Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus 1, $P = \prod_{i=1}^d (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^{d} \lambda_i^n$. On suppose que $P \in \mathbb{Z}[X]$.

- a) Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$
- b) Montrer que f est périodique à partir d'un certain rang.
- c) Montrer que, pour tout $i \in \{1, ..., d\}$, λ_i est nul ou racine de l'unité.
- a) On procède par récurrence sur $n \in \mathbb{N}$.

$$\begin{aligned} & \text{Initialisation}: \ n = 0 \\ & \sum_{i=0}^{d} \lambda_{i}^{0} = d \in \mathbb{Z} \end{aligned}$$

Hérédité : On suppose, pour un certain $n \in \mathbb{N}^*$, que $\forall k < n \in \mathbb{N}^*$, $\sum_{i=1}^d \lambda_i^k \in \mathbb{Z}$

On a:

$$\begin{split} \sum_{i=1}^d \lambda_i^n &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j^{n-1} \\ &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \frac{1}{2} \left(\sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j\right) \left(\sum_{k=1}^d \lambda_k^{n-2}\right) + \frac{1}{2} \sum_{1\leqslant i\neq j\neq k\leqslant d} \lambda_i \lambda_j \lambda_k^{n-2} \\ &= \cdots \\ &= \sum_{k=1}^n \left((-1)^{k+1} \left(\sum_{i=1}^d \lambda_i^{n-k}\right) \left(\sum_{1\leqslant i_1<\dots< i_k\leqslant d} \prod_{j=1}^k \lambda_{i_j}\right)\right) \end{split}$$

Or, par hypothèse de récurrence, $\forall k \in [\![1,n]\!], \sum_{i=1}^d \lambda_i^{n-k} \in \mathbb{Z}$

De plus, pour tout $k \in [1, n]$, $\sum_{1 \leqslant i_1 < \dots < i_k \leqslant d} \prod_{j=1}^k \lambda_{i_j} \text{ est le coefficient de degré } n-k \text{ du polynôme } P \text{ donc appartient de degré } n-k \text{ du polynôme } P \text{$

Finalement,

$$\sum_{i=1}^{d} \lambda_i^n \in \mathbb{Z}$$

Cela conclut la récurrence.

b) Pour $n \ge d$, on a :

$$f(n) = \sum_{k=1}^{d} \left((-1)^{k+1} f(n-k) \left(\sum_{1 \leq i_1 < \dots < i_k \leq d} \prod_{j=1}^{k} \lambda_{i_j} \right) \right)$$

Or, $\forall n \in \mathbb{N}, f(n) \in [-d, d]$.

Comme $[-d, d]^d$ est fini, il existe $n < n' \in \mathbb{N}$ tels que n' - n > d et $\forall k \in [0, d - 1], f(n + k) = f(n' + k)$. Et comme f(n) dépend des d termes précédents,

c) f est périodique à partir d'un certain rang donc $\exists r \in \mathbb{N}, \forall n \in \mathbb{N}^*, f(mr) = f(r)$ On pose $S(x) = \sum_{n=0}^{+\infty} f(nr)x^n$. Alors :

$$S(x) = d + f(r) \frac{x}{1 - x}$$

$$= d + \sum_{n=1}^{+\infty} \sum_{i=1}^{d} \lambda_i^{rn} x^n$$

$$= \sum_{n=0}^{+\infty} \sum_{i=1}^{d} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \sum_{n=0}^{+\infty} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Donc
$$d - f(r) + \frac{f(r)}{1 - x} = \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Par unicité de la DES, tous les λ_i sont nuls ou tels que $\lambda_i^{-r}=1$