Kubernetes + YOU + Sustainability == Impact ♡♡♡

whois Kris

- CNCF Ambassador
- Microsoft Azure MVP
- Kubernetes Unpacked
 Podcast Host
- ...
- Preaching about K8s, cloud native, green tech and cats

climate.nasa.gov

What does it have to do with tech?

ICTs GHG emissions stable at 2020 level

Global CO2 emissions

Quiz time!

Image source: blog.economize.cloud K8s Node icon: kubernetes/community @GitHub

Quiz time!

>30%

Over a third of CPUs for cloud native applications are never used

The State of Kubernetes Report: Overprovisioning in Real-Life Containerized Applications

cast.ai/the-state-of-kubernetes-overprovisioning

Oh no...Are my clusters unsustainably lost?..

It all starts with <u>awareness!</u>

Shared Responsibility Model

Image source:

https://www.redhat.com/architect/sustainable-software-architecture

Supply chain && Location

- Data center type
- Energy source and efficiency
- Overall strategy and commitments
- Carbon offsetting/Greenwashing
- Region
 - Heat map
 - Consumer proximity

Supply chain && Location

Node type && size

- VM type and size
 - VM series
 - Power-efficient processors (Ampere Altra Arm-based)
 - Oversizing
- Spot instances
- Proximity placement group

Fewer compute resources + highest utilization =

Scaling

- Conscious scaling
- Sudden bursts vs. constant load
- Automatic vs. manual scaling
- Event-driven scaling

Emerging: Carbon-aware scaling

Eliminate zombies!

- Regular "Dugnad" :)
- Scale to zero
- Turn off policy
- On-demand usage
- Scheduling time frame
- Detect and alert upon "zombie"

Applications

Lift and shift ≠ sustainable (by default)

- Application architecture
- CI/CD
- Deployment model
- Observability
- Best practices
 - Containerized applications
 - Green coding/Green software engineering
 - Lean coding

Cloud Providers: 1 of 3 Services: 26 of 26 Accounts: 1 of 3 Your cumulative emissions are 5.9 metric tons CO2e that is equivalent to CO2e emissions from direct one way flights from NYC to London **FLIGHTS** PHONES TREES Source: Flight Carbon Footprint Calculator 🔼

1M

3M

Start Date \longrightarrow End Date

ALL

12M

Cloud Usage

Custom

Nodes i	10
Namespaces 🖪	23
Pods 🖪	1302
Controllers 1	74

Total Cost 🚹	US\$623.40
Estimated Savings	US\$2,930.49
Efficiency 1	7%
Spending Trend	N/A

Savings

Estimated monthly savings available

US\$2,336.45

Right-size your cluster nodes

Adjust the number and size of your cluster's nodes to stop over-spending on unused capacity.

Kubernetes Insight

Save up to

US\$2,452.21/mo~

Remedy abandoned workloads

Scale down, delete or resize pods that don't send or receive a meaningful rate of network traffic.

Kubernetes Insight

Save up to

US\$182.95 /mo~

Manage unclaimed volumes

Delete volumes that are unused by any pods or move them to a cheaper storage tier.

Kubernetes Insight

Explore savings

Manage underutilized nodes

Turn down or resize nodes with low memory and CPU utilization.

Save up to

US\$934.67 /mo~

		CURRENT	IRRENT RECOMMENDATION: COMPLEX			RECOMMENDATION: SIMPLE				
^	Total cost	US\$2,850.79/mo			US\$421.50/mo	US\$421.50/mo		US\$398.58/mo		
	Savings					US\$2,429.29 (85.2%)		US\$2,452.21 (86%)		
	Node count	9			4			3		
^	CPU	64 VCPUs	VCPUs 14 VCPUs			12 VCPUs				
\$ <u></u>	CPU utilization	25.5% utilized			70.8% utilized			71.7% utilized		
^	RAM	424 GB		33 GB		48 GB				
	RAM utilization	5.9% utilized			44.8% utilized			26.6% utilized		
^	Instance breakdown	7 DS13 v2 x86		wn 7 DS13 v2 ×86 2 B1ls ×86		3 B4ms (x86)				
		VCPUs 8 VCPUs ea.	RAM 56 RAM (GB) ea.	Cost n/a	VCPUs 1 VCPUs ea.	RAM 0.5 RAM (GB) ea.	Cost US\$4.16/mo ea.	VCPUs 4 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost US\$132.86/mo ea.
		2 D4s v3 (x86			1 F8s v2 (x86)					
		VCPUs 4 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost n/a	VCPUs 8 VCPUs ea.	RAM 16 RAM (GB) ea.	Cost US\$280.32/mo ea.			
		3			1) B4ms (x86)					

Nodes with underutilized CPU & memory

Nodes with low memory and CPU utilization are candidates for being turned down or resized. The following nodes have sustained usage below 25% in both categories. Your cluster has enough resource availability to support turning these nodes down.

Maximum CPU/RAM Request Utilization (60%)

Node	Node Checks	Pod Checks	Recommendation	
akswinpol00003o	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
akswinpol00003i	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
akswinpol00003s	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
akswinpol00003n	Passed	Passed	Safe to drain. Save \$246.87 / mo.	\
aks-nodepool1-16599594-vmss000000	Failed	Failed	Do not drain	\
akswinpol00003p	Failed	Passed	Do not drain	\
akswinpol00003r	Failed	Passed	Do not drain	\

Define - Measure - Optimize

- Sustainability pillar of Well-Architected Framework
- Carbon emissions calculator && dashboards
- Cost management tools

Principles of Sustainable
Software Engineering

**Principles.Green

It's all about balance!

YOU can make a bigger impact than you think!

Thank You!

@kristhecodingu1

krisde

kristhecodingunicorn.com

Icons source: icons8.com GIF source: tenor.com