	0.1464
31.2	.00283	780	.1267	900	.1551
31.4	.00285	790	.1283	950	.1639
31.6	.00287	800	.1299	1000	.1723
3				1	,-3
<u> </u>				<u> </u>	

^{*}The height of the basometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation $H_I = H_I' - a(I' - I')$ where H_I' is the height at the standard temperature, H_I' the observed height at the temperature I' and I' and I' for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 10^{10} f. 10^{10} he standard density at 10^{10} f. 10^{10} he standard at 10^{10} f. 10^{10} he scale is graduated so as to be standard at 10^{10} f. 10^{10} he harometer having a brass scale gave H = 765 mm. at 10^{10} c. 10^{10} f. 10^{10} he scale is graduated at 10^{10} f. 10^{10} he harometer having a brass scale gave H = 765 mm. at 10^{10} c. 10^{10} f. $10^{$

mined by experiment.

TABLE 134.

CORRECTION OF BAROMETER TO STANDARD CRAVITY.

Height above sea										
level in metres.	400	450	500	550	600	650	700	750	800	
100 200 300 400	tres	for ele	in mi	above			.014 .028 .041	.015 .030 .044 .059	.016 .032 .047 .063	
500 600 700	and	level in height p line.	first co of baro	olumn meter		.064 .077 .090	.055 .068 .082 .096	.073 .088 .102	.078	
900 1000 1100				801. 811.	.118	.103 .115 .128 .141	.109 .123 .137 .150	.117 .131 .146		
1200 1300 1400 1500			.147	.129 .140 .151 .162	.142 .153 .165 .176	.154 .166 .179 .191	.164 .178 .191 .205			
1600 1700 1800 1900 2000		.176	.157 .167 .177 .187 .196	.172 .183 .194 .204 '215	.188 .200 .212 .224 .235	.204 .217 .230 .242 .255		1.340	1.245 1.203 1.162	15000 14500 14000
2100 2200 2300 2400 2500	.195	.185 .194 .203 .212	.206 .216 .226 .236 .245	.226 .237 .248 .259 .270	.247 .259 .271 .283		1.345 1.291 1.237	1.292 1.244 1.196 1.149 1.101	1.120 1.088 1.046 1.004 .962	13500 13000 12500 12000 11500
2600 2700 2800 2900 3000	.203 '211 .219 .227 .235	.229 .238 .247 .256 .265	.255 .265 .275 .285 .294		1.050	1.31 5 1.255 1.196 1.136 1.076	1.184 1.130 1.076 1.022 .969	1.053 1.005 .957 .909 .861	.920 .879 .837 .795 .753	11000 10500 10000 9500 9000
3100 3200 3300 3400 3500	.243 .251 .259 .267 .275	.274 .283 .292 .201 .309		1.077	.918 .853 .787 .721 .655	.957 .897 .837 .777	.915 .861 .807 .753	.813 .765		8500 8000 7500 7000 6500
3600 3700 3800 3900	.291 .299 .307		·779	.934 .862 .790 .718 .646	.789 .724 .658 .592	.718 .658 .598	,,55			6000 5500 5000 4500
4000	.314	.503 .419 .335	.623 -545 -467 -389 -311	.574 .503 .431 .359 .287	.526 .461 •395	of an sea le heigh	rrections inch for e evel in la it of baror	elevation st column	above n and	4000 3500 3000 2500 2000
.192 .096	.269 .179 .090	.251 .167 .084	.233 .155 .078	.215		line.	1	 I	ı	1 500 1000 500
32	30	28	26	24	22	30	18	16	14	Height above sea level in
		O	bserved	height of	baromete	er in inch	es.			feet.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.*

Reduction to Latitude 45°. - English Scale.

N. B. From latitude 9° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

					1	leight o	f the ba	rometer	in inche	·s.			
Latite	ide.	19	20	21	22	23	24	25	26	27	28	29	30
O°	90°	Inch. 0.051	Inch. 0.053	Inch. 0.056	Inch. 0.059	Inch. 0.061	Inch. 0.064	Inch. 0.067	Inch. 0.069	Inch. 0.072	Inch. 0.074	Inch. 0.077	Inch. 0.080
5	85	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	0.079
6	84	.049	.052	.055	.057	.060	.062	.065	.068	.070	.073	.076	.078
	83	.049	.052	.054	.057	.059	.062	.065	.067	.070	.072	.075	.077
7 8	82	.049	.051	.054	.056	.059	.061	.064	.067	.069	.072	.074	.077
9	81	.048	.051	.053	.056	.058	.061	.063	.066	.068	.071	.073	.076
10	80	0.048	0.050	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.073	0.075
11	79	.047	.049	.052	.054	.057	.059	.062	.064	.067	.069	.072	.074
12	79 78	.046	.049	.051	.054	.056	.058	.061	.063	.066	.068	.071	.073
13	77	.045	.048	.050	.053	.055	.057	.060	.062	.065	.067	.069	.072
14	76	.045	.047	.049	.052	.054	.056	.059	.06!	.063	.066	.068	.071
15	75	0.044	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069
16	74	.043	.045	.047	.050	.052	.054	.056	.059	.061	.063	.065	.068
17	73	.042	.044	.046	.049	.051	.053	.055	.057	.060	.062	.064	.066
18	72	.041	.043	.045	.047	.050	.052	.054	.056	.058	.060	.062	.065
19	71	.040	.042	.044	.046	.048	.050	.052	.055	.057	.059	.061	.063
20	70	0.039	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.061
21	69 68	.038	.040	.042	.044	.045	.047	.049	.051	.053	.055	.057	.059
22		.036	.038	.040	.042	.044	.046	.048	.050	.052	.054	.056	.057
23 24	67 66	.035	.037	.039	.041	.043 .041	.044	.045	.048 .046	.050	.052	.054	.055
25	65	0.033	0.034	0.036	0.038	0.039	0.041	0.043	0.044	0.046	0.048	0.050	0.051
26	64	.031	.033	.034	.036	.038	.039	.041	.043	.044	.046	.048	.049
27	63	.030	.031	.033	034	.036	.038	.039	.041	.042	.044	.045	.047
28	62	.028	.030	.031	.033	.034	.036	.037	.039	.040	.042	.043	.045
29	61	.027	,028	.030	.031	.032	.034	.035	.037	.038	.039	.041	.042
30	60	0.025	0.027	0.028	0.029	0.031	0.032	0.033	0.035	0.036	0.037	0.039	0.040
31		.024	.025	.026	.027	.029	.030	.031	.032	.034	.035	.036	.037
32	59 58	.022	.023	.025	.026	.027	.028	.029	.030	.032	.033	.034	.035
33	57	.021	.022	.023	.024	.025	.026	.027	.028	.029	.030	.031	.032
34	56	.019	.020	.021	.022	.023	.024	.025	.026	.027	.028	.029	.030
35	55	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025		0.026	0.027
36	54	.016	.016	.017	810.	.019	.020	.021	.021	.022	.023	.024	.025
37 38	53	.014	.015	.015	.016	.017	.018	.018	.019	.020	.021	.021	.022
38	52	.012	.013	.014	.014	.015	.015	.016	.017	.017	.018	.019	.019
39	51	.011	.011	.012	.012	.013	.013	.014	.014	.015	.015	.016	.017
40	50	0.009	0.009	0.010	0.010	0.011	0.011	0.012	0.012	0.012	0.013		0.014
41	49 48	.007	.007	.008	.008	.009	.009	.009	.010	.010	.010	110.	.011
42		.005	.006	.006	.006	.006	.007	.007	.007	.008	.008	.008	.008
43	47	.004	.004	.004	.004	.004	.004	.005	.005	.005	.005	.005	.006
44	46	.002	.002	.002	.002	.002	.002	.002	.002	.003	.003	.003	.003

^{* &}quot;Smithsonian Meteorological Tables," p. 58.

REDUCTION OF BAROMETER TO STANDARD GRAVITY.

Refrection to Latitude 45°. — Metric Scale.

N. B. — From latitude 9° to 44° the correction is to be subtracted. From latitude 90° to 46° the correction is to be added.

					Н	eight of	the bare	ometer i	n millim	etres.			
Lati	rude.	520	560	600	620	640	660	6 8 o	700	720	740	760	780
00	90°	mm. 1.38	mm. 1.49	mm. 1.60	mm. 1.65	mm. 1.70	mm.	mm.	mm. 1.86	mm. 1.92	mm. 1.97	mm. 2.02	mm. 2.08
5 6 7 8	85 84 83 82 81	1.36 1.35 1.34 1.33 1.32	I.47 I.46 I.45 I.43 I.42	1.57 1.56 1.55 1.54 1.52	1.63 1.61 1.60 1.59 1.57	1.68 1.67 1.65 1.64 1.62	1.73 1.72 1.70 1.69 1.67	1.81 1.78 1.77 1.76 1.74	1.84 1.82 1.81 1.79 1.77	1.89 1.87 1.86 1.84 1.82	1.94 1.93 1.91 1.89 1.87	1.99 1.98 1.96 1.94 1.92	2.04 2.03 2.01 2.00 1.97
10 11 12 13 14	80 79 78 77 76	1.30 1.28 1.26 1.24 1.22	1.40 1.38 1.36 1.34 1.32	1.50 1.48 1.46 1.44 1.41	1.55 1.53 1.51 1.48 1.46	1.60 1.58 1.56 1.53 1.50	1.65 1.63 1.60 1.58 1.55	1.70 1.68 1.65 1.63 1.60	1.75 1.73 1.70 1.67 1.65	1.80 1.78 1.75 1.72 1.69	1.85 1.83 1.80 1.77 1.74	1.90 1.88 1.85 1.82 1.79	1.95 1.93 1.90 1.87 1.83
15 16 17 18 19	75 74 73 72 71	1.20 1.17 1.15 1.12 1.09	1.29 1.26 1.24 1.21 1.17	1.38 1.35 1.32 1.29 1.26	I.43 I.40 I.37 I.34 I.30	1.48 1.44 1.41 1.38 1.34	1.52 1.49 1.45 1.42 1.38	1.57 1.54 1.50 1.46 1.43	1.61 1.58 1.54 1.51 1.47	1.66 1.63 1.59 1.55 1.51	1.71 1.67 1.63 1.59 1:55	1.75 1.72 1.68 1.64 1.59	1.80 1.76 1.72 1.68 1.64
20 21 22 23 24	70 69 68 67 66	1.06 1.03 1.00 0.96 •93	1.14 1.11 1.07 1.04 1.00	1.22 1.19 1.15 1.11 1.07	1.26 1.23 1.19 1.15 1.10	1.31 1.27 1.23 1.18 1.14	1.35 1.31 1.26 1.22 1.18	1.39 1.35 1.30 1.26 1.21	I.43 I.38 I.34 I.29 I.25	I.47 I.42 I.38 I.33 I.28	1.51 1.46 1.42 1.37 1.32	1.55 1.50 1.46 1.41 1.35	1.59 1.54 1.49 1.44 1.39
25 26 27 28 29	65 64 63 62 61	0.89 .85 .81 .77 .73	0.96 .92 .88 .83 .79	1.03 0.98 .94 .89 .85	1.06 1.02 0.97 .92 .87	1.10 1.05 1.00 0.95 .90	1.13 1.08 1.03 0.98 .93	1.16 1.11 1.06 1.01 0.96	1.20 1.15 1.10 1.04 0.99	1.23 1.18 1.13 1.07 1.02	1.27 1.21 1.16 1.10 1.04	1.30 1.25 1.19 1.13 1.07	1.33 1.28 1.22 1.16 1.10
30 31 32 33 34	60 59 58 57 56	0.69 .65 .61 .56	0.75 .70 .65 .61 .56	o.80 .75 .70 .65	0.83 .77 .72 .67 .62	0.85 .80 .75 .69	o.88 .82 .77 .71 .66	0.91 .85 .79 .74 .68	0.94 .87 .82 .76	0.96 .90 .84 .78	0.98 .92 .86 .80 .74	1.01 0.95 .89 .82 .76	1.04 0.97 .91 .84 .78
35 36 37 38 39	55 54 53 52 51	0.47 .43 .38 .33 .29	0.51 .46 .41 .36 .31	0.55 .49 .44 .39	0.56 .51 .45 .40 .34	0.58 .53 .47 .41 .35	o.60 ·54 ·48 ·43 ·37	0.62 •56 •50 •44 •38	0.64 .58 .51 .45 .39	o.66 ·59 ·53 ·46 ·40	0.67 .61 .54 .48 .41	0.69 .63 .56 .49	0.71 .64 .57 .50 .43
40 41 42 43 44	50 49 48 47 46	0.24 .19 .14 .10	0.26 .21 .16 .10	0.28 .22 .17 .11	0.29 .23 .17 .12 .06	0.30 .24 .18 .12	0.31 .24 .18 .12 .06	0.31 .25 .19 .13	0.32 .26 .19 .13	0.33 .27 .20 .13	0.34 .27 .21 .14	0.35 .28 .21 .14 .07	0.36 .29 .22 .14 .07

^{• &}quot;Smithsonian Meteorological Tables," p. 59.

TABLE 137.

CORRECTION OF THE BAROMETER FOR CAPILLARITY.

								
-			ı. Me	TRIC MEA	SURE.			
			Нвісн	r of Menis	cus in Mil.	LIMETRES.		
Diameter of tube in mm.	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
	_		Согте	ction to be a	dded in mill	imet res .		
4 5 6 7 8 9 10 11 12 13	0.83 -47 .27 .18 - - - -	1.22 0.65 .41 .28 .20 .15 - - -	1.54 0.86 .56 .40 .29 .21 .15 .10	1.98 1.19 0.78 -53 -38 -28 -20 -14 -10	2.37 1.45 0.98 .67 .46 .33 .25 .18	1.80 1.21 0.82 .56 .40 .29 .21	- 1.43 0.97 .65 .46 .33 .24 .18	- - 1.13 0.77 .52 .37 .27 .19
			2. Bri	TISH MEA	SURE.			
			Hai	GHT OF MI	INISCUS IN I	NCHES.		
Diameter of tube in inches.	.01	.02	.03	.04	.05	.06	.07	.08
			Correction	to be added	in hundredtl	s of an inch		
.15 .20 .25 .30 .35 .40 .45 .50	2.36 1.10 0.555 .36 - - -	4.70 2.20 1.20 0.79 .51 .40 -	6.86 3.28 1.92 1.26 0.82 .61 .32 .20	9.23 4.54 2.76 1.77 1.15 0.81 .51 .35	11.56 5.94 3.68 2.30 1.49 1.02 0.68 -47	- 7.85 4.72 2.88 1.85 1.22 0.83 .56	- 5.88 3.48 2.24 1.42 0.96 .64	- 4.20 2.65 1.62 1.15 0.71

^{*} The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1867). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

A number of tables, mostly based on theoretical formulæ and the capillary constants of mercury in glass tubes in air and vacuum, were given in the fourth edition of Guyot's Tables, and may be there referred to. They are not repeated here, as the above is probably more accurate, and historical matter is excluded for convenience in the use of the book.

ABSORPTION OF GASES BY LIQUIDS."

			_							
Temperature				ABSOR	PTION CORFFI	CIENTS, 4,	FOR GASE	S IN WA	TER.	
Centigrade.	Ca:	rbon kide. O ₃	mo	arbon noxide. CO	Hydrogen. H	Nitrogen. N	Nitr oxid N(le.	Nitrous oxide. N ₂ O	Oxygen.
0 5 10 15 20 25 30 40 50	1. 1. 0. 0.	797 450 185 002 901 772 - 506 -		0354 0315 0282 0254 0232 0214 0200 0177 0161	0.02110 .02022 .01044 .01875 .01809 .01745 .01690 .01644 .01608	0.02399 .02134 .01918 .01742 .01599 .01481 .01370 .01195 .01011	0.073 .062 .057 .057 .042 .042	46 71 15 71	1.305 1.095 0.920 0.778 0.670 	0.04925 .04335 .03852 .03456 .03137 .02874 .02646 .02316 .02080
Temperature Centigrade.				monia. N H _a	Chlorine.	Ethylene. C ₂ H ₄	Metha CH	une. _	Iydrogen ulphide. H ₂ S	Sulphur dioxide. SO ₂
0 5 10 15 20 25	.0: .01	2471 2179 1953 1795 1704	8	74.6 971.5 840.2 956.0 583.1 510.8	3.036 2.808 2.585 2.388 2.156 1.950	0.2563 .2153 .1837 .1615 .1488	0.054 .048 .043 .039 .034	89 67 03 99	4.371 3.965 3.586 3.233 2.905 2.604	79.79 67.48 56.65 47.28 39.37 32.79
		A	BSOI	RPTION C	OBFFICIENTS,	at, for Ga	SES IN A	ссоноц,	С₂Н₅ОН.	
Temperature Centigrade.	Carbon dioxide CO ₂	xide. Einylene. Methane		Hydrogen. H	Nitrogen. N	Nitric oxide. NO	Nitrous oxide. N ₂ O		de. dioxide.	
0 5 10 15 20 25	4.329 3.891 3.514 3.199 2.946 2.756	3.891 3.323 .5086 3.514 3.086 .4953 3.199 2.882 .4828 2.946 2.713 .4710		.0685 .0679 .0673	0.1263 .1241 .1228 .1214 .1204 .1196	0.3161 .2998 .2861 .2748 .2659 .2595	4.190 3.838 3.525 3.215 3.015 2.819	14.7 11.9 9.5 7.4	8 251.7 9 190.3 4 144.5 1 114.5	

^{*} This table contains the volumes of different gases, supposed measured at o° C. and 76 centimetres' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

NOTE. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

$$\begin{cases} P = 45 \text{ cms.} & 50 \text{ cms.} & 55 \text{ cms.} & 60 \text{ cms.} & 65 \text{ cms.} \\ a_{38} = 69 & 74 & 79 & 84 & 88 \end{cases}$$

According to Setschenow the effect of varying the pressure from 45 to 85 centimetres in the case of carbonic acid in water is very small.

VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimetres of mercury.

Tem- pera- iure Cent.	Acetone. C ₈ H ₆ O	Benzol. C ₆ H ₆	Carbon bisul- phide. CS ₂	Carbon tetra- chloride. CCl ₄	Chloro- form. CHCl ₃	Ethyl alcohol. C ₂ H ₆ O	Ethyl ether. C ₄ H ₁₀ O	Ethyl bromide. C ₂ H ₅ Br	Methyl alcohol. CH ₄ O	Turpen- tine. C ₁₀ H ₆
_25°	_	_	_	_	_	_	_	4.41	.41	l _ i
-20	_	.58	4.73	.98	_	-33	6.89	5.92	.63	-
-15	-	.58 .88	4.73 6.16		_	.51	8.93	7.81	.93	-
—1ŏ	-	1.29	7.94	1.35 1.85	_	.51 .65	11.47	10.15	1.35	-
一5		1.83	10.13	2.48	_	.91	14.61	13.06	1.92	-
							.0		- 40	-
0	-	2.53	12.79	3.29	-	1.27	18.44	16.56	2.68	.21
5 10	_	3.42	19.85	4.32 5.60	_	1.76 2.42	23.09 28.68	20.72 25.74	3.69 5.01	.29
15	_	4.52 5.89	24.41	7.17	_	3.30	35.36	31.69	6.71	-29
20	17.96	7.56	29.80	9.10	16.05	4.45	43.28	38.70	8.87	-44
-	-7.50	7.50	-3.50	, ,,,		L 4.43	73.20	35.70	5.5,	44
25	22.63	9.59	36.11	11.43	20.02	5.94	52.59	46.91	11.60	-
30	28.10	12.02	43.46	14.23	24.75	7.85	63.48	56.45	15.00	.69
35	34.52	14.93	51.97	17.55	30.35	10.29	76.12	67.49	19.20	-
40	42.01	18.36	61.75	21.48	36.93	13.37	90.70	80.19	24.35	1.08
45	50.75	22.41	72.95	26.08	44.60	17.22	107.42	94.73	30.61	-
50	62.29		85.71			21.99	126.48	111.28	38.17	
	72.59	27.14 32.64	100.16	31.44 37.63	53.50 63.77	27.86	148.11	130.03	47.22	1.70
\$5 60	86.05	39.01	116.45	44.74		35.02	172.50	151.19	57.99	2.65
65	101.43	46.34	134.75	52.87	75-54 88-97	43.69	199.89	174.95	70.73	
70	118.94	54.74	155.21	62.11	104.21	54.11	230.49	201.51	85.71	4.06
		3.7.	33				, , ,		١ ٠.	'
75	138.76	64.32	177.99	72.57	121.42	66.55	264.54	231.07	103.21	
8o	161.10	75.19	203.25	84.33	140.76	81.29	302.28	263.86	123.85	6.13
85	186.18	87.46	231.17	97.51	162.41	98.64	343.95	300.06	147.09	
90	214.17	101.27	261.91	112.23	186.52	118.93	389.83	339.89	174.17	9.06
95	245.28	116.75	296.63	128.69	213.28	142.51	440.18	383.55	205.17	-
100	279.73	134.01	332.51	146.71	242.85	169.75	495.33	431.23	240.51	13.11
105	317.70	153.18	372.72	166.72	275.40	201.04	555.62	483.12	280.63	-3
110	359.40	174.14	416.41	188.74	311.10	236.76	621.46	539.40	325.96	18.60
115	405.00	197.82	463.74	212.91	350.10	277.34	693.33	600.24	376.98	- 1
120	454.69	223.54	514.88	239.37	392.57	323.17	771.92	665.80	434.18	25.70
				60	0					
125	508.62	251.71	569.97	268.24	438.66	374.69	_	736.22 811.65	498.05	
130	566.97	282.43	629.16	299.69	488.51	432.30	_		569.13	34.90
135	629.87	315.85	692.59 760.40	333.86	542.25 600.02	496.42 567.46	_	892.19 977.96	647.93	46.40
140 145	697.44	352.07 391.21	832.69	411.00	661.92	645.80	_	9//.90	733.71 830.89	40.40
143	_	391.21	032.09	411.00	301.92	343.00			23029	
150	_	433-37	909.59	454.31	728.06	731.84	-	_	936.13	60.50
155	-	478.65		501.02	798.53	825.92	-	-	~~ ~	68.60
160	-	527.14	-	551.31	873.42	-	-	-	-	77.50
165	_	568.30	-	605.38	952.78	-	-	- '	-	-
170	-	634.07	-	663.44	-	-	-	-	-	-
			1	L		L		<u> </u>	L	

VAPOR PRESSURES.

Tem- pera- ture, Centi- grade.	Ammonia. NH ₃	Carbon dioxide. CO ₂	Ethyl chloride. C ₂ H ₃ Cl	Ethyl iodide. C ₂ H ₅ I	Methyl chloride. CH ₈ Cl	Methylic ether. C ₂ H ₆ O	Nitrous oxide. N ₂ O	Pictet's fluid. 64SO ₂ + 44CO ₂ by weight	Sulphur dioxide. SO ₃	Hydrogen sulphide. H ₅ S
_30 °	86.61	-	11.02	-	57.90	57.65	_	58.52	28.75	-
-25 -20 -15 -10 -5	110.43 139.21 173.65 214.46 264.42	1300.70 1514.24 1758.25 2034.02 2344.13	14.50 18.75 23.96 30.21 37.67	1111	71.78 88.32 107.92 130.96 157.87	71.61 88.20 107.77 130.66 157.25	1 569.49 17 58.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374-93 443-85 519.65 608.46 706.60
0 5 10 15 20	318.33 383.03 457.40 543.34 638.78	2690.66 3075.38 3499.86 3964.69 4471.66	46.52 56.93 61.11 83.26 99.62	4.19 5.41 6.92 8.76 11.00	189.10 225.11 266.38 313.41 366.69	187.90 222.90 262.90 307.98 358.60	2742.10 3055.86 3401.91 3783.17 4202.79	139.08 167.20 193.80 226.48 258.40	116.51 142.11 171.95 206.49 246.20	820.63 949.08 1089.63 1244.79 1415.15
25 30 35 40 45	747.70 870.10 1007.02 1159.53 1328.73	5020.73 5611.90 6244.73 6918.44 7631.46	118.42 139.90 164.32 191.96 223.07	13.69 16.91 20.71 25.17 30.38	426.74 494.05 569.11 -	415.10 477.80 - - -	4664.14 5170.85 6335.98 - -	297.92 338.20 383.80 434.72 478.80	291.60 343.18 401.48 467.02 540.35	1601.24 1803.53 2002.43 2258.25 2495.43
50 55 60 65 70	1515.83 1721.98 1948.21 2196.51 2467.55	-	257.94 266.84 340.05 387.85 440.50	36.40 43.32 51.22	- - - -	-	-	521.36 - - - -	622.00 712.50 812.38 922.14	2781.48 3069.07 3374.02 3696.15 4035.32
75 80 85 90 95	2763.00 3084.31 3433.09 3810.92 4219.57		498.27 561.41 630.16 704.75 785.39	- - - -	- - - -	-	-		-	-
100	4660.82	_	872.28	-	-	-	-	-	_	

CAPILLARITY. - SURFACE TENSION OF LIQUIDS.*

TABLE 140. - Water and Aloohal in Contact with Air.

TABLE 142. — Solutions of Salts in Water.†

Density.

Temp.

Salt in

solution.

Tension

in dynes

per cm.

Temp. C.	in dy	e tension nes per netre.	Temp.	in dy	e tension ynes per metre.	Temp.	Surface tension in dynes per cen- timetre.
C.	Water.	Ethyl alcohol.	C.	Water.	Ethyl alcohol.	C.	Water.
0° 5 10 15 20 25 30 35	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7	23.5 23.1 22.6 22.2 21.7 21.3 20.8 20.4	40° 45 50 55 60 65 70 75	70.0 69.3 68.6 67.8 67.1 66.4 65.7 65.0	20.0 19.5 19.1 18.6 18.2 17.8 17.3 16.9	80° 85 90 95 100 - -	64.3 63.6 62.9 62.2 61.5

BaCl ₂	1.2820	15-16	81.8
4	1.0497	15-16	77.5
CaCle	1.3511	19	950
4 2	1.2773	19	90.2
HCl	1.1190	20	73.6
11.61	1.0887	20	74.5
u	1.0242	20	
KCl	1.1699	15-16	75-3 82.8
	1.1011	15-16	80.1
64	1.0463	15-16	78.2
MgCl ₂	1.2338	15-16	90.I
mg(1.1694	15-16	85.2
4	1.0362	15-16	78.0
NaCl	1.1932	20	85.8
4	1.1074	20	80.5
46		20	
NH ₄ Cl	1.0360	16	77.6 84.3
4	1.0535	16	81.7
"	1.0281	16	78.8
SrCl ₂	1.3114	15-16	85.6
21 C12	1.1204	15-16	
u	1.0567	15-16	79·4 77·8
K ₂ CO ₈	1.3575	15-16	90.0
	1.1576	15-16	81.8
66	1.0400	15-16	
Na ₂ CO ₂	1.1329	14-15	77.5
1122008	1.0605	14-15	79.3 77.8
66	1.0283	14-15	
KNO ₂	1.1263	14-15	77.2 78.9
	1.0466	14	77.6
NaNOs	1.3022	12	83.5
4	1.1311	12	80.0
CuSO ₄	1.1775	15-16	78.6
	1.0276	15-16	77.0
H ₂ SO ₄	1.8278	15-10	63.0?
119302	1.4453	15	79-7
44	1.2636	15	79-7 79-7
K ₂ SO ₄	1.0744	15-16	78.0
	1.0360	15-16	77·4
MgSQ.	1.2744	15-16	83.2
MgSO ₄	1.0680	15-16	77.8
MnoSO	1.1110	15-16	70.1

1.1119 15-16 1.0329 15-16 1.3981 15-16 1.2830 15-16

1.1039 15-16

Mn₂SO₄ ZnSO₄

79.1 77.3 83.3 80.7 77.8

TABLE 141. - Missellaneous Liquids in Contact with Air.

` Liquid.	Temp. C.°	Surface tension in dynes per cen- timetre.	Authority.
Aceton	14.0 17.0 15.0 15.0 20.0 20.0 20.0 17.0 0.0 68.0 20.0 15.0 20.0 20.0	28.8 28.7 30.5 28.3 18.4 63.14 21.2 470.0 24.7 34.7 25.9 25.9	Average of various. " Quincke. Average of various. Hall. Schiff. " Average of various. " Magie. Schiff.
Toluol	97.1 15.0 109.8 21.0	18.0 29.1 18.9 28.5	" " " Average of various.

This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.141 dyne per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

† From Volkmann (Wied. Ann. vol. 17, p. 353).

TENSION OF LIQUIDS. TABLE 143. — Surface Tension of Liquids.

		.iquid.				Specific	Surface tension in dynes per centimetre of liquid in contact with —				
	-					gravity.	Air.	Water.	Mercury.		
Water		 -	•	<u> </u>	•		_	1.0	75.0	0.0	(392)
Mercury .							.	13.543	513.0	392.0	0
Bisulphide of carb	On						.	1.2687	30.5	41.7	(387)
Chloroform .		•					-	1.4878	(31.8)	26.8	(415)
Ethyl alcohol					•		•	0.7906	(24.1)	- .	364
Olive oil .	•	•						0.9136	34.6	18.6	317
Turpentine .				•			.	0.8867	28.8	11.5	241
Petroleum .							. [9-7977	29.7	(28.9)	271
Hydrochloric acid				•		•		1.10	(72.9)	-	(392)
Hyposulphite of s	oda	solut	tion	•			. }	1.1248	69.9	_	429

TABLE 144. - Suriace Tension of Liquids at Selidifying Point.

Suber	ance.			Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimetre.	Substance.	Tempera- ture of solidifi- cation. Cent.°	Surface tension in dynes per centimetre.
Platinum Gold . Zinc . Tin . Mercury Lead . Silver . Bismuth Potassium Sodium		:	:	2000 1200 360 230 40 330 1000 265 58	1691 1003 877 599 588 457 427 1390 371 258	Antimony	432 1000 1000 0 217 111 43 68	249 216 210 116 87.9‡ 71.8 42.1 42.0 34.1

TABLE 145. - Tension of Soap Pilms.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. They find that a film of cleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNOs added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimetres, the average being 12.1 micro-millimetres. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution (vide Newton's rings, Table 146).

When the percentage of KNO₈ is diminished, the thickness of the black patch increases. or example, $KNO_8 = 3$ 1 0.5 0.0 For example,

 $KNO_8 = 3$ 1 0.5 0.0 Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO₃ dissolved, increased the thickness of the film.

- 1 part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm.

Norm. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of wirer, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1371). The numbers given are the equivalent in degrees per centimetre of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1855) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was about 30° C.

† Quincke, "Pogg. Ann." vol. 135, p. 661.

‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

¶ "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

NEWTON'S RINGS. Newton's Table of Colors.

The following table gives the thickness in millionths of an inch, according to Newton, of a plate of air, water, and glass corresponding to the different colors in successive rings commonly called colors of the first, second, third, etc., orders.

Order.	Color for re-	Color for transmitted	mill	nickness ionths o nch for -	f an	Order.	Color for re- flected light.	Color for trans-	milli	ickness onths o ch for-	f an
δ	nected ngnc	light.	Air.	Water.	Glass.	ō	nected fight.	light.	Air.	Water.	Glass.
I.	Very black Black Beginning of black . Blue	White Yellowish	0.5 1.0 2.0	0.4 0.75 1.5	0.2 0.9 1.3		Yellow Red Bluish red	Bluish green	27.1 29.0 32.0	20.3 21.7 24.0	17.5 18.7 20.7
	White Yellow Orange . Red	red Black Violet . Blue	2.4 5.2 7.1 8.0 9.0	1.8 3.9 5.3 6.0 6.7	1.5 3.4 4.6 4.2 5.8	IV.	Bluish green . Green Yellowish green .	Red .	24.0 35.3 36.0	25.5 26.5	22.0 22.7 23.2
11.	Violet Indigo Blue Green	White . Yellow . Red	11.2 12.8 14.0 15.1	3.4 9.6 10.5	7.2 8.4 9.0	v.	Red Greenish blue	Bluish green Red .	40.3 46.0	30.2 34·5	26.0 39.7
	Yellow Orange . Bright red Scarlet	Violet . Blue	16.3 17.2 18.2 19.7	12.2 13.0 13.7 14.7	10.4 11.3 11.8 12.7	VI.	Greenish blue Red	=	52.5 58.7 65.0	39·4 46 48.7	34.0 38.0 42.0
III.	Purple Indigo Blue Green	Green . Yellow . Red	21.0 21.1 23.2 25.2	15.7 17.6 17.5 18.6	13.5 14.2 15.1 16.2	VII.	Greenish blue Reddish white .	_ _	72.0 71.0	53.2 57.7	45.8 49.4

The above table has been several times revised both as to the colors and the numerical values. Professors Reinold and Rucker, in their investigations on the measurement of the thickness of soap films, found it necessary to make new determinations. They give a shorter series of colors, as they found difficulty in distinguishing slight differences of shade, but divide each color into ten parts and tabulate the variation of thickness in terms of the tenth of a color band. The position in the band at which the thickness is given and the order of color are indicated by numerical subscripts. For example: $R_{1\,\delta}$ indicates the red of the first order and the fifth tenth from the edge furthest from the red edge of the spectrum. The thicknesses are in millionths of a centimetre.

Order.	Color.	Posi- tion.	Thick- ness.	Order.	Color.	Posi-	Thick- ness.	Order.	Color.	Posi-	Thick- ness.
I. II.	Red * . Violet . Blue . Green . Yellow * Orange * Red . Purple . Blue * . Green . Yellow *	V ₂ 5 B ₂ 5 G ₂ 5 Y ₂ 5 O ₂ 5 R ₂ 5 R ₂ 5 R ₃ 5 B ₃ 5 G ₃ 5	28.4 30.5 35.3 40.9 45.4 49.1 52.2 .55.9 57.7 60.6 71.0	IV.	Red * . Bluish red * . Green Yellow green * Red * . Green . Green * . Red Red * .	R _{8 5} BR _{8 5} G _{4 0} G _{4 5} YG _{4 5} R _{4 5} G _{5 0} G _{5 5} R _{5 0} R _{5 6}	76.5 81.5 84.1 89.3 96.4 105.2 111.9 118.8 126.0 133.5	VI.	Green . Green . Red Green . Green . Red Red Red		141.0 147.9 154.8 162.7 170.5 178.7 186.9 193.6 200.4 211.5

^{*} The colors marked are the same as the corresponding colors in Newton's table.

CONTRACTION PRODUCED BY SOLUTION.

Across the top of the heading are given the formulas of the salt dissolved, its molecular weight (M. W.), and the density of the salt, with the authority for that density.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M. W.		20. sity == 2.656 (Ka	arsten).	NaOH. M. W. = 39.95. Density = 2.130 (Filhol).				
	(Hager.)				(Schiff.)			
4.702 9.404 14.106 18.808 23.510 28.212 32.914 37.616 42.318 47.020 70.530 79.934	99.88 99.92 100.18 100.60 101.20 102.90 103.90 104.96 106.10 112.20 114.88	101.77 103.55 105.32 107.09 108.86 110.64 112.41 114.18 115.96 117.73 126.59 130.14	1.86 4.20 4.88 6.06 7.04 7.81 8.46 9.01 9.80 9.88 11.37 11.73	3-995 7-990 11-985 15-980 19-975 23-970 27-965 31-960 35-955 39-950 59-925 79-900 11-98-50 15-98-00	99-4 99-6 100.2 100.8 101.7 103.8 105.0 106.2 113-4 121.2 138.6 156.6	101.88 103.75 105.63 107.50 109.38 111.26 113.13 115.01 116.88 118.76 128.14 137.52 156.28	2.43 4.19 5.71 6.79 7.84 8.59 9.22 9.75 10.17 10.58 11.50 11.87 11.31	
м.)H. htty == 2.044 (Fill	hal).	199.750 239.970	174.8	193.80	9.80 8.92	
	(Schiff.)	- 3.044 (FII	11017.					
5.6 11.2 16.8 22.4 28.0 33.6 39.2 44.8 50.4 56.0 84.0 112.0 168.0 224.0	101.2 102.6 104.0 105.4 106.8 108.4 110.0 111.6 113.2 115.0 124.2 134.6 157.6 181.8	102.74 105.48 108.22 110.26 113.70 116.44 119.18 121.92 124.66 127.40 141.10 154.80 182.20 209.60	1.50 2.73 3.90 5.01 6.91 7.70 8.46 9.19 9.72 11.98 13.05 13.50 13.26	M. W. = 1.7 3.4 5.1 6.8 8.5 10.2 11.9 13.6 15.3		H _p ty = 0.616 (A) 102.76 105.52 108.28 111.04 113.80 116.56 119.32 122.08 124.84	0.25 0.49 0.81 1.12 1.41 1.68 1.95 2.20	
м. w.	Na ₂ O. M. W. = 30.97. Density = 2.805 (Karsten).				124.2 135.8 147.3 169.7	127.60 141.40 155.20 182.80	2.66 3.96 5.09 7.17	
	(Hager.)							
3.097 6.194 9.291 12.388 15.485 18.582	99.01 98.26 97.76 97.45 97.29 97.23	101.10 102.21 103.31 104.42 105.52 106.63 107.73	2.07 3.86 5.37 6.67 7.80 8.81 9.66	M. W. =		I ₄ Cl. nity = 1.52 (Sc	hroeder).	
21.679 24.776 27.873 30.970 46.455 52.649	97-32 97-55 97-84 98-20 100-94 102-30	107.73 108.83 109.94 111.04 116.56 118.77	10.37 11.00 11.56 13.40 13.87	5.338 10.676 16.014 21.352 26.690	103.7 107.5 111.5 115.3 119.2	103.51 107.02 110.54 114.05 117.56	0.18 0.45 0.87 1.10 1.40	

^{*} The table was compiled from a paper by Gerlach (Zeits. für Anal. Chem. vol. 27).

TABLE 147.

CONTRACTION PRODUCED BY SOLUTION.

Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 200 of water.	Observed volume.	Calculated volume.	Per cent of contraction		
M. W.:		Cl. psity == 1.945 (C	larke).	M. W. =		Cl ₂ . sity = 3.75 (Scl	hroeder).		
	(Gerlach.)		T		(Gerlach.)		1		
	0	0-							
7.44I 14.882	102.8	103.83 107.65	0.99	10.377	101.6 102.9	102.77 105.53	1.14 2.50		
22.323	108.9	111.48	2.31	20.754 31.131	104.9	108.30	3.14		
M. W. :		aCl. asity == 2.150 ((Clarke).	KI. M. W. = 166.57. Density = 3.07 (Clarke).					
	(Gerlach.)				(Kremers.)				
- 0 - (16.657	104.5	105.39	0.85		
5.836 11.672	101.7	102.71	0.99	33.314	109.3	110.77	1.34		
17.508	103.7	105.43	1.64 2.16	49.971	114.2	116.18	1.70		
23.344	107.9	110.86	2.67	66.628	119.1	121.57	2.20		
29.180	110.1	113.58	3.06	83.285	124.0	126.97	2.34		
w w		Cl. ity = 1.980 (Ge	riach)	M. W. =	KC = 122.29. De	IO ₈ . nsity == 2.331 (C	Clarke).		
M. W.		ity == 1.980 (Ge	nach).		(Kremers.)				
	(Gerlach.)	· · · · · ·		6.114	102.3	102.62	0.314		
4.2	101.9	102.14	0.24	0.114	102.3	102.02	0.314		
8.4	103.8	104.28	0.46		' <u></u>				
12.6	105.8	106.42	0.58		KN	O ₈ .			
16.8	107.8	108.56	0.70	M. W. =		nsity == 2.092 (C	Clarke).		
21.0 42.0	110.0	110.70 121.40	0.63 0.58		(Gerlach.)				
					••••				
	_	61		5.046 10.093	101.90	102.41	0.50 0.79		
36 577		Cl ₂ .		20.186	108.40	109.65	1.14		
M. W. =	(Gerlach.)	ity = 2.216 (Sc	inroeder).		100.40				
	(Germen.)				Nal		•		
5.532	101.2	102.50	1.26 -	M. W.:	= 84.88. Der	sity = 2.244 (C	larke).		
11.064	102.2	104.99	2.66		(Kremers.)				
16.596 22.128	103.5	107.49	3.71	ļ	\		ļ		
22.128 27.660	104.8 106.3	109.99 112.48	4.72	0.00		700 TQ			
	108.0	114.98	5.50	8.488	102.9	103.78	0.85		
33.192 6 6.384	118.6	129.96	8.74	16.976 42.440	116.2	107.56 118.91	1.36 2.28		
				84.880	134.3	137.82	2.55		
	Sr				<u>' </u>		<u></u>		
M. W. =		sity=3.05 (Sci	hroeder).	м. w. =		NO3. ity== 1.74 (Sch	roeder).		
	(Gerlach.)				(Gerlach.)				
	101.4	102.59	1.16						
7,805					104.6	104.59	0.076		
7.895 15.790		105.17	2.44	7.00					
15.790	102.5	105.17 107.7 6	2.55 3.43	7.990 15.980		109.18	0.106		
		105.17 107.7 6 110.34	3-43 4-39	7.990 15.980 39.950	109.3	109.18			

CONTRACTION PRODUCED BY SOLUTION.

<u>[</u>	-	NO ₂) ₂ - ensity = 2.36 (C	larke).	M. W. = 105.	Na	.co.			
1.637 3.274 4.910	100.45 100.90 101.35	100.69		Na ₂ CO ₂ . M. W. = 105.83. Density 2.476 (Clarke and Schroeder).					
3.274 4.910	100.90	100.69	1 1		(Gerlach.)				
0.547		101.39	0.24 0.48 0.72	5.292 10.582 15.875	100.00 100.44 101.06	192.14 194.27 196.41	2.09 3.68 5.03		
8.184 16.368 32.736 49.104 65.472	102.30 104.70 109.90 115.55 121.50	102.77 103.47 106.94 113.87 120.81 127.74	0.90 1.13 2.09 3.49 4.35 4.89	K ₂ SO ₄ . M. W. = 173.90. Density 2.647 (Clarke).					
81.840	127.65	1 34.68	5.22		(Gerlach.)				
				8.695	101.94	103.29	1.30		
M. W. = 2	Ba(N 260-58. De	IO ₈) ₃ . ensity == 3.23 (C	larke).	(NH ₄) ₃ SO ₄ .					
(Gerlach.)			M. W. = 131.84. Density 1.762 (Clarke)					
5.212	100.5 101.0 101.5	100.81	0.30 0.60	6.592	(Schiff.)				
	7.817 IOI.5 IO2.42 0.90 Sr(NO ₃) ₂ . M. W. = 210.98. Density = 2.93 (Clarke).				102.92 105.96 109.20 112.60 135.20	103.74 107.48 112.26 114.97 137.42 156.13	0.792 1.418 1.821 2.060 1.615		
	Gerlach.)			98.880	1 54.50	130.13	1.044		
6.329	100.48 100.95 101.40 101.95	100.72 101.44 102.16 102.88	0.24 0.48 0.74 0.90	M. W.	FeS = 151.72. D	SO ₄ . Pensity 2.99 (Cl	arke).		
10.549	102.45	103.60	1.11		•				
42.196	104.95 110.20 116.15	107.20 114.40 121.60	2.10 3.67 4.48	7.586 15.172 22.7 5 8	100.52 101.30 102.40	102.54 105.07 107.61	1.97 3.59 4.84		
W W	Pb(NO ₂) ₂ .				103.70	110.15	5.85		
	M. W. = 165.09. Density = 4.41 (Clarke).				MgSO ₄ . M. W. = 197.6. Density 2.65 (Clarke).				
16.509	102.4	103.74	1.29		•				
33.018 82.545	105.1	107.49	2.2 2 3.97	5.988	100.13	102.26	2.08		
K ₂ CO ₃ . M. W. = 137.93. Density 2.29 (Clarke and Schroeder).				11.976 17.964 23.952	100.40 101.26 102.10	104.52 106.78 109.04	3.94 5.16 6.36		
	Gerlach.)								
6.897	100.96	103.01	1.99	M. W. =	Na ₂ : 141.80. De	504. nsity == 2.656 ((Clarke).		
13.793 20.689	102.22	106.02 109.08	3.59 4.82		(Gerlach.)		· · ·		
27.586 68.965 96.551	105.44 118.20 128.10	112.05 130.12 142.16	5.90 9.16 9.89	7.09 14.18	100.96	102.67 105.34	1.67		

^{*} Authority not given.

TABLE 147. CONTRACTION PRODUCED BY SOLUTION.

Grammes of the salt in too of water.	Observed volume.	Calculated volume.	Per cent of contraction.	Grammes of the salt in 100 of water.	Observed volume.	Calculated volume.	Per cent of contraction.	
M.W.		SO ₄ . Density 3.49 (Cl	arke).	$KC_2H_2O_3$. M.W. = 97.90. Density = 1.472 (Gerlach).				
	•				(Gerlach.)			
8.036 16.072 24.108 32.144 40.180	100.06 100.44 101.08 101.90 102.86	102.30 104.61 106.91 109.21	2.19 3.98 5.45 6.69 7.76	9-79 19-58 48-95 97-90	105.2 110.5 127.3 156.4	106.65 113.30 133.26 166.51	1.36 2.47 4.47 6.07	
·	Al ₂ K ₂	$(SO_4)_4$. nsity = 2.228 (6)	1	$K_2C_4H_4O_4$. M. W. = 225.72. Density 1.98 (Gerlach).				
	(Gerlach.)				(Gerlach.)			
6.450	100.58	102.90	2.25	22.57 2 45.144	108.8	111.39 122.79	2.33 3.66	
M. W. =	$NaC_{2}H_{8}O_{2}$. M. W. = 81.85. Density = 1.476 (Gerlach).				128.2 138.7 149.2 159.7	134.18 145.58 156.97 168.36	4-46 4-73 4-95 5-15	
	(Gerlach.)			135.432 158.004	170.6	179.76	5.10	
8.185 16.360	104.1 108.3	105.55 111.09	1.37 2.51					
M. W.	• 1	H ₄ O ₆ . ensity 1.83 (Ger	rlach).	Pb(C ₂ H ₃ O ₃) ₂ . M. W. = 162.06. Density 3.251 (Schroeder).				
	(Gerlach.)				(Gerlach.)			
19.362 38.724	106.6	110.57	3·59 5·74	16.206 32.412 81.030	104.7 109.5 124.6	104.98 109.96 124.91	0.27 0.42 0.25	

TABLE 148.

CONTRACTION DUE TO DILUTION OF A SOLUTION.

The first column gives the name of the salt dissolved, the second the amount of the salt required to produce saturation and the third the contraction produced by mixing with an equal volume of water.

Water with equal volume of saturated solution of following salts.		Parts of an- hydrate salt dissolved by 100 parts of H ₂ O at 10 ⁰ C.	Contraction when mixed. Per cent.	Water with equa of saturated solu following sa	ution of	Parts of an- hydrate salt dissolved by 100 parts of H ₂ O at 10° C.	Contraction when mixed. Per cent.
KCl K ₂ SO ₄ KNO ₈ . K ₂ CO ₈ NaCl Na ₂ SO ₄ NaNO ₈ Na ₂ CO ₈ NH ₄ Cl (NH ₄) ₂ SO ₄		31.97 10.10 20.77 88.72 35.75 8.04 84.30 16.66 36.60	0.325 0.082 0.144 2.682 0.490 0.107 0.975 0.206 0.273 1.302	NH4NO8 CaCl2 . BaCl2 . MgSO4 ZnSO4 . FeSO4 . Al ₂ K ₂ (SO4), CuSO4 . Pb(NO ₈) ₂		185.00 63.30 33.30 30.50 48.36 19.90 4.99 20.92 48.30	0.772 1.135 0.235 0.677 0.835 0.327 0.033 0.218 0.228

^{*} Authority not given. † R. Broom, "Proc. Roy. Soc. Edin." vol. 13, p. 172.

FRICTION.

The following table of coefficients of friction f and its reciprocal 1/f, together with the angle of friction or angle of repose φ, is quoted from Rankine's "Applied Mechanics." It was compiled by Rankine from the results of General Morin and other authorities, and is sufficient for all ordinary purposes.

Material.		f	1/f	•
Wood on wood, dry	•	2550	4.00-2.00	14.0-26.5
" " " soapy	•	20	5.00	11.5
Metals on oak, dry	•	5060	2.00-1.67	26.5-31.0
" " wet		2426	4.17-3.85	13.5-14.5
" " " soapy		20	5.00	11.5
" " elm, dry		2025	5.00-4.00	11.5-14.0
Hemp on oak, dry	•	53	1.89	28.0
" " " wet		. .33	3.00	18.5
Leather on oak	•	2738	3.70-2.86	15.0-19.5
" " metals, dry	•	. 1 .56	1.79	29.5
" " wet		36	2.78	20.0
" " " greasy	•	23	4-35	13.0
" " oily	•	15	4-35 6.67	8.5
Metals on metals, dry	•	1520	6.67-5.00	8.5-11.5
" " wet	•	. 3	3.33	16.5
Smooth surfaces, occasionally greased.		0708	14.3-12.50	4.0-4.5
" continually greased .		05	20.00	3.0
" " best results	•	03–.036	33.3-27.6	1.75-2.0
Steel on agate, dry *	•	20	5.00	11.5
" " " oiled *	•	107	9.35	6. r
Iron on stone	•	3070	3-33-1-43	16.7–35.0
Wood on stone	•	. About 40	2.50	22.0
Masonry and brick work, dry	•	6070	1.67-1.43	33.0-35.0
" " " damp mortar		74	1.35	36.5
" on dry clay		51	1.96	27.0
" " moist clay		• 33	3.00	18.25
Earth on earth		25-1.00	4.00-1.00	14.0-45.0
" " dry sand, clay, and mixe	d earth	3875	2.63-1.33	21.0-37.0
" " " damp clay		. 1.00	1.00	45.0
" " wet clay	•	31	3.23	17.0
" " shingle and gravel .		. 81-1.11	1.23-0.9	39.0-48.0

[•] Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

The coefficient of viscosity is the tangential force per unit area of one face of a plate of the fluid which is required to keep up unit distortion between the faces. Viscosity is thus measured in terms of the temporary rigidity which it gives to the fluid. Solids may be included in this definition when only that part of the rigidity which is due to varying distortion is considered. One of the most satisfactory methods of measuring the viscosity of fluids is by the observation of the rate of flow of the fluid through a capillary tube, the length of which is great in comparison with its diameter. Poiseuille * gave the following formula for calculating the viscosity coefficient in this case: $\mu = \frac{\pi h r^4 s}{8vl}$, where h is the pressure height, r the radius of the tube, s the density of the fluid, v the quantity flowing per unit time, and l the length of the capillary part of the tube. The liquid is supposed to flow from an upper to a lower reservoir joined by the tube, hence l and l are different. The product l is the pressure under which the flow takes place. Hagenbach † pointed out that this formula is in error if the velocity of flow is sensible, and suggested a correction which was used in the calculation of his results. The amount to be subtracted from h, according to Hagenbach, is $\frac{v^2}{\sqrt{2}g}$, where g is the acceleration due to gravity. Gartenmeister ; points out an error in this to which his attention had been called by Finkener, and states that the quantity to be subtracted from h^0 should be simply $\frac{v^2}{r}$; and this formula is used in the reduction of his observations. Gartenmeister's formula is the most accurate, but all of them nearly agree if the tube be long enough to make the rate of flow very small. None of the formulæ take into account irregularities in the distortion of the fluid near the ends of the tube, but this is probably negligible in all cases here quoted from, although it probably renders the results obtained by the "viscosimeter" commonly used for testing oils useless for our purpose. The term "specific viscosity" is sometimes used in the headings of the tables; it means the ratio of the viscosity of the fluid under consideration to the viscosity of water at a specified

temperature.

TABLE 150. — Specific Viscosity of Water at different Temperatures relative to Water at 0° C.

Temp. in C ⁶ .		Mean	Absolute value in						
	Poiseuille.	Gral	nam.	Relistab.	Sprung.	Wagner.	Wagner. Slotte.		C. G. S. units.
0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0178§
5	85.2	84.4	84.8	85.3	84.9	-	-	84.9	0.0151
10	73.5	73.6	72.9	73.5	73.2	-	-	73-3	0.0131
15	64.3	63.5	63.7	63.0	63.9	63.9 56.2	-	63.7 56 .2	0.0113
20	56.7	56.o	56.0	55.5	56.2	56.2	56.4	56.2	0.0100
25	_	49-5	50.5	48.7	50.5	50.3		49.9	0.0089
30	45.2	44.7	45.0	45.0	45.2	44.6	45.2	45.0	0.0086
35	'=	40.2	41.1	40.0	40.8	40.3	-	40.5	0.0072
35 40	-	36.8	37.0	37.2	37.0	36.7	36.9	36.9	0.0066
45	-	33.9	33.9	34-5	34.0	34.5	_	34.2	0.0061
50	30.8	31.1	31.1	31.2	31.3	31.7	_	31.2	0.0056

^{* &}quot;Comptes rendus," vol. 15, 1842. "Mém. Serv. Etr." 1846.

^{† &}quot; Pogg. Ann." vol. 109, 1860.

^{‡ &}quot;Zeits. für Phys. Chim." vol. 6, 1890.

[§] The value 0.0178 is taken from a paper by Crookes (Phil. Trans. R. S. L. 1886), where the coefficient is given as $\mu = 0.0177931P$, where $P^{-1} = 1 + .0336793T + .0002209036T^2$, where T is the temperature of the water in degrees Centigrade. The numbers in the table were calculated not from the formula but from the numbers in the column headed "mean value."

TARLE 151. - Solution of Alcohol in Water.*

Coefficients of viscosity, in C. G. S. units, for solution of alcohol in water.

Temp. C.	Percentage by weight of alcohol in the mixture.												
<u>. </u>	•	8.21	16.60	34.58	43-99	53.36	75-75	87.45	99.72				
00	0.0181	0.0287	0.0453	0.0732	0.0707	0.0632	0.0407	0.0294	0.0180				
5	.01 52	.0234	.0351	.0558	.0552	.0502	.0344	.0256	.0163				
10	.0131	.0195	.0281	.0435	.0438	.0405	.0292	.0223	.0148				
15	.0114	.0165	.0230	.0347	.0353	.0332	.0250	.0195	.0134				
20	.0101	.0142	.0193	.0283	.0286	.0276	.0215	.0172	.0122				
25	0.0000	0.0123	0.0163	0.0234	0.0241	0.0232	0.0187	0.01 52	0.0110				
30	.0081	8010.	.0141	.0196	.0204	.0198	.0163	.0135	.0100				
35	.0073	.0096	.0122	.0167	.0174	.0171	.0144	.0120	.0092				
40	.0067	.0086	.0108	.0143	.0150	.0149	.0127	.0107	.0084				
45	.0061	.0077	.0095	.0125	.0131	.0130	.0113	.0097	.0077				
50	0.0056	0.0070	0.0085	0.0100	0.0115	0.0115	0.0102	0.0088	0.0070				
	.0052	.0063	.0076	.0096	.0102	.0102	1000.	.0086	.0065				
55 60	.0048	.0058	.0069	.0086	1000.	.0092	.0083	.0073	.0060				

The following tables (152-153) contain the results of a number of experiments in the viscosity of mineral oils derived from petroleum residues and used for lubricating purposes.†

TABLE 152. -- Mineral Oils.:

aity.	Density. Flashing		Sp. viscosity. Water at 20° C. = 1.						
Den	° C.	o Burning O point.	20° C.	50° C.	1∞° C.				
.931 .921 .906	243 216 189	274 246 20 8	- - -	11.30 7.31 3.45	2.9 2.5 1.5				
.921 .917	163 132	19 0 168	<u>-</u>	27.80 -	2.8				
.904 .891 .878 .855	170 151 108 42	207 182 148 45	8.65 4.77 2.94 1.65	2.65 1.86 1.48 -	I.7 I.3				
.905 .894 .866	165 139 90	202 270 224	- 7.60 2.50	3.10 3.60 1.50	1.5 1.3				

TABLE 153. - Mineral Oils.

Oil.	Density.	o Flashing O Point.	o Burning C point.	Viscosity at 19° C., water at 19° C.=1.
Cylinder oil Machine oil Wagon oil	.917 .914 .914 .911	227 213 148 157 134	274 260 182 187 162	191 102 80 70 55
Oleo-naphtha . " " Oleonid	.910 .904 .894 .884	219 201 184 185	257 242 222 217	121 66 26 28 20
Olive oil Whale oil	.916 .879 .875	1 1 1	-	22 9 8

[•] This table was calculated from the table of fluidities given by Noack (Wied. Ann. vol. 27, p. 217), and shows a naximum for a solution containing about 40 per cent of alcohol. A similar result was obtained for solutions of acetic

acid.

† Table 152 is from a paper by Engler in Dingler's "Polv. Jour." vol. 268, p. 76, and Table 153 is from a paper by Lamansky in the same journal, vol. 248, p. 29. The very mixed composition of these oils renders the viscosity a very uncertain quantity, neither the density nor the flashing point being a good guide to viscosity.

† The different groups in this table are from different residues.

TABLE 154.

This table gives some miscellaneous data as to the viscosity of liquids, mostly referring to oils and paraffins. The viscosities are in C. G. S. units.

Liquid.			G. %	Coefficient of viscosity.	Temp. Cent.	Authority.
Ammonia	: :	:		0.0160 0.0149	11.9 14.5	Poiseuille.
Anisol				0.0111	20.0	Gartenmeister.
Glycerine		:		42.20 25.18	2.8 8.1	Schottner.
"				13.87	143	44
"				8.30	20.3	44
"		·		4-94	26.5	u
Glycerine and water		.	94.46	7.437	8.5	44
Grycerine and water	• •	:	80.31	1.021	8.5	44
45 45		:	64.05	0.222	8.5	u
			49.79	0.092	8.5	u
Glycol				0.0219	0.0	Arrhenius.
Mercury				0.0184	-20	Koch.
4				0.0170	0.0	44
"				0.0157	20.0	44
"		. 1		0.0122	0.001	u
"				0.0102	200.0	u
"				0.0093	300.0	er .
Meta-cresol				0.1878	20.0	Gartenmeister.
Olive oil				3 2653†	0.0	Reynolds.
Paraffins: Decane				0.0077	22.3	Bartolli & Stracciati.
Dodecane				0.0126	23.3	46 46
Heptane				0.0045	24.0	66 eE
Hexadecan	e.			0.0359	22.2	" "
Hexane				0.0033	23.7	66 66 66 66
Nonane	• •	•		0.0062	22.3	u u
Octane				0.0053	22.2	" "
Pentane		: 1		0.0026	21 0	46 66
Pentadecar				0.0281	22.0	
Tetradecan				0.0213	21.9.	u u
Tridecane		.		0.0155	23.3	· · · · · · · · · · · · · · · · · · ·
Undecane				0 0095	22.7	.c ee
Petroleum (Caucasian				0.0190	17.5	Petroff.
Rape oil			,	25.3	0.0	O. E. Meyer.
""				25.3 3.85	10.0	"
44 44				1.63	20.0	"
""				56.0	30.0	44
					l	

[•] Calculated from the formula $\mu = .017 - .000066t + 00000021t^2 - .00000000025t^6$ (vide Koch, Wied. Ann. vol. 14 p. 1).

† Given as = 3.2653 $e^{-0.089T}$, where T is temperature in Centigrade degrees.

This table gives the viscosity of a number of liquids together with their temperature variation. The headings are temperatures in Centigrade degrees, and the numbers under them the coefficients of viscosity in C. G. S. units.

Acetates: Allyl	Timid		Tempe	ratures Cen	tigrade.			
Acetates: Allyl	Laquid.	100	3 0'3	30°	40°	50°	Authority.	
Acetates: Allyl	Acetone	.0043	.0030	.0036	.0032	.0 028	Pribram & Hand	n.
Amyl						.0044	" "	
Methyl	Amyl	.0106	.0089			.0058		l l
Methyl		.0051	.0044	.0040		.0032		Į.
Acids : † Acetic								
Butyric							ſ	
Formic .0231 .0184 .0149 .0125 .0014 .0073 .0073 .0091 .0080 .0081 .0073 .0081 .0073 .0081 .0073 .0080 .0081 .0080 .0081 .00								1
Propionic .0125							Gartenmeister.	Į.
Salicylic .0320 .0271 .0202 .0181 .0150 .0150 .0260 .0181 .0150 .0170 .0150 .0170 .0150 .0170 .0150 .0170 .0150 .0170 .0150 .0170 .0160 .0180 .0170 .0180							Polletab	
Salicylic	Tropione							ո 🏻
Valeric	Salicylic							۱
Alcohols: Allyl								1
Amyl							Pribram & Hand	n. 🏻
Butyl							4 4	_
Ethyl							" "	- 1
Isobuty	Ethyl						Gartenmeister.	- [
Isopropyl	Isobutyl		.0411	.0301			"	
Propyl	Isopropyl	.0338	.0248	.0185		.0108	1	- 1
Aldehyde		.0073	.0062	.0054	.0047	.0041	**	- 1
Aniline			.0227	.0179	.0142	.0115	1 "	- 11
Benzene		.0037	.0037	-	-			- 1
Benzoates : Ethyl		-					Wijkander.	- 1
Methyl							".	
Bromides : Allyl			· · ·		•	•	Relistab.	- 1)
Ethyl004300370035							D."	. 11
Ethylene					.0045	.0041	Pribram & Hand	u.
Carbon disulphide		.0043			-	-		- 11
Carbon dioxide (liquid) .0008 .0007 .0005 -		-				-	Wiikander	- []
Chlorides: Allyl		~~8			.0034			、
Ethylene .<						_		
Chloroform		.0039			0062	mrh		١١
Ether	Chloroform	.0064						- 1
Ethyl sulphide							" "	- 11
Iodídes: Allyl					.0035	.0032		- 13
Ethyl							" "	- []
Metaxylol .0075 .0066 .0058 .0052 .0047 " " " Nitro benzene - .0203 .0170 .0144 .0124 " " " utane 0119 .0103 .0089 .0078 .0069 " " ethane 0080 .0071 .0064 .0057 .0052 " " "							l	H
Nitro benzene	Metaxylol							
" ethane			.0203			0124	1	
" propane			.0103		.0078	.0069	1	
" toluene0233 .0190 .0159 .0136 " "	ethane			0064			1	
toluene	propane	.0099				_	"	
	toluene	-				.0136		
Propyl aldehyde0047 .0041 .0036 .0033 - " " "						-	l	
Toluene	Toluene	.0068	.0059	.0052	.0047	.0042	" "	
							l	

Calculated from the specific viscosities given in Landolt & Boernstein's "Phys. Chem. Tab." p. 289 et seq., on the assumption that the coefficient for water at o° C. is .0178.

[†] For inorganic acids, see Solutions.

TABLE 156.

VISCOSITY OF SOLUTIONS.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution.

µ stands for specific viscosity, and ℓ for temperature Centigrade.

Salt.	Percentage by weight of salt in solution.	Density.	μ	\$	μ		μ		μ	ŧ	Authority.
BaCl ₂ "	7.60 15.40 24.34	- - -	77.9 86.4 100.7	10	44.0 56.0 66.2	30 "	35.2 39.6 47.7	50 "	- -	1 1 1	Sprung.
Ba(NO ₈)2	2.98 5.24	1.027 1.051	62.0 68.1	15	51.1 54.2	25 "	42.4 44.1	3.5	34.8 36.9	45	Wagner.
CaCl ₂ " " "	15.17 31.60 39.75 44.09	-	1 10.9 27 2.5 670.0	10 " "	71.3 177.0 379.0 59 3. 1	30 "	50.3 124.0 245.5 363.2	50 "	-	- - -	Sprung.
Ca(NO ₈) ₂ "	17.55 30.10 40.13	1.171 1.274 1.386	93.8 144.1 242.6	15 "	74.6 112.7 217.1	25 "	60.0 90.7 156.5	35 "	49-9 75-1 128-1	45 "	Wagner.
CdCl ₂ "	11.09 16.30 24.79	1.109 1.181 1.320	77.5 88.9 104.0	15 "	60.5 70.5 80.4	25 "	49.1 57.5 64.6	3 5 "	40.7 47.2 53.6	45 "	66 66
Cd(NO ₈) ₂ "	7.81 15.71 22.36	1.074 1.159 1.241	61.9 71.8 85.1	15 "	50.1 58.7 69.0	25 "	41.1 48.8 57.3	3 <u>.</u> 5 "	34.0 41.3 47.5	45 "	ec ec
CdSO4 "	7.14 14.66 22.01	1.068 1.159 1.268	78.9 96.2 120.8	15 "	61.8 72.4 91.8	25 "	49.9 58.1 73.5	3 <u>5</u> "	41.3 48.8 60.1	45 "	66 66
CoCl ₂ "	7.97 14.86 22.27	1.08t 1.161 1.264	83.0 111.6 161.6	15 "	65.1 85.1 126.6	25 "	53.6 73.7 101.6	35 "	44.9 58.8 85.6	45 "	46 46
Co(NO ₈) ₂ "	8.28 1 5.96 24.53	1.073 1.144 1.229	74-7 87.0 110-4	15 "	57.9 69.2 88.0	25 "	48.7 55.4 71.5	35 "	39.8 44.9 59.1	45 "	41 41
CoSO <u>4</u>	7.24 14.16 21.17	1.086 1.159 1.240	86.7 117.8 193.6	15 "	68.7 95.5 146.2	25 "	55.0 76.0 113.0	35 "	45.1 61.7 89.9	45 "	66 66
CuCl ₂	12.01 21.35 33.03	1.104 1.215 1.331	87.2 121.5 178.4	15 "	67.8 95.8 137.2	25 "	55.1 77.0 107.6	35 "	45.6 63.2 87.1	45 "	u
Cu(NO ₈) ₂ "	18.99 26.68 46.71	1.177 1.264 1.536	97·3 126.2 382.9	15 "	76.0 98.8 283.8	25 "	61.5 80.9 215.3	35 "	51.3 68.6 172.2	4 5 "	66 66 66
CuSO ₄	6.79 12.57 17.49	1.055 1.115 1.163	79.6 98.2 124.5	15 "	61.8 74.0 96.8	25 "	49.8 59.7 75.9	35 "	41.4 52.0 61.8	45 "	ee ee
HCl "	8.14 16.12 23.04	1.037 1.084 1.114	71.0 80.0 91.8	15 "	57.9 66.5 79.9	25 "	48.3 56.4 65.9	3 <u>5</u>	40.1 48.1 56.4	45 "	44 66 68
HgCl₂ "	0.23 3·55	1.023	- 7675	10	58.5 59.2	20 "	46.8 46.6	3 0	38.3 38.3	40 "	u

TABLE 156 VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	1	μ.	t	μ	t	μ	t	Authority.
HNO ₈	8.37 12.20 28.31	1.067 1.116 1.178	66.4 69.5 80.3	15	54.8 57.3 65.5	25 "	45·4 47·9 5 4·9	35 "	37.6 40.7 46.2	4 5 "	Wagner. "
H ₂ SO ₄	7.87 15.50 23.43	1.065 1.130 1.200	77.8 95.1 122.7	15 "	61.0 75.0 95.5	25 4	50.0 60.5 77.5	3 <u>.</u> 5 "	41.7 49.8 64.3	45 "	и и
KC1	10.23 22.21	-	7 0. 0 70.0	10	46.1 48.6	30	33.1 36.4	50	-	-	Sprung.
KBr "	14.02 23.16 34.64	-	67.6 66.2 66.6	10	44.8 44.7 47.0	30 * *	32.1 33.2 35.7	50 "	-		u u u
KI "	8.42 17.01 33.03 45.98 54.00	+	69.5 65.3 61.8 63.0 68.8	10 " "	44.0 42.9 42.9 45.2 48.5	30	31.3 31.4 32.4 35.3 37.6	50			64 64 64
KClO ₈	3.51 5.69	-	71.7 -	10	44.7 45.0	30 "	31.5 31.4	50 "	-	-	44
KNO.	6.32 12.19 17.60	111	70.8 68.7 68.8	10	44.6 44.8 46.0	39.ª ±	31.8 32.3 33.4	50 "	-	- - -	« «
K ₂ SO ₄	5.17 9.77	-	77.4 81.0	10	48.6 52.0	30 "	34.3 36.9	50	-	-	44
K₂CrO₄ " "	11.93 19.61 24.26 32.78	- 1.233	75.8 85.3 97.8 109.5	10 " "	62.5 68.7 74.5 88.9	30 "	41.0 47.9 54.5 62. 6	40 4 4 4 4 4	-		" Slotte. Sprung.
K ₂ C ₇₂ O ₇	4.71 6.97	1.032 1.049	72.6 73.1	10	55.9 56.4	20 "	45·3 45·5	3º	37·5 37·7	40	Slotte.
LiCl "	7.76 13.91 26.93	- -	96.1 121.3 229.4	10 "	59.7 75.9 142.1	30 1 1	41.2 52.6 98.0	50 "	- -		Sprung.
Mg(NO ₈) ₃ "	18.62 34.19 39.77	I.102 I.200 I.430	99.8 213.3 317.0	15 "	81.3 164.4 250.0	25 "	66.5 132.4 191.4	35 "	56.2 109.9 158.1	45 "	Wagner.
MgSO ₄	4-98 9-50 19-32	-	96.2 1 30.9 302.2	10 "	59.0 77.7 166.4	30 "	40.9 53.0 106.0	50 "	- - -	-	Sprung. "
MgCrO ₄	12.31 21.86 27.71	1.089 1.164 1.217	111.3 167.1 23 2.2	10 "	84.8 125.3 172.6	20 "	67.4 99.0 133.9	30 "	55.0 79.4 106.6	40 "	Slotte.
MnCl ₂	8.01 15.65 30.33 40.13	1.096 1.196 1.337 1.453	92.8 130.9 256.3 537·3	15 " "	71.1 104.2 193.2 393.4	25 " "	\$7.5 84.0 155.0 300.4	35 "	48.1 68.7 123.7 246.5	45 "	Wagner.

TABLE 156.

VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	μ	t	μ	t	μ	t	μ	ŧ	Authority.
Mn(NO ₈) ₂	18.31 29.60 49.31	1.148 1.323 1.506	96.0 167.5 396 8	15	176.4 126.0 301.1	25 "	64.5 104.6 221.0	35 "	55.6 88.6 188.8	45 "	Wagner.
MnSO4	11.45 18.80 22.08	1.147 1.251 1.306	129.4 228.6 661.8	15	98.6 172.2 474-3	25 "	78.3 137.1 347.9	3 <u>.</u> 5	63.4 107.4 266.8	45 "	es 66 66
NaCl "	7.95 14.31 23.22	-	82.4 94.8 128.3	10	52.0 60.1 79.4	30 "	31.8 36.9 47.4	50 "	-		Sprung.
NaBr "	9.77 18.58 27.27		75.6 82.6 95.9	10	48.7 53.5 61.7	30 "	34·4 38·2 43·8	50 "	-	1 1 1	" "
NaI " "	8.83 17.15 35.69 55.47	- - -	73.1 73.8 86.0 157.2	10	46.0 47.4 55.7 96.4	30 "	32.4 33.7 40.6 66.9	50 "		1111	66 66 66
NaClO ₈ "	11.50 20.59 33.54	- -	78.7 88.9 121.0	10	50.0 56.8 75.7	30 "	35-3 40-4 53-0	50 "	- - -	1 1 1	66 66 66
NaNO ₈ " "	7.25 12.35 18.20 31.55		75.6 81.2 87.0 121.2	10	47.9 51.0 55.9 76.2	30 "	33.8 36.1 39.3 53.4	50 "	- - -	1111	66 66 66
Na ₂ SO ₄ " "	4.98 9.50 14.03 19.32	- - -	96.2 130.9 187.9 302.2	10 " "	59.0 77.7 107.4 166.4	30 "	40.9 53.0 71.1 106.0	50 "	- - -	1 1 1 1	66 66 66
Na ₂ CrO ₄ "	5.76 10.62 14.81	1.058 1.112 1.164	85.8 103.3 127.5	10	66.6 79.3 97.1	20 "	53·4 63·5 77·3	30 "	43.8 52.3 63.0	40 "	Slotte.
NH ₄ Cl " "	3.67 8.67 15.68 23.37	-	71.5 69.1 67.3 67.4	10	45.0 45.3 46.2 47.7	30 "	31.9 32.6 34.0 36.1	50 " "	-	1111	Sprung. " "
NH₄Br "	1 5.97 2 5.33 36.88	- - -	65.2 62.6 62.4	10 "	43.2 43.3 44.6	30 "	31.5 32.2 34.3	50 "	- - -	1 1 1	66 66
NH4NO3 " " "	5 97 12.19 27.08 37.22 49.83	1111	69.6 66.8 67.0 71.7 81.1	10 " "	44·3 44·3 47·7 51.2 63·3	30 " "	31.6 31.9 34.9 38.8 48.9	50 " "	1111	11111	ee ee ee
(NH ₄) ₂ SO ₄ "	8.10 15.94 25.51	- - -	107.9 120.2 148.4	10 4	52.3 60.4 74.8	30 "	37.0 43.2 54.1	50 "	- - -	111	ec ec

TABLE 156. VISCOSITY OF SOLUTIONS.

Salt.	Percentage by weight of salt in solution.	Density.	щ	ŧ	μ.	*	μ	ŧ	μ	1	Authority.
(NH ₄) ₉ CrO ₄	10.52 19.75 28.04	1.063 1.120 1.173	79-3 88.2 101.1	10 "	62.4 70.0 80.7	20 "	57.8 60.8	- 30 "	42.4 48.4 56.4	41 -	Slotte.
(NH ₄) ₂ Cr ₂ O ₇ "	6.85 13.00 19.93	1.039 1.078 1.126	72.5 72.6 77.6	10	56.3 57.2 58.8	20 "	45.8 46.8 48.7	30 "	38.0 39.1 40.9	40 "	44 44
NiClg	11.45 22.69 30.40	1.109 1.226 1.337	90.4 140.2 229.5	15	70.0 109.7 171.8	25 "	57.5 87.8 139.2	3.5 "	48.2 72.7 111.9	45 "	Wagner.
Ni(NO ₈) ₂ "	16.49 30.01 40.95	1.136 1.278 1.388	90.7 135.6 222.6	15 "	70.1 105.9 169.7	25 "	57-4 85.5 128.2	35 "	48.9 70.7 152.4	45 "	" "
NiSO4	10.62 18.19 25.35	1.092 1.198 1.314	94.6 154.9 298.5	15	73-5 119-9 224-9	25 "	60.1 99.5 173.0	35 "	49.8 75.7 152.4	45 "	u u
Pb(NO ₈) ₂	17.93 32.22	1.179 1.362	74.0 91.8	15	59.1 72.5	25 "	48.5 59.6	35	40.3 50.6	45	44
Sr(NO ₈) ₂	10.29 21.19 32.61	1.088 1.124 1.307	69.3 87.3 116.9	15 "	56.0 69.2 93.3	25 "	45.9 57.8 76.7	35	39.1 48.1 62.3	45 "	44 44
ZnCl ₂ "	1 5.33 23.49 33.78	1.146 1.229 1.343	93.6 111.5 151.7	15 "	72.7 86.6 117.9	25 "	57.8 69.8 90.0	35 "	48.2 57.5 72.6	45 "	u u
Zn(NO ₃) ₂ "	1 5-95 30-23 44-50	1.115 1.229 1.437	80.7 104.7 167.9	15 "	64.3 85.7 130.6	25 "	52.6 69.5 105.4	35	43.8 57.7 87.9	45 "	u u
ZnSO4	7.12 16.64 23.09	1.106 1.195 1.281	97.1 156.0 232.8	15 "	79-3 118.6 177-4	25 "	62.7 94.2 135.2	35	51.5 73.5 108.1	45 "	44 44 44

TABLE 157.

SPECIFIC VISCOSITY.*

<u> </u>									-
	Normal s	olution.	non 🖁	mal.	å nor	mal.	i nor	mal.	
Dissolved salt.	ty.	fic ity.	ty.	ity.	ı,	ity.	ty.	fic ity.	Authority.
	Density	Specific viscosity.	Density.	Specific viacosity.	Density.	Specifie viacosity.	Density.	Specific viscosity.	
				w.z		- N.2		- C.2	
Acids: Cl ₂ O ₃ HCl	5	1.012	9	1.003	1.0143	1.000		0.999	Reyher.
HClO ₈	1.0177	1.067	I.0092 I.0244	1.034	1.0045	1.017	1.0025 1.0064	1.009 1.006	"
HNO ₈ H ₂ SO ₄	1.0332	1.027	1.0168	110.1	1.0086	1.005	1.0044	1.003	Womer
•	1.0303	1.090	1.0154	1.043	1.0074	1.022	1.0035	1.008	Wagner.
Aluminium sulphate Barium chloride	1.0550	1.406	1.0278	1.178	1.0138	1.082	1.0068	1.038	44
" nitrate	-	1.123	1.0441	1.057 1.044	1.0226	1.026	1.0114	1.013	u
Calcium chloride .	1.0446	1.156	1.0218	1.076	1.0105	1.036	1.0050	1.017	44
" nitrate	1.0596	1.117	1.0300	1.053	1.0151	1.022	1.0076	1.008	
Cadmium chloride .	1.0779	1.134	1.0394	1.063	1.0197	1.031	1.0098	1.020	64
" nitrate . " sulphate .	1.0954	1.165 1.348	1.0479	1.074 1.157	I.0249 I.0244	1.038	1.0119	1.033	u
Cobalt chloride	1.0571	1.204	1.0286	1.097	1.0144	1.048	1.0058	1.023	u
" nitrate " sulphate	1.0728	1.166 2.354	1.0369	1.075	1.0184	1.032	1.0094	1.018	44
-				_		•		'	4
Copper chloride	1.0624	1.205	1.0313	1.098 1.080	1.0158	I.047 I.040	I.0077 I.0092	1.027	"
" sulphate .	1.0755	1.179	1.03/2	1.160	1.0205	1.080	1.0103	1.038	66
Lead nitrate	1.1380	1.101	0.0699	1.042	1.0351	1.017	1.0175	1.007	"
Lithium chloride . sulphate .	1.0243 1.0453	I.142 I.290	1.0129	1.066	1.0062	1.031	1.0030	I.012 I.032	"
•									"
Magnesium chloride nitrate.	1.1375	1.201	1.0188	1.094 1.082	1.0091	I.044 I.040	1.0043 1.0066	1.021	"
" sulphate	1.0584	1.367	1.0297	1.164	1.0152	1.078	1.0076	1.032	4
Manganese chloride nitrate.	1.0513	1.209	1.0259 1.0349	1.095	1.0125	1.048 1.043	1.0063	1.023 1.023	"
" sulphate		1.364	1.0365	1.169	1.0179	1.076	1.0087	1.037	se .
Nickel chloride	1.0591	1.205	1.0308	1.097	1.0144	1.044	1.0067	1.021	46
" nitrate	1.0755	1.180	1.0381	1.084	1.0192	1.042	1.0096	1.019	"
" sulphate Potassium chloride .	1.0773	1.361 0.987	1.0391	1.161 0.987	1.0198	0.990	1.0017	1.032 0.993	"
" chromate	1.0935	1.113	1.0475	1.053	1.0241	1.022	1.0121	1.012	"
" nitrate .	1.0605	0.975	1.0305	0.982	1.0161	0.987	1.0075	0.992	66
" sulphate	1.0664	1.105	1.0338	1.049	1.0170	1.021	1.0084		
Sodium chloride	1.0401	1.097	1.0208	1.047	1.0107	1.024	1.0056	1.013	Reyher.
" bromide " chlorate .	1.0786	1.064	1.0396	1.030	1.0190	1.015	1.0100	1.000	"
" nitrate	1.0554	1.065	1.0281	1.026	1.0141	1.012	1.0071	1.007	4
Silver nitrate	1.1386	1.053	1.0692	1.020	1.0348	1.006	1.0173	1.000	Wagner.
Strontium chloride .	1.0676	1.141	1.0336	1.067	1.0171	1.034	1.0084	1.014	66
" nitrate . Zinc chloride	1.0822	1.115	1.0419	1.049 1.096	1.0208	1.024	1.0104	1.011	"
" nitrate	1.0758	1.164	1.0404	1.0Ś6	1.0191	1.039	1.0096	1.019	"
" sulphate	1.0792	1.367	1.0402	1.173	1.0198	1.082	1.0094	1.036	44
		'	''			·			

[•] In the case of solutions of salts it has been found (vide Arrhennius, Zeits, für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation $\mu = \mu_1^{-\alpha}$, where μ_1 is the specific viscosity for a normal solution referred to the solvent at the same temperature, and α the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C.

VISCOSITY OF GASES AND VAPORS.

The values of μ given in the table are 10^6 times the coefficients of viscosity in C. G. S. units.

Substance.	Temp. ° C.	μ	Authority.	Substance.	Temp.	μ	Authority.
Acetone	0.81	78	Puluj.	Carbon dioxide .	12.8	147 208	Schumann.
Air	0.0	172	Thomlinson.				
u : : : :	0.0 16.7	168 183	Obermeyer. Puluj.	Carbon monoxide	0.0	163	Obermeyer.
1.		_	,	Chlorine	. 0.0	129	Graham.
Alcohol: Methyl . Ethyl .	66.8 78.4	135 142	Stendel.		20.0	147	"
Normal	/	-4-	1	Chloroform	17.4	103	Puluj.
propyl Isopropyl	97.4 82.8	142 162	u	Ether	16.0	73	"
Normal	02.0	102		Ethyl iodide	73-3	216	Stendel.
butyl	116.9	143	"	Methyl "	44.0	232	"
Isobutyl	108.4	144	"	1	71	٦	1
Tertiary				Mercury	270.0	489	Koch.
butyl	82.9	160	"	"	300.0	536	"
1				"	330.0	582	66
Ammonia	0.0	96	Graham.		360.0	627	"
¶	20.0	1ó8		"	390.0	671	"
Benzene	19.0	79	Schumann.	Water	0.0	90	Puluj.
*	100.0	118	"	"	16.7	97	4.
Carbon disulphide	16.9	99	Puluj.	"	100.0	132	L. Meyer & Schumann.

^{*} The values here given were calculated from Koch's table (Wied. Ann. vol. 19, p. 869) by the formula $\alpha = 489 \left[1 + 746 \left(\ell - 270\right)\right]$.

SMITHSONIAN TABLES.

TABLE 159.

COEFFICIENT OF VISCOSITY OF GASES.

The following are a few of the formulæ that have been given for the calculation of the coefficient of viscosity of gases for different temperatures.

Gas.	Value of µ.	Authority.
Air	μ_0 (1 + .002751 t 00000034 t^2) .000172 (1 + 00273 t) .0001683 (1 + .00274 t)	Holman. O. E. Meyer. Obermeyer.
Carbon dioxide	μ_0 (1 + .003725 t00000264 t ² + .00000000417 t ⁸) .0001414 (1 + .00348 t)	Holman. Obermeyer.
Carbon monoxide .	.0001630 (1 + .00269 <i>t</i>)	"
Ethylene	.0000966 (1 + .00350 <i>t</i>)	*
Ethylene chloride .	.0000935 (1 + .00381 t)	u
Hydrogen	.0000822 (I + .00249 <i>I</i>)	"
Nitrogen	.0001635 (I + .00269 <i>1</i>)	"
Nitrous oxide (N2O)	.0001408 (1 + .003451)	u
Oxygen	.0001873 (1 + .002831)	ēc .

DIFFUSION OF LIQUIDS AND SOLUTIONS OF SALTS INTO WATER.

The coefficient of diffusion as tabulated below is the constant which multiplied by the rate of change of concentration in any direction gives the rate of flow in that direction in C. G. S. units. Suppose two liquids diffusing into each other, and let ρ be the quantity of one of them per unit volume at a point A, and ρ' the quantity per unit volume at an adjacent point B, and x the distance from A to B. Then if x is small the rate of flow from A towards B is equal to $k(\rho - \rho')/x$, where k is the coefficient of diffusion. Similarly for solutions of salts diffusing into the solvent medium, ρ and ρ' being taken as the quantities of the salt per unit volume. The results indicate that k depends on the absolute density of the solution. Under c will be found the concentration in grammes of the salt per 100 cu. cms. of the solution; under n the number of gramme-molecules of water per gramme-molecule of salt or of acid or other liquid.

Substance.			0	**	k×107	Temp. C.	Authority.
Ammonia			-	16:0	123	4.°5	Scheffer.
l)		•	-	85.0	123	4.5	
Ammonium chloride		•	23		135	10.0	Schuhmeister.†
B	•	•	_	61.0	152	17.5	Scheffer
Barium chloride . Calcium chloride		•	-	46.0	76 83	8.0	44
Calcium chioride		•	-	13.0		9.0	66
4 4		•	-	297.0	74	9.0	u
4 4		•	10	384.0	79	9.0	Schuhmeister.
Cobalt chloride .	• •	•	10	-	79	10.0	66
Copper ".	• •	•	10	I	53 50	10.0	66
Copper sulphate		•	10	_	24	10.0	66
Hydrochloric acid	•		-	5.0	267	0.0	Scheffer.
""		•	_	9.8	215	0.0	4
			_	14.1	195	0.0	u
			_	27.1	176	0.0	u
44			_	129.5	161	0.0	u
44			- - -	7.2	309	11.0	u
44 44			_	27.6	245	11.0	"
66 66			_	69.4	234	11.0	"
; " "			_	108.4	213	11.0	"
Lead nitrate .			-	136.0	76	12.0	46
"".			-	514.0	82	12.0	44
Lithium chloride		.	14	_	81	10.0	Schuhmeister.
" bromide			20	-	93	10.0	44
		•	38	-	100	10.0	4
" iodide .			17	-	93	10.0	"
Magnesium sulphate	• •		10	-	32	10.0	
	• •	•	-	45.0	32	5-5	Scheffer.
		•	-	184.0	37	5.5	
	• •	•	-	30.0	31	10.0	"
Potassium chloride	• •	٠ ا	-	248.0	39 98	10.0	
Potassium chloride	• •	•	-	32.0	106	7.0 •	46
44 44	• •	٠,۱	10	107.0		7.0 10.0	Schuhmeister.
66 66	• •	٠,			127	10.0	"
" bromide		٠,	30 10	_	147 131	10.0	"
4 510111.00	• •	: 1	30	_	144	10.0	u
" iodide		: 1	10		130	10.0	"
" "		:	30	_		10.0	"
		.	90	_	145 168	10.0	"
" nitrate			15	_		10.0	"
" sulphate		.	13	_	93 87	10.0	"
Sodium chloride		.	10		97	10.0	"
"		.	30	_	106	10.0	"
" bromide		.	30	-	99	10.0	"
" iodide		.	15	-	93	10.0	"
"		-	30	-	100	10.0	"
" nitrate .		.	10	-	69	10.0	"
" carbonate		- [13	-	45 76	0.01	"
" sulphate		•	10	-		0.01	= "
Nitric acid		•	-	2.9	225	9.0	Scheffer.
44 44		.	-	7.3	234	9.0	"
" "	• •	•	-	35.0	206	9.0	
			-	426.0	200	9.0	"
Sulphuric acid	• •	•	-	18.8	124	8.0	"
" "	• •	•	-	125.0 686.0	115	8.5	"
	• •	•	_		132	9.0	"
		.	_	0.5	150	13.0	"
	• •	.	_	35.0	144	13.0	

^{• &}quot; Z. für Phys. Chem." 2, p. 390.

^{† &}quot;Wien. Akad. Ber." vol. 79, 2. Abth. p. 603.

TABLE 161.

DIFFUSION OF CASES AND VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimetres of mercury.*

	Va	por.				Temp. C.	ke for vapor diffusing into hydrogen.	ke for vapor diffusing into air.	Re for vapor diffusing into carbon dioxid
Acids :	Formic					0.0	0.5131	0.1315	0.0879
	44					65.4	0.7873	0.2035	0.1343
	"	•				84.9	0.8830	0.2244	0.1519
	Acetic					0.0	0.4040	0.1061	0.0713
	46					65.5	0.6211	0.1578	0.1048
	44	•				98.5	0.7481	0.1965	0.1321
	Isovalerio	: .				0.0	0.2118	0.0555	0.0375
	44	•	•	•	•	98.0	0.3934	0.1031	0.0696
Alcoho	ls: Methy	ι.				0.0	0.5001	0.1325	0.0880
	"					25.6	0.6015	0.1620	0.1046
	66					49.6	0.6738	0.1809	0.1234
	Ethyl					0.0	0.3806	0.0994	0.0693
	"					40.4	0.5030	0.1372	0.0898
	44					66.9	0.5430	0.1475	0.1026
	Propyl					0.6	0.3153	0.0803	0.0577
	""					66.9	0.4832	0.1237	1000.0
	"					83.5	0.5434	0.1379	0.0976
	Butyl					0.0	0.2716	1880.0	0.0476
	44 "					99.0	0.5045	0.1265	0.0884
	Amyl					0.0	0.2351	0.0589	0.0422
	"					99.1	0.4362	0.1094	0.0784
	Hexyl					0.0	0.1998	0.0499	0.0351
	"	•	•	•	•	99.0	0.3712	0.0927	0.0651
Benzen	e					0.0	0.2940	0.07 51	0.0527
44						19.9	0.3409	0.0877	0.0609
"		•	•	•	•	45.0	0.3993	0.1011	0.0715
Carbon	disulphide					0.0	0.3690	0.0883	0.0629
"	46					19.9	0.4255	0.1015	0.0726
"	"	•		•		32.8	0.4626	0.1120	0.0789
Esters:	Methyl ac	cetate				0.0	0.3357	0.0852	0.0572
	44	46				20.3	0.3928	0.1013	0.0679
	Ethyl	"				0.0	0.2373	0.0630	0.0450
	"	16				46.1	0.3729	0.0970	0.0666
	Methyl b	utyrai	te.			0.0	0.2422	0.0640	0.0438
	"	ű				92.1	0.4308	0.1139	0.0809
	Ethyl	44				0.0	0.2238	0.0573	o.0406
	"	"				96.5	0.4112	0.1064	0.0756
		erate				0.0	0.2050	0.0505	0.0366
	" •	•	•	•	•	97.6	0.3784	0.0932	0.0676
Ether						0.0	0.2960	0.0775	0.0552
"		•	•	•	•	19.9	0.3410	0.0893	0.0636
Water						0.0	0.6870	0.1980	0.1310
66						49-5	1.0000	0.2827	0.1811
46						92.4	1.1794	0.3451	0.2384

^{*} Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for 0° were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Obermeyer the coefficient of diffusion of a gas, or vapor, at 0° C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{T_0}{f_0}$, where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air $-CO_0$, n = 1.068; $CO_2 - N_2O$, n = 2.05; $CO_1 - H$, n = 1.742; CO - O, n = 1.755; $H - O_0$, n = 1.755; $H - O_0$, H = 1.755;

TABLE 162.

COEFFICIENTS OF DIFFUSION FOR VARIOUS GASES AND VAPORS.*

Gas or vapor o	liffusing	.	Gas or vapor diffused into.	Temp.	Coefficient of diffusion.	Authority.
Air		•	Carbon dioxide	0	0.1343	Obermayer.
"		•	Oxygen	0	0.1775	_ "
Carbon dioxide			Air	0	0.1423	Loschmidt.
d (1		•	"	0	0.1360	Waitz.
44 44			Carbon monoxide .	0	0.1405	Loschmidt.
44 44		•		0	0.1314	Obermayer.
44 44			Ethylene	0	0.1006	u
"			Hydrogen	0	0.5437	44
" "		•	Methane	0	0.1465	
4 4		•	Nitrous oxide	0	0.0983	Loschmidt.
" "			Oxygen	0	0.1802	44
Carbon disulphi			Air	0	0.0995	Stefan.
Carbon monoxio	ie .	•	Carbon dioxide	0	0.1314	Obermayer.
"			Ethylene	0	0.1164	44
44 64			Hydrogen	0	0.6422	Loschmidt.
" "		•	Oxygen	0	0.1802	**
"				0	0.1872	Obermayer.
Ether .			Air	0	0.0827	Stefan.
			Hydrogen	0	0.3054	46
Hydrogen .			Aír	0	0.6340	Obermayer.
			Carbon dioxide	0	0.5384	u ·
" .			" monoxide .	0	0.6488	4
" .			Ethane	ا ه	0.4593	44
" .		•	Ethylene	۱ ه	0.4863	44
" .			Methane	0	0.6254	46
" .			Nitrous oxide	0	0.5347	••
" .			Oxygen	0	0.6788	66
Nitrogen			Oxygen	0	0.1787	66
Oxygen .			Carbon dioxide	0	0.1357	46
17 .			Hydrogen	0	0.7217	Loschmidt.
u			Nitrogen	٥	0.1710	Obermayer.
Sulphur dioxide			Hydrogen	0	0.4828	Loschmidt.
Water .			Air	8	0.2390	Guglielmo.
			"	18	0.2475	
"			Hydrogen	18	0.8710	44

^{*} Compiled for the most part from a similar table in Landolt & Boernstein's "Phys. Chem. Tab."

SMITHSONIAN TABLES.

OSMOSE.

The following table given by H. de Vries* illustrates an apparent relation between the isotonic coefficient† of solutions and the corresponding lowering of the freezing-point and the vapor pressure. The freezing-points are taken on the authority of Raoult, and the vapor pressures on the authority of Tammann.‡

Substance.	Formula.	Isotonic coefficient X 100.	Molecular lowering of the freezing point X 100.	Molecular lowering of the vapor pressure × 1000.
Glycerine Cane sugar	C3H8O3 C19H22O11 C4H6O6 MgSO4 KNO3 NaNO3 KC1 NaC1 NHC1 KC2H8O2 K2C2O4 K2SO4 MgC12 CaCl3	178 188 202 196 300 300 287 305 300 300 393 392 433 433	171 185 195 192 308 337 336 351 348 345 450 390 488 466	- 188 156 267 296 313 330 313 331 372 351 513 517

TABLE 164.

OSMOTIC PRESSURE.

The following numbers give the result of Pfeffer's § measurement of the magnitude of the osmotic pressure for a one per cent sugar solution. The result was found to agree with that of an equal molecular solution of hydrogen. The value for the hydrogen solution is given in the third column of the table.

Temperature C.	Osmotic pressure in atmospheres.	0.649 (1+.003671)
6.8	0.664	0.665
13.7	0.691	0.681
14.2	0.671	0.682
15.5	0.684	0.686
22.0	0.721	0.701
32.0	0.716	0.725
36.0	0.746	0.735

^{* &}quot;Zeits. für Phys. Chem." vol. 2, p. 427.

† The isotonic coefficient is the relative value of the molecular attraction of the different salts for water or the relative value of the osmotic pressures for normal solutions. In the above table the coefficient for KNO3 was taken as 3 arbitrarily and the others compared with it. The concentrations of different salts which give equal osmotic pressures are called by Tammann and others isosmotic concentrations; they are sometimes called isotonic concentrations. The reciprocals of the numbers of molecules in the isotonic concentrations are called by De Vries the isotonic coefficients.

nts. ‡ See also Tammann, "Wied. Ann." vol. 34, p. 315. § Winkelmann's "Handbuch der Physik," vol. 1, p. 632.

TABLE 165.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

The last four columns were calculated from the data given in the second column and the density of mercury.

Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure : atmospheres.	Temp. ° Fahr.	Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure: atmospheres.	Temp. O Fahr.
4.60 4.94 5.30 5.69 6.10	6.254 6.716 7.206 7.736 8.291	0.0890 .0955 .1025 .1100 .1180	0.181 .194 .209 .224	0.0061 .0065 .0070 .0075 .0080	32.0 33.8 35.6 37.4 39.2	40 41 42 43 44	54.91 57.91 61.01 64.35 67.79	74.653 78.678 82.947 87.488 92.165	1.061 1.121 1.216 1.244 1.312	2.162 2.280 2.404 2.533 2.669	0.072 .076 .080 .085 .089	104.0 105.8 107.6 109.4 111.2
8.02	10.904	0.1263 .1354 .1452 .1551 .1657	0.257 .276 .295 .316 .338	0.0086 .0092 .0099 .0107	41.0 42.8 44.6 46.4 48.2	45 46 47 48 49	79.09 83.20	107.528	1.609	2.811 2.959 3.114 3.276 3.444	0.094 .099 .104 .109	113.0 114.8 116.6 118.4 120.2
11.16	15.173	0.1773 .1893 .2023 .2158 .2303	0.361 .386 .412 .439 .469	0.012 .013 .014 .015	50.0 51.8 53.6 55.4 57.2	50 51 52 53 54	91.98 96.66 101.54 106.64 111.95	125.05 131.42 138.04 144.98 152.20	1.78 1.87 1.96 2.06 2.17	3.62 3.81 4.00 4.20 4.41	.134 .140	125.6 127.4
		0.2456 .2618 .2789 .2970 .3162	0.500 .533 .568 .605 .644	0.017 .018 .019 .020	59.0 60.8 62.6 64.4 66.2	55 56 57 58 59	123.24 129.25 135.51	167.55 175.72 184.23	2.27 2.39 2.50 2.62 2.75	4.63 4.85 5.09 5.33 5.59	.163 .170 .178	131.0 132.8 134.6 136.4 138.2
20.89	28.401	0.3363 •3577 •3802 •4040 •4289	0.685 .728 .774 .822 .873	0.023 .024 .026 .028 .029	68.0 69.8 71.6 73.4 75.2	60 61 62 63 64	163.17 170.79	221.84	2.88 3.01 3.16 3.30 3.46	5.86 6.14 6.42 6.72 7.04	.205 .215 .225	145.4
23.55 24.99 26.51 28.10 29.78	32.018 33.97 5 36.042 38.204 40.488	0.4554 .4833 .5126 .5434 .5759	0.927 .984 1.044 .106 .172	0.031 .033 .034 .037 .039	77.0 78.8 80.6 82.4 84.2	65 66 67 68 69	21 3.60	290.40	3.62 3.78 3.95 4.13 4-32	7.36 7.70 8.05 8.41 8.79	.257 .267 .281	152.6 154.4
31.55 33.41 35.36 37.41 39.57	42.894 45.423 48.074 50.861 53.798	0.6101 .6461 .6838 .7234 .7655	1.242 .315 .392 .473 .558	0.042 .044 .047 .049 .052	86.0 87.8 89.6 91.4 93.2	70 71 72 73 74	243.39 254.07 265.15	330.90 345.42 360.49	4.51 4.71 4.91 5.12 5.35	9.18 9.58 10.00 10.44 10.89	.320 .334 .349	159.8 161.6 163.4
41.83 44.20 46.69 49.30 52.04	56.870 60.093 63.478 67.026 70.752	0.810 .855 .903 .954 1.007	1.647 .740 .838 .941 2.049	0.055 .058 .061 .065	95.0 96.8 98.6 100.4 102.2	75 76 77 78 79	300.84	409.01	5.58 5.82 6.06 6.32 6.58	11.36 11.84 12.35 12.87 13.40	.396 .414 .430	168.8 170.6 172.4
	4.60 4.94 5.30 5.69 6.53 7.49 8.02 8.57 9.17 9.79 10.46 11.16 11.19 12.70 13.54 14.42 15.36 10.35 17.39 18.50 19.66 20.89 22.18 23.55 24.99 26.51 28.10 29.78 31.55 33.41 35.36 37.41 39.57 41.83 44.69 49.30	4.60 6.254 4.94 6.716 5.30 7.736 6.10 8.291 6.53 8.878 7.00 9.517 7.49 10.183 8.02 11.651 9.17 12.467 9.79 13.310 14.207 11.16 15.173 11.91 16.192 12.70 17.266 13.54 18.408 14.42 19.605 15.36 20.893 25.152 19.66 26.729 20.89 28.401 22.18 30.155 22.519.66 26.729 20.89 28.401 22.18 30.155 23.55 32.018 24.99 33.975 25.152 19.66 26.729 20.89 28.401 22.18 30.155 23.55 32.018 24.99 33.975 33.042 29.78 40.488 31.55 42.894 33.41 45.423 35.36 48.074 47.42 60.093 46.69 63.478 49.30 67.026	## 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	4.60 6.254 0.0890 0.181 5.30 7.206 1.025 2.209 5.69 7.736 1.100 2.24 6.53 8.878 0.1263 0.257 7.00 9.517 .1354 .276 7.49 10.183 .1452 2.95 8.57 11.651 .1657 .338 9.17 12.467 0.1773 0.361 9.79 13.310 1.1893 .386 1.40 14.207 .2023 4.12 11.16 15.173 .2158 .439 11.91 16.192 .2303 .469 12.70 17.266 0.2456 0.500 13.54 18.408 .2618 .533 11.42 19.605 .2789 .605 13.54 18.408 .2618 .533 14.42 19.605 .2789 .605 13.54 18.408 .2618 .533 14.42 19.605 .2789 .605 13.55 22.229 .3162 .644 17.39 23.643 0.3363 0.685 18.50 25.152 .3577 .728 19.60 26.729 .3802 .774 20.89 28.401 .4040 .822 22.18 30.155 .4289 .873 23.55 32.018 0.4554 0.927 24.99 33.975 48.33 .984 25.154 0.6101 1.242 28.10 38.204 .5434 1.106 29.78 40.488 .5759 .172 31.55 42.894 0.6101 1.242 33.41 45.423 .6461 .315 35.36 48.074 .6838 .392 37.41 59.861 .7234 .473 39.57 53.798 .6555 41.83 56.870 0.810 1.647 4.20 60.093 .855 .740 4.669 63.478 .903 .834 49.30 67.026 .954 .941	4.60 6.254 0.0890 0.181 0.0061 5.30 7.206 1.025 2.99 0.070 6.10 8.291 1.180 .224 0.080 6.53 8.878 0.1263 0.257 0.0086 7.00 9.517 1.354 .276 0.092 8.02 10.904 1.551 3.16 2.295 0.099 8.57 11.651 1.657 3.38 0.114 9.17 12.467 0.1773 0.361 0.012 9.79 13.310 1.893 1.386 0.13 10.46 14.207 2.2023 4.12 0.14 11.16 15.173 2.158 4.39 0.15 11.91 16.192 2.303 4.69 0.16 12.70 17.266 0.2456 0.500 0.017 11.54 18.408 2.218 5.33 0.18 11.42 19.65 2.2789 0.605 12.30 20.883 2.2970 0.65 16.35 22.229 3.162 0.644 0.22 17.39 23.643 0.3363 0.685 0.023 18.50 25.152 0.3577 7.28 0.24 19.66 26.729 3.802 7.74 0.26 18.50 25.152 0.3802 7.74 0.26 22.18 30.155 42.894 0.6101 1.242 0.024 33.41 45.423 0.646 38.204 5434 1.06 0.37 29.78 40.488 5.759 1.72 0.39 31.55 42.894 0.6101 1.242 0.042 33.41 45.423 0.6461 3.15 0.044 33.56 48.074 0.6838 3.392 0.47 37.41 59.861 7.234 4.73 0.049 39.57 53.798 7.655 5.558 0.52 41.83 56.870 0.810 1.647 0.055 44.20 00.093 .855 7.740 0.058 44.20 00.093 .	4.60 6.254 0.0890 0.181 0.0061 32.0 4.94 6.716 .0955 .194 .0065 33.8 5.30 7.206 .1025 .209 .0070 35.6 5.69 7.736 .1100 .224 .0075 37.4 6.10 8.291 .1180 .240 .0080 39.2 6.53 8.878 0.1263 0.257 0.0086 41.0 7.00 9.517 .1354 .276 .0092 42.8 7.49 10.183 .1452 .295 .0099 44.6 8.57 11.651 .1551 .316 .0107 46.4 8.57 11.651 .1557 .338 .0114 48.2 9.17 12.467 0.1773 0.361 .012 50.0 9.79 13.310 .1893 .386 .013 51.8 10.46 14.207 .2023 .412 .014 53.6 11.16 15.173 .2158 .439 .015 55.4 11.19 16.192 .2303 .409 .016 57.2 12.70 17.266 0.2456 0.500 0.017 59.0 13.54 18.408 .2618 .533 .018 60.8 14.42 19.605 .2789 .568 .019 62.6 15.36 20.883 .2970 .605 .020 64.4 16.35 22.229 .3162 .644 .022 66.2 17.39 23.643 .0.3363 0.685 0.023 68.0 18.50 25.152 .3577 .728 .024 60.8 19.66 26.729 .3802 .774 .026 71.6 20.89 28.401 .4040 .822 .028 73.4 22.18 30.155 .4289 .873 .029 75.2 23.55 32.018 0.4554 0.927 0.031 77.0 23.55 32.018 0.4554 0.927 0.031 77.0 24.99 33.975 .4833 .984 .033 78.8 26.51 36.042 .5434 .106 .037 82.4 29.78 40.488 .5759 .172 .039 84.2 31.55 42.894 0.6101 1.242 0.042 86.0 33.41 45.423 .6461 .315 .044 .034 80.6 33.41 45.423 .6461 .315 .044 .034 80.6 33.41 45.423 .6461 .315 .044 .034 80.6 33.81 35.36 48.074 .6838 .392 .047 89.6 37.41 59.861 .7234 .473 .049 91.4 39.57 53.798 .7655 .558 .052 93.2 41.83 56.870 .810 1.647 .0.55 95.0 41.83 56.870 .810 1.647 .0.55 95.0 44.20 60.093 .855 .740 .058 96.8 49.30 67.026 .954 .941 .065 100.4	4.60 6.254 0.0890 0.181 0.0061 32.0 40 4.94 6.716 .0955 .194 .0065 33.8 41 5.30 7.206 .1025 .209 .0070 35.6 42 5.69 7.736 .1100 .224 .0075 37.4 43 6.10 8.291 .1180 .240 .0080 39.2 44 6.53 8.878 0.1263 0.257 0.0086 41.0 45 7.00 9.517 .1354 .276 .0092 42.8 46 8.02 10.904 .1551 .316 .0107 46.4 48 8.57 11.651 .1657 .338 .0114 48.2 49 9.17 12.467 0.1773 0.361 0.012 50.0 50 9.79 13.310 .1893 .386 .013 51.8 51 10.46 14.207 .2023 .412 .014 53.6 52 11.16 15.173 .2158 .439 .015 55.4 53 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 11.91 16.192 .2303 .469 .016 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 57.2 54 12.70 17.266 0.2456 0.500 0.017 59.0 62.6 55 13.54 18.408 .2618 .533 0.018 60.8 56 14.42 19.605 .2789 .568 0.09 62.6 57 16.35 22.229 .3162 .644 .022 66.2 59 17.39 23.643 0.3363 0.685 0.023 68.0 60 18.50 25.152 .3577 .728 .024 69.8 61 19.66 26.729 .3802 .774 .026 71.6 62 20.89 28.401 .4040 .822 .028 73.4 63 22.18 30.155 .4289 .873 .029 75.2 64 23.55 32.018 0.4554 0.927 0.031 77.0 655 24.99 33.975 .4833 .984 .033 78.8 66 26.71 38.204 .5434 .106 .037 82.4 68 29.78 40.488 .5759 .172 .039 84.2 69 31.55 42.894 0.6101 1.242 0.042 86.0 72 33.41 45.423 .6461 .315 .044 87.8 71 33.576 48.074 .6838 .392 .047 89.6 72 33.41 45.423 .6461 .315 .044 87.8 71 33.576 48.074 .6838 .392 .047 89.6 72 33.41 45.423 .6461 .315 .044 87.8 71 33.536 48.074 .6838 .392 .047 89.6 72 33.41 45.423 .6461 .315 .044 87.8 71 33.576 48.074 .6838 .392 .047 89.6 72 33.57 53.798 .7655 .558 .052 93.2 74 41.83 56.870 0.810 1.	4.60 6.254 0.0890 0.181 0.0061 32.0 40 54.91 5.30 7.206 1.025 2.09 0.0070 35.6 42 61.01 5.69 7.736 .1100 .224 0.0080 39.2 44 67.79 6.53 8.878 0.1263 0.257 0.0086 41.0 45 71.39 7.00 9.517 .1354 .276 0.092 42.8 46 7.516 7.99 10.183 .1452 .295 0.099 44.6 47 79.09 8.02 10.994 .1551 .316 0.107 46.4 88 8.57 11.651 .1657 .338 0.114 48.2 49 87.50 9.79 13.310 0.1893 .386 0.13 51.8 51 0.46 14.207 .2023 412 0.14 53.6 52 101.54 11.16 15.173 .2158 .439 0.015 55.4 111.16 15.173 .2158 .439 0.015 55.4 111.16 15.173 .2158 .439 0.015 55.4 111.19 16.192 .2303 .469 0.016 57.2 54 111.95 12.70 17.266 0.2456 0.500 0.017 59.0 55 117.48 18.408 .2618 .533 0.18 60.8 15.36 11.42 19.605 .2789 .568 0.19 66.2 65 112.92 15.50 25.00 25.15 20.883 .2970 .605 0.020 64.4 11.05 22.129 .3162 .644 .022 66.2 59 142.02 11.35 22.229 .3802 .774 0.026 71.6 62 163.17 20.22 18.30 1.55 .4289 .873 0.029 75.2 64 178.71 22.18 30.155 .4289 .873 0.029 75.2 64 178.71 23.55 32.018 0.4554 0.927 0.031 77.0 68.01 33.975 .4833 .984 0.33 78.8 66 195.50 20.89 28.401 .4040 .822 0.28 73.4 63 170.79 22.18 30.155 .4289 .873 0.029 75.2 64 178.71 23.55 32.018 0.4554 0.927 0.031 77.0 65 186.95 75.2 179.50 33.975 .4833 .984 0.33 78.8 66 195.50 20.8 28.10 38.204 .5434 .106 0.37 82.4 68 213.60 29.78 40.488 .5759 .172 0.39 84.2 69 223.17 33.51 5.54 68.8 67 204.38 83.41 45.423 0.6101 1.242 0.002 85.0 0.20 75 24.09 33.975 .4833 .984 0.33 88.6 67 204.38 82.13 5.0 44 45.423 0.6101 1.242 0.002 85.0 70 233.09 3.2 66.0 70 233.09 3.341 45.423 0.6101 1.242 0.002 85.0 70 233.09 3.2 66.0 33.41 45.423 0.6101 1.242 0.002 85.0 70 233.09 3.2 74 276.62 33.41 59.861 7.72 34 4.73 0.49 91.4 59.50 72 254.07 74 2254.07 37.41 59.861 7.72 34 4.73 0.49 91.4 73 265.15 39.57 53.798 7.655 5.58 0.52 93.2 74 276.62 44.20 60.093 .855 7.74 0.058 96.6 77 2254.07 44.20 60.093 .855 7.74 0.058 96.6 77 2254.07 44.20 60.093 .855 7.00 88 96.8 77 33.2681 49.30 67.026 .954 .941 0.655 100.4 78 326.81	4.60 6.254 0.0890 0.181 0.0061 32.0 40 54.91 74.653 7.50 7.206 1.025 2.09 .0070 3.56 26.0 7.736 1.100 .224 .0075 37.4 43 64.35 87.488 6.10 8.291 1.180 .240 .0080 39.2 44 67.79 92.165 6.53 8.878 0.1263 0.257 0.0086 41.0 45 71.39 97.059 7.00 9.517 1.354 .276 .0092 42.8 46 7.516 102.184 7.009 9.517 1.354 .276 .0092 42.8 46 7.516 102.184 8.02 10.904 1.1551 .316 .0107 46.4 48 83.20 11.3115 1.1657 .338 .0114 48.2 49 87.50 118.962 9.79 13.310 .1893 .386 .013 51.8 51 11.651 .1657 .338 .0114 48.2 49 87.50 118.962 9.79 13.310 .1893 .386 .013 51.8 51 11.91 16.192 .2303 .409 .016 57.2 51 111.95 15.220 11.70 17.266 0.2456 0.0500 0.017 59.0 13.34 18.408 .2618 .533 .018 60.8 14.42 19.605 .2789 .568 .019 15.36 20.883 .2970 .605 .020 64.4 58 135.51 184.23 19.605 .2789 .568 .019 62.6 57 129.25 175.72 15.36 20.883 .2970 .605 .020 64.4 58 135.51 184.23 19.605 .2789 .568 .019 62.6 57 129.25 175.72 20.808 28.401 .4040 .822 .028 73.4 63 170.79 232.20 17.30 88.10 8.20.8 28.401 .4040 .822 .028 73.4 63 170.79 232.20 17.50 20.80 28.401 .4040 .822 .028 73.4 63 170.79 232.20 22.18 30.155 .4289 .873 .029 75.2 64 178.71 242.97 23.55 32.018 0.4554 0.927 0.031 77.0 65 186.95 25.79 29.78 40.488 .5759 .172 .039 84.2 69 223.17 303.41 45.423 .6461 .315 0.044 .034 87.8 66 195.50 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .034 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .036 87.8 66 22.317 303.41 45.423 .6461 .315 0.044 .036 87.8 66 22.317 303.41 45.42	4.60 6.254 0.0890 0.181 0.0061 32.0 40 54.91 74.653 1.061 5.30 7.206 .0955 .194 .0065 33.8 41 57.91 78.678 1.1216 5.50 7.736 .1100 .224 .0075 37.4 43 64.35 87.488 1.244 67.79 92.165 1.312 6.53 8.878 0.1263 0.257 0.0086 41.0 44 67.79 92.165 1.312 6.53 8.878 0.1263 0.257 0.0086 41.0 45 71.39 97.059 1.381 7.49 10.183 .1452 .295 0.0099 44.6 47 79.09 107.528 1.551 .316 0.107 46.4 48 83.20 10.904 .1551 .316 0.107 46.4 48 83.20 10.904 .1551 .316 0.107 46.4 48.2 49 87.50 118.962 1.692 1.1651 .1657 .338 0.114 48.2 49 87.50 118.962 1.692 1.161 1.16 11.16 11.173 .2158 4.39 0.15 5.18 51 96.66 131.42 1.87 11.16 11.173 .2158 4.39 0.15 57.2 54 111.91 16.192 .2303 .469 0.016 57.2 54 111.95 152.20 2.17 12.70 17.266 0.2456 0.500 0.017 59.0 55 117.48 159.72 2.27 13.54 18.408 .2618 .533 0.018 60.8 56 123.24 167.55 2.39 143.20 2.29 3.362 0.2883 .2970 0.605 0.20 64.4 58 135.51 184.23 2.29 3.162 0.644 0.22 66.2 59 142.02 193.08 2.75 116.36 20.883 .2970 0.605 0.20 64.4 58 135.51 184.23 2.62 11.35 184.23 2.62 11	4.60 6.254 0.0890 0.181 0.0061 32.0 40 54.91 74.653 1.061 2.162 5.30 7.206 1.025 2.29 .0070 35.6 42 61.01 82.947 1.216 2.404 5.50 7.736 1.100 .224 .0075 37.4 43 64.35 87.488 1.224 2.533 6.10 8.291 1.180 .240 .0080 39.2 44 66.76 9.517 1.354 .276 0.092 42.8 46 77.90 92.165 1.312 2.609 7.749 10.183 1.452 .295 .0099 44.6 47 79.00 107.528 1.530 3.114 88.27 11.651 1.657 .338 .0114 48.2 49 87.50 118.962 1.692 3.444 99 87.50 118.962 1.692 3.444 99 87.50 118.962 1.692 3.444 99 87.50 118.962 1.692 3.444 1.207 1.2089 2.840 1.218 4.39 .015 55.4 1.312 2.203 4.69 0.10 57.2 54 111.95 152.20 2.17 4.41 1.216 1.230 2.233 4.69 0.10 57.2 54 111.95 152.20 2.17 4.41 1.207 1.236 2.288 2.249 3.375 2.229 3.162 0.44 0.22 66.2 59 14.202 1.351 3.016 0.42 2.229 3.162 0.44 0.22 66.2 59 14.202 1.351 3.016 0.42 2.229 3.162 0.44 0.22 66.2 59 14.202 1.302 2.23 4.85 18.50 2.21.22 3.357 7.728 0.024 69.8 61 15.584 211.87 3.01 61.40 1.207 2.203 3.409 0.016 57.2 54 111.95 152.20 2.17 4.41 1.207 2.223 3.104 0.22 66.2 59 14.202 193.08 2.75 5.99 1.351 18.428 2.75 5.99 1.351 18.50 2.22.29 2.22 2.22 2.22 2.22 2.22 2.22	4.60 6.254 0.0890 0.181 0.0061 32.0 40 54.91 74.653 1.061 2.162 0.072 6.726 1.025 .209 0.0070 35.6 42 61.01 82.947 1.216 2.404 0.80 7.736 1.100 0.244 0.0080 33.4 41 57.91 74.678 1.121 2.280 0.076 7.736 1.100 0.244 0.0080 39.2 44 67.79 92.165 1.312 2.669 0.89 6.53 8.878 0.1263 0.257 0.0026 42.8 46 75.16 102.184 1.454 2.953 0.89 7.49 10.183 1.1452 2.905 0.0099 44.6 48 82.004 1.551 1.355 1.366 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.365 0.010 48.2 10.004 1.551 1.050 3.38 0.014 48.2 49 87.50 118.962 1.692 3.444 1.15 9.17 12.467 0.1773 0.361 0.012 50.0 50 11.3412 1.809 3.276 1.004 14.207 .2023 4.12 0.014 53.6 52 101.54 138.04 1.96 4.00 1.34 11.61 1.573 3.258 4.39 0.15 55.4 53 10.564 144.08 2.06 4.20 1.40 11.91 16.192 2.203 469 0.016 57.2 54 111.95 152.20 2.17 4.41 1.47 12.12 12.26 0.2456 0.500 0.017 59.0 55 11.748 159.72 2.27 4.63 0.155 13.54 18.408 .2618 .533 0.18 60.8 55 12.324 167.55 2.39 4.85 1.63 18.30 18.30 2.2.229 3.162 0.044 0.022 66.2 59 142.02 193.08 2.75 5.59 1.87 15.36 22.229 3.162 0.044 0.022 66.2 59 142.02 193.08 2.75 5.59 1.87 15.36 22.229 3.362 0.044 0.022 66.2 59 142.02 193.08 2.75 5.59 1.87 15.36 22.229 3.300 2.774 0.06 67 0.028 3.399.5 0.031 7.00 68.0 69.8 67 15.58 2.11.87 3.05 6.72 0.225 1.00 6.00 18.2 0.0

TABLE 165.

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

													_
Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure :	Temp. O Fahr.	Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetres.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure:	Temp. O Fahr.
80 81 82 83 84	354.64 369.29 384.44 400.10 416.30	482.15 502.07 522.67 543.96 565.99	7.14 7.44 7.74	13.96 14.54 15.14 15.75 16.39	.506 .526	1 76.0 177.8 179.6 181.4 183.2	120 121 122 123 124	1539.25 1588.47 1638.96	2027.48 2092.70 21 59.62 2228.26 2298.69	29.78 30.73 31.70	58.71 60.61 62.54 64.53 66.56	2.025 .091 .157	
85 86 87 88 89	433.04 450.34 468.22 486.69 505.76	588.74 612.26 636.57 661.68 687.61	9.41	17.05 17.73 18.43 19.16 19.91	.593 .616 .640	185.0 186.8 188.6 180.4 192.2	127	1743.88 1798.35 1854.20 1911.47 1970.15	2370.91 2444.96 2520.89 2598.76 2678.54	35.86 36.97	68.66 70.80 73.00 75.25 77.57	.366 .430	257.0 258.8 260.6 262.4 264.2
90 91 92 93 94	525.45 545.78 566.76 588.41 610.74	714.38 740.31 770.54 799.98 830.34	10.56 10.95 11.38	21.49 22.31 23.17	.719 .746 .774	194.0 195.8 197.6 199.4 201.2		2091.94 2155.03 2219.69	2760.29 2844.12 2929.89 3017.80 3107.85	40.47 41.68 42.93	82.36 84.84 87.39	.836 .921	266.0 267.8 269.6 271.4 273.2
95 96 97 98 99	633.78 657.54 682.03 707.28 733.31	861.66 893.97 927.26 961.59 996.98	12.71 13.19 13.68	25.89 26.85 27.85	.865 .897 .931	204.8	137	2494.23 2567.00	3200.04 3294.43 3391.06 3489.99 3591.29	48.24 49.65	98.19 101.06	.188 .282 .378	275.0 276.8 278.6 280.4 282.2
100 101 102 103 104	760.00 787.59 816.01 845.28 875.41		15.79 16.35	31.01 32.13 33.28	.074 .112	212.0 213.8 215.6 217.4 219.2	140 141 142 143 144	2717.63 2795.57 2875.30 2956.86 3040.26	3694.78 3800.75 3909.14 4020.03 4133.42	54.07 55.60 57.16	110.06 113.20 116.41	.678 .783 .890	285.8 287.6 289.4
105 106 107 108 109	1039.65	1232.32 1275.69 1320.32 1366.24 1413.47	18.15 18.78 19.44 20.11	36.94 38.23 39.56 40.93	.235 .278 .322 .368	221.0 222.8 224.6 226.4 228.2	145 146 147 148 149	3125-55 3212.74 3301.87 3392.98 3486.09	4249.37 4367.91 4489.09 4612.96 4739.55	62.13 63.86 65.62	126.48 129.99 133.58	.227 .344 .464	
111 112 113	1112.09 1149.83 1188.61	1462.03 1511.97 1563.26 1615.99 1670.18	21.51 22.24 22.99	43.78 45.25 46.80	.463 .513 .564	230.0 231.8 233.6 235.4 237.2	151 152 153	3678.4 3777.7 3879.2	4868.9 5001.1 5136.1 5275.0 5414.8	71.14 73.06	141.0 144.8 148.7 152.7 156.8	.840 .971 5.104	302.0 303.8 305.6 307.4 309.2
116 117 118	1311.47 1354.66 1399.02	1725.84 1783.02 1841.74 1902.05 1963.95	25.37 26.20 27.06	51.63 53.34 55.08	.726 .782	239.0 240.8 242.6 244.4 246.2	157	4088.6 4196.6 4306.9 4419.5 4534-4	5558.6 5705.5 5855.5 6008.5 6164.7	81.22 83.29 85.47	161.0 165.2 169.6 174.0 178.5	.522 .667	311.0 312.8 314.6 316.4 318.2

PRESSURE OF AQUEOUS VAPOR, ACCORDING TO REGNAULT.

Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure:	Temp. ° Fahr.	Temp. ° Cent.	Pressure: mm. of mercury.	Grammes per sq. centimetre.	Pounds per sq. inch.	Pressure: inches of mercury.	Pressure : atmospheres.	Temp. ° Fahr.
160 161 162 163 164	4651.6 4771.3 4893.4 5017.9 5145.0	6486.8 6652.8 6822.2		187.9	6.603	321.8 323.6	196 197 198	10519.6 10746.0 10975.0 11209.8 11447.5	14609.8 14921.2 15240.4	207.81 212.25 216.77	423.1 432.1 441.3	14.139 14.441 14.749	384.8 386.6 388.4
165 166 167 168 169	5274-5 5406-7 5541-4 5678-8 5818-9	7171.1 7350.7 7533.9 7720.7 7911.1	104.56 107.18 109.84	212.9 218.2 223.6	7.114 7.291 7.472	329.0 330.8 332.6 334.4 336.2	200 201 202 203	11689.0 11934.4 12183.7 12437.0 12694.3	15891.9 16225.5 16564.7 16908.8	226.04 230.79 235.61 240.54	460.1 469.8 479.7 489.6	15.380 15.703 16.031 16.364	392.0 393.8 395.6 397.4
170 171 172 173 174	5961.7 6107.2 6255.5 6406.6 6560.6	8504.7 8710.2	118.11 1 20.9 8 123.90	240.4 246.3	8.036 8.231 8.430	338.0 339.8 341.6 343.4 345.2	1 200	12955.7 13221.1 13490.8 13764.5 14042.5	17074.0	255.67 260.88 266.18	520.5 531.2 541.9	17.396 17.751 18.111	402.8 404.6 406.4
175 176 177 178 179	6717.4 6877.2 7040.0 7205.7 7374.5	9571.3	133.00 136.15 139.35	270.8 277.2 283.7	9.049 9.263 9.481	347.0 348.8 350.6 352.4 354.2	211 212 213	14324.8 14611.3 14902.2 15197.5 15497.2	19864.9 20260.5 20661.9	282.58 288.21 293.92	575.3 586.7 598.3	19.226 19.608 19.997	411.8 413.6 415.4
180 181 182 183 184	7721.4 7899.5 8080.8	10259.7 10497.7 10739.9 10986.4 11237.3	149.32 152.77 156.32	304.0 311.0 318.1	10.150 10.394 10.633	357.8 359.6 361.4	216 217 218	15801.3 16109.9 16423.2 16740.9 17063.3	21902.4 22328.3 22760.3	311.57 317.62 323.78	634.2 646.6 659.1	21.197 21.690 22.027	420.8 422.6 424.4
185 186 187 188 189	8644-4 8838-8 9036-7	11490.0 11752.5 12016.9 12285.9	167.17 170.94 174.76	340.3 348.0 355.8	11.374 11.630 11.885	366.8 368.6 370.4	221 222 223	17390.4 17722.1 18058.6 18399.9 18746.1	24094.3 24551.8 25015.8	342.70 349.21 355.81	697 7 711.0 724.4	23.319 23.761 24.210	429.8 431.6 433.4
190 191 192 193	9442.7 9650.9 9862.7 10078.0	12837.9 13121.0 13408.9 13701.7 13999.4	182.61 186.63 190.72 194.88	371.8 380.0 388.3 396.8	12.425 12.699 12.977 13. 2 61	374.0 375.8 377.6 379.4	226 227 228	19097.0 19452.9 19813.8 20179.6 20550.5	26447.4 26938.0 27435.4	376.17 383.15 390.22	765.8 780.9 794.5	25.596 26.071 26.552	438.8 440.6 442.4

TABLE 166. PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
-28	0.46	0.45	0.44	0.43	0.43	0.42	0.41	0.40	0.40	0.39
-26				0.52				0.49	0.48	0.47
-24	0.55 0.66	0.54 0.65	0.53 0.64	0.63	0.51	0.50	0.50	0.58	0.57	0.56
-22	0.79	0.78	0.77	0.75		0.73	0.71	0.70	0.69	0.68
-20	0.94	0.93	0.91	0.90	0.74 0.88	0.87	0.85	0.84	0.82	0.81
-18	I.12	1.10	1.08	1.06	1.05	1.03	10.1	0.99	0.98	0.96
— 16	1.32	1.30	1.28	1.26	1.24	1.22	1.20	1.18	1.16	1.14
—14	1.56	1.54	1.51	1.49	1.46	1.44	1.42	1.39	1.37	1.35
—I 2	1.84		1.78	1.75	1.72	1.69	1.67	1.64	1.61	1.59
-10	2.15	2.12	2.08	2.05	2.02	1.99	1.96	1.93	1.90	1.87
 -8	2.51	2.48	2.44	2.40	2.36	2.33	2.29	2.26	2.22	2.19
 -6	2.93	2.89	2.84	2.80	2.76	2.72	2.67	2.63	2.59	2.55 2.98
-4	3.41	3.36	3.31	3.26	3.21	3.16	3.11	3.07	3.03	2.98
	3.95	3.36 3.89	3.31 3.84	3.78	3.72	3.67	3.62	3.56	3.51	3.46
-∞	4.57	4.50	4.44	4-37	4.31	4.25	4.19	4.13	4.07	4.01
+0	4.57	4.64	4.70	4.77	4.84	4.91	4.98	5.05	5.12	5.20
2	5.27	5.35 6.15	5.42	Ş .50	5.58	5.66	5.74 6.60	5.82	5.90 6.78	5.99 6.88
4	6.07		6.24	6.33	6.42	6.51		6.69	6.78	6.88
6	6.97	7.07	7.17 8.21	7.26	7.36	7.47	7.57 8. 6 6	7.67	7.78 8.90	7.88
8	7.99	8.10	8.21	8.32	8.43	8.55	8.00	8.78	8.90	9.02
10	9.14	9.26	9.39	9.51 20.85	9.64	9.77	9.90	10.03	10.16	10.30
12	10.43	10.57	10.71	20.85	10.99	11.14	11.28	11.43	11.58	11.73
14		12.04	12.19	12.35	12.51	12.67	12.84	13.00	13.17	13.34
16	13.51	13.68	13.86	14.04	14.21	14.40	14.58	14.76	14.95	15.14
18	15.33	15.52	15.72	1 5.92	16.12	16.32	16.52	16.73	16.94	17.15
20	17.36	17.58 19.87	17.80	18.02	18.24	18.47	18.69	18.92	19.16	19.39 21.89
22	19.63		20.11	20.36	20.61	20.86	21.11	21.37	21.63	
24	22.15	22.42	22.69	22.96	23.24	23.52 26.47	23.80	24.08	24.37	24.66
26	24.96	25.25	25.55	25.86	26.16		26.78	27.10	27.42	27.74
28	28.07	28.39	28.73	29.06	29.40	29.74	30.09	30-44	30.79	31.15
30	31.51	31.87	32.24	32.61	32.99	33-37	33-75	34.14	34-53 38.65	34.92
32	35.32	35.72	36.13	36.54 40.87	36.95	37.37	37.79	38.22	30.05	39.08
34 36	39.52	39.97	40.41		41.32	41.78	42.25	42.72	43.19 48.20	43.67 48.73
30	44.16	44.65	45.14	45.64	46.14	46.65	47.16	47.68	40.20	40.73
38	49.26	49.80	50.34	50.89	51.44	52.00	52.56	53.13	53.70	54.28
40	54.87 61.02	55.46 61.66	56.05	56.65 62.98	57.26	57.87	58.49	59.11	59.74	60.38
42			62.32	62.98	63.64	64.31	64.99	65.67	66 .36	67.05
44	67.76	68.47	69.18	69.90	70.63	71.36	72.10	72.85	73.60 81.52	74.36
46	75.13 83.19	75.91	76.69	77-47	78.27	79.07	79.88	80.70		82.35
48	83.19	84.03	84.89	85.75	86.61	87.49	88.37	89.26	90.16	91.06
50	80.10	92.90	93.8 3	94.77	95.71	96.66	97.63	98.60	99-57	100.56
52	101.55	102.56	103.57	104.59	105.62	106.65	107.70	108.76	99-57 109-82	110.89
54	111.97	113.06	114.16	115.27	116.39	117.52	118.65	119.80	120.95	122.12
56	123.29	124.48	125.67	1 26.87	128.09	129.31	130.54	131.79	133.04	134.30
58	135.58	136.86	138.15	139.46	140.77	142.10	143.43	144.78	146.14	147.51
60	148.88	1 50.27	151.68	1 53.09	154.51	155.95	1 57.39	1 58.85	160.32	161.80
62	163.29	164.79	166.31	167.83	169.37	170.92	172.49	174.06	175.65	177.25
64	178.86	180.48	182.12	183.77	185.43	187.10	188.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75	204.56	206.38	208.21	210.06	211.92
68	21 3.79	215.68	217.58	219.50	221.43	223.37	225.33	227.30	229.29	231.29
							-			

This table is based on Regnault's experiments, the numbers being taken from Broch's reduction of the observations (Trav. et Mém. du Bur. Int. des Poids et Més. tom. 1). The numbers differ very slightly from those of Regnault (see Table 165). The direct measurements of Marvin given in Table 169 show that the numbers in this table are high for temperature below zero centigrade.

TABLE 166. PRESSURE OF AQUEOUS VAPOR, ACCORDING TO BROCH.

Temp.	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
70	233.31	235.34	237-39	239.45	241.52	243.62	245.72	247.85	249.98	252.14
72	254.30	256.49	258.69	260.91	263.14	265.38	267.65	269.93	272.23	274.54
74	276.87	279.21	281.58	283.95	286.35	288.76	291.19	293.64	296.11	298.59
76	301.09	303.60	306.14	308.69	311.26	313.85	316.45	319.07	321.72	324.38
78	32 7 .05	329.75	332-47	335.20	337.95	340.73	343.52	346.33	349.16	352.01
80	354-87	357.76	360.67	363.59	366.54	369.51	372-49	375-50	378.53	381.58
82	384.64	387.73	390.84	393.97	397.12	400.29	403-49	406-70	409.94	413.19
84	416.47	419.77	423.09	426.44	429.81	433.19	436-60	440-04	443.49	446.97
86	450-47	454.00	457.54	461.11	464.71	468.32	471-96	475-63	479.32	483.03
88	486.76	490.52	494.31	498.12	501.95	505.81	509-69	513-60	517.53	521.48
90	525.47	529.48	533.51	537·57	541.65	545-77	549.90	554-07	558.26	562.47
92	566.71	570.98	575.28	579.61	583.96	588.33	592.74	597.17	601.64	606.13
94	610.64	61 5.19	619.76	624.37	629.00	633.66	638.35	643.06	647.81	652.59
96	657.40	662.23	667.10	672.00	676.00	681.88	686.87	691.89	696.93	702.02
98	707.13	712.27	717.44	722.65	727.89	733.16	738.46	743.80	749.17	754.57
100	760.00	765.47	770-97	776.50	782.0 7	787.67	_	-	_	-

TABLE 167. WEIGHT IN GRAINS OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC FOOT OF SATURATED AIR.*

Temp.	0.0	1.0	2.0	8.0	4.0	5.0	6.0	7.0	8.0	9.0
–10	0.356	0.340	0.324	0.309	0.294	0.280	0.267	0.254	0.242	0.230
	0.564	0.540	0.516	0.493	0.471	0.450	0.430	0.411	0.391	0.373
+0	0.564	0.590	0.617	0.645	0.674	0.705	0.735	0.767	0.801	0.837
10	0.873	0.910	0.950	0.991	1.033	1.077	1.122	1.169	1.217	1.268
20	1.321	1.374	1.430	1.488	1.549	1.611	1.675	1.743	1.812	1.882
30	1.956	2.034	2.113	2.194	2.279	2.366	2.457	2.550	2.646	2.746
40	2.849	2.955	3.064	3.177	3.294	3.414	3.539	3.667	3.800	3.936
50	4.076	4.222	4.372	4.526	4.685	4.849	5.016	5.191	5.370	5-555
60	5.745	5.941	6.142	6.349	6.563	6.782	7.009	7.241	7.480	7-726
70	7.980	8.240	8.508	8.782	9.666	9.356	9.655	9.962	10.277	10-601
80	10.934	11.275	11.626	11.987	12.356	12.736	13.127	13.526	13.937	14-359
90	14.790	15.234	15.689	16.155	16.634	17.124	17.626	18.142	18.671	19-212
100 110	19.766 26 .112	20.335 26.832	20.917 27.570	21.514 28.325	22.125 29.096	22.750 29.887	23.392	24.048	24.720	25.408 _

TABLE 168. WEIGHT IN GRAMMES OF THE AQUEOUS VAPOR CONTAINED IN A CUBIC METRE OF SATURATED AIR.

Temp. °C.	0.0	1.0	2.0	8.0	4.0	5.0	6.0	7.0	8.0	9.0
-20	1.078	0.992	0.913	0.839	0.770	0.706	0.647	0.593	0.542	0.496
-10	2.363	2.192	2.032	1.882	1.742	1.611	1.489	1.375	1.269	1.170
-	4.835	4.513	4.211	3.926	3.659	3-407	3.171	2.949	2.741	2.546
+0	4.835	5.176	5.538	5.922	6.330	6.761	7.219	7.703	8.215	8.7 57
10	9.330	9.935	10.574	11.249	11.961	12.712	13.505	14.339	15.218	16.144
20	17.118	18.143	19.222	20.355	21.546	22.796	24.109	25.487	26.933	28.450
30	30.039	31.704	33.449	35.275	37.187	39.187	41.279	43.465	45.751	48.138

^{*} See "Smithsonian Meteorological Tables," pp. 132-133.

TABLE 169.

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURE.*

Pressures are given in inches and millimetres of mercury, temperatures in degrees Fahrenheit and degrees Centigrade.

	(a) Pressur	es in inche	s of mercu	ry; temper	atures in d	egrees Fal	renbeit.		
Temp. F.	0°.0	1°.0	2°.0	8 °.0	4º.0	5°.0	6 °.0	7°.0	8°.0	9 °.0
-50°	0 0021	0.0019	0.0018	0.0017	0.0016	0.0015	0.0013	0.0013	0.0012	1100.0
-40	.0339	.0037	.0035	.0033	.0031	.0029	.0027	.0026	.0024	.0022
-30	.0:6)	.0065	.0061	.0057	.0054	.005í	-0048	.0046	.0044	.0041
20	.0126	.0119	.0112	.0106	.0100	.0094	.0089	.0083	.0078	.0074
-10	.0222	.021ó	.0199	.0188	.0178	.0168	.01 59	.0150	.0141	.0133
-0	0.0383	0.0263	0.0244	0.0225	0.0307	0.0291	0.0275	0.0260	0.0247	0.0234
+0	.0383	.0403	.0423	.0444	.0467	.0491	.0515	.0542 .0891	.0570	.0600
10	.0531	.0665	.0699	.0735	.0772	.0810			-0933	.0979
20 30	.1026 .1641	.1077	.1130	.1185	.1242	.1302	.1365	.1430	.1497	.1 568
	(b)	Pressures	in millimet	res of merc	:ury; temp	eratures in	degrees F	ahrenheit		
Temp. F.	0 °.0	1°.0	2°.0	\$ °.0	4 °.0	5°.0	6 °.0	7 °.0	8 °.0	9 °.0
50°	0.053	0.049	0.046	0.043	0.040	0.037	0.034	0.032	0.030	0.028
-40	.100	.094	.089	.084	.079	.074	.069	.065	.061	.057
—30	.176	.165	.155	.146	.138	.130	.123	.117	111.	.105
—20	.319	.301	.284	.268	.253	.239	.225	.212	.199	.187
—IO	.564	-534	.505	-478	-452	.427	.403	.384	.358	.338
0°	0.972	0.922	0.873	0.826	0.781	0.738	0.698	0.661	0.627	0.595
+0	.972	1.023	1.075	1.129	1.186	1.246	1.309	1.376	1.447	
10	1.603	1.688	1.776	1.867	1.961	2.058	2.158	2.262	2.371	1.523 2.486
20	2.607	2.735	2.869	3.009	3.155	3.307	3.466	3.631	3.803	3.982
30	4.169	4.364	4.568							
		e) Pressur	es in inche	s of mercu	ry; temper	atures in d	egrees Cer	ntigrade.	Y	
Temp. C.	0 °.0	1°.0	2°.0	8 °.0	4°.0	5°.0	60.0	7° .0	8°.0	9 °.0
0 °	0.1798	0.1655	0.1 524	0.1395	0.1290	0.1185	0.1091	0.0998	0.0916	0.0842
-10	.0772	.0706	.0645		.0537	.0491	.0449	.0411	.0375	.0341
20	.0307	.0278	.0252	.0229	.0208	.0188	.0171	.0153	.0138	.01 24
—30	.0112	.0101	.0091	.0032	.0073	.0065	.0059	.0053	.0048	-0044
-40	.0040	.0036	.0032	.0029	.0025	.0022	.0020	.0017	.0015	.0013
	(d)	Pressures	in millime	tres of me	rcury; tem	peratures i	n degrees (Centigrade	8.	
Temp. C.	0°.0	1°.0	2°.0	3°.0	4°.0	5 °.0	8 °.0	7 °.0	8°.0	9 °.0
	4.568	4.208	3.875	3.565	3.277	3.009	2.767	2.534	2.327	2.138
0°		1.794	1.637	1.493	1.363	1.246	1.140	1.044	0.952	0.864
-10°	1.901	1./44								
- 1	i.961 0.781		0.641	0.583	0.528	0.478	0.432	0.389		0.315
-10 -20 -30	0.781	0.706	0.641	0.583	0.528	0.478	0.432	0.389	0.350	0.315
—10 —20	0.781	0.706	0.641	0.583	0.528 0.185 0.064				0.350	

Marvin's results (Ann. Rept. U. S. Chief Signal Officer, 1891, App. 10).
 Smithsonian Tables.

PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference t-t, between the readings of dry and wet bulb thermometers and the temperature t_1 of the wet bulb thermometer. The differences $t-t_1$ are given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees and Regnault's vapor pressures in millimetres of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimetres, and a correction is given for each centimetre at the top of the columns.*

\$ 1	t-t ₁	2	4	6	6	10	12	14	16	18	20	ce per
Correcti B per metre	r centi-	.013	.026	.040	.053	.066	.079	.092	.106	.119	.132	Difference $\frac{1}{4}^{\circ}$ of $t-t_1$
-10 -9 -8 -7	1.96 2.14 2.33 2.53	0.96 1.14 1.33 1.53	0.14 0.33 0.53					Exas	nplo.			0.100 0.100 0.100
-7 -6 - 5 -4 -3 -2	2.53 2.76 3.01 3.28 3.57	1.76 2.01 2.28	0.53 0.76 1.00 1.27 1.56	0.27 0.56				iber=6. for <i>B=</i>	12 — 6 X		o.o 4-5	0.100 0.100 0.100
-2 -1 0	3.57 3.88 4.22 4.60 4.94	2.57 2.88 3.22 3.60 3.93	1.87 2.21 2.59 2.92	0.87 1.21 1.59 1.92	0.21 0.59 0.92				we get ≠			001.0 001.0 001.0
3 4 5	5.30 5.69 6.10 6.53	4.29 4.68 5.09 5.52	3.29 3.68 4.09 4.51	2.28 2.67 3.08 3.50	1.28 1.66 2.07 2.49	0.27 0.66 1.06	0.05					0.100
6 7 8 9	7.00 7.49 8.02 8.57	5.99 6.48 7.01 7.56	4.98 5.47 5.99 6.54	3.97 4.45 4.98 5.53	2.96 3.44 3.97 4.51	1.95 2.43 2.96 3.50	0.94 1.42 1.94 2.49	0.41 0.93 1.48	0.46			0.101 0.101 0.101 0.101
10 11 12 13	9.17 9.79 10.46 11.16	8.16 8.77 9.44 10.14	7.14 7.76 8.43 9.12	6.12 6.74 7.41 8.10	5.11 5.73 6.39 7.09	4.09 4.71 5.37 6.07	3.08 3.69 4.36 5.05	2.07 2.68 3.34 4.03	1.06 1.66 2.32 3.01	0.05 0.64 1.30 1.99	o.28 o.97	0.101 0.102 0.102 0.102
14 15 16 17	11.91 12.70 13.54 14.42	10.89 11.68 12.52 13.40	9.87 10.66 11.50 12.37	9.64 10.47 11.35	7.83 8.62 9.45 10.33	7.60 8.43 9.31	5.79 6.58 7.41 8.28	4.77 5.56 6.39 7.26	3.71 4.54 5.37 6.24	2.69 3.52 4.35 5.22	2.50 3.33 4.20	0.102 0.102 0.102 0.102
18 19 20 21	15.36 16.35 17.39 18.50	14.34 15.33 16.37 17.47	13.31 14.30 15.34 16.45	12.29 13.27 14.31 15.42	11.26 12.25 13.28 14 39	10.24 11.22 12.26 13.36	9.21 10.20 11.23 12.33 13.48	8.19 9.17 10.21 11.31	7.17 8.15 9.18 10.28	6.15 7.13 8.15 9.25	5.13 6.11 7.12 8.22	0.102 0.102 0.103 0.103
22 23 24 25	19.66 20.89 22.18 23.55	18.63 19.86 21.15 22.52	17.60 18.83 .20.12 21.49	16.57 17.80 19.09 20.45	15.54 16.77 18.05	14.51 15.74 17.02 18.39	14.71 15.99 17.36	12.46 13.68 14.96 16.33	11.43 12.66 13.94 15.30	10.40 11.63 12.91 14.27	9-37 10.60 11.88 13.24	0.103 0.103 0.103 0.103
26 27 28 29	24.99 26.51 28.10 29.78	23.96 25.48 27.07 28.75	22.92 24.44 26.03 27.71	21.89 23.40 24.99 26.67	20.86 22.37 23.96 25.63	19.82 21.34 22.92 24.59	18.79 20.30 21.89 23.56	17.76 19.27 20.85 22.52	16.73 18.24 19.82 21.49	15.70 17.21 18.79 20.46	14.67 16.18 17.76 19.43	0.103 0.103 0.103 0.103
30 31 32 33 34	31.55 33.41 35.36 37.41 39.57	30.51 32.37 34.32 36.37 38.53	29.47 31.33 33.28 35.33 37.48	28.43 30 29 32.24 34.29 36.44	27.40 29.25 31.21 33.25 35.40	26.36 28.22 30.17 32.22 34.36	25.32 27.18 29.13 31.18 33.32	24.29 26.14 28.09 30.14 32.28	23.25 25.10 27.05 29.10 31.24	22.22 24.07 26.01 28.06 30.20	21.18 23.03 24.97 27.02 29.16	0.104 0.104 0.104 0.104
35 36 37 38	41.83 44.20 46.69 49.30	40.79 43.16 45.65 48.26	39.74 42.11 44.60 47.21	38.70 41.07 43.56 46.17	37.66 40.03 42.52 45.13	36.62 38.99 41.48 44.08	35.68 37.95 40.44 43.04	34.64 36.90 39.39 41.99	33.60 35.86 38.35 40.95	32.56 34.82 37.31 39.91	31.52 33.78 36.27 38.87	0.104 C.104 0.104 0.104
39	52.04	51.00	49.95	48.91	47.86	46.82	45.77	44.73	43.78	42.74	41.69	0.105

^{*} The table was calculated from the formula $p = p_1 - 0.00066 B(t - t_1) (t + 0.00115 t_1)$ (Ferrel, Annual Report U. S. Chief Signal Officer, 1886, App. 24).

† When B is less than 76 the correction is to be added, and when B is greater than 76 it is to be subtracted.

The first column of this table gives the temperatures of the wet-bulb thermometer, and the top line the difference the table. The dew-points were computed for a barometric pressure of 76 centimetres. When the barometer differs and the resulting number added to or subtracted from the tabular number according as the barometer is below or

t ₁	t-t1=1	2	8	4	8	6	7	
	Dew-point				f temperatur	e given in t irst column.	he above lin	e and the
8 T/8 B ==	.04	.11	.22	-49			1	
-10 -9	— 13.2 12.0	— 17.9 16.0	22.0					
-8 -7	10.7 9.5	14.3 12.7	19.4 17.1	— 24.0				
-6 8 <i>T/8B</i> =	8.3	11.2	14.9	20.3				
5	.03 — 7.1	. 06 - 9.7	.11 — 12.9	- 17.5	24·5	-43		
-4 -3	6.0 4.8	8.3 6.9	11.1 9.4	14.8	20.1 16.8	23.4		
- 2 - 1	3.6 2.5	5·5 4·2	7.8 6.2	10.5 8.5	13.9 11.5	18.9 15.4	— 21.0	
8 T/8B == 0	.02 — 1.3	.04 2.9	.07 4.8	.io — 6,8	.14	.19 12.3	. 26 — 16.5	. 38 22.9
I 2	0.3 + 0.6	1.7	3.5	5-3	-9.3 7.6	10.2 8.3	13.5	18.3
3	1.7	0.7 + 0.2	2,2 I.O	3.9 2.6	6.1 4.6	6.4	8.9	14.7 11.9
8T/8B = 4	2.8 .02	1.4 .03	0.0 . 05	1.3°	3.1 .09	4.7 .11	6.9 .14	9-4 .18
5	3.8 4.9	2.6 3.7	+ 1.2 2.5	1.0 — 1.1 +	1.6 0.2	- 3.2 1.7	5.0 3.3	— 7.1 5.2
7 8	6.6 7.0	4.9 6.0	3.7 4.9	2.4 3.7	+ 1.1 2.5	0.3 + 1.1	3.3 1.8 0.3	3-4 1.8
8 T/8B=	1.8	7. I	6.1	5.0	3.9	2.6	+ 1.2	0.1
10	9.1	. 02 8.3	.03 7·3 8·4	. 05 6.3	. 05 5.2	.0 8 4.1	.10 2.8	. 12 + 1.5
I I I 2	10.2 11.2	9-3 10.4	8.4 9.6	7·5 8·7	6.5 7.8	5.5 6.8	4.3 5.8	3.1 4.7
13 14	12.3 13.3	11.5 12.6	10.7 11.9	9.9 11.1	9.1 10.3	8.2 9.05	7.2 8.6	6.2 7.6
8 T/8B = 15	.01 14.4	.02 13.7	.03 13.0	.04	.05	. 06	.07	.08
16	15.4	14.8	14.1	12.3	11.5	12.0	9.9 11.3	9.I IO.5
17 18	16.4 17.5	15.8 16.9	15.2 16.3	14.6 15.7	13.9 15.1	13.3 14.5	12.6 13.8	11.8 13.1
8 T/8B =	18.5 . 005	18.0 .01	17.4 .015	16.9 . 02	16.3 . 02 7	15.7 .033	15.1 .04	14.4 .05
20 21	19.5 20.5	19.0 20.1	18.5 19.6	18.0 19.1	17.4 18.6	16.9 18.1	16.3 17.5	15.7 17.0
22 23	21.6 22.6	21.1 22.2	20.7 21.7	20.2	19.7 20.8	19.2	18.7	18.2
8 T/8B =	23.6	23.2	22.8	21.3 22.4	22.0	20.4 21.5	19.9 21.1	19.4 20.6
25	. 005 24.6	.01 24.2	. 015 23.9	.02 23.5	.025 23.I	.03 22.7	.035 22.2	.04 21.8
26 27	25.6 26.7	25.3 26.3	24.9 26.0	24.5 25.6	24.2 25.3	23.8 24.9	23.4 24.5	23.0 24.I
28 29	27.7 28.7	27.3 28.4	27.0 28.1	26.7 27.8	26.4 27.4	26.6 27.1	25.7 26.8	25.3 26.4
8 <i>T/</i> 8 <i>B</i> = 30	.003 29.7	. 006 29.4	. 0 I 29.I	.013 28.8	.017 28.5	.019 28.2	.022	.026 27.6
31	30.7	30.5	30.2	29.9	29.6	29.3	27.9 29.0	28.7
32 33	31.7 32.8	31.5 32.5	31.2 32.2	30.9 32.0	30.7 31.7	30.4 31.5	30.1 31.2	29.8 30.9
8 T/8 B = 34	33.8 . 003	33-5 . 005	33.3 . 008	33.0 . 010	32.8 .013	32.5 .016	32.3 .019	32.0 . 02 1
35 36	34.8 35.8	34·5 35·5	34·3 35·3	34.I 35.1	33.8 34.9	33.6 34.6	33-4 34-4	33.1 34.2
37 38	30.8	35.5 36.6 37.6	36.4 37·4	36.2	36.0	35.7 36.8	35.5 36.6	35·3 36·4
39	37.8 38.8	37.6 38.6	38.4	37.2 38.2	37.0 38.0	37.9	37.6	37.5

POINTS.

between the dry and the wet bulb, when the dew-point has the values given at corresponding points in the body of from 76 centimetres the corresponding numbers in the lines marked $\delta T/\delta B$ are to be multiplied by the difference, or above 76. See examples.

£ ₁	t-t1=9	10	11	12	13	14	15
	Dew-points	corresponding wet-b	to the differe				ne and the
			1	_	EXAMPLES.		
			Ther Also	n <i>B= 72, 1</i> 1= 1 tabular numb 76 — 72 = 4 ar	per for $t_1 = 10$ and $87/8B = .0$	and $t-t_1=5$	is 5.2
			Hene	prrection = 0.0 be the dew-point $B = 71.5$, $t_1 =$	ntis	: : :	.24 5-44
			Then 8 7 / 8	$B = \frac{.18 + .12}{2}$	oulated numbe == .15	r=	3-4
			Corre Dew-	ction = 0.15 × point =	4.5=:	: : :	.67 4-07
8 T/8B =	-45	.67					
1 2	— 20. 0						
3 4 8 <i>T/</i> 8 <i>B</i> =	15.8 12.4 . 23	22.2 16.8 . 20	-37	-44	-54	.66	.72
5	19.8 7.4	- 13.1 10.1	— 17.7 13.4	18.1			·
7 8 9	5·3 3·3 1.6	7.6 5.2 3.2	10.1 7.4 5.1	13.5 10.1 7.2	— 18.3 13.5 9.9	— 18.3 13.1	17.2
8 T/8B= 10	.14 0.0	-1.3	- 3.0	- 4-7	- 6.8	. 29 9.4	.36 — 12.5
11 12 13	+ 1.8 3.5 5.1	+ 0.3 2.2 3.9	1.0 + 0.8 2.7	2.6 0.6 + 1.3	4-3 2. I 0. I	6.3 3-7 1.6	8.8 5.7 3.1
87/8B=	6.7 . 09	5.6 .11	4-5 .12	3-3 -14	+ 1.9 .1 6	+0.5	0.9
15 16 17	8.2 9.6 11.0	7.2 8.7 10.2	6.2 7.8 9.4	5.1 6.8 8.5	3.9 5.8 7.5	2.7 4-7 6.5	+ 1.3 3.5 5.5
18 19	12.4	11.7 13.1	10.9 12.4	10.1	9.2 10.8	8.3 10.0	7.4 9.1
8 T/8B = 20 21	.05 15.1 16.4	.07 14.5 15.8	. 08 13.8 15.2	. 09 13.1 14.5	.10 12.4 13.9	.11 11.6 13.2	.13 108 12.5
22 23	17.6	17.1 18.4	16.5 17.9	15.9 17.3	15.3 16.8	14.7 16.2	14.0 15.7
8 T/8B=	20.1 .045 21.4	19.6 . 05 20.9	19.2 . 06 20.4	18.7 . 06 20.0	18.1 . 07	17.6 . 08 19.0	17.0 . 09 18.5
26 27	22.6 23.7	22.I 23.4	21.7 22.9	21.3 22.5	19.5 20.8 22.1	20.3 21.7	19.9 21.2
28 29 8 T/8 B =	24.9 26.1 .031	24.5 25.7 .035	24.2 25.4 .041	23.8 25.0 . 047	23.4 24.6 .053	23.0 24.2 .06	22.6 23.9 .07
30°	27.2 28.4	26.9 28.1	26.6 27.8	26.2 27.4	25.9 27.1	25.5 26.8	25.2 26.4
32 33 34	29.5 30.7 31.8	29.2 30.4 31.5	28.9 30.1 31.2	28.6 29.8 30.9	28.3 29.5 30.7	28.0 29.2 30.4	27.7 28.9 30.1
34 87/8B= 35	. 024 3 2. 9	. 027 32.6	.029 32.4	.032 32.1	. 037 31.8	31.6	.04 31.4
36 37 38	34.0 35.1 36.2	33·7 34·9 35·9	33.5 34.6 35.7	33-3 34-4 35-5	33.0 34.2 35.3	32.8 33.9 35.1	32.5 33.7 34.8
39	37.3	37.1	35.7 36.8	35.5 36.6	36.4	36.2	36.0

VALUES OF 0.378 e.*

This table gives the humidity term $0.378\,e$, which occurs in the equation $\delta = \delta_0 \frac{k}{760} = \delta_0 \frac{B - 0.378\,e}{760}$ for the calculation of the density of the dry air in a sample containing aqueous vapor at pressure ϵ ; δ_0 is the density at normal barometric pressure, B the observed barometric pressure, and k the pressure corrected for humidity. For values of $\frac{k}{760}$ see Table 174. Temperatures are in degrees Centigrade, and pressures in millimetres of mercury.

Dew- point.	Vapor pressure.	0.378 6.	Dew- point.	Vapor pressure.	o.378 e.	Dew- point.	Vapor pressure.	o.378 e.
- 30° 29 28 27 26	0.38 .42 .46 .50	0.14 .16 .17 .19	0 I 2 3 4	4-57 4-91 5-27 5-66 6-07	1.73 1.86 1.99 2.14 2.29	30° 31 32 33 34	31.51 33.37 35.32 37.37 39.52	11.91 12.61 13.35 14.13
- 25 24 23 22 21	0.61 .66 .73 .79	0.23 .25 .28 .30	5 6 7 8	6.51 6.97 7.47 7.99 8.55	2.46 2.63 2.82 3.02 3.23	35 36 37 38 39	41.78 44.16 46.65 49.26 52.00	15.79 16.69 17.63 18.62 19.66
-20 -19 -18 -17 -16	0.94 1.03 .12 .22 .32	0.36 .39 .42 .46 .50	10 11 12 13 14	9-14 9-77 10-43 11-14 11-88	3-45 3-69 3-94 4-21 4-49	40 41 42 43 44	54.87 57.87 61.02 64.31 67.76	20.74 21.86 23.06 24.31 25.61
-15 -14 -13 -12 -11	1.44 .56 .69 .84 .99	0.54 .59 .64 .70 .75	15 16 17 18 19	12.67 13.51 14.40 15.33 16.32	4-79 5-11 5-44 5-79 6-17	45 46 47 48 49	71.36 75.13 79.07 83.19 87.49	26.97 28.40 29.89 31.45 33.07
-10 -9 -8 -7 -6	2.15 -33 -51 -72 -93	0.81 .88 .95 1.03	20 21 22 23 24	17.36 18.47 19.63 20.86 22.15	6.56 6.98 7.42 7.89 8.37	50 51 52 53 54	91.98 96.66 101.55 106.65 111.97	34-77 36-54 38-39 40-31 42-32
-5 -4 -3 -2 -1	3.16 .41 .67 .95 4-25	1.19 .29 .39 .49 .61	25 26 27 28 29	23.52 24.96 26.47 28.07 29.74	8.89 9.43 10.01 10.61 11.24	55 56 57 58 59	117.52 123.29 129.31 135.58 142.10	44.42 46.60 48.88 51.25 53.71

^{*} This table is quoted from "Smithsonian Meteorological Tables," p. 225.

SMITHSONIAN TABLES.

RELATIVE HUMIDITY.*

This table gives the humidity of the air, for temperature t and dew-point d in Centigrade degrees, expressed in percentages of the saturation value for the temperature t.

Depression of		Des	v-point	(d).		Depression of		Dev	v-point	(ď).	
the dew-point.	— 10	0	+10	+ 20	+30	the dew-point.	— to	o	+ 10	+ 20	+ 30
C. O°.0 o.2 o.4 o.6 o.8	100 98 97 95 94	100 99 97 96 94	100 99 97 96 95	100 99 98 96 95	100 99 98 97 96	C. 8°.0 8.2 8.4 8.6 8.8	54 54 53 52 51	57 56 56 55 54	60 59 58 57 57	62 61 60 60 59	64 63 63 62 61
1.0 1.2 1.4 1.6 1.8	92 91 90 88 87	93 92 90 89 88	94 92 91 90 89	94 93 92 91 90	94 93 92 91 90	9.0 9.2 9.4 9.6 9.8	51 50 49 48 48	53 53 52 51 51	56 55 55 54 53	58 58 57 56 56	61 60 59 5 9 5 8
2.0 2.2 2.4 2.6 2.8	86 84 83 82 80	87 85 84 83 82	88 86 85 84 83	88 87 86 85 84	89 88 87 86 85	10.0 10.5 11.0 11.5 12.0	47 45 44 42 41	50 48 47 45 44	53 51 49 48 47	55 54 52 51 49	57
3.0 3.2 3.4 3.6 3.8	79 78 77 76 75	81 80 79 77 76	82 81 80 79 78	83 82 81 80 79	84 83 82 82 81	12.0 13.0 13.5 14.0 14.5	39 38 37 35 34	42 41 40 38 37	45 44 43 41 40	48 46 45 44 43	
4.0 4.2 4.4 4.6 4.8	73 72 71 70 69	75 74 73 72 71	77 76 75 74 73	78 77 77 76 76	80 79 78 77 76	15.0 15.5 16.0 16.5 17.0	33 32 31 30 29	36 35 34 33 32	39 38 37 36 35	42 40 39 38 37	
5.0 5.2 5.4 5.6 5.8	68 67 66 65 64	70 69 68 67 66	72 71 70 69 69	74 73 7 ² 7 ¹ 70	75 75 74 73 72	17.5 18.0 18.5 19.0	28 27 26 25 24	31 30 29 28 27	34 33 3 ² 31 30	36 35 34 33 33	
6.0 6.2 6.4 6.6 6.8	63 62 61 60 60	66 65 64 63 62	68 67 66 65 64	70 69 68 67 66	71 71 70 69 68	20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
7.0 7.2 7.4 7.6 7.8	59 58 57 56 55	61 60 60 59 58	63 62 61 60	66 65 64 63 63	68 67 66 65 65	25.0 26.0 27.0 28.0 29.0	17 16 15 14 13	19 18 17 16	22 21 20 19 18		
8.0	54	57	60	62	64	30.0	12	14	17		

^{*} Abridged from Table 45 of "Smithsonian Meteorological Tables."

TABLES 174, 175.

DENSITY OF AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 174.—Values of $\frac{\lambda}{760}$, from $\lambda=1$ to $\lambda=9$, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of air at pressure \hat{A} in terms of the density at normal atmosphere pressure. When the air contains moisture, as is usually the case with the atmosphere, we have the following equation for the dry air pressure: $\hat{A} = \hat{B} = 0.378 \, \epsilon$, where ϵ is the vapor pressure, and \hat{B} the observed barometric pressure corrected for temperature. When the necessary observations are made the value of ϵ may be taken from Table 170, and then 0.378 ϵ from Table 172, or the dew-point may be found and the value of 0.378 ϵ taken from Table 172.

λ	<u>k</u> 700
1	0.0013158
2	.0026316
3	.0039474
4 5	0.0052632 .0065789 .0078947
7	0.0092105
8	.0105263
9	.0118421

Examples of Use of the Table. To find the value of
$$\frac{\dot{k}}{760}$$
 when $\dot{k}=754.3$
 $\dot{k}=700$ gives .05789
9 .05263

To find the value of
$$\frac{\lambda}{760}$$
 when $\lambda = 5.73$

TABLE 175. — Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

					Values of	log <u>Å</u> .				
	0	1	2	8	4	5	6	7		•
80	ī.02228	ī.02767	ī.03300	ī.03826	ī.04347	ī.04861	ī.05368	1.05871	ī.06367	ī.o68¢8
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100	7.11010	ī.12351	Ī.12779	Ī.13202	ī.13622	ī.14038	ī.14449	T.14857	ī.1 5261	ī.15661
110	.16058	.16451	.16840	.17226	.17609	.17988	.18364	.18737	.19107	.19473
120	.19837	.20197	.20555	.20000	.21261	.21611	.21956	.22299	.22640	.22978
130	.23313	.23646	.23976	.24304	.24629	.24952	.25273	.25591	.25907	.26220
140	.26531	.26841	.27147	.27452	·27755	.28055	.28354	.28650	.28945	.29237
150	ī.29528	ī.29816	7.30103	ī.30388	ī.30671	ī.30952	ī.31231	ī.31 509	ī.31784	ī.32058
160	.32331	.32616	.32870	.33137	-33403	.33667	.33929	.34190	.34450	.34707
170	.34964	.35218	.35471	·35723	-35974	.36222	36470	.36716	.36961	.37204
180	.37446	.37686	.37926	.38164	.38400	.38636	.38870	.39128	-39334	.39565
190	-39794	.40022	.40249	-40474	.40699	.40922	.41144	.41365	41585	-41804
200	Ī.42022	T 40008	7 10151	ī.42668	ī.42882			=	-	
210	.44141	1.42238	1.42454 .44552		.44960	1.43094	1.43305	1.43516		1.43933
220	.46161	.46358	.46554	·44757 ·46749	.46943	45162	.45364	.45565	.45764	.45963
230	.48091	.48280	.48467	.48654	.48840	.47137	.47329	.47521	.47712	.47902
240	.49940	.50120	.50300	.50479	.50658	.49025 .50835	.49210	.49393 .51188	.49576	.49758
1	-49940	"	.50500	.504/9	.50050	.50035	.51012	.51100	.51364	.51 539
250	1.51713	ī.51886	1.52059	ī.52231	1.52402	T.52573	1.52743	ī.52912	ī.53081	1.53249
260	.53416	.53583	-53749	.53914	.54079	.54243	.54407	.54570	.54732	.54894
270	.55055	.55216	.55376	·55535	.55694	.55852	.56010	.56167	.56323	.56479
280	.56634	56789	.56944	.57097	.57250	.57403	·57555	.57707	.57858	.58008
290	.58158	58308	58457	58605	.58753	.58901	.59048	.59194	.59340	.59486
300	ī.59631	1.59775	ī.59919	ī.60063	ī.60206	ī.60349	7.60491	ī.60632	ī.60774	ī.60914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	.62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201
<u> </u>	<u> </u>		<u> </u>	!			<u> </u>	1	L	

A					Values o	f log <u>k</u> ,		· · · · · · · · · · · · · · · · · · ·		
	0	1	2	3	4	5	6	7		9
350	ī.66325	ī.66449	ī.66573	ī.66696	ī.6681g	ī.66941	ī.67064	ī.67185	ī.67307	ī.67428
360	.67 549	67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.68856	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	.70239	.70352	.70465	.70577 .71688	.70690	.70802	.70914
390	.71025	.71136	.71 247	.71358	.71468	.71578	.71688	.71798	.71907	.72016
400	ī.72125	ī.72233	ī.72341	Ī.72449	1.72557	ī.72664	Ī.72771	ī.72878	ī.72985	ī.73091
410	.73197	-73303	.73408	-73514	.73619	-73723	.73828	·73932	.74036	.74140
420	-74244	.74347	.74450	·74553	.74655 .75668	74758	.74860	.74961	75063	.75164
430	.75265	.75366	.75467	.75567	.75668	.7 5768	.7 5867	.75967	76066	.76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	.76949	.77046	.77143
450	ī.77240	ī.77336	Ī.77432	ī.77528	Ī.77624	T.77720	1.77815	ī.77910	ī.78005	ī.781∞
460	.78194	.78289	.78383	.78477	78570	.78664	.787.57	78850	.78943	.79036
470	.79128	.79221	.79313	-79405	.79496	.79588	.79679 .80582	-79770	.78961	.79952
480	.80043	.86133	.80223	.80313	.80403	.80493		.80672	.80761	.79952 .80850
490	.80938	.81027	.81115	.81203	.81291	.81379	.81467	.81554	.81642	.81729
500	7.81816	T.81902	7.81989	1.82075	7.82162	ī.82248	T.82334	1.82419	7.82505	ī.82590
510	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352 .84182	.83435
520	.83519	.83602	.83686	.83769	83852	.83935	.84017	.84100		.84264
530	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
540	.85158	.85238	.85319	.85399	85479	.85558	.85638	.85717	.85797	.85876
550	ī.85955	ī.86034	ī.86113	1.86191	T.86270	7.86348	ī.86426	ī.86504	ī.86582	ī.8666o
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87282	.87658	.87734	.87810	.87885	.87961	.88o36	11188.	-88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	1.89734	7.89806	7.89878	7.89950	1.90022	7.90094	ī.90166	ī.90238	ī.90309	7.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91 507	.91 576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	·92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	1.93210	ī.93277	ī.93343		ī.93476		1.93601	ī.93675	1.93741	1.93807
660	.93873	.93930	.94004	.94070	.94135 .94785	.94201	.94266	•94331	.94396	.94461
670	.94526	.94591	.94656	.94720		.94849	.94913	.94978	.95042	.95106
68o	.95170	.95233 .95866	.95297	.95361	.95424	.95488	.95551 .96180	.95614	.95677	95741
690	.95804	.95806	.95929	.95992	.96055	.96117	.90180	.96242	.96304	.96366
700	ī.96428	ī.96490	ī.96552	1.96614	ī.96676	ī.96738		ī.96861	ī.96922	ī.96983
710	-97044	.97106	.97167	.97228	.97288	-97349	.97410	.97471	.97531	-97 592
720	.97652	.97712	.97772	.97832	.97892	.97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	.98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	.99134	.99193	.99251	.99309	.99367
750	1.99425	ī.99483	ī.99540	7.99598	ī.99656	7.99713	1.99771	ī.99828	7.99886	ī.99942
760	0.00000	0.00057	0.00114	0.00171	0.00228	0.00285	0.00342	0.00398	0.00455	0.00511
770	.00568	.00624	.00680	.00737	.00793	.00849	.00905	.00961	.01017	.01072
780	.01128	.01184	.01 239	.01295	.01350	.01406	.01461	.01516	.01571	.01626
790	.01681	.01736	.01791	.01846	.01901	.01955	.02010	.02064	.02119	.02173
·		I	1						J <u></u>	<u>!</u>

VOLUME OF PERFECT CASES.

Values of 1 + .00367 t.

The quantity 1 + .00367t gives for a perfect gas the volume at t^0 when the pressure is kept constant, or the pressure at t^0 when the volume is kept constant, in terms of the volume or the pressure at o^0 .

- (a) This part of the table gives the values of z + .00367t for values of t between o° and zo° C. by tenths of a degree.
- (b) This part gives the values of 1+.00367 t for values of t between 90° and + 1990°.
 C. by 10° steps.
- These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (δ) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (δ) table which corresponds to the difference between the nearest temperature in the (δ) table and the actual temperature. For example, let the temperature be $630^{\circ}.2:$

- (e) This part gives the logarithms of r + .00367 t for values of t between -49° and $+399^{\circ}$ C. by degrees.
- (d) This part gives the logarithms of r + .00367 t for values of t between 400° and 1990°.
 C. by 10° steps.

(a) Values of 1+.003\$7 t for Values of t between 0° and 10° C. by Tentha of a Degree.

ŧ	0.0	0.1	0.2	0.8	0.4
0	1.00000	1.00037	1.00073	01100.1	1.00147
1	.00367	.00404	.00440	.00477	.00514
2	.00734	.00771	.00807	.00844	00881
3 4	101 10.	.01138	.01174	.01211	.01248
4	.01468	.01 505	.01541	.01 578	.01615
5	1.01835	1.01872	1.01908	1.01945	1.01982
6	.02202	.02239	.02275	.02312	.02349
7 8	.02569	.02606	.02642	.02679	.02716
	.02936	.02973	.03009	03046	.03083
9	.03303	.03340	.03376	.03413	.03450
ŧ	0.5	0.6	0.7	0.8	0.0
0	1.00184	1.00220	1.00257	1.00294	1.00220
ī	.00550	.00587	.00624	.00661	1.00330
2	.00918	.00954	100001	.01028	.01064
1 2	.01284	.01 321	.01358	.01395	.01431
3 4	.01652	.01688	.01725	.01762	.01798
ľ			1.02092	1.02120	1.02165
5	1.02018	1.02055			
5	1.02018	1.02055			
5 6 7	.02386	.02422	.02459	.02496	.02532
5 6 7 8			.02459		

TABLE 176.

VOLUME OF PERFECT CASES.

(b) Values of $1+.00307\,t$ for Values of t between -90° and $+1900^{\circ}$ O. by 10° Steps.

ŧ	00	10	20	30	40
000	1.00000	0.96330	0.92660	0.88990	0.85320
+000	1.00000	1.93670	1.07340	1.11010	1.14680
100	1.36700	1.40370	1-44040	1.44710	1.51380
200	1.73400	1.77070	1.80740	1.84410	1.88080
300	2.10100	2.13770	2.17440	2.21110	2.24780
400	2.46800	2.50470	2.54140	2.57810	2.61480
500	2.83500	2.87170	2.90840	2.94510	2.98180
600	3.20200	3.23870	3.27 540	3.31210	3.3488o
700	3.56900	3.60570	3.64240	3.67910	3.71580
800	3.93600	3.97270	4.00940	4.04610	4.08280
900	4.30300	4-33970	4.37640	4-41310	4.44980
1000	4.67000	4.70670	4.74340	4.78010	4.81680
1100	5.03700	5.07370	5.11040	5.14710	£.1828o
1200	5.40400	5.44070	5-47740	5.51410 5.88110	5.55080
1 300	5.77100 6.13800	5.80770	5.84440	5.88110	5.91780 6.28480
1400	6.13800	6.17470	6.21140	6.24810	6.28480
1500	6.50500	6.54170	6.57840	6.61510	6.65180
1600	6.87200	6.90870	6.04540	6.98210	7.01880
1700	7.23900	7.27570	7.31240	7.34910	7.38580
1800	7.60600	7.64270	I 7.67040	7.71610	7.75280
1900	7.97300	7.64270 8.00970	8.04640	7.71610 8.08310	7.75280 8.11980
2000	8.34000	8.37670	8.41340	8.45010	8.48680
				_	
ŧ	50	60	70	30	90
-000	50 0.81650	60 0.77980	70		90 0.66970
	0.81650	0.77980	0.74310	30 0.70640	0.66970
-000	0.81650 1.18350 1.55050	0.77980	0.74310	0.70640 1.29360 1.66060	0.66970
-000 +000 100 200	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720 1.95420	0.74310	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730
-000 +000 100 200 300	0.81650 1.18350 1.55050 1.91750 2.28450	0.77980 1.22020 1.58720 1.95420	0.74310 1.25690 1.62390 1.99090 2.55790	0.70640 1.29360 1.66060 2.02760 2.39460	0.66970 1.33030 1.69730 2.06430 2.43130
-000 +000 100 200	0.81650 1.18350 1.55050	0.77980 1.22020 1.58720	0.74310 1.25690 1.62390 1.99090	0.70640 1.29360 1.66060 2.02760	0.66970 1.33030 1.69730 2.06430
-000 +000 100 200 300 400 500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500 600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500 600 700 800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630
-000 +000 100 200 300 400 500 600 700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78020	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 3.86260	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530
-000 +000 100 200 300 400 500 600 700 800 900	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290	30 0.70640 1.20360 1.66060 2.02760 2.30460 2.76160 3.12860 3.49560 4.22960 4.59660	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330
-000 +000 100 200 300 400 500 600 700 800 900 1000	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20300	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20300	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.602420 5.00120	0.74310 1.25690 1.02390 1.99090 2.55790 2.72490 3.09190 3.45890 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790	30 0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.259660 4.596360 5.33060 5.60760 6.06460	0.66970 1.33030 1.69730 2.06430 2.45430 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.853350 5.22050 5.25050 5.95450 6.32150	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.20300	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.69760	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.66330 4.63330 5.00030 5.773430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1100 1300 1400 1500	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.41950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.0525720 5.02420 5.99120 6.35820	0.74310 1.25690 1.62390 1.929090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.06090 6.02790 6.39490	0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660 4.96360 5.33060 5.509760 6.06460 6.43160 6.79860	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.773430 6.10130 6.46830
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.32150 6.68850 7.05550	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220	0.74310 1.25690 1.62390 1.92990 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.26900 5.06090 6.02790 6.39490 6.76190 7.12890	30 0.70640 1.20360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.22960 4.22960 4.33060 5.50760 6.06460 6.43160 6.79860 7.16560	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.73430 6.10130 6.46830 6.83530 7.20230
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.09220 7.09220 7.45920	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490 6.712890 7.40500	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.29960 4.59660 4.96360 5.33060 5.69760 6.06460 6.79860 7.16560 7.16560 7.15560	0.66970 1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 6.10130 6.46830 6.83530 7.20230 7.56930
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.48650 4.85350 5.22050 5.58750 6.32150 6.68850 7.05550 7.42250 7.78050	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.459020 7.82620	0.74310 1.25690 1.62390 1.99090 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.55990 4.92690 5.29390 5.66090 6.02790 6.39490 6.712890 7.40500	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22260 4.22260 4.59660 4.59660 6.643160 6.79860 7.16560 7.53260 7.89960	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.0030 5.73430 6.10130 6.46830 6.83530 7.20230 7.56930 7.91630
-000 +000 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700	0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750 5.95450 6.68850 7.05550 7.42250	0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020 5.25720 5.09220 7.09220 7.45920	0.74310 1.25690 1.62390 1.92990 2.55790 2.72490 3.09190 3.45890 3.82590 4.19290 4.92690 5.26900 5.06090 6.02790 6.39490 6.76190 7.12890	0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.29960 4.59660 4.96360 5.33060 5.69760 6.06460 6.79860 7.16560 7.16560 7.15560	0.66970 1.33030 1.09730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 6.10130 6.46830 6.83530 7.20230 7.56930

TABLE 176

VOLUME OF (e) Legarithms of 1 + .00367 t for Values

·	0	1	2	8	4	Mean diff. per degree.
-40			T 007400		7.000410	1884
1	1 931051	1.929179	1.927299	1.925410	1.923513	1805
— 30	.949341 .966892	.947546	·945744	943934	.942117	
- 20 -10		.965169	.963438 .980440	.961701	·959957	1733 1667
-10	.983762 0.000000	.998403	.996801		.977092	1605
-0	0.0000	.996403	.990001	.995192	·993577	1005
+0	0.000000	0.001591	0.003176	0.004755	0.006329	1582
10	.01 5653	.017188	.018717	.020241	.021760	1526
20	.030762	.032244	.033721	.035193	.036661	1474
30	.045362	.046796	.048224	.049648	.051068	1426
40	.059488	.060875	.062259	.063637	.065012	1381
50	0.073168	0.074513	0.075853	0.077190	0.078522	1335
60	.086431	.087735	.089036	.090332	.091624	1299
70	.099301	.100567	.101829	.103088	.104344	1259
80	.111800	.113030	.114257	.115481	.116701	1226
90	.123950	.125146	.126339	.1 27 529	.128716	1191
100	0.135768	0.136033	0.138094	0.139252	0.140408	1158
110	.147274	0.136933 .248408	.149539	.1 50667	.151793	1120
120	.1 58483	.159588	.160691	.161790	.162887	1101
130	.169410	.170488	.171563	.172635	.173705	1074
140	.180068	.181120	.182169	.183216	.184260	1048
150	0.190472	0.191498	0.192523	0.193545	0.194564	1023
160	.200632	.201635	.202635	.203634	.204630	1000
170	.210559	.211540	.212518	.213494	.214468	976
180	.220265	.221 224	.222180	.223135	.224087	956
190	.229959	.230697	.231633	.232567	·233499	935
200	0.239049	0.239967	0.240884	0.241798	0.242710	916
210	.248145	.249044	.249942	.250837	0.242710	897
220	.257054		.258814	.259692	.251731 .260567	878
230	.265784	.257935 .266648	.267510	.268370	.269228	86r
240	·274343	.275189	.276034	.276877	.277719	844
250		0.282.46	0.08400#	0.085	,	968
260	0.282735	0.283566	0.284395	0.285222	0.286048	828
200 270	.290969 .299049	.291784 .299849	.292597	.293409	.294219	813
280	.306982	.307768	.308552	.301445	.302240	798 784
290			.316314	.309334	.310115	769
	.314773	.31 5544	.310314	.317083	.317850	/49
300	0.322426	0.323184	0.323941	0.324696	0.325450	756
310	.329947	.330692	-331435	.332178	.332919	743
320	·337 339	.338072	.338803	·339533	.340262	730
330	.344608	·345329	.34 5048	-346766	.347482	719
340	.351758	.352466	-353174	.353880	-354585	707
350	0.358791	0.359488	0.360184	0.360879	0.361573	696
360	.365713	.366399	.367084	.367768	.368451	684
370	.372525	.373201	·37 3 875	•374549	.375221	674
380	·379233	.379898	.380562	.381225	.381887	664
390	·385439	.386494	.387148	.387801	.388453	654
L						

PERFECT CASES.

of t between -49° and $+399^\circ$ C. by Degrees.

8	5	6	7	8	9	Mean diff. per degree.
-40	ī.921608	ī.919695	ī.917773	ī.915843	7.01.2004	1926
	_				1.913904	
— 30 — 20	.940292	.938460	.936619	.93477 I	.932915	1845
— 10	.958205	.956447	.954681	.952909	.951129	1771
_ 10 _ 10	.975409	.973719	.972022	.970319	.968609	1699
	.991957	.990330	.900097	.987058	.985413	1636
+o	0.00789 7	0.009459	0.011016	0.012567	0.014113	1554
10	.023273	.024781	.026284	.027782	.029274	1 500
20	.038123	.039581	.041034	.042481		1450
30	.052482	.053893	.055298	.056699	.043924 .058096	1402
40	.066382	.067748	.069169	.070466	.071819	1359
50	0.079847	0.081174	0.082495	0.083811	0.085123	1315
60	.092914	.094198	-005516	.096715	.098031	1281
70	.105595	.106843	.095516 .108088	.109329	.110566	1243
80	.117917	.119130	.120340		.122750	1210
90	.129899			.121547	.134601	B I
90	.129699	.131079	.132256	.133430	.134001	1175
100	0.141559	0.142708	0.143854	0.144997	0.146137	1144
110	.1 52915	1 54034	.155151	.156264	.157375	1115
120	.163981	.164072	.155151 .1 6 6161	.167246	.168330	1087
130	.174772	.175836	.176898	.177958	.179014	1060
140	.185301	.186340	.187377	.188411	.189443	1035
11	1103301			1		1 .033
150	0.195581	0.196596	0.197608	0.198619	0.199626	1011
160	.205624	.206615	.207605	.208592	.209577	988
170	.21 5439	.216409	.217376	.218341	.219904	966
180	.225038	.225986	.226932	.227876	.228819	946
190	-234429	.235357	.236283	.237207	.238129	925
200	0.243621	0.244529	0.245436	0.246341	0.247244	906
210	.252623	.253512	.254400	.255287	.256172	887
220	.261441	.262313	.263184	.264052	.264919	870
230	.270085	.270940	.271793	.272644	.273494	853
240	.278559		.280234	.281070	.281903	836
240		.2 793 9 8	.200234	1	.201903	030
250	0.286872	0.287694	0.288515	0.289326	0.290153	820
260	.295028	.295835	.296860	-297445	.298248	805
270	.303034	.303827	.304618	.305407	.306196	790
28o	.310895	.311673	.31 2450	.313226	.314000	776
290	.318616	.319381	.320144	.320906	.321667	763
300	0.326203	0.326954	0.327704	0.328453	0.329201	750
310	.333659	•334397	-335135	.335871	.336606	737
320	·340989	·34 ¹ 715	.34244I	.343164	.343887	724
330	.348198	.348912	.349624	-350337	.351048	713
340	.355289	.355991	.356693	·357394	.358093	701
350	0.362266	0.362957	0.363648	0.364337	0.365025	690
360	.369132	.369813		.371171	.371849	678
	.375892	.376562	.370493		.378567	668
370 380	282548		.377232 282868	.377900	.385183	658
	.382548	.383208	.383868	.384525		648
390	.389104	·3 ⁸ 97 54	.390403	.391052	.391699	U40
<u> </u>	l					L

TABLE 176.

VOLUME OF PERFECT CASES.

(d) Logarithms of 1+.00367t for Values of t between 400° and 1990° C. by 10° Steps.

	1 00	T		1	1
t	00	10	20	80	40
400	0.392345	0.398756	0.405073	0.411300	0.417439
500	0.452553	0.458139	0.463654	0.469100	0.474479
600	.505421	.510371	.51 5264	.520103	524889
700	·552547	.556990	.561388	.565742	
800	.595055	.599086	.603079	.007037	.570052 .610958
900	.633771	.637460	.641117	.644744	.648341
1000	0.669317	0.672717	0.676090	0.679437	0.6827.59
1100	.702172	.705325	.708455	.711563	.714648
1200	.732715	.735655	.738575 .766740	-741745	744356
1300	.761251	.764004	.766740	.769459	.772160
1400	.788027	.790616	.793190	-795748	.798292
1500	0.813247	0.81 5691	0.818120	0.820536	0.822939
1600	.837083	.839396	.841697	1 .843986	-846263
1700	.859679	.861875	.86₄060	.866234	.868398
1800	.859679 .881156	.883247	.885327	.887398	.889459
1900	.901622	.903616	.905602	.907578	.909545
ŧ	50	60	70	80	90
400	0.423492	0.429462	0.435351	0.441161	0.446894
500	0.479791	0.485040	0.490225	0.495350	0.500415
600	.529623	.534305	.538938	.543522	.548058
700		578548	.582734	.543522 .586880	.590987
800	.574321 .614845	.578548 .618696	.622515	.626200	.630051
900	.651908	.655446	.658955	.662437	.665890
1000	0.686055	0.689327	0.692574	0.695797	0.698996
1100	.717712	.720755	1 .723776	.726776	.729756
1200	.747218	.750061	.7 52886	.755692	.7 ¢8480
1300	.774845	.777514	.780166	.782802	.785422
1400	.800820	.803334	.805834	.808319	.810790
l	0.825320	0.827705	0.830069	0.832420	0.834758
1500			1 0	0	9 55 45 7
1500 1600	.848828	.850781	.053023	1 .055253	1 .05/4/1
1600 1700	0.825329 .848828 .870550	.850781 .872692	.853023 .874824	.855253 .876945	.857471 .879056
1600	.848828 .870550 .891510 .911504	.850781	.853023 .874824 .895583	.876945 .897605	.879056 .899618

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.

 $C \text{ (in feet)} = 52494 \left[z + \frac{t_0 + t - 64}{900} \right]$ English measures.

 $C \text{ (in metres)} = 16000 \left[z + \frac{2(t_0 + t)}{1000} \right]$ metric measures.

In which $Z = \text{difference}$ of height of two stations in feet or metres.

 B_0 , $B = \text{barometric}$ readings at the lower and upper stations respectively, corrected for all accords to the contract of the contr

sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

Values et C.

20 51094 4.70837 —6 15616 .1935 25 51677 .71330 —2 15744 .1971 25 51677 .71330 —2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2440 80 58094 <t< th=""><th>Eng</th><th>LISH MEAS</th><th>URES.</th><th>Me</th><th>TRIC MEAS</th><th>URES.</th></t<>	Eng	LISH MEAS	URES.	Me	TRIC MEAS	URES.	
10° 49928 4.69834 —10° 15360 4.1863 15 50511 .70339 —8 15488 .1900 20 51094 4.70837 —4 15744 .1971 25 51677 .71330 —2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511	₫ (4 ₀ + 1).	с	Log C	1 (40+1).	(t ₀ +s). C		
15 50511 .70339 —8 15488 .1900 20 51094 4.70837 —4 15744 .1971 25 51677 .71330 —2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 4 16256 .2110 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 <td< td=""><td>Fahr.</td><td colspan="2">Feet</td><td>Cent.</td><td>Metres.</td><td></td></td<>	Fahr.	Feet		Cent.	Metres.		
15 50511 .70339 —8 15488 .1900 20 51094 4.70837 —4 15744 .1971 25 51677 .71330 —2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 4 16256 .2110 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2316 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2407 80 58094 4.76413 26 17664 <t< td=""><td>100</td><td>40028</td><td>4.60834</td><td>-10°</td><td>15360</td><td>4.18630</td></t<>	100	40028	4.60834	-10°	15360	4.18630	
20 51094 4.70837 -4 15744 .1971 25 51677 .71330 -2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2400 80 58094 4.76413 26 17664 .2470 85 58677 <	- 1				15488	.19000	
20 51094 4.70837 -4 15744 .1971 25 51677 .71330 -2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 + 2 16128 .2075 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2316 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2400 80 58094 4.76413 26 17664 .2470 85 58677	- 1				15616	.19357	
25 51677 .71330 —2 15872 .2006 30 52261 4.71818 0 16000 4.2041 35 52844 .72300 +2 16128 .2075 40 53428 4.72777 6 16384 .2144 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2402 80 58094 4.76413 26 17664 .2470 85 58677 .76847 28 17792 .2502 90 59260 <t< td=""><td>20</td><td></td><td>4.70837</td><td> 4</td><td>15744</td><td>.19712</td></t<>	20		4.70837	 4	15744	.19712	
35 52844 .72300 + 2 16128 .2075 40 53428 4.72777 6 16284 .2114 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2403 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2504 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	25	51677		-2	15872	.20063	
35 52844 .72300 + 2 16128 .2075 40 53428 4.72777 6 16284 .2114 45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2403 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2504 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	30	52261	4.71818			4.20412	
40 53428 4.72777 6 16256 .2110 45 54011 .73248 8 16512 .2144 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2407 24 17536 .2430 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	35	52844		+ 2		.20758	
45 54011 .73248 8 16512 .2178 50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2405 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2504 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504		_		4		.21101	
50 54595 4.73715 10 16640 4.2211 55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2316 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2407 24 17536 .2433 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504		53428		6	16384	.21442	
55 55178 .74177 12 16768 .2244 60 55761 4.74633 16 17024 .2316 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2407 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2504 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	45	54011	.73248	8	10512	.21780	
55 \$5\$\text{i78}\$.74\text{i77}\$ 12 \$16768\$.2244 60 \$5\$\text{761}\$ 4.74633 16 \$17024\$.23\text{i7} 65 \$56344\$.75085\$ 18 \$17152\$.23\text{i3} 70 \$56927\$ 4.75532\$ 20 \$17280\$ 4.23\text{i5} 75 \$7511\$.75975\$ 22 \$17408\$.2407\$ 24 \$17536\$.2435\$.2435\$ 85 \$8094\$ 4.76413\$ 26 \$17664\$.2470\$ 85 \$58677\$.76847\$ 28 \$17792\$.2504\$ 90 \$59260\$ 4.77276\$ 30 \$17920\$ 4.2533\$ 95 \$59844\$.77702\$ 32 \$18048\$.2504	50	54595	4.73715	10		4.22115	
60 55761 4.74633 16 17024 .2310 65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2375 75 57511 .75975 22 17408 .2407 24 17536 .2430 80 58094 4.76413 26 17664 .2470 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2564	55	55178		11		.22448	
65 56344 .75085 18 17152 .2343 70 56927 4.75532 20 17280 4.2378 75 57511 .75975 22 17408 .2407 24 17536 .2430 80 58094 4.76413 26 17664 .2470 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504						.22778	
70 56927 4.75532 20 17280 4.2378 75 57511 .75975 22 17408 .2407 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504		55761	4.74633			.23106	
75 57511 .75975 22 17408 .2407 80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	05	50344	7,5085	18	17152	.23431	
75 57511 .75975 22 17408 .2407	70	56927	4.75532			4.23754	
80 58094 4.76413 26 17664 .2476 85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2564	75	57511	·7 <i>5</i> 97 <i>5</i>			.24075	
85 58677 .76847 28 17792 .2502 90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2504	~~					·24393	
90 59260 4.77276 30 17920 4.2533 95 59844 .77702 32 18048 .2564		55094				.24709	
95 59844 .77702 32 18048 .2564	05	50077	.70047	20	17792	.25022	
95 59844 .77702 32 18048 .2564		59260		11		4.25334	
1 4 -02	95	59844	.77702	32		.25643	
	100	60.07	1 28200	34	10170	.25950	

SMITHBORIAN TABLES.

BAROMETRIC

Barometric pressures corresponding to different This table is useful when a boiling-point apparatus is used

(a) British Measure.

Temp. F.	.0	.1	.2	.8	.4	.5	.6	.7	.8	.9
185°	17.05	17.08	17.12	17.16	17.20	17.23	17.27	17.31	17.35	17.39
186	17-42	17.46	17.50	17.54	17.58	17.61	17.65	17.69	17.73	17.77
187	17.81	17.84	17.88	17.92	17.96	18.00	18.04	18.08	18.12	18.16
188	18.20	18.24	18.27	18.31	18.35	18.39	18.43	18.47	18.51	18.55
189	18.59	18.63	18.67	18.71	18.75	18.79	18.83	18.87	18.91	18.95
190	19.00	19.04	19.08	19.12	19.16	19.20	19.24	19.28	19.32	19.36
191	19.41	19.45	19.49	19.53	19.57	19.61	19.66	19.70	19.74	19.78
192	19.82	19.87	19.91	19.95	19.99	20.04	20.08	20.12	20.17	20.21
193	20.25	20.29	20.34	20.38	20.42	20.47	20.51	20.55	20.60	20.64
194	20.68	20.73	20.77	20.82	20.86	20.90	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.26	21.30	21.35	21.39	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85	21.89	21.94	21.99
197	22.03	22.08	22.12	22.17	22.22	22.26	22.31	22.36	22.40	22.45
198	22.50	22.54	22.59	22.64	22.69	22.73	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.11	23.16	23.21	23.26	23.31	23.36	23.40
200	23.45	23.50	23.55	23.60	23.65	23.70	23.75	23.80	23.85	23.89
201	23.94	23.99	24.04	24.09	24.14	24.19	24.24	24.29	24.34	24.39
202	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.80	24.85	24.90
203	24.95	25.00	25.05	25.10	25.15	25.21	25.26	25.31	25.36	25.41
204	25.46	25.52	25.57	25.62	25.67	25.73	25.78	25.83	25.88	25.94
205	25.99	26.04	26.10	26.15	26.20	26.25	26.31	26.36	26.42	26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207	27.07	27.12	27.18	27.23	27.29	27.34	27.40	27.45	27.51	27.56
208	27.62	27.67	27.73	27.79	27.84	27.90	27.95	28.01	28.07	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.64	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211	29.33	29.39	29.45	29.51	29.57	29.62	29.68	29.74	29.80	29.86
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

PRESSURES.

temperatures of the boiling-point of water.
in place of the barometer for the determination of heights.

(b) Metric Measure.*

Темр. С.	.0	.1	.2	.8	.4	.5	.6	.7	.8	.9
80°	354.6	356.1	357-5	359.0	360.4	361.9	363.3	364.8	366.3	367.8
8 1	369.3	370.8	372.3	373.8	375-3	376.8	378.3	379.8	381.3	382.9
82	384-4	385.9	387.5	389.0	390.6	392.2	393-7	395.3	396.9	398.5
83	400.1	401.7	403.3	404.9	406.5	408.1	409.7	411.3	413.0	414.6
84	416.3	417.9	419.6	421.2	422.9	424.6	426.2	427.9	429.6	431.3
85	433.0	434-7	436.4	438.1	439-9	441.6	443-3	445.I	446.8	448.6
86	450.3	452.1	453.8	455.6	457-4	459-2	461.0	462.8	464.6	466.4
87	468.2	470.0	471.8	473-7	475-5	477-3	479-2	481.0	482.9	484.8
88	486.6	488.5	490-4	492.3	494-2	496.1	498.0	499-9	\$01.8	503.8
89	505.7	507.6	509.6	511.5	513.5	515.5	517.4	519.4	521.4	523-4
90	525-4	527-4	529-4	531.4	533-4	535-5	537-5	539.6	541.6	543-7
91	545.7	547.8	549-9	551.9	554.0	556.1	558.2	560.3	562.4	564.6
92	566.7	568.8	571.0	573.1	57 5-3	577-4	579.6	581.8	584.0	586.1
93	588.3	590.5	592.7	595.0	597.2	599-4	601.6	603.9	606.1	608.4
94	610.7	612.9	61 5.2	617.5	619.8	622.1	624.4	626.7	629.0	631.4
95	633.7	636.0	638.4	640.7	643.1	645.5	647.9	650.2	652.6	655.0
96	657.4	659.9	662.3	664.7	667.1	669.6	672.0	674.5	677.0	679-4
97	681.9	684.4	686.9	689-4	691.9	694.5	697.0	699.5	702.I	704.6
98	707.2	709-7	712.3	714.9	71 7 .5	720.1	722.7	725.3	727.9	730.5
99	733-2	735.8	738.5	741.2	743.8	746.5	749.2	751.9	754.6	757-3
100	760.0	762.7	765.5	768.2	770.9	773-7	776.5	779-2	782.0	7 8 4.8

[•] Pressures in millimetres of mercury.

SMITHBORIAN TABLES.

STANDARD WAVE-LENGTHS.

This table is an abridgment of the table published by Rowland (Phil. Mag. [5] vol. 36, pp. 49-75). The first column gives the number of the line reckoned from the beginning of Rowland's table, and thus indicates the number of lines of the table that have been omitted. The second column gives the chemical symbol of the element represented by the line of the spectrum. The third column indicates approximately the relative intensity of the lines recorded and also their appearance; R stands for reversed, d for double, ? for doubtful or difficult. The fourth column gives the relative "weights" to be attached to the values of the wave-lengths as standards. The last column gives the values of the wave-lengths in Angström's units, i.e., in ten millionths of a millimetre in ordinary air at about 20° C. and 760 millimetres pressure. When two or more elements are on the same line of the table it indicates that they have apparently coincident lines in the spectrum for that wave-length. When two or more lines are "racketed it means that the first one has a line coinciding with one side of the corresponding line in the solar spectrum and so on in order. Lines marked A(o) and A(sw) denote lines due to absorption by the oxygen or water vapor in the earth's atmosphere. The letters placed in front of some of the numbers in the first column are the symbols of well-known lines in the spectrum. The footnotes are from Rowland's paper.

No. of line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (arc spectrum).	No. of line.	Element.	Inten- sity and appear- ance.	Weight.	Wave- length (arc spectrum).
1 4 7 9	Sr Si Si Al Ca	2 3 2 4 20 R	1 2 2 2 3	21 52.91 2 2210.939 2218.146 2269.161 227 5.602	115 117 121 124 126	Fe Fe Fe Fe	10 R 7 R 8 R 12 R 10 R	4 4 12 15	2937.020 2954.058 2967.016 2973.358 2983.689
14 16 19 22 24 29 31	Ba Fe Al Fe Ca Si	20 R - 7 - 25 R 8 3	1 2 3 2 5 15	2335.267 2348.385 2373.213 2388.710 2398.667 2435.247 2443.460	129 131 135 136 141 151 163 169	Fe Ca Fe Fe Fe Fe	8 R 10 R 8 R 15 R 6 R 25 R 20 R	18 3 15 3 15 18 13	2994-547 2997-430 3001.070 3006.978 3008.255 3020.759 3047.720 3059.200
33 37* 46 51 55 59† 63 68	Si C Bo Si Si Hg Al Mn	3 10 20 15 9 50 R	10 15 20 7 10 2 5	2452.219 2478.661 2497.821 2516.210 2524.206 2536.648 2568.085 2593.810	136 144 154 158 164	r r r Co	3 4 5 5 3 d	- 7 7 5 5	(Sun spectrum.) 3005.160 3012.557 3024.475 3035.850 3050.212 3061.930
[‡] 73 77 78 82 85	Si Fe Ca Fe Fe	5 - 5 - 1	7 3 1 3 3	2631.392 2720.989 2721.762 2742.485 2756.427	177 187 197 201 203	Fe? ? Va; — Mn	3 4 2 5 3 1	6 9 5 5	3078.148 3094.739 3121.275 3140.869 3167.290
99 102 106 111 112	Mg Mg Fe Mg Si	20 R 20 R 4 100 R 15	12 10 7 15 12	2795.632 2802.805 2832.545 2852.239 2881.695	207 209 211 215 222	Cr? Ti Ti Ti Cu	4 4 3 4 9	5 5 3 5	3188.164 3200.032 3218.390 3224.368 3247.680

^{*} Seems to be the only single carbon line not belonging to a band in the arc spectrum. It was determined to belong to carbon by the spark spectrum.

[†] This line appears as a sharp reversal, with no shading, in the spectra of all substances tried that contained any trace of a continuous spectrum in the region.

There is a faint line visible on the violet side.

TABLE 179.

STANDARD WAVE-LENGTHS.

No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).
224 229 235 239 241	Va Na Ti Zr Fe	4 6 5 1 2	10 6 10 8 12	3267.839 3302.501 3318.163 3356.222 3389.887	409† 410 417 420 422	Fe? Fe Fe Mn Fe	10 3 20 5 15	3 7 7 13 7	4005.305 4016.578 4045.975 4055.701 4063.756
244 250 255 261 2 65	Fe Co Co, Fe, Ni Fe Co	4 4 4 3 5	18 10 10 4	3406.955 3455.384 3478.001 3500.721 3518.487	424 428 431 434 436	Fe Fe Fe Fe	4 2 4 3 3	14 8 14 17 2 0	4073.920 4088.716 4114.600 4157.948 4185.063
269 · 274 278 279	Fe { Ti } Fe Fe Fe }	5 4 <i>d</i> ? 40 4	10 12 6 12	3540.266 3564.680 3581.344 3583.483	439 & 445 448 451 456	Fe Ca Cr Fe ?	5 10 7 8 4	10 15 9 14	4202.188 4226.892 4254.502 4271.924 4293.249
284 290 292 294 298	Fe Fe Fe Fe	4 15 4 20 4	12 10 15 10	3597.192 3609.015 3612.217 3618.924 3623.332	G 462 f 465 467	Ca Fe Fe Fe	$\begin{bmatrix} 2 \\ -5 \\ 8 \\ 3 \end{bmatrix}$	3 3 10 15 17	4307.904 4308.034 4308.071 4325.940 4352.903
301 307 311 313	Fe Fe Co Fe Va	20 10 3 6	10 11 13	3631.619 3647.995 3667.397 3683.202	d 471 473 477 4801 484	Fe Fe Ca Fe Fe	10 8 4 5 5	11 11 7 18 18	4383.721 4404.927 4425.609 4447.899 4494.735
320 324 327 338 341	Fe Fe Fe Fe Fe	5 50 5 20	11 10 15 8 7	3707.186 3720.086 3732.542 3789.633 3758.379	490 493 496 500 505	Ti Ba Ti Fe Ti Co	4 7 6 4 5	17 8 14 20	4508.456 4554.213 4572.157 4602.183 4629.515
348 355 358 361 369	Fe Fe Fe Fe	3 3 30 20 5	15 15 4 4 8	3781.330 3804.153 3820.567 3826.024 3843.406	508 512 515 518§ 524	Fe Fe Ni Mg Mn	4 6 4 9 6	17 12 12 11	4643.645 4679.028 4686.395 4703.180 4783.601
371 375 379 382 K 387*	Fe C Fe Ti Ca	10 7 4 4 300	3 12 15 5	3860.048 3883.472 3897.599 3924.669 3933.809	528 F 531 537 545	Mn H Fe Ti Fe Fe	6 15 7 3	12 5 4 10	4823.697 4861.496 4919.183 4973.274
391 393 397 # 399 404	Al Fe Fe Ca Fe, Ti	10 4 3 200 4	7 15 11 5 14	3944.159 3950.101 3960.429 3968.620 3981.914	549 558 561 564 567	Fe Ti Fe Fe Fe	4 3 5 4 2	7 8 12 14 9	4994.316 5020.210 5050.008 5068.946 5090.959

This line is doubly reversed and spread out in broad shading for 6.000 to 7.000 on either side. In each case the second reversal is slightly excentric with respect to the other, being displaced towards the red-

[†] Seven or eight lines, the brightest, and most of the others are due to iron.

There is a faint side line towards the red.

[§] This line is shaded towards the violet, probably due to a close side line.

TABLE 179.

STANDARD WAVE-LENGTHS.

No. of Line.	Element.	Intensity and appearance.	Weight.	Wave- length (sun spectrum).	No. of Line.	Element.	Inten- sity and appear- ance.	Weight	Wave- length (sun spectrum).
570 575 580 589	Fe . Fe Fe Fe	2 4 3 4	11 9 5 13	5109.825 5127.530 5141.916 5162.448	762 764 770 774	Fe Si Fe Mn	6 6 6	14 14 7	5930-410 5948-761 5987-286 6013-717
(592	Mg	8)	3	5167.501	778	Fe	ě	5 8	6024.280
64 \ 593 (594 (595	Fe Fe	$\begin{bmatrix} -5 \\ d \\ 4 \\ -5 \\ d \end{bmatrix}$	7 3 3 5	5167.572 5167.686 5169.066	782 786 792	Fe Ca Ca	7 6 9	13 9 11	6065.708 6102.941 6122.428
62 596 597	Fe	$-\begin{cases} d \\ 4 \end{cases}$	3	5169.161 5169.218	797 804	Ca Fe	10 8	9 10	6162.383 6191.770
62 599 61 601 610 614 618	Mg Mg Fe Fe Fe	10 20 4 8	9 11 10 9	5172.871 5183.792 5215.352 5233.124 5253.649	808 811 815 822 827	Fe, Va Fe Fe Fe Fe	7 7 5 7 6	12 9 11 7	6230.946 6252.776 6265.347 6301.719 6335.550
$E_{2} \begin{array}{c} 630^{\bullet} \\ 631 \\ E_{1} \\ 632 \\ 633 \\ 639 \end{array}$	Fe Ca - Fe Fe	8 d? 4 } d - } d	16 12	5269.722 5270.448 5270.495 5270.533 5283.803	834 838 843 846 850	Fe Fe Ca Ca Fe	7 7 7 5 7	9 10 11 7 9	6393.818 6411.864 6439.298 6471.881 6495.209
643 647 655	Fe Fc Fe Fe	4 8 6	10 8 8	5307.546 5324.373 5367.670 5383.576	856 C 858 863 867	{Ti } {Fe } H Fe Ni	6 30 5 5	11 13 11	6546.486 6563.054 6593.161 6643.482
659 662	Fe	7	14	5405.987	870	Fe	5	10	6678.232
668 674 676 679 682	Fe Fe Ni Fe Mg	7 4 4 4 7	9 10 10 8 8	5347.130 5463.493 5477.128 5501.685 5528.636	877 879 883 886 <i>B</i> 896	Fe Ni Fe Fe A(o)	4 4 3 4 d	12 9 8 6 12	6750.412 6768.044 6810.519 6441.591 6870.186
687 690 695 6991 7001	Fe Ca Ca Fe Fe, Va	5 6 4 2 4	8 9 4 12 14	5569.848 5588.980 5601.501 5624.253 5624.768	911 925 931 938 940	A(o) A(o) A(o) A(wv) A(wv)	4 6 4 8 8	13 9 9 10 12	6884.083 6909.675 6919.245 6947.781 6956.700
706 710 717 720 725	Fe Na Fe Fe Cu?Co?	5 5 5 7 d?	9 7 10 10 9	5662.745 5688.434 5731.973 5753.342 5782.346	957 961 969 977 984	? ? A(wv) A(wv) A(wv)	6 6 10 15	8 5 4 3	7035.159 7122.491 7200.753 7243.904 7290.714
73 ² 737 [‡] D ₈ 740§ D ₂ 743 D ₁ 745	Fe Ca He Na Na	5 7 - 15 10	7 14 - 20 20	5806.954 5857.672 5875.982 5890.182 5896.154	990 997 998 1004 1010	A(o) A(o) A(o)	7 - 10 14 4	2 4 5 3 1	7389.696 7594.059 7621.277 7660.778 7714.686

Component about .o88 apart on the photographic plate. It is an exceedingly difficult double.
 Lines used by Pierce in the determination of absolute wave-lengths.

There is a nickel line near to the red.

[§] This value of the wave-length is the result of three series of measurements with a grating of 20,000 lines to the inch and is accurate to perhaps .oz.

Beginning at the head of A, outside edge.

WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimetre on the supposition that the D line value is 5896.156. The table is for the most part taken from Rowland's table of standard wave-lengths, but when no corresponding wave-length is there given, the number given by Kayser and Runge has been taken. These latter are to two places of decimals.

	<u> </u>	Wans langth !-			Wave length !-
Index letter.	Line due to —	Wave-length in centimetres × 10 ⁸ .	Index letter.	Line due to-	Wave-length in centimetres X 10 ⁸ .
	(0	7621.277*	G' or H _y	н	4340.66 §
A	. {o	7594.059*		∫ Fe	4308.071
a	-	7184.781	G		4308.034
В	O	6870.186t		Ca	4307.904
C or Ha	н	6563.054	g	Ca	4226.892
a	o	6278.289‡	h or H ₈	н	4101.87
$\mathbf{D_1}$	Na	5896.154	н	Ca	3968.620
$\mathbf{D_2}$	Na	5890.182	ĸ	Ca	3 933.8 0 9
D_8	Не	5875.982	L	Fe	3820.567
	∫ Fe	5270-533	M	Fe	3727.763
$\mathbf{E_1}$		5270.495	N	Fe	3581.344
	Ca	5270.448	0	Fe	3441.135
E ₂	Fe	5269.722	P	Fe	3 361. 30
b 1	Mg	5183.792	Q	Fe	3286.87
b ₂	Mg	5172.871	R	∫ Ca	3181.40
	∫ Fe	5169.218		(Ca	3179-45
b ₈		5169.161	٧٩	Fe	3144.58 (?)
!	Fe	5169.066	S ₁	F e	3100.779
	∫ Fe	5167.686	S ₁	Fe	3100.415
b ₄	{ -	5167.572	24	Fe	3100.064
	Mg	5167.501	8	Fe	3047.720
F or H _β	н	4861.496	т	Fe	3020.759
d	Fe	4383.721	t	Fe	2994.542
f	Fe	4325.940	์ บ	Fe	2947.993

The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge;" the second, a "single line beginning at the tail of A." † The principal line in the head of B.

[‡] Chief line in the a group.

[§] Ames, " Phil. Mag." (5) vol. 30.

Cornu gives 3179.8, which, allowing for the different value of the standard D line, corresponds to about 3180.3.

[¶] Cornu gives 3144.7, which would correspond to about 3145.2.

TABLE 181.

DETERMINATIONS OF THE VELOCITY OF LIGHT, BY DIFFERENT OBSERVERS.*

Date of determination.	No. of experi- ments made.	Method.	Interval worked across in kilometres.	Velocity in kilometres per second.	Velocity in miles per second.	Reference.	Wt. of observation as estimated by Harkness.
1849	-	Toothed wheel	8.633	31 5324	195935	1	
1862	8o	Revolving mirror	0.02	298574 ± 204	185527 ± 127	2	1
1872	658	Toothed wheel	10.310	2985 00 ± 995	185481 ± 618	3	1
1874	546	u u	22.91	300400 ± 300	186662 ± 186	4	2
1879	100	Revolving mirror	0.6054	299910±51	186357±31.7	5	3
188o	12	Toothed wheel	{ 5.1313 } { 5.5510 }	301384 ± 263	187273 ± 164	6	ı
1880	148	Revolving mirror	5.1019	299709	186232	7	-
to 1882	39	" "	7-4424	299776	186274	7	-
1002	65		7-4424	299860	186326	7	6
1882	23	" "	0.6246	299 853±60	186322 ± 37	8	3
Mean f	rom all	weighted measurem	ents	299835±154	186310 ± 95.6	9	
Mean f	rom tho	se having weights >	-1	299893±23	186347 ± 14.3	9	

- I Fizeau, "Comptes Rendus," 1849.

 2 Foucault, "Recueil des travaux scientifiques," Paris, 1878.

 3 Cornu, "Jour. de l'Ecole Polytechnique," Paris, 1874.

 4 Cornu, "Annales de l'Observatoire de Paris," Memoires, tome 13, p. A. 298, 1876.

 5 Michelson, "Proc. A. A. S." 1878.

 6 Young and G. Forbes, "Phil. Trans." 1882.

 7 Newcomb, "Astronomical Papers of the American Ephemeris," vol. 2, pp. 194, 201, and 202.

 8 Michelson, "Astronomical Papers of the American Ephemeris," vol. 2, p. 244.

 9 Harkess
- 9 Harkness.

TABLE 182.

PHOTOMETRIC STANDARDS.

Name of standard	Name of standard.				Star candles.	German candles.	English candles.	Hefner- Alteneck lamps.
Violle units †			1.000 0.481 0.062 0.061 0.054 0.053	2.08 1.00 0.130 0.127 0.112	16.1 7-75 1.00 0.984 0.870 0.853	16.4 7.89 1.02 1.00 0.886 0.869	18.5 8.91 1.15 1.13 1.00 0.98	18.9 9.08 1.17 1.15 1.02 1.00

Quoted from Harkness, "Solar Parallax," p. 33.
† This table, founded on Violle's experiments, is quoted from Paterson's translation of Palaz' "Industrial Photometry," p. 173.
† The Violle unit is sometimes called the absolute standard of white light. It is the quantity of light emitted normally by one square centimetre of the surface of melted platinum at the temperature of solidification. SMITHSONIAN TABLES.

SOLAR ENERGY AND ITS ABSORPTION BY THE EARTH ATMOSPHERE.

This table gives some of the results of Langley's researches on the atmospheric absorption of solar energy. The first column gives the wave-length λ , in microns, of the spectrum line, while the second and third columns give the corresponding absorption, according to an arbitrary scale, for high and low solar attitudes. The fourth column, E, gives the relative values of the energy for the different wave-lengths which would be observed were there no terrestrial atmosphere.

λ	s ₁	a ₂	E
o ^{ss} .375 .400 .450 .500 .600 .700 .800 .900	112 235 424 570 621 553 372 238	27 63 140 225 311 324 246 167	353 683 1031 1203 1083 849 519 316 309

TABLE 184.

THE SOLAR CONSTANT.

The "solar constant" is the amount of heat per unit of area of normally exposed surface which, at the earth's mean distance, would be received from the sun's radiation if there were no terrestrial atmosphere. The following table is taken from Langley's researches on the energy of solar radiation.† The first column gives the wave-length in microns. The second and third columns give relatively on an arbitrary scale a 1 upper and a lower limit to the possible value of spectrum energy.

Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).	Wave- length.	Spectrum energy (upper limit).	Spectrum energy (lower limit).
o#.530 .375 .400 .450 .500 .600 .700 .800	203.9 196.6 242.2 783.2 852.9 514.7 317.7	122.5 110.0 139.1 105.5 374.1 333.0 255.4 167.3	I [#] .000 I.200 I.400 I.600 I.800 2.000 2.200 2.400	105.0 78.2 65.1 48.0 39.2 29.1 19.4 7.0	102.3 61.3 52.2 45.0 36.4 27.1 17.5 6.8

The areas of the energy curves are respectively . . . 149,060 and 95,933

The solar constants deduced from these areas are . . . 3.505 and 2.630

Langley concludes that "in view of the large limit of error we can adopt three calories as the most probable value of the solar constant," or that "at the earth's mean distance, in the absence of its absorbing atmosphere, the solar rays would raise one gramme of water three degrees per minute, for each normally exposed square centimetre of its surface."

SMITHSORIAN TABLES.

^{* &}quot;Am. Jour. of Sci." vols. xxv., xxvii., and xxxii.

^{† &}quot;Professional Papers of U. S. Signal Service," No. 15, 1884.

TABLE 185.

INDEX OF REFRACTION FOR CLASS.

The table gives the indices of refraction for the Fraunhofer lines indicated in the first column. The kind of glass, the density, and, where known, the corresponding temperature of the glass are indicated at the top of the different columns. When the temperature is not given, average atmospheric temperature may be assumed.

	1		RAUNHOF	Flint		1		,_ 			glass.		-	11	
	Density		3.723			512		2.756	\overrightarrow{T}	2.5		1	2.535	\parallel	
	Temp.	C. =	180.79						_ _	17	·.s	<u> </u>		_	
l	B		1.627		1.60			55477		1.52			.52431		3
	ď		.6296		.60	380 849	:	55593 55008			685 959	İ	.52530 .52798	- 11	
	E		.6420	02	.61	453		55908 56315			301		.53137	- []	
	F G		.648		.62	004	•	56674	1	-53	6os		.53434	- 11	
	H		.6602			037		57354 5 7947		·54 ·54	166 657		.53991 .54468		
	(b) Baili	æ's D	BTERMINA	TIONS	s. (Qu	oted fro	m tì	e Ann.	du l	Bur. d	es Lor	g. ze	93, p. 62	o.)	
						Flint gl	288.								
Density Temp. C.	= 2.	8. ₂	3.22 18 ⁰ .4	3.2	4	3·44 19 ⁰ ·5	2	30.2	13	63 °-7	3.66 24°.	8	4.08 12 ⁰ .4		5.00 22 ⁰ .5
В	1.5	609	1.5659	1.57	66 1	.5966	1.0	5045		131	1.62		1.677		7801
C D	-5	624	. 5 675	.57	83	.5982). ا	5062		149	.62		.679	§ ·	.7831
p ₁	:5	660 715	.5715 .5776	.58	87	.6027 .6098	1 3	5109 5183		198 275	.630 .631	04 B4	.685 .695		.7920 .8062
F	.5	715 748	.5813	.59	24	.6141	ĵ.	5225		321	.64:	29	.7019	9 I -	8149
G H	-5	828	.5902			.6246		5335 5428	.6.	435	5 6549		.717	tl.	8368
H .5898 .5979 .6098 .6338 .6428 .6534 .6647 .7306 .8567															
			1	C	rown g	lass. (1	Baill	e, <i>ibid</i> .)						
Density = 2.49 2.50 2.55 2.80 3.00 Temp. C. = 23°.5 17°.8 18°.4 21°.2 21°.9															
	В		1.512		1.52	244		5226		1.51	57	1	.5554 .5568 .5604		
	C	,	.513	4	.52	254	•	5237		.51	66		.5508	Ш	
	b ₁		.519	8	-5320		.5265			.5192		.5058		Ш	
	F		.522	2		343		5332		.52	56		.5690	- [[]	
	G H		.527	8		397	.5392			-5313		.5769			
	<u></u>		.532	3	•54	143	_	5442	1_	•53	60		.5836	ļļ_	
		(e)	Hopkinso	n's D	ETERM	INATIO	vs.	(Proc.	Roy	Soc.	vol. 20	5.)	<u></u>		
	Ha cro	rd wn.	Soft crown.	Si	tani- licic own.					Flint	glass.				
Density :	= 2.4	86	2.550	2	-553	2.860	5	3.20	%	3.	659	3	.889	4	.422
A	1.51	755	1.508956	,	-	1.5340	67	_			-		39143	1.69	6531
В	.51	3625	.510916		39155	.5364	150	1.568			5701	.6.	42874	.70	1000
C D		4568	.511904		40255	-5376		.570			7484		44866 50388		3478
E		331	.514591 .518010		43249 47088	.5410		·574 ·579		.62	8895		57653		020I 9114
$\tilde{\mathbf{b_1}}$		0967	.518686	.5	47852	7088 .5453 7852 .5461		.580	271		0204		59122		0924
F	.52	3139	-52 0 996	i ا . ۲	50471	.5491	121	.583	886	.63	4748	.6	64226	.72	7237
(G)	.52	7994	.526207	٦. ١	56386	.5558	363	.592	190	.64	5267		76111		2063
G	.52	3353	.526595	.5	56830	.556	372	.592			6068	6. ا	77019		3204
		27 9 2	·529359 ·531416	.5	59999 62392	.5600	760	.597 .600	332		1840 6219	.6.	83577 88569	.7	51464 57785
H_1					~- 144	/	,	,	1-1		,7		7~7	• • • •	,, , ~ .)

(d) MASCAR		ATIONS (Au 68.)	n. Chim. Phys.	(e) L	/NGLE/		ERMINA al, 27,	attons. (Silli 1884-)	man's Jour-		
	Flint	glass.	Crown glass.				Flint g	lass.			
Density= Temp. =	3.615 30°.0	3.239 26°.0	2.578 28~.0			Wave le	ngth < 10 ⁶ .	Index of refraction.			
A B	1.60927 .61268	1.57829 .58114	1.52814 .53011			203	8	1.5515 .5520			
Ď	.61443 .61929	.58261 .58671	.53113 .53386			187 181 158 154	0	·5535 ·5544 ·5572			
E b ₄	.62569 .62706	.59197 .59304	·53735 ·53801			136 127 113	0	.5576 .5604 .5616 .5636			
F G	.63148 .64269	.59673 .60589	.54037 .54607			94 91 89	0	.5668 .5674 .5678			
H L	.65268 .65817	.61390 .62012	.55093 ·55349		.	85 81 760.1 =	5 = A	.5687 .5697 .5714			
M N	.66211	.62138 .62707	.55853 .55853			656.2 = 588.9 = 516.7 =	= D ₁ = b ₄	·57 57 ·5798 ·5862			
O P Q	.67733	.63341 .63754 .64174	.56198 .56419 .56646			486.1 = 396.8 = 344.0 =	$=H_1$.5899 .6070 .6266	٠		
	(f) EFFECT OF TEMPERATURE. (Vogel, Wied. Ann. vol. 25.)										
		where no temperatu peratures following	$n_i + n_{i'} = \alpha (i - 1)$ is the absolute re i , and α and ranging from 12 values of α and the tops of the co	index of are control 260 to 260 B for the	f refra	ction for	the tem- the lines				
				Ha	D	Hβ	H_{γ}				
		White gla	ass $\begin{cases} a.10^8 = \\ \beta.10^{10} = \end{cases}$	96 107	123 106	224 97	3 ² 7 93				
		Flint glas	$\begin{cases} \alpha \cdot 10^8 = \\ \beta \cdot 10^{10} = \end{cases}$	101	190 147	362 221	57 5 22 I				
	(g) Effect of Temperature. (Müller, Publ. d. Astrophys. Obs. zu Potsdam, 1885.)										
Fraun-		1	Flint glass.					Crown gla	188.		
line.	Density = 3.855. Density = 3.218. Density = 2.522. Temp. $C = -3^{\circ}$ to 21°. Temp. $C = -5^{\circ}$ to 23°.										
B C D b ₁ F H ₇	.651193 + .659632 + .664936 + .676720 +	.00000474	t .5758: t .5798 t .5860: t .5898: t .5982:	59 + .0 28 + .0 56 + .0 00 + .0 28 + .0 98 + .0	000003 000004 000004 000004	33 t 23 t 43 t 39 t		\$12588 — .00 \$13558 — .00 \$16149 + .00 \$20004 + .00 \$22349 + .00 \$27360 + .00 \$20376 + .00	000033 t 000017 t 000054 t 000048 t 000082 t		
N. B	— The above es are only applie	xamples on the	e effect of temp	erature (rive an	idea of	the o	rder of magni	tude of that		

Indices of Refraction for the various Aluma.*

R	ř.	ပိ		I	ndex of re	raction for	the Fraun	hofer lines	•			
	Denaity.	Тетр		3	• .	D	В	b	P	e		
			Alw	ninjum Ale	ums. RA	(SO ₄) ₉ +12	H ₂ O.†					
Na NH ₈ (CH ₈) K Rb Cs NH ₄ Te	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 -45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	I.44231 -45749 -45996 -45999 -46203 -46288 -50209	1.44412 .45941 .46181 .46192 .46386 .46481	.46363 .46609		
Indium Alums. RIn(SO ₄) ₂ +12H ₂ O.†												
Rb Cs NH ₄	2.065 2.241 2.011	3-13 17-22 17-21	1.45942 .46091 .46193	1.46024 .46170 .46259	1.46126 .46283 .46352	1.46381 .46522 .46636	.46842	1.46751 .46897 .47015	1.46955 .47105 -47234	1.49402 .47562 .47750		
	Gallium Alums. RGa(SO ₄) ₂ +12H ₂ O.†											
Cs K Rb NH4 Te	2.113 1.895 1.962 1.777 2.477	17-22 19-25 13-15 15-21 18-20	1.46047 .46118 .46152 .46390 .50112	1.46146 .46195 .46238 .46485 .50228	1.46243 .46296 .46332 .46575 .50349	1.46495 .46528 .46579 .46835 .50665	1.46785 .46842 .46890 .47146 .51057	1.46841 -46904 -46930 -47204 -51131	1.47034 .47093 .47126 .47412 .51387	1.47481 -47548 -47581 -47864 -52007		
			Ch	rome Alun	ns. RCr(S	6O ₄) ₉ +12H	I ₂ O.†					
Cs K Rb NH4 Te	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.4 7 627 .47642 .47660 .47911 .51692	1.47732 -47738 -47756 -48014 -51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808		
			I	ron Alums	. RFe(SC	O4)2+12H2	0.†					
K Rb Cs NH ₄ Te	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112		

According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
 † R stands for the different bases given in the first column.

Index of Refraction of Motals and Motallic Oxides.

(a) Experiments of Kundt * by transmission of light through metallic prisms of small angle.

			Index of refraction for				
Name of subst	ance.		Red.	White.	Blue.		
Silver Gold Copper Platinum Iron Nickel Bismuth Gold and gold oxide " " " " Rismuth oxide Iron oxide Nickel oxide Copper oxide Platinum and platinum of	· · · · · · · · · · · · · · · · · · ·	:	 	0.27 0.58 0.65 1.64 1.73 2.01 2.26 - 0.99 2.03 1.91 2.11 2.23 2.84 3.29 4.82	- 1.00 0.95 1.44 1.52 1.85 2.13 1.25 1.33 - - 2.36 2.39 3.18 2.90		

(b) Experiments of Du Bois and Rubens by transmission of light through prisms of small angle.

The experiments were similar to those of Kundt, and were made with the same spectrometer. Somewhat greater accuracy is claimed for these results on account of some improvements introduced, mainly by Prof. Kundt, into the method of experiment. There still remains, however, a somewhat large chance of error.

	Index of	refraction for lig	ht of the following	ng color and wa	ve-length.
Name of metal.	Red (Li _a). $\lambda = 67.1$	"Red." \(\lambda = 64.4\)	Yellow (D). λ = 58.9	Blue (F). λ = 48.6	Violet (G). λ = 43.1‡
Nickel Iron Cobalt	2.04 3.12 3.22	1.93 3.06 3.10	1.84 2.72 2.76	1.71 2.43 2.39	1.54 2.05 2.10

(e) Experiments of Drude.

The following table gives the results of some of Drude's experiments. The index of refraction is derived in this case from the constants of elliptic polarization by reflection, and are for sodium light.

Me	Metal. Index of refraction.					Metal.					
Aluminium Antimony Bismuth Cadmium Copper . Gold . Iron . Lead . Magnesium	:	:		1.44 3.04 1.90 1.13 0.641 0.366 2.36 2.01	Mercury Nickel . Platinum Silver . Steel . Tin, solid "fluid Zinc .	:		:	1.73 1.79 2.06 0.181 2.41 1.48 2.10		

[&]quot;Wied. Ann." vol. 34, and "Phil Mag." (5) vol. 26.
Wave-lengths λ are in millionths of a centimetre.

[†] Nearly pure oxide. § "Wied. Ann." vol. 39-

TABLES 188, 189.

INDEX OF REFRACTION.

TABLE 188. — Index of Refraction of Rock Salt.

Deter	mined by l l'emp. 24°	angley. C.	Determin	ned by Ru Snow.	ibens and	D	etermined b	y other authorities.
Line of spec- trum.	Wave- length in cms. X 106.	Index of refraction.	Line of spectrum.	Wave- length in cms. X 108.	Index of refrac- tion.	Line of spec- trum.	Index of refraction.	Authority.
M L H ₂ H ₁	37.27 38.20 39.33 39.68 43.03	1.57486 .57207 .56920 .56833 .56133	Hy F D C	43.4 48.5 58.9 65.6 75.5	1.5607 .5531 .5441 .5404 .5370	Η _α Η _β Η _γ	1.54046 .55319 .56056	Haagen at 20° C.
F b ₄	48.61 51.67	·55323 ·54991		79.0 83.1	.5358 .5347	Ηβ Ηγ	.55384	Carleton Williams at 15° C.
b ₁ D ₁ D ₂ C B A ρστ	51.83 57.89 58.95 65.62 68.67 76.01 94.	.54975 .54418 .54414 .54051 .53919 .5367 .5328 .5305		87.6 92.3 97.8 103.5 110.7 118.6 127.7 138.4	·5337 ·5329 ·5321 ·5313 ·5305 ·5299 ·5293 ·5286	B C D E F	1.53884 .54016 .54381 .54866 .55280	Mülheims.
Ū	139. 132.	.5287 .5268		151.I 166.0 184.5 207.6	.5280 .5275 .5270 .5264	B { C }	.53918 .53902 .54050 .54032	Stefan at 17° and
Determin	ned by Bad	len Powell.		237.2 277.1 302.2	.5257 .5247 .5239	D	.54418 .54400 .54901	22° C. The up- per values are
B C D E	- - -	1.5403 .5415 .5448 .5498		332.0 369.0 415.0	.5230 .5217 .5208	F {	.54882 .55324 .55304 .56129	at 17° and the lower at 22° for each line.
D E F G H	- -	.5622 .5691		554.0 644.7 830.7	.5184 .5163 .5138	G }	.56108 .56823 .56806	

TABLE 189. — Index of Refraction of Sylvine (Potassium Chloride).

Deter	mined by Ru	ens and Sno	Determined by other authorities.				
Wave-length in cms. X 10 ⁴ .			Index of refraction.	Line of spec- trum.	Index of refraction.	Authority.	
43.4 (H ₇) 48.6 (F) 58.9 (D) 65.6 (C) 80.2 84.5 89.3 94.4	1.5048 .4981 .4900 .4868 1.4829 .4819 .4809	145.8 160.3 178.1 200.5 229.1 267.3 320.9 356.1	1.4766 .4761 -4755 .4749 1.4742 -4732 -4722 -4717	A B C D E F G H B C	1.48377 -48597 -48713 -49031 -49455 -49830 -50542 -51061 -4754	Stefan at 20 C.	
100.3 107.0 114.5 123.4	1.4795 .4789 .4781 .4776	400.1 457.7 534.5 641.2	1.4712 .4708 .4701 .4693	C DE F G D D	.4767 -4825 -4877 -4903 -5005 -4904 -4930	Grailich. Tschermak. Groth.	

Index of Refraction of Fluor-Spar.

Determin Rubens and	ed by i Snow.		Determined Sarasin.	by		Determined authorities q	by the uoted.
Wave-length in cms. × 10 ⁶ .	Index of refraction.	Line of spectrum.	Wave- length in cms. X 10 ⁶ .	Index of refraction.	Line of spectrum.	Index of refraction.	Authority.
43.4(H _γ)	1.4393	A	76.040	1.431010	D	1.4339	Fizeau.
48.5(F)	·437²	a	71.836	-431575			
58.9(D)	.4340	В	68.6 ₇ 1	-431997	A	1.43003	
65.6(C)	·43 ² 5	С	65.618	.432571	a	-43153	
80.7	-4307	D	58.920	·433937	В	.43200	
85.0	.4303	F	48.607	.437051	С	.43250	Mülheims.
89.6	-4299	h	41.012	.441215	D	.43384	
95.0	-4294	н	39.681	.442137	E	-4355I	
100.9	.4290	Cd	36.090	-445356	F	.43696	
107.6	.4286	44	34.655	.446970			
115.2	.4281	"	34.015	-447754	В	1.43200	
124.0	.4277	"	32.525	.449871	D	.43390	
134.5	.4272	"	27.467	.459576	F	.43709	Stefan.
146.6	.4267	"	25.713	.464760	G	.43982	
161.3	.4260	"	23.125	.475166	н	.44204	
179.2	.4250	"	22.645	.477622			
201.9	.4240	"	21.935	.481515	Red	1.433	DesCloi-
230.3	.4224	"	21.441	.484631	Yellow	.435	seaux.
268.9	.4205	Zn	20.988	.487655			
322.5	.4174	"	20.610	.490406	Na	1.4324* }	Kohl-
403.5	.4117	"	20.243	.493256	"	.4342† \$	rausch.
462.0	.4080	Al	19.881	.496291			
538.0	.4030	"	19.310	.502054			
646.0	.3960	"	18.560	.509404			
807.0	.3780						

[•] Gray at 23° C. † Black at 19° C.

TABLE 191.

Various Monoretringent or Optically Isotropic Solids.

Subst	ance.					Line of Spectrum.	Index of Refraction.	Authority.
Agate (light color)					•	red	1.5374	De Senarmont.
	•	•	•	•	•	D D	1.53/4	Grailich.
Ammonium chloride	•	•	•	•	•		1.6422	
Arsenite	•	•	•	•	•	D	1.755	DesCloiseaux.
Barium nitrate .			•		•	D	1.5716	Fock.
Bell metal .	_					D	1.0052	Beer.
	•	-	-	-		(Li	2.34165)	
Blende						Na Na	2.36923 }	Ramsay.
Diende	•	•	•	•	•) Ti		Kambay.
							2.40069)	
						(C	1.46245	
Boric acid .	_	_	_	_		∤ D	1.46303	
	•	-	-	•	-	/F	1.47024	Bedson and
						}c	1.51222	Carleton Williams.
								Carreton winams.
Borax (vitrified)		•	•	•	•	{ D	1.51484	
, ,						(F	1.52068	
						-	5 1.532	Kohlrausch.
Camphor				•		D	13 7 5462	Mulheims.
•						(3	1.5462	MI WILLETTIES.
Diamond (colorless)						∫ red	2.414	DesCloiseaux.
Diamond (colorless)	•	•	•	•	•	green	2.428	200 IVISCAUA.
						Ϋ́B	2.46062	
Diamond (1)						\ a \		Schrauf.
Diamond (brown)	•	•	•	•	•		2.46986 }	ochram.
						(E	2.47902)	
Ebonite					_	`D	1.6	Ayrton & Perry.
	•	•	•	•	•	ſĀ	1.73	,
						B	18.1	
Fuchsin							1.90 }	Wernic ke.
						l IG	1.31	
						H		
						(11	1.54 J	
Garnet (different vari	eties	١			_	D	§ 1.74 to }	Various.
Carnet (different Ann	CUCS	,	•	•	•	1	1.90	
Gum arabic .						red	1.480	Jamin.
" " " " " " " " " " " " " " " " " " "	•	•	•	•	•			Wollaston.
	•	•	•	•	•	l -	1.514	Trabishess bac
Hanyne	•	•	•	•	•	D	1.4961	Tschichatscheff.
Helvine					•	D	1.739	Levy & Lecroix.
						l _	(1.482 to)	 :
Obsidian			•	•	. •	D	1.486	Various.
						1		
Onel						D	S I .406	"
Opal	•	•	•	•	•		1.450	
Pitch		_	_	_		red	1.531	Wollaston.
	•	•	•	•	•	D		
Potassium bromide	• .	•	•	•	•	יי	1.5593	Topsöe and
" chlorstann	ate			•	•		1.6574 }	Christiansen.
" iodide						"	1.6666)	
Phosphorus .	-	-	•	•	-	4	2.1442	Gladstone & Dale.
	•	•	•	•	•			lamin.
Resins: Aloes	•	•	•	•	•	red	1.619	
Canada balsa	am				•	"	1.528	Wollaston.
Colophony						"	1.548	Jamin.
Copal .	-	•	•	•	•	u	1.528	- "
	•	•	•	•	•			Wollaston.
Mastic .	•	•	•	•	•	1	1.535	
Peru balsam						D	1.593	Baden Powell.
						ſA	2.653	
						В	2770	
Selenium, vitreous							2.730 2.86	Sir ks.
,		-	-	-	-] <u>C</u>		
						D	2.98	
(bromide		_	_	_	_	Ď.	2.533	
Cilman) ablanta	•	•	•	•	•	"	2.061	Wernicke.
Silver chloride .	•	•	•	•	•			TT CITICAC.
(iodide .	•		•	•	•		2.182	
a (blue .						"	1.4827	Fourmen
Sodalite blue .	D ota~		-		-	"	1.4833	Feusner.
	maici		•	•	•	"	*******	Dussaud.
Sodium chlorate	•	•	•	•	•		1.5150	
Spinel				•	•	"	1.7155	DesCloiseaux.
						66	1.5667	Fock.
Strontium nitrate								

SMITHSONIAN TABLES.

Index of Refraction of Iceland Spar.

The determinations of Carvallo, Mascart, and Sarasin cover a considerable range of wave-length, and are here given.

Many other determinations have been made, but they differ very little from those quoted.

	Wave-	Index of ref	raction for		Wave-	Index of ref	raction for—
Line of spectrum.	length-in cms. × 10 ⁵ .	Ordinary ray.	Extraordi- nary ray.	Line of spectrum.	length in cms. × 10 ⁵ .	Ordinary ray.	Extraordi- nary ray.
	Authority	: Carvallo.			Authorit	y: Sarasin.	
-	215	-	1.4753	Cd ₁₈	32.53	1.70740	1.50857
-	198	1.6279	-	Cd ₁₇	27.46	.74151	.52276
-	177	-	-4766	Cd ₁₈	25.71	.76050	.53019
-	154	.6350	-	Cd ₂₈	23.12	.80248	· 5 45 5 9
-	145	.6361	-4779	Cd ₂₄	22.64	.81300	.54920
-	122	.6403	-	Cd ₂₅	21.93	.83090	-55514
-	108	.6424	-44799	Cd ₂₆	21.43	.84 <u>5</u> 80	-55993
A	76.04	.65006	.48275		A . 1.	. 36	<u> </u>
В	68.67	.65293	.48406		Authority	: Mascart.	ı
			<u> </u>	A	-	1.65013	1.48285
	Authorit	y: Sarasin.		a –		.65162	-
A	76.04	1.65000	1.48261	В	-	.65296	.48409
a	71.84	.651 56	.48336	С	-	.65446	.48474
В	68.67	.65285	.48391	D	-	.65846	.48654
Cd ₁	64.37	.65501	.48481	E	-	.66354	.48885
D	58.92	.65839	.48644	b ₄	-	.66446	-
Cd₂	53-77	.66234	.48815	F	-	.66793	.49084
Cd ₈	53.36	.66274	.48843	G	-	.67620	49470
Cd₄	50.84	.66525	.48953	н	-	.68330	-49777
F	48.61	.66 7 83	49079	L	-	.68706	.49941
Cd₅	47.99	.668 58	.49112	М	-	.68966	.50054
Cd ₆	46.76	.67023	.49185	N	-	.69441	.50256
Cd7	44.14	.67417	.49367	0	-	.69955	.50486
h	41.01	.68036	.49636	P	j -	.70276	.50628
н	39.68	.68319	-49774	Q	-	.70613	.50780
Cd ₉	36.09	.69325	.50228	R	-	.71155	.51028
Cd ₁₀	34.65	.69842	.50452	s	-	.71 580	-
Cd ₁₁	34.01	.70079	.50559	Т	_	.71939	-

Index of Refraction of Quarts.

Line or wave-	Index	t for —	Line	Inde	c for —		
length in cms. X 10°.	Ordinary ray.	Extraordinary ray.	of spectrum.	Ordinary ray.	Extraordinary ray.		
	4.1.1.0	_	Quir	ncke (right-handed	anded quartz).		
	Authority: Sarasin		B C	1.53958 .54087	1.54780 •54933		
Cd₁ D Cd₂ Cd₃	1.54227 .54419 .54655 .54675	1.55124 ·55335 ·55573 ·55595	D E F G	•54335 •54649 •54868 •55241	.55199 .55508 .55758 .56193		
Cd4 Cd5 Cd6	· .54825 ·55014 ·55104	·55749 ·55943 ·56038	Quin	ncke (left-handed q	uartz).		
Cd7 Cd9 Cd10 Cd11 Cd18 Cd17 Cd18 Cd28	.55318 .56348 .56617 .56744 .57094 .58750 .59624 .61402	.56270 .57319 .57599 .57741 .58097 .59812 .60713	B C D E F G	1.54022 :54092 .54318 -54575 .54845 .55246	1.54880 -54945 -55245 -55533 -55801 -56163		
Cd ₂₄ Cd ₂₅ Cd ₂₆	.61816 .62502 .63040	.62992 .63705 .64268		Authority: Masca	rt.		
Zn ₂₇ Zn ₂₈ Zn ₂₉ Al ₈₀ Al ₈₁ Al ₈₂	.63569 .64041 .64566 .65070 .65990 .67500	.64813 .65308 .65852 .66410 .67410	A a B C D	1.53902 54018 .54099 .54188 .54423 .54718	1.54812 .54919 .55002 .55095 .55338 .55636		
	Authority: Ruben	.	b ₄ F G H L	.54770 .54966 .55429 .55816 .56019	.55694 .55897 .56372 .56770 .56974		
43.4(H _y) 48.5(F) 59.0(G) 65.6(C) 83.9	1.5538 -5499 -5442 -5419 -5376	- - - - - - - - -	M N O P Q R	.56150 .56400 .56668 .56842 —	.57121 .57381 .57659 .57822 .57998 .58273		
90.4 97.9 106.7 117.4	.5364 -5353 -5342 -5325	. =	Authority: Va	n der Willigen (lef	-handed quartz).		
130.5 146.8 167.9 195.7 234.8	.53*5 .5310 .5287 .5257 .5216 .5160	- - - -	A B C. D E	1.53914 .54097 .54185 .54419 .54715	1.54806 .54998 .55085 .55329 .55633		
			F G H	.54966 .55422 .55811	.55855 .56365 .56769		

^{*} For wave-lengths, see Tables 190 and 192.

INDEX OF REFRACTION. TABLE 194. — Uniazial Crystals.

Substance.	Line of spec- trum.	Index of rooms	Extraordinary ray.	Authority.
Alunite (alum stone) Ammonium arseniate Anatase Apatite Benzil Berzil Beryl Brucite Calomel Cinnabar Corundum (ruby, sapphire, etc.) Dioptase Emerald (pure) Ice at — 8° C. Idocrase Ivory Magnesite Potassium arseniate " Silver (red ore) Sodium arseniate " nitrate " phosphate Strychnine sulphate Tin stone Tourmaline (colorless) " (different colors) Zircon (hyacinth) " Apatite Identify	D red D D red red P D D D D D D D D D D D D D D D D D D	1.573 1.577 2.5354 1.6390 1.6588 1.589 to 1.570 1.560 2.854 1.767 to 1.769 1.767 to 1.769 1.719 to 1.722 1.539 1.717 1.564 1.403 3.084 1.459 1.514 1.637 1.637 1.637 1.633 to 1.650 1.924	1.592 4.524 2.4959 1.6384 1.582 to 1.566 1.581 2.60 3.199 1.752 1.723 1.578 1.313 1.717 to 1.720 1.541 1.515 1.515 1.501 2.881 1.467 1.336 2.452 1.519 2.093 1.616 to 1.625 1.968	Kohlrausch. Mallard. DesCloiseaux. De Sernamont. Fizeau. Baker. Schrauf. Dufet. Martin. Grubenman. Heusser.

TABLE 196. - Biazial Crystals.

	Line of	Ind	lex of refracti	on.	Authority.
Substance.	spec- trum.	Minimum.	Interme- diate.	Maximum.	Authority.
Anglesite Anhydrite Antipyrin Aragonite Axinite Barite Borax Copper sulphate Gypsum Mica (muscovite) Olivine Orthoclase Potassium bichromate " nitrate " sulphate Sugar (cane) Sulphur (rhombic)		1.8771 1.5693 1.5101 1.5301 1.6720 1.636 1.4467 1.5140 1.5208 1.5601 1.661 1.5190 1.7202 1.3346 1.43397 1.9505	1.8823 1.5752 1.6812 1.6816 1.6779 1.4594 1.5368 1.5228 1.5936 1.678 1.578 1.5780 1.5056 1.4946 1.5667 2.0383	1.8936 1.6130 1.6858 1.6859 1.6810 1.648 1.4724 1.5433 1.5298 1.5977 1.697 1.5260 1.8197 1.5064 1.4980 1.5716	Arzruni. Mülheims. Glazebrook. Rudberg. DesCloiseaux. Various. Dufet. Kohlrausch. Mülheims. Pulfrich. DesCloiseaux. " Dufet. Schrauf. Topsöe & Christiansen. Calderon.
Topaz (Brazilian) Topaz (different kinds) Zinc sulphate	D D D	1.6294 1.630 to 1.613 1.4568	1.6308 1.631 to 1.616 1.4801	1.637 5 1.637 to 1.623 1.4836	Mülheims. Various. Topsöe & Christiansen.

TABLE 196.

INDEX OF REFRACTION. Indices of Refraction relative to Air for Solutions of Salts and Acids.

						ices of re	fraction	for	spectru	ım li:	nes.			•
Sub	etance	B.	Density.	Temp. C.	0	D	1	?	Ηγ		H		Au	thority.
	(a) Solutions in Water.													
Ammoni	um c	hloride	1.067	27°.05	1.37703		6 1.38	473	-	1	1.393	36	Will	igen.
Calcium	chlo	ride .	.025 .398	29.75 25.65	.34850		9 44	515 938	_		.362	43 01		4
u u	u		.215	22.9	.39411	.3965	2 .40	206	_		.386	78		4
_	-		.143	25.8	.37152	1		876	_	- [
Hydroch Nitric ac		acid .	1.166 -359	20.75 18.75	1.40817 .39893	1.4110	9 1.41	774 867	_	1	1.428 419	61		4
Potash (ic)	.339 .416	11.0	.40052	.4028	1 .40	808	_		.416	37	Frau	nhofer.
Potassiui			normal	solution	34087	-3427	8 .34	719	1.350	49	·-	-	Bend	ier.
"	•			normal	.34982 .35831	-3517	9 .35	645	.359 .368	94	-		"	
"	,	"	triple	normal	.35831	.3602	9 .36	512	.368	90	-			·
Soda (ca	ustic),	1.376	21.6	1.41071		4 1.41	936	_	1	1.428			igen.
Sodium o	hlor	ide	.189	18.07 18.07	.37 562	-3778	9 .38	322 442	1.387 .368	40	_		Schu	itt.
"	••		.109 .035	18.07	.35751 .34000			628	.349	69	<i>-</i>		4	
Sodium r				22.8	1.38283	* *	-		_	Ί,	.401		wiii	igen.
Sulphuri			1.358 118.	18.3	43444		5 1.39 9 .44	168	_	ľ	.448	83	•	'
- G4	66		.632	18.3	-42227	.4246	6 .42	967	_	1	.436	94		']
4	u		.221	18.3	.36793	.3700	9 .37	468	_	- 1	.381	58		•
- "	"		.028	18.3	.33663	.3386	2 .34	285	-		.349	38	•	•
Zinc chlo			1.359	26.6	1.39977				-	1	1.417	38		•
""	1	• • •	.209	26.4	.37292	·3751	5 .38	026	_	- 1	.388	45	•	4
				(b) Solu	rions in	ETHYL .	Атсон)L						
Eshal ala	-hal		0.789	27.7		. 2505		305		Π,	.370		wan	igen.
Ethyl alc	4 60001		.932	25.5 27.6	1.35791 -35372		1 1.36	986	_	- '	.366	62	** 111	igen.
Fuchsin	(near	rly sat-					1				.3	- 1		
urated) Cyanin (s			-	16.0 16.0	.3918 .3831	.398	.36	I	_		·375 ·382	9	Kun	dt.
Cyaniii (i	atui	ateu, .		10.0	.3031		.3/	05			.302			
Not: a 4.5 pe For a 9	er cer 19 pe	Cyanin nt. solut r cent. s	in chlor ion μ _A = solution	oform al 1.4593, p he gives p	so acts 1.4 = 1.4 1.4 = 1.4	anoma 695, μ, 902, μ,	lously (green (green	; fo) = n) =	r exa 1.451 = 1.449	mple 4, μ 97, μ	e, Sie ø (bl	ebe lue) lue)	n giv	es for -4554- -4597-
		(0) Solutio	NS OF POT	PASSIUM :	Perman	GANAT	E IN	WATI	ER.*				
Wave- S	pec-	Index	Index	Index	Index	Wave-	Spec-	In	dex	Ind	ex	In	dex	Index
in cms.	rum	for	for	for	for	length in cms.	trum	f	or	fò	r	fe	DE.	for
X 10 ⁵ .	ne.	1 % sol.	2 % sol.	3 % sol.	4 % sol.	X 104.	line.	1.3	sol.	2 %	301.	3 %	sol.	4 % sol.
68.7	В	1.3328	1.3342	_	1.3382	51.6	_	1.2	368	1.33	85		_	_
65.6	c	.3335	.3348	1.3365	.3391	50.0	-		374	-33	83	1.3	386	1.3404
61.7	-	·3343	.3365	.3381	.3410	48.6	F	1 .3	377	-	- 1	•		.3408
59.4 58.9	- D	·3354	·3373 .	-3393	.3426	48.0	-	.3	381	.33			398	-3413
58.9	ן ע	·3353 ·3362	·3372 ·3387	.3412	.3426	46.4	_		397	.34		.3	414	.3423 .3439
55.3	-	.3366	·3395	.3417	·3445 ·3438	44-7 43-4	_		407 417	•34	-	٠,	426	.3459
52.7	E	-3303	-3323	- 1	- 373	42.3	-		431	-34	42	.3	457	.3452 .3468
52.2	-	.3362	-3377	.3388	-	-	-	١	=	-	.	•	~	
			<u> </u>					<u> </u>	1					

According to Christiansen.

INDEX OF REFRACTION.

Indices of Refraction of Liquids relative to Air.

	Temp.	Inc	dex of refra	ction for s	pectrum lit	ies.	Authority.
Substance.	C.	0	D	7	H,	H	224.107.1.71
Acetone	10°	1.3626	1.3646	1.3694	1.3732	-	Korten.
Analin *	20	·4755	.4782 .5863	.4847 .6041	.6204	_	Weegmann.
Aniseed oil	21.4	.5993 .5410	.547.5	.5647	.0204	_	Willigen.
" "	15.1	.5508	.5572	.5743	-	1.6084	Baden Powell.
Benzene †	10	1.4983	1.5029	1.5148	-	1.5355	Gladstone.
Distance and all	21.5	-4934	-4979	.5095	-	.5304	T 14
Bitter almond oil . Bromnaphtalin	20 20	.5391	.6582	.5623 .6819	•5775	.7289	Landolt Walter.
bromnaphtaum	20	.6495	.0502	.0019	.7041	.7209	waiter.
Carbon disulphide ‡	0	1.6336	1.6433	1.6688	1.6920	1.7175	Ketteler.
	20 IO	.6182 .6250	.6276	.6523 .6592	.6748	.6994 .7078	Gladstone.
	19	.6189	.6344 .6284	.6352		.7010	Dufet.
Cassia oil	10	.6007	.6104	.6389	_	.7039	Baden Powell.
	22.5	.5930	.6026	.6314	-	.6985	" "
Chinolin	20	1.6094	1.6171	1.6361	1.6497	-	Gladstone.
Chloroform	10	. 44 6 6	.4490	·4555	-	.4661	Gladstone & Dale.
44	30		·4397		-	.4561	Lorenz.
Cinnamon oil	20 23.5	-4437 -6077	.4462 .6188	.4525 .6508	=	_	Willigen.
Cimiamon on	23.3	.00//	.0100	.0300	_	_	Winigon.
Ether	15	1.3554	1.3566	1.3606	-	1.3683	Gladstone & Dale.
"	15	-3573	-3594	.3641	-	.3713	Kundt.
Ethyl alcohol	o	.3677	.3695	-37,39	-3773	-	Korten.
	10	.3636	.3654	.3698	·3732	-	"
	20	.3596	.3614	.3657 .3683	.3690		Gladstone & Dale.
" "	15	.3621	.3638	.3003	-	·3751	Giaustone & Date.
Glycerine	20	1.4706	_	1.4784	1.4828	-	Landolt.
Methyl alcohol	15	.3308	1.3326	.3362	_	.3421	Baden Powell.
Olive oil	0	.4738	.4763	.4825	-	"-	Olds.
Rock oil	٥	-4345	-4573	.4644	-	-	"
Turpentine oil	10.6	1.4715	1.4744	1.4817	-	1.4939	Fraunhofer.
_ " "	20.7	.4692	.4721	-4793	-	.4913	Willigen.
Toluene	20	.4911	-4955	.5070	.5170	i -	Bruhl.
Water§	16	.3318	.3336	•3377	.3409		Dufet. Walter.
	16	.3318	·3337	.3378	_	-3442	waiter.

[•] Weegmann gives $\mu_D = 1.59668 - .000518 t$. Knops gives $\mu_F = 1.61500 - .00056 t$.

[†] Weegmann gives $\mu_D = 1.51474 - .000665 t$. Knops gives $\mu_D = 1.51399 - .000644 t$.

[‡] Wüllner gives $\mu_C = 1.63407 - .00078 t$; $\mu_F = 1.66908 - .00082 t$; $\mu_h = 1.69215 - .00085 t$.

[§] Dufet gives $\mu_D = 1.33397 - 10^{-7} (125\ell + 20.6\ell^2 - .000435\ell^2 - .00115\ell^4)$ between 0° and 50°; and nearly the same variation with temperature was found by Ruhlmann, namely, $\mu_D = 1.33373 - 10^{-7} (20.14\ell^2 + .000494\ell^4)$.

Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t = 1 = \frac{n_0 - 1}{1 + \alpha t/50}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and β the pressure of the gas in millimetres of mercury. Taking the mean value, for air and white light, of $n_0 = 1$ as 0.0003936 and α as 0.00367 the formula becomes

$$n_t - 1 = \frac{.0002036}{1 + .00367 \, t} \cdot \frac{P}{1.0136 \times 10^6} = \frac{.0002895}{1 + .00367} \, \frac{P}{10^6} +$$

where P is the pressure in dynes per square centimetre, and t the temperature in degrees Centigrade.

(a) The following table gives some of the values obtained for the different Fraunhofer lines for air.

Spectrum	Index	of refraction accord	Spectrum	Index of refraction according to	
line.	Ketteler.	Lorenz.	Kayser & Runge.	line.	Kayser & Runge.
A	1.0002929	1.0002893	1.0002905	М	1.0002993
В	2935	2899	2911	N	3003
A B C	2938	2902	2914	U	3015
D	2947	2911	2922		
E	2958	2922	2933	P	1.0003023
1		1		Q K	3031
F	1.0002968	1.0002931	1.0002943	ĸ	3043
G	2987	2949	29/52		
н	3003	2963	2978	S	1.0003053
K	-		2980	T	3064
L	_	_	2987	Ü	307 5

(b) The following data have been compiled from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0. Centigrade and 760 mm. pressure.

Substance.	Kind of tight.	Indices of refraction and authority.	Substance.	Kind of light.	Indices of refraction and authority.
Acetone Ammonia	D white D D	1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 Rayleigh. 1.001700-1.001823	Hydrogen Hydrogen sul- { phide } Methane	white white D D white	1.000138-1.000143 1.000139-1.000143 1.000644 Dulong. 1.000623 Mascart. 1.000443 Dulong.
Carbon dioxide Carbon disul- phide }	D white I) white D	1.001152 Mascart. 1.000449-1.000450 1.000448-1.000454 1.001500 Dulong. 1.001478-1.001485	Methyl alcohol. Methyl ether Nitric oxide.	D D D white D	1.000444 Mascart. 1.000549-1.000623 1.000891 Mascart. 1.000303 Dulong. 1.000297 Mascart.
Carbon mon- { oxide } Chlorine Chloroform	white white white D D	1.000340 Dulong. 1.000335 Mascart. 1.000772 Dulong. 1.000773 Mascart. 1.001436–1.001464	Nitrogen Nitrous oxide . "" . Oxygen	white D white D white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 Mascart. 1.000272-1.000280
Cyanogen	white D D D white	1.000834 Dulong. 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000043 Rayleigh. 1.000449 Mascart.	Pentane	D D white D white	1.000271-1.000272 1.001711 Mascart. 1.000665 Dulong. 1.000686 Ketteler. 1.000261 Jamin.

TABLE 199.

ROTATION OF PLANE OF POLARIZED LIGHT.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimetre of the solution. The examples are quoted from Landolt & Börnstein's "Phys. Chem. Tab." The tollowing symbols are used:—

f = number grammes of the active substance in 100 grammes of the solution. f = " solvent" " cubic centimetre"

Right-handed rotation is marked +, left-handed -.

Line of spectrum.	Wave-length according to Angström in cms. × 10 ⁶ .	Tartaric acid, CuH ₆ O ₆ , dissolved in water. q = 30 to 95, temp. = \$40°C.	Camphor, $^{\circ}$ C ₁₀ H ₃₆ O, disselved in alcohol. q = 50 to 95, temp. $= 22.9^{\circ}$ C.	Santonin,† C ₁₈ H ₁₈ O ₂ , dissolved in chloroform. q = 75 to 96.5, temp. = 20° C.
BCDE55F e	68.67 65.62 §8.92 §2.69 §1.83 §1.72 48.61 43.83	$+ 2^{\circ}.748 + 0.09446 q$ + 1.950 + 0.13030 q + 0.153 + 0.17514 q - 0.832 + 0.19147 q - 3.598 + 0.23977 y - 9.057 + 0.31437 q	38°.549 — 0.0852 q 51.945 — 0.0964 q 74-331 — 0.1343 q 	- 140°.1 + 0.2085 q - 149.3 + 0.1555 q - 202.7 + 0.3086 q - 285.6 + 0.5820 q - 302.38 + 0.6557 q - 365.55 + 0.8284 q - 534.98 + 1.5240 q
		Santonin,† $C_{10}H_{10}O_{2}$, ediasolved in alcohol. c=1.782. temp. = $s0^{\circ}$ C.	Santonin,† C ₂₅ H ₁₆ O ₈ , dissolved in alcohol. c=4.046. temp.= so° C. dissolved in chloroform c=3.1-30.5 temp.= so° C.	chloroform. diesolved in
BCDE55F eG s	68.67 65.62 58.92 52.69 51.83 51.72 48.61 43.83 43.07 42.26	110.4° 118.8 161.0 222.6 237.1 261.7 380.0	442° 484° 504 549 693 754 991 1088 1053 1148	- 49°
		Arndtsen, "Ann. Cl Narini, "R. Acc. de Stefan, "Sitzb. d. W	nim. Phys." (3) 54, 1858. d Lincei," (3) 13, 1882. Vien. Akad." 52, 1865.	

ROTATION OF PLANE OF POLARIZED LIGHT.

TABLE 200.

. 95, 1882). °	1882, or C. R	de Gen.	108, 1889).	uye, C. R.	chlorate (G	Sodium			
Rotation per mm.	Wave- length.	Spec- trum line.	Rotation per mm.	Wave- length.	Spec- trum line.	Rotation per mm.	Temp. C.	Wave- length.	Spec- trum line.,
63°.268	36.090	Cd ₉	1 2°.668	76.04	A	2°.068	15°.0	71.769	a
64.459	35.818	N	14.304	71.836	a B	2.318	17.4	67.889	В
69.454	34.655	Cd ₁₀	15.746	68.671	B	2.599	20.6	65.073	B
70.587	34.406	0		·		3.104	18.3	59.085	D
			17.318	65.621	C	3.841	16.0	53.233	E
72.448	34.015	Cd11	21.684	5 8.951	D_2	4.587	11.9	48.912	F
74.57 I	33.600	P	21.727	58.891	$ D_1 $	5.331	10.1	45.532	G
78.579	32.858	Q			-	6.005	14.5	42.834	DEF GG
80.459	32.470	Q Cd ₁₈	27.543	52.691	E F G	6.754	13.3	40.714	H
			32.773	48.607	F	7.654	14.0	38.412	L
84.972	31.798	R	42.604	43.072	G	8.100	10.7	37.352	L M
121.052	27.467	Cd17	, ,			8.861	12.9	35.544	N
143.266	25.713	Cd ₁₈	47.481	41.012	h i	9.801	12.1	33.931	N P
190.426	23.125	Cdgs	51.193	39.681	H	10.787	11.9	32.341	0
			52.155	39.333	K	11.921	13.1	30.645	Ř
201.824	22.645	Cd ₂₄	5 55	5, 555		12.424	12.8	29.918	Q R T
220.731	21.935	Cd ₂₅	55.625	38.196	L	13.426	12.2	28.270	Cd17
235.972	21.431	Cd ₂₆	58.894	27.262	M	14.965	11.6	25.038	Cd18

The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunhofer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

Shithhoomian Tables.

TABLE 201.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Under P is the number of grammes of the substance dissolved in 100 cubic centimetres of water. Under C is the amount of lowering of the freezing-point. The data have been obtained by interpolation from the results published by the authorities quoted.

	-		1 .					 i
Substance and observer.	P	Co	Substance and observer.	P	Co	Substance and observer.	P	C°
AgNO ₂	5	0.93	ZnSO ₄	I	0.10	MgCl ₂	0.5	0.26
F. M. Raoult.	10	1.71	F. M. Raoult.	2	0.23	S. Arrhenius.†	1.0	0.53
li	20	2.38		3	0.36		2.0	1.10
<u> </u>	25	2.97 3.53		5	0.61		2.5	1.39
]	30	4.00		10	1.23		3.0	1.69
	35	4-43		15	1.85	`	3.5	2.00
	40	4.80 5.15		20 25	2.50 3.19		4.5	2.32
	50	5.45		30	3.94		5.0	2.98
	55 60	5.75	C80	_		•	5.5 6.0	3.32 3.67
	65	6.00	CuSO ₄ F. M. Raoult.*	I 2	0.15		0.0	3-07
	ر ا		2 1 1121 2000 2101	3	0.40	BaCl ₂	0.5	0.119
Ca(NO ₈) ₂	1	0.28		4	0.51	Harry C. Jones.§	1.0	0.234
F. M. Raoult.*	2	0.56		5	0.62		1.5 2.0	0.344
	3	1.12			0.82		2.0	0.450
	Š	1.40		7 8	0.92	SrCl ₂	0.5	0.17
	10	2.78		9	1.02	S. Arrhenius.†	1.0	0.34
	15 20	4.26 6.00		10	1.12		1.5 2.0	0.50
			CdSO ₄	I	0.09		2.5	0.80
Cd(NO ₃) ₃	0.5	0.112	F. M. Raoult.*	2	0.19		3.0	0.95
Harry C. Jones.§	1.0	0.217		3	0.28 0.38		3.5 4.0	I.I2 I.29
Na ₂ SO ₄	I	0.28		5	0.48		4.5	1.44
F. M. Raoult.	2	0.56		10	1.00		5.0	1.60
Į.	3	0.84		15 20	1.54 2.11		5.5 6.0	1.76 1.93
	5	1.40	İ	25	2.77		0.0	1.93
	_			30	3.51	CuCl ₂ +2H ₂ O	0.5	0.15
K ₂ SO ₄ S. Arrhenius.	0.5	0.14		35	4.40	S. Arrhenius.†	1.0	0.30
S. Alliemus.	1.5	0.27	NaCl	۵.5	0.32		2.0	0.44
<u> </u>	2.0	0.51	S. Arrhenius.†	1.0	0.62		2.5	0.72
Į į	2.5	0.63	l	1.5	0.92		3.0	0.86
	3.0	0.74		2.0 2.5	I.22 I.52		3.5 4.0	I.00 I.14
	4.0	0.96		3.0	1.82		4-5	1.29
	4-5	1.07	ксі				5.0	1.43
	5.0	1.17 1.27	Harry C. Jones.	0.5	0.234		5.5 6.0	I.57 I.7I
	5.5 6.0	1.37		1.5	0.693		6.5	1.85
	6.5	1.47		2.0	0.915		2.0	2.00
	7.0	1.57		2.5		CdCl ₂	ا ہے	0.120
H	7·5 8.0	1.77		3.0	1.359	Harry C. Jones.§	0.5	0.120
ll ,, ,,			LiCI	0.5	0.45		1.5	0.322
MgSO ₄ F. M. Raoult.*	I 2	0.18 0.35	S. Arrhenius.†	1.0	0.89	CaCl ₂	0.5	0.23
1	3	0.52		1.5 2.0	1.34 1.78	S. Arrhenius.†	1.0	0.45
	4	0.70		2.5	2.23		2.0	0.08
	5	0.89	NH4Cl		اممدا		2.5	1.14
ļ	15	1.77 2.78	Harry C. Jones.‡	0.5	0.326	l	3.0	1.37
H	20	3.68	, .,,	1.5	0.957		3.5	1.61 1.85
L						<u> </u>	+~	-~3

^{*} In "Zeits. für Physik. Chem." vol. 2, p. 489, 1888. † Ibid. vol. 2, p. 491, 1888. ‡ Ibid. vol. 11, p. 110, 1893. § Ibid. vol. 11, p. 529, 1893.

TABLE 201.

LOWERING OF FREEZING-POINT BY SOLUTION OF SALTS.

Substance and observer.	P	Co	Substance and observer.	P	c°	Substance and observer.	P	Co
ZnCl ₂ Harry C. Jones.*	0.5	0.185	Alcohol, C ₂ H ₆ O	0.1	0.044	H ₂ SO ₃	0.5	0.15
marry C. Jones.	1.0	0.348	Harry C. Jones.‡	0.2	0.087	S. Arrhenius.†	1.0 1.5	0.30
CdBr ₂	0.5	0.080		0.4	0.170		2.0	0.60
Harry C. Jones.	1.0	0.142		0.5	0.212		2.5	0.75
li i	1.5	0.195		1.0	0.402		3.0	0.90
	2.0	0.300					3.5 4.0	I.05 I.20
	3.0	0.352					4.5	1.35
			Acetic acid,	0.1	0.034		5.0	1.50
CdI _s S. Arrhenius.†	1 2	0.06	C ₂ H ₄ O ₂ Harry C. Jones.‡	0.2	0.067		5.5 6.0	1.65
5. Minchia.	3	0.12	marry C. Jones.	0.4	0.099		6.5	1.95
li i	4	0.25		0.5	0.162		7.0	2.10
li l	5	0.32		1.0	0.313	** 00		
ŀ	10	0.63			i	H ₂ SO ₄ Harry C. Jones.‡	0.1 0.2	0.044
i i	15 20	0.92 1.22				many C. Jones.	0.3	0.031
li i	25	1.52	P(OH)s	0.5	0.18		0.4	0.172
N. O.T.	_	_	S. Arrhenius.†	1.0	0.35		0.5	0.212
NaOH Harry C. Jones. t	0.1 0.2	0.092		1.5 2.0	0.50		1.0	0.402
Trainy C. Jones.;	0.3	0.260		2.0	0.03	H ₂ PO ₄	0.5	0.14
	0.4	0.337				S. Arrhenius.†	1.0	0.27
1	0.5	0.410					1.5	0.38
кон	0.1	0.064	HIOs S. Arrhenius.†	0.5	0.09		2.0	0.49
Harry C. Jones.;		0.004	S. Amenius.	1.5	0.10		3.0	0.70
	0.3	0.189		2.0	0.35		3.5	0.80
ŀ	0.4	0.252		2.5	0.44		4.0	0.90
	0.5	0.312		3.0 3.5	0.52 0.61	Cane sugar.	0.5	0.030
i l	0.7	0.430		4.0	0.69	F. M. Raoult.	1.0	0.060
				4-5	0.78		2.0	0.118
NH4OH Harry C. Jones.†	0.05			5.0	0.86		3.0	0.176
Traily C. Jones.	0.15	0.050					4.0 5.0	0.234
i	0.20	0.113					10.0	0.587
	0.25	0.143	HCl	0.1	0.099		15.0	0.881
Na ₂ CO ₂	0.1	0.048	Harry C. Jones.‡	0.2	0.198 0.296		20.0 25.0	1.174
Harry C. Jones.‡	0.2	0.096	1	0.4	0.395		30.0	1.752
	0.3	0.143 0.188		0.5	0.493		35.0	2.048
	0.4		' I				40.0	2.333
	0.5	0.228				Glycerine.	1.0	0.22
	1.0	J.4./	HNO ₂	0.1	130.0	S. Arrhenius.†	2.0	0.42
K₂CO ₈	0.1	0.039	Harry C. Jones.‡	0.2	0.118		3.0	0.64
Harry C. Jones.‡		0.078		0.3	0.175		4.0	0.87
	0.3	0.1 16 0.1 52		0.4 0.5	0.232	•	5.0 6.0	I.II I.34
	0.5	0.187		0.6	0.338		8.0	1.83
	1.0	0.343		0.7	0.390		10.0	2.32
							12.0	2.83
<u> </u>		<u> </u>			l			l

SMITHSONIAN TABLES.

^{*} In "Zeits. für Physik. Chem." vol. 11, p. 529, 1883.
† Ibid. vol. 2, p. 491, 1888.
‡ Ibid. vol. 12, p. 623, 1893.
§ F. M. Raoult, C. R. 114, p. 268.
§ 50% solution solidifies at —31° C., according to Fabian, "Ding. Poly. Journ." vol. 155, p. 345. This gives an average of .3 per gramme.

TABLE 202.

VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gramme-molecules of the salt in a litre of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimetres barometric pressure.

Sube	tano	e.		0.5	1.0	2.0	3.0	40	8.0	6.0	\$.0	10.0
							<u> </u>					
Al ₂ (SO ₄) ₈ AlCl ₈ .				12.8	36.5		l	1				
	•	•	•	22.5 6.6	61.0	179.0	318.0	l		i	ļ	
Ba(SO ₈) ₂	•	•	•		154	34-4	ł	i		ĺ	1	1 .
Ba(OH) ₂	•	•	•	12.3	22.5	39.0			l	1	1	
Ba(NO ₈) ₂	•	•	•	13.5	27.0					1		[
Ba(C1Os)2				15.8	32.3	70.5	108.2]	1		1	i i
BaCl ₂ .				16.4	33-3 36.7 38.8	77.6	1]			1	1
BaBr ₂ .	•			16.8	38.8	91.4	1 50.0	204.7	j			1
Ca(SO ₈) ₂			•	9.9	23.0	56.0	106.0		l	ļ	1	1 1
Ca(NO ₈) ₂	•	•	•	16.4	34.8	74.6	139.3	161.7	205.4]	ļ	
CaCla.	_	_	.	17.0	39.8	05.3	166.6	241.5	319.5		Ì	
CaBr.				17.7	44.2	95.3 135.8	191.0	283.3	368.5		1	1 1
CdSO ₄	:	•		4.1	44.2 8.9	18.1	1,55	3.3	"	l		
CdI ₂				7.6	14.8		52.7	1	1	i	1	1
CdBr ₂ .		•		7.6 8.6	17.8	33·5 36·7	Š 5.7	80.0	I	1	1	j
C 10:				أر		_					1	
CdCl ₂ .	•	•	•	9.6	18.8	36.7	57.0	77-3	99.0	1		
Cd(NO ₈) ₂	•	•	. 1	15.9	36.1	78.0	122.2				l	1
Cd(ClO ₈) ₂ CoSO ₄	•	•	.]	17.5		20.0	4		[1	ĺ	
CoCla.	•	•		5.5 15.0	10.7	22.9 83.0	45.5 136.0	186.4		l	i	i i
Cocig.		•	١.	.3.0	34.8	03.0	130.0	100.4			1	1 1
Co(NO ₈) ₂		•	• 1	17.3 5.8 6.0	39.2	89.0	1 52.0	218.7	282.0	332.0	ł	
FeSO ₄	•	•	•	5.8	10.7	24.0	42.4				1	1 1
H ₈ BO ₈	•	•	•	6.0	12.3	25.1	3 8.0	51.0			١.	_
H ₂ PO ₄	•	•		6.6	14.0	28.6	45.2	62.0	81.5	103.0	146.9	189.5
H ₈ AsO ₄	•	•	.	7.3	15.0	30.2	46.4	64.9				!
H ₂ SO ₄			.	12.9	26.5	62.8	104.0	148.0	198.4	247.0	343.2]
KH ₂ PO ₄			.	10.2	19.5	33-3	47.8	60.5		85.2		l 1
KNO ₃ .			- 1	10.3	21.1	40.1	57.6 62.1	74·5 80.0	73.I 88.2	102.1	126.3	148.0
KC1O ₈	•	•	• \	10.6	21.6	42.8	62.1	80.0				1
KBrO ₈	•	•	• 1	10.9	22.4	45.0						ŀ
KHSO4			.	10.9	21.9	43.3	65.3	85.5	107.8	129.2	170.0	1
KNO ₂			·	11.1	22.8	43·3 44·8	67.0	90.0	110.5	130.7	167.0	198.8
KCIO4				11.5	22.3		•		, ,	,		
KCl .				12.2	24.4	48.8	74.1	100.9	128.5	1 52.2	1	
KHCO ₂	•	•	•	11.6	23.6	59.0	77.6	104.2	132.0	160.0	210.0	255.0
KI.			٠. ا	12.5	25.3	52.2	82.6	112.2	141.5	171.8	225.5	278.5
K ₂ C ₂ O ₄				13.9	28.3	59.8	94.2	131.0		-,	3-3	-, 5.5
K ₂ WO ₄				13.9	33.0	75.0	123.8	175.4	226.4			
K ₂ CO ₈	•		.	14.4	31.0	75.0 68.3	105.5	1 52.0	209.0	258.5	350.0	
кон.	•	•	.	15.0	29.5	64.ŏ	99.2	140.0	181.8	223.0	309.5	387.8
K ₂ CrO ₄			.	16.2	29.5	60.0						
LiNO ₈			- :	12.2	25.9	55.7	88.9	122.2	155.1	188.0	253.4	309.2
LiCl .		•		12.1			95.0	132.5	175.5	219.5	311.5	
LiBr .		•	.	12.2	25.5 26.2	57.1 60.0	97.0	140.0	175.5 186.3	241.5	341.5	393.5 438.0
Li ₂ SO ₄	•	•	.	13.3	28.1	56.8	89.0		,		5. 5	"
LiHSO4				12.8	27.0	£7 0		1200	168.o			
LiI	:	:		13.6	28.6	57.0 64.7	93.0 105.2	1 30.0 1 54.5	206.0	264.0	357.0	445-0
Li ₂ SiFl ₆			:	15.4	34.0	70.0	106.0	-34.3	200.0	204.0	33/.0	743~
LiOH.		•		15.9	37.4	78.1						
Li ₂ CrO ₄				16.4	32.6	74.0	120.0	171.0				
ļ												

^{*} Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

Smithsonian Tables.

TABLE 202. VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

Substance.	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
MgSO ₄	6.5 16.8 17.6 17.9 18.3	12.0 39.0 42.0 44.0 46.0	24-5 100-5 101.0 115.8 116.0	47·5 183·3 174·8 205·3	277.0 298.5	377-0			
MnSO ₄	6.0 15.0 10.5 10.9	10.5 34.0 20.0 22.1 22.5	21.0 76.0 36.5 47.3 46.2	122.3 51.7 75.0 68.1	167.0 66.8 100.2 90.3	209.0 82.0 126.1	96.5 148.5 131.7	126.7 189.7 167.8	157.1 231.4 198.8
NaClO ₈ (NaPO ₈) ₆	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
NaOH	11.8 11.6 12.1	22.8 24.4 23.5	48.2 50.0 43.0	77.3 75.0 60.0	107.5 98.2 78.7	139.1 122.5 99.8	172.5 146.5 122.1	243.3 189.0	314.0 226.2
NaHCO ₂	12.9 12.6 12.3	24.1 25.0 25.2	48.2 48.9 52.1	77.6 74.2 80.0	102.2	127.8	152.0	198.0	239.4
NaBrOs NaBr	12.1	25.0 25.9	54.I 57.0	81.3 89.2	108.8	136.0	197.5	268.o	
NaI	12.1 13.2 14.3	25.6 22.0 27.3	60.2 53.5 65.8	99·5 80·2	136.7	177.5	221.0	301.5	370.0
Na ₂ C ₂ O ₄	14.5	30.0 33.6	71.6	105.8	146.0 1 62. 6				
NasPO4	16.5 17.1 12.8 11.5	30.0 36.5 22.0 25.0	52.5 42.1 44.5	62.7	82.9	103.8	121.0	152.2	180.0
NH₄Ći	12.0	23.7	45.1	69.3	94.2	118.5	1 38.2	179.0	213.8
NH ₄ HSO ₄	11.5 11.0 11.9	22.0 24.0 23.9	46.8 46.5 48.8	71.0 69.5 74.1	94.5 93.0 99.4	118. 117.0 121.5	139.0 141.8 145.5	181.2	218.0
NH ₄ I	5.0	25.1 10.2	49.8	78.5	104.5	132.3	1 56.0	200.0	243.5
NiCl ₂	16.1 16.1 12.3	37.0 37.3 23.5	86.7 91.3 45.0	147.0 156.2 63.0	212.8				
$Sr(NO_8)_2$	7.2 15.8	31.0	47.0 64.0	97.4	131.4				
SrCl ₂	16.8 17.8 4.9	38.8 42.0 10.4	91.4 101.1 21.5	1 56.8 179.0 42.1	223.3 267.0 66.2	281.5			
ZnCl ₂ Zn(NO ₈) ₂	9.2 16.6	18.7 39.0	46.2 93.5	75.0 157.5	107.0 223.8	153.0	195.0		

SMITHSONIAN TABLES.

TABLE 203.

RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.

This table gives the number of grammes of the salt which, when dissolved in 100 grammes of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimetres.

Salt.	1 ° C.	2°	30	4 °	5 ^	7 °	10°	15°	20°	25 °
PaCI LAW O			45.0	60 -	122.6 0			of 40mm		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.0	31.1	47·3 16·5	63.5	25.0		.5 rise	of temp	69.0	84.5
$Ca(NO_8)_2 + 2H_2O$	12.0	25.5	39.5	53.5	68.5	98.7	152.5	55·5 240.0	331.5	443.5
кон	4-7	9.3	13.6	17.4	20.5	26.4		47.0	57.5	67.3
KC ₂ H ₈ O ₂	6.0	12.0	18.0	24.5	31.ŏ	44.0	34-5 63.5	98.0	134.0	171.5
KCl		16.7			36.2	.0.	/	ا محدد	mina af S	× ~/
K ₂ CO ₃	9.2 11.5	22.5	23.4 32.0	29.9 40.0	47.5	48.4 60.5	78.5	103.5	rise of 8	152.5
KCIO ₈	13.2	27.8	44.6	62.2	77.5	۵۰.5	70.3	-03.3	/-3	-3-3
KI	15.0	30.0	45.0	60 .0	74.0	99.5	134.	185.0	(220 giv	es 18°.5)
KNO ₈	15.2	31.0	47.5	64.5	82.0	120.5	134. 188.5	338.5]
K ₂ C ₄ H ₄ O ₆ + \(\frac{1}{4}\text{H}_2\text{O}\).	18.0	36.0	54.0	72.0	90.0	126.5	182.0	284.0		
KNaC4H4O6	17.3	34.5	51.3	68.1	84.8		171.0	272.5	390.0	510.0
KN2C4H4O6 + 4H2O	25.0	53.5	84.0	118.0	157.0	266.0	554.0	5510.0	390.0	3.5.5
LiCl		7.0	10.0	12.5	ī 5.0	18.5	26.0	35.0	42.5	50.0
$LiCl + 2H_2O$	3·5 6.5	13.0	19.5	26.0	32.0	44.0	62.0	92.0	123.0	160.5
$MgCl_2 + 6H_2O$	11.0	22.0	33.0	44.0	5 5.0	77.0	110.0	170.0	241.0	334-5
MgSO ₄ + 7H ₂ O	41.5	87.5	138.0	196.0	262.0	//.0	110.0	-,0.0	-41.0	334.3
NaOH	4.3	8.6	11.3	14.3	17.0	22.4	30.0	41.0	51.0	60.1
NaCl	6.6	12.4	17.2	21.5	25.5	33.5 68.0	(40.7 §		.8 rise)	
NaNO ₈	9.0	18.5	28.0	38.0	48.0	68.o	99.5	1 56.0	222.0	
$NaC_2H_8O_2 + 3H_2O.$	14.9	30.0	46.1	62.5	79.7	118.1	194.0	484.0	6250.0	
Na ₂ S ₂ O ₈	14.0	27.0	39.0	49.5	50.0	76.0	104.0	147.0	214.5	302.0
Na ₂ HPO ₄	17.2	34-4	51.4	68.4	85.3	_				
$Na_{2}C_{4}H_{4}O_{6} + 2H_{2}O$.	21.4	44-4	68.2	93.9	121.3	183.0			°.4 rise)	
$Na_2S_2O_8 + 5H_2O .$	23.8	50.0	78.6	108.1	139.3	216.0	400.0	1765.0		
$Na_2CO_8 + 10H_2O$.	34.1	86.7	177.6	369.4	1052.9		ļ			
$Na_2B_4O_7 + 10H_2O$.	39.	93.2	254.2	898.5	(5555.5			e)		
NH ₄ Cl	6.5	12.8	19.0	24.7	29.7	39.6	56.2	88.5		
NH ₄ NO ₈ · · ·	10.0	20.0	30.0	41.0	52.0	74.0		172.0		337.0
NH ₄ SO ₄	15.4	30.1	44.2	58.0	71.8	99.1	(115.3	gives	100.2)	
$SrCl_2 + 6H_2O$	20.0	40.0	60.0	81.0	103.0	1 50.0	234.0	524.0		
$Sr(NO_3)_2$	24.0	45.0	63.6	81.4	97.6	- 1	- 1			
C ₄ H ₆ O ₆	17.0	34-4		70.0	87.0		177.0	273.0	374.0	484.0
$C_2H_2O_4 + 2H_2O$.	19.0	40.0 58.0	62.0	86.0 116.0	112.0	169.0 208.0	262.0	536.0	1316.0	50000.0
$C_6H_8O_7 + H_2O \qquad .$	29.0	50.0	87.0	110.0	145.0	200.0	320.0	553.0	952.0	
	<u>. T .</u>	<u> </u>			T		1			2 2426
Salt. 40°	´ •	0°	80 °	100°	120°	140°	160°	180	200	° 240°
CaCl			21.4.5							
CaCl ₂ 137. KOH 92.	٠,	22.0	314.0	185.0	219.8	263.1	212	. 27.	ممد اه	.4 623.0
KOH 92. NaOH 93.		50.8	152.6	345.0		800.0	312.			
NH ₄ NO ₈ 682.		70.0			8547.0		1-333.	- -333		~
C4H6()6 980	, ,		(infinit					1		
1	-	1			1	1		-	1	

^{*} Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

CONDUCTIVITY FOR HEAT.

Metals and Alloys.

The coefficient k is the quantity of heat in therms which is transmitted per second through a plate one centimetre thick per square centimetre of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_0 = k_0$ (t + at). In the table k_0 is the value of k_0 for c0 C., t the temperature Centigrade, and a a constant.

Substance.	8	k,	a	Authority.	Substance.	t	k;	Authority.
Aluminium	0 100 0 100	0.3435 .3619 .3619 .0442 .0396 .0177 .0164 .2041 .2540 .2450 .2450 .2045 .1665 .1665 .1665 .1567 .0836 .0704 .0148 .0148 .0148 .0148 .0148 .0152 .1110 .3760 .0520 .1110 .3760 .0520 .1123 .0319 .3030 .3030	.0005356 001041 000735 .002445 .001492 000051 .002670 000228	1 1 1 1 2 1 1 1 3 1 4 2 1 5 5 4 1 1 4 2 2	Clay slate, (Devonshire) Granite	- - -	.00272 .00550 .00550 .00550 .00550 .00315 .00360 .00441 .00093 .00545 .00505 .00441 .00031 .00051 .00051 .00051 .00051 .00051 .00051 .00050 .00050	6 6 6 6 6 6 6 6 7688889981066 8 8
	. Forbe		Author 5 Kohlra 6 H. L. &	usch.	Wax (bees)		R. Web Stefan.	8

^{*} A repetition of Forbes's experiments by Mitchell, under the direction of Tait, shows the conductivity to increase with rise of temperature. (Trans. R. S. E. vol. 33, 1887.)

BMITHSONIAN TABLES.

[†] Herschel, Lebour, and Dunn (British Association Committee).

CONDUCTIVITY FOR HEAT.

TABLE 205. - Various Substances.

Au-thor- \mathbf{k}_{l} Substance. ŧ ity. .000405 0 1 .000162 0 I .000717 0 I Cotton wool . . . Cotton pressed . . 0 :000043 I 1 2 .000033 Chalk Ebonite000370 2 49 I .000035 0 I .0005 } 3 I .000042 I .00223 I Ice 4 Caen stone (build-.00433 2 ing limestone) . § Calcareous sand-.00211 2 stone (freestone) AUTHORITIES. 3 Various. 1 G. Forbes.

2 H., L., & D.* 4 Neumann.

TABLE 206. - Water and Salt Solutions.

Substan	ice.	Density.	£	kı	Au- thor- ity.
Water "" "" "" "" ""		-	- 0 9-15 4 30 18	.002 .00120 .00136 .00129 .00157	1 2 2 3 4 5
Solution					
CuSO ₄ KCl . NaCl . H ₂ SO ₄ " ZnSO ₄		1.160 1.026 33½% 1.054 1.100 1.180 1.134 1.136	4.4 13 10-18 20.5 20.5 21 4.5 4-5	.00118 .00116 .00267 .00126 .00128 .00130 .00118	2 46 5552 2

AUTHORITIES.

1 Bottomley.2 H. F. Weber.3 Wachsmuth.

4 Graetz.

5 Chree. 6 Winkelmann.

TABLE 207. — Organio Liquida.

Substance.	ŧ	k t × 1000	a	Authority.
Acetic acid Alcohols : amyl .	9-15 9-15	.472 .328	- -	I
ethyl . methyl	9-15	.423 .495	_ '	I
Carbon disulphide	9-15	-343	-	i
Chloroform	9-15 9-15	.288	-	I
Glycerine Oils: olive	9-15	.637	0.12	2
castor	_	·395	_	3
petroleum .	13	-355	.011	2
turpentine.	13	·325	.0067	2

AUTHORITIES.

1 H. F. Weber. 2 Graetz. 3 Wachsmuth.

TABLE 208. - Gases.

Substance.	ŧ	k t × 1000	a	Authority.
Air	0 0 0	.568 .458 .499 .307	.00190 .00548 —	I I I
Ethylene Hydrogen Methane	0 0 7 - 8	·395 ·3 ² 7 ·647	.00445	1
Nitrogen Nitrous oxide Oxygen	7-8 7-8 7-8	.524 .350 .563	.00446 _	I
Aur	ruopi	TV		<u>'</u>

AUTHORITY.

1 Winkelmann.

^{*} Herschel, Lebour, and Dunn (British Association Committee).

FREEZING MIXTURES.*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, B the temperature of the mixture, F the lowering of temperature, G the temperature when all snow is melted, when snow is used, and H the amount of heat absorbed in heat units (therms when A is grammes). Temperatures are in Centigrade degrees.

Substance.	A	В	С	D	E	F	G	Н
NaC ₂ H ₈ O ₂ (cryst.)	85	H ₂ O-100	_	10.7	- 4.7	15.4		
NH ₄ Cl.	30	1190-100	_	13.3	- 4·/ - 5·1	18.4		
NaNOs.	75	"	_	13.2		18.5	_	_
Na ₂ S ₂ O ₈ (cryst.) .	110	" "	_	10.7	— 5.3 — 8.0	18.7	-	_
I KI	140	44 44	-	8.01	- 11.7	22.5	-	-
CaCl ₂ (cryst.)	250	4 4	-	10.8	- 12.4	23.2	-	-
NH ₄ NO ₈	60	" "		13.6	— 13.6	27.2	-	-
(NH ₄) ₂ SO ₄	25	# 50	NH4NOs-25	_	-	26.0	_	-
NH ₄ Cl	25			-		22.0	_	
KNO.	25 25		NH4Cl-25	_	_	20.0	_	
Na ₂ SO ₄	25	64 64	1111101 23	l _	-	19.0	_	-
NaNOs.	25	" "	66 .6	_	_	17.0	-	-
K ₂ SO ₄	10	Snow 100	-	— т	- 1.9	0.9	_	
Na ₂ CO ₃ (cryst.) .	20	4 4	-	— I	— 2.0	1.0	-	-
$\{ KNO_8 $	13	14 14	-	-1	2.85	1.85	-	-
CaCl ₂	30		_	-1	— 10.9	9.9	-	-
NH ₄ Cl NH ₄ NO ₈	25	" "		— I	- 15.4 16.75	14.4	<u>-</u>	-
NaNO ₈	45		_	— i	— 16.75 — 17.75	15.75	_	_
NaCl .	50 33	44 44	_	-i	- 21.3	20.3		_
1	33	" 1.097	-	— ī	- 37.0	36.0	- 37.0	0.0
! !	1	" 1.26	_	ī	— 36.0	35.0	- 30.2	17.0
H ₂ SO ₄ + H ₂ O	1	" 1.38	_	— I	— 35.0	34.0	— 25.0	27.0
(66.1 % H ₂ SO ₄)	I	" 2.52	-	— I	— 30.0	29.0	- 12.4	133.0
(00.1 /6 112502)	I	" 4.32 " 7.02	-	— I	— 25.0	24.0	 7.0	273.0
1 i	I	7.92	-	— I	- 20.0	19.0	3.1	553.0
! !	I	13.00	-	<u> </u>	<u> — 16.0 </u>	15.0	2.I	967.0
11	1	" o.35	_	0		_	0.0 19.7	52.1
!	ī	" .49 " .61	_	0	_	_	— 39.0	49·5 40·3
	i	4 .70	_	ő	_	_	- 54.9t	30.0
$CaCl_2 + 6H_2O$	ī	" .Šī	_	o		_	- 40.3	46.8
11	1	" 1.23	_	0	-	_	- 21.5	88.5
!	. 1	" 2.46	. –	0	-	-	— 9.ŏ	192.3
<u> </u>	I	" 4.92 " 72	-	0	-	-	-4.0	392.3
Alcohol at 4° {	77	1 /3	-	0	30.0	_	-	-
Chloroform	_	CO ₂ solid		_	— 72.0 — 77.0	_		_
Ether	_	" "		_	— 77.0 — 77.0	_		_
Liquid SO ₂	_	66 16	_	-	- 82.0	_	_	_
[]	1	H ₂ O75	_	20	5.0	_	_	33.0
	I	" .94	_	20	-40	-	_	21.0
	I	4 4	-	10	- 4.0	-	-	34.0
	1		-	5	- 4.0	-	-	40.5
	I	Snow "	-	0	- 4.0	-	-	122.2
NH ₄ NO ₈ .	I	H ₂ O-1.20	-	10	— 14.0	-	-	17.9
	I I	Snow " H ₂ O-1.31		0	— 14.0 — 17.5t		- 1	129.5
	1	Snow "	_	10	- 17.5† - 17.5†	_	-	10.6
	i	H ₂ O-3.61	_	10	- 8.0	_	_	131.9
	I	Snow "	~	0	- 8.0	-	_	327.0
`			ļ	- 1		- 1		ĭ / ˈ
<u> </u>					!			

^{*} Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.
† Lowest temperature obtained.

TABLE 210.

CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES . OF CASES.*

∅ = Critical temperature.

P = Pressure in atmospheres.

 ϕ = Volume referred to air at 0° and 76 centimetres pressure.

d = Density in grammes per cubic centimetre.

Substance.	0	P		d	Observer.
Substance.			ф	a	Observer.
					01 11
Air.	-140.0	30.0	_	-	Olszewski.
Alcohol (C ₂ H ₆ O)	243.6	62.76	0.00713	0.288	Ramsay and Young.
	² 33.7	-	-	-	Jouk (lowest value recorded).
" (CH ₄ O)	239.95	78.5	-	-	Ramsay and Young.
Ammonia	130.0	115.0	-	-	Dewar.
Argon	-121.0	50.6	-	1.5	Olszewski.
Benzene	288.5	47.9	0.00981	0.355	Young.
Carbon dioxide	30.92	77	0.0066	_	Andrews.
" monoxide	-141.1	35.9	_	-	Wroblewski.
" disulphide	277.7	78.I		_	Dewar.
Chloroform	260.0	54.9	-	-	Sajotschewski.
					_ '
Chlorine	141.0	83.9	-		Dewar.
	148.0	_	-	-	Ladenburg.
Ether	19.7	35.77	0.01 584	0.208	Battelli.
	194.4	35.61	0.01 344	0.246	Ramsay and Young.
Ethylene	9.2	58.0		_	Van der Waals.
"	13.0	-	0.00569	0.21	Cailletet.
Hydrogen	-220.0	20.0	_	_	Olszewski.
" chloride	51.25	86.0	_	_	Ansdell.
4 4	, ,	86.0	_	0.61	Dewar.
" sulphide	52.3 100.0	88.7	_	0.01	Olszewski.
11 3.5 .3	-81.8	54.9			OISZEWSKI.
Methane					Dewar.
	99.5	50.0	_	_	Dewai.
Nitric oxide (NO)	-93.5	71.2	-	-	Olszewski.
Nitrogen	-146.0	35.0	_	0.44	"
"	-146.0	33.0	_	_	Wroblewski.
" monoxide (N2O) .	354.0	75.0	-	-	Dewar.
Oxygen	-118.0	50.0	_	0.6044	Wroblewski.
Sulphur dioxide	155.4	78.9	-	-	Sajotschewski.
Surpriter dioxide	157.0	/5.9	l _		Clark.
Water		l <u> </u>	0.001874	0.429	Nadejdine.
water	358.1	105 5	0.00.0/4	3.429	Dewar.
	370.0	195.5	_		~~
•	<u> </u>	<u> </u>	<u> </u>	L	ļ <u> </u>

^{*} Abridged for the most part from Landolt and Boernstein's "Phys. Chem. Tab."

Note. — Guldberg shows (Zeit. für Phys. Chem. vol. 5, p. 375) that for a large number of organic substances the ratio of the absolute boiling to the absolute critical temperature, although not constant, lies between 0.58 and 0.7, the majority being between 0.58 and 0.7. Methane, ethane, and ammonia gave approximately 0.58. H₂S gave 0.566, and CS₂, N₂O, and O gave about 0.59.

SMITHSONIAN TABLES.

HEAT OF COMBUSTION.

Heat of combustion of some common organic compounds. Products of combustion, CO₂ or SO₂ and water, which is assumed to be in a state of vapor.

Substance.	Therms per gramme of substance.	Authority.
Acetylene	11923	Thomsen.
Alcohols: Amyl	8958	Favre and Silbermann.
Ethyl	7183	
Methyl	5307	66 66 66
Benzene	9977	Stohmann, Kleber, and Langbein.
Coals: Bituminous	7400-8500	Various.
Anthracite	7800	Average of various.
Lignite	6900	e
Coke	7000	4 4 16
Carbon disulphide	3244	Berthelot.
Dynamite, 75%	1290	Roux and Sarran.
Gas: Coal gas	5800-11000	Mahler.
Illuminating	5200-5500	Various.
Methane	13063	Favre and Silbermann.
Naphthalene	9618-9793	Various.
Gunpowder	720-750	u
Oils: Lard	9200-9400	u
Olive	9328-9442	Stohmann.
Petroleum, Am. crude .	11094	Mahler.
" " refined .	11045	u
" Russian	10800	44
Woods: Beech with 12.9% H2O	4168	Gottlieb.
Birch " 11.83 "	4207	u
Oak " 13.3 "	3990	44
Pine " 12.17 "	4422	46

TABLE 212.

HEAT OF

Heat of combination of elements and compounds expressed in units, such that when unit mass of the substance is units, which will be raised in temperature

Substance.	Combined with oxygen forms —	Heat units.	Combined with chlorine forms —	Heat units.	Combined with sulphur forms—	Heat units.	Author- ity.
Calcium	CaO	3284	CaCl ₂	4255	CaS	2300	1
Carbon — Diamond .	CO ₂	7859	-	-	-	_	2
	CO	2141	-	-	-	-	3
" — Graphite .	CO ₂	7796	-	-	-	-	3 1
Chlorine	Cl ₂ O	- 254		-	-	-	I
Copper		321	CuCl	520			I
	CuO	585	CuCl _s	819	CuS	158	I
	*	593	TTC	_	77.0	_	4
Hydrogen*	H ₂ O	34154	HCl	22000	H ₂ S	2250	3
"			_	_	_	-	5
Iron	FeO	34417	FeCl.	1464	FeSH ₂ O	428	
4	1.60	1353	FeCla	1714	1631190	420	3
Iodine	I ₂ O ₅	177	recig	1/14	_	_	3
Lead	PbO	243	PbCl ₂	400	PbS	98	i
Magnesium	MgO	6077	MgCl ₂	6291	MgS	3191	i
Manganese	MnOH ₂ O	1721	MnCl	2042	MnSH ₂ O ₂	841	lil
Mercury	H- 0	105	HgCl	206	-	_	ī
"	HgO	153	HgCl ₂	310	HgS	84	Ī
Nitrogen*	N ₂ O	-654	_	3	-	_	I
	NO	-154i		-	-	_	1
"	NO ₂	- ĭ43	_	-	_	-	1
Phosphorus (red)	P ₂ O ₅	5272	- 1	-		_	x
" (yellow) .	**	5747	-	- 1	- 1	-	7
	"	5964	-	-	-	-	I
Potassium	K ₂ O	1745	KCl	2705	K₂S	1312	8
Silver	Ag ₂ O	27	AgCl	271	Ag ₂ S	24	I I
Sodium	Na ₂ O	3293	NaCl	4243	Na₂S	1900	8
Sulphur	SO ₂	2241	- 1	-	-	-	I
" · · · · ·	1 "	2165	-	_	-	-	2
Tin	SnO	573	SnCl ₂	690	-	_	4
	7-0		SnCl ₄	1089	-	-	7
Zinc	ZnO	1185	7-01	_	-	-	4
		1314	ZnCl ₂	1495	-	_	I
S. L.	Combined	Heat	Combined	Heat	Combined	Heat	Author- ity.
Substance.	with S+O.	units.	with N + Oa to form -	units.	with C+O ₃ to form—	units.	3.5
Calaina	C-00		C OYO		C-C0	-	
Calcium		7997 2887	Ca(NO ₈) ₂	5080	CaCO ₈	6730	I
Copper	CuSO ₄		Cu(NO ₈) ₂	1304	-	_	I
Hydrogen	H ₂ SO ₄	96450	HNO ₈	41 500	_	_	I
Iron	FeSO ₄ PbSO ₄	4208	Fe(NO ₈) ₂	2134	PbCO ₈	814	I
Magnesium	MgSO ₄	1047	Pb(NO ₈) ₂	512	FBCO8	014	I
Mercury	_ mg304	12596	-		_	_	I
Potassium	K ₂ SO ₄	4416	KNO ₂	3061	K ₂ CO ₈	3583	ī
Silver	Ag ₂ SO ₄	776	AgNO ₈	266	Ag ₂ CO ₈	561	i
Sodium	Na ₂ SO ₄	7119	NaNO _a	4834	Na ₂ CO ₃	5841	1
Zinc	ZnSO ₄	3538		4034	-	5041	i
		3335]	_			•
		· · · · · · · · · · · · · · · · · · ·	TIPO				<u>'</u>
		UTHORI					
I Thomsen 2 Faure	and Silberm	ann r	Носе		*	Andrew	. !

¹ Thomsen. 3 Favre: 2 Berthelot. 4 Joule.

 ³ Favre and Silbermann.
 4 Joule.
 5 Hess.
 6 Average of seven different.

⁷ Andrews. 8 Woods.

[•] Combustion at constant pressure.

COMBINATION.

caused to combine with daygen or the negative radical, the numbers indicate the amount of water, in the same from o^0 to 1^0 C. by the addition of that heat.

		In dilute solutions.								
Substance.	Forms —	Héat units.	Forms	Heat units.	Forms —	Heat units.	Author ity.			
Calcium	CaOH ₂ O	3734	CaCl ₂ H ₂ O	4690	CaS + H ₂ O	2457 —	1 2			
u u	-	-	-	-	-	-	3			
" — Graphite . Chlorine	_	_	_	-	_	-	3			
Copper	_	_	_	_	_	=	i			
u u	_	_	_	_	-	_	ī			
"	-	-	-	-	-	-	4			
Hydrogen	-	-	-	-	-	-	3			
	-	_	-	-	-	-	5			
Iron .	FeO + H ₂ O	1220#	FeCl ₂ + H ₂ O	1785			3			
4		-	FeCla	2280	_	_	3			
Iodine	-	_		-	-	-	I			
Lead	N-0.11		PbCl ₂	368	- Nr. C	-	1			
Magnesium Manganese	MgO ₂ H ₂	9050†	MgCl ₂ MnCl ₂	7779	MgS	4784	I			
Mercury	_	_	Milela	2327	_		i			
	_	-	HgCl ₂	299	_	_	i			
Nitrogen	-	-	~	-	-	-	1			
"	-	-	-	-	-	-	I			
Phosphorus (red)	_	_	-	_		=	I			
" (yellow).	_	_	_	_	_	_	,			
" "	-	-	_	-	_	-	i i			
Potassium Silver	K ₂ O	2110*	K Ci	2592	K ₂ S	1451	8			
Sodium	Na ₂ O	3375	NaCl	4190	Na ₂ S	2260	8			
Sulphur	_	33/3	-	4.90	-	-	ī			
, h	-	-		-	-	-	2			
Tin	-	-	SnCl ₂ SnCl ₄	691	-	-	7			
Zinc	_	_	- SilCit	1344		-	7 4			
"	-	-	ZnCl ₂	1735	-	-	ĭ			
		•	In dilute solutio	ns.		l	ź			
Substance.		Heat	_	Heat	_	Heat	Authority.			
	Forms —	units.	Forms -	units.	Forms —	units.	Ā.E			
Calcium	_	-	Ca(NOs)2	5175		_				
Copper	CuSO ₄	3150	Cu(NO ₈) ₂	1310	_	-	ī			
Hydrogen	H ₂ SO ₄	105300	HNO.	24550	-	-	1			
Iron	FeSO ₄	4210	$Fe(NO_8)_8$	2134	-	-	I			
Lead	MgSO ₄	13420	Pb(NO ₈) ₂ Mg(NO ₈) ₂	475 8595		-	I			
Mercury	-	-	Hg(NOs)2	335	_	_	i			
Potassium	K ₂ SO ₄	4324	KNO ₈	335 2860	-	-	1			
Silver	Ag ₂ SO ₄	753	AgNO ₈	216	No.CO	-	I			
Sodium Zinc	Na ₂ SO ₄ ZnSO ₄	7160 3820	NaNO ₈ Zn(NO ₈) ₂	4620 2035	Na ₂ CO ₈	5995	1			
	Favre and Silb		orities. 5 Hess. 6 Average of	seven d	7 A	Indrew Voods	8.			

^{*} Thomsen.

[†] Total heat from elements.

TABLE 213.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in calories per kilogramme or in therms per gramme by H; the total heat from o° C. in the same units by H'. The pressure is that due to the vapor at the temperature T.

Substance.	Formula.	Т	Н	H'	Authority.
Acetic acid	C ₂ H ₄ O ₂	118º	84.9	_	Ogier.
Alcohol: Amyl	C ₅ H ₁₂ O	131	120	-	Schall.
Ethyl	C ₂ H ₆ O	- 78.1	209	-	Favre and Silbermann. Wirtz.
	"	/0.1	205 236	255 236	Regnault.
ll " : : :	"	50	-30_	264	" "
" : : :	- "	100		267	46
" : : :	"	150	-	285	"
Methyl	сн40	64.5	2.67 289	307 289	Wirtz. Ramsay and Young.
4	64	50		274	" " " "
il " : : :	u	100	l -	246	
"	"	150	-	206	
" : : :	4	200	_	152	" " "
ll " : : :	44	238.5		44.2	
.				44	
Ammonia	NH:	7.8	294.2	-	Regnault.
	1	11	291.3	-	
	"	16	297.4	-	44
"	"	17	296.5	-	ee
Benzene	C ₆ H ₆	80.1	92.9	127.9	Wirtz.
Bromine	Ba	88	45.6	-	Andrews.
Carbon dioxide, solid	CO ₂	-	-	138.7	Favre.
liquid		—25	72.23 57.48	-	Cailletet and Mathias.
	, u	0	57-40	_	
" " "	- u	12.35	44.97 31.8	-	Mathias.
		22.04	31.0	-	
	"	29.85	14.4	-	
	"	30.82	3.72	_	•
" disulphide	CS ₂	46.1	83.8	94.8	Wirtz.
	".	0	90	90	Regnault.
		100	-	100.5	1
		140	_	102.4	"
Chloroform	CHCI8	60.9	58.5	78.8	Wirtz.
Ether	C ₄ H ₁₀ O	34.5	88.4	107	44
	4	34.9	90.5	-	Andrews.
"	"	Ö	94	94	Regnault.
",	"	50	-	115.1	- "
"	"	120	-	140	u
Iodine	1	-	2.95	-	Favre and Silbermann.
Sulphur dioxide	SO ₂	0	91.2	-	Cailletet and Mathias.
	44	30 65	80.5	-	4 4 4
"	"	65	68.4	-	66 16 64
Turpentine	C ₁₀ H ₁₀	159-3	74.04	-	Brix.
Water	H ₂ O	100	535-9	637	Andrews. Regnault.

LATENT HEAT OF VAPORIZATION.

Substance, formula, and temperature.	/= total heat from fluid at 0° to vapor at 1°. r = latent heat at 1°.	Authority.
Acetone, C ₈ H ₆ O, — 3° to 147°.	$l = 140.5 + 0.36644 l - 0.000516 l^2$ $l = 139.9 + 0.23356 l + 0.00055358 l^2$ $r = 139.9 - 0.27287 l + 0.0001571 l^2$	Regnault. Winkelmann.
Benzene, C ₆ H ₆ , 7° to 215°.	l = 109.0 + 0.24429 l - 0.0001315 l ²	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°.	r ² == 118.485 (31 t) 0.4707 (31 t ²)	Cailletet and Mathias.
Carbon disulphide, CS ₂ , — 6° to 143°.	$l = 90.0 + 0.14601 t - 0.000412 t^{2}$ $l = 89.5 + 0.16993 t - 0.0010161 t^{2} + 0.00003424 t^{2}$ $r = 89.5 - 0.06530 t - 0.0010976 t^{2} + 0.00003424 t^{2}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$l = 52.0 + 0.14625 t - 0.000172 t^{2}$ $l = 51.9 + 0.17867 t - 0.0009599 t^{2} + 0.00003733 t^{8}$ $r = 51.9 - 0.01931 t - 0.0010505 t^{8} + 0.00003733 t^{8}$	Regnault. Winkelmann.
Chloroform, CHCl ₈ , — 5° to 159°.	$l = 67.0 + 0.1375 t$ $l = 67.0 + 0.14716 t - 0.0000437 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann.
Nitrous oxide, N2O, . — 20° to 36°.	r ² = 131.75 (36.4 - t) - 0.928 (36.4 - t) ²	Cailletet and Mathias.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.

^{*} Quoted from Landolt and Boernstein's "Phys. Chem. Tab." p. 350.

TABLE 214.

LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances. It has been compiled principally from:
Landolt and Boernstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

Substance.	с	r	Н	Authority.
Alloys: 30.5Pb + 69.5Sn	PbSn ₄	183	17	Spring.
36.9Pb + 61.3Sn	PbSns	179	15.5	""B"
63.7Pb + 36.3Sn	PbSn	177.5	11.6	44
77.8Pb + 22.2Sn	Pb ₂ Sn	176.5		44
Britannia metal, 9Sn + 1Pb	1 03011	236	9.54 28.0*	Ledebur.
Rose's alloy,	_	230	28.0	Ledebui.
24Pb + 27.3Sn + 48.7Bi	_	98.8	6.85	Mazzotto.
$(25.81^{\circ}b + 14.75n)$		-	1	**
Wood's alloy $\begin{cases} 25.81'b + 14.7Sn \\ +52.4Bi + 7Cd \end{cases}$	-	75.5	8.40	
Bromine	Br	— 7.32	16.2	Regnault.
Bismuth	Bi	266.8	12.64	Person.
Benzene	C ₆ H ₆	5.3	30.85	Fischer.
Cadmium	Cd	320.7	ĭ 3.66	Person.
Calcium chloride	$CaCl_2 + 6H_2O$	28.5	40.7	1
Iron, Gray cast	-	-	23	Gruner.
White "	-	-	33	
Slag	Ī	- '	50	
Iodine		_	11.71	Favre and Silbermann.
1ce	H ₂ O	0	79.24	Regnault.
" · · · · · ·	(17.0 0.000)	0	80.02	Bunsen.
" (from sea-water)	{ H ₂ O + 3.535 } of solids	-8.7	54.0	Petterson.
Lead	Pb	325	5 86	Rudberg.
Mercury	Hg	-	2.82	Person.
Naphthalene	C ₁₀ H ₈	79.87	35.62	Pickering.
Palladium	Pd	(1500)?	36.3	Violle.
Phosphorus	P	40.05	4.97	Petterson.
Potassium nitrate	KNO ₈	333-5	48.9	Person.
Phenol	C ₆ H ₆ O	25.37	24.93	Petterson.
Paraffin	- -	52.40	35.10	Batelli.
Silver	Ag	999	21.07	Person.
Sodium nitrate	NaNO ₈	305.8	64.87	· "
Sodium phosphate	$ \left\{ \begin{array}{l} \text{Na}_2\text{HPO}_4\\ +\text{12H}_2\text{O} \end{array} \right\} $	36.1	66.8	"
Spermaceti	=	43.9	36.98	Batelli.
Sulphur	S	115	9-37	Person.
Wax (bees)		61.8	42.3	"
Zinc	Zn	41 5.3	28.13	· ·

^{*} Total heat from o° C.

TABLE 216.

MELTING-POINT OF CHEMICAL ELEMENTS.

The melting-points of the chemical elements are in many cases somewhat uncertain, owing to the very different results obtained by different observers. This table gives the extreme values recorded except in a few cases where one observation differed so much from all others as to make its accuracy extremely improbable. The column headed "Mean" gives a probable average value.

			,						
Substance.	Ra	nge.	Mean.	Observer.	Substance.	Ra	nge.	Mean.	Observer.
Substance.	Min.	Max.		o P	Substance.	Min.	Max.	Mean.	0
4	C.°	C.°	C.°			C.º	C.º	C.º	
Aluminium	600.	850.	625.		Lithium	-	_	180.	13
Antimony	425.	450.	435		Magnesium	750.	800.	775-	13
Arsenic		Sb and		I	Manganese		- 1	1900.	14
Barium			ast iron	_	Mercury	<u></u> 35.50	39:44	-39.04	
Beryllium		that of		3	Molybdenum .		e white		15
Bismuth		269.2			Nickel	1450.	1600.	1500.	
Boron, amorph.	1	in elec		4	Osmium	-	-	2500.	16
Bromine	— 7.2	一7.3	—7·27		Nitrogen	203.	-214.	—208 .	
Cadmium	315.	321.	318.	i	Palladium	1350.	1950.	1600.	
Cæsium	-	-	26.5	5	Phosphorus .	44.2	44-4	44.25	ĺ
Chlorine, liquid			—102 .	- 1	Platinum	1775.	2200.	1900.	
	above th			7	Potassium	55.	63.	60.	_
Cobalt	1500.	1800.	1650.	1 1	Rhodium	-	-	2000.	16
Copper	1050.	1330.	1100.	_	Rubidium	-	-	38.5	
Gallium	-	-	30.15	8	Ruthenium	-	-	1800.	l
Germanium .	-	-	900.	9	Silenium	1	'	217.	17
Gold	1035.	1250.	1080.		Silicon		st iron a		7
Indium	-	-	176.	10	Silver	916.	1040.	950.	
Iodine	107.	115.	II2.	1 (Sodium		-97.6		_
Iridium	1950.	1 500.	2225.		Strontium		red heat	1	18
Iron (pure)	1 500.	1800.	1635.		Sulphur	III.	I 20.	115.1	
" (white pig)	1050.	1100.	1075.		Tellurium	452.	525.	470.	
" (gray pig)	1100.	2275.	I 200.		Thallium	288.	290.	289.	
Steel	1300.	1400.	1360.	1	Tin			230.	1
" (cast)	-	_	I 37 5.	11		beve that	t of mar	ganese	19
Lanthanum	betwee	en Sb a	nd Ag	12	Zinc	400.	433.	415.	
Lead	322.	335.	326.			1			
1 Mallet. 2 Frey. 8 Debray. 4 Despretz. 5 Setterberg, 188	7 De 8 Le b	szewski, ville, 18 coq de saudran, inkler, 1	56. Bois- 1876.	11 Lec 12 Hil	debrand and 16 orton, 1875. 17	Carnelle Buchho Pictet, Hittorf, Matthie	lz. 1879. 1851.	19 Wö	hler.

BOILING-POINT OF CHEMICAL ELEMENTS.

The column headed "Range" gives the extremes of the records found. Where the results are from one observer the authority is quoted with date of publication.

	Ra	Range.		rver.	, de de		nge.		1
Substance.	Min.	Max.	Mean.	Observ	Substance.	Min.	Max.	Mean.	Observ
Aluminium	abov	e white	heat	1	Nitrogen		_	-194.4	8
Antimony	1470.	1700.	1535.		Oxygen	181.	—184 .	— 183.	
Arsenic	449	450.		2	Ozone	-	-	—106.	9
Bismuth	1090.	1700.	1413.		Phosphorus .	287.3	290.	288.	
Bromine	59.27	63.05	62.08		Potassium	667.	725.	695.	
Cadmium	720.	860.	779-		Selenium	664.	683.	675.	
Chlorine	' -	-	-33.6	3	Sodium	742.	907.	825.	
Iodine		over 200		4	Sulphur		448.4	448.1	
Lead	bet. 14	1500 and	1 1600°	Š	Thallium	1600.	1800.	1700. l	
Magnesium	_	i –	1100.	5	Tin	bet. 14	500 and	16000	
Mercury	_	-	357-	7	Zinc	891.	1040.	958.	

TABLE 217.

MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.*

		М	elting-poin	ts.]
Substance.	Chemical formula.	Min.	Max.	Particular or average values.	Authority.	Date of publication.
Aluminium chloride	AlCl _s	_	_	190.	ī	1888
" nitrate	$Al(NO_8)_8 + 9H_2O$	-	-	72.8	2	1859
Ammonia	NH ₈ (NH ₄)NO ₈	145.	166.	<u> </u>	3	1875
" sulphate .	(NH ₄) ₂ SO ₄	- 43.	-	140.	4	1837
" phosphite .	NH ₄ H ₂ PO ₈	-	-	123.	ş	1887
Antimonietted hydrogen . Antimony trichloride .	SbH ₈ SbCl ₈	72.	73.2	—91.5 72.8	-	1886
" pentachloride .	SbCl ₈		- 73-2	-6 .	78	1875
Arsenic trichloride	AsCl ₈	-	-	—18.		1889
Arsenietted hydrogen Barium chlorate	AsH ₈ Ba(ClO ₂) ₂	-	_	—113.5 414.	6	1884 1878
" nitrate	Ba(NO ₈) ₂	_	-	593.	9	1878
" perchlorate	Ba(ClO ₄) ₂		-	505.	10	1884
Bismuth trichloride	BiCl _s H _s BO _s	225. 184.	230. 186.	227.5 185.	9	1876 1878
" anhydride	B ₂ O ₃	-	-	577·	9	1878
Borax (sodium borate) .	NagB ₄ O ₇	-	-	<u>5</u> 61.	9	1878
Cadmium chloride	$ \begin{array}{c} \operatorname{CdCl_2} \\ \operatorname{Cd(NO_8)_2} + 4\operatorname{H_2O} \end{array} $	_	_	541.	9	1878
Calcium chloride	CaCl ₂	719.	723.	59.5 721.	9	1859 1878
" "	CaCl ₂ + 6H ₂ O	28.	29.	28.5	-	-
" nitrate	Ca(NO ₈) ₂	-	-	561.	9	1878
Carbon tetrachloride	$ \begin{array}{c} \text{Ca(NO3)2 + 4H2O} \\ \text{CCl4} \end{array} $	-	_	44· 24·7	12 12	1859 1863
" trichloride	C ₂ Cl ₆	182.	187.	184.5	-	
" monoxide	CO	199.	207.	203.	-	-
" dioxide disulphide	CO ₂ CS ₂	-56.5	— <u>57·5</u>	—57. —110.	13	1845 1883
Chloric acid	HC104 + H20	_	-	50.	14	1861
Chlorine dioxide	ClO ₂	-		—76. J	3	1845 1884
Chrome alum	$KCr(SO_4)_2 + 12H_2O$ $Cr_2(NO_3)_6 + 18H_2O$	_	_	89. 37.	15	1859
Cobalt sulphate	CoSO ₄	96.	98.	l 97.	15	1884
Cupric chloride	CuCl ₂	-	_	498.	9	1878
Cuprous "	$ \begin{array}{c} \operatorname{Cu_2Cl_2} \\ \operatorname{Cu(NO_8)_2} + 2\operatorname{H_2O} \end{array} $	_	_	434. 114.5	9	1878 1859
Hydrobromic acid	HBr	_	_	<u>86.7</u>	3	1845
Hydrochloric acid	HC1	-	-	-112.5		1884
Hydrofluoric acid Hydroiodic acid	HFI HI	_		-92.3 -49.5	6	1886 1845
Hydrogen peroxide	H ₂ O ₂	_	_	30.	3 16	1818
" phosphide .	PH ₈	- 1	_	-t32.5	6	1886
" sulphide	H ₂ S FeCl ₂	301.	- 307.	85.6 303.	3	1845
" nitrate	$Fe(NO_3)_3 + 9H_2O$	Jor.	30/.	47.2	2	1859
" sulphate	FeSO ₄ + 7H ₂ O PbCl ₂	-		64.	15	1884
Lead chloride	PbCl ₂ Pb(PO ₈) ₂	498.	58o. 	526. 800.	9	1878
Magnesium chloride	MgCl ₂	_	_	708.	9	1878
" nitrate	$Mg(NO_8)_8 + 6H_9O$	-	-	90.	2	1859
" sulphate .	MgSO ₄ + 5H ₂ O MnCl ₂ + 4H ₂ O	_	-	54. 87 r	15	1884
Manganese chloride nitrate	$Mn(NO_8)_2 + 6H_2O$	_	_	54. 87.5 25.8	17 2	1859
" sulphate	$ MnSO_4 + 5H_2O $	-	-	54-	15	1884
Mercuric chloride	HgCl ₂	287.	293.	290.	_	-
1 Friedel and Crafts. 5 Amat. 2 Ordway. 6 Olsze	o Carnelley.	11		ski and Olsz	ewal	ci.
3 Faraday. 7 Kamr	nerer. 11 Muir.	ronea. 14	Roscoe. Tilden.	17 Clark,	*Co	nst. of Nat."
4 Marchand. 8 Besso		16	Tilden. Thénard.			į

⁶ For more extensive tables on this subject, see Carnelley's "Melting and Bolling-point Tables," or Landolt and Boernstein's "Phys. Chem. Tab."

TABLE 217.
MELTING-POINTS OF VARIOUS INORGANIC COMPOUNDS.

		,	Melting-po	oint.	Ī.	
Substance.	Chemical formulæ.	Min.	Max.	Particular or probable value.	Authority	Date of publication.
Nickel carbonyl	. NiCO4	_		—2 5 .	1	1890
" nitrate	$Ni(NO_8)_2 + 6H_2O$	-	-	56.7	2	1859
" sulphate Nitric acid	NiSO ₄ + $7H_2O$	98.	100.	99-	3	1884
" anhydride.	HNO ₈ N ₂ O ₅	_	-	-47. 30.	4	1878
" oxide " .	NO	_	_	— 16.7	5	1885
" peroxide	. N ₂ O ₄	- 1	-	-10.14	7 8	1890
Nitrous anhydride	N ₂ O ₈	-	-	—82.		1889
Phosphoric acid (ortho)	N ₂ O H ₃ PO ₄	38.6	41.7	—99. 40.3	9	1873
Phosphorous acid .	H _a PO _a	70.1	74.	72.	_	_
Phosphorus trichloride	. PClg	-	-	8.111	10	1883
" oxychloride " disulphide	PC1O ₈	-		-1.5	11	1871
" pentasulphide	PS ₂ P ₂ S ₅	296. 274.	298. 276.	297. 275.	12	1879 1879
" sesquisulphid		142.	167.	158.	-3	,,
" trisulphide	. P ₂ S ₈	-	l -	290.	14	1864
Potassium carbonate . " chlorate .	K ₂ CO ₂	834.	1150. ?	836.	-	1 - 1
" perchlorate	KCIO4	334-	372.	354. 610.	15	1880
" chloride .	KC1	730.	738.	734	-	-
" nitrate .	. KNO ₈	327.	353-	340.	-	! -
" acid phosphate		-	-	96.	16	1884
" acid sulphate Silver chloride	. KHSO ₄	450.	457	200.	10	1840
" nitrate	AgNO ₂	198.	457· 224.	453. 214.	_	-
" nitrogenietted .	. AgNa	-	-	250.	20	1890
" perchlorate .	AgCIO4	-	-	486.	18	1884
" phosphate . " metaphosphate	Ag ₈ PO ₄ AgPO ₈	1 =	-	849. 482.	15	1878
" sulphate	Ag ₂ SO ₄	_	-	654.	15	1878
Sodium chloride	. NaCl	772.	960.	772.	-	-
" hydroxide .	NaOH		-	60.	17	1884
" nitrate " chlorate	NaNOs NaClOs	298.	330.	31 5. 302.	15	1878
" perchlorate .	NaClO ₄	-	_	482.	18	1884
" carbonate .	Na ₂ CO ₃	814.	920.	884.	-	-
" " .	$Na_2CO_3 + 10H_2O$	-	-	34-	3	1884
" phosphate . " metaphosphate	Na ₂ HPO ₄ + 4H ₂ O NaPO ₂	35.	36.4	35.4 617.	15	1878
" pyrophosphate	. Na ₄ P ₂ O ₇	_	_	888.	15	1878
" phosphite .	$(H_2N_2PO_8)_2 + 5H_2O$	-	-	42.	19	1888
" sulphate	Na ₂ SO ₄	861.	865.	863.	15	1878
" hyposulphite .	$\begin{array}{c c} . & Na_2SO_4 + 10H_2O \\ . & Na_2S_2O_8 + 5H_2O \end{array}$	45.	48.1	34· 47·	3	1884
Sulphur dioxide	SO ₂	76.	79.	78.	_	-
Sulphuric acid	. H₂SŌ₄	10.1	10.6	10.4	21	1884
	$\frac{12 H_2 SO_4 + H_2 O}{H_2 SO_4 + H_2 O}$	= -	0 -	0.5	22	1853
" " (pyro) .	$\begin{array}{c c} \cdot & H_2SO_4 + H_2O \\ \cdot & H_2S_2O_7 \end{array}$	7.5	8.5	8. 35.	22	1853
Sulphur trioxide .	· SO ₈	14.8	15.	149	5	1876-1886
Tin, stannic chloride .	. SnCl4	-	-	—33 .	23	1889
" stannous " . Zinc chloride	SnCl ₂ ZnCl ₂		-	250.	24	.=.
4 4	$ZnCl_2 + 3H_0O$	_	=	262. 7.	25 26	1875 1886
" nitrate	$\begin{array}{c c} . & ZnCl_2 + 3H_2O \\ . & Zn(NO_8)_2 + 6H_2O \end{array}$	_	-	36.4	3	1884
" sulphate	$\frac{1}{2nSO_4 + 7H_2O}$	-	-	90.	3	1884
t Mond, Langer & Quincke. 2 Ordway. 6 Olssewski.	to Wroblewski & Olszewski. 15	Carnelle Mitsche	y. 20 rlich. 21	Curtius. Mendeleje	ff.	25 Braun. 26 Engel.
3 Tilden. 7 Ramsay. 4 Berthelot. 8 Birhaus.	12 Ramme. 17	Cripps.	22 Shea. 22	Marignac. Besson.		-
5 R. Weber. 9 Wills.		Amat.	24	Clark, "C	onst.	of Nat."

[•] Under pressure 138 mm. mercury.

TABLE 213.

LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by T; the latent heat in calories per kilogramme or in therms per gramme by H; the total heat from o^0 C. in the same units by H'. The pressure is that due to the wapor at the temperature T.

Substance.	Formula.	r	Н	H'	Authority.
Acetic acid	C ₂ H ₄ O ₂	1180	84.9	_	Ogier.
Alcohol: Amyl	C ₅ H ₁₂ O	131	120	-	Schall.
Ethyl	C ₂ H ₆ O	_ 78.1	209		Favre and Silbermann. Wirtz.
	"	76.1	205 236	255 236 264	Regnault.
4 : :	4	50	230	264	"
4	u	100	_	267	44
"	"	1 50	-	285	"
Methyl	сн40	64-5	2.67 289	307 289	Wirtz. Ramsay and Young.
"	4	50		274	" " "
"	4	100	_	246	44 46 66
44	"	150	_	206	66 66 66
"	"	200	-	152	
"	"	238.5	-	44.2	u u u
Ammonia	NHs	7.8 11	294.2 291.3	-	Regnault.
"		16	297.4	_	44
"	"	17	296.5	-	u
Benzene	C ₆ H ₆	80.1	92.9	127.9	Wirtz.
Bromine	Ba	88	45.6	-	Andrews.
Carbon dioxide, solid	CO2	_	_	1 38.7	Favre.
liquid	66	25	72.23	"-"	Cailletet and Mathias.
	"	ŏ	72.23 57.48	-	
""".	4	12.35	44.97 31.8	-	Mathias.
	' 4	22.04	31.8	-	"
4 4 4 4	"	29.85	14.4	-	44
	. "	30.82	3.72	-	"
" disulphide	CS ₂	46.1	83.8	94.8	Wirtz.
44 44	"	0	90	90	Regnault.
" " ' '	"	100	_	100.5	- " "
	"	140	_	102.4	••
Chloroform	CHC18	60.9	58.5	78.8	Wirtz.
Ether	C ₄ H ₁₀ O	34.5	88.4	107	"
44	"	34.9	90.5	-	Andrews.
	"	0	94	94	Regnault.
4,	" "	50	-	115.1	u
"	. "	120	-	140	"
Iodine	I	_	2.95	-	Favre and Silbermann.
Sulphur dioxide	SO ₂	۰ ا	91.2	-	Cailletet and Mathias.
	"		80.5	-	44 44 44
44 44	"	30 65	68.4	-	u u u
Turpentine	C ₁₀ H ₁₀	159-3	74.04	-	Brix.
Water	H ₂ O	100	535.9	637	Andrews. Regnault.

LATENT HEAT OF VAPORIZATION.

Substance, formula, and temperature.	$l = \text{total heat from fluid at } o^{\circ}$ to vapor at f° . $r = \text{latent heat at } f^{\circ}$.	Authority.
Acetone, C ₈ H ₆ O, — 3° to 147°.	$l = 140.5 + 0.36644 l - 0.000516 l^2$ $l = 139.9 + 0.23356 l + 0.00055358 l^2$ $r = 139.9 - 0.27287 l + 0.0001571 l^2$	Regnault. Winkelmann.
Benzene, C ₈ H ₆ , 7° to 215°.	l = 109.0 + 0.24429 t - 0.0001315 t ²	Regnault.
Carbon dioxide, CO ₂ , — 25° to 31°.	r ² = 118.485 (31 - t) - 0.4707 (31 - t ²)	Cailletet and Mathias.
Carbon disulphide, CS ₂ , — 6° to 143°.	$l = 90.0 + 0.14601 t - 0.000412 t^{2}$ $l = 89.5 + 0.16993 t - 0.0010161 t^{2} + 0.000003424 t^{2}$ $r = 89.5 - 0.06530 t - 0.0010976 t^{2} + 0.000003424 t^{2}$	Regnault. Winkelmann.
Carbon tetrachloride, CCl ₄ , 8° to 163°.	$l = 52.0 + 0.14625 t - 0.000172 t^{2}$ $l = 51.9 + 0.17867 t - 0.0009599 t^{2} + 0.00003733 t^{8}$ $r = 51.9 - 0.01931 t - 0.0010505 t^{8} + 0.00003733 t^{8}$	Regnault. Winkelmann.
Chloroform, CHCl ₂ , — 5° to 159°.	$l = 67.0 + 0.1375 t$ $l = 67.0 + 0.14716 t - 0.0000437 t^{2}$ $r = 67.0 - 0.08519 t - 0.0001444 t^{2}$	Regnault. Winkelmann.
Nitrous oxide, N ₂ O, . — 20° to 36°.	$r^2 = 131.75 (36.4 - t) - 0.928 (36.4 - t)^2$	Cailletet and Mathias.
Sulphur dioxide, SO ₂ , o° to 60°.	$r = 91.87 - 0.3842 t - 0.000340 t^2$	Mathias.

^{*} Quoted from Landolt and Boernstein's "Phys. Chem. Tab." p. 350.

TABLE 220.

DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N. B. - The data in this table refer only to normal compounds.

Substance.	Formula.	Temp. ° C.	Den- sity.	Melting- point.	Boiling-point.	Authority.
		(a) F	araffin	Series :	C _# H _{2#+2} .	
Methane* Ethane†	CH ₄ C ₂ H ₆	—164. —	0.415	-185.8	164.	Ołszewski.
Propane	CaHa	_	_	_	-25 to -30	Roscoe and Schorlemmer.
Butane	C4H10	0	.60	_	+1.	Butlerow.
Pentane	C ₅ H ₁₂	17.	.626	-	+37.	Schorlemmer.
Hexane	C_6H_{14}	17.	.663	1111	∔ 89.	44
Heptane	C7H16	O	.701	-	98.4	Thorpe.
Octane	C ₈ H ₁₈	0	.719		125.5	
Nonane	C_9H_{20}	20.	.718		1 50.	Krafft.
Decane	C ₁₀ H ₂₂	20.	.730	—31.	173.	44 44
Undecane	C11H24	—26.	-774	26.	195.	"
Dodecane	C12H26	—12.	.773	—I 2.	214.	46
Tridecane	C ₁₃ H ₂₈	 6.	-775	-6.	234.	•• ••
Tetradecane Pentadecane		+4.	.775 .776	+4.	252. 270.	•• ••
Hexadecane	C15H82	10. 18.		+10. 18.		4
Heptadecane	C ₁₀ H ₈₄ C ₁₇ H ₈₆	22.	-775	22.	287.	"
Octadecane	C ₁₈ H ₈₈	28.	.777	28.	303.	4
Nonadecane	C19H40	32.	·777 · 77 7	32.	317. 330.	"
Eicosane	C20H42	37.	.778	37.	205.‡	44
Heneicosane	C21H44	40.	.778	40.	215.‡	"
Docosane	C22H46	44.	.778	44.	224.‡	44
Tricosane	C28H48	48.	.779	48.	234.‡	44
Tetracosane	C24 H50	51.	.779	51.	243.‡	- 44
Heptacosane	C27H56	б о.	.780	бо.	270.1	44
Pentriacontane .	C81H64	68.	.781	68.	302.‡	66
Dicetyl	C ₈₂ H ₆₆	70.	.781	70.	310.‡	66
Penta-tria-contane	C ₈₅ H ₇₂	75.	.782	75-	331.‡	66
	(b) (Olefines,	or the	Ethylen	e Series : C _n l	Н _{2н} .
Ethylene	C ₂ H ₄	_	_	—16g.	—103.	Wroblewski or Olszewski.
Propylene	C ₈ H ₆	- 1	-	- 1		
Butylene	C ₄ H ₈	-13.5	0.635	-	ı.	Sieben.
Amylone	C ₈ H ₁₀		-	- 1	36.	Wagner or Saytzeff.
Hexylene	C ₆ H ₁₂	0	.76	-	69.	Wreden or Znatowicz.
Heptylene	C7H14	19.5	.703	- - -	96.–99.	Morgan or Schorlemmer.
Octylene	C ₈ H ₁₆	17.	.722	-	122123.	Möslinger.
Nonylene	C ₉ H ₁₈	-	-	-	153.	Bernthsen, "Org. Chem."
Decylene	C ₁₀ H ₂₀	-	-	- 1	175.	66 66
Undecylene Dodecylene	C11H22		-		195.	
Dodecylene	C ₁₂ H ₂₄ C ₁₈ H ₂₆	—31.	· 79 5	<u>31.</u>	96.‡	Krafft. Bernthsen.
Tetradecylene	C ₁₄ H ₂₈	<u>_12.</u>	-794		233. 127.‡	Krafft.
Pentadecylene .	C ₁₅ H ₈₀		-/94		247.	Bernthsen.
Hexadecylene.	C ₁₆ H ₃₂	+4.	.792	+4.	155.‡	Krafft, Mendelejeff, etc.
Octadecylene	C ₁₈ H ₈₆	18.	.791	+18.	179.‡	Krafft.
Eicosylene	C20H40	-	-/3.	'-	-/ 5'+	
Cerotene	C27H54	-	-	58.	_	Bernthsen.
Melene	C ₈₀ H ₆₀	-	-	58. 62.	-	"

Liquid at — 11.° C. and 180 atmospheres' pressure (Cailletet).
 † +4.° " 46 " 16 "
 Boiling-point under 15 mm. pressure.

TABLE 220. DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

Substance.	Chemical formula.	Temp. C∵.	Specific gravity.	Melting- point.	Boiling- point.	Authority.
	(o) A	cetylene	Series :	C _n H _{2n}	_ ₂ ,	L
Acetylene	C ₂ H ₂	_	_	_	_	
Allylene	C ₈ H ₄	_			_	
Ethylacetylene	C ₄ H ₆	-	-	-	+ 18.	Bruylants, Kutsche-
	6 77					roff, and others.
Propylacetylene Butylacetylene	C ₅ H ₈	-	-	-	4850.	Bruylants, Taworski.
Oenanthylidene	C ₆ H ₁₀ C ₇ H ₁₂	_	_	_	68.–70. 106.–108.	Taworski. Bruylants, Behal,
	0,1112				100100.	and others.
Caprylidene	C ₈ H ₁₄	0.	0.771	-	133134.	Behal.
Undecylidene	C ₁₁ H ₂₀	-	-	-	210215.	Bruylants.
Dodecylidene	C ₁₂ H ₂₂	<u>-9</u> .	.810	- ŷ.	105.	Krafft.
Tetradecylidene Hexadecylidene	C ₁₄ H ₂₆	+6.5	.806	+ 6.5	134.	"
Octadecylidene	C ₁₆ H ₈₀ C ₁₈ H ₈₄	20. 30.	.804 .802	20. 30.	160. * 184. *	u
- Commontaine :	0181184	30.	.002	30.	104	
	(d) Monai	omic al	cohols:	C _R H _{2N}	_F OH.	
Methyl alcohol	CH ₈ OH	0.	0.812	-	66.	
Ethyl alcohol	C ₂ H ₅ OH	0.	.806	-130.t	78.	
Propyl alcohol	C ₈ H ₇ OH	0.	.817	-	97-	From Zander, "Lieb.
Butyl alcohol	C ₄ H ₉ OH	0.	.823	-	117.	Ann." vol. 224, p. 85,
Amyl alcohol Hexyl alcohol	$C_6H_{18}OH$	0. 0.	.829		138.	and Krafft, "Ber." vol. 16, 1714,
Heptyl alcohol	C7H18OH	0.	.836	-	157.	" 19, 2221,
Octyl alcohol	C ₈ H ₁₇ OH	0.	.839	-	195.	" 23, 236o,
Nonyl alcohol	C ₉ H ₁₉ OH	0.	.842	 5.	213.	and also Wroblew-
	$C_{10}H_{21}OH$.839	+ 7.	231.	ski and Olszewski,
	C ₁₂ H ₂₅ OH		.831	24.	143.	" Monatshefte,"
	C14H29OH	38.	.824	38.	167.	vol. 4, p. 338.
Hexadecyl alcohol Octadecyl alcohol	C ₁₆ H ₃₃ OH C ₁₈ H ₃₇ OH	50. 59.	.818	50. 59.	190.# 211.#	
- College y alcohor					1	<u> </u>
		coholic e	thers:	C _R H _{2R} +		
Dimethyl ether	C ₂ H ₆ O	-	-	-	- 23.6	Erlenmeyer, Kreich- baumer.
Diethyl ether	C ₄ H ₁₀ O	4.	0.731	-	+ 34.6	Regnault.
Dipropyl ether	C ₆ H ₁₄ O	0.	.763	-	90.7	Zander and others.
Di-iso-propyl ether.	C ₆ H ₁₄ O	0. 0.	-743	l	69.	Lieben, Rossi, and
Di-n-butyl ether	C ₈ H ₁₈ O	1	.784	_	141.	others. Kessel.
Di-sec-butyl ether Di-iso-butyl "	$C_8H_{18}O$ $C_8H_{18}O$	21. 15.	.756	-	121.	Reboul.
Di-iso-amyl "		0.	799	_	170175.	Wurtz.
Di-sec-hexyl "	C ₁₂ H ₂₆ O	-	'2"	-	203.–208.	Erlenmeyer and Wanklyn.
Di-norm-octyl "	C ₁₆ H ₈₄ O	17.	.805	-	280282.	
	(f) E	thyl eth	ers : C _N	H _{2#+2} O).	
Ethyl-methyl ether	C ₈ H ₈ O	-		-	11.	Wurtz, Williamson. Chancel, Brühl.
" propyl " " iso-propyl ether .	C ₅ H ₁₂ O C ₅ H ₁₂ O	20. 0.	0.739	-	63.–64. 54.	Markownikow.
" norm-butyl ether	C ₆ H ₁₄ O	0.	.769	-	92.	Lieben, Rossi.
" iso-butyl ether .	C ₆ H ₁₄ O	_	.751	-	78.–80.	Wurtz.
" iso-amyl ether .	C ₇ H ₁₆ O	18.	.764	-	112.	Williamson and others.
" norm-hexyl ether	C ₈ H ₁₈ O	_	-	-	134137.	Lieben, Janeczek.
" norm-heptyl ether	C ₉ H ₂₀ O	16.	.790	-	165.	Cross.
" norm-octyl ether	C ₁₀ H ₂₂ O	17.	-794	-	182.–184.	Moslinger.
					<u>'</u>	

^{*} Boiling-point under 15 mm. pressure. † Liquid at —11.° C. and 180 atmospheres' pressure (Cailletet).

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Linear Expansion of the Chemical Elements.

In the heading of the columns T is the temperature or range of temperature, C the coefficient of linear expansion, A_1 the authority for C, M the mean coefficient of expansion between 0° and 100° C., a and β the coefficients in the equation $l_1 = l_0$ ($1 + al + \beta l^2$), where l_0 is the length at 0° C. and l_1 the length at l_2 C., l_3 is the authority for a, l_4 , and m.

Substance.	T	C X 10 ⁴	Aı	<i>M</i> X 10 ⁴	× 104	β × 10 ⁶	A2
Aluminium	40 600	0.2313	Fizeau Les Chatelier.	0.2220	-	-	Calvert, John-son and Lowe.
Antimony:		"					
Parallel to cryst.		1					
axis	40	.1692	Fizeau.				
Perp. to axis .	40	.0882	"	ا ا			36-441 !
Mean	40	.1152	"	.1056	.0923	.01 32	Matthieson.
Arsenic Bismuth :	40	.0559	•				
Parallel to axis	40	.1621	44				
Perp. to axis	40	.1208	"				
Mean	40	.1346	"	.1316	.1167	.0149	Matthieson.
Cadmium	40	.3069	"	.3159	.2693	.0466	4
Carbon:	, T	اردد		اوددد	55	-4-0	
Diamond	40	.0118	"				
Gas carbon	40	.0540	44				
Graphite	40	.0786	"			i	
Anthracite	40	.2078	66 66				
Cobalt	40	.1236	64		. 0-		35-441
Copper	40	.1678		.1666	.1481	.0185	Matthieson.
Gold	40	.1443		.1470	.1358	.0112	
Iron:	40	.4170					
Soft	40	.1210	44				
Cast	40	.1061	66			l	
Wrought	-18 to 100		Andrews.				
Steel	40	.1 322	Fizeau.			•	
" annealed	40	.1095	"	.1089	.1038	.0052	Benoit.
Lead	40	.2924	"	.2709	.0273	.0074	Matthieson.
Magnesium	40	.2694	66 66	1	1		
Nickel	40	.1279	66	1	l	1	
Osmium	40	.0657	44	l			Matthieson.
Palladium	40	.1176	Pisati and De	.1104	.1011	.0093	matthieson.
Phosphorus	0-40	1.2530	Franchis.		1	1	
Platinum	40	.0899	Fizeau	.0886	.0851	.0035	Matthieson.
Potassium	0-50	.8300	Hagen.			233	
Rhodium	40	.0850	Fizeau.	1		1	
Ruthenium	40	.0960	44	l		l	1
Selenium	40	.3680	"	.6604	-	-	Spring.
Silicon	40	.0763	44	1			l
Silver	40	.1921	"	.1943	.1809	.0135	Matthieson.
Sulphur:	١		"				Carina
Cryst. mean.	40	.6413		1.180	_	-	Spring.
Tellurium Thallium	40	.1675		.3687	-	-	
cm.	40	.3021	4	.2296	.2033	.2063	Matthieson.
Zinc	40	.2918	" : : :	.2976	.2741	.0234	4
	"	1 .29.0	ı	1.29/0	1.5/41)4	1

N. B. — The above table has been with a few exceptions compiled from the results published by Fizeau, "Comptes Rendus," vol. 68, and Matthieson, "Proc. Roy. Soc.," vol. 15.

SMITHSONIAN TABLES.

COEFFICIENT OF THERMAL EXPANSION.

Coefficient of Linear Expansion for Miscellaneous Substances.

N. B. — The coefficient of cubical expansion may be taken as three times the linear coefficient. T is the temperature or range of temperature, C the coefficient of expansion, and A the authority.

Color Colo	Substance.	T	C X 104	А	Substance.	Т	C X 104	A		
Cast O-100	P									
Wire		0-100°	0.1875		Platinum-silver		İ			
71.5Cu+27.7Zn+ 0.3Sn+0.5Pb 71Cu+2yZn Bronze: 3Cu+1Sn 16.6-100 0.1849 16.6-350 0.2116 16.6-350 0.2116 16.6-350 0.2116 16.6-350 0.1737 15.6Cu+2.2Sn+ 0.2P, hard 0.3P, hard 0.4P 0.1782 16.7-25.3 0.770 Ebonite 16.7-25.3 0.770 Ebonite 16.7-25.3 0.770 Ebonite 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.160 Cerman silver 16.6-350 0.1713 0.1723 0.1737 Ebonite 17.6-25.3 0.770 0.1636 Cerman silver 18.6-250 0.1713 0.160 0.1713 0.1723 0.1732 0.1733 0.0838 0.1713 0.1733 0.0838 0.1713 0.0838 0.1713 0.1828 0.1713 0.1828 0.1713 0.1828 0.1713 0.1728 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.1733 0.0838 0.0831 0.0838 0.0831 0.0838 0.0831 0.0838 0.0831 0.0838 0.0831 0.0838 0.0831 0.0838 0.0838 0.0831 0.0838						0.100	0	١		
71.5Cu+27.7Zn+ 0.3Sn+0.5Pb 71Cu+29Zn 0-100 0.1859 30L+1Sn 16.6-100 16.6-350 0.1737 86.3Cu+9.7Sn+ 0.2P, hard 16.6-350 0.1737 97.6Cu+2.2Sn+ 0.2P, hard 16.6-350 0.1733 170paz: Parallel to lesser horizontal axis Parallel to vertical axis Parallel to vertical axis Parallel to prize tudinal axis Parallel to long-tudinal axis Parallel to	wire									
0.35n+0.5Pb 40			.17031930	2						
71/Cu+20Zn 0-100 0.1906 4 Parallel to axis 0-80 0.0797 6 0.137 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.152 7 0.0831 7 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093			0			1000-1400	0.0553	17		
Bronze: 3Cu+1Sn		•				- 0-		ا ہا		
Second S	71Cu+29Zn .	0-100	0.1900	4						
## 16.6-957	Bronze:			_				1 1		
16.6-957	3Cu+1Sn					0-100	0.1933	1		
86.3Cu+9.7Sn+ 4Zn 97.6Cu+2.2Sn+							l			
Solution Solution	l	10.0-957	0.1737	5		.,		اہا		
97.6Cu+2.2Sn+			_			••	0.0832	8		
0.2P, hard 0-80 0.1713 6 6 Caoutchouc		40	0.1782	3	Parallel to greater		٠.	ا ہا		
" " " soft Caoutchouc				ا۔ ا		••	0.0836	8		
Caoutchouc						.		اہا		
Cold-platinum	1	••	0.1708			••	0.0472	ا لا إ		
Cold-platinum	Caoutchouc		.657686				İ			
Fluor apar: CaF2	" · · ·		0.770	7				اہا		
German silver Gold-platinum California		25.3-35.4	0.842	7		"	0.0937	8		
Gold-platinum:: 2Au+1Pt Gold-copper: 2Au+1Cu Gold-copper: Tube							l	ا ِ ا		
Cold-copper		••	0.1836	8			0.0773	1 1		
Gold-copper:							0.1952	5		
Glass: Tube		•	0.1523	4						
Glass: Tube						0-100	0.0890	5		
Tube		"	0.1552	4						
Crown (mean)			_				ł			
Plate			0.0833					19		
Crown (mean) " 0.0897 10 Elm 0.0565 20 20 20 20 20 20 20 2						2-34		20		
Clown (mean) So-60 Clowd (mean) So-60 Clowd (mean) So-60 Clowd (mean) So-60 Clowd (mormal)				. ,				20		
Flint	Crown (mean) .		0.0897					20		
Jena thermometer	"		0.0954					20		
Companies			0.0788	11				20		
Gutta percha		'	_				0.0492	20		
Columb C	(normal)							20		
Ce	59"		0.058			"	0.0658	20		
Cleand spar :	Gutta percha		1.983				١.	1 1		
Parallel to axis . 0-80 0.2631 6 Elm		-20 to -I	0.375	14				20		
Perpendicular to axis		_		ا ۔ ا				20		
Authorities Authorities		0-80	0.2631	6		1		20		
Lead-tin (solder) 2Pb+1Sn 0-100 0.2508 1 Oak		, ,		ا ا				20		
2Pb+1Sn		• •	0.0544	6				20		
Paraffin							0.544	20		
#		_		- 1				20		
#						_	0.484	20		
Platinum-iridium 10Pt+1Ir 40 0.0884 3 "	" • • •							21		
Platinum-iridium 10Pt+1Ir 40 0.0884 3 " 31-43 4.860 21 15.227 21 21	" :· ·	38-49	4.7707	15		26-31		21		
AUTHORITIES. 1 Smeaton. 6 Benoit. 11 Pulfrich. 16 Braun. 21 Kopp. 2 Various. 7 Kohlrausch. 12 Schott. 17 Deville and Troost. 3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.								21		
1 Smeaton. 6 Benoit. 11 Pulfrich. 16 Braun. 21 Kopp. 2 Various. 7 Kohlrausch. 12 Schott. 17 Deville and Troost. 3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.	IOPt+1Ir	40	0.0884	3		43-57	15.227	21		
1 Smeaton. 6 Benoit. 11 Pulfrich. 16 Braun. 21 Kopp. 2 Various. 7 Kohlrausch. 12 Schott. 17 Deville and Troost. 3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.					l	<u> </u>				
2 Various. 7 Kohlrausch. 12 Schott. 17 Deville and Troost. 3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.			Aut	HOR	ITIES.					
2 Various. 7 Kohlrausch. 12 Schott. 17 Deville and Troost. 3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.	I Smeaton 6 P	lenoit	* 1	D ₁ ,	lfrich 16 Braun		ar Kan	_		
3 Fizeau. 8 Pfaff. 13 Russner. 18 Mayer. 4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.										
4 Matthieson. 9 Deluc. 14 Brunner. 19 Glatzel.										
1										

TABLE 223.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of some Crystalline and other Selids.*

T = temperature or range of temperature, C = coefficient of cubical expansion, A = authority.

	_	ature, c = coemc	lent of Cubica	
Substance.			C X 104	Α
Antimony		o-100	0.3167	Matthieson.
Beryl		0-100	0.0105	Pfaff.
Bismuth		-	0.4000	Kopp.
Diamond		40	0.0354	Fizeau.
Emerald		40	0.0168	"
Fluor spar		14-47	0.6235	Kopp.
Garnet		0-100	0.2543	Pfaff.
Glass, white tube .		0-100	0.2648	Regnault.
" green tube .		c-100	0.2299	"
" Swedish tube .		0-100	0.2363	66
" hard French tube		0-100	0.2142	. 66
" crystal tube .		0-100	0.2101	66
" common tube .		0-1	0.2579	u
" Jena		0-100	0.2533	Reichsanstalt.
Ice		-20 to -1	1.1250	Brunner.
Iceland spar		50-60	0.1447	Pulfrich.
Idocrase		0-100	0.2700	Pfaff.
Iron		0-100	0.3550	Dulong and Petit.
"		0-300	0.4410	64 66 66
Magnetite, Fe ₈ O ₄ .		0-100	0.2862	Pfaff.
Manganic oxide, Mn ₂ O ₈		0-100	0.522	Playfair and Joule.
Orthoclase (adularia)		0-100	0.1794	Pfaff.
Porcelain		0-100	0.1080	Deville and Troost.
Quartz		50-60	0.3530	Pulfrich.
Rock salt		50-60	1.2120	66
Spinel ruby		40	0.1787	Fizeau.
Sulphur, rhombic .		0-100	2.2373	Корр.
Topaz		0-100	0.2137	Pfaff.
Tourmaline		0-100	0.2181	44
Zincite, ZnO		40	0.0279	Fizeau.
Zircon		0-100	0.2835	Pfaff.

^{*} For more complete tables of cubical expansion, see Clarke's "Constants of Nature," (Smithsonian Collections), published in 1876.

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Cubical Expansion of Liquids.

This table contains the coefficients of expansion of some liquids and solutions of salts. When not otherwise stated atmospheric pressure is to be understood. T gives the temperature range, C the mean coefficient of expansion for range T in degrees C., and A_1 the authority for C. a, β , and γ are the coefficients in the volume equation $v_t = v_0 (1 + at + \beta t^2 + \gamma t^2)$, and m the mean coefficient for range o'-soo' C., and A_2 is the authority for these.

Liquid.	T	C X 1000	A1	X 100	a X 1000	β × 10 ⁴	γ × 10 ⁸	Α,
Acetic acid	16°-107°	•			6	0.106.	0-6	
Acetone			_	.1433	1.0630	0.1264	1.0876	3
Alcohol:	0 −54	-	_	.1616	1.3240	3.8090	0.8798	3
Amyl	-15 to +80	_	_		0.8900	0.6573	1.1846	الما
	0-80	_ :	_	_	1.0414	0.7836	1.7168	4
Ethyl, sp. gr8095	0-39	_	_	_	0.7450	1.850	0.730	5
" 30 % "	18–39	_	_	_ 1	0.2928	17.900	11.87	6
" 500 atmo. press.	0-40	.866	I	_		-,.,-		_
" 3000 " "	0-40	.524	I	_	_	_	_	- 1
Methyl	-38 to +70	'-'	-	.1433	1.1856	1.5649	0.9111	4
Benzene	11–81	-	_	.1385	1.1763	1.2775	0.8065	5
Bromine	—7 to +60	-	-	.1168	1.0382	1.7114	0.5447	4
Calcium chloride:								
CaCl ₂ , 5.8 % solution	18-25	-	-	.0506	0.0788	4.2742	- '	7
CaCl ₂ , 40.9 % " .	17-24	-	-	.0510	0.4238	0.8571	-	7
Carbon disulphide	—34 to +60	-	-	.1468	1.1398	1.3706	1.9122	4
500 atmos. pressure.	0-50	.940	1	-	-	-	-	-
3000 " " .	0-50	.581	1	-	-	-	-	l - i
Chloroform	0-63	- 1	-	.1399	1.1071	4.6647	1.7433	4
Ether	—15 to +38	-	-	.2150	1.5132	2.3592	4.0051	4
Glycerine	-	-	-	.0534	0.4853	0.4895	-	8
Hydrochloric acid:				2.00			Ì	
$ HCl + 6.25H_2O $	0-30	_	_	.0489	0.4460	0.430	_	9
HCl + 50H2O · · Mercury · · · · ·	0-30	-	_	.0933	0.0625 0.1818	8.710	-	9
Olive oil	24-299		_	.0742	0.6821	0.000175	0.003512	11
Potassium chloride:	_	- '	_	.0/42	0.0021	1.1405	 ⋅539	••
KCl, 2.5% solution .	_	_	_	.0572	_	_	١ _	7
KCl, 24.3% "	_	l - I	_	.0477	_	_	_	7
Potassium nitrate:		l i		.54,7			ŀ	'
KNO ₈ , 5.3 % sol'n	_	-	_	.0539	_	_	l –	12
KNO ₈ , 21.9% "	_	-	_	£577	_	_	_	12
Phenol, C ₆ H ₆ O	36-157	- 1	-	.0899	0.8340	0.1073	0.4446	13
Petroleum	7-38	.992	2		-		_	-
Sp. gr. 0.8467	24-120		-	.1039	0.8994	1.396	-	14
Sodium chloride:		1 1		-			ł	
NaCl, 1.6% solution.	-	-	-	.1067	0.0213	10.462	l –	9
Sodium sulphate:					_		1	
N2 ₂ SO ₄ , 24 % sol'n .	10-40	-	-	.0611	0.3599	2.516	-	9
Sodium nitrate:	0			-6	0			_
NaNO ₈ , 36.2 % sol'n.	20-78	_	-	.0627	0.5408	1.075	1 -	12
Sulphuric acid:	2-20	_		0480	0 5750	0864		اما
$H_2SO_4 \cdot \cdot .$ $H_2SO_4 + 50H_2O \cdot .$	0-30	-	_	.0489	0.5758	0.864		9
Turpentine	0-30 -9 to +106	-	_	-0799	0.2835	5.160		9
Water	0-200	1	_	.1051	0658	1.959 8 roz	-6.769	5
		<u> </u>				8.507	0.709	.3
		Аитн	ORIT	TIES.				
r Amagat. 4 Pi	erre.	7 Dec	ker.		10 Broch	. 13	Pinette.	
2 Barrett. 5 Kopp. 8 Emo. 11 Spring, 14 Frankenheim.								
	ecknagel.	9 Ma			12 Nicol.		Scheel.	

COEFFICIENTS OF THERMAL EXPANSION.

Coefficients of Expansion of Gases.

The numbers obtained by direct experiment on the change of volume at constant pressure, E_p , are separated in the table from those obtained from the change of pressure at constant volume, E_p . The two parts of the table are headed "Coefficient at constant pressure" and "Coefficient at constant volume," respectively. Ordinary changes of atmospheric pressure produce very little change in the coefficient of exposion, and hence entries in the pressure column of t atm. have been made for all pressures near to 76 centimetres of mercury. The other numbers in the pressure columns are centimetres of mercury at t0° C. and approx. t5° latitude, unless otherwise marked.

Thomson has given (vide Encyc. Brit. art. "Heat") the following equations for the calculation of the expansion, E_t between t0° and t10° C. of the gases named. Expansion is to be understood as change of volume under constant pressure.

constant pressure.

Hydrogen . . .
$$E = .3662 \left(1 - .00049 \begin{array}{c} V_0 \\ v_9 \end{array}\right)$$

Common air . . $E = .3662 \left(1 + .0026 \begin{array}{c} V_0 \\ v_9 \end{array}\right)$
Oxygen $E = .3662 \left(1 + .0031 \begin{array}{c} V_0 \\ v_9 \end{array}\right)$
Nitrogen . . . $E = .3662 \left(1 + .0031 \begin{array}{c} V_0 \\ v_9 \end{array}\right)$
Carbon dioxide . $E = .3662 \left(1 + .0164 \begin{array}{c} V_0 \\ v_9 \end{array}\right)$

where V_o/v_o is the ratio of the actual density of the gas at o^o C. to the density it would have at o^o C. and one amosphere of pressure. The same experiments (Thomson & Joule, Trans. Roy. Soc. 1860), —which, together with Regnault's data, led to these equations, —give for the absolute temperature of melting ice 2.731 times the temperature interval between the melting-point of ice and the boiling-point of water under normal atmospheric pressure.

Coefficient at cor	astant volume	•		Coefficient at co	nstant pressi	ire.†	
Substance.	Pressure.	E, X 100	Author- ity.	Substance.	Pressure.	E, X 100.	Authority.
Air " " " " " " " " " " " " " " " " " "	0.6 1.6 7.6 10.0 26.0 37.6 75.0 76-83 11-15 17-24 37-51 76 200 2000 10000 76 76 1 atm. 1 " 1 " 25.87 " 25.87 " 25.87 " 25.87 " 33.53 " 33.53 " 1 " 1 " 1 " 1 " 1 "	.3765 .3763 .3663 .3663 .3665 .3670 .3688 .3651 .3658 .3659 .3752 .3756 .3756 .3756 .3752 .4252 .4754 .4607 .3758 .5406 .9734 .3677 .3638 .3633 .3633 .3633 .3657 .3638 .3657 .3638 .3657 .3658 .3657 .3658 .3657 .3658 .3657 .3658 .3657 .3658	111112 333333333345551 3336666666 3355335555	" " 64°-100° " " 64°-100° " " 0°-7.5° " " 0°-100° Carbon monoxide . Nitrous oxide . Sulphur dioxide . " " 0°-111° " " 0°-162° " " 0°-200° " " 0°-247°	17.1 " 24.81 " 24.81 " 24.81 " 34.49 "	0.3671 0.3605 0.36616 0.3710 0.3645 0.4747 0.7000 0.6204 0.5435 1.0970 0.8450 0.6574 0.3069 0.3719 0.4187 0.4187 0.4187 0.4191 0.3938 0.3799	333336666666633333777777

^{*} Corrected by Mendelejeff to 45° latitude and absolute expansion of mercury. Rowland gets almost the same correction on Regnault, using Willner's value of the expansion of mercury.

† The series of results at different pressures are given because of their interest. The absolute values are a little too low. (See preceding footnote.)

DYNAMICAL EQUIVALENT OF THE THERMAL UNIT.

Rowland in his paper quoted in Table 227 has given an elaborate discussion of Joule's determinations and the corrections required to reduce them to temperatures as measured by the air thermometer. The following table contains the results obtained, together with the corresponding results obtained in Rowland's own experiments. The variation for change of temperature in Rowland's result is due to the variation with temperature of the specific heat of water.

Date.	Method of experiment.	Temp. of water C.°		to air the	lue reduced rmometer itude of more.	Row- land's value.	J-R.	Relative weight of Joule's value as estimated by Rowland.
		.		Eng. units.	Met. units.			
1847	Friction of water .	15	781.5	787.0	442.8	427-4	+15-4	0
1850	"""	14	772-7	778.0	426.8	427.7	—0.9	10
1850	" " mercury	9	772.8	779-2	427.5	428.8	-1.3	2
1850	44 44 44	9	775-4	781.4	428.7	428.8	-a1	2
1850	" " iron .	9	776.0	782.2	4 2 9.1	428.8	+0.3	1
1850		9	773-9	780.2	428.0	428.8	0.8	1
1867	Electric heating	18.6	-	-	428.0	426.7	+1.3	3
1878	Friction of water .	14.7	772.7	776.1	425.8	427.6	-1.8	2
1878	66 66 66 .	12.7	774.6	778.5	427.1	428.0	—0.9	3
1878	66 66 66	15.5	773.I	776.4	426.0	427.3	-1.3	5
1878		14.5	767.0	770.5	422.7	427.5	-4.8	1
1878	66 66 66 .	17.3	774.0	777.0	426.3	426.9	—0.6	1

From the above values and weights Rowland concludes as the most probable value from Joule's experiments, at the temperature 14.6° C. and the latitude of Baltimore, 426.75, and from his own experiments 427.52.

The mean of these results is 427.13 in metric units, or 778.6 in British units. Correcting back for latitude, and to mercury thermometer, this gives about 774.5 for the latitude of Manchester, instead of 772, as has been commonly used.

An elaborate determination recently made by Griffith and referred to in Table 227 gives a value about one tenth of one per cent higher than Rowland's. Probably when a mercury thermometer is involved in the measurements we may take 776 as the nearest whole number in foot-pounds and British thermal units for the latitude of Manchester, and 777 for that of Baltimore. The corresponding values in the metric system will be 425.8 and 426.3, or in round numbers 426 for both latitudes.

The following quantities should be added to the equivalent of Baltimore to give the equivalent at the latitude named:—

MECHANICAL EQUIVALENT OF HEAT.

The following historical table of the principal experimental determinations of the mechanical equivalent of the unit of heat has been, with the exception of the few determinations bearing dates later than 1870, taken from Rowland.*

The different determinations are divided into four groups, according to the method used. Calculations based on the constants of gases and vapors as determined by others are not included in this table.

Method.	Observer.	Date.	Result.
Compression of air	. Joule 1	1845	443.8
Expansion ""	Joule 1	1845	437.8
Experiments on steam engine	Hirn 8	1857	413.0
" " " "	Hirn ²	1860-1	420~432
• •			443.6
Expansion and contraction of metals .	Edlund 8	1865	430.1
Expansion and contraction of metals .	Dailand	1003)	428.3
		}	420.3
	Haga 4	1881 }	437.8 428.t
Measurement of the specific volume of		(420.1
	Perot 6	1886	
vapor	relot	1000	424.3
Boring of cannon	Rumford 6	1798	040 ftlbs.
Friction of water in tubes	Joule 7	1843	424.6
" " calorimeter	Toule 1		488.3
u u u u u	Joule •	1845	
		1847	428.9
- · · · · ·	Joule 9	1850	423.9
" " mercury in "	Joule *	1850	424.7
" plates of fron	Joule *	1850	425.2
merais	Hirn 2	1857	371.6
" " in mercury calorimeter.	Favre 10	1858	413.2
	Him *	1858	400-450
	Hirn ²	1858	425.0
Water in balance à frottement	Hirn 2	1860-1	432.0
Flow of liquids under strong pressure .	Hirn 3	1860-1	432.0
Crushing of lead	Him *	1860-1	425.0
Friction of metals	Puluj 11	1876	426.6
Friction of water in calorimeter	Joule 18	1878	423.9
	Rowland 18	1879	426.3
" " metals	Sahuika ¹⁴	1890	427.5
Westing by magnete electric surrects	Tonle 7	.8.2	4600
Heating by magneto-electric currents .	Joule 7	1843	460.0
Heat generated in a disc between the			435.2
poles of a magnet	Violle 15	1870 {	434-9
- -			435-8
Flow of menous under second	Bartoli 16	1880	437-4
Flow of mercury under pressure Heat developed in wire of known abso-	Ouintus Icilius, 17	1)	428.4
lute resistance	also Weber	1857	399-7
Heat developed in wire of known abso-	Lenz	} 1859 }	396.4
lute resistance	Weber	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	478.2
Heat developed in wire of known abso-			
lute resistance	Joule 19	1867	429.5
Heat developed in wire of known abso-			
lute resistance	H. F. Weber 19	1877	428.15
Heat developed in wire of known abso-			414×10 ergsp
lute resistance	Webster 2)	1885 }	HIAVIO CIKED
Heat developed in wire of known abso-		, , ,	gramme degre
lute resistance	Dieterici ²¹	1888	424.36
	1	L	
Refe	rences.		
' See onn	osite page.		
See opp	anna hata.		

^{* &}quot;Proc. Am. Acad. Arts and Sci." vol. 15.

MECHANICAL EQUIVALENT OF HEAT.

Method.	Observer.	Date.	Result.
Diminishing the heat contained in a battery when the current produces work Diminishing the heat contained in a battery	Joule 7	1843	499.0
when the current produces work	Favre 22	1858	443.0
Heat due to electrical current, electro-chemical equivalent of water = .009379, absolute resistance, electro-motive force of Daniell cell, heat developed by action of zinc on sulphate of copper	Weber, Boscha, Favre, and Silbermann	1857	432.1
Heat developed in Daniell cell Electromotive force of Daniell cell	Joule Boscha 28	1859	419.5
Combination of electrical heating and mechanical action by stirring water	Griffiths 94	1893	428.0

REFERENCES.

- 1 Joule, "Phil. Mag." (3) vol. 26.
- 2 Hirn, "Théorie Méc. de la Chaleur," sér. 1, 3me éd.
- 3 Edlund, "Pogg. Ann." vol. 114.
- 4 Haga, "Wied. Ann." vol. 15.
- 5 Perot, "Compt. Rend." vol. 102.
- 6 Rumford, "Phil. Trans. Roy. Soc." 1798; Favre, "Compt. Rend." 1858.
- 7 Joule, "Phil. Mag." (3) vol. 23.
- 7 Joue, 1 III. 11-15. 8 Joule, " " " " 27. 2 Toule. " " " 31.
- 10 Favre, "Compt. Rend." 1858; "Phil. Mag." (4) vol. 15.
- 11 Puluj, "Pogg. Ann." vol. 157.
- 12 Joule, "Proc. Roy. Soc." vol. 27.
- 13 Rowland, "Proc. Am. Acad. Arts & Sci." vols. 15 & 16.
- 14 Sahulka, "Wied. Ann." vol. 41.
- 15 Violle, "Ann. de Chim." (4) vol. 22.
- 16 Bartoli, "Mem. Acc. Lincei," (3) vol. 8.
- 17 Quintus Icilius, " Pogg. Ann." vol. 101.
- 18 Joule, "Rep. Com. on Elec. Stand.," "B. A. Proc." 1867.
- 19 H. F. Weber, "Phil. Mag." (5) vol. 5.
- 20 Webster, "Proc. Am. Acad. Arts & Sci." vol. 20.
- 21 Dieterici, "Wied. Ann." vol. 33.
- 22 Favre, "Compt. Rend." vol. 47.
- 23 Boscha, "Pogg. Ann." vol. 108.
- 24 Griffiths, "Phil. Trans. Roy. Soc." 1893.

SPECIFIC HEAT.

Specific Heat of Water.

The specific heat of water is a matter of considerable importance in many physical measurements, and it has been the subject of a number of experimental investigations, which unfortunately have led to very discordant results. Regnault's measurements, published in 1847,* show an increase of specific heat with rise of temperature. His results are approximately expressed by the equation

$$c = 1 + .0004 t + 0000009 t^2$$

which makes the specific heat nearly constant within the atmospheric range. A different equation was found from Regnault's results by Boscha, who thought the temperatures required correction to the air-thermometer. Regnault, however, pointed out that the results had already been corrected. Jamin and Amaury † found, for a range from 9° to 76° C., the equation

$$c = 1 + .0011 t + .0000012 f$$

which nearly all the evidence available shows to be very much too rapid a change. Wüllner gives, for some experiments of Münchhausen,‡ the equation

$$c = 1 + .00030102 t$$

in vol. 1, changed to

$$c = 1 + .000425t$$

in vol. 10, for a range of temperature from 17° to 64°. In 1879, experiments are recorded by Stamo, by Henrichsen, and by Baumgarten, all of them giving large variation with temperature

In 1879, Rowland inferred from his experiments on the mechanical equivalent of heat that the specific heat of water really passes through a minimum at about 30°, and he attempted to verify this by direct experiment. The results obtained by direct experiments were not by any means os satisfactory as those obtained from the friction experiment; but they also indicated that the specific heat passed through a minimum, — but, in this case, at about 20° C. Further, direct experiments were made in 1883, in Rowland's laboratory, by Liebig, using the same calorimetric apparatus; and these experiments also show a minimum at about 20° C. Since the publication of Rowland's paper a number of new determinations have been made. Gerosa gave, in 1881, a series of equations which show a maximum at 4°.4, then a minimum a little above 5° and afterwards a rise to 24°! Neesen ** found a minimum near 30°, but got rather less variation than Rowland. Rapp,†† taking the mean specific heat between 0° and 100° as unity, gives the equation

$$c = 1.039925 - .007068t + .00021255t - .000001584t,$$

which gives a minimum between 20° and 30° and a maximum about 70°. Volten ‡‡ gives an equation which is even more extraordinary with regard to coefficients than the last, namely,

$$c = 1 - .00146255121 + .00002379811^2 - .000000107161^6$$

which puts the minimum between 40° and 50°, and gives a maximum at 100°; which maximum is, however, less than unity. Dieterici, in his paper on the mechanical equivalent of heat, discusses this subject; but his own results being in close agreement with Rowland's, his table practically only extends Rowland's results through a greater range of temperature, assuming straightline variation to the two sides of the minimum. Bartoli and Stracciati §§ found a minimum at about 30°; while Johanson in the same year gives a minimum at about 4° and then a rise about 12 times as rapid as that of Regnault. Griffiths |||| finds the equation

$$c = 1 - .0002666 (t - 15)$$

to satisfy his experiments through the range from 15° to 26°. This agrees fairly well with Row-land through the same range, and indicates that the minimum is at a temperature higher than 26°

The following table gives the results of Rowland, Bartoli and Stracciati, and Griffiths. The column headed "Rowland" has been calculated from Rowland's values of the mechanical equivalent of heat at different temperatures, on the assumption that the specific heat at 15° is equal to unity.

```
* "Mém. de l'Acad." vol. 21.

1 "Wied. Ann." vols. 1 and 10.

1 "Wied. Ann." vol. 8.

1 Rowland, "Proc. Am. Acad." vol. 15, and Liebig, "Am. Jour. of Sci." vol. 26.

* Wied. Ann." vol. 18, 1883.

11 "Diss. Zürich."

5 "Wied. Beib." vol. 15, 1891.

* "Wied. Beib." vol. 21, 1893.

* "Phil. Trans." 1893.

* "Phil. Trans." 1893.
```

SPECIFIC HEAT.

TABLE 228. — Specific Heat of Water.

Temp. C.	Rowland.	Bartoli	Griffiths.	Temp.	Rowland.	Bartoli	Griffiths.	Di	eterici.
c.	Rowland.	and Stracciati.	Grimtins.	C. F	Rowland.	and Stracciati.	Grimins.	Temp. C.	Specific heat.
00	1.0075*	1.0066	-	190	0.9984	0.9995	0.9989	o°	1.0000
1	1.0070	1.0060	-,	20	0.9980	0.9995	0.9987	10	0.9943
2	1.0065*	1.0054	-	21	0.9976	0.9995	0.9984	20	0.9893
3	1.0060*	1.0049	-	22	0.9973	0.9996	0.9981	30	0.9872
4	1.0055*	1.0043	-	23	0.9971	0.9996	0.9979	40	0.9934
ş	1.0050	1.0038	-	24	0.9968	0.9998	0.9976	50 60	0.9995
6	1.0045	1.0033	- 1	25 2€	0.9967	1.0001	0.9973	60	1.0057
8	1.0040	1.0028	-	2€	0.9965	1.0003	0.9971	70	1.0120
	1.0034	1.0023	-	27	0.9964	1.0006	0.9967	80	1.0182
9	1.0029	1.0019	-	28	0.9963	1.0010	_	90	1.0244
10	1.0024	1.0015	-	29	0.9962	1.0014	-	100	1.0306
11	6100.1	1100.1	-	30	0.9962	1.0019	-	-	_
12	1.0014	1.0008	-	31	0.9963	1.0024	_	- 1	-
13	1.0009	1:0005	-	32	0.9963	-	_	-	_
14	1.0005	1.0002	-	33	0.9964	-	-	- 1	-
15	1.0000	1.0000	1.0000	34	0.9965	-	-	-	_
	0.9996	0.9998	0.9997	35 36	0.9966	-	_	-	-
17 18	0.9991	0.9997	0.9995	36	0.9967	-	-	-	_
18	0.9987	0.9996	0.9992		}				

TABLE 229. - Specific Heat of Air.

The ratio of the specific heat at constant pressure to the specific heat at constant volume has been the subject of much investigation, and more particularly so in the case of atmospheric air, on account of its interest in connection with the velocity of sound. The following table gives the results of the principal direct determinations of this ratio for air. It may be remarked that the methods most commonly employed have been modifications of that employed by Clement and Desormes, and that the chances of error towards too small a ratio by this method are considerable.

Date. 1812 - 1853 1858 1859 1861 1862 1863 1864 1864 1869 1873 1874 1883	Ratio. 1.354 1.374 1.249 1.421 1.4196 1.4025 1.3845 1.41 1.399 1.41 1.399 1.4053 1.397 1.4062	Experimenters. Clement and Desormes. Gay Lussac and Welter. Delaroche and Berard. Favre and Silbermann. Masson. Weisbach. Hirn. Cazin. Dupré. Jamin and Richards. Tresca and Laboulaye. Kohlrausch. Röntgen. Amagat. Müller.	Some of these and hence neglibor 1.39 and remainder we oprobable error. The values velocity of so more accurate, ease of the exagreement of the value 332 m the velocity of a heats must be 1.4065 may be present knowle
	1.4062 1.384		

Some of these results are clearly too low; and hence neglecting all those that fall below 1.39 and giving equal weights to the remainder we obtain, with a somewhat large probable error, the value 1.4070.

The values obtained indirectly from the velocity of sound are undoubtedly much more accurate, judged either by the greater ease of the experiment or by the better agreement of the results. Assuming that the value 332 metres per second is good for the velocity of sound, the ratio of the specific heats must be near to 1.4063. Probably 1.4065 may be taken as fairly representing present knowledge of the subject.

Note. — For specific heats of metals, solids and liquids, see pp. 294 to 296.

^{*} Variation assumed uniform below 7 with same slope as from 7 to 5.

SPECIFIC HEAT. Specific Heat of Gases and Vapors.

Substance.	Range of temp. C.º	Sp. ht. pressure constant.	Authority.	Mean ratio of sp. hts.	Authority.	Calculated sp. ht. vol. const.
Acetone	26-110	0.3468	Wiedemann	_	-	
"	27-179	0.3740	 "	-	-	
"	129-233	0.4125	Regnault	-	-	
Air	-30 to + 10	0.23771	"	-	-	
"	0-100	0.23741	"	-	-	
	0-200 20-100	0.23751	Wiedemann	-	_	
"	mean	0.2389 0.23788	W ledemain	1.4066	Various	0.1691
Alaskal adhad			D		(Jaeger	
Alcohol, ethyl	108-220	0.4534	Regnault	1.136	Neyreneuf	0.3991
" methyl	101-223	0.4580	"	-	` -	
Ammonia	23-100	0.5202	Wiedemann	-	-	
	27-200	0.5356	D	-	-	
	24-216	0.5125	Regnault	_	Cazin	
"	mean	0.5228	-	1.31	Wüllner	0.3991
Benzene	34-115	0.2990	Wiedemann	_	-	
"	35-180	0.3325	"	-	_	
_ "	116-218	0.3754	Regnault	_	-	
Bromine	83-228	0.0555	- "	-		
"	19-388	0.0553	Strecker	1.293	Strecker	0.0428
Carbon dioxide	-28 to +7	0.1843	Regnault	-	-	
44 44	15-100	0.2025	44	_	_	
u u	1	1 -	i		∫ Röntgen	
	mean	0.2012	-	1.300	Wüllner	0.1548
Carbon monoxide	23-99	0.2425	Wiedemann	-	` -	
46 46	26-198	0.2426		1.403	∫ Cazin	0.1729
	1	1 .	<u>.</u> .	. •	\ Wüllner	
Carbon disulphide	86–190	0.1596	Regnault	1.200	Beyne	0.1330
Chlorine	13-202	0.1210	Strecker	7 222	Strecker	0.08.00
Chloroform	27-118	0.1441	Wiedemann	1.323	Succee	0.0850
*		1	4		(Beyme	
	28–189	0.1489	-	1.106	Müller	0.1346
Ether	69-224	0.4797	Regnault	-	_	
	27-189	0.4618	Wiedemann	-	-	
· " · · · · ·	25-111	0.4280	"		Maller	
	mean 22-214		Pegnault	1.029	Müller	0.4436
Hydrochloric acid	13-100	0.1852	Regnault Strecker	1.395	Strecker	0.1301
Hydrogen	-28 to +9	3.3996	Regnault	- 5	-	0.1391
, 38	12-198	3.4090	"	-	_	i
46	21-100	3.4100	Wiedemann	l –		
"	mean	3.4062	L	1.410	Cazin	2419
" sulphide (H ₂ S) .	20-206	0.2451	Regnault	1.276	Müller	0.1925
Methane	18-208	0.5929		1.316	_ ::	0.4505
Nitrogen	0-200	0.2438	44	1.410	Cazin	0.1729
Nitrogen tetroxide (NO ₂)	13-172	1.625	Berthelot	_	_	ĺ
" " " "	27-150	1.115	and	-	_	!
44 66 64	27-280	0.650) Ogier	-	_	l
Nitrous oxide	16-207	0.2262	Regnault	-	-	l
46 46	26-103	0.2126	Wiedemann	-	_	l
	27-206	0.2241		-	W::!!	
• • •	mean	1	l_	1.291	Wüllner {Cazin }	.1715
Sulphur dioxide (SO ₂)	16-202	0.1544	Regnault	1.26	Müller	0.1225
Water	128-217	0.4805	"	_	-	
			Macfarlane	i	I	I
44	100-125	0 2282				I
	100-125	0.3787 0.429 6	Gray	- 1.300	- Various	0.3305

VAPOR PRESSURE.

TABLE 231. — Vapor Pressure of Bthyl Alochol.*

ن	0°	1°	20	3 °	40	5 °	6°	7 °	8°	9°				
Temp		Vapor pressure in millimetres of mercury at o ² C.												
0° 10 20 30 40 50 60 70	12.24 23.78 44.00 78.06 133.70 220.00 350.30 541.20	13.18 25.31 46.66 82.50 140.75 230.80 366.40 564.35	14.15 27.94 49.47 87.17 148.10 242.50 383.10 588.35	15.16 28.67 52.44 92.07 155.80 253.80 400.40 613.20	16.21 30.50 55.56 97.21 163.80 265.90 418.35 638.95	17.31 32.44 58.86 102.60 172.20 278.60 437.00 665.55	18.46 34.49 62.33 108.24 181.00 291.85 456.35 693.10	19.68 36.67 65.97 114.15 190.10 305.65 476.45 721.55	20.98 38.97 69.80 120.35 199.65 319.95 497.25 751.00	22.34 41.40 73.83 126.86 209.60 334.85 518.85 781.45				
ن	00	10°	20 °	30 °	40°	50°	60°	70°	80 °	90 °				
Temp.		Vapor pressure in millimetres of mercury at o° C.												
0° 100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7		540.91 11858.	811.81 14764.	1186.5 18185.				

TABLE 232. - Vapor Pressure of Methyl Alcohol.:

. C	0 °	1°	2°	3°	40	5 °	6°	7 °	8°	9°
Temp.			Va	por pressur	e in millim	etres of me	ercury at o	° C.		
0° 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	1 58.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4

^{*} This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

[†] In this formula a = 5.0720301; $\log b = \overline{2}.6406131$; $\log c = 0.6050854$; $\log a = 0.003377538$; $\log \beta = \overline{1}.99682424$ (c is negative).

[†] Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

TABLE 233. VAPOR PRESSURE.

Carbon Disulphide, Chlorobensene, Bromobensene, and Antime.

Temp. 90 80 (a) CARBON DISULPHIDE. O 133.85 140.05 146.45 167.15 127.90 153.10 160.00 174.60 182.25 100.20 198.45 215.80 224.95 275.40 403.90 576.75 804.10 286.55 244.15 361.10 10 207.00 264.65 234.40 254 25 298.05 322.10 389.20 309.90 334.70 484.15 347-70 20 374.95 538.15 419.00 434.60 596.85 830.25 450.65 519.65 557.15 778.60 30 467.15 501.65 660.50 682.90 753.75 40 617.50 638.70 705.90 729.50 (b) CHLOROBENZENE. 20° 12.04 20.48 8.65 9.14 9.66 10.21 10.79 11.40 1 3.42 22.69 37.08 12.71 14.17 18.47 14.95 1 5.77 26.38 16.63 23.87 38.88 17.53 29.12 30 19.45 21.56 **3**0.58 40 27.72 25.10 32.10 33.69 35.35 49.05 76.30 114.85 50 46.84 56.22 40.75 42.69 44.72 58.79 61.45 51.35 79.60 53.74 83.02 86.56 64.20 60 67.06 70.03 73.11 90.22 94.00 97.90 144.80 208.35 106.10 70 80 101.95 11041 119.45 124.20 129.10 134.15 139.40 150.30 215.80 1 56.05 161.95 168.00 181.70 187.30 174.25 194.10 201.15 256.20 283.25 90 223.45 231.30 239.35 247.70 265.00 274.00 100 333-35 454.65 608.75 322.80 344.15 468.50 626.15 366.65 378.30 292.75 302.50 312.50 355.25 482.65 390.25 402.55 542.80 512.05 680.75 41 5.10 558.70 738.65 427.95 575.05 758.80 497.20 110 441.15 527.25 120 591.70 662.15 643.95 699.65 718.95 130 (c) Bromobenzene. **40**° 13.75 12.40 13.06 15.22 14.47 17.68 50 16.00 16.82 18.58 22.59 36.18 24.88 19.52 20.50 21.52 23.71 34.56 53.88 81.84 37.86 60 26.10 28.68 30.06 31.50 33.00 39.60 61.26 27.36 45.24 69.48 103.80 56.25 85.20 70 80 41.40 43.28 66.64 47.28 51.60 78.60 58.71 49.40 75.46 88.68 63.90 72 42 107.88 92.28 116.40 120.86 96.00 99.84 112.08 90 125.46 130.20 135.08 167.40 185.67 258.10 156.03 219 58 100 161.64 140.10 145.26 1 50.57 173.32 179.41 102.10 110 198.70 205.48 212.44 226.90 234.40 320.80 242.10 250.00 266.40 351.15 468.90 615.75 120 274.90 283.65 292.60 301.75 311.15 330.70 340.80 361.80 383.75 430.75 568.35 443.20 583.85 482.20 632.25 130 372.65 395.10 406.70 418.60 455.90 495.80 140 509.70 538.40 599.65 523.90 553.20 666.25 150 683.80 738.55 796.70 816.90 649.05 701.65 776.95 719.95 757-55 (d) Aniline. 21.83 **80°** 18.80 19.78 26.32 28.80 24.00 25.14 38.90 20.79 32.83 27.54 42.28 22.QO 40.56 90 30.10 31.44 34.27 35.76 37.30 44.06 47.80 58.50 63.34 65.88 100 45.90 68.50 49.78 51.84 53.98 56.20 60.88 86.32 83.10 79.98 89.66 110 71.22 74.04 108.17 76.96, 93.12 96.70 116.46 125.28 178.56 120 100.40 104.22 112.25 120.80 129.91 134.69 1 39.62 149.94 211.58 155.34 218.76 166.62 184 80 191.22 197.82 130 144.70 160.9ŏ 172.50 204.60 226.14 233.72 241.50 249.50 257.72 266.16 274.82 140 150 283.70 386.00 292.80 321.60 352.65 302.15 311.75 331.70 342.05 363.50 374.60 434.30 576.10 421.80 473.60 625.05 487.25 501.25 659.45 397.65 447.10 460.20 160 409.60 515.60 677.15 545.20 608.35 560.45 592.05 642.05 170 530.20 695.30 180 713.75 732.65 751.90 771.50

These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

SMITHEORIAN TABLES.

VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthaline, and Mercury.

Temp. C.	0°	1°	2°	3 °	40	80	60	7°	8°	90				
			<u> </u>	(e) M=	THYT SA	LICYLAT	r.	<u> </u>						
ļ	(e) METHYL SALICYLATE.													
70°	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4.34				
80	4.60	4.87	5.15	5-44	5.74	3.40 6.05	6.37	6.70	7.05	7.42				
90	7.80	8.20	8.62	9.60	9.52	9-95	10.44	10.95	11.48	12.03				
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95				
110 120	19.80 30.25	20.68 31.52	21.60 32.84	22.55 34.21	23.53 35.63	24.55 37.10	25.61 38.67	26.71 40.40	27.85 41.84	29.03 43.54				
130	45.30	47.12	49.01	50.96	52.97	\$5.05 80.00	57.20	59-43	61.73	64.10				
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30				
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90				
160	134.25	138.72	143.31	148.03	152.88 208.72	157.85	162.95 221.65	168.19	173.56 235.15	179.06				
170 180	184.70 249-35	190.48 256.70	196.41 264.20	202.49 271.90	270.75	287.80	296.00	304.48	313.05	321.85				
190	330.85	340.05	349-45	359.65	368.85	378.90	389.15	399.60	410.30	421.20				
200	432-35	443-75	455-35	467.25	479-35	491.70	504.35	517.25	530.40	543.80				
210	557.50	571.45	585.70	600.25	61 5.05	630.15	645.55	661.25	677.25	693.60				
220	710.10	727.05	744-35	761.90	779.85	798.10								
				/f) D==				·						
<u> </u>				(I) BRC	MONAPH	THALIN	<u> </u>							
1100	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22				
120	5.45	5.70 8.89	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12				
130	8.50		9.29	9.71	10.15	10.60 1 6.2 0	11.07	11.56 17.56	12.07 18.28	12.60				
140	13.15	13.72	14.31	14.92	15.55		10.07			'				
150	19.80 28.85	20.59	21.41	22.25 32.00	23.11	24.00	24.92	25.86 36.83	26.83 38.10	27.83				
160 170	40.75	29.90 42.12	30.98 43.53	44.99	33.23 46.50	34.40 48.05	35.60 49.64	51.28	52.96	39.41 54.68				
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82				
190	77.15	79-54	81.99	84.51	87.10	89.75	92-47	95.26	98.12	101.05				
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59				
210 220	138.40 181.75	142.30 186.65	146.29	150.38	1 54-57 202-00	158.85	163.25	167.70 218.40	172.30	176.95 230.00				
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95				
240	303.35	310.90	318.65	326.50	334-55	342.75	351.10	359.65	368.40	377-30				
250	386.35	395.60	405.05	414.65	424.45	434-45	444.65	455.00	465.60	476.35				
260 270	487.35 608.75	498.55	509.90 635.70	521.50 649.50	533·35 663·55	545-35 677-85	557.60	57 0. 05	582.70 722.15	595.60 737.45				
			-33,10	~~~~	3-33	5,,~3	77.40	'-'3	,3	131-43				
				(g) Merci	JRY.								
			-											
270°	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	1 53.70				
280	157.35	161.07	164.86 207.10	168.73 211.76	172.67	176.79	180.88 226.25	185.05	189.30 236.34	193.63				
290	198.04	202.53			210.50	221.33		231.25	230.34	241.53				
300	246.81	252.18 311.30	257.65 317.78	263.21	268.87 331.08	274.63 337.89	280.48 344.81	286.43 351.85	292.49 359.00	298.66 366.28				
310 320	304.93 373.67	381.18	388.81	324.37 396.56	404.43	412-44	420.58	428.83		445.75				
330	454.41	463.20	472.12	481.19	490.40	499-74	509.22	518.85	437.22 528.63	538.56				
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36				
350	658.03	669.86	681.86	694.04	706.40	718.94	731.65	744-54	757.61	770.87				
360	784.31													
				<u>' </u>										

AIR AND MERCURY THERMOMETERS.

Rowland has shown (Proc. Am. Acad. Sci. vol. 15) that, when o' and 100° are chosen for fixed points, the relation between the readings of the air and the mercury in glass thermometers can be very nearly expressed by an equation t = T - at(100 - t)(b - t),

where t is the reading of the air thermometer and T that of the mercury one, a and b being constants. The smaller a is, the more nearly will the thermometers agree at all points, and there will be absolute agreement for t = 0 or 100 or 6

Regnault found that a mercury thermometers agree at an poants, and there will be associate agreement for t = 0 or δ . Regnault found that a mercury thermometer of ordinary glass gave too high a reading between 0° and about 245° . As to some other thermometers experimented on by Regnault, little is recorded of their performance between 0° and roo', but all of them gave too high readings above 100° , indicating that below 100° the mercury thermometer probably reads too low. Regnault states this to be the case for a thermometer of Choisy le Roi crystal glass, and puts the maximum error at from one tenth to two tenths of a degree. Regnault's comparisons of the air and mercury thermometers and a comparison by Recknagel of a mercury thermometer of common glass with the air thermometer are compared with the above formula by Rowland. The tables are interesting as showing approximately the error to be expected in the use of a mercury thermometer and the magnitude of the constants and b for different glasses. They are given in the following Table. Regnault's results above 100° C. compared with the formula t = T - at(100 - t)(b - t), give for the constants and b the following values:

Cristal de Choisy le Roi a = 0.00000034, $b = 245^{\circ}$.

Verre ordinaire a = 0.00000034, $b = 245^{\circ}$.

Verre de Suède a = 0.00000034, $b = 200^{\circ}$.

Common glass (Recknagel) a = 0.00000033, $b = 00^{\circ}$.

(a) Temperatures between oo and 100° C.

There are no observed results with which to compare the calculations for the Choisy le Roi thermometer through this range, and in the case of the verre ordinaire, the specimen for which the readings below 100° are given was not the same as that used above 100°, from which the constants a and b were calculated. Rowland shows that a = 0.0000044 and b = 260 give considerably better agreement.

		Regnault's t	hermometers.		Recknagel's thermometer.				
Air thermome- ter.	Choisy	Verre o	rdinaire.	2:4	01 1	Calculated.	Difference.		
ter.	le Roi. Calculated.	Observed.	Calculated.	Difference.	Observed.	Calculated.	Difference.		
o l	00.00	00.00	00.00	_	00.00	00.00	.00		
10	10.00	-	10.07	l – i	10.08	10.08	.00		
20	19.99	-	20.12		20.14	20.14	.00		
30	29.98	30.12	30.15	+.03	30.18	30.18	.00		
40	30.97	40.23	40.17	06	40.20	40.20	.00		
	49.96	50.23	50.17	06	50.20	50.20	.00		
50 60	59.95	60.24	60.15	09	60.18	60.18	.00		
70	69.95	70.22	70.12	—.to	70.14	70.15	+.01		
70 80	79.96	80.10	80.09	oi	80.10	80.11	+.01		
90	89.97	_	90.05	-	90.05	90.06	+ 01		
IÓO	100.00	100.00	100.00	_ :	100.00	100.00	+.0		

(b) Temperatures above 100° C., Regnault's Thermometers.

Air	Ch	oisy le Re	oi.	Ver	re ordinai	re,	V	erre vert		Ver	re de Suè	de.
ther.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.	Obs.	Calc.	Diff.
100 120 140 160 180 200 220 240 260 280 300 320 340	327.25	100.00 120.09 140.25 160.36 180.8 201.76 221.56 247.56 263.46 284.52 305.76 327.20 348.88	+.03 +.04 +.03 03 04 01 02 04 04	119.95 139.85 159.74 179.63 199.70 219.80 239.90 260.20 280.58 301.08	139.80 159.72 179.68 199.69 219.78 239.96 260.21 280.00 301.12	+.05 +.02 05 +.01 +.02 06 01 02 04	160.40 180.60 200.80 221.20	200.89 221.23 241.63 262.09	—.03 +.07	140.11 160.20	100.00 120.04 140.10 160.21 180.34 200.53 220.78 241.08	.00 .00 +.01 01 03 03 +.08

[•] Misprinted [+] 270 in Rowland's paper.

COMPARISON OF THERMOMETERS.*

Chappius gives the following equations for comparing glass thermometers: $1000 (T_N - T_H) = .00543 (100 - T_m) T_m + 1.412 \times 10^{-4} (100^3 - T_m^2) T_m - 1.323 \times 10^{-6} (100^3 - T_m^3) T_m$ $1000 (T_{000} - T_B) = .0359 (100 - T_m) T_m - 0.234 \times 10^{-4} (100^3 - T_m^3) T_m - 0.510 \times 10^{-6} (100^3 - T_m^3) T_m.$ N = nitrogen; H = hydrogen; $CO_2 = \text{carbon dioxide}$; m = mercury.

TABLE 235. - Hydrogen Thermometer compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the hydrogen

	Chap	pius's experin	nents.†		Mar	ek's experim	ents.‡	
Tempera- ture by	Hard				M	188.		
hydrogen thermom- eter.	French glass mercury ther-	Nitrogen thermome- ter.	Carbon dioxide thermome- ter.	Hard French	French Jena normal		Thuring	ian glass.
	mometer.			glass.	glass.	glass.	1830-40.	1888.
20	+0.172	+0.014	+0.071				İ	
-10	+0.073	+0.007	+0.032		j	l	1	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	-0.052	0.006	-0.025	-0.044	-0.060	— 0.056	0.086	-0.072
20	0.085	0.010	-0.043	-0.073	—o 100	-0.091	-0.149	-0.125
30	0.102	-0.011	—0.054	-0.09I	-0.125	-0.109	-0.191	-0.159
40	-0.107	0.011	0.059	-0.098	-0.134	-0.111	-0.213	—0.178
50 60	-0.103	0.009	0.059	0.096	-0.132	-0.103	-0.216	-0.180
	-0.090	-0.005	-0.053	-0.086	-0.118	0.086 0.064	-0.201	-0.168
70 80	0.072 0.050	-0.001 +0.002	-0.044 -0.030	0.070 0.050	0.096 0.068	-0.004	-0.171 -0.127	-0.143 -0.106
90	-0.030 -0.026	+0.003	-0.030	-0.036	0.035	-0.041	-0.069	-0.100
100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-50	5,000	1.000	5,000	5.000		3.000		3,555

TABLE 236. - Air Thermometer compared with others.

This table gives the correction which added to the thermometer reading gives the temperature by the air thermometer.

Temperature by air thermome- ter.	Mercury in Thuringian glass thermometer (Grommach §).	Mercury in Jena glass thermome- ter (Wiebe and Böttcher).	Temperature by air thermome- ter.	Mercury in Jena glass thermome- ter (Wiebe and Böttcher).	Temperature by air thermome- ter.	Baudin alcohol thermometer (White ¶).
-20 -10 0 10 20 30 40 50 54 60 70 73 80 82 90 110	+0.03 +0.02 0.00 -0.03 -0.11 -0.12 -0.08 -0.04 	+0.153 +0.067 0.000 -0.049 -0.083 -0.103 -0.110 -0.107 -0.096 -0.078 -0.054 -0.028 0.000 -0.03	130 140 150 160 170 180 200 210 220 230 240 250 270 280 290	-0.07 -0.09 -0.10 -0.10 -0.08 -0.06 -0.02 +0.04 +0.11 +0.21 +0.46 +0.63 +0.63 +0.82 +1.05 +1.30 +1.58	0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -65 -70 -80 -90	-0.000 -0.144 -0.382 -0.704 -1.100 -1.563 -2.082 -2.648 -3.253 -3.887 -4.541 -5.206 -5.872 -6.531 -7.174 -8.371 -9.392

^{*} These two tables are taken with some slight alteration from Landolt and Boernstein's "Phys. Chem. Tab."
† P. Chappius, "Trav. et Mém. du Bur. internat. des Poids et Més." vol. 6, 1888.
‡ Marek, "Zeits. für Inst.-K." vol. 10, p. 283.
† Grommach, "Metr. Beitr. heraus. v. d. Kaiser. Norm.-Aich. Comm." 1872.

† Wiebe und Böttcher, "Zeits. für Inst. K." vol. 10, p. 233.
† White, "Proc. Am. Acad. Sci." vol. 21, p. 45.

TABLE 237.

CHANCE OF THERMOMETER ZERO DUE TO HEATING.

When a thermometer is used for measurements extending over a range of more than a few degrees, its indications are generally in error due to the change of volume of the glass lagging behind the change of temperature. Some data are here given to illustrate the magnitude of the change of zero after heating. This change is not permanent, but the thermometer may take several days or even weeks to return to its normal reading.

		ĺ		Kind of glass	L I	
No. of experi-	Maximum temp. in	Time at maximum	Normal J	ena glass.	Thuringian	Composition of Jena glass
ment.	deg. cent.	temp. in hours.	I.	II.	glass.	used.
			Depres	sion of freezi	ng-point.	•
I	290	5	1.0	1.0	2.1	ZnO 7 %
2	290	5	1.3	1.5	2.7	CaO 7 %
3	290	5	1.5	1.7 1.8	3.I	Na ₂ O 14.5 % Al ₂ O ₈ 2.5 % B ₂ O ₈ 2 % SiO ₂ 67 %
4	290	١١			3.4	R ₂ O ₈ 2.5 %
ž	290 290	2	1.7 1.8	1.9 2.0	3.6	SiO ₂ 67 %
7	290	25	2.0	2.2	4.2	-

TABLE 238.

CHANGE OF THERMOMETER ZERO DUE TO HEATING.

Description of thermometer.	Year of manufacture.		a and potash glass.	Depression of zero due to one hour's
	manufacture.	Na ₂ O / K ₂ O	K ₂ O/Na ₂ O	heating to roo° C.
Humboldt, No. 2 J. G. Greiner, F1 "F2 "F5 "F5 Ch. F. Geissler, No. 13 G. A. Schultze, No. 3 Rapp's Successor, F4	Before 1835 1848 1856 1872 1875 1875	0.04 0.08 0.22 - -	 0.21 0.26 0.24 0.83	0.06 0.15 0.38 0.38 0.40 0.44 0.65

^{*} Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

[†] W. Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189. See also, for this and following table, Wiebe in the "Zeitschrift für Instrumentenkunde," vol. 6, p. 167, from which Fresenius quotes. The thermometer referred to in this table belonged to the Kaiserlichen Normal-Aichungs Commission.

EFFECT OF COMPOSITION ON THERMOMETER ZERO.

Jena Glasses.

Descriptive number.	Si ₂ O	Na ₂ O	K₂O	CaO	Al ₂ O ₃	B ₂ O ₃	ZnO	Depression of zero due to one hour's heating to 100° C.
IV VIII XXII XXII XVII ^{III} XIV ^{III} XIV ^{III} XVIII XVIII	70 70 66 66 69 70 69 67.5 52	- 15 14 11.1 15 7.5 14 -	13.5 - 14 16.9 10.5 7.5 - 9	16.5 15 6 6 - 15 7 7	- - - 5 - 1 2.5	- - - - 2 2 9	- - - - 7 7 30	0.08 0.08 1.05 1.03 1.06 0.17 0.05 0.05

TABLE 240.

CHANGE OF ZERO OF THERMOMETER WITH TIME.

Closely allied to the changes illustrated in Tables 235-237 is the slow change of volume of the bulb of a thermometer with age. The following short table shows the change for the normal Jena thermometer.;

	Da	te of observation	on.	
Thermometer number.	1886	1889	1890	Total rise.
		Rise of zero.		
106	0.00	0.3	0.04	0.04
108	10.0	0.2	0.04	0.03
665 667	0.01	0.3	0.05	0.04
667	0.02	0.4	0.05	0.03
668	0.02	0.5	50.0	0.04
670	0.00	0.3	0.04	0.04
671	0.05	0.9	0.09	0.04
671 672	0.05	0.8	0.08	0.03

^{*} Fresenius, "Zeits. für Anal. Chem." vol. 27, p. 189. † Normal Jena glass.

[‡] Allihn, "Zeits. für Anal. Chem." vol. 29, p. 385.

TABLE 241.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.*

T=t-0.0000795 π (t'-t), in Fahrenheit degrees; T=t-0.000143 π (t'-t), in Centigrade degrees. Where T= corrected temperature, t= observed temperature, t'= mean temperature of glass stem and mercury column, n= the length of mercury in the stem in scale degrees.

			(a) Corre		r Fahreni of 0.0000 7 95		MOMETER			
					t'-t					
26	10°	20 °	30°	40 °	50°	60 °	70 °	80°	90 °	100°
10°	10.0	0.02	0.02	0.03	0.04	0.05	0.06	0.06	0.07	0.08
20	0.02	0.03	0.05	0.06	0.08	0.10	0.11	0.13	0.14	0.16
30	0.02	0.05	0.07	0.10	0.12	0.14	0.17	0.19	0.21	0.24
40 50	0.03	0.06 0.08	0.10 0.12	0.13	0.16	0.19 0.24	0.22	0.25	0.29	0.32
2~	5.54	0.00	0.12	0.10	0.20	J.24	0.20	U.J2	0.30	0.40
60	0.05	0.10	0.14	0.19	0.24	0.29	0.33	0.38	0.43	0.48
70	0.06	0.11	0.17	0.22	0.28	0.33 0.38	0.39	0.45	0.50	0.56
8o	0.06	0.13	0.19	0.25	0.32	0.38	0.45	0.51	0.57	0.64
90	0.07	0.14	0.21	0.29	0.36	0.43	0.50	0.57	0.64	0.72
100	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64	0.72	0.79
110	0.00	0.17	0.26	0.25	0.44	0.52	0.61	0.70	0.79	0.87
120	0.10	0.19	0.29	0.35 0.38	0.48	0.52	0.67	0.76	0.86	0.95
130	0.10	0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03
	:====; <u>-</u>		(b) Corr		OR CENTIGI		MOMETER		<u> </u>	<u> </u>
		· 			t'-t					
n	10°	20	•	30 °	40 °	50°	60	,]	70°	80°
10°	0.01	0.0	,	0.04	0.06	0.07	0.00		0.10	0.11
20	0.03	0.0		0.09	0.00	0.14	0.1		0.20	0.11
30	0.04	0.0		0.13	0.17	0.21	0.2	- 1	0.30	0.34
40	0.06	0.1	- 1	0.17	0.23	0.29	0.3		0.40	0.46
50	0.07	0.1		0.21	0.29	0.36	0.4		0.50	0.57
60			_ .	ا ہے				.		- 6-
60	0.09	0.1		0.26	0.34	0.43	0.5		0.60	0.69
70 80	0.10 0.11	0.2		0.30	0.40	0.50	0.60		0.70 0.80	0.80
90	0.11	0.2		0.34	0.46 0.51	0.57			0.90	0.92 1.03
100	0.13	0.2	1	0.39 0.43	0.57	0.04	0.7		1.00	1.03
			' `	73	5/	,-	3.0.	·		
,		N. B	. — When	t' — t is n	egative the	correction l	ecomes ad	ditive.	·	

^{• &}quot; Smithsonian Meteorological Tables," p. 12.

CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM.

		(0)	Correct	TON TO E	BE ADDED	то Тнв	RMOMETE	R READ	NG.*		
					t-	- t'					
14	70°	80°	90°	100°	120°	140°	1 60 °	180°	200°	220°	*
10°	0.02	0.03	0.05	0.07	0.11	0.17	0.21	0.27	0.33	0.38	10°
20	0.13	0.15	0.18	0.22	0.29	0.38	0.46	0.53	0.61	0.67	20
30	0.24	0.28	0.33	0.39	0.48	0.59	0.70	0.78	0.88	0.97	30
40	0.35	0.41	0.48	0.56	0.68	0.82	0.94	1.04	1.16	1.28	40
50	0.47	0.53	0.62	0.72	0.88	1.03	1.17	1.31	1.44	1.59	50
60	0.57	0.53	0.77	0.89	1.09	1.25	1.42	1.58	1.74	1.90	60
	0.69	0.79	0.92	1.06	1.30	1.47	1.67	1.86	2.04	2.23	
70 80	o.8ó	0.91	1.05	1.21	1.52	1.71	1.94	2.15	2.33	2.55	70 80
90	0.91	1.04	1.19	1.38	1.73	1.96	2.20	2.42	2.64	2.89	90
100	1.02	1.18	1.35	1.56	1.97	2.18	2.45	2.70	2.94	3.23	100
110	_	-	-	1.78	2.19	2.43	2.70	2.98	3.26	3.57	110
120	-	_	-	1.98	2.43	2.69	2.95	3.26	3.58	3.92	120
130	_	_	l <u>-</u>	_	2.68	2.94	3.20	3.56	3.89	4.28	130
140	_	_	-	-	2.92	3.22	3.47	3.86	4.22	4.64	140
150	_	-	-	i –	-	_	3.74	4.15	4.56	5.01	150
1 <u>ç</u> 0	-	-	-	-	-	-	4.00	4.46	4.90	5.39	160
170	_	_	_	_	l _	l _	4.27	4.76	5.24	5.77	170
180	_	-	_	_	l –	l -	4.54	5.07	5.59	6.15	180
190	_	-	-	-	-	-	1 . 5,	5.38	5.95	6.54	190
200	-	-	-	-	-	-	-	5.70	6.30	6.94	200
210	_	_	_	_	_	_	_	_	6.68	7.35	210
220	_	-	-	-	-	-	l -	-	7.04	7.75	220

^{*} This table is quoted from Rimbach's results, "Zeit. für Instrumentenkunde," vol. 10, p. 153. The numbers represent the correction made by direct experiment for thermometers of Jena glass graduated from 0° to 360° C., the degrees being from 1 to 1.6 mm. long. The first column gives the length of the mercury in the part of the stem which is exposed in the air, and the headings under t-t' give the difference between the observed temperature and that of the air.

EMISSIVITY.

TABLE 242. - Emissivity at Ordinary Pressures.

According to McFarlaue * the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C., can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-4}t - 2.6 \times 10^{-4}t^{2}$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-6}t^{3}$$

when the surface is that of polished copper. In these equations e is the emissivity in c. g. s. units, that is, the quantity of heat, in therms, radiated per second per square centimetre of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ- ence of	Valu	se of s.	
tempera- ture &	Polished surface.	Biackened surface.	Ratio.
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000 328	.690
60	.000226	.000328	.690
1			

TABLE 243. -- Emissivity at Different Pres-SUITES.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8° C.

Polishe	ed surface.	Blacken	ed surface.
ŧ	et	ŧ	et
Pri	ISSURE 76 CM	s. of Mri	CURY.
63.8 57.1 50.5 44.8 40.5 34.2 29.6 23.3 18.6	.00987 .00862 .00736 .00628 .00562 .00438 .00378 .00278	61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00640 .00455 -
Pres	SURE 10.2 Ch	s. of Me	RCURY.
67.8 61.1 55 49.7 44.9 40.8	.00492 .00433 .00383 .00340 .00302 .00268	62.5 57.5 53.2 47.5 43.0 28.5	.01298 .01158 .01048 .00898 .00791 .00490
PR	ESSURE : CM.	or Merc	URY.
65 60 50 40 30 23.5 -	.00388 .00355 .00286 .00219 .00157 .00124	62.5 57.5 54.2 41.7 37.5 34.0 27.5 24.2	.01182 .01074 .01003 .00726 .00569 .00569 .00446

^{* &}quot;Proc. Roy. Soc." 1872. † "Proc. Roy. Soc." Edinb. 1869.

EMISSIVITY.

TABLE 244. - Constants of Buissivity.

The constants of radiation into vacuum have been determined for a few substances. The object of several of the investigations has been the determination of the law of variation with temperature or the relative merits of Dulong and Petit's and of Stefan's law of cooling.

Dulong and Petit's law gives for the amount of heat radiated in a given time the equation

$$H = Asa^{\theta}(a^t - 1)$$

where A is a constant depending on the units employed and on the nature of the surface, s the surface, a a constant determined by Dulong and Petit to be 1.0077, 6 the absolute temperature of the enclosure, and the difference of temperature between the hot surface and the enclosure. The following values of A are taken from the experiments of W. Hopkins, the results being reduced to centimetre second units, and the therm as unit of heat.

> Glass A = .00001327Dry chalk A = .00001107Dry chalk A = .00001195Dry new red-sandstone A = .00001162Sandstone (building) . A = .00001232Polished limestone . A = .00001263Unpolished limestone (same block) . . . A = .0001777

Stefan's law is expressed by the equation

$$H = \sigma s(T_1^4 - T_0^4),$$

where H and s have the same meaning as above, σ is a constant, called Stefan's radiation constant, T_1 is the absolute temperature of the radiating body and T_0 the absolute temperature of the enclosure. Stefan's constant would represent, if the law held to absolute zero, the amount of heat which would be radiated per unit surface from the body at 1° absolute temperature to space at absolute zero. The experiments of Schleiermacher, Bottomley, and others show that this law approximates to the actual radiation only through a limited range of temperature.

Graetz * finds for g	lass						. $T_1 = 400$, $T_0 = 0$, $\sigma = 1.0846 \times 10^{-12}$
Schleiermacher † fir	nd for	pol	ished	plat	inum	wire	$ \begin{cases} T_1 = 1085, \ T_0 = 0, \ \sigma = 0.185 \times 10^{-12} \\ T_1 = 1150, \ T_0 = 0, \ \sigma = 0.177 \times 10^{-12} \end{cases} $
		•		•			$(7_1 = 1150, 7_0 = 0, \sigma = 0.177 \times 10^{-13})$
For copper oxide	•	• -	•	•	•	•	$ \begin{cases} T_1 = 850, & T_0 = 0, \sigma = 0.000 \times 10^{-12} \\ T_1 = 1080, & T_0 = 0, \sigma = 0.701 \times 10^{-12} \end{cases} $

TARLE 245. - Effect of Absolute Temperature of Surface.

The following tabular results are given by Bottomley. The results of Schleiermacher were calculated from data given in the paper above quoted. The temperatures t₁ are in degrees centigrade, and e is the emissivity or amount of heat in therms radiated per square centimetre of surface per degree difference of temperature between the hot body and the enclosure. The results are all for high vacuum.

Schlei	ermacher's results. polished platir	Tempe num wire	rature of enclosure, tses to blackened	, o ^o C. <i>i</i> platinum	1,61, 1,62, refer to wire.	polishe	ey's results for d platinum, the tres being at 15° C.
t ₁	e ₁	t ₂	е,	t ₃	e ₃	e e	
130 200 337 581 826	21.6 × 10 ⁻⁶ 30.0 " 53.8 " 137.0 " 315.0 "	65 110 232 383 740 900	14.5 × 10 ⁻⁶ 18.7 " 32.2 " 61.6 " 198.0 " 358.0 "	16 38 94 228 403 585	60.9 × 10 ⁻⁶ 67.6 " 83.7 " 147.0 " 293.0 " 540.0 "	302 425 613 744 806	65.05 × 10 ⁻⁶ 120.3 " 282.0 " 537.0 " 653.0 "

^{* &}quot;Wied. Ann." vol. 11, p. 297. † "Wied. Ann." vol. 26, p. 305. ‡ "Phil. Trans. Roy. Soc." 1887, p. 429.

EMISSIVITY.

TABLE 246. - Radiation of Platinum Wire to Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers: —

$$t = 408^{\circ}$$
 C., $et = 378.8 \times 10^{-4}$, temperature of euclosure 16° C. $t = 505^{\circ}$ C., $et = 726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosus	re 16° C., 1=408° C.	Temp. of enclosure	17°℃., t= 505° C.
Pressure in mm.	et	Pressure in mm.	ot
740. 440. 140. 42. 4- 0.444 .070 .034 .012 .0051	8137.0 × 10 ⁻⁴ 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 "	0.094 .053 .034 .013 .0046 .00052 .00019 Lowest reached } but not measured }	1688.0 × 10 ⁻⁴ 1255.0 " 11250.0 " 920.4 " 831.4 " 767.4 " 746.4 "

TABLE 247. — Bifoct of Pressure on Radiation at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimetre per second.

Temp. of	Pressure in mm.						
Temp. of wire in Co.	10.0	1.0	0.25	0.025	About o.1 M.		
100°	0.14	0.11	0.05	0.01	0.005		
200 300	.31 .50 .75	.24 .38	.18	.02 .04	.0055 .0105		
400 500	·75	.53 .69 .85	.25 ·33	.07 .13	.025 .055		
600 700	-	.85	·45	.23	.13 .24		
800 900	-	=	_	.37 .56	.40 .61		

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " " 39.8 watts.

PROPERTIES OF STEAM.

Metric Measure.

The temperature Centigrade and the absolute temperature in degrees Centigrade, together with other data for steam or water vapor stated in the headings of the columns, are here given. The quantities of heat are in therms or calories according as the gramme or the kilogramme is taken as the unit of mass.

Temp. C.	Absolute temp.	Pressure in mm. of mercury.	Pressure in grammes per sq. centimetre = \$\phi\$.	Pressure in atmospheres.	Total heat of evaporation from o° at $P = H$.	eat of liquid Å.	Heat of evaporation = $H - k$.	Outer latent or external-work heat $= A \phi v$.	Total heat of steam = H -A fv.	Inner latent or internal-work heat $=H-(k+Apv)$.	Litres per gramme, or cubic metres per kilog. = v.	Ratio of inner la- tent heat to vol- ume of steam.†
F	<u> </u>	_ <u>& A</u>	<u> 4 5 8 </u>	P. S	£ 8€	H =	#.₩	Q 1 11	프	급호Ⅱ	Pe Ci	- E te 23
5 10 15 20	273 278 283 288 293	4.60 6.53 9.17 12.70 17.39	6.25 8.88 12.47 17.27 23.64	0.006 .009 .012 .017	606.5 608.0 609.5 611.1 612.6	0.00 5.00 10.00 15.00 20.01	606.5 603.0 599.5 596.0 592.6	31.47 31.89 32.32	575.4 576.5 577.7 578.8 579.8	575-4 571.5 567-7 563.7 559-8	210.66 150.23 108.51 79.35 78.72	2.732 3.805 5.231 7.104 9.532
25 30 35 40 45	298 303 308 313 318	23.55 31.55 41.83 54.91 71.39	32.02 42.89 56.87 74.65 97.06	0.031 .042 .055 .072 .094	614.1 615.6 617.2 618.7 620.2	35.04 40.05	589.1 585.6 582.1 587.6 575.1	34.12	580.9 582.0 583.1 584.1 585.2	555.9 552.0 548.2 544.1 540.1	43.96 33.27 25.44 19.64 15.31	12.64 16.59 21.54 27.70 35.26
50 55 60 65 70	323 328 333 338 343	91.98 117.47 148.79 186.94 233.08	125.0 159.7 202.3 254.2 316.9	0.121 .155 .196 .246 .306	621.7 623.3 624.8 626.3 627.8	65.17	571.7 568.2 564.7 561.1 557.6	36.51 37.00	586.2 587.2 588.3 589.3 590.4	536.1 532.1 528.1 524.2 520.2	12.049 9.561 7.653 6.171 5.014	44-49 55.65 69.02 84.94 103.75
75 80 85 90 95	348 353 358 363 368	288.50 354.62 433.00 525.39 633.69	392.3 482.1 588.7 714.4 861.7	0.380 .446 .570 .691 .834	629.4 630.9 632.4 633.9 635.5	75.24 80.28 85.33 90.38 95.44	554.1 550.6 547.1 543.6 540.0	38.88 39.33	591.4 592.5 593.5 594.6 595.7	516.2 512.2 508.2 504.2 500.3	4.102 3.379 2.800 2.334 1.957	125.8 151.6 181.5 216.0 255.7
100 105 110 115 120	373 378 383 388 393	760.00 906.41 1075.4 1269.4 1491.3	1033. 1232. 1462. 1726. 2027.	1.000 .193 .415 .670 .962	637.0 638.5 640.0 641.6 643.1	105.6 110.6	533.0 529.4 525.8	40.20 40.63 41.05 41.46 41.86	596.8 597.9 599.0 600.1 601.2	496.3 492.3 488.4 484.4 480.4	1.6496 1.3978 1.1903 1.0184 0.8752	300.8 352.2 410.3 475.6 549.0
125 130 135 140 145	398 403 408 413 418	1743.9 2030.3 2353.7 2717.6 3125.6	2371. 2760. 3200. 3695. 4249.	2.295 2.671 3.097 3.576 4.113	644.6 646.1 647.7 649.2 650.7	125.9 131.0 136.1 141.2 146.3	518.7 515.1 511.6 508.0 504.4	43.01	602.4 603.5 604.7 605.8 607.0	476.5 472.5 468.6 464.6 460.7	0.7555 0.6548 0.5698 0.4977 0.4363	630.7 721.6 822.3 933.5 1055.7
150 155 160 165 170	423 428 433 438 443	3581.2 4088.6 4651.6 5274.5 5961.7	4869. 5589. 6324. 7171. 8105.	4-712 5-380 6-120 6-940 7-844	652.2 653.8 655.3 656.8 658.3	151.5 156.5 161.7 166.9 172.0	500.8 497.2 493.5 489.9 486.3	44.76 45.09	608.2 609.3 610.5 611.7 612.9	456.7 452.8 448.8 444.8 440.9	0.3839 0.3388 0.3001 0.2665 0.2375	1190. 1336. 1496. 1669. 1856.
175 180 185 190 195	448 453 458 463 468	6717.4 7546.4 8453.2 9442.7 10520.	12838.	8.839 9.929 11.123 12.425 13.842	659.9 661.4 662.9 664.4 666.0	177.2 182.4 187.6 192.8 198.0	482.7 479.0 475.3 471.7 468.0	45.71 46.01 46.30 46.59 46.86	614.2 615.4 616.6 617.9 619.1	433.0 429.0	0.2122 0.1901 0.1708 0.1538 0.1389	2059. 2277. 2512. 2763. 3031.
200	473	11689.	1 5892.	15.380	667.5	203.2	464.3	47.13	620.4	417.1	0.1257	3318.

^{*} Where A is the reciprocal of the mechanical equivalent of the thermal unit. $+ \frac{H - (h + A \rho v)}{v} = \frac{\text{internal-work pressure}}{\text{mechanical equivalent of heat}}.$ Where v is taken in litres the pressure is given per square decimetre, and where v is taken in cubic metres the pressure is given per square metre,—the mechanical equivalent being that of the therm and the kilogramme-degree or calorie respectively.

PROPERTIES OF STEAM. British Messure.

The quantities given in the different columns of this table are sufficiently explained by the headings. The abbreviation B. T. U. stands for British thermal units. With the exception of column 3, which was calculated for this table, the data are taken from a table given by Dwelshauvers-Dery (Trans. Am. Soc. Mech. Eng. vol. xi.).

					,					
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B T. U.	Total heat per pound of steam in B. T. U.
1 2 3 4 5	144 288 432 576 720	0.068 .136 .204 .272 .340	102.0 126.3 141.6 153.1 162.3	334.23 173.23 117.08 89.80 72.50	0.0030 .0058 .0085 .0111	70.1 94-4 109.9 121.4 130.7	980.6 961.4 949.2 940.2 932.8	62.34 64.62 66.58 67.06 67 .89	1043. 1026. 1011. 1007.	1113.0 1120.4 1127.0 1128.6 1131.4
6 7 8 9	864 1008 1152 1296 1440	0.408 .476 .544 .612 .680	170.1 176.9 182.9 188.3 193.2	61.10 53.00 46.60 41.82 37.80	0.0163 .0189 .0214 .0239 .0264	138.6 145.4 151.5 156.9 161.9	926.7 921.3 916.5 912.2 908.3	68.58 69.18 69.71 70.18 70.61	995.2 990.5 986.2 982.4 979.0	1133.8 1135.9 1137.7 1139.4 1140.9
11	1584	0.748	197.8	34.61	0.0289	166.5	904.8	70.99	97 5.8	1142.3
12	1728	.816	202.0	31.90	.0314	170.7	901.5	71.34	97 2.8	1143.5
13	1872	.884	205.9	29.58	.0338	174.7	898.4	71.68	97 0.0	1144.7
14	2016	.952	209.5	27.59	.0362	178.4	895.4	72.00	967 .4	1145.9
15	2160	1.020	213.0	25.87	.0387	181.9	892.7	72.29	965.0	1146.9
16	2304	1.088	216.3	24.33	0.0411	185.2	890.1	72.57	962.7	1147.9
17	2448	.156	219.4	22.98	.0435	188.4	887.6	72.82	960.4	1148.9
18	2592	.224	222.4	21.78	.0459	191.4	885.3	73.07	958.3	1149.8
19	2736	.292	225.2	20.70	.0483	194.3	883.1	73.30	956.3	1150.6
20	2880	.360	227.9	19.72	.0507	197.0	880.9	73.53	954.4	1151.4
21	3024	1.429	230.5	18.84	0.0531	199.7	878.8	73·74	952.6	1152.2
22	3168	.497	233.0	18.03	.0554	202.2	876.8	73·94	950.8	1153.0
23	3312	.565	235.4	17.30	.0578	204.7	874.9	74·13	949.1	1153.7
24	3456	.633	237.7	16.62	.0602	207.0	873.1	74·32	947.4	1154.4
25	3600	.701	240.0	15.99	.0625	209.3	871.3	74·51	945.8	1155.1
26	3744	1.769	242.2	15.42	0.0649	211.5	869.6	74.69	944.3	1155.8
27	3888	.837	244.3	14.88	.0672	213.7	867.9	74.85	942.8	1156.4
28	4032	.905	246.3	14.38	.0695	215.7	866.3	75.01	941.3	1157.1
29	4176	.973	248.3	13.91	.0619	217.8	864.7	75.17	939.9	1157.7
30	4320	2.041	250.2	13.48	.0742	219.7	863.2	75.33	938.5	1158.3
31	4464	2.109	252.1	13.07	0.0765	221.6	861.7	75-47	937.2	1158.8
32	4008	.177	253.9	12.68	.0788	223.5	860.3	75-61	935.9	1159.4
33	4752	.245	255.7	12.32	.0811	225.3	858.9	75-76	934.6	1159.9
34	4896	.313	257.5	11.98	.0835	227.1	857.5	75-89	933.4	1160.5
35	5040	.381	259.2	11.66	.0858	228.8	856.1	76.02	932.1	1161.0
36	5184	2.449	260.8	11.36	0.0881	230.5	854.8	76.16	931.0	1161.5
37	5328	.517	262.5	11.07	.0903	232.2	853.5	76.28	929.8	1162.0
38	5472	.585	264.0	10.79	.0926	233.8	852.3	76.40	928.7	1162.5
39	5616	.653	265.6	10.53	.0949	235.4	851.0	76.52	927.6	1162.9
40	5760	.722	267.1	10.29	.0972	236.9	849.8	76.63	926.5	1163.4
41	5904	2.789	268.6	10.05	0.0995	238.5	848.7	76.75	925-4	1163.9
42	6048	.857	270.1	9.83	.1018	239.9	847.5	76.86	924-4	1164.3
43	6192	.925	271.5	9.61	.1040	241.4	846.4	76.97	923-3	1164.7
44	6336	.993	272.9	9.41	.1063	242.9	845.2	77.07	922-3	1165.2
45	6480	3.061	274.3	9.21	.1086	244.3	844.1	77.18	921-3	1165.6
46	6624	3.129	275.6	9.02	0.1108	245.6	843.1	77.29	920.4	1166.0
47	6768	.197	277.0	8.84	.1131	247.0	842.0	77.39	919.4	1166.4
48	6912	.265	278.3	8.67	.1153	248.3	841.0	77.49	918.5	1166.8
49	7056	·333	279.6	8.50	.1176	249.7	840.0	77.58	917.5	1167.2

PROPERTIES OF STEAM.

British Measure.

	,		,	,						
a	نيي	. 5	in Fahr.	lt:	<u>.</u>	ater	latent pound in	latent pound in	tent pound in	heat per lof steam T. U.
Presrure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	'E E	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of wal per pound i B. T. U.	# # E E	A PED	ratent Grapou	Total heat pound of stem B. T. U.
a de la	Pressur pounds square f	· 1 0	Temp. i degrees	Sing Part	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¥ 84.	He Te	H F F E	otal late zat per 1 steam T. U.	E E
£ 8.5	FEE	£ #	6 H	8 8 4	2.5 ≰	# 2m	Internal beat per poly steam in B. T. U.	External I heat per p of steam in B. T. U.	Total late heat per 1 of steam B. T. U.	L SE
										l
50	7200	3.401	280.8	8.34	0.1198	251.0	839.0	77.67	916.6	1167.6
51 52	7344 7488	.469	282.I 283.3	8.19 8.04	.1221	252.2 253.5	838.0 837.0	77.76 77.85	915.7 914.9	1168.0 1168.3
53	7632	.537 .605	284.5	7.90	.1266	254.7	836.0	77.94	914.0	1168.7
54	7776	.673	285.7	7.76	.1288	256.0	835.1	78.03	913.1	1169.1
55	7920	3.741	286.g	7.63	0.1310	257.1	834.2	78.12	912.3	1169.4
56	8064	3.741 .801	288.1	7.50	.1333	258.3	833.2	78.21	911.5	1169.8
57 58	8208	.878	289.2	7.38	.1355	259.5	832.3	. 78.29	910.6	1170.1
58	8352	.946 4.014	290.3	7.26	.1377	260.7 261.8	831.5	78.37 78.45	909.8	1170.5
59	8496	1	291.4	7.14	.1400	201.0	830.6	70.45	909.0	11/0.6
60	8640	4.082	292.5	7-03	0.1422	262.9	829.7	78.53 78.61	908.2	1171.2
61 62	8784 8928	.190	293.6	6.92 6.82	.1444 .1466	264.0 265.1	828.9 828.0	78.61 78.68	907.5	1171.5
63	9072	.218	294-7 295- 7	6.72	.1488	266.1	827.2	78.76	905.9	1171.0
64	9216	-354	296.7	6.62	.1511	267.2	826.4	78.83	905.2	1172.4
65	9360	4-422	297.8	6.52	0.1533	268.3	825.6	78.90	904.5	1172.8
66		.490	298.8	6.43	.1555	269.3	824.8	78.97	903.7	1173.1
67 68	9504 9648	.558 .626	299.8	6.24	.1 577	270.4	824.0	79.04	903.1	1173.4
69	9792	.626 .694	300.1	6.25 6.17	.1599 .1621	271.4	823.2 822.4	79.11	902.3	1173.7
!!!!!	9936	1 -	301.0		i	272.4	022.4	79.18	901.6	1174.0
70	10080	4.762	302.7	6.09	0.1643	273-4	821.6	79.25	900.9	1174.3
71 72	10224	.830 .898	303.7 304.6	6.00	.1665 .1687	274.3	820.9 820.1	79.32	900.2 899.5	1174.6
73	10512	.966	305.5	5.93 5.85	.1700	275.3 276.3	819.4	79-39 79-46	898.8	1175.1
74	10656	5.034	306.5	5.78	.1731	277.2	818.7	79-53	898.1	1175.4
75	10800	5.102	307.4	5.70	0.1753	278.2	817.9	70.50	897.5	1175.7
76	10944	.170	308.3	5.63	.1775	279.1 280.0	817.2	79.59 79.65	896.9	1176.0
77 78	11088	.238	309.2	5·5 7	.1797 .1818	280.0	816.5	79-7 I	896.2	1176.2
78 79	11232	.306	310.1 310.9	5.50	.1818	280.9 281.8	81 5.8 81 5.1	7 9-77 79-83	895.6 895.0	1176.5
11	113/0	-374	310.9	5.43	1 1		013.1	79.03		11/00
80	11520	5.442	311.8	5-37	0.1862	282.7	814.4	79.89	894.3	1177.0
81 82	11664 11808	.510 .578	312.7	5.31 5.25	.1884	283.6 284.5	813.8 813.0	79.95 80.01	893.7 893.1	1177.3
83	11952	.646	313.5 314.4	5.19	.1928	285.3	812.4	80.07	8Q2.5	1177.8
84	12096	.714	31 5.2	5.13	.1949	286.2	811.7	80.13	891.9	1178.0
85	12240	5.782	316.0	5.07	0.1971	287.0	1.118	80.19	891.3	1178.3
86	11384	.850	316.8	5.02	.1993	287.0	810.4	80.25	890.7	1178.3 1178.6
87 88	12528	81 9 .	317.6	4.96	.2015	288.7	809.8	80.30	890.1	1178.9
88 89	12672 12816	.986 6.054	318.4 319.2	4.91 4.86	.2036 .2058	289.5 290.4	809.2 808.5	80.35 80.40	889.5 888.9	1179.0
									- ,	
90	12960	6.122	320.0	4.81	0.2080	291.2	807.9	80.45	888.4 887.8	1179.5
91 92	13104 13248	.190 .258	320.8 321.6	4.76 4.71	.2102	292.0 292.8	807.3 806.7	80.50 80.56	887.2	1179.6
93	13392	.327	322.4	4.66	.2145	293.6	806.ī	80.56 80.61	886.7	1180.3
94	13536	.396	323.i	4.62	.2145 .2166	294.3	805.5	80.66	1.688	1180.5
95	13680	6.463	323.9	4-57	0.2188	295.1	804.9	80.71	885.6	1180.7
96	13824	.531	324.6		.2209	295.9	804.3	80.76	88 s.o	1180.9
97	13968	.599 .667	325.4	4-53 4-48	.2231	296.7	803.7	80.81	884.5	1181.2
98	14112 14256	.007	326.1 326.8	4.44	.2252 .2274	297.4 298.2	803.1 802.5	80.86 80.91	884.0 883.4	1181.4
79	-4250	·735	320.0	4.40	.22/4	290.2	302.5	00.91	60 3.4	1101.0
نـــــــــــــــــــــــــــــــــــــ						<u> </u>				J

TABLE 249.

PROPERTIES OF STEAM. British Measure.

								_		
Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
100 101 102 103 104	14400 14544 14688 14832 14976	6.803 .871 .939 7.007	327.6 328.3 329.0 329.7 330.4	4.356 .316 .276 .237 .199	0.2295 .2317 .2338 .2360 .2381	298.9 299.7 300.4 301.1 301.9	802.0 801.4 800.8 800.3 799.7	80.95 81.00 81.05 81.10 81.14	882.9 882.4 881.9 881.4 880.8	1181.8 1182.1 1182.3 1182.5 1182.7
105	15120	7.143	331.1	4.161	0.2403	302.6	799.2	81.18	880.3	1182.9
106	15264	.211	331.8	.125	.2424	303.3	798.6	81.23	879.8	1183.1
107	15408	.279	332.5	.088	.2446	304.0	798.1	81.27	879.3	1183.4
108	15552	.347	333.2	.053	.2467	304.7	797.5	81.31	878.8	1183.6
109	15696	.415	333.8	.018	.2489	305.4	797.0	81.36	878.3	1183.8
110	15840	7.483	334·5	3.984	0.2510	306.1	796.5	81.41	877.9	1184.0
111	15984	.551	335·2	.950	.2531	306.8	795.9	81.45	877.4	1184.2
112	16128	.619	335·8	.917	.2553	307.5	795.4	81.50	876.9	1184.4
113	16272	.687	336·5	.885	.2574	308.2	794.9	81.54	876.4	1184.6
114	16416	.757	337·2	.853	.2596	308.8	794.4	81.58	875.9	1184.8
115	16560	7.823	337.8	3.821	0.2617	309.5	793.8	81.62	875.5	1185.0
116	16704	.891	338.5	.790	.2638	310.2	793.3	81.66	875.0	1185.2
117	16848	.959	339.1	.760	.2660	310.8	792.8	81.70	874.5	1185.4
118	16992	8.027	339.7	.730	.2681	311.5	792.3	81.74	874.1	1185.6
119	17136	.095	340.4	.700	.2702	312.1	791.8	81.78	873.6	1185.7
120	17280	8.163	341.0	3.671	0.2724	312.8	791.3	81.82	873.2	1185.9
121	17424	.231	341.6	.643	.2745	313.4	790.8	81.86	872.7	1186.1
122	17568	.299	342.2	.615	.2766	314.1	790.3	81.90	872.2	1186.3
123	17712	.367	342.8	.587	.2787	314.7	789.9	81.94	871.8	1186.5
124	17856	.435	343.5	.560	.2809	315.3	789.4	81.98	871.4	1186.7
125	18000	8.503	344.1	3.534	0.2830	316.0	788.9	82.02	870.9	1186.9
126	18144	.571	344.7	.507	.2851	316.6	788.4	82,06	870.5	1187.1
127	18288	.639	345.3	.481	.2872	317.2	787.9	82.09	870.0	1187.2
128	18432	.708	345.9	.456	.2893	317.8	787.5	82.13	869.6	1187.4
129	18576	.776	346.5	.431	.2915	318.4	787.0	82.17	869.2	1187.6
130	18720	8.844	347.1	3.406	0.2936	319.0	786.5	82.21	868.7	1187.8
131	18864	.912	347.6	.382	.2957	319.7	786.1	82.25	868.3	1188.0
132	19008	.980	348.2	.358	.2978	320.3	785.6	82.28	867.9	1188.1
133	19152	9.048	348.8	.334	.2999	320.9	785.1	82.32	867.5	1188.3
134	19296	.116	349.4	.310	.3021	321.5	784.7	82.35	867.0	1188.5
135	19440	9.184	349.9	3.287	0.3042	322.1	784.2	82.38	866.6	1188.7
136	19584	.252	350.5	.265	.3063	322.6	783.8	82.42	866.2	1188.8
137	19728	.320	351.1	.424	.3084	323.2	783.3	82.45	865.8	1189.0
138	19872	.388	351.6	.220	.3105	323.8	782.9	82.49	865.4	1189.2
139	20016	.456	352.2	.199	.3126	324.4	782.4	82.52	865.0	1189.4
140 141 142 143 144	20160 20304 20448 20592 20736	9.524 .592 .660 .728 .796	352.8 353.3 353.9 354.4 355.0	3.177 .156 .135 .115	0.3147 .3168 .3190 .3211 .3232	325.0 325.5 326.1 326.7 327.2	782.0 781.6 781.1 780.7 780.3	82.56 82.59 82.63 82.66 82.69	864.6 864.2 863.8 863.4 863.0	1189.5 1189.7 1189.9 1190.0
145 146 147 148 149	20880 21024 21168 21312 21456	9.864 .932 10.000 .068 .136	355.5 356.6 356.6 357.1 357.6	3.074 .054 .035 .016 .997	0.3253 •3274 •3295 •3316 •3337	327.8 328.4 328.9 329.5 330.0	779.8 779.4 779.0 778.6 778.1	82.72 82.75 82.79 82.82 82.86	862.6 862.2 861.8 861.4 861.0	1190.4 1190.5 1190.7 1190.9

PROPERTIES OF STEAM.

British Measure.

Pressure in pounds per square inch.	Pressure in pounds per square foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet.	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B. T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
150	21600	10.204	358.2	2.978	0.3358	330.6	777·7	82.89	860.6	1191.2
151	21744	.272	358.7	.960	.3379	331.1	777·3	82.92	860.2	1191.3
152	21888	.340	359.2	.941	.3400	331.6	776·9	82.95	859.9	1191.5
153	22032	.408	359.7	.923	.3421	332.2	776·5	82.98	859.5	1191.7
154	22176	.476	360.2	.906	.3442	332.7	776·1	83.01	859.1	1191.8
155	22320	10.544	360.7	2.888	0.3462	333.2	775-7	83.04	858.7	1192.0
156	22464	.612	361.3	.871	.3483	333.8	775-3	83.07	858.3	1192.1
157	22608	.680	361.8	.854	.3504	334.3	774-9	83.10	858.0	1192.3
158	22752	.748	362.3	.837	.3525	334.8	774-5	83.13	857.6	1192.4
159	22896	.816	362.8	.820	.3546	335.3	774-1	83.16	857.2	1192.6
160	23040	10.884	363.3	2.803	o.3567	335.9	773-7	83.19	856.9	1192.7
161	23184	.952	363.8	.787	.3588	336.4	773-3	83.22	856.5	1192.9
162	23328	11.020	364.3	.771	.3609	336.9	772-9	83.25	856.1	1193.0
163	23472	.088	364.8	.755	.3630	337.4	772-5	83.28	855.8	1193.2
164	23616	.157	365.3	.739	.3650	337.9	772-1	83.31	855.4	1193.3
165 166 167 168 169	23760 23904 24048 24192 24336	.293 .361 .429 .497	365.7 366.2 366.7 367.2 367.7	2.724 .708 .693 .678 .663	0.3671 .3692 .3713 .3734 .3754	338.4 338.9 339.4 339.9 340.4	771.7 771.3 771.0 770.6 770.2	83.34 83.37 83.39 83.42 83.45	855.1 854.7 854.3 854.0 853.6	1193.5 1193.6 1193.8 1193.9 1194.1
170 171 172 173 174	24480 24624 24768 24912 25056	.633 .701 .769 .837	368.2 368.6 369.1 369.6 370.0	2.649 .634 .620 .606 .592	0.3775 .3796 .3817 .3838 .3858	340.9 341.4 341.9 342.4 342.9	769.8 769.4 769.1 768.7 768.3	83.48 83.51 83.54 83.56 83.59	853.3 852.9 852.6 852.2 851.9	1194.2 1194.4 1194.5 1194.7 1194.8
175 176 177 178 179	25200 25344 25488 25632 25776	.973 12.041 .109 .177	370.5 371.0 371.4 371.9 372.4	2.578 .564 .550 .537 524	0.3879 .3900 .3921 .3942 .3962	343-4 343-9 344-3 344-8 345-3	767.9 767.6 767.2 766.8 766.5	83.62 83.64 83.67 83.70 83.73	851.6 851.2 850.9 850.5 850.2	1194.9 1195.1 1195.2 1195.4 1195.5
180 181 182 183 184	25920 26064 26208 26352 26496	.313 .381 .449 .517	372.8 373.3 373.7 374.2 374.6	2.510 -497 -485 -472 -459	0.3983 .4004 .4025 .4046 .4066	345.8 346.3 346.7 347.2 347.7	766.1 765.8 765.4 765.0 764.7	83.75 83.77 83.80 83.83 83.86	849.9 849.5 849.2 848.9 848.5	1195.6 1195.8 1195.9 1196.1 1196.2
185	26640	12.585	375.1	2.447	0.4087	348.1	764.3	83.88	848.2	1196.3
186	26784	.653	375.5	.434	.4108	348.6	764.0	83.90	847.9	1196.5
187	26928	.721	376.0	.422	.4129	349.1	763.6	83.92	847.5	1196.6
188	27072	.789	376.4	.410	.4150	349.5	763.3	83.95	847.2	1196.7
189	27216	.857	376.8	.398	.4170	350.0	762.9	83.97	846.9	1196.9
190	27360	12.925	377·3	2.386	0.4191	350.4	762.6	83.99	846.6	1197.0
191	27504	.993	377·7	·374	.4212	350.9	762.2	84.02	846.3	1197.1
192	27648	13.061	378.2	·362	.4233	351.3	761.9	84.04	845.9	1197.3
193	27792	.129	378.6	·351	.4254	351.8	761.6	84.06	845.6	1197.4
194	27936	.197	379.0	·339	.4275	352.2	761.2	84.08	845.3	1197.5
195	28080	13.265	379-4	2.328	0.4296	352.7	760.9	84.10	845.0	1197.7
196	28224	•333	379-9	.317	.4316	353.1	760.5	84.13	844.7	1197.8
197	28368	.401	380.3	.306	.4337	353.6	760.2	84.16	844.4	1197.9
198	28512	.469	380.7	.295	.4358	354.0	759.9	84.19	844.0	1198.1
199	28656	•537	381.1	.284	-4379	354.4	759.5	84.21	843.7	1198.2

TABLE 249.

PROPERTIES OF STEAM. British Measure.

Pressure in pounds per equare inch.	Pressure in pounds per equare foot.	Pressure in atmospheres.	Temp. in degrees Fahr.	Volume per pound in cubic feet	Weight per cubic foot in pounds.	Heat of water per pound in B. T. U.	Internal latent heat per pound of steam in B T. U.	External latent heat per pound of steam in B. T. U.	Total latent heat per pound of steam in B. T. U.	Total heat per pound of steam in B. T. U.
200 201 202 203 204 205 206	28800 28944 29088 29232 29376 29520 29664 29808	13 605 13.673 13.742 13.810 13.878 13.946 14.014 14.082	381.6 382.0 382.4 382.8 383.2 383.7 384.1	2.273 .262 .252 .241 .231 2.221 .211	0.4399 .4420 .4441 .4461 .4482 0.4503 .4523	354-9 355-3 355-8 356-2 356-6 357-1 357-5	759-2 758-9 758-5 758-2 757-9 757-5 757-2	84.23 84.26 84.28 84.30 84.33 84.33	843.4 843.1 842.8 842.5 842.2 841.9 841.6 841.3	1198.3 1198.4 1198.6 1198.7 1198.8
207 208 209 210 211 212	29952 30096 30240 30384 30528	14.150 14.218 14.386 14.454 14.522	384.9 385.3 385.7 386.1 386.5	.191 .181 2.171 .162 .152	.4544 .4564 .4585 0.4605 .4626 .4646 .4666	357.9 358.3 358.8 359.2 359.6 360.0	756.9 756.6 756.2 755.9 755.6 755.3	84-40 84-42 84-44 84-46 84-48 84-51	841.0 840.7 840.4 840.1 839.8	1199.2 1199.3 1199.4 1199.6 1199.7 1199.8
213 214 215 216 217 218	30672 30816 30960 31104 31248 31392	14.590 14.658 14.726 14.794 14.862 14.930	386.9 387.3 387.7 388.1 388.5 388.9 389.3	.143 .134 2.124 .115 .106 .097	.4666 .4687 0.4707 .4727 .4748 .4768 .4788	360.4 360.9 361.3 361.7 362.1 362.5 362.9	755.0 754.7 754.3 754.0 753.7 753.4	84.53 84.55 84.57 84.60 84.62 84.64 84.66	839.2 839.2 838.9 838.6 838.3 838.0 837.7	1199.9 1200.1 1200.2 1200.3 1200.4 1200.5

RATIO OF THE ELECTROSTATIC TO THE ELECTROMAGNETIC UNIT OF ELECTRICITY (v) IN RELATION TO THE VELOCITY OF LIGHT.

	Ratio of elec	Reference.				
Date of determination.	in cms. per sec.*	Determined by —	Publication.	Year.		
1856	3.107×10 ¹⁰	Weber & Kohlrausch .	Pogg. Ann	1856		
1868	2.842 × 10 ¹⁰	Maxwell	Phil. Trans	1868		
1869	2.808 × 10 ¹⁰	W. Thomson & King .	B. A. Report	1869		
1872	2.896×10 ¹⁰	McKichan	Phil. Trans	1872		
1879	2.960 × 10 ¹⁰	Ayrton & Perry	Jour. Soc. Tel. Eng.	1879		
1879	2.968 × 10 ¹⁰	Hocken	B. A. Report	1879		
1880	2.955 × 10 ¹⁰	Shida	Phil. Mag	1880		
1881	2.99 × 10 ¹⁰ †	Stoletow	Soc. de Phys	1881		
1881	3.019 × 10 ¹⁰	Klemenčič	Wien. Ber	1884		
1882	2.923 × 10 ¹⁰	Exner	Wien. Ber	1882		
1883	2.963 × 10 ¹⁰	J. J. Thomson	Phil. Trans	1883		
1888	3.009 × 10 ³⁰	Himstedt	Wied. Ann. 35 .	1888		
1889	2.981 × 10 ¹⁰	Rowland	Phil. Mag.	1889		
1889	3.000 × 10 ¹⁰	Rosa		1889		
1889	3.004 × 10 ¹⁰	W. Thomson	Phil. Mag	1889		
1890	2.995 × 10 ¹⁰	J. J. Thomson & Searle	Phil. Trans	1890		

^{*} The results in this column correspond to a value of the B. A. ohm = .98664 \times 108 cms. per sec. If we neglect the first four determinations, and also that of Exner and Shida, because of their large deviation from the mean, the remaining determinations give a mean value of 2.9889 + .0137, a value which practically agrees with the best determinations of the velocity of light. (Cf. Table 181.)
† Given as between 2.98 × 10¹⁰ and 3.00 × 10¹⁰.

TABLE 251.

DIELECTRIC STRENGTH.

Difference of Electric Potential required to produce a Spark in Air.

Spark length in centimetres.	Difference of potential in volts required to produce a spark according to —								
	W. Thomson.1	De la Rue. ³	MacFarlane.3	Baille.4	Freyberg.				
10.0	790	500	-		_				
0.02	1340	970	-	_	-				
0.04	1840	1900	-	-	-				
0.07	2940	3170	-	-	-				
0.10	4010	4330	3507	4401	4344				
0.14	5300	5740	-	_					
0.20	-	7620	5715 7818	7653 10603	7539				
0.30	-	10400		10603	10671				
0.40	-	-	9879	13431	13665				
0.50	-	-	11925	16341	16293				
0.60	-	- ·	13956	19146	19059				
0.80	-	-	18006	25458	24465				
1.00	-	- ·	22044	31647	28800				

^{4 &}quot;Ann. de Chim. et de Phys." vol. 25, 1882.

(b) MEDIUM, AIR. ELECTRODE TERMINALS, BALLS OF DIAMETER d IN CENTIMETERS.

Experiments of Freyberg.

Spark length in centimetres.	d = 0 (points).	d=0.50	d = 1.0	d = 2.0	d=4.0	d = 6.0
1.0	3720	5050 8600	466o	4560	_	4530
0.2	4700	8600	9500	8700	8400	7900
0.3	5300	11100	11700	11600	11200	10500
0.4	6000	13500	14000	14400	14200	12800
0.6	6900	13500 16600	19300	19500	20100	19200
0.8	8100	18400	23200	24600	25800	26000
1.0	8600	19500	25800	29000	29900	31600
2.0	10100	24600	35400	_		
5.0	13100	30700		_	_	_

From the above table it appears, as remarked by Freyberg, that for each length of spark there is a particular size of ball which requires the greatest difference of potential to produce the spark.

(0) Comparison of Results of Determinations, the Terminals being Balls.

		Differe	nce of poter	ntial require	d to produc	ng to —	o —		
Spark length in cms.	Baille.	Bichat and Blondlot.	Paschen.	Freyberg.	Paschen.	Freyberg.	Quincke.2	Baille.	Freyberg.
Balls 1 centimetre diameter.			Balls 2 cms. diameter. Balls 6 cms. di			ns. diam.			
I.	4590	4200	486o	4660	4830	4560	4440	4440	4530 7860
.2	8040 11190	8130 10860	8430 11670	9500 11670	8340 11670	8700	7920 11190	7680 10830	7860 I
-4	13650	14130	14830	13980	14820	14400	14010	13500	12750
.6	16410 19560	16800 19350	17760 20460	16800 19260	1803 0 20820	17040 19470	16920 19980	16530 195 60	16410 19200
.7 .8	21690 23280	21030	22640	20070	23670	22530	22590	22620	22590
9.9	24030	23190 24540	24780 -	23220 25110	_	24630 27240	²⁵⁷⁷⁰	26400 29220	26010 28770
1.0	24930	25800	-	25770	-	29040	-	33870	31620

1 "Electricien," Aug. 1886.

^{* &}quot;Phil. Mag." vol. 10, 1880.
* Wied. Ann." vol. 38, 1889.

DIELECTRIC STRENGTH.

TABLE 252. — Effect of Pressure of the Gas on the Dielectric Strength.*

Length of spark is indicated by / in centimetres. The pressure is in centimetres of mercury at oo C.

		Hydrogen	•		Air.		Carbon dioxide.		
Pressure.	/=o.s	<i>l</i> =0.4	/=o.6	l=0.2	1=04	/=a.6	/=0.2	/=0.4	/=o.6
2	510	606	-	819	1202	1 536	1125	1446	1650
4	729	1017	1437	1140	1725	2289	1431	1971	2373
6	945	1323	1839	1455	2229	3012	1755	2484	3105
8	1098	1572	2172	1740	2721	3684	2070	2913	3813
10	1242	1806	2463	2004	3186	4272	2355	3288	4278
20 25 30 35	1 584 1866 2169 2475 2748	2376 2937 3444 3957 4407	3330 4020 4668 5331 5997	2664 3294 3816 4347 4845	4212 5205 6108 7020 7980	5736 7074 8346 9570 10797	2991 3705 4248 4707 5163	4227 5235 6120 6921 7737	5592 6801 8004 9147 10293
40	3051	4863	6681	5349	8853	12009	5772	8543	11397
45	3339	5334	7347	5853	9639	13224	6222	9303	12483
50	3606	5829	7971	6288	10431	14361	6489	10038	13557
55	2834	6294	8583	6711	11259	15441	6789	10650	14610
60	4107	6747	9222	7134	12084	16548	7197	11397	15702
65	4476	719 7	9867	7569	12885	17688	7605	12114	16740
70	4731	7629	10476	8016	13710	18804	8001	12816	17727
75	4914	8031	11 04 0	8487	14523	19896	8388	13506	18705

Paschen deduces from the above, and also shows by separate experiments, that if the product of the pressure of the gas and the length of spark be kept constant the difference of potential required to produce the spark also remains constant.

In the following short table l is length of spark, P pressure, and V difference of potential, the unit being the same as above. The table illustrates the potential difference required to produce a spark for different values of the product l.P.

l.P.	V for H	V for Air.	V for CO ₂	l.P.	V for H	V for Air.	V for CO2
0.2 0.4 0.6 1.0 2.0 4.0	456 567 660 846 1427 1884	669 837 996 1326 2019 3216	873 1110 1281 1599 2271 3468	6.0 10.0 20.0 30.0 45.0	2481 3507 5835 8004 11013	4251 6162 10392 13448 19848	4443 6198 10011 13527 18705

TABLE 253. — Dielectric Strength (or Difference of Potential per Centimetre of Spark Length) of Different Substances, in Kilo Volts.†

Dielectric strength.		Substance.	Dielectric strength.	Substance.	Dielectric strength.
Air (thickness 5 mm.) . Carbon dioxide " Coal gas " Hydrogen " Oxygen "	23.8 22.7 15.1 22.2 22.3	Beeswaxed paper . Paraffined paper . Paraffin (solid)	540. 360. 130.	Kerosene oil Oil of turpentine . Olive oil Paraffin oil Paraffin (melted) .	50. 94. 82. 87. 56.

[•] Paschen. † MacFarlane and Pierce, "Phys. Rev." vol. 1, p. 165, 1893.

TABLE 254.

COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(a) Double Fluid Bat	TERIES.		
Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F.
Bunsen	Amalgamated zinc	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O \end{array} \right\} $	Carbon	Fuming H ₂ NO ₈ .	1.94
"	ec 46	64	u	HNO2, density 1.38	1.86
Chromate.	и и	12 parts K ₂ Cr ₂ O ₇ to 25 parts of H ₂ SO ₄ and 100 parts H ₂ O	и	{ I part H ₂ SO ₄ to } { I2 parts H ₂ O . }	2.00
".	u u	$\begin{cases} 1 \text{ part } H_2SO_4 \text{ to } \\ 12 \text{ parts } H_2O . \end{cases}$	"	{ 12 parts K ₂ Cr ₂ O ₇ } { to 100 parts H ₂ O }	2.03
Daniell .	44 44	$\{ 1 \text{ part } H_2SO_4 \text{ to } \}$ $\{ 4 \text{ parts } H_2O . \}$	Copper	{ Saturated solution } of CuSO ₄ +5H ₂ O }	1.06
".	u u	{ I part H ₂ SO ₄ to } { I2 parts H ₂ O . }	"	44	1.09
" .	44	{ 5% solution of } { ZnSO ₄ + 6H ₂ O }	"	64	1.08
".	66 66	{ I part NaCl to } { 4 parts H ₂ O . }	64	66	1.05
Grove	66 66	$ \left\{ \begin{array}{c} \text{1 part } H_2SO_4 \text{ to } \\ \text{12 parts } H_2O . \end{array} \right\} $	Platinum	Fuming HNOs	1.93
"	44 44	Solution of ZnSO ₄	4	HNO ₈ , density 1.33	1.66
"	u u	{ H ₂ SO ₄ solution, } density 1.136. }	u	Concentrated HNOs	1.93
"	" "	{ H ₂ SO ₄ solution, } density 1.136 . }	"	HNO ₈ , density 1.33	1.79
cc	66 68	{ H ₂ SO ₄ solution, } density 1.06 . }	u	66	1.71
"	66 66	{ H ₂ SO ₄ solution, } density 1.14 . }	44	HNO ₈ , density 1.19	1.66
"	se 44	H ₂ SO ₄ solution, density 1.06 .	66	46 66 66	1.61
"	" "	NaCl solution	"	" density 1.33	1.88
Marié Davy	ec 66	{ 1 part H ₂ SO ₄ to } { 12 parts H ₂ O }	Carbon	Paste of protosulphate of mercury and water	1.50
Partz	66 66	Solution of MgSO ₄	46	Solution of K ₂ Cr ₂ O ₇	2.06

^{*} The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

SMITHSONIAN TABLES.

TABLE 254
COMPOSITION AND ELECTROMOTIVE FORCE OF BATTERY CELLS.

Name of cell.	Negative pole.	Solution.	Positive pole.	E. M. F. in volts.		
		(b) Single Fluid Batterie	s.			
Leclanche	Amal. zinc	(mac)	Carbon surrounded by powdered carbon and peroxide of manganese	1.46		
Chaperon	æ	Solution of caustic } potash	Copper and CuO	0.98		
Edison-Lelande .	u	"	· "	0.70		
Chloride of silver	Zinc	{ 23 % solution of sal- ammoniac }	Silver surrounded by silver chloride	1.02		
Law	"	15% " "	Carbon	1.37		
Dry cell (Gassner)	44	1 pt. ZnO, 1 pt. NH ₄ Cl, 3 pts. plaster of paris, 2 pts. ZnCl ₂ , and water to make a paste	66	1.3		
Poggendorff	Amal. zinc	Solution of chromate { of potash }	44	1.08		
ec	"	$\left\{\begin{array}{c} 12 \text{ parts } K_2Cr_2O_7 + \\ 25 \text{ parts } H_2SO_4 + \\ 100 \text{ parts } H_2O \end{array}\right.$	u	2.01		
J. Regnault	44	(1 part H ₂ SO ₄ +) 12 parts H ₂ O +) 1 part CaSO ₄)	Cadmium	0 34		
Volta couple	Zinc	`H ₂ O	Copper	0.98		
(6) Standard Cells.						
Kelvin, Gravity, a Daniell	Amal. zinc	(Sity 1.40)	Electrolytic cop- per in CuSO ₄ sol. density 1.10)	\[\begin{align*} \ \ \ \00016 \ (t-15) \end{align*} \]		
Clark standard .	u	Mercurous sulphate in paste with saturated solution of neutral ZnSO ₄	Mercury	\[\begin{align*} \limit{1.434 \left[1 \\00077 \\ (t-15) \end{align*} \]		
Baille & Ferry .	"	{ Zinc chloride, density }	Lead surrounded by powdered PbCl ₂	o.50 tem- perature coeffic't about .00011		
Gouy	"	Oxide of mercury in a 10 % sol. of ZnSO ₄ (paste)	Mercury	(1.387 [1 0002 (t-12)]		
Lodge's standard cel iell zinc-zinc sulphate,	l and Fleming copper-copper	's standard cell are, like the Kel sulphate cell.	vin cell above, modifications	s of the Dan-		
		(d) SECONDARY CELLS.				
Faure-Sellon- (Volckmar) . }	Lead	H ₂ SO ₄ solution of density 1.1 }	PbO ₂	2.2*		
Regnier (1)	Copper .	$CuSO_4 + H_2SO_4$	"	1.68 to 0.85, av- erage 1.3.		
" (2) Main	Amal, zinc Amal, zinc	ZnSO ₄ solution H ₂ SO ₄ density ab 't 1.1	" in H ₂ SO ₄	2.36 2.50		

^{*} F. Streintz gives the following value of the temperature variation $\frac{dE}{dt}$ at different degrees of charge:—

E. M. F.	dE / dt × 10 ⁸	E. M. F.	dE / dt × 10 ⁸	E. M. F.	$dE \int dt \times 10^{6}$
1.9223 1.9828	140 228	2.0031 2.0084 2.0105	335 285 255	2.0779 2.2070	130 73

SMITHSONIAN TABLES.

TABLE 255.

THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals at mean temperature t is the electromotive force in the circuit for one degree difference of temperature between the junctions. It is expressed by dE/dt = A + Bt, when dE/dt = 0, t = -A/B, and this the neutral point or temperature at which the thermoelectric power vanishes. The ratio of the specific heat of electricity to the absolute value of the temperature t is expressed by -B for any one metal when the other metal is lead. The thermoelectric power of different couples may be inferred from the table, as it is the difference of the tabulated values with respect to lead, which is here taken as zero. The table has been compiled from the results of Becquerel, Matthieson, and Tait. In reducing the results the electromotive forces of the Grove's and the Daniell cells have been taken as 1.95 and 1.07 volts respectively.

			Thermoelec	tric power	Neutral	
Substance.	Α	B × 10−1	junctions (m		$-\frac{A}{B}$	Author- ity.
Aluminium	0.76		0.68		TOF	T
Antimony, comm'l pressed wire	- 0.70	-0.39 -	-6.0	0.56 -	195	M
u axial · · ·	-	-	22.6	-	-	"
" equatorial	-	-	26.4	-	-	" P
" ordinary	11.94	5.06	—17.0 12.95	- 14-47	236	B
4				12.7	-	B
Arsenic		-	13.56	- '		M
Bismuth, comm'l pressed wire .	-	-	97.0	-	· -	"
" pure " " . " crystal, axial	_		89.0 65.0	_	_	"
" " equatorial .	-	-	45.0	-	-	"
" commercial			-	39-9	-,	B
Cadmium	2.63	-4 .24	-3.4 8	-4. 75	62	T B
Cobalt	_	_	22.	-2.45	_	M
Copper	-1.34	-0.94	-1.52	-1.81	— 143	T
" commercial	-	-	0.10	-	-	M
" galvanoplastic	_	_	—3.8 —1.2	_	_	44
"·	-2.80	-1.01	-3.0	3.30	-277	T
Iron	-17.15	4.82	1 d.2	-14.74	356	"
" pianoforte wire	-	-	-17.5	-	-	M B
" commercial	-		_	-12.10 -9.10	_	" I
Lead	-	0.00	0.00	0.00	-	-
Magnesium	-2.22	0.94	-2.03	-1.75	236	T
Mercury	_	_	0.413		_	M B
Nickel	_	_		3.30 15.50	_	ı ı
" (—18° to 175°)	21.8	5.06	22.8	24.33	438	T
" (250°–300°)	83.57	-23.84	-		-	"
" (above 3400)	3.04 6.18	5.06 3.55	6.9	7.96	—I74	
i anadrum	-	3.33	-	6.9	-/4	B
Phosphorus (red)	-	-	-29.9	- 1	-	M
Platinum		-	-0.9	-	-	T
" (malleable)	2.57 0.60	0.74 1.00	-2.42 8.82	2.20 1.15	347 —55	
" wire	-	-	-	-0.94	-33	В
" another specimen .	-	-	-	2.14	-	" (
Platinum-iridium alloys: 85% Pt + 15% Ir	7.90	-0.62	8.03	-8.21	—I274	T
90% Pt + 10% Ir	-5.90	1.33	—6.03 —5.63	-5.23	444	" '
90% Pt + 10% Ir 95% Pt + 5% Ir	−6. 15	-0.55	6.26	-6.42	—1118	
Selenium	-	-	—8 07.	- 06	-	M
Silver	-2.12	—I.47	-2.41 -3.00	2.86 	—I44	M
" wire	_	-		-2.18	-	В
Steel	—I I.27	3.25	—10.62	 9.65	347	T
Tellurium	_	_	—502.		-	M B
Tin (commercial)	-	-	_	-429.3 -0.33	_	D
	-	-	—o.1	-	-	M
	0.43	-0.55 -2.38	0.33	0.16	78	T
Zinc	-2.32	-2.38	$\frac{-2.79}{-3.7}$	-3.51	98	M
pure pressed	1	!	3.7		l	•••

B = Ed. Becquerel, "Ann. de Chim. et de Phys " [4] vol 8. T = Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

M = Matthieson, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.

THERMOELECTRIC POWER OF ALLOYS.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as a reference metal, the thermoelectric power of lead to copper was taken as —1.9.

Substance.	Relative quantity.	Thermo- electric power in microvolts.	Substance.	Relative quantity.	Thermo- electric power in microvolts.
Antimony Cadmium	806 } 696 }	227	Antimony Bismuth	10 }	8.8
Antimony Cadmium	4 2	146	Antimony Iron	4 }	2.5
Zinc	806)		Antimony	8 }	1.4
Cadmium Bismuth	696 }	137	Antimony Lead	8 }	-0.4
Antimony Zinc	806 } 406 }	95	Bismuth	2 }	-43.8 -33.4
Antimony Zinc	806) 406 }	8.1	Antimony Bismuth Antimony	1 } 4 } 1 }	-51.4
Antimony	4		Bismuth Antimony	8 } 1 }	— 63.2
Lead Zinc	I	76	Bismuth	10 }	68.2
Antimony Cadmium	4 2	46	Bismuth	12 }	66.9
Zinc	I		Bismuth	2 } I }	60
Antimony Zinc	2 I	43	Bismuth	10 }	24.5
Antimony	12 10 }	1	Zinc	12 } 1 } 12 }	-31.1
Zinc	3)	35	Arsenic	12 {	-46.0
Antimony Tellurium	10}	10.2	Bismuth sulphide	1 }	68.1

TABLE 257.

TABLE 258.

NEUTRAL POINTS WITH LEAD.*

Substance.	Temp. C.	Substance.	Temp. C.	
Gold Argentan Cobalt . Palladium Antimony Silver	-580° -424 -276 -238 -228 -172 -156 -144 -132	Zinc Cadmium . Platinum . Tin Rhodium . Ruthenium Aluminium Magnesium Iron	-95° -59 -56 75 132 136 212 239 356	

SPECIFIC HEATS OF ELECTRICITY.

The numbers are the coefficients B in the equation $\frac{dE}{dt} = A + Bt$, and have to be multiplied by the absolute at temperature T to give the specific heat of electricity. (See also Table 255.)

Metal.	Sp. ht. of el	Metal.	Sp. ht. of el.
Aluminium Antimony Argentan Bismuth . Cadmium Cobalt . Copper . Gold Iron Iridium .	.00039 .02221 —.00507 —.01073 .00425 —.01141 .00094 .00101 —.00481	Magnesium Nickel: To 175° C. 250°-310° Above 340° Platinum (soft) Palladium Rhodium Rubidium Silver Tin	0009400507 .002190035100109003550011300206 .00148
Lead	.00000	Zinc	.00235

^{*} Tait's "Heat," p. 180. † Calculated from a table given by Tait by assuming the electromotive force of a Grove's cell = 1.95 volts.

TABLE 259.

THERMOELECTRIC POWER OF METALS AND SOLUTIONS.*

Thermoelectric power of circuits, the two parts of which are either a metal and a solution of a salt of that metal or two solutions of salts. The concentration of the solution was such that in 1000 parts of the solution there was one half gramme equivalent of the crystallized salt. The circuit is indicated symbolically; for example, Cu and CuSO₄ indicates that the circuit was partly copper and partly a solution of copper sulphate.

Substances forming circuit.	Substances forming circuit. Thermoelectric power in microvolts.		Insoluble salts mixed with a solution of the corresponding zinc or cadmium salts			
Cu and CuSO ₄ Zn and ZnSO ₄ Cu and CuAc (acetate) . Pb and PbAc Zn and ZnAc	754 760 660 176 693	for the purpose of acting as The other part of the circuit of the insoluble salts. The re- plex and of doubtful value.	was the metal			
Cd and CdAc	503 562 562 632	Substances forming circuit.	Thermoelectric power in microvolts.			
Zn and Zn I ₂	602 594	Ag and AgCl in ZnCl ₂ . Ag and AgCl in CdCl ₂ .	143 310			
CuSO ₄ and ZnSO ₄ CuAc and ZnAc	40 8	Ag and AgBr in ZnBr ₂ . Ag and AgBr in CdBr ₂ .	327 461			
Zn A c and CdAc	0	Ag and AgI in ZnI_2	414			
CuAc and CdAc PbAc and ZnAc	o 73	Ag and AgI in CdI_2 Hg and Hg_2Cl_2 in $ZnCl_2$.	unsuccessful 680			
PbAc and CdAc PbAc and CuAc	- 54	Hg and Hg_2Cl_2 in $CdCl_2$.	673			
PbAc and CuAc ZnCl2 and CdCl2	133 9	Hg and Hg_2Br_2 in $ZnBr_2$. Hg and Hg_2Br_2 in $CdBr_2$.	650 815			
$Zn Br_2$ and $CdBr_2$ $Zn I_2$ and CdI_2	15 82	Hg and Hg ₂ I ₂ in ZnI ₂ Hg and Hg ₂ I ₂ in CdI ₂ .	948 891			

TABLES 260, 261.

PELTIER EFFECT.

TABLE 260. — Jahn's Experiments.†

TABLE 261. - Le Roux's Experiments.:

Current flows from copper to metal mentioned.

Table gives therms per ampere per hour.

Table gives therms per ampere per hour, and current flows from copper to substance named.

Metals.			Therms.
Cadmium .		•	-0.616
Iron			— 3.613
Nickel			4.362
Platinum .	•	•	0.320
Silver		•	-0.413
Zinc	•	•	— 0.585
Cd to CdSO4			4.29
Cu to CuSO ₄			-1.4
Ag to AgNO ₈			7.53
Zn to ZnSO4			-2.14

Metals.						Therms.
Antimony (Becquerel's) § (commercial)						13.02
Bismuth "	(pure) (Becqu	ierel's	s) i	:	:	19.1 25.8
Cadmiur German		:	:	:		0.46 2.47
iron Zinc		:	:	:	•	2.5 0.39

^{*} Gockel, "Wied. Ann." vol. 24, p. 634.

† "Wied. Ann." vol. 34, p. 767.

\$ "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.

\$ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.

Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 262.

CONDUCTIVITY OF THREE-METAL AND MISCELLANEOUS ALLOYS.

Conductivity $C_1 = C_0 (1 + at + bt^2)$.

Metals and alloys.	Composition by weight	<u>Co</u> 20 ⁴	a × 10 ⁶	δ× 10 ⁹	Authority.
Gold-copper-silver	58.3 Au + 26.5 Cu + 15.2 Ag 66.5 Au + 15.4 Cu + 18.1 Ag 7.4 Au + 78.3 Cu + 14.3 Ag	7.58 6.83 28.06	574 529 1830	924 93 7280	I I I
Nickel-copper-zinc	{ 12.84 Ni + 30.59 Cu + } { 6.57 Zn by volume }	4.92	444	51	1
Brass	Various	12.2-15.6 12.16 14.35	I-2 × 10 ⁸ - -	-	3
German silver	Various	3-5	-	-	2
44 4	(60.16 Cu + 25.37 Zn + 14.03 Ni+.30 Fe with trace (of cobalt and manganese.)	3-33	3 60	-	4
Aluminium bronze		7.5-8.5	5-7 × 10 ²	-	2
Phosphor bronze		10-20	-	-	2
Silicium bronze		4 I	-	-	5
Manganese-copper	30 Mn + 70 Cu	1.00	40	-	4
Nickel-manganese-copper	3 Ni + 24 Mn + 73 Cu	2.10	30	-	4
Nickelin	(18.46 Ni + 61.63 Cu + 19.67 Zn + 0.24 Fe + 0.19 Co + 0.18 Mn)	3.01	300	_	4
Patent nickel	(25.1 Ni + 74.41 Cu + 0.42 Fe + 0.23 Zn + (0.13 Mn + trace of cobalt)	2.92	190	-	4
Rheotan	(53.28 Cu + 25.31 Ni + 16.89 Zn + 4.46 Fe + 0.37 Mn · · · · · · ·	1.90	410	-	4
Copper-manganese-iron .	91 Cu + 7.1 Mn + 1.9 Fe . 70.6 Cu + 23.2 Mn + 6.2 Fe	4.98 1.30	120 22	-	6
es 66 66 .	69.7 Cu + 29.9 Ni + 36 Fe.	2.60	120	– Temp. C.º	7
Manganin	84 Cu + 12 Mn + 4 Ni	2.33	25 14	10-20 20-30	8
"		"	4	30-35	8
4	" " " "	"	3	35-40 40-45	8
"	66 66 66	"	— I	45-50	8
66	66 66 66	66 46	-2 -4	50-55 55-68	8
		Van der Ve Blood.		eusner. indeck.	_

CONDUCTING POWER OF ALLOYS.

I his table shows the conducting power of alloys and the variation of the conducting power with temperature. The values of C_0 were obtained from the original results by assuming silver $=\frac{10^6}{1.585}$ mhos. The conductivity is

taken as $Ct = C_0$ ($t = at + \beta t^0$), and the range of temperature was from 0^0 to 100° C. The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (a) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptions, the percentage variation between 0^0 and 100° can be calculated from the formula $P = P_0 \frac{t}{R}$, where t is the observed and t the calculated conducting power of the mixture at 100° C.,

and P_{σ} is the calculated mean variation of the metals mixed.

	Weight %	Vo lume %	<u>C</u> .		å× 10³	Variation	per 100° C.
Alloys.	of first	named.	104	a × 10 ⁸	<i>8</i> × 10 ⁵	Observed.	Calculated.
		Gı	ROUP 1.				
SnePb	77.04 82.41 78.06 64.13 24.76 23.05 7.37	83.96 83.10 77.71 53.41 26.06 23.50 10.57	7·57 9·18 10·56 6·40 16·16 13·67 5·78	3890 4080 3880 3780 3780 3850 3500	8670 11870 8720 8420 8000 9410 7270	30.18 28.89 30.12 29.41 29.86 29.08 27.74	29.67 30.03 30.16 29.10 29.67 30.25 27.60
		G	ROUP 2.				
Lead-silver (Pb ₂₀ Ag) . Lead-silver (PbAg) . Lead-silver (PbAg ₂) . Tin-gold (Sn ₁₂ Au) " (Sn ₅ Au)	95.05 48.97 32.44 77.94 59.54	94.64 46.90 30.64 90.32 79.54	5.60 8.03 13.80 5.20 3.03	3630 1960 1990 3080 2920	7960 3100 2600 6640 6300	28.24 16.53 17.36 24.20 22.90	19.96 7.73 10.42 14.83 5.95
Tin-copper	92.24 80.58 12.49 10.30 9.67 4.96	93.57 83.60 14.91 12.35 11.61 6.02 1.41	7-59 8.05 5-57 6.41 7-64 12.44 39-41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070	28.71 26.24 5.18 5.48 6.60 9.25 21.74	19.76 14.57 3.99 4.46 5.22 7.83 20.53
Tin-silver	91. 3 0 53.85	96.52 75.51	7.81 8.65	3820 3770	8190 8550	30.00 29.18	23.31 11.89
Zinc-copper †	36.70 25.00 16.53 8.89 4.06	42.06 29.45 23.61 10.88 5.03	13.75 13.70 13.44 29.61 38.09	1370 1270 1880 2040 2470	1340 1240 1800 3030 4100	12.40 11.49 12.80 17.41 20.61	11.29 10.08 12.30 17.42 20.62

Note. -- Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at a o a c. and a the corresponding specific resistance, a (a + m) $\Rightarrow m$.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthieson's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

From the experiments of Matthieson and Vogt, "Phil. Trans. R. S." v. 154.
 Hard-drawn.

TABLE 263.

CONDUCTING POWER OF ALLOYS.

GROUP 3.								
	Weight %	Volume %	<u>C</u> ,			Variation per 100° C.		
Alloys.	of first	named.	104	a × 10 ⁸	<i>b</i> × 10 ⁹	Observed.	Calculated.	
Gold-copper †	99.23 90.55	98.36 81.66	35.42 10.16	2650 749	4650 81	21.87 7.41	23.22 7·53	
Gold-silver †	87.95 87.95	79.86 79.86	13.46 13.61	1090 1140	793 1160	10.09	9.65 9.59	
u u +	64.80 64.80 31.33	52.08 52.08 19.86	9.48 9.51 13.69	673 721 885	246 495 531	6.49 6.71 8.23	6.58 6.42 8.62	
Gold-copper †	31.33 34.83 1.52	19.86 19.17 0.71	13.73 12.94 53.02	908 864 3320	570 7300	8.44 8.07 25.90	8.31 8.18 25.86	
Platinum-silver †	33.33 9.81	19.65	4.22 11.38	330 774	208 656	3.10	3.21 7.25	
" " † Palladium-silver †	5.00 25.00	2.51	19.96 5.38	1240 324	1150	3.40	4.21	
Copper-silver †	98.08 94.40	98.35 95.17	56.49 51.93	3450 3250	7990 6940	26.50 25.57	27.30 25.41	
44 44	76.74 4 2.75 7.14	77.64 46.67 8.25	44.06 47.29 50.65	3030 2870 2750	6070 5280 4360	24.29 22.75 23.17	21.92 24.00 25.57	
" " † Iron-gold †	1.31	1.53 27.93	50.30 1.73	4120 3490	8740 7010	26.51 27.92	29.77 14.70	
" " †	9.86 4.76	21.18	1.26 1.46	2970 487	1220	3.84	11.20	
Iron-copper †	2.50	0.46	4.62	1550 476	2090 145	13.44	14.03	
Arsenic-copper †	0.95 5.40 2.80	_	3.97 8.12	1320 516	1640 989	_	_	
" " †	trace	-	38.52	736 2640	446 4830	=	-	

^{*} Annealed.

† Hard-drawn.

SMITHSONIAN TABLES.

TABLE 264.

SPECIFIC RESISTANCE OF METALLIC WIRES.

This table is modified from the table compiled by Jenkin from Matthieson's results by taking the resistance of silver, gold, and copper from the observed metre gramme value and assuming the densities found by Matthieson, namely, 10.468, 19.265, and 8.95.

Substance.	Resistance at o° (' of a wire one cm. long, one sq. cm. in section.	Resistance at o° C. of a wire one metre long, one mm. in diam.	Resistance at 0° C. of a wire one metre long, weighing one gramme.	Resistance at co C. of a wire one foot long, 16es in. in diam.	Relistance at 0° C. of a wire one foot long, weighing one grain.	Percentage increase of resistance for 1° C, increase of temp, at 20° C
Silver annealed	1.460 × 10	0.01859	.1523	8.781	.2184	0.377
" hard drawn	1.585 "	0.02019	.1659	9.538	.2379	-
Copper annealed	1.584 "	0 02017	.1421	9.529	.2037	0.388
" hard drawn	1.619 "	0.02062	.1449	9.741	.2078	-
Gold annealed	2.088 "	0.02659	.4025	12.56	.5771	0.365
" hard drawn	2.125 "	0.02706	.4094	12.78	.5870	-
Aluminium annealed	2.906 "	0.03699	.0747	17.48	.1071	-
Zinc pressed	5.613 *	0.07146	.4012	33.76	-5753	0.365
Platinum annealed	9.035 "	0.1150	1.934	54-35	2.772	-
Iron "	9.693 "	0.1234	.7551	58.31	1.083	-
Nickel "	12.43 "	0.1583	1.057	74.78	1.515	-
Tin pressed	13.18 "	0.1678	.9608	79.29	1.377	0.365
Lead "	19.14 "	0.2437	2.227	115.1	3.193	0.387
Antimony pressed	35-42 "	0.4510	2.379	213.1	3.410	0.389
Bismuth "	130.9 "	1.667	12.86	787.5	18.43	0.354
Mercury "	94.07 "	1.198	12.79	565.9	18.34	0.072
Platinum-silver, 2 parts Ag, 3	24-33 "	0.3098	2.919	146.4	4.186	0.031
German silver	20.89 "	0.2660	1.825	125.7	2.617	0.044
Gold-silver, 2 parts Au, 1 part Ag, by weight .)	10.84 "	0.1380	1.646	65.21	2-359	0.065

SPECIFIC RESISTANCE OF METALS.

The specific resistance is here given as the resistance, in microhms, per centimetre of a bar one square centimetre in cross section.

Substance.	Physical state.	Specific resistance.	Temp. C.	Authority.
Aluminium	_	2.9-4.5	0	Various.
Antimony.	_	35.4-45.8	ò	4
"	Solid	35.4-45.8 182.8		De la Rive.
"	Liquid	129.2	Melting-point	De la Rive.
	Ziquid		86o	ایدا
Arsenic .	_	137.7		Matthieson and
Aisenic .	-	33-3	0	
Bismuth .	Electrolytic soft	108.0	_	Vogt. Van Aubel.
DESILIULI .	" hard	100.0	0	van Aubei.
	Commercial	108.7	0	37
D		110-268	0	Various.
Boron	Pulverized and com-	0 >4 ==10		
	pressed	8 × 10 ₁₀	-	Moissan.
Cadmium .		6.2-7.0		Various.
II "•I	Solid	16.5	318	Vassura.
" ·	Liquid	37.9	318	"
Gold	- I	2.04-2.09	0	Various.
Calcium .	-	7.5	16.8	Matthieson.
Cobalt	- 1	7·5 9·8	0	44
Copper	Commercial	1.58-2.20	0	Various.
Iron	u	9.7-12.0	٥	4
"	Electrolytic	11.2	Ordinary	Kohlrausch.
"	4	105.5	Red heat	"
"	"	114.8	Yellow heat	44
u	и	118.3	Iron magnetic	
• • •		110.5	heat	4
Steel	Cast	19.1	Ord. temp.	4
"	u	85.8	Red heat	4
"	44		Yellow heat	46
"	44	104.4	Nearly white	J .
	·	113.9	heat	
l u	Tamanana alam hand		neat t	Barus and
	Tempered glass hard	45.7 (1 + .001614)	•	Strouhal.
	" light yellow	08 0 (1 ± 000444)		u Strouman
	" vellow	28.9 (I + .00244t) 26.3 (I + .00280t)	;	
,, , , ,	" yenow blue	20.3 (1 + .002601)		
		20.5 (1 + .003302)	<i>t</i>	
<u>" · · · · · · · · · · · · · · · · · · ·</u>	ngit blue	20.5 (1 + .003304) 18.4 (1 + .003604) 15.9 (1 + .004234)		" "
	" sort	15.9 (1 + .004234)	t	" "
Iron	Cast, hard	97.8	•	" "
· · · · ·	" soft	74-4	0	
Indiam	-	8.38	•	Erhard.
Lead	-	18.4–19.6	•	Various.
Lithium .	- 1	8.8	20	Matthieson.
Magnesium Nickel	- 1	4.1-5.0	0	Various.
	_	10.7-12.4	0	
Palladium .	– 1	10.6-13.6	0	"
Platinum .	- 1	9.0-15.5	0	"
Potassium.	-	25.1	0	Matthieson.
" .	Fluid	50.4	100	"
Silver	_	1.5-1.7	٥	Various.
Strontium.	_	25.13	20	Matthieson.
Tellurium .] -	2.17 × 10 ⁵	19.6	•
" .	l –	55.05	294	Vincentini and
ll		JJ-3	1 7	Omodei.
Tin	l –	9.53-11.4		Various.
4 : : :		9-53		Vassura.
u	Solid	20.96	226.5	
"	Liquid	44.56	226.5	u u
Zinc	Liquid	5.56-6.04		-
44	Solid	18.16	Melting-point	De la Rive.
u	Liquid	36.00	- Pomit	
∥ '''	- and and	3444		l
I	L	L	L	

TABLE 266.

RESISTANCE OF METALS AND

The electrical resistance of some pure metals and of some alloys have been determined by Dewar and Fleming and increases as the temperature is lowered. The resistance seems to approach zero for the pure metals, but not for temperature tried. The following table gives the results of Dewar and Fleming.*

When the temperature is raised above oo C. the coefficient decreases for the pure metals, as is shown by the experiexperiments to be approximately true, namely, that the resistance of any pure metal is proportional to its absolute is greater the lower the temperature, because the total resistance is smaller. This rule, however, does not even zero Centigrade, as is shown in the tables of resistance of alloys. (Cf. Table 262.)

Temperature ==	1000	200	00	— 8o°
Metal or alloy.	Sp	ecific resistan	e in c. g. s. w	nits.
Aluminium, pure hard-drawn wire	4745	3505	3161	· -
Copper, pure electrolytic and annealed	1920	1457	1349	-
Gold, soft wire	2665	2081	1948	1400
Iron, pure soft wire	13970†	9521	8613	-
Nickel, pure (prepared by Mond's process) from compound of nickel and carbon and monoxide)	19300	13494	12266	7470
Platinum, annealed	10907	8752	8221	6133
Silver, pure wire	2139	1647	1559	1138
Tin, pure wire	1 3867	10473	9575	6681
German silver, commercial wire	35720	34707	34524	33664
Palladium-silver, 20 Pd + 80 Ag	15410	14984	14961	14482
Phosphor-bronze, commercial wire	9071	8588	8479	8054
Platinoid, Martino's platinoid with 1 to 2% .	44590	43823	43601	43022
Platinum-iridium, 80 Pt + 20 Ir	31848	29902	29374	27504
Platinum-rhodium, 90 Pt + 10 Rh	18417	14586	13755	10778
Platinum-silver, 66.7 Ag + 33.3 Pt	27404	26915	26818	26311
Carbon, from Edison-Swan incandescent } lamp	-	4046×108	4092×108	4189×108
Carbon, from Edison-Swan incandescent } .	3834×10 ⁸	3908×10 ⁸	3955×10 ⁸	4054×108
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6168×108	6300×108	6363×108	6495×10 ⁸

^{• &}quot;Phil. Mag." vol. 34, 1892. † This is given by Dewar and Fleming as 13777 for 95°.4, which appears from the other measurements too high. SMITHSONIAN TABLES.

ALLOYS AT LOW TEMPERATURES.

by Cailletet and Bouty at very low temperatures. The results show that the coefficient of change with temperature the alloys. The resistance of carbon was found by Dewar and Fleming to increase continuously to the lowest

ments or Müller, Benoit, and others. Probably the simplest rule is that suggested by Clausius, and shown by these temperature. This gives the actual change of resistance per degree, a constant; and hence the percentage of change approximately hold for alloys, some of which have a negative temperature coefficient at temperatures not far from

				
Temperature =	— 100°	— 182°	— 197°	Mean value of temperature co-
å Metal or alloy.	Specific resis	stance in c. g.	s. units.	efficient between - 100° and + 100° C.*
Aluminium, pure hard-drawn wire	1928	894	-	.00446
Copper, pure electrolytic and annealed	757	272	178	431
Gold, soft wire	1 207	604	-	375
Iron, pure soft wire	4010	1067	608	578
Nickel, pure (prepared by Mond's process from compound of nickel and carbon monoxide)	6110	1900	_	538
Platinum, annealed	5295	2821	2290	341
Silver, pure wire	962	472	-	377
Tin, pure wire	5671	2553	-	428
German silver, commercial wire	33280	32512	-	035
Palladium-silver, 20 Pd + 80 Ag	14256	1 3797	-	039
Phosphor-bronze, commercial wire	7883	7371	-	070
Platinoid, Martino's platinoid with 1 to 2% } .	42385	41454	_	025
Platinum-iridium, 80 Pt + 20 Ir	26712	24440	-	087
Platinum-rhodium, 90 Pt + 10 Rh	9834	7134	_	312
Platinum-silver, 66.7 Ag + 33.3 Pt	26108	25537	-	024
Carbon, from Edison-Swan incandescent } .	4218×108	4321×108	-	-
Carbon, from Edison-Swan incandescent lamp	4079×108	4180×108	-	031
Carbon, adamantine, from Woodhouse and Rawson incandescent lamp	6533×108	-	-	029

[•] This is a in the equation $R=R_0$ (t+at), as calculated from the equation $a=\frac{R_{100}-R_{-100}}{200~R_0}$.

Shittheorian Tables.

TABLE 267.

EFFECT OF ELONGATION ON THE SPECIFIC RESISTANCE OF SOFT METALLIC WIRES.*

				Increase of specific resistan	nce for 1 % of elongation —
Substan	ce.			Permanent elongation.	Elastic elongation.
Copper				From .50 % to .60 %	From 2.5 % to 7.7 %
Iron				" .70 " " .80 "	" 4.6 " " 4.8 "
German silver .	•	•	•	"·50 " "·55 "	" 0.7 " I.O "

TABLE 268.

EFFECT OF ALTERNATING THE CURRENT ON ELECTRIC RESISTANCE.

This table gives the percentage increase of the ordinary resistance of conductors of different diameters when the current passing through them alternates with the periods stated in the last column.

Diame	eter in —	Area	in —	Percentage increase of	Number of complete	
Millimetres.	Inches.	Sq. mm.	Sq. in.	ordinary resistance.	periods per second.	
10	· 3 937	78.54	.122	Less than 1	1	
15	.5905	176.7	.274	2.5		
20	.7874	314.16	-487	8		
25	.9842	490.8	.760	17.5	80	
40	1.575	1256	1.95	68		
100	3.937	7854	12.17	3.8 times		
1000	39 -39	785400	1217	35 times		
9	-3543	63.62	.098	Less than 100	h	
13.4	.5280	141.3	.218	2.5		
18	.7086	254-4	-394	8	100	
22.4	.8826	394	.611	17.5	J	
7.75	.3013	47.2	.071	Less than 100.	$ \cdot $	
11.61	.4570	106	.164	2.5		
15.5	.6102	189	.292	8	133	
19.36	.7622	294	-456	17.5]	

T. Gray, "Trans. Roy. Soc. Edin." 1880.
 W. M. Mordey, "Inst. El. Eng. London," 1889.

CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohl-rausch,* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electro-chemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grammes of the pure salts proportional to their electrochemical equivalent, and using a litre of water as the standard quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grammes to the litre of water, we get what is called the normal or gramme molecule per litre solution. In the table, m is used to represent the number of gramme molecules to the litre of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within

The tabular numbers were obtained from the measurements in the following manner:—

Let $K_{1s} = \text{conductivity}$ of the solution at 18° C. relative to mercury at 0° C. $K_{1s} = \text{conductivity}$ of the solvent water at 18° C. relative to mercury at 0° C.

Then $K_{1s} = K_{1s} = \text{conductivity}$ of the electrolyte in the solution measured.

 $\frac{k_{10}}{k_{10}} = \mu = \text{conductivity of the electrolyte in the solution per molecule, or the "specific"$ molecular conductivity."

TABLE 269. -- Value of k_{10} for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

190	KCI	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
0.00000I	1.216	1.024	1.080	0.939	1.275	1.056
0.00002	2.434	2.056	2.146	1.886	2.532	2.104
0.00006	7.272	6.162	6.462	5.610	7.524	6.216
0.000I	12.09	10.29	10.78	9.34	12.49	10.34

TABLE 270. - Electre-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 271 may be convenient. They represent grammes per cubic centimetre of the solution at the temperature given.

Salt dissolved.	Grammes per litre.	m	Temp. C.	Density.	Salt dissolved.	Grammes per litre.	**	Temp. C.	Density.
KCl	74-59 53-55 58-50 42-48 104-0 68-0 165-9 101-17 85-08 169-9 65-28 61-29 98.18	1.0 1.0009 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5	15.2 18.6 18.4 18.4 18.6 15.0 18.6 18.7 - 18.3 18.6	1.0457 1.0152 1.0391 1.0227 1.0888 1.0592 1.1183 1.0601 1.0542	K ₂ SO ₄ Na ₂ SO ₄ Li ₂ SO ₄ MgSO ₄ ZnSO ₄ CuSO ₄ K ₂ CO ₂ Na ₂ CO ₂ Na ₂ CO ₃ KOH HCl HNO ₈ H ₂ SO ₄	87.16 71.09 55.09 60.17 80.58 79.9 69.17 53.04 56.27 36.51 63.13 49.06	1.0 1.0003 1.0007 1.0023 1.0 1.001 1.0006 1.0 1.0025 1.0041 1.0014	18.9 18.6 18.6 18.6 18.2 18.3 17.9 18.8 18.6 18.6	I.0658 I.0602 I.0445 I.0573 I.0776 I.0576 I.0517 I.0477 I.0161 I.0318 I.0300

^{* &}quot;Wied. Ann." vol. 26, pp. 161-226.

TABLE 271. SPECIFIC MOLECULAR CONDUCTIVITY μ : MERCURY=10°.

				7					1
Salt dissolved.	#= 10	5	3	1	0.5	0.1	.05	.03	.oi
½K₂SO4	_	_	_	_	672	736	897	959	1098
KCI	-	-	827	919	958	1047	1083	1107	1147
KI	-	770	900	968	997		1102	1123	1161
NH ₄ Cl	_	75 2	825 572	907 752	948 839	1035 983	1078	1101	1142
			_		-35		5,		
BaCle	-	-	487	658	725	198	904	939	1006
Ba ₂ N ₂ O ₆		_		_	799 531	927 755	(976) 828	1006 (870)	1053 951
CuSO4	-	-	150	241	531 288	424	479	537	675
AgNO ₈	-	351	448	635	728	886	936	(966)	1017
12nSO4	-	82	146	249	302	431	500	556	685
MgSO ₄	-	82	151	270	330	474	532	556 587	715
Na ₂ SO ₄	60	180	280	475	559 601	734 768	784 817	828 851	906
NaCl	-	398	528	514 695	757	865	897	(920)	915 962
	1	"	_					'	
NaNO ₈	20	240	430 381	617	694 671	817 784	855 820	877 841	907 8 79
RC2HgO2	30	-40	254	594 427	510	682	751	799	899
H₂SO4		1270	1560	1820	1899	2084	2343	2515	2855
C ₂ H ₄ O	0.5	2.6	5.2	12	19	43	62	79	132
HC1		1420	2010	2780	3017	3244	3330	3369	3416
HNO ₈		1470	2070	2770	2991	3225	3289	3328	3395
H ₃ PO ₄	148 423	160 990	170 1314	200 1718	250 1841	430 1986	540 2045	620 2078	790 2124
NH ₈	0.5	2.4	3.3	8.4	12	31	43	50	92
-	-,,		3.3	0.4	1	ا -د	70	ا در	
,						_			
Salt dissolved.	.006	.002	.001	.0006	.0002	.0001	.00006	.00002	*0000x
Salt dissolved.	.006	.002	.001	.0006	.0002	.0001	.00006	1266	.00001 1275
Salt dissolved.	.006 1130 1162	.002 1181 1185	.001 1207 1193	.0006 1220 1199	.0002 1241 1209	.0001 I 249 I 209	.00006 1254 1212	.00002 1266 1217	.00001 1275 1216
Salt dissolved.	.006 1130 1162 1176	.002 1181 1185 1197	.001 1207 1193 1203	.0006 1220 1199 1209	.0002 I 24I I 209 I 214	.0001 1249 1209 1216	.00006 1254 1212 1216	.00002 1266 1217 1216	.0001 1275 1216 1207
Salt dissolved.	.006 1130 1162	.002 1181 1185	.001 1207 1193	.0006 1220 1199	.0002 1241 1209	.0001 I 249 I 209	.00006 1254 1212	.00002 1266 1217	.00001 1275 1216
Salt dissolved. Language Salt dissolved. L	.006 1130 1162 1176 1157 1140	.002 1181 1185 1197 1180 1173	.001 1207 1193 1203 1190 1180	.0006 1220 1199 1209 1197	.0002 I24I I209 I214 I204	.0001 1249 1209 1216 1209	.00006 1254 1212 1216 1215 1220	.00002 1266 1217 1216 1209 1198	.00001 1275 1216 1207 1205 1215
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068	.002 1181 1185 1197 1180 1173 1074 1091	.001 1207 1193 1203 1190 1180	.0006 1220 1199 1209 1197 1190	.0002 I24I I209 I214 I204 I199 II18 II19	.0001 1249 1209 1216 1209 1207 1126 1122	.00006 1254 1212 1216 1215 1220 1133 1126	1266 1217 1216 1209 1198 1144 1135	.00001 1275 1216 1207 1205 1215 1142 1141
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982	.002 1181 1185 1197 1180 1173 1074 1091 1033	.001 1207 1193 1203 1190 1180 1092 1101 1054	.0006 1220 1199 1209 1197 1190 1102 1109 1066	.0002 1241 1209 1214 1204 1199 1118 1119 1084	.0001 1249 1209 1216 1209 1207 1126 1122 1096	.00006 1254 1212 1216 1215 1220 1133 1126 1100	.00002 1266 1217 1216 1209 1198 1144 1135	.00001 1275 1216 1207 1205 1215 1142 1141 1114
Salt dissolved. K_SO4	.006 1130 1162 1176 1157 1140 1031 1068 982 740	.002 1181 1185 1197 1180 1173 1074 1091 1033 873	.001 1207 1193 1203 1190 1180	.0006 1220 1199 1209 1197 1190	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039	.0001 1249 1209 1216 1209 1207 1126 1122	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084	.00001 1275 1216 1207 1205 1215 1142 1141
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 740 1033	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057	1207 1193 1203 1190 1180 1092 1101 1054 950 1068	.0006 1220 1199 1209 1197 1190 1102 1109 1066 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 740 1033 744	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861	1207 1193 1293 1193 1193 1190 1180 1092 1101 1054 959 1068	.0006 11200 1199 1209 1190 1102 1109 1066 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084 1073	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080
Salt dissolved. K ₂ SO ₄ KCl KI NH ₄ Cl KNO ₈ BaCl ₂ . KClO ₈ BaCl ₂ CuSO ₄ AgNO ₈ ZnSO ₄ MgSO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 740 1033 744 773	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881	1207 1193 1203 1190 1180 1092 1101 1054 950 1068	1220 1199 1209 1197 1190 1102 1109 1066 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084 1073	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080 1060 1056
Salt dissolved. K ₃ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 740 1033 744	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979	1207 1193 1203 1190 1180 1092 1101 1054 959 1068	.0006 11200 1199 1209 1190 1102 1109 1066 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1023 1034 1034 1029	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077	1266 1217 1216 1209 1198 1144 1135 1114 1084 1073	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080
Salt dissolved. K_SO4		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980	1207 1193 1203 1190 1180 1092 1101 1054 950 1068	.0006 1220 1199 1209 1197 1190 1102 1109 1069 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1023 1034 1034	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084 1073	.0001 1275 1216 1207 1205 1215 1142 1141 11086 1080 1060 1056 1054
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 740 1033 744 773 933 933 939	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979	1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 998 998	.0006 1220 1199 1209 1197 1190 1102 1109 1066 987 1069	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1023 1034 1034 1029	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031	1266 1217 1216 1209 1198 1144 1135 1114 1084 1073 1047 1052 1056 1035	.00001 1275 1216 1207 1205 1215 1142 1141 1186 1080 1056 1054 1036 1024
Salt dissolved. K ₃ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 749 1033 744 773 933 939 976	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998	.001 1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 998 994 1008	.0006 1220 1199 1209 1197 1190 1102 1109 1069 957 1069 953 967 1009 1004 1014	.0002 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1023 1034 1034 1029 1029 975 934	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935	1266 1217 1216 1209 1198 1144 1135 1114 1084 1073 1047 1056 1035 1028 972 943	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080 1060 1056 1054 1036 1024
Salt dissolved. K ₂ SO ₄		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998	.001 1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 998 908 1008	.0006 1220 1199 1209 1197 1190 1102 1109 1066 987 1069 953 967 1009 1004 1014	1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1023 1034 1034 1029 1029 975 934 874	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027	.00002 1266 1217 1216 1209 1198 1144 1135 1114 1084 1073 1047 1052 1056 1035 1028 972 943 715	.00001 1275 1216 1207 1205 1215 1142 1141 1186 1080 1056 1054 1036 1024 975 939 607*
Salt dissolved. K ₂ SO ₄	.006 1130 1162 1176 1157 1140 1031 1068 982 749 1033 744 773 933 939 976	.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998	1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 998 994 1008	.0006 1220 1199 1209 1197 1190 1102 1102 1109 1066 987 1069 1004 1014 956 923 1046 3342	1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988 3280	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1034 1034 1034 1029 1029 975 934 874 3118	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935	1266 1217 1216 1209 1198 1144 1135 1114 1084 1073 1047 1056 1035 1028 972 943	.00001 1275 1216 1207 1205 1215 1142 1141 1086 1080 1060 1054 1036 1024 975 939 697* 1413*
Salt dissolved. Kc		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998 942 913 1010 3240 283	1207 1193 1203 1190 1180 1092 1101 1054 959 1068 919 935 994 1008 952 919 1037 3316 380	.0006 1220 1199 1209 1190 1102 1109 1066 987 1069 953 967 1009 1004 1014 956 923 1046 3342 470	.coo2 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988 3280 796	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1034 1034 1039 1029 1029 975 934 874 3118 995	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935 790 2927 1133	.00002 1266 1217 1216 1209 1198 1144 1034 1073 1047 1052 1056 1035 1028 972 943 715 2077 1328	.00001 1275 1216 1207 1205 1215 1142 1114 1086 1080 1060 1056 1054 1036 1024 975 939 697* 1413* 1304*
Salt dissolved. K ₂ SO ₄		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998 942 913 1010 3240 283	1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 994 1008 952 919 1037 3316 380	1220 1199 1209 1190 1190 1102 1109 1066 987 1069 953 907 1009 1004 1014 956 923 1046 3342 470	1241 1209 1214 1204 11199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988 3280 796	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1034 1034 1034 1039 1039 975 934 874 3118 995	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935 790 2927 1133	1266 1217 1216 1219 1198 1144 1135 1114 1084 1073 1047 1052 1056 1035 1028 972 943 715 2077 1328	.00001 1275 1216 1207 1205 1215 1142 1114 1086 1080 1056 1054 1036 1024 975 939 697* 1413* 1304*
Salt dissolved. KsSO4		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998 942 913 1010 3240 283 3455 3448	1207 1193 1203 1190 1180 1092 1101 1054 959 1068 919 935 994 1008 952 919 1037 3316 380	.0006 1220 1199 1209 1197 1190 1102 1102 1109 1066 987 1069 953 967 1009 1004 1014 956 923 1046 3342 470 3440 3408	.coo2 1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988 3280 796	.0001 1249 1200 1216 1200 1207 1126 1122 1006 1062 1078 1023 1034 1034 1029 1029 975 934 874 3118 995	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935 790 2927 1133	1266 1217 1216 1298 1198 1144 1135 1114 1084 1073 1047 1052 1056 1035 1028 1035 1035 1035 1035 1035 1035 1035 1035	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080 1060 1056 1054 1036 1024 975 939 697* 1413* 1304* 1254* 1144*
Salt dissolved. KasO4		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 942 913 1010 3240 283 3455 3448 945 2140	1207 1193 1203 1190 1180 1092 1101 1054 959 1068 919 935 994 1008 952 919 1037 3316 380 3455 3427 968 2110	.0006 1220 1199 1209 1190 1102 1109 1066 987 1069 953 967 1009 1004 1014 956 923 1046 3342 470 3440 3408	1241 1209 1214 1199 1118 1119 1084 1039 1077 1001 1015 1026 1020 1018 966 933 988 3280 796 3340 3285 920 1892	.0001 1249 1209 1216 1209 1207 1126 1122 1096 1062 1078 1034 1034 1034 1039 1029 975 934 874 3118 995 3170 3088 837 1689	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935 790 2927 1133 2968 2863 746 1474	.00002 1266 1217 1216 1209 1198 1114 1084 1073 1047 1052 1056 1035 1028 972 943 715 2077 1328 2057 1904 497 845	.00001 1275 1216 1207 1205 1215 1142 1114 1086 1080 1060 1056 1054 1036 1024 975 939 697* 1413* 1304* 1254* 1144* 402*
Salt dissolved. KasO4		.002 1181 1185 1197 1180 1173 1074 1091 1033 873 1057 861 881 980 979 998 942 913 1010 3240 283 3448 945	1207 1193 1203 1190 1180 1092 1101 1054 950 1068 919 935 998 994 1008 952 919 1037 3316 380 3455 3427 968	1220 1199 1209 1197 1190 1102 1102 1106 987 1069 1004 1014 956 923 1046 3342 470 3440 3408 977	1241 1209 1214 1204 1199 1118 1119 1084 1039 1077 1001 1015 1020 1018 966 933 988 3280 796 3340 3285 920	.0001 1249 1209 1216 1209 1207 1126 11026 1062 1078 1023 1034 1034 1029 1029 975 934 874 3118 995 3170 3088 837	.00006 1254 1212 1216 1215 1220 1133 1126 1100 1074 1077 1032 1036 1038 1031 1027 970 935 790 2927 1133	1266 1217 1216 1229 1198 1144 1135 1114 1084 1073 1047 1052 1056 1035 1028 972 943 715 2077 1328 2057 1904 497	.00001 1275 1216 1207 1205 1215 1142 1141 1114 1086 1080 1060 1056 1054 1036 1024 975 939 697* 1413* 1304* 1254* 1144*

^{*} Acids and alkaline salts show peculiar irregularities.

LIMITING VALUES OF

This table shows limiting values of $\mu = \frac{h}{m}$. 109 for infinite dilution for neutral salts, calculated from Table 271.

Salt.	*	Salt	μ.	Salt.	M	Salt.	μ
‡K₃SO₄ .	1280	₽BaCl ₂	1150	⅓MgSO ₄ .	1080	4H₂SO₄ .	3700
ксі	1220	₽KClO ₈ .	1150	⅓Na₂SO₄ .	1060	нсі	3500
кі	1220	BaN₂O6 .	1120	∄ZnCl	1040	HNO ₈	3500
NH₄Cl	1210	∦CuSO₄ .	1100	NaCl	1030	H ₈ PO ₄	1100
KNO	1210	AgNO ₈ .	1090	NaNOs .	980	кон	2200
-	-	₹ZnSO4 .	1080	K ₂ C ₂ H ₈ O ₂	940	Na₂CO ₈ .	1400
i -		AgNO ₈ .	1090	NaNO ₈ .	980	кон	2200

If the quantities in Table 271 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 272 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities. H_3PO_4 in dilute solution seems to approach a monobasic acid, while H_3SO_4 shows two maxima, and like H_3PO_4 approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

TABLE 273.

TEMPERATURE COEFFICIENT.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gramme molecule of the salt.

Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.	Salt.	Temp. Coeff.
KC1	0.0221	кі	0.0219	⅓K₂SO₄ .	0.0223	⅓K₂CO8	0.0249
NH4Cl	0.0226	KNO8	0.0216	∄Na₂SO₄ .	0.0240	¹ √Na ₂ CO ₈	0.0265
NaCl	0.0238	NaNO8	0.0226	∄Li₂SO₄ .	0.0242	VOII	
LiCl	0.0232	AgNO ₈	0.0221	⅓MgSO ₄ .	0.0236	KOH HCl	0.0194 0.0159
∄BaCl₂	0.0234	Ba(NO ₈)₂	0.0224	₫ZnSO ₈ .	0.0234	HNO_8 $\frac{1}{4}H_2SO_4$	0.0102
½ZnCl₂	0.0239	KClO ₈	0.0219	₹CuSO₄ .	0.0229		
⅓MgCl₂ .	0.0241	KC ₂ H ₈ O ₂ .	0.0229	-	-	$ \begin{cases} \frac{1}{4} H_2 SO_4 \\ for m = .001 \end{cases} $	0.01 59

TABLE 274.

VARIOUS DETERMINATIONS OF THE VALUE OF THE OHM, ETC.*

	Observer.	Date.	Method.	Value of B. A. U. in ohms.	Value of 100 cms. of Hg in B. A.U.	Value of ohm in cms. of Hg.			
1 2 3 4	Lord Rayleigh . Lord Rayleigh . Mascart Rowland	1882 1883 1884 1887	Rotating coil Lorenz method Induced current . Mean of several methods	.98651 .98677 .98611	(.95412) -95374	106.31 106.27 106.33			
5	Kohlrausch	1887	Damping of mag-	.98644	-95349	106.32			
6 7 8 9	Glazebrook Wuilleumeier	1882 to 1888 1890 1890 1891	Induced currents . Lorenz method . Lorenz method . Mean	.98660 .98665 .98686 .98634 	.95338 .95352 .95355 .95341	106.32 106.29 106.31 106.34 106.31			
10 11 12 12	Strecker	1885 1888 1890 -	An absolute determination of resistance was not made. The value .98656 has been used. Mean		-95334 -95352 -95332 -95354	106.32 106.30 106.33 106.30			
13 14 15 16	H. F. Weber Roti	1884 - 1884 1885 1889	Induced current . Rotating coil . Mean effect of induced current . Damping of mag-	Absolute measurements compared with German silver wire coils issued					
18	Wild	1883	net	by Sien Strecker.	106.24				
19	Lorenz	1885	net Lorenz method)	l	106.03 105.93			
The	e specific resistance o	of mercury in of Also I Sie	ommended for adopting the sis thus .9407 × 10 mens unit = .9407 of = .9535 B n = I.01358 l	o⊸. hm. . A. U. B. A. U.					
	The following values have been found for the mass of silver deposited from a solution of silver nitrate in one second by a current of one ampere: Mascart, "J. de Physique," iii. 1884								
The I B.	ey have been reduced	from those g	d for the electromotive iven in the original p mass of silver depos	papers on t	he supposit	ion that			
		rift für Instrun		: :	1.4345 v lt. 1.4340 " 1.4341 " 1.4342 "				

[•] Abstract from the Report of the British Association Committee on Practical Standards for Electrical Measurement, "Proc. Brit. Assoc." 1892.
† ± .0000002 T. G.

SMITHSONIAN TABLES.

SPECIFIC INDUCTIVE CAPACITY OF CASES.

With the exception of the results given by Ayrton and Perry, for which no temperature record has been found, the values are for o° C. and 760 mm. pressure.

	Sp. ind. cap.	
Gas.	Vacuum = 1. Air = 1.	Authority.
Air	1.0015 1.0000	Ayrton and Perry.
"	1.00059 1.0000	Klemenčič.
"	1.00059 1.0000	Boltzmann.
Carbon disulphide	1.0029 1.0023	Klemenčič.
Carbon dioxide, CO ₂	1.0023 1.0008	Ayrton and Perry.
	1.00039	Klemenčič.
u u u	1.00095 1.00036	Boltzmann.
Carbon monoxide, CO	1.00069 1.00010	Klemenčič.
	1.00069 1.00010	Boltzmann.
Coal gas (illuminating)	1.0019 1.0004	Ayrton and Perry.
Hydrogen	1.0013 0.9998	Ayrton and Perry.
"	1.00026 0.99967	Klemenčič.
"	1.00026 0.99967	Boltzmann.
Nitrous oxide, N2O	1.00116 1.00057	Klemenčič.
	1.00099 1.00040	Boltzmann.
Sulphur dioxide	1.0052 1.0037	Ayrton and Perry.
	1.00955 1.00896	Klemenčič.
Vacuum 5 mm. pressure	1.0000 0.9985	Ayrton and Perry.
" 0.001 " " about	1.0000 0.94	Ayrton and Perry.
"	1.0000 0.99941	Klemenčič.
4	1.0000 0.99941	Boltzmann.

SMITHSONIAN TABLES.

TABLE 276. SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR=UNITY).

Substance.	Sp. ind. cap.	Authority.
Calcspar parallel to axis	7.5	Romich and Nowak.
" perpendicular to axis	7.7	
Caoutchouc	2.12-2.34	Schiller.
" vulcanized	2.69-2.94	44
Celluvert, hard gray	1.19	Elsas.
" " red	1.44	46
" " black	1.89	44
" soft red	2.66	· ·
Ebonite	2.08	Rossetti.
4	3.15-3.48	Boltzmann.
44	2.21-2.76	Schiller.
"	2.72	Winkelmann.
"	2.56	Wüllner.
"	2.86	Elsas.
"	1.9	Thomson (from Hertz's vibrations).
Fluor spar	6.7	Romich and Nowak.
l " "	6.8	Curie.
Glass, density 2.5 to 4.5	5–10	Various.
Double extra dense flint, density 4.5 .	9.90	Hopkinson.
Dense flint, density 3.66	7.38	4
Light flint, " 3.20	6.70	<u>"</u>
Very light flint " 2.87	6.61	
1 11414 610 411 2:403	6.96	1 4
riate	8.45	
Mirror	5.8-6.34	Schiller.
	6.46-7.57	Winkelmann.
	6.88	Donle.
1	6.44-7.46	Elsas.
Plate	3.31-4.12	Schiller.
	7.5	Romich and Nowak.
_ "	6.10	Wüllner.
Guttapercha	3.3-4.9	Submarine cable data.
Gypsum	6.33	Curie.
Mica	6.64	Klemenčič.
44	8.00	Curie.
" · · · · · ·	7.98	Bouty.
	5.66-5.97	Elsas.
1	4.6	Romich and Nowak.
Paraffin	2.32	Boltzmann.
	1.98	Gibson and Barclay.
	2.29	Hopkinson.
quickly cooled translucent .	1.68-1.92	Schiller.†
" slowly cooled white	1.85-2.47	Winkelmonn
	2.18	Winkelmann.
1	1.96-2.29	Donle, Wüllner. Arons and Rubens.
" fluid — pasty	1.98-2.08	Arons and Rubens.
Porcelain	1.95 4.38	Curie.
		Curie.
1 • • .	4.55	46
" transverse	4-49	Boltzmann.
Rock salt	2.48–2.57 18.0	Hopkinson.
G 44		Curie.
Selenium .	5.85 10.2	Romich and Nowak.
CL -11		Winkelmann.
4	3.10	Donle.
4	3.67	Wüllner.
	2.95-3.73	w unifier.
		<u></u>

The values here quoted apply when the duration of charge lies between 0.25 and 0.00005 of a second. J. J. Thomson has obtained the value 2.7 when the duration of the charge is about 1/25 X 10⁸ of a second; and this is confirmed by Blondlot, who obtained for a similar duration 2.8.

† The lower values were obtained by electric oscillations of duration of charge about 0.0006 second. The larger values were obtained when duration of charge was about 0.02 second.

Table 276.

	Substance.						Sp. ind. cap.	Authority.		
Spermaceti Sulphur " " " "		:		•		:	 2.18 2.25 3.84–3.90 2.88–3.21 2.24 2.94 2.56	Rossetti. Felici. Boltzmann. Wüllner. J. J. Thomson. Blondlot. Trouton and Lilly.		

SPECIFIC INDUCTIVE CAPACITY OF SOLIDS (AIR = UNITY).

TABLE 277.

SPECIFIC INDUCTIVE CAPACITY OF LIQUIDS.

Substance.	Sp. ind. cap.	Authority.
Alcohols: Amyl	. 15-15-9 . 24-27 . 32-65 . 22.8 . 7-5 . 1.93-2.45 . 2.3 . 2.1898	Cohn and Arons; Tereschin. Various. Tereschin. " Various. Negreano.
" 25° C. " 40° C. Hexane, between 11° and 13° C. Octane, 13° 5-14° C. Decane. 12° 5-14° C.	. 2.1534 . 2.1279 . 2.1103 . 1.859 . 1.934 . 1.966	" Landolt and Jahn. " " "
Amylene, " 15°-16°.2 C Octylene, " 11°.5-13°.6 C. Decylene, " 16°.7 C Oils: Arachid	. 2.201 . 2.175 . 2.236	" " " " Hopkinson.
Castor	. 4.6–4.8 . 3.07–3.14 . 2.25 . 3.07 . 3.08–3.16	Various. Hopkinson. Tomaszewski. Hopkinson. Arons and Rubens; Hopkinson.
Petroleum	2.02-2.19 1.92 2.2-3.0	Various. Hopkinson. Various. Hopkinson.
Sperm Turpentine Vaseline Ozokerite Toluene Xylene	3.02-3.09 2.15-2.28 2.17 2.13 2.2-2.4 2.3-2.6	Hopkinson; Rosa. Various. Fuchs. Hopkinson. Various.

SMITHSONIAN TABLES.

CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

	•						
	Carbon.	Copper	Iron.	Lend	Platinum.	Tin.	Zinc
Mercury	.092 (.01 { to	.308 .269 to	.502 .148	-	.156 (.285) (to)	177	- {105 to
Alum solution: saturated }	(.17	.100			(.345)		(+.156
at 16º.5 C	-	—.I 27	653	139	.246	225	536
Copper sulphate solution: sp. gr. 1.087 at 16°.6 C.	-	.103	-	-	-	-	-
Copper sulphate solution: } saturated at 15° C }	-	.070	-	-	-	-	-
Sea salt solution: sp. gr. {	_	475	605	_	856	334	—.565
Sal-ammoniac solution:	_	396	—.652	— .189	.059	364	637
Zinc sulphate solution: sp. (_	_	_	_	_	238
gr. 1.125 at 16°.9 C { Zinc sulphate solution: }	_	_	_	_	_	_	-430
saturated at 15°.3 C (One part distilled water +) 3 parts saturated zinc sulphate solution Strong sulphuric acid in	-	-	-	-	-	-	444
distilled water: I to 20 by weight	_	-	_	_	-	_	-344
I to 10 by volume	{ about } 035 }	-	-	-	-	-	_
1 to 5 by weight		-	-	-	-	-	-
5 to 1 by weight	(,oi) to (-	-	— .120	-	25	-
Concentrated sulphuric acid	(·55)	1.113	-	{ .72 to	1.3 } to }	_	-
Concentrated nitric acid .	(.85)	_	_	(I.252 -	.672	-	-
Mercurous sulphate paste . Distilled water containing { trace of sulphuric acid }	-	-	-	-	-	-	- 24I

[•] Everett's "Units and Physical Constants: "Table of

POTENTIAL IN VOLTS.

Liquids with Liquids in Air.*

during experiment about 16° C.

		,								
	Amalgamated zinc.	Brass.	Mercury.	Distilled water.	Alum solution: saturated at 16°.5 C.	Copper sulphate solution:	Zinc sulphate solution : sp. gr. 1.25 at 16º.9 C.	Zinc sulphate solution: saturated at 15°.3 C.	One part distilled water + 3 pts. zinc sulphate.	Strong nitric acid.
Mercury	1	-	1		-	-	1	•	-	-
Distilled water	.100	.231	-	-	-	043	-	.164	-	-
Alum solution: saturated } at 16°.5 C }	-	014	-	-	-	-	-	-	-	-
Copper sulphate solution: { sp. gr. 1.087 at 16°.6 C.	-	-	-	-	-	-	.090	-	-	-
Copper sulphate solution: saturated at 15° C.	-	-	-	043	-	-	-	.095	.102	-
Sea salt solution: sp. gr. 1.18 at 200.5 C	-	435	-	-	-	-	-	-	-	-
Sal-ammoniac solution: saturated at 15°.5 C.	-	348	-	-	-	-	-	-	-	-
Zinc sulphate solution: sp. gr. 1.125 at 16°.9 C.	-	-	-	-	-	-	-	-	-	-
Zinc sulphate solution: { saturated at 15°.3 C.	284	-	-	200	-	095	-	-	-	-
One part distilled water +) 3 parts saturated zinc \(\) sulphate solution \(\) Strong sulphuric acid in distilled water:	-	-	•	-	•	102	-	-	-	-
1 to 20 by weight	-	-	-	-	-	-	-	-	-	-
I to 10 by volume	358		-	-	-	-	-	-	-	-
I to 5 by weight	-429	-	-	-	-	-	-	-	-	-
5 to 1 by weight	-	016	-	-	-	-	-	-	-	-
Concentrated sulphuric acid	.848	-	-	1.298	1.456	1.269	-	1.699	-	-
Concentrated nitric acid . Mercurous sulphate paste .	_	_	- •475	-	_	-	-	-	-	-
Distilled water containing } trace of sulphuric acid.	-	-	-	1	-	•	1	•	-	.078

Ayrton and Perry's results, prepared by Ayrton.

SMITHSONIAN TABLES.

TABLE 279.

CONTACT DIFFERENCE OF POTENTIAL IN VOLTS.

Solids with Solids in Air.*

Temperature of substances during the experiment about 18° C.

Carbon.	Copper.	Iron.	Lead.	Platinum.	Tin.	Zinc.	Zinc amal- gam.	Brass.
0	.370	-485	.858	.113	-795	1.096†	1.208†	-414†
370	0	.146	.542	238	.456	.750	.894	.087
485†	146	o	.401†	369	.313†	.60ot	-744†	064
858	542	401	0	—.77 I	099	.210	-357†	472
113t	.238	.369	.771	0	.690	.981	1.125†	.287
- .795†	458	313	.099	—.69 0	0	.281	-463	372
-1 .09 6†	750	600	216	—.9 8 1	.281	٥	.144	679
-I.208†	894	 .744	— -357†	—1.125†	463	144	0	822.
414	087	.064	.472	287	-372	.679	. 822	٥
	0 370 485† 858 113† 795† 1.096†	0 .370 370 0 485†146 858542 113† .238 795†458 1.096†750 1.208†894	0 .370 .485370 0 .146485†146 0858542401113† .238 .369795†458313 1.096†750600 1.208†894744	0 .370 .485 .858 -370 0 .146 .542 -485†146 0 .401† 858542401 0 113† .238 .369 .771 795†458313 .099 1.096†750600216 1.208†894744357†	0 .370 .485 .858 .113370 0 .146 .542238485†146 0 .401†369858542401 0771113† .238 .369 .771 0795†458313 .099690 1.096†750600216981 1.208†894744357† -1.125†	0 .370 .485 .858 .113 .795370 0 .146 .542238 .456485†146 0 .401†369 .313†858542401 0771099113† .238 .369 .771 0 .690795†458313099690 0 1.096†750600216981281 1.208†894744357†1.125†463	0 .370 .485 .858 .113 .795 1.096† -370 0 .146 .542 -238 .456 .750 -485†146 0 .401†369 .313† .600†858542401 0771099 .210113† .238 .369 .771 0 .690 .981795†458313 .099690 0 .281 1.096†750600216981 .281 0 1.208†894744357† -1.125†463144	0 .370 .485 .858 .113 .795 1.096t 1.208t 370 0 .146 .542 238 .456 .750 .894 485t 146 0 .401t 369 .313t .600t .744t 858 542 401 0 771 099 .210 .357t 113t .238 .369 .771 0 .690 .981 1.125t 795t 458 313 .099 690 0 .281 .463 1.096t 750 600 216 981 .281 0 .144 1.208t 894 744 357t -1.125t 463 144 0

The numbers not marked were obtained by direct experiment, those marked with a dagger by calculation, on the assumption that in a compound circuit of metals, all at the same temper. Nurse, there is no electromotive force.

The numbers in the same vertical column are the differences of potential in volts between the substance named at the top of the column and the substance named on the same line in the first column, when the two substances are in contact.

The metals used were those ordinarily obtained in commerce.

^{*} Everett's "Units and Physical Constants." The table is from Ayrton and Perry's experiments, and was prepared by Ayrton.

SMITHSONIAN TABLES.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini * for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Strength granin litre.	of the solution in ne molecules per	Zinc.†	Cadmium.†	Lead.	Tin.	Copper.	Sil ve r.
No. of molecules.	Salt.		Differe	nce of poter	itial in centiv	olts.	
0.5 1.0 0.5 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.2 0.107 1.0 1.0 0.5	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ SO ₅ KNO ₈ NaNO ₈ K ₂ Cr ₂ O ₇ K ₂ SO ₄ (NH ₄) ₂ SO ₄ (NH ₄) ₂ SO ₄ K ₄ FeC ₆ N ₆ K ₆ FeC ₂ (CN) ₂ KCNS NaNO ₈ SrNO ₈ Ba(NO ₈) ₂ KCIO ₈ KCIO ₈ KCIO ₈ KCIO ₈	0.0 -32.1 -42.5 1.4 -5.9 11.8‡ 11.5 23.9‡ 72.8 1.8 -0.5 -6.1 41.0\$ -1.2 4-5 14.8 21.9 -‡ 15-10‡ 13-20†	36.6 19.5 15.5 35.6 24.1 31.9 32.3 42.8 61.1 34.7 37.1 33.6 80.8 32.5 35.2 38.3 39.3 35.6 39.9 40.7	51.3 31.8 32.0 50.8 45.3 42.6 51.0 41.2 78.4 51.0 53.2 50.7 81.2 52.8 50.2	51.3 0.2 —1.2 51.4 45.7 31.1 40.9 40.9 68.1 40.9 57.6‡ 41.2 130.9 52.7 49.0 48.7 52.8 49.9 57.7 50.9	100.7 80.2 77.0 101.3 38.8 81.2 95.7 94.6 123.6 95.7 101.5 	121.3 95.8 104.0 120.9 64.8 105.7 114.8 121.0 132.4 114.8 125.7 87.8 124.9 72.5 104.6?
1.0 1.0 1.0 1.0 1.0 0.5 - 1.0 0.5 0.5	NH4Cl KF NaCl KBr KCl Na ₂ SO ₈ NaOBr C ₄ H ₆ O ₆ C ₄ H ₆ O ₆ C ₄ H ₆ O ₆	2.9 2.8 — 2.3 — —8.2 18.4 5.5 4.1 —7.9	32.4 22.5 31.9 31.7 32.1 28.7 41.6 39.7 41.3 31.5	51.3 41.1 51.2 47.2 51.6 41.0 73.1 61.3 61.6 51.5	50.9 50.8 50.3 52.5 52-6 31.0 70.6 ‡ 54.4§ 57.6	81.2 61.3 80.9 73.6 81.6 68.7 89.9 104.6 110.9	101.7 61.5 101.3 82.4 107.6 103.7 99.7 123.4 125.7 119.7

^{• &}quot;Rend. della R. Acc. di Roma," 1890.

[†] Amalgamated.

² Not constant.

[&]amp; After some time.

¹ A quantity of bromine was used corresponding to NaOH = r.

VARIATION OF ELECTRICAL RESISTANCE OF CLASS AND PORCELAIN WITH TEMPERATURE.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimetre of a rod one square centimetre in cross section.

No.	Kind of glass.		Density.	a	b		e	Range of temp. Centigrade.
ı	Test-tube glass		_	13.86	044	.00	0065	00-2500
2			2.458	14.24	055	.00	10	37-131
3	Bohemian glass		2.43	16.21	043	.00	00394	60-174
4	Lime glass (Japanese manu	facture) .	2.55	13.14	031	00	0021	10-85
5	64 64 66	" .	2.499	14.002	025	00	006	35-95
6	Soda-lime glass (French fla	sk) .	2.533	14.58	049	.00	0075	45-120
7	Potash-soda lime glass .		2.58	16.34	0425	.000	00364	66-193
8	Arsenic enamel flint glass		3.07	18.17	055	.00	0088	105-135
9	Flint glass (Thomson's election)	ctrometer · ·	3.172	18.021	036	00	16000	100-200
10	Porcelain (white evaporation	ng dish) .	-	15.65	042	.000	20 5	68-290
	Composition	OF SOME OF	THE ABOV	E SP CIN	ens of G	LASS.		
	Number of specimen =	8	4		6	7	8	•
Sil	ica	61.3	57-2	70	2.05	5.65	54.2	55.18
Po	tash	22.9	21.1	1	1-44	7.92	10.5	13.28
So	da	Lime, etc.	Lime, e	etc. 14	1.32	6.92	7.0	-
Le	ad oxide	by diff.	by dif	f. 2	2.70	-	23.9	31.01
Lir	ne	15.8	16.7	10	2.33	8.48	0.3	0.35
Ma	ignesia	-	-		-	0.36	0.2	0.06
Ar	senic oxide	-	-		- '		3.5	-
Alt	ımina, iron oxide, etc	-	<u>-</u>	1	1-45	0.70	0.4	0.67

^{*} T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 188a.

RELATION BETWEEN THERMAL AND ELECTRICAL CONDUCTIVITIES.

between the thermal and the electrical conductivities of metal was shown experimentally by Wiedemann and Franz tally by wiedemann and rame in 1853, and had been referred to by Forbes, with whom a difficulty arose with regard to the direction of the variation with temperature. The exwith temperature. The ex-periments of Tait and his stu-dents have shown that this difficulty was largely, if not entirely, due to experimental error. The same relation has error. The same relation has been shown to hold for alloys by Chandler Roberts and by Neumann. This relation was

That there is a close relation a. VALUES IN ARBITRARY UNITS AT 15° C.

Substance.	1,5	k18	15 k18
Lead Tin	7.93 14.46 25.45 41.52 14.18 9.64	4.569 8.823 14.83 24.04 6.803 4.060 6.565	1.74 1.64 1.72 1.73 2.08 2.37 2.09

denied by H. F. Weber, and has been again experimentally investigated and apparently established by the experiments of Kirchhoff and Hansemann, of L. Lorenz, of F. Kohlrausch, and of Berget.

Putting / — thereal conduc-

Putting /= thermal conductivity, and k=electrical conductivity, Kirchhoff and Hansemann find the values in ransemann mud ne values in Table a. This table shows iron to deviate considerably from the other metals in the relationship of the two conductivities; but this may possibly be explained by its magnetic properties.

Lorenz's results * show that the ratio l/k for the different metals, except iron, is nearly constant for values at 0° and 100° C., but that the ratio is generally greater for poorly conducting substances. He shows that the at 0° and 100° C., but that the ratio is generally greated as poorly stated as $\frac{l_{100}}{k_{100}} + \frac{l_0}{k_0}$ remains nearly constant for all metals examined, with the exception of iron, and has an average value, as shown by Table B, of about 1.37. He concludes that $l/k = \text{constant} \times T$, where T is the absolute temperature.

In this table the values of l and k are given in c. g. s. units, and the metals are arranged in the order of their heat conductivities. The same specimens were used for both the thermal and the electrical experiments.

h. VALUES IN C. G. S. UNITS.

Substan	ces.			l _o	l ₁₀₀	Å ₀ × 10 ⁸	k₁00 × 10 ⁸	<u>l_o</u>	$\frac{l_{100}}{k_{100}} + \frac{l_0}{k_0}$
Copper .				0.7198	0.7226	45.74	33.82	1 574	1.358
Magnesium		•	•	0.3760	0.3760	24-47	17.50	1 537	1.398
Aluminium		•		0.3435	0.3619	22.46	17.31	1529	1.367
Brass, red.		•		0.2460	0.2827	15.75	13.31	1562	1.360
Cadmium .		•	•	0.2200	0.2045	14.41	10.18	1527	1.315
Brass, yellow		•	•	0.2041	0.2540	12.62	11.00	1617	1.428
Iron		•		0.1665	0.1627	10.37	6.628	1605	1.530
Tin				0.1528	0.1423	9.346	6.524	1635	1.334
Lead				0.0836	0.0764	5.141	3.602	1627	1.304
German silver		•	•	0.0700	0.0887	3.766	3.632	1858	1.314
Antimony.			•	0.0442	0.0396	2.199	1.522	2011	1.294
Bismuth .				0.0177	0.0164	0.929	0.633	1900	1.372

c. BERGET'S EXPERIMENTS.†

The same specimens were used for both experiments. It will be seen that the ratio is nearly constant, but not exactly so.

Substance.	Z	k × 10 ^{−5}	<u>/</u> 10−4	Substance.	ı	k×10−5	¹ / _k 10 ^{−3}
Copper Zinc Brass Iron	1.0405	65.13	1.6	Tin	0.151	8.33	1.8
	0.303	18.00	1.7	Lead	0.0810	5.06	1.6
	0.2625	15.47	1.7	Antimony .	0.042	2.47	1.7
	0.1587	9.41	1.7	Mercury	0.0201	1.06	1.8

4. Kohlrausch's Results.

An interesting confirmation of the relationship of the two conductivities has been furnished by F. Kohlrausch, who has shown that tempering steel causes equal proportional changes in the thermal and electrical conductivities of the metal, thus leaving the ratio I/k unchanged by the process.‡

In the consideration of this subject it must be borne in mind that closely accurate values of thermal conductivity are very difficult to obtain, and hence fairly large variations are to be expected.

^{* &}quot;Wied. Ann." vol. 13, p. 598. † "Compt. Rend." vol. 110, p. 76.

TABLE 283.

ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

With the exception of the value given for silver and that corresponding to valence s for copper, the electrochemical equivalents given in this table have been calculated from the atomic weights and one or two of the more common apparent valences of the substance. The value given for silver is that which was adopted by the International Congress of Electricians at Chicago in 1804. The number for silver is made the basis of the table; the other numbers, with the exception of copper, above referred to, are theoretical. The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights ("Jour. Am. Chem. Soc.," vol. 25, p. 4).

Substa	ince	•		Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb X 1000.
Aluminum				Al	27.1	26.9	3	.0936
Antimony	•			Sb	120.2	119.3	3	.4150
" "				• •	4.6		5	.2490
Argon .				A	39.9	39.6	_	
Arsenic	•	•	•	As	75.0	74.4	3	.2590
				44	44		_ ا	
Barium	•	•	•	Ba	137.4	136.4	5 2	.1554 .7116
Bismuth	•	•		Bi	208.5	206.9	3	7199
1,1	•	:		**	2001.3	200.9	5	.4319
Boron .	:	:	:	В	II.	10.9	3	.0380
			-	,				
Bromine	•	•	•	Br	79.96	79.36	r	.8283
Cadmium	•	•	•	Cq	112.4	111.6	2	.5822
Caesium	•	•	•	Cs	133.	132.	I	1.3777
Calcium	•	•	•	Ca	40. I	39.8	2	.2077
Carbon	•	•	•	С	12.0	11.91	4	.0311
Cerium	_	_		Ce	140.	139.	2	.7251
Chlorine	•	•		Cì	35.45	35.18	ī	.3672
Chromium		•		Čr	52. I	51.7		.1800
**			•	44	""	347	3	,0000
Cobalt			•	Co	59.0	58.56	2	.3056
ll				44	44			
•	•	•	•			1	3	.2038
Columbium	•	•	•	СР	94.	93.3	5	.1947
Copper	•	•	•	Cu	63.6	63.1	1	.6588
Erbium	•	•	•	Er	166.	164.8	2 2	.3290 8508
Bibluin	•	•	•	Ei	100.	104.0	*	.8598
Fluorine	•			F	19.	18.9	r	.1968
Gadolinium				Gd	156.	155.	—	
Gallium	•	•		Ga	70.	69.5	3	.2417
Germanium			•	Ge	72.5	71.9	 	
Glucinum	•	•	•	Gl	9.1	9.03	2	.0471
Gold .	_			Au	197.2	195.7	3	.6800
Helium		•		He	4.	4.	<u>-</u>	
Hydrogen		:		H	1.008	1.000	1	.0104
Indium				În	114.	113.1	3	.3936
Iodine.				I	126.85	125.90	ĭ	1.3140
ll								
Iridium .	•	•	•	Ir	193.0	191.5	4	.4998
Iron .	•	•	•	Fe	55.9	55.5	2	.2895
•	•	٠	•	Kr	81.8	81.2	3	.1930
Krypton Lanthanum	•	•	•	La La	81.8 138.9	137.9	2	7704
Lanthandm	•	•	•	178	130.9	137.9	2	.7194
Lead .				Pb	206.9	205.35	2	1.0716
Lithium				Li	7.03	6.98	1	.0728
Magnesium				Mg	24.36	24.18	2	.1262
Manganese				Mn	55.0	54.6	2	.2849
••	•	•		**	••	٠٠ ١	4	.1424
	_						<u> </u>	<u> </u>
	_							

TABLE 283.
ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

Substance.	Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb × 1000
Mercury	Hg	200.0	198.5	I 2	2.0717
Molybdenum	Mo	96.0	95.3	6	1.0359 .1657
Neodymium	Nd	143.6	142.5	-	
Neon	Ne	20.	19.9	_	
Nickel	Ni "	58.7	58.3	2 3	.3040 .2027
Nitrogen	N	14.04	13.93	3	.0485
Osmium	Os	191.	189.6	5 6	.0291 .3297
Oxygen	0	16.00	15.88	2	.0820
Palladium	Pd	106.5	105.7	2	.5516
Phombosous	P	"-	"	5	.2206
Phosphorous	F	31.0	30.77	3 5	.1070 ,0642
Platinum	Pt	194.8	193.3	2	1.0098
	**	1 377	- 35.5	4	.5049
Potassium	K	39.15	38.86	Ī	.4055
Praesodymium	Pr	140.5	139.4	-	
Radium	Rd	225.	223.3	_	
Rhodium	Rh	103.0	102.2	3	.3556
Rubidium	Rb	85.4	84.8	I	.8846
Ruthenium	Ru	101.7	100.9	4	.2634
Samarium	Sm	150.	148.9	_	
Scandium	Sc	44.1	43.8	_	
Selenium	Se	79.2	78.6	2	.4102
Silicon	Si	28.4	28.2	4	.0735
Silver	Ag	107.93	107.12	I	1,1180
Sodium	Na Sr	23.05	22.88	I	.2388
Strontium		87.6	86.94	2	-4537
Sulphur	S	32.06	31.83	2	.1660
Tantalum	Ta	183.	181.6	5	·379I
Tellurium	Te	127.6	126.6	2	.6609
Terbium	Tb Tl	160.	158.8	-	1
		204.1	202.6	I	2.1142
Thorium	Th	232.5	230.8	2	1.2042
Thulium	Tm	171.	169.7	-	1 1
Tin	Sn	119.0	118.1	2	.6163
Titanium :	Ti	48.1	47.7	4	.3082 .1246
Tungsten	w	184.	182.6	6	.3177
Urnaium	Üΰ	238.5	236.7	2	1.2353
O'Indiana :	"		-3,,,	3	.8235
Vanadium	v	51.2	50.8	3	.1768
**	"		- "	3 5	1001.
Xenon	Xe	128.	127.	-	
Ytterbium	Yb	173.0	171.7	_	.4==
Yttrium	Yt	89.0	88.3	2	.4610
Zinc	Zn	65.4	64.9	2	.3387
Zirconium	Zr	90.6	89.9	4	.2346
L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	

SMITHSONIAN TABLES.

TABLE 283.

ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

With the exception of the value given for silver and that corresponding to valence a for copper, the electrochemical equivalents given in this table have been calculated from the atomic weights and one or two of the more common apparent valences of the substance. The value given for silver is that which was adopted by the International Congress of Electricians at Chicago in 1804. The number for silver is made the basis of the table; the other numbers, with the exception of copper, above referred to, are theoretical.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights ("Jour. Am. Chem. Soc.," vol. 25, p. 4).

Subm	ance	•		Symbol.	Relative atomic wt. Oxygen = r6.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grams per coulomb X 1000
Aluminum				Al	27.1	26.9	3	.0936
Antimony				Sb	120.2	119.3	3	.4150
**				**			5	.2490
Argon.				A	39.9	39.6	<u>-</u>	<u> </u>
Arsenic		•		As	75.0	74-4	3	.2590
	•	-	-		1			1
**				44		44	5	.1554
Barium				Ba	137.4	136.4	2	.7116
Bismuth			•	Bi	208.5	206.9	3	.7199
**		•		41			5	.4319
Boron .	:	•		В	II.	10.9	3	.0380
201011	•	•	•	-		1	,	,,,,
Bromine			_	Br	79.96	79.36	ī	.8283
Cadmium	•	:	•	Ca	112.4	111.6	2	.5822
Caesium	•	•	•	Cs.	133.	132.	ī	1.3777
Calcium	•	•	•	Ca.	40.1	39.8	2	.2077
Carbon	•	•	•	č	12.0		_	.0311
CEI DOII	•	•	•		12.0	11.91	4	.0311
Cerium				Ce	140.		2	
Chlorine	•	•	•	Ci		139.	1	.7251
Chromium	•	•	•	Cr	35.45	35.18		.3672 .1800
Chromium	•	•	•	Ć.	52.1	51.7	3	
•••	•	٠	•] "	***	6	.0900
Cobalt	•	•	•	Со	59.0	58.56	2	.3056
44				**	4.	44		2000
Columbium	•	•	•	Съ			3	.2038
	•	•	•		94-	93.3	5	.1947
Copper	•	•	•	Cu	63.6	63.1	1 2	.6588
Erbium	•	•	•	Er	166.	-6.0	2	.3290
Eroium	•	•	•	Er	100,	164.8	2	.8598
Fluorine				F	IQ.	18.9		****
r iuorine Gadolinium	•	•	•	Ğd	156.		I	.1968
Gadonnium Gallium	•	•	•	Ga		155.	_	6475
Gainum Germanium	•	•	•	Ge	70.	69.5	3	.2417
Germanium Glucinum	•	•	•	Gl	72.5	71.9	2	0477
Giucinum	•	•	•	GI	9.1	9.03	3	.0471
Gold .				Au	197.2	195.7	3	.6800
Helium		•	•	He	4.	4.		.5559
Hydrogen	:	•		H	1.008	1.000	I	.0104
Indium	•	•	•	In	114.	113.1	3	.3936
Iodine.	•	•	• ,	Ĭ"	126.85	125.90	, j	1.3140
Louise.	•	•	•	•	120.03	123.90	•	1.5140
Iridium	_			Ir	193.0	191.5	4	.4998
Iron .	•	•		Fe			2	.2895
	•	:	•	116	55.9	55.5	3	.1930
Krypton	•	:		Kr	81.8	81.2		1 .1930
Krypton Lanthanum	•	•		La	138.9	137.9	2	.7194
	•	•	•		-30.9	-37.9	_	1 1/194
Lead .	_	_		Pb	206.9	205.35	2	1.0716
Lithium	•	•	•	Li	7.03	6.98	ī	.0728
Magnesium	•	•	•	Mg	24.36	24.18	2	.1262
	•	•	•	Mn	55.0		2	.2849
Manganese			•			54.6		

TABLE 283. ELECTROCHEMICAL EQUIVALENTS AND INTERNATIONAL ATOMIC WEIGHTS.

	==					,
Substance.		Symbol.	Relative atomic wt. Oxygen = 16.	Relative atomic wt. Hydrogen = 1.	Valence.	Electrochemical equivalent in grammes per coulomb × 1000
Mercury		Hg	200.0	198.5	I 2	2.0717
Molybdenum	:	Mo	96.0	95.3	6	1.0359
Neodymium .		Nd	143.6	142.5	_	
Neon	•	Ne	20,	19.9	_	
Nickel	•	Ni	58.7	58.3	2	.3040
Nitrogen	:	N	14.04	13.93	3 3	.2027
		••	<i>``</i>	,,,,,	5	.0291
Osmium	•	Os	191.	189.6	6	-3297
Oxygen		0	16.00	15.88	2	.0820
Palladium	•	Pd	106.5	105.7	2	.5516
Dhambarra .	•				5	.2206
Phosphorous .	•	P	31.0	30.77	3	.1070
	•				5	.0642
Platinum	•	Pt	194.8	193.3	2	1.0098
Potassium	•	K			4	.5049
Praesodymium .	•	Pr	39.15 140.5	38.86	1	.4055
Radium	:	Rd	225.	139.4 223.3	_	
	•		5.			
Rhodium	•	Rh	103.0	102.2	3	.3556
Rubidium Ruthenium	•	Rb Ru	85.4	84.8	I	.8846
Samarium	•	Sm	101.7 150.	100.9 148.9	4	.2634
Scandium	:	Sc	44.1	43.8	_	
	•	50	44	43.0		
Selenium		Se	79.2	78.6	2	.4102
Silicon	•	Si	28.4	28.2	4	.0735
Silver	•	Ag	107.93	107.12	I	1.1180
Sodium	•	Na Sr	23.05	22,88	1 2	.2388
Strontium	•	J.	87.6	86.94	2	-4537
Sulphur		S	32.06	31.83	2	.1660
Tantalum	•	Ta	183.	181.6	5	.3791
Tellurium	•	Te	127.6	126.6	2	.6609
Terbium	•	Tb Tl	160. 204. I	158.8 202.6	<u> </u>	
	•		204.1	202.0	•	2.1142
Thorium		Th	232.5	230.8	2	1.2042
Thulium	•	Tm	171.	169.7	_	
Tin	•	Sn	119.0	118.1	2	.6163 .3082
Titanium .	:	Ti	48.1	47.7	4	.1246
Tungsten		w	184,	182,6	6	
Tungsten	:	Ü	238.5	236.7	2	.3177 1.2353
	:	"	-30,5	-3;;'	1 7	.8235
Vanadium	•	v	51.2	50.8	3 3 5	.1768
"	•	"	٠,,	"	5	.1061
Xenon		Xe	128.	127.	_	
Ytterbium	·	YЪ	173.0	171.7		
Yttrium		Yt	89.0	88.3	2	.4610
Zinc	•	Zn	65.4	64.9	2	.3387
Zirconium	•	Zr	90.6	89.9	4	.2346
L		<u> </u>	<u> </u>	ł	<u> </u>	

PERMEABILITY OF IRON.

TABLE 284. - Permeability of Iron Rings and Wire.

This table gives, for a few specimens of iron, the magnetic induction B, and permeability μ, corresponding to the magneto-motive forces H recorded in the first column. The first specimen is taken from a paper by Rowland, and refers to a welded and annealed ring of "Burden's Best" wrought iron. The ring was 6.77 cms. in mean diameter, and the bar had a cross sectional area of 0.016 sq. cms. Specimens 2-4 are taken from a paper by Bosanquet, and also refers to soft iron rings. The mean diameters were 21.5, 22.1, and 22.725 cms., and the thickness of the bars 2.535, 1.295, and .7544 cms. respectively. These experiments were intended to illustrate the effect of thickness of bar on the induction. Specimen 5 is from Ewing's book, and refers to one of his own experiments on a soft iron wire .077 cms. diameter and 30.5 cms. long.

	Specin	en 1	2	2		2			4		5		high e re nility
H	В	-	В	μ.	В	μ.	В	#	В	μ.	ively force meak nin di		
0.2	80	400	126	630	65	325	85	425	22	110	F.E. H. 4. 8.		
0.5	330	400 660	377	754	224	325 448 840	214	425 428	74	148	se companagnetizi		
0.1	1450	1450	1449	1449	840	840	885	885	246	246	. 5 8 2 5 8		
2.0	4840 9880	2420	4564	2282	3533	1766	2417 8884	1208	950	47.5 2486			
5.0		1976	9900	1980	3533 8 2 93	1659	8884	1777	12430				
10.0	12970	1297	13023	1302	12540	1254	11388	1139	1 5020	1502			
20.0	14740	737 328	14911	746	14710	735	13273	664	15790	789	Norra Live o re is t		
50.0	16390	328	16217	324	16062	321	13890	278 148	-	- 1	Norwalue quired when		
100.0	-	-	17148	171	17900	179	14837	148	-	-	> 0 5 5		

TABLE 285. - Permeability of Transformer Iron.

This table contains the results of some experiments on transformers of the Westinghouse and Thomson-Houston types. Referring to the headings of the different columns, M is the total magneto-motive force applied to the iron; M/l the magneto-motive force per centimetre length of the iron circuit: B the total induction through the magnetic goal; B/a the induction per square centimetre of the mean section of the iron circuit; B/l the magnetic reluctance of the iron circuit; B/l the permeability of the iron, a being taken as the mean cross section of the iron circuit as it exists in the transformer, which is thus slightly greater than the actual cross section of the iron.

			pecimen.	Second specimen.					
М	M T	В	B	<u>M</u> B	Bl Ma	В	B	<u>M</u> B	Bl Ma
8	0.597	218×108	1406	0.917 × 10 ⁻⁴	2360	16×104	1032	1.25 × 10-4	1730
40	1.194	587 " 878 "	3790	0.681 "	3120	49 "	3140	0.82 "	2640
60	1.791	878 "	5660	0.683 "	3180	82 "	5290	0.73 "	2970
80	2.338	1091 "	7040	0.734 "	2960	104 "	6710	0.77 "	2820
100	2.985	1219 "	7860	0.819 "	2640	118 "	7610	0.85 "	2560
120	3.582	1330 "	8580	0.903 "	2410	124 "	8000	0.97 "	2250
140	4.179	1405 "	9060	0.994 "	2186	131 "	8450	1.07 "	2036
160	4.776	1475 "	9510	1.090 "	2000	135 "	8710	1.18 "	1830
180	5-373	1532 "	9880	1.180 "	1850	140 "	9030	1.29 "	1690
200	5.970	1581 "	10200	1.270 "	1720	142 "	9160	1.41 "	1540
220	6.567	1618 "	10430	1.360 "	1 590	144 "	9290	1.53 "	1410
260	7.761	1692 "	10010	1.540 "	1410	-		-	-

[&]quot;Phil. Mag." 4th series, vol. xiv. p. 151.
Ibid. 5th series, vol. xix. p. 73.
"Magnetic Induction in Iron and Other Metals."

T. Gray, from special experiments.

PERMEABILITY OF TRANSFORMER IRON.

	-		First specimen.						Second specimen.					
M		M	В		$\frac{B}{a}$	M B		i Ta	В	B a	M B	Bl Ma		
20 40 60 80 100 120 140 160 180 200		0.62 147 1.23 442 1.85 697 2.46 862 3.08 949 3.70 1010 4.31 1060 4.93 1090 5.55 1120 6.16 1150		7 " " " " " " " " " " " " " " " " " " "	1320 1.36×10 ⁻⁴ 3980 0.91 " 6280 0.86 " 7770 0.93 " 8550 1.05 " 9106 1.19 " 9550 1.33 " 9820 1.47 " 10100 1.61 "		32 33 31 27 24 22 19	40 215×10 ⁸ 60 615 " 826 " 40 986 " 70 1050 " 100 " 1100 " 1170 " 30 1190 "		1940 0.93×10 ⁻⁴ 5540 0.64 " 7440 0.72 " 8880 0.81 " 9940 1.09 " 10300 1.23 " 10500 1.37 " 1.51 "		3140 4490 4030 3590 3060 2670 2430 2180		
							Г							
M		BOUT			TRANSF CAPACIT M B		(d) *	Гном s о	n-Houston	1 1500 W	M B	Bl Ma		
-1	(,	BOUT	1200	WATTS	CAPACIT M	Bl Ma	М 20	<u>M</u> 1	<i>B</i> 70×10 ⁸	<u>B</u> 1560	M/B 2.86×10−4	Bl Ma		
M 20 40	$\frac{M}{l}$	BOUT	B ×10 ⁸	B a	M B 1.36×1	7). Bl Ma 0 2140 2940	М	<u>M</u>	70×10 ⁸ 142 " 214 " 265 "	Ba	2.86×10 ⁻⁴ 2.81 " 2.81 " 3.02 "	3730 3780 3790 3520		
M 20 40 60	0.69 1.38 2.07	147 406 573	B ×10 ⁸	### 1470 4066 5730	M B 1.36×1 0.98	BI Ma 0-4 2140 " 2940 " 2770	20 40 60 80 100 120	0.42 0.84 1.26 1.68 2.10 2.52	70×10 ⁸ 142 " 214 " 265 " 309 " 348 "	1560 3160 4770 5910 6890 7760	2.86×10-4 2.81 " 2.81 " 3.02 " 3.45 "	3730 3780 3790 3520 3280 3080		
20 40 60 80	0.69 1.38 2.07 2.76	147 406 573 659	B ×10 ⁸ "	### 1470 4066 5730 6590	1.36×11 0.98 1.05 1.21	## 2940 ## 2390	20 40 60 80 100 120 160 200	0.42 0.84 1.26 1.68 2.10 2.52 3.36 4.20	70×10 ⁸ 142 " 214 " 265 " 348 " 408 " 456 "	1560 3160 4770 5910 6890 7760 9100 10200	2.86×10 ⁻⁴ 2.81 " 2.81 " 3.02 " 3.24 " 3.45 " 3.92 " 4.39 "	3730 3780 3790 3520 3280 3080 2710 2430		
M 20 40 60	0.69 1.38 2.07	147 406 573	B ×10 ⁸	### 1470 4066 5730	M B 1.36×1 0.98 1.05 1.21 1.40	BI Ma 0-4 2140 " 2940 " 2770 " 2390	20 40 60 80 100 120 160 200	0.42 0.84 1.26 1.68 2.10 2.52 3.36	70×10 ⁸ 142 " 214 " 265 " 309 " 348 " 408 "	1560 3160 4770 5910 6890 7760 9100	2.86×10-4 2.81 " 2.81 " 3.02 " 3.24 " 3.45 " 3.92 " 4.30 "	3730 3780 3790 3520 3280 3080 2710		

COMPOSITION AND MAGNETIC

This table and Table 289 below are taken from a paper by Dr. Hopkinson on the magnetic properties of iron and steel.

which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the
by 4". "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagprevious magnetization in the opposite direction to the "maximum induction" stated in the table. The "emergy
which, however, was only found to agree roughly with the results of experiment.

No.		Temper.	Chemical analysis.						
of Test.	Description of . specimen.		Total Carbon.	Manga- nese.	Sulphur.	Silicon.	Phos- phorus.	Other substances.	
1	Wrought iron	Annealed	-	_	-	-	-	-	
2	Malleable cast iron		_	_	-	-	-	- 1	
3	Gray cast iron Bessemer steel	_	0.045	0.200	0.030	None.	0.040	_	
4	Whitworth mild steel .	Annealed	0.090	0.153	0.016	Mone.	0.042	1	
8	4 4	"	0.320	0.438	0.017	0.042	0.035	_	
7		Oil-hard- ened	"	*	u	"	"	_	
8	46 46	Annealed	0.890	0.165	0.005	0.081	0.019		
ا و		S Oil-hard-	"	"	"	"	"	_	
10	Hadfield's manganese }	ened _	1.005	12.360	0.038	0.204	0.070	_	
	steel 5 '	Anformed	0.674		- 1		•		
11	Manganese steel	As forged Annealed	0.0/4	4.730	0.023	0.608	0.078		
13		Oil-hard- ened	"	"	"	"	u	_	
14		As forged	1.298	8.740	0.024	0.094	0.072	_	
15		Annealed	"	- /47	"	777			
16		Oil-hard- ened	44	"	"	"	u	-	
17	Silicon steel	As forged	0.685	0.694	u	3.438	0.123	_	
18	" "	Annealed	"	"	"	10 10	"	_	
19	" " · · ·	{ Oil-hard- } ened	46	"	u	"	u	-	
20	Chrome steel	As forged	0.532	0.393	0.020	0.220	0.041	0.621 Cr.	
21	" "	Annealed	**	**	"	"	68	"	
22	" "	Oil-hard- ened	"	"	"	"	"	66	
23	" "	As forged	0.687	0.028	"	0.134	0.043	1.195 Cr.	
24	"	Annealed	"	"	"	"	"	- a	
25		{ Oil-hard- } ened	"	"	"	40	4	"	
26	Tungsten steel	As forged	1.357	0.036	None.	0.043	0.047	4.649 W.	
27		Annealed	"	"	"	"	4	"	
28		Hardened in cold	"	"	u	"	"		
		water				ĺ			
		(Hardened							
29	" "	in tepid water	"	"	u	"	"	"	
30	" (French) .) Oil-hard-	0.511	0.625	None.	0.021	0.028	3.444 W.	
11 - 1	4 4) ened							
31 32	Gray cast iron	Very hard	0.855	0.312	0.042	0.151	0.089	2.353 W. 2.064 C.†	
33	Mottled cast iron	_	3-455 2.581	0.173	0.042	2.044 1.476	0.151	1.477 C.1	
34	White " "	_	2.036	0.386	0.467	0.764	0.458	4/	
35	Spiegeleisen	_	4.510	7.970	Trace.	0.502	0.128	_	
						ا د		[

[•] Phil. Trans. Roy. Soc. vol. 176.

[†] Graphitic carbon.

PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated "was calculated from the formula:—Energy dissipated = coercive force \times maximum induction \div π

Test. Temper.	No.		Temper.	Specific	Magnetic properties.				Energy dis-
Malleable cast iron	of	Description of specimen.		electri- cal resis-	mum in-	induc-	cive	netizive	sipated per
3		Wrought iron	Annealed				2.30	-	
Bessemer steel						7479	8.80		
The second color of the	3		_			3920	3.00	1	
6 " " " " " " " " " " " " " " " " " " "	1 2		Annealed					-	10280
7	6		"					-	
10		" " .						-	
Hadfield's manganese Steel	8	" " . ·	Annealed	.01 559	16120	10740	8.26	-	
Steel	9	•		.01695	16120	8736	19.38	-	99401
12	10		-	.06554	310	-	_		-
12	11	Manganese steel	As forged	05368		2202	23.50	37.13	. 34567
13	12	· · · · ·		.03928	10578	5848	33.86	46.10	113963
15	13	• •	{ ened		-	21 58-		40.29	41941
16						-	-	-	-
10	15	• • • •		.06316	1985	540	24.50	50.39	15474
18 " "	16	" "		.07066	733	-	-	-	-
10				.06163	15148		9.49	12.60	45740
19	18	" "		.06185	14701	8149	7.80	10.74	36485
21	19		ened	.06195	14696	8084	12.75	17.14	
22						9318			61439
22	21	" "		.01942	14848	7570	8.98	12.24	
24 " "	22		ened	1		1		48.45	169455
25 " " " Annealed .01049 13233 0409 1540 1979 04842 26 Tungsten steel As forged .02249 15718 10144 15.71 17.75 78568 27 " " As forged .02249 15718 10144 15.71 17.75 78568 28 " " As forged .02250 16498 11008 15.30 16.93 80315 29 " " Water Hardened in tepid water Hardened in tepid water Oil hardened in tepid water Oil hardened 0.02249 15610 9482 30.10 34.70 149500 30 " " (French) Water Oil hardened .03604 14480 8643 47.07 64.46 216864 31 " " Very hard .04427 12133 6818 51.20 70.69 197660 32 Gray cast iron 06286 10546 5108 12.24 - 41072 33 White " " 05661 9342 5554 12.24 20.40 36383	23								
25 Comparison of the content of th	24	" " · · •				6489	15.40	19.79	64842
27 " " Annealed (Hardened in tepid water (Hardened in tepid water (Oil hardened ened 2) " " (French) (French)			ened	1		7891	•		
28 " "			As forged						
28 " " in cold water Hardened in tepid water Gil hardened ened .02249 15610 9482 30.10 34.70 149500 30 " " (French) . (French) . (French) . (French) . (French) . (French) . (27			.02250	16498	11008	15.30	16.93	80315
Hardened in tepid water Oil hardened water Oil hardened o.02249 15610 0482 30.10 34.70 149500	28		in cold	.02274	_	_	_	-	_
30					1				
30	20	""		.02240	15610	0482	30.10	34.70	140500
31 " " Very hard .0427 12133 6818 51.20 70.69 197660 32 Gray cast iron			water		- ,5.5	*	, ,,,,,,	54.,5	
32 Gray cast iron - .11400 9148 3161 13.67 17.03 39789 33 Mottled cast iron - .06286 10546 5108 12.24 - 41072 34 White " " - .05661 9342 5554 12.24 20.40 36383	30	(French).	ened	.03604				1 11	
33 Mottled cast iron			Very hard						197660
34 White " "05661 9342 5554 12.24 20.40 36383			-					17.03	
34 Willie - 1.05001 9342 5554 12.24 2040 30303			_		, ,,			20.40	
		AA IIITE	1 -				12.24	20.40	30303
	35	Shiekereraen	1	.10520	J 305	"	-	-	_

TABLE 287.

PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 286.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 286. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be alightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz- ing force. Specimen 1 (iron).		Specimen 8 (annealed steel).		Specimen 9 (same as 8 tempered).		Specimen 3 (cast iron).		
H	В	μ.	В	ļ.	В		В	μ.
1	_	_	_	_	_	· _	265	265
2	200	100	-	-	-	-	700	350
3	-	-	-	-	-	-	1625	542 600
5	10050	2010	1525	300	750	150 165	3000	
10	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	57.5	5875	294	6000	300
30	1 5200	507	12650	422	9875	329	6500	217
40	1 5800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	12000	240	7350	149
70	16360	234 168	14350	205	13400	191	7900	113 85 63
100	16800		14900	149	14500	145	8500	85
150	17400	116	1 5700	105	1 5800	105	9500	63
200	17950	90	16100	8ŏ	16100	8ō	10190	51

Tables 288-203 give the results of some experiments by Du Bois,* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimetres long and 0.6 centimetres diameter. The specimens were as follows: (1) Soft Swedish Iron carefully annealed and having a density 7.82. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO₂ and traces of Fe and Cu; density 8.82. (4) Cast cobalt giving the following composition on analysis: Co = 93.1, Ni = 5.8, Fe = 0.8, Cu = 0.2, Si = 0.1, and C = 0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and \(\mu\) have the same meaning as in the other tables, S is the magnetic moment per gramme, and I the magnetic moment per cubic contimetre. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

TABLE 288.

MACNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C.

	· s	oft iron at o	∘ C.			Soft	iron at 100	o⁰ C.	
Н	S	I	В	μ	Н	S	I	В	μ
100	180.0	1408	17790	177.9	100	180.0	1402	17720	177.
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0
400	208.0	1627	19310 20830	52.1	400	207.0	1613	20660	51.0
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0
1 200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.

TABLES 289.

MAGNETIC PROPERTIES OF STEEL AT 0° AND 100° C.

	Steel at o° C.					Steel at 100° C.			
Н	s	I	В	μ	H	S	I	В	μ
100 200 400 700 1000 1200 3750†	165.0 181.0 193.0 199.5 203.5 205.0	1283 1408 1500 1552 1583 1595 1650	16240 17900 19250 20210 20900 21240 24470	162.4 89.5 48.1 28.9 20.9 17.7 6.5	100 200 400 700 1000 1 500 3000 5000	165.0 180.0 191.0 197.0 199.0 203.0 205.5 208.0	1278 1395 1480 1527 1543 1573 1593	16170 17730 19000 19890 20380 21270 23020	161.7 88.6 47.5 28.4 20.4 14.2 7.7 5.1

^{• &}quot;Phil. Mag." 5 series, vol. xxix.
† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 292.)

MACNETIC PROPERTIES OF METALS.

TABLE 290. - Cobalt at 100° C.

200 106 848 10850 54.2 928 11960 116 39.9 26.5 19.8 300 1016 1 3260 500 127 13870 700 131 1048 14520 15380 16870 134 138 1000 1076 14.5 1104 10.3 I 500 2500 1144 1164 6.7 143 18630 20780 4000 4.7 6000 147 1176 3.5 9000 149 1192 23980 2.6 At 0° C. this specimen gave the fol-23980 9000 lowing results: 7900 154 | 1232 | 23380 | 3.0

TABLE 291. - Nickel at 100° C.

Н	S	1	В	μ
100	35.0	309	3980	39.8
200	43.0	38ó	4966	24.8
300	46.0	406	5399	18.0
500	50.0	441	6043	12.1
700	51.5	454	6409	9.1
1000	53.0	468	6875	6.9
1500	56.0	494	7707	5.1
2500	58.4	515	8973	3.6.
4000	59.0	520	10540	2.6
6000	59.2	522	12561	2.I
9000	59-4	524	15585	1.7
12000	59.6	526	18606	1.5
At oo C	. this sp	oecimer	ı gave th	e fol-
1		ng resu		
12300	67.5	595	19782	1.6

TABLE 292. - Magnetite.

The following results are given by Du Bois * for a specimen of magnetite.

H	I	В	μ
500	325	8361	16.7
1000	345	9041	9.0
2000	350	10084	5.0
I 2000	350	20084	1.7

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, \(\alpha \) \(\alpha \) \(\alpha \) is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewig's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 293. — Lowmoor Wrought Iron.

Н	I	В	μ
3080	1680	24130	7.83
6450	1740	28300	4.39
10450	1730	32250	3.09
13600	1720	35200	2.59
16390	1630	36810	2.25
18760	1680	39900	2.13
18980	1730	40730	2.15

TABLE 294. — Vicker's Tool Steel.

H	I	В	μ
6210 9970 12120 14660 15530	1550 1580	25480 29650 31620 34550 35820	4.10 2.97 2.60 2.36 2.31

TABLE 295. — Hadfield's Manganese Steel.

H	I	В	μ
1930	55	2620	1.36
2380	84	3430	1.44
3350	84	4400	1.31
5920	111	7310	1.24
6620	187	8970	1.35
7890	191	10290	1.30
8390	263	11690	1.39
9810	396	14790	1.51

TABLE 296. - Saturation Values for Steels of Different Kinds.

		Н	I	В	μ
	Bessemer steel containing about 0.4 per cent carbon Siemens-Marten steel containing about 0.5 per cent carbon Crucible steel for making chisels, containing about 0.6 per	17600 18000	1770 1660	39880 38860	2.27 2.16
4	cent carbon	19470 18330 19620 18700	1480 1580 1440 1590	38010 38190 37690 38710	1.95 2.08 1.92 2.07

^{• &}quot; Phil. Mag." 5 series, vol. xxix.

^{† &}quot;Phil. Trans. Roy. Soc." 1885 and 1889.

TABLE 297.

MACNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS.

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following the effect of very small magnetizing forces has been studied by U. Baur and by Lord Rayleigh. The following short table is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100 H, or $l = 15 H + 100 H^2$. The experiments were made on an annealed ring of round bar 1.013 cms. radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 64 + 51 H, or l = 6.4 H $l = 1.51 H^2$. The forces were reduced as low as 0.00004 c. g. s., the relation of k to H remaining constant.

First experiment.			Second experiment.		
Н	À	I	Н	k	
.01580 .03081 .07083 .13188 .23011	16.46 17.65 23.00 28.90 39.81 58.56	2.63 5.47 16.33 38.15 91.56 224.87	.0130 .0847 .0946 .1864 .2903	1 5.50 18.38 20.49 25.07 32.40 35.20	

TABLES 298, 299.

DISSIPATION OF ENERGY IN CYCLIC MAGNETIZATION OF MAGNETIC SUBSTANCES.

When a piece of iron or other magnetic metal is made to pass through a closed cycle of magnetization dissipation of energy results. Let us suppose the iron to pass from zero magnetization to strong magnetization in one direction and then gradually back through zero to strong magnetization in the other direction and thence back to zero, and this operation to be repeated several times. The iron will be found to assume the same magnetization when the same magnetizing force is reached from the same direction of change, but not when it is reached from the other direction. This has been long known, and is particularly well illustrated in the permanency of hard steel magnets. That this fact involves a dissipation of energy which can be calculated from the open loop formed by the curves giving the relation of magnetization to magnetizing force was pointed out by Warburg ‡ in 1881, reference being made to experiments of Thomson, § where such curves are illustrated for magnetism, and to E. Cohn, || where similar curves are given for thermoelectricity. The results of a number of experiments and calculations of the energy dissipated are given by Warburg. The subject was investigated about the same time by Ewing, who published results somewhat later. T Extensive investigations have since been made by a number of investigators.

TABLE 298 .- Soft Iron Wire.

(From Ewing's 1885 paper.)

Total induction per sq. cm.	Dissipation of energy in ergs per cu. cm.	Horse- power wasted per ton at 100 cycles per sec.
2000	420	0.74
3000	800	1.41
4000	1230	2.18
5000	1700	3.01
6000	2200	3.89
7000	2760	4.88
8000	3450	6.10
9000	4200	7-43
10000	5000	8.84
11000	5820	10.30
I 2000	67.20	11.89
1 3000	7650	13.53
14000	8650	1 5.30
15000	9670	17.10

TABLE 299. - Cable Transfermers.

This table gives the results obtained by Alexander Siemens with one of Siemens' cable transformers. The transformer core consisted of goe soft iron wires 1 mm. diameter and 6 metres long.** The dissipation of energy in watts is for 100 complete cycles per second.

Mean maximum induction density in core.	Total ob- served dis- sipation of energy in the core in watts per 112 lbs.	Calculated eddy current loss in watts per 112 lbs.	Hysteresis loss of energy in watts per 112 lbs.	Hysteresia loss of energy in ergs per cu. cm. per cycle.
1000	43.2	4	39.2	602
2000	43.2 96.2	16	39.2 80.2	1231
3000	158.0	36 64	122.0	1874
4000	231.2	64	167.2	2566
5000	309.5	100	209.5	3217
6000	390.1	144	246.ī	3779

^{* &}quot;Wied. Ann." vol. xi. ‡ "Wied. Ann." vol. xiii. p. 141. || "Wied. Ann." vol. 6.

^{† &}quot;Phil. Mag." vol. xxiii.

41. \$ "Phil. Trans. Roy. Soc." vol. 175.

¶ "Proc. Roy. Soc." 1882, and "Trans. Roy. Soc." 1885.

** "Proc. Iust. of Elect. Eng." Lond., 1892.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=aB^{1.6}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed \pm 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.

Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

Number of specimen.	Kind of material.	Description of specimen.	Value of
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Iron	Norway iron Wrought bar Commercial ferrotype plate Annealed "" Thin tin plate Medium thickness tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " tempered in oil " annealed Same as 12, 13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " containing \$ % aluminium " " " alumining " " A square rod 6 sq. cms. section and 6.5 cms. long, from the Tilly Foster mines, Brewsters, Putnam County, New York, stated to be a very pure sample Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Rod containing about 2 % of iron, also calculated from Ewing's experiments by Steinmetz Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron.	.00227 .00326 .00548 .00458 .00286 .00425 .00349 .00457 .00318 .02792 .07476 .016130 .02700 .01445 .01300 .01459 .02348 .0122 .02348 .0122
		1st experiment, continuous cyclic variation of m.m. } f. 180 cycles per second	.0457 .0396 .0373

^{• &}quot;Trans. Am. Inst. Elect. Eng." January and September, 1892.
† See T. Gray, "Proc. Roy. Soc." vol. lvi.

TABLE 301.

DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF TRANS-FORMER CORES.*

This table gives, for the most part, results obtained for transformer cores. The electromagnet core formed a closed iron circuit of about 320 sq. cms. section and was made up of sheets of Bessemer steel about 1-20 inch thick. The No. 20 transformer had a core of soft steel sheets about 7-1000 inch thick insulated from each other by sheets of thin paper. The cores of the other transformers were formed of soft steel sheets 15-1000 inch thick insulated from each other by their oxidized surfaces only. The following are the particulars of the data given in the different columns:

- Lounn 1. Description of specimen.
 a. The total energy, in joules per cycle, required to produce the magnetic induction given in column B
 3. The energy, in joules per cycle, returned to the circuit on reversal of the magnetizing force.
 4. The energy dissipated, in joules per cycle, or the difference of columns 2 and 3.
 5, 6, and 7. The quantities in columns 2, 3, and 4 reduced to ergs per cubic centimetre of the core.
 B. The maximum induction in c. g. s. units per sq. cm.

1	2	3	4	8	, 6	7	B
Electromagnet {	6.5 24.4 66.8 81.4 96.6 126.2 153.0 178.4 221.2 275.6	0.9 2.6 10.4 15.4 21.8 38.2 57.6 79.2 116.8 168.0	5.6 21.8 56.4 66.0 74.8 88.0 95.4 99.2 104.4 107.6	1010 3800 10400 12700 15100 19700 23900 27800 34500 42900	140 406 1620 2400 3400 5960 8990 12400 18300 26200	867 3400 8800 10300 11700 13700 14900 15500 16300	2660 6700 11600 12700 14100 15200 15000 17240 17420
Westinghouse No 20 transformer	1.31	0.30	1.01	1435	328	1107	2330
	4.65	1.10	3.55	5110	1210	3900	4980
	8.25	1.62	6.63	9060	1780	7280	6620
	10.36	1.89	8.47	11350	2070	9280	7720
	12.20	2.98	9.22	13440	3280	10160	8250
	18.20	5.15	13.05	19980	5660	14320	9690
Westinghouse No. 8 transformer, specimen 1	0.45	0.055	0.400	875	105	770	3480
	0.80	0.102	0.101	1544	196	1348	5140
	1.66	0.199	1.460	3200	380	2820	7570
	2.42	0.406	2.010	4650	780	3870	9250
	3-54	0.795	2.750	6820	1530	5290	10940
Westinghouse No. 8 transformer, specimen 2	0.399	0.046	0.353	768	88	680	3060
	0.820	0.085	0.735	1574	164	1410	4830
	1.713	0.183	1.530	3300	352	2948	7570
	2.663	0.343	2.320	5120	660	4460	9270
Westinghouse No. 6 transformer, specimen 1	0.488	0.062	0.426	1360	172	1188	4640
	0.814	0.096	0.718	2260	266	1994	6760
	1.430	0.205	1.225	3980	570	3410	9370
	2.000	0.330	1.670	5560	918	4642	10950
Westinghouse No. 6 transformer, specimen 2	0.722	0.100	0.622	2000	278	1722	7290
	1.048	0.164	0.884	2920	456	2464	9000
	1.379	0.222	1.157	3830	616	3214	9990
	1.731	0.328	1.403	4810	912	3898	11210
Westinghouse No. 4 transformer	0.355	0.044	0.311	1210	152	1058	4540
	0.549	0.074	0.475	1880	255	1625	5020
	0.783	0.126	0.657	2690	433	2257	7 · 40
	0.970	0.175	0.795	3340	603	2737	7800
Thomson-Houston 1500 watt transformer	0.413	0.105	0.308	1930	490	1440	6150
	0.681	0.189	0.492	3190	880	2310	8250
	1.207	0.389	0.818	5660	1830	3830	11110
	1.797	0.710	1.087	8420	3320	5100	13290

^{*} T. Gray, from special experiments; see Table 285 for other properties.

DISSIPATION OF ENERGY DUE TO MAGNETIC HYSTERESIS IN IRON.*

The first column gives the maximum magnetic induction B per square centimetre in c. g. s. units. The other columns give the dissipation of energy in ergs per cycle per cubic centimetre for the iron specified in the foot-note.

В	1	2	3	4	5	•	7
2000	400	420	530	600	750	930	1100
3000	780	800	1050	1150	1350	1700	2150
4000	1200	1260	1670	1780	2030	2600	3300
5000	168o	1770	2440	2640	2810	3800	4700
6000	2200	2370	3170	3360	3700	5200	6200
7000	2800	3150	4020	4300	4650	6600	7800
8000	3430	3940	5020	5300	5770	8400	9500
9000	4160	4800	6100	6380	6970	10100	11400
10000	4920	5730	7200	7520	8340	11800	13400
11000	5800	6800	8410	8750	9880	13600	15600
12000	6700	8000	97 50	10070	11550	1 5400	-
13000	7620	9200	11200	11460	13260	17300	-
14000	8620	10500	12780	13100	15180	-	-
15000	9730	12150	14600	14900	17300	-	-
1	1		ı	1	I		

The iron for which data are given in columns 1 to 7 is described as follows:—

- 1. Very soft iron wire (taken from a former paper).
- 2a. Sheet iron 1.95 millimetres thick
- 2b. Thin sheet iron 0.367 millimetres thick almost alike.
- 3. Iron wire 0.975 millimetres diameter.
- 4. Iron wire of hedgehog transformer 0.602 millimetres diameter.
- 5. Thin sheet iron 0.47 millimetres thick.
- 6. Fine iron wire 0.2475 millimetres diameter.
- 7. Fine iron wire 0.34 millimetres diameter.

^{*} Ewing and Klassen, "Phil. Trans. Roy. Soc." vol. clxxxiv. A, p. 1015.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2}$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path substance, M the linear of the component of the magnetic field in the detection of the balan, r the index of refraction, and λ the wave-length of the light in air. If H be different, at different parts of the path, IH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant A has been called "Verdet's constant A". stant," * and a number of values of it are given in Tables 303-310. For variation with temperature the following formula is given by Bichat: -

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$\frac{\theta_1}{\theta_2} \!=\! \frac{\mu_1^{\,2} (\mu_1^{\,2} \!-\! 1) \lambda_2^{\,2}}{\mu_2^{\,2} (\mu_2^{\,2} \!-\! 1) \lambda_1^{\,2}},$$

where μ is index of refraction and λ wave-length of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet,† H. Becquerel,† Quincke,§ Koepsel,|| Arons,¶ Kundt,*** Jahn,†† Schönrock,†‡ Gordon,§§ Rayleigh and Sidgewick,|||| Perkin,¶¶ Bichat.***

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

```
The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35).

† "Ann. de Chim. et de Phys." [3] vol. 52.

† "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90 and 100.

§ "Wied. Ann." vol. 24.

| "Wied. Ann." vol. 24.

| "Wied. Ann." vol. 24.

| "Wied. Ann." vol. 23 and 27.

†† "Wied. Ann." vol. 43.

† "Zeits. für Phys. Chem." vol. 11.

| "Fil. Trans. R. S." 1885.

| "Phil. Trans. R. S." 1885.

| "Jour. Chem. Soc." vols. 8 and 12.

| ""Jour. de Phys." vols. 8 and 9.
```

Solida.

Substance.	Chemical formula.	Density or grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Тетр. С.	Authority.
Amber	_	_	D	0.0095	18-20°	Quincke.
Blende	ZnS	_	u	0.2234	15	Becquerel.
Diamond	С	-	u	0.0127	"	"
Fluor spar	CaFl ₂	-	"	0.0087	u	"
Glass:						
Crown	-	_	"	0.0203	**	u
Faraday A	-	5.458	u	0.0782	18–20	Quincke.
" В	-	4.284	"	0.0649	u	"
Flint	-	-	u	0.0420	"	"
	_	_	u	0.0325	15	Becquerel.
"	-	_	"	0.0416	u	"
" dense	-	-	"	0.0576	u	. u
	_	-	"	0.0647	u	46
Plate	-	-	4	0.0406	18-20	Quincke.
Lead borate	PbB ₂ O ₄	-	"	0.0600	15	Becquerel.
Quartz (perpendicular to axis)	-	-	44	0.0172	18-20	Quincke.
Rock salt	NaCl	-	"	0.0355	15	Becquerel.
Selenium	Se	_	В	0.4625	"	"
Sodium borate	Na ₂ B ₄ O ₇	-	D	0.0170	u	"
Spinel (colored by chrome) .	_	-	"	0.0209	"	"
Sylvine	KCl	-	66	0.0283	u	"
Ziqueline (suboxide of copper)	Cu ₂ O	-	В	0.5908	44	"

Liquids.

Substance.	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Acetone	C ₈ H ₆ O	0.7947	D	0.0113	20	Jahn.
"	••	0.7957	4	0.0115	15	Perkin.
"	64	0.7947	"	0.0114	19	Schönrock.
Acids: (see also solutions in						
water) Acetic	C ₂ H ₄ O ₂	1.0561	44	0 0105	21	Perkin.
Butyric	C ₄ H ₈ O ₂	0.9663	64	0.0110	15	- 4
Formic	CH ₂ O ₂	1.2273	44	0.0105	15	**
Hydrochloric	HCI	1.2072	"	0.0224	15	44
"	44		44	0.0206	15	Becquerel.
Hydrobromic	HBr	1.7859	44	0.0343	15	Perkin.
Hydroiodic	HI	1.9473	46	0.0513	15	4 1
Nitric	HNO ₈	1.5190	44	0.0070	13	46
" (fuming)	"	-	44	0.0080	15	Becquerel.
Propionic	C ₈ H ₆ O ₂	0 9975	• •	0.0110	15	Perkin.
Sulphuric	H ₂ SO ₄		46	0.0121	15	Becquerel.
Sulphurous	H ₂ SO ₈	-	44	0.0153	15	"
Valeric	$C_5H_{10}O_2$	0.9438	**	0.0121	15	Perkin.
Alcohols:				1		١,, , ا
Amyl	C ₈ H ₁₁ OH	_	"	0.0131	15	Becquerel.
		0.8107	"	0.0128	20	Jahn.
Butyl	C ₄ H ₉ OH	0.8021	4	0 0124	20	D
• · · · · ·	6 17 017		"	0.0124	15	Becquerel.
Ethyl	C₂H₅OH	0.7929	"	0.0107	18-20	Quincke.
"		0.7900	"	0.0112	20	Jahn. Perkin.
		0.7944	4	0.0114	15 16	Schönrock.
	CHOH	0.7943	"	0.0113	18-20	Quincke.
Methyl	сн₃он	0.7915	66	0.0094	20	Jahn.
	l "	0 7920	44	0.0093	15	Becquerel.
	44	0.7966	u	0.0096	15	Perkin.
	4	0.7903	44	0.0096	21.9	Schönrock.
Octyl	C ₈ H ₁₇ OH	0.82,6	44	0.0134	15	Perkin.
Propyl	Call ₇ OH	0.8050	46	0.0120	20.8	Schönrock.
110pyr		0.8082	"	0.0120	15.0	
4	"	_	66	0.0118	15	Becquerel.
"	**	0.8042	44	0.0120	20	Jahn.
Benzene	C ₆ H ₆	0.8786	66	0.0297	20	Jahn.
4	16	-	46	0.0268	15	Becquerel.
"	"	0.8718	44	0.0301	26.9	Schönrock.
Bromides:			46			I.,
Bromoform	CHBr ₈	2.9021	44	0.0317	15	Perkin.
Ethyl	C ₂ H ₅ Br	1.4486	44	0.0183	15	"
Ethylene	C ₂ H ₄ Br ₂	2.1871	64	0.0268	15	
	CIL D-	2.1780	"	0.0269	20	Jahn. Perkin.
Methyl	CH ₈ Br	1.7331	4	0.0205	0	Perkin.
Methylene	CH ₂ Br ₂	2.4971	et	0.0276	15	"
Octyl	C ₈ H ₁₇ Br C ₈ H ₇ Br	1.1170	44	0.0180	15	"
Propyl	CS ₂	1.2644	46	0.0160	18-20	Ouincke.
Carbon d'sulphide	l .	1.2044		1	(Becquerel,
" "	•	-	66	0.0434	•	1885.
44 44	· cc	'	44	0.0433		Gordon.
"			66	0.0433	18	Rayleigh.
44 44	u	_	u	0.0420	18	Koepsel.
	u	_		0.0439	o	Arons.
	1				ļ ⁻	1
	<u> </u>	<u> </u>	<u> </u>		<u>' ———</u>	

Liquida.

Substance.	Chemical formula.	Density in grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Chlorides:				•		
li A	CHCl	0.8740	D	0.0140	20	Jahn.
Amyl	As	0.0740	"	0.0422	15	Becquerel.
Carbon	C		64	0.0170		Decquerer.
4 1111	ČC1₄		"	0.0170	15	"
Chloroform	CHCI.	1.4823	66	0.0164	20	Jahn.
Choloron	CITCIS	1.4990	66	0.0166	15	Perkin.
Ethyl .	C•HaCl	0.9169	44	0.0138	.3	4
TO A STATE OF THE	C ₂ H ₄ Cl ₂	1.2589	66	0.0166	15	"
Etnylene	C3114C13	1.2561	46	0.0164	20	Tahn.
Methyl	CH ₈ Cl	1.2301	"	0.0170	15	Becquerel.
Methylene	CH ₂ Cl ₂	1.3361	u	0.0162	15	Perkin.
Octyl	CaH ₁₇ Cl	0.8778	44	0.0102	15	46 H
Phosphorus protochloride .	PCls	3.5776	44	0.0141	15	Becquerel.
Propyl	CaH,Cl	0.8922	**	0.0135		Perkin.
Silicon	SiCl ₄	0.0922	44	0.0275	15	Becquerel.
Sulphur bichloride	S ₂ Cl ₂		"	0.02/3	15 15	Decquerer.
Tin bichloride	SnCl4		4	0.0393		46
Zinc bichloride	ZnCl ₂		"		15	44
Iodides:	ZiiCig	_		0.0437	15	
Esh.J	C ₂ H ₈ I		"	0.0296		Perkin.
[CH ₈ I	1.9417 2.2832	66		15	reikili.
N	Call ₁₇ I		44	0.0336 0.0213	15	"
Propyl	CaH ₇ I	1.3395	"		15	
Nitrates:	C81171	1.7658		0.0271	15	
Ethyl	C ₂ H ₅ O.NO ₂		"	0.0001		"
Ethylene (nitroglycol)	$C_2H_4(NO_8)_2$	1.1149	66	0.0091	15	"
Methyl	CH ₈ O.NO ₂	1.4948	44	0.0038	15	"
	CaH ₇ O.NO ₂	1.2157	"	0.0078	15	44
Propyl	$C_8H_5(NO_8)_8$	1.5996	"	0.0000	15	
Nitro ethane	C ₂ H ₅ NO ₂		"	0.0095	15	46
3711	CH ₈ NO ₂	1.0552	66	0.0084	15	
Nitro methane	CaHaNO2	1.1432	"	0.0004	15	
Paraffins:	Cananoa	1.0100		0.0102	15	
D	C10H22	0.7218	66	0.0128	23.1	Schönrock.
TY	C ₁₀ 11 ₂₂ C ₇ H ₁₆	0.6880	46	0.0125		Perkin.
	C ₆ H ₁₄	0.6580	"	0.0125	15 22.1	Schönrock.
	~61 1/4	0.6743	46	0.0122		Perkin.
Octane	C ₈ H ₁₈	0.0/43	44	0.0125	15	Schönrock.
Pentane	C ₈ 1118 C ₆ H ₁₉	0.6196	44	0.0110	23.I 21.I	"
" i i i i i i i i i i i i i i i i i i i	C81113	0.6332	44	0.0119	15	Perkin.
Phosphorus (melted)	P	0.0332	66	0.0116		Becquerel.
Sulphur (melted)	Š	-	u	0.0803	33 114	Decdagier
Toluene	C ₇ H ₈	0.8581	44	0.0269	28.4	Schönrock.
1 Ordene	-711B	0.0301	66	0.0209	15	Becquerel.
Water	H _• O	0.9992	44	0.0243	15	Secdacies.
water	***	0.9992	44	0.0130	18-20	Quincke.
"	44	0.9983	"	0.0131	20	Jahn.
Xylene	C ₈ H ₁₀	J.9903	**	0.0132	15	Becquerel.
4	~8~~10	0.8746	"	0.0221	27	Schönrock.
		3.0/40		3.0203	~/	Scholliock.
					لــــــــــــــــــــــــــــــــــــــ	

TABLE 305.

MAGNETO-OPTIC ROTATION.

Solutions of Acids and Salts in Water.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Acetone	C ₈ H ₆ O	0.9715	D	0.0129	20 ⁰	Jahn.
Hydrobromic	HBr	1.7859	44 44	0.0343	15	Perkin.
		1.6104	44	0.0304	"	u
		1.3775	66	0.0244	и	"
	44	1.2039	44	0.0168	66	l u
Hydrochloric	нсі	1.2072	44	0.0225	и	"
"		1.1856	66	0.0219	44	"
"		1.1573	"	0.0204	66	"
"	44	1.1279	64	0.0193	"	68
"	4	1.0762	66	0.0168	44	46
"	"	1.0323	66	0.0150	20	Jahn.
"	66	1.0158	66	0.0140	4	1
Hydriodic	HI	1.9473	**	0.0513	66	Perkin.
*	"	1.9057	"	0.0499 0.0468	46	"
	"	1.8229	46		"	-
	"	1.7007	46	0.0421	"	- "
	1	1.4495	"	0.0323	- 66	u
		1.2966	66	0.0258	66	"
	HNO	1.1760	66	0.0205	66	44
Nitric	HNO8	1.5190	44	0.0105	64	
Culmburia Liatta	H ₂ SO ₄	1.3560	66	0.0121	44	Becquerel.
Sulphuric + 3H ₂ O	NH ₈	0.8918	"	0.0153	15	Perkin.
Ammorium	NH ₄ Br	1.2805	66	0.0226	u	- "
"	4.	1.1576	64	0.0186	44	- "
Barium	BaBr ₂	1.5399	66	0.0215	20	Jahn.
*	46	1.2855	44	0.0176	66	4
Cadmium	CdBr ₂	1.3291	44	0.0192	"	l ::
	•••	1.1608	"	0.0162	"	"
Calcium	CaBr ₂	1.2491	u	0.0189	44	
	KBr	1.1337	44	0.0163	44	"
Potassium	KB1	1.1424	66	0.0151	ш	"
Sodium	NaBr	1.1351	u	0.0165	44	44
4	114	1.0824	"	0.0152	44	u
Strontium	SrBr ₂	1.2901	64	0.0186	44	**
44	"	1.1416	44	0.0159	66	"
Carbonate of potassium	K ₂ CO ₃	1.1906	64	0.0140	20	u
" " sodium	Na ₂ CO ₈	1.1006	64	0.0140	64	44
	"	1.0564	44	0.0137	46	"
Chlorides:			44			37
Ammonium (sal ammoniac)	NH ₄ Cl	1.0718	44	0.0178	15	Verdet.
Barium	BaCl ₂	1.2897	"	0.0168	20	Jahn.
G-A-ium	CdCl ₂	1.1338	44	0.0149	u	46
Cadmium	Cacia	1.3179	44	0.0179	"	46
44	4	1.2755	44	0.01/9	46	"
4	¦	1.1531	**	0.0157	44	44
Calcium	CaCla	1.1504	44	0.0165	44	66
44	"	1.0832	66	0.0152	"	"
46	"	1.1049	44	0.0157	16	Schönrock.
			44	0.0221	10	Becquerel
Copper	CuCl ₂	1.5158			15	Decqueren
Copper	CuCl ₂	1.5150	"	0.0121		Decquerez "

Solutions of Acids and Salts in Water.

		1				
S. Latana	Chemical	Density,	Kind	Verdet's	Temp.	Authority.
Substance.	formula.	grammes per c. c.	of light.	constant in minutes.	C.	Authority.
			<u> </u>			
Chlorides:	- a.					
Iron	FeCl ₂	1.4331	D	0.0025	1.5°	Becquerel.
" : : : :	44	1.2141	"	0.0099	64	44
" : : : :	66	1.0548	"	0.0124	44	"
" (ferric)	Fe ₂ Cl ₆	1.6933	66	-0.2026	"	"
	"	1.5315	"	-0.1140	66	"
	44	1.3230	"	0.0348 0.0015	"	" "
" : : : :	"	1.0864	46	0.0013	66	"
"	."	1.0445	"	0.0113	66	"
	4	1.0232	44	0.0122	"	"
Lithium	LiCl .	1.0619		0.0145	20	Jahn.
Manganese	MnCl ₂	1.0316	"	0.0143	i	1
Wanganese	"	1.0876	"	0.0150	15	Becquerel.
Mercury	HgCl ₂	1.0381	66	0.0137	16	Schönrock.
	N'G1	1.0349	"	0.0137	"	, ", , , l
Nickel	NiCl ₂	1.4685	"	0.0270	1.5	Becquerel.
" : : : :	"	1.2432 1.1233	"	0.0162	"	"
	66	1.0690		0.0146	44	"
Potassium	KCl	1.6000	"	0.0163	"	- "
"	"	1.0732	"	0.0148	20	Jahn.
Sodium	NaCl	1.0418	"	0.0144	15	Becquerel.
Sodium	"aCI	1.1058	44	0.0155	1,5	becquerer.
4	"	1.0546	"	0.0144	"	"
"	44	1.0817	"	0.0154	20	Jahn.
" · · · ·	" S-C1	1.0418	"	0.0144	4	" "
Strontium	SrCl ₂	1.1921	44	0.0162	- a	
Tin .	SnCl ₂	1.3280	4	0.0266	1.5	Verdet.
	**	1.1637	"	0.0198	1 "	"
_" · · · ·	" 7 C1	1.1112	"	0.0175	"	"
Zinc	ZnCl ₂	1.2851	"	0.0196	"	
Chromate of potassium	K ₂ CrO ₄	1.1595		0.0098	66	"
Bichromate of "	K ₂ Cr ₂ O ₇	1.0786	"	0.0126	") "
Cyanide of mercury .	Hy(CN)2	1.0638	66	0.0136	16	Schönrock.
	44	1.0425	4	0.0134	4	" "
Iodides:		1.0605	-	0.0135		
Ammonium	NH4I	1.5948	"	0.0396	15	Perkin.
"	"	1.5688	44	0.0386	1	"
"	u	1.5109	"	0.0358	"	"
Cadmium : : :	CdI	1.2341		0.0235	20	Jahn.
Cadmium	Car	1.5156	"	0.0291	20	Jann.
"	u	1.1521	"	0.0177	46	"
Potassium	KI	1.6743	66	0.0338	15	Becquerel.
u	ee 66	1.3398	"	0.0237	66	" "
	"	1.1705	**	0.0182 0.0152	44	"
	44	1.2380		0.0152	20	Jahn.
	44	1.1245	44	0.0174	"	"
Sodium	NaI	1.1939	66	0.0200	"	"
"	"	1.1191	••	0.0175		

TABLES 305-307.

MAGNETO-OPTIC ROTATION.

TABLE 305. — Solutions of Acids and Salts in Water.

Subst	ance.		Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Nitrates: Ammonium Potassium . Sodium . Uranium . " " Sulphates: Ammonium " Barium . " Cadmium . " Lithium . " Manganese . Potassium . Sodium .	acid)		NH4NO8 KNO8 NaNO8 U2O8.N2O6 " (NH4)2SO4 NH4.HSO4 BaSO4 CdSO4 Li2SO4 MnSO4 " K2SO4 NaSO4	1.2803 1.0634 1.1112 2.0267 1.7640 1.3865 1.1963 1.2286 1.4417 1.1788 1.0938 1.1762 1.0890 1.1762 1.0942 1.2441 1.1416 1.0475 1.0661	D	0.0121 0.0130 0.0131 0.0053 0.0105 0.0115 0.0140 0.0085 0.0134 0.0133 0.0136 0.0137 0.0138 0.0138 0.0138	15 20 4 4 4 4 20 4 4 4 4	Perkin. Jahn. "" Perkin. " Jahn. " " " " " " " " " " " " "

TABLE 306. - Solutions of Salts in Alcohol.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.
Cadmium bromide	CdBr ₂ CaBr ₂ SrBr ₂ CdCl ₂ SrCl ₃ CdI ₂	1.0446 0.9420 0.9066 0.8846 0.9636 0.8814 0.8303 0.8313 0.8374 1.0988	D 44 44 44 44 44 44 44 44 44 44 44 44 44	0.0159 0.0140 0.0154 0.0130 0.0140 0.0126 0.0118 0.0118 0.0117 0.0199 0.0156	20 	Jahn.

TABLE 307. — Solutions in Hydrochloric Acid.

Substance.	Chemical formula.	Density, grammes per c. c.	Kind of light.	Verdet's constant in minutes.	Temp. C.	Authority.	
Antimony trichloride """ """ Bismuth "" """ """ """ """ """ """ """		SbCl ₈ " " BiCl ₈ "	2.4755 1.8573 1.5195 1.3420 2.0822 1.6550 1.4156	D "" "" "" "" "" "" "" "" "" "" "" "" ""	0.0603 0.0449 0.0347 0.0277 0.0396 0.0359	15 " " "	Becquerel.

Gener.

Substance.					Pressure.	Temp.	Verdet's constant in minutes.	Authority.	
Atmospheric air Carbon dioxide Carbon disulphide Ethylene . Nitrogen . Nitrous oxide . Oxygen . Sulphur dioxide		:			Atmospheric 74 cms. Atmospheric " " " 246 cms.	Ordinary 70° C. Ordinary " " 20° C.	6.83 × 10-8 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 "	Becquerel. Bichat. Becquerel. " " Bichat.	

Du Bois discusses Kundt's results and gives additional experiments on nickel and cobalt. He shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

TABLE 309.

VERDET'S AND KUNDT'S CONSTANTS.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

	Magnetic	Verdet's co	Wave-length	Kundt's constant.	
Name of substance.		Number.	Authority.		
Cobalt			Becquerel. Arons Becquerel. De la Rive. Becquerel. Rayleigh. Becquerel.	6.44×10 ⁻⁶ 6.56 ' 5.89 " " "	3.99 3.15 2.63 0.01 4.00 5.4 5.6 5.8 14.9 17.1

TABLE 310.

MAGNETIC SUSCEPTIBILITY OF LIQUIDS AND GASES.

The following table gives a comparison by Du Bois * of his own and some other determinations of the magnetic susceptibility of a few standard substances. Verdet's and Kundt's constants are in radians for the sodium line D.

Substance.	Verdet's constant.		Faraday's value &× 10 ⁶		,	querel's value × 10°	Wähner's value &×10 ⁶
Water	3.77 × 10	,⊸	—0.69		_	-0.6 3	-a.536
Alcohol, C ₂ H ₆ O	3.30 "		-0.57		_	-0.49	0.388
Ether, C ₄ H ₁₀ O	3.15 "	•	-0.54			-	-0.360
Carbon disulphide	12.22 "	•	0.72		_	0.84	0.465
Oxygen at 1 atmosphere .	0.00179"	٠	0.13			0.12	-
Air at 1 atmosphere	0.00194 "		0.02	4		0.025	-
	Quincke	at 20° C	:		D	u Bois at 1	5° C.
Substance.	Density.	έ×	106	Densi	ty.	¥ × 10g	Kundt's constant.
Water	0.9983	0.8	315	0.999)2	0.83	7 —4-50
Alcohol, C ₂ H ₆ O	0.7929	0.0	56o	0.796	3	0.69	4 -4.75
Ether, C ₄ H ₁₀ O	0.7152	0.6	507	0.725	0	0.64	2 —4.91
Carbon disulphide	1.2644	0.;	724	1.269	2	0.81	6 -14.97
Oxygen at 1 atmosphere .	-	-	.	0.001	35	0.11	7 0.016
Air at 1 atmosphere	_	_		100.0	23	0.02	4 0.081

TABLE 311.

VALUES OF KERR'S CONSTANT.

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant, K, Kerr's constant for the magnetized substance forming the magnet.

	Color of light.			Spectrum	· Wave- length	Kerr's constan	nt in minutes pe	r c. g. s. unit of	magnetization.
Cold	or ot	light.		line.	in cms. X 10 ⁶	Cobalt.	Nickel.	Iron.	Magnetite.
Red		•	•	Li a	67.7	0.0208	0.0173	0.01 54	+0.0096
Red		•	•	-	62. 0	0.0198	0.0160	0.0138	+0.0120
Yellow		•	•	D	58.9	0.0193	0.01 54	0.0130	+0.0133
Green		•		ь	51.7	-0.0179	-0.01 59	0.0111	+0.0072
Blue			•	F	48.6	-0.0180	0.0163	0.0101	+0.0026
Violet				G	43. I	-0.0182	0.0175	0.0089	-

^{* &}quot;Wied. Ann." vol. 35, p. 163.

† H. E. J. G. Du Bois, "Phil. Mag." vol. 29.

EFFECT OF MAGNETIC FIELD ON THE ELECTRIC RESISTANCE OF BISMUTH.*

TARLE 312. - Resistance One Ohm for Zero Pield and Various Temperatures.

This table gives the resistance to the flow of a steady electric current when conveyed across a magnetic field of the strength in c. g. s. units given in the first column if the wire has a resistance of one ohm at the temperature given at the top of the column when the field is of zero strength.

Тетр. С.=	0 °	10°	1.8°	30 °	50°	80 °
Field.			Resis	tance.		,
000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 25000 25000 35000 40000	1.000 1.018 1.045 1.088 1.135 1.185 1.240 1.365 1.423 1.480 1.743	1.000 1.019 1.050 1.094 1.153 1.214 1.274 1.340 1.466 1.467 1.535 1.875 2.507 2.846	1.000 1.018 1.045 1.084 1.131 1.183 1.242 1.295 1.358 1.417 1.480 1.785 2.087 2.393 2.704 3.031 3.309	1.000 1.017 1.041 1.074 1.118 1.156 1.202 1.258 1.308 1.355 1.409 1.665 1.927 2.193	1.000 1.014 1.034 1.055 1.085 1.113 1.148 1.190 1.223 1.266 1.303 1.505 1.713 1.931	1.000 1.007 1.015 1.032 1.050 1.074 1.100 1.127 1.154 1.182 1.203 1.343 1.349 1.804

TABLE 313. — Resistance One Ohm for Zero Field and Temperature Zero Centigrade.

This table gives the resistance in different magnetic fields and at different temperatures of a wire, the resistance of which is one ohm at o° C., when the magnetic field is zero. The current is supposed to be steady and to flow across the field.

Temp. C.=	0,	10°	18°	, 30 °	50°	· 80°
Field.			Resis	tance.		
0000	1.000	1.037	1.072	1.115	1.200	1.332
1000	1.018	1.057	1.091	1.129	1.217	1.341
2000	1.045	1.089	1.118	1.156	1.241	1.352
3000	1.088	1.134	1.162	1.198	1.266	1.375
4000	1.135	1.198	1.210	1.246	1.302	1.397
5000	1.185	1.260	1.265	1.290	1.335	1.428
6000	1.240	1.323	1.327	1.341	1.379	1.464
7000	1.304	1.392	1.385	1.404	1.428	1.500
8000	1.365	1.458	1.453	1.460	1.465	1.536
9000	1.423	1.523	1.515	1.509	1.520	1.573
10000	1.480	1.592	1.583	1.573	1.562	1.610
15000	1.743	1.946	1.907	1.860	1.805	1.784
20000		2.295	2.243	2.148	2.055	1.980
25000	-	2.645	2.560	2.445	2.320	2.157

Calculated from the results of J. B. Henderson's experiments, "Phil. Mag." vol. 38, p. 488.

TABLE 314.

SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.*

Solids.						
Substance.	Temperature in degrees C.	Specific heat.	Authority.			
Alloys: Bell metal Brass, red "yellow. 80 Cu + 20 Sn 88.7 Cu + 11.3 Al German silver Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi + 14.24 Sn ditto Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn ditto	15-98 0 0 14-98 20-100 0-100 5-50 100-150 -77-20 20-89	0.0858 .08991 .08831 .0862 .10432 .09464 .0345 .0426 .0356	R L R Ln T M "			
Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn	5-50 100-150	.0352 .0426	M "			
Miscellaneous alloys: 17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn 37.1 Sb + 62.9 Pb 39.9 Pb + 60.1 Bi ditto (fluid) 63.7 Pb + 36.3 Sn 46.7 Pb + 53.3 Sn 63.8 Bi + 36.2 Sn 46.9 Bi + 53.1 Sn CdSn Basalt Calcspar Diamond " " " " " " " " " " " " " " " " " "	20-99 10-98 16-99 144-358 12-99 10-99 20-99 20-99 -77-20 20-100 16-48 -50.5 10.7 140.0 206.0 606.7 985 20-1040 10-50 10-50 10-50 10-50 10-50 10-50 10-50 10-50 10-8 138.5 201.6 641.9 977.0 16-1040	.05657 .03880 .03165 .03500 .04507 .04507 .04504 .05537 .2024 .206 .0635 .1128 .2733 .4488 .4589 .3145 .161 .117 .186 .1726 .2143 .1920 .1138 .1604 .2542 .2966 .4450 .4670	R " " " " " " " " " " " " " " " " " " "			
References.						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		K = Ko $Ma = M$ $R = Re$	H. Meyer. pp. arignac.			

^{*} Condensed from more extensive tables given in Landolt and Börnstein's " Phys. Chem. Tab."

TABLE 314. SPECIFIC HEATS OF VARIOUS SOLIDS AND LIQUIDS.

Substance.	Temperature in degrees C.	Specific heat.	Authority.			
Gypsum Ice " " India rubber (Para) Marble, white " gray Paraffin " " " " " fluid Quartz " " Sulphur, cryst. Vulcanite	16-46 -78-0 -30-0 -21-1 ?-100 16-98 23-98 -20-3 -19-20 0-20 35-40 60-63 0 350 400-1200 17-45 20-100	0.259 4627 505 5017 481 .2158 .2099 .3768 .5251 .6939 .622 .712 .1735 .2786 .305 .163	K R P G&T R W " B " Pn " K A M			
LīQUIDS.						
Alcohol, ethyl """ """ """ Benzene """ Ethyl ether Glycerine Oils, castor " citron " olive " sesame " turpentine Petroleum CuSO ₄ + 50 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O " + 200 H ₂ O Na(OH + 30 H ₂ O " + 100 H ₂ O Na(OH + 50 H ₂ O " + 100 H ₂ O Na(OH + 50 H ₂ O " 100 H ₂ O Na(OH + 10 H ₂ O " 100 H ₂ O Na(OH + 10 H ₂ O " 100 H ₂ O Na(OH + 10 H ₂ O " 100 H ₂ O Na(OH + 10 H ₂ O " 100 H ₂ O Sea water: density 1.0043 "" "" "" "" "" "" "" "" ""	-20 0 40 5-10 15-10 10 40 0 15-50 - 5.4 6.6 - 0 21-58 12-15 12-14 13-17 20-52 20-52 20-52 18 18 18 18 18 18 17.5	0.5053 -5475 -6479 -5901 -6009 -3402 -4233 -5290 -576 -434 -438 -471 -387 -4106 -511 -848 -975 -842 -952 -975 -842 -975 -942 -983 -9791 -978 -980 -938 -903	R "" H&D R E W H W R Pa "" "" ""			
REFERENCES. A M = A. M. Maver. G & T = Gee & Terry. H & D = De Heen & J & B = Joly & Barto	= Dewar. Deruyts. li.	E = Em H M = 1 K = Ko	H. Meyer.			
L = Lorenz. $Ln = Luginin.$ $M = P = Person.$ $Pa = Pagliani.$ Pn	= Mazotto. = Pionchon. = Thomsen.	Ma = M R = Reg	arignac.			

TABLE 315.

SPECIFIC HEAT OF METALS.*

Metal. Temperature in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degrees C. Specific fine in degree C. Specific fine in deg								
" 100	Metal.	in	Specific heat.	Authority.	Metal.	in	Specific heat.	Authority.
" 100	A 1			NT.	Vanconos	•		Б
## 200								
Antimony 15 0.4890 " " 00 0.3337 N 100 0.9384 " 200 0.9384 " 200 0.9384 " 200 0.9384 " 200 0.93215 " 200 0.9386 " 100 0.93215 " 200 0.93215 "					Mercury: sond			
Antimony 15 0.4890 " 100 0.3384 " 200 0.3284 " 200 0.3384 " 200 0.3235 " 200 0.3235 " 200 0.3235 " 200 0.3235 " 250 0.3212 " 200 0.3366 " Nickel 14-97 1.10916 R 1-109 1.1283 P 1-109 1.12	• • •				"	_		
## 100						_	.03337	N
## 200								1
								1 1
Bismuth					Michal			
				-				
a fluid 280-380 .0363 P " \$600 .12988 " Cadmium 21 .0551 N " 800 .1484 " " 100 .0570 " " 1000 .16975 " " 200 .0594 " Palladium 0-100 .0592 V Calcium 0-100 .1804 B Platinum -78-20 .03037 S Chromium (?) 22-51 .09975 K " 0-100 .0323 Y Cobalt .9-97 .16674 R " 0-78-20 .03037 S Cobalt .9-97 .16674 R " 0-100 .0337 " " 500 .14516 Pn " 0-100 .0377 " Copper 0 .08988 L " 1300 .03854 Pt " 50 .09166 " "	Bismuth							
Cadmium 21 .0551 N								1 1
Calcium 21	nuiu			-				i !
# 200 .0594 " Palladium .0-100 .0592 V	Cadmium) I
Calcium 0-100 1804 B Platinum -78-20 0.3037 S C Chromium (?) 22-51 0.9097 K 0-100 0.323 V C Obalt 9-97 1.0674 R 0.0784 0.0365 0.0714 C 0.000 0.323 V C 0.000					Palladin			₃₇
Calcium		r .		"				
Chromium (?) Cobalt 9-97 10674 R 0-100 0-323 V Cobalt 9-97 10674 R 0-100 0-323 V Cobalt 1000 204 1000 204 1000 204 1100 204 117 0-1177 0-388 11400 0-3865 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 0-3663 11400 11500 110000 110000 110000 110000 110000 11000	Coloium			B	Platinum			اما
Cobalt . 9-97								
1000 14516 Pn					"			
Copper								64
Copper	"				"			46
#	Conner		08088	т.	"			Pt
" 17	Copper		00766		4		03806	
## 100	"			N	"		03080	"
"	"				Potassium		.1662	lsl
Gold	4			"		0-100	•	
Gold	"			u	"	li .		N
Iridium	Gold		- :	v	"			"
Color Colo	Iridium			"	"	200		1 . 1
##	"	0-1400		"			.06091	1 1
"	Iron	15	.1091					
"			.1151	1	nuiu			
"		200	.1249		Sodium		.2830	
"		300	.1376		"			
"			.17645					
"	" • • • •			7-				
Lead							-05534	
##								l i
##	"				11414			
## Cool							.05799	
" fluid	• • • •				7inc			R
" "				1				
Lithium				J.P	"	1		
Magnesium 0 .2456 L " 300 .1040 .122 LV	Lithium			R	u			"
REFERENCES. R W W State St					"			_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"				"	300-400		LV
B = Bunsen. $K = Kopp.$ $L = Lorenz.$ $LV = Le Verrier.$ $N = Naccari.$ $P = Person.$ $Pn = Pionchon.$ $Pt = Pouillet.$ $R = Regnault.$		1	1 3.7					L_
P = Person. $Pn = Pionchon.$ $Pt = Pouillet.$ $R = Regnault.$			F	(efe				
				= Lo				uri.
S = Schüz. Sp = Spring. V = Violle. W = Winkelmann.								
↓	S = Schuz.	Sp = Spr	ing.		V = Violle.	w = V	V inkelmai	nn.

Condensed from Landolt and Börnstein's "Phys. Chem. Tab."

INDEX.

PAGE	PAGE
Absorption of gases by liquids125	Capillarity (continued).
of solar energy by the atmosphere177	surface-tension of water and alcohol 128
Acceleration, angular and linear, conversion	various liquids
factors for	Carat, definition of
Activity, conversion factors for	Cells, battery
planes	standard247
data for wind pressure	Chemical elements, boiling and melting
Agonic lines117	points of
Air, specific heat of223	Cobalt, Kerr's constants of291
thermometer	magnetic properties of279
Alcohol, density of	Coefficients, isotonic
vapor pressure of	of diffusion
Alloys, electric conductivity of251-253 electric resistance of251-253, 256, 257	of thermal expansion214-218
density of85	of viscosity
specific heat of294	Color scale, Newton and Reinold and
strength of	Rucker
thermal conductivity of	Combination, heat of202
thermoelectric power of248, 249	Combustion, heat of201
Alternating currents, resistance of wires for 258	Compressibility, of gases
Alums, indices of refraction for180 Angles, conversion factors for14	of liquids
Aqueous solutions, boiling-points of196	Conducting power of alloys251-253
vapor, density of155	Conductivities, molecular260, 261
pressure of	of electrolytes
Arc spectrum, wave-lengths in	thermal197, 198
Areas, conversion factors for	Contact, difference of potential268
Atmosphere, pressure of vapor in	Conversion factor, definition ofxviii Conversion factors for acceleration, angular18
Atomic weights272	acceleration, linear
	activity19, 21
Barometer, correction for capillarity124	angles 14
determination of heights by	areas11
reduction to latitude 45°122, 123	capacities12
reduction to sea level	densities23
reduction to standard temperature120	electric deposition24 electric displacement25
Battery cells, composition and electromotive force of	electric displacement
Bismuth, electric resistance of, in magnetic	electric resistance23
field293	energy20, 21
Boiling-point, of chemical elements207	film tension
of various inorganic compounds210	force17
of various organic compounds212	heat, quantities of24
of water, barometric height correspond-	intensity of magnetization
of water, effect of dissolved salts on196	length
Brick, strength of70	moment of inertia
British weights and measures, equivalents in	moment of momentum
metric	momentum16
	magnetic moment27
Conscition conversion factors for	magnetization, intensity of
Capacities, conversion factors for	magnetization, surface density of26 power19, 21
Capillarity, of aqueous solutions	resistance, electric23
correction of barometer for124	stress
of liquids as solidifying-point129	temperatures25
of soap films129	tension, film or surface20

Conversion (continued).	Factors, conversion
time, intervals of	formulæ for conversion
velocities	Film-tension, conversion factors for20, 22
volumes12	constants for128, 129
work	Fluor spar, refractive index of183
Critical temperature of gases200	Formulæ for conversion factors, dynamic
Crystals, cubic expansion of	units
elastic constants of	electric and magnetic units
formulæ for elasticity of	fundamental units
refractive indices of	heat unite
	heat units
liquids217 solids216	Force, conversion factors for
Cyclic magnetization, dissipation of energy	Force de cheval, definition of
in	Fraunhofer lines, wave-lengths of175
111	Freezing mixtures199
	Freezing-point, lowering of, by salts192
Declination, magnetic	Friction, coefficients of
Densities, of air, values of $h/760$	Functions, hyperbolic28-35
alcohol96-98	gamma38
alloys and other solids85	Fundamental units2
aquéous solutions90	Fusion, latent heat of206
gases	
liquids	
mercury95	Gamma functions38
metals86	Gases, absorption by liquids125
organic compounds212	compressibility of79-81
water92-94	critical temperatures of200
woods87	density and specific gravity of89
Density, conversion factors for23	expansion of218
Dew-points, table for calculating	magnetic susceptibility of292
Diamonds, unit of weight for	magneto-optic rotation in291
Dielectric strength244, 245	refractive indices of190
Diffusion of gases and vapors149	specific heat of224 thermal conductivity of198
liquids and solutions	rices it of
Dilution of solution, contraction due to134	viscosity of
Dimension formulæ (see also <i>Units</i>)xvii	volume of perfect (values of 1 7 .0030/1)
	164_168
Dip, magnetic	164-168
Dynamic units, dimension formulæ ofxvii	164–168 Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2	164-168 Gauges, wire58-68 Geometric units, conversion formulæ for2
Dynamic units, dimension formulæ ofxvii	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219 Earth, miscellaneous data concerning106	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219 Earth, miscellaneous data concerning106 Elasticity, moduli of	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219 Earth, miscellaneous data concerning106	Gauges, wire
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219 Earth, miscellaneous data concerning106 Elasticity, moduli of	164-168 164-168 58-68 58-68 Geometric units, conversion formulæ for
Dynamic units, dimension formulæ ofxvii formulæ for conversion of2 Dynamical equivalent of thermal unit219 Earth, miscellaneous data concerning106 Elasticity, moduli of	164-168 164-168 58-68 58-68 Geometric units, conversion formulæ for
Dynamic units, dimension formulæ of	164-168 164-168 58-68 58-68 58-68 58-68 69 69 69 69 69 69 69
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 219 Dynamical equivalent of thermal unit	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 33 units, dimension formulæ xxv Electrochemical equivalents and atomic	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 219 Dynamical equivalent of thermal unit	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytes, conductivities of 259	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytes, conductivities of 259 Electrolytic deposition, conversion factors for .24 Electromagnetic system of unitsxxix	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255, relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytic deposition, conversion factors for 24 Electromagnetic system of units xxvi Electromotive force of battery cells 246, 247 Electrostatic system of units xxvi	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 275 Electrolytes, conductivities of 259 Electrolytes, conductivities of 259 Electrolytic deposition, conversion factors for .24 Electromagnetic system of units xxix Flectromotive force of battery cells 246, 247 Electrostatic system of units xxix Electrostatic unit of electricity, ratio of, to electromagnetic 243	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 30 units, dimension formulæ xxix Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytic deposition, conversion factors for 240 Electrostatic system of units xxix Flectrostatic system of units xxix Flectrostatic unit of electricity, ratio of, to electromagnetic 243 Elliptic integrals 258 Emissivity 258 Emissivity 234 Electrostatice of vires 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 258 Emissivity 259 Emissivity 258 Emissivity	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74–78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58–68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytes, conductivities of 259 Electrolytic deposition, conversion factors for .24 Electromagnetic system of units xxix Flectromatic system of units xxix Flectrostatic system of units xxix Flectrostatic unit of electricity, ratio of, to electromagnetic 243 Elliptic integrals 43 Elongation, effect on resistance of wires 254 Emissivity 234, 235 Energy, conversion factors for 20, 21	Gauges, wire
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74-78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58-68, 254 displacement 25 potential, conversion factors for 27 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytes, conductivities of 259 Electrolytic deposition, conversion factors for 240 Electromagnetic system of units xxix Flectromatic system of units xxix Electrostatic unit of electricity, ratio of, to electromagnetic 243 Elliptic integrals 43 Elongation, effect on resistance of wires 258 Emissivity 234, 235 Energy, conversion factors for 20, 21 Equivalent, electrochemical 272	Gauges, wire 58-68 Gauges, wire 58-68 Geometric units, conversion formulæ for 2 Glass, electric resistance of 270 indices of refraction for 178, 179 Gravity, force of 102-104 Harmonics, zonal 40 Heat, conversion factors for quantities of 24 latent heat of fusion 206 latent heat of vaporization 204 mechanical equivalent of 220 units, conversion factors for 24 dimension formulæ for xxiii formulæ for conversion factors of 3 Heats of combustion and combination 201, 202 Heights, determination by barometer 160 Humidity, relative 161 Hydrogen thermometer 23 Hyperbolic cosines 29-31 Hyperbolic functions 28-35 Hyperbolic sines 28-35 Hyperbolic sines 28-36 Hysteresis, magnetic 280-283 Iceland spar, refractive index of 185 Indices of refraction for alums 185 gases and vapors 196 glass 178, 176 Iceland spar 187
Dynamic units, dimension formulæ of xvii formulæ for conversion of 2 Dynamical equivalent of thermal unit 219 Earth, miscellaneous data concerning 106 Elasticity, moduli of 74–78 Electric conductivity of alloys 251, 252 of metals 255 relation to thermal 271 constants of wires 58–68, 254 displacement 25 potential, conversion factors for 27 resistance, conversion factors for 23 resistance, effect of elongation on 258 units, conversion factors for 3 units, dimension formulæ xxv Electrochemical equivalents and atomic weights 272 of solutions 259 Electrolytes, conductivities of 259 Electrolytic deposition, conversion factors for .24 Electromagnetic system of units xxix Flectromatic system of units xxix Flectrostatic system of units xxix Flectrostatic unit of electricity, ratio of, to electromagnetic 243 Elliptic integrals 43 Elongation, effect on resistance of wires 254 Emissivity 234, 235 Energy, conversion factors for 20, 21	Gauges, wire

Indices of refraction for alums (continued).	Melting-points (continued).
quartz	of mixtures and alloys
solutions of salts	Mercury, density of
sylvine	electric resistance of255, 256
Inductance, mutual42	index of refraction181
Integrals, elliptic	specific heat of22
Intensity, norizontal, or earth's magnetic field	strength of
total, of earth's magnetic field110	electric resistance of
Iron, elasticity and strength of72	specific heat of
hysteresis in280-283	thermal conductivity of197
magnetic properties of274-283, 292	Metals and metallic oxides, indices of refrac-
Isotonic coefficients	tion for
	Metric weights and measures —
Jewels, unit of weight for	equivalents in British
Joule's equivalent220	equivalents in United States
•	Mixtures, freezing
Kerr's constant, definition and table of 292	Moduli of elasticity
Kilogramme, definition ofxvi	Moments of inertia, conversion factors for 13
Kundt's constants291	Moment of momentum, conversion factor
definition of291	for
	Momentum, conversion factors for
Tatant hast	Mutual inductance, table for calculating42
Latent heat	
Legalization of practical electric unitsxxxiv	Neutral-points, thermoelectric249
Length, conversion factors for	Newton's rings and scale of colors130
Light, velocity of176-243	Nickel, Kerr's constants for292
rotation of plane of polarized191	magnetic properties of279
Linear expansion of chemical elements214 of various substances215	
Liquids, absorption of gases by125	Ohm, various determinations of262
compressibility and bulk moduli of82	Osmose and osmotic pressure150
density of88	
magneto-optic rotation in286, 287	Decade wait of maints for
magnetic susceptibility	Pearls, unit of weight for
specific heat of295	Pendulum, length of seconds104, 105
thermal conductivity of197, 198	Permeability, magnetic
thermal expansion of217	Photometric standards176
Lowering of freezing-point by salts192	Planets, miscellaneous data concerning106
	Poisson's ratio
Magnetic field, effect of, in resistance of bis-	Potential, contact difference of268
muth	difference of, between metals in solu-
moment, conversion factors for27	tions269
permeability	electric, conversion factors for
magnetite and nickel279	Power, conversion factors for
properties of iron and steel276	Practical electrical unitsxxxiii
saturation values for steel	Pressure, barometric, for different boiling-
susceptibility of liquids and gases292	points of water
units, conversion formulæ for	critical, of gases
Magnetism, conversion factors for surface	of aqueous vapor151-154
density	at low temperatures
terrestrial	in the atmosphere
Magnetization, conversion factors for inten-	of mercury column119
sity of	osmotic150 of vapors126, 225–227
magnetic properties of279	of wind
Magneto-optic rotation, general reference to	Probability, table for calculating36
284	
tables of	Quarte fibres strangth of
Masses, conversion factors for	Quartz, fibres, strength of
Measurement, units ofxv	TOTAL MINUTE OF FITTE OF THE PARTY OF THE PA
Mechanical equivalent of heat220	
Melting-points of chemical elements 207	Radiation, effect of pressure on236
of inorganic compounds208	Relative humidity

300 INDEX.

Resistance (see also Conductivity), electric.	Terrestrial magnetism (continued).
of alloys251-253, 256, 257	horizontal intensity and its secular varia-
of electrolytes259	tion for different latitudes and longi-
of glass and porcelain270	tudes
of metals and metallic wires254-257 of wires, effect of elongation on258	secular variation of declination113-116 Thermal conductivities197, 198
Rigidity, modulus defined74	relation to electrical271
of metals74	expansion, coefficients of214-218
variation of, with temperature76	units, dynamic equivalent of219
Rotation, magneto-optic284-291	Thermoelectricity248-250
	Thermometer
	air228, 231
Saturation values, magnetic, for steel279	correction of, for mercury in stem232
Seconds pendulum, length of104, 105 Secondary batteries247	hydrogen231 mercury in glass229
Sections of wires44-54, 58-68	zero change due to heating229
Sheet metal, weight of	zero, change of, with time230
Soaring of planes, data for109	Timber, strength of70
Solar constant177	Time, unit of, definedxvii
Solar spectrum, wave-length in172	Times, conversion factors for14
Solids, compressibility and bulk moduli of83	Transformers, permeability of
density of85	iron in
magneto-optic rotation in284 Solution, contraction produced by131-134	Units of measurementxv
Solutions, aqueous, boiling-points of196	dimension formulæ for dynamic xviii
density of90	electric and magneticxxv
magneto-optic rotation in288-290	electromagneticxxix
refractive indices for188	electrostaticxxvi
specific heat of224	fundamental2
Sound, velocity of, in air99	heatxxiii
in gases and liquids	practical, legalization of electric xxxiii ratio of electrostatic to electromagnetic
Specific electrical resistance, conversion fac-	243
tors for23, 254-256	United States weights and measures in
Specific gravity (see also Density).	metric
of aqueous ethyl alcohol96	•
methyl alcohol97	
of gases89	Vapor, density of aqueous155
Specific heat of air	diffusion of149 pressure of126, 225-227
of metals	pressure of aqueous151-154
of solids and liquids294, 295	values of 0.378 e 160
of water223	pressure of, for aqueous solutions194
of water, formulæ for222	refractive indices for190
Specific inductive capacity263-265	specific heats of224
viscosity, aqueous solutions144	Vaporization, latent heat of204 Velocity, angular and linear, conversion fac-
oils	tors for
Spectra, wave-lengths in arc and solar172	of light176, 243
Standard cells247	of sound99, 101
wave-lengths of light	Verdet's constants for alcoholic solution of
Standards, photometric	salts290
Steel, physical properties of	aqueous solutions of salts287
Steinmetz, constants for hysteresis of281	gases291 hydrochloric acid solutions of salts 290
Stone, strength of70	liquids and solids285-287
thermal conductivity of	and Kundt's constants292
dielectric244	Viscosity, coefficient, definition of
Strength of materials70-73	coefficient of, for aqueous alcohol137
Stress, conversion factors for	for gases
conversion factors for	for liquids
Sylvine, refractive index of	specific, for oils
•	for water
	Volumes, conversion for ors for
Temperature, conversion factors for25	critical, of gases200
critical, of gases	
declination, data for maximum east at	Water, boiling-point for various barometric
various stations118	pressures
dip and its secular variation for differ-	density of92-94
ent latitudes and longitudes111	specific heat of222, 223

thermal conductivity of	Wind, pressure of
	Woods, densities of88
Wave-lengths of Fraunhofer lines	Work, conversion factors for20, 2
Weights and measures —	
British Imperial to Metric	Yard, definition ofxv
Metric to British Imperial5, 6	Young's moduli
Metric to United States	modulus, definition of
United States to Metric	
Weights of sheet metal	
Weights of wires44-54	Zonal harmonics40

			ı
		•	1
			,
			1
		-	1

. , .

.

DUZ NOV 21 191.

Phys 440.3.14 Smithsonian physical tables Cabot Science 003439213