ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Regulating the distribution of iron active sites on γ -Fe₂O₃ via Mn-modified α -Fe₂O₃ for NH₃-SCR

Donghai Mo^{a,b,c}, Qiuju Qin^{a,b,c}, Chengheng Huang^{a,b,c}, Lin Tao^{a,b,c}, Chen Li^{a,b,c}, Jiaqi Qiu^{a,b,c}, Jingkai Wang^{a,b,c}, Xiaorong Han^{a,b,c}, Shifei Gu^{a,b,c}, Zhengjun Chen^{a,b,c}, Bin Li^{a,b,c}, Lihui Dong^{a,b,c,*}

- a State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China
- b Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- ^c Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

ARTICLE INFO

Keywords: NH₃-SCR Low temperature Fe₂O₃ Magnetism Crystal-active sites relationship

ABSTRACT

Developing below 150 °C highly activity and broad reaction window catalysts has been challenging by using Febased catalysts for NH₃-SCR. The octahedral Fe^{3+} (Fe^{3+}_{Oh}) sites exist in hematite (α -Fe₂O₃) and maghemite (γ -Fe₂O₃) are inactive for NH₃-SCR due to the redox circle of $Fe^{2+} \rightarrow Fe^{3+}$ reliance on the distribution of iron sites in crystal structure. Here we modified the α -Fe₂O₃ crystal structure by substituting part inactive Fe^{3+}_{Oh} sites with catalytically active Mn^{3+}_{Oh} sites, which promoted the formation of γ -Fe₂O₃ to generate the active tetrahedral Fe^{3+}_{Oh} (Fe³⁺_{Oh}) sites and enhanced the magnetism of the $Fe_{1-y}Mn_yO_x$. The strong Fe-O-Mn interaction established by crystal coordinative configurations not only boosted the formation of NO₂ but also facilitated the Brønsted acid circle. Surprisingly, the $Fe_{0.85}Mn_{0.15}O_x$ exhibited the superior low temperature NH₃-SCR activity, with NO_x conversion above 100% at 100–275 °C under a GHSV of 60000 h⁻¹.

1. Introduction

Nitrogen oxides that containing NO and NO₂ mainly emitted by power stations, factories and automobiles have made great contributions to air pollution, significantly affecting global tropospheric chemistry and seriously endangering human health [1,2]. At present, it is considered to be an efficient and practical method to use vanadium metal oxide as catalyst to achieve efficient NO elimination in NH₃-SCR technology. Developing environmental-friendly and low-temperature (LT) high-efficiency catalysts is necessary due to the poor catalytic activity below 150 $^{\circ}$ C and secondary pollution caused by serious biotoxicity hinder the scope of applications of vanadium-based catalysts [3].

Iron-based catalysts have attracted much attention from researchers because of environment-friendly, low economic cost and catalytic stability in the middle and high temperature window for NH₃-SCR. Among the crystalline phases of Fe₂O₃, maghemite (γ -Fe₂O₃) and hematite

 $(\alpha\text{-Fe}_2\text{O}_3)$ are the most widely investigated for NH₃-SCR [4,5]. Hematite (α-Fe₂O₃) has a rhombohedral centered hexagonal structure consisting only of Fe_{0h}³⁺ sites in which Fe³⁺ ions occupying the octahedral oxygen center, maghemite (γ-Fe₂O₃) has a spinel structure centered on tetrahedral Fe^{3+} (Fe^{3+}_{Td}) and octahedral Fe^{3+} (Fe^{3+}_{Oh}) sites [6]. Qu et al. creatively demonstrated that Fe_{Td}^{3+} sites as the catalytically active sites (CASs) in NH₃-SCR by substituting the Fe_{Td}^{3+} sites and Fe_{Oh}^{3+} sites with inactive Ti⁴⁺ or Zn²⁺ respectively and found the electron transfer between Fe³⁺ and Fe^{2+} is promoted in Fe^{3+}_{Td} sites compared with Fe^{3+}_{Oh} sites [7]. Liu et al. found the α-Fe₂O₃ catalysts exhibited lower catalytic performance than γ-Fe₂O₃ below 200 °C due to stable nitrates more easily formed on α -Fe₂O₃ surface than γ -Fe₂O₃ and blocked the active sites [8]. Wen et al. prepared FeNb_{0.4}O_x-C catalyst by coprecipitation with the assistance of CTAB to induce generate γ-Fe₂O₃. The interaction between Fe-Nb and brought about more active sites hence enhanced the NO_x conversion [9]. Despite many achievements have been made in the study of iron oxides in NH3-SCR, developing the wide operating temperature window and

E-mail address: donglh@gxu.edu.cn (L. Dong).

^{*} Corresponding author at: State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, PR China.

the excellent LT activity (below $\sim\!150~^{\circ}\text{C})$ remains a crucial bottleneck for $Fe_2O_3\text{-based}$ catalysts. The performance of representative of iron-based catalysts for NH $_3\text{-SCR}$ in recent five years is summarized in Table 1.

Manganese oxides with variable valence states and excellent redox ability are commonly investigated for NH3-SCR. Although manganesebased materials showing an excellent LT SCR activity, restraining their practical applications because of sensitivity to SO₂, poor N₂ selectivity and show narrow working temperature window [10,11]. However, manganese oxides as additives for other metal oxides can enhance the redox ability and increase Brønsted acid sites on NH₃-SCR catalysts [12]. The flexible valence states of manganese oxides facilitate the electronic transfer with other metal ions and formation of abundant active oxygen, thus promoting the NO oxidize to NO2 and trigger the "Fast SCR" reaction at low temperatures [13,14]. Zhang et al. found that Mn doping can optimize the structure of γ-Fe₂O₃ and form Fe-Mn solid solution, thus improving the SCR activity at low temperature [49]. Lai et al. report on a Fe-Mn system, the existence of manganese causes the lattice contraction of γ-Fe₂O₃ and increases the activation energy of construct α-Fe₂O₃, thus maintaining the crystal phase of γ-Fe₂O₃ at high temper-

Transformation of crystal phase structure and CASs are essential in NH $_3$ -SCR for iron-based oxides due to the formation of α -Fe $_2O_3$ above 320 °C. Relationship between crystal structure and CASs of Fe $_2O_3$ is crucial for elaborate any catalytic reaction mechanism and for the logical devise of high- efficient and low-temperature NH $_3$ -SCR catalysts. However, the distribution of the doping element and transformation of crystal phase leads to the change of CASs in crystal structure of Fe $_2O_3$ are seldom investigated on NH $_3$ -SCR. In this work, to induce the transition from α -Fe $_2O_3$ to γ -Fe $_2O_3$ structure and generate more active Fe $_3^{3+}$ CASs of the iron oxide catalyst, we have modified the Fe $_2O_3$ crystal structure by substituting part inactive Fe $_0^{3+}$ sites with catalytically active Mn $_0^{3+}$ sites. Herein, a series of Fe $_1$ –yMn $_yO_x$ was prepared by sol-gel strategy, compared with pure Fe $_2O_3$, the Fe $_0$.85Mn $_0$.15Ox catalyst exhibited the superior LT catalytic performance and extensive reaction window.

2. Experimental section

2.1. Catalyst preparation

The α -Fe₂O₃, γ -Fe₂O₃, γ -Mn₂O₃ and Fe_{1-v}Mn_vO_x series catalysts were acquired by sol-gel strategy. First, a 10 ml mixed solution containing 4.04 g of Fe(NO₃)₃·9H₂O and a specified amount of Mn (CH₃COO)₂·4H₂O (The molar ratio of Mn/Fe atoms is contained within range 0-20%) was prepared with deionized water. Second, the mixed solution is then added drop by drop to the 10 ml deionized aqueous solution of citric acid monohydrate (0.73 g/ml). Third, the precursor solution was continuously mixed for 0.5 h, then 30 mg polyethylene glycol (PEG 2000) was added and transferred to a magnetic stirring oil bath at 80 °C for 4 h to obtain a stable gel. Next, the gel was dried at 100 °C for 12 h. Lastly, the catalyst was obtained by grinding the dried material into powder and calcining it at 350 °C in air for 4 h. γ-Fe₂O₃ acquired by calcined at 250 °C for 2 h. The catalyst is named after the proportion of doped manganese in the total amount of metal atoms. For instance, the Fe_{0.85}Mn_{0.15}O_x catalyst contains 15% of Mn in the total amount of metal atoms.

2.2. Catalysts characterization

X-ray diffraction (XRD) data of the catalysts were collected on a Bruker D8 with Cu K α radiation at 40 kV and 30 mA and the scanning range was set at 20 of 10–80 $^{\circ}$ with a scanning speed of 10 $^{\circ}$ /min.

The morphology and microstructure of the samples were observed by field emission scanning electron microscopy (SEM) at 20~kV (FEI Ouattro S, Czech).

The energy-dispersive X-ray spectroscopy (EDS) images were

Table 1
Representative of iron-based catalysts for the NH₃-SCR in recent five years.

catalysts	preparation method	reaction condition	NO conversion	ref	
Fe-Ce	e-Ce sol-gel NO = NH ₃ = 500 ppm, 5 vol $O_2, \text{GHSV} = 90000 h^{-1}$		~100%, (200–300 °C)	[4]	
Fe-Nb	co- precipitation	NO = NH ₃ = 500 ppm, 5 vol% O ₂ , GHSV = 250000 h ⁻¹	> 90%, (250–400°C)	[9]	
Fe-Ce-S	co- precipitation	$NO = NH_3 =$ 500 ppm, 5 vol% O_2 , $GHSV =$	~100%, (225–350 °C)	[16]	
Fe-V-Ti	co- precipitation	$100000 h^{-1}$ $NO = NH_3 =$ $500 ppm, 5 vol\%$ $O_2, GHSV =$ $200000 h^{-1}$	~100%, (225–375 °C)	[17]	
FeMnTiO _x - tourmaline	sol-gel	NO = NH ₃ = 800 ppm, 5 vol% O ₂ , GHSV = 50000 h^{-1}	> 80%, (160–380 °C)	[18]	
SO_4^{2-}/α -Fe $_2O_3$	impregnation	NO = NH ₃ = 600 ppm, 5 vol% O ₂ , GHSV = 60000 h ⁻¹	~100%, (275–400 °C)	[19]	
FeVO ₄ /CeO ₂	sol-gel	$NO = NH_3 = 500 \text{ ppm, 5 vol}\%$ O_2 , GHSV = 80000 h ⁻¹	> 90%, (225–350 °C)	[20	
Fe-Mn-Mo/TiO ₂	impregnation	$NO = NH_3 =$ 400 ppm, 3 vol% $O_2, \text{ GHSV} =$ 30000 h^{-1}	~100%, (250–300 °C)	[21	
Fe-Cu	urea -assisted	$NO = NH_3 =$ 500 ppm, 3 vol% O_2 , $GHSV =$ 60000 h^{-1}	> 90%, (150–275 °C)	[50	
Fe ₂ O ₃ .SO ₄ ²⁻ / (TiO ₂ -ZrO ₂)	impregnation	$NO = NH_3 =$ 500 ppm, 3 vol% O_2 , GHSV = 47000 h^{-1}	~100%, (300–500 °C)	[51]	
Ti-Fe ₂ O ₃	co- precipitation	$NO = NH_3 =$ $600 \text{ ppm, } 3 \text{ vol}\%$ $O_2, \text{ GHSV} =$ 72000 h^{-1}	> 90%, (210–350 °C)	[52]	
CeO ₂ - Fe ₂ O ₃ -MoO ₃	impregnation	$NO = NH_3 =$ 500 ppm, 5 vol% O_2 , GHSV = 75000 h ⁻¹	> 90%, (225–350 °C)	[53]	
TiO ₂ @Fe ₂ O ₃ @Al ₂ O ₃	impregnation	$NO = NH_3 = 500 \text{ ppm}, 5 \text{ vol}\%$ O_2 , GHSV = 20000 h ⁻¹	> 90%, (220–420 °C)	[54]	
MnFe-TOS	hydrothermal	$NO = NH_3 = 500 \text{ ppm}, 5 \text{ vol}\%$ O_2 , GHSV = 30000 h^{-1}	> 80%, (180–380 °C)	[55]	
Zr/Fe-SSZ-13	hydrotherma	NO = 1000 ppm, $NH_3 = 1100 \text{ ppm},$ $5 \text{ vol} \Theta_2, \text{ GHSV}$ $= 30000 \text{ h}^{-1}$	> 90%, (350–575 °C)	[56]	
Fe-CePO4	co- precipitation	$NO = NH_3 =$ 500 ppm, 5 vol% O_2 , GHSV = 60000 h^{-1}	~100%, (240–380 °C)	[57]	
Fe-Nb-Ti	sol-gel	$NO = NH_3 =$ 500 ppm, 4 vol% O_2 , GHSV = 24000 h ⁻¹	> 80%, (~200 °C)	[58]	
Fe-OMS-2	hydrothermal	$NO = NH_3 =$ 500 ppm, 5 vol% O_2 , $8 \text{ vol}\% H_2O$, GHSV = 40000 h^{-1}	> 90%, (125–300°C)	[59]	

(continued on next page)

Table 1 (continued)

catalysts	preparation method	reaction condition	NO conversion	ref
WO ₃ -FeO _x	solvent-free	$NO = NH_3 =$ 600 ppm, 5 vol\% $O_2, \text{GHSV} =$ 60000 h^{-1}	~100%, (250–450 °C)	[60]

obtained by the Tecnai G2 F20 S-TWIN instrument of FEI Company, the highresolution transmission electron microscope (HRTEM) images were acquired under an accelerating voltage of 200 kV. Test preparation: ultrasonic the sample in ethanol solution for 10 min, then drop the sample solution into the copper mesh for testing.

The $\rm N_2$ adsorption-desorption curve was tested on Micrometric Stristari3020 at a temperature of 77 K and the samples were pretreated at 300 °C for 4 h. The pore size distribution and specific surface area of the catalyst were calculated using the Barrett-Joyner-Halenda (BJH) method and the Brunauer-Emmet-Teller (BET) equation.

In situ DRIFTS data were collected in Nicolet IS50 FT-IR spectrometer with a resolution of 4 cm $^{-1}$ and a scan count of 32. A certain amount of the catalyst was filled in the reaction cell and pretreated for 0.5 h $\rm N_2$ purging at 110 °C (pretreatment temperature at 300 °C for NH₃ adsorption-desorption) and the background image is obtained at 50–300 °C (50 °C each step) during the sample cooling process. The sample spectrum was collected within 50–300 °C after the pre-adsorption of the reaction gas for 1 h. Test conditions: NO = NH₃ = 500 ppm, O₂ = 5 vol%, balance N₂ and GHSV = 60,000 h $^{-1}$.

H₂-TPR and O₂/NH₃-TPD experiments were performed using a FINESORB-3010 automatic chemical adsorption instrument. All samples used for testing are 40–60 mesh in size and the gas flow rate used is 10 ml/min. For H₂-TPR, 25 mg samples were pretreated at 110 °C in N₂ atmosphere for 1 h. The H₂-Ar mixture (7 vol% H₂, Ar as the equilibrium gas) was introduced as reducing gas pre-adsorption for 30 min after samples cooled to room temperature. For O₂-TPD or NH₃-TPD, 50 mg samples were pretreated at 200 °C or 300 °C for 1 h in He stream. The O₂ (pure O₂) or NH₃ (5 vol% NH₃, N₂ as the equilibrium gas) was introduced as adsorption gas pre-adsorption for 1 h after samples cooled to room temperature and then purging in the He atmosphere for 30 min. Finally, the samples were raised from room temperature to 800 °C at a heating rate of 10 °C/min, and the data of H₂-TPR, O₂-TPD and NH₃-TPD was collected by thermal conductivity detector (TCD).

X-ray photoelectron spectroscopy (XPS) were carried out on Thermo Fisher Scientific ESCALAB 250XI and the data were corrected based on C 1 s =284.8 eV.

The hysteresis loop of the catalyst was obtained by vibrating sample magnetometer (VSM) Lake Shore 7404 and the moment measuring range: 5×10^{-7} - 10^3 emu.

2.3. Catalytic performance evaluation

The NO, NO₂ and N₂O concentration in catalytic reaction was determined by FGA10 flue gas analyzer. A Nicolet IS50 FT-IR spectrometer was used to detect the concentrations of NH₃. All tests used 40–60 mesh 100 mg samples with a 10 mm O.D. quartz tube. Water vapor in flue gas is produced by FD-WG water vapor generator (Furende Inc). The concentration and composition of reaction gas standard cylinders used are as follows: NO (1250 ppm NO, N₂ as the equilibrium gas), NH₃ (1271 ppm NH₃, N₂ as the equilibrium gas), O₂ (15% O₂, N₂ as the equilibrium gas), SO₂ (1027 ppm SO₂, N₂ as the equilibrium gas). In the reaction process, the flow rate is controlled by using type MT-50–2 J flowmeters to generate defined concentrations.

Reaction conditions: NO = NH $_3$ = 500 ppm, O $_2$ = 5 vol%, SO $_2$ = 25 ppm (when used), H $_2$ O = 5 vol% (when used). The NO conversion and N $_2$ selectivity 50–300 °C was calculated as followed

$$\begin{split} &\text{NO conversion} = \left[\frac{[\text{NO}]_{\text{in}}[\text{NO}]_{\text{out}}}{[\text{NO}]_{\text{in}}}\right] \times 100\% \\ &N_2 \text{ selectivity} = \left[1 - \frac{2[\text{N}_2\text{O}]_{\text{out}} + [\text{NO}_2]_{\text{out}}}{[\text{NO}]_{\text{in}} - [\text{NO}]_{\text{out}} + [\text{NH}_3]_{\text{in}} - [\text{NH}_3]_{\text{out}}}\right] \times 100\% \end{split}$$

3. Results and discussion

3.1. NH₃-SCR performance and H₂O/SO₂ tolerance

In order to study that influence of manganese doping into Fe₂O₃ on catalytic performance. The low-temperature SCR performance over catalysts were test in the range of 50-300 °C, 25 °C for each step. The results of NO conversion are shown in Fig. 1(a), it can be seen that the highest NO conversion of α-Fe₂O₃ catalyst only achieve 65% in the 275 $^{\circ}$ C and inactivity at 50–150 $^{\circ}$ C. In comparison, the pure γ -Fe₂O₃ shows ~90% NO conversion at 250–300 °C and γ-Mn₂O₃ shows ~80% NO conversion at 150-250 °C. However, after the modified the Fe₂O₃ crystal structure by doping manganese, the NO conversion of the catalysts is improved significantly. It is worth noting that among Fe₂O₃ and all Fe_{1-v}Mn_vO_x catalysts, Fe_{0.85}Mn_{0.15}O_x exhibits the best NH₃-SCR performance which achieves above 85% in the 75 °C and nearly 100% within 100-275 °C at a GHSV of 60,000 h⁻¹. Moreover, the activity of Fe_{1-v}Mn_vO_x catalysts is enhance with the manganese content increase from 5% to 20% at low temperatures (50–150 $^{\circ}\text{C})$ while decrease the activity when the manganese content over 15% at high temperatures (over 200 $^{\circ}\text{C}$). This means that the introduction of manganese produces more catalytically active sites (CASs) in $Fe_{1-y}Mn_yO_x$ catalysts for NH₃-SCR. It was noted that the activity of the $Fe_{0.80}Mn_{0.20}O_x$ began to decline at 200 °C, which was mainly caused by the adsorption of NH₃ on acidic sites is weakened and the occurrence of side reaction of NH3 overoxidation at high temperatures results in less reductant [22,23]. Thus, the balance in redox circle and acid circle is crucial for $Fe_{0.85}Mn_{0.15}O_x$ have the capability to exhibit the superior LT NH3-SCR activity and a broad reaction window. The N2 selectivity of the catalysts for the NH₃-SCR reaction were calculated and shown in Fig. 1(b). It can be seen that γ -Fe₂O₃ shows better N₂ selectivity than α -Fe₂O₃ and γ -Mn₂O₃ in the whole temperature window and nearly 100%. Notably, compared with pure Fe₂O₃, the introduction of Mn caused the production of N₂O as a by-product at 125 °C (Fig S1), which led to the decrease of the N2 selectivity of the Fe_{1-v}Mn_vO_x. In addition, the stability of the Fe_{0.85}Mn_{0.15}O_x catalyst was tested and shown in Fig. S2. The Fe0_{.85}Mn_{0.15}O_x catalyst can maintain nearly 100% NO conversion and 90% N2 selectivity at 150 °C for 24 h. The H₂O and SO₂ resistance over α-Fe₂O₃ and Fe_{0.85}Mn_{0.15}O_x were investigated due to H₂O and SO₂ are inevitably exist in actual flue gas. As depicted in the Fig. 1(c) and (d). When 5 vol% H₂O was turned on the reaction gas at 250 °C, α-Fe₂O₃ and Fe_{0.85}Mn_{0.15}O_x catalysts is no obvious fluctuation in 3 h of the NO conversion, however, when we increase the water vapor content from 5 to 10 vol%, it can be seen in the Fig. 1(d), NO conversion of $\alpha\text{-Fe}_2\text{O}_3$ decreases from 63% to 47%, while the NO conversion of $Fe_{0.85}Mn_{0.15}O_x$ can still maintain nearly 100%, showing that the excellent water-resistant ability of $Fe_{0.85} Mn_{0.15} O_x$ after Mn modified the $Fe_2 O_3$ crystal structure. In addition, the NO conversion of $\alpha\text{-Fe}_2\text{O}_3$ decreased from 60% to 23% in 3 h when 25 ppm SO₂ was turned on the reaction gas at 250 °C while Fe_{0.85}Mn_{0.15}O_x was maintained at ~90% was observed after being tested. This means that the sulfur resistance has been improved by modified the Fe₂O₃ crystal. Besides, the NO conversion of Fe_{0.85}Mn_{0.15}O_x still decrease after turn off 5 vol% H₂O and irreversible after being poisoned by SO2, which means SO2 is the main reason cause $Fe_{0.85}Mn_{0.15}O_x$ inactivation.

Fig. 1. NH₃-SCR performance of catalysts: (a) NO conversion of catalysts; (b) N₂ selectivity of the catalysts for the NH₃-SCR reaction; (c) The 5 vol% H₂O and SO₂ tolerance of Fe_{0.85}Mn_{0.15}O_x and α-Fe₂O₃ at 250 °C; (d) The 10 vol% H₂O tolerance of Fe_{0.85}Mn_{0.15}O_x and α-Fe₂O₃ at 250 °C. Reaction conditions: NO = NH₃ = 500 ppm, O₂ = 5 vol%, H₂O = 5 or 10 vol% (when used), SO₂ = 25 ppm (when used), balance N₂ and GHSV = 60,000 h⁻¹.

3.2. Structure and morphology

3.2.1. XRD analysis

To obtain structural information on the Mn modified the Fe₂O₃ catalysts. Fig. 2(a) show the XRD spectrum of the Fe_{1-v}Mn_vO_x catalysts with various manganese-doped contents and pure Fe₂O₃. Pure Fe₂O₃ is identified as hematite (α-Fe₂O₃) with a hexagonal structure (JPCDS Card No. 33–0664) [8,24]. Additionally, there are some new diffraction peaks appeared after doping manganese, while no diffraction peak belongs to MnO_x can be detected. This distinct shows that Mn doped into the Fe₂O₃ crystal lattice [25]. The diffraction peaks at 30.3°, 35.7°, 37.4°, 43.5°, 53.9° , 57.5° and 63.1° can be well indexed to $\gamma\text{-Fe}_2\text{O}_3$ (JCPDS Card No. 39-1346), corresponding to the lattice planes of (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) [7,8,15]. With increasing manganese content is increased from 5% to 20%, all the intensity of diffraction peaks of the α-Fe₂O₃ becoming weaken and the γ-Fe₂O₃ gradually increases. This means that the crystalline phase can be induced from α -Fe₂O₃ to γ -Fe₂O₃ by introducing manganese. Note that all the peaks of Fe_{1-v}Mn_vO_x clearly shift to larger Bragg angles in comparison to $\gamma\text{-Fe}_2O_3.$ This occurs after substitution of part Fe_{Oh}^{3+} with Mn^{3+} in $\alpha\text{-Fe}_2O_3$ and generate Fe_{Td}^{3+} of γ -Fe₂O₃, which brought about lattice contraction [15]. Furthermore, we calculate the crystallite sizes, lattice constants of (2 2 0) peaks and to quantify the ratio of α/γ Fe₂O₃ of the Fe_{1-v}Mn_vO_x catalysts and the results comparison with pure γ-Fe₂O₃ are summarized

in Table 2. In consideration of ionic radius of Fe_{Td}^{3+} (0.49 Å) and Fe_{Oh}^{3+} (0.65 Å), the Mn^{3+} (0.58 Å) is smaller than that of Fe_{Oh}^{3+} (0.65 Å) [7], the related changes in the lattice parameters calculated from the (2 0 0) peaks indicating that substitution of part Fe_{Oh}^{3+} with Mn^{3+} in $Fe_{1-y}Mn_yO_x$ after Mn modified. This conclusion is consistent with XPS analysis and support by H_2 -TPR results.

3.2.2. VSM analysis

To further study the impact of formation γ-Fe₂O₃ and the influence of the magnetic properties, the α -Fe₂O₃, γ -Fe₂O₃ and Fe_{1-v}Mn_vO_x catalysts were measured by vibrating sample magnetometer (VSM). The M-H curves of α -Fe₂O₃, γ -Fe₂O₃ and Fe_{1-v}Mn_vO_x are shown in Fig. 2(c) and summary of the magnetic properties are shown in Table 3. It is found that the introduction of Mn can enhance the coercivity (Mr) and saturation magnetization (M_s) of Fe_{1-v}Mn_vO_x remarkably. When the doping content of manganese is increased to 15%, the value of M_r and M_s reached the maximum value 46.16 emu/g and 5.91 emu/g, respectively. In comparison with γ -Fe₂O₃ that M_r and M_s value is 42.05 emu/g and 0.94 emu/g, respectively, $Fe_{0.85}Mn_{0.15}O_x$ shows better magnetism. It has been reported that the increase of magnetism can improve the adsorption of NO at low temperature on the catalyst surface because NO is a paramagnetic molecule and degaussing of catalyst at high temperature [15,24,25]. Furthermore, the increased magnetization of $Fe_{1-v}Mn_vO_x$ is positively related to the promotion of γ -Fe₂O₃ formation

Fig. 2. (a) XRD spectra of the catalysts; (b) the partial enlarged detail of $Fe_{0.85}Mn_{0.15}O_x$ and γ - Fe_2O_3 (PDF#39–1346); (c) Samples' room-temperature magnetization curves of the catalysts; (d) N_2 adsorption-desorption isotherms of the catalysts; SEM images of (e) α - Fe_2O_3 and (f) $Fe_{0.85}Mn_{0.15}O_x$.

Table 2 Summary of the XRD data analysis of the $Fe_{1-y}Mn_yO_x$ catalysts and $\gamma\text{-Fe}_2O_3$.

Samples	crystallite sizes (Å)	lattice constants (Å)	$\gamma/$ ($\alpha+\gamma$) Fe ₂ O ₃ (%)
Fe _{0.95} Mn _{0.05} O _x	116	8.34	61.0
$Fe_{0.90}Mn_{0.10}O_x$	132	8.32	63.3
$Fe_{0.85}Mn_{0.15}O_x$	132	8.30	75.8
$Fe_{0.80}Mn_{0.20}O_{x}$	127	8.31	73.0
γ-Fe ₂ O ₃	103	8.36	100

Table 3Summary of the magnetic properties of the samples.

Samples	M _s (emu/g)	M _r (emu/g)	H_c (O _e)
α-Fe ₂ O ₃	5.78	0.87	92.44
$Fe_{0.95}Mn_{0.05}O_{x}$	33.96	3.14	46.10
$Fe_{0.90}Mn_{0.10}O_{x}$	36.34	3.90	46.21
$Fe_{0.85}Mn_{0.15}O_{x}$	46.16	5.91	35.37
$Fe_{0.80}Mn_{0.20}O_x$	43.05	4.29	31.45
γ -Fe ₂ O ₃	42.05	0.94	14.89

in XRD results and $Fe_{0.85}Mn_{0.15}O_x$ show the best catalytic activity, which may be due to the difference of NO adsorption on the surface caused by the magnetism of the catalyst. These factors will be discussed in the in-situ DRIFT results.

3.2.3. BET analysis

The specific surface area is an important factor affecting the adsorption capacity of reaction gas on the catalyst. As depicted in Fig. 2 (d) and Fig. S3, the isotherms of the $\alpha\text{-Fe}_2\text{O}_3,~\gamma\text{-Fe}_2\text{O}_3,~\gamma\text{-Mn}_2\text{O}_3$ and $\text{Fe}_{1-y}\text{Mn}_y\text{O}_x$ catalysts exhibit typical IV curves at high relative pressure and the pore sizes are corresponding to mesoporous material (2–50 nm)

[26,27]. Table 4 summarizes the surface physical properties of the pure Fe_2O_3 and $Fe_{1-y}Mn_yO_x$ catalysts. Combined with XRD quantitative analysis, the γ Fe₂O₃ ratio in Fe_{1-v}Mn_vO_x catalysts increasing with the Mn mole ratio from 5% to 15%. As summarized in Table 4, the specific surface areas of γ -Fe₂O₃ and γ -Mn₂O₃ are 125 and 55 m²/g, respectively, which is much larger than that of α -Fe₂O₃ (23 m²/g). When doped into α-Fe₂O₃ the Mn mole ratio is 15%, the specific surface area is largest and reaches 85 m²/g, which is enlarge ca. 370% to the α -Fe₂O₃. This shows that the formation of γ-Fe₂O₃ significantly affects the specific surface area of the catalyst. The average pore size of Fe_{0.85}Mn_{0.15}O_x is 14 nm, corresponding to lessen ca. 36% in comparison with the α-Fe₂O₃. Beyond this value, with the Mn mole ratio is increased to 20% the surface area lessened from 85 to 57 m²/g, indicating that doping of excessive manganese may segregate MnO_x nanoparticles lead to the collapse or sintering of the pore structure, will lead to an lessen in the specific surface area of the catalyst. Generally, NO conversion is related to specific surface area of catalyst in NH₃-SCR, as shown in Fig. 1(a). Interestingly, Fe_{0.95}Mn_{0.05}O_x and Fe_{0.90}Mn_{0.10}O_x catalysts have similar specific surface areas, 53 m²/g and 52 m²/g respectively, but the NH₃-SCR activity at low temperature is quite different. The NO conversion of $Fe_{0.90}Mn_{0.10}O_x$ catalyst is 96.6% while $Fe_{0.95}Mn_{0.05}O_x$

Table 4Summary of the structural properties of the samples.

Materials	Specific surface area (m²/g)	Pore volume (cm ³ /g)	Pore Size (nm)
α-Fe ₂ O ₃	23	0.12	22
$Fe_{0.95}Mn_{0.05}O_x$	53	0.28	18
$Fe_{0.90}Mn_{0.10}O_x$	52	0.21	17
$Fe_{0.85}Mn_{0.15}O_{x}$	85	0.29	14
$Fe_{0.80}Mn_{0.20}O_x$	57	0.22	16
γ -Fe ₂ O ₃	125	0.45	14
γ -Mn ₂ O ₃	55	0.19	11

catalyst is only 63.6% at 100 $^{\circ}\text{C},$ which may be related to the magnetism of the catalyst.

3.2.4. SEM and EDS analysis

To elaborate examine the Fe_{1-v}Mn_vO_x and α-Fe₂O₃ structure, SEM observation were used for understand the structure of the α -Fe₂O₃ and Fe_{0.85}Mn_{0.15}O_x catalysts and results are shown in Fig. 2(e) and (f). It can be seen that the surface morphology of α-Fe₂O₃ presents smooth spherical particle accumulation, and its particle size is $1-3~\mu m$. After modified the Fe₂O₃ crystal structure by introducing Mn, the smooth sphere was dispersed into smaller spheres, showing more surface defects, and its particle size was obviously smaller than that of α -Fe₂O₃. This structural change will increase the specific surface area of the catalyst, which is beneficial to the adsorption of NH3 and O2, thus improving the removal efficiency of NO_x. This result is consistent with N₂ adsorption-desorption curve data and support by NH₃/O₂-TPD results. Moreover, EDS mapping were tested to further explore the distribution of Mn species on the $Fe_{0.85}Mn_{0.15}O_x$ catalyst. Fig S4 shows elemental maps of Fe, Mn and O on the Fe_{0.85}Mn_{0.15}O_x catalyst. From the signal intensity of Mn in the Fig S4(d) is much lower than that of Fe, it can be seen that Mn species are highly dispersed in the Fe_{0.85}Mn_{0.15}O_x catalyst. The EDS mapping results also confirm the homogeneous dispersion of Mn species and Fe co-located in the doped samples.

3.3. Redox properties

The redox property of the catalyst is crucial to the NH₃-SCR reaction activity at low temperature. For this reason, H2-TPR and O2-TPD was used to analyze the redox property of the α -Fe₂O₃, γ -Fe₂O₃, γ -Mn₂O₃ and Fe_{1-v}Mn_vO_x catalysts, with the H₂-TPR results shown in Fig. 3(a) and H₂ consumption peaks area are summarized in Table 5. All asymmetric peaks are deconvoluted by the by Gaussian-Lorenz function. For the α -Fe₂O₃, composing only of the octahedral Fe³⁺(Fe_{Oh}³⁺) sites, two visible peaks are observed at about 381 and 620 °C, which correspond to consecutive reduction process: $Fe_{(Oh)2}O_3 \rightarrow Fe_3O_4 \rightarrow FeO$ [28,29]. Different from α -Fe₂O₃, γ -Fe₂O₃ consisting of Fe_{Td}³⁺ and Fe_{Oh}³⁺ sites and Fe_{Td}^{3+} sites is more active in redox reaction at low temperatures [7,9,30, 31]. Therefore, γ-Fe₂O₃ has two peaks around 352 and 409 °C, which correspond to the reduction of $Fe_{(Th)2}O_3 \rightarrow Fe_3O_4$ and $Fe_{(Oh)2}O_3 \rightarrow Fe_3O_4$, respectively. In addition, the peak around 586 °C corresponds to the reduction of Fe₃O₄ \rightarrow FeO [7,9,30,31]. The two peaks of γ -Mn₂O₃ at 317 and 452 °C correspond to the reduction of $Mn_2O_3 \rightarrow Mn_3O_4$ and $Mn_3O_4\rightarrow MnO$, respectively. In comparison with the α -Fe₂O₃, two reduction peaks at 381 and 620 °C shift to 361 and 556 °C in the $Fe_{0.85}Mn_{0.15}O_x$, respectively. Combine with the $Fe_{1-v}Mn_vO_x$ catalysts XRD and XPS results, spinel structure coupled with two new reduction peak of Fe $_{1-y} Mn_y O_x$ is observed at \sim 297 and 330 $^{\circ} \text{C},$ which is attribute to the $Mn_2O_3 \rightarrow Mn_3O_4$ and $Fe_{(Td)2}O_3 \rightarrow Fe_3O_4$ in $Fe_{1-v}Mn_vO_x$ catalysts. Because the shift of the peak position to a lower temperature represents the improvement of the reduction properties of the catalyst [32]. With increase the Mn³⁺ content from 5% to 15%, it can be apparently observed that the peaks area of $Fe_{(Oh)2}O_3 \rightarrow Fe_3O_4$ (~380 °C) is decrease and shift to lower temperatures and the peak area of Mn₂O₃→Mn₃O₄ gradually increases at ~ 300 °C. It suggests that substitution Fe_(Ob) with Mn³⁺ to form Mn³⁺_(Oh) can facilitate the reduction process of Fe_(Oh) $_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO$ by electron transfer between Mn^{3+} and Fe^{3+} . However, there has no obvious influence the reduction peaks area change of $Fe_{(Th)2}O_3 \rightarrow Fe_3O_4$ (~ 330 °C), more importantly, the decreasing reduction peak areas of $Fe_{(Dh)2}O_3 \rightarrow Fe_3O_4$ approximate increasing peak areas of $Mn_2O_3 \rightarrow Mn_3O_4$, which is significant evidence that the Fe^{3+} sites substituted with Mn^{3+} are Fe^{3+}_{Oh} sites rather than Fe^{3+}_{Th} sites in γ - Fe_2O_3 of $Fe_{1-\gamma}Mn_\gamma O_x$ catalysts. This is consistent with the previous XRD analysis.

The O₂-TPD curves of α-Fe₂O₃, γ-Fe₂O₃, γ-Mn₂O₃ and Fe_{1-v}Mn_vO_x catalysts are shown in Fig. 3(b). Four O2 desorption peaks are observed at ~200, ~300, ~450 and ~530 $^{\circ}C$ in $\alpha\text{-Fe}_2O_3$ and $\text{Fe}_{1-v}\text{Mn}_vO_x$ catalysts with the temperature increasing from 100 to 650 °C. For γ-Fe₂O₃. two peaks are observed at 263 and 412 °C, and three peaks appear at 197, 375 and 543 °C were detected in γ -Mn₂O₃. The peaks at \sim 100–300 °C are assigned to chemically adsorbed oxygen (O_{2abs)}, O_(abs)) denoted as O_{α} while the peaks at ~300–600 °C are assigned to lattice oxygen (O_{latt}^{2-}) denoted as $O_{\beta},$ among which the O_{α} are related to surface oxygen defect [4]. The O_{α} peaks area and position were summarized in the Table 6, compared with γ -Fe₂O₃, α -Fe₂O₃ and γ -Mn₂O₃ show small O_{α} peak area, which indicates that γ-Fe₂O₃ has more oxygen vacancies. Furthermore, the $Fe_{0.85}Mn_{0.15}O_x$ exhibits the largest area of O_{α} peak among the Fe_{1-v}Mn_vO_v catalysts. This corresponds to the fact that Fe_{0.85}Mn_{0.15}O_v has the highest content of γ -Fe₂O₃ among the Fe_{1-v}Mn_vO_v catalysts in the previous XRD analysis, showing that introduction of Mn promoted the formation of γ-Fe₂O₃ is conducive to generate more surface oxygen defect. The oxygen defect has been reported that favorable for promoting the redundant electrons transferred to the different metal ions surrounding the oxygen vacancy thus facilitating oxidation of NO to NO2 [4,33,34], which is in accord with XPS and in-situ DRIFT results.

3.4. Acidity properties

NH₃-TPD studies were conducted to characterize the surface acidity of the $\alpha\text{-Fe}_2O_3$, $\gamma\text{-Fe}_2O_3$, $\gamma\text{-Mn}_2O_3$ and $\text{Fe}_{1-y}\text{Mn}_yO_x$ catalysts. As shown in Fig. 4(a), for $\alpha\text{-Fe}_2O_3$ and $\gamma\text{-Mn}_2O_3$, the low intensity peaks are observed at about 210 and 196 °C, respectively, demonstrating the poor NH₃ desorption and less acidic sites of $\alpha\text{-Fe}_2O_3$ and $\gamma\text{-Mn}_2O_3$, the profiles of Fe_{1-y}Mn_yO_x catalysts and $\gamma\text{-Fe}_2O_3$ can be divide into two peaks at $\sim\!105$ and $\sim\!200$ °C, previous studies have shown that NH₃ desorption peaks appeared in the range of 100–150 and 150–350 °C are assigned to the physical adsorption of NH₃ and weak acidity, respectively [32,35]. As shown in Fig. 4(b), compared with $\alpha\text{-Fe}_2O_3$, it was clear that the NH₃ desorption amounts of Fe_{1-y}Mn_yO_x catalysts and $\gamma\text{-Fe}_2O_3$ were much higher than the $\alpha\text{-Fe}_2O_3$ and $\gamma\text{-Mn}_2O_3$, suggesting that incorporation of Mn formation of $\gamma\text{-Fe}_2O_3$ contribute to the increase of acidic sites on the Fe_{1-y}Mn_yO_x catalysts surface, which can enhance the NO conversion on Fe_{1-y}Mn_yO_x in the NH₃-SCR reaction.

It is generally recognized that coordinate NH_2 species and Brønsted acid is decisive for the NH_3 -SCR LT activity [1,36]. In situ DRIFTS of NH_3 adsorption-desorption is conducted to differentiate Lewis (denoted as L) acid and Brønsted (denoted as B) acid, and the results are shown in Fig. 4 (c) and Fig. 4(d). Several bands were appeared after NH_3 coordinated with acidic sites on the α -Fe₂O₃ and γ -Fe₂O₃ catalyst surface. As the previous studies were shown that the bands appear at 1141, 1225 and 1600 cm⁻¹ attributed to NH_3 species adsorbed on the L-acid sites, while the bands at 1351, 1374 and 1553, 1577 cm⁻¹ could be classified as the

Table 5 H₂ consumption peak area of each phase in various catalysts.

Samples	$Fe_{(Oh)2}O_3 \rightarrow Fe_3O_4$	Fe _{(Td)2} O ₃ →Fe ₃ O ₄	$Mn_2O_3 \rightarrow Mn_3O_4$	Total H ₂ consumption
α-Fe ₂ O ₃	3944	-	_	4944
$Fe_{0.95}Mn_{0.05}O_x$	1301	2054	502	3857
$Fe_{0.90}Mn_{0.10}O_{x}$	953	2024	1016	3993
$Fe_{0.85}Mn_{0.15}O_x$	156	2033	1722	3911
$Fe_{0.80}Mn_{0.20}O_x$	488	2003	1462	3953
γ-Fe ₂ O ₃	2015	4022	_	6037
γ -Mn ₂ O ₃	-	_	4822	4822

Fig. 3. H₂-TPR (a) and O₂-TPD (b) profiles of catalysts.

Table 6 The O_{α} peak area and position of catalysts.

	-	
Samples	Position (°C)	Area
α-Fe ₂ O ₃	213	494
$Fe_{0.95}Mn_{0.05}O_x$	192	1122
$Fe_{0.90}Mn_{0.10}O_{x}$	217	859
$Fe_{0.85}Mn_{0.15}O_x$	188	2456
$Fe_{0.80}Mn_{0.20}O_{x}$	232	1000
γ-Fe ₂ O ₃	262	2115
γ -Mn ₂ O ₃	197	369

NH₂ species and NH₂ species coordinated to L-acid, respectively [37, 38]. It should be pointed out that the peaks at 1425 and 1462 cm⁻¹ belonging to Brønsted acid site in the γ-Fe₂O₃, which are not observed in the spectrum of α -Fe₂O₃. For the Fe_{0.85}Mn_{0.15}O_x catalyst, the bands appear at 1140, 1194, and 1600 cm⁻¹ could be assigned to the L acid site while the bands at 1451 and 1643 cm⁻¹ are NH₄ ions attached to the B acid site. It is obvious that NH₃ adsorption-desorption bands of α-Fe₂O₃ and Fe_{0.85}Mn_{0.15}O_x are similar but have some differences. Compared with α -Fe₂O₃, Fe_{0.85}Mn_{0.15}O_x has extra acid site 1194 (L acid) and 1451, 1643 cm⁻¹ (B acid), indicating that introduction of Mn formation of γ -Fe₂O₃ is conducive to the formation of B-acid sites. Besides, 1360 and 1573 cm⁻¹ are related to the NH₂ and NH₂ species, respectively. Active NH₂ species from oxidative dehydrogenation of NH₃ are essential intermediates for E-R reaction and establish acid cycle on the catalyst surface [9,17,39]. The bands assigned to NH₂ (1360 cm⁻¹) and NH₂ (1573 cm^{-1}) species can be detected on the surface of Fe_{0.85}Mn_{0.15}O_x and γ -Fe₂O₃ at 50 °C. This shows that the acid cycle of NH₃ and E-R reaction on $Fe_{0.85}Mn_{0.15}O_x$ and γ - Fe_2O_3 can be carried out at a lower temperature than that of α-Fe₂O₃.

3.5. Surface chemical state

The surface atomic composition and valence state distribution of the catalyst are crucial to understand the redox cycle in NH₃-SCR, hence XPS measurements of $Fe_{0.85}Mn_{0.15}O_x$ and α -Fe₂O₃ were conducted and the results are displayed in Fig. 5 and Table 7. All asymmetric peaks are

deconvoluted by the Gaussian-Lorenz function. As displayed in Fig. 5(a), for α -Fe₂O₃, the peaks arise at 709.5 and 711.1 eV, which were attached to Fe^{2+} and Fe^{3+} , respectively [4,40,41]. It can be observed that compare to the α -Fe₂O₃, Fe_{0.85}Mn_{0.15}O_x peak position of Fe²⁺ and Fe³⁺, shifted from 709.5 to 709.7 eV and 711.1-711.5 eV higher binding energy, respectively, revealing that exist electrons transferred between Mn and Fe in Fe_{0.85}Mn_{0.15}O_v. This electron transfer and interaction is also reflected in the XRD and H2-TPR results. Fig. 5(b) shows the XPS spectra of Mn 2p, the peaks located at 641.2 and 643.4 eV were assigned to the Mn^{3+} and Mn^{4+} , respectively [39]. The O 1 s spectra of α -Fe₂O₃ and Fe_{0.85}Mn_{0.15}O_x in Fig. 5(c) were fitted into two peaks, chemically adsorbed oxygen (O_{abs}) , O_{abs}) denoted as O_{α} (531.6 eV) and lattice oxygen (O_{latt}^{2-}) denoted as O_{6} (529.7 eV) [4,42,43]. Moreover, compared with α -Fe₂O₃, the O_B peak shift from 529.8 to 529.6 eV lower binding energy was detected on Fe_{0.85}Mn_{0.15}O_x sample, which may result from the electron transfer in the strong interaction between Fe-O-Mn after Mn substituting part inactive Fe_{Oh}^{3+} sites of α -Fe₂O₃. As summarized in Table 7, compare $Fe_{0.85}Mn_{0.15}O_x$ and α - Fe_2O_3 , the percent of O_α on Fe_{0.85}Mn_{0.15}O_x clearly increases from 15.3% to 45.4%, respectively, which immensely enhances the redox capacity of $Fe_{0.85}Mn_{0.15}O_x$ catalyst. More importantly, compare to Fe_{0.85}Mn_{0.15}O_x, the percent of Fe³⁺ and Mn^{3+} were decrease while the percent of Fe^{2+} , $\text{Mn}^{\bar{4}+}$ and O_{α} were increase on A-Fe $_{0.85}$ Mn $_{0.15}$ O $_{x}$ surface. According to previous researches, the oxygen vacancy by accelerating the transfer of redundant electrons from metal ions (Fe³⁺, Mn³⁺) hence facilitating the formation of Fe²⁺ and Mn⁴⁺ ions, which is consistent with our experimental observation and proves that the redox cycle between $Fe^{3+} + Mn^{3+} \leftrightarrow Fe^{2+} + Mn^{4+}$ of Fe_{0.85}Mn_{0.15}O_v exist in NH₃-SCR reaction.

3.6. In-situ DRIFT tests

3.6.1. NO + O_2 adsorption-desorption

In-situ DRIFTS test of $NO+O_2$ adsorption-desorption were carried out due to investigate the NO_x active species on the catalyst surface at different temperatures is indispensable for revealing the reaction mechanism. As shown in Fig. 6(a), the surface of α -Fe₂O₃ adsorbed species of linear nitrite (1078 cm⁻¹), monodentate nitrate (1286 cm⁻¹) and bridged nitrate (1600 cm⁻¹) are observed at 50 °C. As the

Fig. 4. (a) NH₃-TPD patterns of catalysts; (b) Total desorption amount of NH₃; In-situ DRIFTS spectra of NH₃ adsorption-desorption: (c) α -Fe₂O₃, (d) Fe_{0.85}Mn_{0.15}O_x and (e) γ -Fe₂O₃.

temperature rises, the intensity of monodentate nitrate weaken while new peaks of bidentate nitrate (1547, 1570 cm $^{-1}$) and bridged nitrite (1206 cm $^{-1}$) are observed at 150–300 °C [8,35,44]. The results show that with the increase of temperature, monodentate nitrate species gradually transforms into quite stable NO_x species. Distinguish from $\alpha\text{-Fe}_2O_3$, the bands of monodentate nitrate (1436 cm $^{-1}$) can form on $\gamma\text{-Fe}_2O_3$ surface at 50 °C. Besides, with the temperature rises from 150 to

 $300~^\circ\text{C}$, all the bands intensity significant weaken, which indicate that NO_x species formed on the surface of $\gamma\text{-Fe}_2O_3$ are unstable at $150\text{--}300~^\circ\text{C}$. For $Fe_{0.85}Mn_{0.15}O_x$, as exhibited in Fig. 6(b), the bands relating to bridged nitrite (1197 cm $^{-1}$), NO_2 (1622 cm $^{-1}$) and monodentate nitrate (1434 cm $^{-1}$) can be observed on the $Fe_{0.85}Mn_{0.15}O_x$ surface at 50 $^\circ\text{C}$, indicating that the NO_2 and bridged nitrite can be generated from oxidation of NO at low temperatures. Among active NO_x species, NO_2

Fig. 5. XPS spectra of $Fe_{0.85}Mn_{0.15}O_x$ (after NH₃-SCR reaction denoted as A-Fe_{0.85}Mn_{0.15}O_x) and α -Fe₂O₃: (a) Fe 2p, (b) Mn 2p, (c) O1s.

Table 7 Surface atomic concentration of $Fe_{0.85}Mn_{0.15}O_x$ (after NH_3 -SCR reaction denoted as A- $Fe_{0.85}Mn_{0.15}O_x$) and α - Fe_2O_3 .

Samples Atomic Concentration (mol%)	Fe _{total}		Mn _{total}		O _{total}	
α-Fe ₂ O ₃	28.5		-		71.5	
$Fe_{0.85}Mn_{0.15}O_{x}$	19.9		10.5		69.6	
$A-Fe_{0.85}Mn_{0.15}O_x$	19.9		10.7		69.4	
Atomic Ratio (%)	Fe ³⁺ /	Fe ²⁺ /	Mn ³⁺ /	Mn ⁴⁺ /	O_{α} /	O _β /
	(Fe _{total})	(Fe _{total})	(Mn _{total})	(Mn _{total})	(O _{total})	(O _{total})
α-Fe ₂ O ₃	65.5	34.5	_	_	15.3	84.7
$Fe_{0.85}Mn_{0.15}O_{x}$	58.8	41.2	65.9	34.1	45.4	54.6
$A-Fe_{0.85}Mn_{0.15}O_x$	57.4	42.6	63.8	36.2	48.8	51.2

from NO oxidation can significantly boost LT NH3-SCR activity by inducing Fast SCR reaction [45,46]. Moreover, the bridged nitrite (1197 cm⁻¹) and NO₂ (1622 cm⁻¹) decrease with increasing temperature and then vanish at 200 °C, while the peak intensity of bridged nitrate (1248 cm⁻¹) and bidentate nitrate (1572 cm⁻¹) arise at 150 °C, indicating that bridged nitrite can be transform to bridged nitrate and bidentate nitrate at 150 °C. Previous study indicated bidentate nitrates are inactive at low temperatures while became active at high temperatures [47]. It is worth noting that monodentate nitrate, bridged nitrate and bidentate nitrate weaken with the temperatures over 200 °C, indicating that NO_x species more easier form equilibrium of formation-decomposition on $Fe_{0.85}Mn_{0.15}O_x$ surface than α - Fe_2O_3 at 50–300 °C. This phenomenon is similar to the γ -Fe₂O₃ and consistent with the previously reported that magnetism affects the adsorption of NO at low temperature and the analysis of our VSM experimental results. Commonly, the SCR activity decrease with formation of steady NO_x species by cause of covering active sites on the catalyst surface [48]. This discrepancy formation of NO_x species and its thermal stability on the $Fe_{0.85}Mn_{0.15}O_x$ and $\alpha\text{-Fe}_2O_3$ surface may be one of the crucial factors leading to the excellent LT NH3-SCR activity of Fe0.85Mn0.15Ox at 50-300 °C.

3.6.2. NH_3+NO+O_2 co-adsorption

The reaction mechanism of $\alpha\text{-Fe}_2O_3$, $\gamma\text{-Fe}_2O_3$ and $\text{Fe}_{0.85}\text{Mn}_{0.15}O_x$ was further investigated by NH_3+NO+O_2 co-adsorption. As shown in Fig. 7 (a), several bands assigned to linear nitrite (1080 cm^-1), monodentate nitrate (1282, 1482 cm^-1), bridged nitrate (1226, 1609 cm^-1), NH_2 species (1572 cm^-1) and bridged nitrite (1202 cm^-1) can be observed on the $\alpha\text{-Fe}_2O_3$ of NH_3+NO+O_2 co-adsorption. However, the bands relevant to NH_3 adsorption didn't appear and the monodentate nitrate and bridged nitrite species quite stable on the $\alpha\text{-Fe}_2O_3$ surface at below 150 °C. According to previous research, competitive adsorption between NH_3 and NO+O_2 exists and NO+O_2 was on $\alpha\text{-Fe}_2O_3$ preferential adsorption [8,47]. That means that the adsorbed NO_x species and NH_3 is difficult to occur reaction on $\alpha\text{-Fe}_2O_3$ at low temperatures. As shown in Fig. 7(a), compared with $\alpha\text{-Fe}_2O_3$, the bands attribute to NH_4 ions coordinated with B-acid sites (1438 cm^-1), NH_2 (1364 cm^-1) and NH_2

species (1572 cm⁻¹) can observe on γ-Fe₂O₃ surface at 50 °C. In addition, the bands intensity relevant to NH₃ adsorption gradually weakened and disappeared at 200°C, which indicates that the acidic sites formed on γ-Fe₂O₃ surface can react with NO_x species. After Mn modified Fe₂O₃, as shown in Fig. 7(b), the bands corresponding to bridged nitrite (1206 cm⁻¹), NO₂ (1614 cm⁻¹), NH_{$\frac{1}{4}$} ions coordinated with B-acid sites (1465 cm⁻¹), NH_{$\frac{1}{2}$} (1364 cm⁻¹), NH_{$\frac{1}{2}$} specie (1516 cm⁻¹) and NH_{$\frac{1}{4}$}NO₂ (1078 cm^{-1}) can be observed on the $Fe_{0.85}Mn_{0.15}O_x$ surface at 50 °C. Furthermore, the peaks intensity of bridged nitrite, NH₄ ions and NO₂ rapidly decline from 50 to 100 °C, indicating that the Fast SCR reaction is able to occur on $Fe_{0.85}Mn_{0.15}O_x$ at low temperature. Besides, the overlapping peaks of NH₂ species (1516 cm⁻¹) and NH₄ ions coordinated with B-acid sites (1465 cm⁻¹) at 200-300 °C were identified. Remarkably, there is no bands relevant to NO+O2 while the bands intensity corresponding to NH3 coordinated with the L-acid and B-acid sites became stronger with temperature from 200 to 300 °C, which is mainly because high temperature promotes the oxidative dehydrogenation of NH₃ on Fe_{0.85}Mn_{0.15}O_x.

3.6.3. Reactivity of adsorbed species on $Fe_{0.85}Mn_{0.15}O_x$

In-situ DRIFTS instantaneous reaction were proposed to explore the reaction intermediates of $Fe_{0.85}Mn_{0.15}O_x$ in low temperature NH_3 -SCR reaction. The NH $_3$ was pre-adsorbed on Fe $_{0.85}$ Mn $_{0.15}$ O $_x$ surface for 1 h at 100 °C and NO+O2 was introduced to react with the adsorbed NH3 species after the N₂ purge for 0.5 h. As shown in Fig. 8(a), several bands assigned to coordinated NH₃ with L-acid (1086, 1120, and 1602 cm⁻¹), NH₄ ions adsorbed on B-acid sites (1640 cm⁻¹) and N-H vibration of the adsorbed NH₃ (3374 cm⁻¹) can be observed on the $Fe_{0.85}Mn_{0.15}O_x$ surface after adsorption of NH₃ [8,35,44,47]. Moreover, with introducing NO+O2 that the bands attributed to NH3 species disappear immediately and the wide bands attributed to O-H (3400-3600 cm⁻¹) was emerged gradually, showing that the introduced NO can directly react with the adsorbed ammonia species to occur Eley-Ridea (E-R) reaction pathway at low temperatures. Furthermore, the bands attributing to NO₂ (1626 cm⁻¹) can be detected gradually (3 min later), according to prewhich can react with NH₄⁺ vious research Langmuir-Hinshelwood (L-H) reaction pathway and then form NH₄NO₂

Fig. 6. In-situ DRIFTS spectra of NO+O₂ adsorption-desorption for catalysts: (a) α -Fe₂O₃, (b) Fe_{0.85}Mn_{0.15}O_x and (c) γ -Fe₂O₃.

that rapid generation of N2 and H2O (Fast SCR).

The transformation between adsorbed NH₃ species and reaction with pre-adsorbed NO_x species is further studied by in-situ DRIFTS studies that NO+O2 pre-adsorbed and followed by NH3 adsorption on $Fe_{0.85}Mn_{0.15}O_x$ at 100 °C. As shown in Fig. 8(b), the bridged nitrite (1194 cm^{-1}) and NO_2 (1621 cm^{-1}) are clearly observed on $Fe_{0.85}M$ $n_{0.15}O_x$ surface after NO+O₂ pre-adsorbed. When the NH₃ is introduced, the bands of bridged nitrite, NO₂ and O-H (3400-3600 cm⁻¹) vanish gradually and several bands assigned to coordinated NH3 with L-acid sites (1154, 1254, 1284 and 1602 cm⁻¹), N-H (3374 cm⁻¹) and NH₄⁺ ions adsorbed on B-acid sites (1445,1631 cm⁻¹) can be observed [8,32, 35,38]. Furthermore, NH₂ (1565 cm⁻¹) can be detected after 1 min, indicating that NH3 can be rapidly oxidized to active NH2 at low temperature. [31,32,47]. Notably, compare with Fig. 8(a), the bands intensity of B-acid sites (1445 cm⁻¹) and NH₂ (1565 cm⁻¹) are obvious became stronger than NH3 species adsorption alone, indicating that chemically adsorbed oxygen and adsorbed NO_x species is promotes the formation of B-acid sites and NH2. Moreover, the intensity of NH2 (1565 cm⁻¹) gradually weaken while the B-acid sites (1445 cm⁻¹) became stronger in 5 min, indicating that the conversion between NH₂ (1565 cm⁻¹) and B-acid sites (1445 cm⁻¹) in the acid cycle.

3.7. Reaction mechanism

After substituted part inactive Fe_{0h}³⁺ sites of Fe₂O₃ with active Mn_{0h}³⁺, the Fe₂O₃ crystal structure generate more active Fe³⁺ CASs. The establishment of redox cycle $Fe^{3+}+Mn^{3+} \leftrightarrow Fe^{2+}+Mn^{4+}$ between Fe-O-Mn induced the increase of chemically adsorbed oxygen on the Fe_{0.85}M $n_{0.15}O_x$ surface, not only boosted the formation of NO_2 but also facilitated the Brønsted acid circle. Based on the results analysis, possible a reaction mechanism that over Fe_{0.85}Mn_{0.15}O_x are proposed and the model are depicted in Fig. 9. In this mechanism, chemisorbed oxygen (O_{abs}) reacts with Fe(III) to form the Fe(III)-O reactive intermediates. Subsequently, NH₃ adsorbed on Fe(III)-O groups proceed oxidative dehydrogenation reaction to produce active Fe(III)-OH-NH2 intermediates. The activated -NH2 groups derived from Fe(III)-OH-NH2 intermediates could occur Eley-Ridea (E-R) reaction pathway with gaseous NO to generate NH₂-NO intermediate that generation of N₂, H₂O and generate Fe(III)-OH sites. The NH₃ adsorbed on Fe(III)-OH sites to occur redox reaction and then form Fe(II)-ONH₄⁺ sites. This catalytic reaction process included the electronic transfer the redox cycle between $Fe^{3+}+Mn^{3+} \leftrightarrow Fe^{2+}+Mn^{4+}$, the NO₂ is induced to form at low temperature and then reaction with the Fe(II)-ONH₄ to have Fast SCR. The active Fe(III)-O groups were regenerated through the redox cycle between $Fe^{3+}+Mn^{3+} \leftrightarrow Fe^{2+}+Mn^{4+}$ to complete redox circle and acid cycle. This cycle also occurs at the Mn_{Oh}^{3+} active sites.

 $\textbf{Fig. 7.} \ \ \text{In-situ DRIFTS spectra of (a)} \ \ \alpha\text{-Fe}_2O_3, \ \ (b) \ \ \text{Fe}_{0.85}Mn_{0.15}O_x \ \ \text{and (c)} \ \ \gamma\text{-Fe}_2O_3 \ \ NH_3+NO+O_2 \ \ \text{co-adsorption.}$

Fig. 8. In-situ DRIFTS spectra of $Fe_{0.85}Mn_{0.15}O_x$ at $100\,^{\circ}C$. (a) NH_3 pre-adsorption and then introduced $NO+O_2$, (b) $NO+O_2$ pre-adsorption and then introduced NH_3 .

4. Conclusions

In this work, a highly LT $\ensuremath{\text{NH}_3\text{-SCR}}$ activity and an extensive reaction

window catalyst by Mn modified the $\alpha\text{-Fe}_2O_3$ crystal structure has been composed by using sol-gel strategy. The transition of $\alpha\text{-Fe}_2O_3$ to the $\gamma\text{-Fe}_2O_3$ structure and magnetic properties are promoted after

Fig. 9. Reaction mechanism model for Fe_{0.85}Mn_{0.15}O_x.

substituted part inactive Fe_{Oh}^{3+} sites of Fe_2O_3 with active Mn_{Oh}^{3+} sites. Besides, introducing of highly dispersed Mn^{3+} into the γ -Fe $_2O_3$ crystalline structure to generate Fe-O-Mn coordinate sites, which can increase of chemically adsorbed oxygen and then enhanced the oxidation of NO and NH $_3$ on the $Fe_{0.85}Mn_{0.15}O_x$ surface to facilitate the redox circle and acid cycle at low temperatures. It is of great significance to deepen the understanding relationship between crystal structure and CASs of α -Fe $_2O_3$ and γ -Fe $_2O_3$, designing of high-performance catalysts of SCR catalysts at low temperatures.

CRediT authorship contribution statement

Donghai Mo: Conceptualization, Investigation, Methodology, Formal analysis, Writing – original draft, Data curation. Qiuju Qin: Resources, Formal analysis, Validation, Visualization. Chengheng Huang: Validation, Formal analysis, Software, Visualization. Lin Tao: Software, Visualization, Resources. Chen Li: Validation, Formal analysis, Jiaqi Qiu: Validation, Visualization. Jingkai Wang: Formal analysis, Software. Xiaorong Han: Validation, Visualization. Shifei Gu: Validation, Visualization. Zhengjun Chen: Funding acquisition, Supervision. Lihui Dong: Funding acquisition, Project administration, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgments

This work is supported by National Natural Science Foundation of China (No. 22265002, 22062002).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.123869.

References

- [1] L. Han, S. Cai, M. Gao, J.-Y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects, Chem. Rev. 119 (2019) 10916–10976, http://10.1021/ acs.chemrev.9b00202.
- [2] C.-H. Zheng, C.-R. Xu, X. Gao, Y.-X. Zhang, J. Zhang, Z.-Y. Luo, K.-F. Cen, Simultaneous absorption of NOx and SO2 in oxidant-enhanced limestone slurry, Environ. Prog. Sustain 33 (2014) 1171–1179, https://doi.org/10.1002/ep.11903
- [3] Y. Peng, J. Li, X. Huang, X. Li, W. Su, X. Sun, D. Wang, J. Hao, Deactivation mechanism of potassium on the V2O5/CeO2 Catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx, Environ. Sci. Technol. 48 (2014) 4515–4520, https://doi.org/10.1021/es405602a.
- [4] W. Chen, S. Yang, H. Liu, F. Huang, Q. Shao, L. Liu, J. Sun, C. Sun, D. Chen, L. Dong, Single-Atom Ce-modified α-Fe2O3 for selective catalytic reduction of NO with NH3, Environ. Sci. Technol. 56 (2022) 10442–10453, https://doi.org/ 10.1021/acs.est.2c02916.
- [5] X. Tang, Y. Shi, F. Gao, S. Zhao, H. Yi, Z. Xie, Promotional role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance, Chem. Eng. J. 398 (2020) 125619, https://doi.org/10.1016/j.cej.2020.125619.
- [6] L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric Iron (III) oxide: a review, Chem. Mater. 23 (2011) 3255–3272, https://doi.org/ 10.1021/cm200397g.
- [7] W. Qu, Y. Chen, Z. Huang, J. Gao, M. Zhou, J. Chen, C. Li, Z. Ma, J. Chen, X. Tang, Active Tetrahedral Iron Sites of γ-Fe2O3 Catalyzing NO Reduction by NH3, Environ. Sci. Technol. Lett. 4 (2017) 246–250, https://doi.org/10.1021/acs. estlett 7h00124
- [8] C. Liu, S. Yang, L. Ma, Y. Peng, A. Hamidreza, H. Chang, J. Li, Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia, Catal. Lett. 143 (2013) 697–704, https://doi.org/10.1007/s10562-013-1017-3.
- [9] W. Zhang, X. Shi, Z. Yan, Y. Shan, Y. Zhu, Y. Yu, H. He, Design of high-performance iron-niobium composite oxide catalysts for NH3-SCR: insights into the interaction between Fe and Nb, ACS Catal. 11 (2021) 9825–9836, https://doi.org/10.1021/ acscatal.1c01619.
- [10] G. Xu, X. Guo, X. Cheng, J. Yu, B. Fang, A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance, Nanoscale 13 (2021) 7052–7080, http://10.1039/d1nr00248a.
- [11] S. Cai, D. Zhang, L. Shi, J. Xu, L. Zhang, L. Huang, H. Li, J. Zhang, Porous Ni-Mn oxide nanosheets in-situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts, Nanoscale 6 (2014) 7346–7353, http://10.1039/c4nr00475b.
- [12] P. Sun, R.-T. Guo, S.-M. Liu, S.-X. Wang, W.-G. Pan, M.-Y. Li, The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu, Appl. Catal. A 531 (2017) 129–138, https://doi.org/10.1016/j. apcata.2016.10.027.
- [13] Z. Chen, Q. Yang, H. Li, X. Li, L. Wang, S.C. Tsang, Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature, J. Catal. 276 (2010) 56–65, https://doi.org/10.1016/j.jcat.2010.08.016.
- [14] H. Chang, X. Chen, J. Li, L. Ma, C. Wang, C. Liu, J.W. Schwank, J. Hao, Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures, Environ. Sci. Technol. 47 (2013) 5294–5301, http://10.1021/es304732h.
- [15] J.R. Lai, K. Shafi, K. Loos, A. Ulman, Y. Lee, T. Vogt, C. Estournès, Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure, J. Am. Chem. Soc. 125 (2003) 11470–11471, https://doi.org/10.1021/ja035409d.

- [16] Y. Wang, L. Chen, W. Wang, X. Wang, B. Li, S. Zhang, W. Li, S. Li, Revealing the excellent low-temperature activity of the Fe1 xCexO8-S catalyst for NH3-SCR: improvement of the lattice oxygen mobility, ACS Appl. Mater. Interfaces 15 (2023) 17834–17847, http://10.1021/acsami.3c00212.
- [17] N. Zhu, W. Shan, Z. Lian, Y. Zhang, K. Liu, H. He, A superior Fe-V-Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NOx with NH3, J. Hazard. Mater. 382 (2020) 120970, https://doi.org/10.1016/j. ihazmat.2019.120970.
- [18] F. Wang, Z. Xie, J. Liang, B. Fang, Y.a. Piao, M. Hao, Z. Wang, Tourmaline-modified FeMnTiOx catalysts for improved low-temperature NH3-SCR performance, Environ. Sci. Technol. 53 (2019) 6989–6996, http://10.1021/acs.est.9b02620.
- [19] G. Wang, Y. Zhang, J. Lu, Y. Liu, M. Yang, G. Peng, L. Jia, H. Wang, F. Xia, Q. Zhang, The improving effect of SO42- on environmental-friendly SO42-/α-Fe2O3 catalyst for NH3-SCR, J. Energy. Inst. 110 (2023). http://10.1016/j. ioei.2023.101347.
- [20] Y. Liu, B. Huang, J. Zhang, Y. Chen, J. Chen, J. Wang, Improved NH3-SCR activity by the cooperation of FeVO4 and CeO2 nanosheet catalysts: structure and mechanism, Catal. Sci. Technol. 13 (2023) 5374–5386, http://10.1039/ d3cv00597f
- [21] J. Xu, H. Shen, X. Zhou, T. Zheng, F. Guo, Q. Zhang, M. Duan, Enhancement low-temperature NH3-SCR activity of the Fe-Mn-Mo/TiO2 catalyst and its DFT calculations and kinetics, Mol. Catal. 551 (2023) 113657, https://doi.org/10.1016/j.mcat.2023.113657.
- [22] X. Yao, Z. Wang, S. Yu, F. Yang, L. Dong, Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR, Appl. Catal. A 542 (2017) 282–288, https://doi.org/10.1016/j.apcata.2017.06.003.
- [23] X. Shi, J. Guo, T. Shen, A. Fan, S. Yuan, J. Li, Enhancement of Ce doped La-Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance, Chem. Eng. J. 421 (2021) 129995, https://doi.org/10.1016/j.cei/2021/129995
- [24] R. Nikam, S. Rayaprol, S. Mukherjee, S.D. Kaushik, P.S. Goyal, P.D. Babu, S. Radha, V. Siruguri, Structure and magnetic properties of Mn doped α-Fe2O3, Phys. B Condens. Matter. 574, 411663. http:// (2019), https://doi.org/10.1016/j. physb.2019.411663.
- [25] C. Wang, S. Yang, H. Chang, Y. Peng, J. Li, Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3, J. Mol. Catal. A 376 (2013) 13–21, https://doi.org/10.1016/j. molcata.2013.04.008.
- [26] R. Zhao, X. Wei, B. Chu, K. Chen, Q. Qin, H. Liu, Y. Zhou, B. Li, L. Dong, Multiphase coexisting metal oxide derived by MOFs for the CO-SCR reaction at low temperature and in situ DRIFTS study on reaction mechanism, Appl. Surf. Sci. 580 (2022) 152277. http://10.1016/j.apsusc.2021.152277.
- [27] S. Xie, L. Li, L. Jin, Y. Wu, H. Liu, Q. Qin, X. Wei, J. Liu, L. Dong, B. Li, Low temperature high activity of M (M = Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism, Appl. Surf. Sci. 515 (2020) 146014. http://10.1016/j.apsusc.2020.146014.
- [28] S. Yang, C. Liu, H. Chang, L. Ma, Z. Qu, N. Yan, C. Wang, J. Li, Improvement of the activity of γ Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization, Ind. Eng. Chem. Res. 52 (2013) 5601-5610. http://10.1021/ie303272u.
- [29] J. Sun, Y. Lu, L. Zhang, C. Ge, C. Tang, H. Wan, L. Dong, Comparative study of different doped metal cations on the reduction, acidity, and activity of Fe9M1Ox (M = Ti4+, Ce4+/3+, Al3+) catalysts for NH3-SCR reaction, Ind. Eng. Chem. Res. 56 (2017) 12101–12110, https://doi.org/10.1021/acs.iecr.7b03080.
- [30] C. Li, Z. Huang, Y. Chen, X. Liu, J. Chen, W. Qu, Z. Ma, X. Tang, Optimizing selective catalytic reduction of NO with NH3 on Fe2O3/WO3 via redox-acid synergy, Chemcatchem 10 (2018) 3990–3994, https://doi.org/10.1002/ cctc.201801070
- [31] Z. Chen, F. Wang, H. Li, Q. Yang, L. Wang, X. Li, Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase, Ind. Eng. Chem. Res 51 (2012) 202–212, https://doi.org/ 10.1021/je201894c.
- [32] H. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, In Situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NOx with NH3, J. Phys. Chem. C 119 (2015) 22924–22933, https://doi.org/10.1021/acs.jpcc.5b06057.
- [33] S. Xie, Q. Qin, H. Liu, L. Jin, X. Wei, J. Liu, X. Liu, Y. Yao, L. Dong, B. Li, MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism, ACS Appl. Mater. Interfaces 12 (2020) 48476–48485, https://doi.org/10.1021/acsami.0c11035.
- [34] H. Liu, Z. Fan, C. Sun, S. Yu, S. Feng, W. Chen, D. Chen, C. Tang, F. Gao, L. Dong, Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3, Appl. Catal. B 244 (2019) 671–683, https://doi.org/10.1016/j.apcatb.2018.12.001.
- [35] J. Yang, S. Ren, Y. Zhou, Z. Su, L. Yao, J. Cao, L. Jiang, G. Hu, M. Kong, J. Yang, Q. Liu, In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3-SCR of NO, Chem. Eng. J. 397 (2020) 125446, https://doi.org/10.1016/j.cej.2020.125446.
- [36] A. Marberger, D. Ferri, M. Elsener, O. Krocher, The significance of lewis acid sites for the selective catalytic reduction of nitric oxide on vanadium-based catalysts, Angew. Chem. Int. Ed. 55 (2016) 11989–11994, http://10.1002/anie.201605397.
- [37] M. Zhu, J.-K. Lai, U. Tumuluri, Z. Wu, I.E. Wachs, Nature of active sites and surface intermediates during SCR of NO with NH3 by supported V2O5-WO3/TiO2 catalysts, J. Am. Chem. Soc. 139 (2017) 15624-15627. http://10.1021/ jacs.7b09646.

- [38] V. Thanh Huyen, J. Radnik, J. Rabeah, U. Bentrup, M. Schneider, H. Atia, U. Armbruster, W. Gruenert, A. Brueckner, Efficient VOx/Ce1-xTixO2 catalysts for low-temperature NH3-SCR: reaction mechanism and active sites assessed by in situ/operando spectroscopy, ACS Catal. 7 (2017) 1693-1705. http://10.1021/acscatal.6b03223.
- [39] H. Wang, H. Chen, Y. Wang, Y.-K. Lyu, Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO, Chem. Eng. J. 361 (2019) 1161-1172. http://10.1016/j.cej.2018.12.159.
- [40] L.J. France, W. Li, Y. Zhang, W. Mu, Z. Chen, J. Shi, Q. Zeng, X. Li, A superior Fe-Zr mixed oxide catalyst for the simultaneous reduction of NO and SO2 with CO, Appl. Catal. B 269 (2020) 118822, https://doi.org/10.1016/j.apcatb.2020.118822.
- [41] X. Cheng, X. Zhang, D. Su, Z. Wang, J. Chang, C. Ma, NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: catalyst design and activity test, Appl. Catal. B 239 (2018) 485–501, http://10.1016/j.apcatb.2018.08.054.
- [42] X. Zhang, X. Zhang, X. Yang, Y. Chen, X. Hu, X. Wu, CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance, Chem. Eng. Sci. 238 (2021). http://10.1016/j.ces.2021.116588.
- [43] G. Li, D. Mao, M. Chao, G. Li, J. Yu, X. Guo, Low-temperature NH3-SCR of NO over MnCeO/TiO2 catalyst: Enhanced activity and SO2 tolerance by modifying TiO2 with Al2O3, J. Rare. Earth. 39 (2021) 805-816. http://10.1016/j.jre.2020.10.001.
- [44] F. Liu, W. Shan, Z. Lian, J. Liu, H. He, The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3, Appl. Catal. B 230 (2018) 165–176, https://doi.org/10.1016/j. apcath 2018 02 052
- [45] P. Wang, S. Chen, S. Gao, J. Zhang, H. Wang, Z. Wu, Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead, Appl. Catal. B 231 (2018) 299–309, https://doi.org/ 10.1016/j.apcatb.2018.03.024.
- [46] J. Liu, Y. Wei, P.-Z. Li, P. Zhang, W. Su, Y. Sun, R. Zou, Y. Zhao, Experimental and theoretical investigation of mesoporous MnO2 nanosheets with oxygen vacancies for high-efficiency catalytic DeNOx, ACS Catal. 8 (2018) 3865–3874, https://doi. org/10.1021/acscatal.8b00267.
- [47] H. Hu, S. Cai, H. Li, L. Huang, L. Shi, D. Zhang, Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: structure-activity relationships and in situ DRIFTs analysis, ACS Catal. 5 (2015) 6069-6077. http://10.1021/acscatal.5b01039.
- [48] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3, J. Catal. 171 (1997) 219–230, https://doi.org/10.1006/jcat.1997.1789.
- [49] X. Zhang, D. Wang, F. Cheng, M. Lu, B. Xiong, Influence of Mn doping on magnetic γ-Fe2O3 catalysts for selective catalytic reduction at low temperatures, J. Eng. Thermophys. 35 (2014) 995–998.
- [50] S. Dong, H. Wang, T. Zhu, Z. Qu, High-performance Fe-Cu composite oxide for selective catalytic reduction of NOx with NH3: driving of Cu on α-Fe2O3, J. Environ. Chem Eng. 10 (2022) 108481.http://https://doi.org/10.1016/j. iece.2022.108481.
- [51] C. Liu, Y. Bi, J. Li, Activity enhancement of sulphated Fe2O3 supported on TiO2-ZrO2 for the selective catalytic reduction of NO by NH3, Appl. Surf. Sci. 528 (2020) 146695. http://https://doi.org/10.1016/j.apsusc.2020.146695.
- [52] Y. Fan, J. Zhang, L. Yang, M. Lu, T. Ying, B. Deng, W. Dai, X. Luo, J. Zou, S. Luo, Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in lowtemperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3, Sep. Purif. Technol. 311 (2023) 123272, https://doi. org/10.1016/j.seppur.2023.123272.
- [53] L. Zhu, J. Yao, G. Ma, P. Cao, S. Wu, Z. Li, NH3-SCR performance and SO2 resistance comparison of CeO2 based catalysts with Fe/Mo additive surface decoration, Chem. Eng. J. 428 (2022) 131372, https://doi.org/10.1016/j.cei.2021.131372
- [54] L. Han, M. Gao, J.-y. Hasegawa, S. Li, Y. Shen, H. Li, L. Shi, D. Zhang, SO2-Tolerant Selective Catalytic Reduction of NOx over Meso-TiO2@Fe2O3@Al2O3 Metal-Based Monolith Catalysts, Environ. Sci. Technol. 53 (2019) 6462-6473. http:// 10.1021/acs.est.9b00435.
- [55] X. Huang, N. Fang, S. Wu, F. Dong, Y. Chu, Z. Tang, Interfacial confinement effect induced by pre-sulfurization for promoting SO2 tolerance of MnFe-TOS catalyst in low temperature NH3-SCR reaction, Appl. Catal. B 343 (2024) 123518, https://doi. org/10.1016/j.apcatb.2023.123518.
- [56] Z. Chen, Q. Liu, L. Guo, S. Zhang, L. Pang, Y. Guo, T. Li, The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction, Appl. Catal. B 286 (2021) 119816, https://doi.org/10.1016/j. apcatb.2020.119816.
- [57] Y. Zeng, W. Song, Y. Wang, S. Zhang, T. Wang, Q. Zhong, Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: the role of Fe3+ ions, J. Hazard. Mater. 383 (2020) 121212, https://doi.org/10.1016/j.ihazmat.2019.121212.
- [58] Y. Hou, J. Wang, Q. Li, Y. Liu, Y. Bai, Z. Zeng, Z. Huang, Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal, Fuel 285 (2021) 119133, https://doi.org/ 10.1016/j.fuel.2020.119133.
- [59] K. Zha, C. Feng, L. Han, H. Li, T. Yan, S. Kuboon, L. Shi, D. Zhang, Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study, Chem. Eng. J. 381 (2020) 122764, https://doi.org/10.1016/j.cej.2019.122764.
- [60] H. Wang, P. Ning, Y. Zhang, Y. Ma, J. Wang, L. Wang, Q. Zhang, Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR, J. Hazard. Mater. 388 (2020) 121812, https://doi.org/10.1016/j. ihazmat.2019.121812.