Curvature and Vector Fields

Lecture Notes of Loring W. Tu [1]

Zhenhao Huang

Last updated: September 28, 2025

Contents

Lecture	e 1–Riemannian manifold	1
1.1	Inner Products on a Vector Space	1
1.2	Representations of Inner Products by Symmetric Matrices	2
1.3	Riemannian Metrics	3
1.4	Existence of a Riemannian Metric	4
Prol	olems	5
Lecture	e 2–Curves	5
2.1	Regular Curves	5
2.2	Arc Length Parameterization	6
2.3	Signed Curvature of a Plane Curve	7
2.4	Orientation and Curvature	7
Prol	blems	7

***** 1. Riemannian manifold

1.1 Inner Products on a Vector Space

The **Euclidean inner product** on \mathbb{R}^n is defined by

$$\langle u, v \rangle = \sum_{1}^{n} u^{i} v^{i}, \tag{1}$$

and the length of a vector is

$$||u|| = \sqrt{\langle u, u \rangle},\tag{2}$$

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|},\tag{3}$$

the **arc length** of a curve $c(t) \in \mathbb{R}^n$, $a \le t \le b$ is

$$s = \int_a^b \|c'(t)\| dt \tag{4}$$

Definition 1.1. An inner product in a real vector space V is a postive-definite, bilinear and symmetric map: $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ so that for $u, v, w \in V$ and $a, b \in \mathbb{R}$, satisfies

- (i) **Postive-definiteness** $\langle v, v \rangle = 0$ iff. v = 0
- (ii) **Symmetry** $\langle u, v \rangle = \langle v, u \rangle$
- (iii) **Bilinear** $\langle au + bv, w \rangle = a \langle u, w \rangle + b \langle v, w \rangle$

Proposition 1.2. If *W* is a subspace of *V*, then the restriction

$$\langle , \rangle_W := \langle , \rangle|_{W \times W} : W \times W \to \mathbb{R},$$
 (5)

of an inner product \langle , \rangle on V is also an inner product.

Proof. The subspace construction preserves the properites in Definition 1.1.

Proposition 1.3. The **nonnegative linear combinition** of inner products \langle , \rangle_i on $V: \langle , \rangle := \sum_{i=1}^r a_i \langle , \rangle_i, a_i \geq 0$ is again an inner product on V.

Proof. The **nonnegativity** of a_i preserves condition (i) in Definition 1.1, the linearity makes condition (ii), (iii) hold.

1.2 Representations of Inner Products by Symmetric Matrices

Let e_1, \ldots, e_n be the basis of vector space V, each vector $x \in V$ can be represented as a column vector

$$x = \sum_{i=1}^{n} x^{i} e_{i} \leftrightarrow \mathbf{x} = \begin{bmatrix} x^{1} \\ \vdots \\ x^{n} \end{bmatrix}. \tag{6}$$

Let *A* be an $n \times n$ matrix whose entries $a_{ij} = \langle e_i, e_j \rangle$, the matrix form of an inner product on *V* is

$$\langle x, y \rangle = \sum_{ij} x^i y^j \langle e_i, e_j \rangle = \mathbf{x}^\top A \mathbf{y}.$$
 (7)

We find that, once a basis of V is chosen, the inner product on V determines a postive-definite symmetric matrix. Conversely, an $n \times n$ postive-definite symmetric matrix with a basis of V determines an inner product on V

It follows that there is an one-to-one correspondence

$$\left\{\begin{array}{c}
\text{inner product on a } n\text{-dimensional} \\
\text{vector space}
\right\} \leftrightarrow \left\{\begin{array}{c}
\text{An } n \times n \text{ postive-definite} \\
\text{symmetric matrix}
\end{array}\right\}. (8)$$

Let a basis of dual space $V^{\vee} := \operatorname{Hom}(V, \mathbb{R})$ be $\alpha^1, \ldots, \alpha^n$ w.r.t. the basis e_1, \ldots, e_n of V, an inner product \langle , \rangle of $x, y \in V$ is

$$\langle x, y \rangle = \sum_{i,j} a_{ij} x^i y^j = \sum_{i,j} a_{ij} \alpha^i(x) \alpha^j(y)$$
$$= \sum_{i,j} a_{ij} \alpha^i \otimes \alpha^j(x, y)$$

In terms of tensor product, an inner product on *V* may be written as

$$\langle , \rangle = \sum_{ij} a_{ij} \alpha^i \otimes \alpha^j \tag{9}$$

1.3 Riemannian Metrics

Definition 1.4. A **Riemannian metric** is an inner product **assignment** to each $p \in M$ of an inner product \langle , \rangle_p on the tangent space T_pM . This assignment should be C^{∞} in the following sense: if $p \mapsto \langle X_p, Y_p \rangle_p$ is a C^{∞} function for any C^{∞} vector fields X, Y. A **Riemannian manifold** is a pair (M, \langle , \rangle) , which consists of a C^{∞} manifold M together with a Riemannian metric on M.

Example 1.5. Since the tangent space at a point in Euclidean space \mathbb{R}^n is isomorphic to \mathbb{R}^n , the Euclidean inner product induces a Riemannian metric on \mathbb{R}^n called the **Euclidean metric**.

Example 1.6. A surface M in \mathbb{R}^3 is a 2-dimensional regular submanifold of \mathbb{R}^3 , the tangent space at p is a subspace of $T_p\mathbb{R}^3$, so the surface M inherits a Riemannian metric from the Euclidean metric by restriction \langle , \rangle_M .

Definition 1.7. A C^{∞} map $F:(N,\langle,\rangle')\to (M,\langle,\rangle)$ of Riemannian manifolds is said to be **metric-preserving** if

$$\langle u, v \rangle_p' = \langle F_* u, F_* v \rangle_{F(p)} \tag{10}$$

for all point $p \in N$ and tangent vectors $u, v \in T_pN$. An **isometry** is a metric-preserving diffeomorphism.

For a Riemannian manifold (M, \langle, \rangle) , if there is a diffeomorphism that maps some manifolds N to M, the induced metric \langle, \rangle' on N can be defined by (10).

Example 1.8 (Metric-preserving but not an isometry). Let N and M be the unit circle in \mathbb{C} . Define $F: N \to M$ a **2-sheeted covering space map** (for any $w \in M$, $F^{-1}(w)$ contains 2 points in N), by $F(z) = z^2$. Given M any Riemannian metric \langle , \rangle , and define the induced metric on N is (10), The map F is metric-preserving but not an isometry because F is not a diffeomorphism (not inject).

Example 1.9 (Topological equivalant Riemannian manifolds may not isometric).

Figure 1: Two Riemannian metrics on torus.

1.4 Existence of a Riemannian Metric

The local diffeomorphism ϕ defines a Riemannian metric on a coordinate chart (U, x^1, \dots, x^n) of M that $x^i = r^i \circ \phi$, as

$$\langle X, Y \rangle = \sum_{ij} a^i b^i \langle \partial_i, \partial_j \rangle = \sum_{ij} a^i b^i,$$
 (11)

since $\phi_* \partial_j = \frac{\partial}{\partial r^j}$, the induced metric is the same as the Euclidean ones.

To obtain a Riemannian metric on M, we need to piece together the Riemannian metrics on all charts of an atlas of M. Here, we use the **partition of the unity** as the standard tools.

Theorem 1.10 (Existence of a Riemannian metric). There exists a Riemannian metric on every manifold.

Proof. Let $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ an atlas of M. We have a partition of unity $\{\rho_{\alpha}\}$ that subcoordinates to open sets $\{U_{\alpha}\}$. Let $\langle , \rangle_{\alpha}$ the Riemannian metric on U_{α} as in (11), from Proposition 1.3, we define a metric on $T_{p}M$ at p is

$$\langle , \rangle = \sum_{\alpha \in A} \rho_{\alpha} \langle , \rangle_{\alpha}. \tag{12}$$

Since U_p intersects finite number of U_α , (12) is a finite sum. Since ρ_α and \langle , \rangle_α are both smooth, for any C^∞ vector fields $X, Y, \sum_{\alpha \in A} \rho_\alpha \langle X, Y \rangle_\alpha$ is a finite sum of smooth functions at arbitary p (By Definition 1.4). So $\sum_{\alpha \in A} \rho_\alpha \langle , \rangle_\alpha$ is a Riemannian metric on M.

Problems

1.1 Suppose (M, \langle, \rangle) is a Riemannian manifold. Show that two C^{∞} vector fields $X, Y \in \mathfrak{X}(M)$ are equal if and only if $\langle X, Z \rangle = \langle Y, Z \rangle$ for all C^{∞} vector fields $Z \in \mathfrak{X}(M)$.

*** 2. Curves**

2.1 Regular Curves

Definition 2.1 (Regular curve). A parameterized curve $c : [a, b] \to M$ is **regular** if its velocity $c'(t) \neq 0$ for all t in [a, b], which means an immersion from [a, b] to M.

Example 2.2. The curve $c(t) = (t^3, t^2)$, $t \in [-1, 1]$ in \mathbb{R}^2 is not regular since c'(t) is zero at t = 0. Although c is smooth, but the image of c is not smooth as shown in Figure 2.

Figure 2: A nonregular curve.

2.2 Arc Length Parameterization

The most important **reparameterization** ($\beta(u) := c(t(u))$ if t = t(u) is a diffeomorphism from one to another closed interval) is the **arc length reparameterization**. We define the **speed** of a curve $c : [a, b] \to M$ is ||c'(t)||, and the arc length is

$$\ell = \int_a^b ||c'(t)|| dt.$$

Then, the **arc length function** $s : [a, b] \rightarrow [0, \ell]$ of c is

$$s(t) = \int_a^t \|c'(t)\| dt.$$

Proposition 2.3. The arc length function s of a regular curve has a C^{∞} inverse.

Proof. The regular property gaurantees s'(t) = ||c'(t)|| > 0, which means s(t) is monotonically increasing, so t(s) is a C^{∞} function.

Thus, we can write the **arc length reparameterization** of a regular curve by $\gamma(s) = c(t(s))$.

Proposition 2.4. A curve $\gamma(s)$ is reparameterized by arc length if and only if it has **unit speed** and its parameter starts at 0.

Proof. (\Rightarrow): as $\gamma(s) = c(t(s))$, the speed is

$$\left\| \frac{d\gamma}{ds} \right\| = \left\| \frac{dc}{dt} \right\| \left| \frac{dt}{ds} \right| = \frac{ds}{dt} \left| \frac{dt}{ds} \right| = 1. \tag{13}$$

(⇐): If $c(t) : [a, b] \to M$ has unit speed that ||c'(t)|| = 1, the arc length function $s(t) = \int_a^t dt = t - a$. Since a = 0, we have s = t. Thus, a unit speed curve starts at t = 0 is reparameterized by arc length.

Here, we do not emphasize that the curve need to be regular since "reparameterized by arc length" implies regularity. The parameter is s or t depends on the way of reparameterization.

Example 2.5. The regular curve $c:[0,2\pi]\to\mathbb{R}^2$,

$$c(t) = (a\cos t, a\sin t), \quad a > 0,$$

is a circle of radius a centered at the origin. The arc length function is

$$s(t) = \int_0^t ||c'(t)|| = at.$$

So the reparameterization is

$$\gamma(s) = (a\cos\frac{s}{a}, a\sin\frac{s}{a}).$$

- 2.3 Signed Curvature of a Plane Curve
- 2.4 Orientation and Curvature

Problems

References

[1] L.W. Tu. An Introduction to Manifolds. Universitext. Springer New York.