Calculo de Limites Aqui vamos apresenter como se procede o cal-culo de limites que envolvem esspressões indeterminadas. As expressões: $0, \frac{\infty}{\infty}, \infty - \infty, 0 \times \infty, 0^{\circ}, \infty^{\circ}, 1^{\infty}$ são denominadas expressões inditermi-- lonidere a requinte rituação. Sigam le g funções tais que lim f(x) = 0 e lim g(x) = 0. Nerte caso, a priori, nada podemos afirmar sobre o limite: (x) lim f(x), æsse limite nos remete a uma indeterminação da forma o. Dependendo das funções le genvolvidas, o limite (*) po de assumir qualquer no real ou memo nem essistis. Para deterninar limites de funções envolvendo indeterminações usamos alguns artificios algébicos.

Exemplo: Determine os seguintes lini-tes envolvendo indeterminações

(a) $\lim_{x\to -2} \frac{x^3 + 4x + 4x}{x^2 - x - b}$, re aplicamos 0

limite no numerador e no denominader, obtemos a inditerminação Q, portanto para saismos dessa indeteminação, precisamos trabalhas algebricamente com a função envolvida. Fataando: $|x^2 + 4x + 4x = x(x^2 + 4x + 4) = x(x + 2)^2$ $(x^2-x-b=(x+2)(x-3)$

Assim lim $\frac{x^{2}+4x+4x}{x^{2}-x-6} = \lim_{x\to -2} \frac{x(x+2)^{2}}{(x+2)(x-3)}$

 $=\lim_{\chi\to-2}\frac{\chi(\chi+2)}{\chi-3}$ $= \frac{\lim_{x\to -2} x(x+2)}{\lim_{x\to -2} (x-3)} = \frac{0}{-5} = 0$ $\lim_{x\to -2} (x-3) = \frac{0}{-5} = 0$

b) lim 1x44-2, podemos observar que novamende teremos uma inditerminação da fama G. Para "leventar" ersa indeterminação, neste caro usamos a racionalização do numerador.

 $\lim_{x\to 0} \frac{\sqrt{x+4'-2}}{x} = \lim_{x\to 0} \frac{\sqrt{x+4'-2}}{x} \cdot \frac{\sqrt{x+4'+2}}{\sqrt{x+4'+2}}$

= $\lim_{x\to 0} \frac{(x+y)-4}{x(\sqrt{x+y}+2)}$

 $=\lim_{x\to 0}\frac{x}{x(\sqrt{x+u'}+2)}$

 $=\lim_{N\to00}\frac{1}{\sqrt{n+y'}+2}=\frac{1}{4}$

Limites no Infinito

Considere a requisite lunção l: R*-o R, definida par lln)=1

 $\lim_{x\to+\infty}\frac{1}{x}=0$

 $\lim_{N\to -\infty} \frac{1}{N} = 0$

Nota: De forma análoga, podemos definir lim fln) = M

Jeanna: Sie ne N' entaro:

(i)
$$\lim_{n\to+\infty} \frac{1}{n^n} = 0$$

(ii)
$$\lim_{N\to -\infty} \frac{1}{N^n} = 0$$

Exemplo: Vamos considerar o caso particular da função fix) = 1/2. -0 f(1) = 1 ; $f(10) = \frac{1}{10^2} = \frac{1}{100} = 0.01$ $f(100) = \frac{1}{(100)^2} = 0,0001$ Inso nos induz que $\lim_{n\to +\infty} f(n) = 0$ f(-1)=1 , f(-10)=0'01 & f(+100)=0'0001 Ao que indica, de fato flx) = 1 quando, into é, lim f(n) = 0

Exemplo: Calcular lim 2x-5 x-0+ × x+7

 $\lim_{x\to+\infty} \frac{2x-5}{x+7} = \lim_{x\to+\infty} \frac{x(2-\frac{5}{x})}{x(1+\frac{7}{x})}$

 $=\lim_{N\to +\infty} \frac{2-\frac{5}{n}}{1+\frac{7}{n}}$

 $=\frac{\lim_{N\to+\infty}\left(2-\frac{5}{N}\right)}{\lim_{N\to+\infty}\left(1+\frac{7}{N}\right)}=\frac{2}{1}=2$

Limites Infinitos <u>Definição</u>: Sigam I C IR um intervalo alierto, com no EI, e l:I-(no) - R uma função, então: $\lim_{n\to\infty} f(n) = +\infty$, re dado M>0 esistin 5>0 tal que re xE I com xE(xo,5,no)V(xo,xo+5) => f(x)>M Analogamente definimos Exemplo: Canside a função f(x) = +. Norte caso: $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{1}{x} = +\infty$ $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{1}{x} = -\infty$ Jeorema: Se n∈ N, então:

(i)
$$\lim_{N\to 0^+} \frac{1}{N^n} = +\infty$$

(ii)
$$\lim_{N\to0^{-}} \frac{1}{x^{n}} = \begin{bmatrix} +\infty \\ -\infty \end{bmatrix}$$
, se $n \in par$

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{1}{x^2} = +\infty$$

$$\lim_{N\to0} f(n) = \lim_{N\to0} \frac{1}{n^2} = +\infty$$

$$\Rightarrow \lim_{N\to\infty} \left(\frac{2}{N^2 + \sqrt{N+1}} - \frac{1}{N^2} \right) = \lim_{N\to\infty} \frac{2}{N+1} \lim_{N\to\infty} \frac{1}{N+1} \lim_{N\to\infty} \frac{1}{N+$$

$$=0+\sqrt{1}-\infty=-\infty$$

Se foremos user a propriedade da soma chegariamos à $(+\infty-\infty+4)$ o que claramente é uma inditerminação, logo precisamos trabalhar com a expresão algébrica.

Resolução:

$$(*) = \lim_{x \to +\infty} (3x^{4} - 5x^{3} + 4) = \lim_{x \to +\infty} x^{4} (3 - \frac{5}{x} + \frac{4}{x^{4}})$$

Agora escrevendo fln) = n'e gln)=(3-5+4)

 $\Rightarrow \lim_{N\to +\infty} f(n) = +\infty \text{ e } \lim_{N\to +\infty} g(n) = 3,$

usando a propriedade do produto: lim $f(n) \cdot g(n) = +\infty$, into é,

 $\lim_{x\to 1+\infty} (3x^{4}-5x^{3}+4)=0$

Exemplo: Calcular os limites:

(i)
$$\lim_{x\to 2^+} \frac{x}{x^2-4} = \frac{2}{0^+} = +\infty$$

(ii)
$$\lim_{x\to 0^{-}} \frac{x}{x^{2}-4} = \frac{2}{0^{-}} = -\infty$$

(iii)
$$\lim_{y\to 0-\infty} \frac{3-y}{\sqrt{5+4y^2}} = \lim_{y\to -\infty} \frac{3-y}{\sqrt{y^2(\frac{5}{y^2}+4)}}$$

 $\frac{3-y}{y^{-0}-\infty} = \lim_{y\to -\infty} \frac{3-y}{|y|\sqrt{5}+y} = \lim_{y\to -\infty} \frac{3-y}{|y|\sqrt{5}+y}$ Como y -0-\infty $= \lim_{y\to -\infty} \frac{3-y}{-y\sqrt{5}+y} = \lim_{y\to -\infty} \frac{-y(-\frac{3}{2}+1)}{-y\sqrt{5}+y} = \lim_{y\to -\infty} \frac{-\frac{3}{2}+1}{|y|^{2}+y}$ remi deren $= \lim_{y\to -\infty} \frac{3-y}{-y\sqrt{5}+y} = \lim_{y\to -\infty} \frac{3-y}{-y\sqrt{5}+y} = \lim_{y\to -\infty} \frac{3-y}{-y\sqrt{5}+y}$

 $= \frac{1}{\sqrt{2}} = \frac{1}{2}$

Amintotas Définição: Sejam I CR um intervado aberto, ram xo E I e l: I-txol — o R uma função; re uma das afirmações for verdadaira. (i) $\lim_{x\to x_0^+} f(x) = +\infty$ (ii) $\lim_{x\to x_0^+} f(x) = -\infty$ (iv) lim fln) = - 0 (iii) $\lim_{n\to\infty} f(n) = +\infty$ então a reta n=xo é uma arrintota rectical do gráfico da função y= fln). Définição: Seja (l: (a,+∞) → R (ou f:(-∞,b)-oR) uma função tal que lim fln) = L (on lim fln)=M), entao dizens que a reta y=L (ony=M) de uma arrintota horizontal do gráfico da função f. Exemplo: Analizar a inistência de arrintotar so gráfico da função flu = 1+ x $\begin{cases} \lim_{N\to0^+} f(N) = +\infty \end{cases}$ $\lim_{n\to0}-\lim_{n\to\infty}$ = x=0 i anistata vertical

i flim flim = 1 a lim flim = 1 = y=1 à amintota horizontal

limites Fundamentais

Jemos três caracterizações denominados de limites fundamentais. Esses três casos enadrem indeterminações da forma $\frac{2}{9}$, $\frac{1}{10}$ e ∞

Proporição: lim renx = 1

Não faremos a demanstração, mas vamos verificar numéricamente o que acentece com o queciente in medida que y tende ao jara x

1	y	0,5	0,2				-0,01		
4	MAX	0,9588	0,9933	0,9983	0,9998	9	0,9998	0,9983	0,9588

Exemplo: Calcular linn sen 4x

não consquimos usas a proposição disitamente, então faremas uma mudança de saciavel:

Seja 4x=u = x=4, além disso: quando x-00=0 4x-00, into é, u-00

Logo lim renyn = lim sen u

= lim y. senu = 4. lim senu = 4.1= 4

Proporição: lim $(1+\frac{1}{h})^{n}=e$, onde e é o número inacional reprisano, sur valor aproximado é $e \simeq 2,7182818284...$

X	70	100	1000	10000	,
(+ *)x	2,5937	2,7048	27169	2,7181	0 0 0
X	-10	- 100	-1000	-10000	
(1+X)X	2,8679	2,7319	2,7196	2,7184	ں ہ

Exemplo 1: Peterminar lim (1+x) 1/n

Fazendo $\frac{1}{x} = t$ $\Rightarrow x = \frac{1}{t}$ e quando $x \rightarrow 0^{+} \Rightarrow t \rightarrow 0 + \infty$ $\Rightarrow \lim_{x \rightarrow 0^{+}} (1+x)^{1/x} = \lim_{t \rightarrow +\infty} (1+\frac{t}{t})^{t} = C$

Nota: De forma analoga lim (L+X) = e, into e, lim (L+X) = e.

Exemplo 2: Determiner lim (1+ 5)

Seja j= 5 = 0 x = 5y, quando x -0+00

logo lim $\left(1+\frac{5}{n}\right)^{N} = \lim_{N\to+\infty} \left(1+\frac{1}{y}\right)^{5}y$

 $= \lim_{y\to+\infty} \left[\left(\frac{1+j}{y} \right)^{\frac{1}{2}} \right]^{\frac{5}{2}} = \left[\lim_{y\to+\infty} \left(\frac{1+j}{y} \right)^{\frac{1}{2}} \right]^{\frac{5}{2}} = e^{\frac{5}{2}}$

Proposição: lim $\frac{\alpha^2-1}{n-00} = \ln \alpha$, $\alpha > 0 = \alpha \neq 1$.

Vamos fazu uma tabela para o caso particular em que $\alpha = 2$, reste caso $\ln 2 \simeq 0,693147$ $\lim_{n\to 0} \frac{2^n-1}{n} = \ln 2$

x 0.5 0.2 0.1 0.01 0 -0.001 -0.01 -0.1

2x-1 0.8284 0.7434 0.7177 0.6955 9 0.6929 0.6907 0.6696

Ex: Determinar os limites a requir:

a) $\lim_{x\to 2} \frac{9^x - 81}{x - 2}$, podemos deservar que é una indeterminação da fama $\frac{0}{0}$.

 $\lim_{x\to 2} \frac{g^{x} - \ell 1}{x - 2} = \lim_{x\to 2} \frac{g^{x} - g^{2}}{x - 2}$ $= \lim_{x\to 2} \frac{g^{2} \left(\frac{g^{x}}{g^{2}} - 1\right)}{x - 2}$ $= g^{2} \cdot \lim_{x\to 2} \frac{g^{x-2} - 1}{x - 2}$

Jomando y = x-2, quando $x \to 2 \Rightarrow y \to 0$ Logo lim $\frac{9^{x}-81}{x-2} = 9^{2}$. $\lim \frac{9^{y}-1}{y} = 9^{2}$. $\lim \frac{9^{y}-1}{y} = 9^{2}$. $\lim \frac{9^{y}-1}{y} = 81$. $\lim \frac{9^{y}-1}{y} = 81$. $\lim \frac{9^{y}-1}{y} = 81$.

B

Definição: Seja f: I-o Ruma função, I C R um intervado aberto. Dizemos que f é emtínua em xo E R se as seguintes condições forem satisfeitas:

(i) NOE I, (NOE DUP));

(ii) strike lim flx);

(iii) lim fln) = flno).

Vamos ilustrar algumas situações de funções que não são continuas em xo.

Exemplo: Derifique se a função $f(x) = \begin{cases} x^2 \\ 1-|x| \end{cases}$, x > -1en x = -1.

 $\rightarrow A$ função f está definida em x=1, inte, $(-1) \in D(f)$ e $f(-1)=(-1)^2=1$.

→ Verificação da existência do limite de f em x=-1

 $\lim_{x\to -1^+} f(x) = \lim_{x\to -1^+} x^2 = (-1)^2 = 1$

 $\lim_{x\to 0-1^-} f(x) = \lim_{x\to 0-1^-} (1-|x|) = 1-|-1| = 1-1 = 0$

Logo f não é continua em x=-1.

Ex: Carifique se a função $f(n) = \left| \frac{x^2 - 4}{x + 2}, x \neq 2 \right|$ - 62001) e f(-2) = 4

 $\lim_{x\to -2} f(x) = \lim_{x\to -2} \frac{x^2 - 4}{x + 2} = \lim_{x\to -2} \frac{(x-2)(x+2)}{x + 2}$

 $= \lim_{x\to 0-2} (x-2) = -2-2 = -4$

Alem disso lim fln = -4 = fl-2

logo fi centinua em x=-2

Propriedades das Funções lontinuas

Proposição: Se as funções f a g são continuos em um porto a, então:

(i) f + g & continua em a;

(ii) f. g i continua em a; desde que g(a) to.

Proporção:

(i) Una lunção polinemial é entima en todo XER;

(ii) Uma lunção racional é centínua em todos os pontos de seu deminio (iii) As funções trigonométricas, expenenciais e logantmicas são continuas em todos os pontos do seu deminio.

Exemplo: Determine o conjunto onde a função $f(x) = \frac{x^2 - 9}{x - 3}$ i continua.

Como l'i una função racional, barta verificarmos o dominio da função f.

-0 Para xED(f) precisamos x-3 ±0 =0 x ± 3 logo l'i continua no Conjunto A=IR-{3}.

Exemplo: Determine o valor de p de modo que a função flui-[x²+px+2, x+3 3, x=3 reja uma função continua um R. representa uma função polinamial, portanto ela i continua, no entanto, a função flui é definida por essa sentença em IR-135 então para que of rija continua em IR, barta ainda venficamos ma continuidade em x=3 -0 (13) = 3 $-0 \lim_{x\to 3} f(x) = \lim_{x\to 3} (x+px+2)$ $=3^2+p.3+2=3p+11$ Para f un continua em 3, precisamos que lim fln) = fl3) $\Rightarrow 3p+11=3 \Rightarrow 3p=-8 \Rightarrow p=-\frac{8}{3}$ Deta forma l'é continua em \mathbb{R} x $\left| p = -\frac{8}{3} \right|$ Définição. Siga f: [a,b] - R uma função (i) Se lim fln) = fla), então diremos que l'é continua à direita no porto a; (ii) Se lim flx)=flb), diremos que a função l'é contémua à esqueda noporto b? (iii) Se f for continua em todo intervalo alverto (a,b), f for continua à direita no ponto a a f for continua à esquer da no ponto b, entao diremos que f à continua no intervalo fachado [a,b]. Jevena do Valor Intermediario (TVI) Se f é continua no intervalo fechado [a,b]. e L i un numero real tal que fla) < L & flb) on flb] ≤ L ≤ fla), então essiste pelo menos um c ∈ [a,b]

tal que f(c)=L

Pla Dy Dy

Nota: Uma consequência do TVI é que re

f for uma função continua em [a,b] e

re fla) e flb) tiverem rimais o portos, então
esiste pelo menos um c E (a,b) tal que fle)=0

Plan C b

Esemplo: Vailique u a equação $2x^2 = e^x + 1$

o Vamos reeserver a equação $2x^2 = e^x + 1$. $2x^2 = e^x + 1$ i equivalente à $e^x - 2x^2 + 1 = 0$ A função $f(x) = e^x - 2x^2 + 1$ i a função associada à equação $e^x - 2x^2 + 1 = 0$.

o Assim precisames unificar re a função f possir raiz.

 $|(-1) = e^{-1} - 2(-1)^{2} + 1 = \frac{1}{e} - 1 \approx -0.632 < 0$ $|(0) = e^{0} - 2(0)^{2} + 1 = 1 + 0 + 1 = 2 > 0$

Como f i continua om [0,1] i fl-1)<0 e flo)>0 Seque pelo TVI que existe CE(0,1) tal que flc)=0, logo 2x²=ex+1 possui solução reals