UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Cálculo IV

Lista 03 17 de Março de 2017

- (1) Use o Teorema de Stokes para calcular $\int_C F dr$, onde C tem orientação anti-horária vista de cima no eixo z:
 - a) $\overrightarrow{F}(x,y,z)=(xy,x^2,z^2)$ e C é a interseção do parabolóide $z=x^2+y^2$ e o plano z=y.
 - b) $\overrightarrow{F}(x,y,z)=(x+y^2,y+z^2,z+x^2)$ e C é o triângulo com vértices (1,0,0),(0,1,0) e (0,0,1).
 - c) $\overrightarrow{F}(x,y,z) = (yx,2xz,e^{xy})$ e C é o cículo $x^2 + y^2 = 16, z = 5$
- (2) Use o Teorema de Stokes para calcular $\iint_S rot F dS$: a) $\overrightarrow{F}(x,y,z)=(x^2z^2,y^2z^2,xyz)$ e S é a parte do parabolóide $z=x^2+y^2$ que está dentro do cilindro $x^2 + y^2 = 4$, orientada para cima.
 - b) $\overrightarrow{F}(x,y,z) = (xyz,xy,x^2yz)$ e S consiste no topo e os 4 lados (mas não o fundo) de um cubo com vértices $(\pm 1, \pm 1, \pm 1)$, orientado para fora.
- (3) Calcule o fluxo de saída do campo vetorial F através da superfície S:
 - a) $\overrightarrow{F}(x,y,z)=(x^2+y,z^2,e^y-z)$ e S é a superfície do sólido retangular limitado pelos planos coordenados e os planos $x=3,\,y=1$ e z=2.
 - b) $\overrightarrow{F}(x,y,z)=(x^3-e^y,y^3+\sin z,z^3-xy)$ e S é a superfície do sólido limitado acima por $z = \sqrt{4 - x^2 - y^2}$ e por baixo pelo plano XY.
 - c) $\overrightarrow{F}(x,y,z)=(x^3,x^2y,xy)$ e S é a superfície do sólido limitado acima por $z=4-x^2,$ y + z = 5, z = 0 e y = 0.

Bons estudos!

Bibliografia:

Stewart, J. - Cálculo Vol II

Howard, A. - Cálculo Vol II.

Gabarito

- (1) a) 0
 - b) -1
 - c) 80π
- (2) a) 0
 - b) 0
- (3) a) 12
 - b) $\frac{1927}{5}$
 - c) $\frac{4608}{25}$