

POSTER PRESENTATION

Open Access

T cell receptor affinity and avidity defines antitumor response and autoimmunity in T cell immunotherapy

Michelle Krogsgaard^{1,3,7*}, Shi Zhong¹, Karolina Malecek^{1,6}, Laura A Johnson⁵, Zhiya Yu², Eleazar Vega-Saenz de Miera^{7,3}, Farbod Darvishian³, Katelyn McGary-Shipper^{1,6}, Kevin Huang¹, Joshua Boyer¹, Emily Corse⁴, Yongzhao Shao^{8,7}, Steven A Rosenberg², Nicholas P Restifo², Iman Osman^{1,9,7}

From Society for Immunotherapy of Cancer 28th Annual Meeting
National Harbor, MD, USA. 8-10 November 2013

T-cells have evolved the unique ability to discriminate "self" from "non-self" with high sensitivity and selectivity. However, tissue-specific autoimmunity, tolerance or eradication of cancer does not fit into the self/non-self paradigm because the T-cell responses in these situations are most often directed to non-mutated self-proteins. To determine the TCR affinity threshold defining the optimal balance between effective antitumor activity and autoimmunity in vivo, we used a novel self-antigen system comprised of seven human melanoma gp100₂₀₉₋₂₁₇-specific TCRs spanning physiological affinities (1 to 100 μM). We found that in vitro and in vivo T cell responses are determined by TCR affinity. Strikingly, we found that T cell antitumor activity and autoimmunity are closely coupled but plateau at a defined TCR affinity of 10 μM, likely due to diminished contribution of TCR affinity to avidity above the threshold. Our results suggest a relatively low affinity threshold is necessary for the immune system to avoid self-damage given the close relationship between antitumor activity and autoimmunity. This, in turn, indicates that treatment strategies focusing on TCRs in the intermediate affinity range (KD ~10 μM) or targeting or targeting shared tumor antigens would dampen the potential for autoimmunity during adoptive T cell therapy for the treatment of cancer.

Authors' details

¹NYU Cancer Institute, New York University School of Medicine, New York, NY, USA. ²Center for Cancer Research, National Cancer Institute, National Cancer Institute, NIH, Bethesda, MD, USA. ³Department of Pathology, New

York University School of Medicine, New York, NY, USA. ⁴Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ⁵Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ⁶Program in Structural Biology, New York University School of Medicine, New York, NY, USA. ⁷Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA. ⁸Division of Biostatistics, New York University School of Medicine, New York, NY, USA. ⁹Ronald O. Perleman Department of Dermatology, New York University School of Medicine, New York, NY, USA.

Published: 7 November 2013

doi:10.1186/2051-1426-1-S1-P242

Cite this article as: Krogsgaard et al.: T cell receptor affinity and avidity defines antitumor response and autoimmunity in T cell immunotherapy. *Journal for ImmunoTherapy of Cancer* 2013 **1**(Suppl 1):P242.

Submit your next manuscript to BioMed Central
and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

¹NYU Cancer Institute, New York University School of Medicine, New York, NY, USA

Full list of author information is available at the end of the article