18. Представление тьюринговых программ в виде аналитических выражений (псевдокодов). Правила композиции тьюринговых программ. Примеры с доказательством частичной корректности

Билеты 10, 22

Обозначим за s, l, r, a – команды остановки, движения влево/вправо на 1 ячейку, печать символа a в текущую ячейку, соответственно. Программы, у которых множество выходов разбито на два непустых подмножества (подмножество да-выходов и подмножество нет-выходов) назовем бинарными распознающими программами.

1. Бинарно-распознающая программа

2. Охраняемая программа. Пусть P – бинарно-распознающая программа, T – произвольная. (Если P)T

3. $P_1, ..., P_k$ – набор распознающих программ, $P_1, ..., P_k$ – набор произвольных программ. $\bigvee_{i=1}^k (Если P_i) T_i$

4. Если P – бинарно-распознающая программа, T – произвольная. (Пока P)T

5. Если P – бинарно-распознающая программа, T – произвольная. T(Делай P)

6. Последовательное соединение программ. $[T_1, ..., T_k]$. Если $T_1 = \cdots = T_k = T$, то $[T_1, ..., T_k] = T^k$

Пример: (программа: добавление 1 к числу) $P_2 - \#\alpha_1 \dots \alpha_k \# \#\alpha_1 \dots \alpha_k \#$ $P_{3_i} - \#\alpha_1 \dots \alpha_k \# \#\alpha_1 \dots \alpha_{k-i} 0^i \qquad 0^i = 0000 \dots 0000 \ (k \ \text{штук})$ P_4 — выход Возможные варианты переходов: $I \rightarrow II$ $II \rightarrow III_1$

II→IV (k=0) $\begin{array}{l} III_k \rightarrow IV \\ III_i \rightarrow III_{i+1} \end{array}$ Рассмотрим последний случай подробнее:

 $P_{III_i} = \#\alpha_1 \dots \alpha_k \#\#\alpha_1 \dots \alpha_{k-i-1} 100^{i-1} \# \rightarrow P_{III_{i+1}} = \#\alpha_1 \dots \alpha_k \#\#\alpha_1 \dots \alpha_{k-i-1} 00^i \#$ Доказана частичная корректность данного алгоритма