Problème 1. Fonction $x \mapsto \frac{\arcsin x}{x^2}$ et suite récurrente associée.

1. On considère la fonction g définie sur [0,1[par

$$\forall x \in [0, 1[g(x) = \frac{x}{\sqrt{1 - x^2}} - 2 \arcsin x.$$

- (a) Justifier que g est de classe \mathcal{C}^1 sur [0,1[et calculer $\lim_{x\to 1}g(x).$
- (b) Calculer g'(x) pour $x \in [0,1[$ et donner le tableau de variations de g.
- (c) En déduire qu'il existe un unique $\alpha \in]0,1[$ tel que $g(\alpha)=0.$ Justifier que $\frac{\sqrt{2}}{2}<\alpha<1.$
- (d) Donner, suivant les valeurs de x, le signe de g(x).
- 2. Soit f la fonction à valeurs réelles définie par

$$f(x) = \frac{\arcsin x}{x^2}.$$

- (a) Déterminer le domaine de définition de f. Étudier la parité et la continuité de f. Que valent f(1) et f(-1)?
- (b) Justifier que $\frac{\arcsin x}{x} \xrightarrow[x \to 0]{} 1$.

 Déterminer les limites à gauche et à droite de f en 0. Peut-on prolonger f par continuité en 0?
- (c) Justifier que f est de classe C^1 sur $]-1,0[\cup]0,1[$. Pour $x \in]0,1[$, exprimer f'(x) en fonction de g(x). Justifier que la fonction f n'est pas dérivable en 1 et en -1.
- (d) Dresser le tableau de variations de f.

- 3. On rappelle que α est l'unique réel de $\left]\frac{\sqrt{2}}{2},1\right[$ tel que $g(\alpha)=0.$ On pose $\beta=\arcsin\alpha.$
 - (a) Montrer que $\frac{\pi}{4} < \beta < \frac{\pi}{2}$ et $f(\alpha) = \frac{1}{\sin 2\beta}$.
 - (b) Montrer que $\tan \beta = 2\beta$ puis que $\beta = \arctan 2\beta$.
- 4. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N} : u_{n+1} = \arctan(2u_n). \end{cases}$$

On définit la fonction h sur $[\beta, +\infty[$ par $h: x \mapsto \arctan(2x)$ Enfin, on pose

$$k = \frac{2}{1 + 4\beta^2}.$$

- (a) Montrer que pour tout $n \in \mathbb{N}$ on a $u_n \geq \beta$.
- (b) Montrer que h est k-lipschitzienne sur $[\beta, +\infty[$.
- (c) Démontrer que

$$\forall n \in \mathbb{N} : |u_{n+1} - \beta| \le k|u_n - \beta|.$$

(d) On admet qu'une première approximation donne $\beta > 1$. Déduire de ce qui précède que

$$\forall n \in \mathbb{N} \qquad |u_n - \beta| \le \left(\frac{2}{5}\right)^n.$$

Donner un rang n_0 à partir duquel on est certain d'avoir les mille premières décimales de β .

5. On donne les valeurs approchées à 10^{-1} près : $\sin \beta \approx 0,9$ et $\frac{1}{\sin(2\beta)} \approx 1,4$. Tracer dans un repère orthonormé le graphe de f.

Exercice 1. Une preuve du théorème de Darboux.

Soient deux réels a et b tels que a < b et une fonction f dérivable sur [a, b].

On considère un réel y entre f'(a) et f'(b). On souhaite prouver que y possède un antécédent par f':

$$\exists c \in [a, b] \quad y = f'(c).$$

On aura alors établi le *théorème de Darboux*, qui énonce qu'une fonction dérivée possède la propriété des valeurs intermédiaires.

Considérons les fonctions

$$\varphi: \left\{ \begin{array}{ccc}]a,b] & \to & \mathbb{R} \\ x & \mapsto & \frac{f(x)-f(a)}{x-a} \end{array} \right. \quad \psi: \left\{ \begin{array}{ccc} [a,b[& \to & \mathbb{R} \\ x & \mapsto & \frac{f(b)-f(x)}{b-x} \end{array} \right. \right.$$

- 1. Pourquoi le résultat est-il facile à établir si on fait l'hypothèse (plus forte) que f est de classe C^1 sur [a, b]?
- 2. Justifier que φ est prolongeable par continuité en a et que et ψ est prolongeable par continuité en b.

On continue de noter φ et ψ leurs prolongements.

- 3. On suppose dans cette question que y est entre $\varphi(a)$ et $\varphi(b)$.
 - (a) Justifier que y possède un antécédent par φ dans [a,b]. Soit γ un tel nombre.
 - (b) Conclure dans le cas $\gamma = a$.
 - (c) Conclure dans le cas $\gamma > a$.
- 4. On suppose dans cette question que y n'est pas entre $\varphi(a)$ et $\varphi(b)$. Prouver qu'alors y est entre $\psi(a)$ et $\psi(b)$ et conclure (sans tout détailler).
- 5. Application : trouver toutes les fonctions f dérivables sur $\mathbb R$ telles que

$$\forall x \in \mathbb{R} \quad f'(x) = |f(x)|.$$

Exercice 2.

Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par $f(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$

On <u>admet</u> que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

1. Montrer que pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on a

$$xf^{(n+1)}(x) + (n+1)f^{(n)}(x) = \sin\left(x + (n+1)\frac{\pi}{2}\right).$$

On pourra appliquer la formule de Leibniz à $x \mapsto xf(x)$.

- 2. Calculer $|f^{(n)}(0)|$ en fonction de n.
- 3. Montrer par récurrence sur n que $f^{(n)}(x)$ tend vers 0 quand x tend vers $\pm \infty$. L'entier n est désormais fixé pour la suite.
- 4. Montrer que $f^{(n)}$ prend des valeurs strictement positives et des valeurs strictement négatives.
- 5. Déduire de 3 et 4 que $f^{(n)}$ est bornée et atteint ses bornes.
- 6. Montrer que : $\forall x \in \mathbb{R} \quad \left| f^{(n)}(x) \right| \leq \frac{1}{n+1}$.
- 7. Il vous reste du temps? Démontrer que f est bien \mathcal{C}^{∞} sur \mathbb{R} .