Álgebra lineal – Semana 8 Transformaciones lineales, núcleo e imagen

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Funciones

Definición 1 (Función)

Una función f de un conjunto D en un conjunto E es una correspondencia que asigna a todo elemento x de D, exactamente un elemento y de E.

Observación 1

- ${\color{red} \bullet}$ Una función f de D en E se denota por $f:D\rightarrow E.$
- \bullet El conjunto D es el **dominio** de la función.
- \odot El conjunto E es el **codominio** de la función.
- \bullet El elemento y = f(x) de E se llama **imagen** de x bajo f.
- **3** La preimagen de y en E es el conjunto de todos los x en D tales que f(x) = y.

Definición 1 (Función)

Una función f de un conjunto D en un conjunto E es una correspondencia que asigna a todo elemento x de D, exactamente un elemento y de E.

Ejemplo 1

Sea f la función con dominio \mathbb{R} definida por $f(x) = x^2$ para cada x en \mathbb{R} .

- Halle $f(-6), f(\sqrt{3}), f(a+b), f(a) + f(b)$
- \bigcirc Halle el rango de f.

Observación 2

Vamos a considerar funciones

$$T:V\to W$$

donde V y W son espacios vectoriales.

Funciones entre espacios vectoriales

Ejemplo 2

Considere la función $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2).$$

- \bigcirc Encuentre la imagen de $\mathbf{v} = (1, 2)$.
- Encuentre la preimagen de $\mathbf{w} = (-1, 11)$.

Transformaciones lineales

Definición 2 (Transformación lineal)

Sean V y W espacios vectoriales y $T:V\to W$ una función. Se dice que T es una transformación lineal si para todo vector \mathbf{u} y \mathbf{v} en V y todo escalar c se cumplen las siguientes propiedades:

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

$$T(c\mathbf{u}) = c T(\mathbf{u})$$

Observación 3

$$\begin{array}{c|c}
\text{Producto} \\
\text{en } V
\end{array}
\qquad
\begin{array}{c}
\text{Producto} \\
\text{en } W
\end{array}$$

$$T(c\mathbf{u}) = c T(\mathbf{u})$$

Ejemplo 3

Muestre que la función $T:\mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$T(v_1, v_2) = (v_1 - v_2, v_1 + 2v_2)$$

es una tranformación lineal.

Funciones que no son transformaciones lineales

Ejemplo 4

Muestre que las siguientes funciones **no** son transformaciones lineales.

- $oldsymbol{0} f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 2x + 1.
- $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = x^2$.
- \bullet $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) = \operatorname{sen} x$.

Transformaciones lineales cero e identidad

Definición 3

Sean V y W espacios vectoriales.

 ${\color{red} \bullet}$ La $transformación {\color{blue} cero}$ es la función $T:V\rightarrow W$ definida por

$$T(\mathbf{v}) = \mathbf{0}_{w}$$
, para todo \mathbf{v} en V .

 ${\color{red} \bullet}$ La transformación identidad es la función $T:V\rightarrow V$ definida por

$$T(\mathbf{v}) = \mathbf{v}$$
, para todo \mathbf{v} en V .

Propiedad 1

La transformaci'on cero y la transformaci'on identidad son transformaciones lineales.

Propiedades de las transformaciones lineales

Propiedad 2

Sea $T:V\to W$ una transformación lineal y suponga que ${\bf u}$ y ${\bf v}$ son vectores en V. Entonces:

- $T(\mathbf{0}_{\mathrm{v}}) = \mathbf{0}_{\mathrm{w}}.$
- $T(-\mathbf{v}) = -T(\mathbf{v}).$
- $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v}).$
- $\mathbf{0}$ Si $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$, entonces

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \dots + c_n T(\mathbf{v}_n)$$

Propiedades de las transformaciones lineales

Ejemplo 5

Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que

$$T(1,0,0) = (2,-1,4)$$

$$T(0,1,0) = (1,5,-2)$$

$$T(0,0,1)\,=\,(0,3,1)$$

Calcule T(2, 3, -2).

Transformación lineal definida por una matriz

Ejemplo 6

Considere la función $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$T(\mathbf{v}) = A\mathbf{v} = \begin{pmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

- Calcule T(2,-1).
- ${\color{red} {\color{red} {0}}}$ Muestre que T es una transformación lineal.

Transformaciones lineales definidas por una matrices

Propiedad 2

Sea A una matriz $m \times n$. La función T definida por

$$T(\mathbf{v}) = A\mathbf{v}$$

es una transformación lineal de \mathbb{R}^n en \mathbb{R}^m .

Observación 3

$$A\mathbf{v} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + \cdots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \cdots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \cdots + a_{mn}v_n \end{pmatrix}$$
vector en \mathbb{R}^n

Ejemplo 7

Muestre que la transformación lineal $T:\mathbb{R}^2\to\mathbb{R}^2$ definida por la matriz

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

tiene la propiedad de rotar todo vector en $\mathbb{R}^2,$ un ángulo θ en sentido contrario a las manecillas del reloj.

Ejemplo 8

Considere la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ definida por la matriz

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Analice cómo transforma T a todo vector en \mathbb{R}^3 .

Transformación lineal entre espacios de matrices

Ejemplo 9

Muestre que la función $T: M_{mn} \to M_{nm}$ definida por

$$T(A) = A^T.$$

es una transformación lineal.

El operador de multiplicación

Ejemplo 10

Demuestre que la función $T: P_2 \to P_3$ definida por

$$(Tp)(x) = xp(x)$$

es una transformación lineal.

El operador diferencial (cálculo)

Ejemplo 11

Muestre que la función $D:C^1[a,b]\to C^1[a,b]$ definida por

$$D(f) = f'.$$

es una transformación lineal.

Ejemplo 12

Muestre que la función $T: C[a, b] \to \mathbb{R}$ definida por

$$T(f) = \int_{a}^{b} f(x) \, dx$$

es una transformación lineal.

Observación 1

Si $T:V\to W$ es una transformación lineal, entonces

$$T(\mathbf{0}_{\mathrm{v}}) = \mathbf{0}_{\mathrm{w}}$$

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores \mathbf{v} en V tales que $T(\mathbf{v})=\mathbf{0}_{\mathrm{w}}$:

nu
$$T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{w} \}.$$

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores ${\bf v}$ en V tales que $T({\bf v})={\bf 0}_{\rm w}$:

$$\text{nu } T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{w} \}.$$

Ejemplo 1

Sea $T:M_{32}\to M_{23}$ la transformación lineal definida por

$$T(A) = A^T$$
.

Encuentre el núcleo de T.

Núcleo de las transformaciones cero e identidad

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores $\mathbf v$ en V tales que $T(\mathbf v)=\mathbf 0_{\rm w}$:

$$nu T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{w} \}.$$

Ejemplo 2

Encuentre el núcleo de la transformación cero $T:V\to W$ definida por

$$T(\mathbf{v}) = \mathbf{0}_{w}$$
, para todo \mathbf{v} en V .

Núcleo de las transformaciones cero e identidad

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores $\mathbf v$ en V tales que $T(\mathbf v)=\mathbf 0_{\rm w}$:

$$\mathrm{nu}\ T = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{\mathrm{w}}\}.$$

Ejemplo 3

Encuentre el núcleo de la $transformaci\'on~identidad~T:V\to V$ definida por

$$T(\mathbf{v}) = \mathbf{v}$$
, para todo \mathbf{v} en V .

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores $\mathbf v$ en V tales que $T(\mathbf v)=\mathbf 0_{\rm w}$:

$$nu T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{w} \}.$$

Ejemplo 4

Encuentre el núcleo de la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (x, y, 0).$$

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores $\mathbf v$ en V tales que $T(\mathbf v)=\mathbf 0_{\rm w}$:

$$\mathrm{nu}\ T = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{\mathrm{w}}\}.$$

Ejemplo 5

Encuentre el núcleo de la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$T(x_1, x_2) = (x_2 - 2x_1, 0, -x_1).$$

Definición 1 (Núcleo)

Sea $T:V\to W$ una transformación lineal. El **núcleo** de T es el conjunto de todos los vectores \mathbf{v} en V tales que $T(\mathbf{v})=\mathbf{0}_{\mathrm{w}}$:

$$\text{nu } T = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}_{w} \}.$$

Ejemplo 6

Encuentre el núcleo de la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por $T(\mathbf{x}) = A\mathbf{x}$, donde

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix}.$$

Propiedades del núcleo

Propiedad 1

El núcleo nu T de una transformación lineal $T:V\to W$ es un subespacio vectorial de V.

Propiedad 2

Sea Auna matriz $m\times n$ y $T:\mathbb{R}^n\to\mathbb{R}^m$ la transformación lineal definida por

$$T(\mathbf{x}) = A\mathbf{x}.$$

Entonces el núcleo de T es igual al espacio solución del sistema

$$A\mathbf{x} = \mathbf{0}.$$

Es decir, el núcleo de T es igual al espacio nulo de A:

$$\operatorname{nu} T = N_A = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0} \}$$

Imagen de una transformación lineal

Definición 2 (Imagen)

Sea $T:V\to W$ una transformación lineal. La imagen de T es el conjunto de todos los vectores ${\bf w}$ en W que son imágenes de vectores en V. Es decir,

im
$$T = \{T(\mathbf{v}) \mid \mathbf{v} \in V\}.$$

Propiedad 3

La imagen im T de una transformación lineal $T:V\to W$ es un subespacio vectorial de W.

Observación 2

Sea $T: V \to W$ una transformación lineal.

- \bullet nu T es un subespacio de V.
- \bullet im T es un subespacio de W.

Imagen de una transformación lineal

Observación 2

Sea A una matriz $m \times n$ y $T : \mathbb{R}^n \to \mathbb{R}^m$ la transformación lineal

$$T(\mathbf{x}) = A\mathbf{x}.$$

$$A\mathbf{x} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$\mathbf{b} \in \text{im } T \iff T(\mathbf{x}) = \mathbf{b} \iff A\mathbf{x} = \mathbf{b} \iff \mathbf{b} \in C_A$$

Propiedad 4

Sea A una matriz $m \times n$ y $T : \mathbb{R}^n \to \mathbb{R}^m$ la transformación lineal $T(\mathbf{x}) = A\mathbf{x}$. Entonces la *imagen* de T es igual al *espacio generado por las columnas* de A. Es decir,

im
$$T = C_A$$
.

Ejemplo 7

Considere la transformación lineal $T: \mathbb{R}^5 \to \mathbb{R}^4$ definida por $T(\mathbf{x}) = A\mathbf{x}$, donde

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}.$$

Encuentre una base para im T.

Rango y nulidad de una transformación lineal

Definición 3 (Rango y nulidad)

Sea $T:V\to W$ una transformación lineal.

• A la dimensión del núcleo de T se le llama la nulidad de T y se la denota por ν(T):

$$\nu(T) = \dim \mathrm{nu} \, T.$$

4 A la dimensión de la imagen de T se le llama el rango de T y se la denota por $\rho(T)$:

$$\rho(T) = \dim \operatorname{im} T.$$

Observación 1

Si A una matriz $m \times n$ y $T: \mathbb{R}^n \to \mathbb{R}^m$ es la transformación lineal $T(\mathbf{x}) = A\mathbf{x}$, entonces:

- $\rho(A) + \nu(A) = \text{ número de columnas de } A = n.$

Definición 3 (Rango y nulidad)

Sea $T: V \to W$ una transformación lineal.

 \bullet A la dimensión del núcleo de T se le llama la $\pmb{nulidad}$ de T y se denota por $\nu(T)$:

$$\nu(T) = \dim \mathrm{nu}\, T.$$

3 A la dimensión de la imagen de T se le llama el rango de T y se denota por $\rho(T)$:

$$\rho(T) = \dim \operatorname{im} T.$$

Propiedad 5

Sea $T:V\to W$ una transformación lineal definida en un espacio vectorial V de dimensión n. Entonces

$$\rho(T) + \nu(T) = n = \dim V.$$

Observación 1

"dimensión de la imagen + dimensión del núcleo = dimensión del dominio"

Propiedad 5

Sea $T:V\to W$ una transformación lineal definida en un espacio vectorial V de dimensión n. Entonces

$$\rho(T) + \nu(T) = n = \dim V.$$

Ejemplo 7

Sea $T:\mathbb{R}^3\to\mathbb{R}^3$ la transformación lineal definida por

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Encuentre el rango y la nulidad de T.

Determinación del rango y la nulidad de una transformación lineal

Ejemplo 8

Sea $T: \mathbb{R}^5 \to \mathbb{R}^7$ una transformación lineal.

- \odot Encuentre la dimensión del núcleo de T si el rango es 2.
- \bullet Encuentre el rango de T si la nulidad de T es 4.
- \odot Encuentre el rango de T si nu $T = \{0\}$.

Bibliografía

Stanley Grossman
Álgebra lineal
McGraw-Hill Interamericana, Edición 8, 2019.

David Poole

Álgebra lineal: una introducción moderna

Cengage Learning Editores, 2011.

Bernard Kolman Álgebra lineal Pearson Educación, 2006.

Ron Larson
Fundamentos de Álgebra lineal
Cengage Learning Editores, 2010.

