Лабораторная работа N°2

Вариант 7

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
plt.style.use('fast')
```

Задача 1

```
n = 20
a = pd.Series([0]*n, [i for i in range(n-1, -1, -1)])
print(f"""Серия значений:
{a}
Длинна: {len(a)}
Размерность: {a.shape}
Число элементов: {len(a)}
Тип элементов: {type(a[0])}
Число уникальных значений: {len(a.unique())}""")
Серия значений:
19
      0
18
      0
17
      0
      0
16
15
      0
14
      0
13
      0
12
      0
11
      0
10
      0
9
      0
8
      0
7
      0
6
      0
5
      0
4
      0
3
      0
2
      0
1
      0
0
      0
dtype: int64
```

```
Длинна: 20
Размерность: (20,)
Число элементов: 20
Тип элементов: <class 'numpy.int64'>
Число уникальных значений: 1
```

Задача 2

```
df = pd.read_csv("seeds.csv")
del df["compact"], df["grooveLen"], df["perim"]
df
                                          region id
             len
                  width
                                   class
     area
                          asym
0
     15.26
           5.763
                 3.312
                         2.221
                                    Kama
1
     14.88 5.554 3.333
                         1.018
                                    Kama
                                                  1
2
    14.29 5.291 3.337
                         2.699
                                    Kama
                                                 10
3
    13.84 5.324 3.379
                         2.259
                                    Kama
                                                  4
4
                                                  1
    16.14 5.658 3.562 1.355
                                    Kama
                                                . . .
205 12.19 5.137
                         3.631 Canadian
                  2.981
                                                  3
    11.23 5.140 2.795 4.325 Canadian
206
                                                  4
    13.20 5.236
                  3.232 8.315 Canadian
207
                                                  6
                                                  6
208 11.84 5.175 2.836 3.598 Canadian
209 12.30 5.243 2.974 5.637 Canadian
[210 rows x 6 columns]
print(f"""Список колонок: {df.columns}
Число строк: {df.shape[0]}
Paзмерность: {df.shape}
Общее число элементов: {len(df)}
Eсть пустые элементы: {True in df.isnull()}
Первые 3 строки:
{df.head(3)}
Последние 3 строки:
{df.tail(3)}""")
Список колонок: Index(['area', 'len', 'width', 'asym', 'class',
'region id'], dtype='object')
Число строк: 210
Размерность: (210, 6)
Общее число элементов: 210
Есть пустые элементы: False
Первые 3 строки:
                        asym class
           len width
                                    region id
   area
  15.26 5.763 3.312
                       2.221 Kama
```

```
1 14.88 5.554 3.333 1.018
                               Kama
2 14.29 5.291 3.337 2.699
                              Kama
                                            10
Последние 3 строки:
             len width
                                    class
                                           region id
      area
                           asym
207
     13.20 5.236 3.232 8.315
                                Canadian
    11.84 5.175 2.836 3.598 Canadian
208
                                                   6
209 12.30 5.243 2.974 5.637 Canadian
                                                   1
for col in df.columns:
   print(f"""Колонка: {col}
Тип данных: {type(df[col][0])}
Число уникальных элементов: {len(df[col].unique())}""")
   if type(df[col][0]) == np.float64:
        print(f"""Maксимальный элемент: {df[col].max()}
Минимальный элемент: {df[col].min()}
Среднее арифметическое: {df[col].mean()}""")
   print()
Колонка: area
Тип данных: <class 'numpy.float64'>
Число уникальных элементов: 193
Максимальный элемент: 21.18
Минимальный элемент: 10.59
Среднее арифметическое: 14.84752380952381
Колонка: len
Тип данных: <class 'numpy.float64'>
Число уникальных элементов: 188
Максимальный элемент: 6.675
Минимальный элемент: 4.899
Среднее арифметическое: 5.628533333333334
Колонка: width
Тип данных: <class 'numpy.float64'>
Число уникальных элементов: 184
Максимальный элемент: 4.033
Минимальный элемент: 2.63
Среднее арифметическое: 3.258604761904762
Колонка: asym
Тип данных: <class 'numpy.float64'>
Число уникальных элементов: 207
Максимальный элемент: 8.456
Минимальный элемент: 0.7651
Среднее арифметическое: 3.700200952380953
Колонка: class
Тип данных: <class 'str'>
Число уникальных элементов: 3
```

Колонка: region_id

Тип данных: <class 'numpy.int64'> Число уникальных элементов: 10

Задача З

```
plt.plot(df['len'], df['area'], '*g')
plt.ylabel("Площадь, мм2")
plt.xlabel("Длинна, мм")
plt.title('Зависимость параметров зерна', fontsize=15)
plt.grid(True)
print()
```

Зависимость параметров зерна

Выбрана точечная диаграмма, так как выборка содержит множество различных значений площади для зерён конкретной длинны. Такая диограмма позволяет определить характер зависимости одного признака от другого. В данном случае можно наблюдать некоторую линейную зависимость.

```
plt.close()
colors = ['pink', 'lightblue', 'lightgreen']
ax = df.boxplot(column='area', by='class', patch_artist=False,
notch=True, color="blue", grid=False)
ax.get_figure().suptitle('')
ax.set_xlabel("Copt")
ax.set_ylabel("Площадь, мм2")
ax.set_title('Распределение площади зерна в зависимости от сорта')
print()
```


Выбрана диаграмма boxplot, так как по оси абцисс расположен категориальный признак, а по оси ординат - непрерывный, что позволяет сравнить распределение значение непрерывного признака у зерён разных котегорий. Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы.

Задача 4

Данные ежедневных измерений погоды в разных городах с 2008 по 2017 гг.

<pre>df_raw = pd.read_csv("weatherAUS.csv", parse_dates=['Date']) df_raw.head()</pre>								
		Location	MinTemp	MaxTemp	Rainfall	Evapor	ation	
	nshine \ 2008-12-01	Albury	13.4	22.9	0.6		NaN	
1 2	2008-12-02	Albury	7.4	25.1	0.0		NaN	
NaM 2 2 NaM	2008-12-03	Albury	12.9	25.7	0.0		NaN	
	2008-12-04	Albury	9.2	28.0	0.0		NaN	
	2008-12-05	Albury	17.5	32.3	1.0		NaN	
	√indGustDir	WindGus	tSpeed W	indDir9am	Humi	dity9am	Humidity3pn	n
0	W		44.0	W		71.0	22.6)
1	WNW		44.0	NNW		44.0	25.0)
2	WSW		46.0	W		38.0	30.0)
3	NE		24.0	SE		45.0	16.0)
4	W		41.0	ENE		82.0	33.0)
	Pressure9ar	m Pressu	re3pm C	loud9am (Cloud3pm	Temp9am	Temp3pm	
	inToday \	, ,	007.1	0.0		16.0	21.0	
0	1007.	/ 1	.007.1	8.0	NaN	16.9	21.8	
No	1010	c 1	007.0	N - N	NaN	17 2	24.2	
1 No	1010.0	0 1	.007.8	NaN	NaN	17.2	24.3	
2	1007.6	6 1	.008.7	NaN	2.0	21.0	23.2	
No 3	1017.6	6 1	.012.8	NaN	NaN	18.1	26.5	
No 4	1010.8	8 1	.006.0	7.0	8.0	17.8	29.7	
No								
0 1 2 3 4	! !	ow No No No No						
[5 rows x 23 columns]								

```
plt.close()
# Отбираем данные за январь 2017 г.
df = df raw.loc[(pd.to datetime("2017-01-01") \le df raw["Date"]) &
(df raw["Date"] < pd.to datetime("2017-02-01"))]</pre>
#print(df["Location"].unique())
Locations = ["Sydney", "Ballarat", "Portland"]
df = df[df["Location"].isin(Locations)]
colors = ['red', 'blue', 'orange', 'brown', 'grey', 'green', 'olive',
'red'l
x data = df["Date"].unique()
y data = [(df[df["Location"] == i]["MaxTemp"]) for i in Locations]
fig, ax = plt.subplots(\frac{1}{1}, figsize=(\frac{16}{9}), dpi= \frac{80}{1})
for i in range(len(Locations)):
    ax.fill_between(x, y1=y_data[i], y2=0, label=Locations[i],
alpha=0.7, color=colors[i], linewidth=2)
plt.legend(loc='upper left')
plt.title("Сравнительная диаграмма температуры за январь 2017г.")
plt.xlabel("Дата")
plt.vlabel("Максимальная температура за день, °С")
print()
```



```
plt.close()
from random import choices
# Отбираем данные за январь 2017 г.
df = df_raw.loc[(pd.to_datetime("2017-01-01") <= df_raw["Date"]) &</pre>
(df_raw["Date"] < pd.to_datetime("2017-02-01"))]</pre>
n = 10
Locations = choices(df["Location"].unique(), k=n)
df = df[df["Location"].isin(Locations)]
y data = df.groupby('Location')["Rainfall"].sum()
all colors = list(plt.cm.colors.cnames.keys())
c = choices(all colors, k=n)
plt.figure(figsize=(16,10), dpi= 80)
plt.bar(df["Location"].unique(), y data, color=c, width=1.2)
for i, val in enumerate(y_data.values):
    plt.text(i, val, round(float(val), 3),
horizontalalignment='center', verticalalignment='bottom',
fontdict={'fontweight':500, 'size':12})
plt.title("Сумма осадков за январь 2017г.")
plt.xlabel("Местность")
plt.ylabel("Сумма осадков, мм")
print()
```

