

Zagadnienia

- Modele procesu Inżynierii Oprogramowania
- Czynności procesu
- Modyfikacje oprogramowania
- The Rational Unified Process
 - Przykład nowoczesnego procesu Inżynierii Oprogramowania

Proces Inżynierii Oprogramowania

- Ustrukturalizowany zbiór czynności wymaganych do opracowania oprogramowania.
- W użyciu jest wiele różnych procesów, ale wszystkie uwzględniają czynności:
 - Specyfikacja definiowanie tego co system powinien realizować;
 - Projektowanie i implementacja definiowanie organizacji systemu oraz implementacja systemu;
 - Zatwierdzanie sprawdzanie czy system wykonuje to czego oczekuje klient;
 - Ewolucja modyfikowanie systemu w odpowiedzi na zmiany potrzeb klienta.
- Model procesu Inżynierii Oprogramowania
 - abstrakcyjna reprezentacja procesu.
 - Opis procesu z określonej perspektywy.

3

Reprezentacja procesu Inżynierii Oprogramowania

- Kiedy opisujemy proces to zazwyczaj myślimy o czynnościach tego procesu (np. specyfikowanie modelu danych, projektowanie interfejsu użytkownika) oraz porządku w jakim czynności te powinny być wykonywane.
- Opis procesu może również zawierać:
 - 1. Produkty stanowiące rezultaty czynności procesu;
 - Role odzwierciedlające odpowiedzialności osób zaangażowanych w procesie;
 - Warunki wstępne i końcowe które muszą być prawdziwe, odpowiednio przed i po wykonaniu czynności procesu lub wytworzeniu produktu.

Procesy sterowanie planem i procesy zwinne

- Procesy sterowane planem to procesy, gdzie wszystkie czynności procesu są zaplanowane.
 Pomiary postępów prac odnoszone są do tego planu.
- W procesach zwinnych planowanie jest przyrostowe, co powoduje, że łatwiej jest zmienić proces w odpowiedzi na zmianę wymagań.
- W praktyce większość procesów zawiera elementy obu podejść
- Nie ma dobrych lub złych procesów Inżynierii Oprogramowania.

5

Ulepszanie procesów

- Dobre praktyki
- Metody Inżynierii Oprogramowania
- Standaryzacja procesu
 - Redukcja czasu szkolenia
 - Automatyzacja wsparcia procesu

Modele procesu Inżynierii Oprogramowania

- Model kaskadowy (The waterfall model)
 - Model starowany planem. Oddzielne fazy specyfikacji i rozwoju.
- 2. Realizacja przyrostowa (Incremental development)
 - Specyfikacja, wytwarzanie i zatwierdzanie są przeplatane. Może być sterowana planem lub zwinna.
- Inżynieria zorientowana na wielokrotne użycie (Reuse-oriented software engineering)
 - System jest składany z istniejących komponentów. Może być sterowana planem lub zwinna.
- W praktyce większość systemów wytwarza się z wykorzystaniem procesów, które wykorzystują elementy wszystkich tych modeli.

7

Model kaskadowy

Fazy modelu kaskadowego

- Model kaskadowy składa się z wydzielonych faz:
 - Analiza i definiowanie wymagań
 - Projektowanie systemu i oprogramowani
 - Implementacja i testy jednostkowe
 - Integracja i testy systemowe
 - Eksploatacja i utrzymanie
- Podstawową wadą modelu jest trudność w adaptacji zmian pojawiających się w czasie realizacji procesu. Z zasady, faza musi być zakończona zanim rozpocznie się kolejna.

9

Model kaskadowy - dyskusja

- Brak elastyczności poprzez podział projektu na oddzielne etapy powoduje trudności w sytuacji, gdy pojawią zmiany wymagań.
 - Z tego powodu model ten jest odpowiedni w przypadkach gdy wymagania są dobrze zrozumiane a zmiany w trakcie procesu są mocno ograniczone.
 - Niewiele systemów biznesowych posiada stabilne wymagania.
- Model kaskadowy jest wykorzystywany dla realizacji dużych systemów, gdzie prace odbywają się w kilku miejscach.
 - Sterowana planem natura modelu kaskadowego pomaga w koordynacji prac.

Realizacja przyrostowa

11

Zalety realizacji przyrostowej

- Redukcja kosztów adaptacji zmian w wymaganiach.
- Zakres analizy i dokumentacji, która musi zostać powtórnie wykonana jest zdecydowanie mniejsza w porównaniu z modelem kaskadowym.
- Łatwiej jest uzyskać informację zwrotną na temat dotychczas wykonanych prac.
 - Klienci mogą wypowiedzieć się na temat oprogramowania na podstawie prezentacji dotychczas zrealizowanego zakresu implementacji.
- Możliwe jest szybsze dostarczenie i wdrożenie użytecznego oprogramowania.
 - Klienci mogą wykorzystać oprogramowanie wcześnie w stosunku do tego co oferuje model kaskadowy.

Problemy realizacji przyrostowej

- Niejawność procesu
 - Klasyczne zarządzanie projektem wymaga regularnych rezultatów, pozwalających na pomiar postępów. Jeżeli system jest wytwarzany szybko nie opłaca się produkować dokumentacji odzwierciedlającej każdą wersję systemu.
- Struktura systemu ma tendencję do degradacji wraz z dodawaniem nowych przyrostów.
 - Jeżeli nie zostaną poświęcone dodatkowe środki oraz czas na restrukturyzację oprogramowania, regularne zmiany ostatecznie doprowadzą do zniszczenia struktury oprogramowania. Wprowadzanie kolejnych zmian stanie coraz bardziej kosztowne i skomplikowane.

13

Inżynieria Oprogramowania zorientowana na wielokrotne użycie

- Opiera się na systematycznym podejściu do wykorzystania istniejącego oprogramowania. System integrowany jest z istniejących komponentów lub systemów COTS (Commercial-off-the-shelf).
- Fazy procesu:
 - Analiza komponentów;
 - Modyfikacja wymagań;
 - Projektowanie z wielokrotnym użyciem;
 - Rozwój i integracja.
- Wielokrotne użycie jest obecnie standardowym podejściem do budowania wielu typów systemów biznesowych.

Inżynieria Oprogramowania zorientowana na wielokrotne użycie

15

Typy komponentów oprogramowania

- Usługi internetowe (ang. web services) wytwarzane zgodnie ze standardami usług, wywoływane zdalnie.
- Kolekcje obiektów wytwarzane w postaci pakietów, które integrowane są w ramach implementacji modelu komponentowego (frameworka) np.: .NET, J2EE.
- Autonomiczne systemy oprogramowania (COTS) konfigurowane dla działania w określonym środowisku.

Aktywności procesu

- Rzeczywiste procesy IO to sekwencje przeplatających się zespołowych czynności technicznych i zarządczych. Ich ogólnym celem jest wyspecyfikowanie, zaprojektowanie, implementacja oraz przetestowanie systemu oprogramowania.
- Cztery podstawowe aktywności procesu:
 - Specyfikacja, rozwój, zatwierdzanie (walidacja), ewolucja
 - Są organizowane różnie, w zależności od procesu (sekwencyjnie, przeplatające się).

17

Specyfikacja oprogramowania

Projektowanie i implementacja oprogramowania

- Proces, którego celem jest przekształcenie specyfikacji w działający system
- Projektowanie
 - Określenie struktury oprogramowania, która realizuje specyfikacje.
- Implementacja
 - Translacja struktury na wykonywalny program
- Projektowanie i implementacja są ze sobą mocno powiązane i często się przeplatają.

20

Ogólny model procesu projektowania oprogramowania

Zatwierdzanie (walidacja) oprogramowania

- Celem weryfikacji i zatwierdzania jest wykazanie, że system jest zgodny ze specyfikacją i spełnia wymagania klienta systemu.
- Obejmuje procesy kontroli i przeglądów oraz testowania systemu.
- Testowanie systemu to uruchomienie go i wykonanie przypadków testowych, które wywodzą się ze specyfikacji rzeczywistych danych, które będą przetwarzane przez system.
- Testowanie jest najczęściej wykorzystywaną techniką w ramach czynności weryfikacji i zatwierdzania.

23

Etapy testowania

Fazy testowania w procesie IO sterowanym planem.

26

Ewolucja oprogramowania

- Oprogramowanie musi być elastyczne bo zmiany są nieuniknione
 - Zmieniają się uwarunkowania biznesowe -> zmieniają się wymagania -> ewoluuje system
- Pomimo pierwotnego wyróżnienia procesu budowy i ewolucji systemu granica ta dzisiaj coraz bardziej się zaciera (coraz mniej systemów jest zupełnie nowych).

Podsumowanie

- Procesy IO to czynności obejmujące produkcję oprogramowania. Modele procesów IO to abstrakcyjne ich reprezentacje.
- Ogólne modele procesu opisuję podstawową organizację procesu IO. Przykładami są: model kaskadowy, realizacja przyrostowa oraz wytwarzanie zorientowane na powtórne użycie.

Podsumowanie

 Inżynieria wymagań to proces rozwoju specyfikacji oprogramowania.

 Projektowanie i implementacja związane są z transformacją specyfikacji wymagań w wykonywalne

oprogramowanie.

 Zatwierdzanie oprogramowania to proces kontroli, której celem jest sprawdzenie czy system jest zgodny ze specyfikacją i czy spełnia rzeczywiste potrzeby użytkowników systemu.

 Ewolucja oprogramowania to dostosowywanie istniejącego oprogramowania do nowych wymogów. Aby pozostać użyteczne – oprogramowanie musi ewoluować.

Radzenie sobie ze zmianą

- Zmiany są nieuniknione we wszystkich dużych projektach oprogramowania.
 - Zmiany biznesowe powoduję powstawianie nowych i zmianę istniejących wymagań
 - Owe technologie dają możliwość udoskonalania implementacji
 - Zmieniające się platformy wymuszają zmiany w aplikacjach
- Zmiany prowadzą do ponownego wykonania pewnych prac (np. ponowna analiza istniejących wymagań) oraz zaimplementowania nowych funkcjonalności. Wszystko to składa się na koszty zmian.

32

Redukcja kosztów modyfikacji

- Unikanie zmian proces IO może obejmować działania, których celem jest przewidzenie ewentualnych zmian zanim spowodują one potrzebę znaczących przeróbek.
 - Na przykład można opracować prototyp systemu w celu zaprezentowania klientom kluczowych cech systemu.
- Tolerowanie zmian proces IO jest skonstruowany w taki sposób aby zmiany mogły być wprowadzone przy relatywnie niskim koszcie realizacji.
 - Takie podejście wymaga zazwyczaj jakiejś formy wytwarzania przyrostowego - iteracyjności. Proponowane zmiany mogą być wprowadzanie w ramach przyrostów, które nie zostały jeszcze zrealizowane. Jeżeli jest to niemożliwe wówczas zmiana może być uwzględniona poprzez modyfikację pojedynczego przyrostu (małego fragmentu systemu).

Prototypowanie

- Prototyp to początkowa wersja systemu, której celem jest zademonstrowanie jego koncepcji oraz wypróbowanie wariantów projektowych.
- Prototyp może być wykorzystany w:
 - Procesie inżynierii wymagań jako pomoc w pozyskiwaniu oraz zatwierdzaniu wymagań
 - Procesie projektowym w celu rozpatrzenia możliwych rozwiązań oraz rozwoju projektu interfejsu użytkownika.

34

Model procesu rozwoju prototypu

Rozwój prototypu

- Może wykorzystywać dedykowane języki i narzędzia
- Jest z założenia niekompletny
 - Prototyp powinien koncentrować się na nie do końca zrozumianych obszarach produktu,
 - Prototyp może pomijać kontrolę błędów.
 - Kwestie niezawodności czy bezpieczeństwa nie są zazwyczaj brane pod uwagę.

37

Prototyp a dalszy rozwój systemu

- Prototypy powinny być porzucane po opracowaniu ponieważ nie stanowią dobrej bazy do produkcji systemu:
 - Może być niemożliwe dostrojenie prototypu do spełnienia wymagań niefunkcjonalnych;
 - Prototypu są nieudokumentowane;
 - Z powodu szybkich zmian prototyp ma zazwyczaj mocno zdegradowaną strukturę;
 - Podczas produkcji prototypu omija się standardy jakości, które wykorzystuje organizacja.

Dostarczanie przyrostowe

- Zamiast dostarczać system w jednym kroku, rozwój i dostawy podzielone są na przyrosty. Każdy przyrost dostarcza część wymaganej funkcjonalności.
- Wymagania użytkowników podlegają priorytetyzacji te, którym przypisano najwyższe priorytety włączane są do wczesnych przyrostów.
- W momencie rozpoczęcia realizacji przyrostu (iteracji)

 wybrane wymagania są zamrażane. Natomiast
 wymagania przeznaczone do kolejnych przyrostów
 mogą cały czas podlegać ewolucji.

39

Dostarczanie przyrostowe

Realizacja przyrostowa a dostarczanie przyrostowe

- Realizacja przyrostowa
 - Iteracyjne Budowanie systemu (przyrosty). Ocena każdego przyrostu przed przejściem do kolejnego etapu.
 - Podejście wykorzystywane w tzw. metodach zwinnych (agile).
 - Ocena wykonywana przez pełnomocnika użytkownika/klienta.
- Dostarczanie przyrostowe
 - Iteracyjne wdrażanie systemu dostarczenie przyrostu do wykorzystania przez użytkowników.
 - Bardziej realistyczna ocena bazująca na praktycznym wykorzystaniu oprogramowania

41

Zalety dostarczania przyrostowego

- Każdy przyrost wprowadza elementy wartościowe dla klienta – wybrana funkcjonalność jest dostarczana wcześniej.
- Wczesne przyrosty działają jak prototypu pomagają pozyskać wymagania dla kolejnych etapów.
- Zmniejszenie ryzyka porażki projektu.
- Usługi systemu o wyższym priorytecie są dłużej testowane.

Problemy dostarczania przyrostowego

- Większość systemów wymaga zestawu podstawowych funkcjonalności, które są wykorzystywane przez pozostałe części systemu.
 - Ponieważ wymagania nie są definiowane szczegółowo do momentu rozpoczęcia przyrostu, który ma je zrealizować, trudno jest dokonać identyfikacji wspólnych udogodnień, które będą wykorzystywane we wszystkich przyrostach..
- Istotą procesu iteracyjnego jest to, że specyfikacja jest opracowywana w połączeniu z oprogramowaniem.
 - W wielu organizacjach, pełna specyfikacja systemu jest częścią umowy dotyczącej jego rozwoju.

43

The Rational Unified Process

- Nowoczesny model procesu wywodzący się z procesów wykorzystujących język UML
- Łączy w sobie elementy 3 generycznych procesów (kaskadowy, realizacja przyrostowa i zorientowanie na wielokrotne użycie).
- Opisywany z trzech perspektyw
 - Dynamicznej fazy w funkcji czasu
 - Statycznej czynności procesu (procesy pracy ang. workflow)
 - Pragmatycznej sugestie wskazówki, dobre praktyki, narzędzia

Fazy w RUP

- Rozpoczęcie (ang. Inception)
 - Ustalenie celu biznesowego realizacji systemu.
- Opracowanie (ang. Elaboration)
 - Ustalenie planu pracy, zrozumienie dziedziny problemu oraz opracowanie architektury systemu.
- Konstrukcja (ang. Construction)
 - budowa systemu projektowanie, kodowanie, testowanie.
- Przekazanie (ang. Transition)
 - Wdrożenie w środowisku operacyjnym udostępnienie systemu użytkownikom końcowym.

49

Iteracje w procesie RUP

Perspektywa statyczna w RUP – procesy pracy (1 z 2)

Proces pracy	Opis
Modelowanie biznesowe (Business modelling)	Procesy biznesowe modelowane są za pomocą biznesowych przypadków użycia
Wymagania (Requirements)	Aktorzy będący w interakcji z systemem oraz przypadki użycia modelujące wymagania dla systemu.
Analiza i projektowanie (Analysis and design)	Model projektowy budowany jest z wykorzystaniem modeli architektonicznych, modeli komponentowych, modeli obiektowych oraz modeli sekwencji.
Implementacja (Implementation)	Komponenty systemu są implementowane i reprezentowane w postaci podsystemów. Wykorzystuje się możliwości automatycznej generacji kodu w celu przyspieszenia procesu.

52

Perspektywa statyczna w RUP – procesy pracy (2 z 2)

Proces pracy	Opis
Testowanie (Testing)	Testowanie jest procesem iteracyjnym realizowanym r powiązaniu z implementacją. Po zakończeniu implementacji wykonywane są testy systemowe.
Wdrożenie (Deployment)	Tworzone jest wydanie systemu, które jest dystrybuowane do użytkowników.
Zarządzanie konfiguracją i zarządzanie zmianą (Configuration and change management)	Proces wspierający - zarządzanie zmianami w systemie
Zarządzanie projektem (Project management)	Proces wspierający -zarządzanie rozwojem systemu
Środowisko (Environment)	Proces pracy związany z zapewnianiem dostępności odpowiedniego zestawu narzędzi CASE.

Dobre praktyki w RUP

- Buduj przyrostowo
- Zarządzaj wymaganiami
- Wykorzystuj architekturę komponentową
- Modeluj wizualnie
- Stale weryfikuj jakość
- Zarządzaj zmianami

54

Podsumowanie

- Proces musi obejmować czynności umożliwiające radzenie sobie ze zmianami. Przykładem takiej czynności jest etap prototypowania pozwalający na zmniejszenie ryzyka błędnych decyzji dotyczących wymagań i projektu systemu.
- Proces może być tak skonstruowany aby umożliwiać rozwój oraz dostarczenie przyrostowe. Dzięki iteracyjności zmiany mogą być wprowadzane przy minimalizacji ryzyka naruszenia całości systemu.
- Przykładem nowoczesnego generycznego modelu procesu IO jest Rational Unified Process. Proces ten zorganizowany jest w fazy (rozpoczęcie, opracowanie, konstrukcja, przekazanie) odseparowane od konkretnych czynności (wymagania, analiza i projektowanie,...).