USTHB-Faculté de Chimie

SNV- CHIMIE I

EPREUVE DE RATTRAPAGE (Durée 1H 30)

Nom:	Note/20 :
Prénom :	4
N°d'immatriculation :	
Section/groupe :	

EXERCICE NºI / 7pts

1- Donner la configuration électronique du phosphore $^{31}_{15}P$ et représenter les électrons de valence dans les cases quantiques - en déduire la période, le groupe et le bloc de cet élément.

Configuration électronique	Cases quantiques	Période	Groupe	Bloc

2- Quels sont les quatre nombres quantiques qui caractérisent chacun des électrons de valence de l'élément phosphore.

- 3- Un isotope du phosphore ₁₅ P a son nombre de masse égal à 32. Quels sont les constituants du noyau de cet isotope.
- 4- L'élément 15P s'associe à l'hydrogène (1H) et à l'Oxygène (8O) pour former les trois composés suivants :

 H_3PO_2 , H_3PO_3 et H_3PO_4

- Compléter le tableau ci-dessous en donnant le diagramme de Lewis, le type AX_mE_n selon Gillespie, l'état d'hybridation de P et la géométrie des trois composés cités.

Composé	H ₃ PO ₂	H ₃ PO ₃	H ₃ PO ₄
Diagramme de Lewis			
Type AX _m E _n		,	
Etat d'hybridation de p			
Géométrie			

S. HADJOUT

Faculté de Chimie, USTHB

01 février 2014

Epreuve de rattrapage de Chimie 1

1ère année SNV

Durée 01H30min

Exercice 1 (07.5 points)

On considère les six éléments suivants C (Z = 6), N (Z = 7), Cl (Z = 17), K (Z = 19), Rb (Z = 37) et Mo (Z = 42).

- 1) Ecrire la configuration électronique, à l'état fondamental, de chacun des six éléments. Quels sont les éléments appartenant à la même période et ceux appartenant au même groupe.
- 2) A quelle famille appartient chacun des éléments suivant : Cl, Rb et Mo. Justifier
- 3) Définir l'électronégativité d'un élément et préciser parmi les six éléments, celui qui possède la plus faible valeur d'électronégativité.
- 4) Un électron de la couche externe d'un des six éléments précités est caractérisé par les quatre nombres quantiques suivants : n = 4, l = 2, m = +2, s = +1/2. De quel élément s'agit-il ?
- 5) a- Donner le diagramme de Lewis de la molécule C₂N₂ (non cyclique)
 b- Déterminer les états d'hybridation des atomes C et N, puis déduire la géométrie de cette molécule.