EECS 484, Winter 2016 - Database Management Systems

DBMS Overview Chapter 1

Instructor: Atul Prakash
University of Michigan, Ann Arbor

Partly based on material by many other professors

What is a DBMS?

- Database: Large, integrated collection of data
- DBMS = <u>Database Management System</u>
 = a software package designed to store
 and manage databases
 e.g. Oracle, MS SQL server, SqlLite,
 Postgres, MySQL.
- Goal: Efficient and convenient access to data

DBMS: Motivation

Scenario:

- Students taking classes, and obtaining grades
- ♦ Q1: Find grade in class X
- ♦ Q2: Find my GPA
- ...

Old-time Solution: Sorted Student Folders

- Advantages?
- Disadvantages?

Old-time Solution: Sorted Student Folders

- Advantages?
- Disadvantages?
 - Large physical footprint
 - No sharing
 - No ad-hoc queries

- Access?
 - using programs in C, Java, etc.
- Layout for the student records?

- Access?
 - using programs in C, Java, etc.
- Layout for the student records?

CSV:

Brown, Lisa, Ibrown, db, A, os, B Smith, Bart, bsmith Tompson, Mary, mtom, vis, B+, db, A-

. . .

. . .

- Access?
 - using programs in C, Java, etc.
- Layout for the student records?

Multiple files:

Brown, Lisa, Ibrown Smith, Bart, bsmith Tompson, Mary, mtom

• • •

. . .

Ibrown, db, A Ibrown, os, B mtom, vis, B+ mtom, db, A-

. .

...

Problems?

- Problems?
 - Inconvenient access to data (requires programming experience and knowledge of file layout)

- Data redundancy
- Integrity problems
- Atomicity problems (concurrent access issues)
- Security problems

Who uses a DBMS?

Who uses a DBMS?

- Everyone!
 - Your bank
 - Your university
 - Your coffee shop
 - Your favorite hotel
 - Your favorite website
 - Your phone
 - Your government
- How many databases have you used so far today?

Why Study Databases?

Data is useless without the tools to extract information (queries)

Select your departure to Cancun Fri, Jan 8
Select your departure to Cancun Fri, Jan 8
Titler your results by

"Optimal" pricing of an airline ticket

- Datasets increasing in diversity and volume
 - Websites, digital libraries, interactive video, human genome project, mobile applications

- Databases touch most of CS
 - ♦ OS, languages, theory, Al, multimedia, logic, ...

University Database Example

This is called an Entity-Relationship (ER) Model

Entities: Student, Course

Relationship: Enrolled_in

University Database

- Relational representation. Store data in simple tables or relations.
 - Students(sid:integer, name:string, login:string, age:integer)
 - Courses(cid: integer, cname:string, credits:integer)
 - Enrolled(sid:integer, cid:integer, grade:string)

Students

sid	name	login	age
13	Lisa	lsimp	40
41	Bart	bart	20

Courses

cid	cname	Cr.
1	EECS484	4
2	EECS584	3

Enrolled

sid	cid	Grade
41	1	A-
13	2	A+

- In the previous slide, what course(s) has Lisa taken?
- In the previous slide, what course(s) has Bart taken?
- If Bart were to take both courses, what row would you add to the Enrolled table?

10/12/16

Data Models

- Data model: a collection of concepts for describing data.
- Schema: a description of a particular collection of data, using a given data model.
- Relational model: the most widely-used model today.
 - Data model: Database is a collection of relations
 - A relation is a table with rows and columns.
- Entity-Relationship (ER) model: A "semantic" data model,
 i.e. a higher-level more user-intuitive model
 - A (relational) DBMS only understands the relational model
 Must translate an ER schema to a relational schema

10/12/16

Relational and Other Data Models

- DBMS using the relational DM
 - ♦ IBM DB2
 - ♦ Informix
 - ♦ Oracle
 - Sybase
 - Microsoft Access
 - → Tandem
 - → Teradata
 - ♦ . . .

- Other data models
 - Hierarchical
 - IBM IMS
 - Network
 - IDMS, IDS
 - Object-oriented
 - ObjectStore
 - Object-relational
 - Oracle

...

Why use a DBMS?

- It solves ALL the problems with other ad hoc solutions such as files of records, coding data structures, etc.!
 - Data independence
 - Apps need a view of the data, not info about internal representation and storage
 - Efficient storage and access
 - Centralized data administration
 - Data integrity and security
 - Concurrent access, recovery from crashes
 - Reduced application dev time

Levels of Abstraction

Example: University Database

Conceptual schema:

- Students(sid: string, name: string, login: string, age: integer)
- Courses(cid: string, cname: string, credits: integer)
- Enrolled(sid: string, cid: string, grade: string)

Physical schema:

- Relations stored as unordered files.
- Index on first column of Students.

External Schema:

- View: Course_info(cid: string, enrollment: integer)
- View: Class_rank(sid: string, gpa: real, rank: integer)

10/12/16

Data Independence

 Applications insulated from data format and storage details

- Logical data independence: Protection from changes in *logical* structure of data
 - External / Conceptual schemas
- Physical data independence: Protection from changes in physical structure of data
 - Conceptual / Physical schemas

Other key benefits:

- Declarative query processing
- Transactions

- Which of these are more suitable for storing in a DBMS rather than files in an OS?
 - (a) Grades for students at the university
 - (b) Source code for a program
 - (c) Contents of a textbook

- Let's say UM provides you access to a relational table that gives just your grades in various courses. Does that relation represent:
 - a) An external schema?
 - b) A conceptual schema?
 - c) A physical schema?

- The relational table with student grade information is very large and stored on multiple servers for performance. Does the storage scheme represent:
 - a) An external schema?
 - b) A conceptual schema?
 - c) A physical schema?

Transactions (I)

- Transaction: any one execution of a user program in a DBMS
- Inconsistency caused by incomplete operations
- DBMS ensures atomic operations!
 - i.e. all or nothing!
 - Automatic recovery from crashes!

Transactions (II)

- Inconsistency caused by interleaving actions of different user programs
- DBMS provides the illusion of a "single-user" system
 - Key concept: Transaction, an atomic sequence of R/W
 - Concurrency control, transaction management

Lots of People use DBMS ...

- DBMS vendors
- DB application programmers
 - e.g. smart webmasters
- Database administrator (DBA)
 - Designs logical /physical schemas
 - Handles security and authorization
 - Data availability, crash recovery
 - Database tuning as needs evolve

Must understand how a DBMS works!

Summary

- DBMS used to maintain & query large datasets
- Benefits include
 - recovery from system crashes,
 - concurrent access,
 - quick application development,
 - data integrity and
 - security
- Levels of abstraction give data independence
- DBAs hold responsible, interesting, well-paid jobs

Next

The Entity-Relationship (ER) Model

