

Construção de Compiladores

Analisador de precedência fraca

Professor: Luciano Ferreira Silva, Dr.

Analisador de precedência fraca

- O analisador sintático preditivo faz o reconhecimento pela estratégia de construção <u>descendente</u>;
- O analisador sintático de precedência fraca faz o reconhecimento pela estratégia de construção ascendente;
- Também utiliza o autômato de pilha;
 - ✓ Que neste caso é orientado por uma tabela, chamada tabela de deslocamento e redução, gerada a partir da análise da gramática;

- Este tipo de analisador é adequado para reconhecer sentenças de uma classe restrita de gramáticas livres de contexto. Suas propriedades são:
 - 1. A gramática não pode conter nenhuma produção cujo lado direito seja a string vazia;
 - 2. A gramática deve ser unicamente inversível, ou seja, não pode haver duas produções que tenham o mesmo lado direito;

- 3. A gramática deve ser livre de ciclos;
 - Se A é um símbolo não-terminal na gramática, não deve existir uma sequência de derivações que produza como resultado o mesmo símbolo A;
- 4. As demais propriedades dependem da avaliação de relações um pouco mais elaboradas.
 - ✓ Para auxiliar nas suas definições, associa-se dois conjuntos a cada símbolo não-terminal: o *ESQ* e o *DIR*;

- \checkmark Seja X o símbolo não-terminal em análise, então:
 - ✓ ESQ(X) contém todos os símbolos que podem dar início à expansão de X por meio de uma quantidade qualquer de derivações;

$$ESQ(X) = \{ Y \in V_T \cup V_N \mid X \stackrel{\pm}{\Rightarrow} Y\alpha, \text{ para } \alpha \in (V_T \cup V_N)^* \}$$

 \checkmark DIR(X) contém todos os símbolos que podem terminar à expansão de X por meio de uma quantidade qualquer de derivações;

$$DIR(X) = \{ Y \in V_T \cup V_N \mid X \stackrel{+}{\Rightarrow} \alpha Y, \text{ para } \alpha \in (V_T \cup V_N)^* \}$$

- Por exemplo, considere a gramática F, com:
 - ✓ Símbolos não-terminais $V_N = \{S, X\}$, sendo S o símbolo sentencial;
 - ✓ Símbolos terminais $V_T = \{a, b, c, d, e\}$
 - ✓ Produções $P = \{S \rightarrow aSb, S \rightarrow Xc, X \rightarrow d, X \rightarrow e\}$
- Os conjuntos ESQ e DIR para os dois símbolos nãoterminais são:
 - \checkmark ESQ(S) = {X, a, d, e}
 - $\checkmark DIR(S) = \{b, c\}$
 - $\checkmark ESQ(X) = \{d, e\}$
 - $\checkmark DIR(X) = \{d, e\}$
- Pode-se agora definir as relações de precedência de Wirth-Weber;
 - ✓ Que são analisadas para avaliar se uma gramática é ou não de precedência fraca;

- Seja $G = (V_N, V_T, P, S)$ uma gramática livre de contexto;
- As relações \approx , \ll e \gg são definidas para dois símbolos X, $Y \in V_N \cup V_T$ pelas seguintes regras:
 - 1. $X \approx Y$ se existe pelo menos uma produção em G cujo lado direito tenha X imediatamente antes de Y,

$$A \rightarrow \alpha XY\beta$$

Sendo α e β quaisquer strings em G.

II. $X \ll Y$ se existe um símbolo não-terminal $Z \in V_N$ tal que

$$X \approx Z e Y \in ESQ(Z)$$

- III. $X \gg a$, $a \in V_T$, se uma das duas condições é verdadeira:
 - Existe um símbolo não- terminal $Z \in V_N$ tal que $Z \approx a$ e $X \in DIR(Z)$
 - b) Existem símbolos não-terminais $Z_1, Z_2 \in V_N$ tal que $Z_1 \approx Z_2$ e $X \in DIR(Z_1)$ e $a \in ESQ(Z_2)$

- Pode-se obter agora as condições restantes para determinar quando uma gramática é de precedência fraca:
 - i. Se a relação $X \gg Y$ ocorre para dois símbolos X, Y de uma gramática G, então não pode ocorrer na gramática a relação $X \ll Y$ ou $X \approx Y$;
 - ii. Quando duas produções de G terminam com uma mesma string β , como em $A \to \alpha X \beta$ e $B \to \beta$;
 - O par de símbolos *X*, *B* não pode estar associado por nenhuma das relações de Wirth-Weber;
- Se essas duas condições são observadas juntamente com aquelas apresentadas anteriormente, então G é uma gramática de precedência fraca.

Na gramática F percebe-se que:

- 1. As regras 1, 2 e 3 podem ser facilmente verificadas;
- 2. Analisado as regras de Wirth-Weber:
 - 1. Checando a operação ≈:
 - i. $S \rightarrow aSb$, verifica-se $a \approx S$, $S \approx b$;
 - *ii.* $S \rightarrow Xc$, verifica-se $X \approx c$.
 - 2. Checando a operação «:
 - i. Analisa-se todas as relações \approx que tenham do lado direito um símbolo não-terminal: $a \approx S$;
 - ii. Pela regra, $a \ll Z$ para cada $Z \in ESQ(S) = \{X, a, d, e\}$: $a \ll X$, $a \ll a$, $a \ll d$, $e \approx a \ll e$.

- 3. Checando a operação »:
 - i. Primeiro: analisa-se todas as relações \approx que tenham do lado esquerdo um símbolo não-terminal: $S \approx b$, $X \approx c$;
 - a) $S \approx b \in DIR(S) = \{b, c\}: b \gg b, c \gg b$;
 - b) $X \approx c \in DIR(S) = \{d, e\}: d \gg c, e \gg c$;
 - ii. Segundo: analisa-se de todas relações ≈ que possuem símbolos não-terminais em ambos os lados.
 - a) No caso particular da gramática F tal situação não ocorre;

 Tabela da relações de Wirth-Weber para a gramática F:

	S	X	a	b	C	d	e
S				æ			
X				3	æ		
а	n	«	«	4		«	«
b		4		>>			
С				>>			
d					>>		
e					>>		

- Condição 1 atendida: não há nenhuma posição da tabela na qual a relação » apareça junto com outras relações;
- Condição 2 atendida: não há nenhum par de produções que terminem com a mesma string;
- Portanto F é uma gramática de precedência fraca

- A tabela DR é a base para a operação de reconhecimento do analisador sintático de precedência fraca;
- Construída com base nas relações de Wirth-Weber;
- Deve-se considerar primeiramente duas regras adicionais:
 - ✓ Seja S o símbolo sentencial da gramática e \$ o símbolo delimitador, é estabelecido então que:
 - 1. $\$ \times X$ para cada símbolo $X \in ESQ(S)$;
 - Para F: \$ « X, \$ « a, \$ « d, \$ « e;
 - 2. $X \gg$ \$ para cada símbolo $X \in DIR(S)$;
 - Para F: *b* » \$, *c* » \$;

- Considere X um símbolo qualquer da gramática e t um símbolo terminal que compõe a sentença, então na tabela:
 - ✓ Se existir $X \ll t$ ou $X \approx t$ coloca-se D no cruzamento da linha X com a coluna t.
 - A entrada *D* indica que a ação deve ser de empilhar o próximo símbolo da sentença (deslocamento)
 - ✓ Se existir $X \gg t$ coloca-se R no cruzamento da linha X com a coluna t.
 - A entrada *R* determina a <u>redução</u> dos símbolos no topo da pilha que combinam com o lado direito de uma produção.

	S	X	a	b	C	d	e
S				*			1
X				1	*		
a	*	«	«			«	«
b				>>			
C	3			>>			
d					>>		
e				À	>>		

	a	b	c	d	e	\$
S		D				
X			D	A.		
а	D	7 <		D	D	
b		R			\setminus	R
C		R			\	R
d		\	R			
\overline{e}			R			
\$	D			D	D	

•

\$ «
$$X$$
, \$ « a , \$ « d , \$ « e , b » \$, c » \$;

Observação:

- ✓ Para entradas em branco não há uma ação que possa ser tomada que leve ao reconhecimento da sentença;
 - Portanto, tal situação indica uma condição de erro no reconhecimento

A gramática F:

- ✓ Símbolos não-terminais $V_N = \{S, X\}$, sendo S o símbolo sentencial;
- ✓ Símbolos terminais $V_T = \{a, b, c, d, e\}$
- ✓ Produções $P = \{S \rightarrow aSb, S \rightarrow Xc, X \rightarrow d, X \rightarrow e\}$
- Os conjuntos ESQ e DIR para os dois símbolos não-terminais são:
 - $\checkmark ESQ(S) = \{X, a, d, e\}$
 - $\checkmark DIR(S) = \{b, c\}$
 - $\checkmark ESQ(X) = \{d, e\}$
 - $\checkmark DIR(X) = \{d, e\}$

- 1. A gramática não pode conter nenhuma produção cujo lado direito seja a string vazia;
- A gramática deve ser unicamente inversível, ou seja, não pode haver duas produções que tenham o mesmo lado direito;
- 3. A gramática deve ser livre de ciclos;
 - Se A é um símbolo não-terminal na gramática, não deve existir uma sequência de derivações que produza como resultado o mesmo símbolo A;