# Chapter 4.3 Properties of Functions and Set Cardinality

Chapter 4.4
Properties of Relations

### Onto:

A function f is onto if everything in the codomain really is an output of f. That is, for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.

### One-to-one:

A function f is one-to-one if nothing in the codomain is an output via two different inputs. That is, for every choice of different elements  $\chi_1$  and  $\chi_2$  in the domain,  $f(\chi_1)$  and  $f(\chi_2)$  must be different.

### **Invertible:**

A function f is a one-to-one correspondence if it is both one-to-one and onto. This is equivalent to saying that f is invertible.

Another way of stating this is: The function  $f: A \rightarrow B$  is *invertible* if there is a function  $f^{-1}: B \rightarrow A$  such that f(x) = y if and only if  $f^{-1}(y) = x$ .

The notation is read as "f inverse" and the symmetry of the definition means that  $(f^{-1})^{-1}=f$ .

### In diagramming terms...

- A function is *onto* if every point in the codomain has an arrow ending at that point.
- A function is one-to-one if no point in the codomain has two or more arrows ending at a point.
- A function is a one-to-one correspondence (invertible) if every point in the codomain has exactly one arrow ending at that point.

$$f: A \rightarrow B$$



$$f^{-1}: B \rightarrow A$$



#### Onto?

Yes, every point in the codomain has an arrow leading to it.

#### One-to-one?

Yes, there is no point in the codomain that is pointed to from two or more sources in the domain.

#### Invertible?

Yes, as it is both onto and one-to-one.

 $f: A \rightarrow B$ 



$$f^{-1}: B \rightarrow A$$



#### Onto?

Yes, every point in the codomain has an arrow leading to it.

#### One-to-one?

No, "B" is pointed at from two sources.

#### Invertible?

No, the inverse of f is not a function.





 $f^{-1}: B \rightarrow \overline{A}$ 



#### Onto?

No, "C" has nothing pointing to it.

#### One-to-one?

Yes, there is no point in the codomain that is pointed to from two or more sources in the domain.

#### Invertible?

No, the inverse of f is not a function.

$$f: A \rightarrow B$$



### $f^{-1}: B \rightarrow A$



#### Onto?

No, "B" in the codomain does not have an arrow pointing to it.

#### One-to-one?

No, "A" is being pointed to by two sources.

#### Invertible?

No, the inverse of f is not a function.

### Without diagrams...

Given the function:

$$f: \mathbb{R} \to \mathbb{R}$$
, with  $f(x) = x^2 + x + 1$ 

Why is this function **not onto?** (for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

Can we find some x that gives us an f(x) not in the set of all real numbers?

### Without diagrams...

Given the function:

$$f: \mathbb{R} \to \mathbb{R}$$
, with  $f(x) = x^2 + x + 1$ 

Why is this function **not onto?** (for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

Can we find some x that gives us an f(x) not in the set of all real numbers?

How about f(x) = 0? We can find the roots with the quadratic formula...

$$x = (-1)^{2/3}$$

$$x = -\sqrt[3]{-1}$$

This isn't in the set!

### Without diagrams...

Given the function:

$$f: \mathbb{R} \to \mathbb{R}$$
, with  $f(x) = x^2 + x + 1$ 

Why is this function **not onto?** (for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

Therefore, this function is **not onto**, and not invertible.

$$x = (-1)^{2/3}$$
  $x = -\sqrt[3]{-1}$ 

### Without diagrams...

Given the function:

$$f: \mathbb{R} \to \mathbb{R}$$
, with  $f(x) = x^2$ 

Why is this function **not one-to-one?** (A function f is one-to-one if nothing in the codomain is an output via two different inputs.)

Can we get the same f(x) for two different x values?

### Without diagrams...

Given the function:

$$f: \mathbb{R} \to \mathbb{R}$$
, with  $f(x) = x^2$ 

Why is this function **not one-to-one?** (A function f is one-to-one if nothing in the codomain is an output via two different inputs.)

Can we get the same f(x) for two different x values?

$$f(2)=4$$

$$f(-2)=4$$

Therefore it is not one-to-one.

### Without diagrams...

Given the function:

$$h: \{a,b,c\} \rightarrow \{1,2,3\} \text{ with the rule } \{(a,1),(b,2),(c,3)\}$$

#### Is it onto?

(for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

### Without diagrams...

### Given the function:

$$h: \{a,b,c\} \rightarrow \{1,2,3\} \text{ with the rule } \{(a,1),(b,2),(c,3)\}$$

### Is it onto?

(for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

#### Is it one-to-one?

(A function f is one-to-one if nothing in the codomain is an output via two different inputs.)

### Without diagrams...

### Given the function:

 $h: \{a,b,c\} \rightarrow \{1,2,3\} \text{ with the rule } \{(a,1),(b,2),(c,3)\}$ 

### Is it onto?

(for every element y in the codomain, there must be (at least one) x in the domain where f(x) = y.)

### Is it one-to-one?

(A function f is one-to-one if nothing in the codomain is an output via two different inputs.)

Yes!

So is it invertible?

### Without diagrams...

Given the function:

$$h: \{a,b,c\} \rightarrow \{1,2,3\} \text{ with the rule } \{(a,1),(b,2),(c,3)\}$$

Onto: Yes! One-to-one: Yes! Invertible: Yes!

 $h^{-1}$ :{1,2,3} $\rightarrow$ {a,b,c} with the rule{(1,a),(2,b),(3,c)}

Let R be a binary relation on set A.

**Reflexive:** R is reflexive if  $(a,a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all  $a,b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

Let R be a binary relation on set A.

**Irreflexive:** R is irreflexive if for all  $a \in A$ ,  $(a,a) \notin R$  In an arrow diagram – there are **no loops**.

Example relation R on the set  $\{1, 2, 3, 4\}$ , with the rule  $(x, y) \in R$ , if  $x \le y$ 



Relation:  $R_1 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ 

**Reflexive:** R is reflexive if every node has a loop to itself.

So this relation is reflexive.



Relation:  $R_1 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ 

**Antisymmetric:** Ris

antisymmetric if arrows only go in one direction.

So this relation is antisymmetric.



Relation:  $R_1 = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ 

**Transitive:** *R* is transitive if you can follow two arrows from *a* to *c*, and you can also get from *a* to *c* in a single arrow.

So this relation is transitive.



Without a diagram...

$$A = \{ 1, 2, 3, 4 \},$$
  
 $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$ 

Is this transitive?

Without a diagram...

```
A = \{ 1, 2, 3, 4 \},

R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}
```

Is this transitive?

```
(1, 2) exists, (2, 3) exists, and (1, 3) exists. (1, 2) exists, (2, 4) exists, and (1, 4) exists. (1, 3) exists, (3, 4) exists, and (1, 4) exists. ... and so on ...
```

Without a diagram...

$$A = \{ 1, 2, 3, 4 \},$$
  
 $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$ 

Is it reflexive? Or irreflexive?

**Irreflexive:** R is irreflexive if for all  $a \in A$ ,  $(a, a) \notin R$  In an arrow diagram – there are **no loops**.

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

Without a diagram...

$$A = \{ 1, 2, 3, 4 \},$$
  
 $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$ 

Is it reflexive? Or irreflexive?

None of these nodes point back to themselves, so it is **irreflexive**.

<u>Irreflexive:</u> R is irreflexive if for all  $a \in A$ ,  $(a,a) \notin R$  In an arrow diagram – there are **no loops**.

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

Without a diagram...

$$A = \{ 1, 2, 3, 4 \},$$
  
 $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$ 

Is it antisymmetric?

Without a diagram...

$$A = \{ 1, 2, 3, 4 \},$$
  
 $R = \{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) \}$ 

Is it antisymmetric?

Each node only goes one way: (1, 2) but no (2, 1). So it is antisymmetric.

For the following relation on the set of integers:

$$R_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a + b \text{ is odd}\}$$

Is this reflexive or irreflexive?

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all  $a,b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation on the set of integers:

$$R_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a + b \text{ is odd}\}$$

Is this reflexive or irreflexive?

If we plug in a as (a, a)? a + a = 2a, which is **not** odd. A node cannot loop back on itself, so it is irreflexive.

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation on the set of integers:

$$R_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a + b \text{ is odd}\}$$

Is this antisymmetric? Can we find some *a, b* and *b, a* that result in the same values?

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation on the set of integers:

$$R_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a + b \text{ is odd}\}$$

Is this antisymmetric? Can we find some *a*, *b* and *b*, *a* that result in the same values?

(2, 3) = 5, and (3, 2) = 5, so it is **not** antisymmetric.

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

$$R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$$

Is this reflexive?

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

$$R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$$

Is this reflexive?

No, you generally cannot get a flight from location "a" back to location "a" (at least not without another stop).

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

$$R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$$

Is this antisymmetric?

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

 $R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$ 

Is this antisymmetric? No, you can get a flight from "a" to "b" and from "b" to "a".

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

$$R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$$

Is this transitive?

For this set, you can have a direct flight from "a" to "b", and "b" to "c", but not for "a" to "c", as it is not defined in the set.

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.

For the following relation:

$$R_1 = \{(a, b) \in C \times C : \text{There is a direct flight from } a \text{ to } b\}$$

Is this antisymmetric?

**Reflexive:** R is reflexive if  $(a, a) \in R$  for all  $a \in A$  In an arrow diagram – every node has a loop to itself.

**Antisymmetric:** R is antisymmetric if for all a,  $b \in A$  If  $a \neq b$  and  $(a,b) \in R$ , then  $(b,a) \notin R$  In an arrow diagram – arrows only go in one direction.