Practical: Airborne Infection Risk

Session objectives

- Introduce disease dynamics and transmission modelling
- 2. Introduce the parameters that affect airborne transmission and Wells-Riley model
- Demonstrate how it can be coupled with SEIR models
- 4. Use simple spreadsheet models to explore the effect of parameters and interventions

Disease Transmission

Disease Dynamics

- Spread of disease depends on many factors:
 - The pathogen concerned virilence, survival
 - The population of people and their susceptibility to the disease
 - The mode of transmission
 - The time between being exposed to the disease and becoming infectious
 - The symptoms
 - The ability and ease of passing the disease on

.....

Outbreak patterns

Royal Liverpool University Hospital, and influenza-like illness rates in Liverpool between week 47/2008 and week 2/2009

HPA, www.hpa.org.uk/hpr/archives/2009/news0509.htm

Indoor and Urban Air Quality

Outbreak patterns

Some illness onset dates have been estimated from other reported information.

Modelling disease transmission

- Models allow assessment of the relative importance of disease parameters
- Describe the progression of disease over time
- Enable intervention or response to disease
- Earliest model Daniel Bernolli, vaccination against small pox
- Modern approaches based on models of Reed and Frost (1920's) and McKendrick and Kermack (1927)

Model requirements

- Will an infection spread?
- How fast will it spread?
- How many people will be affected?
- How long will the outbreak last?
- What interventions are the most effective?
- In air how does the building and human breathing ventilation affect risk?

Wells-Riley Model

 Probability of infection (Pr) linked to disease, occupant and ventilation characteristics

$$\mathbf{Pr} = 1 - e^{\left(\frac{Iqpt}{Q}\right)}$$

 Usually used to model new infections (N_C) for S susceptibles

$$N_C = S(1-e^{\left(\frac{Iqpt}{Q}\right)})$$
 Q = ventilation rate (m³/s)

P = breathing rate (m³/s)

I = number of infectors

S = number of susceptibles

Quanta (q)

- Rate of generation of "infectious doses"
- Encompasses concentration, virilence, host susceptibility
- Used in wide range of risk analysis studies and assessment of disease outbreaks
- Usually estimated from past outbreak data but not always reliable

Infectious Dose

(highest infectors)

Aircraft outbreak

Outbreak in a school

School cases in Taiwan

Taipei Hospital outbreak

Experimental data of Dick et al 1987

Measles

Influenza

Influenza

Rhinovirus

CIVE 5370M

SARs

16

Disease	Case	Quanta/h	Reported by
ТВ	Average TB patient	1.25	Nardell et al (1991)
ТВ	Outbreak in office building	12.7	Nardell et al (1991)
ТВ	Human to guinea pig transmission	0.3-44	Escombe et al (2007)
MDR TB	Human to guinea pig transmission	40,52,226	Escombe et al (2008)

570

66.91 (LN*)

28.77 (LN*)

79-128

1-10

Rudnick & Milton (2003)

Rudnick & Milton (2003)

Rudnick & Milton (2003)

Liao et al (2005)

Liao et al (2005)

Indoor and Urban Air Quality

Wells-Riley Results

Fully mixed room: 10 susceptibles, 1 infector, 12 quanta/hr, 10 l/min pulmonary ventilation, 32.25 m³ room

Stochastic Effects

Epidemic models

SIR Deterministic Formulation

 For a closed population of N people – no increase or decrease eg. Birth rate

$$N = S + I + R$$

- Assume homogeneity every person has the same probability of infection, with contact rate β
- People recover at a rate $\gamma = 1/duration$ of infection
- Consider rate of transition between states
- Expressed as ordinary differential equations

SIR Deterministic model

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Rate susceptibles become infectious

Rate infectors change = new infectors – those who recover/are removed

Rate infectors recover/are removed

Numerical solution is straightforward

SIR outputs

Reproduction rate

Measure of rate of spread of an infection

Ro = number of secondary cases produced by an infector

- Ro < 1: infection will die out
- Ro > 1: infection will spread through
- Ro = 1: Epidemic threshold
- Can estimate from

$$Ro = N \frac{\beta}{\gamma}$$

Epidemic threshold

Ro < 1 Ro > 1

SEIR Models

- Most common variant on SIR model
- Acknowledges that most diseases have an incubation period between exposure and becoming infectious

SEIR Outputs

Linking air and epidemic models

- Wells-Riley developed for TB generally long incubation period
- Can be applied to short incubation infections such as influenza, SARs etc.
- Contact rate determined by air flows and breathing rate

$$\beta = \frac{pq}{Q}$$

Can use to estimate effectiveness of environmental controls

Activity

In groups or individually:

- Use the spreadsheet models provided to explore how changes to disease parameters and the environment affect outbreaks
- Use the models to evaluate the scenarios described