Semantic Segmentation & Object Detection in Point Clouds

Jiantao Gao

2020.8.20

Paper List

- JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds (ECCV 2020)
- H3DNet: 3D Object Detection Using Hybrid Geometric Primitives (ECCV 2020)
- Weakly Supervised 3D Object Detection from Lidar Point Cloud (ECCV 2020)

JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds

```
Zeyu \mathrm{HU^{1[0000-0003-3585-7381]}}, Mingmin Zhen^{1[0000-0002-8180-1023]}, Xuyang \mathrm{BAI^{1[0000-0002-7414-0319]}}, Hongbo \mathrm{Fu^{2[0000-0002-0284-726X]}}, and Chiew-lan \mathrm{Tai^{1[0000-0002-1486-1974]}}
```

Hong Kong University of Science and Technology
{zhuam,mzhen,xbaiad,taicl}@cse.ust.hk

City University of Hong Kong
hongbofu@cityu.edu.hk

Motivation:

The Semantic segmentation (SS) and the semantic edge detection (SED) tasks can be seen as two dual problems with even interchangeable outputs in an ideal case.

Pipeline:

Two streams of networks with a shared feature encoder

Joint refinement module

Joint refinement module:

Edge map generation sub-module:

Edge map generation sub-module converts an SSP mask to SEP mask (edge activation point maps)

$$a_i = col_i(|M * Softmax(s) - Softmax(s)|)$$

The points nearer to the predicted boundaries will have larger activation values

Joint Multi-task Learning:

$$L_{total} = \lambda_0 L_{seg} + \lambda_1 L_{edge} + \lambda_2 L_{bce} + \lambda_3 L_{dual}$$

Semantic segmentation results on S3DIS:

Table 3: mIoU scores (%) of semantic segmentation task.

Method	S3DIS	ScanNet
TangentConv_54	52.6	43.8
RNN Fusion 55	53.4	-
SPGraph 56	58.0	-
FCPN 57	_	44.7
PointCNN 3	57.3	45.8
ParamConv 58	58.3	-
PanopticFusion 59	_	52.9
TextureNet 60	-	56.6
SPH3D-GCN 61	59.5	61.0
HPEIN 37	61.9	61.8
MCCNN 62	_	63.3
MVPNet 4	62.4	64.1
PointConv 42	_	66.6
KPConv rigid 21_	65.4	68.6
KPConv deform 21	67.1	68.4
SparseConvNet 29	_	72.5
MinkowskiNet 30	65.4	73.6
JSENet (ours)	67.7	69.9

Semantic edge detection results on S3DIS and ScanNet:

Table 4: MF (ODS) scores (%) of semantic edge detection on S3DIS Area-5.

													board	I
CASENet 8														
KPConv [21]														
JSENet (ours)	31.0	44.5	43.2	38.8	0.2	24.1	13.2	36.7	37.7	36.3	29.1	34.0	33.3	32.4

Table 5: MF (ODS) scores (%) of semantic edge detection on ScanNet val set.

Method	mean																				
CASENet 8																					
KPConv 21																					
JSENet (ours)	37.3	43.8	55.8	35.9	38.2	41.0	40.8	34.5	35.9	25.5	28.7	29.5	37.3	36.2	31.7	28.1	28.3	48.5	35.6	53.2	37.8

Fig. 5: Qualitative results on S3DIS Area-5. For better visualization, we thickened all the semantic edges.

Ablation Study on S3DIS:

Table 1: Ablation experiments of network structures on S3DIS Area-5. **SEDS**: semantic edge detection stream; **EFE**: enhanced feature extraction; **HS**: hierarchical supervision; **SSS**: semantic segmentation stream; **JRM**: joint refinement module. The results in some cells (with '-') are not available, since the corresponding models perform either SS or SED.

0	SEDS	EFE	$_{ m HS}$	SSS	JRM	mIoU (%)	mMF (ODS)(%)
1	✓	✓	✓	✓	✓	67.7	31.0
2	✓	✓	✓	✓		66.2	30.5
3				✓		64.7	-
4	✓	✓	✓			-	30.2
5	✓	✓				-	29.9
6	✓					-	29.4

Ablation Study on S3DIS:

Table 2: (a) Comparison of different supervision choices for SED. (b) Effects of the dual semantic edge loss in terms of boundary quality (F-score).

(a) (b)

Method	mMF (ODS) (%)
L_{bce} for all five layers	30.1
L_{seg} for all five layers	30.1
No hierarchical supervision	29.9
L_{bce} for first three, L_{seg} for last two	30.2

Method	F-score (%)
JSENet w/o dual loss	22.7
JSENet	23.1

H3DNet: 3D Object Detection Using Hybrid Geometric Primitives

Zaiwei Zhang¹, Bo Sun^{*1}, Haitao Yang^{*1}, and Qixing Huang¹

The University of Texas at Austin, Austin, Texas, USA, 78710

Motivation:

Hybrid Geometric Primitives: BB centers, BB face centers, and BB edge centers

Advantages:

- 1. The hybrid set of geometric primitives not only provides more accurate signals for object detection than using a single type of geometric primitives, but it also provides an overcomplete set of constraints on the resulting 3D layout;
- 2. The hybrid set of geometric primitives can make the model tolerate outliers in the predicted geometric primitives better.

Introduce hybrid geometric primitives to the 3D object detection?

Pipeline:

Fig. 2: H3DNet consists of three modules. The first module computes a dense descriptor and predicts three geometric primitives, namely, BB centers, BB face centers, and BB edge centers. The second module converts geometric primitives into object proposals. The third module classifies object proposals and refines the detected objects.

Pipeline:

Classification & Refinement Module:

ScanNet v2 and SUN RGB-D:

Table 2: **Left:** 3D object detection results on ScanNetV2 val set. **Right:** results on SUN RGB-D V1 val set. We show mean of average precision (mAP) across all semantic classes with 3D IoU threshold 0.25 and 0.5.

	Input	mAP@0.25	mAP@0.5
DSS 39	Geo + RGB	15.2	6.8
F-PointNet 29	Geo + RGB	19.8	10.8
GSPN 51	Geo + RGB	30.6	17.7
3D-SIS 9	Geo + 5 views	40.2	22.5
VoteNet 28	Geo only	58.7	33.5
Ours	Geo only	67.2	48.1
w\o refine	Geo only	60.2	37.3

	Input	mAP@0.25	mAP@0.5
DSS 39	Geo + RGB	42.1	-
COG[32]	Geo + RGB	47.6	-
2D-driven 17	Geo + RGB		-
F-PointNet 29	Geo + RGB	54.0	-
VoteNet 28	Geo only	57.7	32.9
Ours	Geo only	60.1	39.0
w\o refine	Geo only	58.5	34.2

Fig. 5: Qualitative baseline comparisons on ScanNet V2.

Fig. 6: Qualitative baseline comparisons on SUN RGB-D.

Ablation Study on ScanNet v2:

Fig. 4: Effect of geometric primitive matching and refinement.

Ablation Study on ScanNet v2:

Table 3: Quantitative results without refining predicted center, size, semantic or object existence score for Scan-Net, and without refining predicted angle for SUN RGB-D and differences compared with refining all.

_						
	mAI	P@0.25	mAP@0.5			
w\o center	66.9	-0.3	46.3	-1.8		
w o size	65.4	-1.8	44.2	-3.9		
w o semantic	66.2	-1.0	47.3	-0.8		
w o existence	65.2	-1.8	45.1	-3.0		
w\o angle	58.6	-1.5	36.6	-2.4		

Table 4: Quantitative comparisons between different number of descriptor computation towers, among our approach and VoteNet, for ScanNet and SUN RGB-D.

	# of Towers	mAP@0.25	mAP@0.5
0	1	64.4	43.4
	2	65.4	46.2
Ours	3	66.0	47.7
	4	67.2	48.3
Vote	4 (Scan)	60.11	37.12
	4 (SUN)	57.5	32.1

Weakly Supervised 3D Object Detection from Lidar Point Cloud

Qinghao Meng¹, ⊠Wenguan Wang², Tianfei Zhou³, Jianbing Shen³, Luc Van Gool², and Dengxin Dai²

¹School of Computer Science, Beijing Institute of Technology ²ETH Zurich ³Inception Institute of Artificial Intelligence https://github.com/hlesmqh/WS3D

Data Annotation Strategy for Our Weak Supervision:

Fig. 3. (a-c): Precise annotations require extensive labeling efforts (see §3). (d-f): Our weak supervision is simply obtained by clicking object centers (denoted by ♯) on BEV maps (see §3). (g-h): Our pseudo groundtruths for fore-/background segmentation (yellower indicates higher foreground score; see §4.1).

Pseudo Ground-truth Generation:

A labeled vehicle center point \boldsymbol{o} on Bev: (x_o, z_o)

Setting its height as: $y_o = 0$.

Pseudo Ground-truth Generation:

$$f^{p} = \max_{o \in \mathcal{O}}(\iota(p, o)), \text{ where } \iota(p, o) = \begin{cases} 1 & \text{if } d(p, o) \leq 0.7, \\ \frac{1}{\kappa} \mathcal{N}(d(p, o)) & \text{if } d(p, o) > 0.7. \end{cases}$$

$$d(p,o) = [(x_p - x_o)^2 + \frac{1}{2}(y_p - y_o)^2 + (z_p - z_o)^2]^{\frac{1}{2}}$$

Pipeline:

Fig. 5. Our 3D object detection pipeline ($\S4$). (a-b) Cylindrical 3D proposal generation results from Stage-1 ($\S4.1$). Yellower colors correspond to higher foreground probabilities. (c-d) Cuboid prediction in Stage-2 ($\S4.2$). (e) Our final results.

Pipeline:

Fig. 5. Our 3D object detection pipeline ($\S4$). (a-b) Cylindrical 3D proposal generation results from Stage-1 ($\S4.1$). Yellower colors correspond to higher foreground probabilities. (c-d) Cuboid prediction in Stage-2 ($\S4.2$). (e) Our final results.

Table 1. Evaluation results on KITTI val set (Car). See §5.2 for details.

Learning Paradigm	Detector	Modality		BEV@0.7			3D Box@	0.7
Learning Faradigm	Detector	Modanty	Easy	${\bf Moderate}$	Hard	Easy	Moderate	Hard
Trained with the	whole KITTI train se	t: 3,712 pr	recisely	labeled sc	enes w	ith 15,	654 vehicle	instances
	VeloFCN [11]	LiDAR	40.14	32.08	30.47	15.20	13.66	15.98
	PIXOR [5]	LiDAR	86.79	80.75	76.60	-	-	-
Fully supervised	VoxelNet [17]	LiDAR	89.60	84.81	78.57	81.97	65.46	62.85
	SECOND [16]	LiDAR	89.96	87.07	79.66	87.43	76.48	69.10
	PointRCNN [13]	LiDAR	-	-	-	88.45	77.67	76.30
	PointPillars [2]	LiDAR	89.64	86.46	84.22	85.31	76.07	69.76
	Fast PointR-CNN [6]	LiDAR	90.12	88.10	86.24	89.12	79.00	77.48
	STD [18]	LiDAR	90.50	88.50	88.10	89.70	79.80	79.30
Trained with a	part of KITTI train s	set: 500 pre	ecisely	labeled sce	nes wi	th 2, 17	76 vehicle in	stances
Fully supervised	PointRCNN [13]	LiDAR	87.21	77.10	76.63	79.88	65.50	64.93
Fully supervised	PointPillars [2]	LiDAR	86.27	77.13	75.91	72.36	60.75	55.88
Trained with a	a part of KITTI train	set: 125 pi	recisely	labeled sc	enes w	ith 550	vehicle ins	tances
Fully supervised	PointRCNN [13]	LiDAR	85.09	74.35	67.68	67.54	54.91	51.96
Fully supervised	PointPillars [2]	LiDAR	85.76	75.30	73.29	65.51	51.45	45.53
Trained with a part	of KITTI train set: 5	600 weakly	labele	d scenes wi	th 534	precis	ely annotate	ed instances
Weakly supervised	Ours	LiDAR	88.56	84.99	84.74	84.04	75.10	73.29
- vv earity supervised	Ours	LIDAI	00.00	04.33	04.74	04.04	10.10	10.29

Table 2. Evaluation results on KITTI test set (Car). See §5.2 for details.

Looming Donadigm	Detector	Modality		BEV@0.7			3D Box@	0.7
Learning Paradigm	Detector	Modanty	Easy	Moderate	Hard	Easy	Moderate	Hard
Trained with the w	hole KITTI train set:	3,712 prec	isely a	nnotated se	cenes v	vith 15	654 vehicle	e instances
	PIXOR [5]	LiDAR	87.25	81.92	76.01	-	-	-
	VoxelNet [17]	LiDAR	89.35	79.26	77.39	77.47	65.11	57.73
	SECOND [16]	LiDAR	88.07	79.37	77.95	83.13	73.66	66.20
$Fully\ supervised$	PointRCNN [13]	LiDAR	89.47	85.68	79.10	85.94	75.76	68.32
	PointPillars [2]	LiDAR	88.35	86.10	79.83	79.05	74.99	68.30
	Fast PointR-CNN [6]	LiDAR	88.03	86.10	78.17	84.28	75.73	67.39
	STD [18]	LiDAR	94.74	89.19	86.42	87.95	79.71	75.09
Trained with a par	t of KITTI train set:	500 weakly	labele	ed scenes +	534 p	recisely	y annotated	instances
Weakly supervised	Ours	LiDAR	90.11	84.02	76.97	80.15	69.64	63.71

Fig. 6. Qualitative results of 3D object detection (Car) on KITTI val set (§5.2). Detected 3D bounding boxes are shown in yellow; images are used only for visualization.

Table 3. Evaluation results on KITTI val set (Pedestrian). See §5.2 for details.

Learning Paradigm	Detector	Modality	BEV@0.5			3D Box@0.5			
	Detector		Easy	Moderate	Hard	Easy	Moderate	Hard	
Trained with: 951 precisely labeled scenes with 2,257 pedestrian instances									
Fully supervised	PointPillars [2]	LiDAR	71.97	67.84	62.41	66.73	61.06	56.50	
	PointRCNN [13]	LiDAR	68.89	63.54	57.63	63.70	69.43	58.13	
	Part- A^{2} [40]	LiDAR	-	-	-	70.73	64.13	57.45	
	VoxelNet [17]	LiDAR	70.76	62.73	55.05	-	-	-	
	STD [18]	LiDAR	75.90	69.90	66.00	73.90	66.60	62.90	
Trained with: 951 weakly labeled scenes with 515 pedestrian instances									
Weakly supervised	Ours	LiDAR	74.79	70.17	66.75	74.65	69.96	66.49	

Performance as An Annotation Tool:

Table 5. Comparison of annotation quality on KITTI val set (see §5.4).

Learning Paradigm	Method	Mode	Speed	BEV@0.5			3D Box@0.5		
			(sec./inst.)	Easy	Moderate	Hard	Easy	Moderate	Hard
Trained with the whole KITTI train set: 3,712 well-labeled scenes with 15,654 vehicle instances									
Fully Supervised	[15]	Active	3.8	-	-	-	-	-	88.33
Trained with KITTI train+val: 7,481 scenes (implicitly using 2D instance segmentation annotations)									
Fully-Supervised	[14]	Auto	8.0	80.70	63.36	52.47	63.39	44.79	37.47
Trained with a part of KITTI train set: 500 weakly labeled scenes + 534 precisely annotated instances									
Weakly Supervised	Ours	Auto	0.1	96.33	89.01	88.52	95.85	89.14	88.32
		Active	2.6	99.99	99.92	99.90	99.87	90.78	90.14

Table 6. Performance of PointRCNN [13] and PointPillars [2] when trained using different annotations sources. Results are reported on KITTI val set (§5.4).

Detector	Annotation Source		BEV@0.7		3D Box@0.7			
	Annotation Source	Easy	Moderate	Hard	Easy	Moderate	Hard	
PointRCNN [13]	Manual	90.21	87.89	85.51	88.45	77.67	76.30	
	Automatic (ours)	88.02	85.75	84.27	83.22	74.54	73.29	
	Active (ours)	88.64	85.41	84.94	84.21	76.08	74.91	
PointPillars [2]	Manual	89.64	86.46	84.22	85.31	76.07	69.76	
	Automatic (ours)	88.55	85.62	83.84	84.79	74.18	68.52	
	Active (ours)	88.94	85.88	83.86	84.53	75.03	68.63	

Thanks