

Fakultät Mathematik Institut für Geometrie, Professur für Nichtlineare Analysis

PARTIELLE DIFFERENTIALGLEICHUNGEN

Übungen

Prof. Dr. Friedemann Schuricht

Sommersemester 2020

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Partielle Differentialgleichungen – Übungsblatt 1

Aufgabe 1. Es sei $U \subset \mathbb{R}^n$ ein Gebiet, $u \in C^2(U, \mathbb{R}^n)$, $A \in C^1(U, \mathbb{R}^{m \times n})$, $\varphi \in C^1(U)$ und $c \in \mathbb{R}^m$. Zeigen Sie:

- (a) $\operatorname{div}((Du)^{\top}) = (D(\operatorname{div} u))^{\top},$
- (b) $\operatorname{div}(cA) = c \operatorname{div} A$,
- (c) $\operatorname{div}(\varphi A) = A \cdot D\varphi + \varphi \operatorname{div} A$.

Hinweis: Wir betrachten Vektoren im \mathbb{R}^n als Zeilenvektoren, · ist das Skalarprodukt im \mathbb{R}^n , $Du = (\partial_j u_i)_{i,j=1,\dots,n}$, div und · wirken auf eine Matrix *zeilenweise*.

Es seien nun $u, v: U \to \mathbb{R}$ hinreichend glatt. Beweisen Sie die Formel von Leibniz:

$$D^{\alpha}(uv) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} u D^{\alpha - \beta} v$$

wobei für Multiindizes α, β gilt:

$$D^{\alpha}u = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}u, \qquad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta!(\alpha-\beta)!}, \qquad \alpha! = \alpha_1! \cdot \alpha_2! \cdot \dots \cdot \alpha_n!$$

und $\beta \leq \alpha$ genau dann, wenn $\beta_i \leq \alpha_i$ für i = 1, ..., n.

(zu a) Sei $u=(u_1,u_2,\ldots,u_n)\in C^2$. Wir notieren Vektoren verkürzt $(u_i)_i=(u_i)_{i=1,\ldots,n}=(u_1,u_2,\ldots,u_n)$. Es ist

$$\operatorname{div}\left((Du)^{\top}\right) = \operatorname{div}\begin{pmatrix} \partial_{1}u_{1} & \partial_{2}u_{1} & \cdots & \partial_{n}u_{1} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1}u_{n} & \partial_{2}u_{n} & \cdots & \partial_{n}u_{n} \end{pmatrix}^{\top} = \operatorname{div}\left(\partial_{j}u_{i}\right)_{i,j}^{\top} = \operatorname{div}\left(\partial_{i}u_{j}\right)_{i,j}^{\top}$$
$$= \begin{pmatrix} \partial_{11}u_{1} & \partial_{12}u_{2} & \cdots & \partial_{1n}u_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n1}u_{1} & \partial_{n2}u_{2} & \cdots & \partial_{nn}u_{n} \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} \partial_{ij}u_{j} \\ \sum_{j=1}^{n} \partial_{ij}u_{j} \end{pmatrix}_{i}$$

und außerdem

$$(D(\operatorname{div} u))^{\top} = \left(D\left(\sum_{i=1}^{n} \partial_{i} u_{i}\right)\right)^{\top} = \begin{pmatrix} \partial_{11} u_{1} + \partial_{21} u_{2} + \dots + \partial_{n1} u_{n} \\ \vdots \\ \partial_{1n} u_{1} + \partial_{2n} u_{2} + \dots + \partial_{nn} u_{n} \end{pmatrix} = \left(\sum_{j=1}^{n} \partial_{ji} u_{j}\right)_{i}$$

Wegen $u \in \mathbb{C}^2$ sind alle partiellen Ableitungen stetig und können somit vertauscht

werden. Daraus folgt die (zeilenweise) Gleichheit mit

$$\operatorname{div}\left(\left(Du\right)^{\top}\right) = \left(\sum_{j=1}^{n} \partial_{ij} u_{j}\right)_{i} = \left(\sum_{j=1}^{n} \partial_{ji} u_{j}\right)_{i} = \left(D(\operatorname{div} u)\right)^{\top}$$

(zu b) Es ist

$$\operatorname{div}(cA) = \operatorname{div}\left(\sum_{j=1}^{n} c_{j} a_{ij}\right)_{i} = \sum_{i=1}^{n} \partial_{i} \sum_{j=1}^{n} c_{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{i} c_{j} a_{ij}$$
$$c \cdot \operatorname{div}(A) = c \cdot \left(\sum_{j=1}^{n} \partial_{j} a_{ij}\right)_{i} = \sum_{i=1}^{n} c_{i} \sum_{j=1}^{n} \partial_{j} a_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_{j} c_{j} a_{ij}$$

und somit $\operatorname{div}(cA) = c \cdot \operatorname{div}(A)$.

(zu c) Man hat

$$A \cdot D\varphi = A \cdot (\partial_i \varphi)_i = \left(\sum_{j=1}^n a_{ij} \ \partial_j \varphi\right)_i$$
$$\varphi \operatorname{div}(A) = \varphi \cdot \left(\sum_{j=1}^n \partial_j a_{ij}\right)_i = \left(\sum_{j=1}^n \varphi \ \partial_j a_{ij}\right)_i$$
$$\operatorname{div}(\varphi A) = \operatorname{div}\left(\left(\varphi a_{ij}\right)_{i,j}\right) = \left(\sum_{j=1}^n \partial_j (\varphi a_{ij})\right)_i$$

Für fixiertes i (also zeilenweise) erhält man mit der Produktregel für (partielle) Ableitungen

$$\sum_{j=1}^{n} \partial_{j}(\varphi a_{ij}) = \sum_{j=1}^{n} ((\partial_{j}\varphi)a_{ij} + \varphi(\partial_{j}a_{ij})) = \sum_{j=1}^{n} (\partial_{j}\varphi)a_{ij} + \sum_{j=1}^{n} \varphi(\partial_{j}a_{ij})$$

und somit $\operatorname{div}(\varphi A) = A \cdot (D\varphi) + \varphi \cdot \operatorname{div}(A)$.

Leibnitz-Formel: Vollständige Induktion über $|\alpha| = k$.

(IA) k = 0: Für $|\alpha| = 0$, also $\alpha = 0$ ist

$$D^0(uv) = uv = \begin{pmatrix} 0 \\ 0 \end{pmatrix} D^0 u \ D^0 v$$

(IV) Für
$$|\alpha| = \sum_{i=1}^n \alpha_i = k$$
 gilt $D^{\alpha}(uv) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta} u D^{\alpha-\beta} v$.

(IS) $k \to k+1$: Seien $|\alpha| = |(\alpha_1, \alpha_2, \dots, \alpha_n)| = k+1$ und $\alpha' = (\alpha_1, \dots, \alpha_{n-1}, \alpha_n - 1)$ sowie $\beta' = (\beta_1, \dots, \beta_{n-1}, \beta_n + 1)$. Dann ist $|\alpha'| = k$ und $|\beta'| = |\beta| + 1$. Es gilt

$$D^{\alpha}(uv) = \partial_{x_{1}}^{\alpha_{1}} \dots \partial_{x_{n}}^{\alpha_{n}}(uv) = \partial_{x_{n}} \left(\partial_{x_{1}}^{\alpha_{1}} \dots \partial_{x_{n}}^{\alpha_{n}-1}(uv) \right)$$

$$= \partial_{x_{n}} \left(D^{\alpha'}(uv) \right)$$

$$\stackrel{\text{IV}}{=} \partial_{x_{n}} \left(\sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} D^{\beta} u \ D^{\alpha'-\beta} v \right)$$

$$= \sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} \left(\partial_{x_{n}}(D^{\beta} u) \ D^{\alpha'-\beta} v + D^{\beta} u \ \partial_{x_{n}}(D^{\alpha'-\beta} v) \right)$$

$$= \sum_{\beta \leq \alpha'} \binom{\alpha'}{\beta} \left(D^{\beta'} u \ D^{\alpha'-\beta} v + D^{\beta} u \ D^{\alpha-\beta} v \right)$$

$$= \dots$$

$$= \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} D^{\beta} u \ D^{\alpha-\beta} v$$

Aufgabe 2. Ermitteln Sie jeweils eine nichttriviale Lösung der folgenden partiellen Differentialgleichungen:

- (a) $v_y(x,y) = xy \cdot v(x,y)$
- (b) $u_x(x,y) + y \cdot u(x,y) = 0$

(zu a) Wir gehen analog zur Vorlesung vor und betrachten die Gleichung für fixiertes x = const.Dann erhalten wir eine gewöhnliche Differentialgleichung

$$u'(y) = xy \cdot u(y)$$

und lösen entweder durch geübtes Hinschauen oder mit Trennung der Variablen: sei f(u(y)) = u(y) und $g(y) = x \cdot y$. Der Ansatz

$$\int^{u(y)} \frac{1}{f(\xi)} d\xi = \int^{y} g(\xi) d\xi \implies \ln(|u(y)|) = \frac{1}{2} x y^{2} + C$$

Beachte, dass die unteren Integralgrenzen dabei in der Konstante C zusammengefasst sind, da wir keinen Anfangswert vorgegeben haben. Die Gleichung "umgestellt" ergibt eine Lösung

$$u(y) = \exp\left(\frac{1}{2}xy^2\right)$$
 bzw. $v(x,y) = \exp\left(\frac{1}{2}xy^2\right)$

Eine kurze Probe ergibt

$$v_y(x,y) = xy \cdot \exp\left(\frac{1}{2}xy^2\right) = xy \cdot v(x,y)$$

(zu b) Wir fixieren erneut eine Variable, diesmal $y={\rm const.}$ Diesmal sehen wir direkt eine Lösung, nämlich

$$u(x,y) = \exp(-xy)$$

Eine kurze Probe ergibt $u_x(x,y) + y \cdot u(x,y) = -y \cdot \exp(-xy) + y \cdot \exp(-xy) = 0.$

Zusatzaufgabe 3. Klassifizieren Sie die nachstehenden partiellen Differentialgleichungen nach folgenden Gesichtspunkten:

- (a) Ist die Differentialgleichung linear, semilinear, quasilinear oder voll nichtlinear?
- (b) Welche Ordnung hat die Differentialgleichung?

$$\Delta u = 0$$

$$-\Delta u = f(u)$$

$$|Du| = 1$$

$$u_t + \sum_{i=1}^n b^i u_{x_i} = 0$$

$$\det(D^2 u) = f$$

$$\det\left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = 0$$

$$u_t - \Delta u = f(u)$$

$$u_{tt} - \Delta u = 0$$

$$u_t + \operatorname{div} F(u) = 0$$

$$u_t + uu_x + u_{xxx} = 0$$

$$u_t + uu_x + u_{xxx} = 0$$

$$u_t + H(Du, x) = 0$$

$$u_t - \Delta(u^{\gamma}) = 0$$

$$-\Delta u = \lambda u$$

$$\operatorname{div}(|Du|^{p-2}Du) = 0$$

$$u_t + uu_x = 0$$

Hausaufgaben

Matr.-Nr. 4679202

Thema: Charakteristikenmethode

Ich bitte um Entschuldigung, dass meine Lösung so lang geworden ist. Aber ich habe mich bemüht mein Vorgehen detailliert zu beschreiben. ©

Aufgabe 4. Finden Sie Lösungen $u \in C^1$ der folgenden linearen Randwertprobleme:

- (a) $-3u_x + 2u_y = 0$ mit $u(x,y) = y^2 + 1$ auf $\Gamma = \{(1,s) \in \mathbb{R}^2 \mid s \in \mathbb{R}\}$
- (b) $u_x+u_y-u_z=xe^{y-z}$ mit u(0,y,z)=g(y,z) für alle $y,z\in\mathbb{R},$ wobei $g\in C^1(\mathbb{R}^2)$ beliebig ist
- (c) $2u_x u_y = 2u xe^x$ mit $u(0, y) = y^2$ für alle $y \in \mathbb{R}$

Erläutern Sie dabei Ihr Vorgehen und überprüfen Sie abschließend, ob die von Ihnen gefundene Lösung wirklich das Problem löst.

(zu a) Wir betrachten die Charakteristiken

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ 2 \end{pmatrix} \implies \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

Sei $\alpha(t) := u(x(t), y(t))$, d.h. α beschreibt u entlang der Charakteristiken. Es gilt

$$\alpha'(t) = u_x \cdot \dot{x}(t) + u_y \cdot \dot{y}(t) = -3u_x + 2u_y = 0$$

und somit ist u konstant entlang der Charakteristiken. Parametrisiere die Kurve Γ durch $x_0(s)=1$ und $y_0(s)=s$. Dann ergibt sich die Randwertbedingung zu $g(s)=s^2+1$. Wir prüfen nun die nichtcharakteristische Bedingung, d.h. ob die Kurve Γ auch alle Charakteristiken $\Xi_{(x_0,y_0)}$ durchläuft. Dazu prüfen wir den Tangentenvektor von Γ , nämlich $\begin{pmatrix} \dot{x}_0 \\ \dot{y}_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, und den Tangentenvektor der Charakteristik $\Xi_{(x_0,y_0)}$, nämlich $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, auf lineare Unabhängigkeit:

$$\det \begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix} = 3 \neq 0$$

Somit schneidet Γ alle Charakteristiken $\Xi_{(x_0,y_0)}$. Somit können wir die Schar der Charakteristiken beschreiben durch

$$x(s,t) = x_0(s) - 3t = 1 - 3t \quad \Rightarrow \quad t(x,y) = \frac{1-x}{3}$$
$$y(s,t) = y_0(s) + 2t = s + 2t \quad \Rightarrow \quad s(x,y) = y - 2t = y - \frac{2}{3}(1-x) = y + \frac{2}{3}x - \frac{2}{3}$$

Nach Konstruktion in der Vorlesung erhalten wir damit eine Lösung

$$u(x,y) = g(s(x,y)) = \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 + 1$$

Die Probe liefert mit den partiellen Ableitungen

$$\begin{array}{rcl} u_x(x,y) & = & \frac{4}{3} & \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 \\ u_y(x,y) & = & 2 & \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 \end{array} \right\} \quad \Rightarrow \quad -3 \cdot \frac{4}{3} \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 + 4 \left(y + \frac{2}{3}x - \frac{2}{3}\right)^2 = 0$$

und außerdem $u(1,y) = y^2 + 1$ für den Anfangswert. Somit ist u also Lösung der Differentialgleichung.

(zu b) Wir betrachten die partielle Differentialgleichung $u_x + u_y - u_z = x \cdot e^{y-z}$ mit der Randbedingung u(0, y, z) = g(y, z) für beliebiges $g \in C^1(\mathbb{R}^2)$. Definieren wir den "Rand" als die Fläche $\Gamma = \{(0, y, z) \in \mathbb{R}^3 : y, z \in \mathbb{R}\}$. Diese lässt sich parametrisieren mit

$$\gamma(\sigma,\tau) = \begin{pmatrix} x_0(\sigma,\tau) \\ y_0(\sigma,\tau) \\ z_0(\sigma,\tau) \end{pmatrix} = \begin{pmatrix} 0 \\ \sigma \\ \tau \end{pmatrix}$$

Für die Tangentialebene erhalten wir die Spannvektoren

$$\gamma_{\sigma}(\sigma, \tau) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \gamma_{\tau}(\sigma, \tau) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \Rightarrow \quad \dot{\gamma}(\sigma, \tau) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Betrachten wir die Charakteristiken $\Xi_{\sigma,\tau} = \operatorname{Im}(\xi)$ mit

$$\xi(t,\sigma,\tau) = \begin{pmatrix} x(t,\sigma,\tau) \\ y(t,\sigma,\tau) \\ z(t,\sigma,\tau) \end{pmatrix} = \begin{pmatrix} x_0(\sigma,\tau) + t \\ y_0(\sigma,\tau) + t \\ z_0(\sigma,\tau) - t \end{pmatrix} = \begin{pmatrix} t \\ \sigma + t \\ \tau - t \end{pmatrix}$$
(2.1)

Prüfen wir die nichtcharakteristische Bedingung um sicherzustellen, dass auch jede Charakteristik $\Xi_{\sigma,\tau}$ von Γ durchlaufen wird:

$$\det(\dot{\gamma} \mid \dot{\xi}) = \det \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 1 \neq 0$$

Bezeichne mit $f(u, x, y, z) = x \cdot e^{y-z}$ die rechte Seite der Differentialgleichung. Schreibe $\xi(t) = \xi(t, \sigma, \tau)$ für fixiertes σ und τ (x, y, z) analog). Sei $\alpha(t) := u(\xi(t))$ die Funktion u entlang einer Charakteristik $\Xi_{\sigma, \tau}$. Dann gilt

$$\dot{\alpha}(t) = Du \cdot \dot{\xi} = f(u(\xi(t)), \xi(t)) = f(\alpha(t), t, \sigma + t, \tau - t) = t \cdot e^{(\sigma + t) - (\tau - t)}$$

$$= t \cdot e^{\sigma - \tau + 2t}$$
(2.2)

und dem Anfangswert $\alpha(0) = \alpha(0, \sigma, \tau) = g(\sigma, \tau)$. Lösen wir also dieses Anfangswert-

problem und integrieren dazu die rechte Seite in Gleichung (2.2) partiell:

$$\alpha(t) = \int t \cdot e^{\sigma - \tau + 2t} dt = \left(\frac{1}{2}e^{\sigma - \tau + 2t}\right) t - \int \frac{1}{2}e^{\sigma - \tau + 2t} dt$$
$$= \frac{1}{2}t \cdot e^{\sigma - \tau + 2t} - \frac{1}{4}e^{\sigma - \tau + 2t} + C(\sigma, \tau)$$
$$= \left(\frac{1}{2}t - \frac{1}{4}\right)e^{\sigma - \tau + 2t} + C(\sigma, \tau)$$

Mit dem Anfangswert $\alpha(0) = g(\sigma, \tau)$ ergibt sich die Konstante

$$\alpha(0) = \frac{1}{4}e^{\sigma-\tau} + C(\sigma,\tau) \stackrel{!}{=} g(\sigma,\tau) \ \Rightarrow \ C(\sigma,\tau) = \frac{1}{4}e^{\sigma-\tau} + g(\sigma,\tau)$$

und somit die konkrete Lösung

$$\alpha(t) = \left(\frac{1}{2}t - \frac{1}{4}\right)e^{\sigma - \tau + 2t} + \frac{1}{4}e^{\sigma - \tau} + g(\sigma, \tau)$$

Aus Gleichung (2.1) erhalten wir die Inverse von ξ als

$$\xi^{-1}(x,y,z) = \begin{pmatrix} t(x,y,z) \\ \sigma(x,y,z) \\ \tau(x,y,u) \end{pmatrix} = \begin{pmatrix} x \\ y-x \\ z+x \end{pmatrix}$$

Nach Konstruktion in der Vorlesung erhalten wir die Lösung

$$\begin{split} u(x,y,z) &= \alpha(\xi^{-1}(x,y,z)) \\ &= \left(\frac{1}{2}x - \frac{1}{4}\right)e^{(y-x)-(z+x)+2x} + \frac{1}{4}e^{(y-x)-(z+x)} + g(y-x,z+x) \\ &= \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + g(y-x,z+x) \end{split}$$

Nun prüfen wir noch, dass die gefundene Funktion auch wirklich eine Lösung der Differentialgleichung ist. Für die partiellen Ableitungen gilt

$$u_x(x,y,z) = \frac{1}{2}e^{y-z} - \frac{1}{2}e^{y-z-2x} - \partial_1 g(y-x,z+x) + \partial_2 g(y-x,z+x)$$

$$u_y(x,y,z) = \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + \partial_1 g(y-x,z+x)$$

$$u_z(x,y,z) = -\left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} - \frac{1}{4}e^{y-z-2x} + \partial_2 g(y-x,z+x)$$

Einsetzen liefert

$$\begin{split} &\frac{1}{2}e^{y-z} - \frac{1}{2}e^{y-z-2x} - \partial_1 g(y-x,z+x) + \partial_2 g(y-x,z+x) \\ &+ \left(\frac{1}{2}x - \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} + \partial_1 g(y-x,z+x) \\ &+ \left(\frac{1}{2}x + \frac{1}{4}\right)e^{y-z} + \frac{1}{4}e^{y-z-2x} - \partial_2 g(y-x,z+x) \\ &= e^{y-z} \cdot \left(\frac{1}{2} + \frac{1}{2}x - \frac{1}{4} + \frac{1}{2}x - \frac{1}{4}\right) - e^{y-z-2x} \left(\frac{1}{2} - \frac{1}{4} - \frac{1}{4}\right) \\ &= x \cdot e^{y-z} \end{split}$$

Außerdem ist die Randwertbedingung erfüllt, denn

$$u(0, y, z) = -\frac{1}{4}e^{y-z} + \frac{1}{4}e^{y-z} + g(y, z) = g(y, z)$$

und somit u tatsächlich Lösung der partiellen Differentialgleichung.

(zu c) Gegeben sei die partielle Differentialgleichung $2u_x - u_y = 2u + x \cdot e^x$ und die Randwertbedingung $u(0,y) = y^2$ für alle $y \in \mathbb{R}$. Bezeichnen wir mit $f(u,x,y) = 2u - xe^x$ die rechte Seite. Die Randwerte werden auf der Kurve $\Gamma = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}$ angenommen. Diese können wir parametrisieren mit

$$\gamma(s) = \begin{pmatrix} x_0(s) \\ y_0(s) \end{pmatrix} = \begin{pmatrix} 0 \\ s \end{pmatrix} \implies \dot{\gamma}(s) = \begin{pmatrix} \dot{x}_0(s) \\ \dot{y}_0(s) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Damit wird die Randwertbedingung zu $g(s) = s^2$. Betrachten wir die Charakteristiken Ξ_s mit

$$\xi(t,s) = \begin{pmatrix} x(t,s) \\ y(t,s) \end{pmatrix} = \begin{pmatrix} x_0(s) + 2t \\ y_0(s) - t \end{pmatrix} = \begin{pmatrix} 2t \\ s+t \end{pmatrix}$$
 (2.3)

Die nichtcharakteristische Bedingung ist hier erfüllt, denn

$$\det \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} = -2 \neq 0$$

Betrachte nun die Funktion u entlang der Charakteristiken Ξ_s für fixiertes s beschrieben durch $\alpha(t) = u(\xi(t))$. Differenzieren ergibt

$$\dot{\alpha}(t) = u_x \cdot \dot{x} + u_y \cdot \dot{y} = f(u(\xi(t)), \xi(t)) = f(\alpha(t), 2t, s + t) = 2\alpha - 2t \cdot e^{2t}$$
 (2.4)

bei $\alpha(0,s)=g(s)=s^2$. Dieses Anfangswertproblem lösen wir mit Variation der Konstanten. Das zugehörige homogene Problem besitzt offensichtlich die Lösung $\alpha(t)=c(t)\cdot e^{2t}$. Differenzieren wir diese Gleichung erhalten wir $\dot{\alpha}(t)=\dot{c}(t)\cdot e^{2t}+2c(t)\cdot e^{2t}$. Setzen wir dies nun in Gleichung (2.4) ein, dann erhalten wir für ein $\hat{c}\in\mathbb{R}$

$$\dot{c}(t) \cdot e^{2t} + 2c(t) \cdot e^{2t} = 2c(t) \cdot e^{2t} - 2t \cdot e^{2t} \implies \dot{c}(t) = -2t \implies c(t) = \hat{c} - t^2$$

Damit ergibt sich die allgemeine Lösung $\alpha(t)=e^{2t}(\hat{c}-t^2)$. Durch den Anfangswert gilt $\alpha(0)=\hat{c}=s^2$ und somit ist $\alpha(t)=e^{2t}(s^2-t^2)$ konkrete Lösung des Anfangswertproblems, was sich auch leicht überprüfen lässt:

$$\dot{\alpha}(t) = 2\underbrace{e^{2t}(s^2 - t^2)}_{=\alpha(t)} - 2t \cdot e^{2t} = 2\alpha(t) - 2t \cdot e^{2t}$$
 und $\alpha(0) = s^2$

Aus Gleichung (2.3) erhalten wir

$$\xi^{-1}(x,y) = \begin{pmatrix} t(x,y) \\ s(x,y) \end{pmatrix} = \begin{pmatrix} \frac{1}{2}x \\ \frac{1}{2}x + y \end{pmatrix}$$

Damit folgt nach Konstruktion in der Vorlesung eine Lösung

$$u(x,y) = \alpha(s(x,y)) = e^x \left(\left(\frac{1}{2}x + y \right)^2 - \frac{1}{4}x^2 \right)$$
$$= e^x \left(\frac{1}{4}x^2 + xy + y^2 - \frac{1}{4}x^2 \right)$$
$$= e^x \left(y^2 + xy \right)$$

Dann gilt für die partiellen Ableitungen

$$u_x = e^x (y^2 + xy) + y \cdot e^x$$
$$u_y = e^x (2y + x)$$

und somit

$$2u_x - u_y = 2e^x(y^2 + xy) + 2y \cdot e^x - e^x(2y + x)$$
$$= 2u + e^x(2y - 2y - x)$$
$$= 2u - x \cdot e^x$$

und $u(0,y)=e^0(y^2+0\cdot y)=y^2$. Damit ist also u tatsächlich Lösung der partiellen Differentialgleichung.

Partielle Differentialgleichungen – Übungsblatt 3

Aufgabe 6. Bestimmen Sie eine Lösung $u \in C\dot{z}(U)$ des quasilinearen Randwertproblems

$$uu_x + u_y = 1$$

$$u(x, x) = \frac{1}{2}x \quad \forall x \in \mathbb{R} \setminus \{\xi\}$$

wobei $\xi \in \mathbb{R}$ geeignet gewählt und U eine geeignet gewählte Umgebung der Menge ist, auf der u vorgegeben ist. Nutzen Sie dazu die Methode der Charakteristiken, überprüfen Sie Ihr Ergebnis und skizzieren Sie einige Charakteristiken in der Nähe des Punktes (ξ, ξ) .

Aus der Vorlesung kennen wir die Notation $a(u(x),x)\cdot Du+b(u(x),x)=0$. Wir notieren a(u(x,y),x,y)=(u(x,y),1) und b(u(x,y),x,y)=-1. Aus der Randwertbedingung erhalten wir eine Kurve $\Gamma=\left\{(x,x)\in\mathbb{R}^2:x\in\mathbb{R}\setminus\{\xi\}\right\}$ mit Parametrisierung $\gamma(s)=\left(\begin{smallmatrix}x_0(s)\\y_0(s)\end{smallmatrix}\right)=\left(\begin{smallmatrix}s\\s\end{smallmatrix}\right)$, auf der $g(s)=\frac{1}{2}s$ gilt. Wir überprüfen die nichtcharakteristische Bedingung gemäß Konstruktion in der Vorlesung als

$$\det\left(\dot{\gamma}\mid a(g(s),\gamma(s))\right) = \det\begin{pmatrix}1 & g(s)\\1 & 1\end{pmatrix} = \det\begin{pmatrix}1 & \frac{1}{2}s\\1 & 1\end{pmatrix} = 1 - \frac{1}{2}s \neq 0 \ \forall s \neq 2$$

Wähle somit also $\xi = 2$, um die Regularität zu sichern. Betrachten wir $\alpha(t, s) = u(x(t, s), y(t, s)$ als die Funktion u entlang der Charakteristiken. Da die partielle Differentialgleichung quasilinear ist, reichen die beiden folgenden charakteristischen Gleichungen zu lösen aus:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = a(\alpha, x, y) = \begin{pmatrix} \alpha \\ 1 \end{pmatrix}$$

$$\dot{\alpha} = -b(\alpha, x, y) = 1$$

mit den Anfangswerten $\alpha(0, s) = \frac{1}{2}s$, x(0, s) = s und y(0, s) = s. Lösen wir diese gewöhnlichen Differentialgleichungen:

$$\begin{array}{lll} \alpha(t) = t + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = \frac{1}{2}s & \Rightarrow & \alpha(t,s) = t + \frac{1}{2}s \\ y(t) = t + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = s & \Rightarrow & y(t,s) = t + s \\ x(t) = \frac{1}{2}t^2 + \frac{1}{2}st + c(s) & \stackrel{\mathrm{AW}}{\Rightarrow} & c(s) = s & \Rightarrow & x(t,s) = \frac{1}{2}t^2 + \frac{1}{2}st + s \end{array}$$

Wegen der charakteristischen Bedingung können wir dieses Gleichungssystem nach t und s auflösen:

$$y(t,s) = t + s \implies s = y - t$$

$$x(t,s) = \frac{1}{2}t^2 + \frac{1}{2}st + s = \frac{1}{2}t^2 + \frac{1}{2}(y - t)t + y - t = t\left(\frac{1}{2}y - 1\right) + y$$

also

$$t(x,y) = \frac{x-y}{\frac{1}{2}y-1}$$
 und $s(x,y) = y - \frac{x-y}{\frac{1}{2}y-1}$

Setzen wir dies als Lösung $u(x,y) = \alpha(t(x,y),s(x,y))$ zusammen, erhalten wir

$$u(x,y) = \alpha \left(\frac{x-y}{\frac{1}{2}y-1}, \ y - \frac{x-y}{\frac{1}{2}y-1} \right)$$

$$= \frac{x-y}{\frac{1}{2}y-1} + \frac{1}{2}y - \frac{1}{2}\frac{x-y}{\frac{1}{2}y-1}$$

$$= \frac{x-y}{y-2} + \frac{1}{2}y \qquad \forall x, y \in \mathbb{R}, y \neq 2$$

Überprüfen wir unser Ergebnis: Es gilt

$$u(x,y) = \frac{x-y}{y-2} + \frac{1}{2}y$$

$$u_x(x,y) = \frac{1}{y-2}$$

$$u_y(x,y) = \frac{-1}{y-2} - \frac{x-y}{(y-2)^2} + \frac{1}{2} = \frac{2-x}{(y-2)^2} + \frac{1}{2}$$

Setzen wir dies in die partielle Differentialgleichung ein, so erhalten wir

$$u(x,y) \cdot u_x(x,y) + u_y(x,y) = \left(\frac{x-y}{y-2} + \frac{1}{2}y\right) \cdot \frac{1}{y-2} + \frac{2-x-2y}{(y-2)^2} + \frac{1}{2}$$

$$= \frac{x-y}{(y-2)^2} + \frac{1}{2}y\frac{1}{y-2} + \frac{2-x}{(y-2)^2} + \frac{1}{2}$$

$$= \frac{2-y}{(y-2)^2} + \frac{1}{2}y\frac{1}{y-2} + \frac{1}{2}$$

$$= \left(\frac{1}{2}y-1\right)\frac{1}{y-2} + \frac{1}{2}$$

$$= 1$$

und für die Randwerte $u(x,x) = \frac{1}{2}x$ für alle $x \neq 2$.

Betrachten wir die Charakteristiken beschrieben mit einer Parametrisierung für fixiertes $s \neq 2$ und betrachten das Gleichungssystem

$$x(t) = \begin{pmatrix} \frac{1}{2}t^2 + \frac{1}{2}st + s \\ t + s \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \implies t = 2 - s \implies 2 = \frac{1}{2}(2 - s)^2 + \frac{1}{2}s(2 - s) + s = 2$$

Somit sind die Gleichungen unabhängig von $s \in \mathbb{R} \setminus \{2\}$ erfüllt und alle Charakteristiken gehen durch den Punkt (2, 2).

Partielle Differentialgleichungen – Übungsblatt 4

Aufgabe 7. Wir betrachten die Burgers-Gleichung

$$u_t + uu_x = 0$$
 für $(x, t) \in \mathbb{R} \times (0, \infty)$
 $u(x, 0) = g(x)$ für alle $x \in \mathbb{R}$

(a) Es sei zuerst g gegeben durch

$$g(x) = \begin{cases} 1 & \text{für } x \ge 0, \\ 0 & \text{für } x < 0 \end{cases}$$

Zeigen Sie, dass die Funktionen

$$v(x,t) = \begin{cases} 1 & \text{für } x \ge \frac{1}{2}t, \\ 0 & \text{für } x < \frac{1}{2}t \end{cases} \quad \text{und} \quad w(x,t) = \begin{cases} 1 & \text{für } x \ge t, \\ \frac{x}{t} & \text{für } x \in [0,t), \\ 0 & \text{für } x < 0 \end{cases}$$

schwache Lösungen sind.

Hinweis: Es genügt, die Randwerte, die Rankine-Hugoniot-Bedingung auf Sprungkurven und die Differentialgleichung abseits dieser Kurven zu überprüfen.

(b) Es sei nun g gegeben durch

$$g(x) = \begin{cases} 1 & \text{für } x \le 0 \\ 1 - x & \text{für } 0 \le x \le 1 \\ 0 & \text{für } x \ge 1 \end{cases}$$

- i. Offenbar ist $g \notin C^1(\mathbb{R})$. Stellen Sie dennoch die charakteristischen Gleichungen auf und ermitteln Sie, welche Lösung man formal für t < 1 erwarten würde.
- ii. In welchen Punkten $(x,t) \in \mathbb{R} \times (0,1)$ gilt $u_t + uu_x = 0$?
- iii. Setzen Sie u derart auf $\mathbb{R} \times (0, \infty)$ fort, dass nur eine Sprungkurve existiert und dass entlang dieser die Rankine-Hugoniot-Bedingung erfüllt ist.

Hinweis: Es bietet sich an, dass u für $t \ge 1$ nur die Werte 0 und 1 annimmt.

Für die Burgers-Gleichung gilt in Anlehnung an die Notation der Vorlesung $F(u)_x = uu_x$ und damit $F(u) = \frac{1}{2}u^2$.

(zu a) Wir betrachten die Funktion v. Für die Randwerte, d.h. für y=0 gilt

$$v(x,0) = \begin{cases} 1 & \text{für } x \ge 0 \\ 0 & \text{für } x < 0 \end{cases} = g(x) \qquad \text{für alle } x \in \mathbb{R}$$

Die Sprungkurve ist gegeben durch $s(t) = \frac{1}{2}t$ mit $\dot{s} = \frac{1}{2}$. Es gilt [[v]] = -1 und $[[F(v)]] = 0 - \frac{1}{2} = \frac{1}{2}$, also ist mit $[[F(v)]] = \dot{s} \cdot [[v]]$ die Rankine-Hugoniot-Bedingung erfüllt. Betrachte die Differentialgleichung abseits der Sprungkurve:

- Sei $x > \frac{1}{2}t$. Dann ist v gegeben durch v(x,t) = 1 und somit $v_t = v_x \equiv 0$. Eingesetzt in die PDE ergibt dies $v_t + vv_x = 0 + 1 \cdot 0 = 0$. \checkmark
- Sei $x < \frac{1}{2}t$. Dann ist v gegeben durch v(x,t) = 0 und somit $v_t = v_x \equiv 0$. Eingesetzt in die PDE ergibt dies $v_t + vv_x = 0 + 0 \cdot 0 = 0$. \checkmark

Betrachten wir nun die Funktion w. Die Randwerte werde wegen

$$w(x,0) = \begin{cases} 1 & \text{für } x \ge 0 \\ 0 & \text{für } x < 0 \end{cases} = g(x) \qquad \text{für alle } x \in \mathbb{R}$$

erfüllt. Wir erhalten hier zwei Sprungkurven:

■ Die Winkelhalbierende können wir durch $s_1(t) = t$ parametrisieren, also ist $\dot{s} = 1$. Dann ergibt sich für die Differenzen

$$[[F(w)]] = \frac{1}{2} - \frac{1}{2} = 0 \quad \text{ und } \quad [[w]] = 1 - \frac{t}{t} = 0 \quad \Rightarrow \quad [[F(w)]] = \dot{s_1} \cdot [[w]]$$

■ Für die andere Sprungkurve, die wir mit $s_2(t) = 0$ parametrisieren $(\dot{s} = 0)$, erhalten wir

$$[[F(w)]] = 0 - 0 = 0$$
 und $[[w]] = \frac{0}{t} - 0 = 0$ \Rightarrow $[[F(w)]] = \dot{s_2} \cdot [[w]]$

Die Differentialgleichung wird abseits der Sprungkurven auch erfüllt:

- Sei x > t. Dann ist w gegeben durch w(x,t) = 1 und somit $w_t = w_x \equiv 0$. Eingesetzt in die PDE ergibt dies $w_t + ww_x = 0 + 1 \cdot 0 = 0$. \checkmark
- Sei $x \in [0,t)$. Dann ist w gegeben durch $w(x,t) = \frac{x}{t}$ und somit $w_t = \frac{-x}{t^2}$ und $w_x = \frac{1}{t}$. Eingesetzt in die PDE ergibt dies $w_t + ww_x = \frac{-x}{t^2} + \frac{x}{t} \frac{1}{t} = 0$. \checkmark
- Sei x < 0. Dann ist w gegeben durch w(x,t) = 0 und somit $w_t = w_x \equiv 0$. Eingesetzt in die PDE ergibt dies $w_t + ww_x = 0 + 0 \cdot 0 = 0$. \checkmark

Damit sind also v und w schwache Lösungen der partiellen Differentialgleichung.

(zu b) Mit y := (x, t), $a(u, y) = \begin{pmatrix} u \\ 1 \end{pmatrix}$ und b(u, y) = 0 hat die Burgergsgleichung die quasilineare

Form der Vorlesung. Dann sind die charakteristischen Gleichungen gegeben durch

$$\begin{split} \dot{y}(\tau,\sigma) &= \left(\begin{matrix} \dot{x} \\ \dot{t} \end{matrix} \right) = a(\alpha,y) = \left(\begin{matrix} \alpha \\ 1 \end{matrix} \right) \\ \dot{\alpha}(\tau,\sigma) &= a(\alpha,y) \cdot Du = -b(u,y) = 0 \quad \text{mit} \quad \alpha(0,\sigma) = g(\sigma) \end{split}$$

Aus der zweiten Gleichung erhalten wir die Lösung $\alpha(\tau,\sigma)=g(\sigma)$, d.h. u ist entlang der Charakteristiken konstant. Aus der ersten Gleichung erhalten wir zum einen die Identifizierung $\tau=t$, d.h. die Charakteristiken können durch die Zeit t parametrisiert werden. Zum anderen die gewöhnliche Differentialgleichung $\dot{x}=\alpha$ mit der Lösung $x(\tau,\sigma)=g(\sigma)\cdot \tau+s$ bzw. mit der Identifizierung dann $x(t)=g(\sigma)\cdot t+\sigma$. Setzen wir die Definition von g ein, so erhalten wir

$$x(t) = \begin{cases} t + \sigma & \sigma \le 0 \\ (1 - \sigma)t + \sigma & 0 \le \sigma \le 1 \\ \sigma & \sigma \ge 1 \end{cases}$$

Für $t \leq 1$ können wir jeden Fall umstellen und erhalten

$$\sigma = \begin{cases} x - t & x - t \le 0\\ \frac{x - t}{1 - t} & x - t \ge 0 \land x \le 1\\ x & x \ge 1 \end{cases}$$

Nach Konstruktion erhalten wir dann die Lösung

$$u(x,t) = \alpha(\tau,\sigma) = g(\sigma(t,x)) = \begin{cases} 1 & x-t \le 0\\ 1 - \frac{x-t}{1-t} & x-t \ge 0 \land x \le 1\\ 0 & x \ge 1 \end{cases}$$

Sei nun $t \in (0,1)$. Wir prüfen die Gültigkeit der Differentialgleichung:

- Sei $x-t \le 0$. Dann ist also u(x,t) = 1 und $u_x = u_t \equiv 0$ und die Differentialgleichung erfüllt.
- Ist $x t \ge 0$ und $x \le 1$, dann ist $u(x,t) = 1 \frac{x-t}{1-t}$ und $u_x(x,t) = \frac{1}{1-t}$ sowie $u_t(x,t) = \frac{(t-1)+(x-t)}{(1-t)^2}$. In die Differentialgleichung eingesetzt ergibt dies

$$u_t + uu_x = \frac{(t-1) + (x-t)}{(1-t)^2} + \frac{1}{1-t} - \frac{x-t}{(1-t)^2} = 0$$
 \checkmark

• Sei $x \ge 1$. Dann ist $u = u_x = u_t \equiv 0$ und die Differentialgleichung damit erfüllt.

Somit ist u Lösung der Differentialgleichung für alle $x \in \mathbb{R}$ und $t \in (0,1)$.

Aufgabe 8. Betrachten Sie das Beispiel "Ampel (von rot auf grün)" aus der Vorlesung, modelliert durch

$$u_t + F(u)_x = 0$$
 für $(x, t) \in \mathbb{R} \times (0, \infty)$
 $u(x, 0) = g(x)$ für alle $x \in \mathbb{R}$

mit

$$F(u) = u(60 - \frac{2}{5}u)$$
 und $g(x) = \begin{cases} 150 & \text{für } x < 0 \\ 0 & \text{für } x \ge 0 \end{cases}$

(a) In der Vorlesung wurde in Teil a) eine Funktion u_a explizit gegeben. In Teil b) wurde eine weitere Lösung u_b skizziert. Ermitteln Sie u_b explizit.

Hinweis: Die charakteristischen Gleichungen geben u_b auf eine großen Menge vor. Ermitteln Sie u_b für die restlichen (x,t), indem sie eine differenzierbare reelle Funktion v derat bestimmen, dass $u_b(x,t) = v(\frac{x}{t})$ die Differentialgleichung löst.

- (b) Überprüfen Sie für u_a und u_b entlang aller Sprungkurven die Rankine-Hugoniot-Bedingung und die Entropiebedingung.
- (zu a) Für die skalare Erhaltungsgleichung erhalten wir die aus der Vorlesung bekannten Bezeichnungen mit $y=(x,t),\ a(u,y)=(60-\frac{4}{5}u\ ,\ 1)$ und $b\equiv 0$. Außerdem sind die Startwerte der charakteristischen Gleichungen gegeben durch $x_0(s)=s,\ t_0(s)=0$, und als Randwerte $g(s)=150\cdot \mathbbm{1}_{\{s<0\}}(s)$. Wir erhalten die charakteristischen Gleichungen

$$\dot{y}(\tau,\sigma) = \begin{pmatrix} \dot{x} \\ \dot{t} \end{pmatrix} = a(\alpha,y) = \begin{pmatrix} 60 - \frac{4}{5}u \\ 1 \end{pmatrix}$$
$$\dot{\alpha}(\tau,\sigma) \stackrel{\mathrm{DGI}}{=} -b(\alpha,y) = 0$$

Aus der letzten Zeile der ersten Gleichung erhalten wir dabei die Identifizierung $t(\tau,\sigma)=\tau$. Die zweite charakteristische Gleichung löst sich unter Nutzung des Anfangswertes $\alpha(0,\sigma)=g(\sigma)$ zu $\alpha(\tau,\sigma)=g(\sigma)$. Setzen wir dies in die erste Zeile der ersten Gleichung ein, so erhalten wir $\dot{x}(\tau,\sigma)=60-\frac{4}{5}g(\sigma)$. Dies löst sich mit dem Anfangswert $x(0,\sigma)=\sigma$ zu

$$x(\tau,\sigma) = 60\tau - \frac{4}{5}g(\sigma) \cdot \tau + \sigma = \begin{cases} -60t + \sigma & \sigma < 0\\ 60t + \sigma & \sigma \ge 0 \end{cases}$$

Für $\tau=t>0$ lässt sich dies umstellen zu

$$\sigma(x,t) = \begin{cases} x + 60t & x < 0 \\ x - 60t & x \ge 0 \end{cases}$$

Damit erhalten wir die Lösung

$$u(x,t) = \alpha(t,\sigma) = \begin{cases} 150 & \sigma(x,t) < 0 \\ 0 & \sigma(x,t) \ge 0 \end{cases}$$

Da $t \in (0, \infty)$ ist, ist somit u auf der Menge $\{(x, t) : t \in (0, \infty), x \notin (-60t, 60t)\}$ eindeutig vorgegeben. Wir erweitern nun auf $t \in \mathbb{R}$ und betrachte $x \in (-60t, 60t)$. Dabei soll eine Funktion v mit $u(x,t) = v(\frac{x}{t})$ bestimmt werden, die die PDE erfüllt. Die Funktion u muss gemäß Vorlesung ihr Maximum auf der t-Achse, also für x = 0 annehmen. Dementsprechend gilt $u(0,t) = v(\frac{0}{t}) = v(0) = u_{\text{opt}} = 75$. Da wir $x \in (-60t, 60t)$ betrachten, gilt $\frac{x}{t} = (-60, 60)$. Die Randwerte sollten dabei mit minimaler (rechts) bzw. maximaler (links) Dichte gegeben sein, d.h. v(-60) = 150 und v(60) = 0. Diese drei Punkte definieren uns eine eindeutige Polynomfunktion zweiten Grades:

$$v(\xi) = -\frac{5}{4s}\xi + 75$$
 auf $(-60, 60)$

Damit können wir u definieren als

$$u(x,t) = v(\frac{x}{t}) = -\frac{5}{4}\frac{x}{t} + 75$$
 für $t \in \mathbb{R}$ und $x \in (-60t, 60t)$

Damit gilt $u_x(x,t) = -\frac{5}{4}\frac{1}{t}$ und $u_t(x,t) = \frac{5}{4}\frac{x}{t^2}$. In die PDE eingesetzt liefert dies

$$u_t + F(u)_x = u_t + \left(60 - \frac{4}{5}u\right)u_x$$
$$= \frac{5}{4}\frac{x}{t^2} + \left(60 + \frac{x}{t} - 60\right)\left(-\frac{5}{4}\frac{1}{t}\right) = \frac{5}{4}\frac{x}{t^2} - \frac{5}{4}\frac{x}{t^2} = 0 \qquad \checkmark$$

Somit können wir u schlussendlich definieren als

$$u(t,x) = \begin{cases} 150 & x < -60t \\ -\frac{5}{4}\frac{x}{t} + 75 & -60t \le x \le 60t \\ 0 & x > 60t \end{cases}$$

(zu b) Definiere $u_b := u$ von oben. Man sieht leicht, dass u_b eine stetige Funktion ist. Daher existieren keine Sprungkurven und die Rankine-Hugoniot- bzw. Entropie-Bedingungen müssen nicht betrachtet werden. (Die Rankine-Hugoniot-Bedingungen werden trivialerweise trotzdem erfüllt, aber die Entropie-Bedingung nicht mehr).

Aus der Vorlesung bekannt ist

$$u_a(x,t) = \begin{cases} 150 & x < 0 \\ 0 & x \ge 0 \end{cases}$$

Wir betrachten die Sprungkurve x=s(t)=0. Dann ist auch $\dot{s}=0$ und mit $F(u)=u\left(60-\frac{2}{5}u\right)$ gilt

$$\begin{array}{ccc} [[u]] & = & 150 \\ [[F(u)]] & = & 0 \end{array} \right\} \ \, \Rightarrow \ \, [[F(u)]] = \dot{s} \cdot [[u]]$$

Es ist $F'(u) = 60 - \frac{4}{5}u$ und damit $F'(u_l) = F'(150) = -60$ sowie $F'(u_r) = F'(0) = 60$. Somit ist die Entropie-Bedingung verletzt.

Partielle Differentialgleichungen – Übungsblatt 5

Aufgabe 12. Eine Funktion $u \in C^2(U)$ über einer offenen Menge $U \subset \mathbb{R}^n$ heißt harmonisch, falls $\Delta u = 0$ in U.

(a) Zeigen Sie, dass die durch

$$u(x) = \begin{cases} \ln(|x|) & \text{für } n = 2, \\ \frac{1}{|x|^{n-2}} & \text{für } n \ge 3 \end{cases}$$

definierte Funktion auf $\mathbb{R}^n \setminus \{0\}$ harmonisch ist.

- (b) Es sei $u \colon \mathbb{R}^n \to \mathbb{R}$ harmonisch und $A \in \mathbb{R}^{n \times n}$ orthogonal. Zeigen Sie, dass durch v(x) = u(Ax) eine harmonische Funktion $v \colon \mathbb{R}^n \to \mathbb{R}$ definiert wird.
- (zu a) Sei n=2 und $x=(x_1,x_2)\in U$. Dann ist $u(x)=\ln|x|=\ln(r(x))$ mit $r(x)\coloneqq|x|$. Mit $r_{x_i}(x)=\frac{x_i}{|x|}$ ist

$$u_{x_i}(x) = \frac{1}{|x|} \cdot r_{x_i}(x) = \frac{x_i}{|x|^2} = \frac{1}{x_1^2 + x_2^2}$$

Leiten wir weiter nach x_i ab, dann erhalten wir

$$u_{x_i x_i}(x) = \partial_{x_i} \frac{1}{x_1^2 + x_2^2} = \frac{x_1^2 + x_2^2 - x_i \cdot 2x_i}{|x|^4} = \frac{|x|^2 - 2x_i^2}{|x|^4}$$

und somit für den Laplace-Operator

$$\Delta u(x) = x_{x_1x_1} + u_{x_2x_2} = \frac{|x|^2 - 2x_2^2}{|x|^4} + \frac{|x|^2 - 2x_2^2}{|x|^4} = 0 \quad \checkmark$$

Sei $n \ge 3$. Dann ist $u(x) = |x|^{2-n}$. Es gilt

$$u_{x_{i}}(x) = (2 - n) \cdot |x|^{1 - n} \cdot \frac{x_{i}}{|x|} = (2 - n) \cdot |x|^{-n} \cdot x_{i}$$

$$u_{x_{i}x_{i}} = (2 - n) \cdot \partial_{x_{i}} \left(x_{i} \cdot |x|^{-n} \right)$$

$$= (2 - n) \cdot \left(|x|^{-n} - n \cdot |x|^{-n - 1} \frac{x_{i}}{|x|} \cdot x_{i} \right)$$

$$= (2 - n) \cdot \left(|x|^{-n} - n \cdot |x|^{-n - 2} \cdot x_{i}^{2} \right)$$

Damit gilt für den Laplace-Operator

$$\Delta u(x) = \sum_{i=1}^{n} u_{x_i x_i}(x) = (2 - n) \cdot \left(\sum_{i=1}^{n} |x|^{-n} - n \cdot |x|^{-n-2} \cdot \sum_{i=1}^{n} x_i^2 \right)$$
$$= (2 - n) \left(n \cdot |x|^{-n} - n \cdot |x|^{-n-2} \cdot |x|^2 \right)$$
$$= 0 \qquad \checkmark$$

(zu b) Sei $u \colon \mathbb{R}^n \to \mathbb{R}$ harmonisch und $A \in \mathbb{R}^{n \times n}$ orthogonal, d.h. $A^\top = A^{-1}$. Betrachte

$$v_{x_{i}}(x) = Du(Ax) \cdot \partial_{i}Ax = Du(Ax) \cdot a_{i} = \sum_{k=1}^{n} u_{x_{k}}(Ax) \cdot a_{ki}$$
$$v_{x_{i}x_{i}}(x) = \partial_{x_{i}} \left(\sum_{k=1}^{n} u_{x_{k}}(Ax) \cdot a_{ki} \right) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} u_{x_{k}x_{\ell}}(Ax) \cdot a_{ki}a_{\ell i}$$

Aufgrund der Orthogonalität von Aist $\sum_{i=1}^n a_{ki} a_{\ell i} = \delta_{k\ell}.$ Somit ist

$$\Delta v(x) = \sum_{i=1}^{n} v_{x_i x_i}(x) = \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{\ell=1}^{n} u_{x_k x_\ell}(Ax) \cdot a_{ki} a_{\ell i} = \sum_{i=1}^{n} u_{x_i x_i}(Ax) = \Delta u(Ax) = 0 \quad \checkmark$$

und daher auch v harmonisch.

Aufgabe 13. Es sei Φ die Fundamentallösung der Laplace-Gleichung, d. h.

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \ln(|x|) & \text{für } n = 2, \\ \frac{1}{n(n-2)\alpha(n)} \frac{1}{|x|^{n-2}} & \text{für } n \ge 3 \end{cases}$$

für $x \neq 0$. Zeigen Sie für $x \neq 0$ die Abschätzungen $|D\Phi(x)| \leq c |x|^{1-n}$ und $|D^2\Phi(x)| \leq c |x|^{-n}$.

Für n=2 gilt $\Phi_{x_i}(x)=-\frac{1}{2\pi}\frac{1}{|x|}\cdot\frac{x_i}{|x|}=-\frac{1}{2\pi}\cdot\frac{x_i}{|x|^2}$. Leiten wir für $n\geq 3$ nach x_i ab, so erhalten wir $\Phi_{x_i}(x)=\frac{2-n}{n(n-2)\alpha(n)}\cdot|x|^{1-n}\frac{x_i}{|x|}=\frac{2-n}{n(n-2)\alpha(n)}\cdot x_i\cdot|x|^{-n}$. Beide Fälle können wir mit einer universellen Konstante c zusammenfassen und erhalten mit $\frac{x_i}{|x|}\leq 1$ auch folgende Abschätzung:

$$\Phi_{x_i}(x) = c \cdot x_i \cdot |x|^{-n} = c \cdot |x|^{1-n} \cdot \frac{x_i}{|x|} \le c \cdot |x|^{1-n} \qquad (i = 1, \dots, n)$$

Damit erhalten wir für die erste Ungleichung

$$|D\Phi(x)| = \sqrt{\sum_{i=1}^{n} \Phi_{x_i}(x)^2} \le \sqrt{\sum_{i=1}^{n} \left(c \cdot |x|^{1-n}\right)^2} = c \cdot n \cdot |x|^{1-n} = c \cdot |x|^{1-n}$$

Für die zweiten Ableitungen gilt dann entsprechend

$$\Phi_{x_{i}x_{j}}(x) = c \left(\delta_{ij} |x|^{-n} - nx_{i} |x|^{-n-1} \cdot \frac{x_{j}}{|x|} \right) = c \cdot |x|^{-n} \left(\delta_{ij} - n \cdot x_{i}x_{j} \cdot |x|^{-2} \right)$$

$$\Rightarrow \left| D^{2}\Phi(x) \right| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \Phi_{x_{i}x_{j}}(x)^{2}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(|x|^{-n} \right)^{2} \cdot \left(c\delta_{ij} - nx_{i}x_{j} |x|^{-2} \right)^{2}}$$

$$= |x|^{-n} \sqrt{nc^{2} - 2n |x|^{-2} \sum_{i=1}^{n} x_{i}^{2} + n^{2} |x|^{-4} \sum_{i=1}^{n} x_{i}^{2} \sum_{j=1}^{n} x_{j}^{2}}$$

$$= |x|^{-n} \cdot \sqrt{nc^{2} - 2n + n^{2}}$$

$$\leq c |x|^{-n}$$

Partielle Differentialgleichungen – Übungsblatt 6

Aufgabe 15. Es sei $U \subset \mathbb{R}^n$ ein beschränktes Gebiet und $u \in C^2(U) \cap C(\overline{U})$ eine Lösung von

$$-\Delta u = f(u, x)$$
 in U , $u = g$ auf ∂U ,

wobei f und g im Folgenden spezifisch gewählt werden.

- (a) Es sei $f(u,x) = u u^3$ und g = 0. Beweisen Sie mit elementaren Methoden die Abschätzung $-1 \le u(x) \le 1$ für alle $x \in \overline{U}$.
- (b) Es sei $U = (-a, a)^n$ für ein a > 0, f(u, x) = -1 und g = 0. Finden Sie möglichst gute obere und untere Schranken für u(0), indem Sie eine harmonische Funktion der Form v = u + w betrachten, wobei w geeignet zu wählen ist
- (c) Es sei $U = B_1(0)$, f(u, x) = h(x) mit $h, g \in C^1(\mathbb{R}^n, \mathbb{R})$. Zeigen Sie, dass es eine von n, h, g und u unabhängige Konstante c > 0 gibt, für die gilt:

$$\max_{\overline{B_1(0)}} |u| \le c \cdot \left(\max_{\partial B_1(0)} |g| + \max_{\overline{B_1(0)}} |h| \right)$$

Hinweis: Betrachten sie u-v, wobei $v(x) = \max_{\partial B_1(0)} |g| + (e^2 - e^{x_1+1}) \max_{\overline{B_1(0)}} |h|$.

(zu a) Es sei $f(u) = u - u^3$ und $g \equiv 0$. Da U beschränktes Gebiet ist und \overline{U} eine abgeschlossene Menge, ist also \overline{U} kompakt. Da u stetig auf \overline{U} ist, nimmt u ein Maximum in einem $x_0 \in \overline{U}$ an. Nehmen wir an es sei $u(x_0) > 1$. Es gilt $\equiv g \equiv 0$ auf ∂U , d.h. um ein Maximum $u(x_0 > 1$ zu besitzen, muss $x_0 \in \text{int } U$ sein. Da $u(x_0)$ Maximum ist mit $u \in C^2(U)$, gilt $u_{x_ix_i}(x_0) \leq 0$ für alle $i = 1, \ldots, n$. Nach Differentialgleichung ist dann also

$$0 \le -\Delta u(x_0) = -\sum_{i=1}^n u_{x_i x_i}(x_0) = u(x_0) - u^3(x_0) = u(x_0) \left(1 - u(x_0)^2\right) \stackrel{u(x_0) > 1}{\le} 0$$

ein Widerspruch. Somit ist dann $u(x_0) \leq 1$ und aufgrund der Maximalität von $u(x_0)$ auch $u(x) \leq u(x_0) \leq 1$ für alle $x \in \overline{U}$.

Analog dazu nimmt u auf \overline{U} ein globales Minimum in $x_0 \in \overline{U}$ an, für welches nach gleicher Argumentation wie oben $x_0 \in \text{int } U$ gilt. Nehmen wir an, es sei $u(x_0) < -1$. Als Minimalstelle gilt $u_{x_ix_i}(x_0) \geq 0$ für alle $i = 1, \ldots, n$. Nach PDE gilt dann

$$0 \ge -\Delta u(x_0) = -\sum_{i=1}^{n} u_{x_i x_i}(x_0) = u(x_0) - u^3(x_0) = u(x_0) \left(1 - u(x_0)^2\right) \stackrel{u(x_0) < -1}{<} 0$$

ein Widerspruch. Somit ist $u(x) \ge u(x_0) \ge -1$ für alle $x \in \overline{U}$ und schließlich gilt die Einschließung $-1 \le u(x) \le 1$ für alle $x \in \overline{U}$.

(zu b) Sei a>0 und $U=(-a,a)^n$ ein n-dimensionaler (offener) Quader. Weiter sei $f\equiv -1$ und $g\equiv 0$. Gesucht sind "gute" (obere und untere) Schranken von u(0). Wir betrachten eine harmonische Funktion v der Form v=u+w, d.h. $0=\Delta v=\Delta u+\Delta w=-f(u,x)+\Delta w=1+\Delta w$. Somit suchen wir nun eine Funktion w mit $\Delta w=-1$. Eine Lösung dieser PDE erhalten wir beispielsweise mit $w(x)=-\frac{1}{2n}|x|^2=-\frac{1}{2n}\sum_{i=1}^n x_i^2$.

Wenden wir das Maximumsprinzip auf v an, dann nimmt damit v sein Maximum in einem $x_0 \in \partial U$ an. Aufgrund der Randwertbedingung gilt dort $u \equiv 0$. Wir betrachten oBdA den Randpunkt $x_0 = (a,0,\dots,0) \in \partial U$. Dieser minimiert $\sum_{i=1}^n x_i^2$, da jeder andere Randpunkt auch mindestens eine Koordinate $j \in \{1,\dots,n\}$ mit $x_j = \pm a$ besitzt. Somit gilt dann schlussendlich

$$u(0) = v(0) - w(0) = v(0) \le \max_{x \in U} v(x) \le \max_{x \in \partial U} (u(x) + w(x)) \le w(x_0) = -\frac{1}{2n}a^2$$

Analog liefert das Minimumsprinzip die Existenz des Minimum in $x_0 \in \partial U$. Nach Randwertbedingung gilt dort wieder $u(x_0) = 0$. Die Funktion w wird auf dem Rand minimiert durch den Punkt $x_0 = (a, \ldots, a) \in \partial U$ mit Minimalwert $w(x_0) = -\frac{1}{2n} \sum_{i=1}^n a^2 = -\frac{1}{2}a^2$. Analog zu oben gilt nun

$$u(0) = v(0) - w(0) = v(0) \ge \min_{x \in U} v(x) \ge \min_{x \in \partial U} (u(x) + w(x)) \ge w(x_0) = -\frac{1}{2}a^2$$

Somit ist schließlich $-\frac{1}{2}a^2 \le u(0) \le -\frac{1}{2n}a^2$.

(zu c) Sei $U = B_1(0)$ und f(u,x) = h(x)) für $g,h \in C^1(\mathbb{R}^n,\mathbb{R})$. Gemäß Hinweis betrachten wir u - v mit $v(x) := \max_{\partial B_1(0)} |g| + (e^-e^{x_1+1}) \cdot \max_{\overline{B_1(0)}} |h|$. Es ist $\Delta v(x) = -e^{x_1+1} \cdot \max_{\overline{B_1(0)}} |h| \le -\max_{\overline{B_1(0)}} |h|$. Somit ist

$$-\Delta(u-v)(x) = -\Delta u(x) + \Delta v(x) = f(u,x) - \Delta v(x) \le h(x) - \max_{B_1(0)} |h| \le 0 \quad \forall x \in B_1(0)$$

Damit ist u-v subharmonisch und mit dem Maximumsprinzip gilt auch hier, dass das Maximum in einem $x_0 \in \partial B_1(0)$ angenommen wird. Dementsprechend gilt

$$\frac{\max(u - v) \le \max_{\partial B_1(0)} (u - v) \le \max_{\partial B_1(0)} u + \max_{\partial B_1(0)} (-v) = \max_{\partial B_1(0)} |g| - \max_{\partial B_1(0)} |g| = 0$$

sowie daraus folgend

$$\begin{split} \frac{\max}{B_1(0)} u &\leq \frac{\max}{B_1(0)} (u - v) + \frac{\max}{B_1(0)} v = \frac{\max}{B_1(0)} v \\ &= \max_{\partial B_1(0)} |g| + \max_{\overline{B_1(0)}} |h| \cdot \frac{\max}{B_1(0)} \left(e^2 - e^{x_1 + 1} \right) \\ &= \max_{\partial B_1(0)} |g| + \left(e^2 - \underbrace{e^0}_{=1} \right) \cdot \frac{\max}{B_1(0)} |h| \end{split}$$

Die gleiche Rechnung funktioniert auch mit -u bzw. f(u,x)=-h(x), sodass $c\coloneqq e^2-1$ vollständig unabhängig ist.

Aufgabe 16. Für t>0 ist die Fundamentallösung der Wärmeleitungsgleichung auf \mathbb{R}^n gegeben durch $u(x,t)=(ct)^{-n/2}e^{-\frac{|x|^2}{4t}}$ mit einer Konstante c>0. Zeigen Sie:

- (a) $u_t = \Delta u$ auf $\mathbb{R}^n \times \mathbb{R}_+$.
- (b) $\lim_{t\to 0+} u(x,t) = 0$ für $x\neq 0$, $\lim_{t\to 0+} u(0,t) = \infty$ und $\lim_{t\to\infty} u(x,t) = 0$.
- (c) $\int_{\mathbb{R}^n} u(x,t)dx = 1$ für alle t > 0 und $c = 4\pi$.
- (zu a) Es sei $u(x,t)=(ct)^{-\frac{n}{2}}\cdot e^{-\frac{|x|^2}{4t}}$. Dann ist

$$u_{t}(x,t) = c^{-\frac{n}{2}} \left(-\frac{n}{2}\right) t^{-\frac{n}{2}-1} e^{-\frac{|x|^{2}}{4t}} + (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \cdot \frac{4|x|^{2}}{16t^{2}}$$

$$= (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(-\frac{n}{2}t^{-1} + \frac{|x|^{2}}{4t^{2}}\right)$$

$$= (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(\frac{|x|^{2} - 2nt}{4t^{2}}\right)$$

$$u_{x_{i}}(x,t) = (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \left(-\frac{2x_{i}}{4t}\right) = -(ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^{2}}{4t}} \cdot \frac{x_{i}}{2t}$$

$$u_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} \left(e^{-\frac{|x|^{2}}{4t}} \cdot \frac{x_{i}}{2t} \cdot \frac{x_{i}}{2t} - \frac{1}{2t}e^{-\frac{|x|^{2}}{4t}}\right)$$

$$= (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{x_{i}^{2}}{4t^{2}} - \frac{1}{2t}\right)$$

$$\Delta_{x}u(x,t) = \sum_{i=1}^{n} x_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{1}{4t^{2}} \cdot \sum_{i=1}^{n} x_{i}^{2} - \frac{n}{2t}\right)$$

$$= \sum_{i=1}^{n} x_{x_{i}x_{i}}(x) = (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} \left(\frac{|x|^{2} - 2nt}{4t^{2}}\right)$$

Somit gilt also $u_t = \Delta u$ auf $\mathbb{R}^n \times \mathbb{R}_+$.

(zu b) • Sei $x \neq 0$. Es ist

$$\lim_{t \to 0+} \frac{n}{2} \ln(t) + \frac{|x|^2}{4} \cdot \frac{1}{t} = \lim_{t \to 0+} \frac{2nt \ln(t) + |x|^2}{4t}$$

Betrachten wir zunächst den Ausdruck $2nt \cdot \ln(t) = 2n \cdot \frac{\ln(t)}{\frac{1}{t}}$. Mit der Regel von l'Hôpital erhalten wir

$$\lim_{t \to 0+} 2n \cdot \frac{\ln(t)}{\frac{1}{t}} = 2n \cdot \lim_{t \to 0+} \frac{\frac{1}{t}}{-\frac{1}{t^2}} = -2n \cdot \lim_{t \to 0+} t = 0$$

Damit erhalten wir dann recht einsichtig

$$\lim_{t \to 0+} \frac{2nt \ln(t) + |x|^2}{4t} = \infty$$

und schließlich

$$\lim_{t \to 0+} (ct)^{-\frac{n}{2}} \cdot e^{-\frac{|x|^2}{4t}} = c' \cdot \lim_{t \to 0+} e^{\ln(t^{-\frac{n}{2}})} \cdot e^{-\frac{|x|^2}{4t}} = c' \cdot \lim_{t \to 0+} e^{-\left(\frac{n}{2}\ln(t) + \frac{|x|^2}{4t}\right)} = 0$$

■ Sei $t_k \to 0+$ für $k \to \infty$. Dann ist

$$\lim_{t \to 0+} u(0,t) = \lim_{k \to \infty} (c \ t_k)^{-\frac{n}{2}} = \lim_{k \to \infty} \frac{1}{(c \ t_k)^{\frac{n}{2}}} = \infty$$

 \bullet Sei nun $t_k \to \infty$ für $k \to \infty$. Dann ist

$$\lim_{t \to \infty} (c \ t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}} = \lim_{k \to \infty} \frac{1}{(c \ t_k)^{\frac{n}{2}}} \cdot \exp\left(\lim_{k \to \infty} -\frac{|x|^2}{4t_k}\right) = 0 \cdot 1 = 0$$

(zu c) Wir wollen die Substitution $y_i = \frac{x_i}{2\sqrt{t}}$ verwenden. Dabei ist $\frac{d}{dx_i}y_i = \frac{1}{2\sqrt{t}}$. Es gilt

$$\int_{\mathbb{R}^{n}} (ct)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4t}} dx = (ct)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4t}} dx$$

$$= (ct)^{-\frac{n}{2}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{\frac{-x_{1}^{2} - \cdots - x_{n}^{2}}{4t}} dx_{1} \dots dx_{n}$$

$$= (ct)^{-\frac{n}{2}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \prod_{i=1}^{n} e^{\frac{-x_{i}^{2}}{4t}} dx_{1} \dots dx_{n}$$

$$= (4\pi t)^{-\frac{n}{2}} \prod_{i=1}^{n} \int_{\mathbb{R}} e^{-\frac{x_{i}^{2}}{4t}} dx_{i}$$

$$= \pi^{-\frac{n}{2}} \prod_{i=1}^{n} \int_{\mathbb{R}} e^{-\frac{x_{i}^{2}}{4t}} \cdot \frac{1}{2\sqrt{t}} dx_{i}$$

$$\sup_{i=1}^{n} \int_{\mathbb{R}} e^{-y_{i}^{2}} dy_{i}$$

$$= \prod_{i=1}^{n} \underbrace{\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-y_{i}^{2}} dy_{i}}_{=1}$$

Partielle Differentialgleichungen – Übungsblatt 7

Aufgabe 18. Für $x \in \mathbb{R}^n$, $t \in \mathbb{R}$ und r > 0 ist

$$E(x,t;r) = \left\{ (y,s) \in \mathbb{R}^{n+1} \mid s \le t, \Phi(x-y,t-s) \ge \frac{1}{r^n} \right\}$$

wobei Φ die Fundamentallösung der Wärmeleitungsgleichung ist. Zeigen Sie

$$E(0,0;r) = \left\{ (y,s) \in \mathbb{R}^{n+1} \mid s \le 0, |y|^2 \le 2ns \ln\left(-\frac{4\pi s}{r^2}\right) \right\}$$

und bestimmen Sie für jedes $s \in \mathbb{R}$ den Schnitt $B_s := \{y \in \mathbb{R}^n \mid (y,s) \in E(0,0;r)\}$

Hinweis: E(x,t;r) ist der aus der Vorlesung bekannte $W\ddot{a}rmeball$. Dabei ist $\Phi(x,0)$ als Grenzwert $\lim_{s\to 0+} \Phi(x,s)$ zu interpretieren. Analoges gilt in der Darstellung von E(0,0;r).

Es ist $\Phi(x,t)=(4\pi t)^{-\frac{n}{2}}e^{-\frac{|x|^2}{4t}}$ für t>0 die Fundamentallösung der Wärmeleitungsgleichungen. Betrachten wir E(0,0;r). Die Bedingung $s\leq t$ wird damit automatisch zu $s\leq 0$ und wir können umstellen:

$$\Phi(-y, -s) = (-4\pi s)^{-\frac{n}{2}} e^{-\frac{|y|^2}{-4s}} \ge \frac{1}{r^n} \qquad \Leftrightarrow \qquad e^{-\frac{|y|^2}{-4s}} \ge \frac{(-4\pi s)^{\frac{n}{2}}}{r^n}$$

$$\Leftrightarrow \qquad -\frac{|y|^2}{-4s} \ge \ln\left(\frac{-4\pi s}{r^2}\right)^{\frac{n}{2}}$$

$$\Leftrightarrow \qquad \frac{|y|^2}{-4s} \le \frac{n}{2} \cdot \ln\left(\frac{r^2}{-4\pi s}\right)$$

$$\Leftrightarrow \qquad |y|^2 \le 2ns \cdot \ln\left(-\frac{4\pi s}{r^2}\right)$$

Betrachten wir nun $B_s := \{y \in \mathbb{R}^n : (y,s) \in E(0,0;r)\}$. Wir unterscheiden fünf Fälle:

- (i) Ist s > 0, so ist $B_s = \emptyset$.
- (ii) Ist s = 0, so ist

$$\Phi(-y,0) = \lim_{t \to 0+} \Phi(-y,t) = \begin{cases} 0 & \text{wenn } y \neq 0 \\ \infty & \text{wenn } y = 0 \end{cases}$$

Damit kann $\Phi(-y,0) \ge \frac{1}{r^2} > 0$ nur für y = 0 erfüllt sein, also $B_s = B_0 = \{(0,0)\}.$

(iii) Sein nun s < 0. Dann müssen wir in obiger Umstellung

$$|y|^2 \le 2ns \cdot \ln\left(-\frac{4\pi s}{r^2}\right)$$

beachten, wann die rechte Seite positiv bzw. Null wird. Da s < 0, sind alle Ausdrücke

definiert. Es ist

$$0 = 2ns \cdot \ln\left(-\frac{4\pi s}{r^2}\right) \iff -\frac{4\pi s}{r^2} = 0 \iff s = -\frac{r^2}{4\pi}$$

und somit $B_s = B_{-\frac{r^2}{4\pi}} = \{(0,0)\}$. Abschließend ist

$$0>2ns\cdot \ln\left(-\frac{4\pi s}{r^2}\right) \;\;\Leftrightarrow\;\; -\frac{4\pi s}{r^2}<0 \;\;\Leftrightarrow\;\; s>-\frac{r^2}{4\pi}$$

d.h. $B_s = \emptyset$ für $s < -\frac{r^2}{4\pi}$ und

$$B_s = B_r(0) \text{ mit } r = \sqrt{2ns \cdot \ln\left(-\frac{4\pi s}{r^2}\right)} \qquad \text{für } -\frac{r^2}{4\pi} < s < 0$$

Zusammengefasst gilt also

$$B_s = \begin{cases} \emptyset & \text{für } s > 0 \\ \{(0,0)\} & \text{für } s = 0 \\ \left\{ y \in \mathbb{R}^n : |y| \le \sqrt{2ns \cdot \ln\left(-\frac{4\pi s}{r^2}\right)} \right\} & \text{für } -\frac{r^2}{4\pi} < s < 0 \\ \{(0,0)\} & \text{für } s = -\frac{r^2}{4\pi} \\ \emptyset & \text{für } s < -\frac{r^2}{4\pi} \end{cases}$$

Aufgabe 19. Lösen Sie die Wellengleichung für n = 1, also das Problem

$$u_{tt} - u_{xx} = 0$$
 in $\mathbb{R} \times (0, \infty)$,
 $u = g$, $u_t = h$ auf $\mathbb{R} \times \{0\}$

Gehen Sie dazu wie folgt vor:

- (a) Zeigen Sie, dass die allgemeine Lösung der partiellen Differentialgleichung $\overline{u}_{\eta\xi} = 0$ auf \mathbb{R}^2 . gegeben ist durch $\overline{u}(\eta,\xi) = F(\eta) + G(\xi)$, wobei $F,G \in C^1(\mathbb{R})$ beliebig sind.
- (b) Betrachten Sie im \mathbb{R}^2 die Koordinatentransormation

$$\varphi(t,x) = (t+x,t-x)$$
 für $x,t \in \mathbb{R}$.

und zeigen Sie, dass die Gleichung $u_{tt} - u_{xx} = 0$ genau dann erfüllt ist, wenn $\overline{u}_{\eta\xi} = 0$ für $\overline{u}(\eta,\xi) := (u \circ \varphi^{-1})(\eta,\xi)$ gilt.

(c) Nutzen Sie (a) und (b), um die Formel von d'Alembert herzuleiten, also die Lösungsdarstellung

$$u(x,t) = \frac{1}{2} (g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$

Hinweis: Die Wellengleichung wird demnächst Gegenstand der Vorlesung sein. Dort wird die Formel von d'Alembert geschickt mittels der Methode der Charakteristiken hergeleitet.

- (zu a) Sei $\overline{u}(\eta,\xi) = F(\eta) + G(\xi)$ für $F,G \in C^1(\mathbb{R})$. Dann ist $\overline{u}_{\eta}(\eta,\xi) = F'(\eta)$ und $\overline{u}_{\eta\xi}(\eta,\xi) = 0$ für alle $\eta,\xi \in \mathbb{R}$.
- (zu b) Es ist $\varphi^{-1}(\eta,\xi) = \frac{1}{2}(\eta+\xi,\eta-\xi)$. Damit gilt unter Nutzung des Satz von Schwarz

$$\frac{\partial}{\partial \xi} \frac{\partial}{\partial \eta} u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right)$$

$$= \frac{\partial}{\partial \xi} \left(\frac{1}{2} \partial_1 u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right) + \frac{1}{2} \partial_2 u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right) \right)$$

$$= \frac{1}{4} \partial_{11} u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right) - \frac{1}{4} \partial_{12} u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right)$$

$$+ \frac{1}{4} \partial_{21} u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right) - \frac{1}{4} \partial_{22} u \left(\frac{\eta + \xi}{2}, \frac{\eta - \xi}{2} \right)$$

$$= \frac{1}{4} \left(u_{tt}(t, x) - u_{xx}(t, x) \right) = 0$$

$$\Leftrightarrow 0 = u_{tt}(t, x) - u_{xx}(t, x)$$

(zu c) Mit (a) und (b) ist $u\left(\frac{\eta+\xi}{2}, \frac{\eta-\xi}{2}\right) = F(\eta) + G(\xi)$ bzw. u(x,t) = F(x+t) + G(x-t). Mit den Randwerten ist

$$u(x,0) = F(x) + G(x) = g(x)$$
 für alle $x \in \mathbb{R}$ (I)

$$u_t(x,0) = F'(x) - G'(x) = h(x)$$
 für alle $x \in \mathbb{R}$

Aus der zweiten Randwertbedingung erhalten wir

$$F(x) - G(x) = \int F'(x) - G'(x) \, dx = \int_{x_0}^x h(y) \, dy$$
 (II)

Addieren bzw. Subtrahieren wir Gleichungen (I) und (II) so erhalten wir

$$F(x) = \frac{1}{2} \left(g(x) + \int_{x_0}^x h(y) \, dy \right)$$
$$G(x) = \frac{1}{2} \left(g(x) - \int_{x_0}^x h(y) \, dy \right)$$

Setzen wir dies nun in die allgemeine Lösung von oben ein, dann erhält man mit

$$u(t,x) = \frac{1}{2} \left(g(x+t) - g(x-t) + \int_{x_0}^{x+t} h(y) \, dy - \int_{x_0}^{x-t} h(y) \, dy \right)$$
$$= \frac{1}{2} \left(g(x+t) - g(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, dy$$

die Formel von d'Alembert

Partielle Differentialgleichungen - Übungsblatt 8

Aufgabe 20. Lösen Sie die folgenden Probleme, indem Sie die Formel von d'Alembert aus Aufgabe 19 auf geeignete Hilfsprobleme anwenden.

a)
$$u_{tt} - c^2 u_{xx} = 0 \quad \text{in } \mathbb{R} \times (0, \infty) \text{ mit } c > 0,$$
$$u(x, 0) = x^2 |e^x - 1| \quad \text{für } x \in \mathbb{R},$$
$$u_t(x, 0) = x|e^x - 1| \quad \text{für } x \in \mathbb{R}.$$

b)
$$u_{tt} - u_{xx} = x^2 \quad \text{in } \mathbb{R} \times (0, \infty),$$

$$u(x, 0) = x \quad \text{für } x \in \mathbb{R},$$

$$u_t(x, 0) = 0 \quad \text{für } x \in \mathbb{R}.$$

(zu a) Definiere v(x,t) := u(cx,t). Dann wird die partielle Differentialgleichung zu $v_{tt}(x,t) - v_{xx}(x,t) = u_{tt}(cx,t) - c^2 u_{xx}(cx,t) = 0$ und die Anfangswerte zu $v(x,0) = u(cx,0) = (cx)^2 |e^{cx} - 1| =: g(x)$ sowie $v_t(x,t) = u_t(cx,t) = cx |e^{cx} - 1| =: h(x)$ für alle $x \in \mathbb{R}$. Wir lösen nun das Integral $\int_{x-t}^{x+t} h(y) dy$ und wollen zuerst eine Stammfunktion finden:

$$\int h(y) \, dy = \int cy \cdot |e^{cy} - 1| \, dy$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot c \cdot \int y(e^{cy} - 1) \, dy$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot c \cdot \int y \cdot e^{cy} - y \, dy$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot c \cdot \left(\int y \cdot e^{cy} \, dy - \int y \, dy \right)$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot c \cdot \left(\frac{1}{c} y e^{cy} - \frac{1}{c} \int e^{cy} \, dy - \frac{1}{2} y^2 \right)$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot c \cdot \left(\frac{1}{c} y e^{cy} - \frac{1}{c^2} e^{cy} - \frac{1}{2} y^2 \right)$$

$$= \operatorname{sgn}(e^{cy} - 1) \cdot \frac{2(cy - 1)e^{cy} - c^2 y^2}{2c}$$

Damit ergibt sich für das bestimmte Integral

$$\begin{split} \int_{x-t}^{x+t} h(y) \ \mathrm{d}y &= \frac{1}{2c} \left[\mathrm{sgn}(e^{cy} - 1) \cdot \left(2(cy - 1)e^{cy} - c^2 y^2 \right) \right]_{x-t}^{x+t} \\ &= \frac{1}{2c} \left(\mathrm{sgn}(e^{c(x+t)} - 1) \cdot \left(2(c(x+t) - 1)e^{c(x+t)} - c^2(x+t)^2 \right) \right) \\ &- \mathrm{sgn}(e^{c(x-t)} - 1) \cdot \left(2(c(x-t) - 1)e^{c(x-t)} - c^2(x-t)^2 \right) \end{split}$$

. . .

Damit gilt dann mit der Formel von d'Alembert

$$g(x+t) + g(x-t) = c^{2}(x+t)^{2} \left| e^{cx+ct} - 1 \right| + c^{2}(x-t)^{2} \left| e^{cx-ct} - 1 \right|$$

und abschließend also

$$v(x,t) = \frac{1}{2} (g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$

$$= \frac{1}{2} \left(c^2(x+t)^2 \left| e^{cx+ct} - 1 \right| + c^2(x-t)^2 \left| e^{cx-ct} - 1 \right| \right)$$

$$+ \frac{1}{2} \frac{1}{2c} \left(\operatorname{sgn}(e^{c(x+t)} - 1) \cdot \left(2(c(x+t) - 1)e^{c(x+t)} - c^2(x+t)^2 \right) - \operatorname{sgn}(e^{c(x-t)} - 1) \cdot \left(2(c(x-t) - 1)e^{c(x-t)} - c^2(x-t)^2 \right) \right)$$

. . .

(zu b) Definiere $v(x,t) := u(x,t) + \frac{1}{12}x^4$. Lösen wir nun das Hilfsproblem $v_{tt}(x,t) - v_{xx}(x,t) = u_{tt}(x,t) - u_{xx}(x,t) - x^2 = 0$ mit den Anfangswerten $v(x,0) = u(x,0) + \frac{1}{12}x^4 = x + \frac{$

$$\begin{split} v(x,t) &= \frac{1}{2} \left(g(x+t) + g(x-t) \right) + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, \mathrm{d}y \\ &= \frac{1}{2} \left((x+t) + \frac{1}{12} (x+t)^4 + (x-t) + \frac{1}{12} (x-t)^4 \right) \\ &= \frac{1}{2} \left(2x + \frac{1}{12} \left(t^4 + 4t^3x + 6t^2x^2 + 4tx^3 + x^4 + t^4 - 4t^3x + 6t^2x^2 - 4tx^3 + x^4 \right) \right) \\ &= \frac{1}{2} \left(2x + \frac{1}{12} \left(2t^4 + 12t^2x^2 + 2x^4 \right) \right) \\ &= x + \frac{1}{12} t^4 + \frac{1}{2} t^2 x^2 + \frac{1}{12} x^4 \end{split}$$

Damit ergibt sich

$$u(x,t) = v(x,t) - \frac{1}{12}x^4 = x + \frac{1}{12}t^4 + \frac{1}{2}t^2x^2$$

Testen wir diese Lösung: Es ist

Außerdem sind die Randwerte erfüllt, da u(x,0)=x und $u_t(x,0)=\frac{1}{3}t^3+x^2t\ \big|_{t=0}=0.$

Aufgabe 21. Es sei u eine Lösung der Wärmeleitungsgleichung $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$. Zeigen Sie, dass für jedes $x \in \mathbb{R}^n$ das sphärische Mittel

$$v(y,t) := M_u(x,|y|,t) := \int_{\partial B_1(0)} u(x+|y|z,t) \, dO(z)$$

ebenfalls eine Lösung der Wärmeleitungsgleichung ist.

Hinweis: Die Vorlesung vom 28. Mai kann inspirierend sein.

Partielle Differentialgleichungen - Übungsblatt 9

Aufgabe 25. Es seien $g \in C_0^2(\mathbb{R})$ und $h \in C_0^1(\mathbb{R})$ Funktionen mit kompaktem Träger, und es sei $u \in C^2(\mathbb{R} \times [0, \infty))$ eine Lösung der homogenen Wellengleichung

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{auf } \mathbb{R} \times (0, \infty), \\ u = g, u_t = h & \text{auf } \mathbb{R} \times \{0\}. \end{cases}$$

Die "kinetische Energie" k und die "potentielle Energie" p seien definiert durch

$$k(t) \coloneqq \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) \, dx \quad \text{und} \quad p(t) \coloneqq \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) \, dx \quad (t > 0)$$

Zeigen Sie:

- (a) k + p ist konstant.
- (b) k(t) = p(t) für alle genügend großen t.

(zu a) Wir betrachten die Formel von d'Alembert

$$u(x,t) = \frac{1}{2} (g(x+t) + g(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$

Das Integral können wir mittels y = x + zt und dy = tdz transformieren zu $t \cdot \int_{-1}^{1} h(x + zt) dz$. Damit können wir problemlos nach x und t ableiten, wobei aufgrund der kompakten Träger die Reihenfolge von Integration und Differentiation vertauschbar ist. Es gilt also:

$$u_{x}(x,t) = \frac{1}{2} \left(g'(x+t) + g'(x-t) + t \int_{-1}^{1} h'(x+zt) \, dz \right)$$

$$= \frac{1}{2} \left(g'(x+t) + g'(x-t) + h(x+t) - h(x-t) \right)$$

$$u_{xx}(x,t) = \frac{1}{2} \left(g''(x+t) + g''(x-t) + h'(x+t) - h'(x-t) \right)$$

$$u_{xt}(x,t) = \frac{1}{2} \left(g''(x+t) - g''(x-t) + h'(x+t) + h'(x-t) \right)$$

$$u_{t}(x,t) = \frac{1}{2} \left(g'(x+t) - g'(x-t) + \int_{-1}^{1} h(x+zt) \, dz + t \int_{-1}^{1} h'(x+zt) \cdot z \, dz \right)$$

$$= \frac{1}{2} \left(g'(x+t) - g'(x-t) + h(x+t) + h(x-t) \right)$$

Wir wollen nun zeigen, dass

$$(k+p)'(t) = \frac{1}{2} \frac{d}{dt} \int_{-\infty}^{\infty} u_t^2(x,t) + u_x^2(x,t) dx = \int_{-\infty}^{\infty} u_t(x,t) \underbrace{u_{tt}(x,t)}_{=u_{xx}(x,t)} + u_x(x,t) u_{xt}(x,t) dx$$

Durch Einsetzen und Ausmultiplizieren erhalten wir einen fürchterlichen Term:

$$\frac{1}{2}u_t(x,t)u_{xx}(x,t) + u_x(x,t)u_{xt}(x,t)$$

$$= g'(x+t)g''(x+t) + g'(x+t)h'(x+t) - g'(x-t)g''(x-t) + g'(x-t)h'(x-t) + h(x+t)g''(x+t) + h(x+t)h'(x+t) + h(x-t)g''(x-t) - h(x-t)h'(x-t)$$

Nun sind in jedem Summanden die inneren Ableitungen nach t gleich, das heißt die Vorzeichen spielen bei der Integration über x keine Rolle und wir erhalten

$$(k+p)'(t) = \int_{-\infty}^{\infty} 4 \cdot \left(g'(z)h'(z) + g''(z)h(z) \right) dz$$

sowie mit partieller Integration für den zweiten Summanden

$$\int_{-\infty}^{\infty} g''(z)h(z) dz = \left[g'(z)h(z)\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} g'(z)h'(z) dz = -\int_{-\infty}^{\infty} g'(z)h'(z) dz$$

Damit ist nun schlussendlich

$$(k+p)'(t) = 4 \cdot \int_{-\infty}^{\infty} g'(z)h'(z) \, dz + 4 \cdot \int_{-\infty}^{\infty} g''(z)h(z) \, dz$$
$$= 4 \cdot \int_{-\infty}^{\infty} g'(z)h'(z) \, dz - 4 \cdot \int_{-\infty}^{\infty} g'(z)h'(z) \, dz = 0$$

und folglich also k + p konstant für alle t > 0.

(zu b) Betrachten wir nun k-p. Der ausmultiplizierte Integrant ergibt sich als

$$u_x^2(x,t) - u_t^2(x,t) = q'(x+t)q'(x-t) - q'(x+t)h(x-t) + q'(x-t)h(x+t) - h(x+t)h(x-t)$$

Die Funktionen g und h leben auf kompakten Trägern, d.h. es existieren Radien $R_g, R_h > 0$, sodass $\mathrm{supp}(g) \subseteq B_{R_g}(0)$, $\mathrm{supp}(h) \subseteq B_{R_h}(0)$ und auch $\mathrm{supp}(g') \subseteq B_{R_g}(0)$. Ist t nun hinreichend groß, d.h. $t > R \coloneqq \{R_g, R_h\}$, dann ist $x + t \notin B_R(0)$ oder $x - t \notin B_R(0)$. Somit wird stets einer der beiden Faktoren in obigen Summanden außerhalb des Trägers liegen und somit gleich Null sein. Das heißt also, dass $u_x^2(x,t) - u_t^2(x,t) = 0$ für alle t > R und $x \in R$ bzw. $p(t) - k(t) = 0 \equiv p(t) = k(t)$ für hinreichend große t.

Aufgabe 26. Es seien $g, h \in C_0^{\infty}(\mathbb{R}^3)$ gegeben und es sei $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ eine Lösung der homogenen Wellengleichung

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{auf } \mathbb{R}^3 \times (0, \infty), \\ u = g, u_t = h & \text{auf } \mathbb{R}^3 \times \{0\}. \end{cases}$$

Zeigen Sie:

$$\exists C > 0 \ \forall x \in \mathbb{R}^3, t \in (0, \infty) : |u(x, t)| \le \frac{C}{t}$$

Schätzen Sie dazu u(x,t) auf geeigneten Teilbereichen von $\mathbb{R}^3 \times [0,\infty)$ ab.

Mit der Kirchhoff'schen Formel erhalten wir als Darstellung der Lösung

$$u(x,t) = \frac{1}{3t^2\alpha(3)} \int_{\partial B_t(0)} th(x+z) + g(x+z) + Dg(x+z) \cdot z \, dO(z)$$

Schreibe von nun an $\alpha \coloneqq \alpha(3)$. Gemäß Voraussetzung leben g und h auf kompakten Trägern, d.h. es existieren Radien $R_g, R_h > 0$, sodass $\operatorname{supp}(g) \subseteq B_{R_g}(0)$ und $\operatorname{supp}(h) \subseteq B_{R_h}(0)$ sowie insbesondere auch $\operatorname{supp}(Dg) \subseteq B_{R_g}(0)$. Auf diesen kompakten Trägern nehmen die stetigen Funktionen auch ein Maximum an, d.h. $g(x) \leq g_{\max} \coloneqq \max_{x \in \mathbb{R}^3} |g(x)|, \ h(x) \leq h_{\max} \coloneqq \max_{x \in \mathbb{R}^3} |h(x)|, \ Dg(x) \leq g'_{\max} \coloneqq \max_{x \in \mathbb{R}^3} |Dg(x)|$ für alle $x \in \mathbb{R}^3$. Dann gilt mit $R \coloneqq \max\{R_g, R_h\}$ für $t \leq R$

$$|u(x,t)| \leq \frac{1}{3t^{2}\alpha} \int_{\partial B_{t}(0)} |t| \cdot |h(x+z)| + |g(x+z)| + |Dg(x+z)| \cdot |z| \, dO(z)$$

$$\leq \frac{1}{3t\alpha} \int_{\partial B_{R}(0)} h_{\max} \, dO(z) + \frac{1}{3t^{2}\alpha} \int_{\partial B_{R}(0)} g_{\max} \, dO(z) + \frac{1}{3t\alpha} \int_{\partial B_{R}(0)} g'_{\max} \, dO(z)$$

$$= \frac{R^{2}h_{\max}}{t} + \frac{R^{2}h_{\max}}{t^{2}} + \frac{R^{2}g'_{\max}}{t} \qquad (|\partial B_{R}(0)| = R^{2} \cdot 3\alpha)$$

Für hinreichend große t ist $\frac{1}{t} \approx \frac{1}{t^2}$, d.h. mit $C_1 := R^2 (h_{\max} + g_{\max} + g'_{\max}) > 0$ gilt die Abschätzung $|u(x,t)| \leq \frac{C_1}{t}$. Für kleine t in einer Umgebung der Null ist $u(x,t) \xrightarrow{t \to 0} |g(x)| \leq g_{\max}$ beschränkt, d.h. ex existiert ein $C'_1 > 0$, sodass $|u(x,t)| \leq \frac{C'_1}{t}$.

Sein nun t>R. In diesem Fall muss x+z nicht mehr unbedingt in den jeweiligen Trägern von g oder h liegen. Dies ist jedoch der Fall, wenn |x+z|< R. Wählen wir nun ein $z\in\partial B_R(0)$, d.h. auf dem Rand der R-Kugel, die kleiner ist als die t-Kugel. Für ein fixiertes x kann die Bedingung |x+z|< R höchstens für eine Hemisphäre gelten (für die jeweils andere Hemisphäre "zeigt x aus der Kugel"). Der Flächeninhalt einer solchen Sphäre ist $\mathcal{A}(t)=\pi R^2+\omega(t)$, wobei $\omega(t)$ den Flächenzuwachs durch die Wölbung der t-Kugel beschreibt. Je größer t wird, desto geringer wird die Wölbung, da der "Ausschnitt" der gleiche bleibt, d.h.

 ω fällt monoton und für $t \to \infty$ gilt $\omega(t) \to 0$, d.h. $\mathcal{A}(t) \to \pi R^2$. Somit ist \mathcal{A} beschränkt durch $\pi R^2 \le \mathcal{A}(t) \le \pi R^2 + \omega(R)$ für alle t > R. Somit ist

$$|u(x,t)| \leq \frac{1}{3t^2\alpha} \int_{\partial B_t(0)} |th(x+z)| + |g(x+z)| + |Dg(x+z)| \cdot |z| \, dO(z)$$

$$\leq \mathcal{A}(t) \cdot \left(\frac{h_{\max}}{3t\alpha} + \frac{g_{\max}}{3t^2\alpha} + \frac{g'_{\max}}{3t\alpha}\right)$$

$$= \underbrace{\mathcal{A}(t) \frac{h_{\max} + g_{\max} + g'_{\max}}{3\alpha}}_{=:C_2} \cdot \frac{1}{t} = \frac{C_2}{t}$$

Definiere abschließend $C := \max\{C_1, C_1', C_2\}$, dann ist $|u(x,t)| \leq \frac{C}{t}$ für alle $(x,t) \in \mathbb{R}^3 \times (0,\infty)$.

Matr.-Nr. 4679202

Aufgabe 28. Es sei $u:(0,1)\to\mathbb{R}$. Zeigen Sie:

- (a) Ist u stetig und stückweise stetige differenzierbar mit gleichmäßig beschränkter Ableitung, so hat u eine stückweise stetige schwache Ableitung.
- (b) Ist u stückweise gleichmäßig stetig und ist $x_0 \in (0,1)$ eine Sprungstelle von u, so hat u keine schwache Ableitung.
- (zu a) Sei $0 = x_1 < x_2 < \cdots < x_n = 1$ eine Zerlegung des Intervalls (0,1), sodass $u|_{(x_i,x_{i+1})} = u_i$ für alle $i = 0, \ldots, n-1$ stetig differenzierbar ist. Aufgrund der gleichmäßigen Beschränktheit von u' existiert ein $0 < C < \infty$, sodass $u'_i(x) \le C$ für alle $x \in (x_i, x_{i+1})$ und alle $i \in \{0, 1, \ldots, n-1\}$. Dann gilt

$$\int_0^1 u'(x) \, \mathrm{d}x = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} u_i'(x) \, \mathrm{d}x \le \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} C \, \mathrm{d}x = \sum_{i=0}^{n-1} C \cdot \underbrace{|x_{i+1} - x_i|}_{\le 1} \le (n+1)C < \infty$$

und somit $u' \in L^1_{loc}(0,1)$. Außerdem gilt mit stückweiser partieller Integration für alle $\varphi \in C_0^\infty(0,1)$

$$\int_{0}^{1} u \cdot \varphi' \, dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} u_{i} \cdot \varphi' \, dx = \sum_{i=0}^{n-1} \left[u_{i} \cdot \varphi \right]_{x_{i}}^{x_{i+1}} - \int_{x_{i}}^{x_{i+1}} u'_{i} \cdot \varphi \, dx$$

$$= \left[u \cdot \varphi \right]_{0}^{1} - \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} u'_{i} \cdot \varphi \, dx$$

$$= -\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} u'_{i} \cdot \varphi \, dx$$

$$= -\int_{0}^{1} u' \cdot \varphi \, dx$$

wobei $[u\varphi]_0^1 = 0$, da $\varphi(0) = \varphi(1) = 0$ wegen $\varphi \in C_0^{\infty}(0,1)$. Somit ist $u' \in L_{loc}^1(0,1)$ und es gilt $\int_0^1 u\varphi' dx = -\int_0^1 u'\varphi dx$ für alle $\varphi \in C_0^{\infty}(0,1)$, d.h. u' ist schwache Ableitung von u auf (0,1). Die stückweise Stetigkeit folgt dabei aus der stetigen Differenzierbarkeit von u_i für alle $i \in \{0, \ldots, n-1\}$.

(zu b) —

Aufgabe 29. Es seien $U \subset \mathbb{R}^n$ offen und beschränkt und $u, v \in W^{k,p}(U)$. Zeigen Sie:

- (a) $D^{\beta}(D^{\alpha}u) = D^{\alpha+\beta}u$, für alle α, β mit $|\alpha| + |\beta| \le k$.
- (b) $\lambda u + \mu v \in W^{k,p}(U)$ mit $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha} u + \mu D^{\alpha} v$ für alle $\lambda, \mu \in \mathbb{R}$ und $|\alpha| \leq k$.
- (c) $u|_V \in W^{k,p}(V)$ für jede offene Menge $V \subset U$.

(zu a) Sei $v := D^{\alpha}u$. Dann ist

$$(-1)^{|\alpha|} \int_{U} v D^{\beta} \varphi \, dx = (-1)^{|\alpha|} \int_{U} D^{\alpha} u \cdot D^{\beta} \varphi \, dx$$

$$= \int_{U} u \cdot D^{\alpha} (D^{\beta} \varphi) \, dx \qquad \text{(partielle Integration)}$$

$$= \int_{U} u \cdot D^{\alpha+\beta} \varphi \, dx \qquad \text{(klassische Ableitung vertauschbar)}$$

$$= (-1)^{|\alpha+\beta|} \int_{U} D^{\alpha+\beta} u \cdot \varphi \, dx \qquad \text{(partielle Integration)}$$

$$= (-1)|\alpha| + |\beta| \int_{U} D^{\alpha+\beta} u \cdot \varphi \, dx \qquad (\alpha, \beta \ge 0)$$

Und somit ist $D^{\beta}v=D^{\alpha+\beta}u$, also gerade die Behauptung.

(zu b) Der Sobolev-Raum $W^{k,p}(U)$ ist ein Banachraum, d.h. insbesondere ein Vektorraum über dem Körper \mathbb{R} . Somit ist er abgeschlossen unter Linearkombination und aus $u,v\in W^{k,p}(U)$ folgt auch, dass für alle $\lambda,\mu\in\mathbb{R}$ schon $\lambda u+\mu v\in W^{k,p}(U)$. Weiterhin ist wegen $u,v\in W^{k,p}(U)$ für $|\alpha|\leq k$ auch

$$\int_{U} (\lambda u + \mu v) \cdot D^{\alpha} \varphi \, dx = \int_{U} \lambda u \cdot D^{\alpha} \varphi + \mu v \cdot D^{\alpha} \varphi \, dx$$

$$= \lambda \cdot \int_{U} u \cdot D^{\alpha} \varphi \, dx + \mu \int_{U} v \cdot D^{\alpha} \varphi \, dx$$

$$= \lambda \cdot (-1)^{|\alpha|} \cdot \int_{U} D^{\alpha} u \cdot \varphi \, dx + \mu \cdot (-1)^{|\alpha|} \int_{U} D^{\alpha} v \cdot \varphi \, dx$$

$$= (-1)^{|\alpha|} \int_{U} \underbrace{(\lambda D^{\alpha} u + \mu D^{\alpha} v)}_{=D^{\alpha} (\lambda u + \mu v)} \cdot \varphi \, dx$$

und daher $D^{\alpha}(\lambda u + \mu v) = \lambda D^{\alpha} u + \mu D^{\alpha} v$ für alle $u, v \in W^{k,p}(U)$ und alle $\lambda, \mu \in \mathbb{R}$ sowie $|\alpha| \leq k$.

(zu c) —

Matr.-Nr. 4679202

Aufgabe 31. Bestimmen Sie die Mengen im \mathbb{R}^2 , auf denen der Differentialoperator

$$(Lu)(x,y) := (1+x)u_{xx}(x,y) + 2xyu_{xy}(x,y) - y^2u_{yy}(x,y)$$

elliptisch, hyperbolisch oder parabolisch ist.

Die Koeffizientenmatrix des Differentialoperators ist gegeben durch

$$A(x,y) = -\begin{pmatrix} 1+x & 2xy \\ 0 & -y^2 \end{pmatrix}$$

Um die Eigenwerte zu bestimmen, betrachten wir die Nullstellen des charakteristischen Polynoms χ_A von A(x, y) gegeben durch

$$\chi_A(\lambda) = \det(\lambda \operatorname{id} - A) = \det\begin{pmatrix} \lambda + 1 + x & 2xy \\ 0 & \lambda - y^2 \end{pmatrix} = (\lambda + 1 + x) \cdot (\lambda - y^2)$$

Die Nullstellen von χ_A und damit Eigenwerte von A(x,y) sind also $\lambda_1 = -1 - x$ und $\lambda_2 = y^2$.

- L ist per Definition genau dann **elliptisch**, wenn alle Eigenwerte von A(x, y) positiv sind. Es ist $\lambda_1 > 0$ genau dann, wenn x < -1 und $\lambda_2 = y^2 > 0$ genau dann, wenn $y \neq 0$. Somit ist L elliptisch auf $(-\infty, -1) \times (\mathbb{R} \setminus \{0\})$.
- L ist genau dann **hyperbolisch**, wenn genau ein Eigenwert negativ ist und alle anderen positiv. Nun ist $\lambda_2 = y^2 \ge 0$ für alle $y \in \mathbb{R}$, d.h. es kann nur λ_1 negativ sein. Das ist genau dann der Fall, wenn x > -1. In diesem Fall ist $\lambda_2 = y^2 > 0$ genau dann, wenn $y \ne 0$. Schlussendlich ist also L hyperbolisch auf $(-1, \infty) \times (\mathbb{R} \setminus \{0\})$.
- L ist genau dann **parabolisch**, wenn mindestens ein Eigenwert gleich Null ist. Es ist $\triangleright \lambda_1 = -1 x = 0 \iff x = -1$ für alle $y \in \mathbb{R}$ $\triangleright \lambda_2 = y^2 = 0 \iff y = 0$ für alle $x \in \mathbb{R}$

Somit ist also L parabolisch auf $\{(-1,y): y \in \mathbb{R}\} \cup \{(x,0): x \in \mathbb{R}\}.$

Aufgabe 32. Beweisen Sie den ersten Teil von Satz 15 (Poincaré-Ungleichung) der Vorlesung: Es seien $U \subset \mathbb{R}^n$ beschränkt und offen, und $1 \le p < \infty$. Dann gibt es eine Konstante c > 0 mit

$$||u||_{L_p} \le c||\nabla u||_{L_p}$$
 für alle $u \in W_0^{1,p}(\Omega)$

Führen Sie den Beweis unter Verwendung der Gagliardo-Nirenberg-Sobolev-Ungleichung.

Sei $U \subseteq \mathbb{R}^n$ offen und beschränkt. Weiter sei $u \in W_0^{1,p}(U)$ mit $1 \le p < \infty$. Dann existiert nach Theorem 8 (Approximation durch glatte Funktionen) eine Folge $\{u_m\}_{m \in \mathbb{N}} \subset C_0^\infty(U) \cap W^{1,p}(U)$ mit $u_m \stackrel{W^{1,p}(U)}{\longrightarrow} u$. Nun setzen wir die u_m zu Funktionen \widetilde{u}_m auf \mathbb{R}^n fort, wobei auch $\widetilde{u}_m \stackrel{W^{1,p}(U)}{\longrightarrow} u$. Nach Satz 11 (Gagliardo-Nirenberg-Sobolev-Ungleichung) existiert dann eine (universelle) Konstante c > 0 mit

$$\|\widetilde{u}_m\|_{L^{p^*}(\mathbb{R}^n)} \le c \cdot \|D\widetilde{u}_m\|_{L^p(\mathbb{R}^n)}$$

und somit

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le c \cdot ||Du||_{L^p(\mathbb{R}^n)}$$

Da u kompakten Träger hat, ist auch

$$||u||_{L^{p^*}(U)} \le c \cdot ||Du||_{L^p(\mathbb{R}^n)} \quad \text{mit} \quad p^* = \frac{np}{n-p}$$
 (*)

Da U als beschränkte Menge ein endliches Maß besitzt, ist $L^q(U) \hookrightarrow L^{p^*}(U)$ für alle $q \leq p^*$. Demnach ist für alle $q \leq p^*$

$$||u||_{L^{q}(U)} \le c \cdot ||u||_{L^{p^{*}}(U)} \stackrel{(\star)}{\le} c \cdot ||Du||_{L^{p}(U)}$$

Somit gilt also $||u||_{L^q(U)} \le c \cdot ||Du||_{L^p(U)}$ für alle $q \le p^*$, also insbesondere auch für q = p, da $p \le p^*$.

Matr.-Nr. 4679202

Aufgabe 34. Es sei $U = B_1(0) \subset \mathbb{R}^2$. Zeigen Sie, dass die PDE

$$((1+|x|)u_x(x,y))_x + \frac{1}{2}(\operatorname{sgn}(x)u_y(x,y))_x + \frac{1}{2}(\operatorname{sgn}(x)u_x(x,y))_y + u_{yy}(x,y) = -\sin(xy) \quad \text{auf } U$$

in U eine eindeutige schwache Lösung $u \in H_0^1(U)$ besitzt.

Wir notieren die mit -1 multiplizierte PDE in Divergenzform, d.h. als $-\operatorname{div}(A^{\top}Du) + b \cdot Du + c \cdot u = f$ mit

$$A = \begin{pmatrix} 1 + |x| & \frac{1}{2}\operatorname{sgn}(x) \\ \frac{1}{2}\operatorname{sgn}(x) & 1 \end{pmatrix}, \qquad b = 0, \qquad c = 0$$

Nach Theorem 3 hat das Randwertproblem $Lu + \mu u = f$ in U und u = 0 auf ∂U eine eindeutige schwache Lösung $u \in H_0^1(U)$ für alle $\mu \geq \gamma$, sofern L gleichmäßig elliptisch ist und die Koeffizientenfunktionen in $L^{\infty}(U)$ liegen. Wegen b = 0 und c = 0 erhalten wir $\gamma = 0$, d.h. wir können insbesondere $\mu = 0$ wählen, sodass unser Randwertproblem jenem in Theorem 3 entspricht. Außerdem sind die Koeffizientenfunktionen a^{12} , a^{21} und a^{22} offensichtlich durch 1 beschränkt und somit in $L^{\infty}(U)$. Weiter ist $|a^{11}| = |1 + |x|| \leq 1 + |x| \leq 2$, da $x \in B_1(0)$ und somit auch $a^{11} \in L^{\infty}(U)$. Schließlich ist auch $f(x,y) = \sin(x,y) \in L^2(U)$.

Nun ist noch zu zeigen, dass L gleichmäßig elliptisch ist. Sei dazu $\xi=(\xi_1,\xi_2)\in\mathbb{R}^2$ beliebig. Dazu betrachten wir

$$\frac{1}{|\xi|^2} \cdot \sum_{i,j=1}^2 a^{ij} \ \xi_1 \ \xi_2 = \frac{1}{|\xi|^2} \cdot \left((1+|x|)\xi_1^2 + \operatorname{sgn}(x)\xi_1\xi_2 + \xi_2^2 \right)
\ge \frac{1}{|\xi|^2} \cdot \left(\xi_1^2 + \xi_2^2 - |\xi_1\xi_2| \right)
= 1 - \underbrace{\frac{|\xi_1\xi_2|}{\xi_1^2 + \xi_2^2}}_{\le \frac{1}{2}}
\ge \frac{1}{2} =: c \in (0, \infty)$$

Damit ist L gleichmäßig elliptisch auf U und nach Theorem 3 existiert nun also eine eindeutige schwache Lösung $u \in H_0^1(U)$ der partiellen Differentialgleichung.

Aufgabe 35. Beweisen Sie die beiden folgenden Transformationsaussagen:

(a) Es sei $U \subset \mathbb{R}^n$ offen und beschränkt, und $a^{ij}, b^i, c \colon U \to \mathbb{R}$ seien gegebene Koeffizientenfunktionen mit $a^{ij} \in C^1(U)$. Dann lässt sich der Differentialoperator

$$(Lu)(x) = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i}(x))_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i}(x) + c(x)u(x)$$

stets in die Form

$$(Lu)(x) = -\sum_{i,j=1}^{n} \tilde{a}^{ij}(x)u_{x_ix_j}(x) + \sum_{i=1}^{n} b^i(x)u_{x_i}(x) + c(x)u(x)$$

bringen und umgekehrt.

(b) Es sei $L \equiv \sum_{i,j=1}^{n} a^{ij} \frac{\partial^2}{\partial x_i \partial x_j}$ ein elliptischer Operator und $C = (c^{ij})_{i,j=1,...,n}$ eine orthogonale Matrix. Dann geht L durch die Transformation y = Cx und die Wahl

$$b^{kl} = \sum_{i,j=1}^{n} c^{ki} a^{ij} c^{lj}$$
 $(k, l = 1, ..., n),$ d. h. $B = CAC^{T},$

über in den elliptischen Operator

$$\tilde{L} = \sum_{k,l=1}^{n} b^{kl} \frac{\partial^2}{\partial y_k \partial y_l}.$$

(zu a) Mit der Produktregel können wir die Divergenzform umschreiben zu

$$(Lu)(x) = -\sum_{i,j=1}^{n} \left(a^{ij}(x) \cdot u_{x_i}(x) \right)_{x_j} + \sum_{i=1}^{n} b^{i}(x) \cdot u_{x_i}(x) + c(x) \cdot u(x)$$

$$= -\sum_{i,j=1}^{n} \left(a^{ij}(x) \cdot u_{x_i x_j}(x) \right) + a^{ij}_{x_j}(x) \cdot u_{x_i}(x) + \sum_{i=1}^{n} b^{i}(x) \cdot u_{x_i}(x) + c(x) \cdot u(x)$$

$$= -\sum_{i,j=1}^{n} a^{ij}(x) \cdot u_{x_i x_j}(x) + \sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{n} b^{i}(x) - a^{ij}_{x_j}(x) \right)}_{=:\widetilde{b}^{i}(x)} \cdot u_{x_i}(x) + c(x) \cdot u(x)$$

Mit den Koeffizienten A, \tilde{b} und c hat L dann Nicht-Divergenz-Form. Sei umgekehrt L in Nicht-Divergenz-Form und $a^{ij} \in C^1(U)$, dann existiert $a^{ij}_{x_j}$ für alle $i,j \in \{1,\ldots,n\}$ und wir können $\tilde{b}^i(x) := \sum_{j=1}^n b^i(x) - a^{ij}_{x_j}(x)$ definieren. Mit obiger Rechnung und der Produktregel "rückwärts" erhalten wir dann L in Divergenzform.