Task 5: End-to-End Data Pipeline for Book Analytics

Expected duration: 5 days

Task Overview

Objective:

Build a complete data pipeline to analyze IMDB-style Book Data using Python, SQL, and a visualization dashboard.

Deliverables:

Data Ingestion

Load mock book data from a CSV file or simulate data from an API using Python.

Data Cleaning

Handle missing values, duplicates, and outliers in book-related fields such as ratings, votes, and publication year.

• SQL Schema Design and Population

- Design a normalized database schema for storing the book data using SQLite or PostgreSQL.
- Populate the database using the cleaned dataset.

• Interactive Dashboard (Streamlit or Dash)

Build a web-based dashboard that allows users to filter and visualize:

- Average book ratings by genre
- Top-rated books by year
- Revenue vs. votes
- Book count by genre over the years

1.Data Ingestion

```
In [112...
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Read the csv dataset
df = pd.read_csv('data/books.csv')
df.head()
```

Out[112...

	BookID	Title	Genre	PublicationYear	Rating	Votes	RevenueMillions
0	0	Book 0	Romance	2011	4.2	3862	32.22
1	1	Book 1	Non-Fiction	2020	3.5	13170	4.41
2	2	Book 2	Science Fiction	1973	4.3	16332	37.19
3	3	Book 3	Non-Fiction	1988	4.3	397	10.51
4	4	Book 4	Non-Fiction	2017	3.8	46901	19.48

```
In [102... print(df.shape) # Rows & columns
print(df.info()) # Data types
```

(10000, 7) <class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 7 columns): Non-Null Count Dtype # Column --- ----------10000 non-null int64 0 BookID Title 10000 non-null object
Genre 10000 non-null object 1 2 Genre 3 PublicationYear 10000 non-null int64 4 Rating 10000 non-null float64 10000 non-null int64 5 Votes 6 RevenueMillions 10000 non-null float64 dtypes: float64(2), int64(3), object(2) memory usage: 547.0+ KB

In [103... df.describe() # Summary statistics

Out[103...

	BookID	PublicationYear	Rating	Votes	RevenueMillions
count	10000.00000	10000.00000	10000.000000	10000.000000	10000.000000
mean	4999.50000	1986.48960	4.003170	24816.082800	25.163221
std	2886.89568	21.42787	0.694034	14394.196041	14.432541
min	0.00000	1950.00000	0.900000	12.000000	0.100000
25%	2499.75000	1968.00000	3.500000	12374.500000	12.760000
50%	4999.50000	1987.00000	4.000000	24755.500000	25.080000
75%	7499.25000	2005.00000	4.500000	37189.000000	37.810000
max	9999.00000	2023.00000	6.900000	49991.000000	49.990000

2.Data Cleaning

```
In [35]: df.isnull().any()
Out[35]: BookID
                            False
         Title
                            False
         Genre
                            False
         PublicationYear
                            False
          Rating
                            False
         Votes
                            False
          RevenueMillions
                            False
          dtype: bool
In [36]: df.duplicated().sum()
Out[36]: np.int64(0)
In [37]: num_cols = df.select_dtypes(include=np.number)
         import seaborn as sns
         # plot boxplot for outlier detection
         for col in num_cols:
             sns.boxplot(x=df[col])
             plt.show()
```



```
In [38]: df.dtypes
Out[38]: BookID
                              int64
         Title
                             object
                             object
         PublicationYear
                             int32
         Rating
                            float64
         Votes
                             int32
         RevenueMillions
                            float64
         dtype: object
In [39]: df['RevenueMillions'].min()
Out[39]: np.float64(0.1)
```

3.SQL Schema Design and Population

```
In [41]: # 1. Create & Connect Database
         import sqlite3
         connection = sqlite3.connect("D:/Data Science/Codes/Internship/Task 5/database.db")
         cursor = connection.cursor()
In [94]: tables = {
             "genres":'''
                 create table if not exists genres (
                 id integer primary key autoincrement,
                 name varchar(100) unique
             ''',
             "books": '''
                 create table if not exists books (
                 id integer primary key autoincrement,
                 title varchar(100) not null,
                 genre_id integer,
                 publication_year integer,
                 foreign key (genre_id) references genres(id)
             "book_stats":'''
                 create table if not exists book_stats(
                     id integer primary key autoincrement,
                     book_id integer,
                     rating real,
```

```
votes integer,
                      revenue_millions real,
                      foreign key (book_id) references books(id)
                 )
 In [ ]: for table_name,query in tables.items():
             cursor.execute(query)
             print(f"Table {table name} is created(if not exists)")
          connection.commit()
         connection.close()
        Table genres is created(if not exists)
        Table books is created(if not exists)
        Table book_stats is created(if not exists)
In [58]: df.head()
Out[58]:
                                   Genre PublicationYear Rating Votes RevenueMillions
            BookID
                       Title
          0
                                                    2011
                                                                                  32.22
                  0 Book 0
                                                                  3862
                                 Romance
                                                             4.2
                                                             3.5 13170
                  1 Book 1
                               Non-Fiction
                                                    2020
                                                                                   4.41
          1
          2
                  2 Book 2 Science Fiction
                                                    1973
                                                             4.3 16332
                                                                                  37.19
                  3 Book 3
                                                                                   10.51
          3
                               Non-Fiction
                                                    1988
                                                             4.3
                                                                   397
          4
                                                    2017
                  4 Book 4
                               Non-Fiction
                                                             3.8 46901
                                                                                  19.48
In [92]: connection = sqlite3.connect('database.db')
          cursor = connection.cursor()
In [96]: # Insert genres in the genres table
         unique_genres = df['Genre'].unique()
          for genre in unique_genres:
              cursor.execute('insert or ignore into genres (name) values (?)',(genre,))
             connection.commit()
In [97]: # Fetch all genres id and store in dictionary
         cursor.execute('select * from genres')
          genre_map = {}
          for row in cursor.fetchall():
             genre_map[row[1]] = row[0]
         genre_map
Out[97]: {'Romance': 1,
           'Non-Fiction': 2,
           'Science Fiction': 3,
           'Mystery': 4,
           'Fiction': 5}
In [98]: # Insert books and books stats
          for _,row in df.iterrows():
             cursor.execute('''
                 insert into books (title,genre_id,publication_year) values
              (row['Title'],genre_map[row['Genre']],int(row['PublicationYear']))
             book_id = cursor.lastrowid
              # Insert stats
              cursor.execute('''
                 insert into book_stats (book_id,rating,votes,revenue_millions) values
              (book_id,row['Rating'],row['Votes'],row['RevenueMillions'])
         # Commit and close
```

```
connection.commit()
connection.close()
print(" Data successfully inserted into SQLite database!")
```

✓ Data successfully inserted into SQLite database!

4.Data Visualization

1. Average Book Ratings by Genre

Out[108...

	genre	avg_rating
0	Fiction	4.03
1	Non-Fiction	4.01
2	Science Fiction	4.00
3	Romance	4.00
4	Mystery	3.98

2. Top-Rated Books by Year

Out[109	publication_ye

	publication_year	title	top_rating
0	1950	Book 5836	6.9
1	1951	Book 8898	5.7
2	1952	Book 6663	5.9
3	1953	Book 9560	5.9
4	1954	Book 5053	5.7
•••			
69	2019	Book 1193	5.6
70	2020	Book 6448	6.1
71	2021	Book 5570	6.0
72	2022	Book 4774	5.7
73	2023	Book 6205	5.8

74 rows × 3 columns

3. Revenue vs. Votes (Scatter Data)

```
query = '''
In [110...
          SELECT b.title,
                 bs.votes,
                 bs.revenue_millions
          FROM books b
          JOIN book_stats bs ON b.id = bs.book_id;
          df_book_stats = pd.read_sql(query, conn)
          df_book_stats
```

Out[110...

	title	votes	revenue_millions
0	Book 0	3862	32.22
1	Book 1	13170	4.41
2	Book 2	16332	37.19
3	Book 3	397	10.51
4	Book 4	46901	19.48
•••	•••		
9995	Book 9995	44900	46.90
9996	Book 9996	48558	28.66
9997	Book 9997	10436	32.12
9998	Book 9998	12546	28.99
9999	Book 9999	11361	39.26

10000 rows × 3 columns

4. Book Count by Genre Over the Years

```
In [111...
          query = '''
          SELECT b.publication_year,
                 g.name AS genre,
                 COUNT(*) AS book_count
          FROM books b
          JOIN genres g ON g.id = b.genre_id
```

```
GROUP BY b.publication_year, g.name
ORDER BY b.publication_year, g.name;

df_genre_counts = pd.read_sql(query, conn)
df_genre_counts
```

Out[111...

	publication_year	genre	book_count
0	1950	Fiction	22
1	1950	Mystery	32
2	1950	Non-Fiction	22
3	1950	Romance	21
4	1950	Science Fiction	29
•••			•••
365	2023	Fiction	29
366	2023	Mystery	31
367	2023	Non-Fiction	29
368	2023	Romance	33
369	2023	Science Fiction	28

370 rows × 3 columns