Solución al Examen de Teoría de autómatas y lenguajes formales del 2 de Diciembre del 2016.

1. (3 ptos.)

Calcular el AFD mínimo equivalente al siguiente autómata finito:

$$R^{0} = \{\{1, 2, 3, 4, 5\}, \{6\}\}\$$

$$R^{1} = \{\{1, 2, 3\}, \{4\}, \{5\}, \{6\}\}\}$$

$$R^{2} = \{\{1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}\}\}$$

$$R^{3} = R^{2} = R^{\infty}$$

2. (3 ptos.) Sea
$$L = \{xay : x, y \in \{a, b\}^* \land y \neq x^R\}$$
. ¿Es L regular?

Sea la secuencia infinita $\langle b^i a \rangle_{i>0}$ y sean $b^j a$ y $b^k a$ con $j \neq k$ dos palabras cualesquiera de la misma. Consideremos además la palabra b^j . Podemos observar que

 $b^j a.b^j \notin L$ pues contiene una única a y las palabras a su izquierda, $x=b^j$, y derecha, $y=b^j$, son tales que $y=x^R$, mientras que

 $b^k a.b^j \in L$ pues puede expresarse en la forma $xay: y = b^j \neq x^R = b^k$.

Por tanto $b^j a$ y $b^k a$ tendrían que llevarnos a estados diferentes en cualquier AFD que aceptara a L. Puesto que esto es cierto para cada par de palabras de la serie infinita, cualquier autómata que aceptara a L tendría que tener infinitos estados y no sería, por tanto, un AFD. Con esto queda demostrado que no existe ningún AFD que acepte a L y, por definición, que L no es regular.

3. (3 ptos.)

Sea h el homomorfismo tal que $h(0)=aba,\,h(1)=ab.$ Dados los autómatas

calcular un AFD para cada uno de los siguientes lenguajes:

i)
$$L(A_1) \cap L(A_2)$$

4. (1 pto.)

Sea $L\subseteq\{a,b\}^*$ y sea P una operación tal que P(L) es el resultado de eliminar el primer símbolo de las palabras de L que comienzan por a, dejando como están las demás. Demuestre que $L\in\mathcal{L}_3\Rightarrow P(L)\in\mathcal{L}_3$.

El lenguaje $L_a = \{x \in \{a,b\}^* : a \in Pref(x)\}$ es regular, pues es aceptado por el AFD

$$\longrightarrow \bigcirc a$$
 $\bigcirc a,b$

Ahora tenemos que: Por una parte $a^{-1}L$ son las palabras resultantes de quitar a las palabras de L que comienzan por a su primer símbolo. Por otra parte $L-L_a$ son las palabras de L que no comienzan por a.

Por lo tanto $P(L) = (a^{-1}L) \cup (L - L_a)$.

Ahora, dado que $L_a \in \mathfrak{L}_3$, y que \mathfrak{L}_3 es cerrada bajo derivadas, unión y diferencia,

$$L \in \mathfrak{L}_3 \Rightarrow (a^{-1}L) \cup (L - L_a) \in \mathfrak{L}_3$$

o, lo que es lo mismo,

$$L \in \mathfrak{L}_3 \Rightarrow P(L) \in \mathfrak{L}_3$$