Title

D. Zack Garza

Tuesday 13th October, 2020

Contents

1	Mor	nday, September 28
	1.1	Kempf's Theorem
		Good Filtrations and Weyl Filtrations
		Cohomological Criteria for Good Filtrations

Monday, September 28

1.1 Kempf's Theorem

Next topic: Kempf's Vanishing Theorem. Proof in Jantzen's book involving ampleness for sheaves.

Setup:

We have

$$G$$
 a reductive algebraic group over $k=\bar{k}$ \subseteq \uparrow B the Borel subgroup \subseteq \uparrow T its maximal torus

along with the weights X(T).

We can consider derived functors of induction, yielding $R^n \operatorname{Ind}_B^G \lambda = \mathcal{H}^n(G/B, \mathcal{L}(\lambda)) := H^n(\lambda)$ where $\mathcal{L}(\lambda)$ is a line bundle and G/B is the flag variety.

Recall that

- $H^0(\lambda) = \operatorname{Ind}_B^G(\lambda),$
- $\lambda \notin X(T)_+ \implies H^0(\lambda) = 0$ $\lambda \in X(T)_+ \implies L(\lambda) = \operatorname{Soc}_G H^0(\lambda) \neq 0.$

Theorem 1.1.1(Kempf).

If $\lambda \in X(T)_+$ a dominant weight, then $H^n(\lambda) = 0$ for n > 0.

Remark 1.1.1.

In char (k) = 0, $H^n(\lambda)$ is known by the Bott-Borel-Weil theorem. In positive characteristic, this is not know: the characters char $H^n(\lambda)$ is known, and it's not even known if or when they vanish. Wide open problem!

Could be a nice answer when p > h the Coxeter number.

1.2 Good Filtrations and Weyl Filtrations

We define two classes of distinguished modules for $\lambda \in X(T)_+$:

- $\nabla(\lambda) := H^0(\lambda) = \operatorname{Ind}_B^G \lambda$ the costandard/induced modules.
- $\Delta(\lambda) = V(\lambda) := H^0(-w_0\lambda) = \operatorname{Ind}_B^G \lambda$ the standard/Weyl modules
 - Here w_0 is the longest element in the Weyl group

We have

$$L(\lambda) \hookrightarrow \nabla(\lambda)\Delta(\lambda)$$
 $\longrightarrow L(\lambda)$.

We define the category Rat-G of rational G-modules. This is a highest weight category (as is e.g. Category \mathcal{O}).

Definition 1.2.1 (Good Filtrations).

An (possibly infinite) ascending chain of G-modules

$$0 < V_0 \subset V_1 \subset V_2 \subset \cdots \subset V$$

is a **good filtration** of V iff

- 1. $V = \bigcup_{i>0} V_i$
- 2. $V_i/V_{i-1} \cong H^0(\lambda_i)$ for some $\lambda_i \in X(T)_+$.

In characteristic zero, the H^0 are irreducible and this recovers a composition series. Since we don't have semisimplicity in this category, this is the next best thing.

Definition 1.2.2 (Weyl Filtration).

With the same conditions of a good filtration, a chain is a **Weyl filtration** on V iff

- 1. $V = \bigcup_{i>0} V_i$
- 2. $V_i/V_{i-1} \cong V(\lambda_i)$ for some $\lambda_i \in X(T)_+$.

I.e. the different is now that the quotients are standard modules.

Definition 1.2.3 (Tilting Modules).

V is a **tilting module** iff V has both a good filtration and a Weyl filtration.

Theorem 1.2.1(Ringel, 1990s).

Let $\lambda \in X(T)_+$ be a dominant weight. Then there is a unique indecomposable highest weight tilting module $T(\lambda)$ with highest weight λ .

Example 1.2.1.

We have the following situation for type A_2 :

Figure 1: Image

And thus a decomposition:

Figure 2: Image

The picture to keep in mind is the following: 4 types of modules, all indexed by dominant weights:

1.3 Cohomological Criteria for Good Filtrations

We'll take cohomology in the following way: let G be an algebraic group scheme, and define

$$H^n(G,M) := \operatorname{Ext} G^n(k,M)$$

where to compute $\operatorname{Ext}_G^n(M,N)$ we take an injective resolution $N \hookrightarrow I_*$, apply $\operatorname{hom}_G(M,\cdot)$, and take kernels mod images.

Letting $\lambda \in \mathbb{Z}\Phi$ be integral, so $\lambda_{\alpha \in \Delta} = \sum n_{\alpha}\alpha$, define the **height**

$$\operatorname{ht}(\lambda) = \sum_{\alpha \in \Delta} n_{\alpha}.$$

Lemma 1.1(?).

There exists an injective resolution of B-modules

$$0 \to k \to I_0 \to I_1 \to \cdots$$

where

1. I_0 is the injective hull of k,

2. All weights of I_j , say μ satisfy $\operatorname{ht}(\mu) \geq j$.

$$k[u]$$
 an injective B -module $k \hookrightarrow \operatorname{Ind}_T^B k := I_0 = k[u].$

We thus get a diagram of the form

Figure 3: Image

Proposition 1.3.1(?).

Let $H \leq G$, then there exists a spectral sequence

$$E_2^{i,j} = \operatorname{Ext}_G^i(N, R^j \operatorname{Ind}_H^G M) \implies \operatorname{Ext}_H^{i+j}(N, M)$$

for $N \in \text{Mod}(G), M \in \text{Mod}(H)$.

Example 1.3.1.

Let H=B and take G=G itself, and let N=k the trivial module and $M\in \mathrm{Mod}(G)$ be any rational G-module. We have

$$E_2^{i,j} = \operatorname{Ext}_B^i(k, R^j \operatorname{Ind}_B^G M) \implies \operatorname{Ext}_B^{i+j}(k, M).$$

Observations:

$$0. R^0 \operatorname{Ind}_B^G k = \operatorname{Ind}_B^G k = k.$$

- 1. The tensor identity works here, i.e. $R^j \operatorname{Ind}_B^G M = (R^j \operatorname{Ind}_B^G k) \otimes M$.
- 2. $R^{j}\operatorname{Ind}_{B}^{G}k=0$ for j>0 since we have a dominant weight.

The spectral sequence thus collapses on E_2 :

Figure 4: Image

Thus

$$E_2^{i,0} = \text{Ext}_B^i(k, M) = H^i(B, M).$$

Corollary 1.3.1(?).

Let $G \supseteq P \supseteq B$ where P is a parabolic subalgebra and let M be a rational G-module. Then $H^n(G,M) = H^n(P,M) = H^n(B,M)$ for all $n \ge 0$.

Example 1.3.2.

Fix a Dynkin diagram and take a subset $J \subseteq \Delta$.

Figure 5: i

Then $L_j \rtimes U_j = P_J = P$, and we have a decomposition like

Figure 6: Image

Proposition 1.3.2(?).

Let $M \in \text{Mod}(P)$ with $P \supseteq B$.

- a. If dim $M < \infty$ then dim $H^n(P, M) < \infty$ for all n.
- b. If $H^j(P, M) \neq 0$ then there exists λ a weight of M with $-\lambda \in \mathbb{N}\Phi^+$ and $\operatorname{ht}(-\lambda) \geq j$.