Chapitre 4:Circuits combinatoires

Présenter par: Mme AMGHAR D

Circuits combinatoires

- 1. Introduction
- 2. Addition binaire
- 3. Soustraction
- 4. Comparaison
- 5. Décodage
- 6. Multiplexage
- 7. Encodage

Introduction

- Les circuits logiques sont élaborés à partir de composants électroniques transistors .
- Types de circuits logiques:
 - Combinatoires
 - Séquentiels

Introduction

Circuits logiques séquentiels : c'est des circuits dont les valeurs de sortie dépendent d'entrée appliquées ultérieurement.

Circuits logiques combinatoires : c'est des circuits dont les valeurs de sortie ne dépendent que de ses valeurs d'entrée.

Circuit combinatoire

Un circuit combinatoire est constitué d'éléments logiques élémentaires appelés portes logiques(logic gates), elle reçoivent des signaux appliqués en entrée et produisent des signaux en sortie.

Circuit combinatoire

L'étude des circuits combinatoires se résume en deux questions :

- **Synthèse**: réaliser le circuit combinatoire à partir de l'énoncé décrivant les fonctions ou le rôle du circuit, en question.
- Analyse: déterminer le rôle du circuit combinatoire à partir de son logigramme.

Circuit combinatoire

les étapes à suivre pour réaliser la synthèse d'un circuit logique combinatoire :

- 1. Établir la table de vérité de chacune des fonctions impliquées dans le problème à traiter
- 2. Établir les équations logiques.
- 3. Simplifier les équations de chacune des fonctions logiques.
- 4. Établir le logigramme du circuit logique.

Circuits combinatoires

Un circuit combinatoire est un circuit numérique dont les sorties dépendent uniquement des entrées.

Circuits combinatoires

Parmi les principaux circuits combinatoires, on distingue:

- les circuits d'opérations arithmétiques (addition, soustraction)
- Les circuits logiques (décodage, multiplexage, comparaison).

Remarque: Il est possible d'utiliser des circuits combinatoires pour réaliser d'autres circuits plus complexes.

- Additionneurs :
- Demi additionneur : 2 entrées sur 1 bit,
 - 2 sorties sur 1 bits.
- Additionneur complet : 3 entrées sur 1 bit,
 - 2 sorties sur 1 bits.
- Additionneur sur n bits.

Demi-additionneur (half adder)::

- On commence par l'addition de 2 bits **a** et **b** en entrée ,avec en sortie la **somme S** et une retenue **R**.
- On l'appelle demi additionneur, parce qu'il ne tient pas compte de la **retenue** qui peut provenir des calculs précédents.

Entrées	Sorties			
A B	Somme (S) Retenue (R_{sor})			
0 + 0	0	0		
0 + 1	1	0		
1+0	1	0		
1 + 1	0	I		

Demi-additionneur (half adder)::

Entrées	Sorties				
A B	Somme (S) Retenue (R_{sor})				
0 + 0	0	0			
0 + 1	1	0			
1+0	1	0			
I + I	0	1			

a
$$\longrightarrow$$
 S $S = a \oplus b$
b \longrightarrow R $R_{sor} = a.b$

Demi additionneur (half adder):

Expressions logiques:

$$S = A \oplus B$$

 $R_{SOr} = A.B$.

Logigramme :

L'additionneur complet (full adder):

- il faut tenir compte de la retenue provenant des bits de poids inférieurs
- donc l'additionneur complet :
- > 3 entrées :a, b et r
- 2 sorties S et R

additionneur Complet (full adder) (AC):

Symbole logique d'un AC

L'additionneur complet(full adder):

TV de l'additionneur complet :

a	b	r	R	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$a$$
 b
 DC
 r
 R
 $R = \bar{a}.b.r + a.\bar{b}.r + a.b.\bar{r} + a.b.r$
 $R = a.b + r(a \oplus b)$ (après simplification)

 $S = \bar{a}.\bar{b}.r + \bar{a}.b.\bar{r} + a.\bar{b}.\bar{r} + a.b.r$
 $S = (a \oplus b) \oplus r$

Additionneur complet (full adder): :

Expressions logiques:

$$\begin{split} S &= (A \oplus B) \oplus R_{en} \\ R_{zor} &= A.B + (A \oplus B).R_{en} \end{split}.$$

Logigramme :

Additionneur complet(full adder):

Logigramme avec 2 demi-additionneurs :

DA
$$S = a \oplus b$$
 $R_{sor} = a.b$

$$S = (a \oplus b) \oplus r$$
CA $R = a.b + r(a \oplus b).$

Additionneur parallèle:

- Pour additionner 2 nombres
- ► Il consiste à mettre des additionneurs 1 bit en série, avec la retenue sortante de l'un qui devient entrante du suivant, ce qui correspond à la propagation de retenue.

Additionneur parallèle:

Exemple: additionneur parallèle à 4 bits.

Soit à additionner les nombres binaires :

$$A = a_0 a_1 a_2 a_3$$

$$B = b_0 b_1 b_2 b_3$$

Additionneur 4 bits:

