A quantum computer can be simulated by applying rotations to a unit vector $u \in \mathbb{C}^{2^n}$ where \mathbb{C} is the set of complex numbers and n is the number of qubits. The dimension is 2^n because a register with n qubits has 2^n eigenstates. Quantum operations are "rotations" because they preserve |u| = 1. Mathematically, a rotation of u is equivalent to the product Ru where R is a $2^n \times 2^n$ matrix.

Eigenstates $|j\rangle$ are represented by the following vectors. (Each vector has 2^n elements.)

$$|0\rangle = (1, 0, 0, \dots, 0)$$

$$|1\rangle = (0, 1, 0, \dots, 0)$$

$$|2\rangle = (0, 0, 1, \dots, 0)$$

$$\vdots$$

$$|2^{n} - 1\rangle = (0, 0, 0, \dots, 1)$$

A quantum computer algorithm is a sequence of rotations applied to the initial state $|0\rangle$. (The sequence could be combined into a single rotation by associativity of matrix multiplication.) Let ψ_f be the final state of the quantum computer after all the rotations have been applied. Like any other state, ψ_f is a linear combination of eigenstates.

$$\psi_f = \sum_{j=0}^{2^n - 1} c_j |j\rangle, \quad |\psi_f| = 1$$

The last step is to measure ψ_f and get a result. Measurement rotates ψ_f to an eigenstate $|j\rangle$. The measurement result is $|j\rangle$. The probability P_j of getting a specific result $|j\rangle$ is

$$P_j = |c_j|^2 = c_j c_j^*$$

Note that if ψ_f is already an eigenstate then no rotation occurs. (The probability of rotating to a different eigenstate is zero.) Since the measurement result is always an eigenstate, the coefficients c_j cannot be observed. However, the same calculation can be run multiple times to obtain a probability distribution of results. The probability distribution is an estimate of $|c_j|^2$ for each $|j\rangle$ in ψ_f .

Unlike a real quantum computer, in a simulation the final state ψ_f , or any other state, is available for inspection. Hence there is no need to simulate the measurement process. The probability distribution of the result can be computed directly as

$$P = \psi_f \odot \psi_f^*$$

where operator \odot indicates a Hadamard (element-wise) product. The result P is a vector such that P_j is the probability of eigenstate $|j\rangle$ and

$$\sum_{j=0}^{2^{n}-1} P_{j} = 1$$

Note: Eigenmath index numbering begins with 1 hence P[1] is the probability of $|0\rangle$, P[2] is the probability of $|1\rangle$, etc.

The Eigenmath function rotate(u, s, k, ...) rotates vector u and returns the result. Vector u is required to have 2^n elements where n is an integer from 1 to 15. Arguments s, k, ... are a sequence of rotation codes where s is an upper case letter and k is a qubit number from 0 to n-1. Rotations are evaluated from left to right. The available rotation codes are

```
C, k
         Control prefix
H, k
         Hadamard
         Phase modifier (use \phi = \frac{1}{4}\pi for T rotation)
P, k, \phi
Q, k
         Quantum Fourier transform
V, k
         Inverse quantum Fourier transform
W, k, j
         Swap bits
X, k
         Pauli X
Y, k
         Pauli Y
Z, k
         Pauli Z
```

Control prefix C, k modifies the next rotation code so that it is a controlled rotation with k as the control qubit. Use two or more prefixes to specify multiple control qubits. For example, C, k, C, j, X, m is a Toffoli rotation. Fourier rotations Q, k and V, k are applied to qubits 0 through k. (Q and V ignore any control prefix.)

Error codes

- 1 Argument u is not a vector or does not have 2^n elements where n = 1, 2, ..., 15.
- 2 Unexpected end of argument list (i.e., missing argument).
- 3 Bit number format error or range error.
- 4 Unknown rotation code.

Here are some useful Eigenmath code snippets for setting up a simulation and computing the result.

```
1. Initialize \psi = |0\rangle.

n = 4 -- number of qubits (example)

N = 2^n -- number of eigenstates

psi = zero(N)

psi[1] = 1

2. Compute the probability distribution for state \psi.

P = psi \ conj(psi)

Hence

P[1] = probability \ that \ |0\rangle \ will \ be \ the \ result

P[2] = probability \ that \ |1\rangle \ will \ be \ the \ result

P[3] = probability \ that \ |2\rangle \ will \ be \ the \ result
```

3. Draw a probability distribution.

 $P[N] = \text{probability that } |N-1\rangle \text{ will be the result}$

```
xrange = (0,N)
yrange = (0,1)
draw(P[ceiling(x)],x)
4. Compute an expectation value.
sum(k,1,N, (k-1) P[k])
5. Make the high order qubit "don't care."
for(k,1,N/2, P[k] = P[k] + P[k + N/2])
Hence for N = 16
                        P[1] = \text{probability that the result will be } |0\rangle \text{ or } |8\rangle
                        P[2] = \text{probability that the result will be } |1\rangle \text{ or } |9\rangle
                        P[3] = \text{probability that the result will be } |2\rangle \text{ or } |10\rangle
                        P[8] = \text{probability that the result will be } |7\rangle \text{ or } |15\rangle
Example.
-- Verify the following truth table for cnot
-- Input Output
        00
                 00
       01
                 11
        10
                 10
        11
                 01
U(psi) = rotate(psi,C,0,X,1) -- cnot
ket00 = (1,0,0,0)
ket01 = (0,1,0,0)
ket10 = (0,0,1,0)
ket11 = (0,0,0,1)
U(ket00) == ket00
U(ket01) == ket11
U(ket10) == ket10
U(ket11) == ket01
```