Université Mohamed khider Biskra

Faculté des sciences exactes et sciences de la nature et de vie

Département de mathématiques

Module: Martingale à temps discret.

Année: 2020/2021

TD. Temps d'arrêt

Exercice 1: Soit (Ω, \mathcal{F}, P) un espace de probabilité sur lequel on définit deux filtrations $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}$ et $\mathbb{G} = (\mathcal{G}_n)_{n \in \mathbb{N}}$ telles que pour chaque $n \in \mathbb{N}$, on a $\mathcal{G}_n \subset \mathcal{F}_n$. Soit également T un \mathbb{F} -temps d'arrêt et S un \mathbb{G} -temps d'arrêt.

- 1) Est-ce que S un \mathbb{F} -temps d'arrêt? Justifier.
- 2) Est-ce que T un \mathbb{G} -temps d'arrêt? Justifier.

Exercice 2: Soient T_1 , T_2 deux temps d'arrêt adaptés à une filtration $\mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}$, montrer que:

- 1) $T_1 + T_2$, $T_1 \wedge T_2$ et $T_1 \vee T_2$ sont des temps d'arrêt.
- 2) Si $(T_n)_{n\in\mathbb{N}}$ est une suite de \mathbb{F} -temps d'arrêt, alors $\sup_{n\in\mathbb{N}} T_n$ est $\inf_{n\in\mathbb{N}} T_n$ sont des temps d'arrêt.

Exercice 3:

Soient $X = (X_n)_{n \ge 1}$ un processus à temps discret, $\mathbb{F} = (\mathcal{F}_n)_{n \ge 1}$ sa filtration naturelle et t un nombre réel constant. On pose,

$$N(t) = \max \{ n \in \mathbb{N}, X_1 + ... + X_n \le t \}.$$

- 1) Montrer que la variable aléatoire N(t) + 1 est un \mathbb{F} -temps d'arrêt.
- 2) La variable aléatoire N(t) est-elle un \mathbb{F} -temps d'arrêt? Justifier

Exercice 4: Soient $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}, P)$ un espace de probabilité filtré et T et S sont deux \mathbb{F} -temps d'arrêt.

- a) Montrer que l'ensemble $\mathcal{F}_T = \{A \in \mathcal{F} : \forall n \in \mathbb{N}, A \cap \{T = n\} \in \mathcal{F}_n\}$ est une tribu.
- b) Montrer que $\mathcal{F}_T = \{A \in \mathcal{F} : \forall n \in \mathbb{N}, A \cap \{T \leq n\} \in \mathcal{F}_n\}$
- c) Montrer que T est \mathcal{F}_T -mesurable.
- d) Si $A \in \mathcal{F}_S$, montrer que $A \cap \{S \leq T\} \in \mathcal{F}_T$.
- e) Si $S \leq T$, montrer que $\mathcal{F}_S \subset \mathcal{F}_T$.

Exercice 5: Temps de premier succès ou du premier échec.

Soient $(X_n)_{n\in\mathbb{N}}$ une suite aléatoire i.i.d de loi de Bernoulli:

$$P(X_1 = 0) = P(X_1 = 1) = \frac{1}{2}$$

- 1) Montrer que pour tout $n \in \mathbb{N}$ fixé, la variable aléatoire $N_n = \inf \{k \in \mathbb{N} : X_{n+k} = 0\}$ est un temps d'arrêt adapté à la filtration $\{\sigma(\{X_0, ..., X_{n+m}\})\}_{m \in \mathbb{N}}$.
- 2) Calculer la probabilité que N_n soit égale à 0 infiniment souvent (ie: $P(\lim_n \sup (N_n = 0))$).
- 3) Même question pour la valeur 1 (on considérera la suite d'événements $(N_{2n}=1)_{n\in\mathbb{N}}$).

Exercice 6 :(Identité de Wald)

Soient $(Y_n)_{n\geq 1}$ une suite de v.a.r. indépendantes, intégrables, de même loi et T un temps d'arrêt intégrable. On pose $X_0=0$ et $X_n=Y_1+Y_2+\ldots+Y_n$ pour $n\geq 1$. Montrer que $E(X_T)=E(Y_1)E(T)$.