

input_vector = [114115.099, 37.533, 10.697, ..., 2700.0, 817.0]

```
contaminated input vectors = [
          NaN, 37.533, 10.697, ..., 2700.0, 817.0],
   [114115.099, NaN, 10.697, ..., 2700.0, 817.0],
  [114115.099, 37.533, NaN, ..., 2700.0, 817.0],
  [114115.099, 37.533, 10.697, ..., NaN, 817.0],
  [114115.099, 37.533, 10.697, \ldots, 2700.0, NaN],
```

contaminated_outputs[18] = [*NaN*, 3475012.2, *NaN*, ..., 170545.5, *NaN*]

Sparsity pattern of `surfw()`, using NaN-contamination Inputs (n=38)

Column-compressed sparsity pattern of `surfw()` Inputs (n=25)

Sparsity pattern of `surfw()`, using NaN-contamination Inputs (n=38)

Sparsity pattern of `surfw()`, using NaN-contamination Inputs (n=38)

Step 1:

- Trace sparsity with NaN-propagation
- Compute gradient, take optimization step, etc.

Step 2:

 At next iteration, if any new values for discrete variables are seen, redo the sparsity trace

Step 3:

 Take the union of the new sparsity and the previous one, and use that going forward

X = false negatives!

