BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név:			
Műszaki Mechanikai Tanszék	2. HÁZI FELADAT	Neptun kód: AHU27Z			
2024/25 II.	Határidő: lásd Moodle	Késedelmes beadás: □ Javítás: □			
Nyilatkozat: Aláírásommal igazolom, hog szítettem el, az abban leírtak saját megértése	Aláírás:				

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet két rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas (rugalmassági modulusz: E=210 GPa; Poisson-tényező: $\nu=0,3$). Az (1)-es rúd keresztmetszete az ábrán látható I-szelvény (I-80-MSZ-325), míg a (2)-es rúdé d külső átmérőjű körgyűrű.

Adatok

$L\left[\mathbf{m}\right]$	h [m]	d [mm]	F [kN]	M [kNm]	p [kN/m]	$\varepsilon_a [10^{-4}]$	$\varepsilon_b [10^{-4}]$	$\varepsilon_c [10^{-4}]$	α [°]
1.50	2.50	58	4	1.50	1.75	-5.20	2.50	6	30

(Rész)eredmények

A_z [kN] x_{max} [m]		$w_{ m max}$ [mm]		$t_{ m min}$ [mm]	$\varepsilon_y [10^{-4}]$		$\gamma_{xz} \left[10^{-4} \right]$		σ_x [MPa]			
σ_z [MPa] τ_{xz} [MPa]		MPa]	σ_1 [MPa]		σ_2 [MPa]	σ_3 [MPa]		$\Delta\sigma_{ m e}$ [MPa]		u_d [J/cm 3]		
e_{1x} [-]	$e_{:}$	_{1y} [-]	e_{1z} [[-]	e_{2x} [-]	e_{2y} [-]	e_{2z} [-]	e_3	x [-]	e_{3y} [·	-]	e_{3z} [-]

Pontozás

Minimumfeladat			Felac	Dokumentáció	Összesen			
	2.	3.	4.	5.	6.	7.	Dokumentacio	Osszesch
	/5	/3	/4	/4	/2	/2	/5	/25

Feladatok

Az 1. feladat minimumfeladat, helyes megoldása előfeltétele a házi feladat elfogadásának!

- 1. Készítsen léptékhelyes ábrát a szerkezetről! Rajzolja meg a rudak szabadtest ábráit, majd ezek alapján határozza meg az A és B kényszerekben ébredő reakció komponenseket, valamint a rudak közt a C pontban átadódó erőket! **Minimumfeladat**
- 2. Határozza meg az (1)-es rúd w(x) lehajlásfüggvényét a rugalmas szál differenciálegyenletének felhasználásával, amennyiben a (2)-es rúd hosszváltozásától eltekintünk:
 - Szerkessze meg a hajlítónyomatéki igénybevételi függvényt (parabolaívek esetén az érintőket is)!
 - Írja fel a rugalmas szál differenciálegyenletét és a megoldáshoz szükséges peremfeltételeket, majd a jellegzetes értékek feltüntetésével ábrázolja a kapott lehajlás- és szögelfordulásfüggvényt. A szabványos I-szelvény y-tengelyre számított másodrendű nyomatéka $I_y=77.8~{\rm cm}^4!$
 - Adja meg az abszolút értelemben maximális elmozdulás x_{max} helyét és w_{max} előjelhelyes értékét!
- 3. Méretezze a (2)-es rudat kihajlásra:
 - Rajzolja meg a (2)-es rúdra jellemző $\sigma_{\rm kr}$ kritikus feszültség λ karcsúság diagramot a jellegzetes értékek feltüntetésével, ha a folyáshatár $\sigma_F=240$ MPa, $\lambda_0=105$, valamint a Tetmajer-egyenes képlete $\sigma_{\rm kr}=308-1{,}14\lambda$ MPa.
 - Adja meg a t_{\min} minimális falvastagságot tized mm-re kerekítve, hogy a (2)-es rúd háromszoros biztonsággal megfeleljen kihajlásra! Mekkora lesz ekkor a λ karcsúság?

Egy másik, ismeretlen terhelési esetben az (1)-es rúd alakváltozási állapotát vizsgáljuk az I-szelvény gerincére az ábrán látható módón felhelyezett nyúlásmérő bélyegekből álló "rozetta" segítségével. A vizsgált, terheletlen felületen az ε_a , ε_b és ε_c fajlagos nyúlásokat mérjük.

- 4. Értékelje ki a nyúlásmérés eredményét:
 - Határozza meg az ε alakváltozási tenzor mátrixát a P pontbeli x-y-z koordináta rendszerben! Adja meg a vizsgált P pontban a $\Delta V/V$ fajlagos térfogatváltozás értékét!
 - A Hooke-törvény segítségével adja meg a σ feszültségi tenzor mátrixát (az x-y-z koordináta rendszerben), valamint adja meg a skalár invariánsai értékét! Ábrázolja a feszültségi állapotot feszültségi kiskockán!
- 5. Határozza meg a főfeszültségeket és a főirányokat a Mohr-féle feszültségi kördiagram szerkesztésével! Adja meg a főirányok \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 egységvektorait úgy, hogy jobbsodrású rendszert alkossanak és az e_{1x} komponens ne legyen negatív értékű! Ellenőrizze számítását, sajátérték-sajátvektor számítással!
- 6. Számítsa ki a P pontbeli feszültségi állapothoz tartozó $\sigma_{\rm e}^{\rm Mohr}$ Mohr-féle, valamint a $\sigma_{\rm e}^{\rm HMH}$ HMH-féle egyenértékű feszültségeket! Adja meg a két elmélet $\Delta\sigma_{\rm e}=\sigma_{\rm e}^{\rm Mohr}-\sigma_{\rm e}^{\rm HMH}$ abszolút eltérését!
- 7. Számítsa ki a P pontbeli u alakváltozási energiasűrűség értékét! Adja meg ennek az u_h térfogatváltozásra, és az u_d alaktorzulásra forduló részét!