Monitoring the shape of weather, soundscapes, and dynamical systems: a new statistic for dimension-driven data analysis on large datasets.

Henry Kvinge* Elin Farnell Michael Kirby Chris Peterson

Colorado State University, Fort Collins, CO

Dimensionality reduction

Dimensionality reduction is a key tool for extracting information from high dimensional data sets.

When our data points correspond to elements of \mathbb{R}^n we can think of dimensionality reduction as the process of mapping:

points in
$$\mathbb{R}^n \mapsto \text{points in } \mathbb{R}^m$$

for m < n.

Dimension driven statistics

Some dimensionality reduction algorithms naturally provide statistics that indicate how much structure was lost during reduction.

These statistics give a picture of the intrinsic dimension of the data.

Classic example: The singular values in PCA (or eigenvalues in multidimensional scaling) suggest the number of dimensions required to capture variance of data.

Secant-based approach to dimensionality reduction

Dimensionality reduction can be framed in terms of secant sets.

Example: In many cases we do not want to collapse points in \mathbb{R}^n onto each other in \mathbb{R}^m .

Secant-based approach to dimensionality reduction

Dimensionality reduction can be framed in terms of secant sets.

Example: In many cases we do not want to collapse points in \mathbb{R}^n onto each other in \mathbb{R}^m .

Secant-based dimensionality reduction

What is another way of saying that we want to preserve the distances between points?

For a data set $D \in \mathbb{R}^n$ the normalized *secant set* S is

$$S := \left\{ \frac{x - y}{||x - y||} \mid x, y \in D, \text{ with } x \neq y \right\}.$$

Secant-based dimensionality reduction algorithms work under the principle that we should look for dimension reducing transformations which preserve the secant set of our data set.

SAP algorithm outline

In this project we were interested in solving the optimization problem

$$\underset{P \in \mathsf{Proj}(\mathbb{R}^n, \mathbb{R}^m)}{\arg\max} \left(\underset{s \in S}{\min} ||P^T s|| \right)$$

where $\operatorname{Proj}(\mathbb{R}^n, \mathbb{R}^m)$ consists of all $n \times m$ matrices whose columns are orthonormal vectors in \mathbb{R}^n .

How to solve: Several methods exist, we used an algorithm that we developed called *secant-avoidance projection (SAP) algorithm*.

SAP searches for the projection such that the most shrunken secant is maximized.

Suppose we have used SAP (or a similar method) to find \bar{P} that gives an approximate solution to

$$\bar{P} pprox rg \max_{P \in \operatorname{Proj}(\mathbb{R}^n, \mathbb{R}^m)} \bigg(\min_{s \in S} ||P^T s|| \bigg).$$

Then we can calculate κ_m ,

$$\kappa_m := \min_{s \in S} ||P^T s||.$$

The value $\kappa_m \in [0,1]$ captures the projected length of the secant least well preserved by \bar{P} .

Example: If $\bar{P}: \mathbb{R}^3 \to \mathbb{R}^2$ maps

Then

$$\kappa_2 = \frac{||\bar{P}\bar{P}^T x_1 - \bar{P}\bar{P}^T x_2||}{||x_1 - x_2||} \approx .2$$

We define the κ -profile to be the n-tuple

$$(\kappa_1, \kappa_2, \ldots, \kappa_n).$$

The κ -profile gives a measure of how well the data can be projected into dimensions $1, 2, \ldots, n$.

We can give some bounds to the intrinsic dimension of D via $(\kappa_1, \ldots, \kappa_n)$ and Whitney's Embedding Theorem.

We plot the κ -profile as a curve where

- The x-axis is the dimension of the projection
- The y-axis is the corresponding κ -value

The κ -profile often correlates closely with the dimension of a data set

The κ -profile gives information which is distinct from that provided by the singular values in PCA.

This follows from the fact that the underlying optimization problems are different.

PCA solves

$$\underset{P \in \mathsf{Proj}(\mathbb{R}^n, \mathbb{R}^m)}{\arg\max} \sum_{s \in S} ||P^T s||$$

SAP solves

$$\underset{P \in \text{Proj}(\mathbb{R}^n, \mathbb{R}^m)}{\arg \max} \left(\min_{s \in S} ||P^T s|| \right)$$

As a consequence:

- PCA "tries" to minimize the extent to which all secants are shrunk in projection,
- while SAP "focuses" on making sure no particular secant is shrunk too much.

Trigonometric moment curve $\phi : \mathbb{R} \to \mathbb{R}^{10}$, $\phi(t) := (\cos(t), \sin(t), \cos(2t), \dots, \cos(5t), \sin(5t))$.

SAP Projection: Trigonometric Moment Curve

Trigonometric moment curve $\phi: \mathbb{R} \to \mathbb{R}^5$,

$$\phi(t) := (\cos(t), \sin(t), \cos(2t), \dots, \sin(4t), \cos(5t)).$$

- From singular values it appears that data is 5-dimensional (its actually 1-dimensional).
- But the κ -profile suggests that data is somewhere from 1 to 3-dimensional.

Examples of the κ -profile

The κ -profile for soundscapes.

The κ -profile suggests that soundscapes with more random, incoherent noise are unsurprisingly higher dimensional.

The κ -profile for dimensions $2, 3, \ldots, 9$ as a function of time, for a large 2015 weather data set taken from a grid in the Western Atlantic.

Storm activity seems to roughly correlate with jumps in κ_2 .

Stormy weather corresponds to the data becoming more 3-dimensional?

Thank you!

(I am currently on the job market.)