Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
	информационные технологии»

ЛАБОРАТОРНАЯ РАБОТА №1

«Программы линейной структуры»

ДИСЦИПЛИНА: «Высокоуровневое программирование»

Выполнил: студент гр. ИУК4-11Б	(подпись)	_ (.	Суриков Н.С	_)
Проверил:	(подпись)	_ (.	Пчелинцева Н.И.	_)
Дата сдачи (защиты):				
Результаты сдачи (защиты): - Балльная	я оценка:			
- Оценка:				

Цель: Приобретение практических навыков разработки программ линейной структуры средствами языка C++.

Задачи:

- 1. Изучить операторы ввода, вывода.
- 2. Изучить операторы присвоения, простейших логических и арифметических операций.
- 3. Научиться составлять и реализовывать линейные алгоритмы с применением изученных операций.

Вариант 21

Задание 1:

Формулировка:

Даны целые d, m, действительные числа a, b. Вычислить:

$$z = d^2 + \sin^2(m+4)^2 + \sqrt{\frac{a-b^m}{\sqrt{b^2+1}}};$$

r =
$$\frac{tg(m+1)^2 + 4.12e^{d-1}}{\ln|d+m+1.75^5|} + 3\cos 2b;$$

Блок схема:

Листинг программы на С++:

Результат выполнения:

Входные	Вывод	Вывод калькулятора	
данные 5 4 13.1 0.7	программы 29.092251 69.997534	$z = 5^{2} + \sin((4+4)^{2})^{2} + \sqrt{\frac{13.1 - 0.7^{4}}{\sqrt{0.7^{2} + 1}}} $ $r = \frac{\tan((4+1)^{2})}{\ln(5+4+1)}$ $z = 25 + \sin(64)^{2} + \frac{\sqrt{149 \times 128599^{2} \times 1490^{2}}}{14900}$ $r = \frac{25 \tan(29)}{25 \ln(-39)}$ Alternative Form $z \approx 29.09225$ $r \approx 69.99753$	$\frac{ +4.12e^{5-1}}{1.75^{5} } + 3\cos(2 \times 0.7)$ $\frac{ -5 }{1.75^{5} } + 3\cos(2 \times 0.7)$ $\frac{ -5 }{1.75^{5} } + 3\cos(2 \times 0.7)$
6 7 8.9 10.1	1064.788563 182.179016	$z = 6^{2} + \sin((7+4)^{2})^{2} + \sqrt{\frac{8.9 - 10.1^{7}}{\sqrt{10.1^{2} + 1}}}} \qquad \underline{r} = \frac{\tan((7+1)^{2})}{\ln(6+7-1)}$ $z = 36 + \sin(121)^{2} + \frac{\sqrt{101^{7} - 89 \times 10^{6}}}{1000\sqrt[4]{10301}} \qquad \underline{r} = \frac{25 \tan(64)^{2}}{25 \ln(-64)^{2}}$ Alternative Form $z \approx 1064.78856$ Alternative Form $r \approx 182.17902$	$(1) + 103e^{5}$ $\frac{30119}{1024} + 3\cos(20.2)$
5 9 0.4 0.1	25.993288 68.640203	$z \approx 1064.78856$ $r \approx 182.17902$ $r = \frac{\tan((9+1)^2)}{\ln(5+9+1)}$ $z = 25 + \sin(169)^2 + \frac{\sqrt[4]{101 \times 4038990^2}}{10100}$ $z = 25 + \sin(169)^2 + \frac{\sqrt[4]{101 \times 4038990^2}}{10100}$ Alternative Form $z \approx 25.99321$ $r = \frac{25 \tan(100)}{25 \ln(100)}$ Alternative Form $r \approx 68.6402$	$\frac{1.75^{5}}{1.75^{5}} + 3\cos(2 \times 0.1)$ $\frac{100}{1024} + 103e^{4} + 3\cos(0.2)$

Задание 2:

Формулировка:

Точка задана своими координатами (x, y). Написать программу, которая, используя логическое выражение выводит TRUE, если точка принадлежит заштрихованной области и FALSE - если не принадлежит.

Блок схема:

Листинг программы на С++:

Результат выполнения:

Входные данные	-22	3 2.645	-4 -2	1 -1
Вывод	true	true	true	false
программы	uue	uue	uue	juise

Задание 3:

Формулировка:

Найти сумму трех первых цифр дробной части значения выражения:

$$\int_{1}^{\infty} \frac{\sin^2 x + \cos x}{x + y^4 e^{|x-y|}}$$

Блок схема:

Листинг программы на C++:

Результат выполнения:

Входные данные	11	0.1 0.3	-0.55 -0.5
Вывод	12	Q	Q
программы	12	<i>J</i>	J

Вывод

В ходе данной лабораторной работы я приобрёл практические навыки разработки программ линейной структуры средствами языка С++. Я изучил операторы ввода, вывода, операторы присвоения, простейших логических и арифметических операций, научился составлять и реализовывать линейные алгоритмы с применением изученных операций.

Литература

- 1. Зырянов, К. И. Программирование на С++: учебное пособие / К. И. Зырянов, Н. П. Кисленко. Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2017. 129 с. ISBN 978-5-7795-0817- 9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/85873.html
- 2. Фридман, А. Л. Язык программирования С++: учебное пособие / А. Л. Фридман. 3-е изд. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2021. 217 с. ISBN 978-5-4497-0920-2. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/102076.html