

00125US2.ST25.txt
SEQUENCE LISTING

<110> Lind, Peter
Berthold, Malin
<120> Novel G Protein-Coupled Receptor
<130> 00125US2
<150> 60/198,600
<151> 2000-04-19
<160> 12
<170> PatentIn version 3.0
<210> 1
<211> 1540
<212> DNA
<213> Homo sapiens
<400> 1
agcctgggcc tgggctcgcc atcccagggt cgctggacta gcatggggga tgggcctgtg 60
acaggaggtt ccctgggtgc cctctttcgg cccatggag tcctcaccca tccccagtc 120
atcagggaac tcttccactt tggggagggt ccctcaaacc ccaggccct ctactgccag 180
tggggtcccg gaggtggggc tacgggatgt tgcttcgaa tctgtggccc tcttcttcat 240
gctcctgctg gacttgactg ctgtggctgg caatgccgt gtatggccc tgatgccaa 300
gacgcctgcc ctccgaaaat ttgtcttcgt cttccaccc tgcctggtgg acctgctggc 360
tgccctgacc ctcatgcccc tggccatgct ctccagctt gcccctttt accacgcct 420
ctttggggag gtggcctgccc gcctctactt gtttctgagc gtgtgctttt tcagcctggc 480
catcctctcg gtgtcagcca tcaatgtgga gcgtactat tacgttagtcc accccatgcg 540
ctacgaggtt cgcatgacgc tggggcttgtt ggccctgtg ctgggggtt tggtgggtgaa 600
ggcccttggcc atggcttctg tgccagtgtt gggaaagggtc tcctgggagg aaggagctcc 660
cagtgtcccc ccaggctgtt cactccagtg gagccacagt gcctactgcc agcttttgt 720
ggtggctttt gctgtctttt actttctgtt gcccctgctc ctcatacttg tggtctactg 780
cagcatgttc cgagtggccc gcgtggctgc catgcagcac gggccgctgc ccacgtggat 840
ggagacaccc cggcaacgct ccgaatctct cagcagccgc tccacgatgg tcaccagctc 900
ggggggccccc cagaccaccc cacaccggac gtttggggga gggaaagcag cagtggttct 960
cctggctgtg gggggacagt tcctgctctg ttgggtgccc tacttctt tccacctcta 1020
tgttgccctg agtgctcagc ccatttcaac tgggcagggt gagagtgtgg tcacctggat 1080
tggctacttt tgcttcactt ccaacccttt cttctatgga tgtctcaacc ggcagatccg 1140
ggggggagctc agcaagcagt ttgtctgtt cttcaaggca gctccagagg aggagctgag 1200
gctgccttagc cgggagggtc ccattgagga gaacttcctg cagttccttc aggggactgg 1260
ctgtccttct gagtccctggg ttcccggacc cctaccacgc cccaaacgcagg agccacctgc 1320
tgttgacttt cgaatcccag gccagatgc tgaggagacc tctgagttcc tggagcagca 1380

00125US2.ST25.txt

actcaccagc gacatcatca tgtcagacag ctacccgt cctggccct caccccgct	1440
ggagtcatga tggccgctg gacactcgga gggatatggg gctggggcca gttatgattg	1500
caaggaccac cttgtggat cacctttcc cagctggcta	1540

<210> 2
<211> 451
<212> PRT
<213> Homo sapiens

<400> 2

Met Glu Ser Ser Pro Ile Pro Gln Ser Ser Gly Asn Ser Ser Thr Leu
1 5 10 15

Gly Arg Val Pro Gln Thr Pro Gly Pro Ser Thr Ala Ser Gly Val Pro
20 25 30

Glu Val Gly Leu Arg Asp Val Ala Ser Glu Ser Val Ala Leu Phe Phe
35 40 45

Met Leu Leu Leu Asp Leu Thr Ala Val Ala Gly Asn Ala Ala Val Met
50 55 60

Ala Val Ile Ala Lys Thr Pro Ala Leu Arg Lys Phe Val Phe Val Phe
65 70 75 80

His Leu Cys Leu Val Asp Leu Leu Ala Ala Leu Thr Leu Met Pro Leu
85 90 95

Ala Met Leu Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly Glu
100 105 110

Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu
115 120 125

Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val
130 135 140

Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala
145 150 155 160

Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val
165 170 175

Pro Val Leu Gly Arg Val Ser Trp Glu Glu Gly Ala Pro Ser Val Pro
180 185 190

Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe
195 200 205

Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Leu Leu Ile
210 215 220

Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met
225 230 235 240

Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser
245 250 255

Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala Pro
260 265 270

Gln Thr Thr Pro His Arg Thr Phe Gly Gly Lys Ala Ala Val Val

00125US2.ST25.txt

275

280

285

Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe
 290 295 300

Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly
 305 310 315 320

Gln Val Glu Ser Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser
 325 330 335

Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu
 340 345 350

Ser Lys Gln Phe Val Cys Phe Phe Lys Pro Ala Pro Glu Glu Leu
 355 360 365

Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe
 370 375 380

Leu Gln Gly Thr Gly Cys Pro Ser Glu Ser Trp Val Ser Arg Pro Leu
 385 390 395 400

Pro Ser Pro Lys Gln Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly
 405 410 415

Gln Ile Ala Glu Glu Thr Ser Glu Phe Leu Glu Gln Gln Leu Thr Ser
 420 425 430

Asp Ile Ile Met Ser Asp Ser Tyr Leu Arg Pro Ala Ala Ser Pro Arg
 435 440 445

Leu Glu Ser
 450

<210> 3

<211> 1909

<212> DNA

<213> Rattus norvegicus

<400> 3
 ggaaggcctgg acctggggctt acatcccagg gttgtggagt aggatggggg atgggcctgt 60
 aacaggaagt gccctgggtg tccttttcg gccccatgga gtccctcaccc atcccccaagt 120
 catcaggaaa ctcatccact ttgggaaggg cccttcaaacc cccaggtccc tctacggcca 180
 gcggagtcggc agagttggga ctaagggacg tggcttcgga atctgtggcc ctcttcttca 240
 tgcttctgtt ggatctcaact gctgtggcggt gcaatgtgc tgtgtatggct gttattgcca 300
 agacaccgc cctccgaaag tttgtttttt tcttccatct ctgtctggtg gacctgctgg 360
 ctgccctgac cctcatgccc ctggccatgc tctccagctc tgccctcttt gaccacgccc 420
 tctttggggc ggtggcctgc cgcccttacc tggccatgtcg cgtttgtttt gtcagcctgg 480
 ccatcccttc ggtgtctgccc attaatgtgg agcgctacta ttatgtggtc caccccatgc 540
 gctacgaggt ggcgcatacata ctagggctgg tggccctgt gctgggtggc gtgtggtaa 600
 agggccctggc catggcgtct gtgccagtgt tgggaagggt ctactggag gaaggagctc 660
 ccagtgttaa cccaggctgt tctctccat ggagccatag tgcctactgc cagcttttg 720
 tgggtggtctt tgctgttctt tacttcttgc tgcccttgcat cctgtatctttt gtgggtctact 780

00125US2.ST25.txt

gcagcatgtt	tcgagtggct	cgcgtggctg	ccatgcaaca	tggcccgctg	cccacgtgga	840
tggagacgcc	ccggcaacgc	tctgagtctc	tcagtagccg	ctctactatg	gtcactagct	900
ccggggctca	tcagaccacc	ccacaccgga	cgtttggggg	tggaaaggca	gcagtggtcc	960
tcctggctgt	cggggacag	ttcttgcttt	gttggttacc	ctacttctct	ttccatctct	1020
atgttgcct	gagcgctcag	cccattcaa	caggacaggt	ggagaatgtg	gtgacctgga	1080
tcggctactt	ttgcttcaact	tccaaccctt	ttttctatgg	atgtctcaac	cgtcagatcc	1140
ggggcgagct	tagcaaacag	tttgtctgtt	tcttcaaggc	agctccagag	gaggagctga	1200
ggctgcccag	tcgcgaggc	tccatcgagg	agaatttcct	acagttctc	cagggtacat	1260
ctgagaactg	ggtttctcg	cccctaccct	gccctaagcg	ggagccaccg	cctgctgttg	1320
actttcgaat	cccaggccag	attgctgagg	agacctcgga	gttcttgag	cagcaactca	1380
ccagcgacat	catcatgtcg	gacagctacc	tccgtcctgc	cccttcacca	aggctggagt	1440
catgatggac	agacactagg	agggataaag	gcttggggct	ggtttatcat	ctcaaggatt	1500
gctttccag	ctggctgggg	tttggactcg	ggtctctgga	cttagcttt	gtgtgggtt	1560
tcctgggtca	ggaccagagt	caacgggatg	gacatgtggc	aaaaagcctt	ggacttggct	1620
gtgatcttg	actattgggg	gagggatcct	gggtatggtg	agacggtgat	gagagaaaaag	1680
ggtgacaaag	gtgagggaaa	gccttctac	cagtgaactc	ttcgtgcctc	aggagacagg	1740
gcaacttctg	gttaggcatt	ggagcagcag	gctaggagca	gttattctgg	ggaccgttga	1800
ggttacttc	tttccagtgt	catagtccag	actaatattt	atactgagac	aaggtaagaa	1860
aatggcccac	atcttctcat	ttgctaacta	ggttaaaaaa	aaaaaaaaaa		1909

<210> 4
<211> 449
<212> PRT
<213> Rattus norvegicus

<400> 4

Met	Glu	Ser	Ser	Pro	Ile	Pro	Gln	Ser	Ser	Gly	Asn	Ser	Ser	Thr	Leu
1							5		10					15	

Gly	Arg	Ala	Leu	Gln	Thr	Pro	Gly	Pro	Ser	Thr	Ala	Ser	Gly	Val	Pro
							20		25				30		

Glu	Leu	Gly	Leu	Arg	Asp	Val	Ala	Ser	Glu	Ser	Val	Ala	Leu	Phe	Phe
							35		40				45		

Met	Leu	Leu	Leu	Asp	Leu	Thr	Ala	Val	Ala	Gly	Asn	Ala	Ala	Val	Met
							50		55				60		

Ala	Val	Ile	Ala	Lys	Thr	Pro	Ala	Leu	Arg	Lys	Phe	Val	Phe	Val	Phe
65							70		75				80		

His	Leu	Cys	Leu	Val	Asp	Leu	Leu	Ala	Ala	Leu	Thr	Leu	Met	Pro	Leu
							85		90				95		

Ala	Met	Leu	Ser	Ser	Ser	Ala	Leu	Phe	Asp	His	Ala	Leu	Phe	Gly	Glu
							100		105				110		

00125US2.ST25.txt

Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu
 115 120 125
 Ala Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val
 130 135 140
 Val His Pro Met Arg Tyr Glu Val Arg Met Thr Leu Gly Leu Val Ala
 145 150 155 160
 Ser Val Leu Val Gly Val Trp Val Lys Ala Leu Ala Met Ala Ser Val
 165 170 175
 Pro Val Leu Gly Arg Val Tyr Trp Glu Glu Gly Ala Pro Ser Val Asn
 180 185 190
 Pro Gly Cys Ser Leu Gln Trp Ser His Ser Ala Tyr Cys Gln Leu Phe
 195 200 205
 Val Val Val Phe Ala Val Leu Tyr Phe Leu Leu Pro Leu Ile Leu Ile
 210 215 220
 Phe Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val Ala Ala Met
 225 230 235 240
 Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg Ser
 245 250 255
 Glu Ser Leu Ser Ser Arg Ser Thr Met Val Thr Ser Ser Gly Ala His
 260 265 270
 Gln Thr Thr Pro His Arg Thr Phe Gly Gly Lys Ala Ala Val Val
 275 280 285
 Leu Leu Ala Val Gly Gly Gln Phe Leu Leu Cys Trp Leu Pro Tyr Phe
 290 295 300
 Ser Phe His Leu Tyr Val Ala Leu Ser Ala Gln Pro Ile Ser Thr Gly
 305 310 315 320
 Gln Val Glu Asn Val Val Thr Trp Ile Gly Tyr Phe Cys Phe Thr Ser
 325 330 335
 Asn Pro Phe Phe Tyr Gly Cys Leu Asn Arg Gln Ile Arg Gly Glu Leu
 340 345 350
 Ser Lys Gln Phe Val Cys Phe Phe Lys Ala Ala Pro Glu Glu Leu
 355 360 365
 Arg Leu Pro Ser Arg Glu Gly Ser Ile Glu Glu Asn Phe Leu Gln Phe
 370 375 380
 Leu Gln Gly Thr Ser Glu Asn Trp Val Ser Arg Pro Leu Pro Ser Pro
 385 390 395 400
 Lys Arg Glu Pro Pro Ala Val Asp Phe Arg Ile Pro Gly Gln Ile
 405 410 415
 Ala Glu Glu Thr Ser Glu Phe Leu Glu Gln Gln Leu Thr Ser Asp Ile
 420 425 430
 Ile Met Ser Asp Ser Tyr Leu Arg Pro Ala Pro Ser Pro Arg Leu Glu
 435 440 445
 Ser

00125US2.ST25.txt

<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 5
taatggcaga caccgaaagg atggc

25

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 6
gctgacaaaag caaacgctca ggaac

25

<210> 7
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 7
tcgaaaagtca acagcaggcg gtggctcccc ctttagggctg ggtagggg

48

<210> 8
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 8
gcggctactg agagactcag agcggttgcgg gggcgctctcc atccacgt

48

<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 9
gcctctacct gttcctga

18

00125US2.ST25.txt

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 10
tttacccaca cgccccacc

18

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 11
tggcccttctt cttcatgctc c

21

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<221> misc_feature
<223> Primer

<400> 12
ttcacccaca caccaccaag

20