Arquitectura de Computadores I

Vírgula flutuante - standard IEEE754

Miguel Barão

Resumo

Vírgula fixa

Vírgula flutuante

Formato binário IEEE754

Precisões simples e dupla

Overflow e underflow

Problemas numéricos no cálculo em vírgula flutuante

Vírgula flutuante em RISC-V

Revisão: Conversão de números fraccionários para binário

$$14.375 = 14 + 0.375 =$$

Parte inteira converte-se com divisões por 2:

$$14_{\text{dec}} = 1110_{\text{bin}}$$

Revisão: Conversão de números fraccionários para binário

$$14.375 = 14 + 0.375 = 1110.011\bar{0}_{bin}$$

Parte inteira converte-se com divisões por 2:

$$\begin{array}{c|cccc}
 & 14 & & & \\
\hline
 & 7 & 0 & & \\
 & 3 & 1 & & \\
 & 1 & 1 & & \\
 & 0 & 1 & & \\
\hline
 & 14_{dec} & = 1110_{bin} & & \\
\end{array}$$

Parte fraccionária convete-se com multiplicações por 2:

$$0.625_{\text{dec}}=0.011\bar{0}_{\text{bin}}$$

Vírgula fixa

Vírgula fixa

Vírgula fixa representa números com número fixo de algarismos à esquerda e direita da vírgula

Simples, pode ser implementada recorrendo a números inteiros.

Vírgula fixa

Vírgula fixa representa números com número fixo de algarismos à esquerda e direita da vírgula

$$a_2 \mid a_1 \mid a_0. \mid a_{-1} \mid a_{-2} \mid a_{-3} \mid a_{-4}$$

Simples, pode ser implementada recorrendo a números inteiros.

Por exemplo, com 2 casas decimais

$$12.30 \times 6.02 = (1230 \times 10^{-2}) \times (602 \times 10^{-2})$$
$$= 740460 \times 10^{-4}$$
$$= 74.0480$$
$$\approx 74.05$$

Tipicamente, usa-se vírgula fixa em base decimal para representar valores monetários.

Vírgula flutuante

Vírgula flutuante

Vírgula flutuante consiste na representação de números no formato

$$significando \times base^{expoente}$$

onde

- base é normalmente 10 ou 2.
- expoente é um número inteiro.
- lacksquare significando é um número $1 \leq x < {\sf base}$.

Vírgula flutuante

Vírgula flutuante consiste na representação de números no formato

$$significando \times base^{expoente}$$

onde

- base é normalmente 10 ou 2.
- expoente é um número inteiro.
- significando é um número $1 \le x <$ base.

Exemplos de vírgula flutuante em base decimal:

- $3.14159265359 \longrightarrow 3.14159265359 \times 10^{0}$
- $-0.0012345 \longrightarrow -1.2345 \times 10^{-3}$
- $\blacksquare 1024 \longrightarrow 1.024 \times 10^3$

0.375 =

$$\blacksquare 0.375 = 0.011_{bin} =$$

- \bullet 0.375 = 0.011_{bin} = 1.1_{bin} × 2⁻²
- **■** 128 =

- $0.375 = 0.011_{\text{bin}} = 1.1_{\text{bin}} \times 2^{-2}$
- $\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$
- 3.25 =

- $0.375 = 0.011_{\text{bin}} = 1.1_{\text{bin}} \times 2^{-2}$
- $\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$
- $\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$
- **■** 0.1 =

$$\bullet$$
 0.375 = 0.011_{bin} = 1.1_{bin} × 2⁻²

$$\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$$

$$\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$$

$$\blacksquare \ 0.1 = \underbrace{0.0001100110011 \ldots_{bin}}_{\text{d\'{z}ima infinita}} =$$

- \bullet 0.375 = 0.011_{bin} = 1.1_{bin} × 2⁻²
- $\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$
- $\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$
- $0.1 = \underbrace{0.0001100110011..._{bin}}_{\text{dízima infinita}} = 1.100110011..._{bin} \times 2^{-4}$

$$\bullet$$
 0.375 = 0.011_{bin} = 1.1_{bin} × 2⁻²

$$\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$$

$$\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$$

■
$$0.1 = \underbrace{0.0001100110011..._{bin}}_{\text{dízima infinita}} = 1.100110011..._{bin} \times 2^{-4}$$

■ $0.2 = 0.001100110011..._{bin} = 1.1001100110011..._{bin} \times 2^{-3}$

- \bullet 0.375 = 0.011_{bin} = 1.1_{bin} × 2⁻²
- $\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$
- $\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$
- $0.1 = \underbrace{0.0001100110011..._{bin}}_{\text{dízima infinita}} = 1.100110011..._{bin} \times 2^{-4}$
- $0.2 = 0.001100110011..._{bin} = 1.1001100110011..._{bin} \times 2^{-3}$
- $0.3 = 0.010011001100..._{bin} = 1.0011001100110..._{bin} \times 2^{-2}$

A maioria dos números não têm representação exacta!

Há muitos números com dízima finita em decimal, mas com dízima infinita em binário!

- $0.375 = 0.011_{\text{bin}} = 1.1_{\text{bin}} \times 2^{-2}$
- $\blacksquare 128 = 10000000_{\text{bin}} = 1.0_{\text{bin}} \times 2^7$
- $\blacksquare 3.25 = 11.01_{\text{bin}} = 1.101_{\text{bin}} \times 2^1$
- $0.1 = \underbrace{0.0001100110011..._{bin}}_{\text{dízima infinita}} = 1.100110011..._{bin} \times 2^{-4}$
- $0.2 = 0.001100110011..._{bin} = 1.1001100110011..._{bin} \times 2^{-3}$
- $0.3 = 0.010011001100..._{bin} = 1.0011001100110..._{bin} \times 2^{-2}$

A maioria dos números não têm representação exacta!

- Há muitos números com dízima finita em decimal, mas com dízima infinita em binário!
- Apenas os números que são somas de potências de 2 têm dízima finita em binário.

Formato binário IEEE754

IEEE754

O standard IEEE754 especifica como os números em vírgula flutuante são codificados:

float precisão simples: 32 bits

double precisão dupla: 64 bits

IEEE754

O standard IEEE754 especifica como os números em vírgula flutuante são codificados:

float precisão simples: 32 bits double precisão dupla: 64 bits

Adicionalmente são definidos os símbolos:

 $\pm Inf$ representa infinito, e.g. devido a overflow.

NaN not-a-number representa resultados indefinidos.

 $\pm 0.0\,$ zeros são números especiais.

Precisões simples e dupla

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin} , i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin} , i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin}, i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin}, i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin} , i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

```
\pm (1 bit) expoente (8 bits) significando (23 bits + 1)
```

Expoente:

- entre 00000001_{bin} e 111111110_{bin} , i.e. de 1 a 254 decimal.
- expoente é biased: 2^0 é codificado com $127 = 011111111_{bin}$.

- Na realidade são 24 bits (um dos bits está escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

Infinito: Inf

O infinito é gerado em várias situações:

- Quando uma operação resulta em overflow.
- Divisão por zero: 1.0/0.0 = Inf ou -1.0/0.0 = -Inf.
- Funções podem definir esse resultado: log(0.0) = -Inf.

Formato:

0 11111111	000000000000000000000000000000000000000	+Inf
1 11111111	000000000000000000000000000000000000000	-Inf

Algumas propriedades:

- $\blacksquare x + Inf = Inf$, onde x é um número finito.
- $\blacksquare x/Inf = 0.0$, se $x \neq \pm Inf$, NaN.
- $= \exp(-Inf) = 0.0$
- = 1.0/ 0.0 = -Inf

Not-a-Number: NaN

O Not-a-Number é gerado em várias situações:

- 0.0/0.0 = NaN
- $\blacksquare 0.0 * Inf = NaN$
- Inf Inf = NaN.

Formato:

Algumas propriedades:

- Os Not-a-Number tem tendência a propagar-se e contaminar os resultados seguintes.
- $\mathbf{x} + \mathbf{NaN} = \mathbf{NaN}.$
- A comparação NaN = NaN é *FALSA*.
- A comparação NaN \neq NaN é *VERDADEIRA*.
- $\blacksquare 1.0^{\text{NaN}} == 1.0.$

Zero: 0.0

Existem dois zeros:

- -+0.0
- -0.0

Formato:

Algumas propriedades:

- O zero não é um número em vírgula flutuante regular.
- Não se considera o bit escondido no significando.
- A comparação 0.0 = -0.0 é *VERDADEIRA*.
- 1.0/0.0 = +Inf enquanto que 1.0/(-0.0) = -Inf.
- \bullet 0.0^{0.0} = 1.0.

Precisão dupla: double (64 bits)

\pm (1 bit) expoente (11 bits)	significando (52 bits + 1)
----------------------------------	----------------------------

Expoente:

- \blacksquare entre 00000000001_{bin} e $1111111111111_{\text{bin}}$, i.e. de 1 a 2046.
- expoente é biased: 2^0 é codificado com $1023 = 011111111111_{bin}$.

- Na realidade são 53 bits (há 1 bit escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

Precisão dupla: double (64 bits)

```
\pm (1 bit) expoente (11 bits) significando (52 bits + 1)
```

Expoente:

- \blacksquare entre 00000000001_{bin} e $1111111111111_{\text{bin}}$, i.e. de 1 a 2046.
- expoente é biased: 2^0 é codificado com $1023 = 0111111111111_{bin}$.

Significando:

- Na realidade são 53 bits (há 1 bit escondido).
- O primeiro bit é sempre 1 e não é representado (é o bit escondido).

Que números são estes?

Overflow e underflow

Overflow e underflow

Overflow ocorre quando o expoente atinge 128 em precisão simples, ou 1024 em precisão dupla. Nesta situação deixa de ser possível representar o número em vírgula flutuante, passando o resultado a ser representado por ±Inf.

Underflow ocorre quando o expoente atinge -127 em precisão simples, ou -1023 em precisão dupla, e o significando é nulo. Nesta situação deixa de ser possível representar o número em vírgula flutuante, passando o resultado a ser representado por ± 0.0 .

Underflow progressivo ocorre quando o expoente atinge -127 ou -1023, em precisão simples ou dupla, e o significando ainda não é nulo. Nesta situação, o número deixa de ser normal, passando a ser um número não normalizado ou subnormal. Estes números perdem progressivamente precisão à medida que se aproximam de um underflow.

Problemas numéricos no cálculo em vírgula flutuante

- **1** Calcule (0.1 + 0.2) + 0.3
- **2** Calcule 0.1 + (0.2 + 0.3)

- **1** Calcule (0.1 + 0.2) + 0.3
- **2** Calcule 0.1 + (0.2 + 0.3)

Resultado em precisão dupla:

A adição é associativa?

- **1** Calcule (0.1 + 0.2) + 0.3
- 2 Calcule 0.1 + (0.2 + 0.3)

Resultado em precisão dupla:

A adição é associativa?

- Em matemática Sim
- Em vírgula flutuante Não...

Caso notável:

$$x^{2} - y^{2} = (x+y)(x-y)$$

Será válido em vírgula flutuante?

Suponhamos que x e y são números próximos. Por exemplo,

$$x = 0.9999, \quad y = 0.9998$$

obtemos

$$x^2 - y^2 \approx 0.00019997000000004928$$

 $(x - y)(x + y) \approx 0.00019996999999998$

valor correcto: 0.00019997

Problemas numéricos na vírgula flutuante

- Operações em decimal e binário dão resultados diferentes.
- Conversão para binário introduz erros.
- Propriedades das operações (e.g. associatividade) não são satisfeitas.
- Erros acumulam-se à medida que se realizam mais operações.
- Não usar vírgula flutuante para valores monetários (se necessário, implementar cálculos decimais em software em vez de usar a vírgula flutuante do cpu.)

Distância entre números

■ Inteiros:

A distância entre os números inteiros é constante em toda a escala.

■ Vírgula flutuante:

Distância entre números

■ Inteiros:

A distância entre os números inteiros é constante em toda a escala.

■ Vírgula flutuante:

A resolução de um número em vírgula flutuante varia com o expoente.

Vírgula flutuante em RISC-V

Vírgula flutuante na arquitectura RISC-V

- O suporte de vírgula flutuante é opcional na arquitectura RISC-V.
- A extensão F adiciona registos específicos para vírgula flutuante:
 - 32 registos de 32 bits **f0-f31**.
 - 1 registo fcsr (Floating-point Control and Status Register).

Floating-point registers

Reserved	Rounding Mode	NV	DZ	OF	UF	NX
Floating-point Control and Status Register						

Instruções de vírgula flutuante RISC-V

São adicionadas várias instruções novas:

```
flw f0, 0(t0)
                     # float load word
fsw f0, 4(t0)
                   # float store word
fadd.s f2, f0, f1 # soma em vírgula flutuante
fsub.s f2, f0, f1 # subtracção
fmul.s f2, f0, f1 # multiplicação
fdiv.s f2, f0, f1 # divisão
fmin.s f2, f0, f1 # menor de dois números
fmax.s f2, f0, f1 # maior de dois números
fsgrt.s f2, f0 # raíz guadrada
fmadd.s f3, f0, f1, f2 # multiply-add f3 = f0*f1+f2
fmsub.s f3, f0, f1, f2 # multiply-sub f3 = f0*f1-f2
```

e mais algumas...