# Documentation for the pyroll-thermal-2d Plugin

Max Weiner

January 17, 2023

### 1 Model Description

#### 1.1 Ring Model

The following derivations are based on the ring model approach. For details on this approach read also the respective documentation<sup>1</sup>.

#### 1.2 Heat Flow Balance

see Figure 1, i index of layer in radial direction, k index of disk element in x-direction

$$0 = \dot{q}_1 - \dot{q}_2 - \dot{q}_3 + \dot{q}_4 + \dot{q}_S \tag{1}$$

heat flow contributions

$$\dot{q}_1 = \varrho c_{\rm p} \dot{V}_i T_i^k \tag{2}$$

$$\dot{q}_2 = \varrho c_{\rm p} \dot{V}_i T_i^{k+1} \tag{3}$$

$$\dot{q}_3 = -\lambda \frac{T_{i+1}^k - T_i^k}{r_{i+1} - r_i} \times 2\pi R_{i+1} \Delta x \tag{4}$$

$$\dot{q}_4 = -\lambda \frac{T_i^k - T_{i-1}^k}{r_i - r_{i-1}} \times 2\pi R_i \Delta x \tag{5}$$

$$\dot{q}_{\rm S} = \eta_{\rm S} \frac{k_{\rm f}}{\eta_{\varphi}} \dot{\varphi} V \tag{6}$$

where the volume flow  $\dot{V}$ 

<sup>&</sup>lt;sup>1</sup>https://github.com/pyroll-project/pyroll-ring-model



Figure 1: Heat Flows on a Disk Element Ring

$$\dot{V}_i = A_i \frac{\Delta x}{\Delta t} \tag{7}$$

$$A_i = \pi \left( R_{i+1}^2 - R_i^2 \right) \tag{8}$$

at surface different  $\dot{q}_3,$  with surface temperature  $T_{\rm S}$ 

$$\dot{q}_3 = \left[ -\alpha \left( T_{\infty} - T_{\rm S} \right) - \epsilon_0 \epsilon_{\rm r} \left( T_{\infty}^4 - T_{\rm S}^4 \right) \right] \times 2\pi R_{\hat{\imath}+1} \Delta x \tag{9}$$

surface temperature estimation as stationary state between environment and outer layer, numerical solution

$$\lambda \frac{T_{\rm S} - T_{\hat{\imath}}^k}{R_{\hat{\imath}+1} - r_{\hat{\imath}}} = \alpha \left( T_{\infty} - T_{\rm S} \right) + \epsilon_0 \epsilon_{\rm r} \left( T_{\infty}^4 - T_{\rm S}^4 \right) \tag{10}$$

#### 1.3 Temperature Increment Functions

for core layer  $\dot{q}_4 = 0$ 

$$\Delta T_0 = \frac{\Delta t}{\varrho c_p A_0} \left[ \pi \lambda \left( T_1^k - T_0^k \right) + \eta_S \frac{k_f}{\eta_\varphi} \dot{\varphi} A_0 \right]$$
 (11)

for intermediate layers with Equation 4

$$\Delta T_{i} = \frac{\Delta t}{\varrho c_{p} A_{i}} \left[ 2\pi \lambda \left[ \frac{T_{i+1}^{k} - T_{i}^{k}}{r_{i+1} - r_{i}} R_{i+1} - \frac{T_{i}^{k} - T_{i-1}^{k}}{r_{i} - r_{i-1}} R_{i} \right] + \eta_{S} \frac{k_{f}}{\eta_{\varphi}} \dot{\varphi} A_{i} \right]$$
(12)

for surface layer with Equation 9

$$\Delta T_{\hat{i}} = \frac{\Delta t}{\varrho c_{\mathrm{p}} A_{\hat{i}}} \left[ 2\pi \left[ \left[ \alpha \left( T_{\infty} - T_{\mathrm{S}} \right) + \epsilon_{0} \epsilon_{\mathrm{r}} \left( T_{\infty}^{4} - T_{\mathrm{S}}^{4} \right) \right] R_{\hat{i}+1} - \lambda \frac{T_{\hat{i}}^{k} - T_{\hat{i}-1}^{k}}{r_{\hat{i}} - r_{\hat{i}-1}} R_{\hat{i}} \right] + \eta_{\mathrm{S}} \frac{k_{\mathrm{f}}}{\eta_{\varphi}} \dot{\varphi} A_{\hat{i}} \right]$$

$$\tag{13}$$

## 2 Plugin Usage

## **Symbols**

| Symbol            | Description                                 |
|-------------------|---------------------------------------------|
| $\overline{A}$    | Cross section                               |
| $\alpha$          | Heat transfer coefficient                   |
| $c_{ m p}$        | Thermal Capacity                            |
| $\epsilon_0$      | Radiation coefficient of black radiator     |
| $\epsilon_{ m r}$ | Relative radiation coefficient              |
| $\eta_{ m S}$     | Efficiency of heat source by deformation    |
| $\eta_{arphi}$    | Efficiency of deformation                   |
| i                 | Index of the ring                           |
| $\hat{\imath}$    | Maximum index of the ring                   |
| j                 | Index of the ring boundary                  |
| $\hat{\jmath}$    | Maximum index of the ring boundary          |
| k                 | Index of the disk element                   |
| $k_{ m f}$        | Flow stress                                 |
| $\lambda$         | Thermal conductivity                        |
| $\dot{m}$         | Mass flow in x-direction                    |
| $\varphi$         | Equivalent strain                           |
| $\dot{arphi}$     | Equivalent strain rate                      |
| $\dot{q}$         | Heat flow                                   |
| $\dot{q}_{ m S}$  | Heat source (generation)                    |
| r                 | Radius coordinate of a ring's center line   |
| R                 | Radius coordinate of a ring's boundary line |

Continued on next page

Table 0: (Continued)

| $\Delta r$   | Discretization width in radius        |
|--------------|---------------------------------------|
| $\varrho$    | Density                               |
| t            | Time                                  |
| $\Delta t$   | Discretization width in time          |
| T            | Absolute temperature                  |
| $\Delta T$   | Increment of temperature              |
| $T_{\infty}$ | Environemnt temperature               |
| $T_{ m S}$   | Absolute surface temperature          |
| V            | Volume of the disk element rep. layer |
| $\dot{V}$    | Volume flow                           |
| x            | X Coordinate                          |
| $\Delta x$   | Discretization width in x             |