1. (9.1) (Game: Odd or Even) Write a **function** that lets the user guess whether a randomly generated number is odd or even. The function randomly generates an integer between 0 and 9 (inclusive) and returns whether the user's guess is correct or incorrect. The argument for the function will be *guess* (the user's guess, either "odd" or "even"), if no argument is provided then the **default** guess should be even.

Hint: Use the following lines of code to create the function.

```
from random import randint
value = randint(0,9) #picks a random integer between 0-9 inclusive
```

Examples:

- guess() \rightarrow "Correct!" (if random value is even) or "Incorrect!" (if random value is odd)
- guess("odd") \rightarrow "Correct!" (if random value is odd) or "Incorrect!" (if random value is even)
- guess("even") \rightarrow "Correct!" (if random value is even) or "Incorrect!" (if random value is odd)
- 2. (9.2) Write a **function** named *is_two_digit_number* that returns a boolean value which determines if an integer is a two digit number. Write a second function named *report_two_digit_numbers* that takes a list of integers and returns a new list containing all the two digit numbers from the original list. Call the *is_two_digit_number* function as part of the *report_two_digit_numbers* function.

Hint: a two digit number is one in the range $[-99, -10] \cup [10, 99]$.

Examples:

- report_two_digit_numbers([100,57,12,1]) \rightarrow [57,12]
- report_two_digit_numbers([121,36,-19,-6,0,21]) \rightarrow [36,-19,21]
- report_two_digit_numbers([100,7,8437]) \rightarrow []

1. (9.1) Write a **function** that takes two arguments, a list and a value. The function should return the indices of all occurrences of the *value* in the list, if no argument is provided then the **default** should be to find 0.

Examples:

- get_indices([1, 0, 5, 0, 7]) \rightarrow [1, 3]
- get_indices([1, 5, 5, 2, 7], 7) \rightarrow [4]
- get_indices([1, 5, 5, 2, 7]) \rightarrow []
- get_indices([1, 5, 5, 2, 7], 5) \rightarrow [1, 2]
- get_indices($[1, 5, 5, 2, 7], 8) \rightarrow []$
- 2. (9.2) Write a **function** named *is_vowel* that returns a boolean value which determines if an letter is a vowel. Write a second function named *report_vowels* that takes a string and returns a list containing all the vowels from the original string. Call the *is_vowel* function as part of the *report_vowels* function.

Hint: In the English language, the letters a, e, i, o, and u are the vowels.

Examples:

- report_vowels("apple") \rightarrow [a,e]
- report_vowels("banana") \rightarrow [a,a,a]
- report_vowels("run time error") \rightarrow [r,i,e,e,o]

1. (9.1) (Game: Odd or Even) Write a **function** that lets the user guess whether a randomly generated number is odd or even. The function randomly generates an integer between 0 and 9 (inclusive) and returns whether the user's guess is correct or incorrect. The argument for the function will be *guess* (the user's guess, either "odd" or "even"), if no argument is provided then the **default** guess should be even.

Hint: Use the following lines of code to create the function.

```
from random import randint
value = randint(0,9) #picks a random integer between 0-9 inclusive
```

Examples:

- guess() \rightarrow "Correct!" (if random value is even) or "Incorrect!" (if random value is odd)
- guess("odd") \rightarrow "Correct!" (if random value is odd) or "Incorrect!" (if random value is even)
- guess("even") → "Correct!" (if random value is even) or "Incorrect!" (if random value is odd)
- 2. (9.2) Write a **function** named *is_even* that returns a boolean value which determines if an integer is even. Write a second function named *report_evens* that takes a list of integers and returns a new list containing all the even numbers from the original list. Call the *is_even* function as part of the *report_evens* function.
 - report_evens([4,3,12,16,8,9,25]) $\rightarrow [4,12,16,8]$
 - report_evens([6,100,3,12,16,6,9,100]) $\rightarrow [6,100,12,16,6,100]$
 - report_evens([3,99,7,13,25]) \rightarrow []

1. (9.1) Write a **function** that returns the number of copies of the same number. The arguments for the function will be num_1 (first number), num_2 (second number), and num_3 (third number), if no argument is provided then the **default** for all 3 values should be 0.

Examples:

- count_duplicates $(2, 3, 2) \rightarrow$ "There are 2 of the same number",
- count_duplicates $(4, 4, 4) \rightarrow$ "There are 3 of the same number",
- count_duplicates(1, 2, 3) \rightarrow "Each number is unique"
- count_duplicates(1) \rightarrow "There are 2 of the same number"
- count_duplicates(0) \rightarrow "There are 3 of the same number"
- 2. (9.2) Write a **function** named *is_two_digit_number* that returns a boolean value which determines if an integer is a two digit number. Write a second function named *report_two_digit_numbers* that takes a list of integers and returns a new list containing all the two digit numbers from the original list. Call the *is_two_digit_number* function as part of the *report_two_digit_numbers* function.

Hint: a two digit number is one in the range $[-99, -10] \cup [10, 99]$. **Examples:**

- report_two_digit_numbers([100,57,12,1]) $\rightarrow [57,12]$
- report_two_digit_numbers([121,36,-19,-6,0,21]) \rightarrow [36,-19,21]
- report_two_digit_numbers([100,7,8437]) \rightarrow []