Lógica para Computação Aula 16 - Lógica de Predicados¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, introduzimos a Lógica de Predicados.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari e do Huth & Ryan.

Sumário

1 Lógica de Predicados

2 Próxima Aula

Limites da Lógica Proposicional

- Considere a sentença "Todos os amigos de Pedro são amigos de João."
- Nenhuma regra da lógica proposicional baseada unicamente nessa sentença nos permite concluir:
 - "Carlos é amigo de João" dado que Carlos é amigo de Pedro.
- Já no caso da sentença: "Ana é amiga de João, mas não de Pedro", o mesmo acontece, pois não conseguimos concluir também que "Existe alguém que é amigo de João mas não é amigo de Pedro."

Lógica de Predicados

- Lógica de Predicados ou Lógica de Primeira Ordem
 - É uma lógica bem mais expressiva.
 - É uma extensão da lógica proposicional.
 - Para utilizá-la, precisamos entender predicados e quantificadores.

Predicados

- Considere as afirmações:
 - "O computador x está funcionando bem."
 - "x é amigo de y".
 - "x é mais alto que y e mais baixo que z".
 - "x é maior do que 3."
- Em todas essas afirmações, percebemos a presença de variáveis.
 - Na afirmação "o computador x está funcionando bem", o sujeito é "o computador x", e "está funcionando bem" é o predicado.

Predicados

- Na lógica de predicados, usamos símbolos predicativos como
 P, Q, R, ... para representar predicados.
- Então, por exemplo, podemos usar :
 - P(x) para denotar a afirmação "x está funcionando bem" e
 - Q(x,y) para denotar "x é maior do que y"
 - Nesse exemplo, considerando que x e y são números naturais, sabemos que Q(5,1) é verdadeiro e Q(2,4) é falso
- Predicados expressam propriedades, características, ...

Predicados

- Quando atribuímos valores específicos às variáveis, o predicado tem um valor verdade, exatamente como uma proposição em lógica proposicional.
- Então pode-se dizer que P(x) é o valor da "função proposicional" P para x.
- O número de argumentos que um símbolo proposicional recebe é chamado sua aridade.
 - No caso da fórmula $R(t_1, t_2, ..., t_n)$, dizemos que R tem aridade **n**.
 - P(x) tem aridade 1
 - Q(x,y) tem aridade 2

Quantificadores

- Um quantificador é outra maneira importante de criar uma proposição (afirmação) a partir de um predicado
- É usado para expressar a extensão da verdade de um predicado em relação a uma coleção de elementos
- A maneira típica de expressar isso em Português é com palavras como todos, alguns, muitos, nenhum, poucos, cada, há, existe(m).
- Focaremos em dois tipos: quantificação universal e existencial

Quantificação

- Em lógica, o conjunto de todas as coisas nas quais estamos interessados é chamado de universo de discurso (ou domínio do discurso ou só domínio).
- Frequentemente (em matemática, etc.) precisamos expressar que um predicado é verdadeiro
 - para todos os valores daquele domínio isso é quantificação universal; ou
 - para alguns valores isso é quantificação existencial
- Para determinar o valor verdade de um predicado quantificado, precisamos saber a que domínio ele se refere; o significado de uma quantificação muda quando mudamos o domínio!

Quantificação Universal

- A quantificação universal de P(x) é a afirmação: "P(x) para todos os valores de x no domínio."
- O quantificador universal e denotado por ∀
- Então a quantificação universal de P(x) é $\forall x.P(x)$
 - Lemos essa fórmula como "para todo x, p de x"

Quantificação Universal

- Também podemos expressar quantificação universal com "todo x", "para cada valor de x", "dado qualquer x", "para x arbitrário"
- Exemplo. Seja P(x) a afirmação "x+1 é maior do que x".
 - O domínio são todos os números reais.
 - Qual o valor verdade de $\forall x.P(x)$?
- Para domínio finitos,
 - $\forall x. P(x)$ é equivalente a $P(t_1) \land P(t_2) \land P(t_3) \land ... \land P(t_n)$

Quantificação Existencial

- A quantificação existencial de P(x) é a afirmação: "Existe ao menos um elemento x do domínio tal que P(x)."
- O quantificador existencial é denotado por ∃
- Então a quantificação existencial de P(x) é $\exists x. P(x)$
 - Lemos essa fórmula como "existe x tal que p de x" (ou "existe pelo menos um x ...", ou "para algum (valor de) x, P(x)")

Quantificação Existencial

- Exemplo. Seja P(x) a afirmação "x é maior do que 3".
 - O domínio são todos os números reais.
 - Qual o valor verdade de $\exists x.P(x)$?
- Para domínios finitos,
 - $\exists x. P(x)$ é equivalente a $P(t_1) \lor P(t_2) \lor P(t_3) \lor ... \lor P(t_n)$

Quantificadores

Resumo:

Fórmula	V?	F?
∀x.P(x)	P(x) é verdadeiro para todo x.	Existe um x* para o qual P(x) é falso.
∃ <i>x</i> . <i>P</i> (<i>x</i>)	Existe pelo menos um x para o qual P(x) é verdadeiro.	P(x) é falso para todo x.

- Existe uma hipótese implícita de que todos os universos de discurso são conjuntos não vazios!
- * (esse valor de x é chamado um contra-exemplo)

Outros Quantificadores

- Os quantificadores universal e existencial são os mais importantes, mas as vezes facilita se usarmos existência única
- É denotada por \exists_1 ou $\exists!$
 - A fórmula ∃₁.P(x) diz "Existe um único x tal que P(x) é verdade."; também pode ser lida como "existe exatamente um" ou "existe um e somente um"

 O alfabeto da Lógica de Predicados é um conjunto formado pelos seguintes caracteres:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T
$$\neg$$
, \lor , \land , \rightarrow , \leftrightarrow , \forall , \exists ,(,),.,! 0,1,2,3,4,5,6,7,8,9

- Definição de linguagem geral do cálculo de predicados:
 - A linguagem geral do cálculo de predicados de primeira ordem consiste em:
 - um conjunto enumerável de constantes individuais tem a função de designar indivíduos específicos. Ex: a, b, c, ...,t, a₁, b₁, ..., t₁, a₂, ..., b₁₁, ..., q₂₂, ... (uma mesma constante, em uma fórmula, não pode representar dois indivíduos diferentes).
 - 2 para cada número natural $n \ge 0$, um conjunto enumerável de constantes de predicado n-árias representam propriedades e relações (predicados). Ex: A, B, C, ..., T, A_1 , B_1 ..., T_1 , A_2 ,...

- Definição de linguagem geral do cálculo de predicados:
 - A linguagem geral do cálculo de predicados de primeira ordem consiste em:
 - **①** ..
 - 2 ..
 - Um conjunto enumerável de variáveis individuais não identificam indivíduos específicos, mas têm um domínio de variação. Ex: u,v,w,x,y,z,u₁, v₁ ..., z₁,u₂, ...
 - **4** Operadores : $\neg, \lor, \land, \rightarrow, \leftrightarrow$
 - Quantificadores: ∀,∃
 - Sinais de pontuação: .,(,),!

• Definição de Linguagem de primeira ordem

- Uma linguagem de primeira ordem é qualquer subconjunto da linguagem geral que inclua símbolos lógicos (itens 3,4, 5 e 6) e pelo menos uma constante de predicado.
 - Ex: $L_1 = \{a, c, m, x, y, G, E, P, \neg, \lor, \land, \rightarrow, \leftrightarrow, \forall, \exists, (,), .\}$

Definição de Termo

 Os termos de uma linguagem de primeira ordem são suas variáveis e constantes individuais. Ex em L₁: a, c, m, x, y

Definição de Fórmulas:

- Seja *L* uma linguagem de primeira ordem, Dizemos que:
 - ① Se P é um símbolo de predicado n-ário para um número natural $n \ge 0$ e $t_1, t_2, ..., t_n$ são termos, então $P(t_1, ..., t_n)$ é uma fórmula (atômica);
 - ② Se α e β são fórmulas então $\neg \alpha$, $(\alpha \lor \beta)$, $(\alpha \land \beta)$, $(\alpha \to \beta)$ e $(\alpha \leftrightarrow \beta)$ também são fórmulas (moleculares).
 - 3 Se x é uma variável e α é uma fórmula na qual x ocorre, então $\forall x.\alpha$ e $\exists x.\alpha$ são fórmulas (gerais).
 - Nada mais é uma fórmula.

- Atividade I: Assinale as fórmulas abaixo que são bem formadas:
 - \bigcirc $x\exists x.P$

 - $P(x) \to \forall x$
 - \bigcirc $\forall y. \forall x. P(a)$

 - $(\exists y. \forall x. (P(x) \rightarrow \forall z. A(z)))$

 - $\forall x, y. P(x, y)$
 - \bigcirc $\exists y. \forall x. (x \land y)$

- Atividade II: Escreva as sentenças abaixo em lógica de predicados.
 - Algo é branco (B: x é branco)
 - Tudo é azul. (A: x é azul)
 - 3 Alguma coisa não é azul. (A: x é azul)
 - 4 Algo é bonito. (B: x é bonito)
 - Todos são mortais. (M; x é mortal).
 - 6 Alguma coisa não é verde. (V: x é verde)
 - Alguém é mais velho que Pedro. (p: Pedro, V: x é mais velho que y)
 - 3 Alguém gosta de Lulu. (I: Lulu, G: x gosta de y)

- Atividade III: Sabendo que o predicado G(x,y) significa x gosta de y, que v representa Vítor e a representa Ana, interprete as fórmulas abaixo e escreva as sentenças correspondentes:

 - $\exists x.(G(x,v) \land \neg G(x,a))$

 - $\exists x.(G(v,x) \land \neg G(a,x))$

- Subfórmulas imediatas de uma fórmula qualquer:
 - fórmulas atômicas não têm subfórmulas imediatas;
 - ullet a subfórmula imediata de $\neg \alpha$ é α .
 - as subfórmulas imediatas de $(\alpha \lor \beta)$, $(\alpha \land \beta)$, $(\alpha \to \beta)$ e $(\alpha \leftrightarrow \beta)$ são α e β .
 - a subfórmula imediata de $\forall x.\alpha$ e $\exists x.\alpha$ é α .

 Atividade IV: Construa a árvore de formação de cada fórmula abaixo, desmembrando cada fórmula em sua fórmula imediata até chegar a fórmulas atômicas.

$$((Q(b) \land \forall x. (P(x) \rightarrow Q(x))) \rightarrow P(b))$$

$$\exists y. \forall x. (P(x) \rightarrow \forall z. A(z))$$

$$(\forall x. \forall y. L(x,y) \land Q(y))$$

- Escopo dos quantificadores: inicia após o ponto e pode estar delimitado por parênteses.
 - Ex: $(\forall x.(P(x) \rightarrow Q(x)) \rightarrow \exists y.P(y))$
 - Escopo de $\forall x: (P(x) \rightarrow Q(x))$
 - Escopo de $\exists y : P(y)$
- Variável ligada: x é uma variável ligada numa fórmula α se x faz parte de um quantificador ou está em seu escopo.
- Variável livre: qualquer ocorrência de alguma variável x numa fórmula α que esteja fora do escopo de qualquer quantificador para x é chamada de livre.
 - Ex: $(\forall x. \forall y. L(x,y) \land Q(y))$
 - Ligadas: x e y (ocorrência em L)
 - Livre: y (última ocorrência)

- Fórmula Aberta: uma fórmula é chamada de aberta se possui pelo menos uma ocorrência livre de alguma variável.
 - Ex: $\forall x.F(x,y)$
- Fórmula Fechada: é o oposto. Uma fórmula é fechada quando não há ocorrências de variáveis livres.
 - Ex: $(\forall x.F(x) \rightarrow \exists y.P(y))$

- Atividade V: Identifique as variáveis livres e as ligadas nas fórmulas abaixo. Além disso, classifique as fórmulas como fechadas e abertas.

 - $P(w) \to \forall w. F(w)$

 - $\bigvee \forall x. (P(x) \rightarrow \exists y. Q(x,y))$

Leitura

• Mortari, C. A. Introdução à Lógica: Capítulo 6 e 7