

THE CHEAT SHEET FOR PYTHON DATA STRUCTURES

THE CHEAT SHEET FOR PYTHON DATA STRUCTURES

BUILT IN DATA STRUCTURES

Lists

for storing multiple items in a single variable

- Changeable the data can be removed, added, or changed
- Ordered
 the data order is defined and unchanged
- Duplicates
 it can contain data of the same values

for storing values in the key-value pairs

- Changeable the data can be removed, added, or changed
 - **Ordered** the data order is defined and unchanged
 - No Duplicates it can't contain data of the same values

BUILT IN DATA STRUCTURES

Set

for storing multiple items in a single variable

- Unchangeable
 the data can't be removed, added, or
 changed after creating the set
- Unordered
 the data order is not defined and will change
 with every use of the list
- No Duplicates
 it can't contain data of the same values

for storing multiple items

in a single variable

Unchangeable •

the data can't be removed, added, or changed after creating the set

Ordered •

the data order is defined and unchanged

Duplicates

it can contain data of the same values

for storing and retrieving data sequentially,

e.g., as temporary storage of data within procedures

- Linear data structure
 data is arranged in a linear manner where every new element is
 linked to the previous and/or next element
- Last In-First Out (LIFO) or First In-Last Out (FILO) method
 adding a new element to one end and deleting it from the same end

for storing and retrieving data sequentially,

e.g., as a control of access to shared resources

- Linear data structure
 data is arranged in a linear manner where every new element is
 linked to the previous and/or next element
- First In-First Out (FIFO) method adding a new element to one end and deleting the element from the other end (the least recent element)

USER-DEFINED DATA STRUCTURES

for storing and retrieving hierarchical data,

e.g., the organizational structure of a company

- Hierarchical data structure
 data is arranged hierarchically with data represented with nodes and
 children nodes, with each node holding a reference to every child node
- Two children
 each node has a maximum of two children (left and right)
- Node reference ≥ right child node
 a reference stored in the node is always equal to or greater than
 the reference stored in the left child node
- Node reference ≤ left child node
 a reference stored in the node is always equal to or less than
 the reference stored in the right child node

Linked List

for storing and retrieving data sequentially in the form of nodes that contain its data and the address of the following node, e.g., dynamic memory allocation

- Linear data structure data is arranged in a linear manner where data is linked by pointers
- Randomness
 nodes are stored randomly in the memory

for storing the data through the key-value pair and making data insertion, deletion, update, and retrieval quicker

- Indexed data structure
 maps the element's key or index value and calculates it using the hash function
- Key-value pair assigns each element a key-value pair

USER-DEFINED DATA STRUCTURES

Graph

for storing and retrieving data sequentially in the form of nodes that contain its data and the address of the following node, e.g., dynamic memory allocation

- Linear data structure data is arranged in a linear manner where data is linked by pointers
- Randomness
 nodes are stored randomly in the memory

SPECIALIZED DATA STRUCTURES

namedtuple()	Gives a descriptive name to each position in the tuple and is used for accessing values instead of indices.
deque	A double-ended queue where elements can be added or removed from both left and right sides.
ChainMap	Groups multiple dictionaries and other mappings to create a single updateable view.
Counter	A dictionary subclass that counts hashable objects storing them as keys andcounting them as values.
OrderedDict	A dictionary subclass that keeps the order in which the items are inserted into the dictionary.
defaultdict	A dictionary subclass for assigning each new key with a default value based on the dictionary type.
UserDict	A class that simulates the dictionary and simplifies dictionary subclassing.
UserList	A class that simulates the list and simplifies list subclassing.
UserString	A class that simulates the string and simplifies string subclassing.

For more data science tips

@stratascratch

