

SEQUENCE LISTING

<110> Benjamin, Thomas L.
Li, Dawei
Mok, Samuel C.
Cramer, Daniel W.
Ma, Yupo

<120> Diagnosing and Treating Cancer Cells
Using Sal2

<130> 00742/066002

<150> US 09/812,633
<151> 2001-03-19

<150> US 60/216,723
<151> 2000-07-07

<160> 21

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1005
<212> PRT
<213> Homo Sapiens

<400> 1
Met Ala His Glu Ser Glu Arg Ser Ser Arg Leu Gly Val Pro Ala Gly
1 5 10 15
Glu Pro Ala Glu Leu Gly Gly Asp Ala Ser Glu Glu Asp His Pro Gln
20 25 30
Val Cys Ala Lys Cys Cys Ala Gln Phe Thr Asp Pro Thr Glu Phe Leu
35 40 45
Ala His Gln Asn Ala Cys Ser Thr Asp Pro Pro Val Met Val Ile Ile
50 55 60
Gly Gly Gln Glu Asn Pro Asn Asn Ser Ser Ala Ser Ser Glu Pro Arg
65 70 75 80
Pro Glu Gly His Asn Asn Pro Gln Val Met Asp Thr Glu His Ser Asn
85 90 95
Pro Pro Asp Ser Gly Ser Ser Val Pro Thr Asp Pro Thr Trp Gly Pro
100 105 110
Glu Arg Arg Gly Glu Glu Ser Ser Gly His Phe Leu Val Ala Ala Thr
115 120 125
Gly Thr Ala Ala Gly Gly Gly Leu Ile Leu Ala Ser Pro Lys
130 135 140
Leu Gly Ala Thr Pro Leu Pro Pro Glu Ser Thr Pro Ala Pro Pro Pro
145 150 155 160
Pro Pro Pro Pro Pro Pro Pro Gly Val Gly Ser Gly His Leu Asn
165 170 175
Ile Pro Leu Ile Leu Glu Leu Arg Val Leu Gln Gln Arg Gln Ile
180 185 190
His Gln Met Gln Met Thr Glu Gln Ile Cys Arg Gln Val Leu Leu Leu
195 200 205
Gly Ser Leu Gly Gln Thr Val Gly Ala Pro Ala Ser Pro Ser Glu Leu
210 215 220
Pro Gly Thr Gly Thr Ala Ser Ser Thr Lys Pro Leu Leu Pro Leu Phe

225	230	235	240
Ser Pro Ile Lys Pro Val Gln Thr Ser Lys Thr Leu Ala Ser Ser Ser			
245	250	255	
Ser Ser Ser Ser Ser Ser Gly Ala Glu Thr Pro Lys Gln Ala Phe			
260	265	270	
Phe His Leu Tyr His Pro Leu Gly Ser Gln His Pro Phe Ser Ala Gly			
275	280	285	
Gly Val Gly Arg Ser His Lys Pro Thr Pro Ala Pro Ser Pro Ala Leu			
290	295	300	
Pro Gly Ser Thr Asp Gln Leu Ile Ala Ser Pro His Leu Ala Phe Pro			
305	310	315	320
Ser Thr Thr Gly Leu Leu Ala Ala Gln Cys Leu Gly Ala Ala Arg Gly			
325	330	335	
Leu Glu Ala Thr Ala Ser Pro Gly Leu Leu Lys Pro Lys Asn Gly Ser			
340	345	350	
Gly Glu Leu Ser Tyr Gly Glu Val Met Gly Pro Leu Glu Lys Pro Gly			
355	360	365	
Gly Arg His Lys Cys Arg Phe Cys Ala Lys Val Phe Gly Ser Asp Ser			
370	375	380	
Ala Leu Gln Ile His Leu Arg Ser His Thr Gly Glu Arg Pro Tyr Lys			
385	390	395	400
Cys Asn Val Cys Gly Asn Arg Phe Thr Thr Arg Gly Asn Leu Lys Val			
405	410	415	
His Phe His Arg His Arg Glu Lys Tyr Pro His Val Gln Met Asn Pro			
420	425	430	
His Pro Val Pro Glu His Leu Asp Tyr Val Ile Thr Ser Ser Gly Leu			
435	440	445	
Pro Tyr Gly Met Ser Val Pro Pro Glu Lys Ala Glu Glu Glu Ala Ala			
450	455	460	
Thr Pro Gly Gly Val Glu Arg Lys Pro Leu Val Ala Ser Thr Thr			
465	470	475	480
Ala Leu Ser Ala Thr Glu Ser Leu Thr Leu Leu Ser Thr Ser Ala Gly			
485	490	495	
Thr Ala Thr Ala Pro Gly Leu Pro Ala Phe Asn Lys Phe Val Leu Met			
500	505	510	
Lys Ala Val Glu Pro Lys Asn Lys Ala Asp Glu Asn Thr Pro Pro Gly			
515	520	525	
Ser Glu Gly Ser Ala Ile Ser Gly Val Ala Glu Ser Ser Thr Ala Thr			
530	535	540	
Leu Met Gln Leu Ser Lys Leu Met Thr Ser Leu Pro Ser Trp Ala Leu			
545	550	555	560
Leu Thr Asn His Phe Lys Ser Thr Gly Ser Phe Pro Leu Pro Leu Cys			
565	570	575	
Ala Arg Ala Leu Gly Ala Ser Pro Ser Glu Thr Ser Lys Leu Gln Gln			
580	585	590	
Leu Val Glu Lys Ile Asp Arg Gln Gly Ala Val Ala Val Thr Ser Ala			
595	600	605	
Ala Ser Gly Ala Pro Thr Thr Ser Ala Pro Ala Pro Ser Ser Ser Ala			
610	615	620	
Ser Ser Gly Pro Asn Gln Cys Val Ile Cys Leu Arg Val Leu Ser Cys			
625	630	635	640
Pro Arg Ala Leu Arg Leu His Tyr Gly Gln His Gly Gly Glu Arg Pro			
645	650	655	
Phe Lys Cys Lys Val Cys Gly Arg Ala Phe Ser Thr Arg Gly Asn Leu			
660	665	670	
Arg Ala His Phe Val Gly His Lys Ala Ser Pro Ala Ala Arg Ala Gln			
675	680	685	
Asn Ser Cys Pro Ile Cys Gln Lys Lys Phe Thr Asn Ala Val Thr Leu			
690	695	700	

EQUUS EQUUS

Gln Gln His Val Arg Met His Leu Gly Gly Gln Ile Pro Asn Gly Gly
705 710 715 720
Thr Ala Leu Pro Glu Gly Gly Gly Ala Ala Gln Glu Asn Gly Ser Glu
725 730 735
Gln Ser Thr Val Ser Gly Ala Gly Ser Phe Pro Gln Gln Ser Gln
740 745 750
Gln Pro Ser Pro Glu Glu Glu Leu Ser Glu Glu Glu Glu Glu Asp
755 760 765
Glu Glu Glu Glu Asp Val Thr Asp Glu Asp Ser Leu Ala Gly Arg
770 775 780
Gly Ser Glu Ser Gly Gly Lys Ala Ile Ser Val Arg Gly Asp Ser
785 790 795 800
Glu Glu Ala Ser Gly Ala Glu Glu Val Gly Thr Val Ala Ala Ala
805 810 815
Ala Thr Ala Gly Lys Glu Met Asp Ser Asn Glu Lys Thr Thr Gln Gln
820 825 830
Ser Ser Leu Pro Pro Pro Pro Pro Asp Ser Leu Asp Gln Pro Gln
835 840 845
Pro Met Glu Gln Gly Ser Ser Gly Val Leu Gly Gly Lys Glu Glu Gly
850 855 860
Gly Lys Pro Glu Arg Ser Ser Ser Pro Ala Ser Ala Leu Thr Pro Glu
865 870 875 880
Gly Glu Ala Thr Ser Val Thr Leu Val Glu Glu Leu Ser Leu Gln Glu
885 890 895
Ala Met Arg Lys Glu Pro Gly Glu Ser Ser Ser Arg Lys Ala Cys Glu
900 905 910
Val Cys Gly Gln Ala Phe Pro Ser Gln Ala Ala Leu Glu Glu His Gln
915 920 925
Lys Thr His Pro Lys Glu Gly Pro Leu Phe Thr Cys Val Phe Cys Arg
930 935 940
Gln Gly Phe Leu Glu Arg Ala Thr Leu Lys Lys His Met Leu Leu Ala
945 950 955 960
His His Gln Val Gln Pro Phe Ala Pro His Gly Pro Gln Asn Ile Ala
965 970 975
Ala Leu Ser Leu Val Pro Gly Cys Ser Pro Ser Ile Thr Ser Thr Gly
980 985 990
Leu Ser Pro Phe Pro Arg Lys Asp Asp Pro Thr Ile Pro
995 1000 1005

<210> 2
<211> 16080
<212> DNA
<213> Homo sapiens

<400> 2
atatacacacc ccagctggct atgtaatcat gaaataagga gaaaacacata aatatttggt 60
taaaaacacct ttaatgatag agggaaagac actaatatct cccgtctgtt cttgacattt 120
tacttaggtta ggaagctctg gagcctacag cttgaggaga agccatcggtt caagtcagtc 180
aatagcaaaa ccctcactct ctccctcctca gaactcctgt tccaaatgtat cctatgttaa 240
gagtaaatac tacaactcat tacaagacgg agaggcaggg aggacgccac ctggagctgg 300
gactcttaag aaccagacaa tgacaaaagac acaaggccccca gcctacggat aggcaaaaatg 360
ggtaggggtc ttgaaagagg aagataaggaa aaatacaagg ggccaggggaa taaaggaggg 420
agttagtctaa aactagaagc atactagtgc taggaaatcc cccatgatcc ctggtagcacc 480
tctgcacact atgtcactat tagccccaaaaa gaatattaac gagaatgtcc acattcacaa 540
gaatttgagg cctttccct tacatcatgt cccttctta gtcacatagg taccagcaag 600
ccctatgttc tagcaacatt ccctaactct ctcatcatta gttcatcaac catgtgacc 660
aaaaatgctc cttaaagata cgaacttcac atttcccaa tatctcctgg gagaccttt 720
ggcaagaaat cagcttgttt cccaactttg agaggtcatac atgaatgaga agctggagag 780

gtcttggcac actgaccagc caaaaccttt accttaatgt gaccatcagg ggatttactg 840
 ggaaaatttt cctatgcct tccttcattt ctccctactt cctagggttg ggtcaccaat 900
 tactggagca tcttcagtac cggcacccctc tggagcaggg ggaggaagaa ggaatgtaca 960
 gttgctact tcttgcttat gatgggctt tcaggcactg ccttgggtgc aggaggctga 1020
 aataggaggg gggctgtctt ctccttggct tccctgatc ccattgttg aggcacccctc 1080
 ccagccacag ttccctaggcc aaacagcact ggtggggcca ggcttggagt gtagtggag 1140
 gtggagctgg aattccaggg cttcatgggc aggccattt acaggaatgc cacatactgg 1200
 ttctagaaag ataggggacc cataccacc agctgagcag aaaggtcacc ccagaggagt 1260
 ggcactgggc cctccagaga cagctgccag cccttttg 3' ctaggtcgca atgccaatg 1320
 taggtgtca ggtgcaccta ccaaaggaa agggagagga gagaggaggg ggaagaaggg 1380
 tcacaccagg gaagctggag agggttcccc ttgagaaagc tgca gagaat ctatgttcc 1440
 cagtgacaaa gaatgaggag ggaagaaaaa ttcccttaggg gcccattcccc ttgtaagcac 1500
 agtaattcc aagctcaggg actacagaaa agccactagg gacataacat gttaagaact 1560
 tagagaaaaa gacaaaatca gggctcataa ctctggagg tccttttgta aagctgttc 1620
 tgctctgtgg gacaaagagc agcaggtaca gaaaaacagg ctcatggat cgtgggtca 1680
 tctttcggg gaaaggggg a gacccctgtg gaggtgatgg aaggcgaaca gccaggact 1740
 agagaaagag cagcaatatt ctgagggca tgggggca aaggctgtac ctgggtgt 1800
 gccaggagca tatgttctt gagggtagcc cgctcaagaa agccctgcct gcagaaaaca 1860
 caagtgaaga gcccgcctc cttgggggtgg gtcttcgtat gtcctccatc agctgcctgg 1920
 gaggggaaagg cctggccaca cacttcgcag gccttctgc tgcgtctc tcctgctcc 1980
 tttcttatttgc cctctgcag gtcagctcc tctaccaagg tcacgctgtt ggctccct 2040
 tctgggtgtga gtgctgatgc cggacttgc cttctccgc gtttgccttgc ctcttcctt 2100
 cctcctaaaaa caccactgct tcctgcctc attggctgag gctgatccag gctgtcagg 2160
 ggtgggtgtg gtggcaaaaga agactgtga gtatgttttctt cattactgtc catctccctc 2220
 ccagctgtgg ctgctgccgc cactgtcccc acctccctc ctgccccca tgcctttct 2280
 gaatcacccatc tcaactgatat tgccctctca cctccactct ctgagccctc ccctgccagg 2340
 gaatcttcat cagtcacatc ttctcttct tcctcatctt cctcttcctc ctcttcagac 2400
 aactccctt ccgggtatgg ctgctggac tgctgctggg gaaaactccc tgcccccggag 2460
 actgttagatt gtcggagcc atttcctga gcagctccct caccttcagg gagtgacgat 2520
 ccaccgttgg gatctggcc ccccagggtgc atccggacat gtcgctgcag agtgacagca 2580
 ttggtaact tcttctggca gatggggcag gaattctgtg cccgggcagc tggactggcc 2640
 ttgtggccca cgaaaatgtgc acgcagatta cccctgggtgg agaaggctct gccacacact 2700
 ttgcatttga agggcccttc acctccatgt tggccataat gaaggcgtag ggcccggagga 2760
 cagctaagca ctggagagaca gatgacacac tggtaggtc cagaagaggc tgaggatgaa 2820
 ggtgcagggg cagaggtgg tggggctctt gaggcagctg agtcaccgc cacagctct 2880
 tgccggtaa tctttctac cagttgctgc agctttgtat ttcagaggg tgaggcccc 2940
 aagggtctca gcacataggg gaaggggaaag ctgccatgg acttgaagtg gttgtaagc 3000
 agtgcggcagc ttggtagtga agtcaccaac ttacttagtt gcatgcgatc tgccgtgcta 3060
 ctttctgcca ctccactgat ggctgagccc tcactccctg ggggggtgtt ttcatcagct 3120
 ttattcttgg gttccactgc tttcatgagc acaaacttat tgaagcagg gagtccctgga 3180
 gccgtggctg tgcctgcact ggtggagac agagtcaggc tctctgtggc actgagtgc 3240
 gttgtggagg ccaccagggtt ctgcgtctca acccctccac ctggagtgcc tgcctccctc 3300
 tcggccttct ctgggtgcac ggacatacca taaggcaagc cactgctgtt aatgacatag 3360
 tcttaggtgct ctggtaactgg gtgtgggttc atctgcacat gtgggtactt ctcacatgc 3420
 cgggtggaaat gcactttgag gttgccacgg gtggtaaac ggtttccaca gacattgcac 3480
 ttataggggcc ttcacccgt gtgggaacga aggtggatct gcagggcact gtcactgcca 3540
 aatactttgg cacagaagcg gcatttgc cttccaccag gcttctccaa gggaccatc 3600
 acttctccgt agtcacgatc accacttcca ttctttggct tcaggagccc tggggaggca 3660
 gtggcctcaa ggcctccggc tggcccaaga cactgtgctg ccagtagtcc cgtgggtctt 3720
 gggaaatgca gatgaggcga ggcacatcgc tgcgtgtgc tgcctggcaa ggctggggaa 3780
 gggcagggg tgggttggc gttccacccatc acccctccag cagagaaagg atgctgtgac 3840
 cccagtggtt gtaaaagggtg gaagaaggcc tgcttggcg tttctgcccc tgaagaggaa 3900
 gaggaggagg aggaggaaga tgccactgtc ttgctggttt ggacaggctt gatggggctg 3960
 aagaggggtt gtaggggtt ggtggaaagag gcagtcctg tcccaggtt ctctgaggaa 4020
 ctggcagggg caccacccgt ctggccataag gagccacatc acagcacctg ctcgcagatt 4080
 tgctcagtca tctgcacatgc atggatctgc cgcgtcgca gcacccgtt ctcttccaa 4140
 atcaggggga tattcaagtg gcaactgcct acccctgggg gcccgggggg tggtaggag 4200
 ggaggggggtt caggggtcgat ttctggaggt aatggggttt ctcccagctt gggactggcc 4260
 aagatcaggc ccccgccctc cccagccgt gtacctgtgg cagcgaccag gaaatgcct 4320

ggagactcct ctcctctcct ctctgggccc caggtggat ccgtggcac ggaggacca 4380
 gaatctgggg ggttgctatg ctctgtgtcc atgacctgag gattattgtg accctcaggc 4440
 cgggttcag aggaggccga agagttgtt gggtttcctt ggcccccaat tatcaccatt 4500
 acaggagggt cagtagaaaca tgcgttctgg tggcgagga attcagttgg gtcagtgaat 4560
 tgtgcgcagc acttggcaca gacttggggg tgatcctcct cgctagcatc acctggggag 4620
 aagacaagga gagagagcgt gggggcgca gttgggttgg gtataccgag gctctaatta 4680
 acaaggaggc cagtaaccgc tagtggggg tggggagatg agtcaccat cagggccatg 4740
 cagaagtcta gagctcaggc ctgatccgtg tggacaggag acaacccggc atggggcagg 4800
 ggggtgggga gggaggaggg gaggggggca agagcatgct actccctcct tcagccaccc 4860
 tccctccccc aggccacaag cgagttcagc gaataggtgt ggggacaggg gcctacgcag 4920
 agaatcatgc attttctccc acccaccgaa agtcttcgcc gcccctgcgc atccccctcc 4980
 gccccccaccc ctgcccagcc cgaccgaccc taccgcaccc ccgagctctg ccggctcccc 5040
 gcagggcacc ccgagacgag agctcctctc ggattcgtgc gccatgggtt tgggggaagt 5100
 ggagggccag gtgggggtgg agacaatggc tattgggatt gggggaggcg atggccgctg 5160
 ggtctgcggc agcctctgca cccagcggcc cagactgcgg agatggagat cggcagcggc 5220
 gggggcaggg agcagcggcc gagggggggg ggagcgagga ggcggggaga agctggagtg 5280
 agaaagcggg gagagggggag atctgggagg agctgatgag ggggggagtt tatggggagg 5340
 agctgctggg gagggaggcg ggagctagag gaggcgggag aaggggagcgc tagcgggggc 5400
 gtggggcggg gagctcagag ctcggagag tttccggagg cgcagtgaca ggtgctgtga 5460
 agcaactgcgg gggtccacct ttcccggtcc ctggccagct ccccccacatc gcagatgcct 5520
 ttggccaggc ctaccctcct ccccccggcc tcccctccct agctctaggg gcacagtggg 5580
 aaacgttagcc ctgctcagtg gagcaaggcg ataggcttct ctatttttc ttggataaa 5640
 ggatccgctg agcttgaaaa aagtggattt cagagagggt cgtctgatct cctcagaggt 5700
 ctgagggcca gaagaagagg gggagatcag aacatccact cctcaccacgc acacacaccc 5760
 caaaatattc gaagtttgtt ctcgtcttcc tcacttccat tcccaccctta ccccccaccc 5820
 tctccacaaa agaagttctt caggggtggc ggctgcaagg tagaattttc caggaagtca 5880
 tttcaggact ctctgcggaa cactaagccc cttcaactccc cggccctccct ccccccata 5940
 aatagctgaa tgcagggtac tccgcagatc gcccagccctt cacaacaccc aattcataga 6000
 gtccatgctt atttaataag ccatctccat ttttagtaccc ttttccctccctt ctattctcc 6060
 ctgcacacat tcctcacacc gtcactatta aagacagtgg gtttggggag acgctagcct 6120
 gcagaggcct acggaggccc acccagctt aacctggggg ggagggggagc cctcttgaaa 6180
 caatgcggta ggaactacca ggcagccctc agtgtctaaa gccccttcag ccccagcctg 6240
 atttgaatgc ttagaaatag ctaaacacctg ctcaccatca cagaggcagc ctcctattca 6300
 gacaggataa gtaagaataa aatgcctctt ggaccaggtt ttctggcattt ctcttttta 6360
 ccttggaaatg agtcttaaaatg tgcttccac ttccctaaaat actttctctt acatgcagga 6420
 agtgaccaca agtccttggg tttgtgggtt ccctgggcat cagtaaacctt aaattttttt 6480
 aatcccagtt ctattctgc ctcaactgata aaactgagac atgggtgtca gtcacaccat 6540
 gttataaccac cgtttccctc ttccataaaatggtaatattt tagctgcagttt atttactca 6600
 gaaaaatattt gtggggacaa aaaattgaaa aattggacaa tattatgt taaaccagg 6660
 atgggtgtgc acacttggtag ccccagctac ttggggaggctt gaggcaggag aattgttta 6720
 gtcaggagt ttgaggctgc agtgagctgt gatcacaccc gtataaccatc actgcctcc 6780
 agttcggca acatagtgag gccccattac tttaaaaaaaa aaaaaaaaaa gggcgcgggt 6840
 gctcaactgta atccccagcac ttggggagggtt gggcagatca cgaggtcaga agttcagac 6900
 cagcatggcc aacatgttga aaccccgctt ctactaaaaa tacaaaaattt agctggcat 6960
 gatggtacac cttaatcccc agtcaactggg gcagctgagc caggagaatg gcttgaaccc 7020
 aggagggtgg ggttgcagggg ggctgagatc gtggcattgc actccagcc gggcaacaag 7080
 agtggaaactg cgtctcaaaaa aaaaaaaaaaa gtctaaaaaaa attaataatgtt acatgtgaga 7140
 tttttaaatgtt tggggagtc ctgaattttaa tcaatggat aatttacattt gtcagtagca 7200
 aaataatcgaa agtaacctta aatacacata tactaaaattt agatctgttt tccatgtt 7260
 ttgttaatct tattatccc ttaggtttaaga tattggctaa tatcagcagc atattcaaa 7320
 ggttaggaatgtt ttttatttc agtgggtggg ggagctgaaa caaccttattt aaaatattt 7380
 taacatccac tttacttctc aacataaaattt ttgcctgtt tttttaaattt aaaacagttt 7440
 actgaatttat gtttggaaac ttcaagataat aaggcttta gcattgttag tcataattct 7500
 gaaatggacg ggttctgtgc ttccaggccctt ggacttacaa atgaggggagg ggggttctat 7560
 tttagtttat ggcaagtcac agtttggtagt aatgtggttt atttttacag ataaggaaac 7620
 tgaagcttgg agaggttaag ttagtttcc aagttcacac agtaatttcag tgaagcaagc 7680
 attcagaattt ttgactccctg tccaatgtct tctcaagcac atcaactttt tatggcttcc 7740
 ctaatgctag agaaaggggcc ctgtgtggct tcttacttgcc atttgctccc tggccttagt 7800
 cagggagaggc gaatcagatg gaggcttctt actgagcattt tttttaattttt cattgaacat 7860

ttgatatcca gttgctgttt tgtcaagtct tctgacaaga aaagaaaatcc ttttctttc 7920
 atcttctcct gggaaacact gtccccttc ttgctctta atgaaatgtg ctttctgatg 7980
 cgttaatttga tctaagctct tctttaaggt aaatttagtc cctggtgaaa ggtgactgga 8040
 tcaacagcca cctgtaagag gaaccctcca tttcttagta ctttgcactc actgcacatc 8100
 ctgaaaaggg gggcaggatt cttacacaaa catgaatgaa gtcacaaaatg caggaataaa 8160
 ctaaacttgtt aatggtgtcc ctagatagca gataaggta ggttaagctat ctccgtcaa 8220
 atgaaagtc cgggggtggga ctaagacctg gacaagctt tttaaactta tagagagctg 8280
 aaatgacaaa gaaaaggaa accaggtggc ttcccttcta aatcttagtgc cccatcatg 8340
 tgcttcttta ggcttcagag agaactgttc gggagaacaa agagaaaaat aggtgagttg 8400
 tathtagcag ggtgatacat ttgaacagcg gtttcaaat tttgctgcc attaggatta 8460
 ccagaagaga gttttaaaat ttttatgtt aggtgcagtg gtcgttccct tttttttttt 8520
 gctactctgg aggctgaggc gggaggatca cttgagctca agggtttag 8580
 aaaatctcaa aaaaaaagaag aaaaaaaaaa gaaaagaaaag ttaagcaca gtgggtacct 8640
 catgcctata atccttagcac ttttggaggc caaggcagga ggattgctt aggccaggaa 8700
 tttgagacca gcctgcataa catagtgaga cccccatctc tgcaaaaagca accaaccaac 8760
 caaacttaaa aaaaatccct gtgtccaggc cacatcccag gctaattaaat tcataatccc 8820
 tgaggatagg atccaggcat tagtttgcata aagctctca ggtgattcca atgagaatac 8880
 aaagatggtg acacaatgtat gagacccaca tggaggactg ccctttccat cataacctcc 8940
 accctgctcc tcacagatct tacctgagct aaacttggcc acaattggga cacagacaaa 9000
 atgaactctc aatgctaaat ctcccattca ggtccctcc ctacagtgc cacaaccaca 9060
 cattaacttc cttgtatcct ttcccagtga aaaatctgtc tccatgaata gaatttgata 9120
 taatttacac cttactgtaa gtttaagtga ttgcatttct ttcccaggta tgggtatctt 9180
 gaagcatatt tttttttttt ttaattgata tttgagccat attttttttt tttttttttt 9240
 tttttttttt tttttttttt ttgagacggg gttttgtctt cattgcccag gctggagtgc 9300
 aatggcatga tctcggtca ccgcaacctc cacctcccag gtcaagcga ttctctgc 9360
 tcagccttcc caagtagctg ggattacagg catgtgccac caagccggc taattttgt 9420
 ttttagtag agatgggtt tctccatgtg ggtcaggctg gtcctaaact cccgacactca 9480
 ggtgatctgc caacctcgcc ctcccaaagt gttgggattt cagggcgttag ccacgcgc 9540
 cggccaccat atttctaatt gtaaggtgaa aggctttttt ctacagagtt caagcatcat 9600
 ccacccatta aggctggagt gaagtggcac aatcatagct cactgcacac tctactccc 9660
 aggcttaggt gatcctccca cctcagcttc ctgaatagct ggactacag gcatgcacaa 9720
 tcatgcccag ctaattaaaaa tattttttt ttttagagatg aggtttcact atgttgc 9780
 ggctgtctgg aataacctggg ctcagggat ctcctgcct tttttttttt aagtgtctg 9840
 agtacagatg taagccactg ctcctggccc acttacttat tattgacact gaacaatgt 9900
 aattggtagc ttccataatt atgaattgtat tctgttaacta ttgtactga ctacttctt 9960
 gggaaatatac tcatcttc ctccttactc ctctttctt aatgttagaca cataataatc 10020
 ctttgcaacc cagacctact aatgttaacta tggcctatgt aacacagtag actaacaggc 10080
 acaatgattt gtacacactgg tcttaagtga gaaaaagata ttgttttcca gaacaggaat 10140
 atcttagatc aaacataaga atgtttttt aatgaaaatt tctttactt caaaggactc 10200
 aacacttaac atggaattca taccatttt gactggggac ttcaagatc tgacactctc 10260
 attgtcattt tgcacagtga ttcaagactg agttaaagtc ccagctctag aacattctaa 10320
 tatttgcattt ctggggaaaa ttcttaatc tctcccaggat ttgtttttt tattttttt 10380
 tggcacagag tttcactctt ttgtccagg ctggagtgca atggcacat cttacttcac 10440
 cgcaacctcc gcctccagg ttcaagcgat tctcctgcct caccctccct agtagctgg 10500
 attacaggca tttgtccacca cggccggctt atttttttt tttttttttt agacggggtt 10560
 tcttcattt gtcaggctg gtcctaaact cccagctca ggtgatctgc ccacccggc 10620
 ctcccaaagt gctggattac aggcatttgc caccggccct ggccagccct tttttttttt 10680
 ttgagacggg gtcctgcctt gtcggccagg ctggagtgca atggtcgc 10740
 gcaatgggtt gatctggct cactgcaatc tccgcctccct gggttcaaac gattttcc 10800
 cctcaggctc ccaagtagct ggattacag gtgtgcgc 10860
 tatttttagt agagatgagg tttcacctt tttttttttt tttttttttt 10920
 caagtgattt gcccacactca gctcccaaa gtcgttagat tacaggcatg agctgtgt 10980
 cccggctgtat ttctctttaatgagg gtactgccc atcaaggaaat gaaattctga 11040
 tacatgctac aacatgaatg aactttgtaa acattatgtt ttcaagacaaa tttgacttta 11100
 attgagaaaa aaagagaaaa catactaagt gcaataaaagc agacacaaaaa ggacaaaat 11160
 ttttatgattt catttagatg agtacccaa acattatgtt agtccattaa tatgaaat 11220
 ggcaaggtca cacatacaga aagcagagta gaggctaaaca gggctaaagg aatggggagaa 11280
 tggggattt ttgttaacg gtacagttt ctgtttgtat atgaaaaaaa tattgaaaca 11340
 gcagtaatgg ttacataaca tagtgaatgt acttaatgcc actgaattgt acacttaaaa 11400

atggtaaaaa tggtaaattt tattacacat attttacaat aaaaaaattt tagccaggtg 11460
 tggggcatg cacctgtaat cccagctgtt caggaggctg aggcaggaga atctcttcaa 11520
 ccctggaggt ggagggttca gtgagccgag acgtgcact gcactccagc ctggcaaca 11580
 gagtaggact tggctcaaa aaaagaaaaa aattttttt gtaataataa gggagttggg 11640
 gctggcggt gtggctcacg cctgtaatcc cagcacccg ggaggccaaa gtggcgat 11700
 catgaagtca ggagatcgag accatcctgg ctaacacagt gaaaccctgt ctctactgaa 11760
 aatataaaaa attagccagg tgggtggcg ggcgcctgt aatccagcta cttgggaggc 11820
 tgagggcagga gaatgggtg aaccggggag gcccggctcg cagtggccca agatcgcc 11880
 actgcacccc agcctggcg acagagcgag actccgtctc aaaataataa aaataaataa 11940
 ataataataat aaaataataa taataacgga gttgggagga aaaagaggaa atgcaaaaag 12000
 ggcttagcac agtacctgaa tgctccacaa atattagcca tgggtgttag ttattatttg 12060
 aatgtcaaaa gctgaatgaa gccctgggt aagaaaggc acatgtgccc aaggtcacat 12120
 agcttcaagg tccacactag attgaaaacc aagtttctg ttttcttatac tagtactctg 12180
 taacaccagg actgagatac tcttattcc aaaatgtgtt ttttctgatc tgggaatacc 12240
 tagttgagt gcccgggaa tcaataaacct gagagatgag gctcttact tccaaatgt 12300
 aacagagccc cccaaactct acctttgcct tcttcctct cttgctgttc ttgctatctg 12360
 ccaacttcca tctaaagtac tcccctctc ccctctagat ctgtttggct gctgtcctgg 12420
 tttcttcttc tcactaaata tctgggttcc tgattgttcc ctttatttcc cagatgtact 12480
 ggtttgcatt ttccccccag tcacatcctt tgggttctct aatccagatt tcttagactct 12540
 gtaggggaga gagaagggtt tttttttcc tctctagat ttttaagtga atagagtatt 12600
 tcctgccccat cacttatatg caataactgt tctgttaggt ttgatgctc tggtaggaa 12660
 agctgagcaa aaacggctgg aaaacagatt ttctagactg ttcttgggt atgtcttagg 12720
 tcactgcaga attttggctt taaaatatg taacaaaggc tcagcatgg catgttgtat 12780
 atggcacata ttgcttacaa gaaggcaaaa gactccgtt aacattactg gcacctaga 12840
 ctactgacta aatgtcttct gatactcatg atgatatcca taatttcaca ggtacacca 12900
 aggatacatg tgccccctaa taagggccct tcctccctaa ctgtggagca tgctctggg 12960
 tagaaggaag tcagatgcct gaagatcaca taagtgaata gaaaccctgt ctataaaaaa 13020
 ttagggaaaaa ggagagctct cattctgttt tgcagaatgg atgctgcccc attcatgatt 13080
 aaaaaaattt attaatttaa aagaaaacca gaaaatgtga aattttatata ttataagctt 13140
 ataagatcca ggaggaattt tagatacgt caaatagagc cacccattt tgcatgatgag 13200
 gccaatgac atccagatca taatggccctt aggatcttc actccagggg aattctgatg 13260
 agaaaatctt taggctttct tacggtagat cttAACAGAG ggtgctactg cttccttgct 13320
 cttacattt gttcctgcct ttcatacgctt aaaggccaaat tttcatcaaa aatttggta 13380
 tgcattggg tttaaacctt tactgtttctt atggggatgg ctttgcataa gcattaccat 13440
 gccccccagg ggaagctata tcttaaaggg cttgaaaatc cattcaagac agccctaa 13500
 gatagctttt gactccctca cagaagattt ttcctcagct atgatatggg gaatgggtga 13560
 gcagatggga gaagtaggaa gaagaggaga gaatgctct tgggggtttt gagggtgtt 13620
 cagcatagtt ccacaatcaa accaggcaggaa gggcggact gtggggcaac tctggggagg 13680
 agttgaggct ctaggggaag ttcctctgtt agcacaagca gggaaacatcc ggcctatagc 13740
 agcattaaga agggctaatg tggctcaggaa gggaaaggatg ccatcaccat agaacctcta 13800
 aatatgggc a ctagggatc ccagaaaaggc agtggggcg ggaggatgc ttctgccc 13860
 aacatgtctg ttaagggat ttttgcacat atggggcgct gatttgcactt caagttttt 13920
 ttttttaaca ggtggaaagg caagttat cttacaatggt agtgcgccacc aataactct 13980
 ctttagagctt ttcatgacac gtctcataaa gaaatgtga tggccggag cggtgctca 14040
 cgccctgtat cccagcactt tggggggccca aggccggcag attacgagat caggagatcc 14100
 agagcatctt ggctaacacg gtggaaacccc gtctctacta aaaatacaaa aaatttagccc 14160
 ggogtggtgg caggccctta tagttccagg tactcgggag gctgaggccag gagaatggcg 14220
 tgaacctggg aggtggagcg ggcagtggcc caagattgc ccaactgcact ccaacttgg 14280
 cgacagagcg agactctctc taaaaaaaaaaa aaaaagaaaaa aaagaaaaaaag aaaaagaaaaag 14340
 aaaaaaaaaa aatgtgcac gtttgcacat aggttccgtt gtttgggtca tactacagca 14400
 ctgcaggca gtgtcactgc attcacat aatgataata acgatattca cacaattaa 14460
 gcacttattt atgcttaggtt ttttccaa gggatttacac atattaactc atttagattt 14520
 tcacaacaac ctaatgggtt agcttagtata cacatcttta tttcacagat gagaaactg 14580
 aagcatagag aggcaaaaata aaccagccaa ggtcacaatg ctaaccaagt ggtggagctg 14640
 ggatttgcattt aaaaaggcttgg tttcagaacc cttgtgttca atcctataact atactgttgg 14700
 gtgtatcaac tggatgtctaa acagttgcct gtctggagcc aggacttcca gacttccat 14760
 ctgcacatataa ggagccatac cactgacaag tatgtccaaa acttcttgc tcctaagaat 14820
 tacctggaca attgcaaaaat atatagattt ccacaccctg gctcagatgt actcacaatc 14880
 aggcaagttt taaaaaccca gtttagtgg gtttagttag cactaccaggc cagccctgag 14940

cattagaaaa ttgaagttt tgcctgatt ttgctctgt ctctcagact ctgagcaatt 15000
 tcactcttca attccctgct tgctctactg tctgcctgtc acttaacggaa atgttacaag 15060
 aatacataca atttttcccc ctcataaggg acacctgtt cttcaaaaac acggtatcct 15120
 cataaaatga tatgcatgta gtaacaggtg tattttcttg cacttcttt gttttgtttt 15180
 gtttttgct ttgcttcct tgaagcacaa acctaagccc ctcatccaga cctagccctc 15240
 agctgtcctc caggtgacac gcatacacac cccaaaccag gctgcattct gaccgacctt 15300
 agctctctcc ctctgggagc tctgatcgcc tctcagttca gcccaacaat gagaaacttt 15360
 tttctcgct ccctcagggg agccttcacg tttatccaat tcattctctt gcaacccaaac 15420
 tctccagaaa gaaaaggggg gaaaatccca ccccgaagag acggcttca ggtctgagga 15480
 cgtaacttag caacggcaca aagaccagtg agcaaaggga gacctgagga gaaaactctt 15540
 ggggtggggag acagagccag tttgaaaact ccatttcatc cagagaaaaaa caaggaaaac 15600
 acaaacagaa tcaatcccaa gtaacaagcg gggcttctcc ccagcgcagg tcattctta 15660
 ctccctgcat ctcaactcct tcaaaccccc agtaccaag tccgcctccctg cctgggttcg 15720
 cccatggccc gagtgccctc cccttgcctt ggcctgaccc acacaggctt ggacttaggg 15780
 gccccccaccc ctcccccaggc acccaccgtt ctcagacgcg ctgggacctt cgccagtcg 15840
 gattaactgt tggggtttcc gctgcttcg ccgagacatt cccgggtaga gagttgggag 15900
 aggagggggc aacgctcact tggtcttaac cggggtgacc tggtctcgtc tcccccttgg 15960
 gtcgaagcc aattgatgcc tctcccccag cgcaaatcac tggtaagcag agatgttctt 16020
 cttcccaga gacacagact ctctctctt ctctgattct ctgttcttga ctctctctt 16080

<210> 3
 <211> 1002
 <212> PRT
 <213> Mus musculus

<400> 3
 Met Ala Gln Glu Thr Gly Ser Ser Arg Leu Gly Gly Pro Cys Gly
 1 5 10 15
 Glu Pro Ala Glu Arg Gly Gly Asp Ala Ser Glu Glu His His Pro Gln
 20 25 30
 Val Cys Ala Lys Cys Cys Ala Gln Phe Ser Asp Pro Thr Glu Phe Leu
 35 40 45
 Ala His Gln Asn Ser Cys Cys Thr Asp Pro Pro Val Met Val Ile Ile
 50 55 60
 Gly Gly Gln Glu Asn Pro Ser Asn Ser Ser Ala Ser Ser Ala Pro Arg
 65 70 75 80
 Pro Glu Gly His Ser Arg Ser Gln Val Met Asp Thr Glu His Ser Asn
 85 90 95
 Pro Pro Asp Ser Gly Ser Ser Gly Pro Pro Asp Pro Thr Trp Gly Pro
 100 105 110
 Glu Arg Arg Gly Glu Glu Ser Ser Gly Gln Phe Leu Val Ala Ala Thr
 115 120 125
 Gly Thr Ala Ala Gly Gly Gly Gly Leu Ile Leu Ala Ser Pro Lys
 130 135 140
 Leu Gly Ala Thr Pro Leu Pro Pro Glu Ser Thr Pro Ala Pro Pro Pro
 145 150 155 160
 Pro Pro Pro Pro Pro Pro Pro Gly Val Gly Ser Gly His Leu Asn
 165 170 175
 Ile Pro Leu Ile Leu Glu Glu Leu Arg Val Leu Gln Gln Arg Gln Ile
 180 185 190
 His Gln Met Gln Met Thr Glu Gln Ile Cys Arg Gln Val Leu Leu Leu
 195 200 205
 Gly Ser Leu Gly Gln Thr Val Gly Ala Pro Ala Ser Pro Ser Glu Leu
 210 215 220
 Pro Gly Thr Gly Ala Ala Ser Ser Thr Lys Pro Leu Leu Pro Leu Phe
 225 230 235 240

Ser Pro Ile Lys Pro Ala Gln Thr Gly Lys Thr Thr Ala Ser Ser Ser
 245 250 255
 Ser Ser Ser Ser Ser Gly Ala Glu Pro Pro Lys Gln Ala Phe Phe
 260 265 270
 His Leu Tyr His Pro Leu Gly Ser Gln His Pro Phe Ser Val Gly Gly
 275 280 285
 Val Gly Arg Ser His Lys Pro Thr Pro Ala Pro Ser Pro Ala Leu Pro
 290 295 300
 Gly Ser Thr Asp Gln Leu Ile Ala Ser Pro His Leu Ala Phe Pro Gly
 305 310 315 320
 Thr Thr Gly Leu Leu Ala Ala Gln Cys Leu Gly Ala Ala Arg Gly Leu
 325 330 335
 Glu Ala Ala Ala Ser Pro Gly Leu Leu Lys Pro Lys Asn Gly Ser Gly
 340 345 350
 Glu Leu Gly Tyr Gly Glu Val Ile Ser Ser Leu Glu Lys Pro Gly Gly
 355 360 365
 Arg His Lys Cys Arg Phe Cys Ala Lys Val Phe Gly Ser Asp Ser Ala
 370 375 380
 Leu Gln Ile His Leu Arg Ser His Thr Gly Glu Arg Pro Tyr Lys Cys
 385 390 395 400
 Asn Val Cys Gly Asn Arg Phe Thr Thr Arg Gly Asn Leu Lys Val His
 405 410 415
 Phe His Arg His Arg Glu Lys Tyr Pro His Val Gln Met Asn Pro His
 420 425 430
 Pro Val Pro Glu His Leu Asp Tyr Val Ile Thr Ser Ser Gly Leu Pro
 435 440 445
 Tyr Gly Met Ser Val Pro Pro Glu Lys Ala Glu Glu Ala Gly Thr
 450 455 460
 Pro Gly Gly Gly Val Glu Arg Lys Pro Leu Val Ala Ser Thr Thr Ala
 465 470 475 480
 Leu Ser Ala Thr Glu Ser Leu Thr Leu Leu Ser Thr Gly Thr Ser Thr
 485 490 495
 Ala Val Ala Pro Gly Leu Pro Thr Phe Asn Lys Phe Val Leu Met Lys
 500 505 510
 Ala Val Glu Pro Lys Ser Lys Ala Asp Glu Asn Thr Pro Pro Gly Ser
 515 520 525
 Glu Gly Ser Ala Ile Ala Gly Val Ala Asp Ser Gly Ser Ala Thr Arg
 530 535 540
 Met Gln Leu Ser Lys Leu Val Thr Ser Leu Pro Ser Trp Ala Leu Leu
 545 550 555 560
 Thr Asn His Leu Lys Ser Thr Gly Ser Phe Pro Phe Pro Tyr Val Leu
 565 570 575
 Glu Pro Leu Gly Ala Ser Pro Ser Glu Thr Ser Lys Leu Gln Gln Leu
 580 585 590
 Val Glu Lys Ile Asp Arg Gln Gly Ala Val Ala Val Ala Ser Thr Ala
 595 600 605
 Ser Gly Ala Pro Thr Thr Ser Ala Pro Ala Pro Ser Ser Ser Ala Ser
 610 615 620
 Gly Pro Asn Gln Cys Val Ile Cys Leu Arg Val Leu Ser Cys Pro Arg
 625 630 635 640
 Ala Leu Arg Leu His Tyr Gly Gln His Gly Gly Glu Arg Pro Phe Lys
 645 650 655
 Cys Lys Val Cys Gly Arg Ala Phe Ser Thr Arg Gly Asn Leu Arg Ala
 660 665 670
 His Phe Val Gly His Lys Thr Ser Pro Ala Ala Arg Ala Gln Asn Ser
 675 680 685
 Cys Pro Ile Cys Gln Lys Lys Phe Thr Asn Ala Val Thr Leu Gln Gln
 690 695 700
 His Val Arg Met His Leu Gly Gly Gln Ile Pro Asn Gly Gly Ser Ala

705 710 715 720
 Leu Ser Glu Gly Gly Ala Ala Gln Glu Asn Ser Ser Glu Gln Ser
 725 730 735
 Thr Ala Ser Gly Pro Gly Ser Phe Pro Gln Pro Gln Ser Gln Gln Pro
 740 745 750
 Ser Pro Glu Glu Glu Met Ser Glu Glu Glu Glu Asp Glu Glu Glu
 755 760 765
 Glu Glu Asp Val Thr Asp Glu Asp Ser Leu Ala Gly Arg Gly Ser Glu
 770 775 780
 Ser Gly Gly Glu Lys Ala Ile Ser Val Arg Gly Asp Ser Glu Glu Val
 785 790 795 800
 Ser Gly Ala Glu Glu Val Ala Thr Ser Val Ala Ala Pro Thr Thr
 805 810 815
 Val Lys Glu Met Asp Ser Asn Glu Lys Ala Pro Gln His Thr Leu Pro
 820 825 830
 Pro Pro Pro Pro Pro Asp Asn Leu Asp His Pro Gln Pro Met Glu
 835 840 845
 Gln Gly Thr Ser Asp Val Ser Gly Ala Met Glu Glu Ala Lys Leu
 850 855 860
 Glu Gly Ile Ser Ser Pro Met Ala Ala Leu Thr Gln Glu Gly Glu Gly
 865 870 875 880
 Thr Ser Thr Pro Leu Val Glu Glu Leu Asn Leu Pro Glu Ala Met Lys
 885 890 895
 Lys Asp Pro Gly Glu Ser Ser Gly Arg Lys Ala Cys Glu Val Cys Gly
 900 905 910
 Gln Ser Phe Pro Thr Gln Thr Ala Leu Glu Glu His Gln Lys Thr His
 915 920 925
 Pro Lys Asp Gly Pro Leu Phe Thr Cys Val Phe Cys Arg Gln Gly Phe
 930 935 940
 Leu Asp Arg Ala Thr Leu Lys Lys His Met Leu Leu Ala His His Gln
 945 950 955 960
 Val Pro Pro Phe Ala Pro His Gly Pro Gln Asn Ile Ala Thr Leu Ser
 965 970 975
 Leu Val Pro Gly Cys Ser Ser Ser Ile Pro Ser Pro Gly Leu Ser Pro
 980 985 990
 Phe Pro Arg Lys Asp Asp Pro Thr Met Pro
 995 1000

<210> 4
 <211> 4547
 <212> DNA
 <213> Mus musculus

<400> 4
 atggcgcagg aaaccgggag cagctctcgta ctcggggac cctgcgggaa gcctgcggag 60
 cgccggagggtg atgctagcga ggaacaccac ccccaagtct gtgc当地atcgccacaa 120
 ttttctgacc cgaccgaatt cctcgctcac cagaactcat gttgcactga cccaccggta 180
 atggtgataa ttggaggcca ggagaatccc agcaactctt cagcctcctc tgcccccga 240
 ccagagggcc acagtaggtc ccaggtcatg gatacagagc acagcaatcc cccagattct 300
 gggtcctctg ggccccccga tcccacttgg gggccagagc ggaggggaga ggaatcttct 360
 gggcaattcc tggtcgtgc cacaggtaca gcccgtgggg gaggtggggg ctttatcttg 420
 gccagtccca agctgggagc aaccccaatta cctccagaat ccactcctgc accccctct 480
 ccccccaccac cccctccccc tccaggtgta ggcagtggcc acttgaacat tcctctgatc 540
 ttggaagagt tgcgggtgct gcagcagcgc cagattcacc agatgcagat gactgaacaa 600
 atctgcccgc aggtgctgct acttggctcc ttggggcaga ccgtgggtgc ccctgccagt 660
 ccctcagagc tacctgggac aggggctgcc tcttccacca agcccccctctc gcctcttcc 720
 agtcccacatca agccagcgc aactggcaag aacttggcat ctcccttcc gtcatcctcc 780
 tcctctggag ctgaaccggcc taaggcaggct ttcttccacc ttaccatcc actggatca 840

cagcatcctt tctctgttagg aggggttggg cgagccaca aaccacccc tgcccattcc 900
 cctgcgtgc caggcagtac ggatcagctg attgcttcac ctcatactggc attcccaaggc 960
 accactggac tcctggcagc tcagtgtctt ggggcagcaa ggggcattga ggctgtgcc 1020
 tccccaggc tcctgaagcc aaagaacggc agtggtaac tggctatgg ggaagtgatc 1080
 agttccttgg agaaacccgg tggaaaggcac aaatgcgc ttttgcaaa agtattcgcc 1140
 agtgacagcg ccctgcagat ccacccctgt tcccacactg gtgagaggcc ctataagtgc 1200
 aacgtctgtg gtaaccgtt cacaactcg ggcaacctca aagtacattt tcaccggcat 1260
 cgtgagaagt acccacatgt gcaaataaatgatccacatccag taccggagca cctagactac 1320
 gtcatacca gcagtgggct gccttacggc atgtctgtc caccagagaa agcagaagag 1380
 gaggcaggca caccaggcgg aggtgttggaa cgaaaccccc tagtggctc caccacagca 1440
 ctcaactgcca cagagagcct gacactgctc tccactggca caagcacagc agtggctcct 1500
 gggctcccta ctttcaacaa gtttggctc atgaaggcag tgaacccaa gagtaaagcgc 1560
 gatgagaaca cgccccccagg gaggaggc tccgcacatcg ctggagtagc agacagtggc 1620
 tcagcaaccc gaatgcagct aagaatgcgt gtgacgtcac taccgagttt ggcactgctt 1680
 actaataact tgaagtcaac tggaaagttt cccttcctt atgtctaga acccttgggg 1740
 gcttcgcctt ctgagacctc aaagctgcag cagctagtag aaaagattga ccgccaaggaa 1800
 gctgtggcgg tggcatctac tggctcgggaa gctccacca cttctgcccc tgcacccctt 1860
 tcctccgtt ctggacactaa ccagtgtgtg atctgtctt gggctctgag ctgcctcgg 1920
 gctctacgccc tgcatttatgg ccaacatgggaa ggtgaggcgc ccttcaagtg taaagtgtgt 1980
 ggccgagctt tctccacaag gggcaatttg cgccacatt tcgtgggtca caagaccagt 2040
 ccagctgccc gggctcagaa ctccgtcccc atttgtcaga agaagttcac taatgtgtc 2100
 actctgcagc aacatgttgc gatgcacctg gggggccaga tccccaaatgg gggttccgca 2160
 ctttctgaag gtgggggagc tgcccaggaa aacagctctg agcagtctac agcctctgg 2220
 ccaggaggat tccccccagcc gcagtcccag cagccatctc cagaagagga gatgtcttag 2280
 gaagagggaaag aggatgagga agaggaggaa gacgtgacag atgaagattt cctagcagga 2340
 agaggctctg agagtggggg agagaaggcc atatcagttc gaggtgactc agaagaggta 2400
 tctggggcag aggaagaagt ggcaacatca gtagcagcac ccaccactgt gaaggagatg 2460
 gacagtaatg agaaaggcccc tcaacacact ctggccccc acccgacaac 2520
 ctggatcatc cccaaacccat ggagcaggaa accagtgtatg ttccggagc catggaggaa 2580
 gaagccaaac tggagggaaat ctaagcccc atggcagccc tcaaccaaga aggggaggc 2640
 accagcaccc ctttgggtga agagctgaac ttaccggaa ccatgaagaa ggatccagga 2700
 gagagcagcg gcaggaaggc ctgtgaagta tgtggccaga gcttccctac ccagacagct 2760
 ctggaggaggc atcagaagac ccatcccaag gatggggccac tttctacttg tgtctctgc 2820
 aggaggcgtt cccttgaccg tgctaccctc aagaagcaca tgctgttggc tcaccaccag 2880
 gtaccgcctt ttgcacccca tggccctcag aatattgtca ctcttcctt ggtccctggc 2940
 tttcccttcc tccatcccttc tccaggggctc tccccattcc ctcgaaaaga tgacccacc 3000
 atgcatgag cctgtttctt gtacctggc ctctatgacc cagagagcag aaacctgaga 3060
 gctcataga ggaactccaa gatttactca ccctccctt gtcccttctc aagtctgac 3120
 atgatgttcc tagggcttc ttctctagtc cctgagctt acaattgcct ttgaaagaga 3180
 atgcccctt aagaaatttt tatcacctt ttgttctgtg taactaaggaa aaacaaattt 3240
 ccttagctt ttacattctc aagggggagc tctctccctt ttccttcc ccttggcag 3300
 gtatactaga acccccatcc ttggagtgcc agccttgcc caaggggctg gcaactgtcc 3360
 atggaaggcc cagcgttact ctttgggtat cttgaccacc ctgcaagact ttctagggcc 3420
 gggaccttct tgagaagctt gtaaggggtg gtaggtttct ttctgcaacc actaccagg 3480
 tttccactga gccctggagt tctggaccta cctgcattgc cactcggcc ctgttccat 3540
 cattgtgtg aaagccagg aactgtgtt cacaagggtg cttccagtgc atgatccaga 3600
 gaggcaaaaga acatggccctc cggaaagttga ggctgtgccca aacaagcaca cccggaaagaaa 3660
 gaagaaacta taacttctt ctccctcccc cctgctccag agagtgttgg caataaaagat 3720
 attcttagcaa ttggtgactc accctagaag gttagggacaa gtgaaggact gggaccctt 3780
 ttgcagttatg ttcccttgact cggccacattt aggccaaagat agtggctggt caagatgcca 3840
 ggactactcc agcttcccat catgtccttca accaaacaa gcagggttcc taccaggagg 3900
 tctctcggtt gatagtttag ggagttatgaa gtttctact ctaaaagaatc ctgttgggt 3960
 ggatgattat ttaagcaatg atggggagtt gagggttggt gctaaaacag gcattgctgg 4020
 gaatctatggat gatgaagaac aggactgtat gtaaggggac tcgtatgttca gctctgtga 4080
 gtagtgcgtt tttcttgag ctaatggtga tgtggatgc agaggttccca gggccatgg 4140
 ggggtgtgtt gttccctgtc actagaatgt ttttagttt agatgactcc ctattttatt 4200
 ccctcaccctt ttgtatttcc ctgtgttctt tctcaaaaacc cctttcccttccc cccaggttt 4260
 cctgaccatg ggcaggagct tatgtcttat ttttttcta gaagttgaga gacagagctt 4320
 caagtgggtt ccccccgtct ctgtcttgta gtgagatgtt gtatctactc ttaacatagg 4380

atcctgtgga acaggtgttc tgagaagact gaatttgct gtagctgtt gtcaatgatg 4440
attctctaaa gtagtgggct ccagagctcc ctaacacagt gaaatgtgta agagccgaga 4500
ggggagatac tagaatttt tccttcatca ttaaagggtgt ttggct 4547

<210> 5
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> derived from human Sal2 gene

<400> 5
ccacaaccat ggcgaatccg ag 22

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> derived from human Sal2 gene

<400> 6
ggtgatggaa ggcgaacagc cagg 24

<210> 7
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> derived from human Sal2 gene

<400> 7
cttgttaatt agagcctcggtataacc 26

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> derived from human Sal2 gene

<400> 8
gcacggagga cccagaatct gg 22

<210> 9
<211> 63
<212> DNA
<213> Polyoma virus

<400> 9
gatatacttt gtaatgtgca agaaggcgac gacccttga aggacatatg tgaatatagc 60
tga 63

<210> 10
<211> 20

<212> PRT
<213> Polyoma virus

<400> 10
Asp Ile Leu Cys Asn Val Gln Glu Gly Asp Asp Pro Leu Lys Asp Ile
1 5 10 15
Cys Glu Tyr Ser
20

<210> 11
<211> 19
<212> PRT
<213> TMD25 mutant Polyoma virus

<400> 11
Asp Ile Leu Cys Asn Val Gln Glu Asp Phe Val Met Cys Lys Lys Ala
1 5 10 15
Thr Thr Pro

<210> 12
<211> 60
<212> DNA
<213> TMD25 mutant Polyoma virus

<400> 12
gataatacttt gtaatgtgca agaagacttt gtaatgtgca agaaggcgac gacccttga 60

<210> 13
<211> 16
<212> PRT
<213> Polyoma virus

<400> 13
Asn Val Gln Glu Gly Asp Asp Pro Leu Lys Asp Ile Cys Glu Tyr Ser
1 5 10 15

<210> 14
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 14
Asn Val Gln Glu Gly Asp Asp Pro Leu Lys Asp Ile Cys Glu
1 5 10

<210> 15
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 15
Asn Val Gln Glu Gly Asp Asp Pro Leu Lys
1 5 10

<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 16
Asn Val Gln Glu Gly Asp Asp
1 5

<210> 17
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 17
Asn Val Gln Glu
1

<210> 18
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 18
Asn Val Gln Glu Gly Asp Asp Leu Lys Asp Ile Cys Glu Tyr Ser
1 5 10 15

<210> 19
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> derived from Polyoma virus large T antigen

<400> 19
Asn Val Gln Glu Gly Asp Asp Pro Lys Asp Ile Cys Glu Tyr Ser
1 5 10 15

<210> 20

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> derived from Polyoma virus large T antigen

<400> 20

Asn Val Gln Glu Gly Asp Asp Pro Leu Asp Ile Cys Glu Tyr Ser
1 5 10 15

<210> 21

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> derived from Polyoma virus large T antigen

<400> 21

Asn Val Gln Glu Gly Asp Asp Ile Cys Glu Tyr Ser
1 5 10