Leader Election on Synchronous Rings

Janna Burman

janna.burman@lisn.upsaclay.fr

Assumptions

- **Topology** (communication graph) is in the form of a **ring**, bidirectional links by default (if unidirectional, it is then necessary an oriented ring)
- By default, each node has a unique identifier (id) of the set UID $\subseteq \mathbb{N}^+$, UID >> n
- The ring is oriented:
 - all n nodes are numbered: $p_0, p_1, ..., p_{n-1}$
 - they appear in the corresponding order on the ring
 - each node (process) p_i knows which outgoing link goes to process $p_{i+1 \text{ mod } n}$ and which to $p_{i-1 \text{ mod } n}$

Leader Election (LE) problem specification

Let us assume that each node has a variable named *status* s.t. status ∈ {leader, unknown, non_leader}

- 1. At termination (or from some configuration), some process has status = leader (forever)
- 2. During any execution, at most one process has status = leader

The variants:

At termination (or from some configuration), for any other process:

- 1. it learns to never become a leader (e.g., by status := non_leader)
- 2. it learns the id of the leader
- 3. it determines when the leader is alraedy elected

Algorithm (1) by LeLann, Chang and Roberts (LCR) for a process p_i

M (set of possible messages) = UID

Algorithm (2) by LeLann, Chang and Roberts (LCR) for a process p_i

msgs_i (message generation function):
 generate (output/send) a message containing the value in msg for process p_{i+1}
 msgs_i(<state of p_{i>}, p_{i+1}) := msg

Algorithm (3) by LeLann, Chang and Roberts (LCR) for a process p_i

Proof (for basic LCR) - 1

Denote:

- i_max is the index of the process with maximum id
- $\mathbf{u}_{\mathbf{max}}$ is its id (\mathbf{u}_{i} is an id of process \mathbf{p}_{i})

Lemma 1: For all $0 \le r \le n-1$, after round r, $msg_{(i_max + r) \bmod n} = u_max$ Simple proof by induction.

Lemma 2: After n rounds, status_{i_max} = leader

Proof: Using Lemma 1, show that u_max returns to process
i_max in round n and it executes status_{i_max}: = leader

Proof (for basic LCR) - 2

Define:

- For any process i and j s.t. $i \neq j$, [i,j) is a set of indices $\{i, i+1, ..., j-1\}$, where the addition is modulo n
- i.e. [i_max, i) is a set of consecutive processes in the ring (following the ring orientation) from i_max to i-1 inclusive

Lemma 3: If $i \neq i$ _max and $j \in [i$ _max, i), then always $msg_j \neq u_i$ (u_i is the id of i, and msg_j is a message generated by msgs() of j – see the pseudo-code) Simple proof by the fact that an id smaller than u_max (any u_j) is never generated by the msgs() function of p_{i} _max process (so no p_j can receive u_j).

Lemma 4: No process j other than i_max is executing status_j = leader Proof: Using Lemma 3, show that the id of process $j \neq i$ _max never returns to j

Theorem: LCR solves the leader election problem (without variants).

Complexity Analysis (Basic LCR) worst case default

- In rounds (until termination): n
- In messages (non-null, worst case): Θ (n²)
 - processes are oriented according to the decreasing order of their ids (e.g. from n to 1): n + (n-1) + ... + 2 + 1 = n(n+1)/2 messages
 - Best case: 1 to n oriented processes:
 2n-1 messages
- In bits: O(n² log n), assuming that any id in UID is of size O(log n) bits

LCR variants (1) for a process p_i

LCR variants (2) for a process p_i

```
 \begin{aligned}  & \textbf{msgs}_i \text{ (message generation function):} \\ & \textbf{If (status = unknown) then} \\ & \text{ generate (output/send) a message containing the value} \\ & \text{ in msg for process } p_{i+1} \\ & \bullet \text{ msgs}_i(<\text{state of } p_i>, p_{i+1}):=\text{msg} \\ & \text{Else If ($\neg$ terminated) then} \\ & \text{ msgs}_i(<\text{state of } p_i>, p_{i+1}):=\text{"terminated"} \\ & \text{ terminated: } = \textit{true} \\ & \text{Else} \\ & \text{ msgs}_i(<\text{state of } p_{i>}, p_{i+1}):=\text{null} \\ & \text{ EndIf} \end{aligned}
```

LCR variants (3) for a process p_i

Hirschberg and Sinclair algorithm (HS)

Each process p_i operates in *phases* 0, 1, 2, ...

- At each phase k, the process p_i sends two tokens containing its identifier id_i in two directions.
 - They are assumed to travel to distance 2^k and then return to their origin p_i .
 - If both tokens are returned to it, the p_i process moves on to the next k+1 phase, i.e., *remains active*. However, the tokens may not be returned. In this case, the process is said to be *eliminated*.
- As long as a token is in its exploration stage, each process p_j on its path compares id_i to its identifier id_i .
 - If $id_i < id_j$ the process eliminates the token and
 - If $id_i > id_j$ it relays it.
 - If $id_i = id_i$, the process declares itself leader.

All processes relay a returning token (back to the origin p_i).

HS: pseudo-code for p_i (1)

```
M (set of possible messages) =

UID × {in, out} × N<sup>+</sup>

states<sub>i</sub> + starts<sub>i</sub> (possible states + starts):

my_id: UID; my_id: = the id of i

msg+: M∪{null}; msg+: = (my_id, out, 1)

msg-: M∪{null}; msg-:= (my_id, out, 1)

status: {leader, unknown}; status := unknown

phase: N<sup>0</sup>; phase := 0
```

HS: pseudo-code for p_i (2)

msgs_i (message generation function):

- generate (output/send) a message containing the
 value in msg+ for process p_{i+1}
 - $\operatorname{msgs}_{i}(<\operatorname{state of } p_{i}>, p_{i+1}) := \operatorname{msg}+$
- and the value in msg- for process p_{i-1}
 - $\operatorname{msgs}_{i}(<\operatorname{state of } p_{i}>, p_{i-1}) := \operatorname{msg-}$

HS: pseudo-code for p_i (3)

```
trans; (transition function):
      msg+:=msg-:=null
      If (a message received from p_{i-1} is (id, out, h)) then
          Case
             1. id > my id and h > 1 : msg+ := (id, out, h-1)
             2. id > my id and h = 1 : msg- := (id, in, 1)
             3. id = my id :
                                        status: = leader
          EndCase
      If (a message received from p_{i+1} is (id, out, h)) then
           Case
             1. id > my id and h > 1 : msg- := (id, out, h-1)
             2. id > my id and h = 1 : msg+ := (id, in, 1)
             3. id = my id :
                                        status: = leader
          EndCase
      If (a message received from p_{i-1} is (id, in, 1) and id > my id) then
           msg+ := (id, in, 1)
      If (a message received from p_{i+1} is (id, in, 1) and id > my_id) then
           msg- := (id, in, 1)
      If (two messages received from p_{i-1} and from p_{i+1}, each is (my_id, in, 1)) then
           phase := phase + 1
           msg- := (my id, out, 2^{phase})
           msg+ := (my id, out, 2^{phase})
```

Message complexity of HS (1)

In each **phase k**:

- 1. for each active process i, there are at most $4 \cdot 2^k$ tokens with the id of i that are transmitted on the ring
 - For k = 0, there are n active processes
 - For $k \ge 1$, there are at most $\left[n/(2^{k-1+1}) \right]$ active processes:
 - Since, the minimum distance between 2 active processes is $2^{k-1} + 1$. Otherwise, at least one of these two processes would not have passed to phase k (it would have been eliminated at phase k-1)
- 2. then, at most $4 \cdot 2^k \cdot \lfloor n/(2^{k-1}+1) \rfloor \le 8n$ messages sent in phase $k \ge 1$; and 4n for k = 0

Message complexity of HS (2)

- The maximum number of phases until the election is $\lceil \log n \rceil + 1$ (including phase 0)
- \rightarrow At most $8n \lceil \log n \rceil + 4n$ messages in total
- \rightarrow O(n log n)

Time complexity of HS

- The last phase \[\log n \] takes n rounds
- Any other phase k lasts at most 2.2k rounds
- **→**Complexity in rounds:

$$2(2^{0} + 2^{1} + 2^{2} + 2^{3} + ... + 2^{\lceil \log n \rceil - 1}) + n = 2(2^{\lceil \log n \rceil} - 1) + n$$

- \rightarrow n is a power of 2: at most 3n 2 rounds
- \rightarrow n is not a power of 2: at most 5n 2 rounds
- → O(n) rounds

Time Slice (TS) algorithm

- The processes know the size n of the given oriented ring and count the rounds.
- The elected process is the one with the smallest identifier.
- An execution consists of a sequence of phases, each phase consisting of n rounds:
 - Phase 1 contains rounds 1,2,3,..., n
 - Phase 2, rounds n+1, n+2, ..., 2n
 - etc.
 - Phase v, contains the rounds (v-1)n+1, (v-1)n+2, ..., $v\cdot n$
- Each phase is associated with the possible circulation of a token carrying a unique id (of an existing process), all around the ring. Only id v is allowed to circulate in phase v.
- If the process with id v reaches phase v (round (v-1)-n+1) without having received a non-null message, it assigns itself the leader and informs the other processes (sends the token with its id).

TS: pseudo code for p_i (1)

M (set of possible messages) = UID

```
states<sub>i</sub> + starts<sub>i</sub> (possible states + starts):
    my_id: UID; my_id: = the id of i
    round: N +; round := 1
    leader_id: UID; leader_id := my_id
    msg: MU{null};
    If (my_id = 1) then msg := my_id
    Else msg := null
    status: {leader, non_leader, unknown};
    If (my_id = 1) then status := leader
    Else status := unknown
```

TS: pseudo code for p_i (2)

 \mathbf{msgs}_{i} (message generation function): generate (output/send) a message containing the value in msg for process p_{i+1}

- $msgs_i(<state of p_i>, p_{i+1}):=msg$

TS: pseudo code for p_i (3)

```
trans<sub>i</sub> (transition function):
    msg := null
    If (status = unknown) then
        If (the received message m is non-null, in UID) then
           status := non leader
           leader_id := msg := m
         Else If (round = (my id - 1) \cdot n) then
           status := leader
           leader_id := msg := my id
        EndIf
    EndIf
    round: = round + 1
```

Time-Slice complexities

- In time: u_min·n rounds, where u_min is the minimum id in the ring
- In messages: only n messages!

Impossibility of LE without identifiers

Theorem: In a ring of size n > 1, **if all processes are identical**, then **there is no** *deterministic* **leader election algorithm** even if the ring is bidirectional, oriented or not (synchronous or not) and even if the size n is known to each process.

Proof: Assume by contradiction that such an algorithm exists

- Let us consider an execution that starts in an initial configuration C_0 , in which every process is in the same state s_0
- Let us assume a perfectly synchronous execution such that for each round r:
 - each process sends the same messages to the same neighbours (i.e. any p_i sends message m_{r^+} to p_{i+1} and m_{r^-} to p_{i-1})
 - then, any process changes its state from s_r to s_{r+1}
- Prove by induction on each round r that each process is in the same state s_r as any other process, in each r.
- Let us assume that in a round r*, a leader is elected. But since every process is in the same state, then every process is elected.
- → contradicts the specification of the LE problem