بسم الله الرحمن الرحيم

University of Khartoum

Faculty of Mathematical Sciences and Informatics Statistics and Probability (S2013)

Assignment 5

(Some Probability Distributions)

Content:

- \diamond Gamma Distribution (Γ).
- \clubsuit Beta Distribution (β).
- Chi-Square Distribution (χ^2).
- Related Distributions.
- References.

Written by:

Abobaker Ahmed Khidir Hassan 21-304 Computer Science

Gamma Distribution (Γ)

Definition

The definition of Gamma Distribution requires the gamma (Γ) function from calculus that exists for $\alpha > 0$ and that the value of the integral is a positive number.

Properties

$$\Gamma'(1) = \int_0^\infty \ln t \, e^{-t} \, dt = -\gamma$$
 (18.40)

Multiplication formula:

$$\Gamma(2z) = \pi^{-\frac{1}{2}} 2^{2z-1} \Gamma(z) \Gamma\left(z + \frac{1}{2}\right)$$
 (18.41)

Reflection formulas:

$$\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin \pi z},$$

$$\Gamma\left(\frac{1}{2} + z\right) \Gamma\left(\frac{1}{2} - z\right) = \frac{\pi}{\cos \pi z},$$

$$\Gamma(z-n) = (-1)^n \Gamma(z) \frac{\Gamma(1-z)}{\Gamma(n+1-z)} = \frac{(-1)^n \pi}{\sin \pi z \Gamma(n+1-z)}$$
(18.42)

The gamma function has the recursion formula:

$$\Gamma(z+1) = z \, \Gamma(z) \tag{18.43}$$

The relation $\Gamma(z) = \Gamma(z+1)/z$ can be used to define the gamma function in the left half plane, $z \neq 0, -1, -2, \dots$

The gamma function has simple poles at z = -n, (for n = 0, 1, 2, ...), with the respective residues $(-1)^n/n!$. That is,

$$\lim_{z \to -n} (z+n)\Gamma(z) = \frac{(-1)^n}{n!}$$
 (18.44)

© 2000 by Chapman & Hall/CRC

$$\Gamma(n+1) = n!$$

The Probability Density Function (PDF) of Gamma Distribution

A random variable X is said to have a gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ if its density function (pdf) is given by:

$$f(x) = \frac{x^{\alpha - 1} e^{\frac{-x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \qquad 0 < x < \infty$$

In the second reference page 174: ... with parameters (α, λ) , $\lambda > 0$ and $\alpha > 0$

$$f(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} \qquad x \ge 0$$

Where:

$$\Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha - 1} e^{-y} \, dy$$

In which case, we often write that X has $\Gamma(\alpha, \beta)$ distribution.

The probability density function is skewed to the right. For fixed β the tail becomes heavier as α increases.

Figure 6.10: Probability density functions for a gamma random variable.

The Cumulative Distribution Function (CDF) of Gamma Distribution

$$F(x) = \int_{0}^{x} f(x) dx$$

$$= \int_{0}^{x} \frac{x^{\alpha - 1} e^{\frac{-x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} dx$$

$$= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{x} x^{\alpha - 1} e^{\frac{-x}{\beta}} dx$$

$$= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} * \beta^{\alpha} \gamma(\alpha, \beta x)$$

$$= \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$$

$$\therefore F(x) = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$$

Where:

$$\mathbf{\gamma}(\mathbf{s}, \mathbf{x}) = \int_{0}^{x} t^{s-1} e^{-t} dt$$
$$\mathbf{\Gamma}(\boldsymbol{\alpha}) = \int_{0}^{\infty} t^{\alpha-1} e^{-t} dt$$

$$\Gamma(\alpha) = \int_{0}^{\infty} t^{\alpha - 1} e^{-t} dt$$

The Moment Generating Function (MGF) of Gamma Distribution

Before starting finding the MGF we should remember that β must be greater than 0, and the MGF generates moments when t = 0, so t must be less than β .

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX} f(x) dx$$

$$=\int_{0}^{\infty}e^{tx}\frac{x^{\alpha-1}e^{\frac{-x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}dx=\frac{1}{\beta^{\alpha}\Gamma(\alpha)}\int_{0}^{\infty}x^{\alpha-1}e^{-\left(\frac{1}{\beta}-t\right)x}dx$$

Assume $u = \left(\frac{1}{\beta} - t\right)x$ then $x = \frac{u}{\frac{1}{\beta} - t}$. And Because of $t < \beta$:

$$= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} \left(\frac{u}{\frac{1}{\beta} - t} \right)^{\alpha - 1} e^{-u} \frac{du}{\frac{1}{\beta} - t}$$

$$= \frac{1}{\beta^{\alpha} \Gamma(\alpha) \left(\frac{1}{\beta} - t\right)^{\alpha}} \int_{0}^{\infty} (u)^{\alpha - 1} e^{-u} du$$

$$= \frac{\Gamma(\alpha)}{\beta^{\alpha}\Gamma(\alpha)\left(\frac{1}{\beta} - t\right)^{\alpha}} = \left(\frac{1}{\beta\left(\frac{1}{\beta} - t\right)}\right)^{\alpha} = (\mathbf{1} - \boldsymbol{\beta}t)^{-\alpha}$$

$$\therefore M_X(t) = (1 - \beta t)^{-\alpha}$$

Theorem 3.3.1. Let X_1, \ldots, X_n be independent random variables. Suppose, for $i = 1, \ldots, n$, that X_i has a $\Gamma(\alpha_i, \beta)$ distribution. Let $Y = \sum_{i=1}^n X_i$. Then Y has a $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

Proof: Using the assumed independence and the mgf of a gamma distribution, we have by Theorem 2.6.1 that for $t < 1/\beta$,

$$M_Y(t) = \prod_{i=1}^n (1 - \beta t)^{-\alpha_i} = (1 - \beta t)^{-\sum_{i=1}^n \alpha_i},$$

which is the mgf of a $\Gamma(\sum_{i=1}^n \alpha_i, \beta)$ distribution.

Expectation and Variance of a Variable That Gamma Distributed

Let X be a random variable gamma distributed has $M_X(t) = (1 - \beta t)^{-\alpha}$ Then:

$$E(X) = M'_X(\mathbf{0})$$

$$\frac{d}{dt} (M_X(t)) = \frac{d}{dt} (1 - \beta t)^{-\alpha} \Big|_{t=0}$$

$$= (-\alpha)(1 - \beta t)^{-\alpha - 1} (-\beta)|_{t=0}$$

$$= \alpha \beta$$

$$\therefore E(x) = \alpha \beta$$

$$var(X) = M''_X(\mathbf{0}) - [M'_X(\mathbf{0})]^2$$

$$M''_X(\mathbf{0}) = \frac{d}{dt} (M'_X(t)) \Big|_{t=0}$$

$$= \frac{d}{dt} (-\alpha) (1 - \beta t)^{-\alpha - 1} (-\beta) \Big|_{t=0}$$

$$= (-\alpha) (-\alpha - 1) (1 - \beta t)^{-\alpha - 2} (-\beta)^2 \Big|_{t=0}$$

$$= \alpha (\alpha + 1) \beta^2$$

$$\therefore Var(X) = \alpha(\alpha+1)\beta^2 - (\alpha\beta)^2 = \alpha\beta^2$$

Examples

Example 1. Let the waiting time W have a gamma p.d.f. with $\alpha = k$ and $\beta = 1/\lambda$. Accordingly, $E(W) = k/\lambda$. If k = 1, then $E(W) = 1/\lambda$; that is, the expected waiting time for k = 1 changes is equal to the reciprocal of λ .

Example 2. Let X be a random variable such that

$$E(X^m) = \frac{(m+3)!}{3!} 3^m, \qquad m = 1, 2, 3, \ldots$$

Then the moment-generating function of X is given by the series

$$M(t) = 1 + \frac{4! \ 3}{3! \ 1!} t + \frac{5! \ 3^2}{3! \ 2!} t^2 + \frac{6! \ 3^3}{3! \ 3!} t^3 + \cdots$$

This, however, is the Maclaurin's series for $(1-3t)^{-4}$, provided that -1 < 3t < 1. Accordingly, X has a gamma distribution with $\alpha = 4$ and $\beta = 3$.

Example Let X be a gamma random variable with parameters α and λ . Calculate (a) E[X] and (b) Var(X).

Solution (a)

$$E[X] = \frac{1}{\Gamma(\alpha)} \int_0^\infty \lambda x e^{-\lambda x} (\lambda x)^{\alpha - 1} dx$$
$$= \frac{1}{\lambda \Gamma(\alpha)} \int_0^\infty \lambda e^{-\lambda x} (\lambda x)^{\alpha} dx$$
$$= \frac{\Gamma(\alpha + 1)}{\lambda \Gamma(\alpha)}$$
$$= \frac{\alpha}{\lambda} \quad \text{by Equation (6.1)}$$

(b) By first calculating $E[X^2]$, we can show that

$$Var(X) = \frac{\alpha}{\lambda^2}$$

The details are left as an exercise.

Beta Distribution (β)

Definition

It can be defined as a gamma distribution with parameter values of $\alpha + \beta$ and 1.

Properties

- The beta distribution can be used to model a random phenomenon whose set of possible values is some finite interval [c, d]—which, by letting c denote the origin and taking d c as a unit measurement, can be transformed into the interval [0, 1].
- When a = b, the beta density is symmetric about 1 2, giving more and more weight to regions about 1 2 as the common value a increases.
- When a = b = 1, the beta distribution reduces to the uniform (0, 1) distribution.

ж

Figure 5.8 Beta densities with parameters (a, b) when a = b.

The beta function has the properties:

(a)
$$B(p,q) = B(q,p)$$

(b)
$$B(p, q + 1) = \frac{q}{p} B(p + 1, q) = \frac{q}{p+q} B(p, q)$$

(c)
$$B(p,q) B(p+q,r) = \frac{\Gamma(p) \Gamma(q) \Gamma(r)}{\Gamma(p+q+r)}$$

The Probability Density Function (PDF) of Beta Distribution

A random variable X is said to have a beta distribution with parameters $\alpha > 0$ and $\beta > 0$ if its density function (pdf) is given by:

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)} \qquad 0 \le x \le 1$$

In the second reference page 207:

$$f(x) = ... 0 < x < 1$$

Where:

$$\mathbf{B}(\alpha, \beta) = \int_{0}^{1} y^{\alpha-1} (1-y)^{\beta-1} dy$$

We often denote it by: $B(X; \alpha, \beta)$.

The Cumulative Distribution Function (CDF) of Beta Distribution

$$F(x) = \int_{0}^{x} f(x)dx$$

$$= \int_{0}^{x} \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)} dx$$

$$= \frac{1}{B(\alpha, \beta)} \int_{0}^{x} x^{\alpha - 1}(1 - x)^{\beta - 1} dx$$

From the definition of the incomplete beta function

$$B(X; \alpha, \beta) = \int_{0}^{x} x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$\therefore F(x) = \frac{B(X; \alpha, \beta)}{B(\alpha, \beta)}$$

The Moment Generating Function (MGF) of Beta Distribution

$$\begin{split} & M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX} f(x) dx \\ & = \int_{0}^{1} e^{tx} \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)} dx = \frac{1}{B(\alpha, \beta)} \int_{0}^{1} e^{tx} x^{\alpha - 1} (1 - x)^{\beta - 1} dx \\ & = \frac{1}{B(\alpha, \beta)} \int_{0}^{1} \left(\sum_{k=0}^{\infty} \frac{(tx)^k}{k!} \right) x^{\alpha - 1} (1 - x)^{\beta - 1} dx \\ & = \frac{1}{B(\alpha, \beta)} \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} \right) \int_{0}^{1} x^{\alpha + k - 1} (1 - x)^{\beta - 1} dx \\ & = \frac{1}{B(\alpha, \beta)} \left(\sum_{k=0}^{\infty} \frac{t^k}{k!} \right) \left(B(\alpha + k, \beta) \right) \\ & = \frac{B(\alpha + k, \beta)}{B(\alpha, \beta)} \left(\frac{t^0}{0!} \right) + \left(\sum_{k=1}^{\infty} \frac{t^k}{k!} \right) \left(\frac{B(\alpha + k, \beta)}{B(\alpha, \beta)} \right) \\ & = 1 + \sum_{k=1}^{\infty} \left(\frac{\Gamma(\alpha) \prod_{r=0}^{k} (\alpha + r)}{\Gamma(\alpha)} * \frac{\Gamma(\alpha + \beta) \prod_{r=0}^{k} (\alpha + \beta + r)}{\Gamma(\alpha + \beta) \prod_{r=0}^{k} (\alpha + \beta + r)} \right) \frac{t^k}{k!} \\ & = 1 + \sum_{r=0}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!} \end{split}$$

$$\therefore M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$$

Expectation and Variance of a Variable That Beta Distributed

Let X be a random variable beta distributed has $M_X(t) = 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$. Then:

$$E(X) = M'_X(\mathbf{0})$$

$$\frac{d}{dt} \left(1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!} \right) = \frac{d}{dt} 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!} \Big|_{t=0}$$

$$= \frac{\alpha}{\alpha + \beta}$$

$$\therefore E(X) = \frac{\alpha}{\alpha + \beta}$$

$$var(X) = M_X''(\mathbf{0}) - [M_X'(\mathbf{0})]^2$$

$$M_X''(\mathbf{0}) = \frac{d}{dt} (M_X'(t)) \Big|_{t=0}$$

$$= \frac{d^2}{dt^2} 1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!} \Big|_{t=0}$$

$$\therefore Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$

Examples

Example 3.3.6 (Dirichlet Distribution). Let $X_1, X_2, \ldots, X_{k+1}$ be independent random variables, each having a gamma distribution with $\beta = 1$. The joint pdf of these variables may be written as

$$h(x_1, x_2, \dots, x_{k+1}) = \begin{cases} \prod_{i=1}^{k+1} \frac{1}{\Gamma(\alpha_i)} x_i^{\alpha_i - 1} e^{-x_i} & 0 < x_i < \infty \\ 0 & \text{elsewhere.} \end{cases}$$

Solution:

Let

$$Y_i = \frac{X_i}{X_1 + X_2 + \dots + X_{k+1}}, \quad i = 1, 2, \dots, k,$$

and $Y_{k+1} = X_1 + X_2 + \dots + X_{k+1}$ denote k+1 new random variables. The associated transformation maps $\mathcal{A} = \{(x_1, \dots, x_{k+1}) : 0 < x_i < \infty, \ i = 1, \dots, k+1\}$ onto the space:

$$\mathcal{B} = \{ (y_1, \dots, y_k, y_{k+1}) : 0 < y_i, \ i = 1, \dots, k, \ y_1 + \dots + y_k < 1, \ 0 < y_{k+1} < \infty \}.$$

The single-valued inverse functions are $x_1 = y_1 y_{k+1}, \dots, x_k = y_k y_{k+1}, x_{k+1} = y_{k+1} (1 - y_1 - \dots - y_k)$, so that the Jacobian is

$$J = \begin{vmatrix} y_{k+1} & 0 & \cdots & 0 & y_1 \\ 0 & y_{k+1} & \cdots & 0 & y_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & y_{k+1} & y_k \\ -y_{k+1} & -y_{k+1} & \cdots & -y_{k+1} & (1 - y_1 - \cdots - y_k) \end{vmatrix} = y_{k+1}^k.$$

Hence the joint pdf of $Y_1, \ldots, Y_k, Y_{k+1}$ is given by

$$\frac{y_{k+1}^{\alpha_1+\cdots+\alpha_{k+1}-1}y_1^{\alpha_1-1}\cdots y_k^{\alpha_k-1}(1-y_1-\cdots-y_k)^{\alpha_{k+1}-1}e^{-y_{k+1}}}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_k)\Gamma(\alpha_{k+1})},$$

provided that $(y_1, \ldots, y_k, y_{k+1}) \in \mathcal{B}$ and is equal to zero elsewhere. By integrating out y_{k+1} , the joint pdf of Y_1, \ldots, Y_k is seen to be

$$g(y_1, \dots, y_k) = \frac{\Gamma(\alpha_1 + \dots + \alpha_{k+1})}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_{k+1})} y_1^{\alpha_1 - 1} \cdots y_k^{\alpha_k - 1} (1 - y_1 - \dots - y_k)^{\alpha_{k+1} - 1}, (3.3.10)$$

when $0 < y_i$, i = 1, ..., k, $y_1 + \cdots + y_k < 1$, while the function g is equal to zero elsewhere. Random variables $Y_1, ..., Y_k$ that have a joint pdf of this form are said to have a **Dirichlet pdf**. It is seen, in the special case of k = 1, that the Dirichlet pdf becomes a beta pdf. Moreover, it is also clear from the joint pdf of $Y_1, ..., Y_k, Y_{k+1}$ that Y_{k+1} has a gamma distribution with parameters $\alpha_1 + \cdots + \alpha_k + \alpha_{k+1}$ and $\beta = 1$ and that Y_{k+1} is independent of $Y_1, Y_2, ..., Y_k$.

Chi-Square Distribution (χ^2)

Definition

Let us now consider a special case of the gamma distribution in which $\alpha=r/2$, where r is a positive integer, and $\beta=2$. A random variable X of the continuous type.

The Probability Density Function (PDF) of Chi-Square Distribution

It has the same PDF of Gamma Distribution with parameters $\binom{r}{2}$, 2), so it is given by:

$$f(x) = \frac{x^{(r/2)-1}e^{-x/2}}{2^{r/2}\Gamma(r/2)}$$
 $0 < x < \infty$, $r > 0$

Where:

 $r \equiv A$ positive integer

$$\Gamma(r/2) = \int_{0}^{\infty} y^{(r/2)-1} e^{-y} dy$$

In which case, we often write that X has $\Gamma(\alpha, \beta)$ distribution.

The Cumulative Distribution Function (CDF) of Chi-Square Distribution

$$F(x) = \int_{0}^{x} f(x) dx$$

It has the same CDF of Gamma Distribution with parameters (r/2, 2)

$$\therefore$$
 CDF of Gamma Distribution $F(x) = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$

We can find the CDF of Chi-Square Distribution by assign its parameters (r/2, 2)

$$\therefore F(x) = \frac{\gamma(r/2, 2x)}{\Gamma(r/2)}$$

Where:

$$\mathbf{\gamma}(\mathbf{r}/\mathbf{2},\mathbf{2}\mathbf{x}) = \int_{0}^{2x} t^{(r/2)-1}e^{-t} dt$$

$$\mathbf{\Gamma}(\mathbf{r}/\mathbf{2}) = \int_{0}^{\infty} t^{(r/2)-1}e^{-t} dt$$

$$\Gamma(r/2) = \int_{0}^{\infty} t^{(r/2)-1} e^{-t} dt$$

The Moments Generating Function (MGF) of Chi-Square Distribution

It has the same MGF of Gamma Distribution with parameters (r/2, 2)

$$: MGF \ of \ Gamma \ Distribution \ M_X(t) = (1 - \beta t)^{-\alpha}$$

We can find the MGF of Chi-Square Distribution by assign its parameters (r/2,2)

$$\therefore M_X(t) = (1-2t)^{-r/2}$$

Expectation and Variance of a Variable That Chi-Square Distributed

Let X be a random variable chi-square distributed which is a spatial case of Gamma distribution when $\alpha = r/2$, and $\beta = 2$.

Then it will have the same expected value and variance so:

$$E(X) = M_X'(0)$$

: The expected value of a variable X that gamma distributed $E(x) = \alpha \beta$

We can find the expected value of a variable Y that chi-square Distributed by assign its parameters (r/2,2)

$$\therefore \mathbf{E}(\mathbf{Y}) = \left(\frac{r}{2}\right) 2 = \mathbf{r}$$

$$var(X) = M_X''(0) - [M_X'(0)]^2$$

: The variance of a variable X that gamma distributed $Var(X) = \alpha \beta^2$ We can find the expected value of a variable Y that chi-square Distributed by assign its parameters (r/2, 2)

$$\therefore Var(Y) = \left(\frac{r}{2}\right)2^2 = 2r$$

Examples

Example 3. If X has the p.d.f.

$$f(x) = \frac{1}{4}xe^{-x/2}, \qquad 0 < x < \infty,$$

= 0 elsewhere,

then X is $\chi^2(4)$. Hence $\mu = 4$, $\sigma^2 = 8$, and $M(t) = (1 - 2t)^{-2}$, $t < \frac{1}{2}$.

Example 4. If X has the moment-generating function $M(t) = (1 - 2t)^{-8}$, $t < \frac{1}{2}$, then X is $\chi^2(16)$.

If the random variable X is $\chi^2(r)$, then, with $c_1 < c_2$, we have

$$\Pr(c_1 \le X \le c_2) = \Pr(X \le c_2) - \Pr(X \le c_1),$$

since $Pr(X = c_1) = 0$. To compute such a probability, we need the value of an integral like

$$\Pr\left(X \leq x\right) = \int_0^x \frac{1}{\Gamma(r/2)2^{r/2}} \, w^{r/2-1} e^{-w/2} \, dw.$$

Tables of this integral for selected values of r and x have been prepared and are partially reproduced in Table II in Appendix B.

Related Distributions

Gamma Distribution

Let *X* be a gamma random variable with parameters α and β .

- (1) The random variable X has a **standard gamma distribution** if $\alpha = 1$.
- (2) If $\alpha = 1$ and $\beta = 1/\lambda$, then *X* has an **exponential distribution** with parameter λ .
- (3) If $\alpha = \nu/2$ and $\beta = 2$, then X has a **chi–square distribution** with ν degrees of freedom.
- (4) If $\alpha = n$ is an integer, then X has an **Erlang distribution** with parameters β and n.
- (5) If $\alpha = \nu/2$ and $\beta = 1$, then the random variable Y = 2X has a **chi-square distribution** with ν degrees of freedom.
- (6) As $\alpha \to \infty$, X tends to a **normal distribution** with parameters $\mu = \alpha \beta$ and $\sigma^2 = \alpha \beta^2$.
- (7) Suppose X_1 is a gamma random variable with parameters $\alpha=1$ and $\beta=\beta_1$, X_2 is a gamma random variable with parameters $\alpha=1$ and $\beta=\beta_2$, and X_1 and X_2 are independent. The random variable $Y=X_1/(X_1+X_2)$ has a **beta distribution** with parameters β_2 and β_2 .
- (8) Let X_1, X_2, \ldots, X_n be independent gamma random variables with parameters α and β_i for $i=1,2,\ldots,n$. The random variable $Y=X_1+X_2+\cdots+X_n$ has a **gamma distribution** with parameters α and $\beta=\beta_1+\beta_2+\cdots+\beta_n$.
- c 2000 by Chapman & Hall/CRC

Beta Distribution

Let *X* be a beta random variable with parameters α and β .

- (1) If $\alpha = \beta = 1/2$, then *X* is an **arcsin** random variable.
- (2) If $\alpha = \beta = 1$, then *X* is a **uniform** random variable with parameters a = 0 and b = 1.
- (3) If $\beta = 1$, then X is a **power function** random variable with parameters b = 1 and $c = \alpha$
- (4) As α and β tend to infinity such that α/β is constant, X tends to a **standard normal** random variable.

Chi-Square Distribution

- (1) If X is a chi–square random variable with r=2, then X is an **exponential** random variable with $\lambda=1/2$.
- (2) If X_1 and X_2 are independent chi–square random variables with parameters r_1 and r_2 , then the random variable $(X_1/r_1)/(X_2/r_2)$ has an F distribution with r_1 and r_2 degrees of freedom.
- (3) If X_1 and X_2 are independent chi–square random variables with parameters $r_1=r_2=r$, the random variable

$$Y = \frac{\sqrt{r}}{2} \frac{(X_1 - X_2)}{\sqrt{X_1 X_2}}$$

has a *t* distribution with *r* degrees of freedom.

- (4) Let X_i (for $i=1,2,\ldots,n$) be independent chi-square random variables with parameters v_i . The random variable $Y=X_1+X_2+\cdots+X_n$ has a **chi-square distribution** with $v=v_1+v_2+\cdots+v_n$ degrees of freedom.
- (5) If X is a chi–square random variable with v degrees of freedom, the random variable \sqrt{X} has a **chi distribution** with parameter v. Properties of a chi random variable:

$$f(x) = \frac{x^{\nu-1}e^{-x^2/2}}{2^{(\nu/2)-1}\Gamma(\nu/2)}$$

References

- ❖ Robert V. Hogg, Joseph W. McKean, Allen T. Craig. Introduction to Mathematical Statistics 8th Edition.
- ❖ Sheldon Ross. A First Course in Probability 9th Edition.
- ❖ Hogg Craig. Introduction to Mathematical Statistics 4th edition.
- ❖ Daniel Zwillinger. CRC Standard Probability and Statistics Tables and Formulae.
- Websites: proofwiki.org and statproofbook.github.io

The End

Written in: 24th of July 2024