Homework 5 Notebook - Henry Woodyard

Code **▼**

Run this only if the machine learning packages have not yet been installed

#install.packages("caret")
#install.packages("randomForest")
#install.packages("RANN")
#install.packages("gbm")

Loading packages and data

library(ggplot2)
library(gridExtra)

```
Attaching package: 恸拖gridExtra恸作
The following object is masked from 恸拖package:randomForest恸作:
    combine

Hide

library(gbm)

Loaded gbm 2.1.5

Hide

data(scat)
```

Question 1: Set the Species column as the target/outcome and convert it to numeric. (5 points)

```
Hide
scat$Species <- as.factor(scat$Species)
```

Question 2: Remove the Month, Year, Site, Location features. (5 points)

```
removal <- c("Month", "Year", "Site", "Location")
scat <- scat[,-which(colnames(scat) %in% removal)]; rm(removal)
```

3. Check if any values are null. If there are, impute missing values using KNN. (10 points)

```
print("Missing values before imputing")

[1] "Missing values before imputing"

Hide

missing <- colSums(is.na(scat))
cols_with_missing <- which(missing > 0)
cols_to_impute <- scat[,cols_with_missing]
print(missing)</pre>
```

```
Species
                      Number
                                Length Diameter
                                                                     ΤI
              Age
                                                       Taper
                                                                     17
                0
                                      0
                                                          17
   Mass
              d13C
                        d15N
                                     CN
                                            ropey segmented
                                                                   flat
                 2
                                      2
                                                0
 scrape
```

```
imputeValues <- preProcess(cols_to_impute, method = c("knnImpute", "center", "scale"))
scat[,cols_with_missing] <- predict(imputeValues, scat[, cols_with_missing])
print("Missing values after imputing")</pre>
```

[1] "Missing values after imputing"

Hide

Hide

colSums(is.na(scat))

Species	Age	Number	Length	Diameter	Taper	TI
0	0	0	0	0	0	0
Mass	d13C	d15N	CN	ropey	segmented	flat
0	0	0	0	0	0	0
scrape						
0						

Hide

rm(imputeValues, cols_to_impute, cols_with_missing, missing)

Hide

imputeValues <- preProcess(scat, method = c("knnImpute", "center", "scale"))
scat <- predict(imputeValues, scat)</pre>

Converting every categorical variable to numerical (if needed). points)

Hide

str(scat)

```
'data.frame':
               110 obs. of 15 variables:
          : Factor w/ 3 levels "bobcat", "coyote", ...: 2 2 1 2 2 2 1 1 1 1 ...
$ Species
$ Age
                  1.207 -0.252 -0.252 1.207 1.207 ...
$ Number
                  -0.433 -0.433 -0.433 0.968 ...
                  0.0587 1.3679 -0.0867 -0.2322 -0.3777 ...
$ Length
           : num
$ Diameter : num
                  1.893 1.8141 0.0775 -0.1067 0.5774 ...
$ Taper
           : num
                  1 0.659 -0.804 -0.222 -0.549 ...
$ TI
                  0.0352 -0.1475 -0.771 -0.255 -0.6742 ...
           : num
                  0.396 0.59 -0.453 -0.566 1.478 ...
$ Mass
           : num
$ d13C
                  0.00637 -1.27798 -0.86532 3.15002 1.6802 ...
           : num
$ d15N
           : num
                  -0.16 0.819 0.368 -0.544 -0.137 ...
$ CN
                  0.0295 0.7988 -0.0805 0.8538 0.6065 ...
                  -1.131 -1.131 0.876 0.876 -1.131 ...
$ ropey
           : num
                  -1.131 -1.131 0.876 -1.131 0.876 ...
$ segmented: num
                  -0.239 -0.239 -0.239 -0.239 ...
$ flat
           : num
                  -0.217 -0.217 4.562 -0.217 -0.217 ...
$ scrape
           : num
```

All variables are numeric or integer. Conversion not needed.

5. With a seed of 100, 75% training, 25% testing. Build the following models: randomforest, neural net, naive bayes and GBM

a. For these models display a)model summarization and b) plot variable of importance, for the predictions (use the prediction set) display c) confusion matrix (60 points)

Set random seed to 100 and partition the data.

```
Hide
```

```
set.seed(100)
index <- createDataPartition(scat$Species, p = .75, list = FALSE)
trainSet <- scat[index,]
testSet <- scat[-index,]
rm(index)</pre>
```

Save the names of our outcome and predictor variables for easy reference.

Hide

```
outcomeName <- "Species"
predictors <- names(scat)[names(scat) != outcomeName]</pre>
```

Train a random forest model.

```
Random Forest
83 samples
14 predictors
3 classes: 'bobcat', 'coyote', 'gray_fox'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 83, 83, 83, 83, 83, ...
Resampling results across tuning parameters:
 mtry Accuracy
                   Kappa
        0.6449190 0.3884346
   2
  8
       0.6664501 0.4459848
  14
        0.6659344 0.4489932
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 8.
```

```
Hide
```

```
plot(varImp(object = model_rf), main = "Random Forest - Variable Importance")
```

Random Forest - Variable Importance


```
predict_rf <- predict.train(model_rf, testSet[,predictors])
results_rf <- confusionMatrix(predict_rf, testSet[,outcomeName])
print(results_rf)</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction bobcat coyote gray_fox
  bobcat
               14
                       2
  coyote
                0
                       5
                                0
                0
                                3
  gray_fox
Overall Statistics
               Accuracy : 0.8148
                 95% CI: (0.6192, 0.937)
    No Information Rate: 0.5185
    P-Value [Acc > NIR] : 0.001421
                  Kappa: 0.6707
 Mcnemar's Test P-Value : NA
Statistics by Class:
                     Class: bobcat Class: coyote Class: gray_fox
Sensitivity
                            1.0000
                                           0.7143
                                                           0.5000
                            0.6154
Specificity
                                           1.0000
                                                           1.0000
Pos Pred Value
                            0.7368
                                                           1.0000
                                           1.0000
Neg Pred Value
                            1.0000
                                           0.9091
                                                           0.8750
Prevalence
                            0.5185
                                           0.2593
                                                           0.2222
Detection Rate
                            0.5185
                                           0.1852
                                                           0.1111
Detection Prevalence
                            0.7037
                                           0.1852
                                                           0.1111
Balanced Accuracy
                            0.8077
                                           0.8571
                                                           0.7500
```

Train a neural network.

```
Neural Network
83 samples
14 predictors
3 classes: 'bobcat', 'coyote', 'gray_fox'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 83, 83, 83, 83, 83, ...
Resampling results across tuning parameters:
  size decay Accuracy
                         Kappa
  1
        0e+00 0.5602687 0.2971229
  1
        1e-04 0.5277275 0.2489196
  1
       1e-01 0.6037359 0.3411895
  3
       0e+00 0.6391312 0.4188356
  3
       1e-04 0.6401082 0.4230570
  3
       1e-01 0.6635934 0.4478497
  5
        0e+00 0.6648931 0.4542429
  5
        1e-04 0.6598657 0.4478332
  5
        1e-01 0.6654134 0.4527684
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were size = 5 and decay = 0.1.
```

```
# NN importance is reported by default in a way that throws an error. Converting to a dataframe
and removing the "overall" column fixes this.
imp <- varImp(model_nn)
imp$importance <- as.data.frame(imp$importance)[,-1]
plot(imp, main = "Neural Network - Variable Importance")</pre>
```

Neural Network - Variable Importance


```
predict_nn <- predict.train(model_nn, testSet[,predictors])
results_nn <- confusionMatrix(predict_nn, testSet[,outcomeName])
print(results_nn)</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction bobcat coyote gray_fox
  bobcat
               13
  coyote
                1
                       5
                                1
                0
                       2
                                5
  gray_fox
Overall Statistics
               Accuracy : 0.8519
                 95% CI : (0.6627, 0.9581)
    No Information Rate: 0.5185
    P-Value [Acc > NIR] : 0.0003126
                  Kappa: 0.7632
 Mcnemar's Test P-Value : NA
Statistics by Class:
                     Class: bobcat Class: coyote Class: gray_fox
Sensitivity
                            0.9286
                                           0.7143
                                                           0.8333
Specificity
                            1.0000
                                           0.9000
                                                           0.9048
Pos Pred Value
                            1.0000
                                           0.7143
                                                           0.7143
Neg Pred Value
                            0.9286
                                           0.9000
                                                           0.9500
Prevalence
                            0.5185
                                           0.2593
                                                           0.2222
Detection Rate
                            0.4815
                                           0.1852
                                                           0.1852
Detection Prevalence
                                                           0.2593
                            0.4815
                                           0.2593
Balanced Accuracy
                            0.9643
                                           0.8071
                                                           0.8690
```

Train a naive bayes model.

```
Hide
```

```
Naive Bayes
83 samples
14 predictors
3 classes: 'bobcat', 'coyote', 'gray_fox'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 83, 83, 83, 83, 83, ...
Resampling results across tuning parameters:
  usekernel Accuracy
                        Kappa
  FALSE
             0.6184025
                        0.4186515
   TRUE
             0.6628904
                        0.4514779
Tuning parameter 'laplace' was held constant at a value of \theta
Tuning parameter 'adjust' was held constant at a value of 1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were laplace = 0, usekernel = TRUE
 and adjust = 1.
```

plot(varImp(object = model_nb), main = "Naive Bayes - Variable Importance")

Naive Bayes - Variable Importance


```
predict_nb <- predict.train(model_nb, testSet[,predictors])
results_nb <- confusionMatrix(predict_nb, testSet[,outcomeName])
print(results_nb)</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction bobcat coyote gray_fox
  bobcat
               13
                       2
  coyote
                0
                       5
                                 0
                       0
                                 4
  gray_fox
                1
Overall Statistics
               Accuracy : 0.8148
                 95% CI: (0.6192, 0.937)
    No Information Rate : 0.5185
    P-Value [Acc > NIR] : 0.001421
                  Kappa : 0.6831
 Mcnemar's Test P-Value : NA
Statistics by Class:
                     Class: bobcat Class: coyote Class: gray_fox
Sensitivity
                             0.9286
                                           0.7143
                                                           0.6667
Specificity
                             0.6923
                                           1.0000
                                                           0.9524
Pos Pred Value
                             0.7647
                                           1.0000
                                                           0.8000
Neg Pred Value
                             0.9000
                                           0.9091
                                                           0.9091
Prevalence
                             0.5185
                                           0.2593
                                                           0.2222
Detection Rate
                             0.4815
                                           0.1852
                                                           0.1481
Detection Prevalence
                             0.6296
                                           0.1852
                                                           0.1852
Balanced Accuracy
                             0.8104
                                           0.8571
                                                           0.8095
```

Train a Gradient Boosting Machines (GBM) model.

```
Stochastic Gradient Boosting
83 samples
14 predictors
3 classes: 'bobcat', 'coyote', 'gray_fox'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 83, 83, 83, 83, 83, ...
Resampling results across tuning parameters:
  interaction.depth n.trees Accuracy
                                         Kappa
  1
                      50
                              0.6543485 0.4205283
  1
                     100
                              0.6464551 0.4090252
  1
                     150
                              0.6289119 0.3801202
  2
                      50
                              0.6452228 0.4040488
  2
                     100
                              0.6331374 0.3859193
  2
                     150
                              0.6346581 0.3899366
  3
                      50
                              0.6232588 0.3699732
  3
                     100
                              0.6188623 0.3618511
  3
                              0.6154565 0.3538589
                     150
Tuning parameter 'shrinkage' was held constant at a value of 0.1
Tuning parameter 'n.minobsinnode' was held constant at a value of 10
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 50, interaction.depth
```

```
plot(varImp(object = model_gbm), main = "GBM - Variable Importance")
```

= 1, shrinkage = 0.1 and n.minobsinnode = 10.

GBM - Variable Importance


```
predict_gbm <- predict.train(model_gbm, testSet[,predictors])
results_gbm <- confusionMatrix(predict_gbm, testSet[,outcomeName])
print(results_gbm)</pre>
```

```
Confusion Matrix and Statistics
          Reference
Prediction bobcat coyote gray fox
  bobcat
               14
                0
                       5
  covote
                                1
                       1
                                3
  gray_fox
                0
Overall Statistics
               Accuracy : 0.8148
                 95% CI: (0.6192, 0.937)
    No Information Rate: 0.5185
    P-Value [Acc > NIR] : 0.001421
                  Kappa: 0.6824
 Mcnemar's Test P-Value: 0.391625
Statistics by Class:
                     Class: bobcat Class: coyote Class: gray fox
Sensitivity
                             1.0000
                                           0.7143
                                                           0.5000
Specificity
                            0.7692
                                           0.9500
                                                           0.9524
Pos Pred Value
                            0.8235
                                           0.8333
                                                           0.7500
                            1.0000
Neg Pred Value
                                           0.9048
                                                           0.8696
Prevalence
                            0.5185
                                           0.2593
                                                           0.2222
Detection Rate
                            0.5185
                                           0.1852
                                                           0.1111
Detection Prevalence
                            0.6296
                                           0.2222
                                                           0.1481
Balanced Accuracy
                                                           0.7262
                             0.8846
                                           0.8321
```

6. For the BEST performing models of each (randomforest, neural net, naive bayes and gbm) create and display a data frame that has the following columns: ExperimentName, accuracy, kappa. Sort the data frame by accuracy. (15 points)

Note: I'm a little confused about your phrasing here. You say for the "best performing models of each", but when predicting, the model already uses the best parameters (i.e. bestTune). Perhaps you wanted us to get the accuracy from the model directly, rather than from the prediction; however, it seems more robust to use the accuracy from the testing and thus I'm using that.

Using the results from the confusion matrices earlier, I take the accuracy and kappa for each model and combine them into a dataframe.

	ExperimentName <fctr></fctr>	Accuracy <dbl></dbl>	Kappa <dbl></dbl>
1	Neural Net	0.8518519	0.7631579
2	Naive Bayes	0.8148148	0.6830986
3	Random Forest	0.8148148	0.6707317
4	GBM	0.8148148	0.6823529
4 rc	ows		

7. Tune the GBM model using tune length = 20 and: a) print the model summary and b) plot the models. (20 points)

This gives warning for zero variance in the scrape variable. I assume this is because some random subsamples result in scrape being constant. Annoying to see but empirically fine.

variable 14: scrape has no variation.variable 14

```
Print(model_gbm_tuned)
```

```
Stochastic Gradient Boosting
83 samples
14 predictors
 3 classes: 'bobcat', 'coyote', 'gray_fox'
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 83, 83, 83, 83, 83, ...
Resampling results across tuning parameters:
  interaction.depth
                     n.trees
                              Accuracy
                                          Kappa
                       50
                              0.6544860
                                         0.4329368
   1
                      100
                              0.6478794
                                         0.4240464
   1
                      150
                              0.6413565 0.4153538
   1
                      200
                              0.6281235 0.3904565
   1
                      250
                              0.6283308 0.3922084
   1
                      300
                              0.6215263 0.3802714
   1
                      350
                              0.6297663 0.3940760
   1
                      400
                              0.6315559
                                         0.3985401
   1
                      450
                              0.6268682 0.3909514
   1
                      500
                              0.6239534
                                         0.3871706
   1
                      550
                              0.6273703 0.3903794
   1
                      600
                              0.6164212 0.3733550
   1
                      650
                              0.6150046 0.3720943
   1
                      700
                              0.6164946 0.3722923
   1
                      750
                              0.6191175 0.3771790
   1
                      800
                              0.6189124 0.3772179
   1
                      850
                              0.6205399
                                         0.3789572
   1
                      900
                              0.6160672 0.3719492
   1
                      950
                              0.6190342 0.3776456
   1
                     1000
                              0.6158465 0.3731862
   2
                       50
                              0.6455649
                                         0.4155581
   2
                      100
                              0.6418848 0.4140376
   2
                      150
                              0.6330193
                                         0.4012279
   2
                      200
                              0.6190148
                                         0.3826711
   2
                      250
                              0.6161080 0.3753404
   2
                      300
                              0.6190009
                                         0.3812209
   2
                      350
                              0.6108654
                                         0.3679395
   2
                      400
                              0.6178837
                                         0.3804358
   2
                      450
                              0.6203581 0.3827920
   2
                      500
                              0.6177338 0.3800135
   2
                      550
                              0.6162983 0.3790783
   2
                      600
                              0.6174156 0.3815298
   2
                      650
                              0.6175754 0.3814272
   2
                      700
                                         0.3680430
                              0.6092720
   2
                      750
                              0.6094099
                                         0.3681720
   2
                      800
                              0.6081139 0.3675109
   2
                      850
                              0.6029220
                                         0.3592596
   2
                      900
                              0.6066083 0.3638201
   2
                      950
                              0.6065250
                                         0.3642037
   2
                     1000
                              0.6068541
                                         0.3644228
   3
                       50
                              0.6464910
                                         0.4197312
```

J			TIOTHEWORK O MOTODOOK	i iciii y
3	100	0.6240793	0.3881133	
3	150	0.6196791	0.3790104	
3	200	0.6091445	0.3607727	
3	250	0.6216297	0.3840099	
3	300	0.6213963	0.3831918	
3	350	0.6159956	0.3737283	
3	400	0.6146225	0.3695983	
3	450	0.6188581	0.3766414	
3	500	0.6130553	0.3699184	
3	550	0.6148459	0.3722637	
3	600		0.3681002	
3	650	0.6134390	0.3712089	
3			0.3569594	
3	750			
3	800		0.3651829	
3	850		0.3690260	
3	900		0.3648996	
3	950		0.3562760	
3	1000		0.3619111	
4	50		0.4091416	
4			0.3865402	
4	150		0.3760532	
4	200		0.3827756	
4	250		0.3848849	
4	300		0.3737045	
4	350		0.3729554	
4	400		0.3761575	
4	450		0.3681416	
4			0.3697225	
4	550		0.3743705	
4	600		0.3669362	
4	650		0.3555083	
4	700		0.3616810	
4	750		0.3644140	
4	800		0.3677982	
4	850		0.3643343	
4		0.6067138		
4	900	0.6093179		
4	950			
5	1000	0.6067534		
5 5	50		0.4272039	
	100		0.4213646	
5	150		0.3943930	
5	200		0.3850672	
5	250		0.3752162	
5	300	0.6145724		
5	350	0.6044535		
5	400	0.6056223		
5	450	0.6028144		
5	500	0.6031820		
5	550		0.3380624	
5	600		0.3360037	
5	650		0.3309657	
5	700	0.5985433		
5	750	0.5933047	0.3393025	

10			TIOTHOWOTK O NOTOBOOK	i iciny
5	800	0.5884997	0.3289923	
5	850	0.5887705	0.3301695	
5	900	0.5913881	0.3332751	
5	950	0.5941500	0.3368543	
5	1000	0.5900106	0.3304351	
6	50	0.6482430	0.4250268	
6	100	0.6493792	0.4281636	
6	150	0.6298055	0.3948456	
6	200	0.6278745	0.3913656	
6	250	0.6221715	0.3816637	
6	300	0.6141558	0.3701310	
6	350	0.6119318	0.3687588	
6	400	0.6119612	0.3677011	
6	450	0.6060115	0.3541150	
6	500	0.6032420	0.3500434	
6	550	0.6035679	0.3507564	
6	600	0.5980841	0.3434402	
6	650	0.6009725	0.3472014	
6	700	0.6006255	0.3478253	
6	750	0.5965914	0.3421960	
6	800	0.5922206	0.3358904	
6	850	0.5972707	0.3429697	
6	900	0.5923434	0.3373253	
6	950	0.5992015	0.3475415	
6	1000	0.5951394	0.3405009	
7	50	0.6365216	0.4058972	
7	100	0.6258954	0.3898293	
7	150	0.6246196	0.3893335	
7	200	0.6177830	0.3788253	
7	250	0.6164364	0.3778553	
7	300	0.6118015	0.3687223	
7	350	0.6197601	0.3835367	
7	400	0.6174874	0.3801508	
7	450	0.6051990	0.3627360	
7	500	0.6034718	0.3599242	
7	550	0.6061245	0.3643098	
7	600	0.6021996	0.3575742	
7	650	0.5995283	0.3531244	
7	700	0.5983730	0.3516067	
7	750	0.6007783	0.3550354	
7	800	0.5971098	0.3493776	
7	850	0.5981630	0.3512029	
7	900	0.5970156	0.3481119	
7	950	0.5968664	0.3484390	
7	1000	0.5911741	0.3396673	
8	50	0.6534403	0.4335198	
8	100	0.6375952	0.4111208	
8	150	0.6320311	0.4030418	
8	200	0.6228513	0.3890996	
8	250		0.3974176	
8	300		0.3962627	
8	350	0.6231121	0.3852976	
8	400	0.6102759		
8	450	0.6124781	0.3708278	

, 10			Homework o Hotobook	i iciny v
8	500	0.6066181	0.3640990	
8	550	0.6067190	0.3613311	
8	600	0.6092904	0.3659836	
8	650	0.6013533	0.3524035	
8	700	0.5996854	0.3524540	
8	750	0.6022438	0.3560380	
8	800	0.6027493	0.3563419	
8	850	0.6025770	0.3557241	
8	900	0.6081035	0.3633086	
8	950	0.6013511	0.3541077	
8	1000	0.5987864	0.3507780	
9	50	0.6552520	0.4360529	
9	100	0.6374962	0.4085252	
9	150	0.6233265	0.3872269	
9	200	0.6261910	0.3907434	
9	250		0.3785583	
9	300	0.6115006	0.3667249	
9	350		0.3714560	
9	400		0.3640224	
9	450	0.6081677	0.3621760	
9	500		0.3643488	
9	550		0.3567461	
9	600		0.3758666	
9	650		0.3640170	
9	700	0.6078592		
9	750	0.6076819		
9	800	0.6092335		
9	850	0.6007227	0.3516878	
9	900	0.5914021	0.3362290	
9	950	0.5935638	0.3388249	
9	1000	0.5982012	0.3463642	
10	50	0.6412283	0.4125134	
10	100		0.4080833	
10	150	0.6383455	0.4120723	
10	200	0.6338311	0.4028566	
10	250	0.6213635	0.3823179	
10	300	0.6182492	0.3755332	
10	350	0.6090261	0.3606007	
10	400	0.6155867	0.3730632	
10	450	0.6132853	0.3683405	
10	500	0.6103911	0.3656883	
10	550	0.6060714	0.3576591	
10	600	0.6119421	0.3681905	
10	650	0.6128788	0.3718184	
10	700	0.6118537	0.3691957	
10	750	0.6065529	0.3605301	
10	800	0.6086671	0.3624328	
10	850	0.6059708	0.3570052	
10	900	0.6112345	0.3669116	
10	950	0.6097629	0.3647125	
10	1000	0.6084296	0.3633550	
11	50	0.6507124	0.4289611	
11	100	0.6268978	0.3911950	
11	150	0.6198657	0.3784753	

11	200	0.6045664	0.3546480	
11	250	0.6141726	0.3719702	
11	300	0.6133435	0.3696174	
11	350	0.6215217	0.3825874	
11	400	0.6141780	0.3722399	
11	450	0.6141715	0.3711845	
11	500	0.6114185	0.3681869	
11	550	0.6086629	0.3639070	
11	600	0.6076067	0.3613462	
11	650	0.6087158	0.3615347	
11	700	0.6060978	0.3593209	
11	750	0.6080837	0.3635802	
11	800	0.6075284	0.3599694	
11	850	0.6130287	0.3701176	
11	900	0.6141309	0.3716178	
11	950	0.6096757	0.3642440	
11	1000	0.6113484	0.3686408	
12	50	0.6449416	0.4193296	
12	100		0.3920543	
12	150	0.6152220	0.3696926	
12	200	0.6203953	0.3782565	
12	250	0.6169003	0.3757165	
12	300	0.6068208	0.3588728	
12	350	0.6210473	0.3811554	
12	400	0.6196088		
12	450	0.6179647	0.3766453	
12	500	0.6167601		
12	550	0.6195095	0.3758202	
12	600	0.6192294	0.3785228	
12	650	0.6136202	0.3698144	
12	700	0.6152498	0.3723942	
12	750	0.6140733		
12	800	0.6176823		
12	850	0.6138734	0.3698250	
12	900	0.6095580	0.3635545	
12	950	0.6138946	0.3710268	
12	1000	0.6124258	0.3700798	
13	50	0.6551513		
13	100	0.6316593	0.3964733	
13	150	0.6150700	0.3742939	
13	200	0.6193090	0.3813280	
13	250	0.6109922	0.3658247	
13	300	0.6149522	0.3734547	
13	350	0.6081313		
13	400	0.6050551		
13	450	0.6122801		
13	500	0.6071381		
	<pre>getOption("max.p</pre>			
L . Cachea	9-1051-211/ max.b	· =: , Sili =		

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Tuning parameter 'n.minobsinnode' was held constant at a value of 10 Accuracy was used to select the optimal model using the largest value.

The final values used for the model were n.trees = 50, interaction.depth = 14, shrinkage = 0.1 and n.minobsinnode = 10.

Hide

plot(model_gbm_tuned)


```
predict_gbm_tuned <- predict.train(model_gbm_tuned, testSet[,predictors])
results_gbm_tuned <- confusionMatrix(predict_gbm_tuned, testSet[,outcomeName])</pre>
```

8. Using GGplot and gridExtra to plot all variable of importance plots into one single plot. (10 points)

Create ggplots for variable importance of each model, and combine them using grid.arrange(). This looks a bit messy in a notebook - should best be viewed as its own window.

```
rf_imp <- ggplot(data = varImp(object = model_rf))+ggtitle("Random Forest - Variable of Importan
ce")

nn_imp <- ggplot(data = imp)+ggtitle("Neural Net - Variable of Importance")

nb_imp <- ggplot(data = varImp(object = model_nb))+ggtitle("Naive Bayes - Variable of Importance")

gbm_imp <- ggplot(data = varImp(object = model_gbm))+ggtitle("GBM - Variable of Importance")

grid.arrange(rf_imp, nn_imp, nb_imp, gbm_imp, ncol = 2)</pre>
```


9. Which model performs the best? and why do you think this is the case? Can we accurately predict species on this dataset? (10 points)

From comparing the accuracy of models earlier, we see that the neural network performs the best with an accuracy of about 85%. While we would like to have a higher accuracy, this is still significantly better than random guessing. This is decent considering our training set has only 83 observations. Also, because our test set has only 27 observations, the accuracy can only be measured in multiples of 1/27. Thus the other models all have an accuracy of .815.

10. Graduate Student questions:

a. Using feature selection with rfe in caret and the repeatedcv method: Find the top 3 predictors and build the same models as in 6 and 8 with the same parameters. (20 points)

Recursive feature selection

Outer resampling method: Cross-Validated (10 fold, repeated 3 times)

Resampling performance over subset size:

	Variables	Accuracy	Карра	AccuracySD	KappaSD	Selected
	<s3: asls=""></s3:>	<s3: asls=""></s3:>	<s3: asis=""></s3:>	<s3: asis=""></s3:>	<s3: asls=""></s3:>	<s3: asls=""></s3:>
1	3	0.7614	0.5883	0.1405	0.2391	*
2	6	0.7259	0.5339	0.1702	0.2772	
3	9	0.7310	0.5422	0.1547	0.2590	
4	12	0.7018	0.4838	0.1568	0.2634	
5	14	0.7017	0.4803	0.1427	0.2457	
5 rows						

```
The top 3 variables (out of 3):
CN, d13C, d15N
```

Our best variables are CN, d13C, and d15N. Now we restrict to only those features and train the appropriate models.

Hide

note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .

```
model_nn_rfe <- train(x = trainSet[,predictors],</pre>
                       y = trainSet[,outcomeName],
                       method = 'nnet',
                       importance = T,
                       trace = F)
model_nb_rfe <- train(x = trainSet[,predictors],</pre>
                       y = trainSet[,outcomeName],
                       method = 'naive bayes')
model_gbm_rfe <- train(x = trainSet[,predictors],</pre>
                        y = trainSet[,outcomeName],
                        method = 'gbm',
                         verbose = F)
model_gbm_tuned_rfe <- train(x = trainSet[,predictors],</pre>
                               y = trainSet[,outcomeName],
                               method = 'gbm',
                               tuneLength = 20,
                               verbose = F)
```

b. Create a dataframe that compares the non-feature selected models (the same as on 7) and add the best BEST performing models of each (randomforest, neural net, naive bayes and gbm) and display the data frame that has the following columns: ExperimentName, accuracy, kappa. Sort the data frame by accuracy. (40 points)

```
results_gbm_rfe <- confusionMatrix(predict.train(model_gbm_rfe,</pre>
                                              testSet[,predictors]),
                                    testSet[,outcomeName])
results gbm tuned rfe <- confusionMatrix(predict.train(model gbm tuned rfe,
                                              testSet[,predictors]),
                                          testSet[,outcomeName])
results_nn_rfe <- confusionMatrix(predict.train(model_nn_rfe,</pre>
                                              testSet[,predictors]),
                                   testSet[,outcomeName])
results_nb_rfe <- confusionMatrix(predict.train(model_nb_rfe,</pre>
                                              testSet[,predictors]),
                                   testSet[,outcomeName])
results rf rfe <- confusionMatrix(predict.train(model rf rfe,
                                              testSet[,predictors]),
                                   testSet[,outcomeName])
results all rfe <- as.data.frame(rbind(results gbm rfe$overall[c("Accuracy","Kappa")],
                     results_gbm_tuned_rfe$overall[c("Accuracy", "Kappa")],
                     results nn rfe$overall[c("Accuracy", "Kappa")],
                     results rf rfe$overall[c("Accuracy", "Kappa")],
                     results_nb_rfe$overall[c("Accuracy", "Kappa")]))
results all rfe <- cbind(c("GBM - RFE",
                        "GBM - RFE - Tuned",
                        "Neural Net - RFE",
                        "Random Forest - RFE",
                        "Naive Bayes - RFE"),
                     results all rfe)
colnames(results all rfe)[1] <- "ExperimentName"</pre>
results all <- rbind(results all, results all rfe)
results all <- results all[order(results all$Accuracy, decreasing = TRUE),]
print(results all)
```

ExperimentName	Accuracy	Карра
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>
1 Neural Net	0.8518519	0.7631579
2 Naive Bayes	0.8148148	0.6830986
3 Random Forest	0.8148148	0.6707317
4 GBM	0.8148148	0.6823529
9 Naive Bayes - RFE	0.8148148	0.6770335
7 Neural Net - RFE	0.7407407	0.5563380
8 Random Forest - RFE	0.7037037	0.5102041
5 GBM - RFE	0.6666667	0.4361949
6 GBM - RFE - Tuned	0.6296296	0.4013304
9 rows		

c. Which model performs the best? and why do you think this is the case? Can we accurately predict species on this dataset? (10 points)

Once again, the neural network performs the best when comparing predictions to the test data. Using RFE actually reduced the performance of all of our models, which could be because of our low sample size. My answer holds from before - 85% accuracy is pretty good and would allow for fairly accurate prediction.