CEL459: River Mechanics Minor I

Time: One Hour Marks: 20

Solve the following. Assume the missing data suitably.

Q.1 (a) Describe different flow regimes in slurry flow through a pipeline. [2]

(b) Describe the basic slurry pipeline transportation system. [2]

Q.2 Derive the equation for sediment concentration profile considering particle diffusivity ε as (a) constant (b) variable.

[4]

Q.3 Plot shear stress vs. shear rate curves for different type of fluids: [4]

Q.4 Determine the type of flow and the pressure drop per meter of pipe length for the following data:

Flow Rate (Q)	m /hr	800
Pipe Inside Diameter (D)	mm	250
Bingham Yield Stress (τ _{YB})	Pa	6.0
Plastic viscosity (η_P)	Pa.s	0.03
Slurry Density (ρ)	kg/m ³	1250
Wall Shear Stress (τ _w)	Pa	9.0

Q.5 Derive the expression for discharge in laminar flow of Herschel-Bulkley fluid through pipeline.

Bingham Plastic - Laminar Friction Factor:

$$R_{BP} = \frac{DV\rho}{\eta_P} \text{ and } He = \frac{D^2 \tau_{YB} \rho}{z_{IP}^2} \text{ and } f_{fL} = \frac{16}{R_{BP}} \left[1 + \frac{He}{6R_{BP}} + \frac{He^4}{3f_f^3 R_{BP}^7} \right]$$

Bingham Plastic - Turbulent Friction Factor:

$$f_{fT} = 10^a R_{BP}^b$$
 where $a = -1.47 [1 + 0.146 \exp(-2.9 \times 10^{-5} He)]$ and $b = -0.193$

Bingham Plastic - Combined Friction Factor:

$$f_f = (f_{fL}^m + f_{fL}^m)^{1/m}$$
 where $m = 1.7 + \frac{40000}{R_{RP}}$

Hints:

$$\frac{8\rho V_{am}^{2}}{\tau_{TH} + K \left(\frac{8V_{am}}{D_{shear}}\right)^{n}} = \pi R^{3} n \left(\frac{\tau_{w}}{K}\right)^{1/n} (1-\phi)^{(n+1)/n} \left\{\frac{(1-\phi)^{2}}{3n+1} + \frac{2\phi(1-\phi)}{2n+1} + \frac{\phi^{2}}{n+1}\right\}$$

$$\frac{nR}{(n+1)} \left(\frac{\tau_{w}}{K}\right)^{1/n} (1-\phi)^{(n+1)/n}$$