章小明不会的题目

章小明

2025年3月1日

目录

1	数学分析	1
	1.1 裴礼文	1
	1.2 于品	3
2	复分析	4
3	实变函数与泛函分析	5
4	线性代数	6
	4.1 矩阵	6
	4.2 行列式	9
	4.2.1 结论	14
	4.3 多项式	15
5	抽象代数	16
	5.1 群	16
	5.1.1 结论	18
	5.2 环	18
6	概率论	20
	6.0.1 结论	21
7	组合数学	22
8	数论	22

1 数学分析

1.1 裴礼文

题 1.1.

$$\lim_{n\to\infty} \Big(\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}\Big) = \frac{1}{e}$$

证明. 先证

$$\lim_{n\to\infty}\frac{n!^{1/n}}{n}=\frac{1}{e} \, \overline{\mathbb{M}} \lim_{n\to\infty}\frac{n}{n!^{1/n}}=e$$

• 用 Stirling 公式: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ 易证.

• 用 Stolz 公式: 即证 $\lim_{n\to\infty} \left(\ln n - \frac{\ln n!}{n} \right) = 1.$ 有:

$$\lim_{n\to\infty} \left(\ln n - \frac{\ln n!}{n}\right) = \lim_{n\to\infty} \frac{1}{n} \left(n \ln n - \sum \ln k\right) \stackrel{Stolz}{=} \lim_{n\to\infty} n \ln \left(1 + \frac{1}{n}\right) = \lim_{n\to\infty} \ln \left(1 + \frac{1}{n}\right)^n = 1$$

• $\notin a_n = \left(1 + \frac{1}{n}\right)^n = \frac{(n+1)^n}{n^n}, \, \pi:$

$$\prod a_n = \frac{2^1}{1^1} \frac{3^2}{2^2} \frac{4^3}{3^3} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} \implies \lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \left(\prod a_n\right)^{1/n} = \lim_{n \to \infty} a_n = e^{-\frac{n}{2}} \frac{1}{2^n} \frac{3^2}{2^n} \frac{4^n}{3^n} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} \implies \lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \left(\prod a_n\right)^{1/n} = \lim_{n \to \infty} a_n = e^{-\frac{n}{2}} \frac{1}{2^n} \frac{3^n}{2^n} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} \implies \lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \left(\prod a_n\right)^{1/n} = \lim_{n \to \infty} a_n = e^{-\frac{n}{2}} \frac{1}{2^n} \frac{3^n}{2^n} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} \implies \lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \left(\prod a_n\right)^{1/n} = \lim_{n \to \infty} a_n = e^{-\frac{n}{2}} \frac{1}{2^n} \frac{3^n}{2^n} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} \implies \lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \left(\prod a_n\right)^{1/n} = \lim_{n \to \infty} a_n = e^{-\frac{n}{2}} \frac{1}{2^n} \frac{3^n}{2^n} \cdot \frac{(n+1)^n}{n^n} = \frac{(n+1)^n}{n!} = \frac{$$

最后

题 1.2. f 在 ℝ 上连续有界可微, 则

$$|f(x) - f'(x)| \le 1 \implies |f(x)| \le 1$$

证明. 在 $[x, +\infty)$ 上对 $(e^{-x}f(x))' = e^{-x}(f(x) - f'(x))$ 积分, 有

$$|e^{-x}f(x)| = \left| \int_{x}^{+\infty} e^{-t} |f(t) - f'(t)| dt \right| \le \int_{x}^{+\infty} e^{-t} dt = e^{-x} \implies |f(x)| \le 1$$

 $\ln \ln n \ll \ln n \ll n^a \ll n^k \ll a^n \ll n! \ll n^n$

題 1.3. $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ \Longrightarrow $\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^n a_i b_{n-i} = ab$.

证明. 设 $\alpha_n = a_n - a, \beta_n = b_n - b,$ 有

$$\frac{1}{n} \sum_{i=0}^{n} a_i b_{n-i} = \frac{1}{n} \sum_{i=0}^{n} (\alpha_n + a)(\beta_n + b) = ab + a \frac{\sum \beta_i}{n} + b \frac{\sum a_i}{n} + \frac{\sum \alpha_i \beta_i}{n} \to ab$$

题 1.4. 在 \mathbb{R} 上的 f(x) 有 (1) 介值性: $\forall \mu \in (f(x_1), f(x_2))$ 者 在 x_1 和 x_2 间 : $f(\xi) = \mu$; (2) $\forall r \in \mathbb{Q} : \{x | f(x) = r\}$ 闭. 求证 $f \in C(\mathbb{R})$.

证明. 首先, 由介值性 f(x) 可以取遍 $\left(\inf_{x\in\mathbb{R}}f(x),\sup_{x\in\mathbb{R}}f(x)\right)$, 故 $\mathrm{Im}f$ 在 \mathbb{R} 上单连通. 其次, 由介值性, 对任意的 $r\in\mathbb{Q}\cap\mathrm{Im}f$ 都存在 x_0 使得 $f(x_0)=r$.

由题, 即 $\forall r \in \mathbb{Q} : \{x | f(x) \neq r\}$ 开, 故 $\forall \mathring{V}_{\mathbb{R}}(x_0) : \{x | f(x) \neq r\} \cap \mathring{V}_{\mathbb{R}}(x_0)$ 有界开.

因此对任意的 $r \in \mathbb{Q} \cap \text{Im} f$ 的去心有界开邻域 $\mathring{U}_{\text{Im} f}(r)$, 任取 $\xi_1 \in (\inf U(r), r)$ 和 $\xi_2 \in (r, \sup U(r))$, 都存在 x_1, x_2 有 $\inf U(r) < f(x_1) = \xi_1 < r < \xi_2 < f(x_2) < \sup U(r)$. 因此存在去心有界开邻域 $\mathring{V}_{\mathbb{R}}(x_0) = (x_1, x_2) \setminus \{x_0\} \subset \{x | f(x) \neq r\}$ 使得 $f\left(\mathring{V}_{\mathbb{R}}(x_0)\right) \subset \mathring{U}_{\text{Im} f}(r)$.

思考: 是否能证明 f 在既开又闭的区间上连续?

题 1.5. $f \in C^{(2)}[-2,2]$; $\forall x \in [-2,2]: |f(x)| \le 1$; $f^2(0) + f'^2(0) = 4$. 求证 $\exists \xi \in [-2,2]:$

$$f(\xi) + f''(\xi) = 0$$

证明一. 取 $F(x) = f^2(x) + f'^2(x), F \in C^{(1)}[-2,2],$ 故 $\exists \xi_1 \in (0,2)$:

$$f'(\xi_1) = \frac{f(2) - f(0)}{2} \implies |f'(\xi_1)| \le 1 \implies F(\xi_1) \le 2$$

由于 F(0) = 4, 因此 $\exists \eta_1 \in (0, \xi_1) : F(\eta_1) = 3$.

使 $\delta_1 = \inf\{t | t > 0 \land F(t) = 3\}$, 可知 $F(\delta_1) = 3$, 且 $\forall x \in [0, \delta_1] : g(x) \ge 3$.

同理, 在 [-2,0] 上考虑相应的 ξ_2, η_2, δ_2 . 易知, $\exists \xi \in [\delta_2, \delta_1] : g'(\xi) = 0 \implies f'(\xi) (f(\xi) + f''(\xi)) = 0$. 由 $F(\xi) = f^2(\xi) + f'^2(\xi) = 3 > 1 = f^2(\xi) \implies f'(\xi) \neq 0$ 可知 $f(\xi) + f''(\xi) = 0$, 得证. 证明二. 由 $F'(x) = (f^2(x) + f'^2(x))' = 2f'(x)(f(x) + f''(x))$,即证 $F(x) = f^2(x) + f'^2(x)$ 不单调¹,否则必在 [-2,0) 或 (0,2] 中有

1.2 于品

题 1.6. 一道 Putnam 竞赛题

证明.

题 1.7. $f \in C(\mathbb{R})$ 满足 $\forall \delta > 0$ 有 $\lim_{n \to +\infty} f(n\delta) = 0$, 求证 $\lim_{x \to +\infty} f(x) = 0$.

证明. 这是一道关于 Baire 纲定理的习题.

固定 $\varepsilon > 0$,

$$E_N = \{x : n \ge N \implies f(nx) \le \varepsilon\} = \bigcap_{n \ge N} \{x : f(nx) \le \varepsilon\} = \bigcap_{n \ge N} \frac{1}{n} f^{-1}((-\infty, \varepsilon])$$

是闭集. 另一方面, 由于

$$\forall x>0: (\forall \varepsilon \exists N_x \forall n>N_x: |f(nx)|<\varepsilon) \implies x \in E_{N_x}$$

因此 $\mathbb{R}_{>0} = \bigcup_{n \in \mathbb{N}} E_n$. 而 Baire 纲定理指出,至少有一个集合 E_N 含开区间 (a,b). 因此 $\forall n \geq N \forall t \in (na,nb) \subset E_N$: $f(t) < \varepsilon$.

取
$$M \ge \max\left\{N, \frac{a}{b-a}\right\}$$
, 有 $(Ma, +\infty) = \bigcup_{n \ge M} (na, nb)$. 故 $\forall t > Ma : f(t) < \varepsilon$, 即 $\lim_{t \to +\infty} f(t) = 0$.

題 1.8. $\varphi \in C(\mathbb{R})$ 満足 $(1)\lim_{x \to +\infty} \varphi(x) - x = +\infty(2)$ 不动点集 $\{x \in \mathbb{R} : \varphi(x) = x\}$ 非空有限.

求证: 若有 $f \in C(\mathbb{R})$ 满足 $f \circ \varphi = f$, 则 f 一定是常值函数.@Unsolved

证明.

题 1.9. $f \in C(\mathbb{R}_{\geq 0})$ 满足 $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$. 若非负实数数列 $\{a_n\}$ 满足 $\left\{\frac{a_n}{n}\right\}$ 有界, 求证 $\lim_{n \to +\infty} \frac{f(a_n)}{n} = 0$.

证明. 首先有:(1) $\exists A: \left|\frac{a_n}{n}\right| < A(\forall n \in \mathbb{N}); (2) \forall \varepsilon \exists B \forall x > B: \left|\frac{f(x)}{x}\right| < \frac{\varepsilon}{A}.$

又取
$$C = \sup_{x \in [0,B]} f(x), N = \left\lceil \frac{C}{\varepsilon} \right\rceil$$
,则

$$\forall \varepsilon \exists N \forall n > N : \left| \frac{f(a_n)}{n} \right| = \begin{cases} \frac{|f(a_n)|}{n} < \frac{C}{n} < \varepsilon & a_n \in (0, B) \\ \left| \frac{f(a_n)}{a_n} \right| \left| \frac{a_n}{n} \right| < \frac{\varepsilon}{A} \cdot A = \varepsilon & a_n \ge B \end{cases}$$

题 1.10. A theorem about Cesàro mean, related to Stolz-Cesàro theorem

$$\{a_n\}_{n\geq 1}\subset \mathbb{C}, \sigma_n=\frac{\sum_{k=1}^n a_k}{n}, b_n=a_{n+1}-a_n, |nb_n|\leq M<\infty, \lim_{n\to\infty}\sigma_n=\sigma, \ \text{\mathbb{R} iff $\lim_{n\to\infty} a_n=\sigma$.}$$

证明. 设m < n,注意到

$$\sum_{k=m+1}^{n} a_k = \sum_{k=1}^{m} a_k - \sum_{k=1}^{n} a_k = n\sigma_n - m\sigma_m.$$

因此

$$\sum_{k=m+1}^{n} (a_n - a_k) = (n - m)a_n - (n\sigma_n - m\sigma_m) = (n - m)(a_n - \sigma_n) - m(\sigma_n - \sigma_m)$$

 $^{^{1}}$ 而且在 f'(x) = 0 处同样不单调

因此

$$a_n - \sigma_n = \frac{m}{n-m}(\sigma_n - \sigma_m) + \frac{1}{n-m} \sum_{k=m+1}^{n} (a_n - a_k)$$

而

$$|a_n - a_k| = \left| \sum_{i=k}^{n-1} b_i \right| \le \sum_{i=k}^{n-1} \frac{M}{i} \le M \frac{n-k}{k} < M \frac{n-m-1}{m+1}$$

$$\frac{1}{n-m} \left| \sum_{k=m+1}^{n} (a_n - a_k) \right| < M \frac{n-m-1}{m+1} = M \left(\frac{n}{m+1} - 1 \right)$$

固定 ε , 任取 n, 取 m 满足 $m \leq \frac{n}{1+\varepsilon} < m+1$,

$$|a_n - \sigma_n| < \frac{m}{n-m} |\sigma_n - \sigma_m| + M \left(\frac{n}{m+1} - 1\right) < \frac{|\sigma_n - \sigma_m|}{\varepsilon} + M\varepsilon$$

因此 $n \to \infty$ 时, $|a_n - \sigma_n| \to M\varepsilon$. 最后由 ε 任意性, $|a_n - \sigma_n| \to 0$. 由于 $\sigma_n \to \sigma$, 因此 $a_n \to \sigma$.

2 复分析

题 2.1. $f \in H(B \cup \{1\}), f(B) \subset B, f(1) = 1$, 证明 $f'(1) \ge 0$.

題 2.2.
$$f \in H(B)$$
, 若有 $z_0 \in B - \{0\}$, $f(z_0) \neq 0$, $f'(z_0) \neq 0$, $|f(z_0)| = \max_{|z| \leq |z_0|} |f(z)|$, 则 $\frac{z_0 f'(z_0)}{f(z_0)} > 0$.

geelaw 的证明. 令 $\frac{z_0f'(z_0)}{f(z_0)} = x + iy$, $x,y \in \mathbb{R}$. 由 $f(z_0\mathrm{e}^{\mathrm{i}\theta}) = f(z_0) + f'(z_0)z_0(\mathrm{e}^{\mathrm{i}\theta} - 1) + o(z_0\mathrm{e}^{\mathrm{i}\theta} - z_0)$, 因此

$$\frac{f(z_0 e^{i\theta})}{f(z_0)} = 1 + \frac{z_0 f'(z_0)}{f(z_0)} (e^{i\theta} - 1) + z_0 o(e^{i\theta} + 1) = 1 + (x + iy)i\theta + o(\theta),$$

因此

$$1 \ge \left| \frac{f(z_0 e^{i\theta})}{f(z_0)} \right|^2 = 1 - 2y\theta + (x^2 + y^2)\theta^2 + o(\theta) = 1 - 2y\theta + o(\theta).$$

因此 $y\theta \ge 0$, 而 θ 可正可负, 因此 y = 0.

同理考虑 $f(z_0(1+\delta)), \delta < 0$, 有

$$\frac{f(z_0(1+\delta))}{f(z_0)} = 1 + (x+iy)\delta + o(\delta), \qquad 1 \ge \left| \frac{f(z_0(1+\delta))}{f(z_0)} \right|^2 = 1 + 2x\delta + o(\delta).$$

因此 $x \ge 0$. 最后由于所给限制条件,x > 0, 故得证.

陈施毅的证明. 注意到 $F \in C^1(B)$ 时 $F(x_0, y_0) = \max_{|z| \le r \le 1} F(x, y)$ 有

$$\left(x\frac{\partial F}{\partial y} - y\frac{\partial F}{\partial x}\right)(x_0, y_0) = 0, \qquad \left(x\frac{\partial F}{\partial x} + y\frac{\partial F}{\partial y}\right)(x_0, y_0) \ge 0$$

对于 f = u + iv, $F(x,y) = u(x,y)^2 + v(x,y)^2$. 我们有

$$zf'(z)\overline{f(z)} = (x + iy)\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)(u - iv) = (x + iy)\left(u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial y} + iu\frac{\partial v}{\partial x} - iv\frac{\partial u}{\partial y}\right)$$
$$= \frac{1}{2}(x + iy)\left(\frac{\partial F}{\partial x} - i\frac{\partial F}{\partial y}\right) = \frac{1}{2}\left(\left(x\frac{\partial F}{\partial x} + y\frac{\partial F}{\partial y}\right) + i\left(y\frac{\partial F}{\partial x} - x\frac{\partial F}{\partial y}\right)\right) \ge 0$$

因此得证.

严仲谨的证明. 注意到在圆周 $\gamma:|z|=|z_0|$ 上 z_0 处的切线的辐角为 $\arg z_0\pm\frac{\pi}{2}$, 其在 f 作用下 $f(\gamma)$ 上 $f(z_0)$ 处的切线 的辐角为 $\arg f(z_0) \pm \frac{\pi}{2}$, 而两者之差 $\left(\arg f(z_0) \pm \frac{\pi}{2}\right) - \left(\arg z_0 \pm \frac{\pi}{2}\right) = \arg f'(z_0)$, 因此 $\arg \frac{z_0 f'(z_0)}{f(z_0)} = 0$ 或 $\pm \pi$. (To be continued...)

题 2.3. 设 $D = \{z \in \mathbb{C} : \theta_0 < \arg(z - a) < \theta_0 + \alpha\}, f \in C(\overline{D} - \{a\}), 有:$

$$(1) \lim_{\substack{z \to a \\ z \in \overline{D} - \{a\}}} (z - a) f(z) = A, \quad \mathbb{M} \lim_{r \to 0} \int_{\substack{|z - a| = r \\ z \in \overline{D}}} f(z) \mathrm{d}z = \mathrm{i}\alpha A. \\ (2) \lim_{\substack{z \to \infty \\ z \in \overline{D} - \{a\}}} (z - a) f(z) = B, \quad \mathbb{M} \lim_{R \to \infty} \int_{\substack{|z - a| = R \\ z \in \overline{D}}} f(z) \mathrm{d}z = \mathrm{i}\alpha B.$$

证明. (1)

$$\left| \int_{\substack{|z-a|=r\\z\in\overline{D}}} f(z) \mathrm{d}z - \mathrm{i}\alpha A \right| = \left| \int_{\substack{|z-a|=r\\z\in\overline{D}}} \left(f(z) - \frac{A}{z-a} \right) \mathrm{d}z \right| \le \int_{\substack{|z-a|=r\\z\in\overline{D}}} \frac{|(z-a)f(z) - A|}{|z-a|} |\mathrm{d}z|$$

$$\le \frac{r\alpha}{r} \sup_{\substack{|z-a|=r\\z\in\overline{D}}} |(z-a)f(z) - A| \to 0$$

題 2.4. $f \in C^1(D)$, 则 $f \in H(D) \iff \forall a \in D : \lim_{r \to 0} \frac{1}{\pi r^2} \int_{|z-a|=r} f(z) dz = 0.$

实变函数与泛函分析 3

题 3.1. $E \neq [0,1]$ 的可测子集, 若 m(E) > 0, $m(E^c) > 0$, 则 $\exists p \in [0,1] \forall O(p) \subset [0,1] : m(E \cap O) > 0$, $m(E^c \cap O) > 0$.

证明. \diamondsuit $S_1 = \{x \in [0,1] : \exists O(x) \subset [0,1] : m(E^c \cap O) = 0\}, S_2 = \{x \in [0,1] : \exists O(x) \subset [0,1] : m(E \cap O) = 0\}.$

因此 $p \in S_1^c \cap S_2^c = (S_1 \cup S_2)^c$. 而显然 $S_1 \cap S_2 = \emptyset$, 因为若否, 则 $0 = m((O \cap E) \cup (O \cap E^c)) = m(O \cap (E \cup E^c)) = m(O)$, 矛盾.

下证 S_1 是开集, S_2 同理. $\forall x \in S_1 \exists O(x): m(E^c \cap O) = 0$,因此 $\forall y \in O(x) \exists O(y) \subset O(x): m(E^c \cap O(y)) = 0$,因此 $y \in S_1, O(x) \subset S_1$, 因此 S_1 开

最后, 若 p 不存在, 则 $S_1 \cup S_2 = [0,1]$, 但两者为不交开集, 而 [0,1] 是连通的, 矛盾. 因此 p 存在.

题 3.2. 请教一道 Lebesgue 积分的证明 $f \in L^1(\mathbb{R})$, 证明 $f\left(x - \frac{1}{x}\right) \in L^1(\mathbb{R})$ 且 $\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} f\left(x - \frac{1}{x}\right) dx$.

HINT: 顺序: 区间 \rightarrow 开集 \rightarrow 一般测度有限测集特征函数 \rightarrow 简单函数 \rightarrow 非负可测函数 \rightarrow L^1 函数

证明.
$$1.I = [a,b] \subset \mathbb{R}, \ \diamondsuit \ I_1 \cup I_2 = \left\{ x \in \mathbb{R} : x - \frac{1}{x} \in [a,b] \right\},$$
其中

$$I_1 = \left[\frac{a + \sqrt{a^2 + 4}}{2}, \frac{b + \sqrt{b^2 + 4}}{2} \right], \qquad I_2 = \left[\frac{a - \sqrt{a^2 + 4}}{2}, \frac{b - \sqrt{b^2 + 4}}{2} \right]$$

且 $m(I) = m(I_1) + m(I_2) = b - a$. 因此 $f = c1_{[a,b]}$ 时

$$\int_{\mathbb{R}} f(x) dx = \int_{\mathbb{R}} f\left(x - \frac{1}{x}\right) dx = c(b - a)$$

因此 f 是有界区间上的阶梯函数时, 结论成立.

2. 若 f 是紧支集连续函数, 设 $supp(f) \subset [a, b]$. 由一致连续性, 可作 [a, b] 的分割 $T : a = x_0 < x_1 < \cdots < x_N = b$, 使 $\lambda(T) = \max |\Delta x_i| < \delta, |f(x_k) - f(x_{k+1})| < \varepsilon.$ 取 $c_k \in \left[\min_{[x_{k-1}, x_k]} f(x), \max_{[x_{k-1}, x_k]} f(x)\right], |c_k| = \min_{[x_{k-1}, x_k]} |f(x)|,$ 作

$$\varphi(x) = \sum_{k=1}^{N} c_k 1_{I_k}(x), \qquad I_k = [x_{k-1}, x_k), I_N = [x_{N-1}, x_N]$$

有 $\forall x \in [a,b]: |\varphi(x)-f(x)| < \varepsilon, |\varphi(x)| \le |f(x)|.$ 取 $\varepsilon = \frac{1}{n}$, 可得阶梯函数列 $\{\varphi_n(x)\}$, 使得 $\varphi(x) \nearrow f(x)$. (To be continued...)

题 3.3. 网页链接 $L^2(\mathbb{R})$ 中可测函列 $f_n \to f$ a.e., 若 $\|f_n\|_{L^2} \to \|f\|_{L^2}$, 证明 $\|f_n - f\|_{L^2} \to 0$.

证明. 由 $L^2(\mathbb{R})$ 是 Hilbert 空间, 且 $||f_n||_{L^2} \to ||f||_{L^2}$, 因此仅需证明 f_n 弱收敛于 f, 即对

$$\forall g \in L^2(\mathbb{R}) : \lim \int_{\mathbb{R}} f_n g = \int_{\mathbb{R}} f g$$

由此可得到强收敛.

首先对 $g \in L^2(\mathbb{R})$ 必然有 $\int_{|x|>R} |g|^2 < \varepsilon^2$. 另外由 $\int g$ 的绝对连续性也有 $\int_E |g|^2 < \varepsilon^2$, 其中 $m(E) < \delta$. 由 Eropos 定理, 可取 $E_\delta \subset (-R,R)$ 且 $m((-R,R)-E_\delta) < \delta$, 使在其上有 $f_n \xrightarrow{\mathrm{uni.}} f$. 因此对充分大的 n 和任一点 $x \in E_\delta$ 可取 $|f_n-f| < \frac{\varepsilon}{\sqrt{2R}}$.

设 $M = \|g\|_{L^2} + \|f\|_{L^2} + \sup \|f_n\|_{L^2}$,则对充分大的 n 有 $\int_E |f - f_n|^2 = \int_E f^2 + \int_E f_n^2 - 2 \int_E f f_n < M^2 + M^2 = 2M^2$,

$$\begin{split} \int_{\mathbb{R}} |f_{n} - f| \, |g| &= \left(\int_{E_{\delta}} + \int_{(-R,R) - E_{\delta}} + \int_{|x| > R} \right) |f_{n} - f| \, |g| \\ &\leq \left(\int_{E_{\delta}} |f - f_{n}|^{2} \int_{E_{\delta}} |g|^{2} \right)^{\frac{1}{2}} + \left(\int_{(-R,R) - E_{\delta}} |f - f_{n}|^{2} \int_{(-R,R) - E_{\delta}} |g|^{2} \right)^{\frac{1}{2}} + \left(\int_{|x| > R} |f - f_{n}|^{2} \int_{|x| > R} |g|^{2} \right)^{\frac{1}{2}} \\ &< \left(\frac{\varepsilon^{2}}{2R} \cdot 2R \cdot M^{2} \right)^{\frac{1}{2}} + \left(2M^{2} \cdot \varepsilon^{2} \right)^{\frac{1}{2}} + \left(2M^{2} \cdot \varepsilon^{2} \right)^{\frac{1}{2}} = (M + 2\sqrt{2}M)\varepsilon \end{split}$$

故得证.

4 线性代数

4.1 矩阵

题 4.1. q 元域 \mathbb{F}_q 上的 n 维向量空间 V 中有多少个 $k \in [n]$ 维子空间?

证明. 这一题其实用的是组合思想, 即:

k维子空间数量 = 能张成不同空间的k维基底的个数 = $\frac{n$ 维空间中可选取k维基底的个数 k维空间中可选取k维基底的个数

换个思路,(每个)k 维空间中可选取 k 维基底的个数 = 多少个 k 维基底对应一个 (不同的)k 维空间.

在此之前我一直以为 \mathbb{R}^n 中 k 维子空间的数量是 $\binom{n}{k}$ 个, 但实际上应当是无穷多个, 因为我一直只在标准正交系中找子空间.

考虑 n 维空间 $V_{\mathbb{F}_q}$ 中,若首先要选择一个基底,则有 $|V-\{0\}|=q^n-1$ 个选择. 设选到的为 $v_1,V_1=\langle v_1\rangle$,则第二个基底有 $|V-V_1|=q^n-q$ 个选择. 因此类推,第 $k\in[n]$ 个基底有 q^n-q^{k-1} 种选择. 因此在 \mathbb{F}^q 上的 n 维空间中可选取 k 维基底的个数是 $\frac{1}{k!}\prod_{i\in[k]}q^n-q^{i-1}$,因此在 k 维空间中可选取的基底的个数为 $\frac{1}{k!}\prod_{i\in[k]}q^k-q^{i-1}$,故 (不同)k 维子空

间数量为

$$\prod_{i \in [k]} \frac{q^n - q^{i-1}}{q^k - q^{i-1}} = \prod_{i \in [k]} \frac{q^{n-i+1} - 1}{q^{k-i+1} - 1}$$

题 4.2. 求 $\mathbb Q$ 上的 n 阶半幻方 $\mathrm{SMag}_n(\mathbb Q)$ 和幻方 $\mathrm{Mag}_n(\mathbb Q)$ 的维数, 并证明

$$\operatorname{SMag}_n(\mathbb{Q}) = \operatorname{Mag}_n(\mathbb{Q}) \oplus \mathbb{Q}I_n \oplus \mathbb{Q}D_n$$

其中 D_n 是 $a_{i,n+1-i}=1$ 的 n 阶矩阵.

证明. 首先考察 $\mathrm{SMag}_n(\mathbb{Q})$ 的维度, 若已知它的行列和 $\sigma(A)$, 则遮住一行一列的话, 剩下 n-1 阶矩阵的数字可以任意 选取, 即有 $(n-1)^2+1=n^2-2n+2$ 维.

另一个思路来说, 实际上可以认为 n 行 n 列的和都等于同一个数, 这就给出了 2n 个线性方程和一个自由变量, 但有 n^2 个未知数. 实际上这 2n 个线性方程可以从中约去一个, 还剩 2n-1 个线性无关的, 故最终维数为 $n^2-(2n-1)+1=$ $n^2 - 2n + 2$.

又由等式可知, $\dim \operatorname{Mag}_n(\mathbb{Q}) = n^2 - 2n$. 下证等式.

首先显然 $\operatorname{Mag}_n(\mathbb{Q}) \cap \mathbb{Q}I_n \cap \mathbb{Q}D_n = \{0\}$, 因此

$$\operatorname{Mag}_n(\mathbb{Q}) + \mathbb{Q}I_n + \mathbb{Q}D_n = \operatorname{Mag}_n(\mathbb{Q}) \oplus \mathbb{Q}I_n \oplus \mathbb{Q}D_n$$

其次, 设 $\forall S \in \mathrm{SMag}_n(\mathbb{Q})$ 存在分解

$$\exists p, q, r \in \mathbb{Q}, S = pM + qI_n + rD_n$$

其中 $M \in \operatorname{Mag}_n(\mathbb{Q})$, 则分别计算 S 的行列和 σ_1 、主对角线和 $\sigma_2 = \operatorname{tr} S$ 和副对角线和 σ_3 如下:

$$Ap = \begin{pmatrix} \sigma(M) & 1 & 1 \\ \sigma(M) & n & \delta \\ \sigma(M) & \delta & n \end{pmatrix} \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} = \boldsymbol{\sigma}$$

其中 $\delta = \text{OddQ}(n)$, 当 n 为奇数是 $\delta = 1$, 否则为 0.

通过化简可知 rank A=3, 故 $A:\mathbb{Q}^3\to\mathbb{Q}^3$ 是双射, 故

$$\dim_{\mathbb{Q}} \operatorname{SMag}_{n}(\mathbb{Q}) = \dim_{\mathbb{Q}} \operatorname{Mag}_{n}(\mathbb{Q}) + \dim_{\mathbb{Q}} \mathbb{Q}I_{n} + \dim_{\mathbb{Q}} \mathbb{Q}D_{n}$$

故等式得证.

另,继续计算可得:

$$A^{-1}\boldsymbol{\sigma} = \frac{1}{\det A} \begin{pmatrix} n^2 - \delta^2 & n - \delta & n - \delta \\ \sigma(n - \delta) & \sigma(n - 1) & \sigma(1 - \delta) \\ \sigma(n - \delta) & \sigma(1 - \delta) & \sigma(n - 1) \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = p$$

其中 $\det A = \sigma ((n-1)^2 - (1-\delta)^2).$

下分别给出 $\delta = 0$ 和 $\delta = 1$ 时的 A^{-1} :

$$A^{-1}_{\delta=0} = \frac{1}{2-n} \begin{pmatrix} \frac{n}{\sigma} & \frac{1}{\sigma} & \frac{1}{\sigma} \\ 1 & \frac{1-n}{n} & \frac{1}{n} \\ 1 & \frac{1}{n} & \frac{1-n}{n} \end{pmatrix} \qquad A^{-1}_{\delta=1} = \frac{1}{1-n} \begin{pmatrix} \frac{1+n}{\sigma} & \frac{1}{\sigma} & \frac{1}{\sigma} \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

题 4.3. $\{V_i\}_{i\in[m]}$ 是 n 维空间 V 中的一组子空间,若 $\sum_{i\in[n]}\dim V_i>n(m-1)$,求证 $\bigcap V_i\neq\{0\}$.

证明. 首先, 若公式成立则 $V_i \neq \{0\}$, 因为若有 dim $V_k = 0$, 则

$$\sum \dim V_i = \sum_{i \in [m] - k} V_i + \dim V_k = \sum_{i \in [m] - k} \le n(m - 1)$$

m=1 时公式显然成立,m=2 时 $\dim V_1 + \dim V_2 > n$ 可知 $\dim V_1 \cap V_2 > 0$, 故也成立.

假设 m=k 时公式成立,则 m=k+1 时,假设 $\sum_{i\in[k+1]}\dim V_i>nk$. 若 $\bigcap V_i=\{0\}$,则 [k+1] 中存在 k 元指标集 J 有 $\bigcap_{j\in J}V_j=\{0\}$,故 $\sum_{j\in J}\dim V_j\leq n(k-1)$.设 $[k+1]-J=\{k+1\}$,则

$$J$$
 有 $\bigcap_{i \in J} V_i = \{0\}$, 故 $\sum_{i \in J} \dim V_i \le n(k-1)$. 设 $[k+1] - J = \{k+1\}$, 则

$$\dim V_{k+1} = \sum_{i \in [k+1]} \dim V_i - \sum_{j \in J} \dim V_j > nk - n(k-1) = n$$

矛盾, 故 $\bigcap V_i \neq \{0\}$.

题 4.4. 用平面上 n 条直线集合的几何性质给出

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}, \qquad B = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \\ c_1 & c_2 & \cdots & c_n \end{pmatrix}$$

有相等秩的条件.@Unsolved

证明.

题 4.5 (秩的不等式). 1. Sylvester 秩不等式: $\forall A \in \mathbb{F}^{m \times k}, B \in \mathbb{F}^{k \times n}$: rank $A + \operatorname{rank} B - k \leq \operatorname{rank} AB$

- 2. Frobenius 秩不等式: $\forall A \in \mathbb{F}^{m \times s}, B \in \mathbb{F}^{s \times t}, C \in \mathbb{F}^{t \times n}$: rank AB + rank BC \leq rank B + rank ABC
- 3. $\forall A, B, C \in M_n(\mathbb{F})$, 若 ABC = O, 则 $\operatorname{rank} A + \operatorname{rank} B + \operatorname{rank} C \leq 2n$

证明. (1) 证法 1: 考虑分块矩阵, 有

$$\begin{pmatrix} I_m & A_{m \times k} \\ O_{k \times m} & I_k \end{pmatrix} \begin{pmatrix} A_{m \times k} & O_{m \times n} \\ -I_k & B_{k \times n} \end{pmatrix} = \begin{pmatrix} O_{m \times k} & AB_{m \times n} \\ -I_k & B_{k \times n} \end{pmatrix}$$

因此

$$\operatorname{rank} A + \operatorname{rank} B \le \operatorname{rank} \begin{pmatrix} A & O \\ -I & B \end{pmatrix} = \operatorname{rank} \begin{pmatrix} O & AB \\ -I & B \end{pmatrix} = \operatorname{rank} AB + k$$

证法 2: 由于 A 可被化为等价标准型 $A' = I_r \oplus 0$, 即 A = PA'Q, 其中 P,Q 为可逆方阵, 我们可以化不等式为

$$\operatorname{rank} A + \operatorname{rank} B = r + \operatorname{rank} QB \le \operatorname{rank} PA'QB + k = \operatorname{rank} A'QB + k$$

 $\Rightarrow B' = QB$, 即证明 rank $A' + \text{rank } B' \leq \text{rank } A'B' + k$.

$$\begin{aligned} \operatorname{rank} A' + \operatorname{rank} B' &= \operatorname{rank} A' + \operatorname{rank} (A'B' + (I - A')B') \\ &\leq \operatorname{rank} A' + \operatorname{rank} (A'B') + \operatorname{rank} ((I - A')B') \\ &\leq r + \operatorname{rank} (A'B') + (n - r) \\ &= \operatorname{rank} A'B' + n \end{aligned}$$

证法 3: 即证 $\dim \ker AB \leq \dim \ker A + \dim \ker B$.

由于 $\ker B \subseteq \ker AB$, 考虑 $\bar{B} = B|_{\ker AB}$, 显然 $\ker B = \ker \bar{B}$, 而 $\operatorname{Im} \bar{B} \subseteq \ker A$, 因此 $\operatorname{rank} \bar{B} \leq \dim \ker A$, 即

$$\dim \ker AB = \dim \ker B + \operatorname{rank} \bar{B} \leq \dim \ker B + \dim \ker A$$

(2) 证法 1: 考虑 $C: \ker(ABC)/\ker(BC) \to \ker(AB)/\ker B$, 这是一个映射且是一个单射.

首先, $x + \ker(BC) \mapsto Cx + C(\ker(BC))$, 显然 $x \in \ker(ABC) \implies Cx \in \ker(AB)$, $C(\ker(BC)) = \ker(B)$ (互相包含), 因此

$$x + \ker(BC) = y + \ker(BC) \implies Cx + \ker(B) = Cy + \ker(B), C(x - y) \in \ker B$$

故这是一个映射. 而又有 $a \in \ker C$, ABCa = 0, 即 $a \in \ker(BC)$, $Ca \in \ker B$, 故 C 是单射.

证法 2: 运用 Sylvester 不等式. 若 rank B = r, 则 B 有满秩分解 $B_{s \times t} = P_{s \times r} Q_{r \times t}$, 使得

$$\operatorname{rank}(ABC) = \operatorname{rank}(APQC) \ge \operatorname{rank}(AP) + \operatorname{rank}(QC) - r$$

$$= \operatorname{rank}(APQ) + \operatorname{rank}(PQC) - r$$

$$= \operatorname{rank}(AB) + \operatorname{rank}(BC) - \operatorname{rank}B$$

证法 3: 注意到 $\operatorname{Im} B = \operatorname{Im}(AB) \oplus (\operatorname{Im} B \cap \ker A)$, 因此

$$rank(AB) = rank B - \dim(\operatorname{Im} B \cap \ker A)$$

类似也有

$$rank(ABC) = rank(BC) - \dim(Im(BC) \cap \ker A)$$

又有

 $\operatorname{Im} BC \cap \ker A \subseteq \operatorname{Im} B \cap \ker A$

因此

$$\operatorname{rank} AB + \operatorname{rank} BC = \operatorname{rank} B + \operatorname{rank} ABC$$

$$+ \dim(\operatorname{Im} BC \cap \ker A) - \dim(\operatorname{Im} B \cap \ker A)$$

$$< \operatorname{rank} B + \operatorname{rank} ABC$$

(3) 证法 1: 运用两次 Sylvester 不等式:

$$0 = \operatorname{rank} ABC \geq \operatorname{rank} AB + \operatorname{rank} C - n \geq \operatorname{rank} A + \operatorname{rank} B + \operatorname{rank} C - 2n$$

证法 2: 首先注意到 $\operatorname{Im} BC \subseteq \ker A$, 因此 $n = \operatorname{rank} A + \dim \ker A \ge \operatorname{rank} A + \operatorname{rank} BC$. 其次, 注意到 $\operatorname{Im} C = \operatorname{Im} BC \oplus (\ker B \cap \operatorname{Im} C)$, 因此有

$$n \ge \operatorname{rank} A + \operatorname{rank} BC$$

= $\operatorname{rank} A + \operatorname{rank} C - \dim(\ker B \cap \operatorname{Im} C)$
 $\ge \operatorname{rank} A + \operatorname{rank} C - \dim \ker B$
= $\operatorname{rank} A + \operatorname{rank} C + \operatorname{rank} C - n$

因此得证.

题 4.6. 对 $\forall A \in M_2(\mathbb{R}), \forall k \in \mathbb{N}_+,$ 若 $A^k = O,$ 则 $A^2 = O.$ @Unsolved 证明.

题 4.7. 记 A^{\vee} 为 $A \in M_n(\mathbb{F})$ 的伴随矩阵, 则有

$$\operatorname{rank} A^{\vee} = \begin{cases} n & \text{if } \operatorname{rank} A = n \\ 1 & \text{if } \operatorname{rank} A = n - 1 \\ 0 & \text{if } \operatorname{rank} A < n - 1 \end{cases}$$

证明. rank A < n-1 时, A 的 n-1 阶子式均为 0, 即 $A^{\vee} = O$.

 $\operatorname{rank} A = n-1$ 时,A 存在 n-1 阶子式非零,此时运用 Sylvester 不等式有 $\operatorname{rank} A + \operatorname{rank} A^{\vee} \leq \operatorname{rank} (AA^{\vee}) + n = n$, $\operatorname{rank} A^{\vee} \leq 1$. \square $A^{\vee} \neq O$,因此 $\operatorname{rank} A^{\vee} = 1$.

4.2 行列式

题 4.8. 求证任意阶的斜对称矩阵 A 的行列式 $\det A > 0$. 特别的, 奇数阶时 $\det A = 0$.

证明. 首先对于奇数阶的情况有

$$\det A = \det A^{\mathsf{T}} = \det(-A) = (-1)^n \det A = -\det A \implies \det A = 0$$

对偶数阶的情况:

证法 1: 由于 $\operatorname{tr} A=0$,因此若 λ 是其本征值,则 $-\lambda$ 也是. 有进一步的结论 $\Re(\lambda)=0$,即 λ 是纯虚数. 而 $\det A=\prod_i \lambda_i=\prod_i \lambda_i^2$,得证.

本征信

证法 2: 对 n=2k 作归纳证明. 首先已知 n=2 时 $\det A=a_{12}^2$, 情况成立. 假设对 n=2k 成立, 则只需证 n=2k+2 的情况, 此时

$$\det A_{2k+2} = \det \begin{pmatrix} 0 & a_{12} & \cdots \\ -a_{12} & 0 & \cdots \\ \vdots & \vdots & A_{2k} \end{pmatrix} \stackrel{\textit{infex}(b)}{=} \det \begin{pmatrix} 0 & a_{12} & O \\ -a_{12} & 0 & O \\ O & O & A'_{2k} \end{pmatrix} = a_{12}^2 \det A'_{2k}$$

而 $\det A'_{2k}$ 实际上也是 2k 阶斜对称矩阵 (因为初等行列变换是对应的, 两个变换的结果相互抵消), 因此得证.

题 4.9. 对元素 $a_{ij} = b_i^2 - b_j^2$ 的 n 阶斜对称矩阵, 求证其行列式总为零.

证明. 可以证明元素形如 $a_{ij}=x_i+y_j$ 的矩阵的秩至多为 2, 但也可以这样想: 这个斜对称矩阵是两个秩 1 矩阵的差,即 $a_{ij}=b_i^2$ 和 $a_{ij}=b_j^2$ 的两个矩阵,故矩阵的秩至多为 2.

题 4.10. 证明

$$\Delta_n(k_1, x_1; k_2, x_2; \dots; k_m, x_m) = \det \begin{pmatrix} M_{k_1}^n(x_1) \\ M_{k_2}^n(x_2) \\ \vdots \\ M_{k_m}^n(x_m) \end{pmatrix} = \prod_{1 \le j < i \le m} (x_i - x_j)^{k_i k_j}$$

其中 $M_k^n(x)$ 是 $k \times n$ 阶矩阵:

$$M_k^n(x) = \begin{pmatrix} \binom{0}{0}x^0 & \binom{1}{0}x^1 & \binom{2}{0}x^2 & \cdots & \binom{n-1}{0}x^{n-1} \\ 0 & \binom{1}{1}x^0 & \binom{2}{1}x & \cdots & \binom{n-1}{1}x^{n-2} \\ 0 & 0 & \binom{2}{0}x^0 & \cdots & \binom{n-1}{2}x^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \binom{n-1}{k-1}x^{n-k} \end{pmatrix}$$

即
$$a_{ij} = \binom{j-1}{i-1} x^{j-i}$$
,且 $\sum_{i \in [m]} k_i = n$.

特别的, $k_i = 1$, 即 m = n 时化为 Vandermonde 行列式.

证明. 一篇 1983 年的国内论文Vandermonde 行列式推广及其在控制理论中的应用专门讨论了这个行列式, 摘录如下. 只需证明

$$\Delta_n(k_1, x_1; k_2, x_2; \dots; k_m, x_m) = \Delta_n(k_1 - 1, x_1; k_2, x_2; \dots; k_m, x_m) \prod_{i=2}^m (x_i - x_1)^{k_i}$$

这是因为

LHS =
$$\Delta_n(k_1 - 1, x_1; k_2, x_2; \dots; k_m, x_m) \prod_{i=2}^m (x_i - x_1)^{k_i} = \Delta_n(k_2, x_2; \dots; k_m, x_m) \prod_{i=2}^m (x_i - x_1)^{k_1 k_i}$$

= $\prod_{j=1}^m \left(\prod_{i=j+1}^m (x_i - x_j)^{k_i} \right)^{k_j} = \text{RHS}$

第一步: 仿照 Vandermonde 行列式的求法, 将第 $i \in [m-1]$ 列乘上 $-x_1$ 加到第 i+1 列上, 得到

第二步: 对第一行展开, 再运用组合恒等式 $\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$ 化简前 k_1-1 行, 并对第 k_1 行提取公因式 (x_2-x_1) , 最终得到:

$$RHS_{1} = (x_{2} - x_{1}) \begin{vmatrix} 1 & x_{1} & \cdots & x_{1}^{n-2} \\ 0 & 1 & \cdots & \binom{n-2}{1} x_{1}^{n-3} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \binom{n-2}{k_{1}-2} x_{1}^{n-k_{1}} \\ 1 & x_{2} & \cdots & x_{2}^{n-2} \\ 1 & \binom{2}{1} x_{2} - x_{1} & \cdots & \binom{n-1}{1} x_{2}^{n-2} - \binom{n-2}{1} x_{2}^{n-3} x_{1} \\ 0 & 1 & \cdots & \binom{n-1}{2} x_{2}^{n-3} - \binom{n-2}{2} x_{2}^{n-4} x_{1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \binom{n-1}{k_{2}-1} x_{2}^{n-k_{2}} - \binom{n-2}{k_{2}-1} x_{2}^{n-k_{2}-1} x_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix}$$

第三步: 对于 RHS_2 , 将第 $k_1 + 1$ 行减去第 k_1 行, 则第 $k_1 + 1$ 行变为

$$(RHS_2)_{(k_1+1)} = \left(0, x_2 - x_1, \binom{2}{1} x_2 (x_2 - x_1), \cdots, \binom{n-2}{1} x_2^{n-3} (x_2 - x_1)\right)$$
$$= (x_2 - x_1) \left(0, 1, \binom{2}{1} x_2, \cdots, \binom{n-2}{1} x_2^{n-3}\right)$$

再依次将第 $k_1 + i$ 行减去第 $k_1 + i - 1$ 行 $(i = 2, 3, \dots, k_2 - 1)$, 最终得到:

$$RHS_{2} = (x_{2} - x_{1})^{k_{2} - 1} \begin{vmatrix} 1 & x_{1} & \cdots & x_{1}^{n-2} \\ 0 & 1 & \cdots & \binom{n-2}{1} x_{1}^{n-3} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \binom{n-2}{k_{1} - 2} x_{1}^{n-k_{1}} \\ 1 & x_{2} & \cdots & x_{2}^{n-2} \\ 0 & 1 & \cdots & \binom{n-2}{1} x_{2}^{n-3} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \binom{n-2}{k_{2} - 1} x_{2}^{n-k_{2} - 1} \\ 1 & \binom{2}{1} x_{3} - x_{1} & \cdots & \binom{n-1}{1} x_{3}^{n-2} - \binom{n-2}{2} x_{3}^{n-3} x_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix} = (x_{2} - x_{1})^{k_{2} - 1} RHS_{3}$$

即 $RHS_1 = (x_2 - x_1)^{k_2} RHS_3$.

第四步: 将上面对第 k_1 行到第 $k_1 + k_2 - 1$ 行所做的依次施加直到最后一行, 得到

LHS = RHS₁ = RHS₄
$$\prod_{i=2}^{m} (x_i - x_1)^{k_i}$$
 = RHS

因此得证.

题 4.11. 证明

$$\det B_n(s,t) = \prod_{k \in [t]} \frac{\binom{n+s-k}{n}}{\binom{n+t-k}{n}} = \prod_{k \in [t]} \frac{(n+s-k)!}{(s-k)!} \frac{(t-k)!}{(n+t-k)!}$$

其中

$$B_{n}(s,t) = \begin{pmatrix} \binom{s}{t} & \binom{s}{t+1} & \cdots & \binom{s}{t+n-1} \\ \binom{s+1}{t} & \binom{s+1}{t+1} & \cdots & \binom{s+1}{t+n-1} \\ \vdots & \vdots & \ddots & \vdots \\ \binom{s+n-1}{t} & \binom{s+n-1}{t+1} & \cdots & \binom{s+n-1}{t+n-1} \end{pmatrix} \in M_{n}(\mathbb{Z}), \quad a_{ij} = \binom{s+i-1}{t+j-1}$$

证明. 讨论 s 和 t 的大小关系: 若 s < t, 则 $B_n(s,t)$ 至少有一行全为零, 故 $\det B_n(s,t) = 0 = \mathrm{RHS}$, 等式成立.

若 s=t, 则 $B_n(s,s)$ 右上角全为 0, 主对角线全为 1, 故 LHS = 1 = RHS, 等式成立.

若 s>t, 则对行列式做 t 步变换. 在第 k 步时, 对第 i 行提取 s+i-k, 再从第 j 列提取 $(t+j-k)^{-1}$, 此时矩阵的元素变为 $a_{ij}^{(k+1)}=\binom{s+i-1-k}{t+j-1-k}$, 提取得到

$$\prod_{i \in [n]} \frac{s+i-k}{t+i-k} = \frac{(s+n-k)!}{(s-k)!} \frac{(t-k)!}{(n+t-k)!}$$

最终得到

$$B_{n}^{(t+1)}(s,t) = C_{n}^{m} = \begin{pmatrix} 1 & \binom{m}{1} & \cdots & \binom{m}{n-1} \\ 1 & \binom{m+1}{1} & \cdots & \binom{m+1}{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \binom{m+n-1}{1} & \cdots & \binom{m+n-1}{n-1} \end{pmatrix}, m = s - t, c_{ij} = \binom{m+i-1}{j-1}$$

对 $\det C_n^m$ 将第 i 行减去第 i-1 行, 得到

$$\det C_n^m = \begin{vmatrix} 1 & \binom{m}{1} & \cdots & \binom{m}{n-1} \\ 0 & \binom{m}{0} & \cdots & \binom{m}{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \binom{m+n-2}{0} & \cdots & \binom{m+n-2}{n-2} \end{vmatrix} = \begin{vmatrix} 1 & \binom{m}{1} & \cdots & \binom{m}{n-2} \\ 1 & \binom{m+1}{1} & \cdots & \binom{m+1}{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \binom{m+n-2}{1} & \cdots & \binom{m+n-2}{n-2} \end{vmatrix} = \det C_{n-1}^m$$

而 $\det C_1^m = \det C_2^m = 1$, 因此 $\det C_n^m = 1$. 结合所求系数, 有

LHS =
$$\prod_{k \in [t]} \frac{(n+s-k)!}{(s-k)!} \frac{(t-k)!}{(n+t-k)!} \det C_n^m = \text{RHS}$$

题 4.12. $X \in \mathbb{F}^{n \times k}, Y \in \mathbb{F}^{k \times n}$,则 $\det(I_n + XY) = \det(I_n + YX)$

证明.由

$$\begin{pmatrix} I_k + YX & O \\ X & I_n \end{pmatrix} \begin{pmatrix} I_k & Y \\ O & I_n \end{pmatrix} = \begin{pmatrix} I_k & Y \\ O & I_n \end{pmatrix} \begin{pmatrix} I_k & O \\ X & I_n + XY \end{pmatrix}$$

即马上得证.

题 4.13. 对 $A \in M_n(\mathbb{R})$ 有 $\forall i \neq j : (n-1)|a_{ij}| < |a_{ii}|$, 则 $\det A \neq 0$.

证明. 若 det A=0, 则 AX=0 有非零解 $X^0=(x_1^0,\cdots,x_n^0)^\mathsf{T}$, 其中 x_k^0 的模最大, 因此

$$A_{(k)}X^{0} = \sum_{i \in [n]} a_{ki}x_{i}^{0} = a_{kk}x_{k}^{0} + \sum_{i \neq k} a_{ki}x_{i}^{0} = 0$$

故

$$(n-1)|a_{kk}||x_k^0| = (n-1)\left|\sum_{i \neq k} a_{ki} a_i^0\right| < (n-1)|a_{kk}||x_k^0|$$

得到矛盾.

題 4.14. $A, B \in M_n(\mathbb{R})$, 证明 $(1)\overline{\det(A+\mathrm{i}B)} = \det(A-\mathrm{i}B)$; $(2)\det\begin{pmatrix} A & B \\ -B & A \end{pmatrix} = |\det(A+\mathrm{i}B)|^2$

证明. (1)

$$\overline{\det(A+\mathrm{i}B)} = \sum_{\pi \in S_n} \varepsilon_\pi \prod_{i \in [n]} \overline{(a_{i,\pi(i)}+\mathrm{i}b_{i,\pi(i)})} = \sum_{\pi \in S_n} \varepsilon_\pi \prod_{i \in [n]} (a_{i,\pi(i)}-\mathrm{i}b_{i,\pi(i)}) = \det(A-\mathrm{i}B)$$

(2)

$$\det \begin{pmatrix} A & B \\ -B & A \end{pmatrix} = \det \begin{pmatrix} A - iB & iA + B \\ -B & A \end{pmatrix} = \det \begin{pmatrix} A - iB & O \\ -B & A + iB \end{pmatrix}$$
$$= \det(A - iB) \det(A + iB) = |\det(A + iB)|^2$$

题 4.15. 证明

$$\det A = \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix} = \prod_{k=1}^n \sum_{i=1}^n \varepsilon_n^{k(i-1)} a_i$$

其中 $\varepsilon_n = e^{\frac{2\pi i}{n}} = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$.

证明. 构造

$$B = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \varepsilon_n & \varepsilon_n^2 & \cdots & \varepsilon_n^n \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_n^{n-1} & \varepsilon_n^{2(n-1)} & \cdots & \varepsilon_n^{n(n-1)} \end{pmatrix}, \quad \det B \neq 0$$

 $f(x) = \sum_{i=1}^{n} a_i x^{i-1},$ 有:

$$f(\varepsilon_n^k) = a_1 + a_2 \varepsilon_n^k + \dots + a_n \varepsilon_n^{k(n-1)}$$

$$\varepsilon_n^k f(\varepsilon_n^k) = a_n + a_1 \varepsilon_n^k + \dots + a_{n-1} \varepsilon_n^{k(n-1)}$$

$$\varepsilon_n^{2k} f(\varepsilon_n^k) = a_{n-1} + a_n \varepsilon_n^k + \dots + a_{n-2} \varepsilon_n^{k(n-1)}$$

 $\varepsilon_n^{(n-1)k} f(\varepsilon_n^k) = a_2 + a_3 \varepsilon_n^k + \dots + a_1 \varepsilon_n^{k(n-1)k}$

因此

$$(\det A)(\det B) = \det \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \cdots & a_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \cdots & a_1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \varepsilon_n & \varepsilon_n^2 & \cdots & \varepsilon_n^n \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_n^{n-1} & \varepsilon_n^{2(n-1)} & \cdots & \varepsilon_n^{n(n-1)} \end{pmatrix}$$

$$= \begin{vmatrix} f(\varepsilon_n) & f(\varepsilon_n^2) & \cdots & f(\varepsilon_n^n) \\ \varepsilon_n f(\varepsilon_n) & \varepsilon_n^2 f(\varepsilon_n^2) & \cdots & \varepsilon_n^n f(\varepsilon_n^n) \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_n^{n-1} f(\varepsilon_n) & \varepsilon_n^{2(n-1)} f(\varepsilon_n^2) & \cdots & \varepsilon_n^{n(n-1)} f(\varepsilon_n^n) \end{vmatrix} = (\det B) \prod_{i=1}^n f(\varepsilon_n^i)$$

代入
$$f(\varepsilon_n^k) = \sum_{i=1}^n a_i \varepsilon_n^{k(i-1)}$$
, 有 $\det A = \prod_{k=1}^n \sum_{i=1}^n a_i \varepsilon_n^{k(i-1)}$.

题 4.16 (一个行列式的计算). 求证

$$\begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ x & x & x & \cdots & x & y & y & y & \cdots & y \\ x^2 & 2x^2 & 2^2x^2 & \cdots & 2^{m-1}x^2 & y^2 & 2y^2 & 2^2y^2 & \cdots & 2^{m-1}y^2 \\ x^3 & 3x^3 & 3^2x^3 & \cdots & 3^{m-1}x^3 & y^3 & 3y^3 & 3^2y^3 & \cdots & 3^{m-1}y^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ x^n & nx^n & n^2x^n & \cdots & n^{m-1}x^n & y^n & ny^n & n^2y^n & \cdots & n^{m-1}y^n \end{vmatrix} = (x-y)^{m^2}(xy)^{\frac{m^2-m}{2}} \left(\prod_{i=0}^{m-1}i!\right)^2$$

其中 n = 2m - 1.@Unsolved

证明.

4.2.1 结论

1. 对

$$C_n = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 & 0 \\ c_1 & a_2 & b_2 & \cdots & 0 & 0 \\ 0 & c_2 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c_{n-1} & a_n \end{pmatrix}$$

有 $\det C_n = a_n \det C_{n-1} - b_{n-1} c_{n-1} \det C_{n-2}$.

• $a_i=b_i=1, c_i=-1$ 时有 $\det C_n=\det C_{n-1}+\det C_{n-2},$ 这是 $a_1=a_2=1$ 的 Fibonacci 数列, 即

$$\det C_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}, \varphi = \frac{1 + \sqrt{5}}{2}$$

- $a_i = 2, b_i = c_i = \pm 1 \text{ ff } \det C_n = n + 1.$

2. 对
$$A_n = D_n + \text{diag}(0, 1, 2, \dots, n-1)$$
, 其中 D_n 是全 1 的 n 阶方阵, 有 $\det A_n = (n-1)!$.
3. $\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A+B) \det(A-B)$, 由

$$\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det \begin{pmatrix} A+B & A+B \\ B & A \end{pmatrix} = \det \begin{pmatrix} A+B & O \\ B & A-B \end{pmatrix}$$

马上得到.

4. 若 $A \in M_n(\mathbb{R}), B \in M_m(\mathbb{R})$ 可逆, $C \in \mathbb{R}^{n \times m}$ 则 (列方程解)

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix}$$

5.

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{cases} (\det A) \det(D - CA^{-1}B) = \det(AD - ACA^{-1}B) & \text{if } \det A \neq 0 \\ (\det D) \det(A - CD^{-1}B) = \det(DA - DCD^{-1}B) & \text{if } \det D \neq 0 \end{cases}$$

$$= \begin{cases} \det(AD - CB) & \text{if } AC = CA \\ \det(DA - CB) & \text{if } AB = BA \end{cases}$$

6. 记 A^{\vee} 为 $A \in M_n(\mathbb{F})$ 的伴随矩阵, 则有

- (a) 题4.7
- (b) $AA^{\vee} = A^{\vee}A = (\det A)I_n$, 因此 $\det A^{\vee} = (\det A)^{n-1} \cdot \det A \neq 0$ 时 $A^{-1} = \frac{A^{\vee}}{\det A}$.
- (c) $(AB)^{\vee} = B^{\vee}A^{\vee}, (A^{\mathsf{T}})^{\vee} = (A^{\vee})^{\mathsf{T}}, (\lambda A)^{\vee} = \lambda^{n-1}A^{\vee}, (A^{\vee})^{\vee} = (\det A)^{n-2}A^{\mathsf{T}}$ 最后一式分类讨论: $\det A = 0$ 时 RHS = O, 而 rank $A^{\vee} < n-1$, 因此 rank $(A^{\vee})^{\vee} = 0$, LHS = O. $\det A \neq 0$ 时, 有 $(A^{\vee})^{\vee}A^{\vee} = A^{\vee}(A^{\vee})^{\vee} = (\det A^{\vee})I_n$, 因此

$$(A^{\vee})^{\vee} = \left(\frac{A^{\vee}}{\det A^{\vee}}\right)^{-1} = (\det A^{\vee})(A^{\vee})^{-1} = (\det A^{\vee})\frac{A}{\det A} = (\det A)^{n-2}A$$

4.3 多项式

题 4.17. $\zeta = \frac{2+i}{2-i}$ 不是 1 的 n 次根.

证明一 (by Kostrikin). 若 $\zeta^n = 1$, 则有 $(2-i)^n = (2+i)^n = (2-i+2i)^n = (2-i)^n + \sum_{k=1}^{n-1} (2-i)^k (2i)^{n-k} + (2i)^n$. 化简并提取公因式 2-i, 则 $(2i)^n$ 可以被表示为 (2-i)(a+bi), 其中 $a,b \in \mathbb{Z}$. 两式取模, 得到 $5(a^2+b^2)=2^{2n}$, $5|2^{2n}$, 矛盾.

证明二 (by 江弘毅). 考虑整数数列 $a_{n+1}=6a_n-25a_{n-1}$, 在 $n\geq 1$ 时所有 a_n 模 5 同余, 解得 $a_n=C_1(3+4\mathrm{i})^n+C_2(3-4\mathrm{i})^n$. 注意到 $a_n=(3+4\mathrm{i})^n+(3-4\mathrm{i})^n$ 是数列的一个解, 此时 $a_n \bmod 5=1$, 因此 $a_n\neq 2\cdot 5^n$, 即 $\zeta^n\neq 1$.

思路: 因为本来就是为了考察 e^{inx} 是不是 1, 于是想到归纳法, 于是想到数列递推关系. 就是考虑 $\cos(nx)$ 的通项公式 $a_{n+1}-2\cos xa_n+a_{n-1}=0$ (解得 $a_n=C_1e^{inx}+C_2e^{-inx}$), 然后假设 $\cos x\in\mathbb{Q}$ 时可以写成 $p^na_n=b_n\in\mathbb{Z}$, 接下来考察 $b_n \bmod p$ 就能判断 a_n 能不能再次取到 1.

证明三 (by 瓶子). 由下题立得.

題 4.18 (Niven 定理). $(a \in \mathbb{Q} \land \cos(a\pi) \in \mathbb{Q}) \iff \cos(a\pi) = 0, \pm \frac{1}{2}, \pm 1 \iff a = 2k \pm (0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1), k \in \mathbb{Z}.$

证明一. 由

$$\cos nx = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k} \cos^{n-2k} x \sin^{2k} x = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \cos^{n-2k} x (\cos^2 x - 1)^k$$

$$\cos(m\pi) = \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} t^{n-2k} (t^2 - 1)^k$$

这是一个在 \mathbb{Q} 上的多项式, 其 LHS = ± 1 依赖 m 的奇偶性.

若其有有理根 $t = \frac{q}{p}(p \perp q, 0 , 则 <math>p|a_n, q|a_0$, 其中 $a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} = 2^{n-1}$, 故 $p = 2^s (s \in [n-1]^*)$.

考虑 x 的二倍角 $t_2=\cos 2x=\cos \frac{2m\pi}{n}$, 无论 $t=\frac{q}{2^s}$ 是方程在 LHS $=\pm 1$ 时的解 $,t_2,t_{2^2},\cdots$ 都是方程在 LHS $=\cos(2m\pi)=1$ 时的解. 由于方程 n 次项不变,故仍有形式

$$t_2 = \frac{q_2}{2^{s_2}}, \quad t_4 = 2t_2^2 - 1 = \frac{q_2^2 - 2^{2s_2 - 1}}{2^{2s_2 - 1}} = \frac{q_4}{2^{s_4}}, \quad (q_2, q_4 \in \mathbb{Z}, s_2, s_4 \in [n - 1]^*)$$

又由于 $q_2 \perp 2^{s_2}$, 则有 $s_4 = 2s_2 - 1$.

若 $s_2 > 1$, 则 $1 < s_2 < 2s_2 - 1 = s_4, s_{2^k} = 2^{k-1}(s_2 - 1) + 1$. 因此必然有 k < n 使得 $s_{2^k} \ge n - 1$, 而这与 $s_{2^k} \in [n-1]^*$ 矛盾. 因此 $s_2 = 1$, 即 s = 1, p = 2.

此时
$$t=rac{q}{p}$$
 仅有可能 $0,\pmrac{1}{2},\pm1,$ 容易验证此时的 $a\in\mathbb{Q}$ 为题上数值.

证明二. Niven 定理的证明

证明三 (by 江弘毅). 若 $\cos \theta = q/p, p \perp q$, 考察 $a_n = \cos(nx)$, 有 $a_{n+1} - 2\cos xa_n + a_{n-1} = 0$.

- (1) 若 p > 1 是奇数, 令 $b_n = p^n a_n, b_0 = 1, b_1 = q$, 则 $b_{n+1} = 2qb_n p^2 b_{n-1} \equiv_p 2qb_n \equiv_p 2^n q^{n+1}$. 由于 $2 \perp p \perp q$, 因此 $2^{n-1}q^n \perp p, b_n = sp + 2^{n-1}q^n \perp p$, 故 $b_n/p^n \notin \mathbb{Z}, a_n \neq 1$.
- (2) 若 p = 2k, k > 1, 则 $k \perp q$. 取 $b_n = 2k^n a_n, b_1 = q, b_{n+1} = qb_n k^2 b_{n-1} \equiv_k q^{n+1}$, 由于 $k \perp q$, 因此 $b_n \perp k, b^n/k^n \notin \mathbb{Z}, a_n = \frac{b_n}{2k^n} \notin \mathbb{Z}$.

(3) 因此,
$$p = 1 \lor p = 2$$
, 即 $\cos \theta = 0, \pm 1/2, \pm 1$ 时存在 $\cos(n\theta) = 1$.

题 4.19. \mathbb{F} 是域, 环 $\mathbb{F}[X]$ 的使 $\varphi(\mathbb{F}) = \mathbb{F}$ 的自同构 $\varphi \in \operatorname{Aut}(\mathbb{F})$ 构成的群同构于变换群 $X \mapsto aX + b, a, b \in \mathbb{F}, a \neq 0.$ @Unsolved

证明.

题 4.20. $f,g \in \mathbb{Z}[X]$ 是首一多项式,证明存在 $u,v \in \mathbb{Z}[X]$ 且 $\deg u < \deg g, \deg v < \deg f$ 使得 $\gcd(f,g) = fu + gv$. 证明. 若有 $u,v \in \mathbb{Z}[X]$ 使得 $\gcd(f,g) = fu + gv$,则由 f,g 是首一的,有

$$\deg fu = \deg f + \deg u = \deg gv = \deg g + \deg v \ge \deg \gcd(f, g)$$

若有 $\deg u \ge \deg g$ 或 $\deg v \ge \deg f$, 上式取 >. 此时考察首项系数有

$$f_{\deg f} u_{\deg u} + g_{\deg g} v_{\deg v} = u_{\deg u} + v_{\deg v} = 0$$

由于 u' = u + kg, v' = v - kf 时 gcd(f, g) = fu' + gv' 仍成立, 其中 $k \in \mathbb{Z}[X]$ 且

$$\deg u = \deg kg = \deg k + \deg g$$

$$\deg v = \deg f + \deg u - \deg g = \deg f + \deg k$$

可以选取 k 使得首项系数有

$$u'_{\deg u} = u_{\deg u} + k_{\deg k} g_{\deg g} = u_{\deg u} + k_{\deg k} = 0$$

$$v'_{\deg v} = v_{\deg v} - k_{\deg k} f_{\deg f} = v_{\deg v} - k_{\deg k} = 0$$

这样就得到 $u', v' \in \mathbb{Z}[X]$ 使得 $\deg u' < \deg u, \deg v' < \deg v$. 反复操作, 可以得到 u, v 使 $\deg u < \deg g, \deg v < \deg f$ 满足.

5 抽象代数

题 5.1. 对二元运算 \oplus 若有 $\forall x, y \in X : (x \oplus y) \oplus y = x, x \oplus (x \oplus y) = y, 则 \oplus 交换.$

证明. 记 $z = x \oplus y$, 则 $y \oplus (x \oplus y) = y \oplus z = (x \oplus z) \oplus z = x$. 同理 $(x \oplus y) \oplus x = y$. 因此 $x \oplus y = (y \oplus (y \oplus x)) \oplus y = y \oplus x$. \square

5.1 群

本文档中所有置换乘法均与函数复合相同,属于从右到左的运算.

题 5.2. 有限群 G 有一个 2 阶自同构 $\varphi(\varphi^2=1)$, 其没有非平凡不动点 $(\varphi(a)=a\iff a=e)$, 则 G 交换, 且 |G| 是奇数.

证明. 考虑 $f: a \mapsto \varphi(a)a^{-1}$, 有

$$\varphi(a)a^{-1} = \varphi(b)b^{-1} \implies \varphi(b)^{-1}\varphi(a) = b^{-1}a \implies b^{-1}a = e \implies b = a$$

因此 f 是单射, 又由于 G 有限, 因此 f 是双射, 即 $\forall g \in G \exists a \in G : g = \varphi(a)a^{-1}$. 但

$$\varphi(g) = \varphi(\varphi(a)a^{-1}) = \varphi^{2}(a)\varphi(a)^{-1} = a\varphi(a)^{-1} = g^{-1}$$

因此 $\varphi: g \mapsto g^{-1}$.

因此 $(1)ab = \varphi(a^{-1})\varphi(b^{-1}) = \varphi(a^{-1}b^{-1}) = ba,(2)$ 由于 $g = g^{-1} \iff g = e$, 因此 $G = \{e; g_1, g_1^{-1}; g_2, g_2^{-1}; \cdots\}$, 即 |G| 是奇数.

题 5.3. 若
$$S \subset G = \langle S \rangle := \bigcap_{G_i \subset S \in \mathbb{R}} G_i$$
, 则 $\forall g \in G : g = t_1 t_2 \cdots t_n$, 其中 $t_i \in S$ 或 $t_i^{-1} \in S$.

证明. 即证明 $G' = \langle t_1 t_2 \cdots t_n | t_i \in S \lor t_i^{-1} \in S \rangle = \langle S \rangle$, 因为 $g \in G' \implies g = t_1 \cdots t_n$.

首先显然有 $S \subset \{t_1t_2\cdots t_n|t_i\in S \lor t_i^{-1}\in S\}$, 因此 $\langle S\rangle < G'$. 其次, 对含 S 的群 G_i 一定有 $t_i\in S \lor t_i^{-1}\in S \Longrightarrow t_i\in G_i$, 因此 $t_i\in\bigcap_{G_i\subset S\not\in\mathbb{H}}G_i$, 即

$$\forall g' \in G' : g' = t_1 t_2 \cdots t_n \in \bigcap_{G_i \subset S \neq \mathbb{R}} G_i \implies G' < \langle S \rangle$$

因此得证.

题 5.4. S 张成的幺半群 $M = \langle S \rangle_{\text{monoid}} := \bigcap_{M_i \subset S \not\equiv \text{幺} \neq \text{#}} M_i \ \text{中} \ s \in S \ \text{在} \ M \ \text{中可逆, 则} \ M \ \text{是群.}$

证明. 易知 M 中所有可逆元成群 $\mathrm{Inv}(M)$ 且 $S \subset \mathrm{Inv}(M) \subset M$,而 $\mathrm{Inv}(M)$ 也是一个幺半群,故 $M \subset \mathrm{Inv}(M)$,因此 $M = \mathrm{Inv}(M)$ 是一个群.

题 5.5. 若对幺半群 $G, \forall a, b \in G : ax = b, ya = b$ 均有唯一解, 则 G 为群.

证明. 取 b=e, 则记 ax=e,ya=e 的解为 a_1^{-1},a_2^{-1} , 显然两者相等, 即 a^{-1} . 由于 a 的任意性, 因此任意元素均有逆, 即 得证.

题 5.6. 交换群 $G + |a| = s, |b| = t, M |ab| = \gcd(s, t)$. 若群不交换则 |ab| 可能无限.

证明. $(ab)^k = a^k b^k = e \implies s|k \wedge t|k$, 故 $k \in \{ns + mt|n, m \in \mathbb{Z}\}$, 而 $\gcd(s,t) = \min\{ns + mt|n, m \in \mathbb{Z}\} \cap \mathbb{N}_+ = |ab|$, 得证.

群不交换时考虑 $_2(\mathbb{Z})$ 中 $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$, 则 $AB = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$, $BA = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$, $(AB)^n = (-1)^n \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, $(BA)^n = (-1)^n \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix}$, 因此 $\langle AB \rangle$ 和 $\langle BA \rangle$ 都是无限循环群.

题 5.7. $S_n = \langle (12), (13), \cdots, (1n) \rangle = \langle (12), (12 \cdots n) \rangle$

证明. 首先, 已知任意置换 π 可以写成对换的乘积 $\pi = \prod \tau_i$, 而 (ij) = (1i)(1j)(1i), 故置换可以写成形如 (1k) 形式对换的乘积.

其次 $,(i,i+1)=(12\cdots n)^{i-1}(12)(12\cdots n)^{1-i},(12\cdots n)=(1n)(1,n-1)\cdots (12),$ 即两者之间可互相表出,得证. \Box

题 5.8. $A_n = \langle (123), (124), \cdots, (12n) \rangle$ (若 $n \geq 3$)

证明. 由于 3-轮换是偶置换, 因此其生成的置换也是偶置换, 故 LHS \supset RHS, 即只需要证明任意偶置换可以被形如 (12k) 的轮换表出. 又由于偶置换可以分解为偶数个对换的积, 由结合性可知只需讨论任意两对换的积可以被这样表出. 两对换的积 $(st)(mn)(s \neq t \land m \neq n)$ 有如下分类讨论:

- 1. s,t 中有 2 个数与 m,n 相同: 则 (st)(mn) = (1)
- 2. s,t 中仅有 1 个数与 m,n 相同:(st)(mn) 可记作 (st)(sm). 分类讨论 s,t,m 的大小关系, 有

$$(st)(sm) = (ij)(ik) \lor (ik)(ij) \lor (ji)(jk) \lor (jk)(ji) \lor (ki)(kj) \lor (kj)(ki)$$
$$= (ikj) \lor (ijk) \lor (jki) \lor (jik) \lor (kji) \lor (kij)$$
$$= (ijk) \lor (ijk)^{-1}$$

其中 i < j < k, 故 (st)(sm) 可被 (ijk) 表示.

- (a) 若 i = 1, j = 2, 则 (ijk) = (12k)

- (d) 若 i > 2, 则 i, j, k > 2, $(ijk) = (ik)(ij) = (1ki)(1ij) = (12i)(12k)^{-1}(12j)(12i)^{-1}$
- 3. s,t 与 m,n 完全不相同: 分类讨论四者的大小关系, 有 $(st)(mn)=(ij)(kl)\vee(ik)(jl)$, 其中 $i< j< \min\{k,l\}$.
 - (a) 若 i = 1, j = 2, 则 k, l > 2

i.
$$(ij)(kl) = (12)(kl) = (12k)^{-1}(1kl) = (12k)^{-1}(12l)(12k)^{-1}$$

- ii. (ik)(jl) = (1k)(2l) = (12k)(12l)
- (b) 若 i = 1, j > 2, 则 $j, k, l > 2, (ij)(kl) = (1j)(kl) = (12j)(12)(kl) = (12j)(12k)^{-1}(12l)(12k)^{-1}, (ik)(jl)$ 同理

- (c) 若 i = 2, 则 j, k, l > 2, $(ij)(kl) = (2j)(kl) = (12j)^{-1}(12k)^{-1}(12l)(12k)^{-1}$,(ik)(jl) 同理
- (d) 若 i > 2, 则 i, j, k, l > 2, $(ij)(kl) = (12)(ij)(12)(kl) = (12i)^{-1}(12j)(12i)^{-1}(12k)^{-1}(12l)(12k)^{-1}$

题 5.9. 对 $\pi = (12 \cdots n) \in S_n, \pi^k$ 是 $d = \gcd(n, k)$ 个不交循环的积, 且每个循环长度均为 q = n/d.

证明. 由于 $\pi^k: i \mapsto k+i, i \in [n], k \in [n]^*$ 在有限集上,因此必然有 $s \in \mathbb{N}_+$ 使得 $(\pi^k)^s = e$,而 $|\pi| = n$,因此 $n|ks, |\pi^k| = \min\{s \in \mathbb{N}_+: n|ks\} = \min\{ks \in \mathbb{N}_+: n|ks, k|ks\}/k = \operatorname{lcm}(n, k)/k = q$.

对 $\forall i \in [n]$, 其所属循环即 $i \mapsto k + i \mapsto \cdots \mapsto lk + i \equiv_n i$, 即 n|lk, 而循环的长度 $\min\{l: n|lk\} = q$. 由任意性可知 共有 $n/q = d = \gcd(n,k)$ 个循环.

题 5.10. $\pi \in S_n$ 有循环分解 $\pi = \prod \pi_k, \ | \pi | = \text{lcm} \{ |\pi_k| : k \in [d] \}.$

证明. 有 $\pi^{|\pi|} = \left(\prod \pi_k\right)^{|\pi|} = \prod \pi_k^{|\pi|} = e$, 因此 $\forall k \in [d]: |\pi_k| ||\pi|$, 即 $|\pi| \in \Pi = \{p \in \mathbb{N}_+ : \forall k \in [d], |\pi_k| ||p\}$, 只需证 $|\pi| = \min \{p : p \in \Pi\} = \operatorname{lcm} \{|\pi_k| : k \in [d]\}$. 若 $\exists p \in \Pi : p < |\pi|$, 则 $\pi^p = \prod \pi_k^p = e \implies |\pi| \le p$, 矛盾.

题 5.11. 举出例子: $A, B \in M_n(\mathbb{R}), \exists m \in \mathbb{Z} : (AB)^m = I_n \neq (BA)^m.$ @Unsolved

证明.

题 5.12. 4 阶群均交换, 且同构意义上仅有 V_4 和 \mathbb{Z}_4 .

证明. 记群为 G, 可知 $\forall g \in G : g^4 = e$, 故 |x||4.

若群中有元素 x 的阶为 4, 则 $G = \{e, x, x^2, x^3\} \cong \mathbb{Z}_4$, 这是一个交换群.

若群中没有元素的阶为 4, 即 $\forall a \in G : a^2 = e(因为不可能 a^1 = e ext{ 或 } a^3 = e)$, 则有

$$abab = e \implies ab = b^{-1}a^{-1} = b(b^{-1})^2(a^{-1})^2 = beea = ba$$

因此这也是交换群, 这就是 V_4 .

5.1.1 结论

- 1. 偶数阶群必有 2 阶元
- 2. $\langle \mathbb{P} \rangle = (\mathbb{Q}_+, \cdot)$ 且没有有限生成集生成后者
- 3. 有限群可以 (通过 Caylay 定理) 嵌入 (即存在单同态) 仅有两个生成元的有限群

5.2 环

题 5.13. 证明 $(2^X, \triangle, \cap)$ 是一个含幺交换环, 并求幺.

证明. $A \triangle B = (A+B)(A^c+B^c) = AB^c + BA^c$, 因此

$$\begin{split} A \bigtriangleup (B \bigtriangleup C) &= (A(B \bigtriangleup C)^c) + ((B \bigtriangleup C)A^c) = (A[(BC^c) + (CB^c)]^c) + ([(BC^c) + (CB^c)]A^c) \\ &= (A(BC^c)^c(CB^c)^c) + (BC^cA^c) + (CB^cA^c) = (A(C+B^c)(B+C^c)) + (BC^cA^c) + (CB^cA^c) \\ &= ABC + AB^cC^c + A^cBC^c + A^cB^cC \end{split}$$

$$(A \triangle B) \triangle C = (A \triangle B)C^{c} + C(A \triangle B)^{c} = (AB^{c} + BA^{c})C^{c} + C(AB^{c} + BA^{c})^{c}$$
$$= AB^{c}C^{c} + A^{c}BC^{c} + C(AB + A^{c}B^{c}) = ABC + AB^{c}C^{c} + A^{c}BC^{c} + A^{c}B^{c}C^{c}$$

而交的结合和交换显然, 对称差的交换显然. 由 $A \triangle \emptyset = \emptyset \triangle A = AX = A$ 可知 \emptyset 是 $(2^X, \triangle)$ 的幺元, 而 X 是 $(2^X, \cap)$ 的幺元.

题 5.14. 若 $\forall x \in R : x^2 = x$, 求证环 R 交换, 并讨论 $x^3 = x$ 时的情况.

证明. $(1)x + y = (x + y)^2 = x^2 + y^2 + xy + yx = x + y + xy + yx \implies xy + yx = 0$. 而 xy = xyxy = -xxyy = -xy $\Rightarrow yx = -xy = xy$.

题 5.15. 证明或证伪 $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{5})$.

证明. 若存在一个同构 $f: \mathbb{Q}(\sqrt{2}) \Longrightarrow \mathbb{Q}(\sqrt{5})$, 则 $f(n \cdot a) = nf(a) = f(n)f(a) \Longrightarrow n = f(n)$. 而 $2 = f(2) = f(\sqrt{2})^2$, 设 $f(\sqrt{2}) = a + b\sqrt{5}, a, b \in \mathbb{Q}$, 则有 $a^2 + 5b^2 + 2\sqrt{5}ab = 2$, 即 ab = 0 且 $a^2 + 5b^2 = 2$. 由于 \mathbb{Q} 是域,故 $ab = 0 \Longrightarrow a = 0 \lor b = 0 \Longrightarrow a^2 = 2 \lor b^2 = 2/5$, 最终归结为是否 $\exists a \in \mathbb{Q}: a^2 = 2$. 若存在则设 a = m/n 其中 $m, n \in \mathbb{N}_+$ 互素,有 $m^2 = 2n^2$,故 m^2 是偶数,m 也是,则 $2 \nmid n$,但 $2^2 \mid m^2$,故矛盾,即不存在这样的有理数 a,即不存在这样的同构.

题 5.16. 证明有限整环是域.

证明. 对 $\forall x \in R^* - \{1\}$ 考察 $\langle x \rangle \subset R^*$,由 R^* 有限故一定有 $x^m = x^n (m > n > 0)$,则 $x^{m-n} (x^n - 1) = 0, x^{m-n} = 0 \lor x^n = 1$. 而 $\langle x \rangle \subset R^*$,故仅可能 $x^n = 1, x^{-1} = x^{n-1}$,则 x 可逆,即得证.

题 5.17. 含幺交换环 R 中有 $\forall x \in R : p \cdot x = 0$, 证明 $(x + y)^q = x^q + y^q$, 其中 $q = p^m, m \in \mathbb{N}_+$.

证明. 即证明对 $m \in \mathbb{N}_+, i \in [p^m-1], p \bigg| \binom{p^m}{i}$. 而 $\binom{p^m}{i} = \frac{p^m}{i} \binom{p^m-1}{i-1}$, 其中后者是整数, 而 $i \in [p^m-1]$ 的 p 次项 (p 的重数) 必然 < m, 因此 $p \bigg| \frac{p^m}{i} \binom{p^m-1}{i-1} = \binom{p^m}{i}$, 得证.

题 5.18. 5 元环在同构意义下仅有 \mathbb{Z}_5 和零乘法环两个.

证明. 考虑环 R 的交换加法群 (R, +, 0), 由其势为 5, 故其群同构于 \mathbb{Z}_5 , 记为 $\{0, a, 2a, 3a, 4a\}$. 因此有 $ma + na = (m + n \mod 5)a, ma \cdot na = (mn \mod 5)a^2$.

若 R 含幺 ka=1, 则 $k^2 \mod 5=k$, $a^2=a$, 在 [4] 中仅有 k=1 符合条件,a=1, $R=\{0,1,2,3,4\}$, 且乘法与 \mathbb{Z}_5 的相同, 故 $R\cong\mathbb{Z}_5$. 若 R 不含幺, 则有 $(ka)^2=(k^2 \mod 5)a^2=0$, 即 $a^2=0$, 故任意元素的积为零, 即零乘法环.

题 5.19. (1) 含幺环 $R \mapsto x$ 幂零, 则 1-x 可逆; $(2)\mathbb{Z}_m$ 中有幂零元 $\iff \exists a \in \mathbb{N}_+ - \{1\}, a^2 | m$.

证明. $(1)(1-x)^{-1}=1+x+\cdots+x^{n-1}$, 容易验证.

(2) =: 若 $m = a^2 s, s \in \mathbb{N}_+$,则取 $as \in \mathbb{Z}_m, (as)^2 = a^2 s^2 = ms = 0$.

 \implies : 若有幂零元 $x^n = 0 \land a = x^{n-1} \neq 0$, 其中 n > 2, 有 $a^2 = x^{2n-2} = x^n x^{n-2} = 0$, 即 $a^2 \mid m$.

题 5.20. 无限含幺环 R 中非零不可逆元有无限多个.

证明. 反证, 若仅有有限多个, 设其全体为 $N = \{a_1, \cdots, a_n\}$, 取全体可逆元 $X = R - N - \{0\}$ 有 $\forall x \in X, \rho_x : N \implies N, a_i \mapsto xa_i$. 首先 $xa_i = xa_j \iff x^{-1}xa_i = x^{-1}xa_j = a_i = a_j, \forall a_i \in N \exists a_j = x^{-1}a_i \in N : \rho_x(a_j) = a_i$, 故 ρ_x 是在 N 上的双射,即 $\{\rho_x : x \in X\}$ 到 S_n 有一个嵌入. 而前者是一个无限集,故有无限多对不同的 $x_i, x_j \in X$ 使得 $\rho_{x_i} = \rho_{x_j}, \rho_{x_i - x_j} = 0$,矛盾,故 $x_i - x_j \in N$. 固定一个 x 任取 y 使得 $x - y \in N, y$ 在一个无穷集内取,故 N 无限,矛盾.

题 5.21. 含幺环 R 中若有 1-ab 可逆则 1-ba 可逆,且 $(1-ba)^{-1}=1+b(1-ab)^{-1}a,(1-ab)^{-1}=1+a(1-ba)^{-1}b$.

证明. 注意到 a(1-ba)=(1-ab)a, 因此考虑 $(1-ab)^{-1}a(1-ba)=a$, 即 $b(1-ab)^{-1}a(1-ba)=ba=1-(1-ba)$, 移 项得到 $(1-b(1-ab)^{-1}a)(1-ba)=1$. 直接验证:

$$(1 - ba)(1 - ba)^{-1} = (1 - ba)(1 + b(1 - ab)^{-1}a)$$
$$= 1 + b(1 - ab)^{-1}a - bab(1 - ab)^{-1}a - ba$$
$$= 1 - ba + b(1 - ab)(1 - ab)^{-1}a = 1$$

调换 a,b 即得另一式.

题 5.22. 证明 $GL(3^3) = \{a + bi : a, b \in \mathbb{Z}_3\}$ 构成 9 元域, 且 $GL(3^3)^*$ 是 8 阶循环群.

证明. 由于 $(GL(3^3), +, 0) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3$,故交换加法群得证. 可以验证 a = 1 + i 生成的循环群 $\langle a \rangle = \{1 + i, 2i, 1 + 2i, 2, 2 + 2i, i, 2 + GL(3^3)^*$. 分配性易证. 下给出 $GL(3^3)^*$ 关于加法和乘法的 Caylay 表 (由于 0 的运算是平凡的).

另外应该注意到,a+bi 到 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ 有一个同构关系, 因此也可以写成 $M_2(\mathbb{Z}_3)$ 上的域.

实际上 GL(9) 描述的是 $x^9 = x$ 的根之间的关系, 更换写法变成:

$$\left\{0, \varepsilon_8, \varepsilon_8^2, \cdots, \varepsilon_8^8 = 1\right\} = \left\{0, \frac{1+i}{\sqrt{2}}, i, -\frac{1-i}{\sqrt{2}}, -1, -\frac{1+i}{\sqrt{2}}, -i, \frac{1-i}{\sqrt{2}}, 1\right\}$$
$$\cong \left\{0, 1+i, 2i, 1+2i, 2, 2+2i, i, 2+i, 1\right\}$$

其中的加法和乘法也应当是原本在 € 上的形式.

6 概率论

題 6.1. 已知若独立变量 $\xi, \eta \sim N(0,1)$, 则 $\rho = \sqrt{\xi^2 + \eta^2}$ 服从 Rayleigh Distribution (分布函数为 $R(r) = I_{[0,+\infty)}(r)re^{-\frac{r^2}{2}}$), $\phi \sim U[0,2\pi]$.

证明.

题 6.2 (Box-Muller 变换). 若有独立同分布 $U_1, U_2 \sim U[0, 1]$, 求证

$$\xi = \frac{\cos(2\pi U_2)}{\sqrt{-2\ln U_1}} \sim N(0, 1)$$
 $\eta = \frac{\sin(2\pi U_2)}{\sqrt{-2\ln U_1}} \sim N(0, 1)$

且相互独立, 并说明 ε 和 η 是如何构造的.

证明. 这是 **Box-Muller 变换**, 主要思路是将两个独立的正态分布在二维平面上作极坐标变换 $X=R\cos\theta,Y=R\sin\theta$, 即 $R^2=X^2+Y^2,\theta=\arctan\frac{Y}{X}$, 本质公式即为

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2\pi} \exp\left(-\frac{X^2 + Y^2}{2}\right) dX dY = \int_{0}^{2\pi} \frac{1}{2\pi} d\theta \int_{0}^{+\infty} e^{-R^2/2} R dR = 1$$

因此有分布函数 $\Pr\{R < r\} = \int_0^r \mathrm{e}^{-R^2/2}R\mathrm{d}R = 1 - \mathrm{e}^{-r^2/2}, \Pr\{\theta < \phi\} = \frac{\phi}{2\pi},$ 其中 $r \in [0, +\infty), \theta \in [0, 2\pi]$. 因此可以取 $F_R(r) = 1 - \mathrm{e}^{-r^2/2}, F_\theta(t) = \frac{t}{2\pi}$.

已知: 若随机变量 $\xi \sim F(x)$, 则对 C^1 函数 $g(\cdot)$, 在定义域内 $g(\xi) \sim F \circ g^{-1}(x)$.

由于 $R \sim F_R(x)$,故 $U_0 = F_R(R) = 1 - \mathrm{e}^{-R^2/2} \sim U[0,1], R = \sqrt{-2\ln(1-U_0)}$,再取 $U_1 = 1 - U_0$ 即有 $R = \sqrt{-2\ln U_1}$. 再取 $U_2 = \frac{\theta}{2\pi}$,代入变换即可.

题 6.3. 求证
$$\sum_{i=0}^{N} {N+k \choose k} 2^{-k} = 2^{N}$$
.

证明. 首先 N=1 时 $\binom{1}{0}2^0+\binom{2}{1}2^{-1}=2^1$,等式成立. 再设等式在 N=n 时成立,求证 N=n+1 时是否成立.

$$\begin{split} \sum_{k=0}^{n+1} \binom{n+1+k}{k} 2^{-k} &= 1 + \sum_{k=1}^{n+1} \left(\binom{n+k}{k} + \binom{n+k}{k-1} \right) 2^{-k} \\ &= 1 + \sum_{k=0}^{n} \binom{n+k}{k} 2^{-k} - 1 + \binom{2n+1}{n+1} 2^{-n-1} + \sum_{k=1}^{n+1} \binom{n+k}{k-1} 2^{-k} \end{split}$$

应用假设条件 $\sum_{k=0}^{n} {n+k \choose k} 2^{-k} = 2^n$, 有

$$\sum_{k=0}^{n+1} \binom{n+1+k}{k} 2^{-k} = 2^n + \binom{2n+1}{n+1} 2^{-n-1} + \sum_{k=0}^{n} \binom{n+k+1}{k} 2^{-k-1}$$

注意到 $\binom{n+k+1}{k} 2^{-k-1} = \frac{1}{2} \binom{n+1+k}{k} 2^{-k}$, 以及

$$\sum_{k=0}^{n+1} \binom{n+1+k}{k} 2^{-k} = \sum_{k=0}^{n} \binom{n+1+k}{k} 2^{-k} + \binom{2n+2}{n+1} 2^{-n-1} = \sum_{k=0}^{n} \binom{n+1+k}{k} 2^{-k} + \frac{1}{2} \binom{2n+1}{n+1} 2^{-n-1}$$

则最终得到
$$\frac{1}{2}\sum_{k=0}^{n+1}\binom{n+1+k}{k}2^{-k}=2^n$$
,即 $\sum_{k=0}^{n+1}\binom{n+1+k}{k}2^{-k}=2^{n+1}$,得证,因此对 $\forall N\in\mathbb{N}^*$ 等式均成立. \square

题 6.4. 若某系统中每个元件正常工作概率为 $p \in [0,1]$, 有半数元件正常则系统可工作, 求 p 在什么范围时 2k+1 个元件的系统比 2k-1 个的好.@Unsolved

证明.

题 6.5 (赌徒问题). 若甲乙各剩 n,m 局赢得赌局,则应以 $p_{\mathbb{H}}:1-p_{\mathbb{H}}$ 的比例分赌注,其中 $p_{\mathbb{H}}$ 为甲赢得赌局的概率. 设 p 为甲每局胜的概率,记 q=1-p,有:

1. 因甲最早在 n 局后赢, 最晚在 n+m-1 局后赢, 因此只需计算甲在 n+k 局下赢 n 局的概率之和, 即

$$\sum_{k=0}^{m-1} f(n+k; n, p) = \sum_{k=0}^{m-1} \binom{n+k-1}{k} p^n q^k$$

- 2. 由于 $p_{\mathbb{H}} + p_{\mathbb{Z}} = 1$,因此同理可得 $1 \sum_{k=0}^{n-1} f(m+k; m, q) = \sum_{k=n}^{\infty} \binom{m+k-1}{k} p^k q^m$
- 3. 由于后面 n+m-1 局一定可以决定胜负, 即只需在后 n+m-1 局中至少赢 n 局, 即

$$\sum_{k=n}^{n+m-1} f(n+m-1;k,p) = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} p^k q^{n+m-1-k}$$

求证上面三式相等. 其中 $f(k;r,p)=\binom{k-1}{r-1}p^{r-1}q^{k-r}$ 表示 Pascal 分布, 即 Bernoulli 试验中第 r 个成功发生在第 k 次试验时的概率.@Unsolved

证明.

6.0.1 结论

- 1. 随机变量 $\xi \sim \chi_m^2$, $\eta \sim \chi_n^2$ 相互独立, 求证 $\alpha = \xi + \eta \sim \chi_{m+n}^2$, $\beta = \frac{\xi/m}{\eta/n} \sim F(m,n)$ 且相互独立.
- 2. 若 $\xi = (\xi_1, \xi_2)^{\mathsf{T}}$ 的密度函数为 $p(x_1, x_2)$, 而 $(\eta_1, \eta_2)^{\mathsf{T}} = \eta = A\xi$, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 则 η 的密度函数 $q(y_1, y_2)$ 为:

$$q(y_1, y_2) = \frac{p\left(\frac{dy_1 - by_2}{\det A}, \frac{-cy_1 + ay_2}{\det A}\right)}{|\det A|}$$

3. 若
$$\xi = (\xi_1, \xi_2)^{\mathsf{T}} \sim N_2(\mu, \Sigma)$$
, 其中 $\mu = (0, 0)^{\mathsf{T}}$, $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$, $|\Sigma| = \sigma_1^2 \sigma_2^2 (1 - \rho^2)$, 其密度函数为

$$p(x_1, x_2) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{x\Sigma^{-1}x^{\mathsf{T}}}{2|\Sigma|}\right) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{\sigma_2^2 x_1^2 + \sigma_1^2 x_2^2 - 2\rho\sigma_1\sigma_2 x_1 x_2}{2|\Sigma|}\right)$$

现有旋转矩阵 $A_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$ 使 $(\eta_1, \eta_2)^{\mathsf{T}} = \eta = A_{\alpha} \xi$, 则使用上条结论, η 的密度函数为

$$q(y_1, y_2) = p(y_1 \cos \alpha - y_2 \sin \alpha, y_1 \sin \alpha + y_2 \cos \alpha) = \frac{1}{2\pi\sqrt{|\Sigma|}} \exp\left(-\frac{Ay_1^2 - 2By_1y_2 + Cy_2^2}{2|\Sigma|}\right)$$

其中

$$A = \sigma_2^2 \cos^2 \alpha - 2\rho \sigma_1 \sigma_2 \cos \alpha \sin \alpha + \sigma_1^2 \sin^2 \alpha$$

$$B = \sigma_2^2 \cos \alpha \sin \alpha - \rho \sigma_1 \sigma_2 (\sin^2 \alpha - \cos^2 \alpha) - \sigma_1^2 \cos \alpha \sin \alpha$$

$$C = \sigma_2^2 \sin^2 \alpha + 2\rho \sigma_1 \sigma_2 \cos \alpha \sin \alpha + \sigma_1^2 \cos^2 \alpha$$

进一步, 若选取 α 使得 $\tan(2\alpha)=\frac{2\rho\sigma_1\sigma_2}{\sigma_1^2-\sigma_2^2},$ 则 B=0, 即 η_1,η_2 独立.

7 组合数学

题 7.1 (Bernoulli 信封匹配问题). n 阶对称群 S_n 中, 对 $\forall k \in [n]$ 都没有 $k \mapsto k$ 的置换有多少个?

证明. 这其实是 Bernoulli 信封匹配问题, 即将 n 只信封和 n 封信匹配.

我们记 A_i 为事件第 i 封信送对 (从 S_n 中所选置换 $\pi: i \mapsto i$), 以 $N(\cdot)$ 记方案数,则

$$N_1 = N(A_i) = (n-1)!, \quad N_2 = N(A_i A_j) = (n-2)!, \quad N_n = N(\bigcap_{i \in [n]} A_i) = 1.$$

而事件 " $\forall k \in [n]$ 都没有 $k \mapsto k$ 的置换"即 $\overline{\bigcup_{i \in [n]} A_i}$, 因此有

$$\begin{split} N\Bigg(\overline{\bigcup_{i\in[n]}A_i}\Bigg) &= n! - N\Bigg(\bigcup_{i\in[n]}A_i\Bigg) = n! - \sum_{i\in[n]}(-1)^{i+1}\binom{n}{i}N_i = n! \left(1 + \sum_{i\in[n]}\frac{(-1)^i}{i!}\right) = n! \sum_{i=0}^n\frac{(-1)^i}{i!} \\ &= \mathrm{Round}\bigg(\frac{n!}{\mathrm{e}}\bigg) \end{split}$$

8 数论

题 8.1. x 是数码互异的三位非零正整数,D(x), I(x) 分别是将 x 的数码降序和升序排列得到的整数, 求 y=D(x)-I(x)=:F(x) 的不动点.

- 在 n 位时?
- 求 x 的迭代次数?

证明一. 先取 $9 \ge a > b > c \ge 0$,有 (100a + 10b + c) - (100c + 10b + a) = 99(a - c) = x,因此 99|x,其十位必为 9,a = 9. 由于 x = 100(a - c) - (a - c) = 100(a - c - 1) + 90 + (10 - (a - c)),因此其百位 a - c - 1 = 8 - c = c,个位 10 - (a - c) = 1 + c = b,解得 c = 4, b = 5,带入得 x = 495.

证明二. 设数字的数码为 abc, 其中位数为 d. 由于只有三位, 因此所得 F(x) 的中间一位被抵消了 (如上, 不含 b), 因此 $b=0 (a \geq c)$ 或 9(a < c), 而前者不存在, 因此 b=9. 其他证明同上, 或者也可以直接验算.