

 $\cdot C_A = 12.4 \; mmol.L^{-1}$ في كــأس، حجما $V_A = 20m$ من محلول حمض الإيثــانويك تركيزه *

 $CH_3COOH + H_2O \longleftrightarrow CH_3COO^- + H_3O^+$ معادلة تفكك الحمض $C_B = 20.0 \; mmol.L^{-1}$ نضيف تدريجيا، حجما V_B من محلول لهيدرو كسيد الصوديوم تركيزه V_B $NaOH \longrightarrow N_a^+ + HO^-$ معادلة تفكك القاعدة:

 $CH_3COOH + HO^- \longrightarrow CH_3COO^- + H_2O$ * معادلة تفاعل المعايرة:

<u>* النتائج التجريبية.</u>

12	11	10	9	8	6	4	2	1	0	$V_{B}(mL)$
6.2	5.6	5.4	5.2	5	4.7	4.4	4.1	3.8	3.3	pН
20	18	16	15	14	13.5	13	12.6	12.4	12.2	$V_{B}(mL)$

اتوية الحسن الثاني التأهبلية الأستاذ: محمد المرابي

المعارعة العد خرة القاعدية

Le dosage acido-basique

أنمسال تطبيقية

Travaux pratiques

La manipulation

بواسطة ماصة أو مخبار مدرج S_2 من المحسلول V_2 الذي نضعه في كأس. هذا الأخير نضعه فوق محراك (agitateur (magnétique

نجعل السحاحة فوق الكأس باستعمال حامل و نفتح الصنبور تدريجيا .

> نقيس قيمة pH الخليط باستعمال pH-متر.

> > الاسم و النسب:

العدة التجرببية Dispositif expérimental

معايرة قاعدة بحمض.

* طريقة المماسين:

 \cdot $C_{\scriptscriptstyle B}$ = 10 $\,$ $mmol.L^{-1}$ نصب في كأس، حجما $V_{\scriptscriptstyle B}$ = 20 من محلول الأمـونياك * $NH_3 + H_2O \longleftrightarrow NH_4^+ + HO^-$ معادلة تفكك القاعدة:

 $\cdot C_A = 14$ من محسلول هيض الكلوريدريك تركيزه V_A من محسلول هيض الكلوريدريك تركيزه * $HCl + H_2O \longrightarrow H_3O^+ + Cl^-$ معادلة تفكك الحمض:

* معادلة تفاعل المعايرة:

* النتائج التجريبية.

$NH_3 + H_3O^+ \longrightarrow NH_4^+ + H_2O$

* طريقة المنحنى المشتق:

E نقطة التكافؤ

11	9	7	5	3	2	1	0	$V_A(mL)$
8.7	9	9.2	9.5	9.8	10	10.3	10.6	рН
20	18	17	16	15	14.5	14	13	$V_A(mL)$
2.7	2.8	3.0	3.2	3.6	4.4	7.3	8.2	рН

 $g(V_B) = \frac{dpH}{dV_B}$ غشل المنحنى الممثل لتغيرات . $pH = f(V_R)$ و هي المشتقة للدالة عشل قيمة المشتقة عند نقطة معينة،

ماسین للمنحنی PH = f(V) عند نقطیت PH = f(V)

الانعطاف، ثم نرسم العمودي عليهما.

 T_1 من منتصف القطعة المحصورة بين

و T_2 نرسم مستقیم D موازي لهما.

. $pH = f(V_R)$ قــيمة المعــامل الموجه للمنحنى يكون للمعامل الموجه قيمة قصوية (أو دنوية) عند نقطة التكافؤ، بذلك يوافق حجم $g(V_B) = \frac{dpH}{dV}$ التكافؤ مطراف المنحنى

* باستعمال كاشف الملون:

 $V_{AE} =$

 $pH_F =$

لكي يكون الكاشف الملون مناسبا يجب أن يأخذ اللوينة الحساسة عند ما يكون الحـجم المضاف مساو لحجم التكافؤ. P.P: الفينول فتاليين. B.B.T: أزرق البروموتيمول. H.T: الهـيليـانتين.

