Lecture 2

Cartesian tensors

Review of L1

I. Vectors

1. independent of coordinate system.

II. Cartesian coordinate sytem (CCS)

- 1. Notation: $\{\mathcal{P}, P, \hat{\mathbf{e}}_i\}$.
- 2. Fixed or changing unit vectors.

III. Index notation

- 1. Free indices
- 2. Dummy indices
- 3. Summation convention: $a_ib_i = a_jb_j = a_1b_1 + a_2b_2 + a_3b_3$
- 4. Krönecker delta $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$
- 5. Contraction: $P_{\dots i \dots j \dots} \delta_{ij} = P_{\dots i \dots i \dots}$
- 6. Alternating tensor $\epsilon_{ijk} = \begin{cases}
 +1, & \text{even permutation of } ijk \\
 -1, & \text{odd permutation of } ijk \\
 0, & \text{otherwise}.
 \end{cases}$

Tensors

I. **Definition**: A *second-order tensor* is a linear transformation that operates on a vector to produce another vector.

II. Notation:

- 1. A when typing; \underline{A} when writing.
- 2. $\mathbf{A} \cdot \mathbf{a} = \mathbf{b}$ OR $\mathbf{a} \cdot \mathbf{A} = \mathbf{b}$.

 "The tensor $\mathbf{A} \, left / right$ operates (\cdot) on the vector \mathbf{a} to produce the vector \mathbf{b} ."
- III. Understood "physically" by its action on all vectors or on basis. Examples.
- IV. Some simple properties
 - 1. Addition: Let C = (A + B). Then, $C \cdot a = (A + B) \cdot a = A \cdot a + B \cdot a$
 - 2. **Multiplication**: Let $D = A \cdot B$. Then, $D \cdot a = (A \cdot B) \cdot a = A \cdot (B \cdot a)$
- V. "Overloaded" operator: $\mathbf{b} \cdot \{(A \cdot B) \cdot \mathbf{a}\}$

Tensor product

- I. Extend ideas of unit vector, basis to tensors.
- II. **Definition**: A *tensor product* of two vectors \mathbf{a} and \mathbf{b} is given by $\mathbf{a} \otimes \mathbf{b}$ with properties:
 - 1. $(\mathbf{a} \otimes \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \cdot \mathbf{b})\mathbf{a}$
 - 2. $\mathbf{c} \cdot (\mathbf{a} \otimes \mathbf{b}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b}$

III. Remarks

- 1. Other names: outer or dyadic product.
- 2. Example: $\mathbf{a} \otimes \mathbf{b} = (a_i b_j) \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$
- 3. Property: $(\mathbf{a} \otimes \mathbf{b}) \cdot (\mathbf{c} \otimes \mathbf{d}) = (\mathbf{b} \cdot \mathbf{c})\mathbf{a} \otimes \mathbf{d}$
- IV. **Definition**: Tensorial basis is $\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$.
 - 1. There are 9 unit tensors. Form basis.
- V. Application: Consider a CS $\{\mathcal{P}, P, \hat{\mathbf{e}}_i\}$.
 - 1. Let's write $\mathbf{A} = A_{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$.
 - 2. $A_{ij} = \hat{\mathbf{e}}_i \cdot \mathbf{A} \cdot \hat{\mathbf{e}}_j = \hat{\mathbf{e}}_i \cdot (\mathbf{A} \cdot \hat{\mathbf{e}}_j) = (\hat{\mathbf{e}}_i \cdot \mathbf{A}) \cdot \hat{\mathbf{e}}_j$
 - 3. A_{ij} are *components* of A in $\{\mathcal{P}, P, \hat{\mathbf{e}}_i\}$.

More on tensors

- I. **Components**: Consider two coordinate systems $\{\mathscr{S}, P, \hat{\mathbf{e}}_i\}$ and $\{\mathscr{S}, S, \hat{\mathbf{e}}_i'\}$.
 - 1. In \mathscr{P} : $\mathbf{A} = A_{ij} \, \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$, $A_{ij} = \hat{\mathbf{e}}_i \cdot \mathbf{A} \cdot \hat{\mathbf{e}}_j$
 - 2. In \mathcal{S} : $\mathbf{A} = A'_{ij} \hat{\mathbf{e}}'_i \otimes \hat{\mathbf{e}}'_j$, $A'_{ij} = \hat{\mathbf{e}}'_i \cdot \mathbf{A} \cdot \mathbf{e}'_j$.
 - 3. *Relation to matrix algebra*. Compile components into a matrix:

$$[A]_{\mathscr{P}} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \text{ and } [A]_{\mathscr{S}} = \begin{bmatrix} A'_{11} & A'_{12} & A'_{13} \\ A'_{21} & A'_{22} & A'_{23} \\ A'_{31} & A'_{32} & A'_{33} \end{bmatrix}$$

We call $[A]_{\mathscr{P}}$ as the "matrix of A in \mathscr{P} ".

- 4. In general $A_{ij} \neq A'_{ij}$, i.e.
- Tensor remains the same, but its components change with choice of coordinate system.
- II. Example: Two rotated CS.

Tensor algebra

- I. **Operations**: Consider a CS $\{\mathcal{P}, P, \hat{\mathbf{e}}_i\}$.
 - 1. $\mathbf{b} = \mathbf{A} \cdot \mathbf{a} = A_{ij} a_j \hat{\mathbf{e}}_i \implies b_i = A_{ij} a_j$
 - 2. $\mathbf{c} = \mathbf{a} \cdot \mathbf{A} = a_i A_{ij} \hat{\mathbf{e}}_j \implies c_j = a_i A_{ij}$
 - 3. $C = A \cdot B = A_{in}B_{nj}\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j \Rightarrow C_{ij} = A_{in}B_{nj}$
- II. **Transpose**: Let $A = A_{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_{j'}$ then
 - 1. $A^T = A_{ji} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j \implies (A^T)_{ij} = A_{ji}$.
 - 2. Properties

i.
$$(A + B)^T = A^T + B^T$$

ii.
$$(A \cdot B)^T = B^T \cdot A^T$$

iii.
$$[A^T] = [A]^T$$

iv.
$$(\mathbf{A} \cdot \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\mathbf{A}^T \cdot \mathbf{b})$$

- III. Trace: Let $A = A_{ij} \hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j = A'_{ij} \hat{\mathbf{e}}'_i \otimes \hat{\mathbf{e}}'_j$.
 - 1. $\operatorname{tr}(A) = A_{ii} = A'_{ii} = \operatorname{tr}(A^T)$.
 - 2. Independent of choice of CS.

Mechanics so far ...

Now?