Übung "Grundbegriffe der Informatik"

13.1.2012 Willkommen zur elften Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Organisatorisches

- ► Anmeldung für den Übungsschein nicht vergessen!
- ► Gestern waren 618 Personen angemeldet
- Anmeldung für die Klausur nicht vergessen!
- ► Gestern waren 511 Personen angemeldet
- Anmeldung über Studierendenportal: studium.kit.edu
- Online Klausur-Anmeldung möglich für: INFO, INWI, MATH, PHYS

Überblick

Endliche Akzeptoren

Zusammenhänge: Akzeptoren, reguläre Ausdrücke, RLG

Besondere Zustände

Akzeptor $A = (Z, z_0, X, f, F)$

Der Endzustand E, Müllzustand J

- $\forall x \in X \forall z \in E : f(z,x) \in F$
- $J \cap F = \emptyset \land \forall x \in X \forall z \in J : f(z, x) \in J$

Besondere Zustände

Akzeptor $A = (Z, z_0, X, f, F)$

Der Endzustand E, Müllzustand J

- ∀x ∈ X∀z ∈ E : f(z,x) ∈ F
 → Zustand aus E irgendwann erreicht ⇒ Wort wird akzeptiert.
- ▶ $J \cap F = \emptyset \land \forall x \in X \forall z \in J : f(z, x) \in J$ → Zustand aus J irgendwann erreicht \Rightarrow Wort wird abgelehnt. (Müllzustände)

Besondere Zustände

Akzeptor $A = (Z, z_0, X, f, F)$

Der Endzustand E, Müllzustand J

- ∀x ∈ X∀z ∈ E : f(z,x) ∈ F
 → Zustand aus E irgendwann erreicht ⇒ Wort wird akzeptiert.
- ▶ $J \cap F = \emptyset \land \forall x \in X \forall z \in J : f(z, x) \in J$ → Zustand aus J irgendwann erreicht \Rightarrow Wort wird abgelehnt. (Müllzustände)

In beiden Fällen möglich: |E| = 1 bzw. |J| = 1.

 $w \in X^*$, enthält Eingabe Teilwort w? $A = (Z, z_0, X, f, F)$

$$w \in X^*$$
, enthält Eingabe Teilwort w ?
 $A = (Z, z_0, X, f, F)$
 $Z = \{ \text{ Präfixe von } w \}$

 $w \in X^*$, enthält Eingabe Teilwort w? $A = (Z, z_0, X, f, F)$

- $ightharpoonup Z = \{ \text{ Präfixe von } w \}$
- $ightharpoonup z_0 = \epsilon$

 $w \in X^*$, enthält Eingabe Teilwort w?

$$A=\left(Z,z_{0},X,f,F\right)$$

- $ightharpoonup Z = \{ \text{ Präfixe von } w \}$
- $ightharpoonup z_0 = \epsilon$
- ► *F* = *w*

$$w \in X^*$$
, enthält Eingabe Teilwort w ?

 $A = (Z, z_0, X, f, F)$
 $Z = \{ \text{ Präfixe von } w \}$
 $z_0 = \epsilon$
 $F = w$
 $f(u, x) = \begin{cases} u & \text{falls } u = w \\ \text{längstes Präfix von } w, \\ \text{das Suffix von } ux \text{ ist } \text{ sonst } \end{cases}$

Überblick

Endliche Akzeptorer

Zusammenhänge: Akzeptoren, reguläre Ausdrücke, RLG

Akzeptoren ↔ Reguläre Ausdrücke

Regulärer Ausdruck für L(A)?

1.
$$F = \{z_0\} \Rightarrow R = (R')*$$

Akzeptoren \leftrightarrow Reguläre Ausdrücke

1. $F = \{z_0\} \Rightarrow R = (R')*$ R' beschreibt alle Wege von 0 nach 0, die nur über 1 und 2 gehen.

2. Erstes Zeichen $a \rightarrow 1$. Zustand 1

2. Erstes Zeichen $a \rightarrow 1$. Zustand 1 Danach beliebig oft zwischen 1 und 2 hin und her \rightarrow (ab)*

Akzeptoren ↔ Reguläre Ausdrücke

2. Erstes Zeichen $a \to 1$. Zustand 1 Danach beliebig oft zwischen 1 und 2 hin und her $\to (ab)*$ Dann mit b oder aa zurück nach 0.

Akzeptoren ↔ Reguläre Ausdrücke

3. Erstes Zeichen $b \to 1$. Zustand 2 Danach beliebig oft zwischen 2 und 1 hin und her $\to (ba)*$ Dann mit a oder bb zurück nach 0.

4. Zusammensetzen: $R = (a(ab)*(b \mid aa) \mid b(ba)*(a \mid bb))*$

Rückwärts: $R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$ Akzeptor konstruieren.

Akzeptoren \leftrightarrow Reguläre Ausdrücke

Rückwärts: $R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$ Akzeptor konstruieren.

1. R = (R')*, also ist Anfangszustand akzeptierend.

Akzeptoren ↔ Reguläre Ausdrücke

Rückwärts:
$$R = (a(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$$

Akzeptor konstruieren.

2. Mit a lande ich in anderem Zustand.

Rückwärts: $R = (\mathbf{a}(ab) * (b \mid aa) \mid b(ba) * (a \mid bb))*$ Akzeptor konstruieren.

3. Mit *ab* komme ich in Zustand 1 zurück, also Zwischenzustand 2 einfügen.

Rückwärts: $R = (a(ab)*(b \mid aa) \mid b(ba)*(a \mid bb))*$ Akzeptor konstruieren.

4. Nach 0 komme ich danach mit b oder aa (über gleichen Zwischenzustand).

Akzeptoren ↔ Reguläre Ausdrücke

Rückwärts: $R = (a(ab) * (b \mid aa) | b(ba) * (a \mid bb)) *$ Akzeptor konstruieren.

5. Mit b als erstem Zeichen komme ich in neuen Zustand.

Akzeptoren \leftrightarrow Reguläre Ausdrücke

Rückwärts: $R = (a(ab) * (b \mid aa) \mid \mathbf{b}(ba) * (a \mid bb))*$ Akzeptor konstruieren.

6. Mit ba komme ich nach 3 zurück über Zustand 4.

Rückwärts: $R = (a(ab) * (b \mid aa) \mid b(\mathbf{ba}) * (a \mid bb)) *$ Akzeptor konstruieren.

7. Mit a oder bb komme ich nach 0 zurück.

Akzeptor konstruieren: Jeder Zustand entspricht "Menge an Stellen im Regulären Ausdruck, an denen man bei Zusammensetzung von w sein kann."

$$R = a * b*$$

 $z_0 = Anfang$
 $z_1 = f(z_0, a) = Erstes a$
 $z_2 = f(z_1, b) = Erstes b$

Idee für reguläre Ausdrücke:

Zustände des Akzeptors durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

 R_{ij}^0 sind alle einfach.

Idee für reguläre Ausdrücke:

Zustände des Akzeptors durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

 R_{ij}^{k+1} : Gehe von *i* nach *k* über Zustände aus \mathbb{G}_k .

Gehe beliebig oft von k nach k über Zustände aus \mathbb{G}_k .

Gehe von k nach j über Zustände aus \mathbb{G}_k .

Oder gehe direkt von i nach j über Zustände aus \mathbb{G}_k .

Akzeptoren ↔ Reguläre Ausdrücke

Idee für reguläre Ausdrücke:

Zustände des Akzeptors von 0 bis n-1 durchnummerieren.

 $\langle R_{ij}^k \rangle$ sei Menge aller Wörter w, so dass man von i bei Eingabe von w nach j kommt und dabei nur Zustände aus \mathbb{G}_k durchläuft.

$$R_{ij}^{k+1} = R_{ik}^{k}(R_{kk}^{k}) * R_{kj}^{k} \mid R_{ij}^{k}$$

Sei 0 Anfangszustand und j_0, \ldots, j_m akzeptierende Zustände.

Dann ist $R = R_{0j_0}^n | ... | R_{0j_m}^n$.

Akzeptoren ↔ Rechtslineare Grammatiken (RLG)

Nach Vorlesung: Akzeptor $\overset{Warshall}{\rightarrow}$ Regulärer Ausdruck $\overset{induktiv}{\rightarrow}$ RLG Geht das auch einfacher?

Akzeptoren \leftrightarrow Rechtslineare Grammatiken (RLG)

$$A = (Z, z_0, X, f, F).$$

Idee 1: $G = (Z, X, z_0, P)$ so dass gilt: $z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z.$

Akzeptoren \leftrightarrow Rechtslineare Grammatiken (RLG)

 $A = (Z, z_0, X, f, F).$ Idee 1: $G = (Z, X, z_0, P)$ so dass gilt: $z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z.$ Also: $z_0 \Rightarrow^* wz \Rightarrow wxf(z, x)$ muss Ableitung sein.

Akzeptoren ↔ Rechtslineare Grammatiken (RLG)

$$A = (Z, z_0, X, f, F)$$
.
Idee 1: $G = (Z, X, z_0, P)$ so dass gilt:
 $z_0 \Rightarrow^* wz \iff f^*(z_0, w) = z$.
Also: $z_0 \Rightarrow^* wz \Rightarrow wxf(z, x)$ muss Ableitung sein,
also $\forall z \in Z \forall x \in X : z \rightarrow xf(z, x)$ muss Produktion sein.

$$A=(Z,z_0,X,f,F).$$

ldee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

$$A=(Z,z_0,X,f,F).$$

ldee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

Also $z_0 \Rightarrow^* wz \Rightarrow w$ soll möglich sein, wenn $z \in F$ gilt.

$$A=(Z,z_0,X,f,F).$$

Idee 2: Ableitung $z_0 \Rightarrow^* wz$ soll mit w enden **können**, falls $z \in F$ gilt.

Also $z_0 \Rightarrow^* wz \Rightarrow w$ soll möglich sein, wenn $z \in F$ gilt.

Also $z \to \epsilon$ soll Produktion sein, falls $z \in F$ gilt.

$$A = (Z, z_0, X, f, F).$$
Also: $G = (Z, X, z_0, P)$ mit
$$P = \{z \to xf(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$$

$$A = (Z, z_0, X, f, F).$$

Also: $G = (Z, X, z_0, P)$ mit
 $P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$
Dann gilt:
 $w \in L(G) \iff z_0 \Rightarrow^* w \iff \exists z \in F : z_0 \Rightarrow^* wz \iff f^*(z_0, w) \in F \iff w \in L(A)$

$$A = (Z, z_0, X, f, F).$$

Also: $G = (Z, X, z_0, P)$ mit $P = \{z \rightarrow xf(z, x) \mid z \in Z, x \in X\} \cup \{z \rightarrow \epsilon \mid z \in F\}$
Noch einfacher?

Akzeptoren ↔ Rechtslineare Grammatiken (RLG)

$$A = (Z, z_0, X, f, F)$$
.
Also: $G = (Z, X, z_0, P)$ mit $P = \{z \to x f(z, x) \mid z \in Z, x \in X\} \cup \{z \to \epsilon \mid z \in F\}$
Müllzustände J führen dazu, dass aus wJ kein Wort $w' \in X^*$ abgeleitet werden kann

ightarrow Produktionen mit Müllzuständen auf der rechten Seite können gelöscht werden.

 G_1 sei RLG für R_1 , G_2 sei RLG für R_2 . Konstruiere RLG H_1 für $(R_1 \mid R_2)$ (siehe Vorlesung) Konstruiere RLG H_2 für (R_1R_2) Konstruiere RLG H_3 für (R_1*)

 $G_1 = (N_1, T_1, S_1, P_1), G_2 = (N_2, T_2, S_2, P_2)$ mit $N_1 \cap N_2 = \emptyset$. Konstruiere RLG H_2 für (R_1R_2) ldee: Wenn Wort aus $L(G_1)$ zu Ende, hänge S_2 an.

 $G_1 = (N_1, T_1, S_1, P_1), G_2 = (N_2, T_2, S_2, P_2)$ mit $N_1 \cap N_2 = \emptyset$. Konstruiere RLG H_2 für (R_1R_2)

Es gelte $P_1 = Q_1 \cup Q_2$ mit $\forall X \in \mathcal{N}_1 \forall w \in \mathcal{T}_1^*$: $X \to w \in P_1 \iff X \to w \in Q_2$. $H_2 = (\mathcal{N}_1 \cup \mathcal{N}_2, \mathcal{T}_1 \cup \mathcal{T}_2, \mathcal{S}_1, Q_1 \cup \{X \to w \mathcal{S}_2 \mid X \to w \in Q_2\} \cup P_2)$.

 $G_1 = (N_1, T_1, S_1, P_1).$ Konstruiere RLG H_3 für (R_1*)

Idee: Wenn Wort zu Ende, hänge wieder Startsymbol an;

Startsymbol kann zu ϵ werden.

$$G_1 = (N_1, T_1, S_1, P_1).$$

Konstruiere RLG H_3 für (R_1*)
 $P_1 = Q_1 \cup Q_2$ mit $\forall X \in N_1 \forall w \in T_1^*:$
 $X \to w \in P_1 \iff X \to w \in Q_2.$
 $H_3 = (N_1, T_1, S_1,$
 $\{S_1 \to \epsilon\} \cup Q_1 \cup \{X \to wS_1 \mid X \to w \in Q_2\})$

```
Problem: R = ((ab) * aa)

G = (\{S\}, \{a, b\}, S, \{S \rightarrow abS \mid aa\})

H_3 = (\{S\}, \{a, b\}, S, \{S \rightarrow abS \mid aaS \mid \epsilon\})
```

```
Problem: R = ((ab) * aa)

G = (\{S\}, \{a, b\}, S, \{S \rightarrow abS \mid aa\})

H_3 = (\{S\}, \{a, b\}, S, \{S \rightarrow abS \mid aaS \mid \epsilon\})

ab \in L(H_3), ab \notin \langle R* \rangle
```

 $G_1 = (N_1, T_1, S_1, P_1).$

Konstruiere RLG H_3 für (R_1*)

Idee: Neues Startsymbol S', das nicht in N_1 liegt.

Wenn Wort zu Ende, hänge wieder S' an; S' kann zu ϵ oder S_1

werden.

$$G_1 = (N_1, T_1, S_1, P_1).$$
 Konstruiere RLG H_3 für (R_1*) Es gelte $S' \notin N_1$ und $P_1 = Q_1 \cup Q_2$ mit $\forall X \in N_1 \forall w \in T_1^*$: $X \to w \in P_1 \iff X \to w \in Q_2.$ $H_3 = (N_1 \cup \{S'\}, T_1, S', \{S' \to \epsilon \mid S_1\} \cup Q_1 \cup \{X \to wS' \mid X \to w \in Q_2\})$

Programmieren mit Automaten

http://www.swisseduc.ch/informatik/karatojava/kara/

Mittels grafischer "Entwicklungumgebung" kann über endliche Automaten das Verhalten eines Marienkäfers programmiert werden.

Das wars für heute...

Themen für das elfte Übungsblatt:

- Akzeptoren
- reguläre Ausdrücke
- rechtslineare Grammatiken