Elements of Macroeconomics TA Session 1: Introduction and Textbook Appendix Chapter 1

Haruki Shibuya

hshibuy1@jh.edu

08/26/2024

Introduction

- TA: Haruki Shibuya, a 3rd-year JHU Economics Ph.D. student
- 27 y.o., from Japan. Univ. of Tokyo, Kyoto Univ. alumnus
- Who is a TA (teaching assistant)? My role includes: holding approx. 10 TA sessions + weekly TA office hours and grading exams, etc.
- What are TA sessions? They are mini-lectures/discussion sessions to give students supplemental info and to review homework.
- What are TA office hours? In TA office hours, the TA is available to answer/discuss questions. (time: to be announced)

Introduction

- You have approx. one assignment for each chapter in the course
- Submission means full marks. But...
- you have 3 midterm exams and 1 final exam
- Exams will be mostly based on homework, so review them carefully

Introduction

- What is macroeconomics?
- Macroeconomics focuses on the behavior of overall economy, e.g., GDP, inflation, interest rates, foreign exchange rates, balance of payments.
- Often compared with microeconomics, whose focus is more on individuals
- But the boundary is not so clear (cf. microfoundations)
- Read syllabus/materials to get more ideas

Textbook appendix chapter 1

- Today we discuss appendix Ch 1 of the textbook
- With some additional info

- 1. Graphs
- 2. Demand curve

Graphs

the vertical axis jump from 0 to 4.5.

- There are many types of graphs
- Point: choose appropriate one
- Don't get fooled by how it looks like
- Don't fool others/yourself

Correlation \neq causation

(a) Problem of omitted variables

Winter

Correlation \neq causation

Graphs

Useful tool: log scaling

Graphs

S&P 500 Index - 90 Year Historical Chart (inflation-adjusted)

Demand curve

Price (dollars per pizza)	Quantity (pizzas per week)	Point
\$15	50	Α
14	55	В
13	60	С
12	65	D
11	70	Ε

As you learned in Figure 1A.2, the slashes (//) indicate that the scales on the axes are truncated, which means that numbers are omitted: On the horizontal axis numbers jump from 0 to 50, and on the vertical axis numbers jump from 0 to 11.

- Demand curve: shows pricequantity relationship for consumers in a particular market
- We often write as q = D(p)

• E.g.,
$$q = D(p) = -p/5 + 25$$

■ Slope =
$$-1/5$$

Slope =
$$\frac{\text{Change in value on the vertical axis}}{\text{Change in value on the horizontal axis}}$$

Demand curve

- Assume Pepsi can choose the price and consumers just accept it (monopolistic situation)
- Total revenue = price × quantity
- E.g., if q = D(p) = -p+4, then
- $TR = p \times q = -p^2 + 4p$

Demand curve

- Assume Pepsi can choose the price and consumers just accept it (monopolistic situation)
- Total revenue = price × quantity
- E.g., if q = D(p) = -p+4, then
- $\blacksquare TR = p \times q = -p^2 + 4p$
- $-\dots = -(p-2)^2 + 4$

p = 2 gives the max revenue

Demand curve shifts

Quantity (pizzas per week)				
Price (dollars per pizza)	When the Price of Hamburgers = \$1.00	When the Price of Hamburgers = \$1.50	When the Price of Hamburgers = \$2.00	
\$15	45	50	55	
14	50	55	60	
13	55	60	65	
12	60	65	70	
11	65	70	75	

- Demand curve can shift when an external variable changes
- E.g., pizzas being more popular when hamburgers are more expensive (they are substitutes)
- The demand curve shifts rightward

Note that a point moving on the curve \neq a shift of the curve itself

Some formulae

Recall:

Slope =
$$\frac{\text{Change in value on the vertical axis}}{\text{Change in value on the horizontal axis}}$$

- But how about the slope of a curve?
- slope of a curve = the slope of the tangent line
- Cf. differential coefficient

Some formulae

Percentage change example:

$$\left(\frac{\text{GDP}_{2016} - \text{GDP}_{2015}}{\text{GDP}_{2015}}\right) \times 100$$

Cf. 'annualized' growth rate, YoY, and QoQ

