Non-life — Assignment NL2

Niels Keizer* and Robert Jan Sopers[†]

September 23, 2016

1 Simulating an insurance portfolio-App. A3

$\mathbf{Q}\mathbf{1}$

How many bytes does it take to store 1,..., 10, 1000, 100000 logical values TRUE/FALSE?

We assume that 1, ..., 10 means all the integers from 1 to 10. To how many bytes are needed in R, we use the function object.size().

```
> for (n_values in c(1,2,3,4,5,6,7,8,9,10,1000,100000)){
    hh <- rep(TRUE,n_values)</pre>
    rr <- sample(c(TRUE,FALSE),n_values,repl=TRUE,prob=c(1,1))</pre>
    af <- as.factor(rr)
    print(c(n_values, object.size(hh), object.size(rr), object.size(af)))
+ }
[1]
      1
         48
              48 464
[1]
      2
         48
              48 464
[1]
      3
              56 528
         56
[1]
              56 528
         56
Г17
      5
         72
              72 544
         72
[1]
             72 488
      6
[1]
      7
         72
             72 544
[1]
         72
              72 544
[1]
      9
         88
              88 560
[1]
     10
         88
             88 560
[1] 1000 4040 4040 4512
[1] 100000 400040 400040 400512
```

The first column of the output is the length of the vector. The second column indicates the size in bytes of a vector filled with only TRUE values. The third with a random selection of TRUE and FALSE. The final column represents the size of the randomized vector, after it has been turned into a factor object.

^{*}Student number: 10910492 †Student number: 0629049

To obtain the y vector, we first need to run the following code:

```
> n.obs <- 10000; set.seed(4)
> # n.obs <- 10000; set.seed(4) # Gebruik deze regel voor een grotere sample size.
> sx <- as.factor(sample(1:2, n.obs, repl=TRUE, prob=c(6,4)))
> jb <- as.factor(sample(1:3, n.obs, repl=TRUE, prob=c(3,2,1)))</pre>
> re.tp <- sample(1:9, n.obs, repl=TRUE, prob=c(.1,.05,.15,.15,.1,.05,.1,.1,.2))
> tp <- as.factor(c(1,2,3,1,2,3,1,2,3)[re.tp])
> re \leftarrow as.factor(c(1,1,1,2,2,2,3,3,3)[re.tp])
> mo <- 3 * sample(1:4, n.obs, repl=TRUE, prob=c(1,1,0,8))
> mu <- 0.05 * c(1,1.2)[sx] *
               c(1,1,1)[jb] *
               c(1,1.2,1.44)[re] *
               1.2^{(0:2)}[tp] * mo/12
> y <- rpois(n.obs, mu)
> table(y)
у
   0
        1
             2
                  3
9276 702
            20
                  2
```

Which is then inspected by calculating mean(y), var(y) and the overdispersion factor var(y)/mean(y).

The overdispersion factor is smaller than 1. This is possible because we are looking at a relatively small sample, with low probabilities. If we would take a much larger sample, the value would be larger than 1. We check this by running the same code, but with a sample 100 times larger. This gives a result with an overdispersion factor larger than 1.

```
> table(y)
у
     0
                    2
                           3
                                   4
             1
931128 66053
                 2734
                          82
                                   3
> cbind(mean=mean(y), variance=var(y), phi=var(y)/mean(y))
                 variance
                                phi
         mean
[1,] 0.071779 0.07262285 1.011756
```

$\mathbf{Q3}$

We create a dataframe by using the function aggregate().

```
\verb| > aggr <- aggregate(list(Expo=mo/12,nCl=y,nPol=1), list(Jb=jb,Tp=tp,Re=re,Sx=sx), sum)| \\
```

Then we compare the sizes.

```
> object.size(aggr)
5336 bytes
> object.size(mo)
80040 bytes
> object.size(y)
40040 bytes
> object.size(jb) + object.size(tp) + object.size(re) + object.size(sx)
162240 bytes
```

The amount of memory gained is equal to 80040 + 40040 + 162240 - 5336 = 276984 bytes.

$\mathbf{Q4}$

According to MART Sec. 3.9.3, the maximum likelihood estimate $\hat{\lambda}_{3,3,3,2}$ is equal to the number of claims divided by the exposure.

```
> aggr[54,]
   Jb Tp Re Sx   Expo nCl nPol
54   3   3   2 115.75   13   130
> lambda3332 <- aggr$nCl[54]/aggr$Expo[54]
> lambda3332
[1] 0.112311
```

In the first command, we show that observation 54 contains the desired aggregated values to calculate the estimate, which is then determined at 0.112.

2 Exploring the automobile portfolio of Sec. 9.5

First we execute the following code in R to generate the portfolio.

Q_5

We are asked to comment on the difference between to lines of R code.

```
> str(type)
Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3 3 1 ...
> str(rep(1:3, each=3, len=54))
int [1:54] 1 1 1 2 2 2 3 3 3 1 ...
```

The str() function compactly displays the structure of an arbitrary R object. type contains a Factor object, with 3 ordered levels (or categories), and a list of integers which indicate which element is at that position. rep(1:3, each=3, len=54) creates a vector of integers of three ones, three twos and three threes, repeated to a length of 54. Both objects

Q6

First we take a sample from a dataframe which contains the portfolio.

```
> set.seed(1); subset <- sort(sample(1:54,15))
> data.frame(sex, region, type, job, n, expo)[subset,]
sex region type job n expo
     1
             1
                       3 10
3
                   1
                             210
8
                       2 12
                             175
     1
             1
                  3
             2
                             196
10
     1
                   1
                       1 10
             2
11
                  1
                       2 5
                             133
     1
             2
                  2
                       3 15
                             133
15
     1
16
             2
                  3
                       1 13
                             112
     1
20
     1
             3
                   1
                       2 11
                             126
29
     2
             1
                  1
                       2 12
                             161
30
     2
                       3 8
                             182
             1
                   1
31
     2
             1
                  2
                       1 18
                             203
32
     2
             1
                  2
                       2 3
                               91
45
     2
             2
                  3
                       3 16
                             126
46
     2
             3
                   1
                       1 16
                             175
47
     2
             3
                   1
                       2 13
                             119
48
     2
                       3 14
                             203
```

We are asked to check if the covariates of the first two cells have the right value. We print the right values of cells 3 and 8 using this code.

We conclude that these are equal to those in the dataframe.

Q7

We construct two analysis of deviance tables. One where type is added before region and the other way around.

```
> anova(glm(n/expo ~ type*region, quasipoisson, wei=expo))
Analysis of Deviance Table
```

Model: quasipoisson, link: log

Response: n/expo

Terms added sequentially (first to last)

	Df	Deviance 1	Resid. Df	Resid. Dev	
NULL			53	104.732	
type	2	36.367	51	68.365	
region	2	23.424	49	44.940	
type:region	4	2.529	45	42.412	
> anova(glm	(n/	expo ~ reg	ion*type,	quasipoisson,	wei=expo))
Analysis of	De	viance Tab	le		

Model: quasipoisson, link: log

Response: n/expo

Terms added sequentially (first to last)

	Df	Deviance	${\tt Resid.}$	Df	${\tt Resid.}$	Dev
NULL				53	104	.732
region	2	21.597		51	83	. 135
type	2	38.195		49	44	.940
region:type	4	2.529		45	42	.412

What we see is that the order in which these terms are added does not matter for the result. After both type and region are added, the resulting degrees of freedom and residual deviance is the same. We do of course see a difference between the analysis of only adding region or type.

$\mathbf{Q8}$

We are asked to explain the similarities and the differences between the following R code.

```
> (g.wei <- glm(n/expo ~ region*type, poisson, wei=expo))</pre>
Call: glm(formula = n/expo ~ region * type, family = poisson, weights = expo)
Coefficients:
  (Intercept)
                     region2
                                    region3
                                                      type2
                                                                     type3
     -2.98873
                     0.14988
                                    0.42165
                                                    0.43376
                                                                   0.45195
region2:type2 region3:type2 region2:type3 region3:type3
     -0.08084
                    -0.02230
                                    0.25559
                                                    0.10860
```

```
Degrees of Freedom: 53 Total (i.e. Null); 45 Residual
```

Null Deviance: 104.7

Residual Deviance: 42.41 AIC: Inf

There were 50 or more warnings (use warnings() to see the first 50) > (g.off <- glm(n ~ 1+region+type+region:type+offset(log(expo)),

+ family=poisson(link=log)))

Call: glm(formula = n ~ 1 + region + type + region:type + offset(log(expo)),
 family = poisson(link = log))

Coefficients:

type3	type2	region3	region2	(Intercept)
0.45195	0.43376	0.42165	0.14988	-2.98873
	region3:type3	region2:type3	region3:type2	region2:type2
	0.10860	0.25559	-0.02230	-0.08084

Degrees of Freedom: 53 Total (i.e. Null); 45 Residual

Null Deviance: 104.7

Residual Deviance: 42.41 AIC: 290.7

The output of g.off and g.wei contain the same coefficients, degrees of freedom, null deviance and residual deviance. The AIC for g.off is 290.7, however, for g.wei this is Inf. Also, g.wei throws warnings, on further inspection these arise from having non-integer x values in calls to dpois. This is what prevents the glm function from computing the AIC.