## CMPS 2200 Assignment 1

Name: Emily aymond

In this assignment, you will learn more about asymptotic notation, parallelism, functional languages, and algorithmic cost models. As in the recitation, some of your answer will go here and some will go in main.py. You are welcome to edit this assignment-01.md file directly, or print and fill in by hand. If you do the latter, please scan to a file assignment-01.pdf and push to your github repository.

```
1. (2 pts ea) Asymptotic notation
```

```
• 1a. Is 2^{n+1} \in O(2^n)? Why or why not?.
   . Yes.

. a^{n+1} = a \cdot a^n

. a^{n+1} \le c \cdot a^n \Rightarrow a^{n+1} \le a \cdot a^n
   . 2"" € 0 (2")
• 1b. Is 2^{2^n} \in O(2^n)? Why or why not?
   a^{2^n} \leq c \cdot a^n
   · no constant c fulfills the inequality
   a^{2^n} \notin O(a^n)
• 1c. Is n^{1.01} \in O(\log^2 n)?
   . No
  . n^{1.01} \leq c \cdot (\log^2 n)

. for a large n, n^{1.01} grows faster than \log^2 n

· n^{1.01} \not= O(\log^2 n)
• 1d. Is n^{1.01} \in \Omega(\log^2 n)?
   . Yes. . n!01 ≥ 10g2n
   · polynomial functions grow larger than polylogarithmic functions, fulfilling the inequality
   · nole 1 log2n
• 1e. Is \sqrt{n} \in O((\log n)^3)?
   for large n, n 1/2 grows greater than (log n) Tn & O ((log n))
• 1f. Is \sqrt{n} \in \Omega((\log n)^3)?
  · Yea
    polynomial growth dominates logarithmic growth

\sqrt{n} \in \Omega((\log n)^3)
```

## 2. SPARC to Python

Consider the following SPARC code of the Fibonacci sequence, which is the series of numbers where each number is the sum of the two preceding numbers. For example, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 ...

```
\begin{array}{l} \textit{foo } x = \\ & \text{if } x \leq 1 \text{ then} \\ & x \\ & \text{else} \\ & \text{let } (ra,rb) = (\textit{foo } (x-1)) \ , \ (\textit{foo } (x-2)) \text{ in} \\ & ra + rb \\ & \text{end.} \end{array}
```

- 2a. (6 pts) Translate this to Python code fill in the def foo method in main.py
- 2b. (6 pts) What does this function do, in your own words?

```
However, if x is greater than I, it gust returns X previous terms, (x-1) and (x-2) to calculate the next term in the Fibonacci sequence.
```

## 3. Parallelism and recursion

Consider the following function:

```
def longest_run(myarray, key)
    """
    Input:
        `myarray`: a list of ints
        `key`: an int
    Return:
        the longest continuous sequence of `key` in `myarray`
```

E.g.,  $longest_run([2,12,12,8,12,12,12,0,12,1], 12) == 3$ 

- 3a. (7 pts) First, implement an iterative, sequential version of longest\_run in main.py.
- 3b. (4 pts) What is the Work and Span of this implementation?

. Work: O(n) Espan: O(n)

- 3c. (7 pts) Next, implement a longest\_run\_recursive, a recursive, divide and conquer implementation. This is analogous to our implementation of sum\_list\_recursive. To do so, you will need to think about how to combine partial solutions from each recursive call. Make use of the provided class Result.
- 3d. (4 pts) What is the Work and Span of this sequential algorithm?

· Work:0(n) Span: 0 (10g n)

• 3e. (4 pts) Assume that we parallelize in a similar way we did with sum\_list\_recursive. That is, each recursive call spawns a new thread. What is the Work and Span of this algorithm?

work: 0 (n log n)