离散数学作业 Problem Set 6

201830099 周义植

Monday 7th November, 2022

Problem 1

 f_1

可交换: x + y = y + x

可结合: x + (y + z) = (x + y) + z

不幂等: 只有 $0+0=0, x \neq 0$ 时, $x+x \neq x$

单位元: 0, 0+x=x+0=x

零元: 无

逆元: $x + (-x) = 0, \therefore x^{-1} = -x$

 f_2

不可交换: $x \neq y$ 时 $x - y \neq y + x$

可结合: x - (y - z) = (x - y) - z

不幂等: $x \neq 0$ 时, $x - x \neq x$

单位元不存在,但是有右单位元 0: x-0=x

零元:无

逆元: 不存在单位元, 所以不讨论。

 f_3

可交换: $x \cdot y = y \cdot x$

可结合: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

不幂等: $x \neq 0, 1$ 时, $x \cdot x \neq x$

单位元: $1, 1 \cdot x = x \cdot 1 = x$

零元: $0.0 \cdot x = x \cdot 0 = 0$

逆元: 0 没有逆元,除此之外 $x \cdot \frac{1}{x} = 1, \therefore x^{-1} = \frac{1}{x} (x \neq 0)$

f_4

可交换: max(x,y) = max(y,x)

可结合: max(x, max(y, z)) = max(max(x, y), z) = max(x, y, z)

幂等:max(x,x) = x

单位元: 不存在。

零元:不存在。

逆元: 不讨论。

f_5

可交换: min(x,y) = min(y,x)

可结合: min(x, min(y, z)) = min(min(x, y), z) = min(x, y, z)

幂等:min(x,x) = x

单位元:不存在。

零元:不存在。

逆元: 不讨论。

f_6

可交换: |x - y| = |y - x|

不可结合: x = 2, y = 1, z = 3 时, |x - |y - z|| = 0, ||x - y| - z| = 2

不幂等: $x \neq 0$ 时, $|x - x| \neq x$

单位元: 不存在。x < 0 时, $\forall a \in R, |a - x| = |x - a| \neq x$

零元:不存在。

逆元: 不讨论。

Problem 2

1. 能。

交換律: $\forall x, y \in S, gcd(x, y) = gcd(y, x)$

结合律: $\forall x, y, z \in S, gcd(x, gcd(y, z)) = gcd(gcd(x, y), z) = gcd(x, y, z)$

单位元:不存在。

零元: $1.\forall x \in S, gcd(1, x) = gcd(x, 1) = 1$

2. 不能,因为该运算在 S 上不封闭。反例: lcm(7,9) = 63

3. 能。

交換律: $\forall x, y \in S, x * y = y * x = max(x, y)$

结合律: $\forall x, y, z \in S, (x * y) * z = x * (y * z) = max(x, y, z)$

单位元; $1.forallx \in S, 1*x = x*1 = x$

零元: $10.forallx \in S, 10 * x = x * 10 = 10$

4. 不能。该运算在 S 上不封闭。2*2=0

Problem 3

1

是代数系统。满足交换律和结合律 (和加法的性质相同) 即 (g+f)(x) = g(x) + f(x) = f(x) + g(x) = (f+g)(x), ((f+g)+p)(x) = (f+g)(x) + p(x) = f(x) + g(x) + p(x) = f(x) + (g+p)(x) = (f+(g+p))。 单位元为 $f: f(x) = 0, \forall x \in [a,b], \$ 没有零元。

2

是代数系统。不满足交换律和结合律(和减法的性质相同)。没有单位元和零元。

3

是代数系统。满足交换律和结合律(和乘法的性质相同,分析同第一小问)。单位元为 $f_1:f_1(x)=1, \forall x\in [a,b]$ 零元为 $f_0(x):f_0(x)=0, \forall x\in [a,b]$

4

不构成代数系统。

Problem 4

证明:

$$a)a * b = a * (a * a) = (a * a) * a = b * a$$

b) 若 b * b = a

①若
$$a * b = b * a = a$$
, then

$$b*b = a$$

$$b*b*a = a*a$$

$$b*(b*a) = a*a$$

$$b*a = b$$

与 b*a=a 矛盾;

②若 a * b = b * a = b, then

$$b * b = a$$

$$b*a*a=a$$

$$b*a=a$$

与 b*a=b 矛盾;

因此 b*b=b

Problem 5

证明:

若 $\exists x \in G, x * x = x, 则 x = e * x = x^{-1} * x * x = x^{-1} * x = e$

Problem 6

证明:

封闭性: $\forall x, y \in Z$, 显然 $x + y - 2 \in Z$;

结合律: $\forall x, y, t \in \mathbb{Z}, (x+y-2)+t-2=x+(y+t-2)-2;$

单位元: $\forall x \in Z, x+2-2=2+x-2x, :: 1_s=2;$

逆元: $\forall x \in \mathbb{Z}$, 令 t = 4 - x, 知 $t \in \mathbb{Z}$, 且 x + t - 2 = t + x - 2 = 2. 所以对任意 x, 都存在其逆元 t。

综上, G 关于 ⊙ 构成群。

Problem 7

证明:

首先由 $ea = ae, e \in H$ 知 H 非空。之后

① $\forall x, y \in H, ax = xa, ay = ya, \therefore (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy), xy \in H$

 $(2) \ \forall x \in H, xa = ax$

$$x^{-1}xa = x^{-1}ax$$

 $a = x^{-1}ax$
 $ax^{-1} = x^{-1}axx^{-1}$
 $ax^{-1} = x^{-1}a$

 $\therefore x^{-1} \in H$

由子群判定定理,知 H 为 G 子群。

Problem 8

1,2,4,7,8,11,13,14 与 15 互素,所以 G 的生成元有 $a,a^2,a^4,a^7,a^8,a^{11},a^{13},a^{14}$ 所有子群:

 $\langle a \rangle = G;$

$$< a^3> = \{a^3, a^6, a^9, a^{12}, a^{15}\}$$

$$< a^5 > = \{a^5, a^{10}, a^{15}\}$$

Problem 9

证明:

首先因 H 非空,所以 xHx^{-1} 一定非空。又因 $x,h\in G, \therefore xhx^{-1}\in G,$ H 为 G 非空子集。

① $\forall h_1, h_2 \in H, (xh_1x^{-1})(xh_2x^{-1}) = xh_1h_2x^{-1}$, 因为 H 为 G 的子群, 所以 $h_1h_2 \in H, \therefore xh_1h_2x^{-1} \in xHx^{-1}$

② $\forall h \in H, h^{-1} \in H, \therefore xh^{-1}x^{-1} \in xHx^{-1}$

综上, xHx^{-1} 为 G 的子群。

Problem 10

证明:

(不妨把函数写作 f 与 g) 即证明 $\forall x,y \in A, g(f(x \circ y)) = g(f(x)) \cdot g(f(y))$

首先有 $\forall x, y \in A, f(x \circ y) = f(x) * f(y); \forall p, q \in B, g(p * q) = g(p) \cdot g(q)$

令 p = f(x), q = f(y), 代入即可得证。