CURS 8

Subspaţiu generat. Transformări liniare

Fie $(K, +, \cdot)$ un corp comutativ și V un K-spațiu vectorial.

Din cursul anterior:

- Fie $A \subseteq V$. Sunt echivalente următoarele afirmații:
- 1) A este subspațiu al lui V.
- 2) A verifică condițiile:
 - α) $0 \in A$;
 - β') $a_1, a_2 \in A \Rightarrow a_1 + a_2 \in A$;
 - γ) $\alpha \in K$, $a \in A \Rightarrow \alpha a \in A$.
- 3) A verifică condițiile:
 - α) $0 \in A$;
 - β'') $\alpha_1, \alpha_2 \in K$, $a_1, a_2 \in A \Rightarrow \alpha_1 a_1 + \alpha_2 a_2 \in A$.
- Dacă $X \subseteq V$ atunci $\langle X \rangle = \bigcap \{A \leq_K V \mid X \subseteq A\}$ este subspațiul lui V generat de X.
- Din definiția subspațiului generat rezultă:
 - a) $\langle \emptyset \rangle = \{0\} = \langle 0 \rangle$;
 - b) $X, Y \subseteq V, X \subseteq Y \Rightarrow \langle X \rangle \subseteq \langle Y \rangle$;
 - c) $A \leq_K V \Rightarrow \langle A \rangle = A$;
 - d) $X \subseteq V \Rightarrow \langle \langle X \rangle \rangle = \langle X \rangle$.
- Dacă $\emptyset \neq X \subseteq V$ atunci $\langle X \rangle$ este format din toate combinațiile liniare de elemente din X.

$$A_1 + \dots + A_n = \langle A_1 \cup \dots \cup A_n \rangle$$
. $\leftarrow + \alpha$

• Dacă
$$A, B \leq_K V$$
 atunci $A + B = \langle A \cup B \rangle$. $A + B = \langle \alpha + 6 / \alpha \in A, b \in B \rangle$
• Dacă A_1, \ldots, A_n sunt subspații ale K -spațiului vectorial V , atunci
$$A_1 + \cdots + A_n = \langle A_1 \cup \cdots \cup A_n \rangle. \longleftarrow \text{tenā}$$
• Dacă $X_i \subseteq V$ $(i = 1, \ldots, n)$, atunci $\langle X_1 \cup \cdots \cup X_n \rangle = \langle X_1 \rangle + \cdots + \langle X_n \rangle$. $\uparrow X_i = A_i$ $\downarrow i = 1, \dots$ Subspatio

$$\underline{\underline{\text{deu}}}; \subseteq \text{"} \qquad \times_i \subseteq \langle \times_i \rangle \subseteq \langle \times_1 \rangle + ... + \langle \times_n \rangle + ... + \langle \times_n \rangle \rightarrow ...$$

$$\implies \times_1 \cup ... \cup \times_n \subseteq \langle \times_1 \rangle + + \langle \times_n \rangle \implies$$

$$\chi_{i} \subseteq \chi_{1} \cup ... \cup \chi_{n} \Longrightarrow \langle \chi_{i} \rangle \subseteq \langle \chi_{1} \cup ... \cup \chi_{n} \rangle \quad (i = \overline{1, n})$$

$$\Rightarrow \langle X_1 \rangle + \dots + \langle X_n \rangle \subseteq \langle X_1 \cup \dots \cup X_n \rangle + \dots + \langle X_1 \cup \dots \cup X_n \rangle \subseteq \langle X_1 \cup \dots \cup X_n \rangle$$

Am văzut că suma a două subspații este un subspațiu.

Definiția 1. Dacă A și B sunt subspații ale lui V și $A \cap B = \{0\}$, subspațiul A + B se notează cu $A \oplus B$ și se numește **suma directă** a lui A și B.

În particular, $V=A\oplus B$ dacă și numai dacă au loc următoarele:

i)
$$A+B=V;$$
 \supseteq now (\subseteq are loc into the anna)

ii)
$$A \cap B = \{0\}$$
. \subseteq -4- \subseteq - 4- \subseteq - 4- \subseteq -4- \subseteq -4-

În acest caz, spunem că A (sau B) este **sumand** (sau **sumant**) **direct** al lui V (prin urmare, A şi B sunt sumanzi (sumanţi) direcţi ai lui V). De asemenea, spunem că A este un **complement direct** al lui B (în V); la fel B pentru A.

Observațiile 2. a) Pentru un sumand direct pot exista mai mulți complemenți direcți.

$$\underline{Ex}: \ \lor = \mathbb{R}^2, \ A = \{(a,0)/a \in \mathbb{R}\} \leq_{\mathbb{R}} \mathbb{R}^2$$

$$K = \mathbb{R} \qquad B = \{(0,6)/b \in \mathbb{R}\} \leq_{\mathbb{R}} \mathbb{R}^2$$

$$C = \{(c,c)/c \in \mathbb{R}\} \leq_{\mathbb{R}} \mathbb{R}^2$$

$$A + B = \{(a,0) + (0,6)/a, b \in \mathbb{R}\} = \mathbb{R}^2 \Rightarrow$$

$$A \cap B = \{(0,0)\}$$

$$\Rightarrow \mathbb{R}^2 = A \oplus B.$$

$$A + C = \{(a,0) + (c,c)/a, c \in \mathbb{R}\} = \{(a+c,c)/a, c \in \mathbb{R}\} \subseteq \{(b,c)/b, c \in \mathbb{R}\}$$

$$A \cap C = \{(0,0)\}$$

$$Luauu = b - c$$

$$\implies \mathbb{R}^2 = A \oplus \mathbb{C}.$$

$$\text{Evident}, \quad \mathbb{C} \neq \mathcal{B} \qquad \Big((1,1) \in \mathbb{C}, (1,1) \notin \mathcal{B} \Big).$$

b) Proprietatea de a fi sumand direct este tranzitivă (la seminar).

K

Definiția 3. Fie V, V' două K-spații vectoriale. O funcție $f: V \to V'$ se numește **transformare** liniară (sau funcție liniară sau aplicație liniară sau morfism de K-spații vectoriale) dacă

$$f(x_1 + x_2) = f(x_1) + f(x_2), \ \forall x_1, x_2 \in V$$
 (1)

$$f(\alpha x) = \alpha f(x), \ \forall x \in V, \ \forall \alpha \in K.$$
 (2)

O transformare liniară bijectivă se numește **izomorfism** de spații liniare. O transformare liniară a unui spațiu vectorial V în V se numește **endomorfism** al lui V. Un endomorfism bijectiv al lui K0 se numește **automorfism** al lui V0.

Observațiile 4. a) O funcție $f: V \to V'$ este liniară dacă și numai dacă

$$f(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 f(x_1) + \alpha_2 f(x_2), \ \forall x_1, x_2 \in V, \ \forall \alpha_1, \alpha_2 \in K.$$
 (3)

dun: == " of transf. liviara == (3)

The X, X, EY, X, X, EK arbitrare. Atunci

$$f(\alpha_1 \kappa_1 + \alpha_2 \kappa_2) \stackrel{(1)}{=} f(\alpha_1 \kappa_1) + f(\alpha_2 \kappa_2) \stackrel{(2)}{=} \alpha_1 f(\kappa_1) + \alpha_2 f(\kappa_2)$$

b) Dacă $f: V \to V'$ este o transformare liniară, atunci

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n), \forall x_1, \dots, x_n \in V, \forall \alpha_1, \dots, \alpha_n \in K.$$

$$\underline{\text{den}} : \text{Induction dup\bar{a} with ψ} \left(\underline{\text{den}} \ \underline{\text{dup}} \ \underline{\text{du$$

c) Dacă $f:V\to V'$ este o transformare liniară, atunci f este un morfism între grupurile (V,+) și (V',+) de unde rezultă

$$f(0) = 0 \text{ si } f(-x) = -f(x), \ \forall x \in V.$$

d) Dacă V, V' și V'' sunt K-spații vectoriale și $\underline{f: V \to V'}, \underline{g: V' \to V''}$ sunt transformări liniare, atunci $g \circ f$ este transformare liniară. $\underbrace{f: V \to V'}, \underline{g: V' \to V''}$

$$\frac{duu}{duu} = fie \quad \forall x, y \in X \quad Aratoun \ ca$$

$$(g \circ f)(\alpha x + \beta y) \stackrel{?}{=} \quad \forall (g \circ f)(x) + \beta(g \circ f)(y)$$

$$(g \circ f)(\alpha x + \beta y) = g(f(\alpha x + \beta y)) \stackrel{?}{=} g(\alpha f(x) + \beta f(y)) \stackrel{g}{=} g(\alpha f(x)) + \beta f(y) = g(\alpha f(x)) + g(\alpha f(y)) = g(\alpha f(x)) + g(\alpha f(x))$$

e) Dacă $f:V\to V'$ este un izomorfism de spații vectoriale, atunci și $f^{-1}:V'\to V$ este izomorfism de spații vectoriale, adică

$$f^{-1}(\alpha_{1}y_{1} + \alpha_{2}y_{2}) = \alpha_{1}f^{-1}(y_{1}) + \alpha_{2}f^{-1}(y_{2}), \forall y_{1}, y_{2} \in V', \forall \alpha_{1}, \alpha_{2} \in K.$$

$$\underbrace{f}^{-1}(\beta_{1}y_{1} + \alpha_{2}y_{2}) = \alpha_{1}f^{-1}(y_{1}) + \alpha_{2}f^{-1}(y_{2}), \forall y_{1}, y_{2} \in V', \forall \alpha_{1}, \alpha_{2} \in K.$$

$$\underbrace{f}^{-1}(\beta_{1}y_{1} + \alpha_{2}y_{2}) = f^{-1}(\alpha_{1}y_{1} + \alpha_{2}f(x_{2})) + \alpha_{2}f(x_{2}) + \alpha_{2}f(x_{2}) = f^{-1}(\alpha_{1}y_{1} + \alpha_{2}x_{2}) = f^{-1}(\alpha_{1}y_{1} + \alpha_{2}y_{2}) = f^{-1}(\alpha_{1}y_{1} + \alpha_{2}y_{2})$$

f) Fie V un K-spaţiu vectorial, $End_K(V)$ mulţimea endomorfismelor K-spaţiului vectorial V. Din Observaţia 4 d) rezultă că $End_K(V)$ este stabilă în monoidul (V^V, \circ) , iar $(End_K(V), \circ)$ este monoid.

g) Grupul elementelor inversabile ale monoidului $(End_K(V), \circ)$ este $(Aut_K(V), \circ)$, unde $\underline{Aut_K(V)}$ este mulțimea automorfismelor spațiului vectorial V.

$$U(\text{End}_{K}(V)) = \{f \in \text{End}_{K}(V) \mid f \text{ bijechva} \ \mathcal{J} = \{f : V \rightarrow V \mid f \text{ autou.}_{K} V \}$$

$$\implies \text{Aut}_{K}(V) \neq 8. \text{ in } (\text{End}_{K}(V), \circ) \text{ by } (\text{Aut}_{K}(V), \circ) \text{ grup}$$

$$\stackrel{\text{log. ind.}}{\sim} \text{op. ind.}$$

h) Dacă $f:V\to V'$ este transformare liniară și
 $X\subseteq V,$ atunci

$$f(\langle X \rangle) = \langle f(X) \rangle.$$

$$\underline{din} \vee [5]$$

$$\underline{din} \vee [5]$$

$$\underline{din} \vee [5]$$

$$\underline{din} \vee [5]$$

$$= \langle f(\langle X \rangle) = f(\langle 0 \rangle) = \langle f(0) \rangle = \langle 0 \rangle = \langle f(\phi) \rangle$$

$$\underline{din} \vee [5]$$

$$= \langle f(\langle X \rangle) = f(\langle 0 \rangle) = \langle f(0) \rangle = \langle 0 \rangle = \langle f(\phi) \rangle$$

$$\underline{din} \vee [5]$$

$$\underline{din} \vee [6]$$

$$\underline{di$$

$$= \left\{ \alpha_{1} y_{i} + \cdots + \alpha_{n} y_{n} \mid \alpha_{i} \in K, y_{i} \in \underline{f(x)}, i = \overline{l, n}, n \in \mathbb{N} \right\} = \left\langle f(x) \right\rangle$$

Exemplele 5. a) Pentru orice K-spaţii vectoriale V şi V' funcţia $\theta:V\to V',\ \theta(x)=0$ este o transformare liniară numită transformarea liniară nulă sau zero. Într-adevăr,

$$\theta(\alpha_1 x_1 + \alpha_2 x_2) = 0 = 0 + 0 = \alpha_1 0 + \alpha_2 0 = \alpha_1 \theta(x_1) + \alpha_2 \theta(x_2), \ \forall x_1, x_2 \in V, \ \forall \alpha_1, \alpha_2 \in K.$$

- b) Pentru orice K-spaţiu vectorial V aplicaţia identică $1_V: V \to V$, $1_V(x) = x$ este automorfism al lui V. Acest automorfism este element neutru în $(End_K(V), \circ)$.
 - c) Fie $\varphi \in \mathbb{R}$ fixat. Rotația planului de unghi φ , adică funcția

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \ f(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

este o transformare liniară (la seminar).

d) Fie $a, b \in \mathbb{R}$, a < b, I = [a, b], $C(I, \mathbb{R}) = \{f : I \to \mathbb{R} \mid f \text{ continuă pe } I\}$. Funcția

$$F: C(I, \mathbb{R}) \to \mathbb{R}, \ F(f) = \int_a^b f(x) dx$$

este o transformare liniară.

Într-adevăr, pentru orice $f, g \in C(I, \mathbb{R})$ și $\alpha, \beta \in \mathbb{R}$ avem

$$F(\alpha f + \beta g) = \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \alpha F(f) + \beta F(g).$$

Teorema 6. Fie V şi V' K-spaţii vectoriale. Dacă $f,g:V\to V'$ şi $\alpha\in K$, atunci definim $f+g:V\to V'$ şi $\alpha f:V\to V'$ prin

$$(f+g)(x) = f(x) + g(x) \tag{6}$$

$$(\alpha f)(x) = \alpha f(x). \tag{7}$$

- 1) Dacă f și g sunt transformări liniare, atunci f + g este o transformare liniară.
- 2) Dacă f este transformare liniară, atunci αf este transformare liniară.

$$\frac{\partial eue}{(f+g)(\beta x+fy)} = \beta f + g(x) + f(f+g)(y)$$

$$\frac{(f+g)(\beta x+fy)}{(\beta x+fy)} = f(\beta x+fy) + g(\beta x+fy) = \frac{(3)}{\beta f(x)} + f(y) + \frac{(3)}{\beta g(x)} + \frac{(3)}{\beta g$$

2) Fix
$$x, y \in V$$
, $\beta, \gamma \in K$ Aratau cā:
$$(\alpha f)(\beta x + \gamma y) = \beta (\alpha f)(x) + \beta (\alpha f)(y)$$

Reaccinfine ca $(V')' = \{f \mid f : V \rightarrow V'\}$ este K- M vect in rap cu op definite ca in (6) of (7), adica punctual (ver secuinar) thous $(V, V') = \{f : V \rightarrow V' \mid f \text{ transf. linear a de } K - M \text{ vect. 3}.$

Corolarul 7. a) Mulţimea $Hom_K(V, V')$ a transformărilor liniare ale lui V în V' este stabilă în raport cu operaţia definită de (6) şi $(Hom_K(V, V'), +)$ este grup abelian.

$$\theta: V \rightarrow V'$$
 transf. Uniara (resi exemple) \leftarrow elemental mel $f: V \rightarrow V'$ $\rightarrow a \longrightarrow (-f: V \rightarrow V'), (-f)(x) = -f(x)$ transf. limiara

b) Mulțimea $Hom_K(V,V')$ este stabilă în raport cu operațiile definite în (6) și (7) și $Hom_K(V,V')$ este K-spațiu vectorial în raport cu operațiile induse de acestea.

$$\frac{\text{dem}:}{\text{Hom}_{K}(V,V')} \leqslant_{K} (V')^{X} \leftarrow \text{ols. a) } \S^{1} \text{ 7.6., 2}$$

$$V = V^{1} \Longrightarrow \text{Hom}_{K}(V,V) = \text{End}_{K}(V)$$

c) Grupul abelian $(End_K(V), +)$ este un K-spațiu vectorial în raport cu operația externă definită de (7). Mai mult, compunerea \circ a endomorfismelor K-spatiului vectorial V este distributivă față de +, prin urmare avem și o structură de inel cu unitate pe $End_K(V)$, și anume $(End_K(V), +, \circ)$.

El unitate este
$$1_V: V \rightarrow V$$
, $1_V(x) = X$ (autour. V).

d) $End_K(V)$ este o K-algebră cu unitate.

$$\forall f, g \in End_k(V), \forall \alpha \in K$$

 $\alpha (f \circ g) = (\alpha f) \circ g = f \circ (\alpha g) \qquad (fema)$

Teorema 8. Dacă $f: V \to V'$ este o transformare liniară, atunci:

- 1) Im $f = \{f(x) \mid x \in V\}$ (adică **imaginea** lui f) este un subspațiu al lui V'.
- 2) Ker $f = \{x \in V \mid f(x) = 0\}$ este un subspațiu al lui V numit **nucleul** lui f.
- 3) Transformarea liniară f este injectivă dacă și numai dacă $\operatorname{Ker} f = \{0\}$. \leftarrow caract. inj esue i transformarea liniară f este injectivă dacă și numai dacă $\operatorname{Ker} f = \{0\}$. \leftarrow caract. inj esue i transformarea liniară f este injectivă dacă și numai dacă $\operatorname{Ker} f = \{0\}$.

$$\frac{\partial uu}{\partial x}:1) \quad Jmf = f(V) \leqslant_{K} V' \quad (feunā: cu f.du caract. a subsp.)$$

$$f(V) = f(\langle V \rangle) = \langle f(V) \rangle \leqslant_{K} V'$$

$$2) \quad Kerf = \{\chi \in V \mid f(\chi) = 0\} \leqslant_{K} V \quad (=f'(\{0\}))$$

$$f(0) = 0 \implies 0 \in \ker f$$

Fix
$$\alpha, \beta \in K$$
, $x, y \in Kerf$, $\alpha \times + \beta y \in Kerf$

$$f(\alpha \times + \beta y) = \alpha f(x) + \beta f(y) = \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$Kerf \qquad Kerf \qquad Kerf \qquad in VI$$

3)
$$f inj \Leftrightarrow Ker f = \{03\}$$

$$0 \in Ker f$$

$$\begin{array}{cccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$f(x) = f(y) \implies f(x) = f(y) \implies x = y$$

$$f(x) = f(y) \implies f(x) - f(y) = 0 \implies f(x - y) =$$

$$\Rightarrow x-y \in \text{Ker} f = \{0\} \Rightarrow x-y=0 \Rightarrow x=y$$