ULTRA-LOW POWER 2.4GHz WI-FI + BLUETOOTH SMART SOC

低功耗解决方案

http://www.opulinks.com/

Copyright © 2017-2018, Opulinks. All Rights Reserved.

REVISION HISTORY

TABLE OF CONTENTS

1.	介紹_		1
	1.1.	文檔應用範圍	1
	1.2.		
	1.3.	參考文獻	1
2.	概述_		2
3.	Smai	rt-SLEEP	
	3.1.		
	3.2.	AT 命令接口說明	
		3.2.1. 啟用 Smart-Sleep	
	3.3.	API 接口說明	
	3.4.		
	3.5.	应用	6
4.		r-Sleep	
			7
		AT 命令接口說明	
		4.2.1.1. 自動休眠	7
	4.3.	API 接口說明	8
	4.4.	外部喚醒	9
	4.5.	应用	9
5.		10	
		AT 命令接口說明	
		5.1.1. 使能 Deep-Sleep	10
	5.2.	API 接口說明	
	5.3.		11
	5.4.	应用	11

1. 介紹

1.1. 文檔應用範圍

低功耗解决方案用於 **OPL1000** 蕊片的省電功能。本文介紹了低功耗的一些解决方案,讓用戶可以根據不同的情境之下,來選擇一個適合用戶的低功耗方案,進而達到省電的效果。

1.2. 縮略語

Abbr.	Explanation
BLE	Bluetooth Low Energy
API	Application Programming Interface
DTIM	Delivery Traffic Indication Message
AT	Attention 終端命令指令集

1.3. 參考文獻

[1] OPL1000-AT-instruction-set-and-examples.pdf

2. 概述

OPL1000 系列芯片提供三种可配置的睡眠模式,针对这些睡眠模式,我们提供了多种低功耗解决方案,用户可以结合具体需求选择睡眠模式并进行配置。芯片支持的三种睡眠模式如下:

- Smart-sleep
- •Timer-sleep
- Deep-sleep

三种模式的区别如表 2-1 所示。

表 2-1 三种睡眠模式比较

項目		Smart-sleep		Timer-sleep		Deep-sleep
		自動	強制	自動	強制	強制
Wi-Fi 连接		保持	断连	保持	断连	断连
GPI	GPIO 状态		0	0	0	0
W	/i-Fi	V	Х	Х	Х	х
系统	系统时钟		V	V	V	х
F	RTC		V	V	V	х
C	CPU		Х	Х	Х	х
衬廊	衬底电流					
	DTIM =1			Х	Х	х
平均電 流	DTIM =3			Х	Х	х
//IL	DTIM =10			Х	Х	х
5.5	100ms			Х	Х	х
BLE	500ms			Х	Х	х
連線	1000ms			х	Х	Х

CHAPTER ONE

	4000ms		Х	Х	Х
BLE	20ms		Х	Х	Х
廣播	10s		Х	Х	Х

3. SMART-SLEEP

3.1. 特性

目前 OPL1000 的 Smart-Sleep 仅工作在 Station 模式下,於 WIFI 系統中是由连接路由器后生效,OPL1000 並通过 Wi-Fi 的 DTIM 机制与路由器保持连接。

一般 WIFI 路由器的 Beacon 间隔为 100 ms ~ 1,000 ms · DTIM 為 1 ·

後續章節將說明可經由軟件提供的跳過 DTIM (skip DTIM) 功能達到更省電的操作。

當有下列情況時,可以使用此功能

- Wi-Fi 己連線
- Wi-Fi 掃描中
- BLE 己連線
- BLE 廣播

在 Smart-Sleep 模式下,OPL1000 WIFI 系統本身会自動調整两次 DTIM Beacon 间隔时间的接收長短,关闭或開啟 Wi-Fi 模块电路,达到省电效果。在時間快到達的下次 Beacon 到来前自动唤醒, 是透過 32K RTC 的振盪器來實現。睡眠同时可以保持与路由器的 Wi-Fi 连接,并通过路由器接受来自手机或者服务器的交互信息。

3.2. AT 命令接口說明

3.2.1. 啟用 Smart-Sleep

系統通過以下 AT 指令進入 Smart-Sleep 模式。

AT+SLEEP < mode>, < ext io>

参数说明:

mode

0: 關閉 smart sleep

1: 啟用 smart sleep

ext_io

喚醒的 IO 埠號

3.3. API 接口說明

啟用 Smart Sleep,系統在連線期間,並且在閒置的狀態時,系統會自動的進入睡眠模式。
Smart Sleep 持續會運作,直到外部的觸發喚醒而中止。

void ps_smart_sleep(int enable);

参数说明:

int enable

啟用 Smart Sleep。

可以通過以下 API 接口,設定外部的輸入埠號,來達到喚醒。

void ps_set_wakeup_io(E_Gpioldx_t ext_io_num, E_ItrType_t ext_io_type);

参数说明:

E_Gpioldx_t ext_io_num

唤醒功能的 IO 序號

E_ltrType_t

ext_io_type

喚醒的觸發模式

用戶可以自行定義,當系統被喚醒之後,會做那些動作。

void ps_set_wakeup_cb(PS_WAKEUP_CALLBACK callback);

参数说明:

PS_WAKEUP_CALLBACK callback

用戶可以自行定義的 callback 函式。

3.4. 外部喚醒

在 Smart-Sleep 模式下,CPU 在暂停状态下不会响应来自外围硬件接口的信号與中斷,因此需要通过外部 GPIO 信号将 OPL1000 唤醒,硬件唤醒过程大约为 1 ms。

3.5. 应用

Smart-Sleep 可以用于低功耗的传感器应用,或者大部分时间都不需要进行数据传输的情况之下。

例如,當 BLE (Bluetooth Low Energy) 正在廣播,之後想讓 BLE 進入休眠模式,可以使用 Smart-Sleep 的 AT 指令或 API 來控制實現,休眠的同時也可以做配對的動作,當有需要喚醒传感器時可以配合 GPIO 腳位來控制喚醒。

4. TIMER-SLEEP

4.1. 特性

有下列情況時,皆不可以使用。

- Wi-Fi 己連線
- Wi-Fi 掃描中
- BLE 己連線
- BLE 廣播

系统无法自动进入 Timer-Sleep,需要由用户调用 AT 指令或是於代碼中呼叫 API 来控制。在该模式下,芯片会断开所有 Wi-Fi 连接与数据连接,进入睡眠模式,只有 RTC 模块仍然工作,负责芯片的定时唤醒。

4.2. AT 命令接口說明

4.2.1.1. 自動休眠

系統通過以下 AT 指令進入 Timer-Sleep 模式。

AT+SLEEP <mode>,<sleep_duration>,<ext_io>

参数说明:

mode

2: 使用 timer sleep

Sleep_duration

睡眠週期,單位 millisecond

ext_io

唤醒的 IO 埠號

在 Timer-Sleep 模式下,系统可以自动被唤醒。

4.3. API 接口說明

啟用 Timer Sleep,系統會進入睡眠模式,直到外部的觸發喚醒,或者 Timer 時間終止。

void ps_timer_sleep(uint32_t sleep_duration_ms);

参数说明:

uint32_t sleep_duration_ms

睡眠到喚醒的時間長度,單位為 millisecond.

可以通過以下 API 接口,設定外部的輸入埠號,來達到喚醒。

void ps_set_wakeup_io(E_Gpioldx_t ext_io_num, E_ltrType_t ext_io_type);

参数说明:

E_Gpioldx_t

ext_io_num

唤醒功能的 IO 序號

 $E_ItrType_t$

ext_io_type

唤醒的觸發模式

用戶可以自行定義,當系統被喚醒之後,會做那些動作。

void ps_set_wakeup_cb(PS_WAKEUP_CALLBACK callback);

参数说明:

PS_WAKEUP_CALLBACK

callback

用戶可以自行定義的 callback 函式。

4.4. 外部喚醒

在 Timer-sleep 模式下,CPU 在暂停状态下不会响应来自外围硬件接口的信号與中斷,因此需要通过外部 GPIO 信号将 OPL1000 唤醒,硬件唤醒过程大约为 1 ms。

4.5. 应用

當客戶清楚知道,應用本身會有多久的時間間隔,可以使用 Timer-Sleep 來實現休眠模式。

例如,传感器需要每五分鐘傳遞資料時,可以使用 Timer-Sleep 來實現。使用 Timer-Sleep 會讓传感器固定五分鐘喚醒,偵測資料並傳送資料到雲端,隨後又進入睡眠模式。

5. DEEP-SLEEP

相對於 IC 的 Timer-sleep 模式,系統無法自動進入 Deep-sleep,需要由用戶調用函式接口來控制。在該模式下,芯片會斷開所有 Wi-Fi 連結與數據連結,進入睡眠模式,RTC 模塊也沒有動作,只能透過外部的 GPIO 來喚醒芯片。

5.1. AT 命令接口說明

5.1.1. 使能 Deep-Sleep

系統通過以下 AT 指令進入 Deep-Sleep 模式。

AT+SLEEP <mode>,<ext_io>

参数说明:

mode

3: 啟用 deep sleep

ext_io

唤醒的 IO 埠號

5.2. API 接口說明

啟用 Deep Sleep,系統會進入睡眠模式,直到外部的觸發喚醒。

void ps_deep_sleep(void);

可以通過以下 API 接口,設定外部的輸入埠號,來達到喚醒。

void ps_set_wakeup_io(E_Gpioldx_t ext_io_num, E_ItrType_t ext_io_type);

参数说明:

E_Gpioldx_t ext_io_num

唤醒功能的 IO 序號

E_ltrType_t ext_io_type

唤醒的觸發模式

用戶可以自行定義,當系統被喚醒之後,會做那些動作。

void ps_set_wakeup_cb(PS_WAKEUP_CALLBACK callback);

参数说明:

PS_WAKEUP_CALLBACK callback

用戶可以自行定義的 callback 函式。

5.3. 外部喚醒

在 Deep-Sleep 模式下,CPU 在暂停状态下不会响应来自外围硬件接口的信号與中斷,因此需要通过外部 GPIO 信号将 OPL1000 唤醒,硬件唤醒过程大约为 1 ms。當唤醒之後,整個流程是從 cold-boot 的初始流程開始進行。

5.4. 应用

當客戶清楚知道,應用本身只有在事件完成時,才會觸發。這樣的應用,即可以使用 Deep-Sleep 來實現休眠模式。

例如,當一台洗衣機已經洗完衣服了,之後會利用外部的 GPIO 來觸發传感器,要传感器把洗完衣服,這個事件的資訊傳送到雲端上面。隨後洗衣機會在利用外部的 GPIO 來觸發传感器,讓传感器再次進入 Deep Sleep 的睡眠模式。

CONTACT

sales@Opulinks.com

