МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по практической работе №4

по дисциплине «Качество и метрология программного обеспечения» Тема: Построение операционной графовой модели программы (ОГМП) и расчет

ХАРАКТЕРИСТИК ЭФФЕКТИВНОСТИ ЕЕ ВЫПОЛНЕНИЯ

МЕТОДОМ ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ

Студент гр. 8304	 Нам Ё Себ
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Построение операционной графовой модели программы и расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.

Ход работы

1) Построили УГП путем выделения в программе функциональных участков и сопоставления им элементов графа (см. рис 1). На таблице 1 представлены результаты профилирования из лабораторной 3.

Рис 1 – Управляющий граф программы

исх	прием	общее время	кол-во проходов	среднее время
21	26	13.042	1	13.042
26	28	49.526	1	49.526
28	33	77.258	5	15.452
28	31	115.970	6	19.328
33	38	65.342	5	13.068
38	40	11.833	1	11.833
38	54	77.712	4	19.428
40	45	42.919	1	42.919
45	48	39.878	1	39.878
48	54	10.861	1	10.861
54	56	54.001	5	10.800
56	59	80.530	6	13.422
59	62	65.440	6	10.907
59	59	39.877	2	19.939
62	65	58.482	3	19.494
62	67	37.047	3	12.349
65	65	30.821	3	10.274
65	67	73.477	3	24.492
67	70	22.324	1	22.324
67	73	63.570	5	12.714
70	56	8.232	1	8.232
73	75	72.569	5	14.514
75	77	134.443	5	26.889
77	87	58.017	2	29.008
77	82	29.819	3	9.940
87	90	15.648	2	7.824
90	28	27.947	5	5.589
82	90	24.116	3	8.039
31	28	217.023	5	43.405
31	93	29.219	1	29.219

Таблица 1 – Результаты профилирования

2) На основе результатов профилирования выполнили расчет вероятностей выбора маршрутов выполнения программы (Таблица 2). На рисунке 2 представлена операционная графовая модель программы.

Маршрут	Строчки в	Количество	Вероятность	Время выполнения
	программе	проходов		перехода
1-2	21:26	1	1	13.042
2-3	26:28	1	1	49.526
3-4	28:31	6	0,5455	19.328
3-5	28:33	5	0,4545	15.452
5-6	33:38	5	1	13.068
6-7	38:40	1	0,2	11.833

6-10	38:54	4	0,8	19.428
7-8	40:45	1	1	42.919
8-9	45:48	1	1	39.878
9-10	48:54	1	1	10.861
10-11	54:56	5	1	10.800
11-12	56:59	6	1	13.422
12-11	59:59	2	0,25	19.939
12-13	59:62	6	0,75	10.907
13-14	62:65	3	0,5	19.494
13-15	62:67	3	0,5	12.349
14-13	65:65	3	0,5	10.274
14-15	65:67	3	0,5	24.492
15-16	67:70	1	0,1667	22.324
15-17	67:73	5	0,8333	12.714
16-11	70:56	1	1	8.232
17-18	73:75	5	1	14.514
18-19	75:77	5	1	26.889
19-20	77:82	3	0,6	9.940
19-21	77:87	2	0,4	29.008
21-22	87:90	2	1	7.824
20-22	82:90	3	1	8.039
22-3	90:28	5	1	5.589
4-3	31:28	5	0,8333	43.405
4-23	31:93	1	0,1667	29.219

Таблица 2 – Оценка вероятностей

Рис 2 - ОГМП

3) Выполнили описание ОГМП в CSA III.

Рис 4 – граф в CSA 3

Рис 4 – Результаты работы CSA 3

Заключение

В ходе лабораторной работы построили операционную графовую модель программы и выполнили расчет характеристик эффективности ее выполнения методом эквивалентных преобразований.