BARAM

Logică EXAMEN – 2 \bigcirc 01.2021

2001.1020 gyde 311,314,812

Rândul 1

1p finle.

Subiectul 1. Să se verifice tautologia $(C \lor A) \land (C \to B) \land (A \to B) \Rightarrow B$, folosind:

a) tabele de adevăr; 4p

b) forme normale. 40

| Subjectul 2. a) Enuntați definiția și dați un exemplu de funcție neinjectivă (cu justificare).

b) Să de arate că o funcție α: X → Y este infettiță dacă și numai dacă cu α se poate simplifica la e

c) Să se determine toate secțiunile funcției surjective $f:A\to B$, unde $A=\{1,2,3,4,5\},\ B=\{a,b,c\}$ și

χ	1	2	3	4	5
f(x)	b	а	С	a	b

4 section citeAp = hp

(19 Subiectul 3. a) Mulţime ordonată, total ordonată, latice, latice completă (4 definiţii).

b) Să se dea exemplu de latice care nu e mulțime total ordonată. Justificare.

c) Să se dea exemplu de mulțime total ordonată care nu e latice completă. Justificare.

Subiectul 4. Mulţimea numerelor naturale:

a) Definiţie şi axiomele lui Peano. 0+5 + 5p. =

b) Definiţiile operaţiilor şi a relaţiei de ordine. 4+1+1=3p

c) Să se arate că adunarea în $\mathbb N$ este operație asociativă.

Logic EXAM – 26.01.2021

Row 1

Question 1. Verify the tautology $(C \vee A) \wedge (C \rightarrow B) \wedge (A \rightarrow B) \Rightarrow B$, by using:

- a) truth tables;
- b) normal forms.

Question 2. a) State the definition and the characterization theorem of surjective functions and give an example of a non-surjective function (justify your answer).

- b) Prove that a function $\alpha: X \to Y$ is surjective if and only if α is right cancellable.
- c) Find all the sections of the surjective function $f: A \to B$, where $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c\}$ and

χ	1	2	3	4	5
f(x)	b	а	С	а	b

Question 3. a) Ordered set, totally ordered set, lattice, complete lattice (a definitions).

- b) Give an example of a lattice which is not a totally ordered set (justify your answer)
- c) Give an example of a totally ordered set which is not a complete lattice (justify your answer).

Question 4. The set of natural numbers:

- a) Definition and the Peano axioms (statement).
- b) Definitions of the operations and of the order relation on \mathbb{N} .
- c) Prove that the addition in \mathbb{N} is associative.

Logică EXAMEN – 20.01.2021

Rândul 2

Subjectul 1. Să se verifice schema de deducție $\frac{C \to (B \to A)}{C \land B \to A}$, folosind:

b) forme normale.

Subjectul 2. a) Teorema I de factorizare (enunț). \mathcal{A} b) Să se aplice în cazul funcției $f: A \to B$, unde $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{a, b, c, d\}$ și

χ	1	2	3	4	5	6	7	8
f(x)	b	b	d	d	b	a	b	d

c) Fie $f:A\to B$ o funcție. Să se arate că ker $f=f^{-1}\circ f$.

lunf 14 Affect 11 . F 1/1 kerf 11 Pung 11

Subiectul 3. a) Latici (algebre) Boole și inele Boole: definiții.
b) Enunțul teoremei lui Stone.

c) Să se arate că operația "+" este asociativă.

Subjectul 4. a) Operații cu numere cardinale; ordonarea numerelor cardinale (4 definiții). 2A = 2A b) Să se arate că pentru orice număr cardinal $\alpha = |A|$ avem $\alpha < 2^{\alpha}$. 5ρ .

- A-3A/17: (20) - 7 A-3A by-(20)

Logic EXAM - 20.01.2021

Row 2

Question 1. Verify the deduction scheme $\frac{C \to (B \to A)}{C \wedge B \to A}$, by using:

- a) truth tables;
- b) normal forms.

Question 2. a) State the 1st Factorization Theorem.

b) Apply the theorem in the case of the function $f: A \to B$, where $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{a, b, c, d\}$ and

χ	1	2	3	4	5	6	7	8
f(x)	b	b	d	d	b	а	b	d

c) Let $f:A\to B$ o function. Prove that $\ker f=f^{-1}\circ f.$

Question 3. a) Boole algebras and Boole rings: definitions

- b) The statement of Stone's theorem.
- c) Prove that the operation "+" is associative.

Question 4. a) Operations with cardinal numbers; ordering cardinal numbers (4 definitions).

b) Prove that for any cardinal number $\alpha = |A|$ we have $\alpha < 2^{\alpha}$.

Logică EXAMEN - 20.01.2021

Rândul 3

Subiectul 1. a) Emunțați definițiile reuniumii, intersecției și compunerii a două relații. b) Fie A = $\{1,2,3,4,5\}$ și R, R', S \subseteq A \times A, unde

 $R = \{(1,1), (1,5), (2,4), (3,4), (4,2)\}, R' = \{(1,4), (5,4), (1,2), (2,5), (3,1), (4,4)\},$

 $S = \{(1,2), (1,5), (2,3), (2,4)(4,1), (4,3), (4,5), (5,2), (5,4), (3,2)\}. \ \ \text{Să se determine relația} \ \ (S \circ R) \cup (S \circ R').$

c) Fie relațiile $\sigma = (C, D, S)$, $\tau = (A, B, T)$ și $\rho = (A, B, R)$. Să se arate că: $\sigma \circ (\rho \cap \tau) \subseteq (\sigma \circ \rho) \cap (\sigma \circ \tau)$. Să precizeze toate tautologiile care au fost folosite în demonstrație. se precizeze toate tautologiile care au fost folosite in demonstrație. A. M.

							10	
Χ	1	2	3	4	5	6	7	8
f(x)	С	d	С	d	ь	ь	С	d

b) Fie $f: X \to Y$ o funcție și $A \subseteq X$. Sa se arate ca: $A \subseteq f^{-1}(f(A))$.

c) Sa se arate ca funcția $f: X \to Y$ este injectiva dacă și număi dacă $A = f^{-1}(f(A))$ pentru orice $A \subseteq X$.

Subjectul 3. a) Mulțimi ordonate. total ordonate, bine ordonate (3 definiții).

b) Dați un exemplu de mulțime total ordonată care nu e bine ordonată (justificare).
c) Teorema de caracterizare a mulțimilor bine ordonate (enunț).

Subiectul 4. a) Noțiunile de echipotență și număr cardinal: ordonarea numerelor cardinale (definiții). b) Să se arate că pentru orice număr cardinal $\alpha = |A|$ avem $|\mathcal{P}(A)| = 2^{\alpha}$.

Logic EXAM - 20.01.2021

Row 3

Question 1. a) State the definitions of the union, intersection and composition of two relations.

b) Let $A = \{1, 2, 3, 4, 5\}$ and $R, R', S \subseteq A \times A$, where

 $R = \{(1,1), (1,5), (2,4), (3,4), (4,2)\}, R' = \{(1,4), (5,4), (1,2), (2,5), (3,1), (4,4)\},\$

 $S = \{(1,2), (1,5), (2,3), (2,4)(4,1), (4,3), (4,5), (5,2), (5,4), (3,2)\}.$ Find the relation $(S \circ R) \cup (S \circ R')$.

c) Consider the relations $\sigma = (C, D, S)$, $\tau = (A, B, T)$ and $\rho = (A, B, R)$. Prove that: $\sigma \circ (\rho \cap \tau) \subseteq (\sigma \circ \rho) \cap (\sigma \circ \tau)$. State separately all the tautologies which have been used in the proof.

Question 2. a) Find f(A) and $f^{-1}(f(A))$, where $f: \{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow \{a, b, c, d\}$, $A = \{3, 5\}$ and

χ	1	2	3	4	5	6	7	8
f(x)	С	d	С	d	b	b	С	d

b) Let $f: X \to Y$ be a function and $A \subseteq X$. Prove that: $A \subseteq f^{-1}(f(A))$.

c) Prove that the function $f: X \to Y$ is injective if and only if $A = f^{-1}(f(A))$ for all $A \subseteq X$

Question 3. a) Ordered sets, totally ordered sets, well-ordered sets (3 definitions).

- b) Give an example of a totally ordered set which is not well-ordered.
- c) The characterization of well-ordered sets (statement of the theorem).

Question 4. a) Define the following notions: equipotence: cardinal number: ordering cardinal numbers (3 definitions).

b) Prove that for any cardinal number $\alpha = |A|$ we have $|\mathcal{P}(A)| = 2^{\alpha}$.

Logică EXAMEN - 20.01.2021

Rândul 4

LISTA Sage

Subjectul 1. Fie $f: X \to Y$ o funcție. a) Să se determine $f^{-1}(f(A))$ și $f(f^{-1}(B))$, unde $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $Y = \{a, b, c, d\}$, $A = \{1, 5, 6\}$, $B = \{1, 5, 6\}$, $A = \{1,$

χ	1	2	3	4	5	6	7	8
f(x)	ь	С	d	d	а	а	С	d

b) Să se arate că: $f(A_1 \cup A_2) \stackrel{>}{=} f(A_1) \cup f(A_2)$ pentru orice $A_1, A_2 \subseteq X$. Să se precizeze toate tautologiile care au fost folosite în demonstrație.

Subjectul 2. a) Enuntați definiția și teorema de caracterizare a funcțiilor injective.

b) Fie f: A o B și g: B o C. Să se arate că dacă g o f este injectiv, atunci f este injectiv. 4 p.

c) Să se determine toate retractele funcției injective f: A o B, unde A = {1,2,3,4}, B = {a,b,c,d,e} și

χ	1	2	3	4
f(x)	d	ь	a	е

Subjectul 3. a) Laticea ca structură algebrică; latice distributiva (definiții).
b) Să se arate că mulțimea ordonata (N, |) este latice distributiva.

Sup = Cun a C 11 + 4 p de m

Subjectul 4. a) Principiul includerii și al excluderii (enunț). Y

b) Să se scrie toate permutările $\sigma \in S_4$ fără puncte fixe. C) Câte permutări $\sigma : \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ fără puncte fixelexistă? (Demonstrație).

Logic EXAM – 25.01.2021

Row 4

Question 1. Let $f: X \to Y$ be a function.

a) Find $f^{-1}(f(A))$ and $f(f^{-1}(B))$, where $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $Y = \{a, b, c, d\}$, $A = \{1, 5, 6\}$, $B = \{a, b, c\}$ and

χ	1	2	3	4	5	6	7	8
f(x)	b	С	d	d	а	а	С	d

b) Prove that: $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ for all $A_1, A_2 \subseteq X$. State separately all the tautologies which have been used in the proof.

Question 2. a) State the definition and the characterization theorem of injective functions.

b) Let $f: A \to B$ and $g: B \to C$. Prove that if $g \circ f$ is injective, then f is injective.

c) Find all the retractions of the injective function $f:A\to B$, where $A=\{1,2,3,4\},\ B=\{a,b,c,d,e\}$ and

χ	1	2	3	4
f(x)	d	b	а	е

Question 3. a) The lattice an algebraic structure: distributive lattice (definitions).

b) Prove that the ordered set $(\mathbb{N}, <)$ is a distributive lattice.

Question 4. a) The inclusion-exclusion principle (statement).

- b) Write down all the fixed-point-free permutations $\sigma \in S_4$
- c) How many fixed-point-free permutations $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}$ do exist? (Proof).