Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode.

deeplearning.ai

Neural Networks for Sentiment Analysis

Outline

- Neural networks and forward propagation
- Structure for sentiment analysis

Neural Networks

Forward propagation

 $a^{[i]}$ Activations ith layer

$$a^{[0]} = X$$
 $z^{[i]} = W^{[i]}a^{[i-1]}$
 $a^{[i]} = g^{[i]}(z^{[i]})$

Neural Networks for sentiment analysis

Neural Networks for sentiment analysis

Initial Representation

Word	Number		
а	1		
able	2		
about	3		
•••	•••		
hand	615		
•••	•••		
happy	621		
•••	•••		
zebra	1000		

To match size of longest tweet

Summary

- Structure for sentiment analysis
- Classify complex tweets
- Initial representation

deeplearning.ai

Dense and ReLU Layers

Outline

- Dense layer in detail
- ReLU function

Neural networks Hidden unit j

Dense Layer

$$z_j^{[i]} = w_j^{[i]} a^{[i-1]}$$

Dense layer

$$z^{[i]} = \overline{W^{[i]}} a^{[i-1]}$$
Trainable parameters

ReLU Layer

$$a_j^{[i]} = g^{[i]}(z_j^{[i]})$$

ReLU = Rectified linear unit

$$g(z^{[i]}) = \max(\underline{0}, \underline{z^{[i]}})$$

$$g^{[i]}(z_j^{[i]})$$

Summary

- Dense Layer $= z^{[i]} = W^{[i]}a^{[i-1]}$
- ReLU Layer $g(z^{[i]}) = \max(0, z^{[i]})$

deeplearning.ai

Other Layers

Outline

- Embedding layer
- Mean layer

Embedding Layer

Vocabulary	Index			
1	1	0.020	0.006	_
am	2	-0.003	0.010	
happy	3	0.009	0.010	
because	4	-0.011	-0.018	Trainable
learning	5	-0.040	-0.047	weights
NLP	6	-0.009	0.050	
sad	7	-0.044	0.001	Vocabulary
not	8	0.011	-0.022	X
				Embedding

Mean Layer

Tweet: I am happy

No trainable parameters

Summary

- Embedding is trainable using an embedding layer
- Mean layer gives a vector representation

deeplearning.ai

Traditional Language models

Traditional Language Models

N-grams

$$P(w_2|w_1) = \frac{\operatorname{count}(w_1, w_2)}{\operatorname{count}(w_1)} \longrightarrow \operatorname{Bigrams}$$

$$P(w_3|w_1, w_2) = \frac{\operatorname{count}(w_1, w_2, w_3)}{\operatorname{count}(w_1, w_2)} \longrightarrow \operatorname{Trigrams}$$

$$P(w_1, w_2, w_3) = P(w_1) \times P(w_2|w_1) \times P(w_3|w_2)$$

- Large N-grams needed to capture dependencies between distant words
- Need a lot of space and RAM

Summary

- N-grams consume a lot of memory
- Different types of RNNs are the preferred alternative

deeplearning.ai

Recurrent Neural Networks

Advantages of RNNs

Nour was supposed to study with me. I called her but she did not <u>ahawer</u>

RNNs Basic Structure

Learnable parameters

Summary

- RNNs model relationships among distant words
- In RNNs a lot of computations share parameters

deeplearning.ai

Applications of RNNs

Many to Many

Summary

- RNNs can be implemented for a variety of NLP tasks
- Applications include Machine translation and caption generation

Math in Simple RNNs

Outline

- How RNNs propagate information (Through time!)
- How RNNs make predictions

A Vanilla RNN

$$h^{< t>} = g(W_{hh}h^{< t-1>} + W_{hx}x^{< t>} + b_h)$$

A Vanilla RNN

- Hidden states propagate information through time
- ullet Basic recurrent units have two inputs at each time: $h^{< t-1>}$, $x^{< t>$

deeplearning.ai

Cost Function for RNNs

Cross Entropy Loss

K - classes or possibilities

$$J = -\sum_{j=1}^{K} y_j \log \hat{y}_j$$

Looking at a single example (x, y)

Cross Entropy Loss

$$h^{} = g(W_h[h^{}, x^{}] + b_h)$$
$$\hat{y}^{} = g(W_{yh}h^{} + b_y)$$

$$J = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{K} y_j^{} \log \hat{y}_j^{}$$

Average with respect to time

For RNNs the loss function is just an average through time!

deeplearning.ai

Implementation Note

Outline

- scan() function in tensorflow
- Computation of forward propagation using abstractions

tf.scan() function

```
\hat{y}^{< t_1>} \quad \hat{y}^{< t_2>} \qquad \hat{y}^{< T>} \qquad \text{def scan(fn, elems, initializer=None, } \ldots): \\ \text{cur value = initializer} \\ \text{ys = []} \qquad \text{for x in elems:} \\ \text{y, cur_value = fn(x, cur_value)} \\ \text{ys.append(y)} \\ \text{xs.append(y)} \\ \text{return ys, cur_value}
```

Frameworks like Tensorflow need this type of abstraction Parallel computations and GPU usage

- Frameworks require abstractions
- tf.scan() mimics RNNs

deeplearning.ai

Gated Recurrent Units

Outline

- Gated recurrent unit (GRU) structure
- Comparison between GRUs and vanilla RNNs

Gated Recurrent Units

"Ants are really interesting. They are everywhere."

Plural

Relevance and update gates to remember important prior information

Gates to keep/update relevant information in the hidden state

$$\Gamma_r = \sigma(W_r[h^{< t_0>}, x^{< t_1>}] + b_r)$$

$$\Gamma_u = \sigma(W_u[h^{< t_0>}, x^{< t_1>}] + b_u)$$

$$h'^{\langle t_1 \rangle} = \tanh(W_h[\Gamma_r * h^{\langle t_0 \rangle}, x^{\langle t_1 \rangle}] + b_h)$$

Hidden state candidate

$$h^{\langle t_1 \rangle} = (1 - \Gamma_u) * h^{\langle t_0 \rangle} + \Gamma_u * h'^{\langle t_1 \rangle}$$
$$\hat{y}^{\langle t_1 \rangle} = g(W_y h^{\langle t_1 \rangle} + b_y)$$

Vanilla RNN vs GRUs

$$h^{} = g(W_h[h^{}, x^{}] + b_h)$$
$$\hat{y}^{} = g(W_{vh}h^{} + b_v)$$

- GRUs "decide" how to update the hidden state
- GRUs help preserve important information

deeplearning.ai

Deep and Bi-directional RNNs

Outline

- How bidirectional RNNs propagate information
- Forward propagation in deep RNNs

Bi-directional RNNs

I was trying really hard to get a hold of . **Louise**, finally answered when I was about to give up. her him them $f_{W} \stackrel{h^{< t_{1}>}}{\longrightarrow} f_{W} \stackrel{h^{< t_{2}>}}{\longrightarrow} f_{W}$

Bi-directional RNNs

Information flows from the past and from the future independently

$$\hat{y}^{\langle t \rangle} = g(W_y[\overrightarrow{h}^{\langle t \rangle}, \overleftarrow{h}^{\langle t \rangle}] + b_y)$$

Deep RNNs

- In bidirectional RNNs, the outputs take information from the past and the future
- Deep RNNs have more than one layer, which helps in complex tasks

