Tutoraggio Ricerca Operativa 2019/2020 3. Programmazione Lineare: Metodo del Simplesso e Metodo grafico

Alice Raffaele, Romeo Rizzi

Università degli Studi di Verona

21 aprile 2020

Sommario

- Programmazione Lineare
- 2 II metodo del Simplesso
- Metodo grafico
- 4 Bibliografia

Programmazione Lineare

Un problema di *Programmazione Lineare* (PL) ha la seguente forma:

$$\begin{aligned} \min o \max & c^T x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{aligned}$$

dove $x \in \mathbb{R}^n$ è il vettore delle **variabili di decisione**, $b \in \mathbb{R}^m$ è il vettore dei **termini noti**, $A \in \mathbb{R}^{m \times n}$ e $c \in \mathbb{R}^n$ è il vettore dei **coefficienti** delle variabili nell'espressione della funzione obiettivo.

Forma canonica e forma standard

$$\begin{array}{lll}
\text{max} & c^T x & \text{max} & c^T x \\
\text{s.t.} & Ax \leq b & \text{s.t.} & Ax = b \\
& x \geq 0 & x \geq 0
\end{array}$$

Canonica

Standard

Le due formulazioni sono equivalenti ma il passaggio da una all'altra potrebbe cambiare il numero di vincoli e di variabili.

Regole da seguire:

- ullet Passaggio da "min" a "max", cambiando il segno di c^T ;
- Cambio dei segni dei vincoli da " \leq " a "=", introducendo **variabili di** slack: $\mathbf{a}_i^T \mathbf{x} \geq b_i \rightarrow \mathbf{a}_i^T \mathbf{x} + s_i = b_i$, con $s_i \geq 0$;
- Variabili libere: se x_i è libera in segno, allora si definisce $x_i = x_i^+ x_i^-$, con $x_i^+, x_i^- \ge 0$ e si aggiornano i vincoli dove appariva x_i .

Programmazione Lineare, Lineare Intera e Binaria

- PL Intera (ILP): quando tutte le variabili devono assumere valore intero;
- PL Mista Intera (MILP): quando alcune variabili sono intere e altre continue;
- PL Binaria (0-1): quando tutte le variabili assumono valore 0 o 1.

Geometria della Programmazione Lineare

- Poliedro (convesso): intersezione di un numero finito di semispazi affini o iperpiani;
- Regione ammissibile: insieme di soluzioni ammissibili $\mathbf{x} \in \mathbb{R}^n$ che soddisfano tutte le disequazioni lineari $\to \grave{\mathsf{E}}$ un poliedro;
- Politopo: poliedro limitato;
- **Vertice** o **Punto estremo**: un punto **x** di un poliedro P che non può essere espresso come combinazione convessa di altri due punti del poliedro, i.e., non esistono $\mathbf{y}, \mathbf{z} \in P, \mathbf{y} \neq \mathbf{z}$ e $\lambda \in (0,1)$ tali che $\mathbf{x} = \lambda \mathbf{y} + (1 \lambda)\mathbf{z}$;
- Ogni poliedro ha un numero finito di vertici;
- Teorema di Minkowski-Weyl: ogni punto di un politopo P può essere ottenuto come combinazione convessa dei suoi vertici →
 Se la regione ammissibile di un problema di PL è un politopo limitato, allora esiste almeno un vertice ottimo per P.

Vertici e soluzioni di base

- La soluzione ottima di un problema di PL è un vertice: possiamo considerarne uno a caso e iterare lungo gli altri vertici, spostandoci su uno adiacente, finché non troviamo l'ottimo;
- Base di A: una collezione di *m* colonne linearmente indipendenti di *A*, indicata con *B*:
- Variabili di base e fuori base: $x_B e x_N$

$$A\mathbf{x} = \mathbf{b}$$
 può essere scritto come $B\mathbf{x}_B + N\mathbf{x}_N = \mathbf{b}$

- Quando $\mathbf{x}_N = 0$, $\mathbf{x}_B = B^{-1}\mathbf{b}$ è la **soluzione di base** associata alla base B e può essere:
 - ammissibile (feasible), se $B^{-1}\mathbf{b} \ge 0$;
 - degenere, se $B^{-1}\mathbf{b}$ una o più componenti nulle.
- Un punto \mathbf{x} del poliedro $P := \{\mathbf{x} \ge 0 : A\mathbf{x} = \mathbf{b}\}$ è un **vertex** se e solo se \mathbf{x} è una soluzione ammissibile di $A\mathbf{x} = \mathbf{b}$.

Il metodo del Simplesso

Come risolvere un problema di PL?

- Elencando tutti i possibili vertici, i.e., tutte le soluzioni di base del problema \rightarrow Numero di vertici = $\binom{n}{m} = \frac{n!}{m!(n-m)!}$;
- Cerchiamo di migliorare un po' questo approccio:
 - Verifichiamo l'ottimalità della soluzione corrente in qualche modo;
 - Spostiamoci da una soluzione di base ammissibile a un'altra con un valore migliore della funzione obiettivo.
- Metodo del Simplesso ideato da George Dantzig nel 1947:
 - Uso di tableau/dizionari;
 - Esercizio nelle slides successive;
 - Vedere anche: https://www.youtube.com/watch?v=XK26I9eoS18 e https://www.hec.ca/en/cams/help/topics/The_steps_of_the_ simplex_algorithm.pdf

Esercizio sul Simplesso

Consideriamo il seguente problema di PL:

max
$$3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $-2x_1 + x_2 \le 2$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

Mettiamo il sistema in forma standard introducendo le variabili di slack:

max
$$3x_1 + 2x_2$$

s.t. $2x_1 + x_2 + s_1 = 4$
 $-2x_1 + x_2 + s_2 = 2$
 $x_1 - x_2 + s_3 = 1$
 $x_1, x_2 \ge 0$
 $s_1, s_2, s_3 \ge 0$

Esercizio sul Simplesso - Problema a origine ammissibile

- Osserviamo in primis che il problema è a origine ammissibile: tutti i termini noti sono maggiori o uguali a zero;
- Ciò ci consente di partire dalla soluzione iniziale data dall'origine, ossia $x_1 = x_2 = 0$, dove la funzione obiettivo vale 0;
- x_1 e x_2 sono quindi fuori base, mentre s_1 , s_2 e s_3 sono in base;
- Vediamo come impostare il tableau:

	x1	x2	s1	s2	s3	
s1 s2 s3	Co	oefficier	nti della	matrice	Α	Termini noti
	1			ione obi to ridoti		Valore opposto funzione obiettivo

Esercizio sul Simplesso - Tableau 1

Ecco il primo tableau:

		x2			s3	
s1	2	1 1 -1	1	0	0	4
s 2	-2	1	0	1	0	2
s3	1	-1	0	0	1	1
	3	2	0	0	0	0

Nota: le colonne delle variabili in base formano sempre la matrice identità.

	x1	x2	s1	s2	s3	
s1	2	1	1	0	0	4
s2	-2	1	0	1	0	2
s3	1	-1	0	0	1	1
	3	2	0	0	0	0

Esercizio sul Simplesso - Tableau 1 e coefficienti di costo ridotto

	x1	x2	s1	s 2	s3	
s1	2	1	1	0	0	4
s2	-2	1	0	1	0	2
s3	1	-1	0	0	1	1
	3	2	0	0	0	0

Osserviamo che il coefficiente di costo ridotto (c.c.r):

- di una variabile in base è pari a zero → Questa variabile, essendo già in base, non può più migliorare/peggiorare la funzione obiettivo;
- di una variabile fuori base non è zero → Rappresenta quanto potrebbe migliorare/peggiorare la funzione obiettivo per ogni unità della variabile considerata, se portata in base.

Qual è la variabile più promettente da fare entrare in base a questo punto?

Esercizio sul Simplesso - Variabile entrante

- La variabile più promettente è x_1 , perché il suo coefficiente di costo ridotto è il più alto;
- Fin quando vi sarà anche una sola variabile fuori base avente coefficiente di costo ridotto positivo non nullo, allora non avremo raggiunto l'ottimo → Smetteremo di iterare soltanto quando tutte le variabili fuori base avranno c.c.r. negativi.

				s 2		
s1	2	1	1	0	0	4
s 2	-2	1	0	1	0	2
s3	1	-1	0	0 1 0	1	1
	3	2	0	0	0	0

 x_1 diventa quindi la nostra variabile entrante, ma al posto di quale?

Esercizio sul Simplesso - Variabile uscente e pivot

- La variabile uscente si determina con la **regola dei rapporti minimi**: una volta scelta la variabile entrante j, si calcola il rapporto $\frac{b_i}{a_{i,j}}$, per ogni vincolo i e si sceglie quello più piccolo ma positivo:
 - $i = 1 : \frac{4}{2} = 2$
 - $i=2:\frac{2}{-2}=-1$
 - $i = 3 : \frac{1}{1} = 1$
- In questo caso, si ottiene il valore minimo con la riga di s₃, che è selezionata per essere la variabile uscente;
- L'elemento $a_{3,1} = 1$ è detto **pivot**.

	x1	x2	s1	s 2	s3	
s1	2	1	1	0	0	4
s 2	-2	1	0	1	0	2
s3	1	-1	0	0	1	1
	3	2	0	0	0	0

Esercizio sul Simplesso - Tableau 2 e riga pivot

- Sostituiamo s_3 con x_1 e iniziamo a comporre il nuovo tableau;
- Si divide tutta la riga del pivot per l'elemento pivot stesso (in questo caso, valendo 1, non bisogna far nulla);
- Otteniamo di nuovo la matrice identità per le colonne delle variabili in base e mettiamo a zero i loro c.c.r.

	x1	x2	s1	s 2	s3	
s1	0		1	0		
s2	0		0	1		
x1	1	-1	0	0	1	1
	0		0	0		

Esercizio sul Simplesso - Tableau 2 e altre righe

- Dobbiamo ora ricostruire i valori delle altre celle eseguendo operazioni di riga e sfruttando la riga pivot;
- Nella prima riga, $a_{1,1}$ valeva 2, mentre ora deve valere $0 \rightarrow \text{Alla prima}$ riga del tableau precedente bisogna togliere due volte la riga pivot;
- Così otteniamo i seguenti valori:

	x1	x2	s1	s 2	s3	
s1 s2	0	3	1	0	-2	2
s2	0		0	1		
x1	1	-1	0	0	1	1
	0		0	0		

Esercizio sul Simplesso - Tableau 2 e c.c.r.

• Facciamo lo stesso analogo procedimento per le altre due righe:

	x1	x2	s1	s2	s3	
s1	0	3	1	0	-2	2
s2	0	-1	0	1	2	4
x1	1	-1	0	0	1	1
	0		0	0		

• La stessa cosa vale pure per i c.c.r. : quello di x_1 deve passare da 3 a 0, quindi togliamo tre volte la riga pivot dalla riga dei c.c.r. nel tableau precedente e otteniamo il Tableau 2

	x1	x2	s1	s 2	s3	
s1	0		1	0	-2	2
s2	0	-1	0	1	2	4
x1	1	-1	0	0	1	1
	0	5	0	0	-3	-3

Esercizio sul Simplesso - Tableau 2 e test di ottimalità

	x1	x2	s1	s 2	s3	
s1	0	3	1	0	-2	2
s2	0	-1	0	1	2	4
x1	1	3 -1 -1	0	0	1	1
	0	5	0	0	-3	-3

- Variabili in base: s_1 , s_2 e x_1 e valgono rispettivamente 2, 4 e 1;
- Variabili fuori base: x_2 e s_3 e sono tutte nulle;
- Funzione obiettivo: $3 = 3 \cdot 1$;
- Siamo all'ottimo? No, perché il c.c.r. di x_2 è ancora positivo:
 - x₂ potrebbe dare un contributo di 5 per ogni unità → Iteriamo ancora e l'unica variabile che ha senso fare entrare è proprio x₂;
 - s₃ ha c.c.r. negativo e, tra l'altro, è appena uscito: scegliendo lui, ritorneremmo al tableau precedente.

Esercizio sul Simplesso - Tableau 3 e variabile entrante, variabile uscente e pivot

 Applichiamo di nuovo la regola dei rapporti minimi: stavolta la variabile uscente è s₁ e l'elemento pivot è a_{1,2};

	x1	x2	s1	s2	s3	
s1	0	3	1	0	-2	2
s2	0	-1	0	1	2	4
x1	1	-1	0	0	1	1
	0	5	0	0	-3	-3

• Dividiamo la riga pivot per 3:

	x1	x2	s1	s2	s3	
x2	0	1	1/3	0	-2/3	2/3
s2						
x1						

Esercizio sul Simplesso - Tableau 3 e ricostruzione altre righe

• Otteniamo di nuovo la matrice identità con le colonne di x_2 , s_2 e x_1 e riempiamo la tabella facendo operazioni di riga come prima::

	x1	x2	s1	s2	s3	
x2	0	1	1/3	0	-2/3	2/3
s2	0	0	1/3	1	4/3	14/3
x1	1	0	1/3	0	1/3	5/3
	0	0		0		

• Aggiorniamo la riga dei c.c.r. e della funzione obiettivo, che varrà $\frac{19}{3}$:

	x1	x2	s1	s2	s3	
x2	0	1	1/3	0	-2/3	2/3
s2	0	0	1/3	1	4/3	14/3
x1	1	0	1/3	0	1/3	5/3
	0	0	-5/3	0	1/3	-19/3

Esercizio sul Simplesso - Tableau 3 e test di ottimalità

	x1	x2	s1	s2	s3	
x2	0	1	1/3 1/3	0	-2/3	2/3
s 2	0	0	1/3	1	4/3	14/3
x1	1	0	1/3	0	1/3	5/3
	0	0	-5/3	0	1/3	-19/3

- Variabili in base: x_2 , s_2 e x_1 e valgono rispettivamente 2/3, 14/3 e 5/3;
- Variabili fuori base: s_1 e s_3 e sono tutte nulle;
- Funzione obiettivo: $\frac{19}{3} = 3 \cdot \frac{5}{3} + 2 \cdot \frac{2}{3}$;
- Siamo all'ottimo? Ancora no, perché il c.c.r. di s_3 è positivo.

Esercizio sul Simplesso - Tableau 4 e variabile entrante, uscente e pivot

• La variabile entrante è s_3 , che prende il posto di s_2 :

	x1	x2	s1	s2	s3	
x2	0	1	1/3	0	-2/3	2/3
s2	0	0	1/3	1	4/3	14/3
x1	1	0	1/3	0	1/3	5/3
	0	0	-5/3	0	1/3	-19/3

• Dividiamo la riga pivot per 4/3 e recuperiamo la matrice identità come prima:

	x1	x2	s1	s2	s3	
x2	0	1			0	
s3	0	0	1/4	3/4	1	7/2
x1	1	0			0	
	0	0			0	

Esercizio sul Simplesso - Tableau 4 e ricostruzione altre righe

• Calcoliamo tutte le altre righe del tableau:

	x1	x2	s1	s 2	s3	
x2	0	1	1/2	1/2	0	3
s3	0	0	1/4	3/4	1	7/2
x1	1	0	1/4	-1/4	0	1/2
	0	0			0	

• Aggiorniamo i c.c.r. e la funzione obiettivo:

	x1	x2	s1	s 2	s3	
x2	0	1	1/2	1/2	0	3
s3	0	0	1/4	3/4	1	7/2 1/2
x1	1	0	1/4	-1/4	0	1/2
	0	0	-7/4	-1/4	0	-15/2

Esercizio sul Simplesso - Tableau 4 e soluzione ottima

	x1	x2	s1	s2	s3	
x2	0	1	1/2 1/4	1/2	0	3
s3	0	0	1/4	3/4	1	7/2
x1	1	0	1/4	-1/4	0	7/2 1/2
	0	0	-7/4	-1/4	0	-15/2

- Variabili in base: x_2 , s_3 e x_1 e valgono rispettivamente 3, 7/2 e 1/2;
- Variabili fuori base: s_1 e s_2 e sono tutte nulle;
- Funzione obiettivo: $\frac{15}{2} = 3 \cdot \frac{1}{2} + 2 \cdot 3$;
- **Siamo all'ottimo?** Sì, perché tutti i c.c.r. delle variabili fuori base sono negativi.

Esercizio sul Simplesso - Tutte le iterazioni

Sequenza dei vertici/soluzioni di base visitate:

- **1** $\mathbf{x} = (0, 0, 4, 2, 1)$, funzione obiettivo = 0;
- **2** $\mathbf{x} = (1, 0, 2, 4, 0)$, funzione obiettivo = 3;
- **3** $\mathbf{x} = (\frac{5}{3}, \frac{2}{3}, 0, \frac{14}{3}, 0)$, funzione obiettivo $= \frac{19}{3}$;
- $\mathbf{x} = (\frac{1}{2}, 3, 0, 0, \frac{7}{2})$, funzione obiettivo $= \frac{15}{2}$.

Casi particolari

Loop tra variabili entranti e uscenti:

- Per evitare di continuare a ciclare facendo entrare e uscire le stesse variabili, cioè senza visitare nuove soluzioni, si applica la regola di Bland: si scelgono variabile entrante e variabile uscente preferendo, fra le opzioni possibili, quelle con gli indici più piccoli;
- In questo modo, il Simplesso converge in al più $\binom{n}{m}$ iterazioni (complessità comunque esponenziale);

Soluzione illimitata:

• Tutti i coefficienti della colonna della variabile entrante sono < 0;

Soluzioni ottime multiple:

• Una volta raggiunto l'ottimo, facendo entrare una variabile in base la funzione obiettivo non peggiora;

Soluzione impossibile:

- Regione ammissibile vuota;
- Il problema non è a origine ammissibile e non si riesce a trovare un'altra soluzione da cui far partire il metodo del Simplesso (lo vedremo nella prossima esercitazione con il *metodo delle due fasi*).

26 / 37

TE 31/07/2017, es. 7 - Metodo grafico (I)

Si consideri il problema di PL appena risolto con il metodo del Simplesso:

max
$$3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 4$
 $-2x_1 + x_2 \le 2$
 $x_1 - x_2 \le 1$
 $x_1, x_2 \ge 0$

Risolverlo con il metodo grafico, specificando il valore della funzione obiettivo e delle variabili all'ottimo.

Nota: il problema si presenta in forma canonica, non standard.

TE 31/07/2017, es. 7 - Metodo grafico (II)

Rappresentiamo i tre vincoli nel piano (x_1, x_2) : la loro intersezione rappresenta la regione ammissibile:

TE 31/07/2017, es. 7 - Metodo grafico (III)

• La regione ammissibile ha cinque vertici:

- $0 = x_1 \ge 0 \cap x_2 >= 0$;
- $P = vinc_1 \cap vinc_2$;
- $Q = vinc_1 \cap vinc_3$;
- $R = vinc_3 \cap x_1 \ge 0$;
- $S = vinc_2 \cap x_2 \ge 0$.
- La funzione obiettivo può essere vista come una fascio di rette che si muovono nella direzione in cui la funzione è massimizzata: (3, 2)

TE 31/07/2017, es. 7 - Metodo grafico (IV)

- La soluzione ottima è data dal punto $P = (\frac{1}{2}, 3)$, l'ultimo vertice raggiunto dalla famiglia di linee rette;
- Qui, la funzione obiettivo vale $\frac{15}{2}$.

Vertici, variabili e soluzioni di base, variabili fuori base, ...

• Come prima, scriviamo il problema in forma standard, introducendo le tre variabili di slack s_1 , s_2 e s_3 :

$$\begin{array}{ll} \max & 3x_1+2x_2\\ \text{s.t.} & 2x_1+x_2+s_1=4\\ & -2x_1+x_2+s2=2\\ & x_1-x_2+s_3=1\\ & x_1,x_2\geq 0\\ & s_1,s_2,s_3\geq 0 \end{array}$$

TE 31/07/2017, es. 7 - Basi associate (I)

- Determinare le basi associate ai vertici della regione ammissibile. Possiamo riscrivere Ax = b come $(B|N) \cdot (x_B|x_N)^T = b$ dove:
 - $B = \text{matrice di base } (m \times m, \text{ composta di } m \text{ colonne di } A)$
 - N = matrice non di base
 - x_B = variabili di base
 - $x_N = \text{variabili fuori base}$
- Considero la matrice A del problema in forma standard e metto in B le colonne delle variabili in base;
- Il punto O, rappresentante l'origine, corrisponde alla soluzione con variabili in base $\mathbf{x}_B = (s_1, s_2, s_3)$ e variabili fuori base $\mathbf{x}_N = (x_1, x_2)$:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 1 \\ -2 & 1 \\ 1 & -1 \end{pmatrix}$$

TE 31/07/2017, es. 7 - Basi associate (II)

Vertice $P: x_N = (s_1, s_2) = (0, 0)$, quindi $x_B = (x_1, x_2, s_3)$

$$B = \left(\begin{array}{ccc} 2 & 1 & 0 \\ -2 & 1 & 0 \\ 1 & -1 & 1 \end{array} \right), N = \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right)$$

Vertice $Q: x_N = (s_1, s_3) = (0, 0)$, quindi $x_B = (x_1, x_2, s_2)$

$$B = \left(\begin{array}{ccc} 2 & 1 & 0 \\ -2 & 1 & 1 \\ 1 & -1 & 0 \end{array}\right), N = \left(\begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right)$$

Vertice R: $x_N = (x_2, s_3) = (0, 0)$, quindi $x_B = (x_1, s_1, s_2)$

$$B = \begin{pmatrix} 2 & 1 & 0 \\ -2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, N = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Vertice $O: x_N = (x_1, x_2) = (0, 0)$, quindi $x_B = (s_1, s_2, s_3)$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 1 \\ -2 & 1 \\ 1 & -1 \end{pmatrix}$$

TE 31/07/2017, es. 7 - Simplesso

3 Specificare la sequenza delle basi visitate dal metodo del Simplesso per raggiungere la soluzione ottima (scegliere x_1 come prima variabile entrante);

Riprendiamo quanto abbiamo fatto prima, solo che assegniamo le lettere dei vertici alle soluzioni di base su cui avevamo iterato:

- **1** $\mathbf{x} = (0, 0, 4, 2, 1)$, funzione obiettivo $= 0 \rightarrow O$;
- **2** $\mathbf{x} = (1, 0, 2, 4, 0)$, funzione obiettivo = 3 \rightarrow *R*;
- **3** $\mathbf{x} = (\frac{5}{3}, \frac{2}{3}, 0, \frac{14}{3}, 0)$, funzione obiettivo $= \frac{19}{3} \to Q$;
- $\mathbf{x} = (\frac{1}{2}, 3, 0, 0, \frac{7}{2})$, funzione obiettivo $= \frac{15}{2} \to P$.

TE 31/07/2017, es. 7 - Costi ridotti

- Determinare il valore dei costi ridotti relativi alle soluzioni di base associate ai seguenti vertici, espressi come intersezioni di rette:
 - $vinc_1 \cap vinc_2$
 - $vinc_1 \cap vinc_3$

Per rispondere a questo quesito possiamo:

- Guardare i tableau calcolati durante il metodo del Simplesso (se abbiamo già risolto il problema):
 - $vinc_1 \cap vinc_2 = P \rightarrow (0, 0, -\frac{7}{4}, \frac{1}{4}, 0);$
 - $vinc_1 \cap vinc_3 = Q \rightarrow (0, 0, -\frac{5}{3}, 0, \frac{1}{3}).$
- Calcolare i c.c.r. in forma matriciale, infatti $c^T := c' c'B^{-1}A'$, dove c' sono i coefficienti della funzione obiettivo originale:
 - $\bar{c}^T = (c_B^T | c_N^T)$, e sappiamo già che $c_B^T = 0$;
 - $\bar{c}_N^T = c_N' c_B' B^{-1} N$;
 - $c'_N = (0,0,0) e c'_B = (3,2)$.

TE 31/07/2017, es. 7 - Funzione obiettivo

- Verificare che la direzione opposta del gradiente può essere espressa come una combinazione lineare non negativa dei gradienti dei **vincoli attivi** nel vertice ottimo **soltanto** (tenere in mente che, essendo un problema di massimizzazione, i vincoli devono essere espressi con \leq ; e.g., $x_1 \geq 0$ deve essere riscritto come $-x_1 \leq 0$).
 - L'opposto del gradiente della funzione obiettivo è una combinazione conica dei gradienti dei vincoli attivi all'ottimo (se tutte le direzioni di miglioramento non sono percorribili, allora il vertice è ottimo);
 - Qui la soluzione ottima è data dal punto $P = (\frac{1}{2}, 3)$, il gradiente della funzione obiettivo è (3, 2) e i vincoli attivi in P sono $vinc_1$ e $vinc_2$, rispettivamente aventi gradiente (2, 1) e (-2, 1);
 - Si risolve il sistema seguente: $\lambda_1 \binom{2}{1} + \lambda_2 \binom{-2}{1} = \binom{3}{2}$;
 - Se λ_1 e λ_2 sono entrambi strettamente positivi, allora la condizione è verificata: in questo caso $\lambda_1 = \frac{7}{4}$ e $\lambda_2 = \frac{1}{4}$;
- Infine si controlla analogamente che la condizione non valga per gli altri vertici (i.e., almeno uno dei due λ deve essere \leq 0).

Bibliografia

Matteo Fischetti, *Introduction to Mathematical Optimization*, Kindle Direct Publishing, 2019

https://www.amazon.it/Introduction-Mathematical-Optimization-Matteo-Fischetti/dp/1692792024

Robert J. Vanderbei, *Linear Programming: Foundations and Extensions*, Springer Nature, 4th edition, 2013

https://www.springer.com/gp/book/9781461476290