

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNITCATION TECHNOLOGY

UNIT 9 INVERSE Z-TRANSFORM

PhD. Nguyễn Hồng Quang
Assoc Prof. Trịnh Văn Loan
PhD. Đoàn Phong Tùng
Department of Computer Engineering

□ Contents

- Inverse Z-transform
- The method of finding discrete-time signals in the time domain through their representation in the Z-domain.

□ Learning Objectives

Upon completing this lesson, students will have a grasp of the following concepts:

- 1. The inverse Z-transform using the method of partial fraction expansion to obtain simple rational expressions.
- 2. The inverse Z-transform using the method of power series expansion.

Linearity

If

$$x_1(n) \stackrel{Z}{\longleftrightarrow} X_1(z)$$

$$x_2(n) \stackrel{Z}{\longleftrightarrow} X_2(z)$$

Then

$$x(n) = ax_1(n) + bx_2(n) \xrightarrow{Z} aX_1(z) + bX_2(z)$$

• Observation: The linearity property allows for the representation of X(z) into a linear combination of components whose corresponding discrete-time signals in the time domain are already known.

1. Partial fraction expansion into simple rational fractions

• Inverse Z-transform:: X(z), region of convergence $\rightarrow x(n)$?

$$X(z) = \frac{P(z)}{Q(z)} = S(z) + \frac{P_0(z)}{Q(z)}$$

- P(z), Q(z) are polynomials of degree M and N, respective.
- S(z) in a polynomial of degree M-N ($M < N \rightarrow S(z) = 0$). The degree of $P_0(z)$ is smaller than the degree of Q(z)

$$\frac{P_0(z)}{Q(z)} = \sum_{i=1}^{N} \frac{A_i}{z - z_i}$$

• z_i : single zero point of Q(z): $A_i = (z - z_i) \frac{P_0(z)}{Q_0(z)} \Big|_{z=z_i}$

IT 4172 Signal processing 5

Partial fraction expansion into simple rational fractions

$$X(z) = \frac{P(z)}{Q(z)} = S(z) + \frac{P_0(z)}{Q(z)}$$

• If the zero point z_n of Q(z) has the degree of q

$$\frac{P_0(z)}{Q(z)} = \sum_{\substack{i=1\\i\neq n}}^{N} \frac{A_i}{z - z_i} + \sum_{j=1}^{q} \frac{B_j}{(z - z_n)^j}$$

$$B_{j} = \frac{1}{(q-j)!} \frac{d^{q-j}}{dz^{q-j}} \left[(z-z_{n})^{q} \frac{P_{0}(z)}{Q(z)} \right]_{z=z_{n}}$$

IT 4172 Signal processing 6

Example

• Given X(z) with |z| > 2. Find x(n)?

$$X(z) = \frac{1}{1 - 3z^{-1} + 2z^{-2}} = \frac{z^2}{z^2 - 3z + 2}$$

• The denominator has two roots: z = 1 và z = 2

$$X(z) = a \frac{z}{z-1} + b \frac{z}{z-2}$$

 $\Rightarrow a = -1, b = 2$

 $\Rightarrow x(n) = 2 \cdot 2^n u(n) - u(n) = (2^{n+1} - 1) u(n)$

2. Expansion by power series

• X(z) has the form of a ratio of two polynomials in z^{-1} . Perform polynomial devision to obtain each samples of x(n)

Example:

$$X(z) = \frac{z^{-1}}{1 - 1,414z^{-1} + z^{-2}}$$

$$z^{-1} \qquad \qquad 1 - 1,414z^{-1} + z^{-2}$$

$$z^{-1} - 1,414z^{-2} + z^{-3} \qquad z^{-1} + 1,414z^{-2} + z^{-3} - z^{-5} - 1,414 z^{-6} \dots$$

$$1,414z^{-2} - 2z^{-3} + 1,414z^{-4}$$

$$z^{-3} - 1,414z^{-4}$$

$$z^{-3} - 1,414z^{-4} + z^{-5}$$

$$-z^{-5}$$

$$-z^{-5} + 1,414z^{-6} - z^{-7}$$

$$-1,414z^{-6} + z^{-7}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

$$x(0) = 0, x(1) = 1, x(2) = 1,414,$$

$$x(3) = 1, x(4) = 0, x(5) = -1 \dots$$

$$n < 0, x(n) = 0$$

Several common Z-transform (1/2)

Signal	Z-transform	ROC
$\delta(n)$	1	Toàn mf z
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
-u(-n-1)	$\frac{1}{1-z^{-1}}$	z < 1
$\delta(n-m)$	z^{-m}	Toàn mf z trừ 0 nếu $m>0$, trừ ∞ nếu $m<0$
$a^nu(n)$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a

Several common Z-transform (2/2)

Signal	Z-transform	ROC
na ⁿ u(n)	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(\Omega n) u(n)$	$\frac{1 - (\cos \Omega)z^{-1}}{1 - 2(\cos \Omega)z^{-1} + z^{-2}}$	z > 1
$\sin(\Omega n)u(n)$	$\frac{1 - (\sin \Omega)z^{-1}}{1 - 2(\sin \Omega)z^{-1} + z^{-2}}$	z > 1

4. Summary

- Inverse Z-transform is applied to find discrete signals in the time domain from their representation in the complex domain.
- Representation in the Z-domain is often decomposed into basic components through expansion as proper fractions or power series. Utilizing the linearity property of the Z-transform, the inverse Z-transform can be computed easily from these basic components..

5. Assignment

- Excercise 1
 - ☐ Compute the inverse Z-transform:

a.
$$X(z) = \frac{Z^2 + 4Z}{Z^2 - 3Z + 2}, |z| > 2$$

b.
$$X(z) = \frac{Z+5}{Z^2-3Z+2}, |z| > 2$$

Homework

- Excercise 2
 - ☐ Compute the inverse Z-transform of the following signals:

a.
$$X(z) = \frac{1}{z-a}, |z| > a$$

b.
$$X(z) = \frac{1}{(z-a)^2}, |z| > a$$

c.
$$X(z) = \frac{1}{(z-a)^M}, |z| > a$$

Homework

- Excercise 3
 - ☐ Calculate convolution of the following signals:

$$x_1(n) = 2^n u(n)$$
 $x_2(n) = 3^n u(n)$

The next unit

IMPLEMENTATION OF THE SYSTEM IN

Z DOMAIN

References:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Wishing you all the best in your studies!