Naravna in cela števila

Bor Bregant

1 Naravna števila

Števila s katerimi štejemo $\mathbb{N} = \{1, 2, 3, \ldots\}$. Peanovi aksiomi:

- $1 \in \mathbb{N}$
- Vsako naravno število ima svojega naslednika
- Različni naravni števili imata različna naslednika
- Če neka trditev velja z vsakim naravnim številom tudi za njegovega naslednika, velja za vsa naravna števila.

Osnovni operaciji + in · (notranji). Seštevanec, vsota, faktor, produkt. Komutativnost a+b=b+a, ·, asociativnost (a+b)+c=a+(b+c), distributivnost (a+b)c=ac+bc.

Zgled. Izračunaj 75 · 3 - 12 + 16 · (-5) in 2 + 7 · 3(2 + 4(3 + 2 · 2(5 - 7 · 8))) ter 172 · 29.

Zgled. Odpravi oklepaje 7(3x+1) in (3a+4)(5b+2)

Zgled. Izpostavi skupni faktor 10a + 30 in ac + bc + a + b.

Naloga 1. 5a, 8ce, 9be

2 Cela števila

Dodamo nasprotna števila $n \to -n$. \mathbb{Z} konstruiramo kot unija pozitivnih celih števil, števila 0 in negativnih celih števil.

Dodamo –, ki je definirano kot kot prištevanje nasprotne vrednosti.

Nekaj aksiomov in pravil, urejenost. Vrstni red pri računanju.

Aksiom:
$$a + 0 = a$$
, $-(-a) = a$, $1 \cdot a = a \ \forall a \in \mathbb{Z}$

Izrek:
$$-(a) + (-b) = -(a+b), 0 \cdot a = 0.$$

Urejenost (primerjamo števila): Velja natanko ena od možnosti a < b, a > b, a = b. a > b če in samo če a - b > 0 (slika a leži na desni strani številske premice od števila b)

Zgled. Trikratniku števila 62 odštejemo petkratnik vsote števil 93, 82 in 8. Katero število dobimo?

Zgled. Zapiši množico vseh celih števil, ki so od 0 oddaljena kvečjemu za 6, ter iskano množico predstavi na številski premici.

3 Potence z naravnimi eksponenti

$$a^n = a \cdot \ldots \cdot a$$

Osnova, eksponent, potenca Pravila z dokazi:

$$a^{n} \cdot a^{m} = a^{n+m}$$
$$(a^{n})^{m} = a^{n \cdot m}$$
$$(ab)^{n} = a^{n}b^{n}$$
$$a^{1} = a, 1^{n} = 1$$

Zgled. Izračunaj $x^2 \cdot x^9 + 2x \cdot x^{10}$, $(a^n)^2 \cdot (a^3)^n$, $(u^2v^3)^2$, $(a^2b)^3 (3ab^3)^2 a^2$ in $(-1)^{2023} \cdot (-1)^{2024}$.

Naloga 1. 82cg, 72ab, 80d, 90a

4 Večkratniki in izrazi

Večkratnik ali k-kratnik števila a je vsota k enakih sumandov a: $k \cdot a = a + \ldots + a$.

$$(a+b)^{2} = a^{2} + 2ab + b^{2} \text{ kvadrat vsote}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} \pm b^{3} = (a\pm b)(a^{2} \mp ab + b^{2})$$

$$ab + ac = a(b+c)$$

Zgled. Izračunaj $(2a+3b)^2$, $(x-2y)^2$, $(3u+v)^3$, $(2-5n)^3$ in $(x^2-2x-3)(x^2+3x)$.

Zgled. Zapiši prve tri večkratnike izraza x-2.

Zgled. Razstavi $x^2 + 2x + 1$, $a^2 - 9$, $16a^2 - 81$, $25 + 10a + a^2$, $x^3 + 64y^3$, $3a + 6a^2$, ac + ad + bc + bd in $2x^2 - 2xz + xy - yz$.

Naloga 1. DN 114a, 122a, 123a, 124 prvi stolpec, 125 prvi stolpec, 130a, 131ch, 135a

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$
$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} + \dots - ab^{2n-1} + b^{2n})$$

Zgled. *Izračunaj* $a^7 - 1$, $a^5 + 32b^5$.

Vietovo pravilo

$$x^{2} + (a+b)x + ab = (x+a)(x+b)$$

Zgled. Razstavi $x^2 + 5x + 6$, $x^2 - 11x + 18$, $m^2 + 7m - 8$ in $a^4 + a^2 - 20$.

Naloga 2. DN 127 prvi stolpec, 128 prvi stolpec