Exponentielle complexe, fonctions trigonométriques, nombre π

15.1 Rappels sur la fonction exponentielle réelle

Si on suppose connue la fonction logarithme ln définie sur $]0,+\infty[$ comme la primitive nulle en 1 de la fonction $x\mapsto \frac{1}{x}$, on vérifie alors que cette fonction ln vérifie l'équation fonctionnelle $\ln{(xy)}=\ln{(x)}+\ln{(y)}$ pour tous réels strictement positifs x,y, que c'est un homéomorphisme de $]0,+\infty[$ sur $\mathbb R$ et sa fonction réciproque est appelée fonction exponentielle réelle. On note $x\mapsto\exp{(x)}$ ou $x\mapsto e^x$ cette fonction réciproque. Cette fonction est indéfiniment dérivable de $\mathbb R$ sur $]0,+\infty[$, égale à sa dérivée et vérifie l'équation fonctionnelle $\exp{(x+y)}=\exp{(x)}\exp{(y)}$ pour tous réels x,y.

Rappelons comment se montrent ces résultats.

- 1. On a $\ln(1) = 0$ et, pour tout y > 0 fixé, la dérivée de la fonction $x \mapsto \ln(xy)$ est égale à $\frac{y}{xy} = \frac{1}{x} = \ln'(x)$, ce qui donne $\ln(xy) = \ln(x) + C_y$, la constante C_y étant égale à $\ln(y) \ln(1) = \ln(y)$, ce qui donne bien $\ln(xy) = \ln(x) + \ln(x)$.
- 2. La fonction ln étant dérivable sur $]0,+\infty[$ de dérivée $\ln'(x)=\frac{1}{x}>0$, elle est strictement croissante sur cet intervalle. Avec $\ln(2)>\ln(1)=0$, $\ln(2^n)=n\ln(2)$ on déduit que cette fonction n'est pas bornée et $\lim_{x\to+\infty}\ln(x)=+\infty$. Enfin avec $\ln\left(\frac{1}{x}\right)=-\ln(x)$, on déduit que $\lim_{x\to 0}\ln(x)=-\infty$. La fonction ln est donc continue strictement croissante de $]0,+\infty[$ sur \mathbb{R} , c'est donc un homéomorphisme de $]0,+\infty[$ sur \mathbb{R} . On peut alors définir sa fonction réciproque exp par :

$$(x \in \mathbb{R} \text{ et } y = \exp(x)) \Leftrightarrow (y \in \mathbb{R}^{+,*} \text{ et } x = \ln(y)).$$

Cette fonction exp est dérivable sur \mathbb{R} de dérivée donnée par :

$$\forall x \in \mathbb{R}, \ \exp'(x) = \frac{1}{\ln'(y)} = y = \exp(x)$$

Il en résulte que exp est indéfiniment dérivable sur \mathbb{R} .

3. Pour tous réels x, y, on a :

$$\ln\left(\exp\left(x+y\right)\right) = x+y = \ln\left(\exp\left(x\right)\right) + \ln\left(\exp\left(y\right)\right) = \ln\left(\exp\left(x\right)\exp\left(y\right)\right)$$
et donc
$$\exp\left(x+y\right) = \exp\left(x\right)\exp\left(y\right).$$

Réciproquement, on peut montrer que si f est une fonction dérivable [resp. monotone] de \mathbb{R} dans $]0, +\infty[$ telle que f'(x) = f(x) pour tout réel x [resp. f(x+y) = f(x) f(y) pour tous réels x, y], il existe alors un réel α tel que $f(x) = \alpha e^x$ [resp. $f(x) = e^{\alpha x}$] pour tout $x \in \mathbb{R}$, la constante α étant définie par $\alpha = f(0)$ [resp. $\alpha = \ln(f(1))$].

Rappelons comment se montrent ces résultats.

- 1. Pour f dérivable de \mathbb{R} dans $]0, +\infty[$, la fonction g définie par $g(x) = f(x)e^{-x}$ est également dérivable avec $g'(x) = e^{-x}(f'(x) f(x))$. Si f' = f, on a alors g' = 0 sur \mathbb{R} et $g(x) = \alpha$, soit $f(x) = \alpha e^x$ avec $\alpha = g(0) = f(0)$.
- 2. Supposons que f soit monotone telle que f(x+y)=f(x) f(y) pour tous réels x,y. La fonction $g=\ln \circ f$ vérifie alors l'équation fonctionnelle de Cauchy g(x+y)=g(x)+g(y) et il est alors facile de vérifier que $g(x)=\alpha x$ pour tout réel x, ce qui entraı̂ne $f(x)=e^{\alpha x}$ avec $\alpha=g(1)=\ln (f(1))$.

L'utilisation de la formule de Taylor-Lagrange permet de montrer que la fonction exponentielle est développable en série entière sur \mathbb{R} .

Cette formule s'écrit pour $x \in \mathbb{R}^*$:

$$\exp(x) = \sum_{k=0}^{n} \frac{\exp^{(k)}(0)}{k!} x^{k} + R_{n}(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + R_{n}(x)$$

avec $R_n(x) = \frac{e^{\theta_{n,x}x}}{(n+1)!}x^{n+1}$ où $\theta_{n,x}x \in]0,1[$. Pour tout réel x, on a :

$$|R_n(x)| \le \frac{e^{|x|}}{(n+1)!} |x|^{n+1} \underset{n \to +\infty}{\to} 0$$

ce qui entraîne:

$$\exp\left(x\right) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

15.2 La fonction exponentielle complexe

Sans connaissance préalable de la fonction exponentielle réelle, la définition de la fonction exponentielle complexe est basée sur le résultat suivant.

Lemme 15.1 Pour tout réel $x \ge 0$ la série $\sum \frac{x^n}{n!}$ est convergente.

Démonstration. Pour x=0 c'est clair et pour x>0, en notant $u_n=\frac{x^n}{n!}$, on a $u_n>0$ et $\frac{u_{n+1}}{u_n}=\frac{x}{n+1}\underset{n\to+\infty}{\longrightarrow}0$. On déduit alors du théorème de d'Alembert que la série $\sum \frac{x^n}{n!}$ est convergente.

Théorème 15.1 Pour tout nombre complexe z la série $\sum \frac{z^n}{n!}$ est convergente.

Démonstration. Le lemme précédent nous dit que la série $\sum \frac{z^n}{n!}$ est absolument convergente et donc convergente pour tout nombre complexe z.

On note $f(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ la somme de cette série pour tout nombre complexe z.

Le rayon de convergence de cette série étant infini, la fonction f ainsi définie est continue sur \mathbb{C} .

On rappelle que le produit de Cauchy $\sum w_n$ de deux séries numériques $\sum u_n$ et $\sum v_n$ absolument convergentes est absolument convergent et :

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

où
$$w_n = \sum_{k=0}^n u_k v_{n-k}$$
.

Théorème 15.2 Pour tous nombres complexes λ et μ on a $f(\lambda) f(\mu) = f(\lambda + \mu)$.

Démonstration. Les séries $\sum \frac{\lambda^n}{n!}$ et $\sum \frac{\mu^n}{n!}$ étant absolument convergentes on a :

$$f(\lambda) f(\mu) = \sum_{n=0}^{+\infty} w_n$$

où:

$$w_n = \sum_{k=0}^n \frac{\lambda^k}{k!} \frac{\mu^{n-k}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n C_n^k \lambda^k \mu^{n-k} = \frac{(\lambda + \mu)^n}{n!}$$

ce qui donne $f(\lambda) f(\mu) = f(\lambda + \mu)$.

Si maintenant on se souvient de la fonction exponentielle réelle, on a le résultat suivant.

Théorème 15.3 La restriction de f à \mathbb{R} coïncide avec la fonction exponentielle réelle.

Démonstration. La restriction de f à \mathbb{R} vérifiant l'équation fonctionnelle f(x+y) = f(x) f(y), on a $f(x) = e^{\alpha x}$ pour tout réel x où $\alpha = \ln(f(1))$. Comme $f(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e$, on a $\alpha = \ln(e) = 1$ et $f(x) = e^x$.

On peut aussi dire que cette restriction est dérivable sur \mathbb{R} avec $f'(x) = \sum_{n=1}^{+\infty} n \frac{x^{n-1}}{n!} = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = f(x)$ (la somme d'une série entière réelle est dérivable sur son domaine réel de convergence et la dérivée s'obtient en dérivant terme à terme), donc $f(x) = \alpha e^x$ avec $\alpha = f(0) = 1$

Les résultats précédents nous conduisent à noter, pour tout nombre complexe z, e^z ou $\exp(z)$ la somme de la série $\sum \frac{z^n}{n!}$, ce qui définit ainsi la fonction exponentielle complexe.

Remarque 15.1 Avec l'égalité $1 = e^0 = e^{z-z} = e^z e^{-z}$, on déduit que $e^z \neq 0$ pour tout nombre complexe z et $\frac{1}{e^z} = e^{-z}$.

Remarque 15.2 La continuité de la fonction exponentielle et relation fonctionnelle $e^{\lambda+\mu}=e^{\lambda}e^{\mu}$ pour tous nombres complexes λ,μ se traduisent en disant que la fonction exponentielle est un morphisme de groupes continu de $(\mathbb{C},+)$ dans (\mathbb{C}^*,\cdot) . Nous verrons plus loin que ce morphisme est surjectif de noyau $2i\pi\mathbb{Z}$ une fois défini le nombre π .

En fait, on peut retrouver les propriétés de la fonction exponentielle réelle avec cette définition de l'exponentielle complexe.

- 1. Avec $e^x \neq 0$ et $e^x = \left(e^{\frac{x}{2}}\right)^2 \geq 0$, on déduit que $e^x > 0$ pour tout réel x.
- 2. Avec $(e^x)' = e^x > 0$ pour tout réel x, on déduit que la fonction exponentielle est strictement croissante sur \mathbb{R} .
- 3. Avec $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} > 1 + x$ pour x > 0, on déduit que $\lim_{x \to +\infty} e^x = +\infty$ et avec $e^{-x} = \frac{1}{e^x}$, on déduit que $\lim_{x \to -\infty} e^x = 0$.
- 4. La fonction exponentielle est donc continue strictement croissante de \mathbb{R} sur $]0, +\infty[$ et en conséquence, c'est un homéomorphisme de \mathbb{R} sur $]0, +\infty[$. La fonction réciproque est notée ln et on l'appelle fonction logarithme népérien. On a l'équation fonctionnelle :

$$\ln(xy) = \ln(e^u e^v) = \ln(e^{u+v}) = u + v = \ln(x) + \ln(y)$$

valable pour tous réels $x = e^u > 0$ et $y = e^v > 0$ (les réels u et v sont uniquement déterminés) et en particulier $\ln(1) = 0$. Cette fonction \ln est dérivable de dérivée donnée par :

$$\ln'(x) = \frac{1}{(e^u)'} = \frac{1}{e^u} = \frac{1}{x}.$$

Avec $\ln'(1+x) = \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$ pour $x \in]-1,1[$, on déduit que :

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$$

pour $x \in]-1,1[$ (intégration des développements en série entière), le rayon de convergence de cette série entière étant égal à 1.

Théorème 15.4

- 1. Pour tout nombre complexe z, on a $\overline{e^z} = e^{\overline{z}}$.
- 2. Pour tout nombre réel t, on a $|e^{it}| = 1$.

Démonstration. Le premier point se déduit de la continuité de la fonction $z \mapsto \overline{z}$ sur \mathbb{C} (qui résulte de $|\overline{z_1} - \overline{z_2}| = |z_1 - z_2|$):

$$\left(e^z = \lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{z^k}{k!}\right)\right) \Rightarrow \left(\overline{e^z} = \lim_{n \to +\infty} \left(\sum_{k=0}^n \frac{\overline{z}^k}{k!}\right) = e^{\overline{z}}\right)$$

Pour tout nombre complexe z on a alors :

$$|e^z|^2 = e^z \overline{e^z} = e^z e^{\overline{z}} = e^{z+\overline{z}} = e^{2\Re(z)}$$

et en particulier, pour tout réel t:

$$|e^{it}|^2 = e^0 = 1.$$

15.3 Les fonctions ch, sh, cos et sin

On définit les fonctions cosinus et sinus réels par :

$$\forall t \in \mathbb{R}, \ \cos(t) = \Re\left(e^{it}\right) = \frac{e^{it} + e^{-it}}{2} \text{ et } \sin(t) = \Im\left(e^{it}\right) = \frac{e^{it} - e^{-it}}{2i}.$$

L'égalité $|e^{it}| = 1$ se traduit alors par :

$$\forall t \in \mathbb{R}, \cos^2(t) + \sin^2(t) = 1$$

et ces fonctions sont donc à valeurs dans [-1, 1].

De la définition de l'exponentielle complexe et de la continuité des fonction partie réelle et partie imaginaire, on déduit que ces fonctions sont développables en séries entières sur \mathbb{R} avec :

$$\cos(t) = \Re\left(\sum_{n=0}^{+\infty} \frac{i^n t^n}{n!}\right) = \sum_{n=0}^{+\infty} \Re\left(\frac{i^n t^n}{n!}\right) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} t^{2n}$$

et:

$$\sin(t) = \Im\left(\sum_{n=0}^{+\infty} \frac{i^n t^n}{n!}\right) = \sum_{n=0}^{+\infty} \Im\left(\frac{i^n t^n}{n!}\right) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} t^{2n+1}$$

On déduit également que ces fonctions sont indéfiniment dérivables sur $\mathbb R$ avec :

$$\forall t \in \mathbb{R}, \cos'(t) = \Re(ie^{it}) = -\sin(t) \text{ et } \sin'(t) = \Im(ie^{it}) = \cos(t).$$

En fait, on définit plus généralement les fonctions cos, sin, ch et sh sur $\mathbb C$ par :

$$\forall z \in \mathbb{C}, \begin{cases} \operatorname{ch}(z) = \frac{e^z + e^{-z}}{2} = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} z^{2n} \\ \operatorname{sh}(z) = \frac{e^z - e^{-z}}{2} = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} z^{2n+1} \\ \cos(z) = \operatorname{ch}(iz) = \frac{e^{iz} + e^{-iz}}{2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} z^{2n} \\ \sin(z) = -i \operatorname{sh}(iz) = \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \end{cases}$$

On a donc:

$$\forall z \in \mathbb{C}, \begin{cases} \operatorname{ch}^{2}(z) - \operatorname{sh}^{2}(z) = 1\\ \cos^{2}(z) + \sin^{2}(z) = 1 \end{cases}$$

Les fonctions cos, ch sont paires et les fonctions sin, sh sont impaires.

En se limitant à l'ensemble des réels, les fonctions ch et sh sont indéfiniment dérivables sur \mathbb{R} avec :

$$\forall x \in \mathbb{R}, \text{ ch}'(x) = \text{sh}(x) \text{ et sh}'(x) = \text{ch}(x).$$

De la définition $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$, on déduit que $\operatorname{ch}(x) > 0$ et avec $\operatorname{ch}^2(x) = \operatorname{sh}^2(x) + 1$, que $\operatorname{ch}(x) \ge 1$ pour tout réel x, la valeur 1 étant atteinte pour x = 0. Il en résulte que sh est strictement croissante sur \mathbb{R} , donc $\operatorname{sh}(x) > \operatorname{sh}(0) = 0$ pour x > 0 et ch est strictement croissante sur \mathbb{R}^+ . Enfin avec $\lim_{x \to +\infty} \operatorname{ch}(x) = \lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$ et l'argument de parité, on peut tracer les graphes de ces fonctions (figure 15.1).

FIG. 15.1 – fonctions e^x , ch (x) et sh (x)

On vérifie facilement que :

$$\forall z \in \mathbb{C}, \begin{cases} e^z = \operatorname{ch}(z) + \operatorname{sh}(z) \\ e^{-z} = \operatorname{ch}(z) - \operatorname{sh}(z) \\ e^{iz} = \cos(z) + i\sin(z) \\ e^{-iz} = \cos(z) - i\sin(z) \end{cases}$$

De l'équation fonctionnelle vérifiée par la fonction exponentielle, on déduit les relations suivantes valables pour tous nombres complexes a, b:

$$\begin{cases} \operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b) \\ \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \\ \operatorname{sh}(a+b) = \operatorname{sh}(a)\operatorname{ch}(b) + \operatorname{ch}(a)\operatorname{sh}(b) \\ \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b) \end{cases}$$

et de ces formules on déduit les classiques formules de trigonométrie circulaire et hyperbolique. La démonstration de la première formule peut se faire comme suit.

Pour a, b dans \mathbb{C} , on a :

$$2 \operatorname{ch} (a + b) = e^{a+b} + e^{-a-b} = e^{a} e^{b} + e^{-a} e^{-b}$$

$$= (\operatorname{ch} (a) + \operatorname{sh} (a)) (\operatorname{ch} (b) + \operatorname{sh} (b)) + (\operatorname{ch} (a) - \operatorname{sh} (a)) (\operatorname{ch} (b) - \operatorname{sh} (b))$$

$$= 2 (\operatorname{ch} (a) \operatorname{ch} (b) + \operatorname{sh} (a) \operatorname{sh} (b))$$

La deuxième s'en suit :

$$\cos(a+b) = \operatorname{ch}(ia+ib) = \operatorname{ch}(ia)\operatorname{ch}(ib) + \operatorname{sh}(ia)\operatorname{sh}(ib)$$
$$= \cos(a)\cos(b) - \sin(a)\sin(b)$$

Le nombre π 331

Les deux dernières formules se montrent de manière analogue.

Avec les arguments de parité, on déduit alors les formules suivantes :

$$\begin{cases} \operatorname{ch}(a-b) = \operatorname{ch}(a)\operatorname{ch}(b) - \operatorname{sh}(a)\operatorname{sh}(b) \\ \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \\ \operatorname{sh}(a-b) = \operatorname{sh}(a)\operatorname{ch}(b) - \operatorname{ch}(a)\operatorname{sh}(b) \\ \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b) \end{cases}$$

Prenant a = b, on a:

$$\begin{cases} \operatorname{ch}(2a) = \operatorname{ch}^{2}(a) + \operatorname{sh}^{2}(a) = 1 + 2\operatorname{sh}^{2}(a) = 2\operatorname{ch}^{2}(a) - 1\\ \cos(2a) = \cos^{2}(a) - \sin^{2}(a) = 2\cos^{2}(a) - 1 = 1 - 2\sin^{2}(a)\\ \operatorname{sh}(2a) = 2\operatorname{sh}(a)\operatorname{ch}(b)\\ \sin(2a) = 2\sin(a)\cos(b) \end{cases}$$

Si les fonctions cos et sin restreintes à \mathbb{R} bornées, il n'en n'est pas de même pour ces fonctions définies sur \mathbb{C} . Précisément pour $z = x + iy \in \mathbb{C}$, on a :

$$\cos(z) = \cos(x)\cos(iy) - \sin(x)\sin(iy)$$
$$= \cos(x)\cos(y) + i\sin(x)\sin(y)$$

et:

$$|\cos(z)|^{2} = \cos^{2}(x) \operatorname{ch}^{2}(y) + \sin^{2}(x) \operatorname{sh}^{2}(y)$$

$$= \cos^{2}(x) \operatorname{ch}^{2}(y) + (1 - \cos^{2}(x)) \operatorname{sh}^{2}(y)$$

$$= \cos^{2}(x) (\operatorname{ch}^{2}(y) - \operatorname{sh}^{2}(y)) + \operatorname{sh}^{2}(y)$$

$$= \cos^{2}(x) + \operatorname{sh}^{2}(y) \ge \operatorname{sh}^{2}(y)$$

la fonction sh étant non majorée sur \mathbb{R} .

15.4 Le nombre π

On désigne par Γ l'ensemble des nombres complexes de module égal à 1. C'est un sous-groupe du groupe multiplicatif (\mathbb{C}^*,\cdot) .

De l'équation fonctionnelle vérifiée par la fonction exponentielle, on déduit le résultat suivant.

Théorème 15.5 L'application $\varphi: t \mapsto e^{it}$ réalise un morphisme de groupes de $(\mathbb{R}, +)$ dans (Γ, \cdot) .

Nous allons voir que ce morphisme φ est surjectif et que son noyau n'est pas réduit à $\{0\}$, comme c'est un sous-groupe de $(\mathbb{R}, +)$, il est dense ou discret. Nous allons voir qu'il est discret, c'est-à-dire de la forme $\mathbb{Z}\alpha$, où α est un réel strictement positif.

Lemme 15.2 $On \ a \cos(2) < 0$.

Démonstration. $\cos(2)$ est la somme de la série alternée $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} 2^{2n}$, donc en notant S_n la somme partielle d'indice n de cette série, on a pour tout entier $n \geq 0$:

$$S_{2n+1} \le \cos(2) \le S_{2n}$$

et en particulier:

$$\cos(2) \le S_4 = 1 - \frac{2^2}{2} + \frac{2^4}{24} = -\frac{1}{3} < 0$$

Lemme 15.3 L'ensemble $E = \{t \in [0,2] \mid \cos(t) = 0\}$ est non vide et admet une borne inférieure $\alpha \in [0, 2] \cap E$.

Démonstration. Comme E est contenu dans [0, 2], il est borné. Il reste à montrer qu'il est non vide.

Comme la fonction cos est continue sur \mathbb{R} avec $\cos(0) = 1 > 0$ et $\cos(2) < 0$ le théorème des valeurs intermédiaires nous dit qu'il existe un réel $t \in [0, 2]$ tel que $\cos(t) = 0$.

L'ensemble E étant non vide et minoré admet une borne inférieure α et cette borne inférieure est dans E puisque cet ensemble est fermé $(E = [0, 2] \cap \cos^{-1} \{0\}$ avec cos continue). On a donc $\cos(\alpha) = 0$ et $\alpha \in [0, 2[$ puisque $\cos(0) \neq 0$ et $\cos(2) \neq 0$ (on peut aussi dire, par définition de la borne inférieure, qu'il existe une suite $(t_n)_{n\in\mathbb{N}}$ dans E qui converge vers α , donc $\cos(\alpha) = \lim_{n \to +\infty} \cos(t_n) = 0 \text{ et } \alpha \in E).$ On définit le nombre π par $\pi = 2\alpha$.

 $\frac{\pi}{2}$ est donc le plus petit réel positif qui vérifie $\cos\left(\frac{\pi}{2}\right) = 0$.

Lemme 15.4 On $a\cos(t) > 0$ pour tout $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, la fonction \sin est strictement crois $sante \ de \ \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \ sur \ [-1,1] \ , \ \sin{(t)} > 0 \ \ pour \ tout \ t \in \]0,\pi[\ \ et \ la \ fonction \ \cos \ est \ strictement \]$ décroissante de $[0,\pi]$ sur [-1,1].

Démonstration. Par définition de α , on a $\cos(t) > 0$ pour tout $t \in \left[0, \frac{\pi}{2}\right]$. En effet, on a $\cos(t) \neq 0$ pour tout $t \in \left]0, \frac{\pi}{2}\right[$ par définition de $\alpha = \frac{\pi}{2}$ comme borne inférieure de E. La fonction continue cos est donc de signe constant sur cet intervalle et avec $\cos(0) = 1 > 0$, on déduit que $\cos(t) > 0$ pour t > 0 voisin de 0 et $\cos(t) > 0$ pour tout $t \in \left]0, \frac{\pi}{2}\right[$. Comme la fonction cos est paire avec $\cos(0) = 1 > 0$, on déduit que $\cos(t) > 0$ pour tout $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Comme $\sin'(t) = \cos(t) > 0$ pour tout $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, la fonction sin est strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Avec $\cos^2\left(\frac{\pi}{2}\right) + \sin^2\left(\frac{\pi}{2}\right) = 1$ et $\cos\left(\frac{\pi}{2}\right) = 0$, on déduit que $\sin\left(\frac{\pi}{2}\right) = \pm 1$ et avec $\sin\left(\frac{\pi}{2}\right) > \sin\left(0\right) = 0$, que $\sin\left(\frac{\pi}{2}\right) = 1$. La fonction sin étant impaire, on a $\sin\left(-\frac{\pi}{2}\right) = -1$ et l'image de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par sin est bien [-1, 1].

Pour $t \in \left[0, \frac{\pi}{2}\right[$, on a $\sin(t) > \sin(0) = 0$ et pour $t = \frac{\pi}{2} + t' \in \left[\frac{\pi}{2}, \pi\right[$, $\sin(t) = \frac{\pi}{2}$ $\sin\left(\frac{\pi}{2}\right)\cos\left(t'\right) + \cos\left(\frac{\pi}{2}\right)\sin\left(t'\right) = \cos\left(t'\right) > 0.$

Comme $\cos'(t) = -\sin(t) < 0$ pour tout $t \in (0, \pi)$, la fonction cos est strictement décroissante sur $[0,\pi]$.

Avec $\cos(0) = 1$, $\cos(\pi) = \cos\left(2\frac{\pi}{2}\right) = \cos^2\left(\frac{\pi}{2}\right) - \sin^2\left(\frac{\pi}{2}\right) = -1$, on déduit que l'image de $[0, \pi]$ par cos est bien [-1, 1].

Remarque 15.3 La fonction cos [resp. sin] est continue strictement décroissante [resp. crois $sante \mid de \ [0,\pi] \mid resp. \ \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \mid sur \ [-1,1] \ , \ elle \ r\'ealise \ donc \ un \ hom\'eomorphisme \ de \ [0,\pi] \mid resp.$ $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1]. Sa fonction réciproque est notée arccos [resp. arcsin]. Comme cos [resp.

Le nombre π 333

$$\begin{split} &\sin \int est \ d\acute{e}rivable \ de \ d\acute{e}riv\acute{e}e \ non \ nulle \ sur \]0,\pi[\ [resp.\]-\frac{\pi}{2},\frac{\pi}{2}\Big[\int la \ fonction \ \arccos \ [resp.\ arcsin] \\ &est \ d\acute{e}rivable \ sur \]-1,1[\ de \ d\acute{e}riv\acute{e}e \ arccos' \ (x) = -\frac{1}{\sqrt{1-x^2}} \ [resp.\ arcsin' \ (x) = \frac{1}{\sqrt{1-x^2}}]. \end{split}$$

Lemme 15.5 Pour tout $t \in]0, 2\pi[$, on a $e^{it} \neq 1$.

Démonstration. Soient $t \in]0, 2\pi[$ et $z = e^{i\frac{t}{4}} = \cos\left(\frac{t}{4}\right) + i\sin\left(\frac{t}{4}\right)$. Comme $\frac{t}{4} \in]0, \frac{\pi}{2}[$, on a $\cos\left(\frac{t}{4}\right) > 0$ et $\sin\left(\frac{t}{4}\right) > 0$.

En écrivant que :

$$e^{it} = \left(e^{i\frac{t}{4}}\right)^4 = \cos^4\left(\frac{t}{4}\right) - 6\cos^2\left(\frac{t}{4}\right)\sin^2\left(\frac{t}{4}\right) + \sin^4\left(\frac{t}{4}\right)$$
$$+4i\cos\left(\frac{t}{4}\right)\sin\left(\frac{t}{4}\right)\left(\cos^2\left(\frac{t}{4}\right) - \sin^2\left(\frac{t}{4}\right)\right)$$

on déduit que l'égalité $e^{it}=1$ entraı̂ne $\cos^2\left(\frac{t}{4}\right)=\sin^2\left(\frac{t}{4}\right)$ et avec $\cos^2\left(\frac{t}{4}\right)+\sin^2\left(\frac{t}{4}\right)=1$, cela impose $\cos^2\left(\frac{t}{4}\right)=\sin^2\left(\frac{t}{4}\right)=\frac{1}{2}$ et :

$$e^{it} = \cos^4\left(\frac{t}{4}\right) - 6\cos^2\left(\frac{t}{4}\right)\sin^2\left(\frac{t}{4}\right) + \sin^4\left(\frac{t}{4}\right)$$
$$= \frac{1}{4} + \frac{1}{4} - \frac{6}{4} = -1$$

ce qui est une contradiction.

On en déduit immédiatement le résultat suivant.

Lemme 15.6 *On a :*

$$e^{i\frac{\pi}{2}} = i$$
. $e^{i\pi} = -1$ et $e^{2i\pi} = 1$

et pour tout réel t :

$$\begin{cases}
\cos\left(t + \frac{\pi}{2}\right) = -\sin\left(t\right) \\
\sin\left(t + \frac{\pi}{2}\right) = \cos\left(t\right) \\
\cos\left(t + \pi\right) = -\cos\left(t\right) \\
\sin\left(t + \pi\right) = -\sin\left(t\right)
\end{cases}$$

Les fonctions cos et sin sont périodiques de plus petite période 2π .

Démonstration. Les deux premières égalités se déduisent de (et sont même équivalentes à) :

$$\cos\left(\frac{\pi}{2}\right) = 0, \ \sin\left(\frac{\pi}{2}\right) = 1, \ \cos(\pi) = -1, \ \sin(\pi) = 0$$

 $(\cos(\pi) = -1 \text{ a été montré avec le lemme précédent et } \sin^2(\pi) = 1 - \cos^2(\pi) = 0).$

Il en résulte que $e^{2i\pi} = (e^{i\pi})^2 = 1$, ce qui équivaut à $\cos(2\pi) = 1$ et $\sin(2\pi) = 0$.

Les formules de trigonométries nous donnent les dernières égalité et la 2π -périodicité de cos et sin .

Si $T \in]0, 2\pi[$ est une période plus petite, on a alors $\cos(T) = 1, \sin(T) = 0$, soit $e^{iT} = 1$ avec $T \in]0, 2\pi[$, ce qui est impossible.

Théorème 15.6 Le noyau du morphisme de groupes $\exp: z \mapsto e^z$, de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \cdot) , est $2i\pi\mathbb{Z}$.

Démonstration. Pour tout entier naturel k, on a $e^{2ik\pi} = (e^{2i\pi})^k = 1$ et avec $e^{-2ik\pi} = \frac{1}{e^{2ik\pi}}$, on déduit que le résultat est valable pour tout entier relatif k. La fonction ψ s'annule donc sur $2i\pi\mathbb{Z}$.

Si $e^z=1$ avec z=x+iy, on a $|e^z|=e^x\,|e^{iy}|=e^x=1$ et x=0, donc z=iy et $e^{iy}=1$. Si $y\notin 2\pi\mathbb{Z}$, il existe un entier relatif k tel que $2k\pi < y < 2\left(k+1\right)\pi$ $\left(k=E\left(\frac{y}{2\pi}\right)\right)$ donc $y-2k\pi\in]0, 2\pi[$ et $e^{iy}=e^{i(y-2k\pi)}\neq 1$ d'après le lemme précédent. On a donc $y\in 2\pi\mathbb{Z}$ et $z=iy\in 2i\pi\mathbb{Z}$.

Le théorème précédent se traduit en disant que la fonction $z\mapsto e^z$ est périodique de période $2i\pi$. Il se traduit aussi en disant que l'égalité $e^z=1$ est réalisée si, et seulement si, il existe un entier relatif k tel que $z=2ik\pi$.

Remarque 15.4 L'égalité $(e^{2i\pi})^k = 1$ pour k non entier n'est pas vraiment valable, sans quoi on montrerait que -1 = 1 comme suit :

$$(1 = e^{2i\pi}) \Rightarrow (1 = 1^{\frac{1}{2}} = (e^{2i\pi})^{\frac{1}{2}} = e^{\frac{1}{2}2i\pi} = e^{i\pi} = -1)$$

Corollaire 15.1 L'application $\varphi: t \mapsto e^{it}$ réalise un morphisme continu de groupes de $(\mathbb{R}, +)$ dans (Γ, \cdot) de noyau $\ker(\varphi) = 2\pi\mathbb{Z}$.

On peut aussi montrer directement qu'il existe un réel $\alpha > 0$ tel que ker $(\varphi) = \alpha \mathbb{Z}$ et définir π par $\alpha = 2\pi$ (voir [?] ou [?]).

Montrons enfin que φ est surjectif.

Théorème 15.7 L'application $\varphi: t \mapsto e^{it}$ réalise un morphisme continu de groupes surjectif de $(\mathbb{R}, +)$ sur (Γ, \cdot) de noyau $\ker(\varphi) = 2\pi\mathbb{Z}$.

Démonstration. Soit z = x + iy dans Γ . On distingue les cas de figure suivants.

- 1. Si $x \ge 0$ et $y \ge 0$, alors avec $|z|^2 = x^2 + y^2 = 1$, on déduit que x et y sont dans [0,1]. Comme la fonction cos est strictement décroissante sur $\left[0,\frac{\pi}{2}\right]$ avec $\cos\left(0\right) = 1$ et $\cos\left(\frac{\pi}{2}\right) = 0$, elle réalise une bijection de $\left[0,\frac{\pi}{2}\right]$ sur [0,1] et il existe un unique réel $t \in \left[0,\frac{\pi}{2}\right]$ tel que $x = \cos\left(t\right)$. On a alors $y^2 = 1 x^2 = 1 \cos^2\left(t\right) = \sin^2\left(t\right)$ et $y = \sin\left(t\right)$ puisque ces deux quantités sont positives. Il en résulte que $z = e^{it}$.
- 2. Si x < 0 et $y \ge 0$, alors -iz = y ix se trouve dans le premier cas de figure, il s'écrit donc $-iz = e^{it}$ et $z = ie^{it} = e^{i\left(t + \frac{\pi}{2}\right)}$.
- 3. Si y < 0 et x est réel quelconque, alors -z se trouve dans le premier ou deuxième cas de figure, il s'écrit donc $-z = e^{it}$ et $z = -e^{it} = e^{i(t+\pi)}$.

Le résultat précédent nous dit en fait que pour tout nombre complexe $z \in \Gamma$ il existe un unique réel $t \in [0, 2\pi[$ tel que $z = e^{it}$. En effet, il existe un réel y tel que $z = e^{iy}$ et désignant par k l'entier relatif tel que $2k\pi \le y < 2(k+1)\pi$ ($k = E\left(\frac{y}{2\pi}\right)$), on a $t = y - 2k\pi \in [0, 2\pi[$ et $e^{it} = e^{i(y-2k\pi)} = e^{iy} = z$. Si $t_1 \le t_2$ sont deux tels réels, alors $t_2 - t_1 \in [0, 2\pi[$ est dans $\ker(\varphi) = 2\pi\mathbb{Z}$, donc nécessairement nul.

En notant, pour $z \in \Gamma$, t_0 le réel dans $[0, 2\pi[$ tel que $z = e^{it_0}$, on a $e^{it} = z$ avec z réel si, et seulement si, $t = t_0 + 2k\pi$ avec k entier relatif.

On peut aussi résumer cela en disant que le groupe multiplicatif Γ est isomorphe au groupe additif $\frac{\mathbb{R}}{\ker(\varphi)} = \frac{\mathbb{R}}{2\pi\mathbb{Z}}$.

Corollaire 15.2 L'application exp : $z \mapsto e^z$ réalise un morphisme de groupes surjectif de $(\mathbb{C}, +)$ sur (\mathbb{C}^*, \cdot) de noyau ker $(\exp) = 2i\pi\mathbb{Z}$.

Démonstration. On sait déjà que exp un morphisme de groupes de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \cdot) de noyau $2i\pi\mathbb{Z}$.

Pour tout nombre complexe non nul, on a $\frac{z}{|z|} \in \Gamma$ et il existe un réel y tel que $\frac{z}{|z|} = e^{iy}$, soit $z = |z| e^{iy}$ où $\rho = |z|$ est un réel strictement positif. Mais on a vu que l'exponentielle réelle réalise une bijection de \mathbb{R} sur $\mathbb{R}^{+,*}$, il existe donc un unique réel x tel que $|z| = e^x$ et $z = e^{x+iy}$.

15.5 Les fonctions complexes tan et th

Pour z dans \mathbb{C} , l'égalité $\cos{(z)}=0$ équivaut à $e^{iz}=-e^{-iz}=e^{i(\pi-z)}$, soit à $e^{i(2z-\pi)}=1$, ce qui revient à dire qu'il existe un entier relatif k tel que $2z=(2k+1)\,\pi$, ou encore $z=\frac{\pi}{2}+k\pi$. On a donc ainsi toutes les racines complexes de \cos .

On définit alors la fonction tangente sur $\mathbb{C} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ par $\tan(z) = \frac{\sin(z)}{\cos(z)}$.

De même $\operatorname{ch}(z)=0$ équivaut à $e^z=-e^{-z}=e^{i\pi-z}$, soit à $e^{2z-i\pi}=1$, ce qui revient à dire qu'il existe un entier relatif k tel que $2z=(2k+i)\pi$, ou encore $z=k\pi+i\frac{\pi}{2}$. On a donc ainsi toutes les racines complexes de ch.

On définit alors la fonction tangente hyperbolique sur $\mathbb{C} \setminus \left\{ k\pi + i\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$ par th $(z) = \frac{\sinh(z)}{\cosh(z)}$.

On peut remarque que la fonction ch ne s'annule pas sur \mathbb{R} et th(x) est défini pour tout réel x.

On peut aussi remarquer que $\tan(z) = \frac{\sin(z)}{\cos(z)} = -i\frac{\sinh(iz)}{\cosh(iz)} = -i \tanh(iz)$.

15.6 Les fonctions réelles arctan et argth

La fonction tan est indéfiniment dérivable sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ de dérivée tan' $(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$.

Cette fonction est impaire, strictement croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ (dérivée strictement positive) avec $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$. Elle définit donc un homéomorphisme de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ sur \mathbb{R} . Sa fonction

réciproque est notée arctan, c'est la fonction arc-tangente. Elle est dérivable de dérivé $\frac{1}{1+x^2}$. De même, la fonction the est indéfiniment dérivable sur $\mathbb R$ de dérivée th' $(x) = 1 - \text{th}^2(x) = \frac{1}{\text{ch}^2(x)}$.

Cette fonction est impaire, strictement croissante sur \mathbb{R} (dérivée strictement positive) avec $\lim_{x\to +\infty} \operatorname{th}(x) = 1$. Elle définit donc un homéomorphisme de \mathbb{R} sur]-1,1[. Sa fonction réciproque est notée argth, c'est la fonction argument-tangente. Elle est dérivable de dérivé $\frac{1}{1-x^2}$.

15.7 Le lien avec le nombre π des géomètres

Le cercle unité du plan affine euclidien, identifié à Γ , peut être paramétré par :

$$\gamma: t \in [0, 2\pi] \mapsto (\cos(t), \sin(t))$$

Théorème 15.8 Le périmètre du cercle unité du plan euclidien vaut 2π .

Démonstration. On rappelle que la longueur d'un arc géométrique paramétré par une application γ de classe \mathcal{C}^1 de [a,b] dans \mathbb{R}^2 est $\ell(\gamma) = \int_a^b \|\gamma'(t)\| \, dt$, où $\|\cdot\|$ désigne la norme euclidienne usuelle, ce qui donne pour le cercle :

$$\ell\left(\gamma\right) = \int_{0}^{2\pi} \sqrt{\sin^{2}\left(t\right) + \cos^{2}\left(t\right)} dt = 2\pi.$$

15.8 Les fonctions argument principal et logarithme

On a en fait montré que tout nombre complexe non nul z s'écrit de manière unique $z=\rho e^{i\theta}$ avec $\rho>0$ ($\rho=|z|$) et $\theta\in[0,2\pi[$. Le réel ρ est le module de z.

Avec ces notations, on aura $z = \rho e^{it}$ si, et seulement si, $\rho e^{it} = \rho e^{i\theta}$, ce équivaut à $e^{i(t-\theta)} = 1$ ou encore à $t = \theta + 2k\pi$ avec k entier relatif. On dit alors que t est un argument de z. En se fixant k un tel argument est unique dans $[2k\pi, 2(k+1)\pi[$.

En utilisant les arguments, on peut montrer que les application $t \mapsto e^{i\alpha t}$ sont les seuls morphismes de groupes continus de $(\mathbb{R}, +)$ dans (Γ, \cdot) .

Lemme 15.7 Les seuls morphismes de groupes continus de $(\mathbb{R}, +)$ dans (Γ, \cdot) sont les applications $x \mapsto e^{i\alpha x}$ avec $\alpha \in \mathbb{R}$.

Démonstration. Avec ce qui précède, on voit que pour tout $\alpha \in \mathbb{R}$ l'application $x \mapsto e^{i\alpha x}$ est un morphisme de groupes continu de $(\mathbb{R}, +)$ dans (Γ, \cdot) .

Réciproquement si $f: \mathbb{R} \to \Gamma$ est un morphisme de groupes, il existe alors un unique réel $\alpha \in [0, 2\pi[$ tel que $f(1) = e^{i\alpha}$. Par récurrence on vérifie facilement que $f(n) = e^{in\alpha}$ pour tout $n \in \mathbb{N}$, puis avec $e^{i\alpha} = f\left(n\frac{1}{n}\right) = f\left(\frac{1}{n}\right)^n$ on déduit que $f\left(\frac{1}{n}\right) = e^{i\frac{\alpha}{n}}$ pour tout $n \geq 1$. Il en résulte que $f(r) = e^{ir\alpha}$ pour tout $r \in \mathbb{Q}$. Si de plus f est continue, avec la densité de \mathbb{Q} dans \mathbb{R} , on déduit que $f(x) = e^{i\alpha x}$ pour tout $x \in \mathbb{R}^+$.

Enfin avec 1 = f(x - x) = f(x) f(-x) (le neutre est transformé en neutre), on déduit que $f(-x) = \frac{1}{f(x)} = \overline{f(x)}$ pour tout $x \in \mathbb{R}$. Il en résulte que $f(x) = e^{i\alpha x}$ pour tout $x \in \mathbb{R}$.

Connaissant tous les morphismes de groupes continus de $(\mathbb{R}, +)$ dans (\mathbb{R}^*, \cdot) (ce sont les $x \mapsto e^{ax}$ avec a réel), on déduit le résultat suivant.

Théorème 15.9 Les seuls morphismes de groupes continus de $(\mathbb{R},+)$ dans (\mathbb{C}^*,\cdot) sont les applications $x \mapsto e^{\alpha x}$ avec $\alpha \in \mathbb{C}$.

Démonstration. Si f est un morphisme de groupes continu de $(\mathbb{R},+)$ dans (\mathbb{C}^*,\cdot) , alors |f| est un morphisme de groupes continu de $(\mathbb{R},+)$ dans (\mathbb{R}^*,\cdot) , il existe donc un réel a tel que $|f(x)|=e^{ax}$ pour tout $x\in\mathbb{R}$. La fonction $g:x\mapsto f(x)e^{-ax}$ est alors un morphisme de groupes continu de $(\mathbb{R},+)$ dans (Γ,\cdot) , il existe donc un réel b tel que $f(x)e^{-ax}=e^{ibx}$ pour tout $x\in\mathbb{R}$. On a donc $f(x)=e^{\alpha x}$ pour tout $x\in\mathbb{R}$ avec $\alpha=a+ib\in\mathbb{C}$.

La réciproque est évidente.

En fait un tel argument peut être uniquement déterminé dans tout intervalle de longueur 2π , $[\theta_0,\theta_0+2\pi[$ où θ_0 est un réel fixé. En effet en désignant par θ l'argument de $z\in\mathbb{C}^*$ dans $[0,2\pi[$, il existe un entier k tel que $t=\theta-2k\pi\in[\theta_0,\theta_0+2\pi[$ (il s'agit de réaliser $\theta_0\leq\theta-2k\pi<\theta_0+2\pi,$ soit $2k\pi\leq\theta-\theta_0<2$ $(k+1)\pi$ ou encore $k\leq\frac{\theta-\theta_0}{2\pi}< k+1,$ ce qui définit $k=E\left(\frac{\theta-\theta_0}{2\pi}\right)$) et $z=\rho e^{i\theta}=\rho e^{it}.$ Si $t\leq t'$ sont deux tels arguments, on a $0\leq t'-t<2\pi$ et $t'-t=2k\pi$ avec k entier, ce qui impose k=0.

Le choix de $\theta_0 = -\pi$ définit l'argument principal dans $[-\pi, \pi[$ d'un nombre complexe non nul z.

En résumé tout nombre complexe non nul s'écrit de manière unique $z = \rho e^{i\theta}$ où ρ est un réel strictement positif et θ un réel dans $[-\pi, \pi[$. On note $\theta = \arg(z)$ cet argument principal.

On aura $\arg(z) = -\pi$ si, et seulement si, z est un réel strictement négatif.

Tout nombre complexe $z \in \mathbb{C} \setminus \mathbb{R}^-$ s'écrit donc $z = x + iy = \rho e^{i\theta}$ avec $\rho = \sqrt{x^2 + y^2}$, $\theta \in]-\pi, \pi[$ et $x = \rho \cos(\theta)$, $y = \rho \sin(\theta)$, ce qui donne :

$$\begin{cases} 2\cos^2\left(\frac{\theta}{2}\right) = \cos\left(\theta\right) + 1 = \frac{x}{\rho} + 1\\ 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) = \sin\left(\theta\right) = \frac{y}{\rho} \end{cases}$$

Comme $\frac{\theta}{2} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $\cos \left(\frac{\theta}{2} \right) > 0$ et divisant la première égalité par la seconde, on obtient :

$$\tan\left(\frac{\theta}{2}\right) = \frac{\frac{y}{\rho}}{\frac{x}{\rho} + 1} = \frac{y}{x + \sqrt{x^2 + y^2}}$$

soit:

$$\theta = \arg(z) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) = 2 \arctan\left(\frac{\Im(z)}{\Re(z) + |z|}\right)$$

On peut donc définir la fonction argument principal par :

$$\begin{array}{ccc} \operatorname{arg}: & \mathbb{C} \setminus \mathbb{R}^- & \to &]{-\pi,\pi[} \\ z & \mapsto & 2\arctan\left(\frac{\Im(z)}{\Re(z)+|z|}\right) \end{array}$$

et cette fonction est continue sur $\mathbb{C} \setminus \mathbb{R}^-$.

Cette fonction est donc définie par $\arg(z) \in]-\pi, \pi[$ et $z=|z|\,e^{i\arg(z)}$ pour tout $z\in\mathbb{C}\setminus\mathbb{R}^-$.

Remarque 15.5 Une telle fonction argument principal ne peut pas être prolongée en une fonction continue sur un ouvert contenant strictement $\mathbb{C} \setminus \mathbb{R}^-$.

En effet, supposons que cette fonction arg se prolonge en une fonction continue φ sur une partie Ω de $\mathbb C$ contenant strictement $\mathbb C - \mathbb R_-$. L'ensemble Ω contient alors un réel x < 0 et le

cercle C(0,|x|) est tout entier contenu dans Ω (les points autres que x sont dans $\mathbb{C} - \mathbb{R}_- \subset \Omega$). Considérant les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ de $C(0,|x|)\setminus\{x\}$ définies par :

$$u_n = |x| e^{i\pi\left(1-\frac{1}{n}\right)}, \ v_n = |x| e^{-i\pi\left(1+\frac{1}{n}\right)}$$

on $a \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = -|x| = x$ (la fonction exp est continue sur \mathbb{C}) avec :

$$\varphi(u_n) = \arg(u_n) = \pi \left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{\longrightarrow} \pi$$

et:

$$\varphi(v_n) = \arg(v_n) = -\pi \left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\longrightarrow} -\pi$$

(on a
$$u_n = |u_n| e^{i \arg(u_n)} = |x| e^{i\pi\left(1-\frac{1}{n}\right)}$$
 avec $\arg\left(u_n\right)$ et $\pi\left(1-\frac{1}{n}\right)$ dans $]-\pi,\pi[$, donc $\arg\left(u_n\right) = \pi\left(1-\frac{1}{n}\right)$, de même pour v_n), ce qui est incompatible avec la continuité de φ .

On est maintenant en mesure de définir une fonction logarithme complexe sur $\mathbb{C} - \mathbb{R}_-$. Précisément, on va définir une fonction notée ln sur $\mathbb{C} - \mathbb{R}_-$ telle que $e^{\ln(z)} = z$ pour tout $z \in \mathbb{C} - \mathbb{R}_-$.

Supposons le résultat acquis. En notant respectivement P et Q les parties réelle et imaginaire de ln, on doit avoir $z=e^{\ln(z)}=e^{P(z)+iQ(z)}$, donc $|z|=\left|e^{P(z)+iQ(z)}\right|=e^{P(z)}$ et $P(z)=\ln\left(|z|\right)$ où ln est la fonction logarithme réel réciproque de l'exponentielle réelle. En écrivant que $z=|z|e^{i\arg(z)}$, on a $e^{P(z)}e^{iQ(z)}=|z|e^{i\arg(z)}$ avec $|z|=e^{P(z)}$, donc $e^{iQ(z)}=e^{i\arg(z)}$ et $Q(z)=\arg(z)+2k\pi$ avec k=k(z) entier. Si on souhaite la fonction ln continue sur $\mathbb{C}-\mathbb{R}_-$, il doit en être de même des fonctions $Q=\Im(\ln)$ et $k=\frac{Q-\arg}{2\pi}$. En définitive, k est une fonction continue à valeurs entières sur le connexe $\mathbb{C}-\mathbb{R}_-$, elle est nécessairement constante.

On définit donc, au vu de cette analyse la détermination principale du logarithme par :

$$\ln: \ \mathbb{C} \setminus \mathbb{R}^{-} \to \mathbb{C}$$

$$z \mapsto \ln(|z|) + i \arg(z) = \ln(|z|) + 2i \arctan\left(\frac{\Im(z)}{\Re(z) + |z|}\right)$$

et cette fonction est continue sur $\mathbb{C} \setminus \mathbb{R}^-$ avec :

$$\forall z \in \mathbb{C} \setminus \mathbb{R}^-, \ e^{\ln(z)} = z.$$

Par exemple, on a $\ln(i) = i\frac{\pi}{2}$.

15.9 Mesure des angles

On note \mathcal{P} le plan affine euclidien muni d'un repère orthonormé $\mathcal{R} = (O, \overrightarrow{e_1}, \overrightarrow{e_2})$ et $\overrightarrow{\mathcal{P}}$ est le plan vectoriel associé à \mathcal{P} .

Théorème 15.10 Si θ est un argument de $z \in \mathbb{C}^*$ affixe d'un vecteur non nul \overrightarrow{v} , c'est alors une mesure de l'angle orienté $(\widehat{\overrightarrow{e_1}}, \overrightarrow{v})$.

Mesure des angles 339

Démonstration. Par définition d'une mesure θ' de l'angle orienté $(\overrightarrow{e_1}, \overrightarrow{v})$, il existe un unique automorphisme orthogonal direct u tel que $u(\overrightarrow{e_1}) = \frac{1}{\|\overrightarrow{v}\|} \overrightarrow{v}$. Dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$ la

matrice de u est $\begin{pmatrix} \cos(\theta') & -\sin(\theta') \\ \sin(\theta') & \cos(\theta') \end{pmatrix}$ et si z = x + iy est l'affixe de \overrightarrow{v} , on a alors :

$$\overrightarrow{v} = x\overrightarrow{e_1} + y\overrightarrow{e_2} = ||\overrightarrow{v}|| u(\overrightarrow{e_1})$$
$$= |z| (a\overrightarrow{e_1} + b\overrightarrow{e_2}) = |z| (\cos(\theta') \overrightarrow{e_1} + \sin(\theta') \overrightarrow{e_2})$$

ce qui entraı̂ne $x = |z| \cos(\theta')$, $y = |z| \sin(\theta')$ et $\theta' \equiv \theta$ (2π) .

Remarque 15.6 Le choix d'une orientation de $\overrightarrow{\mathcal{P}}$ nous permet de définir sans ambiguïté la mesure principale dans $[-\pi, \pi[$ d'un angle de vecteurs. Ce choix d'une orientation correspond au choix d'une racine carrée i de -1 dans \mathbb{C} .

Plus généralement on a le résultat suivant.

Théorème 15.11 Si $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ sont deux vecteurs non nuls d'affixes respectives z_1 et z_2 alors un argument de $\frac{z_2}{z_1}$ est une mesure de l'angle orienté $\theta = (\overrightarrow{v_1}, \overrightarrow{v_2})$ et on a:

$$\begin{cases} \cos(\theta) = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{\|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\|} \\ \sin(\theta) = \frac{\det(\overrightarrow{v_1}, \overrightarrow{v_2})}{\|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\|} \end{cases}$$

Démonstration. On a $\frac{1}{\|\overrightarrow{v_2}\|}\overrightarrow{v_2} = u\left(\frac{1}{\|\overrightarrow{v_1}\|}\overrightarrow{v_1}\right)$ où l'automorphisme orthogonal direct u a pour matrice $\begin{pmatrix} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{pmatrix}$ dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2})$, ce qui donne :

$$\begin{cases} x_2 = \frac{\|\overrightarrow{v_2}\|}{\|\overrightarrow{v_2}\|} (\cos(\theta) x_1 - \sin(\theta) y_1) \\ = \frac{|z_2|}{|z_1|} (\cos(\theta) x_1 - \sin(\theta) y_1) \\ y_2 = \frac{\|\overrightarrow{v_2}\|}{\|\overrightarrow{v_2}\|} (\sin(\theta) x_1 + \cos(\theta) y_1) \\ = \frac{|z_2|}{|z_1|} (\sin(\theta) x_1 + \cos(\theta) y_1) \end{cases}$$

et:

$$z_2 = x_2 + iy_2$$

$$= \frac{|z_2|}{|z_1|} \left((\cos(\theta) x_1 - \sin(\theta) y_1) + i \left(\sin(\theta) x_1 + \cos(\theta) y_2 \right) \right)$$

$$= \frac{|z_2|}{|z_1|} \left(x_1 + iy_1 \right) \left(\cos(\theta) + i \sin(\theta) \right)$$

$$= \frac{|z_2|}{|z_1|} z_1 \left(\cos(\theta) + i \sin(\theta) \right)$$

soit:

$$\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} \left(\cos\left(\theta\right) + i\sin\left(\theta\right)\right),\,$$

ce qui signifie que θ est un argument de $\frac{z_2}{z_1}$.

On rappelle que:

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \Re \left(\overline{z_1} z_2
ight) = \left| z_1
ight|^2 \Re \left(rac{z_2}{z_1}
ight)$$

et:

$$\det\left(\overrightarrow{v_1}, \overrightarrow{v_2}\right) = \Im\left(\overline{z_1}z_2\right) = \left|z_1\right|^2 \Im\left(\frac{z_2}{z_1}\right)$$

avec $\Re\left(\frac{z_2}{z_1}\right) = \left|\frac{z_2}{z_1}\right| \cos\left(\theta\right)$ et $\Im\left(\frac{z_2}{z_1}\right) = \left|\frac{z_2}{z_1}\right| \sin\left(\theta\right)$, ce qui donne compte tenu de $|z_1| = \|\overrightarrow{v_1}\|$ et $|z_2| = \|\overrightarrow{v_2}\|$:

$$\overrightarrow{v_1} \cdot \overrightarrow{v_2} = \|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\| \cos{(\theta)} \text{ et } \det{(\overrightarrow{v_1}, \overrightarrow{v_2})} = \|\overrightarrow{v_1}\| \|\overrightarrow{v_2}\| \sin{(\theta)}$$

On déduit de ce théorème que $(\lambda \overrightarrow{v_2}, \lambda \overrightarrow{v_1}) \equiv (\overrightarrow{v_2}, \overrightarrow{v_1})$ modulo 2π pour tout réel non nul et en particulier $(-\overrightarrow{v_2}, -\overrightarrow{v_1}) \equiv (\overrightarrow{v_2}, \overrightarrow{v_1})$ modulo 2π .

Corollaire 15.3 Si les points A, B, C sont deux à deux distincts alors un argument de $\frac{c-a}{b-a}$ est une mesure de l'angle orienté $\theta_A = (\overrightarrow{AB}, \overrightarrow{AC})$ et on a:

$$\begin{cases} \cos(\theta_A) = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{AB \cdot \overrightarrow{AC}} \\ \sin(\theta_A) = \frac{\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right)}{AB \cdot AC} \end{cases}$$

En particulier, on a arg $(b-a) = (\overrightarrow{e_1}, \overrightarrow{AB})$ (modulo 2π).

15.10 Une définition de l'exponentielle complexe à partir de la suite de fonctions $\left(\left(1+\frac{z}{n}\right)^n\right)_{n\geq 1}$

On se place tout d'abord dans le cas réel. Soit $(u_n)_{n\geq 1}$ la suite de fonctions définie par :

$$\forall n \ge 1, \ \forall x \in \mathbb{R}, \ u_n(x) = \left(1 + \frac{x}{n}\right)^n.$$

Pour x = 0, cette suite est stationnaire sur 1.

Lemme 15.8 Pour tout réel x, on a :

$$\lim_{n \to +\infty} u_n(x) u_n(-x) = 1.$$

Une définition de l'exponentielle complexe à partir de la suite de fonctions $\left(\left(1+\frac{z}{n}\right)^n\right)_{n\geq 1}$ 341

Démonstration. Pour tout $n \ge 1$, on a :

$$1 - u_n(x) u_n(-x) = 1 - \left(1 - \frac{x^2}{n^2}\right)^n = \frac{x^2}{n^2} \sum_{k=0}^{n-1} \left(1 - \frac{x^2}{n^2}\right)^k.$$

Pour tout n > |x|, on a $0 < 1 - \frac{x^2}{n^2} \le 1$ et :

$$|1 - u_n(x) u_n(-x)| \le \frac{x^2}{n^2} n = \frac{x^2}{n} \underset{n \to +\infty}{\to} 0.$$

En notant E la fonction partie entière, on associe à tout réel x l'entier n_x défini par :

$$n_x = \begin{cases} 1 \text{ pour } x \ge 0, \\ E(|x|) + 1 \text{ pour } x < 0 \end{cases}$$

et on a $u_n(x) > 0$ pour tout $n \ge n_x$.

Nous allons montrer dans ce qui suit que pour tout réel x, la suite $(u_n(x))_{n\geq 1}$ converge vers un réel f(x) > 0. En utilisant le lemme précédent on voit qu'il suffit de montrer ce résultat pour x > 0 ou pour x < 0.

Lemme 15.9 Pour tout entier $n_0 \ge 1$ et tout entier $n \ge n_0$, la fonction $\frac{u_{n+1}}{u_n}$ est strictement croissante sur \mathbb{R}^+ et strictement décroissante sur $]-n_0,0]$.

Démonstration. On se fixe un entier $n_0 \ge 1$.

Pour tout $n \ge n_0$ et tout $x \in]-n_0, 0]$, on a $n \ge n_0 > -x$ et $u_n(x) > 0$, cette inégalité étant également vérifiée pour x > 0 et $n \ge 1$.

Pour $n \ge n_0$ la restriction de la fonction u_n à $]-n_0, +\infty[$ est dérivable à valeurs strictement positives avec $\frac{u'_n(x)}{u_n(x)} = \frac{n}{n+x}$ et :

$$\forall x \in]-n_0, +\infty[, \frac{u'_{n+1}(x)}{u_{n+1}(x)} - \frac{u'_n(x)}{u_n(x)} = \frac{x}{(n+x)(n+1+x)}.$$

En utilisant $\left(\frac{u_{n+1}}{u_n}\right)' = \frac{u'_{n+1}u_n - u_{n+1}u'_n}{u_n^2}$, on en déduit que :

$$\begin{cases}
\forall x > 0, \ \left(\frac{u_{n+1}}{u_n}\right)'(x) > 0, \\
\forall x \in]-n_0, 0[, \ \left(\frac{u_{n+1}}{u_n}\right)'(x) < 0,
\end{cases}$$

c'est-à-dire que pour $n \ge n_0$, la fonction $\frac{u_{n+1}}{u_n}$ est strictement croissante sur \mathbb{R}^+ et strictement décroissante sur $]-n_0,0]$.

Lemme 15.10 Pour tout réel x la suite $(u_n(x))_{n\geq n_x}$ est à valeurs strictement positives et pour tout entier $n_0 \geq 1$, tout réel non nul x dans $]-n_0, +\infty[$, la suite $(u_n(x))_{n\geq n_0}$ est strictement croissante.

Démonstration. Par définition de n_x , on a $u_n(x) > 0$ pour tout réel x et tout entier $n \ge n_x$. Pour x non nul dans $]-n_0, +\infty[$ le lemme précédent nous dit que :

$$\forall n \ge n_0, \ \frac{u_{n+1}(x)}{u_n(x)} > \frac{u_{n+1}(0)}{u_n(0)} = 1,$$

c'est-à-dire que la suite $(u_n(x))_{n>n_0}$ est strictement croissante.

Théorème 15.12 Pour tout réel x, la suite $(u_n(x))_{n\geq 1}$ converge vers un réel f(x). De plus on a f(0) = 1, f(x) > 0 et $f(-x) = \frac{1}{f(x)}$ pour tout réel x.

Démonstration. Pour x = 0 on a $u_n(0) = 1$ pour tout $n \ge 1$ et $\lim_{n \to +\infty} u_n(0) = 1 = f(0)$.

Pour x < 0, on a $0 < 1 + \frac{x}{n} < 1$ et $0 < u_n(x) < 1$ pour tout $n \ge n_x$, c'est-à-dire que la suite $(u_n(x))_{n \ge n_x}$ est bornée et comme par ailleurs elle est croissante à partir d'un certain rang n_0 , on en déduit qu'elle est convergente. On note $f(x) = \lim_{n \to +\infty} u_n(x)$. De la stricte croissance de $(u_n(x))_{n \ge n_0}$, on déduit que $f(x) > u_{n_0}(x) > 0$.

Enfin pour x > 0, on a :

$$u_n(x) = \frac{u_n(x) u_n(-x)}{u_n(-x)} \underset{n \to +\infty}{\to} \frac{1}{f(-x)}$$

(lemme 15.8), soit $\lim_{n\to+\infty} u_n(x) = \frac{1}{f(-x)} = f(x)$.

Remarque 15.7 Avec:

$$f(x) = \frac{1}{f(-x)} = \lim_{n \to +\infty} \frac{1}{u_n(-x)},$$

on déduit que $f\left(x\right)$ est aussi limite de la suite $(v_{n}\left(x\right))_{n\geq n_{-x}}$ définie par :

$$\forall n \ge n_{-x}, \ v_n(x) = \frac{1}{u_n(-x)} = \left(1 - \frac{x}{n}\right)^{-n}.$$

Pour x non nul, il existe un entier n_0 tel que $(u_n(x))_{n\geq n_0}$ est strictement croissante, $(v_n(x))_{n\geq n_0}$ est strictement décroissante et en conséquence :

$$\forall n \ge n_0, \ u_n(x) < f(x) < v_n(x).$$

Lemme 15.11 *Pour tout* $x \in]-1,1[$, *on* a :

$$1 + x \le f(x) \le \frac{1}{1 - x}.$$

Démonstration. Pour $n_0=1$ et $x\in]-1,+\infty[$ on a vu précédemment que la suite $(u_n(x))_{n\geq 1}$ est strictement croissante et donc $u_1(x)=1+x\leq f(x)$.

Pour $x \in]-1, 1[, -x \text{ est aussi dans }]-1, 1[\text{ et on a } u_1(-x) = 1 - x \le f(-x), \text{ ce qui donne} f(x) = \frac{1}{f(-x)} \le \frac{1}{1-x}.$

Lemme 15.12 La fonction f est continue en 0.

Une définition de l'exponentielle complexe à partir de la suite de fonctions $\left(\left(1+\frac{z}{n}\right)^n\right)_{n\geq 1}$ 343

Démonstration. Du lemme précédent on déduit immédiatement que $\lim_{x\to 0} f(x) = 1 = f(0)$, ce qui signifie que f est continue en 0.

Lemme 15.13 Pour tout suite réelle $(x_n)_{n\in\mathbb{N}}$ convergente vers un réel x, on a $\lim_{n\to+\infty} u_n(x_n) = f(x)$.

Démonstration. On a, pour tout $n \in \mathbb{N}$:

$$u_n(x_n) = \frac{u_n(x_n) u_n(-x)}{u_n(-x)}$$

avec:

$$u_n(x_n)u_n(-x) = \left(\left(1 + \frac{x_n}{n}\right)\left(1 - \frac{x}{n}\right)\right)^n = \left(1 + \frac{\varepsilon_n}{n}\right)^n = u_n(\varepsilon_n)$$

où:

$$\varepsilon_n = x_n - x - \frac{xx_n}{n} \underset{n \to +\infty}{\longrightarrow} 0.$$

Pour n assez grand, on a $\varepsilon_n \in]-1, +\infty[$ de sorte que la suite $(u_m(\varepsilon_n))_{m\geq 1}$ est croissante et donc :

$$u_1(\varepsilon_n) = 1 + \varepsilon_n \le u_n(\varepsilon_n) \le f(\varepsilon_n)$$

avec $\lim_{n\to+\infty} u_1(\varepsilon_n) = 1$ et $\lim_{n\to+\infty} f(\varepsilon_n) = 1$ (continuité de f en 0), ce qui implique $\lim_{n\to+\infty} u_n(x_n) = 1$

On a donc en définitive
$$\lim_{n\to+\infty} u_n(x_n) u_n(-x) = 1$$
 et $\lim_{n\to+\infty} u_n(x_n) = \frac{1}{f(-x)} = f(x)$.

Théorème 15.13 Pour tous x, y dans \mathbb{R} on a f(x + y) = f(x) f(y).

Démonstration. Pour x, y dans \mathbb{R} et $n \geq 1$, on a :

$$u_n(x) u_n(y) = \left(\left(1 + \frac{x}{n}\right)\left(1 + \frac{y}{n}\right)\right)^n = \left(1 + \frac{z_n}{n}\right)^n = u_n(z_n)$$

avec $z_n = x + y + \frac{xy}{n} \xrightarrow[n \to +\infty]{} x + y$. On déduit alors du lemme précédent que :

$$f(x) f(y) = \lim_{n \to +\infty} u_n(x) u_n(y) = \lim_{n \to +\infty} u_n(z_n) = f(x+y).$$

Corollaire 15.4 La fonction f est continue sur \mathbb{R} .

Démonstration. Pour x, y dans \mathbb{R} on a :

$$f(y) - f(x) = f(x + y - x) - f(x) = f(x) (f(y - x) - 1) \underset{y \to x}{\to} 0$$

en utilisant la continuité en 0 de f.

En utilisant le lemme de Dini, on peut montrer que la suite $(u_n)_{n\geq 1}$ converge uniformément vers f sur tout intervalle compact [a,b].

Théorème 15.14 Si I = [a, b] est un intervalle réel compact, alors la suite $(u_n)_{n \ge 1}$ converge uniformément vers f sur I.

Démonstration. On peut trouver un entier n_0 tel que $I = [a,b] \subset]-n_0, +\infty[$ et pour tout x dans I la suite $(u_n(x))_{n\geq n_0}$ est croissante. En se restreignant à I, on a donc une suite croissante $(u_n)_{n\geq n_0}$ de fonctions continues sur I qui converge simplement sur I vers une fonction continue f, le théorème de Dini nous dit alors que la convergence est uniforme sur I.

Théorème 15.15 La fonction f est l'unique solution sur \mathbb{R} du problème de Cauchy y' = y avec la condition initiale y(0) = 1.

Démonstration. Avec le lemme 15.11 on a pour tout $x \in]-1,1[$:

$$1 \le \frac{f(x) - 1}{x} \le \frac{1}{1 - x}$$

et donc $\lim_{x\to 0} \frac{f(x)-1}{x}=1$, ce qui signifie que f est dérivable en 0 de dérivée égale à 1. Puis avec :

 $\frac{f(x+h) - f(x)}{h} = f(x)\frac{f(h) - 1}{h}$

pour tout $x \in \mathbb{R}$ et tout $h \in \mathbb{R}^*$, on déduit que $\lim_{h \to 0} \frac{f\left(x+h\right) - f\left(x\right)}{h} = f\left(x\right)$, ce qui signifie que f est dérivable en x avec $f'\left(x\right) = f\left(x\right)$. Comme $f\left(0\right) = 1$, la fonction f est bien solution du problème de Cauchy.

Si y est une autre solution, la fonction z définie sur \mathbb{R} par z(x) = y(x) f(-x) est telle que z' = 0 avec z(0) = 0, c'est donc la fonction nulle et nécessairement $y(x) = \frac{1}{f(-x)} = f(x)$ pour tout réel x.

De ce résultat on déduit que la fonction f est indéfiniment dérivable sur $\mathbb R$ avec $f^{(n)}=f$ pour tout entier naturel n.

De l'équation fonctionnelle vérifiée par la fonction f, on déduit facilement par récurrence que, pour tout réel non nul a, on a $f(n \cdot a) = (f(a))^n$ pour tout entier naturel n, puis avec $f(-x) = \frac{1}{f(x)}$, on déduit que cette relation est valable pour tout entier relatif n. Si $r = \frac{p}{q}$ est un

entier relatif, on a alors $f(r) = f\left(p\frac{1}{q}\right) = \left(f\left(\frac{1}{q}\right)\right)^p$ et avec $f(1) = f\left(q\frac{1}{q}\right) = \left(f\left(\frac{1}{q}\right)\right)^q$, on déduit que $f\left(\frac{1}{q}\right) = (f(1))^{\frac{1}{q}}$ et $f(r) = (f(1))^{\frac{p}{q}} = (f(1))^r$.

En notant e = f(1), on a donc $f(r) = e^r$ pour tout rationnel r, ce qui nous conduit à noter $f(x) = e^x$ pour tout réel x et la fonction ainsi définie est appelée fonction exponentielle réelle. On la note aussi $f(x) = \exp(x)$.

La définition précédente de la fonction exponentielle peut être étendue à \mathbb{C} (ou de manière plus générale aux algèbres de Banach).

Pour tout z dans \mathbb{C} et tout n dans \mathbb{N}^* , on note $u_n(z) = \left(1 + \frac{1}{n}z\right)^n$. Pour $z \in E$ et m > n, on a:

$$|u_{m}(z) - u_{n}(z)| = \left| \sum_{k=0}^{n} \left(C_{m}^{k} \frac{1}{m^{k}} - C_{n}^{k} \frac{1}{n^{k}} \right) z^{k} - \sum_{k=n+1}^{m} C_{m}^{k} \frac{1}{m^{k}} z^{k} \right|$$

$$\leq \sum_{k=0}^{n} \left| C_{m}^{k} \frac{1}{m^{k}} - C_{n}^{k} \frac{1}{n^{k}} \right| |z|^{k} + \sum_{k=n+1}^{m} C_{m}^{k} \frac{1}{m^{k}} |z|^{k}$$

Une définition de l'exponentielle complexe à partir de la suite de fonctions $\left(\left(1+\frac{z}{n}\right)^n\right)_{n\geq 1}$ 345

Pour k compris entre 2 et n, on a :

$$C_m^k \frac{1}{m^k} = \frac{m(m-1)\dots(m-(k-1))}{k!m^k} = \frac{1}{k!} \left(1 - \frac{1}{m}\right) \dots \left(1 - \frac{k-1}{m}\right)$$
$$\ge \frac{1}{k!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) = C_n^k \frac{1}{n^k},$$

et pour k = 0 ou 1, ces deux quantités valent 1. On a donc :

$$|u_{m}(z) - u_{n}(z)| \leq \sum_{k=0}^{n} \left(C_{m}^{k} \frac{1}{m^{k}} - C_{n}^{k} \frac{1}{n^{k}} \right) |z|^{k} + \sum_{k=n+1}^{m} C_{m}^{k} \frac{1}{m^{k}} |z|^{k}$$
$$\leq u_{m}(|z|) - u_{n}(|z|)$$

et il en résulte que la suite $(u_n(z))_{n\geq 1}$ est de Cauchy dans \mathbb{C} , elle est donc convergente. On note e^z sa limite dans \mathbb{C} .

Faisant tendre m vers l'infini dans l'inégalité précédente, on a :

$$\forall n \ge 1, |e^z - u_n(z)| \le e^{|z|} - u_n(|z|)$$

et on en déduit que la convergence est uniforme sur tout compact de \mathbb{C} .

Si $(z_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathbb{C} qui converge vers z, on en déduit que la suite $(u_n(z_n))_{n\in\mathbb{N}}$ converge vers e^z .

En écrivant que :

$$u_n(z) u_n(-z) = \left(1 - \frac{1}{n^2} z^2\right)^n = u_n\left(-\frac{1}{n} z^2\right)$$

on en déduit par passage à la limite que $e^ze^{-z}=1$, c'est-à-dire que pour tout $z\in\mathbb{C},\ e^z$ est inversible d'inverse e^{-z} .

Pour z, z' dans \mathbb{C} , on a :

$$u_n(z) u_n(z') = \left(\left(1 + \frac{1}{n}z\right)\left(1 + \frac{1}{n}z'\right)\right)^n = \left(1 + \frac{1}{n}z_n\right)^n = u_n(z_n)$$

avec $z_n = z + z' + \frac{1}{n}zz' \underset{n \to +\infty}{\longrightarrow} z + z'$. Il en résulte que :

$$e^{z}e^{z'}=\lim_{n\to+\infty}u_{n}\left(z\right)u_{n}\left(z'\right)=\lim_{n\to+\infty}u_{n}\left(z_{n}\right)=e^{z+z'}.$$

Il reste à faire le lien avec la suite de fonctions $\left(\sum_{k=0}^{n} \frac{x^k}{k!}\right)_{n \in \mathbb{N}}$

Si y est solution de y'=y avec la condition initiale y(0)=1, elle est alors de classe \mathcal{C}^{∞} sur \mathbb{R} avec $y^{(n)}(0)=1$ pour tout $n\in\mathbb{N}$. Pour tout réel non nul x, la formule de Taylor à l'ordre n nous donne alors :

$$y(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{x^{n+1}}{(n+1)!} y^{(n+1)}(\theta x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{x^{n+1}}{(n+1)!} y(\theta x)$$

avec $\theta \in]0,1[$. Avec $\lim_{n\to+\infty} \frac{x^{n+1}}{(n+1)!} = 0$, on en déduit alors que $y(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$, c'est-à-dire que y est limite de la suite de fonctions $(w_n)_{n\in\mathbb{N}}$ définie par :

$$\forall x \in \mathbb{R}, \ w_n(x) = \sum_{k=0}^n \frac{x^k}{k!}.$$

Le lien entre cette suite et la suite $\left(\left(1+\frac{x}{n}\right)^n\right)_{n\geq 1}$ peut être précisé comme suit.

Lemme 15.14 Pour tous x > 0 et n, p dans \mathbb{N}^* on a:

$$u_n(x) \le w_n(x) \le u_{n+p}(x)$$
.

Démonstration. Avec $C_n^k = 0$ et $\frac{C_n^k}{n^k} = \frac{1}{k!} \prod_{j=0}^{k-1} \left(1 - \frac{j}{n}\right) \le \frac{1}{k!}$ pour $1 \le k \le n$, on déduit que $u_n(x) \le w_n(x)$ et avec $C_{n+p}^0 = 1$, $C_{n+p}^k = \frac{1}{k!} \prod_{j=0}^{k-1} (n+p-j) > \frac{1}{k!}$ pour $1 \le k \le n$, on déduit que $w_n(x) \le u_{n+p}(x)$.

En particulier, pour $p = n^2$, on a :

$$u_{n+n^2}(x) < \left(1 + \frac{x}{n^2}\right)^{n^2} \left(1 + \frac{x}{n^2}\right)^n = u_{n^2}(x) u_n\left(\frac{x}{n}\right)$$

et de $u_n(x) \leq w_n(x) \leq u_{n^2}(x) u_n\left(\frac{x}{n}\right)$, on déduit que $\lim_{n \to +\infty} w_n(x) = e^x$ (on a $\lim_{n \to +\infty} u_n\left(\frac{x}{n}\right) = e^0 = 1$), c'est-à-dire que $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ pour tout réel x > 0, ce résultat étant encore vrai pour x = 0.

Si on se place maintenant sur \mathbb{C} , on a pour tout $z \in \mathbb{C}$ et $n \in \mathbb{N}$:

$$|w_{n}(z) - u_{n}(z)| = \left| \sum_{k=0}^{n} \left(\frac{1}{k!} - \frac{C_{n}^{k}}{n^{k}} \right) z^{k} \right| \le \sum_{k=0}^{n} \left(\frac{1}{k!} - \frac{C_{n}^{k}}{n^{k}} \right) |z|^{k}$$

$$\le w_{n}(|z|) - u_{n}(|z|) \underset{n \to +\infty}{\to} 0$$

et donc $e^z = \sum_{n=0}^{+\infty} \frac{1}{n!} z^n$ pour tout $z \in \mathbb{C}$ (ce qui montre au passage, en prenant $E = \mathbb{R}$, que ce résultat est vrai pour les réel négatifs).