

Objectives

- □ Identify and describe the following aspects of the Apollo lunar orbit activities from a trajectory perspective:
 - > Planned sequence of events/rationale for all missions
 - > Flight experiences and lessons learned

Part 1b of this lesson will cover:

Detailed mission techniques and decision points for the Apollo J-series (15-17) missions

Scope

Apollo Mission Techniques lesson sequence:

- Launch and Launch Phase Aborts
- Earth Parking Orbit and Translunar Injection
- Translunar Midcourse Corrections and Lunar Orbit Insertion (LOI)
- > Lunar Orbit Activities, Part 1a and 1b
 - LOI to Powered Descent Initiation (PDI)
- > Lunar Descent
- Lunar Surface Phase
- Lunar Powered Ascent
- ➤ Lunar Orbit Activities, Part 2a and 2b
 - Post-insertion to Transearth Injection (TEI)
- > TEI, Midcourse Corrections, and Entry

Scope

Scope

Initial Conditions: Lunar Orbit Insertion

- □ Targeted by Mission
 Control Center (MCC) to
 place the Command and
 Service Module
 (CSM)/Lunar Module
 (LM) stack in a 170x60
 n.mi. (315x111 km) lunar
 orbit
- □ Performed using the Service Propulsion System (SPS)
- □ Magnitude ranged from 2800 to 3000 fps (850-915 m/s)

Lighting shown representative of Fra Mauro landing (Apollo 13-14)

Apollo 8 Objectives

- □ Primary Mission Objective
 - > Test CSM in lunar orbit
- □ Lunar Orbit Objectives
 - Perform landmark tracking and photography of prospective Apollo landing sites
 - Measure the effects of irregularities in lunar gravity (mascons) on an orbiting spacecraft
 - First observed during Lunar Orbiter program

Gravitational map of lunar near side (Konopliv et al)

Event	GET (h:m:s)*	PROP	ΔV_{TOT} , fps(m/s)*	HAxHP, nmi(km)*
LOI ₁	69:07:29	SPS	2991 (912)	170x60 (315x111)
LOI ₂	73:30:53	SPS	138 (42)	60x60 (111x111)

^{*}Planned values for Ground Elapsed Time (GET), total delta-V (ΔV_{TOT}), height of apocynthion (HA), and height of pericynthion (HP)

- □ LOI₂ targeted by MCC to circularize CSM in a 60 n.mi. (111 km) lunar orbit
- □ Performed using the SPS two orbits after LOI₁
- □ TEI performed ten orbits after LOI₁

Apollo 8 Flight Experience

- □ Effects of mascons on Apollo 8 trajectory were approximately twice that expected from Lunar Orbiter results
 - ➤ Height of pericynthion decreased, and apocynthion increased, approximately 0.3 nmi (0.56 km) per rev
 - Final orbit 63.6 x 58.6 nmi (118 x 109 km)
 - Did not affect Apollo 8 targeting but could have had significant effects on a lunar landing
 - Resulted in intensive effort to refine lunar gravity models for future missions

Apollo 10 Objectives

- □ Primary Mission Objective
 - > Test LM in lunar orbit
- □ Lunar Orbit Objectives
 - > Perform "dress rehearsal" for Apollo 11 landing
 - > Same landing site
 - > Further refine lunar gravity models

End Conditions: Powered Descent Initiation

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	75:45:43	SPS	2974 (907)	170x60 (315x111)
LOI ₂	80:10:45	SPS	138 (42)	60x60 (111x111)
Undock	98:10:00			
SEP	98:35:16	SM RCS	2.5 (0.76)	
DOI	99:33:59	DPS	71 (22)	60x8 (111x15)
POI	100:46:21	DPS	195 (59)	194x8 (359x15)
Staging	102:33:34			
AOI	102:43:18	APS	207 (63)	45x8 (83x15)

- □ LOI₁, LOI₂ same as Apollo 8
- □ Undocking one rev earlier post-LOI₁ relative to
 Apollo 11 to reduce length of crew day
- □ Undocking ~1¼ orbits prior to planned PDI

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	75:45:43	SPS	2974 (907)	170x60 (315x111)
LOI ₂	80:10:45	SPS	138 (42)	60x60 (111x111)
Undock	98:10:00			
SEP	98:35:16	SM RCS	2.5 (0.76)	
DOI	99:33:59	DPS	71 (22)	60x8 (111x15)
POI	100:46:21	DPS	195 (59)	194x8 (359x15)
Staging	102:33:34			
AOI	102:43:18	APS	207 (63)	45x8 (83x15)

□ LM yawed left 60°, pitched up 90° to point forward windows at CSM, then yawed 360° for landing gear inspection

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	75:45:43	SPS	2974 (907)	170x60 (315x111)
LOI_2	80:10:45	SPS	138 (42)	60x60 (111x111)
Undock	98:10:00			
SEP	98:35:16	SM RCS	2.5 (0.76)	
DOI	99:33:59	DPS	71 (22)	60x8 (111x15)
POI	100:46:21	DPS	195 (59)	194x8 (359x15)
Staging	102:33:34			
AOI	102:43:18	APS	207 (63)	45x8 (83x15)

 CSM performed radial-in RCS SEP burn one orbit before planned PDI time

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI_1	75:45:43	SPS	2974 (907)	170x60 (315x111)
LOl_2	80:10:45	SPS	138 (42)	60x60 (111x111)
Undock	98:10:00			
SEP	98:35:16	SM RCS	2.5 (0.76)	
DOI	99:33:59	DPS	71 (22)	60x8 (111x15)
POI	100:46:21	DPS	195 (59)	194x8 (359x15)
Staging	102:33:34			
AOI	102:43:18	APS	207 (63)	45x8 (83x15)

CSM-Centered Curvilinear LVLH Coordinates

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	75:45:43	SPS	2974 (907)	170x60 (315x111)
LOI ₂	80:10:45	SPS	138 (42)	60x60 (111x111)
Undock	98:10:00			
SEP	98:35:16	SM RCS	2.5 (0.76)	
DOI	99:33:59	DPS	71 (22)	60x8 (111x15)
POI	100:46:21	DPS	195 (59)	194x8 (359x15)
Staging	102:33:34			
AOI	102:43:18	APS	207 (63)	45x8 (83x15)

□ Ascent Orbit Insertion burn set up initial conditions for rendezvous

CSM-Centered Curvilinear LVLH Coordinates

Apollo 11 Objectives

- □ Primary Mission Objective
 - > Perform a piloted lunar landing and return

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	75:54:28	SPS	2924 (891)	170x60 (315x111)
LOI ₂	80:09:30	SPS	158 (48)	66x54 (122x100)
Undock	100:09:50			
SEP	100:39:50	SM RCS	2.5 (0.76)	
DOI	101:38:48	DPS	74 (23)	60x8 (111x15)
PDI	102:35:13	DPS	6761 (2061)	

- LOI₂ targeted 66x54 nmi lunar orbit that, under the influence of mascons, would become 60 nmi circular by the time of rendezvous
- □ PDI ½ orbit after DOI

Apollo 11 Flight Experience

- Downrange dispersion during powered descent
 - > LM landed almost four miles long
 - CDR took manual control early to avoid boulders in targeted landing area
 - Caused by combination of:
 - Uncoupled thruster firings during the docked landmark tracking exercise
 - Unaccounted-for velocity accrued during undocking and subsequent inspection and station-keeping activity
 - DOI burn residual
 - Propagated errors in the lunar gravity model
 - Lunar module venting
- □ CSM orbit not quite circular by time of rendezvous
 - Lunar gravity models still needed improvement

Apollo 12 Objectives

- □ Primary Mission Objective
 - Perform a precision lunar landing in the Ocean of Storms near the Surveyor 3 landing site
 - Surrounding area flat safe landing still possible even if precision landing could not be achieved

Apollo 12 Ground Tracking

- Westerly landing site allowed more tracking after acquisition of signal (AOS)
- □ Allows last state vector uplink to occur after DOI
 - On Apollo 11, this was before DOI, allowed dispersions to build

(separation between sites exaggerated by perspective view)

Apollo 12 Procedure Changes

- □ Use of balanced RCS couples for attitude control
- Dumps and vents rescheduled
- □ LM RCS "hot-fire" test reduced and modified
 - > No translational hot firings
 - Rotational hot firings use balanced couples and minimum pulse duration

Apollo 12 Procedure Changes

- "Soft undocking" procedure to minimize perturbing effects on LM
 - > CM docking probe extended prior to opening hooks
 - > CSM performed small RCS firing to pull the probe loose
- □ Post-undocking LM yaw maneuver only performed if required
 - Onboard indication (visual, barberpole talkback) that landing gear had not deployed properly
- □ All stationkeeping performed by CSM

+Vbar

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI₁	83:25:00	SPS	2890 (881)	170x60 (315x111)
LOI_2	87:44:00	SPS	169 (52)	66x54 (122x100)
Undock	107:58:00			
SEP	108:28:00	SM RCS	2.5 (0.76)	
DOI	109:23:00	DPS	72 (22)	60x8 (111x15)
PDI	110:20:00	DPS	6779 (2066)	

- □ Undocking attitude changed to CSM above
- □ SEP burn performed with -Z-axis RCS
- □ Postburn relative motion practically unchanged

Apollo 13 Objectives

Perform a precision lunar landing in the Fra Mauro highlands

Objective of Apollo 13 Changes

- Surrounding area rugged precision landing now a crew safety requirement
- Maximize amount of ground tracking while in descent orbit
- Maximize LM hover time by increasing propellant reserves (minimize LM maneuvers prior to PDI)

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI	77:25:00	SPS	2815 (858)	168x57 (311x106)
DOI	81:45:00	SPS	213 (65)	57x7 (106x13)
Undock/SEP	99:16:00	SM RCS	1.0 (0.3)	
CIRC	100:35:00	SPS	70 (21)	62x52 (115x96)
PDI	103:31:00	DPS	6635 (2022)	

- □ LOI₂ and DOI combined into a single CSM burn
- □ Designed to converge, under lunar gravitational influence, to proper conditions at PDI (58.9x8.3 nmi, PDI at pericynthion)
- □ Allowed 11 revs of tracking in the descent orbit prior to PDI
- Conserved LM prop for additional hover time during landing
- □ Burn monitoring critical one-second overburn would result in negative pericynthion (lunar impact within ½ rev)
- MCC would call for DOI bailout burn after AOS if required
- □ Downside CSM landmark tracking near pericynthion degraded due to fast movement of landscape
- ☐ If post-burn pericynthion drifted out of limits, DOI Trim burn may be inserted
 - > Could possibly require waking the crew from sleep

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI	77:25:00	SPS	2815 (858)	168x57 (311x106)
DOI	81:45:00	SPS	213 (65)	57x7 (106x13)
Undock/SEP	99:16:00	SM RCS	1.0 (0.3)	
CIRC	100:35:00	SPS	70 (21)	62x52 (115x96)
PDI	103:31:00	DPS	6635 (2022)	

- □ SEP burn performed simultaneously with soft undocking, magnitude reduced to 1 fps
- Moved 1 rev earlier (2¼ rev before PDI) to allow CSM to recircularize and perform landmark tracking prior to PDI

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI	77:25:00	SPS	2815 (858)	168x57 (311x106)
DOI	81:45:00	SPS	213 (65)	57x7 (106x13)
Undock/SEP	99:16:00	SM RCS	1.0 (0.3)	
CIRC	100:35:00	SPS	70 (21)	62x52 (115x96)
PDI	103:31:00	DPS	6635 (2022)	

□ CIRC burn targeted for orbit that would become 60 nmi circular by the time of planned rendezvous

Apollo 13-16 Flight Experience

- □ Apollo 13 mission aborted after CSM oxygen tank failure
- □ Sequence of events remained relatively stable for Apollo 14-16
 - > Apollo 15 required DOI Trim burn
 - Fortunately did not require early crew wakeup
 - Apollo 16 undocking-PDI timeline moved one rev earlier to allow EVA-1 to be performed on landing day

Apollo 16 Flight Experience

- □ SPS Sec Yaw Gimbal Anomaly post-undocking
 - Resulted in NO-GO for CIRC
 - CSM performed "brute-force" rendezvous with LM on second orbit after undocking
 - Crew had low confidence in MCC estimates of relative motion
 - LM crew verbally relayed RR data to CMP to assist
 - > Test and analysis showed gimbal usable and safe
 - Mission continued nominally after a three-orbit delay
 - ➤ Postflight analysis indicated that a slight retrograde dispersion at SEP (~0.17 fps) caused the CSM to be 6000 ft in front of the LM at initiation of re-rendezvous instead of 1000 ft behind, as indicated by MCC states

Apollo 16 Post-Undocking Relative Motion

Plot from time of undocking to initiation of brute-force rendezvous

Apollo 17 Objectives

□ Perform a precision lunar landing in the Taurus-Littrow valley

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI	88:55:00	SPS	2980 (908)	170x51 (315x95)
DOI_1	93:13:00	SPS	199 (61)	59x15 (109x28)
Undock/SEP	110:28:00	SM RCS	1.0 (0.3)	
CIRC	111:55:00	SPS	70 (21)	70x54 (130x100)
DOl_2	112:00:00	LM RCS	9.4 (2.9)	70x7 (130x13)
PDI	112:49:00	DPS	6701 (2043)	

- □ LOI pericynthion reduced to 51 nmi (increased performance)
- □ Far easterly landing site would have placed post-DOI pericynthion very soon after AOS
- □ DOI split into two burns, DOI₁ and DOI₂
- Pericynthion location shifted west of landing site
 - Provide sufficient time for MCC to evaluation post-DOI₁ orbit
 - Reduce probability of needing DOI₁ bailout burn
 - > CSM landmark tracking enhanced by higher altitude
 - > Preclude early crew wakeup for a DOI trim maneuver
- □ DOI₂ lowers pericynthion from 80,000 to 43,000 ft
 - Performed with LM RCS to preserve descent propellant
- □ Net gain LM hover time ~3 sec, SPS reserves ~25 fps

Event	GET (h:m:s)	PROP	ΔV_{TOT} , fps(m/s)	HAxHP, nmi(km)
LOI	88:55:00	SPS	2980 (908)	170x51 (315x95)
DOI ₁	93:13:00	SPS	199 (61)	59x15 (109x28)
Undock/SEP	110:28:00	SM RCS	1.0 (0.3)	
CIRC	111:55:00	SPS	70 (21)	70x54 (130x100)
DOI ₂	112:00:00	LM RCS	9.4 (2.9)	70x7 (130x13)
PDI	112:49:00	DPS	6701 (2043)	

Summary

- □ Consistently performing precision landings required that Apollo lunar orbit activities devote considerable attention to:
 - Improving fidelity of lunar gravity models
 - Maximizing availability of ground tracking
 - > Minimizing perturbations on the trajectory
 - Maximizing LM propellant reserves for hover time
- ☐ Use of radial separation maneuvers
 - > Allows passive re-rendezvous after each rev, but...
 - > Sensitive to small dispersions in initial sep direction

Credits

- □ Lunar 3D renderings generated by NASA World Wind 1.4
 - http://worldwind.arc.nasa.gov/
- □ Apollo 16 postflight report provided by Ryan Jackson from the collection of Apollo RETRO Jim l'Anson

References

- □ Apollo Operations Handbook, Block II Spacecraft, Volume I: Spacecraft Description. SM2A-03-Block II-(1), 15 January 1970.
- □ Apollo Operations Handbook, Lunar Module, LM 10 and Subsequent, Volume I: Subsystems Data. LMA790-3-LM 10, 1 April 1971.
- □ Apollo 8 Press Kit. NASA release 68-208, 15 December 1968.
- □ Apollo 10 Press Kit. NASA release 69-68, 7 May 1969.
- □ *Apollo 11 Press Kit*. NASA release 69-83K, 6 July 1969.
- □ Apollo 12 Press Kit. NASA release 69-148, 5 November 1969.
- □ Apollo 13 Press Kit. NASA release 70-50K, 2 April 1970.
- □ Apollo 14 Press Kit. NASA release 71-3K, 21 January 1971.
- □ Apollo 15 Press Kit. NASA release 71-119K, 15 July 1971.
- □ Apollo 16 Press Kit. NASA release 72-64K, 6 April 1972.
- □ Apollo 17 Press Kit. NASA release 72-220K, 26 November 1972.
- □ Apollo 8 Mission Report. MSC-PA-R-69-1, February 1969.
- □ Apollo 10 Mission Report. MSC-00126, August 1969.
- □ Apollo 11 Mission Report. MSC-00171, November 1969.
- □ Apollo 12 Mission Report. MSC-01855, March 1970.
- □ Apollo 13 Mission Report. MSC-02680, September 1970.
- □ Apollo 14 Mission Report. MSC-04112, May 1971.
- □ Apollo 15 Mission Report. MSC-05161, December 1971.
- □ Apollo 16 Mission Report. MSC-07230, August 1972.
- □ Apollo 17 Mission Report. MSC-07904, March 1973.

References

- □ Apollo Mission Techniques Mission C-Prime Lunar (Alternate 1) Lunar Orbit Activities. MSC Internal Note S-PA-8M-032, 15 November, 1968.
- □ Apollo Mission Techniques Missions F and G Lunar Orbit Activities Revision A. MSC Internal Note S-PA-9T-044A, 7 May, 1969.
- □ Apollo Mission Techniques Mission G Lunar Orbit Activities. MSC Internal Note S-PA-9T-135, 30 June 1969.
- □ Apollo Mission Techniques Mission H-1 Lunar Orbit Activities. MSC-01212, 30 October 1969.
- Apollo Mission Techniques Mission H-2 and Subsequent Lunar Orbit Activities. MSC-01297, 30 January 1970.
- □ Apollo Mission Techniques Mission J-1 Lunar Orbit Activities. MSC-04279, 26 May 1971.
- □ Apollo Mission Techniques Mission J-2 and Mission J-3 Update. MSC-05847, 24 January 1972.
- Shaffer, P. C. Mission Techniques for Apollo 17, Lunar Orbit and Ascent. NASA memorandum PA (72-S-6), 7 June 1972.
- □ DuPont, A. Post-flight Report on the Brute-Force Rendezvous Performed During the Apollo 16 Mission. NASA memorandum FM32 (72-189), 4 October 1972.
- □ Tindall, H. W. "What is the effect of uncertainty in the lunar potential on spacecraft computer program performance?" NASA memorandum 67-FM-T-101, 8 November 1967
- □ Tindall, H. W. "It is proposed that we plan a two step LOI maneuver." NASA memorandum 67-PA-T-121A, 15 December 1967
- □ Tindall, H. W. "Recommendation to retain the Two-Stage Lunar Orbit Insertion (LOI) Maneuver." NASA memorandum 68-PA-T-186A, 5 August 1968.
- □ Tindall, H. W. "How to land next to a Surveyor a short novel for do-it-yourselfers." NASA memorandum 69-PA-T-114A, 1 August 1969.
- □ Tindall, H. W. "A lengthy status report on lunar point landing including some remarks about CSM DOI." NASA memorandum 69-PA-T-116A, 29 August 1969.
- □ Tindall, H. W. 'Status report on Apollo 13 Mission Techniques or "Go for CSM DOI".' NASA memorandum 69-PA-T-123A, 29 September 1969.