COSC264 Introduction to Computer Networks and the Internet

Introduction to Routing – Distance Vector Algorithm

Dr. Barry Wu Wireless Research Centre University of Canterbury barry.wu@canterbury.ac.nz

Outline – this week

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Outline – this week

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Review: Dijsktra's Algorithm

```
Initialization:
    S = \{u\} / * u \text{ is the source */}
   for all nodes v
     if v adjacent to u {
5
        then D(v) = c(u,v) / cost of neighbor known*/
        else D(v) = \infty / * cost of others unknown * /
   Loop
    find w not in S with the smallest D(w)
10 add w to S
11 update D(v) for all v adjacent to w and not in S:
       D(v) = min\{D(v), D(w) + c(w,v)\}
12
    /* new cost to v is either old cost to v or known
    shortest path cost to w plus cost from w to v */
#3 until all nodes in S
```

An illustration

Outline – today

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
- Summary

Distance Vector Algorithm

- Distributed
- Iterative
- Asynchronous

Bellman-Ford Equation

Define

 $d_x(y) := cost of least-cost path from x to y$ Then

$$d_{x}(y) = min_{v}\{c(x,v) + d_{v}(y)\}$$

where *min* is taken over all neighbors of x

Bellman-Ford example

Node that achieves minimum is next hop in shortest path.

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

Distance Vector Algorithm

Estimates:

- $D_x(y)$ = estimate of least cost from x to y
- Distance vector: D_x = [D_x(y): y ∈ N]
- Each node x:
 - Node x knows cost to each neighbor v: c(x,v)
 - Node x maintains $D_x = [D_x(y): y \in N]$
 - Node x also maintains its neighbors' distance vectors
 - o For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

An illustration

Distance vectors at node u

Distance vector algorithm

Basic idea:

- Each node periodically sends its own distance vector estimate to neighbours
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\} \quad \text{for each node } y \in N$$

Amazingly, as long as all the nodes continue to exchange their distance vectors in an asynchronous fashion, the estimate D_x(y) converges the actual least cost d_x(y)

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbour

Distributed:

- each node notifies neighbours only when its DV changes
 - neighbours then notify their neighbours if necessary
 - The algorithm doesn't know the entire path – only knows the next hop

Each node:

Distance Vector Algorithm

At each node, x:

```
Initialization:
      for all destinations y in N:
3
          D_x(y) = c(x,y) / c(x,y) = \infty if y is not a neighbour*/
      for each neighbour w
4
5
          D_w(y) = \infty for all destinations y in N
      for each neighbor w
          send distance vector D_x = [D_x(y): y \text{ in } N] to w
8
   loop
      wait (until I see a link cost change to some neighbor w
9
    or until I receive a distance vector from some neighbour w)
      for each y in N:
          D_{x}(y) = min_{v}\{c(x,v) + D_{v}(y)\} / v is adjacent to x^{*}/v
12
      if D_x(y) changed for any destination y
13
          send distance vector D_x = [D_x(y): y \text{ in } N] to all neighbours
14
15 forever
```


A hidden assumption – N (all destinations)

Q: if all nodes exchange distance vectors with their neighbours only, can each of them know all the destination nodes (N, in the pseudocode)?

- Initially, x knows it has a path to y with cost 1; but it does know z;
- y knows it has a path to x (and z) with cost 1;
- z knows it has a path to y with cost 1; but it does know x;
- Then, y and x exchange distance vectors;
- x learned that there is a new destination z and it can reach z via y with cost 2;
- y and z exchange distance vectors;
- z learned that there is a new destination x and it can reach x via y with cost 2;
- Now both x and z know their destination nodes!

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" At time t_0 , y detects the link-cost change (4 \rightarrow 1), updates its DV, and informs its neighbors.

At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x (5 \rightarrow 2) and sends its neighbors its DV.

At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does *not* send any message to z.

Link cost changes:

- Before the link cost changes
 - $D_y(x) = 4$, $D_z(x) = 5$
- ☐ At time t0, y detects the link-cost change and re-compute its dv

- $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+5\} = 6;$
- Now we have routing loop: y sends data to z in order to get to x; z will send data back to y in order to get to x;
- O At time t1, y sends its new dv to z; after z receives y's new dv; z can update $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+6, 50+0\} = 7;$
- O At time t2, z sends its new dv to y; similarly y can update $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+7\} = 8;$
- Then $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1+8, 50+0\} = 9;$
- $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+9\} = 10;$
- **O** ...
- $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1+50, 50+0\} = 50;$
- $D_{v}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60+0, 1+50\} = 51;$
- $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+51, 50+0\} = 50;$

Link cost changes:

- Before the link cost changes
 - $D_y(x) = 4$, $D_z(x) = 5$
- □ At time t0, y detects the link-costChange and re-compute its dv

- **O** ...
- $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+9999, 9999+0\} = 9999;$
- $D_y(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{10000 + 0, 1 + 9999\} = 10000;$
- $D_z(x) = \min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = \min\{1+10000, 9999+0\} = 9999;$

The process stops after z computes the cost of its path via y to be greater than 50; then it chooses the path $z \rightarrow x$ (cost is 50). The bad news about the increase in link cost has travelled slowly! What if c(y,x) had changed from 4 to 10,000 and c(z,x) had been 9,999? Count-to-infinity problem!

Poisoned reverse:

- If z routes through y to get to x :
 - z tells y its (z's) distance to x is infinite (so y won't route to x via z)

- Before the link cost changes
 - $D_v(x) = 4$, $D_z(x) = 5$, but z will lie to y saying " $D_z(x) = \infty$ " (poisoned reverse)
- At time t0, y detects the link-cost

change and re-compute its dv

- $D_v(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+ \infty\} = 60;$
- Now y sends data directly to x;
- At time t1, y sends its new dv to z; after z receives y's new dv; z can update $D_z(x) = \min\{c(z,y) + D_v(x), c(z,x) + D_x(x)\} = \min\{1+60, 50+0\} = 50;$
- At time t2, z sends its new dv to y without lying since it will not route through y; similarly y can update

$$D_v(x) = \min\{c(y,x) + D_x(x), c(y,z) + D_z(x)\} = \min\{60+0, 1+50\} = 51;$$

Then $D_z(x) = min\{c(z,y) + D_y(x), c(z,x) + D_x(x)\} = min\{1 + ∞, 50 + 0\} = 50$; y lies to z this time because it routes through z;

But keep lying does not solve the problem!

Consider y,z,w distance table entries to x only. Using poisoned reverse,

$$z \rightarrow w$$
, $D_z(x) = \infty$; $z \rightarrow y D_z(x) = 6$;

$$w \rightarrow y$$
, $D_w(x) = \infty$; $w \rightarrow z D_w(x) = 5$;

$$y \rightarrow w$$
, $D_y(x) = 4$; $y \rightarrow z D_y(x) = 4$;

Then there is link-cost change $(4\rightarrow60)$;

At t1, y updates its
$$D_y(x) = 9$$
 (via z); $y \to w$, $D_y(x) = 9$; $y \to z$ $D_y(x) = \infty$; $D_y(x) = \min\{c(y,z) + D_z(x), c(y,w) + D_w(x), c(y,x) + D_x(x)\} = \min\{3+6, 1+\infty, 60+0\} = 9$ (via z)

	t0	t1	t2	t3	t4
Z	\rightarrow w, $D_z(x) = \infty$; \rightarrow y, $D_z(x) = 6$;		No change	\rightarrow w, $D_z(x) = \infty$; \rightarrow y, $D_z(x) = 11$;	
W	$ → y, D_w(x) = ∞; → z D_w(x) = 5; $		$ → y, D_w(x) = ∞; → z, D_w(x) = 10; $		No change
y	$\Rightarrow w, D_y(x) = 4;$ $\Rightarrow z, D_y(x) = 4;$	⇒ w, $D_y(x) = 9$; ⇒ z, $D_y(x) = \infty$;		No change	$ → w, D_y(x) = 14;$ $ → z D_y(x) = ∞;$

This continues y-w-z-y-w-z-y-w-z; there is routing loop (y-z, z-w, w-y)

50

Comparison of LS and DV algorithms

Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

Speed of Convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - o error propagate thru network

Summary

- Network layer overview
- Routing overview
- Link-state routing (Dijkstra's algorithm)
- Distance-vector routing (Bellman-Ford)
 - B-F equation
 - B-F algorithm
 - Count-to-infinity problem and poisoned reverse
 - LS vs DV
- Summary

References

- [KR3] James F. Kurose, Keith W. Ross, Computer networking: a top-down approach featuring the Internet, 3rd edition.
- [PD5] Larry L. Peterson, Bruce S. Davie, Computer networks: a systems approach, 5th edition
- [TW5] Andrew S. Tanenbaum, David J. Wetherall, Computer network, 5th edition
- [LHBi]Y-D. Lin, R-H. Hwang, F. Baker, Computer network: an open source approach, International edition
- [ZL] Lilin Zhang, CSC358 Tutorial 9, University of Toronto,
 http://www.cs.toronto.edu/~ahchinaei/teaching/2016jan/csc358/Tut09-taSlides.pdf

Acknowledgements

- All slides are developed based on slides from the following two sources:
 - Dr DongSeong Kim's slides for COSC264, University of Canterbury;
 - Prof Aleksandar Kuzmanovic's lecture notes for CS340, Northwestern University, https://users.cs.northwestern.edu/~akuzma/class

es/CS340-w05/lecture notes.htm