

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

NOTE ON THE THEORY OF IMAGES.

By Dr. Rollin A. Harris, Jamestown, N. Y.

Article 36, found upon pages 84-6, Vol. IV of this journal, is susceptible of the following interpretation:—

In that article nothing was said concerning the properties of i and j. It was implicitly assumed that, like ordinary algebraic quantities, they were commutative, associative, and distributive; and that $i^2 = j^2 = -1$.

In expanding $\varphi(x+iy+jz)$ we have

$$X + iY + jZ + ijW$$
.

Now if we confine ourselves to space of three dimensions instead of four, we project the latter into the former by suppressing the term ijW; i. e. by omitting all terms of the form $Ki^mj^ny^mz^n$ where m and n are both odd.

By this interpretation what was called the path of U is really a projection of the same.

If $i, j, k (\equiv ij)$ be commutative, associative, and distributive, then generally $\varphi(x + iy + jz + kw)$ is developable in powers of iy + jz + kw and is

$$X + iY + jZ + kW;$$

and in four-dimentional space the locus of the point xyzw has an image, the locus of XYZW. Now if we suppress kW we project the path of U, the image of the path of u(=x+iy+jz+o), into the (1, i, j)-space.

Professor Oliver suggests that by writing $a \equiv 1$, $\beta \equiv i \sqrt{-1}$, $\gamma \equiv j \sqrt{-1}$, $\delta \equiv -k$, this (1, i, j, k)-algebra takes the symmetric form

$$a^2 = \beta^2 = \gamma^2 = \delta^2,$$

 $a\beta = \beta a = \gamma \delta = \delta \gamma,$
 $a\gamma = \gamma a = \delta \beta = \beta \delta,$
 $a\delta = \delta a = \beta \gamma = \gamma \beta.$