Vellore Institute of Technology

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES

Summer Semester June–2022 Digital Assignment – I

Course Code : MAT2002 Slot : C

Course Name : AOD

ANSWER ALL QUESTIONS

1. Find the Fourier coefficient a_0 of the function $f(x) = x - \pi$ in $-\pi < x < \pi$

2. If $f(x) = x \cos x$ in $0 < x < 2\pi$ then find the Fourier coefficients a_0

3. Find the eigen values and eigen vectors of $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$

4. The Quadratic form corresponding to the symmetric matrix $\begin{bmatrix} 1 & 2 \\ 2 & -4 \end{bmatrix}$

5. Verify Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$

and also use it to find A^{-1} .

6. Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 + 2x_1x_3 - 2x_1x_2 - 2x_2x_3$ to canonical form by orthogonal reduction.

Vellore Institute of Technology

DEPARTMENT OF MATHEMATICS SCHOOL OF ADVANCED SCIENCES Summer Semester June –2022

<u>Digital Assignment – II</u>

Slot : C

Course Code : MAT2002 Course Name : AOD

ANSWER ALL QUESTIONS

Solve $(x^2D^2 - 4xD + 6)y = x^2$

Apply the method of variation of parameters to solve $y'' + y = \cos ecx$

Use the method of diagonalization to obtain the general solution for x'' + AX = 0; where

$$X = (x_1, x_2)^T$$
 and $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$

Solve the system of linear differential equations by matrix method

$$x'(t) = x(t) + 4y(t); \quad y'(t) = x(t) + y(t)$$

Find the Z-transform of the Sin(3n+5)

Find the Inverse Z-Transform of
$$Z^{-1} \left[\frac{2z^2 + 3z}{(z+2)(z-4)} \right]$$

Solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0=0$, $u_1=1$ using Z-Transform.