

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

01| CONTRATANTE

Razão Social:	MCI – MEDICAL CENTER IMAGE CNPJ: 18.514.920/0001-93					
Nome Fantasia:	MCI – MEDICAL CENTER IMAGE					
Endereço:	ndereço: Rua Samuel Heusi nº 178, Centro - Itajaí/SC - CEP: 88301-320					

02| EQUIPAMENTO AVALIADO

Procedimento Avaliado:	Controle de	· Qualidade	Sala:	Mamografia
Equipomento	MARCA	MODELO	Nº SÉRIE	PATRIMÔNIO
Equipamento:	HOLOGIC	LORAD M-IV	19508012675	-

03| PADRÕES UTILIZADOS

Analisador:	X2 Base Unit							
	MARCA	MODELO	Nº SÉRIE					
	RaySafe	8251010-6	228517					
Sensor Externo:	X2 R/F Sensor							
	MARCA	MODELO	Nº SÉRIE					
	RaySafe	8251010-6	231609					
	Rastreabilidade:	LABPROSAUD-C160-18, LABPROSAUD-C161-18						

04| METODOLOGIA

Os ensaios foram realizados baseando-se no procedimento de ensaio interno Nº PE-001 Revisão 001.

OBSERVAÇÃO:

A incerteza expandida de medição relatada e declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k =2, o qual para uma distribuição t com graus de liberdade efetivos(veff = infinito), corresponde a uma probabilidade de abrangência de aproximadamente 95%. A incerteza de medição foi determinada de acordo com a publicação EA-4/02.

Este relatório só deve ser reproduzido por completo. A reprodução em partes só é permitida mediante autorização por escrito da Safety Soluções em Radioproteção. Os resultados apresentados neste relatório de ensaio referem-se exclusivamente aos corpos de prova (equipamentos) avaliados, nas condições especificadas. Este relatório atente os requisitos estabelecidos pela norma NBR ISO/IEC 17025.

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

A I QUALIDADE DA IMAGEM

Periodicidade: Teste de aceitação, diário e após reparos.

Tolerância: Fibra ≤ 0,75 mm; Microcalcificação ≤ 0,32 mm; Massa ≤ 0,75

Nível de Suspensão: Não cumprir um dos requisitos.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Tensão (kVp):	28	Corrente x tempo (mAs):	77,2	FC	3	
Técnica:			Auto Time				
Objetos id	dentificados na	a imagem:	Número de objetos:				
Número	de Fibras Visu	ualizadas	4				
Número de Mi	icrocalcificaçõ	es Visualizadas		4			
Número	de Massas Vis	ualizadas	4				
Re	esultado (C/NO	C):	Conforme				

C | VALORES REPRESENTATIVOS DE DOSE GLANDULAR MÉDIA

Periodicidade: Teste de aceitação, bienal ou após reparos.

Tolerância: Vide tabela.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabelas 2 e G.

	ESPESSURA (cm)		Dose Glandular (mGy)						
Ma	ma Equivalente PMMA	Valor Médio Medido	k	U95	Referência	Resultado (C/NC)			
	45 mm	1,838432	2	7,3	2	Conforme			

EXATIDÃO E REPRODUTIBILIDADE

D I EXATIDÃO DO INDICADOR DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 2kV. Nível de Suspensão: > 4kV

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

E I REPRODUTIBILIDADE DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 1kV. Nível de Suspensão: > >2kV

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

F I EXATIDÃO DO TEMPO DE EXPOSIÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 1,5s para um simulador de 4,5 cm PMMA. Nível de Suspensão: 2s

Resolução Normativa N°002/DIVS/SES de 18/05/2015, Tabela 2.

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

Foc	Ю	FC	CO FINO) istância Fo	oco De	tector	cm]	60	
VALC	ORES NON	MINAIS				VALOR	ES MEI	DIDOS			
Tensão	Corrente	Tempo X	ŀ	Kerma		Te	empo		Tensão		
[kVp]	[mA]	Corente	Kerma			Tempo			Tensão		
[κνρ]	[IIIA]	[mAs]	[mGy]	k	U95	[ms]	k	U95	[kVp]	k	U95
			4,086			1332,0			25,9		
		40	4,084	2,0	1,8	1332,0	2,0	1,9	25,9	2,0	1,6
		40	4,086	2,0	1,0	1332,0	2,0	1,9	25,9	2,0	1,0
			4,084			1332,0			25,9		
			3,078			1002,0			25,9	-	
26	-	30	3,074	2,0	1,8	1002,0	2,0	1,9	25,9	2,0	1,6
			3,078			1002,0			25,9	-	
			3,074			1002,0			25,9		
			2,036 2,031			661,1 661,1			26,0 26,0	-	
		20	2,031	2,0	1,8	661,1	2,0	1,9	26,0	2,0	1,6
			2,030			661,1			26,0	1	
			4,419			1162,0			27,9		
		0.5	4,423	0.0	1.0	1161,0	0.0	0.0	27,9	0.0	1.0
		35	4,419	2,0	1,8	1162,0	2,0	2,0	27,9	2,0	1,6
			4,423			1161,0			27,9		
			3,054			801,5			27,9		
28	_	24	3,058	2,0	1,8	801,5	2,0	1,9	27,9	2,0	1,6
20		∠ ¬	3,054	2,0	1,0	801,5	2,0	1,5	27,9	2,0	1,0
			3,058			801,5			27,9		
			2,028			531,6			27,8	-	
		16	2,031	2,0	1,8	531,6	2,0	1,9	27,9	2,0	1,6
			2,028			531,6			27,8	-	
			2,031			531,6			27,9		
			4,658 4,664			1002,0 1002,0			29,9 29,9	1	
		30	4,658	2,0	1,8	1002,0	2,0	1,9	29,9	2,0	1,6
			4,664			1002,0			29,9	1	
			3,400			731,7			29,9		
30		22	3,403	2.0	1.0	731,9	2.0	1.0	29,9	2.0	1.6
30	-	22	3,400	2,0	1,8	731,7	2,0	1,9	29,9	2,0	1,6
			3,403			731,9			29,9		
			1,875			402,1			29,9		
		12	1,873	2,0	1,8	402,2	2,0	1,9	29,9	2,0	1,6
			1,875	_,0	.,0	402,1	,	.,5	29,9	,_	.,0
			1,873			402,2		29,9			
	Desvio Máximo		Taxa	de Keri	ma		empo			nsão	
	Reprodutibilidade (%)			0,2			0,1			0,4	
	Exatidão (%) Resultado Exatidão (C/NC)			Aplicá		0,0			0,4		
				Aplicá			forme			forme	
Resultad	uo Reprod	utibilidade	INao	Aplicá	vei	Cor	forme		Con	forme	

contato@safetyrad.com.br | www.safetyrad.com.br

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

VALORES NOMINAIS VALORES MEDIDOS	Foo	0	FOC	0 GROSS	0		istância Fo	oco De	tector	[cm]		60		
Corrente RVP RVP	VALC	RES NO	MINAIS				VALORI	ES ME	DIDOS					
Remail R	Tensão	Corrente	Tempo X	ŀ	Kerma		Τe	empo		Tensão				
Part			Corente	Kerma			Tempo			Tens	são			
Part	[I(VP]			[mGv]	k	U95	·	k	U95	[kV	ſq	k	U95	
Part														
26					0.0	1.0		0.0	1.0			0.0	1.0	
Part			90		2,0	1,8		2,0	1,9			2,0	1,6	
Part														
Second Process				10,080			751,3			26,	.0			
Say	26	_	75	8,401	20	1.8	751,2	20	1.0	26,	.0	20	16	
Conforme Conforme	20		7.0	8,396	2,3	1,0	751,3	2,0	1,9	26,	.0	2,0	1,0	
Composition				8,402			751,2							
Conforme Conforme														
Conforme Conforme			60		2.0	1.8		2.0	1.9			2.0	1.6	
Part					2,0	.,0		_,0	. ,5		6,0	.,0		
28 - 75														
12,580														
28			90		2,0	1,8		2,0	1,9			2,0	1,6	
Table Tabl														
Table Tabl														
Total Properties														
Resultado Exatidão (C/NC) Não Aplicável 10,490 1,84 28,0 28,	28	-	75		2,0	1,8		2,0	1,9			2,0	1,6	
Resultado Exatidão (C/NC) Rasultado Exatidão (C/NC)														
Resultado Exatidão (C/NC) Não Aplicável Applicable Applicable														
Second														
Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme Reprodutibilidade (%) Resultado Exatidão (C/NC) Resultado Exatidão (C			60		2,0	1,8		2,0 1,9			2,0	1,6		
To														
To														
11,880			7.0		0.0									
30			70		2,0	1,8		2,0	1,9			2,0	1,6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1				
30														
S,508 S,511 S01,7 S01,5 S01,7 S01,5 S01,	20		50		2.0	1.0		2.0	1.0			2.0	1.6	
S,916 S,915 S,905 S,908 S,90	30	-	30	8,508	2,0	1,0	501,7	2,0	1,9	30,	.0	2,0	1,0	
35 5,915 2,0 1,8 1162,0 2,0 1,9 30,0 30,				8,511			501,5			30,	.0			
Desvio Máximo Taxa de Kerma Tempo Tensão Reprodutibilidade (%) 0,3 0,0 0,3 Exatidão (%) Não Aplicável 0,1 0,0 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme				5,916			1162,0			30,	.0			
5,905 1162,0 30,0 5,908 1162,0 30,0 Desvio Máximo Taxa de Kerma Tempo Tensão Reprodutibilidade (%) 0,3 0,0 0,3 Exatidão (%) Não Aplicável 0,1 0,0 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme			35	5,915	20	1.8	1162,0	2 0	1 0	30,	.0	2 0	16	
Desvio MáximoTaxa de KermaTempoTensãoReprodutibilidade (%)0,30,00,3Exatidão (%)Não Aplicável0,10,0Resultado Exatidão (C/NC)Não AplicávelConformeConforme			00	5,905	2,0	1,0	1162,0	2,0	1,5	30,	.0	2,0	1,0	
Reprodutibilidade (%) 0,3 0,0 0,3 Exatidão (%) Não Aplicável 0,1 0,0 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme				5,908					30,0					
Exatidão (%) Não Aplicável 0,1 0,0 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme	Desvio Máximo		Taxa	de Ker	ma									
Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme	Repr	Reprodutibilidade (%)			0,3			0,0		0,3				
Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme		Exatidão (%)		Não	Aplicá	vel		0,1						
	Resulta	Resultado Exatidão (C/NC)												
ricoartado ricprodutibilidade rido Aplicavel Comonne Comonne	Resultad	do Reprod	utibilidade											

contato@safetyrad.com.br | www.safetyrad.com.br

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018

DATA EMISSÃO: 12/12/2018

G | REPRODUTIBILIDADE DO CONTROLE AUTOMÁTICO DE EXPOSIÇÃO (CAE)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 15%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 2.

	Valore	s Nominais		Valores Medidos			
Local	Tensão [kVp]	[mAs] Selecionado	[mAs] Indicado	Dose [mGy]	k	U95	
AEC 1	28,0	63,0	66,2	0,278	2,0	1,9	
AEC 2	28,0	63,0	66,3	0,280	2,0	1,9	
AEC 3	28,0	63,0	66,2	0,278	2,0	1,9	
AEC 4	28,0	63,0	0,280	2,0	1,9		
	Re	0,7					
	Resultado	Conforme					

HI COMPENSAÇÃO DO CAE PARA DIFERENTES ESPESSURAS

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 15%. Nível de Suspensão: > 20%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 2.

	Valore	s Nominais		Valores Medidos			
Expessura PMMA [cm]	Tensão [kVp]	[mAs] Selecionado	[mAs] Indicado	Dose [mGy]	k	U95	
2,0	28,0	12,0	13,5	0,2612	2,0	1,9	
4,0	28,0	63,0	66,2	0,2798	2,0	1,9	
5,0	28,0	130,0	0,2879	2,0	1,9		
		9,7					
	Resulta	do Compensaç	ão (C/NC):		Conforme		

contato@safetyrad.com.br | www.safetyrad.com.br

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

I | Camada Semi-redutora (CSR)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: 0,31 ≤ CSR (mmAl) ≤ 0,40 à 28 kV com combinação Mo/Mo.

Nível de Suspensão: ≤ 0,28 à 28 kv, com combinação Mo/Mo. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 2

	VAL	ORES NOMIN	NAIS		VALORES	MEDIDOS	
GERADOR	Tensão [kV]	Corrente [mA]	Tempo X Corrente [mAs]	Tensão [kV]	Tempo [ms]	Dose [mGy]	CSR [mmAl]
	30,0	-	70	30,0	701,3	30,0	0,336
	30,0	-	70	30,0	701,3	30,0	0,335
	30,0	-	70	29,9	701,3	29,9	0,337
π	30,0	-	70	30,0	701,3	30,0	0,335
Frequência	30,0	-	50	30,0	501,5	30,0	0,336
duê	30,0	-	50	30,0	501,5	30,0	0,335
Fre	30,0	-	50	30,0	501,7	30,0	0,336
Alta	30,0	-	50	30,0	501,5	30,0	0,336
	30,0	-	35	30,0	1162,0	30,0	0,336
	30,0	-	35	30,0	1162,0	30,0	0,336
	30,0	-	35	30,0	1162,0	30,0	0,336
	30,0	-	35	30,0	1162,0	30,0	0,336
		RESULTADO	Média	k	U95		
		TILOULTADO	0,3	2,0	7,8		
	RES	SULTADO [C/	Conforme				

J | RESOLUÇÃO ESPACIAL

Periodicidade: Teste de aceitação, anual ou após reparos. Tolerância: ≥ 12 pl/mm. Nível de Suspensão: < 10 pl/mm. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 2.

RESULTADO: NÃO APLICÁVEL PARA SISTEMA DIGITAL

(1) +55 (48) 3181-0368

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho,

Itajai, SC, CEP 88307-620

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

K | EXATIDÃO DO SISTEMA DE COLIMAÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 5 mm. Nível de Suspensão: > 10 mm.

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 2.

Coincidência entre campo de radiação e o detector de imagem

Campo	Desv. Parede Toráxica (mm)	Desv. Direita (mm):	Desv. Esquerda (mm):	Desv. Atras (mm):	Resultado
Campo 18 x 24	-4,7	-4,5	0	3,9	Conforme
Campo 24 x 30	-	-	-	-	NA

Coincidência entre campo de radiação e o campo luminoso

Campo	Desv. Parede Toráxica (mm)	Desv. Direita (mm):	Desv. Esquerda (mm):	Desv. Atras (mm):	Resultado
Campo 18 x 24	-1,1	0	4,9	2,8	Conforme
Campo 24 x 30	-	-	-	-	NA

Coincidência da borda da bandeja de compressão à borda do receptor de imagem

Campo	Desv. Parede Toráxica (mm)	Desv. Direita (mm):	Desv. Esquerda (mm):	Desv. Atras (mm):	Resultado
Campo 18 x 24	0	-	-	-	Conforme
Campo 24 x 30	-	-	-	-	NA

L | SISTEMA DE COMPRESSÃO AUTOMÁTICO

Periodicidade: teste de aceitação, anual ou após reparos

Tolerância: 11kg ≤ Força de compressão ≤ 18kgf. Nível de suspensão: > 30 kgf ou < 9kgf Resolução Normativa №002/DIVS/SES de 18/05/2015. Tabela 2.

Resolução Normativa	N°002/DIVS/SES 06	e 18/05/2015, Tabela 2.	

Força Nominal [kgf]	Força Medida [kgf]	k	U95	Resultado
14,1	14,40	2	1,9	Conforme

contato@safetyrad.com.br | www.safetyrad.com.br

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

DATA EMISSÃO: 12/12/2018

RELATÓRIO DE ENSAIO controle de qualidade anual de mamografia

DATA ENSAIO: 12/12/2018

M | ALINHAMENTO DA BANDEJA DE COMPRESSÃO

Periodicidade: Teste de aceitação, semestral ou após reparo.

Tolerância: ≤ 5mm. Nível de Suspensão: >10mm.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Campo	Desv. Parede Toráxica (mm)	Desv. Direita (mm):	Desv. Esquerda (mm):	Desv. Atras (mm):	Resultado
Campo 18 x 24	34,5	34,1	32,2	31,9	Conforme
Campo 24 x 30	-	-	-	-	NA

N | INDICAÇÃO DA ESPESSURA DA MAMA COMPRIMIDA

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 5mm. Nível de suspensão: > 10mm.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Espessura Nominal [mm]	Espessura Medida [mm]	Erro [mm]	k	U95	Resultado
20	22	2	2	1,9	Conforme
40	42	2	2	1,9	Conforme
50	52	2	2	1,9	Conforme

O I CONTATO TELA FILME

Periodicidade: Teste de aceitação, semestral ou após reparos.

Tolerância: Sem perda de uniformidade.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Resultado: Conforme

P | ARTEFATOS NA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Imagens sem artefatos.

Resolução Normativa N°002/DIVS/SES de 18/05/2015, Tabela 2.

Resultado: Conforme

DATA ENSAIO: 12/12/2018

DATA EMISSÃO: 12/12/2018

Q I INTEGRIDADE DOS CHASSIS E CASSETES

Periodicidade: Teste de aceitação e anual. Tolerância: Chassi e cassetes íntegros.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Resultado: Conforme

R | UNIFORMIDADE DA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: >20%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Resultado: Conforme

S I VEDAÇÃO DA CÂMARA ESCURA

Periodicidade: Teste de aceitação, anual ou após reparos

Tolerância: Sem entrada de luz externa. Nível de Suspensão: Velando filme.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Não Aplicável.

T I EFETIVIDADE DO CICLO DE APAGAMENTO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Ausência de imagem residual.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 2.

Protocolo de Leitura		kVp	mAs	Corrente	DFD (cm)
CCD		28	40	-	60
Identificação do IP	Tamanho do IP (cm x cm)	Resultado			
141	18x24	Conforme			

DATA ENSAIO: 12/12/2018 DATA EMISSÃO: 12/12/2018

U | PARECER TÉCNICO

Segundo a Resolução Normativa Nº 002/DIVS/SES (ERRATA Publicada no DOE/SC Nº 20.654 de 13/11/2017), todos os testes realizados apresentaram conformidade. Sendo assim o equipamento avaliado pode operar com legitima observação e cuidados no que tange a radioproteção. **OBSERVAÇÕES:**

- 1) A validade do relatório é de 1 anos, contados a partir da data do ensaio.
- 2) O Responsável deve manter o relatório arquivado e a disposição da autoridade sanitária local.

V I GRÁFICOS

O gráfico apresentou resposta positiva e de acordo com o comportamento esperado, característico de um equipamento Alta Fregüência.

I FOTOS

RENATO D. PACIÊNCIA

ESPECIALISTA EM FÍSICA DO RADIODIAGNÓSTICO

(1) +55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

