$$\Delta Xo \ \sigma_f: \ \sqrt{\sigma_{est}^2 + \sigma_{nom}^2} = \sqrt{\sigma_{est}^2 + \sigma_{ap}^2 + \sigma_{def}^2 + \sigma_{int}^2 + \sigma_{exact}^2}$$

$$\sigma f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + \cdots}$$

Cinemática en \mathbb{R} :

*CL/TV:
$$y(t) = y_0 + v_0 \Delta t \pm \frac{1}{2} g \Delta t^2$$
, $v(t) = v_0 \pm g \Delta t$

Cinemática en IR:

*MRU:
$$x = x_0 + v\Delta t$$
, con $v = \frac{\Delta x}{\Delta t}$

*MRUV: $x(t) = x_0 + v_0\Delta t + \frac{1}{2}a\Delta t^2$, $v(t) = v_0 + a\Delta t$

Cinemática en IR² y IR³:

*CL/TV: $y(t) = y_0 + v_0\Delta t \pm \frac{1}{2}g\Delta t^2$, $v(t) = v_0 \pm g\Delta t$

*TO:
$$\begin{cases} x(t) = x_0 + v_0\cos\theta\Delta t \\ y(t) = y_0 + v_0\sin\theta\Delta t + \frac{1}{2}a\Delta t^2 \\ v_y(t) = v_0\sin\theta - g\Delta t \end{cases}$$

$$(\theta(t) = \theta_0 + \omega(t - t_0) + \frac{1}{2}\alpha(t - t_0)^2$$

*MCU:
$$\begin{cases} \theta(t) = \theta_0 + \omega(t - t_0) + \frac{1}{2}\alpha(t - t_0)^2 \\ \omega = \frac{d\theta}{dt} = \frac{\Delta\theta}{\Delta t} = \omega_0 + \alpha(t - t_0) \\ v_t = \omega R, a_c = \frac{v^2}{R} = \omega^2 R, a_t = \alpha R \end{cases}$$

*Fuerza, masa, peso: $\mathbf{F} = m\mathbf{a}, \ \frac{m_2}{m_1} = \frac{a_1}{a_2}, \ \mathbf{P} = m\mathbf{g}$

*Momento: $\mathbf{M}_F = \mathbf{F} \times \mathbf{d}$, $M_F = Fd\sin a$, y dado un punto $O: \mathbf{M}_{\mathbf{R}}^O = \sum_i \mathbf{M}_{\mathbf{F}_i}^O$

*Fuerza elástica: $\mathbf{F} = \mathbf{F}_e \alpha \Delta x$, con $F_e = -k \Delta x = k |x - \ell_0|$

Trabajo:

*Producto fuerza-desplazamiento:
$$\begin{cases} F\Delta x = ma\Delta x = m\frac{v_f - v_0}{\Delta t} \frac{1}{2}(v_f - v_0)\Delta t \\ F\Delta x = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 \end{cases}$$

*Trabajo: fz. ctes.:
$$\begin{cases} \mathbf{W_f} = \mathbf{F} \cdot \Delta \mathbf{r} = F \Delta r \cos \theta \\ mg \cdot \mathbf{h} & caida \\ -\mu mg \cdot \mathbf{d} & rozamien \end{cases}$$

*Trabajo: *Producto fuerza-desplazamiento:
$$\begin{cases} F\Delta x = ma\Delta x = m\frac{v_f - v_0}{\Delta t}\frac{1}{2}(v_f - v_0)\Delta t \\ F\Delta x = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 \end{cases}$$
*Trabajo: fz. ctes.:
$$\begin{cases} W_f = \mathbf{F} \cdot \Delta \mathbf{r} = F\Delta r \cos \theta \\ mg \cdot \mathbf{h} & caida \\ -\mu mg \cdot \mathbf{d} & rozamiento \end{cases}$$
*Trabajo: fz. dinámicas:
$$\begin{cases} W_f = \sum_i W_{F_i} = \sum_i F_i \Delta x_i = \int_{x_1}^{x_2} F_x dx \\ \frac{1}{2}k\Delta x^2 & elástica \end{cases}$$
*Energía cinética: $\Delta E_c = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 \rightarrow E_c = \frac{1}{2}mv^2$
Potencia y energía potencial:

Potencia y energía potencial:

*Potencia: $P = \frac{dW}{dt} = \mathbf{F} \cdot \mathbf{v} = Fv \cos \theta$ *Energía potencial (U, \mathbf{E}_p) :

*En fz. conservativa
$$\mathbf{F}_c$$
:
$$\begin{cases} \Delta U = U_B - U_A = -\int_A^B \mathbf{F} \cdot d\mathbf{s} & \to dU = -\mathbf{F} \cdot d\mathbf{s} \\ W_{\mathbf{F}_c}^{A \to B} = -\Delta U \end{cases}$$

*Gravitatoria: $U = -\frac{GM}{r}$

*Elástica (muelle): $U = \frac{1}{2}k\Delta x^2$

Energía mecánica y principio de conservación:

*Energía mecánica: $E_m = E_{c_{sist}} + U_{sist}$

*Teorema trabajo-energía: $W_{ext} = \Delta E_{sist} = \Delta E_m + \Delta E_{term} + \Delta E_{quim} + \Delta E_{otras}$ *Principio de conservación de la energía: $W_{\mathbf{F}_{nc}}^{A \to B} = E_{m_B} - E_{m_A}, \frac{1}{2} m v_i^2 + E_{p_i} = \frac{1}{2} m v_f^2 + E_{p_f}$

Impulso y cantidad de movimiento:

*Impulso, cant. de movimiento: $\mathbf{I} = \mathbf{F}\Delta t, \mathbf{p} = m\mathbf{v}$

*Choques:

Ecuación de conservación: $m_1\mathbf{v}_{01} + m_2\mathbf{v}_{02} = m_1\mathbf{v}_{f1} + m_2\mathbf{v}_{f2}$ Coeficiente de restitución: $e = -\frac{v_{2f} - v_{1f}}{v_{2i} - v_{1i}}$, con $0 \le e \le 1$

Gravitación:

*Unidad astronómica, c
te. gravitación: UA = $1.50\times10^{11} \rm m,~G=6.67384(80)\times10^{-11}~N~m^2~kg^{-2}$

*Ley de gravitación universal: $F = -\frac{Gm_1m_2}{r_{1,2}^2} \hat{\mathbf{r}}_{1,2}$

*Velocidad de escape: $v_e = \sqrt{\frac{2Gm_1m_2}{r}}$; en la Tierra $v_e = \sqrt{2gR_t} \approx 11.2\frac{\text{km}}{\text{s}}$