无人机控制接口调试实验

1.	总体说明	月	1
	1.1.	文件目录	1
	1.2.	预备知识	1
	1.3.	关键知识点	1
2.	接口文件	牛介绍	1
3.	关键代码	马介绍	1
4.	相关资料	24	3

1. 总体说明

1.1. 文件目录

例程目录: [安装目录]\6.RflySimExtCtrl\0.ApiExps\e1 PX4MavCtrlAPITest

文件夹/文件名称	说明
Readme.pdf	uORB 消息读取与写入实验步骤
PX4MavCtrlAPITest.bat	启动仿真配置文件
PX4MavCtrlAPITest.py	实现功能主文件

1.2. 预备知识

MAVLink (Micro Air Vehicle Link) 是一种用于小型无人载具的通信协议,首次发布于 2009 年。该协议主要用于地面站 (Ground Control Station, GCS) 与无人载具 (如无人固定翼飞行器、无人旋翼飞行器、无人车辆等) 之间的通信,同时也用于载具内部子系统的内部通信。MAVLink 以消息库的形式定义了参数传输的规则,支持多种无人载具。

MAVLink 协议的核心是由一系列消息包 (Message Packet) 组成,所有消息包具有通用的消息包结构,同时每个消息包又具有各自特殊的负载信息 (Payload) 结构。消息包结构封装的信息用于发送消息、接收消息、识别消息种类,而负载信息则用于描述消息所要传达的具体内容。

1.3. 关键知识点

- ▶ 打开 MAVLink 以监控 CopterSim 数据并实时更新。
- ▶ 发送指令让飞控中初始化为 Offboard 模式,并在 Python 中开始发送数据循环。
- ▶ 一直发送控制指令给飞控,让飞控解锁进行相应的控制。
- ▶ 发送指令让飞控退出 Offboard 模式,并且停止监听 MAVLink 数据。

2. 接口文件介绍

"PX4MavCtrlV4.py"是就用 mavlink 的通信接口,全平台(Windows 和 Linux, Linux 系统需安装 Python3+pymavlink+OpenCV4等组件)均可用,提供接口控制 RflySim3D 程序,以及接口获取信息并控制飞控(软件在环或硬件在环)。

3. 关键代码介绍

新建 MAVLink 通信实例,UDP 发送端口(CopterSim 的接收端口)为 20100。

mav = PX4MavCtrl.PX4MavCtrler(1)

sendUE4Cmd:RflySim3D API 修改场景显示样式。

ue.sendUE4Cmd (cmd, windowID=-1), 其中 cmd 是命令字符串, windowID 是接收到的窗口号(假设同时打开多个 RflySim3D 窗口), windowID=-1 表示发送到所有窗口。

RflyChangeMapbyName 命令意味着切换地图(场景),下面的字符串是地图名称,这里

会将所有打开的窗口切换到草地地图。

ue.sendUE4Cmd('RflyChangeMapbyName Grasslands') time.sleep(2)

向 RflySim3D 发送并生成一个 3D 对象, 其中:车辆 ID 为 CopterID=100。

车辆类型 VehicleType=30 (一名男子); 转子转速=0RPM; 位置坐标 PosM=[2.5,0, -8.0 86]m。

车辆姿态角 AngEulerRad=[0,0, math.pi]rad(旋转 180 度以面向车辆),接收窗口号默认窗口 ID=-1 (发送到所有打开的 RflySim3D 程序)。

车辆类型选项:四旋翼机 3 个, 六旋翼机 5/6 个, 人 30 个, 棋盘格 40 个, 汽车 50/51 个, 发光灯 60 个, 飞翼或固定翼飞机 100 个, 正方形目标 150/152 个。

ue.sendUE4Pos(100,30,0,[2.5,0,-8.086],[0,0,math.pi])

向 RflySim3D 发送并生成一个 3D 对象, 其中: 车辆 ID 为 CopterID=101;

车辆类型 VehicleType=2030 是指型号为 30 (一名男子), 型号为 2; 转子转速=0RPM; 位置坐标 PosM=[10.5,0, -8.086]m, xyz 方向上的比例=[10,10,10]次。

ue.sendUE4PosScale(101,2030,0,[10.5,0,-8.086],[0,0,math.pi],[10,10,10])

发送一条消息, 使 CopterID=100 (刚刚创建的角色) 在所有场景中, 这里 style=12 表示一个行走的人。

ue.sendUE4Cmd('RflyChange3DModel 100 12')

RflyChange3DModel 命令后接车辆 ID+所需样式。

```
print('Change to Eric_Walking')
ue.sendUE4Cmd('RflyChange3DModel 100 Eric_Walking')
```

命令 RflyChangeViewKeyCmd 表示模拟在 RflySim3D 中按下的快捷键, 快捷键 B1 表示将焦点切换到 CopterID=1 的对象。

此处设置为发送到窗口0,其他窗口不发送。

```
ue.sendUE4Cmd('RflyChangeViewKeyCmd B 1',0)
time.sleep(0.5)
```

快捷键 V1 表示切换到第一个车载摄像头(前置摄像头)。

```
ue.sendUE4Cmd('RflyChangeViewKeyCmd \overline{V} 1',0) time.sleep(0.5)
```

RflyCameraPosAng x y z 滚转俯仰偏航。

设置相机相对于身体中心的位置, 默认值为 0。

此处将前置摄像头的位置设置为[0.1-0.25 0]。

```
ue.sendUE4Cmd('RflyCameraPosAng 0.1 0 0',0)
time.sleep(0.5)
```

打开 offboard 模式。

mav.initOffboard()

发送所需位置信号,飞到目标点0.0,-1.7位置,偏航角为0。

```
mav.SendPosNED(0, 0, -1.7, 0)
print("Send target Pos")
```

time.sleep(0.5)

发送所需速度信号,向下 0.2m/s, z 轴向下为正。

```
mav.SendVelNED(0, 0, 0.2, 0)
print("Send Velocity Speed")
```

退出 offboard 控制模式

```
print("Send offboard stop")
mav.endOffboard()
time.sleep(1)
```

退出 MAVLink 数据接收模式

```
print("Send Mavlink stop")
mav.stopRun()
time.sleep(1)
```

4. 相关资料

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.四旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [2]. PX4 官网: https://docs.px4.io/main/zh/index.html

附加资源

官方文档: RflySim 官方文档: https://rflysim.com/doc/zh/

社区交流: 加入 RflySim 技术交流群: 951534390

