We claim:

5

10

25

30

1. A (hetero)cyclylcarboxanilide of the formula I,

in which variables are as defined below:

- A is phenyl or an at least monounsaturated 5- or 6-membered heterocycle having 1, 2 or 3 heteroatoms selected from the group consisting of N, O, S, S(=O) and S(=O)₂ as ring members, where phenyl and the at least monounsaturated 5- or 6-membered heterocycle may be unsubstituted or may carry 1, 2 or 3 radicals R^a, where
- is halogen, nitro, CN, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyl, C₁-C₄-haloalkoxy or phenyl, where phenyl may be unsubstituted or carries one, two or three radicals R^b selected from the group consisting of halogen, nitro, CN, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkoxy;
 - Y is oxygen or sulfur;
 - R¹ is H, OH, C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkyl, C_3 - C_6 -halocycloalkyl or C_1 - C_4 -haloalkoxy;
 - R² is halogen, nitro, CN, C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl or C₁-C₄-haloalkoxy;
- R^{3m}, R^{4m} are each independently of one another halogen, hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl, phenyl-C₁-C₄-alkyl, phenyl-C₂-C₄-alkenyl, phenyl-C₂-C₄-alkynyl, C₁-C₆-haloalkyl, C₃-C₆-haloalkenyl, C₂-C₆-haloalkynyl, phenyl-C₁-C₄-haloalkyl,

phenyl- C_2 - C_4 -haloalkenyl or phenyl- C_2 - C_4 -haloalkynyl, where phenyl or the phenyl moiety of phenyl- C_1 - C_4 -alkyl, phenyl- C_2 - C_4 -alkenyl, phenyl- C_2 - C_4 -haloalkyl, phenyl- C_2 - C_4 -haloalkenyl and phenyl- C_2 - C_4 -haloalkynyl may be unsubstituted or may carry one, two or three radicals R^b ; for m = 2 or 3 the variables R^{32} , R^{42} and R^{33} , R^{43} , respectively, may also be C_1 - C_6 -alkoxy;

is hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl, phenyl-C₁-C₄-alkyl, phenyl-C₂-C₄-alkenyl, phenyl-C₂-C₄-alkynyl, C₁-C₆-haloalkyl, C₃-C₆-halocycloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, phenyl-C₁-C₄-haloalkyl, phenyl-C₂-C₄-haloalkenyl or phenyl-C₂-C₄-haloalkynyl, where phenyl or the phenyl moiety of phenyl-C₁-C₄-alkyl, phenyl-C₂-C₄-alkenyl, phenyl-C₂-C₄-alkynyl, phenyl-C₁-C₄-haloalkyl, phenyl-C₂-C₄-haloalkenyl, phenyl-C₂-C₄-haloalkynyl may be unsubstituted or may carry one, two or three radicals R^b;

is hydrogen, C_1 - C_8 -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -haloalkyl, C_3 - C_6 -halocycloalkyl, C_2 - C_8 -haloalkenyl, C_2 - C_8 -haloalkynyl, phenyl, naphthyl, phenyl- C_1 - C_6 -alkyl, naphthyl- C_1 - C_6 -alkyl, phenyl- C_2 - C_6 -alkenyl, phenyl- C_2 - C_6 -alkynyl, phenyl- C_1 - C_6 -haloalkyl, phenyl- C_2 - C_6 -haloalkenyl or phenyl- C_2 - C_6 -haloalkynyl, where phenyl and naphthyl in the 9 last-mentioned groups may be unsubstituted or may carry 1, 2 or 3 substituents selected from the group consisting of R^b and R^7 , where R^7 is -(CR^8)= NOR^9 , where

R⁸ is hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-haloalkyl, C₃-C₆-halocycloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, phenyl, benzyl; where phenyl and the phenyl group in benzyl may be unsubstituted or may carry one, two or three radicals R^b; and

R⁹ is C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -halocycloalkyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkynyl, phenyl, phenyl- C_1 - C_4 -alkyl, phenyl- C_1 - C_4 -haloalkyl, phenyl- C_2 - C_4 -alkenyl, phenyl- C_2 - C_4 -haloalkynyl, where phenyl and the phenyl group in phenyl- C_1 - C_4 -alkyl, phenyl- C_1 - C_4 -haloalkyl, phenyl- C_2 - C_4 -alkenyl, phenyl- C_2 - C_4 -alkenyl, phenyl- C_2 - C_4 -haloalkenyl, phenyl- C_2 - C_4 -alkynyl and phenyl- C_2 - C_4 -haloalkynyl may be unsubstituted or may carry one, two or three radicals R^b ;

n is 0, 1, 2, 3 or 4; and

m is 1, 2 or 3;

- 5 or an agriculturally useful salt thereof.
 - 2. A (hetero)cyclylcarboxanilide of the formula I in which A is a radical of the formula

Ra2
$$\stackrel{*}{\underset{Ra1}{\bigvee}}$$
 $\stackrel{*}{\underset{Ra1}{\bigvee}}$ $\stackrel{*}{\underset{Ra2}{\bigvee}}$

where * means the point of attachment to C(=Y) and the variables are as defined below:

- 15 X, X₁ are each independently of one another N or CR^c, where R^c is H or has one of the meanings mentioned for R^b;
 - W is S or N-R^{a4}, where R^{a4} is hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy or phenyl which may be unsubstituted or may carry 1, 2 or 3 radicals R^b;
 - U is oxygen or sulfur;

20

25

Z is S, S(=O), S(=O)₂ or CH_2 ,

R^{a1} is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or halogen;

are each independently of one another hydrogen, halogen, nitro, CN,

C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₁-C₄-alkoxy, where the 5 last-mentioned groups may be substituted by halogen; and

 R^{a3} is hydrogen, halogen, nitro, CN, C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl, C_1 - C_4 -alkoxy, where the 5 last-mentioned groups may be substituted by halogen.

5

- The (hetero)cyclylcarboxanilide of the formula I according to claim 2 in which R^{a1} is hydrogen, halogen, C₁-C₂-alkyl, C₁-C₂-alkoxy or C₁-C₂-fluoroalkyl.
- 4. The (hetero)cyclylcarboxanilide of the formula I according to claim 2 or 3 in which
 10 A is a radical of the formula A-1a, A-2a or A-3a,

$$R^{a2}$$

(A-1a)

 R^{a3}
 R^{a4}
 R^{a4}
 R^{a4}
 R^{a1}
 R^{a1}

in which R^{a1} , R^{a2} , R^{a3} and R^{a4} are as defined in claim 2.

- The (hetero)cyclylcarboxanilide of the formula I according to claim 4 in which A is a radical A-1a where R^{a1} = halogen and R^{a2} = hydrogen, or is a radical A-2a where R^{a1} = C_1 - C_2 -fluoroalkyl, R^{a3} = is hydrogen and R^{a4} = C_1 - C_4 -alkyl or is a radical A-3a where R^{a1} = C_1 - C_2 -fluoroalkyl and R^{a3} = C_1 - C_4 -alkyl.
- 20 6. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which R¹ is hydrogen.
- 7. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which R² is C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro, cyano or halogen.
 - 8. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which n is 0 or 1.
- 30 9. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which m is 1.
 - The (hetero)cyclylcarboxanilide of the formula I according to claim 9 in which R³¹ and R⁴¹ are each independently of one another hydrogen or C₁-C₄-alkyl.

35

11. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding

claims in which R^5 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -halocycloalkyl, phenyl, phenyl- C_1 - C_4 -alkyl, phenyl- C_1 - C_4 -haloalkyl, where phenyl in the three last-mentioned radicals may be unsubstituted or may carry one, two or three radicals R^b .

- 5
- The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which R⁶ is C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl, C₃-C₆-halocycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₂-C₄-alkynyl, C₂-C₄-haloalkynyl, phenyl-C₁-C₂-alkyl or phenyl, where phenyl in the two last-mentioned radicals may be unsubstituted or may carry one or two halogen groups.
 - 13. The (hetero)cyclylcarboxanilide of the formula I according to any of the preceding claims in which Y is oxygen.
- 15
- The use of (hetero)cyclylcarboxanilides of the formula I according to any of the preceding claims and of agriculturally useful salts thereof for controlling harmful fungi.
- 20 15. A crop protection composition, comprising at least one (hetero)cyclylcarbox-anilide of the formula I according to any of claims 1 to 13 or an agriculturally useful salt thereof.
- 16. A method for controlling harmful fungi, which comprises treating the harmful fungi, their habitat or the plants, areas, materials or spaces to be kept free from them with a fungicidally effective amount of at least one (hetero)cyclylcarbox-anilide of the formula I according to any of claims 1 to 13 or an agriculturally useful salt thereof.