Algorithms and Datastructures

Big-Oh notation September 5, 2023

Runtime Complexity

Big-Oh Notation

Analyzing the runtime complexity of programs

Question

• Why is quick sort better than bubble sort?

Question

- Why is quick sort better than bubble sort?
- Because quick sort runs faster.

Question

- Why is quick sort better than bubble sort?
- Because quick sort runs faster.
- More difficult: is quick sort better than merge sort?
- General question: what measures do we have to determine how good an algorithm is?

Good algorithms

- Functional correctness: is the output of the algorithm correct?
- Runtime efficiency: how long does execution of the algorithm take?
- Space efficiency: how much memory does the algorithm use?
- Energy efficiency: how much energy does the algorithm consume?

Good algorithms

- Functional correctness: is the output of the algorithm correct?
- Runtime efficiency: how long does execution of the algorithm take?
- Space efficiency: how much memory does the algorithm use?
- Energy efficiency: how much energy does the algorithm consume?

Topic of today: analyzing the runtime efficiency of algorithms.

Outline

Runtime Complexity

Big-Oh Notation

Analyzing the runtime complexity of programs

Analyzing Execution Time

Before we can analyze algorithms, we need to fix a formal setting.

- Model of computation
- Resource cost of operation

Analyzing Execution Time: Model of Computation

We use random access machines.

- Generic computer with single processor and no concurrency
- Algorithms are its programs

There are primitive operations

- Arithmetic operations: addition, multiplication, . . .
- Data manipulation: storing, reading, ...
- Control flow: if-then-else, loops, ...

The primitive operations operate in constant time

Execution Time

The execution time depends on the size of the input

- For sorting an array: the number of elements
- Finding maximal common subsequence of two strings: sum of the lengths of the strings

Execution time: number of primitive operations executed (depends on the size of the input).

Note: this is machine independent

Let's compare some runtime complexities

Let's compare some algorithms with

- $T(n) = \log(n)$ (binary search)
- T(n) = n (linear search)
- $T(n) = n^2$ (bubble sort)
- $T(n) = 2^n$ (naive implementation of Fibonacci)

	log(<i>n</i>)	n	$n \cdot \log(n)$	n^2	2 ⁿ
10	≈ 3.3	10	\approx 33.2	100	1024
100	≈ 6.6	100	≈ 664.4	10000	$pprox 1.27 \cdot 10^{30}$
1000	≈ 9.9	1000	≈ 9965.8	1000000	really a lot

Think

• Binary search: $T(n) = \log(n)$

• Linear search: T(n) = n

• Merge sort: $T(n) = n \cdot \log(n)$

• Bubble sort: $T(n) = n^2$

• Fibonacci (naive implementation): $T(n) = 2^n$

It is about growth

- In practice: the input can be quite large (big databases)
- In those cases, it is the growth that determines the runtime efficiency, not the constants

So: we want to have a methods to compare functions based on how they grow if the input becomes larger and larger.

Outline

Runtime Complexity

Big-Oh Notation

Analyzing the runtime complexity of programs

Definition

Definition (Big Oh)

Suppose, we have $f,g:\mathbb{N}\to\mathbb{R}^+$. Then we say $f\in\mathcal{O}(g)$ if there is $c\in\mathbb{R}$ and $n_0\in\mathbb{N}$ such that c>0 and for all $n\geq n_0$ we have $f(n)\leq c\cdot g(n)$.

This means: the growth of f is bounded by g. We also say g is an **asymptotic upper bound** for f.

Definition

Definition (Big Oh)

Suppose, we have $f,g:\mathbb{N}\to\mathbb{R}^+$. Then we say $f\in\mathcal{O}(g)$ if there is $c\in\mathbb{R}$ and $n_0\in\mathbb{N}$ such that c>0 and for all $n\geq n_0$ we have $f(n)\leq c\cdot g(n)$.

This means: the growth of f is bounded by g.

We also say g is an **asymptotic upper bound** for f.

Note: some people write $f = \mathcal{O}(g)$, but I won't do that

 $2 \cdot n^2 + n + 20 \in \mathcal{O}(n^2)$

We have:

$$2 \cdot n^2 + 3 \in \mathcal{O}(n^2)$$

Take:

$$c = 3,$$
 $n_0 = 3$

Then for n > 3 we have

$$2 \cdot n^2 + 3 \le 2 \cdot n^2 + n^2$$
$$= 3 \cdot n^2$$

We have:

$$2 \cdot n^2 + 3 \in \mathcal{O}(n^2)$$

Take:

$$c = 3,$$
 $n_0 = 3$

Then for $n \ge 3$ we have

$$2 \cdot n^2 + 3 \le 2 \cdot n^2 + n^2$$
$$= 3 \cdot n^2$$

Observation: big Oh allows us to suppress constant factors.

We have:

$$n^2 + n \in \mathcal{O}(n^2)$$

Take:

$$c = 2,$$
 $n_0 = 1$

Then for $n \ge 1$ we have

$$n^2 + n \le n^2 + n^2$$
$$= 2 \cdot n^2$$

We have:

$$n^2 + n \in \mathcal{O}(n^2)$$

Take:

$$c = 2,$$
 $n_0 = 1$

Then for n > 1 we have

$$n^2 + n \le n^2 + n^2$$
$$= 2 \cdot n^2$$

Observation: big Oh allows us to suppress lower-order terms.

We have:

$$n^2 + 2 \cdot n + 3 \in \mathcal{O}(n^2)$$

Take:

$$c = 4,$$
 $n_0 = 3$

Then for $n \ge 3$, we have

$$n^2 + 2 \cdot n + 3 \le n^2 + 2 \cdot n^2 + n^2$$

= $4 \cdot n^2$

We have:

$$n^2 + 2 \cdot n + 3 \in \mathcal{O}(n^2)$$

Take:

$$c = 4,$$
 $n_0 = 3$

Then for $n \ge 3$, we have

$$n^2 + 2 \cdot n + 3 \le n^2 + 2 \cdot n^2 + n^2$$

= $4 \cdot n^2$

Observation: big Oh allows us to suppress constants and lower-order terms.

Nonexample

We have

$$n^2 \notin \mathcal{O}(n)$$

Suppose, we have *c* and n_0 such that for all $n \ge n_0$

$$c \cdot n \geq n^2$$

Take

$$n = c + n_0 + 1$$

Then $n \ge n_0$. We also have

$$n^{2} = (c + n_{0} + 1)^{2}$$

$$= c^{2} + 2 \cdot c \cdot n_{0} + n_{0}^{2} + 2 \cdot (n_{0} + c) + 1$$

$$> c^{2} + c \cdot n_{0} + c$$

$$= c \cdot (c + n_{0} + 1) = c \cdot n$$

Contradiction!

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- If $f \in \mathcal{O}(g)$, then $c \cdot f \in \mathcal{O}(g)$

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- If $f \in \mathcal{O}(g)$, then $c \cdot f \in \mathcal{O}(g)$
- If $f_1, f_2 \in \mathcal{O}(g)$, then $f_1 + f_2 \in \mathcal{O}(g)$

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- If $f \in \mathcal{O}(g)$, then $c \cdot f \in \mathcal{O}(g)$
- If $f_1, f_2 \in \mathcal{O}(g)$, then $f_1 + f_2 \in \mathcal{O}(g)$

Examples:

- $n \in \mathcal{O}(n^2)$
- If $k_1 \le k_2$, then $n^{k_1} \in \mathcal{O}(n^{k_2})$

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- If $f \in \mathcal{O}(g)$, then $c \cdot f \in \mathcal{O}(g)$
- If $f_1, f_2 \in \mathcal{O}(g)$, then $f_1 + f_2 \in \mathcal{O}(g)$

Examples:

- $n \in \mathcal{O}(n^2)$
- If $k_1 \le k_2$, then $n^{k_1} \in \mathcal{O}(n^{k_2})$
- $\log(n) \in \mathcal{O}(n)$
- $n^k \in \mathcal{O}(2^n)$

Properties

General properties:

- $f \in \mathcal{O}(f)$
- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$
- If $f \in \mathcal{O}(g)$, then $c \cdot f \in \mathcal{O}(g)$
- If $f_1, f_2 \in \mathcal{O}(g)$, then $f_1 + f_2 \in \mathcal{O}(g)$

Examples:

- $n \in \mathcal{O}(n^2)$
- If $k_1 \le k_2$, then $n^{k_1} \in \mathcal{O}(n^{k_2})$
- $\log(n) \in \mathcal{O}(n)$
- $n^k \in \mathcal{O}(2^n)$
- $n \in \mathcal{O}(n \cdot \log(n))$
- $n \cdot \log(n) \in \mathcal{O}(n^2)$

Example

Show that

$$n^2 + 3 \cdot n + 5 \in \mathcal{O}(n^2)$$

Note that

- $n^2 \in \mathcal{O}(n^2)$
- $n \in \mathcal{O}(n^2)$
- So: $3 \cdot n \in \mathcal{O}(n^2)$
- So: $n^2 + 3 \cdot n \in \mathcal{O}(n^2)$

Example

Show that

$$n^2 + 3 \cdot n + 5 \in \mathcal{O}(n^2)$$

Note that

- $n^2 \in \mathcal{O}(n^2)$
- $n \in \mathcal{O}(n^2)$
- So: $3 \cdot n \in \mathcal{O}(n^2)$
- So: $n^2 + 3 \cdot n \in \mathcal{O}(n^2)$
- $5 \in \mathcal{O}(n^2)$
- So: $n^2 + 3 \cdot n + 5 \in \mathcal{O}(n^2)$

Other Notation

Definition

Suppose, we have $f, g : \mathbb{N} \to \mathbb{R}^+$. Then we say $f \in \Omega(g)$ if there is $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that c > 0 and for all $n \ge n_0$ we have $f(n) \ge c \cdot g(n)$.

Proposition

We have $f \in \Omega(g)$ if and only if $g \in \mathcal{O}(f)$.

Other Notation

Definition

Suppose, we have $f, g : \mathbb{N} \to \mathbb{R}^+$. Then we say $f \in \Omega(g)$ if there is $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that c > 0 and for all $n \ge n_0$ we have $f(n) \ge c \cdot g(n)$.

Proposition

We have $f \in \Omega(g)$ if and only if $g \in \mathcal{O}(f)$.

So: this says that f grows at least as fast as g.

We also say g is an **asymptotic lower bound** for f.

Other Notation

Definition

Suppose, we have $f, g : \mathbb{N} \to \mathbb{R}^+$. Then we say $f \in \Omega(g)$ if there is $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that c > 0 and for all $n \ge n_0$ we have $f(n) \ge c \cdot g(n)$.

Proposition

We have $f \in \Omega(g)$ if and only if $g \in \mathcal{O}(f)$.

So: this says that f grows at least as fast as g.

We also say g is an **asymptotic lower bound** for f.

Definition

We say $f \in \Theta(g)$ if $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$.

 $5 \cdot n \in \Omega(n)$

 $5 \cdot n \in \Omega(n)$ True! We have $n \in \mathcal{O}(5 \cdot n)$, so we also have $5 \cdot n \in \Omega(n)$

```
5 \cdot n \in \Omega(n)
True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n)
n \in \Omega(n^2)
```

```
5 \cdot n \in \Omega(n)
True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n)
n \in \Omega(n^2)
False! This means that n^2 \in \mathcal{O}(n), which is false.
```

```
5 \cdot n \in \Omega(n)
True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n)
n \in \Omega(n^2)
False! This means that n^2 \in \mathcal{O}(n), which is false.
If f \in \Theta(g), then g \in \Theta(f)
```

```
5 \cdot n \in \Omega(n) True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n) n \in \Omega(n^2) False! This means that n^2 \in \mathcal{O}(n), which is false. If f \in \Theta(g), then g \in \Theta(f) True! Note that both f \in \Theta(g) and g \in \mathcal{O}(f).
```

```
5 \cdot n \in \Omega(n)
True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n)
n \in \Omega(n^2)
False! This means that n^2 \in \mathcal{O}(n), which is false.

If f \in \Theta(g), then g \in \Theta(f)
True! Note that both f \in \Theta(g) and g \in \Theta(f) mean that f \in \mathcal{O}(g) and g \in \mathcal{O}(f).
n^2 + 2 \cdot n + 20 \in \Theta(n^2)
```

```
5 \cdot n \in \Omega(n)
True! We have n \in \mathcal{O}(5 \cdot n), so we also have 5 \cdot n \in \Omega(n)
n \in \Omega(n^2)
False! This means that n^2 \in \mathcal{O}(n), which is false.

If f \in \Theta(g), then g \in \Theta(f)
True! Note that both f \in \Theta(g) and g \in \Theta(f) mean that f \in \mathcal{O}(g) and g \in \mathcal{O}(f).

n^2 + 2 \cdot n + 20 \in \Theta(n^2)
True!
```

Outline

Runtime Complexity

Big-Oh Notation

Analyzing the runtime complexity of programs

Linear Search

We consider the following program

```
bool isln(int xs[], int x) {
    int i = 0;
    while (i < xs.length()) {
        if (x == xs[i]) {
            return true;
        }
        i++;
        }
        return false;
}</pre>
```

Denote its time complexity in the worst case by T.

Goal: $T \in \mathcal{O}(n)$.

Linear Search with Annotated Costs

Step 1: annotate the cost per line

```
bool isln(int xs[], int x) {
     int i = 0;
                             // Cost: c 1
2
     while (i < xs.length()) { // Cost: c_2</pre>
        if(x == xs[i]) { // Cost: c_3}
4
           return true;  // Cost: c_4
5
6
        i++;
                                // Cost: c_5
7
8
     return false;
                                 // Cost: c 6
9
10
```

Linear Search with Annotated Costs and Repetitions

Step 2: annotate the number of repetitions per line

```
bool isln(int xs[], int x) {
    int i = 0;
                         // Cost: c 1, repetitions: 1
2
    while (i < xs.length()) { // Cost: c_2, repetitions: n</pre>
3
      return true;  // Cost: c_4, repetitions: n
6
7
      i++:
                           // Cost: c 5, repetitions: n
8
    return false:
                           // Cost: c_6, repetitions: 1
9
```

Here n is the length of the array xs.

Note: in the worst case (the element is not found), the loop has n repetitions.

The Total Cost of Linear Search

Step 3: add all the costs and take repetitions into account

$$T(n) = c_1 + n \cdot (c_2 + c_3 + c_4 + c_5) + c_6$$

The Total Cost of Linear Search

Step 3: add all the costs and take repetitions into account

$$T(n) = c_1 + n \cdot (c_2 + c_3 + c_4 + c_5) + c_6$$

Note: in the best case, the element we are looking for, is the first element of the array.

In that case, we would have

$$T(n) = c_1 + c_2 + c_3 + c_4$$

The Time Complexity of Linear Search

Step 4: prove what we wanted to show

$$c_1 + n \cdot (c_2 + c_3 + c_4 + c_5) + c_6 \in \mathcal{O}(n)$$

Simpler, show that

$$a \cdot n + b \in \mathcal{O}(n)$$

This holds.

- Take c = a + 1 and $n_0 = b$.
- Or you can use the properties given before

Why is the worst case interesting?

- It gives an upper bound that holds for every input
- It is realistic and often the average case is closer to the worst case
- Worst case is simpler than the average case

Average case: difficult to determine. For example, one needs to determine the probability that an input is already sorted

Conclusion

Take aways from this lecture:

- Many factors determine the quality of algorithms, including run-time efficiency
- We compare run-time efficiency by looking at the growth of functions
- To characterize the growth of functions, we use the Big-Oh notation
- The Big-Oh notation allows us to surpress constants and lower-order terms
- Often the worst case is the most interesting case

Reading material: Chapter 1 and 2 in Roughgarden