Oxygen Extraction from Regolith Using Ionic Liquids

Elizabeth Barrios, Wayne State University Dr. Peter A. Curreri, MSFC EM-31

Introduction

- President's vision for human space exploration includes manned missions to an asteroid by 2025, followed by missions to Mars by the mid-2030's
- Utilizing materials present in space is crucial for these types of mission

Multi-purpose Crew Vehicle
Originally Published by NASA/Lockheed Martin

The Need for Oxygen

- A critical component for propulsion and life support systems
- Abundant in extraterrestrial regolith in the form of metal oxides

Previous Methods of Extraction

- Hydrogen Reduction
 - Low oxygen yield
 - Selective of composition
- Molten OxideElectrolysis
 - High operating temperature (1600°C)
 - Not selective of composition

Molten Oxide Electrolysis operating at 1600°C

Originally Published by MIT?NASA

What are Ionic Liquids?

- A liquid composed of oppositely charged ions
- Can be designed for a specific task
- Melts at 100°C or below
- Negligible vapor pressure and low flammability

Why are IL's Attractive for Oxygen Extraction?

 Lower operation temperature to around 200°C

Not selective of regolith composition

Low toxicity

Ionic liquid can be regenerated and reused

Basic Schematic

Extracting Oxygen using Ionic Liquids

- Solubilize regolith in ionic liquid at 200°C
 - Products: water vapor, spent ionic liquid, metal ions
- Condense water vapor
- Liquid water is electrolyzed in ionic liquid electrolyte to form H₂ and O₂

Laboratory solubilization of lunar regolith simulant, JSC-1.

Mechanisms of Oxygen Extraction

(a) Regolith(Metal Oxides) + Ionic Liquid

$$\rightarrow H_2O_{(v)} + Metal Ions$$

(b) $2H_2O \xrightarrow[lonic liquid]{\mathscr{E}} 2H_2 + O_2$

- (a) Solubilization of Regolith into water vapor and metal ions
- (b) Electrolysis of water product into hydrogen and oxygen

Working in Low-Gravity

- Absence of natural phenomena
 - > Buoyancy
 - > Sedimentation
- Presence of high vacuum atmosphere
- Problems
 encountered during
 oxygen extraction
 process

The effects of buoyancy on a candle flame. Left picture: Earth; Right picture: low-gravity space

Pervaporation

- Does not rely on buoyancy. Relies on:
 - Selective, porous membrane
 - Different rates of diffusion
 - Applied vacuum across membrane

Basic pervaporation process

Purpose

 To explore the possibility of utilizing and incorporating the method of pervaporation into the existing oxygen extraction process using ionic liquids

Methods and Materials

- Sulfonated Teflon membrane, thickness 183 µm, contact area = 1017.88mm²
- 30% aqueous ionic liquid
- Testing:
 - > 1 apparatus verification test
 - > 2 stirring tests
 - > 1 high temperature test
 - > 1 long duration test

Testing Apparatus

Verification of Testing Apparatus

- 100 mL distilled H₂O
- 20°C for 4 hours
- Water flux = 1225.8g/m²hr
- Membrane absorbed 0.0646 g H₂O
 - Needs to be presaturated

A pre-saturated membrane

Test 1 and Test 2

 Purpose: Determine if a stirring mechanism is needed to obtain proper results

- Both tests ran with
 - > 20 mL sample of 30% aq. Ionic liquid
 - > Temperature = 20°C
 - > Time = 6.5 hours

Test 1 and Test 2 Results

- Test 1 (no stirring)
 - > 1 mL H₂O collected
 - Water flux = 150.90g/m²hr
 - \rightarrow $\Delta P = -200 \text{ mTorr}$
- Test 2 (stirring)
 - 2 mL H₂O collected
 - Water flux = 301.71g/m²hr
 - \rightarrow $\Delta P = +33 \text{ mTorr}$
- Conclusion: need stirring for proper results

(left) Test 1 – 1mL H₂O collected no stirring; (right) Test 2: 2 mL H₂O collected with stirring

Test 3

 Purpose: Determine if the membrane could withstand operating at elevated temperatures while being in contact with the ionic liquid

- Test conditions:
 - > 20 mL sample of 30% aq. Ionic liquid
 - > Temperature = 50°C
 - > Time = 6.5 hours

Test 3 Results

- 3 mL H₂O collected
- Water flux = $452.52g/m^2hr$
- Lost approximately 2.5 mL during the process
 - Probably due to evaporation
- Conclusion: Membrane and ionic liquid can operate at elevated temperatures, but need to develop a tighter seal to eliminate evaporation

3 mL H₂O collected

Test 4

• Purpose: Determine if the ionic liquid pervaporation process could withstand operating for extended periods of time.

- Test conditions:
 - > 20 mL sample of 30% aq. Ionic liqiud
 - Temperature = 20°C
 - > Time = 78.5 hours (3 days, 6.5 hours)

Test 4 Results

- Successfully demonstrated this process works well for extended period of time.
- All water pulled from aq. ionic liquid and presaturated membrane (no water flux could be calculated)
- Liquid remaining in funnel was quite viscous (this is the ionic liquid)

The membrane after the water was pulled from it during Test 4

Conclusion

- A sulfonated Teflon membrane could successfully separate water from an ionic liquid
- Stirring is needed to avoid any build up on one side of a membrane
- Membrane can withstand exposure to ionic liquids at elevated temperature and for extended periods of time
- Could be a highly successful replacement for distillation in the low-gravity space environment

Future Research

- Test pervaporation during actual regolith (or simulant) solubilization
- Examine the rest of the oxygen extraction process for issues that may arise during low-gravity operation
- Further develop and refine process schematic so an actual model can be made and deployed into space

Acknowledgements

- Pl and Co-Pl Dr. Peter Curreri and Dr. Laurel Karr
- Mr. David Donovan, Mr. Matt Malone, and Mr. Steve Paley
- Dr. Frank Six and Dr. Gerald Karr
- The NASA Academy
- The Michigan Space Grant Consortium
- Wayne State University

Questions?