USC_65nm_Release_Dec20_2018

- 1. User is required to have Cadence IC615 or later to read the schematics.
- 2. User needs the standard libraries that are distributed by Cadence to read the schematics (US_8ths, basic, analogLib, functional, cdsDefTechLib)
- 3. User needs the 65nm technology libraries in order to be able to see the device symbols and properties. This requires an NDA between the user and Global Foundries, which is the responsibility of the user.
- 4. The 65nm library has technology properties for the selected metal stack option of 6_00_01_00_LB, whose meaning is defined in the PDK to be obtained under NDA. The libraries and design are valid at PDK version V1.6.0 (Rev 11). The user is advised that selecting a different metal-stack option for tapeout will require the above variable to be changed. At the schematic level, this will affect the metal-oxide-metal capacitors used in the designs.
- 5. Simulation testbenches are provided for toplevel cells.
- 6. Simulation is using adexl and Spectre. Adexl views and Spectre states are provided.
- 7. Layout cells are not provided at this time.
- 8. The library has three top-level cells ADC12b (twelve bit SAR ADC), aafilter_vncap_7MHz (differential input, differential output, six-pole anti-aliasing Butterworth filter) and opamp5 (general purpose differential input, differential output opamp). Layout cells will be provided to the user under NDA for these cells. A separate design schematic called aafilter_vncap_2p2MHz is provided to the interested reader to create a layout from the aafilter_vncap_7MHz layout as a learning exercise for the CAD flow (DRC, LVS and simulation after parasitic extraction).
- 9. Design Corners: Process Corners, -55C to 125C, Vdd nominal +/- 10%
 - a. Toplevel cell 1: ADC12b:

12-bit, 20.4 MS/s SAR ADC with 285.714 MHz sampling clock (3.5ns period) ADC has 12-bit parallel output as well as serial output.

Typical Current consumption specifications from 1.2V supply at room temperature:

Analog circuit current consumption: 484uA Digital circuit current consumption: 93uA

Current consumption from 1.2V reference input: 386uA

Output I/O circuits for parallel outputs (10pF load on each output): 1.024mA

Total current consumption excluding I/O circuits: 963uA

ADC Parallel output specification:

Parallel outputs PO<11:0> ready after sync falling edge Output = $(1-2*PO<11>)*(2^10*PO<10>+ ... + 2^0*PO<0>)$

ADC Serial output specifications:

serial output (ADCo) starts after signal "Ho" goes high.

MSB out first, LSB out last

MSB (ADCo<11>) = sign bit

- ADCo<11> = 1 positive number
- ADCo<11> = 0 negative number

 $\begin{aligned} & \text{Output} = (2*ADCo<11>-1)*\{2^10^*[ADCo<11>*ADCo<10>+(1-ADCo<11>)^*(1-ADCo<10>)]+ + 2^0^*[ADCo<11>*ADCo<0>+(1-ADCo<11>)^*(1-ADCo<0>)]\} \end{aligned}$

TestBenches:

- 1. test ADC12b
- 2. test_ADC12b_sin: Testbench with 2 equal amplitude sine wave inputs at 2.551MHz and 3.827MHz.

- Test_comp2: Testbench for comparator resolution simulation using transient analysis
- 4. Test_comp2_ac: Testbench for comparator pre-amp gain and noise analyses

b. Toplevel cell 2: aafilter_vncap_7MHz

Differential input, Differential output six-pole filter with nominal bandwidth of 7.143 MHz and min bandwidth > 4.6875 MHz across corners.

Fiilter is composed of three, cascaded two-pole biquad filter sections. Filter sections can be turned off by connecting the "on" input to ground instead of 1.2V. **TestBenches:**

- test2_aafilter_vncap TestBench for aafilter_vncap_7MHz RminCmin and RmaxCmax corner testing
- 2. test2 power aafilter vncap TestBench for aafilter vncap 7MHz
- 3. test2_aafilter_mc Monte Carlo TestBench for aafilter_vncap_7MHz
- 4. test2_aafilter_vncap TestBench for aafilter_vncap_7MHz
- 5. test2_aafilter_vncap_off TestBench for checking effect of offset in aafilter_vncap_7MHz
- 6. opamp5 Schematic of opamp5 used in aafilter_vncap_7MHz

c. opamp5

Differential input, differential output opamp with required GBW for biquad sections used in filter.

TestBenches:

1. test opamp5 TestBench for opamp5

The tabular description below corresponds to the structure of the design library as seen in Cadence. The "/" character indicates a subcategory under the category preceding the "/" character.

<u>#</u>	Category	CellName	Description
1	ADC12b	ADC12b	12-bit, 20.4MS/s SAR ADC
		Shf_line	Used by sarlogic2 cell in ADC12b
		sarc	Used by sarlogic2 cell in ADC12b
		comp2	Comparator cell used in ADC12b
		DAC_array	DAC cell used in ADC12b
	ADC12b/ADC_TestBenches	test_ADC12b	Testbench for ADC12b
		test_ADC12b_sin	Testbench for ADC12b with 2.551 MHz sin wave
			input
		test_comp2	Testbench for comparator used in ADC12b
2	Analog_Biasing	Selfbias	Biascircuit used for biasing aafilter cell.
3	DAC_Cells	DAC_array	Segmented resistor-capacitor DAC used in
			ADC12b
		R_array2	Resistive DAC segment
		cap_array5	Capacitive array DAC segment
		R_cell3	Basic unit cell of R_array2
		cap_cell	Basic unit cell of cap_array5
		cap_cell2	Basic unit cell of cap_array5
		cap_cell_dummy	Basic dummy cell of cap_array5
		cap_cell_dummy2	Basic dummy cell of cap_array5
		cap_cell_tr	Basic unit cell of cap_array5
4	Digital Cells	dffr	DFF with reset
		diffs	DFF with set

		Inv_1x	1x strength inverter
		Inv 4x	4x strength inverter
		Inv_8x	8x strength inverter
		Inv_32x	32x strength inverter
		nor2 1x	1x strength nor2 gate
		nor2 4x	4x strength nor2 gate
		nor3 1x	
		_	1x strength nor3 gate
		tgate0	Transmission gate
		tate1	Transmission gate
		tgate1R_2p5u	Transmission gate
		tgate1R_p5u	Transmission gate
		tgate2	Transmission gate
		tgateL	Transmission gate
		tgateL1p5R	Transmission gate
		tgateL1p25R	Transmission gate
5	Filter	aafilter_vncap_7MHz	Anti aliasing Butterworth filter with 7MHz nominal
			bandwidth, min BW across PVT > 4.6875 MHz
			and < 10.2 MHz across thirty-nine corners. This
			design has a measured bandwidth of 6.5 MHz
			and measured 01. dB compression point of
			4.5 MHz. 1 dB compression point was not found
			in measurements. Filter matching across four
			filters on the same die was measured to be $\pm -\sigma$
			= +/- 0.0291 dB (+/- 0.67%)
			in the frequency range 0.1 MHz to 7 MHz and
			$+/-\sigma = +/-0.0198 \text{ dB } (+/-0.46\%).$
			Simulated linearity between –63dB and –72.35dB
			across thirty nine corners for failure rate target of
			4 PPM.
		bq1_vncap_7MHz	First biquad 2-pole filter section
		bq2_vncap_7MHz	Second biquad 2-pole filter section
		bq3_vncap_7MHz	Third biquad 2-pole filter section
	Filters/Filter TestBenches	test2_aafilter_vncap	TestBench for aafilter_vncap_7MHz RminCmin
	_		and RmaxCmax corner testing
		test2_power_aafilter_	TestBench for aafilter_vncap_7MHz
		vncap	
		test2 aafilter mc	Monte Carlo TestBench for aafilter_vncap_7MHz
		test2_aafilter_vncap	TestBench for aafilter_vncap_7MHz
		test2_aafilter_vncap_	TestBench for checking effect of offset in
		off	aafilter_vncap_7MHz
6	Opamps	opamp5	Schematic of opamp5 used in
	Chambo	Spanipo	aafilter_vncap_7MHz
	Opamps/Opamp_TestBench	test_opamp5	TestBench for opamp5
	Opamps/Opamp_TestDeffCff	tost_opampo	restriction opampo