General Specifications

GENERAL DESCRIPTION

- · General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

1210	4	D	107	M	Α	T	2	Α
	T	T	T	T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
(L" x W")	4 = 4V	D = X5R	Code (In pF)	Tolerance	Rate	T = Plated Ni	2 = 7" Reel	Code
0101**	6 = 6.3V		2 Sig. Digits +	$K = \pm 10\%$	A = N/A	and Sn	4 = 13" Reel	A = Std.
0201	Z = 10V		Number of	$M = \pm 20\%$				
0402	Y = 16V		Zeros					
0603	3 = 25V							
0805	D = 35V							A A
1206	5 = 50V							
1210	1 = 100V							The same of the sa
1812								
**EIA 010	005							RoHS
								COMPLIANT

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring C	onditions						
	perature Range	-55°C to +85°C	Temperature Cycle Chamber							
	itance on Factor	Within specified tolerance ≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V For Cap > 10 μF, 0.5Vrms @ 120Hz							
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity							
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and dito 50 mA	scharge current limited						
	Appearance	No defects	Deflection	: 2mm						
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 30							
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V							
	Insulation Resistance	≥ Initial Value x 0.3	90 m							
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo ± 0.5 sec							
	Appearance	No defects, <25% leaching of either end terminal								
	Capacitance Variation	≤ ±7.5%								
Resistance to Solder Heat Dissipation Factor Insulation Resistance		Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at roon	n temperature for 24 ±						
		Meets Initial Values (As Above)	2hours before measuring	g electrical properties.						
	Dielectric Strength	Meets Initial Values (As Above)								
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes						
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes						
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes						
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes						
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature							
	Appearance	No visual defects	Charge device with 1.5X	rated voltage in test						
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ± (+48,-	2°C for 1000 hours						
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are to							
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	voltaç							
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chambe temperature for							
	Appearance	No visual defects	Take the initial value a							
Load	Capacitance Variation	≤ ±12.5%	After applying rated vol hours in the condition of 95%RH, and place in nor	f 40°C±2°C and 90 to mal temperature and						
Humidity	Dissipation Factor / Tanδ	Within specification	humidity, then measure the sample after heat treatment. The charge and discharge current of the							
	Insulation Resistance	Over $1000M\Omega$ or $50M\Omega \cdot \mu\text{F}$, whichever is less. *Exceptions Listed Below	capacitor must not ex measure	ceed 50mA for IR						

PREFERRED SIZES ARE SHADED

Case Size		010	01*			0201					04	02						0603					0805					
Soldering		Reflov	v Only		Re	flow 0	nly			-	Reflow	/Wav	e				Ref	low/W	/ave					Ref	low/W	/ave		
Packaging		Paper/Er	nbossed		Α	II Pape	er				All P	aper					Α	II Pap	er					Pape	r/Emb	ossed		
(L) Length	mm (in.)	0.40 :	0.40 ± 0.02						1.00 ± 0.20 (0.040 ± 0.008)					1.60 ± 0.20 (0.063 ± 0.008)						2.01 ± 0.20 (0.079 ± 0.008)								
W) Width	mm (in.)		.20 ± 0.02							0.50 ± 0.20 (0.020 ± 0.008)					0.80 ± 0.20 (0.031 ± 0.008)							1.25 ± 0.20 (0.049 ± 0.008)						
(t) Terminal	mm (in.)	0.10 : (0.004 ±				15 ± 0. 06 ± 0.						± 0.10 ± 0.00						35 ± 0 14 ± 0							50 ± 0 20 ± 0			
Voltage:		6.3	10	4	6.3		16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10		25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С														
1000	102		В				Α	Α						С														
1500	152	В	В				Α	Α						С														
2200	222	В	В			Α	Α	Α						С														
3300	332	В	В			Α	Α	Α						С														
4700	472	В	В			Α	Α	Α					С								G							
6800	682	В	В			Α	Α	Α					С								G						$oxed{oxed}$	
Cap (µF) 0.01	103	В	В			Α	Α	Α					С						G	G	G							
0.015	153	В											С						G	G	G							
0.022	223	В			Α	Α	Α	Α				С	С						G	G	G							N
0.033	333	В										С							G	G	G						<u> </u>	N
0.047	473	В			Α	Α	Α	Α				С	С						G	G	G							N
0.068	689	В										С							G		G				ļ			N
0.1	104	В			Α	Α	Α	Α			С	С	С	С					G	G	G					N	N	N
0.15	154	_														-			G						_	N	N	
0.22	224	В		Α	Α	Α				С	С	С	С	С				G	G							N	N	N
0.33	334	_												_		-		G	G	<u> </u>		_			-	N		
0.47	474 684	В		Α	Α				С	С	С	С	С	E		1		G	J				-		-	N	Р	Р
0.68				Α	Α		_		_	_	_	_	0	_	_		_	G		_	_	<u> </u>	-	-	N.I.	N		P
1.0	105 155			Α	Α	С	С		С	С	С	С	С	_	G	G	G	G	J	G	G	_	-	-	N	N	Р	P
2.2	225			С	С	С			С		С	С	С	_		-	1			V	V		-	NI	NI	P	Р	P
3.3	335			U	U	U			U	С	U	U	U		G	G	J	J	J	K	K		N	N	N	P	P .	Р
4.7	475			С	С		-	-	Е	Е	Е	Е	-	-	J	J	J	G	K		-	N	P	P	Р	Р	Р	Р
10	106			U	U			_	E	E	E	Е	-		K	J	K	K	K		-	P	P	P	P	P	P	P
22	226				-				E	G			_		K	K	K	I.	I N			P	P	P	P	P	\vdash	$\vdash \vdash \vdash$
47	476									G					K	K			-			P	P	P			\vdash	$\vdash \vdash \vdash$
100	107				 				-	-			\vdash	-	IX	IX		-	 	-				-	 	<u> </u>	<u> </u>	$\vdash \vdash$
Voltage:	107	6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Case Size		0.5			0.0	0201				0.0		02		00		0.0		0603			- 00		0.0		0805		_ 00	
Oude dize		J.,				7201					- 31							3000							3000			

Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.057)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAI	PER						EMBO	SSED			

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

PREFERRED SIZES ARE SHADED

Case Size					1206							1210				1812													
Soldering				Refl	ow/W	/ave					Re	flow C	nly			Reflow Only													
Packaging		Paper/Embossed Paper/Embossed All En																			All Embossed								
(L) Length	mm (in.)				20 ± 0. 26 ± 0.				3.20 ± 0.40 (0.126 ± 0.016)								4.50 ± 0.30 (0.177 ± 0.012)												
W) Width	mm (in.)			1.6	0 ± 0. 3 ± 0	.30			2.50 ± 0.30 (0.098 ± 0.012)								3.20 ± 0.20 (0.126 ± 0.008)												
(t) Terminal	mm (in.)			0.5	50 ± 0. 20 ± 0.	.25			0.50 ± 0.25 (0.020 ± 0.010)								0.61 ± 0.36 (0.024 ± 0.014)												
Voltage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50														
Cap (pF) 100	101																												
150	151																												
220	221																												
330	331																												
470	471																												
680	681																												
1000	102																												
1500	152																												
2200	222																												
3300	332																												
4700	472																												
6800	682																												
Cap (µF) 0.01	103																												
0.015	150																												
0.022	223																												
0.033	333																												
0.047	473																												
0.068	689																												
0.1	104																												
0.15	154																												
0.22	224																												
0.33	334																												
0.47	474					Q	Q							Х	Х														
0.68	684																												
1.0	105					Q	Q	Q					Х	Х	Х														
1.5	155																												
2.2	225			Q	Q	Q	Q	Q					Х	Z	Z														
3.3	335		Q	Q																									
4.7	475	Χ	Χ	Х	Х	Х	Χ	Χ			Z	Z	Z	Z	Z														
10	106	Χ	Х	Х	Х	Х	Χ	Χ		Χ	Х	Z	Z	Z	Z					Z									
22	226	Χ	Х	Х	Х	Х			Z	Z	Z	Z	Z			Z	Z	Z	Z										
47	476	Χ	Х	Х	Х				Z	Z	Z	Z	Z																
100	107	Χ	Х						Z	Z																			
Voltage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50							
Case Size					1206							1210							1812										

Letter	Α	В	С	E	G	J	K	М	N	P	Q	X	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.057)	(0.070)	(0.090)	(0.100)	(0.110)
			PA	PER						ЕМВО	SSED			

PAPER and EMBOSSED available for 01005

NOTE: Contact factory for non-specified capacitance values *EIA 01005

