

Knowledge-Based Systems

Foundation

Jeff Z. Pan

http://homepages.abdn.ac.uk/jeff.z.pan/pages/

Roadmap

- Foundation
 - KR, ontology and rule; set theory
- Knowledge capture
- Knowledge representation
 - Ontology: Semantic Web standards RDF and OWL, Description Logics
 - Rule: Jess
- Knowledge reasoning
 - Ontology: formal semantics, tableaux algorithm
 - Rule: forward chaining, backward chaining
- Knowledge reuse and evaluation
- Meeting the real world
 - Jess and Java, Uncertainty, Invited talk

Lecture Outline

- Overview of KR (OR Why Ontology/ Description Logics and Rules)
 - Semantic Nets
 - Frames
 - FOL
 - KL-ONE
- Set theory
 - Brief introduction

[Section 4.1]

Semantic Nets

- Proposed by Quillian (1968) to analysis the meaning of words in sentences
 - Later applied to KR
- Basic notations:
 - Nodes: to represent objects, concepts, or situations
 - Arcs: to represent relationships

An Example Semantic Net

Pros/Cons of Semantic Nets

- Easy to follow hierarchy
- Easy to trace association
- Flexible

- No well defined syntax
- No formal semantics
- Not expressive enough to define meaning of labels
- Inefficient

Frames

That has default (*) knowledge

Mammal

subclass: Animal

warm_blooded: yes

Elephant

subclass: Mammal

* colour: grey

* size: large

Cari:

instance: Elephant

size: small

Procedures in Frames

- Frames allow procedures called demons to be attached to their slots (properties)
 - if_added: triggered when a new value is put into a slot
 - if_removed: triggered when a value is removed from a slot
 - if_replaced: triggered when a slot value is replaced
 - if_needed: triggered when there is no value present in an instance frame and a value must be computed from a generic frame

Example: Procedures in Frames

```
age:
range 1..1500
if_needed ask("What is the age of ", name of this person)
if_added if new value > 1500 then
print("Your ", this slot, " is too high!");
```


Pros/Cons of Frames

- Easy to include default information and detect missing values
- Easy to create specialised procedures

- Difficult to program
- Difficult for inference

First Order Logic

- Allow to use quantifiers in sentences
 - "for all" (∀), "exists" (∃)
 - Makes sentences more precise

- Example:
 - Chair is a sub-class of furniture
 - $\forall x (chair(x) \rightarrow furniture(x))$
 - A chair has a part seat
 - $\forall x (chair(x) \rightarrow \exists y (part(x,y) \land seat(y))$

Pros/Cons of FOL

- Expressive
- Clear formal semantics

- Syntax too complex
- No support for uncertainty
- Not deci Notes:

 Being decidable means there exists an algorithm returning all and only the correct answers in finite time.

Jen Z. Fan

KL-ONE

- Use FOL-based formal semantics, but limit the expressive power
- Formalising Semantic Nets
 - Three kinds of vocabulary
 - Concepts, properties and objects
 - Non-graphic Syntax
 - Formal semantics for built-in relationships
 - Sub-Class-Of
 - Instance-of
 - Provide constructors to define concepts

Example: KL-ONE

- Example:
 - Chair is a sub-class of furniture
 - Chair

 Furniture
 - A chair has a part seat
 - Chair ⊑ ∃ *part*.Seat

Pros/Cons of KL-ONE like languages

- Well defined and simplified syntax
- Clear formal semantics
- Good balance between expressive power and decidability

[Later known as **Description Logics**, and used as the Semantic Web standard **ontology** language]

- Not as expressive as FOL
- No support for procedures

Rules

Another way to limit the expressive power of FOL

- General forms:
 - IF condition-list THEN conclusion-list / action-list
- Example

IF (has-P?x?p) and (has-B?p?u) THEN (has-U?x?u)

Pros/Cons of Rules

- Simple syntax
- Easy to understand
- High modular
- Production rules support the notion of action

- Hard to follow hierarchies
- No constructors to define concepts

Lecture Outline

- Overview of KR (OR Why Ontology/ Description Logics and Rules)
 - Semantic Nets
 - Frames
 - FOL
 - KL-ONE
- Set theory
 - Brief introduction

Meaning of Basic Constructs

- A concept is a set of instances
 - Employee: {E1, E2, E3, E4}
 - Project: {P1, P2}
- A relation is a set to pairs (tuples) of instances
 - Works-for: {<E1,P1>, <E2,P1>, <E2,P2>, <E3,P1>, <E3,P2>, <E4,P2>}
- Relational representation

Introduction to Set Theory

- A set is
 - a structure, representing an <u>unordered</u> collection (group, plurality) of
 - zero or more <u>distinct</u> (different) objects.
- Set theory deals with
 - operations between,
 - relations among, and
 - statements about sets.

Basic Notations for Sets

- We can denote a set S in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b,c.
- Set builder notation: For any proposition P(x) over any universe of discourse, $\{x|P(x)\}$ is the set of all x such that P(x).
 - e.g., $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \}$

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain <u>exactly the same</u> elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5 } =
 {x | x is a positive integer whose square
 is >0 and <25}

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:

```
N = \{0, 1, 2, ...\} The natural numbers.
```

$$Z = \{..., -2, -1, 0, 1, 2, ...\}$$
 The integers.

R = The "real" numbers, such as

374.1828471929498181917281943125...

Basic Set Relations: Member of

- x∈S ("x is in S") is the proposition that object x is an
 ∈lement or member of set S.
 - -e.g. 3∈**N**, "a"∈{ $x \mid x$ is a letter of the alphabet}
- Can define <u>set equality</u> in terms of ∈ relation:
 ∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
 "Two sets are equal **iff** they have all the same members."
- $x \notin S := \neg(x \in S)$ "x is not in S"

Subset and Superset Relations

- $S\subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S\subseteq T \Leftrightarrow \forall x (x\in S \to x\in T)$
- ∅⊆S, (the empty set is a subset of every set) S⊆S.
- S is a superset of T means $T \subseteq S$.
- Note S=T ⇔ S⊆T∧ T⊆S.
- $S \subseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$

The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, **or** (" \vee ") in B (or, of course, in both).
- Formally, $\forall A,B$: $A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that A∪B contains all the elements of A and it contains all the elements of B:

 $\forall A, B: (A \cup B \subseteq A) \land (A \cup B \subseteq B)$

Union Examples

- $\{a,b,c\}\cup\{2,3\} = \{a,b,c,2,3\}$
- $\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} \neq \{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection A∩B is the set containing all elements that are simultaneously in A and ("∧") in B.
- Formally, $\forall A,B: A \cap B = \{x \mid x \in A \land x \in B\}.$
- Note that $A \cap B$ is a subset of A and it is a subset of B: $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$

Intersection Examples

- $\{a,b,c\}\cap\{2,3\} = \emptyset$
- $\{2,4,6\}\cap\{3,4,5\} = \{4\}$

Set Difference

• For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not B.

•
$$A - B := \{x \mid x \in A \land x \notin B\}$$

= $\{x \mid \neg(x \in A \rightarrow x \in B)\}$

Also called:

The <u>complement of B with respect to A</u>.

Set Difference Examples


```
• Z - N = {..., -1, 0, 1, 2, ...} - {0, 1, ...}

= {x \mid x is an integer but not a nat. #}

= {x \mid x is a negative integer}

= {..., -3, -2, -1}
```


Set Complements

- The *universe of discourse* can itself be considered a set, call it *U*.
- The *complement* of *A*, written *A*, is the complement of *A* w.r.t. *U*, *i.e.*, it is *U-A*.
- *E.g.*, If *U*=**N**,

$$\overline{\{3,5\}} = \{0,1,2,4,6,7,\dots\}$$

Summary

- Knowledge representation formalisms
 - Semantic Nets
 - Frames
 - FOL
 - KL-ONE (DL/Ontology)
 - Rules
- Set theory is a useful tool to understand the semantics of
 - Ontology
 - Rule

Acknowledgements

 Prof. Enrico Franconi (University of Bolzano)

 Prof. George Bebis (University of Nevada)