# Chương 2

# LÝ THUYẾT TẬP HỢP

Tập hợp hình thành từ việc nhóm một số đối tượng nào đó với nhau.

- Các đối tượng được gọi là các phần tử của tập hợp.
- Ký hiệu tập hợp: A, B, X, Y
- Ký hiệu phần tử: a, b, c, u, v ...
- > a∈A; a ∉A.
- > Tập rỗng là tập không chứa bất kỳ một phần tử nào.
  - ➤ Ký hiệu: Ø hoặc { }

Các cách biểu diễn tập hợp:

- Liệt kê các phần tử

$$A = \{u, e, o, a, i\}$$

- Sử dụng quy tắc đơn giản

$$B = \{0, 2, 4, 6, \ldots\}$$

- Sử dụng quy tắc nhận biết

$$C = \{x \mid x < 100 \text{ và } x \text{ là số nguyên tố} \}$$

#### Tập con:

$$A \subset B \Leftrightarrow \forall x \in A \Rightarrow x \in B$$

### Tập bằng nhau:

$$A = B \Leftrightarrow A \subseteq B \text{ và } B \subseteq A$$

### Bản số (lực lượng):

Tập hợp S có chính xác *n* phần tử phân biệt trong S thì *n* được gọi là bản số của S.

Ký hiệu là |S|.

Ví dụ: 
$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$B = \{0, 2, 4, 6, 8\}$$

$$C = \{x \mid x \text{ là số tự nhiên chẵn và nhỏ hơn 10}\}$$

#### Ta có:

- $^{\circ}$   $B \subseteq A$ ,  $C \subseteq A$
- $\circ B = C$
- |A| = 10, |B| = |C| = 5

#### Tập lũy thừa của một tập hợp S

- Tập luỹ thừa của S là tập tất cả các tập con của S.
- Ký hiệu là P(S)
- Số phần tử của tập lũy thừa của S là 2<sup>|S|</sup>

**Ví dụ**: 
$$S = \{0, 1, 2\}$$

- $P(S) = \{ \emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\} \{0,1,2\} \}.$
- Số phần tử của P(S) là  $2^3 = 8$

### Tích Đề-các

Cho A và B là hai tập hợp.

- $\circ A \times B = \{ (a, b) \mid a \in A \ vab \in B \}$
- $|A \times B| = |A| \cdot |B|$

**Ví dụ**:  $A = \{0,1\}$  và  $B = \{a, b, c\}$ 

 $^{\circ}A\times B = \{(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)\}$ 

### Tích Đề-các

Tích Đêcac của các tập  $A_1$ ,  $A_2$ , . .,  $A_n$  được ký hiệu là  $A_1 \times A_2 \times .. \times A_n$ 

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ v\'oi } i = 1, 2, ... n \}$$

**Ví dụ**:  $A_1$  – Tập họ tên,  $A_2$  – Tập năm sinh,  $A_3$  – Tập các tỉnh/thành phố

(Hoa, 1990, Hà Nội)  $\in A_1 \times A_2 \times A_3$ 

### CÁC PHÉP TOÁN TRÊN TẬP HỢP

#### Phép hợp

$$A \cup B = \{ x \mid x \in A \text{ hoặc } x \in B \}$$



#### Phép giao

$$A \cap B = \{ x \mid x \in A \text{ và } x \in B \}$$



 Hai tập hợp A và B được gọi là rời nhau nếu giao của chúng là tập rỗng (A∩B = Ø)

### CÁC PHÉP TOÁN TRÊN TẬP HỢP

#### Phép hiệu

$$A - B = \{ x \mid x \in A \text{ và } x \notin B \}$$
$$A \setminus B = \{ x \mid x \in A \text{ và } x \notin B \}$$



#### Phần bù của tập A

$$\bar{A} = \{ x \mid x \notin A \}$$



# CÁC PHÉP TOÁN TRÊN TẬP HỢP

Ví dụ: 
$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$B = \{0, 2, 4, 6, 8\}$$

$$C = \{x \mid x \text{ là số tự nhiên chia hết cho 3}\}$$

#### Ta có:

- $A \cap B = \{0, 2, 4, 6, 8\}, A \cup B = A$
- $^{\circ}$  *B* ∩ *C* = {0, 6}
- $\circ$  *A* \ *B* = {1, 3, 5, 7, 9}
- $\overline{C} = \{x \mid x \text{ là số tự nhiên không chia hết cho 3} \}$

# CÁC HẰNG ĐẮNG THỰC TẬP HỢP

#### Biểu thức

#### Tên luật

$$A \cap U = A$$

$$A \cup \emptyset = A$$

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

$$A \cup A = A$$

$$A \cap A = A$$

Luật đồng nhất

Luật nuốt (luật hấp thu)

Luật lũy đẳng

# CÁC HẰNG ĐẮNG THỰC TẬP HỢP

#### Biểu thức

#### Tên luật

$$\overline{(\overline{A})} = A$$

Luật phản xạ

$$A \cup B = B \cup A$$

Luật giao hoán

$$A \cap B = B \cap A$$

$$A \cup \overline{A} = U$$
$$A \cap \overline{A} = \emptyset$$

Luật đầy đủ và phi mâu thuẫn

# CÁC HẰNG ĐẮNG THỰC TẬP HỢP

#### Biểu thức

#### Tên luật

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Luật kết hợp

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Luật phân phối

$$\frac{\overline{A \cap B} = \overline{A} \cup \overline{B}}{\overline{A \cup B} = \overline{A} \cap \overline{B}}$$

Luật De Morgan

## Chứng minh đẳng thức tập hợp

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}.$$

$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B} \cap \overline{C})$$

$$= \overline{A} \cap (\overline{B} \cup \overline{C})$$

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$

$$= (\overline{C} \cup \overline{B}) \cap \overline{A}$$

# Chứng minh đẳng thức tập hợp

Chứng minh luật phân phối:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

| A | В | C | $B \cup C$ | $A\cap (B\cup C)$ | $A \cap B$ | $A\cap C$ | $(A\cap B)\cup (A\cap C)$ |
|---|---|---|------------|-------------------|------------|-----------|---------------------------|
| 1 | 1 | 1 | 1          | 1                 | 1          | 1         | 1                         |
| 1 | 1 | 0 | 1          | 1                 | 1          | 0         | 1                         |
| 1 | 0 | 1 | 1          | 1                 | 0          | 1         | 1                         |
| 1 | 0 | 0 | 0          | 0                 | 0          | 0         | 0                         |
| 0 | 1 | 1 | 1          | 0                 | 0          | 0         | 0                         |
| 0 | 1 | 0 | 1          | 0                 | 0          | 0         | 0                         |
| 0 | 0 | 1 | 1          | 0                 | 0          | 0         | 0                         |
| 0 | 0 | 0 | 0          | 0                 | 0          | 0         | 0                         |

# Chứng minh đẳng thức tập hợp

Sử dụng luật tương đương logic

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in (A \cap B))\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}$$

# Biểu diễn tập hợp trong máy tính

Cho  $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Mỗi tập con của U được biểu diễn bởi 1 xâu nhị phân độ dài |U| = 10

| Xâu nhị phân | Tập con            |
|--------------|--------------------|
| 10101010     | {0, 2, 4, 6, 8}    |
| 01010101     | {1, 3, 5, 7, 9}    |
| 1101101100   | {0, 1, 3, 4, 6, 7} |

# Biểu diễn tập hợp trong máy tính

Các phép toán trên tập hợp được thực hiện bằng các phép toán trên xâu nhị phân tương ứng

| Phép toán trên xâu nhị phân | Phép toán tập hợp |
|-----------------------------|-------------------|
| AND                         | Phép giao         |
| OR                          | Phép hợp          |
| Đảo bít NOT                 | Phép lấy phần bù  |

# Biểu diễn tập hợp trong máy tính

Ví dụ:  $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

#### Phép toán trên xâu nhị phân

1010101010 AND 0101010101 = 0000000000  $\{0, 2, 4, 6, 8\} \cap \{1, 3, 5, 7, 9\} = \emptyset$ 

1010101010 OR 0101010101 = 1111111111  $\{0, 2, 4, 6, 8\} \cup \{1, 3, 5, 7, 9\} = U$ 

NOT(1010101010) = 0101010101 U \  $\{0, 2, 4, 6, 8\} = \{1, 3, 5, 7, 9\}$ 

X là tập các sinh viên

Y là tập các điểm hệ 4

Ánh xạ f là một phép gán **mỗi phần tử** của tập X với **duy nhất một** phần tử của tập Y

Ký hiệu:  $f: X \rightarrow Y$ 

$$f(a) = b$$



```
A là tập xác định \{b \in B \mid \exists a \in A: f(a) = b\} là tập giá trị a là tạo ảnh của b b là ảnh của a
```



#### Đơn ánh:

$$f(a) = f(b) \Rightarrow a = b$$



#### Toàn ánh:

$$\forall b \in B, \exists a \in A: f(a) = b$$



#### Song ánh:

f là song sánh khi và chỉ khi f vừa đơn ánh, vừa toàn ánh

Xác định các loại ánh xạ trong các hình sau:



### Ánh xạ ngược



### Ánh xạ tích



- Tập hợp là tập hữu hạn nếu số lượng phần tử là một số xác định hoặc bị giới hạn bởi một số xác định.
- Tập vô hạn không phải là tập hữu hạn.
- Lực lượng của tập hữu hạn là số lượng phần tử của tập hợp đó.
- Hai tập hữu hạn có cùng lực lượng nếu có cùng số lượng phần tử.

Hai tập A và B có cùng lực lượng khi tồn tại một song ánh từ A đến B.

Ví dụ: xét tập hợp vô hạn số tự nhiên và tập số nguyên

$$f(z) = \begin{cases} 2.z & n\text{\'e}u \ z \ge 0 \\ -2.z - 1 & n\text{\'e}u \ z < 0 \end{cases}$$

f là song ánh từ tập Z đến tập N

Nên Z và N có cùng lực lượng

### Tập đếm được và tập không đếm được:

- Tập hữu hạn hoặc tập có cùng lực lượng với tập số tự nhiên là tập đếm được.
- Các tập vô hạn không có cùng lực lượng với tập số tự nhiên là tập không đếm được.

#### Ví dụ:

- Tập các số tự nhiên lẻ là tập đếm được.
- Tập các số nguyên là tập đếm được.

Tập các số hữu tỷ dương là vô hạn, đếm được

