Niech $M \in \Lambda$.

- M jest w postaci β -normalnej (β -NF, ang. normal form), jeśli nie zawiera β -redeksu (ang. redex = reducible expression), tj. podtermu ($\lambda x.P$)Q.
- M jest w postaci $\beta\eta$ -normalnej ($\beta\eta$ -NF), jeśli nie zawiera β ani η -redeksu, tj. podtermów ($\lambda x.P$)Q ani $\lambda x.P$ x, gdzie x $_{nie}$ \in F V (P).
- M jest w czołowej postaci normalnej (HNF, ang. head-normal form), jeśli $M \equiv \lambda x_1 \dots x_n .y N_1 \dots N_m dla m, n \ge 0$.
- M jest w słabej czołowej postaci normalnej (WHNF, ang. weak head-normal form), jeśli $M \equiv \lambda x.N$ lub $M \equiv yN_1 \dots N_m$ dla $m \ge 0$. $\circ \lambda x.x$
- M ma R -NF, jeśli ∃N.M = N i N jest w R -NF, gdzie R oznacza dowolną redukcję.

```
foldr f z x:xs = f x (foldr f z xs) foldr f z [] = z  
foldl f z x:xs = foldl f (f z x) xs foldl f z [] = z  
wyłuskanie wartości:
a) return a>>=k = k(a)  
return:: a \rightarrow m a  
b) m >>= return = m  
łączność:
c) m >>=(\x -> k x >>= h) =(m>>=\x \rightarrow kx ) >>= h  
m1 >>= (\x -> m2 >>= (\y y -> m3)) = (m1 >>= \x -> m2) >>= (\y y -> m3)  
d) m >> (k >> h) = (m>>k)>>h
```