CCCY 321 Information Security Management Course Project

CY7

- Razan Alghanmi 2111007
- Shahad Kulaibi 2114565
 - Elaf Salem 2110527

1) Preliminary Activities

a) What are the company's key assests?

Physical Assests	Potential Cyber Security Threats to Assess
Company Iphones for all staff members	Open Network.
	Infiltration of malicious or pirated
	programmes.
Digital Security Culture	Phishing attacks
	Lack of awareness
Hardware	Complicated network of suppliers
	Investment level at record low
	Cheaper, faster and more complicated
	Outdated technology
Laptop	Randomware attacks
	• Theft

Information Assests	Potential Cyber Security Threats to Assess
1) Users must give their bank details	There are cases where cybercriminals have learnt
when signing up to pay in-app games	to mimic legitimate banking websites by using
	their URLs. When a person logs in, the hackers
	steal their data to use later.
2) User business	Cyberattacks targeting private companies are no
	different from those targeting public companies.
	Due to their opportunistic nature, cybercriminals
	are constantly on the lookout for new ways to
	attack. However, private companies have their
	own qualities that lead to unique cyber security
	risks.

3) Users with whom you are speaking	Without the knowledge or consent, the attackers
lack identity evidence	may be able to locate your friends and demand a
	ransom.
4) Healthcare Data	Because they contain personal information that
	could be exploited for identity theft, medical
	records are a common target for fraudsters. This
	data is often used to forge prescriptions and other
	forms of health insurance fraud.

b) How have other companies been affected by cyber security attacks? What can Chatter learn from these experiences?

Componay name	Description of their cybersecurity attack	How might this be a risk for
		Chatter?
Facebook	According to the company, the data of over 50	Chatter could be vulnerable as
	million Facebook users may have been	hackers are likely to exploit
	compromised, regardless of whether news or	the same underlying
	financial data was accessed. The hackers were	vulnerabilities to steal data.
	able to crack Facebook via three different	
	security vulnerabilities.	In addition, many people use
		their passwords from one
	Facebook fixed the problem by resetting the	service to another. If the
	access token for each account. Users did not	hackers manage to crack a
have to reset their passwords as the tokens do		password database, they could
	not store them.	potentially access user
		accounts on Chatter.
Saudi Aramco	One of the biggest oil producers in the world,	The cyberattack that targeted
	Saudi Aramco, was the target of a cyberattack	Saudi Aramco teaches Chatter
	that was a serious occurrence that affected	a valuable lesson by drawing
	many aspects of their business. The virus used	attention to possible threats.
	in the attack was called "Shamoon," and its	One such risk is that hackers
	only function was to find and destroy data.	might target Chatter in an

The hackers successfully erased the data on some 30,000 machines during the attack, which caused a large loss of information and interfered with the business's operations. The attack is noteworthy even though it had little effect on Aramco's cash flow since it showed how cyberattacks might have a direct influence on the real world.

attempt to alter or destroy the data it has processed, which might cause it to lose important user data and interfere with its regular business operations. It is imperative that Chatter implement strong data redundancy, backup procedures, and security measures to prevent unwanted access in order to reduce this risk.

Adobe

Hackers stole user account information, credit card records, login credentials, and other private information during the cybersecurity attack on Adobe. Nearly three million encrypted payment card records and login credentials were reportedly hacked at first. Later on, though, the number was raised to include 38 million active users' encrypted passwords and IDs. More research also showed that a previously uploaded file included over 150 million hashed password pairs and usernames that were stolen from Adobe. Names, passwords, and debit/credit card information of customers were compromised.

A prime example of the possible dangers and ramifications for Chatter's cybersecurity is the hack on Adobe that led to the loss of consumer information. Similar to Adobe, Chatter might keep sensitive data as well as user details. Cybercriminals could misuse personal information and violate user privacy by taking advantage of this data if there is a security breach. It is crucial that Chatter create strong encryption, access limits, comply with applicibal policies and frequent security

	updates to minimize these
	dangers and safeguard user
	data.

1) Refer to the tables above to identify Chatter's cyber risks (Assests/potential vulnerability/threate)

Asset	Potential vulnerability	Threat
Iphones	Unpatched software/apps	An attack vector that could be taken advantage of by attackers
Company laptops and desktops	Theft	• Inadequate security measures for laptops can lead to unauthorised access, as can the practise of storing usernames and passwords on sticky notes or in the laptop itself for less skilled workers.
Staff	Uneducated and untrained employees	The theft of a company laptop and other inappropriate behaviour in the face of an attack are examples of misused company assets.
Network Devices(firewalls, switches, routers)	 Firewallsmisplacement Missetting firewalls rules Notmonitoring network traffic 	 Money lost because firewalls are inefficient due to poor placement. Bypass firewall rules, ineffective rules can allow malicious traffic into the corporate network.

When registering	Unsecure/unauthorizedpayment	•	Users' credit card details have
for paid in-app	processescompany's services.		been leaked, which could lead
games, users must			to a number of problems.
provide their			
financial details.			
User Credentials	Simple passwords and predictable	•	Bruteforce attacks
(usernames and/or	usernames		
passwords)			
Personal pictures	Use a simple password	•	Blackmailing the users by the
and videos	Share photos and videos with		untrusted people
	-	•	Hacking their accounts
	suspicious chatter friends		

3. Risk analysis: assign a score to each identified risk using a qualitative or a semiqualitative method as detailed in chapter 4.

Likeliho	od Scale	
Rating	Description	Definition
5	Very High	Probability of the event occurring once within a
		three-year period is >50%
4	High	Probability of the event occurring once within a
		three-year period is 30 to 50%
3	Moderate	Probability of the event occurring once within a
		three-year period is 15 to 30%
2	Low	Probability of the event occurring once within a
		three-year period is 5 to 15%
1	Very Low	Probability of the event occurring once within a
		three-year period is $<5\%$

Figure 1. Risk likelihood scale

Magnitude of	Impact definition	Score
impact	•	
High impact/	Very high	
High probability	They are the biggest risks that entrepreneurs should pay attention.	5
High impact /	High	
Medium probability	These risks have either a high probability of	4
Medium impact /	occurrence, or a significant impact	
High probability		
Medium impact /	Medium	
Medium probability	There is a medium chance that the risks appear noticeable impact.	3
Medium impact /	Low	
Low probability	These risks can occur in some situations and have a	2
Low impact /	low to medium impact.	
Medium probability		
Low impact /	Insignificant	
Low probability	There are risks with low probability of occurrence	1
	and low impact. Can therefore be neglected.	

Figure 2. Risk Impact scale

		Consequence				
		Negligible 1	Minor 2	Moderate 3	Major 4	Catastrophic 5
	5 Almost certain	Moderate 5	High 10			
	4 Likely	Moderate 4	High 8	High 12		
Likelihood	3 Possible	Low 3	Moderate 6	High 9	High 12	
	2 Unlikely	Low 2	Moderate 4	Moderate 6	High 8	High 10
	1 Rare	Low 1	Low 2	Low 3	Moderate 4	Moderate 5

Figure 3. Risk Rating Matrix

By considering the above figures in the risk analysis process, we have concluded the following:

Risk Rating Matrix:

Asset	Vulnerability	Likelihood	Impact	Risk-Rating Factor
Iphones	Unpatched software/apps	3 (Moderate)	4 (High)	12 (High)
Company laptops and desktops	Theft	2 (Low)	3 (Moderate)	6 (Moderate)
Staff	Uneducated and untrained employees	4 (High)	2 (Low)	8 (High)
Network Devices (firewalls,	Firewalls misplacement	2 (Low)	3 (Moderate)	6 (Moderate)

switches,				
routers)				
Network	Missetting firewalls	3 (Moderate)	4 (High)	12 (High)
Devices	rules			
(firewalls,				
switches,				
routers)				
Network	Not monitoring	3 (Moderate)	4 (High)	12 (High)
Devices	network traffic			
(firewalls,				
switches,				
routers)				
When	Unsecure/unauthorized	2 (Low)	4 (High)	8 (High)
registering for	payment processes			
paid in-app	company's services.			
games, users				
must provide				
their financial				
details.				
User	Simple passwords and	4 (High)	3 (Moderate)	12 (High)
Credentials	predictable usernames			
(usernames				
and/or				
passwords)				
User	Use a simple password	4 (High)	2 (Low)	8 (High)
Credentials				
(usernames				
and/or				
passwords)				
Personal	Share photos and	3 (Moderate)	3 (Moderate)	9 (High)
pictures and	videos with suspicious			
videos	chatter friends			

Based on the risk analysis conducted above, it appears that missetting firewall rules, not monitoring network traffic, unpatched software/apps, and simple passwords and predictable usernames must be addressed first by the risk treatment team and dedicate their efforts on because they have the highest risk rating (12).

4. Risk Treatment: How would you treat each identified risk? Indicate the treatment strategy (Mitigation, avoidance, transfer, etc., ...) and justify your response. (CLO 3.3, 4 Marks)

We have created extensive methods and practices in order to further manage the dangers that have been identified. To learn more about each strategy's ability to reduce potential dangers, let's take a closer look at it.

Using the risk mitigation strategy, we will put in place a reliable mechanism for frequent updates and patch installations in order to reduce the danger of iPhones running unpatched software or

apps. This involves keeping a careful eye out for software flaws and swiftly applying the required updates to guarantee that the devices are shielded from known security threats. We want to protect the integrity and security of our iPhone fleet by taking a proactive stance.

Using the risk transference strategy, purchasing full insurance coverage to transfer the risk of laptop and desktop theft is a wise move. The insurance policy will offer financial protection in the unfortunate case of theft or loss, reducing potential losses. With this method, we can concentrate on replacing devices quickly and smoothly, causing the least amount of disruption to worker productivity.

Using the risk mitigation strategy, maintaining a secure environment requires addressing the risk of staff members who lack education and training. We'll put in place thorough training courses covering a range of security best practices topics. Employees will receive training on the value of data security, safe surfing practices, and the identification of possible dangers through interactive sessions, workshops, and seminars. We hope to reduce the possibility of dangerous actions by our employees by cultivating a culture of security awareness.

Using the risk avoidance strategy, we will follow industry rules and suggested practices during installation and configuration to reduce the possibility of firewall misplacement. In this way, our network infrastructure is effectively protected from unwanted access and any security breaches by making sure that network equipment, like firewalls, are positioned strategically and configured accordingly.

Using the risk mitigation strategy, we are going to implement strict change control procedures to prevent misconfigured firewall rules. The approval and review process for any changes made to firewall rules is rigorous to guarantee that only approved and required changes are put into effect. To help detect and quickly fix any misconfigurations, this strategy will be reinforced by routine audits that add another level of control.

Using the risk mitigation strategy, to spot possible security risks and irregularities, proactive network traffic monitoring is crucial. Thus, we will put in place reliable network monitoring instruments and create thorough monitoring procedures. By doing this, we will be able to quickly identify and address any unusual activity, reducing the possibility that security breaches would go undetected.

Using the risk termination strategy, we are dedicated to completely stopping any payment procedures that are not secure. Rather, the implementation of safe and approved payment gateways that follow industry guidelines and use robust encryption techniques will take precedence. We can prevent potential security breaches for our clients and our business by making sure that all payment operations are secure, and that sensitive financial information is kept securely.

Using the risk mitigation strategy, we shall impose strong password policies in order to reduce the risk associated with weak passwords. For sensitive accounts, this entails establishing minimum complexity criteria, changing passwords on a regular basis, and using multi-factor authentication. We'll also teach staff members and inform users on the importance of password

security, encouraging them to create strong, one-of-a-kind passwords that work on all platforms and gadgets.

Using the risk acceptance strategy, although decisions about publishing personal content are left to the individual, we recognize and accept the risks involved. However, we advise users to share images and videos with caution and awareness, especially if they are with unknown or suspicious people. This reminds people to be aware of potential threats and to safeguard their personal privacy and security when using the internet.

To determine whether these techniques are effective and to spot any potential new concerns, regular risk assessments will be carried out. Our systems and policies will stay strong and current thanks to ongoing monitoring, which will also help us remain alert in a threat landscape that is always changing.

We may create a thorough and proactive security framework that successfully reduces risks and protects the confidentiality and integrity of the data and operations of our firm by implementing these tactics.

5. Draft two policies that may help Chatter in its defense strategy against the identified risks.

Employee Training and Awareness Policy:

The level of awareness among employees is low. Therefore, the company needs to implement a policy to ensure raising security awareness and continuous training for employees, which includes training them in social engineering methods, how easy it is to crack simple passwords using programs available to the public.

Acceptable Use Policy:

Since employees work inside and outside the company via their devices. It is important that they know the acceptable use policy for company devices. Such as the programs available to download and update periodically, the hours of Internet connection, and restrictions on using their personal accounts on these devices.

Data Protection Policy:

Since the company's main product is an application that users use. Their data will naturally be stored, transmitted and processed. Therefore, the company must implement a policy that explains safe ways to do this. Among them are instructions for encrypting data, methods for safe transmission, and how to dispose of it safely.

Remote Work Policy:

Due to the incident that occurred in the company due to the failure to implement a policy for employees who work remotely. The company must establish one to limit or reduce and control these incidents as much as possible and the impacts and threats they incur in the future.

6. Which PwC team (refer to the case study) do you think Chatter needs to help them improve their cyber security strategy and why?

We believe that the company needs a crisis team due to the presence of various threats surrounding the company and the lack of a plan to manage them. This team will help the company prepare well and confront crises before they occur. There are several main points that cover the company's security needs.

1. Rapid Response:

Usually, companies need to respond quickly to incidents and make immediate decisions. Because any additional time will be given to the one causing the threat, causing additional destruction to the company.

2. Specialized Expertise:

A person without experience cannot make quick decisions. Therefore, relying on a team with administrative, legal and security experience will give the company more time and effort to focus on developing the product away from focusing time on the company's secondary goals.

3. Risk Mitigation:

The company needs to develop good plans as much as it needs employees with administrative and security competencies. The crisis team proactively identifies, evaluates and mitigates risks before, during and after they occur.

4. Reputation Management:

The importance of the crisis team is expanding in managing psychological crises that may sow in the hearts of users and stakeholders and cause panic about using the company's applications or contracting with the company due to their unsafety. Therefore, reputation management protects the company and its assets, such as the brand, indirectly.

5. Preparedness and Planning:

Crisis teams dedicate time and effort to prepare for potential crises. They develop crisis response plans, conduct training and simulations, and stay updated on emerging risks and best practices. This preparedness enables them to respond effectively when a crisis occurs and minimize the negative consequences for the company and its assets.

References:

- Figure 1: Chaparro, M.R. (2014). A new dimension to Risk Assessment.
- Figure 2: Iacob, V. (2014). Risk Management And Evaluation And Qualitative Method Within The Projects. *Ecoforum*, *3*, 10.
- Figure 3: Kaya, Gulsum. (2018). Good risk assessment practice in hospitals.
- Fox, J. (2023) 8 biggest cyberattacks in history, Cobalt. Available at: https://www.cobalt.io/blog/biggest-cybersecurity-attacks-in-history (Accessed: 16 November 2023).
- The 15 biggest data breaches of the 21st Century (2022) CSO Online. Available at: https://www.csoonline.com/article/534628/the-biggest-data-breaches-of-the-21st-century.html (Accessed: 16 November 2023).