Zad 1. Sprawdz, ze $\langle a,b \rangle = \langle c,d \rangle \implies a=c \ \land \ b=d$

Z definicji pary uporzadkowanej wg. Kuratowskiego:

$$\langle a,b\rangle=\{\{a\},\{a,b\}\}$$

DOWOD:

Ustalmy dowolne abcd takie, ze $\langle a,b\rangle=\langle c,d\rangle$. Wowczas

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$$

Rozpatrzmy pzypadki:

1. a = b

Wtedy mamy

$$\{\{a\},\{a,a\}\} = \{\{a\}\} = \{\{c\},\{c,d\}\}$$

i wtedy z aksjomatu ekstencjonalnosci

$${a} = {c} = {c, d}$$

wiec a=c=d, czyli $a=c \wedge b=d$.

2. $a \neq b$

Wtedy $\{a\} \neq \{a,b\}$, stad wnioskujemy

$$\{c\} = \{a\},\$$

wiec c=a.

Dalej zauwazamy, ze $\{a,b\} \neq \{c\}$, bo $c=a \neq b$, wiec

$${a,b} = {c,d} = {a,d}$$

i poniewaz $a \neq b$, to b = d.

Zad 2. Udowodnij, ze $\bigcup \mathcal{P}(A) = A$.

DOWOD:

1. $\bigcup \mathcal{P}(A) \supseteq A$

Ustalmy dowolne $x \in A$. Cheemy pokazac, ze $x \in \bigcup \mathcal{P}(A)$. Zauwazmy, ze

$$A \in \mathcal{P}(A)$$
,

wiec z definicji sumy otrzymujemy

$$x \in \bigcup \mathcal{P}(A)$$
.

2. $\bigcup \mathcal{P}(A) \subseteq A$

Ustalmy dowolne $x \in \bigcup \mathcal{P}(A)$. Wowczas istnieje $B \in \mathcal{P}(A)$ takie, ze

$$x \in B$$
.

Z definicji zbioru potegowego

$$B \subseteq A$$
,

 $\mathtt{zatem}\ \mathtt{z}\ \mathtt{definicji}\ \mathtt{zawierania}\ x\in A\,.$

Zad 3. Niech A bedzie zbiorem niepustym. Ktore z ponizszych twierdzen sa prawdziwe?

Jesli A = | A|, to $\emptyset \in A$.

Teza
$$A = \bigcup A \implies \emptyset \in A$$
.

Z aksjomatu regularnosci wiemy, ze istnieje $x \in A$ taki, ze

$$(\heartsuit) \forall a \in A \quad \neg (y \in x).$$

Gdyby $\emptyset \neq x$, to istnialoby $z \in x$. Poniewaz $z \in x$ i $x \in A$, to

$$z \in \bigcup A$$

czyli z zalozenia mamy $z \in A$, co jest sprzeczne z (\heartsuit) . Wobec tego $x = \emptyset \in A$.

Jesli $\emptyset \in A$, to $A = \bigcup A$.

NIE: Niech $A=\{\emptyset\}$. Wowczas $\emptyset\in\{\emptyset\}$ i $\bigcup A=\emptyset
eq \{\emptyset\}=A$

Jesli $\bigcup A = \bigcap A$, to $A = \{x\}$ dla pewnego x

Teza: $\bigcup A = \bigcap A \implies \exists x \quad A = \{x\}$

Niech $x \in A$. Zalozmy nie wprost, ze istnieje $y \in A$ takie, ze $y \neq x$. Bez straty ogoolnosci mozemy zalozyc, ze istnieje $t \in x$ i $t \notin y$.

Z definicji sumy $t \in \bigcup A$, a z drugiej strony, z definicji przekroju, $t \notin \bigcap A$. Czyli $\bigcap A \neq \bigcup A$ i otrzymujemy sprzecznosc z zalozeniem.

Zad 4. Ktora z ponizszych rownosci zachodzi dla dowolnego zbioru A?

$$\bigcap \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcap \mathcal{P}(B) : B \subseteq A \}$$

Po lewej szukamy wspolnego elementu wszystkich podzbiorow zbioru A - jest to \emptyset . Z prawej strony mam rodzine wszystkich przekrojow. Czyli zeby byc podzbiorem wszystkich podzbiorow zbioru A trzeba byc \emptyset

$$\bigcap \{ \mathcal{P}(B) : B \subseteq A \} = \{ \bigcap \mathcal{P}(B) : B \subseteq A \}$$

$$\mathcal{P}(A)$$

Zad 5. Udowodnij, ze aksjomat pary wynika z pozostalych aksjomatow teorii ${\it ZF}_0$.