МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

Кафедра телекоммуникационных систем и вычислительных средств (TC и BC)

Отчет по лабораторной работе №5 по дисциплине Математические основы обработки сигналов

по теме:

ЛИНЕЙНЫЕ СИСТЕМЫ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ. СИГНАЛ НА ВЫХОДЕ ЛИНЕЙНОЙ СИСТЕМЫ

СОДЕРЖАНИЕ

1	ТЕОРИЯ	4
2	ПРАКТИКА	16
3	ВЫВОД	20

ЦЕЛЬ И ЗАДАЧИ

TT		
	ATL	•
ц	CJID	•

Изучить свойства линейных систем. Познакомиться с операцией свертки.

ТЕОРИЯ

LTI системы

Система - то, что преобразует сигнал (входной в выходной).

Нас не интересует, как работает система, нам интересен только результат, который она дает, поэтому можно представить эту систему в виде "черного ящика"

Рисунок 1 — Визуализация LTI системы

Здесь F[x(t)] - функция, выполняемая над входным сигналом x(t), y(t) - результат работы системы (выходной сигнал).

Примером LTI систем может являться RC цепь

Рисунок 2 — Визуализация RC цепи

Подадим на вход такой системы прямоугольный импульс и получим какой-то выходной сигнал:

Рисунок 3 — Визуализация входного и выходного сигнала RC цепи

Линейная, постоянная во времени система. Свойства системы.

1) Свойство линейности

Это свойство говорит о том, что реакция на сумму сигналов равна сумме реакций на каждый из сигналов, а также, что при умножении входного сигнала на какое-то число k получим выходной сигнал, который умножен на k.

$$x(t) \to y(t)$$

$$K \cdot x(t) \to K \cdot y(t)$$

$$x_1(t) \to y_1(t) = F[x_1(t)]$$

$$x_2(t) \to y_2(t) = F[x_2(t)]$$

$$F[x_1(t) + x_2(t)] = F[x_1(t)] + F[x_2(t)]$$

$$s(t) = \sum a_i s_i(t)$$

$$y(t) = F\left[\sum a_i s_i(t)\right] = \sum a_i F[s_i(t)]$$

В линейной системе при подаче линейной комбинации сигналов на входе получают линейную комбинацию выходных сигналов.

2) Свойство постоянства во времени

Это свойство говорит о том, что если входной сигнал сдвинут во времени на t_0 , то выходной сигнал тоже будет сдвинут во времени на t_0

$$y(t) = F[x(t)]$$
$$x(t - t_0) \to y(t - t_0)$$

Рисунок 4 — Визуализация свойства постоянства во времени

Реакция системы на произвольный сигнал

Для определения отклика системы на произвольный входной сигнал нужно выполнить 3 действия:

- 1. Получить реакцию системы на отдельный элементарный сигнал (с небольшой длительностью);
- 2. Представить входной сигнал в виде комбинации элементарных сигналов;
- 3. Получить выходной сигнал системы при заданном произвольном входном сигнале как сумму реакций на элементарные сигналы.

Шаг 1

Выше мы выяснили, как система реагирует на прямоугольный импульс.

Шаг 2

Подадим произвольный сигнал на вход системы и аппроксимируем его прямоугольными сигналами (представим входной сигнал в виде комбинации элементарных сигналов). Пусть прямоугольные сигналы имеют длительность T_0 , S - произвольная функция, S_0 - прямоугольный импульс, $S_0(t)$ - эталонный прямоугольный импульс, тогда для каждой точки сигнала получим:

$$s(0) * s_0(t)$$

$$s(T_0) * s_0(t - T_0)$$

$$s(2T_0) * s_0(t - 2T_0)$$

$$s(3T_0) * s_0(t - 3T_0)$$

В момент времени 0 наша аппроксимирующая функция будет иметь значение $S(0) * S_0(t)$, т.е мы как бы повышаем значение прямоугольного импульса до значения входной функции. Далее будем сдвигаться на T_0 и повторять процесс.

Рисунок 5 — Аппроксимация сигнала прямоугольными импульсами

Шаг 3

Если просуммировать произведения выше, то получим примерное значение входной произвольной функции S(t).

$$s(t) \approx s(0)s_0(t) + s(T_0)s_0(t - T_0) + s(2T_0)s_0(t - 2T_0)$$

Если воспользоваться свойствами LTI систем, то можем посчитать значение выходного сигнала y(t) как сумму реакций на элементарные сигналы

$$y(t) = s(0)F[s_0(t)] + s(T_0)F[s_0(t - T_0)] + \dots$$

Эта аппроксимация не совсем точная (можем видеть на графике, что некотрые части произвольного сигнала теряются). Чтобы повысить точность, нужно сделать T_0 максимально маленьким, т.е $T_0 \to 0$, тогда получим дельтафункцию.

Дельта функция

Дельта-функция ($\delta(t)$) - обобщенная функция. Значение функции определяется не через аргумент, а через взаимодействие с другими функциями.

Рисунок 6 — Дельта-функция

Свойства дельта-функции

- 1. $\delta(t) = 0, \, t \neq 0$, функция везде равна 0, кроме точки t.
- 2. $\int_{-\infty}^{\infty} \delta(t) dt = 1$, площадь, занимаемая дельта-функцией, равна единице.
- 3. $\int_{-\infty}^{\infty} \delta(t-t_0) dt = 1$, площадь, занимаемая дельта-функцией, равна единице и не зависит от сдвига.
- 4. $\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = \int_{-\infty}^{\infty} x(t_0)\delta(t-t_0)dt = x(t_0)*1 = x(t_0)$, произведение функции и дельта-функции, сдвинутой на t_0 , под интегралом дает значение значение функции в точке t_0 $(x(t_0))$

Улучшение аппроксимации

На прошлом шаге мы получили аппроксимацию для проивзольного входного сигнала. Теперь будем учитывать, что $T_0 \to 0$, поэтому промежутков kT_0 будет всё больше и больше, поэтому сумма перейдет в интеграл

$$S(t) = \int_{-\infty}^{\infty} S(\tau) \delta(t - \tau) d\tau$$

Импульсная характеристика системы (импульсная реакция системы)

При подаче $\delta(t)$ на вход LTI системы на выходе получим реакцию системы $\mathbf{h}(\mathbf{t})$

Рисунок 7 — Реакция системы на дельта-функцию

h(t) - импульсная характеристика системы или реакция системы на дельта-функцию.

Таким образом выходной сигнал y(t) можно записать как

$$y(t) = \int_{-\infty}^{\infty} S(\tau)h(t-\tau)d\tau$$

Формула выше - свертка, интеграл свертки.

Если представить входной сигнал как сумму бесконечной последовательности взвешенных и задержанных дельта-функций, то на выходе системы получается бесконечно много взвешанных и задержанных импульсных реакций системы. Входной сигнал системы - сумма (интеграл) по всем взвешанным и задержанным импульсным характеристикам.

Процесс свертки

Процесс свертки сигналов выглядит следующим образом:

Рисунок 8 — Визуализация процесса свертки

Здесь задан прямоугольный сигнал S(t) и импульсная характеристика RC-цепи h(-t). S(t) остается все время неподвижным, а импульсная характеристика сдвигается постепенно вправо и накладывается на сигнал S(t). Свертка - интеграл, значит, он будет суммировать площадь под пересечением сигналов.

Если пронаблюдать за площадью, то можно заметить, что она сначала равна нулю (когда нет пересечения), потом в какой-то момент начинает возрастать, а потом в какой-то момент начинает убывать. Эти изменения площади под пересечением графиков отражают характер выходной сигнал y(t) - сначала он будет возрастать, потом убывать.

Промежутки свертки

1)
$$t < 0$$

Возьмем любую точку ${\bf t} < {\bf 0}$ и сместим в нее график h(-t) (первый график на картинке выше). Поскольку пересечения у графиков нет, то свертка будет равна нулю.

2)
$$0 < t < T_0$$

 T_0 - длительность прямоугольного сигнала

В этом случае t находится в прямоугольном сигнале и h(-t) как-бы входит в него и образуется пересечение (2-3 график). Площадь под пересечением графиков начинает расти. Запишем операцию свертки на этом промежутке:

Пусть
$$S(\tau) = U$$
, $h(t - \tau) = \frac{1}{T}e^{-\frac{t-\tau}{T}}$

$$y(t) = \int_{-\infty}^{\infty} S(\tau)h(t-\tau)d\tau = \int_{0}^{t} \frac{U}{T}e^{\frac{t-\tau}{T}}d\tau$$

Разобьем $e^{-\frac{t-\tau}{T}}$ на $e^{-\frac{t}{T}}$ и $e^{\frac{\tau}{T}}$. Заметим, что $\frac{U}{T}$ и $e^{-\frac{t}{T}}$ не зависисят от τ , поэтому вынесем их за скобку.

$$\frac{U}{T}e^{-\frac{t}{T}}\int_{-\infty}^{\infty}e^{\frac{\tau}{T}}d\tau = \frac{U}{T}e^{-\frac{t}{T}}Te^{\frac{\tau}{T}}\Big|_{0}^{t} =$$

$$Ue^{-\frac{t}{T}}e^{\frac{\tau}{T}}\Big|_{0}^{t} = Ue^{-\frac{t}{T}}e^{\frac{t}{T}} - (Ue^{-\frac{t}{T}}e^{\frac{0}{T}}) =$$

$$U[1 - e^{-\frac{t}{T}}]$$

3) $t > T_0$

Если $t > T_0$, то h(-t) начинается за правой границей прямоугольника (4-5 график). Площадь под пересечением графиков начинает уменьшаться. Найдем, как будет изменяться выходной сигнал y(t) на этом промежутке:

$$y(t) = \int_{0}^{T_{0}} \frac{U}{T} e^{\frac{t-\tau}{T}} d\tau = \frac{U}{T} e^{-\frac{t}{T}} \int_{-\infty}^{\infty} e^{\frac{\tau}{T}} d\tau = \frac{U}{T} e^{-\frac{t}{T}} \int_{-\infty}^{\infty} e^{\frac{\tau}{T}} d\tau = \frac{U}{T} e^{-\frac{t}{T}} T e^{\frac{\tau}{T}} \Big|_{0}^{T_{0}} = U e^{-\frac{t}{T}} e^{\frac{\tau}{T}} \Big|_{0}^{T_{0}} = \frac{U e^{-\frac{t}{T}} e^{\frac{\tau}{T}}}{U e^{-\frac{t}{T}} [e^{-\frac{\tau}{T}} - (U e^{-\frac{t}{T}} e^{\frac{0}{T}})]} = \frac{U e^{-\frac{t}{T}} [e^{-\frac{\tau}{T}} - 1]}{U e^{-\frac{t}{T}} [e^{-\frac{\tau}{T}} - 1]}$$

ПРАКТИКА

Задание 1: Для временных функций s1(t) и h(t) задайте временные параметры и выполните по шагам вычисление интеграла свертки задавая пределы интегрирования

Задание 2: Вычисление инеграла свертки численным интегрированием

Сформируем прямоугольный сигнал и импульсную характеристику RC-цепи

Рисунок 11 — График прямоугольного сигнала и импульсная характеристика RC-цепи

Сдвинем прямоугольный сигнал на $\mathbf{t}=[-1,0,2]$. Визуализируем сдвиг. Для каждого сдвинутого сигнала найдем $\int_{-5}^5 h(\tau) s(t-\tau)$ путем численного интегрирования.

Рисунок 12 — Сдвиг прямоугольного сигнала

При отрицательных t график сдвигается влево, при положительных - вправо. При сдвиге вправо пересечением между графиками уменьшается и площадь тоже уменьшается.

Проделаем те же действия, но при $t \in (-10, 10)$

Рисунок 13 — Реакция RC-цепи на прямоугольный импульс

При таких сдвигах прямоугольного сигнала полностью проходит через h(t) и получается реакция системы на прямоугольный сигнал.

вывод

В ходе работы я познакомился с LTI системами, изучил их свойства. Узнал, что такое опреация свертки, высчитал ее аналитическим и численным методом, получив реакцию системы на входной сигнал.