- In [1]: ▶ import numpy as np #imported numpy library
- In [2]: ▶ import pandas as pd # imported pandas library
- In [4]:

 import matplotlib.pyplot as plt # imported matplot library

 matplotlib inline # inline function will allow us to see the approaching jupyter
- In [6]: #to load the data set from excelfile into jupyter environment
 dataset = pd.read_excel("C:/Users/subed/OneDrive/Desktop/garments_worker_productive
- In [7]: ► dataset # calling dataset.it shows first five and last five rows with all columns # dimention of dataset = 1197 rows × 15 columns

Out[7]:

	date	quarter	department	day	team	targeted_productivity	smv	wip	over_time
0	2015- 01-01	Quarter1	sweing	Thursday	8	0.80	26.16	1108.0	7080
1	2015 - 01-01	Quarter1	finishing	Thursday	1	0.75	3.94	NaN	960
2	2015- 01-01	Quarter1	sweing	Thursday	11	0.80	11.41	968.0	3660
3	2015- 01-01	Quarter1	sweing	Thursday	12	0.80	11.41	968.0	3660
4	2015- 01-01	Quarter1	sweing	Thursday	6	0.80	25.90	1170.0	1920
1192	2015- 03-11	Quarter2	finishing	Wednesday	10	0.75	2.90	NaN	960
1193	2015- 03-11	Quarter2	finishing	Wednesday	8	0.70	3.90	NaN	960
1194	2015- 03-11	Quarter2	finishing	Wednesday	7	0.65	3.90	NaN	960
1195	2015- 03-11	Quarter2	finishing	Wednesday	9	0.75	2.90	NaN	1800
1196	2015- 03-11	Quarter2	finishing	Wednesday	6	0.70	2.90	NaN	720

1197 rows × 15 columns

4

```
In [8]:
         ▶ dataset.columns # this displays all the columns name in console
            #smv = standard minute value
            #wip= work in progress
            # over time = amount of overtime done by each team in minute
            # targeted productivity: is productivity set by authority for each team for each d
            # actual productivity : is the productivity delivered by workers in % ( from 0 to
    'no of style change', 'no of workers', 'actual productivity'],
                  dtype='object')
In [14]:
         ▶ #plotting box_plot
            ''' Introduction of box plot
            A box plot is a graphical display of the distribution of data.
            It helps to interpret data on the basis of 5 key numbers.
            They are minimum, first quartile, median, third quartile and maximum with outliers
            IQR: distance between first and third quartile.
            Whiskers: lines beyonds the IQR ( = 1.5* IQR on either side)
            Outliners: numbers beyonds the minimum and maximum points.
            # what inference can we get from box plot/ Applications
            # About the median value of data
            # About the distribution of data (either unifrom or skewed)/Symmetry of data
            # About the degree of dispersion of data
            # outliners values
            # data skewness
            plt.boxplot(dataset.over_time)
                                           # Creating plot
            plt.ylabel('over time pay')
            plt.title('A Boxplot')
            plt.grid(True)
                       # show plot
            plt.show()
            # By defalult it is single horizontal box plot.
```


Out[33]: 'we got three department, where the targeted productivity is almost equal to 0.8 (around 80%)\nwith minimum value of 0.6'

In [34]: N sns.boxplot(x='department', y='actual_productivity',data = dataset)
 '''But what we got is the actual productivity is better than the expected one. tha higher efficiency in result.
 The finishing department has highest actual_productivity of around
 '''
By compairing the data result of we can say that the workers and working environ

Out[34]: <AxesSubplot:xlabel='department', ylabel='actual_productivity'>

Out[35]: <AxesSubplot:xlabel='day', ylabel='actual_productivity'>

Out[37]: <AxesSubplot:xlabel='team', ylabel='actual_productivity'>

In [43]: In sns.boxplot(y='incentive', x='department',data = dataset)
We see that only sweing department got incentive though the actual_productivity

Out[43]: []

Out[44]: <AxesSubplot:xlabel='department', ylabel='over_time'>


```
In [46]: In sns.boxplot(x='team', y='over_time',data = dataset, hue = 'department')
# This implies overtime is higest paid in dep 1,4,7,9 of sweing department.
```

Out[46]: <AxesSubplot:xlabel='team', ylabel='over_time'>


```
In [52]: In sns.boxplot(x='team', y='no_of_workers',data = dataset)
# team 6 and 12 has less numbers of workers in comparision of others.
```

Out[52]: <AxesSubplot:xlabel='team', ylabel='no_of_workers'>

In []: ▶