

# Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

GONG Ying gong.ying@connect.umac.mo 2024.1.12

#### Contents

- 1. Introduction
- 2. Diffusion Policy Formulation
- 3. Key Design Decisions
- 4. Diffusion Policy Overview

#### 1. Introduction

- Policy learning from demonstration can be formulated as the supervised regression task of learning to map observations to actions.
- Prior work attempts to explore different action representations from explicit to implicit to better capture multi-modal distributions.
- This work introduces a new form of robot visuomotor policy that generates behavior via a
  "conditional denoising diffusion process on robot action space", Diffusion Policy.





#### 1. Introduction

- **Diffusion policy** infers the action-score gradient, conditioned on visual observations, for K denoising iterations.
  - I. Expressing multimodal action distributions.
  - II. High-dimensional output space.
  - III. Stable training.
- Contributions:
  - I. Closed-loop action sequences.
  - II. Visual conditioning.
  - III. Time-series diffusion transformer.
- Consistent performance boost across all benchmarks with an average improvement of 46.9%. (12 tasks from 4 benchmarks)

Visuomotor robot policies are formulated as Denoising Diffusion Probabilistic Models (DDPMs).

#### Denoising Diffusion Probabilistic Models

Starting from  $x^K$  sampled from Gaussian noise, the DDPM performs K iterations of denoising to produce a series of actions with decreasing levels of noise,  $x^k$ ,  $x^{k-1}$ ...  $x^0$ , until a desired noise-free output  $x^0$  is formed.

$$\mathbf{x}^{k-1} = \mathbf{\alpha}(\mathbf{x}^k - \mathbf{\gamma}\varepsilon_{\theta}(\mathbf{x}^k, k) + N(0, \mathbf{\sigma}^2 I)),$$

where  $\varepsilon_{\theta}$  is the noise prediction network and  $N(0, \sigma^2 I)$  is Gaussian noise added. It can be interpreted as a noisy gradient descent step:

$$x' = x - \gamma \nabla E(x)$$
.

Where  $\varepsilon_{\theta}(x, k)$  predicts the gradient field  $\nabla E(x)$  and  $\gamma$  is the learning rate. An  $\alpha$  slightly smaller than 1 improves stability.

#### DDPM Training

The training process starts by randomly drawing unmodified examples,  $x^0$ , from the dataset. For each sample, we randomly select a denoising iteration k and then sample a random noise  $\varepsilon^k$  with appropriate variance for iteration k. The noise prediction network is asked to predict the noise from the data sample with noise added.

$$L = MSE(\varepsilon^k, \varepsilon_\theta(x^0 + \varepsilon^k, k)),$$

Minimizing the loss function L also minimizes the variational lower bound of the KL-divergence between the data distribution  $p(x^0)$  and the distribution of samples drawn from the DDPM  $q(x^0)$ .

#### Diffusion for Visuomotor Policy Learning

DDPMs are typically used for image generation (x is an image), we use a DDPM to learn robot visuomotor policies. It requires 2 modifications:

- I. Change the output x to represent robot actions:Closed-loop action-sequence prediction
- II. Make the denoising processes conditioned on input observation  $\boldsymbol{O}_t$ : Visual observation conditioning



#### Diffusion for Visuomotor Policy Learning

I. Closed-loop action-sequence prediction

To encourage temporal consistency and smoothness in long-horizon planning while allowing prompt reactions to unexpected observations, the action-sequence prediction produced by a diffusion model is integrated with receding horizon control: At time step t the policy takes the latest  $T_O$  steps of observation data  $O_T$  as input and predicts  $T_P$  steps of actions, of which  $T_a$  steps of actions are executed on the robot without re-planning. Here we define  $T_O$  as the observation horizon,  $T_P$  as the action prediction horizon and  $T_a$  as the action execution horizon.

$$o_1, o_2, o_3, o_4, o_5, \dots, o_{t-2}, o_{t-1}, o_t$$

$$T_0 = 3$$



#### Diffusion for Visuomotor Policy Learning

#### II. Visual observation conditioning

We use a DDPM to approximate the conditional distribution  $p(A_t|\mathbf{O}_t)$  instead of the joint distribution  $p(A_t,\mathbf{O}_t)$ . It allows the model to predict actions conditioned on observations without inferring future states, speeding up the diffusion process and improving the accuracy of generated actions. To capture  $p(A_t|\mathbf{O}_t)$ , we modify  $x^{k-1} = \alpha(x^k - \gamma \varepsilon_\theta(x^k, k) + N(0, \sigma^2 I))$  to:

$$A_t^{k-1} = \alpha (A_t^k - \gamma \varepsilon_\theta (\mathbf{O}_t, A_t^k, k) + N(0, \sigma^2 I)),$$

And the training loss is modified from  $L=\mathrm{MSE}\left(\varepsilon^k,\varepsilon_\theta(x^0+\varepsilon^k,k)\right)$  to:

$$L = MSE(\varepsilon^k, \varepsilon_{\theta}(\boldsymbol{O}_t, \boldsymbol{A}_t^0 + \varepsilon^k, k)),$$

The exclusion of  $O_t$  from the output of the denoising process significantly improves inference speed and better accommodates real-time control.

## 3. Key Design Decisions

Network Architecture Options

Choice of NN architectures for  $\varepsilon_{\theta}$ .

- I. CNN-based diffusion policy
  Needs less tuning, but performs
  poorly when the desired action
  sequence changes quickly and
  sharply.
- II. Time-series diffusion transformer

  More sensitive to hyperparameters,
  but performs well if the task is
  complex or action changes often.



## 3. Key Design Decisions

#### Visual Encoder

- The visual encoder maps the raw image sequence into a latent embedding  ${\bf 0}_t$  and is trained end-to-end with the diffusion policy.
- ResNet-18 is used as the encoder with the following modifications:
  - Replace the global average pooling with a spatial softmax pooling to maintain spatial information.
  - Replace BatchNorm with GroupNorm for stable training.

#### Noise Schedule

It's empirically found that the Square Cosine Schedule proposed in iDDPM works best for the tasks.

#### Accelerating Inference for Real-time Control

Denoising Diffusion Implicit Models (DDIM) approach.



## 4. Diffusion Policy Overview



## Thank you.

