Single Pass PCA of Matrix Products

Shanshan Wu, Srinadh Bhojanapalli, Sujay Sanghavi, Alexandros G. Dimakis

[Problem]

Given two large matrices A and B (assumed too large to fit in memory), find the rank-r approximation of their product A^TB , using a single pass over the matrices.

Applications

- PCA is a special case when A = B
- Capture co-occurrence (e.g., A user-by-query, B user-by-ad) or cross-covariance relation (e.g., A genotype, B phenotype)

Why care about single-pass?

- Reduce disk I/O overhead
- Applicable when the data is streaming

Algorithm	No. of Passes	Memory
A^TB + SVD	1 or more	$O(n_1n_2)$
Direct power method on A, B	O(r)	$O(\max\{n_1,n_2\}r)$
LELA [BJS15]	2	$O(\max\{n_1,n_2\}r^3/\epsilon^2)$
SMP-PCA (Our Algorithm)	1	$O(\max\{n_1,n_2\}r^3/\epsilon^2)$

[BJS15] S. Bhojanapalli, P. Jain, and S. Sanghavi. Tighter low-rank approximation via sampling the leveraged element, SODA 2015.

[Our Algorithm SMP-PCA (3 steps)]

Step 1 Sketching

Step 2 Sampling & estimating entries of A^TB

Key Idea I Entrywise Sampling

Sample
$$(A^TB)_{ij} \propto q_{ij} = m \left(\frac{\|A_i\|^2}{2n_2\|A\|_F^2} + \frac{\|B_j\|^2}{2n_1\|B\|_F^2} \right)$$

Higher weights are given to heavy rows and columns

Key Idea II Rescaled JL

Rescaling reduces error from distorted norms

$$\widetilde{M}_{ij} = \|A_i\| \cdot \|B_j\| \cdot \frac{\widetilde{A_i}^T \widetilde{B_j}}{\|\widetilde{A_i}\| \cdot \|\widetilde{B_j}\|}$$

Observation Rescaled JL (\widetilde{M}_{ij}) has smaller mean squared error than standard JL $(\widetilde{A_i}^T \widetilde{B_j})$.

 \widetilde{M} is more accurate than $\widetilde{A}^T\widetilde{B}$, when the column vectors are more correlated.

Step 3 Low rank approx. from the sampled entries

WAltMin: optimize over U(V) assuming V(U) is fixed.

[Theoretical Guarantee]

Theorem (Informal) Let

- ρ be the condition number of $(A^TB)_r$
- \tilde{r} be the maximum stable rank of A and B

If the input parameters satisfy

- Sketch size $k = O(\frac{r^3 \rho^2 \tilde{r} \log n}{\epsilon^2})$
- The number of samples $m = O(\frac{nr^3 \rho^2 r^2 T^2 \log n}{\gamma \epsilon^2})$
- The number of WAltMin iterations $T = O(\log \frac{1}{\zeta})$

Then w.p. $\geq 1 - \gamma$, we get

$$\|(A^TB)_r - UV^T\| \le \epsilon \|A^TB - (A^TB)_r\|_F + \zeta + \epsilon \sigma_r^*$$
 Vanishes if A^TB is captures the error exactly rank- r caused by sketching

Computation Complexity:

[Numerical Experiments]

Spark Implementation

Source code https://github.com/wushanshan/MatrixProductPCA

Flow chat of SMC-PCA in Spark-1.6.2:

Synthetic Dataset

- Spark-1.6.2, m3.2xlarge EC2 instances
- *A, B*: 100k-by-100k dense matrices (150GB)
- Use SRHT as the sketching step

Algorithm	Error	Runtime [1]
Exact SVD ^[2]	0.0271	23 hrs
LELA	0.0274	56 mins
SMP-PCA	0.0280	34 mins
[1] Runtime on a c		

Runs faster with smaller loss of accuracy

Scales as the cluster size grows

Real Dataset

- SMP-PCA outperforms $\mathsf{SVD}(\tilde{A}^T\tilde{B})$ because of Rescaled JL
- SMP-PCA achieves similar error as the two-pass LELA

Dataset	Optimal	LELA	SMP- PCA
URL-malicious Size: 792k-by-10k	0.0163	0.0182	0.0188
URL-benign Size: 1603k-by-10k	0.0103	0.0105	0.0117