## Programação paralela

Cálculo de Pi Utilizando API OpenMP



Rafael A. Dalmolin

#### Produto de Wallis

Deduzido em 1655 por John Wallis

$$\prod_{n=1}^{\infty} \left( \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} \right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot \dots = \frac{\pi}{2}$$

### Hardware



- Operating system: Pop!\_OS 21.04 x86\_64
- Processor: Intel® Core™ i5-9300H CPU @ 2.40GHz × 4 Núcleo x 8 threads
- Graphics: NVIDIA GeForce GTX 1650 Mobile
- Memory: 19.4GiB

# Speedup e Eficiência

| Núcleos | Tempo de Execução (s) | Speed-Up | Speed-Up Ideal | Eficiência |
|---------|-----------------------|----------|----------------|------------|
| 1       | 5.859164              | 1,0      | 1              | 1,0        |
| 2       | 4.203203              | 1,4      | 2              | 0,7        |
| 4       | 6.127049              | 1,0      | 4              | 0,2        |
| 6       | 4.976354              | 1,2      | 6              | 0,2        |
| 8       | 3.386887              | 1,7      | 8              | 0,2        |
| 16      | 7.674910              | 0,8      | 16             | 0,0        |



### Demonstração do Código

Linguagem C



### Referências

