Optimization Methods for Mechanical Design (ME7223)

Assignment 3

September 13, 2020

Max marks: 20 Due date: 17th Sept 2020

Instructions

- Answer all questions.
- Assume any missing data appropriately.
- Append the graphs to the scanned version of the answer sheets.
- Contact the TA (Mayank Raj) if you have any questions.
- 1. A symmetric matrix $\mathbf{M} \in \mathcal{R}^{n \times n}$ is positive definite iff $x^T \mathbf{M} x > 0$, $\forall x \in \mathcal{R}^{n \times 1}$. Find a vector \mathbf{x} to show that the following matrix in not positive definite: (1.5)

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -4 & 5 \\ 3 & 5 & 1 \end{bmatrix}$$

Conclude that a diagonal element of a positive definite matrix can not be negative.

- 2. The Hessian matrix $\mathbf{H}(\mathbf{x}) \in \mathcal{R}^{n \times n}$ corresponding to a function $f(\mathbf{x})$; $\mathbf{x} \in \mathcal{R}^{n \times 1}$, is defined such that $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Given that both the function $f(\mathbf{x})$ and it's derivative $\nabla f(\mathbf{x})$ are continuous and diffrentiable, answer the following questions with respect to the function $f(\mathbf{x})$ and its Hessian \mathbf{H} :
 - (a) Is **H** always a symmetric matrix?
 - (b) For what kind of functions, \mathbf{H} would be independent of spatial coordinates \mathbf{x} , give an example of such function.
 - (c) For what kind of functions, **H** would be a function of spatial coordinates **x**.
 - (d) What does the quantity $\mathbf{H}\mathbf{y}$ mean physically, where \mathbf{y} is a small change in vector \mathbf{x} .
 - (e) What does the quantity $\mathbf{y}^{\mathbf{T}}\mathbf{H}\mathbf{y}$ mean physically, where \mathbf{y} is a small change in vector \mathbf{x} .
- 3. Consider the following problem:

$$\min_{x_1, x_2} f = (x_1 - 2)^2 + (x_2 - 1)^2$$

(3)

subject to

$$2 \ge x_1 + x_2$$

$$x_2 \ge x_1^2$$

Using Kuhn-Tucker (KKT) conditions, find which of the following vectors are local minima:

$$\mathbf{x_1} = \begin{Bmatrix} 1.5 \\ 0.5 \end{Bmatrix}, \quad \mathbf{x_2} = \begin{Bmatrix} 1 \\ 1 \end{Bmatrix}, \quad \mathbf{x_3} = \begin{Bmatrix} 2 \\ 0 \end{Bmatrix}$$

4. Using Kuhn-Tucker conditions, find the value(s) of β for which the point $x_1^* = 1, x_2^* = 2$ will be optimal to the problem:

$$\max_{x_1, x_2} f(x_1, x_2) = 2x_1 + \beta x_2$$

subject to

$$g_1(x_1, x_2) = x_1^2 + x_2^2 - 5 \le 0$$

$$g_2(x_1, x_2) = x_1 - x_2 - 2 \le 0$$

Verify your result using a graphical procedure.

5. Find a usable and feasible direction **S** at (a) $\mathbf{x_1} = \{-1, 5\}^T$ (b) $\mathbf{x_2} = \{2, 3\}^T$ for the following problem:

$$\min f(\mathbf{x}) = (x_1 - 1)^2 + (x_2 - 5)^2$$

subject to

$$g_1(\mathbf{x}) = -x_1^2 + x_2 - 4 \le 0$$

$$g_2(\mathbf{x}) = -(x_1 - 2)^2 + x_2 - 3 \le 0$$

(2)

(3)

6. Determine and show if the following functions are convex:

(a)
$$f(x_1, x_2) = -4x_1 + x_1^2 - 2x_1x_2 + 2x_2^2$$

(b)
$$f(x_1, x_2) = 2x_1 + 3x_2 - x_1^3 - 2x_2^2$$

7. Determine and show if the following optimization problem is convex:

$$\min_{x_1, x_2} f(x_1, x_2) = 9x_1^2 - 18x_1x_2 + 13x_1 - 4$$

subject to

$$x_1^2 + x_2^2 + 2x_1 > 16$$

8. Consider the function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}\mathbf{x} + c$, where:

$$\mathbf{A} = \begin{bmatrix} 18\alpha & 2 - 2\alpha \\ 0 & 2 \end{bmatrix}$$

(3)

$$\mathbf{b} = \begin{bmatrix} \alpha^2 & 1 \end{bmatrix}$$

$$c = \alpha$$

- (a) Is the Hessian of $f(\mathbf{x})$ symmetric? Justify.
- (b) Is a quadratic function always bound to be either convex or concave?
- (c) Find the range of α for which $f(\mathbf{x})$ is strictly convex along the direction $x_2 = (1 \alpha)x_1$ and strictly concave along the direction $x_1 = x_2$.
- (d) Will the minima obtained from the following optimization problem, for $\alpha = -8$, be the global minima (in context of the constraints)?

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x} + \mathbf{b} \mathbf{x} + c$$

subject to

$$x_2 = (1 - \alpha) x_1$$