Practice Session 4

Introduction to Sampling Distributions

Recall that a "sample" is a subset of a population. We can use samples to calculate "statistics", such as the sample mean, median, and standard deviation. If we were to **repeatedly** sample from the same population, and calculate the **mean** of each sample, we would obtain what is known as a Sampling Distribution of the **Sample Mean**. If we were to instead calculate a **Proportion** from each sample, we would obtain the Sampling Distribution of the **Sample Proportion**.

In general, Sampling Distributions are the distributions of a **statistic**. This is in contrast to the Population, which is the distribution of all individuals or sampling units.

Sampling Distribution Terminology

Match each term with its definition.

Terms:

- s
- σ
- Standard Error (SE)
- X
- \bar{x}

Definitions:

- Standard deviation of a population
- Individual unit of the population
- Standard deviation of a sample
- Sample mean
- Standard deviation of a sampling distribution

Generating Sampling Distributions

Let's generate a sampling distribution using polling data from the president's approval rating. Make sure to load the library(SDS1000) to have access to the functions for this exercise.

1.) Use the get_approval_sample() function to obtain a sample of n = 1000 individual approval ratings. Use the get_proportions() function to obtain the proportion of voters in this sample that approve of the president.

```
# Load the SDS1000 package
library(SDS1000)
```

2.) Next, use the do_it function from class to generate 10000 samples, and repeat the above steps to obtain the proportion for each sample. Assign this vector of proportions to the variable polling_distribution, and create a histogram of it. Make sure to have an appropriate title.

Challenge: What do values on the x-axis of this histogram correspond to? How does this differ from histograms that we've previously encountered?

```
# Your code here
```

3.) Finally, calculate the mean and standard deviation of your collection of sample proportions. What is another name for the standard deviation?

```
# Your code here
```

Properties of Sampling Distribution

Answer the following True/False questions relating to sampling distributions.

- True/False: As the sample size n decreases, the standard error of a sampling distribution also decreases.
- True/False: The mean of a sampling distribution is always **greater than** the mean of population.
- True/False: The mean of a sampling distribution is always is always less than the mean of the population.
- True/False: Assuming that you have an unbiased sampling procedure with a sufficient sample size, the sampling distribution of the sample mean is approximately normally distributed.
- True/False: It is generally better to have a larger standard error than a smaller one.

Introduction to Confidence Intervals

Match each term with its definition:

Terms:

- Point Estimate
- Interval estimate
- Confidence Interval
- Confidence Level

Definitions:

- An interval that is generated with a specific method that guarantees that a certain percentage of these intervals will contain the population parameter.
- The percentage of confidence intervals that will contain the population parameter of interest. For example, a 95% confidence level means that 95% of confidence intervals generated will contain the population parameter of interest.
- A sample statistic that we use to estimate a population parameter. The sample mean is an example as we use it to estimate the population mean.
- An interval that contains a range of plausible values for a population parameter. The point estimate sits at the center of this interval.

Confidence Interval for Baseball Salaries

For this section, we will use the BaseballSalaries2015 data set from the Lock5Data library.

1.) Using the sample() function, obtain a sample of 100 baseball player salaries. Make sure to sample without replacement. See the help page for sample() for details.

library(Lock5Data)

2.) Using your sample of 100 salaries, calculate a point estimate of the mean salary and the standard deviation of salaries.

Your code here

3.) Next, generate a 95% interval estimate for the mean salary of baseball players. The interval estimate is of the form:

Point Estimate $\pm 1.96 \cdot \text{Standard Error.}$

You can calculate the standard error by taking your sample standard deviation and dividing it by 10.

Your code here

- 4.) Interpret your interval estimate.
- 5.) Compare your point and interval estimates to the actual mean salary from the entire data set. Comment on what you notice.

Your code here