Semântica da LP: Satisfazibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

24 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- Satisfazibilidade

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- 4 Satisfazibilidade

Pensamento

Pensamento

Frase

A ausência da prova não é a prova da ausência.

Quem?

Desconhecido ???.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- 4 Satisfazibilidade

Notícias do Santa Cruz

22/04/2014 22h03 - Atualizado em 23/04/2014 00h28

Salgueiro bate Santa Cruz no Arruda; fica com 3º lugar e vaga no Nordestão

Em partida movimentada, salgueirenses venceram por 2 a 1 os tricolores, jogaram melhor e mereceram a vitória esta terça-feira à noite, pelo estadual

Por GLOBOESPORTE.COM Recife

Em jogo movimentado e cheio de emoção no final, o Salgueiro venceu o Santa Cruz por 2 a 1, em pleno Arruda, nesta terça-feira, pela disputa do tercero lugar do Campeonato Pernambucano. De mémio, ficu com uma das vanas na Cona do Nordeste de 2015. Enquanto os tripolores os citaram

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- Satisfazibilidade

Semântica da LP

Semântica

O estudo da semântica da lógica proposicional consiste em atribuir valores verdade às fórmulas da linguagem. Na lógica clássica, há apenas dois valores verdade: verdadeiro e falso. Representaremos o verdadeiro por 1 e o falso por 0.

Função de Valoração ${\cal V}$

$$\mathcal{V}:\mathcal{P}\rightarrow\{0,1\}$$

Semântica da LP

Valoração de uma fórmula qualquer

- \bullet $\mathcal{V}: \mathcal{P} \to \{0,1\}$ (Caso básico).
- $\mathcal{V}(\neg A) = 1$ se, e somente se, $\mathcal{V}(A) = 0$.
- $\mathcal{V}(A \wedge B) = 1$ se, e somente se, $\mathcal{V}(A) = 1$ e $\mathcal{V}(B) = 1$.
- $\mathcal{V}(A \to B) = 1$ sse $\mathcal{V}(A) = 0$ ou $\mathcal{V}(B) = 1$.

Matriz de Conectivos Lógicos

Conectivo \neg

	$\neg A$
A = 0	1
A = 1	0

Conectivo \wedge

$A \wedge B$	B=0	B = 1
A=0	0	0
A = 1	0	1

Matriz de Conectivos Lógicos

Conectivo ∨

$$\begin{array}{c|cccc} A \lor B & B = 0 & B = 1 \\ \hline A = 0 & 0 & 1 \\ A = 1 & 1 & 1 \\ \hline \end{array}$$

${\sf Conectivo} \to$

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

$\mathcal{V}_2(A)$

Em que temos $\mathcal{V}_2(p)=1$, $\mathcal{V}_2(q)=1$ e $\mathcal{V}_2(r)=1$.

Dada a fórmula $A = (p \lor \neg q) \to (r \land \neg q)$

$\mathcal{V}_1(A)$

Em que temos $\mathcal{V}_1(p)=1$, $\mathcal{V}_1(q)=0$ e $\mathcal{V}_1(r)=1$.

$$\mathcal{V}_1(A)=1$$

$\mathcal{V}_2(A)$

Em que temos $\mathcal{V}_2(p)=1$, $\mathcal{V}_2(q)=1$ e $\mathcal{V}_2(r)=1$.

$$\mathcal{V}_2(A)=0$$

Possibilidades de valorações diferentes

Se uma fórmula A possui N subfórmulas atômicas, e cada valoração pode atribuir ou 0 ou 1 a cada um desses átomos, temos que pode haver 2^N distintas valorações para a fórmula A.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Semântica da LP
- Satisfazibilidade

Satisfazibilidade e Validade

Satisfazibilidade

Uma fórmula A é dita satisfazível se existe uma valoração $\mathcal V$ de seus átomos tal que $\mathcal V(A)=1.$

Satisfazibilidade e Validade

Satisfazibilidade

Uma fórmula A é dita satisfazível se existe uma valoração $\mathcal V$ de seus átomos tal que $\mathcal V(A)=1$.

Insatisfazilidade

Uma fórmula A é dita insatisfazível se toda valoração $\mathcal V$ de seus átomos é tal que $\mathcal V(A)=0$.

Validade

Validade

Uma fórmula A é dita válida ou uma tautologia se toda valoração $\mathcal V$ de seus átomos é tal que $\mathcal V(A)=1$.

Validade

Validade

Uma fórmula A é dita válida ou uma tautologia se toda valoração $\mathcal V$ de seus átomos é tal que $\mathcal V(A)=1$.

Falsificabilidade

Uma fórmula A é dita falsificável se existe uma valoração $\mathcal V$ de seus átomos tal que $\mathcal V(A)=0$.

Corolário 01

Toda fórmula válida é também satisfazível.

Corolário 01

Toda fórmula válida é também satisfazível.

Corolário 02

Toda fórmula insatisfazível é falsificável.

Corolário 01

Toda fórmula válida é também satisfazível.

Corolário 02

Toda fórmula insatisfazível é falsificável.

Corolário 03

Uma fórmula não pode ser satisfazível e insatisfazível.

Corolário 01

Toda fórmula válida é também satisfazível.

Corolário 02

Toda fórmula insatisfazível é falsificável.

Corolário 03

Uma fórmula não pode ser satisfazível e insatisfazível.

Corolário 04

Uma fórmula não pode ser válida e falsificável.

Corolário 05

Se A é válida, então $\neg A$ é insatisfatível; analogamente se A é insatisfatível, entao $\neg A$ é válida.

Corolário 05

Se A é válida, então $\neg A$ é insatisfatível; analogamente se A é insatisfatível, entao $\neg A$ é válida.

Corolário 06

Se A é satisfatível, $\neg A$ é falsificável, e vice-versa.

Corolário 05

Se A é válida, então $\neg A$ é insatisfatível; analogamente se A é insatisfatível, entao $\neg A$ é válida.

Corolário 06

Se A é satisfatível, $\neg A$ é falsificável, e vice-versa.

Corolário 07

Existem fórmulas que são tanto satisfatíveis como falsificáveis.

Desafio na Computação

Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.

Desafio na Computação

Problema em Aberto

Dada uma fórmula complexa qualquer, classificá-la como

- satisfazível;
- insatisfazível;
- válida;
- falsificável.

Primeira solução...

Construção de tabela da verdade.

Onde estudar mais...

Seção 1.3: Semântica

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de. Em Lógica para Computação. São Paulo: Thomson Learning, 2006. Código Bib.: [519.687 SIL /log].

Semântica da LP: Satisfazibilidade

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

24 de abril de 2014

