· Ex (product rule)

$$\frac{d}{dx} \left(X \cos x \right) = \frac{d}{dx} X \cos x + X dx \cos x$$

$$= 1 \cdot \cos x + X \left(-\sin x \right)$$

$$= \cos x - X \sin x$$

. Ex (quotient rule) We have seen

$$\frac{d}{dx} x^n = nx^{n-1} \qquad N = 0,1,2,3,...$$

What about N= -1, -2

N=-1:

$$\frac{d}{dx} \frac{1}{x} = \frac{x \frac{1}{x^2} - 1 \cdot \frac{1}{x^2}}{x^2} = \frac{1}{x^2} = -x^{-2}$$

by induction

In your HW:
$$\frac{d}{dx} \times^n = n \times^{n-1}$$
 when $n = -1, -2, -3, ...$
by induction

You will see an alternate proof later today.

- · Chain rule and higher derivatives
- · Today: () How to compute the derivative of the composition of two functions (Chain rule).

 (D) Higher derivatives

$$\circ \frac{\Delta y}{\Delta t} = \frac{\Delta y}{\Delta x} \frac{\Delta x}{\Delta t}$$

· As St >0, Ax>0 Since of is continuous.

· And $\frac{dx}{dx} \Rightarrow \frac{dx}{dx}$, $\frac{dx}{dx} \Rightarrow \frac{dx}{dx}$

Thus, dy dx dx : dy : Chain rule

. In the example, $\frac{dx}{dt} = 2t$ and $\frac{dy}{dx} = Cos \times$.

· Thus , & Sin(t2) = & & & = Cosx. 2t = 2t Cost2.

· Alternale Chain rule notation:

$$\frac{d}{dx} f(g(x)) = f'(g(x)) g'(x)$$

$$(or \frac{d}{dx} f(g(x)) = f'(g(x)) g'(x)).$$

• Example continued: Composition of functions f(x) = Sin x and $g(x) = x^2$

$$\xrightarrow{\times} \boxed{9} \xrightarrow{9(x)} \boxed{f} \xrightarrow{f(y(x))}$$

Example: $\frac{d}{dx} \cos(\frac{1}{x}) = ?$ $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

•
$$\frac{dy}{du} = \frac{d}{du} (\cos u) = -\sin u$$
 • $\frac{du}{dx} = -\frac{1}{x^2}$

$$= \frac{dy}{dx} = \frac{\sin u}{x^2} = \frac{\sin \left(\frac{1}{x}\right)}{x^2}$$

Example:
$$\frac{d}{dx} \times^{-n} = ? \quad n=1,2,3,...$$

Solution 1:
$$x^{-n} = \left(\frac{1}{x}\right)^n$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} dx \, x^{-n} = \frac{1}{2} \int_{-\infty}^{\infty} \left(\frac{1}{x}\right)^n - \eta_1\left(\frac{1}{x}\right)^{n-1} \cdot \left(\frac{1}{x^2}\right)^n$$

$$= -\eta_1 x^{-(n-1)} \cdot y^{-2}$$

$$= -\eta_2 x^{-(n-1)} \cdot y^{-2}$$

• Solution 2:
$$X^{-n} = \frac{1}{x^n} = -n x^{-(n-1)} \cdot x^{-2} = -n x^{-n-1}$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \times \times \frac{1}{\sqrt{2}} = -\frac{1$$

Example:
$$\frac{d}{dx}$$
 Sin (cos(x)) = cos(cos x). (-siny)
= - sinx cos (cos(x)).

. Higher derivatives

. This is not a difficult concept: Just Keep differentiating.

• If h=f', we write h'=(f')'=f'!

· Nototran:

£,(*)	DF	9x	
f"(x)	$D_{5}t$	$\frac{d^2f}{dx^2}$	
	D3t	$\frac{dx_3}{d3}$	-
t,,(x)	Dut {	grt 1	

Example: Duxu= 3

· Dx=1

 $\int_{0}^{2} \chi^{2} = \int_{0}^{2} (2\chi) = 2 \cdot = 1.2$

 $\int_{3}^{3} x^{3} = \int_{3}^{3} (3x^{2}) = 2.3 \cdot Dx = 6 = 1.23$

· D"X" = N! (educated guess)

" n foctorial"; n! = 1.2.3.4... (n-1).h "caren" • Proof by induction: (base Case n=1 is done). So suppose we know $D^n \times n = n!$.

• $D^{n+1} \times n + 1 = D^n (D \times n + 1) = D^n (C \cap H) \times n = (n+1)!$ (i.e., that the "case n+1" holds)

• $D^{n+1} \times n + 1 = D^n (D \times n + 1) = D^n (C \cap H) \times n = (n+1)!$ => done!