Lab 4 ECN 252

(For any question, contact Dr Sparsh Mittal)

http://vhosts.eecs.umich.edu/370simulators/cache/simulator.html

Lesson 1: Seeing the impact of strided access

```
for i = 0:2
for j = 0:16
Id i*32 + j*K
end
```

Consider code1:

Let #sets =1, #Blocks/set = 2 and Blocksize = 4.

Run this code with following K and report #Hit and #Miss for i, ii and iii.

(i) K=1

end

- (ii) K=2
- (iii) K=4

Lesson 2: Seeing the impact of loop interchange

Consider this code2

```
for i = 0:8

for j = 0:4

Id i*32 + j

end

end
```

Consider this code3

```
for j = 0:4
for i = 0:8
```

```
Id i*32 + j
end
end
(iv) Report #Hit and #Miss with code2
```

(v) Report #Hit and #Miss with code3

Lesson 3: Seeing the miss-rate of matrix-tranpose operation

Code4

for j = 0.8

```
for i = 0:8

Id i*32 + j

st j*32 + i + 200

end

end

Code5

for i = 0:8

for j = 0:8

Id i*32 + j

st j*32 + i + 200

end
```

end

- (vi) Find the total #Hit and #Miss for Code4. Also show them separately for Id and st instructions.
- (vii) Find the total #Hit and #Miss for Code5. Also show them separately for Id and st instructions.

Lesson 4: Seeing the impact of approximation (precision-scaling)

https://www.h-schmidt.net/FloatConverter/IEEE754.html

In place of this number, a student has to take the decimal number as **RollNumber.34567**. For example, a student with roll number 19114001 has to take the number as 19114001.34567 and then find its binary number: 01001011100100011101010000001001

(viii) Make a table

Binary number	Dec	ima	l Diff
010000101111111111111111111111111111111	111	?	?
01000010111111111111111111111100	000	?	?
010000101111111111111111111000000	000	?	?
01000010111111111111110000000000	000	?	?
010000101111111110000000000000000000000	000	?	?
010000101111000000000000000000000000000	000	?	?
010000101000000000000000000000000000000	000	?	?

Diff is the difference of decimal number from the exact representation.

Lesson 5: Seeing the impact of error in bits of different importance

In place of this number, a student has to take the decimal number as **RollNumber.34567**. For example, a student with roll number 19114001 has to take the number as 19114001.34567 and then find its binary number: 01001011100100011101010000001001

Let us number the bits from MSB to LSB as 0 to 31.

4

Bit 0 is sign bit. Let error in bit position k mean that if its original value is 0, it changes to 1; and vice versa.

(ix) Make a table. Diff has to be shown as NewNumber-OriginalNumber. Do not compute its magnitude, rather show as +/-, e.g., +5 or -13456

Error in bit	Representation	DecimalNumber	diff
No error	010011101111111111111111111111111111	?	0
1	0 0 00111011111111111111111111111111111		
2			
3			

5					
6					
7					
8					
9					
Lesson 6: Seein	g the impact of memor	y technology on important metrics			
(x) Run destiny	with four cfg files and sl	now the write latency and leakage power in the table			
https://drive.go	ogle.com/drive/folders	/1-dTiCOQ6jq6rvX5KBXeb3q3Rl0huBPlp?usp=sharing			
git clone https:/	//bitbucket.org/sparsh_	mittal/destiny_v2/			
cd destiny_v2					
make					
cd config					
/destiny Final_ReRAM.cfg					
Memory	WriteLatency (ns)	LeakagePower (mw)			
SRAM					
eDRAM					
STTRAM					
ReRAM					