Formulario Álgebra lineal

1. Concepto.

Matriz es un arreglo rectangular de números ordenados en filas y columnas encerrados entre dos corchetes. Matemáticamente:

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m \cdot n} \end{bmatrix}$$

Donde:

A = nombre de la matriz. $m \times n = tamaño$ de la matriz.

m = filas. n = columnas.

 a_{ij} = elemento genérico de la matriz y significa que está ubicado en fila "i" y la columna "j".

2. Propiedades de las Matrices.

1. Propiedades de la Suma.

- $1. \qquad A_{m \times n} + A_{m \times n} = A_{m \times n}$
- 2. A + B = B + A
- 3. A + (B + C) = (A + B) + C

Propiedades de la Matriz Cero.

- 1. $A + \theta = \theta + A = A$
- 2. $\theta A = -A$
- 3. $A + (-A) = A A = \theta$
- 4. $A\theta = \theta$; $\theta A = \theta$

Donde: $\theta = \text{matriz cero (nulo)}$. (-A) = inverso aditivo.

2. Propiedades del Producto.

- $A_{m\times n}\times B_{p\times q}=C_{m\times q}$ Donde: n = p
- 2. A(B+C) = AB + AC
- 3. (A+B)C = AC + BC
- 4. A(BC) = (AB)C
- 5. AI = A; I = matriz indentidad.
- 6. $AB \neq BA$ en el producto.
- 7. $k \cdot A_{m \times n} = [k \cdot a_{i,i}]$ $k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$ k = escalar.
- 8. k(A + B) = kA + kB
- 9. $k_1(k_2A) = (k_1k_2)A$
- 10. $(A + B)^2 \neq A^2 + 2AB + B^2$ ya que el producto no es conmutativo.
- 11. No cumple la propiedad cancelativa: AB = AC ??

3. Propiedades de la Potencia.

- 1. $A^0 = I$
 - 2. $A^n = AAA \cdots A$
 - 3. $A^r A^s = A^{r+s}$
 - $4. \quad (A^r)^s = A^{rs}$

4. Matriz Polinomial.

 $P_{(x)} = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

Si A = matriz, entonces se define:

$$P_{(A)} = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n$$

3. Tipos de Matrices.

1. Matriz Cuadrada.

Si el número de filas es igual al número de columnas. $A_{n \times n} = A_n = [a_{ij}] \in IR^n$

 $1 \le i \le n \qquad 1 \le j \le n$

2. Matriz Nula.

Si todos los elementos a_{ij} son cero:

$$A_{m \times n} = \theta = \begin{bmatrix} a_{ij} = 0 \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

3. Matriz Identidad.

La matriz identidad siempre es cuadrada.

$$I_{n \times n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad I_{n \times n} = \begin{cases} a_{ij} = 1 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

4. Matriz Fila.

Es una matriz que consta de una única fila.

$$A_{1\times n} = \left[a_{1j}\right] \in IR^{1\times n}$$

 $A_{1 \times n} = [a_{11} \quad a_{12} \quad a_{13} \quad ... \quad a_{1n}] \in IR^{1 \times n}$ 5. Matriz Columna.

Matriz que tiene una única columna.

$$A_{m \times 1} = [a_{i1}] \in IR^{m \times 1}$$
 $A_{m \times 1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$

6. Matriz Traspuesta.

Si $A_{m \times n}$ entonces $A^t = A_{n \times m}$ $A = [a_{ij}] \rightarrow A^t = [a_{ji}]$ $A = [a_1, a_2, a_3] \rightarrow A^t = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$

Propiedades:

- $1. \quad (A^t)^t = A$
- 2. $(A + B)^t = A^t + B^t$
- 3. $(AB)^t = A^t B^t$
- 4. $(kA)^t = kA^t$

7. Matriz Triangular (ó Escalonada)

Si $AB = \theta \rightarrow \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ No implica que $A = \theta$; $B = \theta$ es decir A, B no necesariamente tiene que ser cero.

8. Matriz Triangular Superior (Upper).

Matriz cuadrada cuyos elementos que están por debajo de la diagonal principal son todos nulos.

$$A_{n \times n} = \begin{cases} a_{ij} \neq 0 & i < j \\ a_{ij} = 0 & i > j \end{cases} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix}$$

9. Matriz Triangular Inferior (Lower).

Es una matriz cuadrada cuyos elementos

$$A_{n \times n} = \begin{cases} a_{ij} \neq 0 & i < j \\ a_{ij} = 0 & i > j \end{cases} \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

10. Matriz Diagonal.

Es una matriz que al mismo tiempo es triangular superior e inferior y es cuadrada.

$$D_{n \times n} = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

$$D_{n\times n}^{k} = D^{k} = \begin{bmatrix} d_{1}^{k} & 0 & \dots & 0 \\ 0 & d_{2}^{k} & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{n}^{k} \end{bmatrix}$$

$$D_{n\times n} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} D = \begin{cases} a_{ij} \neq 0 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

$$D_{n \times n} = \begin{bmatrix} -5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{bmatrix} \quad D = \begin{cases} a_{ij} \neq 0 & i = j \\ a_{ij} = 0 & i \neq j \end{cases}$$

Matriz Diagonal Inversa:

$$D_{n\times n}^{-1} = D^{-1} = \begin{bmatrix} 1/d_1 & 0 & \dots & 0 \\ 0 & 1/d_2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/d_n \end{bmatrix}$$

11. Matriz Conjugado.

Matriz Conjugado.
$$A = \begin{bmatrix} i & 1-i \\ 3 & 1-2i \end{bmatrix} \qquad \overline{A} = \begin{bmatrix} -i & 1+i \\ 3 & 1+2i \end{bmatrix}$$
Propiedades:

- 1. $\overline{A} = A$
- 4. $\overline{A+B} = \overline{A} + \overline{B}$

- 2. $\overline{A}^t = \overline{A^t}$ 3. $\overline{k \cdot B} = \overline{k} \cdot \overline{B}$

4. Matrices Especiales:

1. Matriz Simétrica.

Es Simétrica si solo si $A = A^t$ y es una matriz cuadrada $A_{n \times n} = [a_{ij}]$

2. Matriz Antisimétrica.

También llamado Hemisimétrica.

Es Antisimétrica si solo si $A^t = -A$ y es

una matriz cuadrada
$$A_{n\times n}=\begin{bmatrix} a_{ij} \end{bmatrix}$$

$$A=\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

3. Matriz Normal

Es normal si conmuta con su transpuesta, esto es si: $A \cdot A^t = A^t \cdot A$

4. Matriz Singular.

Es Singular si: $det(A_{n\times n}) = 0$

5. Matriz Regular.

 $det(A_{n\times n}) \neq 0$ y si su Es Regular si: rango $\rho(A_{n \times n}) = n$

6. Matriz Periódica.

Es periódica si $A^{k+1} = A$. Si $k \in \mathbb{Z}^+$ que satisface la condición $A^k = I$ se dice que A es una matriz de periodo k donde: $A^{k+1} = A$, $A^{k+2} = A^2$, $A^{k+3} = A^3$, ...

7. Matriz Idempotente.

Si: $A_{n \times n}$ Es Idempotente si cumple:

$$A^{2} = AA = A$$
, $A^{3} = A$, ... $A^{k} = A$

$$A = \begin{bmatrix} -1 & 3 & 5\\ 1 & -3 & -5\\ -1 & 3 & 5 \end{bmatrix} \rightarrow A^{7} = A$$

8. Matriz Nilpotente. (ó Nulpotente)

Si $A = A^{k-1}$ entonces $A^{\bar{k}} = A^2 = \theta$

Otra forma:

Si $k \ge 2 \in Z^+$ que satisface la condición $A^k = \theta$ donde k = índice $A_{2 \times 2} = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$ $A^{k+1} = \theta$, $A^{k+2} = \theta$, ... $A^n = \theta$

9. Matriz Involutiva.

Una matriz cuadrada $A = A_{n \times n}$ y k = 2Es Involutiva si cumple las dos condiciones:

- 1) $A^k = A$ si k es Impar.
- 2) $A^k = I$ si k es Par.

$$A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

10. Matriz Ortogonal.

Una matriz cuadrada $A = A_{n \times n}$ Es Ortogonal si cumple: $A \cdot A^t = A^t \cdot A = I$

Es decir: $A^{-1} = A^t$ $\begin{bmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{bmatrix} \begin{bmatrix} \sin x & \cos x \\ -\cos x & \sin x \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Recuerda que: $\sin^2 x + \cos^2 x = 1$

11. Matriz Hermética.

Una matriz cuadrada $A = A_{n \times n}$ Es Hermética si $A_{n \times n} \in \mathbb{C}$ complejos.

$$A_{n \times n} = \left(\overline{A}\right)^{t}$$

$$A_{3 \times 3} = \begin{bmatrix} 4 & -i & 3+2i \\ i & -3 & 4-7i \\ 3-2i & 4+7i & 6 \end{bmatrix}$$

$$A_{3\times3} = \begin{bmatrix} 13 - 2i & 4 + 7i & 6 \\ Matriz Hermitania. \end{bmatrix}$$

$$A_{3\times3} = \begin{bmatrix} 2 & 3 + i & i \\ 3 - i & 5 & 4 - 3i \\ -2i & 1 + i & 7 \end{bmatrix}$$
A.Matriz Hemihermética.

12. Matriz Hemihermética.

Una matriz cuadrada $A = A_{n \times n}$ Es Hemihermética si $A_{n\times n} \in \mathbb{C}$ complejos.

$$A_{n\times n} = -\overline{A^t}$$

$$A_{3\times 3} = \begin{bmatrix} 0 & 1-i & 4+3i \\ -1-i & i & -3 \\ -4+3i & 3 & 0 \end{bmatrix}$$
5. Operaciones y Matrices Elementales.

1. Operaciones Elementales.

- 1. $kf_i \rightarrow f_i$ $kC_j \rightarrow C_j$ múltiplo. 2. $f_\rho \leftrightarrow f_i$ $C_\rho \leftrightarrow C_j$ intercambiar. 3. $kf_\rho + f_i \rightarrow f_i$ $kC_\rho + C_j \rightarrow C_j$ Suma de la fila o columna con el múltiplo escalar de otra fila o columna.

2. Matriz Elemental.

Sea:
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = E_1$$

$$E_1 = E_2 \qquad E_2 = E_3 \quad \dots$$

$$kf_{\rho} + f_i \rightarrow f_i \qquad kf_{\rho} + f_i \rightarrow f_i \qquad \dots$$

3. Matriz Elemental.

i. Matriz Elemental.
$$A_{m \times n} \equiv B_{m \times n}$$
 si cumple: $E_n \cdots E_2 E_1 A = B$ $A \underbrace{E_1 E_2 \cdots E_n}_{Matriz \ de \ Paso} = B$
Factorización L U = A:

6. Factorización LU=A:

Toda matriz $A_{n\times n}$ puede escribirse como el producto de: $L \cdot U = A$

U = una Matriz Triangular Superior (UpperL = una Matriz Triangular Inferior (Lower).

$$A = L \cdot U$$

1. Método de Tanteo para L U: Ejemplo 1:

Para U: Comenzar escalonando la matriz A a una Matriz Triangular Superior (Upper):

$$A = \begin{bmatrix} 2 & 5 \\ -3 & -4 \end{bmatrix} \rightarrow U = \begin{bmatrix} 2 & 5 \\ 0 & \frac{7}{2} \end{bmatrix}$$

para que a_{21} sea 0: 2x - 3 = 0 $x = \frac{3}{2}$

El factor que hace que se vuelva cero es $\frac{3}{2}$ Trasladamos el factor $-\frac{3}{2}$ cambiado de signo a la posición a_{21} :

$$L = \begin{bmatrix} 1 & 0 \\ -\frac{3}{2} & 1 \end{bmatrix}$$
 Finalmente: $A = LU$

Para *U*: Comenzar escalonando la matriz A a una Matriz Triangular Superior (Upper):

than Matriz Triangular Superior (Opper)
$$A = \begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & -2 & 0 \end{bmatrix}$$

$$\xrightarrow{-\frac{2}{3}f_1 + f_3 \to f_3} \xrightarrow{-\frac{2}{3}f_2 + f_3 \to f_3}$$

para que a_{21} sea 0: 3x - 3 = 0 x = 1para que a_{31} sea 0: 3x + 9 = 0 x = -3para que a_{32} sea 0: -3x - 2 = 0 x = -4

$$\begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & 0 & -8 \end{bmatrix} \rightarrow U = \begin{bmatrix} 3 & -1 & 2 \\ 0 & -3 & 12 \\ 0 & 0 & -8 \end{bmatrix}$$

- 1. Para L: El factor que hace que se vuelva cero es 1. Trasladamos el factor -1 cambiado de signo, a la posición a_{21} .
- 2. El factor que hace que se vuelva cero es -3. Trasladamos el factor 3 cambiado de signo, a la posición a_{31} .
- 3. El factor que hace que se vuelva cero es $-\frac{2}{3}$. Trasladamos el factor $\frac{2}{3}$ cambiado de signo, a la posición a_{32} .

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & \frac{2}{3} & 1 \end{bmatrix}$$
 Finalmente: $A = L \cdot U$

2. Método de Ecuaciones para L U:

Ej.: La matriz $A_{n \times n}$ se puede descomponer $\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A \qquad \text{Si: } A = L \cdot U$$

$$A = L \cdot U = \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & 0 & U_{33} \end{bmatrix}$$

Igualando componentes de la matriz A y el producto de $L \cdot U$. Se tiene las ecuaciones:

$$\begin{array}{c|cccc} a_{11} = U_{11} & a_{22} = L_{21}U_{12} + U_{22} \\ a_{12} = U_{12} & a_{13} = U_{13} \\ a_{21} = L_{21}U_{11} & a_{31} = L_{31}U_{11} \\ a_{32} = L_{31}U_{12} + L_{32}U_{22} \end{array}$$

 $a_{23} = L_{21}U_{13} + U_{23}$

 $a_{33} = L_{31}U_{13} + L_{32}U_{23} + U_{33}$

Método L U para resolver Sis. Ec. Lineales: Si: $[A]{x} = {f} \rightarrow [L][U]{x} = {f}$

- $\{z\}$ = matriz columna $n \times 1$ (vector)
- ${z} = [U]{x} \rightarrow [L]{z} = {f}$

3. Método Operaciones Elementales:

Ejemplo 1: Para *U*: Comenzar escalonando la matriz A a una Matriz Triangular Superior

matriz A a una Matriz Triangular Superior (Upper), con operaciones elementales:
$$[A] = [A_1] \rightarrow E_1^{-1} = [I]$$

$$2f_1 + f_1 \rightarrow f_1$$

$$Ojo!! - 2f_1 + f_2 \rightarrow f_2 = f_2 - 2f_1 \rightarrow f_2$$

$$[A_1] = [A_2] \rightarrow E_2^{-1} = [I]$$

$$-2f_2 + f_3 \rightarrow f_3$$

$$[A_2] = [A_3] \rightarrow E_3^{-1} = [I]$$

$$-\frac{1}{2}f_2 + f_3 \rightarrow f_3$$

$$[A_3] = [A_4] \rightarrow E_4^{-1} = [I]$$

$$\frac{1}{2}f_3 \rightarrow f_3$$

$$[A_4] = [A_5] \rightarrow E_5^{-1} = [I]$$

$$-\frac{1}{2}f_3 \rightarrow f_3$$

$$[A_4] = [A_5] \rightarrow E_5^{-1} = [I]$$

$$-\frac{1}{2}f_3 \rightarrow f_3$$

$$U = [A_5] = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \text{Trian. Sup.}$$

$$E_n \dots E_3 E_2 E_1 A = U \qquad A = \underbrace{E_1^{-1} E_2^{-1} \dots E_n^{-1}}_{L \text{ upper}} U$$

7. Factorización PAQ=B:

Si queremos expresar A en forma PAQ = Bcon A y B como datos:

1. Para la forma: PAQ = B

$$(A|I_A) \rightarrow (B_1|P) \rightarrow \left(\frac{I_B}{B_1}\right) \rightarrow \left(\frac{Q}{B}\right)$$

2. Partiendo de A llevaremos a B, haciendo op. elem.: $\underbrace{F_n \dots F_2 F_1}_{P} A \underbrace{C_1 C_2 \dots C_n}_{O} B$

8. Factorización L D U = A:

Si queremos expresar A en forma LDU = Acon A v D como datos:

1. Para la forma: PAQ = D

$$(A|I_A) \rightarrow (B_1|P) \rightarrow \left(\frac{I_B}{B_1}\right) \rightarrow \left(\frac{Q}{B}\right)$$

- **2.** Partiendo de A llevaremos a D, haciendo op. elem.: $\underbrace{F_n \dots F_2 F_1}_{P} A \underbrace{C_1 C_2 \dots C_n}_{Q} = D$
- 3. Finalmente:

$$\underbrace{F_1^{-1}F_2^{-1}\dots F_n^{-1}}_{L}D\underbrace{C_n^{-1}\dots C_2^{-1}C_1^{-1}}_{\dot{U}} = A$$

9. Características de una Matriz.

1. Diagonal Principal.

Se denomina a los elementos a_{ij} tal y solo existe en matrices que i = jcuadradas. (otro diagonal secundario).

$$A_{m \times m} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$$

2. Traza de una Matriz

Es la suma de todos los elementos de la diagonal principal, y solo existe en matrices cuadradas.

$$tr(A) = a_{11} + a_{22} + a_{33} + \dots + a_{m \times m}$$

 $tr(A) = \sum_{i=j=1}^{n} a_{ij}$ si: $i = j$

Propiedades:

- 1. tr(A+B) = tr(A) + tr(B)
- 2. $tr(A + \cdots + Z) = tr(Z + \cdots + A)$
- 3. $tr(A^t) = tr(A)$
- 4. tr(kA) = k tr(A)5. $tr(A^{-1}) = a_{11}^{-1} + a_{22}^{-1} + \cdots + a_{nn}^{-1}$

3. Rango de una Matriz.

El rango de una matriz es igual al número de filas no nulas luego de realizar un número finito de operaciones elementales. Escalonar.

$$\rho(A)$$
 = Rango de $A_{m \times n}$ = N° filas no nulas $\rho(A) = n$ ° de vectores.

: los vectores son Lin. Indep.

1. Rango por Gauss:

$$\begin{bmatrix} \frac{1}{0} & 6 & 9 \\ 0 & \frac{5}{0} & 8 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3} \qquad \begin{bmatrix} \frac{1}{0} & 3 & 5 & 9 \\ 0 & \frac{7}{2} & 2 & 6 \\ 0 & 0 & 6 & 7 \end{bmatrix}_{3 \times 4}$$

3 = rango max Ejemplo 1:

 $\boxed{3}$ = rango max

$$A = \begin{bmatrix} 1 & 4 & -1 \\ 0 & 7 & 1 \\ 0 & -6 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{1}{0} & 4 & -1 \\ 0 & \frac{7}{2} & 1 \\ 0 & 0 & \underline{18} \end{bmatrix}$$

$$\therefore \rho(A) = 3 \; ; \quad 3 \text{vectores L. I}$$

2. Rango por Determinantes:

Si: $|A| \neq 0 \rightarrow \rho(A) = 3$. Vectores L.I. Si: $|A| = 0 \rightarrow \rho(A) = 2 \text{ ó } 1.$

Ejemplos:

Ejemplos:

$$|A| = \begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 9 \quad \therefore \text{ 3 Vectores } L.I.$$

$$|A| = \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 0 \quad \therefore \rho(A) = 2 \text{ 6 1.}$$

$$|A| = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = -5 \neq 0 \quad \therefore \rho(A) \geq 2$$

KAIZEN SOFTWARE

2. Determinantes.

1. Concepto de Determinante.

Es una función que va de las Matrices de $M_{n\times n}$ a los Reales.

$$\begin{array}{c|c}
\hline
f: M_{n \times n} \to R & \text{o} & f: R^{n \times n} \to R \\
\hline
\text{Notación:} & det(A) = |A| \\
det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

2. Propiedades de los Determinantes.

- $|A^{-1}| = \frac{1}{|A|}$ $det(A^{-1}) = \frac{1}{det(A)}$
- 3. $k|A| = \begin{vmatrix} k \cdot a_{11} & ka_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} ka_{11} & a_{12} \\ ka_{21} & a_{22} \end{vmatrix}$ 4. $|A^{-1}| = |A|^{-1}$; $||A|| = |A|^n$

- $|A^t| = |A|$ $det(A^t) = det(A)$
- $|A| = -|B| \quad \text{Intercambiar} \begin{cases} f_1 \leftrightarrow f_2 \\ c_1 \leftrightarrow c_2 \end{cases}$

Si en un determinante se intercambian Filas o Columnas el nuevo determinante queda multiplicado por (-).

$$\begin{vmatrix} a & b \\ c & d \\ f_1 \leftrightarrow f_2 \end{vmatrix} = -\begin{vmatrix} c & d \\ a & b \end{vmatrix}; \begin{vmatrix} a & b \\ c & d \\ c_1 \leftrightarrow c_2 \end{vmatrix} = -\begin{vmatrix} b & a \\ d & c \end{vmatrix}$$

- **9.** Si $A_{m \times n}$ tiene una Fila o una Columna compuestas por **ceros**, entonces |A| = 0.
 - $\begin{vmatrix} 0 & 0 \\ a & b \end{vmatrix} = 0 \quad ; \quad \begin{vmatrix} 0 & a \\ 0 & b \end{vmatrix} = 0$
- **10.** Si $A_{m \times n}$ tiene dos Filas o dos Columnas **iguales**, entones |A| = 0.

$$\begin{vmatrix} a & b \\ a & b \end{vmatrix} = 0 \quad ; \quad \begin{vmatrix} a & a \\ b & b \end{vmatrix} = 0$$

11. Si $A_{n \times n}$ tiene una Fila o una Columna

que es **múltiplo** del otro (**L.D.**) entones:

$$|A| = 0$$
; $\begin{vmatrix} 3 & 5 \\ 2 \cdot 3 & 2 \cdot 5 \end{vmatrix} = 0$; $\begin{vmatrix} 3 & 2 \cdot 3 \\ 5 & 2 \cdot 5 \end{vmatrix} = 0$

12. Si $A_{n \times n}$ tiene una Fila o una Columna que es una combinación de las demás filas o columnas, entones |A| = 0.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ a+d & b+e & c+f \end{vmatrix} = 0$$

13. Si una fila o una columna se multiplica por k, entonces el determinante de la matriz se multiplica por la **inversa** de k.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{1}{k} \begin{vmatrix} ka & kb \\ c & d \end{vmatrix}$$

determinante de una Triangular Superior o Inferior es el Producto de los elementos de la diagonal

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

15. Suma de determinantes:

$$\begin{vmatrix} a+c & b+d \\ x & y \end{vmatrix} = \begin{vmatrix} a & b \\ x & y \end{vmatrix} + \begin{vmatrix} c & d \\ x & y \end{vmatrix}$$

También cumple para determinantes de 3x3, 4x4, etc.

- $|adj(A_{n\times n})| = |A|^{n-1}$
- $adj(adj(A_{n\times n})) = |A|^{n-2}A$ 17.

3. Cálculo de Determinantes.

1. Regla de Sarrus para |A|.

Primera Forma:

Determinantes de 3x3: Copear las 2 primeras Columnas a la derecha, y multiplicar en diagonales.

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \quad |A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \frac{a}{g} \frac{b}{h}$$

$$|A| = (aei + bfg + cdh) - (ceg + afh + bdi)$$

Determinantes de 4x4: Copear las 3 primeras Columnas a la derecha, y multiplicar en diagonales.

Segunda Forma:

Determinantes de 3x3: Copear las 2 primeras Filas abajo, y multiplicar en diagonales.

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \qquad |A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ d & e & f \end{vmatrix}$$

|A| = (aei + dhc + gbf) - (ceg + fha + ibd)Determinantes de 4x4: Copear las 3 primeras Filas abajo, y multiplicar en diagonales.

2. Método de las Diagonales Paralelas

(Otra forma de Sarrus)

Valido solo para Determinantes de 3x3:

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
 formar: \bigstar

|A| = (aei + bfg + cdh) - (ceg + afh + bdi)

3. Métodos Matriciales para |A|.

Mediante Gauss (ó **Operaciones** Elementales) llegar a una matriz triangular superior o inferior, luego la determinante es el Producto de los elementos de la diagonal.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

4. Método de Reducida o Menores |A|

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(-1)^{1+1} \begin{vmatrix} e & f \\ h & i \end{vmatrix} + b(-1)^{1+2} \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c(-1)^{1+1} \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$|A| = a[ei - fh] - b[di - fg] + c[dh - eg]$$

5. Método de Cofactores para |A|.

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

La matriz de cofactores es:

$$cof(A) = \begin{bmatrix} + \begin{vmatrix} e & j \\ h & i \end{vmatrix} & - \begin{vmatrix} a & j \\ g & i \end{vmatrix} & + \begin{vmatrix} a & e \\ g & h \end{vmatrix} \\ - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & - \begin{vmatrix} a & b \\ g & h \end{vmatrix} \\ + \begin{vmatrix} b & c \\ e & f \end{vmatrix} & - \begin{vmatrix} a & c \\ d & f \end{vmatrix} & + \begin{vmatrix} a & b \\ d & e \end{bmatrix}$$

$$c_{11} = (-1)^{1+1} |A_{11}| \quad c_{12} = (-1)^{1+2} |A_{12}|$$

$$\begin{array}{ll} c_{13} = (-1)^{1+3}|A_{13}| & c_{21} = (-1)^{2+1}|A_{21}| \\ c_{22} = (-1)^{2+2}|A_{22}| & c_{23} = (-1)^{2+3}|A_{23}| \\ c_{31} = (-1)^{3+1}|A_{31}| & c_{32} = (-1)^{3+2}|A_{32}| \\ c_{33} = (-1)^{3+3}|A_{33}| & \end{array}$$

$$cof(A) = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \quad |A_{11}| = \begin{bmatrix} e & f \\ h & i \end{bmatrix}$$
Page | A| so debe multiplicantly file 1 do A con

Para |A| se debe multiplicar la fila 1 de A, con la misma fila 1 de cof(A).

Para |A| se debe multiplicar la columna 1 de A, con la misma columna 1 de cof(A).

$$|A| = ac_{11} + dc_{21} + gc_{31}$$

6. Regla de Chío para |A| de 3x3.

(ó Método del Pivote) Primero elegir una Fila o Columna para trabajar.

Mediante Gauss (Operaciones Elementales) llegar a una Fila o Columna que tenga un 1 y los demás elementos ceros.

En este caso elegimos la columna 1.

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ kf_i + f_j \to f_{nj} \end{vmatrix} \xrightarrow{\text{Op.Elem.}} \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

$$|A| = 1(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - 0 \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + 0 \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

 $|A| = 1 \cdot (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + 0 + 0$ 7. Regla de Chío para |A| de 4x4.

Ejemplo:
$$|A| = \begin{vmatrix} 1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 4 \\ 2 & 3 & 0 & 0 \\ 1 & 5 & -2 & 6 \end{vmatrix}$$

Generalizando y comparando con |A|:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & \boxed{a_{43}} & a_{44} \end{vmatrix}$$

Trabajando en la tercera columna.

$$|A| = \sum_{i=1}^{4} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$|A| = \sum_{i=1}^{4} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$n = 4$$

$$j = 3 \text{ columna} \qquad |A| = \sum_{i=1}^{4} (-1)^{i+3} a_{i3} |M_{i3}|$$

Desarrollando y reemplazando:

$$|A| = \underbrace{(-1)^{1+3}a_{13}|M_{13}|}_{+(-1)^{3+3}a_{23}|M_{23}|}_{+(-1)^{3+3}a_{33}|M_{33}|}_{+(-1)^{4+3}a_{43}|M_{43}|}_{+(-1)^{4+3}a_{43}|M_{43}|}$$

$$\begin{aligned} |A| &= 0|M_{13}| - 0|M_{23}| + 0|M_{33}| - (-2)|M_{43}| \\ |A| &= 2|M_{43}| & |A| &= 2\underbrace{\begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & 4 \\ 2 & 3 & 0 \end{bmatrix}}_{|B|} \end{aligned}$$

Queda una Matriz de 3x3:

 $|a_{11} \quad a_{12} \quad a_{13}|$ |A| = 2|B| generalizando: $|a_{21} \ a_{22} \ a_{23}|$

$$|B| = \sum_{i=1}^{3} (-1)^{i+j} a_{ij} |M_{ij}|$$

$$n = 3$$

$$j = 1 \text{ columna} \quad |B| = \sum_{i=1}^{3} (-1)^{i+1} a_{i1} |M_{i1}|$$

$$|B| = \underbrace{(-1)^{1+1} a_{11} |M_{11}|}_{+ \underbrace{(-1)^{2+1} a_{21} |M_{21}|}_{+ \underbrace{(-1)^{3+1} a_{31} |M_{31}|}_{+ \underbrace{(-1)^{3+1} a_{$$

$$\begin{aligned} |B| &= 1|M_{11}| - 0|M_{21}| + 2|M_{31}| \\ |B| &= |M_{11}| + 2|M_{31}| \\ |B| &= \begin{vmatrix} -1 & 4\\ 3 & 0 \end{vmatrix} + 2\begin{vmatrix} 0 & -1\\ 2 & 3 \end{vmatrix} \quad |B| = -6 \end{aligned}$$
 Finalments:

$$|A| = 2|B|$$
 $|A| = 2(-6)$ $|A| = -12$

1ra Propiedad: si la matriz es simétrica con elementos únicos (una sola variable respecto a la diagonal principal). Para reducir el determinante, sumamos todas las (filas o columnas) a la primera.

2da Propiedad: si la matriz tiene elementos simétricos opuestos respecto a la diagonal principal, su $|A| = |A^t| \rightarrow |A||A^t| = |AA^t|$ $|A||A| = |AA^t| \rightarrow |A| = \sqrt{|AA^t|}$ esto lo realizamos para que al multiplicar solo genere la diagonal principal, ya que son opuestos, los demás elementos se anula.

3. Inversión de Matrices.

1. Generalidades.

1. Concepto de la Matriz Inversa.

Sea A y B matrices cuadradas de orden "n" tal que BA = AB = I en estas condiciones se dice que B es la matriz inversa de A o sea $B = A^{-1}$ y $AA^{-1} = A^{-1}A = I$

2. Condiciones para Invertir:

- 1. Tiene que ser cuadrada $A_{n \times n}$
- 2. $A_{n \times n}$ debe ser No Singular, es decir el determinante de $A \neq 0$

3. Inversa de una Matriz 2×2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad A^{-1} = \frac{1}{|A|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$
$$|A| = a_{11}a_{22} - (a_{12}a_{21}) \neq 0$$

2. Propiedades de la Inversa.

- 1. $AA^{-1} = A^{-1}A = I$ 2. $(A^{-1})^{-1} = A$ 3. $(AB)^{-1} = B^{-1}A^{-1}$
- 4. $|A^{-1}| = |A|^{-1}$ 1ro |A| luego $|A|^{-1}$
- 5. $(kA)^{-1} = \frac{1}{k}A^{-1}$ 6. $A^{-n} = (A^{-1})^n = \underbrace{A^{-1}A^{-1} \cdots A^{-1}}_{n \text{ factores}}$ $(A^n)^{-1} = (A^{-1})^n \quad \text{lro } A^{-1} \quad (n \ge 0)$

$$(A^n)^{-1} = (A^{-1})^n$$
 1ro A^{-1} $(n \ge 0)$

- 7. $(A^{-1})^t = (A^t)^{-1}$
- 8. $(A^{-1})^t A^t = (AA^{-1})^t = I^t = I$

3. Inversión por Gauss – Jordán.

También llamado método de las operaciones elementales.

[A]
$$\rightarrow \begin{bmatrix} A \mid I \end{bmatrix}_{\text{k}f_i + f_j \rightarrow f_{n_j}} \xrightarrow{\text{Op.Elem.}} \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

4. Inversión por Fadevva.

4. Inversión por Fadevva.
$$A_1 = A_n \qquad a_1 = \frac{tr(A_1)}{1} \qquad B_1 = A_1 - a_1 I$$

$$A_2 = AB_1 \qquad a_2 = \frac{tr(A_2)}{2} \qquad B_2 = A_2 - a_2 I$$

$$A_3 = AB_2 \qquad a_3 = \frac{tr(A_3)}{3} \qquad B_3 = A_3 - a_3 I$$
Hasta:
$$B_n = 0 = A_n - a_n I \qquad A_n = a_n I \quad (1)$$
Pero:
$$A_n = AB_{n-1} \qquad (2)$$

$$(1) \text{ en } (2) \qquad a_n I = A \cdot B_{n-1} \qquad //A^{-1}$$

$$A^{-1} = \frac{B_{n-1}}{a_n}$$

5. Inversión por Cofactores (ó adjunta)

$$A^{-1} = \frac{1}{|A|} adj(A)$$

$$adj(A) = [cof(A)]^{t}$$

1. Matriz de Cofactores

Sea la Matriz:
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

La matriz de cofactores es:

$$cof(A) = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \quad |A_{11}| = \begin{vmatrix} e & f \\ h & i \end{vmatrix}$$

$$c_{11} = (-1)^{1+1} |A_{11}| \quad c_{12} = (-1)^{1+2} |A_{12}|$$

$$c_{13} = (-1)^{1+3} |A_{13}| \quad c_{21} = (-1)^{2+1} |A_{21}|$$

$$c_{22} = (-1)^{2+2} |A_{22}| \quad c_{23} = (-1)^{2+3} |A_{23}|$$

$$c_{31} = (-1)^{3+1} |A_{31}| \quad c_{32} = (-1)^{3+2} |A_{32}|$$

$$c_{33} = (-1)^{3+3} |A_{33}|$$

$$c_{33} = (-1)^{3+3} |A_{33}|$$

$$c_{34} = (-1)^{3+1} |A_{11}| \quad c_{32} = (-1)^{3+2} |A_{32}|$$

$$c_{35} = (-1)^{3+2} |A_{15}| \quad c_{15} = (-1)^{3+2} |A_{15}|$$

$$c_{15} = (-1)^{3+1} |A_{15}| \quad c_{15} = (-1)^{3+1} |A_{15}|$$

$$A^{-1} = \frac{1}{|A|} adj(A) = \frac{1}{|A|} [cof(A)]^t$$

2. Inversión por Adjunta de una Matriz.

Sea $A_{n\times n}$ una matriz de cof(A), se defina la adjunta de la matriz $A_{n\times n}$ como:

$$adj(A) = [cof(A)]^t = cof(A^t)$$

Deducción: Si: $|A| \cdot I = A \cdot adj(A)$ (1) Si pre multiplicamos por A^{-1} a (1): $A^{-1}|A| \cdot I = A^{-1} \cdot A \cdot adj(A)$

$$A^{-1} = \frac{adj(A)}{|A|} \qquad A^{-1} = \frac{1}{|A|} adj(A)$$
$$A^{-1} = \frac{1}{|A|} [cof(A)]^{t}$$

3. Propiedades de la Adjunta

- 1. $adj(I_n) = I_n$
- 2. $\underline{adj}(A \cdot B) = adj(B) \cdot adj(A)$
- $adj(A^n) = [adj(A)]^n$
- 4. $adj(A^t) = [adj(A)]^t$
- 5. $adj(A^{-1}) = [adj(A)]^{-1}$
- 6. $adj(A^{-1}) = \frac{A}{|A|}$; $A^{-1} = \frac{1}{|A|}adj(A)$
- $A \cdot adj(A) = adj(A) \cdot A = |A| \cdot I_n$

8.
$$adj(kA_n) = k^{n-1}adj(A_n)$$

- $adj(kA) = |kA|(kA)^{-1}$
- $adj[adj(A_n)] = |A_n|^{n-2}A_n$
- 11. $adj[adj(A)] = |adj(A)|[adj(A)]^{-1}$
- $adj[adj(A_{2\times 2})] = A_{2\times 2}$
- $|adj(A_n)| = |A_n|^{n-1}$
- $|adj(kA_n)| = (k^{n-1})^n |A_n|^{n-1}$
- 15. $|adj(adj(A_n))| = |A_n|^{(n-1)^2}$

n =orden de la matriz.

16. Si:
$$adj(A_n) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 se cumple: $|A_n|^2 = |adj(A_n)|$

- $A_n = |A_n| \cdot [adj(A_n)]^{-1}$
- $|adj(A^n)| = |A^{n-1}|^n$
- 19. $||A|| = |A|^n$

4. Sistema de Ec. Lineales.

1. Concepto.

Es un conjunto de n ecuaciones, con nincognitas. Las ecuaciones deben ser lineales es decir de primer grado. Y puede ser representado por la forma Matricial: AX = B.

Soluciones a Sistema de Ec. Lineales

Ec. > # Incog. ÚnicaSol. ∞Sol. No tieneSol Sist. No Homogéneos: AX = B; $B \neq \theta$. Sist Equivalentes: # Ec. = # Incognits = Sol

3. Métodos de Solución a sist. Lineales:

1. Solución por la Inversa.

Solo sirve para sistemas: Cuadrados, que tienen única solución $A_{n\times n}X_{n\times 1}=B_{n\times 1}$.

Ec. = # Incognitas. El
$$|A| \neq 0$$
.
 $AX = B \rightarrow A^{-1}AX = A^{-1}B \rightarrow X = A^{-1}B$

$$A^{-1} = \frac{1}{|A|}adj(A) \qquad |A| \neq 0$$

Aplicable a sist. tipo: $A_{m \times n} X_{n \times 1} = B_{m \times 1}$ # Ec. < # Incognitas

Matriz aumentada: $[A \mid B] \rightarrow [A_1 \mid B_1]$ Escalonar la matriz aumentada al máximo, por Op. Elem. preferentemente en Filas.

3. Solución por el método de Cramer:

Solo sirve para sistemas: Cuadrados, que tienen única solución $A_{n\times n}X_{n\times 1} = B_{n\times 1}$. # Ec. = # Incognitas. El $|A| \neq 0$.

Algoritmo de Cramer:

$$\begin{aligned} &\text{Si: } A_{n \times n} = [C_1 | C_2 | C_3 | \dots | C_n] & \text{Si: } B. \\ &A_1 = [B | C_2 | C_3 | \dots | C_n] & x_1 = \frac{|A_1|}{|A|} \\ &A_2 = [C_1 | B | C_3 | \dots | C_n] & x_1 = \frac{|A_2|}{|A|} \\ &\vdots & x_2 = \frac{|A_2|}{|A|} \\ &\vdots & x_3 = \frac{|A_3|}{|A|} \dots \end{aligned}$$

4. Sistemas Lineales Homogéneos.

Es cuando el vector columna de los términos **independientes** B es nula. AX = 0; B = 0. Un sistema homogéneo siempre tiene soluciones o siempre es consistente.

- Única Sol.: $x_1 = x_2 = x_3 = \dots = 0$ Trivial.
- Infinitas Sol.: incluye solución Trivial.
- 1. Homogéneo Cuadrado: |A| = 0 infinitas Sol. $|A| \neq 0$ sol Trivial $x_1 = x_2 = x_3 = \cdots = 0$
- 2. Homogéneo No Cuadrado:

Ec. < # Incognits → Infinitas sol.

Ec. > # Incognits → Única sol. Infinitas sol.

KAIZEN SOFTWARE

FORMULARIO 2 ÁLGEBRA LINEAL

1. Notación y Operación de Vectores.

Vector *n*–dimensional:

$$\vec{a} = (a_1, a_2, a_3, ..., a_n)$$

 $\vec{b} = (b_1, b_2, b_3, ..., b_n)$

La suma de $\vec{a} + \vec{b}$ se define como:

 $\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$ El múltiplo escalar se define como:

$$k\vec{a} = (ka_1, ka_2, ka_3, \dots, ka_n)$$

El vector cero se define como:

$$\vec{0} = (0, 0, 0, \dots, 0)$$

Producto Escalar:

Sean: $\vec{a} = (a_1, a_2, a_3)$ y $\vec{b} = (b_1, b_2, b_3)$ $\vec{a} \circ \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = ||\vec{a}|| ||\vec{b}|| \cos\theta$ Producto Vectorial:

Sean:
$$\vec{A} = (a_1, a_2, a_3)$$
 y $\vec{B} = (b_1, b_2, b_3)$
 $\vec{A} \times \vec{B} = [(a_2b_3 - a_3b_2), -(a_1b_3 - a_3b_1), (a_1b_2 - a_2b_1)]$

2. Introducción a Espacios Vectoriales.

Sea el sistema:

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \cdots + a_{3n}x_n = b_3 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_n \end{array}$$

Este sistema puede ser escrito de la forma:

$$x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \dots \boxed{\alpha}$$

Donde: $x_1, x_2, x_3, \dots, x_n$ son escalares y $\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \end{pmatrix}, \dots \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$ son vectores

 $\langle a_{m1}/ \langle a_{m2}/ \langle a_{mn}/ \langle b_n/ \rangle$ La estructura α tiene las dos operaciones:

- ✓ Suma de vectores.
- ✓ Producto de un escalar por vector.

Un espacio vectorial es una estructura de la forma $\overline{\alpha}$.

- ✓ Es un conjunto de vectores.
- ✓ Suma de vectores.
- ✓ Producto de un escalar por vector.

3. Concepto de Espacio Vectorial.

Un espacio vectorial es una terna de la forma $(V, +, \cdot)$ formada por un conjunto (V) y dos operaciones $(+, \cdot)$.

Es un conjunto V no vacio que tiene dos operaciones una es la suma y la otra de una multiplicación de un escalar. Es un espacio vectorial si satisface las siguientes propiedades:

4. Propiedades Espacios Vectoriales.

Para que V sea un espacio vectorial se debe cumplir las siguientes 10 axiomas o propiedades: Consideremos: $\forall \vec{u}, \vec{v}, \vec{w} \in V^n$ (vectores) $\forall a_1, a_2, a_3 \in IR$ (constantes)

Suma: $+ : V \times V \rightarrow V \qquad \vec{a}, \vec{b} \rightarrow \vec{a} + \vec{b}$

1. Clausura.

$$\forall \ \vec{a}, \vec{b} \in V$$

2. Asociativa.

$$\forall \vec{a}, \vec{b}, \vec{c} \in V \quad \vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$$

 $\vec{a} + \vec{b} \in V$

3. Elemento Neutro.

$$\forall \ \vec{a} \in V^n \ \exists \vec{0} \in V \qquad \qquad \vec{a} + \vec{0} = \vec{a}$$

4. Elemento Opuesto.

$$\forall \vec{a} \in V^n \ \exists (-\vec{a}) \in V \ | \vec{a} + (-\vec{a}) = \vec{0}$$

5. Conmutativa.

$$\forall \ \vec{a} \ , \vec{b} \ \in V \qquad \qquad \vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Producto: $: V \times V \rightarrow V \qquad \vec{a}, \vec{b} \rightarrow \vec{a} \cdot \vec{b}$

1. Clausura.

 $\forall \ \vec{a} \in V \land k \in \mathbb{K} \qquad k \cdot \vec{a} \in V$

2. Asociativa.

 $\forall \vec{a} \in V \land h, k \in \mathbb{K} \quad (h \ k) \vec{a} = h(k \ \vec{a})$

3. Elemento Neutro.

 $\forall \ \vec{a} \in V \ \exists 1 \in v \qquad \boxed{1 \cdot \vec{a} = \vec{a}}$

4. Distributiva de la suma de escalares por un vector

 $\forall \vec{a} \in V \land h, k \in \mathbb{K}$ $(h+k)\vec{a} = h\vec{a} + k\vec{a}$

5. Distributiva de la suma de vectores por un escalar

$$\forall \vec{a}, \vec{b} \in V \land k \in \mathbb{K}$$

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

Nota 1: No entra **conmutatividad** para el producto por que siempre se maneja $k\vec{a}$.

 $\vec{u}\vec{v} \neq \vec{v}\vec{u}$

Nota 2: No hay elemento **Inverso** para el producto por que no existe **división** entre vectores

Nota 3: Cada elemento tiene que tener las características del espacio vectorial dado.

5. Subespacios Vectoriales.

Si V es un espacio vectorial, un subconjunto $S \subset V$ no vacio, S es subespacio vectorial de V, siendo $(S, +, \cdot)$. Para lo cual debe cumplir 2 propiedades:

1. Clausura para la suma.

$$x, y \in S \rightarrow x + y \in S$$

2. Clausura para el producto (o multiplica. de un escalar por un vector).

$$k \in K \land x \in S \rightarrow kx \in S$$

Nota: $\vec{0} \in x$ si no pasa por el "0" no es subespacio. Ejm.: $S = \left\{ \begin{pmatrix} x_1 \\ 1 \end{pmatrix} \in R^2 : x_1 \in R \right\}$

 $x + y = {x_1 \choose 1} + {y_1 \choose 1} = {x_1 + y_1 \choose 2} \notin S \text{ no es } S$

Doble clausura: $a, b \in R$; $U, V \in S$ $aU + bV \in S$

Ejm.: $S_2 = \{A \in M^{2 \times 2}: A^T = -A\}$ es subesp. Todo Subespacio es un espacio vectorial, porque este Subespacio S hereda el resto de las condiciones del espacio vectorial V.

6. Combinación Lineal.

Un vector \vec{V} se dice que es Combinación Lineal de un conjunto de vectores:

$$C = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{a}_n\}$$

Si el sistema:

 $\overrightarrow{V} = \alpha_1 \overrightarrow{u}_1 + \alpha_2 \overrightarrow{u}_2 + \alpha_3 \overrightarrow{u}_3 + \cdots + \alpha_n \overrightarrow{a}_n$ Tiene una **Única Solución** y existen los escalares α_1 , α_2 , α_3 , ..., $\alpha_n \in R$. Entonces \overrightarrow{V} es Combinación Lineal del conjunto de vectores $C = \{ \overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3, ..., \overrightarrow{a}_n \}$.

Ejemplo 1:

Sea el conjunto de vectores:

 $C = \{ (1,3,5), (0,1,0) \}, \text{ decir si } \vec{V} = (1,5,5)$ es combinación lineal de C.

Sol.: $(1,5,5) = \alpha_1(1,3,5) + \alpha_2(0,1,0)$ $\begin{cases}
1 = \alpha_1 \\
5 = 3\alpha_1 + \alpha_2
\end{cases} \rightarrow \begin{cases}
\alpha_1 = 1 \\
\alpha_2 = 2
\end{cases}$

Tiene una única solución y existen los escalares α_1 , α_2 por lo tanto es C.L.

Ejemplo 2:

Sea el conjunto de vectores:

 $C = \{ (1,3,5), (0,1,0) \}, \text{ decir si } \vec{V} = (1,2,3)$ es combinación lineal de C.

Sol.: $(1,2,3) = \alpha_1(1,3,5) + \alpha_2(0,1,0)$

$$\begin{cases} 1 = \alpha_1 \\ 2 = 3\alpha_1 + \alpha_2 \\ 3 = 5\alpha_1 \end{cases} \rightarrow \begin{cases} \alpha_1 = 1 \\ \alpha_2 = 2 \\ \alpha_1 = \frac{3}{5} \end{cases}$$

No tiene una Única Solución α_1 , por lo tanto **No** es C.L.

Ejemplo 3.

El vector $(x, y, z) \in R^3$ es Combinación Lineal de los vectores unitarios:

$$\vec{i} = (1,0,0), \ \vec{j} = (0,1,0), \ \vec{k} = (0,0,1)$$

$$(x,y,z) = x\vec{i} + y\vec{j} + z\vec{k}$$

7. Dependencia Lineal.

Se dice que un conjunto de vectores:

$$C = \{ \vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{a}_n \}$$

Son Linealmente Dependientes si el sistema:

 $\alpha_1\vec{u}_1 + \alpha_2\vec{u}_2 + \alpha_3\vec{u}_3 + \dots + \alpha_n\vec{a}_n = \vec{0}$ tiene una solución de la forma:

$$\alpha_1 \neq 0, \qquad \alpha_2 \neq 0, \cdots, \alpha_n \neq 0$$

Es decir existen los escalares:

 α_1 , α_2 , α_3 , ..., α_n **NO todos nulos** (cero). Entonces se dice que el conjunto C es Linealmente Dependiente o que forman un

sistema ligados. Vectores Linealmente Dependientes:

Sean los vectores: \vec{u} y \vec{v} .

También: |A| = 0.

Ejemplo 1:

Los vectores $\vec{u} = (4, -4, 2)$, $\vec{v} = (2, -2, 1)$ son Linealmente Dependientes, porque:

 $\vec{u} - 2\vec{v} = \vec{\theta} \rightarrow (4, -4, 2) - 2(2, -2, 1) = \vec{\theta}$ Por lo tanto C es L.D.

8. Independencia Lineal.

Se dice que un conjunto de vectores:

$$C = \{ \vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{a}_n \}$$

Son Linealmente Independientes si el sistema: $\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2 + \alpha_3 \vec{u}_3 + \dots + \alpha_n \vec{a}_n = \vec{0}$

tiene una solución de la forma:

$$\alpha_1 = \alpha_2 = \alpha_3 = \cdots = \alpha_n = 0$$

(solución trivial). Entonces se dice que el conjunto C es Linealmente Independiente o que forman un sistema libre.

Los vectores son Linealmente Independe. Si:

$$\rho(A) = n^{\circ}$$
 de vectores.

Por lo tanto, los vectores son Lin. Indep.

Vectores Linealmente Independientes: Sean los vectores: \vec{u} y \vec{v} .

Ejemplo 1: Decir si el conjunto de vectores: $C = \{ (1,1,0), (0,1,0) \}$

También:

 $|A| \neq 0$.

Son Linealmente Independientes.

Sol.:
$$\alpha_1(1,1,0) + \alpha_2(0,1,0) = \vec{0}$$

$$\begin{cases}
\alpha_1 = 0 \\
\alpha_1 + \alpha_2 = 0 \\
0 = 0
\end{cases} \quad \alpha_1 = 0 \\
\alpha_2 = 0 \quad \therefore C \text{ es } L.I.$$

9. Wronskiano.

Ejemplo 1: $S = \{1, \sin t, \cos t\}$

$$W = \begin{vmatrix} 1 & \sin t & \cos t \\ 0 & \cos t & -\sin t \\ 0 & -\sin t & -\cos t \end{vmatrix}$$

Aplicando Chio:

$$W = 1 \cdot (-1)^{1+1} \begin{vmatrix} \cos t & -\sin t \\ -\sin t & -\cos t \end{vmatrix}$$

$$W = -1 \rightarrow W \neq 0 \rightarrow L.I.$$

10. Conjunto Generador.

 $C = {\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n}$ es un Conjunto Generador de un Subespacio \vec{S} si cualquier vector $\vec{v} \in \vec{S}$, se puede representar como Combinación Lineal de C.

$$\overrightarrow{v} = k_1 \overrightarrow{v}_1 + k_2 \overrightarrow{v}_2 + \dots, + k_n \overrightarrow{v}_n$$

Ejemplo 1:

El conjunto $C = \{\vec{i}, \vec{j}\} = \{(1,0), (0,1)\}$ es un conjunto generador de R^2 con $\vec{i} = (1,0)$ $y \vec{i} = (0,1)$.

Se puede representar como Comb. Lineal:

$$(\alpha,\beta) = \alpha(1,0) + \beta(0,1)$$

Ejemplo 2: Hallar un conjunto generador para $S_{0(2)} = \{A \in M_{2\times 2}: A^T = -A\}$ Antisim.

Sol
$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = -\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 igualo componentes $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = c\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ idem a $2k = pares$.

11.Base.

Base: Sea $C = {\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n}$ Se dice que C es una base del espacio vectorial \vec{V} si cumple:

✓ Sus elementos son L.I.

✓ Es un conjunto Generador.

Ejemplo 1:

Una base de R^2 es (\vec{i}, \vec{j}) donde $\vec{i} = (1,0)$ $y \vec{i} = (0,1).$

Ejemplo 2:

Demostrar que $\{(1,2,1), (1,2,3), (3,2,1)\}$ es una base. Solución: $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ escalonando.

Si el $\rho(A) = 3$ (L.I.) es una base.

 $(a, b, c) = \alpha(1,2,1) + \beta(1,2,3) + \gamma(3,2,1)$

Ejemplo 3:

Demostrar que $\{1 + x, x^2 + x^3, 1 + 4x^3, x^3\}$ es una base. Sol. $\rho(A) = 4$ (L.I.) y Comb. Lin

Si: $W = \{(x, y, z, w) \in R^4: z + w = x + y\}$ Hallar una base para W.

Solución: $z + w = x + y \rightarrow w = x + y - z$ Sea un vector cualquiera:

 $\vec{v} = (x, y, z, w) \in \mathbb{R}^4$ reemplazando w.

 $\vec{v} = (x, y, z, x + y - z)$

 $\vec{v} = (x, 0, 0, x) + (0, y, 0, y) + (0, 0, z, -z)$ $\vec{v} = x(1,0,0,1) + y(0,1,0,1) + z(0,0,1,-1)$

Luego el conjunto de vectores: $B = \{(1,0,0,1), (0,1,0,1), (0,0,1,-1)\}$ Es una base de W.

12. Bases Canónicas v Dimensiones.

1. Espacio Vectorial: R^2

Base canónica: $\{\binom{1}{0}, \binom{0}{1}\}$ $\{(1,0), (0,1)\}$ $Dim R^2 = 2$

2. Espacio Vectorial: R^3

Base canónica: $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ 0 \\ 1 \end{pmatrix} \right\}$ $\{(1,0,0), (0,1,0), (0,0,1)\}\ \operatorname{Dim} R^3 = 3$

3. Espacio Vectorial: P_1

Base canónica: $\{t, 1\}$ Dim $P_1 = 2$

4. Espacio Vectorial: P2

Base canónica: $\{t^2, t, 1\}$ Dim $P_2 = 3$

5. Espacio Vectorial: P₃

Base canónica: $\{t^3, t^2, t, 1\}$ Dim $P_3 = 4$

6. Espacio Vectorial: $M^{2\times 2}$

Base canónica:

 $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ $Dim M^{2\times 2} = 4$

7. Espacio Vectorial: $M^{3\times3}$

Base canónica:

$$\left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dots \right\}$$
Dim $M^{3\times3} = 9$

13. Teorema de la Dimensión.

La dimensión de \vec{V} esta dada por el # de vectores NO nulos de la base.

Formula de GRASMAN:

 $Dim(A + B) = DimA + DimB - Dim(A \cap B)$

Relación en Ecuaciones Implícitas:

 n° Ec.Impli. = dim(Esp) – dim(Subesp)

2. Operaciones Subespacios

1. Operaciones con Subespacios.

Sea \vec{U} y \vec{W} subespacios del espacio \vec{V} . Se definen las siguientes operaciones entre Subespacios U y W:

1. Unión. No siempre es espacio vectorial

$$\vec{U} \cup \vec{W} = \{ x \in V / x \in U \ \lor x \in V \}$$

2. Intersección.

 $\overrightarrow{U} \cap \overrightarrow{W} = \{x \in V / x \in U \land x \in W\}$ $\vec{U} \cap \vec{W}$ siempre es espacio vectorial. Se halla la condición de U y W luego se intersectan todas las Condiciones.

The section to das its conditiones.
$$U = \{(2x+1), (3x-1)\} \rightarrow \begin{pmatrix} 2 & 3 & a \\ 1 & -1 & b \end{pmatrix}$$

$$ax + b = \alpha \underbrace{(2x+1)}_{vector} + \beta \underbrace{(3x-1)}_{vector}$$

$$B_{U \cap W} = \{x-1, 2x+1\} \quad Dim_{B_{U \cap W}} = 2$$

$$\overrightarrow{U} + \overrightarrow{W} = \{x = x_1 + x_2 \in V \mid x_1 \in U \land x_2 \in W\}$$

$$2(ax + b) = \underbrace{(ax + b)}_{\text{Reempl cond 1}} + \underbrace{(ax + b)}_{\text{Reempl cond 2}}$$

ax + b = a(2x + 1) + b(3x - 1)

 $B_{U+W} = \{2x+1, 3x-1\}$ $Dim_{B_{U+W}} = 2$

4. Suma directa.

$$\overrightarrow{U} \oplus \overrightarrow{W} = \{x = x_1 + x_2 \in V \mid x_1 \in U \land x_2 \in W\}$$

$$B_{U \oplus W} = \{B_U, B_W\} \qquad \overrightarrow{U} \cap \overrightarrow{W} = \{\overrightarrow{0}\}$$

$$Dim_{B_{U \oplus W}} = DimU + DimW$$

$$Dim\left(\frac{U + W}{U \cap W}\right) = Dim(U + W) - Dim(U \cap W)$$

$$\operatorname{Dim}\left(\frac{U+W}{U\cap W}\right) = \operatorname{Dim}(U+W) - \operatorname{Dim}(U\cap W)$$

Ejemplo 1: Hallar: $B_1 + B_2 = ?$ $B_1 \cap B_2 = ?$ Si: $B_1 = \{(0,1,0), (1,0,0)\}$

 $B_2 = \{(2,0,0), (0,1,1)\}$

Sol.: por Gauss: hacer 0 debajo de la Diago $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $B_{B_1+B_2} = \{(0,1,0), (1,0,0), (0,1,1)\}$

 $B_{B_1 \cap B_2} = \{(2,0,0)\}$ es la fila q se anula.

Ejemplo 2: Hallar: $S_1 \cap S_2 = ?$

Si:
$$S_1 = \{(x_1, x_2, x_3) \in R^3: \begin{array}{c} x_1 - x_3 = 0 \\ x_2 = 0 \end{array} \}$$

 $S_2 = \{(x_1, x_2, x_3) \in R^3: x_2 + x_3 = 0\}$ Sol: n° Ec.Impli = dim(Esp) – dim(Subesp) Para S_1 : $2 = 3 - \boxed{1}$ $\dim(S_1) = 1$

 $\rho_{(A)} = \rho_{(A|B)} = n^{\circ} \operatorname{Incog.} \qquad B_{S_1 \cap S_2} = \{ \vec{0} \}$ $\dim(A+B) = \dim A + \dim B - \dim(A \cap B)$

3 = 1 + 2 - 0 $S_1 \oplus S_2$ es suma directa

2. Cambio de Base.

Ejemplo 1: Hallar las coordenadas del polinomo $P(x) = 1 - x + x^2$ respecto la base $B_2 = \{1 + x, 1 + x - x^2, -1 + 2x - x^2\}$

Sol.: Sea:
$$[1 - x + x^2]_{B_2} = {r \choose s}_{B_2}$$

 $1 - x + x^2 = r(1+x) + s(1+x-x^2) +$

Igualando compon.: $r = \frac{2}{3}$; $s = -\frac{1}{3}$; $t = -\frac{2}{3}$ $[1 - x + x^2]_{B_2} = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}_{B_2}$

$$[1 - x + x^2]_{B_2} = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$$

Ejemplo 2:

Si: $B' = \{(1,1), (0,2)\}$ y $V = (2,3)_{B'}$ Hallar: $B' \to B_C = ?$

Sol.:
$$\underline{B'} \rightarrow \underline{B_C}$$

Sol.:
$$B' \rightarrow B_C = 0$$

 $(2,3)_{B'} = 2(1,1) + 3(0,2) = (2,2) + (0,6)$

 $\therefore (2,3)_{B'} = (2,8)_{B_C}$

Es decir: $(2.8)_{Bc} = 2(1.0) + 8(0.1)$

Ejemplo 3:

Si: $B' = \{(1,1), (0,2)\}\ y\ V = (1,3)$

Hallar: $B_C \rightarrow B' = ?$

Sol.: es implícito: $(1,3)_{B_C}$

$$(1,3)_{B_C} = \alpha(1,1) + \beta(0,2)$$

$$\begin{cases} 1 = \alpha + 0\beta \\ 3 = \alpha + 2\beta \end{cases} \rightarrow \begin{cases} \alpha = 1 \\ \beta = 1 \end{cases} \rightarrow (1,1)$$

$$\therefore (1,3)_{B_C} = (1,1)_{B'}$$

3. Matriz Cambio de Base.

Matriz Cambio de Base.
$$y = 2x$$

$$[v]_{B_2} = P_{B_1 \to B_2}[v]_{B_1} \quad [v]_{B_1} = P_{B_2 \to B_1}^{-1}[v]_{B_2}$$

$$P_{B_1 \to B_2} = P_{B_2 \to B_1}^{-1}$$
 Eiemplo 1:

Ejemplo 1:

Dados las bases: $B_1 = \{1, x, x^2\} = B_{canonica}$ $B_2 = \{1 + x, 1 + x - x^2, -1 + 2x - x^2\}$

Hallar: $[1 - x + x^2]_{B_1}$ Solucion:

$$[v]_{B_1} = P_{B_2 \to B_1}[v]_{B_2} \quad [1-x+x^2]_{B_2} = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}_{B_1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & -1 & -1 \\ B_1 & B_2 & B_2 & B_2 \end{pmatrix} \rightarrow P_{B_2 \to B_1} = B_2$$

$$[1-x+x^2]_{B_1} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Ejemplo 2: Dados: $B_C = \{(1,0), (0,1)\}$

las coordenadas del vector \vec{V}_1 en B'.

Sol.: Nos preguntan: $X_{B'} = ?$

1er paso: calculando la matriz más fácil de calcular: $M_{B'\to B_C}$ poniendo en columnas:

$$B' = \{(1,1), (0,1)\} \rightarrow M_{B' \to B_C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
2do paso: $M_{B_C \to B'} = M_{B' \to B_C}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$

3er paso: $X_{B'} = M_{B_C \rightarrow B'} \cdot X_{B_C}$

$$X_{B'} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow X_{B'} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{B'}$$

3. Producto Interior.

1. Producto Escalar.

El Producto Interior análogamente es conocido como Producto Escalar. Sean:

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \quad \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \quad \vec{u}^t = (u_1, u_2, \dots, u_n)$$

$$\vec{u}^t \circ \vec{v} = (u_1, u_2, u_3, \dots, u_n) \circ \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

$$\vec{u}^t \circ \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 + \dots + u_n v_n$$

$$\langle \vec{u}^t, \vec{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 + \dots + u_n v_n$$

$$\vec{u}^t \circ \vec{v} = \vec{\omega} \circ \vec{v}$$

2. Producto Interior.

(ó Producto Interno de Vectores) Sea \vec{u} , \vec{v} vectores del espacio vectorial V.

Un Producto Interior es una función $\langle , \rangle : V \times$ $V \rightarrow R$ que asigna a toda pareja de vectores \vec{u} , \vec{v} de V un número $\langle \vec{u}, \vec{v} \rangle \in R$ de tal manera que cumpla las siguientes propiedades:

- 1. Simetría: $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
- Aditividad:

$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

- 3. Homogeneidad: $\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{v}, \vec{u} \rangle$
- 4. Positividad:

$$\langle \, \vec{u} \, , \vec{u} \, \rangle \geq 0$$

Ejemplo 1: Verificar si $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 +$ $6u_2v_2$ es producto interior de R^2 .

Sol.: debe cumplir los 4 axiomas:

Si: $\vec{u} = (u_1, u_2), \vec{v} = (v_1, v_2), \vec{w} = (w_1, w_2)$

- 1. Simetría: $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 6u_2v_2 =$ $=3v_1u_1+6v_2u_2=\langle \vec{v},\vec{u}\rangle$
- 2. Aditividad: $\langle \vec{u} + \vec{v}, \vec{w} \rangle =$

$$3(u_1 + v_1)w_1 + 6(u_2 + v_2)w_2$$

$$(3u_1w_1 + 6u_2w_2) + (3v_1w_1 + 6v_2w_2)$$

$$= \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

3. Homogeneidad:

4. Positividad:

$$\langle \vec{u}, \vec{u} \rangle \ge 0 \quad \langle \vec{u}, \vec{u} \rangle = 3u_1^2 + 6u_2^2 \ge 0$$

Ejemplo 2:

Verificar si $\langle \vec{u}, \vec{v} \rangle = 2u_1v_1 - 3u_2v_2$ es producto interior de R^2 . Resp.- no es P.I. *** Un Producto Interior es la forma generalizada de un Producto Escalar.

Donde la forma Canónica de $\langle \vec{u}, \vec{v} \rangle$ es: $\langle \vec{u}, \vec{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3 + \dots + u_n v_n$

$B' = \{(1,1), (0,1)\}$ Sea $\vec{V}_1 = (1,2)$. Calcular 3. Producto Interno Euclidiano (canónico)

Es el desarrollo del Producto Interior, también se lo denomina Producto Euclidiano ó Producto Canónico. A este desarrollo en particular se le llama Producto Escalar al caso general se le denomina Producto Interior. Sea: $V = R^n$ y $\vec{u} = (u_1, u_2, ..., u_n) \in R^n$ $\vec{v}=(v_1,v_2,\ldots,v_n)\in R^n$ Así definimos el Producto Interior Canónico:

$$\langle \vec{u}, \vec{v} \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

Si es un PI debe satisfacer las 4 propiedades

4. Espacio Vectorial Euclidiano.

Un espacio vectorial Real con PI y dimensión finita es un Espacio Euclidiano. Un espacio vectorial real sobre el que se ha definido un producto interior se dice que es un espacio vectorial euclidiano y se representa por el par $(V, \langle \vec{u}, \vec{u} \rangle).$

1. Norma de un Vector o Módulo.

2. Ángulo entre Vectores.

$$\cos \theta = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \|\vec{v}\|}$$

3. Distancia entre Dos Vectores.

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

5. Proyección de un Vector.

$$\operatorname{Proy}_{\vec{u}} \vec{v} = \frac{\langle \vec{v}, \vec{u} \rangle}{\|\vec{u}\|^2} \vec{u} \quad \text{es la}$$

proyección del vector \vec{v} sobre el vector \vec{u} y en la dirección \vec{u} .

El componente ortogonal de \vec{v} a \vec{u} es \vec{w} .

$$\vec{w} = \vec{v} - \frac{\langle \vec{v}, \vec{u} \rangle}{\|\vec{u}\|^2} \vec{u}$$

6. Producto Interior en Matriz.

1. Producto Interior Canónico de Matriz

Producto interior mediante la Traza:

Sea A, B dos matrices de orden $m \times n$ el producto interno o Producto Punto de A y B

A =
$$\vec{u} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$
 $B = \vec{v} = \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}$ $\langle A, B \rangle = tr(A^t B)$ $\langle A, B \rangle = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4$

Si esta última es un producto interior debe satisfacer las 4 propiedades.

2. Norma de una Matriz.

1. $||A|| \ge 0$; $||A|| = 0 \leftrightarrow A = 0$

- 2. ||-A|| = ||A||
- 3. $\|\alpha A\| = |\alpha| \|A\|$

3. Ángulo entre Matrices A y B.

$$\begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \quad \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} \quad \cos \theta = \frac{\langle A, B \rangle}{\|A\| \|B\|}$$

$$\langle A, B \rangle = a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4$$

$$\|A\| = \sqrt{\langle \vec{u}, \vec{u} \rangle}$$

$$\|A\| = \sqrt{a_1a_1 + a_2a_2 + a_3a_3 + a_4a_4}$$

4. Distancia entre Matrices.

$$d(A, B) = ||A - B|| = \sqrt{A - B, A - B}$$

$$\vec{u} - \vec{v} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} - \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

$$\|\vec{u} - \vec{v}\| = \sqrt{c_1 c_1} + c_2 c_2 + c_3 c_3 + c_4 c_4$$
Si las matrices no son cuadradas:

$$d(A,B) = ||A - B|| = \sqrt{(A - B)^t, (A - B)}$$

7. Producto Interior en Polinomios.

1. Producto Interior en Polinomios P_2 .

Sean dos vectores $\vec{p} = p$ y $\vec{q} = q$ cualesquiera en P_2 las cuales: $p = a_0 + a_1 x + a_2 x^2$

$$q = b_0 + b_1 x + b_2 x^2$$
La siguiente formula define un P.I. en P_2 .

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

2. Norma de polinomio p.

$$||p|| = \langle p, p \rangle^{1/2} = \sqrt{a_0 a_0 + a_1 a_1 + a_2 a_2}$$

8. Producto Interior en Funciones.

1. Formula en producto interior en funciones: Entonces la siguiente formula define un producto interior en funciones:

$$\langle f, g \rangle = \int_{a}^{b} f_{(x)} g_{(x)} dx$$

2. Norma de un función

$$||f|| = \langle f, f \rangle^{1/2} = \sqrt{\int_a^b f_{(x)}^2 dx}$$

4. Ortogonalización.

1. Vectores Ortogonales.

Se dice que \vec{u} , $\vec{v} \in V$ son **ortogonales** respecto el producto interior \langle , \rangle si \vec{u} y \vec{v} forman un ángulo recto (ortogonal), es decir:

$$\langle \vec{u}, \vec{v} \rangle = 0$$
 $\langle \vec{u}, \vec{v} \rangle = ||\vec{u}|| ||\vec{v}|| \cos \theta$

Conjuntos Ortogonales de Vectores

Un conjunto de vectores $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_k\}$ en \mathbb{R}^n se llama Conjunto Ortogonal si todos los pares de vectores distintos en el conjunto son ortogonales; esto es, si:

$$\vec{v}_i \circ \vec{v}_j = 0$$
 si: $i \neq j$. Para $i, j = 1, 2, ..., k$
Entonces dichos vectores son Linealmente Independientes.

Base Ortogonal.

Una base ortogonal para un subespacio W de \mathbb{R}^n es una base de W que es un conjunto ortogonal.

2. Vectores Ortonormales.

Se dice que $\vec{u} \in V$ es **ortonormal** si su norma es la unidad: $\|\vec{u}\| = 1$

Normalización de Vectores.

Se denomina normalización de un vector al procedimiento por el cual se logra que la norma sea uno de dicho vector. Para la

normalización hacemos: $\vec{v} = \frac{\vec{u}}{\|\vec{u}\|}$ $\vec{u} \neq \vec{0}$

Conjuntos Ortonormales de Vectores.

Un conjunto de vectores en \mathbb{R}^n es un conjunto ortonormal si es un conjunto ortogonal de vectores unitarios.

Bases Ortonormales.

Una base ortonormal para un subespacio W de \mathbb{R}^n es una base de W que es un conjunto ortonormal.

Sea
$$\vec{B} = {\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_n}$$

Una base cualquiera de un subespacio vectorial \overrightarrow{W} . Entonces existe una Base **Ortonormal:**

$\overline{B}' = \{\vec{v}_1\;,\vec{v}_2\;,\vec{v}_3\;,\dots\;,\vec{v}_n\;\}$

Que puede ser calculada a partir de \vec{B} y este calculo de \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , ..., \vec{v}_n es el proceso de Gram – Schmit.

3. Proyección Ortogonal de \overrightarrow{v} sobre \overrightarrow{u} .

El vector:
$$\operatorname{Proy}_{\overrightarrow{u}} \overrightarrow{v} = \frac{\langle \overrightarrow{v}, \overrightarrow{u} \rangle}{\|\overrightarrow{u}\|^2} \overrightarrow{u}$$
 es la

proyección del vector \vec{v} sobre el vector \vec{u} y en la dirección \vec{u} .

El componente ortogonal de \vec{v} a \vec{u} es \vec{w} .

$$\vec{w} = \vec{v} - \frac{\langle \vec{v}, \vec{u} \rangle}{\|\vec{u}\|^2} \vec{u}$$

4. Bases Ortogonales

Ortogonalización de GRAM-SCHMIDT

Aplicar el proceso de Gram-Schmidt para transformar los vectores básicos: $\{\vec{u}_1, \vec{u}_2, \vec{u}_3, \dots, \vec{u}_n\}$ en una Base Ortogonal $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_n\}.$

Para realizar este proceso se sigue:

1.Se establece:

$$\vec{v}_1 = \vec{u}_1$$
 $V_1 = gen(\vec{u}_1)$

2. Obtenemos \vec{v}_2 que sea Ortogonal a \vec{v}_1 :

$$\boxed{\vec{v}_2 = \vec{u}_2 - \frac{\langle \vec{u}_2, \vec{v}_1 \rangle}{\|v_1\|^2} \vec{v}_1} \quad V_2 = gen(\vec{u}_1, \vec{u}_2)$$

3. Obtenemos \vec{v}_3 que sea Ortogonal a \vec{v}_1 y \vec{v}_2 :

$$\vec{v}_{3} = \vec{u}_{3} - \frac{\langle \vec{u}_{3}, \vec{v}_{1} \rangle}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} - \frac{\langle \vec{u}_{3}, \vec{v}_{2} \rangle}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2}$$

$$\vdots \qquad \qquad V = acn(\vec{v}_{1}, \vec{v}_{2})$$

4. Obtener \vec{v}_n que sea Ortogonal a \vec{v}_1 , \vec{v}_2 ... \vec{v}_{n-1}

Recuerde que debe CUMPLIRSE:

$$\langle \vec{v}_1, \vec{v}_2 \rangle = 0 \; ; \langle \vec{v}_1, \vec{v}_3 \rangle = 0 \; ; \langle \vec{v}_2, \vec{v}_3 \rangle = 0$$

Ejemplo 5:

Sea:
$$B_W = {\vec{u}_1, \vec{u}_2, \vec{u}_3}$$

 $B_W = {(1,0,1), (1,0,-1), (0,3,4)}$

Construya una base **Ortogonal** para B_W . Con el producto interior canonico.

Solución:

Hallar la base ortogonal: $B_W^{\perp} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$

1.Se establece:

$$\vec{v}_1 = \vec{u}_1$$
 $\vec{v}_1 = \vec{u}_1 = (1,0,1)$

2.Obtenemos \vec{v}_2 que sea Ortogonal a \vec{v}_1 :

$$\vec{v}_{2} = \vec{u}_{2} - \frac{\langle \vec{u}_{2}, \vec{v}_{1} \rangle}{\|v_{1}\|^{2}} \vec{v}_{1}$$

$$\vec{v}_{2} = (1,0,-1) - \frac{(1,0,-1)(1,0,1)}{\|(1,0,1)\|^{2}} (1,0,1)$$

$$\vec{v}_{2} = (1,0,-1)$$

 $\vec{v}_3 = (0.3.0)$

Finalmente: $B_W^{\perp} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ base ortogonal Recuerde que debe CUMPLIRSE:

$$\langle \ \vec{v}_1 \ , \vec{v}_2 \ \rangle = 0 \ ; \ \langle \ \vec{v}_1 \ , \vec{v}_3 \ \rangle = 0 \ ; \ \langle \ \vec{v}_2 \ , \vec{v}_3 \ \rangle = 0$$

5. Bases Ortonormales:

Ortonormalización de GRAM-SCHMIDT

Teorema: todo subespacio vectorial con $\langle , \rangle \neq 0$ tiene una Base Ortonormal.

Cálculo de una Base Ortonormal a B:

Sol.: Recuerde que debe CUMPLIRSE:

$$\langle \vec{v}_1, \vec{v}_2 \rangle = 0 \quad \wedge \quad ||\vec{v}_1|| = 1$$

$$\langle \vec{v}_1, \vec{v}_3 \rangle = 0 \quad \wedge \quad ||\vec{v}_2|| = 1$$

 $\langle \vec{v}_2, \vec{v}_3 \rangle = 0 \quad \wedge \quad ||\vec{v}_3|| = 1 \dots$ 1. Primero se obtiene el Vector Normalizado:

$$\vec{v}_1 = \frac{\vec{u}_1}{\parallel \vec{u}_1 \parallel}$$

2.Se obtiene el vector \vec{v}_2 ortonormal a \vec{v}_1 y de norma uno. Como \vec{v}_1 ya esta normalizado, entonces $||\vec{v}_1|| = 1$ entonces $||\vec{v}_1||^2 = 1$.

$$\vec{v}_2 = \frac{\vec{u}_2 - \langle \vec{u}_2, \vec{v}_1 \rangle \vec{v}_1}{\|\vec{u}_2 - \langle \vec{u}_2, \vec{v}_1 \rangle \vec{v}_1\|}$$
3. Se obtiene el vector \vec{v}_3 ortonormal a \vec{v}_1 y \vec{v}_2 .

$$\vec{v}_3 = \frac{\vec{u}_3 - \langle \vec{u}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{u}_3, \vec{v}_2 \rangle \vec{v}_2}{\|\vec{u}_3 - \langle \vec{u}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{u}_3, \vec{v}_2 \rangle \vec{v}_2\|}$$

Sea
$$B_W = {\vec{u}_1, \vec{u}_2, \vec{u}_3}$$

 $B_W = {(1,0,1), (1,0,-1), (0,3,4)}$

Construya una base **Ortonormal** para B_W Con el producto interior canonico. Solución:

Primera forma:

1. Primero se obtiene el Vector Normalizado:

$$\vec{v}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|}$$
 $\vec{v}_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$

 $\vec{v}_1 = \frac{\vec{u}_1}{\|\vec{u}_1\|} \quad \vec{v}_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$ **2.**Se obtiene el vector \vec{v}_2 ortonormal a \vec{v}_1 y de norma uno. Como \vec{v}_1 ya esta normalizado, entonces $\|\vec{v}_1\| = 1$ entonces $\|\vec{v}_1\|^2 = 1$.

$$\frac{\vec{v}_{2} = \frac{\vec{u}_{2} - \langle \vec{u}_{2}, \vec{v}_{1} \rangle \vec{v}_{1}}{\|\vec{u}_{2} - \langle \vec{u}_{2}, \vec{v}_{1} \rangle \vec{v}_{1}\|} = \vec{v}_{2} = \frac{\vec{v}_{1} + \vec{v}_{2}}{\|\vec{v}_{2} - \langle \vec{u}_{2}, \vec{v}_{1} \rangle \vec{v}_{1}\|}$$

3.Se obtiene el vector \vec{v}_3 ortonormal a \vec{v}_1 y \vec{v}_2

$$\vec{v}_{3} = \frac{\vec{u}_{3} - \langle \vec{u}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{u}_{3}, \vec{v}_{2} \rangle \vec{v}_{2}}{\|\vec{u}_{3} - \langle \vec{u}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{u}_{3}, \vec{v}_{2} \rangle \vec{v}_{2}\|}$$

$$\vec{v}_{3} = \left(0, \frac{3}{3}, 0\right)$$

 $B_W^* = \{\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}\}$ Base Ortonormal.

Entonces $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ es un conjunto ortogonal y ortonormal de vectores en B_W . $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ es un conjunto linealmente independiente y en consecuencia una base para B_W pues $dim(B_W) = 3$.

Segunda Forma de la Ortogonalización:

Hallar base ortonormal: $B_W^* = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ Donde del ejemplo 5, v_1 ; \vec{v}_2 ; \vec{v}_3 son bases ortogonales a \vec{u}_1 , \vec{u}_2 , \vec{u}_3 luego:

$$\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} \qquad \vec{w}_1 = \frac{(1,0,1)}{\sqrt{2}}$$

$$\vec{w}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|} \qquad \vec{w}_2 = \frac{(1,0,-1)}{\sqrt{2}}$$

$$\vec{w}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|} \qquad \vec{w}_3 = \frac{(0,3,0)}{3}$$

6. Proyección de \vec{u} sobre $B_{\vec{v}}$.

Donde: $\vec{u} = \text{un vector cualquiera}$.

 $B_{\vec{v}}$ = Base Ortonormal.

 $\operatorname{Proy}_{B_{\overrightarrow{v}}} \overrightarrow{u} = \langle \overrightarrow{u}, \overrightarrow{v}_1 \rangle \overrightarrow{v}_1 + \langle \overrightarrow{u}, \overrightarrow{v}_2 \rangle \overrightarrow{v}_2 + \cdots \langle \overrightarrow{u}, \overrightarrow{v}_n \rangle \overrightarrow{v}_n$

7. Matriz Ortogonal.

Ejemplo 6:

Dado:
$$\vec{B} = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, ..., \vec{u}_n\}$$
 Hallar la

Base Ortonormal $\vec{B}' = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, ..., \vec{v}_n\}$.

$$A^{-1} = A^t$$

$$A = \begin{bmatrix} -4/5 & 0 & 3/5 \\ 0 & 1 & 0 \\ 3/5 & 0 & 4/5 \end{bmatrix}$$