Sprint-2

Model Building(Training,Saving,Testing the model)

Date	02 November 2022
Team ID	PNT2022TMID37845
Project Name	Al-powered Nutrition Analyzer for FitnessEnthusiasts
Maximum Marks	

Dataset:

- In our dataset we have collected images of the five variety of fruits.
 - Apple
 - Orange
 - Pineapple
 - Watermelon
 - Banana

Drive link: https://drive.google.com/file/d/1jzDjV7jYclzllieagaJdubMJ3YeLsry1/view?usp=share link

Image Pre-processing:

- Import The ImageDataGenerator Library
- Configure ImageDataGenerator Class
- Apply Image DataGenerator Functionality To Trainset And Testset

Model Building:

- Importing The Model Building Libraries
- Initializing The Model
- Adding CNN Layers
- Adding Dense Layers
- Configure The Learning Process
- Train the model
- Save the model
- Test the model

Data Collection

Download the dataset **here**

```
# Unzipping the dataset
!unzip '/content/Dataset.zip'
       inflating:
       Dataset/TRAIN_SET/WATERMELON/r_288_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_289_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_28_100.jp
       g inflating:
       Dataset/TRAIN_SET/WATERMELON/r_290_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_291_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_292_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_293_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_294_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_295_100.j
       pginflating:
       Dataset/TRAIN SET/WATERMELON/r 296 100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_297_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_298_100.j
       pginflating:
       Dataset/TRAIN_SET/WATERMELON/r_299_100.j
       pginflating:
       Dataset/TRAIN SET/WATERMELON/r 29 100.jp
       g inflating:
       Dataset/TRAIN_SET/WATERMELON/r_2_100.jpg
       inflating:
       Dataset/TRAIN_SET/WATERMELON/r_300_100.j
                                      inflating:
       Dataset/TRAIN SET/WATERMELON/r 301 100.j
       pg
                                      inflating:
       Dataset/TRAIN_SET/WATERMELON/r_302_100.j
                                      inflating:
       Dataset/TRAIN_SET/WATERMELON/r_303_100.j
                                      inflating:
       Dataset/TRAIN SET/WATERMELON/r 304 100.j
                                      inflating:
       Dataset/TRAIN SET/WATERMELON/r 305 100.j
                                      inflating:
       Dataset/TRAIN_SET/WATERMELON/r_306_100.j
                                      inflating:
       Dataset/TRAIN_SET/WATERMELON/r_307_100.j
                                      inflating:
       pg
```

```
Dataset/TRAIN SET/WATERMELON/r 308 100.j
pg
inflating:
Dataset/TRAIN_SET/WATERMELON/r_309_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_30_100.jp
g inflating:
Dataset/TRAIN SET/WATERMELON/r 310 100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_311_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_312_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_313_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_314_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_315_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_31_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_32_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_33_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_34_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_35_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_36_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_37_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_38_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_39_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_3_100.jpg
inflating:
Dataset/TRAIN_SET/WATERMELON/r_40_100.j
                              inflating:
Dataset/TRAIN SET/WATERMELON/r 41 100.j
                              inflating:
Dataset/TRAIN SET/WATERMELON/r 42 100.j
                              inflating:
Dataset/TRAIN SET/WATERMELON/r 43 100.j
                              inflating:
Dataset/TRAIN_SET/WATERMELON/r_44_100.j
                              inflating:
pg
```

```
Dataset/TRAIN_SET/WATERMELON/r_45_100.j
pg
inflating:
Dataset/TRAIN_SET/WATERMELON/r_46_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_4_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_50_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_57_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_5_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_6_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_7_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_81_100.j
pginflating:
Dataset/TRAIN_SET/WATERMELON/r_8_100.jp
g inflating:
Dataset/TRAIN_SET/WATERMELON/r_9_100.jp
g
```

Image Preprocessing

```
#Importing The ImageDataGenerator Library from keras.preprocessing.image import ImageDataGenerator
```

Image Data Augmentation

```
#Configure ImageDataGenerator Class
train_datagen =
ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizonta
test_datagen=ImageDataGenerator(rescale=1./255)
```

Applying Image DataGenerator Functionality To TrainsetAnd Testset

```
#Applying Image DataGenerator Functionality To
Trainset And Testsetx_train =
train_datagen.flow_from_directory(
    r'/content/Dataset/TRAIN_SET',
    target size=(64,
64), batch_size=5, color_mode='rgb', class_mode='sparse')
#Applying Image DataGenerator Functionality To Testset
x_test =
    test_datagen.flow_from_di
    rectory(
    r'/content/Dataset/TEST_S
    ET',
    target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
     Found 4118 images belonging
     to 5 classes. Found 929
     images belonging to 5
     classes.
#checking the
number of classes
print(x_train.clas
s_indices)
     {'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}
#checking the
number of classes
print(x_test.class
_indices)
     {'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}
from collections import
Counter as cc(x_train
.labels)
```

Model Building

• Importing The Model Building Libraries

```
import numpy as np
import tensorflow as tf
from tensorflow.keras.models
import Sequentialfrom
tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout
```

• Initializing The Model

```
model = Sequential()
```

Adding CNN Layers

```
# Initializing the CNN
classifier = Sequential()

# First convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))

# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))

# input_shape is going to be the pooled feature maps from the previous
convolution layerclassifier.add(MaxPooling2D(pool_size=(2, 2)))

# Flattening the layers
classifier.add(Flatten())
```

• Adding Dense Layers

```
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax'))
#summary
of our
model
classifi
er.summa
ry()
```

Model: "sequential_1"

Layer (type) Output Shape Param #

conv2d (Conv2D)	(None, 62, 62, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 14, 14, 32)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 128)	802944
dense_1 (Dense)	(None, 5)	645

Total params: 813,733 Trainable params: 813,733 Non-trainable params: 0

• Configure The Learning Process

```
# Compiling the CNN
# categorical_crossentropy for more than 2
classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['acc
```

• Train The Model

#Fitting the model
classifier.fit_generator(generator=x_train,steps_per_epoch =
len(x_train),epochs=20, valid

824/824

Epoch 1/20
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2:
UserWarning: `Model.

- 16ms/step -

0.6172

[=======]	21s		loss:		accuracy:
Epoch 2/20					-
824/824	-	15ms/step	-	0.4115	-
[=======]	13s		loss:		accuracy:
Epoch 3/20					
824/824	-	16ms/step	-	0.3766	-
[=======]	13s		loss:		accuracy:
Epoch 4/20					
824/824	-	16ms/step	-	0.3484	-
[======]	13s		loss:		accuracy:
Epoch 5/20					
034/034		1.5		0 2242	
824/824	-	16ms/step		0.3243	-
[========]	13s		loss:		accuracy:
Epoch 6/20		1.5 / 1		0 2040	
824/824	-	16ms/step		0.3240	-
[=======]	13s		loss:		accuracy:
Epoch 7/20		16		0 2007	
824/824	12-	16ms/step	1	0.2887	-
[=======]	13s		loss:		accuracy:
Epoch 8/20		16		0 2720	
824/824	12-	16ms/step	-	0.2728	-
[=======]	13s		loss:		accuracy:
Epoch 9/20		16		0 2717	
824/824	126	16ms/step	1000	0.2717	2661102611
[=======] Fnoch 10/20	13s		loss:		accuracy:
Epoch 10/20		47 / /		0 2265	
824/824	-	17ms/step	-	0.2365	-
[=======]	14s		loss:		accuracy:
Epoch 11/20		1 Fmc / c+on		0 2201	
824/824	126	15ms/step	_	0.2301	-
[========]	13s		loss:		accuracy:
Epoch 12/20		15/		0 2002	
824/824	126	15ms/step	1000	0.2083	-
[========] Enach 12/20	13s		loss:		accuracy:
Epoch 13/20		45 /		0 2040	
824/824	12-	15ms/step	-	0.2049	-
[========]	13s		loss:		accuracy:
Epoch 14/20					

824/824	-	15ms/step	-	0.1930	-
[=======]	12s		loss:		accuracy:
Epoch 15/20					
824/824	-	15ms/step	-	0.1807	-
[=======]	13s		loss:		accuracy:
Epoch 16/20					
824/824	-	15ms/step	-	0.1712	-
[=======]	13s		loss:		accuracy:
Epoch 17/20					
824/824	-	15ms/step	-	0.1599	-
[=======]	13s		loss:		accuracy:
Epoch 18/20					
824/824	-	15ms/step	-	0.1619	-
[=======]	13s		loss:		accuracy:
Epoch 19/20					
824/824	-	15ms/step	-	0.1505	-
[=======]	13s		loss:		accuracy:
Epoch 20/20					
824/824	-	15ms/step	-	0.1211	-
[======]	12s		loss:		accuracy:

<keras.callbacks.History at 0x7fd655833d90>

• Saving The Model

classifier.save('nutrition.h5')

• Testing The Model

```
#Predict the results
from tensorflow.keras.models
import load_modelfrom
keras.preprocessing import image
model = load_model("nutrition.h5")

from tensorflow.keras.utils import
img_to_array#loading of the image
img =
load_img(r'/content/Sample_Images/Test_Image1.jpg',grayscale=False,target_siz
e= (64,#image to array
x =
img_to_a
rray(img
)
```

● Colab HYPERLINK
"https://colab.research.google.com/si
gnup?utm_source=footer&utm_med
ium=link&utm_campaign=footer_li

nks" HYPERLINK

"https://colab.research.google.co m/signup?utm_source=footer&u tm_medium=link&utm_campaig n=footer_links"paid

HYPERLINK

"https://colab.research.google.com/s ignup?utm_source=footer&utm_me dium=link&utm_campaign=footer_

links"_HYPERLINK

"https://colab.research.google.co m/signup?utm_source=footer&u tm_medium=link&utm_campaig n=footer_links"products -

Cancel HYPERLINK

"https://colab.research.google.com/c ancel-subscription"_ HYPERLINK "https://colab.research.google.com/cancel-subscription" contracts

HYPERLINK

"https://colab.research.google.com/c ancel-subscription"_ HYPERLINK "https://colab.research.google.co m/cancel-subscription"<u>here</u>