Recursion Theorem Notes

Geoffrey Matthews

March 6, 2017

Self Reference

▶ This sentence is false.

Self Reference

- This sentence is false.
- ► Print the following twice, the second time in quotations: "Print the following twice, the second time in quotations:"

Self Reference

- ▶ This sentence is false.
- Print the following twice, the second time in quotations: "Print the following twice, the second time in quotations:"
- "yields falsehood when appended to its own quotation." yields falsehood when appended to its own quotation."

Quine Pages

- ▶ https://www.nyx.net/~gthompso/quine.htm
- http://www.madore.org/~david/computers/quine.html

A Quine Turing Machine

Consider the TM B:

B: on input $\langle M \rangle$:

► Create TM A:

A: on input w:

- ► Erase w
- Write $\langle M \rangle$ on the tape.
- Simulate what's on the tape.
- Write $\langle A \rangle$ on the tape.
- Now consider TM A:

A: on input w:

- ► Erase w
- Write $\langle B \rangle$ on the tape.
- Simulate what's on the tape.

A Quine Turing Machine

Consider the TM B:

B: on input $\langle M \rangle$:

► Create TM A:

A: on input w:

- ► Erase w
- Write $\langle M \rangle$ on the tape.
- Simulate what's on the tape.
- Write \(\lambda \righta \) on the tape.
- Now consider TM A:

A: on input w:

- ► Erase w
- Write $\langle B \rangle$ on the tape.
- Simulate what's on the tape.
- ▶ Note that *B* could do other things before writing *A* and halting.

Recursion theorem makes undecidability easier to prove

 $Halt = \{\langle M, w \rangle : M \text{ is a TM that terminates on } w\}$

Assume there is a TM H that decides this language. Construct the following TM Q:

Q: On input w:

- ▶ Obtain description of self, $\langle Q \rangle$.
- ▶ Run H on $\langle Q, w \rangle$.
- ▶ If *H* accepts, loop forever, else halt.