

SOC Robot Cartógrafo. Corrección de la primera entrega Universidad Nacional de Colombia - Facultad de Ingeniería

Propuesta Proyecto

Presentado por:

Daniela Valentina Amaya Vargas Julián Andrés Castro Pardo Julián Andrés Silva Cuadros

Nuevo Driver: Temperatura y humedad

Presentación:

De acuerdo a la votación del curso se decide implementar un driver para obtener la temperatura y humedad del ambiente utilizando un sensor que transmite datos mediante comunicación I2C.

Sensor de temperatura y humedad SHT31

Comunicación: I2C - SCL.

Precisión: ±2% humedad relativa, ±3°C Temperatura

Alimentación Vcc: 2.5V-5V

Funcionamiento del Radar

Se decide definir el funcionamiento del radar de manera conjunta (PWM, motor y ultrasonido) por las siguientes razones :

Primero

Se puede reutilizar el módulo del PWM para no tener que definirlo dos veces.

Segundo

El propósito de tener el PWM, motor y ultrasonido juntos hace que se pueda modificar o realizar mantenimiento al proyecto de una manera más eficiente.

Tercero

Hacerlo de manera conjunta hace que el proceso en software sea más sencillo y compacto.

Funcionamiento del Radar

UNAL

Procesamiento de Imagen

Se decide realizar el procesamiento de imagen mediante hardware.

Primero

Principalmente porque es más eficiente el procesamiento.

Segundo

Se tiene posibilidad de procesar más datos, a la vez que se libera capacidad del procesador

Procesamiento de Imagen

Procesamiento de Imagen

Justificación 1

Es más sencillo realizar el movimiento del robot por medio de un driver dentro del SOC ya que al añadir otro procesador se debe comunicar con la FPGA, dificultando así el proceso.

Justificación 2

Al usar otro procesador se deben añadir más fuentes de energía (baterías) para energizarlo, haciendo que el robot cartógrafo tenga un mayor peso y tamaño.

Movimiento del Robot

Se define el movimiento del robot con un driver dentro del SoC

SoC Robot Cartógrafo

Mapa de Memoria General

Mapa de Memoria General		
RAM	0X8200 0000	
SRAM	0X8200 07FF	
UART (Bluetooth)	0X8200 0800	
Puente H Motores	0X8200 0900	
GPIO	0X8200 0A00	
TIMER	0X8200 0B00	
I2C (Sensor)	0X8200 0C00	
RADAR	0X8200 0D00	
CÁMARA	0X8200 0E00	
VGA	0X8200 0F00	

UART

Bluetooth, Radio frecuencia, navegación

Mapa de Memoria del UART			
RXTX	0X8200 0800	L/E	
Baudios	0X8200 0804	L/E	

Radar

Mapa	de Memoria del Ra	dar
Done	0X8200 0D00	L
Init	0X8200 0D04	L/E
Coordizq	0X8200 0D10	L
CoordDer	0X8200 0D14	L
CoordFront	0X8200 0D18	L

12C master

Mapa de memoria de I2C			
SDA 0X8200 0C00 L/E			
SCL	0X8200 0C04	L/E	
CLK 0X8200 0C08 L/E			

Cámara

Mapa de Memoria de la Cámara		
Init	0X8200 0E00	L/E
Done	0X8200 0E04	L
Figura	0X8200 0E08	L
Color	0X8200 0E10	L

Motores

Mapa de M	lemoria de los N	/lotores
Movimiento	0X8200 0900	L/E

Motores

Codificación del movimiento de 2 motores DC que van a ser controlados mediante un Puente H.

Movimiento	Acción	Motor A	Motor B
000	Estar Quieto	0.0	0.0
001	Rotar Derecha - Avanzar	01	0.0
010	Rotar Izquierda - Avanzar	0.0	01
011	Avanzar	01	01
100	Estar Quieto	00	00
101	Rotar Derecha - Retroceso	10	00
110	Rotar Izquierda - Retroceso	0.0	10
111	Retroceder	10	10

Infrarojo

GPIO

Mapa d	Mapa de Memoria del Infrarrojo		
Read	0X8200 0A00	L/E	
Write	0X8200 0A04	L/E	
Dir	0X8200 0A08	L/E	

VGA

Mapa	de Memoria del VO	ŝΑ
RGB	0X8200 0F00	L
Coordenadas	0X8200 0F0C	L

Referencias

Datasheet sensor SHT31:

https://www.mouser.com/datasheet/2/682/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital-971521.pdf

Proyecto final grupo 5 - 2020-2:

https://github.com/unal-edigital2-labs/2020-2-w07_entrega-_final-grupo05

Proyecto final grupo 15 - 2021-1:

https://github.com/unal-edigital2-labs/2021-1-w07_entrega-_final-grupo15

Presentación SoC de la clase - 2021-2:

https://github.com/unal-edigital2/2021-2/blob/master/slides/week-07-proyecto%20Dig2%202021%20-2.pptx

¡Muchas gracias!

¿Tienes alguna pregunta?