Package 'proBatch'

June 1, 2018

```
Type Package
Title Tools for Batch Effects Diagnostics and Correction
Author Jelena Čuklina <chuklina.jelena@gmail.com>
Maintainer The package maintainer <chuklina.jelena@gmail.com>
Description The proBatch package contains functions for diagnosing and removing
      batch effects and other unwanted variation in high-thoughput experiment, primarily
      designed for DIA proteomics data.
      The diagnostic part of the package can be broadly divided in (1) Genome-wide
      and (2) Gene-specific functions, explained in corresponding vignettes. Since
      the diagnostic part for batch effects does require batch effect removal, here
      we provide a few convenience wrappers for common batch-effect removal approaches,
      namely, ComBat (Johnson et al. 2007 Biostatistics) and mean/median centering.
      However, proteomics data may require more complicated technical artifact
      correction approaches like non-linear fitting, which is also found in "normalization"
      section of this package.
      The approaches are described in (Čuklina et al. 2019, MCP)
License What license is it under?
Depends R (>= 3.4.0),
      dplyr (>= 0.7.4),
      ggplot2
Encoding UTF-8
LazyData true
Imports Biobase,
      corrplot,
      ggfortify,
      lazyeval,
      lubridate,
      magrittr,
      pheatmap,
      preprocessCore,
      pvca,
      RColorBrewer,
      readr,
      reshape2,
      rlang,
```

scales,

2 R topics documented:

```
sva,
tibble,
tidyverse (>= 1.2.1),
wesanderson,
WGCNA

Suggests knitr,
rmarkdown,
SWATH2stats

VignetteBuilder knitr

RoxygenNote 6.0.1
```

R topics documented:

boxplot_all_steps
clean_requants
color_list_to_df
config
convert_to_matrix
dates_to_posix
date_to_sample_order
define_batches_by_MS_pauses
define_batches_by_MS_pauses_within_instrument
distribution_of_cor
example_peptide_annotation
example_proteome
example_sample_annotation1
fit_nonlinear
generate_colors_for_numeric
get_sample_corr_distrib
join_data_matrices
matrix_to_long
merge_rare_levels
plot_clustering
plot_corr_between_samples
plot_corr_plot_protein
plot_heatmap
plot_iRTs
plot_pca
plot_peptide_level
plot_pvca
plot_sample_corr_distribution
plot_sample_means_or_boxplots
plot_spike_ins
plot_with_fitting_curve
proBatch
quantile_normalize
remove_peptides_with_missing_batch
sample_annotation_to_colors
sample_random_peptides
summarize pentides 29

boxplot_all_steps 3

Index 30

h	
boxplot_all_steps	Plot boxplots to compare various data normalization steps/approaches
	WARNING: extremely slow for big dataframes

Description

Plot boxplots to compare various data normalization steps/approaches WARNING: extremely slow for big dataframes

Usage

```
boxplot_all_steps(list_of_dfs, sample_annotation, batch_column, step = NULL)
```

Arguments

list_of_dfs list of data frames of format, specified in 'plot_boxplot' sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) bio-

logical and 3) technical covariates (batches etc)

batch_column in 'sample_annotation' that should be used for batch comparison

step normalization step (e.g. 'Raw' or 'Quantile_normalized' or 'qNorm_ComBat').

Useful if consecutive steps are compared in plots. Note that in plots these are usually ordered alphabetically, so it's worth naming with numbers, e.g. '1_raw',

'2_quantile'

Value

ggplot object

See Also

plot_boxplot

clean_requants Remove requanted and sparse features

Description

Cleans dataset df_long (proBatch) by removing requanted features and features not meeting user define sparsness criterias.

```
clean_requants(df_long, sample_annotation, batch_column = "MS_batch.final",
  feature_id_column = "peptide_group_label", threshold_batch = 0.3,
  threshold_global = 0.3)
```

4 color_list_to_df

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_column and a measure_column, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

batch_column

column in sample_annotation that should be used for batch comparison

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

threshold_batch

maximally tollerated fraction of missing values for a feature in a batch

threshold_global

maximally tollerated fraction of globally missing values for a feature

Value

df_long (proBatch) like data frame filtered as follow:

- · remove requant values
- · remove features not meeting batch or global sparsness thresholds

See Also

Other dataset cleaning functions: remove_peptides_with_missing_batch, summarize_peptides

 ${\tt color_list_to_df}$

Color list to data frame

Description

Turn color list to df (some plotting functions require the latter)

Usage

```
color_list_to_df(color_list, sample_annotation)
```

Arguments

sample_annotation

Value

a data frame representation of the input color list

config 5

config

Data normalization and batch adjustment methods

Description

Data normalization and batch adjustment methods

Median normalization of the data (per batch median)

Median normalization of the data (global)

normalize with the custom (continuous) fit

Standardized input-output ComBat normalization ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input data are assumed to be cleaned and normalized before batch effect removal.

Usage

```
normalize_medians_batch(data_long, sample_annotation = NULL,
    sample_id_column = "FullRunName", batch_column = "MS_batch.final",
    feature_id_col = "peptide_group_label", measure_column = "Intensity")

normalize_medians_global(data_long, sample_id_column = "FullRunName",
    measure_column = "Intensity")

normalize_custom_fit(data_matrix, sample_annotation,
    batch_column = "MS_batch.final", feature_id_col = "peptide_group_label",
    sample_id_column = "FullRunName", measure_col = "Intensity",
    sample_order_col = "order", fit_func = fit_nonlinear, return_long = F,
    ...)

correct_with_ComBat(data_matrix, sample_annotation,
    batch_column = "MS_batch.final", par.prior = TRUE)
```

Arguments

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) bio-

logical and 3) technical covariates (batches etc)

batch_column in 'sample_annotation' that should be used for batch comparison

measure_column if 'df_long' is among the parameters, it is the column with expression/abundance/intensity,

otherwise, it is used internally for consistency

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames

and file/sample names as colnames. Usually the log transformed version of the

original data

sample_order_col

column, determining the order of sample MS run, used as covariate to fit the

non-linear fit

fit_func function to fit the (non)-linear trend

6 convert_to_matrix

return_long whether the result should be the "long" data frame (as 'df_long') or "wide" (as 'data_matrix')
... other parameters, usually those of the 'fit_func'
par.prior
sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

Value

'data_matrix'-size data matrix with batch-effect corrected by 'ComBat'

convert_to_matrix Long to wide conversion

Description

Convert from a long data frame representation to a wide matrix representation

Usage

```
convert_to_matrix(df_long, feature_id_column = "peptide_group_label",
  measure_column = "Intensity", sample_id_col = "FullRunName")
```

Arguments

df_long data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_column and a measure_column, but usually

also an m. score (in OpenSWATH output result file)

also an m_score (in OpenSWATH output result file)

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

Value

```
data_matrix (proBatch) like matrix (features in rows, samples in columns)
```

See Also

Other matrix manipulation functions: join_data_matrices, matrix_to_long

dates_to_posix 7

dates_to_posix

Convert data/time to POSIXct

Description

convert date/time column of sample_annotation to POSIX format required to keep number-like behaviour

Usage

```
dates_to_posix(sample_annotation, time_column = c("RunDate", "RunTime"),
    new_time_column = NULL, dateTimeFormat = c("%b_%d", "%H:%M:%S"))
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

time_column

name of the column(s) where run date & time are specified. These will be used to determine the run order

new_time_column

name of the new column to which date&time will be converted to

dateTimeFormat POSIX format of the date and time. See as . POSIXct from base R for details

Value

sample annotation file with column names as 'new_time_column' with POSIX-formatted date

date_to_sample_order

Convert date/time to POSIXct and rank samples by it

Description

Converts date/time columns fo sample_annotation to POSIXct format and calculates sample run rank in order column

```
date_to_sample_order(sample_annotation, time_column = c("RunDate", "RunTime"),
    new_time_column = "DateTime", dateTimeFormat = c("%b_%d",
    "%H:%M:%S"), order_column = "order", instrument_col = "instrument")
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

time_column

name of the column(s) where run date & time are specified. These will be used to determine the run order

new_time_column

name of the new column to which date&time will be converted to

dateTimeFormat POSIX format of the date and time. See as . POSIXct from base R for details

Value

sample annotation file with column names as 'new time column' with POSIX-formatted date & order_column used in some diagnostic plots (e.g. plot_iRTs, plot_sample_mean)

```
define_batches_by_MS_pauses
```

Batch by date/time and instrument

Description

Identify long stretches of time between samples on a per instrument basis and split them into batches.

Usage

```
define_batches_by_MS_pauses(sample_annotation, threshold,
  runtime_col = "RunDateTime", minimal_batch_size = 5,
  instrument_col = "instr", batch_name = "MS_batch")
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

threshold

time difference that would mean there was an interruption

runtime_col

POSIX or numeric-like column corresponding to the sample MS profile acquisition timepoint

minimal_batch_size

minimal number of samples in a batch

instrument_col column specifying MS instrument used to acquired data (to account for the presence of multiple instruments in sample_annotation)

batch_name

string with a self-explanatory name for the batch (e.g. 'MS_batch' for MS-

proteomics) to which batch number will be added

Value

sample_annotation data matrix with an additional column to indicate sample batching by MS run time and instrument.

Description

Identify long stretches of time between samples and split them into batches. Most users are going to want to call define_batches_by_MS_pauses, rather then this function

Usage

```
define_batches_by_MS_pauses_within_instrument(date_vector, threshold,
    minimal_batch_size = 5, batch_name = "MS_batch")
```

Arguments

date_vector POSIX or numeric-like vector corresponding to the sample MS profile acquisi-

tion timepoint

threshold time difference that would mean there was an interruption

minimal_batch_size

minimal number of samples in a batch

batch_name string with a self-explanatory name for the batch (e.g. 'MS_batch' for MS-

proteomics) to which batch number will be added

Value

vector of batches for each sample

distribution_of_cor Plot distribution of correlations

Description

Plot distribution of correlations

Usage

```
distribution_of_cor(data_matrix_sub, facet_var = NULL, theme = "classic")
```

Arguments

```
data_matrix_sub
```

10 example_proteome

example_peptide_annotation

Peptide annotation data

Description

This is data from Evan's aging study annotated with gene names

Usage

example_peptide_annotation

Format

A data frame with 200625 rows and 8 variables:

Peptide peptide group label ID, identical to 'peptide_group_label' in 'example_proteome'

Gene HUGO gene ID

ProteinName protein group name as specified in 'example_proteome' ... other parameters determined by 'summarize_peptides' function

example_proteome

Example protein data

Description

This is data from Evan's aging study with all iRT, spike-in peptides, few random peptides and QTL proteins for biological signal improvement demonstration

Usage

example_proteome

Format

A data frame with 200625 rows and 8 variables:

peptide_group_label peptide ID, which is regular feature level. This column is mostly used as 'feature_id_col'

RT retention time. Relevant to identify retention time related bias

Intensity peptide group intensity in given sample. Used in function as 'measure_col'

ProteinName Protein group ID, specified as N/UniProtID1|UniProtID2|..., where N is number of protein peptide group maps to. If 1/UniProtID, then this is proteotypic peptide

assay_rt retention time as in DIA library

m_score peptide group identification FDR as determined by pyProphet

FullRunName name of the file, in most functions used for 'sample_id_col' #' ...

Source

PRIDE ID will be added in future

```
example_sample_annotation1
```

Sample annotation data version 1

Description

This is data from Evan's aging study with mock instruments to show how instrument-specific functionality works

Usage

```
example_sample_annotation1
```

Format

A data frame with 375 rows and 18 variables:

FullRunName name of the file, in most functions used for 'sample_id_col'

MS_batch.final mass-spectrometry batch: 7-level factor of manually annotated batches

EarTag mouse ID, i.e. ID of the biological object

Strain mouse strain ID - biological covariate #1

Diet diet - either 'HFD' = 'High Fat Diet' or 'CD' = 'Chow Diet'. 'Mix' stands for mixture of several samples

Sex mice sex - 3-level biological covariate. Possible values - "

Age_Days mice age at sampling - numeric biological covariate

RunDate mass-spectrometry running date. In combination with 'RunTime' used for running order determination

RunTime mass-spectrometry running time. In combination with 'RunDate' used for running order determination

SacrificeDate date of mouse sacrifice - technical covariate

ProteinPrepDate date of protein preparation - technical covariate ...

fit_nonlinear

Fit a non-linear trend

Description

Fit a non-linear trend

```
fit_nonlinear(dataDF, response.var = "y", expl.var = "x",
    noFitRequants = F, fitFunc = "kernel_smooth", with_df = F, ...)
```

Arguments

response.var the name of the column in dataDF with the response variable expl.var the name of the column in dataDF with the explanatory variable

 ${\tt noFitRequants} \quad (logical) \ whether \ to \ fit \ requanted \ values$

fitFunc function to use for the fit ('kernel_smooth', 'smooth_spline', or 'loess_regression')

with_df

... additional paramters to be passed to the fitting function

Value

vector of fitted response values

Description

Generates a list of colors for a vector of numeric, POSIXct (i.e. the (signed) number of seconds since the beginning of 1970, or factors

Usage

```
generate_colors_for_numeric(num_col, palette_type = "brewer", i = 1,
   granularity = 10)
```

Arguments

num_col a vector of type numeric of factor to generate colors for

palette_type 'brewer' or 'viridis'

i if palette_type is 'brewer' the palette argument to brewer_pal. If palette_type

is 'viridis' the option argument to virids_pal ()

granularity the breaks to use when generating colors for num_col

```
get_sample_corr_distrib
```

Calculates correlation distribution for all pairs of the replicated samples

Description

Calculates correlation distribution for all pairs of the replicated samples

```
get_sample_corr_distrib(cor_proteome, sample_annotation,
  sample_id_col = "FullRunName", biospecimen_id_col = "EarTag",
  batch_col = "MS_batch.final")
```

join_data_matrices 13

Arguments

```
sample_annotation
```

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

sample_id_col

name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

batch_col

join_data_matrices

Join data matrices

Description

Joins 2 or more data matrices

Usage

```
join_data_matrices(matrices_list, step, sample_annotation,
  measure_column = "Intensity")
```

Arguments

matrices_list

list of matrices in data_matrix (proBatch) format to be joined

step

normalization step (e.g. 'Raw' or 'Quantile_normalized' or 'qNorm_ComBat'). Useful if consecutive steps are compared in plots. Note that in plots these are usually ordered alphabetically, so it's worth naming with numbers, e.g. '1_raw', '2_quantile'

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency

Value

df_long (proBatch) like data frame with a row, having entries for:

- 1. feature_id_col (e.g. peptide name)
- 2. sample_id_col (e.g. filename)
- 3. measure_col (e.g. intensity/expression)
- 4. step (e.g. 'raw', 'quantile_norm')

See Also

Other matrix manipulation functions: convert_to_matrix, matrix_to_long

14 matrix_to_long

matrix_to_long

Wide to long conversion

Description

Convert from wide matrix to a long data frame representation

Usage

```
matrix_to_long(data_matrix, sample_annotation,
  feature_id_column = "peptide_group_label", measure_column = "Intensity",
  sample_id_col = "FullRunName", step = NA)
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity; otherwise, it is used internally for consistency

sample_id_col

name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)

step

normalization step (e.g. 'Raw' or 'Quantile_normalized' or 'qNorm_ComBat'). Useful if consecutive steps are compared in plots. Note that in plots these are usually ordered alphabetically, so it's worth naming with numbers, e.g. '1_raw', '2_quantile'

Value

```
df_long (proBatch) like data frame
```

See Also

Other matrix manipulation functions: convert_to_matrix, join_data_matrices

merge_rare_levels 15

merge_rare_levels	Replaces rare levels with other
mer 6c_r ar c_revers	replaces faire levels will office

Description

Replaces levels with a maximal occurence of 1 with other

Usage

```
merge_rare_levels(column)
```

plot_clustering

cluster the data matrix to visually inspect which confounder dominates

Description

cluster the data matrix to visually inspect which confounder dominates

Usage

```
plot_clustering(data_matrix, color_df, title = "Clustering of raw samples",
   distance = "euclidean", agglomeration = "complete", label_samples = T,
   label_font = 0.2, plot_title = NULL, ...)
```

Arguments

data_matrix	features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data
color_df	data frame of colors, as created by 'sample_annotation_to_colors'
title	Title of the plot (usually, processing step + representation level (fragments, transitions, proteins))
distance	distance metric used for clustering
agglomeration	agglomeration methods as used by 'hclust'
	other parameters of 'plotDendroAndColors' from 'WGCNA' package

See Also

hclust, sample_annotation_to_colors, plotDendroAndColors

Description

Plot correlation of selected samples

Usage

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data

samples_to_plot

string vector of samples in data_matrix to be used in the plot

parameters for the corrplot visualisation

```
plot_corr_plot_protein
```

Protein correlation plot

Description

Plots correlation plot of a single protein

Usage

```
plot_corr_plot_protein(data_matrix, protein_name, peptide_annotation,
    prot.column = "ProteinName", peptide_col_name = "peptide_group_label",
    title = NULL, ...)
```

Arguments

data_matrix features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data

protein_name the name of the protein

prot.column the column name in peptide_annotation with protein names

peptide_col_name

the column name in peptide_annotation with peptide names

title The title of the plot

... parameters for the corrplot visualisation

plot_heatmap 17

Examples

plot_heatmap

Plot the heatmap of samples

Description

Plot the heatmap of samples

Usage

```
plot_heatmap(data_matrix, sample_annotation = NULL, fill_the_missing = T,
    cluster_rows = F, cluster_cols = F, annotation_color_list = NA,
    filename = NA, ...)
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)

fill_the_missing

boolean value determining if missing values should be substituted with -1 (and colored with black)

cluster_rows boolean value determining if rows should be clustered

cluster_cols boolean value determining if columns should be clustered

 $annotation_color_list$

list specifying colors for columns (samples). Best created by 'sample_annotation_to_colors'

filename filepath where to save the image

... other parameters of pheatmap

Value

object returned by 'pheatmap'

See Also

```
sample_annotation_to_colors, pheatmap
```

18 plot_iRTs

plot_iRTs

Plot iRT measurements

Description

Creates a iRT facetted ggplot2 plot of the value in measure_column vs order_column using plot_peptide_level. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_iRTs(df_long, sample_annotation, order_column = NULL,
    irt_pattern = "iRT", batch_column = "MS_batch.final",
    sample_id_col = "FullRunName", feature_id_column = "peptide_group_label",
    measure_column = "Intensity", title = "iRT peptide profile", ...)
```

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_column and a measure_column, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

order_column column in sample_anr

column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

irt_pattern substring used to identify irts proteins in the column 'ProteinName'

batch_column column in sample_annotation that should be used for batch comparison

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long . In the wide formatted representation $data_matrix$ this

corresponds to the row names.

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

title the string indicating the source of the peptides

... additional arguments to plot_peptide_level function

Value

ggplot2 type plot of measure_column vs order_column, faceted by irt_pattern containing proteins and (optionally) by batch_column

See Also

Other feature-level diagnostic functions: plot_peptide_level, plot_spike_ins, plot_with_fitting_curve

plot_pca

plot_pca

plot PCA plot

Description

```
plot PCA plot
```

Usage

```
plot_pca(data_matrix, sample_annotation, color_by = "MS_batch",
   PC_to_plot = c(1, 2), colors_for_factor = NULL, theme = "classic")
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) bio-

logical and 3) technical covariates (batches etc)

color_by column name (as in 'sample_annotation') to color by

PC_to_plot principal component numbers for x and y axis

colors_for_factor

named vector of colors for the 'color_by' variable

theme ggplot theme, by default 'classic'. Can be easily overriden (see examples)

Value

ggplot scatterplot colored by factor levels of column specified in 'factor_to_color'

plot_peptide_level

Plot peptide measurements

Description

Creates a peptide facetted ggplot2 plot of the value in measure_column vs order_column. Additionally, the resulting plot can also be facetted by batch.

```
plot_peptide_level(pep_name, df_long, sample_annotation, order_column = NULL,
    sample_id_col = "FullRunName", batch_column = "MS_batch.final",
    measure_column = "Intensity", feature_id_column = "peptide_group_label",
    geom = c("point", "line"), color_by_batch = F, facet_by_batch = F,
    title = NULL, requant = NULL, theme = "classic")
```

20 plot_peptide_level

Arguments

pep_name name of the peptide for diagnostic profiling

df_long data frame where each row is a single feature in a single sample. It minimally has

a sample_id_col, a feature_id_column and a measure_column, but usually

also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

1. sample_id_col (this can be repeated as row names)

2. biological covariates

3. technical covariates (batches etc)

order_column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

batch_column in sample_annotation that should be used for batch comparison

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format

representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

geom whether to show the feature as points and/or connect by lines

color_by_batch (logical) whether to color points by batch

facet_by_batch (logical) whether to plot each batch in its own facet

title the string indicating the source of the peptides

requant if data frame: requant values; if logical: whether to indicate requant values

(requires 'requant' or 'm_score' column in df_long)

theme plot theme (default is 'classical'; other options not implemented)

Value

ggplot2 type plot of measure_column vs order_column, faceted by pep_name and (optionally) by batch_column

See Also

Other feature-level diagnostic functions: plot_iRTs, plot_spike_ins, plot_with_fitting_curve

plot_pvca 21

n	<u>^</u> +	pvca
\mathbf{u}	LUL	DVCa

Plot variance distribution by variable

Description

Plot variance distribution by variable

Usage

```
plot_pvca(data_matrix, sample_annotation, sample_id_column = "FullRunName",
  technical_covariates = c("MS_batch", "instrument"),
  biological_covariates = c("cell_line", "drug_dose"), title = NULL,
  colors_for_bars = NULL, threshold_pca = 0.6, threshold_var = 0.01,
  theme = "classic")
```

Arguments

data_matrix

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data

sample_annotation

data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc)

technical_covariates

vector 'sample_annotation' column names that are technical covariates

biological_covariates

vector 'sample_annotation' column names, that are biologically meaningful covariates

title

Title of the plot (usually, processing step + representation level (fragments, transitions, proteins))

colors_for_bars

four-item color vector, specifying colors for the following categories: c('residual', 'biological', 'biol:techn', 'technical')

threshold_pca

the percentile value of the minimum amount of the variabilities that the selected

principal components need to explain

threshold_var

the percentile value of weight each of the covariates needs to explain (the rest will be lumped together)

Value

```
list of two items: plot =gg, df = pvca_res
```

See Also

```
sample_annotation_to_colors
```

```
plot_sample_corr_distribution
```

Create violin plot of correlation distribution Typically to visualize within batch vs within replicate vs non-related sample correlation

Description

Create violin plot of correlation distribution Typically to visualize within batch vs within replicate vs non-related sample correlation

Usage

```
plot_sample_corr_distribution(data_matrix, sample_annotation,
  repeated_samples = NULL, sample_id_col = "FullRunName",
  batch_col = "MS_batch.final", covariate = "EarTag",
  title = "Correlation_distribution", plot_param = "batch_the_same")
```

Arguments

plot_param

```
{\tt plot\_sample\_means\_or\_boxplots}
```

Plot per-sample average or boxplot (distribution) vs order (if the real running order available)

Description

Plot per-sample average or boxplot (distribution) vs order (if the real running order available)

```
plot_sample_mean(data_matrix, sample_annotation = NULL,
    sample_id_col = "FullRunName", order_column = "order",
    batch_column = NULL, facet_column = "instrument", color_by_batch = F,
    color_scheme = "brewer", theme = "classic", title = NULL,
    order_per_facet = F)

plot_boxplot(df_long, sample_annotation = NULL,
    sample_id_column = "FullRunName", measure_col = "Intensity",
    order_column = "order", batch_column = "MS_batch.final",
    facet_column = "instrument", color_by_batch = T,
    color_scheme = "brewer", theme = "classic", title = NULL,
    order_per_facet = F)
```

plot_spike_ins 23

Arguments

features (in rows) vs samples (in columns) matrix, with feature IDs in rownames data_matrix and file/sample names as colnames. in most function, it is assumed that this is the log transformed version of the original data sample_annotation data matrix with 1) 'sample_id_col' (this can be repeated as row names) 2) biological and 3) technical covariates (batches etc) sample_id_col name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found) order_column column where running order is specified. batch_column column in 'sample_annotation' that should be used for batch comparison facet_column recommended if more than one batch covariate is present. Faceting is most suited to examine instruments separately color_by_batch should the each batch be represented with its own color? color_scheme named vector, names corresponding to unique batch values as specified in 'sample_annotation' ggplot theme, by default 'classic'. Can be easily overriden (see examples) theme title Title of the plot (usually, processing step + representation level (fragments, transitions, proteins)) order_per_facet if order is defined ignoring facets (usually instrument), re-define order per-batch data frame where each row is a single feature in a single sample, thus it has df_long minimally, 'sample_id_col', 'feature_id_column' and 'measure_column', but usually also 'm score' (in OpenSWATH output result file) measure_column if 'df_long' is among the parameters, it is the column with expression/abundance/intensity, otherwise, it is used internally for consistency

Details

functions for quick visual assessment of trends associated, overall or specific covariate-associated (see 'batch_column' and 'facet_column')

Value

ggplot2 class object. Thus, all aesthetics can be overriden

Description

Creates a spike-in facetted ggplot2 plot of the value in measure_column vs order_column using plot_peptide_level. Additionally, the resulting plot can also be facetted by batch.

Usage

```
plot_spike_ins(df_long, sample_annotation, order_column = "order",
  spike_ins = "BOVIN", sample_id_column = "FullRunName",
 batch_column = "MS_batch", measure_column = "Intensity".
 feature_id_column = "peptide_group_label",
 title = "Spike-in BOVINE protein peptides", ...)
```

Arguments

df_long

data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_column and a measure_column, but usually also an m_score (in OpenSWATH output result file)

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

order_column

column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

spike_ins

substring used to identify spike-in proteins in the column 'ProteinName'

batch_column

column in sample_annotation that should be used for batch comparison

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

title

the string indicating the source of the peptides

additional arguments to plot_peptide_level function

Value

ggplot2 type plot of measure_column vs order_column, faceted by spike_ins containing proteins and (optionally) by batch_column

See Also

Other feature-level diagnostic functions: plot_iRTs, plot_peptide_level, plot_with_fitting_curve

```
plot_with_fitting_curve
```

Plot peptide measurements across multi-step analysis

Description

Plot Intensity of a few representative peptides for each step of the analysis including the fitting curve

plot_with_fitting_curve 25

Usage

```
plot_with_fitting_curve(pep_name, data_df_all_steps, sample_annotation, fit_df,
  fit_value_var = "fit", fit_step = "3_loess_fit", order_column = NULL,
  sample_id_col = "FullRunName", batch_column = "MS_batch",
  measure_column = "Intensity", feature_id_column = "peptide_group_label",
  geom = c("point", "line"), color_by_batch = F, facet_by_batch = F,
  title = NULL, requant = NULL, theme = "classic")
```

Arguments

data frame, similar to df_long proBatch, where each row is a single feature in a single sample, at a certain step of the analysis (minimally raw and after linear normalization) thus it has minimally the following columns: sample_id_col, feature_id_column, measure_column, and fit_step, but usually also m_score

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

order_column in sample_annotation that determines sample order. It is used for

certain diagnostics and normalisations.

sample_id_col name of the column in sample_annotation file, where the filenames (colnames

of the data matrix are found)

batch_column column in sample_annotation that should be used for batch comparison

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

otherwise, it is used internally for consistency

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this

corresponds to the row names.

geom for the intensity measure_col profile: color_by_batch (logical) whether to color points by batch

facet_by_batch (logical) whether to plot each batch in its own facet title the string indicating the source of the peptides

requant if data frame: requant values; if logical: whether to indicate requant values

(requires 'requant' or 'm_score' column in df_long)

theme plot theme (default is 'classical'; other options not implemented)

Value

ggplot-class plot with minimally two facets (before and after non-linear fit) with measure_column (Intensity) vs order_column (injection order) for selected peptides (specified in pep_name)

See Also

Other feature-level diagnostic functions: plot_iRTs, plot_peptide_level, plot_spike_ins

26 proBatch

proBatch	proBatch: A package for diagnostics and correction of batch effects, primarily in proteomics

Description

It adresses the following needs:

- prepare the original data (e.g. OpenSWATH output matrix and sample annotation file) for analysis. However, you might need to use 'SWATH2stats' additionally
- Diagnose batch effects, sample-wide and feature-level
- Correct for batch effects (normalize the data). Other useful package for this purpose is 'Normalyzer'.

Arguments

`		
	df_long	data frame where each row is a single feature in a single sample. It minimally has a sample_id_col, a feature_id_column and a measure_column, but usually also an m_score (in OpenSWATH output result file)
	data_matrix	features (in rows) vs samples (in columns) matrix, with feature IDs in rownames and file/sample names as colnames. Usually the log transformed version of the original data
sample_annotation		
		data matrix with:
		 sample_id_col (this can be repeated as row names) biological covariates technical covariates (batches etc)
	sample_id_col	name of the column in sample_annotation file, where the filenames (colnames of the data matrix are found)
	batch_column	column in sample_annotation that should be used for batch comparison
	order_column	column in sample_annotation that determines sample order. It is used for certain diagnostics and normalisations.

 $otherwise, it is used internally for consistency \\ feature_id_column$

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

measure_column if df_long is among the parameters, it is the column with expression/abundance/intensity;

Details

To learn more about proBatch, start with the vignettes: 'browseVignettes(package = "proBatch")'

quantile_normalize 27

quantile_normalize	Quantile normalization of the data, ensuring that the row and column
	names are retained

Description

Quantile normalization of the data, ensuring that the row and column names are retained

Usage

```
quantile_normalize(data_matrix)
```

Arguments

data_matrix log transformed data matrix (features in rows and samples in columns)

Value

'data_matrix'-size matrix, with columns quantile-normalized

```
remove_peptides_with_missing_batch

*Remove features missing in at least one batch
```

Description

Cleans dataset df_long (proBatch) by removing all features that are not present in every batch

Usage

```
remove_peptides_with_missing_batch(df_long, batch_column = "MS_batch.final",
    feature_id_column = "peptide_group_label")
```

Arguments

df_long data frame where each row is a single feature in a single sample. It minimally has

a $sample_id_col$, a $feature_id_column$ and a $measure_column$, but usually

also an m_score (in OpenSWATH output result file)

batch_column in sample_annotation that should be used for batch comparison

feature_id_column

name of the column with feature/gene/peptide/protein ID used in the long format representation df_long. In the wide formatted representation data_matrix this corresponds to the row names.

Details

useful for some downstream functions as ComBat normalization, that would not work otherwise

Value

df_long (proBatch) like data frame freed of features that were not detected in each batch

See Also

Other dataset cleaning functions: clean_requants, summarize_peptides

```
sample_annotation_to_colors
```

Generate colors for sample annotation

Description

Convert the sample annotation data frame to list of colors the list is named as columns included to use in potting functions

Usage

```
sample_annotation_to_colors(sample_annotation, columns_for_plotting = NULL,
    sample_id_column = NULL, factor_columns = NULL,
    not_factor_columns = NULL, rare_categories_to_other = T,
    numerics_to_log = F, numeric_palette_type = "brewer", granularity = 10)
```

Arguments

sample_annotation

data matrix with:

- 1. sample_id_col (this can be repeated as row names)
- 2. biological covariates
- 3. technical covariates (batches etc)

columns_for_plotting

only consider these columns from sample_annotation

factor_columns of sample_annotation to be treated as factors. Note that factor and character columns are treated as factors by default.

not_factor_columns

don't treat these columns as factors. This can be used to override the default behaviour of considering factors and character columns as factors.

 $rare_categories_to_other$

if True rare categories will be merged as other

numerics_to_log

NOT IMPLEMENTED!

numeric_palette_type

palette to be used for numeric values coloring

granularity number of colors to map to the number vector (equally spaced between minimum and maximum)

Value

list of colors

```
sample_random_peptides
```

sample random peptides for diagnostics

Description

sample random peptides for diagnostics

Usage

```
sample_random_peptides(proteome, seed = 1, pep_per_group = 3,
  groups_RT = 10, groups_intensity = 5)
```

Arguments

summarized_proteome

summarize_peptides

Summarize run features

Description

Summarizes various peptide properties on a per sample basis. By default will summarize RT, Intensity and m_score. If your feature does not have some of these set them to NULL when calling.

Usage

```
summarize_peptides(df_long, sample_id_col = "FullRunName",
  feature_id_column = "peptide_group_label", RT = "RT",
  Intensity = "Intensity", m_score = "m_score")
```

Details

summarize peptides by sample (ranking) and on the contrary, across peptide-wise across samples

Value

a data frame summarizing features in a dataset on a per sample basis. The following columns are returned: 'RT_mean', 'Int_mean', 'numb_requants', 'median_m_score', 'mean_m_score', 'median_good_m_score' (median of 'm_score' excluding requants)

See Also

Other dataset cleaning functions: clean_requants, remove_peptides_with_missing_batch

Index

```
*Topic datasets
                                                 plot_boxplot
    example_peptide_annotation, 10
                                                         (plot_sample_means_or_boxplots),
    example_proteome, 10
    example_sample_annotation1, 11
                                                 plot_clustering, 15
                                                 plot_corr_between_samples, 16
as.POSIXct, 7, 8
                                                 plot_corr_plot_protein, 16
                                                 plot_heatmap, 17
boxplot_all_steps, 3
                                                 plot_iRTs, 8, 18, 20, 24, 25
                                                 plot_pca, 19
clean_requants, 3, 28, 29
                                                 plot_peptide_level, 18, 19, 23-25
color_list_to_df, 4
                                                 plot_pvca, 21
config, 5
                                                 plot_sample_corr_distribution, 22
convert_to_matrix, 6, 13, 14
                                                 plot_sample_mean, 8
correct_with_ComBat (config), 5
                                                 plot_sample_mean
                                                         (plot_sample_means_or_boxplots),
date_to_sample_order, 7
dates_to_posix, 7
                                                 plot_sample_means_or_boxplots, 22
define_batches_by_MS_pauses, 8
                                                 plot_spike_ins, 18, 20, 23, 25
define_batches_by_MS_pauses_within_instrumentplot_with_fitting_curve, 18, 20, 24, 24
                                                 plotDendroAndColors, 15
distribution_of_cor, 9
                                                 proBatch, 3, 4, 6, 13, 14, 25, 26, 27, 28
                                                 proBatch-package (proBatch), 26
example_peptide_annotation, 10
                                                 quantile_normalize, 27
example_proteome, 10
\verb|example_sample_annotation1|, 11|
                                                 remove_peptides_with_missing_batch, 4,
                                                         27, 29
fit_nonlinear, 11
                                                 sample_annotation_to_colors, 15, 17, 21,
generate_colors_for_numeric, 12
get_sample_corr_distrib, 12
                                                 sample_random_peptides, 29
                                                 summarize_peptides, 4, 28, 29
hclust, 15
join_data_matrices, 6, 13, 14
matrix_to_long, 6, 13, 14
merge_rare_levels, 15
normalize_custom_fit (config), 5
normalize_medians_batch (config), 5
normalize_medians_global(config), 5
pheatmap, 17
plot_boxplot, 3
```