1) of cutoff =
$$\frac{1}{2\pi R(17nF)}$$

 $R = \frac{1}{2\pi (2000)(47\times10^{-9})} = 1693.14 \Omega$

1 ks/ + 680 D resistors in series

6 Measured Resistance: 1.682 km fontoff = 2004.7Hz

(2)			
6	Input Frequency (Hz)	V _{pp} (V)	Gain (V _{pp} /V _{in})
	400	4.98	0.996
	800	4.68	0.936
	1000	4.52	0.904
	1200	4.28	0.856
	1400	4.12	0.824
	1600	3.92	0.784
	1700	3.84	0.768
	1800	3.72	0.744
	1900	3.64	0.728
	2000	3.56	0.712
	2100	3.44	0.688
	2200	3.38	0.676
	2400	3.24	0.648
	2600	3.08	0.616
	2800	2.92	0.584

The 70% Gain mark occurs around 2000Hz, which is expected.

Noisy Square Wave, Unfiltered

Filtered Wave

2) RC High Pass Filter

Noisy Square Wave, Unfiltered

Filtered Wave (Scaled for stability in oscilloscope)

3) RL 2-stage Low Pass Filter $R_{1} = 999.8 \, \text{LO} \, \text{C}_{1} = 46.9 \, \text{nF}$ $R_{2} = 9.829 \, \text{kg} \, \text{C}_{2} = 4.53 \, \text{nF}$ $f_{coal} = \frac{1}{2\pi \sqrt{R_{1}R_{2}C_{1}C_{2}}} = 3482.8 \, \text{Hz}$ $f_{coal} = \frac{1}{2\pi \sqrt{R_{1}R_{2}C_{1}C_{2}}} = 2241.5 \, \text{Hz}$

Input Frequency (Hz)	V _{pp} (V)	Gain (V _{pp} /V _{in})
400	4.96	0.992
800	4.64	0.928
1000	4.48	0.896
1200	4.32	0.864
1400	4.08	0.816
1600	4.00	0.800
1700	3.84	0.768
1800	3.76	0.752
1900	3.68	0.736
2000	3.52	0.704
2100	3.36	0.672
2200	3.36	0.672
2400	3.20	0.640
2600	2.96	0.592
2800	2.88	0.576

