

STAT011 Statistical Methods I

Lecture 14 Statistical Inference

Lu Chen Swarthmore College 3/19/2019

Outline

- Review
 - Central limit theorem (CLT)
 - Level *C* confidence interval for a population mean
 - Level α *z* test for a population mean
- Motivation example Emoji

- Confidence interval some cautions
- Hypothesis testing
 - The *P*-value and a statement of significance
 - A level C confidence interval and a level α two-sided test
 - Some cautions

Review - Central limit theorem (CLT)

Draw an SRS of size n from **any population** with mean μ and finite standard deviation σ . When n is large, the sampling distribution of the sample mean \bar{x} is approximately Normal:

$$\bar{x}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

$$\bar{x} \stackrel{approx.}{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- ▶ Central limit theorem holds for any distribution.
 - Population distribution is Normal.
 - Population distribution is not Normal.
 - Population distribution is Bernoulli.

Review - Confidence interval

Choose an SRS of size n from a population having unknown mean μ and known standard deviation σ . The margin of error for a level C confidence interval for μ is

$$m=z^*\frac{\sigma}{\sqrt{n}}.$$

Here, z^* is the value on the standard Normal curve with area C between the critical points $-z^*$ and z^* . The **level** C **confidence interval for** μ is

$$\bar{x} \pm m = \bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}.$$

The confidence level of this interval is exactly C when the population distribution is Normal and is approximately C when n is large in other cases.

Review - Confidence interval

Confidence level C	0.9	0.95	0.99
Critical point z*	1.645	1.960	2.576

To find z^* , use qnorm(1-(1-C)/2).

In the midterm exam,

- For 80% C.I., $z^* = qnorm(0.9)$
- For 95% C.I., $z^* = qnorm(0.975)$

Review - Hypothesis testing

To test the hypothesis $H_0: \mu = \mu_0$ based on an SRS of size n from a population with unknown mean μ and known standard deviation σ , compute the **test statistic**

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

In terms of a standard Normal random variable Z, the P-value for a test of H_0 vs.

$$H_a: \mu > \mu_0$$
 is $P(Z \ge z)$
 $H_a: \mu < \mu_0$ is $P(Z \le z)$
 $H_a: \mu \ne \mu_0$ is $2P(Z \ge |z|)$

These P-values are exact if the population distribution is Normal and are approximately correct for large n in other cases.

Review - Hypothesis testing

z Test						
H_0	$\mu = \mu_0$					
H_a	$\mu > \mu_0$ $\mu < \mu$	μ_0	$\mu \neq \mu_0$			
Test statistic	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \stackrel{approx.}{\sim} N(0, 1)$					
P-value	$P(Z \ge z)$ $P(Z \le z)$ pnor		$P(Z \ge z)$ 2*(1-pnorm(abs(z)))			
Conclusion	$P > \alpha$: statistically insignificant at level α ; cannot reject H_0 $P \le \alpha$: statistically significant at level α ; reject H_0					

Investigating the Potential for Miscommunication Using Emoji

By Hannah Miller on April 5, 2016

Hey emoji users: Did you know that when you send your friend on your Nexus, they might see on their iPhone? And it's not just ; this type of thing can happen for all emoji (yes, even). In a paper (download) that will be officially published at AAAI ICWSM in May, we show that this problem can cause people to misinterpret the emotion and the meaning of emoji-based communication, in some cases quite significantly. , we know.

Abby using a Google Nexus, texting Bill:

Bill using an iPhone, texting Abby:

These are all the same emoji!

This is what the "grinning face with smiling eyes" emoji looks like on devices for each of these platforms:

- ▶ The investigators' questions of interest:
 - Across platform: Do people interpret one platforms rendering of an emoji character the same way that they interpret a different platform's rendering?
 - Within platform: Do people look at the exact same rendering of a given emoji and interpret it the same way?

Across platform: the investigators assessed the emotional meaning of each rendering on a scale from -5 (strongly negative) to 5 (strongly positive).

Within-platform score of mis-communication (25 emoji for each platform)

	Ap	ple	Go	ogle	Micı	osoft	Sam	sung	L	\mathbf{G}	Coorlo MS
		3.64	*	3.26	¥	4.40		3.69	(2.59	Google, MS LG together
Top 3		3.50				2.94					Average
		2.72	¥¥	2.61	T	2.35		2.29	ÛÓ	2.51	commun
•••	•••							Number			
		1.25		1.13	2	1.12		1.23	8	1.30	Populati
Bottom 3	•	0.65		1.06	3	1.08		1.09		1.26	deviation
	~~ Z Z	0.45		0.62	·	0.66	6	1.08	C	0.63	

Google, MS, Samsung and LG together

- Average score of miscommunication: 1.84
- Number of emoji's: 100
- Population standard deviation: 0.50

- Find the 95% confidence interval for the population mean score of miscommunication for the four platforms.
- Is the average score of mis-communication of the four platforms different from 2, which is the average score of Apple emoji?

$$\bar{x} = 1.84, \sigma = 0.5, n = 100, C = 0.95$$

Microsoft Samsung

- 95% confidence interval
- $C = 0.95, z^* = 1.96$
- Margin of error

$$m = z^* \frac{\sigma}{\sqrt{n}} = 1.96 \frac{0.5}{\sqrt{100}} = 0.10$$

- 95% confidence interval $\bar{x} \pm m = 1.84 \pm 0.10$
- We are 95% confident (about the method) that the population mean score of mis-communication for the four platforms will be within [1.74, 1.94]

Confidence interval - some cautions

- ▶ The data should be an SRS from the population.
 - If not *simple* random sampling, other methods for calculating confidence intervals (C.I.s) are available.
 - If not simple *random* sampling, estimates may be biased and there is no statistical method for correction of bias.
- Outliers are very influential on C.I. because it is constructed based on mean \bar{x} .
- If the population distribution is Normal, the interval is exact; otherwise it is approximate.
 - Usually we require $n \ge 15$ for the approximation works well.
- Population standard deviation σ is assumed to be known. We will learn methods for calculating C.I. when σ is unknown.

Is the average score of mis-communication of the four from 2, which is the average score of Apple emoji?

Microsoft Samsung

$$\bar{x} = 1.84, \sigma = 0.5, n = 100, \alpha = 0.05$$

 $H_0: \mu = 2; H_a: \mu \neq 2$

VS.

- $P(Z \ge |z|) = 2P(Z \ge 3.2) = 0.0014 < 0.052*(1-pnorm(3.2))$
- The test is significant at level 0.05 and we reject H_0 . The mean score of miscommunication of the four platforms is significantly different from 2.
- Note: here we assume the mean score of Apple Emoji = 2 is fixed, which is not true since it is a sample mean. In Lecture 16, we will learn the method to compare two sample means.

The P-value and a statement of significance

Level α test: we reject H_0 when $P \leq \alpha$. If $\alpha = 0.05$,

- For $H_a: \mu > \mu_0$, when $z \ge 1.645$, $P \le 1$ -pnorm(1.645) = 0.05
- For $H_a: \mu < \mu_0$, when $z \le -1.645$, $P \le pnorm(-1.645) = 0.05$
- For $H_a: \mu \neq \mu_0$, when $z \geq 1.96$ or $z \leq -1.96$, $P \leq 2*(1-pnorm(1.96)) = 0.05$

The P-value and a statement of significance

For this level $\alpha = 0.05$ two-sided test, there are two different ways to make a statement of significance (reject-ornot):

1.
$$P = 0.0014 < 0.05$$
, reject H_0

2.
$$z = -3.2 < -1.960$$
, reject H_0

Here 1.960 and -1.960 are called **critical values/points**.

This is equivalent to a 95% confidence interval!

The confidence interval and a two-sided test

For the emoji example,

- ▶ 95% confidence interval for the population mean score of mis-communication is $1.84 \pm 1.960 \frac{0.5}{\sqrt{100}} = 1.84 \pm 0.10$
 - Apple emoji mean score 2 does not fall into the interval [1.74, 1.94], the population mean should be significantly different from 2.
 - 1.960 and -1.960 are the z^* values we used to calculate C.I..
- ▶ Level 0.05 hypothesis testing: $z = \frac{1.84-2}{0.5/\sqrt{100}} = -3.2$. Reject $H_0: \mu = 2$ for
 - P = 0.0014 < 0.05 or
 - z = -3.2 < -1.960
- The 95% confidence interval does not contain 2 \Leftrightarrow the level 0.05 two-sided test for $H_0: \mu = 2$ is significant.

The confidence interval and a two-sided test

A level α two-sided significance test rejects a hypothesis $H_0: \mu = \mu_0$ exactly when the value μ_0 falls outside a level $C = 1 - \alpha$ confidence interval.

- ▶ This only holds for a two-sided test.
- A level α two-sided test is equivalent to a level $C = 1 \alpha$ confidence interval in the statement of significance.
 - Level 0.01 two-sided test ⇔ level 99% confidence interval
 - Level 0.05 two-sided test ⇔ level 95% confidence interval
 - Level 0.10 two-sided test ⇔ level 90% confidence interval

The confidence interval and a two-sided test

If the test is **one-sided**, its statement of significance is **not equivalent to** that from the confidence interval, for confidence interval is always "two-sided".

For a one-sided test $H_a: \mu > \mu_0$,

- Level 0.01 test $z^* = 2.326$; 99% confidence interval $z^* = 2.576$ and -2.576.
- Level 0.05 test $z^* = 1.645$; 95% confidence interval $z^* = 1.960$ and -1.960.
- Level 0.10 test $z^* = 1.282$; 90% confidence interval $z^* = 1.645$ and -1.645.

For a one-sided test $H_a: \mu < \mu_0$,

- Level 0.01 test $z^* = -2.326$; 99% confidence interval $z^* = 2.576$ and -2.576.
- ▶ Level 0.05 test $z^* = -1.645$; 95% confidence interval $z^* = 1.960$ and -1.960.
- Level 0.10 test $z^* = -1.282$; 90% confidence interval $z^* = 1.645$ and -1.645.

Confidence interval, test and significance

z^* values

α	$\mu > \mu_0$	$\mu < \mu_0$	$\mu \neq \mu_0$	С	C.I.
0.01	2.326 qnorm(0.99)	-2.326 qnorm(0.01)	± 2.576 qnorm(1-0.01/2)	0.99	± 2.576 qnorm(1-0.01/2)
0.05	1.645 qnorm(0.95)	-1.645 qnorm(0.05)	± 1.960 qnorm(1-0.05/2)	0.95	± 1.960 qnorm(1-0.05/2)
0.10	1.282 qnorm(0.90)	-1.282 $qnorm(0.10)$	± 1.645 qnorm(1-0.10/2)	0.90	± 1.645 qnorm(1-0.10/2)
а	qnorm(1-a)	qnorm(a)	qnorm(1-a/2)	1 - <i>a</i>	qnorm(1-a/2)

Hypothesis testing - some cautions

- A level α test rejects H_0 at
 - $P \leq \alpha$ or
 - $z \ge z^*, z \le z^*$ (one-sided test) or
 - $z \ge z^* \text{ or } z \le -z^* \text{ (two-sided test)}$
 - z^* only tells us to reject or not, but P-value shows the strength of rejection.
- A level α two-sided significance test is equivalent to a level C confidence interval, where $\alpha = 1 C$ or $C = 1 \alpha$.
- ▶ There is no sharp border between "significant" and "not significant", only increasingly strong evidence as the *P*-value decreases.
- ▶ Beware of searching for significance.
 - Choose H_a and level α before the test.

Hypothesis testing - some cautions

- Statistical significance does not suggest practical significance.
 - $z = \frac{x \mu_0}{\sigma / \sqrt{n}}$. When *n* is large, even $\bar{x} \mu_0$ is tiny, *z* could be large and the test could be statistically significant.
- ▶ Don't ingore lack of significance.
 - Sometimes, a practically meaningful result can hardly achieve statistical significance due to lack of large sample.
- ▶ Be aware of outliers.
 - \bar{x} is not resistant. Always do exploratory data analysis before conducting any test.
- Statistical inference is not valid for all sets of data.
 - The z test assumes Normal distribution of \bar{x} .