Mathematical Thinking. Test Flight Assignment Solutions.

Okon Samuel

Question 9

Definition 1. $\bigcap_{n=1}^{\infty} A_n := \{x : (\forall n \in \mathbb{N}) (x \in A_n)\}$

Lemma 1. Let $A_n := \{x : 0 < x < \frac{1}{n}\}$ for every natural number n, then $A_{n+1} \subset A_n$.

Proof. Let n be any natural number and $A_n := \{x : 0 < x < \frac{1}{n}\}.$

Then $A_{n+1} := \{x : 0 < x < \frac{1}{n}\}$. For every $x \in A_{n+1}$, $0 < x < \frac{1}{n+1}$

$$\Rightarrow (0 < x) \land (x < \frac{1}{n+1})$$

$$\Rightarrow (0 < x) \land (x < \frac{1}{n})$$

$$\Rightarrow 0 < x < \frac{1}{n}$$

$$\Rightarrow x \in A_n.$$
(Since $\frac{1}{n+1} < \frac{1}{n}$)

Hence for any natural number $n, A_{n+1} \subset A_n$.

Lemma 2. For every $x \in \mathbb{R}$, there exists a $n \in \mathbb{N}$ such that $x \notin A_n$, where $A_n := \{ y : 0 < y < \frac{1}{n} \}.$

Proof. (By Cases)

Let x be any real number.

Case 1: $(x \leq 0)$

Let n be any natural number and $A_n := \{x : 0 < x < \frac{1}{n}\}.$ $\Rightarrow x \notin A_n$ (Since $x \leq 0$).

Case 2: (x > 0)

Let n be any natural number such that $n \ge \frac{1}{x}$ and $A_n := \{x : 0 < x < \frac{1}{n}\}.$

$$\Rightarrow x \ge \frac{1}{n} \\ \Rightarrow x \notin A_n \qquad \text{(Since } x \ge \frac{1}{n}\text{)}.$$

Hence, for every $x \in \mathbb{R}$, there exists a $n \in \mathbb{N}$ such that $x \notin A_n$, where $A_n := \{ y : 0 < y < \frac{1}{n} \}.$

Lemma 3. If $A_n := \{x : 0 < x < \frac{1}{n}\}$, for every $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} = \phi$.

Proof. Let $A_n := \{x : 0 < x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$. From Definition ??, $\bigcap_{n=1}^{\infty} = \phi$ if $\neg(\exists x \in \mathbb{R})(\forall n \in \mathbb{N})(x \in A_n)$ But $\neg(\exists x \in \mathbb{R})(\forall n \in \mathbb{N})(x \in A_n) \Leftrightarrow (\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(x \notin A_n)$. Hence, $\bigcap_{n=1}^{\infty} = \phi$ if $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(x \notin A_n)$.

By Lemma 2,
$$(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(x \notin A_n)$$
 is true. Hence, $\bigcap_{n=1}^{\infty} = \phi$ is true.

Proposition 1. If $A_n := \{x : 0 < x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$, then:

1.
$$A_{n+1} \subset A_n$$
 for every $n \in \mathbb{N}$

$$2. \bigcap_{n=1}^{\infty} = \phi.$$

Proof. Let $A_n := \{x : 0 < x < \frac{1}{n}\}$ for every $n \in \mathbb{N}$. Then property (1) is true by Lemma 1 and property (2) is true by Lemma 3.