(a) Displacement x as a function of time t

(b) Velocity v_x as a function of time t

The v_x -t graph is shifted by $\frac{1}{4}$ cycle from the x-t graph.

(c) Acceleration a_x as a function of time t

$$a_{\text{max}} = \omega^{2}A$$

$$-a_{\text{max}} = -\omega^{2}A$$

$$T$$

$$a_{\text{max}} = -\omega^{2}A$$

$$T$$

$$T$$

$$2T$$

The a_x -t graph is shifted by $\frac{1}{4}$ cycle from the v_x -t graph and by $\frac{1}{2}$ cycle from the x-t graph.

Each curve shows the amplitude A for an oscillator subjected to a driving force at various angular frequencies ω_d . Successive curves from blue to gold represent successively greater damping.

Driving frequency ω_d equals natural angular frequency ω of an undamped oscillator.