2020-2021 学年第一学期北京邮电大学 高等数学 A(上)期中试卷

1.
$$\lim_{x \to \infty} \frac{|x|}{x} \arctan x = \underline{\hspace{1cm}};$$

$$2. \quad \lim_{x\to\infty} \left(\frac{\sin 2x}{x} + x\sin\frac{3}{x}\right) = \underline{\qquad};$$

3.
$$i = 0 < \alpha < 1, \lim_{n \to \infty} \left[\left(n + n^{\alpha} \right)^{1-\alpha} - n^{1-\alpha} \right] = \underline{ } ;$$

4.
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2 \arctan x} - 1}{(1 - \cos 2x) \sin x} = \underline{\hspace{1cm}};$$

6.
$$\lim_{n\to\infty} \left[\frac{2}{2^n+1} + \frac{2^2}{2^n+2} + \dots + \frac{2^n}{2^n+n} \right] = \underline{\hspace{1cm}};$$

7. 设
$$f(x) = \begin{cases} \frac{\sqrt[3]{1-ax}-1}{x}, x > 0 \\ (1-x)^{\frac{1}{x}}, x < 0 \end{cases}$$
 , $x = 0$ 为 $f(x)$ 的可去间断点,则常数 $a =$ ____;

8. 设
$$f(x) = \sin x$$
, $g(x) = \begin{cases} x - \pi, x \le 0 \\ x + \pi, x > 0 \end{cases}$, 则函数 $f(g(x))$ 在点 $x = 0$ _____(填: 连续或间断).

9. 当
$$x \to 0$$
 时, $\sqrt{x \sin x + \cos x} - 1 \sim \ln(1 + kx^2)$, 则常数 $k =$ _____;

10. 设
$$f(x)$$
 在点 $x = 0$ 处可导, $f(0) = 0$, $f'(0) = 1$,则 $\lim_{x \to 0} (1 + 2x)^{\frac{1}{f(x)}} = _______$;

11. 设
$$y = \sqrt[3]{x \sin x \sqrt{(1+x^2)e^x}}$$
, 则导数 $y' =$ ______;

12. 设
$$f(x) = \begin{cases} \frac{\ln(1+x)}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$
 , 则 $f'(x) =$ ______;

13. 设
$$y = 2x^3 + \ln x$$
 的反函数为 $x = \varphi(y)$, 则 $\varphi'(2) = ______;$

15. 设
$$f(x) = \begin{cases} \cos x, x \ge 0 \\ e^{ax^2}, x < 0 \end{cases}$$
, $f''(0)$ 存在,则常数 $a =$ ____;

16. 曲线
$$x \cos y + y - \pi = 0$$
 上点 $(0,\pi)$ 处的切线方程为_____;

17. 设函数
$$y = y(x)$$
 由方程
$$\begin{cases} x = 2t + \ln t \\ y = t^2 + \ln t \end{cases}$$
 确定,则 $\frac{d^2y}{dx^2} \Big|_{x=2} =$;

18. 设
$$y = \ln(x + \sqrt{1 + x^2})$$
, 则微分 $dy|_{x=1} =$ _______;

19. 函数
$$f(x) = x^3$$
, $g(x) = x^2$ 在区间 [0,1]上使用**柯西**中值定理,定理中的 $\xi =$ ______;

20.
$$\lim_{x\to 0} \frac{e^{\tan x} - e^{\sin x}}{e^{\sin x} - e^x} =$$
____;

2020-2021 学年高等数学 A(上)期中试卷参考答案 2020.11.11

- 1. $\frac{\pi}{2}$;
- 3. $1-\alpha$;
- 4. $\frac{1}{4}$;
- 5. $-\frac{1}{4}$;
- 6. 2; 7. $-\frac{3}{e}$;
- 9. $\frac{1}{4}$;
- 10. e^2 ;
- 11. $y' = \frac{1}{3}\sqrt[3]{x \sin x \sqrt{(1+x^2)e^x}} \left(\frac{1}{x} + \cot x + \frac{x}{1+x^2} + \frac{1}{2}\right);$
- 12. $f'(x) = \begin{cases} \frac{x (1+x)\ln(1+x)}{x^2(1+x)}, & x \neq 0 \\ -\frac{1}{2}, & x = 0 \end{cases}$;
- 13. $\frac{1}{7}$;
- 15. $-\frac{1}{2}$;
- 16. $y = x + \pi$;
- 17. $\frac{2}{9}$;
- 18. $\frac{1}{\sqrt{2}}dx$;
- 19. $\frac{2}{3}$;
- 20. -3;