## İ.T.Ü. Bilgisayar ve Bilişim Fakültesi Bilgisayar Mühendisliği Bölümü



# MİKROBİLGİSAYAR LABORATUVARI DENEY RAPORU

Deney No : 1

Deney Adı : ITU Eğit Kitinin Tanıtılması

Deney Tarihi : 06.10.2011 Perşembe

**Grup** : 10

**040080322 Osman Boyacı** 

Deneyi Yapanlar : 040080153 Serkan Güler

040090533 Abdullah Aydeğer

Deneyi Yaptıran Araştırma Görevlisi: Hasan Kıvrak

## Deneyin İceriği

İlk deney olmasi sebebiyle önce ITU eğit kiti ile tanışıldı. Program yazma, program çalıştırma, adım sayısı hesaplama, duraksama noktası koyma, adım adım çalıştırma gibi kitin özellikleri incelendi, kitin adresleme modlarina aşına olundu.

Deneyde simgesel koddan makine koduna ve makine kodundan simgesel koda geçiş amaçlandı.

### <u>Deneyde Verilen Programlar</u> a)Simgesel koddan makine koduna

| 1  |     | LDX \$0000      | CE 00 00 |
|----|-----|-----------------|----------|
| 2  |     | CLRA            | 4F       |
| 3  |     | CLR [ \$0010 ]  | 7F 00 00 |
| 4  |     | CLR [ \$0011 ]  | 7F 00 01 |
| 5  |     | LDAA [ \$4500 ] | B6 45 00 |
| 6  |     | STAA \$0010     | 97 10    |
| 7  | D1: | LDAB [ \$0010 ] | F6 00 10 |
| 8  |     | CMPB \$00       | C1 00    |
| 9  |     | BEQ C1          | 27 14    |
| 10 |     | STAA \$0011     | 97 11    |
| 11 | D2: | LDAB [\$0011]   | F6 00 11 |
| 12 |     | CMPB \$00       | C1 00    |
| 13 |     | BEQ C2          | 27 06    |
| 14 |     | INX             | 08       |
| 15 |     | DEC \$0011      | 7A 00 11 |
| 16 |     | BRA D2          | 20 F3    |
| 17 | C2: | DEC [ \$0010 ]  | 7A 00 10 |
| 18 |     | BRA D1          | 20 E5    |
| 19 | C1: | STX \$4500      | FF 45 00 |
| 20 |     | SWI             | 3F       |

Yukarıdaki program en genel olarak bir sayının karesini alma programıdır. Karesi alınmak istenen sayı ve bir kopyası boş iki bellek gözüne yazılır içiçe iki döngü kurulur. Her bir turda (nXn) bir register değeri bir artırılarak istenen sonuca ulaşılır. (8 bitlik bir sayının karesı 8 biti aşabileceğinden burada 16 bitlik SK kullanılması yeğlenmiştir).

#### Kodun C dilinde yazılmış versiyonu:

```
void main(){
             int M[4600];//bellek
             int SK=00;
             int A=0;
             M[10]=0;
             M[11]=0;
             A=M[4500];
             M[10]=A;
             int B;
D1:
      B=M[10];
             if(B==0)
                    goto C1;
             M[11]=A;
      B=M[11];
D2:
             if(B==0)
                    goto C2;
             SK++;
             M[11]--;
             goto D2;
C2: M[10]--;
             goto D1;
C1:
      M[4500]=SK; //(iki bellek gozu aslinda ama :D)
             return;
}
```

#### b)Makine kodundan simgesel koda

```
1 ($4000) 4F
                        CLRA
2 ($4001) CE 45 00
                        LDX $4500
3 ($4004) 8C 45 0A
                        CPX $450A
4 ($4007) 27 OF
                        BEQ $0F
5 ($4009) A6 00
                        LDA [SK+00]
6 ($400B) 81 00
                        CMPA $00
7 ($400D) 2D 03
                        BLT $03
8 ($400F) 08
                        INX
9 ($4010) 20 F2
                        BRA $F2
10 ($4012)43
                        COMA
11 ($4013)4C
                        INCA
12 ($4014 ) A7 00
                        STAA [SK+00]
13 ($4016) 20 EC
                        BRA $EC
14 ($4018) 3F
                        SWI
```

Kodun simgesel dile çevrildikten sonra anlaşılabilir hale gelmesi sonucu 10 elemanlı bir dizideki elemanların mutlak değerlerini bulup yerlerine yazdığı farkedilmiştir.

Her iki programa ait akış şemaları asağıda verilmiştir. İlk şema verilen sayının karesini bulurken, ikinci şekil ise bir dizideki elemanları mutlak degerlerini bulmaya yarar.

#### Kodun C dilinde yazılmış versiyonu:

```
void main(){
             int M[4600];//bellek
             int A=0;
             int SK=0x4500;
BAS: if(SK==0x450A)
                    goto BIT;
             A=M[SK+00];
             if(A<0)
                    goto TMLE;
             SK++;
             goto BAS;
TMLE: A = \sim A;
             A++;
             M[SK+00]=A;
             goto BAS;
BIT:
      return;
```



