WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5
C07D 213/36, 213/40, 213/60
C07D 417/12, 239/26, 237/08
C07D 241/12, 231/10, 277/08
A01N 43/40, 43/36, 43/48
A01N 43/78

(11) International Publication Number:

WO 91/04965

A1

(43) International Publication Date:

18 April 1991 (18.04.91)

(21) International Application Number:

PCT/JP90/01282

(22) International Filing Date:

4 October 1990 (04.10.90)

:

(30) Priority data:

1/259966 1/336231 2/56611 2/115246 2/196258	6 October 1989 (06.10.89) 27 December 1989 (27.12.89) 9 March 1990 (09.03.90) 2 May 1990 (02.05.90) 26 July 1990 (26.07.90)	JF JF JF JF
2/196258	26 July 1990 (20.07.90)	JI

(71) Applicant (for all designated States except US): NIPPON SODA CO., LTD. [JP/JP]; 2-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo 100 (JP).

(72) Inventors; and

(75) Inventors; and
(75) Inventors; and
(75) Inventors/Applicants (for US only): ISHIMITSU, Keiichi
[JP/JP]; SUZUKI, Junji [JP/JP]; OHISHI, Haruhito
[JP/JP]; YAMADA, Tomio [JP/JP]; HATANO, Renpei
[JP/JP]; TAKAKUSA, Nobuo [JP/JP]; MITSUI, Jun
[JP/JP]; Odawara Research Center, Nippon Soda Co., Ltd., 345, Aza Yanagimachi, Takada, Odawara-shi, Kanagawa 250-02 (JP).

(74) Agents: YOKOYAMA, Yoshimi et al.; Nippon Soda Co., Ltd., 2-1, Ohtemachi 2-chome, Chiyoda-ku, Tokyo 100

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CM (OAPI patent), DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), HU, IT (European patent), KR, LK, LU, LU (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MW, NL, NL (European patent), NO, RO, SD, SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US. TG (OAPI patent), US.

Published

With international search report.

(54) Title: AMINE DERIVATIVES

$$R_1 - X - N$$

$$R_2$$

$$R_3$$

$$R_3$$

$$R_3$$

$$R_3$$

(57) Abstract

The present invention relates to a compound having formula (I) which has an excellent insecticidal activity, wherein R₁ represents an optionally substituted 5-6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl; X represents an optionally substituted C₁₋₃ alkylene or alkylidene; R₂ represents a hydrogen, a carbamoyl, a mono or di C₁₋₅ alkyl carbamoyl, a thiocarbamoyl, a mono or di C₁₋₅ alkylthiocarbamoyl, a sulfamoyl, a mono or di C₁₋₅ alkylsulfamoyl, an optionally substituted C₁₋₅ alkyl, an optionally substituted C₂₋₅ alkenyl, an optionally substituted C₂₋₅ alkynyl, an optionally substituted C3-8 cycloalkyl, an optionally substituted C3-8 cycloalkenyl, an optionally substituted aryl or -Y- R_5 ; Y represents O, S(O)_n, CO, CS or CO₂; n represents 0, 1 or 2; R_5 represents a hydrogen, an optionally substituted $C_{1.5}$ alkyl, an optionally substituted $C_{2.5}$ alkenyl, an optionally substituted $C_{2.5}$ alkynyl, an optionally substituted $C_{3.8}$ cycloalkyl, an optionally substituted C3-8 cycloalkenyl or an optionally substituted aryl; R3 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl or an optionally substituted C₃₋₈ cycloalkenyl; R₄ represents a cyano or a nitro; and Z represents CH or N; or its

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CM	Cameroon ·	Li	Liechtenstein	SU	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU	Luxembourg	TG	Togo
	•		-	บร	United States of America

1

DESCRIPTION

Amine Derivatives

Technical Field:

The present invention relates to new amine derivatives, the processes for the production thereof and insecticides containing the said derivatives as effective compounds.

Background art:

A large number of chemicals, for example, organophosphorus carbamate parathion and malathion and insecticides such as insecticides such as carbaryl and methomyl, have been developed and put to practical use by research and development on insecticides over many years. These insecticedes have played a very great role for the improvement of agricultural production. However, in recent years some of these insecticides are regulated on their use because of problems such as environmental pollution due to residue or accumulation, or cause infestitation of resistant insect pests as a Therefore, it is demanded to develop new result of long-term use. chemicals which have excellent insecticidal characteristics over various types of insect pests including these resistant insect pests and which can be used safely.

The following compound is known as the analogous compound of this invention, which has no insecticidal activity.

(Boll. Chim. Farm., 1979 118(11)661-666)

Further, the following compound is described in USP 4918088, which has insecticidal activities.

The compound however shows no insecticidal activity against lepidopterous insects and green rice leafhopper which are more serious pests on crops, though it shows the activity against cotton aphid.

The purpose of this invention is to provide agricultural chemicals which can be advantageously synthesized industrially, have certain effects and are applicable safely.

The compound of this invention has high insecticidal activity against both lepidopterous and hemipterous insects.

Disclosure of Invention:

The present invention relates to a compound having the formula

$$\begin{array}{c|c}
R_4 \\
Z \\
R_1 - X - N - R_3 \\
R_2
\end{array}$$

wherein R₁ represents an optionally substituted 5 - 6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl;

x represents an optionally substituted c_{1-3} alkylene of alkylidene;

 $\rm R_2$ represents a hydrogen, a carbamoyl, a mono or di $\rm C_{1-5}$ alkyl carbamoyl, a thiocarbamoyl, a mono or di $\rm C_{1-5}$ alkylthiocarbamoyl, a sulfamoyl, a mono or di $\rm C_{1-5}$

alkylsulfamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl, an optionally substituted aryl or $-Y-R_5$;

Y represents 0, $S(0)_n$, CO, CS or CO_2 ; n represents 0,1 or 2;

 R_5 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted aryl;

 R_3 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl or an optionally substituted C_{3-8} cycloalkenyl; R_4 represents a cyano or a nitro; and Z represents CH or N; or its salt.

Best Mode for Carrying Out the Invention:

The compounds of this invention can be prepared in accordance with the following reaction schemes:

(1) Preparation Method 1:

where r^1 and r^2 represent a C_{1-5} alkyl; and R_1 , R_2 , R_3 , R_4 and X are as defined above.

The reaction is carried out in an inactive organic solvent, preferably in an aromatic hydrocarbon solvent such as xylene, toluene or benzene, in the presence of acidic catalyst such as p-toluenesulfonic acid, if necessary, under reflux.

(2) Preparation method 2:

where r^3 represents a C_{1-5} alkyl:

and R_1 , R_2 , R_3 and X are as defined above. This reaction is carried out in an inactive organic solvent, preferably in an alcohol such as methanol, ethanol, between room temperature and the boiling point of the used solvent.

(3) Preparation Method 3:

$$\begin{array}{c} CN \\ N \\ R_1-X-NH \end{array} + R_2-Ha1 \longrightarrow \begin{array}{c} CN \\ N \\ R_1-X-N \end{array}$$

$$\begin{array}{c} R_1-X-N \\ R_2 \end{array}$$

$$(I''') \qquad \qquad (V) \qquad \qquad (I'')$$

where Hal represents a halogen; and R_1 , R_2 , R_3 and X are as defined above.

This reaction is carried out in an inactive organic solvent, preferably DMF, THF, benzene acetonitrile, acetone, methylethylketone, in the presence of acid accepter such as potassium carbonate, NaH, triethylamine, between room temparature and the boiling point of the used solvent.

(4) Preparation Method 4:

$$\begin{array}{c} CN \\ \downarrow \\ N \\ R_2-NH \end{array} + R_1-X-Hal \longrightarrow \begin{array}{c} CN \\ \downarrow \\ N \\ R_1-X-N \\ R_2 \end{array}$$

$$(VI) \qquad (VII) \qquad (I")$$

where R_1 , R_2 , R_3 , X and Hal are as defined above. reaction is carried out in the same manner as that of Preparation Method 3.

(5) Preparation Method 5:

where R₁, R₂, R₃ and X are as defined above. This reaction is carried out in an inactive organic solvent, preferably acetonitrile, carbon tetrachloride, dichloroethane, in the presence of nitration reagent such as nitronium tetrafluoroborate, between -20°C and the boiling point of the used solvent.

After the reaction is completed, an usual after-treatment gives the intended compound. The structure of the compounds of this invention was determined by such means as IR, NMR, MASS, etc. When $\rm R_2$ is hydrogen in a compound of this invention, tautomers represented by

can exist.

The syn - aniti isomers, when Z represents N, and the cis-trans isomers, when Z represents CH, as represented by,

can also exist.

The ratio varies depending on e.g. conditions of instrumental analysis.

The following examples illustrate the present invention.

Example 1 : 2-(2-chloro-5-pyridylmethylamino)-1-nitro-1-butene:

$$C1 \xrightarrow{\text{CH}_2\text{NH}_2} + C_2\text{H}_5\text{COCH}_2\text{NO}_2 \longrightarrow C1 \xrightarrow{\text{N}} \text{CH}_2\text{NH} \xrightarrow{\text{C}_2\text{H}_5}$$

In 50ml of toluene, 4.2g of 2-chloro-5-pyridylmethylamine, 3.5g of 1-nitro-2-butanone and 0.1g of p-toluene sulfonic acid were mixed and the mixture was refluxed for 2 hours. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 4.1g of compound No. 368. m.p. 95-98°C Example 2: 2-(2-chloro-5-pyridylmethylamino)-1-cyano-1-propene:

1.4g of 2-chloro-5-pyridylmethylamine and 0.8g of 1-cyano-2-propanone were mixed and the mixture was stirred at room temperature over night. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 1.7g of compound No. 528.

m.p. 95-98°C

Example 3:

N-cyano-N'-(2-chloro-5-pyridylmethyl)-N'-methylacetamidine:

In 20ml of ethanol, 1.6g of N-methyl-2-cloro-5-pyridylmethylamine and 1.2g of ethyl-N-cyanoacetamidine were mixed and the mixture was stirred at room temperature over night. The solvent was then distilled off and the residue was purified by column chromatography on silica gel to afford 1.8g of compound No. 22. m.p. 101-103°C

8

Example 4:

N-cyano-N'-(2-chloro-5-pyridylmethyl)-N'-ethylacetamidine:

0.7g of sodium hydride (purity 60%) was added to the solution of 3.0g of N-cyano-N'-(2-chloro-5-pyridylmethyl)acetamidine in 20ml of N.N-dimthylformamide at ice bath temperature. After stirring it at the same temperature for 1 hour, 2.7g of ethyl iodide was added to the mixture, followed by stirring for 5 hours at room temperature. The reaction mixture was then poured into ice-water, extracted with magnesium sulfate and anhydrous ethvl acetate, dried over The residue obtained was concentrated under reduced pressre. purified by column chromatography on silica gel to afford 1.6g of compound No. 51. m.p. 100-101°C

Example 5:

N-cyano-N-(2-chloro-5-pyridylmethyl)-N'-methylacetamidine:

0.6g of sodium hydride (purity 60%) was added to the solution of 20ml of N, N-N-cyano-N'-methylacetamidine in dimethylformamide at ice bath temperature. After stirring it at for hour. 2.2q of 2-chloro-5-1 temperature the same pyridylmethylchlride was added to the mixture, followed by stirring The reaction mixture was then for 5 hours at room temperature. poured into ice-water, extrated with ethyl acetate, dried over anhydrous magnesium sulfate and concentrated under reduced pressre.

The residue obtained was purified by column chromatography on silica gel to afford 1.5g of compound No.22 m.p. 101-103°C

Reference Example:

N-(2-chloro-5-pyridylmethyl)-N-methylacetamidine hydrochloride:

To 40ml of ethanol was added 5.1g of N-(2-chloro-5-pyridylmethyl)-N-Methylamine and then 4g of ethyl acetimidate hydrochloride at 0°C. After stirring for an hour, the reaction mixture was allowed to warm to room temperature and stirred over night. The solvent was then distilled off. The obtained white residue was washed with diethyl ether to afford 7.3g of the title compound m.p. 192-197°C Example 6:

N-(2-chloro-5-pyridylmethyl)-N-methyl-N'-nitroacetamidine:

To a suspension of 1g of N-(2-chloro-5-pyridylmethyl)-N-methylamidine hydrochloride in 10ml of dry acetonitrile was added dropwise 0.7g of DBU under nitrogen at room temperature. After stirring for 30 minutes, the solution was added dropwise to a suspension of 0.6g of nitronium tetrafluoroborate in 5ml of dry acetonitrile under nitrogen on cooling with ice-water and let stir for 4 hours. After which time, the mixture was poured into ice-water, then extracted several time with chloroform. The combined chloroform layer was dried over magnesium sulfate, filtered and

distilled off. The crude oil was purified by column chromatgraphy on silica gel to afford 0,3g of compound No. 236.

 N_{D}^{25} 1.5808

Typical examples of this invention including those described above are listed in Table 1.

1 1

Table 1

		Structur	e Formula			
Compound No.		Physical Properties				
	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
1	CL N CII2-	11	II	N	CN	(123-126)
2	"	"	CH ₃	"	"	(141-143)
3	"	"	CII₂C <i>ℓ</i>	"	"	(124-126)
4	"	"	CII ₂ F	"	"	(151-152)
5	"	"	CF ₃	"	"	(112-114)
6	"	"	C2ll5	<i>"</i>	"	(120-122)
7	"	"	C ₃ II ₇ (n)	"	"	(100-101)
8	"	"		"	11	(193, 5-195)
9	"	"	C4Hu(t)	"	"	
10	"	"	CII2 OCII3	"	"	(128-128.5)
11	"	"	CII 2 SCH 3	"	"	(116-118)

No.	R ₁ X	R ₂	Rз	Z	R۵	() m. p. °C
12	Ce N CII2-	II	C112C00C2115	N	CN	^{25. 5} п _р 1.5608
13	<i>"</i>	"	CH2CH2COOC2H5	"	"	
14	"	"	CH₂NHCH₃	"	"	
15	"	"	CH ₂ N(CH ₃) ₂	"	"	
16	"	"	CH2CH2CH2C @	"	"	(114-115)
17	"	"	CII2 C L	"	"	(190-191)
18	"	"	CII ₂ CN	"	"	(106-108)
19	"	"	CH ₂ CH ₂ CN	"	"	
20	"	"	NCN C ₂ II ₄ NCII ₂ T _N C e	"	"	(187-189)
21	"	CH3	11	"	"	г _р 1.5918
22	"	"	CH ₃	"	"	(101-103)
23	"	"	"	"	"	(161-162) IIC & salt
24	"	"	CH₂C £	"	"	26. 5 N D 1. 5921
25	"	"	CH₂F	"	"	(79- 80)
26	"	"	CF ₃	"	"	* 1

No.	RıX	R ₂	R a	Z	R ₄	() m.p.℃
27	C & N Cll2 -	CII3	C2II5	N	CN	n _D 1.5742
28	"	"	C3 ll7 (n)	"	"	[97-100]
29	"	"		."	"	24. 5 п в 1. 5829
30	"	"	Callu(t)	"	"	
31	"	"	CII2OCII3	"	//	n _D 1.5803
32	"	"	CII2 SCII3	"	<i>"</i>	n D 1.6070
33	"	"	CII2COOC2II5	"	"	25. 5 n D 1. 5604
34	"	"	CII2CII2COOC2II5	"	"	24.5 n d 1.5605
35	"	"	CII2NHCII3	"	"	²⁵ п _р 1.5861
36	. "	"	CH ₂ N(CH ₃) ₂	"	<i>"</i>	n _D 1.5577
37	"	"	CII₂CII₂C ℓ	<i>"</i>	"	
38	"	"	CII2CII2CII2C L	//	<i>"</i>	25. 5 n D 1. 5830
39	"	"	√II	"	"	
40	"	"	- CII2	"	"	
41	<i>"</i>	"	CII2-C L	"	"	n _D 1.6040

No.	RıX	R 2	R 3	Z	R ₄	() m.p.℃
42	C & N CII2-	CII3	CH=CH ₂	N	CN	25
43	"	<i>"</i>	CII ₂ CN	"	"	п _р 1.5913
44	"	"	CH2CH2CN	"	"	(112-114)
45	"	"	CII=CII	"	"	
46	"	"	NCN -C ₂ H ₄ NCH ₂ CH ₃	"	"	(224-226)
47	"	CIIF ₂	11	"	"	
48	"	"	Cll3	"	"	24. 5 n d 1. 5423
49	"	"	C ₂ lls	"	"	
50	"	C ₂ II ₅	II	"	"	(101-103)
51	"	"	CII ₃	"	"	(100-101)
52	"	"	C ₂ II ₅	"	"	
53	"	C ₃ H ₇ (i)	Н	"	"	(205-207)
54	"	"	CH3	"	"	
55	"	"	C ₂ H ₅	"	"	
56	"		II	"	"	

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
57	C e N CII2-	$\overline{}$	CII ₃	N	CN	n _D 1.5825
58	" " "		C2ll5	"	"	
59	"	CII2 OCII3	H	<i>,,</i> ,	"	
60	<i>"</i>	. "	CH ₃	"	"	^{25. 5} n _D 1.5711
61	"	CH₂SCH3	Н	//	"	
62	"	"	СН₃	"	"	n D 1.5828
63	"	C112 C00C 2 II 5	Н	"	"	
64	"	"	CII3	"	"	n _D 1.5475
65	"	CH ₂	П	"	"	•
66	"	"	CH ₃	"	"	n _D 1.5928
67	"	CII ₂	Н	"	,,,	:
68	"	"	CII3	"	"	n _D 1.6155
69	"	CII2	11	"	"	
70	"	"	CH ₃	<i>"</i>	"	n _D 1.6093
71	"	CII2 C &	11	"	"	

No.	R ₁ X	R 2	R 3	Z	R ₄	() m.p.℃
72	C & N CH2	CH ₂ CH ₂	СНз	N	CN	(112-114)
73	"	CII2CII=CII2	II	11	11	n D 1.5841
74	"	"	CII ₃	"	"	n _D 1.5809
75	"	CII2C=CII	п	"	"	
76	"	"	СПз	"	"	^{25. 5} n _D 1. 5730
77	"	CII ₂ CN	Н	"	"	
78	"	"	CH ₃	"	"	(127-128)
79	"	CII ₃ 0	Н	"	"	
80	"	"	Cll ₃	"	"	(124-127)
81	"	-CII ₂	II	"	"	
82	"	"	CII3	"	"	n b 1.6045
83	"	-CH ₂ S C e	И	"	"	
84	"	"	CH ₈	"	"	25. 5 N D 1. 6092
85	"	CH ₂ CH ₂ CN	. Н	"	"	

1 7

No.	R ₁ X	R 2	Rз	Z	R ₄	() m.p.℃
86	C & N CII2	CH ₂ CH ₂	CII ₃	N	CN	^{25. 5} п _р 1.5910
87	"	CII2 CII2 CI 2	II	"	"	
88	"	"	CII3	<i>"</i>	"	n _D 1.6162
89	"		H	"	"	
90	"	"	Cll3	"	"	(115-117)
91	"	осн _з	II	" .	"	
92	"	"	СНз	"	"	(110-112)
93	"	СНО	II	"	"	
94	"	"	Clls	"	"	
95	"	сосна	11	//-	<i>II</i> .	25. 5 n D 1. 5475
96	"	"	CII3	"	"	(84- 86)
97	"	SO ₂ CII ₃	Н	"	<i>"</i>	(160-163)
98	"	"	CII3	"	, //	
99	"	co-<	H	"	"	• .
100	<i>"</i> .	"	Clls	"	"	(112-114)

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
101	C & N CH2-	COOC₂H₅	H	N	CN	,
102	"	"	CH3	"	"	n d 1.5540
103	"	CONH₂	II .	"	"	
104	"	"	CH ₃	"	"	
105	"	CON CII3	Н	"	"	
106	"	"	CII3	"	"	(89- 91)
107	"	CONHCH₃	H	"	"	
108	"	"	CH3	"	"	
109	"	CSNIICII ₃	H	"	"	
110	. "	"	CII3	"	"	
111	Br N CH2	И	CH₃	"	"	
112	"	CII ₃	"	"	"	
113	F N CH2	Н	"	"	"	
114	"	CII3	"	"	"	
115	CH ₃ CH ₂ -	Н	"	"	"	(83- 85)

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
116	CII ₃ N CII ₂ -	CII3	CH3	N	CN	(76- 78)
117	C & 3 C N CII2-	11	"	"	"	
118	"	CH ₃	"	"	"	(145-147)
119	F ₃ C N CH ₂ -	11	"	"	"	
120	"	CII3	"	"	"	n _D 1.5202
121	F ₃ CO N CII ₂ -	Н	"	"	"	
122	"	CH ₃	"	"	"	
123	CII ₃ 0 N CII ₂ -	Н	"	"	"	,
124	"	CII ₃	"	"	"	n _D 1.5580
125	F2HCO N CII2-	11	"	"	"	7
126	"	CH ₃	"	"	"	
127	CII ₃ 0 N CII ₂ -	H	"	"	"	
128	"	СНз	"	"	"	
129	CII ₃ S N CII ₂ -	Н	"	"	"	(162-163)
130	"	CH ₉	"	"	"	(105-107)

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
131	CH ₃ SO ₂ CH ₂ -	H	СНз	N	CN	
132		CII3	,,	,,	"	(138-139)
133	O CH2-	II	"	"	"	2 5
134	"	CIIa	"	"	"	пъ 1.5841
135	NC N CII2-	Н	"	"	"	
136	"	CH3	"	"	"	(107-109)
137	O ₂ N CII ₂ -	Н	"	"	"	
138	"	CH ₃	"	"	"	
	C ℓ					
139	C & N CH2-	Н	"	"	"	
140	"	СНз	"	"	"	
141	C & N CII3	Н	"	"	"	
142	"	ClI ₃	"	"	"	
143	CH ₃ N N CH ₂ -	11	"	"	"	(122-124)
144	"	CH ₃	"	"	"	(110-113)

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
145	CII ₂ -	- 11	СНз	Ņ	CN	(66- 68)
146	"	CII3	"	. "	"	^{24. 5} пъ 1. 5790
147	C & N CII2-	II	"	<i>"</i>	"	
148	"	CII ₃	"	"	"	(94-96)
149	CII3 N CII2-	н	<i>"</i>	"	"	(130-132)
150	"	CH3	"	"	"	n D 1.5612
151	C e CII2-	11	"	"	"	[96- 99]
152	"	CH3	"	. "	"	^{25. 5} п _р 1.5800
153	N CII ₂ -	11	"	"	"	
154	"	CII ₃	"	"	,,	
155	CII ₃ CII ₂ -	II	"	<i>"</i>	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m. p. ℃
156	N CH ₂ -	СН₃	CH3	N	CN	
157	N CII ₂ -	II	"	"	"	
158	"	CH3	"	"	"	
159	$CH_3 \stackrel{N}{\swarrow} CH_2 -$	II	"	"	"	
160	"	CII ₃	"	"	"	
161	$\langle N=N \rangle$ CH ₂ -	Н	"	"	"	
162	"	CII3	"	"	"	
163	$C \ell {\sim}_{N=N} CH_2 -$	н	"	"	"	(115-117)
164	"	CII:	"	"	"	n _D 1.5717
165	CII ₃ N N CII ₂	II	"	"	"	(104-106)
166	,	CII3	"	"	"	

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.°C
167	N CII2 -	Н	CII ₃	N	CN	
168	"	CII3	"	"	<i>"</i>	
169	N Cll ₂ –	11	"	"	"	(112-114)
170	"	СНз	"	"	"	n D 1.5413
171	C L S CII2 -	Н	"	"	"	(122-124)
172	"	СНа	"	"	"	(143-144)
173	"	"	C ₂ ll ₅	"	"	n _D 1.5575
174	"	C2115	CII3	"	"	(63- 70)
175	C L S CH ₂	II	"	"	"	(149-151)
176	"	CII3	"	"	"	
177	CH2-	Н	Н	"	"	(179-183)
178	CL S	CII3	"	<i>"</i>	"	n _D 1.5952

No.	R ₁ X	R 2	R ₃	Z .	R ₄	() m. p. ℃
179	CII2CII2-	H	СНз	N	CN	
180	"	CH ₃	"	"	"	
181	C & N CH2CH2-	II	"	"	"	
182	"	CII3	"	"	"	
183	CH ₂ CH ₂ -	11	"	"	"	
184	"	CH3	"	"	"	·
185	C & N CII2 CII2 -	и	"	,,	"	
186	"	CH3	"	"	"	1
187	CH3 CH3 CH1	Н	"	<i>"</i>	"	
188	"	CH ₃	"	"	"	(106-109)
189	N Cll ₂ -	II	CH3	"	"	(90- 92)

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
190	N CII ₂ -	CII ₃	CH3	N	CN	(102-103)
191	C e CII2 -	И	<i>"</i>	<i>"</i>	"	
192	"	Cll ₃	<i>"</i>	"	"	
193	CII ₂ -	JI	Н	" .	"	
194	"	"	СНз		"	(127-129)
195	<i>"</i>	"	CII₂C ℓ	<i>"</i>	"	
196	"	"	CH₂F	"	"	
197	"	"	C ₂ H ₅	"	"	
198	"	"		"	: "	
199	"	"	CH ₂ SCH ₃	"	"	
200	"	"	CII₂OCII₃	"	"	
				L	<u> </u>	<u> </u>

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.°C
201	CII ₂ -	Н	C3H7 (11)	N	CN	^{25. 5} n _D 1.5528
202	"	CII3	11	"	"	
203	"	"	CH3	"	"	^{25.5} n _D 1.5798
204	"	"	CII₂C L	"	"	
205	"	"	CH₂F	"	"	
206	"	II	C ₂ II ₅	<i>"</i> .	"	^{25. 5} п _р 1. 5657
207	"	"		"	"	
208	"	"	CH ₂ SCH ₃	"	"	
209	"	"	CII2 OCII3	"	"	
210	"	"	CaH7 (i)	"	"	
211	"		Calle(t)	"	"	

3

.

2 7

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
212	CII ₂	C2II5	Н	N .	CN	
213	"	"	CH₃	"	, ,,	n _D 1.5665
214	"	"	CII₂C ℓ	"	<i>II</i>	
215	"	"	C ₂ H ₅	"	"	
216	"	C ₃ ll ₇ (i)	Н	,,	<i>"</i>	
217	"	"	CH ₃	"	"	
218	"	"	C ₂ H ₅	"	"	
219	"	COCII3	H	"	,;* ,,	
220	"	"	CII ₃	<i>"</i>	"	
221	"	SO ₂ CH ₃	11	"	"	
222	<i>"</i>	"	CII3	"	"	
	•			<u></u>		

No.	RıX	R 2	R ₃	Z	R ₄	() m.p.℃
223	C.e N CII2-	Н	Н	N	NO ₂	
224	"	"	СНз	"	<i>"</i>	
225	"	"	CII₂C £	"	"	
226	"	"	CH ₂ F	"	"	
227	"	"	C2ll5	<i>''</i>	"	
228	"	"	\prec	"	"	
229	"	"	Cll ₂ SCll ₃	"	"	
230	"	"	CII2OCII3	"	"	
231	"	"	C ₃ ll ₇ (i)	"	"	
232	"	"	Callu(t)	"	"	
233	"	"	CII=CH ₂	"	"	
234	"	"	CII ₂ -	"	"	

چ

.

.

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
235	C L N CII2-	CII3	Н	N :	NO ₂	
236	"	"	CH3	"	"	n _D 1.5808
237	"	"	CII₂C ℓ	<i>"</i>	<i>"</i>	
238	"	"	CH ₂ F	"	"	
239	"	"	C ₂ ll ₅	"	<i>"</i>	
240	"	"		"	"	
241	"	"	CII2SCII3	"	"	
242	"	"	CII2 OCII3	"	"	
243	"	"	C3 ll7 (n)	"	"	
244	"	"	C. III (t)	"	"	
245	"	"	CII=CII ₂	"	"	
246	"	"	CII ₂ -	"	"	

No.	R ₁ X	R 2	Rа	Z	R ₄	() m.p.℃
247	C & N CII2-	C ₂ II ₅	Н	N	NO ₂	
248	"	"	CH ₃	"	"	
249	"	"	C ₂ II ₅	"	"	
250	"	C ₃ ll ₇ (i)	Н	"	"	
251	"	"	СН₃	"	"	
252	"	"	C2H5	"	"	
253	<i>"</i>		Н	"	"	
254	"	"	CII ₃	"	"	
255	"	. "	C2II5	"	"	
256	"	COCH3	II	"	"	
257	"	"	CH₃	"	"	
258	"	SO ₂ CH ₃	Н	"	"	
259	"	"	CII ₃	"	"	

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
260	B ₁ CH ₂ -	11	Clla	N	NO ₂	
261	• "	СН₃	"	"	"	
262	F CII2	11	"	"	"	
263	"	CH₃	"	"	<i>"</i>	
264	CH ₂ -	Н	"	"	"	
265	"	CH ₃	"	"	"	
266	C & 3 C N CH2-	Н	"	"	"	
267	"	CII ₃	"	"	"	
268	F ₃ C N CH ₂ -	Н	"	"	"	
269	"	CII.	<i>"</i>	"	"	
270	F ₃ CO N CH ₂ -	11	"	"	,,	
271	"	Clla	" .	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
272	CH ₃ O N .	11	CH3	N	NO ₂	
273	"	CH ₃	"	"	"	
274	F ₂ HCO N CH ₂ -	H	"	"	"	
275	"	CII3	"	"	"	
276	CII30 N CII2-	II	"	"	"	
277	"	CH ₃	"	"	"	
278	CII ₃ S N CII ₂ -	Н	"	"	,"	
279	"	СНз	"	"	"	
280	CII ₃ SO ₂ N CII ₂ -	Н	"	"	"	
281	"	СНз	"	"	"	
282	O CH2-	Н	"	"	"	
283		CH ₃	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
284	NC N CII2-	11	CII ₃	N	NO ₂	
285	"	CII3	"	"	"	
286	O ₂ N N CII ₂	H	"	. ,,	"	
287	"	Clls	"	. 11	"	
288	C & CII2-	II	"	. "	"	
289	"	CH ₃	, ,,	" .	li .	
290	C & N CH ₂ -	11	"	"	"	
291	"	CII3	"	"	"	
292	CII ₃ N N CII ₂ -	H	"	"	"	
293	"	CH ₃	"	"	<i>"</i>	

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
294	CII ₂ -	II	CII 3	N	NO ₂	
295	"	CII3	"	"	"	
296	C & N CII2-	Н	"	"	"	
297	"	CII3	<i>"</i>	"	"	
298	CII ₃ CII ₂ -	II	"	"	"	
299	"	CII.3	"	"	"	
300	C l N CII2-	II	"	"	"	
301	"	СНз	"	"	"	
302	N CII2-	Н	"	"	"	
303	"	CH ₃	"	"	"	
304	N CII ₂ -	II	"	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
305	N Cll ₂ -	Cll3	CH3	N	NO ₂	
306	⟨N CH₂−	II	"	<i>"</i>	"	
307	"	CII3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	",	
308	CH ₃ -\(\big _N = \int CH ₂ -	H	"	"	"	
309	"	СН₃	"	"	"	
310	$\langle N=N \rangle$ CH ₂ -	Н	"	,"	"	
311	"	CII3	"	"	".	
312	$ c \ell \stackrel{\longleftarrow}{\underset{N=N}{\longleftarrow}} c I I_z - $	И	<i>"</i>	"	#.	
313	"	CII3	"	"	"	· :.
]	L	l	<u> </u>	L

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
314	N CII2 -	11	CH3	N	NO ₂	
315	"	CII a	"	"	"	
316	CII ₃ S CII ₂ -	11	"	"	"	
317	"	CH3	"	"	"	
318	C L S CH2-	11	"	"	"	
319	"	ClI3	"	"	"	
320	"	"	C ₂ II ₅	"	"	
321	"	C ₂ II ₅	CII3	"	"	ļ
322	C L S CII2 -	H	"	"	"	
323	"	CII3	"	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
324	CII2CII2-	H	СНз	N	NO ₂	
325	. "	Clł3	"	' //	"	
326	C e N CH2 CH2 -	H	"	"	"	
327	"	CH ₃	"	"	"	
328	CH ₂ CH ₂ -	11	"	"	"	
329	"	CII ₃	"	"	"	
330	C & N CII2 CH2 -	Н	"	"	.//	
331	" ÇII3	CH3	"	"	<i>"</i>	-
332	C e N CII-	11	"	"	"	
333	"	CH3	"	"	"	
334	N CH ₂	H	"	"	"	
335	"	CII3	"	"	"	

No.	RıX	Rz	Rз	Z	R ₄	() m.p.℃
336	CII ₂ -	II	H	N	NO ₂	
337	"		СНз	"	"	
338	"	"	C_2II_5	"	"	
339	"	"	CH₂C ℓ	"	"	
340	"	"	CII ₂ F	"	"	
341	"	"	\prec	"	"	
342	"	<i>"</i>	CH ₂ SCH ₃	, ,,	"	
343	"	"	СН₂ОСН₃	"	"	

No.	RiX	R 2	R ₃	Z	R ₄	() m.p.℃
344	CII ₂ -	CH ₃	Н	Ŋ	NO ₂	
345	"	"	СНз	"	"	· .
346	"	"	CII ₂ C <i>L</i>	"	"	:
347	"	"	CH ₂ F	"	"	
348	"	"	C ₂ II ₅	"	"	
349	"	"	\prec	"	"	
350	"	"	CH ₂ SCH ₃	"	<i>"</i> "	
351	"	"	CH ₂ OCH ₃	"	"	
352	"	"	C ₃ II ₇ (i)	"	"	
353	"	"	C ₄ II ₀ (t)	"	"	
				L	1	<u> </u>

4 0

No.	R ₁ X	R 2	Rз	Z	R۵	() m.p.℃
354	CH ₂ -	C2H5	11	N	NO ₂	
355	"	"	CH ₃	"	"	
356	"	"	CII₂C <i>L</i>	"	<i> </i>	
357	"	"	C ₂ II ₅	"	"	
358	"	C ₃ H ₇ (i)	Н	"	"	
359	"	"	CH₃	"	"	
360	"	"	C2ll5	"	"	·
361	"	COCII ₃	II	"	"	
362	"	"	CH₃	"	"	
363	"	SO ₂ CII ₃	Н	"	"	
364	"	"	CH3	"	"	
	<u> </u>	<u> </u>		<u> </u>		

4 1

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.°C
365	C & N CII ₂ -	II	Н	CII	NO ₂	(116-118)
366	"	"	CHs	, ,,	"	(133-135)
367	"	"	CH₂C ℓ	"	"	·
368	"	<i>"</i>	C2H5	"	<i>''</i>	[95-, 98]
369	"	"	C ₃ ll ₇ (i)	"	· //	(150-152)
370	"	"	C4117(t)	"	"	
371	"	"	CII=CII ₂	"	, , , , , , , , , , , , , , , , , , ,	
372	"	"	CII=CHCII3	"	"	
373	"	"	CH₂CN	"	"	
374	, , , , , , , , , , , , , , , , , , , ,	"	CH ₂ NO ₂	"	<i>"</i>	
375	"	"	CH ₂ COOC ₂ H ₅	"	<i>"</i>	
					<u></u>	

4 2

No.	R ₁ X	R ₂	Rз	Z	R ₄	() m.p.℃
376	C & N CII ₂ -	Н	-(H)	CH	NO ₂	
377	"	"	\prec	"	. //	
378	"	"	CII ₂	"	//	
379	<i>"</i>	"	CH=CH	"	"	
380	"	CH₃	Н	"	"	
381	"	"	CII ₃	"	"	(79- 82)
382	"	"	CII₂C <i>L</i>	"	"	
383	"	"	C ₂ ll ₅	"	"	(101-104)
384	. "	"	C ₃ H ₇ (i)	"	"	
385	"	"	C4117(t)	"	"	
386	"	"	CH=CII2	"	"	
387	"	"	CH=CHCH3	"	"	

No.	R ₁ X	R 2	R ₃	Z	R ₄	[] m.p.℃
388	C L N CII2-	CH ₃	CH ₂ CN	CH	NO ₂	
389	"	"	CH ₂ NO ₂	. <i>II</i>	"	·
390	"	. //	Cll ₂ COOC ₂ ll ₅	, ,,,	"	
391	"	"	√II	· //	"	
392	"	"		, ,,	"	
393	."	"	CII ₂	<i>"</i>	"	
394	"	"	CII=CII—	"	"	
395	"	C2H5	Н	"	. "	
396	"	· //	CII a	"	"	
397	"	"	C ₂ H ₅	"	"	
398	"	C ₃ ll ₇ (i)	Н	"	"	
399	"	"	CIIs	"	" .	

4 4

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
400	C & N CII2-	C ₃ II ₇ (i)	C₂H₅	CH	NO 2	
401	"	-	II	<i>"</i>	"	
402	"	"	CII3	"	"	
403	"	"	C ₂ II ₅	"	"	
. 404	"	CII2 CII=CII2	Н	"	"	
405	"	"	СНз	ï	"	
406	"	"	C2ll5	"	"	
407	"	-	Н	"	"	
408	"	"	CII3	"	"	
409	"	"	C ₂ II ₅	"	"	
410	"	CIIO	11	"	"	
411	"	"	СНз	"	"	

4 5

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
412	CH ₂ -	сно	C2ll5	СН	NO ₂	
413	"	COCII3	11	"	"	
414	"	"	CII3	"	"	
415	"	"	C ₂ H ₅	"	<i>"</i>	4
416	"	SO ₂ CH ₃	II	"	"	
417	"	"	CII 3	"	"	
418	"	"	$C_2 H_5$	"	",	
419	"	C00C2ll5	Н	"	"	
420	"	"	CII3	"	<i>"</i>	
421	"	"	C ₂ H ₅	"	"	
422	"	0C2H5	II	"	"	
423	"	"	CH₃	"	"	
424	"	"	C2II5	"	, // .	
425	"	CII ₂ C=CII	H	"	"	
426	<i>"</i>	"	CH3	"	"	
427	"	"	C ₂ H ₅	"	"	

No.	R ₁ X	R ₂	Rз	Z	R4	() m.p.℃
428	B1. CH2-	Н	СН₃	CH	NO ₂	
429	"	CH ₃	"	"	"	
430	F CII2-	Н	"	"	"	
431	"	CII₃	"	"	"	
432	CII ₃ CII ₂ -	II	"	"	"	
433	"	СНз	"	· //	"	
434	C & 3 C N CII2-	Н	"	"	"	
435	"	СНз	"	"	"	
436	F ₃ C N CII ₂ -	И	"	"	"	
437	"	СНз	"	"	"	
438	F ₃ CO N Cli ₂ -	II	"	"	"	
439	"	CII3	"	"	"	

No.	RıX	R ₂	Rs	Z	R ₄	()	m. p.	°C
440	CII30 N CII2-	H	CH3	СН	NO ₂				
441	"	CH3		"	"				
442	F ₂ HCO N CH ₂ -	11	"	"	"				
443	"	CII3	"	"	"				
444	CH ₃ O N CH ₂ -	H	<i>"</i>	"	"				
445	"	СНз	"	"	"				
446	CII ₂ -	H	"	"	"				
447	"	CII3	"	"	"				
448	CII ₃ SO ₂ N CII ₂ -	II	"	"	"				
449	"	CH3	"	"	"				
450	O CII2-	11	"	"	"				:
451	"	CIIs	"	,,,	"				

4 8

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m. p. ℃
452	NC N CII2-	11	CH ₃	CH	NO ₂	
453	"	CH3	"	"	"	
454	O ₂ N CH ₂ -	11	"	"	"	
455	"	CH3	"	"	"	
456	C & CII2-	Н	"	"	"	
457	"	CH3	"	"	"	
458	C L CII2-CII3	II	"	"	"	
459	"	CH3	"	"	"	
460	CH ₃ N CH ₂ -	H	"	"	"	·
461	"	CII3	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
462	CII ₂ -	H	CIIs	Cli	NO ₂		
463	"	CH ₃	"	"	"		
464	C e N CII2-	11	"	".	"		
465	<i>"</i>	CII3	"	"	"		-
466	CII ₃ CII ₂ -	Н	"	"	"		
467	"	CH₃	"	"	"		
468	C e CH ₂ -	И	"	"	"		
469	"	СНз	"		, , ,		
470	N CII2-	Н	"	"	"		·,
471	"	CII3	"	ji.	" .		
472	CII ₃		"	"	"		

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
473	N CH ₂ -	Clls	CII3	CII	NO ₂	
474	N CII ₂ -	И	"	"	"	
475	"	СНз	"	"	"	
476	CII ₃ $\stackrel{N}{\sim}$ CII ₂ -	Н	"	"	"	
477	"	CII3	"	"	"	
478	N=N CH ₂ -	11	"	"	"	
479	"	СНз	"	"	"	
480	$C \ell <\!$	II	"	"	"	
481	"	СН₃	<i>"</i>	"	"	
482	N CII2-	Н	"	"	"	
483		CII 3	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
484	CH ₂ –	11	СНз	СН	NO ₂	
485	"	CH3	"	"	"	·
486	C L S CII2 -	Ħ	"	"	"	
487	"	CII3	"	"	"	·
488	"	"	C ₂ H ₅	"	"	
489	, ,,	C2115	CH3	<i>"</i>	"	
490	CH ₂ CH ₂ -	Н	"	"	"	
491	<i>"</i>	CH ₃	"	"	,	
492	C L N CH2 CH2 -	Н	"	"	"	
493	//	CII3	"	"	"	
494	CH ₂ CH ₂ -	11	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
495	"	CH ₃	"	"	"	

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
496	C L N CII2 CII2 -	Н	CII3	СН	NO ₂	
497	<i>"</i>	Cli ₃	"	"	"	
498	CH ₃ CH- CH ₂	Н	"	"	"	
499	"	CH₃	"	"	"	
500	N CII2	II	"	<i> </i>	"	
501	"	CH3	"	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
502	CH ₂ -	II	Н	СН	NO 2	
503	"	"	Clla	"	"	
504	"	"	CH₂C <i>L</i>	"	<i>"</i>	
505	"	"	C2115	"	"	
506	<i>"</i>	"	C ₃ H ₇ (i)	"	"	·
507	"	"	C₄H _B (t)	"	//	
508	"	СН₃	II	"	"	
509	"	"	CH ₉	"	"	
510	"	"	CH₂C <i>L</i>	"	"	
511	"	"	C ₂ II ₅	"	"	
512	"	"		"	"	

5 4

No.	R ₁ X	R 2	R ₃	Z	R ₄	() m.p.℃
513	CH ₂ -	CH₃	C ₃ H ₇ (i)	СН	NO ₂	a managaran sa
514	<i>"</i>	"	C₄II₀(t)	"	"	
515	"	C ₂ ll ₅	Н	"	"	
516	"	"	СН₃	"	"	
517	"	"	C2115	"	"	
518	"		II	"	"	
519	"	"	CII ₃	"	"	
520	"	"	C_2II_5	"	"	
521	"	COCH₃	Н	"	"	
522	"	"	СНз	"	"	
523	"	"	C2H5	"	"	
524	"	SO ₂ CII ₃	11	"	"	
525	"	"	CII₃	"	"	
526	"	. "	C2H5	"	"	

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
527	C e N CII2-	11	Н	CH	CN	
528	"	"	СН₃	"	"	(95- 98)
529	"	"	CH₂C ℓ	"	"	٠.
530	"	"	C ₂ II ₅	"	"	. :
531	. "	"	C3 7 (i)	"	"	
532	"	"	C₄II₀(t)	"	"	
533	"	"	CH=CH ₂	"	<i>"</i>	
534	"	"	CII=CIICII3	"	"	
535	"	, ,,	CII₂CN	"	"	
536	"	"	CH ₂ NO ₂	"	"	
537	"	"	CII2COOC2II5	"	"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
538	C & N CH2-	Н	- √ H .	CII	CN	
539	"	"	$\overline{}$	"	"	
540	"	"	CH ₂	"	"	
541	"	"	CH=CH-	"	"	
542	"	CH₃	II	"	"	
543	"	"	СН₃	"	"	гь 1.5941
544	"	"	СН₂С £	"	"	
545	"	"	C ₂ H ₅	"	"	
546	"	"	C ₃ H ₇ (i)	"	"	
547	"	"	C4H8(t)	"	"	
548	"	"	CII=CII ₂	"	"	
549	"	"	CII=CIICII3	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
550	C & N CH2-	CII ₃	CH₂ CN	СН	CN	
551	"	"	CII2NO2	"	"	
552	"	"	Cll ₂ COOC ₂ ll ₅	"	"	·
553	"	"	— II	"	"	
554	"	"	\triangleleft	"	"	
555	"	<i>"</i> .	CII ₂	"	"	
556	"	"	CII=CH-	"	"	
557	"	C ₂ H ₅	11	"	"	:
558	"	"	Cll ₃	"	"	
559	"	"	C ₂ 11 ₅	"	"	
560	"	C ₃ ll ₇ (i)	11	"	"	
561	"	"	CII 3	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
562	C e N CII ₂ -	C ₃ H ₇ (i)	C ₂ H ₅	СН	CN	
563	"	$\overline{}$	Н	"	"	
564	"	"	CH ₃	"	"	,
565	"	"	C ₂ ll ₅	"	"	
566	"	CH2CH=CH2	Н	"	"	
567	"	"	CH₃	"	"	
568	"	"	C ₂ H ₅	"	"	
569	"		Н	"	"	·
570	"	"	CH ₃	"	"	
571	"	'"	C ₂ H ₅	"	"	
572	"	СНО	Н	"	"	
573	"	"	CH ₃	"	"	

No.	RıX	R ₂	R 3	Z	R ₄	() m.p.℃
574	C L N CII2-	CIIO	C2ll5	СН	CN	
575	"	COCH ₃	II	"	"	
576	"	"	СН₃	"	"	
577	"	"	C2H5	"	"	
578	"	SO ₂ Cll ₃	Н	"	"	
579	"	"	CH3	"	"	
580	"	"	C2H5	"	"	
581	"	COOC ₂ H ₅	Н	"	"	
582	"	"	CII3	"	· //	
583	"	"	C2ll5	"	"	
584	"	0C2H5	H	"	"	
585	"	"	СН₃	"	"	
586	"	"	C ₂ ll ₅	"	<i>"</i>	
587	"	CII2C=CII	Н	"	"	
588	"	"	CH ₃	"	"	
589	"	"	C ₂ H ₅	"	"	

No.	R ₁ X	R₂	Rз	Z	R ₄	() m.p.℃
590	Br CH ₂ -	11	CH ₃	CII	CN	
591	"	CII3	"	"	"	
592	F CH ₂ -	Н	"	"	"	
593	"	Cll₃	"	"	"	
594	CII ₃ CII ₂ -	Н	"	"	"	
595	"	СН₃	"	"	"	
596	C & 3 C N CH2-	н	"	"	"	
597	"	СН₃	"	"	"	
598	F ₃ C N CII ₂ -	Н	"	"	"	
599	"	CII3	"	"	"	•
600	F ₃ CO N CH ₂ -	H	"	"	"	
601	"	Cll ₃	"		"	

No.	RıX	R ₂	R ₃	Z	R ₄	() m.p.℃
602	CH ₃ O N CII ₂ -	II	CII ₃	CH	CN	
603	"	CII3	"	"	<i>"</i>	
604	F ₂ HCO N CH ₂ -	II	"	"	"	
605	"	СНз	<i>"</i>	"	"	· · · · · · · · · · · · · · · · · · ·
606	CH ₃ 0 N CH ₂ -	II	"	"	"	
607	"	CII₃	"	"	"	
608	CH ₃ S N CH ₂ -	11 .	"	"	"	
609	"	CII3	"	<i>!!</i>	"	
610	CII ₃ SO ₂ N CII ₂ -	Н	"	"	"	
611	"	CH3	"	"	"	
612	O CH2-	Н	"	"	"	
613	"	CH3	"	"	"	

No.	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
614	NC N CH2-	Н	CII3	СН	CN	
615	"	. CII3	"	"	"	
616	O ₂ N N CH ₂ -	Н	"	"	"	
617	"	CII3	"	"	"	
618	C & CII2-	Н	"	"	"	
619	"	CH₃	"	"	"	
620	C & CH ₂ -CH ₃	Н	"	"	"	
621	"	CH₃	"	"	"	
622	CII ₃ N CH ₂ -	11	"	"	"	
623	"	CIIa	"	"	"	

No.	R ₁ X	R ₂	R ₃	Z	R ₄	() m.p.℃
624	N CH₂-	Н	CHs	СН	CN	
625	"	Cll3	"	"	"	
626	Ce N CII2-	11	"	"	<i>"</i>	
627	"	CII ₃	"	"	"	
628	CH ₃ CH ₂ -	Н	"	"	<i>"</i>	
629	"	CII3	"	"	"	
630	C & N CII2-	Н	"	"	"	
631	"	СНз	"	"	"	·
632	N CII2-	11	<i>"</i>	"	<i>"</i>	
633	"	CII3	"	"	"	
634	CH ₃ CH ₂ -	Н	"	"	"	:

1 1	RıX	R ₂	Rз	Z	R ₄	() m.p.℃
635	N CH ₂ -	CH ₃	СНз	СН	CN	
636	CH ₃ N CH ₂ -	H	 //	"	<i>"</i>	
637	"	Cll3	"	"	"	
638	CH ₃ CH ₂ -	Н	"		"	
639	<i>"</i>	СН₃	"	"	"	
640	$\langle N=N \rangle$ CH ₂ -	Н	"	"	"	
641	"	CHs	"	"	"	
642	$C \ell \stackrel{\sim}{\sim} N = N$	Н	"	"	"	
643	"	CII₃	"	"	"	

No.	RiX	R 2	Rз	Z	R ₄	() m.p.℃
644	N CII2 -	Н	CH ₃	СН	CN	
645	"	СН₃	"	"	"	
646	CII ₃ S CII ₂ -	11	"	<i>"</i>	"	
647	"	CII3	"	"	"	
648	C & S CH ₂ -	II		"	"	
649	"	CII ₃	"	"	"	
650	"	"	C ₂ H ₅	"	"	
651	"	C2H5	СНз	"	"	-

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
652	CII2CII2-	11	CH ₃	СН	CN	
653	"	CII ₃	"	"	"	
654	C e N CII2 CII2 -	- II	"	"	"	
655	"	CII ₃	"	"	"	
656	CH ₂ CH ₂ -	11	"	"	"	
657	"	CH ₃	"	"	"	
658	C e N CH2 CH2 -	II	"	"	"	
659	″ CH₃	CH ₃	"	"	"	
660	C & N CH-	н	"	"	"	
661	"	CH ₃	"	"	"	
662	N CII2	11	"	"	"	
663	"	CH3	"	"	"	

6 7

No.	R ₁ X	R ₂	Ra	Z	R ₄	() m.p.℃
664	CII ₂ -	II	Н	CII	CN	
665	"	"	СН₃	"	<i>"</i>	
666	"	"	CII₂C <i>L</i>	"	"	
667	"	"	C2H5	"	"	
668	"	"	C ₃ H ₇ (i)	<i>"</i> .	"	
669	"	"	C₄H _B (t)	"	"	
670	"	СН₃	Н	, ,,,	,,,	
671	"	"	СН₃	"	"	
672	"	"	CH₂C ℓ	"	"	
673	"	"	C ₂ H ₅	"	"	
674	"	"		"	"	

675 CH ₂ CH ₃ C ₃ H ₇ (i) CH CN 676 " C ₄ H ₉ (t) " " 677 " C ₂ H ₅ H " "	
677 " C ₂ II ₅ II " "	
678 " " Cll ₃ " "	
679 " " C ₂ H ₅ " "	
680 " H " "	
681 " " CII ₃ " "	
682 " " C ₂ H ₅ " "	
683 " COCH3 H " "	
684 " " Cll ₃ " "	
685 " " C ₂ ll ₅ " "	
686 " SO ₂ CH ₃ H " "	

6 9

No.	R ₁ X	R ₂	R 3	Z	R ₄	() m.p.℃
687	CII ₂ -	SO ₂ CH ₃	CII ₃	СН	CN	E.
688	"	"	C2II5	"	"	

^{*} 1 H-NMR(CDCl₃) δ ; ppm 3. 32 (s. 3H), 4. 63 (s. 2H), 7. 37 (d. 1H), 7. 62 (dd. 1H), 8. 37 (d. 1H)

this invention exhibit high insecticidal The compounds of various species of insect pests against activities cutworms, diamondback moth, aphids, leafhoppers and planthoppers. decrease of the control effects of the recent years In organophosphorus and carbamate insecticides, which is caused by the development of resistance to these insecticides, has become serious In such situations, the development of new insecticides which is effective on the resistant pests has been desired. superior insecticidal this invention possess compounds of activities against not only susceptible strains but also resistant ones.

The insecticides covered by this invention contain as active ingredients one or more types of the compounds as expressed by the general formula (1). These active ingredients, may be used asproduced but normally they are used in any of the forms which ordinary agricultural chemicals can take, namely wettable powder, dust, emulsifiable concentrate, suspension concentrates, smoking chemicals, fumigant, granule, or other formulations. For additives and carriers are used soybean flour, wheat flour or other vegetable flours, diatomaceous earth, apatite, gypsum, talc, pyrophyllite, clay or other fine mineral powders, when solid formulations are intended.

When liquid formulations are intended, then for solvents are used kerosene, mineral oil, petroleum, solvent naphtha, xylene, cyclohexane, cyclohexanone, dimethylformamide, dimethylsulfoxide, alcohol, acetone, water, etc. A surface active agent may, if necessary, be added in order to give a homogeneous and suitable formulation. The wettable powders, emulsifiable concentrates,

suspension concentrates, etc. thus obtained are diluted with water into suspensions or emulsions of a prescribed concentration, before they are actually sprayed on plants in the field. In the case of dusts or granules, they are directly applied without further processing.

It goes without saying that the compound(s) of this invention is effective even alone, but it can be used by mixing with various types of insecticides, acaricides and fungicides.

Typical examples of acaricides and insecticides which can be used by mixing with the compounds of this invention are described below:

Acaricides (fungicides):

chlorobenzilate, chloropropylate, proclonol, bromopropylate, dicofol, dinobuton, binapacryl, chlordimeform, amitraz, propargite, PPPS, benzoximate, hexythiazox, fenbutatin oxide, polynactine, chinomethionat, thioquinox, chlorfenson, tetradifon, phenproxide, avermectins, clofentezine, flubenzimine, fenazaquin, pyridaben, fenproximate, chlorfenethol, thiophanate-methyl, benomyl, thiram, iprobenfos, edifenfos, fthalide, probenazole, isoprothiolane, chorothalonil, captan, polyoxin-B, blasticidin-S, kasugamycin, validamycin, tricyclazole, pyroquilon, phenazine oxide, mepronil, hymexazole, metalaxyl, iprodione, flutolanil, pencycuron, triflumizole, diclomezine, tecloftalam, vinclozolin, procymidone, fenarimal, bitertanol, triadimefon, prochloraz, pyrifenox, fenpropimorph, triforine, metalaxyl, oxycarboxin, pefrazoate, diclomedine, fluazinam, oxadixyl, ethoquinolac, TPTH, propamocarb, fosetyl, dihydrostreptomycin, anilazine, dithianon, diethofencarb. Organophosphorus-type and carbamate-type insecticides(acaridides):

fenthion, fenitrothion, diazinon, chlorpyrifos, oxydeprofos, vamidothion, phenthoate, dimethoate, formothion, malathion, trichlorfon, thiometon, phosmet, menazon, dichlorvos, acephate, EPBP, dialifos, parathion-methyl, oxydemeton-methyl, ethion, aldicarb, propoxur, methomyl, fenobucarb, BPMC, pyraclofos, monocrotophos, salithion, cartap, carbosulfan carbofuran, benfuracarb, metolcarb, carbaryl, pirimicarb, ethiofencarb, fenoxycarb,

Pyrethroide-type insecticides (acaricides):

permethrin, cypermethrin, deltamethrin, fenvalerate, fenpropathrin, pyrethrins, allethrin, tetramethrin, resmethrin, parthrin, dimethrin, proparthrin, bifenthrin, prothrin, fluvalinate, cyfluthrin, cyhalothrin, flucythrinate, ethofenprox, cycloprothrin, tralomethrin, silaneophan.

Benzoylphenylurea-type and other types insecticides:
diflubenzuron, chlorfluazuron, triflumuron, teflubenzuron,
buprofezin, pyriproxyfen, flufenoxuron, Machine oil.

Same examples of the formulations are given below. The carriers, surface-active agents, etc. that are added, however, are not limited to these Examples.

Example 7	:	Emulsifiable	concentrate
-----------	---	--------------	-------------

The compound of this invention 10 parts
Alkylphenyl polyoxyethylene 5 parts
Dimethyl formamide 50 parts
Xylene 35 parts

These components are mixed and dissolved and, for use in spraying, the liquid mixture is water-diluted into an emulsion.

Example 8 : Wettable powder

The compound of this invention 20 parts
Higher alcohol sulfuric ester 5 parts
Diatomaceous earth 70 parts
Silica 5 parts

These components are mixed and ground to fine powder, which for use in spraying, are water-diluted into a suspension.

Example 9 : Dust

The compound of this invention 5 parts

Talc 94.7 parts

Silica 0.3 parts

These are mixed and ground and used as-ground in spraying.

Example 10 : Granule

The compound of this invention 5 parts

Clay 73 parts

Bentonite 20 parats

Sodium dioctylsulfosuccinate 1 part

Sodium phosphate 1 part

The above compounds are granulated, and applied as it is when used.

Industrial applicability:

The tests below show the insecticidal activity of the compounds of this invention.

Test 1 Efficacy for cotton aphid

30 to 50 insects of cotton aphid per plot were inoculated using a small brush on cucumber leaves which were seeded in pots, 10cm in diameter, and 10 days old after germination. A day later, wounded insect pests were removed, and a chemical solution, which was prepared in the way that the emulsifiable concentrate described in Example 7 of the above example of insecticide was diluted with water to 125 ppm of compound concentration according to the prescription, was sprayed. The pots were placed in a thermostatic room at temperature of 25°C and humidity of 65%. The number of survival pests was counted 7 days later and the control efficacy was calculated by comparing with that of untreated plot. The results are shown in Table 2.

Table 2

Table	۷
	Control Efficacy (7 days later)
Compound No.	125 ppm
1	100 %
2	100
3	100
4	100
6	100
8	100
10	100
16	100
20	100
21	100
22	100
23	100
24	100
25	100
27	100
29	100
31	100
32	100
33 .	100
38	100
44	100
48	100
50	100
51	100
53	100
57	100
60	100
62	100
64	100
66	100
68	100
70	100
. 72	100

Compound No.	Control Efficacy
73	100
74	100
78	100
80	100
82	100
84	100
86	100
88	100
92	100
96	100
100	100
102	100
115	100
116	100
120	100
124	100
130	100
132	100
136	100
144	100
145	100
146	100
148	100
149	100
150	100
151	100
152	100
163	100
164	100
169	100
170	100
171	100
172	100
173	100
174	100

.

Compound No.		Control Efficacy		
177		100		
178	ļ	100		
188	1	100		
189		100		
190	ļ	100		
194	ļ	100		
203		100		
206		100		
213		100		
236		100		
366 368		100		
		100		
381		100		
383		100		
543		100		
Comparative compound	A	27		
		100		

Comparative compound A:

Comparative compound B:

WO 91/04965 PCT/JP90/01282

78

Test 2 Efficacy for green rice leafhopper

Rice seedlings of 7 days old after germination were immersed in a chemical solution, which was prepared in the way that the emulsifiable concentrate described in Example 7 of the above example of insecticide was diluted with water to 125 ppm of compound concentration according to prescription, for 30 seconds. After dried in air, the treated seedlings were placed in test tubes and 10 insects of 3rd-instar larvae of green rice leafhopper resistant to the organophosphorus and carbamate insecticides were inoculated. The tubes were covered with gauze, and placed in a thermostatic room at temperature of 25°C and humidity of 65%. The mortality was checked 5 days later.

The results are shown in Table 3.

Table 3

Table	
	% mortality (5 days later)
Compound No.	125 ppm
1	100 %
2	100
4	` 100
6	100
8. ~ · ·	100
10	100
16	100
18	100
20	100
21	100
22	100
23	100
24	100
25	100
27	100
28	100
29	100
31	100
32	100
33	100
35	100
36	100
44	100
48	100
50	100
51	100
53	100
57	100
60	100
62	100
66	100
68	100
72	100
73	100

Compound No.	% Mortality		
74	100		
78	100		
82	100		
84	100		
86	100		
88	100		
96	100		
100	100		
102	100		
116	100		
120	100		
124	100		
130	100		
132	100		
136	100		
144	100		
146	100		
148	100		
150	100		
152	100		
164	100		
169	100		
170	100		
171	100		
172	100		
173	100		
174	100		
178	100		
188	100		
190	100		
201	100		
203	100		

ž

.

_

Compound No.	% Mortality
213	100
236	100
366	100
368	100
369	100
381	100
Comparative Compound A	0
" В	O
" C	0

Comparative compound A and B: The same as test 1

Compound C:

(malathion)

WO 91/04965 PCT/JP90/01282

82

Test 3 Efficacy for rice armyworm

The test compounds were formulated into the wettable powder in the same manner as Example 8. The compounds were diluted with water to 125 ppm. A maize leaf was immersed in the chemical solution for 30 seconds. After air-dried, the treated leaf was placed in a petri dish and five 3rd-instar larvae of rice armyworm were inoculated. The petri dishes were covered with glass lids, and placed in a thermostatic room at 25°C and 65% relative humidity. The mortality was checked 5 days later. Two replications were conducted in the each test. The results are shown in Table 4.

Table 4

	% mortality (5 days later)		
Compound No.	125 ppm		
21	100 %		
22	100		
23	100		
24	100		
25	100		
51	100		
57	100		
88	100		
92	100		
148	100		
172	100		
381	100		
Comparative compound A	0		
" В	0		
" D	4.0		

Comparative compound A and B: The same as Test 1

Compound D:

$$C1 \sim N = CH - N(CH_3)_2$$
 CH_3

(chlordimeform)

84 Claims

1. A compound having the formula

wherein R₁ represents an optionally substituted 5 - 6 membered aromatic hetero ring containing nitrogen atom, except a non-substituted 2-pyridyl;

X represents an optionally substituted C_{1-3} alkylene or alkylidene;

 R_2 represents a hydrogen, a carbamoyl, a mono or di C_{1-5} alkyl carbamoyl, a thiocarbamoyl, a mono or di C_{1-5} alkylthiocarbamoyl, a sulfamoyl, a mono or di C_{1-5} alkylsulfamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted aryl or $-Y-R_5$;

Y represents 0, $S(0)_n$, CO, CS or CO_2 ; n represents 0,1 or 2;

 R_5 represents a hydrogen, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl, an optionally substituted C_{3-8} cycloalkenyl or an optionally substituted aryl;

 ${
m R}_3$ represents a hydrogen, an optionally substituted ${
m C}_{1-5}$ alkyl, an optionally substituted ${
m C}_{2-5}$ alkenyl, an optionally

substituted C_{2-5} alkynyl, an optionally substituted C_{3-8} cycloalkyl or an optionally substituted C_{3-8} cycloalkenyl; R_4 represents a cyano or a nitro; and Z represents CH or N; or its salt.

2. A compound according to claim 1,

wherein R_1 represents a pyridyl, a pyrazyl, a pyrazolyl, a pyridazyl or a thiazolyl, which may be substituted by a C_{1-5} alkyl, a C_{1-5} haloalkyl, a C_{1-5} alkoxy, a C_{1-5} alkylthio, a C_{1-5} alkylsulfonyl, a cyano, a halogen or a di C_{1-5} alkylamino, respectively, except a non-substituted 2-pyridyl;

 R_2 represents a hydrogen, a mono or di C_{1-5} alkylcarbamoyl, an optionally substituted C_{1-5} alkyl, an optionally substituted C_{2-5} alkenyl, an optionally substituted C_{2-5} alkynyl, an optionally substituted C_{3-6} cycloalkyl, an optionally substituted aryl or $-Y-R_5$;

Y represents O, CO, CO₂ or SO₂;

 R_5 represents an optionally substituted C_{1-5} alkyl, or an optionally substituted aryl;

 R_3 represents a hydrogen, an optionally substituted C_{1-5} alkyl or an optionally substituted C_{3-6} cycloalkyl;

Z represents N;

- 3. An insecticidal composition comprising a compound according to claim 1 as an active ingredient.
- 4. An insecticidal composition comprising a compound according to claim 2 as an active ingredient.
- 5. A process for the preparation of a compound having the formula

Ť

which comprises reacting a compound having the formula

with a compound having the formula

$$R_3^{COCH_2R_4}$$
 or R_3^{Or} $\begin{vmatrix} Or^1 \\ | \\ C-CH_2R_4 \end{vmatrix}$

wherein r^1 and r^2 are a C_{1-5} alkyl, respectively; and R_1 , R_2 , R_3 , R_4 and X are as defined above.

6. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

wherein r^3 represents a C_{1-5} alkyl; and R_1 , R_2 , R_3 and X are as defined above.

7. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

wherein Hal represents a halogen atom; and R_1 , R_2 , R_3 and X are as defined above.

8. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with a compound having the formula

$$R_1$$
-X-Hal

wherein R_1 , R_2 , R_3 , X and Hal are as defind above.

9. A process for the preparation of a compound having the formula

which comprises reacting a compound having the formula

with nitration reagent,

wherein R_1 , R_2 , R_3 and X are as defined above.

INTERNATIONAL SEARCH REPORT

International Application No PCT/JP 90/01282

I. CLASS	I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁵				
Asserting to International Patent Classification (IPC) or to both National Classification and IPC					
IPC5: C 07 D 213/36, 213/40, 213/60, 417/12, 239/26, 237/08 241/12, 231/10, 277/08, A 01 N 43/40, 43/36, 43/48, 43/78					
II FIFI DS SFARCHED					
	Minimum Documentation Searched '				
Classificati	on System		Classification Symbols		
				•	
1,555		C 07 D. A 01 N			
IPC5		C 07 D; A 01 N			
1		Documentation Searched other to the Extent that such Document	than Minimum Documentation s are included in Fields Searched ⁸		
					
		_			
	·			,	
III. DOCU		ONSIDERED TO BE RELEVANT ⁹		1	
Category *		ion of Document, ¹¹ with indication, where ap		Relevant to Claim No.13	
Α	EP, A2	2, 0302389 (TAKEDA CHEMICA	L INDUSTRIES, LTD.)	1-9	
	8	February 1989,			
	Se	ee the whole document			
	1				
			0.51 1000	1_0	
Α	EP, A	2, 0302833 (CIBA-GEIGY AG)	8 February 1989,	1-9	
	Se	ee the whole document			
				1.0	
A	EP, A	1, 0306696 (CIBA-GEIGY AG)	15 March 1989,	1-9	
	Se	ee the whole document			
·					
A	EP, A	2, 0303570 (CIBA-GEIGY AG)	15 February 1989,	1-9	
	S	ee the whole document			
		~~			
				•	
				<u> </u>	
* Special categories of cited documents: 10 *A" document defining the general state of the art which is not cited to understand the principle or theory underlying the					
considered to be of particular relevance invention					
"E" earlier document but published on or after the international "X" document of particular relevance, the claimed invention cannot be considered to					
involve an inventive step					
cannot be considered to involve all inventors and income other such docu-					
f other wears in the sim					
"P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed					
IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search					
I	4.5 m				
EUROPEAN PATENT OFFICE Signature of Authorized Officer miss T. MOHTENSEN Machine Ma					
	EURO	PEAN PATENT OFFICE	miss T. MOHTENSEN	in Mellinous	
1	Tun Crown				

Form PCT/ISA/210 (second sheet) (January 1985)

ategory *	JMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET) Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
1	Chemical Abstracts, volume 88, no. 1, 2 January 1978, (Columbus, Ohio, US), Kreutzberger, Alfred: "Antimycotics. VI. Dehydro-N-Mannich bases from cyclic and mixed aliphatic-aromatic amines. ", see page 580, abstract 6816j, & ChemZtg. 1977, 101(9), 400-401	1-9
	Chemical Abstracts, volume 94, no. 13, 30 March 1981, (Columbus, Ohio, US), see page 691, abstract 102861q, & JP, A, 80130950 (B-Alkoxyacrylonitriles, 3-aminoacrylonitriles, and 2-cyanovinyl esters.) 29 March 1979	1-9
		
	_	
		İ

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/JP 90/01282

SA

40597

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A2- 0302389	08/02/89	JP-A-	2000171	05/01/90
EP-A2- 0302833	08/02/89	AU-D- JP-A- US-A-	2051088 1070468 4918086	09/03/89 15/03/89 17/04/90
EP-A1- 0306696	15/03/89	JP-A- US-A-	1070467 4948798	15/03/89 14/08/90
EP-A2- 0303570	15/02/89	JP-A-	1070469	15/03/89