

Photo: A. Black, UBC

Learning objectives

- Explain how radiation laws apply to longwave radiative exchange as well.
- Describe how long-wave radiation can interact with surfaces.
- Explain how we can calculate longwave outgoing radiation, and how it relates to surface emissivity.

People in front of a heated building in winter as seen in the thermal infrared by a thermal camera (Source: A. Christen)

What is 'Longwave' radiation?

- Wavelength range: 3 μm to 100 μm
- Longwave = far-infrared = thermal infrared radiation (TIR)

Measuring long-wave radiation

There is a range of instruments available that measure long-wave radiation received in a particular **field of view** (FOV), within a particular **band**, and/or with a particular spatial **resolution**.

Pyrgeometer

Reissyairport

Boulogne
Paris

Paris

38

48

50'N

34

32
20

Thermal satellite channel

Review: Stefan-Boltzmann law: grey body

Natural objects are not full radiators. The <u>emittance</u> from these objects (called grey bodies) is given by

$$E_g = \varepsilon \sigma T^4 \qquad \star$$

where ε is their surface emissivity. Emissivity is the ratio of the actual emission to that of a blackbody (i.e. $\varepsilon = 1.0$).

This law is the basis of remote sensing in the TIR incl. satellite sensors.

Surface	Emissivity ε*
Soil	0.90 – 0.98
Grass	0.90 – 0.95
Crops	0.90 – 0.99
Forests	0.97 – 0.99
Water	0.92 – 0.97
Iron	0.13 - 0.28

^{*} in the long-wave range of the spectrum (relevant for microclimates)

W m⁻²

299.53 301.45 303,36 305.28 307.20 309.11 311.03 312.95 314.86

316.78 318.69 320.61 322.53+

Sept 3 2010 12:24 PDT

Emittance of Vancouver seen from **ASTER** satellite

Atmospheric window & remote sensing in the TIR

From emittance we can estimate surface temperature

Where are the warmest and the coolest places in Montreal?

Review: Kirchhoff's law

Assuming no transmission the absorptivity of a body (ζ_{λ}) equals its emissivity (ε_{λ}) at a given wavelength.

A good absorber is a good emitter

Kirchhoff's law of thermal radiation

- Kirchhoff's law only applies if the wavelength considered is the same – do not mix them together.
- Kirchhoff's law only has relevance to long-wave exchange in climatology.
- The law does not apply to fluorescent objects, which can absorb energy at a given a wavelength and release it at another one.

Mass-radiation interactions

most surfaces are opaque to long-wave radiation therefore absorptivity typically = emissivity

Is long-wave reflection important?

Energy conservation	Transmissivity		Absorptivity		Reflectivity			
	Ψo,LW	+	$\zeta_{o,LW}$	+	$\mathcal{O}_{o,LW}$	= 1.0	×	*

However, most surfaces are opaque to long-wave (i.e., $\psi_{o,LW} \sim 0$) so

$$\zeta_{o LW} + \alpha_{o,LW} = 1.0$$

Join at

and since $\zeta_{0LW} = \mathcal{E}_{0,LW}$ (according to Kirchhoff's Law)

$$\alpha_{o,LW} =$$

The subscript '0' refers to values of the <u>land surface</u> (in contrast to atmosphere with subscript a). In the upcoming slides we will implicitly assume values are in the long-wave band, and omit the subscript 'LW'

Is long-wave reflection important?

Energy conservation	Transmissivity		Absorptivity		Reflectivity		.	
	Ψo,LW	+	$\zeta_{o,LW}$	+	⊘ o,LW	= 1.0	*	

However, most surfaces are opaque to long-wave (i.e., $\psi_{o,LW} \sim 0$) so

$$\zeta_{oLW} + \alpha_{o,LW} = 1.0$$

and since $\zeta_{0LW} = \mathcal{E}_{0,LW}$ (according to Kirchhoff's Law)

$$\alpha_{o,LW} = 1 - \epsilon_{o,LW}$$

The subscript '0' refers to values of the <u>land surface</u> (in contrast to atmosphere with subscript a). In the upcoming slides we will implicitly assume values are in the long-wave band, and omit the subscript 'LW'

Is long-wave reflection important?

Energy conservation	Transmissivity		Absorptivity		Reflectivity		.	
	Ψo,LW	+	$\zeta_{o,LW}$	+	⊘ o,LW	= 1.0	*	

However, most surfaces are opaque to long-wave (i.e., $\psi_{o,LW} \sim 0$) so

$$\zeta_{o} Lw + \alpha_{o,L}w = 1.0$$

and since $\zeta_{0LW} = \mathcal{E}_{0,LW}$ (according to Kirchhoff's Law)

$$\alpha_{o,LW} = 1 - \epsilon_{o,LW}$$

Since $\mathcal{E}_{o,LW} > 0.95$ it means $\alpha_{o,LW}$ is usually small (< 0.05).

The subscript '0' refers to values of the <u>land surface</u> (in contrast to atmosphere with subscript a). In the upcoming slides we will implicitly assume values are in the long-wave band, and omit the subscript 'LW'

Long-wave reflection

Long-wave radiation exchange of a surface

 $\varepsilon = \frac{\text{radiative flux density emitted by a body}}{\text{radiative flux density emitted by a blackbody}}$

defines blackbody as ε = 1.0, and grey bodies as ε < 1.0.

$$L_{\uparrow}=arepsilon_{o}^{ ext{emission}} ag{emission}$$

$$\varepsilon = \frac{\text{radiative flux density emitted by a body}}{\text{radiative flux density emitted by a blackbody}}$$

defines blackbody as ε = 1.0, and grey bodies as ε < 1.0.

$$L_{\uparrow} = rac{arepsilon_{o} ext{reflection in the long-wave}}{arepsilon_{o}} + \underbrace{(1-\zeta_{o})}_{lpha_{o}} L_{\downarrow}$$

$$\varepsilon = \frac{\text{radiative flux density emitted by a body}}{\text{radiative flux density emitted by a blackbody}}$$

defines blackbody as ε = 1.0, and grey bodies as ε < 1.0.

$$L_{\uparrow} = rac{arepsilon_{o} ext{reflection in the long-wave}}{arepsilon_{o}} + \underbrace{(1-\zeta_{o})}_{lpha_{o}} L_{\downarrow}$$

where ζ_0 - absorptivity of surface in the long-wave, α_0 reflectivity of surface in the long-wave and from Kirchhoff's law ($\zeta_\lambda = \varepsilon_\lambda$):

where subscript '0' indicates surface value.

$$\varepsilon = \frac{\text{radiative flux density emitted by a body}}{\text{radiative flux density emitted by a blackbody}}$$

defines blackbody as ε = 1.0, and grey bodies as ε < 1.0.

$$L_{\uparrow} = rac{\epsilon_o \sigma T_o^4}{\epsilon_o \sigma T_o^4} + \underbrace{(1-\zeta_o)}_{lpha_o} L_{\downarrow}$$

where ζ_0 - absorptivity of surface in the long-wave, α_0 reflectivity of surface in the long-wave and from Kirchhoff's law ($\zeta \lambda = \varepsilon \lambda$):

$$L_{\uparrow} = \varepsilon_o \sigma T_o^4 + (1 - \varepsilon_o) L_{\downarrow} \quad \star$$

where subscript '0' indicates surface value.

Net long-wave radiation flux density L^*

The long-wave net radiation L^* at the surface is the difference between the input from above L_{\downarrow} and the output from emission and reflected L_{\downarrow} :

$$L^* = L_{\downarrow} - L_{\uparrow}$$

Net long-wave radiation flux density L^*

The long-wave net radiation L^* at the surface is the difference between the input from above L_{\downarrow} and the output from emission and reflected L_{\downarrow} :

$$L^* = L_{\downarrow} - L_{\uparrow}$$
 $L^* = L_{\downarrow} - (\varepsilon_o \sigma T_o^4 + (1 - \zeta_o) L_{\downarrow})$

Net long-wave radiation flux density L*

The long-wave net radiation L^* at the surface is the difference between the input from above L_{\downarrow} and the output from emission and reflected L_{\downarrow} :

$$L^* = L_{\downarrow} - L_{\uparrow}$$
 $L^* = L_{\downarrow} - (\varepsilon_o \sigma T_o^4 + (1 - \zeta_o) L_{\downarrow})$
 $L^* = L_{\downarrow} - (\varepsilon_o \sigma T_o^4 + (1 - \varepsilon_o) L_{\downarrow})$
Kirchhoff's Law

Question for discussion

What influences L_{\downarrow} ?

Join at slido.com #1522 905

Long-wave radiation exchange of a surface

Long-wave radiation - example of measurements

Diurnal course of radiation - clear sky day

Images from Katkam in Vancouver

Class activity - Why is $L_{up} > L_{down}$?

Images from Katkam in Vancouver

Diurnal course of radiation - overcast / broken sky day

Images from Katkam in Vancouver

Effect of clouds on longwave irradiance

With a clear-sky, L↓ originates from **all layers** of the atmosphere, because the atmosphere is **partly transparent** ('atmospheric window' open)

With clouds L↓ originates from the cloud base and the atmosphere below the cloud, because the cloud is opaque to long wave ('atmospheric window' closed)

Monthly totals of L↓, L↑ and L* in Vancouver

'Fingerprint' of L↓ and L↑ measured in Vancouver

Take home points

- Radiation laws apply the same way to the longwave part of the spectrum - but Kirchhoff's law and the concept of emissivity become relevant.
- The net-long wave radiation is driven by the difference in apparent sky and surface temperatures and hence clouds and thermal surface properties are controlling radiative exchange in the long-wave.