EIN DEUTSCHES DIGITALES SIGNATURVERFAHREN AUF DEM WEG ZUM INTERNATIONALEN KRYPTOGRAFISCHEN STANDARD

15. Deutscher IT-Sicherheitskongress 16/05/2017

Nina Bindel TU Darmstadt

ALGORITHMUS VON SHOR, 1994

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

true when quantum mech

RSA und ECDSA nicht mehr sicher

factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

QUANTUM COMPUTER REALISTISCH?

nature.com, 03. 01. 2017:

"Quantum computers ready to leap out of the lab in 2017"

Abschätzung der EU-Kommision:

bis 2035 universeller Quantencomputer

BETTER SAFE THAN SORRY

- NSA, 2015: (Teilweiser) Wechsel von klassischer zu post-quantum Kryptografie
- NIST, 2017: Start des Standardisierungswettbewerbs/Post-Quantum-Projekt

POST-QUANTUM KANDIDAT

UNTERSTÜTZER UND MITAUTOREN

- Sedat Akleylek¹
- Erdem Alkim²
- Johannes Buchmann³
- Özgür Dagdelen⁴
- Edward Eaton^{5,6}

- Gus Gutoski⁶
- Juliane Krämer³
- Giorgia Marson⁷
- Filip Palewa^{5,6}
- Peter Schwabe⁸

BISHERIGE ENTWICKLUNG VON TESLA

Jul. 2015: [ABBDP15] (TESLA)

Strikte Reduktion im ROM

Verbesserte Parameter*

Effizientere Implementierung*

SICHERHEITSREDUKTION

BISHERIGE ENTWICKLUNG VON TESLA

Jul. 2015: [ABBDP15] (TESLA) **Apr. 2016:** [ABBKM16] (ring-TESLA)

Aug. 2016: [BBK16] (ring-TESLA)

Okt. 2016: [BLNRZ16] (TESLA#) Nov. 2016: Fehler in Reduktion **Apr. 2017:** [ABBDEGKP17] (TESLA)

Smilte Redultion in ROM

Übertragung Paduktion Übertragung Reduktion

Strikte Reduktion im QROM and ROM

Verbesserte Parameter*

Parameter

Update Parameter

Effizientere Implementierung*

Implementierung

Impl. effizienter

Impl. sicher gegen Rechenzeitangriffe Update Implementierung

Analyse Fehlerangriffe

* Im Vgl. zu [BG14] und [DEG+14]

GLIEDERUNG

- Beschreibung Signaturverfahren TESLA & Unterschiede ring-TESLA
- Beschreibung Parameterwahl
- Implementierung & Vergleich
- Geplante n\u00e4chste Schritte

TESLA - SIGNATURERSTELLUNG

RING-TESLA

```
A \leftarrow_{\$} \mathbb{Z}_{q}^{m \times n}
sk = (S, E) \leftarrow_{\P} \mathbb{Z}_{q}^{n \times n} \times \mathbb{Z}_{q}^{m \times n}
pk = (A, B = AS + E)
```

Rechenintesivste Operation

 $a_1, a_2 \leftarrow_{\$} \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ $sk = (s, e_1, e_2) \leftarrow_{\sigma} \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$ $pk = (a_1, a_2, b_1 = a_1 s + e_1, b_2 = a_2 s + e_2)$ Großer Speicherplatz

LEARNING WITH ERRORS PROBLEM

Gegeben:

$$A \leftarrow_{\$} \mathbb{Z}_{q}^{m \times n}$$
 $b \leftarrow \mathbb{Z}_{q}^{m}$

Finde:

$$A \cdot s + e = b \mod q$$

$$(\mathbf{s,e}) \leftarrow_{\sigma} \mathbb{Z}_q^n \times \mathbb{Z}_q^m$$

SICHERHEITSREDUKTION TESLA

Theorem

Für entsprechende Parameter gilt: Falls M-LWE (t,ϵ) -schwer ist,

dann ist TESLA (t',ϵ',q_h,q_s) -sicher (EUF-CMA) im "quantum random oracle model"

mit $t \approx t'$ und

$$\epsilon' < \epsilon + \text{negl}(\lambda)$$
.

- das Verfahren korrekt,
- die Reduktion strikt und
- das Verfahren sicher ist.

BIT-SICHERHEIT UND BIT-HARDNESS

angestrebtes Sicherheitslevel λ von TESLA = Bit-Hardness η von LWE

- Sicherheitsverlust durch Reduktion
- Sicherheitsverlust Reduktion LWE auf M-LWE

$$\lambda = 96$$

wähle LWE-Instanz mit Bit-Hardness

$$\eta = 110$$

Bit-Hardness = Laufzeitabschätzung schnellster (klassischer oder quantum) Angriffe

VERGLEICH SICHERHEITSEIGENSCHAFTEN

Signatur- verfahren	Jahr	Problem	ROM?	Strikt?	QROM?	Strikt?
GPV	2008	SIS	✓	✓	✓	✓
GLP	2012	DCK	✓	×	-	-
GPV-poly	2013	R-SIS	✓	✓	✓	✓
BLISS	2013	R-SIS, NTRU	✓	×	-	-
BG	2014	SIS, LWE	✓	×	-	-
TESLA	2017	LWE	\checkmark	✓	✓	\checkmark

VERGLEICH EFFIZIENZ

Verfahren/ Instanziierung	Cycle counts [k-cycles]		Speicherplatz [kB]			Klassische Sicherheit
	Signierung	Verifikation	pk	sk	Sig.	[bit]
GPV	312 800	50 600	27 840	12 064	29	96
TESLA	27 244	5 375	4 808	2 895	1,9	96

GEPLANTE NÄCHSTE SCHRITTE

TESLA (Mai 201*7*)

Strikte Red. im (Q)ROM

Parameter

Implementierung

Reduktion ring-TESLA

Parameter ring-TESLA

Implementierung ring-TESLA

Analyse
Seitenkanalangriffe
ring-TESLA

Sichere Impl. ring-TESLA

Übertragung strikte Red. [A<u>B</u>BDEGKP17] im QROM

oder

Übertragung nichtstrikte Red. [BG14] im ROM Update Parameter Update Implementierung Analyse Cache-Seitenkanäle

Impl. sicher gegen Impl.-angriffe

Bereits in Arbeit

ZUSAMMENFASSUNG

- Entwicklung und aktuellen Forschungsstand von TESLA:
 - Gitterbasiertes Signaturverfahren
 - Strikte Reduktion von LWE im QROM
 - Parametervorschlag und Implementierung
- Nächste Schritte für ring-TESLA
 - Übertragung Ergebnisse TESLA
 - Sichere Implementierung

...mit dem Ziel der Einreichung beim NIST-PQ-Projekt

