Line Integrals: Practice Problems

EXPECTED SKILLS:

- Understand how to evaluate a line integral to calculate the mass of a thin wire with density function f(x, y, z) or the work done by a vector field $\mathbf{F}(x, y, z)$ in pushing an object along a curve.
- Be able to evaluate a given line integral over a curve C by first parameterizing C.
- Given a conservative vector field, \mathbf{F} , be able to find a potential function f such that $\mathbf{F} = \nabla f$.
- Be able to apply the Fundamental Theorem of Line Integrals, when appropriate, to evaluate a given line integral.
- Know how to evaluate Green's Theorem, when appropriate, to evaluate a given line integral.

PRACTICE PROBLEMS:

1. Evaluate the following line integrals.

(a)
$$\int_C (xy+z^3) ds$$
, where C is the part of the helix $\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle$ from $t=0$ to $t=\pi$ $\boxed{\frac{\pi^4 \sqrt{2}}{16}}$

(b)
$$\int_{C} \left(\frac{x}{1+y^2}\right) ds \text{ where } C \text{ is given parametrically by } x = 1+2t, y = t, \text{ for } 0 \le t \le 1$$

$$\boxed{\sqrt{5} \left(\frac{\pi}{4} + \ln 2\right)}$$

2. Find the mass of a thin wire in the form of $y = \sqrt{9 - x^2}$ ($0 \le x \le 3$) if the density function is $f(x, y) = x\sqrt{y}$.

$$6\sqrt{3}$$

3. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = \langle x^2, xy \rangle$ and $C : \mathbf{r}(t) = \langle 2\cos t, 2\sin t \rangle$ for $0 \le t \le \pi$

4. For each of the following, compute the work done by the vector field \mathbf{F} on the particle that moves along C.

1

(a) $\mathbf{F}(x,y) = (xy)\mathbf{i} + x^2\mathbf{j}$ where C is the portion of $x = y^2$ from (0,0) to (1,1) $\boxed{\frac{3}{5}}$

- (b) $\mathbf{F}(x,y,z) = (x+y)\mathbf{i} + xy\mathbf{j} z^2\mathbf{k}$ where C consists of the line segment from (0,0,0) to (1,3,1) followed by the line segment from (1,3,1) to (2,-1,4)
- 5. Evaluate the following line integrals.
 - (a) $\int_C (x+2y) dx + (x-y) dy$ where $C: x = 2\cos t, y = 4\sin t, 0 \le t \le \frac{\pi}{4}$ $\boxed{-\frac{9}{2} \pi}$
 - (b) $\int_C (y-x) dx + (xy) dy$ where C is the line segment from (3,4) to (2,1) $\boxed{-\frac{39}{2}}$
 - (c) $\int_C y \, dx x \, dy$ where C is as shown below

-1

- 6. For each of the following, determine whether the given vector field in the plane is a conservative vector field. If so, find a potential function.
 - (a) $\mathbf{F}(x,y) = \langle x,y \rangle$ $\mathbf{Yes}; f(x,y) = \frac{1}{2}(x^2 + y^2) + C$
 - (b) $\mathbf{F}(x,y) = \langle 3y^2, 6xy \rangle$ $\mathbf{Yes}; f(x,y) = 3xy^2 + C$

(c)
$$\mathbf{F}(x,y) = \langle x^2 y, 5xy^2 \rangle$$

(d)
$$\mathbf{F}(x,y) = \langle e^x \cos y, -e^x \sin y \rangle$$

 $\mathbf{Yes}; f(x,y) = e^x \cos y + C$

7. Compute a potential function for $\mathbf{F}(x,y,z) = \langle e^z, 2y, xe^z \rangle$

$$f(x,y,z) = xe^z + y^2 + C$$

8. For each of the following, apply the fundamental theorem of line integrals to evaluate the given integral.

(a)
$$\int_C 3y \, dx + 3x \, dy$$
 where C is any curve from $(1,2)$ to $(4,0)$

- (b) $\int_C e^x \sin y \, dx + e^x \cos y \, dy$ where C is any curve from (0,0) to $\left(1, \frac{\pi}{2}\right)$
- (c) $\int_C \left(e^x \ln y \frac{e^y}{x}\right) dx + \left(\frac{e^x}{y} e^y \ln x\right) dy \text{ where } x > 0, y > 0, \text{ and } C \text{ is any curve from } (1,1) \text{ to } (3,3)$
- 9. Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y) = \langle e^y + y e^x, x e^y + e^x \rangle$ and $C : \mathbf{r}(t) = \langle \sin\left(\frac{\pi t}{2}\right), \ln t \rangle$ for $1 \le t \le 2$ $\boxed{-1 + \ln 2}$
- 10. Compute the area of the region which is bounded by y = 4x and $y = x^2$ using the indicated method.
 - (a) By evaluating an appropriate double integral.

$$\frac{32}{3}$$

(b) By evaluating one or more appropriate line integrals.

$$\boxed{\frac{32}{3}}$$

11. Evaluate the following line integrals using Green's Theorem. Unless otherwise stated, assume that all curves are oriented counterclockwise.

- (a) $\oint_C 2xy \, dx + y^2 \, dy$ where C is the closed curve formed by $y = \frac{x}{2}$ and $y = \sqrt{x}$ $\boxed{-\frac{64}{15}}$
- (b) $\oint_C xy \, dx + (x+y) \, dy$ where C is the triangle with vertices (0,0), (2,0), and (0,1) $\boxed{\frac{1}{3}}$
- (c) $\oint_C (e^3x + 2y) dx + (x^3 + \sin y) dy$ where C is the rectangle with vertices (2, 1), (6, 1), (6, 4) and (2, 4).
- (d) $\oint_C \ln(1+y) dx \frac{xy}{1+y} dy$ where C is the triangle with vertices (0,0), (2,0), and (0,4)