assignment06_FoxAndrea

April 25, 2021

Name: Andrea Fox Date: April 21, 2021

Assignment: Week 6 Exercises

0.1 Assignment 6.1

Using section 5.1 in Deep Learning with Python as a guide (listing 5.3 in particular), create

```
[9]: #Load libraries
from keras import layers
from keras import models
from keras.datasets import mnist
from keras.utils import to_categorical
from pathlib import Path
import os
import matplotlib.pyplot as plt
import numpy as np
from keras import losses
from keras import metrics
```

```
[2]: #5.1 Instantiating a small convnet
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

```
[3]: #Looking at the architecture of the convnet model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d (MaxPooling2D)	(None, 13, 13, 32)	0

```
conv2d_1 (Conv2D)
                (None, 11, 11, 64) 18496
    ______
   max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)
   conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
   Total params: 55,744
   Trainable params: 55,744
   Non-trainable params: 0
[4]: #5.2 - Adding a classifier on top of the convnet
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
[5]: #Checking architecture now to see difference
    model.summary()
   Model: "sequential"
               Output Shape
                                  Param #
   Layer (type)
   conv2d (Conv2D)
                       (None, 26, 26, 32)
                                          320
   max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
   conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
   max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)
    _____
   conv2d_2 (Conv2D)
                      (None, 3, 3, 64)
                                         36928
   flatten (Flatten)
                 (None, 576)
   ______
   dense (Dense)
                       (None, 64)
                                          36928
   dense 1 (Dense)
                (None, 10)
                                         650
    ______
   Total params: 93,322
   Trainable params: 93,322
   Non-trainable params: 0
   _____
[21]: #5.3 - Training the convnet on MNIST Images
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    train_images = train_images.reshape((60000, 28, 28, 1))
```

```
train_images = train_images.astype('float32') / 255
     test_images = test_images.reshape((10000, 28, 28, 1))
     test_images = test_images.astype('float32') / 255
     train_labels = to_categorical(train_labels)
     test_labels = to_categorical(test_labels)
     model.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
     history = model.fit(train_images, train_labels, epochs=5, batch_size=64,__
      →validation split=0.1)
    Epoch 1/5
    844/844 [=============] - 14s 15ms/step - loss: 0.0151 -
    accuracy: 0.9955 - val_loss: 0.0156 - val_accuracy: 0.9960
    844/844 [========== ] - 12s 15ms/step - loss: 0.0109 -
    accuracy: 0.9969 - val_loss: 0.0156 - val_accuracy: 0.9957
    844/844 [============= ] - 12s 15ms/step - loss: 0.0082 -
    accuracy: 0.9976 - val_loss: 0.0218 - val_accuracy: 0.9940
    844/844 [=========== ] - 12s 14ms/step - loss: 0.0079 -
    accuracy: 0.9975 - val_loss: 0.0202 - val_accuracy: 0.9958
    Epoch 5/5
    844/844 [========= ] - 12s 14ms/step - loss: 0.0060 -
    accuracy: 0.9982 - val_loss: 0.0256 - val_accuracy: 0.9950
[24]: #Evaluating model on the test data
     test_loss, test_acc = model.evaluate(test_images, test_labels)
     print('Test Accuracy:',test_acc)
     print('Test Loss:', test_loss)
    accuracy: 0.9929
    Test Accuracy: 0.992900013923645
    Test Loss: 0.035402439534664154
[29]: #Create plots
     history_dict = history.history
     acc_values = history_dict['accuracy']
     val_acc_values = history_dict['val_accuracy']
     val loss = history dict['loss']
     val_loss_values = history_dict['val_loss']
```

```
epochs = range(1, len(accuracy) + 1)

#Plot for loss
plt.plot(epochs, val_loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
```

Training and validation loss


```
[28]: #Plot for Accuracy
plt.plot(epochs, acc_values, 'bo', label='Training Accuracy')
plt.plot(epochs, val_acc_values, 'b', label = 'Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
```


0.2 Assignment 6.2

Assignment 6.2.a Using section 5.2 in Deep Learning with Python as a guide, create a ConvNet model that classif

```
from keras import layers
from keras import models
from keras import optimizers
from keras.datasets import cifar10
from matplotlib import pyplot
from keras.utils import to_categorical
from pathlib import Path
import os
import matplotlib.pyplot as plt
import numpy as np
from keras import losses
from keras import metrics
```

```
[39]: #5.5 - Instantiating a small convnet for classification
model2 = models.Sequential()
model2.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, □ →3)))
```

```
model2.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model2.add(layers.MaxPooling2D((2, 2)))
    model2.add(layers.Conv2D(128, (3, 3), activation='relu'))
[40]: #Looking at the architecture of the convnet
    model2.summary()
   Model: "sequential_4"
   Layer (type)
              Output Shape
                                          Param #
    ______
   conv2d_18 (Conv2D)
                       (None, 30, 30, 32)
    _____
   max_pooling2d_15 (MaxPooling (None, 15, 15, 32)
         ______
   conv2d_19 (Conv2D) (None, 13, 13, 64) 18496
   max_pooling2d_16 (MaxPooling (None, 6, 6, 64)
   conv2d 20 (Conv2D) (None, 4, 4, 128) 73856
    _____
   Total params: 93,248
   Trainable params: 93,248
   Non-trainable params: 0
[43]: #Add classifier to convnet
    model2.add(layers.Flatten())
    model2.add(layers.Dense(512, activation='relu'))
    model2.add(layers.Dense(10, activation='softmax'))
[44]: #Second look at architecture to see difference
    model2.summary()
   Model: "sequential_4"
   Layer (type) Output Shape
                                    Param #
    ------
   conv2d_18 (Conv2D) (None, 30, 30, 32) 896
   max_pooling2d_15 (MaxPooling (None, 15, 15, 32)
   conv2d_19 (Conv2D)
                   (None, 13, 13, 64)
                                          18496
   max_pooling2d_16 (MaxPooling (None, 6, 6, 64)
```

model2.add(layers.MaxPooling2D((2, 2)))

```
_____
   flatten_4 (Flatten)
                        (None, 2048)
        -----
   dense 8 (Dense)
                        (None, 512)
                                           1049088
    _____
   dense 9 (Dense)
                  (None, 10)
                                            5130
    ______
   Total params: 1,147,466
   Trainable params: 1,147,466
   Non-trainable params: 0
[45]: #Training the convnet on cifar10 Images
    (train_images2, train_labels2), (test_images2, test_labels2) = cifar10.
    →load_data()
    #Found this on general chat from Sam Loyd
    train images2 = train images2.reshape((50000, 32, 32, 3))
    test_images2 = test_images2.reshape((10000, 32, 32, 3))
    train_labels2 = to_categorical(train_labels2)
    test_labels2 = to_categorical(test_labels2)
[46]: #5.6 - configuring the model for training. Also worked with Anna Harvey on this
    \rightarrowportion
    model2.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
    history2 = model2.fit(train_images2, train_labels2, epochs=20, batch_size=64,__
     →validation_data=(test_images2, test_labels2))
   Epoch 1/20
   accuracy: 0.2415 - val_loss: 1.5796 - val_accuracy: 0.4406
   Epoch 2/20
   accuracy: 0.5381 - val_loss: 1.4188 - val_accuracy: 0.5440
   Epoch 3/20
   782/782 [============= ] - 25s 32ms/step - loss: 1.1501 -
   accuracy: 0.6117 - val_loss: 1.2844 - val_accuracy: 0.5851
   Epoch 4/20
   accuracy: 0.6366 - val_loss: 1.4950 - val_accuracy: 0.6158
   Epoch 5/20
   782/782 [============= ] - 24s 31ms/step - loss: 1.0598 -
   accuracy: 0.6515 - val_loss: 1.2030 - val_accuracy: 0.5845
   Epoch 6/20
```

conv2d_20 (Conv2D) (None, 4, 4, 128) 73856

```
Epoch 7/20
   accuracy: 0.6719 - val_loss: 1.3406 - val_accuracy: 0.6001
   Epoch 8/20
   accuracy: 0.6737 - val_loss: 1.2869 - val_accuracy: 0.5822
   Epoch 9/20
   782/782 [============= ] - 24s 30ms/step - loss: 1.0139 -
   accuracy: 0.6690 - val_loss: 1.4236 - val_accuracy: 0.5944
   Epoch 10/20
   accuracy: 0.6712 - val_loss: 2.6873 - val_accuracy: 0.4206
   accuracy: 0.6694 - val_loss: 1.7243 - val_accuracy: 0.5925
   Epoch 12/20
   accuracy: 0.6720 - val_loss: 1.5756 - val_accuracy: 0.5621
   Epoch 13/20
   accuracy: 0.6708 - val_loss: 1.4410 - val_accuracy: 0.5844
   Epoch 14/20
   782/782 [============== ] - 23s 29ms/step - loss: 1.0479 -
   accuracy: 0.6645 - val_loss: 1.5604 - val_accuracy: 0.5809
   Epoch 15/20
   782/782 [============ ] - 23s 29ms/step - loss: 1.0521 -
   accuracy: 0.6640 - val_loss: 2.1028 - val_accuracy: 0.5229
   Epoch 16/20
   782/782 [============= ] - 23s 29ms/step - loss: 1.0554 -
   accuracy: 0.6645 - val_loss: 1.9848 - val_accuracy: 0.5034
   Epoch 17/20
   782/782 [============= ] - 22s 29ms/step - loss: 1.0259 -
   accuracy: 0.6728 - val_loss: 1.6156 - val_accuracy: 0.5410
   Epoch 18/20
   782/782 [============= ] - 22s 29ms/step - loss: 1.0733 -
   accuracy: 0.6608 - val_loss: 2.1186 - val_accuracy: 0.4374
   Epoch 19/20
   782/782 [============ ] - 23s 29ms/step - loss: 1.0764 -
   accuracy: 0.6621 - val_loss: 1.3937 - val_accuracy: 0.5986
   Epoch 20/20
   accuracy: 0.6691 - val_loss: 1.2201 - val_accuracy: 0.6252
[72]: #Evaluating model on test data
    test_loss2, test_acc2 = model2.evaluate(test_images2, test_labels2)
```

accuracy: 0.6588 - val_loss: 1.1846 - val_accuracy: 0.6151

```
print('Test Accuracy:',test_acc2)
     print('Test Loss:', test_loss2)
    accuracy: 0.6252
    Test Accuracy: 0.6251999735832214
    Test Loss: 1.2201370000839233
[52]: #Create plots
     history_dict2 = history2.history
     acc_values2 = history_dict2['accuracy']
     val_acc_values2 = history_dict2['val_accuracy']
     val_loss2 = history_dict2['loss']
     val_loss_values2 = history_dict2['val_loss']
     epochs2 = range(1, len(val_loss2) + 1)
     #Plot for loss
     plt.plot(epochs2, val_loss2, 'bo', label='Training loss')
     plt.plot(epochs2, val_loss_values2, 'b', label='Validation loss')
     plt.title('Training and validation loss')
     plt.xlabel('Epochs')
     plt.ylabel('Loss')
     plt.legend()
     plt.show()
```



```
[54]: #Plot for Accuracy
plt.plot(epochs2, acc_values2, 'bo', label='Training Accuracy')
plt.plot(epochs2, val_acc_values2, 'b', label = 'Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()
```


Assignment 6.2.b Using section 5.2 in Deep Learning with Python as a guide, create a ConvNet model that classif

```
[76]: #load libraries
from keras import layers
from keras import models
from keras import optimizers
from keras.datasets import cifar10
from matplotlib import pyplot
from keras.utils import to_categorical
from pathlib import Path
```

```
import os
    import matplotlib.pyplot as plt
    import numpy as np
    from keras import losses
    from keras import metrics
    from keras.preprocessing.image import ImageDataGenerator
[70]: #Instantiating convnet for classification
    model3 = models.Sequential()
    model3.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, __
    →3)))
    model3.add(layers.MaxPooling2D((2, 2)))
    model3.add(layers.Dropout(0.2))
    model3.add(layers.Conv2D(64, (3, 3), activation='relu'))
    model3.add(layers.MaxPooling2D((2, 2)))
    model3.add(layers.Dropout(0.2))
    model3.add(layers.Conv2D(128, (3, 3), activation='relu'))
[71]: #look at architecture
    model3.summary()
    Model: "sequential_13"
    Layer (type)
                        Output Shape
    (None, 30, 30, 32)
    conv2d_36 (Conv2D)
    _____
    max_pooling2d_32 (MaxPooling (None, 15, 15, 32) 0
                    (None, 15, 15, 32)
    dropout_7 (Dropout)
    conv2d_37 (Conv2D) (None, 13, 13, 64) 18496
    max_pooling2d_33 (MaxPooling (None, 6, 6, 64)
    ______
    dropout_8 (Dropout) (None, 6, 6, 64)
    conv2d_38 (Conv2D) (None, 4, 4, 128) 73856
    ______
    Total params: 93,248
    Trainable params: 93,248
    Non-trainable params: 0
    ______
[73]: #Add classifier to convnet
    model3.add(layers.Flatten())
    model3.add(layers.Dense(512, activation='relu'))
```

```
[74]: #See updated architecture
    model3.summary()
    Model: "sequential 13"
     -----
    Layer (type)
                      Output Shape Param #
    ______
    conv2d 36 (Conv2D)
                          (None, 30, 30, 32)
                                              896
    max_pooling2d_32 (MaxPooling (None, 15, 15, 32)
    dropout_7 (Dropout) (None, 15, 15, 32)
    conv2d_37 (Conv2D)
                         (None, 13, 13, 64) 18496
    max_pooling2d_33 (MaxPooling (None, 6, 6, 64) 0
    dropout_8 (Dropout)
                         (None, 6, 6, 64)
    conv2d_38 (Conv2D)
                         (None, 4, 4, 128) 73856
    flatten_5 (Flatten)
                     (None, 2048)
                         (None, 512)
    dense_10 (Dense)
                                             1049088
    dense_11 (Dense) (None, 10) 5130
    ______
    Total params: 1,147,466
    Trainable params: 1,147,466
    Non-trainable params: 0
    _____
[89]: #Training the convnet on cifar10 Images
    (train_images3, train_labels3), (test_images3, test_labels3) = cifar10.
    →load_data()
    #Found this on general chat from Sam Loyd
    train_images3 = train_images3.reshape((50000, 32, 32, 3))
    test_images3 = test_images3.reshape((10000, 32, 32, 3))
    train_labels3 = to_categorical(train_labels3)
    test_labels3 = to_categorical(test_labels3)
[90]: #configuring the model for training. Also worked with Anna Harvey on this.
     \rightarrow portion
```

model3.add(layers.Dense(10, activation='softmax'))

```
model3.compile(optimizer='rmsprop',
                 loss='categorical_crossentropy',
                 metrics=['accuracy'])
     #Got help from Samuel Sears on this portion
     train_datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.
      →1, horizontal_flip = True)
     train_generator = train_datagen.flow(train_images3, train_labels3, batch_size = ___
      →64)
[91]: #Samuel Sears said to use 200 epochs as you started seeing better results
     → around there and the plots were better
     history3 = model3.fit(train generator, epochs = 200, validation data = 11
      Epoch 1/200
    190645433183.1418 - accuracy: 0.1016 - val_loss: 1744569856.0000 - val_accuracy:
    0.1000
    Epoch 2/200
    782/782 [============== ] - 53s 67ms/step - loss: 334387327.2031
    - accuracy: 0.1025 - val_loss: 2.3098 - val_accuracy: 0.1000
    Epoch 3/200
    782/782 [============= ] - 53s 68ms/step - loss: 2.3290 -
    accuracy: 0.1000 - val_loss: 2.3212 - val_accuracy: 0.1000
    Epoch 4/200
    782/782 [============ ] - 53s 68ms/step - loss: 2.3249 -
    accuracy: 0.0989 - val_loss: 2.3313 - val_accuracy: 0.1000
    Epoch 5/200
    782/782 [============ ] - 53s 68ms/step - loss: 2.3226 -
    accuracy: 0.1024 - val_loss: 2.3266 - val_accuracy: 0.1000
    Epoch 6/200
    782/782 [============ ] - 53s 68ms/step - loss: 2.3230 -
    accuracy: 0.0981 - val_loss: 2.3162 - val_accuracy: 0.1000
    Epoch 7/200
    782/782 [============== ] - 53s 67ms/step - loss: 2.3206 -
    accuracy: 0.1042 - val_loss: 2.3193 - val_accuracy: 0.1000
    Epoch 8/200
    782/782 [============= - 50s 63ms/step - loss: 2.3214 -
    accuracy: 0.0967 - val_loss: 2.3196 - val_accuracy: 0.1000
    Epoch 9/200
    782/782 [============ ] - 49s 63ms/step - loss: 2.3209 -
    accuracy: 0.0994 - val_loss: 2.3194 - val_accuracy: 0.1000
    Epoch 10/200
    782/782 [============= ] - 49s 63ms/step - loss: 2.3192 -
    accuracy: 0.1013 - val_loss: 2.3192 - val_accuracy: 0.1000
    Epoch 11/200
```

782/782 [=============] - 50s 64ms/step - loss: 2.3191 -

```
accuracy: 0.0999 - val_loss: 2.3132 - val_accuracy: 0.1000
Epoch 12/200
782/782 [============= ] - 50s 63ms/step - loss: 2.3191 -
accuracy: 0.0988 - val_loss: 2.3344 - val_accuracy: 0.1000
Epoch 13/200
accuracy: 0.0996 - val_loss: 2.3118 - val_accuracy: 0.1000
Epoch 14/200
782/782 [============= ] - 49s 63ms/step - loss: 2.3174 -
accuracy: 0.0966 - val_loss: 2.3418 - val_accuracy: 0.1000
Epoch 15/200
782/782 [============== ] - 49s 63ms/step - loss: 2.3156 -
accuracy: 0.1055 - val_loss: 2.3137 - val_accuracy: 0.1000
Epoch 16/200
accuracy: 0.0972 - val_loss: 2.3117 - val_accuracy: 0.1000
Epoch 17/200
782/782 [============= ] - 49s 63ms/step - loss: 2.3152 -
accuracy: 0.1001 - val_loss: 2.3156 - val_accuracy: 0.1000
Epoch 18/200
782/782 [============= ] - 49s 63ms/step - loss: 2.3152 -
accuracy: 0.1013 - val_loss: 2.3172 - val_accuracy: 0.1000
Epoch 19/200
782/782 [============= ] - 50s 64ms/step - loss: 2.3149 -
accuracy: 0.0987 - val_loss: 2.3186 - val_accuracy: 0.1000
Epoch 20/200
782/782 [============= ] - 50s 63ms/step - loss: 2.3137 -
accuracy: 0.0996 - val_loss: 2.3112 - val_accuracy: 0.1000
accuracy: 0.1018 - val_loss: 2.3140 - val_accuracy: 0.1000
Epoch 22/200
782/782 [============ ] - 49s 63ms/step - loss: 2.3134 -
accuracy: 0.0959 - val_loss: 2.3106 - val_accuracy: 0.1000
Epoch 23/200
accuracy: 0.0986 - val loss: 2.3093 - val accuracy: 0.1000
Epoch 24/200
accuracy: 0.0984 - val_loss: 2.3052 - val_accuracy: 0.1000
Epoch 25/200
782/782 [============ ] - 49s 63ms/step - loss: 2.3110 -
accuracy: 0.1023 - val_loss: 2.3121 - val_accuracy: 0.1000
Epoch 26/200
782/782 [============= ] - 49s 63ms/step - loss: 2.3114 -
accuracy: 0.1009 - val_loss: 2.3129 - val_accuracy: 0.1000
Epoch 27/200
782/782 [============ ] - 50s 64ms/step - loss: 2.3122 -
```

```
accuracy: 0.1007 - val_loss: 2.3058 - val_accuracy: 0.1000
Epoch 28/200
782/782 [============= ] - 50s 64ms/step - loss: 2.3102 -
accuracy: 0.0985 - val_loss: 2.3103 - val_accuracy: 0.1000
Epoch 29/200
accuracy: 0.0998 - val_loss: 2.3067 - val_accuracy: 0.1000
Epoch 30/200
782/782 [============= ] - 45s 58ms/step - loss: 2.3091 -
accuracy: 0.0993 - val_loss: 2.3076 - val_accuracy: 0.1000
Epoch 31/200
accuracy: 0.1009 - val_loss: 2.3070 - val_accuracy: 0.1000
Epoch 32/200
accuracy: 0.0991 - val_loss: 2.3055 - val_accuracy: 0.1000
Epoch 33/200
782/782 [============ ] - 48s 61ms/step - loss: 2.3067 -
accuracy: 0.1003 - val_loss: 2.3060 - val_accuracy: 0.1000
Epoch 34/200
782/782 [============= ] - 47s 61ms/step - loss: 2.3065 -
accuracy: 0.1025 - val_loss: 2.3049 - val_accuracy: 0.1000
Epoch 35/200
782/782 [============= ] - 47s 61ms/step - loss: 2.3065 -
accuracy: 0.1016 - val_loss: 2.3072 - val_accuracy: 0.1000
Epoch 36/200
782/782 [============ ] - 48s 61ms/step - loss: 2.3061 -
accuracy: 0.1007 - val_loss: 2.3056 - val_accuracy: 0.1000
accuracy: 0.0999 - val_loss: 2.3057 - val_accuracy: 0.1000
Epoch 38/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3067 -
accuracy: 0.0965 - val_loss: 2.3039 - val_accuracy: 0.1000
Epoch 39/200
accuracy: 0.1009 - val loss: 2.3040 - val accuracy: 0.1000
Epoch 40/200
accuracy: 0.0990 - val_loss: 2.3060 - val_accuracy: 0.1000
Epoch 41/200
accuracy: 0.0985 - val_loss: 2.3056 - val_accuracy: 0.1000
Epoch 42/200
782/782 [============= ] - 48s 62ms/step - loss: 2.3045 -
accuracy: 0.1021 - val_loss: 2.3033 - val_accuracy: 0.1000
Epoch 43/200
782/782 [============ ] - 48s 61ms/step - loss: 2.3044 -
```

```
accuracy: 0.1001 - val_loss: 2.3044 - val_accuracy: 0.1000
Epoch 44/200
782/782 [============= ] - 47s 60ms/step - loss: 2.3043 -
accuracy: 0.0971 - val_loss: 2.3029 - val_accuracy: 0.1000
Epoch 45/200
accuracy: 0.0978 - val_loss: 2.3038 - val_accuracy: 0.1000
Epoch 46/200
782/782 [============= ] - 47s 61ms/step - loss: 2.3045 -
accuracy: 0.0975 - val_loss: 2.3030 - val_accuracy: 0.1000
Epoch 47/200
782/782 [============= ] - 47s 60ms/step - loss: 2.3034 -
accuracy: 0.1002 - val_loss: 2.3030 - val_accuracy: 0.1000
Epoch 48/200
accuracy: 0.0988 - val_loss: 2.3035 - val_accuracy: 0.1000
Epoch 49/200
782/782 [============= ] - 47s 60ms/step - loss: 2.3035 -
accuracy: 0.0988 - val_loss: 2.3029 - val_accuracy: 0.1000
Epoch 50/200
782/782 [============ ] - 47s 61ms/step - loss: 2.3032 -
accuracy: 0.0984 - val_loss: 2.3028 - val_accuracy: 0.1000
Epoch 51/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3029 -
accuracy: 0.1010 - val_loss: 2.3029 - val_accuracy: 0.1000
Epoch 52/200
782/782 [============= ] - 47s 60ms/step - loss: 2.3031 -
accuracy: 0.0991 - val_loss: 2.3027 - val_accuracy: 0.1000
accuracy: 0.0979 - val_loss: 2.3028 - val_accuracy: 0.1000
Epoch 54/200
782/782 [============= ] - 55s 71ms/step - loss: 2.3029 -
accuracy: 0.1000 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 55/200
accuracy: 0.0988 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 56/200
accuracy: 0.0984 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 57/200
accuracy: 0.0977 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 58/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0998 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 59/200
782/782 [============= ] - 55s 71ms/step - loss: 2.3027 -
```

```
accuracy: 0.0979 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 60/200
782/782 [============= ] - 56s 71ms/step - loss: 2.3027 -
accuracy: 0.0986 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 61/200
accuracy: 0.0986 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 62/200
782/782 [============= ] - 56s 71ms/step - loss: 2.3027 -
accuracy: 0.0986 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 63/200
accuracy: 0.0992 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 64/200
accuracy: 0.0981 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 65/200
782/782 [============= ] - 56s 71ms/step - loss: 2.3027 -
accuracy: 0.1000 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 66/200
782/782 [============ ] - 56s 71ms/step - loss: 2.3026 -
accuracy: 0.1020 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 67/200
782/782 [============= ] - 51s 66ms/step - loss: 2.3026 -
accuracy: 0.1041 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 68/200
782/782 [============ ] - 48s 61ms/step - loss: 2.3027 -
accuracy: 0.0967 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.0975 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 70/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3033 -
accuracy: 0.0981 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 71/200
accuracy: 0.0977 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 72/200
accuracy: 0.1000 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 73/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 74/200
782/782 [============= ] - 54s 70ms/step - loss: 2.3027 -
accuracy: 0.1010 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 75/200
782/782 [============= ] - 55s 71ms/step - loss: 2.3032 -
```

```
accuracy: 0.0968 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 76/200
782/782 [============== ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 77/200
accuracy: 0.0986 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 78/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 79/200
782/782 [============== ] - 55s 70ms/step - loss: 2.3031 -
accuracy: 0.0991 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 80/200
accuracy: 0.1026 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 81/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 82/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0956 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 83/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3029 -
accuracy: 0.0991 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 84/200
782/782 [============== ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0966 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.0995 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 86/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3027 -
accuracy: 0.1004 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 87/200
accuracy: 0.0992 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 88/200
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 89/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3026 -
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 90/200
accuracy: 0.1004 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 91/200
782/782 [============ ] - 48s 61ms/step - loss: 2.3028 -
```

```
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 92/200
782/782 [============== ] - 48s 61ms/step - loss: 2.3027 -
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 93/200
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 94/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3027 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 95/200
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 96/200
accuracy: 0.0998 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 97/200
782/782 [============= ] - 52s 67ms/step - loss: 2.3028 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 98/200
accuracy: 0.0970 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 99/200
782/782 [============ ] - 57s 73ms/step - loss: 2.3031 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 100/200
782/782 [============== ] - 56s 72ms/step - loss: 2.3027 -
accuracy: 0.0958 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.1009 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 102/200
782/782 [============= ] - 58s 74ms/step - loss: 2.3027 -
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 103/200
accuracy: 0.0952 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 104/200
accuracy: 0.0986 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 105/200
accuracy: 0.0963 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 106/200
782/782 [============= ] - 64s 82ms/step - loss: 2.3033 -
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 107/200
782/782 [============ ] - 57s 73ms/step - loss: 2.3030 -
```

```
accuracy: 0.0980 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 108/200
782/782 [============= ] - 57s 73ms/step - loss: 2.3029 -
accuracy: 0.0974 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 109/200
accuracy: 0.0988 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 110/200
782/782 [============= ] - 58s 74ms/step - loss: 2.3027 -
accuracy: 0.1001 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 111/200
accuracy: 0.0958 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 112/200
accuracy: 0.0962 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 113/200
782/782 [============= ] - 57s 73ms/step - loss: 2.3088 -
accuracy: 0.0982 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 114/200
782/782 [============= ] - 48s 62ms/step - loss: 2.3027 -
accuracy: 0.0968 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 115/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3029 -
accuracy: 0.0985 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 116/200
782/782 [============= ] - 55s 71ms/step - loss: 2.3027 -
accuracy: 0.0958 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 117/200
accuracy: 0.1006 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 118/200
782/782 [============= ] - 58s 74ms/step - loss: 2.3027 -
accuracy: 0.0987 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 119/200
accuracy: 0.0983 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 120/200
accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 121/200
accuracy: 0.1005 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 122/200
782/782 [============= ] - 57s 72ms/step - loss: 2.3027 -
accuracy: 0.0991 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 123/200
782/782 [============= ] - 49s 62ms/step - loss: 2.3037 -
```

```
accuracy: 0.1019 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 124/200
accuracy: 0.1012 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 125/200
accuracy: 0.1007 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 126/200
782/782 [============= ] - 48s 62ms/step - loss: 2.3027 -
accuracy: 0.1017 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 127/200
accuracy: 0.0960 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 128/200
accuracy: 0.1005 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 129/200
782/782 [============= ] - 57s 72ms/step - loss: 2.3027 -
accuracy: 0.0972 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 130/200
782/782 [============ ] - 57s 73ms/step - loss: 2.3027 -
accuracy: 0.0974 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 131/200
accuracy: 0.0974 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 132/200
accuracy: 0.0990 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.1003 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 134/200
782/782 [============= ] - 58s 74ms/step - loss: 2.3026 -
accuracy: 0.0993 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 135/200
accuracy: 0.1007 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 136/200
accuracy: 0.0972 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 137/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 138/200
782/782 [============= ] - 54s 69ms/step - loss: 2.3027 -
accuracy: 0.0977 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 139/200
782/782 [============= ] - 53s 68ms/step - loss: 2.3027 -
```

```
accuracy: 0.1011 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 140/200
accuracy: 0.1006 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 141/200
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 142/200
782/782 [============= ] - 54s 69ms/step - loss: 2.3027 -
accuracy: 0.0971 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 143/200
accuracy: 0.1009 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 144/200
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 145/200
782/782 [============= ] - 53s 68ms/step - loss: 2.3028 -
accuracy: 0.0974 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 146/200
782/782 [============ ] - 53s 68ms/step - loss: 2.3027 -
accuracy: 0.0994 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 147/200
782/782 [============= ] - 53s 68ms/step - loss: 2.3027 -
accuracy: 0.1008 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 148/200
782/782 [============== ] - 52s 66ms/step - loss: 2.3027 -
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.0949 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 150/200
782/782 [============= ] - 49s 63ms/step - loss: 2.3027 -
accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 151/200
accuracy: 0.0968 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 152/200
accuracy: 0.0977 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 153/200
accuracy: 0.1018 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 154/200
782/782 [============= ] - 48s 61ms/step - loss: 2.3027 -
accuracy: 0.0961 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 155/200
782/782 [============= ] - 46s 59ms/step - loss: 2.3027 -
```

```
accuracy: 0.0969 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 156/200
accuracy: 0.1006 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 157/200
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 158/200
782/782 [============= ] - 54s 69ms/step - loss: 2.3027 -
accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 159/200
accuracy: 0.0992 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 160/200
accuracy: 0.1017 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 161/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 162/200
782/782 [============= ] - 60s 77ms/step - loss: 2.3027 -
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 163/200
782/782 [============= ] - 55s 70ms/step - loss: 2.3027 -
accuracy: 0.0964 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 164/200
782/782 [============= ] - 58s 74ms/step - loss: 2.3050 -
accuracy: 0.0999 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.0978 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 166/200
782/782 [============= ] - 64s 82ms/step - loss: 2.3027 -
accuracy: 0.0993 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 167/200
accuracy: 0.0968 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 168/200
accuracy: 0.0963 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 169/200
782/782 [============= ] - 63s 81ms/step - loss: 2.3027 -
accuracy: 0.1021 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 170/200
782/782 [============ ] - 63s 81ms/step - loss: 2.3034 -
accuracy: 0.0984 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 171/200
782/782 [============= ] - 63s 80ms/step - loss: 2.3027 -
```

```
accuracy: 0.0972 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 172/200
782/782 [============== ] - 63s 80ms/step - loss: 2.3026 -
accuracy: 0.0988 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 173/200
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 174/200
782/782 [============= ] - 62s 79ms/step - loss: 2.3027 -
accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 175/200
accuracy: 0.0993 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 176/200
accuracy: 0.0939 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 177/200
782/782 [============= ] - 63s 80ms/step - loss: 2.3025 -
accuracy: 0.0993 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 178/200
782/782 [============= ] - 62s 79ms/step - loss: 2.3027 -
accuracy: 0.1018 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 179/200
782/782 [============= ] - 62s 80ms/step - loss: 2.3027 -
accuracy: 0.1001 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 180/200
782/782 [============== ] - 63s 81ms/step - loss: 2.3027 -
accuracy: 0.0975 - val_loss: 2.3026 - val_accuracy: 0.1000
accuracy: 0.0952 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 182/200
782/782 [============= ] - 63s 81ms/step - loss: 2.3027 -
accuracy: 0.0996 - val_loss: 2.3027 - val_accuracy: 0.1000
Epoch 183/200
accuracy: 0.0984 - val loss: 2.3026 - val accuracy: 0.1000
Epoch 184/200
accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 185/200
782/782 [============= ] - 63s 81ms/step - loss: 2.3027 -
accuracy: 0.0979 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 186/200
accuracy: 0.0986 - val_loss: 2.3026 - val_accuracy: 0.1000
Epoch 187/200
782/782 [============= ] - 63s 81ms/step - loss: 2.3027 -
```

```
Epoch 188/200
   782/782 [============== ] - 63s 80ms/step - loss: 2.3027 -
   accuracy: 0.1007 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 189/200
   accuracy: 0.1006 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 190/200
   782/782 [============= ] - 63s 80ms/step - loss: 2.3027 -
   accuracy: 0.1009 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 191/200
   accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 192/200
   accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 193/200
   782/782 [============= ] - 62s 80ms/step - loss: 2.3027 -
   accuracy: 0.0988 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 194/200
   782/782 [============= ] - 62s 79ms/step - loss: 2.3027 -
   accuracy: 0.0992 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 195/200
   782/782 [============= ] - 58s 74ms/step - loss: 2.3027 -
   accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 196/200
   782/782 [============ ] - 59s 75ms/step - loss: 2.3026 -
   accuracy: 0.0989 - val_loss: 2.3026 - val_accuracy: 0.1000
   accuracy: 0.0995 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 198/200
   782/782 [============= ] - 59s 75ms/step - loss: 2.3027 -
   accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 199/200
   accuracy: 0.1002 - val_loss: 2.3026 - val_accuracy: 0.1000
   Epoch 200/200
   accuracy: 0.1006 - val_loss: 2.3026 - val_accuracy: 0.1000
[92]: #Evaluating model on test data
    test_loss3, test_acc3 = model3.evaluate(test_images3, test_labels3)
    print('Test Accuracy:',test_acc3)
    print('Test Loss:', test_loss3)
   accuracy: 0.1000
```

accuracy: 0.0996 - val_loss: 2.3026 - val_accuracy: 0.1000

Test Accuracy: 0.10000000149011612 Test Loss: 2.302603006362915

```
[95]: #Create plots
history_dict3 = history3.history
acc_values3 = history_dict3['accuracy']
val_acc_values3 = history_dict3['val_accuracy']
val_loss3 = history_dict2['loss']
val_loss_values3 = history_dict3['val_loss']

epochs3 = range(1, len(val_loss3) + 1)

#Plot for loss
plt.plot(epochs3, val_loss3, 'bo', label='Training loss')
plt.plot(epochs3, val_loss_values3, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()
```

```
Traceback (most recent call last)
<ipython-input-95-e6bce6c06167> in <module>
     10 #Plot for loss
     11 plt.plot(epochs3, val_loss3, 'bo', label='Training loss')
---> 12 plt.plot(epochs3, val_loss_values3, 'b', label='Validation loss')
     13 plt.title('Training and validation loss')
     14 plt.xlabel('Epochs')
/opt/conda/lib/python3.8/site-packages/matplotlib/pyplot.py in plot(scalex, _____
⇒scaley, data, *args, **kwargs)
   2838 @_copy_docstring_and_deprecators(Axes.plot)
   2839 def plot(*args, scalex=True, scaley=True, data=None, **kwargs):
-> 2840
           return gca().plot(
   2841
                *args, scalex=scalex, scaley=scaley,
   2842
                **({"data": data} if data is not None else {}), **kwargs)
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/ axes.py in plot(self, ...
→scalex, scaley, data, *args, **kwargs)
   1741
   1742
                kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
-> 1743
                lines = [*self._get_lines(*args, data=data, **kwargs)]
   1744
                for line in lines:
   1745
                    self.add_line(line)
```

```
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/_base.py in _____
 →__call__(self, data, *args, **kwargs)
                         this += args[0],
    271
    272
                         args = args[1:]
--> 273
                    yield from self._plot_args(this, kwargs)
    274
            def get next color(self):
    275
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/_base.py in_
→_plot_args(self, tup, kwargs)
    397
    398
                if x.shape[0] != y.shape[0]:
--> 399
                     raise ValueError(f"x and y must have same first dimension, u
 ⇔but "
    400
                                      f"have shapes {x.shape} and {y.shape}")
    401
                if x.ndim > 2 or y.ndim > 2:
ValueError: x and y must have same first dimension, but have shapes (20,) and
 \hookrightarrow (200,)
```



```
[96]: #Plot for Accuracy
plt.plot(epochs3, acc_values3, 'bo', label='Training Accuracy')
plt.plot(epochs3, val_acc_values3, 'b', label = 'Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
```

```
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

```
Traceback (most recent call last)
ValueError
<ipython-input-96-4890c52fdf6e> in <module>
      1 #Plot for Accuracy
----> 2 plt.plot(epochs3, acc_values3, 'bo', label='Training Accuracy')
      3 plt.plot(epochs3, val_acc_values3, 'b', label = 'Validation Accuracy')
      4 plt.title('Training and Validation Accuracy')
      5 plt.xlabel('Epochs')
/opt/conda/lib/python3.8/site-packages/matplotlib/pyplot.py in plot(scalex,,,
→scaley, data, *args, **kwargs)
   2838 @_copy_docstring_and_deprecators(Axes.plot)
   2839 def plot(*args, scalex=True, scaley=True, data=None, **kwargs):
-> 2840
           return gca().plot(
   2841
                *args, scalex=scalex, scaley=scaley,
   2842
                **({"data": data} if data is not None else {}), **kwargs)
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/ axes.py in plot(self, __
→scalex, scaley, data, *args, **kwargs)
   1741
   1742
                kwargs = cbook.normalize_kwargs(kwargs, mlines.Line2D)
-> 1743
                lines = [*self._get_lines(*args, data=data, **kwargs)]
   1744
                for line in lines:
   1745
                    self.add line(line)
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/_base.py in_
 → call_(self, data, *args, **kwargs)
    271
                        this += args[0],
                        args = args[1:]
    272
--> 273
                    yield from self._plot_args(this, kwargs)
    274
    275
            def get_next_color(self):
/opt/conda/lib/python3.8/site-packages/matplotlib/axes/_base.py in_
 →_plot_args(self, tup, kwargs)
    397
    398
                if x.shape[0] != y.shape[0]:
                    raise ValueError(f"x and y must have same first dimension,
--> 399

but "
    400
                                     f"have shapes {x.shape} and {y.shape}")
    401
                if x.ndim > 2 or y.ndim > 2:
```

ValueError: x and y must have same first dimension, but have shapes (20,) and \hookrightarrow (200,)

0.3 Assignment 6.3

Load the ResNet50 model. Perform image classification on five to ten images of your choice. The

```
[31]: #load libraries
import os
from pathlib import Path

#load ResNet50 libraries
import numpy as np

from keras.preprocessing.image import img_to_array
from keras.applications.resnet50 import preprocess_input
from keras.applications.imagenet_utils import decode_predictions
import matplotlib.pyplot as plt
```

```
[32]: #set current directory and create images directory
    current_dir = Path(os.getcwd()).absolute()
    images_dir = current_dir.joinpath('images')
    images_dir.mkdir(parents=True, exist_ok = True)
```

```
[71]: #Used article "Simple Image Classification with ResNet-50" from Medium
#I know I can loop this, but just having trouble getting it to work
#Load image1 and set target to 224, 224 since that is the format ResNet50 needs
img1 = image.load_img('images/bunny.jpg', target_size = (224, 224))
#show image
plt.imshow(img1)
```

[71]: <matplotlib.image.AxesImage at 0x7fb08c25f640>


```
[72]: #turn into a numpy array
img1 = image.img_to_array(img1)
#insert new axis that will appear at the axis position in expanded array shape
img1 = np.expand_dims(img1, axis = 0)
#Preprocessing the numpy array encoding a batch of images
img1 = preprocess_input(img1)
#instantiating the ResNet50 model
model = ResNet50(weights = 'imagenet')
#predicting on the model and printing the result
preds1 = model.predict(img1)
print('Predicted:', decode_predictions(preds1, top = 1)[0])
```

WARNING:tensorflow:5 out of the last 9 calls to <function
Model.make_predict_function.<locals>.predict_function at 0x7fb0206641f0>
triggered tf.function retracing. Tracing is expensive and the excessive number
of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2)
passing tensors with different shapes, (3) passing Python objects instead of

tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Predicted: [('n02326432', 'hare', 0.5823781)]

```
[73]: #Load image2 and set target to 224, 224 since that is the format ResNet50 needs img2 = image.load_img('images/elephant.jpg', target_size = (224, 224))
#show image
plt.imshow(img2)
```

[73]: <matplotlib.image.AxesImage at 0x7fb02052e5e0>


```
[74]: #turn into a numpy array
img2 = image.img_to_array(img2)
#insert new axis that will appear at the axis position in expanded array shape
img2 = np.expand_dims(img2, axis = 0)
#Preprocessing the numpy array encoding a batch of images
img2 = preprocess_input(img2)
#instantiating the ResNet50 model
model2 = ResNet50(weights = 'imagenet')
#predicting on the model and printing the result
preds2 = model.predict(img2)
print('Predicted:', decode_predictions(preds2, top = 1)[0])
```

```
Predicted: [('n01871265', 'tusker', 0.45374754)]
```

```
[75]: #Load image3 and set target to 224, 224 since that is the format ResNet50 needs img3 = image.load_img('images/giraffe.png', target_size = (224, 224))
#show image
plt.imshow(img3)
```

[75]: <matplotlib.image.AxesImage at 0x7fb01855efd0>


```
[76]: #turn into a numpy array
img3 = image.img_to_array(img3)
#insert new axis that will appear at the axis position in expanded array shape
img3 = np.expand_dims(img3, axis = 0)
#Preprocessing the numpy array encoding a batch of images
img3 = preprocess_input(img3)
#instantiating the ResNet50 model
model3 = ResNet50(weights = 'imagenet')
#predicting on the model and printing the result
preds3 = model.predict(img3)
print('Predicted:', decode_predictions(preds3, top = 1)[0])
```

Predicted: [('n02417914', 'ibex', 0.36325175)]

```
[77]: #Load image4 and set target to 224, 224 since that is the format ResNet50 needs img4 = image.load_img('images/red_panda.png', target_size = (224, 224)) #show image
```

```
plt.imshow(img4)
```

[77]: <matplotlib.image.AxesImage at 0x7fb0182d3940>


```
[78]: #turn into a numpy array
img4 = image.img_to_array(img4)
#insert new axis that will appear at the axis position in expanded array shape
img4 = np.expand_dims(img4, axis = 0)
#Preprocessing the numpy array encoding a batch of images
img4 = preprocess_input(img4)
#instantiating the ResNet50 model
model4 = ResNet50(weights = 'imagenet')
#predicting on the model and printing the result
preds4 = model.predict(img4)
print('Predicted:', decode_predictions(preds4, top = 1)[0])
```

Predicted: [('n02509815', 'lesser_panda', 0.977285)]

```
[79]: #Load image5 and set target to 224, 224 since that is the format ResNet50 needs img5 = image.load_img('images/tiger.jpeg', target_size = (224, 224))
#show image
plt.imshow(img5)
```

[79]: <matplotlib.image.AxesImage at 0x7fb08c682e20>


```
[80]: #turn into a numpy array
img5 = image.img_to_array(img5)
#insert new axis that will appear at the axis position in expanded array shape
img5 = np.expand_dims(img5, axis = 0)
#Preprocessing the numpy array encoding a batch of images
img5 = preprocess_input(img5)
#instantiating the ResNet50 model
model5 = ResNet50(weights = 'imagenet')
#predicting on the model and printing the result
preds5 = model.predict(img5)
print('Predicted:', decode_predictions(preds5, top = 1)[0])
```

Predicted: [('n02129604', 'tiger', 0.7966444)]