1 Introduction to Engineering Calculation

• Base units

Dimension	SI	cgs	English
Length	m	cm	in, ft, mi
Mass	kg	g	lb_{m}
Time	\mathbf{s}	\mathbf{S}	S
Temperature	K	K	\mathbf{F}
Current	A	A	
Light intensity	cd	cd	

• Derived units

Volume	liter	L	1000 cm^3
Force	Newton	N	1 kg m/s^2
	dyne		$1~{\rm g~cm/s^2}$
Energy/Work	Joule	J	$1 \text{ N m} = 1 \text{ kg m}^2/\text{s}^2$
,	erg		$1 \text{ dyne cm} = 1 \text{ g cm}^2/\text{s}^2$
	calorie	cal	4.184 J
	Btu		1 Btu = 1055.05585 J
Power	Watt	W	$1 \mathrm{J/s}$
	Horsepower	$_{ m hp}$	1 hp = 745.7 W
Pressure	Pascal	Pa	$1 \text{ N/m}^2 = 1 \text{ J/m}^3$
	bar		10^5 Pa
	atmosphere	atm	1 atm = 1.01325 bar
	torr	torr	$1/760 \mathrm{\ atm}$

• basic statistics

sample mean Sample variance Standard deviation
$$\bar{X} = \sum_{1}^{n} X_{i} \qquad s_{X}^{2} = \frac{1}{N-1} \sum_{1}^{n} (X_{i} - \bar{X})^{2} \quad s_{x} = \sqrt{s_{X}^{2}}$$

2 Processes and process variables

• Density

$$\rho = \frac{m}{V} = \frac{\dot{m}}{\dot{V}}$$

• Pressure

$$P = P_0 + \rho g h$$

$$P_{gauge} = P_{abs} - P_{atm}$$

• Temperature Scales

- Kelvin: absolute scale, $0 \to \infty$
- Celsius: $T(^{\circ}C) = T(K) 273.15$)
- Fahrenheit: $T({}^{\circ}F) = 1.8T({}^{\circ}C) + 32$
- Rankine: absolute scale, $T({}^{\circ}R) = T({}^{\circ}F) + 459.67$
- Chemical composition

3 Material balances

• general balance

output = input + generation - consumption - accumulation

• Reaction progress

$$n_j = n_{j0} + \nu_j \xi$$

• conversion

$$X_j = \frac{n_{j0} - n_j}{n_{j0}} = -\frac{\nu_j \xi}{n_{j0}}$$

• Multiple reactions

$$n_j = n_{j0} + \sum_i \nu_{ij} \xi_i$$

- $yield = n_j/n_j^{\text{max}}$
- selectivity (often) defined as amount of desired product over amount of undesired.

4 Properties of single-phase systems

• Ideal solution

$$v (1/\text{mol}) = \sum_{i} x_{i} v_{i}$$
$$\frac{1}{\bar{\rho}} = \sum_{i}^{n} \frac{\omega_{i}}{\rho_{i}}$$

• Ideal gases

$$PV = nRT$$
 or $Pv = RT$ or $v = \frac{RT}{P}$

R $8.314472 \text{ J / (K mol)} \quad 0.082057 \text{ atm l / (K mol)} \quad 1.3806504e-23 \text{ J / K}$

• Ideal gas mixture

$$V(N,T,P) = V_1(N_1,T,P) + V_2(N_2,T,P)$$

$$\frac{P_1}{P} = \frac{N_1 RT/V}{NRT/V} = y_1$$

• van der Waals model

$$P_{\text{vdW}} = \frac{RT}{v - b} - \frac{a}{v^2}$$
$$b = v_c/3 \qquad a = \frac{9}{8}RT_cv_c$$

• reduced variables

$$T_r = T/T_c$$
 $P_r = P/P_c$ $v_r = v/v_c$

• Soave-Redlich-Kwong (SRK) model

$$P_{\text{SRK}} = \frac{RT}{v - b} - \frac{\alpha(T)a}{v(v + b)}$$

$$a = 0.42747 \frac{(RT_c)^2}{P_c}$$

$$b = 0.08664 \frac{RT_c}{P_c}$$

$$m = 0.48508 + 1.55171\omega - 0.1561\omega^2$$

$$\alpha = 1 + m(1 - \sqrt{T_r})$$

• Pitzer "acentric" factor

$$\omega = -\log\left(\frac{P_{sat}}{P_c}\right)\Big|_{T_r = 0.7} - 1$$

• Virial expansion

$$P = \frac{RT}{v} \left(1 + \frac{B_2(T)}{v} + \frac{B_3(T)}{v^2} + \cdots \right)$$

• compressibility

$$Z = \frac{P(v, T)v}{RT}$$

• Law of corresponding states

$$Z_c = 0.27$$

5 Two-phase systems

• Clapeyron equation

$$\frac{dP^*}{dT} = \frac{\Delta H_{\text{latent}}}{T(v_b - v_a)}$$

• Clausius-Clapeyron equation:

$$\ln \frac{P_2^*}{P_1^*} \approx -\frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

• Antoine equation

$$\log_{10} P^* = A - \frac{B}{T+C}$$

• Gibbs phase rule

$$DOF = c - \Pi - r + 2$$

• Raoult's Law

$$x_A P_A^*(T) = P_A = y_A P$$

$$P_{\text{bubble}} = \sum x_i P_i^*$$

$$P_{\text{dew}} = \left(\sum_{i} \frac{y_i}{P_i^*}\right)^{-1}$$

• Relative humidity

$$RH(T) = P_{\mathrm{H_2O}}/P_{\mathrm{H_2O}}^*(T)$$

• Henry's Law

$$x_A H_A(T) = P_A = y_A P$$

• Colligative properties

$$\Delta T_b \approx \frac{RT_b^2}{\Delta H_{vap}^*} x$$
$$\Delta T_m \approx \frac{RT_m^2}{\Delta H_m^*} x$$

6 Energy balances

• Energy types

$$E_K = \frac{1}{2}mv^2 \qquad \dot{E}_K = \frac{1}{2}\dot{m}u^2$$

$$E_V = mgh$$
 $\dot{E}_V = \dot{m}gz$

$$U = U(T, P, x_i)$$
 $H = U + PV$

• Closed, constant volume system

$$\Delta U + \Delta E_K + \Delta E_V - q - w = 0$$

• Open system at steady-state

$$\Delta \dot{H} + \Delta \dot{E}_K + \Delta E_P = \dot{q} + \dot{W}_s$$

• Bernoulli equation:

$$\frac{1}{2}\Delta u^2 + g\Delta z + \frac{1}{\rho}\Delta P = 0$$

7 Energy balances on non-reactive systems

· heat capacity

$$C_v(T) = \left(\frac{\partial \hat{U}}{\partial T}\right)_v$$
$$C_p(T) = \left(\frac{\partial \hat{H}}{\partial T}\right)_p$$

- For liquids and solids, $C_p \approx C_v$
- For ideal gas, $C_p = C_v + R$

8 Energy balances on reactive systems

• Reaction energy

$$\Delta H_r^{\circ} = \sum_{j} \nu_j \Delta \hat{H}_{f,j}^{\circ}$$

• "Heat of reaction" method

$$\Delta \dot{H} = \xi \Delta \hat{H}_r^{\circ} + \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$
$$\Delta \dot{H} = \sum_i \xi_i \Delta \hat{H}_r^{\circ} + \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$

• "Heat of formation" method

$$\Delta \dot{H} = \sum_{out} \dot{n}_{out} \hat{H}_{out} - \sum_{in} \dot{n}_{in} \hat{H}_{in}$$

9 Transient processes

• General balance around any system or element of a system

$$\dot{F}_{out}(t) = \dot{F}_{in}(t) + r(t) - \frac{dF}{dt}$$