

typedef struct {

char c; double *p;

int i;

} struct1;

double d; short s;

Instituto Superior de Engenharia do Porto DEI / Licenciatura em Engenharia Informática Arquitectura de Computadores Exame Época Normal – Janeiro 2016

- Consulta <u>apenas</u> da	as 2 folhas de co	onsulta (C e Asser	nbly)
-----------------------------	-------------------	--------------------	-------

- A infracção implica, no mínimo, a ANULAÇÃO da prova.
- Quando omissa a arquitectura, considere Linux/IA32.

Versão: A Número:	Nome:	Nota mínima: 7.5/20 valores /	Duração: 120 minutos		
Responda aos grupos versão do enunciado.	III, IV e V em folhas A4 separad	as. No final, deverá entregar 4 folhas assir	nadas, indicando a		
[8v] Grupo I - Assinale no	seguinte grupo se as frases são verdade	iras ou falsas (uma resposta errada desconta 50% d			
1) Em C, o cast de uma varia	ável do tipo int para uma do tipo unsign	ned int altera o padrão de bits da variável	V F □□		
2) Em C, numa expressão co	om variáveis do tipo int com e sem sinal,	todas as variáveis são convertidas para valores sem sir	nal		
3) Em C, se tivermos um ch	ar com representação binária de 100110	10, o cast para um short resulta no valor 1111111	110011010		
4) Admita um inteiro x com	valor 0x01234567 e um valor dado por	&x de 0x100. Logo, o valor presente no byte 0x101	é 0x45□□		
5) Em C, a adição de duas va	ariáveis do tipo int com valores positivos	nunca pode resultar num valor negativo			
6) Em C, a operação u< <k r<="" td=""><td>resulta em u*2^k, independentemente da va</td><td>riável u ter ou não sinal</td><td></td></k>	resulta em u*2 ^k , independentemente da va	riável u ter ou não sinal			
7) Em Assembly, a instrução	7) Em Assembly, a instrução movl %eax, (%esp) pode ser usada para escrever o valor de %eax no topo da stack				
8) Em Assembly, a instrução cmp não altera os seus parâmetros nem os bits do registo EFLAGS					
		i. É possível alterar o valor de x executando movl \$			
, ,		antigo de %ebp numa função que inicia com o prólogo	•		
11) Admita que o endereç	eo de um vetor do tipo int está arma:	zenado em %esi e que o valor de %ecx é 2. A elemento do vetor	instrução leal		
12) A execução da instrução call não implica a alteração do valor do registo %esp					
13) Não é possível passar o endereço de uma variável local para outra função chamada pela primeira usando a <i>stack</i>					
14) Depois de um call de	uma função com 3 parâmetros inteiros pod	emos executar subl \$12, %esp para retirar os parân	netros da stack □□		
15) A convenção de salvagu	arda de registos indica que o registo %esi	deve ser gerido pela função invocada			
16) Admita a declaração da	matriz int m[4][5]. Em Assembly, o e	endereço do elemento m[i][j] é dado pela expressão	m+20*i+4*j□□		
17) Uma estrutura, alinhada	de acordo com as regras estudadas, com un	n vector de 2 char, 1 int e 1 short (por esta order	m) ocupa 8 bytes□□		
18) O espaço ocupado por uma estutura alinhada é sempre o mesmo, independemente da ordem dos seus campos					
	*	emente da ordem dos seus campos			
		de funções para outro local do programa com vista à s			
desconta 50% de uma corr	recta).	indique se a expressão é <u>sempre</u> verdadeira (uma	resposta errada		
Considere as seguintes decla	,	Expressão	Sempre verdade?		
	orna valor em [0, INT_MAX] */ orna valor em [0, INT_MAX] */	x*x >= 0 x+y == uy+ux			
<pre>/* Conversão para o unsigned ux = (unsi unsigned uy = (unsi double dx = (doub double dy = (doub</pre>	gned) x; gned) y; le) x;	x == (int) (float) x $(double) (float) x == (double) ux$ $dx + dy == (double) (y+x)$ $(dx + dy) - dx == dy$			
[5v] Grupo III — Respond respostas.Considere as seguintes decla		inar e entregar no final do exame. Justifique cada u	ıma das		

typedef struct { float x;

> char e; int v[4];

} struct2;

struct1 *s1;

[1.5v] a) Indique o alinhamento dos campos de uma estrutura do tipo struct1. Indique claramente, para cada campo, o seu endereço, bem como as partes alocadas mas não usadas para satisfazer as restrições de alinhamento. Admita que a estrutura está colocada a partir do endereço 0x100.

[1.5v] **b)** Se definirmos os campos da estrutura struct1 por outra ordem é possível reduzir o número de bytes necessários para o seu armazenamento? Justifique a sua resposta, indicando, em caso afirmativo, qual a ordem dos campos que garante o menor tamanho.

[2v] c) Para cada sequência de código em Assembly à esquerda, complete a função correspondente em C à direita, considerando as declarações iniciais das estruturas (escreva a função completa na folha A4).

```
f1:
                                                     f1(struct2 *s2)
  pushl %ebp
  movl %esp, %ebp
                                                    return _____
  movl 8(%ebp), %eax
  movl 16(%eax), %eax
  movl %ebp, %esp
  popl %ebp
  ret
f2:
  pushl %ebp
                                                     _ f2(struct2 *s2)
  movl %esp, %ebp
  movl 8(%ebp),%eax
                                                     return ____
  movl 4(%eax), %eax
  movl 8(%eax), %eax
  mov1 %ebp, %esp
  popl %ebp
  ret
```

[2v] Grupo IV — Responda numa folha A4 separada que deve assinar e entregar no final do exame. Justifique a sua resposta.

O código seguinte em C preenche a diagonal de uma matriz N*N com o valor passado no argumento val.

```
void fix_set_diag(int m[N][N], int val){
   int i;
   for(i = 0; i < N; i++)
        m[i][i] = val;
}</pre>
```

Quando compilado para Assembly, o GCC gera o seguinte código para um valor de N=4

```
fix_set_diag:
    pushl %ebp
    movl %esp, %ebp
    movl 8(%ebp), %ecx
    movl 12(%ebp), %edx
    movl $0, %eax
.L14:
    movl %edx, (%ecx,%eax)
    addl $20, %eax
    cmpl $80, %eax
    jne .L14
    ret.
```

Reescreva a função fix_set_diag em C usando uma optimização similar à demonstrada no código Assembly. Use expressões que recorram à variável N em vez de valores inteiros constantes, para que o seu código continue a funcionar se o valor de N for alterado.

[3v] Grupo V - Responda numa folha A4 separada que deve assinar e entregar no final do exame. Justifique a sua resposta.

Considere o seguinte código Assembly:

```
loop:
  pushl %ebp
  movl %esp, %ebp
  mov1 8(%ebp), %ecx
  movl 12(%ebp),%edx
  xorl %eax, %eax
   cmpl %edx, %ecx
   jle .L4
.L6:
  decl %ecx
   incl %edx
   incl %eax
   cmpl %edx, %ecx
   jg .L6
.L4:
   incl %eax
  mov1 %ebp, %esp
   popl %ebp
   ret
```

Com base no código Assembly à esquerda, preencha os espaços em branco no código correspondente em C. Apenas pode usar as variáveis x, y e result nas expressões (não use nomes de registos!) (escreva a função completa na folha A4).

```
int loop(int x, int y) {
    int result;

for(____; ___; result++) {
        ____;
    }

    return result;
}
```