Recursive Functions

Gödel's Primitive Recursive Functions F_{pr}

A computable function represents a calculation that returns a result in finitely many well-defined steps.

Initial functions:

$$Zero(x) = 0$$
 (Zero)
 $Proj_n^i(x_1,...,x_n) = x_i$ ($1 \le k \le n$) (Projection)
are in \mathcal{F}_{pr} .

Composition: If $g_1, \ldots, g_m : \mathbb{N}^k \to \mathbb{N}$, $h : \mathbb{N}^m \to \mathbb{N} \in \mathcal{F}_{pr}$, then $f : \mathbb{N}^k \to \mathbb{N} \in \mathcal{F}_{pr}$, where f is defined by

$$f(x_1,...,x_k) = h(g_1(x_1,...,x_k),...,g_m(x_1,...,x_k))$$

Primitive Recursion: If $g: \mathbb{N}^k \to \mathbb{N}$, $h: \mathbb{N}^{k+2} \to \mathbb{N} \in \mathcal{F}_{pr}$, then $f: \mathbb{N}^{k+1} \to \mathbb{N} \in \mathcal{F}_{pr}$, where f is defined by $f(0, x_1, \dots, x_k) = g(x_1, \dots, x_k)$ $f(Succ(y), x_1, \dots, x_k) = h(y, f(y, x_1, \dots, x_k), x_1, \dots, x_k)$

An Example

As an example, take the factorial function:

$$fac(0) = 1$$

 $fac(Succ(y)) = Succ(y) \times fac(y)$

(so here k = 0, g() = 1 (so we see constants as parameterless functions), and $h(y, z) = S(y) \times z$).

Thus, this function is primitive recursive.

But not all computable functions are primitive recursive.

The **Ackermann function** Ack : $IN^2 \rightarrow IN$ defined by

$$Ack (0, y) = Succ (y)$$

$$Ack (Succ (x), 0) = Ack (x, 1)$$

$$Ack (Succ (x), Succ (y)) = Ack (x, Ack (Succ (x), y))$$

is clearly computable (in fact, below we will show it always terminates) but does not belong to \mathcal{F}_{pr} .

Kleene's (Partial) Recursive Functions

The class of (partial) recursive functions F_{rec} in $N^k \to N$ (for any k) is defined as F_{pr} , but adding:

Minimisation: If
$$f: \mathbb{N}^{n+1} \to \mathbb{N} \in \mathcal{F}_{rec}$$
, then $h: \mathbb{N}^n \to \mathbb{N} \in \mathcal{F}_{rec}$, where h is defined by:

$$h(x_1,...,x_n) = \mu y (f(y,x_1,...,x_n) = 0)$$

Intuitively, minimisation ' μy ' expresses the search for, beginning with 0 and proceeding upwards, the smallest argument y that causes $f(y,x_1,\ldots,x_n)$ to return 0. So it steps through

$$f(0, x_1, \ldots, x_n), f(1, x_1, \ldots, x_n), f(2, x_1, \ldots, x_n), \ldots$$

This search might not terminate; then h is partial.

Partial recursive functions capture exactly the notion of computability.