

Data Science Level 1

Hung Nguyen

TIC Data Team Lead

Course objective

Theory

Deeply understand about Data Science:

- What is DS
- What DS [can] do
- How to be a DS

Practice

• Build an end-to-end predictive model

Course syllabus

Session 1

- Data Science introduction
- Data science project cycle
- Basic concepts of statistics
- Intro duction to Python

Session 2

- Data manipulation with Python - Pandas
- Data Visualization with Python Matplotlib

Session 3

- Machine Learning with
 Scikit-Learn – build model
- Model evaluation
- Basic algorithms
- PoCs planning

Session 4

- PoCs review:
- ➤ Prediction with linear regression
- ➤ Classification with logistic regression

Data Science Level 1

-- Session 1-- Introduction

Hung Nguyen

TIC Data Team Lead

What is Data Science?

- > Data science is a multi-disciplinary field
- > Uses scientific methods, processes, algorithms and systems
- > Extracts knowledge and insights from data in various forms,
 - both structured and unstructured

The Big Mea.

The True Measures Of Success

10 Rules for Managing Global Innovation

What Ever Happened To Accountability?

DATA SCIENTIST

The Sexiest Job of the 21st Century

EMC²

Josh Wills @josh wills

Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

9:55 AM - 3 May 12

What Data Scientist do?

Product and Research

- Find **better** techniques
- Make sure ML system was "smart"

enough

- **Help** the **engineering** team
- Work with product managers to

incorporate new improvements

• Develop **new** products or features

Sales and Marketing

- Explain technology aspects to potential clients
- Work with data set from a potential client
- **Share** knowledge
- Create visualization

Data Scientist skill set

Data Scientist skill set

Data Science Level 1

-- Session 1-Data science project cycle

Hung Nguyen

TIC Data Team Lead

The Data Science Process

Business understanding

Determine

What does the client want to achieve?

- ✓ Reduce attrition
- ✓ Customized targeting
- ✓ Plan future media spend
- ✓ Prevent fraud
- ✓ Recommend Products

Understand

- **Understand** success criteria.
- **List** assumptions, constraints, and important factors.
- **Identify** secondary or competing objectives.
- **Study** existing solutions (if any).

Map

- Business Objective →
 Technical Objective
 - ✓ State the project objective in **technical terms**.
 - ✓ How data science project will help
 - ✓ Successful scenarios.

Data Preparation

IDENTIFY

- Data sources,
 formats
- Entity

Relationship

Diagram

- Identify **relevant** data
- Record unavailable data.
- How long

COLLECT

- Access or acquire all relevant data in a central location
- Quality control checks and tests

ASSESS

- Get **familiar** with the data.
- Study

seasonality.

- Detect mistakes.
- Check

assumptions.

Review distributions.

VECTORIZE

Create the Analysis **Dataset**

Data munging (preprocessing)

- **Descriptive** statistics
- Correlation analysis
- Impute missing values
- Trim extreme values
- Process categorical attributes

- Transformations (square, log, etc.)
- Multicollinearity: **reduce** redundancy
- Create additional feature
- Interactions
- Normalization (scaling)

Time Spent 80% 20%

Data Munging Model Building

Model training

Model Evaluation

MODEL SELECTION

- Law of Parsimony:
- simple is better
- Execution time
- Deployment complexity

ASSESSMENT

PRESENTATION

Model Deployment

- Model production cycle
- Scoring code, or publish model as a web service
- Model Documentation (Technical Specifications)
- Reproducibility
- Model Persistence vs. Model Transience

Model Tracking

MONITOR

Model performance

over time

• Predictor distribution

MAINTAIN

Model maintenance

plan

Adding new data

sources

Version control

TEST

Experimental Design

(A/B tests, Fractional

Factorial)

Data Science Process: Recap

Business Understanding	Data Preparation	Data Munging	Model Training	Model Evaluation	Model Deployment	Model Tracking
Determine	Identify	Impute	Train	Evaluate	Deploy	Monitor
Understand	Collect	Transform	Assess	Peer Review	Document	Maintain
Мар	Assess	Reduce	Select	Present		Test
	Vectorize					
DISCUSS	COLLATE	WRANGLE	PERFORM	COMMUNICATE	EXECUTE	TRACK

Data Science Level 1

-- Session 1--Basic statistical concepts

Hung Nguyen

TIC Data Team Lead

Statistical Features

- min, max, mean, median, mode,
 standard deviation, first & third quartiles
- the first stats technique to apply when exploring a dataset
- easy to understand and implement in code

Probability Distributions

Probability - percent chance that some event will occur

Dimensionality Reduction

Techniques:

- Feature pruning
- Principal component analysis (PCA)

Over and Under Sampling

usually use in **imbalanced classification** problem

Bayesian Statistics

• Example I : the probability of a certain medical test being positive is 90%, if a patient has disease D. I% of the population have the disease, and the test records a false positive 5% of the time. If you receive a positive test, what is your probability of having D?

• P(+|D)=0.9, P(D)=0.01, P(+|no D)=0.05, we want P(D|+)

•
$$P(D|+) = \frac{P(+|D)P(D)}{P(+)} = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|\text{no}D)P(\text{no}D)}$$

• Substituting in the numbers : P(D|+) = 0.15

Data Science Level 1

-- Session 1-Introduction to Python

Hung Nguyen

TIC Data Team Lead

Python, R, Both, or Other platforms for Analytics, Data Science, Machine Learning

Why Python for Data Science?

- Python's inherent readability and simplicity make it relatively easy to pick up
- Large amount of dedicated analytical libraries and open-source communities
- Millions of users who are happy to offer advice or suggestions
- Supports object-oriented programming, structured programming, and functional programming patterns

```
hung@hung:~

File Edit View Search Terminal Help

hung@hung:~$ python

Python 3.6.4 |Anaconda custom (64-bit)| (default, Jan 16 2018, 18:10:19)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> print('Hello World!')

Hello World!

>>>
```

Python basic libraries for Data Science

Install: \$ pip install library_name>

Use: >>> import <library_name>

IPython
Interactive Computing

Run:

IDE: Python Notebook

An illustration of the Discrete Fourier Transform

$$X_k = \sum_{n=0}^{N-1} x_n exp^{\frac{-2\pi i}{N}kn} \quad k = 0, \dots, N-1$$

Install: \$ pip install jupyter

\$ jupyter notebook

```
In [2]: from scipy.io import wavfile
        rate, x = wavfile.read('test mono.wav')
```

And we can easily view it's spectral structure using matplotlib's builtin specgram routine:

```
In [5]: fig, (ax1, ax2) = plt.subplots(1,2,figsize(16,5))
        axl.plot(x); axl.set_title('Raw audio signal')
        ax2.specgram(x); ax2.set_title('Spectrogram');
```


Libraries/APIs for Big Data & Deep Learning

THANK YOU!

Vietnam: **84-2839-951-059**

North America: +1 844 224 4188

Australia: +61 414 734 277

Japan: +81 364 324 994

Website: http://tma-innovation.center

Email: innovation@tma.com.vn

