浙江工业大学 2018/2019 第一学期 大学物理AII 试卷 2019.1.18

· 选	择题	(共30分)							
1.	(本是	返3分)(4015)							
	1 mc	1刚性双原子分子:	理想怎	〔体, 当	温度为 T 时,	其内能为			
	(A)	$\frac{3}{2}RT$.	(B)	$\frac{3}{2}kT$.					
	(C)	$\frac{5}{2}RT$.	(D)	$\frac{5}{2}kT.$]
	定)	中R为普适气体常	常量,	k 为玻尔	7兹曼常量)				
2.	在相 (A) (B)	图 3分)(4592) 同的高温热源和低 其效率都相等。 以可逆热机效率为 以不可逆热机效率	为最大	. •	作的一切热机 ,				
	(D)	即使都是可逆的	,其刻	效率也会	:因工作物质不	同而异,	当工作	三物质是	是理
想	气体时	,热机效率最大.]
的	如图 两个轻	5 3分)(3380) 所示,质量为 <i>m</i> 自 弹簧连接,在水平 动频率为				1	[<i>m</i>]/	$\stackrel{k_2}{\swarrow}$	
2112					1 $l_r + l_r$				<u>-</u>
		$v = 2\pi \sqrt{\frac{k_1 + k_2}{m}} .$		-					
	(C)	$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1 k_2}}$. (D)	$\nu = \frac{1}{2}$	$\frac{1}{2\pi}\sqrt{\frac{k_1k_2}{m(k_1+k_2)}}$]
4.	(本是	医 3分)(3288)							
	•	.械波在媒质中传播	討,	一媒质点	质元的最大变形	/量发生在	-		
	(A)	媒质质元离开其	平衡位	置最大	位移处.				
	(B)	媒质质元离开其式	平衡位	歪(√2/	A/2)处(A 是振ā	动振幅).			
	(C)	媒质质元在其平衡	新位置	处.					
	(D)	媒质质元离开其	平衡位	$\mathbb{Z} \frac{1}{2} A$	处(A 是振动振	[幅].]

5. (本题 3分)(3171)

在双缝干涉实验中,两条缝的宽度原来是相等的. 若其中一缝的宽度略变窄 (缝中心位置不变),则

- (A) 干涉条纹的间距变宽.
- (B) 干涉条纹的间距变窄.
- (C) 干涉条纹的间距不变, 但原极小处的强度不再为零.
- (D) 不再发生干涉现象.

Γ ٦

6. (本题 3分)(3689)

在牛顿环实验装置中, 曲率半径为 R 的平凸透镜与平玻璃扳在中心恰好接 触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色 光在真空中的波长为 λ ,则反射光形成的干涉条纹中暗环半径 r_{ι} 的表达式为

- (A) $r_k = \sqrt{k\lambda R}$. (B) $r_k = \sqrt{k\lambda R/n}$.
- (C) $r_{\nu} = \sqrt{kn\lambda R}$. (D) $r_{\nu} = \sqrt{k\lambda/(nR)}$.

Γ ٦

7. (本题 3分)(3516)

在迈克耳孙干涉仪的一支光路中,放入一片折射率为n的透明介质薄膜后, 测出两束光的光程差的改变量为一个波长2,则薄膜的厚度是

- (A) $\lambda/2$.
- (B) $\lambda / (2n)$.
- (C) λ / n .
- (D) $\frac{\lambda}{2(n-1)}$.

Γ

8. (本题 3分)(3368)

一束光强为 I。的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成 45° 角,则穿过两个偏振片后的光强 I 为

- (A) $I_0/4\sqrt{2}$.
- (B) $I_0 / 4$.
- (C) $I_0/2$.
- (D) $\sqrt{2}I_0/2$.

Γ 7

9. (本题 3分)(4351)

宇宙飞船相对于地面以速度 v 作匀速直线飞行,某一时刻飞船头部的宇航 员向飞船尾部发出一个光讯号,经过\(\text{\data}(\text{\center})\)时间后,被尾部的接收器收 到,则由此可知飞船的固有长度为 (c表示真空中光速)

(A) $c \cdot \Delta t$

- (B) $v \cdot \Delta t$
- $\frac{c \cdot \Delta t}{\sqrt{1 (\upsilon/c)^2}}$ (C)
- (D) $c \cdot \Delta t \cdot \sqrt{1 (\upsilon/c)^2}$

10. (本题 3分)(4737)

在康普顿效应实验中,若散射光波长是入射光波长的 1.2 倍,则散射光光子 能量 ε 与反冲电子动能 E_{κ} 之比 ε/E_{κ} 为

- (A) 2. (B) 3. (C) 4. (D) 5.
-]

二 填空题 (共31分)

11. (本题 3分)(4293)

图示的两条 f(v)~v 曲线分别表示氢气和氧气在 同一温度下的麦克斯韦速率分布曲线.由此可得

氢气分子的最概然速率为_____;

氧气分子的最概然速率为_____.

12. (本题 5分)(4689)

压强、体积和温度都相同的氢气和氦气(均视为刚性分子的理想气体),它们

的质量之比为 $m_1: m_2 = _____$,它们的内能之比为 $E_1: E_2 = _____$,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为 $W_1: W_2 =$

(各量下角标 1 表示氢气, 2 表示氦气)

13. (本题 5分)(3398)

一质点作简谐振动, 其振动曲线如图所示, 根据此

图,它的周期T=_____,用余弦函数描述时初相

 ϕ = _____.

14. (本题 3分)(5314)

一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

$$x_1 = 0.05\cos(\omega t + \frac{1}{4}\pi)$$
 (SI), $x_2 = 0.05\cos(\omega t + \frac{9}{12}\pi)$ (SI)

其合成运动的运动方程为 x = .

15. (本题 3 分)(3315) 设平面简谐波沿 x 轴传播时在 $x = 0$ 处发生反射,反射波的表达式为
$y_2 = A\cos[2\pi(\nu t - x/\lambda) + \pi/2]$ 已知反射点为一自由端,则由入射波和反射波形成的驻波的波节位置的坐标为
16. (本题 3 分)(3357) 在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ ₁ ≈
在早期人成本员们别英独中,仅第一级唱级的们别用很小,看钢黄儿(λ_1 ~589 nm) 中央明纹宽度为 4.0 mm,则 λ_2 =442 nm (1 nm = 10^{-9} m)的蓝紫色光的中央
明纹宽度为
17. (本题 3 分)(4175) 设电子静止质量为 m_e ,将一个电子从静止加速到速率为 $0.6c$ (c 为真空中光
速),需作功
18. (本题 3分)(4742) 某金属产生光电效应的红限为 u_0 ,当用频率为 $v(v>v_0)$ 的单色光照射该金
属时,从金属中逸出的光电子(质量为 m)的德布罗意波长为
19. (本题 3分)(4518) 欲使氢原子能发射巴耳末系中波长为 6562.8 Å 的谱线,最少要给基态氢原
子提供eV 的能量.
(里德伯常量 $R = 1.097 \times 10^7 \text{ m}^{-1}$)

三 计算题 (共35分)

20. (本题10分)(4907)

1 mol 单原子分子理想气体的循环过程如图所示.

- (1) 在p-V图上表示该循环过程.
- (2) 求此循环效率.

(普适气体常量 $R = 8.31 \,\mathrm{J \cdot mol^{-1} \cdot K^{-1}}$)

21. (本题10分)(3141)

图示一平面简谐波在t=0 时刻的波形图,求

- (1) 该波的波动表达式;
- (2) P处质点的振动方程.

22. (本题10分)(3531)

将一束波长 λ = 589 nm (1 nm = 10^9 m)的平行钠光垂直入射在1 厘米内有 5000 条刻痕的平面衍射光栅上,光栅的透光缝宽度 a 与其间距 b 相等,求:

- (1) 光线垂直入射时,能看到几条谱线?是哪几级?
- (2)不改变光栅的前提下,怎样做可以增大可观察到谱线的最大级次?

23. (本题 5分)(1902)

已知粒子处于宽度为a的一维无限深方势阱中运动的波函数为

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$
 , $n = 1, 2, 3, \dots$

试计算 (1)n = 1 时, 在 $x_1 = a/4 \rightarrow x_2 = 3a/4$ 区间找到粒子的概率;

(2) n = 3 时, 粒子出现概率最大的位置.