1. Demostrar $\frac{d^2f(x_i)}{dx^2} = \frac{f(x_{i+2}) - 2f(x_i) + f(x_{i-2})}{dx^2}$ 0 Sabemos que $\frac{d^2f(x_i)}{dx^2} = \frac{d}{dx} \left(\frac{d}{dx} f(x_i) \right) y$ que $\frac{d}{dx} f(x_i) = \frac{d}{dx} \left(\frac{d}{dx} f(x_i) \right) + \frac{d}{dx} \left(\frac{d}{dx} f(x_i) \right) = \frac{d}{dx} \left(\frac{d}{dx} f(x_i) \right) + \frac{d}{dx} \left(\frac{d}{dx} f(x_i) \right) = \frac{d}{dx} \left(\frac{d}{dx} f(x_i) - \frac{d}{dx} f(x_i) \right)$ Enton ces, $\frac{d^2f(x_i)}{dx^2} = \frac{d}{dx} \left(\frac{d}{dx} f(x_i) - \frac{d}{dx} f(x_i) \right)$ Sea $g(x_j) = f(x_{j+1}) - f(x_{j+1})$: $d^2f(x_j) = d g(x_j) = g(x_{j+1}) - g(x_{j-1})$ $dx^2 = dx$ Pero $g(x_{j+1}) = f(x_{j+2}) - f(x_j) = g(x_{j-1}) = f(x_j) - f(x_{j-2})$ $= f(x_{j+1}) - f(x_j) = f(x_{j+1}) - f(x_j) - f(x_{j-1})$ Entonces $d^2f(x_j) = (f(x_{j+1}) - f(x_j)) - (f(x_{j+1}) - f(x_{j-1}))$ $= dx^2$ $f(x_{j+2}) - 2f(x_j) + f(x_{j-2})$ = $f(x_{j+2}) - 2f(x_j) + f(x_{j-2})$ uh^2 2h Q.E.D.

