مدارهای الکتریکی و الکترونیکی - دکتر شکفته

امیرحسین منصوری - ۹۹۲۴۳۰۶۹ - تمرین سری ۷

:درنتیجه $v_a = v_b = 0$ درنتیجه

$$\begin{split} i_1 &= \frac{v_1 - 0}{20000} = \frac{v_1}{20000} \\ i_2 &= \frac{v_2 - 0}{50000} = \frac{v_2}{50000} \\ & \Rightarrow i_3 = i_1 + i_2 = \frac{v_1}{20000} + \frac{v_2}{50000} \\ & \Rightarrow \frac{v_a - v_o}{100000} = \frac{v_1}{20000} + \frac{v_2}{50000} \\ & \Rightarrow v_o = - (5v_1 + 2v_2) \end{split}$$

سوال ۲

با توجه به خاصیت OpAmp ایدهآل داریم : و $v_{_{h}}=8$ و $v_{_{a}}=5$

$$i_1=rac{0-v_a}{10}=rac{-5}{10}=-\ 0.5$$
 $i_2=rac{v_a-v_b}{15}=rac{5-8}{15}=-\ 0.$ همای OpAmp ایدهآل صفر

$$i_1 = i_2 + i_3 \Rightarrow i_3 = i_1 - i_2$$

 $\Rightarrow i_3 = -0.5 - (-0.2) = -0.3$

ایدهآل داریم (OpAmp ایدهآل داریم
$$v_b=8$$
 و $v_a=5$ $v_b=8$ و $v_a=5$ $v_b=8$ و $v_a=5$ $v_b=8$ و $v_a=5$ $v_b=9$ $v_a=5$ $v_b=9$ $v_a=9$ $v_$

$$i_3 = \frac{v_a - v_{o2}}{20} = \frac{5 - v_{o2}}{20} = -0.3$$

 $\Rightarrow v_{o2} = 11$

$$i_4 = \frac{v_{o2} - v_b}{30} = \frac{11 - 8}{30} = 0.1$$

جریان ورودی به پایانههای OpAmp ایدهآل صفر است. بنابراین:

$$\begin{split} i_5 &= i_2 + i_4 = -0.1 \\ i_5 &= \frac{v_b - v_{o1}}{60} = \frac{8 - v_{o1}}{60} = -0.1 \\ \Rightarrow v_{o1} &= 14 \end{split}$$

سوال ۳

در زمان $t=0^-$ مدار به شکل روبهرو است. بنا به KCL، در زمان داریم $i_{x}=0$ همچنین:

المحاربة شكل روبهرو الشك بن المكاربة شكل روبهرو الشك بن المكاربة شكل
$$i_x=0$$
 . $i_x=0$. $i_x=$

در زمان $t=0^+$ ، خازن مثل یک منبع ولتاژ ۶ ولتی عمل میکند و مدار به شکل روبهرو در میآید. داریم:

$$2I + 6 = 0 \Rightarrow I = -3$$

در زمان $\infty + = t$ ، مدار به شکل روبهرو در میآید. با تبدیل منبع ولتاژ سمت چپ به منبع جریان، مدار به شکل پایین در میآید. در نهایت داریم:

$$i_y = 2I$$

 $i_y + I = 3 - 6 = -3$
 $\Rightarrow I = -1$

 $au = R_{eq} C_{eq} = (1||2) \times \frac{1}{4} = \frac{1}{6}$ همچنین

$$I(t) = I(+ \infty) + (I(0^{+}) - I(+ \infty))e^{-\frac{t}{\tau}} \quad (t > 0)$$

= -1 - 2e^{-6t} \quad (t > 0)

در زمان $t=0^-$ ، شاخهی با جریان I(t) از مدار قطع است. بنابراین I=0 و مدار به شکل روبهرو در میآید. پس $V_{_{C}}=0$

در زمان $t=0^+$ ، خازن مثل منبع ولتاثر صفر ولتى يا عملا مانند اتصال کوتاه عمل میکند. بنابراین مدار به شکل روبهرو در میآید. با استفاده از تحلیل خانهای داریم:

$$-4 + i_1 + (i_1 - i_2) + 2i_1 = 0$$

$$-2i_1 + (i_2 - i_1) + i_2 = 0$$

$$\Rightarrow i_1 = I = 1.6$$

در زمان $t=+\infty$ خازن مثل مدار باز عمل میکند و مدار به شکل روبهرو در مىآيد. داريم:

$$-4 + I + I + 2I = 0 \Rightarrow I = 1$$

برای به دست آوردن مقاومت کل مدار، R_{TH} را حساب میکنیم. داریم:

$$V_{TH} = 2I + I = 3$$

حال اتصال کوتاه برقرار میکنیم و
$$I_{SC}$$
 و حساب میکنیم.
$$\mathcal{T}_{SC} - 4 + I + (I - I_{Sc}) + 2I = 0$$

$$-2I + (I_{SC} - I) + I_{SC} = 0$$

$$\Rightarrow I_{SC} = 2.4$$

$$\Rightarrow R_{eq} = R_{TH} = \frac{V_{TH}}{I_{SC}} = 1.25$$

$$\Rightarrow \tau = R_{eq}C_{eq} = 1.25 \times 2 = 2.5$$

در نهایت داریم:

$$\Rightarrow I(t) = I(+ \infty) + (I(0^{+}) - I(+ \infty))e^{-\frac{t}{\tau}} \quad (t > 0)$$
$$= 1 + (1.6 + 1)e^{-\frac{t}{2.5}} \quad (t > 0)$$