In [3]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]:

Distribution within Categories

In [5]:

....

Boxplot Violinplot Swarmplot Boxenplot

Out[5]:

'\nBoxplot\nViolinplot\nSwarmplot\nBoxenplot\n'

In [9]:

df= pd.read_csv("StudentsPerformance.csv")
df

Out[9]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

1000 rows × 8 columns

In [10]:

df.head()

Out[10]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

boxplot

In [12]:

```
plt.figure(figsize=(10,4),dpi=300)
sns.boxplot(data=df,y="math score",x="test preparation course")
```

Out[12]:

<AxesSubplot:xlabel='test preparation course', ylabel='math score'>

In [27]:

Out[27]:

<matplotlib.legend.Legend at 0x1d4d20bbcd0>

violinplot

In [32]:

Out[32]:

<AxesSubplot:xlabel='reading score', ylabel='parental level of education'>

In [36]:

Out[36]:

<matplotlib.legend.Legend at 0x1d4d34d32b0>

In [39]:

Out[39]:

<AxesSubplot:xlabel='reading score', ylabel='parental level of education'>

swarmplot

In [48]:

Out[48]:

<matplotlib.legend.Legend at 0x1d4ccf85640>

boxenplot

In [51]:

sns.boxenplot(x="math score",y="test preparation course",data=df,hue="gender")

Out[51]:

<AxesSubplot:xlabel='math score', ylabel='test preparation course'>

In []: