Tic Tac Toe Phase 3

IFT-703 Informatique cognitive

BELDA Tom, INGARAO Adrien, UNG Alexandre

Rappel de la problématique

Les règles :

On modélise un seul coup

- 2 Joueurs

Hypothèses:

tic tac toe

- Une grille de 3 lignes 3 colonnes
- Placent chacun à leur tour dans la grille leur symbole X ou O
- But : aligner 3
 symboles identiques
 horizontalement,
 verticalement ou en
 diagonal

- On joue toujours les X
- Chaque joueur a joué 2 coups
- C'est à notre tour de jouer
- Il y a toujours une seule bonne solution

Description d'un scénario

Structure du modèle

(chunk-type board-state case1_1 case1_2 case1_3 case2_1 case2_2 case2_3 case3_1 case3_2 case3_3 nextLigne nextCol currentLigne currentCol firstEmptyLig firstEmptyCol goodAnswerLig goodAnswerCol type-move state) Chunk goal du modèle.

- case1_1, 1_2...: cases du plateau (contient "X", "O" ou "E").
- nextLigne , nextCol : coordonnées de la case suivante.
- currentLigne, currentCol: coordonnées de la case actuelle.
- firstEmptyLig, firstEmptyCol: coordonnées de la première case vide où on peut jouer.
- goodAnswerLig, goodAnswerCol: coordonnées du bon coup à jouer
- type-move: type du bon coup à jouer ("gagnant" ou "bloquant").
- state: état du modèle ("search-empty", "create-move", "try-remember"...).

Structure du modèle

(chunk-type pattern id case1 case2 case3)

Paternes des lignes du plateau.

- id: id du pattern
- case1, case2, case3: cases du pattern (contient "X", "O" ou "E").

```
(XOE ISA pattern id 231 case1 "X" case2 "O" case3 "E")
(OXE ISA pattern id 321 case1 "O" case2 "X" case3 "E")
(XEO ISA pattern id 213 case1 "X" case2 "E" case3 "O")
```

Structure du modèle

(chunk-type learned-move ligne col diag1 diag2 type)

Information que le modèle apprend.

- ligne: pattern de la ligne du coup.
- col: pattern de la colonne du coup.
- diag1, diag2: pattern des diagonales du coup.
- type: type de coup("bloquant" ou "gagnant" ou "lose")

(move ISA learned-move 221 113 nil 111 "gagnant")

Étapes du déroulement d'un scénario

Plateau initial

P-START

P-TEST-NON-EMPTY1 1

Rappel: Plateau

P-TEST-EMPTY1_2

P-CREATE-MOVE

P-SELECT-LINE1

Retrieval

P-CREATE-LINE

Buffer imaginal

P-SELECT-COL2

Retrieval

P-CREATE-COL

P-NO-DIAG1

P-NO-DIAG2

TRY-REMEMBER-MOVE-NO-DIAG 7€ Stepper \times Time Step Stop Run Until: Tutor Mode Next Step: 0.725 PROCEDURAL CLEAR-BUFFER RETRIEVAL Last Stepped: PROCEDURAL PRODUCTION-FIRED TRY-REMEMBER-MOVE-NO-D Possible Productions Bindings RY-REMEMBER-MOVE-NO-DIAG =ARG2: 113 =ARG1: 212 =GOAL: BOARD-STATE0-0 =IMAGINAL: CHUNK0-0 Production (P TRY-REMEMBER-MOVE-NO-DIAG =GOAL> STATE TRY-REMEMBER-MOVE **Production Parameters** NEXTLIGNE NIL Parameters for production TRY-RE - NEXTCOL NIL MEMBER-MOVE-NO-DIAG: =IMAGINAL> :utility 0.000 LIGNE 212 :u 0.000 COL 113 :at 0.050 DIAG1 NIL DIAG2 NIL =IMAGINAL> +RETRIEVAL> LIGNE 212 COL 113 DIAG1 NIL DIAG2 NIL - TYPE NIL =GOAL> STATE REMEMBERING

CANNOT-REMEMBER-MOVE-FIRST-EMPTY

Continue à chercher des cases vides

Applique stratégie FIRST-EMPTY

Current

P-CREATE-DEFAULT-MOVE

P-PLAY-DEFAULT-MOVE

GOAL-MODIFICATION

P-MEMORIZE-WIN-DEFAULT

P-TRY-REMEMBER-MOVE-NO-DIAG 7 Stepper Run Until: Step Time Next Step: 1.123 PROCEDURAL CLEAR-BUFFER RETRIEVAL Last Stepped: PRODUCTION-FIRED TRY-REMEMBER-MOVE-NO-DIAG PROCEDURAL Possible Productions RY-REMEMBER-MOVE-NO-DIAG =ARG2: 113 =ARG1: 212 =GOAL: BOARD-STATE0-0 =IMAGINAL: CHUNKO-0

Production Parameters

Parameters for production TRY-REMEMBER-M

OVE-NO-DIAG:

:u 0.000

:at 0.050

:utility 0.000

Scénario 2 On se rappelle

Tutor Mode

Bindings

Production

(P TRY-REMEMBER-MOVE-NO-DIAG

- NEXTLIGNE NIL

- NEXTCOL NIL

LIGNE 212

DIAG1 NIL

DIAG2 NIL

LIGNE 212 COL 113

DIAG1 NIL DIAG2 NIL - TYPE NIL =GOAL>

STATE REMEMBERING

COT. 113

=IMAGINAL>

=IMAGINAL>

+RETRIEVAL>

STATE TRY-REMEMBER-MOVE

=GOAL>

P-REMEMBER-MOVE-NO-DIAG

P-MEMORIZE-WIN-REMEMBER2

Coup Perdant

buffer Imaginal

P-PLAY-DEFAULT-MOVE

Goal buffer

P-MEMORIZE-LOSE-COL

Apprentissage

1er méthode:

- Génération plateau.
- Présentation au modèle.

Le modèle apprend les coups gagnants et bloquants.

(run-blocks 50 20)

Apprentissage

2è méthode:

- Génération plateau.
- Présentation au modèle.

Le modèle apprend les coups gagnants, bloquant mais aussi les mauvais coups

(run-blocks 50 20)

Evolution des performances du modèle

Apprentissage

3è méthode:

- Génération plateau.
- Présentation au modèle.
- Bon coup : nouveau plateau.
- Mauvais coup : même plateau.

(run-blocks 50 20)

Limites du modèle

- Le modèle ne fonctionne pas sur les configurations à deux coups possibles.
- Le modèle semble un peu lourd (1000 lignes d'ACT-R, chunk goal à 19 slots).
- Le modèle est très spécifique.

Extensions possibles

- Plusieurs cas en même temps.
- Victoire au prochain tour.
- Réduire la taille du code/ le nombre de règles de production.
- Prendre en compte la symétrie.

Questions?