13BUTADIENE

10^{1} SA/invBrent($\sqrt[4]{p}$)

1BUTENE

1BUTYNE

1PENTENE

22DIMETHYLBUTANE

23DIMETHYLBUTANE

3METHYLPENTANE

ACETONE

ACETYLENE

AMMONIA 10¹ SA/invBrent(√p) }

ARGON

BENZENE

BUTANE

C2BUTENE

 $\overline{10^{-2}}$ 0.1

 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

0.2

0.3

0.4

0.5

0.6

0.7

 10^{-17}

 10^{-18}

 10^{-14}

 10^{-10}

 10^{-6}

C4F10

C5F12

C6F14

CHLORINE

CHLOROBENZENE

CYCLOBUTENE

CYCLOHEX

CYCLOPEN

CYCLOPRO

 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

D₂O

DEA

DECANE

DMC

DME

EBENZENE

EGLYCOL

ETHANE

ETHANOL

ETHYLENEOXIDE

ETHYLENE

FLUORINE

HELIUM

HEPTANE

HEXANE

HYDROGEN

IBUTENE

 10^1 SA/invBrent($\sqrt[4]{p}$)

IHEXANE

IOCTANE

IPENTANE

ISOBUTAN

KRYPTON

 10^{1}

MDM SA/invBrent($\sqrt[4]{p}$)

METHANE

METHANOL

MLINOLEA 10¹ SA/invBrent(\$\sqrt{p}\$)

MLINOLEN

MOLEATE

MPALMITA

MSTEARAT

MXYLENE

NEON

NEOPENTN

NITROGEN

NONANE

OCTANE

ORTHOHYD 10¹ SA/invBrent(\(\sqrt{p}\))

OXYGEN 10¹ - SA/invBrent(\(\sigma\)) -

OXYLENE

PARAHYD

10¹ SA/invBrent(⁴√p)

PENTANE

PROPADIENE

PROPANE

PROPYLENEOXIDE

PROPYLEN 10¹ - SA/invBrent(∜√p) -

PROPYNE

PXYLENE

R1123

R1224YDZ

R1233ZDE

R1234YF $10^{1} - SA/\text{invBrent}(\sqrt[4]{p}) - SA/Brent$

R1234ZEE

R1243ZF

 10^{1} $SA/invBrent(\sqrt[4]{p})$ SA/Brent

R125

R1336MZZZ

R134A 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10^{-5} 10^{-7} 10^{-9} 10^{-11}

R142B

R143A 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10^{-5} 10^{-7} 10^{-9} 10^{-11}

R150 10^{1} $SA/invBrent(\sqrt[4]{p})$ SA/Brent 10^{-1} REFPROP 10^{-3} 10^{-5}

R152A 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $T_{\rm orig}|$ / K 10^{-3} 10^{-5} 10^{-7} 10^{-9}

R21

R236EA

R236FA $10^{1} - \text{SA/invBrent}(\sqrt[7]{p})$

R245FA

R365MFC

RC318

RE143A

RE245CB2

 10^1 SA/invBrent($\sqrt[4]{p}$)

RE245FA2

RE347MCC 10^{1} $SA/invBrent(\sqrt[4]{p})$ SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10⁻⁵ 10^{-7} 10^{-9}

SO₂

T2BUTENE

TOLUENE 10¹ SA/invBrent(\(\sqrt{p}\))

VINYLCHLORIDE

WATER

XENON

