Homework 5. Predicate Logic: Syntax and Semantics

Rushikesh Khamkar

November 20, 2022

1. Consider the following sentence.

Every number greater than or equal to 4 can be written as the sum of two prime numbers.

(a) Write *a language* (as defined in Def 2.1) such that some formulas of the language can be used to represent the sentence above.

Solution:

Distinctive primitive symbols	Answer
Variables	a, b, c
Constants	4
Connectives	$\lor, \land, \lnot, \rightarrow, \leftrightarrow$
Quantifiers	∀,∃
Punctuation	, ()
Predicate Symbols	P,Q,R
Function Symbols	f

(b) Write a formula of your language that should reflect the meaning of the sentence above.

Solution:

Formula - $((\forall a P(a,4))((\exists c Q(c))R(a,f(b,c)))$

Formula of language	Meaning of the sentence	
P(a,4)	The condition where all integers in the predicate are	
	greater than or equal to 4.	
Q(b), Q(c)	The condition where all-prime-numbers are predicate.	
R(a,f(b,c))	The clause that states that $a = b+c$.	
f(b,c)	The equation that symbolizes $(b + c)$.	

(c) In terms of your language, write three example terms, three example atomic formulas, and three example formulas.

Solution:

Definition	Example
Terms	a, b, c,
	f(b,c)
Atomic Formulas	P(a,4),
	Q(b),
	Q(c),
	R(a, f(b, c))
Formulas	P(a,4),
	Q(b),
	Q(c),
	R(a, f(b, c)),
	$((\forall a P(a,4))((\exists b Q(b))(\exists c Q(c))R(a,f(b,c))))$

- 2. Write a formula to represent the following information. Your formula should be as close as possible to the intended meaning of these sentences.
 - (a) There is a mother to all children.

Solution:

 $\exists x \ \forall y \ \text{Mother}(x,y) \ \text{where, Mother}(x,y) = x \ \text{is mother of children} \ y.$

(b) ALL ITEMS NOT AVAILABLE AT ALL STORES.

Note, the sentence above is a disclaimer in the weekly flyer of specials of a grocery store chain.

Solution:

 $\forall x \ \forall y \ \neg \ \text{available}(x,y) \ \text{where, available}(x,y) = x \ \text{items are available at} \ y \ \text{stores.}$

- 3. Given the language defined in Def 2.1, which of the following are formulas defined by Def 2.5?
 - (a) f(x,c)
 - (b) R(c, f(d, z))
 - (c) $\forall x(P(x))$
 - (d) $((\exists x)(((\forall y)P(z)) \rightarrow R(x,y)))$

Solution:

Formulas	mulas Formulas Defined or Not?	
f(x,c)	Formula is not defined by Def 2.5	
R(c, f(d, z))	Formula is defined by Def 2.5	
$\forall x(P(x))$	Formula is defined by Def 2.5	
$((\exists x)(((\forall y)P(z)) \to R(x,y)))$	Formula is defined by Def 2.5	

4. Given

$$((\exists x)(((\forall y)P(z)) \to R(x,y))),$$

(a) List all its subformulas.

Solution:

List of Sub formulas from above given Formula	
P(z)	
$((\forall y)P(z))$	
R(x,y)	
$(((\forall y)P(z)) \to R(x,y))$	
$((\exists x)(((\forall y)P(z)) \to R(x,y)))$	

(b) Draw its formation tree.

Solution:

- 5. Which of the following terms are substitutable for x in the corresponding formulas?
 - (a) f(z,y) in $((\exists y)(P(y) \land R(x,z)))$.

Solution:

It is not substitutable, Since y is already constrained by $\exists y$ the substitution f(z,y) for x results in the wrong result because x is not bound in this situation.

(b)
$$g(f(z,y),a)$$
 in $((\exists x)(P(x) \land R(x,y)))$.

Solution:

It is not substitutable, Since x is constrained by $\exists x$.

- 6. Connect predicate calculus to the study of this course. To focus on the substance, we need to extend (informally) predicate calculus (syntax) as follows
 - You can use sets or proposition as a parameter of a predicate.
 - You can use = as a predicate symbol in the normal way. For example, that two terms t_1 and t_2 are equal can be represented by $t_1 = t_2$.
 - You can use a variable to refer to a function or a set or a proposition. (e.g., $((\exists \mathcal{V})\mathcal{V}(x) = T)$ where T is constant.)

The form of formula will be expanded accordingly to the extension above. Consider the definition of *consequence* (Def 3.7 of Part I).

(a) Represent it as a formula. You need to introduce all predicates you need in the formula, in the way we did in L11.1 for the subset example. Intuitively, a concept name and its parameters/arguments you identify in the definition is a good candidate of a predicate. You also need to introduce any constant

or function symbol you need. Note the main "if" in a definition should be understood as "if and only if." Note statement " $\forall x \in A, x \in B$ " in the subset definition. We translate it to " $((\forall x)(x \in A \to x \in B))$."

Answer

Predicates: consequence (σ, Σ) : σ is a consequence of Σ equals $(v(\tau), T)$: $v(\tau)$ equals to true. equals $(v(\sigma), T)$: $v(\sigma)$ equals to true. Constant: T (True) Resulting Formula: consequence $(\sigma, \Sigma) \leftarrow ((\forall (\tau \in \Sigma), \text{ equals}((v(\tau), T) \rightarrow \text{ equals}((v(\sigma), T))))$

(b) Let your formula be α . What can you logically derive (some intuition/experience from your earlier study is needed here) from the formula ($\alpha \wedge$ "B is a consequence of $\{A, A \to B\}$ ")? Note you should translate the English in the formula using predicate(s) you introduced. Your answer to this question has to be in the form of a formula. You need to do a variable substitution (Σ in English definition would be replaced by $\{A, A \to B\}$, and σ by B).

Answer:

consequence(B, A, $A \to B$) \leftarrow ((\forall ($\tau \in A$, $A \to B$), equals(($\upsilon(\tau)$,T) \to equals($\upsilon(B)$, T)))

- 7. 1) Let $A = \{1, 2\}$.
 - a) List all functions from A to A in the form of sets of pair. For example, one function is $\{(1,1),(2,2)\}$. If we let the function be named g. Then in the example function, g(1) is 1 and g(2) is 2.

Solution:

According to the question $A = \{1, 2\}$. All functions from A to A are : $g(A) = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

b) List all unary relations on A. Your relations must be represented as sets.

Solution:

Assume U(A) represents all unary relations on A. $U(A) = \{1\}, \{2\}, \{1, 2\}$.

2) Show that $\forall x(p(x) \to q(f(x))) \land \forall xp(x) \land \exists x \neg q(x)$ is satisfiable. The format of your structure should follow the one in L12.1. In your structure, you must use the domain $A = \{1, 2\}$. You must represent the function assigned to f in the set of pairs. You must represent the relations assigned to f and f in the set forms. Note you have to figure out the constants in the language on which the formula is defined.

Solution:

Steps	Proof	
a.	Assume, $\Sigma = p(x), q(f(x))$, Domain: $A = \{1,2\}$, Constant Assign-	
	ments: {(1, one), (2, two)}	
b.	Function Assignment: f to $\{(1,2), (2,2)\}$, p to $p1$: $p1\{1\}$, q to $q1$: $q1\{2\}$	
c.	The sentences listed above are a set, as we all know. According to the	
	definition of induction, every $a\exists A$ in a sentence must be designated	
	by a ground word L in order for it to be true.	
d.	Constants and constants created by applying function symbols to	
	other constants are considered ground terms.	
e.	In this instance, $f(x)$ is grounded, making q true.	
f.	Considering that $(p(x) \to q(f(x)), p(x))$ is also true.	
g.	All members of \exists are real based on the information above, thus	
	$\forall x(p(x) \rightarrow q(f(x))) \land \forall xp(x) \land \exists x \neg q(x) \text{ is satisfiable.}$	

QED

8. Prove that $\mathcal{A} \models \neg \exists x \varphi(x)$ if and only if $\mathcal{A} \models \forall x \neg \varphi(x)$. You have to follow the proof format we used earlier. Working backward again is a good idea. You have to be able to apply the definitions.

Solution:

Steps	Proof	Reason
a.	If each element of the structure is	By definition 4.3.
	named by a ground term of L that	
	is defined by induction, then the	
	phrase φ satisfies the structure $\mathcal A$	
	i.e., $\mathcal{A} \models \varphi$.	
b.	$\mathcal{A} \models \neg \exists \ \mathbf{x} \ \varphi(x)$ for some ground	By definition 4.3, (ii) and (viii)).
	term t , $\mathcal{A} \models \neg \varphi$ (t) .	
C.	$\mathcal{A} \models \forall x \neg \phi(x)$ for some ground	By definition 4.3, (ii) and (viii)).
	term t , $\mathcal{A} \models \neg \phi(t)$.	
d.	Both $\mathcal{A} \models \neg \exists x \varphi(x)$ and $\mathcal{A} \models$	By (b) and (c).
	$\forall x \neg \phi(x)$ are equivalent to the $\mathcal{A} \models$	
	$\neg \varphi(t)$, hence $\mathcal{A} \models \neg \exists \mathbf{x} \varphi(x) \leftrightarrow \mathcal{A}$	
	$\models \forall x \neg \phi(x).$	
e.	$\mathcal{A} \models \neg \exists \mathbf{x} \varphi(x) \leftrightarrow \mathcal{A} \models \forall x \neg \phi(x)$	By (d).

QED