A 27/26-Approximation Algorithm for the Chromatic Sum Coloring of Bipartite Graphs

Krzysztof Giaro, Robert Janczewski, Marek Kubale, and Michał Małafiejski

Foundations of Informatics Department, Gdańsk University of Technology, Poland kubale@eti.pg.gda.pl

Abstract. We consider the Chromatic Sum Problem on bipartite graphs which appears to be much harder than the classical Chromatic Number Problem. We prove that the Chromatic Sum Problem is NP-complete on planar bipartite graphs with $\Delta \leq 5$, but polynomial on bipartite graphs with $\Delta \leq 3$, for which we construct an $O(n^2)$ -time algorithm. Hence, we tighten the borderline of intractability for this problem on bipartite graphs with bounded degree, namely: the case $\Delta = 3$ is easy, $\Delta = 5$ is hard. Moreover, we construct a 27/26-approximation algorithm for this problem thus improving the best known approximation ratio of 10/9.

1 Introduction

Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). By n and m we denote the number of vertices and the number of edges of G, respectively. By $\Delta(G)$ we denote the maximum degree over all vertices of graph G. If $W \subset V(G)$ is a nonempty set then by G[W] we denote a subgraph of G induced by W. The chromatic sum is defined as follows [6].

Definition 1. By the **chromatic sum** of graph G we mean $\sum (G) = \min_c \sum (G,c)$, where $\sum (G,c) = \sum_{v \in V(G)} c(v)$ and $c:V(G) \to \mathbb{N}$ is a proper vertex coloring of G, i.e. $c(v) \neq c(w)$ whenever $\{v,w\} \in E(G)$. A coloring c of G is said to be a **best coloring** if $\sum (G,c) = \sum (G)$.

The problem of verifying the inequality $\sum (G) \leq k$ for a graph G and arbitrary positive integer k is known as the Chromatic Sum Problem. This differs from the Sum Coloring Problem, which requires a best coloring c in addition. The notion of chromatic sum was first introduced in [6], where the authors showed that the Chromatic Sum Problem is NP-complete on arbitrary graphs. Another complexity result comes from [11], where NP-completeness has been proved for interval graphs. In [2] the authors have shown that there exists $\varepsilon > 0$, such that there is no $(1 + \varepsilon)$ -ratio approximation algorithm for the Sum Coloring Problem on bipartite graphs, unless P = NP. In [7] the author proved

the NP-completeness of the Chromatic Sum Problem on cubic planar graphs. Moreover, in [7] the Chromatic Sum Problem on r-regular graphs was proved to be NP-complete for any $r \geq 3$. The 2-approximation algorithm for interval graphs have been shown in [9]. In [1] the authors showed $(\Delta+2)/3$ -approximation algorithm for graphs with bounded degree and the 2-approximation algorithm for line graphs.

In this paper we deal with the Chromatic Sum Problem on bipartite graphs. We establish a borderline of intractability for this problem on bipartite graphs with bounded degree, namely the case $\Delta=3$ is easy, $\Delta=5$ is hard. We construct an $O(n^2)$ -time algorithm for bipartite graphs with $\Delta \leq 3$, and a 27/26-approximation algorithm for the Sum Coloring Problem on any bipartite graph. This improves the previously best known 10/9-approximation algorithm for this problem [2].

1.1 NP-Completeness Results on Bipartite Planar Graphs with $\Delta \leq 5$

In this extended abstract we omit the proofs of NP-completeness.

Theorem 1 ([8]). The CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with $\Delta \leq 5$.

Corollary 1 ([8]). The Chromatic Sum Problem is NP-complete on planar bipartite graphs with $\Delta \leq 5$, even when restricted to graphs for which there exists a best 3-coloring.

2 Exact and Approximation Algorithms

In this section we introduce an idea of 3-pseudocolorings of bipartite graphs and construct an algorithm for finding the best pseudocoloring for any bipartite graph in O(mn) time.

Definition 2. By a **pseudocoloring** (3-**pseudocoloring**) of bipartite graph G we mean any mapping $q:V(G)\to\{1,2,3\}$ satisfying conditions: every set $C_i:=q^{-1}(\{i\})$ is an independent set in graph G for i=1 and i=2. Analogously to Definition 1, by the **pseudochromatic sum** of a bipartite graph G we mean $\sum_{qs}(G):=\min_q\sum_{g}(G,q)$, where $\sum_{g}(G,q):=\sum_{v\in V(G)}q(v)$ and g is a pseudocoloring of G. A pseudocoloring g of graph g is said to be a **best pseudocoloring** if $\sum_{g}(G,q):=\sum_{g}(G)$.

For any bipartite graph G we have an obvious

Proposition 1.
$$\sum_{qs}(G) \leq \sum(G) \leq 3n/2$$
.

We get at once

Proposition 2. For any best pseudocoloring q of subcubic (i.e. $\Delta(G) \leq 3$) bipartite graph G we have $\Delta(G[C_2 \cup C_3]) \leq 2$.

Before we show the algorithm, we need some well-known notation of minimum cuts in weighted digraphs (e.g. see [10]). Let D=(V,A) be any digraph without loops and multiple edges, and let w be a vector of positive weights (including ∞) on the edges of D. For any two different vertices $s,t\in V(D)$ by the s-t cut (or simply cut) we mean a partition (S,T) of the set V(D) such that $s\in S$, $t\in T$, $S\cap T=\emptyset$ and $S\cup T=V(D)$. By the capacity of the cut (S,T) we mean $f(S,T):=\sum_{e\in A(D)\cap (S\times T)}w(e)$. By the minimum cut $f_o(D,w,s,t)$ we mean the s-t cut of weighted digraph D which minimizes f(S,T).

Theorem 2. There exists an algorithm for finding the best pseudocoloring of any bipartite graph in O(mn) time.

Proof. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. We construct the digraph D with weights w such that a minimum s - t cut (P, Q) for some vertices $s \in P$ and $t \in Q$ is equal to $f_o(D, w, s, t) = f(P, Q) = \sum_{qs} (G) - n(G)$.

Let $G^* = (V_1^* \cup V_2^*, E^*)$ be the isomorphic copy of G such that $V(G) \cap V(G^*) = \emptyset$. By v^* we denote an image of vertex $v \in V(G)$ under isomorphism $h: V(G) \to V(G^*)$, i.e. $h(v) = v^*$ ($h^{-1}(v^*) = v$), analogously $h(V_i) = V_i^*$. The directed graph D with weights w shown in Figure 1 is formally defined as follows:

$$V(D) = V(G^*) \cup V(G) \cup \{s\} \cup \{t\}$$

$$A(D) = A_{1,2} \cup A_{2,1} \cup A_{s,1} \cup A_{2,t} \cup A_{1,1} \cup A_{2,2}$$

$$w(e) = \begin{cases} 1 & \text{if } e \in A_{s,1} \cup A_{2,t} \cup A_{1,1} \cup A_{2,2} \\ \infty & \text{if } e \in A_{1,2} \cup A_{2,1} \end{cases}$$

$$(1)$$

where

$$\begin{split} A_{1,2} &= \{(v_1,v_2): v_1 \in V_1 \wedge v_2 \in V_2 \wedge \{v_1,v_2\} \in E(G)\} \\ A_{2,1} &= \{(v_2,v_1): v_1 \in V_1^* \wedge v_2 \in V_2^* \wedge \{v_1,v_2\} \in E(G^*)\} \\ A_{s,1} &= \{s\} \times V_1 \\ A_{2,t} &= V_2 \times \{t\} \\ A_{1,1} &= \{(v_1^*,v_1): v_1 \in V_1\} \\ A_{2,2} &= \{(v_2,v_2^*): v_2 \in V_2\} \end{split}$$

Let (P,Q) be the minimum s-t cut in D. We introduce auxiliary notations (see Figure 1) for i=1,2:

$$P_{i} = V_{i} \cap P, P_{i}^{*} = V_{i}^{*} \cap P$$

$$Q_{i} = V_{i} \cap Q, Q_{i}^{*} = V_{i}^{*} \cap Q,$$
(2)

moreover, using the isomorphism h we define $P_{1,Q}^* = h(Q_1) \cap P$, $Q_{2,P}^* = h(P_2) \cap Q$. Because $f(P,Q) \leq \sum_{e \in A_{s,1}} w(e) = |V_1| < \infty$, from the infinity of weights of edge sets $A_{1,2}$ and $A_{2,1}$ we get

$$A(D) \cap ((P_2^* \times Q_1^*) \cup (P_1 \times Q_2)) = \emptyset.$$
(3)

Fig. 1. The directed graph D with specified sets of vertices, edges and its weights.

So, from definition of capacity we obtain $f(P,Q) = |Q_1| + |P_2| + |P_{1,Q}^*| + |Q_{2,P}^*|$. Moreover, if $h(P_1) \cap Q_1^* \neq \emptyset$ then we can change the (P,Q) partitioning by moving these vertices from Q to P. Observe, that this operation cannot increase the cut capacity and can be done in linear time. Analogously, if $h(Q_2) \cap P_2^* \neq \emptyset$ the we can move these vertices from P to Q. Therefore in the following we assume that $Q_1^* \subseteq h(Q_1)$ and $h(Q_2) \subseteq Q_2^*$. So, we have

$$f(P,Q) = |Q_1| + |P_2| + |P_{1,Q}^*| + |Q_{2,P}^*|$$

$$= |Q_1| + |P_2| + |h(Q_1)| - |h(Q_1) \cap Q| + |h(P_2)| - |h(P_2) \cap P|$$

$$= 2 \cdot |Q_1| + 2 \cdot |P_2| - |Q_1^*| - |P_2^*|.$$
(4)

Now, we shall show the connection between the constructed minimum cut (P,Q) and some pseudocoloring of G. We prove the following claims:

Claim 1. $C_1 := P_1 \cup Q_2$ and $C_2 := h^{-1}(Q_1^* \cup P_2^*)$ are independent sets in G.

Claim 2. Defining $C_3 := V(G) \setminus (C_1 \cup C_2)$ we get the pseudocoloring q defined as follows: $q^{-1}(\{i\}) = C_i$ with $\sum (G, q) = f(P, Q) + n(G)$.

Claim 3. Pseudocoloring q is the best one, i.e. $\sum (G,q) = \sum_{qs} (G)$.

By (3) $C_1 = P_1 \cup Q_2$ is an independent set in G and $Q_1^* \cup P_2^*$ is an independent set in G^* and because h^{-1} is an isomorphism so C_2 is an independent set in G. Claim 1 is proved. Then q is a pseudocoloring of G, hence by (4) we get Claim 2:

$$\sum (G,q) = |C_1| + 2 \cdot |C_2| + 3 \cdot |C_3| = 3 \cdot n(G) - 2 \cdot |C_1| - |C_2|$$
$$= n(G) + 2 \cdot (n(G) - |C_1|) - |C_2| = n(G) + f(P,Q).$$

Now, observe that for any pseudocoloring p of G the following partition (S^p, T^p) :

$$S^{p} = \{s\} \cup (C'_{1} \cap V_{1}) \cup h(C'_{1} \cap V_{1}) \cup (V_{2} \setminus C'_{1}) \cup h(V_{2} \cap C'_{2}) \cup h(V_{1} \cap C'_{3})$$
$$T^{p} = \{t\} \cup (C'_{1} \cap V_{2}) \cup h(C'_{1} \cap V_{2}) \cup (V_{1} \setminus C'_{1}) \cup h(V_{1} \cap C'_{2}) \cup h(V_{2} \cap C'_{3})$$

is an s-t cut of capacity $f(S^p, T^p) = \sum (G, p) - n(G)$, where $C'_i := p^{-1}(\{i\})$. Because (P, Q) is the minimum cut in D we get that q is the best pseudocoloring of G, so we have proved Claim 3.

We can construct the minimum cut (P,Q) in O(mn) time using the Ford-Fulkerson algorithm (see [10]), hence we have constructed the best pseudocoloring q of graph G in polynomial time.

As the first consequence of Theorem 2 we get an $O(n^2)$ -time algorithm for solving the Sum Coloring Problem on subcubic bipartite graphs.

Theorem 3. The SUM COLORING PROBLEM on subcubic bipartite graphs can be solved in $O(n^2)$ time.

Proof. Let G be any subcubic bipartite graph. Because m=O(n), so by Theorem 2 we can construct in time $O(n^2)$ the best pseudocoloring q such that every $C_i:=q^{-1}(\{i\})$ is an independent set in G for i=1,2. By Proposition 2 we conclude that the subgraph of G induced by $C_2 \cup C_3$ is of degree at most 2. Because q is the best pseudocoloring of G, we can easily recolor graph $G[C_2 \cup C_3]$ with colors 2, 3 and get a proper coloring c of graph G using only 3 colors with the same sum of colors. From Proposition 1 it follows $\sum (G,c) = \sum (G,q) = \sum_{qs} (G) \leq \sum (G)$, hence c is the best coloring of G.

In [1] the authors proposed a 9/8-approximation algorithm, which has been improved in [2].

Theorem 4 ([2]). There exists a 10/9-approximation algorithm for the Sum Coloring Problem on bipartite graphs.

Now, we improve on this result by using the pseudocoloring algorithm given in the proof of Theorem 2.

Theorem 5. There exists a 27/26-approximation algorithm for the Sum Coloring Problem on bipartite graphs of complexity O(mn).

Proof. Let $G = (V_1 \cup V_2, E)$ be any bipartite graph with m edges, n vertices and assume that $|V_1| \ge |V_2|$. By Theorem 2 we can construct the best pseudocoloring q in O(mn) time. Let us denote, $C_i := q^{-1}(\{i\})$ and $a_i := |C_i|$ for i = 1, 2, 3. Proposition 1 implies

$$\sum (G,q) = a_1 + 2a_2 + 3a_3 = 2n - a_1 + a_3 \le \sum (G).$$
 (5)

Now, consider three algorithms A_1 , A_2 and A_3 for coloring a bipartite graph G. By A_1 we mean an algorithm that colors V_1 with color 1 and V_2 with color 2. It is easy to see that

$$S(A_1) \le 3n/2,\tag{6}$$

where by $S(A_i)$ we denote the sum of colors used by algorithm A_i for i = 1, 2, 3. The algorithm A_2 colors all the vertices from C_1 with color 1 and colors graph $G[C_2 \cup C_3]$ analogously to A_1 with colors 2 and 3. It is easy to see that

$$S(A_2) \le a_1 + 5(a_2 + a_3)/2 = 5n/2 - 3a_1/2. \tag{7}$$

Finally, let A_3 be an algorithm that colors C_1 with 1, C_2 with 2 and colors graph $G[C_3]$ similarly to A_1 with colors 3 and 4, hence we get

$$S(A_3) \le a_1 + 2a_2 + 7a_3/2 = 2n - a_1 + 3a_3/2. \tag{8}$$

Now, let A be an algorithm that colors graph G using A_1 , A_2 , A_3 and chooses the solution with minimum sum of colors. Using 6, 7, 8 and 5 we get

$$26S(A) \le 2S(A_1) + 6S(A_2) + 18S(A_3)$$

$$\le 54n - 27a_1 + 27a_3 = 27(2n - a_1 + a_3) \le 27\sum_{i=1}^{n} G_i.$$

In contrast to the general case, where the Chromatic Sum Problem on r-regular graphs is NP-complete [7], the Chromatic Sum Problem on bipartite regular graphs appears to be polynomially solvable. In fact, we get an exact formula for the chromatic sum.

Theorem 6. The chromatic sum of a connected bipartite regular graph is equal to 3n/2 for any n > 1. Moreover, any coloring c using more than two colors has a greater sum.

Proof. Consider an arbitrary feasible coloring c of k-regular graph with n vertices. Then

$$k \sum_{v \in V} c(v) = \sum_{\{v,u\} \in E} (c(v) + c(u)) \ge \sum_{\{v,u\} \in E} 3 = 3|E| = 3kn/2,$$

hence $\sum (G) \geq 3n/2$. The lower bound is attained for bipartite regular graphs by coloring with 1 all vertices in one part of the bipartition, and by coloring with 2 all vertices in the other part.

3 Conclusions

The results given in the previous section tighten the borderline between P and NP-completeness for the Chromatic Sum Problem on low-degree bipartite graphs, namely: graphs with $\Delta \leq 3$ are easy instances and those with $\Delta \leq 5$ are

Table 1. Complexity classification for the chromatic sum problem on graphs with bounded degree.

Problem: CSP or SCP on graphs	Complexity	Reference
$\Delta \leq 2$	$O\left(n\right)$	[7]
regular bipartite	O(n)	Thm. 6
planar cubic graphs	NPC	[7]
k -regular $(k \ge 3)$	NPC	[7]
bipartite subcubic ($\Delta \leq 3$)	$O\left(n^2\right)$	Thm. 3
bipartite with $\Delta \leq 5$	NPC	Thm. 7

hard. A still open question is the complexity of the problem on bipartite graphs with $\Delta = 4$. The authors conjecture that this problem is polynomially solvable, but this case claim seems to be very hard to prove.

The proposed approximation algorithm produces a coloring that is less than 4% worse than the value of optimal solution. In [2] the authors show that there exists an $\varepsilon > 0$, such that there is no $(1+\varepsilon)$ -ratio approximation algorithm (unless P=NP). We still don't know how far is 1/26 from this ε . Table 1 summarizes the complexity results proved for graphs with small degree.

References

- Bar-Noy A., Bellare M., Halldórsson M.M., Shachnai H., Tamir T.: On chromatic sums and distributed resource allocation. Information and Computation 140 (1998) 183-202
- Bar-Noy A., Kortsarz G.: Minimum color sum of bipartite graphs. Journal of Algorithms 28 (1998) 339-365
- Dyer M.E., Frieze A.M.: Planar 3DM is NP-complete. Journal of Algorithms 7 (1986) 174-184
- 4. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)
- Giaro K., Kubale M.: Edge-chromatic sum of trees and bounded cyclicity graphs. Inf. Proc. Letters 75 (2000) 65-69
- Kubicka E., Schwenk A.J.: An introduction to chromatic sums. Proceedings of ACM Computer Science Conference (1989) 39-45
- Małafiejski M.: The complexity of the chromatic sum problem on planar graphs and regular graphs. The First Cologne Twente Workshop on Graphs and Combinatorial Optimization, Cologne (2001), Electronic Notes in Discrete Mathematics 8 (2001)
- 8. Małafiejski M.: Scheduling Multiprocessor Tasks to Minimize Mean Flow Time (in Polish), Ph.D. Thesis, Gdańsk University of Technology (2002)
- Nicolso S., Sarrafzadeh M., Song X.: On the sum coloring problem on interval graphs. Algorithmica 23 (1999) 109-126
- Papadimitriou C.H., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey (1982)
- Szkaliczki T.: Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete. SIAM Journal on Computing 29 (1999) 274-287

4 Appendix

The reduction uses the restriction of the classical NP-complete problem 3DM [4], namely a planar 3DM problem introduced and proved in [3].

Definition 3. $3DM_p$: let W, X, Y be three disjoint sets satisfying |W| = |X| = |Y| = q and let M be any subset of $W \times X \times Y$. For every $a \in W \cup X \cup Y$ we define $\#a := |\{(w, x, y) \in M : w = a \lor y = a \lor x = a\}|$ which is equal to 2 or 3. Moreover, a bipartite graph $G = (W \cup X \cup Y \cup M, \{\{a, m\} : a \in m, a \in W \cup X \cup Y, m \in M)$ is planar, where $a \in m$ means that a is one of the coordinates of vector m. The question that we state is as follows: is there a subset $M' \subseteq M$

satisfying |M'| = q, such that every two elements $m_1, m_2 \in M'$, $m_1 \neq m_2$, differ on each coordinate?

The following easy observation holds for any best colorings of graph G.

Proposition 3. Given a graph G and a decomposition of G into vertex disjoint subgraphs $G_1, ..., G_k$ such that $\bigcup_{i=1}^k V(G_i) = V(G)$ and $\bigcup_{i=1}^k E(G_i) \subset E(G)$ implies $\sum (G) \ge \sum_{i=1}^k \sum (G_i)$. Moreover, if c_i is a best coloring of G_i for all i = 1, ..., k and all these colorings form a coloring c of G, then c is a best coloring of G and $\sum (G) = \sum (G, c) = \sum_{i=1}^k \sum (G_i, c_{|V(G_i)})$.

Theorem 7. The Chromatic Sum Problem is NP-complete on planar bipartite graphs with $\Delta \leq 5$.

Proof. We show a polynomial reduction from problem $3DM_p$ to the CHROMATIC SUM PROBLEM on planar bipartite graphs with degree bounded by 5. This reduction is a modification of NP-completeness proof of the CSP for subcubic planar graphs showed in [7]. Let W, X, Y, q, M be given as in Definition 3 and let x_i be the number of elements $a \in W \cup X \cup Y$ such that #a = i (i = 2 or i = 3).

We define a graph G as follows

$$V(G) = \{v_m : m \in M\} \cup \bigcup_{a \in W \cup X \cup Y} V(A_{\#a}^a)$$

$$\tag{9}$$

$$E(G) = \{\{a_m, v_m\}, \{b_m, v_m\}, \{c_m, v_m\} : m = (a, b, c) \in M\} \cup \bigcup_{a \in W \cup X \cup Y} E(A_{\#a}^a),$$

where $a \in W \cup X \cup Y$ and A_2^a (#a = 2) or A_3^a (#a = 3) are bipartite graphs with the desired properties of the best colorings.

First, we construct an auxiliary bipartite graph B with non-symmetry property of every best coloring. Consider the bipartite graph B with $\Delta=5$ shown in Figure 2.

Fig. 2. The auxiliary graph B with the chromatic sum 33.

We will show the following property: for every best coloring c of B vertex v is colored with 2 and w is colored with 1. Moreover, if we color the pair of vertices (v, w) with a pair of colors (1, 2) we can extend this partial coloring to the coloring of graph B in such a way that the sum of colors exceeds the chromatic sum of B exactly by 1.

By T_b we denote a connected subgraph of $B \setminus \{a,c\}$ including vertex b, analogously by T_c we mean that tree of $B \setminus \{b,w\}$ including vertex c. Let $T_v = B[\{v,a\}]$ and $T_w = B[\{w\}]$. For a given graph G and a vertex $v' \in V(G)$ let $bc(G,v') = \{k \in \mathbb{N} : c(v') = k \land c \text{ any best coloring of } G\}$ be a list of colors. Analogously, for any $v', w' \in V(G)$ let $bc(G, (v', w')) = \{(k, l) : c(v') = k \land c(w') = l \land c$ any best coloring of $G\}$. Analyzing all the best colorings of the defined trees we get $bc(T_v, v) = \{1, 2\}$, $bc(T_v, a) = \{1, 2\}$, $bc(T_w, w) = \{1\}$, $bc(T_b, b) = \{2, 3\}$ and $bc(T_c, c) = \{1, 3\}$. Moreover $\sum (T_v) = 3$, $\sum (T_w) = 1$, $\sum (T_b) = 13$ and $\sum (T_c) = 16$, hence by Proposition 3 we obtain $\sum (G) = 33$ and there is only one coloring c_p of the path $B[\{v, a, b, c, w\}]$ that can be extended to best coloring of the whole graph B, namely c_p colors the vertices v, a, b, c, w with colors 2, 1, 2, 3, 1, respectively. Now, color vertex v with 1 and w with 2. Coloring the vertex a with 2, b with 3 and c with 1 we can extend this pre-coloring to the whole graph B with the sum of colors equal to 34.

We construct a graph A_2^a shown in Figure 3 for a given element $a \in W \cup X \cup Y$ occurring only in $x, y \in M$.

Fig. 3. Graph A_2^a with the chromatic sum 73.

Notice, that graph A_2^a is bipartite with $\Delta = 5$ and $bc(A_2^a, a_x) = \{1, 2\}$, $bc(A_2^a, a_y) = \{1, 2\}$. By Proposition 3 we have $\sum (A_2^a) \ge 2 \cdot 33 + 6 = 72$, from the properties of B it follows $\sum (A_2^a) > 72$. On the other hand, one can easily construct colorings of A_2^a with the chromatic sum equal to 73. Considering all possibilities of coloring of the vertices a_x and a_y we get at once $bc(A_2^a, (a_x, a_y)) = \{(1, 2), (2, 1)\}$.

At last, for a given element $a \in W \cup X \cup Y$ occurring only in $x, y, z \in M$ we construct a graph A_3^a shown in Figure 4.

Fig. 4. Bipartite graph A_3^a with the chromatic sum 229.

Notice, that graph A_2^t is just an auxiliary graph. First, let us note that graph A_3^a is bipartite with $\Delta \leq 5$ and by Proposition 3 we have $\sum (A_3^a) \geq 3 \cdot 73 + 3 \cdot 3 = 228$, but it is impossible to extend best colorings of all A_2^t -graphs to the whole graph A_3^a , so $\sum (A_3^a) > 228$. On the other hand, one can easily construct a coloring with the sum equal to 229. Let c be any best coloring of A_3^a , i.e. $\sum (A_3^a, c) = 229$. There are only two possibilities:

- (1) $c(\{a_x, a_y, a_z\}) = \{1, 2, 3\}$ and the coloring c restricted to any A_2^t -graph is the best coloring, or
- (2) $c(\{a_x, a_y, a_z\}) = \{1, 2\}$ and only one A_2^t -graph is colored with sum greater than 73.

In both cases $\{1,2\} \subset c(\{a_x,a_y,a_z\})$. Moreover, coloring any vertex from set $\{a_x,a_y,a_z\}$ with 1 and the others with 2 we can extend this pre-coloring to the best coloring of A_3^a .

Now we are able to show that there exists a proper solution M' to $3DM_p$ if and only if there exists a coloring c satisfying $\sum (G, c) \le k$, where $k = 73 \cdot x_2 + 229 \cdot x_3 + 2 \cdot q + (|M| - q)$. Let us notice that the graph defined in (9) is bipartite with $\Delta(G) \le 5$ and by Definition 3 it is planar.

Now, suppose that M' is a proper solution of $3DM_p$. We define a coloring c as follows: $c(v_m) = 2$ if $m \in M'$ and $c(v_m) = 1$ if $m \in M \setminus M'$. For any $a \in W \cup X \cup Y$ we color the graphs $A^a_{\#a}$ with 3 colors such that $c(a_m) = 1$, whenever $m \in M'$ and $c(a_m) = 2$, if $m \notin M'$. Based on the properties of graphs $A^a_{\#a}$ we can extend the coloring c to the whole graph G so that $\sum (G, c) \leq k$.

Conversely, suppose that c is a coloring of the graph G satisfying $\sum (G, c) \le k$. Now let $\sum_{M} := \sum_{m \in M} c(v_m) > |M| + q$. We conclude that

$$\sum_{a \in W \cup X \cup Y} \sum \left(A_{\#a}^a \right) = \sum \left(G, c \right) - \sum_{M} < 73 \cdot x_2 + 229 \cdot x_3,$$

which is impossible. Thus suppose that exactly p < q vertices among all |M| vertices v_m are colored with a color different from 1. Hence at most $3 \cdot p$ graphs $A^a_{\#a}$ have neighbors in set $\{v_m : m \in M \land c(v_m) \geq 2\}$ and at least $3 \cdot (q-p)$ graphs $A^a_{\#a}$ are colored with $2, 3, \ldots$ This gives

$$\sum (G, c) = \sum_{a \in W \cup X \cup Y} \sum (A_{\#a}^{a}) + \sum_{M} \ge 273 \cdot x_2 + 229 \cdot x_3 + 3 \cdot (q - p) + |M| + p > k$$

which is impossible. Hence $\sum_{M} = |M| + q$ and exactly q vertices v_m are colored with 2, we get the desired equality $\sum_{m} (G, c) = k$. Thus we have constructed the solution $M' = \{m \in M : c(v_m) = 2\}$ in polynomial time.

Note that simply replacing graphs A_2^a by edges $\{a_x, a_y\}$ and similarly A_3^a by triangles we can prove NP-completeness for planar subcubic graphs [7].