

09/20/00
JC927

9-21-00

ATTORNEY'S DOCKET NO.
RD-27,624

ORIGINAL/CIP PATENT APPLICATION TRANSMITTAL LETTER

TO THE ASSISTANT COMMISSIONER FOR PATENTS:

Transmitted herewith for filing is the ORIGINAL CONTINUATION-IN-PART patent application of:
Xiao-Dong Sun

Inventor(s)

For METHOD AND SYSTEM FOR SELECTIVELY DISTRIBUTING LUMINESCENCE MATERIAL PRECURSORS

(Title of Invention)

 This is a Continuation-In-Part of Serial No. _____, filed _____, Attorney Docket No. _____

ENCLOSED ARE:

 Specification having 15 total pages. 5 sheets of formal informal drawings. Declaration. Unsigned Declaration. Information Disclosure Statement. Other _____ An Assignment of the invention to General Electric Company with cover sheet.

The filing fee is calculated below:

	NUMBER FILED	NUMBER EXTRA	RATE	BASIC FEE \$690.00
TOTAL CLAIMS	34 - 20 =	14	x \$18.00	\$252.00
INDEPENDENT CLAIMS	3 - 3 =	0	x \$78.00	\$0.00
ADDITIONAL FEE FOR USE OF MULTIPLE DEPENDENT CLAIM(S) (once per application)			x \$260.00	
TOTAL FILING FEE				\$942.00

 Please charge \$942.00 to my Deposit Account No. 07-0868. The Assistant Commissioner is hereby authorized to charge payment of all fees required under 37 CFR 1.16 or 1.17 or credit any overpayment to Deposit Account No. 07-0868.9/18/00

date

Noreen C. Johnson

Attorney _____

Reg. No. 38,929Send Correspondence to:
General Electric Company
CRD Patent Docket Rm 4A59
P.O. Box 8, Bldg. K-1 -Salamone
Schenectady, New York 12301"Express Mail" mailing label number EL641454594USDate of Deposit 9/20/00Customer Number: 006147

Three copies of this form are enclosed

METHOD AND SYSTEM FOR SELECTIVELY
DISTRIBUTING LUMINESCENCE MATERIAL
PRECURSORS

BACKGROUND OF THE INVENTION

5 The present invention relates to a method and system for selectively distributing reactant precursors to separate locations on a receiver. Particularly, the invention relates to a method and system for preparing a combinatorial library of luminescence material precursors for screening by combinatorial high throughput screening (CHTS).

10 Luminescence materials, also called phosphors, can convert a certain type of energy into electromagnetic radiation over thermal radiation.¹ A phosphor is usually composed of a host lattice doped with fluorescent-active elements (activator) present in up to a few mole %. Phosphors have been widely used in fluorescent lamps, displays, scintillation, etc. Although the search for advanced phosphors started about a century ago, the new photonic technologies, including mercury-free fluorescent lamps, various flat panel displays, computed tomography (CT), etc., require new phosphors with advanced properties: These include high quantum efficiency, good absorption of the excitation energy, adequate color coordinate, long lifetime, and low cost.

15 The discovery of advanced oxide phosphors with multiple superior qualities for display applications remains a difficult problem. The specific spectral properties, absorption, quantum efficiencies, and lumen maintenance depend on complex interactions between the excitation source, host lattice, structural defects, and fluorescent dopants. Luminescence properties are highly sensitive to the changes in dopant composition, host stoichiometry, and processing conditions. Consequently, 20 the identification of phosphors that are ideally suited to the requirements of a given display technology is highly empirical.

25 Combinatorial chemistry techniques have been applied to search for new phosphors in thin film form or powder form. Sun, Ted X., Biotechnology and Bioengineering Combinatorial Chemistry, 61, 4 (1998/1999) shows that a combination of a thin-film deposition and a masking strategy can be used to generate 30 a thin film "spatially addressable library," where each sample precursor in the library

is formed from a multiple-layer. Following deposition of precursor layers, interdiffusion of the layers can be effected by a thermal annealing step and the phosphors synthesized in a following high temperature step.

However, most phosphors used in industry are in powder form. The thin-film techniques result in libraries of materials that are substantially two-dimensional as opposed to a three dimensional powder form. The substantially two dimensional libraries cannot replicate the industrial powder form of phosphors and the results of testing the thin-film-created libraries can not always be extrapolated to industrial conditions.

In the synthesis of phosphor libraries in powder form, solutions of elemental precursors are dispensed using an automatic liquid injector with accurate control of volume. In this process, elemental precursors mix on a molecular scale prior to coprecipitation and high temperature synthesis. For example, in Xiang et al., U.S. Pat. 6,048,469, libraries of phosphor materials are generated using dispensers of a multi-jet delivery system. In this process, solutions of precursors are deposited by a "droplet-on-demand" ink jet system operated with a piezoelectric disc, which squeezes a drop of liquid when pulsed with an electric signal.

However, a multi-jet delivery system cannot handle viscose solutions or gels, gels or solid suspensions that are the necessary precursors of phosphor materials. Materials of a viscosity greater than about 1 centipoise tend to clog the orifices of multi-jet type systems. Some of the precursors are so viscous that they cannot be delivered through the ink-jet nozzle. Additionally, known multi-jet systems are designed for discovery processing of relatively benign materials. Many of the phosphor library precursors must be delivered as highly acidic solutions. The viscous solutions cannot be delivered through the orifices of the multi-jet type systems and the deleterious acidic phosphor solutions cause deterioration of known multi-jet delivery system structures.

There is a need for a method and apparatus to produce a precursor phosphor library that emulates forms of industrially used phosphors. Additionally, there is a need for a method and apparatus that will resist deteriorating effects of various phosphor precursor compositions.

BRIEF SUMMARY OF THE INVENTION

The invention meets these needs by providing a method and apparatus to deliver a library of precursor phosphor materials from solutions and gels of particle-sized materials and by providing a method and apparatus that resists the effects of deleterious precursor phosphor materials.

5 In a first embodiment, a method comprises positively displacing a first luminescence material precursor from a dispenser to a first position of an array, displacing a second luminescence material precursor from a dispenser mechanism to a second position of an array and simultaneously reacting the first and second precursors to produce a library of candidate luminescence materials.

10 In another embodiment, the invention relates to a method, comprising establishing a combinatorial library of precursor luminescence materials, effecting parallel reaction of said library to produce a library of candidate luminescence materials and evaluating each candidate material to select a best material from among said candidate library.

15 In another embodiment, the invention relates to a combinatorial high throughput screening liquid dispenser assembly. The assembly comprises a battery of positive displacement driven dispensers for dispensing solutions of precursor luminescence materials, an array plate with wells to receive dispensed solution from the dispenser, a robotic positioning table supporting the array plate to position wells beneath respective dispensers and a controller to control dispensing of the solutions and positioning of the plate.

20 In still another embodiment, the invention relates to a combinatorial high throughput screening system. The system includes the dispensing assembly, a furnace to heat treat solutions of precursor luminescence materials in the wells and an evaluator to evaluate luminescence materials from the precursors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a combinatorial high throughput screening liquid dispenser assembly;

30 FIG. 2 is a schematic representation a positive displacement device of the assembly of FIG. 1;

FIG. 3 is a schematic representation of another combinatorial high throughput screening liquid dispenser assembly;

FIG. 4 is a flow chart of a method for screening luminescence materials; and

5 FIG. 5 is a fluorescent intensity image phosphor library.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to a combinatorial chemistry approach to screening and selecting luminescence materials. In a first aspect, the invention relates to a method and apparatus for producing a library of luminescence materials for 10 combinatorial high throughput screening (CHTS).

These and other features will become apparent from the drawings and following detailed discussion, which by way of example without limitation describe preferred embodiments of the present invention.

15 FIG. 1 schematic represents a combinatorial high throughput screening liquid dispensing assembly with an array of 8 positive displacement syringes and FIG. 2 schematically represents a positive displacement device of the assembly 10 of FIG. 1. In FIG. 1, assembly 10 includes a battery 12 of positive displacement syringes 14 that are driven by stepping motor 16 (shown in FIG. 2), which in turn is controlled by computer 18. The dispensing assembly 10 further includes X-Y-Z robotic positioning stage 20, which supports array plate 22. X-Y-Z robotic positioning stage 20 is 20 controlled by computer 18 to position wells 24 of the array plate 22 beneath respective positive displacement syringes 14 for delivery of test solutions from reservoirs 26.

25 Referring to FIGs. 1 and 2, each syringe 14 is a positive displacement device with a connecting line 28 to a chemical reservoir 26, a connecting line 30 to syringe 14 and three-way valve 34. Syringe 14 includes microsolenoid valve 34 and removable tip 36. Three way fluid valve 34 is driven by stepping motor 16, which is controlled by computer 18. In operation, computer 18 controls stepping motor 16 to open valve 34 to reservoir connecting line 28 and to withdraw valve plunger 40 toward the motor to aspirate a solution of luminescence material precursor into chamber 42. Valve 34 then closes connecting line 28 and opens connecting line 30 to 30 syringe 14. The computer 18 causes stepping motor 16 to drive plunger 40 to

mechanically displace precursor solution from chamber 42 to syringe 14 through solenoid valve 32. Solenoid valve 32 is closed until plunger 40 is driven to displace material. The additional liquid control of the solenoid valve allows for a non-contact dispensing of a fluid drop to a respective well 24 of plate 22.

5 Computer 18 controls aspiration of precursor solution into the battery 12 of syringes 14 and sequential positioning of the wells 24 of array place 22 so that a prescribed stoichiometry and/or composition of luminescence precursor can be delivered to the wells 24. By coordinating activation of the syringes 14 and movement of plate 22 on the robotic X-Y-Z, a library of the luminescence precursor materials can be generated in a two-dimensional array for use in a combinatorial high 10 throughput screening method.

15 The method and system of the invention can advantageously accommodate solutions and gels having a viscosity greater than about 1 centipoise to about 100 centipoise. Additionally, the method and system can dispense highly viscose solid in fluid suspensions of up to about 100 centipoise and particle size of up to about 50 μ m.

20 A dispenser assembly 10 can be fabricated by providing a battery of eight automated nano-liter liquid syringes 14 as shown in FIG. 1. Each syringe 14 is individually controlled and programmed with a dual function of aspiration and dispensing, with a linear dynamic range (deliverable volume range per drop) of from about 4 nano-liter to about 250 micro-liter. The dynamic range can be from about 20 nano-liter to about 100 micro-liter, preferably from about 100 nano-liter to about 50 micro-liter. A matching array plate 22 of reaction wells 24 can be machined from alumina or quartz. The plate 22 is placed in registry with the syringe battery 12 so 25 that syringe tip to tip separation matches well to well separation. By coordinating the movement of the syringe battery 12 and by changing amount of solution delivered, a 128-membered solution precursors of a phosphor materials library can be generated in about 10 minutes.

30 FIG. 3 is a schematic representation of another dispensing assembly 50 of the invention. Assembly 50 includes a battery 52 of positive displacement syringes 54 that are driven by a step motor, controlled by computer 56 in a similar fashion as shown in FIG. 2. In this embodiment however, solution precursors are aspirated through dispenser tips 36 and then moved to corresponding well-positions of the array

plate 22 and dispensed volumetrically. This is unlike the scheme shown in FIGs. 1 and 2, where solution precursors are fed into dispenser tips 36 through the three way valve 34. In FIG. 3, syringe battery 52 is robotically controlled by a computer 56 driven motor for displacement up and down in a Z-axis direction. The dispensing assembly 50 further includes X-Y robotic positioning stage 58, which supports both an array plate 60 and reservoirs 62 containing luminescence precursor material solutions. X-Y robotic positioning stage 58 is controlled by computer 56 to position reservoirs 62 beneath respective positive displacement syringes 54. The battery 52 of syringes 54 is then activated in a vertical Z direction into contact with respective reservoirs 62. Solution is aspirated into respective chambers 64 of syringes 54 by operation of the stepping motor and valve arrangement of FIG. 2. Computer 56 then controls the robotic mechanism to displace the syringe battery 52 upwardly. X-Y robotic positioning stage 58 controlled by computer 56, positions wells 68 of plate 60 beneath respective syringes 54 and lowers the syringes toward the wells 68 to a position for delivery of solution. The computer 56 then activates solenoid valves 72 and the stepping motor to mechanically displace a volume of precursor solution from each chamber 64 of each syringe 54 through solenoid valve 72 to deliver solution to a respective well 68 of plate 60. Each aspirated volume can be controlled by computer 56 so that different volumes or different proportions can be delivered to separate respective wells. The dispenser of FIG. 3 can be used to handle highly viscous and/or corrosive materials. The dispenser of FIG. 3 can easily handle solid/liquid suspensions and emulsions.

The assembly of the invention generates a library of luminescence precursor solutions in a two-dimensional array for use in a combinatorial high throughput screening method (CHTS). Typically, a CHTS is characterized by parallel reactions at a micro scale. In the invention, the CHTS can be described as comprising (A) (i) aspirating a candidate luminescence material precursor into a hollow tube by action of a plunger; (ii) dispensing the precursor into a well of an array plate by a positive displacement action of a plunger against the precursor; (iii) effecting a reaction of the precursor to form a candidate luminescence material; and (iv) evaluating the candidate luminescence material. The method includes (B) reiterating (A) wherein a successive candidate luminescence material precursor for a step (i) is selected as a result of an evaluating step (iii) of a preceding iteration of (A).

FIG. 4 shows an overall CHTS method, including preparation of a phosphor precursor library to conversion to final phosphor library by a thermal process and evaluation with fluorescent screening. The screening result narrows down a space of search for design and preparation of a next phosphor library. The 5 method 80 includes delivering 82 candidates of luminescence material precursors by positively displacing the precursors to produce a library of precursors. The precursors are dried, calcined and annealed 84. In these procedures, the library is first placed on an orbital shaker and precursors in each well are thoroughly mixed. The library is then baked at about 80°C in an oven to dry fluid. The library is then calcined at about 10 300°C to about 700°C to convert precursors to oxide phosphors. Finally, the library is sintered at about 800°C to about 1500°C to form luminescence materials. The luminescence materials are then evaluated 86. Color photography of the 15 luminescence material library can provide comparison of the brightness and chromaticity of the materials. A high throughput CCD (charge coupling device) based spectrometer can also be used to image the fluorescence of the library. This instrument is preferred since it permits a high throughput synthesis and screening of fluorescence materials up to a daily screening rate of 100 to 1,000. The evaluating step can be used to identify candidate precursor materials for further screening. In this embodiment, the steps of delivering the precursors, drying, calcining and annealing 20 and evaluating the precursors are reiterated 88 to identify “best” luminescence materials or to identify next candidate precursor materials for a next iteration.

In one aspect, the CHTS can be described with reference to FIG. 4 as a method 80 comprising (A) (i) preparing 82 a library of luminescence precursor materials by dispensing a solution of the precursor into a well of an array plate by a positive displacement action; (ii) effecting 84 a reaction of the precursor to form a candidate luminescence material; and (iii) evaluating 86 the candidate luminescence material. The method includes (B) reiterating 88 (A) wherein a successive candidate luminescence material precursor for a step (i) is selected as a result of an evaluating 25 step (iii) of a preceding iteration of (A).

30 The following Example describes a preferred embodiment of the invention.

EXAMPLE

A powder phosphor library: $(Y_xA_{1-x})_3(Al_yGa_{1-y})_5O_{12}:Ce^{3+}$ (A: Gd, Lu) was prepared as follows. A sintered alumina (99.5% purity) plate with 128 (8 by 16 array) cells of 2 mm in diameter and ~6 mm in depth was machined and used as a containing plate for liquid precursors to powder phosphors. Neighboring cells were 3 mm in center to center separation and registered in position to the array of liquid dispenser. By coordinating the scanning motion of a X-Y-Z table mounted with the substrate plate in the spatial resolution of 0.1 mm, and variation of liquid volumes from dispenser, a library with 128 different solution mixing precursors of powder phosphors was generated in a matter of minutes. First, a continuously decreasing volume of $Y(NO_3)_3$ was dispensed by positive displacement into each array well in the X-direction. A continuously increasing volume of $A(NO_3)_3$ was then delivered in the same direction. The total volume of $Y(NO_3)_3$ and $A(NO_3)_3$ in each well was 3mmol. A corresponding gradient of $Al(NO_3)_3$ and $Ga(NO_3)_3$ was delivered in the Y-direction of the array to provide a total of 5mmol. in each well. Finally a uniform amount of $Ce(NO_3)_3$ was delivered to each well.

High purity ($\geq 99.9\%$) clear aqueous nitrate solutions were used in making the powder library: $Y(NO_3)_3$, (1M), $Gd(NO_3)_3$ (1M), $Lu(NO_3)_3$, (1M), $Al(NO_3)_3$, (1M), $Ga(NO_3)_3$ (1M), $Ce(NO_3)_3$ (0.5M). A phosphor precursor solution library was generated on the alumina plate (with 128 sample cells) according to the described scheme of X-Y delivery. The total amount of samples in each cell was approximately 10 μ mole. The composition of each cell is listed in TABLE 1, within the general formula $(Y_xA_{1-x})_3(Al_yGa_{1-y})_5O_{12}:Ce^{3+}_{0.06}$ (A: Gd, Lu), where $3 \geq x \geq 0.375$; $5 \geq y \geq 0.625$. The library was placed on an orbital shaker for mixing while over shining with an IR lamp to evaporate the solvent, with surface temperature approximately 800°C. After samples are dried, the library was placed in a reducing furnace at 1400°C for 2 hours with heating and cooling controlled at ~ 10°C/minute.

Table 1

TABLE 1

Lu1.625Y0.375Al5Ce0.06	Lu2.25Y0.75Al5Ce0.06	Lu1.875Y1.125Al5Ce0.06	Lu1.5Y1.5Al4.375Ga0.625Ce0.06	Lu1.5Y1.5Al4.375Ga0.625Ce0.06	Lu1.5Y1.5Al4.375Ga0.625Ce0.06
Lu2.625Y0.375Al4.375Ga0.625Ce0.0	Lu2.25Y0.75Al4.375Ga0.625Ce0.0	Lu1.875Y1.125Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06
Lu2.625Y0.375Al3.75Ga1.25Ce0.06	Lu2.25Y0.75Al3.75Ga1.25Ce0.06	Lu1.875Y1.125Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06	Lu1.5Y1.5Al3.75Ga1.25Ce0.06
Lu2.625Y0.375Al3.125Ga1.875Ce0.0	Lu2.25Y0.75Al3.125Ga1.875Ce0.0	Lu1.875Y1.125Al3.125Ga1.875Ce0.06	Lu1.5Y1.5Al3.125Ga1.875Ce0.06	Lu1.5Y1.5Al3.125Ga1.875Ce0.06	Lu1.5Y1.5Al3.125Ga1.875Ce0.06
Lu2.625Y0.375Al2.5Ga2.5Ce0.06	Lu2.25Y0.75Al2.5Ga2.5Ce0.06	Lu1.875Y1.125Al2.5Ga2.5Ce0.06	Lu1.5Y1.5Al2.5Ga2.5Ce0.06	Lu1.5Y1.5Al2.5Ga2.5Ce0.06	Lu1.5Y1.5Al2.5Ga2.5Ce0.06
Lu2.625Y0.375Al2.5Ga2.5Ce0.06	Lu2.25Y0.75Al2.5Ga2.5Ce0.06	Lu1.875Y1.125Al1.875Ga3.125Ce0.06	Lu1.5Y1.5Al1.875Ga3.125Ce0.06	Lu1.5Y1.5Al1.875Ga3.125Ce0.06	Lu1.5Y1.5Al1.875Ga3.125Ce0.06
Lu2.625Y0.375Al1.25Ga1.25Ce0.06	Lu2.25Y0.75Al1.25Ga1.25Ce0.06	Lu1.875Y1.125Al1.25Ga1.25Ce0.06	Lu1.5Y1.5Al1.25Ga1.25Ce0.06	Lu1.5Y1.5Al1.25Ga1.25Ce0.06	Lu1.5Y1.5Al1.25Ga1.25Ce0.06
Lu2.625Y0.375Al0.75Al0.625Ga4.375Ce0.0	Lu2.25Y0.75Al0.625Ga4.375Ce0.0	Lu1.875Y1.125Al0.625Ga4.375Ce0.06	Lu1.5Y1.5Al0.625Ga4.375Ce0.06	Lu1.5Y1.5Al0.625Ga4.375Ce0.06	Lu1.5Y1.5Al0.625Ga4.375Ce0.06
Gd1.625Y0.375Al5Ce0.06	Gd2.25Y0.75Al5Ce0.06	Gd1.875Y1.125Al5Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06
Gd2.625Y0.375Al4.375Ga0.625Ce0.0	Gd2.25Y0.75Al4.375Ga0.625Ce0.0	Gd1.875Y1.125Al4.375Ga0.625Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06	Gd1.5Y1.5Al4.375Ga0.625Ce0.06
Gd2.625Y0.375Al3.75Ga1.25Ce0.06	Gd2.25Y0.75Al3.75Ga1.25Ce0.06	Gd1.875Y1.125Al3.75Ga1.25Ce0.06	Gd1.5Y1.5Al3.75Ga1.25Ce0.06	Gd1.5Y1.5Al3.75Ga1.25Ce0.06	Gd1.5Y1.5Al3.75Ga1.25Ce0.06
Gd2.625Y0.375Al3.125Ga1.875Ce0.0	Gd2.25Y0.75Al3.125Ga1.875Ce0.0	Gd1.875Y1.125Al3.125Ga1.875Ce0.06	Gd1.5Y1.5Al3.125Ga1.875Ce0.06	Gd1.5Y1.5Al3.125Ga1.875Ce0.06	Gd1.5Y1.5Al3.125Ga1.875Ce0.06
Gd2.625Y0.375Al2.5Ga2.5Ce0.06	Gd2.25Y0.75Al2.5Ga2.5Ce0.06	Gd1.875Y1.125Al2.5Ga2.5Ce0.06	Gd1.5Y1.5Al2.5Ga2.5Ce0.06	Gd1.5Y1.5Al2.5Ga2.5Ce0.06	Gd1.5Y1.5Al2.5Ga2.5Ce0.06
Gd2.625Y0.375Al1.25Ga1.25Ce0.06	Gd2.25Y0.75Al1.25Ga1.25Ce0.06	Gd1.875Y1.125Al1.25Ga1.25Ce0.06	Gd1.5Y1.5Al1.25Ga1.25Ce0.06	Gd1.5Y1.5Al1.25Ga1.25Ce0.06	Gd1.5Y1.5Al1.25Ga1.25Ce0.06
Gd2.625Y0.375Al0.75Al0.625Ga4.375Ce0.0	Gd2.25Y0.75Al0.625Ga4.375Ce0.0	Gd1.875Y1.125Al0.625Ga4.375Ce0.06	Gd1.5Y1.5Al0.625Ga4.375Ce0.06	Gd1.5Y1.5Al0.625Ga4.375Ce0.06	Gd1.5Y1.5Al0.625Ga4.375Ce0.06

After thermal treatment, there is no detectable cross contamination of neighboring samples and no apparent alumina substrate effect on the phosphor library. The as synthesized powder phosphor library was placed under a uniform long UV (370 nm) excitation. The fluorescent image of the library is shown in FIG. 5. FIG. 5 shows an array of different phosphors synthesized simultaneously in accordance with the invention. The phosphor library of FIG. 5 corresponds to the composition map shown in TABLE 1. Fluorescence of each phosphor corresponds to location brightness of respective phosphors of the library as shown. Three distinguishable emitting colors, orange-yellow-green, were obtained from this series of phosphors, by elemental substitution.

Qualitative composition/property relationships can be determined from the library. For example, the following relationships were determined:

1. Increase of Ga³⁺ in $(Y_xCe0.06Lu1-x)3(AlyGa1-y)5O12$ decreases emission wavelength and emission intensity.
- 15 2. Increase of Lu³⁺ in $(Y_xCe0.06Lu1-x)3(AlyGa1-y)5O12$ slightly increases emission intensity and slightly decreases emission wavelength, W.
3. Increase of Gd³⁺ for lesser Ga³⁺ $(Y_xCe0.06Lu1-x)3(AlyGa1-y)5O12$ causes a red shift of emission wavelength, for higher Ga³⁺, increase of Gd³⁺ quenches emission intensity.

20 These studies permit optimization of emitting intensity of phosphors for each desired color from this series of compositions.

While preferred embodiments of the invention have been described, the present invention is capable of variation and modification and therefore should not be limited to the precise details of the Examples. The invention includes changes and alterations that fall within the purview of the following claims.

WHAT IS CLAIMED IS:

5 1. A method comprising positively displacing a first luminescence material precursor from a dispenser to a first position of an array, displacing a second luminescence material precursor from a dispenser mechanism to a second position of an array and simultaneously reacting said first and second precursors to produce a library of candidate luminescence materials.

10 2. The method of claim 1, wherein reacting said first and second precursors comprises effecting parallel chemical synthesis of an array of said precursors.

15 3. The method of claim 1, comprising mechanically positively displacing said first precursor from said dispenser.

15 4. The method of claim 1, comprising mechanically positively displacing said first precursor from said dispenser with a syringe.

20 5. The method of claim 1, comprising displacing said first and second precursors from respective hollow barrels by activating a plunger within each of said barrels.

20 6. The method of claim 1, comprising first loading said precursors into said dispenser.

25 7. The method of claim 1, wherein said precursor is displaced within a linear dynamic range of from about 4 nano-liter to about 250 micro-liter.

8. The method of claim 1, wherein said precursor is displaced within a linear dynamic range of from about 20 nano-liter to about 100 micro-liter.

9. The method of claim 1, wherein said precursor is displaced within a linear dynamic range of from about 100 nano-liter to about 50 micro-liter.

25 10. The method of claim 1, comprising first aspirating a said precursor into said dispenser.

11. The method of claim 10, wherein said precursor is aspirated into said dispenser within a linear dynamic range of from about 4 nano-liter to about 250 micro-liter.

5 12. The method of claim 10, wherein said precursor is aspirated into said dispenser within a linear dynamic range of from about 20 nano-liter to about 100 micro-liter.

13. The method of claim 10, wherein said precursor is aspirated into said dispenser within a linear dynamic range of from about 100 nano-liter to about 50 micro-liter.

10 14. The method of claim 1, comprising first aspirating a plurality of precursors into respective dispensers of a battery of dispensers.

15 15. The method of claim 1, comprising first aspirating said precursors into respective hollow barrels of a battery of said dispensers, positioning respective wells of an array plate beneath each of said barrels and displacing each of said precursors from respective hollow barrels by activating a plunger within each of said barrels.

20 16. The method of claim 1, comprising first robotically positioning respective vials containing said precursors beneath a battery of said dispensers, aspirating said precursors into respective hollow barrels of said battery of said dispensers, positioning respective wells of an array plate beneath each of said barrels and displacing each of said precursors from respective hollow barrels by activating a plunger within each of said barrels.

25 17. The method of claim 1, comprising first robotically positioning respective vials containing said precursors beneath a battery of said dispensers, aspirating said precursors into respective hollow barrels of said battery of said dispensers, robotically positioning respective wells of an array plate beneath each of said barrels and displacing each of said precursors from respective hollow barrels by activating a plunger within each of said barrels.

30 18. The method of claim 17, comprising controlling positioning of said vials with a microprocessor.

19. The method of claim 17, comprising controlling positioning of said vials and positioning of wells of said array plate with a microprocessor.

20. The method of claim 1, wherein said precursors are highly viscous materials.

5 21. The method of claim 1, wherein said precursors are highly viscous materials.

22. The method of claim 1, wherein said precursors have a viscosity of greater than about 1 centipoise.

10 23. The method of claim 1, wherein said precursors have a viscosity of greater than about 1 centipoise to about 100 centipoise.

24. The method of claim 1, wherein said precursors comprise a solid in fluid suspension of a particle size of up to about 50 μ m.

25. A combinatorial high throughput screening (CHTS) method for selecting a luminescence material, comprising:

15 (A) (i) aspirating a candidate luminescence material precursor into a hollow tube by action of a plunger; (ii) dispensing said precursor into a well of an array plate by a positive displacement action of said plunger against said precursor; (iii) effecting a reaction of said precursor to form a candidate luminescence material; and (iv) evaluating said candidate luminescence material.

20 26. The method of claim 25, further comprising (B) reiterating (A) wherein a successive candidate luminescence material precursor for a step (i) is selected as a result of an evaluating step (iii) of a preceding iteration of (A).

25 27. A combinatorial high throughput screening liquid dispensing assembly comprising a battery of positive displacement driven dispensers for dispensing solutions of precursor luminescence materials, an array plate with wells to receive dispensed solution from said dispenser, a robotic positioning table supporting said array plate to position wells beneath respective dispensers and a controller to control dispensing of said solutions and positioning of said plate.

28. The assembly of claim 27, additionally comprising a plurality of reservoirs of solution for delivery of solution to said battery of dispensers.

29. The assembly of claim 28, wherein said plurality of reservoirs is robotically positionable for aspiration of solution into respective dispensers of said
5 battery.

30. The assembly of claim 27, wherein a tip to tip separation of said dispensers is registered with a well to well separation of said plate.

31. The assembly of claim 27, wherein said positive displacement dispensers have a capability of displacing solution within a linear dynamic range of
10 from about 4 nano-liter to about 250 micro-liter.

32. The assembly of claim 27, wherein said positive displacement dispensers have a capability of displacing solution within a linear dynamic range of from about 20 nano-liter to about 100 micro-liter.

33. The assembly of claim 27, wherein said positive displacement dispensers have a capability of displacing solution within a linear dynamic range of from about 100 nano-liter to about 50 micro-liter.
15

34. A combinatorial high throughput screening system, comprising the dispensing assembly of claim 27, a furnace to heat treat solutions of precursor luminescence materials in said wells and an evaluator to evaluate luminescence
20 materials from said precursors.

METHOD AND SYSTEM FOR SELECTIVELY
DISTRIBUTING LUMINESCENCE MATERIAL
PRECURSORS

ABSTRACT OF THE DISCLOSURE

5 A method comprises positively displacing a first candidate luminescence material precursor from a dispenser to a first position of an array, displacing a second candidate luminescence material precursor from a dispenser mechanism to a second position of an array and simultaneously reacting the first and second candidates to produce a library of luminescence materials. A combinatorial 10 high throughput screening liquid dispenser assembly comprises a battery of positive displacement driven dispensers for dispensing solutions of precursor luminescence materials, an array plate with wells to receive dispensed solution from the dispenser, a robotic positioning table supporting the array plate to position wells beneath respective dispensers and a controller to control dispensing of the solutions and 15 positioning of the plate.

O S E E S S E P P - O S E 2 0 0 0

FIG. 1

FIG. 2

FIG. 3

SHEET 4/5

FIG. 4

09663360 092000

SHEET 5/5

FIG. 5

095663812 • 032000

DECLARATION FOR PATENT APPLICATION

Docket Number
RD-27,624

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

METHOD AND SYSTEM FOR SELECTIVELY DISTRIBUTING LUMINESCENCE MATERIAL

PRECURSORS

the specification of which is attached hereto unless the following box is checked:

was filed on _____ as United States Application Number or PCT International Application Number _____
and was amended on _____ (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations §1.56. I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed.

Prior Foreign Application

Priority Claimed

Yes No

(Number)	(Country)	(Day/Month/Year Filed)
_____	_____	_____

Yes No

(Number)	(Country)	(Day/Month/Year Filed)
_____	_____	_____

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below.

(Application Number)	(Filing Date)
_____	_____

(Application Number)	(Filing Date)
_____	_____

I hereby claim the benefit under Title 35, United States Code §120 of any United States Application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

(Application Number)	(Filing Date)	(Status - patented, pending, abandoned)
_____	_____	_____

(Application Number)	(Filing Date)	(Status - patented, pending, abandoned)
_____	_____	_____

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, **CUSTOMER NO. 006147**.

Douglas E. Stoner, Reg. No. 26,509, Marvin Snyder, Reg. No. 20,126, Donald S. Ingraham, Reg. No. 33,714, Jill M. Breedlove, Reg. No. 32,684, Noreen C. Johnson, Reg. No. 38,929, Ronald E. Myrick, Reg. No. 26,315, Henry J. Policinski, Reg. No. 26,621, Jay L. Chaskin, Reg. No. 24,030, James W. Mitchell, Reg. No. 25,602, Bernard Snyder, Reg. No. 24,843 and Catherine J. Winter, Reg. No. 38,364.

Address all telephone calls to: Noreen C. Johnson at telephone number (518) 387-7863

Address all correspondence to:
General Electric Company
CRD Patent Docket Rm 4A59
P.O. Box 8, Bldg. K-1 - Salamone
Schenectady, New York 12301

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

SOLE OR FIRST INVENTOR:

Full name: Xiao-Dong Sun

First Name

Middle Name

Last Name

Signature: [Signature]

Date

9/15/00

Residence: Schenectady, New York

City and State

Citizenship: China

Post Office Address: 1455 Dorwaldt Blvd., Schenectady, NY 12309

SECOND JOINT INVENTOR:

Full name:

First Name

Middle Name

Last Name

Signature: [Signature]

Date

Residence: [Signature]

Citizenship: [Signature]

City and State

Post Office Address: [Signature]

THIRD JOINT INVENTOR:

Full name:

First Name

Middle Name

Last Name

Signature: [Signature]

Date

Residence: [Signature]

Citizenship: [Signature]

City and State

Post Office Address: [Signature]

FOURTH JOINT INVENTOR:

Full name:

First Name

Middle Name

Last Name

Signature: [Signature]

Date

Residence: [Signature]

Citizenship: [Signature]

City and State

Post Office Address: [Signature]