Chapitre

Théorème de Pythagore

5

5.1 Le carré d'un nombre

Définition 5.1 a désigne un nombre. La puissance

$$a^2 = aa = a \times a$$

s'appelle aussi « le carré de a ».

Comme toutes les exposants, l'exposant « 2 » est prioritaire à la multiplication et l'addition.

■ Exemple 5.1

$$-5^{2} = -5 \times 5 = -25$$

$$(-5)^{2} = (-5) \times (-5) = 25$$

$$(4-3)^{2} = 1^{2} = 1$$

Figure 5.1 – Pour a nombre positif : $a \ge 0$. Le nombre a^2 s'interprète comme « l'aire d'un carré de côté a ».

5.2 La racine carré d'un nombre

Définition 5.2 La racine carrée d'un nombre positif $b \geqslant 0$ est le nombre positif noté \sqrt{b} dont le carré vaut b.

$$\left(\sqrt{b}\right)^2 = \sqrt{b} \times \sqrt{b} = b$$

En géométrie \sqrt{b} est « la longueur du côté d'un carré d'aire b ».

Figure 5.2 — Pour calculer le carré d'un nombre positif, on utilise la touche x^2 de la calculatrice. La touche x^2 sert à passer d'écriture décimale à fraction d'entier (lorsque c'est possible).

5.2.1 Exercices carrés et racines carrées

■ Exemple 5.2 — Carrés parfaits à connaître. Les carrés de nombres entiers sont dits « carrés parfaits ».

$$1^{2} =$$
 $2^{2} =$
 $3^{2} =$
 $4^{2} =$
 $5^{2} =$
 $6^{2} =$
 $10^{2} =$
 $10^{2} =$
 $11^{2} =$
 $14^{2} =$
 $15^{2} =$
 $15^{2} =$

Exercice 1

Le nombre dans les carrés indique l'aire du carré. Détermine la longueur du côté indiqué.

g =

En regardant g et e, i et f, h et e, j et k, que dire de $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$.

Exercice 2

Le nombre dans les carrés indique l'aire du carré. Détermine la longueur du côté indiqué.

Exercice 3

Les figures ci-dessous sont formées de carrés. Calculer les aires grisées dans chaque cas.

■ Exemple 5.3 — Racines de carrés parfaits. sont aussi des entiers.

$$\sqrt{\begin{array}{c}
\sqrt{} = 1 \\
\sqrt{} = 2 \\
\sqrt{} = 3 \\
\sqrt{} = 4 \\
\sqrt{} = 5$$

$$\sqrt{\begin{array}{c}
\sqrt{} = 6 \\
\sqrt{} = 7 \\
\sqrt{} = 8 \\
\sqrt{} = 9 \\
\sqrt{} = 10$$

Exercice 4

Exprimer les expressions suivantes à l'aide d'entiers.

a)
$$\sqrt{49}$$

c)
$$\sqrt{3^2}$$

e)
$$\sqrt{100}$$

g)
$$-\sqrt{9^2}$$

i)
$$\sqrt{(-9)^2}$$

k)
$$\sqrt{5} \times \sqrt{5}$$

d)
$$\sqrt{100^2}$$

f)
$$\left(\sqrt{3}\right)$$

$$h) \sqrt{-9^2}$$

$$j) \left(\sqrt{9}\right)^2$$

a)
$$\sqrt{49}$$
 b) $\sqrt{7^2}$ e) $\sqrt{100^2}$ e) $\sqrt{100}$ b) $\sqrt{-9^2}$ d) $\sqrt{100^2}$ e) $\sqrt{100}$ b) $\sqrt{-9^2}$ d) $\sqrt{9}$ d) $\sqrt{100^2}$ e) $\sqrt{100}$ d) $\sqrt{100^2}$ d)

Défi : Trouve des nombres tels que l'instruction \sqrt{a} retourne un message d'erreur.

Exemple 5.4 Encadrer $\sqrt{19}$, $\sqrt{30}$ et $\sqrt{134}$ par deux entiers consécutifs.

$$\sqrt{16} < \sqrt{19} < \sqrt{25}$$

$$4<\sqrt{19}<5$$

Exercice 5 Même consignes. Montrer les étapes.

a)
$$\sqrt{27}$$

| b)
$$\sqrt{41}$$
 | c) $\sqrt{5}$ | d) $\sqrt{89}$ | e) $\sqrt{10}$ | f) $\sqrt{122}$

$$| c) \sqrt{5}$$

d)
$$\sqrt{89}$$

e)
$$\sqrt{10}$$

f)
$$\sqrt{122}$$

Exercice 6

À l'aide de la touche (SECONDE) puis (X2) de la calculatrice, donner un encadrement décimal au centième près des racines carrées suivantes :

$$<\sqrt{2}<$$

$$|$$
 $<\sqrt{3}<$

$$| < \sqrt{5} <$$

5.3 Le théorème de Pythagore

Théorème 5.1 — Théorème de Pythagore. Dans un triangle rectangle. Le carré du plus grand côté (l'hypoténuse) est égale à la somme des carrés des deux côtés de l'angle droit.

Le théorème est utilisé au collège pour calculer la 3^e longueur d'un triangle rectangle quand on connaît les longueurs de 2 de ses côtés.

Figure 5.3 – la figure de l'hypoténuse du Zhoubi Suanjing Classique mathématique du Gnomon des Zhou. Un des textes mathématiques chinois des plus anciens, de la dynastie de Zhou (1046-771 av J.-C.). On y voit le cas 3-4-5 d'un triangle rectangle

Année 2022/2023 CLG Jeanne d'Arc, 4^e

■ Exemple 5.5 — Illustration du théorème de Pythagore. Vidéo

À l'aide du quadrillage, retrouver les aires des carrés ci-dessous. En déduire la longuer de l'hypoténuse dans chaque cas.

CLG Jeanne d'Arc, 4^e
Année 2022/2023

5.3.1 Exercices application : je sais que le triangle est rectangle

■ Exemple 5.6 — Je fais. Calculer la valeur de x puis donner une valeur approchée au centième près.

Exercice 7 — à vous. Mêmes consignes

Théorème 5.2 — Théorème de Pythagore. Dans un triangle rectangle, le carré du plus grand côté (l'hypoténuse) est égal à la somme des carrés des deux côtés de l'angle droit.

■ Exemple 5.7 — Calculer la longueur manquante. de triangles rectangles

	Justification	Affirmation
Calcul de la longueur du grand côté IC		
1		
2		$(\ldots)^2 + (\ldots)^2 = (\ldots)^2$
3		$IC^2 =$
4		IC =
Calcul d'un des côtés de l'angle droit ${\cal J}M$		
1		
2		$(\ldots)^2 + (\ldots)^2 = (\ldots)^2$
3		$MJ^2 =$
4		MJ =

Exercice 8 — à vous. Calculer les longueurs manquantes en respectant la rédaction type.

Exercice 9

Dans le triangle ABC ci-contre, H est le pied de la hauteur issue de A. Le triangle ABC n'est pas a priori rectangle.

- a) Calculer la valeur exacte de AB.
- b) Calculer la valeur exacte de HC.

Exercice 10

Dans la figure ci-contre, ERI est un triangle rectangle en I, et NRE est rectangle en R.

- a) Calculer la valeur exacte de RE.
- b) En déduire la valeur exacte de NR.

5.4 Identifier si un triangle est rectangle

Soit un triangle ABC dont les longueurs des côtés sont désignés par a, b et c. Le côté le plus long est c.

On souhaite savoir si ABC est un triangle rectangle en C.

Considérons le triangle rectangle EDF dont les côtés de l'angle droit mesurent a et b. Le théorème de Pythagore dans le triangle EDF, indique que $EF^2=a^2+b^2$.

Il y a deux possibilités :

Cas n° 1 $c^2 = EF^2 = a^2 + b^2$. Dans ce cas, le triangle ABC a les mêmes longueurs de côtés que DEF. Les triangles sont superposables, et l'angle \widehat{ACB} est droit.

Cas n° 2 $c^2 \neq a^2 + b^2$. Le triangle ABC ne peut pas être rectangle en C.

Théorème 5.3 — Réciproque du théorème de Pythagore. Si le carré du plus grand côté est égal à la somme des carrés des deux côtés de l'angle droit, alors le triangle est rectangle et le plus grand côté est l'hypoténuse.

Théorème 5.4 — Contraposée du théorème de Pythagore. Si le carré du plus grand côté n'est pas égal à la somme des carrés des deux côtés de l'angle droit, alors le triangle n'est pas rectangle

5.5 Exercices: identifier les triangles rectangles

Théorème 5.5 — Réciproque du théorème de Pythagore. Si le carré du plus grand côté est égal à la somme des carrés des deux côtés de l'angle droit, alors le triangle est rectangle et le plus grand côté est l'hypoténuse.

■ Exemple 5.8 — Justifier ou réfuter si un triangle est rectangle.

Dans le triangle MJS, [MS] est le plus grand côté.

Comme $MS^2=MJ^2+JS^2$, alors le triangle MJS est rectangle en J d'après la réciproque du théorème de Pythagore.

Dans le triangle IJK, [IK] est le plus grand côté.

Comme $IK^2 = IJ^2 + JK^2$, alors le triangle IJK est rectangle en J d'après la réciproque du théorème de Pythagore.

Exercice 11 Justifier si les triangles ABC, IJK ou RTS ci-dessous sont rectangles.

Exercice 12 Dire si le triangle colorié est un triangle rectangle, et si oui, en quel point.

Exercice 13

- a) Donne la longueur exacte du côté [HC].
- b) Calculer l'aire du triangle ABC.
- c) Le triangle ABC est-il rectangle? Justifier votre réponse.

Exercice 14

Le triangle ABD est-il rectangle? Justifie.

Exercice 15

- a) Donne la longueur exacte du côté [CA], puis calcule une valeur approchée au centimètre prés.
- b) Le triangle ACD est-il rectangle? Justifie.

Exercice 16 — **f**.

Soit le pavé droit ABCDEFGH ci-contre :

- a) Montrer que AC = 5.
- b) Calculer AG.

Exercice 17

Pour les paires de triangles suivantes justifier que les triangles sont égaux et préciser le critère utilisé.

Exercices du manuel 47, 55 page 250-251.