Теорема 1. Пусть $\mathcal{L} - \partial u \phi \phi$ еренцируемая функция, такая что все стационарные точки \mathcal{L} являются локальными минимумами. Пусть также гессиан \mathbf{H}^{-1} функции потерь \mathcal{L} является обратимым в каждой стационарной точке, тогда:

$$\nabla_{\mathbf{h}} \mathcal{Q} \left(\mathsf{T} \left(\mathbf{\Theta}_{0}, \mathbf{h} \right), \mathbf{h} \right) = \nabla_{\mathbf{h}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) - \nabla_{\mathbf{h}} \nabla_{\mathbf{\Theta}} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right)^{\mathsf{T}} \mathbf{H}^{-1} \nabla_{\mathbf{\Theta}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right). \tag{1}$$

Доказательство.

$$\nabla_{\mathbf{\Theta}} \mathcal{L} \left(\mathsf{T} \left(\mathbf{\Theta}_{0}, \mathbf{h} \right) \right) = 0 \Rightarrow$$

$$\Rightarrow \nabla_{\mathbf{h}} \left(\nabla_{\mathbf{\Theta}} \mathcal{L} \left(\mathsf{T} \left(\mathbf{\Theta}_{0}, \mathbf{h} \right) \right) \right) = \nabla_{\mathbf{\Theta}, \mathbf{h}} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) + \nabla_{\mathbf{\Theta}}^{2} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) \frac{\partial \mathbf{\Theta}}{\partial \mathbf{h}} = 0 \Rightarrow$$

$$\Rightarrow \frac{\partial \mathbf{\Theta}}{\partial \mathbf{h}} = - \left(\nabla_{\mathbf{\Theta}}^{2} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) \right)^{-1} \nabla_{\mathbf{\Theta}, \mathbf{h}} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right).$$
(2)

$$\nabla_{\mathbf{h}} \mathcal{Q} \left(\mathsf{T} \left(\mathbf{\Theta}_{0}, \mathbf{h} \right) \right) = \nabla_{\mathbf{h}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) + \nabla_{\mathbf{\Theta}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right)^{\mathsf{T}} \frac{\partial \mathbf{\Theta}}{\partial \mathbf{h}}. \tag{3}$$

Подставляя (2) в (3) получаем:

$$\nabla_{\mathbf{h}} \mathcal{Q} \left(\mathsf{T} \left(\mathbf{\Theta}_{0}, \mathbf{h} \right) \right) = \nabla_{\mathbf{h}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) - \nabla_{\mathbf{\Theta}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right)^{\mathsf{T}} \left(\nabla_{\mathbf{\Theta}}^{2} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) \right)^{-1} \nabla_{\mathbf{\Theta}, \mathbf{h}} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) = \\ = \nabla_{\mathbf{h}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) - \nabla_{\mathbf{\Theta}, \mathbf{h}} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right)^{\mathsf{T}} \left(\nabla_{\mathbf{\Theta}}^{2} \mathcal{L} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right) \right)^{-1} \nabla_{\mathbf{\Theta}} \mathcal{Q} \left(\mathbf{\Theta}^{\eta}, \mathbf{h} \right)$$

$$(4)$$

1