

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Лубянов Александр Дмитриевич	
Группа	РК6-62Б	
Гип задания	лабораторная работа	
Гема лабораторной работы	БПФ и полиномиальная регрессия	
Студент		_ Лубянов, А. Д.
Студент	подпись, дата	_ Лубянов, А. Д. фамилия, и.о.
Студент Преподаватель	подпись, дата	

Оглавление

Зад	ание на лабораторную работу	3
Цел	ть выполнения лабораторной работы	5
Зад	ачи, выполненные в процессе реализации лабораторной работы	5
1.	Быстрое преобразование Фурье	6
2.	Регрессия	9
Зак	лючение	.17
Спі	исок использованных источников	18

Задание на лабораторную работу

Задача 1 (БПФ)

Даны интегралы

$$I_{1} = \int_{-\frac{\pi}{4}}^{\pi} |x| dx,$$

$$I_{2} = \int_{-\frac{\pi}{4}}^{\pi} (x \cos x^{2} + e^{x} \cos e^{x}) dx.$$

Требуется:

- 1. Вывести общее выражение для формулы численного интегрирования путем аналитического интегрирования тригонометрического ряда, заменяющего подинтегральную функцию.
- 2. Используя алгоритм Кули—Тьюки, написать функцию $fft_coeff(y_nodes)$, которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома, интерполирующего узлы y_nodes, равномерно распределенные на отрезке $[-\pi; \pi]$.
- 3. Написать функцию $spectral_integral(f, N)$, которая вычисляет значение интеграла функции f, интерполируемой в N узлах c помощью тригонометрического ряда, на интервале $[-\pi/4;\pi]$. Функция $spectral_integral$ должна использовать внутри себя функцию fft_coeff .
- 4. Для каждого из интегралов I_1 и I_2 провести следующий анализ:
 - Найти точное значение интеграла.
 - Найти приближенное значение интеграла с помощью функции $spectral_integral$ для $N=2^n$, где $n \in 1,...,8$.
 - Для каждого N найти относительную погрешность вычислений δ и вывести на экран график зависимости δ от N, где δ следует отображать в логарифмической шкале.
- 5. Объяснить, как можно использовать полученные логарифмические графики для оценки порядка точности интегрирования.
- 6. Ответить, различаются ли порядки точности интегрирования в случае вычисления интегралов I_1 и I_2 и, если различаются, объ-яснить, с тем это связано.

Задача 9 (Регрессия)

Дана функция

$$f(x) = -10x^2 + 1.5x + 1 + \sigma X,$$

где $x \in [-1; 1]$ и X — случайная величина, нормально распределенная на интервале [-1; 1].

Требуется:

- 1. Написать функцию poly_regression(x_nodes, y_nodes, degree), которая возвращает коэффициенты многочлена степени degree, наилучшим образом приближающегося к точкам с абсциссами x_nodes и ординатами y_nodes.
- 2. Для каждого σ из множества $\{10^{-2}, 10^{-1}, 10^{0}, 10^{1}, 10^{2}\}$, N из множества $\{2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}\}$ и р из множества 1, 2, 3, 4, 5 провести следующий анализ:
 - С помощью функции f(x) сгенерировать начальный набор данных $D_{regr}^{(N)}$ и проверочный набор данных $D_{test}^{(N)}$, где N число точек в наборе данных.
 - С помощью набора данных $D_{regr}^{(N)}$ и функции poly_regression построить многочлен степени р, наилучшим образом приближающийся к данным.
 - Вычислить среднеквадратичную погрешность аппроксимации $\epsilon_{regr}^{(N,p)}$ данных $D_{regr}^{(N)}$ полученным многочленом.
 - Вычислить среднеквадратичную погрешность аппроксимации $\epsilon_{test}^{(N,p)}$ данных $D_{test}^{(N)}$ полученным многочленом.
- 3. Вывести на экран несколько характерных примеров графиков многочленов вместе с начальными и проверочными данными.
- 4. Ответить на следующие вопросы:
 - Как влияет увеличение числа начальных и проверочных данных на $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$? Выведите на экран графики, иллюстрирующие ответ, и сделайте вывод.
 - Как влияет увеличение степени многочлена р на $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$? Выведите на экран графики, иллюстрирующие ответ, и сделайте вывод.
 - Как влияет увеличение числа начальных и проверочных данных на относительную погрешность коэффициентов многочлена при сравнении с f(x) в случае фиксированного σ? Что происходит при увеличении σ? Выведите на экран графики, иллюстрирующие ответ, и сделайте вывод. Как может повлиять изменение функции распределения случайной величины X на сделанный вывод?
- 5. Исходя из ответов на предыдущие вопросы, сделать общий вывод о свойствах сходимости полиномиальной регрессии в случае зашумленных данных. [1]

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — овладеть методами Быстрого преобразования Фурье и полиномиальной регрессии. На практике оценить их эффективность и сделать выводы о свойствах методов.

Задачи, выполненные в процессе реализации лабораторной работы

- 1. Выведено общее выражение для формулы численного интегрирования.
- 2. Разработаны функции *fft_coeff(y_nodes)*, которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома и *spectral_integral(f, N)*, которая вычисляет значение интеграла функции f, интерполируемой в N узлах.
- 3. Для каждого из интегралов I_1 и I_2 проведен анализ и произведена оценка порядка точности интегрирования.
- 4. Разработана функция poly_regression(x_nodes, y_nodes, degree), которая возвращает коэффициенты многочлена, наилучшим образом приближающегося к точкам с абсциссами x_nodes и ординатами y_nodes.
- 5. Сгенерированы начальный набор данных $D_{regr}^{(N)}$ и проверочный набор данных $D_{test}^{(N)}$. С помощью набора данных $D_{regr}^{(N)}$ построен многочлен степени р, наилучшим образом приближающийся к данным, вычислена погрешность. Выведена на экран несколько характерных графиков.
- 6. Сделаны выводы о свойствах полиномиальной регрессии.

1. Быстрое преобразование Фурье

Вывод общего выражения для формулы численного интегрирования:

Пусть $\int_{-\pi/4}^{\pi} f(x) dx$ — рассматриваемый интеграл. Заменим f(x) тригонометрическим интерполянтом $a_0 + \sum_{k=1}^{n} (a_k \cdot \cos kx + b_k \cdot \sin kx)$.

Тогда получим выражение

$$\int_{-\pi/4}^{\pi} f(x) \, dx = \int_{-\pi/4}^{\pi} (a_0 + \sum_{k=1}^{n} (a_k \cdot \cos kx + b_k \cdot \sin kx)) \, dx. \tag{1}$$

Преобразуем:

$$\int_{-\pi/4}^{\pi} (a_0 + \sum_{k=1}^{n} (a_k \cdot \cos kx + b_k \cdot \sin kx)) \, dx =$$

$$= \int_{-\pi/4}^{\pi} a_0 \, dx + \sum_{k=1}^{n} \left(\int_{-\pi/4}^{\pi} a_k \cos kx \, dx + \int_{-\pi/4}^{\pi} b_k \sin kx \, dx \right) =$$

$$= a_0 \cdot \int_{-\frac{\pi}{4}}^{\pi} dx + \sum_{k=1}^{n} \left(a_k \cdot \int_{-\frac{\pi}{4}}^{\pi} \cos kx \, dx + b_k \cdot \int_{-\frac{\pi}{4}}^{\pi} \sin kx \, dx \right). (2)$$

Раскрываем интегралы:

$$\int_{-\pi/4}^{\pi} f(x) \, dx = a_0 \cdot \frac{5\pi}{4} + \sum_{k=1}^{n} \left(a_k \frac{1}{k} \cdot \sin \frac{k\pi}{4} + b_k \frac{1}{k} \cdot \left(-\cos k\pi + \cos \frac{k\pi}{4} \right) \right). \tag{3}$$

Т.к. $a_0 = \text{Re}(\hat{a}_0)$, $a_k = 2\text{Re}(\hat{a}_k)$, $b_k = -2\text{Im}(\hat{a}_k)$ [2], выражение (3) примет вид:

$$\int\limits_{-\pi/4}^{\pi} f(x) \, \mathrm{d}x = \frac{5\pi}{4} \cdot \mathrm{Re}(\widehat{a}_0) + \sum_{k=1}^{n} (\frac{2\mathrm{Re}(\widehat{a}_k)}{k} \cdot \sin\frac{k\pi}{4} - \frac{2\,\mathrm{Im}(\widehat{a}_k)}{k} \cdot (\cos\frac{k\pi}{4} - \cos k\pi)).$$

Реализована функция, которая вычисляет коэффициенты тригонометрического полинома, используя алгоритм Кули-Тьюки, а также функция, вычисляющая значение интеграла некоторой функции с помощью тригонометрического ряда.

Для каждого из интегралов I_1 и I_2 были найдены точные значения с помощью библиотечной функции *sympy.integrate*: $I_1 = 5.2432$, $I_2 = -1.8573$. С помощью разработанной функции *spectral_integral* были найдены приближенные значения интегралов при значениях количества узлов $N = 2^n$, где $n \in 1,...,8$. Например, при N = 128 приближенные значения I_1 и I_2 равны соответственно 5.2506 и -1.3081.

Для каждого N найдена относительная погрешность вычислений. На рисунках 1 и 2 представлены log-log графики зависимости этой погрешности от количества узлов интерполяции для интегралов I_1 и I_2 соответственно.

Рисунок 1. График зависимости относительной погрешности от количества узлов интерполяции ∂ ля I_1

Рисунок 2. График зависимости относительной погрешности от количества узлов интерполяции ∂ ля I_2

Как видно из графиков, при увеличении количества узлов, относительная погрешность вычислений уменьшается. На графике, изображенном на рисунке 2, имеется скачок при N=8. Это значит, что для интеграла I_2 оптимальное количество узлов интерполирования равно 8.

Порядок точности интегрирования I_1 больше 1, что видно из графика, представленном на рисунке 1 (при увеличении количества узлов в n раз, погрешность уменьшается в k > n раз). Из графика 2 следует, что порядок точности интегрирования I_2 меньше, чем у I_1 .

Различие порядков точности интегрирования I_1 и I_2 связано с тем, что функция интеграла I_1 f(x) = |x| - четная и непрерывная на отрезке $[-\pi; \pi]$. Согласно теореме Вейерштрасса для функции, обладающей такими свойствами, существует тригонометрический многочлен, который равномерно сходится к исходной функции.[3] Функция интеграла I_2 не обладает этими свойствами, к ней теорема Вейерштрасса не применима, поэтому точность её интегрирования ниже.

2. Регрессия

работы была разработана функция, ходе которая возвращает заданной коэффициенты многочлена степени, наилучшим образом приближающегося к данным. Для каждого из заданных Nир $D_{regr}^{(N)}$ набор данных проверочный набор И начальный сгенерирован данных $D_{test}^{(N)}$. С помощью наборов $D_{regr}^{(N)}$ получены многочлены, наилучшим образом приближающиеся к данным. На рисунках 3-6 показаны некоторые из получившихся многочленов вместе с начальными и проверочными данными.

Рисунок 3. График многочлена степени p=1, построенный по количеству узлов $N=2^4$, $\sigma=0.01$

Рисунок 4. График многочлена степени p=2, построенный по количеству узлов $N=2^7$, $\sigma=0.1$

Рисунок 5. График многочлена степени p=3, построенный по количеству узлов $N=2^6$, $\sigma=1$

Рисунок 6. График многочлена степени p=5, построенный по количеству узлов $N=2^9$, $\sigma=10$

Вычислена среднеквадратичная погрешность аппроксимации $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ по формуле:

$$\epsilon_{regr}^{(N,p)} = \sqrt{\frac{\sum_{i=1}^{N} \left(y_i \left(D_{regr}^{(N)}\right) - P(x_i)\right)^2}{N}}, \quad (4)$$

где $y_i\left(D_{regr}^{(N)}\right)$ — i-ое значение функции в наборе $D_{regr}^{(N)}$, $P(x_i)$ — значение полинома в i-ом узле. Погрешность для проверочных данных находится аналогично.

На рисунке 7 представлен график зависимости среднеквадратичных погрешностей $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ от количества начальных и проверочных данных N.

Рисунок 7. Графики зависимости среднеквадратичных погрешностей $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ от количества начальных и проверочных данных N при многочлене степени p=3, $\sigma=1$

Из графика следует, что при малых значениях N $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ различны, но при увеличении числа данных N значения $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ стремятся к одному числу.

Влияние степени многочлена р на значения среднеквадратичных погрешностей можно оценить по графикам, изображенным на рисунках 8 и 9.

Рисунок 8. Графики зависимости среднеквадратичных погрешностей $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ от степени полинома р при количестве данных $N=2^7$, $\sigma=1$

Рисунок 9. Графики зависимости среднеквадратичных погрешностей $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$ от степени полинома р при количестве данных $N=2^7$, $\sigma=10$

При малых σ наблюдается уменьшение среднеквадратичной погрешности при увеличении степени полинома. При этом значительное уменьшение погрешности происходит только при изменении степени р с 1 до 2. Поэтому при небольших σ следует выбирать полином 2 степени.

На рисунке 10 представлен график зависимости относительной погрешности коэффициентов многочлена от N при фиксированном σ , а на рисунке 11 – при увеличении σ (в 10 раз при увеличении N в 2 раза).

Рисунок 10. График зависимости относительной погрешности коэффициентов многочлена от N при фиксированном σ =1, p=2

Рисунок 11. График зависимости относительной погрешности коэффициентов многочлена от N при увеличении σ , p=2

При фиксированном о относительная погрешность коэффициентов многочлена степени 2 не превышает 1 и уменьшается с увеличением количества узлов. При увеличении о погрешность становится значительно больше (от 2.5 до 20) и увеличивается при увеличении числа данных N. Поэтому при использовании полиномиальной регрессии величина о должна быть постоянна, чтобы обеспечить точность вычислений.

Изменим значения величины X: новый интервал [-15;3], математическое ожидание = 1, среднеквадратичное отклонение = 5. Графики зависимости относительной погрешности коэффициентов многочлена от N при постоянном σ и увеличении σ показаны на рисунках 12 и 13 соответственно.

Рисунок 12. График зависимости относительной погрешности коэффициентов многочлена от N при фиксированном σ =1, p=2 при новых значениях X

Рисунок 13. График зависимости относительной погрешности коэффициентов многочлена от N при увеличении σ , p=2 при новых значениях X

Относительная погрешность значительно возросла (примерно в 2.5 раза), график при фиксированном значении σ стал более хаотичен, т.к. при увеличении значений X данные становятся более зашумленными, что влияет на точность приближения

Заключение

В случае зашумленных данных, которые имеют нормальное распределение, с помощью полиномиальной регрессии можно получить приближение, погрешность которого уменьшается с увеличением числа данных. Метод регрессии следует использовать при большом количестве зашумленных данных.

Список использованных источников

- [1] Соколов, А.П., Першин, А.Ю. Инструкция по выполнению лабораторной работы (общая). Соколов, А.П., Першин, А.Ю., Москва, 2018.
- [2] Першин, А.Ю. Лекции по вычислительной математике. Першин А.Ю., Москва, 2019.
- [3] Теорема Вейерштрасса Стоуна [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Teopema Вейерштрасса Стоуна (Дата обращения: 29.04.2019).