Fonctions réelles d'une variable réelle

Corrigé des exercices

Correction de l'exercice 18. Le domaine de définition de f est l'ensemble des $x \in \mathbb{R}$ tels que $\sin(\pi x) \neq 0$, soit $\pi x \not\equiv 0[\pi]$, soit encore $x \not\equiv 0[1]$: c'est donc l'ensemble $\mathbb{R} \setminus \mathbb{Z}$.

Pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$, on a $-x \in \mathbb{R} \setminus \mathbb{Z}$, et on peut alors écrire

$$f(-x) = \frac{\pi \cos(-\pi x)}{\sin(-\pi x)} = \frac{\pi \cos(\pi x)}{-\sin(\pi x)} = -\frac{\pi \cos(\pi x)}{\sin(\pi x)} = -f(x)$$

car cos est paire et sin est impaire : ainsi, f est impaire.

Enfin, si $x \in \mathbb{R} \setminus \mathbb{Z}$ alors $x + 1 \in \mathbb{R} \setminus \mathbb{Z}$, et on peut écrire

$$f(x+1) = \frac{\pi \cos(\pi(x+1))}{\sin(\pi(x+1))} = \frac{\pi \cos(\pi x + \pi)}{\sin(\pi x + \pi)}$$
$$= \frac{-\pi \cos(\pi x)}{-\sin(\pi x)} = \frac{\pi \cos(\pi x)}{\sin(\pi x)} = f(x).$$

La fonction f est donc 1-périodique.

Correction de l'exercice 19.

1. Soient $x, x' \in [0, 1]$ tels que $x \leq x'$. Étudions le signe de la différence $f_y(x') - f_y(x)$. On a

$$f_y(x') - f_y(x) = \frac{x' + y}{1 + x'y} - \frac{x + y}{1 + xy}$$

$$= \frac{(x' + y)(1 + xy) - (x + y)(1 + x'y)}{(1 + x'y)(1 + xy)}$$

$$= \frac{x' - x + xy^2 - x'y^2}{(1 + x'y)(1 + xy)}$$

$$= \frac{(x' - x)(1 - y^2)}{(1 + x'y)(1 + xy)}.$$

Or $x' - x \ge 0$ et $1 - y^2 \ge 0$, donc $f_y(x') - f_y(x) \ge 0$. La fonction f_y est donc bien croissante.

2. Soit $x \in [0,1]$. Comme f_y est croissante, on a $f_y(0) \leqslant f_y(x) \leqslant f_y(1)$, soit $y \leqslant f_y(x) \leqslant 1$, ce qu'il fallait démontrer.

Correction de l'exercice 20.

1. Soient $T_1, T_2 \in \mathcal{P}$. Pour tout $x \in \mathbb{R}$, on a alors

$$f(x + T_1 + T_2) = f(x + T_1) = f(x),$$

où la première égalité résulte du fait que T_1 est une période de f, et la deuxième du fait que T_2 en est une aussi. Ainsi, $T_1 + T_2$ est une période de f, donc $T_1 + T_2 \in \mathcal{P}$. L'ensemble \mathcal{P} est donc bien stable par somme.

- 2. Comme f est périodique, \mathcal{P} est non vide; il existe donc $T \in \mathcal{P}$. Mais alors $2T = T + T \in \mathcal{P}$ d'après la question précédente, ce qui implique ensuite que $3T = 2T + T \in \mathcal{P}$, puis que $4T = 3T + T \in \mathcal{P}$, et ainsi de suite. Ainsi, \mathcal{P} contient tous les réels kT pour $k \in \mathbb{N}$ (ce que l'on pourrait prouver rigoureusement par récurrence sur k): cet ensemble est donc infini.
- 3. Il n'est pas systématique que f admette une plus petite période, c'est-à-dire que \mathcal{P} admette un minimum.

Par exemple, si f est constante, alors f est T-périodique pour tout T > 0, ce qui signifie que $\mathcal{P} = \mathbb{R}_+^*$, donc \mathcal{P} n'admet pas de minimum.

Un exemple moins trivial est fourni par la fonction indicatrice $\mathbb{1}_{\mathbb{Q}}$, qui est T-périodique pour tout $T \in \mathbb{Q}_+^*$ (en effet, si $T \in \mathbb{Q}_+^*$ et $x \in \mathbb{R}$, on a alors $x + T \in \mathbb{Q}$ si et seulement si $x \in \mathbb{Q}$, donc $\mathbb{1}_{\mathbb{Q}}(x + T) = \mathbb{1}_{\mathbb{Q}}(x)$); il n'est pas difficile de voir que dans ce cas, P est exactement l'ensemble \mathbb{Q}_+^* , qui n'admet pas non plus de minimum.

Correction de l'exercice 21.

- (i) Il suffit de sommer les fonctions indicatrices des différents intervalles affectées de coefficients adaptés : une écriture de la fonction en question est par exemple $5\mathbb{1}_{]-\infty,1]} 2\mathbb{1}_{[2,+\infty[}$.
- (ii) Par définition de la partie entière, la fonction recherchée est $x\mapsto\lfloor\frac{1}{x}\rfloor$.
- (iii) La fonction recherchée est appelée partie entière supérieure; on la note parfois sous la forme $x \mapsto \lceil x \rceil := \min\{n \in \mathbb{Z} : n \geqslant x\}$, mais il est possible de l'exprimer à l'aide de la fonction partie entière classique en écrivant que pour tout $x \in \mathbb{R}$ on a $\lceil x \rceil = -\lfloor -x \rfloor$ (en effet, si $x \in \mathbb{R}$ alors $\lfloor -x \rfloor$ est le plus grand entier inférieur ou égal à -x, soit l'opposé de l'entier recherché). Notons que $\lceil x \rceil$ n'est pas simplement égal à $\lfloor x \rfloor + 1$ pour tout $x \in \mathbb{R}$ puisque $\lceil n \rceil = \lfloor n \rfloor = n$ pour tout $n \in \mathbb{Z}$.
- (iv) Si $k \in \mathbb{Z}$ et si $x \in [2k, 2k+2[$, alors $k = \lfloor \frac{x}{2} \rfloor$, donc $3k = 3\lfloor \frac{x}{2} \rfloor$. Ainsi, la fonction recherchée est $x \mapsto 3\lfloor \frac{x}{2} \rfloor$.
- (v) Il faut faire un dessin! On voit alors que la fonction recherchée est affine par morceaux, c'est-à-dire définie par des expressions affines différentes sur différentes intervalles : elle transforme x en $\frac{1}{3}x + \frac{2}{3}$ si $x \in]-\infty,1]$, et en -x+2 si $x \in]1,+\infty[$ (on rappelle que le coefficient directeur d'une droite passant par des points (x_1,y_1) et (x_2,y_2) , avec $x_1 \neq x_2$, est donné par le quotient $\frac{y_2-y_1}{x_2-x_1}$). Il s'agit donc de la fonction

$$x \longmapsto \begin{cases} \frac{1}{3}x + \frac{2}{3} & \text{si } x \leqslant 1 \\ -x + 2 & \text{si } x > 1 \end{cases} = \mathbb{1}_{]-\infty,1]}(x) \left(\frac{1}{3}x + \frac{2}{3}\right) + \mathbb{1}_{]1,+\infty[}(x)(-x+2).$$

Correction de l'exercice 22. La courbe C_1 rappelle celle de la fonction partie entière; son caractère décroissant et le fait qu'elle ne croise pas l'axe des abscisses pousse à considérer que la courbe représente la fonction $f: x \mapsto -\lfloor x \rfloor + \frac{1}{2}$.

La fonction représentée par la courbe C_2 prend la valeur -1 sur \mathbb{R}_+^* . Sur \mathbb{R}_+ , la courbe a l'aspect de celle de la racine carrée; pour qu'elle passe par le point (2,1), on considère la fonction $x \mapsto \sqrt{\frac{x}{2}}$. Ainsi, la courbe C_2 a l'allure de celle de la fonction

$$g: x \mapsto \begin{cases} -1 & \text{si} \quad x < 0\\ \sqrt{\frac{x}{2}} & \text{si} \quad x \geqslant 0. \end{cases}$$

La courbe C_3 rappelle la courbe de la fonction $x \mapsto \frac{1}{x^2}$. Son orientation et sa position par rapport aux axes pousse à considérer qu'elle représente la fonction

$$h: x \longmapsto -\frac{1}{(1+x)^2} + 1 = 1 - \frac{1}{(1+x)^2}.$$

Correction de l'exercice 23.

- 1. Le domaine de définition de f est l'ensemble des $x \in \mathbb{R}$ tels que $x^2 + 2x + 1 \neq 0$, c'est-à-dire tels que $(x+1)^2 \neq 0$: il s'agit donc de $\mathbb{R} \setminus \{-1\}$.
- 2. Dire que la droite d'équation x=-1 est axe de symétrie de la courbe représentative de f signifie que l'axe des ordonnées est axe de symétrie de la courbe de f décalée d'une unité vers la droite, c'est-à-dire de $g: x \mapsto f(x-1):$ en d'autres termes, cela signifie que la fonction g est paire. Or pour tout $x \in \mathbb{R}$ on a

$$g(x) = f(x-1) = \frac{\cos(\pi(x-1))}{(x-1+1)^2} = \frac{\cos(\pi x - \pi)}{x^2} = -\frac{\cos(\pi x)}{x^2},$$

ce qui définit bien une fonction paire. Ainsi, la droite d'équation x = -1 est bien un axe de symétrie de la courbe de f.

Correction de l'exercice 24. Soit f une fonction périodique définie sur une partie A de \mathbb{R} ; on note T>0 une période de f. Supposons f non constante : il existe alors $a,b\in\mathbb{R}$ tels que f(a)< f(b). Comme f est T-périodique, on a $f(a+k_1T)=f(a)$ et $f(b+k_2T)=f(b)$ pour tous $k_1,k_2\in\mathbb{Z}$. Or il est possible de trouver $k_1,k_2\in\mathbb{Z}$ tels que $a+k_1T< b+k_2T$: le fait que $f(a+k_1T)=f(a)< f(b)=f(b+k_2T)$ montre alors que f n'est pas décroissante. Il est aussi possible de trouver $k_1',k_2'\in\mathbb{Z}$ tels que $a+k_1'T>b+k_2'T$: le fait que $f(a+k_1T)=f(a)< f(b)=f(b+k_2T)$ montre alors que f n'est pas croissante. Ainsi, la fonction f n'est pas monotone.

On a donc montré qu'une fonction périodique non constante ne peut être monotone : par conséquent, une fonction périodique monotone est nécessairement constante.

Correction de l'exercice 25.

1. Comme cos est 2π -périodique, on a

$$\forall x \in \mathbb{R}, \quad \cos\left(\sqrt{2}(x+\sqrt{2}\pi)\right) = \cos\left(\sqrt{2}x+2\pi\right) = \cos\left(\sqrt{2}x\right),$$

donc la fonction $x \mapsto \cos(\sqrt{2}x)$ est $\sqrt{2}\pi$ -périodique.

2. (a) On a $f(0) = \cos(0) + \cos(0) = 2$ et, comme la fonction f est T-périodique, f(T) = f(0) = 2.

Or $f(T) = \cos(T) + \cos(\sqrt{2}T)$ et on sait que $\cos(T) \le 1$ et $\cos(\sqrt{2}T) \le 1$, si bien que l'on a nécessairement $\cos(T) = \cos(\sqrt{2}T) = 1$.

(b) Comme $\cos(T) = \cos(\sqrt{2}T) = 1$, les propriétés de la fonction \cos (ou un simple regard sur le cercle trigonométrique) assurent que $T \in 2\pi\mathbb{Z}$ et $\sqrt{2}T \in 2\pi\mathbb{Z}$.

Il existe donc $m, n \in \mathbb{Z}$ tels que $T = 2m\pi$ et $\sqrt{2}T \in 2n\pi$, et on a nécessairement $m \neq 0$ puisque T > 0. On peut donc écrire

$$\sqrt{2} = \frac{\sqrt{2}T}{T} = \frac{2n\pi}{2m\pi} = \frac{n}{m} \in \mathbb{Q}.$$

3. On sait que $\sqrt{2} \notin \mathbb{Q}$, donc l'hypothèse de périodicité de f engendre une absurdité : ainsi, f n'est pas périodique.

La fonction f s'écrit donc comme la somme de la fonction 2π -périodique cos et de la fonction $\sqrt{2}\pi$ -périodique $x \mapsto \cos(\sqrt{2}x)$, mais elle n'est pas elle-même périodique : on a bien construit le contre-exemple recherché.

Correction de l'exercice 26. La réponse est encore une fois négative.

Pour démontrer ce fait, considérons à nouveau la fonction f de l'exercice précédent. Les fonctions $g: x \mapsto e^{\cos(x)}$ et $h: x \mapsto e^{\cos(\sqrt{2}x)}$ sont respectivement 2π -périodiques et $\sqrt{2}\pi$ -périodiques, mais leur produit

$$ah: x \mapsto e^{\cos(x)}e^{\cos(\sqrt{2}x)} = e^{\cos(x) + \cos(\sqrt{2}x)} = e^{f(x)}$$

n'est pas périodique, sans quoi $f = \ln \circ (gh)$ le serait.

Alternativement, on aurait pu écrire directement que la fonction ²

$$f: x \longmapsto \cos(x) + \cos(\sqrt{2}x) = \frac{1}{2}\cos\left(\frac{1+\sqrt{2}}{2}x\right)\cos\left(\frac{1-\sqrt{2}}{2}x\right),$$

qui n'est pas périodique d'après l'exercice 25, est pourtant le produit des fonctions périodiques $x \mapsto \frac{1}{2} \cos\left(\frac{1+\sqrt{2}}{2}x\right)$ et $x \mapsto \cos\left(\frac{1-\sqrt{2}}{2}x\right)$, qui ont pour périodes respectives $\frac{4\pi}{1+\sqrt{2}}$ et $\frac{4\pi}{\sqrt{2}-1}$.

^{1.} Notons qu'il est fréquent d'utiliser l'exponentielle et le logarithme pour transposer au cas de produits des résultats démontrés dans le cas de sommes et réciproquement.

^{2.} On a utilisé la formule $\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$ démontrée dans les exercices accompagnant le chapitre de trigonométrie.