逻辑门电路

2.1 基本逻辑门电路

一、二极管与门和或门电路

1. 与门电路

输入、输出电压之间的关系

输入				
$V_A(V) = V_B(V)$				
0V	0V			
5V	0.00			
ov	ov			
5V	5V			
	V _B (V) 0V 5V 0V			

与逻辑真值表

输	输入			
A	A B			
0	0	0		
0	1	0		
1	0	0		
1	1	1		

2. 或门电路

输入、输出电压之间的关系

输	输出	
V _A (V)	$V_{\Gamma}(\Lambda)$	
0V	0V	0V
0V	5V	5V
5V	0V	5V
5V	5V	5V

或逻辑真值表

输	输出	
A	L	
0	0	0
0	1	1
1	0	1
1	1	1

二、三极管非门电路

输入、输出电压之间的关系

输入	输出
$V_{\mathbf{A}}(V)$	$V_{L}(V)$
0V	5V
5V	0V

非逻辑真值表

输入	输出
A	L
0	1
1	0

钳位电路

二极管与门和或门电路的缺点:

- (1) 在多个门串接使用时,会出现低电平偏离标准数值的情况。
 - (2) 负载能力差

解决办法:

将二极管与门(或门)电路和三极管非门电路组合起来。

三、DTL与非门电路

工作原理:

- (1) 当A、B、C全接为高电平5V时,二极管 $D_1 \sim D_3$ 都截止,而 D_4 、 D_5 和T导通,且T为饱和导通, V_L =0.3V,即输出低电平。
- (2) A、B、C中只要有一个为低电平0.3V时,则 $V_P \approx 1$ V,从而使 D_4 、 D_5 和T都截止, $V_L = V_{CC} = 5$ V,即输出高电平。

所以该电路满足与非逻辑关系,即: $L = \overline{A \cdot B \cdot C}$

2.2 TTL逻辑门电路

2. TTL与非门的逻辑关系

(1)输入全为高电平3.6V时。

 T_2 、 T_3 导通, V_{B1} =0.7×3=2.1 (V),

由于 T_3 饱和导通,输出电压为: $V_0 = V_{\text{CES3}} \approx 0.3 \text{V}$

这时T。也饱和导通,

故有 $V_{\text{C2}} = V_{\text{E2}} + V_{\text{CE2}} = 1 \text{V}$ 。

使 T_4 和二极管D都截止。

实现了与非门的逻辑功能之一:

输入全为高电平时,

输出为低电平。

(2) 输入有低电平0.3V 时。

该发射结导通, $V_{\text{B1}}=1$ V。所以 \mathbf{T}_2 、 \mathbf{T}_3 都截止。由于 \mathbf{T}_2 截止,流过 \mathbf{R}_{C2} 的电流较小,可以忽略,所以 $V_{\text{B4}} \approx V_{\text{CC}}=5$ V ,使 \mathbf{T}_4 和 \mathbf{D} 导通,则有:

$$V_0 \approx V_{\text{CC}} - V_{\text{BE4}} - V_{\text{D}} = 5 - 0.7 - 0.7 = 3.6 \text{ (V)}$$

实现了与非门的逻辑功能的另一方面:

输入有低电平时,输出为高电平。

综合上述两种情况,

该电路满足与非的

逻辑功能,即:

$$L = \overline{A \cdot B \cdot C}$$

二、TTL与非门的开关速度

- 1. TTL与非门提高工作速度的原理
 - (1) 采用多发射极三极管加快了存储电荷的消散过程。

(2) 采用了推拉式输出级,输出阻抗比较小,可迅速给负载电容充放电。

2. $TTL与非门传输延迟时间t_{pd}$

<mark>导通延迟时间*t*_{PHL}——从输入波形上升沿的中点到输出波形下降沿的</mark>中点所经历的时间。

截止延迟时间t_{PLH}——从输入波形下降沿的中点到输出波形上升沿的中点所经历的时间。

与非门的传输延迟时间 t_{pd} 是 t_{PHL} 和 t_{PLH} 的平均值。即

$$t_{\rm pd} = \frac{t_{\rm PLH} + t_{\rm PHL}}{2}$$

一般TTL与非门传输延迟时间 t_{pd} 的值为几纳秒~十几个纳秒。

三、TTL与非门的电压传输特性及抗干扰能力

1. 电压传输特性曲线: $V_0 = f(V_i)$

制中代表逻辑"1"的输出电压。 3压的最小值 $V_{OH (min)}$ =2.4 $V_{oh (min)}$

中代表逻辑 "0"的输出电压。 V_{OL} 的最大值 V_{OL} (max) =0.4 V_{OL}

下降到 $V_{OH\ (min)}$ 时对应的输入电压。 中常称为**输入低电平电压**,用 V_{IL}

下降到 V_{OL} (max)时对应的输入电压。即输入高电压的最小值。在产品手册中常称为输入高电平电压,用 V_{IH} (min)表示。产品规定 V_{IH} (min)=2V。

(5) **阈值电压 /_{th}—**电压传输特性的过渡区所对应的输入电压,即决定电路截止和导通的分界线,也是决定输出高、低电压的分界线。

近似地: $V_{\text{th}} \approx V_{\text{OFF}} \approx V_{\text{ON}}$

即 $V_i < V_{th}$,与非门关门,输出高电平;

 $V_i > V_{th}$,与非门开门,输出低电平。

 V_{th} 又常被形象化地称为门槛电压。 V_{th} 的值为1.3 $V\sim 1.4 V$ 。

3. 抗干扰能力

TTL门电路的输出高低电平不是一个值,而是一个范围。同样,它的输入高低电平也有一个范围,即它的输入信号允许一定的容差,称为噪声容限。

低电平噪声容限 $V_{NL} = V_{OFF} - V_{OL (max)} = 0.8V - 0.4V = 0.4V$ 高电平噪声容限 $V_{NH} = V_{OH (min)} - V_{ON} = 2.4V - 2.0V = 0.4V$

四、TTL与非门的带负载能力

1. 输入低电平电流/ 与输入高电平电流/ (1) **输入低电平电流/ (——**是指当门电路的输入端接低 电平时,从门电路输入端流出的电流。

可以算出:

$$I_{\rm IL} = \frac{V_{\rm CC} - V_{\rm B1}}{R_{\rm b1}} = \frac{5 - 1}{4} = 1 \text{(mA)}$$

产品规定 I_{II} <1.6mA。

- (2) **输入高电平电流/_{IH}**__是指当门电路的输入端接高电平时, 流入输入端的电流。有两种情况。
- ①寄生三极管效应:如图 (a) 所示。这时 I_{IH} = $\theta_P I_{B1}$, θ_P 为寄生三极管的电流放大系数。
- ②倒置的放大状态:如图(b)所示。这时 I_{IH} = $\beta_i I_{B1}$, β_i 为倒置放大的电流放大系数。

由于 $\boldsymbol{\theta}_{p}$ 和 $\boldsymbol{\theta}_{i}$ 的值都远小于1, 所以 \boldsymbol{I}_{H} 的数值比较小,产品规定: \boldsymbol{I}_{H} <40uA。

2. 带负载能力

(1) 灌电流负载

当驱动门输出低电平时,电流从负载门灌入驱动门。

当负载门的个数增加,灌电流增大,会使 T_3 脱离饱和,输出低电平升高。因此,把允许灌入输出端的电流定义为输出低电平电流 I_{OL} ,产品规定 I_{OL} =16mA。由此可得出:

$$N_{\rm OL} = \frac{I_{\rm OL}}{I_{\rm IL}}$$
 $N_{\rm OL}$ 称为输出低电平时的扇出系数。

(2) 拉电流负载。

当驱动门输出高电平时, 电流从驱动门拉出,流至 负载门的输入端。

拉电流增大时,R_{C4}上的 压降增大,会使输出高 电平降低。因此,把允 许拉出输出端的电流定 义为**输出高电平电流**/_{0H}。

产品规定 I_{OH} =0.4mA。由此可得出:

$$N_{\rm OH} = \frac{I_{\rm OH}}{I_{\rm IH}}$$

 N_{OH} 称为输出高电平时的扇出系数。

一般 $N_{OL} \neq N_{OH}$,常取两者中的较小值作为门电路的扇出系数,用 N_{O} 表示。

五、TTL与非门举例—7400

7400是一种典型的TTL与非门器件,内部含有4个2输入端与非门,共有14个引脚。引脚排列图如图所示。

六、TTL门电路的其他类型

1. 非门

2. 或非门

3. 与或非门

4. 集电极开路门(OC门)

在工程实践中,有时需要将几个门的输出端并联使用,以实现与逻辑,称 为线与。普通的TTL门电路不能进行线与。

为此,专门生产了一种可以进行线与的门电路——集电极开路门。

OC门主要有以下几方面的应用:

(1) 实现线与。

电路如右图所示,逻辑关系为:

$$L = L_{\!\!1} \cdot L_{\!\!2} = \overline{AB} \cdot \overline{CD}$$

(2) 实现电平转换。

如图示,可使输出高电平变为10V。

(3) 用做驱动器。

如图是用来驱动发光二极管的电路。

OC门进行线与时,外接上拉电阻Rp的选择:

(1) 当输出高电平时,

 R_p 不能太大。 R_p 为最大值时要保证输出电压为 $V_{OH\ (min)}$,由

$$V_{\rm CC} - V_{\rm OH\ (min)} = m' I_{\rm IH} R_{\rm P\ (max)}$$

得:

$$R_{\text{P(max)}} = \frac{V_{CC} \cdot V_{\text{OH(min)}}}{m' \cdot I_{\text{IH}}}$$

(2) 当输出低电平时,

 $R_{\rm P}$ 不能太小。 $R_{\rm P}$ 为最小值时要保证输出电压为 $V_{
m OL~(max)}$,由

得:
$$R_{\text{P(min)}} = \frac{V_{\text{CC}} - V_{\text{OL(max)}}}{I_{\text{OL(max)}} - m \cdot I_{\text{IL}}}$$

所以:

$$R_{P \text{ (min)}} < R_{P} < R_{P \text{ (max)}}$$

5. 三态输出门

(1) 三态输出门的结构及工作原理。

当EN=0时,G输出为1, D_1 截止,相当于一个正常的二输入端与非门,称为正常工作状态。

当EN=1时,G输出为0, T_4 、 T_3 都截止。这时从输出端L看进去,呈现高阻,称为高阻态,或禁止态。

(2) 三态门的应用

三态门在计算机总线结构中有着广泛的应用。

(a) 组成单向总线,

实现信号的分时单向传送.

(b)组成双向总线, 实现信号的分时双向传送。

七、TTL集成逻辑门电路系列简介

- 1. 74系列—为TTL集成电路的早期产品,属中速TTL器件。
- 2. 74L系列—为低功耗TTL系列,又称LTTL系列。
- 3. 74H系列——为高速TTL系列。
- 4. 74S系列—为肖特基TTL系列,进一步提高了速度。如图示。
- 5. 74LS系列—为低功耗肖特基系列。
- 6.74**AS**系列—为先进肖特基系列, 它是74**S**系列的后继产品。
- 7. 74ALS系列——为先进低功耗肖特基系列, 是74LS系列的后继产品。

74/54LS02 四2输入或非门NOR

Quad 2-Input NOR Gate

逻辑表:

输	λ	输出
A	A B	Y
Н	Н	L
L	H	L
H	L	L
L	L	H

外引线排列图

推荐工作条件

			74 ∐		54			
符号	参数名称		参数值		参数值			単位
		最小	典型	最大	最小	典型	最大	
Vcc	电源电压	4.75	5	5. 25	4.5	5	5.5	V
V _{IH}	输入高电平电压	2			2			V
V_{IL}	输入低电平电压			0.8			0.7	V
Іон	输出高电平电流			-400			-400	μA
I _{OL}	输出低电平电流			8			4	mA
TA	工作环境温度	-40		85	-55		125	$^{\circ}$

电性能: (除特别说明外,均为全温度范围)

				74 II			54		
符号	参数名称	测试条件	测试条件 参数值		参数值参数值			単位	
			最小	典型	最大	最小	典型	最大	
V_{IK}	輸入钳位电压	Vcc=最小 I _I =-18mA			-1.5			-1.5	V
V	 輸出高电平电压	Vcc=最小 V _{IL} =最大	2.7			2.5	3.4		v
VOH	棚山同电工电压	I _{OH} =最大	۷. ۱	2. 7		2.0	J. 4		V
V	 輸出低电平电压	Vcc=最小			0.5		0.25	0.4	v
V OL	MI 中小水子 一个下	V _{IH} =2V I _{OL} =最大			0.5		0.25		· I
$I_{\rm I}$	輸入电流	Vcc=最大 V _r =7V			0.1			0.1	А
ıI	(最大输入电压时)	VCC-BX/\ VI-/V			0.1				mA
I _{IH}	輸入高电平电流	Vcc=最大 V _I =2.7V			20			20	μA
I_{IL}	輸入低电平电流	Vcc=最大 V _I =0.4V			-0.4			-0.4	mA
Ios	输出短路电流	Vcc=最大 Vo=0V	-20		-100	-20		-100	mA
I_{CCH}	高电平电源电流	Vcc=最大 V _I =0V			3.2		1.6	3.2	mA
I_{CCL}	低电平电源电流	Vcc=最大 输入开路			5.4		2.8	5.4	mA

注: 所有典型值均在 Vcc=5.0V, TA=25℃下测量得出。

交流 (开关) 参数: Vcc=5.0V, T_A=25℃

符号	参数名称	从(输入)	到 (输出)	测试条件		参数值		单位
	35 A C C C C C C C C C C C C C C C C C C	/// \ \ 	声)(相)山)	199 4477 17	最小	典型	最大	丰世
t _{PLH}	传输延迟	A或B	Y	C =15nE P =21-O		10	15	ns
tpHL	传输延迟	A或B	Y	$C_L=15pF R_L=2k\Omega$		10	15	ns

2.3 **MOS**逻辑门电路

一、NMOS门电路

1. NMOS非门

逻辑关系:(设两管的开启电压为 $V_{T1}=V_{T2}=4V$,且 $g_{m1}>>g_{m2}$) (1) 当输入V.为高电平8V时, T_1 导通, T_2 也导通。因为 $g_{m1}>>g_{m2}$,所以两管的导通电阻 $R_{DS1}<< R_{DS2}$,输出电压为:

$$V_{\mathrm{OL}} = \frac{R_{\mathrm{DS1}}}{R_{\mathrm{DS1}} + R_{\mathrm{DS2}}} V_{\mathrm{DD}} \leq 1 \mathrm{V}$$
 所以输出为低电平。

(2) 当输入 V_i 为低电平0V时,

 T_1 截止, T_2 导通。所以输出电压为 $V_{OH} = V_{DD} - V_T = 8V$,即输出为高电平。 所以电路实现了非逻辑。

2. NMOS门电路

(1) 与非门

二、CMOS非门

CMOS逻辑门电路是由N沟道MOSFET和P沟道MOSFET互补而成。

1. 逻辑关系:

(设
$$V_{DD}$$
> (V_{TN} + $|V_{TP}|$),且 V_{TN} = $|V_{TP}|$)

- (1) 当 V_i =0V时, T_N 截止, T_p 导通。输出 $V_o \approx V_{DD}$ 。
- (2) 当 $V_i = V_{DD}$ 时, T_N 导通, T_P 截止,输出 $V_O \approx 0V$ 。

2. 电压传输特性: (设: $V_{DD}=10V$, $V_{TN}=|V_{TP}|=2V$)

- (1) 当 V_i <2V, T_N 截止, T_p 导通,输出 $V_o \approx V_{DD}$ =10V。
- (2) 当2 $\mathbf{V} < \mathbf{V}_i < 5\mathbf{V}$, \mathbf{T}_N 工作在饱和区, \mathbf{T}_p 工作在可变电阻区。
- (3) 当 $\mathbf{V_i}$ =5 \mathbf{V} ,两管都工作在饱和区, $\mathbf{V_o}$ =($\mathbf{V_{DD}}/2$)=5 \mathbf{V} 。
- (4) 当5V<V_i<8V,
 T_p工作在饱和区,
 T_N工作在可变电阻区。
- (5) 当*V_i*>8V,T_p截止, T_N导通,输出*V_o*=0V。 可见:

CMOS门电路的阈值电压

$$V_{\mathrm{th}} = V_{\mathrm{DD}}/2$$

 $V_{
m DD}$

 T_N

3. 工作速度

由于CMOS非门电路工作时总有一个管子导通,所以当带电容负载时,给电容充电和放电都比较快。CMOS非门的平均传输延迟时间约为10ns。

三、其他的CMOS门电路

- 1. CMOS与非门和或非门电路
 - (1) 与非门

(2) 或非门

(3) 带缓冲级的门电路

为了稳定输出高低电平,可在输入输出端分别加反相器作缓冲级。下图所示为带缓冲级的二输入端与非门电路。

$$L=$$

2. CMOS异或门电路

由两级组成,前级为或非门,输出为 $X = \overline{A + B}$ 后级为与或非门,经过逻辑变换,可得:

$$L = \overline{A \cdot B + X} = \overline{A \cdot B + \overline{A + B}} = \overline{A \cdot B + \overline{A} \cdot \overline{B}} = A \oplus B$$

3. CMOS三态门

工作原理:

当EN=0时, \mathbf{T}_{P2} 和 \mathbf{T}_{N2} 同时导通,为正常的非门,输出 L=A当EN=1时, \mathbf{T}_{P2} 和 \mathbf{T}_{N2} 同时截止,输出为高阻状态。 所以,这是一个低电平有效的三态门。

4. CMOS传输门

工作原理: (设两管的开启电压 $V_{TN}=|V_{TP}|$)

- (1) 当C接高电平 V_{DD} ,C接低电平0V时,若 V_i 在0V~ V_{DD} 的范围变化,至少有一管导通,相当于一闭合开关,将输入传到输出,即 V_o = V_i 。
- (2) 当C接低电平0V, 接高电平 V_{DD} , V_i 在0V $\sim V_{DD}$ 的范围变化时, T_N 和 T_p 都截止,输出呈高阻状态,相当于开关断开。

四、CMOS逻辑门电路的系列及主要参数

- 1. CMOS逻辑门电路的系列
 - (1) 基本的CMOS—4000系列。
 - (2) 高速的CMOS—HC系列。
 - (3)与TTL兼容的高速CMOS—HCT系列。
- 2. CMOS逻辑门电路主要参数的特点
- (1) $V_{OH \text{ (min)}} = 0.9 V_{DD}$; $V_{OL \text{ (max)}} = 0.01 V_{DD}$ 。 所以CMOS门电路的逻辑摆幅(即高低电平之差)较大。
- (2) 阈值电压 V_{th} 约为 $V_{DD}/2$ 。
- (3) **CMOS**非门的关门电平 V_{OFF} 为0.45 V_{DD} ,开门电平 V_{ON} 为0.55 V_{DD} 。因此,其高、低电平噪声容限均达0.45 V_{DD} 。
- (4) CMOS电路的功耗很小,一般小于1 mW/门;
- (5) 因CMOS电路有极高的输入阻抗,故其扇出系数很大,可达50。

2.4 集成逻辑门电路的应用

一、TTL与CMOS器件之间的接口问题

两种不同类型的集成电路相互连接,驱动门必须要为负载门提供符合要求的高低电平和足够的输入电流,即要满足下列条件:

驱动门的V_{OH (min)} ≥负载门的V_{IH (min)}

驱动门的V_{OL (max)} ≤负载门的V_{IL (max)}

驱动门的I_{OH(max)}≥负载门的I_{IH(总)}

驱动门的I_{OL (max)} ≥负载门的I_{IL (总)}

二、TTL和CMOS电路带负载时的接口问题

- 1. 对于电流较小、电平能够匹配的负载可以直接驱动。
 - (a) 用TTL门电路驱动发光二极管LED, 这时只要在电路中串接一个约几百Ω的限流电阻即可。
 - (b)用TTL门电路驱动5V低电流继电器,其中二极管D作保护,用以防止过电压。

2. 带大电流负载

- (a) 可将同一芯片上的多个门并联作为驱动器,如图(a)所示。
- (b) 也可在门电路输出端接三极管,以提高负载能力,如图(b)所示。

三、多余输入端的处理

- (1) 对于与非门及与门,多余输入端 应接高电平,比如直接接电源正端 ,或通过一个上拉电阻(1~3kΩ
 -)接电源正端;在前级驱动能力允 许时,也可以与有用的输入端并联 使用。

(2) 对于或非门及或门,多余输入端应接低电平,比如直接接地; 也可以与有用的输入端并联使用。

2.5 混合逻辑中逻辑符号的变换

1. 逻辑图中任一条线的两端同时加上或消去小圆圈,其逻辑关系不变。

2. 任一条线一端上的小圆圈移到另一端,其逻辑关系不变。

3. 一端消去或加上小圆圈,同时将相应变量取反,其逻辑关系不变。

本章小结

- 1. 最简单的门电路是二极管与门、或门和三极管非门。它们是集成逻辑门电路的基础。
- 2. 目前普遍使用的数字集成电路主要有两大类,一类由NPN型三极管组成,简称TTL集成电路;另一类由MOSFET构成,简称MOS集成电路。
- 3. TTL集成逻辑门电路的输入级采用多发射极三级管、输出级采用 达林顿结构,这不仅提高了门电路的开关速度,也使电路有较强的驱 动负载的能力。在TTL系列中,除了有实现各种基本逻辑功能的门电路 以外,还有集电极开路门和三态门。
- 4. MOS集成电路常用的是两种结构。一种是NMOS门电路,另一类是CMOS门电路。与TTL门电路相比,它的优点是功耗低,扇出数大,噪声容限大,开关速度与TTL接近,已成为数字集成电路的发展方向。
- 5. 为了更好地使用数字集成芯片,应熟悉TTL和CMOS各个系列产品的外部电气特性及主要参数,还应能正确处理多余输入端,能正确解决不同类型电路间的接口问题及抗干扰问题。