TEHNICI DE COMPILARE – CURSUL 5

PARSER DESCENDENT (TOP-DOWN) GENERAL

Fie $G = (N, \Sigma, S, P)$ gramatică independentă de context care descrie sintaxa unui limbaj de programare.

Considerăm multimea:

$$\mathcal{C} = \Sigma^* \# \times (N \cup \Sigma)^* \# \times \{1, ..., |P|\}^*$$
, unde:

- C mulțimea configurațiilor parserului
- # simbol nou, # $\notin N \cup \Sigma$

Numim configurație a parser-ului un triplet $c = (x\#, \alpha\#, \pi) \in \mathcal{C}$, unde $x \in \Sigma^*$, $\alpha \in (N \cup \Sigma)^*, \pi \in \{1, ..., |P|\}^*$, # simbol nou, iar:

- x# este cuvântul ce a rămas de analizat pe banda de intrare
- α# reprezintă conținutul stivei, cu # la bază
- $\pi = p_1 p_2 \dots p_k$, $p_1, p_2, \dots, p_k \in \{1, \dots, |P|\}$ reprezintă numerele de ordine ale producțiilor aplicate până la momentul actual.

Definiție. Parserul descendent atașat g.i.c. $G = (N, \Sigma, S, P)$ constă din perechea (C_0, \vdash) , unde:

- $C_0 = \{(w\#, S\#, \lambda) | w \in \Sigma^*\} \subseteq C$ este mulțimea configurațiilor inițiale;
- $\vdash \subseteq \mathcal{C} \times \mathcal{C}$ reprezintă relația de tranziție între configurații pentru care avem regulile:
- 1) $(u\#, A\gamma\#, \pi) \vdash (u\#, \beta\gamma\#, \pi r)$, unde $r: A \rightarrow \beta \in P$
- 2) $(av\#, a\gamma\#, \pi) \vdash (v\#, \gamma\#, \pi), \forall a \in \Sigma$
- 3) (#, #, π) configurația de acceptare
- 4) O configurație c pentru care nu există c' cu $c \vdash c'$ în sensul 1)-2), o numim configurație de eroare

Notam cu ⊢* închiderea reflexivă și tranzitivă a relației ⊢ și cu ⊢+ inchiderea tranzitivă a acestei realații.

Parserul descris mai sus corespunde translatorului stivă nedeterminist T_G (vezi cursul 4), în care nu mai este pusă în evidență starea, deoarece nu este relevantă.

Dacă pentru neterminalul A avem două producții $r_1: A \to \beta_1, r_2: A \to \beta_2, \beta_1 \neq \beta_2$, atunci la pasul 1) putem alege (nedeterminist) oricare dintre cele 2 producții, adică din configurația $(u\#, A\gamma\#, \pi)$ putem să trecem fie în $(u\#, \beta_1\gamma\#, \pi r_1)$, fie în $(u\#, \beta_2\gamma\#, \pi r_2)$.

Lema 1. Dacă în parserul descendent (C_0, \vdash) atașat g.i.c. $G = (N, \Sigma, S, P)$ avem:

$$(uv\#, \gamma\#, \lambda) \vdash^* (v\#, \delta\#, \pi), u, v \in \Sigma^*, \gamma, \delta \in (N \cup \Sigma)^*, \pi \in \{1, ..., |P|\}^*$$
 atunci în G avem derivarea stângă:

$$\gamma \stackrel{\pi}{\Rightarrow}_{S} u\delta$$

Demonstrație. Facem inducție după $n = |\pi|$.

Baza. n = 0. Rezultă că în secvența $(uv\#, \gamma\#, \lambda) \vdash^* (v\#, \delta\#, \lambda)$ s-au aplicat doar tranziții de tipul 2), deci $\gamma = u\delta$ și atunci evident $\gamma \stackrel{\pi}{\Rightarrow}_{s} u\delta, \pi = \lambda$.

<u>Ipoteza de inducție</u>. Presupunem afirmația din enunț adevărată pentru orice π cu $|\pi| = n, n$ dat.

Saltul inductiv. Fie π cu $|\pi| = n + 1$.

Atunci $\pi = \pi' r$, $|\pi'| = n$, r: $A \to \beta \in P$ este ultima productie aplicata. Putem scrie:

$$(uv\#, \gamma\#, \lambda) = (u'u''v\#, \gamma\#, \lambda) \vdash^* (u''v\#, A\gamma'\#, \pi') \vdash (u''v\#, \beta\gamma'\#, \pi'r) = (u''v\#, u''\delta\#, \pi) \vdash^* (v\#, \delta\#, \pi), \text{ unde } u = u'u'', \beta\gamma' = u''\delta.$$

În conformitate cu ipoteza de inducție, deoarece $(u'u''v\#, \gamma\#, \lambda) \vdash^* (u''v\#, A \gamma'\#, \pi')$, rezultă că $\gamma \stackrel{\pi'}{\Rightarrow_S} u'A\gamma'$. Deoarece $u' \in \Sigma^*$, rezultă că A este cel mai din stânga neterminal, deci aplicând $r: A \to \beta$ obtinem:

$$\gamma \stackrel{\pi'}{\Rightarrow}_{S} u'A\gamma' \stackrel{r}{\Rightarrow} u'\beta'\gamma' = u'u''\delta = u\delta,$$

adica $\gamma \stackrel{\pi}{\Rightarrow}_{s} u\delta$, qed.

Corolar 1. Dacă în parserul descendent (C_0, \vdash) asociat gramaticii $G = (N, \Sigma, S, P)$ are loc $(w\#, S\#, \lambda) \vdash^* (\#, \#, \pi)$, atunci $S \stackrel{\pi}{\Rightarrow}_S w$.

Lema 2. Fie $G = (N, \Sigma, S, P)$ g.i.c. și (C_0, \vdash) parserul descendent asociat. Dacă în G are loc derivarea stângă $\gamma \stackrel{\pi}{\Rightarrow}_S uA\delta, u \in \Sigma^*$, atunci $\forall v \in \Sigma^*$,

$$(uv\#, \gamma\#, \lambda) \vdash^* (v\#, A\delta\#, \pi)$$

Demonstrație. Facem inducție după $n = |\pi|$.

<u>Baza</u>. n = 0. Rezultă că $\gamma = uA\delta$, iar $(uv\#, uA\delta\#, \lambda) \vdash^* (v\#, A\delta\#, \lambda), \pi = \lambda$.

<u>Ipoteza de inducție</u>. Presupunem afirmația din enunț adevărată pentru orice π cu $|\pi| = n$, n dat.

Saltul inductiv. Fie π cu $|\pi| = n + 1$. Atunci $\pi = \pi' r$, $|\pi'| = n$, iar în G avem:

$$\gamma \stackrel{\pi'}{\Rightarrow}_{S} u'A'\delta' \stackrel{r}{\Rightarrow}_{S} u'u''A\delta''\delta' = uA\delta$$

unde $r: A' \to u'' A \delta'' \in P$, u = u'u'', $\delta = \delta'' \delta'$. În conformitate cu ipoteza de inducție, deoarece $\gamma \stackrel{\pi'}{\Rightarrow}_s u' A' \delta'$, rezultă că:

$$(u'v'#, \gamma #, \lambda) \vdash^* (v'#, A'\delta'#, \pi'), \forall v' \in \Sigma^*.$$

Consideram v' = u''v, $v \in \Sigma^*$ oarecare. Atunci obținem:

$$(uv\#, \gamma\#, \lambda) = (u'u''v\#, \gamma\#, \lambda) \vdash^* (u''v\#, A'\delta'\#, \pi')$$

$$\vdash (u''v\#, u''A\delta''\delta'\#, \pi'r) \vdash^* (v\#, A\delta\#, \pi), \text{qed}.$$

Corolar 2. Dacă în $G = (N, \Sigma, S, P)$ are loc derivarea $S \stackrel{\pi}{\Rightarrow}_{S} w$, atunci în parserul descendent (C_0, \vdash) asociat gramaticii are loc $(w\#, S\#, \lambda) \vdash^* (\#, \#, \pi)$.

<u>Demonstrație</u>. Punem în evidență ultimul pas al derivării $S \stackrel{\pi}{\Rightarrow}_{S} w$:

$$S \stackrel{\pi'}{\Rightarrow} uA\delta \stackrel{r}{\Rightarrow} u\beta\delta, r: A \rightarrow \beta \in P, \pi = \pi'r, u\beta\delta = w \in \Sigma^*.$$

În conformitate cu Lema 2, pentru $\gamma = S$, $v = \beta \delta$, obținem:

$$(w\#, S\#, \lambda) = (u\beta\delta\#, S\#, \lambda) \vdash^* (\beta\delta\#, A\delta\#, \pi') \vdash (\beta\delta\#, \beta\delta\#, \pi'r)$$
$$\vdash^* (\#, \#, \pi), \text{qed}.$$

Teorema 1. Pentru o g.i.c. $G = (N, \Sigma, S, P)$ și parserul descendent (C_0, \vdash) asociat avem $S \stackrel{\pi}{\Rightarrow}_S w$ dacă și numai dacă $(w\#, S\#, \lambda) \vdash^* (\#, \#, \pi)$ (altfel spus $w \in L(G)$ dacă și numai dacă $(w\#, S\#, \lambda) \vdash^*$ acceptare.

Demonstrație. Rezultă din Corolarele 1 și 2.

Această teoremă asigură corectitudinea parserului descendent (top-down).

PARSER k-PREDICTIV

Dacă în parserul descendent general, asociat gramaticii G, la regulile de de tipul

1)
$$(u\#, A\gamma\#, \pi) \vdash (u\#, \beta\gamma\#, \pi r)$$
, unde $r: A \rightarrow \beta \in P$

alegerea producției este unică, bazându-ne pe un anumit criteriu, obținem un parser determinist, numit k-predictiv, iar derivările stângi rezultate sunt unice.

Vom arăta că pentru orice gramatică LL(k) tare există un astfel de parser.

TABELA DE ANALIZĂ SINTACTICĂ k-PREDICTIVĂ

Input: $G = (N, \Sigma, S, P)$ gramatică independentă de context fără simboluri inutilizabile, $k \ge 1$ dat

Output: Tabela de analiză sintactică k-predictivă

$$M: \mathbb{N} \times (\Sigma \cup \{\#\})^* \rightarrow \{(\beta, r) | r: A \rightarrow \beta \in P\} \cup \{eroare\}$$

Algoritm:

1. Se calculează mulțimile $First_k(X)$ pentru fiecare $X \in N \cup \Sigma \cup \{\#\}$, folosind algoritmul din cursul 4 (evident, $First_k(\#) = \{\#\}$).

- Se calculează mulțimile Follow_k(A) pentru fiecare A ∈ N, folosind algoritmul din cursul 4, cu excepția faptului că se inițializează Follow_k(S) cu {#} in loc de {λ}. Configurația inițială este (w#, S#, λ), deci după S urmează #, iar w este șirul analizat.
- 3. Pentru fiecare producție $r: A \to \alpha \in P$, unde $r \in \{1, ..., |P|\}$ este numărul de ordine al producției, repetă
 - 3.1. Pentru fiecare $x \in (\Sigma \cup \{\#\})^*, x \in First_k(\alpha \cdot Follow_k(A))$ setează $M[A, x] \leftarrow (\alpha, r)$
 - 3.2. Pentru fiecare $y \in (\Sigma \cup \{\#\})^*, |y| \le k, y \notin First_k(\alpha \cdot Follow_k(A))$ setează $M[A, y] \leftarrow eroare$

Observații.

- În tabela M se introduc doar intrări pentru M[A, x] ca în 3.1, în rest se consideră automat că M[A, y] = eroare (3.2.)
- Cu algoritmul de mai sus este posibil să obținem pentru un același neterminal A și același șir x două intrări diferite în tabela M. Aceasta înseamnă de fapt că există două producții distincte $r: A \to \alpha \in P, r': A \to \beta \in P, \alpha \neq \beta$ pentru care $x \in First_k\left(\alpha Follow_k(A)\right) \cap First_k(\beta Follow_k(A))$, deci $M[A,x] \leftarrow (\alpha,r)$ și $M[A,x] \leftarrow (\beta,r')$
- Rezultă că pentru o gramatică independentă de context, *G*, fără simboluri inutilizabile, <u>tabela *M* nu are intrări multiple dacă și numai dacă *G* este *LL(k)* tare.</u>
- Algoritmul de mai sus furnizează o metodă de a verifica dacă o gramatică independentă de context dată este LL(k) tare.

ANALIZORUL SINTACTIC PENTRU GRAMATICI LL(k) TARI

<u>Input</u>: $G = (N, \Sigma, S, P)$ gramatică independentă de context de tip LL(k) tare; $k \ge 1$ dat; tabela de analiză sintactică M construită ca mai sus; $w \in \Sigma^*$ șirul analizat.

Output: Derivarea stângă (unică), π , a lui w, dacă $w \in L(G)$.

Algoritm: Mișcările (tranzițiile) parserului sunt date de:

1.
$$(u\#, A\gamma\#, \pi) \vdash (u\#, \beta\gamma\#, \pi r)$$
, dacă $M[A, First_k(u\#)] = (\beta, r)$

2.
$$(av\#, a\gamma\#, \pi) \vdash (v\#, \gamma\#, \pi), \forall a \in \Sigma$$

- 3. $(\#, \#, \pi) \vdash \text{acceptare}, \pi \neq \lambda$
- 4. $(au\#, bv\#, \pi) \vdash \text{eroare}$, pentru $a, b \in \Sigma$, $a \neq b$
- 5. $(u#, A\gamma#, \pi) \vdash \text{eroare}, \text{dacă } M[A, First_k(u#)] = \text{eroare}.$

Observații. Parserul de mai sus este determinist, deoarece G fiind LL(k) tare, rezultă că M nu are intrări multiple.

Exemplu. Fie k = 1 și gramatica G cu producțiile

$$E \rightarrow TR$$

$$R \rightarrow +TR \mid *TR \mid \lambda$$

$$T \rightarrow (E)|a$$

X	First(X)	Follow(X)
Ε	(, a	#,)
T	(, a	+,*,#,)
R	+,*,λ	#,)

1.
$$E \to TR$$
, $First(TR \cdot Follow(E)) = \{(a, a)\}$

2.
$$R \rightarrow +TR$$
, $First(+TR \cdot Follow(R)) = \{+\}$

3.
$$R \rightarrow *TR$$
, $First(*TR \cdot Follow(R)) = {*}$

4.
$$R \rightarrow \lambda$$
, $First(\lambda \cdot Follow(R)) = Follow(R) = \{\#, \}$

5.
$$T \rightarrow (E)$$
, $First(E) \cdot Follow(T) = \{(\}$

6.
$$T \rightarrow a$$
, $First(a \cdot Follow(T)) = \{a\}$

Tabela de analiză sintactică 1-predictivă obținută:

М	а	+	*	()	#
E	(TR, 1)	Eroare	Eroare	(TR, 1)	eroare	eroare
T	(a, 6)	Eroare	eroare	((E),5)	eroare	eroare
R	eroare	(+TR,2)	(* TR, 3)	eroare	(λ, 4)	(λ, 4)

Deoarece M nu are intrări multiple, rezultă că G este de tip LL(1) tare, deci este chiar de tip LL(1).

Analizăm șirul w = a * a

$$(a*a\#, E\#, \lambda) \vdash (a*a\#, TR\#, 1) \vdash (a*a\#, aR\#, 16) \vdash (*a\#, R\#, 16) \vdash$$

 $(*a\#, *TR\#, 163) \vdash (a\#, TR\#, 163) \vdash (a\#, aR\#, 1636) \vdash (\#, R\#, 16364) \vdash$
 $(\#, \#, 16364) \vdash$ acceptare

16364 reprezintă derivarea stângă (unică) a lui a * a din S.

ALGORITMUL EARLEY

- A fost dezvoltat de J. Earley în 1968. Este un algoritm de tip top-down polinomial, $O(n^3)$, unde n lungimea șirului de intrare. Algoritmul original funcționează doar pentru gramatici fără λ -producții.
- J. Aycock & R.N. Horspool au îmbunătățit algoritmul în anii 2001-2002, extinzându-l pentru orice tip de gramatică independentă de context. Complexitatea algoritmului este tot $O(n^3)$.
- Algoritmul Earley este folosit îndeosebi în parsarea limbajelor naturale.

Input: $G = (N, \Sigma, S, P)$ gramatică independentă de context; $w = a_1 a_2 \dots a_n \in \Sigma^*$ șirul analizat, $n = |w| \ge 0$.

<u>Metoda</u>: Se crează mulțimile $S_0, S_1, ..., S_n$ de configurații Earley de forma $[A \to \alpha. \beta, j]$, unde $A \to \alpha\beta \in P, j$ pointer catre $S_j, 0 \le j \le n$. O configurație se adaugă la S_j dacă și numai dacă nu exista deja în S_j .

Semnificația configurației $[A \rightarrow \alpha. \beta, j]$:

- $-\alpha$ este subsirul care a fost analizat
- $-\beta$ urmează să fie analizat

Gramatica G se extinde la $G' = (N \cup \{S'\}, \Sigma, S', P \cup \{S' \rightarrow S\})$. Evident, L(G) = L(G').

Se inițializează S_0 cu $[S' \rightarrow .S, 0]$

Operațiile de creare a mulțimilor $S_0, S_1, ..., S_n$ (pentru intrarea $w = a_1 a_2 ... a_n$):

Scanarea. Dacă
$$\left[A \to \alpha. \, \alpha\beta, j\right] \in S_i, 0 \le i \le n-1$$
 și $a=a_{i+1}$, atunci $S_{i+1} \leftarrow S_{i+1} \cup \left[A \to \alpha a. \, \beta, j\right]$

Predicția. a) Dacă
$$\left[A \to \alpha. B\beta, j\right] \in S_i, 0 \le i \le n$$
, atunci $\forall B \to \gamma \in P$ $S_i \leftarrow S_i \cup \left[B \to \gamma, i\right]$.

b) În plus, dacă $B \stackrel{*}{\Rightarrow} \lambda$, atunci $S_i \leftarrow S_i \cup [A \rightarrow \alpha B. \beta, j]$.

<u>Completarea</u>. Dacă $[A \to \alpha, j] \in S_i$ și $[B \to \beta, A\gamma, k] \in S_j, j \le i$, atunci $S_i \leftarrow S_i \cup [B \to \beta A, \gamma, k]$.

Observații.

- 1. Pentru fiecare mulțime S_i se <u>aplică mai întâi</u> operațiile de predicție și completare, făcând treceri repetate peste configarațiile lui S_i până când nu se mai adaugă noi configurații.
- Scanarea presupune trecerea de la mulțimea S_i la S_{i+1}, i < n, dacă și numai dacă următorul simbol din șirul de intrare, a_{i+1}, apare într-o configurație din S_i având punctul în față, cu alte cuvinte apare într-o configurație [A → α. a_{i+1}β, j] din S_i, fiind următorul simbol analizat plecând de la acea configurație. Dacă i < n și S_{i+1} nu poate fi construită (în S_i nu există nicio

- configurație în care '.' apare în fața lui a_{i+1} , următorul simbol din intrare), atunci $w \notin L(G)$. STOP
- 3. În cazul predicției: atunci când '.' se află în fața unui neterminal B, aceasta înseamnă că analiza va continua plecând de la acel neterminal, de aceea se introduc în mulțimea curentă S_i toate configurațiile de forma [B → γ, i], B → γ ∈ P. Indicele asociat noii configurații va fi i, deoarece începând din acest punct se va continua derivarea stângă plecând de la B.
- 4. Ceea ce au adăugat Aycock & Horspool la algoritmul Earley este b) din predicție, care permite ca atunci când $[A \to \alpha. B\beta, j] \in S_i$ și $B \stackrel{*}{\Rightarrow} \lambda$, analiza să continue și cu β , care urmează după B.
- 5. În cazul operației de completare: dacă o configurație finală [A → α., j] este în mulțimea curentă S_i, atunci ne "întoarcem" în S_j, de unde provine A → α., și verifică dacă '.' apare în fața neterminalului A în vreuna din configurațiile lui S_j ([B → β. Aγ, k]). Dacă da, deoarece în S_i am parsat complet pe α (avem [A→ α., j] ∈ S_i), este ca și cum am parsat A din configurația [B → β. Aγ, k] ∈ S_j, de aceea vom introduce în S_i configurația [B → βA. γ, k].
- 6. Dacă S_n este construită și în S_n apare $[S' \to S, 0]$ atunci $w \in L(G)$; altfel, $w \notin L(G)$.
- 7. Pentru a reconstitui derivările stângi ce permit generarea lui w, atunci când $w \in L(G)$, se păstrează o structură arborescentă între configurații, în funcție de modul în care decurg una din cealaltă.

Exemplu. Fie gramatica $G: S \rightarrow S + S \mid n; w = n + n, |w| = 3$

Construim mulțimile S_0 , S_1 , S_2 , S_3 .

$$S_{0} \begin{bmatrix} S' \to .S, & 0 \\ S \to .S + S, 0 \\ S \to .n, & 0 \end{bmatrix}$$

$$W_{1} = 'n' \begin{bmatrix} S \to n., & 0 \\ S' \to S., & 0 \\ S \to S. + S, 0 \end{bmatrix}$$

$$W_{2} = '+' \begin{bmatrix} S \to S + .S, & 0 \\ S \to .S + S, & 2 \\ S \to .n, & 2 \end{bmatrix}$$

$$W_{3} = 'n' \begin{bmatrix} S \to n., & 2 \\ S \to S. + S, & 0 \\ S \to S. + S, & 2 \\ S' \to S., & 0 \\ S \to S. + S, & 0 \end{bmatrix} \leftarrow$$

Rezultă că $n + n \in L(G)$.