7.5 方向导数与梯度

- 一、方向导数
- 二、多元函数的梯度
- 三、数量场和向量场

7.5.1 方向导数

定义: 若函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 处

沿方向l(方向角为 α , β , γ)存在下列极限: ρ /

$$\lim_{\rho \to 0^{+}} \frac{f(x_{0} + \Delta x, y_{0} + \Delta y, z_{0} + \Delta z) - f(x_{0}, y_{0}, z_{0})}{\rho}$$

记作
$$\frac{\partial f}{\partial l}\Big|_{P_0}$$

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2},$$

$$\Delta x = \rho \cos \alpha, \ \Delta y = \rho \cos \beta, \ \Delta z = \rho \cos \gamma$$
则称 $\frac{\partial f}{\partial l}$ 为函数在点 P_0 处沿方向 l 的方向导数.

 $P_0(x_0, y_0, z_0)$

定理。若函数 f(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 处可微,

则函数在该点沿任意方向1的方向导数存在,且有

$$\left. \frac{\partial f}{\partial l} \right|_{P_0} = f_x(P_0) \cos \alpha + f_y(P_0) \cos \beta + f_z(P_0) \cos \gamma \rho \right/ P$$

其中 $\cos \alpha, \cos \beta, \cos \gamma$ 为 l的方向余弦.

证明: 由函数 f(x,y,z) 在点 P_0 可微, 得

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z + o(\rho)$$

$$= \rho \left(\frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma \right) + o(\rho)$$

数
$$\frac{\partial f}{\partial l}\Big|_{P_0} = \lim_{\rho \to 0^+} \frac{\Delta f}{\rho} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

对于可微的二元函数f(x,y),在点 $P_0(x_0,y_0)$ 处沿方向 l

(方向余弦为 $\cos \alpha, \cos \beta$) 的方向导数为

$$\frac{\partial f}{\partial l}\Big|_{P_0} = \lim_{\rho \to 0^+} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\rho}$$
$$= f_x(P_0)\cos\alpha + f_y(P_0)\cos\beta$$

$$(\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}, \ \Delta x = \rho \cos \alpha, \Delta y = \rho \cos \beta)$$

特别: 若 f(x,y) 在点 P_0 存在关于 x 的偏导数

• 当
$$l$$
 与 x 轴同向 $(\alpha = 0, \beta = \frac{\pi}{2})$ 时,有 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}$

• 当
$$l$$
 与 x 轴反向 $(\alpha = \pi, \beta = \frac{\pi}{2})$ 时,有 $\frac{\partial f}{\partial l} = -\frac{\partial f}{\partial x}$

即使函数在某点沿任何方向的方向导数都存在,也不能保证函数在该点的偏导数存在. (同时也不能保证函数在该点货点.)

例如, $z = \sqrt{x^2 + y^2}$ 在点 (0,0) 沿任何方向的方向导数都存在,且

$$\left. \frac{\partial f}{\partial l} \right|_{(0,0)} = \lim_{\rho \to 0^+} \frac{\sqrt{(0 + \Delta x)^2 + (0 + \Delta y)^2 - 0}}{\rho} = 1.$$

但函数在点 (0,0) 处的两个偏导数都不存在.

$$\lim_{\Delta x \to 0} \frac{\sqrt{(0 + \Delta x)^2 + (0 + \Delta y)^2} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

例. 求函数 $u = x^2yz$ 在点 $P_0(1, 1, 1)$ 沿方向 l = (2, -1, 3) 的方向导数.

解:向量1的方向余弦为

$$\cos \alpha = \frac{2}{\sqrt{14}}, \quad \cos \beta = -\frac{1}{\sqrt{14}}, \quad \cos \gamma = \frac{3}{\sqrt{14}}.$$

$$\therefore \frac{\partial u}{\partial l}\Big|_{P_0} = \left(2xyz \cdot \frac{2}{\sqrt{14}} - x^2z \cdot \frac{1}{\sqrt{14}} + x^2y \cdot \frac{3}{\sqrt{14}}\right)\Big|_{(1, 1, 1)}$$

$$= \frac{6}{\sqrt{14}}$$

7.5.2 多元函数的梯度

方向导数公式
$$\frac{\partial f}{\partial l}\Big|_{P_0} = f_x(P_0)\cos\alpha + f_y(P_0)\cos\beta + f_z(P_0)\cos\gamma$$

令向量 $e_l = (\cos\alpha, \cos\beta, \cos\gamma)$

令同軍
$$\mathbf{e}_l = (\cos \alpha, \cos \beta, \cos \gamma)$$

$$\frac{\partial f}{\partial l}\Big|_{P_0} = (f_x(P_0), f_y(P_0), f_z(P_0)) \cdot \mathbf{e}_l \qquad (|\mathbf{e}_l| = 1)$$

当 e_l 与向量 $(f_x(P_0), f_y(P_0), f_z(P_0))$ 的方向一致时,方向导数取最大值: $\|(f_x(P_0), f_y(P_0), f_z(P_0))\|$

这说明向量

 $(f_x(P_0), f_y(P_0), f_z(P_0))$ **方向**: f 变化率最大的方向 模: f 的最大变化率之值

定义. 向量 $(f_x(P_0), f_y(P_0), f_z(P_0))$ 称为函数 f(x, y, z) 在点 P_0 处的梯度 (gradient),记作 $\operatorname{grad} f(P_0)$ 或 $\nabla f(P_0)$,即 $\operatorname{grad} f(P_0) = \nabla f(P_0) = (f_x(P_0), f_y(P_0), f_z(P_0))$ $= f_x(P_0)\mathbf{i} + f_y(P_0)\mathbf{j} + f_z(P_0)\mathbf{k}$

同样可定义二元函数 f(x,y) 的梯度.

说明: 函数的方向导数为梯度在该方向上的投影.

例. 函数 $u = x^2 + 2xy^2 - 3z^2$ 在点 $P_0(2, -1, -1)$ 处沿什么方向的方向导数取得最大值和最小值? 最大值和最小值为多少?

解: 函数 $u = x^2 + 2xy^2 - 3z^2$ 在点 $P_0(2, -1, -1)$ 处的梯度为 $\operatorname{grad} u|_{P_0} = (2x + 2y^2, 4xy, -6z)|_{P_0} = (6, -8, 6),$ 故 u 在点 P_0 处沿梯度方向 (6, -8, 6) 的方向导数取得 最大值,最大值为 $\|\operatorname{grad} u|_{P_0}\| = 2\sqrt{34}.$

u 在点 P_0 处沿负梯度方向 (-6, 8, -6) 的方向导数取得最小值,最小值为 $-\|\text{grad }u\|_{P_0}\| = -2\sqrt{34}$.

7.5.3 数量场和向量场

数量场如:温度场,电位场等 函数————场 (物理量的分布) 向量场如:力场,速度场等

可微函数 f(P) — 梯度场 grad f(P) (有势场) (势)

注意: 向量场不一定都是梯度场.

内容小结

1. 方向导数

•可微函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 沿方向 l(方向 余弦为 $\cos\alpha,\cos\beta,\cos\gamma)$ 的方向导数为

$$\left. \frac{\partial f}{\partial l} \right|_{P_0} = f_x(P_0) \cos \alpha + f_y(P_0) \cos \beta + f_z(P_0) \cos \gamma$$

•可微函数 f(x,y) 在点 $P_0(x_0,y_0)$ 沿方向 l (方向余弦为 $\cos \alpha,\cos \beta$) 的方向导数为

$$\left. \frac{\partial f}{\partial l} \right|_{P_0} = f_x(P_0) \cos \alpha + f_y(P_0) \cos \beta$$

2. 梯度

• 三元函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 处的梯度为 $\operatorname{grad} f(P_0) = (f_x(P_0),f_y(P_0),f_z(P_0))$

• 二元函数 f(x,y) 在点 $P_0(x_0,y_0)$ 处的梯度为 $\operatorname{grad} f(P_0) = (f_x(P_0), f_y(P_0))$

3. 关系

•可微 方向导数存在 偏导数存在

•
$$\frac{\partial f}{\partial l}\Big|_{P_0} = \operatorname{grad} f(P_0) \cdot e_l$$
 梯度在 l 方向上的投影.

