Technical Note No. 6* Options, Futures, and Other Derivatives, Ninth Edition John Hull

Differential Equation for Price of a Derivative on a Stock Providing a Known Dividend Yield

Define f as the price of a derivative dependent on a stock that provides a dividend yield at rate q. We suppose that the stock price, S, follows the process

$$dS = \mu S dt + \sigma S dz$$

where dz is a Wiener process. The variables μ and σ are the expected growth rate in the stock price and the volatility of the stock price, respectively. Because the stock price provides a dividend yield, μ is only part of the expected return on the stock.¹

Because f is a function of S and t, it follows from Ito's lemma that

$$df = \left(\frac{\partial f}{\partial S}\mu S + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial f}{\partial S}\sigma S dz$$

Similarly to the procedure of Section 15.6, we can set up a portfolio consisting of

$$-1$$
: derivative $+\frac{\partial f}{\partial S}$: stock

If Π is the value of the portfolio,

$$\Pi = -f + \frac{\partial f}{\partial S}S\tag{1}$$

and the change, $\Delta\Pi$, in the value of the portfolio in a time period Δt is as given by equation (15.14):

$$\Delta \Pi = \left(-\frac{\partial f}{\partial t} - \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 \right) \Delta t$$

In time Δt the holder of the portfolio earns capital gains equal to $\Delta \Pi$ and dividends on the stock position equal to

$$qS\frac{\partial f}{\partial S}\Delta t$$

Define ΔW as the change in the wealth of the portfolio holder in time Δt . It follows that

$$\Delta W = \left(-\frac{\partial f}{\partial t} - \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S^2 + q S \frac{\partial f}{\partial S} \right) \Delta t \tag{2}$$

^{* ©}Copyright John Hull. All Rights Reserved. This note may be reproduced for use in conjunction with Options, Futures, and Other Derivatives by John C. Hull.

¹ In a risk-neutral world $\mu = r - q$ as indicated in equation (17.7) of the book.

Because this expression is independent of the Wiener process, the portfolio is instantaneously riskless. Hence

$$\Delta W = r\Pi \, \Delta t \tag{3}$$

Substituting from equations (1) and (2) into equation (3) gives

$$\left(-\frac{\partial f}{\partial t} - \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S^2 + qS\frac{\partial f}{\partial S}\right)\Delta t = r\left(-f + \frac{\partial f}{\partial S}S\right)\Delta t$$

so that

$$\frac{\partial f}{\partial t} + (r - q)S\frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

This is equation (17.6) in the book.