Prof. F. Bottacin, N. Rodinò, R. Sánchez

 $1^{\rm o}$ Appello — 16 giugno 2014

Esercizio 1. Dati i vettori $u_1 = (1, 1, 1, 1)$ e $u_2 = (1, 2, 3, 4) \in \mathbb{R}^4$, siano $f_1, f_2 \colon \mathbb{R}^4 \to \mathbb{R}$ le funzioni lineari definite ponendo $f_1(v) = v \cdot u_1$ e $f_2(v) = v \cdot u_2$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dica se \mathbb{R}^4 è somma dei nuclei di f_1 e f_2 e si determini una base di $\operatorname{Ker}(f_1) \cap \operatorname{Ker}(f_2)$.
- (b) Si determini un sottospazio $U_1 \subset \operatorname{Ker}(f_1)$ e un sottospazio $U_2 \subset \operatorname{Ker}(f_2)$, tali che $U_1 \oplus U_2 = \mathbb{R}^4$.
- (c) Si determini $f_1^{-1}(1) \cap f_2^{-1}(1)$.
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R} \to \mathbb{R}^4$ tale che entrambe le funzioni composte $f_1 \circ g$ e $f_2 \circ g$ siano l'identità (le risposte devono essere giustificate).

Esercizio 2. In \mathbb{R}^3 siano dati i vettori $u=(1,-1,0), \ v=(0,-2,-1), \ w=(4,-1,1).$ Sia $f\colon \mathbb{R}^3\to \mathbb{R}^3$ una funzione lineare tale che $f(u)=w, \ f(v)=2w$ e $\mathrm{Im}(f)\subset \mathrm{Ker}(f).$

- (a) Si scriva la matrice A di f rispetto alla base canonica e si determini una base del nucleo di f.
- (b) Si trovi una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- (c) Si determini una matrice invertibile S tale che si abbia $A = SBS^{-1}$. Una tale matrice S è unica?
- (d) Si dica se esiste una matrice invertibile R tale che si abbia $A = RCR^{-1}$, ove C è la matrice $C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Esercizio 3. Si considerino le seguenti matrici:

$$A = \begin{pmatrix} -1 & -2 \\ 6 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 3 \\ -2 & t \end{pmatrix}$$

- (a) Si determinino gli autovalori e gli autovettori di A. Si determinino inoltre una matrice invertibile P e una matrice diagonale D tali che $A = PDP^{-1}$.
- (b) Si dica per quale valore di t la matrice B è simile alla matrice A.
- (c) Per il valore di t trovato al punto (b), si determini una matrice invertibile R tale che si abbia $B = RAR^{-1}$.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia \mathscr{S} la sfera di centro C=(2,-1,1), passante per il punto A=(3,1,0).

- (a) Si determini l'equazione cartesiana del piano tangente a ${\mathscr S}$ nel punto A.
- (b) Sia $\mathscr C$ la circonferenza ottenuta intersecando la sfera $\mathscr S$ con il piano $\pi: 3x+y+2z-2=0$. Si trovi il centro e il raggio di $\mathscr C$.
- (c) Dopo aver verificato che il punto P=(0,-2,2) appartiene alla circonferenza \mathscr{C} , si scrivano le equazioni parametriche della retta r tangente a \mathscr{C} nel punto P.
- (d) Si stabilisca se esistono delle rette passanti per Q = (1,0,2) che non intersecano la sfera \mathcal{S} .

Prof. F. Bottacin, N. Rodinò, R. Sánchez

 $1^{\rm o}$ Appello — 16 giugno 2014

Esercizio 1. Dati i vettori $u_1 = (1, -1, 1, -1)$ e $u_2 = (2, 3, 1, 4) \in \mathbb{R}^4$, siano $f_1, f_2 : \mathbb{R}^4 \to \mathbb{R}$ le funzioni lineari definite ponendo $f_1(v) = v \cdot u_1$ e $f_2(v) = v \cdot u_2$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dica se \mathbb{R}^4 è somma dei nuclei di f_1 e f_2 e si determini una base di $\operatorname{Ker}(f_1) \cap \operatorname{Ker}(f_2)$.
- (b) Si determini un sottospazio $U_1 \subset \operatorname{Ker}(f_1)$ e un sottospazio $U_2 \subset \operatorname{Ker}(f_2)$, tali che $U_1 \oplus U_2 = \mathbb{R}^4$.
- (c) Si determini $f_1^{-1}(1) \cap f_2^{-1}(1)$.
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R} \to \mathbb{R}^4$ tale che entrambe le funzioni composte $f_1 \circ g$ e $f_2 \circ g$ siano l'identità (le risposte devono essere giustificate).

Esercizio 2. In \mathbb{R}^3 siano dati i vettori u=(0,2,1), v=(2,-3,-1), w=(-4,1,-1). Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare tale che f(u)=w, f(v)=-2w e $\mathrm{Im}(f)\subset \mathrm{Ker}(f)$.

- (a) Si scriva la matrice A di f rispetto alla base canonica e si determini una base del nucleo di f.
- (b) Si trovi una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- (c) Si determini una matrice invertibile S tale che si abbia $A = SBS^{-1}$. Una tale matrice S è unica?
- (d) Si dica se esiste una matrice invertibile R tale che si abbia $A=RCR^{-1}$, ove C è la matrice $C=\begin{pmatrix}0&0&1\\0&1&0\\0&0&0\end{pmatrix}$

Esercizio 3. Si considerino le seguenti matrici:

$$A = \begin{pmatrix} -4 & 3 \\ -10 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} t & 1 \\ -6 & -1 \end{pmatrix}$$

- (a) Si determinino gli autovalori e gli autovettori di A. Si determinino inoltre una matrice invertibile P e una matrice diagonale D tali che $A = PDP^{-1}$.
- (b) Si dica per quale valore di t la matrice B è simile alla matrice A.
- (c) Per il valore di t trovato al punto (b), si determini una matrice invertibile R tale che si abbia $B = RAR^{-1}$.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia \mathscr{S} la sfera di centro C=(-1,3,0), passante per il punto A=(2,2,1).

- (a) Si determini l'equazione cartesiana del piano tangente a ${\mathscr S}$ nel punto A.
- (b) Sia $\mathscr C$ la circonferenza ottenuta intersecando la sfera $\mathscr S$ con il piano $\pi:2x+y-z+1=0$. Si trovi il centro e il raggio di $\mathscr C$.
- (c) Dopo aver verificato che il punto P=(0,2,3) appartiene alla circonferenza \mathscr{C} , si scrivano le equazioni parametriche della retta r tangente a \mathscr{C} nel punto P.
- (d) Si stabilisca se esistono delle rette passanti per Q=(1,2,1) che non intersecano la sfera $\mathscr{S}.$

Prof. F. Bottacin, N. Rodinò, R. Sánchez

1º Appello — 16 giugno 2014

Esercizio 1. Dati i vettori $u_1 = (1, -1, -1, 1)$ e $u_2 = (4, 3, 2, 1) \in \mathbb{R}^4$, siano $f_1, f_2 \colon \mathbb{R}^4 \to \mathbb{R}$ le funzioni lineari definite ponendo $f_1(v) = v \cdot u_1$ e $f_2(v) = v \cdot u_2$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dica se \mathbb{R}^4 è somma dei nuclei di f_1 e f_2 e si determini una base di $\operatorname{Ker}(f_1) \cap \operatorname{Ker}(f_2)$.
- (b) Si determini un sottospazio $U_1 \subset \operatorname{Ker}(f_1)$ e un sottospazio $U_2 \subset \operatorname{Ker}(f_2)$, tali che $U_1 \oplus U_2 = \mathbb{R}^4$.
- (c) Si determini $f_1^{-1}(1) \cap f_2^{-1}(1)$.
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R} \to \mathbb{R}^4$ tale che entrambe le funzioni composte $f_1 \circ g$ e $f_2 \circ g$ siano l'identità (le risposte devono essere giustificate).

Esercizio 2. In \mathbb{R}^3 siano dati i vettori $u=(2,0,1),\ v=(2,-1,2),\ w=(1,2,-3).$ Sia $f\colon \mathbb{R}^3\to\mathbb{R}^3$ una funzione lineare tale che $f(u)=w,\ f(v)=2w$ e $\mathrm{Im}(f)\subset\mathrm{Ker}(f).$

- (a) Si scriva la matrice A di f rispetto alla base canonica e si determini una base del nucleo di f.
- (b) Si trovi una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- (c) Si determini una matrice invertibile S tale che si abbia $A = SBS^{-1}$. Una tale matrice S è unica?
- (d) Si dica se esiste una matrice invertibile R tale che si abbia $A=RCR^{-1}$, ove C è la matrice $C=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Esercizio 3. Si considerino le seguenti matrici:

$$A = \begin{pmatrix} 2 & 3 \\ -4 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -6 \\ t & -5 \end{pmatrix}$$

- (a) Si determinino gli autovalori e gli autovettori di A. Si determinino inoltre una matrice invertibile P e una matrice diagonale D tali che $A = PDP^{-1}$.
- (b) Si dica per quale valore di t la matrice B è simile alla matrice A.
- (c) Per il valore di t trovato al punto (b), si determini una matrice invertibile R tale che si abbia $B = RAR^{-1}$.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia \mathscr{S} la sfera di centro C=(1,1,2), passante per il punto A=(-1,2,3).

- (a) Si determini l'equazione cartesiana del piano tangente a ${\mathscr S}$ nel punto A.
- (b) Sia $\mathscr C$ la circonferenza ottenuta intersecando la sfera $\mathscr S$ con il piano $\pi: x-2y+2z+4=0$. Si trovi il centro e il raggio di $\mathscr C$.
- (c) Dopo aver verificato che il punto P=(0,3,1) appartiene alla circonferenza \mathscr{C} , si scrivano le equazioni parametriche della retta r tangente a \mathscr{C} nel punto P.
- (d) Si stabilisca se esistono delle rette passanti per Q=(2,0,1) che non intersecano la sfera $\mathscr{S}.$

Prof. F. Bottacin, N. Rodinò, R. Sánchez

 $1^{\rm o}$ Appello — 16 giugno 2014

Esercizio 1. Dati i vettori $u_1 = (-1, 1, 1, 1)$ e $u_2 = (3, 1, 4, 2) \in \mathbb{R}^4$, siano $f_1, f_2 \colon \mathbb{R}^4 \to \mathbb{R}$ le funzioni lineari definite ponendo $f_1(v) = v \cdot u_1$ e $f_2(v) = v \cdot u_2$, per ogni $v \in \mathbb{R}^4$.

- (a) Si dica se \mathbb{R}^4 è somma dei nuclei di f_1 e f_2 e si determini una base di $\operatorname{Ker}(f_1) \cap \operatorname{Ker}(f_2)$.
- (b) Si determini un sottospazio $U_1 \subset \operatorname{Ker}(f_1)$ e un sottospazio $U_2 \subset \operatorname{Ker}(f_2)$, tali che $U_1 \oplus U_2 = \mathbb{R}^4$.
- (c) Si determini $f_1^{-1}(1) \cap f_2^{-1}(1)$.
- (d) Si dica se esiste una funzione lineare $g: \mathbb{R} \to \mathbb{R}^4$ tale che entrambe le funzioni composte $f_1 \circ g$ e $f_2 \circ g$ siano l'identità (le risposte devono essere giustificate).

Esercizio 2. In \mathbb{R}^3 siano dati i vettori $u=(1,0,-2),\ v=(-1,5,4),\ w=(1,3,-1).$ Sia $f\colon\mathbb{R}^3\to\mathbb{R}^3$ una funzione lineare tale che $f(u)=w,\ f(v)=-2w$ e $\mathrm{Im}(f)\subset\mathrm{Ker}(f).$

- (a) Si scriva la matrice A di f rispetto alla base canonica e si determini una base del nucleo di f.
- (b) Si trovi una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- (c) Si determini una matrice invertibile S tale che si abbia $A = SBS^{-1}$. Una tale matrice S è unica?
- (d) Si dica se esiste una matrice invertibile R tale che si abbia $A=RCR^{-1}$, ove C è la matrice $C=\begin{pmatrix}0&0&1\\0&1&0\\0&0&0\end{pmatrix}$

Esercizio 3. Si considerino le seguenti matrici:

$$A = \begin{pmatrix} -1 & 2 \\ -10 & 8 \end{pmatrix} \qquad B = \begin{pmatrix} t & -6 \\ 2 & 0 \end{pmatrix}$$

- (a) Si determinino gli autovalori e gli autovettori di A. Si determinino inoltre una matrice invertibile P e una matrice diagonale D tali che $A = PDP^{-1}$.
- (b) Si dica per quale valore di t la matrice B è simile alla matrice A.
- (c) Per il valore di t trovato al punto (b), si determini una matrice invertibile R tale che si abbia $B = RAR^{-1}$.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$, sia \mathscr{S} la sfera di centro C=(4,-2,-3), passante per il punto A=(1,-1,-1).

- (a) Si determini l'equazione cartesiana del piano tangente a ${\mathscr S}$ nel punto A.
- (b) Sia $\mathscr C$ la circonferenza ottenuta intersecando la sfera $\mathscr S$ con il piano $\pi:2x+3y-z-1=0$. Si trovi il centro e il raggio di $\mathscr C$.
- (c) Dopo aver verificato che il punto P=(2,-1,0) appartiene alla circonferenza \mathscr{C} , si scrivano le equazioni parametriche della retta r tangente a \mathscr{C} nel punto P.
- (d) Si stabilisca se esistono delle rette passanti per Q=(3,0,-2) che non intersecano la sfera $\mathscr{S}.$