CSC 225

Algorithms and Data Structures I
Rich Little
rlittle@uvic.ca
ECS 516

Logarithms and Exponential Functions

 Review properties of Logarithms and exponents

$$\log_b a = c \text{ if } a = b^c$$

$$\log ac = \log a + \log c$$

$$\log a/c = \log a - \log c$$

$$\log a^c = c \log a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$b^{\log_c a} = a^{\log_c b}$$

$$(b^a)^c = b^{ac}$$

$$b^a/b^c = b^{a-c}$$

Asymptotic Notation

- Evaluating running time in detail as for arrayMax and recursiveMax is cumbersome
- Fortunately, there are asymptotic notations which allow us to characterize the main factors affecting an algorithm's running time without going into detail
- A good notation for large inputs

Name	Notation	Analogy			
Big-Oh	$f(n) \in O(g(n))$	" $f(n) \le g(n)$ "			
Little-Oh	$f(n) \in o(g(n))$	" $f(n) < g(n)$ "			
Big-Theta	$f(n) \in \Theta(g(n))$	"f(n) = g(n)"			
Big-Omega	$f(n) \in \Omega(g(n))$	" $f(n) \ge g(n)$ "			
Little-Omega	$f(n) \in \omega(g(n))$	" $f(n) > g(n)$ "			

Formal Definition of Big-Oh Notation

```
Let f \colon \mathbb{N} \to \mathbb{R} and g \colon \mathbb{N} \to \mathbb{R}. f(n) is O(g(n)) if and only if there exists a real constant c > 0 and an integer constant n_0 > 0 such that f(n) \le cg(n) for all n \ge n_0.

\mathbb{N} : \text{non-negative integers}
\mathbb{R} : \text{real numbers}
```

f(n) = 0

- We say
 - \triangleright f(n) is order g(n)
 - \rightarrow f(n) is big-Oh of g(n)
 - $ightharpoonup f(n) \in O(g(n))$
- Visually, this says that the f(n) curve must eventually fit under the cg(n) curve.

Big-Oh: Examples f(n) is O(?)

1.
$$f(n) = 4n + 20n^4 + 117$$
 $f(n) = 4n + 20n^4 + 117$
 $f(n) = 1083 \in O(1)$

2. $f(n) = 1083 \in O(1)$

3. $f(n) = 3\log n$

4. $f(n) = 3\log n + \log\log n \in O(\log n)$

7. $f(n) = 3\log n + \log\log n \in O(\log n)$

8. $f(n) = 3\log n + \log\log n \in O(\log n)$

7. $f(n) = 3\log n + \log\log n \in O(\log n)$

7. $f(n) = 3\log n + \log\log n \in O(\log n)$

8. $f(n) = 3\log n + \log\log n \in O(\log n)$

Theorem

- R1: If d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0
- R2: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n))
- R3: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n))
- R4: If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n))
- **R5:** If $f(n) = a_0 + a_1 n + ... + a_d n^d$, d and a_k are constants, then f(n) is $O(n^d)$
- R6: n^x is $O(a^n)$ for any fixed x > 0 and a > 1
- R7: $\log n^x$ is $O(\log n)$ for any fixed x > 0
- R8: $\log^x n$ is $O(n^y)$ for any fixed constants x > 0 and y > 0

Proof of R1

R1: If
$$d(n)$$
 is $O(f(n))$, then $ad(n)$ is $O(f(n))$, for any constant $a > 0$

Let $d(n) \in O(f(n))$ and let $a \neq 0$.

Where $ad(n) \in A(n) \in A(n)$ is $ad(n) \in A(n)$.

Where $ad(n) \in A(n) \in A(n)$ is $ad(n) \in A(n)$.

Where $ad(n) \in A(n)$ is $ad(n) \in A(n)$.

Where $ad(n) \in A(n)$ is $ad(n) \in A(n)$.

And $ad(n) \in A(n)$ is $ad(n) \in A(n)$.

$$k = ac 70, n, = n_0 > 0$$
i. $adn \in O(f(n))$

Proof of R2

R2: If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n))

U.T.s.: $\exists C, n_0 > 0$ such that $d(n) + C(n) \neq C(f(n) + g(n))$

We know $\exists c_1, c_2, n_3, n_2 \neq 0$, such that $d(n) \neq c_1, f(n)$ for all $n \geq n_1$, $c(n) \neq c_2g(n)$ for all $n \geq n_2$

 $d(n) + R(n) \leq C_1f(n) + C_2g(n)$ [let $G = max(G_1)$) $\leq G_1f(n) + G_2g(n) = G_2f(n) + G_2g(n)$ 8

Names of Most Common Big Oh Functions

- Constant O(1)
- Logarithmic $O(\log n)$
- Linear O(n)
- Linearithmic $O(n \log n)$
- Quadratic $O(n^2)$
- Polynomial $O(n^k)$, k is a constant

- Exponential $O(2^n)$
- Exponential $O(a^n)$, a is a constant and a > 1
- · Factorial O(n)

Quiz

Which statement is True?

Quiz: 2^n is O(n!) is true

Proof. Let
$$n_0 = 4$$
 and $c = 1$ and show that $2^n < n!$ for all $n \ge n_0$ using induction.

B.L: Let $n = 4$, $C = 1$
 $2^{4} = 16^{6}$, $4! = 24^{6}$ so $2^{4} \le 4^{4}$.

The: Let $n = k \ge 4^{6}$ assume $2^{k} \le k!$

List: Let $n = k \ge 4^{6}$ assume $2^{k} \le k!$
 $2^{k+1} = 2 \cdot 2^{k} \le 2^{k} \le k!$ by J.H.

Let $(k+1) \cdot k! = (k+1)$.

Most Common Functions in Algorithm Analysis Ordered by Growth

Functions Ordered by Growth and Rate

n	log n	n	n log n	$\frac{n^2}{-}$	n ³	2 ⁿ	n!
<u>10</u>	3.3	10	33	102	10^{3}	10^{3}	10^{6}
10 ²	6.6	102	$\underbrace{6.6 \times 10^2}_{0$	104	106	1030	10158
103	10	10^{3}	10×10^3	106	109		
104	13	10^{4}	13 x10 ⁴	108	10^{12}		/
10 ⁵	17	105	17 x10 ⁵	1010	10^{15}		
10 ⁶	20	10^{6}	20 x10 ⁶	1012	1018		

Assume a computer executing 10^{12} operations per second.

To execute 2^{100} operations takes 4 x 10^{10} years.

To execute 100! operations takes much longer still.

Functions Ordered by Growth and Rate

- log *n*
- $\log^2 n$
- \sqrt{n}
- n
- $n \log n$
- n^2
- n^3

 $P \rightarrow class of polynomial time algorithms$

• 2ⁿ

NP = class of *nondeterministic* polynomial time algorithms

A million (US-) dollar question

http://www.claymath.org/millennium/P_vs_NP/

- P = NP?
- Obviously $P \subseteq NP$.
- There is a bunch of problems (so called NP-complete problems) for which one assumes that none of those can be solved in polynomial time.
- Examples: <u>Graph coloring</u>, <u>Independent Set</u>, Generalized 15-Puzzle
- Widely assumed: $P \neq NP$