Crittografia Moderna A.A. 2024-25

Principi di base

Storicamente

- Schemi di cifratura progettati ad hoc
- Valutati basandosi sulla chiarezza, sull'ingegnosità del progetto e sulla difficoltà percepita di rottura
- Nessuna nozione condivisa di cosa significhi per uno schema essere "sicuro"
- Nessun modo per "produrre evidenza di ciò"

Crittografia moderna: pilastri

- Spostamento verso una "scienza"
- ▶ **Definizioni** rigorose di cosa significa "sicuro"
- Assunzioni circa la complessità di certi problemi matematici
- Dimostrazioni/prove che una costruzione è sicura

Principio 1: definizioni rigorose

Essenziali per la progettazione accurata, lo studio, la valutazione e l'uso di primitive crittografiche

"Se non è chiaro cosa si vuole ottenere, come è possibile stabilire quando (e se) il risultato è stato ottenuto?"

Principio 1: definizioni rigorose

Permettono di valutare ciò che è stato costruito

Permettono di comparare schemi

Definizioni: due componenti

- garanzie di sicurezza (security goal): da quali tipi di azioni di un attaccante lo schema protegge
- un modello delle minacce (threat model): che potere ha l'attaccante

Cosa dovrebbe garantire uno schema di cifratura sicuro?

Dovrebbe essere impossibile per un attaccante recuperare la chiave di cifratura? Lo schema

$$\mathbf{Enc}_{\mathsf{K}}(\mathsf{m}) = \mathsf{m}$$

non fornisce alcuna informazione su K ma è chiaramente insicuro.

- Dovrebbe essere impossibile per un attaccante recuperare l'intero testo in chiaro dal cifrato?
 - Si consideri uno schema di cifratura che protegge un database di dati sensibili e rivela il 90% del suo contenuto.
 - Siamo soddisfatti che il 10% è invece protetto?
- Dovrebbe essere impossibile per un attaccante recuperare qualsiasi carattere del messaggio in chiaro dal cifrato?
 - Sembra buona, ma ancora insufficiente.
 - In un database di dati finanziari potrebbe rivelare se alcune transazioni hanno valori maggiori o minori di una certa soglia
 - ▶ E poi, come formalizzare il "recupero di un carattere"?
 - Inoltre, provare ad indovinare è un attacco da considerare?

- La definizione giusta dovrebbe:
 - escludere il rilascio di informazioni utili da parte del cifrato
 - chiarire cosa debba essere considerato un attacco
- Ciò che richiediamo in fondo è che:

Indipendentemente da qualsiasi informazione l'attaccante possa già avere, un cifrato non dovrebbe rilasciare nessuna informazione aggiuntiva circa il sottostante messaggio in chiaro

- La definizione non cerca di definire quale tipo di informazione circa il messaggio in chiaro sia "significativa"
 - Nessuna informazione aggiuntiva deve essere rilasciata
 - Lo schema di cifratura è utile in tutte le potenziali applicazioni
- Cosa manca ancora? Una precisa formulazione di
 - conoscenza a-priori dell'attaccante sul messaggio in chiaro
 - cosa significa esattamente "rilasciare informazione"

- Cosa dovrebbe prevedere il modello delle minacce?
 - > specificare il potere dell'avversario, le sue abilità
 - non porre alcuna restrizione alle strategie d'attacco, cioè non fare alcuna assunzione su come usa le proprie abilità
- Nel contesto della cifratura, i modelli sono 4
- Ciphertext only
 - l'attaccante può solo osservare cifrati c, prodotti usando una chiave k
- Known-plaintext:
 - l'attaccante acquisisce coppie (m,c) in qualche modo, prodotte usando una chiave k

Chosen-plaintext

l'attaccante acquisisce coppie (m,c), scegliendo i valori di m, prodotte usando la chiave k

Chosen-ciphertext

l'attaccante acquisisce coppie (m,c), scegliendo i valori di c, prodotte usando la chiave k

Nota: definizioni e cybersecurity

- Definizioni: due componenti
 - garanzie di sicurezza (security goal): da quali tipi di azioni di un attaccante lo schema protegge
 - un modello delle minacce (threat model): che potere ha l'attaccante

La definizione dei security goal e del threat model (attack model) è un principio di base che si applica in generale nella cybersecurity, non soltanto in crittografia

Prove incondizionate

- La maggior parte delle costruzioni crittografiche moderne non possono essere provate sicure "incondizionatamente"
 - richiederebbe la risoluzione di questioni della teoria della complessità che oggi non hanno ancora risposta (e.g., P ≠ NP ?)

Polynomial time

Non-deterministic polynomial time

(problemi decisionali le cui soluzioni sono verificabili in polynomial time)

Intuizione: dato uno schema di cifratura

- ▶ Problema: sono $c_1, c_2, ..., c_n$ le cifrature di $m_1, m_2, ..., m_n$?
- Supponiamo di riuscire a provare incondizionatamente che lo schema di cifratura è sicuro, in accordo alla definizione data (i.e, le cifrature non danno alcuna informazione sui messaggi sottostanti) per qualsiasi avversario efficiente (i.e., di tempo polinomiale).
- D'altra parte, se qualcuno ci fornisse la chiave usata per cifrare i messaggi, potremmo verificare efficientemente se è vero o no.
- Siamo, quindi, di fronte ad un problema decisionale, la cui soluzione è verificabile in tempo polinomiale (i.e., dato un hint, la chiave) ma non risolvibile in tempo polinomiale.
- ▶ Ciò implicherebbe che la classe di complessità P, che contiene tutti i problemi che possono essere risolti efficientemente, è strettamente più piccola della classe NP, dei problemi le cui soluzioni possono essere verificate efficientemente
- Ovvero, ciò implicherebbe che P ≠ NP che sarebbe una soluzione alla questione più importante nella teoria della complessità computazionale

Principio 2: assunzioni

Le prove di sicurezza poggiano su **assunzioni** enunciate con chiarezza e rigore matematico

richiesto dalle prove ma anche per i motivi che seguono

Rigore matematico: permette

Validazione delle assunzioni

- enunciati che si "congettura" risultino veri
- più sono studiati, maggiore è la confidenza che vi riponiamo
- formulazioni imprecise ostacolano lo studio

Comparazione di schemi

- uno schema basato su un'assunzione più debole è preferibile ad uno schema basato su un'assunzione più forte
- se due assunzioni non sono confrontabili, dovrebbe preferirsi lo schema basato sull'assunzione studiata di più

Rigore matematico: permette

- Comprensione delle assunzioni necessarie
 - se uno schema è basato su "blocchi" e un blocco viene rotto, possiamo verificare se il problema è nel blocco o nell'assunzione

Assumere che uno schema è sicuro?

- Quando uno schema ha resistito con successo ad attacchi per molti anni, può essere ragionevole
- In generale questo approccio non è mai da preferirsi
- Ragioni più specifiche:
 - un'assunzione scrutinata per diversi anni è preferibile ad una nuova, magari ad hoc
 - assunzioni semplici sono preferibili
 - assunzioni di basso livello possono essere usate in svariate costruzioni
 - la progettazione può essere modulare, blocchi sostituibili

Principio 3: prove

- Definizioni ed assunzioni permettono di fornire prove che una costruzione soddisfa una data definizione sotto le assunzioni specificate
- Le prove sono assicurazioni del fatto che nessun attaccante, **relativamente** alla definizione ed alle assunzioni, avrà successo
- Meglio di un approccio "euristico" e non strutturato

non basato su principi chiari

Terminologia: prove ...

- Useremo entrambi i termini "dimostrazione" e "prova"
- Una locuzione più precisa ma più lunga sarebbe riduzione di sicurezza (security reduction)
 - gli enunciati che dimostreremo saranno del tipo: "se le Assunzioni x, y ... valgono, allora la Costruzione Π soddisfa la Definizione Z

specifica il security goal ed il threat model

Conclusioni: rigoroso vs ad hoc

... ma nel mondo reale soluzioni veloci sono spesso progettate seguendo un approccio ad hoc e valutazioni euristiche

Crittografia moderna: "scienza" e "arte"

- Molta della crittografia moderna poggia su solidi fondamenti matematici
- Ma è anche un'arte: occorre creatività nello sviluppo di
 - definizioni
 - assunzioni
 - prove
 - progettazione di primitive e protocolli crittografici
 - progettazione di strategie e tecniche di attacco

"Mondo reale" e "mondo delle prove"

Che relazione c'è tra i due mondi?

Occorre non sopravvalutare cosa una prova offre

- le garanzie sono in relazione alla definizione considerata ed alle assunzioni utilizzate
- sono un suggerimento all'avversario circa le "direzioni d'attacco" da non seguire ...
- l'efficacia di una prova dipende in maniera cruciale da quanto il mondo reale sia ben modellato dalla definizione

Conclusione

L'approccio delle riduzioni di sicurezza non conclude sicuramente l'eterna battaglia tra attaccanti e difensori, ma sposta sicuramente l'ago della bilancia dalla parte dei difensori