

ECONOMICS OF MODERN POWER SYSTEMS

M10 – Network Pricing Step 2: Cost Allocation

Recap: Tariff Design Process

The tariff design is a two-folded process

Learning Outcomes

- What is Cost Allocation?
- Review: power flow analysis
- Explore cost allocation methods
 - Postage Stamp
 - MW-mile
 - Modulus Method
 - Zero Counterflow
 - Incremental Cost
- Case Study

Learning Outcomes – Part2

- Explore cost allocation methods
 - Postage Stamp
 - MW-mile
 - Modulus Method
 - Zero Counterflow
 - Incremental Cost

Case Study

Cost Allocation Principles

Basic Assumptions

Economic Efficiency

- Signaling for the rational use of the network by reducing costs in the expansion and operation (locational signaling)
- No cross-subsidies
- Stability (continuity of the charge)
 - Security to the agents to conduct economic analyzes and feasibility of their new developments
- Remuneration of the grid
 - Generation of sufficient charges to cover annual required revenue (RR)
- Simplicity and ease of regulation
 - Ensuring transparency and reproducibility of results

Cost Allocation Methods

- Three paradigms:
 - Embedded cost
 - Easy to implement
 - Recover all required revenue
 - Lack of economic grounds
 - Incremental cost

Cost per unit of capacity (marginal costs)

Amount of capacity used (power flow)

Fixed costs

- Short term marginal cost (most popular)
- Do not recover all transmission cost
- Composite embedded/incremental cost
 - Solution to the problem
 - Exploit properties of both methods

Embedded Cost

Main Embedded Cost Methods

- Cost are allocated proportionally to the "extent of use" of the network
- Easy to implement
- Some are based on power flow
- Examples
 - Postage Stamp
 - MW-mile
 - Modulus Method
 - Zero Counterflow Method

Postage Stamp

- Every system is affected uniformly for each network usage transaction
- Assessment is made on the basis of the amount of power
- Given a user k, the network charge is given by

$$T_k = RR \frac{D_k}{D_{total}}$$

Widely used for revenue reconciliation

- \blacksquare T_k transmission cost to user k (\$)
- RR network required revenue (\$)
- \square D_k demand of user k (MW)
- lacksquare D_{total} total network demand (MW)
- Cross-subsidies generation point close to the load versus point of injection and withdrawal distant

MW-mile

- Widely used for transmission network pricing
- Formulated based on the distance and active power flow in each line of the network
- Considered the first pricing strategy based on actual use of the system
- Costs are allocated in proportion to the ratio of flow over capacity

$$T_k = \sum_{i=1}^{N} C_i \frac{P_i^k}{\overline{P_i}}$$

- N total number of network elements (line or transformer)
- \Box T_k network charge to user k (\$)
- \Box C_i cost of asset i (\$)
- P_i^k power flow in line/transformer i by user k (MW)
- $lacktriangledown \overline{P_i}$ power flow capacity in /transformer i (MW)
- Since the total circuit power flows are usually smaller than the circuit capacities, this allocation rule does not recover all embedded costs

Modulus method or Usage method

A simple way to ensure recovery of all embedded costs in the MW-mile is to replace the circuit capacities by the sum of absolute power flows

$$T_k = \sum_{i=1}^N C_i \frac{|P_i^k|}{\sum_{s \in S_i} |P_i^s|}$$

- N total number of network elements (line or transformer)
- $lue{S}$ set of agents using i
- \blacksquare T_k transmission cost to user k (\$)
- \square C_i cost of asset i (\$)
- \square P_i^k power flow in line/transformer i by user k (MW)
- $lacktriangleq \overline{P_i}$ power flow capacity in /transformer i (MW)
- Do not differ between user that go on an opposite direction than the net power flow

Zero Counterflow Method

- No charge for the agent whose power flow is in the opposite direction of the net flow
- Only the agents that use the circuit in the same direction of the net flow pay in proportion to their flow
- □ Given a user k, the network charge is given by

$$T_{k} = \begin{cases} \sum_{i=1}^{N} C_{i} \frac{P_{i}^{k}}{\sum_{j \in \Omega_{i+}} P_{i}^{j}} & if \quad P_{i}^{k} \ge 0\\ 0 & if \quad P_{i}^{k} < 0 \end{cases}$$

- N total number of network elements (line or transformer)
- lacksquare Ω_{i+} set of agents using asset I in same direction as net flow
- \blacksquare T_k network charge to user k (\$)
- \square C_i cost of asset i (\$)
- \square P_i^k power flow in line/transformer i by user k (MW)

Modulus method or Usage method

A simple way to ensure recovery of all embedded costs in the MW-mile is to replace the circuit capacities by the sum of absolute power flows

$$T_k = \sum_{i=1}^N C_i \frac{|P_i^k|}{\sum_{s \in S_i} |P_i^s|}$$

- N total number of network elements (line or transformer)
- $lue{S}$ set of agents using i
- \blacksquare T_k transmission cost to user k (\$)
- \square C_i cost of asset i (\$)
- \square P_i^k power flow in line/transformer i by user k (MW)
- $lacktriangleq \overline{P_i}$ power flow capacity in /transformer i (MW)
- Do not differ between user that go on a opposite direction than the net power flow

Zero Counterflow Method

- No charge for the agent whose power flow is in the opposite direction of the net flow
- Only the agents that use the circuit in the same direction of the net flow pay in proportion to their flow
- □ Given a user k, the network charge is given by

$$T_{k} = \begin{cases} \sum_{i=1}^{N} C_{i} \frac{P_{i}^{k}}{\sum_{j \in \Omega_{i+}} P_{i}^{j}} & if \quad P_{i}^{k} \ge 0\\ 0 & if \quad P_{i}^{k} < 0 \end{cases}$$

- N total number of network elements (line or transformer)
- lacksquare Ω_{i+} set of agents using asset I in same direction as net flow
- \blacksquare T_k network charge to user k (\$)
- \square C_i cost of asset i (\$)
- \square P_i^k power flow in line/transformer i by user k (MW)

Summary

Summary

Embedded Cost Methods

Postage Stamp

$$T_k = RR \frac{D_k}{D_{total}}$$

 T_k transmission cost to user k (\$)

RR network required revenue (\$)

 D_k demand of user k (MW)

 D_{total} total network demand (MW)

MW-mile

$$T_k = \sum_{i=1}^{N} C_i \frac{P_i^k}{\overline{P_i}}$$

N # of network elements

 T_k network charge to user k (\$)

 C_i cost of asset i (\$)

 P_i^k power flow in element i caused by user k (MW)

 $\overline{P_i}$ power flow capacity in element i (MW)

Embedded Cost Methods

Modulus Method

$$T_k = \sum_{i=1}^{N} C_i \frac{|P_i^k|}{\sum_{s \in S_i} |P_i^s|}$$

N total number of network elements (line or transformer)

S set of agents using i

 T_k transmission cost to user k (\$)

 C_i cost of asset i (\$)

 P_i^k power flow in line/transformer i by user k (MW)

 $\overline{P_i}$ power flow capacity in line/transformer i (MW)

Zero Counterflow Method

$$T_{k} = \begin{cases} \sum_{i=1}^{N} C_{i} \frac{P_{i}^{k}}{\sum_{j \in \Omega_{i+}} P_{i}^{j}} & if \quad P_{i}^{k} \ge 0\\ 0 & if \quad P_{i}^{k} < 0 \end{cases}$$

N total number of network elements (line or transformer)

 Ω_{i+} set of agents using asset I in same direction as net flow

 T_k network charge to user k (\$)

 C_i cost of asset i (\$)

 P_i^k power flow in line/transformer i by user k (MW)

Some methods require power flow analysis.

Therefore, before we proceed, we need to learn/review power flow...

DC Power Flow Approximation

Following Slides from Daniel Kirshen (University of Washington) - 2011

Power Flow Equations

$$P_{k}^{I} - \sum_{i=1}^{N} V_{k} V_{i} [G_{ki} \cos(\theta_{k} - \theta_{i}) + B_{ki} \sin(\theta_{k} - \theta_{i})] = 0$$

$$Q_{k}^{I} - \sum_{i=1}^{N} V_{k} V_{i} [G_{ki} \sin(\theta_{k} - \theta_{i}) - B_{ki} \cos(\theta_{k} - \theta_{i})] = 0$$

- Set of non-linear equations
- Need a simple linear relation for fast and intuitive analysis
- DC power flow provides such a relation but requires a number of approximations

First Approx.: Neglect Reactive Power

$$P_{k}^{I} - \sum_{i=1}^{N} V_{k} V_{i} [G_{ki} \cos(\theta_{k} - \theta_{i}) + B_{ki} \sin(\theta_{k} - \theta_{i})] = 0$$

$$Q_{k}^{I} - \sum_{i=1}^{N} V_{k} V_{i} [G_{ki} \sin(\theta_{k} - \theta_{i}) - B_{ki} \cos(\theta_{k} - \theta_{i})] = 0$$

$$P_{k}^{I} - \sum_{i=1}^{N} V_{k} V_{i} [G_{ki} \cos(\theta_{k} - \theta_{i}) + B_{ki} \sin(\theta_{k} - \theta_{i})] = 0$$

Impedance and Admittance

Impedance is voltage/current

$$Z = R + jX$$

$$R = resistance = Re(Z)$$

 $X = reactance = Im(Z)$

- Definition: how a group of components pushes against the current flowing
- Resistance is impeding the flow on resistors
- Reactance is impeding the flow in inductors or capacitors

Admittance is current/voltage

$$Y = \frac{1}{Z} = G + jB$$

$$G = conductance = Re(Y)$$

 $B = susceptance = Im(Y)$

- Definition: inverse of impedance, i.e., ability to conduct power
- Conductance is the reciprocal of resistance
- Susceptance is the reciprocal of reactance

Second Approx.: Neglect Resistance of the Branches

$$P_k^I - \sum_{i=1}^N V_k V_i [\Theta_{ki} \cos(\theta_k - \theta_i) + B_{ki} \sin(\theta_k - \theta_i)] = 0$$

$$P_k^I - \sum_{i=1}^N V_k V_i B_{ki} \sin(\theta_k - \theta_i) = 0$$

Third Approx.: Assume All Voltage Magnitudes = 1.0 p.u.

$$P_k^I - \sum_{i=1}^N V_k V_i B_{ki} \sin(\theta_k - \theta_i) = 0$$

$$P_k^I - \sum_{i=1}^N B_{ki} \sin(\theta_k - \theta_i) = 0$$

Fourth Approx.: Assume all angles are small

$$P_k^I - \sum_{i=1}^N B_{ki} \sin(\theta_k - \theta_i) = 0$$

If α is small: $\sin \alpha \approx \alpha$ (α in radians)

$$P_k^I - \sum_{i=1}^N B_{ki} (\theta_k - \theta_i) = 0$$
 or $P_k^I - \sum_{i=1}^N \frac{(\theta_k - \theta_i)}{x_{ki}} = 0$

Interpretation of formulas

Why is it called dc power flow?

- Reactance plays the role of resistance in dc circuit
- Voltage angle plays the role of dc voltage
- Power plays the role of dc current

$$P_{ki} = \frac{(\theta_k - \theta_i)}{x_{ki}}$$

$$I_{ki} = \frac{(V_k - V_i)}{R_{ki}}$$

Matrix representation

Node 1:

$$\begin{split} P_1^I - P_{12} + P_{31} &= 0 \\ P_1^I = P_{12} - P_{31} &= \frac{\theta_1 - \theta_2}{x_{12}} - \frac{\theta_3 - \theta_1}{x_{31}} \\ P_1^I &= \frac{\theta_1}{x_{12}} - \frac{\theta_2}{x_{12}} - \frac{\theta_3}{x_{31}} + \frac{\theta_1}{x_{31}} \\ P_1^I &= \left[\frac{1}{x_{12}} + \frac{1}{x_{13}} \right] \theta_1 - \left[\frac{1}{x_{12}} \right] \theta_2 - \left[\frac{1}{x_{31}} \right] \theta_3 \end{split}$$

Node 2:

$$P_2^I = -\left[\frac{1}{x_{12}}\right]\theta_1 + \left[\frac{1}{x_{12}} + \frac{1}{x_{23}}\right]\theta_2 - \left[\frac{1}{x_{23}}\right]\theta_3$$

Node 3:

$$P_3^I = -\left[\frac{1}{x_{13}}\right]\theta_1 - \left[\frac{1}{x_{23}}\right]\theta_2 + \left[\frac{1}{x_{13}} + \frac{1}{x_{23}}\right]\theta_3$$

Matrix representation (cont'd)

In matrix format:

$$\begin{bmatrix} P_1^I \\ P_2^I \\ P_3^I \end{bmatrix} = \begin{bmatrix} \frac{1}{x_{12}} + \frac{1}{x_{13}} & -\frac{1}{x_{12}} & -\frac{1}{x_{13}} \\ -\frac{1}{x_{12}} & \frac{1}{x_{12}} + \frac{1}{x_{23}} & -\frac{1}{x_{23}} \\ -\frac{1}{x_{13}} & -\frac{1}{x_{23}} & \frac{1}{x_{13}} + \frac{1}{x_{23}} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$P = B\theta$$

Power Flow Example

Example: 6 buses, 3 Gen, 5 Loads

- □ Total demand = 120 MW
- All network elements have capacity of 100 MW

DC Power Flow Computation

Vector P represents injection (generation) withdrawal (load)
 Pg
 Pl
 Vector P

	Pg	Pl	Vector P
1	60	0	60
2	0	20	-20
3	50	10	40
4	0	10	-10
5	0	10	-10
6	10	70	-60

Consider reactance in p.u. for matrix B computation

DC Power Flow Computation (cont'd)

 \square Choosing reference node as node 1, therefore $\theta_1=0$

$$\begin{bmatrix} \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \end{bmatrix} = \begin{bmatrix} 0.0756 & 0.0296 & 0.0542 & 0.0625 & 0.0628 \\ 0.0296 & 0.0603 & 0.0439 & 0.0384 & 0.0381 \\ 0.0542 & 0.0439 & 0.1028 & 0.0687 & 0.0736 \\ 0.0625 & 0.0384 & 0.0687 & 0.0765 \\ 0.0628 & 0.0381 & 0.0736 & 0.0765 & 0.0927 \end{bmatrix} \begin{bmatrix} -20 \\ 40 \\ -10 \\ -5.459 \\ -5.817 \\ -60 \end{bmatrix} = \begin{bmatrix} -5.263 \\ -1.289 \\ -5.459 \\ -5.817 \\ -6.795 \end{bmatrix}$$

 \square Power flow in circuit ij:

Power Flow Results

Case Study

Example: 6 buses, 3 Gen, 5 Loads

- □ Total demand = 120 MW
- Required revenue for the year is \$810.00
- Revenue is equally distributed within networks assets, i.e., all 9 circuits have an associated cost of \$90.00
- All network elements have capacity of 100 MW

Results for Postage Stamp

$$T_{GA} = \frac{810}{2} * \frac{60}{120} = 202.50$$
\$/year

Postage Stamp

		U/D	rustage	z Starrip
		MW	\$/year	\$/MW
	GA	60	202.50	3.375
-	GB	50	?	?
	GC	10	?	?
	Total	120	?	?

G/D

L2	20	?	?
L3	10	?	?
L4	10	?	?
L5	10	?	?
L6	70	?	?
Total	120	?	?

T . –	$RR = \frac{D_k}{R}$	
I_k –	D_{total}	- [

Collected Revenue	?

Charge results for Postage Stamp

G/D [MW] Charge \$/year

Postage Stamp

GA	60	202.50		
GB	50	168.75		
GC	10	33.75		
Total	120	405.00		

L2	20	67.50
L3	10	33.75
L4	10	33.75
L5	10	33.75
L6	70	236.25
Total	120	405.00

Collected Revenue	810.00
-------------------	--------

Results for MW-mile

Missing P_i^k !!!

How do we get P_i^{GA} , P_i^{GB} , P_i^{GC} ?

Is that enough to find all charges?

No, also need P_i^{L2} , P_i^{L3} , P_i^{L4} , P_i^{L5} , P_i^{L6} .

How to find P_i^{GA} ?

To find power flow on each element due to GA

1) remove GA by changing vector P

	Pg	Pl	Vector P		
1	60	0	60		
2	0	20	-20		
3	50	10	40		
4	0	10	-10		
5	0	10	-10		
6	10	70	60		
				New	
	Pg	F	기	Vector P_	
1	0		0 [0	
2	0	20 - (20*6	0/120) = 10	-10	
3	50	10 - (10*6	50/120) = 5	45	
	_			_	
4	0	10 – (10*6	50/120) = 5	-5	
5	0	•	50/120) = 5 50/120) = 5	-5 -5	

- 2) Simulate power flow for the new vector P
- 3) Subtract power flow obtained in 2 from the base case

Power Flow without Generator A

- Take generator A out (60MW) and same amount of load proportionally
- Find new angle vector θ

Find flow corresponding to generator A

			Angle	Flow without GA
De	Para	Reactance (X)	Difference	[MW]
1	2	12	1.58	13.16
1	3	8	-1.05	-13.16
2	5	5	-0.01	-0.19
2	6	12	0.40	3.35
3	4	15	2.32	15.46
3	5	16	2.62	16.39
4	5	12	0.30	2.52
4	6	9	0.72	7.94
5	6	3	0.42	13.72

Results for Power Flow due to GA

From To		Flow [MW]	Flow GA [MW]
1	2	43.87	30.72
1	3	16.13	29.28
2	5	11.13	11.32
2	6	12.75	9.40
3	4	27.81	12.35
3	5	28.32	11.93
4	5	3.00	0.47
4	6	14.81	6.88
5	6	32.44	18.73

Repeat the process for other generators and loads!

Results summary: analysis extended to all loads

From	То	Flow [MW]	Flow G1	Flow G2	Flow G3
1	2	43,86	30,71	13,26	-0,11
1	3	16,11	29,28	-13,29	0,12
2	5	11,08	11,31	0,63	-0,85
2	6	12,77	9,40	4,29	-0,93
3	4	27,80	12,35	15,76	-0,31
3	5	28,30	11,93	16,78	-0,41
4	5	2,98	0,47	2,68	-0,16
4	6	14,84	6,87	8,95	-0,98
5	6	32,60	18,75	16,13	-2,28

From	То	Flow [MW]	Flow C2	Flow C3	Flow C4	Flow C5	Flow C6
1	2	43,86	9,67	1,00	3,05	3,74	26,39
1	3	16,11	0,32	4,00	1,95	1,26	8,58
2	5	11,08	-7,16	0,80	1,94	3,06	12,45
2	6	12,77	-3,14	0,21	1,11	0,66	13,92
3	4	27,80	3,80	-0,83	4,19	2,28	18,38
3	5	28,30	4,85	-1,00	1,92	3,13	19,39
4	5	2,98	1,73	-0,29	-2,67	1,33	2,89
4	6	14,84	2,09	-0,55	-3,15	0,96	15,50
5	6	32,60	-0,62	-0,51	1,23	-2,44	34,94

Charge results for MW Mile

Does this method recover all required revenue?

Charge results for MW Mile

Do not recover all required revenue cost!

Network Usage x Reserve Capacity

- □ Required Revenue = \$810.00
- □ Collected Revenue = \$ 171.23, why?

From	То	Cost	Capacity [MW]	Flow [MW]	Cost*Flow/Capacity
1	2	90	100	43,87	39,49
1	3	90	100	16,13	14,51
2	5	90	100	11,13	10,01
2	6	90	100	12,75	11,47
3	4	90	100	27,81	25,03
3	5	90	100	28,32	25,49
4	5	90	100	3,00	2,70
4	6	90	100	14,81	13,33
5	6	90	100	32,44	29,20
				Total [\$]	171,23

Reserve Capacity Cost

$$=$$
 \$ 810 $-$ \$ 173.23 $=$ \$ 638.77

Modulus Method – Flow summary table

From	То	Flow [MW]	Flow GA	Flow GB	Flow GC	Flow GA + GB + GC
1	2	43,86	30,71	13,26	-0,11	44,09
1	3	16,11	29,28	-13,29	0,12	42,69
2	5	11,08	11,31	0,63	-0,85	12,79
2	6	12,77	9,40	4,29	-0,93	14,62
3	4	27,80	12,35	15,76	-0,31	28,42
3	5	28,30	11,93	16,78	-0,41	29,12
4	5	2,98	0,47	2,68	-0,16	3,31
4	6	14,84	6,87	8,95	-0,98	16,80
5	6	32,60	18,75	16,13	-2,28	37,15

		Flow						Flow
From	То	[MW]	Flow C2	Flow C3	Flow C4	Flow C5	Flow C6	C2 + C3 + C4 + C5 + C6
1	2	43,86	9,67	1,00	3,05	3,74	26,39	43,86
1	3	16,11	0,32	4,00	1,95	1,26	8,58	16,11
2	5	11,08	-7,16	0,80	1,94	3,06	12,45	25,41
2	6	12,77	-3,14	0,21	1,11	0,66	13,92	19,04
3	4	27,80	3,80	-0,83	4,19	2,28	18,38	29,47
3	5	28,30	4,85	-1,00	1,92	3,13	19,39	30,30
4	5	2,98	1,73	-0,29	-2,67	1,33	2,89	8,90
4	6	14,84	2,09	-0,55	-3,15	0,96	15,50	22,26
5	6	32,60	-0,62	-0,51	1,23	-2,44	34,94	39,73

Results for Modulus Method

		•	
GA	60	216.51	3.6085
GB	50	?	?
GC	10	?	?
Total	120	2	2

\$/year

G/D

MW

Modulus

\$/MW

L2	20	?	?
L3	10	?	?
L4	10	?	?
L5	10	?	?
L6	70	?	?
Total	120	?	?

Collected Revenue	810

Results for Modulus Method

	G/D [MW]	Charge \$/year
		Modulus
G1	60	216,51
G2	50	173,67
G3	10	14,82
Total	120	405,00
C2	20	57,54
C3	10	19,96
C4	10	45,09
C5	10	33,95
C6	70	248,45
Total	120	405,00
Collecte	d Revenue	810,00

Zero Counterflow Method – Flow Summary table

From	То	Flow [MW]	Flow GA	Flow GB	Flow GC	Positive Flow Ratio GA	Positive Flow Ratio GB	Positive Flow Ratio GC
1	2	43,86	30,71	13,26	-0,11	0,70	0,30	0,00
1	3	16,11	29,28	-13,29	0,12	1,00	0,00	0,004
2	5	11,08	11,31	0,63	-0,85	0,95	0,05	0,00
2	6	12,77	9,40	4,29	-0,93	0,69	0,31	0,00
3	4	27,80	12,35	15,76	-0,31	0,44	0,56	0,00
3	5	28,30	11,93	16,78	-0,41	0,42	0,58	0,00
4	5	2,98	0,47	2,68	-0,16	0,15	0,85	0,00
4	6	14,84	6,87	8,95	-0,98	0,43	0,57	0,00
5	6	32,60	18,75	16,13	-2,28	0,54	0,46	0,00

F	т.	Flow	Flow	Flow	Flow	Flow	Flow	Positive Flow	Positive Flow	Positive Flow	Positive Flow	Positive Flow
<u>From</u>	<u>To</u>	[MW]	<u>C2</u>	<u>C3</u>	<u>C4</u>	<u>C5</u>	C6	Ratio C2	Ratio C3	Ratio C4	Ratio C5	Ratio C6
1	2	43,86	9,67	1,00	3,05	3,74	26,39	0,22	0,02	0,07	0,09	0,60
1	3	16,11	0,32	4,00	1,95	1,26	8,58	0,02	0,25	0,12	0,08	0,53
2	5	11,08	-7,16	0,80	1,94	3,06	12,45	0,00	0,04	0,11	0,17	0,68
2	6	12,77	-3,14	0,21	1,11	0,66	13,92	0,00	0,01	0,07	0,04	0,88
3	4	27,80	3,80	-0,83	4,19	2,28	18,38	0,13	0,00	0,15	0,08	0,64
3	5	28,30	4,85	-1,00	1,92	3,13	19,39	0,17	0,00	0,07	0,11	0,66
4	5	2,98	1,73	-0,29	-2,67	1,33	2,89	0,29	0,00	0,00	0,22	0,49
4	6	14,84	2,09	-0,55	-3,15	0,96	15,50	0,11	0,00	0,00	0,05	0,84
5	6	32,60	-0,62	-0,51	1,23	-2,44	34,94	0,00	0,00	0,03	0,00	0,97

Results for Zero Counterflow Method

$T_k = \sum_{i=1}^{N} C_i \frac{P_i^k}{\sum_{j \in \Omega_{i+}} P_i^j}$ $if P_i^k \ge 0$
ij i =0

G/D	Zero Co	unterflow
MW	\$/year	\$/MW

GA	60	238.77	3.9795
GB	50	?	
GC	10	?	
Total	120	?	

L2	20	?	
L3	10	?	
L4	10	?	
L5	10	?	
L6	70	?	
GA	120	?	

Collected Revenue	810.00

Results for Zero Counterflow Method

Comparing Generation Charges

Comparing Load Charges

Incremental Costs

Incremental Costs

- Variation of total cost due to the entry of a particular agent
- □ Long or short term
- Incremental cost = difference between the total cost before and after including a new agent/transport transaction
- It can be computed simulating the two cases (before and after) or using the Lagrange multipliers

ICRP method

- Proxy of the long term incremental cost considers an specific system condition and configuration
- Provide generation and consumption tariff at each node of the network
- Don't actually solve optimization model all the time, instead the network charges at each bus are given by

$$\pi_i^g = \sum_{j=1}^N C_j \beta_{ji}$$
 and $\pi_i^c = -\pi_i^g$

- N # of network elements
- Sensitivity mains
- π_i^g network charge for generators at node i (\$/kW)
- π_i^c network charge for consumers at node i (\$/kW)
- \Box C_i cost of asset i (\$)

What is β_{ji} ?

- \square β is a sensitivity matrix
- \square Element β_{ji} power flow variation on element j when we increment 1 pu power in node i;
- \square How de we compute $oldsymbol{eta}$?
 - Matrix Form

$$\beta = D * C * X$$

D = Susceptibility Diagonal Matrix (nl x nl)

C = Connectivity Matrix (nl x nb)

X = Inverse of B with zeros in row and column of the reference node (nb x nb).

2. Power Flow computation with and without the 1 pu at node i

Back to our case study

Now let's compute charges with incremental cost

Beta Matrix Computation

Circuit	From	То	Resistance (R)	Reactance (X%)
1	1	2	0	12
2	1	3	0	8
3	2	5	0	5
4	2	6	0	12
5	3	4	0	15
6	3	5	0	16
7	4	5	0	12
8	4	6	0	9
9	5	6	0	3

Matrix D (nl x nl)									
	_ 1	12	13	14	15	16	17	18	I9 _
l1	8,33	0	0	0	0	0	0	0	0
12	0	12,50	0	0	0	0	0	0	0
13	0	0	20,00	0	0	0	0	0	0
14	0	0	0	8,33	0	0	0	0	0
15	0	0	0	0	6,67	0	0	0	0
16	0	0	0	0	0	6,25	0	0	0
17	0	0	0	0	0	0	8,33	0	0
18	0	0	0	0	0	0	0	11,11	0
19	_ 0	0	0	0	0	0	0	0	33,33_

Matrix	C	(nl	X	nb)

	_ b1	b2	b3	b4	b5	b6	_
l1	1	-1	0	0	0	0	
12	1	0	-1	0	0	0	
13	0	1	0	0	-1	0	
14	0	1	0	0	0	-1	
15	0	0	1	-1	0	0	
16	0	0	1	0	-1	0	
17	0	0	0	1	-1	0	
18	0	0	0	1	0	-1	
19	_ 0	0	0	0	1	-1	

Matrix X (nb x nb)

	_ b1	b2	b3	b4	b 5	b6	
b1	0	0	0	0	0	0	
b2	0	0,0756	0,0296	0,0542	0,0625	0,0628	
b3	0	0,0296	0,0603	0,0439	0,0384	0,0381	
b4	0	0,0542	0,0439	0,1028	0,0687	0,0736	
b5	0	0,0625	0,0384	0,0687	0,0826	0,0765	
b6	_ 0	0,0628	0,0381	0,0736	0,0765	0,0927	

Beta matrix computation (cont'd)

 \Box Beta matrix can also be used for power flow calculation $F = \beta P$

Exactly what we had before!

Computing Network Charge π

Bus	Generation	Load	πg	πο
1	60	0	0,000	0,000
2	0	20	-1,058	1,058
3	50	10	-0,793	0,793
4	0	10	-1,399	1,399
5	0	10	-1,797	1,797
6	10	70	-2,498	2,498

- \square Network charge for generator Eg = π g * G
- □ Network charge for load $Ec = \pi c * D$

							Collected Revenue [\$]	171,30
Bus	Generation	Load	πg	Eg	πς	Ec		
1	60	0	0,000	0,00	0,000	0,00		
2	0	20	-1,058	0,00	1,058	21,16		• -
3	50	10	-0,793	-39,63	0,793	7,93	Just as in MW mile	it recovers
4	0	10	-1,399	0,00	1,399	13,99	only the cost related	d to the used
5	0	10	-1,797	0,00	1,797	17,97	•	
6	10	70	-2,498	-24,98	2,498	174,86	portion of the	network
				-64.61		235,91		

Comparing Gen Charges

Comparing Load Charges

THANK YOU!

luana.marangon.lima@duke.edu