Report 12

Rainzor

1. Question

推导正方格子点阵上键逾渗的重整化群变换表达式 p'=R(p),求临界点 p_c 与临界指数 ν ,与正确值(下表)相比较。

表1.6.1.3-1 各种点阵下座逾渗与键逾渗的逾渗阈值 p_c				
维数	点阵	座逾渗 p _c	键逾渗 pc	配位数
2	三角形	0.500000	0.34729	6
2	正方形	0.592746	0.50000	4
2	Kagome	0.6527	0.45	4
2	蜂房形	0.6962	0.65271	3
3	面心立方	0.198	0.119	12
3	体心立方	0.246	0.1803	8
3	简立方	0.3116	0.2488	6
3	金刚石	0.428	0.388	4
3	无规密堆积	0.27(实验值)		
4	简立方	0.197	0.160	8
5	简立方	0.141	0.118	10
6	简立方	0.107	0.094	12

表1 ## 2. Answer

2.1 临界点 p_c

本题要讨论的是正方形点阵上的键逾渗,而键逾渗有6条相邻的键,如下图所示

图1: 方阵键逾渗

且与两边有两个点联通,与上下有四个点联通,但实际上这个结构与三角形的座逾渗结构十分相似,如下 图所示:

图2: 三角阵座逾渗

与图1的结构一样,中心的点有6个相邻的座,二者是同构。

那么为了方便问题的讨论,我们就可以把问题转化成:讨论三角格子点阵上座逾渗的临界点 p_c 与临界指数 ν_c

我们重整化方式如下,取尺度放大因子为2的元胞。

图3: b=2元胞

一共有三种情况可以联通

1. 四个点都占据

图4: 四个点占据

2. 三个点占据

图5:三个点占据 3.两个点占据

图6:两个点占据

假设格点的占据几率为 p, 对于 $\mathbf{b}=\mathbf{2}$, 上下端连接的图形有7个(图1.6.3.3-1),其变换表达式为

\$\$

 $p' = R(p | b=2)=p^4+4p^3(1-p)+3p^2(1-p)^2$

\$\$

一般来说,重整化后的格子点阵占据几率 p ' 相异于原格子点阵的占据几率 p , 但对于零界点 p_c , 它满足关系式:

\$\$

 $p_c = R(p_c) \times 2$

\$\$

由 (1) (2) 解出非平凡的值为 $\mathbf{p_c} = \mathbf{0.5}$, 与表1对比可以看出,与正确值一样

2.2 临界指数 ν

为了计算临界指数 ν , 对 (1) 式求导

\$\$

 $R'(p) = 4p^3 + 12p^2(1-p) - 4p^3 + 6p(1-p)^2 - 6p^2(1-p) = 6(1-p)p \setminus tag3$

\$\$

那么在 p_c 处的值为 $R'(p_c) = 1.5$,那么可以解得临界指数为

\$\$

 $\label{line} $$ \sum_{frac{\ln b}{\ln k}=\frac{1.5}{approx1.7095}} $$

\$\$

与正确的值对比 $p^*=0.5, \nu^*=4/3$,可见 p_c 求得了精确值,而 ν 的值有所差距,但对于b=2的简单情况来说,近似结果已经不错了。可能对于较大的b,结果可能会得到更好的改善。