

Cv	_	18
ĿΧ	_	13

	Ex-18
	Prove the following Legendre's function
0	$\frac{2}{5} \frac{P_3(\pi)}{5} + \frac{3}{5} \frac{P_1(\pi)}{5} = \pi^{83}$
	5
Solu':	we know the Legendre's polynomials are:
	P(n)=n'
	$P_3(\pi) = 1 (5\pi^3 - 3\pi)$
	2
	Now
	$L.H.S. = \frac{2}{5} P_3(\pi) + \frac{3}{5} P_1(\pi)$
	5 5
	$= \frac{2(5\pi^3 - 3\pi) + 3\pi}{5\pi}$
	5 2 5
	$= \chi^3 - 3\chi + 3\chi$
	5 5
	= 23 R. H.S.

f(n) = 5x3 + 21	
we know.	
P1(x) = 2	
P3(x) = 1 (5 n3 - 3n)	
2 Ps(9) = 5x3- 321	
2 P3(21) = 5213 - 3 P,(21)	
5n3 = 2f3(n) + 3p1(n)	
Νρω)	
f(n) = 2 P3(n) + 3P1(n) + P1(n)	
$f(n) = 2P_3(n) + 4P_1(n)$	
$f(\eta) = \eta^3 - 5\eta^2 + 6\eta + 1$	
D- 100	a debit a
we know,	1
Po(n) = 1	
$P_1(n) = n$	
6 Pi(n) = 67	
P2(n) = 1 (3n2-1)	
2 P2 (m) = 3 m 2 - Po (m)	
2/2(n) + Po(n) = 3n2	
$\frac{2}{3} \frac{p_2(\eta)}{3} + \frac{1}{1} \frac{p_0(\eta)}{3} = \eta^2$	
$5\eta^2 = 10 P_2(9) + 5 P_0(9)$	

$$P_3(n) = \frac{1}{3} (5n^3 - 3n)$$

$$2 p_3(n) = 5 n^3 - 3 p_1(n)$$

$$5\eta^3 = 2\rho_3(\eta) + 3\rho_1(\eta)$$

 $\eta^3 = 2\rho_3(\eta) + 3\rho_1(\eta)$

News

$$f(n) = \frac{2}{5}P_3(n) + \frac{9}{5}P_1(n) - \frac{10}{3}P_2(n) - \frac{5}{3}P_0(n) + \frac{6}{5}P_1(n) + \frac{9}{5}P_0(n)$$

$$f(n) = \frac{2}{5} f_3(n) - \frac{10}{3} f_2(n) + \frac{33}{5} f_1(n) - \frac{2}{3} f_2(n),$$

[x is
$$\frac{1}{3}$$
 (m) = $\frac{1}{3}$ (in $\frac{1}{3$

12	J(n) =	148 -	81	J. (21)	+/1.	-241	J.(n)
	4	173	2)			912)	

we have

$$2n J_n(n) = 2[J_n(n) + J_n(n)] - 0$$

Put n= 3,

$$\overline{J_4(n)} = \left(\frac{24}{n^2} - 1\right) \left(\frac{2}{n} \overline{J_1(n)} - \overline{J_0(n)}\right) - \frac{6}{n} \overline{J_1(n)}$$

or,
$$J_4(m) = \left(\frac{48}{713} - \frac{2}{7} - \frac{6}{9}\right) J_1(m) - \left(\frac{24}{712} - 1\right) J_0(m)$$

$$\sigma J_{4}(n) = \left(\frac{48}{n^{3}} - \frac{8}{n}\right)J_{1}(n) + \left(1 - \frac{24}{n^{2}}\right)J_{0}(n)$$

= KBY KCA 4 Jn"(n) = Jn-2(n) - 2 Jn(n) + Jn+2(n) we know, 2 Jn'(m) = Jn-1(m) - Jn+1(m) -0 diff Owrt n, 2 Jr"(m) - Jn-1 (m) - Jn+1 (m) Multiplying both sides by 2. 4 Jn"(m) = 2 Jn-1(m) - 2 Jn+1 (m) -0 Put nas n-1 is and not is 1 2] (m) = Jn (m) - Jn (n) - 3 2 Jati(m) = Ja(m) - Ja+2(m) -3 using 360 m 3

4 Jn'(n) = Jn-2(x) - 2 Jn(n) + Jn+2(n) proved

19. J, (n) = J1/2(n) cot n 50/v": we know, $\sum_{\alpha} (\alpha) = \sum_{\alpha} \sin \alpha$ and, $J_{-1}(n) = \begin{cases} 2 & \cos n \end{cases}$ (11) Dividing 10 by 0 J-1 (N) * J, (2) J (21) - J, (21) cot 21,

20.	$\left[J_{V_2}(\alpha) \right]^2 + \left[J_{V_2}(\alpha) \right]^2 = 2$ $\Pi \alpha$
- 1 m	
: 10/02	
	$J_{H_{\lambda}}(x) = 2 \cos x - 0$
	Squaring and adding @ and @
	$[J_{\nu_2}(\eta)]^2 + [J_{\nu_2}(\eta)]^2 = \frac{2 \sin^2 \eta}{\eta \eta} + 2 \cos^2 \eta$
Оу,	[J,(x)]2+[J-1/2(x)]2= 2 [sin2x+cos2x]
	$\left[J_{\mu_2}(\eta)\right]^2 + \left[J_{-\mu_2}(\eta)\right]^2 = \frac{2}{n\alpha}$ provedy

(F)	$J_2(n) - J_0(n) = 2J_0(n)$
20/01	From &-N. 14
	$4J_{n}^{"(n)} = J_{n-2}(n) - 2J_{n}(n) + J_{n+2}(n)$
	Pert n= 00
	4 Jo"(m) = J-2(m) - 2 Jo(m) + Ja(m)
	Since,
	$J-n(m)=(-1)^{2}J_{n}(m)$
	47."(m): (-1)2 J2(m) - 2 Jo(m) # J2(m)
	4 J。"(n) - 2 J。(n) - 2 J。(n)
	フュ(n)- J。(n) = マス (n)/