

Instituto Federal de Santa Catarina Campus Jaraguá do Sul – Rau Introdução à Programação Prof. Frank Juergen Knaesel, MSc.

Lista de Exercícios Programação Sequencial

Parte 1 Operadores Aritméticos

1. Desenvolva um algoritmo/programa que Calcule a Soma de dois números fornecidos pelo usuário

_	Entrada		Saída
	3 9		12

2. Elabore um programa no qual o usuário forneça dois valores inteiros como a base e altura de um triângulo, e em seguida o programa calculará a Área desse Triângulo e mostrará esse resultado na tela: $Area = \frac{Base \cdot Altura}{2}$

Obs.: Programadores na linguagem C precisam ter atenção especial à divisão de inteiros

Enti	rada	Saída
4	7	Area.: 14
3	7	Area.: 10.5

3. Calcular e mostrar o volume de uma caixa: Volume = Altura . Largura . Profundidade

Entrada	Saída
Altura: 3 Largura: 5 Profundidade.: 7	Volume: 105

4. Elabore um algoritmo/programa que calcule a **área** de uma circunferência, a partir do valor do raio que o usuário fornecerá:

 $Area = \pi . r^2$ Considere PI = 3.141592

Entrada	Saída
3	Area.: 28.274328

5. O restaurante Bem Bom fornece comida em Kg e bebidas aos seus clientes. Faça um algoritmo/programa que leia o valor da bebida escolhida e o peso do prato em Kg. Sendo \$ 28,50 o valor cobrado por Kg, calcule e mostre o valor final a ser cobrado do cliente. Imprima o valor a pagar apenas com 2 casas decimais.

Entrada	Saída
Peso: 0.470 Bebida.: 2.50	Valor.: 15.89

6. **Faça** um algoritmo/programa que leia o **diâmetro** de uma bola de futebol. Em seguida o programa deve calcular o **volume** desta bola, cuja fórmula é $Vol = \frac{4}{3} \cdot \pi \cdot r^3$, sendo pi=3,141592 e r é o raio da esfera. Lembre-se que o raio é a metade do diâmetro.

Entrada	Saída
10	Volume.: 523.598666667
20	Volume.: 4188.789333333

- 7. Construa um algoritmo/programa que calcule a Soma, a Diferença, o Produto, o Quociente Inteiro, o Quociente Fracionário e o Resto da divisão, a partir de dois <u>números inteiros</u> fornecidos pelo usuário.
 - → Para o operador do resto da divisão funcionar, seus argumentos precisam ser inteiros, portanto as variáveis de entrada precisam ser *int* (Linguagem C)
 - → Para a variável onde será armazenado o quociente fracionário use o tipo *float* ou *double* (Linguagem C)

Entrada	Saída
5 3	Soma

- 8. Calcular e mostrar a partir da medida do lado de um cubo:
 - a área de uma de suas faces
 - a área total de suas faces
 - o perímetro de uma de suas faces
 - a soma da medida de todas as arestas
 - o seu volume

Entrada	Saída
Lado do Cubo.: 7	Área de uma face: 49 Área de todas faces: 294 Perímetro de uma face.: 28 Soma todas arestas: 84 Volume: 343

9. Desenvolva um algoritmo que calcule e mostre a média aritmética de 3 notas

$$M_a = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

M_a: Média Aritmética

 $x_1, x_2, ..., x_n$: Cada valor

n: Quantidade de valores

Entrada	Saída
Nota 1.: 5 Nota 2.: 8 Nota 3.: 7	Média: 6.66

- 10. Dados dois valores A e B, determine:
 - o quadrado da soma destes números
 - a soma dos quadrados de cada número

Entrada	Saída
A.: 3	Quadrado da Soma: 64
B.: 5	Soma dos Quadrados.: 34

11. Partindo do princípio que um posto de combustíveis vende apenas gasolina comum e aditivada, faça um programa que leia o preço de cada um, bem como a quantidade de litros vendidos de cada tipo de gasolina em um determinado dia, e calcule/mostre o total vendido (com duas casas decimais).

Entrada	Saída
Preço Gas Comum.: 3,39 Litros Gas Comum.: 2345 Preço Gas Adit: 3,49 Litros Gas Adit: 765	Total Vendido: 10619,40

- 12. Esquematize um algoritmo/programa que leia dois valores, e em seguida troque-os de variáveis. Os dois métodos mais conhecidos são:
 - o da bolha (criar uma variável auxiliar)
 - método aritmético (através da soma e subtração de valores das variáveis)
 - * Obs.: Não basta trocar os prints na saída, é preciso mesmo trocar os valores das variáveis

Entrada	Saída
X = 7	X = 11
Y = 11	Y = 7

13. Escreva um algoritmo que leia um valor em reais e exiba quantos dólares, euros e pesos argentinos seria possível comprar com o montante informado. Considere que um dólar vale R\$ 4,06, um euro vale R\$ 4,56 e um peso argentino R\$ 0,43. Arredonde os valores para 2 casas decimais e 6 casas antes da vírgula.

Entrada	Saída
	Dólares.: 492.61 Euros: 438.60 Pesos: 4651.16

- 14. Aristeu visitará sua família em sua cidade natal. Ele enche o tanque de combustível antes de sair e anota a quilometragem do odômetro. Ao chegar no destino, Aristeu enche novamente o tanque, guarda o cupom fiscal e anota a quilometragem do odômetro. Neste contexto, crie um algoritmo que a partir das quilometragens do odômetro (inicial e final), do preço da gasolina e do valor total abastecido, determine e mostre:
 - a quilometragem percorrida
 - a quantidade de litros abastecidos
 - o consumo (em km/litro)
 - o preço do km rodado
 - * partimos do princípio que o automóvel inicia a viagem com o tanque cheio
 - * formatação para 2 casas decimais, sem arredondamento

Entrada	Saída
Km final: 128129 Preço Gas: 3.39	Km percorrida.: 586 Litros abast: 45.27 Consumo Km/l: 12.94 Preço Km: 0.26

15. Faça um algoritmo para determinar o valor de um cofre cheio de moedas. Leia a quantidade de cada tipo de moeda e imprima o valor total. Considere a existência de moedas de 1, 5, 10, 25, 50 centavos e 1 real.

Entrada	Saída
Moedas 0.01.: 22 Moedas 0.05.: 17 Moedas 0.10.: 33 Moedas 0.25.: 12 Moedas 0.50.: 15 Moedas 1.00.: 9	Total do Cofre.: 23.87

Parte 2 Uso de Funções Pré-Definidas

- 16. Elabore um algoritmo/programa que leia dois valores inteiros e que calcule:
 - a) a potência do primeiro número elevado ao segundo número
 - b) a raiz quadrada do primeiro número
 - → Linguagem C.: Para usar as funções sqrt (raiz quadrada) pow (potência), é necessário incluir no início do programa a biblioteca matemática #include <math.h>
 - → Linguagem Python.:
 - Para calcular potência use o operador "**"
 - Para usar a função de raiz quadrada:

```
import math
variavel = math.sqrt(valor/variável)
```

Entrada	Saída
5 2	Potência = 25 Raiz Quad = 2.236068

- 17. Escreva um algoritmo/programa que leia 2 valores X e Y, e que determine qual o maior através da fórmula: $MaiorXY = \frac{x+y+|x-y|}{2}$
 - → Na linguagem C, para obter o "módulo" de um número, use a função "*abs*" da<*stdlib.h*>
 - → Na linguagem Python, use a função **abs** (...), conforme descrito nos slides

Entrada	Saída
3 5	Maior Numero.: 5
8 7	Maior Numero.: 8

- 18. Escreva um algoritmo/programa que leia 3 valores X, Y e Z, e que determine qual o maior através da fórmula: $MaiorXY = \frac{x+y+|x-y|}{2}$
 - → Como conseguir o maior de três números sendo que a função funciona apenas com dois?

Entrada	Saída
3 5 7	Maior Numero.: 7
6 2 4	Maior Numero.: 6
1 2 1	Maior Numero.: 2

- 19. Construa um algoritmo ou programa que leia 3 notas de um aluno e em seguida calcule a <u>média ponderada</u> destas notas, considerando que: a primeira nota tem peso 2
 - a segunda nota tem peso 3
 - a terceira nota tem peso 4

$$M_p = \frac{n_1 \cdot p_1 + n_2 \cdot p_2 + ... + n_i \cdot x_i}{p_1 + p_2 + ... + p_i}$$
, sendo Mp a Média Ponderada;

n1, n2, ..., ni: Valor de cada Nota

p1, p2, ..., pi: Peso de cada Nota

Arredonde o resultado usando a função round()

Entrada	Saída
Nota 1.: 6 Nota 2.: 7 Nota 3.: 9	Media: 8.0

20. Escreva um algoritmo que leia as coordenadas (x,y) de dois pontos no plano cartesiano. Em seguida determine e mostre a distância entre estes pontos (com 2 casas decimais) através da fórmula:

$$dist = \sqrt{((x2-x1)^2 + (y2-y1)^2)}$$

Obedeça a formatação abaixo.

Entrada	Saída
X1.: 1 Y1.: 1 X2.: 2 Y2.: 3	A distância entre os pontos (1,1) e (2,3) é 2.24
1 2 3 4	A distância entre os pontos (1,2) e (3,4) é 2.83

21. Lidos A,B,C correspondentes aos coeficientes de uma equação do 2° grau $ax^2+bx+c=0$, determinar e mostrar: o delta e as raízes desta equação:

$$\Delta = b^2 - 4ac$$
 $\frac{x_1 = -b + \sqrt{\Delta}}{2a}$ $\frac{x_2 = -b - \sqrt{\Delta}}{2a}$

Entrada	Saída
A.: 1	D = 81
B.: -1	X1 = 5
C.: -20	X2 = -4

22. Converter uma temperatura informada em Fahrenheit para Celsius $C = \frac{(F-32) \times 5}{9}$, com **arredondamento** para 1 casa decimal.

Entrada	Saída
Temp Fahrenheit.: 80	Temp Celsius: 26.7

23. Converter uma temperatura informada em Celsius para Fahrenheit $F = \frac{9C}{5} + 32$, com

arredondamento para 1 casa decimal

Entrada	Saída
Temp Celsius: 22	Temp Fahrenheit.: 71.6

24. Faça um algoritmo para converter uma determinada velocidade informada em km/h para m/s, **arredondando** para 1 casa decimal.

Entrada	Saída
Velocidade Km/h.: 110	Velocidade m/s: 30.6
Velocidade Km/h.: 80	Velocidade m/s: 22.2

25. Uma empresa vai conceder um prêmio de R\$ 10.000 para seus três melhores vendedores. O prêmio será distribuído proporcionalmente ao valor de vendas anual de cada um deles. Elabore um algoritmo que mostre o nome e quanto cada um vai receber, **arredondando** para 2 casas decimais. Ao final, some o valor dos prêmios e verifique se é igual aos R\$ 10.000

Entrada	Saída
Vendas 1.: 22600	Fulano, prêmio de R\$ 2508,18 Beltrano, prêmio de R\$ 3185,17 Ciclano, prêmio de R\$ 4306,64 Soma dos prêmios R\$??????????

Parte 3 Cálculos com Porcentagem

26. A padaria HotPão vende pães franceses e broas. Cada pãozinho custa R\$0,12 e a broa custa R\$1,50. Ao final do dia, o dono quer saber quanto arrecadou com a venda dos pães e broas, e quanto deve guardar numa conta de poupança (15% do total arrecadado). Com base nestes fatos, faça um algoritmo para ler as quantidades de pães e de broas, e depois calcular os dados solicitados (com 2 casas decimais)

Entrada	Saída
Pães: 2468	Total Vendido.: 875.16
Broas.: 386	Poupança: 131.27

27. Um vendedor de automóveis usados recebe um salário fixo de R\$ 800,00 e uma comissão de R\$ 200,00 por carro vendido e mais 2% sobre o valor total dos automóveis vendidos. Com base nestas informações, elabore um algoritmo que calcule a comissão recebida por este vendedor e o salário final, com duas casas decimais

Entrada	Saída
Val.Carros Vendidos.: 123000	Comissão por Qtde (200): 1400.00 Comissão por Valor (2%): 2460.00 Comissão Total

28. Uma empresa produz e vende três produtos e neste mês, para cada um, incide um desconto: 10% para parafusos, 20% para porcas e 30% para arruelas. Construa um algoritmo que leia a quantidade de peças de uma venda, o preço normal de cada peça e que calcule e mostre o total a pagar sem desconto, o valor do desconto, e o valor a pagar com o desconto (com 2 casas decimais e 5 casas à esquerda).

Entrada	Saída
Qtd.Parafusos: 20 Preço Unit Paraf: 0.20 Qtd.Porcas: 20 Preço Unit Porca: 0.20 Qtd.Arruelas: 40 Preço Unit Arruela.: 0.05	Valor Total:: 10.00 Desconto: 1.80 Valor Final:: 8.20

- 29. <mark>Uma loja</mark> de smartfones precisa de um software para calcular o valor a pagar de um aparelho para algumas formas de pagamento. Desenvolva então um algoritmo/programa que peça para o usuário fornecer o valor do aparelho. Em seguida o programa deve mostrar:
 - o valor com 5% de desconto caso seja pago em dinheiro
 - o valor com 2% de desconto caso seja pago no débito
 - o valor com 3% de acréscimo caso o valor seja feito pelo cartão de crédito
 - e o valor de cada parcela acrescido de 5% caso seja feito em 3x pelo cartão de crédito.

Entrada	Saída
990	Dinheiro: 940,50 Débito: 970,20 Crédito 1x.: 1019,70 Crédito 3x.: 346,50 (3x)

30. Considere a seguinte situação: um trabalhador recebe um determinado salário. Deste salário descontam-se inicialmente 10% como contribuição à previdência social (INSS?).

O valor que sobrou desse desconto é a base de cálculo que será usada para o cálculo do imposto de renda, que é de 5%. Faça um algoritmo que leia o salário bruto de um cidadão, calcule e imprima o valor de cada desconto e o seu salário líquido (valores sempre com 2 casas decimais e 6 posições à esq)

Entrada	Saída
Sal.Bruto.: 2000	INSS: 200.00 Base IRPF.: 1800.00 IRPF: 90.00 Sal.Líq: 1710.00

- 31. Crie um algoritmo que peça para o usuário informar:
 - o salário bruto do colaborador
 - a quantidade de horas extras (25%) trabalhadas no mês
 - a quantidade de horas extras (50%) trabalhadas no mês
 - considere que a quantidade de horas do mês é 220 para fins do cálculo do valor hora A seguir, o programa deve calcular e apresentar:
 - o valor da hora normal
 - o valor das horas extras 25%
 - o valor das horas extras 50%
 - a soma dos valores brutos a serem recebidos
 - * arredonde o resultado de todos os cálculos para 2 casas decimais
 - * formatação da saída com 2 casas decimais e 6 posições à esquerda

Entrada	Saída
(Val Hora Normal: 13.50 Val.Hrs.25%: 303.75 Val.Hrs.50%: 243.00 Soma Proventos: 3516.75

Parte 4 Usando o Operador MOD (Resto da Divisão Símbolo "%")

32. Desenvolva um algoritmo que leia um valor inteiro e determine a quantidade mínima de cédulas correspondente ao valor. Considere que o sistema monetário em questão utilize apenas notas de 1, 5, 20 e 100

Entrada	Saída
Valor.: 574	Notas 100:: 5 Notas 20:: 3 Notas 5:: 2 Notas 1:: 4

33. Construa um algoritmo que leia uma quantidade X de segundos, e converta esse valor em horas, minutos e segundos.

Entrada	Saída
Segundos.: 9876	2h 44min 36s
Segundos.: 12345	3h 25min 45s

34. Desenvolva um algoritmo que solicite que o usuário informe o número de dias que já viveu. Seu programa deve converter este valor para anos, meses e dias. Considere que todos os anos têm 365 dias, e que todos os meses têm 30 dias.

Entrada	Saída
Dias.: 12348	33 ano(s), 10 mes(es), 3 dias
Dias.: 9889	27 ano(s), 1 mes(es), 4 dias

Parte 5 Usando String

35. Escreva um algoritmo/programa para ler o nome e a idade de uma pessoa, calcule e mostre quantos dias de vida ela possui. Considere apenas anos completos, e que um ano possui 365 dias.

Entrada		Saída
Maria	19	Maria, você já viveu 6935 dias
João	17	João, você já viveu 6205 dias