Physics 262: SU(2) Conventions

Flip Tanedo

flip.tanedo@ucr.edu

Department of Physics & Astronomy, University of California, Riverside, CA 92521

Abstract

Some conventions for group theory. Corrections and additions welcome. We roughly follow chapter 3.2 of Georgi with slightly different conventions.

Contents

	Basis of Generators	
2	Weights	
3	Raising/Lowering Weights	
4	Finite Dimensional Representations	
	10 /	
	4.2 Recursion relation	
	4.3 Closed expression for the normalization	
5	Bottom of the ladder	

1 Basis of Generators

The SU(2) algebra is

$$[T^a, T^b] = i\varepsilon^{abc}T^c . (1.1)$$

Let us decompose these generators into a pair of raising/lowering operators T^{\pm} and the diagonal generator, T^3 . We choose to define the raising/lowering operators as:

$$T^{\pm} = T^1 \pm iT^2 \tag{1.2}$$

note that Georgi's definition differs by a factor of $1/\sqrt{2}$. These satisfy the commutation relations:

$$[T^3, T^{\pm}] = \pm T^{\pm} \tag{1.3}$$

$$[T^+, T^-] = 2T^3 (1.4)$$

2 Weights

The **weight**, m, of a state is the T^3 eigenvalue:

$$T^3 |m\rangle = m |m\rangle . {(2.1)}$$

The weight is an index for the different components of the representation.

3 Raising/Lowering Weights

The T^{\pm} operators increment the weight of a state by ± 1 . We can see this by applying T^3 to the state $T^{\pm} |m\rangle$:

$$T^{3}T^{\pm}|m\rangle = ([T^{3}, T^{\pm}] + T^{\pm}T^{3})|m\rangle = (m \pm 1)T^{\pm}|m\rangle$$
 (3.1)

The result is that acting on a state with T^{\pm} moves you to a new

4 Finite Dimensional Representations

Let us examine representations of SU(2) that have a finite number of weights—that is, a finite number of components. The T^{\pm} operators mean that given a state with some state $|m\rangle$, you can "rotate" to a different state $|m\pm 1\rangle$. We are interested in finite dimensional representations—objects with only a finite number of components (weights) that rotate into each other. Thus this ladder must truncate for some maximum and minimum weights. Let j be the **maximum weight** of the representation:

$$T^+ |j\rangle = 0. (4.1)$$

Let us sequentially derive the states of the representation by applying the lowering operator. What we want to find is the value of the *minimum weight* so that we will know that we have found all of the states.

We can assume that $|j\rangle$ is normalized. However, we have no guarantee that $T^-|j\rangle$ is normalized. Thus let us define a normalization

$$T^{-}|j\rangle = N_{j}|j-1\rangle , \qquad (4.2)$$

where $|j-1\rangle$ is normalized. Let's look at this first state below the maximum weight state.

4.1 Normalization of $|j-1\rangle$

We determine the normalization N_j by calculating the norm $||T^-|j\rangle||$:

$$\langle j| \left(T^{-}\right)^{\dagger} T^{-} |j\rangle = \langle j| T^{+} T^{-} |j\rangle \tag{4.3}$$

$$= \langle j | ([T^+, T^-] + T^- T^+) | j \rangle \tag{4.4}$$

$$= \langle j | 2T^3 | j \rangle \tag{4.5}$$

$$=2j. (4.6)$$

We have used $T^{+}|j\rangle = 0$. Using the definition of the normalized state $|j-1\rangle$, this must equal:

$$2j = |N_j|^2 \langle j - 1|j + 1 \rangle , \qquad (4.7)$$

so that we have found the normalization

$$N_j = \sqrt{2j} \ . \tag{4.8}$$

Next we should check the normalization of the $T^+|j-1\rangle$. To do this, we use the one strategy available: use the commutation relations to simplify the expression. Use the facts that

- 1. T^+ annihilates $|j\rangle$
- 2. $T^3 |m\rangle = m$.

Thus the raising of $|j-1\rangle$ gives:

$$T^{+}\left|j-1\right\rangle = T^{+}\left(\frac{1}{N_{j}}T^{-}\left|j\right\rangle\right) \tag{4.9}$$

$$= \frac{1}{N_j} ([T^+, T^-] + T^- T^+) |j\rangle$$
 (4.10)

$$=\frac{2j}{N_i}|j\rangle\tag{4.11}$$

$$=N_{j}\left| j\right\rangle . \tag{4.12}$$

In the last line we explicitly use $N_j = \sqrt{2j}$. We observe that raising $|j-1\rangle$ and lowering $|j\rangle$ produce the same normalization:

$$T^{-}|j\rangle = N_{j}|j-1\rangle \tag{4.13}$$

$$T^{+}\left|j-1\right\rangle = N_{j}\left|j\right\rangle \ . \tag{4.14}$$

4.2 Recursion relation

Now suppose that for some general weight $|m\rangle$ in our representation, we know that:

$$T^{-}|m+1\rangle = N_{m+1}|m\rangle \tag{4.15}$$

$$T^{+}|m\rangle = N_{m+1}|m+1\rangle$$
, (4.16)

where N_{m+1} is known and the states $|m\rangle$, $|m+1\rangle$ are normalized. This is the case with the 'top of the ladder,' (m+1) = 1. We now derive N_m and show that the same relation holds for $m \to (m-1)$. N_m is defined by

$$T^{-}|m\rangle = N_m|m-1\rangle . (4.17)$$

 N_m is fixed by requiring that $|m-1\rangle$ is normalized, $\langle m-1|m-1\rangle=1$. Then we have:

$$N_m^2 = \langle m | T^+ T^- | m \rangle \tag{4.18}$$

$$= \langle m | ([T^+, T^-] + T^- T^+) | m \rangle \tag{4.19}$$

$$=2m+N_{m+1}^2. (4.20)$$

We thus have a recursion relation for N_m in terms of N_{m+1} .

To complete the recursion, we must prove that

$$T^{+}\left|m-1\right\rangle = N_{m}\left|m\right\rangle \ . \tag{4.21}$$

The left-hand side is

$$T^{+}|m-1\rangle = T^{+}\left(\frac{1}{N_{m}}T^{-}|m\rangle\right) \tag{4.22}$$

$$= \frac{1}{N_m} \left([T +, T -] + T^- T^+ \right) |m\rangle \tag{4.23}$$

$$= \frac{1}{N_m} \left(2m |m\rangle + N_{m+1} T^- |m+1\rangle \right)$$
 (4.24)

$$= \frac{1}{N_m} \left(2m |m\rangle + N_{m+1}^2 |m\rangle \right)$$
 (4.25)

$$=N_m |m\rangle$$
 , (4.26)

where we have used the explicit result, (4.20).

4.3 Closed expression for the normalization

We can imagine writing down the relations for the squared normalizations:

Sum both sides of the equations and recognizing that there are (k+1) terms,

$$N_{j-k}^2 = 2(k-1)j - 2\frac{k(k+1)}{2}$$
(4.28)

$$= (k+1)(2j-k) . (4.29)$$

Rather than using "k steps below the highest weight," it is more tidy to use the normalization of the m^{th} rung of the ladder via k = j - m:

$$N_m = \sqrt{(j-m+1)(j+m)} \ . \tag{4.30}$$

5 Bottom of the ladder

In order for the representation to be finite, we need the ladder to truncate at the bottom. There is thus some a limit to the number of times you can hit the highest weight state $|j\rangle$ with T^- before it annihilates. Let this number be ℓ . Then we want to use

$$T^{-}|j-\ell\rangle = 0 \tag{5.1}$$

with the normalization $N_{j-\ell}$ to determine what this ℓ is.

$$N_{j-\ell} = \sqrt{(\ell+1)(2j-\ell)} \ . \tag{5.2}$$

Observe that $(\ell + 1) > 0$ since ℓ is a positive natural number. Then the requirement that the ladder terminates, $N_{j-\ell} = 0$, requires

$$\ell = 2j . (5.3)$$

From this we observe:

- 1. The highest weight $m_{\rm max}=j$ is half integer. It can be written as $\ell/2$ for some positive integer ℓ .
- 2. The lowest weight is simply $m_{\min} = -j$.