Quantum Mechanics and Spectroscopy CHEM 3PA3 Assignment 15

- 1. Show the proof of the variational principle using Dirac notation.
- 2. Derive the expressions for first and second order energy of perturbation theory using Dirac notation.
- 3. Suppose we have two eigenstates $|\psi_1\rangle$ and $|\psi_2\rangle$ that yield a different eigenvalue for a certain Hermitian operator \hat{A} ,

$$\hat{A} |\psi_1\rangle = \alpha_1 |\psi_1\rangle$$
 $\hat{A} |\psi_2\rangle = \alpha_2 |\psi_2\rangle$

Show that the eigenstates are orthonormal using bracket notation.

4. Show that if \hat{A} is Hermitian, then

$$\left\langle \hat{A}\psi \middle| \hat{B}\psi \right\rangle = \left\langle \psi \middle| \hat{A}\hat{B} \middle| \psi \right\rangle.$$

5. A general state function, expressed in the form of a ket vector $|\phi\rangle$, can be written as a superposition of the eigenstates $|1\rangle$, $|2\rangle$,... of an operator \hat{A} with eigenvalues a_1 , a_2 ,... (in other words, $\hat{A}|1\rangle = a_n|n\rangle$):

$$|\phi\rangle = c_1 |1\rangle + c_2 |2\rangle + \dots = \sum_n c_n |n\rangle$$

- (a) Show that $c_n = \langle n | \phi \rangle$. This quantity is called the amplitude of measuring a_n if a measurement of \hat{A} is made in the state $|\phi\rangle$.
- (b) The probability of obtaining a_n is $c_n^*c_n$. Show that $|\phi\rangle$ can be written as $|\phi\rangle = \sum_n |n\rangle \langle n|\phi\rangle$.
- (c) Similarly, the corresponding bra vector of $|\phi\rangle$ can be written in terms of the corresponding bra vectors of the $|n\rangle$ as $\langle\phi|=\sum_n c_n^{\star}\langle n|$. Show that $c_n^{\star}=\langle\phi|n\rangle$, so that $\langle\phi|=\sum_n \langle\phi|n\rangle\langle n|$.
- (d) If $\langle \phi |$ is normalized, then $\langle \phi | \phi \rangle = 1$. Use this to argue that $\sum_{n} |n\rangle \langle n| = 1$ is a unit operator.