CS 511 Formal Methods, Fall 2024 Instructor: Assaf Kfoury

Homework Assignment 5

October 10, 2024 Lucas Miguel Tassis

Exercise 1

(a)
$$(y \approx 0) \land (y \approx x) \vdash 0 \approx x$$

1. $(y \approx 0) \land (y \approx x)$ premise

2. $y \approx 0$ $\wedge e 1$

3. $y \approx x$ $\wedge e 1$

4. $0 \approx x$ =e 2, 3

where, t_1 is y, t_2 is 0, and $\phi(y)$ is $y \approx x$

(b)
$$t_1 \approx t_2 \vdash (t + t_2) \approx (t + t_1)$$

1. $t_1 \approx t_2$ premise

 $2. t+t_1 \approx t+t_1 = i$

3. $t + t_2 \approx t + t_1 = e 1, 2$

where, t_1 is t_1 , t_2 is t_2 , and $\phi(x)$ is $t + x \approx t + t_2$

Exercise 2

(a)
$$\exists x(S \to Q(x)) \vdash S \to \exists x Q(x)$$

1.
$$\exists x(S \to Q(x))$$
 premise
2. S assumption
3. x_0 fresh x_0
4. $S \to Q(x_0)$ assumption
5. $Q(x_0)$ \to e 2, 3
6. $\exists Q(x)$ \exists i 4
7. $\exists Q(x)$ \exists e 1, 3–5

8.
$$S \to \exists x Q(x)$$
 $\to i 2-6$

(b)
$$\forall x P(x) \to S \vdash \exists x (P(x) \to S)$$

There are two solutions for this exercise, one using the identities and equivalences, and one using only natural deduction proof. I will show both, but the pure natural deduction proof I found on the web. The first one using some identities and equivalences is:

```
1. \forall x P(x) \to S premise
```

2.
$$\neg \forall x P(x) \lor S$$
 1, equivalence 3 (can be proved using truth table)

3.
$$\exists x \neg P(x) \lor S$$
 2, provable identity 1

4.
$$\exists x(\neg P(x) \lor S)$$
 3, prenex normal form (since x is not free on S we do not need to rename variables)

5.
$$\exists x(P(x) \to S)$$
 4, equivalence 3 (can be proved using truth table)

The second one is using only natural deduction (found on the web):

1.	$\forall x P(x) \to S$	premise
2.	$\neg \exists x (P(x) \to S)$	assumption
3.	x_0	fresh x_0
4.	$\bigcap P(x_0)$	assumption
5.	$P(x_0)$	assumption
6.		$\neg e \ 4, \ 5$
7.		
8.	$P(x_0) \to S$	→i 5–7
9.	$ \qquad \exists x (P(x) \to S) $	$\exists x$ i 8
10.		¬e 2, 9
11.	$\neg \neg P(x_0)$	¬i 4–10
12.	$P(x_0)$	¬¬e 11
13.	$\forall x P(x)$	∀ <i>x</i> i 3–12
14.	S	\rightarrow e 1, 13
15.	P(t)	assumption
16.	S	copy 14
17.	$P(t) \to S$	→i 15–16
18.	$\exists x (P(x) \to S)$	∃ <i>x</i> i 17
19.		¬e 2, 18
20.	$\neg\neg\exists x(P(x)\to S)$	¬i 2–19
21.	$\exists x (P(x) \to S)$	¬¬e 20

Exercise 3

The Lean template file with the solutions is available on GitHub.

Exercise 4

The Lean template file with the solutions is available on GitHub.