

FAST'15

A Tale of Two Erasure Codes in HDFS

Mingyuan Xia, Mohit Saxena Mario Blaum, David Pease

IBM Research Almaden & McGill University

Really Big Data Today

Big Data Storage

GFS Three-way replication 2003

Storage overhead:3x

Big Data Storage

Erasure Coded Storage saves millions of \$ for capital cost

Facebook HDFS: Reed Solomon (14,10)

Facebook HDFS: Reed Solomon (14,10)

- Compute 4 parities per 10 data blocks
- Storage overhead: 1.4x=14/10

Facebook HDFS: Reed Solomon (14,10)

- Compute 4 parities per 10 data blocks
- Storage overhead: 1.4x=14/10
- For a single failure, RS needs any 10 blocks over network from other nodes to recover

Facebook HDFS: Reed Solomon (14,10)

- Compute 4 parities per 10 data blocks
- Storage overhead: 1.4x
- For a single failure, RS needs any 10 blood over network from other nodes to recover

Problems:

- Degraded read
- Data reconstruction

Problem 1: Degraded Read

Causes

- Software errors (>90%)
 - Rolling updates
 - Hot-spot effects
- Hardware errors

Problem 1: Degraded Read

Problem 2: Data Reconstruction

Causes

- Disk or node failure
- Decommissioned nodes

Problem 2: Disk/node Reconstruction

Production Clusters

- New data: 500TB~900TB/day
- Failure: lose ~100k blocks/day
- Reconstruction traffic: 180TB/day

Recovery Cost vs. Storage Overhead

Recovery Cost vs. Storage Overhead

HDFS Data Access Skew

Four Cloudera customers and one Facebook workload

Two Erasure Codes

Adaptive Coding in HDFS

Popular code families

- Product Code
- Local Reconstruction Code

Low recovery cost codes

- Reed-Solomon Code (MDS code)
- Partial MDS Code
- HoVer Code

Popular code families

Product Code

Local Reconstruction Code

Low recovery cost codes

- Reed-Solomon Code (MDS code)
- Partial MDS Code
- HoVer Code

Fast and Compact Product Codes

D1	D2	D3	D4	D5	P1
D6	D7	D8	D9	D10	P2
Р3	P4	P5	P6	P7	P8

<u>Fast code</u> (Product Code 2x5)

Storage overhead: 1.8x (18/10)

Fast and Compact Product Codes

D1	D2	D	D4	D5	P1
D6	D7	D8	D9	D10	P2
Р3	P4	P5	P6	P7	P8

Fast code (Product Code 2x5)

Recovery cost: 2

Storage overhead: 1.8x (18/10)

Fast and Compact Product Codes

D1	D2	D3	D4	D5	P1
D6	D7	D8	D9	D10	P2
Р3	P4	P5	P6	P7	P8

Fast code (Product Code 2x5)

Recovery cost: 2

Storage overhead: 1.8x

Compact code (Product Code 6x5)

Recovery cost: 5

Storage overhead: 1.4x

Storage Bound

Upcoding/Downcoding

Upcoding/Downcoding

Upcoding for Product Codes

Parity-only Conversion

- Horizontal parties require no re-computation
- Vertical parities require no data block transfer
- All parity updates can be done in parallel and in a distributed manner

Efficient Up/Down-coding

- Popular code families with efficient up/downcoding
 - **✓ Product Code**
 - ✓ Local Reconstruction Code
 - ✓ Reed-Solomon Code (MDS code)
 - ✓ Partial MDS Code
 - √ HoVer Code

HACFS implementation

Applicable to other codes as well

Evaluation

- HACFS Implementation
 - Extension to Facebook's HDFS
 - 3k LOC: three new modules
- Methodology
 - Five workloads: four Cloudera customers, one Facebook[VLDB'2012]
 - HDFS cluster: 11 nodes
 - Each node: 24 cores, 6 disks,1 Gbps network

Experiment metrics

- Degraded read latency
 - Foreground read request delay
 - Caused mostly by software issues
- Reconstruction time
 - Background recovery for failures
 - Caused mostly by hardware failures
- Storage overhead (bounded)

Reconstruction Time

Reconstruction Time

System Comparisons

	HACFS using Product Codes		
	Colossus FS	FB HDFS	Azure
Degraded Read Latency	25.2%	46.1%	25.4%
Reconstruction Time	14.3%	43.7%	21.4%
Storage Overhead	2.3%	-4.7%	-10.2%

	HACFS using LRCs		
	Colossus FS	FB HDFS	Azure
Degraded Read Latency	21.5%	43.3%	21.2%
Reconstruction Time	-3.1%	32.2%	5.6%
Storage Overhead	7.7%	1.1%	-4.2%

System Comparisons

HACES	Susing Produ	ct Codes
Colossus FS	FB HDFS	Azure
25.2%	46.1%	25.4%
14.3%	43.7%	21.4%
2.3%	-4.7%	-10.2%
	Colossus FS 25.2% 14.3%	25.2% 46.1% 14.3% 43.7%

	HACFS using LRCs		
	Colossus FS	FB HDFS	Azure
Degraded Read Latency	21.5%	43.3%	21.2%
Reconstruction Time	-3.1%	32.2%	5.6%
Storage Overhead	7.7%	1.1%	-4.2%

Conclusions

Thanks Q/A

FAST'15

A Tale of Two Erasure Codes in HDFS

Mingyuan Xia, Mohit Saxena Mario Blaum, David Pease

IBM Research Almaden & McGill University