Algorytmy i Struktury Danych

Lista zadań 13 - DFT, sieci sortujące

1. Dyskretną transformatą Fouriera ciągu $(a_1,...,a_n)$ nazywamy ciąg $(A_1,...,A_n)$ taki, że:

$$A_k = \sum_{p=0}^{n-1} a_p e^{2\pi i k p/n}$$
 dla $k = 0 \dots n-1$. (1)

Odwrotną dyskretną transformatą Fouriera ciągu (A_1, \ldots, A_n) nazywamy ciąg (b_1, \ldots, b_n) taki, że:

$$b_q = \frac{1}{n} \sum_{k=0}^{n-1} A_k e^{-2\pi i q k/n} \quad \text{dla } q = 0 \dots n - 1$$
 (2)

Wstawiąjąc wzór (1) do prawej strony wzoru (2) udowodnij że $b_q = a_q$ dla $q = 0 \dots n-1$, czyli, że wynikiem odwrotnej dyskretnej transformaty Fouriera, wykonanej na transformacie ciągu (a_1, \dots, a_n) jest faktycznie wyjściowy ciąg liczb (a_1, \dots, a_n) .

- 2. Wyznacz DFT dla ciągów (5, 3), (1, 5, 3, 1) oraz (1,2,3,4,5,6,7,8):
 - (a) z definicji,
 - (b) symulując działanie algorytmu FFT podanego na wykładzie.
- 3. Udowodnij zasadę zero-jedynkową dla sieci sortujących: Jeśli sieć poprawnie sortuje wszystkie możliwe n-elementowe ciągi zer i jedynek, to dobrze sortuje dowolne ciągi liczb rzeczywistych.
- 4. * Udowodnij, że bitonic_half_cleaner(2n) (patrz Cormen) działa poprawnie dla dowolnego ciągu bitonicznego złożonego z zer i jedynek. To znaczy, że dla dowolnego bitonicznego ciągu zer i jedynek o długości 2n danego na wejściu, wynikiem jest: albo ciąg którego lewa połowa to zera a prawa jest bitoniczna, albo ciąg którego lewa połowa jest bitoniczna a prawa to jedynki.
- 5. Narysuj sieć sortującą n liczb dla n=2,4,8,16. Powinna to być opisana na wykładzie sieć implementująca równoległą wersję algorytmu mergesort, działająca w czasie $O((\log n)^2)$. Prześledź działanie sieci o n=8 dla ciągu wejściowego: 8 4 2 3 7 5 6 1, rysując jakie liczby wchodzą i wychodzą z każdego komparatora (na kartkach).