STA 447/2006S, Spring 2001, Test #2: SOLUTIONS

1. (10 points) Consider a single-server queue with interarrival time distribution $\mathbf{Exp}(\lambda)$, and service time distribution $\mathbf{Unif}[0,10]$. Let W_n be the waiting time of the n^{th} customer. Give (with explanation) necessary and sufficient conditions on λ such that $W_n \to \infty$ in probability.

Solution. Here the mean interarrival time is $1/\lambda$, and the mean service time is 5. Hence, the traffic density is $\rho = 5/(1/\lambda) = 5\lambda$. Now, we know from class that $W_n \to \infty$ in probability if and only if $\rho \ge 1$, i.e. if and only if $5\lambda \ge 1$, or $\lambda \ge 0.2$.

2. (10 points) Let $\{N(t)\}$ be a non-arithmetic renewal process with finite mean interarrival time μ . Fix h > 0. Compute (with explanation) the limit

$$\lim_{t\to\infty} \left(\frac{N(t+h)-N(t)}{t}\right)^2.$$

Solution. From the first part of the Elementary Renewal Theorem, we know that as $t \to \infty$, with probability 1, $N(t)/t \to 1/\mu$. Hence, with probability 1, $N(t+h)/t = (N(t+h)/(t+h))((t+h)/t) \to (1/\mu)(1) = 1/\mu$. Thus, with probability 1, $(N(t+h)-N(t))/t \to (1/\mu)-(1/\mu)=0$, so also $((N(t+h)-N(t))/t)^2 \to 0^2 = 0$ with probability 1. Hence, $\lim_{t\to\infty} ((N(t+h)-N(t))/t)^2 = 0$.

- **3.** (15 points) Let a and c be positive integers, with 0 < a < c 1. Consider the Gambler's Ruin Markov chain $\{X_n\}$ on $\{0,1,\ldots,c\}$ with $p=\frac{1}{2}$, so that $X_0=a$, and $p_{i,i+1}=p_{i,i-1}=\frac{1}{2}$ for $1 \le i \le c-1$ and $p_{00}=p_{cc}=1$. Define the stopping time U by $U=\min\{n \ge 1; X_n=a+1\}$.
- (a) Show that $\{X_n\}$ is a martingale.

Solution. Clearly $E|X_n| \le c < \infty$ for all n. Also, since $\{X_n\}$ is a Markov chain, $\mathbf{E}(X_{n+1} \mid X_0, \dots, X_n) = \mathbf{E}(X_{n+1} \mid X_n)$. Now, $\mathbf{E}(X_{n+1} \mid X_n = 0) = (1)(0) = 0$. Also $\mathbf{E}(X_{n+1} \mid X_n = c) = (1)(c) = c$. If $1 \le i \le c - 1$ then $\mathbf{E}(X_{n+1} \mid X_n = i) = (\frac{1}{2})(i+1) + (\frac{1}{2})(i-1) = i$. Hence, in any case, $\mathbf{E}(X_{n+1} \mid X_0, \dots, X_n) = \mathbf{E}(X_{n+1} \mid X_n) = X_n$.

(b) Prove or disprove that $\mathbf{E}[X_U] = \mathbf{E}[X_0]$.

Solution. If $U < \infty$, then $X_U = a + 1$ by definition. However, with probability 1/(a+1) > 0, the chain will stop at 0 before ever hitting a+1, in which case $U = \infty$ and X_U is not even well-defined. In either case, we do <u>not</u> have $\mathbf{E}[X_U] = a$, even though $\mathbf{E}[X_0] = a$.

(c) Can the Optional Stopping Theorem (or its Corollary) be applied to this process

 $\{X_n\}$ and stopping time U? (Explain your answer.)

Solution. No, we cannot apply the Optional Stopping Theorem (or its Corollary) since we do not have $\mathbf{P}(U < \infty) = 1$. In fact, $\mathbf{P}(U = \infty) = 1/(a+1) > 0$.

4. (15 points) Consider simple symmetric random walk $\{X_n\}$ on the set of all integers **Z**, with $X_0 = 0$. Let $T_2 = \min\{n \ge 1; X_n = 2\}$. Prove or disprove that

$$\lim_{M \to \infty} \mathbf{E}[X_M \mid T_2 > M] = -\infty.$$

[Hint: You may wish to set $S = \min(T_2, M)$ and use the Law of Total Probability.]

Solution. Let $S = \min(T_2, M)$. Then S is a stopping time with $S \leq M$, so by the Optional Sampling Theorem, $\mathbf{E}[X_S] = \mathbf{E}[X_0] = 0$. On the other hand, by the Law of Total Probability,

$$\mathbf{E}[X_S] = \mathbf{P}(T_2 > M) \, \mathbf{E}[X_S \, | \, T_2 > M] + \mathbf{P}(T_2 \le M) \, \mathbf{E}[X_S \, | \, T_2 \le M]$$
$$= \mathbf{P}(T_2 > M) \, \mathbf{E}[X_M \, | \, T_2 > M] + [1 - \mathbf{P}(T_2 > M)] \, (2)$$

(since S = M whenever $T_2 > M$, while $X_S = X_{T_2} = 2$ whenever $T_2 \leq M$). Since $\mathbf{E}[X_S] = 0$, this says that

$$\mathbf{E}[X_M \mid T_2 > M] = \frac{-[1 - \mathbf{P}(T_2 > M)](2)}{\mathbf{P}(T_2 > M)}.$$

But simple symmetric random walk is recurrent, so that $\mathbf{P}(T_2 < \infty) = 1$, and therefore $\lim_{M \to \infty} \mathbf{P}(T_2 > M) = 0$. Hence,

$$\lim_{M \to \infty} \mathbf{E}[X_M \,|\, T_2 > M] = \lim_{M \to \infty} \frac{-[1 - \mathbf{P}(T_2 > M)](2)}{\mathbf{P}(T_2 > M)} = -\infty.$$

Hence, the statement is true and proved.