

Light in the Labyrinth: Breach Path Analysis for Anyone

Parker Shelton

Cum subijt Theseus nunquam remeabile tectum, Semibouem sic ille virum prostrauit; et inde Gnosius à tergo fila legenda dedit.

Per dubius redijt lætus honore vius.

Your Treasure Map

Your Treasure Map

You Need

Inventory

Have a program to collect inventory of users, assets, and permissions.

Topological Map

Know the terrain you're defending.

Attacker Mindset

Consider how assets are connected.

Breach Paths

What Are Breach Paths?

A **breach path** is a sequence of steps that a threat actor may use to infiltrate and compromise a network or a system or move laterally or elevate privileges.

Breach path analysis is a technique to scan the graph of a network or system to identity possible breach paths.

Threat actors may move laterally within a network or elevate their privileges to gain access to critical systems. You want to know how before they do it.

Breach Path: Storage Account Privilege Escalation

"Azure Functions <u>use storage for several purposes</u>. Azure Functions code may be stored in the account specified."

"Important data, such as function code, access keys, and other important service-related data, can be persisted in the storage account. You must carefully manage access to the storage accounts used by function apps."

Breach Path: Storage Account Privilege Escalation

NetSPI's research highlighted the risks associated with write access to storage accounts in Azure, which can lead to **privilege escalation** on Azure App Services and Functions.

Compromising a storage account can lead to compromise of any identities associated with the Azure App Service.

Breach Path: Leaked Credentials

X509 client certificates on developer machines can lead to lateral movement and privilege escalation if a threat actor dumps other identity credentials in key management systems.

SSH keys stored on developer machines can grant access to cloud resources.

API keys checked into git repositories can grant access to cloud resources.

Breach Path: Entra Support Roles

Role that password can be eset	Password Admin	Helpdesk Admin	Auth Admin	User Admin	Privileged Auth Admin	Global Admin
Auth Admin			<u>~</u>		☑	<u>~</u>
Directory Readers	<u>~</u>	\checkmark	<u>~</u>	<u>~</u>	✓	~
Global Admin					✓	*
Groups Admin				<u>~</u>	<u>~</u>	<u>~</u>

(i) Important

The <u>Partner Tier2 Support</u> role can reset passwords and invalidate refresh tokens for all non-administrators and administrators (including Global Administrators). The <u>Partner Tier1 Support</u> role can reset passwords and invalidate refresh tokens for only non-administrators. These roles should not be used because they are deprecated.

Breach Path: Container Escapes

Paths Come Together In a Graph

Graphs visualize collections of paths.

This is the multiverse of possibilities, not actual threat actor activity.

Security graphs help **blue teams** detect security risks that need to be mitigated.

Security graphs help **red teams** understand where they are and the path to their objective.

Build or Buy a Graph?

Cloud Security Posture Management, Exposure Management, and Attack Path management tools exist!

You may have **unique business needs** such as proprietary services or solutions.

You may have **regulatory requirements** or security concerns limiting third-party access.

You can use the following engineer concepts to understand how some of these products work or evaluate vendor fit.

You Need Inventory

Inventory

Cloud

Identity

Secrets

You Need Cloud Inventory

Inventory

Cloud

Identity

Secrets

You Need Identity Inventory

Inventory

Cloud

Identity

Secrets

You Need Secret Inventory

Inventory

Cloud

Identity

Secrets

You Need Inventory

You (Probably) Need More Inventory

Inventory

Cloud

Identity

Secrets

Your Inventory Will Be Incomplete

All maps are wrong; some are useful.

Adversaries are not limited by how you **think** systems and objects are connected.

Maps get **better over time** through exploration. Don't let perfect be the enemy of good.

You Need Labels

Graphs have nodes and edges that need labels. This is an **ontology**.

Triple = Subject – Verb – Object

The **Resource Description Framework** (RDF) gives subjects, predicates, and objects types and RDF Schema (RDFS) adds classes.

Web Ontology Language (OWL) adds semantics such as transitivity or equality of different relationships.

Subject	Predicate	Object
Alex	Pets	Buffalo
Buffalo	Eat	Grass
Buffalo	Buffalo	Buffalo

```
<rdf:Description about="http://contoso/book/1">
    <si:title>The Cat in the Hat</si:title>
    <si:author>Dr. Seuss</si:author>
    </rdf:Description>

<owl:Class rdf:ID="WineGrape">
        <rdfs:subClassOf rdf:resource="&food;Grape" />
        </owl:Class>
    <WineGrape rdf:ID="CabernetSauvignonGrape" />
```

You Can Borrow An Ontology

Studying existing ontologies, like BloodHound, provides insight into effective graph models.

We Have An Ontology You Could Explore

You can explore a sample ontology we've published inspired by our internal tooling at:

https://github.com/microsoft/security-graph-schemas

You Need To Move Data Around

You need ETL processes to transform relational data into a graph-friendly triple representation.

You (May) Need Graph Storage

Your ETL processes could write nodes and edges into a relational database so you could fake traversals with joins.

Other tools can perform graph analytics on top of relational data.

Kusto Graph Operators	Gremlin on CosmosDB	Spanner Graph Capabilities	No ETL Solutions	Commercial Graph Databases
Kusto's new make- graph and graph- match operators can analyze relational data in graph form.	Gremlin queries can now be executed against CosmosDB NoSQL data, enabling graph analytics.	Spanner now supports Spanner Graph, allowing graph analytics on top of its relational database.	Offerings like PuppyGraph reduce ETL with federated queries against diverse data stores.	Neo4JAWS NeptuneTinkerPopTigerGraphMemgraph

You (May) Need Graph Storage

Your ETL processes could write nodes and edges into a relational database so you could fake traversals with joins.

Other tools can perform graph analytics on top of relational data.

Kusto Graph Operators	Gremlin on CosmosDB	Spanner Graph Capabilities	No ETL Solutions	Commercial/OSS Graph Databases
Kusto's new make- graph and graph- match operators can analyze relational data in graph form.	Gremlin queries can now be executed against CosmosDB NoSQL data, enabling graph analytics.	Spanner now supports Spanner Graph, allowing graph analytics on top of its relational database.	Offerings like PuppyGraph reduce ETL with federated queries against diverse data stores.	Neo4JAWS NeptuneTinkerPopTigerGraphMemgraph

You Need Graph Queries

Cypher

Proprietary query language from Neo4j.

OpenCypher

Open-source language specification adopted by multiple vendors.

GQL

ISO standard language specification completed in 2024.

Gremlin

Functional data-flow language under the Apache umbrella.

GQL

```
GRAPH Entra
MATCH (g:Group {impact: "high")-[:Contains]->(u:User {intern: TRUE})
RETURN g.name, COUNT(*) AS num_interns
ORDER BY num_interns
```

Gremlin

```
entra.V('impact','high').outE('contains').inV().has('intern',true).name
```


You Need a Graph UI

Explore the effectiveness of your queries.

Render **pictures** from your queries for effective risk communication with leadership.

Support the **red team**, helping them understand the next set of steps to take to compromise a target.

You Need Graph Computation

Reuse the same ETL process you picked earlier to continuously analyze the graph.

Encode Tactics, Techniques, and Procedures (TTPs) as **query fragments**.

Combine query fragments to create breach path queries to discover risks.

Store results for historical trending.

This supports **blue team** risk identification and risk mitigation.

Finding Vulns With Graphs

Graph Nodes and Edges:

- 1. (:USER)-[:HASROLE]->(:STORAGEACCOUNT)
- 2. (:FUNCTIONAPP)-[:USES]->(:STORAGEACCOUNT)
- 3. (:FUNCTIONAPP)-[:HASIDENTITY]->(:AADOBJECT)
- 4. (:AADOBJECT)-[:HASROLE]->(:KEYVAULT)

Fragments:

- MATCH (u:USER)-[:HASROLE {role: "write"}]->(s:STORAGEACCOUNT)<[:USES]-(f:FUNCTIONAPP)-[:HASIDENTITY]->(:AADOBJECT)
 WHERE NOT EXISTS ((u)-[:HASROLE {role: "write"}]->(f))
- 2. MATCH (: AADOBJECT) –[:HASROLE role: "write"}]->(:KEYVAULT)

Additional Work

BSides Seattle 2025

How Attackers (or Red Teamers)

Navigate Azure Using Key Vault Lateral

Movement

Christiano Bianchet

Microsoft Red Team

BSides Dublin 2025

One Bug, Two Bug, Red Bug, Blue Bug
Lea Snyder and Patrick Fitzgerald
Microsoft Entra

Your Treasure Map

You Need

Inventory

Have a program to collect inventory of users, assets, and permissions.

Topological Map

Know the terrain you're defending.

Attacker Mindset

Consider how assets are connected.

Light in the Labyrinth: Breach Path Analysis for Anyone

Parker Shelton

Credits

"Theseus and Ariadne in front of the labyrinth (Metamorphoses)" by Crispijn de Passe the Elder via The Rijksmuseum, Netherlands

<u>Saint Belec Slab</u> © Denis Gliksman, Inrap. Licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

Waldseemuller map 2 - Waldseemüller map via Wikipedia (Public Domain)

"A flat black and white vector icon of a map where part of the terrain is covered by a dark cloud representing fog of war" by Bing Designer

Introducing the Neo4j Connector for Apache Spark via Neo4j