Practical 6

Logic Gates and Adders

Part A

Objective

Understand various logic gates

1	. Complete questions below		
A	Draw a transistor level circuit diagram and truth table for a OR Gate which consists of NOR and NOT gates (5 marks)		
В	Draw a transistor level circuit diagram and truth table for a XOR Gate which consists of NAND and OR gates		
	(6 marks)		
С	Draw a transistor level circuit diagram and truth table for a AND Gate which consists of NAND and NOT gates (5 marks)		
D	De Morgan's Law can be expressed as "the negation of a conjunction is the disjunction of the negations" and that "the negation of a disjunction is the conjunction of the negations". Prove, using a truth table, that: $\neg(A \land B) = \neg A \lor \neg B$		
	(14 marks)		
Е	Draw a logic Gate diagram for De Morgan's Law.		
F	Draw a Transistor Gate diagram for De Morgan's Law. Why is this an important law.		

Practical 6

Logic Gates and Adders

2. Complete questions below

Using logic.ly construct the following Circuit using NAND and NOT Gates (With a Light at Output) and complete Truth Tables

Hand up this practical report at the end of session and ensure it has been checked

Student Name		Student Number	
Date		Checked	
Group	A/B		