Kernel method

yataka

1 Functional Analysis

Definition 1.1. (vector space)

Let K, \mathbb{R} be a field and a set with two operations, addition and scalar multiplication. If V statisfies

- 1. V becomes commutative group by addition,
- 2. $\forall \alpha \in \mathbb{K}, \forall u, v \in V, e\alpha(u+v) = \alpha u + \alpha v,$
- 3. $\forall \alpha, \beta \in \mathbb{K}, \forall v \in V, (\alpha + \beta)v = \alpha v + \beta v,$
- 4. $\forall \alpha, \beta \in \mathbb{K}, \forall v \in V, \alpha(\beta v) = (\alpha \beta)v$ and
- 5. $\exists 1_{\mathbb{K}} \in \mathbb{K} \text{ s.t. } \forall v \in V, 1_{\mathbb{K}}v = v.$

Then, V is called **vector space** over \mathbb{K} .

We consider only real verctor space or complex vector space in this article. So, $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}.$

Definition 1.2. (normed vector space)

Let V, $\|\cdot\|$ be a vector space over \mathbb{K} and a map from $V \times V$ to \mathbb{K} . $\|\cdot\|$ is called **norm** on \mathbb{K} when $\|\cdot\|$ statisfies

- 1. $\forall v \in V, ||v|| \ge 0$,
- $2. \ \forall v \in V, \|v\| = 0 \iff v = 0,$
- 3. $\forall \alpha \in \mathbb{K}, \forall v \in V, ||\alpha v|| = |\alpha| ||v||$ and
- 4. $\forall v, w \in V, ||v + w|| \le ||v|| + ||w||$.

A pair (V, ||||) is called **normed vector space** or **normed space**

Proposition 1.3. Suppose that (V, ||||) is normed space. Then, norm space is metric space by a distance generated $d: V \times V \to \mathbb{K}$ by norm,

$$d(x,y) = ||x - y||.$$