

Rappresentazione delle informazioni

Fondamenti di Informatica, AA 2022/23

Luca Cassano

luca.cassano@polimi.it

Cos'è l'informatica?

Scienza della rappresentazione e dell'elaborazione dell'informazione.

Cos'è l'Informatica?

Scienza della rappresentazione e dell'elaborazione dell'informazione.

- Scienza: ovvero una conoscenza sistematica e rigorosa di tecniche e metodi.
- Informazione: l'oggetto dell'investigazione scientifica (informazione intesa come entità astratta e come tecnologie per la sua gestione)
- Rappresentazione: il modo in cui l'informazione viene strutturata e trasformata in dati fruibili da macchine
- Elaborazione: uso e trasformazione dell'informazione per un dato scopo. L'elaborazione deve poter essere eseguita da macchine che processano dati.

[da «Informatica Arte e Mestiere»]

Rappresentazione dell'informazione

Il bit è la più piccola quantità di informazione rappresentabile

Il bit è la più piccola quantità di informazione rappresentabile Quante configurazioni dm bit esistono?

Il bit è la più piccola quantità di informazione rappresentabile Quante configurazioni dm bit esistono?

Quante combinazioni di m elementi posso realizzare se ogni elemento lo scelgo tra 2 elementi diversi? -> 2^m

Il bit è la più piccola quantità di informazione rappresentabile

Qual è il numero massimo che posso scrivere con m bit?

Quante combinazioni di m elementi posso realizzare se ogni elemento lo scelgo tra 2 elementi diversi? -> 2^m

Ad esempio:

Con 1 cifra in base 2, copro $[0, 2^1 - 1]$ (cioè [0, 1])

Con 4 cifre in base 2, copro $[0, 2^4 - 1]$ (cioè [0, 15])

Con 8 cifre in base 2, copro $[0, 2^8 - 1]$ (cioè [0, 255])

Con 16 cifre in base 2, copro $[0, 2^{16} - 1]$ (cioè [0, 65535])

In binario ho bisogno di molte più cifre rispetto al decimale per esprimere gli stessi numeri

20	21	2 ²	2 ³	24	2 ⁵	2 ⁶	27	28	2 ⁹	210
1	2	4	8	16	32	64	128	256	512	1024

- Byte = $8 \text{ bit} = 2^3 \text{ bit}$
- KiloByte (kB) = 10^3 Byte = 2^{13} bit
- MegaByte (MB) = 10^6 Byte = 2^{23} bit
- GigaByte (GB) = 10^9 Byte = 2^{33} bit
- TheraByte (TB) = 10^{12} Byte = 2^{43} bit

Codifica dei numeri

Utilizziamo la definizione di numero in notazione posizionale

$$(N)_2 = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + ... + a_0 \times 2^0$$

Es.

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (5)_{10}$$

 $(1100010)_2 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2 =$
 $= 64 + 32 + 2 = (98)_{10}$

Nel corso vedremo diverse codifiche per

- I numeri naturali
- I numeri interi (positivi e negativi)
- I numeri reali

Rappresentazione dei Caratteri

Ogni carattere viene mappato in un numero intero (che è espresso da sequenza di bit) utilizzando dei codici

Il codice più usato è l'ASCII (American Standard Code for Information Interchange) a 8 bit che contiene:

- Caratteri alfanumerici
- Caratteri simbolici (es. punteggiatura, @&%\$ etc..)
- Caratteri di comando (es. termina riga, vai a capo, tab)

La codifica ASCII (esempi)

A ⇔ 65 ⇔ 01000001

a ⇔ 97 ⇔ 01100001

.

.

.

Z ⇔ 90 ⇔ 01011010

z ⇔ 122 ⇔ 01111010

La codifica ASCII (parziale)

DEC	CAR	DEC	CAR	DEC	CAR	DEC	CAR	DEC	CAR
48	0	65	Α	75	K	97	а	107	k
49	1	66	В	76	L	98	b	108	I
50	2	67	С	77	M	99	С	109	m
51	3	68	D	78	N	100	d	110	n
52	4	69	E	79	0	101	е	111	0
53	5	70	F	80	Р	102	f	112	р
54	6	71	G	81	Q	103	g	113	q
55	7	72	Н	82	R	104	h	114	r
56	8	73	1	83	S	105	i	115	s
57	9	74	J	84	Т	106	j	116	t
				85	U			117	u
				86	V			118	V
				87	W			119	w
				88	X			120	X
				89	Y			121	у
				90	Z			122	Z

Codifica delle Immagini

 Le immagini nei calcolatori sono digitali, i.e. tabella di pixel, ciascuno caratterizzato da uno o più valori di

intensità.

123	122	134	121	132	133	145	134
122	121	125	132	124	121	116	126
119	127	137	119	139	127	128	131

Codifica delle Immagini

 Le immagini nei calcolatori sono digitali, i.e. tabella di pixel, ciascuno caratterizzato da uno o più valori di

intensità.

Rappresentazione dei numeri naturali

- Le cifre che abbiamo a disposizione sono 10 $A_{10} = \{0, 1, ..., 9\}$
- Utilizziamo una codifica posizionale, quindi le cifre in posizioni differenti hanno un significato differente

Le cifre che abbiamo a disposizione sono 10

$$A_{10} = \{0, 1, ..., 9\}$$

- Utilizziamo una codifica posizionale, quindi le cifre in posizioni differenti hanno un significato differente
- Es numero di 4 cifre
 - 3401 = $3 \times 10^3 + 4 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$

Le cifre che abbiamo a disposizione sono 10

$$A_{10} = \{0, 1, ..., 9\}$$

- Utilizziamo una codifica posizionale, quindi le cifre in posizioni differenti hanno un significato differente
- Es numero di 4 cifre
 - 3401 = $3 \times 10^3 + 4 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$
 - 4310 = $4 \times 10^3 + 3 \times 10^2 + 1 \times 10^1 + 0 \times 10^0$

Le cifre che abbiamo a disposizione sono 10

$$A_{10} = \{0, 1, ..., 9\}$$

- Utilizziamo una codifica posizionale, quindi le cifre in posizioni differenti hanno un significato differente
- Es numero di 4 cifre

• 3401 =
$$3 \times 10^3 + 4 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$$

• 4310 =
$$4 \times 10^3 + 3 \times 10^2 + 1 \times 10^1 + 0 \times 10^0$$

• **0413** =
$$\mathbf{0} \times 10^3 + \mathbf{4} \times 10^2 + \mathbf{1} \times 10^1 + \mathbf{3} \times 10^0$$

Le cifre che abbiamo a disposizione sono 10

$$A_{10} = \{0, 1, ..., 9\}$$

- Utilizziamo una codifica posizionale, quindi le cifre in posizioni differenti hanno un significato differente
- Es numero di 4 cifre

• 3401 =
$$3 \times 10^3 + 4 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$$

• 4310 =
$$4 \times 10^3 + 3 \times 10^2 + 1 \times 10^1 + 0 \times 10^0$$

• **0413** =
$$\mathbf{0} \times 10^3 + \mathbf{4} \times 10^2 + \mathbf{1} \times 10^1 + \mathbf{3} \times 10^0$$

• Con m cifre posso rappresentare 10^m numeri distinti:

$$0, \dots, 10^m - 1$$

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$
 - In base 10, il dizionario è $A_{10} = \{0, ..., 9\}$

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$
 - In base 10, il dizionario è $A_{10} = \{0, ..., 9\}$
 - In base 8, il dizionario è $A_8 = \{0, ..., 7\}$

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$
 - In base 10, il dizionario è $A_{10} = \{0, ..., 9\}$
 - In base 8, il dizionario è $A_8 = \{0, ..., 7\}$
 - In base 2, il dizionario è $A_2 = \{0, 1\}$

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$
 - In base 10, il dizionario è $A_{10} = \{0, ..., 9\}$
 - In base 8, il dizionario è $A_8 = \{0, ..., 7\}$
 - In base 2, il dizionario è $A_2 = \{0, 1\}$

- Un numero è una sequenza di cifre $a_n a_{n-1} \dots a_1 a_0 \text{ con } a_i \in A$
 - 8522 è una sequenza di 4 cifre di A_{10} , $\{8,5,2\} \subset A_{10}$.

- Ogni codifica ha un insieme di cifre (dizionario) A
 - In base 16, il dizionario è $A_{16} = \{0, ..., 9, A, ..., F\}$
 - In base 10, il dizionario è $A_{10} = \{0, ..., 9\}$
 - In base 8, il dizionario è $A_8 = \{0, ..., 7\}$
 - In base 2, il dizionario è $A_2 = \{0, 1\}$

- Un numero è una sequenza di cifre $a_n a_{n-1} \dots a_1 a_0$ con $a_i \in A$
 - 8522 è una sequenza di 4 cifre di A₁₀, {8,5,2} ⊂ A₁₀
 - 4F è una sequenza di 2 cifre di A_{16} , $\{4, F\} \subset A_{16}$.

- Manteniamo un codifica posizionale: ogni cifra assume un significato diverso in base alla sua posizione nel numero.
 - a_n è la cifra più significativa
 - a₀ è la cifra meno significativa

Es: in **8522**, **8** è la cifra più significativa, **2** quella meno. 8522 è diverso da 2852, 8252,... che pur contengono le stesse cifre

Codifica dei Numeri: Notazione Posizionale

• Dato un numero N_{10} , in base 10 contenente m cifre scritto come $a_{m-1}a_{m-2} \dots a_1a_0$ questo corrisponde a:

$$N_{10} = a_{m-1} \times 10^{m-1} + a_{m-2} \times 10^{m-2} + ... + a_0 \times 10^0$$

Codifica dei Numeri: Notazione Posizionale

• Dato un numero N_{10} , in base 10 contenente m cifre scritto come $a_{m-1}a_{m-2}\dots a_1a_0$ questo corrisponde a:

$$\begin{split} N_{10} &= a_{m-1} \times 10^{m-1} + a_{m-2} \times 10^{m-2} + \ldots + a_0 \times 10^0 \\ &(a_{m-1}a_{m-2} \ldots a_1a_0)_{10} = \sum_{i=0}^{m-1} a_i \times 10^i \ , \qquad a_i \in A_{10} \end{split}$$

 Es: $(8522)_{10} = 8 \times 10^3 + 5 \times 10^2 + 2 \times 10^1 + 2 \times 10^0$

Codifica dei Numeri: Notazione Posizionale

• Dato un numero N_{10} , in base 10 contenente m cifre scritto come $a_{m-1}a_{m-2} \dots a_1a_0$ questo corrisponde a:

$$\begin{split} N_{10} &= a_{m-1} \times 10^{m-1} + a_{m-2} \times 10^{m-2} + \ldots + a_0 \times 10^0 \\ &(a_{m-1}a_{m-2} \ldots a_1a_0)_{10} = \sum_{i=0}^{m-1} a_i \times 10^i \ , \qquad a_i \in A_{10} \end{split}$$

 Es: $(8522)_{10} = 8 \times 10^3 + 5 \times 10^2 + 2 \times 10^1 + 2 \times 10^0$

- Con m cifre in A_{10} quanti numeri posso esprimere: 10^m
- Considerando gli interi positivi, posso scrivere tutti numeri tra [0, 10^m - 1]
 - Es: m = 1 copro [0,10 1] (cioè [0,9]) $m = 3 \text{ copro } [0,10^3 - 1] \text{ (cioè } [0,999])$

- Consideriamo rappresentazioni posizionali in base p (con p > 0) e chiamiamo A_p il dizionario di p cifre:
 - se $p \le 10$ prendiamo le cifre di A_{10} , $A_p = \{0, ..., p-1\}$

- Consideriamo rappresentazioni posizionali in base p (con p > 0) e chiamiamo A_p il dizionario di p cifre:
 - se $p \le 10$ prendiamo le cifre di A_{10} , $A_p = \{0, ..., p-1\}$
 - se p > 10 aggiungiamo simboli $A_p = \{0, ..., 9, A, B...\}$

- Consideriamo rappresentazioni posizionali in base p (con p > 0) e chiamiamo A_p il dizionario di p cifre:
 - se $p \le 10$ prendiamo le cifre di A_{10} , $A_p = \{0, ..., p-1\}$
 - se p > 10 aggiungiamo simboli $A_p = \{0, ..., 9, A, B...\}$
- Un numero di m cifre in base p:

$$N_{p} = a_{m-1} \times p^{m-1} + a_{m-2} \times p^{m-2} + \dots + a_{0} \times p^{0}$$

$$N_{p} = a_{m-1} a_{m-2} \dots a_{1} a_{0} = \sum_{i=0}^{m-1} a_{i} \times p^{i}, \qquad a_{i} \in A_{p}$$

- Consideriamo rappresentazioni posizionali in base p (con p > 0) e chiamiamo A_p il dizionario di p cifre:
 - se $p \le 10$ prendiamo le cifre di A_{10} , $A_p = \{0, ..., p-1\}$
 - se p > 10 aggiungiamo simboli $A_p = \{0, ..., 9, A, B...\}$
- Un numero di m cifre in base p:

$$N_p = a_{m-1} \times p^{m-1} + a_{m-2} \times p^{m-2} + \dots + a_0 \times p^0$$

$$N_p = a_{m-1} a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times p^i$$
, $a_i \in A_p$

- Con m cifre in A_p quanti numeri posso esprimere: p^m
- Considerando gli interi positivi, posso scrivere tutti numeri tra $[0, p^m 1]$

Codifica dei numeri in base p: Esempi

• Es: m = 1 e p = 7, copro [0, 7 - 1] (cioè [0, 6]) m = 4 e p = 7, copro $[0, 7^4 - 1]$ (cioè [0, 2400]) m = 1 e p = 13, copro [0, 13 - 1] (cioè [0, 12]) m = 4 e p = 13, copro $[0, 13^4 - 1]$ (cioè [0, 28560])

Codifica dei numeri in base p: Esempi

• Es: m = 1 e p = 7, copro [0, 7 - 1] (cioè [0, 6]) m = 4 e p = 7, copro $[0, 7^4 - 1]$ (cioè [0, 2400]) m = 1 e p = 13, copro [0, 13 - 1] (cioè [0, 12]) m = 4 e p = 13, copro $[0, 13^4 - 1]$ (cioè [0, 28560])

Al crescere di *p* cresce il «potere espressivo» del dizionario (con lo stesso numero di cifre posso scrivere molti più numeri).

• I calcolatori sono in grado di operare con informazioni binarie. Quindi p=2 e $A_2=\{0,1\}$

binarie. Quindi
$$p = 2$$
 e $A_2 = \{0, 1\}$

$$N_2 = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + ... + a_0 \times 2^0$$

$$N_2 = a_{m-1} a_{m-2} ... a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 2^i , \qquad a_i \in \{0, 1\}$$

• I calcolatori sono in grado di operare con informazioni binarie. Quindi p=2 e $A_2=\{0,1\}$

Marie. Quindi
$$p = 2$$
 e $A_2 = \{0, 1\}$

$$N_2 = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + ... + a_0 \times 2^0$$

$$N_2 = a_{m-1}a_{m-2} ... a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 2^i , \qquad a_i \in \{0, 1\}$$

 Un bit (binary digit) assume valore 0/1 corrispondente ad un determinato stato fisico (alta o bassa tensione nella cella di memoria)

• I calcolatori sono in grado di operare con informazioni binarie. Quindi p=2 e $A_2=\{0,1\}$

$$N_{2} = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + \dots + a_{0} \times 2^{0}$$

$$N_{2} = a_{m-1} a_{m-2} \dots a_{1} a_{0} = \sum_{i=0}^{m-1} a_{i} \times 2^{i} , \qquad a_{i} \in \{0,1\}$$

- Un bit (binary digit) assume valore 0/1 corrispondente ad un determinato stato fisico (alta o bassa tensione nella cella di memoria)
- Con m bit posso scrivere 2^m numeri diversi, ad esempio tutti gli interi nell'intervallo $[0, 2^m 1]$

• I calcolatori sono in grado di operare con informazioni binarie. Quindi p=2 e $A_2=\{0,1\}$

Dinarie. Quindi
$$p = 2$$
 e $A_2 = \{0, 1\}$

$$N_2 = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + ... + a_0 \times 2^0$$

$$N_2 = a_{m-1}a_{m-2} ... a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 2^i , \qquad a_i \in \{0, 1\}$$

- Un bit (binary digit) assume valore 0/1 corrispondente ad un determinato stato fisico (alta o bassa tensione nella cella di memoria)
- Con m bit posso scrivere 2^m numeri diversi, ad esempio tutti gli interi nell'intervallo $[0, 2^m 1]$
- Il byte è una sequenza di 8 bit ed esprime 2⁸ = 256 numeri diversi (ad esempio gli interi in [0,255]) 00000000, 00000001, 00000010, ..., 11111111

Conversione Binario → **Decimale**

Utilizziamo la definizione di numero in notazione posizionale

$$N_2 = a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + ... + a_0 \times 2^0$$

Es.

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (5)_{10}$$

 $(1100010)_2 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2 = (98)_{10}$

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

Divisione intera tra il numero e 2

Il risultato della divisione precedente viene successivamente diviso

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

Divisione intera tra il numero e 2

Il risultato della divisione precedente viene successivamente diviso

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

$$\bullet$$
 132 / 2 = 66 + 0

•
$$66 / 2 = 33 + 0$$

•
$$33 / 2 = 16 + 1$$

•
$$16 / 2 = 8 + 0$$

$$\bullet$$
 8 / 2 = 4 + 0

•
$$4 / 2 = 2 + 0$$

•
$$2 / 2 = 1 + 0$$

•
$$1 / 2 = 0 + 1$$

Divisione intera tra il numero e 2

Il risultato della divisione precedente viene successivamente diviso

Si continua fino a quando il risultato della divisione non diventa 0 (e considero comunque il resto!)

- Metodo delle divisioni successive:
- Per convertire 531 opero come segue:

•
$$265 / 2 = 132 + 130$$

•
$$4 / 2 = 2 + 0$$

•
$$2 / 2 = 1 + 0$$

•
$$1 / 2 = 0 + 1$$

Cifra meno significativa

I resti della divisione intera, letti dall'ultimo al primo, identificano la codifica binaria

$$(531)_{10} = (1000010011)_2$$

Cifra più significativa

 L'algoritmo delle divisioni successive vale rispetto a qualunque base

$$N_{16} = a_{m-1}a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 16^i$$
, $a_i \in A_{16}$

- $Es: (31)_8 =$
- $(A170)_{16} =$
- $(623)_8 =$
- $(623)_{16} =$

$$N_{16} = a_{m-1}a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 16^i$$
, $a_i \in A_{16}$

- Es: $(31)_8 = 3 * 8 + 1 = (25)_{10}$
- $(A170)_{16} =$
- $(623)_8 =$
- $(623)_{16} =$

$$N_{16} = a_{m-1}a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 16^i$$
, $a_i \in A_{16}$

- Es: $(31)_8 = 3 * 8 + 1 = (25)_{10}$
- $(A170)_{16} = A * 16^3 + 1 * 16^2 + 7 * 16$ = $10 * 4096 + 1 * 256 + 7 * 16 = (41328)_{10}$
- $(623)_8 =$
- $(623)_{16} =$

$$N_{16} = a_{m-1}a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 16^i$$
, $a_i \in A_{16}$

- Es: $(31)_8 = 3 * 8 + 1 = (25)_{10}$
- $(A170)_{16} = A * 16^3 + 1 * 16^2 + 7 * 16$ = $10 * 4096 + 1 * 256 + 7 * 16 = (41328)_{10}$
- $(623)_8 = 6 * 8^2 + 2 * 8 + 3 * 8^0$ = $6 * 64 + 16 + 3 = (403)_{10}$
- $(623)_{16} =$ =

$$N_{16} = a_{m-1}a_{m-2} \dots a_1 a_0 = \sum_{i=0}^{m-1} a_i \times 16^i$$
, $a_i \in A_{16}$

- Es: $(31)_8 = 3 * 8 + 1 = (25)_{10}$
- $(A170)_{16} = A * 16^3 + 1 * 16^2 + 7 * 16$ = $10 * 4096 + 1 * 256 + 7 * 16 = (41328)_{10}$
- $(623)_8 = 6 * 8^2 + 2 * 8 + 3 * 8^0$ = $6 * 64 + 16 + 3 = (403)_{10}$
- $(623)_{16} = 6 * 16^2 + 2 * 16 + 3 * 16^0$ = $6 * 256 + 32 + 3 = (1571)_{10}$

Conversioni decimale → ottale/esadecimale

• È possibile utilizzare l'algoritmo delle divisioni successive

Conversioni decimale → ottale/esadecimale

- È possibile utilizzare l'algoritmo delle divisioni successive
- È tuttavia più comodo fare delle conversioni passando dalla rappresentazione binaria e

Conversioni decimale → ottale/esadecimale

- È possibile utilizzare l'algoritmo delle divisioni successive
- È tuttavia più comodo fare delle conversioni passando dalla rappresentazione binaria e
 - Esprimere ogni sequenza di 3 numeri binari in base 8

•
$$(1231)_{10} = (10011001111)_2 = (010011001111)_2$$

•
$$(1231)_{10} = (2317)_8$$
 $(2 \ 3 \ 1 \ 7)_8$

Conversioni decimale ⇒ ottale/esadecimale

- È possibile utilizzare l'algoritmo delle divisioni successive
- È tuttavia più comodo fare delle conversioni passando dalla rappresentazione binaria e
 - Esprimere ogni sequenza di 3 numeri binari in base 8

•
$$(1231)_{10} = (10011001111)_2 = (010011001111)_2$$

•
$$(1231)_{10} = (2317)_8$$

•
$$(1231)_{10} = (10011001111)_2 = (010011001111)_2$$

•
$$(1231)_{10} = (4CF)_{16}$$

$$(4 \quad C \quad F)_{16}$$

 $(2 \ 3 \ 1 \ 7)_8$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\mathbf{0101} + (5)_{10} \\ \mathbf{1001} = (9)_{10}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ----- \\
 \mathbf{0}
 \end{array}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ---- \\
 \mathbf{10}
 \end{array}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ---- \\
 \mathbf{110}
 \end{array}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ----- \\
 \mathbf{1110} \quad (14)_{10}
 \end{array}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ----- \\
 \mathbf{1110} \quad (14)_{10}
 \end{array}$$

$$\begin{array}{r}
 1 \\
 1111 + (15)_{10} \\
 1010 = (10)_{10} \\
 ---- \\
 01
 \end{array}$$

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

- Si eseguono «in colonna» e si opera cifra per cifra
- Si considera il riporto come per i decimali
 - 0 + 0 = 0 riporto 0
 - 1 + 0 = 1 riporto 0
 - 0 + 1 = 1 riporto 0
 - 1 + 1 = 0 riporto 1
- Occorre sommare il riporto della cifra precedente

- A volte i bit utilizzati per codificare gli addendi non bastano a contenere il risultato
 - In questi casi occorrono più bit per codificare il risultato
 - Si ha quindi un bit di carry in eccesso e di conseguenza overflow \

$$\begin{array}{r}
 \mathbf{1} \\
 \mathbf{0101} + (5)_{10} \\
 \mathbf{1001} = (9)_{10} \\
 ----- \\
 \mathbf{1110} \quad (14)_{10}
 \end{array}$$

111
1111 +
$$(15)_{10}$$

1010 = $(10)_{10}$

(1)1001 $(25)_{10}$

Rappresentazione dei numeri interi

- Positivi e Negativi

- È possibile dedicare il primo bit alla codifica del segno
 - "1" il numero che segue è negativo
 - "0" il numero che segue è positivo

- È possibile dedicare il primo bit alla codifica del segno
 - "1" il numero che segue è negativo
 - "0" il numero che segue è positivo
- Con m cifre in binario e codifica modulo e segno dedico 2^{m-1} rappresentazioni per i positivi e 2^{m-1} rappresentazioni per gli stessi numeri cambiati di segno
 - posso rappresentare tutti i numeri nell'intervallo

$$X \in [-(2^{m-1}-1), 2^{m-1}-1]$$

- È possibile dedicare il primo bit alla codifica del segno
 - "1" il numero che segue è negativo
 - "0" il numero che segue è positivo
- Es su 5 bit rappresento
 - 11111 = -15
 - -10000 = -0
 - 00000 = +0
 - 01111 = +15

Ho due codifiche differenti lo zero

C'è uno «spreco» nella codifica

Ho due codifiche differenti lo zero

- C'è uno «spreco» nella codifica
- Ostacola realizzazione circuitale delle operazioni algebriche
 - A>0 && B>0 => A + B == A + B
 - A>0 && B<0 => A + B == A |B|
 - A<0 && B>0 => A + B == B |A|
 - A<0 && B<0 => A + B == -(|A| + |B|)

Ho due codifiche differenti lo zero

- C'è uno «spreco» nella codifica
- Ostacola realizzazione circuitale delle operazioni algebriche
 - A>0 && B>0 => A + B == A + B
 - A>0 && B<0 => A + B == A |B|
 - A<0 && B>0 => A + B == B |A|
 - A<0 && B<0 => A + B == -(|A| + |B|)
- Occorre trovare una rappresentazione migliore!

• Date m cifre binarie, disponibili 2^m configurazioni distinte

- In CP2 se ne usano:
 - $2^{m-1} 1$ per valori positivi
 - 1 per lo zero
 - 2^{m-1} per i valori negativi

• Con m bit rappresento l'intervallo $[-2^{m-1}, 2^{m-1} - 1]$

- Sia $X \in [-2^{m-1}, 2^{m-1} 1]$ il numero da rappresentare in CP2, con m bit.
 - se X è positivo o nullo scrivo X in binario con m bit
 - se X è negativo scrivo $2^m |X|$ in binario con m bit

DEFINIZIONE DI CP2

$$-4 = 2^3 - 4 = 4 = 100$$

- -3 =
- −2 =
- −1 =
- · 0 =
- 1 =
- · 2 =
- 3 =

- Esempio $m = 3 \Rightarrow 2^3 = 8$
 - $-4 = 2^3 4 = 4 = 100$
 - $-3 = 2^3 3 = 5 = 101$
 - −2 =
 - −1 =
 - · 0 =
 - 1 =
 - · 2 =
 - 3 =

$$-4 = 2^3 - 4 = 4 = 100$$

$$-3 = 2^3 - 3 = 5 = 101$$

$$-2 = 2^3 - 2 = 6 = 110$$

- −1 =
- · 0 =
- 1 =
- · 2 =
- 3 =

$$-4 = 2^3 - 4 = 4 = 100$$

$$-3 = 2^3 - 3 = 5 = 101$$

$$-2 = 2^3 - 2 = 6 = 110$$

$$-1 = 2^3 - 1 = 7 = 111$$

- · 0 =
- 1 =
- · 2 =
- 3 =

$$-4 = 2^3 - 4 = 4 = 100$$

$$-3 = 2^3 - 3 = 5 = 101$$

$$-2 = 2^3 - 2 = 6 = 110$$

$$-1 = 2^3 - 1 = 7 = 111$$

- 0 = 000
- \cdot 1 = 001
- \cdot 2 = 010
- \cdot 3 = 011

 Con i positivi copro solo il range [0, 2^{m-1}-1], quindi la prima cifra è 0

- Con i positivi copro solo il range [0, 2^{m-1}-1], quindi la prima cifra è 0
- Con i negativi copro il range [−2^{m−1}, −1] e scrivo 2^m − |X|, e quindi la prima cifra è 1

- Con i positivi copro solo il range [0, 2^{m-1}-1], quindi la prima cifra è 0
- Con i negativi copro il range [−2^{m−1}, −1] e scrivo 2^m − |X|,
 e quindi la prima cifra è 1
- Quindi, il primo bit indica il segno del numero
 - Attenzione: indica il segno ma non è il segno;
 cambiandolo non si ottiene il numero opposto
 - $45 = (0101101)_{CP2}$ se cambio di segno alla prima cifra

•
$$(1101101)_{CP2} \rightarrow -2^6 + 2^5 + 2^3 + 2^2 + 1 =$$

= $-64 + 45 = -19$

- Con i positivi copro solo il range [0, 2^{m-1}-1], quindi la prima cifra è 0
- Con i negativi copro il range [−2^{m−1}, −1] e scrivo 2^m − |X|, e quindi la prima cifra è 1
- Quindi, il primo bit indica il segno del numero
 - Attenzione: indica il segno ma non è il segno;
 cambiandolo non si ottiene il numero opposto
 - $45 = (0101101)_{CP2}$ se cambio di segno alla prima cifra

•
$$(1101101)_{CP2} \rightarrow -2^6 + 2^5 + 2^3 + 2^2 + 1 =$$

= $-64 + 45 = -19$

 Inoltre, un solo valore per lo 0 nessuna configurazione "sprecata" dalla codifica

Dato un numero in CP2, il suo valore il base 10 è:

$$N_{CP2} = a_{m-1}a_{m-2} \dots a_1 a_0$$

$$= -a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + \dots + a_0 \times 2^0$$

$$= -a_{m-1} \times 2^{m-1} + \sum_{i=0}^{m-2} a_i \times 2^i , \qquad a_i \in \{0,1\}$$

Dato un numero in CP2, il suo valore il base 10 è:

$$\begin{aligned} N_{CP2} &= a_{m-1} a_{m-2} \dots a_1 a_0 \\ &= \boxed{-a_{m-1} \times 2^{m-1}} + a_{m-2} \times 2^{m-2} + \dots + a_0 \times 2^0 \\ &= \boxed{-a_{m-1} \times 2^{m-1}} + \sum_{i=0}^{m-2} a_i \times 2^i \ , \qquad a_i \in \{0,1\} \end{aligned}$$

viene cambiato il segno dell'addendo relativo alla cifra più significativa

Esempi:

$$100 = -1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = -4$$

Esempi:

$$100 = -1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = -4$$

$$110 = -1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -2$$

Esempi:

$$100 = -1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0} = -4$$

$$110 = -1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = -2$$

$$010 = -0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = +2$$

Es, definire un intervallo che contenga -23 e 45

- Es, definire un intervallo che contenga -23 e 45
 - m = 7, copro $[-2^6, 2^6 1] = [-64, 63]$

- Es, definire un intervallo che contenga -23 e 45
 - m = 7, copro $[-2^6, 2^6 1] = [-64, 63]$
 - m = 6, copro $[-2^5, 2^5 1] = [-32, 31]$ (non cont. 45)

- Es, definire un intervallo che contenga -23 e 45
 - m = 7, copro $[-2^6, 2^6 1] = [-64, 63]$

•
$$m = 6$$
, copro $[-2^{\frac{5}{2}}, 2^{\frac{5}{2}} - 1] = [-32, 31]$ (non cont. 45)

$$-23 \rightarrow 2^7 - 23 = 128 - 23 = 105 = (1101001)_{CP2}$$

- Es, definire un intervallo che contenga -23 e 45
 - m = 7, copro $[-2^6, 2^6 1] = [-64, 63]$

•
$$m = 6$$
, copro $[-2^{\frac{5}{2}}, 2^{\frac{5}{2}} - 1] = [-32, 31]$ (non cont. 45)

- $-23 \rightarrow 2^7 23 = 128 23 = 105 = (1101001)_{CP2}$
- $45 = (0101101)_{CP2}$

Metodo "operativo" per rappresentare X su m bit in CP2

Metodo "operativo" per rappresentare X su m bit in CP2

1. Controllo che $X \in [-2^{m-1}, 2^{m-1} - 1]$, altrimenti m bit non bastano

Metodo "operativo" per rappresentare X su m bit in CP2

- 1. Controllo che $X \in [-2^{m-1}, 2^{m-1} 1]$, altrimenti m bit non bastano
- 2. Se X è positivo, converto (col metodo delle divisioni successive) X utilizzando m bit

NB: ricordandosi di aggiungerei zeri se necessario all'inizio del numero!

Metodo "operativo" per rappresentare X su m bit in CP2

- 1. Controllo che $X \in [-2^{m-1}, 2^{m-1} 1]$, altrimenti m bit non bastano
- Se X è positivo, converto (col metodo delle divisioni successive) X utilizzando m bit
 NB: ricordandosi di aggiungerei zeri se necessario all'inizio del numero!
- 3. Se *X* è negativo:
 - a) Converto (col metodo delle divisioni successive) |X| utilizzando m bit
 - b) Complemento tutti i bit di X $(1 \rightarrow 0, 0 \rightarrow 1)$
 - c) Sommo 1 al numero ottenuto

Esempio: scrivere -56 in CP2 con il numero di bit necessari

Esempio: scrivere -56 in CP2 con il numero di bit necessari

i.
$$m = 7 \text{ copre } [-2^6, 2^6 - 1] = [-64, 63]$$

Esempio: scrivere -56 in CP2 con il numero di bit necessari

i.
$$m = 7 \text{ copre } [-2^6, 2^6 - 1] = [-64, 63]$$

ii. Scrivo $(56)_{10} \rightarrow 0111000$

56	0
28	0
14	0
7	1
3	1
1	1
0	

Esempio: scrivere -56 in CP2 con il numero di bit necessari

i.
$$m = 7 \text{ copre } [-2^6, 2^6 - 1] = [-64, 63]$$

- ii. Scrivo $(56)_{10} \rightarrow 0111000$
- iii. Complemento → 1000111

Esempi Conversione Decimale → CP2

Esempio: scrivere -56 in CP2 con il numero di bit necessari

i.
$$m = 7 \text{ copre } [-2^6, 2^6 - 1] = [-64, 63]$$

- ii. Scrivo $(56)_{10} \rightarrow 0111000$
- iii. Complemento → 1000111
- iv. Sommo 1 _____1
- v. $(1001000)_{CP2} = (-56)_{10}$

56	0
28	0
14	0
7	1
3	1
1	1
0	

Esempi Conversione Decimale → CP2

Esempio: scrivere -56 in CP2 con il numero di bit necessari

i.
$$m = 7 \text{ copre } [-2^6, 2^6 - 1] = [-64, 63]$$

ii. Scrivo
$$(56)_{10} \rightarrow 0111000$$

v.
$$(1001000)_{CP2} = (-56)_{10}$$

Oppure applico la definizione:

$$(-56)_{10} = 2^7 - 56 = 72 = (1001000)_{CP2}$$

Conversione CP2 → Decimale

Possiamo utilizzare la definizione

$$N_{CP2} = a_{m-1} a_{m-2} \dots a_1 a_0$$

$$= -a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + \dots + a_0 \times 2^0$$

$$= -a_{m-1} \times 2^{m-1} + \sum_{i=0}^{m-2} a_i \times 2^i , \qquad a_i \in \{0,1\}$$

Conversione CP2 → Decimale

Possiamo utilizzare la definizione

$$N_{CP2} = a_{m-1}a_{m-2} \dots a_1 a_0$$

$$= -a_{m-1} \times 2^{m-1} + a_{m-2} \times 2^{m-2} + \dots + a_0 \times 2^0$$

$$= -a_{m-1} \times 2^{m-1} + \sum_{i=0}^{m-2} a_i \times 2^i , \qquad a_i \in \{0,1\}$$

$$Es (1001000)_{CP2} = -2^6 + 2^3 = -64 + 8 = (-56)_{10}$$

Somma tra Numeri in CP2

 In CP2 l'operazione di somma si realizza come nella rappresentazione binaria posizionale

Somma tra Numeri in CP2

 In CP2 l'operazione di somma si realizza come nella rappresentazione binaria posizionale

 Grazie alla rappresentazione in CP2 è possibile eseguire anche sottrazioni tra numeri binari con lo stesso meccanismo (i.e., somme tra interi di segno opposto)

 In CP2 occorre individuare l'overflow, i.e., casi in cui il risultato è fuori dall'intervallo rappresentabile con i bit utilizzati.

- In CP2 occorre individuare l'overflow, i.e., casi in cui il risultato è fuori dall'intervallo rappresentabile con i bit utilizzati.
 - Quando c'è overflow il risultato è inconsistente con gli addendi:
 - Somma di due addendi positivi da un numero negativo
 - Somma di due addendi negativi da un numero positivo

- In CP2 occorre individuare l'overflow, i.e., casi in cui il risultato è fuori dall'intervallo rappresentabile con i bit utilizzati.
 - Quando c'è overflow il risultato è inconsistente con gli addendi:
 - Somma di due addendi positivi da un numero negativo
 - Somma di due addendi negativi da un numero positivo
- NB non può esserci overflow quando sommo due numeri di segno opposto

- In CP2 occorre individuare l'overflow, i.e., casi in cui il risultato è fuori dall'intervallo rappresentabile con i bit utilizzati.
 - Quando c'è overflow il risultato è inconsistente con gli addendi:
 - Somma di due addendi positivi da un numero negativo
 - Somma di due addendi negativi da un numero positivo
- NB non può esserci overflow quando sommo due numeri di segno opposto
- NB può esserci un ultimo riporto senza che ci sia overflow e viceversa

Esempio: 60 - 54

Esempio: 60 - 54

diventa 60 + (-54)

Esempio:
$$60 - 54$$

diventa $60 + (-54)$

$$\begin{array}{rcl}
& 11 & 11 \\
(60)_{10} & = & (0 & 1 & 1 & 1 & 0 & 0)_{CP2} \\
(-54)_{10} & = & (1 & 0 & 0 & 1 & 0 & 1 & 0)_{CP2}
\end{array}$$
(1) $0 & 0 & 0 & 0 & 1 & 1 & 0$

Il riporto (carry) viene ignorato

Quando sommo numeri di segno opposto non può esserci overflow

Il risultato è positivo $(0000110)_{CP2} = (6)_{10}$

Esempio:
$$-4 - 3 = -4 + (-3) = (100)_{CP2} + (101)_{CP2}$$

Esempio:
$$-4 - 3 = -4 + (-3) = (100)_{CP2} + (101)_{CP2}$$

1

1 0 0 +

1 0 1 =

(1) 0 0 1

Esempio:
$$-4 - 3 = -4 + (-3) = (100)_{CP2} + (101)_{CP2}$$

1

1 0 0 +

1 0 1 =

(1) 0 0 1

Ignoro il bit di carry

Esempio:
$$-4 - 3 = -4 + (-3) = (100)_{CP2} + (101)_{CP2}$$

1

1 0 0 +

1 0 1 =

(1) 0 0 1

- Ignoro il bit di carry
- Overflow: la somma di due numeri negativi mi ha dato un numero positivo.
- Il risultato non ha senso, occorre scrivere gli addendi con un bit in più per rappresentare il risultato dell'operazione

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$

$$-3 \Rightarrow 1101$$

 $+6 \Rightarrow 0110$
 $+3 \Rightarrow (1)0011$

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$

$$-3 \Rightarrow 1101$$

 $+6 \Rightarrow 0110$
 $+3 \Rightarrow (1)0011$

$$-3 \Rightarrow 1101$$

 $-7 \Rightarrow 1001$
 $-10 \Rightarrow (1)0110$

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$

$$-3 \Rightarrow 1101$$

 $+6 \Rightarrow 0110$
 $+3 \Rightarrow (1)0011$

$$-3 \Rightarrow 1101$$

 $-7 \Rightarrow 1001$
 $-10 \Rightarrow (1)0110$

$$+2 \Rightarrow 0010$$

 $+5 \Rightarrow 0101$
 $+7 \Rightarrow (0)0111$

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$
 $-3 \Rightarrow 1101$

$$-3 \Rightarrow 1101$$

 $+6 \Rightarrow 0110$
 $+3 \Rightarrow (1)0011$

$$-3 \Rightarrow 1101$$
 $-7 \Rightarrow 1001$
 $-10 \Rightarrow (1)0110$
 $+2 \Rightarrow 0010$
 $+5 \Rightarrow 0101$
 $+7 \Rightarrow (0)0111$
 $+3 \Rightarrow 0011$
 $+6 \Rightarrow 0110$
 $+9 \Rightarrow (0)1001$

• Esempi: con m = 4 bit => [-8, 7]

$$-3 \Rightarrow 1101$$
 $-4 \Rightarrow 1100$
 $-7 \Rightarrow (1)1001$

$$-3 \Rightarrow 1101$$

 $+6 \Rightarrow 0110$
 $+3 \Rightarrow (1)0011$

Non c'è alcuna relazione fra l'overflow e il carry!

$$-3 \Rightarrow 1101$$

 $-7 \Rightarrow 1001$
 $-10 \Rightarrow (1)0110$

$$+2 \Rightarrow 0010$$

 $+5 \Rightarrow 0101$
 $+7 \Rightarrow (0)0111$

$$+3 \Rightarrow 0011$$

 $+6 \Rightarrow 0110$
 $+9 \Rightarrow (0)1001$

a) Si dica qual è l'intervallo di valori interi rappresentabile con la codifica in complemento a due a 9 bit.

- a) Si dica qual è l'intervallo di valori interi rappresentabile con la codifica in complemento a due a 9 bit.
 - a) $[-2^8, 2^8 1] = [-256, 255]$

- a) Si dica qual è l'intervallo di valori interi rappresentabile con la codifica in complemento a due a 9 bit.
 - a) $[-2^8, 2^8 1] = [-256, 255]$
- b) Indicare, giustificando brevemente le risposte, quali delle seguenti operazioni possono essere effettuate :
 - i. -254 255
 - ii. +254 253
 - iii. -18 + 236
 - iv. +217+182

- a) Si dica qual è l'intervallo di valori interi rappresentabile con la codifica in complemento a due a 9 bit.
 - a) $[-2^8, 2^8 1] = [-256, 255]$
- b) Indicare, giustificando brevemente le risposte, quali delle seguenti operazioni possono essere effettuate :
 - i. $-254 255 = -509 \dots OUT OF RANGE$
 - ii. $+ 254 253 = 1 \dots$ IN RANGE
 - iii. -18 + 236 = 218 ... IN RANGE
 - iv. $+217 + 182 = 399 \dots OUT OF RANGE$

- a) Si dica qual è l'intervallo di valori interi rappresentabile con la codifica in complemento a due a 9 bit.
 - a) $[-2^8, 2^8 1] = [-256, 255]$
- b) Indicare, giustificando brevemente le risposte, quali delle seguenti operazioni possono essere effettuate:
 - i. $-254 255 = -509 \dots OUT OF RANGE$
 - ii. + 254 253 = 1 ... IN RANGE
 - iii. -18 + 236 = 218 ... IN RANGE
 - iv. $+217 + 182 = 399 \dots$ OUT OF RANGE
- c) Mostrare in dettaglio come avviene il calcolo delle operazioni (i) e (ii), evidenziando il bit di riporto e il bit di overflow così ottenuti. (Il bit di overflow è pari ad 1 se si verifica overflow, 0 altrimenti.)

$$-254 = 512 - 254 = 258 = 100000010$$

$$-255 = ?$$

$$255/2 = 127 + 1$$

$$127 / 2 = 63 + 1$$

$$63/2 = 31 + 1$$

$$31/2 = 15 + 1$$

$$15/2 = 7 + 1$$

$$7/2 = 3 + 1$$

$$3/2 = 1 + 1$$

$$1/2 = 0 + 1$$

$$0111111111 => 100000000 => 100000001$$

$$-254 = 512 - 254 = 258 = 100000010$$

$$-255 = 512 - 255 = 257 = 100000001$$


```
011111110 (+254)
100000011 (-253)
[0](1)00000001 (+1)
```


Rappresentazione dei numeri reali

I numeri reali

- Un'approssimazione dei numeri reali in [0,1]
- Si rappresentano anteponendo 0. al numero

$$N_{p} = (0. a_{-1}a_{-2} \dots a_{-m})_{p} =$$

$$N_{p} = a_{-1} \times p^{-1} + a_{2} \times p^{-2} \dots + a_{-m} \times p^{-m}$$

$$N_{p} = \sum_{i=1}^{m} a_{i} \times p^{-i} , \qquad a_{i} \in A_{p}$$

- Un'approssimazione dei numeri reali in [0,1]
- Si rappresentano anteponendo 0. al numero

$$N_{p} = (0. a_{-1}a_{-2} \dots a_{-m})_{p} =$$

$$N_{p} = a_{-1} \times p^{-1} + a_{2} \times p^{-2} \dots + a_{-m} \times p^{-m}$$

$$N_{p} = \sum_{i=1}^{m} a_{i} \times p^{-i} , \qquad a_{i} \in A_{p}$$

In base 10

$$0.586 = 5 \times 10^{-1} + 8 \times 10^{-2} + 6 \times 10^{-3}$$

- Un'approssimazione dei numeri reali in [0,1]
- Si rappresentano anteponendo 0. al numero

$$N_{p} = (0. a_{-1}a_{-2} \dots a_{-m})_{p} =$$

$$N_{p} = a_{-1} \times p^{-1} + a_{2} \times p^{-2} \dots + a_{-m} \times p^{-m}$$

$$N_{p} = \sum_{i=1}^{m} a_{i} \times p^{-i} , \qquad a_{i} \in A_{p}$$

In base 10

$$0.586 = 5 \times 10^{-1} + 8 \times 10^{-2} + 6 \times 10^{-3}$$

In base 2

$$(0.101)_2 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = \frac{1}{2} + \frac{1}{8} = (0.625)_{10}$$

• Date m cifre in base p=2, posso rappresentare **un** sottoinsieme dell'intervallo continuo $[0, 1-2^{-m}]$

- Date m cifre in base p=2, posso rappresentare **un** sottoinsieme dell'intervallo continuo $[0, 1-2^{-m}]$
 - Con una cifra binaria dopo la virgola rappresento l'intervallo [0, 0.5]
 - $-(x.0)_2 = (y.0)_{10}$
 - $-(x.1)_2 = (y.5)_{10}$

- Date m cifre in base p=2, posso rappresentare **un** sottoinsieme dell'intervallo continuo $[0, 1, 2^{-m}]$
 - Con una cifra binaria dopo la virgola rappresento l'intervallo [0, 0.5]
 - $-(x.0)_2 = (y.0)_{10}$
 - $-(x.1)_2 = (y.5)_{10}$
 - Con due cifre binarie dopo la virgola rappresento l'intervallo [0, 0.75]
 - $-(x.00)_2 = (y.0)_{10}$
 - $-(x.01)_2 = (y.25)_{10}$
 - $-(x.10)_2 = (y.5)_{10}$
 - $-(x.11)_2 = (y.75)_{10}$

- Date m cifre in base p=2, posso rappresentare **un** sottoinsieme dell'intervallo continuo $[0, 1, 2^{-m}]$
 - Con una cifra binaria dopo la virgola rappresento l'intervallo [0, 0.5]
 - $-(x.0)_2 = (y.0)_{10}$
 - $-(x.1)_2 = (y.5)_{10}$
 - Con due cifre binarie dopo la virgola rappresento l'intervallo [0, 0.75]
 - $-(x.00)_2 = (y.0)_{10}$
 - $-(x.01)_2 = (y.25)_{10}$
 - $-(x.10)_2 = (y.5)_{10}$
 - $-(x.11)_2 = (y.75)_{10}$
- L'errore di approssimazione sarà minore di 2^{-m}

Conversione Decimale → Binario su Frazionari

L'algoritmo delle **moltiplicazioni successive** per convertire $N_{10} \in [0,1]$

- 1. Moltiplico N_{10} per 2.
- 2. La parte intera del risultato definisce una cifra della rappresentazione binaria finale
- 3. la parte frazionaria risultante viene moltiplicata per 2
- 4. Si itera i passi1- 3 fino a
 - Ottenere parte frazionaria nulla (rappresentazione esatta)
 oppure
 - Coprire tutte le cifre binarie a disposizione (rappresentazione approssimata)
- 5. La cifra più significativa (il coefficiente di 2^{-1}) è dato dalla prima parte intera calcolata, quella meno significativa (il coefficiente di 2^{-m}) è dato dall'ultima parte intera calcolata

• Convertire in binario 0.625 utilizzando m=6 bit

•
$$0.625 \times 2 = 1 + 0.25$$
 Parte intera + parte frazionaria
• $0.250 \times 2 = 0 + 0.5$ Parte intera + parte frazionaria

- 0 La parte intera definisce la rappresentazione binaria
- Otteniamo $(0.625)_{10} = 0.101$, la rappresentazione è esatta

- Convertire in binario 0.625 utilizzando m=6 bit
- $0.625 \times 2 = 1 + 0.25$
- $0.250 \times 2 = 0 + 0.5$
- $-0.500 \times 2 = 1 + 0$
- **0**

• Otteniamo $(0.625)_{10} = 0.101$, la rappresentazione è esatta

- Convertire in binario 0.625 utilizzando m=6 bit
- $0.625 \times 2 = 1 + 0.25$
- $0.250 \times 2 = 0 + 0.5$
- $0.500 \times 2 = 1 + 0$
- 0

- Otteniamo $(0.625)_{10} = 0.101$, la rappresentazione è esatta
- Devo usare 6 bit: $(0.625)_{10} = 0.101000$

• Convertire in binario 0.587 utilizzando m=6 bit

•
$$0.587 \times 2 = 1 + 0.174$$
 Parte intera + parte frazionaria
• $0.174 \times 2 = 0 + 0.348$ parte frazionaria
• $0.348 \times 2 = 0 + 0.696$
• $0.696 \times 2 = 1 + 0.392$

- $0.392 \times 2 = 0 + 0.784$
- $0.784 \times 2 = 1 + 0.560$

La parte intera definisce la rappresentazione binaria

- Otteniamo $(0.587)_{10} \approx 0.100101$
- Rappresentazione approssimata, la parte frazionaria finale non è 0. L'errore introdotto è minore di 2⁻⁶.

• Convertire in binario 0.9 utilizzando m=16 bit

Rappresentazione **periodica!** Inutile procedere oltre

• Otteniamo $(0.9)_{10} \approx 0.1\ 1100\ 1100\ 1100\ 110\ con$ accuratezza di almeno 2^{-16} .

Rappresentazione in Virgola Fissa

- Si definiscono m bit per la parte intera e n bit per la parte frazionaria e si scrivono le due parti indipendentemente
- Rappresentare $(-123,21)_{10}$ utilizzando m=8, n=6 e rappresentazione in CP_2 per la parte intera

$$(-123)_{10} = (10000101)_{CP2}$$

 $(0,21)_{10} \approx (001101)_2$
 $-123,21_{10} \approx (10000101.001101)_2$

- Questa rappresentazione mi da
 - Precisione costante lungo l'asse reale R:
 - Estremi definiti solo da m

Virgola mobile (floating point)

• Il numero r in base p in virgola mobile è espresso come:

$$r = \pm M \cdot b^n$$

- M mantissa (parte frazionaria, è un numero razionale)
- *b*: base della notazione esponenziale (numero naturale)
- n: esponente (numero intero)
- M e n sono in base p (non necessariamente 10)

Virgola mobile (floating point)

Il numero r in base p in virgola mobile è espresso come:

$$r = \pm M \cdot b^n$$

- *M* mantissa (parte frazionaria, è un numero razionale)
- b: base della notazione esponenziale (numero naturale)
- n: esponente (numero intero)
- M e n sono in base p (non necessariamente 10)

Esempio (p = 10, b = 10):

$$-331,6875 = -0,3316875 \cdot 10^3$$
 $M = -0,3316875;$ $n = 3$

- Il numero può essere codificato usando un numero predefinito di bit per M e per n
 - b e p non devono essere rappresentati, sono definiti dallo standard

Virgola mobile (floating point)

• Il numero r in base p in virgola mobile è espresso come:

$$r = \pm M \cdot b^n$$

- M mantissa (parte frazionaria, è un numero razionale)
- b: base della notazione esponenziale (numero naturale)
- n: esponente (numero intero)
- M e n sono in base p (non necessariamente 10)
- N.B la base p della codifica può essere diversa dalla base della rappresentazione in floating point b

Esempio Se ho
$$(p = 2 \ b = 10)$$
 e $M = 1011$, $n = 11 = 0.6875 \times 10^3$

Normalizzazione

• A parità di precisione, il numero di cifre dopo la virgola può cambiare giocando sull'esponente e.g.: $0.06789013245 \times 10^{15} = 6.789013245 \times 10^{13}$

Normalizzazione

- A parità di precisione, il numero di cifre dopo la virgola può cambiare giocando sull'esponente
 e.g.: 0,06789013245 × 10¹⁵ = 6,789013245 × 10¹³
- Numero in virgola mobile detto normalizzato se contiene una sola cifra nella parte intera

e.g.: $0,06789013245 \times 10^{15}$ NON normalizzato $6,789013245 \times 10^{13}$ NORMALIZZATO

Normalizzazione

- A parità di precisione, il numero di cifre dopo la virgola può cambiare giocando sull'esponente
 e.g.: 0,06789013245 × 10¹⁵ = 6,789013245 × 10¹³
- Numero in virgola mobile detto normalizzato se contiene una sola cifra nella parte intera

```
e.g.: 0,06789013245 \times 10^{15} NON normalizzato 6,789013245 \times 10^{13} NORMALIZZATO
```

- Forma normalizzata vantaggiosa se numero cifre (i.e., bit) disponibili per rappresentare r è limitato
 - permette di evitare zeri iniziali inutili

Standard IEEE 754-1985

- Tre diversi formati, differiscono nel numero totale dei bit utilizzati. Quelli più diffusi:
 - precisione singola: 32 bit
 - precisione doppia: 64 bit
 - precisione estesa: 128 bit
- Si usa sempre base b = 2 e p = 2

Standard IEEE 754-1985 a 32 bit

Il numero X ha la seguente rappresentazione

$$X = (-1)^S \times 1.M \times 2^E$$

Standard IEEE 754-1985 a 32 bit

Il numero X ha la seguente rappresentazione

$$X = (-1)^S \times 1.M \times 2^E$$

- Rappresentazione divisa in tre parti:
 - *S*: il segno (1 bit)
 - M: contiene le cifre decimali della mantissa in forma normalizzata (23 bit)
 - E: l'esponente (8 bit)

Standard IEEE 754-1985 a 32 bit

- II numero X ha la seguente rappresentazione $X = (-1)^S \times 1.M \times 2^E$
- Rappresentazione divisa in tre parti:
 - *S*: il segno (1 bit)
 - M: contiene le cifre decimali della mantissa in forma normalizzata (23 bit)
 - E: l'esponente (8 bit)
- S, M ed E si rappresentano in base p = 2, la base della notazione esponenziale b = 2.

Standard IEEE 754-1985, la mantissa (M)

- Rappresentata in binario in forma normalizzata,
- In base 2 la mantissa è un numero compreso tra 1.00000 ... 0 e 1.11111 ... 1
- Nella codifica IEEE 754-1985 in M non viene mai salvata la prima cifra che è sempre 1 $X = (-1)^S \times 1. M \times 2^E$
- **N.B.** la mantissa è sempre positiva, si usa il bit di segno S per rappresentare i numeri negativi. M **non** viene rappresentato in CP_2 quindi.

Standard IEEE 754-1985, l'esponente (E)

Si usa una notazione per eccesso

$$E = n + 127$$
.

Dove n è la caratteristica del numero, l'esponente di 2

- In questo modo non occorre dedicare un bit al segno di E:
 - n ∈ [-128, 127]
 - voglio E ∈ [0,255] ma con E = 0 e E = 255 casi speciali (vedremo dopo)
 - Di conseguenza per avere $E \in [1, 254]$ ho bisogno che l'eccesso sia 127
 - E di conseguenza gli n ammissibili saranno ∈ [-126,127]

Standard IEEE 754-1985, l'esponente (E)

Si usa una notazione per eccesso

$$E = n + 127$$
.

Dove n è la caratteristica del numero, l'esponente di 2

- Esempi:
 - esponente $E = 254 \Rightarrow$ caratteristica n = +127
 - esponente $E = 250 \Rightarrow$ caratteristica n = +123
 - esponente $E = 132 \Rightarrow$ caratteristica n = +5
 - esponente $E = 127 \Rightarrow$ caratteristica n = 0
 - esponente $E = 80 \Rightarrow$ caratteristica n = -47
 - esponente $E = 1 \Rightarrow$ caratteristica n = -126
- **N.B.** E > 127 indica caratteristiche positive, E < 127 indica caratteristiche negative

Standard IEEE 754-1985, l'esponente (E)

Si usa una notazione per eccesso

$$E = n + 127$$
.

Dove n è la caratteristica del numero, l'esponente di 2

- Esempi:
 - esponente $E = 254 \Rightarrow$ caratteristica n = +127
 - esponente $E = 250 \Rightarrow$ caratteristica n = +123
 - esponente $E = 132 \Rightarrow$ caratteristica n = +5
 - esponente $E = 127 \Rightarrow$ caratteristica n = 0
 - esponente $E = 80 \Rightarrow$ caratteristica n = -47
 - esponente $E = 1 \Rightarrow$ caratteristica n = -126

N.B. E va rappresentato sempre con 8 bit

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)
- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)
- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $-X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$
- 3. Porto il numero in forma normalizzata in base 2
 - $-X = 1.010101011 \times 2^{5}$

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)
- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $-X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$
- 3. Porto il numero in **forma normalizzata** in base 2
 - $-X = 1.010101011 \times 2^{5}$
- 4. Definisco *M* a 23 bit come la mantissa senza il primo bit (sempre 1)
 - M = 01010101 10000000 0000000 (23 bit)

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)
- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $-X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$
- 3. Porto il numero in **forma normalizzata** in base 2
 - $-X = 1.010101011 \times 2^{5}$
- 4. Definisco *M* a 23 bit come la mantissa senza il primo bit (sempre 1)
 - M = 01010101 10000000 0000000 (23 bit)
- 5. Calcolo E = n + 127 = 5 + 127 = 132 -> 10000100 (8 bit)

- 1. Definisco il bit di segno S = 0 se positivo, S = 1 se negativo
 - S = 0 (1 bit)
- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $-X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$
- 3. Porto il numero in **forma normalizzata** in base 2
 - $-X = 1.010101011 \times 2^{5}$
- 4. Definisco *M* a 23 bit come la mantissa senza il primo bit (sempre 1)
 - M = 01010101 10000000 0000000 (23 bit)
- 5. Calcolo E = n + 127 = 5 + 127 = 132 -> 10000100 (8 bit)
- 6. Compongo il numero
 - S = 0
 - E = 10000100
 - M = 01010101 10000000 0000000

- 2. Codifico in virgola fissa in base 2, parte frazionaria e parte intera
 - $-X = 42.6875 \rightarrow 101010.1011 \times 2^{0}$
- 3. Porto il numero in forma normalizzata in base 2
 - $-X = 1.010101011 \times 2^{5}$

Non ha senso fare il viceversa: normalizzare in base 10 e poi passare in base 2.

1. Il numero normalizzato in base 10 potrebbe non esserlo in base 2 (es. 9.5 -> 1001.01)

Esempio di Decodifica

Convertire in base dieci il seguente numero espresso nella codifica floating point:

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100
- S = 0 ...numero positivo

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100
- S = 0 ...numero positivo
- E=10000100 \rightarrow E = 132; n = 132 127 = 5

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100
- S = 0 ...numero positivo
- E=10000100 \rightarrow E = 132; n = 132 127 = 5
- 1.M (1.10010011 0000000 0000000) → 1.10010011

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100
- S = 0 ...numero positivo
- E=10000100 \rightarrow E = 132; n = 132 127 = 5
- 1.M (1.10010011 0000000 0000000) → 1.10010011
- Mantissa denormalizzata → 110010.011

- S = 0
- M = 10010011 0000000 0000000
- E = 10000100
- S = 0 ...numero positivo
- E=10000100 \rightarrow E = 132; n = 132 127 = 5
- 1.M (1.10010011 0000000 0000000) → 1.10010011
- Mantissa denormalizzata → 110010.011
- Parte intera: 110010 = 32+16+2 = 50
- Parte razionale: .011 = 0.25+0.125 = 0.375
- \rightarrow X = 50.375

Casi Particolari

Con la codifica IEEE 754-1985 è anche possibile scrivere:

- NaN: (Not a Number, valori non definiti): E = 255 e $M \neq 0$ (NB: molte possibili rappresentazioni)

- 0: segno qualsiasi, E = 0, M = 0(\Rightarrow due rappresentazioni, come se ci fossero +0 e -0)

Casi Particolari

Eccezione dei numeri con E = 0 e $M \neq 0$ (numeri che tendono ad essere vicini al limite della rappresentabilità)

In questi casi il numero è in forma denormalizzata

Standard IEEE 754-1985

- Tre diversi formati, differiscono nel numero totale dei bit utilizzati. Quelli più diffusi:
 - precisione singola: 32 bit
 - 1 bit segno, 8 bit esponente, 23 bit mantissa
 - precisione doppia: 64 bit
 - 1 bit segno, 11 bit esponente, 52 bit mantissa
 - precisione estesa: 128 bit
 - 1 bit segno, 15 bit esponente, 112 bit mantissa

- Si fornisca la codifica binaria CP₂ del numero -221 utilizzando il minor numero di bit necessari per una corretta rappresentazione
- 2. Si fornisca la codifica binaria in virgola mobile secondo lo standard IEEE 754-1985 a precisione singola del numero -221.0625
- 3. Si dica, giustificando la risposta, se la rappresentazione fornita al punto 2 è esatta oppure comporta qualche approssimazione

Punto 1, rappresentazione in CP_2 di -221

Su 8 bit codifico $[-2^7, 2^7 - 1] = [-128, 127]$...non sufficienti Su 9 bit codifico $[-2^8, 2^8 - 1] = [-256, 255]$...sufficienti!!!

Punto 1, rappresentazione in CP_2 di -221

Su 8 bit codifico $[-2^7, 2^7 - 1] = [-128, 127]$...non sufficienti Su 9 bit codifico $[-2^8, 2^8 - 1] = [-256, 255]$...sufficienti!!!

```
221 | 1

110 | 0 | 221 = 11011101

55 | 1

27 | 1

13 | 1

6 | 0

3 | 1

1 | 1

0 |
```


Punto 1, rappresentazione in CP_2 di -221

```
Su 8 bit codifico [-2^7, 2^7 - 1] = [-128, 127] ...non sufficienti
Su 9 bit codifico [-2^8, 2^8 - 1] = [-256, 255] ...sufficienti!!!
```

```
221 1
110 0 221 = 11011101
55 1 011011101 (estendo a 9 bit)
27 1 100100010 (complemento)
13 1 100100011 (sommo 1)
6 0
3 1
1 1
0
```


Parte intera: 221 in binario naturale 11011101

Parte intera: 221 in binario naturale 11011101

```
0,0625 \times 2
0,1250 \times 2
0,250 \times 2
0,50 \times 2
1,0
1
\Rightarrow 0,0001
```

Nessuna approssimazione

Parte intera: 221 in binario naturale 11011101

```
0,0625 \times 2
0,1250 \times 2
0,250 \times 2
0,50 \times 2
1,0
1
\Rightarrow 0,0001
```

Nessuna approssimazione

- \cdot 221 = 11011101
- \bullet 0,0625 = 0,0001
- 221,0625 = 11011101,0001

Parte intera: 221 in binario naturale 11011101

```
0,0625 x 2

0,1250 x 2 0

0,250 x 2 0

0,50 x 2 0

1,0 1

=> 0,0001
```

Nessuna approssimazione

```
221 = 11011101
0,0625 = 0,0001
221,0625 = 11011101,0001 =
```

 $= 1,10111010001 \times 2^7$ (normalizzo)

Parte intera: 221 in binario naturale 11011101

```
0,0625 x 2
0,1250 x 2 0
0,250 x 2 0
0,50 x 2 0
1,0 1 => 0,0001
```

Nessuna approssimazione

```
• 221 = 11011101
```

•
$$0,0625 = 0,0001$$

$$221,0625 = 11011101,0001 =$$

$$= 1,10111010001 \times 2^7 \text{ (normalizzo)}$$

$$S = 1 (1 bit)$$

$$E = 7 + 127 = 134 = 10000110$$
 (8 bit)

$$M = (1,)10111010001(+ 12 zeri) (23 bit)$$

Quindi 110000110101111010001(+ 12 zeri)(32 bit)