EMPIRICAL WORK

Econometrics 1

Semester 1

Session: 2023-24

Submitted by Avanish Mishra [MSC 1ST YEAR]

*All interpretations are made at 5% level of significance

1. Please refer to the variable definition in the manual and run the following regression command in STATA and produce the regression table:

Interpret the regression result including the magnitude and statistical significance of the coefficients.

					1	o gdp_g gdp_g_	. reg any_pri
743)S =	ber of ob	Num	MS	df	SS	Source
0.97	=	, 740)	- F(2				
0.3797	=	b > F	11 Pro	.1904364	2	.380872821	Model
0.0026	=	quared	36 R-s	.19637883	740	145.320338	Residual
-0.0001	ed =	R-square	— Adj				
.44315	=	t MSE	Roo	.19636281	742	145.701211	Total
			- 1.1				
Interval]	Conf.	[95%	P> t	t	Std. Err.	Coef.	any_prio
.1425658 .3687338 .2980358	619	7613 5140 .2338	0.179 0.747 0.000	-1.34 -0.32 16.28	.2302228 .2248388 .0163394	3094018 0726641 .2659587	gdp_g gdp_g_l _cons
						I .	

According to the data manual, the variable definitions are as follows:

- any_prio: Any Internal War or Any Internationalized Internal War.
- gdp_g: GDP Growth. (GDPEN GDPENL) / (GDPENL) where, GDPEN: per capita GDP, GDPENL: per capita GDP lagged one year, with 0 for start of country series.
- gdp_g_l: gdp_g lagged one year

Interpretation: Let our estimated regression equation be

$$E[any_prio|X] = b0 + b1*gdp_g + b2*gdp_g_l$$

The p-value for both the independent variables is more than 0.05. So, both the estimates of the coefficient of these variables are statistically insignificant at 5% level of significance and cannot be used to interpret the change in the probability of conflict.

2. Now run the following regression equation:

regress any_prio gdp_g gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year (equation 2)

Explain how and why the coefficients and standard errors have changed now in comparison to the earlier regression result.

	s =	ber of obs		MS	df	SS	Source
	=	, 733)	•				
	=	b > F		1.94849094	9	17.5364185	Model
	. =	quared		.174849649	733	128.164793	Residual
	d =	R-squared	-				
.41815	=	t MSE	Roo	.196362818	742	145.701211	Total
Interval]	Conf.	[95% Co	P> t	t	Std. Err.	Coef.	any_prio
.1016961	847	753384	0.135	-1.50	.2177767	3258443	gdp_g
.3388952	649	495764	0.712	-0.37	.2125758	0784348	gdp_g_l
.005931	835	005883	0.994	0.01	.003009	.0000237	polity2l
.387205	872	.050987	0.011	2.56	.0856298	.2190961	ethfrac
0349752	561	417656	0.021	-2.32	.0974633	2263156	relfrac
.1003895	714	091171	0.925	0.09	.0487878	.0046091	Oil
.1084735	911	.04691	0.000	4.96	.0156791	.0776922	lpopl1
.1030891	274	.047827	0.000	5.36	.0140744	.0754583	lmtnest
.0082107	891	003789	0.470	0.72	.0030562	.0022108	year
6.952432	431	-16.8843	0.414	-0.82	6.070872	-4.965938	cons

According to the data manual, the variable definitions are as follows:

- any_prio: Any Internal War or Any Internationalized Internal War.
- gdp_g: GDP Growth. (GDPEN GDPENL) / (GDPENL) where, GDPEN: per capita GDP, GDPENL: per capita GDP lagged one year, with 0 for start of country series.
- gdp_g_l: gdp_g lagged one year
- polity2l: Polity2 lagged one year, with 0 for start of country series where Polity2 is Revised polity score.
- ethfrac: Ethnic-linguistic fractionalization
- relfrac: Religious Fractionalization
- Oil: Oil Exporters
- lpopl1: Log of population lagged one year, with 0 for start of country series

• Imtnest: log of percent mountainous terrain

Interpretation: Let our estimated regression equation be

```
E[any\_prio|X] = b0 + b1*gdp\_g + b2*gdp\_g\_l + b3*polity2l + b4*ethfrac + b5*relfrac + b6*Oil + b7*lpopl1 + b8*lmtnest + b9*year
```

Since the p-value for the variables ethfrac, relfrac, lppopl1 and lmtnest are less than 0.05, there estimated coefficients are statistically significant. These coefficients can then be interpreted as following:

- dE[any_prio|X]/ ∂ ethfrac = .2191 which implies that keeping all other variable same, the expected value of any internal conflict increases by .2191 whenever the ethnic fragmentation changes by 1 unit.
- dE[any_prio|X]/∂relfrac = -.2263 which implies that keeping all other variable same, the expected value of any internal conflict decreases by .2263 whenever the religious fragmentation changes by 1 unit.
- dE[any_prio|X]/dlpopl1 = .0777 which implies that keeping all other variable same, the expected value of any internal conflict increases by .0777 whenever the log of population in the previous year had changed by 1 unit.
- $\partial E[any_prio|X]/\partial lmtnest = .0755$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0755 whenever the log of mountainous terrain changes by 1 unit.

3. How wouldyour interpretation change when in addition to gdp_g you also add square of gdp_g as the independent variable in equation 2.

Adding the square of gdp_g, we have the regression equation as

regress any_prio gdp_g sq_gdp_g gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year

- . gen sq_gdp_g = gdp_g^2
- . reg any_prio gdp_g sq_gdp_g gdp_g_l polity21 ethfrac relfrac Oil lpopl1 lmtnest year

743	=	er of obs	Numb	MS	df	SS	Source
11.71	=	, 732)	- F(10				
0.0000	=	> F	7 Prob	2.0098613	10	20.0986137	Model
0.1379	=	uared	8 R-sq	.17158824	732	125.602598	Residual
0.1262	=	R-squared	- Adj				
.41423	=	MSE	8 Root	.19636281	742	145.701211	Total
Interval]		[05% Con:	P> t	t	Std. Err.	Coef.	any prio
Lincerval	•	[93% COII	PYICI	· ·	Stu. Err.	coer.	ally_pr10
0056554		8596499	0.047	-1.99	.2174995	4326527	gdp_g
4.255843		1.388333	0.000	3.86	.7303116	2.822088	sq_gdp_g
.3980062		4312181	0.937	-0.08	.2111909	016606	gdp_g_l
.0046714		0070999	0.686	-0.41	.002998	0012143	polity21
.3728402		.0395135	0.015	2.43	.0848933	.2061768	ethfrac
0568485		4365088	0.011	-2.55	.0966937	2466786	relfrac
.0994691		0902972	0.924	0.09	.0483306	.004586	Oil
.111999		.050894	0.000	5.23	.0155625	.0814465	lpopl1
.0992102		.0443383	0.000	5.14	.013975	.0717742	lmtnest
.0332202				1.23	.0030536	.0037487	year
.0097435		0022461	0.220	1.25	.000000	.005/40/	year

<u>Interpretation:</u> Using the square of gdp_g in the regression, the statistical significance of some of the independent variables changed.

Earlier we had ethfrac, relfrac, lpopl1 and lmtnest as statistically significant in the model.

Now we have gdp_g, ethfrac, relfrac, lpopl1 and lmtnest are statistically significant.

In addition to these sq_gdp_g is also statistically significant.

From here we can conclude that adding square of gdp_g in the model makes gdp_g statistically significant.

These statistically significant estimates can then be interpreted as following:

- $\partial E[any_prio|X]/\partial gdp_g = -.4327$ which implies that keeping all other variable same, the expected value of any internal conflict decreases by .4327 whenever the gdp grows by 1 unit.
- $\partial E[any_prio|X]/\partial sq_gdp_g = 2.8221$ which implies that keeping all other variable same, the expected value of any internal conflict decreases by 2.8221 whenever the square of gdp grows by 1 unit.

- $\partial E[any_prio|X]/\partial ethfrac = .2062$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .2062 whenever the ethnic fragmentation changes by 1 unit.
- $\partial E[any_prio|X]/\partial relfrac = -.2467$ which implies that keeping all other variable same, the expected value of any internal conflict decreases by .2467 whenever the religious fragmentation changes by 1 unit.
- $\partial E[any_prio|X]/\partial lpopl1 = .0814$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0814 whenever the log of population in the previous year had changed by 1 unit.
- dE[any_prio|X]/∂lmtnest = .0718 which implies that keeping all other variable same, the expected value of any internal conflict increases by .0718 whenever the log of mountainous terrain changes by 1 unit.

4. How would your interpretation change when instead of gdp_g you use log of gdp as the independent variable in equation 2.

Using the log of gdp instead of gdp_g, we have the regression equation as

regress any_prio lgdp gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year

- . gen lgdp=log(gdpen)
- . reg any_prio lgdp gdp_g_l polity2l ethfrac relfrac Oil lpop11 lmtnest year

Source	SS	df	MS			743
Model Residual	19.7727616 125.92845	9 733	2.19697351 .171798704	R-squa	F =	0.0000 0.1357
Total	145.701211	742	.196362818	- Adj R-squared Root MSE		0.1251 .41449
any_prio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lgdp	1184297	.0302814	-3.91	0.000	1778783	0589811
gdp_g_l	.0056689	.2119659	0.03	0.979	4104637	.4218016
polity2l	.0023715	.0030446	0.78	0.436	0036056	.0083486
ethfrac	.2159197	.0848829	2.54	0.011	.0492771	.3825624
relfrac	2561168	.0969162	-2.64	0.008	4463831	0658504
Oil	.0863311	.0523766	1.65	0.100	0164948	.1891571
lpopl1	.060075	.0161967	3.71	0.000	.0282775	.0918725
lmtnest	.0721777	.0139726	5.17	0.000	.0447466	.0996087
year	.0009713	.0030372	0.32	0.749	0049913	.0069339
_cons	-2.340925	6.036867	-0.39	0.698	-14.19254	9.510685

<u>Interpretation</u>: Using lgdp instead of gdp_g, we get a statistically significant independent variable which can be used to interpret the changes in the expected value of any internal conflict.

Let our estimated regression equation be

$$E[any_prio|X] = b0 + b1*|gdp + b2*gdp_g_l + b3*polity2l + b4*ethfrac + b5*relfrac + b6*Oil + b7*|popl1 + b8*|mtnest + b9*year$$

Now, the statistically significant variables can be interpreted as below,

- dE[any_prio|X]/dethfrac = .2159 which implies that keeping all other variable same, the expected value of any internal conflict increases by .2159 whenever the ethnic fragmentation changes by 1 unit.
- $\partial E[any_prio|X]/\partial relfrac = -.2561$ which implies that keeping all other variable same, the expected value of any internal conflict decreases by .2561 whenever the religious fragmentation changes by 1 unit.

- $\partial E[any_prio|X]/\partial lpopl1 = .0601$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0601 whenever the log of population in the previous year had changed by 1 unit.
- $\partial E[any_prio|X]/\partial lmtnest = .0722$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0722 whenever the log of mountainous terrain changes by 1 unit.
- $\partial E[any_prio|X]/lgdp = -.1184$ which implies that keeping all other variable same, the expected value of any internal conflict decreases by .1184 whenever gdp changes by 1 percent.

5. Suppose you would like to test that economic shocks affect conflict more in countries with low levels of democracy. Write the regression equation to do that and produce the regression table. Also, interpret the results of the new model.

We can use the interactive dummy to account for the increase in the effect of gdp growth on the chances of increase in conflict due to different levels of democracy.

The level of democracy is represented by democ variable which ranges from 0 (least democratic) to 10 (most democratic).

The interactive dummy corresponding to this case is inter_democ = democ*gdp_g.

regress any prio gdp g inter democ gdp g | polity2| ethfrac relfrac Oil |popl1 | Imtnest year

. reg any_prio gdp_g inter_democ gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year

737	s =	ber of ob	Nui	MS	df		SS	Source
11.26 0.0000 0.1342	= =	F(10, 726) 1.9248408 Prob > F .171015552 R-squared		10 726		19.248408 124.157291	Model Residual	
0.1223 .41354	d = =	R-square ot MSE		.19484469	736		143.405699	Total
Interval]	Conf.	[95%	P> t	t	Err.	Std.	Coef.	any_prio

any_prio	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gdp_g	042651	.2274778	-0.19	0.851	4892439	.4039419
<pre>inter_democ</pre>	.0303996	.0076494	3.97	0.000	.015382	.0454173
gdp_g_l	.0413489	.2127737	0.19	0.846	3763763	.4590741
polity2l	0011316	.0029941	-0.38	0.706	0070098	.0047466
ethfrac	.2108295	.0848347	2.49	0.013	.0442788	.3773801
relfrac	2464842	.0965926	-2.55	0.011	4361182	0568501
Oil	.0133741	.0483044	0.28	0.782	0814588	.108207
lpopl1	.0788902	.015561	5.07	0.000	.0483403	.1094401
lmtnest	.0727433	.014073	5.17	0.000	.0451147	.1003719
year	.0015583	.0030324	0.51	0.608	0043951	.0075116
_cons	-3.670948	6.024629	-0.61	0.543	-15.49872	8.156826

Interpretation: The regression equation corresponding to this case will be

 $E[any_prio|X] = b0 + b1*gdp_g + b2*gdp_g + b3*polity2 + b4*ethfrac + b5*relfrac + b6*Oil + b7*lpopl1 + b8*lmtnest + b9*year + b10*inter_democ$

Here the p-value for is less than 0.05 for the independent variables inter_democ, ethfrac, relfrac, lpopl1 and lmtnest. So these variables are statistically significant and they can be interpreted as follow:

- $\partial E[any_prio|X]/\partial gdp_g = -.0427 + .0304*democ$ which implies that keeping all other variable same, the expected value of any internal conflict changes by -.0427 + .0304*democ whenever gdp_g changes by 1 unit. The interpretation of this effect depend on the value of democ for the particular country.
- dE[any_prio|X]/drelfrac = -.2465 which implies that keeping all other variable same, the expected value of any internal conflict decreases by .2465 whenever the religious fragmentation changes by 1 unit.

- $\partial E[any_prio|X]/\partial lpopl1 = .0789$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0789 whenever the log of population in the previous year had changed by 1 unit.
- $\partial E[any_prio|X]/\partial lmtnest = .0727$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0727 whenever the log of mountainous terrain changes by 1 unit.

6. Do you think the estimation of equation 2 using OLS results in BLUE estimator? If not, state in detail the reason.

No, one possible reason for this could be the presence of heteroscedasticity in the model. Presence of heteroscedasticity implies that the OLS estimates are not the BLUE estimates. This can be tested using the breusch-pagan testfor heteroscedasticity in the model.

. estat hettest, rhs mtest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

			_
chi2	df	р	
0.37 1.06 0.06 5.71 8.72 0.72 58.09 30.91	1 1 1 1 1 1	0.5403 0.3030 0.8129 0.0168 0.0031 0.3965 0.0000 0.0000	# # # # # #
82.72	9	0.0000	-#
	0.37 1.06 0.06 5.71 8.72 0.72 58.09 30.91 5.53	0.37 1 1.06 1 0.06 1 5.71 1 8.72 1 0.72 1 58.09 1 30.91 1 5.53 1	0.37 1 0.5403 1.06 1 0.3030 0.06 1 0.8129 5.71 1 0.0168 8.72 1 0.0031 0.72 1 0.3965 58.09 1 0.0000 30.91 1 0.0000 5.53 1 0.0187

unadjusted p-values

Critical chi2 value for 1 degree of freedom is 3.84 and for 9 degree of freedom is 16.92. Here we have the value of chi2 for ethfrac, relfrac, lpopl1 and lmtnest greater the critical value of chi2 at 1 degree of freedom. There we can reject the null hypothesis that the variances are constant and thus the model can not be estimated using OLS.

7. The file provided also has data on rainfall shocks. Can you use this variable to improve upon OLS? Explain in detail all the steps.

We can use exogenous variation in rainfall as an instrumental variable for income growth in order to estimate the impact of economic growth on civil conflict. Weather shocks are plausible instruments for growth in gross domestic product in economies that largely rely on rain-fed agriculture, that is, neither have extensive irrigation systems nor are heavily industrialized. The instrumental variable method makes it credible to assert that the association between economic conditions and civil war is a causal relationship rather than simply a correlation. Sub-Saharan Africa is the ideal region for this identification strategy as the World Development Indicator database indicates that only 1 percent of cropland is irrigated in the median African country, and the agricultural sector remains large.

We use the IV(2SLS) method to estimate the regression equation.

Let us denote rainfall shock at period t by $R_{\rm t}$. Since the GDP growth rate of current year depends upon the GDPs of present year and the past year, we use both the rainfall shock of current year and the previous year i.e., $R_{\rm t}$ and $R_{\rm t-1}$ as instrumental variables for gdp_g. Similarly, the lagged GDP growth rate which is gdp_g_l is also an endogenous variable for which we use the instrumental variables $R_{\rm t-1}$ and $R_{\rm t-2}$.

So, our instrumental variable vector is $Z = [R_t R_{t-1} R_{t-2} polity2]$ ethfrac relfrac Oil Ipopl1 Imtnest year]

<u>Step 1:</u> At the 1st stage, we estimate both gdp_g and gdp_g_l by OLS regression according to the following regression equations.

$$gdp_g = \alpha 0 + \alpha 1R_t + \alpha 2R_{t-1} + \varepsilon 1$$

$$gdp_g_I = \delta 0 + \delta 1R_{t-1} + \delta 2R_{t-2} + \varepsilon 2$$

Let the estimated gdp_g and gdp_g_l be denoted by $gd\hat{p}_g$ and $gd\hat{p}_g_l$ respectively.

Step 2: Initially our vector of variables was

 $X = [gdp_g gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year]$

And our regression equation was

$$Y = X\beta + \epsilon$$

At the 2nd stage we use the following vector of variables

 $X = [gd\hat{p}_g \ gd\hat{p}_g_l \ polity2l \ ethfrac \ relfrac \ Oil \ lpopl1 \ lmtnest \ year]$

and estimate the coefficients as $bIV = (X'X)^{-1}(X'Y)$.

Now since $gd\hat{p}_g$ and $gd\hat{p}_g_l$ are linear combinations of R_t , R_{t-1} and R_{t-2} , X is the same as estimated X in a OLS regression upon instrument variables vector Z.

So, X = (I - MZ) X, where $MZ = I - Z (Z'Z)^{-1}Z'$ is the residual maker.

So,
$$X = Z(Z'Z)^{-1}Z'X$$

 $b\ IV = (X'X)^{-1}(X'Y) = (X'Z(Z'Z)^{-1}Z'X)^{-1}(X'Z(Z'Z)^{-1}Z'Y) = (X'Z(Z'Z)^{-1}Z'X)^{-1}(X'Z)^{-1}(X'Z)^{-$

So, $plim\ b\ IV = plim\ [\ \beta + (X'Z\ (Z'Z)^{-1}Z'X)^{-1}\ (X'Z\ (Z'Z)^{-1}Z'\ \epsilon)] = \beta + plim\ (X'Z\ (Z'Z)^{-1}Z'X)^{-1}\ (X'Z\ (Z'Z)^{-1}Z'X)^{-1}\ (X'Z\ (Z'Z)^{-1}Z'X)^{-1}\ (X'Z/n)^{-1}\ plim\ (Z'Z/n)^{-1}\ plim\ (Z'Z/n)^{$

Hence, we get $plim\ b\ IV = \beta$ i.e., $b\ IV$ is a consistent estimator of β .

Now we have a consistent estimator and it is free from endogeneity. So it is an improvement over the OLS estimator.

8. Estimate regression equation 1 with robust standard errors to account for possible heteroscedasticity in the data. Interpret the change in standard errors with respect to standard errors obtained by estimating equation 2. Run the following command in Stata:

regress any_prio gdp_g gdp_g_l polity2l ethfrac relfrac Oil lpopl1 lmtnest year, robust

. regress any_prio gdp_g gdp_g_l, robust

Linear regression	Number of obs	=	743
	F(2, 740)	=	0.58
	Prob > F	=	0.5588
	R-squared	=	0.0026
	Root MSE	=	.44315

any_prio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gdp_g	3094018	.2969241	-1.04	0.298	8923158	.2735122
gdp_g_l	0726641	.279152	-0.26	0.795	6206883	.4753602
_cons	.2659587	.0163924	16.22	0.000	.2337775	.2981399

. regress any_prio gdp_g gdp_g_l polity21 ethfrac relfrac Oil lpopl1 lmtnest year, robust

Linear regression	Number of obs	=	743
	F(9, 733)	=	13.38
	Prob > F	=	0.0000
	R-squared	=	0.1204
	Root MSE	=	.41815

any_prio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gdp_g	3258443	.2791102	-1.17	0.243	8737949	.2221063
gdp_g_l	0784348	.2618608	-0.30	0.765	5925214	.4356517
polity21	.0000237	.0028078	0.01	0.993	0054885	.005536
ethfrac	.2190961	.0886646	2.47	0.014	.0450292	.393163
relfrac	2263156	.0916145	-2.47	0.014	4061737	0464575
Oil	.0046091	.0515001	0.09	0.929	0964963	.1057144
lpopl1	.0776922	.0148332	5.24	0.000	.0485716	.1068128
lmtnest	.0754583	.0132024	5.72	0.000	.0495392	.1013773
year	.0022108	.0032873	0.67	0.501	0042428	.0086644
_cons	-4.965938	6.518818	-0.76	0.446	-17.76372	7.831843

<u>Interpretation</u>: The use robust standard errors removes the problem of heteroscedasticity in the model but does not have any impact on the values of coefficient estimates and does not influence there statistical significance. So the interpretation of their effects remains the same as earlier for the robust models also.

For equation 1:

<u>Interpretation</u>: The p-value for both the independent variables is more than 0.05. So, both the estimates of the coefficient of these variables are statistically insignificant at 5% level of significance and cannot be used to interpret the change in the probability of conflict.

For equation 2:

Since the p-value for the variables ethfrac, relfrac, lppopl1 and lmtnest are less than 0.05, there estimated coefficients are statistically significant. These coefficients can then be interpreted as following:

- dE[any_prio|X]/dethfrac = .2191 which implies that keeping all other variable same, the expected value of any internal conflict increases by .2191 whenever the ethnic fragmentation changes by 1 unit.
- dE[any_prio|X]/∂relfrac = -.2263 which implies that keeping all other variable same, the expected value of any internal conflict decreases by .2263 whenever the religious fragmentation changes by 1 unit.
- $\partial E[any_prio|X]/\partial lpopl1 = .0777$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0777 whenever the log of population in the previous year had changed by 1 unit.
- $\partial E[any_prio|X]/\partial lmtnest = .0755$ which implies that keeping all other variable same, the expected value of any internal conflict increases by .0755 whenever the log of mountainous terrain changes by 1 unit.