

UNISOC Camera AF Trigger Tuning Guide

修改历史

版本号	日期	· <mark>注释</mark> · · · · · · · · · · · · · · · · · · ·
V1.0	2020/4/2	初稿Fornial

Unisoc Confidential

文档信息

适用产品信息	适用版本信息	关键字	
UMS312/UDS710+UDX710	Android 9.0 For hial	AF Trigger	
Unisoc Co	nfiderition		

- 1 原理介绍 nfidential For man
 - 2 调试流程
 - 3 功能确认
 - 4 调试案例
 - **5** 附: Param list

相关名词解释:

lential For hiar Auto-focus trigger 自动对焦触发 AFT:

Auto-focus monitor 图像pixel组成block的对比度反差的统计值 AFM:

Auto-exposure monitor 图像pixel组成block的RGB 的统计值 AEM:

Sensor:包括Gyro和Gsensor 陀螺仪和重力传感器

Face: 人脸信息

亮度信息 AE:

face detect 人脸检测 FD:

TOF: time of flight

PDAF: Phase Detection Auto-focus 相位差对焦

CAF: contrast Auto-focus

Gyro: 陀螺仪

Gsensor: 重力传感器

AF 流程介绍:

触发源:

AF trigger 流程介绍:

- 1.触发按照上图优先级顺序进行。
- 2.Touch/flash 状态下无需判断trigger条件 , 开始触发 , 计算pos值。

平台AF状态:

Confidential For hiar

类型/是否支持	UMS512(T)	UMS312	UDS710+UDX710	SC9863A	SC9832E	SC7731E
FD	支持	支持	支持	支持	支持	支持
TOF	支持	支持	支持	支持	不支持	不支持
PDAF	支持	支持	支持	支持	支持	不支持
CAF	支持	支持	支持	支持	支持	支持
SAF	支持	支持	支持	支持	支持	支持

AF Trigger调试:

AFT参数结构 C Confidential For hiar 1. 参数分为normal、video、bokeh三种 模式,三种模式结构基本相同。

- 2. 三种模式独立控制 9 种触发源 , 根据硬 件配置,确认需要支持触发源。
- 3. 确认normal、video、bokeh中的其他 参数,如果是0,修改为默认值。
- 4. video、bokeh参数,除右侧表格中 support独立控制,其他参数设置为0时 , 默认使用normal中的参数。

BLOCK ISP EXIF		
NAME	HEX	DEC
□ 🔄 AFT_V1		
- ≡ version	0x01	1
+ normal		
+ 🗀 video		
+ 🛅 bokeh		

normal/video/bokeh	default	注释
support.face_support	1	支持Face的触发
support.pd_data_support	1	支持Pd sensor的触发
support.tof_data_support	0	需要TOF硬件支持,默认关闭
support.img_blk_support	1	支持AEM硬件的触发
support.hist_support	1	默认打开,辅助AEM作用
support.afm_support	1	支持AFM硬件的触发
support.afm_blk_support	0	不使用
support.gsensor_support	1	需要Gsensor硬件支持
support.gyro_support	0	需要Gyro硬件支持,默认关闭

AFT参数介绍 —— Common

参数	default	说明
common.scene_bv_thr[0-2]	1100/400/50	大于[0] 值,是outdoor;大于[1]值,是indoor;小于[1]值,判断为dark;[2] reserved
common.caf_work_lum_thr	0	AE lum小于该值时,trigger不工作
common.glob_ae_stab_cnt_thr	3	判定AE连续几帧稳定,表示当前ae稳定,af 可以trigger
common.face_ae_stab_cnt_thr	2	face ae连续几帧稳定,表示当前face ae稳定,face af 可以trigger
common.llux_ae_stab_cnt_thr	3	在dark下ae连续几帧稳定,表示当前ae稳定,af 可以trigger
common.abort_af_support	1	af是否支持abort, 对焦过程中,触发条件有变,是否支持中断当前AF,1表示支持,0表示不支持。
common.vcm_pos_abort_thr	180	支持abort 下, vcm 的位置变化小于此值时允许abort.
common.need_rough_support	0	默认为0。
common.dump_support	0	调试开关,不使用。

af trigger 的必要条件:

1. scene_bv_thr 在不同的亮度下, sensor的统计值有很大差异, 可以区分场景在不同亮度调试trigger 参数

Gal For hiar

- 2. caf_work_lum_thr 环境太暗,当lum小于此阈值,不触发af
- 3. glob_ae_stab_cnt_thr 触发的前提是图像的亮度稳定,此值设置亮度连续稳定几帧,表示AE稳定,可触发对焦
- 4. face_ae_stab_cnt_thr face触发的前提是face的亮度稳定,此值设置face亮度连续稳定几帧,表示face AE稳定,可触发对焦
- 5. Ilux_ae_stab_cnt_thr 在dark 条件下,帧率低 ,调整ae稳定帧数 ,可加快触发对焦
- 6. abort_af_support 对焦过程中,触发条件有变,是否支持中断当前AF,1表示支持,0表示不支持
- 7. vcm_pos_abort_thr 在支持abort状态下vcm变化小于此值时才允许abort

AT trigger 基本示意图: 触发流程: OC Confidential For hiar

move→ stable → trigger → 対焦完成 abort*

参数。〇〇	default	说明	
af_stats.afm_skip_cnt	3	trigger init skip几帧,手机切换场景的前几帧AFM(中断)丢弃	
af_stats.move.fv_diff_thr	\	判定场景是否有变化,大于该值,场景变化	情况A
af_stats.move.af_cnt_thr	\	场景连续N帧场景变化,则满足move状态	月/几八
af_stats.stable.fv_diff_thr	\	判定场景是否稳定,小于该值,场景稳定	情况B
af_stats.stable.af_cnt_thr	\	场景连续N帧场景稳定,则满足stable状态	旧ルし
af_stats.abort.fv_diff_thr	\	判定场景是否有变化,大于该值,场景变化	性い口で
af_stats.abort.af_cnt_thr	\	场景连续N帧场景变化,AF中断,重新判断trigger条件	情况C
af_stats.afm_abort_support	1	afm 是否支持abort,1表示支持,0表示不支持。	
af_stats.afm_need_rough_thr	250	不再使用。	

AFT参数介绍 —— AFM_blk & hist For hiar

参数Confide	default	说明
stats_blk.roi.left	25	
stats_blk.roi.top	25	
stats_blk.roi.width	50	
stats_blk.roi.height	50	
stats_blk.roi.num_h	16	
stats_blk.roi.num_v	25	
stats_blk.move.value_thr	120	
stats_blk.move.num_thr	160	不再使用
stats_blk.move.cnt_thr	2	
stats_blk.stable.value_thr	50	
stats_blk.stable.num_thr	60	
stats_blk.stable.cnt_thr	5	
stats_blk.abort.value_thr	0	
stats_blk.abort.num_thr	0	
stats_blk.abort.cnt_thr	0	
hist_stab_thr	900	
hist_stab_diff_thr	90	
hist_base_stab_thr	900	M421 + T T
hist_need_rough_cc_thr	700	默认打开,辅助AEM作用
hist_max_frame_queue	4	
hist_stab_cnt_thr	4	

AFT参数介绍 —— AEM

其中亮度变化值计算公式为:(当前亮度值-初始亮度值)/初始亮度值*255

	nilue	110.		
LIN参数C UU	default	说明		
ae_stats.ae_skip_line_percent	30	计算AEM时,图像空置区域比例		₩ ROI
ae_stats.img_blk_frame_skip_cnt	1	计算AEM时,间隔几帧做数据计算		
ae_stats.move.value_thr	100	判断AEM统计区域亮度变化量,大于该值的数量	ר	
ae_stats.move.num_thr	65	AEM统计区域亮度数量大于该值,场景变化	┣ 情况A	
ae_stats.move.cnt_thr	3	连续几帧满足场景变化,达到move状态	J	1
ae_stats.stable.value_thr	40	判断AEM统计区域亮度变化量,小于该值的数量	ln	AE统计分为32*3
ae_stats.stable.num_thr	30	AEM统计区域亮度数量小于该值,场景稳定	► 情况B	时ROI 亮度变化
ae stats.stable.cnt thr	2	连续几帧满足场景稳定,达到stable状态	ال	ae_skip_line_perce
ae_stats.abort.value_thr	185	AF trigger过程中,AEM统计区域亮度变化量,大于该值的数量	h	计算方法:
ae_stats.abort.num_thr	75	AF trigger过程中,AEM统计区域亮度数量大于该值,场景变化	┣ 情况C	32×0.3 = 9(取整 32-9×2 = 14
ae_stats.abort.cnt_thr	3	AF trigger过程中,连续几帧满足场景变化,abort 状态	h	32-9×2 = 14 14×14=196
		AF finished		在196个block中有

如右测示意图:

Move判断:单通道判断满足即可;

Stable判断: RGB三通道需同时满足才可;

AF abort

*32个区域,此 七区域数量总数 cent 为30

整)

有超过65个block 发生变化,则aem发生了变化

AFT参数介绍 —— Gyro & Gsensor hial

0	4	' ~ [F() [] [] []
参数	default	jall O' in
sensor.gyro.move.value_thr	60	此值/1000代表x,y,z值的阈值,实际x y z 变化大于阈值,说明状态变化。
sensor.gyro.move.cnt_thr	6	连续几帧变化,判定状态变化,小于该值,判定状态稳定。
sensor.gyro.stable.value_thr	50	此值/1000代表x,y,z值的阈值,实际x y z 变化均小于阈值,说明状态稳定。
sensor.gyro.stable.cnt_thr	6	连续几帧稳定,判定状态稳定,小于该值,判定状态不稳定。
sensor.gyro.abort.value_thr	300	中断触发,含义同move。 Gyro 触发参数
sensor.gyro.abort.cnt_thr	6	中断触发,含义同move。
sensor.gyro.sensor_queue_cnt	8	队列长度
sensor.gyro.move_percent_thr	95	队列中最大最小差值 > 最大值 * 此阈值/100说明状态有变化
sensor.gyro.stab_percent_thr	40	此值/1000代表x,y,z值的阈值,实际x y z 变化均满足小于阈值,说明状态稳定
sensor.gsensor.move.value_thr	500	此值/1000代表x,y,z值的阈值,实际x y z 变化大于此阈值,说明状态变化。
sensor.gsensor.move.cnt_thr	3	用来判定场景发生变化时最低连续几帧变化,小于该值判定状态稳定。 Gsensor 触发参数
sensor.gsensor.stable.value_thr	500	此值/1000代表x,y,z值的阈值,实际x y z 变化均小于此阈值说明此帧状态稳定。
sensor.gsensor.stable.cnt_thr	3	连续几帧稳定,判定状态稳定,小于该值,判定状态不稳定。
sensor.gsensor.abort.value_thr	2000	中断触发,含义同move。
sensor.gsensor.abort.cnt_thr	5	中断触发,含义同move。

打开sensor Log: adb shell setprop debug.isp.aft.mlog sensor 红框中(1,1):第一个值为1表示move 状态,第二个值为1表示stable,当stable为1,满足触发条件

aft_sprd_lib: 2484, sensor_data_process_new: sensor mora base(x,y,z):(-1.721286,4.421718,8.288028), diff(x,y,z):(0.071820,0.119700,0.047880), thr:(0.500000), move(cnt,thr):(0,3), is_caf_tringer:0 aft_sprd_lib: 2487, sensor_data_process_new: sensor stab base(x,y,z):(-1.721286,4.421718,8.288028), diff(x,y,z):(0.071820,0.119700,0.047880), thr:(0.500000), stab(cnt,thr):(4,3), (g_need_af,g_is_stab) = (1,1)

1. move.value_thr:越大越不灵敏,越小越灵敏。2. stable.value_thr:越大越灵敏,越小越不灵敏。

AFT参数介绍 —— Face

AFT参数介绍 ——	Face	hiar
		idential For hiar
参数	default	一
face.diff_area_thr	6000	此值/face.percentage_base 代表x,y,z值的阈值,人脸面积变化大于阈值,人脸场景变化,小于阈值,人脸稳定
face.diff_cx_thr	4000	此值/face.percentage_base 代表x,y,z值的阈值,人脸X坐标变化大于阈值,人脸场景变化,小于阈值,人脸稳定
face.diff_cy_thr	4000	此值/face.percentage_base 代表x,y,z值的阈值,人脸Y坐标变化大于阈值,人脸场景变化,小于阈值,人脸稳定
face.converge_cnt_thr	5	连续几帧变化/稳定,表示move/stable状态
face.percentage_base	10000	人脸变化比例基数
face.face_timer_cnt_down	3	AFT之前一直可以收到face 信息,从当前帧开始,累计多少帧收不到face信息,判定场景无face 信息或者超出FD 检测face 信息的限制

人脸变化阈值计算:

- 1、face.diff_area_thr/face.percentage_base 人脸面积变化比例
- 2、face.diff_cx_thr/face.percentage_base 人脸框X轴方向变化比例
- 3、face.diff_cy_thr/face.percentage_base 人脸框Y轴方向变化比例

当人脸(面积,X,Y)变化任意一个大于设置阈值,进入move状态。

当人脸(面积, X, Y) 变化同时小于阈值并连续5帧满足条件, 进入stable 状态, face trigger。

face_timer_cnt_down: AFT之前一直可以收到face 信息,从当前帧开始,累计多少帧收不到 face信息,判定场景无face 信息或者超出FD 检测face 信息的限制

AFT参数介绍 —— PD

Inisoc

tial For hiar ➤ PDAF触发条件如下: 必须同时满足以下条件才能触发

触发参数	注释
pd_data_support	功能使能开关,1打开PD,0关闭PD
pd_value_abs_trig	相位差均值*1000大于阈值,满足触发条件
pd_value_stable	相位差方差*1000小于阈值,满足触发条件
pd_conf_th_table	相位差对应的信心度大于阈值,满足触发条件
pd_bv_thr	BV值大于阈值,满足触发条件
pd_stable_cnt	连续几帧同时满足前面条件,满足触发条件

详细PDAF 调试,请参考PDAF 调试文档

AFT介绍 —— TOF

- ➤ TOF触发条件如下图 dential For hiar Unisoc
 - 目前平台未开放触发条件的参数。

功能确认

通过单一使用触发源确认触发是否正常 For hial transition fidential For hial

1.只打开support.face_support

现象: 打开:只有识别到人脸才做对焦;关闭:不做FD 触发计算,不触发对焦

2.只打开support.pd data support

现象: 支持PD sensor, 打开: PD工作正常, 拍竖条对焦图, 触发PD对焦; 关闭: PD数据不做计算, 不触发PD对焦

3.只打开support.tof data support

现象: 支持Tof硬件,打开: Tof工作正常,切换场景会对焦;关闭: Tof数据不做计算,不触发对焦

4.只打开support.img blk support

现象:打开:场景亮度变化后,AEM 统计值达到触发条件,触发对焦; 关闭:AEM统计值不做计算,不触发对焦

5.只打开support.afm_support

现象:打开:场景变化后,AFM 统计值达到触发条件,触发对焦; 关闭:AFM统计值不做计算,不触发对焦

6.只打开support.gsensor_support

现象:打开:翻转移动设备,达到触发条件,触发对焦;关闭:qsensor数据不做计算,不触发对焦

7.只打开support.gyro_support

现象:支持Tgyro 硬件,打开:平移设备,达到触发条件,触发对焦;关闭:Gyro 数据不做计算,不触发对焦

注意:在normal、video、bokeh下支持触发都要确认工作状态。

通辺IOg判断触友是否正常 关键词: aft_sprd_lib aft_proc_internal_calc

Trigger log开关:

adb shell setprop debug.isp.aft.mlog save //none 关闭

指定模块log:

adb shell setprop debug.isp.aft.mlog com:ae (可以任意个组合如:com:ae:af:sensor:fd:pd:tof:other)

通过不同状态,确认是否每一个条件都会触发对焦。

图像亮度稳定是AF trigger 最后的必须条件

:1表示图像亮度稳定, 0表示不稳定 glb:1 faceae:1:1表示face亮度稳定, 0表示不稳定

> Face ae 不稳定 Face 触发相关 Ae 稳定

I aft_sprd_lib: 3559, aft_proc_internal_calc: aftae: (glb:1 llux:0 faceae:0 pv_stdev:0), face_exist:0, face(0,0) pd(0), afm(0,0), cafm(0,s), img(0,0), gyro(0,0), g:(0,1), p->tri:can(0,0)
I aft_sprd_lib: 3561, aft_proc_internal_calc: base_pos 317, cur_pos 317, afm_need_abort 0, y_diff 0, y_base 451840, y_sum 455225, init trigger 0
I aft_sprd_lib: 3614, aft_proc_internal_calc: do not abort param->is_cancel_caf 0, param->is_caf_trigger 0, param->ae_info.vcm_pos 317

aft sprd lib: 3745, aft proc internal calc: log5

Confidential For hiar 通过log判断触发是否正常

Face:

- 1. face_exist:0:是否识别到人脸, face_exist值为几,表示识别到几个人脸
- 2. Face(0,0):第一个值为1表示move状态,第二个值为1表示stable状态,当stable 满足条件,则face trigger

PD:PD(0)表示是否为PD触发,0为非PD,1表示PD

AFM:afm(0,0):第一个值为1表示move状态,第二个值为1表示stable状态,当stable为1 满足条件,则afm trigger

AEM:img(0,0):第一个值为1表示move状态,第二个值为1表示stable状态,当stable为1 满足条件,则aem trigger

Gyro:gyro(0,0):第一个值为1表示move状态,第二个值为1表示stable状态,当stable为1满足条件,则gyro trigger

Gsensor:g(0,0):第一个值为1表示move状态,第二个值为1表示stable状态,当stable为1满足条件,则gsensor trigger

Tri:Can(0,0):第一个值表示trigger type,非0 表示触发,第二个值表示cancel type,非0表示af cancel

调试示例:触发类型

从log 中看当前的触发类型和触发状态: 关键词:aft_proc_internal_calc aft_proc_calc

Trigger log开关: C

adb shell setprop debug.isp.aft.mlog save //none 关闭

I aft sprd lib: 3888, aft proc calc: current af mode: 2, data type 6 //AF 触发数据类型 当前6表示 FD I aft sprd lib: 3531, aft proc internal calc: source face num 0, face frame cnt down 0,in param->exp time 6000074 I aft_sprd_lib: 3559, aft_proc_internal_calc: aftae:1(glb:1 llux:0 faceae:0 bv_stdev:2), face_exist:0, face(0,0), pd(0), afm(0,0), cafm(0,s), img(0,0), 第二个值0表示当前没有cancel af gyro(0,0), g:(0,1), p->tri:can(1,0) //第一个值1表示AF 属于CB (CAF) 触发 I aft_sprd_lib: 3561, aft_proc_internal_calc: base_pos 209, cur_pos 221, afm_need_abort 0, y_diff 1, y_base 610259, y_sum 601800, init trigger 0 V aft_sprd_lib: 3745, aft_proc_internal calc: log5

AFT type : aft interface.h

用于log查看对应的type

```
AF 触发类型
enum aft_trigger_type {
    AFT_TRIG_NONE = 0x00,
   AFT_TRIG_CB, -> CAF-01
   AFT TRIG PD, --- PDAF-02
   AFT_TRIG_FD, -> FD-03
   AFT_TRIG_TOF, --- TOF-04
   AFT TRIG MAX
};
```

```
AF 触发中断类型
       AF 触发数据类型
enum aft_calc_data_type {
                                enum aft_cancel_type {
   AFT DATA AF,
                        AFM-00
                                   AFT_CANC_NONE = 0x00,
   AFT_DATA_IMG_BLK, AEM-01
                                   AFT CANC CB, CAF-01
   AFT DATA AE,
                                   AFT CANC_PD, --- PDAF-02
   AFT_DATA_SENSOR, -> Sensor-03
                                   AFT CANC FD, --- FD-03
   AFT DATA CAF,
                                   AFT CANC TOF, -- TOF-04
   AFT DATA PD,
                     → PD-05
                                   AFT CANC FD GONE,
   AFT DATA FD,
                     → FD-06
                                   AFT CANC MAX
   AFT DATA TOF,
                     → TOF-07
   AFT_DATA_MAX
};
```

调试示例:人脸移动AF不触发

● 问题描述:

人脸前后移动时,低概率发生AF不触发,造成失焦。

● 问题分析:

```
I aft_sprd_lib: 3913, aft_proc_calc: data type 6 is_trigger_caf 3, is_cancel_caf 0
I aft_sprd_lib: 3435, aft_proc_reset: lace_base (sx ex sy ey) = (2240 2900 1710 2310), rollangle 0
I aft_sprd_lib: 3439, aft_proc_reset: face_base1(sx ex sy ey) = (2240 2900 1710 2310), rollangle -90
V aft_sprd_lib: 3947, aft_proc_calc: Exit
```

通过log确认当前触发类型是face 触发,人脸变化没有达到重新触发AF;设置较小阈值条件,如果能够触发,确认问题人脸变化阈值条件太大;调试逐渐增大阈值,达到合理的设置阈值;

● 参数修改:

─ <u> </u>	0x1770	6000	face.diff_area_thr	0x1770	6000
- <u>□</u> face.diff_cx_thr	0x0FA0	4000	face.diff_cx_thr	0x0DAC	3500
-∭ face.diff_cy_thr	0x0FA0	4000	face.diff_cy_thr	0x0DAC	3500
-∭ face.converge_cnt_thr	0x05	5	face.converge_cnt_thr	0x05	5
- ☐ face.percentage_base	0x2710	10000	face.percentage_base	0x2710	10000
-∭ face.face_timer_cnt_down	0x03	3	face.face_timer_cnt_down	0x03	3

调试示例:切换场景AF不触发

● 问题描述:

修改前有快速切换场景时,AF 高概率不发生trigger,导致出现失焦。

● 问题分析:

关键词: aft_proc_internal_calc

I aft_sprd_lib: 3559, aft_proc_internal_calc: aftae:1(glb:1 llux:0 faceae:0 bv_stdev:2), face_exist:0, face(0,0), pd(0), afm(0,0), cafm(0,s), img(1,0), gyro(0,0), g:(0,0), p->tri:can(0,0)

从log标注部分看glb ae稳定,afm、aem的判定条件都满足,没触发的原因是caf的触发要求此时手机一定是稳定的g:(1,0)表示手机不稳定,没有达到stable状态,所以没触发。

原因:达到move 状态,没有达到stable 状态,不能触发AF

● 参数修改

修改stable 条件, AF 容易触发

- ae_stats.ae_skip_line_percent	0x1E	30	ae_stats.ae_skip_line_percent	0x1E
–≣ ae_stats.img_blk_frame_skip_cnt	0x01	1	ae_stats.img_blk_frame_skip_cnt	0x01
– ae_stats.move.value_thr	0x78	120	ae_stats.move.value_thr	0x78
– <u>≡</u> ae_stats.move.num_thr	0x41	65	ae_stats.move.num_thr	0x41
- <u>≡</u> ae_stats.move.cnt_thr	0x03	3	ae_stats.move.cnt_thr	0x03
– <u>≡</u> ae_stats.stable.value_thr	0x28	40	─≣ ae_stats.stable.value_thr	0x32
– <u>≡</u> ae_stats.stable.num_thr	0x1E	30	− ≡ ae_stats.stable.num_thr	0x28
– <u>≡</u> ae_stats.stable.cnt_thr	0x02	2	─ <u></u> ae_stats.stable.cnt_thr	0x02
– ae_stats.abort.value_thr	0xB9	185	ae_stats.abort.value_thr	0xB9
– <u>≡</u> ae_stats.abort.num_thr	0x4B	75	ae_stats.abort.num_thr	0x4B
-≣ ae_stats.abort.cnt_thr	0x03	3	- ■ ae_stats.abort.cnt_thr	0x03

调试示例:gsensor AF 不触发

● 问题描述:

移动手机对焦灵敏度低 tial For hiar

● 问题分析:

I aft_sprd_lib: 3555, aft_proc_internal_calc: aftae:1(glb:1 llux:0 faceae:0 bv_stdev:0), face_exist:0, face(0,0), pd(0), afm(1,1), cafm(0,s), img(1,1), gyro(0,0), g:(1,0), p->tri:can(0,0)

发现gsensor很长时间内处于move状态,没有stable,所以无法触发trigger,查看gsensorlog。

原因:x和z的值不满足稳定条件,故gsensor无法稳定下来,从而不能触发AF。

● 参数修改

修改gsensor move trigger阈值参数。

= sensor.gsensor.move.value_thr	0x07D0	2000	- ≡ sensor.gsensor.move.value_thr	0x07D0
- ≡ sensor.gsensor.move.cnt_thr	0x03	3	- <u>≡</u> sensor.gsensor.move.cnt_thr	0x03
- ≡ sensor.gsensor.stable.value_thr	0x01F4	500	− ≡ sensor.gsensor.stable.value_thr	0x044C
-≣ sensor.gsensor.stable.cnt_thr	0x03	3	−🖺 sensor.gsensor.stable.cnt_thr	0x03
- sensor.gsensor.abort.value_thr	0x01F4	500	- <u>≡</u> sensor.gsensor.abort.value_thr	0x01F4
== sensor.gsensor.abort.cnt_thr	0x05	5	−🗉 sensor.gsensor.abort.cnt_thr	0x05

AF Trigger 参数	参数含义	取值范围	default值
Normal/video/bokeh	Af支持的模式Normal/video/bokeh		
support.face_support	支持Face的触发	[0,1]	1
support.pd_data_support	支持Pd sensor的触发	[0,1]	0
support.tof_data_support	需要TOF硬件支持,默认关闭	[0,1]	0
support.img_blk_support	支持AEM硬件的触发	[0,1]	1
support.hist_support	默认打开,辅助AEM作用	[0,1]	1
support.afm_support	支持AFM硬件的触发	[0,1]	1
support.afm_blk_support	不使用	[0,1]	0
support.gsensor_support	需要Gsensor硬件支持	[0,1]	1
support.gyro_support	需要Gyro硬件支持,默认关闭	[0,1]	0
common.scene_bv_thr[0-2]	大于[0] 是outdoor;大于[1] 是indoor;小于[1]是 dark;[2] reserved	[0,1600]	1100/400/50
common.caf_work_lum_thr	AE lum小于该值时,trigger不工作	[0,9999]	0
common.glob_ae_stab_cnt_thr	判定AE连续几帧稳定,表示ae稳定,af 可以trigger	[0,10]	3
common.face_ae_stab_cnt_thr	face ae连续几帧稳定,表示face ae稳定,face af 可以trigger	[0,10]	2
common.llux_ae_stab_cnt_thr	在dark下ae连续几帧稳定,表示ae稳定,af 可以trigger	[0,10]	3
common.abort_af_support	af是否支持abort, 对焦过程中,触发条件有变,是否支持中断当前AF,1表示支持,0表示不支持。	[0,1]	1
common.vcm_pos_abort_thr	支持abort 下, vcm 的位置变化小于此值时允许abort.	[0,1023]	180
common.need_rough_support	默认为0。	[0,1]	0
common.dump_support	调试开关,不使用。	3	3

叼	止方	Ę)	K	E	ŧ	Ħ
	U	И	1	S	0	C

			U N
AF Trigger 参数	参数含义	取值范围	default值
af_stats.move.fv_diff_thr[0-2]	以256为基准,判定场景是否有变化,与起始帧比较	[1,256]	70/71/70
af_stats.move.af_cnt_thr[0-2]	连续几帧变化,说明场景有变	[1,10]	4/5/4
af_stats.stable.fv_diff_thr[0-2]	256为基准,前9帧取最大最小做差,取最小的30/256	[1,256]	30/35/30
af_stats.stable.af_cnt_thr[0-2]	连续几帧不变,说明场景稳定	[1,10]	4/5/4
af_stats.abort.fv_diff_thr[0-2]	判定场景是否有变化,与起始帧比较,变化则中断af	[1,256]	200/200/200
af_stats.abort.af_cnt_thr[0-2]	连续几帧变化,说明场景有变,变化则中断af	[1,10]	2/2/2
af_stats.afm_abort_support	是否支持afm中断	[0,1]	1
af_stats.afm_need_rough_thr	使用默认值250	250	250
stats_blk.roi.left	不再使用	\	25
stats_blk.roi.top	不再使用	\	25
stats_blk.roi.width	不再使用	\	50
stats_blk.roi.height	不再使用	\	50
stats_blk.roi.num_h	不再使用	\	16
stats_blk.roi.num_v	不再使用	\	25
stats_blk.move.value_thr	不再使用	\	120
stats_blk.move.num_thr	不再使用	\	160
stats_blk.move.cnt_thr	不再使用	\	2
stats_blk.stable.value_thr	不再使用	\	50
stats_blk.stable.num_thr	不再使用	\	60
stats_blk.stable.cnt_thr	不再使用	\	5
stats_blk.abort.value_thr	不再使用	\	0
stats_blk.abort.num_thr	不再使用	\	0
stats blk.abort.cnt thr	不再使田	1	0

AF Trigger 参数	参数含义	取值范围	default值
hist_stab_thr	保持默认もは、トロールは、	\	900
hist_stab_diff_thr	保持默认	\	90
hist_base_stab_thr	保持默认	\	900
hist_need_rough_cc_thr	保持默认	\	700
hist_max_frame_queue	保持默认	\	4
hist_stab_cnt_thr	保持默认	\	4
ae_stats.ae_skip_line_percent	计算AEM时,图像空置区域比例	[0,30]	30
ae_stats.img_blk_frame_skip_cnt	计算AEM时,间隔几帧做数据计算	[0,3]	1
ae_stats.move.value_thr	判断AEM统计区域中亮度,大于该值的数量	[0,255]	110
ae_stats.move.num_thr	AEM统计区域亮度数量大于该值,场景变化	[50,196]	65
ae_stats.move.cnt_thr	连续几帧满足场景变化,达到move状态	[0,10]	3
ae_stats.stable.value_thr	判断AEM统计区域中亮度,小于该值的数量	[0,255]	40
ae_stats.stable.num_thr	AEM统计区域亮度数量小于该值,场景稳定	[0,100]	30
ae_stats.stable.cnt_thr	连续几帧满足场景稳定,达到stable状态	[1,10]	2
ae_stats.abort.value_thr	AF trigger 过程中,判断AEM统计区域中亮度,大于该值的数量	[0,255]	185
ae_stats.abort.num_thr	AF trigger 过程中,AEM统计区域亮度数量大于该值,场景变化	[50,196]	75
ae_stats.abort.cnt_thr	AF trigger 过程中,连续几帧满足场景变化,abort 状态	[1,10]	3
ae_stats.partial_stab_min_cnt	当hist不稳定时,img_blk_cnt_thr大于此值可以判定hist稳定。	[0,10]	9
ae_stats.abort_af_y_diff_thr	abort af时, y的变化要大于此值才能abort。	[0,255]	10
ae_stats.ae_calibration_support	使用默认值	[0,1]	0
ae_stats.ae_mean_sat_thr[0-2]	建议使用默认值	[0,255]	190/200/180

AF Trigger 参数	For N参数含义	取值范围	default值
sensor.gyro.move.value_thr	此值/1000代表x,y,z值的阈值,实际x y z 变化大于阈值,说明状态变化。	[0,10000]	60
sensor.gyro.move.cnt_thr	连续几帧变化,判定状态变化,小于该值,判定状态稳定。	[0,10]	6
sensor.gyro.stable.value_thr	此值/1000代表x,y,z值的阈值,实际x y z 变化均小于阈值,说明状态稳定。	[0,10000]	50
sensor.gyro.stable.cnt_thr	连续几帧稳定,判定状态稳定,小于该值,判定状态不稳定。	[0,10]	6
sensor.gyro.abort.value_thr	中断触发,含义同move。	[0,10000]	300
sensor.gyro.abort.cnt_thr	中断触发,含义同move。	[0,10]	6
sensor.gyro.sensor_queue_cnt	队列长度	[0,32]	8
sensor.gyro.move_percent_thr	队列中最大最小差值 > 最大值 * 此阈值/100说明状态有变化	[0,10000]	95
sensor.gyro.stab_percent_thr	此值/1000代表x,y,z值的阈值,实际x y z 变化均满足小于阈值,说明状态稳定	[0,10000]	40
sensor.gsensor.move.value_thr	此值/1000代表x,y,z值的阈值,实际x y z 变化大于此阈值,说明状态变化。	[300,20000]	500
sensor.gsensor.move.cnt_thr	用来判定场景发生变化时最低连续几帧变化,小于该值判定状态稳定。	[1,10]	3
sensor.gsensor.stable.value_thr	此值/1000代表x,y,z值的阈值,实际x y z 变化均小于此阈值说明此帧状态稳定。	[300,20000]	500
sensor.gsensor.stable.cnt_thr	连续几帧稳定,判定状态稳定,小于该值,判定状态不稳定。	[1,10]	3
sensor.gsensor.abort.value_thr	中断触发,含义同move。	[300,20000]	2000
sensor.gsensor.abort.cnt_thr	中断触发,含义同move。	[1,10]	5

AF Trigger 参数	参数含义	取值范围	default值
face.diff_area_thr	此值/face.percentage_base 代表x,y,z值的阈值,人脸面积变化大于阈值,人脸场景变化,小于阈值,人脸稳定	[2000,10000]	6000
face.diff_cx_thr SOC	此值/face.percentage_base 代表x,y,z值的阈值,人脸X坐标变化大于阈值,人脸场景变化,小于阈值,人脸稳定	[2000,10000]	4000
face.diff_cy_thr	此值/face.percentage_base 代表x,y,z值的阈值,人脸Y坐标变化大于阈值,人脸场景变化,小于阈值,人脸稳定	[2000,10000]	4000
face.converge_cnt_thr	连续几帧变化/稳定 ,表示move/stable状态	[1,6]	5
face.percentage_base	人脸变化比例基数	10000	10000
face.face_timer_cnt_down	从当前帧开始,累计多少帧收不到face信息,判定场景无face 信息或者超出FD 检测face 信息的限制	[3,20]	3
pd.pd_value_abs_trig[0-2]	pd均值*1000 > 此阈值说明pd 需要触发	[0,8000]	2500/2500/2500
pd.pd_value_stable[0-2]	pd方差*1000 < 此阈值说明pd 需要触发	[0,8000]	3000/3000/3000
pd.pd_stable_cnt[0-2]	连续几帧满足pd触发条件	[1,10]	1/1/1
pd.pd_bv_thr	pd 工作bv , bv < 此值 , pd 不工作	[0,1600]	600
pd.pd_conf_th_table[0-32]	不同相位差对应的信心度阈值表。若当前相位差,对应的信心度 > 此阈值,则触发pdaf	[0,2000000]	\
bv_stab_thr	表示连续几帧bv的均方差,是用来判定当前环境是否稳定	[0,10]	6

THANKS

本文件所含数据和信息都属于紫光展锐所有的机密信息,紫光展锐保留所有相关权利。本文件仅为信息参考之目的提供,不包含任何明示或默示的知识产权许可,也不表示有任何明示或默示的保证,包括但不限于满足任何特殊目的、不侵权或性能。当您接受这份文件时,即表示您同意本文件中内容和信息属于紫光展锐机密信息,且同意在未获得紫光展锐书面同意前,不使用或复制本文件的整体或部分,也不向任何其他方披露本文件内容。紫光展锐有权在未经事先通知的情况下,在任何时候对本文件做任何修改。紫光展锐对本文件所含数据和信息不做任何保证,在任何情况下,紫光展锐均不负责任何与本文件相关的直接或间接的、任何伤害或损失。

WWW.UNISOC.COM 紫光展锐科技