FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy

Jianqing Zhang¹

Yang Hua²

Hao Wang³

Tao Song¹

Zhengui Xue¹

Ruhui Ma¹

Haibing Guan¹

• In practice, clients generate their specific private data, as shown by the colorful icons here.

• Goal: address the statistical heterogeneity issue by learning personalized models.

• Consensus: reasonably utilizing global and personalized information is the key for pFL.

- Consensus: reasonably utilizing global and personalized information is the key for pFL.
 - E.g., meta-learning-based (Per-FedAvg)

Per-FedAvg[1]

- Consensus: reasonably utilizing global and personalized information is the key for pFL.
 - E.g., meta-learning-based (Per-FedAvg), regularization-based (Ditto)

Per-FedAvg[1]

Ditto[2]

^[1] Fallah A, Mokhtari A, Ozdaglar A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. NeurIPS, 2020. [2] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated learning through personalization. ICML, 2021.

- Consensus: reasonably utilizing global and personalized information is the key for pFL.
 - E.g., meta-learning-based (Per-FedAvg), regularization-based (Ditto), and personalized-head-based (FedRep) pFL.

[1] Fallah A, Mokhtari A, Ozdaglar A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. NeurIPS, 2020.

^[2] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated learning through personalization. ICML, 2021.

^[3] Collins L, Hassani H, Mokhtari A, et al. utilizing shared representations for personalized federated learning. ICML, 2021.

- Consensus: reasonably utilizing global and personalized information is the key for pFL.
 - E.g., meta-learning-based (Per-FedAvg), regularization-based (Ditto), and personalized-head-based (FedRep) pFL.

They only focus on model parameters, but ignore the source of information: data.

^[1] Fallah A, Mokhtari A, Ozdaglar A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach. NeurIPS, 2020.

^[2] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated learning through personalization. ICML, 2021.

^[3] Collins L, Hassani H, Mokhtari A, et al. utilizing shared representations for personalized federated learning. ICML, 2021.

• The *heterogeneous data* on clients contains both global and personalized information

- The *heterogeneous data* on clients contains both global and personalized information
 - E.g., blue (widely-used) contains global information and purple/pink (rarely-used) contains personalized information.

- The *heterogeneous data* on clients contains both global and personalized information
 - E.g., blue (widely-used) contains global information and purple/pink (rarely-used) contains personalized information.
 - Model learns this global and personalized information to its parameters, but

- The *heterogeneous data* on clients contains both global and personalized information
 - E.g., blue (widely-used) contains global information and purple/pink (rarely-used) contains personalized information.
 - Model learns this global and personalized information to its parameters, but
 - Parameters are second-hand information and only data is the first-hand information.

- The *heterogeneous data* on clients contains both global and personalized information
 - E.g., blue (widely-used) contains global information and purple/pink (rarely-used) contains personalized information.
 - Model learns this global and personalized information to its parameters, but
 - Parameters are second-hand information and only data is the first-hand information.
 - How to directly utilizing global and personalized information in data?

- The heterogeneous data on clients contains both global and personalized information
 - E.g., blue (widely-used) contains global information and purple/pink (rarely-used) contains personalized information.
 - Model learns this global and personalized information to its parameters, but
 - Parameters are second-hand information and only data is the first-hand information.
 - How to directly utilizing global and personalized information in data?

Since the dimension of raw data is too large, we consider the extracted feature vector.

• We propose to separate feature information via an auxiliary Conditional Policy Network (CPN).

- We propose to separate feature information via an auxiliary Conditional Policy Network (CPN).
 - Generate sample-specific policy
 - End-to-end training together with the client model
 - Lightweight (e.g., 4.67% parameters of ResNet-18)

- We propose to separate feature information via an auxiliary Conditional Policy Network (CPN).
 - Generate sample-specific policy
 - End-to-end training together with the client model
 - Lightweight (e.g., 4.67% parameters of ResNet-18)

• We utilize global and personalized information via global and personalized heads, respectively.

• How to realize?

- How to realize?
- Use our Federated Conditional Policy (FedCP) framework.

- How to realize?
- Use our **Federated Conditional Policy (FedCP)** framework.

(a) Forward data flow corresponding to the local learning on client i.

(b) Upload and download streams in FedCP.

• Key operations are done on the client side

• Obtain feature vector $m{h}_i$

• Consider sample-specific $m{h}_i$ and client-specific $m{v}_i$ as the conditional input \mathcal{C}_i for CPN

• Generate conditional policy $\{m{r}_i, m{s}_i\}$ via CPN

• Multiply conditional policy $\{m{r}_i, m{s}_i\}$ to $m{h}_i$ to obtain $m{r}_i \odot m{h}_i$ and $m{s}_i \odot m{h}_i$

• Process global feature information $m{r}_i \odot m{h}_i$ via a **frozen** global head $m{W}^{m{h}m{d}}$

• Process global feature information $r_i \odot h_i$ via a **frozen** global head W^{hd} Why?

• Process global feature information $m{r}_i \odot m{h}_i$ via a **frozen** global head $m{W}^{m{h}m{d}}$

Retain global information to guide CPN training during backward

• Process personalized feature information $m{s}_i \odot m{h}_i$ via a personalized head $m{W}_i^{hd}$

• Combine the outputs of two heads to form final output $out_{m{i}}$

• From the view of each sample, its features are processed by an unified head \widehat{W}_i^{hd}

Personalized model for inference

• Personalized model for training: classification error, local cross entropy loss \mathcal{E}_i

• Personalized model for training: aligning features, MMD loss \mathcal{E}_i^d

• Personalized model for training: gray-colored components are only used for training

• Only Θ introduces additional communication overhead per iteration (e.g., 4.67% for ResNet-18)

• FedCP outperforms 11 SOTA traditional FL and pFL methods by up to 6.69%

The accuracy (%) of the image/text classification tasks in the main experiments.

Settings	Pathological setting			Default practical setting ($\beta = 0.1$)					
	MNIST	Cifar10	Cifar100	MNIST	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg [32]	97.93±0.05	55.09±0.83	25.98±0.13	98.81±0.01	59.16±0.47	31.89±0.47	19.46±0.20	19.45±0.13	79.57±0.17
FedProx [26]	98.01±0.09	55.06 ± 0.75	25.94 ± 0.16	98.82±0.01	59.21 ± 0.40	31.99 ± 0.41	19.37 ± 0.22	19.27 ± 0.23	79.35 ± 0.23
Per-FedAvg [8]	99.63±0.02	89.63±0.23	56.80±0.26	98.90±0.05	87.74±0.19	44.28±0.33	25.07±0.07	21.81±0.54	93.27±0.25
pFedMe [42]	99.75±0.02	90.11 ± 0.10	58.20 ± 0.14	99.52±0.02	88.09 ± 0.32	47.34 ± 0.46	26.93 ± 0.19	33.44 ± 0.33	91.41 ± 0.22
FedAMP [15]	99.76±0.02	90.79 ± 0.16	64.34 ± 0.37	99.47±0.02	88.70 ± 0.18	47.69 ± 0.49	27.99 ± 0.11	29.11 ± 0.15	94.18 ± 0.09
Ditto [24]	99.81±0.00	92.39 ± 0.06	67.23 ± 0.07	99.64±0.00	90.59 ± 0.01	52.87±0.64	32.15 ± 0.04	35.92 ± 0.43	95.45 ± 0.17
FedPer [2]	99.70±0.02	91.15 ± 0.21	63.53 ± 0.21	99.47±0.04	89.22 ± 0.33	49.63 ± 0.54	33.84 ± 0.34	38.45 ± 0.85	95.54 ± 0.32
FedRep [6]	99.77±0.03	91.93 ± 0.14	67.56 ± 0.31	99.48±0.02	90.40 ± 0.24	52.39 ± 0.35	37.27 ± 0.20	39.95 ± 0.61	96.28 ± 0.14
FedRoD [4]	99.90±0.00	91.98 ± 0.03	62.30 ± 0.02	99.66±0.00	89.93 ± 0.01	50.94 ± 0.11	36.43 ± 0.05	37.99 ± 0.26	95.99 ± 0.08
FedFomo [55]	99.83±0.00	91.85 ± 0.02	62.49 ± 0.22	99.33±0.04	88.06 ± 0.02	45.39 ± 0.45	26.33 ± 0.22	26.84 ± 0.11	95.84 ± 0.15
FedPHP [27]	99.73±0.00	90.01±0.00	63.09 ± 0.04	99.58±0.00	88.92±0.02	50.52 ± 0.16	35.69±3.26	29.90 ± 0.51	94.38 ± 0.12
FedCP	99.91±0.01	92.67±0.09	71.80±0.16	99.71±0.00	91.30±0.17	59.56±0.08	43.49±0.04	44.18±0.21	96.78±0.09

• FedCP outperforms 11 SOTA traditional FL and pFL methods in various settings and datasets

The accuracy (%) of the image/text classification tasks in the main experiments.

Settings	Pathological setting			Default practical setting ($\beta = 0.1$)					
	MNIST	Cifar10	Cifar100	MNIST	Cifar10	Cifar100	TINY	TINY*	AG News
FedAvg [32]	97.93±0.05	55.09±0.83	25.98±0.13	98.81±0.01	59.16±0.47	31.89±0.47	19.46±0.20	19.45±0.13	79.57±0.17
FedProx [26]	98.01±0.09	55.06 ± 0.75	25.94 ± 0.16	98.82±0.01	59.21 ± 0.40	31.99 ± 0.41	19.37 ± 0.22	19.27 ± 0.23	79.35 ± 0.23
Per-FedAvg [8]	99.63±0.02	89.63±0.23	56.80±0.26	98.90±0.05	87.74±0.19	44.28±0.33	25.07±0.07	21.81±0.54	93.27±0.25
pFedMe [42]	99.75±0.02	90.11 ± 0.10	58.20 ± 0.14	99.52±0.02	88.09 ± 0.32	47.34 ± 0.46	26.93 ± 0.19	33.44 ± 0.33	91.41 ± 0.22
FedAMP [15]	99.76±0.02	90.79 ± 0.16	64.34 ± 0.37	99.47±0.02	88.70 ± 0.18	47.69 ± 0.49	27.99 ± 0.11	29.11 ± 0.15	94.18 ± 0.09
Ditto [24]	99.81±0.00	92.39 ± 0.06	67.23 ± 0.07	99.64±0.00	90.59 ± 0.01	52.87 ± 0.64	32.15 ± 0.04	35.92 ± 0.43	95.45 ± 0.17
FedPer [2]	99.70±0.02	91.15 ± 0.21	63.53 ± 0.21	99.47±0.04	89.22 ± 0.33	49.63 ± 0.54	33.84 ± 0.34	38.45 ± 0.85	95.54 ± 0.32
FedRep [6]	99.77±0.03	91.93 ± 0.14	67.56 ± 0.31	99.48±0.02	90.40 ± 0.24	52.39 ± 0.35	37.27 ± 0.20	39.95 ± 0.61	96.28 ± 0.14
FedRoD [4]	99.90±0.00	91.98 ± 0.03	62.30 ± 0.02	99.66±0.00	89.93 ± 0.01	50.94 ± 0.11	36.43 ± 0.05	37.99 ± 0.26	95.99 ± 0.08
FedFomo [55]	99.83±0.00	91.85 ± 0.02	62.49 ± 0.22	99.33±0.04	88.06 ± 0.02	45.39 ± 0.45	26.33 ± 0.22	26.84 ± 0.11	95.84 ± 0.15
FedPHP [27]	99.73±0.00	90.01±0.00	63.09 ± 0.04	99.58±0.00	88.92±0.02	50.52 ± 0.16	35.69±3.26	29.90 ± 0.51	94.38 ± 0.12
FedCP	99.91±0.01	92.67±0.09	71.80±0.16	99.71±0.00	91.30±0.17	59.56±0.08	43.49±0.04	44.18±0.21	96.78±0.09

• FedCP outperforms 11 SOTA methods on scalability

The accuracy (%) on Cifar100 for scalability.

	N = 10	N = 30	N = 50	N = 100	N = 200	<i>N</i> = 500
FedAvg	31.47±0.01	31.15±0.05	31.90 ± 0.27	31.95±0.37	31.20 ± 0.58	29.51±0.73
FedProx	31.24±0.08	31.21±0.08	31.94±0.30	31.97 ± 0.24	31.22±0.62	29.84±0.81
Per-FedAvg	37.24±0.12	41.57±0.21	44.31±0.20	36.07±0.24	_	_
pFedMe	44.06±0.29	47.04 ± 0.28	48.36 ± 0.64	46.45 ± 0.18	39.55 ± 0.61	31.30 ± 0.89
FedAMP	49.23±0.18	45.33 ± 0.04	44.39 ± 0.35	40.43 ± 0.17	35.40 ± 0.70	diverged
Ditto	52.32±0.19	52.53 ± 0.42	54.22 ± 0.04	52.89 ± 0.22	35.18 ± 0.53	30.24 ± 0.72
FedPer	50.31±0.19	44.98 ± 0.20	44.22 ± 0.18	40.37 ± 0.41	34.99 ± 0.48	30.56 ± 0.59
FedRep	52.89±0.10	50.24 ± 0.01	47.41 ± 0.18	44.61 ± 0.20	36.79 ± 0.60	31.92 ± 0.71
FedRoD	49.83±0.07	50.11 ± 0.03	49.38 ± 0.01	46.65 ± 0.22	43.53 ± 0.86	34.61 ± 0.98
FedFomo	46.71±0.23	43.20 ± 0.05	42.56 ± 0.33	38.91 ± 0.08	34.79 ± 0.71	29.24 ± 1.28
FedPHP	49.32±0.19	49.28±0.06	52.44±0.16	49.70±0.31	34.48 ± 0.33	30.26 ± 0.84
FedCP	58.36±0.02	56.93±0.19	55.43±0.21	53.81±0.32	44.86±0.87	35.87±0.52

• FedCP outperforms 11 SOTA methods on scalability in real-world scenarios

The accuracy (%) on Cifar100 for scalability in real-world scenarios.

	N = 10 50	N = 30 50	N = 50
FedAvg	25.28±0.32	29.04 ± 0.21	31.90 ± 0.27
FedProx	25.65±0.34	29.04±0.36	31.94±0.30
Per-FedAvg	40.20±0.21	42.96±0.42	44.31±0.20
pFedMe	40.27±0.54	42.19 ± 0.38	48.36 ± 0.64
FedAMP	43.57±0.30	43.18 ± 0.31	44.39 ± 0.35
Ditto	48.23±0.35	50.98 ± 0.29	54.22 ± 0.04
FedPer	43.64±0.42	43.54 ± 0.43	44.22 ± 0.18
FedRep	46.85±0.12	47.63 ± 0.26	47.41 ± 0.18
FedRoD	46.32±0.02	49.15 ± 0.12	49.38 ± 0.01
FedFomo	41.53±0.45	40.69 ± 0.41	42.56 ± 0.33
FedPHP	45.71±0.21	48.65 ± 0.24	52.44 ± 0.16
FedCP	50.93±0.34	54.31±0.25	55.43±0.21

FedCP keeps superiority with large local epochs

The accuracy (%) on Cifar10 in the default practical setting with large local epochs.

Local epochs	5	10	20	40
FedAvg	57.51±0.35	57.55±0.32	57.28±0.23	56.27±0.29
FedProx	57.48±0.28	57.69 ± 0.31	57.53 ± 0.33	56.18 ± 0.24
Per-FedAvg	86.13±0.12	86.09±0.19	85.57±0.15	85.45±0.16
pFedMe	88.72±0.02	88.58 ± 0.17	88.37 ± 0.14	88.16 ± 0.20
FedAMP	88.72±0.21	88.77 ± 0.27	88.76 ± 0.30	88.70 ± 0.26
Ditto	90.79±0.21	90.59 ± 0.06	90.34 ± 0.23	90.02 ± 0.38
FedPer	89.62±0.12	89.73 ± 0.31	89.79 ± 0.35	89.49 ± 0.55
FedRep	90.20±0.41	90.08 ± 0.26	89.46 ± 0.13	89.22 ± 0.25
FedRoD	89.71±0.32	89.11±0.33	88.13 ± 0.21	87.55 ± 0.28
FedFomo	88.39±0.15	88.43 ± 0.16	88.41 ± 0.13	88.13 ± 0.32
FedPHP	90.29±0.37	90.03±0.23	89.92±0.27	89.87±0.26
FedCP	91.13±0.34	91.24±0.31	91.02±0.28	90.86±0.37

• FedCP keeps superiority in unstable settings with clients randomly drop out

The accuracy (%) on Cifar100 (N= 50, β = 0.1) when clients accidentally drop out.

	$\rho = 1$	$\rho \in [0.5, 1]$	$\rho \in [0.1, 1]$
Per-FedAvg	44.31±0.20	43.66 ± 1.38	43.63±1.07
pFedMe	48.36±0.64	43.28 ± 0.85	41.71 ± 1.02
FedAMP	44.39±0.35	42.91 ± 0.08	42.92 ± 0.14
Ditto	50.59±0.22	49.78 ± 0.36	48.33 ± 3.27
FedPer	44.22±0.18	44.12 ± 0.21	44.07 ± 0.27
FedRep	47.41±0.18	46.93 ± 0.21	46.61 ± 0.22
FedRoD	49.38±0.01	49.07 ± 0.43	47.80 ± 1.35
FedFomo	42.56±0.33	40.96 ± 0.02	40.93 ± 0.07
FedPHP	50.23±0.12	45.19 ± 0.07	44.43±0.12
FedCP	54.81±0.20	54.68±0.35	54.20±0.21

Policy Study

• Personalization Identification Ratio (PIR) change on client #0 in FedCP

Policy Study

• s_i distribution of test samples on all clients

Use FedCP to Separate Feature Information Now

FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy

Paper: https://arxiv.org/abs/2307.01217

Code: https://github.com/TsingZ0/FedCP

E-mail: tsingz@sjtu.edu.cn

Code

Thanks!