(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003-203683

(P2003-203683A)(43)公開日 平成15年7月18日(2003.7.18)

(51) Int. Cl.

識別記号

FI

テーマコート (参考)

H01M 14/00 H01L 31/04

H01M 14/00

P 5F051

H01L 31/04

Z 5H032

審査請求 未請求 請求項の数12 OL (全7頁)

(21)出願番号

特願2001-400595(P2001-400595)

(22)出願日

平成13年12月28日(2001.12.28)

(71)出願人 000005186

株式会社フジクラ

東京都江東区木場1丁目5番1号

(72)発明者 岡田 顕一

東京都江東区木場一丁目5番1号 株式会

社フジクラ内

(72)発明者 松井 浩志

東京都江東区木場一丁目5番1号 株式会

社フジクラ内

(74)代理人 100064908

弁理士 志賀 正武 (外3名)

最終頁に続く

(54) 【発明の名称】光電変換素子用導電性ガラス

(57)【要約】:

【課題】色素増感太陽電池などの光電変換素子に用いら れる導電性ガラスにおいて、その表面の電気抵抗を大幅 に低減し、かつ光の透過量が低下しないようにし、光電 変換効率を髙める。

【解決手段】ガラス板11上にFTOなどからなる透明 導電膜12を設け、この透明導電膜12上に金属薄膜か ちなるグリッド13を設け、このグリッド13と透明導 電膜12を酸化スズなどからなる厚さ50nm以下の保 護薄膜17で被覆して、光電変換素子用導電性ガラスと する。このグリッド13は、その平面形状が、格子状、 櫛歯状などであり、金、銀、白金などからなる厚さ1~ 20μmのもので、メッキ法などで作られ、その開口率 が90~99%である。また、導電性ガラスのシート抵 抗は1~0.01Ω/□、波長550nmでの光線透過 率が60~90%である。

【特許請求の範囲】

【請求項1】ガラス表面に透明導電膜が設けられ、この 透明導電膜上に金属薄膜からなるグリッドが設けられ、 少なくともグリッドが保護薄膜で被覆されたことを特徴 とする光電変換素子用導電性ガラス。

【請求項2】グリッドの平面形状が、格子状または櫛歯 状であることを特徴とする請求項1記載の光電変換素子 用導電性ガラス。

【請求項3】グリッドの開口率が90~99%であるこ とを特徴とする請求項1記載の光電変換案子用導電性ガ 10 ラス。

【請求項4】グリッドをなす金属が、金、銀、白金、ク ロム、ニッケルのいずれかまたはこれらの2種以上の合 金であることを特徴とする請求項1記載の光電変換素子 用導電性ガラス。

【請求項5】グリッドが、メッキ法により形成されたも のであることを特徴とする請求項1記載の光電変換素子 用導電性ガラス。

【請求項6】グリッドの厚さが、 $1\sim20\mu m$ であるこ とを特徴とする請求項1記載の光電変換素子用導電性ガ 20 ラス。

【請求項7】保護薄膜が、酸化スズまたは酸化チタンか らなることを特徴とする請求項1記載の光電変換素子用 導電性ガラス。

【請求項8】保護薄膜をなす酸化チタンの厚さが、50 nm以下であることを特徴とする請求項1記載の光電変 換素子用導電性ガラス。

【請求項9】シート抵抗が、1~0.01Ω/□である ことを特徴とする請求項1記載の光電変換素子用導電性 ガラス。

【請求項10】波長550nmでの光線透過率が、60 ~90%であることを特徴とする請求項1記載の光電変 換素子用導電性ガラス。

【請求項11】請求項1ないし10のいずれかに記載の 光電変換素子用導電性ガラスを用いてなる光電変換素

【請求項12】色素増感太陽電池である請求項11記載 の光電変換素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、色素増感太陽電 池などの光電変換素子に用いられる導電性ガラスに関す る。

[0002]

【従来の技術】色素増感太陽電池は、スイスのグレツェ ルらが開発したもので、光電変換効率が高く、製造コス トが安いなどの利点があり、新しいタイプの太陽電池と して注目を浴びている。図10は、この色素増感太陽電 池の一例(特公平8-15097号公報)を示すもので ある。

【0003】図中符号1は、透明基板となるガラス板で あり、このガラス板1の一面にはインジュウムドープ酸 化スズ (ITO)、フッ素ドープ酸化スズ (FTO) な どの厚さ1μm程度の透明導電膜2が形成されて、導電 性ガラス3となっている。この導電性ガラス3の透明導 電膜2の上には、酸化チタン、酸化ニオジムなどの酸化 物半導体微粒子からなり、光増感色素が担持された酸化 物半導体多孔質膜4が形成されている。

【0004】また、符号5は、対極となる導電性ガラス であり、上記酸化物半導体多孔質膜4との間には、ヨウ 素/ヨウ素イオンなどのレドックス対を含む非水溶液か らなる電解液が満たされ、電解質層6となっている。ま た、電解質層6に代えて、ヨウ化銅、チオシアン銅など の固体のp形半導体からなるホール輸送層を設けるもの もある。この色素増感太陽電池では、太陽光などの光が 導電性ガラス3側から入射されると、透明導電膜2と対 極5との間に起電力が生じる。

【0005】ところで、このような色素増感太陽電池に あっては、導電性ガラス3には通常ガラス板としての耐 熱ガラス板の表面に透明導電膜2となる厚さ0.5~1 μm程度のITOあるいはFTOを予め蒸着、スパッタ などの薄膜形成法により被覆した市販の透明導電ガラス が使用されている。

【0006】しかしながら、この透明導電ガラスは、材 料コスト、加工コストが嵩み、かつ透明導電膜2をなす ITO、FTOの比抵抗が10⁻⁴~10⁻³Ω·cm程度 であり、銀、金などの金属の比抵抗の約100倍の値を 示すことから、透明導電膜2としたときの抵抗値が高 く、これにより太陽電池としての光電変換効率が低くな る問題があった。

【0007】このため、透明導電ガラスの透明導電膜2 の抵抗を下げるために、透明導電膜2の厚さを厚くする ことが考えられるが、透明導電膜2の膜厚を5μm程度 に厚くすると、透明導電膜2による光吸収が大きくな り、これによって透明導電ガラスの光線透過率が約75 %程度から約20%程度にまで低下し、酸化物半導体多 孔質膜3に届く光が減少し、これによっても太陽電池と した際の光電変換効率が低下することになる。

[0008]

【発明が解決しようとする課題】よって、本発明におけ る課題は、ガラス表面に設けられ、電子の通路として機 能する導電層の電気抵抗値が低く、しかも透明性の高い 光電変換素子用導電性ガラスを得ることにある。

[0009]

【課題を解決するための手段】かかる課題を解決するた めに、請求項1にかかる発明は、ガラス表面に透明導電 膜が設けられ、この透明導電膜上に金属薄膜からなるグ リッドが設けられ、少なくともグリッドが保護薄膜で被 覆されたことを特徴とする光電変換素子用導電性ガラス 50 である。

40

30

20

4

【0010】請求項2にかかる発明は、グリッドの平面形状が、格子状または櫛歯状であることを特徴とする請求項12記載の光電変換素子用導電性ガラスである。請求項3にかかる発明は、グリッドの開口率が90~99%であることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。請求項4にかかる発明は、グリッドをなす金属が、金、銀、白金、クロム、ニッケルのいずれかまたはこれらの2種以上の合金であることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。

【0011】請求項5にかかる発明は、グリッドが、メッキ法により形成されたものであることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。請求項6にかかる発明は、グリッドの厚さが、 $1\sim20\,\mu\,\mathrm{m}$ であることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。

【0012】請求項7にかかる発明は、保護薄膜が、酸化スズまたは酸化チタンからなることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。請求項8にかかる発明は、保護薄膜をなす酸化チタンの厚さが、50nm以下であることを特徴とする請求項1記載の光電変換素子用導電性ガラスである。

【0013】請求項9にかかる発明は、シート抵抗が、 1~0.01Ω/□であることを特徴とする請求項1記 載の光電変換素子用導電性ガラスである。請求項10に かかる発明は、波長550nmでの光線透過率が、60 ~90%であることを特徴とする請求項1記載の光電変 換素子用導電性ガラスである。

【0014】請求項11にかかる発明は、請求項1ない し10のいずれかに記載の光電変換素子用導電性ガラス 30 を用いてなる光電変換素子である。請求項12にかかる 発明は、色素増感太陽電池である請求項11記載の光電 変換素子である。

[0015]

【発明の実施の形態】以下、本発明を実施形態に基づいて詳しく説明する。図1は、本発明の光電変換素子用導電性ガラスの一例を示すものである。図1において、符号11はガラス板を示す。このガラス板11は、厚さ1~5mm程度のソーダガラス、耐熱ガラス、石英ガラスなどのガラスからなるものである。

【0016】このガラス板11の上には、このガラス板11の全面を被覆する透明導電膜12が設けられている。この透明導電膜12は、ITO、FTOなどの透明性を有し導電性を示す薄膜からなるもので、厚さが0. $2\sim1~\mu$ m程度のもので、スパッタ法、CVD法などの薄膜形成方法により形成されたものである。

【0017】この透明導電膜12上には、金属薄膜からなるグリッド13がこれに密着して設けられている。このグリッド13は、この導電性ガラスを色素増感太陽電池などに用いた際に酸化物半導体多孔質膜で発生した電 50

子の通路として、上記透明導電膜12とともに働くものである。

【0018】このグリッド13は、その平面形状が、例えば図2に示すような格子状のものや、図3に示すような櫛歯状のものである。図2に示す格子状のグリッド13では、縦450~2000 μ m、横2000~2000 μ mの長方形状の開口部14、14・・・が無数形成されており、格子をなす縦横の金属薄膜からなる線15の線幅は10~1000 μ mとなっている。また、その一辺には集電用の幅広の集電極16が縦方向に伸びて形成されている。

【0019】図3に示す櫛歯状のグリッド13では、櫛歯をなす金属薄膜からなる幅10~1000 μ mの線15、15・・・が無数に互いに平行に450~2000 μ mの間隔をあけて形成されて、無数の開口部14、14・・・が形成されており、それらの一端には集電用の幅広の集電極16が形成されている。グリッド13の平面形状は、図2および図3に示した格子状および櫛歯状に限られるものではないことは言うまでもない。

【0020】このグリッド13は、後述するように例えばメッキ法などで形成されたものであり、金、銀、白金、クロム、ニッケルなどの金属の1種または2種以上の合金からなり、その線15の厚さは $1\sim20\mu$ m、好ましくは $3\sim10\mu$ mとなっている。この厚さが 1μ m 未満では導電性向上の効果が少なく、 20μ mを越えてもかかる効果は頭打ちとなり、この上に設けられる酸化物半導体多孔質膜よりも厚くなり好ましくない。

【0021】また、このグリッド13の開口率は、90~99%とされる。ここでの開口率とは、単位面積中に占める線15の全面積の比で定義されるものである。この開口率が90%未満では光線透過率が低下して入射光量が低下し、99%を超えると導電性の向上が不十分なものとなる。

【0022】さらに、透明導電膜12およびグリッド13は、保護薄膜17でその全体が被覆されている。この保護薄膜17は、この導電性ガラスを色素増感太陽電池などに用いた場合に、電解液によってグリッド13が侵食されることを防止するためのバリアーの機能を有するとともに、光を透過させて内部の酸化物半導体多孔質膜40に十分な光量が届くようにするためのものである。

【0023】この保護薄膜17は、酸化スズ、酸化チタン、酸化ケイ素、酸化亜鉛などのセラミックからなる透明な薄膜からなる厚さ50nm以下、好ましくは20~50nmのものである。この厚さが20nm未満では保護効果が不足する。また、50nmを越えても保護効果が頭打ちとなり、電流が流れにくくなる。保護薄膜17が酸化スズからなるときは、その厚さは50nm以上であってもよい。この保護薄膜17は、CVD法、SPD法、スパツタ法、蒸着法などの薄膜形成手段によって形成される。この保護薄膜17は、セラミック以外に透明

なポリマー薄膜でもよい。

【0024】図4は、この発明の導電ガラスの他の例を 示すもので、図1に示したものと同一構成部分には同一 符号を付してその説明を省略する。この例では、保護薄 膜17がグリッド13のみを被覆するように、すなわち グリッド13の各線15、15・・・の上面および両側 面が保護薄膜17で被覆され、透明導電膜12の表面は 保護薄膜17で被覆されていない点が、先の例と異なる ところである。

【0025】このような構造の導電性ガラスにあって は、その全表面におけるグリッド13と透明導電膜12 とを加味した全体の表面抵抗 (シート抵抗と言う。) は、1~0.01Ω/□となり、従来のITO、FTO などの透明導電膜を設けた透明導電ガラスに比べて、約 10~1000分の1となっている。このため、極めて 導電性の高い導電性ガラスと言うことができる。

【0026】さらに、この導電性ガラスでは、全表面の 平均した光線透過率を高くすることができる。すなわ ち、グリッド13の存在により導電性が格段に向上する ので、透明性の劣る透明導電膜12の厚さを薄くするこ 20 とができ、しかもグリッド13の開口率が90~99% であるので、ブリッド13の存在による入射光の遮断も ほとんどなく、保護薄膜17の厚さも極めて薄いためで ある。したがって、波長550nmでの光線透過率を9 0%程度にまで高めることができる。

【0027】つぎに、このような導電性ガラスの製造方 法の一例について説明する。まず、図5に示す市販の I TO、FTOなどの透明導電膜12が設けられた透明導 電ガラス18を用意する。このような透明導電ガラス1 8は、例えば旭硝子(株)、日本板硝子(株)などから 30 入手できる。

【0028】この透明導電ガラス18の透明導電膜12 の表面をプラズマ洗浄などにより洗浄したのち、この上 に銀、クロム、ニッケルまたは金をスパッタしてシード 層19とする(図5)。ついで、このシード層19上に ドライレジストフィルムを貼り、露光、現像して、図6 に示すように、グリッド13の平面形状のパターンを有 するマスク20を形成し、さらにベーキング、活性化処 理を施す。

【0029】この後、マスク20から露出しているシー 40 ド層19上に、このシード層19を一方の電極として厚 さ1~20µmの金メッキを施し、図7に示すように、 グリッド13となる金層21を形成する。この金メッキ には、初めに高電流密度でのストライクメッキを行い、 ついで通常の電流密度でのメッキを行う方法が密着性が 向上して好ましい。

【0030】この後、図8に示すように、残っているマ スク20を剥離、除去し、マスク20の下に残ったシー ド層19をエッチング除去した後、全面に常圧CVD法 て保護薄膜17を設け、全体を洗浄するなどして、図1 に示す構造の導電性ガラスが製造される。

【0031】図9は、本発明の導電性ガラスを用いた光 電変換素子としての色素増感太陽電池の例を示すもので ある。図9において、符号31は、図1に示した導電性 ガラスである。この導電性ガラス31の保護薄膜17上 には酸化物半導体多孔質膜32が設けられている。

【0032】この酸化物半導体多孔質膜32は、酸化チ タン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジ 10 ルコニウム、酸化ニオブなどの半導性を示す金属酸化物 微粒子が結合されて構成され、内部に無数の微細な空孔 を有し、表面に微細な凹凸を有する多孔質体であって、 その厚みが5~50μmものである。この酸化物半導体 多孔質膜32は、図9に示すように、グリッド13の開 口部14、14・・・に対応する凹部を埋め、かつ保護 薄膜17の表面全体を覆うようにして、保護薄膜17と 一体的に結合されている。

【0033】この酸化物半導体多孔質膜32の形成は、 上記金属酸化物の平均粒径5~50nmの微粒子を分散 したコロイド液や分散液等を保護薄膜17の表面に、ス クリーンプリント、インクジェットプリント、ロールコ ート、ドクターコート、スプレーコートなどの塗布手段 により塗布し、300~800℃で焼結する方法などで 行われる。

【0034】また、この酸化物半導体多孔質膜32に は、光増感色素が坦持されている。この光増感色素に は、ビピリジン構造、ターピリジン構造などの配位子を 含むルテニウム錯体、ポルフィリン、フタロシアニンな どの金属錯体、エオシン、ローダミン、メロシアニンな どの有機色素などが用いられ、用途、金属酸化物半導体 の種類等に応じて適宜選択することができる。

【0035】また、符号33は、対極である。この例で の対極33は、ポリイミド、ポリエチレンテレフタレー トなどのプラスチックフィルムの一方の面に銅箔、ニッ ケル箔などの金属箔を積層した金属箔積層フィルム33 aの金属箔の表面に、白金、金などの導電薄膜33bを 蒸着、スパッタなどにより形成したものが用いられ、こ れの導電薄膜33bがこの太陽電池の内面側になるよう に配置されて、この例の色素増感太陽電池となってい る。

【0036】また、対極33としては、これ以外に、金 属板などの導電性基板あるいはガラス板などの非伝導性 基板33a上に白金、金、炭素などの導電膜33bを形 成したものを用いてもよい。また、p型半導体をホール 輸送層とする場合には、p型半導体が固体であるため、 この上に直接白金などの導電薄膜を蒸着、スパッタなど により形成してこの導電薄膜を対極23とすることもで

【0037】この対極33と導電性ガラス21の酸化物 などにより厚さ20~50nmの酸化スズなどを成膜し 50 半導体多孔質膜32との間には電解液が充填されて電解

質層34となっている。この電解液としては、レドックス対を含む非水系電解液であれば、特に限定されるものではない。溶媒としては、例えばアセトニトリル、メトキシアセトニトリル、プロピオニトリル、炭酸エチレン、炭酸プロピレン、γーブチロラクトンなどが用いられる。

【0038】レドックス対としては、例えばョウ素/ョウ素イオン、臭素/臭素イオンなどの組み合わせを選ぶことができ、これを塩として添加する場合の対イオンとしては、上記レドックス対にリチウムイオン、テトラア 10ルキルイオン、イミダゾリウムイオンなどを用いることができる。また、必要に応じてョウ素などを添加してもよい。また、このような電解液を適当な高分子マトリックスによりゲル化させた固体状のものを用いてもよい。【0039】また、電解質層34に代えて、p型半導体からなるホール輸送層を用いてもよい。このp型半導体には、例えばョウ化銅、チオシアン銅などの1価銅化合物やポリピロールなどの導電性高分子を用いることができ、なかでもョウ化銅が好ましい。このp型半導体からなる固体のホール輸送層やゲル化した電解質を用いたも20のでは、電解液の漏液の恐れがない。

【0040】このような構成の導電性ガラスにあっては、電気伝導性が高い金属薄膜からなるグリッド13が設けられているので、導電性ガラス全体としての電気抵抗値が低くなり、色素増感太陽電池などの光電変換素子に用いた場合には、光電変換効率が高いものとなる。

【0041】また、低抵抗のグリッド13が存在しているので、透明性の劣る透明導電膜12の厚さを薄くでき、これの透明性を高めることができ、グリッド13の存在により光が遮断されることがないことにも起因して、光の透過量が増加し、色素増感太陽電池に用いた際に、酸化物半導体多孔質膜22に入射される光が増加して、これによっても光電変換効率が向上する。さらに、色素増感太陽電池などに用いた際に、保護薄膜17が設けられているため、金属からなるグリッド13が電解液に浸食されることがない。

【0042】以下、具体例を示す。厚さ2mmのガラス板上に厚さ0.5μmのFTOが設けられた透明導電ガラス(旭硝子(株)製)を準備した。この透明導電ガラスの上記FTO上に上述の製造方法により、金と銀との40合金からなる図2に示すような格子状のグリッドを設けた。

【0043】このグリッドの線の厚さは、 5μ m、線の幅は、 40μ m、開口部の大きさは、縦 860μ m、横 5000μ mの長方形で、開口率は95%とした。ついで、このグリッド上からガラス板全体に、常圧CVD法により厚さ30nmの酸化スズからなる保護薄膜を形成して、導電性ガラスとした。このようにして得られた導電性ガラスのシート抵抗は、0.10/ \square 、波長550nmでの光線透過率は75%であった。

【0044】ついで、この導電性ガラスの保護導電膜上に酸化物半導体多孔質膜を形成した。この酸化物半導体多孔質膜の形成は、粒径約20nmの酸化チタン微粒子をアセチルニトリルに分散してペーストとし、これを上記グリッド上にバーコード法により厚さ15μmに塗布し、乾燥後400℃で1時間加熱焼成しておこなった。焼成後の酸化物半導体多孔質膜にルテニウム色素を担持した。

【0045】対極として、厚さ2 mmのガラス板に厚さ $5 \mu \text{m}$ のFTOを設けた透明導電ガラス(市販品)を用意し、上記導電性ガラスと対極とを貼り合わせ、その間隙にヨウ素/ヨウ化物の電解液を充填して電解質層とし色素増感太陽電池を作製した。得られた太陽電池の平面寸法は、 $100 \text{mm} \times 100 \text{mm}$ とした。

【0046】この太陽電池について、人工太陽光(AM 1.5)を照射し、電流一電圧特性を測定し、その発電効率(η)を求めた。その結果、発電効率は5%であつた。比較のため、グリッドおよび保護薄膜のない市販の透明導電ガラスをそのまま用いて色素増感太陽電池を組み立て、発電効率を求めたところ、0.07%であった。

[0047]

【発明の効果】以上説明したように、本発明の光電変換素子用導電性ガラスは、ガラス表面に透明導電膜を設け、この透明導電膜上に金属薄膜からなるグリッドを設け、少なくともグリッドを保護薄膜で被覆したものであるので、導電性ガラスとしての電気伝導度が極めて高いものとなり、かつ透明導電膜の厚さを薄くすることができ、グリッドでの光の遮断がほとんどないため、光透過率が高く、これにより光電変換素子としたときに光電変換効率が高いものが得られる。

【0048】また、この導電性ガラスを色素増感太陽電池に用いた場合に、金属薄膜からなるグリッドが保護薄膜で被覆されているので、電池の電解液で侵食されることがない。

【図面の簡単な説明】

【図1】本発明の光電変換素子用導電性ガラスの一例を 示す概略断面図である。

【図2】本発明でのグリッドの一例を示す平面図である。

【図3】本発明でのグリッドの他の例を示す平面図である。

【図4】本発明の導電性ガラスの他の例を示す概略断面 図である。

【図5】本発明の光電変換素子用導電性ガラスの製造方法を示す概略断面図である。

【図6】本発明の光電変換素子用導電性ガラスの製造方法を示す概略断面図である。

【図7】本発明の光電変換素子用導電性ガラスの製造方 50 法を示す概略断面図である。

7

【図8】本発明の光電変換素子用導電性ガラスの製造方法を示す概略断面図である。

【図9】本発明の光電変換素子用導電性ガラスを用いた 色素増感太陽電池の例を示す概略断面図である。

【図10】従来の色素増感太陽電池を示す概略断面図で

ある。

【符号の説明】

11・・・ガラス板、12・・・透明導電膜、13・・・グリッド、17・・・保護薄膜、32・・・酸化物半 導体多孔質膜、33・・・対極、34・・・電解質層

【図2】

【図3】

【図4】

【図6】

【図5】

【図7】

【図9】

【図10】

フロントページの続き

(72) 発明者 田辺 信夫

東京都江東区木場一丁目5番1号 株式会

社フジクラ内

Fターム(参考) 5F051 AA14 FA02 FA06 GA03

5H032 AA06 AS06 AS16 CC09 CC13

CC16 EE01 EE02 EE07 EE16

HH01 HH04 HH07 HH08