Estado	Finalizado
Comenzado	jueves, 8 de mayo de 2025, 20:15
Completado	jueves, 8 de mayo de 2025, 20:25
Duración	10 minutos 5 segundos
Calificación	100 de 100
Pregunta 1	
Correcta	
Se puntúa 33 sobre 33	

Marque todas las afirmaciones verdaderas.

Seleccione una o más de una:

- \blacksquare a. Cuando H=0, la decisión es incorrecta si $Y\in R_1$, siendo $R_1=\{y\in Y: \hat{H}(y)=1\}$. Es decir que, la decisión es correcta cuando $\Lambda(y)\leq \eta$.
- \blacksquare b. Sea el caso de un test de hipótesis binario $H=\{0,1\}$. Si la probabilidad a priori $P_H(0)$ se incrementa, Θ $\{y:\hat{H}(y)=1\}$ también se incrementa el umbral de decisión de la regla MAP. Por lo que la región $\{y:\hat{H}(y)=1\}$ se achica.
- c. La probabilidad de error para una detección MAP es menor o igual que la probabilidad de error para una Overdadero. detección ML.
- \square d. El criterio MAP para hipótesis binarias se convierte en ML cuando el umbral es igual a 0, lo cual implica que las probabilidades a priori $P_H(0)$ y $P_H(1)$ son iguales.

Respuesta correcta

Revisar la sección 2.2.1 "Binary hypothesis testing" del Libro "Principles of Digital Communication: A top-down approach" - Bixio Rimoldi (pág. 28)

Las respuestas correctas son: Sea el caso de un test de hipótesis binario $H=\{0,1\}$. Si la probabilidad a priori $P_H(0)$ se incrementa, también se incrementa el umbral de decisión de la regla MAP. Por lo que la región $\{y: \hat{H}(y)=1\}$ se achica., La probabilidad de error para una detección MAP es menor o igual que la probabilidad de error para una detección ML.

Pregunta 2

Correcta

Se puntúa 33 sobre 33

Marque todas las afirmaciones verdaderas.

Libro: https://fcefyn.aulavirtual.unc.edu.ar/pluginfile.php/925448/question/guestiontext/2636418/2/20802955/BixioRimoldi.pdf

Seleccione una o más de una:

- \square a. La función Q puede utilizarse para expresar la probabilidad $Pr\{Z \geq x\}$, siempre y cuando Z posea distribución normal, media cero y varianza unitaria.
- b. $Q(0) = 1/2 \text{ y } Q(\infty) = 1$
- \square c. Si $Z \sim N(0,1)$, $Pr\{Z \leq z\} = Q(z)$.
- \square d. $Q(z) + Q(-z) = 1 \bigcirc$ Verdadero.

Respuesta correcta

Revisar la sección 2.3 "The Q function" del Libro "Principles of Digital Communication: A top-down approach" - Bixio Rimoldi (pág. 31)

La respuesta correcta es: Q(z) + Q(-z) = 1

8/5/25, 8:26 p.m. Test de autoevaluación: Diseño del receptor para observaciones en tiempo discreto.: Revisión del intento | FCEFyN Virtual

Pregunta 3	
Correcta	
Se puntúa 34 sobre 34	

Completar con el texto faltante según corresponda:

Si se transmite una señal aleatoria dis	screta y en el recep	otor se la il	ntenta red	cupera	r exactam	ente , se	usa el térr	nino		
detección	⊘ . Si la señal tra	nsmitida e	s contin u	ıa y se	la trata de	e recuper	ar de la m	ejor f	orma posible pero sin	
poder reconstruirla exactamente, u	ción	💮 . El receptor disp				ispon	e de una			
observación 🔗 de la señal recibida para realizar una 💮 decisión										
transmitidos. De los dos métodos cor	munes de deteccióı	n, el de	máxima v	erosim	nilitud			más s	simple, ya que considera	э
que los símbolos enviados son equip	robables ; en camb	oio, el méto	odo de r	náxima	probabili	dad a pc	steriori	⊘ 6	es óptimo en el sentido	de
que minimiza la probabilidad de er	ror.									
máxima probabilidad a posteriori observación observación				detección						
máxima verosimilitud	decisión			est	mación					

Respuesta correcta

Estos son los términos más frecuentes en el estudio de detección de señal.

La respuesta correcta es:

Completar con el texto faltante según corresponda:

Si se transmite una señal aleatoria discreta y en el receptor se la intenta recuperar exactamente, se usa el término [detección.......]. Si la señal transmitida es **continua** y se la trata de recuperar de la mejor forma posible pero **sin poder** reconstruirla exactamente, usamos el término [estimación.......]. El receptor dispone de una [observación.......] de la señal recibida para realizar una [decisión......] de los símbolos transmitidos. De los dos métodos comunes de detección, el de [máxima verosimilitud......] es el más simple, ya que considera que los símbolos enviados son equiprobables; en cambio, el método de [máxima probabilidad a posteriori...] es óptimo en el sentido de que minimiza la probabilidad de error.