Exercises on Non Negative Matrix Factorization

M-L. Cauwet

December 2, 2018

The following exercises are inspired from [1, 2, 3].

Rank(s).

Consider X a $n \times p$ non-negative matrix (i.e., every coefficient of X is non-negative) with at least one positive coefficient. The **non-negative rank** of a $n \times p$ non-negative matrix X is the smallest integer k such that X = AB where A is a $n \times k$ non-negative matrix and B is a $k \times p$ non-negative matrix. The non-negative rank will be denote by $rank_+(X)$. In the following, $X_{i,j}$ denotes the coefficient on the i^{th} row and j^{th} column of X. We denote by rank(X) the rank of X.

- 1. Proof that $rank(X) \leq rank_{+}(X) \leq \min(n, p)$.
- 2. We say that $X_{i,j}$ and $X_{k,\ell}$ are independent if

$$X_{i,j}X_{k,\ell} > 0$$
 and $X_{i,\ell}X_{k,j} = 0$.

Show that if $X_{i,j}$ and $X_{k,\ell}$ are independent, then $rank_+(X) \geq 2$. Hint: write the system satisfied by the coefficients of A and B if $rank_+(X) = 1$.

More generally, we could show that, if X contains a set of q pairwise independent coefficients, then $rank_{+}(X) \geq q$. (Result admitted).

3. Consider:

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- (a) Give the rank of X.
- (b) We can show that $X_{1,1}$, $X_{2,3}$, $X_{3,2}$ and $X_{4,4}$ are pairwise independent. Deduce the non-negative rank of X.

Exact factorization: particular case of the symmetric factorization

Assume that X is a $n \times n$ matrix which is:

- non-negative;
- symmetric (i.e. $X = X^T$, where X^T is the transpose of X);
- positive semidefinite (i.e. $v^T X v \ge 0$ for all vector v);
- rank(X) = 2.

In this particular case, there exists a $n \times 2$ non-negative matrix W such that $X = WW^T$. The purpose of this exercise is to build such W.

- 1. Show that X has exactly 2 non-zero (and positive) eigenvalues that we will denote λ_1 and λ_2 with $\lambda_1 \geq \lambda_2$. We denote $\mathbf{v_1}$ and $\mathbf{v_2}$ their corresponding orthonormal eigenvectors (column vectors).
- 2. Let D be the diagonal matrix $D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ and P the $n \times 2$ matrix $P = (\mathbf{v_1} \ \mathbf{v_2})$. Show that $X = PDP^T$.
- 3. We define V by $V = P\sqrt{D}$, where $\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{pmatrix}$. Show that for any rotation matrix R, $X = WW^T$, with W = VR. We recall that a rotation matrix R is defined by $RR^T = R^TR = I$ and det(R) = 1.
- 4. $R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. Graphically, how to choose θ in order to have W non-negative?

On the equivalence of Non-Negative Matrix Factorization and K-means

We consider n points $\mathbf{x_1}, \dots, \mathbf{x_n}$ (columns vectors). In the following, $\|\cdot\|$ stands for the Euclidean norm. A K-means clustering over these n points consists into finding k clusters $\mathcal{C}_1, \dots, \mathcal{C}_k$ that minimize the inertia J_K , defined by:

$$J_K = \sum_{k=1}^K \sum_{i \in \mathcal{C}_k} \|\mathbf{x_i} - \mathbf{m_k}\|^2, \tag{1}$$

where $\mathbf{m_k}$ is the centroid of \mathcal{C}_k : $\mathbf{m_k} = \frac{1}{n_k} \sum_{i \in \mathcal{C}_k} \mathbf{x_i}$ and $n_k = Card(\mathcal{C}_k)$.

1. Show that Eq. 1 can be rewritten:

$$J_K = \sum_{i} \|\mathbf{x_i}\|^2 - \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i,j \in \mathcal{C}_k} \mathbf{x_i}^T \mathbf{x_j}.$$
 (2)

2. The rescaled indicator vectors δ_k represent a given clustering as follows:

$$\begin{cases} \delta_k^i = \frac{1}{\sqrt{n_k}} & \text{if } \mathbf{x_i} \in \mathcal{C}_k \\ 0 & \text{otherwise} \end{cases}$$

where δ_k^i is the i^{th} component of column vector δ_k .

We denote $X = (\mathbf{x_1} | \dots | \mathbf{x_n})$ the $p \times n$ matrix containing the data and $\Delta = (\delta_1 | \dots | \delta_K)$ the $n \times K$ matrix containing the indicator vectors.

Show that Eq. 2 can be rewritten:

$$J_K = Tr(X^T X) - Tr(\Delta^T X^T X \Delta), \tag{3}$$

where Tr(A) is the trace of matrix A, i.e. the sum of the elements of its diagonal.

3. Deduce from question 2 that minimizing J_K boils down to solve:

$$\max_{\Delta^T \Delta = I_K, \Delta \ge 0} Tr(\Delta^T W \Delta), \text{ where } W = X^T X.$$
 (4)

4. Prove that Eq. 4 can be rewritten as:

$$\min_{\Delta^T \Delta = I, \Delta \ge 0} \|W - \Delta \Delta^T\|_F^2 \tag{5}$$

where $\|\cdot\|_F^2$ is the Frobenius norm, i.e. the sum of the squared coefficient of the matrix. In particular, $\|A\|_F^2 = Tr(AA^T)$.

5. Show that $\Delta \Delta^T$ is a diagonal bloc matrix of the form:

$$\Delta \Delta^T = \begin{pmatrix} \mathbf{1}_{n_1} & 0 & \dots & 0 \\ 0 & \mathbf{1}_{n_2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \mathbf{1}_{n_K} \end{pmatrix}$$

where $\mathbf{1}_{n_k}$ is a $k \times k$ matrix with every coefficients equal to 1.

- 6. In question 4, we proved that K-means clustering is a non-negative matrix factorization with the additional constraints of:
 - symmetry (i.e. W = AB with $B = A^T$);
 - orthogonality (i.e. $\Delta^T \Delta = I$).

What is this impact on the clusters if the orthogonality constraint is relaxed?

References

- [1] Joel Cohen and Uriel G. Rothblum. Nonnegative ranks, decompositions, and factorizations of nonnegative matrices. 190:149–168, 09 1993.
- [2] Vassilis Kalofolias and Efstratios Gallopoulos. Computing symmetric nonnegative rank factorizations. *Linear Algebra and its Applications*, 436(EPFL-ARTICLE-198764):421–435, 2012.

[3] Chris Ding, Xiaofeng He, and Horst D Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In *Proceedings of the 2005 SIAM International Conference on Data Mining*, pages 606–610. SIAM, 2005.