EnggTree.com

Reg. No.: E N G G T R E E . C O M

Question Paper Code: 70060

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

For More Visit our Website EnggTree.com Third Semester

Mechanical Engineering

CE 3391 - FLUID MECHANICS AND MACHINERY

(Common to: B.E. Aeronautical Engineering/B.E. Aerospace Engineering/B.E. Industrial Engineering/B.E. Industrial Engineering and Management/B.E. Manufacturing Engineering/B.E. Mechanical Engineering(Sandwich)/B.E. Mechanical and Automation Engineering/B.E. Production Engineering/B.E. Safety and Fire Engineering)

(Regulations 2021)

Time: Three hours

www.EnggTree.com

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- Write the Uses of the Continuity Equation.
- 2. What are the types of pressure measurements?
- 3. What do you mean by flow through parallel pipes?
- 4. What is meant by boundary layer separations?
- Define undistorted model.
- 6. Mention the types of similarities.
- Define specific speed.
- 8. Give two comparison between impulse and reaction turbine.
- 9. Define hydraulic efficiency.
- 10. When will you select a reciprocating pump?

Downloaded from EnggTree.com

${\bf EnggTree.com}$

			$PARTB - (5 \times 13 = 65 \text{ marks})$		
11.	(a)	(i)	A soap bubble is formed when the inside pressure is 5 N the atmospheric pressure. If surface tension in the soap 0.0125 N/m, find the diameter of the bubble formed.	m² above bubble is (8)	
		(ii)	Where do you observe Venturi effect?	(5)	
			Or		
	(b)	(i)	Water is flowing through a pipe of diameter 5 cm under a of 29.43N/cm ² (gauge) and with mean Velocity of 2 m/s. total energy per unit weight of the water at a cross-section 5 m above the datum line.	Find the	
•		(ii)	A Conical tube of length 2 m is fixed vertically with its sm upwards. The velocity of flow at the smaller end is 5 m/s the lower end it is 2m/s. The pressure head at the small 2.5 m of liquid. The loss of head in the tube is 0.35(v where V ₁ is the velocity at smaller end and V ₂ at the leader to the respectively. Determine the pressure head at the lower end takes place in the downward direction.	while at er end is 1-v ₂) ² /2g,	
12.	(a)	In a pipe of diameter 350 mm and length 75 m water is flowing at a velocity of 2.8 m/s. Find the head lost due to friction using:			
		(i)	Darcy - Weisbach formula;		
		(ii)	Chezy's formula (Take C=55)		
			Assume kinematic viscosity of water as 0.012 stoke.		
			Or		
	(b)	Two reservoirs have 6 m difference in water levels, and are connected by a pipe 60 cm diameter and 3000 m long. Then, the pipe branches into two pipes each 30 cm diameter and 1500 m long. The friction coefficient is 0.01.			
		Neglecting minor losses, determine the flow rates in the pipe system?			
13.	(a)	(i)	Under laminar conditions, the volume of flow Q through triangular-section pore of width b and length L is a fur viscosity μ pressure drop per unit length $\Delta p/L$ and b . Up it theorem, rewrite this relation in dimensionless form. He the volume flow change if the pore size b is doubled?	a small action of sing the low does	
		(ii)	Classify the types of similarities	(5)	
			Or	(8)	
	(b)	(i)	Classify various types of Models.	(E)	
		(ii)	What are the use of similitude?	(5) (8)	
		0.000	TO STANDARD TO STANDARD STANDARD STANDARD TO STANDARD STA	(0)	

EnggTree.com

14. (a) (i) Discuss the efficiency of turbine. (7)
(ii) Explain Francis turbine working principle with neat sketch. (6)
Or

- (b) The impeller of a centrifugal pump having external and internal diameters 500 mm and 250 mm respectively, width at outlet 50 mm and running at 1200 r.p.m. works against a head of 48 m. The velocity of flow through the impeller is constant and equal to 3 m/s. the vanes are set back at an angle of 40° at outlet. Determine: (i) Inlet vane angle, (ii) Work done by the impeller on water per second and (iii) manometric efficiency.
- 15. (a) A centrifugal pump running at 920 rpm and delivering 0.32m³/s of water against a head of 28m, the flow velocity being 3m/s. if the manometric efficiency is 80% determine the diameter and width of the impeller. The blade angle at outlet is 25°.

Or

- (b) (i) Differentiate the working Principles of centrifugal pump and reciprocating pump. (7)
 - (ii) How does a rotary vane pump work? (6)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Derive Darcy-Weisbach equation for loss of head due to friction in pipes.

Or

www.EnggTree.com

(b) A single acting reciprocating pump running at 50 rpm, delivers 0.01 m³/s of water. The diameter of the piston is 200 mm and stroke length 400 mm. Determine the theoretical discharge of the pump, coefficient of discharge and slip and the percentage slip of the pump.