Relations & Functions - 2

Aviral Janveja

1 Types of Relations

We know that a relation in a set A is a subset of $A \times A$. It could be \emptyset or $A \times A$ or some subset in between. This leads us to the following definitions :

1.1 Empty Relation

A relation R in a set A is called an empty relation, if no element of A is related to any element of A. That is $R = \emptyset$.

1.2 Universal Relation

A relation R in a set A is called universal relation, if each element of A is related to every element of A. That is $R = A \times A$.

Both the empty relation and the universal relation are sometimes called **trivial relations**.

1.3 Reflexive Relation

A relation R in a set A is called reflexive if $(a, a) \in R$ for every $a \in A$.

1.4 Symmetric Relation

A relation R in a set A is called symmetric if $(a, b) \in R$ implies that $(b, a) \in R$ for all $a, b \in A$.

1.5 Transitive Relation

A relation R in a set A is called transitive if $(a,b) \in R$ and $(b,c) \in R$ implies that $(a,c) \in R$ for all $a,b,c \in A$.

1.6 Equivalence Relation

A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

1.7 Example

Let R be the relation defined in the set $A = \{1,2,3,4,5,6,7\}$ by $R = \{(a,b) : both \ a$ and b are either odd or even $\}$. Show that R is an equivalence relation.

Solution:

- \Rightarrow Given any element a in A, it will either be odd or even. So $(a,a) \in R$ for all $a \in A$. Thus R is reflexive.
- \Rightarrow Further, $(a,b) \in R$ implies both a and b must be either odd or even, thus $(b,a) \in R$ as well for any $a,b \in A$. Thus R is symmetric.
- \Rightarrow Finally, $(a,b) \in R$ and $(b,c) \in R$ implies all elements a,b,c must be either even or odd simultaneously, hence implying that $(a,c) \in R$ for any $a,b,c \in A$. Thus R is transitive.

Hence, we have shown that R is an equivalence relation.

2 Types of Functions

2.1 One-One

A function $f: X \to Y$ is said to be one-one (or **injective**) if distinct elements of X under f have distinct images in Y. That is, for every $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Otherwise, if multiple elements in X have the same image in Y, then f is called **many-one**.

2.2 Onto

A function $f: X \to Y$ is said to be onto (or **surjective**) if every element of Y is the image of some element of X under f. That is, for every $y \in Y$, there exists an element x in X such that f(x) = y.

This implies that $f: X \to Y$ is onto if and only if range of f = Y =codomain.

2.3 One-One & Onto

A function $f: X \to Y$ is said to be **bijective** if it is both one-one and onto.

2.4 Example 8 9 13 14