0	
Pro	blem 1
2)	At time t=0, e(0) = co. At the instantancous application
	of stress, the visco-elastic body has no instantaneous
	Viscous vies ponse.
	Under this assumption, we very vigled the viscosity term
	by taking n > 00 in the constitutive equation, therefore
	reducing it to e = in.
	Integrating we find that $e_0 = \frac{\sigma_0}{\kappa}$, or that the
	initial stress on the loody is or (t=0) = Keo.
b)	Now, consider when too, we may perform a variable
	separation to solve the constitutive equation for or (+):
	ė = K + Å.
	Since elt) is constant, é=0, and therefore
	i o do k
	$0 = \frac{\dot{\sigma}}{K} + \frac{\dot{\sigma}}{h} \implies \frac{d\sigma}{dk} = -\frac{\kappa}{h}\sigma.$
	$\frac{d\sigma}{dt} = -\frac{\kappa}{n} dt \Rightarrow \int_{0}^{\sigma(t)} d\sigma' = -\frac{\kappa}{n} \int_{0}^{t} dt'$
	o no

Hence		0(+)	K		
	log los	00	= - K		
	logloca	1 - 10-1	0-1	15 1	
	109 10 01	1 - 191		n.	
\Rightarrow	o(t) =	oo e n	+		
	oct) =		K+		
00	(o(t) =	eoke	n		
		,			

b) To determine b(t), we may apply the constitive equation; e = ot + ot Since the Strein rate e is equivalent to the column lengthening rate, - 5, hence $-\frac{b}{D} = \frac{b}{b}g(Pm-Pa) + \frac{b}{3}g(Pm-Pa)$ Variable separation yields $-6\left(\frac{1}{D} + \frac{9(Pm - Pw)}{K}\right) = 6\frac{9(Pm - Pw)}{m}$ $b = -\frac{g(p_m - p_w)}{2} \cdot \left(\frac{1}{D} + \frac{g(p_m - p_w)}{n}\right)^{-1} b$ Which therefore yields b(t) = b(t=0), exp 2 - 3 (Am-Pa), (= + 9(Pm-Pa)) + } Simplification of the term in the argument of the exponental, with noting that b(t=v) = d, we obtain the expression for b(t): b(+) = d exp { - g(pm-pw)0 + }

$$2 = \frac{(9.4460 \text{ ke to } s)(2.9466 \text{ m})(3 \text{ ke to } P_{a})(10 \frac{14}{15})(2300 \frac{14}{15} \text{ m})}{(3 \text{ ke to } P_{a})} + (2.9466 \text{ m})(10 \frac{14}{15})(2300 \frac{14}{15} \text{ m})}$$

$$2 = 3.44 \times 10^{21} \text{ P2-S}$$

$$2) \text{ The current rate of charge is given by differentiation of both,}$$

$$\frac{db}{dt} = -\left(\frac{D(k_{1}(An-Au)}{2(An-Au)}\right) \frac{b(1)}{b(1)}$$

$$\frac{db}{dt} = 30 \text{ m} \cdot \left(\frac{2966 \text{ m}}{(5 \text{ cut e 21 rb s})} \left[\frac{3200 \text{ kg/m}^{2}}{(5 \text{ cut e 21 rb s})} \left(\frac{2300 \text{ kg/m}^{2}}{(2300 \text{ kg/m}^{2})} \left(\frac{2300 \text{ kg/m}^{2}}{(2300 \text{ kg/m}^{2})} \right)\right)$$

$$= 3.17211 \times 10^{-10} \frac{m}{5}$$
Which, by converting to \text{WW/yr, yields}
$$\left[6 = 9.98 \text{ WW/yr}\right]$$
Cosuperal with the Lecture literature when of 9 \text{WW/yr,}
$$\frac{1}{100} = \frac{1}{100} \frac{1}{$$

Problem 3

2) If only radiogenic hest is being produced, the amount of heat produced in an infinitessimul time of is dy = H dm dt.

Integrated our the whole mus yields the total heat production, Q = HM dt.

The heat flux \$\overline{\pi}\$ is given by heat/unit area unit time, which implies that

D = Q => D = HM

6) This total heat flux may be represented by the relation $\overline{Q}_{tot} = \frac{K(T-Ts)}{d} \cdot \left(\frac{Ra}{Ra}\right)^{1/3}$

where K: thermal conductivity d; wantle depth, T: internal

temperature, Ts: surface temperature, Ra: Rayleigh number,

and Rac: critical Rayleigh number for convection.

Noting that Ra = gado at, we find that

 $MH = K(T-T_s) \left(\frac{9 \times d^3}{5 \times 10^3} \right)^{1/3} (T-T_s)^{1/3}$

with DT = T- Ts. Simple rearranging yields (T-Ts) 4/3 = MH (g x 71/3 KV Rac) c) With H(t) = Hoe xt v = No e differentiation with respect to time yields $\dot{U} = -\lambda H$, $\dot{v} = -\frac{v A_0}{T^2} \frac{dT}{dt}$ Then, by chain/product rule, $\frac{d}{dt} \left(T - T_{5}\right)^{4/3} = \frac{4}{7} \left(T - T_{5}\right)^{1/3} \frac{dT}{dt} \quad \text{and} \quad$ (Let Co = M (ya) d [CoHV'3] = Co dH V13 + CoH 3 V-217 dv = COHV'13 [- \ - 3 T2 27] Setting LHS = RHS, and noting that COHV'S = (T-Ts) W/3, $\frac{11}{9} \Delta T^{1/3} \dot{T} = -\Delta T^{1/3} \left(\lambda + \frac{A_0}{3T^2} \dot{T} \right)$ $\Rightarrow \dot{T} \left(1 + \frac{A_0}{4} \Delta T \right) = -\frac{3\lambda}{4} \Delta T$ $\frac{dT}{dt} = -\frac{3\lambda}{4} \left(T - T_s\right) \left[1 + \frac{A_0}{4T^2} \left(T - T_s\right)\right]^{-1}$

W	nich is 28 required.
d) F	First, Note that if Ts = 300 K and T = 2300 K,
+	hen T-Ts = 2000 K which is still in the
C	order of Mugnitude of ~2000K. Therefore it is
. (ok to Neglect the (T-Ts) term. This follows since
	T-Ts 4 Au = 80'000 14.
7	The equation simplifies accordingly to
	$\frac{dT}{dt} = -\frac{3\lambda}{4} \left(T - T_5\right) \left[\frac{A_0}{4T^2} \left(T - T_5\right) \right]^{-1}$
	dt 4 (17) L 4T2
	Ao
	Frace $\left[\overrightarrow{T} = -\frac{3\lambda}{Ao} \right]$
	The cooling rate, given that $T = ~2300 \text{ K}$,
	$\lambda = 1.42 \times 10^{-17} \text{ s}^{-1}$, and $A_0 = 8 \times 10^{4} \text{ K}$, is
	therefore just
	$T = \frac{3 \cdot (1.42 \times 10^{-17} \text{ s}^{-1})}{8 \times 10^{4} \text{ K}} (2/300 \text{ K})^{2}$
	$= -5.634 \times 10^{-15} \frac{K}{S}$
or	$T = 1.777 \times 10^{-7} \frac{K}{yr}$ is the cooling rate,

f) We have the ODE of = - 3x T2, which, by variable separation, is $\left(\frac{dT}{T^2} = -\frac{3\lambda}{A_0}\right) dt$ 1 = - 3x + + To \Rightarrow T(+) = $\frac{A_0}{3\lambda+}$ + T_0 where To' is an initial condition. To find To, we may impohe the condition that at + = 4.54 byr (corrent time), if Ao = 8 x 104 k, $\lambda = 1.42 \times 10^{-17} \text{ s}^{-1}$ the curent average mantle temperature is 2'300 K. 2'300 K = 32 (4.54 by) + To => To' = 2'300 K - AU 32.4.54 byr 4,54 by ~ ~ 1,4327 x 1017 S, hence $T_0' = 2300 \, \text{K} - \frac{80'000}{3(1.42 \, \text{Klo}^{-17} \, \text{s}^{-1})(1.4327 \, \text{Klo}^{17} \, \text{c})}$ ~ -10'807 5211 K. When two (earth formation), T > 00, which is not possible. This is why this may not be a good estimate for earths initial muntle temperature.