2강. 컴퓨터 구조의 큰 그림

컴퓨터 구조

크게 컴퓨터 구조는 다음과 같이 이루어져 있습니다.

컴퓨터가 이해하는 정보에는 데이터와 명령어가 있습니다.

데이터

데이터는 다음과 같이 이루어져 있습니다.

- 숫자, 문자, 이미지, 동영상과 같은 정적인 정보
- 컴퓨터와 주고받는 / 내부에 저장된 정보를 데이터라고도 합니다.
- 0과 1로 숫자를 표현
- 0과 1로 문자를 표현

명령어

컴퓨터는 결국 명령어를 처리하는 기계입니다.

명령어?

- 컴퓨터를 실질적으로 움직이는 정보
- 데이터는 명령어를 위한 일종의 재료

명령어의 생김새와 동작 방식

- 1과 2를 더하라
- '안녕하세요'를 출력하라

컴퓨터의 네 가지 핵심 부품

핵심적인 4가지 부품은 다음과 같습니다.

해당 부품을 간단하게 표현한다면 다음과 같습니다.

메모리

메모리는 현재 실행되는 프로그램(프로세스)의 명령어와 데이터를 저장하는 부품입니다. 프로그램이 실행되기 위해서는 메모리에 저장되어 있어합니다. 메모리는 실행되는 프로그램의 명령어와 데이터를 저장합니다. 메모리에 저장된 값의 위치는 주소로 알 수 있습니다.

CPU

CPU는 메모리에 저장된 명령어를 읽고, 해석, 실행하는 부품입니다.

쉽게 말해, 컴퓨터의 두뇌라고 생각하시면 됩니다.

CPU는 다음과 같이 구성되어 있습니다. (해당 예시 말고도 추가되는 것이 있습니다.)

- 산술논리연산장치(ALU): 계산기
- 레지스터(Register): CPU 내부의 작은 저장장치
- 제어장치(CU: Control Unit): 제어 신호를 보내고, 명령어를 해석하는 장치
 - 。 제어신호 : 컴퓨터 부품들을 관리하고 작동시키기 위한 전기 신호

메모리 읽기

- CPU가 메모리에 저장된 값을 읽고 싶을 때는 메모리를 향해 메모리 읽기라는 제어 신호를 보냅니다.
- CPU가 메모리에 어떤 값을 저장하고 싶을 때는 메모리를 향해 메모리 쓰기라는 제어 신호를 보냅니다.

해당 과정을 다음과 같이 표현할 수 있습니다.

보조기억장치

보조기억장치의 대표적인 예는 HDD, SSD가 있습니다.

주기억장치인 RAM은 휘발적이라, 전원이 꺼지면 저장된 내용을 잃어 버립니다.

주기억 장치는 메모리를 <mark>실행할 정보</mark>를 저장하고, 보조기억장치는 <mark>보관할 정보</mark>를 저장합니다.

입출력 장치 (I/O)

- 컴퓨터 외부에 연결되어 컴퓨터 내부와 정보를 교환할 수 있는 장치입니다.
- 즉, 사용자와 CPU사이의 정보를 교환하는 장치라고 할 수 있습니다.

메인보드와 시스템 버스

메인보드(Motherboard)는 위 핵심 부품들을 연결하고 서로 통신할 수 있도록하는 주 회로 기판입니다.

핵심 부품들 사이의 소통은 주로 메인보드 내부의 시스템 버스를 통해 이루어집니다.

시스템 버스는 다음과 같이 구성됩니다.

- 주소 버스 : 주소를 주고 받는 통로
- 데이터 버스: 명령어와 데이터를 주고 받는 통로
- 제어 버스 : 제어 신호를 주고받는 통로
- 메모리 값 읽기, 쓰기 예시

