Problem Statement

Linear Regression ¶

Import Libraries

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
a=pd.read_csv("world.csv")
a
```

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/M
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Ki
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tir
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Alg
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	Andorı ∖
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	Lua
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	58.0	Cara
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0	H; ▼
4									•

To display top 10 rows

```
In [3]:
```

c=a.head(15)
c

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Callii Coi
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213
3	Andorra	164	AD	40.00%	468	NaN	7.20	376
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43
10	Azerbaijan	123	AZ	57.70%	86,600	82,000	14.00	994
11	The Bahamas	39	BS	1.40%	13,880	1,000	13.97	1
12	Bahrain	2,239	ВН	11.10%	765	19,000	13.99	973
13	Bangladesh	1,265	BD	70.60%	148,460	221,000	18.18	880
14	Barbados	668	ВВ	23.30%	430	1,000	10.65	1
15 r	ows × 35 co	lumns						•

To find Missing values

In [4]:

```
c.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15 entries, 0 to 14
Data columns (total 35 columns):
    Column
                                                 Non-Null Count Dtype
     ----
                                                 15 non-null
0
    Country
                                                                 object
1
    Density
(P/Km2)
                                   15 non-null
                                                    object
2
    Abbreviation
                                                 15 non-null
                                                                 object
3
    Agricultural Land( %)
                                                 15 non-null
                                                                 object
4
    Land Area(Km2)
                                                 15 non-null
                                                                 object
5
    Armed Forces size
                                                 14 non-null
                                                                 object
6
                                                                 float64
    Birth Rate
                                                 15 non-null
7
    Calling Code
                                                 15 non-null
                                                                 float64
8
    Capital/Major City
                                                 15 non-null
                                                                 object
9
    Co2-Emissions
                                                 15 non-null
                                                                 object
10 CPI
                                                 14 non-null
                                                                 object
11 CPI Change (%)
                                                 14 non-null
                                                                 object
12 Currency-Code
                                                 14 non-null
                                                                 object
13
    Fertility Rate
                                                 15 non-null
                                                                 float64
14 Forested Area (%)
                                                 15 non-null
                                                                 object
15
    Gasoline Price
                                                 15 non-null
                                                                 object
    GDP
 16
                                                 15 non-null
                                                                 object
    Gross primary education enrollment (%)
17
                                                 15 non-null
                                                                 object
    Gross tertiary education enrollment (%)
                                                 14 non-null
                                                                 object
19
    Infant mortality
                                                 15 non-null
                                                                 float64
    Largest city
                                                 15 non-null
                                                                 object
   Life expectancy
                                                                 float64
                                                 14 non-null
22 Maternal mortality ratio
                                                                 float64
                                                 14 non-null
 23 Minimum wage
                                                 13 non-null
                                                                 object
 24 Official language
                                                 15 non-null
                                                                 object
25 Out of pocket health expenditure
                                                15 non-null
                                                                 object
26 Physicians per thousand
                                                15 non-null
                                                                 float64
27
    Population
                                                 15 non-null
                                                                 object
    Population: Labor force participation (%)
                                                13 non-null
                                                                 object
    Tax revenue (%)
                                                 14 non-null
                                                                 object
30 Total tax rate
                                                 14 non-null
                                                                 object
    Unemployment rate
                                                 13 non-null
                                                                 object
    Urban population
                                                 15 non-null
                                                                 object
                                                                 float64
33
    Latitude
                                                 15 non-null
 34 Longitude
                                                 15 non-null
                                                                 float64
dtypes: float64(9), object(26)
```

(20)

memory usage: 4.2+ KB

To display summary of statistics

In [5]:

```
a.describe()
```

Out[5]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand
count	189.000000	194.000000	188.000000	189.000000	187.000000	181.000000	188.000000
mean	20.214974	360.546392	2.698138	21.332804	72.279679	160.392265	1.839840
std	9.945774	323.236419	1.282267	19.548058	7.483661	233.502024	1.684261
min	5.900000	1.000000	0.980000	1.400000	52.800000	2.000000	0.010000
25%	11.300000	82.500000	1.705000	6.000000	67.000000	13.000000	0.332500
50%	17.950000	255.500000	2.245000	14.000000	73.200000	53.000000	1.460000
75%	28.750000	506.750000	3.597500	32.700000	77.500000	186.000000	2.935000
max	46.080000	1876.000000	6.910000	84.500000	85.400000	1150.000000	8.420000
4							>

To display column heading

In [6]:

```
a.columns
```

Out[6]:

```
Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
%)',
       'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Cod
е',
       'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
       'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
       'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
       'Gross tertiary education enrollment (%)', 'Infant mortality',
       'Largest city', 'Life expectancy', 'Maternal mortality ratio',
       'Minimum wage', 'Official language', 'Out of pocket health expendit
ure',
       'Physicians per thousand', 'Population',
       'Population: Labor force participation (%)', 'Tax revenue (%)',
       'Total tax rate', 'Unemployment rate', 'Urban population', 'Latitud
e',
       'Longitude'],
      dtype='object')
```

Pairplot

In [7]:

```
s=a.dropna(axis=1)
s
```

Out[7]:

	Country	Density\n(P/Km2)
0	Afghanistan	60
1	Albania	105
2	Algeria	18
3	Andorra	164
4	Angola	26
190	Venezuela	32
191	Vietnam	314
192	Yemen	56
193	Zambia	25
194	Zimbabwe	38

195 rows × 2 columns

In [8]:

s.columns

Out[8]:

Index(['Country', 'Density\n(P/Km2)'], dtype='object')

In [9]:

sns.pairplot(a)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x272f0cd5370>

Distribution Plot

In [10]:

sns.displot(c['Birth Rate'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x272f3544fd0>

Correlation

In [11]:

Out[11]:

<AxesSubplot:>

Train the model - Model Building

```
In [12]:
```

```
g=c[['Birth Rate']]
h=c['Birth Rate']
```

To split dataset into training end test

```
In [13]:
```

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

```
In [14]:
```

```
from sklearn.linear_model import LinearRegression
```

In [15]:

```
lr=LinearRegression()
lr.fit(g_train,h_train)
```

Out[15]:

LinearRegression()

In [16]:

```
print(lr.intercept_)
```

-1.0658141036401503e-14

Coeffecient

```
In [17]:
```

```
coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[17]:

Co-effecient

Birth Rate

1.0

Best Fit line

In [18]:

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[18]:

<matplotlib.collections.PathCollection at 0x272f5bf67c0>

To find score

```
In [19]:
```

```
print(lr.score(g_test,h_test))
```

1.0

Import Lasso and ridge

```
In [20]:
```

```
from sklearn.linear_model import Ridge,Lasso
```

Ridge

```
In [21]:
```

```
ri=Ridge(alpha=5)
ri.fit(g_train,h_train)
```

Out[21]:

Ridge(alpha=5)

```
In [22]:
ri.score(g_test,h_test)
Out[22]:
0.9998128127752102
In [23]:
ri.score(g_train,h_train)
Out[23]:
0.999818933367054
Lasso
In [24]:
l=Lasso(alpha=6)
1.fit(g_train,h_train)
Out[24]:
Lasso(alpha=6)
In [25]:
1.score(g_test,h_test)
Out[25]:
0.9900296967569474
In [27]:
ri.score(g_train,h_train)
Out[27]:
0.999818933367054
```

ElasticNet

ElasticNet()

```
In [28]:
from sklearn.linear_model import ElasticNet
e=ElasticNet()
e.fit(g_train,h_train)
Out[28]:
```

Coeffecient, intercept

```
In [29]:
print(e.coef_)

[0.9837653]

In [30]:
print(e.intercept_)

0.29338813327121827
```

Prediction

Evaluation

```
In [33]:
from sklearn import metrics
print("Mean Absolute error:",metrics.mean_absolute_error(h_test,d))

Mean Absolute error: 0.10949104312669228

In [34]:
print("Mean Squared error:",metrics.mean_squared_error(h_test,d))

Mean Squared error: 0.02288607251677668

In [35]:
print("Mean Squared error:",np.sqrt(metrics.mean_squared_error(h_test,d)))

Mean Squared error: 0.15128143480538742

In []:
```