5.111 Principles of Chemical Science: Week 6

Logan Pachulski

July 29th, 2019

Progress Update

Over the past week I have been introduced to:

- Bond reaction enthalpy
- @ Gibb's free energy

Bond reaction enthalpy

Reaction enthalpy, ΔH , is the measure of how much energy is released or absorbed when a reaction takes place; consider the combustion of methane:

$$CH_4 + 2O_2 \to CO_2 + H_2O$$
 (1)

890 kJ are released for each mole of methane burnt, thus $\Delta H = -890 kJ$. A few methods exist to estimate bond enthalpy:

- Difference in energy between bonds broken and bonds formed
- ② Difference in standard heat of formation

Gibb's free energy

Gibb's free energy, ΔG is a predictor of whether or not a reaction will be spontaneous. It can be found via the equation

$$\Delta G = \Delta H - T \Delta S \tag{2}$$

where T is temperature in Kelvin, and ΔS is the change in enthalpy.

Review problem

Consider the problem

Using the following bond enthalpy table, calculate the estimated enthalpy of reaction for the following reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

N-N	163 kJ/mol	N-H	391 kJ/mol
N=N	418 kJ/mol	H-H	436 kJ/mol
N=N	941 kJ/mol		

$$\Delta H_{rxn} = -97 \text{ kJ/mol}$$

5/6

Olympiad problem

Now consider the Olympiad problem

The standard enthalpy of reaction for the dissolution of silica in aqueous HF is 4.6 kJ mol⁻¹. What is the standard enthalpy of formation of SiF₄(g)?

$$SiO_2(s) + 4 HF(aq) \rightarrow SiF_4(g) + 2 H_2O(l)$$

 $\Delta H^{\circ}_{rxn} = 4.6 \text{ kJ mol}^{-1}$

Compound	SiO ₂ (s)	HF(aq)	$H_2O(l)$	SiF ₄ (g)
ΔH^{o}_{f} , kJ mol ⁻¹	-910.9	-320.1	-285.8	???

(A) -1624.3 kJ mol⁻¹

(B) −1615.1 kJ mol⁻¹

(C) -949.8 kJ mol⁻¹

(D) −940.6 kJ mol⁻¹