MATH108 10FA Midterm ch1-6 A

answers in web view Total points: 70

Name:_	
Student ID:	

"For You light my lamp; the LORD my God illumines my darkness." For by You I can run upon a troop; and by my God I can leap over a wall. As for God, His way is blameless; the word of the LORD is tried; He is a shield to all who take refuge in Him." -- Psalm 18:28-30

- Please show all your work! No partial credit will be given for incorrect answers with no work shown. Please draw a box around your final answer.
- Calculators are permitted, but no notes, text, laptops, PDAs, or electronic dictionaries. Cell phones should be muted and left in your pocket or bag.
- Tables 3 and 4 are attached to the back. You may detach them for your reference.
- 1. Classify each of the following statements (which may or may not be true) as either (D)escriptive or (I)nferential: [4]
 - (a) 19.2% of BC residents in 2004 were clinically obese.
 - (b) Of the children and adolescents studied in the 2004 Canadian Community Health Survey, 8% were clinically obese.
 - (c) About 90% of students in our MATH108 class are nursing students.
 - (d) 30.1% of male registered nurses (RNs) are under the age of 40.
- 2. Mark each of the following **variables** as categorical (G), ordinal (O), discrete (D), or continuous (C): [5]
 - (a) Whether a student passes a course or not
 - (b) How many children are in a family
 - (c) Satisfaction with current family doctor, rated as "Very Dissatisfied", "Dissatisfied", "Satisfied", or "Very Satisfied"
 - (d) Hemoglobin count, in q/dL
 - (e) Age, divided into categories "0-10", "11-18", "19-25", "26-39", "40-59", "60 and up"
- 3. Say that in a certain town 63% of the people vote Conservative, and the probability that a townsperson drives a large truck is 3/7. If you pick a random townsperson, there is a 27% chance that the townsperson is a Conservative driving a large truck.
 - (a) What fraction of Conservatives in this town drive large trucks? [3]
 - (b) In this town, is voting Conservative **independent** of driving a large truck? Why or why not? Interpret what this means in the context of the townspeople.[3]

4. The diagram below is a **normal probability plot** for an artificially-generated dataset. (Note that the n-scores are along the horizontal axis, and the y-scores from the data are along the vertical axis; this matches the textbook.) How does the distribution differ from a normal distribution? Sketch the distribution, highlighting where and how it deviates from the normal. [5]

[NIST Engineering Statistics Handbook, §1.4.2.2.2]

5. The list below shows the total serum bilirubin level (mg/dL) in a newborn baby, measured at various times over a one-month period.

4.1, 5.7, 4.7, 3.2, 4.2, 2.8, 3.6, 5.3, 4.2

(a) Construct a relative frequency histogram, classifying the data by bins of width 1 mg/dL.[4]

- (b) Find the sample **mean**. Show your work. [2]
- (c) Find the sample **standard deviation**. Show your work. [4]

(d) Draw a **boxplot** for the data. Show your work. [4]

	(e) Find a 95% confidence interval for the average total serum bilirubin level for this baby over the one-month period. [4]
	(f) Interpret this confidence interval in words and in the context of the study. [2]
	(g) We feel this confidence interval is still too broad. In order to estimate the average total serum bilirubin level to within ±0.4 mg/dL with 90% confidence, how many measurements would we need to average? (Assume the underlying true bilirubin level does not change.) [4]
	(h) If we increase the sample size to n=40 measurements, would we expect the distribution of our sample to be more normal ? Why or why not? [2]
norn 2 mr	assay (test) measuring blood lactate during exercise is imprecise, returning values nally distributed around the true lactic acid concentration, with a standard deviation of mol/L. Blood lactate values of over 20 mmol/L are considered "high". (a) What is the probability that this assay returns a result within ±2.5 mmol/L of the true value? [2]
	(b) If the true concentration of blood lactate in a patient is 18.3 mmol/L (not "high"), what is the probability that the assay could still return a value that is considered "high"? [2]
	(c) Since the assay is so imprecise, we run it five times and average the results. Using the same true concentration of 18.3mmol/L , what is the probability that the average of five runs is still "high"? [4]

7. A particular screening test for colon cancer has a 11% false-positive rate (i.e., 89% specificity) and a 7% false-negative rate (i.e., 93% sensitivity).	
(a) Suppose the test is applied to a group of patients, 40% of whom are known to have colon cancer. Draw an event tree for the outcomes of the test. Label the tree with probabilities for each branch. Also calculate the probabilities of each final outcome (leaf of the tree). [5]	
(b) What is the probability that a random patient from this group will test positive for colon cancer using this screening test?[2]	
(c) What is the probability that a patient from this group who tested positive actually has the disease? [2]	
8. Suppose you wish to study whether male nurses are more likely than female nurses to qui within the first five years of working as a nurse.	
(a) What is the population in question? [1]	
(b) List the variables which need to be measured. [1]	
(c) For each variable, indicate its level of measurement and whether it is a predictor (independent variable) or outcome (dependent variable). [2]	
(d) Discuss how you might do the sampling process. What are some steps you could take to ensure a random sampling? Address both criteria for random sampling. How would you measure the variables? Would the measurement process bias your sampling? [3]	