(First, let's finish off MCTS...)

Planning with Partial Observability

Tom Silver
Robot Planning Meets Machine Learning
Princeton University
Fall 2025

Building Toward POMDPs

Fully Observed

Partially Observed

Passive

Active

HMM: sequence of random variables $S_0, S_1, S_2, ...$, with domain S and random variables $O_0, O_1, O_2, ...$, with domain O s.t.

$$P(S_0, S_1, S_2, ..., O_0, O_1, O_2, ...,) = P(S_0) \prod_t P(S_{t+1}|S_t) P(O_t|S_t)$$

HMM: sequence of random variables $S_0, S_1, S_2, ...$, with domain S and random variables $O_0, O_1, O_2, ...$, with domain O s.t.

$$P(S_0, S_1, S_2, ..., O_0, O_1, O_2, ...,) = P(S_0) \prod_t P(S_{t+1}|S_t) P(O_t|S_t)$$

Initial state distribution

HMM: sequence of random variables $S_0, S_1, S_2, ...$, with domain S and random variables $O_0, O_1, O_2, ...$, with domain O s.t.

$$P(S_0, S_1, S_2, ..., O_0, O_1, O_2, ...,) = P(S_0) \prod_t P(S_{t+1}|S_t) P(O_t|S_t)$$

Initial state distribution

Transition model

HMM: sequence of random variables $S_0, S_1, S_2, ...$, with domain S and random variables $O_0, O_1, O_2, ...$, with domain O s.t.

$$P(S_0, S_1, S_2, ..., O_0, O_1, O_2, ...,) = P(S_0) \prod_t P(S_{t+1}|S_t) P(O_t|S_t)$$

Initial state distribution

Transition model

Observation model

HMM: sequence of random variables $S_0, S_1, S_2, ...$, with domain S and random variables $O_0, O_1, O_2, ...$, with domain O s.t.

The observation space

$$P(S_0, S_1, S_2, ..., O_0, O_1, O_2, ...,) = P(S_0) \prod_t P(S_{t+1}|S_t) P(O_t|S_t)$$

Initial state distribution

Transition model

Observation model

Example

How would we represent this scenario as a Hidden Markov Model?

As we receive observations, maintain belief about current state:

$$b_0(s) \triangleq P(S_0 = s \mid O_0)$$

$$b_1(s) \triangleq P(S_1 = s \mid O_0, O_1)$$

$$b_2(s) \triangleq P(S_2 = s \mid O_0, O_1, O_2)$$

• • •

As we receive observations, maintain **belief** about current state:

$$b_0(s) \triangleq P(S_0 = s \mid O_0) \propto P(O_0 \mid S_0 = s) P(S_0 = s)$$
 Bayes' Theorem

$$b_1(s) \triangleq P(S_1 = s \mid O_0, O_1)$$

$$b_2(s) \triangleq P(S_2 = s \mid O_0, O_1, O_2)$$

• • •

As we receive observations, maintain belief about current state:

$$b_0(s) \triangleq P(S_0 = s \mid O_0) \propto P(O_0 \mid S_0 = s) P(S_0 = s)$$
 Bayes' Theorem

$$b_1(s) \triangleq P(S_1 = s \mid O_0, O_1)$$

Can we compute b_{t+1} in terms of b_t ?

$$b_2(s) \triangleq P(S_2 = s \mid O_0, O_1, O_2)$$

• • •

$$b_{t+1}(s') \propto P(O_{t+1}|S_{t+1} = s') \sum_{s} P(S_{t+1} = s'|S_t = s) b_t(s)$$

Follows from definition of HMM

Forward algorithm or Viterbi

HMM Example: Moody Friend

- **States**: *mood* in {0, 1, 2}
- Observations: face in {smile, frown}
- Transition distribution:
 - Stay the same with 0.8 probability
 - Otherwise, move to adjacent mood with uniform probability

Observation model:

- P(smile | mood = 0) = 0.1
- P(smile | mood = 1) = 0.5
- P(smile | mood = 2) = 0.9

$$b_0(s') \propto P(O_0 = \bigcirc | S_0 = s') P(S_0 = s')$$

$$s' = 0$$
 $s' = 1$ $s' = 2$
 $b_0(s')$ 0.067 0.333 0.6

$$b_0(0) \propto P(O_0 = \bigcirc | S_0 = 0) P(S_0 = 0)$$

 $\propto 0.1(0.333...)$

$$b_0(1) \propto P(O_0 = \bigcirc | S_0 = 1)P(S_0 = 1)$$

 $\propto 0.5(0.333...)$

$$b_0(2) \propto P(O_0 = \bigcirc | S_0 = 2)P(S_0 = 2)$$

 $\propto 0.9(0.333...)$

Practice On Your Own: Compute b_{t+1} Given Next Observation:

$$\mathbf{s}' = \mathbf{0}$$
 $\mathbf{s}' = \mathbf{1}$ $\mathbf{s}' = \mathbf{2}$
 $\mathbf{b}_0(\mathbf{s}')$ 0.067 0.333 0.6
 $\mathbf{b}_1(\mathbf{s}')$

$$b_{t+1}(s') \propto P(O_{t+1}|S_{t+1} = s') \sum_{s} P(S_{t+1} = s'|S_t = s)b_t(s)$$

$$s' = 0 \qquad s' = 1 \qquad s' = 2$$

$$b_0(s')$$
 0.067 0.333 0.6

$$b_1(s')$$

$$b_1(s') \propto P(O_1 = \bigotimes | S_1 = s') \sum_{s} P(S_1 = s' | S_0 = s) b_0(s)$$

 $b_1(0) \propto P(O_1 = \bigotimes | S_1 = 0) \sum_{s} P(S_1 = 0 | S_0 = s) b_0(s)$

$$\propto P(O_1 = |\mathcal{S}| | S_1 = 0) [P(S_1 = 0|S_0 = 0)b_0(0) + P(S_1 = 0|S_0 = 1)b_0(1) + P(S_1 = 0|S_0 = 2)b_0(2)]$$

$$\propto 0.9 \left[0.8(0.067) + 0.1(0.333) + 0.0(0.6) \right] = 0.07821$$

$$s' = 0 \qquad s' = 1 \qquad s' = 2$$

$$b_0(s')$$
 0.067 0.333 0.6

$$b_1(s')$$

$$b_1(s') \propto P(O_1 = \bigotimes | S_1 = s') \sum_{s} P(S_1 = s' | S_0 = s) b_0(s)$$

$$b_1(0) \propto 0.07821$$

$$b_1(1) \propto P(O_1 = |S| | S_1 = 1) \sum P(S_1 = 1 | S_0 = s) b_0(s)$$

$$\propto P(O_1 = |S| | S_1 = 1) [P(S_1 = 1 | S_0 = 0)b_0(0) +$$

$$P(S_1 = 1 | S_0 = 1)b_0(1) +$$

 $P(S_1 = 1 | S_0 = 2)b_0(2)]$

$$\propto 0.5 [0.1(0.067) + 0.8(0.333) + 0.1(0.6)] = 0.16655$$

$$s' = 0 \qquad s' = 1 \qquad s' = 2$$

$$b_0(s')$$
 0.067 0.333 0.6

$$b_1(s')$$

$$b_1(0) \propto 0.07821$$

 $b_1(1) \propto 0.16655$

$$b_1(2) \propto P(O_1 = |S| | S_1 = 2) \sum_{s} P(S_1 = 2 | S_0 = s) b_0(s)$$

$$\propto P(O_1 = |S| | S_1 = 2) [P(S_1 = 2 | S_0 = 0)] b_0(0) +$$

$$P(S_1 = 2|S_0 = 1)b_0(1) + P(S_1 = 2|S_0 = 2)b_0(2)$$

$$\propto 0.1 \left[0(0.067) + 0.1(0.333) + 0.8(0.6) \right] = 0.05133$$

$$s' = 0$$
 $s' = 1$ $s' = 2$
 $b_0(s')$ 0.067 0.333 0.6
 $b_1(s')$ 0.264 0.562 0.173

$b_1(0) \propto 0.0$	07821
$b_1(1) \propto 0$.	16655
$b_1(2) \propto 0.0$	05133

Norm	alize	
Norm		

POMDP: MDP + HMM.

POMDP: MDP + HMM.

State space S

No longer observed!

- Action space \mathcal{A}
- Reward function $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$
- Transition distribution $P(S_{t+1} \mid A_t, S_t)$

POMDP: MDP + HMM.

- State space \mathcal{S}
- Action space \mathcal{A}
- Reward function $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$
- Transition distribution $P(S_{t+1} \mid A_t, S_t)$
- Observation space o
- Observation model $P(O_t \mid A_{t-1}, S_t)$

Note: can depend on previous action

POMDP: MDP + HMM.

- State space \mathcal{S}
- Action space \mathcal{A}
- Reward function $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$
- Transition distribution $P(S_{t+1} \mid A_t, S_t)$
- Observation space o
- Observation model $P(O_t | A_{t-1}, S_t)$

Sometimes also define *initial* observation model $P(O_0 \mid S_0)$ since there is no previous action then

POMDP Influence Diagram

Things Carried Over from MDP Land

- Assume finite state, action, and now observation spaces
- Discrete time; possibly finite, infinite, or indefinite horizon
- Still want to maximize expected utility

POMDP State Estimation

As with HMMs, we will want to maintain **belief** about current state.

$$b_{t+1}(s') \propto P(O_{t+1}|S_{t+1} = s', A_t) \sum_{s} P(S_{t+1} = s'|S_t = s, A_t) b_t(s)$$

Now conditioned on actions

Sometimes called *state* estimation

Example: Treasure Hunt

- States: (robot-loc, treasure-loc) in 3-cell grid
- **Actions:** move-left, move-right, scan-left, scan-right
- **Observations:** (robot-loc, scan-response)
 - Scan responses: got-response, got-no-response, not-applicable
- Rewards: 100 if robot at treasure, -1 for each step
- Horizon: indefinite (terminate when treasure obtained)
- Transition distribution:
 - Move actions: succeed with 0.95 probability. Otherwise, move in the other direction
 - Scan actions result in no state change
- Observation model:
 - Scan actions: get accurate response with 0.9 probability
 - Both actions: always observe correct robot location
 - Initial timestep: observe robot location only

Example: Treasure Hunt

Under what circumstances should the robot scan before moving?

- States: (robot-loc, treasure-loc) in 3-cell grid
- Actions: move-left, move-right, scan-left, scan-right
- **Observations:** (robot-loc, scan-response)
 - Scan responses: got-response, got-no-response, not-applicable
- Rewards: 100 if robot at treasure, -1 for each step
- Horizon: indefinite (terminate when treasure obtained)
- Transition distribution:
 - Move actions: succeed with 0.95 probability. Otherwise, move in the other direction
 - Scan actions result in no state change
- Observation model:
 - Scan actions: get accurate response with 0.9 probability
 - Both actions: always observe correct robot location
 - Initial timestep: observe robot location only

Planning in POMDPs

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Planning in POMDPs

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

Expectimax search for POMDPs

We'll start here this time

- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

POMDP Planning Online (In the Wild)

We ship the robot with the **POMDP** and have it plan **online**.

Initial Belief State

• State space: beliefs

Three example states in the belief MDP

• State space: beliefs

• Action space: same

• State space: beliefs

0.5 0.5

• Action space: same

Rewards:

$$R(b_t, a_t) = \sum_{s_t} b_t(s_t) \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) R(s_t, a_t, s_{t+1})$$

• State space: beliefs

• Action space: same

Rewards:

$$R(b_t, a_t) = \sum_{s_t} b_t(s_t) \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) R(s_t, a_t, s_{t+1})$$

Transitions:

$$P(b_{t+1} \mid b_t, a_t) = \dots$$

• State space: beliefs

- 1. We're in state s_t with probability $b_t(s_t)$ and we take a_t .
- 2. Transition to s_{t+1} by sampling from $P(s_{t+1}|s_t, a_t)$.
- 3. We receive some o_{t+1} sampled from $P(o_{t+1}|a_t, s_{t+1})$.
- 4. We run state estimation to compute $b_{t+1}(s_{t+1})$.

$$a_t$$
, s_{t+1})

Transitions:

$$P(b_{t+1} \mid b_t, a_t) = \dots$$

• State space: beliefs

- 1. We're in state s_t with probability $b_t(s_t)$ and we take a_t .
- 2. Transition to s_{t+1} by sampling from $P(s_{t+1}|s_t, a_t)$.
- 3. We receive some o_{t+1} sampled from $P(o_{t+1}|a_t,s_{t+1})$.
- 4. We run state estimation to compute $b_{t+1}(s_{t+1})$.

• Transitions:

$$P(b_{t+1} \mid b_t, a_t) = \dots$$

For each possible observation o_{t+1} , there is one next belief b_{t+1}

Notation: $b_{t+1} = SE(b_t, a_t, o_{t+1})$

• State space: beliefs

0.5 0.5

• Action space: same

Rewards:

$$R(b_t, a_t) = \sum_{s_t} b_t(s_t) \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) R(s_t, a_t, s_{t+1})$$
What is this?

• Transitions:

$$P(b_{t+1} | b_t, a_t) = \begin{cases} SE(b_t, a_t, o_{t+1}) & \text{w.p. } P(O_{t+1} = o_{t+1} | b_t, a_t) \\ SE(b_t, a_t, o'_{t+1}) & \text{w.p. } P(O_{t+1} = o'_{t+1} | b_t, a_t) \end{cases}$$
...

Final equations to complete transition distribution:

$$SE(b_t, a_t, o_{t+1})(s_{t+1}) \propto P(o_{t+1}|a_t, s_{t+1}) \sum_{s_t} b_t(s_t) P(s_{t+1}|s_t, a_t)$$

Same as "state estimation" slide

$$P(O_{t+1} = o_{t+1}|b_t, a_t) = \sum_{s_t} b_t(s_t) \sum_{s_{t+1}} P(o_{t+1}|a_t, s_{t+1}) P(s_{t+1}|s_t, a_t)$$

- State space: beliefs
- Action space: same
- 0.5 0.5

Rewards:

$$R(b_t, a_t) = \sum_{s_t} b_t(s_t) \sum_{s_{t+1}} P(s_{t+1}|s_t, a_t) R(s_t, a_t, s_{t+1})$$

Transitions:

$$P(b_{t+1} | b_t, a_t) = \begin{cases} SE(b_t, a_t, o_{t+1}) & \text{w.p. } P(O_{t+1} = o_{t+1} | b_t, a_t) \\ SE(b_t, a_t, o'_{t+1}) & \text{w.p. } P(O_{t+1} = o'_{t+1} | b_t, a_t) \end{cases}$$
...

• Horizon: if finite or infinite, same. Indefinite: convert to infinite. (Why?)

https://github.com/rpmml/rpmml-code/blob/main/scripts/treasure_hunt_pomdp_walkthrough.py

POMDP Expectimax Search

Run expectimax search in the belief MDP.

• • •

• That's pretty much it!

Completing the Expectimax Agent

- 1. Receive initial observation
- 2. Initialize belief
- 3. Repeat:
 - 1. Run expectimax search in belief MDP
 - 2. Execute action and receive observation
 - 3. Run state estimation to update belief

Example: Home Inspection

Solve!

- **States**: *home-value* in {100, 300}
- **Actions:** buy, do-not-buy, cheap-inspect, premium-inspect
- Observations: good-deal or bad-deal or none
- Rewards:
 - +\$100 if buy and home-value=300
 - -\$100 if buy and home-value=100
 - -\$10 to cheap-inspect
 - -\$50 to premium-inspect
- Horizon: indefinite (terminate after buy or do-not-buy)
- Transition distribution:
 - There is a 5% chance that inspecting will make home-value 100
- Observation model:
 - Cheap-inspect is 75% accurate
 - Premium-inspect is 90% accurate

Planning in POMDPs

Offline Planning

Value iteration for POMDPs

Now this

- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

POMDP Planning Offline (In the Factory)

Run POMDP value iteration offline (in the factory) and compute π .

A Stupidest Possible Algorithm

$$\pi_{MLS}(b) \triangleq \pi_{MDP}^*(\operatorname{argmax}_s b(s))$$

where

- MLS = "Most Likely State" approximation
- π_{MDP}^* is an optimal policy for the underlying MDP

Why is this "stupid"?

Another Stupidest Possible Algorithm

Enumerate candidate policies

Evaluate each candidate and keep the best

Another Stupidest Possible Algorithm

Enumerate candidate policies

Wait, how? Aren't these continuous functions?

Evaluate each candidate and keep the best

Policy Trees

a.k.a. conditional plans

Repeat:

- Take root action
- Receive observation
- Child is new root

For finite horizon, there are finitely many policy trees

How many exactly?

Another Stupidest Possible Algorithm

Enumerate candidate policies

Notation:

- 1. Γ is a policy tree
- 2. $[\Gamma]$ is the action at the root
- 3. $\Gamma[o]$ is the new policy tree after receiving observation o
- Evaluate each candidate and keep the best

Another Stupidest Possible Algorithm

Enumerate candidate policies

Notation:

- 1. Γ is a policy tree
- 2. $[\Gamma]$ is the action at the root
- 3. $\Gamma[o]$ is the new policy tree after receiving observation o
- Evaluate each candidate and keep the best

How?

POMDP Policy Tree Evaluation

Finite Horizon

$$V_t^{\Gamma}(s) = \sum_{s'} P(s' \mid s, [\Gamma])[R(s, [\Gamma], s') + \sum_{o} O(o \mid s', [\Gamma]) V_{t+1}^{\Gamma[o]}(s')]$$

$$V_H^{\Gamma}(s) = 0$$

$$V_t^{\Gamma}(b) = \sum_s b(s) V_t^{\Gamma}(s)$$

POMDP Policy Tree Evaluation

Finite Horizon

$$V_t^{\Gamma}(s) = \sum_{s'} P(s' \mid s, [\Gamma])[R(s, [\Gamma], s') + \sum_{o} O(o \mid s', [\Gamma]) V_{t+1}^{\Gamma[o]}(s')]$$

$$V_H^{\Gamma}(s) = 0$$

$$V_t^{\Gamma}(b) = \sum_{S} b(S) V_t^{\Gamma}(S)$$
 This is a linear function of $b!$

POMDP Policy Tree Evaluation

Finite Horizon

$$V_t^{\Gamma}(s) = \sum_{s'} P(s' \mid s, [\Gamma])[R(s, [\Gamma], s') + \sum_{o} O(o \mid s', [\Gamma]) V_{t+1}^{\Gamma[o]}(s')]$$

$$V_H^{\Gamma}(s) = 0$$

$$V_t^{\Gamma}(b) = \sum_s b(s) V_t^{\Gamma}(s) \triangleq \boldsymbol{\alpha}_{\Gamma} \cdot \boldsymbol{b}$$

"Alpha vector"

POMP Value Functions Have Special Structure

$$V^*(\boldsymbol{b}) = \max_{\Gamma} \boldsymbol{\alpha}_{\Gamma} \cdot \boldsymbol{b}$$

The optimal value function is *piecewise linear*

It's also *convex* (more certainty → higher value)

Example: 2-State POMDP

Example: Toy POMDP

• **States**: *s*1, *s*2

• **Actions**: *a*1, *a*2

• Observations: z1, z2, z3

Rewards:

- R(s1, a1) = 0
- R(s1, a2) = 1.5
- R(s2, a1) = 1
- R(s2, a2) = 0

Horizon = 1

Suppose: $b_0 = [0.75, 0.25]$

https://pomdp.org/tutorial/pomdp-vi-example.html

Recall: Value Iteration in MDPs

```
ValueIteration(\mathcal{S}, \mathcal{A}, P, R, \gamma)
   // Represent values as dictionary V[s] = V^*(s), initialized arbitrarily.
   while not converged
        // Initialize new value function dictionary
3
        Vn = dict()
5
        for each s \in S
              Vn[s] = BellmanBackup(s, V, S, A, P, R, \gamma)
        V = Vn
   return V
                           Iteration 1: Horizon 1 (rewards only)
                           Iteration 2: Horizon 2 in terms of Horizon 1
```

Extending This Intuition To POMDPs

First, compute values for horizon = 1

- Policy trees are just actions
- Values are just rewards

Then, compute values for horizon = 2 using horizon = 1!

- Policy trees are depth 2
- Values are rewards + horizon 1 values

But how?

Etc...

Value Iteration Intuition

$$\alpha^0 = (0, ..., 0)$$

$$\alpha_a^1 = (R(s_1, a), \dots, R(s_n, a))$$
 For each \sqrt{a}

Linear transform

$$\alpha_{\Gamma}^{2} = \left(R(s_{1}, a), \dots, R(s_{n}, a) \right) + M_{ao_{1}} \left(\alpha_{a_{1}}^{1} \right) + M_{ao_{2}} \left(\alpha_{a_{2}}^{1} \right) \text{ For each } \sqrt[3]{a}$$

Using previous step

. . .

Guaranteed to converge

Can prune dominated vectors after each step

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Need to be careful about policy representation and evaluation

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Pineau, Gordon, Thrun (2003)

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Littman et al. (1994)

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Key idea: need sparse belief updates too

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Key idea: store *histories* in nodes, rather than just *states*

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Silver & Veness (2010)

Offline Planning

- Value iteration for POMDPs
- Policy iteration for POMDPs
- See: PBVI, Witness Algorithm

Online Planning

- Expectimax search for POMDPs
- Sparse sampling for large transitions
- Bandits / MCTS for smarter exploration
- See: POMCP, DESPOT

Somani et al. (2013)

POMDP Planning: Takeaways

- 1. POMDPs are hard
- 2. POMDPs → continuous-state MDPs with structure
- 3. Litmus test for candidate planners: information-gathering

For more, highly recommend: https://pomdp.org/