1. The radius of curvature of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point (a,0) is

(a)
$$\frac{b^2}{a}$$
 (b) $\frac{a^2}{b}$ (c) $\frac{a}{b^2}$ (d) $\frac{b}{a^2}$

2. If the value of the integral $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^5}} dx$ is $K_1 \beta \left(K_2, \frac{1}{2}\right)$ then $\frac{K_2}{K_1}$ is equal to

3. The integral $\int_{1}^{\infty} \sin\left(\frac{1}{x}\right) dx$ is

(a) Divergent (b) Converges to 1 (c) Converges to 0 (d) None of these

4. Find an asymptote for the following curve: $x = \frac{t}{1+t^3}$, $y = \frac{t^2}{1+t^3}$

(a)
$$y - x + \frac{1}{3} = 0$$
 (b) $y - x - \frac{1}{3} = 0$ (c) $y + x - \frac{1}{3} = 0$ (d) $y + x + \frac{1}{3} = 0$

5. The expansion of $f(x) = ln(1 + e^x)$ at x = 0?

(a)
$$ln2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \cdots$$
 (b) $ln2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \cdots$ (c) $ln2 + \frac{x}{2} + \frac{x^3}{8} - \frac{x^5}{192} + \cdots$ (d) $ln2 + \frac{x}{2} + \frac{x^3}{8} - \frac{x^5}{192} + \cdots$

6. The value of $\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin x}} dx \times \int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} dx$ is

(a)
$$\pi$$
 (b) $\sqrt{\pi}$ (c) 1 (d) $\frac{\pi}{2}$

7. For what maximum value of x in the interval $[0, \infty)$ can you replace $\ln(1+x)$ by $x - \frac{x^2}{2}$ with an error of magnitude no greater than 4% of x.

8. The point of inflection for the curve $f(x) = (x+1)^{1/3}$ is

9. The integral $\int_{1}^{2} \frac{\sqrt{x}}{\log x} dx$ is

(a) Divergent (b) Converges to 2 (c) converges to 1 (d) None of these

10. If *n* is positive integer, then the value of
$$\frac{2^{n}\Gamma\left(n+\frac{1}{2}\right)}{1.3.5....(2n-1)}$$
 is

(a)
$$\pi$$
 (b) $\sqrt{\pi}$ (c) 1 (d) None of these