${ \begin{array}{c} {\rm NUEN~647} \\ {\rm Uncertainty~Quantification~for~Nuclear~Engineering} \\ {\rm Assignment~1} \end{array} }$

Due on Tuesday, October 4, 2016

Dr. McClarren

Paul Mendoza

Paul Mendoza	NUEN 647 UQ for Nuclear Engineering (Dr. McClarren)	Assignment 1
Contents		
Problem 1		3
Problem 2		5
Problem 3		6
Problem 4		7

Complete the exercises in the Chapter 2 notes. Be sure to include discussion of results where appropriate. You may use any tools that are appropriate to solving the problem.

Problem 1

Show that the transformation in equation 1 results in a standard normal random variable by computing the mean and variance of z.

$$z = \frac{x - \mu}{\sigma} \tag{1}$$

An important special case of the expectation value is the mean which is the expected value of x. It is often denoted as μ ,

$$\mu = E[x] = \int_{-\infty}^{\infty} x f(x) dx$$

where x is a realization of a random sample and f(x) is the probability density function (PDF) for the random variable. For a normal distribution,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

For the sake of the transformation, the value of z substitutes for x, the realization of a random sample (not the PDF because we are transforming that distribution). Therefore, the mean for z is:

$$\mu_z = \int_{-\infty}^{\infty} \frac{x - \mu}{\sigma} \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x - \mu)^2}{2\sigma^2}} dx$$

If $u = (x - \mu)^2$ and $\frac{du}{2} = (x - \mu)dx$ (note that the limits change from $(-\infty, \infty)$ to (∞, ∞) - but that seems fishy to me so I will change it back after integration).

$$\mu_z = \int_{-\infty}^{\infty} \frac{1}{2\sigma^2 \sqrt{2\pi}} e^{\frac{-u}{2\sigma^2}} du = \left| \frac{-1}{\sqrt{2\pi}} e^{\frac{-u}{2\sigma^2}} \right|_{-\infty}^{\infty}$$

$$\mu_z = \left| \frac{-1}{\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \right|_{-\infty}^{\infty} = \frac{-1}{\sqrt{2\pi}} (e^{-\infty} - e^{-\infty}) = \boxed{0}$$

The variance is defined as:

$$Var(X) = E[(X - \mu)^2]$$

Substituting Eq. 1 for X, (but not for the pdf - I could be wrong about that)

$$Var(X) = E[(\frac{x - \mu}{\sigma} - \mu)^{2}] = E\left[\left(\frac{x - \mu - \mu\sigma}{\sigma}\right)^{2}\right] = \frac{1}{\sigma^{2}}(E[x^{2}] - 2\mu E[x] - 2\mu\sigma E[x] + \mu^{2}E[1] + \mu^{2}\sigma^{2} + 2\mu^{2}\sigma)$$

Noting that above it was proven that $E[x] = \mu$ and given that the definition of E[1] = 1 and assuming that $E[x^2] = \sigma^2 + \mu^2$ (will solve on next page)

$$\frac{1}{\sigma^2}(\sigma^2 + \mu^2 - 2\mu^2 - 2\mu^2\sigma + \mu^2 + \mu^2\sigma^2 + 2\mu^2\sigma) = \frac{1}{\sigma^2}(\sigma^2 + \mu^2\sigma^2) = \boxed{1 + \mu^2 = 1}$$

This is assuming that $\mu = 0$. Which was shown above.

$$E[x^2] = \int_{-\infty}^{\infty} \frac{x^2}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

If $t = \frac{(x-\mu)}{\sqrt{2}\sigma}$ and $\sqrt{2}\sigma dt = dx$ and $x = t\sqrt{2}\sigma + \mu$ then (limits of integration don't change)

$$E[x^{2}] = \int_{-\infty}^{\infty} \frac{\left(t\sqrt{2}\sigma + \mu\right)^{2}}{\sqrt{\pi}} e^{-t^{2}} dt = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \left(2\sigma^{2} \left(t^{2} e^{-t^{2}}\right) + 2\sqrt{2}\sigma\mu \left(t e^{-t^{2}}\right) + \mu^{2} \left(e^{-t^{2}}\right)\right)$$

According to wolfram alpha

$$\int_{-\infty}^{\infty} t^2 e^{-t^2} = \frac{\sqrt{\pi}}{2}$$
$$\int_{-\infty}^{\infty} t e^{-t^2} = 0$$
$$\int_{-\infty}^{\infty} e^{-t^2} = \sqrt{\pi}$$

Which simplifies the above to $\sigma^2 + \mu^2$.

Problem 2

Consider the random variables $X \sim U(-1,1)$ and $Y \sim X^2$. Are these independent random variables? What is their covariance?

If two random variables, X and Y, are independent, they satisfy the following condition: link

• P(X|Y) = P(X), for all values of X and Y.

The PDF for X is:

$$f_X(x) = \frac{1}{(1 - (-1))} = 0.5 \quad x \in [-1, 1]$$

The PDF for Y is: link

$$f_Y(y) = \frac{1}{2\sqrt{y}} \quad y \in [0, 1]$$

If the covariance is non zero, then these two variables are independent. The covariance of two random variables can be given by: link

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y = \int_{-1}^1 dx \int_0^1 dy \ xy f(x, y) - \mu_X \mu_Y$$

Because $\mu_X = 0$ this reduces to

$$\sigma_{XY} = E(XY) = \int_{-1}^{1} dx \int_{0}^{1} dy \ xyf(x, y)$$

Where f(x,y) is:

$$f(x,y) = f(y|x)f_X(x)$$

From the definition of Y, f(y|x) is 0 except when $y = x^2$. I think this would be.

$$f(y|x) = \delta(y - x^2)$$

Which means,

$$f(x,y) = 0.5\delta(y - x^2)$$

I am not 100% sure to do here, but after using wolfram, I think its 0.25.

Problem 3

Show that a general covariance matrix must be positive definite, i.e. $\vec{x}^T \Sigma \vec{x} > 0$ for any vector \vec{x} that is not all zeros.

Given that \vec{Y} is a vector of random variables and $\vec{\mu}_Y$ is a vector of the mean values for the random variables found in \vec{Y} .

$$\vec{x}^T \Sigma \vec{x} = \vec{x}^T E [(\vec{Y} - \vec{\mu}_Y)(\vec{Y} - \vec{\mu}_Y)^T] \vec{x}$$
$$= E [\vec{x}^T (\vec{Y} - \vec{\mu}_Y)(\vec{Y} - \vec{\mu}_Y)^T \vec{x}]$$

The last step above puts a constant inside the expectation value integral. Notice

$$\vec{x}^T (\vec{Y} - \vec{\mu}_Y) = (\vec{Y} - \vec{\mu}_Y)^T \vec{x}$$

and that both are scaler functions of the random variables. Therefore,

$$\vec{x}^T \Sigma \vec{x} = E[(\vec{x}^T (\vec{Y} - \vec{\mu}_Y))^2]$$
$$= E[g(Y)^2] = \sigma_f^2$$

The expectation value for a multivariate distribution is defined as

$$E[g(Y)] = \int_{-\infty}^{\infty} dy_1 \int_{-\infty}^{\infty} dy_2 \dots \int_{-\infty}^{\infty} dy_p \ g(y)f(y)$$

Where f(y) is the multivariate PDF for the random variables of \vec{Y} . To prove that the covariance matrix is positive definite the above integral must be proved to be positive with $g(x) = (\vec{x}^T(\vec{Y} - \vec{\mu}_Y))^2$. Explicitly,

$$E[g(Y)] = \int_{-\infty}^{\infty} dy_1 \int_{-\infty}^{\infty} dy_2 \dots \int_{-\infty}^{\infty} dy_p \ (\vec{x}^T (\vec{Y} - \vec{\mu}_Y))^2 f(y)$$

$$= \int_{-\infty}^{\infty} dy_1 \int_{-\infty}^{\infty} dy_2 \dots \int_{-\infty}^{\infty} dy_p \ ((y_1 - \mu_1)x_1 + (y_2 - \mu_2)x_2 + \dots + (y_p - \mu_p)x_p)^2 f(y)$$

Problem 4

Use rejection sampling to sample from a Gamma random variable $X \sim \mathcal{G}(\alpha, \beta)$ where

$$f(x) = \frac{\theta^{\alpha - 1} e^{-\theta/\beta}}{\Gamma(\alpha)\beta^{-\alpha}} \quad \alpha, \beta > 0$$

Let $\alpha = 1$ and $\beta = 0.5$. From rejection sampling with a $N = 10^4$, compute a rejection rate for the sampling procedure. Now draw a triangle around the function and do rejection sampling. Compare the rejection rate from the triangle versus the rectangle. You may consider that the PDF is zero if $f(x) < 10^{-6}$.

Python script for rejection sampling.

Listing 1: Python Script for problem

```
#!/usr/bin/env python3
  Chem Calculations
   __author___
            = "Paul Mendoza"
  __copyright__ = "Copyright 2016, Planet Earth"
             = ["Sunil Chirayath",
  __credits__
                "Charles Folden",
                "Jeremy Conlin"]
  __license__
              = "GPL"
             = "1.0.1"
  __version__
  __maintainer__ = "Paul Mendoza"
  __email__ = "paul.m.mendoza@gmail.com"
            = "Production"
  __status__
  #################### Import packages ##############################
  import os.path
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import datetime
  from uncertainties import ufloat
  from uncertainties.umath import *
  from uncertainties import unumpy as unp
  import re
  import time
  start_time = time.time()
  import Functions as fun
35
  ################# Examples of Calculations ################
```

```
########## Atom Fraction to Mass Fraction #########
                     and vice versa
  string='92235 0.285714286 0 92238 0.714285714 0'
  MasstoAtom=True
  Mass, Zaid=fun.StringToMass(string)
  stringCalculated=fun.ConvertFractions(string, Mass, MasstoAtom, Zaid)
  # if MasstoAtom:
      print("Mass Fractions:")
       print(string)
      print("Atom Fractions:")
      print(stringCalculated)
55
  # else:
     print("Mass Fractions:")
  #
      print (stringCalculated)
      print("Atom Fractions:")
60
       print(string)
  ########## Calculate grams per mol of ##############
  ###########
               a chemical formula
                                    ###############
  #Make sure your chemical form has no repeats
  #And no parentheses
  ChemicalFormula='HNO_3'
  ChemicalFormulaError=[0,0,0,0,0,0,0] #+/- error in integers of
                                 #chemical formula
  ChemicalFormula=ChemicalFormula+"
  List=fun.ChemList(ChemicalFormula)
75 #Enter Modifications:
  #1. Each element should be a single item in the list
  #2. Format: zaid atomfraction+/-error zaid atomfraction+/-error
         : zaid atomfraction error zaid atomfraction
  Modifications=['92235 0.2883155436+/-0.0000000024 92238 0.7116844564+/-0.0000000024', stringCalcu
  df = pd.read_csv('.../Data/AtomicWeights.csv')
  ModMass, ModSymbols, AtomFractions=fun.FormatMods (Modifications, df)
  MolarMass=fun.DetermineMolarMass(List, df,
                              ModSymbols, ModMass,
                              AtomFractions, ChemicalFormulaError)
  # print (MolarMass)
  ############# Calculate Molality from ##############
                      Wt %
  ##############
                                   ################
```

```
gramsOmol=MolarMass
   WtConcentration=ufloat(69,0.1)
   Molality=1000/(gramsOmol*(100/WtConcentration-1))
   ########### Convert molality/molarity ###############
   MolarityToMolality=True
105
   gramsOmol=MolarMass
   #Density in grams per cc or grams per ml
   dfDen=pd.read_csv('../Data/Nitric_Acid.csv')
   Temperature=ufloat(20,3) #Same degrees as dfDen!!!
   Molality=Molality
   Molarity=ufloat (15.43,0.06)
115
   if MolarityToMolality:
      Molality=fun.ConvertMol(MolarityToMolality, Molarity,
                         gramsOmol, dfDen, Temperature)
      Molarity=fun.ConvertMol(MolarityToMolality, Molality,
120
                         gramsOmol, dfDen, Temperature)
   #print("Molarity = "+str(Molarity))
  #print("Molality = "+str(Molality))
   ############ Calculate New Concentration #############
   Vol1=1
   Vol2=1
  gramsOmol=gramsOmol
   m1=Molality
   m2=Molality*.25
  Temperature=ufloat(20,3)
   dfDen=pd.read_csv('../Data/Nitric_Acid.csv')
   m3,p3,Vol3,Wt,M3=fun.NewConcentration(m1,m2,gramsOmol,
                            Temperature, dfDen,
145
                            Vol1, Vol2)
```

This is an example citation [1].

References

[1] E. T. Tatro, S. Hefler, S. Shumaker-Armstrong, B. Soontornniyomkij, M. Yang, A. Yermanos, N. Wren, D. J. Moore, and C. L. Achim. Modulation of bk channel by microrna-9 in neurons after exposure to hiv and methamphetamine. *J Neuroimmune Pharmacol*, 2013. Tatro, Erick T Hefler, Shannon Shumaker-Armstrong, Stephanie Soontornniyomkij, Benchawanna Yang, Michael Yermanos, Alex Wren, Nina Moore, David J Achim, Cristian L R03 DA031591/DA/NIDA NIH HHS/United States U19 AI096113/AI/NIAID NIH HHS/United States Journal article Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology J Neuroimmune Pharmacol. 2013 Mar 19.