Universal Prediction of Individual Sequences

Siva K Gorantla
IE598 Class Presentation

Outline

- Problem Setup
- Algorithm
- Algo for Gambling
- Proofs (converse)
- Related Work
- Future Directions?

$$x_1, x_2, \cdots, x_t$$

$$\hat{x}_{t+1}$$

$$\uparrow$$
 At time t:

$$x_1,x_2,\cdots,x_t\;x_{t+1}\;\;x_{t+2}\;\;\ldots\ldots$$
 $\hat{x}_{t+1}\;\;\hat{x}_{t+2}\;\;\ldots\ldots$ At time t:

Objective: Minimize the relative frequency of prediction errors.

$$\mathbf{x}=x_1,x_2,\cdots,x_t\,x_{t+1}\,x_{t+2}\,\dots$$
 Infinite binary sequence
$$\hat{x}_{t+1}\,\hat{x}_{t+2}\,\dots\dots$$
 At time t:

Objective: Minimize the relative frequency of prediction errors.

- i.i.d., then Past ⇒ Future.
- Predictors helpful whenever Past helps in predicting the future(Patterns).

Finite State(FS) Predictor

```
\mathbf{x} = x_1, x_2, \cdots
```

Inefficient/Infeasible to remember the entire sequence (x_1, \dots, x_t) – Instead remember 'state' of the sequence (s_t)

Finite State(FS) Predictor

$$\mathbf{x} = x_1, x_2, \cdots$$

Inefficient/Infeasible to remember the entire sequence (x_1, \dots, x_t) –

Instead remember 'state' of the sequence (s₊)

Predictor Rule:

$$\hat{x}_{t+1} = f(s_t)$$

$$\hat{x}_{t+1} = f(s_t) \qquad s_t \in \mathcal{S} = \{1, 2, \dots, S\}$$

Next State Rule:

$$s_{t+1} = g(s_t, x_t)$$

Finite State Predictor:

Finite State(FS) Predictor

$$\mathbf{x} = x_1, x_2, \cdots$$

Inefficient/Infeasible to remember the entire sequence (x_1, \dots, x_t) –

Instead remember 'state' of the sequence (s_t)

Predictor Rule:

$$\hat{x}_{t+1} = f(s_t)$$

$$\hat{x}_{t+1} = f(s_t)$$
 $s_t \in \mathcal{S} = \{1, 2, \dots, S\}$

Next State Rule:

$$s_{t+1} = g(s_t, x_t)$$

Finite State Predictor:

Best fixed Predictor: (single-state) => Not saving any patterns

- Suppose frequency of zeros and ones are known e.g: 0.7 and 0.3
 - Best strategy = fixed strategy : predict either "0" or "1" all the time.
 - error = 0.3

Best fixed Predictor: (single-state) => Not saving any patterns

- Suppose frequency of zeros and ones are known e.g: 0.7 and 0.3
 - Best strategy = fixed strategy : predict either "0" or "1" all the time.
 - error = 0.3
- Suppose no information is known about the sequence.

"Behavior of sequential predictors of binary sequences" – Tom Cover

Universal Predictor with same performance as fixed strategy.

error $\rightarrow 0.3$

Markov Predictor: $s_t = (x_{t-k}, \dots, x_{t-1})$

- Suppose prior information is known frequency of #(s,0) and #(s,1).
 - Best Markov Predictor.
 - error = π^{MP}

Markov Predictor: $s_t = (x_{t-k}, \cdots, x_{t-1})$

- Suppose prior information is known frequency of #(s,0) and #(s,1).
 - Best Markov Predictor.
 - error = π^{MP}
- Suppose no information is known about the sequence.

"Compound Bayes predictors for sequences with apparent Markov Structure" – Tom Cover

Universal Predictor with same performance as Best Markov predictor.

error ->
$$\pi^{MP}$$

Fixed, Markov → Finite State

Finite State Predictor: $s_t \in \{1, 2, \cdots, S\}$

- Suppose prior information is known frequency of #(s,0) and #(s,1).
 - Best FS Predictor.
 - error = π^{FS}

•

Fixed, Markov \rightarrow Finite State

Finite State Predictor: $s_t \in \{1, 2, \dots, S\}$

- Suppose prior information is known frequency of #(s,0) and #(s,1).
 - Best FS Predictor.
 - error = π^{FS}
- Suppose no information is known about the sequence.

Does there exist an Universal Predictor with same performance as Best

Finite State Predictor?

error ->
$$\pi^{FS}$$
 ?

Fixed, Markov \rightarrow Finite State

Finite State Predictor: $s_t \in \{1, 2, \dots, S\}$

- Suppose prior information is known frequency of #(s,0) and #(s,1).
 - Best FS Predictor.
 - error = π^{FS}
- Suppose no information is known about the sequence.

Does there exist an Universal Predictor with same performance as Best Finite State Predictor?

error ->
$$\pi^{FS}$$
 ?

- 1. \exists Markov Predictor $\approx \pi^{FS}$
- 2. Markov Predictor + increasing k $\rightarrow \pi^{FS}$
- 3. Limpel-Ziv Parsing Algorithm: Markov Predictor with time varying order

Scope of the technique:

In general: Sequential Decision Problems

- Min fraction of prediction errors possible

Fix a finite sequence: x_1, \dots, x_n

Fix s_1, g : s_1, \dots, s_n

- Min fraction of prediction errors possible

Fix a finite sequence: x_1, \dots, x_n

Fix s_1, g : s_1, \dots, s_n

Compute:

N _n (s,0)	N _n (s,1)
N _n (1,0)	N _n (1,1)
N _n (2,0)	$N_{n}(2,1)$
N _n (S,0)	$N_n(S,1)$

- Min fraction of prediction errors possible

Fix a finite sequence: x_1, \dots, x_n

Fix s_1, g : s_1, \dots, s_n

Compute:

• Best prediction rule:

$$\hat{x}_{t+1} = f(s_t) = \begin{cases} 0 \text{ if } N_n(s_t, 0) > N_n(s_t, 1) \\ 1 \text{ otherwise} \end{cases}$$

N _n (s,0)	N _n (s,1)
N _n (1,0)	N _n (1,1)
N _n (2,0)	N _n (2,1)
N _n (S,0)	N _n (S,1)

- Min fraction of prediction errors possible

Fix a finite sequence: x_1, \dots, x_n Fix s_1, g : s_1, \dots, s_n

Compute:

• Best prediction rule:

$$\hat{x}_{t+1} = f(s_t) = \begin{cases} 0 \text{ if } N_n(s_t, 0) > N_n(s_t, 1) \\ 1 \text{ otherwise} \end{cases}$$

Minimum Fraction of Prediction errors:

$$N_n(s,0)$$
 $N_n(s,1)$ $N_n(1,0)$ $N_n(1,1)$ $N_n(2,0)$ $N_n(2,1)$ $N_n(S,0)$ $N_n(S,1)$

$$\pi(g; x_1^n) = \frac{1}{n} \sum_{i=1}^{S} \min\{N_n(s, 0), N_n(s, 1)\} \in [0, \frac{1}{2}]$$

$$\pi(g;x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S, g

$$\pi(g;x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S, g

ullet S-state predictability of x_1^n

$$\pi_S(x_1^n) = \min_{g \in G_s} \pi(g; x_1^n) \longrightarrow$$
 Fix x_1^n , S

$$\pi(g;x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S, g

ullet S-state predictability of x_1^n

$$\pi_S(x_1^n) = \min_{g \in G_s} \pi(g; x_1^n) \longrightarrow$$
 Fix x_1^n , S

asymptotic S-state predictability

$$\pi_S(\mathbf{x}) = \limsup_{n o \infty} \pi_S(x_1^n) \longrightarrow \mathsf{Fix} \; \mathbf{x}$$
 , S

$$\pi(g;x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
, S, g

ullet S-state predictability of x_1^n

$$\pi_S(x_1^n) = \min_{g \in G_s} \pi(g; x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S

asymptotic S-state predictability

$$\pi_S(\mathbf{x}) = \limsup_{n \to \infty} \pi_S(x_1^n) \longrightarrow \text{Fix } \mathbf{x} \text{ , S}$$

FS predictability

$$\pi(\mathbf{x}) = \lim_{S \to \infty} \pi_S(\mathbf{x}) \longrightarrow \mathsf{Fix} \ \mathbf{x}$$

$$\pi(g;x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S, g

ullet S-state predictability of x_1^n

$$\pi_S(x_1^n) = \min_{g \in G_s} \pi(g; x_1^n) \longrightarrow \operatorname{Fix} x_1^n$$
 , S

asymptotic S-state predictability

$$\pi_S(\mathbf{x}) = \limsup_{n \to \infty} \pi_S(x_1^n) \longrightarrow \text{Fix } \mathbf{x} \text{ , S}$$

FS predictability

$$\pi(\mathbf{x}) = \lim_{S \to \infty} \pi_S(\mathbf{x}) \longrightarrow \text{Fix } \mathbf{x}$$

Note: Attained by FSM that depend on particular sequence \mathbf{x} We want sequential prediction scheme which work independent of \mathbf{x} and yet achieve $\pi(\mathbf{x})$

$$\pi(g;x_1^n) \xleftarrow{ \text{Propose a scheme}} \hat{\pi}(g;x_1^n)$$

$$\pi_S(x_1^n) \leftarrow \hat{\pi}_S(x_1^n)$$

$$\pi_S(\mathbf{x}) \leftarrow \hat{\pi}_S(\mathbf{x})$$

$$\pi(\mathbf{x})$$
 $\hat{\pi}(\mathbf{x})$

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

```
A, B, C, D, E
001010100..... -----> {X,0,01,010,1,0100,.....}
```

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Parse a sequence into distinct phrases s.t each phrase is the shortest string which is not a previously parsed phrase.

• Growing a tree s.t. each new phrase is represented by a leaf in the tree.

Let $\mathbf{c} = \mathbf{c}(x_1^n)$ be the number of parsed strings in x_1^n

Let $N_t^j(x), j=1,\cdots,c$ be the number of symbols equal to x in the jth bin at time t.

The probability estimate of the next bit being x entering j-th bin is

$$\hat{p}_x = \frac{N_t^j(x) + 1}{N_t^j + 2}$$

- Compute \hat{p}_0 \hat{p}_1 say 3/5,2/5.
- Choose the one which is >1/2. here \hat{p}_0
- If in addition, $\hat{p}_x \geq \frac{1}{2} + \epsilon$, declare $\hat{x}_{t+1} = x$. If $\hat{p}_x \leq \frac{1}{2} + \epsilon$, pick 0 or 1 randomly.

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) = 1 - \phi(\hat{p}_t(0)) \end{cases}$$

$$\phi(\alpha) = \begin{cases} 0 & 0 \le \alpha \le \frac{1}{2} - \epsilon \\ \frac{1}{2\epsilon} \left[\alpha - \frac{1}{2} \right] + \frac{1}{2} & \frac{1}{2} - \epsilon \le \alpha \le \frac{1}{2} + \epsilon \\ 1 & \frac{1}{2} + \epsilon \le \alpha \le 1 \end{cases}$$

- Compute \hat{p}_0 \hat{p}_1 say 3/5,2/5.
- Choose the one which is >1/2. here \hat{p}_0
- If in addition, $\,\hat{p}_x \geq \frac{1}{2} + \epsilon\,$, declare $\,\hat{x}_{t+1} = x\,$. If $\,\hat{p}_x \leq \frac{1}{2} + \epsilon\,$, pick 0 or 1 randomly.

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) \end{cases}$$

$$\phi(\alpha) = \begin{cases} 0 & 0 \le \alpha \le \frac{1}{2} - \epsilon \\ \frac{1}{2\epsilon} \left[\alpha - \frac{1}{2} \right] + \frac{1}{2} & \frac{1}{2} - \epsilon \le \alpha \le \frac{1}{2} + \epsilon \end{cases}$$

$$\frac{1}{2} + \epsilon \le \alpha \le 1$$

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) \end{cases}$$

Probability of making an error: $1 - \phi(\hat{p}_t(x_{t+1}))$

$$\hat{\pi}(x_1^n) = \frac{1}{n} \sum_{i=0}^n (1 - \phi(\hat{p}_t(x_{t+1})))$$

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) \end{cases}$$

Probability of making an error: $1 - \phi(\hat{p}_t(x_{t+1}))$

$$\hat{\pi}(x_1^n) = \frac{1}{n} \sum_{i=0}^n (1 - \phi(\hat{p}_t(x_{t+1})))$$

$$\hat{\pi}(x_1^n) \to \pi(\mathbf{x})$$

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) \end{cases}$$

Probability of making an error: $1 - \phi(\hat{p}_t(x_{t+1}))$

$$\hat{\pi}(x_1^n) = \frac{1}{n} \sum_{i=0}^n (1 - \phi(\hat{p}_t(x_{t+1})))$$

$$\hat{\pi}(x_1^n) \to \pi(\mathbf{x})$$

A, B, C, D, E 00101010100..... -----> {X,0,01,010,1,0100,......}
As the number 'n' increases, the number of states 'S' increases.

LZ incremental parsing algorithm.

- Markov: Remembers last few entries.
- Incremental: States increase with n.

LZ algorithm for Gambling

- At each step, either Horse 0 or Horse 1 wins.
- You get double or nothing.
- How do you invest taking into consideration previous winning patterns?

LZ algorithm for Gambling

- At each step, either Horse 0 or Horse 1 wins.
- You get double or nothing.
- How do you invest taking into consideration previous winning patterns?

$$\hat{p}^{LZ}(x_{t+1}|x_1^t)$$
 \longrightarrow (Prediction) Use to predict \hat{x}_{t+1} \longrightarrow (Gambling) Invest \hat{p}_0 on Horse 0 and \hat{p}_1 on Horse 1.

Gambling Using a Finite State Machine

Finite State Complexity:

$$S_n = S_0 2^{n(1 - H^{FS}(x_1^n))}$$

Using LZ algorithm for Gambling:

$$S_n = S_0 2^{n(1 - \hat{H}^{LZ}(x_1^n))}$$

$$\hat{H}^{LZ}
ightarrow H^{FS}$$
 [Meir Feder '91]

Scope of the technique:

In general: Sequential Decision Problems

Proofs

• S = 1 Single-State Machine

Fix a finite sequence: x_1, \dots, x_n

If $N_n(1,0)$, $N_n(1,1)$ are known, optimal solution:

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{if } N_n(1,0) > N_n(1,1) \\ 1, & \text{otherwise} \end{cases}$$

$$\pi_1(x_1^n) = \frac{1}{n} \min\{N_n(1,0), N_n(1,1)\}$$

Non - Sequential

Proof – Step 1

• S = 1 Single-State Machine

Fix a finite sequence: x_1, \dots, x_n

If $N_n(1,0)$, $N_n(1,1)$ are not known:

At each t, update N_t(1,0) and N_t(1,1), compute $\hat{p}_x = \frac{N_t(s,x)+1}{t+2}$

$$\hat{x}_{t+1} = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1)) \end{cases}$$

$$\hat{\pi}_1(x_1^n) \to \pi_1(x_1^n), \quad \forall x_1^n$$

Proof – Step 1

• S = 1 Single-State Machine

Assume $N_n(1,0) > N_n(1,1)$ WLOG

$$\pi(x_1^n) = \frac{1}{n} N_n(1,1) \qquad \qquad \text{Predicts "0" every time.}$$

$$\hat{\pi}(x_1^n) \leq \hat{\pi}(\tilde{x}_1^n) \qquad \qquad \text{Worst sequence}$$

0101010101.... 01 0000000000
$$\longleftrightarrow \longrightarrow \longleftrightarrow$$

$$\hat{\pi}(\tilde{x}_1^n) = \text{E[fraction of errors]} \quad ---- \text{ as a function of } \epsilon$$

$$\hat{\pi}(\tilde{x}_1^n) = \frac{1}{n} \sum_{i=0}^n (1 - \phi(\hat{p}_t(x_{t+1})))$$

$$\leq \frac{N_n(1,1)}{n} + \frac{\epsilon}{1-2\epsilon} + O(\frac{\log n}{n}) \qquad \epsilon \text{ fixed}$$

$$\leq \frac{N_n(1,1)}{n} + O(\frac{1}{\sqrt{n}}) \qquad \epsilon_t = \epsilon = \frac{1}{2\sqrt{t+2}}$$

Proofs

$$\hat{\pi}(x_1^n) \le \frac{N_n(1,1)}{n} + O(\frac{1}{\sqrt{n}})$$

Proposed a Scheme Compute worst Case performance

$$\pi(g;x_1^n) \xleftarrow{ \text{Propose a scheme}} \hat{\pi}(g;x_1^n)$$

$$\pi_S(x_1^n) \leftarrow \hat{\pi}_S(x_1^n)$$

$$\pi_S(\mathbf{x}) \leftarrow \hat{\pi}_S(\mathbf{x})$$

$$\pi(\mathbf{x}) \leftarrow \hat{\pi}(\mathbf{x})$$

Proof-Step 2

• S known, g known

Fix a finite sequence: x_1, \dots, x_n

$$\hat{p}_t(x|s) = \frac{N_t(s,x)+1}{N_t(s)+2}, \quad x = 0, 1$$

$$\hat{x}_{t+1} = f(s_t) = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0|s_t)) \\ 1, & \text{with probability } \phi(\hat{p}_t(1|s_t)) \end{cases}$$

Decompose x_1^n into S subsequences $x^n(S)$ of length $N_n(s)$

$$\hat{\pi}(g; x_1^n) \le \frac{1}{n} \sum_{i=1}^{S} [\min\{N_n(s, 0), N_n(s, 1)\} + N_n(s)\delta_1(N_n(s))]$$

$$\le \pi(g; x_1^n) + O(\sqrt{S/n})$$

Proofs

$$\hat{\pi}(x_1^n) \le \frac{N_n(1,1)}{n} + O(\frac{1}{\sqrt{n}})$$

Proposed a Scheme Compute worst Case performance

$$O(\sqrt{S/n})$$
 $\pi(g; x_1^n) \leftarrow \hat{\pi}(g; x_1^n)$

$$\pi_S(x_1^n) \leftarrow \hat{\pi}_S(x_1^n)$$

$$\pi_S(\mathbf{x}) \leftarrow \hat{\pi}_S(\mathbf{x})$$

$$\pi(\mathbf{x})$$
 $\hat{\pi}(\mathbf{x})$

Refinement of an FS machine

$$g \to \tilde{g}$$
 s.t. $s_t = h(\tilde{s}_t)$

A refinement can do better than the original.

$$\pi(g; x_1^n) \ge \pi(\tilde{g}; x_1^n)$$

For a given S, over all $g \in G_S$

$$\begin{aligned} |\mathsf{G}| &= \mathsf{S}^{2\mathbb{S}} \\ \tilde{s}_t &= (s_t^1, s_t^2, \cdots, s_t^M) \\ &\qquad \qquad \pi(\tilde{g}; x_1^n) \leq \pi(g; x_1^n) \quad \forall g \in G_S \\ &\qquad \qquad \pi(\tilde{g}; x_1^n) \leq \min_{g \in G_S} \pi(g; x_1^n) = \pi_S(x_1^n) \\ &\qquad \qquad O(\sqrt{S^{2S}/n}) \end{aligned}$$

Proofs

$$\hat{\pi}(x_1^n) \le \frac{N_n(1,1)}{n} + O(\frac{1}{\sqrt{n}})$$

Proposed a Scheme Compute worst Case performance

$$O(\sqrt{S/n})$$
 $\pi(g; x_1^n) \leftarrow \hat{\pi}(g; x_1^n)$

$$O(\sqrt{S^{2S}/n})$$
 $\pi_S(x_1^n)$ $\pi_S(x_1^n)$ S-State predictability Define a new refined state

$$\pi_S(\mathbf{x}) \leftarrow \hat{\pi}_S(\mathbf{x})$$

$$\pi(\mathbf{x})$$
 $\hat{\pi}(\mathbf{x})$

$$s_t = (x_{t-k}, \cdots, x_{t-1})$$

Let $\mu_k(x)$ be the k-th order Markov predictability

Refinement:
$$k^* > k \rightarrow \mu_k(x) > \mu_{k^*}(x)$$

Scheme:

$$\hat{x}_{t+1} = f(s_t) = \begin{cases} 0, & \text{with probability } \phi(\hat{p}_t(0|(x_{t-k}, \dots, x_{t-1}))) \\ 1, & \text{with probability } \phi(\hat{p}_t(1|(x_{t-k}, \dots, x_{t-1}))) \end{cases}$$

$$\hat{p}_x = \frac{N_t(x_{t-k+1} \dots x_t 0) + 1}{N_t(x_{t-k+1} \dots x_t) + 2}$$

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

Refinement: $k^* > k \rightarrow \mu_k(x) > \mu_{k^*}(x)$

$$\lim_{k \to \infty} \mu_k(x) = \mu(x)$$
 Markov Predictability

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

Refinement: $k^* > k \rightarrow \mu_k(x) > \mu_{k^*}(x)$

$$\lim_{k \to \infty} \mu_k(x) = \mu(x)$$
 Markov Predictability

To attain $\mu(x)$, the order k must grow as more data is available

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

Refinement: $k^* > k \rightarrow \mu_k(x) > \mu_{k^*}(x)$

$$\lim_{k\to\infty}\mu_k(x)=\mu(x)$$
 Markov Predictability

To attain $\mu(x)$, the order k must grow as more data is available

Increase rapidly to achieve higher-order Markov Predictability

Increase slowly to ensure reliable estimate of $\hat{p}_t(0|(x_{t-k},\cdots,x_{t-1}))$

Order k should not grow faster than O(log t) to satisfy both requirements

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

$$\to \mu(x)$$

$$\hat{\mu}_k(x_1^n) \le \mu_k(x_1^n) + O(\sqrt{2^k/n})$$

$$\to \mu(x)$$

$$\to \pi(x)$$
?

$$\hat{\mu}_k(x_1^n) \leq \mu_k(x_1^n) + O(\sqrt{2^k/n})$$
 $o \mu(x)$
 $o \pi(x)$?

 $\mu(x) \geq \pi(x)$
 $\mu_k(x_1^n) \leq \pi(g; x_1^n) + \sqrt{\frac{\ln S}{2(k+1)}}$ for any k,S

$$\hat{\mu}_k(x_1^n) \leq \mu_k(x_1^n) + O(\sqrt{2^k/n})$$
 $o \mu(x)$
 $o \pi(x)$?

 $\mu(x) \geq \pi(x)$
 $\mu_k(x_1^n) \leq \pi(g; x_1^n) + \sqrt{\frac{\ln S}{2(k+1)}}$ for any k,S
 $ext{ } \leq \pi_S(x_1^n) + \sqrt{\frac{\ln S}{2(k+1)}}$

Proofs

$$\hat{\mu}_k(x) \to \lim_{n \to \infty} \mu(x_1^n) = \mu(x) = \pi(x)$$

Bottom line: Markov Predictor + Increasing Order achieves FS predictability

LZ algorithm does the job

Other work

Universal prediction of individual binary sequences in the presence of noise - T. Weissman and N. Merhay '99.

- Predict the next outcome of an individual binary sequence, based on noisy observations of the past.
- Predictor competes with "set of experts", performs "almost" as well as best of the experts.

On context-tree prediction of individual sequences - Jacob Ziv, Neri Merhav.

the prediction is based on a ``context'' (or a state) that consists of the k most recent past outcomes $x_{t-k},...,x_{t-1}$, where the choice of k may depend on the contents of a possibly longer, though limited, portion of the observed past, $x_{t-k_max},...,x_{t-1}$

Other work

Finite-Memory Universal Prediction of Individual Sequences - Eado Meron and Meir Feder '04.

- > FS predictor can be deterministic or stochastic.
- g can be stochastic.

SEQUENTIAL PREDICTION OF INDIVIDUAL SEQUENCES UNDER GENERAL LOSS FUNCTIONS - D Haussler – 1998

Universal Prediction of Individual Binary Sequences in the Presence of Arbitrarily Varying, Memoryless Additive Noise –T Weissman 00

Future Work?

In general: Sequential Decision Problems