Fiche d'entraînement : inéquations (divers)

Exercice 1: sans fractions

Résoudre dans \mathbb{R} les inéquations suivantes :

1) (2x+4)(6x-6) < 0

2)
$$(3x-12)(-2x+4) \le 0$$

3)
$$(7x-6)(-4-2x) \ge 0$$

4)
$$(6-3x)(4x+5) < 0$$

5)
$$(2x-4)(x-2) \le 0$$

6)
$$(3x-2)(4x+5) + (3x-2)(x-6) \le 0$$

7)
$$(3x-6)(2x+1)-(3x-6)(4x+7)<0$$

8)
$$(2x+1)^2 - (3x-5)^2 \ge 0$$

9)
$$(4x-5)^2 - (-2x+7)^2 \le 0$$

Exercice 2: avec fractions

Résoudre dans $\ensuremath{\mathbb{R}}$ les inéquations suivantes :

1)
$$\frac{(2x+5)(5x-4)}{3x-7} \ge 0$$

2)
$$\frac{(-3x-2)(2x+9)}{-5x+3} \le 0$$

3)
$$\frac{6x-2}{(-4x-6)(2x-3)} \ge 0$$

4)
$$\frac{-4x+1}{(2x-4)(3x+6)} \le 0$$

5)
$$\frac{-5x-3}{(7-2x)(4x-8)} \le 0$$

6)
$$\frac{8+3x}{(x-5)(3x-1)} \ge 0$$

7)
$$\frac{3x-5}{(2x+8)(7-2x)} \ge 0$$

8)
$$\frac{2x+1}{3x-6} \le 3$$

9)
$$\frac{3x-5}{2x+4} \ge -2$$

$$10) \ \frac{-2x+4}{4x-4} \le 4$$

Solutions

1)
$$S =]-2$$
; 1[

2)
$$S =]-\infty$$
; $2] \cup [4; +\infty[$

3)
$$S = \left[-2; \frac{6}{7} \right]$$

4)
$$S = \left[-\infty; -\frac{5}{4} \right] \cup]2; +\infty[$$

5)
$$S = \{2\}$$

6)
$$S = \left[\frac{1}{5}; \frac{2}{3} \right]$$

7)
$$S =]-\infty; -3[\cup]2; +\infty[$$

8)
$$S = \left[\frac{4}{5} ; 6 \right]$$

9)
$$S = [-1; 2]$$

Solutions

1)
$$S = \left[-\frac{5}{2}; \frac{4}{5} \right] \cup \left[\frac{7}{3}; +\infty \right]$$

2)
$$S = \left[-\infty; -\frac{9}{2} \right] \cup \left[-\frac{2}{3}; \frac{3}{5} \right]$$

3)
$$S = \left[-\infty; -\frac{3}{2} \right] \cup \left[\frac{1}{3}; \frac{3}{2} \right]$$

4)
$$S = \left[-2; \frac{1}{4} \right] \cup]2; +\infty[$$

5)
$$S = \left] -\infty; -\frac{3}{5} \right] \cup \left] 2; \frac{7}{2} \right[$$

6)
$$S = \left[-\frac{8}{3}; \frac{1}{3} \right] \cup]5; +\infty[$$

7)
$$S =]-\infty; -4[\cup \left[\frac{5}{3}; \frac{7}{2} \right]$$

8)
$$S =]-\infty$$
; $2[\cup \left[\frac{19}{7}; +\infty\right]$

9)
$$S =]-\infty; -2[\cup \left[-\frac{3}{7}; +\infty \right]$$

10)
$$S =]-\infty$$
; $1[\cup \left[\frac{10}{9}; +\infty\right]$

Correction

Exercice 1:

1)	x	$-\infty$		-2		1		+∞
	2x + 4		_	0	+		+	
	6x - 6		_		_	0	+	
	(2x+4)(6x-6)		+	0	-	0	+	

S =]-2; 1[

2)
$$x -\infty$$
 2 4 + ∞
 $3x - 12$ - 0 +
 $-2x + 4$ + 0 - -
 $(3x - 12)(-2x + 4)$ - 0 + 0 -

 $S =]-\infty; 2] \cup [4; +\infty[$

 $S = \left[-2 \; ; \; \frac{6}{7} \right]$

4)	x	-∞		$\frac{-5}{4}$		2		+∞
	6 – 3 <i>x</i>	5	+		+	0	_	
	4x + 5		_	0	+		+	
	(6-3x)(4x+5)		_	0	+	O	_	

 $S = \left] -\infty; -\frac{5}{4} \right[\cup]2; +\infty[$

5)) x	$-\infty$		2		+∞
	2x-4		-	0	+	
	x - 2		_	0	+	
	(2x-4)(x-2)		+	0	+	

 $S = \{2\}$

6) Il faut tout d'abord factoriser l'expression (à l'aide du facteur commun) avant d'utiliser un tableau de signes avec l'expression factorisée :

(3x-2)(4x+5) + (3x-2)(x-6) = (3x-2)[(4x+5) + (x-6)] = (3x-2)(4x+5+x-6) = (3x-2)(5x-1)

x	$-\infty$		$\frac{1}{5}$		$\frac{2}{3}$		+∞
3x - 2		_		_	0	+	
5x - 1		_	0	+		+	
(3x-2)(5x-1)		+	0	-	0	+	

$$S = \left[\frac{1}{5}; \frac{2}{3}\right]$$

7)
$$(3x-6)(2x+1) + (3x-6)(4x+7) = (3x-6)[(2x+1) - (4x+7)] = (3x-6)(2x+1-4x-7) = (3x-6)(-2x-6)$$

x	$-\infty$		-3		2		+∞
3x-6		_		_	0	+	
-2x - 6		+	0	_		_	
(3x-6)(-2x-6)		_	Ō	+	0	_	

$$S =]-\infty; -3[\cup]2; +\infty[$$

8) On factorise cette fois-ci l'expression en utilisant l'identité remarquable $a^2 - b^2 = (a + b)(a - b)$:

$$\underbrace{(2x+1)^2}_{a^2} - \underbrace{(3x-5)^2}_{b^2} = \underbrace{\left[\underbrace{(2x+1)}_a + \underbrace{(3x-5)}_b\right]}_{a} \times \underbrace{\left[\underbrace{(2x+1)}_a - \underbrace{(3x-5)}_b\right]}_{a} = [2x+1+3x-5] \times [2x+1-3x+5]$$

$$= (5x-4)(-x+6).$$

x	$-\infty$	$\frac{4}{5}$		6		+∞
5x - 4	-	0	+		+	
-x + 6			+	0	_	
(5x-4)(-x+6)		Ó	+	0	_	

$$S = \left[\frac{4}{5} \; ; \; 6\right]$$

9) On factorise cette fois-ci l'expression en utilisant l'identité remarquable $a^2 - b^2 = (a + b)(a - b)$:

$$\underbrace{(4x-5)^2}_{a^2} - \underbrace{(-2x+7)^2}_{b^2} = \underbrace{\left[\underbrace{(4x-5)}_{a} + \underbrace{(-2x+7)}_{b}\right]}_{2} \times \underbrace{\left[\underbrace{(4x-5)}_{a} - \underbrace{(-2x+7)}_{b}\right]}_{2} = \underbrace{\left[4x-5-2x+7\right]}_{2} \times \underbrace{\left[4x-5+2x-7\right]}_{2}$$

$$= (2x+2)(6x-12).$$

x	$-\infty$		-1		2		+∞
2x + 2		_	0	+		+	
6x - 12		_		_	0	+	
(2x+2)(6x-12)		+	0	_	0	+	

$$S = [-1; 2]$$

Exercice 2:

1)	x	$-\infty$		$-\frac{5}{2}$		$\frac{4}{5}$		$\frac{7}{3}$		+∞
	2x + 5		-	0	+		+		+	
	5x - 4		_		_	0	+		+	
	3x - 7		-		_		_	0	+	
	$\frac{(2x+5)(5x-4)}{3x-7}$		_	0	+	0	_		+	6

$$S = \left[-\frac{5}{2}; \frac{4}{5} \right] \cup \left[\frac{7}{3}; +\infty \right[$$

$$S = \left] -\infty; \frac{-9}{2} \right] \cup \left[\frac{-2}{3}; \frac{3}{5} \right[$$

3)
$$x -\infty -\frac{3}{2} \frac{1}{3} \frac{3}{2} +\infty$$

$$6x - 2 - 0 + +$$

$$-4x - 6 + 0 - -$$

$$2x - 3 - 0 +$$

$$\frac{6x - 2}{(-4x - 6)(2x - 3)} + - 0 +$$

$$S = \left] -\infty; -\frac{-3}{2} \left[\cup \left[\frac{1}{3}; \frac{3}{2} \right] \right]$$

4)	// n/					1				
T)	x	$-\infty$		-2		$\frac{1}{4}$		2		+∞
	-4x + 1		+		+	0	_		-	
	2x - 4		_		_		_	0	+	
	3x + 6		_	0	+		+		+	
	$\frac{-4x+1}{(2x-4)(3x+6)}$		+		_	0	+		_	

$$S = \left[-2; -\frac{1}{4} \right] \cup]2; +\infty[$$

5)	x	$-\infty$		$-\frac{3}{5}$		2		$\frac{7}{2}$		+∞
	-5x - 3		+	0	_		_		-	
	7 – 2 <i>x</i>		+		+		+	0	_	
	4x - 8		_		-	0	+		+	
	$\frac{-5x-3}{(7-2x)(4x-8)}$		_	0	+		_		+	

$$S = \left] -\infty; -\frac{-3}{5} \right] \cup \left[2; \frac{7}{2} \right[$$

$$S = \left[-\frac{8}{3}; \frac{1}{3} \right] \cup]5; +\infty[$$

$$S =]-\infty; -4[\cup \left[\frac{5}{3}; \frac{7}{2}\right]$$

8) Pour résoudre $\frac{2x+1}{3x-6} \le 3$ il faut d'abord écrire une seule fraction (donc faire « passer le 3 à gauche ») avant de pouvoir créer un tableau de signes :

$$\frac{2x+1}{3x-6} \le 3$$

$$\frac{2x+1}{3x-6} - 3 \le 0$$

$$\frac{2x+1}{3x-6} - \frac{3 \times (3x-6)}{3x-6} \le 0 \text{ (on va mettre les fractions au même dénominateur)}$$

$$\frac{2x+1-3 \times (3x-6)}{3x-6} \le 0$$

$$\frac{2x+1-9x+18}{3x-6} \le 0$$

$$\frac{-7x+19}{3x-6} \le 0$$

On peut donc maintenant créer le tableau de signes avec cette expression :

x	$-\infty$		2		$\frac{19}{7}$		+∞
-7x + 19		+		+	0	-	
3x-6		-	0	+		+	
$\frac{-7x+19}{3x-6}$		_		+	0	_	

$$S =]-\infty; 2[\cup \left[\frac{19}{7}; +\infty\right[$$

9) Pour résoudre $\frac{3x-5}{2x+4} \ge -2$ il faut d'abord écrire une seule fraction (donc faire « passer le 3–2 à gauche ») avant de pouvoir créer un tableau de signes :

$$\frac{3x-5}{2x+4} \ge -2$$

$$\frac{3x-5}{2x+4} + 2 \ge 0$$

$$\frac{3x-5}{2x+4} + \frac{2 \times (2x+4)}{2x+4} \ge 0 \text{ (on va mettre les fractions au même dénominateur)}$$

$$\frac{3x-5+2 \times (2x+4)}{2x+4} \ge 0$$

$$\frac{3x-5+4x+8}{2x+4} \ge 0$$

$$\frac{7x+3}{2x+4} \ge 0$$

On peut donc maintenant créer le tableau de signes avec cette expression :

x		$-\frac{3}{7}$	+∞
7x + 3	U	- 0	+
2x + 4) +	+
$\frac{7x+3}{2x+4}$		- 0	+

$$S =]-\infty; -2[\cup \left[\frac{-3}{7}; +\infty \right[$$

10) Pour résoudre $\frac{-2x+4}{4x-4} \le 4$ il faut d'abord écrire une seule fraction (donc faire « passer le 4 à gauche ») avant de pouvoir créer un tableau de signes :

$$\frac{-2x+4}{4x-4} \le 4$$

$$\frac{-2x+4}{4x-4} - 4 \le 0$$

$$\frac{-2x+4}{4x-4} - \frac{4 \times (4x-4)}{4x-4} \le 0 \text{ (on va mettre les fractions au même dénominateur)}$$

$$\frac{-2x+4-4 \times (4x-4)}{4x-4} \le 0$$

$$\frac{-2x+4-16x+16}{4x-4} \le 0$$

$$\frac{-18x+20}{4x-4} \le 0$$

On peut donc maintenant créer le tableau de signes avec cette expression :

x	$-\infty$		1		$\frac{10}{9}$		$+\infty$
-18x + 20		+		+	0	-	
4x-4		_	0	+		+	
$\frac{-18x+20}{4x-4}$		_		+	0	_	

 $S =]-\infty; 1[\cup \left[\frac{10}{9}; +\infty\right[$