16. (Claire and Yutian) Show that the symmetric banded matrix $(a_{ij} \neq 0 \text{ only if } |i-j| \leq b \text{ where } b \text{ is the 'bandwidth'})$ the Cholesky factorization can be done with no fill-in outside the band. Note that a tridiagonal matrix is the special case of a banded matrix with bandwidth b = 1.

Let $P_n = (V, E)$ be defined by $V = \{V_1, ..., V_n\}$ and $V_1 V_2 \in E \iff |i-j| \leq b$. Consider the neighbors of $V_1, N(V_1)$. By construction, they are exactly the vertices $\{V_2, ..., V_{b+1}\}$. But for any $1 \leq i, j \leq b+1$, we have $|i-j| \leq b-1$. Thus all these vertices are adjacent, that $:s, N(V_1)$ is a complete subgraph of P_n^b , and deleting V_1 will give no fill-in:

Finally, notice that $P_n^b - \frac{2}{3} \times P_{n-1}^b$. Thus we may treep removing the ends of the underlying path to avoid fill-in. (specifically, remove an end of $P_n^b \subseteq P_n^b$ at each iteration.)