

Fine-Tuned Small LLMs vs. Zero-Shot Generative Al in Text Classification

Jason Gillette

University of Texas at San Antonio

October 21st, 2024

Introduction

- Paper: FINE-TUNED SMALL LLMS (STILL) SIGNIFICANTLY
 OUTPERFORM ZERO-SHOT GENERATIVE AI MODELS IN TEXT
 CLASSIFICATION
- Authors: Martin Juan José Bucher (Stanford), Marco Martini (University of Zurich)
- Research Focus:
 - Smaller fine-tuned models vs. zero-shot generative models (e.g., ChatGPT, Claude Opus)

Problem Statement

- **Generative Al's Promise**: No need for task-specific fine-tuning and labeled data.
- Research Question:
 - Can generative AI models like ChatGPT outperform fine-tuned small LLMs?
- **Importance**: Understanding trade-offs between generative and fine-tuned models.

Background on Fine-Tuned LLMs

• Pre-training and Fine-tuning:

- Smaller models RoBERTa Base, RoBERTa Large, DeBERTa V3,
 Electra Large, and XLNet are pre-trained on large corpora.
- Fine-tuning adapts models to specific tasks like sentiment analysis.

Previous State-of-the-Art:

- Fine-tuned LLMs outperform traditional methods like BoW and pre-transformer architectures.
- Some generative models have outperformed fine-tuned models, yet empirical evidence is not conclusive.

Zero-Shot Generative Models

Generative Al Models:

 GPT-3.5, GPT-4, Claude Opus, and BART prompt-based models without further training.

Zero-Shot Approach:

- No labeled training data required.
- Q: The sentiment of <text> is... A:
- Generates outputs based on pre-trained general knowledge.
- Appeal: Simplicity and scalability.

Methodology - Overview

• Task Setup:

- Four text classification tasks: sentiment analysis, stance classification (approval/disapproval), emotion detection, multiclass text classification.
- Datasets: News, tweets, speeches, political texts (English & German).

Model Comparison:

- Fine-tuned small LLMs vs. zero-shot generative models.
- Metrics: Accuracy, Precision, Recall, F1-scores.

Case Study 1: Sentiment Analysis

• **Task**: Classify positive/negative sentiment in The New York Times articles.

• Results:

- Fine-tuned models (RoBERTa, DeBERTa): ~90% accuracy.
- Zero-shot models (ChatGPT, Claude): ~82-87% accuracy.
- Key Insight: Fine-tuning captures sentiment nuances better.

Case Study 1: Sentiment Analysis Results

Table 1: Results for Sentiment Analysis (US Economy)					
Model Name	Accuracy	Prec. (wgt.)	Recall (wgt.)	F1 (macro)	F1 (wgt.)
MAJ-VOT	$0.73 (\pm 0.00)$	$0.53 (\pm 0.00)$	0.73 (±0.00)	$0.42 (\pm 0.00)$	$0.61(\pm 0.00)$
ROB-BASE	$0.89(\pm 0.00)$	$0.89(\pm 0.01)$	$0.89(\pm 0.00)$	$0.86(\pm 0.01)$	0.89 (±0.01)
ROB-LRG	$0.92(\pm 0.01)$	$0.92(\pm 0.01)$	$0.92(\pm 0.01)$	$0.90(\pm 0.01)$	$0.92(\pm 0.01)$
DEB-V3	$0.92(\pm 0.02)$	$0.92(\pm 0.01)$	$0.92(\pm 0.02)$	$0.90(\pm 0.02)$	$0.92(\pm 0.01)$
ELE-LRG	$0.90(\pm 0.01)$	$0.90(\pm 0.01)$	$0.90(\pm 0.01)$	$0.88(\pm 0.02)$	$0.90(\pm 0.01)$
XLNET-LRG	$0.81(\pm 0.01)$	$0.85(\pm 0.01)$	0.81 (±0.01)	$0.78 (\pm 0.01)$	$0.82 (\pm 0.01)$
BART-LRG	$0.85(\pm 0.00)$	0.84 (±0.00)	$0.85(\pm 0.00)$	0.80 (±0.00)	0.84 (±0.00)
GPT-3.5	$0.82 (\pm 0.00)$	$0.84(\pm 0.00)$	$0.82 (\pm 0.00)$	$0.79(\pm 0.00)$	$0.83(\pm 0.00)$
GPT-4	$0.87(\pm 0.00)$	$0.87(\pm 0.00)$	$0.87(\pm 0.00)$	$0.84(\pm 0.00)$	$0.87(\pm 0.00)$
CLD-OPUS	$0.86 (\pm 0.00)$	$0.87(\pm 0.00)$	$0.86(\pm 0.00)$	$0.83(\pm 0.00)$	$0.87(\pm 0.00)$

Note: Results for fine-tuned models on unseen test set with N=200. Results for BART, GPTs, and Claude on full data. Fine-tuned models use gradient accumulation with 8 steps and batch size 4, except DEB-V3 (batch size 2).

Roberta Large closest zero-shot model by ~5%

Case Study 2: Stance Classification

 Task: Classifying support/opposition in tweets about SCOTUS nomination.

• Results:

- Fine-tuned models (DeBERTa, RoBERTa): ~94% accuracy.
- Zero-shot models: Perform slightly better than baseline (50-60% accuracy).
- **Key Insight**: Zero-shot models struggle with nuanced stance classification.

Case Study 2: Stance Classification Results

Model Name	Accuracy	Prec. (wgt.)	Recall (wgt.)	F1 (macro)	F1 (wgt.)
MAJ-VOT	$0.50(\pm 0.00)$	$0.25(\pm 0.00)$	$0.50(\pm 0.00)$	$0.33(\pm 0.00)$	$0.33(\pm 0.00)$
ROB-BASE	$0.86(\pm 0.01)$	$0.86(\pm 0.01)$	$0.86(\pm 0.01)$	$0.86(\pm 0.01)$	$0.86(\pm 0.01)$
ROB-LRG	$0.92 (\pm 0.01)$	$0.93(\pm 0.01)$	$0.92 (\pm 0.01)$	$0.92 (\pm 0.01)$	$0.92 (\pm 0.01)$
DEB-V3	$0.94(\pm 0.01)$	$0.94(\pm 0.01)$	$0.94(\pm 0.01)$	$0.93(\pm 0.01)$	$0.94(\pm 0.01)$
ELE-LRG	$0.74(\pm 0.01)$	$0.66(\pm 0.02)$	$0.74(\pm 0.01)$	$0.67(\pm 0.02)$	$0.69(\pm 0.02)$
XLNET-LRG	$0.83(\pm 0.01)$	$0.83(\pm 0.01)$	$0.83(\pm 0.01)$	$0.83(\pm 0.01)$	$0.83(\pm 0.01)$
BART-LRG	0.53 (±0.00)	0.59 (±0.00)	0.53 (±0.00)	0.44 (±0.00)	0.44 (±0.00)
GPT-3.5	$0.53(\pm 0.00)$	$0.58(\pm 0.00)$	$0.53(\pm 0.00)$	$0.48 (\pm 0.00)$	$0.47 (\pm 0.00)$
GPT-4	$0.58(\pm 0.00)$	$0.68(\pm 0.00)$	$0.58(\pm0.00)$	$0.51(\pm 0.00)$	$0.51(\pm 0.00)$
CLD-OPUS	$0.61(\pm 0.00)$	$0.68(\pm 0.00)$	$0.61(\pm 0.00)$	$0.57(\pm 0.00)$	$0.57(\pm 0.00)$

Note: Results for fine-tuned models on unseen test set with N=200. Results for BART, GPTs, and Claude on full data. Fine-tuned models use gradient accumulation with 8 steps and batch size 4, except DEB-V3 (batch size 2).

DeBERTa performs over twice as well as zero-shot model.

Case Study 3: Emotion Detection

- Task: Detecting anger in German political texts.
- Results:
 - Fine-tuned models: ~88-89% accuracy.
 - Zero-shot models: Perform poorly (~15-20% accuracy).
- Translation Experiment: Minimal difference between German and translated English performance.
- **Key Insight**: Zero-shot models struggle with specialized tasks.

Case Study 3: Emotion Detection Results

Table 3: Results for Emotion Detection (Anger)					
Model Name	Accuracy	Prec. (wgt.)	Recall (wgt.)	F1 (macro)	F1 (wgt.)
MAJ-VOT	0.71 (±0.00)	0.51 (±0.00)	0.71 (±0.00)	0.42 (±0.00)	$0.59(\pm 0.00)$
ROB-BASE	0.87 (±0.01)	0.88 (±0.01)	0.87 (±0.01)	0.82 (±0.01)	0.88 (±0.01)
ROB-LRG	$0.88(\pm 0.01)$	$0.88(\pm 0.00)$	$0.88(\pm 0.01)$	$0.83(\pm 0.00)$	$0.88(\pm 0.00)$
DEB-V3	$0.88(\pm 0.01)$	$0.88(\pm 0.00)$	$0.88(\pm 0.01)$	$0.83(\pm 0.01)$	$0.88(\pm 0.00)$
ELE-LRG	$0.88(\pm 0.00)$	$0.88(\pm 0.02)$	$0.88(\pm 0.00)$	$0.84(\pm 0.00)$	$0.88(\pm 0.00)$
XLNET-LRG	$0.89(\pm 0.00)$	$0.89(\pm 0.00)$	$0.89(\pm 0.00)$	$0.85(\pm 0.00)$	$0.89(\pm 0.00)$
ELE-BS-GER	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.83(\pm 0.02)$	$0.88(\pm 0.01)$
BART-LRG	0.26 (±0.00)	0.36 (±0.00)	0.26 (±0.00)	0.24 (±0.00)	0.29 (±0.00)
GPT-3.5	$0.15 (\pm 0.00)$	$0.23(\pm 0.00)$	$0.15(\pm 0.00)$	$0.15(\pm 0.00)$	$0.16(\pm 0.00)$
GPT-4	$0.20 (\pm 0.00)$	$0.18(\pm 0.00)$	$0.20(\pm 0.00)$	$0.18 (\pm 0.00)$	$0.13(\pm 0.00)$
CLD-OPUS	$0.15 (\pm 0.00)$	$0.16(\pm 0.00)$	$0.15(\pm 0.00)$	$0.14 (\pm 0.00)$	$0.11(\pm 0.00)$

Note: Results for fine-tuned models on unseen test set with N=200. Results for BART, GPTs, and Claude on full data. Fine-tuned models use gradient accumulation with 8 steps and batch size 4, except DEB-V3 (batch size 2).

XLNET-Large performs 3x to 8x better than zero-shot prompting.

Case Study 4: Multi-Class Stance Classification

- Task: Predicting party positions on EU integration.
- Results:
 - Fine-tuned models: ~92% accuracy.
 - Zero-shot models struggle with multi-class classification.
- Key Insight: Fine-tuned models handle complex tasks better.

Case Study 4: Multi-Class Stance Classification Results

Table 4: Results for Multi-Class Stance Classification (EU Positions)					
Model Name	Accuracy	Prec. (wgt.)	Recall (wgt.)	F1 (macro)	F1 (wgt.)
MAJ-VOT	$0.83(\pm 0.00)$	0.68 (±0.00)	0.83 (±0.00)	0.30 (±0.00)	0.75 (±0.00)
ROB-BASE	0.84 (±0.00)	0.87 (±0.01)	0.84 (±0.00)	0.70 (±0.02)	0.85 (±0.00)
ROB-LRG	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.72 (\pm 0.03)$	$0.87(\pm 0.01)$
DEB-V3	$0.92(\pm 0.01)$	$0.91(\pm 0.01)$	$0.92(\pm 0.01)$	$0.82 (\pm 0.02)$	$0.91(\pm 0.01)$
ELE-LRG	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.88(\pm 0.01)$	$0.75(\pm 0.03)$	$0.87(\pm 0.01)$
XLNET-LRG	$0.87(\pm 0.01)$	$0.89(\pm 0.01)$	$0.87(\pm 0.01)$	$0.75(\pm 0.02)$	$0.88(\pm 0.01)$
BART-LRG	0.82 (±0.00)	0.77 (±0.00)	0.82 (±0.00)	0.34 (±0.00)	$0.75(\pm 0.00)$
GPT-3.5	$0.24(\pm 0.00)$	$0.65(\pm 0.00)$	$0.24 (\pm 0.00)$	$0.17(\pm 0.00)$	$0.27 (\pm 0.00)$
GPT-4	$0.38(\pm 0.00)$	$0.73(\pm 0.00)$	$0.38 (\pm 0.00)$	$0.26 (\pm 0.00)$	$0.45(\pm 0.00)$
CLD-OPUS	$0.26 (\pm 0.00)$	$0.75 (\pm 0.00)$	$0.26 (\pm 0.00)$	$0.25 (\pm 0.00)$	$0.29 (\pm 0.00)$

Note: Results for fine-tuned models on unseen test set with N=200. Results for BART, GPTs, and Claude on full data. Fine-tuned models use gradient accumulation with 8 steps and batch size 4, except DEB-V3 (batch size 2).

Again, DeBERTa out performs zero-shot prompting.

Impact of Training Data Size

- Ablation Study: Effect of varying training set size on performance.
- Findings:
 - Performance improves with larger training data, plateaus after ~500 samples.
 - Fine-tuned models outperform zero-shot models after just 200 samples.
- **Conclusion**: Moderate amounts of training data improve finetuned models significantly.

Ablation Study Results

Figure 4: Effect of training set size on model performance: Results for ROB-LRG with varying number of training observations $N = \{50, 100, 200, 500, 1000\}$. The translucent markers above the 0-point denote the zero-shot results of BART. The rightmost points denote model performance if trained on the full dataset.

Why Fine-Tuning Prevails

- Application-Specific Data: Fine-tuned models gain task-specific knowledge.
- Fine-Tuning Strengths: Better at capturing nuanced distinctions.
- Limitations of Zero-Shot Models: Struggle with niche, specialized tasks.

Future Directions in Generative Al and Fine-Tuning

- **Few-Shot Learning**: Potential to bridge the gap between zero-shot and fine-tuned models.
- **Data Augmentation**: Techniques like back-translation and token perturbation can reduce the need for large labeled datasets.
- Model Architecture: Multi-modality and quality improvements in generative models.

Conclusion and Takeaways

Summary of Key Findings:

- Fine-tuning outperform zero-shot models in specialized tasks.
- Zero-shot models are easy but struggle with domain-specific tasks.

• Toolkit Availability:

- Accessible Jupyter Notebook for text classification fine-tuning.
- Supports binary and non-binary tasks.
- Supports class imbalances in data.
- Final Remark: Fine-tuned LLMs are still relevant.

Q&A

- How would few-shot prompting compare?
- Was zero-shot evaluation performed in a single prompt or per sample and how might this impact results?

Bucher, M. J. J., & Martini, M. (2024). Fine-tuned 'small' LLMs (still) significantly outperform zero-shot generative AI models in text classification. arXiv preprint arXiv:2406.08660.