

Graph Theory

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

2、图的连通性

概念:

通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈)

点连通, 连通图, 点割集, 割点, 边割集, 割边

点连通度, 边连通度

弱连通图,单向连通图,强连通图

二部图 (二分图)

通路与回路

通路与回路

给定图 $G=\langle V, E \rangle$ (无向或有向的), G中顶点与边的交替序列

 $\Gamma = v_0 e_1 v_1 e_2 \cdots e_l v_l$ 称为从 v_0 到 v_1 的通路,其中 v_{i-1} , v_i 是 e_i 的端点;

若 $V_0 = V_I$,则称 Γ 为回路。

Γ 中的边数称为通路的长度。

分类:

- 简单通路与简单回路: 所有边各异;
- 初级通路(路径)与初级回路(圈): Γ 中所有顶点各异($v_0=v_I$ 除外),所有边也各异;
- 复杂通路与复杂回路: 有边重复出现。

几点说明

- 表示法
 - ① 定义表示法
 - ② 只用边表示法
 - ③ 只用顶点表示法(在简单图中)
 - ④ 混合表示法
- 环:长为1的圈,其长度为1
- 两条平行边构成的圈长度为2
- 无向简单图中,圈长≥3
- 有向简单图中圈的长度≥2

通路与回路的长度

- 定理 在n 阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$) 存在通路,则从 v_i 到 v_j 存在长度小于或等于n—1 的通路。
- 推论 在 n 阶图G中,若从顶点 v_i 到 v_j ($v_i \neq v_j$) 存在通路,则从 v_i 到 v_j 存在长度小于或等于n—1的初级通路(路径)。
- 定理 在一个n 阶图G中,若存在 v_i 到自身的回路,则一定存在 v_i 到自身长度小于或等于n的回路。
- 推论 在一个n 阶图G中,若存在 v_i 到自身的简单回路,则一定存在长度小于或等于n 的初级回路。

二部图

二部图

设 G=<V,E>为一个无向图,若能将 V分成 V_1 和 V_2

 $(V_1 \neq \emptyset, V_2 \neq \emptyset, V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset),$

使得 G 中的每条边的两个端点都是一个属于 V_1 ,另一个属于 V_2 ,则称 G 为二部图 (或称二分图、偶图等),称 V_1 和 V_2 为互补顶点子集。常将二部图G记为< V_1 , V_2 ,E>。

特别地,若G是简单二部图, V_1 中每个顶点均与 V_2 中所有的顶点相邻,则称G为完全二部图,记为 $K_{r,s}$,其中 $r=|V_1|$, $s=|V_2|$ 。

注意,n阶(n≥2)零图为二部图。

二部图的判别法

定理 无向图G=<V,E>($|V|\ge 2$)是二部图 当且仅当 G中无奇圈。

例:由定理可知下列各图都是二部图,哪些是完全二部图?

