CO224 LAB 5 PART 5

GROUP NO-3

mult OPEARATION

ASSIGNED OPCODE- 00001101

ENCODING AND DECODING SAME AS A ADD OPERATION.

ALGORITHM USED FOR THE CALCULATION IS SHOWN BELOW. (THE SHOWN RESULT BELOW IS FOR TWO 4 BIT NUMBERS. IN THE CODE 2 NUMBERS OF 8-BIT EACH WERE MULTIPLED BUT THE LOGIC WAS THE SAME.

Here is the formal algorithm.

- 1. Initialize C = 0, Y = 0, X = multiplicand, Z = multiplier, Count = N.
- $2. \ \ At each step, examine Z_0.$

If $Z_0 = 1$, then add X and Y to put the sum in Y and set the carry bit C.

- 3. Right shift the register pair (Y, Z), with C \rightarrow Y_{N-1} and Y₀ \rightarrow Z_{N-1}. Z₀ is lost.
- 4. Decrement the count. If count = 0, stop. If not, go to step 2.

We now illustrate the algorithm with the example specified just above.

At the start of the multiplication, the registers are initialized as follows: $X=1011,\,Y=0000,\,Z=1101,\,$ and C=0.

 $Z_0 = 1$, so there is an addition.

Then there is a right shift.

Now $Z_0 = 0$, so there is no addition. The next step is another right shift.

 $Z_0 = 1$, so there is an addition.

Multiplicand (X Register)

1 0 1 1

0 1 1

1 1 0 1

NO CHANGES WERE MADE TO THE DATAPATH FOR THIS INSTRUCTION.

EX OF A ASSEMBLY CODE TO MACHINE INSTRUCTION

mult 6 4 3 -> 00001101 00000110 00000100 00000011

sll/srl OPEARATIONS

ASSIGNED OPCODEs-

sll- 00001000

srl- 00001001

HERE in both sll and srl, the operations are perfomed on a 8 bit number. so if an 8 bit number is logically shifted by more than 8 places it becomes zero. because of that the immediate value which is of 8 bits has redundant bits as only 4 bits are needed to fully define all the logic shift operations. because of that the 8th bit of the immediate value is taken to store information about the type of logical shift. if the 8th bit is 1 it is a right shift operation and if it is 0 then it is a left shift operation. THIS ALLOWED BOTH OPERATIONS TO BE CONDUCTED USING JUST ONE ALUOP

so if a left shift operation is to be performed to shift left by 2 places the immediate shift value is encoded as - 00000010

if a right shift operation is to be performed to right left by 2 places the immediate shift value is encoded as - 10000010

EX OF A ASSEMBLY CODE TO MACHINE INSTRUCTION

sll 2 1 0x02 -> 00001000 00000010 00000001 00000010

srl 6 2 0x02-> 00001001 00000110 00000010 10000010

sra/ror OPEARATIONS

ASSIGNED OPCODEs-

sra- 00001010

ror- 00001011

NO CHANGES WERE MADE TO THE DATAPATH. BOTH IMEPLEMENTED USING THE SAME FUNCTIONAL GATE IMPLEMENTATION.

EX OF A ASSEMBLY CODE TO MACHINE INSTRUCTION

ror 7 4 0x02 -> 00001011 00000111 00000100 00000010

sra 7 5 0x02 -> 00001010 00000111 00000101 00000010

bne OPEARATIONS

ASSIGNED OPCODE

bne- 00001100

A NEW CONTROL SIGNAL BNQ WAS ADDED TO IMPLEMENT BRANCH IF NOT EQUAL INSTRUCTION. VERY SIMILAR TO BRANCH IF EQUAL INSTRUCTION

EX OF A ASSEMBLY CODE TO MACHINE INSTRUCTION

bne 0x02 4 6 -> 00001100 00000010 00000100 00000110