Московский Государственный Университет имени. М. В. Ломоносова Факультет Вычислительной Математики и Кибернетики

«Разработка параллельной версии программы для задачи»

327 группа Бирюков А.М.

Москва 2020

1 Постановка задачи

Требуется реализовать программу сортировки, используя OpenMP. Был выбрал алгоритм сортировки слиянием (merge sort).

2 Реализация

Реализован стандартный рекурсивный алгоритм сортировки слиянием. Функция merge parallel - рекурсивная функция, на вход которой подается

число тредов.

merge serial - рекурсивная функция, выполняющая сортировку без распараллеливания.

Для подсчета времени использовалась библиотека chrono.

Пользователь должен ввести количество элементов массива и количество желаемых тредов.

Запуск программы производился для разного числа элементов в массиве и для разного числа тредов.

Время выполнения программы при разных параметрах занесено в таблицу.

Компиляция программы проводилась с помощью: g++-std=c++11-Wall -fopenmp -o run merge.cpp Запуск программы: bsub -n 20 -W 15 -o result.out ./myrun 1000 160

3 Результаты

Время выполнения

Π отоки, p	Размер массива, п					
	1 k	10k	100k	1kk	10kk	100kk
1	0.0092812	0.030673	0.286210	3.388000	39.33600	759.41000
2	0.0093948	0.020026	0.159180	1.808500	21.76200	339.91000
4	0.0077780	0.016554	0.125660	1.164000	18.98300	308.90000
8	0.0093289	0.017092	0.097533	0.924810	9.300000	106.44000
16	0.0115880	0.017789	0.085364	0.827520	8.085600	81.804000
32	0.0095815	0.017067	0.084433	0.812810	7.719300	79.870000
64	0.0148060	0.016788	0.091967	0.759750	7.639000	77.312000
128	0.0143760	0.021867	0.124810	0.782590	7.342100	73.611000
160	0.0209770	0.032142	0.089762	0.786890	7.795900	75.828000

Для наглядности построим 3D график полученных данных.

4 Выводы

• С увеличением числа тредов производительность повышается. Переломным числом тредов в среднем получилось - 128. При увеличении этого числа производительность либо ухудшалась, либо практически не изменялась