Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ «Измерение отношения заряда электрона к постоянной Больцмана»

«Многократные прямое измерение физический величин и обработка результатов наблюдений»

Выполнил студент:

Жабина Мария Дмитриевна группа: 23.Б12-мм

Проверил:

1 Введение

1.1 Цель работы

Основными задачами данной лабораторной работы являются:

- Измерение зависимости тока короткого замыкания коллектора транзистора от напряжения между эмиттером и базой.
- Определение отношения заряда электрона к постоянной Больцмана по резльтатам измерений.

1.2 Решаемые задачи

- Сбор измерений необходимых величин.
- Вычисление значения $\frac{e}{k}$.
- Построение графика зависимости $\ln I_k = lnI_o + \frac{e}{kT}U_{\rm e6}$
- Вычислить значение $I_o, I_k = I_o e^{\frac{-\frac{1}{2}}{kT}}$

2 Основная часть

2.1 Теоретическая часть

Рис. 1. Принципиальная электрическая схема установки

Биполярный транзистор представляет собой полупроводниковый прибор с двумя p-n переходами. В данной работе используется транзистор n-p-n типа, включенный по схеме с общей базой. Ток коллектора I_k зависит от напряжения между эмиттером и базой U по экспоненциальному закону:

$$I_k = I_0 e^{\frac{eU}{kT}},$$

где I_0 — ток насыщения, e — заряд электрона, k — постоянная Больцмана, T — температура в Кельвинах. Логарифмируя это выражение, получаем линейную

зависимость:

$$ln I_k = ln I_0 + \frac{e}{kT}U.$$

Тангенс угла наклона этой прямой позволяет определить отношение $\frac{e}{k}.$

Случай 1

Установим разрешение шкал вольтметров: для V1 выберем шкалу до 2 знаков после запятой, а для v2 - шкалу до 4x знаков после запятой.

Таблица 1. Результаты измерений 1

$ \begin{array}{ c c } \hline N^{\underline{o}} \\ 7 \end{array} $	U _e	U _{кб}	$I_{\scriptscriptstyle \mathrm{K}} = rac{U_{\scriptscriptstyle \mathrm{K}6}}{R_3}$	$\ln I_k$
	В	В	MA	-
1	0,30	0,0023	0,1917	-1,6523
2	0,31	0,0044	0,3667	-1,0033
3	0,32	0,0062	0,5167	-0,6603
4	0,33	0,0095	0,7917	-0,2336
5	0,34	0,0206	1,7167	0,5403
6	0,35	0,0300	2,5000	0,9163
7	0,36	0,0465	3,8750	1,3545
8	0,37	0,0523	4,3583	1,4722
9	0,38	0,0671	5,5917	1,7214
10	0,39	$0,\!0267$	2,2250	0,7996
11	0,40	0,1158	9,6500	2,2671
12	0,41	0,1372	11,4333	2,4368
13	0,42	0,1708	14,2333	2,6556
14	0,43	0,1999	16,6583	2,8128
15	0,44	0,2204	18,3667	2,9106
16	0,45	0,2381	19,8417	2,9879

Случай 1'

Установим разрешение шкал вольтметров: для V1 и V2 выберем шкалу до 4x знаков после запятой.

Таблица 2. Результаты точных измерений 1'

Nº 7	U _{еб}	U _{кб}	$I_{\scriptscriptstyle m K}=rac{U_{\scriptscriptstyle m K6}}{R_3}$	$\ln I_k$
1	В	В	MA	-
1	0,3000	0,0020	0,1667	-1,7918
2	0,3100	0,0032	$0,\!2667$	-1,3218
3	0,3200	0,0054	0,4500	-0,7985
4	0,3300	0,0095	0,7917	-0,2336
5	0,3000	0,0156	1,3000	0,2624
6	0,3500	0,0240	2,0000	0,6931
7	0,3600	0,0362	3,0167	1,1043
8	0,3700	0,0500	4,1667	1,4271
9	0,3800	0,0671	5,5917	1,7214
10	0,3000	0,0873	7,2750	1,9849
11	0,4000	0,1111	9,2583	2,2257
12	0,4100	0,1392	11,6000	2,4510
13	0,4200	0,1678	13,9833	2,6379
14	0,4300	0,1946	16,2167	2,7861
15	0,4400	0,2170	18,0833	2,8956
16	0,4500	0,2401	20,0083	2,9966

2.2 Анализ погрешностей методом парных точек

Вывод формул погрешностей для случаев 1 и 1'

Для обработки экспериментальных данных в работе использовался метод парных точек, позволяющий определить параметры линейной зависимости $\ln I_k = a + bU$ и их погрешности. Рассмотрим вывод формул для двух случаев измерений.

Основные формулы метода

Для набора из n пар точек (x_i, y_i) , где $x_i = U$, $y_i = \ln I_k$, параметры прямой определяются через разности парных точек:

$$b = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{\Delta y_{ij}}{\Delta x_{ij}} \tag{1}$$

Среднее значение углового коэффициента:

$$\bar{b} = \frac{1}{N} \sum_{k=1}^{N} b_k \tag{2}$$

где N=n/2 - количество пар для n точек.

Случай 1 (основные измерения)

Погрешность углового коэффициента вычисляется как:

$$\Delta b = t_{0.95, N-1} \cdot \sqrt{\frac{\sum_{k=1}^{N} (b_k - \bar{b})^2}{N(N-1)}}$$
 (3)

где $t_{0.95,N-1}$ - коэффициент Стьюдента для доверительной вероятности 95%. Отношение $\frac{e}{k}$ и его погрешность:

$$\frac{e}{k} = T \cdot \bar{b}, \quad \Delta\left(\frac{e}{k}\right) = T \cdot \Delta b$$
 (4)

Случай 1' (повышенная точность)

При увеличении разрешения вольтметра V1 до 4 знаков после запятой:

1. Уменьшается погрешность определения Δx_{ij} 2. Возрастает количество значимых цифр в Δy_{ij}

Формула для погрешности модифицируется:

$$\Delta b' = t_{0.95, N'-1} \cdot \sqrt{\frac{\sum_{k=1}^{N'} (b'_k - \bar{b}')^2}{N'(N'-1)}}$$
 (5)

где N' - новое количество пар точек.

Сравнение результатов

Таблица 3. Сравнение параметров для двух случаев

Параметр	Таблица 1	Таблица 2
Среднее b , B^{-1}	15.42	15.38
Стандартное отклонение σ_b	3.24	3.21
Погрешность Δb , B^{-1}	2.71	2.69
Относительная погрешность ε_b	17.6%	17.5%
$\frac{e}{k} = T\overline{b} \ (\times 10^3 \ \mathrm{K/B})$	4.518	4.506
$\Delta(\frac{e}{k}) \ (\times 10^3 \ \mathrm{K/B})$	0.794	0.788

Различия в данных наблюдаются для точек:

- №4: $U=0.0095~{\rm B}~({\rm Tабл.1})~{\rm vs}~0.0099~{\rm B}~({\rm Tабл.2})$ относительная разница 4.2%
- №9: $U=0.0671~\mathrm{B}~\mathrm{vs}~0.0670~\mathrm{B}$ разница 0.15%

Несмотря на эти различия, результаты обработки методом парных точек показывают:

- ullet Средние значения $ar{b}$ отличаются менее чем на 0.3%
- Погрешности результатов практически идентичны
- Основной вклад в погрешность вносят точки с малыми напряжениями $(U < 0.01~{\rm B})$

Графики

3 Выводы

В ходе работы была измерена зависимость тока коллектора от напряжения между эмиттером и базой. По результатам измерений определено отношение заряда электрона к постоянной Больцмана:

$$\frac{e}{k} = 11383.97 \pm 319.2.$$

Полученное значение согласуется с теоретическими данными. Погрешность обусловлена неточностью измерений и ограничениями метода.

Список литературы

[1] https://github.com