Feedback — Week 3 Practice Quiz

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Sun 5 Apr 2015 6:08 AM PDT**. You got a score of **8.00** out of **8.00**.

Question 1

You are given a vocabulary composed of only three words: "text", "mining", and "research". Below are the probabilities of two of these three words given by a unigram language model:

Word	Probability
text	0.4
mining	0.2

What is the probability of generating the phrase "text mining research" using this unigram language model?

Your Answer		Score	Explanation
0.4			
0.08			
0			
● 0.032	~	1.00	
Total		1.00 / 1.00	

Question Explanation

The probability of "research" is P("research") = 1 - (P("text") + P("mining")) = 1 - (0.4 + 0.2) = 0.4. The probability of generating the given phrase P("text mining research") = $P(\text{"text"}) \times P(\text{"mining"}) \times P(\text{"research"}) = 0.4 \times 0.2 \times 0.4 = 0.032$.

Question 2

You are given the query Q= "food safety" and two documents:

D1 = "food quality regulations"

D2 = "food safety measures"

Assume you are using the maximum likelihood estimator **without** smoothing to calculate the probabilities of words in documents (i.e., the estimated p(w|D) is the relative frequency of word w in the document D). Based on the unigram query likelihood model, which of the following choices is correct?

Your Answer			Score	Explanation
P(Q D1) = 0	P(Q D2) = 1/9	~	1.00	
○ P(Q D1) = 1/3	P(Q D2) = 1/9			
○ P(Q D1) = 1/3	P(Q D2) = 0			
○ P(Q D1) = 1/2	P(Q D2) = 1/2			
Total			1.00 / 1.00	

Question Explanation

 $P(Q|D1) = P("food"|D1) \times P("safety"|D1) = 1/3 \times 0 = 0.$ $P(Q|D2) = P("food"|D2) \times P("safety"|D2) = 1/3 \times 1/3 = 1/9.$

Question 3

Probability smoothing avoids assigning zero probabilities to unseen words in documents.

Your Answer		Score	Explanation
○ False			
True	~	1.00	
Total		1.00 / 1.00	

Question 4

Assume you are given two scoring functions:

$$S_1(Q,D) = P(Q|D)$$

 $S_2(Q, D) = \log P(Q|D)$

For the same query and corpus, S_1 and S_2 will give the same ranked list of documents.

Your Answer		Score	Explanation
True	~	1.00	
False			
Total		1.00 / 1.00	

Question Explanation

log is a monotonically increasing function so it will preserve the ranking of documents, but not the scores.

Question 5

Assume you are using linear interpolation (Jelinek-Mercer) smoothing to estimate the probabilities of words in a certain document. What happens to the smoothed probability of the word when the parameter λ is **decreased**?

Your Answer	Score	Explanation
It does not change		
It becomes closer to the probability of the word in the collection language model		
It becomes closer to the maximum likelihood estimate of the probability derived from the document.	1.00	
Total	1.00 /	
	1.00	

Question Explanation

The smoothed probability can be thought of as a weighted average of the maximum likelihood estimate and the probability of the word in the collection. When λ decreases, the weight assigned to maximum likelihood estimate increases, thus having a higher effect on the smoothed probability value.

Question 6

Refer to the Rocchio feedback formula in the slides. If you want to reduce the effect of the **relevant** documents in the updated query, which of the following should be done?

Your Answer		Score	Explanation
\bigcirc Increase γ			
lacksquare Increase eta			
lacksquare Reduce eta	~	1.00	
$igcup$ Reduce γ			
Total		1.00 / 1.00	

Question Explanation

The weight assigned to the centroid of the relevant documents is directly proportional to β .

Question 7

Assume that $\beta=1$ is a good choice when performing relevance feedback using Rocchio's method. What is a reasonable value of β to use when relying on pseudo feedback?

Your Answer		Score	Explanation
More than 1			
Less than 1	~	1.00	
1			
Total		1.00 / 1.00	

Question Explanation

When doing relevance feedback, the judgments are usually reliable since human assessors generate them after reading the queries and documents. However, in pseudo feedback, the top k documents retrieved by the system are "blindly" assumed to be relevant, which makes the judgments less reliable compared to relevance feedback. The reasonable choice is to lower the parameter β , which can be thought of as the degree of "confidence" in the documents being used as "positive" examples in feedback.

Question 8

Let q be the original query vector, $D_R=\{P_1,\ldots,P_n\}$ be the set of positive document vectors, and $D_N=\{N_1,\ldots,N_m\}$ be the set of negative document vectors. Let q_1 be the expanded query vector after applying Rocchio on D_R and D_N with positive parameter values α , β , and γ . Let q_2 be the expanded query vector after applying Rocchio on D_R and D_N with the same values for α , β , but γ being set to zero.

In which updated query do you expect stopwords to have higher weights?

Your Answer		Score	Explanation
$lefteq q_2$	~	1.00	
$\bigcirc \ q_1$			
Total		1.00 / 1.00	