Aprendizaje de Máquina No Supervisado

¿Qué es la Clusterización?

1

Agrupación de datos

Método de aprendizaje no supervisado para agrupar datos en clusters.

2

Similitud

Organiza datos similares dentro del mismo cluster.

3

Sin etiquetas

Descubre relaciones ocultas sin necesidad de etiquetas previas.

Aplicaciones de la Clusterización

Segmentación de clientes

Personaliza estrategias de marketing agrupando clientes similares.

Análisis geográfico

Identifica patrones en datos ambientales y demográficos.

Medicina y biología

Identifica patrones en enfermedades y pacientes para tratamientos personalizados.

Recomendación de contenido

Personaliza sugerencias en plataformas como Netflix y Spotify.

Detección de fraudes

Detecta transacciones sospechosas en finanzas y seguridad.

Visión por computadora

Agrupa imágenes y videos para reconocimiento automático.

Algoritmo K-Means

K-Means es un algoritmo de clusterización basado en particiones, Se usa para dividir un conjunto de datos en K grupos (clusters). El número K es elegido por el usuario.

Divide datos

Divide datos en K grupos definidos por el usuario.

Centroides

Asigna cada dato al centroide más cercano.

Rápido

Es rápido y eficiente en grandes volúmenes de datos.

Ventajas y Desventajas de K-Means

Ventajas	Desventajas
Es rápido y eficiente en grandes	Debes definir el número de clusters
volúmenes de datos.	K de antemano.
Fácil de entender e implementar.	No funciona bien si los clusters tienen formas irregulares.
Funciona bien cuando los grupos tienen formas circulares o esféricas.	Sensible a outliers (datos atípicos).

Clustering Jerárquico

Estructura de árbol Agrupa datos en una estructura de árbol (dendrograma).

No requiere K
No requiere especificar el
número de clusters.

Tipos
Aglomerativo (bottom-up) y
divisivo (top-down).

Fuente: slideplayer.es

Ventajas y Desventajas del Clustering Jerárquico

Ventajas	Desventajas
No requiere definir el número de clusters	Computacionalmente más costoso que K-
de antemano.	Means.
Permite visualizar la relación entre los	Difícil de aplicar en grandes volúmenes
datos con un dendrograma.	de datos.

Algoritmo DBSCAN

Algoritmo DBSCAN

Basado en densidad Identifica clusters como regiones densas de puntos.

Outliers

Deja fuera los puntos aislados (outliers).

No requiere K

No requiere especificar el número de clusters.

Mezcla Gaussiana (GMM)

1

- Basado en estadística
- Datos provienen de distribuciones normales.

2

- Flexible
- Más flexible que K-Means.

- Superposición
- Funciona bien con clusters superpuestos.

Casos Prácticos

E-commerce

Segmentación de clientes para personalizar ofertas.

Logística

Optimización de rutas de entrega con DBSCAN.

Medicina

Diagnóstico y personalización de tratamientos.

Otros Casos

Streaming

Recomendación de contenido en Netflix, Spotify.

Bancos

Seguridad y detección de fraudes en bancos.

Actividad Práctica Guiada

SEGMENTACIÓN DE CLIENTES CON K-MEANS

Objetivo: Aplicar K-Means para agrupar clientes según su comportamiento de compra.

Requisitos:

- Tener instalado Python y Jupyter Notebook (o Google Colab).
- . Instalar numpy, matplotlib y sklearn si aún no los tienes (pip install numpy matplotlib scikit-learn).

Pasos:

- Importar librerías.
- 2. Crear Datos Simulados: 100 clientes con dos variables > Monto gastado en compras > Frecuencia de compra.
- 3. Aplicar K-Means.
- 4. Analizar los Clusters.

Preguntas

Sección de preguntas

Aprendizaje de Máquina No Supervisado

Continúe con las actividades