Rechnernetze und Telekommunikation

IPv6

IPv6 - Warum?

- Mangel an IPv4-Adressen
 - 2011 waren keine neuen IPv4-Adressen mehr zu vergeben
 - 2³² (= ca. 4 Mrd.) ist nicht viel
- Neuer Adressierungsmodus "Anycast"
 - z.B. "an einen Router, der mich hört"
 - IPv4 kannte nur Unicast, Broadcast, Multicast
- Einfachere Adressstruktur
 - Einfacher Umzug/Umnummerierung von Adressen
- Eingebaute Unterstützung für
 - Mobilität (MobilelPv6)
 - Sicherheit (IPSec)
 - QoS (Dienstgüte)
- Einfacher Header, schnelleres Routing

IPv6 Adressen

- Länge: 128 Bit, (statt 32 Bit in IPv4)
- Notation
 - 8 Gruppen von je 4 Hexziffern
 - z.B.: 8000:0000:0000:0000:1234:32E1:1234:EDFA
 - Abkürzungen
 - "0000:" werden ":"
 - folgende ":" werden "::"
 - z.B: 8000::1234:32E1:1234:EDFA
 - Netze werden in der CIDR (also "/") Schreibweise angegeben
 - z.B. 3ffe::/16
- Jeder Rechner hat eine (oder mehrere) global erreichbare Adressen
 - Keine Adressübersetzung (NAT)

IPv6 Terminologie

IPv6 Martin Gergeleit

IPv6 - Addressierungs Modell

- Interfaces haben i.d.R. mehrere Adressen
 - Im Gegensatz zu IPv4
- Unicasts
 - Link Local
 - zur Adressierung von Knoten in abgeschlossenen Netzwerksegmenten sowie zur Autokonfiguration oder Neighbour-Discovery
 - Unique Local
 - private Adressen (RFC 4193)
 - Global
 - alle anderen
- Multicasts
 - Beginnen mit FF...

Unicast Adressformate (1)

Link Local (FE80::/10)

Unique Local (privat, FC00::/7)

- 40 Bit Random (0 letzte Bit im Prefix) soll auch Adress-Konflikte zwischen unterschiedFlichen privaten Netzen sehr unwahrscheinlich machen
- Es soll in Zukunft auch global UL-Adressen geben (1 letzte Bit im Prefix), dann garantiert unique

Unicast Adressformate (2)

Global Unicast

- ◆ 2000::/3 (also 2000:... bis 3fff:...)
 - Von der IANA vergebenen globalen Unicast-Adressen
 - ISPs erhalten /32-Netze oder kleiner
 - Endkunden erhalten /64 bis /48-Netze
 - -> 64...80 Bit für lokale/Host- Addressen!)

Multicast Adressen

ff00::/8 (ff...) stehen für Multicast-Adressen

- Es folgen 4 Bits für Flags und 4 Bits für den Scope
- Flags:
 - 0: Von der IANA permanent definierte wohlbekannte Multicast-Adressen
 - 1: (T-Bit gesetzt) Transient oder dynamisch zugewiesene Adressen
 - und weitere...

Scope (Gültigkeitsbereiche):

- 1: interfacelokal, diese Pakete verlassen die Schnittstelle nie. (Loopback)
- 2: link-lokal, werden von Routern grundsätzlich nie weitergeleitet.
- 4: adminlokal, der kleinste Bereich, dessen Abgrenzung in den Routern speziell administriert werden muss.
- 5: sitelokal, dürfen zwar geroutet werden, aber nicht von Border-Routern.
- 8: organisationslokal (implementiert im Routing-Protokoll)

IPv6 Martin Gergeleit

Interface ID (1)

Ursprünglich abgeleitet aus der IEEE 802 MAC-Adresse

Problem:

- InterfaceID wäre permanent einem Adapter zugeordnet
- Jede IPv6-Adresse wäre ziemlich eindeutig einem Gerät zuzuordnen, auch über mehrere Sessions und über unterschiedliche Provider hinweg
- Privacy!!

Interface ID (2)

- Alternative: Privacy Extensions (RFC 4941)
 - 64 Bit InterfaceID wird (pseudo-)zufällig erzeugt
 - Anschließend wird gefragt, ob diese Adresse bereits im lokalen existiert
 - Falls ja, nochmal
- Ein Wechsel der Interface ID wird periodisch erzwungen
 - Alte Verbindungen laufen auf der bisherigen Adresse weiter
 - Spätestens bei einem Neustart neue Adresse

IPv6
Martin Gergeleit

Spezielle IPv6 Adressen

- ::/128 (128 0-Bits)
 - die undefinierte Adresse, steht häufig für alle möglichen Adressen
- ::1/128 (127 0-Bits, ein 1-Bit)
 - die Adresse des eigenen Standortes (localhost, loopback)
- 0:0:0:0:0:0:ffff::/96 (80 0-Bits, gefolgt von 16 1-Bits)
 - für IPv4 mapped (abgebildete) IPv6 Adressen
 - die letzten 32 Bits enthalten die IPv4-Adresse

IPv4 vs. IPv6 Header Format

Feste Länge (40 Byte / 320 Bit) / keine Checksum!

IPv4 Header

- Feldname gleich in IPv4 und IPv6
 - Nicht mehr vorhanden in IPv6
 - Name und Position neu in IPv6
 - Neu in IPv6

IPv6 Header

Extension Headers (1)

- Alle weiteren Informationen als zus. "Extension Headers"
- ◆ Z.B.:

```
IPv6 header
next header =
TCP
```

```
TCP header + data
```

```
IPv6 header
next header =
Routing
```

```
IPv6 header
next header =
Routing
```

fragment of TCP header + data

Extension Headers (2)

- Extension Headers werden nur beim Empfänger bearbeitet
 - Viel geringerer Overhead als bei IPv4
 - Ausnahme: Hop-by-Hop Options Header
 - Keine 40 Bytes Limit für die Options wie in IPv4
- Mögliche Extension Headers
 - Fragmentierung
 - Hop-by-Hop Options
 - Routing
 - Authentication
 - Encryption

ICMPv6 Informational Messages

- Natürlich: Ping (Echo request/response) -> ping6
- Neighbor Discovery ICMP message types:
 - Router solicitation Fragt nach Routern
 - Router advertisement
 - Neighbor solicitation Fragt nach Nachbarn
 - Neighbor advertisement
 - Funktionen
 - Router discovery
 - Prefix discovery
 - Autoconfiguration of address & other parameters
 - Duplicate address detection (DAD)
 - Neighbor unreachability detection (NUD)
 - Link-layer address resolution

Router Advertisements

- Periodischer Multicast eines Ipv6 Routers an die "allnodes" multicast adresse (im Link Scope)
 - Inhalte (u.a.)
 - Prefix
 - Möglichst alle gültigen Prefixes an diesem Link
 - Benutzt für Autokonfiguration
 - "Get addresses from DHCP" Flag
 - Gibt an, dass DHCPv6 genutzt werden soll
 - "Get other from DHCP" Flag
 - Hole auch z.B. DNS-Info über DHCP
 - MTU-Größe
 - Minimum Link MTU für IPv6 sind 1280 Bytes!

Serverless Autoconfiguration ("Plug-n-Play")

- Hosts erzeugen Ihre Adresse aus den Router Advertisements
 - Subnet Prefix(e) werden aus den Muticasts gelernt
 - Die Interface IDs werden lokal erzeugt
 - MAC-Adresse oder davon abgeleitet (RFC 2373)
 - Oder Pseudo-Random (RFC 3041) anonymer!
- (Default-)Router-Adressen und Hop-Limit auch aus den Router Advertisements
- Informationen über höhere Ebenen (DNS, NTP,...) via Multicast/Anycast Discovery
- DHCPv6 bleibt alternativ möglich
 - Explizite Kontrolle

Andere Neighbor Discovery Messages

Router Solicitations

- Zur Start-up-Zeit, um sofort Antwort der Router zu bekommen
- Gesendet an die "All-Routers"-Multicastadr. (im Link Scope)

Neighbor Solicitations

- Zur Adress-Auflösung (statt ARP!): gesendet an die "Solicited Node" Multicastadresse
- Zur Erreichbarkeitserkenung: direkt an die Unicastadr.

Neighbor Advertisements

- Zur Adress-Auflösung: gesendet an Unicastadr. Des Anfragers
- Bei Link-Layer Adressänderungen: gesendet an die "All-Hosts"-Multicastadr.

IPv6
Martin Gergeleit

Übersicht Ipv4 vs. IPv6

F	ea	11	ır	ρ
	-c		41	•

Address length IPSec support QoS support

Fragmentation Packet size

Checksum in header

Options in header

Link-layer address resolution

Multicast membership

Router Discovery Uses broadcasts

Configuration

DNS name queries

IPv4

32 bits
Optional
Some

Hosts and routers 576 bytes

Yes Yes

ARP (broadcast)

Discovery Messáges

IGMP

Discovery (MLD)

Optional

Yes

Manual, DHCP

Uses A records

IPv6

128 bits Required

Better

Hosts only 1280 bytes

No No

Multicast Neighbor

Multicast Listener

Required

No

Automatic, DHCP

Uses AAAA

records

IPv4 nach IPv6 Übergangs-Mechanismen

Dual Stack

- IPv4 und IPv6 Stack parallel auf einem System
- Unterstützt von allen übliche Betriebsystemen

Tunneling

Nutzt die bestehende IPv4-Infrastruktur als virtuellen Link

IPv6 Martin Gergeleit

Tunneling

- Einkapselung eines IPv6-Paketes in einem IPv4-Paket
 - Möglich durch Router und Hosts
 - Kann manuell eingerichtet werden

IPv6
Martin Gergeleit

Automatisierter Tunnel mit 6to4 (RFC 3056)

- Jede IPv4-Adresse wird auf ein /48 großes IPv6-Netz abgebildet
 - Mit Präfix 2002 und der hexadezimal notierten IPv4-Adresse
 - IPv4-Hosts können über öffentliche 6to4-Relays IPv6 Ressourcen erreichen
 - Rückweg wieder über ein 6to4-Relay (mögl. ein anderes)
 - 192.88.99.1 als Anycast zum Erreichen eines 6to4-Relays

IPv6
Martin Gergeleit

Beispiel: 6to4-Tunnel

IPv6
Martin Gergeleit