PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 3

- 1. Sean $A, B \subseteq U$ conjuntos. Demuestre que:
 - a) $A \subseteq B \iff B^c \subseteq A^c$.
 - b) $(B \backslash A) \subseteq C \iff C^c \subseteq (B^c \cup A)$

Solución.

a)
$$A \subseteq B \iff (x \in A \Longrightarrow x \in B) \iff (x \notin B \Longrightarrow x \notin A) \iff (x \in B^c \Longrightarrow x \in A^c) \iff B^c \subseteq A^c$$

b)
$$(B \backslash A) \subseteq C \iff C^c \subseteq (B \backslash A)^c \iff C^c \subseteq (B \cap A^c)^c \iff C^c \subseteq (B^c \cup A)$$

Criterio de Corrección (CC) Pregunta 1.

- **CC 1.** 1,5 puntos por obtener la equivalencia $(x \in A \Longrightarrow x \in B) \Longleftrightarrow (x \notin B \Longrightarrow x \notin A)$.
- CC 2. 1,5 puntos por obtener la equivalencia $(x \notin B \Longrightarrow x \notin A) \Longleftrightarrow (x \in B^c \Longrightarrow x \in A^c)$.
- **CC 3.** 1,5 puntos por usar el inciso a) y obtener $(B \setminus A) \subseteq C \iff C^c \subseteq (B \setminus A)^c$.
- **CC 4.** 1,5 puntos por obtener que $(B \setminus A)^c = (B^c \cup A)$.

2. Sean $U = \mathbb{Z}$, el conjunto universo, $A = \{-3, -2, -1, 5\}$ y B el conjunto de los números pares. Se define la operación binaria \star en U de la siguiente manera:

$$a \star b = a + 5b$$

para todo $a, b \in U$. Determine justificadamente el valor de verdad de cada proposición:

- a) Si $a, b \in B$ entonces $a \star b \in B$.
- b) $\forall x \in A, \exists y \in U, x + y = 0.$

Solución.

- a) La proposición es verdadera ya que si $a, b \in B$, entonces son números pares. Esto es a = 2m para algún $m \in U$ y b = 2n para algún $n \in U$. Por lo que $a \star b = 2m \star 2n = 2m + 5 \cdot 2n = 2(m + 5n)$ que es par, por lo que $a \star b \in B$.
- b) La proposición es verdadera ya que $\forall x \in A, \exists y \in U, x + y = 0$ significa que todo los elementos de A tiene inverso aditivo en U lo cual es verdadero.

También se puede mostrar todos los casos:

- x = -3, se tiene $y = 3 \in U$ tal que x + y = 0.
- x = -2, se tiene $y = 2 \in U$ tal que x + y = 0.
- x = -1, se tiene $y = 1 \in U$ tal que x + y = 0.
- x = 5, se tiene $y = -5 \in U$ tal que x + y = 0.

Criterio de Corrección (CC) Pregunta 2.

- **CC 1.** 1,5 puntos por obtener que si $a, b \in B$ entonces a = 2m y b = 2n para algún $n, m \in \mathbb{Z}$.
- CC 2. 1,5 puntos por demostrar que $a \star b = 2(m+5n)$ y concluir que es par.
- CC 3. 3 puntos por demostar que el inciso b) es verdadero.