AP Physics C

Arnav Patri

 $March\ 22,\ 2022$

Contents

Ι	Mechanics	2
1	Rotations	3
	1.1 Rotation	. 3
	1.2 Rolling, Torque, and Angular Momentum	. 3

Part I Mechanics

Chapter 1

Rotations

1.1 Rotation

A **rigid body** rotates as a unit.

The axis about which an object rotates is the axis of rotation. The angular position θ of this line is taken relative to a fixed direction, the zero angular position.

Although its can be changed (if specified), positive angles are conventionally **counterclockwise** from the zero angular position.

Angular dimension is measured using radians (rad), which are dimensionless.

$$\theta = \frac{s}{r}$$

A **revolution** is equal to 360° which is also equal to 2π rad.

1.2 Rolling, Torque, and Angular Momentum

For an object to **roll** is for it to move rotationally and translationally along a surface. For an object to roll **smoothly** is for it not to leave the ground while it is rolling.

Smooth rolling can be thought of as pure rotation and pure translation or as rotation about a moving contact point.

The center of mass of a rolling object moves parallel to the surface. The rest of the object rotates about the center of mass.

The **arc distance** S, the distance covered on the surface, and the velocity about the center of mass are defined as linear variables:

$$S = \theta r v_{\text{com}} = \omega r$$

As rolling objects move both translationally and rotationally, they have both translational and rotational kinetic energy.

$$K = \frac{1}{2}I_{\text{com}}\omega^2 + \frac{1}{2}Mv_{\text{com}}^2$$

For an object to roll smoothly, friction is required.

If no slipping occurs, then energy is conserved (even with friction).