MATH 8301 Homework IV

David DeMark

2 October 2017

1		١
L	•	,

a.)

Prompt. For $|(V, \mathcal{F})|$ a compact connected surface, find a relation between e, f

Response. As $|(V, \mathcal{F})|$ is compact, we may assume each edge of each 2-simplex is identified with an edge of a distinct 2-simplex. We let $S = \{(\Delta, \epsilon) \in \mathcal{F}^2 : |\Delta| = 3, \ |\epsilon| = 2, \ \epsilon \subset \Delta\}$. As each 2-simplex Δ_0 has boundary composed of three edges $\epsilon_1, \epsilon_2, \epsilon_3$, we have that |S| = 3f. We also have that each edge is boundary to two 2-simplices and thus |S| = 2e. This gives us the relation 3f = 2e

b.)

Prompt. Find formulas for f, e in terms of χ, v .

Response. We have that $\chi = v - e + f$. Substituting $f = \frac{2}{3}e$, we have $\chi = v - \frac{e}{3} \implies e = 3(v - \chi)$. Now, substituting $e = \frac{3}{2}f$, we have $\frac{3}{2}f = 3(v - \chi) \implies f = 2(v - \chi)$.

c.)

Proposition. Show for any triangulation of a compact surface $S = |(V, \mathcal{F})|$ with $\chi(S) = 0$ that $v(S) = v \ge 7$.

Proof. We have that any triangulation of a surface must have at least one vertex as else the simplicial complex (V, \mathcal{F}) is necessarily empty. Furthermore, as the 1-skeleton of (V, \mathcal{F}) must be a graph in the classical sense (that is, with no loops or double edges), we have that $3v = e \leq \binom{v}{2}$. Hence, we must have that v satisfies the solution $3v \leq \frac{v^2 - v}{2}$, or simplifying, $v^2 - 7v \geq 0$, that is $v \leq 0$ or $v \geq 7$. However, as we have already noted that $v \geq 1$, we must have that $v \geq 7$.

2.)

a.)

Proposition. Let P be star-shaped with respect to p. Then, P is contractible.

Proof. We let $H: P \times [0,1] \to P$ be given by H(q,t) = (1-t)q + tp. It is well-known and obvious that H is continuous should it be well-defined, and one may view the definition of star-shaped precisely as $H(q_0,t_0) \in P$ for any $q_0 \in P$, $t_0 \in [0,1]$. Thus, H is well defined and as H(q,1) = p for any $q \in P$, we have that it is a deformation retract and hence a detraction.

b.)

Proposition. If P is a polygon star-shaped w/r/t $p \in \text{int}P$, then $f : P \setminus \{p\} \to S^1$ given by $f(q) = \frac{q-p}{|q-p|}$ is a homotopy equivalence.

Proof. As $p \in \text{int}P$, there exists some $\delta > 0$ such that $\overline{B}_{\delta}(p) \subset P$. We let $S = \partial \overline{B}_{\delta}(p)$. We then let $g: S^1 \to P$ be given by $g(x) = \delta x + p$ and note im g = S. Then, $fg(x) = \text{id}_{S^1}$, as $fg(x) = f(\delta x + p) = \frac{(\delta x + p) - p}{|(\delta x + p) - p|} = \frac{x}{|x|} = x$ as |x| = 1. On the other hand, we have that $gf(q) = g\left(\frac{q-p}{|q-p|}\right) = \delta\frac{(q-p)}{|q-p|} + p$ —in particular, as gf(q) is of the form p + s(q-p), we have that for any $q \notin B_{\delta}(p)$, gf(q) is on the line \overline{pq} . On the other hand, for $q \in B_{\delta}(q)$, gf(q) is still colinear to p, q, so we have that $q \in p(gf(q))$. Hence, we may take $H: P \times [0,1] \to P$ by $(q,t) \mapsto (1-t)q + tgf(q)$ to be our homotopy given our equivalence

c.)

Proposition. $T^2 \setminus \{p\} \cong S^1 \# S^1$

Proof. We begin with a lemma.

Lemma. We let X be a topological space, $A \subset X$ and \sim an equivalence relation on X such that for all $x \in X \setminus A$, [x] is a singleton. Then, if $f: X \to A$ is a homotopy equivalence with homotopy inverse the inclusion ι such that $\iota f \cong_A \operatorname{id}_X, X/\sim$ is in homotopy equivalence with A/\sim .

Proof. We let the natural maps $X \to X/\sim$ and $A \to A/\sim$ be denoted q_X and q_A respectively. We let $H: X \times [0,1] \to X$ give a homotopy relative to A from id_X to ιf . We define $\tilde f: X/\sim\to A/\sim$ by $\tilde f([x])=q_A\circ f(x)$, with $\tilde\iota$ defined similarly, and $\tilde H$ given by $\tilde H([x],t)=q_X\circ H(x,t)$. As our hypothesis forces f,ι and H(-,t) to restrict to the identity (composed or precomposed with the inclusion ι when appropriate) on A and [x] is a singleton for $x\in X\setminus A$ we have that each of f,ι and H respect \sim and hence $\tilde f,\tilde\iota$ and $\tilde H$ well defined. We note that $\tilde f\tilde\iota=\mathrm{id}_{A/\sim}$ as $f\iota=\mathrm{id}_A$, and hence need only show that $\tilde H$ gives a homotopy between $\tilde\iota f$ and $\mathrm{id}_{X/\sim}$. As $\tilde H(-,1)=\mathrm{id}_{X/\sim}$ by construction, we need only show that $\tilde H(-,0)=\tilde\iota f$. We have that $\tilde H(x,0)=(q_X\circ\iota\circ f)(x)$, and note that $q_X\circ\iota=\tilde\iota\circ q_A$ as q_X restricts to q_A on A. Further, we defined $\tilde f([x])=q_A\circ f(x)$. Hence, $\tilde H(x,0)=\tilde\iota f$ and hence gives the desired homotopy.

By the lemma, we now need only show that $I^2 \setminus \{p\}$ where I is the unit interval and $p \in \operatorname{int} I^2$, is homotopy equivalent to ∂I^2 relative to ∂I^2 . As I^2 is convex, we have that for any $q \in I^2$, the line segment \overline{pq} is colinear to precisely one point $d_q \in \partial I^2$. We let $f(q) = d_q$, that is we let f be the projection-to-boundary map. By convexity, it is clear that f is continuous, and as I^2 is star-shaped with respect to any point of its interior, we have that the linear homotopy H from $\operatorname{id}_{I^2 \setminus \{p\}}$ to f by $(q,t) \mapsto (1-t)q + td_q$ is well-defined and continuous. Further, as $q = d_q$ for any $q \in \partial I^2$, we have that H is a homotopy relative to ∂I^2 . Furthermore, as $f \iota = \operatorname{id}_{\partial I^2}$, f is a homotopy equivalence relative to ∂I^2 . Thus, letting \sim be the standard toral side-identification, we have that $T^2 \setminus \{[p]\} = I^2 \setminus \{p\} / \sim \approx \partial I^2 / \sim = S^1 \# S^1$