Breastfeeding Structural

Contents

1	Par	ticipant Characteristics	2
	1.1	Age	3
	1.2	BMI	3
	1.3	BMI percentile	3
	1.4	Maternal Ed	3
	1.5	Paternal Ed	4
	1.6	Race	4
	1.7	Ethnicity	4
	1.8	SES	4
2	3.1	Descriptive Statistics for Covariates	5
	2.1	BF	
	2.2	SR	7
	2.3	%BMIp85	9
	2.4	Left Hippocampus	11
	2.5	Right Hippocampus	13
3	3.2	Path Analyses	15
Ü	3.1	3.2.1 Path Model for Left Hippocampus (Figure 1B)	15
	3.2	3.2.1 Path Model for Left Hippocampus: Sensitivity Test - Effect of Breastfeeding	19
	3.3	3.2.1 Path Model for Left Hippocampus: Sensitivity Test - Adjusting Hippocampal Volume for	10
	0.0	Income	21
	3.4	3.2.2 Path Model for Right Hippocampus (Figure 1C)	23
	$3.4 \\ 3.5$	3.2.1 Path Model for Right Hippocampus: Sensitivity Test - Direct Effect of Breastfeeding	$\frac{23}{27}$
	3.6	3.2.1 Path Model for Right Hippocampus: Sensitivity Test - Adjusting Hippocampal Volume	41
	ა.0		29
		for Income	29

1 Participant Characteristics

	Full Sample	Boys	Girsl
$\mathrm{Total}(N)$	149	73	76
Age (Mean [range], yrs)	9.0 [7.1 - 12.0]	9.0 [7.1 - 12.0]	9.0 [7.1 - 11.8]
BMI (Mean [range])	17.8 [13.8 - 31.9]	17.7 [13.9 - 31.9]	17.9 [13.8 - 25.9]
Percent of CDC 85th %tile (Mean [range])	94.0 [70.1 - 168.8]	94.7 [72.7 - 168.8]	93.4 [70.1 - 131.1]
BMI %tile (Mean [range])	59.9 [5 - 99]	59.3 [5 - 99]	60.5 [6.1 - 98]
$\operatorname{Race}(N)$			
Black/AA	7	5	2
White	136	64	72
Other/Mixed	6	4	2
$\operatorname{Ethnicity}(N)$			
Hispanic/Latino	6	3	3
Not H/L	120	59	61
NA	1	1	0
SES(N)			
>\$100,000	49	26	23
\$50,000-\$100,000	69	30	39
<\$50,000	28	16	12
NA	0	0	0
Maternal Education (N)			
> BA	50	22	28
BA	54	30	24
Associates/Technical	18	7	11
HighSchool	15	8	7
Other/NA	0	0	0
< High School Diploma/GED	0	0	0
Paternal Education (N)			
> BA	57	28	29
BA	38	22	16
Associates/Technical	15	5	10
HighSchool	23	9	14
Other/NA	1	1	0
< High School Diploma/GED	1	1	0
BreastFed $3cat(N)$			
> 6months	54	24	30
4-6months	55	29	26
0-3months	40	20	20

1.1 Age

1.2 BMI

data: cAge_yr by sex
t = 0.20787, df = 146.95, p-value = 0.8356
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3526448 0.4355526
sample estimates:
mean in group Female mean in group Male

8.964650

9.006104

Welch Two Sample t-test

Welch Two Sample t-test

1.3 BMI percentile

Welch Two Sample t-test

1.4 Maternal Ed

Fisher's Exact Test for Count Data

data: mED.sex_tab
p-value = 0.6517

alternative hypothesis: two.sided

1.5 Paternal Ed

Fisher's Exact Test for Count Data

data: pED.sex_tab
p-value = 0.244

alternative hypothesis: two.sided

1.6 Race

Fisher's Exact Test for Count Data

data: race.sex_tab
p-value = 0.3346

alternative hypothesis: two.sided

1.7 Ethnicity

Fisher's Exact Test for Count Data

data: ethnicity.sex_tab

p-value = 1

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.1245066 7.5172554

sample estimates:

odds ratio

0.9674603

1.8 SES

Fisher's Exact Test for Count Data

data: income.sex_tab
p-value = 0.3825

alternative hypothesis: two.sided

2 3.1 Descriptive Statistics for Covariates

2.1 BF

2.1.1 Age

```
Anova Table (Type II tests)

Response: TIV

Sum Sq Df F value Pr(>F)

BreastFed_3cat 61226 2 2.4045 0.09395 .

Residuals 1820588 143
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>6mo 0-3mo 4-6mo

1488.602 1467.938 1518.769

>6mo 0-3mo 4-6mo

95.33367 117.40115 124.84202
```

2.1.2 TIV

Anova Table (Type II tests)

Response: TIV

Sum Sq Df F value Pr(>F)
BreastFed_3cat 61226 2 2.4045 0.09395 .

Residuals 1820588 143

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

>6mo 0-3mo 4-6mo 1488.602 1467.938 1518.769

>6mo 0-3mo 4-6mo 95.33367 117.40115 124.84202

2.1.3 Sex

Fisher's Exact Test for Count Data

data: sex.BreastFed_3cat_tab

p-value = 0.5945

alternative hypothesis: two.sided

2.1.4 Maternal Education

Fisher's Exact Test for Count Data

data: mED.BreastFed_3cat_tab

p-value = 0.9948

alternative hypothesis: two.sided

2.1.5 Income

Pearson's Chi-squared test

data: income.BreastFed_3cat_tab
X-squared = 8.3969, df = 4, p-value = 0.07807

2.1.6 Premature

Pearson's Chi-squared test

data: premat.BreastFed_3cat_tab
X-squared = 0.039254, df = 2, p-value = 0.9806

2.2 SR

2.2.1 Age

Pearson's product-moment correlation

2.2.2 TIV

Pearson's product-moment correlation

2.2.3 Sex

```
Welch Two Sample t-test
```

2.2.4 Maternal Education

```
Anova Table (Type II tests)

Response: cebq_SR

Sum Sq Df F value Pr(>F)
```

```
mEducation_cat 0.746 3 0.6863 0.562 Residuals 47.102 130
```

2.2.5 Income

Anova Table (Type II tests)

Response: cebq_SR

Residuals 50.821 140

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.2.6 Premature

Welch Two Sample t-test

data: cebq_SR by cPreMat

t = 0.94111, df = 20.749, p-value = 0.3575

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.1753275 0.4647940

sample estimates:

 $\hbox{\tt mean in group No mean in group Yes}$

2.897674 2.752941

2.3 %BMIp85

2.3.1 Age

Pearson's product-moment correlation

data: BFstructural_Dat\$cAge_yr and BFstructural_Dat\$cdc_p85th
t = 1.379, df = 144, p-value = 0.17
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.04919698 0.27157561
sample estimates:
 cor
0.1141638

2.3.2 TIV

Pearson's product-moment correlation

data: BFstructural_Dat\$TIV and BFstructural_Dat\$cdc_p85th
t = 0.85574, df = 144, p-value = 0.3936
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.09238515 0.23091094
sample estimates:
 cor
0.07113075

2.3.3 Sex

Welch Two Sample t-test

2.3.4 Maternal Education

Anova Table (Type II tests)

Response: cdc_p85th

Sum Sq Df F value Pr(>F)

Residuals 3.02667 130

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

2.3.5 Income

Anova Table (Type II tests)

Response: cdc_p85th

Residuals 3.3045 140

2.3.6 Prematurity

Welch Two Sample t-test

data: cdc_p85th by cPreMat

t = 1.5838, df = 29.484, p-value = 0.1239

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.01245349 0.09821069

sample estimates:

mean in group No mean in group Yes 0.9432514 0.9003728

2.4 Left Hippocampus

2.4.1 Age

Pearson's product-moment correlation

data: BFstructural_Dat\$cAge_yr and BFstructural_Dat\$1Hip_21
t = 2.6322, df = 144, p-value = 0.00941
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.05367256 0.36403114
sample estimates:
 cor
0.2142529

2.4.2 TIV

Pearson's product-moment correlation

data: BFstructural_Dat\$TIV and BFstructural_Dat\$1Hip_21
t = 11.039, df = 144, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.5781747 0.7563017
sample estimates:
 cor
 0.6770337</pre>

2.4.3 Sex

Welch Two Sample t-test

2.4.4 Maternal Education

Anova Table (Type II tests)

Response: lHip_21

Sum Sq Df F value Pr(>F)

```
mEducation_cat 0.1041 3 0.5598 0.6425 Residuals 8.0587 130
```

2.4.5 Income

Anova Table (Type II tests)

Response: lHip_21

Residuals 8.2973 140

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

2.4.6 Prematurity

Welch Two Sample t-test

data: lHip_21 by cPreMat

t = 2.2391, df = 21.321, p-value = 0.03593

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.009569609 0.255978957

sample estimates:

 $\hbox{\tt mean in group No mean in group Yes}$

2.948182 2.815407

2.5 Right Hippocampus

2.5.1 Age

Pearson's product-moment correlation

data: BFstructural_Dat\$cAge_yr and BFstructural_Dat\$rHip_22
t = 2.0698, df = 144, p-value = 0.04026
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.007737868 0.323488880
sample estimates:
 cor
0.1699726

2.5.2 TIV

Pearson's product-moment correlation

data: BFstructural_Dat\$TIV and BFstructural_Dat\$rHip_22
t = 10.044, df = 144, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.5351887 0.7283432
sample estimates:
 cor
 0.6418356</pre>

2.5.3 Sex

Welch Two Sample t-test

2.5.4 Maternal Education

Anova Table (Type II tests)

Response: rHip_22

Sum Sq Df F value Pr(>F)

mEducation_cat 0.2642 3 1.107 0.3488 Residuals 10.3430 130

2.5.5 Income

Anova Table (Type II tests)

Response: rHip_22

Sum Sq Df F value Pr(>F) income_3cat 0.9412 2 6.1613 0.002726 **

Residuals 10.6933 140

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.5.6 Prematurity

Welch Two Sample t-test

data: rHip_22 by cPreMat

t = 2.4797, df = 25.482, p-value = 0.0201

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.02343983 0.25195054

sample estimates:

mean in group No mean in group Yes

3.283357 3.145662

- 3 3.2 Path Analyses
- 3.1 3.2.1 Path Model for Left Hippocampus (Figure 1B).

Table 1: Fit Statistics for Model: BF -> SR (L Hipp Med) -> p85th BMI

	X
chisq	3.497
$\mathrm{d}\mathrm{f}$	3.000
pvalue	0.321
baseline.chisq	138.482
baseline.df	27.000
baseline.pvalue	0.000
cfi	0.996
tli	0.960
logl	1.517
bic2	43.197
rmsea	0.036
rmsea.ci.lower	0.000
${\it rmsea.ci.upper}$	0.156
rmsea.pvalue	0.459
srmr	0.013

Table 2: Parameters for Model: BF -> SR (L Hipp Med) -> p85th BMI

	lhs	op	rhs	est	se	Z	pvalue
1	cebq_SR	~	mEducation_dummy	-0.028	0.056	-0.502	0.615
2	$cebq_SR$	~	income_dummy	0.232	0.082	2.836	0.005
3	$cebq_SR$	~	cPreMat_dummy	-0.176	0.152	-1.151	0.250
4	$\operatorname{cebq_SR}$	~	BreastFed_3cat_dummy	0.011	0.065	0.173	0.863
5	$cebq_SR$	~	TIV_scale	-0.037	0.074	-0.496	0.620
6	$cebq_SR$	~	Study_dummy	0.017	0.036	0.466	0.641
7	$cebq_SR$	~	$cAge_yr$	-0.020	0.044	-0.454	0.650
8	$cebq_SR$	~	sex_dummy	0.099	0.112	0.882	0.378
9	$cebq_SR$	~	lHip_21	-0.171	0.291	-0.587	0.557
10	lHip_21	~	TIV_scale	0.158	0.017	9.269	0.000
11	lHip_21	~	Study_dummy	-0.014	0.011	-1.289	0.197
12	lHip_21	~	$cAge_yr$	0.038	0.013	3.012	0.003
13	lHip_21	~	sex_dummy	-0.012	0.033	-0.374	0.709
14	lHip_21	~	$cPreMat_dummy$	-0.034	0.046	-0.751	0.452
15	lHip_21	~	$BreastFed_3cat_dummy$	0.038	0.019	1.993	0.046
16	cdc_p85th	~	TIV_scale	0.040	0.019	2.160	0.031
17	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	Study_dummy	-0.002	0.009	-0.182	0.856
18	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	$cAge_yr$	0.017	0.011	1.564	0.118
19	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	sex_dummy	-0.003	0.028	-0.125	0.901
20	cdc_p85th	~	lHip_21	-0.144	0.072	-1.993	0.046
21	cdc_p85th	~	mEducation_dummy	-0.051	0.014	-3.683	0.000
22	cdc_p85th	~	income_dummy	0.020	0.021	0.947	0.344
23	cdc_p85th	~	cPreMat_dummy	-0.039	0.038	-1.021	0.307
24	cdc_p85th	~	$\operatorname{cebq_SR}$	-0.047	0.022	-2.125	0.034
64	lHipMed_BF2SR	:=	a1*b1a2	-0.006	0.012	-0.563	0.573
65	$SRMed_lHip2p85th$:=	b1a2*b2	0.008	0.014	0.566	0.571

3.1.1 Post-Hoc Tests for Breastfeeding

Welch Two Sample t-test

Welch Two Sample t-test

Welch Two Sample t-test

>6mo 0-3mo 4-6mo 2.932576 2.865345 2.983718

3.2	$3.2.1\ \mathrm{Path}\ \mathrm{Model}$ for Left Hippocampus: Sensitivity Test - Effect of Breast-feeding

Table 3: Fit Statistics for Sensitivity Test: direct effect of breastfeeding on p85 BMI

	х
chisq	2.574
df	2.000
pvalue	0.276
baseline.chisq	138.482
baseline.df	27.000
baseline.pvalue	0.000
cfi	0.995
tli	0.930
logl	1.979
bic2	43.986
rmsea	0.047
${\it rmsea.ci.lower}$	0.000
${\it rmsea.ci.upper}$	0.186
rmsea.pvalue	0.386
srmr	0.009

Table 4: Parameters for Sensitivity Test: direct effect of breastfeeding on p85 BMI

lhs	op	rhs	est	se	Z	pvalue
$cebq_SR$	~	mEducation_dummy	-0.028	0.056	-0.502	0.615
$cebq_SR$	~	income_dummy	0.232	0.082	2.836	0.005
$cebq_SR$	~	cPreMat_dummy	-0.176	0.152	-1.151	0.250
$cebq_SR$	~	BreastFed_3cat_dummy	0.011	0.065	0.173	0.863
$cebq_SR$	~	TIV_scale	-0.037	0.074	-0.496	0.620
$cebq_SR$	~	Study_dummy	0.017	0.036	0.466	0.641
$cebq_SR$	~	$cAge_yr$	-0.020	0.044	-0.454	0.650
$cebq_SR$	~	sex_dummy	0.099	0.112	0.882	0.378
$cebq_SR$	~	lHip_21	-0.171	0.291	-0.587	0.557
$lHip_21$	~	TIV_scale	0.158	0.017	9.269	0.000
$lHip_21$	~	$Study_dummy$	-0.014	0.011	-1.289	0.197
$lHip_21$	~	$cAge_yr$	0.038	0.013	3.012	0.003
$lHip_21$	~	sex_dummy	-0.012	0.033	-0.374	0.709
$lHip_21$	~	$cPreMat_dummy$	-0.034	0.046	-0.751	0.452
$l Hip_21$	~	$BreastFed_3cat_dummy$	0.038	0.019	1.993	0.046
${\rm cdc_p85th}$	~	TIV_scale	0.040	0.019	2.153	0.031
${\rm cdc_p85th}$	~	Study_dummy	-0.001	0.009	-0.124	0.901
${\rm cdc_p85th}$	~	$cAge_yr$	0.016	0.011	1.458	0.145
${\rm cdc_p85th}$	~	sex_dummy	0.000	0.028	-0.006	0.995
${\rm cdc_p85th}$	~	lHip_21	-0.133	0.073	-1.825	0.068
${\rm cdc_p85th}$	~	$mEducation_dummy$	-0.053	0.014	-3.754	0.000
${\rm cdc_p85th}$	~	$income_dummy$	0.023	0.021	1.073	0.283
${\rm cdc_p85th}$	~	$cPreMat_dummy$	-0.039	0.038	-1.020	0.308
cdc_p85th	~	$\operatorname{cebq_SR}$	-0.046	0.022	-2.118	0.034
cdc_p85th	~	$BreastFed_3cat_dummy$	-0.016	0.016	-0.960	0.337

3.3 3.2.1 Path Model for Left Hippocampus: Sensitivity Test - Adjusting Hippocampal Volume for Income

Table 5: Fit Statistics for Sensitivity Test: adjusting hippocampal volume for income

	X
chisq	2.964
df	2.000
pvalue	0.227
baseline.chisq	138.482
baseline.df	27.000
baseline.pvalue	0.000
cfi	0.991
tli	0.883
logl	1.784
bic2	44.376
rmsea	0.061
rmsea.ci.lower	0.000
rmsea.ci.upper	0.194
rmsea.pvalue	0.333
srmr	0.013

Table 6: Parameters for Sensitivity Test: adjusting hippocampal volume for income

lhs	op	rhs	est	se	Z	pvalue
cebq SR	~	mEducation dummy	-0.028	0.056	-0.502	0.615
$cebq_SR$	~	income_dummy	0.232	0.082	2.831	0.005
$cebq_SR$	~	cPreMat_dummy	-0.176	0.152	-1.151	0.250
$cebq_SR$	~	BreastFed_3cat_dummy	0.011	0.065	0.173	0.863
$cebq_SR$	~	TIV_scale	-0.037	0.074	-0.498	0.618
$cebq_SR$	~	$Study_dummy$	0.017	0.036	0.466	0.641
$cebq_SR$	~	$cAge_yr$	-0.020	0.044	-0.453	0.650
$cebq_SR$	~	sex_dummy	0.099	0.112	0.881	0.378
$cebq_SR$	~	lHip_21	-0.171	0.292	-0.586	0.558
$lHip_21$	~	TIV_scale	0.156	0.017	9.034	0.000
$lHip_21$	~	$Study_dummy$	-0.013	0.011	-1.177	0.239
$lHip_21$	~	$cAge_yr$	0.038	0.013	3.048	0.002
$lHip_21$	~	sex_dummy	-0.014	0.033	-0.415	0.678
$lHip_21$	~	$cPreMat_dummy$	-0.035	0.045	-0.772	0.440
$lHip_21$	~	$BreastFed_3cat_dummy$	0.036	0.019	1.879	0.060
$l Hip_21$	~	$income_dummy$	0.016	0.022	0.731	0.465
${\rm cdc_p85th}$	~	TIV_scale	0.040	0.019	2.169	0.030
${\rm cdc_p85th}$	~	$Study_dummy$	-0.002	0.009	-0.182	0.856
${\rm cdc_p85th}$	~	$cAge_yr$	0.017	0.011	1.563	0.118
${\rm cdc_p85th}$	~	sex_dummy	-0.003	0.028	-0.125	0.901
${\rm cdc_p85th}$	~	lHip_21	-0.144	0.072	-1.987	0.047
cdc_p85th	~	mEducation_dummy	-0.051	0.014	-3.683	0.000
$cdc_p85th \sim income$		$income_dummy$	0.020	0.021	0.944	0.345
cdc_p85th	~	$cPreMat_dummy$	-0.039	0.038	-1.020	0.308
${\rm cdc_p85th}$	~	$cebq_SR$	-0.047	0.022	-2.125	0.034

3.4 3.2.2 Path Model for Right Hippocampus (Figure 1C).

Table 7: Fit Statistics for Model: BF -> SR (R Hipp Med) -> p85th BMI

	X
chisq	2.652
$\mathrm{d}\mathrm{f}$	3.000
pvalue	0.448
baseline.chisq	123.303
baseline.df	27.000
baseline.pvalue	0.000
cfi	1.000
tli	1.033
logl	-22.845
bic2	91.922
rmsea	0.000
rmsea.ci.lower	0.000
rmsea.ci.upper	0.141
${\it rmsea.pvalue}$	0.582
srmr	0.013

Table 8: Parameters for Model: BF -> SR (R Hipp Med) -> p85th BMI

	lhs	op	rhs	est	se	Z	pvalue
1	cebq_SR	~	mEducation_dummy	-0.025	0.056	-0.455	0.649
2	$cebq_SR$	~	income_dummy	0.232	0.082	2.828	0.005
3	$\operatorname{cebq_SR}$	~	cPreMat_dummy	-0.175	0.152	-1.146	0.252
4	$\operatorname{cebq_SR}$	~	$BreastFed_3cat_dummy$	0.012	0.066	0.189	0.850
5	$cebq_SR$	~	TIV_scale	-0.041	0.072	-0.571	0.568
6	$cebq_SR$	~	Study_dummy	0.017	0.036	0.461	0.645
7	$cebq_SR$	~	$cAge_yr$	-0.021	0.043	-0.497	0.619
8	$cebq_SR$	~	sex_dummy	0.098	0.112	0.876	0.381
9	$cebq_SR$	~	rHip_22	-0.137	0.245	-0.559	0.576
10	$rHip_22$	~	TIV_scale	0.171	0.020	8.434	0.000
11	$rHip_22$	~	Study_dummy	-0.019	0.013	-1.537	0.124
12	$rHip_22$	~	$cAge_yr$	0.035	0.015	2.335	0.020
13	$rHip_22$	~	sex_dummy	-0.016	0.040	-0.402	0.688
14	$rHip_22$	~	$cPreMat_dummy$	-0.033	0.054	-0.601	0.548
15	$rHip_22$	~	$BreastFed_3cat_dummy$	0.054	0.023	2.404	0.016
16	cdc_p85th	~	TIV_scale	0.026	0.018	1.449	0.147
17	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	Study_dummy	-0.001	0.009	-0.080	0.936
18	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	$cAge_yr$	0.014	0.011	1.254	0.210
19	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	sex_dummy	-0.004	0.028	-0.126	0.900
20	cdc_p85th	~	$rHip_22$	-0.054	0.061	-0.888	0.374
21	cdc_p85th	~	mEducation_dummy	-0.048	0.014	-3.424	0.001
22	cdc_p85th	~	income_dummy	0.016	0.021	0.777	0.437
23	$\mathrm{cdc}_{-\mathrm{p}85\mathrm{th}}$	~	cPreMat_dummy	-0.036	0.039	-0.932	0.351
24	$\mathrm{cdc}_\mathrm{p}85\mathrm{th}$	~	$cebq_SR$	-0.045	0.022	-2.046	0.041
64	$rHipMed_BF2SR$:=	a1*b1a2	-0.007	0.014	-0.544	0.586
65	$SRMed_rHip2p85th$:=	b1a2*b2	0.006	0.012	0.539	0.590

3.4.1 Post-Hoc Tests for Breastfeeding

Welch Two Sample t-test

Welch Two Sample t-test

Welch Two Sample t-test

>6mo 0-3mo 4-6mo 3.288617 3.180627 3.311463 3.5 3.2.1 Path Model for Right Hippocampus: Sensitivity Test - Direct Effect of Breastfeeding

Table 9: Fit Statistics for Sensitivity Test: direct effect of breastfeeding on p85 BMI

	х
chisq	1.470
df	2.000
pvalue	0.479
baseline.chisq	123.303
baseline.df	27.000
baseline.pvalue	0.000
cfi	1.000
tli	1.074
logl	-22.254
bic2	92.453
rmsea	0.000
${\it rmsea.ci.lower}$	0.000
${\it rmsea.ci.upper}$	0.158
rmsea.pvalue	0.584
srmr	0.008

Table 10: Parameters for Sensitivity Test: direct effect of breastfeeding on p85 BMI

lhs	op	rhs	est	se	Z	pvalue
cebq SR	~	mEducation_dummy	-0.025	0.056	-0.455	0.649
$cebq_SR$	~	income_dummy	0.232	0.082	2.828	0.005
$cebq_SR$	~	cPreMat_dummy	-0.175	0.152	-1.146	0.252
$cebq_SR$	~	BreastFed_3cat_dummy	0.012	0.066	0.189	0.850
$cebq_SR$	~	TIV_scale	-0.041	0.072	-0.571	0.568
$cebq_SR$	~	Study_dummy	0.017	0.036	0.461	0.645
$cebq_SR$	~	$cAge_yr$	-0.021	0.043	-0.497	0.619
$cebq_SR$	~	sex_dummy	0.098	0.112	0.876	0.381
$cebq_SR$	~	$rHip_22$	-0.137	0.245	-0.559	0.576
$rHip_22$	~	TIV_scale	0.171	0.020	8.434	0.000
$rHip_22$	~	Study_dummy	-0.019	0.013	-1.537	0.124
$rHip_22$	~	$cAge_yr$	0.035	0.015	2.335	0.020
$rHip_22$	~	sex_dummy	-0.016	0.040	-0.402	0.688
$rHip_22$	~	$cPreMat_dummy$	-0.033	0.054	-0.601	0.548
$rHip_22$	~	$BreastFed_3cat_dummy$	0.054	0.023	2.404	0.016
cdc_p85th	~	TIV_scale	0.026	0.018	1.426	0.154
cdc_p85th	~	Study_dummy	0.000	0.009	-0.009	0.993
cdc_p85th	~	$cAge_yr$	0.012	0.011	1.137	0.256
cdc_p85th	~	sex_dummy	0.000	0.028	0.011	0.991
${\rm cdc_p85th}$	~	rHip_22	-0.041	0.062	-0.668	0.504
${\rm cdc_p85th}$	~	$mEducation_dummy$	-0.050	0.014	-3.520	0.000
cdc_p85th	~	$income_dummy$	0.020	0.021	0.919	0.358
cdc_p85th	~	$cPreMat_dummy$	-0.036	0.039	-0.930	0.352
${\rm cdc_p85th}$	~	$cebq_SR$	-0.045	0.022	-2.037	0.042
cdc_p85th	~	$BreastFed_3cat_dummy$	-0.018	0.017	-1.086	0.277

Table 11: Fit Statistics for Sensitivity Test: adjusting hippocampal volume for income

	х
chisq	1.464
df	2.000
pvalue	0.481
baseline.chisq	123.303
baseline.df	27.000
baseline.pvalue	0.000
cfi	1.000
tli	1.075
logl	-22.251
bic2	92.446
rmsea	0.000
${\it rmsea.ci.lower}$	0.000
${\it rmsea.ci.upper}$	0.158
rmsea.pvalue	0.585
srmr	0.011

Table 12: Parameters for Sensitivity Test: adjusting hippocampal volume for income

lhs	op	rhs	est	se	Z	pvalue
cebq_SR	~	mEducation_dummy	-0.025	0.056	-0.455	0.649
$cebq_SR$	~	income_dummy	0.232	0.082	2.818	0.005
$cebq_SR$	~	$cPreMat_dummy$	-0.175	0.152	-1.146	0.252
$cebq_SR$	~	BreastFed_3cat_dummy	0.012	0.066	0.189	0.850
$cebq_SR$	~	TIV_scale	-0.041	0.071	-0.574	0.566
$cebq_SR$	~	Study_dummy	0.017	0.036	0.462	0.644
$cebq_SR$	~	$cAge_yr$	-0.021	0.043	-0.497	0.619
$cebq_SR$	~	sex_dummy	0.098	0.112	0.876	0.381
$cebq_SR$	~	$rHip_22$	-0.137	0.246	-0.556	0.578
$rHip_22$	~	TIV_scale	0.167	0.020	8.170	0.000
$rHip_22$	~	Study_dummy	-0.018	0.013	-1.375	0.169
$rHip_22$	~	$cAge_yr$	0.036	0.015	2.393	0.017
$rHip_22$	~	sex_dummy	-0.018	0.040	-0.466	0.642
$rHip_22$	~	$cPreMat_dummy$	-0.034	0.054	-0.632	0.527
$rHip_22$	~	$BreastFed_3cat_dummy$	0.051	0.023	2.244	0.025
$rHip_22$	~	$income_dummy$	0.028	0.026	1.093	0.275
cdc_p85th	~	TIV_scale	0.026	0.018	1.457	0.145
cdc_p85th	~	$Study_dummy$	-0.001	0.009	-0.080	0.936
${\rm cdc_p85th}$	~	$cAge_yr$	0.014	0.011	1.252	0.210
${\rm cdc_p85th}$	~	sex_dummy	-0.004	0.028	-0.126	0.900
${\rm cdc_p85th}$	~	$rHip_22$	-0.054	0.061	-0.882	0.378
cdc_p85th	~	mEducation_dummy	-0.048	0.014	-3.424	0.001
cdc_p85th	~	$income_dummy$	0.016	0.021	0.772	0.440
cdc_p85th	~	$\operatorname{cPreMat_dummy}$	-0.036	0.039	-0.932	0.351
${\rm cdc_p85th}$	~	$cebq_SR$	-0.045	0.022	-2.046	0.041