Instituto Politécnico Nacional

Escuela Superior de Cómputo

GLOSARIO (De Luna Ocampo Yanina)

SOURCES OF BIG DATA

Actualmente se digitaliza la mayoría de las cosas, si no es que todas y esto ha hecho que las fuentes de datos incrementen de forma exponencial en el volumen de big data.

SENSORS: los que contribuyen al volumen de big data, son los siguientes: acelerómetro para sentir las vibraciones, sensores de proximidad que detectan la presencia de objetos sin contacto físico y sensores en vehículos y dispositivos médicos.

HEALTH CARE: aquí, las mayores fuentes de datos son los registros médicos electrónicos, portales para pacientes que tienen los registros médicos personales y repositorio de datos clínicos unificados en una sola vista.

BLACK BOX: es generado desde las cajas negras de los aviones, helicópteros y jets.

WEB DATA: con los clics de los clientes en las tiendas en línea, se analiza lo que buscan y así, mostrarles lo que es más recomendable para ellos basado en sus intereses.

ORGANIZATIONAL DATA: documentos generados dentro de las organizaciones que contribuyen conjuntamente.

DIFFERENT TYPE OF DATA

Esto puede ser generado por máquinas, estos datos se generan sin la intervención de cualquier humano o generados por humanos, que estos se refieren a los datos que se generan en la interacción del humano con una máquina.

STRUCTURED DATA: son los datos almacenados en tablas con filas y columnas. Son datos muy sencillos de procesar utilizando herramientas de minería de datos.

UNSTRUCTURED DATA: son datos desorganizados, cerca del 80% de los datos son así, por ejemplo: videos, audios, imágenes, documentos de texto, correos.

SEMI-STRUCTURED DATA: son datos estructurados, pero no entran en la definición de los datos estructurados. Un ejemplo de este tipo de datos son los JSON y los XML.

BIG DATA INFRASTRUCTURE

Son herramientas y tecnologías que proveen la capacidad de almacenamiento, proceso y análisis de datos. Con el avance de la tecnología, se volvió muy caro y poco optimo por lo que se buscó algo que cumpliera estas dos, lo que incluye los siguientes.

HADOOP: este framework puede almacenar un volumen muy grande de datos en cualquier formato y las procesa de forma paralela, teniendo un costo bajo. El contenido de estos datos, no pueden ser cambiados.

HADOOP DISTRIBUTED FILE SYSTEM: no requiere características muy complejas, el data set se genera de múltiples fuentes, se almacenan en un documento que se escribe una vez solamente pero que puede leerse varias veces.

MAPREDUCE: este adopta en proceso de divide y vencerás. Procesa datos en cualquier formato, este soporta solo cargas de trabajos por lotes reduciendo el tiempo de procesamiento.

BIG DATA LIFE CYCLE

Este implica nuevos retos con una cantidad considerablemente grande de datos, lo que incluye también nuevos modelos computacionales con la capacidad de procesar tanto cómputos distribuidos y paralelos con almacenamiento escalable.

BIG DATA GENERATION: esta es la primera fase, donde las fuentes de datos se van expandiendo debido a la gran cantidad de datos que se genera hoy en día.

DATA AGGREGATION: aquí se colectan todos los datos de forma bruta, se transmiten a una plataforma de almacenamiento y el preprocesamiento que deben tener.

DATA PREPROCESSING: este proceso, transforma datos brutos a datos entendibles y que nos puedan proporcionar información sobre ellos. Los siguientes puntos abarcan la limpieza de datos, que es el preprocesamiento mencionado previamente.

DATA INTEGRATION: en este paso se combinan datos de diferentes fuentes para brindarles a los usuarios datos unificados. Teniendo cuidado de agrupar correctamente las similitudes entre los datos.

DATA CLEANING: aquí es en donde se llenan los valores nulos, se corrigen los errores, las inconsistencias y la redundancia para cuidar la calidad de los datos.

DATA REDUCTION: se reduje el número de atributos sin perder la integridad, para no tener una cantidad tan grande de datos, ya que esto puede llegar a ser poco factible a la hora de analizarlos.

DATA TRANSFORMATION: se convierten los datos en un formato apropiado para convertirlos en información lógica y significativa para su manejo y análisis.

SMOOTHING: quita el ruido de los datos y los incorpora con técnicas de clustering y regresión.

AGGREGATION: aplica información y agregación en los datos para consolidarlos.

GENERALIZATION: los atributos se generalizan a un nivel superior con vistas a los atributos en un nivel inferior.

DISCRETIZATION: los valores brutos son reemplazados por etiquetas conceptuales o etiquetas de intervalo. Por ejemplo: adolescente, adulto, mayor.

BIG DATA ANALYTICS: la clave de esto es notar el potencial analítico que se tiene con todos estos nuevos datos. Recolectar, almacenar y preprocesar datos crean pequeños valores, se tiene que analizar para poder tomar decisiones.

VISUALIZING BIG DATA: estos tienen que ser entendidos por lo usuarios finales en 5 segundos, sin necesidad de explicar de más, utilizando técnicas visuales como: gráficos de líneas, histogramas, de burbuja, etc.