

Sl. No	Rule	Name	ACE
1	p / ∴p ∨ q /	Addition (or) Disjunctive amplific	eation : pvon : pvs
2	p ∧ q ✓ ∴ p ✓	Simplification (or) Conjunctive Simplificati	$\frac{anb}{anb}$ $\frac{anb}{anb}$
3	$\frac{p}{q}$ $\therefore p \wedge q$	Conjunction b c anbac	

Sl. No	Rule	Name	
4/	$\begin{array}{c} \mathbf{p} \vee \mathbf{q} \\ \sim \mathbf{p} \end{array}$	Disjunctive Syllogism	
	∴ q		
5/	$ \begin{array}{ccc} p \lor q & = T \\ ^p \lor r & = T \end{array} $	Resolution	
	∴q ∨ r		
6/	$\begin{array}{c} p \longrightarrow q \\ p \end{array}$	Modus Ponens	
	∴ q		

PV9

$$P \rightarrow q = True$$

$$P = True$$

$$\therefore q = True$$

Disjunctive Syllogism:

Disjunctive Syllogism:

$$T = P \vee 9 = Father \vee Mother = Student \vee Faculty$$
 $T = \sim P = \sim Father = \sim Student$
 $T = \sim P = \sim Father = \sim Student$
 $T = \sim P = \sim Father = \sim Student$
 $T = \sim P = \sim Father = \sim Student$
 $T = \sim P = \sim Father = \sim Student$
 $T = \sim P = \sim Father = \sim Student = \sim$

: Mother

PV9

Resolution: F Tpvq =T

$$avb = 1$$

$$avc = T$$

$$bvc$$

GATE RANK -> CAR.

GATE RANK

.. will get can

* Rohit hits cent then hewill get can.

* Robit hits century

.: Rohit will get new care

* virat hit Cent. then he will get new care.

~9 * virat will not get new car / =

:. virat has not century

Argument: P -> 9/= virat hit's century then he will get new case.

Y 2 -P = virat has not Century

: virat will not get new case.

NOT valid

Sl. No	Rule	Name	
3/	$p \rightarrow q$ $\sim q$	Modes Tollens	
	∴~p		
8	$ \begin{array}{c} p \to q \\ q \to r \\ \hline \vdots p \to r \end{array} $	* Hypothetical Syllogism	
9	$ \begin{array}{c c} \hline p \rightarrow p \\ \hline p \rightarrow 1 \end{array} $ $ \begin{array}{c c} P_{3} = 0 \end{array} $	Dilema	PAR = T
	∴ R		: R

Hypothetical

$$a \longrightarrow b = True = salman is brother of Ameer.$$
 $b \longrightarrow c = True = Ameer is brother of Abhishek.$
 $\vdots \quad a \rightarrow c = True : Salman is brother of Abhishek.$

Sl. No	Rule	Name		ACE
10	$p \rightarrow Q$ $R \rightarrow S$ $p \lor R$ $\therefore Q \lor S$	Constructive Dilemma	P→ B R→ S PVR DVS	$ \begin{array}{c} a \longrightarrow b \\ c \longrightarrow d \\ ave \\ bvd \end{array} $
11	$ \begin{array}{c} \hline p \to Q \\ R \to S \\ \sim Q \lor \sim S \\ \hline \vdots \sim p \lor \sim R \end{array} $	Destructive Dilemma P→ ® R → S ~ ® ∨ ~ S ∴ ~ P ∨ ~ R	a → b c → d ~bv~d : ~av~c	

Consider the following logical inferences

I₁: If it rains then the cricket match will not be played.

The cricket match was played.

Inference: There was no rain

I, is valid by modus Tollen's

P: It mains /

be played

I₂: If it rains then the cricket match will not be played.

It did not rain.

~9 X NOT valid

Inference: The cricket match was played.

:.~P

P: It rains

9: Match will be played.

Modus Tollen's:

 I_2 : If it rains then the cricket match will not be played.

It did not rain.

Inference: The cricket match was played.

Which of the following is TRUE?

- a) Both I_1 and I_2 are correct inferences \nearrow
- b) I₁ is valid, But NOT I₂
- c) I₂ is valid, But NOT I₁ \checkmark
- d) Neither I_1 nor I_2 is valid \sim

Q. Check the validity of the following argument

Q. Check the validity of the following argument

Q. Check the validity of the following arguments

$$I_1: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_1: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_2: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_3: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_4: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_4: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_4: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_4: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_5: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to S, P \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_6: \{R \to Q, R \lor P\} \Rightarrow (S \lor Q)$$

$$I_2: \{ \sim R \rightarrow (S \rightarrow \sim T), \sim R \lor w, \sim P \rightarrow S, \sim w \} \Longrightarrow (T \rightarrow P)$$

$$\begin{array}{ccc}
 & \sim P \longrightarrow S \\
 & S \longrightarrow \sim T \\
 & \sim P \longrightarrow \sim T = T \longrightarrow P
\end{array}$$

Quantifiers:

Quantifiers are the words the refers to Quantities such as some or all, and indicates how frequently a certain statement is true.

Types:

1. "Universal" (∀) quantifier \(\mathcal{+} = \int \text{for all} \)
2/ "There existential" (∃) quantifier \(\exist \) = Their Exist \(\text{S} \)

Universal Quantifier:

Let P(x) be statement defined on universe of discourse A, then the universal quantification P(x) is the statement P(x) is true for all x belongs to A P(x) is true

```
C9-1: For every oreal number x, x^2 \ge 0

\forall x, x^2 \ge 0

eg-2: All Students are good.

= \text{Every student is good}

= \text{Each student is good}

\forall x \left[S(x) : x \text{ is a student.} \atop g(x) : x \text{ is good.} \right]
```

eg-3: All Boys are Innocent

B(n): x is a Boy

$$J(x): x \text{ is innocent}$$
 $\forall x \text{ [B(x)} \longrightarrow J(x)$

Existential Quantificor:

Let P(2) be a statement defined on universe of discourse A, the Existential Quantification P(x), such that P(x) is TRUE for Some n' belongs to A' (Domain).

eg-1: For some real number x, x+5=072[x+5=0]

Some students are Intelligents

SCR): 2 is a student

I(2): & is Intelligent

Fr SCNA ICX)

Some parallelograms are onectangles

P(x): x is a parallelogram

on(x): It is a overtangle

In [P(x) 1 or (x)]

100 Quatrilatual
Paralle 3

I. Universal quartifier (+) is usually followed by Implication (-)II. Existential quantifier (-1) is usually followed by and (-1)

 $\overline{IV} \quad \exists x \ P(x) = True$ $= P(x_i) \ V \ P(x_2) \ V \ P(x_3) \ V - \cdots \quad V \ P(x_n) = TRUE$