Sucesiones y series de números reales

1 Sucesiones

Ejercicio 1. Prueba que si |x| < 1, entonces $\lim_{n \to \infty} 1 + x + x^2 + \ldots + x^n = \frac{1}{1-x}$.

Ejercicio 2. Demuestra que la sucesión $x_1 = 1$, $x_{n+1} = \sqrt{3x_n}$, $\forall n \ge 1$ es convergente y calcular su límite.

- Se considera la sucesión definida por recurrencia por $a_1 = 1$ y $a_{n+1} = \sqrt{2a_n + 3}$ (E) Ejercicio 3. para $n \in \mathbb{N}$. Estudia si es convergente y, en caso de que lo sea, calcula el límite.
- Sea $\{x_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como $x_1 = \frac{1}{2}$ y $x_{n+1} = x_n^2 + \frac{4}{25}$. (E) Ejercicio 4.
 - a) Demuestra que $\frac{1}{5} < x_n < \frac{4}{5}$ para cualquier natural n.
 - b) Demuestra que $\{x_n\}_{n\in\mathbb{N}}$ es decreciente.
 - c) Calcula su límite.

Ejercicio 5. Sea $a \in \mathbb{R}$, a > 1. Estudiar el comportamiento de la sucesión $x_1 = a$, $x_{n+1} = \sqrt{\frac{x_n^2 + a}{2}}$ para todo $n \in \mathbb{N}$.

2 Convergencia de series numéricas

Ejercicio 6. Aplicar el criterio de la raíz para estudiar la posible convergencia de las siguientes series:

a)
$$\sum \left(\frac{n+1}{3n-1}\right)^n$$

b) $\sum \left(\frac{n}{3n-2}\right)^{2n-1}$

c)
$$\sum \frac{n^n}{(2n+1)^n}$$

d)
$$\sum (1 + \frac{1}{n})^{-n^2}$$

b)
$$\sum \left(\frac{n}{3n-2}\right)^{2n}$$

Ejercicio 7. Aplicar el criterio del cociente para estudiar la posible convergencia de las siguientes series:

a)
$$\sum \frac{1}{n2^n}$$

c)
$$\sum \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 5 \cdot 9 \cdots (4n-3)}$$

d) $\sum \frac{2^n n!}{n^n}$

a)
$$\sum \frac{1}{n2^n}$$

b) $\sum \frac{1}{n} \left(\frac{2}{5}\right)^n$

d)
$$\sum \frac{2^n n}{n^n}$$

Ejercicio 8. Aplicar el criterio de comparación para estudiar la posible convergencia de las siguientes series:

a)
$$\sum \frac{\log(n)}{n}$$

c)
$$\sum \frac{1}{2n-1}$$

e)
$$\sum \frac{1}{(2n-1)2n}$$

f) $\sum \frac{1}{\sqrt{n}}$

a)
$$\sum \frac{\log(n)}{n}$$

b) $\sum \frac{1}{\sqrt{n(n+1)}}$

c)
$$\sum \frac{1}{2n-1}$$

d) $\sum \frac{1}{2^n-n}$

f)
$$\sum \frac{1}{\sqrt{r}}$$

Ejercicio 9. Discutir la convergencia de las siguientes series de números reales:

a)
$$\sum \frac{2^n}{n}$$

b) $\sum \frac{n+1}{n}$

d)
$$\sum \frac{3n-1}{(\sqrt{2})^n}$$

a)
$$\sum \frac{2^n}{n}$$

b) $\sum \frac{n+1}{2n+1}$
c) $\sum \frac{1}{n^2 \log(n)}$

Ejercicio 10. Discutir la convergencia de las siguientes series de números reales:

a)
$$\sum \frac{1}{n!}$$

d)
$$\sum \frac{n^2}{4^{(n-1)}}$$

b)
$$\sum \frac{1}{(3n-2)(3n+1)}$$

a)
$$\sum \frac{1}{n!}$$

b) $\sum \frac{1}{(3n-2)(3n+1)}$
c) $\sum \frac{2n+1}{(n+1)^2(n+2)^2}$

Ejercicio 11. Estudiar la convergencia de las series

a)
$$\sum \frac{n^3}{e^n}$$

c)
$$\sum \frac{2^n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$$

d) $\sum \left(\frac{n+1}{n^2}\right)^n$

a)
$$\sum \frac{n^3}{e^n}$$

b) $\sum \left(\frac{2n+1}{3n+1}\right)^{\frac{n}{2}}$

d)
$$\sum \left(\frac{n+1}{n^2}\right)^n$$

(E) Ejercicio 12. Estudia el carácter de las siguientes series:

a)
$$\sum \left(\frac{2n+1}{2n+5}\right)^{n^2}$$
.

b)
$$\sum \frac{1 + \log(n)}{n^n}.$$

E jercicio 13. Estudiar, según los valores de a > 0 la convergencia de las siguientes series:

a)
$$\sum \frac{a^n}{n^a}$$

b)
$$\sum a^n n^a$$

3 Suma de series

Ejercicio 14. Suma, si es posible, las siguientes series

$$a) \sum_{n=1}^{\infty} \frac{1}{2n(n+1)}$$

b)
$$\sum_{n=0}^{\infty} \frac{1}{(n+3)(n+4)}$$

Ejercicio 15. Suma, si es posible, las siguientes series

a)
$$\sum_{n=0}^{\infty} \frac{15}{10^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n+3}}$$

a)
$$\sum_{n=0}^{\infty} \frac{15}{10^n}$$

b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{3^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{2^{n+3}}$$

d) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$