BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1

ĐỀ CHÍNH THỰC

Thời gian làm bài: 180 phút, không kể thời gian phát đề

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1 (2,0 điểm). Cho hàm số $y = -x^3 + 3x^2 + 3mx - 1$ (1), với m là tham số thực.

- a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 0.
- b. Tìm m để hàm số (1) nghịch biến trên khoảng $(0; +\infty)$

Câu 2 (2,0 điểm). Giải phương trình: $1 + \tan x - 2\sqrt{2} \sin(x + \frac{\pi}{4})$

Câu 3 (1,0 *điểm*). Giải hệ phương trình:
$$\begin{cases} \sqrt{x+1} + \sqrt[4]{x-1} - \sqrt{y^4 + 2} = y \\ x^2 + 2x(y-1) + y^2 - 6y + 1 = 0 \end{cases} (x, y \in R)$$

Câu 4 (1,0 *điểm*). Tính tích phân $I = \int_{1}^{2} \frac{x^2 - 1}{x^2} \ln x dx$.

Câu 5 (1,0 điểm). Cho hình chóp S.ABC có đáy là tam giác vuông tại A, $\widehat{ABC} = 30^{\circ}$, SBC là tam giác đều canh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB).

Câu 6 (1,0 điểm). Cho các số thực dương a, b, c thỏa mãn điều kiện $(a+c)(b+c)=4c^2$. Tìm giá trị nhỏ nhất của biểu thức $P=\frac{32a^3}{(b+3c)^3}+\frac{32b^3}{(a+3c)^3}-\frac{\sqrt{a^2+b^2}}{c}$

II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình chuẩn

Câu 7a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x + y + 5 = 0 và A(-4;8). Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết rằng N(5;-4).

Câu 8a (1,0 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $\Delta : \frac{x-6}{-3} = \frac{y+1}{-2} = \frac{z+2}{1}$ và điểm A

(1; 7; 3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với Δ sao cho AM = $2\sqrt{30}$.

Câu 9a (1,0 điểm). Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các số 1; 2; 3; 4; 5; 6; 7. Xác định số phần tử của *S*. Chọn ngẫu nhiên một số từ *S*, tính xác suất để số được chọn là số chẵn.

B. Theo chương trình Nâng cao

Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng $\Delta: x - y = 0$. Đường tròn (C) có bán kính $R = \sqrt{10}$ cắt Δ tại hai điểm A và B sao cho $AB = 4\sqrt{2}$. Tiếp tuyến của (C) tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C).

Câu 8.*b* (1, 0 điểm). Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+3y+x-11=0 và mặt cầu (S): $x^2+y^2+z^2-2x+4y-2z-8=0$. Chứng minh (P) tiếp xúc với (S). Tìm tọa độ tiếp điểm của (P) và (S).

Câu 9.b (1, 0 điểm). Cho số phức $z = 1 + \sqrt{3}i$. Viết dạng lượng giác của z. Tìm phần thực và phần ảo của số phức $\omega = (1+i)z^5$.

----HÉT----