WHAT IS CLAIMED IS:

1

2

3

4

5

6

7

8

9

10

11

12

13

1. A mobile station capable of communicating with a plurality of base stations in a wireless network and receiving at least one of a software program, a software correction patch and provisioning data from a server associated with said wireless network, said mobile station comprising:

an RF transceiver capable of receiving wireless messages from said plurality of base stations and converting said received wireless messages to a plurality of Internet protocol (IP) packets;

an encryption controller capable of converting said IP packets from an encrypted format to a decrypted format; and

a data burst message protocol controller capable of converting said decrypted IP packets to at least one data burst message.

- The mobile station as set forth in Claim 1 wherein said 1 encryption controller is capable of encrypting and decrypting IP 2 3 packets according to at least one of: IP Sec tunneling protocol; 4 Secure Shell (SSH) tunneling protocol; 5 Secure Sockets Layer/Transport Layer Security (SSL/TLS); б 7 and point-to-point tunneling protocol (PPTP). 8
- 3. The mobile station as set forth in Claim 1 wherein each
 of said IP packets comprise an IP layer and an IP packet payload.
- 1 4. The mobile station as set forth in Claim 4 wherein said 2 IP packet payload comprises a transmission control protocol (TCP) 3 layer.
- 5. The mobile station as set forth in Claim 4 wherein said
 IP packet payload comprises an over-the-air service provisioning
 payload associated with said at least one data burst message.

2

3

- 6. The mobile station as set forth in Claim 1 wherein each of said IP packets comprises an IP layer, a transmission control protocol (TCP) layer and a IP packet payload.
- 7. The mobile station as set forth in Claim 7 wherein said
 IP packet payload comprises an over-the-air service provisioning
 payload associated with said at least one data burst message.
 - 8. The mobile station as set forth in Claim 1 wherein said data burst message protocol controller is capable of converting said decrypted IP packets to said at least one data burst message according to at least one of: 1) an IS-683-A protocol; 2) a short messaging service (SMS) protocol; and 3) extensible mark-up language (XML) protocol.

.7

9. A system for secure over-the-air administration of	а
wireless mobile station via a base station in a wireless network	k,
said system capable of transmitting to said wireless mobile static	on
at least one of a software program, a software correction patch as	nd
provisioning data from a server associated with said wireles	SS
network, said system comprising:	

a data burst message protocol controller capable of receiving and converting said at least one of a software program, a software correction patch and provisioning data into at least one data burst message;

an encryption controller capable of converting said at least one data burst message into a plurality of encrypted IP packets; and

an RF transceiver capable of converting said encrypted IP packets into at least one wireless message and transmitting said at least one wireless message to said wireless mobile station.

- 1 10. The system as set forth in Claim 9 wherein said
 2 encryption controller is capable of encrypting and decrypting IP
 3 packets according to at least one of:
 4 IP Sec tunneling protocol;
 5 Secure Shell (SSH) tunneling protocol;
 6 Secure Sockets Layer/Transport Layer Security (SSL/TLS);
 7 and
 8 point-to-point tunneling protocol (PPTP).
- 1 11. The system as set forth in Claim 9 wherein each of said 2 IP packets comprises an IP layer and a IP packet payload.
- 1 12. The system as set forth in Claim 11 wherein said IP
 2 packet payload comprises a transmission control protocol (TCP)
 3 layer.
- 1 13. The system as set forth in Claim 12 wherein said IP
 2 packet payload comprises an over-the-air service provisioning
 3 payload associated with said at least one data burst message.

2

3

4

5

6

7

- 1 14. The system as set forth in Claim 9 wherein each of said 2 IP packets comprises an IP layer, a transmission control protocol 3 (TCP) layer and a IP packet payload.
- 1 15. The system as set forth in Claim 14 wherein the IP packet 2 payload comprises an over-the-air service provisioning payload 3 associated with said at least one data burst message.
 - burst message protocol controller is capable of converting said at least one of a software program, a software correction patch and provisioning data to said at least one data burst message according to at least one of: 1) an IS-683-A protocol; 2) a short messaging service (SMS) protocol; and 3) extensible mark-up language (XML) protocol.

1	17. For use a wireless network, a method for securely
2	transmitting to a wireless mobile station at least one of a
3	software program, a software correction patch and provisioning data
4	from a server associated with the wireless network, the method
5	comprising the steps of:
6	receiving and converting the at least one of a software
7	program, a software correction patch and provisioning data into at
8 .	least one data burst message;
9	converting the at least one data burst message into a
10	plurality of encrypted IP packets;
-11	converting the encrypted IP packets into at least one
12	wireless message; and
13	transmitting the at least one wireless message to the
14	wireless mobile station.

1	18.	The method as set forth in Claim 17 including the further
2	steps of e	encrypting and decrypting IP packets according to at least
3	one of:	
4	· .	IP Sec tunneling protocol;
5		Secure Shell (SSH) tunneling protocol;
6		Secure Sockets Layer/Transport Layer Security (SSL/TLS);
7	and	
8		point-to-point tunneling protocol (PPTP).

- 1 19. The method as set forth in Claim 17 wherein each of the 2 IP packets comprises an IP layer and a IP packet payload.
 - 20. The method as set forth in Claim 19 wherein the IP packet payload comprises a transmission control protocol (TCP) layer.
- 1 21. The method as set forth in Claim 20 wherein the IP packet 2 payload comprises an over-the-air service provisioning payload 3 associated with the at least one data burst message.

2

3

1

2

3

4

5

6

7

8

9.

- 1 22. The method as set forth in Claim 17 wherein each of the 2 IP packets comprises an IP layer, a transmission control protocol 3 (TCP) layer and a IP packet payload.
 - 23. The method as set forth in Claim 22 wherein the IP packet payload comprises an over-the-air service provisioning payload associated with the at least one data burst message.
 - 24. The method as set forth in Claim 17 wherein the steps of receiving and converting the at least one of a software program, a software correction patch and provisioning data into at least one data burst message comprises the sub-sep of converting the at least one of a software program, a software correction patch and provisioning data into at least one data burst message according to at least one of: 1) an IS-683-A protocol; 2) a short messaging service (SMS) protocol; and 3) extensible mark-up language (XML) protocol.