

Sparse Matrices

• Have small number of non-zero entries

Dense Matrix

Sparse Matrix

Sparse Matrices

- Non-zeros encode connectivity
 - Finite-Element Meshes, Hyperlinks, Social Networks, ...

Structured Mesh

Unstructured Mesh

General Graph

Sparse Solvers

- Solve sparse linear system (A*x = b)
- Variety of direct and iterative methods

Direct Solvers

- Sparse matrix factorization
 - Try to reduce fill-in of factors
 - Use sophisticated reordering schemes
- Popular codes: PARDISO, UMFPACK, SuperLU, ...

Iterative Solvers

- Sequence of approximate solutions
 - Converge to exact solution
- Measure error through residual
 - residual = b A * x
 - residual = A * (x' x) = A * error
 - Stop when || b − A* x || < tolerance</p>
- Wide variety of methods
 - Jacobi
 - Gauss-Seidel
 - Conjugate-Gradient (CG)
 - Generalized Minimum-Residual (GMRES)

Comparison

Direct Solvers

- Robust
- Black-box operation
- Difficult to parallelize
- Memory consumption
- Limited scalability

Iterative Solvers

- Breakdown issues
- Lots of parameters
- Amenable to parallelism
- Low memory footprint
- Scalable

Example: Richardson Iteration

Iterative Solver Components

- Sparse Matrix-Vector Multiplication (SpMV)

- Vector Scale and Add (SAXPY)
 - x = x + omega * r

- Vector Norm (SNRM2)
 - norm(r)

Coordinate (COO)

Compressed Sparse Row (CSR)

ELLPACK (ELL)

Diagonal (DIA)

Hybrid (HYB) ELL + COO

Structured Unstructured

Structured Mesh

Format	float	double
COO	12.00	16.00
CSR	8.45	12.45
DIA	4.05	8.10
ELL	8.11	12.16
HYB	8.11	12.16

Matrix

Bytes per Nonzero Entry

Unstructured Mesh

Format	float	double
COO	12.00	16.00
CSR	8.62	12.62
DIA	164.11	328.22
ELL	11.06	16.60
HYB	9.00	13.44

Matrix

Bytes per Nonzero Entry

Random matrix

Format	Float	Double
COO	12.00	16.00
CSR	8.42	12.42
DIA	76.83	153.65
ELL	14.20	21.29
HYB	9.60	14.20

Matrix

Bytes per Nonzero Entry

Power-Law Graph

Format	Float	Double
COO	12.00	16.00
CSR	8.74	12.73
DIA	118.83	
ELL	49.88	74.82
HYB	13.50	19.46

Matrix

Bytes per Nonzero Entry

Summary

- Iterative Solvers
 - Measure accuracy through residual (b A*x)
 - Stop when ||b A*x|| is small
- Sparse Formats
 - Numerous Options
 - Best format depends on matrix structure
- Next Lesson
 - Implementing Sparse Matrix-Vector Multiplication

References

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors

Nathan Bell and Michael Garland Proceedings of Supercomputing '09

Efficient Sparse Matrix-Vector Multiplication on CUDA

Nathan Bell and Michael Garland NVIDIA Technical Report NVR-2008-004, December 2008

Iterative Methods for Sparse Linear Systems

Yousef Saad

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf (online)