TD d'électronique N° 1 : diodes Corrigé en TD

ATTENUATEUR DE TENSION A DIODE COMMANDEE ELECTRIQUEMENT

Cette application de la diode au silicium met en oeuvre les notions fondamentales de point de repos en régime continu et de résistance dynamique équivalente autour de ce point en mode petits signaux sinusoïdaux.

On considère le montage de la figure 1 excité à l'entrée par un générateur sinusoïdal $e_g = E_{gm}$ sin (ω,t) , de résistance interne nulle, d'amplitude constante faible (10 mV) et de fréquence f = 10 kHz. La température est fixée à 25°C.

Ce montage permet de disposer en sortie, d'une tension sinusoïdale v_s (t) dont l'amplitude dépend d'une tension continue de commande V₁ de valeur ajustable entre 0 et 10 V. La caractéristique de la diode en coordonnées linéaires est donnée en figure 3.

Figure 1

Méthode de travail :

L'analyse du fonctionnement du montage où cohabitent des courants et des tensions sinusoïdales superposés à des courants et des tensions continus est effectuée à l'aide du théorème de superposition permettant de distinguer deux modes :

- Continu où seul le générateur de tension continue V, intervient (e, = 0 V)
- Variable sinusoïdal où le générateur d'excitation e, intervient seul (V₁ = 0 V).

Afin de pouvoir simuler la présence des deux condensateurs du montage, on rappelle leur propriété en mode quelconque fonction du temps et en mode sinusoïdal permanent :

Mode quelconque :
$$i_c(t) = C \frac{dv_c(t)}{dt}$$

Mode sinusoïdal permanent : $\underline{Z_c} = \frac{1}{j\omega C}$

module : $\frac{1}{\omega C}$

argument : $-\frac{\pi}{2}$

En déduire le schéma simple de simulation des condensateurs C₁ et C₂ pour les deux modes de fonctionnements du montage :

- En mode continu où ils sont chargés sous une tension constante.
- En mode sinusoïdal permanent en calculant le module de leur impédance et en la comparant avec la valeur des résistances R₁ et R₂.

1) ETUDE DU MODE CONTINU (1° partie du théorème de superposition)

- a. Dessiner le schéma équivalent du montage en régime continu.
- b. Ecrire l'équation de la droite de charge à la diode : $V_A = f(I_A)$.
- c. Tracer la droite de charge sur la figure 1 pour : V₁ = 1, 2, 3, 5 et 10 V et déterminer les coordonnées du point de fonctionnement (ou de repos) correspondant.

Figure 3

$\mathbf{V}_{_{\mathrm{I}}}$	1 V	2V	3 V	5 V	10 V
$V_{_{A \; repos}}$					
$I_{A \text{ repos}}$					

ETUDE EN MODE SINUSOIDAL PETITS SIGNAUX (2° partie du théorème de superposition)

Sachant que la tension variable qui se développe aux bornes de la diode a une amplitude suffisamment faible (l'amplitude de e_s est égale à 10 mV), on simule la diode en régime sinusoïdal petits signaux par sa résistance dynamique r_d .

- Dessiner le schéma équivalent au montage en régime sinusoïdal imposé par e,
- b. Une diode passante obéit à la loi : $I_A \approx I_S \exp(\frac{V_A}{U_T})$, avec $U_T \approx 25 \text{ mV}$ à 25°C. I_S

est le courant inverse de saturation de la jonction. Montrer que la résistance dynamique de la diode autour d'un point de repos est telle que :

$$r_d = \left[\frac{dV_A}{dI_A}\right]_{point repos} = \frac{U_T}{I_{A repos}}$$

Faire les applications numériques pour les points de repos définis précédemment.

Comparer graphiquement.

$V_{\rm I}$	1 V	2V	3 V	5 V	10 V
$I_{A \text{ repos}}$					
r _d calculée					
r ₄ mesurée					

BILAN

- Analyser le fonctionnement du montage complet.
- b. Calculer l'expression du rapport A = v_s / v_e et tracer le graphe A = f (V₁).
- c. Que passe-t-il si on impose une tension V₁ nulle ou négative ?

TD d électronique N° 2

Exercice 1 : état des diodes

Pour chacun des montages suivant, déterminer l'état de la diode supposée idéale, et calculer la valeur du courant qui la traverse. Les valeurs des résistances sont exprimées en $k\Omega$.

Exercice 2 Montage écrêteur On considère le montage suivant qui utilise une diode supposée parfaite, le générateur ve(t) dont le graphe est donné ci-après fournit une tension triangulaire d'amplitude de 50V et de période de 1 ms.

Exercice 2: Montages doubleur de tension

Tracer l'allure de la tension de sortie Vs(t) pour les trois montages ci-dessous. Les diodes sont supposées idéales. Quel avantage présente le doubleur de Schenkel par rapport au doubleur de Latour ?

Exercice 3: Etude d'une alimentation stabilisée élémentaire

On se propose d'analyser l'alimentation stabilisée représentée ci-dessous. Un transformateur, alimenté coté primaire par le secteur délivre une tension secondaire $V_1 = V_{10}.\sin(\omega.t)$ de période $T = 2.\pi / \omega = 1 / f$.

1 - Etude du circuit redresseur

Le pont de diodes est constitué de 4 diodes identiques supposées idéales

- 1- On suppose l'interrupteur K ouvert
- a- Tracer la courbe représentative de la tension V2 (t)
- b- Calculer la valeur moyenne V_{2m} de cette tension $V_2(t)$.
- 2- On suppose l'interrupteur K fermé.
- a- Expliquer qualitativement le fonctionnement de ce circuit et montrer que la tension V_2 conserve pratiquement une valeur presque constante si la valeur de C est suffisamment grande pour que $R_0C >> T$.
- b- de l'approximation ainsi faite, déterminer la valeur moyenne de V2 (t) et le taux d'ondulation $\Delta V_2 / V_{2moy}$
- c- Application numérique : On donne V₁₀ = 16.9V ; R0=200, C=100uF

2- Etude du circuit stabilisateur

la caractéristique de la diode Zener en polarisation inverse est assimilée à une droite passant pat les points :

Iz = 10mA Vz = 5V et Iz=100mA Vz=5.9V

On admettra que la diode fonctionne en stabilisateur de tension si 5 mA = Iz = Iz max = 100 mA

 Déterminer l'équation de la caractéristique de la diode Zener (lien entre Uz et Iz) et déduire le modèle (schéma) électrique équivalent

Etude à vide (Rc=infinie)

- Déterminer la valeur de la résistance R₀ pour que la diode fonctionne en stabilisateur de tension et sans la destruction de cette dernière?
- Entre quelles limites de V2 peut elle varier pour $R_0=150 \Omega$?

Etude en charge nominale (Rc'= 100 W) Déterminer

- la valeur minimale V2min de la tension V2 (t) pour que la diode fonctionne en stabilisateur de tension
- la variation $\Delta V2$ de la tension de sortie V2 ?
- la valeur moyenne de V_{2moy} de V2, et déduire la valeur de la capacité C?
- calculer la variation de V3 et la variation Δ V3 en fonction de Δ V2 et rz?
- entre quelles limites de Rc peut elle varier pour que la diode fonctionne dans sa zone utile ?
- calculer le rendement du montage et conclusion ?

Etude du montage complet

• calculer la valeur de la tension de sortie et la plage de la variation ΔVs de la tension de sortie Vs en fonction de la variation de la tension v2?

Exercice 3: Stabilisation par diode Zener

La caractéristique de la diode Zener en polarisation inverse (après claquage) est assimilée à une droite passant par les points : $I_z = 20 \text{ mA}$, $U_z = 6.2 \text{ V}$ et $I_z = 100 \text{ mA}$, $U_z = 7.0 \text{ V}$.

On admettra que la diode fonctionne en stabilisateur de tension si 5 mA $< I_z < 100$ mA.

- 1) Déterminer l'équation de la caractéristique utile de la diode Zener (lien entre U_z et I_z).
- 2) Etude à vide (R_C infinie):

Quelles sont les valeurs de U_z et I_z pour E = 12 V et $R = 190 \Omega$?

Entre quelles limites E peut-elle varier si $R = 190 \Omega$?

Calculer le facteur de régulation $F = \frac{\Delta E}{\Delta U_z}$ pour une variation $\frac{\Delta E}{E} = 0.5$ autour de 12 V .

3) Etude en charge ($R_C = 100 \Omega$):

Donner l'équation de la droite de charge (lien entre U_z et I_z). Calculer I_{R_C} , I_R , I_z et U_z pour E = 18 V et $R = 100 \Omega$.

Entre quelles limites R_C peut-elle varier pour que la diode fonctionne dans sa zone utile $(E = 18 \text{ V et } R = 100 \Omega)$?