

Microbial Community Structure and Biogeochemistry of Three Small Eutrophic Lakes

J.B. James¹, J.E. Rogers¹, J.A. Lisa², K.A. Houghton³, R. Devereux¹

¹US EPA – Gulf Ecology Division, Gulf Breeze, FL, ²Rutgers Univ., New Brunswick, NJ, ³CDC, Atlanta, GA

Introduction

The three Jackson Lakes within the Bayou Chico Watershed in NW FL, USA were formed from abandoned sand pits. The lakes experienced inundation with marine water during Hurricane Ivan in 2004, and, despite their proximity and similar dimensions, have developed different biogeochemical profiles over time. All the lakes are stratified, and while the NE lake is fully freshwater, the SE and SW lakes have freshwater above the oxycline with salinities below the oxycline ranging between 2.3 and 4.5. This study was undertaken to investigate the microbial communities of the lakes and how microbial communities are shaped over season and depth.

Figure 1. Locations of Jackson Lakes in Pensacola, FL. The lakes were formerly sand pits. Despite their proximity, they have different biogeochemical characteristics.

Methods

Water Sampling & Analysis

- Continuous dissolved oxygen and temperature sensors
 - Deployed at least 14 days prior to sampling
 - Deployed continuously
 - 12/14/16-7/27/20178/21/2017-12/12/2017
- Sampling Events
- September/October 2016
- April 2017

October 2017

- July 2017
- Water collection
- Same site in each lake10 depths from surface to
- Filtered using 0.2 µm cartridge filters
 Physical parameters determined at sampling using an In-Situ© Smart Troll
 - Salinity
 - pH
 - Temperature
 - Total dissolved solids (TDS)
 Reduction potential (ORP)
 Statistical testing to id
- Dissolved oxygen (DO)
 Water chemistries
- Dissolved
- DissolvedTotal dissolved nitrogen
- Dissolved organic carbon

 Statistical
- Ammonium (NH₄+)
 Total dissolved phosphorus
- Nitrate and nitrite (NO_x)
- Nitrite (NO₂-2)

- Ferrous iron (Fe²⁺)
 Phosphate (PO₄-3)
- Sulfate (SO₄⁻²)
 Sulfide (HS⁻)
- Silicate (SiO)
- Particulate
- Chlorophyll a
 Particulate pitr
- Particulate nitrogen (PN)
- Particulate carbon (PC)
- Gas

Carbon dioxide (CO₂)

- Methane (CH₄)
- Nitrous oxide (N₂O)
 Sequencing and Community

Structure

- DNA extracted from filters
 PowerMag DNA Isolation Kit
- 16S rRNA genes
- Earth Microbiome Project
 protocols
- Sequences analyzed and annotated using mothur and the Silva database

Argonne National Laboratories

- Statistical testing to identify and characterize community structure in the water samples, with relation to environmental parameters performed using PRIMER v7 (Clarke and Gorley
- Statistical methods included Cluster, BEST, and ANOSIM (Clarke 1993)

Notice: Mention of trade names, products, or services does not convey official EPA approval, endorsement, or recommendation.

U.S. Environmental Protection Agency Office of Research and Development

Community Structure based on 16S rRNA gene Sequences and Environmental Influences by Lake

Figure 2. Non-metric multidimensional scaling of samples based on similarity of 16S rRNA gene sequences; each lake separated by season. Samples are labeled by depth in meters below lake surface. Samplings in the Spring and Fall of 2017 occurred after mixing events, and the communities are not as stratified as they are during the other sampling periods. However, the Southeast and Southwest lakes become stratified more quickly after a mixing event than the Northeast lake.

Continuous Monitoring Data of the Lakes – Temperature and Dissolved Oxygen

Figure 3. Continuous vertical profiles of temperature (°C) and dissolved oxygen (mg/l) recorded every 60 seconds using PME MiniDOTs. Vertical spacing of the sensors varied based on the total depth and position of the pycnocline in each lake at the time of deployment.

Physical and Chemical Parameters

Figure 6. Environmental parameters determined to most influence the microbial communities of the lakes included NO_X , ammonium (NH_4^+) , and Fe^{2+} .

Correlating Community Structure with Environmental Variables – Within Lakes

Southeast Lake

BEST Analysis – Linking Community Assemblage to

Northeast Lake BEST Analysis – Linking Community Assemblage to Environmental Variables			
Factor	Environmental Variables	Correlation	
Ordered Depth	NO_X	.783	
Ordered Depth	NO _x , pH	.858	
Season	NO_X	.890	
Season	NO _x , C:N	.905	

Table 1. BEST analysis of correlations of microbial community			
structures in the NE Lake, across	s seasons, and	ordina	l depths
based on the environmental	parameters.	NO _X	is highly
influential in this lake.			

able 2. BEST analysis of correlations of microbial community		
tructures in the SE Lake, across seasons, and ordered depths,		
ased on environmental parameters. The community		
tructure is less easily explained than the NE Lake. The SE		
ake is deeper and temperature has a large effect on depth.		
rissolved carbon dioxide correlates strongest with season.		
· · · · · · · · · · · · · · · · · · ·		

Environmental Variables		
Factor	Environmental Variables	Correlation
Ordered Depth	°C	.664
Ordered Depth	°C, PC	.753
Ordered Depth	°C, Chlorophyll a, PC	.771
Ordered Depth	°C, Chlorophyll <i>a</i> , PC, Sulfide	.792
Season	CO ₂	.838
Season	NO _X , CO ₂	.853
Season	°C, CO ₂ , SO ₄ ²⁻	.856

°C, Fe²⁺, CO₂, SO₄ ²⁻

Southwest Lake BEST Analysis – Linking Community Assemblage to Environmental Variables

Factor	Environmental Variables	Correlation
Ordered Depth	CH ₄	.717
Season	NH ₄ ⁺	.883
Season	Salinity, CO ₂	.894
Season	NO _X , CO ₂ , NH ₄ ⁺	.912

Table 3. BEST analysis of the correlations of the microbial community structures in the SW Lake, across seasons, and ordinal depths, based on the environmental parameters. The community structure by depth is best correlated with methane. Ammonium has the largest single correlation with community structure across the seasons, but, when two variables are allowed, salinity and carbon dioxide correlate better. Only three variables are required to achieve a correlation above 0.9; NO_X, which is important during season across all lakes, carbon dioxide and ammonium.

Community Structure based on 16S rRNA gene Sequence All Lakes, All Sampling Events

Figure 7. Non-metric multidimensional scaling of samples for all three lakes based on Bray-Curtis similarity of transformed abundance of 16S rRNA gene sequences (Log (X+1)). Communities from the lakes' surfaces are largely found at the top of the figure, and likewise for the bottom.

Correlating Community Structure with Environmental Variables Across Lakes

BEST Analysis – Linking Community Assemblage to Environmental Variables

Factor	Environmental Variables	Correlation
Lake	CH ₄	.640
Lake	NO _X , NH ₄ ⁺	.645
Lake	NO_X , NH_4^+ , Fe^{2+}	.664
Season	SiO	.546
Ordered Depth	NO _x , Fe ²⁺	.730

Table 4. BEST analysis of the correlations of the microbial community structures across all the lakes, seasons, and depths, based on the environmental parameters.

Results

The communities were more similar within a lake, and between sampling times with depth being a major determinant within lakes, than among lakes. In agreement with the chemical data, the sulfidic SW and SE lakes were more like one another than either was to the NE lake. Continuous data monitors demonstrated that these lakes are polymictic. The community structure data suggests that after mixing events, the SW and SE lakes established redox gradients more rapidly than in the NE lake, where DOC concentrations were lowest and salinity is negligible. The community structures of the lakes correlated to different environmental drivers.

Organisms were identified as common across lakes, endemic to particular lakes, or as present during single sampling events (in progress).

The views expressed in this poster are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

30 Seconds? Read This!

- Despite their proximity, the three Jackson Lakes have different biogeochemical characteristics and have different microbial communities.
- The Southeast and Southwest lakes have salinity gradients, sulfidic bottom water, and are more alike to one another than to the Northeast Lake. The NE Lake is fully freshwater.
- While these lakes are all polymictic, the microbial communities in the Southeast and Southwest lakes become stratified more quickly, likely due to saline bottom waters.
- BEST analysis shows that methane concentration most strongly correlates with differences in the microbial communities between lakes when considering only one parameter; NO_X and NH₄⁺, and then Fe²⁺ explain most of the variability in communities when considering up to three parameters.
- NO_X and Fe^{2+} (but not NH_4^+) correlate best with differences in the microbial community structure among the ordered depths across the lakes, while silicate correlated best with microbial community changes with seasons.
- Considering the lakes individually, BEST analysis demonstrates that the microbial community structures correlate with different environmental parameters in each lake, with NO_x important in all three lakes.

Future Directions

- Quantify nitrogen cycling genes (amoA, nosZ, nirK, nirS, nrfA, hzo, napA)
 and genes encoding sulfur and methane cycling enzymes.
- Sequence 18S rRNA gene for algae and diatom community structure.
- Identify species and functional groups indicative of biogeochemical changes within and across lakes.
- Develop indicator species indices for chemicals of interest to stakeholders (e.g., nutrient pollution).

References

- Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.
- Clarke, KR, Gorley, RN, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, 192pp.
- Schloss, PD, et al. (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23): 7537-41.

Acknowledgements

This work would not have been possible without the field, lab, database management, and code wrangling contributions of Diane Yates, Jessica Aukamp, Ryan Boyles, Alex Almario, Elizabeth George, Jenna Rackley, David Beddick, Melissa Overton, Dragoslav Marcovich, Brandon Jarvis, Jim Hagy, and Dana Morton.

Contact

John E. Rogers | 850.934.9326 | rogers.johne@epa.gov