线性方程组

Didnelpsun

目录

1	基础解系		
	1.1	方程求通解	1
	1.2	通解求通解	1
	1.3	特解求通解	1
	1.4	通解判断特解	1
	1.5	持解判断特解	1
	1.6	线性表出	1
2	反求	参数	1
3	公共	7 4	2

1 基础解系

1.1 方程求通解

1.2 通解求通解

题目给出 ξ_i 是 Ax=0 的基础解系,然后判断这几个基础解系的变式是否还能称为基础解系,判断条件就是对这些基础解析进行初等运算(往往是加减),如果最后能凑成 0 则代表其线性相关,所以不能成为基础解系,否则可以。

如 $\xi_1+\xi_2$ 、 ξ_2+x_3 、 $\xi_3+\xi_1$ 可以成为,因为 $(\xi_1+\xi_2)-(\xi_2+x_3)+(\xi_3+\xi_1)=2\xi_1\neq 0$, $\xi_1-\xi_2$ 、 ξ_2-x_3 、 $\xi_3-\xi_1$ 不能成为,因为 $(\xi_1-\xi_2)+(\xi_2-x_3)+(\xi_3-\xi_1)=0$ 。

1.3 特解求通解

1.4 通解判断特解

已知特解为方程的一个解,知道通解,所以特解可以由通解线性表出,所以 将通解和特解组成增广矩阵进行初等变换(如果是判断多个向量,则可以一起组 成),通解矩阵的秩和增广矩阵的秩相同则代表可以线性表出,否则不能。

1.5 特解判断特解

已知特解,对特解进行初等变换,然后判断这个式子是否还是原方程的特解,可以直接将新式子代入原方程求得结果。

例题: 已知 α_1 、 α_2 是非齐次线性方程组 Ax = b 的两个不同解,则判断 $3\alpha_1 - 2\alpha_2$ 是否为原方程的特解。

解: 已知 α_1 、 α_2 是非齐次线性方程组 Ax=b 的两个不同解,即 $A\alpha_1=b$, $A\alpha_2=b$ 。

代入 Ax = b: $A(3\alpha_1 - 2\alpha_2) = 3A\alpha_1 - 2A\alpha_2 = 3b - 2b = b$, 所以成立。

1.6 线性表出

2 反求参数

基本上都是给出方程组有无穷多解:

- 齐次方程组:系数矩阵是降秩的;行列式值为0。
- 非齐次方程组: 系数矩阵与增广矩阵秩相同且降秩。

例题: 已知齐次线性方程组
$$\begin{cases} ax_1 - 3x_2 + 3x_3 = 0 \\ x_1 + (a+2)x_2 + 3x_3 = 0 \end{cases}$$
 有无穷多解,求参
$$2x_1 + x_2 - x_3 = 0$$

数 a。

解: 使用矩阵比较麻烦, 三阶的系数矩阵可以使用行列式。

3 公共解