第9章 控制单元的功能

- 9.1 操作命令的分析
- 9.2 控制单元的功能

9.1 操作命令的分析

完成一条指令分4个工作周期

取指周期

间址周期

执行周期

中断周期

9.1 操作命令的分析

一、取指周期

PC → MAR → 地址线

 $1 \longrightarrow R$

 $M(MAR) \longrightarrow MDR$

 $MDR \rightarrow IR$

 \overline{OP} (IR) $\rightarrow CU$

 $(PC)+1 \longrightarrow PC$

二、间址周期

根据形式地址获取有效地址

Ad (IR) \longrightarrow MAR

1 → R

 $M(MAR) \longrightarrow MDR$

 $\overline{MDR} \longrightarrow \overline{Ad} (\overline{IR})$

三、执行周期

1. 非访存指令

- (1) CLA ACC清零 0→ACC
- (2) COM 取反 $\overline{ACC} \rightarrow ACC$
- (3) SAR 算术右移 $L(ACC) \rightarrow R(ACC), ACC_0 \rightarrow ACC_0$
- (4) CSL 循环左移 $R(ACC) \rightarrow L(ACC)$, $ACC_0 \rightarrow ACC_n$
- (5) **STP** 停机指令 0 → G

2. 访存指令

(1) 加法指令 ADD X ; (ACC)+(X) → ACC

 $Ad(IR) \rightarrow MAR$

 $1 \longrightarrow R$

 $\overline{M(MAR)} \rightarrow \overline{MDR}$

 $\overline{(ACC) + (MDR)} \rightarrow ACC$

(2) 存数指令 STA X ; $ACC \rightarrow X$

 $Ad(IR) \rightarrow MAR$

 $1 \longrightarrow W$

 $ACC \rightarrow MDR$

 $MDR \rightarrow M(MAR)$

(3) 取数指令 LDA X

 $;(X) \rightarrow ACC$

 $Ad (IR) \longrightarrow MAR$

 $1 \rightarrow R$

 $M(MAR) \rightarrow MDR$

 $MDR \rightarrow ACC$

- 3. 转移指令
 - (1) 无条件转 JMP X

 $Ad(IR) \rightarrow PC$

(2) 条件转移 BAN X (负则转)

 A_0 :Ad (IR) + \overline{A}_0 (PC) \longrightarrow PC

9.2 控制单元的功能

一、控制单元的外特性

1. 输入信号

(1) 时钟

控制单元 受时钟控制

一个时钟脉冲

发一个操作命令或一组需同时执行的操作命令

(2) 指令寄存器 OP(IR)→ CU

控制信号与操作码有关

(3) 标志 CU 受标志控制

(4) 外来信号

如 INTR 中断请求 HRQ 总线请求 可举例操作系统中的假脱机技术

9

2. 输出信号

(1) CPU 内的各种控制信号

$$R_i \rightarrow R_j$$

(PC) + 1 \rightarrow PC
ALU +、一、与、或 ······

(2) 送至控制总线的信号

MREQ 访存控制信号

IO/M 访 IO/ 存储器的控制信号

ID 读命令

WR 写命令

INTA 中断响应信号

HLDA总线响应信号

取指周期输出信号

PC → MAR → 地址线

 $1 \longrightarrow R$

 $M(MAR) \longrightarrow MDR$

 $MDR \rightarrow IR$

 $OP (IR) \longrightarrow CU$

$$(PC)+1 \longrightarrow PC$$

二、控制信号举例

1. 不采用 CPU 内部总线的方式

以ADD @ X 为例

二、控制信号举例

1. 不采用 CPU 内部总线的方式

二、控制信号举例

1. 不采用 CPU 内部总线的方式

内 部 总 线

(2) ADD @ X 间址周期

形式地址 — MAR

- MDR → MAR → 地址线 **MAR**_i **MDR**₀
- $1 \longrightarrow R$
- 数据线 → MDR
- MDR \longrightarrow IR **MDR**₀ IR_i

有效地址 → Ad(IR)

16

内

部

总

线

(3) ADD @ X 执行周期

- MDR → MAR → 地址线
 MDR₀ MAR_i
- $1 \longrightarrow R$
- · 数据线 → MDR
- MDR \longrightarrow Y \longrightarrow ALU MDR₀ Y_i
- $\begin{array}{ccc}
 \bullet & \overline{AC} \longrightarrow & \overline{ALU} \\
 \hline
 & AC_0 & & ALU_i
 \end{array}$
- $(AC) + (Y) \longrightarrow Z$
- $\begin{array}{ccc} \bullet & Z \longrightarrow & AC \\ \hline Z_0 & & AC_i \end{array}$

CPU

内

部

总

线

三、多级时序系统

- 1. 机器周期(CPU周期)
 - •以访问一次存储器的时间为基准

2. 时钟周期(节拍、状态)

- 将一个机器周期分成若干个时间相等的时间段(节拍、状态、时钟周期)
- 用时钟周期控制产生一个或几个微操作命令
- 时钟周期是控制计算机操作的最小单位时间

2. 时钟周期(节拍、状态)

例:取指周期控制信号安排

PC → MAR → 地址线 T_1 $\overline{M(MAR)} \rightarrow \overline{MDR}$ $MDR \longrightarrow IR$ T_2 \overline{OP} (IR) $\longrightarrow \overline{CU}$ T_1 $(PC)+1 \longrightarrow PC$

3. 多级时序系统

机器周期、节拍(状态)组成多级时序系统

- 一个指令周期包含若干个机器周期(CPU周期)
- 一个机器周期包含若干个时钟周期

定长 不定长机器周期

四、控制方式

产生不同微操作命令序列所用的时序控制方式

1. 同步控制方式

(1) 采用 定长 的机器周期

以最长微操作序列和最繁的微操作作为标准机器周期内节拍数相同

(2) 采用不定长的机器周期

机器周期内节拍数不等

(3) 采用中央控制和局部控制相结合的方法

2. 异步控制方式

无基准时标信号 无固定的周期节拍和严格的时钟同步 采用 应答方式

3. 联合控制方式

同步与异步相结合

4. 人工控制方式

- (1) Reset
- (2) 连续 和 单条 指令执行转换开关
- (3) 符合停机开关

专业术语

- Control unit
- Control bus
- Control signal
- microoperation

要点

- ◈ 控制单元在指令的取指、间址、执行和中 断周期中发出的控制信号
- ◆每个控制信号是在指定机器周期的指定节 拍T发出