

अध्याय 11

विकिरण तथा द्रव्य की द्वैत प्रकृति

11.1 भूमिका

सन् 1887 में वैद्युतचुंबकीय किरणों की उत्पत्ति एवं संसुचना पर विद्युत चुंबकत्व के मैक्सवेल समीकरण तथा हर्ट्ज़ के प्रयोगों ने प्रकाश की तरंगीय प्रकृति को अभृतपूर्व रूप से स्थापित किया। उन्नीसवीं शताब्दी के अंतिम चरण में विसर्जन-निलंका में गैसों में कम दाब पर विद्यत-चालन (विद्युत-विसर्जन) पर प्रायोगिक अन्वेषणों से कई ऐतिहासिक खोजें हुईं। रूंटगेन के द्वारा 1895 में X-किरणों की खोज तथा जे. जे. टॉमसन के द्वारा 1897 में की गई इलेक्ट्रॉन की खोज परमाण्-संरचना को समझने में मील का पत्थर थीं। लगभग 0.001 mm पारे के स्तंभ के अत्यंत कम दाब पर यह पाया गया कि ऐसे दो इलेक्ट्रोडों के बीच, जिनके द्वारा विसर्जन-निलका में गैस पर विद्युत क्षेत्र स्थापित किया जाता है, एक विसर्जन होता है। कैथोड के सम्मुख काँच पर प्रतिदीप्त उत्पन्न होती है। दीप्त का रंग काँच की प्रकृति पर निर्भर करता है, जैसे–सोडा-काँच के लिए पीत-हरा रंग का। इस प्रतिदीप्ति का कारण उस विकिरण को माना गया जो कैथोड से आ रहा था। ये कैथोड किरणें 1870 में विलियम क्रक्स के द्वारा खोजी गई थीं, जिसने बाद में 1879 में यह सुझाया कि ये किरणें तीव्रता से चलने वाली ऋण-आवेशी कणों की धारा से बनी हैं। ब्रिटिश भौतिक शास्त्री जे.जे. टॉमसन (1856 - 1940) ने इस परिकल्पना की पुष्टि की। जे.जे. टॉमसन ने पहली बार विसर्जन-निलका के आर-पार परस्पर लंबवत विद्युत एवं चुंबकीय क्षेत्रों को स्थापित कर प्रायोगिक तौर पर कैथोड-किरण कणों के वेग तथा आपेक्षिक आवेश [अर्थात आवेश और द्रव्यमान का अनुपात (e/m)] ज्ञात किया। यह पाया गया कि ये कण प्रकाश के वेग $(3 \times 10^8 \text{ m/s})$ के

लगभग 0.1 से लेकर 0.2 गुने वेग से चलते हैं। वर्तमान में e/m का स्वीकृत मान $1.76 \times 10^{11} \, \mathrm{C/kg}$ है। यह भी पाया गया कि e/m का मान कैथोड (उत्सर्जक) के पदार्थ अथवा धातु या विसर्जन-निलका में भरी गैस की प्रकृति पर निर्भर नहीं करता। इस प्रेक्षण ने कैथोड-किरण कणों की सार्विकता को सुझाया।

लगभग उसी समय, 1887 में, यह पाया गया कि जब कुछ निश्चित धातुओं को पराबैंगनी प्रकाश द्वारा किरिणत करते हैं तो कम वेग वाले ऋण-आवेशित कण उत्सर्जित होते हैं। इसी प्रकार, जब कुछ निश्चित धातुओं को उच्च ताप तक गरम किया जाता है तो ये ऋण-आवेशित कण उत्सर्जित करते हैं। इन कणों के लिए e/m का मान उतना ही पाया गया जितना कि कैथोड किरण कणों का था। इस प्रकार इन प्रेक्षणों ने यह स्थापित कर दिया कि ये सभी कण, यद्यपि भिन्न दशाओं में उत्पन्न हुए थे, प्रकृति में समान थे। जे.जे. टॉमसन ने, 1897 में, इन कणों को इलेक्ट्रॉन नाम दिया और सुझाया कि ये द्रव्य के मौलिक सार्वित्रक अवयव हैं। गैसों में विद्युत के संवहन पर उनके सैद्धांतिक तथा प्रायोगिक प्रेक्षणों के द्वारा इलेक्ट्रॉन की इस युगांतकारी खोज के लिए उन्हें 1906 में नोबेल पुरस्कार प्रदान किया गया। 1913 में अमेरिकी भौतिकिवज्ञानी आर.ए. मिलिकन (1868–1953) ने इलेक्ट्रॉन पर आवेश के परिशुद्ध मापन के लिए तेल-बूँद का पथ प्रदर्शक प्रयोग किया। उन्होंने यह पाया कि तेल-बिंदुक पर आवेश सदैव एक मूल आवेश, 1.602 × 10-19 C का पूर्ण गुणांक है। मिलिकन के प्रयोग ने यह प्रस्थापित कर दिया कि वैद्युतआवेश क्वांटीकृत है। आवेश (e) तथा आपेक्षित आवेश (e/m) के मान से, इलेक्ट्रॉन का द्रव्यमान (m) ज्ञात किया जा सका।

11.2 इलेक्ट्रॉन उत्सर्जन

हम जानते हैं कि धातुओं में मुक्त इलेक्ट्रॉन (ऋण आवेशित कण) होते हैं जो उनकी चालकता के लिए उत्तरदायी होते हैं। तथापि, मुक्त इलेक्ट्रॉन सामान्यत: धातु-पृष्ठ से बाहर नहीं निकल सकते। यदि इलेक्ट्रॉन धातु से बाहर आते हैं तो इसका पृष्ठ धन आवेश प्राप्त कर लेता है और इलेक्ट्रॉन को वापस धातु पर आकर्षित कर लेता है। इस प्रकार मुक्त इलेक्ट्रॉन धातु के भीतर आयनों के आकर्षण बलों के द्वारा रोककर रखे गए होते हैं। परिणामस्वरूप सिर्फ़ वे इलेक्ट्रॉन जिसकी ऊर्जा इस आकर्षण को अभिभूत कर सके, धातु पृष्ठ से बाहर आ पाते हैं। अत: इलेक्ट्रॉनों को धातु पृष्ठ से बाहर निकालने के लिए एक निश्चित न्यूनतम ऊर्जा की आवश्यकता होती है। इस न्यूनतम ऊर्जा को धातु का कार्य-फलन कहते हैं। इसे साधारणतया ϕ_0 के द्वारा व्यक्त करते हैं और eV (इलेक्ट्रॉन वोल्ट) में मापते हैं। एक इलेक्ट्रॉन वोल्ट किसी इलेक्ट्रॉन को 1 वोल्ट विभवांतर के द्वारा त्वरित कराने पर प्राप्त ऊर्जा का मान है। अत: $1 eV = 1.602 \times 10^{-19} J$

साधारणतया ऊर्जा की इस इकाई का प्रयोग परमाणु तथा नाभिकीय भौतिकी में किया जाता है। कार्य-फलन (ϕ_0) धातु के गुणों और इसके पृष्ठ की प्रकृति पर निर्भर करता है।

धातु के पृष्ठ से इलेक्ट्रॉन उत्सर्जन के लिए मुक्त इलेक्ट्रॉनों को न्यूनतम आवश्यक ऊर्जा निम्न किसी भी एक भौतिक विधि के द्वारा दी जा सकती है :

- (i) तापायनिक उत्सर्जन : उपयुक्त तापन के द्वारा मुक्त इलेक्ट्रॉनों को पर्याप्त तापीय ऊर्जा दी जा सकती है जिससे कि वे धातु से बाहर आ सकें।
- (ii) *क्षेत्र उत्सर्जन :* किसी धातु पर लगाया गया एक प्रबल विद्युत क्षेत्र $(10^8 \, {
 m V \, m}^{-1}$ की कोटि का) इलेक्ट्रॉनों को धातु-पृष्ठ के बाहर ला सकता है, जैसा कि किसी स्पार्क प्लग में।
- (iii) प्रकाश-विद्युत उत्सर्जन : उपयुक्त आवृत्ति का प्रकाश जब किसी धातु-पृष्ठ पर पड़ता है तो इलेक्ट्रॉनों का उत्सर्जन होता है। ये प्रकाशजनित इलेक्ट्रॉन प्रकाशिक इलेक्ट्रॉन (photo-electron) कहलाते हैं।

📭 भौतिकी

11.3 प्रकाश-विद्युत प्रभाव

11.3.1 हर्ट्ज़ के परीक्षण

प्रकाश-विद्युत उत्सर्जन की परिघटना की खोज हेनरिच हर्ट्ज़ (1857-1894) के द्वारा 1887 में वैद्युतचुंबकीय तरंगों के प्रयोगों के समय की गई थी। स्फुलिंग-विसर्जन (spark discharge) के द्वारा वैद्युतचुंबकीय तरंगों की उत्पत्ति के अपने प्रायोगिक अन्वेषण में हर्ट्ज़ ने यह प्रेक्षित किया कि कैथोड को किसी आर्क लैंप से पराबैंगनी प्रकाश के द्वारा प्रदीप्त करने पर धातु-इलेक्ट्रोडों के पार उच्च वोल्टता स्फुलिंग अधिक हो जाता है।

धातु-पृष्ठ पर चमकने वाला प्रकाश मुक्त आवेशित कणों जिन्हें अब हम इलेक्ट्रॉन कहते हैं, को स्वतंत्र करने में सहायता प्रदान करता है। जब धातु-पृष्ठ पर प्रकाश पड़ता है तो पृष्ठ के समीप इलेक्ट्रॉन आपितत विकिरण से पदार्थ के पृष्ठ में धनात्मक आयनों के आकर्षण को पार करने के लिए ऊर्जा अवशोषित कर लेते हैं। आपितत प्रकाश से आवश्यक ऊर्जा प्राप्त करने के पश्चात, इलेक्ट्रॉन धातु-पृष्ठ से बाहर परिवेश में आ जाते हैं।

11.3.2 हालवॉक्स तथा लीनार्ड के प्रेक्षण

विलहेल्म हालवॉक्स तथा फिलिप लीनार्ड ने 1886-1902 के बीच प्रकाशविद्युत उत्सर्जन की परिघटना का अन्वेषण किया।

दो इलेक्ट्रोडों (धातु पट्टिकाओं) वाली किसी निर्वातित काँच की नली में उत्सर्जक पट्टिका पर पराबैंगनी विकिरणों को आपितत करने पर लीनार्ड (1862-1947) ने पाया कि परिपथ में धारा प्रवाह होता है (चित्र 11.1)। जैसे ही पराबैंगनी विकिरणों को रोका गया, वैसे ही धारा प्रवाह भी रुक गया। इन परीक्षणों से ज्ञात होता है कि जब पराबैंगनी विकिरण उत्सर्जक पट्टिका C पर आपितत होते हैं, इलेक्ट्रॉन पट्टिका से बाहर आ जाते हैं तथा विद्युत क्षेत्र द्वारा धनात्मक संग्राहक पट्टिका A की ओर आकर्षित हो जाते हैं। निर्वातित काँच की नली में इलेक्ट्रॉनों के प्रवाह के कारण धाराप्रवाह होती है। इस प्रकार से, उत्सर्जक के पृष्ठ पर प्रकाश पड़ने के कारण बाह्य परिपथ में धाराप्रवाह होती है। हालवॉक्स तथा लीनार्ड ने संग्राहक पट्टिका के विभव, आपितत प्रकाश की आवृत्ति तथा तीव्रता के साथ प्रकाश धारा में परिवर्तन का अध्ययन किया।

हालवॉक्स ने 1888 में इस अध्ययन को आगे बढ़ाया और एक ऋणावेशित जिंक पट्टिका को एक विद्युतदर्शी से जोड़ दिया। उसने प्रेक्षित किया कि जब पट्टिका को पराबैंगनी प्रकाश से किरणित किया गया तो इसने अपना आवेश खो दिया। इसके अतिरिक्त जब एक अनावेशित जिंक पट्टिका को पराबैंगनी प्रकाश से किरणित किया गया तो यह धनावेशित हो गई। जिंक पट्टिका को पराबैंगनी प्रकाश से पुन: किरणित करने पर, इस पट्टिका पर धनआवेश और अधिक हो गया। इन प्रेक्षणों से उसने यह निष्कर्ष निकाला कि पराबैंगनी प्रकाश के प्रभाव से जिंक पट्टिका से ऋणावेशित कण उत्सर्जित होते हैं।

1897 में इलेक्ट्रॉन की खोज के पश्चात यह निश्चित हो गया कि उत्सर्जक पट्टिका से इलेक्ट्रॉनों के उत्सर्जन का कारक आपितत प्रकाश है। ऋण आवेश के कारण उत्सर्जित इलेक्ट्रॉन विद्युत क्षेत्र द्वारा संग्राहक पट्टिका की ओर धकेले जाते हैं। हालवॉक्स तथा लीनार्ड ने यह भी प्रेक्षित किया कि जब उत्सर्जक पट्टिका पर एक नियत न्यूनतम मान से कम आवृत्ति का पराबैंगनी प्रकाश पड़ता है तो कोई भी इलेक्ट्रॉन उत्सर्जित नहीं होता। इस नियत न्यूनतम आवृत्ति को देहली आवृत्ति (threshold frequency) कहते हैं तथा इसका मान उत्सर्जक पट्टिका के पदार्थ की प्रकृति पर निर्भर करता है।

यह पाया गया कि जिंक, कैडिमयम, मैग्नीशियम जैसी कुछ धातुओं में यह प्रभाव केवल कम तरंगदैर्घ्य की पराबैंगनी तरंगों के लिए होता है। तथापि लीथियम, सोडियम, पोटेशियम, सीजियम तथा रूबीडियम जैसी क्षार धातुएँ दृश्य प्रकाश के द्वारा भी यह प्रभाव दर्शाती हैं। जब इन प्रकाश-संवेदी पदार्थों को प्रकाश से प्रदीप्त किया जाता है तो ये इलेक्ट्रॉन उत्सर्जित करते हैं। इलेक्ट्रॉन की खोज के पश्चात् इन इलेक्ट्रॉनों को प्रकाशिक इलेक्ट्रॉन नाम दिया गया। यह परिघटना प्रकाश-विद्युत प्रभाव कहलाती है।

11.4 प्रकाश-विद्युत प्रभाव का प्रायोगिक अध्ययन

चित्र 11.1 में प्रकाश-विद्युत प्रभाव के प्रायोगिक अध्ययन के लिए उपयोग में लाई गई व्यवस्था को दर्शाया गया है। इसमें एक निर्वातित काँच/क्वार्टज़ की नली है जिसमें एक प्रकाश-संवेदी पट्टिका C और दूसरी धातु पट्टिका A है। स्रोत S से प्रकाश, गवाक्ष (window) W से पार होता है और पतली प्रकाश-संवेदी पट्टिका (उत्सर्जक) C पर पड़ता है। पारदर्शी क्वार्ट्ज़ गवाक्ष (काँच-नली पर मुद्रित) से पराबैंगनी विकिरण पार हो जाता है और प्रकाश-संवेदी पट्टिका C को किरणित करता है। पट्टिका C से इलेक्ट्रॉन उत्सर्जित होते हैं जो पट्टिका A (संग्राहक) पर बैटरी द्वारा उत्पन्न विद्युत क्षेत्र द्वारा एकत्र कर लिए जाते हैं। C तथा A पट्टिकाओं के बीच विभवांतर को बैटरी द्वारा बनाए रखा जाता है तथा इसे परिवर्तित किया जा सकता है। प्लेट C तथा A के ध्रुव दिशा दिक्पिरवर्तक (Commutator) के द्वारा बदले जा सकते हैं। इस प्रकार उत्सर्जक पट्टिका C की तुलना में पट्टिका A को इच्छानुसार धन अथवा ऋण विभव पर रखा जा सकता है। जब संग्राहक पट्टिका A, उत्सर्जक पट्टिका C की तुलना में धनात्मक होगी तब इलेक्ट्रॉन इसकी ओर आकर्षित होंगे। इलेक्ट्रॉनों के उत्सर्जन के कारण विद्युत परिपथ में एक प्रवाह उत्पन्न होता है जिससे परिपथ में एक विद्युत धारा स्थापित हो जाती है। इलेक्ट्रोडों के बीच के विभवांतर को एक वोल्टमीटर के द्वारा और परिणामस्वरूप परिपथ में प्रवाहित

होने वाली प्रकाशिक धारा को माइक्रोऐमीटर के द्वारा मापते हैं। प्रकाशिक विद्युत धारा को संग्राहक पट्टिका A का विभव उत्सर्जक पट्टिका C के सापेक्ष परिवर्तित करके बढ़ाया अथवा घटाया जा सकता है। आपितत प्रकाश की तीव्रता तथा आवृत्ति को भी परिवर्तित किया जा सकता है जैसे कि उत्सर्जक C और संग्राहक A के बीच विभवांतर V को परिवर्तित किया जाता है।

हम चित्र 11.1 की प्रायोगिक व्यवस्था का उपयोग प्रकाशिक धारा के (a) विकिरण की तीव्रता, (b) आपितत विकिरण की आवृत्ति, (c) पट्टिकाओं A तथा C के बीच के विभवांतर, तथा (d) पट्टिका C के पदार्थ की प्रकृति के साथ परिवर्तन के अध्ययन के लिए कर सकते हैं। उत्सर्जक C पर पड़ने वाले प्रकाश के मार्ग में उपयुक्त फिल्टर अथवा रंगीन काँच रखकर भिन्न तरंगदैर्घ्य के प्रकाश का उपयोग कर सकते हैं। प्रकाश स्रोत की उत्सर्जक से दूरी को बदलते हुए प्रकाश की तीव्रता को परिवर्तित किया जा सकता है।

चित्र 11.1 प्रकाश-विद्युत प्रभाव के अध्ययन के लिए प्रायोगिक व्यवस्था।

11.4.1 प्रकाश-विद्युत धारा पर प्रकाश की तीव्रता का प्रभाव

संग्राहक A को उत्सर्जक C की तुलना में एक धन विभव पर रखा जाता है जिससे C से उत्सर्जित इलेक्ट्रॉन संग्राहक A की ओर आकर्षित होते हैं। आपतित विकिरण की आवृत्ति तथा विभव को स्थिर

277

भौतिकी

चित्र 11.2 प्रकाश-विद्युत धारा और प्रकाश की तीवृता के बीच ग्राफ।

रखते हुए, प्रकाश की तीव्रता को परिवर्तित किया जाता है और परिणामी प्रकाश-विद्युत धारा को प्रत्येक बार मापा जाता है। यह पाया जाता है कि प्रकाशिक धारा आपितत प्रकाश की तीव्रता के साथ रैखिकत: बढ़ती है जैसा कि चित्र 11.2 में ग्राफीय रूप में दर्शाया गया है। प्रकाशिक धारा उत्सर्जित होने वाले प्रति सेकंड इलेक्ट्रॉनों की संख्या के अनुक्रमानुपाती है, अत: उत्सर्जित होने वाले प्रति सेकंड प्रकाशिक इलेक्ट्रॉनों की संख्या आपितत विकरण की तीव्रता के समानुपाती है।

11.4.2 प्रकाश-विद्युत धारा पर विभव का प्रभाव

हम पहले पट्टिका A को पट्टिका C की तुलना में किसी धन विभव पर रखते हैं और पट्टिका C को निश्चित आवृत्ति ν तथा निश्चित तीव्रता I_1 के प्रकाश से प्रदीप्त करते हैं। फिर हम पट्टिका A के धन विभव को धीरे-धीरे परिवर्तित करते हैं और प्रत्येक बार परिणामी प्रकाश-विद्युत धारा को मापते हैं। यह पाया जाता है

कि प्रकाश-विद्युत धारा धन (त्वरक) विभव के साथ बढ़ती है। पट्टिका A के एक निश्चित धन विभव के लिए एक ऐसी स्थित आ जाती है जिस पर सभी उत्सर्जित इलेक्ट्रॉन पट्टिका A पर संग्रहीत हो जाते हैं तथा प्रकाश-विद्युत धारा उच्चतम हो जाती है अर्थात संतृप्त हो जाती है। यदि हम विद्युत पट्टिका A के त्वरक विभव को और अधिक बढ़ाते हैं तो प्रकाश-विद्युत धारा नहीं बढ़ती। प्रकाश-विद्युत धारा के इस उच्चतम मान को संतृप्त धारा कहते हैं। संतृप्त धारा उस स्थिति के संगत है जब उत्सर्जक पट्टिका C के द्वारा उत्सर्जित सभी प्रकाशिक इलेक्ट्रॉन संग्राहक पट्टिका A पर पहुँच जाते हैं।

चित्र 11.3 आपितत विकिरण की विभिन्न तीव्रताओं के लिए प्रकाशिक-धारा तथा पट्टिका विभव के बीच आलेख।

अब हम पट्टिका A पर पट्टिका C की तुलना में एक ऋण (मंदक) विभव लगाते हैं और इसे धीरे-धीरे अधिक ऋणात्मक करते जाते हैं। जब पट्टिकाओं की ध्रुवता बदली जाती है तो इलेक्ट्रॉन प्रतिकर्षित होते हैं तथा केवल कुछ पर्याप्त ऊर्जा वाले इलेक्ट्रॉन ही संग्राहक A तक पहुँच पाते हैं। यह पाया गया कि प्रकाशिक-धारा तेजी से कम होती जाती है जब तक कि यह पट्टिका A पर ऋण विभव V_o के किसी निश्चित तीक्ष्ण और स्पष्ट क्रांतिक मान पर शून्य नहीं हो जाती। आपितत विकिरण की एक निश्चित आवृत्ति के लिए पट्टिका A पर दिया गया निम्नतम ऋण (मंदक) विभव V_o जिस पर प्रकाशिक-धारा शून्य हो जाती है, अंतक (Cut-off) अथवा निरोधी विभव (Stopping potential) कहलाता है।

प्रकाशिक इलेक्ट्रॉन के द्वारा प्रेक्षण की व्याख्या सीधी है। धातु से उत्सर्जित सभी प्रकाशिक इलेक्ट्रॉन समान ऊर्जा वाले नहीं होते। प्रकाश-विद्युत धारा तब शून्य होती है जब निरोधी विभव अधिकतम ऊर्जा वाले प्रकाशिक इलेक्ट्रॉनों,

जिनकी उच्चतम गतिज ऊर्जा (K_{300}) है, को प्रतिकर्षित करने की अवस्था में हो। अर्थात

$$K_{\text{dec}} = e V_0 \tag{11.1}$$

अब हम इस प्रयोग को आपितत विकिरण की एकसमान आवृत्ति परंतु उच्च तीव्रता I_2 तथा I_3 ($I_3 > I_2 > I_1$) के लिए दोहरा सकते हैं। हम यह नोट करते हैं कि अब संतृप्त धाराओं के मान बढ़ जाते हैं। इससे ज्ञात होता है कि आपितत विकिरण की तीव्रता के अनुपात में प्रति सेकंड अधिक इलेक्ट्रॉन उत्सर्जित होते हैं। परंतु निरोधी विभव उतना ही रहता है जितना कि I_1 तीव्रता के आपितत विकिरण के लिए होता है, जैसा कि चित्र 11.3 में ग्राफ के द्वारा दर्शाया गया है। इस प्रकार, आपितत विकिरण की एक निश्चित आवृत्ति के लिए निरोधी विभव इसकी तीव्रता से स्वतंत्र होता है। दूसरे शब्दों में, प्रकाशिक इलेक्ट्रॉन की उच्चतम गितज ऊर्जा, आपितत विकिरण की तीव्रता पर निर्भर नहीं करती है।

11.4.3 निरोधी विभव पर आपतित विकिरण की आवृत्ति का प्रभाव

अब हम आपितत विकिरण की आवृत्ति ν और निरोधी विभव V_0 के मध्य संबंध का अध्ययन करेंगे। हम प्रकाश विकिरण की विभिन्न आवृत्तियों पर उपयुक्त प्रकार से एक ही तीव्रता को समायोजित करते हैं और संग्राही पिट्टका विभव के साथ प्रकाश-विद्युत धारा के पिरवर्तन का अध्ययन करते हैं। पिरणामी पिरवर्तन को चित्र 11.4 में दर्शाया गया है। हमें आपितत विकिरण की भिन्न आवृत्तियों के लिए निरोधी विभव के भिन्न मान परंतु संतृप्त धारा का एक ही मान प्राप्त होता है। उत्सर्जित इलेक्ट्रॉनों की ऊर्जा आपितत विकिरणों की आवृत्ति पर निर्भर है। आपितत विकिरण की उच्चतर आवृत्ति के लिए निरोधी विभव का मान अधिक ऋणात्मक होता है। चित्र 11.4 से यह जात होता है कि यि

चित्र 11.4 आपितत विकिरण की विभिन्न आवृत्तियों के लिए पट्टिका विभव तथा प्रकाश-विद्युत धारा के बीच आलेख।

आवृत्तियाँ $v_3 > v_2 > v_1$ के क्रम में हों तो निरोधी विभवों का क्रम $V_{03} > V_{02} > V_{01}$ होता है। इसमें यह अंतर्निहित है कि आपितत प्रकाश की आवृत्ति जितनी अधिक होगी, प्रकाशिक इलेक्ट्रॉनों की उच्चतम गितज ऊर्जा उतनी ही अधिक होगी। फलस्वरूप, इन्हें पूर्ण रूप से रोकने के लिए अधिक निरोधी विभव की आवश्यकता होगी। यिद हम भिन्न धातुओं के लिए आपितत विकिरण की आवृत्ति और संबंधित निरोधी विभव के बीच ग्राफ़ खीचें तो हमें एक सीधी रेखा प्राप्त होती है जैसा कि चित्र 11.5 में दर्शाया गया है।

ग्राफ़ यह दर्शाता है कि

- (i) निरोधी विभव V_0 एक दिए हुए प्रकाश-संवेदी पदार्थ के लिए, आपितत विकिरण की आवृत्ति के साथ रैखिकतः परिवर्तित होता है।
- (ii) एक निश्चित निम्नतम अंतक आवृत्ति v_0 होती है जिसके लिए निरोधी विभव शुन्य होता है।
- इन प्रेक्षणों में दो तथ्य अंतर्निहित हैं:
- (i) प्रकाशिक इलेक्ट्रॉनों की उच्चतम गतिज ऊर्जा आपितत विकिरण की आवृत्ति के साथ रैखिकत: परिवर्तित होती है जबकि यह इसकी तीव्रता पर निर्भर नहीं होती।
- (ii) आपितत विकिरण की आवृत्ति v के लिए, जबिक इसका मान अंतक आवृत्ति v₀ से कम है, कोई प्रकाश-विद्युत उत्सर्जन संभव नहीं है (तीव्रता अधिक होने की स्थिति में भी)।

चित्र 11.5 एक दिए हुए प्रकाश संवेदी पदार्थ के लिए आपितत विकिरण की आवृत्ति ν के साथ निरोधी विभव V_0 का परिवर्तन।

279

🖣 भौतिकी

इस न्यूनतम अंतक आवृत्ति v_0 को *देहली आवृत्ति* कहते हैं। यह भिन्न धातुओं के लिए भिन्न होती है।

भिन्न प्रकाश-संवेदी पदार्थ प्रकाश के लिए विभिन्न अनुक्रियाएँ दर्शाते हैं। सेलिनियम, जिंक अथवा कॉपर की तुलना में अधिक संवेदी है। एक ही प्रकाश-संवेदी पदार्थ विभिन्न तरंगदैर्घ्य के प्रकाश के लिए भिन्न अनुक्रिया दर्शाता है। उदाहरण के लिए, कॉपर में पराबैंगनी प्रकाश से प्रकाश-विद्युत प्रभाव होता है जबिक हरे अथवा लाल रंग के प्रकाश से यह प्रभाव नहीं होता।

ध्यान दें कि ऊपर के सभी प्रयोगों में यह पाया गया है कि यदि आपितत विकिरण की आवृत्ति देहली आवृत्ति से अधिक हो जाती है तो बिना किसी काल-पश्चता के तत्काल प्रकाश-विद्युत उत्सर्जन प्रारंभ हो जाता है, तब भी जब आपितत विकिरण बहुत मंद हो। अब यह ज्ञात है कि 10⁻⁹s की कोटि के या इससे कम समय में उत्सर्जन प्रारंभ हो जाता है।

अब हम इस अनुभाग में वर्णन किए गए प्रायोगिक लक्षणों एवं प्रेक्षणों का यहाँ सारांश देंगे :

- (i) किसी दिए गए प्रकाश-संवेदी पदार्थ और आपितत विकिरण की आवृत्ति (देहली आवृत्ति से अधिक) के लिए, प्रकाश-विद्युत धारा आपितत प्रकाश की तीव्रता के अनुक्रमानुपाती होती है (चित्र 11.2)।
- (ii) िकसी दिए गए प्रकाश-संवेदी पदार्थ और आपितत विकिरण की आवृत्ति के लिए, संतृप्त धारा आपितत विकिरण की तीव्रता के अनुक्रमानुपाती पाई जाती है जबिक निरोधी विभव तीव्रता पर निर्भर नहीं होता है (चित्र 11.3)।
- (iii) किसी दिए गए प्रकाश-संवेदी पदार्थ के लिए, एक निश्चित न्यूनतम अंतक-आवृत्ति होती है जिसे देहली आवृत्ति कहते हैं, जिसके नीचे प्रकाशिक इलेक्ट्रॉनों का कोई उत्सर्जन नहीं होता चाहे आपितत प्रकाश कितना भी तीव्र क्यों न हो। देहली आवृत्ति के ऊपर, निरोधी विभव अथवा तुल्यत: उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की उच्चतम गितज ऊर्जा आपितत विकिरण की आवृत्ति के साथ रैखिकत: बढ़ती है परंतु यह इसकी तीव्रता से स्वतंत्र होती है (चित्र 11.5)।
- (iv) प्रकाश-विद्युत उत्सर्जन बिना किसी काल-पश्चता के (~10⁻⁹s अथवा कम) एक तात्क्षणिक प्रक्रिया है, तब भी जब आपतित विकिरण को अत्यधिक मंद कर दिया जाता है।

11.5 प्रकाश-विद्युत प्रभाव तथा प्रकाश का तरंग सिद्धांत

प्रकाश की तरंग प्रकृति उन्नीसवीं शताब्दी के अंत तक अच्छी तरह स्थापित हो गई थी। प्रकाश के तरंग-चित्र के द्वारा व्यतिकरण, विवर्तन तथा ध्रुवण की घटनाओं की स्वाभाविक एवं संतोषजनक रूप में व्याख्या की जा चुकी थी। इस चित्र के अनुसार, प्रकाश एक वैद्युतचुंबकीय तरंग है, जो विद्युत एवं चुंबकीय क्षेत्र से मिलकर बनी होती है तथा जिस आकाशीय क्षेत्र में फैली होती है, वहाँ ऊर्जा का संतत वितरण होता है। अब हम यह देखेंगे कि क्या प्रकाश का यह तरंग-चित्रण पिछले अनुभाग में दिए गए प्रकाश-विद्युत उत्सर्जन संबंधी प्रेक्षणों की व्याख्या कर सकता है।

प्रकाश-विद्युत उत्सर्जन के तरंग-चित्रण के अनुसार धातु के पृष्ठ (जहाँ विकिरण की किरण-पुंज पड़ती है) पर स्वतंत्र इलेक्ट्रॉन विकिरित ऊर्जा को संतत रूप में अवशोषित करते हैं। जितनी अधिक प्रकाश की तीव्रता होगी उतने ही अधिक वैद्युत तथा चुंबकीय क्षेत्रों के आयाम होंगे। परिणामस्वरूप, तीव्रता जितनी अधिक होगी उतना ही अधिक प्रत्येक इलेक्ट्रॉन के द्वारा ऊर्जा-अवशोषण होना चाहिए। इस चित्रण के अनुसार, प्रकाशिक इलेक्ट्रॉन की उच्चतम गतिज ऊर्जा तीव्रता में वृद्धि के साथ बढ़नी चाहिए। साथ ही, चाहे प्रकाश की आवृत्ति कुछ भी हो, एक पर्याप्त तीव्र विकिरण किरण-पुंज (पर्याप्त समय में) इलेक्ट्रॉनों को इतनी पर्याप्त ऊर्जा देने

में समर्थ होगा जो इनके धातु-पृष्ठ से बाहर निकलने के लिए आवश्यक निम्नतम ऊर्जा से अधिक होगी। इसलिए, एक देहली आवृत्ति का अस्तित्व नहीं होना चाहिए। तरंग सिद्धांत की इन प्रागुक्तियों से अनुभाग 11.4.3 में दिए गए प्रेक्षणों (i), (ii) तथा (iii) का सीधे विरोध होता है।

आगे हमें ध्यान रखना होगा कि तरंग-चित्रण में, इलेक्ट्रॉन द्वारा ऊर्जा का संतत अवशोषण विकिरण के पूरे तरंगाग्र पर होता है। चूँकि एक बड़ी संख्या में इलेक्ट्रॉन ऊर्जा अवशोषित करते हैं, अत: प्रति इलेक्ट्रॉन प्रति इकाई समय में अवशोषित ऊर्जा बहुत कम होगी। स्पष्ट गणना से यह आकलन किया जा सकता है कि एकल इलेक्ट्रॉन के लिए कार्य-फलन को पार कर धातु से बाहर निकल आने के लिए पर्याप्त ऊर्जा जुटाने में कई घंटे अथवा और भी अधिक समय लग सकता है। यह निष्कर्ष भी प्रेक्षण (iv), जिसके अनुसार प्रकाश-विद्युत उत्सर्जन (लगभग) तात्क्षणिक होता है, के बिलकुल विपरीत है। संक्षेप में, तरंग-चित्रण के द्वारा प्रकाश-विद्युत उत्सर्जन के अत्यंत मूल लक्षणों की व्याख्या नहीं हो सकती।

11.6 आइंस्टाइन का प्रकाश-विद्युत समीकरण : विकिरण का ऊर्जा क्वांटम

सन् 1905 में अल्बर्ट आइंसटाइन (1879 – 1955) ने प्रकाश-विद्युत प्रभाव की व्याख्या के लिए वैद्युतचुंबकीय विकिरण का एक मौलिक रूप से नया चित्रण प्रस्तावित किया। इस चित्रण में, प्रकाश-विद्युत उत्सर्जन विकिरण से संतत ऊर्जा-अवशोषण के द्वारा नहीं होता। विकिरण ऊर्जा विविक्त इकाइयों से बनी होती है—जो विकिरण की ऊर्जा के क्वांटा कहलाते हैं। विकिरण ऊर्जा के प्रत्येक क्वांटम की ऊर्जा hv होती है, जहाँ h प्लांक स्थिरांक है और v प्रकाश की आवृत्ति। प्रकाश-विद्युत प्रभाव में, एक इलेक्ट्रॉन विकिरण के एक क्वांटम की ऊर्जा (hv) अवशोषित करता है। यदि ऊर्जा का यह अवशोषित क्वांटम इलेक्ट्रॉन के लिए धातु की सतह से बाहर निकल आने के लिए निम्नतम आवश्यक ऊर्जा से अधिक होता है (कार्य-फलन, ϕ_0) तब उत्सर्जित इलेक्ट्रॉन की अधिकतम गतिज ऊर्जा होगी :

$$K_{\text{\tiny 3 \text{\tiny odd}}} = hv - \phi_0 \tag{11.2}$$

अधिक दृढ़ता से आबद्ध इलेक्ट्रॉनों के उत्सर्जित होने पर उनकी गतिज ऊर्जा अपने अधिकतम मान से कम होती है। ध्यान दें कि किसी आवृत्ति के प्रकाश की तीव्रता, प्रति सेकंड आपितत फ़ोटॉनों की संख्या द्वारा निर्धारित होती है। तीव्रता बढ़ाने पर प्रति सेकंड उत्सर्जित इलेक्ट्रॉनों की संख्या बढ़ती है। तथापि, उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा प्रत्येक फ़ोटॉन की ऊर्जा द्वारा निर्धारित होती है।

समीकरण (11.2) को *आइंस्टाइन का प्रकाश-विद्युत समीकरण* कहते हैं। अब हम यह देख सकते हैं कि किस प्रकार यह समीकरण अनुभाग 11.4.3 में दिए प्रकाश-विद्युत प्रभाव से संबंधित सभी प्रेक्षणों को एक सरल एवं परिष्कृत ढंग से प्रस्तुत करता है।

समीकरण (11.2) के अनुसार, प्रेक्षण के अनुरूप, K_{sm} आवृत्ति v पर रैखिकत: निर्भर करती है और विकिरण की तीव्रता पर निर्भर नहीं करती है। ऐसा इसिलए हुआ है क्योंिक आइंस्टाइन के चित्रण में, प्रकाश-विद्युत प्रभाव एकल इलेक्ट्रॉन द्वारा विकिरण के एकल क्वांटम के अवशोषण से उत्पन्न होता है। विकिरण की तीव्रता (जो ऊर्जा क्वांटमों की संख्या प्रति इकाई क्षेत्रफल प्रति इकाई समय के अनुक्रमानुपाती है) इस मुल प्रक्रिया के लिए असंगत है।

भौतिकी

अल्बर्ट आइंस्टाइन (1879 - 1955) सन 1879 में जर्मनी में उल्म नामक स्थान पर जन्मे अल्बर्ट आइंसटाइन आज तक के विश्व के भौतिकविदों में सर्वाधिक महान भौतिकविद के रूप में जाने जाते हैं। उनका विस्मयकारी वैज्ञानिक जीवन उनके सन् 1905 में प्रकाशित तीन क्रांतिकारी शोधपत्रों से आरंभ हुआ। उन्होंने अपने प्रथम शोधपत्र में प्रकाश क्वांटा (अब फ़ोटॉन कहा जाता है) की धारणा को प्रस्तुत किया और प्रकाश-वैद्युत प्रभाव के उस लक्षण की व्याख्या की जिसे विकिरण का चिरप्रतिष्ठित तरंग सिद्धांत नहीं समझा सका। अपने दूसरे शोधपत्र में उन्होंने ब्राउनी गति का सिद्धांत विकसित किया जिसकी कुछ वर्षों बाद प्रयोगात्मक पुष्टि हुई और जिसने द्रव्य के आण्विक चित्रण का विश्वासोत्पादक साक्ष्य उपलब्ध कराया। उनके तृतीय शोधपत्र ने आपेक्षिकता के विशिष्ट सिद्धांत को जन्म दिया। सन 1916 में उन्होंने आपेक्षिकता के व्यापक सिद्धांत को प्रकाशित किया। आइंस्टाइन के कुछ अन्य महत्वपूर्ण योगदान हैं : उद्दीपित उत्सर्जन की धारणा जो प्लांक कृष्णिका विकिरण नियम के एक वैकल्पिक व्युत्पन्न में प्रस्तुत की गई है, विश्व का स्थैतिक प्रतिरूप जिसने आधुनिक ब्रह्मांडिकी का आरंभ किया, किसी गैस के स्थूल बोसॉन की क्वांटम-सांख्यिकी तथा क्वांटम-यांत्रिकी की संस्थापना का आलोचनात्मक विश्लेषण। सैद्धांतिक भौतिकी में उनके योगदान तथा प्रकाश-विद्युत प्रभाव के लिए 1921 में उन्हें नोबेल पुरस्कार से सम्मानित किया गया।

 क्योंकि K_{उच्च} ऋण राशि नहीं होगी, समीकरण (11.2) में यह अंतर्निहित है कि प्रकाश-विद्युत उत्सर्जन तभी संभव है जब

 $h v > \phi_0$

अथवा $v > v_0$, जहाँ

$$v_0 = \frac{\phi_0}{h} \tag{11.3}$$

समीकरण (11.3) के अनुसार, कार्य-फलन ϕ_0 के अधिक मान के लिए, प्रकाशिक इलेक्ट्रॉन उत्सर्जित करने के लिए आवश्यक न्यूनतम अथवा देहली आवृत्ति v_0 का मान अधिक होगा। इस प्रकार, एक देहली आवृत्ति v_0 (= ϕ_0/h) अस्तित्व में होती है जिससे कम आवृत्ति पर कोई प्रकाश-विद्युत उत्सर्जन संभव नहीं है, चाहे विकिरण की तीव्रता कुछ भी क्यों न हो अथवा वह पृष्ठ पर कितनी भी देर क्यों न पडे।

- इस चित्रण में, विकिरण की तीव्रता, जैसा ऊपर परिलक्षित है, ऊर्जा क्वांटा की संख्या प्रति इकाई क्षेत्रफल प्रति इकाई समय के अनुक्रमानुपाती होती है। जितनी अधिक संख्या में ऊर्जा क्वांटा उपलब्ध होंगे, उतनी ही अधिक संख्या में इलेक्ट्रॉन ऊर्जा क्वांटा का अवशोषण करेंगे और इसलिए (v> vo के लिए) धातु से बाहर आने वाले इलेक्ट्रॉनों की संख्या उतनी ही अधिक होगी। इससे यह स्पष्ट हो जाता है कि क्यों v>vo के लिए प्रकाश-विद्युत धारा तीव्रता के अनुक्रमानुपाती होती है।
- आइंस्टाइन के चित्रण में, प्रकाश-विद्युत प्रभाव में एक इलेक्ट्रॉन के द्वारा प्रकाश के एक क्वांटम का अवशोषण मूल प्राथमिक प्रक्रिया होती है। यह प्रक्रिया तात्क्षणिक होती है। इस प्रकार, तीव्रता अर्थात विकिरण क्वांटा की संख्या चाहे जितनी भी हो, प्रकाश-विद्युत उत्सर्जन तात्क्षणिक ही होगा। कम तीव्रता से उत्सर्जन में विलंब नहीं होगा क्योंकि मूल प्राथमिक प्रक्रिया वही रहेगी। तीव्रता से केवल यह निर्धारित होता है कि कितने इलेक्ट्रॉन इस प्राथमिक प्रक्रिया (एक एकल इलेक्ट्रॉन द्वारा एक प्रकाश क्वांटम का अवशोषण) में भाग ले सकने वाले इलेक्ट्रॉनों की संख्या से ही प्रकाश-विद्युत धारा के परिमाण का निर्धारण होता है।

समीकरण (11.1) का उपयोग कर, प्रकाश-विद्युत समीकरण (11.2) को इस प्रकार लिखा जा सकता है

 $eV_0 = h v - \phi_0$; के लिए $v \ge v_0$

अथवा
$$V_0 = \left(\frac{h}{e}\right)v - \frac{\phi_0}{e}$$
 (11.4)

यह एक महत्वपूर्ण परिणाम है। इससे यह प्रागुक्ति होती है कि V_0 के विरुद्ध v का वक्र एक सरल रेखा है, जिसका ढलान = (h/e), जो कि पदार्थ की प्रकृति पर निर्भर नहीं करता। 1906-1916 के मध्य, मिलिकन ने आइंस्टाइन के प्रकाश-विद्युत समीकरण को असत्यापित करने के लिए प्रकाश-वैद्युत प्रभाव पर प्रयोगों की शृंखला की। चित्र 11.5 में दर्शाए अनुसार,

उसने सोडियम के लिए प्राप्त सरल रेखा का ढलान मापा। e के ज्ञात मान का उपयोग कर उसने प्लांक स्थिरांक h का मान निर्धारित किया था। यह मान प्लांक स्थिरांक के उस मान (= $6.626 \times 10^{-34} \text{J s}$) के निकट था जिसे बिलकुल ही भिन्न संदर्भ में ज्ञात किया गया था। इस प्रकार से 1916 में मिलिकन ने आइंस्टाइन के प्रकाश-विद्युत समीकरण को असत्यापित करने के स्थान पर उसकी सत्यता को स्थापित किया।

प्रकाश क्वांटा की परिकल्पना एवं h तथा ϕ_0 के मान (जो अन्य प्रयोगों से प्राप्त मान से मेल रखते हैं) के निर्धारण के उपयोग से प्रकाश-विद्युत प्रभाव के आइंस्टाइन के चित्रण को स्वीकारा गया। मिलिकन ने प्रकाश-विद्युत समीकरण को बड़ी परिशुद्धता से कई क्षारीय धातुओं के लिए विकिरण-आवृत्तियों के विस्तृत परास के लिए सत्यापित किया।

11.7 प्रकाश की कणीय प्रकृति : फ़ोटॉन

प्रकाश-विद्युत प्रभाव ने इस विलक्षण तथ्य को प्रमाणित किया कि प्रकाश किसी द्रव्य के साथ अन्योन्य क्रिया में इस प्रकार व्यवहार करता है जैसे यह क्वांटा अथवा ऊर्जा के पैकेट (जिनमें प्रत्येक की ऊर्जा $h \ v \$ है) का बना हो।

क्या प्रकाश ऊर्जा के क्वांटम को किसी कण से संबद्ध किया जा सकता है? आइंसटाइन एक महत्वपूर्ण पिरणाम पर पहुँचे कि प्रकाश क्वांटम को संवेग $(h\ v/c)$ से संबद्ध किया जा सकता है। ऊर्जा के साथ-साथ संवेग का निश्चित मान इसका प्रबल सूचक है कि प्रकाश क्वांटम को कण से संबद्ध किया जा सकता है। इस कण को बाद में फ़ोटॉन नाम दिया गया। प्रकाश के कण जैसे व्यवहार को ए. एच. कांपटन (1892-1962) के इलेक्ट्रॉन के द्वारा X-किरणों के प्रकीर्णन के प्रयोग से सन् 1924 में पुन: पुष्ट किया गया। सैद्धांतिक भौतिकी में योगदान तथा प्रकाश-विद्युत प्रभाव के अपने कार्य के लिए आइंस्टाइन को 1921 में भौतिकी का नोबेल पुरस्कार प्रदान किया गया। विद्युत के मूल आवेश तथा प्रकाश-विद्युत प्रभाव पर किए गए कार्य के लिए सन् 1923 में मिलिकन को भौतिकी का नोबेल पुरस्कार प्रदान किया गया।

हम वैद्युतचुंबकीय विकिरण के फ़ोटॉन चित्रण का सारांश निम्नानुसार दे सकते हैं:

- (i) विकिरण के द्रव्य के साथ अन्योन्य क्रिया में, विकिरण इस प्रकार व्यवहार करता है मानो यह ऐसे कणों से बना हो जिन्हें फ़ोटॉन कहते हैं।
- (ii) प्रत्येक फ़ोटॉन की ऊर्जा E (=hv) होती है और संवेग p (= hv/c) तथा चाल c होती है। जहाँ c प्रकाश की चाल है।
- (iii) एक निश्चित आवृत्ति v, अथवा तरंगदैर्घ्य λ, के सभी फ़ोटॉनों की ऊर्जा E (=hv = hc/λ) और संवेग p (= hv/c = h/λ), एकसमान होते हैं (विकिरण की तीव्रता चाहे जो भी हो)। किसी दी गई तरंगदैर्घ्य के प्रकाश की तीव्रता बढ़ाने पर केवल किसी दिए गए क्षेत्र से गुज़रने वाले प्रति सेकंड फोटॉनों की संख्या ही बढ़ती है (सभी फोटॉनों की ऊर्जा एकसमान होती है)। अत: फ़ोटॉन की ऊर्जा विकिरण की तीव्रता पर निर्भर नहीं करती।
- (iv) फ़ोटॉन विद्युत उदासीन होते हैं और विद्युत तथा चुंबकीय क्षेत्रों के द्वारा विक्षेपित नहीं होते।
- (v) फ़ोटॉन-कण संघट्ट (जैसे कि फोटॉन-इलेक्ट्रॉन संघट्ट) में कुल ऊर्जा तथा कुल संवेग संरक्षित रहते हैं। तथापि, किसी संघट्ट में फ़ोटॉनों की संख्या भी संरक्षित नहीं रह सकती है। फ़ोटॉन अवशोषित हो सकता है अथवा एक नया फ़ोटॉन सुजित हो सकता है।

उदाहरण 11.1 $6.0 \times 10^{14}\,\mathrm{Hz}$ आवृत्ति का एकवर्णी प्रकाश किसी लेसर के द्वारा उत्पन्न किया जाता है। उत्सर्जन क्षमता $2.0 \times 10^{-3}\,\mathrm{W}$ है। (a) प्रकाश किरण-पुंज में किसी फ़ोटॉन की ऊर्जा कितनी है? (b) म्रोत के द्वारा औसत तौर पर प्रति सेकंड कितने फ़ोटॉन उत्सर्जित होते हैं?

हल

- (a) प्रत्येक फ़ोटॉन की ऊर्जा होगी $E = h \ v = (6.63 \times 10^{-34} \text{ J s}) (6.0 \times 10^{14} \text{ Hz}) = 3.98 \times 10^{-19} \text{ J}$
- (b) यदि स्रोत के द्वारा प्रति सेकंड उत्सर्जित फ़ोटॉनों की संख्या N है तो किरण-पुंज में संचरित क्षमता P प्रति फ़ोटॉन ऊर्जा E के N गुना होगी जिससे कि P=N E । तब

$$N = \frac{P}{E} = \frac{2.0 \times 10^{-3} \text{W}}{3.98 \times 10^{-19} \text{J}}$$

= 5.0 ×10 15 फ़ोटॉन प्रति सेकंड

उदाहरण 11.2 यदि सीजियम का कार्य-फलन 2.14 eV है तो परिकलन कीजिए: (a) सीजियम की देहली आवृत्ति तथा (b) आपितत प्रकाश का तरंगदैर्घ्य, यदि प्रकाशिक धारा को 0.60 V का एक निरोधी विभव लगाकर शून्य किया जाए।

हल

(a) अंतक अथवा देहली आवृत्ति के लिए, आपितत विकिरण की ऊर्जा $h\ v_0$ कार्य फलन ϕ_0 के समान होती है। अतः

$$v_0 = \frac{\phi_0}{h} = \frac{2.14 \,\text{eV}}{6.63 \times 10^{-34} \,\text{J s}}$$

$$= \frac{2.14 \times 1.6 \times 10^{-19} \, \text{J}}{6.63 \times 10^{-34} \, \text{J s}} = 5.16 \times 10^{14} \, \text{Hz}$$

इस प्रकार v_0 = $5.16 \times 10^{14}\,\mathrm{Hz}$ से कम आवृत्तियों के लिए, कोई प्रकाशिक इलेक्ट्रॉन मुक्त नहीं होता है।

(b) उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की उच्चतम गतिज ऊर्जा eV_0 स्थितिज ऊर्जा (मंदन-विभव V_0 के द्वारा) के समान होने की स्थिति में प्रकाशिक धारा शून्य हो जाती है। आइंस्टाइन का प्रकाश-विद्युत समीकरण इस प्रकार है :

$$eV_0 = hv - \phi_0 = \frac{hc}{\lambda} - \phi_0$$

अथवा $\lambda = hc/(eV_0 + \phi_0)$

$$= \frac{(6.63 \times 10^{-34} \,\mathrm{J \, s}) \times (3 \times 10^8 \,\mathrm{m/s})}{(0.60 \,\mathrm{eV} + 2.14 \,\mathrm{eV})}$$

$$= \frac{19.89 \times 10^{-26} \,\mathrm{Jm}}{(2.74 \,\mathrm{eV})}$$

$$\lambda = \frac{19.89 \times 10^{-26} \,\text{J m}}{2.74 \times 1.6 \times 10^{-19} \,\text{J}} = 454 \text{ nm}$$

उदाहरणा 119

11.8 द्रव्य की तरंग प्रकृति

प्रकाश (व्यापक तौर पर वैद्युतचुंबकीय विकिरण) की द्वैत प्रकृति (तरंग-कण), वर्तमान तथा पूर्व अध्यायों में किए गए अध्ययन द्वारा, स्पष्ट रूप से प्रकट होती है। प्रकाश की तरंग प्रकृति व्यतिकरण, विवर्तन तथा ध्रुवण की परिघटनाओं में दृष्टिगोचर होती है। दुसरी ओर, प्रकाश-विद्युत

प्रभाव तथा कॉम्पटन प्रभाव जिनमें ऊर्जा और संवेग का अंतरण होता है, विकिरण इस प्रकार व्यवहार करता है कि मानो यह कणों के गुच्छ अर्थात फ़ोटॉनों से बना हो। कण अथवा तरंग-चित्रण में से कौन किसी प्रयोग को समझने में सर्वाधिक उपयुक्त है, यह प्रयोग की प्रकृति पर निर्भर है। उदाहरण के लिए, अपने नेत्रों से किसी वस्तु को देखने की सुपिरिचित घटना में दोनों ही चित्रण महत्वपूर्ण हैं। नेत्र लेंस द्वारा प्रकाश को एकत्र कर फ़ोकस करने की प्रक्रिया को तरंग-चित्रण से भली-भाँति विवेचित किया गया है। परंतु इसका शलाकाओं तथा शंकुओं (रेटिना के) द्वारा अवशोषण में फोटॉन चित्रण की आवश्यकता होती है।

एक स्वाभाविक प्रश्न यह उठता है कि यदि विकिरण की द्वैत प्रकृति (तरंग तथा कण) है तो क्या प्रकृति के कण (इलेक्ट्रॉन, प्रोटॉन आदि) भी तरंग–जैसा लक्षण प्रदर्शित करते हैं? सन् 1924 में एक फ्रांसीसी भौतिकवैज्ञानिक लुइस विक्टर दे ब्रॉग्ली (फ्रेंच उच्चारण में इसे लुई विक्टर दे ब्राए पुकारा जाता है) (1892-1987) ने एक निर्भीक परिकल्पना को प्रस्तुत किया कि पदार्थ के गतिमान कण उपयुक्त परिस्थितियों में तरंग सदृश गुण प्रदर्शित कर सकते हैं। उसने यह तर्क दिया कि प्रकृति समित है और दो मूल भौतिक सत्ताओं, द्रव्य एवं ऊर्जा, का भी समित लक्षण होना चाहिए। यदि विकिरण का द्वैत लक्षण है तो द्रव्य का भी होना चाहिए। दे ब्रॉग्ली ने प्रस्तावित किया कि संवेग p के कण के साथ जुड़ी तरंगदैर्घ्य λ निम्न प्रकार दर्शायी जा सकती है :

$$\lambda = \frac{h}{p} = \frac{h}{mv} \tag{11.5}$$

जहाँ m कण का द्रव्यमान तथा v इसकी चाल है। समीकरण (11.5) को दे ब्रॉग्ली का संबंध और द्रव्य-तरंग के तरंगदैर्घ्य λ को दे ब्रॉग्ली तरंगदैर्घ्य कहते हैं। द्रव्य का द्वैत स्वरूप दे ब्रॉग्ली के संबंध में स्पष्ट है। समीकरण (11.5) की बाईं ओर, λ तरंग का लक्षण है जबिक दाईं ओर संवेग p कण का विशिष्ट लक्षण है। प्लांक स्थिरांक h दोनों लक्षणों को संयोजित करता है।

समीकरण (11.5) एक पदार्थ-कण के लिए मूलत: एक परिकल्पना है जिसकी तर्कसंगति केवल प्रयोग के द्वारा ही परखी जा सकती है। तथापि, यह देखना रोचक है कि यह एक फ़ोटॉन के द्वारा भी संतुष्ट होता है। एक फ़ोटॉन के लिए, जैसा कि हमने देखा है,

$$p = hv/c \tag{11.6}$$

इसलिए,

$$\frac{h}{p} = \frac{c}{v} = \lambda \tag{11.7}$$

अर्थात, एक फोटॉन का दे ब्रॉग्ली तरंगदैर्घ्य जो समीकरण (11.5) द्वारा दिया गया है उस वैद्युतचुंबकीय विकिरण के तरंगदैर्घ्य के समान होता है तथा फोटॉन विकिरण की ऊर्जा तथा संवेग का एक क्वांटम है।

स्पष्टत: समीकरण (11.5) के द्वारा, λ एक ज़्यादा भारी कण (बड़ा m) अथवा अधिक ऊर्जस्वी कण (बड़े v) के लिए छोटा होगा। उदाहरण के लिए, एक $0.12~{\rm kg}$ द्रव्यमान की गेंद जो $20~{\rm m~s^{-1}}$ की चाल से चल रही है, की दे ब्रॉग्ली तरंगदैर्घ्य का सरलता से परिकलन किया जा सकता है।

लुईस विकटर दे ऑग्ली (1892 – 1987) फ्रांसीसी भौतिकविद, जिन्होंने द्रव्य की तरंग प्रकृति का क्रांतिकारी विचार प्रस्तुत किया। यह विचार इरविन श्रोडिंगर द्वारा क्वांटम-यांत्रिकी के एक संपूर्ण सिद्धांत के रूप में विकसित किया गया, जिसे सामान्यत: तरंग-यांत्रिकी कहते हैं। इलेक्ट्रॉनों की तरंग प्रकृति की खोज के लिए इन्हें सन् 1929 में नोबेल पुरस्कार से सम्मानित किया गया।

11.3

 $p = m v = 0.12 \text{ kg} \times 20 \text{ m s}^{-1} = 2.40 \text{ kg m s}^{-1}$

$$\lambda = \frac{h}{p} = \frac{6.63 \times 10^{-34} \,\text{J s}}{2.40 \,\text{kg m s}^{-1}} = 2.76 \times 10^{-34} \,\text{m}$$

यह तरंगदैर्घ्य इतनी छोटी है कि यह किसी मापन की सीमा से बाहर है। यही कारण है कि स्थूल वस्तुएँ हमारे दैनिक जीवन में तरंग-सदृश गुण नहीं दर्शातीं। दूसरी ओर, अव-परमाण्विक डोमेन (Sub-atomic domain) में, कणों का तरंग लक्षण महत्वपूर्ण है तथा मापने योग्य है।

उदाहरण 11.3 (a) एक इलेक्ट्रॉन जो 5.4×10^6 m/s की चाल से गित कर रहा है, (b) 150 g द्रव्यमान की एक गेंद जो 30.0 m/s की चाल से गित कर रही है, से जुड़ी दे ब्रॉग्ली तरंगदैर्घ्य क्या होगी?

हल

(a) इलेक्ट्रॉन के लिए द्रव्यमान $m=9.11\times 10^{-31}\,\mathrm{kg}$, केंग $v=5.4\times 10^6\,\mathrm{m/s}$ तब संवेग $p=m\,v=9.11\times 10^{-31}\,\mathrm{(kg)}\times 5.4\times 10^6\,\mathrm{(m/s)}$ $p=4.92\times 10^{-24}\,\mathrm{kg}\,\mathrm{m/s}$ दे ब्रॉग्ली तरंगदैर्घ्यं. $\lambda=h/p$

$$= \frac{6.63 \times 10^{-34} \text{ Js}}{4.92 \times 10^{-24} \text{ kg m/s}}$$

$$\lambda = 0.135 \text{ nm}$$

(b) गेंद के लिए द्रव्यमान m' = 0.150 kg, वेग v' = 30.0 m/s तब संवेग

 $p' = m' v' = 0.150 \text{ (kg)} \times 30.0 \text{ (m/s)}$ p' = 4.50 kg m/sदे ब्रॉग्ली तरंगदैर्घ्य $\lambda' = h/p'$

$$= \frac{6.63 \times 10^{-34} \text{ Js}}{4.50 \times \text{ kg m/s}}$$

$$\lambda' = 1.47 \times 10^{-34} \text{ m}$$

इलेक्ट्रॉन के लिए दे ब्रॉग्ली तरंगदैर्घ्य X-िकरण तरंगदैर्घ्य के समान है। परंतु गेंद के लिए यह प्रोटॉन के आकार के लगभग 10^{-19} गुना है जो प्रायोगिक मापन की सीमा के बिलकुल बाहर है।

सारांश

- 1. किसी इलेक्ट्रॉन को धातु से बाहर निकालने के लिए न्यूनतम ऊर्जा को धातु का कार्य-फलन कहते हैं। धातु-पृष्ठ से इलेक्ट्रॉन-उत्सर्जन के लिए आवश्यक ऊर्जा (कार्य-फलन $\phi_{_{0}}$ से अधिक) को उपयुक्त तापन अथवा प्रबल विद्युत क्षेत्र अथवा उपयुक्त आवृत्ति के प्रकाश द्वारा विकिरित करने से दी जा सकती है।
- प्रकाश-विद्युत प्रभाव धातुओं से उपयुक्त आवृत्ति के प्रकाश से प्रदीप्त करने पर इलेक्ट्रॉनों के उत्सर्जन की परिघटना है। कुछ धातु पराबैंगनी प्रकाश से प्रतिक्रिया करते हैं जबिक दूसरे दृश्य-प्रकाश के लिए भी सुग्राही हैं। प्रकाश-विद्युत प्रभाव में प्रकाश ऊर्जा का वैद्युत ऊर्जा में रूपांतरण होता है। यह ऊर्जा के संरक्षण के नियम का पालन करता है। प्रकाश-विद्युत उत्सर्जन एक तात्क्षणिक प्रक्रिया है और इसके कुछ विशिष्ट लक्षण होते हैं।

- प्रकाश-विद्युत धारा (i) आपितत प्रकाश की तीव्रता, (ii) दो इलेक्ट्रोडों के बीच लगाया गया 3. विभवांतर, और (iii) उत्सर्जक के पदार्थ की प्रकृति पर निर्भर करती है।
- रोधक विभव (V) (i) आपितत प्रकाश की आवृत्ति और (ii) उत्सर्जक पदार्थ की प्रकृति पर 4. निर्भर करता है। आपितत प्रकाश की किसी दी हुई आवृत्ति के लिए, यह इसकी तीव्रता पर निर्भर नहीं करता है। रोधक विभव का उत्सर्जित इलेक्ट्रॉनों की उच्चतम गतिज ऊर्जा से संबंधित है:

- $e\ V_{_0} = rac{1}{2} m\ v_{_{_{3}}}^2 = K_{_{_{3}}}$ एक निश्चित आवृत्ति (देहली आवृत्ति) $v_{_0}$ के नीचे जो धातु का अभिलक्षण है, कोई 5. प्रकाश-विद्युत उत्सर्जित नहीं होता चाहे आपितत प्रकाश की तीव्रता कितनी भी अधिक क्यों न हो।
- क्लासिकी तरंग-सिद्धांत प्रकाश-विद्युत प्रभाव के मुख्य लक्षणों की व्याख्या नहीं कर सका। 6. इसका विकिरण से ऊर्जा का संतत अवशोषण का चित्रण $K_{\overline{x}}$ की तीव्रता से स्वतंत्रता, $v_{\overline{x}}$ के अस्तित्व और इस प्रक्रिया की तात्क्षणिक प्रकृति की व्याख्या नहीं कर सका। आइंस्टाइन ने इन लक्षणों की व्याख्या प्रकाश के फ़ोटॉन-चित्रण के आधार पर की। इसके अनसार प्रकाश, ऊर्जा के विविक्त पैकेटों से बना है, जिन्हें क्वांटा अथवा फ़ोटॉन कहते हैं। प्रत्येक फोटॉन की ऊर्जा E = (h, v) और संवेग $p = (h/\lambda)$ होता है, जो कि आपितत प्रकाश की आवृत्ति (v) पर निर्भर करते हैं परंत इसकी तीव्रता पर निर्भर नहीं करते। धात के पष्ठ से प्रकाश-विद्यत उत्सर्जन एक इलेक्टॉन के द्वारा फ़ोटॉन के अवशोषण से होता है।
- आइंस्टाइन का प्रकाश-विद्युत समीकरण ऊर्जा संरक्षण नियम के संगत है जैसा कि धातु में एक 7. इलेक्ट्रॉन के द्वारा फ़ोटॉन अवशोषण में लागू होता है। उच्चतम गतिज ऊर्जा $(\frac{1}{2} \ m \ v_{_{3\varpi}}^2)$ फ़ोटॉन-ऊर्जा (hv) तथा लक्ष्य धातु कार्य-फलन $\phi_{_0}(=hv_{_0})$ के अंतर के बराबर होती है।

$$\frac{1}{2}m v_{3\overline{q}}^2 = V_0 e = hv - \phi_0 = h(v - v_0)$$

पदार्थ तरंग अथवा दे ब्रॉग्ली तरंग कहते हैं।

इस प्रकाश-विद्युत समीकरण से प्रकाश-विद्युत प्रभाव के सभी लक्षणों की व्याख्या होती है। मिलिकन के प्रथम परिशुद्ध प्रकाश-विद्युत मापनों ने आइंस्टाइन के प्रकाश-विद्युत समीकरण को संपुष्ट किया और प्लैंक-स्थिरांक (h) के यथार्थ मान को प्राप्त किया। इससे आइंस्टाइन द्वारा प्रवर्तित वैद्यतचंबकीय विकिरण का कण अथवा फ़ोटॉन वर्णन (प्रकृति) स्वीकृत हुआ। विकिरण की द्वैत प्रकृति होती है : तरंग तथा कण। प्रयोग के स्वरूप पर यह निर्धारित होता है कि तरंग अथवा कण के रूप में वर्णन प्रयोग के परिणाम को समझने के लिए सर्वाधिक उपयक्त है। इस तर्क के साथ कि विकिरण तथा पदार्थ प्रकृति में समिमत हैं, लुइस दे ब्रॉग्ली के पदार्थ (पदार्थ कणों) को तरंग जैसा लक्षण प्रदान किया। गतिमान पदार्थ-कणों से जुड़ी तरंगों को

9. गतिमान कण से संबंधित दे ब्रॉग्ली तरंगदैर्घ्य (λ) इसके संवेग p से इस प्रकार संबंधित है : $\lambda = h/p$ । पदार्थ का द्वैत दे ब्रॉग्ली संबंध, जिसमें तरंग संकल्पना (λ) और कण संकल्पना (p) सम्मिलित हैं, में अंतर्निष्ठ है। दे ब्रॉग्ली तरंगदैर्घ्य पदार्थ-कण के आवेश तथा इसकी प्रकृति से स्वतंत्र है। यह सार्थकता: केवल उप-परमाण्विक कणों, जैसे – इलेक्ट्रॉन, प्रोटॉन आदि (इनके द्रव्यमान अर्थात संवेग की लघुता के कारण) के लिए ही परिमेय (क्रिस्टलों में परमाण्वीय समतलों के बीच की दूरी की कोटि का) है। तथापि यह वास्तव में उन स्थूल वस्तुओं के लिए जो सामान्यत: प्रतिदिन जीवन में मिलती हैं और मापन की सीमा के बिलकुल बाहर है, बहुत छोटा है।

भौतिकी

भौतिक राशि	प्रतीक	विमाएँ	मात्रक	टिप्पणी
प्लांक स्थिरांक	h	$[ML^2T^{-1}]$	J s	E = hv
निरोधक विभव	$V_{_{ m O}}$	$[ML^2T^{-3}A^{-1}]$	V	$eV_{o} = K_{seq}$
कार्य- फलन	$oldsymbol{\phi}_0$	[ML ² T ⁻²]	J; eV	$K_{\scriptscriptstyle m 3 ext{ iny eq}}$ = $E - \phi_0$
देहली आवृत्ति	v_{0}	[T ⁻¹]	Hz	$V_0 = \phi_0 / h$
दे ब्रॉग्ली तंरगदैर्घ्य	λ	[L]	m	$\lambda = h/p$

विचारणीय विषय

- 1. किसी धातु में मुक्त इलेक्ट्रॉन इस अर्थ में मुक्त हैं कि वे धातु के भीतर एक स्थिर विभव के अंतर्गत गितमान होते हैं (यह केवल एक सिन्निकटन है)। वे धातु के बाहर निकलने के लिए मुक्त नहीं होते हैं। उन्हें धातु से बाहर जाने के लिए अतिरिक्त ऊर्जा की आवश्यकता होती है।
- 2. किसी धातु में सभी मुक्त इलेक्ट्रॉनों की ऊर्जा समान नहीं होती। किसी गैस जार में अणुओं के जैसे, एक दिए गए ताप पर इलेक्ट्रॉनों का एक निश्चित ऊर्जा वितरण होता है। यह वितरण उस सामान्य मैक्सवेल वितरण से भिन्न होता है जिसे आप गैसों के गतिज सिद्धांत के अध्ययन में पढ़ चुके हैं। इसके विषय में आप बाद के पाठ्यक्रमों में जानेंगे, परंतु भिन्नता का संबंध इस तथ्य से है कि इलेक्ट्रॉन पॉली के अपवर्जन के सिद्धांत का अनुसरण करते हैं।
- 3. किसी धातु में मुक्त इलेक्ट्रॉनों के ऊर्जा वितरण के कारण, धातु से बाहर आने के लिए इलेक्ट्रॉन के द्वारा अपेक्षित ऊर्जा भिन्न इलेक्ट्रॉनों के लिए भिन्न होती है। उच्चतर ऊर्जा वाले इलेक्ट्रॉनों की धातु से बाहर आने के लिए कम ऊर्जा वाले इलेक्ट्रॉनों की तुलना में कम अतिरिक्त ऊर्जा की आवश्यकता होती है। कार्य-फलन धातु से बाहर निकलने के लिए किसी इलेक्ट्रॉन के द्वारा अपेक्षित न्यूनतम ऊर्जा है।
- 4. प्रकाश-विद्युत प्रभाव से संबंधित प्रयोगों में केवल यही अंतर्निहित है कि द्रव्य के साथ प्रकाश की अन्योन्य क्रिया में ऊर्जा का अवशोषण hv की विविक्त इकाइयों में होता है। यह बिलकुल ही ऐसा कहने के समान नहीं है कि प्रकाश ऐसे कणों से बना है जिनमें प्रत्येक की ऊर्जा hv है।
- 5. निरोधी विभव पर प्रेक्षण (इसकी तीव्रता पर अनिर्भरता और आवृत्ति पर निर्भरता) प्रकाश-विद्युत प्रभाव के तरंग-चित्रण और फ़ोटॉन-चित्रण के बीच निर्णायक विभेदकारक है।
- 6. सूत्र $\lambda = \frac{h}{p}$ के द्वारा दिया गया पदार्थ-तरंग का तरंगदैर्घ्य का भौतिकीय महत्त्व है, इसके कला-वेग v_p का कोई भौतिकीय महत्त्व नहीं होता है। तथापि, पदार्थ-तरंग का समूह-वेग भौतिकतया अर्थपूर्ण है और कण के वेग के बराबर होता है।

अभ्यास

- 11.1 30 kV इलेक्ट्रॉनों के द्वारा उत्पन्न X-किरणों की (a) उच्चतम आवृत्ति तथा (b) निम्नतम तरंगदैर्घ्य प्राप्त कीजिए।
- 11.2 सीजियम धातु का कार्य-फलन 2.14 eV है। जब 6 ×10¹⁴Hz आवृत्ति का प्रकाश धातु-पृष्ठ पर आपतित होता है, इलेक्ट्रॉनों का प्रकाशिक उत्सर्जन होता है।
 - (a) उत्सर्जित इलेक्ट्रॉनों की उच्चतम गतिज ऊर्जा,
 - (b) निरोधी विभव, और
 - (c) उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की उच्चतम चाल कितनी है?
- 11.3 एक विशिष्ट प्रयोग में प्रकाश-विद्युत प्रभाव की अंतक वोल्टता 1.5 V है। उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की उच्चतम गतिज ऊर्जा कितनी है?
- 11.4 632.8 nm तरंगदैर्घ्य का एकवर्णी प्रकाश एक हीलियम-नियॉन लेसर के द्वारा उत्पन्न किया जाता है। उत्सर्जित शक्ति 9.42 mW है।
 - (a) प्रकाश के किरण-पुंज में प्रत्येक फ़ोटॉन की ऊर्जा तथा संवेग प्राप्त कीजिए,
 - (b) इस किरण-पुंज के द्वारा विकिरित किसी लक्ष्य पर औसतन कितने फ़ोटॉन प्रति सेकंड पहुँचेंगे? (यह मान लीजिए कि किरण-पुंज की अनुप्रस्थ काट एकसमान है जो लक्ष्य के क्षेत्रफल से कम है), तथा
 - (c) एक हाइड्रोजन परमाणु को फ़ोटॉन के बराबर संवेग प्राप्त करने के लिए कितनी तेज चाल से चलना होगा?
- 11.5 प्रकाश-विद्युत प्रभाव के एक प्रयोग में, प्रकाश आवृत्ति के विरुद्ध अंतक वोल्टता की ढलान $4.12 \times 10^{-15} \, \mathrm{V \ s}$ प्राप्त होती है। प्लांक स्थिरांक का मान परिकलित कीजिए।
- **11.6** किसी धातु की देहली आवृत्ति $3.3 \times 10^{14} \, \text{Hz}$ है। यदि $8.2 \times 10^{14} \, \text{Hz}$ आवृत्ति का प्रकाश धातु पर आपितत हो, तो प्रकाश-विद्युत उत्सर्जन के लिए अंतक वोल्टता ज्ञात कीजिए।
- 11.7 किसी धातु के लिए कार्य-फलन 4.2 eV है। क्या यह धातु 330 nm तरंगदैर्घ्य के आपितत विकिरण के लिए प्रकाश-विद्युत उत्सर्जन देगा?
- 11.8 $7.21 \times 10^{14} \text{ Hz}$ आवृत्ति का प्रकाश एक धातु-पृष्ठ पर आपितत है। इस पृष्ठ से $6.0 \times 10^5 \text{ m/s}$ की उच्चतम गित से इलेक्ट्रॉन उत्सर्जित हो रहे हैं। इलेक्ट्रॉनों के प्रकाश उत्सर्जन के लिए देहली आवृत्ति क्या है?
- 11.9 488 nm तरंगदैर्घ्य का प्रकाश एक ऑर्गन लेसर से उत्पन्न किया जाता है, जिसे प्रकाश-विद्युत प्रभाव के उपयोग में लाया जाता है। जब इस स्पेक्ट्रमी-रेखा के प्रकाश को उत्सर्जक पर आपितत किया जाता है तब प्रकाशिक इलेक्ट्रॉनों का निरोधी (अंतक) विभव 0.38 V है। उत्सर्जक के पदार्थ का कार्य-फलन जात करें।
- 11.10 (a) एक 0.040 kg द्रव्यमान का बुलेट जो 1.0 km/s की चाल से चल रहा है, (b) एक 0.060 kg द्रव्यमान की गेंद जो 1.0 km/s की चाल से चल रही है, और (c) एक धूल-कण जिसका द्रव्यमान 1.0 × 10⁻⁹ kg और जो 2.2 m/s की चाल से अनुगमित हो रहा है, का दे ब्रॉग्ली तरंगदैर्घ्य कितना होगा?
- 11.11 यह दर्शाइए कि वैद्युतचुंबकीय विकिरण का तरंगदैर्घ्य इसके क्वांटम (फ़ोटॉन) के तरंगदैर्घ्य के बराबर है।