PHYS11 CH8: Linear Momentum & Collisions Understanding Motion Through Conservation Laws

Mr. Gullo

Learning Objectives

- Define and calculate linear momentum
- Understand impulse and its relationship to force
- Apply conservation of momentum in various scenarios
- Analyze elastic and inelastic collisions
- Solve problems involving two-dimensional collisions
- Understand basic rocket propulsion principles

Chang'e-5

 ${\tt CH8/phys12-nuclear-atomic-change-process.jpg}$

|| 4日ト4日ト4日ト || 日 || 、

Saturn V Launch

Saturn V Launch Example

Initial Acceleration Calculation

[Insert Saturn V rocket momentum diagram]

Saturn V Facts

- Largest and most powerful rocket ever successfully operated
- Used in Apollo moon missions
- Height: 111 meters (363 feet)
- Thrust at liftoff: 34.5 million newtons

Example 8.8: Saturn V Initial Acceleration

Problem Setup

Given Values

• Initial mass: $m = 2.80 \times 10^6 \text{ kg}$

Example 8.8: Saturn V Initial Acceleration Problem Setup

Given Values

- Initial mass: $m = 2.80 \times 10^6 \text{ kg}$
- Fuel-burn rate: $\frac{\Delta m}{\Delta t} = 1.40 \times 10^4 \text{ kg/s}$

Example 8.8: Saturn V Initial Acceleration Problem Setup

Given Values

- Initial mass: $m = 2.80 \times 10^6 \text{ kg}$
- ullet Fuel-burn rate: ${\Delta m \over \Delta t} = 1.40 imes 10^4 \ kg/s$
- Exhaust velocity: $v_e = 2.40 \times 10^3 \text{ m/s}$

Example 8.8: Saturn V Initial Acceleration Problem Setup

Given Values

- Initial mass: $m = 2.80 \times 10^6 \text{ kg}$
- ullet Fuel-burn rate: ${\Delta m \over \Delta t} = 1.40 imes 10^4 \ kg/s$
- Exhaust velocity: $v_e = 2.40 \times 10^3 \text{ m/s}$

Example 8.8: Saturn V Initial Acceleration

Problem Setup

Given Values

- Initial mass: $m = 2.80 \times 10^6 \text{ kg}$
- Fuel-burn rate: $\frac{\Delta m}{\Delta t} = 1.40 \times 10^4 \text{ kg/s}$
- Exhaust velocity: $v_e = 2.40 \times 10^3 \text{ m/s}$

Strategy

Use rocket acceleration equation:

$$a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g$$

Mr. Gullo

Step-by-Step Calculation

$$a = \frac{v_{\rm e}}{m} \frac{\Delta m}{\Delta t} - g$$

Step-by-Step Calculation

$$a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g$$
$$= \frac{2.40 \times 10^3 \text{ m/s}}{2.80 \times 10^6 \text{ kg}}$$

Mr. Gullo Linear Momentum 7 /

Step-by-Step Calculation

$$\begin{split} a &= \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g \\ &= \frac{2.40 \times 10^3 \text{ m/s}}{2.80 \times 10^6 \text{ kg}} \times (1.40 \times 10^4 \text{ kg/s}) - 9.80 \text{ m/s}^2 \end{split}$$

Mr. Gullo

Step-by-Step Calculation

$$\begin{split} a &= \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g \\ &= \frac{2.40 \times 10^3 \text{ m/s}}{2.80 \times 10^6 \text{ kg}} \times (1.40 \times 10^4 \text{ kg/s}) - 9.80 \text{ m/s}^2 \\ &= 12.0 \text{ m/s}^2 - 9.80 \text{ m/s}^2 \end{split}$$

Mr. Gullo Linear Momentum 7/1

Step-by-Step Calculation

$$a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g$$

$$= \frac{2.40 \times 10^3 \text{ m/s}}{2.80 \times 10^6 \text{ kg}} \times (1.40 \times 10^4 \text{ kg/s}) - 9.80 \text{ m/s}^2$$

$$= 12.0 \text{ m/s}^2 - 9.80 \text{ m/s}^2$$

$$= 2.20 \text{ m/s}^2$$

Mr. Gullo

Analysis of Results

• Initial acceleration seems small: 2.20 m/s²

Example 8.8: Discussion Analysis of Results

- \bullet Initial acceleration seems small: 2.20 m/s²
- Acceleration increases as fuel burns because:

Analysis of Results

- Initial acceleration seems small: 2.20 m/s²
- Acceleration increases as fuel burns because:
 - Mass (m) decreases

Analysis of Results

- Initial acceleration seems small: 2.20 m/s²
- Acceleration increases as fuel burns because:
 - Mass (m) decreases
 - Exhaust velocity (v_e) remains constant

Analysis of Results

- Initial acceleration seems small: 2.20 m/s²
- Acceleration increases as fuel burns because:
 - Mass (m) decreases
 - Exhaust velocity (v_e) remains constant
 - ullet Fuel burn rate $(\Delta m/\Delta t)$ remains constant

Key Insight

The seemingly small initial acceleration is sufficient because it continuously increases as fuel is consumed.

discussion time

Linear Momentum

Definition

Linear momentum $\vec{p} = m\vec{v}$

- Vector quantity with direction same as velocity
- SI units: kgm/s
- Proportional to both mass and velocity

Total Momentum =
$$\sum_{i} m_{i} \vec{v_{i}}$$

8.1 Linear Momentum and Force

Key Definition

Linear momentum $\vec{p} = m\vec{v}$

- ullet Linear momentum is fundamentally defined as mass imes velocity
- SI Units: kg·m/s
- Newton's Second Law in momentum form:

$$\vec{F}_{\text{net}} = \frac{\Delta \vec{p}}{\Delta t}$$

- \vec{F}_{net} is net external force
- ullet $\Delta ec{p}$ is change in momentum
- \bullet Δt is time interval

Mr. Gullo

Impulse

Key Equation

$$\vec{J} = \vec{F} \Delta t = \Delta \vec{p}$$

- Measures change in momentum
- Can reduce force by increasing time
- Applications:
 - Airbags
 - Sports equipment
 - Safety padding

Impulse Egg Drop

Show impulse egg drop video

8.2 Impulse

Key Concept

Impulse equals change in momentum

$$\vec{J} = \vec{F}_{net} \Delta t$$

$$= \Delta \vec{p}$$

- Impulse is the product of force and time interval
- Forces typically vary over time
- Area under force-time curve equals impulse

8.3 Conservation of Momentum

Conservation Principle

In an isolated system: $\vec{p}_{tot} = constant$

- An isolated system has zero net external force
- $\vec{p}_{\text{initial}} = \vec{p}_{\text{final}}$
- Conserved in systems with:
 - No external forces
 - During projectile motion (horizontal direction)
 - In particle systems

8.4 8.5 Collisions in One Dimension

Elastic Collisions

- Conserves kinetic energy
- Conserves momentum
- Final velocities calculable from initial conditions

Inelastic Collisions

- Kinetic energy not conserved
- Momentum conserved
- Perfectly inelastic: objects stick together

Applications

Sports science, safety systems, particle physics

8.6 Two-Dimensional Collisions

Key Strategy

Break motion into perpendicular components

- Choose x-axis parallel to incoming velocity
- For mass 2 initially at rest:
 - x-axis:
 - $m_1 v_1 = m_1 v_1' \cos \theta_1 + m_2 v_2' \cos \theta_2$
 - y-axis:
 - $0 = m_1 v_1' \sin \theta_1 + m_2 v_2' \sin \theta_2$
- Point masses cannot rotate or spin

CH8/Screenshot 2024-12-17 070905.png

8.7 Rocket Propulsion

Rocket Acceleration

$$a = \frac{v_e}{m} \frac{\Delta m}{\Delta t} - g$$

- Based on Newton's Third Law
- Acceleration depends on:
 - Exhaust velocity (v_e)
 - 2 Fuel burn rate $(\Delta m/\Delta t)$
 - Rocket mass (m)
- Greater acceleration with:
 - Higher exhaust velocity
 - Faster fuel consumption
 - Lower rocket mass