# MA®HMATA RYZANTINHC EKKAHCIACTIKHC MOYCIKHC

ΗΤΟΙ ΘΕΩΡΙΑ ΚΑΙ ΠΛΗΡΗΣ ΜΕΘΟΔΟΣ ΜЄλΦΔΙΚΌΝ ΑCKHCEON

ΕΚΔΟΣΙΣ Β'



Κάθε γνήσιο ἀντίτυπο ἔχει τὴν ὑπογραφὴ τοῦ ἐκδότη.

#### CAN

#### ΕΥλΑΒΙΚΟ ΜΝΗΜΟΟΥΝΟ

Αφιερωνεται

стоүс

макарюус гонек моу

XPHCTO KAI BAPBAPA

поү моү емфүснсан

ΤΗΝ ΑΓΑΠΗ

ΓΙΑ ΤΟΥ ΧΡΙΟΤΟΥ ΤΗΝ ΑΓΙΑ ΕΚΚΛΗΟΙΑ

KAI

TH MOYCIKH THC, THN OYPANIA

Erov Synopovneo Apoistapsvo nai staipero 9500 u. Xe4c70 ACTEPH

Mé agan.

Grawin 17 Mair 1979. Map Sirguente



ΑΒΡΑΑΜ ΕΥΘΥΜΙΑΔΗΣ

#### ΠΡΟΛΟΓΟΣ

"Όταν τὸ 1948 μοῦ ἀνατέθηκε ἀπὸ τὴν 'Ορθόδοξο Χριστιανικὴ 'Αδελφότητα «Η ΑΠΟΣΤΟΛΙΚΗ ΔΙΑΚΟΝΙΑ» ποὺ τώρα ἔχει τὴν ἐπωνυμία 
«Η ΑΠΟΛΥΤΡΩΣΙΣ» — νὰ ὀργανώσω Τμῆμα καὶ Φροντιστήριο Βυζαντινῆς Μουσικῆς ἀνέκυψε ἀμέσως πολὺ ἐπιτακτικὴ ἡ ἀνάγκη ἑνὸς πλήρους, μεθοδικοῦ καὶ εὐλήπτου βοηθήματος γιὰ τὴ διδασκαλία τῆς Θεωρίας καθώς καὶ μιᾶς όλοκληρωμένης μεθόδου μελωδικῶν ἀσκήσεων ποὺ εἶναι ἀπαραίτητες γιὰ τὴν ἐμπέδωσι τῶν θεωρητικῶν γνώσεων.

 $\Gamma$ ι' αὐτό, μὲ τὸ θερμὸ ζῆλο καὶ τὴν ἀκούραστη φροντίδα τοῦ ἀειμνήστον φίλου καὶ μαθητῆ μου Σωκράτη Φαϊτατζίδη, μέλους τῆς 'Αδελφότητος καὶ ἐμπνευστῆ τῆς ὀργανώσεως τοῦ Τμήματος, τυπώθηκαν, τότε, βιαστικὰ καὶ πρόχειρα τὰ «ΜΑΘΗΜΑΤΑ ΒΥΖΑΝΤΙΝΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ».

Στὴ συνέχεια, τὸ βιβλίο αὐτὸ ἀποτέλεσε τὴ βάσι διδασκαλίας στὸ Φροντιστήριο Βυζαντινῆς Μουσικῆς «Ο ΑΓΙΟΣ ΔΗΜΗΤΡΙΟΣ» ποὺ λειτούργησε πολὺ καρποφόρα ὑπὸ τὴν προστασία τῆς Ἱερᾶς Μητροπόλεως Θεσσαλονίκης ἀπὸ τὸ 1950 μέχρι καὶ τὸ 1961 καὶ ὅπου μαζὶ μὲ τὸν ὑπογραφόμενο δίδαξαν οἱ ἀγαπητοί μου φίλοι καὶ συνάδελφοι, ἔγκριτοι Πρωτοψάλτες Χρύσανθος Θεοδοσόπουλος, Χαρίλαος Ταλιαδῶρος καὶ ᾿Αθανάσιος Καραμάνης.

'Επειδή τὸ βιβλίο μου αὐτὸ ἐκτὸς ἀπὸ ἐκείνους ποὺ μαθήτευσαν στὰ δύο αὐτὰ Φροντιστήρια καὶ ποὺ οἱ περισσότεροί τους ἐπάξια κατέχουν σήμερα ἱεροψαλτικὰ στασίδια, βοήθησε καὶ πολλοὺς ἄλλους στὴ μελέτη καὶ ἐκμάθησι τῆς Βυζαντινῆς Μουσικῆς· ἐπειδὴ τιμήθηκε τοῦτο μὲ πολὺ κολακευτικὲς κρίσεις καὶ ἐγκωμιαστικοὺς ἐπαίνους· ἐπειδὴ καὶ στὴν ἀναγνωρισμένη ἀπὸ τὴν Ἐκκλησία τῆς 'Ελλάδος Σχολὴ Βυζαντινῆς Μουσικῆς Θεσσαλονίκης, ὅπου ἔχω τὴν τιμὴ νὰ διδάσκω εἶναι πρωταρχικὸ βοήθημα· ἐπειδὴ ἐπίμονα ζητεῖταὶ ἀπὸ παντοῦ, ἐδῶ στὴν 'Ελλάδα καὶ στὸ 'Εξωτερικό καὶ ἐπειδὴ ἀπὸ μακροτάτου χρόνου ἔχει τελείως ἐξαντληθῆ, ἀναγκάσθηκα ν' ἀποφασίσω τὴν

ἐπανέκδοσί του μὲ τὸν τίτλο «ΜΑΘΗΜΑΤΑ ΒΥΖΑΝΤΙΝΗΣ ΕΚΚΛΗ-ΣΙΑΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ ἤτοι ΘΕΩΡΙΑ ΚΑΙ ΠΛΗΡΗΣ ΜΕΘΟΔΟΣ ΜΕΛΩΔΙΚΩΝ ΑΣΚΗΣΕΩΝ», καταβάλλοντας κάθε δυνατὴ προσπάθεια γιὰ τὴν πληρότητα καὶ τὴν καλλίτερη ἀπὸ κάθε ἄποψι ἐμφάνισί του.

Κι' ἄς μοῦ ἐπιτραπῆ νὰ ὁμολογήσω πώς, ἄν ψάλλοντας σὰν ψάλτης ἐπὶ σαράντα καὶ πλέον χρόνια τώρα τὶς θεῖες καὶ οὐράνιες ἐκκλησιαστικὲς μελωδίες βρίσκω ἱκανοποίησι σὲ μιὰ βαθυτάτη μου ψυχικὴ ἀνάγκη, διδάσκοντας παράλληλα τὴ Βυζαντικὴ Μουσικὴ ἀπολαμβάνω τὴν ἀνείπωτη χαρὰ πὼς ὑποβοηθῶ μὲ τὶς ἐλάχιστες δυνάμεις μου στὴ διάδοσι, καλλιέργεια καὶ προβολὴ τοῦ πατρογονικοῦ μας αὐτοῦ, ἑλληνοχριστιανικοῦ θησαυροῦ κι' εὐχαριστῶ θερ μὰ δλους ποὺ μὲ τίμησαν καὶ μὲ βοήθησαν, μὲ τιμοῦν καὶ μὲ βοηθοῦν στὴν προσπάθειά μου αὐτή. Τὸ ἔργο αὐτὸ εἶναι πολὺ μεγάλο καὶ ἱερό. Γι' αὐτό, εὕχομαι μ' ὅλη μου τὴν καρδιὰ Κύριος ὁ Θεὸς ὁ δοτήρας κάθε ἀγαθοῦ ν' ἀναδείξη κι' ἄλλους ὑπηρέτες πιὸ ἱκανοὺς καὶ πιὸ ἄξιους ἀπὸ μένα γιὰ τὴν ἀσίγαστη καὶ αἰώνια δοξολογία τοῦ Παναγίου 'Ονόματός Του.

#### ΑΒΡΑΑΜ ΕΥΘΥΜΙΑΔΗΣ

Καθηγητής Σχολής Βυζαντινής Μουσικής Θεσ/νίκης

Θεσσαλονίκη - Νοέμβριος 1972

## The land of the la

τφ Μουσικολογιωτάτφ κυρίφ 'Αβραάμ Εύθυμιάδη, τέκνφ ήμων έν Κυρίφ άγαπητφ, χάριν και είρήνην παρά Θεοσ.

Είς Θεσσαλονίκην.

16.4

Πολλην έδοκινασαμεν χαραν λαβόντες την υπ'ήμερομ. Ι2 'Ιουνίου έ. ἔ. ἐπιστολην ώς καὶ τὰ παρά της υμετέρας Εουσικολογιότητος
ἀποσταλέντα ήμτν ἀξιόλογα ύμων ἕργα " Στοιχειώδη μαθήματα Βυζαντινης
Έκκλησιαστικης Μουσικης "," Τὸ φωταγωγικὸν ἄσμα ἤτοι "Ανοιξαντάφια"
διά τε τὴν τοιούτψ λεπτῷ τρόπψ ἐκδήλωσιν τῶν πλουσίων ὑμῶν αἰσθημά—
των, τὴν εὐγενῆ προσφοράν καὶ τὴν καλὴν της ἐπικοινωνίας ταύτης
εὐκαιρίαν.

'Λλλ' ἔτι μᾶλλον ηὐχαριστήθημεν μελετήσαντες αὐτὰ, ἐκ τοῦ πολλοῦ ἐνδιαφέροντος, ὅπερ προκαλοῦσι καὶ ἐκ τῆς ἰδέας ὅτι θὰ θησαυρίσωμεν δι'αὐτῶν τὴν καθ'ἡμᾶς Πατριαρχικὴν Βιβλιοθήκην.

Καὶ νῶν γράφοντες ὑμῖν ἐπιθυμοῦμεν νά ἐκφράσωμεν εὐχαριστίας θερμάς ἐπὶ τῆ πρόφρονι ταὐτη ἀποστολῆ, καὶ τῆ ἰδιοχείρω εὐλαβεῖ ἀριερώσει, ἀλλά καὶ μειζόνως νά συγχαρῶμεν διὰ την ἔκόοσιν τῶν πονημάτων τούτων, εὐχόμενοι ὅπως ὁ "Υψιστος ἐνισχύη ὑμᾶς πρὸς συνέχισιν τῆς τόσον γονίμου πνευματικῆς ὑμῶν ἐργασίας.

Καὶ ἐπὶ τούτοις βέβαιοι, ὅτι ἡ εὐγενής αὕτη χειρονομία της ὑμετέρας Μουσικολογιότητος θά συνεχισθη καὶ κατὰ τὴν ἔκδοσιν ὑπ'αὑτής καὶ νέων συγγραμμάτων, ἀπονέμομεν ὑμῖν ὀλόθυμον τὴν πατρικὴν καὶ Πατριαρχικὴν ἡμῶν εὐλογίαν καὶ ἐπικαλούμεθα ἐφ'Υμᾶς τὴν χάριν καὶ τὸ ἄπειρον ἔλεος τοῦ Κυρίου.

άλξε !! Ιουνίου κβ!

Sicorpo apoi Osorcych.

Γιὰ τὰ «ΜΑΘΗΜΑΤΑ ΒΥΖΑΝΤΙΝΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΜΟΥ-ΣΙΚΗΣ» γράφουν ἐπίσης.



Ό ἀείμνηστος Ἄρχων Πρωτοψάλτης τῆς Μεγάλης τοῦ Χριστοῦ Ἐκκλησίας ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΡΙΓΓΟΣ.

Μέ την αρβαμένην "εμόσειν της "ΠΑΤΡΙΑΡΧΙΚΗΣ ΦΟΡΜΙΓΓΟΣ, ευρίσμος ερτήν λίων εύχαριστον θερίν να αναμείρω είς τούς αξιοτίμους εχόους μαί ευνδρομητας του Εργου μου παθώς μαι είς τούς επουδαστάς της βυζανευνής Δεουσιμής την υπότος ευ εῶν αρίστων μαθητών παι συνεργατών μου π. Αβραάμ Εύθυμια δου είνδο.
Είν πρωτοτύτου βιλχίου με τόν τίτρον ΜΑΘΑΜΑΤΑ ΒΥΖΑΝΤΙΝΗΣ ΕΚΚΑΝΣΙΑ.
ΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ».

Το βιβρίον τουτο πραγματευομενον πραμειμών μαι έπετημονιμών άπακαν την θεωρίαν της βυζαντινής Διευσιμώς, τυρχώνει τό άρτιμτερον τῶν ὑπαρχώντων ομοίων του. Συντετομμένον εἰς την ομιρουμένην γρώσσαν, με εὐχρονον παιδαγωμίων πνευμά, διαμρίνεται διά την μεράχην του σαμήνειαν. Περιέχει πρύρη μα μεθοδιειωτάτην σειρών μερωδικών άστισσω, η μερέτη τῶν οποίων δίδει την Γειανότητα οἰασήποτε μαί απταίστου μουσιμώς άναρνώσεως. Κεράραια ως τό περί ρυθμού, περί τῶν τριῶν γενῶν μαι τῶν υπιρώμον των, περί τῶν τριῶν χενῶν μαι τῶν υπιρώμον των, περί τῶν τριῶν τοῦ δυτηχητικοῦ συστήμανος ται τῶς δρθροιρος ἰας εξονυχήσνται πεπτομερώς. Εν τέμει τοῦ έργου παρατίθενται δόη ἰαι διοί τῶν τρόπον τῶς διδασιαρίος μαι τῶς μερέτης.

Στα ταῦτα, συχαίρων έγμαρδίως τον αμεροσίεν εργάτην μοι βημείνη της Μουειμής μου θερμότατα συνιετώ είς παίντας το έργον τοῦτο ως πορυτιμώτατον βοήθημα, διότι αναμεισβήτητων τυχχάνει στι η άμριβης γνώτις της θεωρίας συνδιαζομένη μετά εξερεώς πραμτικώ βάεξως, οἰμοδομοῦν την δρθήν άμα μαι μαρχιζεχνικών ἐμτίχεριν τών μαθημάτων.

Kwvezavzivouπολί 1 'Απριλίου 1952
' ο ' Άρχων Πρωτοψάχτης τῶς Μ.Χ.' Ευτημεία!

5 Danle of of light troop jo



Ό ἀείμνηστος πολυμαθέστατος μουσικοδιδάσκαλος καὶ Πρωτοψάλτης τοῦ Ἱ. Ν. Ἁγίας Τριάδος Θεσ)νίκης καὶ ἐκ τῶν διδασκάλων τοῦ ἐκδότη Σωκράτης Παπαδόπουλος.

'Αγαπητέ μου 'Αβραάμ,

Μὲ τὴν πρωτότυπον ἐργασίαν σου «Μαθήματα Βυζαντινῆς Ἐκκλησιαστικῆς Μουσικῆς», εἶσαι ὁ πρῶτος, ὅστις ἐπέτυχες νὰ συλλάβης καὶ νὰ δώσης πλήρη, σαφῆ καὶ ὁλοκληρωμένην τὴν θεωρίαν τῆς Μουσικῆς μας. Ἡ χαρὰ τὴν ὁποίαν δικαίως θὰ αἰσθανθῆς ἀπὸ τὸ μεγάλο καὶ ἐνθουσιῶδες «εὖγε», τὸ ὁποῖον σοὺ ἀπευθύνω, πλημμυρίζει καὶ ἐμὲ τὸν ἴδιον, ὡς ἕνα τῶν διδασκάλων καὶ συνεργατῶν σου.

Lary A Hawasowas

ΣΩΚΡΑΤΗΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

Θεσ) νίκη 18-3-1949

Μουσικοδιδάσκαλος - Α΄ Ψάλτης Ί. Ν. Άγ. Τριάδος



'Ο ἔγκριτος Πρωτοψάλτης καὶ Πρόεδρος τοῦ Σωματείου Ἱεροψαλτῶν Θεσσαλονίκης «Ἰωάννης ὁ Δαμασκηνὸς» κ. Βασίλειος Μυλαράκης.

'Αξιότιμε Κε 'Αβρ. Εὐθυμιάδη,

Σαφήνεια, μεθοδικότης, πληρότης καὶ ἐπιστημοσύνη συνθέτουν τὸ ἔργον σας «Μαθήματα Βυζαντινῆς Ἐκκλησιαστικῆς Μουσικῆς». Ἡ ἐπανέκδοσίς του ἐπεβάλλετο. Οἱ μαθηταὶ τῆς Σχολῆς μας καὶ πᾶς ἐγκύπτων εἰς τὴν σπουδὴν τῆς ἐθνικῆς μας μουσικῆς θ' ἀποκτήσουν τὸ ἀπὸ μακροῦ χρόνου ἀναμενόμενον πολύτιμον βοήθημα καὶ ἐντρύφημα.

Σᾶς συγχαίρω ἐγκαρδίως

ΒΑΣΙΛΕΙΟΣ ΜΥΛΑΡΑΚΗΣ

Πρωτοψάλτης Πρόεδρος Σωματείου 'Ιεροψαλτῶν Θεσ) νίκης «'Ιωάννης ὁ Δαμασκηνὸς»

Θεσ)νίκη 14-10-1972



'Ο Πρωτοψάλτης τοῦ 'Ι. Ν. 'Αγίου Δηγητρίου, Πολιούχου Θεσ) νίκης καὶ Δ) ντὴς τῆς Σχολῆς Βυζαντινῆς Μουσικῆς Θεσ) νίκης κ. Χρύσανθος Θεοδοσόπουλος.

'Αγαπητὲ καὶ φίλτατέ μου κ. 'Αβρ. Εὐθυμιάδη,

"Όταν τὸ 1950 ἀπὸ κοινοῦ συνεστήσαμεν τὸ Φροντιστήριον Βυζαντινῆς Μουσικῆς « Ο ΑΓΙΟΣ ΔΗΜΗΤΡΙΟΣ» μοὺ ἐδόθη ἡ εὐκαιρία νὰ διεξέλθω ἐπισταμένως τὸ Θεωρητικόν σου καθὼς καὶ τὰς μελωδικὰς ἀσκήσεις ποὺ περιλαμβάνονται εἰς αὐτό. Καίτοι γνωρίζω ὅτι προσκρούω εἰς τὴν τοῖς πᾶσι γνωστὴν ὑπερβολικήν σου ταπεινοφροσύνην θεωρῶ ὑποχρέωσίν μου νὰ πιστοποιήσω ὅτι εἶναι ἔργον ἐξαίρετον. Ἡ ὁμιλουμένη γλῶσσα τὴν ὁποίαν χρησιμοποιεῖς, τὸ παιδαγωγικὸν καὶ προαγωγικὸν πνεῦμα τὸ ὁποῖον διέπει τὸ βιβλίον σου, ἡ σαφήνεια μὲ τὴν ὁποίαν διατυποῦνται καὶ ἐξονυχίζονται ἄπαντα τὰ πρακτικὰ καὶ θεωρητικὰ θέματα καθιστοῦν αὐτό, χωρὶς ὑπερβολήν, μοναδικὸν εἰς τὸ εἶδος του καὶ ἀπαραίτητον βοήθημα διὰ πάντα σπουδαστὴν τῆς Βυζαντινῆς Μουσικῆς καὶ φιλόμουσον.

Ή χαρά μου είναι μεγίστη διὰ τὴν ἀπόφασιν τῆς ἐπανεκδόσεώς του μετὰ πάσης πληρότητος καὶ προσπαθείας διὰ τὴν ἀπὸ πάσης ἀπόψεως καλλιτέραν ἐμφάνισίν του, διότι είναι μία σοβαρωτάτη καὶ θετικὴ προσφορὰ εἰς τὸν σκοπὸν καὶ τὸ ἔργον τῆς Σχολῆς Βυζαντινῆς Μουσικῆς Θεσσαλονίκης, τὴν ὁποίαν ἔχω τὴν τιμὴν νὰ διευθύνω.

Μὲ ἐκτίμησιν καὶ ἀγάπην

ΧΡΥΣΑΝΘΟΣ ΘΕΟΔΟΣΟΠΟΥΛΟΣ

Πρωτοψάλτης Δ) ντής Σχολής Βυζαντινής Μουσικής Θεσ) νίκης



Ό Πρωτοψάλτης τοῦ Καθεδρικοῦ Ναοῦ Άγίας Σοφίας Θεσ)νίκης καὶ Καθηγητὴς Βυζαντινῆς Μουσικῆς κ. Χαρίλαος Ταλιαδώρος.

Φίλτατέ μου κ. Εὺθυμιάδη,

Κατὰ τὴν μέχρι τοῦδε ὑπερτριακονταετῆ συνεργασίαν μας ἦτο ἑπόμενον νὰ ἐκτιμήσω τὴν μεγίστην πείραν τὴν ὁποίαν διαθέτεις εἰς τὴν συστηματικὴν διδασκαλίαν τῆς Βυζαντινῆς Μουσικῆς.

Χαιρετίζω μὲ ἐνθουσιασμὸν τὴν ἐπανέκδοσιν τοῦ πολυτιμωτάτου Θεωρητικοῦ σου. Εἶναι ἔργον μνημειῶδες.

Μὲ ἀπεριόριστον ἐκτίμησιν καὶ ἀγάπην

ΧΑΡΙΛΑΟΣ ΤΑΛΙΑΔΩΡΟΣ Πρωτοψάλτης - Καθηγητής Βυζαντινής Μουσικής

Θεσ) νίκη 17-10-1972



Ό Πρωτοψάλτης τοῦ Μητροπολιτικοῦ Ναοῦ Θεσσαλονίκης καὶ διαπρεπὴς μουσικοδιδάσκαλος κ. `Αθανάσιος Καραμάνης.

Φίλτατε κ. συνάδελφε,

Μὲ πολλὴν χαρὰν ἐπληροφορήθην τὴν ἐπανέκδοσιν τοῦ πονήματός σας «ΜΑΘΗΜΑΤΑ ΒΥΖΑΝΤΙΝΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ» μὲ τὸν πραγματικὸν θησαυρὸν τῶν μελωδικῶν ἀσκήσεων ποὺ ἐμπεριέχεται εἰς αὐτό.

Πάντοτε επίστευα είς την μεγάλην άξίαν και χρησιμότητά του. Διὰ

τοῦτο πολλάκις κατὰ τὸ παρελθὸν συνέστησα νὰ ἐπωμισθῆς τὸ σοβαρὸν καὶ ἀπὸ οἰκονομικῆς πλευρᾶς βαρύτατον, ὡς ὁ «δριμὺς χειμών», ἀλλ' ἀπὸ ἀπόψεως πνευματικῆς καὶ ἐπιστημονικῆς δημιουργίας ἡδύτατον, ὡς ὁ «γλυκὺς Παράδεισος» φορτίον τῆς ἐπανεκδόσεώς του.

Τὸ ἔργον τοῦτο εἶναι κόσμημα διὰ τὴν βιβλιοθήκην παντὸς συναδέλφου, μουσικοῦ καὶ φιλομούσου.

Σᾶς συγχαίρω θερμότατα

Magacians

Θεσ) νίκη 19-10-1972

**ΑΘΑΝΑΣΙΟΣ ΚΑΡΑΜΑΝΗΣ** Πρωτοψάλτης - Μουσικοδιδάσκαλος

Ο διακεκριμένος μουσικολόγος καὶ Πρόεδρος τῆς Εταιρείας Βυζαντινῆς Μουσικῆς 'Αθηνῶν κ. Γεώργιος Α. Τσατσαρώνης.

Ή ἔλλειψις Θεωρητικοῦ ἀξιώσεων, τὰ τελευταῖα χρόνια, εἶχε ἐπακόλουθο νὰ διδάσκεται ἡ Βυζαντινὴ Μουσικὴ κατὰ τὴν ἀντίληψιν ἑνὸς ἑκάστου καὶ γι' αὐτὸ ὄχι, πάντοτε, σωστά.

Τὸ μεγάλο αὐτὸ κενὸ ἔρχεται νὰ καλύψη τὸ εὐχάριστο καὶ ἐλπιδοφόρο γεγονὸς τῆς ἐκδόσεως τοῦ περισπουδάστου ἔργου «Μαθήματα Βυζαντινῆς Ἐκκλησιαστικῆς Μουσικῆς» τοῦ ἀγαπητοῦ παιδικοῦ φίλου καὶ ἐξαιρέτου μουσικοδιδασκάλου στὴ Σχολὴ Βυζαντινῆς Μουσικῆς Θεσ)νίκης κ. ᾿Αβραὰμ Χ. Εὐθυμιάδη.

Τὸ ἔργο πρωτοκυκλοφόρησε σὲ πολυγράφο τὸ 1948 σὰν «Στοιχειώδη Μαθήματα Βυζ. Ἐκκλ. Μουσικῆς» καὶ ἐκτιμήθηκε ἰδιαιτέρως. Ἐβοήθησε πολλοὺς στὴ σπουδὴ καὶ ἐκμάθησι τῆς μουσικῆς μας καὶ πολλοὺς δασκάλους κατηύθυνε τελεσφόρως στὸ ἔργο τους.

Τώρα, μὲ βάσι τὸ Θεωρητικὸν τοῦ Χρυσάνθου καὶ τὰ πορίσματα τῆς Ἐπιτροπῆς τοῦ 1881, ἡ μεστωμένη ἐμπειρία περὶ τὴν διδασκαλία τῆς Βυζαντινῆς Μουσικῆς τοῦ κ. ᾿Α. Εὐθυμιάδη καὶ ἡ ἐμβρίθειά του, μᾶς δίνουν τὸ ἔργο τοῦτο ὁλοκληρωμένο.

Διακρίνομε καὶ θαυμάζομε τὴ μεθοδική, σὲ ἀπλῆ καὶ ρέουσα ὁμιλουμένη γλῶσσα, ἀναλυτικὴ ἀνάπτυξι ὅλων τῶν θεμάτων, τὴν ἐξονυχιστικὴ — πρακτικὰ καὶ ἐπιστημονικὰ — ἐξέτασι καὶ ἐπεξήγησι δυσκολονοήτων, ἄλλοτε, γιὰ πολλούς, θεωρητικῶν ζητημάτων πού, ὅλα, συνοδεύονται, ἐδῶ, μὲ τὰ κατάλληλα μουσικὰ παραδείγματα καὶ ἡ σαφὴς καὶ πλήρης γνῶσις τῆς Βυζαντινῆς Μουσικῆς ἐμπεδώνεται μὲ ἕνα πραγματικὸ πακτωλὸ θησαυροῦ μελωδικῶν ἀσκήσεων, ἀντιπροσωπευτικῶν ὅλων τῶν εἰδῶν της.

'Επαινῶ καὶ συγχαίρω τὸν φίλτατο συγγραφέα γιὰ τὴ μεγάλη του αὐτὴ προσφορὰ στὸν μαθητὴ ἀλλὰ καὶ στὸ δάσκαλο τῆς Βυζ. Μουσικῆς καθὼς καὶ σ' ὅλους ποὺ ἐνδιαφέρονται καὶ ἐνδιατρίβουν σοβαρὰ στὴ θεία καὶ ἱερὰ τέχνη τοῦ Ἰωάννου Δαμασκηνοῦ.

Pringray A. Toutoupiums

'Αθήναι 15-11-72

Μουσικολόγος

#### EΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

#### Η ΙΕΡΑ ΣΥΝΟΔΟΣ ΤΗΣ ΕΚΚΛΗΣΙΑΣ ΤΗΣ ΕΛΛΑΔΟΣ

'Αθήνησι τῆ 6 - 5 - 1974

'Αριθμ Πρωτ. 1943

Διεμπ. 642

#### ΕΓΚΥΚΛΙΟΣ 2008

ΘΕΜΑ: Σύστασις βιβλίου κ. 'Αβραάμ Εὐθυμιάδου: "Μαθήματα Βυζαντινῆς 'Εκκλησιαστικῆς Μουσικῆς".

Πρός

Τούς Σεβασμιωτάτους 'Ιεράρχας τῆς 'Εκκλησύας τῆς 'Ελλάδος.

Ύπό τοῦ ἐν Θεσσαλονίκη Καθηγητοῦ τῆς Σχολῆς Βυζαντινῆς Μουσικῆς κ. ᾿Αβραάμ Εὐθυμιάδου, ἐκυκλοφορήθη πρότριτα περισπούδαστον μουσικολογικόν ἔργον, τιτλοφορούμενον "Μαθήματα Βυζαντινῆς Ἐκκλησ. Μουσικῆς", περιέχον ἄπασαν τήν θεωρητικήν τῆς Πατρώας Βυζαντινῆς ἡμῶν Μουσικῆς ὕλην, συστηματικῶς κατεστρωμένην καί ἐπαγωγικῶς τα μάλιστα ἀναπτυσσομένην.

Είς τό ἐν λόγω πόνημα αὐτοῦ, ὁ διαληφθείς καθηγητής καί συγγραφεύς, ἀπεθησαύρισε τήν 45ετῆ διδακτικήν αὐτοῦ πεῖραν, ὡς καί τά πορίσματα τῶν πολυετῶν αὐτοῦ μουσικολογικῶν μελετῶν, δούς εἰς τοῦτο ἀρτιότητά τε καί πληρότητα σπανίαν καί καταστήσας τοῦτο πολύτιμον βοήθημα εἰς χεῖρας τῶν σπουδαστῶν τῆς ἰερᾶς Μουσικῆς καί παντός ἐντρυφῶντος εἰς τόν ἀτίμητον τοῦτον θησαυρόν τοῦ Ἑλληνοχριστιανικοῦ Πολιτισμοῦ.

Ταῦτα πάντα ἔχουσα ὑπ' ὄψιν ἡ Ἱερά Σύνοδος τῆς Ἱεραρχίας, ἔγνω παρακαλέσαι ὑμᾶς ἴνα ἀρμοδίως συστήσητε τήν προμήθειαν τοῦ ὡς εἴρηται πονήματος ὑπό τε τῶν Ἱ. Μονῶν, Ἱ. Ναῶν, καί λοιπῶν Ἐκκλησιαστικῶν καθιδρυμάτων τῆς καθ' ὑμᾶς θεοσώστου Μητροπόλε—ως, ὡς καί ὑπό τῶν μαθητῶν καί σπουδαστῶν τῶν Ἐκκλησιαστικῶν

Σχολῶν, ἀπ' εύθείας ὑπό τοῦ συγγραφέως, κατοίκου, ὡς προεγράφη, Θεσσαλονίκης (ὁδός Πτεράρχου Γ. Θεμελῆ άριθ. 16).

- † 'Ο 'Αθηνῶν ΣΕΡΑΦΕΙΜ, Πρόεδρος
- † 'Ο Σεβ. Καλαβρύτων καί Αίγιαλείας ΓΕΩΡΓΙΟΣ
- † 'Ο Σεβ. Πειραιῶς ΧΡΥΣΟΣΤΟΜΟΣ
- † 'Ο Σεβ. Μυτιλήνης ΙΑΚΩΒΟΣ
- † 'Ο Σεβ. Μαρωνείας ΤΙΜΟΘΕΟΣ
- † 'Ο Σεβ. Σερβίων καί Κοζάνης ΔΙΟΝΥΣΙΟΣ
- † 'Ο Σεβ. Κύτρους ΒΑΡΝΑΒΑΣ
- † 'Ο Σεβ. Θήρας ΓΑΒΡΙΗΛ
- † 'Ο Σεβ. Μεσσηνίας ΧΡΥΣΟΣΤΟΜΟΣ
- † 'Ο Σεβ. "Αρτης ΙΓΝΑΤΙΟΣ
- † 'Ο Σεβ. Καστορίας ΔΩΡΟΘΕΟΣ
- + 'Ο Σεβ. Κορινθίας ΠΑΝΤΕΛΕΗΜΩΝ
- † 'Ο Σεβ. Φθιώτιδος ΔΑΜΑΣΚΗΝΟΣ
- † 'Ο Σεβ. Τριφυλίας καί 'Ολυμπίας ΣΤΕΦΑΝΟΣ
- + 'Ο Σεβ. Παροναξίας ΕΠΙΦΑΝΙΟΣ
- † 'Ο Σεβ. 'Ιερισσοῦ, 'Αγ. "Ορους καί 'Αρδαμερίου ΠΑΥΛΟΣ
- † 'Ο Σεβ. Λήμνου ΠΑΝΤΕΛΕΗΜΩΝ
- † 'Ο Σεβ. Φιλίππων, Νεαπόλεως καί Θάσου ΑΛΕΞΑΝΔΡΟΣ
- † 'Ο Σεβ. Σύρου, Τήνου, "Ανδρου, Κέας καί Μήλου ΔΩΡΟΘΕΟΣ † 'Ο Σεβ. Αἰτωλίας καί 'Ακαρνανίας ΘΕΟΚΛΗΤΟΣ
- † 'Ο Σεβ. Γυθείου καί Οἰτύλου ΣΩΤΗΡΙΟΣ
- † 'Ο Σεβ. Σάμου καί 'Ικαρίας ΠΑΝΤΕΛΕΗΜΩΝ
- † 'Ο Σεβ. Μαντινείας καί Κυνουρίας ΘΕΟΚΛΗΤΟΣ
- † 'Ο Σεβ. Δράμας ΔΙΟΝΥΣΙΟΣ
- † 'Ο Σεβ. Κεφαλληνίας ΠΡΟΚΟΠΙΟΣ
- † ΄Ο Σεβ. Ζιχνῶν καί Νευροκοπίου ΝΙΚΟΔΗΜΟΣ
- † 'Ο Σεβ. 'Αργολίδος ΧΡΥΣΟΣΤΟΜΟΣ

' Λρχιγραμματεύς υ Δέρβης ΚΟΣ μ Λ Ξ

Ακριβές άντίγραφον

Δέρβης

### ΜΕΡΟΣ Α΄



#### ΜΟΥΣΙΚΗ

#### ΒΥΖΑΝΤΙΝΗ ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΜΟΥΣΙΚΗ

- 1. Μουσική είναι ή τέχνη τῶν ἤχων μὲ ώρισμένους φυσικοὺς καὶ αἰσθητικοὺς νόμους.
- Ή μουσική έρμηνεύει μὲ τὸ ρυθμὸ καὶ τὶς μελωδικὲς διαδοχὲς τὰ ψυχικὰ αἰσθήματα καὶ τὶς πράξεις ποὺ ἐκφράζονται μ' ἕνα ποιητικὸ κείμενο. 'Ενεργεῖ ἀκουστικά. Προκαλεῖ στὴ ψυχὴ τοῦ ἀκροατῆ τὸ αἴσθημα καὶ τὶς ίδέες που είναι κατάλληλες για να διευκολύνουν την τελεία κατανόησι τοῦ ποιητικού κειμένου, κάνει έντονώτερη την απόλαυσι της ποιήσεως καί έπιδρα συναισθηματικά. Εὐχάριστες ψυχικές καταστάσεις ἐκφράζονται μὲ τόνους καὶ ρυθμούς χαρούμενους, σκιρτητικούς. Δυσάρεστα συναισθήματα ἀποδίδονται μὲ ρυθμούς καὶ μελωδικὲς πλοκὲς συσταλτικές. \*Εννοιες ψυχικής συστολής καὶ ταπεινώσεως έρμηνεύονται μὲ φωνὲς καὶ ρυθμοὺς ήσυχαστικούς. Όταν ὁ ἄνθρωπος νοιώθη τὴν ἀνάγκη νὰ πλησιάση πιὸ πολύ τὸν Πλάστη του, νὰ ἐπικοινωνήση μαζί Του γιὰ νὰ Τὸν εὐχαριστήση γιὰ τ' ἀγαθὰ ποὺ Ἐκεῖνος τοῦ χαρίζει, νὰ τὸν παρακαλέση γιὰ νὰ τὸν βοηθήση ν' ανταπεξέλθη στὶς δυσκολίες τῆς ζωῆς του, νὰ ζητήση τὴν προστασία Του στούς κινδύνους πού τὸν περιζώνουν, ὅταν θέλη νὰ προσευχηθῆ, μὲ τὸν καλύτερο τρόπο ποὺ μπορεῖ, κάνει ἀνάλογη μουσικὴ τὴν προσευχή του, ψάλλει ὕμνους.
- 3. Ἡ μουσικὴ εἶναι γλῶσσα πανανθρώπινη καὶ θεῖο δῶρο. Μετέχουμε σ' αὐτὴν ὅλοι ἐξ ἀ δ ι δ ά κ τ ο υ.
- 4. Κάθε λαός, σὲ κάθε ἐποχή, ἀνάλογα μὲ τὸ βαθμὸ τοῦ πολιτισμοῦ καί, γενικά, τὶς συνθῆκες διαβιώσεώς του (κλιματολογικὲς συνθῆκες, δουλεία, ἐπίδρασις ξένων πολιτισμῶν, ἐλευθερία κλπ) δημιούργησε καὶ διαμόρφωσε τὴ μουσική του μὲ μιὰ ξέχωρη δική του χαρακτηριστικὴ σφραγίδα.

Ή έλληνική μουσική, που ἄρχισε νὰ καλλιεργῆται ἀπὸ τὰ πρῶτα χρόνια τῆς Βυζαντινῆς Αὐτοκρατορίας μετὰ τὴν ἐπικράτησι τῆς Χριστιανικῆς Θρησκείας, ὀνομάζεται Βυζαντινὴ μουσική.

5. 'Η Βυζαντινή μουσική, μὲ βάσι τὴν ἀρχαῖα ἑλληνική μουσική, ἀναπτύχθηκε ἰδιαίτερα ἀπὸ τότε πού, οἱ ἐμπνευσμένοι ποιητὲς τῆς 'Ορθοδόξου Χριστιανικῆς 'Εκκλησίας, τὴν συνύφαναν μὲ τ' ἀριστουργήματικὰ προϊόντα τῆς θρησκευτικῆς ποιήσεως. Γι' αὐτὸ ἡ μουσικὴ αὐτὴ ὀνομάζεται Βυζαντινὴ 'Εκκλησιαστικὴ μουσική.

#### ΚΕΦΑΛΑΙΟΝ Α

#### ΤΑ ΘΕΜΕΛΙΩΛΗ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΜΟΥΣΙΚΗΣ

6. Τὰ θεμελιώδη συστατικὰ τῆς μουσικῆς εἶναι τρία: ὁ φθόγγος, ὁ χρόνος καὶ ἡ ἔκφρασις.

Αμέσως παρακάτω γίνεται λόγος γιὰ τὸ καθένα ἀναλυτικά.

#### α΄ Ο ΦΘΟΓΓΟΣ

- 7. Στὴ μουσικὴ χρησιμοποιοῦνται μόνον οἱ ἦχοι (φωνὲς) ἐκεῖνοι ποὺ ἔχουν ὡρισμένο ὕψος ἢ ὅπως ἀλλιῶς λέμε, ὡρισμένη ὀξύτητα καὶ διακρίνονται μεταξύ των γιατὶ ἄλλος εἶναι ὑψηλότερος (ὀξύτερος) κι᾽ ἄλλος χαμηλότερος (βαθύτερος). Οἱ ἦχοι αὐτοὶ ὀνομάζονται μουσικοὶ ἦχοι, ἢ φθόγγοι. Ὠστε, φθόγγος εἶναι ὁ ἦχος ποὺ ἔχει ὡρισμένο ὕψος.
- **8.** Οἱ φθόγγοι παράγονται μὲ τὸ λάρυγγα τοῦ ἀνθρώπου καὶ τὰ μουσικὰ ὄργανα καὶ ὁ ἀριθμός των εἶναι ἀνάλογος μὲ τὸ μέσο ποὺ τοὺς παράγει.

Τὰ μουσικὰ ὄργανα δίνουν περισσοτέρους φθόγγους ἀπὸ τὸν ἀνθρώπινο λάρυγγα ἀλλὰ καὶ κάθε μουσικὸ ὄργανο ἀνάλογα μὲ τὸ εἶδος καὶ τὴ κατασκευή του (πιάνο, βιολί, κιθάρα, ἀκκορντεὸν κλπ), δίνει περισσοτέρους ἢ ὀλιγοτέρους φθόγγους.

9. Τὸ σύνολον τῶν φθόγγων ἀπὸ τὸ χαμηλότερο (βαθύτερο) ὡς τὸν ὑψηλότερο (ὀξύτερο) ποὺ εἶναι, ἕνας πρὸς ἕναν, ἀντιληπτοὶ στ' αὐτί μας — γιατὶ ὑπάρχει καὶ ἀπειρία χαμηλοτέρων καὶ ὀξυτέρων ἤχων ποὺ μόνο μὲ ἐπιστημονικὰ μέσα διαπιστώνονται — ὀνομάζεται μουσικὴ ἔκτασις.

Ή ἔκτασις τῆς φωνῆς τοῦ ἀνθρώπου καὶ ἡ ἔκτασις τοῦ κάθε μουσικοῦ ὀργάνου εἶναι τμήματα τῆς μουσικῆς ἐκτάσεως.

**10.** Έπτὰ κατὰ σειρὰν ὀξύτητος διαδοχικοὶ φθόγγοι στὴ Βυζαντινὴ μουσικὴ ἔχουν τὰ έξῆς ὀνόματα :

#### Nη Πα Βου Γα Δι Κε $Z\omega^{1}$

11. Ή σειρὰ τῶν φθόγγων ποὺ προχωρεῖ διαδοχικὰ ἀπὸ τὸ χαμηλότερο στοὺς ὑψηλοτέρους ὀνομάζεται ἀνιοῦσα διαδοχή. Ἡ σειρὰ τῶν φθόγγων ποὺ προχωρεῖ διαδοχικὰ ἀπὸ τὸν ὑψηλότερο στοὺς χαμηλοτέρους ὀνομάζεται κατιοῦσα διαδοχή.

Στὴν Εὐρωπαϊκή μουσική οἱ έπτὰ αὐτοὶ φθόγγοι ἔχουν τὰ έξῆς ὀνόματα: Do Re Mi Fa Sol La Si καὶ είναι παρμένα ἀπὸ τὴν πρώτη συλλαβὴ κάθε στίχου ένὸς ὕμνου στὸν Ἰωάννη Βαπτιστή.

<sup>1.</sup> Τὰ ὀνόματα τῶν φθόγγων στὴ Βυζαντινὴ μουσικὴ προῆλθαν ἀπὸ τὰ γράμματα τοῦ Ἑλληνικοῦ ἀλφαβήτου ἀντίστοιχα ὡς ἐξῆς:

- 12. "Αν, μετὰ τὸν Ζω ἐκφωνήσουμε τὸν ἀμέσως ὑψηλότερο φθόγγο διαπιστώνομε πὼς ἔχει τὸ ἴδιο ἄκουσμα μὲ τὸν Νη, διαφέρει ὅμως ἀπ' αὐτὸν γιατὶ βρίσκεται σὲ ὑψηλότερο ἀκουστικὸ ἐπίπεδο. Γι' αὐτό, ὁ ὄγδοος αὐτὸς φθόγγος, παίρνει τὸ ἴδιο ὄνομα μὲ τὸν πρῶτο καί, γιὰ διάκρισι, ἄς τὸ γράψουμε Νη'.
- 13. Ἡ ἀκουστικὴ ὁμοιότης τοῦ πρώτου φθόγγου Νη, τῆς ἀνιούσης διαδοχῆς τῶν ὀκτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω Νη΄, μὲ τὸν ὄγδοο Νη΄ ὀνομάζεται ἀντιφωνία.

Τὴν ἴδια ἔννοια ἐκφράζομε κι' ὅταν λέμε πὸς ὁ Νη΄ είναι ἡ ἐπὶ τὸ ὁξὸ ἀντιφωνία τοῦ Νη, ἢ ἀντίθετα, ὁ Νη είναι ἡ ἐπὶ τὸ βαρὸ ἀντιφωνία τοῦ Νη΄.

Αν σχηματίσουμε ἀνιούσες διαδοχὲς ἀπὸ ὀκτὰ φθόγγους ἀρχίζοντας κάθε φορὰ ἀπὸ καθέναν ἀπὸ τοὺς ὑπολοίπους φθόγγους: Πα Βου Γα Δι Κε Ζω παρατηρούμε πὰς κάθε ὄγδοος, ὁ ὑψηλότερος φθόγγος τῆς κάθε ἀνιούσης διαδοχῆς, είναι ἡ ἐπὶ τὸ ὀξὸ ἀντιφωνία τοῦ πρώτου καὶ γι' αὐτὸ παίρνει τὸ ίδιο μ' αὐτὸν ὄνομα.

Αν σχηματίσουμε κατιούσες διαδοχές ἀπὸ ὀκτὼ φθόγγους ἀρχίζοντας κάθε φορὰ ἀπὸ καθέναν ἀπὸ τοὺς ἑπτὰ φθόγγους Ζω Κε Δι Γα Βου Πα Νη , παρατηρούμε πὼς κάθε ὄγδοος, ὁ χαμηλότερος φθόγγος τῆς κάθε κατιούσης διαδοχῆς, εἶναι ἡ ἐπὶ τὸ βαρὰ ἀντιφωνία τοῦ πρώτου ὑψηλοτέρου ἀπ᾽ ὅλους, καὶ γι᾽ αὐτὸ παίρνει τὸ ἴδιο ὄνομα μ᾽ αὐτόν.

'Απὸ τὸ φαινόμενο αὐτὸ τῆς ἀντιφωνίας ἀποδεικνύεται πὼς στὴ φύσι ὑπάρχει μόνον ἡ σειρὰ τῶν ἐπτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω καὶ ἐπαναλαμβάνεται διαδοχικὰ ἐπὶ τὸ ὀξὸ καὶ ἐπὶ τὸ βαρύ.

- 14. Ἡ συνεχής διαδοχή τῶν ὀκτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω Νη΄, ὅπου ὁ Νη΄ εἰναι ἡ ἐπὶ τὸ ὀξὸ ἀντιφωνία τοῦ Νη ἢ ἀντίθετα, ὁ Νη εἰναι ἡ ἐπὶ τὸ βαρὸ ἀντιφωνία τοῦ Νη΄ ὀνομάζεται κλίμαξ ἢ ὁκταφωνία ἡ διαπασῶν.
- 15. 'Ο πρώτος φθόγγος τῆς κλίμακος ὀνομάζεται βάσις τῆς κλίμακος.'
  'Ο ὄγδοος φθόγγος τῆς κλίμακος ὀνομάζεται κορυφὴ τῆς κλίμακος.



<sup>1.</sup> Στήν Εύρωπαϊκή μουσική ὁ πρώτος φθόγγος τῆς κλίμακος ὀνομάζεται τονική.

- 16. Τὴν μουσικὴ κλίμακα μποροῦμε νὰ τὴν παρομοιάσουμε μὲ μιὰ πραγματικὴ κλίμακα (σκάλα), ποὺ κάθε βαθμίδα (σκαλοπάτι) της εἶναι κι' ἕνας φθόγγος.
- 17. Συνεχής ἀνάβασις στὴν κλίμακα ὀνομάζεται ἡ ἀνιοῦσα διαδοχὴ τῶν φθόγγων της (βαθμίδα πρὸς βαθμίδα) ἀπὸ τοὺς χαμηλοτέρους στοὺς ὑψηλοτέρους, π.χ. Πα Βου Γα Δι Κε κλπ.

Συνεχής κατάβασις στὴν κλίμακα ὀνομάζεται ἡ κατιούσα διαδοχὴ τῶν φθόγγων της (βαθμίδα πρὸς βαθμίδα) ἀπὸ τοὺς ὑψηλοτέρους στοὺς χαμηλοτέρους, π.χ. Κε Δι Γα Βου Πα κλπ.

18. Ύπερβατὴ ἀνάβασις στὴν κλίμακα ὀνομάζεται ἡ ἄμεσος μετάβασις ἀπὸ ἕνα φθόγγο της σ' ὁποιονδήποτε ἄλλον ὑψηλότερο, ἐκτὸς ἀπὸ τὸν ἀμέσως ἑπόμενο ὑψηλότερό του, ὥστε νὰ ὑπερπηδῶνται ἕνας ἢ περισσότεροι φθόγγοι, π.χ. ἀπὸ τὸν Νη στὸν Βου, ἀπὸ τὸν Πα στὸν Δι, ἀπὸ τὸν Γα στὸν Νη΄ κλπ.

Ύπερβατὴ κατάβασις στὴν κλίμακα ὀνομάζεται ἡ ἄμεσος μετάβασις ἀπὸ ἕνα φθόγγο της σ' ὁποιονδήποτε ἄλλο χαμηλότερο, ἐκτὸς ἀπὸ τὸν ἀμέσως χαμηλότερό του, ώστε νὰ ὑπερπηδῶνται ἕνας ἢ περισσότεροι φθόγγοι, π.χ. ἀπὸ τὸν Νη΄ στὸν Γα, ἀπὸ τὸν Δι στὸν Πα, ἀπὸ τὸν Βου στὸν Νη κλπ.

- 19. Ἡ ἐπανάληψις τοῦ ἰδίου φθόγγου δύο ἢ περισσότερες φορὲς ὀνομάζεται ταὐτοφωνία, π.χ. Νη Νη, Πα Πα Πα, Γα Γα Γα
- 20. Έπειδή, ὅπως εἴπαμε (§14), συνεχὴς διαδοχὴ ὀκτὰ φθόγγων, ὅπου ὁ ὄγδοος εἶναι ἡ ἐπὶ τὸ ὀξὰ ἀντιφωνία τοῦ πρώτου ἡ ἀντίθετα, ὁ πρῶτος εἶναι ἡ ἐπὶ τὸ βαρὰ ἀντιφωνία τοῦ ὀγδόου, ὀνομάζεται κλῖμαξ κι' ἐπειδὴ σ' ὁποιαδήποτε διαδοχικὴ σειρὰ ὀκτὰ φθόγγων ὁ ὄγδοος εἶναι ἀντιφωνία τοῦ πρώτου (§13), παίρνοντας γιὰ βάσι καθέναν ἀπὸ τοὺς ἐπτὰ φθόγγους Νη Πα Βου Γα Δι Κε Ζω μποροῦμε νὰ σχηματίσουμε ἰσάριθμες κλίμακες ἐπὶ τὸ ὀξὰ Νη Νη΄, Πα Πα΄, Βου Βου΄, Γα Γα΄, Δι Δι΄, Κε Κε΄, Ζω Ζω΄ καὶ ἰσάριθμες κλίμακες ἐπὶ τὸ βαρὰ Νη΄ Νη, Ζω ζω, Κε κε, Δι δι, Γα γα, Βου βου, Πα πα, Νη νη κι' ὅπου ζω, κε, δι, γα, βου, πα, νη, εῖναι ἡ κατιοῦσα διαδοχὴ τῶν φθόγγων κάτω ἀπὸ τὸν Νη.
- 21. Κάθε κλῖμαξ παίρνει τὸ ὄνομά της ἀπὸ τὴ βάσι της. Ἡ Νη Νη΄ εἶναι κλῖμαξ τοῦ Νη, ἡ Πα Πα΄ εἶναι κλῖμαξ τοῦ Πα, ἡ Βου Βου΄ εἶναι κλῖμαξ τοῦ Βου κτλ.

#### ΕΚΤΑΣΙΣ ΤΗΣ ΕΚΚΛΗΣΙΑΣΤΙΚΗΣ ΜΟΥΣΙΚΗΣ

22. Ἡ κλῖμαξ Νη΄ - Νη΄΄ ποὺ σχηματίζεται μὲ βάσι τὴν κορυφὴ τῆς κλίμακος Νη - Νη΄, ὀνομάζεται ὀξεῖα διαπασῶν.

Ή κλίμαξ Νη - νη, ποὺ σχηματίζεται μὲ κορυφή τὴν βάσι τῆς κλίμακος Νη - Νη΄, ὀνομάζεται βαρεία διαπασῶν.

Ή ἀρχικὴ κλίμαξ Νη - Νη΄ ὀνομάζεται μέση διαπασῶν.

- 23. Ἡ ἐκκλησιαστικὴ μουσικὴ ἐπειδὴ ἐκτελεῖται μόνο μὲ τὴν ἀνθρώπινη φωνὴ περιορίζεται στὴν ἔκτασι δύο διαπασῶν ἢ, ὅπως λέμε, μιᾶς δὶς διαπασῶν, τῆς δι Δι΄.
- 24. Οἱ φθόγγοι τῆς δὶς διαπασῶν δι Δι' ἀνήκουν σὲ τρεῖς φωνητικὲς περιοχές τὴν Ύπάτη, τὴ Μέση καὶ τὴ Νήτη.

Οἱ φθόγγοι δι κε τῆς βαρείας διαπασῶν ἀνήκουν στὴν Ύπάτη. 1

Ή Μέση ἀρχίζει ἀπὸ τὸν ζω τῆς βαρείας διαπασῶν καὶ τελειώνει μὲ τὸν Κε τῆς μέσης διαπασῶν.

Οἱ φθόγγοι Ζω Νη΄ τῆς μέσης διαπασῶν καὶ οἱ ὑπόλοιποι μέχρι καὶ τὸν Δι΄ τῆς ὀξείας διαπασῶν ἀνήκουν στὴ Νήτη².



Τὸ σχημα αὐτὸ εἴναι παραστατικὸ τῆς σειρᾶς τῶν τριῶν διαπασῶν (βαρείας, μέσης καὶ ὀξείας), τῆς δὶς διαπασῶν δι - Δι΄, τῶν τριῶν περιοχῶν (Ὑπάτης, Μέσης καὶ Νήτης) στὶς ὁποῖες ἀνήκουν οἱ φθόγγοι της καὶ ποὺ ἀποτελοῦν τὴν ἔκτασι τῆς ἐκκλησιαστικῆς μουσικῆς³.

<sup>1.</sup> Υπάτη σημαίνη ἀνωτάτη. Οἱ πιὸ χαμηλοί φθόγγοι, ἐπειδὴ παράγονται ἀπὸ τὸ ἀνώτατο μέρος τῆς χορδῆς τῶν μουσικῶν ὀργάνων, ἀποτελοῦν τὴν περιοχὴ τῆς Ύπάτης.

<sup>2.</sup> Νήτη (ἀσυναίρετα νεάτη) σημαίνει ἐσχάτη, ἡ πιὸ τελευταΐα. Οἱ πιὸ ὑψηλοὶ φθόγγοι, ἐπειδή παράγονται ἀπὸ τὸ κατώτερο, ἔσχατο μέρος τῆς χορδῆς τῶν μουσικῶν ὀργάνων, ἀποτελοῦν τὴν περιοχὴ τῆς Νήτης.

<sup>3.</sup> Γιὰ τοὺς φθόγγους, τὶς σχέσεις τῆς ὀξύτητος μεταξύ των, τὴν κλίμακα τοῦ Νη καὶ τὶς κλίμακες τῶν ἄλλων φθόγγων γίνεται λόγος ἐκτενέστερα στὸ Κεφάλαιο Ε΄.

#### β' Ο ΧΡΟΝΟΣ

- 25. Σ' ενα μουσικό έργο δλοι οἱ φθόγγοι ποὺ τὸ συνθέτουν δὲν εἶναι τῆς ἴδιας διαρκείας. 'Ανάλογα μὲ τὴν ἐξέλιξι τῆς μελωδίας ἄλλοι φθόγγοι διαρκοῦν λίγο, ἄλλοι πολύ, ἄλλοι λιγώτερο, ἄλλοι περισσότερο κτλ.
  - Ο προσδιορισμός τῆς διαρκείας τῶν φθόγγων ὀνομάζεται χρόνος.
- **26.** Τὸ μέτρημα τοῦ χρόνου γίνεται μὲ ἰσόχρονες ρυθμικὲς κινήσεις τοῦ χεριοῦ πρὸς τὰ ἐπάνω καὶ πρὸς τὰ κάτω.

Η κίνησις του χεριού πρός τὰ ἐπάνω ὀνομάζεται ἄρσις.

Ή κίνησις τοῦ χεριοῦ πρὸς τὰ κάτω ὀνομάζεται θέσις.

- 27. Μία θέσις μαζί μὲ τὴν ἐπόμενή της ἄρσι ἀποτελοῦν ἔνα μουσικὸ χρόνο. Είναι, λοιπόν, ἡ θέσις καὶ ἡ ἄρσις τὰ δύο ἴσα ἡμιχρόνια τοῦ μουσικοῦ χρόνου.
- 28. "Αν τὸ χέρι μας, ποὺ ἐκτελεῖ τὶς κινήσεις τῆς θέσεως καὶ τῆς ἄρσεως, χτυπᾶ σὲ κάθε θέσι σ' ἕνα σταθερὸ ἐμπόδιο (στὸ γόνατο, στ' ἄλλο μας χέρι, στὸ θρανίο κλπ), κάθε χτύπος σημειώνει κι' ἕνα μουσικὸ χρόνο ἡ, ὅπως ἀπλούστερα λέμε, ἕνα χρόνο, γιατὶ γιὰ νὰ ἐπακολουθήση ὁ ἐπόμενος χτύπος, τὸ χέρι μας θὰ κινηθῆ, ἀναπόδραστα, πρὸς τὰ ἐπάνω, ἐκτελῶντας, κατ' αὐτὸν τὸν τρόπο, καὶ τὴν ἄρσι.
- **29.** Σὲ μιὰ μελωδία ὅλοι οἱ χρόνοι της πρέπει νὰ εἶναι ἀπολύτως ἴσης διαρκείας μεταξύ των.

'Ισοχρόνους καὶ ρυθμικούς χτύπους ἔχει τὸ γνωστὸ ἐκκρεμὲς τοῦ Φρολογίου. $^1$ 

#### γ΄ Η ΕΚΦΡΑΣΙΣ ἢ ΠΟΙΟΤΗΣ

- **30.** "Αν, ἀπὸ τὴν ἀρχὴ ὡς τὸ τέλος μιᾶς μελωδίας, ὅλοι οἱ φθόγγοι της ἐκφέρωνται δυνατὰ ἢ σιγανὰ ἢ κατὰ κάποιον ἄλλον τρόπο, μὲ κάποια, ὡρισμένη, τὴν ἴδια πάντοτε, ὰς ποῦμε, ποιότητα προκαλεῖται, ἀναπόφευκτα, μονοτονία καὶ ξηρότης.
- 31. 'Αντίθετα, ἐκφέροντας κάθε φθόγγο, ἢ μιὰ σειρὰ ἀπὸ φθόγγους ἡ μιὰ μελωδικὴ πλοκή, ὅπως ἡμεῖς θέλουμε, δυνατὰ ἢ ἤπια, ἠπιώτερα ἢ δυνατώτερα, μὲ προοδευτικὴ αὕξησι ἢ ἐλάττωσι τῆς ἐντάσεως ἐκφορᾶς, μὲ ὁποιοδήποτε ἄλλο ἐπιθυμητὸ καὶ ἐνδεικνυόμενο γιὰ τὴν κάθε περίστασι φωνητικὸ χρωματισμό, ἐπιτυγχάνομε νὰ ἔχουμε σὲ ὡρισμένα τμήματα τῆς μελωδίας τονισμούς, σ' ἄλλα της μέρη μεταπτώσεις, σ' ἄλλα τμήματά της διαφόρους λεπτούς χρωματισμούς καὶ σ' ἄλλα μέρη της δυναμικὲς ἀντιθέσεις.

Ή ποιότης πού, κατ' αὐτὸν τὸν τρόπο, ἀποκτοῦν οἱ φθόγγοι καὶ οἱ μελωδικὲς θέσεις ὀνομάζεται ἔκφρασις ἢ ποιότης καὶ εἶναι τὸ στοιχεῖο ποὺ προσδίνει στὴ μουσικὴ σύνθεσι ἰδιαίτερη ζωὴ καὶ θέλγητρο.

<sup>1.</sup> Γιὰ τὸ χρόνο γίνεται λόγος ἐκτενέστερα στὰ Κεφάλαια Γ' καὶ Δ' περί Ρυθμοῦ καὶ Χρονικῆς ἀγωγῆς.

#### ΚΕΦΑΛΑΙΟΝ Β΄

#### ΤΑ ΣΗΜΕΙΑ ΤΗΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

- 32. Γιὰ νὰ παραστήσουμε συμβολικὰ τοὺς φθόγγους, τὴ χρονική διάρκεια καὶ τὴν ἔκφρασί τους, γιὰ νὰ γράψουμε ἕνα μουσικὸ κείμενο χρησιμοποιούμε δρισμένα σημεῖα, τὰ σημεῖα τῆς μουσικῆς γραφῆς.
- 33. 'Η ἀρχαῖα ἑλληνικὴ μουσικὴ γραφόταν μὲ τὰ γράμματα τοῦ ἀλφαβήτου ἀκέραια, ὄρθια, ἀνάποδα ἢ ἀκρωτηριασμένα. Σὲ διάφορες ἐποχὲς καὶ ἡ Βυζαντινὴ καὶ ἡ Εὐρωπαϊκὴ μουσικὴ χρησιμοποίησαν διαφορετικὰ σημεῖα. Καὶ σήμερα, ἄλλα εἶναι τὰ σημεῖα τῆς γραφῆς τῆς μιᾶς κι' ἄλλα τῆς ἄλλης.
- 34. Ἡ σημειογραφία ἢ παρασημαντική, τὸ γραφικό δηλ. σύστημα ποὺ χρησιμοποιεῖ σήμερα ἡ Βυζαντινὴ μουσικὴ, καθιερώθηκε ἀπὸ τὸ Οἰκουμενικὸ Πατριαρχεῖο τὸ ἔτος 1815 μὲ τὴν εἰσήγησι τῶν τριῶν μεγάλων μουσικοδιδασκάλων καὶ μελοποιῶν Χρυσάνθου Μητροπολίτου Προύσης, Γρηγορίου τοῦ Πρωτοψάλτου καὶ Χουρμουζίου τοῦ Χαρτοφύλακος.
  - 35. Τὴν παρασημαντική ἀπαρτίζουν:
    - οί μαρτυρίες
  - τὰ φθογγόσημα ἢ χαρακτῆρες ποσότητος
  - τὰ σημεία τοῦ χρόνου ἢ ἔγχρονες ὑποστάσεις
- και τὰ σημεία τῆς ἐκφράσεως ἢ χαρακτῆρες ποιότητος,

η άχρονες υποστάσεις.

36. Μὲ τὶς μαρτυρίες καὶ τὰ φθογγόσημα παριστάνονται οἱ φθόγγοι. Μὲ τὰ σημεῖα τοῦ χρόνου προσδιορίζεται ἡ διάρκεια τῶν φθόγγων καὶ μὲ τὰ σημεῖα τῆς ἐκφράσεως ὑποδηλώνεται ἡ ἔκφρασις¹.

Κι' έρχόμαστε τώρα στην έξέτασι των σημείων αὐτῶν μὲ τη σειρά τους.

#### α' ΟΙ ΜΑΡΤΥΡΙΕΣ

37. Στούς 15 φθόγγους τῆς φυσικῆς δὶς διαπασῶν κλίμακος ἀντιστοιχοῦν τὰ ἑξῆς σημεῖα ποὺ ὀνομάζονται μαρτυρίες τῶν φθόγγων.

<sup>1.</sup> Στὰ σημεῖα τῆς μουσικῆς γραφῆς ἀνήκουν ἐπίσης τὰ σημεῖα ὰλλοιώσεως, ( $\S$ 144-159) οἱ φθορὲς ( $\S$ 24\$) καὶ οἱ χρόες (Κεφ. ΙΞΞ΄).

<sup>2.</sup> Έκτος ἀπό τίς μαρτυρίες τῶν φθόγγων ὑπάρχουν καὶ οἱ μαρτυρίες τῶν ἤχων (§367).

- **38.** Κάθε μαρτυρία ἀποτελεῖται ἀπὸ ἕνα συμβολικὸ σημεῖο, τὸ μαρτυρικὸ σημεῖο¹ καὶ ἀπὸ τὸ ἀρχικὸ γράμμα τοῦ φθόγγου ποὺ ἀνήκει.
- 39. Όπως καὶ παραπάνω φαίνεται, στὶς μαρτυρίες τῶν φθόγγων τῆς 'Υπάτης τὸ γράμμα τοῦ φθόγγων γράφεται κάτω ἀπὸ τὸ μαρτυρικὸ σημεῖο  ${}^{\mbox{\tiny $\Lambda$}}_{\mbox{\tiny $\Lambda$}}$   ${}^{\mbox{\tiny $\Lambda$}}_{\mbox{\tiny $\Lambda$}}$ , στὶς μαρτυρίες τῶν φθόγγων τῆς Μέσης τὸ γράμμα τοῦ φθόγγου γράσεται ἐπάνω ἀπὸ τὸ μαρτυρικὸ σημεῖο  ${}^{\mbox{\tiny $\Lambda$}}_{\mbox{\tiny $\Lambda$}}$   ${}^{\mbox{\tiny $\Lambda$}}_{\mbox{\tiny $$
- **40.** 'Η διαφορετική αὐτή θέσις τῶν μαρτυρικῶν σημείων, τῶν γραμμάτων τῶν φθόγγων καὶ ὁ τονισμός των εἶναι δηλωτικὰ τῆς φωνητικῆς περιοχῆς ποὺ ἀνήκει ὁ φθόγγος τῆς κάθε μαρτυρίας.
- 41. Οἱ μαρτυρίες τῶν φθόγγων δὲν ἔχουν φωνητικὴ ἀξία, δὲν ἐκφέρονται.
- 42. Μαρτυρία φθόγγου ποὺ γράφεται στὴν ἀρχὴ τοῦ μουσικοῦ κειμένου δείχνει τὸ φθόγγο ποὺ γίνεται βάσις τῆς μελωδίας μαρτυρίες τῶν φθόγγων ποὺ γράφονται σ' ἐνδιάμεσα σημεῖα τοῦ κειμένου ἀντιστοιχοῦν στὸν προηγούμενό τους φθόγγο καὶ μαρτυρία φθόγγου ποὺ γράφεται στὸ τέλος τοῦ κειμένου φανερώνει τὸν τελευταῖο φθόγγο τῆς μελωδίας².

#### β΄ ΤΑ ΦΘΟΓΓΟΣΗΜΑ ἢ ΧΑΡΑΚΤΗΡΕΣ ΠΟΣΟΤΗΤΟΣ

- **43.** Τὰ σημεῖα πού, ἀντίθετα μὲ τἰς μαρτυρίες τῶν φθόγγων, ἔχουν φωνητικὴ ἀξία, παριστάνουν τοὺς φθόγγους καὶ ἐκτελοῦνται φωνητικά, ὀνομά-ζονται φθογγόσημα ἢ χαρακτῆρες ποσότητος.
  - 44. Τὰ φθογγόσημα εἶναι δέκα.

Πέντε ἀπὸ αὐτά:

τὸ 'Ολίγον

ή Πεταστή 🔍

τὰ Κεντήματα 🔻 🔻

τὸ Κέντημα ι καὶ ἡ Ύψηλὴ

δείχνουν ἀνάβασι σὲ ὑψηλοτέρους φθόγγους ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε καὶ ὀνομάζονται φθογγόσημα ἀναβάσεως.

<sup>1.</sup> Τό μαρτυρικό σημείο είναι γνωριστικό τῆς κλίμακος πού ἀνήκει ὁ φθόγγος (§ 238 - 24%).

<sup>2.</sup> Οὶ μαρτυρίες τῶν φθόγγων είναι συνάμα σημεῖα ἀναπνοῆς (§ 62 β΄).

Τέσσερα φθογγόσημα:

ή Απόστροφος

τὸ Ἐλαφρὸν

ή Ύπορροή ...

καὶ ή Χαμηλή

δείχνουν κατάβασι σὲ χαμηλοτέρους φθόγγους ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε καὶ ὀνομάζονται φθογγόσημα καταβάσεως.

Τὸ δέκατο φθογγόσημο,

τὸ Ίσον

φανερώνει τὴν ἐπανάληψι τοῦ προηγουμένου φθόγγου καὶ εἶναι τὸ φθογγόσημο τῆς ταὐτοφωνίας.

#### Ποσοτική άξία τῶν φθογγοσήμων

- **45.** Τὰ φθογγόσημα ἔχουν τριπλῆ ἀξία. Ποσοτικὴ (φθογγική), χρονικὴ καὶ ἐκφραστικὴ (ποιοτική). Θὰ μιλήσουμε γιὰ τὴν ποσοτική τους ἀξία.
- **46.** Γιὰ τὴ χρονικὴ ἀξία τῶν φθογγοσήμων γίνεται λόγος στὰ σημεῖα τοῦ χρόνου (§55) καὶ γιὰ τὴν ἐκφραστικὴ (ποιοτική) τους ἀξία στὰ σημεῖα τῆς ἐκφράσεως (§64).
- 47. Ἡ ποσοτικὴ (φθογγικὴ) ἀξία τῶν φθογγοσήμων δὲν εἴναι ἀπόλυτη. Μεμονωμένο φθογγόσημο δὲν ἐκφράζει κανένα φθόγγο. Ἡ ποσοτικὴ ἀξία τῶν φθογγοσήμων εἶναι σχετικὴ μὲ τὴ θέσι ποὺ κατέχουν στὴ μουσικὴ γραμμὴ κι' ἐξαρτᾶται ἀπὸ τὸ φθόγγο τῆς μαρτυρίας ποὺ προηγεῖται ἢ τὸ φθόγγο ποὺ φανερώνει τὸ προηγούμενο φθογγόσημο.
- 48. 'Απὸ τὰ φθογγόσημα ἀναβάσεως, τὸ 'Ολίγον ἡ Πεταστὴ καὶ τὰ Κεντήματα φανερώνουν ἀνάβασι στὸν ἀμέσως ὑψηλότερο φθόγγο ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε, π.χ. γ Πα Βου Γα ?? Δι ἢ Κε Ζω Νη Πα q Τὸ Κέντημα ι δείχνει ὑπερβατὴ ἀνάβασι δύο φθόγγων ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε, π.χ. ἀπὸ τὸν Νη στὸν Βου, ἀπὸ τὸν Γα στὸν Κε κ.ο.κ. καὶ ἡ 'Υψηλὴ ∫ σημαίνει ὑπερβατὴ ἀνάβασι τεσσάρων φθόγγων ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε, π.χ. ἀπὸ τὸν Νη στὸν Δι, ἀπὸ τὸν Πα στὸν Κε κ.ο.κ.¹.
- 49. 'Απὸ τὰ φθογγόσημα καταβάσεως, ἡ 'Απόστροφος ς φανερώνει κατάβασι στὸν ἀμέσως χαμηλότερο φθόγγο ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε, π.χ.  $\stackrel{\vee}{\text{cl}}$   $\stackrel{\vee}{\text{Zw}}$   $\stackrel{\vee}{\text{Nη}}$   $\stackrel{\vee}{\text{Πα}}$   $\stackrel{\vee}{\text{Boυ}}$   $\stackrel{\vee}{\text{Πα}}$   $\stackrel{\vee}{\text{Nη}}$   $\stackrel{\vee}{\text{Cl}}$   $\stackrel{\vee}$

<sup>1.</sup> Δὲν παραθέτομε παραδείγματα γιατί, ὅπως θὰ δοῦμε (§ 52), τὸ Κέντημα καὶ ἡ Ύψηλὴ ποτὲ δὲν γράφονται μόνα τους ἀλλὰ σύνθετα μὲ τὸ Ὁλίγον καὶ τὴν Πεταστή.

κατάβασι στὸ δεύτερο φθόγγο ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε,

ή Υπορροή • ἐσοδυναμεῖ μὲ δύο ᾿Αποστρόφους (•= >> ) καὶ σημαίνει συνεχή κατάβασι δύο φθόγγων ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε,

$$\pi.\chi. \quad \stackrel{\chi}{\ddot{q}} \quad \overline{Z\omega} \quad \underline{K\epsilon} \quad \underline{\Gamma\alpha} \quad \underline{\Pi A} \quad \stackrel{\gamma}{O_1}$$

καὶ ἡ Χαμηλὴ τοημαίνει ὑπερβατὴ κατάβασι στὸν τέταρτο φθόγγο ἀπὸ ἐκεῖνον ποὺ βρισκόμαστε, π.χ.  $\frac{1}{22}$   $\frac{1}{22}$   $\frac{1}{22}$   $\frac{1}{22}$   $\frac{1}{22}$ 

50. Τέλος, τὸ φθογγόσημο τῆς ταὐτοφωνίας, τὸ Ίσον ἐκφράζει ὅπως εἴδαμε — τὸ φθόγγο τῆς προηγουμένης του μαρτυρίας ἢ τοῦ προηγουμένου φθόγγσήμου, π.χ.  $\frac{\lambda}{\sqrt{N\eta}}$   $\frac{1}{\sqrt{N\eta}}$   $\frac{N$ 

#### Τὰ σύνθετα φθογγόσημα καὶ ή ποσοτική τους άξία

- 51. 'Απὸ τὰ δέκα φθογγόσημα, τὰ τὸ τὸ ἡ Ϳ καὶ ἡ ποτὲ δὲν γράφονται μόνα τους. Συντίθενται κατὰ διαφόρους τρόπους μὲ τὸ τὸ τὸ τὴν τὴν τὸ καὶ τὴ καὶ ἀποτελοῦν τὰ σύνθετα φθογγόσημα.
- 52. Γιὰ τὴν παρασήμανσι τῶν ἐκκλησιαστικῶν μελωδιῶν εἴναι ἀρκετὰ τὰ σύνθετα φθογγόσημα ποὺ περιλαμβάνονται στὸν πίνακά μας τῆς ἑπομένης σελίδος μὲ τἰς κατηγορίες καὶ τὶς ὑποδιαιρέσεις τους.

Οἱ ἀριθμοὶ δείχνουν τὴν ποσοτική τους ἀξία σὲ ἀνάβασι καὶ κατάβασι ποὺ στὰ μικτὰ ξεχωρίζει μὲ τὸ + καὶ τὸ —

53. Όπως βλέπομε στὸν πίνακα αὐτόν, ἡ σύνθεσις εἶναι παραθετική, ὅπου ὅλα τὰ φθογγόσημα ποὺ ἀπαρτίζουν τὸ σύνθετο φθογγόσημο διατηροῦν τὴν ποσοτική τους ἀξία καὶ οἱ φθόγγοι τους ἐκφέρονται ὁ ἕνας μετὰ τὸν ἄλλον, π.χ.

1+1 1+1 0-1

ὅπου λαμβάνεται ὑπ'ὄψιν ἡ συνολικὴ ποσοτικὴ ἀξία τῶν φθογγοσήμων τοῦ συνθέτου φθογγοσήμου, π.χ.

+2 +3 +5 . Τέλος, ἡ σύνθεσις εἶναι παραπληρωματική, ὅπου ἕνα ἀπὸ τὰ φθογγόσημα τοῦ συνθέτου φθογγοσήμου

$$\pi.\chi.$$
  $\frac{1}{+2}$   $\frac{1}{+4}$   $\frac{1}{+6}$   $\frac{1}{+4+1}$   $\frac{1}{-2}$   $\frac{3}{-3}$   $\frac{1}{0}$   $\frac{1}{-1-1+1}$   $\frac{1}{-4+1}$ 

χάνει τὴν ποσοτική του ἀξία,

#### ΠΙΝΑΞ ΣΥΝΘΕΤΩΝ ΦΘΟΓΓΟΣΗΜΩΝ

| ΤΑΥΤΟΦΩΝΙΑΣ                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Jo<br>Jo                                                                                                                             |
| ΑΝΑΒΑΣΕΩΣ                                                                                                                            |
| Συνεχοῦς ἀναβάσεως:                                                                                                                  |
| $\frac{1}{1+1}$ $\frac{1}{1+1}$ $\frac{1}{1+1}$ $\frac{1}{1+1}$ $\frac{1}{1+1}$ $\frac{1}{1+1}$ $\frac{1}{1+1}$ Υπερβατῆς ἀναβάσεως: |
|                                                                                                                                      |
| Μικτῆς ὰναβάσεως:                                                                                                                    |
| $\frac{1}{2+1}  \frac{1}{4+1}  \frac{1}{5+1}  \frac{1}{6+1}$                                                                         |
| ΚΑΤΑΒΑΣΕΩΣ                                                                                                                           |
| ΄Απλῆς καταβάσεως:                                                                                                                   |
| $\frac{1}{2}$                                                                                                                        |
| Συνεχοῦς καταβάσεως:                                                                                                                 |
| 1+1 1+1 1+1 1+1                                                                                                                      |
| Ύπερβατῆς καταβάσεως:                                                                                                                |
| 20 3 3 4 4 5 6 7 8 9 10                                                                                                              |
| ΜΙΚΤΩΝ                                                                                                                               |
| Ταὐτοφωνίας μὲ ἀπλῆ ἀνάβασι:                                                                                                         |
| Ταὐτοφωνίας μὲ ἀπλῆ κατάβασι:                                                                                                        |
| 'Απλής καταβάσεως καὶ ἀναβάσεως : ———————————————————————————————————                                                                |
| Συνεχούς καταβάσεως μὲ ἀπλῆ ἀνάβασι:                                                                                                 |
| Ύπερβατῆς καταβάσεως μὲ ἀπλῆ ἀνάβασι:                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 |

**54.** Τὸ σύνθετο φθογγόσημο συνεχοῦς καταβάσεως δύο φθόγγων **΄ ΄** ονομάζεται Συνεχὲς 'Ελαφρὸν.

#### γ΄ ΤΑ ΣΗΜΕΙΑ ΤΟΥ ΧΡΟΝΟΥ

ή

#### ΕΓΧΡΟΝΕΣ ΥΠΟΣΤΑΣΕΙΣ

**55. Όπως εἴδαμε (§45-46),** τὰ φθογγόσημα ἐκτὸς ἀπὸ τὴν ποσοτική τους ἀξία ἔχουν καὶ ὡρισμένη χρονικὴ ἀξία.

Τὰ σύνθετα φθογγόσημα, ἐκτὸς ἀπὸ τὸ  $\sim$  κι' ἐκεῖνα ποὺ τὸ περιέχουν, εχουν ἕνα χρόνο γιὰ κάθε τους φθόγγο, π.χ.  $\sim$  1 χρόνος,

1+1 χρόνοι, 1+1+1 χρόνοι.

**56.** Ή παρασήμανσις μεγαλυτέρας ἢ μικροτέρας διαρκείας² ἀπὸ ἕνα χρόνο γίνεται μὲ τὰ ἑξῆς σημεῖα, ποὺ ὀνομάζονται σημεῖα τοῦ χρόνου ἢ ἔγχρονες ὑποστάσεις.

τὸ Κλάσμα

τὴν ʿΑπλῆ

τὸ Γοργὸν

τὸ ʾΑργὸν

τὴν Παύσι

καὶ τὸν Σταυρὸ

+

Τὰ σημεῖα τοῦ χρόνου, ἐκτὸς ἀπὸ τὴν Παύσι (§61), γράφονται ἐπάνω ἢ κάτω ἀπὸ τὰ φθογγόσημα ποὺ ἡ χρονική τους ἀξία πρέπει νὰ διαφοροποιηθῆ.

#### 'Αξία τῶν σημείων τοῦ χρόνου

57. Τὸ Κλάσμα → αὐξάνει τὴ χρονικὴ ἀξία τοῦ φθογγοσήμου κατὰ ἕνα χρόνο, π.χ. — 1 χρόνος, 2 χρόνοι.

<sup>1.</sup> Γιὰ τὴ χρονικὴ καὶ ἐκφραστικὴ ἀξία τοῦ 🤾 βλ § 59 καὶ 64η.

<sup>2.</sup> Φθόγγος ποὺ διαρκεῖ ἕναν ἢ ὀλιγώτερο χρόνο ὀνομάζεται βραχύς. Φθόγγος ποὺ διαρκεῖ περισσότερο ἀπὸ ἕνα χρόνο ὀνομάζεται μακρός. Ἡ διάρκεια τοῦ μακροῦ φθόγγου ὀνομάζεται τον ἡ.

\*Ο φθόγγος τοῦ φθογγοσήμου ποὺ παίρνει τὸ • ἐκφέρεται σὰ νὰ ὑπάρχη ἔνα · συνηνωμένο μὲ τὸ φθογγόσημο αὐτὸ καὶ μὲ κάποιο ἐνδιάμεσο ἁπαλὸ κυμάτισμα τῆς φωνῆς¹, π.χ. · = - · ·

Τὸ 🕓 δὲν γράφεται στὰ 📭 στὸ ι στὴν J καὶ στὴν 🗸 .

Τὸ γράφεται ἐπάνω στὸ στὸ στὴν στὸ καὶ στὴ τ.χ.

Τὸ 🤝 γράφεται κάτω από τὴν 💟.

58. Ἡ Ἁπλῆ • αὐξάνει τὴ χρονικὴ ἀξία τοῦ φθόγγου κατὰ ἕνα χρόνο, π.χ. > 1 χρόνος, > 2 χρόνοι, χωρὶς ὅμως τὸ κυμάτισμα φωνῆς ποὺ ἀπαιτεῖ τὸ •

Ή - ποὺ γράφεται κάτω ἀπὸ τὴν • ἀνήκει στὸ δεύτερό της φθόγγο, • = > >

Ή · δὲν γράφεται στὰ ιι στὸ ι καὶ στὴν 🕽 Στὰ ἄλλα φθογγόσημα γράφεται πάντοτε ἀπὸ κάτω.

'Η · ὅταν διπλασιάζεται ἀποτελεῖ τὴ Διπλῆ · · καὶ αὐξάνει τὴ χρονικὴ ἀξία τοῦ φθογγοσήμου κατὰ 2 χρόνους,

'Η · ὅταν τριπλασιάζεται ἀποτελεῖ τὴν Τριπλῆ · · · καὶ αὐξάνει τὴ χρονικὴ ἀξία τοῦ φθογγοσήμου κατὰ 3 χρόνους,

γοσήμου κατὰ 
$$3$$
 χρόνους,  $\pi.\chi.$   $4$  χρόνοι  $4$   $4$  χρόνοι  $4$   $4$  χρόνοι.

Ή Τετραπλή ···· ή Πενταπλή ···· κλπ, ποὺ ἔχουν ἀνάλογη χρονικὴ ἀξία 4, 5 κλπ. χρόνων, σπάνια συναντῶνται.

59α΄. Τὸ Γοργὸν Γ είναι σημεΐον ὑποδιαιρέσεως τοῦ χρόνου.

Φθογγόσημο μὲ Γ ἔχει χρονικὴ ἀξία 1/2 χρόνου 2 καὶ ἐκτελεῖται στὴν ἄρσι τοῦ προηγουμένου χρόνου, π.χ.  $\theta$ έσις + ἄρσις = 1 χρόνος καὶ  $\theta$ έσις + ἄρσις = 1 χρόνος

<sup>1.</sup> Ὁ Χρύσανθος (Μέγα Θεωρητικὸν τῆς μουσικῆς (§120) γράφει: «Ὁ φθόγγος τοῦ χαρακτῆρος, ὅστις ἔχει τὸ Κλάσμα ἐξοδεύει δύο χρόνους καὶ ἐν τῆ διατριβῆ κυματίζεται τρόπον τινὰ ἡ φωνή». Κατ' αὐτὸν τὸν τρόπο, τὸ Κλάσμα μετέχει καὶ τῶν σημείωντῆςἐκφράσεως (§64).

<sup>2.</sup> Φθογγόσημο μὲ Γοργὸν ἀντιστοιχεῖ μὲ ὄγδοο τῆς Εὐρωπαϊκῆς μουσικῆς καὶ

Τὸ Γ ποὺ γράφεται ἐπάνω στὸ σύνθετο φθόγγόσημο τιὰ τὰ π.χ.  $\frac{\Gamma}{1/2+1} = \frac{1}{1/2+1} \frac{\kappa \alpha i}{1/2+1} \frac{\Gamma}{1/2+1} = \frac{1}{1/2+1/2+1}$ 

Έχομε τὶς ἐξῆς περιπτώσεις φθογγοσήμου μὲ Γ σχετικὰ μὲ τὸ προηγούμενο φθογγόσημο.

Όταν φθογγόσημο μὲ  $\Gamma$  ἔχη  $\cdot$  ἢ  $\cdot$   $\cdot$  ἢ  $\cdot$   $\cdot$  κλπ, μετὰ τὴν ἐκτέλεσι τοῦ  $\Gamma$  ό φθόγγος του διαρκεῖ ἀνάλογα 1,2,3, κλ.π χρόνους, π.χ.

Τὸ Γ δὲν γράφεται στὴν 🔾 στὸ ι καὶ στὴν ∫

Τὸ Γ γράφεται, ὅπως εἴδαμε, ἐπάνω στὴν  $\Gamma$  Στὰ ἄλλα φθογγόση-μα γράφεται ἐπάνω ἢ κάτω, ὅπως ἀπαιτεῖ ἡ καλαισθησία.  $\Gamma$ 

β΄. Γοργά παρεστιγμένα, ὀνομάζονται τὰ  $\ ^{\Gamma}$  ποὺ ἔχουν στιγμή δεξιὰ  $\ ^{\Gamma}$  ἢ ἀριστερὰ  $\ ^{\Gamma}$  .

Γοργόν παρεστιγμένον άριστερά το όνομάζεται Ήμίγοργον.

Γοργόν παρεστιγμένον δεξιὰ Γ΄ ὀνομάζεται Τριημίγοργον.

Μὲ τὰ παρεστιγμένα γοργὰ ὁ χρόνος διαιρεῖται σὲ 4/4.

Φθογγόσημο μὲ  $^{\circ}$ Γ ἔχει χρονική ἀξία 1/4 τοῦ χρόνου $^{2}$ , π.χ.

θέσις 
$$\frac{2}{4}$$
 άρσις  $\frac{2}{4}$  1 χρόνος καὶ  $\frac{3}{4}$   $\frac{1}{4}$  1 χρόνος

Φθογγόσημο μὲ τ΄ ἔχει χρονικὴ ἀξία 3/4 τοῦ χρόνου³, π.χ.

θέσις 
$$^{2}/_{4}+$$
 άρσις  $^{2}/_{4}=1$  χρόνος καὶ  $^{1}/_{4}+^{3}/_{4}=$  1 χρόνος

<sup>1.</sup> Τὸ Γοργὸν γράφεται ἐπίσης στὶς Παύσεις (§61δ' - στ').

<sup>2. &#</sup>x27;Αντίστοιχο του ή μι γόργου στην Ευρωπαϊκή μουσική είναι το δέκατον έκτον και

Έχομε τὶς έξῆς περιπτώσεις φθογγοσήμου μὲ γοργὰ παρεστιγμένα σὲ σχέσι μὲ τὸ προηγούμενο φθογγόσημο.

"Όταν φθογγόσημον μὲ 'Γ ἢ Γ΄ ἔχει - ἢ --- κτλ., μετὰ τὴν ἐκτέλεσι τοῦ 'Γ ἢ τοῦ Γ΄ ὁ φθόγγος του διαρκεῖ ἀνάλογα 1, 2, 3 κλπ. χρόνους

$$\pi.\chi.$$
 =  $\frac{1}{2+1/2}$ 

Ο πρώτος φθόγγος του  $\rightarrow$  ἀντίθετα μὲ τὸ δεύτερο, οὔτε αὔξησι, οὔτε ἐλάττωσι τῆς διαρκείας του ἐπιδέχεται π.χ.

ούτε ελάττωσι τῆς διαρκείας του επιδέχεται π.χ.
$$= \frac{1}{2} + \frac{1}{2} \frac{2}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \frac{3}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2}$$

$$= \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac$$

<sup>1.</sup> Βλ. § 61 α' - δ' ρυθμικές μελωδικές άσκήσεις καὶ § 313 θ' όρθογραφία.

δ'. Τὸ Δίγοργον  $\[ - \]$  διαιρεῖ τὸ χρόνο σὲ 3/3, συνενώνει σ' αὐτὸν τρία φθογγόσημα ἀξίας τὸ καθένα ένὸς χρόνου καὶ γράφεται στὸ δεύτερο ἀπὸ αὐτὰ<sup>1</sup>, π.χ.

Μπορεῖ, ὅμως, τὸ πρῶτο ἢ τὸ τρίτο φθογγόσημο ἢ καὶ τὰ δύο νὰ ἔχουν μεγαλύτερη χρονικὴ ἀξία, π.χ.

$$1^{1/3} + \frac{1}{3} + \frac{1}{3}$$

$$2^{1/3} + \frac{1}{3} + \frac{1}{3}$$

$$1^{1/3} + \frac{1}{3} + \frac{$$

ε΄. Δίγοργα παρεστιγμένα ὀνομάζονται τὰ ποὺ ἔχουν στιγμὴ ἀριστερά ΄ ἢ ἐπάνω ; ἢ δεξιὰ Γ΄.

Μὲ τὰ παρεστιγμένα δίγοργα ὁ χρόνος διαιρεῖται σὲ 4/4 μὲ τὴν ἑξῆς κατανομή· 2/4 + 1/4 + 1/4 1/4 + 1/4 + 1/4 1/4 + 1/4 + 1/4

Στὶς περιπτώσεις ποὺ τὸ πρῶτο ἢ τὸ τρίτο φθογγόσημο ἢ καὶ τὰ δύο ἔχουν μεγαλύτερη χρονικὴ ἀξία, ἡ ἐκτέλεσις γίνεται ἀνάλογα μὲ τὰ προηγούμενα, π.χ.

EVO., 
$$\pi.\chi$$
.

$$1^{2}/_{4}+^{1}/_{4}+^{1}_{4}$$

$$2^{2}/_{4}+^{1}/_{4}+^{1}_{4}$$

$$2^{1}/_{4}+^{1}/_{4}$$

$$2^{1}/_{4}+^{2}/_{4}+^{1}/_{4}$$

$$1^{1}/_{4}+^{2}/_{4}+^{1}/_{4}$$

$$2^{1}/_{4}+^{2}/_{4}+^{1}/_{4}$$

$$1^{1}/_{4}+^{2}/_{4}+^{1}/_{4}+^{2}/_{4}$$

$$1^{1}/_{4}+^{1}/_{4}+^{2}/_{4}$$

$$1^{1}/_{4}+^{1}/_{4}+^{2}/_{4}$$

$$1^{1}/_{4}+^{1}/_{4}+^{2}/_{4}+^{1}/_{4}+^{2}/_{4}$$

$$1^{1}/_{4}+^{1}/_{4}+^{2}/_{4}+^{1}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^{2}/_{4}+^$$

2. Ύπάρχει ή έξης αντιστοιχία τῶν παρεστιγμένων διγόργων στὴν Εὐρωπαϊκή μουσική:

<sup>1.</sup> Αντίστοιχο τοῦ  $\Delta$  ιγ ό ρ γ ο υ είναι τὸ τ ρ ί η χ ο  $\delta$  γ  $\delta$  ό ω ν τῆς Εὐρωπαϊκῆς μουσικῆς  $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ 

Δίγοργο μὲ αὔξησι τῆς διαρκείας τοῦ δευτέρου φθόγγου, π.χ. δὲν συναντᾶται.

$$\frac{1}{3} + (\frac{1}{3} + 1) + \frac{1}{3}$$

στ΄. Τὸ Τρίγοργον — διαιρεῖ τὸ χρόνο σὲ 4/4, συνενώνει σ³αὐτὸν τέσσερα φθογγόσημα ἀξίας τὸ καθένα ἑνὸς χρόνου καὶ γράφεται στὸ δεύτερο ἀπὸ αὐτά¹, π.χ.

Μπορεῖ ὅμως τὸ πρῶτο ἢ τὸ τέταρτο φθογγόσημο ἢ καὶ τὰ δύο νὰ ἔ-χουν μεγαλύτερη χρονικὴ ἀξία, π.χ.

ζ΄. Τρίγοργα παρεστιγμένα. ὀνομάζονται τὰ — ποὺ ἔχουν στιγμὴ ἀριστερὰ · — ἢ ἐπάνω στὸ πρῶτο γοργόν — ἢ ἐπάνω στὸδεύτερο Γοργὸν — ἢ δεξιὰ — ·

Μὲ τὰ παρεστιγμένα τρίγοργα ὁ χρόνος διαιρεῖται σὲ 5/5 μὲ τὴν ἑξῆς

κατανομή · 
$$\frac{2}{2/5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$
 ·  $\frac{1}{5} + \frac{2}{5} + \frac{1}{5} + \frac{1}{5}$  ·  $\frac{1}{5} + \frac{1}{5} + \frac{2}{5} + \frac{1}{5}$  ·  $\frac{1}{5} + \frac{1}{5} + \frac{2}{5} + \frac{1}{5}$ 

Μπορεῖ, ὅμως τὸ πρῶτο ἢ τὸ τέταρτο φθογγόσημο ἢ καὶ τὰ δύο νὰ ἔχουν μεγαλύτερη χρονικὴ ἀξία, π.χ.

<sup>1.</sup> Φθογγόσημο μὲ Τρίγοργον ἀντιστοιχεῖ μὲ δέκατον ἔκτοντῆς Εὐρωπαϊκῆς μουσικῆς καὶ

$$\frac{2}{5} + \frac{1}{5} + \frac{1}{5} + (\frac{1}{5} + 1)$$

$$\frac{1}{5} + \frac{2}{5} + \frac{1}{5} + (\frac{1}{5} + 1)$$

$$\frac{1}{5} + \frac{2}{5} + \frac{1}{5} + (\frac{1}{5} + 1)$$

$$\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + (\frac{2}{5} + 1)$$

$$\frac{1^{2}}{5} + \frac{1}{5} + \frac{1}{5} + (\frac{1}{5} + 1)$$

$$\frac{1^{2}}{5} + \frac{1}{5} + \frac{1}{5} + (\frac{1}{5} + 1)$$

$$\frac{1^{1}}{5} + \frac{1}{5} + \frac{1}{5} + (\frac{2}{5} + 1)$$

Στὶς ἐκκλησιαστικὲς μελωδίες σπάνια γίνεται χρήσις τριγόργων καὶ σπανιώτατα παρεστιγμένων.

η΄. Τὸ Τετράγοργον το ποὺ διαιρεῖ τὸ χρόνο σὲ  $^5/_5$  τὸ Πεντάγοργον τον τὸν διαιρεῖ σὲ  $^6/_6$  κλπ, δὲν χρησιμοποιοῦνται στὶς ἐκκλησιαστικὲς μελωδίες.

60α΄. Τὸ ᾿Αργὸν ϶ γράφεται μόνον ἐπάνω στὸ σύνθετο φθογγόσημο καὶ ἐνεργεῖ στὰ το σὰν καὶ στὸ σὰν  $\pi.\chi$ .  $\frac{1}{2}$  καὶ  $\frac{1}{2}$  καὶ  $\frac{1}{2}$  καὶ  $\frac{1}{2}$  καὶ  $\frac{1}{2}$   $\frac{1$ 

$$\frac{1}{1/2} = \frac{1}{3} \quad \kappa \alpha i \quad \frac{1}{1/2} = \frac{1}{3}$$

γ΄. Τὸ Τρίαργον → γράφεται κι' αὐτό, μόνον ἐπάνω στὸ — καὶ ζητάει τὰ ιι μὲ Γ καὶ τὸ — μὲ • π.χ.

$$\frac{1}{2} = \frac{1}{4}$$
  $\kappa \alpha i$   $\frac{1}{2} = \frac{1}{2} = \frac{1}{2$ 

Καὶ στὶς τρεῖς περιπτώσεις τὸ προηγούμενο φθογγόσημο μπορεῖ νὰ είναι μεγαλυτέρας χρονικῆς ἀξίας, π.χ.

$$\frac{1^{1}/_{2}+^{1}/_{2}}{3^{1}/_{2}+^{1}/_{2}} = \frac{1^{1}/_{2}+^{1}/_{2}}{3^{1}/_{2}+^{1}/_{2}} = \frac{1^{1}/_{2}+^{1}/_{2}}{3^{1$$

61 α.΄ Ή Παῦσις γράφεται στὴν ἀρχή, σὲ ἐνδιάμεσα σημεῖα μεταξὺ δύο φθογγοσήμων ἢ στὸ τέλος τῆς μουσικῆς γραμμῆς, ὅπου εἶναι ἀνάγκη νὰ δαπανηθῆ χρονικὸ διάστημα μικρότερο ἢ μεγαλύτερο ἀπὸ ἕνα χρόνο χωρὶς ἀπαγγελία φθόγγου¹.

Ή Παῦσις γράφεται μὲ τὴν  $\mathbf{Baρεῖa} \ \mathbf{1}^2$  καὶ τὴν  $\mathbf{...}$  ἤ  $\mathbf{...}$  κλπ.

Βαρεῖα μὲ ʿΑπλῆ εἶναι Παῦσις 1 χρόνου .
Βαρεῖα μὲ Διπλῆ εἶναι Παῦσις 2 χρόνων .
Βαρεῖα μὲ Τριπλῆ εἶναι Παῦσις 3 χρόνων . κλπ.

γ.΄ Αν, τὸ Γ ποὺ ἀκολουθεῖ τὴν Παῦσι, εἶναι παρεστιγμένον ( 'Γ ἤ Γ' ) τὸ φθογγόσημό του κατέχει, ἀνάλογα, τὸ  $^1/_4$  ἤ τὰ  $^3/_4$  τοῦ τελευταίου χρόνου τῆς Παύσεως, π.χ.

 $^{\circ}$ Οπως παρατηρούμε, όταν τὶς Παύσεις ἀκεραίων χρόνων ἀκολουθῆ φθογγόσημο μὲ  $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$  σχηματίζονται Παύσεις διαρκείας  $^{1}/_{4}$   $^{1}/_{2}$   $^{3}/_{4}$   $^{11}/_{4}$   $^{13}/_{4}$   $^{21}/_{4}$   $^{23}/_{4}$  κλπ. χρόνων.

δ.' Όπως ἕνα φθογγόσημο μὲ χρονικὴ ἀξία ἑνὸς χρόνου ὅταν δέχεται τὸ Γ ἔχει ἀξία  $^{1}/_{2}$  τοῦ χρόνου καὶ ἐκτελεῖται στὴν ἄρσι τοῦ προηγουμένου του χρόνου, τὸ ἴδιο καὶ ἡ Παῦσις μὲ τὸ Γοργὸν  $^{1}$  γίνεται Παῦσις  $^{1}/_{2}$  χρόνου καὶ ἐκτελεῖται στὴν ἄρσι τοῦ προηγουμένου της χρόνου, π.χ.

<sup>1.</sup> Ἡ παῦσις ἀντιστοιχεῖ μὲ τὸ  $\lambda$  εῖμμα ρυθμοῦ τῆς ἀρχαίας ἐλληνικῆς μουσικῆς (§ 87).

<sup>2.</sup> Βλ. § 66. Τὰ σημεῖα τῆς ἐκφράσεως.

Ή Παῦσις  $^{1}/_{2}$  χρόνου  $^{1}$  ποὺ κατέχει μιὰ ἄρσι ὀνομάζεται Παῦσις ἄρσεως.

ε. Αν ή Παῦσις ἔχει Ἡμίγοργον  $\mathbf{\eta}$  ή Τριημίγοργον  $\mathbf{\eta}$  σχηματίζεται ἀνάλογη Παῦσις  $\mathbf{1}_4$  ή  $\mathbf{3}_4$  τοῦ χρόνου, π.χ.

$$3/_4+1/_4$$
 $1^3/_4+1/_4$ 
 $2^3/_4+1/_4$ 
 $1^1/_4+3/_4$ 
 $2^1/_4+3/_4$ 

στ. "Αν θέλομε οἱ Παύσεις αὐτὲς νὰ διαρκέσουν ἐπὶ πλέον 1, 2, 3 κλπ. χρόνους, προσθέτομε δίπλα τους, ἀνάλογα, τὴν • τἡ • • τὴν • • κλπ., π.χ.

Όπως παρατηρούμε, ὅταν ἡ Παῦσις ἑνὸς χρόνου, πάρη τὸ Γ τὸ Γ καὶ τὸ Γ΄ σχηματίζονται Παύσεις διαρκείας  $^1/_4$   $^1/_2$   $^3/_4$   $^11/_4$   $^11/_2$   $^13/_4$   $^21/_4$   $^21/_2$   $^23/_4$  κλπ. χρόνων.

ζ. Αν, στὴν ἀρχὴ ἑνὸς μουσικοῦ κειμένου ἀμέσως μετὰ τὴν ἀρχικὴ μαρτυρία, ὑπάρχη φθογγόσημο μὲ Γ αὐτὸ ἐκτελεῖται στὴν ἄρσι, σὰν νὰ ὑπῆρχε μπροστὰ μιὰ • π.χ. σὰν • σὰν •

 $^{1}/_{2}+^{1}/_{2}+2$ 

η. Ή  $\mathbf{t}$  ή ὁ τελευταῖος χρόνος μιᾶς Παύσεως μεγαλυτέρας διαρκείας ( $\mathbf{t}$  ή  $\mathbf{t}$  κλπ.) μπορεῖ ν' ἀντικαταστήση τὸ πρῶτο φθογγόσημο τῶν  $\mathbf{t}$   $\mathbf{t}$  ή τοῦ  $\mathbf{t}$  όπότε σχηματίζονται Παύσεις διαρκείας  $\mathbf{t}$   $\mathbf{t}$ 

θ. Μὲ τὰ — — Η Τὸ — στὴν το σχηματίζονται Παύσεις διαρκείας  $^1/_4$   $^1/_3$  καὶ  $^2/_4$  τοῦ χρόνου, π.χ.

$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{2}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} + \frac{2}{4} + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} + \frac{2}{4} = \frac{1}{4} + \frac{1}{4} + \frac{2}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}$$

$$\frac{1}{3} + \frac{1}{3} + \frac{1}$$

ια.΄ Ή igcepu μπορεῖ ν' ἀντικαταστήση τὸ τρίτο φθογγόσημο τοῦ igcepu ὁπότε σχηματίζεται Παῦσις  $^1/_4$  τοῦ χρόνου, π.χ. igcepu  $^1/_4+^1/_4$   $^1/_4+^1/_4$ 

- ιβ. Συνοπτικά, παρατηρούμε πως υπάρχουν Παύσεις διαρκείας 1/4  $\frac{1}{3} \frac{1}{2} \frac{3}{4} \frac{1}{4}$  χρόνου καὶ μεγαλυτέρας των ἀξίας κατὰ ἕναν ἢ περισσοτέρους άκεραίους χρόνους.
- ιγ.' Συνηθέστερες είναι οί Παύσεις 1/2 (θέσεως ἢ ἄρσεως) καὶ τοῦ 1 γρόνου καθώς καὶ οἱ μεγαλυτέρας ἀξίας των κατὰ ἕναν ἢ περισσοτέρους ἀκεραίους γρόνους1.
  - ιδ. Οί χρόνοι τῶν Παύσεων ὀνομάζονται χρόνοι κενοί.
- 62 α΄. Ὁ Σταυρός + εἶναι σημεῖον ἀναπνοῆς. Ὁ + γράφεται μεταξὸ δύο φθογγοσήμων καὶ εἶναι Παῦσις τῆς ἄρσεως ἢ ένὸς τελευταίου μέρους τῆς άρσεως τοῦ προηγουμένου του χρόνου, ὅσο χρειάζεται γιὰ τὴν ἀνανέωσι της άναπνοης, κατά τρόπο που ό φθόγγος τοῦ έπομένου φθογγοσήμου, ν' άρχίζη ὑποχρεωτικὰ μὲ τὴν καινούργια εἰσπνοή  $^2$ , π.χ.

όπου άνανεώνουμε την άναπνοή μας στὸ τέλος τῆς ἄρσεως τοῦ δευτέρου χρόνου τοῦ

β.΄ Σημεῖα ἀναπνοῆς ἰσοδύναμα μὲ τὸν + εἶναι οἱ Μαρτυρίες τῶν φθόγγων (§37) ὅπου τὶς συναντήσουμε, π.χ.

63. Ἐκτὸς ἀπὸ τὰ παραπάνω σημεῖα τοῦ χρόνου τῆς Βυζαντινῆς μουσικής χρησιμοποιούνται δύο άλλα χρονικά σημεῖα, ή Κορώνα 🦟 καὶ ή Ύφὲν **~ fi ~** 

Ή 🕋 είναι σημείο της Ευρωπαϊκής μουσικής. Οι φθόγγοι η οι Παύσεις πού τὴ δέχονται παρατείνονται, κατά βούλησι τοῦ ἐκτελεστῆ, πέραν τῆς κανονικῆς των διαρκείας, π.χ.

'H \_\_\_\_ ἢ \_\_\_ εἶναι μία καμπύλη γραμμὴ³ ποὺ ένώνει τὸ '\_\_\_ μὲ τὸ προηγούμενό του φθογγόσημο καὶ προσθέτει σ'αὐτὸ τὴ χρονική του ἀξία. Τὰ δύο αὐτὰ φθογγόσημα μποροῦν νὰ ἔχουν ὁποιαδήποτε χρονική ἀξία.

Συνηθέστερα, πρὶν ἀπὸ τὸ 👝 βρίσκονται 📭 π.χ.



έχουμε τὴν έξῆς ἀντιστοιχία.



- 2. 'Αντίστοιχο τοῦ Σταυροῦ στὴν Εὐρωπαϊκή μουσική εἶναι ἡ ἀναπνοή 🤈
- 3. Ἡ Ὑφὲν ἀντιστοιχεῖ μὲ τὴ σ ύ ν δ ε σ ι δ ι α ρ κ ε ί α ς (liaison ἢ legatura) τῆς Εὐρωπαϊκῆς

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΛΙΑ ΤΑ ΣΗΜΕΙΑ ΤΟΥ ΧΡΟΝΟΥ

Β΄. Γιὰ τὸ Γ΄ στὸν Χρύσανθο (Μέγα Θεωρητικὸν τῆς μουσικῆς § 123) καὶ σ᾽ ἄλλους νεωτέρους του βλέπομε.

$$\frac{3}{2}$$
  $\frac{3}{4}$   $\frac{3}{4}$   $\frac{3}{4}$   $\frac{1}{3}$   $\frac{1}$ 

Οί παραπάνω ὑποδιαιρέσεις δὲν εἶναι πιὰ παραδεκτές.

Γ΄. Ὁ Γεώργιος Ραιδεστινός, θέλοντας ν' ἀποφύγη τὴ χρήσι τῆς στὴν περίπτωση ποὺ αὐτὴ συνδέει ή μὲ ὑποδεικνύει (Μεγ. Ἑβδομάς, πρόλογος σελὶς η΄) τὴ γραφὴ καὶ τὴ χρησιμοποιεῖ στὸ «Εἰς πολλὰ ἔτη Δέσποτα» (ἴδιο βιβλίο σελὶς 1) άντὶ

### ΤΑ ΣΗΜΕΙΑ ΤΗΣ ΕΚΦΡΑΣΕΩΣ

ñ

### ΣΗΜΕΙΑ ΠΟΙΟΤΗΤΟΣ - ΑΧΡΟΝΕΣ ΥΠΟΣΤΑΣΕΙΣ

- **64.** Όπως εἴδαμε (§45), τὰ φθογγόσημα, ἐκτὸς ἀπὸ τὴν ποσοτικὴ καὶ χρονική τους ἀξία, ἔχουν καὶ ἐκφραστικὴ ἀξία.
- α΄. Ὁ φθόγγος τοῦ τοῦ Ὁλίγου τῆς τοῦ καὶ τῆς ἐκφέρεται μὲ φυσικὴ ἔντασι οὕτε σιγανά, οὕτε δυνατά, ἐλεύθερα κι᾽ ἀνεπηρέαστα.
- β΄. Ὁ φθόγγος τῆς ἐκφέρεται μὲ ζωηρότητα μὲ τὸν ἑξῆς τρόπο. ᾿Αρχίζει ἀπὸ τὸ φυσικό του ὕψος, ξεφεύγει λίγο ὀξύτερα κι᾽ ἐπανέρχεται σ᾽ αὐτό, δίνοντας τὴν ἐντύπωσι πετάγματος, π.χ. πού, κατὰ προσέγ-

γισιν, μπορεῖ νὰ γραφῆ

Όταν ή 🔾 ἔχη δύο χρόνους, ὁ χρωματισμὸς τοῦ φθόγγου του γίνεται μεταξύ τῶν δύο της χρόνων π.χ. 🔾 🥎 ποὺ, κατὰ προσέγγισιν, μπορεῖ νὰ γραφῆ 🚾 🕥

γ΄. Ὁ φθόγγος τῶν **ι** ἐκφέρεται ἥπια, μαλακὰ καὶ συνέχεια μὲ τὸν προηγούμενο καὶ τὸν ἑπόμενό του, χωρὶς διακοπὴ ἀναπνοῆς.

- δ΄. Οἱ φθόγγοι τῆς 🎜 ἐκφέρονται ἤπια, μαλακὰ καὶ συνέγεια μὲ τὸν προηγούμενο καὶ τὸν ἑπόμενό τους χωρίς διακοπή ἀναπνοῆς. ε΄. Τὸ ι καὶ ἡ 🕽 προσλαμβάνουν τὴν ἐκφραστικὴ ἀξία τοῦ 🚤 καὶ τῆς 💙 ποὺ μ' αὐτὰ συντίθενται, π.χ. \_\_\_ 🛂 🛂 στ΄. Ὁ φθόγγος τοῦ 🗀 ἐκφέρεται ἐντονώτερα ἀπὸ τὸν φθόγγο τοῦ 🥌 ζ΄. Ὁ φθόγγος τῶν 5 5 3 5 5 ταίρνει τὴν ἐκφραστική άξία τῆς 💙 η΄. Ὁ πρῶτος φθόγγος τοῦ 🤝 ἐκφέρεται ἤπια. Ὁ δεύτερός του φθόγγος ἔχει τὴν ἔκφρασι τοῦ φθόγγου τῆς 🤿 θ΄. Ὁ πρῶτος φθόγγος τῶν 🤾 🔥 ἐκφέρεται ἤπια. Ὁ δεύτερός των φθόγγος ἔχει τὴν ζωηρότητα τῆς 🔾 ι΄. Ὁ φθόγγος τῶν ἔκφρασι τοῦ φθόγγου τῆς 🤿 ια.' Στὰ σύνθετα φθογγόσημα 🚅 🚅 711 311 Q11 3Q11 \(\supersection\) \(\overline{\pi}\) \(\overline{\pi} τὸ — δὲν ὑπολογίζεται οὕτε ποσοτικά οὕτε ποιοτικά. Τὰ φθογγόσημα ποὺ βρίσκονται ἐπάνω σ' αὐτό ἔχουν τὴ δική τους ἐκφραστική άξία ὅπως στὶς προηγούμενες περιπτώσεις. π την εκφέρονται με την εκφραστική άξία τοῦ \_\_\_\_ καὶ τῶν 📭
- **65.** Όταν είναι ἀνάγκη νὰ προσδοθῆ στοὺς φθόγγους διαφορετικὴ ἔκφρασις ἀπὸ ἐκείνην ποὺ δείχνουν τὰ φθογγόσημά τους χρησιμοποιοῦνται τὰ ἑξῆς σημεῖα ποὺ ὀνομάζονται σημεῖα τῆς ἐκφράσεως ἢ χαρακτῆρες ποιότητος.¹

του ἐκφραστικὴ ἀξία κι' ὁ φθόγγος τῆς 🥆 ἐκφέρεται ἤπια.

ιγ. Τέλος, στὸ σύνθετο φθογγόσημο 🥌 τὸ 🥌 διατηρεῖ τὴ δική

<sup>1.</sup> Στὸ «Μέγα Θεωρητικὸν τῆς μουσικῆς» τοῦ Χρυσάνθου (§129) τὰ σημεῖα ἐκφράσεως ὀνομάζονται καὶ τροπικαὶ ὑποστάσεις.

ή Βαρεΐα

τὸ Ψηφιστὸν
τὸ Ὁμαλὸν
τὸ ἀΑντικένωμα
τὸ ετερον
καὶ τὸ ἐΕνδόφωνον

Τὰ σημεῖα τῆς ἐκφράσεως ἐπειδὴ δὲν ἔχουν χρονικὴ ἀξία ὀνομάζονται καὶ ἄχρονες ὑποστάσεις.

# 'Αξία τῶν σημείων ἐκφράσεως

**66.** Ἡ Βαρεῖα γράφεται μπροστὰ σ' ὅλα τὰ φθογγόσημα ἐκτὸς ἀπὸ τὰ ιι

Διακρίνομε δύο χρήσεις τῆς

- α΄. 'Ο φθόγγος τοῦ φθογγοσήμου ποὺ μπροστά του γράφεται ἡ ἐκφέρεται μὲ βάρος σὲ τρόπο ποὺ μὲ τὴ ζωηρότητά του νὰ διακρίνεται ἀπὸ τὸν προηγούμενο καὶ τὸν ἑπόμενό του, π.χ. Στὴ γραμμὴ αὐτὴ ἀν καὶ ὅλα τὰ φθογγόσημα ἔχουν ἀρχικὰ τὴν ἴδια ἐκφραστικὴ ἀξία, τώρα, μὲ τὴν ἐνέργεια τῆς ό φθόγγος τοῦ δευτέρου ἐκφέρεται μὲ ζωηρότητα ποὺ δίνει τὴν ἐντύπωσι τοῦ βάρους κι' ἔτσι ξεχωρίζει ἀπὸ τὸν προηγούμενο καὶ τὸν ἑπόμενό του.
- β.΄ Ἡ ζανει τὴν ἐκφραστική της ἀξία ὅταν, μὲ τὴν τὴ τὴν κλπ, σχηματίζει τὶς Παύσεις ζ. ζ. ζ...
  - 67. Τὸ Ψηφιστὸν γράφεται κάτω ἀπὸ τὰ φθογγόσημα.

Διακρίνομε τους έξης διαφόρους τρόπους ένεργείας τοῦ

α΄. Τὸ ποὺ γράφεται στὸ καὶ στὸ προσδίνει στὸ φθόγγο των δύναμι ποὺ ἐξασθενεῖ βαθμιαῖα στοὺς ἑπομένους δύο ἢ τρεῖς φθόγγους καταβάσεως ὅταν αὐτοὶ ἀνήκουν στὴν ἴδια συλλαβὴ λέξεως τοῦ ποιητικοῦ κειμένου, π.χ.

Τὸ ἴδιο ἐνεργεῖ τὸ στὸ φθογγόσημό του καὶ στὰ ἑπόμενα φθογγόσημα καταβάσεως ποὺ ἀνήκουν στὴν ἴδια συλλαβὴ λέξεως στὶς ἑξῆς καὶ παρόμοιες γραμμές.

Στήν περίπτωσι αὐτή ἀνήκει καὶ ή γραμμή

$$\pi$$
 μη δε ξα  $\mu$ ε ε ε ε  $\nu$ η η  $\pi$ α  $\nu$ α  $\mu$ ω  $\mu$ ε ε  $\epsilon$ 

γ.΄ Τὸ του γράφεται στη σύνθεσι προσδίνει ζωηρότητα στην ἐκφραστικη ἀξία τῆς

δ. Τὰ  $\mathbf n$  παίρνουν τὸ  $\mathbf n$  ὅταν εἴναι ἐπάνω στὸ  $\mathbf n$  εἴτε μόνα τους εἴτε μὲ ἄλλα φθογγόσημα σὲ συνθέσεις παραπληρωματικὲς (§53), π.χ.

$$\widehat{\underline{\phantom{a}}} = \widehat{\underline{\phantom{a}}} = \widehat{\underline{\phantom{a}} = \widehat{\underline{\phantom{a}}} = \widehat{\underline{$$

Στὶς περιπτώσεις αὐτὲς ὁ φθόγγος τῶν 📭 ἐκφέρεται ἐντονώτερα.

Στὴ σύνθεσι τὸ ἀνήκει στὸ καὶ ἐνεργεῖ ὅπως ἀκριβῶς στὴν α΄ περίπτωσι.

<sup>1.</sup> Στὴν περίπτωσι αὐτὴ τὸ ψ η φ ι σ τ ὸ ν ἀντιστοιχεῖ μὲ τὸ Diminuendo > τῆς Εὐρωπαϊκῆς μουσικῆς ποὺ σημαίνει βαθμιαῖα ἐξασθένησι τῶν φθόγγων τῆς μελωδίας.



Τὰ Ν δὲν παίρνουν τὸ

Διακρίνομε τὶς παρακάτω διάφορες θέσεις καὶ ἐνέργειες τοῦ α.΄ Τὸ καὶ τὰ σύνθετα μ' αὐτὸ φθογγόσημα ὑπερβατῆς ἀναβά σεως, ἐκτὸς ἀπὸ τὸ παίρνουν τὸ καὶ ἀκολουθεῖ πάντοτε ἕνα, τοὐλάχιστο, φθογγόσημο καταβάσεως, π.χ.

Στὶς περιπτώσεις αὐτὲς τὸ — προσδίνει στὸ φθόγγο τοῦ φθογγοσήμου του ζωηρότερο τονισμὸ ποὺ προκαλεῖ τὴν ἐντύπωσι τινάγματος.

β. Τὸ τὸ τὰ σύνθετα μὲ τὸ φθογγόσημα ὑπερβατῆς ἀναβάσεως, ἐκτὸς ἀπὸ τὸ ἡ τὸ ἡ καὶ ὅλα τὰ φθογγόσημα ὑπερβατῆς καταβάσεως, ἐκτὸς ἀπὸ ἐκείνα ποὺ περιέχουν τὸ παίρνουν τὸ μὲ καὶ ἀκολουθεῖ, ὑποχρεωτικά, φθογγόσημο καταβάσεως μὲ π.χ.

Στὶς περιπτώσεις αὐτές, ὁ φθόγγος τοῦ φθογγοσήμου ποὺ ἔχει τὸ Γ ἐκφέρεται ἀχώριστα ἀπὸ τὸ φθόγγο τοῦ φθογγοσήμου μὲ τὸ —— καὶ δίνει τὴν ἐντύπωσι πὼς κρέμεται ἀπὸ αὐτόν.

γ. Ἡ τὰ σύνθετα μ' αὐτὴ φθογγόσημα ὑπερβατῆς ἀναβάσεως καὶ ὑπερβατῆς καταβάσεως, τὸ καὶ τὸ παίρνουν τὸ δπότε ἀκολουθεῖ, ὅπως στὴν προηγούμενη περίπτωσι, ὑποχρεωτικά, φθογγόσημο καταβάσεως μὲ Γπ.χ.

Στὶς περιπτώσεις αὐτὲς τὸ — προσδίνει, πρῶτα, ζωηρότητα στὴν ἐκφραστικὴ ἀξία τῆς καί, στὴ συνέχεια, ἐνεργεῖ ὅπως ἀκριβῶς καὶ στὴν προηγούμενη β΄ περίπτωσι.

- δ. Στὶς συνθέσεις 5 5 τὸ τὸ ἀνήκει στὸ δεύτερο φθόγγο τῆς καὶ τοῦ τοῦ ἐκφέρεται ὅπως ἀκριβῶς στὴν προηγουμένη γ΄ περίπτωσι.
- ε. Στὴ σύνθεσι τὸ ἀνήκει στὸ καὶ ἐνεργεῖ ὅπως ἀκριβῶς καὶ στὴ β΄ περίπτωσι.

70. Τὸ "Ετερον , ὀνομάζεται καὶ Σύνδεσμος γιατὶ συνδέει:

β.΄ Τὰ σύνθετα φθογγόσημα ὑπερβατῆς ἀναβάσεως ποὺ περιέχουν τὸ

$$-μὲτὸ  $-π.χ$ .$$

 $\gamma$ . την  $\gamma$  το  $\gamma$  τη  $\gamma$  καὶ το δεύτερο φθόγγο της  $\gamma$  μὲ το  $\gamma$ 

δ.' Τὰ σύνθετα φθογγόσημα ὑπερβατῆς καταβάσεως ποὺ δὲν ἔχουν τὸ καὶ τὴν μὲ τὸ π.χ.

ε. Φθογγόσημα ἀναβάσεως μὲ φθογγόσημα καταβάσεως καὶ ἀντίθετα, π.χ.

καὶ στ΄. Φθογγόσημα ἀξίας 3 ἢ περισσοτέρων χρόνων μὲ ἐπόμενο φθογγόσημο καταβάσεως (συνήθως > ) μὲ Γ ἢ χωρὶς Γ π.χ.

Στὶς περιπτώσεις α΄ — καὶ ε΄ οἱ φθόγγοι τῶν δύο φθογγοσήμων ποὺ συνδέονται μὲ τὸ — • ἐκφέρονται μαλακὰ στὴν ἴδια ἀναπνοἡ καὶ μεταξύ των γίνεται ἕνας ἐλαφρὸς κυματισμὸς, ἡπιώτερος ἀπὸ τὸ — •

Στὴν στ΄ περίπτωσι ὁ μακρὸς φθόγγος (ὑποσ. § 56) ἐκφέρεται μαλακὰ μὲ τὸν ἴδιο κυματισμὸ ὅπως στὶς προηγούμενες περιπτώσεις καὶ στὴν ἴδια ἀναπνοὴ μὲ τὸν ἑπόμενό του.

71. Τὸ Ἐνδόφωνον Α γράφεται μόνον σὲ φθογγόσημο καταβάσεως (συνήθως ) καὶ ἀπαιτεῖ ὁ φθόγγος του νὰ ἐκφέρεται μὲ κλειστὸ στόμα, ἀπὸ τὴ μύτη, ὅση κι' ἂν εἶναι ἡ διάρκειά του, π.χ.

Ή χρῆσις τοῦ 👝 στὴν ἐκκλησιαστικὴ μουσικὴ εἶναι αὐτονόητη καὶ ἐντελῶς φυσιολογική, γιατί, φυσιολογικά, μὲ κλειστὸ στόμα ἀπαγγέλλονται οἱ συλλαβὲς εμ καὶ εν ποὺ ἔχουν τὰ ρινικὰ μ, ν καὶ ποὺ μόνο σ' αὐτὲς γράφονται τὰ φθογγόσημα ποὺ δέχονται τὸ 👝

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΚΦΡΑΣΙ

Α΄. Ἡ διδασκαλία τῆς ἐκφραστικῆς ἀξίας τῶν φθογγοσήμων καὶ τῶν σημείων τῆς ἐκφράσεως ἐπιτυγχάνεται καλλίτερα μὲ τὶς σχετικὲς μελωδικὲς ἀσκήσεις.

Β΄. Όταν, ὁ καθένας ἀπὸ ἀμάθεια, ἑρμηνεύει κατὰ τὴ δική του ἀντίληψι τὰ σημεῖα τῆς ἐκφράσεως ἢ δὲν τὰ λογαριάζει διόλου κατὰ τὴν ἐκτέλεσι, εἶναι ἑπόμενο νὰ μᾶς εἶναι πολὺ δύσκολο νὰ βροῦμε δύο ψάλτες ποὺ νὰ ἐκτελοῦν ἐντελῶς ὁμοιόμορφα τὴν ἴδια μελωδία. Εἶναι, βέβαια, ἀλήθεια πὼς ἀ π ό λ υ τ η θεωρία μουσικῆς ἐκφράσεως δὲν θὰ μποροῦσε νὰ δοθῆ ἀφοῦ αὐτὴ εἶναι πάντοτε συνάρτησι τῆς ἰδιοσυγκρασίας καὶ τοῦ ταλέντου τοῦ καλλιτέχνη καὶ κάθε ἐκτελεστὴς μεταδίνει ἕνα κομάτι τῆς ψυχῆς του στὴ μελωδία ποὺ ἐκτελεῖ. Αὐτὸ ὅμως δὲν σημαίνει πὼς ἐπιτρέπεται νὰ ξεφεύγη κανένας ὁλότελα ἀπὸ τοὺς βασικοὺς καὶ οὐσιώδεις κανόνες της. Κι᾽ ἄν στὸν μεμονωμένο ψάλτη ἐπιτρέπεται μιὰ σχετικὴ ἐλευθερία, ἀντίθετα, σὲ μιὰ χορωδία ἢ σὲ μερικοὺς ψάλτες ποὺ θέλουν νὰ συμψάλουν, ἐ π ι β ά λ λ ετα ι ἡ πιστὴ ἀπόδοσις τῆς παρασημασμένης ἐκφράσεως. ᾿Αλλιῶς, εἶναι ἀδύνατο νὰ νοηθῆ μουσικὸς χορός.

Γιὰ τὴν ἐπιτυχία ὁμοιόμορφης ἀποδόσεως τῆς ἐκφράσεως πολὺ ὑποβοηθητικὸ θἄτανε νὰ προτιμηθῆ καὶ νὰ καθιερωθῆ, ὅσο κι' ὅπου εἶναι δυνατόν, ἕνα σύστημα ἀναλυτικωτέρας μουσικῆς γραφῆς ποὺ νὰ ἑρμηνεύη κατὰ τὸν πιστότερο τρόπο τὴ γνήσια ἀπόδοσι τῆς βυζαντινῆς μελωδίας καὶ νὰ μὴ ἀφίνη περιθώρια γιὰ ὑπερβολὲς καὶ αὐθαιρεσίες.

Παραθέτομε μερικά παραδείγματα ἀναλύσεως ποὺ συναντοῦμε στὰ μουσικά μας κείμενα καὶ ἀκοῦμε ἀπὸ διαφόρους ποὺ θεωροῦνται καλοὶ ἐκτελεστές.

α.΄ 'Ανάλυσις τοῦ 'Ολίγου. 'Ολίγον μὲ κλάσμα καὶ τονιζομένη συλλαβὴ λέξεως τοῦ κειμένου, ἀναλύεται συνήθως, σὲ ὅπως φαίνεται στὰ ἑξῆς παραδείγματα:

Τὸ ἴδιο ἀναλύονται ἕνα ἢ περισσότερα στὴν περίπτωσι ποὺ ἀνήκουν στὴν ἴδια συλλαβὴ λέξεως τοῦ κειμένου.

Δὲν γίνεται ἀνάλυσις, ὅταν πρὶν ἀπὸ τὸ ὑπάρχουν κ π.χ. γ φω νη η μου ??

β. ἀνάλυσις τῆς Πεταστῆς. Ἐκτὸς ἀπὸ τὴν ἀνάλυσι ποὺ κάναμε, κατὰ προσέγγισιν, γιὰ τὴν ἐκφραστικὴ ἀξία τῆς (§ 64β΄) ἀκοῦμε καὶ βλέπομε νὰ γράφωνται καὶ οἱ ἑξῆς διάφοροι τρόποι ἀναλύσεώς της.

(Γ. Βιολάκη. ΔοξαστάριονΠ. Πελοποννησίου) καὶ

γ.' ἀνάλυσις τῆς Βαρείας. Όταν ἡ βρίσκεται μπροστὰ σὲ τὸ τὸ τὸ ἀναλύεται, πολλὲς φορὲς καὶ μάλιστα σὲ ὡρισμένες μελωδικὲς καταλήξεις μὲ τοὺς ἐξῆς τρόπους:

 $\ddot{q}$   $\ddot{\Pi}$   $\ddot{\alpha}$   $\ddot{\alpha}$ 

ος μα ται αι αι ω ως κ

'Ανάλυσις: γ μα ται αι αι ω ως χ

'Ανάλυσις: β βε βαι ου ση η η

'Ανάλυσις δὲν γίνεται στὶς περιπτώσεις 1 5 - 1 5 -

δ.' 'Ανάλυσις τοῦ Ψηφιστοῦ. Τὴν ἐνέργεια τοῦ στὰ Ν (§67δ') τὴν ἀναλύουν πολλὲς φορές, μὲ τοὺς ἀκολούθους τρόπους.

\*Ανάλυσις:

(Στὸ ἴδιο Δοξαστάριο, κατὰ ἐξήγησιν Γ. Βιολάκη)

- Γ΄. Ἐκτὸς ἀπὸ τὰ σημεῖα τῆς ἐκφράσεως μερικοὶ χρησιμοποιοῦν καὶ χρωματισμοὺς τῆς Εὐρωπαϊκῆς μουσικῆς. Τὸ piano ἢ p, ὅταν ὁ ἦχος τῶν φθόγγων πρέπει νὰ εἶναι ἀσθενής, τὸ forte ἢ f, ὅταν πρέπει νὰ εἶναι δυνατὸς κλπ.

Ή ἐνέργεια τῶν χρωματισμῶν αὐτῶν μπορεῖ νὰ ἐκτείνεται σ' ἕναν ἢ δύο φθόγγους καὶ σὲ ὁλόκληρες μουσικὲς γραμμές ὁπότε τὰ ἄλλα σημεῖα ἐκφράσεως ποὺ συναντοῦμε σ' αὐτὲς ἐκτελοῦνται μὲ ἀνάλογη δύναμι.

Δ΄. Σπουδαιότατο ρόλο στὴ μουσικὴ ἔκφρασι παίζουν ὁ ρυθμὸς καὶ ἡ χρονικὴ ἀγωγή. Γι' αὐτὰ γίνεται λόγος στὰ ἑπόμενα κεφάλαια.

### ΚΕΦΑΛΑΙΟΝ Γ΄

### Ο ΡΥΘΜΟΣ

72. Όταν ἀκοῦμε μιὰ μελωδία ἢ ρίχνουμε μιὰ ἁπλῆ ματιὰ στὸ μουσικὸ κείμενό της, ἀντιλαμβανόμαστε πὼς ὅλη ἡ διάρκειά της μοιράζεται στοὺς φθόγγους της κατὰ τρόπο πολυποίκιλο.

Προσεκτικώτερη παρατήρησις μᾶς δείχνει πὼς ἡ διαφορετική διάρκεια τῶν φθόγγων δὲν εἶναι γεγονὸς τυχαῖο. Μεταξὺ τῶν διαφορετικῶν διαρκειῶν ὅλων τῶν φθόγγων τῆς μελωδίας ὑπάρχει πάντοτε κάποια ώρισμένη καὶ κανονικὴ σχέσις ποὺ σὰν ἀποτέλεσμα ἔχει νὰ τὴν κινῆ μὲ τάξι, ἀντιληπτὴ στ' αὐτὶ καὶ τοῦ πιὸ ἀμάθητου ἀκόμα ἀκροατῆ καὶ ποὺ στὴ μουσικὴ ὀνομάζεται ρυθμός. Ὅστε, ρυθμός στὴ μουσικὴ εἶναι διαδοχὴ χρονικῶν διαρκειῶν μὲ ὡρισμένη τάξι.

- 73. "Όλες οι μελωδίες δὲν ἔχουν τὸν ἴδιο ρυθμό. Καὶ δὲν ἀποκλείεται διάφορα τμήματα τῆς ἰδίας μελωδίας νάχουν διαφορετικούς ρυθμούς.
  - **74.** Ἡ διάκρισις τῶν διαφόρων ρυθμῶν δὲν εἶναι δύσκολη.

Κάθε ρυθμὸς ἔχει σὰν πυρῆνα μιὰ χαρακτηριστικὴ ὁμάδα ἀπὸ ώρισμένο μικρὸ ἀριθμὸ χρόνων ποὺ ἐπαναλαμβάνεται μὲ τὴν ἴδια ἢ διαφορετικὴ σύνθεσι καὶ διάταξι ἀπὸ τὴν ἀρχὴ ὡς τὸ τέλος τῆς μελωδίας καὶ τὴ χωρίζει σὲ μικρὰ ἰσόχρονα τμήματα.

Υπάρχει ρυθμὸς ποὺ ἔχει πυρῆνα ἀπὸ δύο χρόνους π.χ.

ἤ — ΄ ἤ ΄ ΄ ΄ ΄ κλπ.

"Αλλος ρυθμὸς ἔχει πυρῆνα ἀπὸ τρεῖς χρόνους π.χ.

΄ ἢ ΄ ΄ ΄ ΄ ΄ κλπ.

κλπ.

Πυρήνας ἀπὸ πέντε χρόνους δίνει ἄλλο ρυθμὸ κλπ.

**75.** Τὰ ἰσόχρονα τμήματα τοῦ μουσικοῦ κειμένου χωρίζονται μεταξύ των μὲ μιὰ μικρὴ κάθετη γραμμὴ ποὺ ὀνομάζεται διαστολή, π.χ.

**76.** Ένα ἀπὸ τὰ ἰσόχρονα τμήματα τοῦ μουσικοῦ κειμένου ποὺ βρίσκεται μεταξὺ δύο διαστολῶν καὶ ποὺ μ' αὐτό, σὰν ἕνα καινούργιο μετρικὸ μέγεθος, μετριέται ἡ ὅλη διάρκεια τῆς μελωδίας, ὀνομάζεται μέτρον, π.χ.

77. Τὸ μέτρο χαρακτηρίζεται ἀπὸ τὸν ἀριθμὸ τῶν χρόνων ποὺ περιέχει καὶ ὀνομάζεται:

Μέτρο δίσημο, ὅταν περιλαμβάνει 2 χρόνους:

Μέτρο τρίσημο, ὅταν περιλαμβάνει 3 χρόνους:

Μέτρο τετράσημο, ὅταν περιλαμβάνει 4 χρόνους, κ.ο.κ.

Στὸ προηγούμενο παράδειγμα (§75) τὸ μέτρο εἶναι δίσημο.

78. Ὁ ρυθμὸς χαρακτηρίζεται ἀπὸ τὸ μέτρο του καὶ ὀνομάζεται:

Ρυθμός δίσημος, ὅταν τὸ μέτρο του εἶναι δίσημο·

Ρυθμός τρίσημος, ὅταν τὸ μέτρο του εἶναι τρίσημο

Ρυθμός τετράσημος, όταν τὸ μέτρο του εἶναι τετράσημο, κ.ο.κ.

Τὸ προηγούμενο παράδειγμα (§75) ἔχει ρυθμὸ δίσημο.

79. Τὰ μέτρα διακρίνονται σὲ άπλᾶ καὶ σύνθετα.

'Απλα μέτρα είναι τὰ δίσημα καὶ τὰ τρίσημα.

Σύνθετα μέτρα είναι ὅλα ὅσα γίνονται μὲ τὴ συνένωσι δύο ἢ περισσοτέρων ἀπλῶν μέτρων.

Τὸ τετράσημο μέτρο εἶναι μέτρο σύνθετο $^1$ , γιατὶ σχηματίζεται μὲ τὴν ἕνωσι δύο δισήμων μέτρων, π.χ.

$$|C - C - C| = |C - C - C|$$

$$|C - C - C| = |C - C - C|$$

$$|C - C - C| = |K\lambda\pi.$$

Τὸ πεντάσημο μέτρο εἶναι σύνθετο, γιατὶ σχηματίζεται μὲ τὴν ἕνωσι ενὸς δισήμου μέτρου μ' ενα τρίσημο, ἢ καὶ ἀντίθετα, ενὸς τρισήμου μέτρου μ' ενα δίσημο, π.χ.

Τὸ έξάσημο μέτρο είναι σύνθετο, γιατὶ μπορεῖ νὰ σχηματισθῆ ἀπὸ δύο τρίσημα ἢ ἀπὸ τρία δίσημα μέτρα π.χ.

$$|\overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}}| = |\overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}}|$$

$$|\overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}}| = |\overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}} \overset{\circ}{\mathcal{C}}| \times \lambda \pi.$$

80. Οἱ ρυθμοὶ διακρίνονται σὲ ἀπλοῦς καὶ συνθέτους.
 ΄Απλὸς ρυθμὸς εἶναι ἐκεῖνος ποὺ ἔχει ἀπλὸ μέτρο.
 Σύνθετος ρυθμὸς εἶναι ἐκεῖνος ποὺ ἔχει σύνθετο μέτρο.

<sup>1.</sup> Τὸ τετράσημο μέτρο θεωρεῖται ἀπὸ πολλούς σὰν ἀπλὸ μέτρο.

81. Σύνθετος ρυθμός που τὸ μέτρο του ἀποτελεῖται ἀπὸ δύο ἀνόμοια, π.χ. ἕνα δίσημο κι' ἕνα τρίσημο, ὀνομάζεται ρυθμός σύνθετος κατὰ συζυγίαν.

Σύνθετος ρυθμός ποὺ τὸ μέτρο του ἀποτελεῖται ἀπὸ τὴ συνένωσι τριῶν ἢ περισσοτέρων ἀνομοίων μέτρων, ὀνομάζεται ρυθμὸς σύνθετος κατὰ περίοδον.

- **82.** Μὲ τὸ συνδυασμὸ άπλῶν καὶ συνθέτων ρυθμῶν γίνονται διάφοροι πολυσύνθετοι ρυθμοί.
- **83.** Σ' ἕνα ρυθμικὸ μέτρο, οἱ ἀπλοῖ χρόνοι ποὺ τὸ ἀποτελοῦν δὲν ἐκτελοῦνται ὁ καθένας μὲ μιὰ θέσι καὶ μιὰ ἄρσι.

'Επειδή τὸ μέτρο ἀποτελεῖ ἕνα ἐνιαῖο χρονικὸ μέγεθος, οἱ χρόνοι του θεωροῦνται ὑποδιαιρέσεις του καὶ ἐκτελοῦνται ἕνας ἢ περισσότεροι μὲ ἰσάριθμες ἰσόχρονες κινήσεις θέσεως καὶ οἱ ὑπόλοιποι, ἕνας ἢ περισσότεροι, μὲ ἰσάριθμες ἰσόχρονες κινήσεις ἄρσεως, σὲ τρόπο ποὺ κάθε χρόνος τοῦ μέτρου ν' ἀντιστοιχῆ σὲ μιὰ ἰσόχρονη κίνησι.

**84.** 'Απλὸς χρόνος¹ τοῦ μέτρου ποὺ ἐκτελεῖται σὲ μιὰ θέσι, σημειώνεται μὲ τὸ σημεῖο  $\mathbf{O}$  'Απλὸς χρόνος τοῦ μέτρου ποὺ ἐκτελεῖται σὲ μίαν ἄρσι σημειώνεται μὲ τὸ  $\mathbf{I}$ 

Θέσις διαρκείας δύο άπλῶν χρόνων σημειώνεται μὲ τὸ σημεῖο Ο θέσις διαρκείας τριῶν άπλῶν χρόνων σημειώνεται μὲ τὸ σημεῖο Ο κ.ο.κ.

"Αρσις διαρκείας δύο άπλῶν χρόνων σημειώνεται μὲ τὸ σημεῖο Ι ἄρσις διαρκείας τριῶν άπλῶν χρόνων σημειώνεται μὲ τὸ σημεῖο Ι κ.ο.κ.

**85.** Όλοι οί χρόνοι τοῦ μέτρου δὲν τονίζονται τὸ ἴδιο. Ἡ θέσις τονίζεται περισσότερο καὶ ὀνομάζεται ἰσχυρὸ μέρος τοῦ μέτρου. Ἡ ἄρσις τονίζεται λιγότερο καὶ ὀνομάζεται ἀσθενὲς μέρος τοῦ μέτρου.

Στὰ ἀπλᾶ μέτρα — τὰ δίσημα καὶ τὰ τρίσημα — ἰσχυρὸ μέρος εἶναι ὁ πρῶτος τους χρόνος, γιατὶ αὐτὸς μόνον ἐκτελεῖται στὴ θέσι. ᾿Ασθενῆ μέρη των εἶναι οἱ ἄλλοι τους χρόνοι, γιατὶ ἐκτελοῦνται στὴν ἄρσι.

Στὰ σύνθετα μέτρα, ἰσχυρὰ μέρη εἶναι οἱ θέσεις τῶν ἁπλῶν μέτρων ποὺ τὰ σχηματίζουν. ᾿Ασθενῆ μέρη των εἶναι ὅλες οἱ ἄρσεις τῶν ἀπλῶν τους μέτρων.

'Απὸ τὰ ἰσχυρὰ μέρη ένὸς συνθέτου μέτρου ἰσχυρότερο εἶναι τὸ πρῶτο, ἡ πρώτη θέσις. Τὰ ὑπόλοιπα εἶναι λιγότερο ἰσχυρά, μὲ βαθμιαία ἐξασθένησι τοῦ τονισμοῦ.

<sup>1.</sup> Ὁ ἀπλὸς χρόνος, δηλ. ή ἀπλῆ χρονικὴ μονάδα, θεωρεῖται ἴσος μὲ τὸν πρῶτο χρόνο τῆς ἀρχαίας ἑλληνικῆς μουσικῆς.

Γιὰ νὰ ἔχουμε τὴν παραστατικὴ εἰκόνα τοῦ τονισμοῦ τῶν χρόνων, μποροῦμε νὰ σημειώσουμε μὲ ἀνάλογο ἀριθμὸ τόνων τὰ ἰσχυρὰ μέρη, π.χ.

- **86.** Ἡ μεγαλύτερη ἔντασις, τοῦ ἰσχυροῦ μέρους τοῦ μέτρου ὀνομάζεται μετρικὸς τονισμός.
- **87.** Στὰ διάφορα μέτρα, ἕνας ἢ περισσότεροι ἢ ὅλοι οἱ χρόνοι ἢ ὑποδιαιρέσεις τους μπορεῖ νὰ εἶναι Παῦσις, π.χ.

Ο κενός χρόνος των μέτρων ονομάζεται λείμμα ρυθμού1.

**88.** Πολλές φορές, ἀπὸ τὸ πρῶτο μέτρο τοῦ μουσικοῦ κειμένου λείπουν ἕνας ἢ περισσότεροι χρόνοι ἢ ὑποδιαιρέσεις τους, π.χ.

Τέτοιο μέτρο ὀνομάζεται έλλιπες μέτρο.

Στὴ θέσι τῶν χρόνων ποὺ λείπουν ἀπὸ τὸ ἐλλιπὲς μέτρο, ὑποτίθεται πὼς ὑπάρχη Παῦσις ἴσης ἀξίας.

- **89.** Ρυθμοὶ ποὺ ἀρχίζουν ἀπὸ τὸ ἰσχυρὸ μέρος τοῦ μέτρου ὀνομάζονται θετικοί. Ρυθμοὶ ποὺ ἀρχίζουν ἀπὸ ἀσθενὲς μέρος τοῦ μέτρου ὀνομάζονται ἀνακρουστικοί.
- 90. Τὰ πιὸ συνηθισμένα μέτρα είναι τὰ δίσημα, τὰ τρίσημα καὶ τὰ τετράσημα.

# Μέτρο δίσημο - ρυθμός δίσημος

91. Τὸ δίσημο μέτρο περιέχει δύο χρόνους καὶ ἐκτελεῖται μὲ δύο κά-

<sup>1.</sup> Βλ. καὶ § 61α'.

θετες, Ισόγρονες και Ισομήκεις κινήσεις του γεριού. 1 μιά πρός τὰ κάτω, ἀπὸ τὸ σημεῖο α ὡς τὸ σημεῖο β καὶ μιὰ πρός τὰ ἐπάνω, ἀπὸ τὸ σημεῖο β ώς τὸ σημεῖο α.

Στὸ μέτρο αὐτό, ἰσχυρὸ μέρος εἶναι ἡ πρώτη κίνησις καὶ ἀσθενὲς μέρος, ή δευτέρα κίνησις.

Ο δίσημος ρυθμός2 σημειώνεται στὰ μουσικά κείμενα



# Μέτρο τρίσημο - ρυθμός τρίσημος



92. Τὸ τρίσημο μέτρο περιέχει τρεῖς χρόνους καὶ έκτελεῖται μὲ τρεῖς ἰσόχρονες καὶ ἰσομήκεις κινήσεις τοῦ γεριοῦ τὴν πρώτη πρὸς τὰ κάτω, τὴ δευτέρα πρὸς τὰ δεξιὰ καὶ τὴν τρίτη πρὸς τὰ ἐπάνω.

Στὸ μέτρο αὐτό, ἰσχυρὸ μέρος εἶναι ἡ πρώτη κίνησις καὶ ἀσθενῆ μέρη οἱ δύο ἄλλες κινήσεις.



Ο τρίσημος ρυθμός σημειώνεται στὰ μουσι-

 <sup>«</sup>Αἱ κινήσεις γίνονται μὲ τὸν πῆχυν τῆς χειρός, ἐνῶ ὁ βραχίων παραμένει κάθετος άποφευγομένης, κατά τὸ δυνατόν, τῆς κινήσεως αὐτοῦ ἐμπρός, ὀπίσω καὶ πλαγίως. Οἱ δάκτυλοι, έκτὸς τοῦ ἀντίχειρος, ἡνωμένοι καὶ κεκαμμένοι έλαφρά. Ἡ ἄρσις (τοῦ πήχεως) τῆς χειρὸς δύναται νὰ φθάση εἰς τὸ ὕψος τοῦ ὤμου μέχρι τοῦ σημείου εἰς τὸ ὁποῖον ἐπιτρέπει ή κάθετος τήρησις τοῦ βραχίονος, ή δὲ θέσις δὲν πρέπει νὰ κατέρχεται ἀπὸ τὴν νοητήν παράλληλον, που πρέπει να σχηματίζη ό πήχυς με το εδαφος. Ίδιαιτέρως πρέπει νὰ προσέχωμεν, ὅπως τὸ χέρι ἀνέρχεται καὶ κατέρχεται ὄχι ἀποτόμως καὶ ταχέως, ἀλλ' ήρέμα καὶ βαθμηδόν, ὅπως τὸ ἐκκρεμὲς καὶ νὰ μὴ στέκεται εἰς τὸ σημεῖον β, ἀλλὰ νὰ ευρίσκεται εν διαρκεῖ κινήσει» (Α.Γ. Αργυροπούλου «Μουσική άγωγή» Τεϋχος Α΄ σελίς 13,  $\sigma \eta \mu$ . 2).

<sup>2.</sup> Ὁ δίσημος ρυθμός στὴν Εὐρωπαϊκή μουσική σημειώνεται μὲ τὰ διμερῆ  $\mu$  έ τ ρ α  $\frac{2}{7}$   $\frac{2}{4}$   $\frac{2}{8}$  κλπ. Τὰ κλάσματα αὐτὰ γράφονται στὴν ἀρχὴ τοῦ μουσικοῦ κειμένου καὶ ἀμέσως μετὰ τὸν γνώμονα καὶ σημαίνουν πὼς κάθε μέτρο περιέχει δύο ἡμίσυ, η δύο τέταρτα, η δύο ὄγδοα κλπ.

<sup>3.</sup> Ὁ τρίσημος ρυθμός στην Ευρωπαϊκή μουσική σημειώνεται μὲ τὰ τριμερή μέτρα  $\frac{3}{2}$   $\frac{3}{4}$   $\frac{3}{8}$  κλπ. Ἡ σημασία τῶν κλασμάτων εἶναι ἡ ἴδια ὅπως καὶ παραπάνω στὸ δίσημο ρυθμό.

# Μέτρο τετράσημο - ρυθμός τετράσημος

93. Τὸ τετράσημο μέτρο περιέχει τέσσερες χρόνους καὶ ἐκτελεῖται μὲ τέσσερεις ἰσόχρονες καὶ ἰσομήκεις κινήσεις τοῦ χεριοῦ τὴν πρώτη πρὸς τὰ κάτω, τὴ δευτέρα ἀριστερά, τὴν τρίτη δεξιὰ καὶ τὴν τετάρτη ἐπάνω.



Στὸ μέτρο αὐτὸ ἰσχυρὰ μέρη εἶναι ἡ πρώτη καὶ ἡ τρίτη κίνησις. ᾿Απὸ αὐτές, ἡ πρώτη εἶναι τὸ ἰσχυρότερο μέρος. Ἡ δευτέρα καὶ ἡ τετάρτη κίνησις εἶναι τὰ ἀσθενῆ μέρη.

Ο τετράσημος ρυθμὸς¹ σημειώνεται στὰ μουσικὰ κείμενα μὲ τὴ λέξι ρυθμὸς καὶ τὰ σημεῖα ΟΙΙΙ π.χ. Ρυθμὸς ΟΙΙΙ Α

# Ο ΡΥΘΜΟΣ ΤΩΝ ΕΚΚΛΗΣΙΑΣΤΙΚΩΝ ΜΕΛΩΔΙΩΝ ΤΟΝΙΚΟΣ ΡΥΘΜΟΣ

94. "Οπως εἴπαμε, οἱ περισσότερες μελωδίες ἀκολουθοῦν ἀπὸ τὴν ἀρχὴ ὡς τὸ τέλος ἕνα ὡρισμένο ρυθμὸ καὶ ὑπάρχουν περιπτώσεις ποὺ κατὰ τὴν πορεία τῆς μελωδίας γίνεται μεταβολὴ τοῦ ρυθμοῦ (§73).

Ο κανόνας αὐτὸς δὲν ἰσχύει γιὰ τὶς ἐκκλησιαστικὲς μελωδίες.

Ή Βυζαντινή μουσική δὲν προϋποθέτει σύνθεσι μελωδίας ποὺ ἐπάνω σ' αὐτὴ νὰ ἐφαρμόζωνται ὅπως-ὅπως οἱ λέξεις τοῦ κειμένου. Εἶναι μελωδία ποὺ τονίζεται μὲ βάσι τὸ ποιητικὸ κείμενο, τοὺς τόνους του, τὴν ἔννοιά

<sup>1.</sup> Ὁ τετράσημος ρυθμός στὴν Εὐρωπαϊκὴ μουσικὴ σημειώνεται μὲ τὰ τετραμερῆ μέτρα  $\frac{4}{2}$   $\frac{4}{4}$   $\frac{4}{8}$  κλπ. Τὸ μέτρον  $\frac{4}{4}$  σημειώνεται συνήθως μὲ τὸ C. Ἡ σημασία τῶν κλασμάτων εἴναι ἡ ἴδια ὅπως καὶ στοὺς ἄλλους ρυθμούς.

του καὶ γενικὰ τοὺς νόμους τῆς μιμήσεως. Εἶναι μελωδία μὲ σκοπό, πρόθεσι καὶ συνείδησι. Εἶναι ἀναπόσπαστα συνδεδεμένη μὲ τὸ ποιητικὸ κείμενο. Χωρὶς αὐτὸ δὲν εἶναι, οὔτε λέγεται, καλλιτέχνημα. Σὲ μιὰ βυζαντινὴ μελωδία δὲν μποροῦμε ν' ἀλλάξουμε οὔτε μιὰ λέξι χωρὶς αὐτὴ νὰ παραμορφωθῆ ὁλότελα.

Γιὰ τὸ λόγο αὐτὸ στὴν ἐκκλησιαστική μουσικὴ κάθε τονιζομένη συλαβὴ λέξεως τοῦ κειμένου γίνεται ἀρχὴ νέου μέτρου. Έτσι μέσα στὸ ἴδιο μουσικὸ κείμενο, ἀνάλογα μὲ τὴ θέσι τῶν τονιζομένων συλλαβῶν, σχηματίζονται διάφορα μέτρα. Γιὰ τὸν ἴδιο λόγο, δὲν γράφονται οἱ τόνοι τοῦ κειμένου. Ἡ ἴδια ἡ φύσις τῆς μουσικῆς μὲ τὶς ἀναβάσεις καὶ τὶς καταβάσεις τῆς φωνῆς, μὲ τὴν ὀξύτητα καὶ τὴ βαρύτητα τῶν φθόγγων ὑποκαθιστᾶ καὶ ὑπογραμμίζει τοὺς τόνους κάθε λέξεως.

' Aπὸ τὸ νόμο αὐτὸν προέκυψε στὴ Bυζαντινὴ μουσικὴ ὁ τονικὸς ρυθμός.

Σύμφωνα μὲ τὸν τονικὸ ρυθμό, ἐνῶ σὲ μιὰ μελωδία κυριαρχεῖ τὸ δίσημο ἢ τὸ τετράσημο μέτρο, ξαφνικὰ παρεμβάλλονται καὶ τρίσημα μέτρα, γιατὶ αὐτὸ ἀπαιτεῖ ὁ τονισμὸς τῶν λέξεων, π.χ.

Ή ποικιλία αὐτὴ τῆς ἐναλλαγῆς τῶν μέτρων ποὺ μὲ τὴ πρώτη ματιὰ μοιάζει μιὰ ἀταξία ἀποτελεῖ στὴν οὐσία μιὰ ἰδιότυπη συμμετρία καὶ άρμονία. Όπως ἄνισες πέτρες συνταιριάζονται μικρὲς μὲ μεγάλες καὶ ἀποτελοῦν τὸ άρμονικὸ σύνολο μιᾶς οἰκοδομῆς, τὸ ἴδιο καὶ στὴ Βυζαντινὴ μελωδία, ἀνόμοια μέτρα, σοφὰ συνταιριασμένα, σχηματίζουν μουσικὸ ρυθμικὸ σύνολο εὐάρεστο στὴν ἀκοή, ἀφοῦ εὐάρεστο εἶναι καὶ τὸ μέτρο τοῦ ποιητικοῦ κειμένου.

Τὰ μέτρα ποὺ πιὸ πολὺ χρησιμοποιοῦνται στὶς βυζαντινὲς μελωδίες εἶναι τὰ δίσημα καὶ τὰ τετράσημα.

'Ο τονικός ρυθμός χαρακτηρίζεται μὲ τὸ ὄνομα τοῦ ρυθμοῦ ποὺ ἐπικρατεῖ στὴ μελωδία καὶ μὲ τὴν ἕνδειξι μετ' ἐξαιρέσεων, π.χ. Ρυθμός ΟΙΙΙ μετ' ἐξαιρέσεων.

Γιὰ εὐκολία τῆς ἐκτελέσεως, ἐπάνω στὰ ἀνόμοια μέτρα ποὺ παρεμβάλλονται γράφονται οἱ ἀριθμοὶ 2, 3, 4, ποὺ δείχνουν τὸ εἶδος των.

Τὸ παραπάνω παράδειγμα ἔχει ρυθμὸ ρυθμὸ ΟΙΙΙ μετ' ἐξαιρέσεων.

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΟ ΡΥΘΜΟ

Α΄ "Όλοι οἱ λαοί, ἀκόμα καὶ οἱ πιὸ βάρβαροι, νοιώθουν τὸ ρυθμό. "Ο ἄνθρωπος, ὅταν ἀκόμα, σὰν νομὰς γύριζε στὰ βουνὰ καὶ στὰ δάση, ἀπὸ ἔνστικτο, προσπαθοῦσε νὰ δώση κάποια ρυθμικὴ κίνησι στὸν ἡχο τῆς φωνῆς του καὶ στὶς κινήσεις τοῦ σώματός του. Στὶς ἄρες τῆς ἀναπαύσεώς του χτυποῦσε ρυθμικὰ δύο πέτρες ἢ χειρονομοῦσε. Μερικοὶ ἐπιστήμονες παραδέχονται πὼς ὁ ρυθμὸς συγκινεῖ τὸν ἄνθρωπο γιατὶ ἀνταποκρίνεται στοὺς παλμοὺς τῆς καρδιᾶς του. 'Αντίθετα μὲ μιὰ μελωδία, ποὺ σ' ἄλλους μπορεῖ νὰ εἶναι εὐχάριστη καὶ σ' ἄλλους ἀποκρουστική, τὸ ρυθμὸ τὸν ἀντιλαμβανόμαστε ὅλοι, πολιτισμένοι καὶ ἀπολίτιστοι, κατὰ τὸν ἴδιο τρόπο. Ό ρυθμὸς εἶσδύει βαθειὰ στὴ ψυχή μας, ἐπιδρᾶ στὸ κινητικὸ κέντρο, κάνει νὰ κινοῦνται ἄθελα τὰ πόδια μας καὶ νὰ χτυποῦν τὸ χρόνο. Κι' ὰν εἶναι χορευτικός, μᾶς ξεσηκώνει καὶ μᾶς παρασέρνει στὸ χορό.

Β.΄ Οἱ ἀρχαῖοι Ἔλληνες τὴν εὕρεσι τοῦ μέτρου καὶ τοῦ ρυθμοῦ ἀπέδιναν στὸν ᾿Απόλλωνα¹. Στὴ μουσική τους θεωρία ἡ ρυθμικὴ κατεῖχε ἐξαιρετικὴ θέσι. Στὸ κεφάλαιο αὐτὸ ὑπῆρξαν οἱ μεγάλοι διδάσκαλοι. Τὰ βιβλία τοῦ ᾿Αριστοξένου² εἶναι ἡ μοναδικὴ πηγὴ ποὺ χρησιμοποιήθηκε στὸ σύγχρονο εὐρωπαϊκὸ ρυθμικὸ σύστημα, χωρὶς αὐτὸ νὰ μπορέση νὰ γίνη πλουσιώτερο.

Στή Βυζαντινή ἐποχή, τὸ ἀρχαῖο ρυθμικὸ σύστημα ἔμεινε αὐτούσιο.

Βάσις τῆς ἑλληνικῆς ρυθμικῆς ἦταν ὁ πρῶτος χρόνος πού, ὕστερα, ἀνομάσθηκε σημεῖον ἢ βραχεῖα καὶ παριστανόταν μὲ τὸ σημεῖο •

Ό πρῶτος χρόνος ήταν ή μικρότερη χρονική μονάδα ποὺ ἐπιδεχόταν πολλαπλασιασμὸ ὄχι ὅμως καὶ ὑποδιαίρεσι.

Χρόνος διπλασίας διαρκείας ἀπὸ τὸν πρῶτο ὀνομαζόταν μακρὸς χρόνος η δίσημος χρόνος καὶ παριστανόταν μὲ τὸ σημεῖο

"Όλες οἱ ἀνώτερες ἀξίες ἀπὸ τὸν πρῶτο χρόνο ὀνομάζονταν χρόνοι σύνθετοι.

<sup>1. «</sup>Τοῦ δὲ μέτρου εύρετὴς ὁ ᾿Απόλλων. Μέτρου δὲ πατὴρ ρυθμὸς καὶ Θεός. ἀπὸ ρυθμοῦ γὰρ ἔσχε τὴν ἀρχήν. Θεὸς δὲ τὸ μέτρον ἀνεφθέγζατο» (Λογγίνου, σχόλια εἰς Ἐγχειρ. Ἡφαιστίωνος σελ. 82 ἐκδ. Westphal).

<sup>2.</sup> Μουσικὸς καὶ φιλόσοφος, ό πιὸ μεγάλος θεωρητικὸς τῆς ἀρχαίας ἑλληνικῆς μουσικῆς τέχνης (350-300 π.Χ.).

Σήμερα, ή ἀπόλυτη διάρκεια τοῦ πρώτου χρόνου δὲν μᾶς εἶναι γνωστή. Ἐπειδὴ ὁ μουσικὸς ρυθμὸς ἤταν ἀναπόσπαστα συνδεδεμένος μὲ τὸν ποιη τικὸ ρυθμό, πιστεύεται πὼς ἡ διάρκεια τοῦ πρώτου χρόνου συνέπιπτε μὲ τὴ διάρκεια μιᾶς βραχείας συλλαβῆς.

Στὴ Βυζαντινὴ μουσικὴ ὁ πρῶτος χρόνος ἀντιστοιχεῖ στὸν ἁπλὸ χρόνο (θέσι καὶ ἄρσι) καὶ στὴν Εὐρωπαϊκὴ μουσικὴ μὲ τὸ φθογγόσημο ὄγδοον.

Ό πρῶτος χρόνος σὲ συνδυασμὸ μὲ τὸ μακρὸ χρόνο ἔδινε λαβὴ στὸ σχηματισμὸ τῶν διαφόρων μέτρων ποὺ ὀνομάζονταν πόδες.

Ο μουσικός ὅρος ποῦς εἶχε παρθῆ ἀπὸ τὴν ὀρχηστικὴ ὅπου, στὸν ἴδιο χρόνο τῆς ἐξαγγελίας του, ὁ χορευτὴς ἔκαμνε ἀνάλογες καὶ συμμετρικὲς κινήσεις τῶν ποδιῶν του.

Οἱ ἀρχαῖοι Ἔλληνες διέκριναν ἰσχυρὰ καὶ ἀσθενῆ μέρη τοῦ ποδός. Τὸ ἰσχυρὸ μέρος, ὅπως καὶ σήμερα, ὀνομαζόταν θέσις ἢ κάτω χρόνος, γιατὶ συνέπιπτε στὸ χορὸ μὲ τὸ κατέβασμα τοῦ ποδιοῦ. Τὸ ἀσθενὲς μέρος, ὅπως καὶ σήμερα, ὀνομαζόταν ἄρσις ἢ ἄνω χρόνος, γιατὶ συνέπιπτε μὲ τὸ σήκωμα τοῦ ποδιοῦ. Τὸ σύνολον τῆς θέσεως καὶ τῆς ἄρσεως ἀποτελοῦσε τὸ πλῆρες μέτρο.

Τὸ μέτρο μποροῦσε νὰ περιέχη περισσότερες θέσεις καὶ ἄρσεις.

Στὴν ἀρχή, τὰ μέτρα ἑνὸς ρυθμοῦ ἦσαν ἀπολύτως ὁμοιόμορφα. ᾿Αργότερα ἄφησαν μερικὲς ἐλευθερίες. Ἔγινε δεκτὸ πὼς ὁ μακρὸς χρόνος, ἐφόσον ἀντιστοιχεῖ μὲ δύο βραχεῖς ἢ πρώτους χρόνους, μπορεῖ νὰ ἀντικατασταθη ἀπὸ δυὸ βραχεῖς ἢ ἀντίθετα δύο βραχεῖς νὰ ἀντικατασταθοῦν ἀπὸ ἔνα μακρὸ χρόνο ἢ καὶ μὲ παύσεις (λείμματα ρυθμοῦ). Κατόπιν, μὲ τὴ συνένωσι δύο ἢ περισσοτέρων μέτρων σχηματίσθηκαν τὰ σύνθετα μέτρα ποὺ ὀνομάζονταν διποδίαι, τριποδίαι, τετραποδίαι κλπ. ἀνάλογα μὲ τὸν ἀριθμὸ τῶν ποδῶν ποὺ τὰ ἀποτελοῦσαν. Πιὸ ἀργότερα, τὰ σύνθετα μέτρα περιωρίσθηκαν μόνο στὶς διποδίες.

Οἱ κυριώτεροι πόδες ἦσαν οἱ ἑξῆς:

# α.΄ τρίσημοι ἢ ἰαμβικοὶ πόδες τροχαῖος = ΄΄ ἴαμβος = ΄΄ τρίβραχυς = ΄΄ β.΄ τετράσημοι ἢ δακτυλικοὶ πόδες δάκτυλος = ΄΄ ἀνάπαιστος = ΄΄ ἀμφίβραχυς = ΄΄ σπονδεῖος = ΄΄ προκελευματικὸς = ΄΄ προκελευματικὸς = ΄΄

### γ.΄ πεντάσημοι ή παιωνικοί πόδες

### δ.΄ έξάσημοι η ἰωνικοὶ πόδες σύνθετοι

# ε.΄ έπτάσημοι η ἐπίτριτοι πόδες σύνθετοι

### στ.΄ ὀκτάσημοι πόδες σύνθετοι

'Ανάλογα μὲ τὴ χρονικὴ διάρκεια τῶν θέσεων καὶ τῶν ἄρσεων τῶν διαφόρων ποδῶν τοὺς εἶχαν κατατάξει σὲ τρία γένη.

α΄. στὸ **γένος ἴσον** ὅπου ἡ χρονικὴ διάρκεια τῶν θέσεων ἦταν ἴση μὲ τὴ χρονικὴ διάρκεια τῶν ἄρσεων ὅπως, π.χ. στὸ δάκτυλο \_\_ στὸν ἀνάπαιστο \_ \_ \_

β΄. στὸ γένος διπλάσιον ὅπου ἡ χρονικὴ διάρκεια τῶν θέσεων ἦταν διπλασία ἀπὸ τὴν χρονικὴ διάρκεια τῶν ἄρσεων, ὅπως π.χ. στὸν ἴαμβο

— στὸν ἰωνικὸ ἀπὸ μείζονος — — στὸν ἰωνικὸ ἀπὸ ἐλάσσονος — — καὶ

γ΄. στὸ γένος ήμιόλιον ὅπου ή θέσις εἶχε σχέσι μὲ τὴν ἄρσι τὴν ἀναλογία 3 πρὸς 2 ἢ καὶ ἀντίθετα ὅπως, π.χ. ὁ παίων πρῶτος — · · παίων δεύτερος · · · ·

Τὰ μέτρα ποὺ δὲν ὑπάγονταν στὰ τρία αὐτὰ γένη ἦσαν ἀκανόνιστα ὅπως ο δεύτερος ἐπίτριτος \_\_\_ \_ | \_\_\_ \_\_\_

'Απὸ τοὺς ἀρχαίους ἑλληνικοὺς ρυθμοὺς πολλοὶ διασώθηκαν στὰ δημοτικά μας τραγούδια. 'Ο παιωνικὸς ποῦς συναντᾶται μὲ πολλὰ ρυθμικὰ σχήματα σὲ Πελοποννησιακὰ καὶ 'Ηπειρωτικὰ δημοτικὰ τραγούδια καὶ ἀποδίδεται στὴν Εὐρωπαϊκὴ μουσικὴ μὲ μέτρο 5/4. Στὰ τραγούδια τῆς Κύπρου καὶ τῆς Κρήτης συναντᾶμε τὸν παιωνικὸν πόδα ποὺ ἀποδίδεται μὲ μέτρο 5/2. 'Ο παίων ἐπιβατὸς συναντᾶται σὲ Πελοποννησιακὰ τραγούδια ὅπως στὰ «Κόρη μαλαματένια μου», «Σ΄ ὅσους γάμους κιὶ ἀν ἐπῆγα» καὶ ἀποδίδεται μὲ μέτρο 5/2. Οἱ ἰωνικοὶ πόδες ἀπὸ μείζονος καὶ ἀπὸ ἐλάσσονος βρίσκονται, ἐπίσης, σὲ ἀρκετὰ δημοτικὰ τραγούδια. 'Ο ἑξάσημος διτρόχαιος δακτυλικὸς, ἐκτὸς ποὺ βρίσκεται στὰ δημοτικά μας τραγούδια, χρησιμοποιεῖται συχνὰ καὶ σὲ ἐκκλησιαστικὲς μελωδίες ὅπως στὰ Κρατήματα καὶ τὶς Καταβασίες. 'Ο χορίαμβος καὶ ὁ ἀντίσπαστος συναντῶνται στὰ δημοτικὰ τραγούδια ποὺ χορεύονται σὰν τσάμικος ἢ πηδηχτός ἢ λεβέντικος. Τέλος, ὁ ἐπτάσημος ρυθμὸς καὶ κυρίως ὁ δεύτερος ἐπίτριτος, εἶναι ὁ κατ' ἐξοχὴν ἑλληνικὸς χορευτικὸς ρυθμός.

Γ΄. Εἴπαμε παραπάνω πὼς ὁ ρυθμὸς ἔχει τὴ δύναμι νὰ εἰσδύη στὴ ψυχή μας καὶ ἀνάλογα μὲ τὸ εἶδος του νὰ τροποποιῆ τὴν κατάστασί της. Ἡ δύναμις αὐτὴ ὀνομάζεται ἦθος τοῦ ρυθμοῦ¹

Τὸ ἦθος τοῦ ρυθμοῦ διακρίνεται:

- α΄. σὲ διασταλτικὸ ὅπου ἀποδίδονται ἔννοιες μεγαλοπρεπείας, ψυχικῆς ἐξάρσεως, ἡρωϊκῶν πράξεων καὶ ἄλλων ἀναλόγων ἰδιοτήτων.
- $oldsymbol{eta}$ ΄, σὲ συσταλτικὸ ὅπου προκαλοῦνται ἔννοιες ψυχικῆς συστολῆς καὶ ταπεινώσεως καὶ
- γ΄. σὲ ἡσυχαστικὸ ὅταν μᾶς γεννᾶ ψυχικὴ ἡρεμία ἢ συναισθήματα εἰρήνης καὶ γαλήνης.

Στὴν ἀρχαῖα ἑλληνικὴ μουσικὴ ὁ τροχαῖος ἦταν ρυθμὸς γοργὸς καὶ σκιρτητικὸς καὶ τὸν ὀνόμαζαν τροχαλὸ ἢ τροχερό. Ὁ ἴαμβος εἶχε ἦθος εὐγενέστερο καὶ λιγότερο ζωηρό. Ὁ δάκτυλος εἶχε ἦθος ἐπιβλητικὸ καὶ σεμνό, ὁ σπονδεῖος ἦταν πιὸ ἐπιβλητικὸς καὶ ὁ προκελευσματικὸς θερμότερος καὶ ταχύς.

Οί παιωνικοὶ ρυθμοὶ ἦσαν ἐνθουσιαστικώτεροι. Ὁ ᾿Αριστείδης Κοϊντιλιανὸς² γράφει τὰ έξῆς χαρακτηριστικὰ γιὰ τὸν παίωνα ἐπιβατὸ «Τοὺς δὲ ἐν ἡμιολίῳ λόγῳ θεωρουμένους ἐνθουσιαστικωτέρους εἶναι συμβέβηκε. Τούτων δὲ ὁ ἐπιβατὸς κεκίνηται μᾶλλον, συνταράττων μὲν τῆ διπλῆ θέσει τὴν ψυχήν, εἰς ὕψος δὲ τῷ μεγέθει τῆς ἄρσεως τὴν διάνοιαν ἐξεγείρων». Τέλος, ἀπὸ τοὺς ἰωνικοὺς ρυθμοὺς οἱ μὲν ἀπὸ μείζονος εἶχαν ἦθος μαλθακὸ καὶ χαῦνο, οἱ δὲ ἀπὸ ἐλάσσονος ταχὺ καὶ ἔντονο.

Οἱ ρυθμοὶ τῆς Βυζαντινῆς μουσικῆς ἔχουν τὸ ἡθος τῶν ἀντιστοίχων ἑλληνικῶν ρυθμῶν.

Δ΄. ᾿Απὸ ὅλες μας τὶς παρατηρήσεις βγαίνει τὸ συμπέρασμα πὸς ὁ ρυθμὸς εἶναι τὸ πρωταρχικό, τὸ ἀπαραίτητο καὶ οὐσιῶδες στοιχεῖο τῆς μουσικῆς ποὺ ὅσο πιστότερα καὶ ἀκριβέστερα τηρεῖται τόσο πιὸ πολὺ ἀναδεικνύει τὴ μουσικὴ ἐκτέλεσι καὶ τῆς δίνει ζωή. Ὁ ρυθμός, λοιπόν, εἶναι ἡ ψυχὴ τῆς μουσικῆς.

### ΚΕΦΑΛΑΙΟΝ Δ΄

### ΧΡΟΝΙΚΗ ΑΓΩΓΗ

95. Μᾶς εἶναι γνωστὸ πὼς εἴτε τὸν άπλὸ χρόνο χρησιμοποιοῦμε εἴτε

<sup>1.</sup> Τήθος διακρίνομε ἐπίσης στὴ μελωδία (§263) καὶ στὴ χρονικὴ ἀγωγὴ (σελ. 62 παρατ. Β΄).

<sup>2.</sup> Έλλην συγγραφεύς που ήκμασε στὰ τέλη τοῦ  $\Gamma'$  ἢ στὶς ἀρχὲς τοῦ  $\Delta'$  μ.Χ. αἰῶνα. Έγραψε σὲ τρία βιβλία περὶ μελωδίας, ρυθμοῦ καὶ ἀποτελεσμάτων τῆς μουσικῆς. ᾿Απὸ τὸ δεύτερο βιβλίο φαίνεται πὼς ἡ δύναμις τῆς ἑλληνικῆς μουσικῆς στηριζόταν κυρίως στὸ ρυθμό της.

τὰ διάφορα μέτρα τῶν ρυθμῶν, ὁ χρόνος στὴ μουσικὴ μετριέται πάντοτε μὲ ἰσόχρονες κινήσεις ποὺ εἶναι κανόνας ἀπαράβατος.

Οἱ ἰσόχρονες ὅμως κινήσεις μποροῦν νὰ γίνωνται κάθε φορὰ καὶ μὲ διαφορετικὴ ταχύτητα, διαρκείας 1/4, 1/3, 1/2, 3/4, 1 δευτερολέπτου κλπ.

'Η ώρισμένη ταχύτης τῶν κινήσεων τοῦ ρυθμοῦ ὀνομάζεται χρονικὴ ἀγωγή.¹.

- 96. Κάθε μελωδία είναι γραμμένη σὲ κάποια ὡρισμένη χρονικὴ ἀγωγή.
- 97. ἀπὸ τὴν πληθώρα τῶν χρονικῶν ἀγωγῶν ποὺ μποροῦμε νὰ ἔχουμε ἀπὸ τὴν πιὸ ἀργὴ ὡς τὴν πιὸ γρήγορη στὴ Βυζαντινὴ μουσικὴ χρησιμοποιοῦνται οἱ ἑξῆς πέντε.

- ε΄. ἡ ταχυτάτη χρονικὴ ἀγωγὴ ἢ τὸ χῦμα ..... χ ἀπὸ 208 μέχρι τὸ διπλάσιο ἀριθμὸ χτύπων τῆς ταχείας.
  - 98. Πιὸ συνηθισμένες χρονικές άγωγές είναι ή 🗓 καὶ ἡ 🛣
- **99.** Ή χρονική ἀγωγή σημειώνεται στήν ἀρχή τοῦ μουσικοῦ κειμένου. Γράφεται ἐπίσης σὲ διάφορα ἐνδιάμεσα σημεῖα ὅταν ὑπάρχη ἀνάγκη μετα-βολῆς της στὸ ταχύτερο ἢ τὸ βραδύτερο.
- 100. Στὰ μουσικὰ κείμενα ποὺ δὲν σημειώνεται χρονικὴ ἀγωγὴ ἐννοεῖται ἡ  $\frac{1}{2}$
- 101. Όπως βλέπομε παραπάνω, οἱ ὑποδείξεις τῶν χρονικῶν ἀγωγῶν εἶναι σχετικῆς μόνον ἀκριβείας. Κάθε μιὰ μπορεῖ νὰ παρουσιασθῆ μὲ διαφορετικὸ ἀριθμὸ κινήσεων μέσα στὰ ὅριά της. Ἡ τ π.χ. ἄλλοτε ὁρίζεται μὲ 60 ἄλλοτε μὲ 76 καὶ ἄλλοτε μὲ 80 κινήσεις. Τὸ ἴδιο καὶ οἱ ἄλλες χρονικὲς ἀγωγὲς μέσα στὰ ὅριά τους.

"Όταν θέλουμε νὰ προσδιορίσουμε ἐπακριβῶς τὸν ἀριθμὸ τῶν κινήσεων μιᾶς χρονικῆς ἀγωγῆς χρησιμοποιοῦμε τὸ μετρονόμο τοῦ Mälzel² ποὺ ἀπλούστερα ὀνομάζεται χρονόμετρον.

<sup>1.</sup> Ἡ χρονικὴ ἀγωγὴ στὴν Εὐρωπαϊκὴ μουσικὴ ὀνομάζεται ρυθμικ ἡ ἀγωγή.

<sup>2.</sup> Johann Mälzel (Maelzel), διάσημος Βαυαρός μηχανικός (1812-1838). Ὁ μετρονό μος του ποὺ εἶναι τελειοποίησις τοῦ χρονομέτρου τοῦ Winkel (1812) ἔγινε ἀποδεκτός τὸ 1816 ἀπὸ τὸ Ἰνστιτοῦτο τῶν Παρισίων καὶ ἐπεκράτησε στὸ μουσικὸ κόσμο.

# Μετρόνομος τοῦ Mälzel

102. Ὁ μετρονόμος τοῦ Mälzel ἢ χρονόμετρον εἶναι ἕνας άπλὸς μηχανισμὸς ὡρολογίου τοποθετημένος μέσα σ' ἕνα μικρὸ κιβώτιο σχήματος πυρα-

μίδος, ύψους 20 έκατοστῶν τοῦ μέτρου.

Ο μηχανισμός αὐτὸς κουρδίζεται — ὅπως δείχνει τὸ παρακάτω σχῆμα— μὲ τὸ κλειδὶ Κ καὶ κινεῖ ἐντελῶς ἰσόχρονα, δεξιὰ κι' ἀριστερὰ, τὸ ἐκκρεμὲς Ε ποὺ σὲ κάθε του κίνησι ἀκούεται ἕνας ξηρὸς κρότος. Μὲ τὸ μοχλὸ Μ ποὺ μπορεῖ νὰ τραβιέται πρὸς τὰ ἔξω ὡς τὸσημεῖο ποὺ νὰ φανῆ μιὰ ἀπὸ τὶς ὑποδιαιρέσεις 2, 3, 4, καὶ 6 ποὺ εῖναι χαραγμένες ἐπάνω του ἔχουμε, ἐπὶ πλέον, ἀντιστοίχως, τὸν πρῶτο χτύπο, τὴν ἀρχή, τοῦ 2σήμου, 3σήμου, 4σήμου καὶ 6σήμου μέτρου ποὺ σημαίνεται, ἀντὶ μὲ τὸν ξηρὸ κρότο, μὲ τὸ χτύπημα ένὸς κωδωνίσκου. Ο κωδωνίσκος αὐτὸς δὲν λειτουργεῖ ὅταν ὁ μοχλὸς Μ εἶναι τελείως πατημένος πρὸς τὰ μέσα.

Τὸ βαρύδιο β μπορεῖ νὰ μετακινηθή κατά μήκος τοῦ στελέχους τοῦ ἐκκρεμοῦς καὶ νὰ τοποθετηθῆ σὲ διάφορες θέσεις του. "Όσο ψηλότερα βρίσκεται τὸ βαρύδιο, τόσο οί κινήσεις τοῦ ἐκκρεμοῦς γίνονται βραδύτερες κι' όσο χαμηλότερα τὸ τοποθετοῦμε. τόσο ό ἀριθμὸς τῶν κινήσεων αὐξάνει. Έτσι, ὅταν τὸ βαρύδιο βρίσκεται στὸ ἀνώτατο σημείο του στελέχους, τὸ ἐκκρεμὲς δίνει 40 χτύπους κι΄ **ὅταν εἶναι τοποθετημένο στὸ** κατώτατό του σημείο, γτυπάει 208 χτύπους σὲ 1 λεπτὸ τῆς ὥρας. Οἱ ἄκρες αὐτὲς ταχύτητες είναι σημειωμένες έπάνω σὲ μιὰ ἐπιμήκη πινακίδα Π πού είναι στερεωμένη πίσω, ἀκριβῶς, ἀπό τὸ στέλεχος τοῦ ἐκκρεμοῦς, ὅταν



Μετρονόμος

αὐτὸ κατέχη κατακόρυφη θέσι καὶ ἡ μεταξὺ τῶν δύο αὐτῶν ταχυτήτων ἀπόστασις εἶναι χαραγμένη στὶς έξῆς ὑποδιαιρέσεις 40, 44, 48, 52, 56, 60, 66, 72, 80, 88, 96, 104, 112, 120, 132, 144, 160, 176, 192 καὶ 208 ἀπὸ τὴν ἀριστερὴ πλευρὰ καὶ 42, 46, 50, 54, 58, 63, 69, 76, 84, 92,

100, 108, 116, 126, 138, 152, 168, 184, καὶ 200 ἀπὸ τὴ δεξιὰ πλευρά, ἐνῶ στὴ στήλη ποὺ σχηματίζεται στὸ κέντρο εἶναι γραμμένες οἱ ρυθμικὲς ἀγωγὲς τῆς Εὐρωπαϊκῆς μουσικῆς Largo 40-60, Larghetto 60-66, Adagio 66-76, Andante 76-108, Moderato 108-120, Allegro 120-168 καὶ Presto 168-208.

Κατ' αὐτὸν τὸν τρόπο, ἔχουμε τὴν ἑξῆς ἀντιστοιχία μὲ τὶς χρονικὲς ἀγωγὲς τῆς Βυζαντινῆς μουσικῆς:  $\vec{\chi} = \text{Largo} - \text{Adagio}, \quad \vec{\chi} = \text{Andante},$   $\vec{\chi} = \text{Moderato} - \text{Allegro}, \quad \vec{\chi} = \text{Presto} \quad \text{καὶ} \quad \vec{\chi} = \text{Prestissimo} \quad (ἔξω ἀπὸ τὶς ὑποδιαιρέσεις τοῦ μετρονόμου).}$ 

103. Όταν θέλουμε ή χρονική ἀγωγὴ νὰ εἶναι ἀπολύτως ώρισμένη καὶ νὰ περιέχη ώρισμένο ἀριθμὸ χτύπων, φέρνομε τὸ ἐκκρεμὲς στὴν κατακόρυφη θέσι καὶ μετακινοῦμε τὸ βαρύδιο β μέχρι τὸ σημεῖο ποὺ τὸ ἄνω του ἄκρο νὰ βρεθῆ στὴν ὑποδιαίρεσι ποὺ ἐπιθυμοῦμε.

### ΠΑΡΑΤΗΡΗΣΕΙΣ

Α.΄ Οἱ χρονικὲς ἀγωγὲς τῆς Βυζαντινῆς μουσικῆς καθωρίσθηκαν ἀπὸ τὴν Πατριαρχικὴ Μουσικὴ Ἐπιτροπὴ τοῦ 1881 ποὺ κατ' αὐτὸν τὸν τρόπο εἰσήγαγε τὴ χρήσι τοῦ μετρονόμου Mälzel.

Στὸ «Θεωρητικὸν μέγα τῆς μουσικῆς» τοῦ Χρυσάνθου (§196) ἀναφέρονται ἡ χ καὶ ἡ χ κι' αὐτὲς ἀπροσδιόριστα. Ὁ Θεὸδωρος Φωκαεύς, ὁ Στέφανος Λαμπαδάριος κ.ἄ. ἀναφέρουν τὴ χ μὲ 30 χτύπους, τὴ χ μὲ 40 χτύπους, τὴ χ μὲ 60 χτύπους, τὴν χ μὲ 120 χτύπους καὶ τὴν χ μὲ 240 χτύπους.

- Β΄. Οἱ βραδεῖες χρονικὲς ἀγωγὲς δίνουν ἤθος συσταλτικὸν ἤ ἤσυχαστικὸν. Οἱ ταχεῖες ἀγωγὲς συντείνουν στὸ διασταλτικὸν ἤθος.
- Γ΄. Ἡ ἐκτέλεσις τῶν μελωδιῶν μὲ τὴν κανονική τους χρονικὴ ἀγωγὴ παίζει σπουδαιότατο ρόλο στὴ μουσικὴ ἔκφρασι. Χωρὶς αὐτὴν ὁ ρυθμὸς χωλαίνει φοβερὰ εἰς βάρος τῆς ὅλης μουσικῆς ἐκτελέσεως.
- Δ΄. ᾿Απὸ τὰ παραπάνω γίνεται καταφανής ή τεραστία σημασία τῆς χρονικῆς ἀγωγῆς μέσα στὸ ρυθμὸ καὶ στὴ μουσικὴ ἔκφρασι.

### ΚΕΦΑΛΑΙΟΝ Ε΄

### ΔΙΑΤΟΝΙΚΕΣ ΚΛΙΜΑΚΕΣ

### Παλμική κίνησις, ήχος - φθόγγος

104. "Αν πάρουμε ἕνα λεπτὸ χαλύβδινο ἔλασμα ΑΒ, ὅπως στὸ ἑπόμενο σχῆμα (σελ. 63) τὸ στερεώσουμε ἀπὸ τὸ ἄκρο Β, τὸ λυγίσουμε πρὸς τὴ μία κατεύθυνσι ΑΚ ἢ ΑΚ΄, τὸ ἀφήσουμε κατόπιν ἐλεύθερο ἢ ὁπωσδήποτε διαταρά-

ξουμε τὴν ἰσορροπία του, παρατηροῦμε πὼς κάνει ταχύτατες κινήσεις δεξιὰ κι' ἀριστερὰ ἀπὸ τὴ θέσι ἰσορροπίας **AB** ἐνῶ, ταὐτόχρονα, παράγεται ἤχος, τὸ αἴτιο δηλ. ποὺ διεγείρει τὸ αἰσθητήριο ὄργανο τῆς ἀκοῆς.

Οἱ κινήσεις αὐτὲς ὀνομάζονται παλμικὲς κινήσεις.

105. Οι παλμικές κινήσεις τοῦ ἐλάσματος, ἐφόσον δὲν θὰ ἐπιδράση σ' αὐτὸ ἄλλη καινούργια ἐξωτερικὴ δύναμις, φθίνουν σιγὰ-σιγὰ μέχρι τελείας ἀποσβέσεώς των καὶ τὸ ἔλασμα ἐπανέρχεται στὴν ἀρχικὴ κατακόρυφη θέσι ἰσορροπίας ΑΒ, ἐνῶ, ταὐτόχρονα, ὁ ῆχος ἀδυνατίζει καὶ τελικὰ δὲν ἀκούεται. "Αρα, ὁ ῆχος εἶναι ἀποτέλεσμα τῶν παλμικῶν κινήσεων.

**106.** Ἡ παλμικὴ κίνησις τῶν σωμάτων ὀφείλεται στὴν ἐλαστικότητα τῆς ὕλης των.

107. Ἡ παλμική κίνησις διακρίνεται σὲ ἀπλῆ καὶ διπλῆ.

'Απλή παλμική κίνησις είναι ή μετάβασις τοῦ ἄκρου Α τοῦ ἐλάσματος ΑΒ ἀπὸ τὸ σημεῖο ἠρεμίας του Α στὸ ἄκρο σημεῖο Κ καὶ ἡ ἐπάνοδος του στὸ Α, δηλ. ἡ διαδρομή ΑΚΑ. Τὸ ἴδιο, μιὰ ἀπλῆ παλμική κίνησις εἶναι καὶ ἡ ἀντίθετη διαδρομή ΑΚ΄Α.

Διπλῆ παλμικὴ κίνησις εἶναι τὸ σύνολο δύο ἀπλῶν παλμικῶν κινήσεων  $\mathbf{A}\mathbf{K}\mathbf{A} + \mathbf{A}\mathbf{K}'\mathbf{A}$  ἢ  $\mathbf{A}\mathbf{K}'\mathbf{A} + \mathbf{A}\mathbf{K}\mathbf{A}$ 



108. Τὰ σώματα ποὺ παράγουν ἦχο ὀνομάζονται ἡχογόνα.

Τὰ συνηθέστερα ἠχογόνα σώματα εἶναι ὁ λάρυγξ τοῦ ἀνθρώπου, τὰ ἀδικὰ πτηνά, οἱ χορδὲς τῶν μουσικῶν ὀργάνων καὶ οἱ ἠχητικοὶ σωλῆνες ὅπως, π.χ. ἡ φλογέρα, τὸ φλάουτο, τὸ κλαρίνο, τὰ διάφορα εἴδη τῶν σαλπίγγων καὶ γενικὰ ὅλα τὰ πνευστὰ ὄργανα.

109. Μὲ πειράματα ἔχει ἀποδειχθῆ πὼς ὅλα τὰ ἠχογόνα σώματα δὲν πάλλονται μὲ τὸν ἴδιο ἀριθμὸ παλμικῶν κινήσεων στὸν ἴδιο χρόνο, στὴ μονάδα, π.χ. τοῦ χρόνου. "Αλλα πάλλονται ταχύτερα, ἄλλα ἀργότερα καὶ ἄλλα σχετικὰ ἢ ἐντελῶς ἀκανόνιστα. 'Επὶ πλέον, τὸ ἴδιο ἠχογόνο σῶμα, κάτω ἀπὸ διαφορετικὲς συνθῆκες (θερμοκρασίας κλπ.), ἄλλοτε πάλλεται ταχύτερα καὶ ἄλλοτε βραδύτερα.

Ο ἀριθμὸς τῶν παλμικῶν κινήσεων ποὺ ἕνα ἠχογόνο σῶμα ἐκτελεῖ στὴ μονάδα τοῦ χρόνου, σ᾽ ἕνα δευτερόλεπτο τῆς ὥρας, ὀνομάζεται συχνότης τῶν παλμικῶν κινήσεων του.

110 'Ο ήχος ποὺ παράγεται ἀπὸ σώματα ποὺ πάλλονται μὲ ὡρισμένη συχνότητα ὀνομάζεται μουσικὸς ήχος ἤ, ἀπλῶς, ήχος. Οἱ μουσικοὶ ήχοι

παράγονται μὲ τὸ λάρυγγα καὶ τὰ διάφορα μουσικὰ ὄργανα καὶ γνώρισμά τους εἶναι πώς, συνήθως, μᾶς προκαλοῦν εὐχάριστο συναίσθημα.

- 111. Ο ήχος που είναι ἀποτέλεσμα ἀκανονίστων παλμικῶν κινήσεων ὀνομάζεται κρότος<sup>1</sup>. Οἱ κρότοι, ὅπως π.χ. τὸ κύλισμα τῶν τροχῶν κάρρου σὲ λιθόστρωτο δρόμο, τὸ γκέμισμα τοίχου κλπ, ἔχουν δυσάρεστο ἄκουσμα<sup>2</sup>
  - 112. Στή μουσική χρησιμοποιοῦνται οἱ ἦχοι καὶ ὀνομάζονται φθόγγοι.
- 113. Χαρακτηριστικά γνωρίσματα τοῦ φθόγγου είναι τὸ ὕψος, ή ἔντασις καὶ ή χροιά.

Ύψος τοῦ ήχου η τοῦ φθόγγου ὀνομάζεται ή ὀξύτης η βαρύτης του<sup>3</sup>.

Μὲ πειράματα ἀποδεικνύεται πὼς, τὸ ὕψος τοῦ φθόγγου εἶναι ἀνάλογο μὲ τὴ συχνότητα τῶν παλμικῶν κινήσεων τοῦ ἠχογόνου σώματος. Ὅσο μεγαλύτερος εἶναι ὁ ἀριθμὸς τῶν παλμικῶν κινήσεων στὴ μονάδα τοῦ χρόνου, τόσο ὁ φθόγγος εἶναι ὑψηλότερος (ὀξύτερος). Ὅσο ἡ συχνότης τῶν παλμικῶν κινήσεων στὴ μονάδα τοῦ χρόνου εἶναι μικρότερη, τόσο ὁ ἡχος εἶναι χαμηλότερος (βαρύτερος).

Τ' αὐτί μας μπορεῖ ν' ἀντιληφθῆ ἤχους ποὺ εἶναι ἀποτέλεσμα παλμικῶν κινήσεων συχνότητος 32 - 50.000 ἀπλῶν παλμῶν. Τὰ ὅρια ὅμως αὐτὰ εἶναι μεταβλητά, γιατὶ εἶναι συνάρτησις τῆς διαπλάσεως τοῦ ἀκουστικοῦ ὀργάνου καὶ τῆς ἡλικίας τοῦ κάθε ἀτόμου.

Στὴ μουσικὴ χρησιμοποιοῦνται φθόγγοι ποὺ τὸ ὕψος τους ποικίλλει ἀπὸ 60 - 8000 ἁπλοὺς παλμοὺς στὸ δευτερόλεπτο. Ἰδιαίτερα, στὴ Βυζαντινὴ μουσικὴ, μὲ τὴν περιωρισμένη της ἔκτασι, χρησιμοποιοῦνται φθόγγοι ὕψους 384-1536 ἀπλῶν παλμῶν<sup>4</sup>.

Έντασις τοῦ ήχου η τοῦ φθόγγου είναι ή ίδιότης ποὺ μᾶς ἐπιτρέπει νὰ τὸν διακρίνουμε σὲ ἰσχυρὸ η ἀσθενη.

'Ισχυροὶ ήχοι εἶναι ἐκεῖνοι ποὺ ἐρεθίζουν ζωηρὰ τὸ ἀκουστικό μας νεῦρο καὶ ἀσθενεῖς ἐκεῖνοι ποὺ τὸ προσβάλλουν ἐλαφρά.

Μὲ πειράματα ἔχει ἀποδειχθῆ πὼς, ἡ ἔντασις τοῦ ἥχου ὲξαρτᾶται, κατὰ κύριο λόγο, ἀπὸ τὸ πλάτος τῶν παλμικῶν κινήσεων καὶ εἶναι ἀνάλογο μ'αὐτό. Όσο δηλ. μεγαλύτερη εἶναι ἡ ἀπόστασις μεταξὸ τῶν ἄκρων σημείων ΚΚ΄ στὸ προηγούμενο σχῆμα, τόσο ὁ ἦχος εἶναι ἰσχυρότερος. ᾿Αντίθετα,

<sup>1.</sup> Διάφορα εἴδη κρότου εἴναι ὁ θόρυβος, ὁ πάταγος, ὁ ψόφος κλπ.

<sup>2.</sup> Τὰ ὅρια διακρίσεως τῶν μουσικῶν ἤχων καὶ τῶν κρότων δὲν εἶναι εὐκρινῆ.

<sup>3.</sup> Βλ. καὶ §7.

<sup>4.</sup> Bλ. § 23 καὶ 126

<sup>5.</sup> Ἄλλα αἴτια ποὺ ἐπιδροῦν τροποποιητικὰ στὴν ἔντασι τοῦ ἤχου εἶναι ἡ ἀπόστασις τῆς πηγῆς τοῦ ἤχου ἀπὸ τὸν ἀκροατῆ, ἡ διεύθυνσις τοῦ ἀνέμου, ἡ κατάστασις τῆς ἀτμοσφαίρας, ἡ παρουσία ἄλλων σωμάτων καὶ ὁ χῶρος ὅπου παράγεται ὁ ήχος.

όσο τὸ πλάτος τῶν παλμικῶν κινήσεων γίνεται μικρότερο καὶ τελικὰ μηδενίζεται, τόσο ὁ ἦχος ἀδυνατίζει καὶ τελικὰ παύει νὰ ἀκούεται.

Χροιὰ τοῦ ήχου ἢ τοῦ φθόγγου ὀνομάζεται ἡ ποιότης του, τὸ ἰδιαίτερο χρῶμα του ποὺ μᾶς ἐπιτρέπει νὰ τὸ διακρίνουμε ἀπὸ ἄλλον ήχο τοῦ ἰδίου ὕψους καὶ τῆς ἰδίας ἐντάσεως. Εὔκολα ξεχωρίζομε ἕνα καὶ τὸν αὐτὸ φθόγγο ὰν παράγεται ἀπὸ βιολί, ἀπὸ κιθάρα, τὴν ἀνθρώπινη φωνὴ κλπ.

Ή χροιὰ εἶναι γνώρισμα τῶν συνθέτων ἤχων. Αὐτοὶ ἀποτελοῦνται ἀπὸ ἕνα ἰσχυρότερο καὶ χαμηλότερο ἦχο ποὺ ὀνομάζεται θεμελιώδης ἤχος καὶ συνοδεύεται ἀπὸ ἄλλους ἀσθενεστέρους καὶ ὀξυτέρους μὲ διπλάσια, τριπλασία, τετραπλασία κλπ, συχνότητα παλμικῶν κινήσεων, συγκριτικὰ μὲ τὸ θεμελιώδη καὶ ποὺ ὀνομάζονται ἀρμονικοὶ ἤχοι. Ὠστε. ἡ χροιὰ τοῦ ἤχου ἐξαρτᾶται ἀπὸ τοὺς ἀρμονικούς του¹.

'Ελάχιστοι ήχοι είναι άπλοί.

114. Στή μουσική τὸ ὕψος τῶν φθόγγων ἐξετάζεται στὰ κεφάλαιά της περὶ τῶν κλιμάκων. Ἡ ἔντασις καὶ ἡ χροιὰ τοῦ ἡχου εἶναι ἀντικείμενα τῆς ἐκφράσεως.

### ΜΟΥΣΙΚΑ ΔΙΑΣΤΗΜΑΤΑ - ΤΟΝΟΙ

### ΔΙΑΤΟΝΙΚΗ ΚΛΙΜΑΞ

- 115. Ὁ λόγος² τοῦ ἀριθμοῦ τῶν παλμικῶν κινήσεων τοῦ ὀξυτέρου φθόγγου πρὸς τὸν ἀριθμὸ τῶν παλμικῶν κινήσεων τοῦ χαμηλοτέρου ὀνομάζεται μουσικὸ διάστημα.
- 116. Ύπάρχουν τὰ ἑξῆς τρία θεμελιώδη μουσικὰ διαστήματα καὶ ποὺ ὀνομάζονται τόνοι.

$$\frac{9}{8}$$
  $\frac{10}{9}$   $\frac{16}{15}$ 

117. Ο  $\frac{9}{8}$  ὁ μεγαλύτερος, ὀνομάζεται μείζων τόνος, ὁ  $\frac{10}{9}$  ποὺ εἴναι μικρότερος ἀπὸ τὸν  $\frac{9}{8}$  ὀνομάζεται ἐλάσσων τόνος καὶ ὁ  $\frac{16}{15}$  ὁ μικρότερος ἀπὸ ὅλους, ὀνομάζεται ἐλάχιστος τόνος ἢ μεῖζον ἡμιτόνιον³.

<sup>1.</sup> Ύψος τῶν συνθέτων ἤχων εἶναι τὸ ΰψος τοῦ θεμελιώδους των.

<sup>2.</sup> Μᾶς εἴναι γνωστὸν ἀπὸ τὰ μαθηματικὰ πὰς λόγος δύο ὁμοειδῶν μεγεθῶν εἴναι τὸ κλάσμα ποὺ ἔχει ἀριθμητὴ καὶ παρονομαστὴ τοὺς ἀριθμοὺς ποὺ παριστάνουν τὰ μεγέθη αὐτά, π.χ. τὸ  $\frac{\alpha}{\beta}$  εἴναι ὁ λόγος τοῦ α πρὸς τὸ  $\beta$ .

<sup>3.</sup> Ἡ διαφορὰ τοῦ μεγέθους τῶν τριῶν τόνων γίνεται ἐμφανέστερη ἀν τὰ κλάσματα  $\frac{9}{8}$   $\frac{10}{9}$   $\frac{16}{15}$  τραποῦν σὲ δμώνυμα δπότε ἔχουμε  $\frac{1215}{1080}$   $\frac{1200}{1080}$  καὶ  $\frac{1152}{1080}$ 

118. Συγκρίνοντας μεταξύ των τὰ μεγέθη τῶν τριῶν τόνων βρίσκομε πὼς: Ο μείζων τόνος  $\frac{9}{8}$  εἶναι μεγαλύτερος ἀπὸ τὸν ἐλάσσονα τόνο  $\frac{10}{9}$ 

Ο μείζων τόνος  $\frac{9}{8}$  εἶναι μεγαλύτερος ἀπὸ τὸν ἐλάχιστο τόνο  $\frac{16}{15}$  κατὰ  $\frac{135}{128}$  γιατὶ  $\frac{9}{8}$ :  $\frac{16}{15} = \frac{135}{128}$  Ή διαφορὰ αὐτὴ  $\frac{135}{128}$  ποὺ κι' αὐτὴ εἶναι ἕνα ἄλλο μουσικὸ διάστημα, ὀνομάζεται ἀποτομὴ ἐλάσσονος τόνου.

Ο ἐλάσσων τόνος  $\frac{10}{9}$  εἶναι μεγαλύτερος ἀπὸ τὸν ἐλάχιστο τόνο  $\frac{16}{15}$  κατὰ  $\frac{25}{24}$  γιατὶ  $\frac{10}{9}$ :  $\frac{16}{15} = \frac{150}{144} = \frac{25}{24}$  Ἡ διαφορὰ αὐτὴ  $\frac{25}{24}$  εἶναι τὸ μουσικὸ διάστημα ποὺ ὀνομάζεται ἡμιτόνιον ἔλασσον  $^1$ .

# Διατονική κλίμαξ τοῦ Νη

119. Ἡ διαδοχικὴ σειρὰ ὀκτὰ φθόγγων ποὺ μεταξύ τους σχηματίζονται τρεῖς μείζονες, δύο ἐλάσσονες καὶ δύο ἐλάχιστοι τόνοι, ὀνομάζεται διατονικὴ κλῖμαξ.

120. Στὴ διατονικὴ κλίμακα τοῦ Νη οἱ τόνοι ἔχουν τὴν ἑξῆς σειρά.



121. Ἡ διατονικὴ κλῖμαξ τοῦ Νη, ὅπως παρατηροῦμε, ἀποτελεῖται ἀπὸ δύο ἴσα καὶ ὅμοια τμήματα ποὺ τὸ καθένα ἀποτελεῖται ἀπὸ τέσσερεις φθόγγους καὶ μεταξύ των περικλείεται ἡ ἴδια σειρὰ τόνων, μείζων - ἐλάσσων - ἐλάχιστος. Τὰ τμήματα αὐτὰ τῆς κλίμακος ὀνομάζονται τετράχορδα καὶ διακρίνονται στὸ πρῶτο τετράχορδο ποὺ ἀποτελεῖται ἀπὸ τοὺς φθόγγους Νη Πα Βου Γα καὶ στὸ δεύτερο τετράχορδο ποὺ ἀποτελεῖται ἀπὸ τοὺς φθόγγους Δι Κε Ζω Νη΄.

<sup>1.</sup> Τὸ ἔλασσον ἡμιτόνιον  $\frac{25}{24}$  είναι μεγαλύτερο ἀπὸ τὸ κόμμα  $\frac{81}{80}$  ὅπως γίνεται φανερὸ ἂν τὰ κλάσματα γίνουν ὁμώνυμα :  $\frac{25}{24} = \frac{2000}{1920}$  καὶ  $\frac{81}{80} = \frac{1944}{1920}$ 

- **122.** Ό μείζων τόνος Γα Δι ποὺ χωρίζει τὰ δύο τετράχορδα, ὀνομάζεται διαζευκτικὸς τόνος.
- 123. Ἡ διατονική κλίμαξ τοῦ Νη είναι ή φυσική καὶ θεμελώδης μουσική κλίμαξ.

# Δὶς διαπασῶν κλῖμαξ

124. Ἐπειδὴ στὴ φύσι ὑπάρχει μόνον ἡ σειρὰ τῶν ἑπτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω ποὺ ἐπαναλαμβάνεται διαδοχικὰ ἐπὶ τὸ ὀξὺ καὶ ἐπὶ τὸ βαρύ καὶ στὴ δὶς διαπασῶν κλίμακα δι - Δι΄ ποὺ εἶναι ἡ ἔκτασι τῆς ἐκκλησιαστικῆς μουσικῆς² οἱ τόνοι ἔχουν τὴν ἴδια σειρὰ ὅπως καὶ στὴν κυρίως κλίμακα.

|      |      |   | ø        |    | 7.48 úv |         |    |     |          |     | A      |      |   | ฉีง     |           |       |    |
|------|------|---|----------|----|---------|---------|----|-----|----------|-----|--------|------|---|---------|-----------|-------|----|
| £    | ×    |   | ζω       | Nn | Па      | Вои     | ſa | 3.  |          | Kε  | Zω     | N'n' |   | Πa΄     | Bou       | Γα    | Δι |
| 9 8  |      | 9 | 16<br>19 | 9  | - 19    | 16      |    | 9   | <u>9</u> | 1c. | 10     | 5    | 9 | 1       | 9 19      | 9     | -  |
| 2    | 4    |   | z        | ň  | 9       |         | 1, | • • |          | *   | ž.     | 77   |   | ă'      | \$<br>%   | ť.    | ŝ  |
| Yaca | T 17 |   |          |    |         | N £ 6 . | n  |     |          |     | ****** |      |   | 4 m r n | *** ***** | ***** |    |

# Σχηματισμός των διατονικών κλιμάκων

125. Στὴ Βυζαντινὴ μουσικὴ ἔχει γίνει ἀποδεκτὸ πὼς ὁ φθόγγος Νη, ἡ βάσις τῆς φυσικῆς διατονικῆς κλίμακος, εἴναι ἀποτέλεσμα 512 ἁπλῶν παλμικῶν κινήσεων στὸ δευτερόλεπτο³. Ἔτσι γιὰ τοὺς φθόγγους τῆς δὶς διαπασῶν δι - Δι΄ ἀντιστοιχοῦν οἱ ἑξῆς συχνότητες.

Φθόγγοι δι κε ζω Νη Πα Βου Γα Δι Κε Ζω Νη΄ Πα΄ Βου΄ Γα΄ Δι΄ Παλμοὶ 384 432 480 512 576 640 682 768 864 960 1024 1152 1280 1364 1536

'Απὸ τὸ διάγραμμα αὐτὸ βλέπομε πὸς ὁ Νη΄ εἴναι ἀποτέλεσμα διπλασίας συχνότητος ἁπλῶν παλμικῶν κινήσεων τοῦ Νη ( $512 \times 2 = 1024$ ). Τὸ Ιδιο παρατηροῦμε πὸς συμβαίνει μεταξὺ κάθε πρώτου καὶ ὀγδόου τῆς κάθε διαδοχικῆς σειρᾶς ἀπὸ ὀκτὰ φθόγγους, π.χ. δι - Δι ( $384 \times 2 = 768$ ) Δι - Δι' ( $768 \times 2 = 1536$ ), κε - Κε ( $432 \times 2 = 864$ ) κλπ.

'Απὸ τὸ γεγονὸς αὐτὸ ἐξηγεῖται τὸ φαινόμενο τῆς ἀντιφωνίας καὶ δικαιολογεῖται ὁ σχηματισμὸς διαπασῶν κλιμάκων μεταξὺ δύο ἀντιφωνούντων σὲ μιὰ διαδοχικὴ σειρὰ ἀπὸ ὀκτώ φθόγγους, ὅπως ἀκριβῶς καὶ στὴ φυσικὴ θεμελιώδη κλίμακα.

Έπειδή οἱ κλίμακες αὐτὲς ποὺ παράγονται κατ' αὐτὸν τὸν τρόπο καὶ

<sup>1.</sup> BA. § 13.

<sup>2.</sup> B\(\delta\). § 23.

<sup>3.</sup> BA. § 142.

<sup>4.</sup> Bλ. § 13.

ποὺ παραθέτομε συνοπτικό τους διάγραμμα, ἔχουν τοὺς τόνους τῆς φυσικῆς διατονικῆς κλίμακος εἶναι κι' αὐτὲς διατονικὲς κλίμακες.



126. Καθεμιὰ ἀπὸ τὶς διατονικὲς κλίμακες ἔχει ἰδιαίτερο ἄκουσμα γιατὶ εἶναι διαφορετικὴ ἡ σειρὰ τῶν τόνων τους καὶ ἀνήκουν σὲ διαφορετικὲς περιοχὲς ὀξύτητος.

# Σχέσις ὀξύτητος τῶν φθόγγων Διατονικὰ διαστήματα

**127.** Συγκρίνοντας τὴν ὀξύτητα τῶν φθόγγων τῆς διατονικῆς κλίμακος τοῦ Νη μὲ τὴ βάσι της ἔχομε τὰ ἑξῆς μουσικὰ διαστήματα.

| Φθόγγοι        | Νη                | Πα                | Βου               | Γα                | Δι                | Κε                | Ζω                | Nη′                |
|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|
| Διαστήματα     | $\frac{512}{512}$ | $\frac{576}{512}$ | $\frac{640}{512}$ | $\frac{682}{512}$ | $\frac{768}{512}$ | $\frac{864}{512}$ | $\frac{960}{512}$ | $\frac{1024}{512}$ |
| καὶ άπλούστερα | 1                 | 9 8               | 5                 | 4 3               | $\frac{3}{2}$     | $\frac{27}{16}$   | $\frac{15}{8}$    | 2                  |

Τὰ διαστήματα χαρακτηρίζονται ἀπὸ τὸν ἀριθμὸ τῶν φθόγγων ποὺ τὰ περικλείουν:

—Τὸ διάστημα μεταξὺ δύο διαδοχικῶν φθόγγων, ὁ τόνος, ὀνομάζεται διάστημα δευτέρας ἢ διάστημα διὰ δύο¹.

Τὰ διατονικὰ διαστήματα δευτέρας εἶναι, ὡς γνωστὸν

Nη - Πα Πα - Βου Βου - Γα Γα - Δι Δι - Κε Κε - Ζω Ζω - Νη'  $\frac{9}{8} \qquad \frac{10}{9} \qquad \frac{16}{15} \qquad \frac{9}{8} \qquad \frac{9}{8} \qquad \frac{10}{9} \qquad \frac{16}{15}$ 

—Τὸ διάστημα μεταξύ ένὸς φθόγγου καὶ τοῦ ἐπομένου τρίτου ὀνομάζεται διάστημα τρίτης ἢ διάστημα διὰ τριῶν.

'Απὸ τὴ διατονικὴ κλίμακα σχηματίζονται τὰ έξῆς διαστήματα τρίτης.

 $N\eta$  - Bou  $\Pi\alpha$  -  $\Gamma\alpha$  Bou -  $\Delta\iota$   $\Gamma\alpha$  -  $K\epsilon$   $\Delta\iota$  -  $Z\omega$   $K\epsilon$  -  $N\eta'$   $Z\omega$  -  $\Pi\alpha'$   $\frac{5}{4}$   $\frac{32}{27}$   $\frac{6}{5}$   $\frac{81}{64}$   $\frac{5}{4}$   $\frac{32}{27}$   $\frac{6}{5}$ 

—Τὸ διάστημα μεταξὺ ένὸς φθόγγου καὶ τοῦ ἐπομένου τετάρτου ὀνομάζεται διάστημα τετάρτης ἢ διάστημα διὰ τεσσάρων.

Τὰ διατονικά διαστήματα τετάρτης είναι τὰ έξῆς:

 $N\eta - \Gamma\alpha$   $\Pi\alpha - \Delta\iota$   $Bov - K\epsilon$   $\Gamma\alpha - Z\omega$   $\Delta\iota - N\eta'$   $K\epsilon - \Pi\alpha'$   $Z\omega - Bov'$   $\frac{4}{3}$   $\frac{4}{3}$   $\frac{27}{20}$   $\frac{45}{32}$   $\frac{4}{3}$   $\frac{4}{3}$   $\frac{4}{3}$ 

—Τὸ διάστημα μεταξὺ ένὸς φθόγγου καὶ τοῦ επομένου πέμπτου ὀνομάζεται διάστημα πέμπτης ἢ διάστημα διὰ πέντε.

Έχομε τὰ έξῆς διατονικὰ διαστήματα πέμπτης:

 $N\eta - \Delta\iota$   $\Pi\alpha - K\epsilon$   $Bov - Z\omega$   $\Gamma\alpha - N\eta'$   $\Delta\iota - \Pi\alpha'$   $K\epsilon - Bov'$   $Z\omega - \Gamma\alpha'$   $\frac{3}{2}$   $\frac{3}{2}$   $\frac{3}{2}$   $\frac{3}{2}$   $\frac{3}{2}$   $\frac{40}{27}$   $\frac{64}{45}$ 

—Τὸ διάστημα μεταξύ ένὸς φθόγγου καὶ τοῦ έπομένου ἔκτου ὀνομάζεται διάστημα ἕκτης ἢ διάστημα διὰ ἕξ.

Τὰ διατονικὰ διαστήματα ἕκτης εἶναι τὰ ἑξῆς:

Nη - Κε Πα - Ζω Βου - Νη΄ Γα - Πα΄ Δι - Βου΄ Κε - Γα΄ Ζω - Δι΄  $\frac{27}{16}$   $\frac{5}{3}$   $\frac{8}{5}$   $\frac{27}{16}$   $\frac{5}{3}$   $\frac{128}{81}$   $\frac{8}{5}$ 

—Τὸ διάστημα μεταξὺ ένὸς φθόγγου καὶ τοῦ έπομένου έβδόμου ὀνομάζεται διάστημα έβδόμης ἢ διάστημα διὰ έπτά.

Έχομε τὰ έξῆς διατονικὰ διαστήματα έβδόμης:

 $N\eta - Z\omega$   $\Pi\alpha - N\eta'$   $Bov - \Pi\alpha'$   $\Gamma\alpha - Bov'$   $\Delta\iota - \Gamma\alpha'$   $K\epsilon - \Delta\iota'$   $Z\omega - K\epsilon'$   $\frac{15}{8}$   $\frac{16}{9}$   $\frac{9}{5}$   $\frac{15}{8}$   $\frac{16}{9}$   $\frac{9}{5}$ 

<sup>1.</sup> Διάστημα διὰ δύο φθόγγων.

—Τὸ διάστημα μεταξύ ένὸς φθόγγου καὶ τοῦ έπομένου ὀγδόου ὀνομάζεται διάστημα ὀγδόης ἢ διάστημα διαπασῶν.

Στὴ διατονικὴ κλίμακα διαστήματα δγδόης εἶναι οἱ ἀντιφωνίες:

$$N\eta - N\eta'$$
  $\Pi\alpha - \Pi\alpha'$   $Bov - Bov'$   $\Gamma\alpha - \Gamma\alpha'$   $\Delta\iota - \Delta\iota'$   $K\epsilon - K\epsilon'$   $Z\omega - Z\omega'$   $2$   $2$   $2$   $2$   $2$   $2$ 

# Χορδή - μονόχορδον

128. Ἡ χορδὴ εἶναι στερεὸ κυλινδρικὸ σῶμα ἀπὸ ἔντερο ἢ νῆμα μεταξιοῦ ἢ χαλκὸ ἢ σφυρηλατημένο σίδηρο ἢ ἀτσάλι κλπ. καὶ πού, ἀνάλογα μὲ τὸ μῆκος της, ἔχει πάρα πολὺ μικρὴ διάμετρο.



Αν μιὰ χορδὴ τεντωμένη μεταξὺ δύο σημείων, π.χ. ΑΒ τριβῆ μὲ τὸ δοξάρι ἢ χτυπηθῆ μὲ τὸ δάχτυλο ἀκούεται ἦχος γιατὶ τὰ μόρια τῆς ὕλης της τίθενται σὲ παλμικὴ κίνησι.

129. Τὸ ὕψος τοῦ φθόγγου τῆς παλλομένης χορδῆς ἐξετάζεται μὲ εἰδικὸ ὅργανο, τὸ μονόχορδον ἢ φθογγόμετρον ἢ καὶ ἠχόμετρον καὶ ποὺ ἡ ἐπινόησίς του ἀποδίδεται στὸν ἀρχαῖο ἕλληνα σοφὸ Πυθαγόρα (580-500 περίπου π.Χ.).

'Επάνω στὸ μακρόστενο ὀρθογώνιο ξύλινο, ἀπὸ λεπτὲς σανίδες, κιβώτιο ποὺ ἀποτελεῖ τὸ σῶμα τοῦ μονοχόρδου καὶ ἔχει τὴν ἰδιότητα νὰ ἐνισχύη τὸν ἦχο¹ ὑπάρχει κλῖμαξ διηρημένη σὲ 1080 χιλιοστά.



Ή χορδή, ποὺ ἀποτελεῖ τὸ κύριο μέρος τοῦ ὀργάνου, δένεται στὸ σημεῖο  $\beta$  τοῦ ἠχείου, ἀνεγείρεται στὶς ἀκμὲς δύο κινητῶν ὑποστηριγμάτων  $\mathbf{A}$  καὶ  $\mathbf{B}$  καὶ τεντώνεται ἀπὸ τὸ ἄλλο της ἄκρο μὲ τὸ κλειδὶ  $\alpha$  ἐπάνω στὴ διηρημένη κλίμακα.

131. Μὲ τ' ἀκόλουθα πειράματα στὸ μονόχορδο, ἀποδεικνύεται πὼς τὸ

<sup>1.</sup> Στην ἀκουστική οἱ συσκευὲς ποὺ χρησιμεύουν γιὰ την ἐνίσχυσι τοῦ ήχου ὀνομάζονται ἀ ν τ η χ ε ῖ α καὶ οἱ ἰδιότητές τους χρησιμοποιοῦνται στὰ διάφορα ἔγχορδα ὄργανα (βιολί, κιθάρα, πιάνο κλπ) καθὼς καὶ σὲ ἀκουστικοὺς χώρους (θέατρα, ἐκκλησίες κλπ.) γιὰ τὴ βελτίωσι τῆς ἀκουστικῆς των.

ύψος του φθόγγου τῆς χορδῆς ἐξαρτᾶται ἀπὸ τὸ βαθμὸ τῆς **τάσεως**, τὸ **μῆκος** καὶ τὸ **πάχος** της.

α΄ Σχέσις τοῦ ύψους τοῦ φθόγγου μὲ τὴν τάσι τῆς χορδῆς.— Ας ὁποθέσουμε πὼς ἡ χορδὴ τοῦ μονοχόρδου, ὅπως εἶναι τεντωμένη, δίνει τὸ φθόγγο δι (τῆς Ὑπάτης). Αν, στρίβοντας τὸ κλειδὶ α τοῦ μονοχόρδου, αὐξήσουμε τὴν τάσι τῆς χορδῆς παρατηροῦμε πὼς παράγεται ὀξύτερος φθόγγος ποὺ γίνεται ἀκόμη ἀξύτερος ὅσο πιὸ πολὺ τεντώνεται ἡ χορδή.

Γιὰ νὰ καθορίσουμε τὴν ἀκριβῆ σχέσι τοῦ ὕψους τοῦ φθόγγου μὲ τὴν τάσι τῆς χορδῆς ἀποσυνδέομε τὸ ἄκρο της ἀπὸ τὸ κελιδὶ α καὶ κρεμᾶμε ἀπ' αὐτὸ βάρος 1 χιλιογράμμου. "Αν, διαδοχικά, αὐξήσουμε τὸ βάρος παρατηροῦμε πὼς ὅσο αὐτὸ αὐξάνει τόσο αὐξάνει καὶ τὸ ὕψος τοῦ φθόγγου σὲ τρόπο ποὺ γιὰ ν' ἀκούσουμε τὸν Δι (τῆς Μέσης), τὴν ἀντιφωνία τοῦ δι (τῆς Ὑπάτης), πρέπει τὸ βάρος νὰ γίνη 4 χιλιογράμμων καὶ γιὰ νὰ παραχθῆ ὁ Δι' (τῆς Νήτης), τὸ βάρος πρέπει νὰ αὐξηθῆ σὲ 16 χιλιόγραμμα. Ἐπειδὴ δέ, ὡς γνωστόν, ὁ λόγος τῶν ἀντιφωνιῶν, γενικά, ἄρα καὶ τῶν δι - Δι - Δι΄ εἶναι ὅπως οἱ ἀκέραιοι ἀριθμοὶ 1, 2, 4 (κάθε ἀντιφωνία καὶ διπλάσιος λόγος) τὰ ἀντίστοιχα ὅμως γιὰ τὴν παραγωγή τους βάρη εἶναι 1, 4, 16 (κάθε ἀντιφωνία καὶ τετραπλασία τάσις) βγαίνει τὸ συμπέρασμα πὼς τὸ ὕψος τοῦ φθόγγου τῆς χορδῆς εἶναι ἀνάλογο μὲ τὴν τετραγωνικὴ ρίζα τῆς δυνάμεως ποὺ τὴν τεντώνει (γιατὶ  $\frac{2}{\sqrt{1}} = 1$   $\frac{2}{\sqrt{4}} = 2$  καὶ  $\frac{2}{\sqrt{16}} = 4$ ).

β΄ Σχέσις τοῦ ύψους τοῦ φθόγγου μὲ τὸ μῆκος τῆς χορδῆς.— "Ας ὑποθέσουμε πώς ή χορδή τοῦ μονοχόρδου μήκους 1080 χιλιοστών τοῦ μέτρου. οπως είναι τεντωμένη, δίνει τὸ φθόγγο δι (τῆς Ύπάτης). Αν, τώρα, χωρὶς νὰ μεταβάλουμε τὴν τάσι, ελαττώσουμε τὸ μῆκος της μεταφέροντας τὸ ὑποστήριγμα Α στὴν ὑποδιαίρεσι 120 τῆς κλίμακος τοῦ μονοχόρδου καὶ τὴ θέσουμε σὲ παλμική κίνησι ἀκοῦμε τὸ φθόγγο κε (τῆς Ὑπάτης) ποὺ εἶναι ὑψηλότερος κατά μείζονα τόνο. Κι' όσο έξακολουθοῦμε νὰ έλαττώνουμε, κατά τὸν ίδιο τρόπο, τὸ μῆκος τῆς χορδῆς παρατηροῦμε πὼς τόσο ὁ φθόγγος της γίνεται ὀξύτερος σὲ σημεῖο ποὺ γιὰ ν' ἀκουσθῆ ἡ ἀντιφωνία Δι (τῆς Μέσης) πρέπει τὸ ὑποστήριγμα Α νὰ τοποθετηθῆ στὴν ὑποδιαίρεσι 540 ποὺ βρίσκεται στὸ μέσον τῆς κλίμακος καὶ γιὰ ν' ἀκουσθῆ ἡ ὑψηλότερη ἀντιφωνία Δι΄ (τῆς Νήτης) τὸ ὑποστήριγμα πρέπει νὰ μετατεθή στὴν ὑποδιαίρεσι 810 τῆς κλίμακος. Έτσι, ἐνῶ οἱ ἀντιφωνίες δι - Δι - Δι΄ δίνονται μὲ τοὺς ἀκεραίους ἀριθμοὺς 1, 2, 4 τὸ παλλόμενο τμῆμα τῆς χορδῆς ἐλαττώνεται ἀντίστοιχα ἀπὸ 1 σὲ  $\frac{1}{2}$  καὶ  $\frac{1}{4}$  ( $^1/_2\times^1/_2=^1/_4$ ). Αρα, τὸ ὕψος τοῦ φθόγγου τῆς χορδής είναι αντιστρόφως ανάλογο με το μήκος της.

γ΄ Σχέσις τοῦ ὕψους τοῦ φθόγγου μὲ τὸ πάχος τῆς χορδῆς.— "Αν τεντώσουμε ἐπάνω στὸ μονόχορδο περισσότερες χορδὲς κατασκευασμένες ἀπὸ τὴν ἴδια ὕλη ποὺ νὰ διαφέρουν ὅμως κατὰ τὸ πάχος παρατηροῦ-

με πὼς μὲ τὴν ἴδια τάσι καὶ μὲ τὸ ἴδιο μῆκος δὲν μᾶς δίνουν τὸν ἴδιο φθόγγο. Όσο λεπτότερη εἶναι ἡ χορδή, τόσο ὀξύτερος εἶναι ὁ φθόγγος της κι'ὅσο παχύτερη εἶναι, τόσο χαμηλότερος. Έτσι π.χ. ἀν ἡ μιὰ χορδὴ ἔχει διάμετρο 1 χιλιοστὸ τοῦ μέτρου καὶ μᾶς δίνει τὸν δι (τῆς 'Υπάτης), ἡ ἄλλη χορδὴ μὲ διάμετρο 1/2 χιλιοστὸ παράγει τὸν Δι (τῆς Μέσης), τρίτη χορδὴ μὲ διάμετρο 1/4 τοῦ χιλιοστοῦ μᾶς δίνει τὸν Δι' (τῆς Νήτης) κ.ο.κ. Ἐπειδὴ δὲ ὁ λόγος τῶν ἀντιφωνιῶν, γενικά, καὶ τῶν δι - Δι - Δι', εἶναι ὅπως οἱ ἀκέραιοι ἀριθμοὶ 1, 2, 4 καὶ ἐπειδὴ τὸ πάχος τῆς χορδῆς ἐλαττώνεται ἀντίστοιχα ἀπὸ 1 σὲ 1/2 καὶ 1/4 συμπεραίνεται πὼς τὸ ὕψος τοῦ φθόγγου τῆς χορδῆς εἶναι ἀντιστρόφως ἀνάλογο μὲ τὴ διάμετρό της.

131. Οἱ παραπάνω τρεῖς σχέσεις ἀποτελοῦν τοὺς νόμους τῆς παλλομένης χορδῆς καὶ ἔχουν ἐφαρμογὴ στὰ μουσικὰ ὄργανα.

# 'Αξία τῶν τόνων καὶ τῶν διαστημάτων σὲ μῆκος χορδῆς

132. Στὰ προηγούμενα (§115 - 127) προσδιορίσαμε τοὺς τόνους καὶ τὰ λοιπὰ μουσικὰ διαστήματα μὲ τὸ λόγο τῶν συχνοτήτων τῶν παλμικῶν κινήσεων τῶν φθόγγων. Μποροῦμε ὅμως νὰ τὰ προσδιορίσουμε καὶ σὲ σχέσι μὲ τὸ μῆκος παλλομένης χορδῆς, ἀφοῦ, σύμφωνα μὲ τὸ δεύτερό της νόμο, τὸ ὕψος τοῦ φθόγγου εἶναι ἀντιστρόφως ἀνάλογο πρὸς αὐτό. Ἔτσι, μουσικὸ διάστημα εἶναι ὁ λόγος τοῦ μήκους τῆς χορδῆς τοῦ ὑψηλοτέρου φθόγγου πρὸς τὸ μῆκος τῆς χορδῆς τοῦ χαμηλοτέρου.

Γιὰ τὸ σκοπὸ αὐτὸν ἐργαζόμαστε ὡς ἑξῆς:

# Διαστήματα ὀγδόης ἢ διαπασῶν

Στὸ δεύτερο νόμο τῆς χορδῆς εἴδαμε πὼς ὅταν τὸ ὑποστήριγμα  $\bf A$  μετατεθῆ στὴν ὑποδιαίρεσι 540 τῆς κλίμακος καὶ ἐλαττωθῆ ἔτσι τὸ παλλόμενο μῆκος τῆς χορδῆς στὸ  $\frac{1}{2}$  ἀκούεται ἡ ἀντιφωνία τοῦ φθόγγου ὁλόκληρης τῆς χορδῆς. Ἦν δηλ. ἀπὸ ὁλόκληρη τὴ χορδὴ ποὺ εἶναι μιὰ ἀκεραία μονάδα  $\bf 1$  ἀκούεται ὁ δι (τῆς Ὑπάτης), τὸ  $\frac{1}{2}$  τοῦ μήκους της ἠχεῖ τὸν  $\bf \Delta \iota$  (τῆς Μέσης). Ἦρα, ἡ ἀντιφωνία δι -  $\bf \Delta \iota$  καὶ κάθε ἀντιφωνία, δηλ. τὸ διάστημα

ολόης δίνεται ἀπὸ τὸ 
$$\frac{1}{2}\left(\begin{array}{c} \frac{1}{2}\\ \frac{1}{1} \end{array} = \frac{1}{2} \right)$$
 τῆς χορδῆς.

# Διαστήματα έβδόμης

Δεχόμαστε πως όλόκληρη ή χορδή, μήκους 1080 χιλιοστών που έχομε στο μονόχορδο, παλλομένη μας δίνει :

α' τὸν Νη (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 504 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 576 (1080 - 504 = \$76) χιλιοστὰ δηλ. στὰ  $\frac{576}{1080} = \frac{8}{15}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf Z\omega$  (τῆς Μέσης), δηλ. τὸ διάστημα ἑβδόμης  $\bf N\eta$  -  $\bf Z\omega = \frac{15}{8}$ . Ἄρα, τὸ διάστημα ἑβδόμης  $\frac{15}{8}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{8}{15}$ .

Ίσο, μ' αὐτό, διάστημα έβδόμης εἶναι καὶ τὸ Γα - Βου΄

β΄ τὸν ζω (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 480 περιορίζουμε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 600 ( 1080 - 480 = 600) χιλιοστά, δηλ. στὰ  $\frac{600}{1080} = \frac{5}{9}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf K\epsilon$  (τῆς Μέσης), δηλ. τὸ διάστημα ἑβδόμης  $\bf \zeta \omega$  -  $\bf K\epsilon = \frac{9}{5}$  Αρα, τὸ διάστημα ἑβδόμης  $\bf \frac{9}{5}$  δίνεται ἀπὸ μῆκος χορδῆς  $\bf \frac{5}{9}$  .

Ίσο, μ' αὐτό, διάστημα έβδόμης εἶναι καὶ τὸ **Βου - Πα**΄ καὶ γ΄ τὸν **Πα** (τῆς Μέσης).

"Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 472,5 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 607,5 (1080 - 472,5 = 607,5) χιλιοστά δηλ. στὰ  $\frac{607,5}{1080} = \frac{9}{16}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf N\eta'$  (τῆς  $\bf N$ ήτης), δηλ. τὸ διάστημα ἑβδόμης  $\bf \Pi \alpha$  -  $\bf N\eta' = \frac{16}{9}$  " $\bf A$ ρα, τὸ διάστημα ἑβδόμης  $\bf L$  δίνεται ἀπὸ μῆκος χορδῆς  $\bf L$  τὸ διάστημα ἑβδόμης  $\bf L$  διάστημα ἐξιαστάστημα διάστημα διά

Τσο, μ' αὐτό, διάστημα έβδόμης εἶναι καὶ τὸ δι - Γα.

# Διαστήματα εκτης.

Δεχόμαστε πὼς ὁλόκληρη ἡ χορδή, μήκους 1080 χιλιοστῶν ποὺ ἔχομε στὸ μονόχορδο, παλλομένη μᾶς δίνει:

α΄ τὸν Νη (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 440 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 640 (1080 - 440 = 640) χιλιοστά, δηλ. στὰ  $\frac{640}{1080} = \frac{16}{27}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf K$ ε (τῆς Μέσης), δηλ. τὸ διάστημα ἔκτης  $\bf N\eta$  -  $\bf K$ ε =  $\frac{27}{16}$  . Αρα, τὸ διάστημα ἔκτης  $\frac{27}{16}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{16}{27}$ .

Ισο, μ' αὐτό, διάστημα ἕκτης εἶναι καὶ τὸ Γα - Πα'.

β΄ τὸν ζω (τῆς Μέσης).

"Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 405 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 675 (1080 - 405 = 675) χιλιοστά, δηλ. στὰ  $\frac{675}{1080} = \frac{5}{8}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf \Delta i$  (τῆς Μέσης), δηλ. τὸ διάστημα ἕκτης  $\bf \zeta \omega$  -  $\bf \Delta i = \frac{8}{5}$ . "Αρα, τὸ διάστημα ἕκτης  $\bf \frac{8}{5}$  δίνεται ἀπὸ μῆκος χορδῆς  $\bf \frac{5}{8}$ .

Τσο, μ' αὐτό, διάστημα ἕκτης εἶναι καὶ τὸ Βου - Νη΄.

γ΄ τὸν κε (τῆς Ύπάτης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 396,5 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σε 683,5 (1080 - 396,5 = 683,5) χιλιοστά, δηλ. στὰ  $\frac{683,5}{1080} = \frac{81}{128}$ τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf \Gamma$ α (τῆς Μέσης), δηλ. τὸ διάστημα ἕκτης κε -  $\bf \Gamma$ α =  $\frac{128}{81}$ . Αρα, τὸ διάστημα ἕκτης  $\frac{128}{81}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{81}{128}$ .

δ΄ τὸν Πα (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 332 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 648 (1080 - 332 = 648) χιλιοστά, δηλ. στὰ  $\frac{648}{1080} = \frac{3}{5}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf Z\omega$  (τῆς Νήτης), δηλ. τὸ διάστημα ἕκτης  $\bf \Pi\alpha$  -  $\bf Z\omega$  =  $\frac{5}{3}$  Αρα, τὸ διάστημα ἕκτης  $\frac{5}{3}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{3}{5}$ .

"Ισο, μ' αὐτό, διάστημα ἕκτης εἶναι καὶ τὸ Δι - Βου'.

# Διαστήματα πέμπτης

Δεχόμαστε πως όλόκληρη ή χορδή, μήκους 1080 χιλιοστών που έχομε στο μονόχορδο παλλομένη, μας δίνει:

α' τὸν δι (τῆς Ύπάτης).

Αν μεταθέσουμε τὸ ὑποστήριγμα Α στὴν ὑποδιαίρεσι 360 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 720 (1080 - 360 = 720) χιλιοστά, δηλ. στὰ  $\frac{720}{1080} = \frac{2}{3}$  τοῦ όλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\Pi$ α (τῆς Μέ-

σης), δηλ. τὸ διάστημα πέμπτης δι -  $\Pi \alpha = \frac{3}{2}$ . Άρα, τὸ διάστημα πέμπτης  $\frac{3}{2}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{2}{3}$ .

Ίσα, μ' αὐτό, διαστήματα πέμπτης είναι καὶ τὰ Νη - Δι Πα - Κε Βου - Ζω καὶ Γα - Νη'.

β΄ τὸν κε (τῆς Ύπάτης).

"Αν μεταθέσουμε τὸ ὑποστήριγμα Α στὴν ὑποδιαίρεσι 351 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 729 (1080 - 351 = 729) χιλιοστά, δηλ. στὰ  $\frac{729}{1080} = \frac{27}{40}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο Bou (τῆςΜέσης), δηλ. τὸ διάστημα πέμπτης κε - Bou  $= \frac{40}{27}$ . "Αρα, τὸ διάστημα πέμπτης  $\frac{40}{27}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{27}{40}$  καὶ

γ΄ τὸν ζω (τῆς Μέσης).

Ἄν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 320,6 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 759, 4 (1080 - 320,6 = 759,4) χιλιοστά, δηλ. στὰ  $\frac{759,4}{1080} = \frac{45}{64}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf \Gamma$ α (τῆς Μέσης), δηλ. τὸ διάστημα πέμπτης  $\bf \zeta \omega$  -  $\bf \Gamma \alpha = \frac{64}{45}$ . Ἄρα, τὸ διάστημα πέμπτης  $\bf \zeta \omega$  -  $\bf \Gamma \alpha = \frac{64}{45}$  δίνεται ἀπὸ μῆκος χορδῆς  $\bf \frac{45}{64}$ .

## Διαστήματα τετάρτης

Δεχόμαστε πως όλόκληρη ή χορδή, μήκους 1080 χιλιοστών που έχομε στο μονόχορδο, παλλομένη μᾶς δίνει:

α΄ τὸν δι (τῆς Ύπάτης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 270 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 810 (1080 - 270 = 810) χιλιοστά, δηλ. στὰ  $\frac{810}{1080} = \frac{3}{4}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf N\eta$  (τῆς Μέσης), δηλ. τὸ διάστημα τετάρτης δι -  $\bf N\eta = \frac{4}{3}$ . Ἄρα, τὸ διάστημα τετάρτης  $\frac{4}{3}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{3}{4}$ .

Ίσα, μ' αὐτό, διαστήματα τετάρτης εἶναι καὶ τὰ κε - Πα ζω - Βου  $\mathbf{N}$ η - Γα καὶ Πα - Δι.

β' τὸν Βου (τῆς Μέσης).

"Αν μεταθέσουμε τὸ ὑποστήριγμα Α στὴν ὑποδιαίρεσι 280 περιορίζομε τὸ

παλλόμενο τμήμα τῆς χορδῆς σὲ 800 (1080 - 280 = 800) χιλιοστά, δηλ. στὰ  $\frac{800}{1080} = \frac{20}{27}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο Κε τῆς Μέσης), δηλ. τὸ διάστημα τετάρτης  $\mathbf{Bov}$  -  $\mathbf{Ke} = \frac{27}{20}$ . "Αρα, τὸ διάστημα τετάρτης  $\mathbf{c}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{20}{27}$ , καὶ

γ΄ τὸν Γα (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  ${\bf A}$  στὴν ὑποδιαίρεσι 312 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 768 (108 - 312 = 768) χιλιοστά, δηλ. στὰ  $\frac{768}{1080} = \frac{32}{45}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  ${\bf Z}\omega$  (τῆς Νήτης), δηλ. τὸ διάστημα τετάρτης  ${\bf \Gamma}{\bf a}$  -  ${\bf Z}\omega = \frac{45}{32}$ . Ἄρα, τὸ διάστημα τετάρτης  $\frac{45}{32}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{32}{45}$ .

## Διαστήματα τρίτης

Δεχόμαστε πώς όλόκληρη ή χορδή, μήκους 1080 χιλιοστῶν ποὺ ἔχομε στὸ μονόχορδο, παλλομένη μᾶς δίνει:

α΄ τὸν δι (τῆς Ύπάτης).

Αν μεταθέσουμε τὸ ὑποστήριγμα Α στὴν ὑποδιαίρεσι 216 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 864 (1080 - 216 = 864) χιλιοστά, δηλ. στὰ  $\frac{864}{1080} = \frac{4}{5}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο ζω (τῆς Μέσης), δηλ. τὸ διάστημα τρίτης δι - ζω =  $\frac{5}{4}$ . Άρα, τὸ διάστημα τρίτης  $\frac{5}{4}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{4}{5}$ .

"Ισο, μ' αὐτό, τὸ διάστημα τρίτης εἶναι καὶ τὸ Νη - Βου.

β΄ τὸν κε (τῆς Ύπάτης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 168,7 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 911,3 (1080 - 168,7 = 911,3) χιλιοστά, δηλ. στὰ  $\frac{911,3}{1080}=\frac{27}{32}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf N\eta$  (τῆς Μέσης), δηλ. τὸ διάστημα τρίτης κε -  $\bf N\eta=\frac{32}{27}$ . Ἄρα, τὸ διάστημα τρίτης της  $\frac{32}{27}$  δίνεται ἀπὸ μῆκος χορδῆς  $\frac{27}{32}$ .

"Ισο, μ' αὐτό, τὸ διάστημα τρίτης εἶναι καὶ τὸ Πα - Γα.

γ΄ τὸν ζω (τῆς Μέσης).

Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 180 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 900 (1080 - 180 = 900) χιλιοστά, δηλ. στὰ  $\frac{900}{1080} = \frac{5}{6}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf \Pi a$  (τῆς Μέσης), δηλ. τὸ διάστημα τρίτης ζω -  $\bf \Pi a = \frac{6}{5}$ . Αρα, τὸ διάστημα τρίτης  $\bf \tau q = \frac{6}{5}$  δίνεται ἀπὸ μῆκος χορδῆς  $\bf \tau q = \frac{6}{5}$ .

Τσο, μ' αὐτό, διάστημα τρίτης εἶναι καὶ τὸ Βου - Δι καὶ

δ΄ τὸν Γα (τῆς Μέσης).

"Αν μεταθέσουμε τὸ ὑποστήριγμα  $\bf A$  στὴν ὑποδιαίρεσι 226,7 περιορίζομε τὸ παλλόμενο τμῆμα τῆς χορδῆς σὲ 853,3 (1080 - 226,7 = 853,3) χιλιοστά, δηλ. στὰ  $\frac{853,3}{1080}=\frac{64}{81}$  τοῦ ὅλου μήκους της καὶ ἀκοῦμε τὸ φθόγγο  $\bf K$ ε (τῆς Μέσης), δηλ. τὸ διάστημα τρίτης  $\bf \Gamma \alpha$  -  $\bf K$ ε  $=\frac{81}{64}$ . "Αρα, τὸ διάστημα τρίτης  $\frac{81}{64}$  δίνεται ἀπὸ χορδὴ μήκους  $\frac{64}{81}$ .

## Διαστήματα δευτέρας

α' Μείζων ἢ ἐπόγδοος τόνος.

΄Η ὑπεροχὴ τοῦ διαστήματος πέμπτης  $\frac{2}{3}$  (δι - Πα Νη - Δι Πα - Κε Βου - Ζω καὶ Νη - Γα) ἀπὸ τὸ διάστημα τετάρτης  $\frac{3}{4}$  (δι - Νη κε - Πα ζω - Βου Νη - Γα καὶ Πα - Δι) εἶναι ὁ μείζων τόνος  $\frac{9}{8}$  ποὺ δίνεται ἀπὸ μῆκος χορδῆς  $\frac{8}{9}$  ( $\frac{2}{3}$   $\frac{8}{9}$ ).

Ο μείζων τόνος ἀπὸ τὸν ἀριθμητὴ τοῦ κλάσματος ποὺ τὸν παριστάνει ὀνομάζεται καὶ ἐπόγδοος.

Μείζονες τόνοι είναι τὰ διαστήματα δευτέρας δι - κε Νη - Πα Γα - Δι καὶ Δι - Κε.

β' Ἐλάσσων ἢ ἐπιένατος τόνος.

'Ο ἐλάσσων τόνος, ἀπὸ τὸν ἀριθμητὴ τοῦ κλάσματος ποὺ τὸν παριστάνει, ὀνομάζεται ἐπιένατος.

Έλάσσονες τόνοι είναι τὰ διαστήματα δευτέρας κε - ζω καὶ Πα - Βου.

γ΄ Ελάχιστος η ἐπιπεντεκαιδέκατος τόνος.

'Η ὑπεροχὴ τοῦ διαστήματος τετάρτης  $\frac{3}{4}$  (δι - Νη κε - Πα ζω - Βου Νη - Γα καὶ Πα - Δι) ἀπὸ τὸ διάστημα τρίτης  $\frac{4}{5}$  (δι - ζω καὶ Νη - Βου)

είναι ὁ ἐλάχιστος τόνος 
$$\frac{16}{15}$$
 ποὺ δίνεται ἀπὸ μῆκος χορδῆς  $\frac{15}{16}$   $\left(\frac{\frac{3}{4}}{\frac{4}{5}} = \frac{15}{16}\right)$ .

Ο ελάχιστος τόνος, ἀπὸ τὸν ἀριθμητὴ τοῦ κλάσματος ποὺ τὸν παριστάνει, ὀνομάζεται καὶ ἐπιπεντεκαιδέκατος.

Έλάχιστοι τόνοι είναι τὰ διαστήματα δευτέρας ζω - Νη καὶ Βου - Γα.

# Οί διαφορές των τριών τόνων

α΄ τὸ κόμμα

 $^{\circ}$ Η ὑπεροχὴ τοῦ μείζονος ἢ ἐπογδόου τόνου  $\frac{8}{9}$  ἀπὸ τὸν ἐλάσσονα ἢ ἐπιένατο  $\frac{9}{10}$  εἴναι τὸ κόμμα  $\frac{81}{80}$ καὶ δίνεται ἀπὸ μῆκος χορδῆς  $\frac{80}{81}$  (  $\frac{\frac{8}{9}}{\frac{9}{10}}$  =  $\frac{80}{81}$  ).

# β΄ ή ἀποτομὴ ἐλάσσονος τόνου.

΄Η ὑπεροχὴ τοῦ μείζονος ἢ ἐπογδόου τόνου  $\frac{8}{9}$  ἀπὸ τὸν ἐλάχιστο ἣ ἐπιπεντεκαιδέκατο τόνο  $\frac{15}{16}$  εἴναι ἡ ἀποτομὴ ἐλάσσονος τόνου  $\frac{135}{128}$  καὶ δίνεται ἀπὸ μῆκος χορδῆς  $\frac{128}{135}$   $\left(\frac{\frac{8}{9}}{\frac{15}{16}} = \frac{128}{135}\right)$  καὶ

# γ΄ τὸ ἔλασσον ἡμιτόνιον.

Ή ὑπεροχὴ τοῦ ἐλάσσονος ἢ ἐπιένατου τόνου  $\frac{9}{10}$  ἀπὸ τὸν ἐλάχιστο ἢ ἐπιπεντεκαιδέκατο τόνο  $\frac{15}{16}$  εἶναι τὸ ἔλασσον ἡμιτόνιον  $\frac{25}{24}$  καὶ δίνεται ἀπὸ  $\frac{24}{10}$   $\frac{9}{10}$   $\frac{24}{10}$ 

μηκος χορδής 
$$\frac{24}{25}$$
  $\left(\frac{\frac{9}{10}}{\frac{15}{16}} = \frac{24}{25}\right)$ .

133. Μὲ τὴν ἀξία τῶν τόνων σὲ μῆκος χορδῆς ἡ φυσικὴ διατονικὴ κλῖμαξ τοῦ Νη (§121) παίρνει τὴν έξῆς μορφή.



134. Τὰ διαστήματα ποὺ σχηματίζονται ἀπὸ τὴ βάσι Νη τῆς φυσικῆς διατονικῆς κλίμακος μὲ τὴν ἀξία τους σὲ μῆκος χορδῆς συνοψίζονται στὸ ἑξῆς διάγραμμα:

| Φθόγγοι         | $N\eta$ | Пα | Βου | Γα | Δι | Kε | Ζω | Nη′ |
|-----------------|---------|----|-----|----|----|----|----|-----|
| Διαστήματα      | 1       | 8  | 4   | 3  | 2  | 16 | 8  | 1   |
| σέ μῆκος χορδῆς | •       | 9  | 5   | 4  | 3  | 27 | 15 | 2   |

135. Ἐφόσον ὁλόκληρη ή χορδή, μήκους 1080 χιλιοστῶν ποὺ ἔχομε στὸ μονόχορδο, παλλομένη μᾶς δίνει τὸν Νη (τῆς Μέσης), τὴ βάσι, δηλ. τῆς φυσικῆς διατονικῆς κλίμακος, οἱ φθόγγοι της, σύμφωνα μὲ τὰ παραπάνω, θὰ βρίσκωνται στὶς ἑξῆς ὑποδιαιρέσεις:

- 136. Ὁ προσδιορισμός ὁποιουδήποτε διατονικοῦ διαστήματος, εἴτε μὲ τὸ ὕψος τῶν φθόγγων σὲ σχέσι τἰς συχνότητες τῶν παλμικῶν κινήσεων εἴτε καὶ μὲ τὸ μῆκος τῆς χορδῆς, γίνεται μὲ τοὺς ἴδιους τρόπους ποὺ καθωρίσαμε τὰ διαστήματα.
- 137. 'Ανακεφαλαιώνοντας ὅσα εἴπαμε γιὰ τὴ φυσικὴ διατονικὴ κλίμακα τοῦ Νη ἔχομε τὸ ἑξῆς πλῆρες διάγραμμά της:

# Συγκερασμένη διαίρεσις τῆς φυσικῆς διατονικῆς κλίμακος τοῦ Νη

138. Γιὰ τὴ διδασκαλία τῶν πρωτοπείρων φανταζόμαστε καὶ παριστάνομε τὴ φυσικὴ μουσικὴ κλίμακα σὰ μιὰ πραγματικὴ σκάλα μὲ βαθμίδες της τοὺς ὀκτὰ φθόγγους Νη Πα Βου Γα Δι Κε Ζω Νη΄ ποὺ ἀνάμεσά τους σχηματίζονται έπτὰ ἀποστάσεις Νη - Πα, Πα - Βου, Βου - Γα, Γα - Δι, Δι - Κε, Κε - Ζω, Ζω - Νη΄ καὶ ποὺ ὀνομάζονται τονιαῖα διαστήματα.

Οἱ βαθμίδες ὅμως τῆς μουσικῆς κλίμακος, δηλ. οἱ φθόγγοι, δὲν εἶναι τοποθετημένες σὲ ἴσες ἀποστάσεις.

Γιὰ νὰ γίνη τοῦτο ἀντιληπτὸ ἀπὸ τούς μαθητές, ὁ δάσκαλος μπορεῖ νὰ τοὺς παρουσιάση ἕνα μονόχορδο ποὺ νά τὸ ἔχη μετατρέψη σὲ τριχορδο ἔτσι ποὺ ἡ πρώτη χορδὴ νὰ δίνη τὸν Νη ἡ δευτέρα τὸν Πα καὶ ἡ τρίτη τὸν Βου. Καὶ πρέπει τὸ μῆκος τῆς κάθε χορδῆς, ὅταν πάλλεται ὁλόκληρη, νὰ εἶναι 1080 χιλιοστά.

Περιορίζοντας, τώρα, ὁ δάσκαλος τὸ μῆκος τῆς χορδῆς τοῦ  $\mathbf{N}\mathbf{\eta}$  στὰ  $\frac{8}{9}$  του θὰ κάμη ν' ἀκουσθῆ ὁ  $\mathbf{\Pi}\mathbf{\alpha}$  καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 120. Περιορίζοντας κατόπιν τὸ μῆκος τῆς χορδῆς τοῦ  $\mathbf{\Pi}\mathbf{\alpha}$  στὰ  $\frac{9}{10}$  του θὰ κάμη ν' ἀκουσθῆ ὁ  $\mathbf{Bov}$  καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 108. Καὶ τέλος, περιορίζοντας τὸ μῆκος τῆς χορδῆς τοῦ  $\mathbf{Bov}$  στὰ  $\frac{15}{16}$  του θὰ κάμη ν' ἀκουσθῆ ὁ  $\mathbf{\Gamma}\mathbf{\alpha}$  καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 67,5.

'Αφοῦ λοιπὸν γιὰ νὰ πᾶμε

ἀπὸ τὸν Νη στὸν Πα πατᾶμε στὴν ὑποδιαίρεσι 120

ἀπὸ τὸν Πα στὸν Βου πατᾶμε στὴν ὑποδιαίρεσι 108

άπὸ τὸν Βου στὸν Γα πατᾶμε στὴν ὑποδιαίρεσι 67,5

γίνεται πρακτικὰ ἐμφανὲς πὼς ἀπὸ τὰ τρία τονιαῖα διαστήματα ποὺ σχηματίσθηκαν ἔτσι ἀλληλοδιάδοχα τὰ  $N\eta - \Pi\alpha$   $\Pi\alpha - Bov$  καὶ  $Bov - \Gamma\alpha$  τὸ  $N\eta - \Pi\alpha$  εἶναι μεγαλύτερο ἀπὸ τὸ  $\Pi\alpha - Bov$  καὶ τὸ  $Bov - \Gamma\alpha$  μικρότερο ἀπὸ τὸ  $\Pi\alpha - Bov$  δηλ.  $N\eta - \Pi\alpha > \Pi\alpha - Bov > Bov - \Gamma\alpha$ .

Κατόπιν ὁ δάσκαλος θὰ χορδίση τὸ τρίχορδο ἔτσι ποὺ ἡ πρώτη χορδὴ νὰ δίνη τὸν Γα, ἡ δευτέρα τὸν Κε καὶ ἡ τρίτη τὸν Ζω.

Περιορίζοντας, τώρα, τὸ μῆκος τῆς χορδῆς τοῦ  $\Gamma \alpha$  στὰ  $\frac{8}{9}$  του θὰ κάμη ν' ἀκουσθῆ ὁ  $\Delta \iota$  καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 120, στὴν ἴδια δηλ. θέσι ποὺ πατήθηκε καὶ ἡ χορδὴ τοῦ  $N \eta$  γιὰ ν' ἀκουσθῆ ὁ  $\Pi \alpha$  καὶ συνεπῶς τὸ τονιαῖο διάστημα  $\Gamma \alpha$  -  $\Delta \iota$  εἴναι ἴσο μὲ τὸ  $N \eta$  -  $\Pi \alpha$ .

Κατόπιν θὰ χορδίση τὴν ἴδια χορδὴ τοῦ  $\Gamma \alpha$  ἔτσι ποὺ ἀπ' ὅλο της τὸ μῆκος νὰ μᾶς δίνη τὸν  $\Delta \iota$ .

Περιορίζοντας τώρα τὸ μῆκος τῆς χορδῆς τοῦ Δι στὰ  $\frac{8}{9}$  του θὰ κάμη ν' ἀκουσθῆ ὁ Κε καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε πάλιν στὴν ὑποδιαίρεσι 120 στὴν ἱδια δηλ. θέσι ποὺ πατήθηκαν καὶ οἱ χορδὲς τῶν Νη καὶ Γα γιὰ ν' ἀκουσθοῦν, ἀντίστοιχα, οἱ Πα καὶ Δι καὶ συνεπῶς τὸ τονιαῖο διάστημα Δι - Κε εἶναι ἴσο μὲ τὰ Νη - Πα καὶ Γα - Δι.

Πηγαίνοντας ὕστερα στὴν χορδὴ τοῦ  $\mathbf{K}$ ε καὶ περιορίζοντας τὸ μῆκος της στὰ  $\frac{9}{10}$  του θὰ κάμη ν' ἀκουσθῆ ὁ  $\mathbf{Z}$ ω καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 108 στὴν ἴδια δηλ. θέσι ποὺ πατήθηκε καὶ ἡ χορδὴ τοῦ  $\mathbf{\Pi}$ α γιὰ ν' ἀκουσθῆ ὁ  $\mathbf{B}$ ου καὶ συνεπῶς τὸ τονιαῖο διάστημα  $\mathbf{K}$ ε -  $\mathbf{Z}$ ω εἴναι ἴσο μὲ τὸ  $\mathbf{\Pi}$ α -  $\mathbf{B}$ ου.

Καὶ τέλος, πηγαίνοντας στὴ χορδὴ τοῦ  $\mathbf{Z}\boldsymbol{\omega}$  καὶ περιορίζοντας τὸ μῆκος της στὰ  $\frac{15}{16}$  του θὰ κάμη  $\mathbf{v}$  ἀκουσθῆ ὁ  $\mathbf{N}\boldsymbol{\eta}$  καὶ θὰ παρατηρήση πὼς ἡ χορδὴ πατήθηκε στὴν ὑποδιαίρεσι 67,5 στὴν ἴδια δηλ. θέσι ποὺ πατήθηκε καὶ ἡ χορδὴ τοῦ  $\mathbf{Bov}$  γιὰ  $\mathbf{v}$  ἀκουσθῆ ὁ  $\mathbf{\Gamma}\boldsymbol{\alpha}$  καὶ συνεπῶς τὸ τονιαῖο διάστημα  $\mathbf{Z}\boldsymbol{\omega}$  -  $\mathbf{N}\boldsymbol{\eta}$  εἶναι ἴσο μὲ τὸ  $\mathbf{Bov}$  -  $\mathbf{\Gamma}\boldsymbol{\alpha}$ .

Έτσι θὰ καταδειχθῆ πρακτικὰ πὼς μεταξὺ τῶν φθόγγων τῆς φυσικῆς κλίμακος σχηματίζονται τριῶν εἰδῶν τονιαῖα διαστήματα:

 $\begin{aligned} \mathbf{N} \eta & - \Pi \alpha = \Gamma \alpha - \Delta \iota = \Delta \iota - \mathbf{K} \epsilon & \text{tà meizona} \\ \Pi \alpha & - \mathbf{Bou} & = \mathbf{K} \epsilon - \mathbf{Z} \omega & \text{tà èlássona} \\ \kappa \alpha \mathring{\mathbf{l}} & \mathbf{Bou} & - \Gamma \alpha & = \mathbf{Z} \omega - \mathbf{N} \eta. & \text{tà èláxista} \end{aligned}$ 

Γιὰ τὴν πρακτική διδασκαλία ἔχει γίνει παραδεκτή ἡ σύγκρασι τῶν φυσικῶν διαστημάτων καὶ ἡ διαίρεσις τοῦ διαστήματος τῆς διαπασῶν Νη - Νη΄ σὲ 72 ἴσα ἀκουστικὰ διαστήματα ποὺ ὀνομάζονται τμήματα.

Μὲ τὴν διαίρεσι αὐτὴ κάθε μεῖζον τονιαῖο διάστημα (Νη - Πα Γα - Δι Δι - Κε) ἀποτελεῖται ἀπὸ 12 τμήματα, κάθε ἔλασσον (Πα - Βου Κε - Ζω) ἀπὸ 10 καὶ κάθε ἐλάχιστο (Βου - Γα Ζω - Νη) ἀπὸ 8 τμήματα.

Τονιαῖο διάστημα 12 τμημάτων ὀνομάζεται μείζων τόνος. Τονιαῖο διάστημα 10 τμημάτων ὀνομάζεται ἐλάσσων τόνος. Τονιαῖο διάστημα 8 τμημάτων ὀνομάζεται ἐλάχιστος τόνος.

Έτσι, ή διαπασῶν κλῖμαξ Νη-Νη΄ ποὺ ὀνομάζεται καὶ διατονική 1

<sup>1.</sup> Ba. § 111.

<sup>2.</sup> Bl. § 121, 122.

καὶ ή δὶς διαπασῶν δι - Δι΄ παριστάνονται μὲ τὰς έξῆς σχεδιαγράμματα:



Ή διατονική κλίμαξ τοῦ  $N\eta$  ἀποτελεῖται ἀπὸ δύο ἴσα καὶ ὅμοια τετράχορδα μὲ 30 τμήματα τὸ καθένα, τὸ  $N\eta$  -  $\Gamma\alpha$  (α΄ τετράχορδον) καὶ τὸ  $\Delta\iota$  -  $N\eta$  (β΄ τετράχορδον), καὶ ποὺ χωρίζονται μὲ τὸ μείζονα διαζευκτικὸ τόνο  $\Gamma\alpha$  -  $\Delta\iota$ .

'Η διατονική κλίμαξ τοῦ Νη είναι ή θεμελιώδης μουσική κλίμαξ.1

"Αν θελήσουμε νὰ καθορίσουμε σὲ τμήματα τὴν ἀξία τῶν διαστημάτων ποὺ σχηματίζονται ἀνάμεσα στὴ βάσι καὶ τοὺς ἄλλους φθόγγους τῆς διατονικῆς κλίμακος τοῦ Νη εἶναι εὐκολονόητο πὼς θὰ ἔχουμε:

Καὶ γενικά θὰ ἔχουμε τὰ έξῆς διαστήματα :

π 9

Mésn

ň

# Διαστήματα δευτέρας

Είναι κατά σειράν οί τόνοι τῆς κλίμακος.

## Διαστήματα τρίτης

Φθόγγοι Νη - Βου Πα - Γα Βου - Δι Γα - Κε Δι - Ζω Κε - Νη΄ Ζω - Πα΄ Τμήματα 22 18 20 24 22 18 20

## Διαστήματα τετάρτης

Φθόγγοι Nη - Γα Πα - Δι Bου - Κε Γα - Zω Δι - Nη' Κε - Πα' Zω - Βου' Τμήματα 30 30 32 34 30 30 30

<sup>1.</sup> Bλ. § 123.

## Διαστήματα πέμπτης

Φθόγγοι Nη - Δι Πα - Κε Βου - Ζω Γα - Nη' Δι - Πα' Κε - Βου' Ζω - Γα' Τμήματα 42 42 42 42 40 38

## Διαστήματα εκτης

Φθόγγοι Nη - Kε Πα - Zω Bου - Nη' Γα - Πα' Δι - Βου' Kε - Γα' Zω - Δι' Τμήματα 54 52 50 54 52 48 50

## Διαστήματα έβδόμης

Φθόγγοι Nη - Zω Πα - Nη' Bου - Πα' Γα - Bου' Δι - Γα' Κε - Δι' Zω - Κε' Τμήματα 64 60 62 64 60 62

## Διαστήματα ὀγδόης

Είναι όλες οι άντιφωνίες Νη - Νη΄ Πα - Πα΄ κλπ., μὲ 72 τμήματα.

## ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΗΝ ΚΛΙΜΑΚΑ

Α΄. Ἡ Μουσικὴ Ἐπιτροπὴ τοῦ Οἰκουμενικοῦ Πατριαρχείου μὲ τὴν ἔκθεσί της τῆς 15ης Ἰουνίου 1885 διατύπωσε τὴν ἄποψι πὼς ὁποιοδήποτε σύστημα διδασκαλίας ποὺ στηρίζεται μόνο στὴ φωνητικὴ ἐκτέλεσι τῶν διαστημάτων τῆς Βυζαντινῆς μουσικῆς χωρὶς τὴ βοήθεια ὀργάνου, εἶναι ἄσκοπος ματαιοπονία.

Γιὰ τὴν κατασκευὴ τέτοιου ὀργάνου κατέφυγε στὴ σύγκρασι τῶν φυσικῶν διαστημάτων καὶ ὕστερα ἀπὸ πολλὲς δοκιμὲς υἱοθέτησε τὴ διαίρεσι τῆς διαπασῶν σὲ 36 τμήματα. ᾿Απὸ αὐτὰ 6 ἔδωσε στὸν μείζονα τόνο, 5 στὸν ἐλάσσονα καὶ 4 στὸν ἐλάχιστο ποὺ εἶναι  $\binom{36}{\sqrt{2}}^4 = \sqrt[9]{2} = \frac{27}{25}$  καὶ προσεγγίζει καταπληκτικὰ τὸν φυσικὸ ἐλάχιστο  $\frac{15}{16}$  ὅπως γίνεται φανερὸν ἄν τὰ κλάσματα γίνουν ὁμώνυμα  $\frac{27}{25} = \frac{81}{75}$  καὶ  $\frac{16}{15} = \frac{80}{75}$ .

Μὲ τὴ συγκερασμένη αὐτὴ διαίρεσι κατασκεύασε τὸ Ψαλτήριον.

Όπως παρατήρησε καὶ ἡ Μουσικὴ Ἐπιτροπή, ἡ συγκερασμένη διαίρεσις τῆς διαπασῶν σὲ 72 τμήματα εἶναι ἀκόμη πιὸ σύμφωνη μὲ τὴ φυσική της διαίρεσι ἀλλὰ ὄργανο κατασκευασμένο μὲ τέτοια διαίρεσι εἶναι δύσχρηστο.

- Β΄. Στὸ «Θεωρητικὸν μέγα τῆς μουσικῆς» τοῦ Χρυσάνθου καὶ ἀλλοῦ οἱ τόνοι παριστάνονται μὲ 12, 9, 7, ποὺ σύμφωνα μὲ τὰ παραπάνω δὲν εἶναι σωστοί.
  - Γ΄. Ἡ φυσικὴ κλῖμαξ χρησιμοποιεῖται καὶ στὰ δημοτικά μας τραγούδια.

Δ΄. Ἡ Εὐρωπαϊκὴ μουσικὴ μεταχειρίζεται τὴ συγκεκραμένη κλίμακα ὅπου τὸ διάστημα διαπασῶν  $\frac{2}{1}$  διαιρεῖται σὲ 12 ἴσα ἡμιτόνια μὲ ἀξία τὸ καθένα ἴση πρὸς 1,0594 (γιατὶ  $\frac{12}{\sqrt{2}} = 1,0594$ ). Δέκα ἡμιτόνια ἀνὰ δύο ἀποτελοῦν πέντε τόνους μὲ ἀξία τὸν καθένα ἴση πρὸς 1,1225 (γιατὶ 1,0594 × 1,0594 = 1,1225 περίπου) καὶ βρίσκονται μεταξὺ τῶν φθόγγων Do - Re, Re - Mi, Fa - Sol, Sol - La καὶ La - Si καὶ τὰ ἐναπομένοντα 2 ἡμιτόνια χωρίζουν τοὺς φθόγγους Mi - Fa καὶ Si - Do.

Καὶ ἐπειδὴ ἔχει γίνει παραδεκτὸ σὰν κανονικὸ ὕψος τοῦ La ἡ συχνότης τῶν 870 ἀπλῶν παλμικῶν κινήσεων¹ μποροῦμε νὰ ἔχουμε τὸ έξῆς ἀριθμητικὸ διάγραμμα τῆς κλίμακος αὐτῆς:

Τὴν παράφωνο αὐτὴ διαίρεσι τῆς κλίμακος ποὺ εἶχε προταθῆ ἀπὸ τὸν 'Αριστόξενο¹ 300 χρόνια π.Χ. ὁ ὀργανοποιὸς Anton Werkmeister χρησιμοποίησε κατὰ τὸ 1700 μὲ ἐπιτυχία καὶ ὁ Ἰωάννης Σεβαστιανὸς Μπάχ (1685-1750), ἕνας ἀπὸ τοὺς μεγαλυτέρους μουσικοδιδασκάλους ὅλων τῶν ἐποχῶν, τὴν διέδωσε μὲ τὸ ἔργο του «Das Wolhtemperierte Klavier (Καλῶς συγκεκραμένο κλειδόχορδο) καταδεικνύοντας τὴ μεγάλη πλαστικότητα τοῦ συστήματος.

Δ΄. Ἡ ᾿Αρχαῖα Ἑλληνικὴ μουσικὴ χρησιμοποιοῦσε τὴ σύντονο ἢ σκληρὰ διατονικὴ κλίμακα τοῦ Πυθαγόρα μὲ τὴν ἑξῆς διαίρεσι.

| Φφόγγοι                                  | Νη | <b>17 Па</b> | C             | Βου 🐬             | $\Gamma \alpha^{i}$ | -             | Δι       | Kε         | Ζω                | ் <b>N</b> 1      | η |
|------------------------------------------|----|--------------|---------------|-------------------|---------------------|---------------|----------|------------|-------------------|-------------------|---|
| Τόνοι σὲ παλμούς                         |    | 9 8          | <u>9</u><br>8 | $\frac{256}{243}$ | _                   | <u>9</u><br>8 | <u>9</u> | <u>.</u> . | 8                 | $\frac{256}{243}$ |   |
| Διαστήματα<br>ἀπὸ τὸν Νη                 | 1  | 9 8          |               | 81<br>64          | <del>4</del> 3      |               | 3 2      | 27<br>16   | $\frac{243}{128}$ | . 2               | 2 |
| Τόνοι<br>σὲ μῆκος χορδῆς                 |    | 8 9          | <u>8</u><br>9 | 243<br>256        | -                   | <u>8</u>      | _8       |            | 8                 | $\frac{243}{256}$ |   |
| Διαστήματα σὲ μῆκος<br>χορδῆς ἀπὸ τὸν Νη | 1  | 8 9          |               | 84<br>81          | 3                   |               | 3        | 16<br>27   | $\frac{128}{243}$ | _                 | 2 |

Στὴν κλίμακα αὐτὴ τὸ μικρὸ μουσικὸ διάστημα  $\frac{256}{243}$  ὀνομαζόταν λεῖμμα ἐπειδὴ εἶναι κατά τι μικρότερο ἀπὸ ἕνα σωστὸ ἡμιτόνιο τοῦ μείζο-

<sup>1.</sup> Bλ. § 140.

<sup>1.</sup> Βλ. ύποσ. 2.

νος τόνου  $\frac{9}{8}$  καὶ ἡ ὑπεροχὴ τοῦ μείζονος τόνου ἀπὸ τὸ λεῖμμα ποὺ εἶναι ἴση μὲ  $\frac{2187}{2048}$  ( γιατὶ  $\frac{9}{8}:\frac{256}{243}=\frac{2187}{2048}$ ) ὀνομαζόταν ἀποτομή.

## ΤΟΝΟΔΟΤΗΣ

139. 'Απὸ τὸν τρόπο τοῦ σχηματισμοῦ τῶν κλιμάκων γίνεται φανερὸ πὼς ἔνας ὁποιοσδήποτε φθόγγος, σ' ὁποιαδήποτε ὀξύτητα μπορεῖ — ὰν θελήσουμε — νὰ θεωρηθῆ σὰν βάσις ἢ κορυφὴ μιᾶς κλίμακος ἀρκεῖ, κατὰ τὴν ἀνιοῦσα ἢ κατιοῦσα διαδοχή, νὰ τηρηθοῦν ἀμετάβλητοι οἱ τόνοι ποὺ ὑπάρχουν μεταξὺ τῶν φθόγγων.

Κατὰ τὸν ἴδιο τρόπο, ἕνας ὁποιοσδήποτε φθόγγος, σ' ὁποιαδήποτε ὀξύτητα μπορεῖ νὰ θεωρηθῆ σὰν ἕνας ἐνδιάμεσος φθόγγος μιᾶς κλίμακος ἀρκεῖ, σὲ σχέσι μὲ τὸ ὕψος του, οἱ ὑπόλοιποι χαμηλότεροι καὶ ὑψηλότεροι φθόγγοι νὰ σχηματίζουν μεταξύ των τοὺς καθορισμένους τόνους.

Πολλοὶ ψάλτες καὶ ἀοιδοί, ἐπωφελούμενοι ἀπὸ τὸ γεγονὸς αὐτὸ καὶ στὴ φιλοδοξία τους νὰ ἐπιδεικνύουν τὴ φωνή τους μ' ὅσο τὸ δυνατὸν ὑψηλοτέρους φθόγγους, συνετέλεσαν, μαζὶ μὲ ἄλλα αἴτια, ἡ ὀξύτης τῆς θεμελιώδους κλίμακος νὰ ποικίλλη σὲ διάφορες ἐποχὲς μὲ τάσι τὴν ἀνύψωσι τῶν φθόγγων της.

- 140. Πρὸς ἀποφυγήν, λοιπόν, τῶν δυσαράστων συνεπειῶν τῆς χρήσεως τῆς φυσικῆς κλίμακος σὲ διαφορετικὲς περιοχὲς ὀξύτητος ἡ ᾿Ακαδημία τῶν Ἐπιστημῶν τῶν Παρισίων καθώρισε τὸ 1858 σὰν κανονικὸ ὕψος τοῦ La τῆς Εὐρωπαϊκῆς μουσικῆς τοὺς 870 ἀπλοὺς παλμοὺς καὶ τὸ 1885 τὸ Εἰδικὸ Διεθνὲς Συνέδριο τῆς Βιέννης ἐπεκύρωσε τὸν κανονικὸ La (La normal).
- 141. Γιὰ τὸν ἴδιο λόγο καὶ κατ' ἀναλογίαν, ἡ Πατριαρχικὴ Μουσικὴ Ἐπιτροπὴ τοῦ 1881 καθώρισε τὸ ὕψος τοῦ Νη, τῆς βάσεως τῆς φυσικῆς κλίμακος, σὲ 512 ἁπλοὺς παλμούς, μὲ συνέπεια ὁ Κε νὰ δίνεται ἀπὸ 864 ἀπλοὺς παλμοὺς καὶ νὰ μειονεκτῆ ἀπὸ τὸν κανονικὸ La κατὰ 6 ἁπλοὺς παλμούς, μιὰ διαφορὰ ἐντελῶς ἀσήμαντη καὶ ἀνεπαίσθητη.
- **142.** Τὸ ὕψος τοῦ κανονικοῦ La δίνεται ἀπὸ πρότυπο συσκευὴ ποὺ ὀνομάζεται τονοδότης ἢ διαπασῶν.

Ο τονοδότης είναι μικρὸ χαλύβδινο δίχαλο μὲ ἀνάλογο στέλεχος πού, ὅταν τὸ χτυποῦμε, πάλλεται μὲ συχνότητα 870 ἀπλῶν παλμῶν (Σχῆμα 1, σελ. 86).

Τὸ ὕψος τοῦ φθόγγου τοῦ τονοδότου ἐξαρτᾶται ἀπὸ τὸ μῆκος καὶ τὸ πάχος του. Οἱ βραχύτεροι καὶ παχύτεροι τονοδότες πάλλονται μὲ



Έπειδη ὁ ήχος τοῦ τονοδότου εἶναι πολύ ἀδύνατος τὸν στηρίζομε ἐπάνω σὲ κατάλληλο ήχεῖο 1 ἢ τὸν πλησιάζομε στ' αὐτί μας. Ο τονοδότης ἐφευρέθη τὸ 1711 ἀπὸ τὸν ὀργανοποιὸ John Shore.

σικῆς κλίμακος.

143. Τὸν κονονικὸ La μᾶς δίνει καὶ ὁ πνευστὸς τονοδότης πού λειτουργεῖ μὲ γλωσσίδα. (Σχ. 2 καὶ 3).

μεγαλύτερη συχνότητα καὶ δίνουν ύψηλοτέρους φθόγγους καὶ ἀντίθετα, οἱ μακρύτεροι καὶ λεπτότεροι πάλλονται μὲ μικρότερη συχνότητα καὶ δίνουν χαμηλοτέρους φθόγγους. Στην άρχη αὐτη στηρίζεται ή κατασκευή διαφόρων τονοδοτών που δίνουν, εκτός από τον κανονικό La καὶ διαφόρους ἄλλους φθόγγους τῆς φυ-

Υπάρχει, ἐπίσης, ὁ πνευστὸς πολυφωνικὸς τονοδότης (Σχ. 4) πού δίνει τούς άντιστοίχους στίς τέσσερεις χορδές τοῦ βιολιοῦ φθόγγους Sol Re La Mi.

Σχήμα 1





Σχ. 4

Τέλος, ὁ πνευστὸς χρωματικὸς τονοδότης (Σχ. 5, σελ. 87), μὲ τὴν αὐξομείωσι τοῦ μήκους τῆς παλλομένης γλωσσίδος του, μᾶς δίνει ὅλους τοὺς φθόγγους, τὰ ήμιτόνια καὶ κάθε αἰσθητή μικροϋποδιαίρεσι τοῦ τόνου τῆς διαπασῶν Fa<sub>3</sub> - Fa<sub>4</sub> (Γα - Γα').

<sup>1.</sup> Βλ. ὑποσ. 1 τῆς § 130.

Στὸ χρωματικὸ τονοδότη, ή γλωσσίδα γ (Σχ. 6 καὶ 7) εἶναι στερεωμένη στὴ βάσι της στὰ σημεῖα  $\beta$  καὶ  $\beta'$  καὶ πάλλεται ἀνάμεσα στὴν εἰ-



δική σχισμή τοῦ στελέχους Σ. Στὸ σημεῖο α τῆς ὀπισθίας ὄψεως τοῦ στελέχους Σ συνδέεται μὲ ἄξονα ἡ προέκτασις τοῦ τόξου Τ. Στὴν ἴδια ὄψι, ἡ προέκτασις τοῦ τόξου Τ συνδέεται μὲ τὸν ἄξονα κ τοῦ μοχλίσκου μ ἐνῶ τὸ ἄλλο του ἄκρο συνδέεται σταθερὰ στὸ σημεῖο κ΄ μὲ τὸ δείκτη δδ΄ ποὺ μπορεῖ, κάτω ἀπὸ τὸ πλακίδιο π, νὰ διολισθαίνη ἐπάνω στὴ γλωσσίδα γ. Στὴν ἐμπροσθία ὄψι, τὸ μικρὸ στέλεχος σ εἶναι σταθερὰ ἐνωμένο μὲ τὸ δείκτη δδ΄. Μὲ τὴν ἀρθρωτή αὐτὴ διάταξι τὸ τόξο Τ σὲ κάθε του κίνησι, ἀνεβάζοντας ἢ κατεβάζοντας τὰ ἐπάνω ἄκρα τοῦ δείκτου δδ΄ καί τοῦ στελέχους σ ποὺ ὰνάμεσά των πιέζεται τὸ κάτω τμῆμα τῆς γλωσσίδος γ τὴν βραχύνει ἢ τὴν ἐπιμηκύνει. Τὸ κάτω ἄκρο δ΄ τοῦ δείκτου δ δ΄ ποὺ βγαίνει καὶ ἐφάπτεται στὴν ἐμπροσθία ὄψι τοῦ τόξου Τ δείχνει τοὺς φθόγγους καὶ τὶς ὑποδιαιρέσεις τῶν τόνων ποὺ εἶναι χαραγμένες ἐπάνω σ' αὐτήν.

# **ΚΕΦΑΛΑΙΟΝ ΣΤ΄** ΑΛΛΟΙΩΣΕΙΣ

## ΔΙΕΣΙΣ ΚΑΙ ΥΦΕΣΙΣ

144. Γιὰ τὸ διαστηματικὸ ἐμπλουτισμὸ τῆς μουσικῆς μετατοπίζομε, πολλὲς φορές, εἴτε παροδικὰ εἴτε καὶ μόνιμα, ὑψηλότερα ἢ χαμηλότερα, ἔναν ἢ περισσοτέρους φθόγγους τῆς φυσικῆς διατονικῆς κλιμακος πρὸς τὸν ἀμέσως ὑψηλότερο ἢ χαμηλότερό τους. Μ' αὐτὸν τὸν τρόπο ἐπέρχεται ἡ ἀλλοίωσις τῶν φθόγγων ποὺ ἔχει συνέπεια νὰ μικραίνη ὁ τόνος

πού σχηματίζεται μεταξύ τῶν ὑψηλότερα μετατοπιζομένων φθόγγων καὶ τοῦ ἀμέσως ὑψηλοτέρου των καὶ νὰ μεγαλώνη ὁ ἀμέσως χαμηλότερος τόνος ἢ νὰ μικραίνη ὁ τόνος ποὺ σχηματίζεται μεταξύ τῶν χαμηλότερα μετατοπιζομένων φθόγγων καὶ τοῦ άμέσως χαμηλοτέρου των καὶ νὰ μεγαλώνη ὁ ἀμέσως ὑψηλότερος τόνος, παροδικὰ ἢ μόνιμα, μὲ ἀποτέλεσμα νὰ διαφοροποιῆται, ἀνάλογα, τὸ ἄκουσμα τῆς κλίμακος.

Έτσι, π.χ. ἄν μετατοπίσουμε τὸν Πα πρὸς τὸν Βου (Σχ. 1), ὁ ἐλάσσων τόνος Πα - Βου (10 τμήματα) μένει, ἄς ποῦμε, ἐλάχιστος (8 τμήματα) ἐνῶ ὁ μίζων τόνος Νη - Πα (12 τμήματα) γίνεται ὑπερμείζων τόνος  $^1$  (14  $^1$ μματα) ἢ ἀντίθετα, ἄν μετατοπίσουμε τόν Πα πρὸς τὸν Νη (Σχ. 2),

ό μείζων τόνος Νη - Πα (12 τμήματα) μένει, ας ποῦμε, ἐλάχιστος (8 τμήματα) ἐνῶ ὁ ἐλάσσων τόνος Πα - Βου (10 τμήματα) γίνεται ὑπερμείζων (14 τμήματα).

145. Ἡ μετατόπισις ένὸς φθόγγου πρὸς τὸν ἀμέσως ὀξύτερό του ὀνομάζεται δίεσις.



- **146.** Ή μετατόπισις ένὸς φθόγγου πρὸς τὸν ἀμέσως χαμηλότερό του ὀνομάζεται ὕφεσις.
- 147. Ὁ ἀλλοιωμένος φθόγγος, αὐτὸς δηλ. ποὺ προέρχεται ἀπὸ δίεσι ἡ ὕφεσι ἑνὸς φθόγγου τῆς φυσικῆς κλίμακος, διατηρεῖ τὸ ὄνομά του ἀλλὰ χαρακτηρίζεται, ἀνάλογα, π.χ. Πα δίεσις ἢ Πα ἐν διέσει καὶ Πα ὕφεσις ἢ Πα ἐν ὑφέσει.
  - 148. Ἡ δίεσις ² γράφεται μὲ τὸ σημεῖο σ
  - 149. Ἡ ὕφεσις γράφεται μὲ τὸ σημεῖο ρ
- 150. Ἡ σ γράφεται έπάνω ἢ κάτω ἀπὸ τὸ φθογγόσημο ποὺ ὁ φθόγγος του πρέπει νὰ ὀξυνθῆ. Ἡ ρ γράφεται, σὺνήθως, ἐπάνω στὸ φθογγόσημο ποὺ ὁ φθόγγος του πρέπει νὰ χαμηλώση, π.χ.

Pυθμὸς OI 
$$\frac{1}{\chi}$$
  $\frac{1}{2}$   $\frac{1$ 

151. Ἡ σ καὶ ἡ ρ ἀλλοιώνουν μόνον τὸ φθόγγο τοῦ φθογγοσή-

<sup>1.</sup> Κάθε τόνος που είναι μεγαλύτερος ἀπὸ τὸν μείζονα ὀνομάζεται ὑπερμείζων τόνος,

<sup>2.</sup> Ἡ δίεσις καὶ ἡ ὕφεσις ἀνήκουν κι' αὐτά, στὰ σημεῖα τῆς μουσικῆς γραφῆς (§ 32-35).

μου πού τὶς δέχεται καὶ ἰσχύουν γιὰ ὅλη τὴ χρονικὴ διάρκειά του, π.χ.

Έτσι, ή ρ στὰ τοῦ 20υ μέτρου βαρύνει μόνον τὸ φθόγγο ποὺ ἐκφράζουν αὐτά, δηλ. τὸν Βου καὶ τὸν φέρνει πιὸ κοντὰ στὸν Πα στὴ διάρκεια 1 χρόνου. Στὸ 30 μέτρο, ἡ σ ὀξύνει μόνον τὸ φθόγγο τοῦ Τολ. τὸν Γα καὶ τὸν φέρνει πιὸ κοντὰ στὸν Δι στὴ διάρκεια 1 ½ χρόνου καὶ ἡ ρ στὸ τελευταῖο τοῦ ἰδίου μέτρου βαρύνει τὸν Ζω καὶ τὸν τοποθετεῖ πιὸ κοντὰ στὸν Κε μὲ διάρκεια 1 χρόνου. Κατὰ τὸν ἴδιο τρόπο, στὸ 40 μέτρο, ἡ ρ στὰ τοῦ ἐκφράζουν τὸν Ζω τὸν θέλει χαμηλωμένο, πιὸ κοντὰ στὸν Κε στὴ διάρκεια ½ χρόνου καὶ ἡ σ στὸ ποὺ ἐκφράζει τὸν Νη΄ τὸν θέλει ὑψωμένο, πιὸ κοντὰ στὸν Πα΄ στὴ διάρκεια 2½ χρόνων.

152. Αν, ἀμέσως μὲ τὸν ἀλλοιωμένο φθόγγο, ὑπάρχη όποιασδήποτε χρονικῆς ἀξίας, ἰσχύει ἡ ταὐτοφωνία καὶ ὁ φθόγγος μένει στὸ ἴδιο ἀλλοιωμένο ὕψος, π.χ.

'Εδῶ, τὸ τοῦ 2ου μέτρου εἶναι Πα ἐν ὑφέσει, ὅπως καὶ τὸ προηγούμενό του Τὸ τοῦ 4ου μέτρου εἶναι Γα ἐν διέσει, ὅπως καὶ τὸ προηγούμενό του σ . Τὸ τοῦ 6ου μέτρου εἶναι, ἐπίσης, Γα ἐν διέσει, ὅπως καὶ ἡ προηγουμένη καὶ τὸ τοῦ τελευταίου μέτρου εἶναι Βου ἐν ὑφέσει, ὅπως καὶ ἡ προηγουμένη του .

Τὸ ἴδιο ἰσχύει καὶ ὅταν τὸν ἀλλοιωμένο φθόγγο ἀκολουθοῦν περισσότερα φθογγόσημα ταὐτοφωνίας μὲ ὁποιαδήποτε χρονικὴ ἀξία, π.χ.

153. ή σ καὶ ρ είναι παροδικές άλλοιώσεις γιατὶ ἐνεργοῦν μόνον

στὸ φθόγγο τοῦ φθογγοσήμου ποὺ γράφονται, π.χ.

Pυθμός OI 
$$\frac{1}{\chi}$$
  $\frac{\Delta}{2}$   $\frac{\Delta$ 

Έτσι, ὁ **Βου** τοῦ 2ου μέτρου εἶναι **ἐν ὑφέσει**, ὁ **Βου** τοῦ 3ου μέτρου εἶναι φυσικός, ὁ **Γα** τοῦ 5ου μέτρου εἶναι **ἐν διέσει** καὶ ὁ **Γα** τοῦ 7ου μέτρου φυσικός.

154, Ή σ καὶ ἡ ρ δὲν χωρίζουν τὸν τόνο (μείζονα ἢ ἐλάσσονα ἢ ἐλάχιστο κλπ.) σὲ δύο ἴσα μέρη. 'Οξύνουν ἢ βαρύνουν τὸ φθόγγο σὲ ἐνδιάμεσό του σημεῖο ὅπου τὸν τοποθετοῦν ἡ φωνὴ καὶ τὸ αὐτί, ὁδηγημένα ἀπὸ τὴν πλοκὴ καὶ ἐξέλιξι τῆς μελωδίας.

# Γενική δίεσις τοῦ Βου Γενική ὕφεσις τοῦ Ζω

155. Ἐκτὸς ἀπὸ τὶς παροδικὲς ἀλλοιώσεις, τὴν σ καὶ τὴν ρ ὑπάρ-χουν ἡ γενικὴ δίεσις τοῦ Βου καὶ ἡ γενικὴ ὕφεσις τοῦ Ζω.

156. ή γενική δίεσις τοῦ Βου γράφεται μὲ τὸ σημεῖο δ

157. Ἡ γενικὴ ὕφεσις τοῦ Ζω γράφεται μὲ τὸ σημεῖο ♀

158. Ἡ ὁ γράφεται στὸν Γα και θέλει μόνιμα ὑψωμένον τὸν Βου. Ἡ ♀ γράφεται στὸν Κε καὶ θέλει μόνιμα χαμηλωμένον τὸν Ζω.

**159.** Ἡ μόνιμη αὐτὴ ἐνέργεια τῆς  $\delta$  καὶ τῆς  $\delta$  καταργεῖται, ἐφόσον ὑπάρχη ἀνάγκη, μὲ ἄλλα εἰδικὰ σημεῖα  $\delta$ , π.χ.

<sup>1.</sup> Ή γενικὴ δίεσις τοῦ Bου καὶ ἡ γενικὴ ὕφεσις τοῦ Zω ἀνήκουν, κ' αὐτά, στὰ σημεῖα τῆς μουσικῆς γραφῆς (§ 32-35).

<sup>2.</sup> Βλ. Φθορὲς (§ 244).

'Εδῶ, ἡ ὁ ποὺ ἡ ἐνέργειά της ἀρχίζει ἀπὸ τὴν πρώτη > τοῦ 4ου μέτρου καὶ ἡ ♀ ποὺ ἡ ἐνέργειά της ἀρχίζει ἀπὸ τὰ • τοῦ 7ου μέτρου διήκει μέχρι τὸ τελευταῖο μέτρο καὶ ἀναιροῦνται μὲ τὸ σημεῖο¹ ϙ ποὺ βρίσκεται ἐπάνω στὸ τελευταῖο —

#### ΠΑΡΑΤΗΡΗΣΕΙΣ

**Α΄** Τὴν ἄνιση διαίρεση τοῦ τόνου μὲ τὴ  $\sigma$  καὶ τὴν  $\rho$  παραδέχονταν καὶ οἱ ἀρχαῖοι ελληνες  $\sigma$ 2.

Β΄ Στὸ «Θεωρητικὸν μέγα τῆς μουσικῆς» τοῦ Χρυσάνθου (§ 231 ὑποσ. β΄) ἀναφέρονται τὰ ἑξῆς σημεῖα:

Καὶ ή Πατριαρχική μουσική Ἐπιτροπή τοῦ 1881 πρότεινε τὰ έξῆς σημεῖα:

Τὰ παραπάνω σημεῖα μπορεῖ θεωρητικὰ νὰ εἶναι σωστά. Πρακτικὰ ὅμως ἡ ἐκτέλεσίς των, σὲ τρόπο ποὺ νὰ διακρίνεται ἡ διαφορά τους, εἶναι πολὺ δύσκολη ἄν μὴ ἀκατόρθωτη γιὰ τὸν καθένα. ᾿Αναγνωρίζοντας τοῦτο καὶ ὁ Χρύσανθος γράφει: «δυνάμεθα δὲ θεωρεῖν αὐτὰ μόνον ἐπὶ χορδῆς».

Γ΄ Στὴν Εὐρωπαϊκὴ μουσικὴ ἡ δίεσις γράφεται μὲ τὸ σημεῖο ‡ καὶ ἡ ὕφεσις μὲ τὸ σημεῖο þ . Τὰ σημεῖα αὐτὰ γράφονται μπροστὰ στὸ φθογγόσημο τοῦ φθόγγου ποὺ πρέπει νὰ ἀλλοιωθῆ καὶ ἰσχύουν ὅχι μόνον γιὰ αὐτὸν ἀλλὰ καὶ γιὰ ὅλους τοὺς ἐπομένους ὁμωνύμους φθόγγους ποὺ βρίσκονται μέσα στὸ ἴδιο μέτρο. Ἡ ἀναίρεσις εἶναι ἡ κατάργησις

<sup>1.</sup> Βλ. φθορὲς (§ 244).

<sup>2. «</sup>Οὐκ ἄρα διαιρεθήσεται ὁ τόνος εἰς ἴσα» (Εὐκλείδης, μαθηματικὸς καὶ μουσικός, 300 π.Χ.) καὶ «τὸ ἡμιτόνιον οὐκ ἔστιν ἀκριβῶς ἡμιτόνιον» (Γαυδέντιος, φιλόσοφος καὶ μουσικός, 120 μ.Χ.).

τῆς ἀλλοιώσεως ποὺ ἔγινε μὲ τὴ δίεσι ἡ τὴν ὕφεσι καὶ γράφεται μὲ τὸ σημεῖο , κατὰ τὸν ἴδιο τρόπο, μπροστὰ στὸ φθογγόσημο. Τὰ σημεῖα τῆς διέσεως, ὑφέσεως καὶ ἀναιρέσεως ὀνομάζονται σημεῖα ἀλλοιώσεως. Τὰ σημεῖα ἀλλοιώσεως, ὅταν ἰσχύουν μόνον μέσα σ' ἔνα μέτρο, ὀνομάζονται τυχαῖα σημεῖα ἀλλοιώσεως. Μία, ὅμως, ἢ περισσότερες διέσεις ἢ ὑφέσεις ποὺ γράφονται στὴν ἀρχὴ τοῦ μουσικοῦ κειμένου, κοντὰ στὸ γνώμονα, ἀποτελοῦν τὸν ὁπλισμὸ τῆς κλίμακος γιατὶ ἀλλοιώνουν συνεχῶς ἕναν ἢ περισσοτέρους φθόγγους τῆς φυσικῆς κλίμακος καὶ συντελοῦν στὴν παραγωγὴ τῶν διαφόρων κλιμάκων.

Στὰ μουσικὰ ὄργανα πού, ἀπὸ τὴν κατασκευή τους, δίνουν πάντοτε φθόγγους ὡρισμένου ὕψους (π.χ. πιάνο, orgue, ἄρπα κλπ.) ἡ δίεσις καὶ ἡ ὕφεσις ἀλλοιώνουν τὸ φθόγγο κατὰ ἕνα συγκεκραμένο ἡμιτόνιο¹. Στὶς ἄλλες περιπτώσεις τὸν ἀλλοιώνουν κατὰ  $\frac{5}{9}$  τοῦ συγκεκραμένου τόνου. Ἡμιτόνιο ἴσο μὲ  $\frac{5}{9}$  τοῦ συγκεκραμένου τόνου ὀνομάζεται χρωματικὸ ἡμιτόνιο καὶ ἡμιτόνιο ἴσο μὲ  $\frac{4}{9}$  τοῦ συγκεκραμένου τόνου ὀνομάζεται διατονικὸ ἡμιτόνιο. Ἔτσι καὶ ἡ Εὐρωπαϊκὴ μουσικὴ παραδέχεται τὴν ἂνιση διαίρεση τοῦ τόνου.

## ΚΕΦΑΛΑΙΟΝ Ζ΄

## ΣΥΜΦΩΝΙΕΣ

- **160.** Ἡ συνήχησις, τὸ ταὐτόχρονο δηλ. ἄκουσμα, δύο φθόγγων ὀνομάζεται συμφωνία.
- 161. 'Ανάλογα μὲ τὸ ἄκουσμά τους, οἱ διάφορες συνηχήσεις, ἀποτελοῦν συμφωνίες ὁμόφωνες, σύμφωνες, διάφωνες καὶ παράφωνες.
- α΄ Όμόφωνος συμφωνία ἢ όμοφωνία ὀνομάζεται ἡ συνήχησις δύο φθόγγων τοῦ ἰδίου ὕψους, δηλ. ἡ ταὐτοφωνία, π.χ. τοῦ Νη μὲ τὸν Νη.
- β΄ Σύμφωνος συμφωνία ἢ συμφωνία ὀνομάζεται ἡ συνήχησις ὅπου δύο διαφορετικοὶ (ἀνισοϋψεῖς) φθόγγοι παθαίνουν κάποια κρᾶσι καὶ ἔνωσι, συγχωνεύονται καὶ ἀποτελοῦν ἕνα σύνολο ποὺ μᾶς προξενεῖ εὐπαράδεκτο καὶ εὐάρεστο συναίσθημα.
- γ΄ Διάφωνος συμφωνία ἢ διαφωνία ὀνομάζεται ἡ συνήχησις δύο διαφορετικῶν φθόγγων ποὺ μᾶς προκαλεῖ δυσάρεστο συναίσθημα καὶ
- δ΄ Παράφωνος συμφωνία ἢ παραφωνία ὀνομάζεται ἡ συμφωνία ποὺ συγχέεται μεταξὺ συμφώνου καὶ διαφώνου.

<sup>1.</sup> Βλ. (§ 84 Δ').

- 162. Συνηθέστερα, ή όμοφωνία συμπεριλαμβάνεται στη συμφωνία καὶ ή παραφωνία στη διαφωνία. Έτσι, γίνεται χρήσις μόνον τῶν δύο ὅρων σύμφωνος συμφωνία ἢ συμφωνία καὶ διάφωνος συμφωνία ἢ διαφωνία.
- 163. Τὰ μουσικὰ διαστήματα, ἀνάλογα μὲ τὸ εἶδος τῆς συμφωνίας ποὺ δίνουν οἱ ἀκραῖοι τους φθόγγοι, διακρίνονται σὲ σύμφωνα καὶ διάφωνα διαστήματα.

Κατὰ βασικὸ κανόνα, τὸ μουσικὸ διάστημα εἶναι τόσο πιὸ σύμφωνο —πιὸ εὐάρεστο καὶ ἀρμονικὸ—ὅσο ὁ λόγος τῶν συχνοτήτων τῶν φθόγγων τους ἢ ὁ λόγος τῶν μηκῶν τῆς χορδῆς ποὺ τοὺς παράγουν, εἶναι πιὸ ἀπλός. Ἐπειδὴ ὅμως ἡ ἀντίληψις τοῦ εὐχαρίστου καὶ ἀρμονικοῦ συνδέεται ἄρρηκτα μὲ τὴν αἰσθητικὴ καὶ τὶς πολύπλοκες ψυχικὲς λειτουργίες δὲν εἶναι εὔκολο νὰ διατυπωθῆ ἕνας ἀπόλυτος κανόνας. ᾿Απὸ τὸ γεγονὸς αὐτὸ ἐξηγεῖται γιατὶ σὲ διάφορες ἐποχὲς καὶ σὲ διάφορες περιοχὲς τῆς ὑδρογείου χρησιμοποιήθηκαν διαφορετικὲς διαιρέσεις τῆς διαπασῶν σὰν αὐτὲς ποὺ ἀναφέραμε.

Παραθέτουμε τὰ σύμφωνα διατονικὰ διαστήματα μὲ τὴν ἀξία (λόγος συχνοτήτων, λόγος μηκῶν χορδῆς καὶ συγκεκραμένα τμήματα) καὶ τὴν εἰδικὴ ὀνομασία τους.

- α΄ Διὰ τριῶν μεγάλη τελεία συμφωνία =  $\frac{5}{4}$  ἢ  $\frac{4}{5}$  μ. χορδῆς ἤ 22 τμήματα (δι ζω καί  $N\eta$  Bov)
- β΄ Διὰ τριῶν μικρὴ τελεία συμφωνία  $=\frac{6}{5}$  ἢ  $\frac{5}{6}$  μ. χορδῆς ἢ 20 τμήματα (ζω Πα καὶ Βου Δι )
- γ΄ Διὰ τεσσάρων τελεία συμφωνία  $=\frac{4}{3}$  η  $\frac{3}{4}$  μ. χορδης η 30 τμήματα (δι Νη κε Πα ζω Βου Νη Γα καὶ Πα Δι)
- δ΄ Διὰ πέντε τελεία συμφωνία  $=\frac{3}{2}$  ή  $\frac{2}{3}$  μ. χορδής ή 42 τμήματα (δι Πα Νη Δι Πα Κε Βου Ζω καὶ Γα Νη΄)
- ε΄ Δι' ἕξ μεγάλη τελεία συμφωνία  $=\frac{5}{3}$  ἢ  $\frac{3}{5}$  μ. χορδῆς ἢ 52 τμήματα (δι Βου καὶ Πα Ζω )
- στ'  $\Delta$ ι' ἔξ μικρὴ τελεία συμφωνία  $=\frac{8}{5}$  ἢ  $\frac{5}{8}$  μ. χορδῆς ἢ 50 τμήματα  $(\zeta \omega \Delta \iota \ \, \text{καὶ} \ \, \text{Βου} \, \text{Nη'}\,)$  καὶ
- ζ΄ Διὰ πασῶν τελεία συμφωνία =1 ἥ  $\frac{1}{2}$  μ. χορδῆς ἢ 72 τμήματα (δι Δι κε Κε ζω Ζω Νη Νη΄ Πα Πα΄ Βου Βου΄ Γα Γα΄)

## ΠΑΡΑΤΗΡΗΣΕΙΣ

- Α΄ Οί συμφωνίες παίζουν πολύ σπουδαΐο ρόλο στη μουσική.
- α΄ 'Αφοῦ κάθε μελωδία—ὁλόκληρη ἢ τμηματικὰ—ἔχει σκοπὸ νά μᾶς προκαλέση ὡρισμένα συναισθήματα, οἱ δεσπόζοντές της φθόγγοι, ἐκεῖνοι δηλ. ποὺ γύρω τους περιστρέφεται, πρέπει νὰ δίνουν μεταξύ τους ἀνάλογες συμφωνίες.
- β΄ Στὴν Εὐρωπαικὴ μουσική, εἶναι τὸ θεμέλιο τοῦ μεγάλου οἰκοδομήματος ποὺ ὀνομάζεται ἀρμονία καὶ ὅπου οἱ συγχορδίες εἶναι συνηχήσις τριῶν ἢ περισσοτέρων φθόγγων ποὺ ἀπέχουν μεταξύ τους κατὰ διαστήματα τρίτης.
- **Β΄** Στὴ νεωτέρα Εὐρωπαϊκὴ μουσική, συμφωνία (symphonie) ὀνομάζεται μεγάλη καὶ μὲ ὡρισμένη μορφὴ σύνθεσις γιὰ ὀρχήστρα. Τὸ εἴδος αὐτὸ χρονολογεῖται ἀπὸ τὴν ἐποχὴ τοῦ διασήμου Βοημοῦ μουσουργοῦ Στάμιτς (1717-1757) καὶ ἔφθασε στὸ ὕψιστο σημεῖο τῆς τελειότητός του μὲ τὰ ἀθάνατα ἔργα τοῦ Μπετόβεν (1770-1827).
- Γ΄ Ἡ ἀρχαῖα Ἑλληνικὴ μουσικὴ σὰν σύμφωνα διαστήματα παραδεχόταν, βασικά, μόνον τὴν διὰ πασῶν τελεία συμφωνία, τὴν διὰ τεσσάρων τελεία συμφωνία  $\left(\frac{4}{3}\right)$  ποὺ ὀνομαζόταν συλλαβὴ καὶ τὴν διὰ πέντε τελεία συμφωνία  $\left(\frac{3}{2}\right)$  ποὺ ὀνομαζόταν διοξεῖα. Κατ ἐπέκτασιν, σὰν σύμφωνα διαστήματα θεωροῦσε τὴ συλλαβὴ καὶ τὴ διοξεῖα σύνθετες μὲ τὴ διαπασῶν. Ὅλα τὰ ἄλλα διαστήματα θεωροῦνταν διάφωνα.
- Δ΄ Είναι εὐκολονόητο πὼς σὲ μιὰ συμφωνία ἡ ἀλλοίωσις ἑνὸς ἤ καὶ τῶν δύο φθόγγων της ἔχει σὰν ἀποτέλεσμα τὴν ἀλλοίωσι τοῦ εἴδους της. Έτσι, σύμφωνο διάστημα μπορεῖ νὰ μεταβληθῆ σὲ διάφωνο καὶ διάφωνο νὰ γίνη σύμφωνο.

## ΚΕΦΑΛΑΙΟΝ Η΄

## ΓΡΑΦΗ ΚΑΙ ΑΝΑΓΝΩΣΙΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

**164.** Μὲ τὴ γνώσι τῶν θεμελιωδῶν συστατικῶν τῆς μουσικῆς (φθόγγου, χρόνου καὶ ἐκφράσεως) καὶ τῆς παρασημαντικῆς ποὺ ἐκθέσαμε λεπτομερῶς στὰ προηγούμενα κεφάλαια, ἡ βυζαντινὴ ἐκκλησιαστικὴ μουσικὴ γράφεται, γενικά <sup>1</sup>, κατὰ τὸν ἀκόλουθο τρόπο :

<sup>1.</sup> Ἐκτὸς ἀπὸ τὰ σημεῖα τῆς μουσικῆς γραφῆς ποὺ γνωρίσαμε στὰ προηγούμενα κεφάλαια, τέτοια είναι καὶ οἱ μαρτυρίες τῶν φθόγγων τῶν διαφόρων κλιμάκων (§ 238-243), οἱ φθορὲς (§ 247), οἱ χρόες (§ 254) καὶ οἱ ἀρκτικὲς μαρτυρίες τῶν ἤχων (§ 257).

- α΄ Στὴν ἀρχὴ μπαίνουν οἱ ἐνδείξεις τοῦ ρυθμοῦ καὶ τῆς χρονικῆς ἀγωγῆς.
- $\beta$  Κατόπιν γράφεται ή μαρτυρία τοῦ φθόγγου ποὺ θὰ παρθῆ σὰν βάσις  $^1$ .
- γ΄ ᾿Ακολουθοῦν τὰ φθογγόσημα, ἀπλᾶ καὶ σύνθετα, μὲ τά, πρόσθετα ἢ μή, σημεῖα τοῦ χρόνου καὶ τῆς ἐκφράσεως καθώς καὶ τὰ σημεῖα τοῦ ρυθμοῦ (διαστολές, διακρίσεις μέτρων), ἀνάλογα μὲ τή πλοκὴ καὶ τὴν ἐξέλιξι τῆς μελωδίας ποὺ παρασημαίνομε.
- δ΄ Παρεμβάλλονται, ὅπου εἶναι ἀνάγκη, οἱ ἐνδιάμεσες μαρτυρίες τῶν φθόγγων.
  - ε΄ Στὸ τέλος γράφεται ή μαρτυρία τοῦ τελευταίου φθόγγου καὶ
- στ΄ Κάτω ἀπὸ τὰ φθογγόσημα μπαίνουν οἱ συλλαβὲς τῶν λέξεων τοῦ ποιητικοῦ κειμένου.
- 165. Τὸ σύνολο αὐτὸ τῶν γραπτῶν σημείων ἀποτελεῖ τὸ μουσικὸ κείμενο.
- **166.** Τμήματα τοῦ μουσικοῦ κειμένου μὲ ὡρισμένο νόημα ὀνομάζονται μουσικὲς γραμμές.
- **167.** Ἡ ἀνάγνωσις τοῦ μουσικοῦ κειμένου, ἡ ἐκτέλεσις δηλ. τῆς παρασημασμένης μουσικῆς, ὀνομάζεται μουσικὴ ἀνάγνωσις.
- 168. Ἡ μουσικὴ ἀνάγνωσις διακρίνεται σὲ ρυθμικὴ ἀνάγνωσι, παραλλαγὴ καὶ μέλος.
- α΄ Ρυθμικὴ ἀνάγνωσις ὀνομάζεται ἡ ἁπλῆ, χωρὶς τὸ ὕψος καὶ τὴν ἔκφρασι, ἐκφώνησις τῶν ὀνομάτων τῶν φθόγγων στὴ χρονική τους διάρκεια καὶ στὸ ρυθμὸ ποὺ ἀνήκουν.

Μὲ τὴ ρυθμικὴ ἀνάγνωσι γίνεται ἡ ἐκμάθησις τοῦ ρυθμοῦ καὶ προπαρασκευάζεται ἡ παραλλαγή.

β΄ Παραλλαγὴ ὀνομάζεται ὁ συνδυασμὸς τῆς ρυθμικῆς ἀναγνώσεως μὲ τὸ ὕψος καὶ τὴν ἔκφρασι τῶν φθόγγων.

Μὲ τὴν παραλλαγὴ προετοιμάζεται τὸ μέλος.

γ΄ Μέλος ὀνομάζεται ἡ ἀντικατάστασις τῶν ὀνομάτων τῶν φθόγγων τῆς παραλλαγῆς μὲ τὶς συλλαβὲς τῶν λέξεων τοῦ ποιητικοῦ κειμένου, ἡ πλήρης δηλ. μουσικὴ ἐκτέλεσις, χωρὶς νὰ παραλείπεται τίποτε.

<sup>1.</sup> Βλ. σημ. 1 προηγ. σελίδος.

## ΠΑΡΑΤΗΡΗΣΙΣ

"Αλλο είδος μουσικής ἀναγνώσεως ποὺ συνηθιζόταν ἀπὸ τοὺς παλαιοὺς Βυζαντινοὺς ἡταν ἡ μετροφωνία ὅπου ἐκτελοῦνταν οἱ φθόγγοι χωρὶς ρυθμὸ καὶ ἔκφρασι. Τὸ είδος αὐτό, σὰν ἄχρηστο, ἔχει ἐγκαταλειφθή.

# ΜΕΡΟΣ Β'



# ΜΕΛΩΔΙΚΕΣ ΑΣΚΗΣΕΙΣ

Οἱ μελωδικὲς ἀσκήσεις τοῦ μέρους αὐτοῦ ἔχουν σκοπὸ τὴν ἐμπέδωσι τῶν θεωρητικῶν ζητημάτων ποὺ ἐκτέθηκαν στὰ προηγούμενα κεφάλαια.

Κι' ἐπειδὴ μοναδικὸ ὄργανο ἐκτελέσεως τῆς ἐκκλησιαστικῆς μουσικῆς εἶναι ἡ ἀνθρώπινη φωνή, δὲν εἶναι ἄσκοπο καὶ περιττὸ νὰ ποῦμε, λίγα ἁπλᾶ λόγια, γιὰ τὰ ὄργανα ποὺ συντελοῦν στὴν παραγωγή της, νὰ γνωρίσουμε τὰ διάφορά της εἴδη καὶ νὰ παραθέσουμε τοὺς πιὸ στοιχειώδεις κανόνες γιὰ τὴ συντήρησι καὶ τὸν καλύτερο τρόπο χρήσεως καὶ ἐκμεταλλεύσεώς της.

# ΚΕΦΑΛΑΙΟΝ Θ΄

# Ή φωνή

169. Φωνὴ ὀνομάζεται ὁ ήχος ποὺ παράγεται στοὺς ἀνθρώπους καὶ στὰ ζῶα ἀπὸ εἰδικὴ πολύπλοκη ὀργανικὴ συσκευὴ καὶ ἀποτελεῖται, ἀπὸ κάτω πρὸς τὰ ἐπάνω, ἀπὸ τοὺς πνεύμονες μὲ τοὺς βρόγχους καὶ τὴν τραχεῖα, μαζί τὸ λάρυγγα καὶ τὸ φάρυγγα μὲ τοὺς ρινικοὺς θαλάμους καὶ τὶς κοιλότητες τοῦ στόματος, μαζί.

Πνεύμονες, βρόγχοι, τραχεῖα. — Οἱ πνεύμονες (Σχ. 1) π, π' εἶναι δύο, συνδέονται μὲ τοὺς βρόγχους  $\beta$  καὶ κρέμονται μέσα στὴ θωρακικὴ κοιλότητα.



Σχ. 1 Πνεύμονες, βρόγχοι, τραχεία

Οἱ βρόγχοι, πρὸς τὰ κάτω, διαμοιράζονται σὲ πολλοὺς παράπλευρους κλάδους, τὰ βρογχίδια πού, σὰν ρίζες, εἰσχωροῦν στοὺς πνεύμονες καὶ φθάνουν μέχρι τὴ βάσι των καὶ πρὸς τὰ ἐπάνω, ἐνώνονται σ' ἕνα ἰνοχόνδρινο στερεὸ καὶ ἀνώμαλο σωλῆνα ποὺ ὀνομάζεται τραχεῖα Τ.

Στὴν κορυφὴ τῆς τραχείας βρίσκεται δ λάρυγξ Λ.

Λάρυγξ.— Ο λάρυγξ, εξωτερικά, διακρίνεται, ίδιαίτερα στὸν ἀνδρα, ἀπὸ μιὰ προεξοχὴ κάτω ἀπὸ τὸ δέρμα τοῦ λαιμοῦ ποὺ ὀ-

νομάζεται μῆλον τοῦ ᾿Αδὰμ ἢ κοινῶς, καρύδι.

Ο λάρυγξ (Σχ. 2) ἔχει σκελετὸ χόνδρινο καὶ ἀποτελεῖται ἀπὸ τὰ ἑξῆς κύρια μέρη :



Σχ. 2— Πλαγία ὄψις τοῦ λάρυγγος, ἀνατομικῶς

α΄ τὸν κρικοειδή χόνδρο κ ποὺ μοιάζει σὰν τελευταῖος κρίκος τῆς τραχείας·

β΄ τὸν <u>θυρεοειδῆ</u> χόνδρο θ ποὺ εἶναι ἀρθρωμένος ἐπάνω στὸ ἐμπρόσθιο μέρος τοῦ κρικοειδοῦς, σχηματίζει γωνία μὲ τὴν προεξοχὴ πρὸς τὰ ἔξω καὶ ἔχει ἐντομὴ τὸ μῆλον τοῦ 'Αδὰμ μ καὶ

γ΄ τοὺς ἀρυταινοειδεῖς χόνδρους α, α΄ ποὺ εἶναι ἀρθρωμένοι στὸ πίσω ἐπάνω χεῖλος τοῦ κρικοειδοῦς.

Ή ἐσωτερικὴ ἐπιφάνεια τοῦ λάρυγγος καλύπτεται ἀπὸ βλεννογόνο ὑμένα ποὺ δύο ἐλαστικές του

πτυχές, μήκους 2-2,5 έκατοστῶν τοῦ μέτρου, ἐξέχοντας στὸ ἴδιο ὕψος, σχηματίζουν τὶς φωνητικὲς χορδὲς  $\chi$  χ΄. (Σχ.  $\chi$  καὶ 4).



Κάτοψις τοῦ ἐσωτερικοῦ τοῦ λάρυγγος

Σχ. 3.— Φωνητικές χορδές, κλειστές, Σχ. 4.— Φωνητικές χορδές, ἀνοιχτές.

Τὰ ἄκρα τῶν φωνητικῶν χορδῶν, πρὸς τὰ ἐμπρός, εἶναι ένωμένα καὶ προσκολλημένα ἀκλόνητα στὴ γωνία τοῦ θυρεοειδοῦς καί, πρὸς τὰ πίσω, εἶναι χωρισμένα καὶ προσκολλημένα, τὸ καθένα, στὸν ἀντίστοιχο ἀρυ-

<sup>1.</sup> Λίγο ὑψηλότερα ἀπὸ τὶς φωνητικές χορδές, δύο ἄλλες πτυχές τοῦ βλεννογόνου σχηματίζουν τὶς ψευδεῖς φωνητικές χορδές.

ταινοειδή χόνδρο α καὶ α΄. Μ' αὐτὴν τὴ διάταξι, οἱ φωνητικὲς χορδὲς σχηματίζουν μιὰ ἰσοσκελή δριζόντια γωνία ποὺ ὀνομάζεται γλωττὶς γ καὶ ποὺ τὸ ἄνοιγμά της ὀνομάζεται γλωττιδικὴ σχισμὴ σ.

Μὲ κατάλληλες κινήσεις τῶν ἀρυταινοειδῶν χόνδρων, οἱ φωνητικὲς χορδὲς πλησιάζουν καὶ ἡ γλωττιδικὴ σχισμὴ γίνεται στενώτερη ἢ καὶ κλείνει ἐντελῶς (Σχ. 3) ἢ ἀπομακρύνονται καὶ ἡ γλωττιδικὴ σχισμὴ διευρύνεται ἀνάλογα (Σχ. 4).

'Έκτὸς ἀπὸ τὴν ὁριζόντια αὐτὴ κίνησι τῶν φωνητικῶν χορδῶν ποὺ ἔχει ἀποτέλεσμα τὴ μεταβολὴ τοῦ ἀνοίγματος τῆς γλωττιδικῆς σχισμῆς, ἐπειδὴ ὁ θυρεοειδὴς χόνδρος, ποὺ στὴ γωνία του εἶναι — ὅπως εἴπαμε— ἑνωμένα, πρὸς τὰ ἐμπρὸς καὶ προσκολλημένα τὰ ἄκρα τῶν φωνητικῶν χορδῶν, μπορεῖ καὶ ἐκτελεῖ κινήσεις ἀπὸ πάνω πρὸς τὰ κάτω ἢ ἀντίθετα, παρασύρει, ἔτσι, καὶ τὶς φωνητικὲς χορδὲς μὲ ἀποτέλεσμα νὰ χαλαρώνουν καὶ νὰ χονδραίνουν περισσότερο ἤ ἀντίθετα, νὰ τεντώνωνται καὶ νὰ λεπταίνουν.

'Ο ἀέρας ποὺ εἶναι ἐναποθηκευμένος στοὺς πνεύμονες περνώντας ἀπὸ τοὺς βρόγχους καὶ τὴν τραχεῖα, πλήττει τὶς φωνητικὲς χορδές, τὶς θέτει σὲ παλμικὴ κίνησι καὶ παράγεται ἡ φωνὴ ποὺ τὸ ὕψος της, ὅπως σὲ κάθε χορδή, εἶναι συνάρτησις τοῦ μήκους, τῆς τάσεως καὶ τοῦ πάχους τῶν φωνητικῶν χορδῶν.

# Φάρυγξ, ρινικοί θάλαμοι, κοιλότητες τοῦ στόματος.

'Η φωνή που παράγεται μὲ τὸν ἀνωτέρω πολύπλοκο μηχανισμό, παίρνει τὴν ἐπιθυμητὴ ἔκφρασι καὶ ἐνισχύεται ἀπὸ τὸ φάρυγγα, τοὺς ρινικοὺς θαλάμους, τὶς κοιλότητες τοῦ στόματος, τὰ τοιχώματα τοῦ θώρακος καὶ τοῦ λάρυγγος. Όλα αὐτὰ τὰ ὄργανα σὰν συνεχόμενα ἢ ἐφαπτόμενα καὶ ὁπωσδήποτε συγκοινωνοῦντα μεταξύ τους, χρησιμεύουν σὰν ἀντηχεῖα.

170. Ἡ φωνὴ ἔχει φυσιολογικὴ διέξοδο τὸ στόμα. Ἡ ἔξοδός της ἀπὸ τὴ μύτη ἀποτελεῖ τὴν ἀποκρουστικὴ **ρινοφωνία** ποὺ εἶναι φαινόμενο παθολογικὸ ἤ ἀποτέλεσμα κακῆς συνηθείας.

# \*Εκτασις καὶ εἴδη τῆς ἀνθρώπινης φωνῆς

- 171. Εἶναι εὐνόητο πώς, ἡ ἔκτασις τῆς φωνῆς τοῦ ἀνθρώπου (§ 9) εἶναι περιορισμένη. Περιλαμβάνει μιὰ διαδοχὴ ἀπὸ 14 ἕως 16—συνήθως—φθόγγους χωρὶς νὰ ἀποκλείωνται καὶ μερικὲς σπάνιες ἐξαιρέσεις μὲ μερικὸς περισσοτέρους φθόγγους.
- 172. 'Απὸ τὴ διαφορετικὴ διάπλασι τοῦ κάθε ἀτόμου καὶ τῆς φωνητικῆς του συσκευῆς γίνεται φανερὸ γιατὶ ἡ ἔκτασις τῆς φωνῆς του κα-

τέχει ύψηλότερη ἢ χαμηλότερη περιοχή μέσα στὴ μουσικὴ ἔκτασι.

Οἱ φωνητικὲς χορδὲς τῶν παιδιῶν, συγκριτικὰ μὲ τὶς ἀνδρικές, ἔχουν τὸ μισὸ μῆκος. Τὸ μῆκος τῶν γυναικείων φωνητικῶν χορδῶν εἶναι τὰ 4/5 καὶ κάποτε τὰ 3/5 τῶν ἀνδρικῶν.

"Έτσι, οί φωνὲς διακρίνονται σὲ ἀνδρικές, γυναικεῖες <sup>1</sup> και παιδικὲς καὶ οἱ ἀνδρικὲς φωνὲς εἶναι κατὰ μία διαπασῶν χαμηλότερες.

173. Ἐπὶ πλέον, οἱ ἀνδρικές, γυναικεῖες καὶ παιδικὲς φωνές, ἀνάλογα μὲ τὴ δική τους ἔκτασι, ὑποδιαιροῦνται ὡς ἐξῆς:

## α΄ 'Ανδρικές φωνές

| Βαθύφωνος                       | Ιταλικά basso) | $\frac{1}{\sqrt{3}} - \frac{d}{\pi}$         |
|---------------------------------|----------------|----------------------------------------------|
| Βαρύτονος (                     | » barytono)    | $\frac{x}{d} - \frac{\sqrt{d}}{L_{\lambda}}$ |
| Ύψίφωνος η ὀξύφωνος η τενόρος ( | » tenore)      | γ - ¤                                        |
| β΄ Γυναικεΐες καὶ τ             | παιδικές φωνές |                                              |
| Βαρύφωνος (Ἰταλικὰ              |                |                                              |
| <b>Μεσόφωνος</b> ( » m          | ezzo-soprano)  | å – 44<br>k.                                 |
| Ύψίφωνος ( »                    | soprano)       | ุง′ − ซู๊<br>าก − ซู๊                        |

174. \*Ασχετα μὲ τὸ φῦλον, ἡ φωνὴ διακρίνεται, ἐπίσης, σὲ στηθικὴ καὶ κεφαλική.

Στηθική ὀνομάζεται ή φωνή που παράγεται μὲ τὴ δόνησι τῶν φωνητικῶν χορδῶν σ' ὅλο τους τὸ μῆκος καὶ που ἐνισχύεται ἀπὸ τὴν κοιλότητα τοῦ θώρακος που χρησιμεύει σὰν ἀντηχεῖο. Ἡ φωνή αὐτὴ εἶναι πλήρης καὶ εὕηχος.

Κεφαλική ὀνομάζεται ή φωνή ποὺ παράγεται μὲ τὴ δόνησι τοῦ ἐμπροσθίου, μόνον, τμήματος τῶν φωνητικῶν χορδῶν καὶ ποὺ ἐνισχύεται ἀπὸ τὶς κοιλότητες τῆς κεφαλῆς (φάρυγγος, στόματος καὶ ρινικῶν θαλάμων). Ἡ φωνὴ αὐτὴ δίνει ὑψηλοτέρους φθόγγους ἀπὸ τὴ στηθική.

Κάθε ἄνθρωπος μπορεῖ, κατὰ βούλησι, νὰ χρησιμοποιήση καὶ τὰ δύο, αὐτά, εἴδη φωνῆς.

<sup>1.</sup> Ἡ ἐκκλησιαστικὴ παράδοσις ἀποδοκιμάζει τὴ συμμετοχὴ τῶν γυναικῶν στὴ ψαλμωδία.

# Μεταφώνησις

175. Κατά τὴν ἐφηβικὴ ἡλικία, μεταξύ, συνήθως, τοῦ 13ου καὶ 16ου ἔτους, ἐπειδὴ τὰ φωνητικὰ ὄργανα παρακολουθοῦν κι' αὐτὰ τὴ γενικὴ χαρακτηριστικὴ ἀνάπτυξη τοῦ ἀνθρώπινου ὀργανισμοῦ, ἡ φωνὴ τοῦ ἀγοριοῦ γίνεται βραχνὴ καὶ ὑπόκωφος ἢ καὶ χάνεται ἐντελῶς. Ἡ κατάστασις αὐτὴ εἶναι παροδική. Ἡ φωνή του ἐπανέρχεται ἀλλὰ εἶναι κατὰ μία διαπασῶν χαμηλότερη. Ἔχει δηλ. μεταβληθῆ σὲ ἀνδρική.

Ύστερα ἀπὸ τὴ μεταβατικὴ αὐτὴ περίοδο, στὸ κορίτσι ἡ φωνὴ μετατοπίζεται κατὰ δύο, μόνον, τόνους γαμηλότερα.

Τὸ φαινόμενον αὐτὸ ὀνομάζεται μεταφώνησις.

# Προφύλαξις καὶ ἐξάσκησις τῆς φωνῆς

176. Σύμφωνα μὲ τὴ γνώμη τῶν εἰδικῶν ποὺ νομίζω πὼς δὲν ἀποτελεῖ τὸ γενικὸ κανόνα, ὁ ἄνδρας φθάνει στὴν φωνητική του ὡριμότητα στὸ 30°, περίπου, ἔτος τῆς ἡλικίας καὶ ἡ γυναῖκα στὸ 28°.

"Όσο προχωρεῖ ή ήλικία ὁ λάρυγξ γερνᾶ. Οἱ χόνδροι του σκληρύνονται. Οἱ μὕς ἀτονοῦν. Οἱ πνεύμονες ἀδυνατίζουν. "Ετσι. σὲ ήλικία 40, περίπου, ἐτῶν γιὰ τὸν ἄνδρα καὶ 70 γιὰ τὴ γυναῖκα, ἀρχίζει ἡ κατάπτωσις. Ἡ φωνὴ ἀδυνατίζει, γίνεται ἀσταθὴς καὶ τρεμουλιαστή.

177. Ἐκτὸς ὅμως ἀπὸ τὴ βραχύτητα τῆς φωνητικῆς ἀκμῆς τοῦ ἀνδρός, λίγοι εἶναι οἱ προνομιοῦχοι ποὺ προικίζονται ἀπὸ τὸ Δημιουργὸ μὲ ώραία φωνὴ καὶ λιγότεροι ἐκεῖνοι ποὺ ἔχουν μιὰ κάποια ἔμφυτη ἱκανότητα νὰ τὴ χρησιμοποιοῦν καλά. Συνηθέστερα, ὡραιότατες φωνές, μὲ τὴν κακὴ χρῆσι, χάνουν τὸ μεγαλύτερο μέρος τῆς ἀξίας τους καὶ πολλὲς φορὲς ἀχρηστεύονται ἐντελῶς.

'Αντίθετα, μὲ τὴν προφύλαξί της ἀπὸ κάθε τι ποὺ μπορεῖ νὰ τὴ βλάψη, μὲ τὴν κατάλληλη ἐξάσκησί της ἀπὸ τὰ παιδικά, ἀκόμη, χρόνια καὶ γενικά, μὲ τὴν καλὴ χρῆσι της ἐπιτυγχάνεται ἡ διατήρησίς της ἐπὶ περισσότερον καιρὸ καὶ συνάμα ἡ βελτίωσίς της.

178. Τόσο γιὰ τὴν προφύλαξι, ὅσο καὶ γιὰ τὴν ἐξάσκησι τῆς φωνῆς εἶναι ἀπαραίτητη, πρωταρχικά, ἡ φυσιολογική, γυμνασμένη καὶ μεγάλης διαρκείας ἀναπνοὴ καὶ ποὺ νὰ κατευθύνεται κατὰ τὴ βούλησί μας. Πολὺ συχνὲς καὶ βαθειὲς ἀναπνοὲς κουράζουν καὶ δὲν ὑποβοηθοῦν στὴν ἐξάσκησι τῆς φωνῆς.

Γιὰ τὴν ἐξάσκησι τῆς ἀναπνοῆς καλύτερες θεωροῦνται οἱ ἐπόμενες ἀσκήσεις.

"Ασκησις α'.— Εἰσπνέομε ἐπὶ 2 δευτερόλεπτα, πολὺ ἀργὰ καί,

δσο τὸ δυνατόν, λιγότερο ἀέρα. Τὸν κρατᾶμε 1 δευτερόλεπτο. Ύστερα, ἐκπνέομε σὲ 2 δευτερόλεπτα, πολὺ ἀργά, ἐλαφρότατα, βγάζοντας, ὅσο τὸ δυνατόν, ἐλάχιστη δόσι ἀέρος. Κατόπιν ἐπαναλαμβάνομε τὴν ἴδια ἄσκησι αὐξάνοντας, διαδοχικά, τὰ δευτερόλεπτα.

"Ασκησις β'.— Εἰσπνέομε ἀργά. Κρατᾶμε τὸν ἀέρα 1-4 δευτερόλεπτα καὶ ἐκπνέομε ἀπότομα.

"Α σκη σις γ'.— Εἰσπνέομε ἀπότομα καὶ ἐκπνέομε βαθμιαῖα καὶ ὁμαλά.

"Α σ κ η σις δ'.— Εἰσπνέομε ἀπότομα. Κρατᾶμε τὸν ἀέρα καὶ ἐκπνέομε πολὸ ἀργά.

Σ' ὅλες αὐτὲς τὶς ἀσκήσεις, ἡ εἰσπνοὴ γίνεται μὲ κλειστὸ στόμα, ἀπὸ τὴ μύτη καὶ ἡ ἐκπνοὴ ἀπὸ τὸ στόμα. Τόσον ἡ εἰσπνοὴ ὅσον καὶ ἡ ἐκπνοὴ πρέπει νὰ γίνωνται ἀθόρυβα.

'Αποκτῶντας γερὸ ἀναπνευστικὸ σύστημα ἀποκλείομε τοὺς κινδύνους παθήσεών του.

'Αναπνέοντας ἔγκαιρα καὶ ἤρεμα στὰ σημεῖα ἀναπνοῆς (μαρτυρίες, σταυρούς, παύσεις) δὲν κομματιάζομε τὶς λέξεις, π.χ. «πρόσδε - ξαι» καὶ δὲν χωρίζομε δύο λέξεις ποὺ συνανήκουν, π.χ. «"Αγιον - Πνεῦμα»,

179. Ύποβοηθητικά γιά την κανονική άναπνοή είναι:

α΄ Ἐλαφρὸς στόμαχος.

β΄ 'Αβίαστη καὶ εὐθυτενὴς ὀρθία στάσις τοῦ σώματος.

γ΄ Ἐλευθερία τοῦ λαιμοῦ καὶ τοῦ στήθους ἀπὸ τὸ σφίξιμο ρούχων.

καὶ δ΄ Κανονικὸ ἄνοιγμα τοῦ στόματος, ὅσο τὸ πάχος τοῦ ἀντίχειρος.

180. Ἡ προφύλαξις τῆς φωνῆς συνίσταται στὴν προφύλαξι τῶν ὀργάνων ποὺ τὴν παράγουν.

Γι' αὐτὸ ἐπιβάλλονται τὰ ἑξῆς:

α'— Πρόληψις παθήσεων τοῦ ἀναπνευστικοῦ συστήματος, τοῦ στόματος καὶ τῶν δοντιῶν.

Πνεύμονες ποὺ πάσχουν δὲν εἶναι ἱκανοὶ νὰ εἰσπνέουν κανονικὰ καὶ νὰ ἐξακοντίζουν τὸν ἀέρα, μὲ τὴν ἀπαιτουμένη δύναμι, στὶς φωνητικὲς χορδές.

Φλεγμονὲς τοῦ φάρυγγος καὶ τῶν ἀμυγδαλῶν εἶναι συνέπειες παθή-σεων τοῦ στόματος καὶ χαλασμένων δοντιῶν.

β΄— ᾿Αποχὴ ἀπὸ τροφὲς ποὺ προκαλοῦν ἐρεθισμὸ τοῦ φάρυγγος καὶ τοῦ λάρυγγος (καρύδια. μουστάρδα κλπ.).

γ΄— 'Αποχή ἀπὸ τὰ οἰνοπνευματώδη ποτά. Προκαλοῦν ὑπεραιμίες

- τοῦ λάρυγγος ποὺ ἐκδηλώνονται μὲ βραχνάδα καὶ διαταραχὴ κάποτε ἀνεπανόρθωτη.
- γ΄— 'Αποχὴ ἀπὸ τὸ κάπνισμα. 'Ανάλογα μὲ τὴν ἰδιοσυγκρασία τοῦ κάθε ἀτόμου, προκαλεῖ, μεγαλύτερη ἢ μικρότερη, φαρυγγίτιδα.
- ε'— 'Αποχὴ ἀπὸ κατάχρησι καφέ. Μὲ τὸν καιρό, φέρνει τὴν τελεία χρεοκοπία τῆς φωνῆς.
- στ'— 'Αποχὴ ἀπὸ τὸν ἄσωτο βίο. Μὲ τὰ γρήγορα γηρατεία τοῦ ἀνθρωπίνου ὀργανισμοῦ ἐπέρχεται καὶ ὁ ταχύτερος μαρασμὸς τῆς φωνῆς.
- ζ΄— ᾿Αποχὴ ἀπὸ τὴν ἀδιάκοπη καὶ κουραστικὴ ἀπασχόλησι τοῦ φωνητικοῦ ὀργάνου.
  - η'— 'Αποχή ἀπὸ ψυχρὰ ποτὰ ἀμέσως, πρὶν ἢ μετὰ τὸ ἇσμα.
- θ'— 'Αποχὴ ἀπὸ τὸ ἇσμα σὲ μέρος ὅπου σχηματίζεται ρεῦμα ἀέρος ἢ ἡ ἀτμόσφαιρα εἶναι ψυχρὴ ἢ ὑγρὴ ἢ σκονισμένη ἢ γεμάτη καπνούς.
  - ι' -- 'Αποχή ἀπὸ τὸ ἇσμα ἀμέσως μετὰ ἀπὸ σωματική κούρασι.
- ια΄ 'Αποχή ἀπὸ τὸ ἄσμα καὶ ἀπὸ ὁποιαδήποτε κούρασι τοῦ φωνητικοῦ ὀργάνου στὴν περίοδο τῆς μεταφωνήσεως.
  - ιβ'— 'Αποχή ἀπὸ φθόγγους ἔξω ἀπὸ τὴν ἔκτασι τῆς φωνῆς μας.
- ιγ΄— Προφύλαξις ἀπὸ ψυχρὸ ἀέρα ἀμέσως μετὰ τὸ ἇσμα καὶ ἀποφυγὴ τῆς ὁμιλίας σὲ ὑψηλὸ τόνο, καὶ
- ιδ'— Τελεία ἀνάπαυσις τοῦ φωνητικοῦ ὀργάνου στὴν περίπτωσι κρυολογήματος μέχρι τῆς θεραπείας του.
- **181.** Μετὰ τὸν καθορισμὸ τοῦ εἴδους τῆς φωνῆς (βαθύφωνος, βαρύτονος, ὀξύφωνος) ἡ ἐξάσκησίς της ἐπιδιώκει κυρίως τὰ ἑξῆς:
- α'— Τὴν ἐπιτυχία ὁμοιογενείας σ' ὅλη της τὴν ἔκτασι, ὥστε ὅλοι οἱ φθόγγοι νὰ βγαίνουν μὲ τὴν ἴδια εὐκολία καὶ τὴν ἴδια ἔντασι.
  - β'— Τὴν ἀποφυγὴ τῆς ρινοφωνίας.
- γ΄— Τὸν ἐξευγενισμὸ τοῦ παραγομένου ἤχου μαζὶ μὲ τὴν ἐπιτυχία εὐλυγισίας καὶ ἀπαλότητος τῆς φωνῆς, καὶ
- $\delta'$  Τὴ σωστὴ προφορὰ τῶν φωνηέντων  $A \ E \ I \ O$  καὶ τοῦ διφθόγγου OY ἐν συνδυασμῷ μὲ τὴν καλὴ ἄρθρωσι καὶ εὐκρινῆ ἀπαγγελία τῶν λέξεων.
- Ή ἐξάσκησις τῆς φωνῆς εἶναι ἐργασία ποὺ ἀπαιτεῖ μεγάλη ὑπομονὴ καὶ γίνεται μὲ τὴν καθοδήγησι καὶ προσεκτικὴ παρακολούθησι τοῦ εἰδικοῦ καθηγητῆ τοῦ ἄσματος.

Είδικά, στὴ σωστὴ προφορὰ τῶν φωνηέντων συντελεῖ ἡ ἐπιμελημένη ἐκτέλεσις ἀδικῶν γυμνασμάτων, ὅπου τὰ χρησιμοποιοῦμε ἀντὶ τῶν ὀνομάτων τῶν φθόγγων προσέχοντας, συγχρόνως, τὸ ἀνάλογο καὶ κανονικὸ ἀνοιγμα τοῦ στόματος, ὡς ἑξῆς:

Στὸ Α τὰ χείλη ἀνοίγουν πλατειὰ καὶ ἡ γλῶσσα βρίσκεται χαμηλά.

Στὸ Ε ή γλῶσσα ύψώνεται καὶ τὰ χείλη πλησιάζουν.

Στὸ  ${\bf I}$  ή γλῶσσα ύψώνεται περισσότερο καὶ ή στοματική κοιλότης μικραίνει.

Στὸ Ο ή γλῶσσα τραβιέται πίσω καὶ τὰ χείλη στρογγυλεύουν, καὶ

Στὸ **ΟΥ** τὰ χείλη μαζεύονται καὶ παίρνουν τὸ σχῆμα καὶ τὴ θέσι ποὺ ἔχουν στὸ σφύριγμα.

<sup>1.</sup> Τὰ γυμνάσματα αὐτά, στὴν Εὐρωπαϊκή μουσική, ὀνομάζονται βοκαλισμὸς (vocalisation).

#### ΚΕΦΑΛΑΙΟΝ Ι΄

# ΡΥΘΜΙΚΕΣ ΚΑΙ ΜΕΛΩΔΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΥΝΕΧΟΥΣ ΑΝΑΒΑΣΕΩΣ ΚΑΙ ΚΑΤΑΒΑΣΕΩΣ ΤΩΝ ΦΘΟΓΓΩΝ ΤΗΣ ΔΙΑΤΟΝΙΚΗΣ ΚΛΙΜΑΚΟΣ ΤΟΥ **Νη**

'Αφοῦ προηγουμένως διδαχθοῦν τὰ σημεῖα τῆς μουσικῆς γραφῆς ποὺ περιλαμβάνονται σὲ κάθε ἄσκησι, θὰ γίνεται, πρῶτα ρυθμικὴ ἀνάγνωσίς της, θ' ἀκολουθήση ἡ παραλλαγή της καὶ τελικά, ὅπου ὑπάρχουν σχετικὰ παραδείγματα, θὰ ψάλη τὸ μέλος.

#### 182. Ο φθόγγος Νη

Τὸ "Ισον  $(\S 43, 47, 50, 55, 64 α')$ , τὸ Κλάσμα  $(\S 57)$ , ἡ ʿΑπλῆ · ἡ Διπλῆ · · ἡ Τριπλῆ · · · ( $\S 58$ ), ὁ Σταυρὸς + ( $\S 55, 62 α'$ ), ἡ μετρία χρονικὴ ἀγωγὴ  $(\S 97)$ , οἱ Ρυθμοὶ ΟΙ ΟΙΙ ( $\S 91, 92, 93$ ) καὶ ὁ τονικὸς ρυθμὸς ( $\S 94$ ).

#### Ρυθμός ΟΙ 🦷

#### Ρυθμός ΟΙΙ 🤻

#### Ρυθμός ΟΙΙΙ

## Μικτά μέτρα 🦼

18.  $\sqrt[4]{} = \frac{c^2}{|c|} = \frac{c^3}{|c|} = \frac{c^4}{|c|} = \frac$ 

#### Τονικός ρυθμός 🦼

19. 
$$\frac{3}{6}$$
 My the Se ou tou Y wi stou swo oi ke  $\frac{3}{6}$  two pa kly seig  $\frac{4}{6}$   $\frac{3}{6}$   $\frac{4}{6}$   $\frac{4}{6}$   $\frac{3}{6}$   $\frac{4}{6}$   $\frac{4}{6}$   $\frac{3}{6}$   $\frac{4}{6}$   $\frac{4}{6}$ 

#### 183. 'Ο φθόγγος Πα

Τὸ 'Ολίγον  $\hat{ }$  ή Πεταστὴ  $\hat{ }$  τὰ Κεντήματα  $\hat{ }$  (§ 48, 51, 55, 64α', β', γ'), ἡ 'Απόστροφος  $\hat{ }$  (§ 49, 55, 64α'), τὰ σύνθετα φθογγόσημα  $\hat{ }$  (σελ. 25, § 64ζ').

# Ρυθμός ΟΙ 🤻

# Ρυθμός ΟΙΙ 🦼

21. 次 - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - - | - - - | - - - - | - - - | - - - | - - - | - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - | - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - | - - - | - - | - - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - | - - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | | - | | - | | - | | - | | - | | - | | - | | -

#### Ρυθμός ΟΙΙΙ 🦪

#### Τονικός Ρυθμός 🦼

#### 184. 'Ο φθόγγος Βου

# Ρυθμός ΟΙ 🤻

#### Ρυθμός ΟΙΙ 🤻

# Ρυθμός ΟΙΙΙ 🦼

Τονικός ρυθμός 🦼

#### 185. Τὸ τετράχορδον Νη - Γα

Οί Παύσεις \ " \ " (§ 61α'), ἡ Ύπορροὴ • (§ 49, 58, 61δ')

Ρυθμός ΟΙ 🤻

#### Ρυθμός ΟΙΙ 🤻

| - - - | 1 ... | 5 ... | 5 ... | - 1 ... | 5 ... | - 1 ... | 5 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ... | - 1 ..

# Ρυθμός ΟΙΙΙ 🦼

Τονικός ρυθμός 🦪

186. Τὸ πεντάχορδον Νη - Δι καὶ τὰ σύνθετα φθογγόσημα \_\_\_\_ (Σελ. 25)

Pυθμὸς ΟΙ τ 41. χ ← τι | — τι | — τ + | τ τ | τ χ | ← τι | — τι |

# Ρυθμὸς ΟΙΙ 🤻

44. 次 - - - | 3 | - - | 3 次 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - | 3 | - |

46. 8 - 1 - 1 + | - 1 | - 1 + | - 1 |

| --- | 5 % | --- | --- | --- | --- | --- | --- | | --- | --- | --- | --- | | --- | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

Ρυθμός ΟΙΙΙ 🦼

47. \$\langle \frac{\pi}{\pi} \\ \frack{\pi} \\ \frac{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frack{\pi} \\ \frac{\pi}{\pi} \\ \frack{\pi}{\pi} \\ \frac{\pi}{\pi} \\ \frac{\

Μικτά μέτρα 🦼

, y

50.  $\chi = \frac{2}{3} = \frac{1}{3} = \frac{3}{3} = \frac{4}{3} = \frac{4}{3}$ 

#### Τονικός ρυθμός γ

#### 187. Ἡ διατονική κλίμαξ τοῦ Νη

Ρυθμός ΟΙ 🦼

54. 
\[ \frac{1}{\lambda} = \frac{1}{\sigma} = \fra

55.  $\gamma = |-\rangle = \frac{\pi}{q} |\rangle = |-\rangle = \frac{\pi}{2} |-\rangle = |-\rangle$ 

57. 
\( \lambda \) \( \cup \) \(

59.  $\frac{1}{10} = \frac{1}{10} = \frac{1}{1$ 

 $||\dot{y}|| = \frac{1}{2} ||\dot{y}|| =$ 

Ρυθμὸς ΟΙΙΙ ¬ ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ ) | ( γ )

64. \( \frac{1}{\pi} = \frac{1}{\pi} = \frac{1}{\pi} \\ \frac{1}{\pi} = \frac{

65. y = | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - | - - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - - | - - - - - - | - - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - | - - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - | - - - | - - - | - - - | - - - | - - - | - - - | - - - | - - | - - - | - - | - - - | - - | - - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - - | - | - - | - - | - - | - | - - | - | - - | - | - | - - | - | - - | - | - |

## Τονικός ρυθμός 🦼

# 188. Ἡ δὶς διαπασῶν

διατονική κλίμαξ δι - Δι - Δι

Ρυθμός ΟΙ 🦼

88. 8 - 3 | - 11 | - 12 | - 12 | - 11 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12 | - 12

# Ρυθμός ΟΙΙ 🦼

 $|C_{1} - C_{1} - C_{2} - C_{1} - C_{1} - C_{2} - C_{1} - C_{$ 

# Ρυθμός ΟΙΙΙ 🦼

70. 
\[ \langle - \langle

1- 3

Τονικός ρυθμός 🦪

71.  $\frac{4}{\sqrt{100}} = \frac{4}{100} = \frac{4}{100} = \frac{3}{100} = \frac{3}{100} = \frac{2}{100} = \frac{3}{100} = \frac{2}{100} = \frac{3}{100} = \frac{3}{100}$ 

#### 189. Ἡ Βαρεῖα \ (§ 66 α')

καὶ τὸ σύνθετο φθογγόσημο 🥌 (σελ. 25, § 55, 64 ιγ΄)

Ρυθμός ΟΙ 🦼

12. \( \frac{\pi}{\pi} \rightarrow \left[ \frac{\pi

Ρυθμός ΟΙΙ 🦼

 $|\hat{S}_{2}| = |\hat{I}_{2}| = |\hat{$ 

# Ρυθμός ΟΙΙΙ 🦼

#### 190. Τὸ Ψηφιστὸν 🗸 (§ 67)

και τὸ ἐλλιπὲς μέτρον (§88)

Ρυθμός ΟΙΙ 🦼

Ρυθμός ΟΙΙΙ 🦼

Τονικός ρυθμός 🦼

80. 
$$_{6}$$
  $\stackrel{2}{\smile}$   $_{7}$   $_{7}$   $_{8}$   $_{9}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{6}$   $_{6}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{6}$   $_{6}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{6}$   $_{6}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{6}$   $_{6}$   $_{6}$   $_{6}$   $_{7}$   $_{8}$   $_{7}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{9}$   $_{8}$   $_{9}$   $_{1}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{5}$   $_{6}$   $_{6}$   $_{1}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{5}$   $_{7}$   $_{7}$   $_{8}$   $_{1}$   $_{1}$   $_{1}$   $_{2}$   $_{3}$   $_{4}$   $_{5}$   $_{5}$   $_{7}$   $_{7}$   $_{7}$   $_{8}$   $_{7}$   $_{8}$   $_{7}$   $_{8}$   $_{7}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$   $_{8}$ 

#### 191. Τὰ σύνθετα φθογγόσημα

(σελ. 25, § 55 καὶ 64 ια', 67 δ')

Ρυθμός ΟΙΙΙ 🦼

87. Δ προ σχες τη φω νη η η τη ης δε η η σε ω ω ως μου δ

#### 192. Τὸ Γοργὸν 🗀

93. 
\[ \frac{1}{\chi} = \frac{1}{\chi}

Τονικός ρυθμός 🦼

# 193. Τὸ Ετερον η Σύνδεσμος 🗢

( § 70 α', β')

Φθογγόσημα μὲ καὶ η η η (§ 59 α')

Ρυθμός ΟΙ 🤺

| 1 2 2 | 1 2 2 | 1 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |

Ρυθμός ΟΙΙΙ 🤻

103. \( \frac{1}{2} \) \( \fra

105. Δ τερ Υι υι ε ἤ

106. Τοις αν θρω ω ποις σω μα α τι ι κως δι

Τονικός ρυθμός 🦼

# 194. Τὸ 'Αντικένωμα — (§ 69 α')

Ρυθμός ΟΙΙΙ 🤻

109. Κυ υ υ υ ρι ι ι ι ι ε λ

195. Κλάσμα πρὸ Γοργοῦ — (§ 59 α')
ἡ 'Υφὲν — ἢ — (§ 63)
'Αντικένωμα μὲ 'Απλῆ — (§ 69 β', γ', δ', ε')
Ρυθμὸς ΟΙΙΙ ¬⊓

110. 1 - - - 5 1 5 - 5 2 - 5 3

113. αγ γε λι κη μορ φη η εμ φα α νως
ε θε α α σω παμ μα κα α α α ρι ι ι ι
στε δ

114. γ ζο ο ο ο μεν δι

117.  $K_{\varepsilon}$   $\chi \alpha$   $\rho_{1}$   $\tau \omega$   $\mu_{\varepsilon}$   $\varepsilon$   $\varepsilon$   $\varepsilon$   $\varepsilon$   $\varepsilon$   $\varepsilon$   $\varepsilon$   $\nu \eta$   $\chi$ 

Καὶ τὰ δύο προέρχονται ἀπὸ τοὺς πολυσυλλάβους φθόγγους τῆς παλαιᾶς βυζαντινῆς μουσικῆς

α για μες q με α μες χ | με α μες γ | με α γι ε σ | με α γ

Ό Χρύσανθος («Θεωρητικόν μέγα τῆς μουσικῆς», § 67 ὑποσ. α΄) γράφει «Παράγεται δὲ τὸ μὲν αθαίμες ἀπὸ τὸ ανα ανες, τοὐτέστιν ἄναξ ἄφες τὸ δὲ θαθα ἀπὸ τὸ ἄνα ἄνα· τὸ δὲ ἄγια ἀπὸ τοῦ ᾶγιε· τὸ δὲ ὅλον οὕτως ἔχον, ἄναξ, ἄφες, ναὶ ἄφες ἄναξ ᾶγιε, εὐχή ἐστι πρὸς Θεὸν ἀναφερομένη».

# 196. Διπλή ·· Τριπλή ··· πρὸ Γοργοῦ (§ 59 α΄, 70 στ΄)

Ρυθμός ΟΙΙΙ 🦼

118. \( \frac{1}{2} = \frac{1}

Τονικός ρυθμός 🦼

#### 197. Φθογγόσημον μὲ Γοργὸν -

καὶ 'Απλῆ · Διπλῆ · Τριπλῆ · · · (§ 59 α')

Ρυθμός ΟΙ 🦷

| イーショク 以 | イーショク ショ | ニュー | イーショク ラョー | イーション ロー | イーション ロー | イーション ロー | イーション | イーション

#### Ρυθμός ΟΙΙΙ 🤻

123. Δ και α να στα α ας ε εκ νε ε ε κρω ων ??

#### 197 β΄ Φθογγόσημον μὲ Γοργὸν -

καὶ Απλῆ - Διπλῆ - Τριπλῆ -- καὶ ἑπόμενο φθογγόσημο μὲ Γοργόν -

Ρυθμός ΟΙ 🦼

154. がんこうにしょ 塩 | イーシー | 3 以 | 154. がんこうに | 3 な | イーシー | 154 | 16 ー シー | 174 | 17 ー シー | 17 ー | 17 ー シー |

| 152 | 10 2 2 | 2 2 | 2 2 | 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 2 | 1 2 | 1 2 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1 2 | 1

Ρυθμός ΟΙΙ 🦼

126. 
\( \lambda \) \( \lambda

#### Ρυθμός ΟΙΙΙ 🦼

127. 125 | - 55 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 | - 5 |

# 198. Τὸ Ἐνδόφωνον ΔΟΔ. (§ 71)

Τονικός ρυθμός 🦼

129. 

κα θο σον α πε χου σιν α να το λαι α πο δυ

σμω ων ε μα α α κρυ νεν αφ η μω ων τας α νο

μι ας η μων οξ

# 199. Τὸ Ὁμαλὸν — (§ 68)

Ρυθμός ΟΙΙΙ 🦼

Τονικός ρυθμός 🦼

Ρυθμός ΟΙΙ 7

# Ρυθμός ΟΙΙΙ 🦼

134.

γ τρο φη η ης δε λει ει ει πο ο ο ο

ο με ε ε νο ος κ

Τονικὸς ρυθμὸς  $\frac{1}{\chi}$ 135.  $\frac{1}{\sqrt{3}}$  ο τι προς σε  $\frac{1}{\sqrt{3}}$  Κυ ν ρι ε οι

 $\left|\begin{array}{c} \frac{2}{0} & \frac{1}{0} & \frac{3}{0} & \frac{4}{0} \\ 0 & \frac{3}{0} & \frac{1}{0} & \frac{3}{0} & \frac{3}{0} \end{array}\right|$ 

#### Ρυθμός ΟΙΙΙ 🤻

Τονικὸς ρυθμὸς  $\frac{1}{\chi}$ 140.  $\frac{4\pi}{\chi}$   $\frac{4\pi}{\chi}$   $\frac{\pi}{\chi}$   $\frac{\pi}{\chi}$ 

Ρυθμός ΟΙΙΙ 🤻

142. 
\( \langle = \langle \cdot \cd

Ρυθμός ΟΙΙ 🦼

Απλός χρόνος 🦼

Ρυθμός ΟΙΙΙ 🤻

145. 
\[ \langle \lang

201. Τὸ Συνεχὲς Ἐλαφρὸν (§ 59 γ') καὶ τὸ σύνθετο φθογγόσημο (σελ. 25)

148. 

| 148. 
| 148. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149. 
| 149.

Ρυθμός ΟΙΙ 🤻

149. パーニー | シュー ポート | シュー | カート | シュー | カート | シュー | カート |

1-1-22 × 4

Τονικός ρυθμός 🦼

154.  $\frac{4}{2}$   $\frac{1}{2}$   $\frac{4}{2}$   $\frac{1}{2}$   $\frac{1}{2}$ 

155.  $\Delta = \begin{cases} 3 & | \mathcal{Y} \\ \tilde{\chi} & \chi_{\alpha 1} \end{cases} \xrightarrow{\beta} \left[ \begin{cases} 3 & | \mathcal{Y} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma} \left[ \begin{cases} 3 & | \chi_{\alpha 1} | \chi_{\alpha 1} \\ \tilde{\chi} & \chi \end{cases} \right]^{2} \xrightarrow{\gamma}$ 

156.  $\frac{4}{\sqrt{2}} \times \frac{1}{\kappa \alpha} = \frac{1}{\alpha} \times \frac{1$ 

U v vov Å

159. 

α ο χο ρος των Απο στο λων βο ο α α α α

προ ος υ υ υ μας δ

 $| \sum_{\text{pl}} \frac{1}{\text{l}} \alpha_{\text{l}\zeta} | \sum_{\text{e}} \frac{1}{\text{e}} \sigma_{\text{pl}} | \sum_{\text{l}} \frac{1}{\text{l}} \gamma | \sum_{\text{pl}} \frac{1}{\text{e}} \sum_{\text{e}} \frac{1}{\text{e}} \sum_{\text{vov}} \frac{1}{\text{d}} \gamma | \sum_{\text{e}} \frac{1}{\text{e}} \gamma | \sum_{\text{e}} \gamma | \sum_{\text{e}}$ 

161.  $\frac{3}{\tau_{\text{E}}} = \frac{3}{6}$ 

## 202. Τὸ ᾿Αργὸν Τι

τὸ Δίαργον ς τὸ Τρίαργον ς (§ 60 α', β', γ')

Ρυθμός ΟΙΙΙ 🤻

#### 203. Γοργά παρεστιγμένα

τὸ ἡμίγοργον τ τὸ τριημίγοργον τ (§ 59 β΄)

<sup>1. &#</sup>x27;Η 'Υ φ è ν (§ 63) χρησιμεύει καὶ σὰν σημεῖο τοῦ τονικοῦ ρυθμοῦ γιὰ τὴ σύνδεσι τῶν μερῶν τῶν συνθέτων μέτρων.

171. 
\[
\langle - \frac{1}{2} - \frac{1}{2}

172. 
\[ \langle \] \[ \langle

173. 
\[
\langle - \frac{1}{2} \langle - \fr

174. 
\( \langle \) \( \times \

175. 
\[ \frac{\pi}{\pi} = \frac{\pi}{\pi} \fr

Τονικός ρυθμός 🤻

176.  $\Delta = \begin{pmatrix} \Delta & 0 & 0 \\ \ddot{0} & 0 & 0 \end{pmatrix}$   $\tau_1 \quad \tau_2 \quad \tau_3 \quad \tau_4 \quad \tau_5 \quad \tau_5 \quad \tau_6 \quad \tau_7 \quad \tau_7$ 

178. Κα τευ θυν θη η η τω η προ ο ο σε ευ

χη η η μου η η σο η προ ο ο σε ευ

179. 

α να μαρ τη η η η τους φυ λα χθη η ναι

αι η η η μας δ

## **204. Τὸ Δίγοργον** -- (§ 59 δ')

#### Ρυθμός ΟΙ 🤺

## Ρυθμός ΟΙΙ 🤻

181.  $\chi$   $\dot{C}$   $\dot{C}$ 

182. 
\( \frac{1}{2} \\ \frac{1}{2}

Ρυθμός ΟΙΙΙ 🤻

183.

1 - 2 - 4 | - 2 - 4 | - 2 - 4 | - 2 - 4 | - 2 - 4 | - 2 - 4 |

## 205. Δίγοργα παρεστιγμένα

. کے ہے۔ (§ 59 وڑ)

Ή ἄσκησις 180 μὲ 🕝

Ρυθμός ΟΙ 🤻

195. & - it - - it - | > 2 | - it - - it - |

| - # | - it - - it - | - # | > it - - it - |

| - y' | - it - - it - | - # | > it - - it - |

| 3 % | > it - > it - | > 1/2 | - it - > 5/3 | > 1/4

Ή ἄσκησις 182 μὲ 🖵 καὶ 🖵

ή ἄσκησις 183 μὲ ∸

Ή ἄσκησις 184 ἄσκησις μὲ 🖵 καὶ 📇

Ή ἄσκησις 181 ἄσκησις μὲ 🖵 👉 καὶ 😁

## Ρυθμός ΟΙΙ 🦷

199. 
\( \langle \cdot \

Ή ἄσκησις 184 ἄσκησις μὲ 🖵

'Η ἄσκησις 185 ἄσκησις μὲ - καὶ -·

Ή ἄσκησις 186 μὲ - - - καὶ --

'Η ἄσκησις 183 μὲ -Τ '-Τ - 'Τ καὶ -Τ'

204. <sup>4</sup> τα α α α χυ υ υ υ υ υ υ υ δ δ δ δ

# 206. Τὸ Τρίγοργον --- (§ 59 στ')

Ρυθμός ΟΙ 🤻

Μετατροπή τῆς ἀσκήσεως 180

Ρυθμός ΟΙΙ 🦼

Τονικός ρυθμός 🦼

209.  $\sqrt{\frac{1}{2}} = \frac{1}{1} = \frac{3}{1} = \frac{3}{1$ 

#### ΚΕΦΑΛΑΙΟΝ ΙΑ΄

#### ΡΥΘΜΙΚΕΣ ΚΑΙ ΜΕΛΩΛΙΚΕΣ ΑΣΚΗΣΕΙΣ ΔΙΑΤΟΝΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

207. Διάστημα τρίτης (§ 127, 132 σελ. 76)
Τὸ Ἐλαφρὸν (§ 49, 55, 64α'), τὰ σύνθετα φθογγόσημα

(σελ. 25, § 48, 51, 55, 64 ζ', 1α', 1β'), ἡ κορώνα (§ 63)

Ρυθμός ΟΙ 🤻

216. 次 ニニッショー & リーニー シーニー A | コーニー A |

Ρυθμός ΟΙΙΙ 🦪

517. \$\frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac^

## Ρυθμός ΟΙ 🦼

518. \$\frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{

## Τονικός ρυθμός 🤻

220. <sup>4</sup> Λυ ει τα δε σμα α και δρο σι ι ζει την φλο ο γα και δο φεγ γης της Θε αρ χι ας τυ υ πος κ

121.  $_{V}$   $_{E}$   $_{$ 

224.  $\Delta$   $\zeta \omega$   $\eta$   $\varphi o$  o  $\varphi o$   $\varphi o$ 

225.  $\Delta$   $\epsilon$   $\tau \epsilon$   $\epsilon$   $\chi \theta \eta \varsigma$   $\epsilon \kappa$   $\Pi \alpha \rho$   $\theta \epsilon$  vov  $\ddot{\beta}$ 

227. 6 Ε βο ο η η σε προ τυ πων την τα φη η ην τη της τη ην τρι η με ρον κ ο Προ φη η η η η της Ει δε ο με νος κ

230. π και προ σκυ νη η η σα α αν τες α αυ

τον η

**208.** Διάστημα τετάρτης (§ 127, 132 σελ. 75),

Ρυθμός ΟΙΙΙ 🥱

| \$\tilde{\alpha} \tilde{\alpha} \\ \frac{\alpha}{\sigma} \\ \frac{\alp

| スーール| ラン| ジャン| ラーー | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 | 132 |

Ρυθμός ΟΙΙ 🤻

533. \$\langle \langle \langle

## Ρυθμός ΟΙ 🦼

Τονικός ρυθμός 🥇

236.  $\pi$  0 τε προ ση  $\lambda \omega$   $\omega$  θης τω ξυ  $\lambda \omega$   $\omega$  του  $\Sigma$ τα αυ  $\frac{2}{\rho}$   $\frac{2}{\rho}$   $\frac{1}{\tau}$   $\frac{3}{\tau}$   $\frac{3}{\tau}$   $\frac{1}{\tau}$   $\frac{3}{\tau}$   $\frac{3}{\tau}$ 

237. V Eu  $\lambda$ 0  $\gamma\eta$   $\mu\epsilon$   $\nu\eta$   $\eta$   $\kappa$ 01  $\lambda$ 1 1  $\alpha$   $\sigma$ 00  $\sigma$ 0  $\phi$ 0 $\phi$ 0 $\nu$ 

<sup>(1)</sup> καὶ (2). Μελωδίες ἀπὸ δημοτικὰ τραγούδια,

Α αν να καρ πον γαρ ην θη σε παρ θε νι ι ας δι την α σπο ρως τον τρο φε α της κτι σε ως τε κου σαν τον λυ τρω τη η ην Ι η σουν λ

238.  $\frac{\Gamma}{q} = \frac{1}{A_1} = \frac{\Gamma}{\text{VEI}} = \frac{\Gamma}{\text{EI}} = \frac{1}{\text{EI}} = \frac{2}{\text{EI}} =$ 

239.  $\Delta$   $\ddot{\beta}$   $\ddot{\eta}$   $\ddot{\eta}$ 

#### 209. Διάστημα πέμπτης

( § 127, 132 σελ. 74, § 138 σελ. 83)

Ή Χαμηλή (§ 49, 55, 64 α') τὰ σύνθετα φθογγόσημα (σελ. 25, § 55, 64ε', ια', ιβ')

Ρυθμός ΟΙΙΙ 🤻

241. み ニニニー ( ) ニュニー ( ) 1 ニュー ( ) 1 ニュニー ( ) 1 ニュー (

243. 
| \( \frac{1}{4} \) \( \

Τονικός ρυθμός 🦼

244.  $Y \pi \epsilon \rho \alpha \gamma \iota \alpha \Theta \epsilon o \tau o \kappa \epsilon \sigma \omega \sigma o v \eta$ 

<sup>1. &#</sup>x27;Από τὸ δημοτικό τραγούδι «Σαράντα παλληκάρια»,

 $\mu$  μας  $\ddot{\alpha}$  Χο ρευ ε τω πα σα κτι ι ι σις  $\ddot{\alpha}$  ευ φραι  $\dot{\alpha}$  νε σθω και  $\dot{\alpha}$  βιδ  $\ddot{\alpha}$ 

245.  $\Delta \varepsilon$   $\varepsilon v$   $\varepsilon v$ 

247.  $\frac{3}{4}$   $\frac{3}{4}$   $\frac{1}{4}$   $\frac{2}{4}$   $\frac{2}{4}$   $\frac{2}{4}$   $\frac{2}{4}$   $\frac{2}{4}$   $\frac{2}{4}$   $\frac{4}{4}$   $\frac{6}{4}$   $\frac{6}{4}$ 

249.  $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ 

#### 210. Διάστημα ἕκτης

(§ 127, 132 οελ. 73, § 138 σελ. 83)

τὰ σύνθετα φθογγόσημα (σελ. 25, § 55, 64ε΄, ι΄, ια΄, ιβ΄)

Ρυθμός ΟΙΙΙ 🦼

252. ζ Ως υ δα τα θα λασ σης φι λαν θρω πε τα κυ μα τα του βι ου χει μα ζει με ζ

Ρυθμός ΟΙΙ 🦼

253. 
\[
\langle \lang

## Τονικός ρυθμός 🦼

255.  $\frac{4}{6}$  Ω του πα ρα δο ξου θαυ μα τος ω μυ στη ρι ου φρι κτου  $\frac{4}{6}$  ο τη φυ σει α θα να τος  $\frac{\pi}{4}$  πως εν ξυ λω κρε μα ται  $\frac{2}{6}$  πως θα να του νυν γευ ε ται  $\frac{\pi}{4}$  πως κα τα κρι ι νε ται ο α νευ θυ νος  $\frac{\pi}{4}$  κρυ ψον το φω ως σου και φρι ξον η  $\frac{2}{6}$   $\frac{4}{6}$   $\frac{\pi}{6}$   $\frac{2}{6}$   $\frac{2}{6}$   $\frac{4}{6}$   $\frac{2}{6}$   $\frac{2}{$ 

256. ε νε κεν α λη η θει ει ει ας ζί και πρα

τη η το ος χ

#### 211. Διάστημα έβδόμης

(§ 127. 132 σελ. 72, § 138 σελ. 83)

τὰ σύνθετα φθογγόσημα (σελ. 25, § 55, 64ε', ι', ια')

Ρυθμός ΟΙΙΙ 🤻

22. \$\langle \frac{1}{2} \rangle \frac{1}{2} \

Τονικός ρυθμός 🦪

260. <sup>2</sup> Δο ξα σοι τω δει ξαν τι το φως δι

#### 212. Διάστημα ὀγδόης

(σελ. 70, § 127, οελ. 72, § 132, § 138 σελ. 83)

τὰ σύνθετα φθογγόσημα (σελ. 25, § 55, 64ε', 1', 1α')

Ρυθμός ΟΙΙΙ 🤻

<sup>1.</sup> Μελωδία ἀπὸ δημοτικό τραγούδι.

一次によりはない。

Τονικός ρυθμός  $\frac{1}{\chi}$ 264.  $\frac{1}{\chi}$  τον  $\frac{1}{\chi}$   $\frac{1}{\chi}$ 

<sup>1. &#</sup>x27;Απὸ τὴ «Μουσικὴ ἀγωγὴ» Α. 'Αργυροπούλου.

 $\begin{vmatrix} \frac{1}{8} & \frac{3}{8} & \frac{1}{8} & \frac{$ 

265.  $\sqrt{\frac{4}{\text{AV}}}$   $\sqrt{\frac{4}{\text{AV}}}$ 

267. Υ και εν Υι ω α να παυ ο ο ο με ε ε ε ε νον Δ Τρι α ας Α γι α δο ο ο ξα α α α α

269.  $_{2}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{7}$   $_{$ 

## 212 β΄ Διαστήματα μεγαλύτερα τῆς διαπασών 1

α΄ διάστημα ένάτης 🛂 🞖 🧲

β΄ διάστημα δεκάτης Κ΄

γ' διάστημα ένδεκάτης (σελ. 25, § 55, 64ε', ι', ια')

#### Ρυθμός ΟΙΙΙ 🦪

Τονικός ρυθμός 🦼

<sup>1.</sup> Ή χρήσις διαστήματος ένάτης στίς έκκλησιαστικές μελωδίες είναι σπανία καὶ σπανιωτάτη ή χρήσις των μεγαλυτέρων της διαστημάτων.

('Από τὸ ἀργὸ 'Ιδιόμελο τῆς Κασσιανῆς «Κύριε ἡ ἐν πολλαῖς ἀμαρτίαις» Πέτρου Πελοπονησίου)

('Απὸ τὸ ἴδιο 'Ιδιόμελο, Χουρμουζίου Χαρτοφύλακος)

('Από τὸ ἴδιο 'Ιδιόμελο, τοῦ αὐτοῦ)

(Κρατήματα <sup>1</sup> ἀπὸ τὸ ὀκτάηχον «Θεοτόκε Παρθένε» Πέτρου Μπερεκέτου)

#### ΚΕΦΑΛΑΙΟΝ ΙΒ΄

#### ΑΛΛΟΙΩΣΕΙΣ ΤΗΣ ΔΙΑΤΟΝΙΚΗΣ ΚΛΙΜΑΚΟΣ (§ 144 - 159)

#### 213. Φθόγγοι μὲ ὕφεσι ρ

275. ὁ Πα φυσικὸς καὶ ἐν ὑφέσει

<sup>1.</sup> Κράτημα ή βάσταμα είναι ἡ ἐπέκτασις τῆς μελωδίας μὲ συλλαβὲς διαφορετικὲς ἀπὸ τὶς λέξεις τοῦ ποιητικοῦ της κειμένου πού, φαινομενικά, στεροῦνται σημασίας καὶ πού, ἐκτὸς ἀπὸ τὸν πλατυσμό της δηλαδή τὴν ἐπέκτασί της, ἀποσκοποῦν καὶ στὸν καλλωπισμό της.

Γιὰ τὰ κρατήματα χρησιμοποιούνται οἱ ἑξῆς κατασκευασμένες λέξεις: ៤ε (α, είε (α, με ίε (α, τείε (α καὶ τερερεμ ἢ τεριρεμ. Μὲ τὴ διάσπασι, ὕστερα, τῆς τελευταίας καὶ τὴν ἐναλλαγὴ διαφόρων φωνηέντων προκύπτουν οἱ συλλαβὲς τε, τι, το, ρε, ρι, ρο, ρου.

Όπως γίνεται φανερόν, οί: μεγα, εμεγα, με μεγα καὶ τεμεγα προέρχονται ἀπὸ τοὺς πολυσυλλάβους φθόγγους τῆς παλαιᾶς βυζαντινῆς μουσικῆς: αγγαμες, μεαμες, γαγα αγια πού, ὅπως εἴδαμε (§ 195 σελ. 132), ἐρμη-

#### 276. ὁ Κε φυσικός καὶ ἐν ὑφέσει

νεύονται, στὸ σύνολό τους, σὰν μιὰ προσευχὴ στὸ Θεό: «ἄναξ ἄφες, ναὶ ἄφες ἄναξ, ἄναξ ἄγιε».

Όσον ἀφορᾶ στὴ σημασία τῆς λέξεως τερερεμ ἢ τεριρεμ καὶ τὴν παρεισαγωγή της στὴ μουσικὴ τῆς 'Ορθοδόξου 'Εκκλησίας ὑπάρχουν διάφορες ἐρμηνείες καὶ ἀπόψεις καὶ ἀπό αὐτὲς ἐπικρατέστερες εἶναι.

α΄ 'Η ἐπιθυμία καὶ ἡ προσπάθεια τοῦ ἀνθρώπου νὰ μιμηθῆ τὴν ἀκατάληπτη γλῶσσα ποὺ μ' αὐτὴν οἱ ἄγγελοι ἀνυμνοῦν ἀκατάπαυστα τὸν Θεό, καθὼς καὶ τὰ «ἄρρητα ρήματα» ποὺ ἄκουσε ὁ οὐρανοβάμων 'Απόστολος Παῦλος.

Σχετικά, ὁ Χρύσανθος («Θεωρητικόν μέγα τῆς μουσικῆς» § 445 ὑποσ. α') γράφει «Εδρον γεγραμμένα έν τινι γραμματική τής Μουσικής. όμως έλήφθησαν, έξ ών περί της τοιαύτης ύποθέσεως εϊρηκεν Ίωάννης ὁ Δαμασκηνὸς» τὰ έξῆς: «Τὰς μὲν οῦν ἀπὸ τῆς μουσικῆς ἀπαρχὰς τῷ Θεῷ κατὰ χρέος ἀνατιθέντες, ἐν τῆ ἱερῷ ψάλλειν Ἐκκλησίᾳ ταχθέντες, ἐν κατανύξει τὸν Θεόν, τὸν ἀοράτως ἐκεῖ παρόντα δοξολογήσωμεν. Καὶ γὰρ ἐν τάξει, φασί, τῶν ἀγγελικών καὶ ἀρχαγγελικών ταγμάτων, ταύτα τὰ σειρηνομελίρρυτα μέλη καὶ πνευματοκίνητα ἄσματα τῆ Ἐκκλησία τυπικώς παρεδόθησαν. Καὶ καθάπερ ἐκεῖνοι πολυειδώς, ποικίλως τε καὶ διαφόρως, μετὰ φόβου καὶ εὐλαβείας παριστάμενοι τῷ Θεῷ, τοῦτον ἀκαταπαύστως ἀνυμνοῦσιν ό μὲν τὸ «Αγιος ὁ Θεός, ἄγιος Ἰσχυρός, ἄγιος Ἀθάνατος, ἐλέησον ήμᾶς» ἀσιγήτως βοῶν ὁ δὲ τὸ «'Αλληλούτα»· καὶ ἄλλος τὸ «"Αγιος, ἄγιος, ἄγιος Κύριος Σαββαώθ»· καὶ ἔτερος τὸ «Σὲ ὑμνοῦμεν, σὲ εὐλογοῦμεν» καὶ τὰ έξῆς· Καὶ ἄλλος ᾶλλο, πολλά καὶ διάφορα δοξολογούντες χρεωστικώς, τὸν Ποιητὴν ὑμνούσιν. Ούτω καὶ ήμεῖς, ἐπόμενοι τούτοις καὶ συναμιλλώμενοι, μετὰ φόβου καὶ τρόμου καὶ πολλής εὐλαβείας ὀφείλομεν ἵστασθαι, τὰ ᾶγια συνάδοντες ἄσματα, ἐν λέξεσι σημαντικοίς καὶ ἀσημάντοις. Οὐρανὸς γὰρ ἡ Ἐκκλησία, παρὰ τοῖς σοφοῖς καὶ θεοδιδάκτοις διδασκάλοις, ἀπεικόνισται καὶ προσηγόρευται. Τὸ γὰρ τερερε καί το τοτοτο καί το τιτιτι καί το μεγαγγαμε καί τα λοιπά, είς τύπον έκείνων των άγγελικων δοξολογιών, των σημαντοῖς καὶ άσημάντοις λέ-

#### 277. ὁ Πα καὶ ὁ Κε φυσικοὶ καὶ ἐν ὑφέσει

## 

ξεσι γινομένων. Εἰ καὶ αἱ ἀσήμαντοι δοκοῦσαι λέξεις αἰνίττονται τι. Τήρει γὰρ φησί, τίνι παρίστασαι καὶ τὶ προσάδεις. Καὶ τότε πῶς ἀπολογήσει τῷ Κριτῆ, ρευστή γε φύσις καὶ διαλυομένη τυγχάνων, ἄ ἄνθρωπε; Παράγεται γοῦν τὸ μὲν τερερε ἀπὸ τοῦ τήρει ροῦ τὸ δὲ τοτο ἀπὸ τοῦ τότε τότε τὸ δὲ τιτι ἀπὸ τοῦ τί τίνι».

β΄ Πιό κοντά, ὅμως, στὴν ἱστορικὴ ἀλήθεια φαίνεται νὰ βρίσκεται ἡ ἄποψις πὰς ἡ λέξις τερερεμ ἢ τεριρεμ ἔχει τὴν καταγωγή της ἀπὸ τὸ «Ἱερὸν Παλάτιον» τῶν Βυζαντινῶν Αὐτοκρατόρων.

Κατὰ τὶς δοχὲς (δεξιώσεις καὶ διασκεδάσεις) καὶ τὶς προελεύσεις (θριαμβευτικὲς παρελάσεις) τῶν Αὐτοκρατόρων, ὁ χορὸς ψάλλοντας τὸν ἐπίκαιρο
ὕμνο ποὺ εἶχε, πάντοτε, θρησκευτικὸ περιεχόμενο ἐπεσύναπτε σ΄ αὐτόν, μὲ
ἀνάλογη μελωδία τή φράσι regem expectamus. ᾿Απ᾽ αὐτὴν τὴ φράσι, μὲ τὴ
διαφοροποίησι τῆς πρώτης λέξεως καὶ τὴν παράλειψι τῆς δευτέρας ἔμεινε τὸ
terem πού, κατόπιν, μὲ τὸν διπλασιασμὸ τῆς τε ἔγινε ἡ λέξις tererem
ἢ terirem. Μὲ τὸν καιρό, ὅταν τὸ Βυζάντιο καὶ μαζί του τὸ Ἱερὸν Παλάτιον
ἔξελληνίσθηκε καὶ συνάμα ξεχάσθηκε ἡ λατινικὴ γλώσσα, ἡ λέξις τερερεμ ἢ
τεριρεμ ἔμεινε πολιτογραφημένη σὰν μία μακρυνὴ ἀπήχησις παλαιᾶς παραδόσεως καὶ ἐθίμου.

Σύμφωνα μ' αὐτὴν τὴν ἐκδοχὴ καὶ παρὰ τὰ γραφόμενα ἀπὸ τὸν Χρύσανθο, ἡ εἰσαγωγὴ τῶν κρατημάτων στὴν 'Ορθόδοξο 'Εκκλησιαστικὴ μελωδία, φαίνεται μεταγενέστερη ἀπὸ τὸν 'Αγιο 'Ιωάννη τὸν Δαμασκηνὸ καὶ μπορεῖ νὰ ἀποδοθῆ στὸν 'Ιωάννη Κουκουζέλη (ΙΒ΄ αἰῶνας), ἀφοῦ, ὡς γνωστόν, αὐτὸς προερχόταν ἀπὸ τὸ Βυζαντινὸ Παλάτι ἀπὸ ὅπου κατέφυγε στὸ 'Αγιον 'Όρος.

Τὰ κρατήματα συνοδεύουν, κυρίως, τοὺς Καλοφωνικοὺς Είρμοὺς καὶ τὶς μελωδίες τοῦ Παπαδικοῦ εἴδους (§ 260), μπαίνοντας ἄλλοτε στὸ τέλος, ἄλλοτε παρεμβαλλόμενα καὶ ἄλλοτε προτασσόμενα.

#### 278. ὁ Πα καὶ ὁ Κε ἐν ὑφέσει

Μικτά μέτρα 🦼

3 6 1 2 3 1 2 3 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3

279. ὁ Πα καὶ ὁ Κε φυσικοί καὶ ἐν ὑφέσει

Μικτά μέτρα 🦪

#### 280. ὁ Βου φυσικός καὶ εν ύφεσει

#### Ρυθμός ΟΙΙΙ 7

#### 281. δ Ζω φυσικός καὶ ἐν ὑφέσει

#### Ρυθμός ΟΙΙΙ 🛪

| こここにできる | でここにできる | でここにできる | でここに | でいる | できる | で

#### Τονικός ρυθμός χ

282.  $A\lambda$  λο τρι ι ον των μη τε ε ρων η παρ  $\theta$ ε νοις η παι  $\theta$ ε πι σοι  $\theta$ ε ο το ο κε  $\theta$ μ φο τε ρα  $\theta$ κο νο μη η  $\theta$ η δι  $\theta$ ο σε

πα σαι αι φυ λαι τη ης γης α παυ στως με γα λυ νο
ο μεν ο

283. ὁ Βου καὶ ὁ Ζω ἐν ὑφέσει

284. ὁ Δι φυσικός καὶ ἐν ὑφέσει

 $\int_{\mathbb{R}^{n}} |\mathcal{L}_{n}| = \int_{\mathbb{R}^{n}} |\mathcal{L}_{n}| = \int_{\mathbb{R}^{n$ 

285. ὁ Δι ὁ Ζω καὶ ὁ Πα φυσικοὶ καὶ ἐν ὑφέσει

 
> ('Από τὴν ἀργὴ δοξολογία σὲ ἦχο βαρὺ διατονικὸ 'Ιακώβου Πρωτοψάλτου)

# 214. Φθόγγοι μὲ δίεσι σ

286. ὁ Νη φυσικὸς καὶ ἐν διέσει

287. ὁ Πα φυσικός καὶ ἐν διέσει

> ('Απὸ τὸ δοξαστικὸ τῶν Αἴνων τοῦ 'Αγίου Πνεύματος Σωκράτους Παπαδοπούλου).

#### 288. ό Γα φυσικός καὶ ἐν διέσει

# Ρυθμός ΟΙΙ 🧏

Μικτά μέτρα 🦼

291. ό Πα καὶ ό Γα φυσικοί καὶ ἐν διέσει

292.  $\frac{6}{\lambda}$   $\frac{3}{5}$   $\frac{2}{5}$   $\frac{4}{5}$   $\frac{2}{5}$   $\frac{4}{5}$   $\frac{2}{5}$   $\frac{6}{\lambda}$   $\frac{4}{5}$   $\frac{2}{5}$   $\frac{6}{\lambda}$   $\frac{2}{5}$   $\frac{6}{\lambda}$ 

293. ὁ Δι φυσικός καὶ ἐν διέσει

1-1-18321-1. " | V -1 | - " | - " | = " |

# 215. Φθόγγοι μὲ διέσεις καὶ ὑφέσεις

- 295. ὁ Βου φυσικός καὶ ἐν διέσει
  - ό Ζω φυσικός καὶ ἐν ὑφέσει

296. ὁ Νη καὶ ὁ Βου ἐν διέσει, ὁ Δι φυσικὸς καὶ ἐν διέσει καὶ ὁ Ζω φυσικὸς καὶ ἐν ὑφέσει

297. ὁ Βου ἐν ὑφέσει καὶ ὁ Γα ἐν διέσει

Μικτά μέτρα 🦪

298. ὁ Βου καὶ ὁ Ζω ἐν ὑφέσει, ὁ Δι φυσικὸς καὶ ἐν διέσει, ὅ Γα καὶ ὁ Νη ἐν διέσει

Miktà µétpa  $\frac{1}{\chi}$   $\frac{1}{q}$   $\frac{1}{q}$ 

299. ὁ Βου φυσικός, ἐν ὑφέσει καὶ ἐν διέσει

ό Γα φυσικός καὶ ἐν διέσει

ό Ζω φυσικός, εν ύφεσει καὶ εν διέσει

Ρυθμός ἑξάσημος,  $^1$  διτρόχαιος δακτυλικός  $OO \cap II$ 

$$\frac{1}{4}$$
 $\frac{1}{4}$ 
 $\frac{$ 

Στό διτρόχαιο δακτυλικό μέτρο μπορούν να μετατραπούν ώρισμέ-

300. Ρυθμὸς ἑξάσημος, διτρόχαιος δακτυλικός, μὲ παρεμβαλλόμενα τρίσημα μέτρα.  $\frac{1}{\chi}$ 

νες μελωδίες, ὲφόσον είναι σὲ καθαρὸ τετράσημο ρυθμό, μὲ τὸ διπλασιασμὸ τῆς διαρκεὶας τῶν ἰσχυρῶν μερῶν του, ὅπως στὴν ἄσκησι αὐτή. (Στίχος ἀπὸ τὸ «Μακάριος ἀνὴρ» Πέτρου Λαμπαδαρίου), ὅπως αὐτὸ ἔχει συντμηθῆ καὶ καλλωπισθῆ ἀπὸ τὸν Ἐμμανουὴλ Πρωτοψάλτη καὶ ποὺ στὸν ἀρχικὸ τετράσημο ρυθμὸ είναι:

1. "Όταν στὸ τετράσημο ρυθμὸ παρεμβάλλονται δίσημα μέτρα, ὅπως στὴ 274 ἄσκησι (Κρατήματα), τότε τὰ τετράσημα μέτρα γἰνονται ἐξάσημα καὶ τὰ δίσημα τρίσημα, ὅπως στὴν 300 ἄσκησι ποὺ εἶναι μετατροπὴ τῆς 274. Συνηθέστατα, ἔτσι ψάλλονται τὰ Κρατήματα.

# Ρυθμός έπτάσημος, β΄ ἐπίτριτος ΟΙ ΤΙΙ χ

302. ὁ Βου ἐν διέσει καὶ ὁ Ζω ἐν ὑφέσει 🦼

 $<sup>{}^</sup>tO$  έπτάσημος ρυθμός στὴν Εὐρωπαϊκὴ μουσική σημειώνεται σὲ τὸ μέτρο  $\frac{7}{8}$  .

Παρά πολλά δημοτικά μας τραγούδια είναι τονισμένα σὲ ἐπτάσημο ρυθμό.

<sup>2.</sup> Ὁ τελευταίος χρόνος τοῦ τελευταίου μέτρου συμπληρώνεται μὲ τὸν πρῶτο χρόνο τοῦ πρώτου μέτρου.

303.

#### Ή αὐτάρκεια

(σχολικό τραγούδι)

Ποίησις 'Αγγέλου Βλάχου

Μελοποίησις Οίκ. Θεοδ. Θωΐδη

# Ρυθμός ἐπτάσημος, β΄ ἐπίτριτος ΟΙ $\widehat{\ \ }$ ΟΙ

τη ης να α α δο ο ξα α α α σθη η η ης γη  $\| \underbrace{\hspace{1cm} \bigcup_{\mu\eta \hspace{1cm} \eta \hspace{1cm} \eta \hspace{1cm} \tau \epsilon \hspace{1cm} \epsilon \hspace{1cm} \| \hspace{1cm} \underbrace{\hspace{1cm} \bigcup_{\nu\alpha \hspace{1cm} \alpha \hspace{1cm} \pi\lambda o \upsilon \hspace{1cm} o \upsilon}}_{\nu\alpha \hspace{1cm} \alpha \hspace{1cm} \pi\lambda o \upsilon \hspace{1cm} o \upsilon} \| \underbrace{\hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} }}_{\tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} }}_{\tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \bot} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \bot} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \bot} \bot_{\tau \hspace{1cm} \bot} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \bot} \tau \hspace{1cm} \bigcup_{\tau \hspace{1cm} \bot} \bot_{\tau \hspace{1cm$ ση η ης σου ου ου ει ει ναι αι αι μη η ζη η η τη ης τα α α πε ε ρι ι ι ιτ 

804.

#### Χειμώνιασε

( δημοτικό )

Ρυθμός έπτάσημος, β΄ ἐπίτριτος ΟΙ ΙΙ χ

#### ΠΑΡΑΤΗΡΗΣΕΙΣ

#### ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΕΛΩΔΙΚΩΝ ΑΣΚΗΣΕΩΝ

- Α΄. Γιὰ εὐκολία, μποροῦν, στὴν ἀρχή, οἱ μελωδικὲς ἀσκήσεις, μέχρι κὰποιο σημεῖο, νὰ διδαχθοῦν σὲ άπλὸ χρόνο. Όταν, ὅμως, ὁ μαθητὴς ἀποκτήση σχετικὴ εὐχέρεια στὴ μουσικὴ ἀνάγνωσι, θὰ ἐπαναληφθοῦν στὸ ρυθμὸ ποὺ εἶναι γραμμένες.
- **Β΄.** Σὲ ὅλες τὶς ἀσκήσεις προτάχθηκε ἡ χρονικὴ ἀγωγὴ  $\frac{1}{\chi}$ . Μὲ τὴ πρόοδο, ὅμως, τοῦ μαθητῆ ὁ διδάσκων θὰ κάμη χρῆσι καὶ τῶν χρονικῶν ἀγωγῶν  $\frac{1}{\chi}$   $\frac{1}{\chi}$  διαλέγοντας τὶς ἀνάλογες ἀσκήσεις ποὺ καλύτερα μποροῦν νὰ προσαρμοσθοῦν σ' αὐτές.
- Γ΄. Οἱ ἀσκήσεις ἀλλοιώσεων ποὺ περιλήφθηκαν στὸ ΙΒ΄ Κεφάλαιο (§ 213—215) ἀποσκοποῦν στὴ προπαρασκευὴ τοῦ χρωματικοῦ καὶ τοῦ ἐναρμονίου γένους καθώς καὶ τῶν χροῶν, ποὺ ἐξετάζονται στὰ ἐπόμενα Κεφάλαια.

# ΜΕΡΟΣ Γ'



'Η φυσική διατονική κλίμαξ καὶ ή παρασημαντική ποὺ μεταχειρίζεται ή βυζαντινή μουσική ἀνήκουν, βέβαια, στὰ γνωρίσματά της. Τὸν ἰδιαίτερο, ὅμως, χαρακτήρα της δημιουργοῦν οἰ θεωρητικὲς ἀρχές της ποὺ ἐκτίθενται στὰ ἐπόμενα κεφάλαια.

#### KEDALAION IT'

#### ΤΑ ΣΥΣΤΗΜΑΤΑ

216. Γνωρίζομε πώς, μὲ τὸ φαινόμενο τῆς ἀντιφωνίας ἡ σειρὰ τῶν ἐπτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω ἐπαναλαμβάνεται διαδοχικὰ ἐπὶ τὸ ὀξὺ καὶ ἐπὶ τὸ βαρὺ (§ 13) καὶ ὅτι, ἡ διαδοχὴ τῶν ὀκτὰ φθόγγων Νη Πα Βου Γα Δι Κε Ζω Νη΄ ὅπου ὁ Νη΄ εἶναι ἡ ἐπὶ τὸ ὀξὺ ἀντιφωνία τοῦ Νη ἢ ἀντίθετα, ὁ Νη εἶναι ἡ ἐπὶ τὸ βαρὸ ἀντιφωνία τοῦ Νη΄ ὀνομάζεται κλῖμαξ ἢ ὀκταφωνία ἢ διαπασῶν (§ 14).

Μὲ τὸ φαινόμενο δηλ. τῆς ἀντιφωνίας, κάθε φορὰ ποὺ θέλουμε νὰ ἐπεκταθοῦμε σὲ ὀξυτέρους φθόγγους ἔξω ἀπὸ τὴ διαπασῶν, ἡ κορυφή της γίνεται βάσις τῆς ἀμέσως ὀξυτέρας διαπασῶν καὶ ἀντίθετα, κάθε φορὰ ποὺ θέλουμε νὰ ἐπεκταθοῦμε σὲ χαμηλοτέρους φθόγγους ἔξω ἀπὸ αὐτήν, ἡ βάσις της μετατρέπεται σὲ κορυφὴ τῆς ἀμέσως βαρυτέρας διαπασῶν.

\*Ο φυσικὸς αὐτὸς τρόπος τῆς ἐπεκτάσεως τῆς διαπασῶν μπορεῖ νὰ ἐφαρμοσθῆ στὴ μουσικὴ καὶ ἄν ἀκόμα ἀντὶ τῆς διαπασῶν πάρουμε ἕνα μόνον τμῆμα της, μιὰ διαδοχικὴ σειρὰ ἀπό ὡρισμένους, μόνον, φθόγγους της μὲ τὴν ὡρισμένη σειρὰ τῶν τόνων ποὺ περικλείονται σ' αὐτοὺς καὶ ὅπου ὁ πρῶτος φθόγγος (ὁ χαμηλότερος) θὰ θεωρηθῆ σὰν βάσις καὶ ὁ τελευταῖος (ὁ ὀξύτερος) κορυφὴ καὶ ὀνομάζεται σύστημα. ဪστε, σύστημα στὴ μουσικὴ εἶναι ἡ ἐπανάληψις — μιὰ ἢ περισσότερες φορὲς — τῆς διαπασῶν ἢ τμήματός της, μὲ τὴ σειρὰ τῶν τόνων ποὺ περικλείονται μεταξὺ τῶν φθόγγων τους.

217. Ἡ βυζαντινή μουσική χρησιμοποιεί τὰ έξῆς τρία συστήματα:

Τὸ ὀκτάχορδον ἢ διαπασῶν

Τὸ πεντάχορδον ποὺ ὀνομάζεται καὶ τροχὸς καὶ

Τὸ τετράχορδον ποὺ ὀνομάζεται καὶ τριφωνία

# α΄ Σύστημα ὀκτάχορδον ἢ διαπασῶν

218. Τὸ ὀκτάχορδον ἢ διαπασῶν σύστημα χρησιμοποιεῖ τοὺς 7 δια-

δοχικούς τόνους που περικλείονται μεταξύ των 8 φθόγγων της διαπασών.

Στὸ σύστημα αὐτὸ οἱ ἄκροι φθόγγοι, ἡ βάσις δηλ. καὶ ἡ κορυφή, ὁρί-ζουν διάστημα ὀγδόης (=  $\frac{1}{2}$  μ. χορδῆς ἢ 72 τμήματα) καὶ σχηματίζουν τελείαν διαπασῶν συμφωνίαν ( $\S$  163ζ΄).

Κατὰ τὴν ἀνάβασι, ἡ κορυφὴ γίνεται βάσις ὁμοίου ὑψηλοτέρου ὀκτα-χόρδου καὶ κατὰ τὴν κατάβασι, ἡ βάσις μετατρέπεται σὲ κορυφὴ ὁμοίου χαμηλοτέρου ὀκταχόρδου. Κατ' αὐτὸν τὸν τρόπο, σχηματίζεται σύστημα ἀπὸ δύο ἢ τρία, τὸ πολύ, ὅμοια ὀκτάχορδα πού, ἀνάλογα μὲ τὸν ἀριθμὸ τῶν ὀκτάδων του, ὀνομάζεται δὶς διαπασῶν ἢ τρὶς διαπασῶν (§ 22, 23).

Γνώρισμα τοῦ διαπασῶν συστήματος εἶναι ἡ ἀντιφωνία τῶν ὁμωνύμων φθόγγων (§ 13,125).

Οἱ μελωδικὲς ἀσκήσεις τῆς φυσικῆς διατονικῆς κλίμακος ποὺ περιλήφθηκαν στὸ  $\mathbf{B}'$  μέρος τοῦ βιβλίου αὐτοῦ ἀκολουθοῦν τὸ διαπασῶν σύστημα.

# β΄ Σύστημα πεντάχορδον ή τροχός

**219.** Τὸ πεντάχορδον σύστημα ἢ τροχὸς χρησιμοποιεῖ 4 τόνους ποὺ περικλείονται μεταξὺ τῶν 5 διαδοχικῶν φθόγγων  $\frac{12}{10}$   $\frac{10}{8}$   $\frac{12}{12}$   $\frac{10}{10}$   $\frac{12}{8}$   $\frac{12}{12}$   $\frac{12}{10}$   $\frac{12}{12}$   $\frac{$ 

Στὸ σύστημα αὐτὸ οἱ ἄκροι φθόγγοι (Νη Δι ἢ Πα Κε), ἡ βάσις δηλ. καὶ ἡ κορυφὴ τῶν πενταχόρδων, ὁρίζουν διάστημα πέμπτης μὲ ἀξία  $\frac{2}{3}$  μ. χορδῆς ἢ 42 τμήματα καὶ σχηματίζουν τελείαν διὰ πέντε συμφωνίαν ( $\S$  163δ΄).

Κατὰ τὴν ἀνάβασι, ἡ κορυφὴ (Δι ἢ Κε) γίνεται βάσις ὁμοίου ὑψη-λοτέρου πενταχόρδου καὶ κατὰ τὴν κατάβασι, ἡ βάσις (Νη ἢ Πα) μετατρέπεται σὲ κορυφὴ ὁμοίου χαμηλοτέρου πενταχόρδου. Κατ' αὐτὸν τὸν τρόπο, σχηματίζεται σύστημα ἀπὸ δύο, τρία ἢ περισσότερα ὅμοια πεντάχορδα, ὅπως π.χ.

**Πα Βου Γα Δι Κε**10 8 12 12
χαμηλό πεντάχορδο

# γ΄ Σύστημα τετράχορδον ή τριφωνία

**220.** Τὸ τετράχορδον σύστημα ἢ τριφωνία χρησιμοποιεῖ 3 τόνους ποὺ περικλείονται μεταξὺ τεσσάρων διαδοχικῶν φθόγγων, π.χ.

$$N\eta \prod_{12} \prod_{10} Bov \Gamma \alpha$$

Στὸ σύστημα αὐτὸ οἱ ἄκροι φθόγγοι, ἡ βάσις δηλ. καὶ ἡ κορυφὴ τοῦ τετραχόρδου, ὁρίζουν διάστημα τετάρτης μὲ ἀξία  $\frac{3}{4}$  μ. χορδῆς ἢ 30 τμήματα καὶ σχηματίζουν τελείαν διὰ τεσσάρων συμφωνίαν (§ 139γ΄).

Κατὰ τὴν ἀνάβασι, ἡ κορυφὴ τοῦ τετραχόρδου γίνεται βάσις ὁμοίου ὑψηλοτέρου τετραχόρδου καὶ κατὰ τὴν κατάβασι, ἡ βάσις του μετατρέπεται σὲ κορυφὴ ὁμοίου χαμηλοτέρου τετραχόρδου.

Κατ' αὐτὸν τὸν τρόπο, σχηματίζεται σύστημα ἀπὸ δύο ἢ περισσότερα ὅμοια τετράχορδα ὅπως π.χ.

# Σύγκρισις των συστημάτων

**221.** Όπως παρατηρούμε στὰ παρατιθέμενα συγκριτικὰ διαγράμματα, μὲ τὴ χρῆσι τῶν συστημάτων δημιουργούνται νέες διαφορετικὲς κλίμακες,

άφοῦ πολλοὶ ἀπὸ τοὺς φθόγγους τοῦ ένὸς συστήματος βρίσκωνται σὲ διαφορετικὸ ὕψος ἀπὸ τοὺς φθόγγους τῶν ἄλλων.



Μὲ τὰ συστήματα, λοιπόν, ἐπιτυγχάνεται διαστηματικὸς ἐμπλουτισμὸς τῆς μουσικῆς ποὺ γίνεται ἀκόμα περισσότερος, ὅταν σὲ μιὰ μελωδία μετα-βάλλεται τεχνικὰ τὸ σύστημα ποὺ ἀκολουθεῖ ἡ κλῖμαξ της, π.χ. ἀπὸ τὸ δια-πασῶν στὸ πεντάχορδο καὶ ἀντίθετα, ἢ ἀπὸ τὸ διαπασῶν στὸ τετράχορδο, καὶ ἀντίθετα, ἢ ἀπὸ τὸ πεντάχορδο στὸ τετράχορδο σύστημα καὶ ἀντίθετα.

222. Ἡ μεταβολὴ τῆς βάσεως σὲ κορυφή, τῆς κορυφῆς σὲ βάσι στὸ ἔδιο σύστημα καθὼς καὶ ἡ μεταβολὴ ἀπὸ τὸ ἕνα σύστημα στὸ ἄλλο παρα-

σημαίνονται μὲ τὶς φθορὲς ποὺ γι' αὐτὲς γίνεται λόγος στὸ ἑπόμενο Κεφάλαιο (§ 242 - 250).

#### ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΑ ΣΥΣΤΗΜΑΤΑ

- Α΄. Τὸ πεντάχορδον σύστημα ὀνομάζεται καὶ τροχὸς γιατὶ οἱ δάσκαλοι τῆς μουσικῆς χρησιμοποιοῦσαν σὰν ἐποπτικὸ μέσο γιὰ τὴ διδασκαλία τῆς παραλλαγῆς του σχῆμα τροχοῦ ἢ κύκλου μὲ τέσσερεις διαμέτρους ποὺ στὸ καθένα ἀπὸ τὰ ὀχτὰ ἄκρα των ἀντιστοιχοῦσε καὶ ἕνας φθόγγος.
- **Β΄.** Στην ἀρχαῖα ἑλληνικη μουσικη ὁ κοινὸς φθόγγος δύο τετραχόρδων, ὁμοίων κατὰ τὸ σχημα, ὀνομαζόταν συναφή.
- Γ΄. Τὰ τρία συστήματα τῆς βυζαντινῆς μουσικῆς είναι τὰ ἴδια μὲ ἐκεῖνα ποὺ χρησιμοποιοῦσε ἡ ἀρχαῖα ἑλληνικὴ μουσική.
- Δ΄. Ἡ εὐρωπαϊκὴ μουσικὴ κάνει χρῆσι μόνον τοῦ διαπασῶν συστήματος.

#### ΚΕΦΑΛΑΙΟΝ ΙΔ΄

#### TA FENH

**223.** Κατὰ τὴν ἐξέτασι τῆς σχέσεως τῆς ὀξύτητος τῶν φθόγγων (§ 127) γνωρίσαμε πώς, ἀπὸ τὴ φυσικὴ διατονικὴ κλίμακα σχηματίζονται τὰ ἑξῆς διαστήματα τετάρτης :

Γνωρίσαμε ἐπίσης (§ 163) πώς, οἱ δύο ἄκροι φθόγγοι τῶν διαστημάτων τετάρτης μὲ ἀξία  $\frac{4}{3}$  ἢ  $\frac{3}{4}$  μ. χορδῆς ἢ 30 τμήματα ἀποτελοῦν τὴν διὰ τεσσάρων τελείαν συμφωνίαν.

Τὰ ἀντίστοιχα μὲ τὸ διάστημα αὐτὸ τετράχορδα δηλ. τὰ:

όνομάζονται τέλεια ή άκριβή τετράχορδα.

- 224. Ἡ βάσις (ὁ πρῶτος φθόγγος) καὶ ἡ κορυφὴ ( ὁ τέταρτος φθόγγος) τῶν φυσικῶν τελείων τετραχόρδων δὲν παθαίνουν ἀλλοίωσι καὶ γι' αὐτὸ ὀνομάζονται ἐστῶτες. Οἱ δύο, ὅμως, ἐνδιάμεσοι τους φθόγγοι (ὁ δεύτερος καὶ ὁ τρίτος) μποροῦν νὰ μετακινοῦνται μὲ δίεσι ἢ μὲ ὕφεσι καὶ γι' αὐτὸ ὀνομάζονται κινούμενοι ἢ φερόμενοι.
- 225. Μὲ τὶς διάφορες, χρησιμοποιήσιμες στὴ μουσική, ἀλλοιώσεις τῶν φερομένων τῶν τελείων τετραχόρδων παράγονται νέα, διάφορα, τετράχορδα πού, ἀνάλογα μὲ τὸ εἶδος τῶν τριῶν τόνων ποὺ περικλείουν, κατατάσσονται σὲ τρεῖς κατηγορίες ποὺ ὀνομάζονται γένη² καὶ διακρίνονται σὲ διατονικό, χρωματικὸ καὶ ἐναρμόνιο.
- **226.** Στὸ διατονικό γένος <sup>3</sup> κατατάσσονται τὰ τέλεια τετράχορδα ποὺ περιέχουν, ἀνεξαρτήτως σειρᾶς, καὶ τὰ τρία εἴδη τῶν τόνων τῆς φυσικῆς κλίμακος δηλ. ἕνα μείζονα, ἕνα ἐλάσσονα καὶ ἕνα ἐλάχιστο τόνο.

Στὸ χρωματικὸ γένος κατατάσσονται τὰ τέλεια τετράχορδα ποὺ οἱ φερόμενοί τους φθόγγοι πλησιάζουν τοὺς ἐστῶτες σὲ τρόπο ποὺ ὁ μεσαῖος τόνος νὰ εἶναι πάντοτε ὑπερμείζων καὶ

Στὸ ἐναρμόνιο γένος κατατάσσονται τὰ τέλεια τετράχορδα ποὺ περικλείουν, ἀνεξαρτήτως σειρᾶς, δύο μείζονες τόνους καὶ ἕνα ἡμιτόνιον ἢ λεῖμμα.

<sup>1.</sup> Έφεξῆς, στὶς ἀλλοιώσεις τῶν φθόγγων τῆς φυσικῆς διατονικῆς κλίμακος γιὰ τὴν παραγωγὴ τῶν γενῶν, τῶν τετραχόρδων τους καὶ τὸ σχηματισμὸ τῶν κλιμάκων τους θὰ χρησιμοποιοῦμε, σὰν πιὸ παραστατικά, τὶς διέσεις καὶ τὶς ὑφέσεις τῆς Πατριαρχικῆς Μουσικῆς Ἐπιτροπῆς τοῦ 1881. (Βλ. σελ. 91).

<sup>2. «</sup>Γένος εἰς τὴν μουσικὴν εἶναι ποιὰ διαίρεσις τετραχόρδου» (Χρυσάνθου Θεωρητικὸν μέγα τῆς μουσικῆς § 217).

<sup>3.</sup> Όπως γράφει ὁ Νικόμαχος ὁ Γερασηνὸς (Πυθαγορικὸς φιλόσοφος ἀπὸ τὰ Γέρασα τῆς Πετραίας 'Αραβίας ποὺ ἤκμασε κατ' ἄλλους στὸ τέλος τοῦ Α΄ μ.Χ. αἰῶνος καὶ κατ ἄλλους στὰ μέσα τοῦ Β΄ μ.Χ. αἰῶνος) τὸ γένος αὐτὸ ὁνομάζεται διατονικὸν «ἐκ τοῦ προχωρεῖν διὰ τῶν τόνων αὐτὸ μονώτατον τῶν ἄλλων.

# Τὰ τετράχορδα τῶν τριῶν γενῶν

#### Α΄. Διατονικά τετράχορδα

227. Όπως βρήκαμε παραπάνω (§ 223), τὰ τέλεια διατονικὰ τετράχορδα εἶναι πέντε: δι - Νη κε - Πα ζω - Βου Νη - Γα καὶ Πα - Δι.

**228.** Στὰ τέλεια διατονικὰ τετράχορδα, παρατηρούμε πώς, ή σειρὰ τῶν τριῶν τόνων δὲν εἶναι σ' ὅλα ή ἰδία.

Στὰ τετράχορδα:

ή διάταξις τῶν τριῶν τόνων, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, εἶναι μείζων — ἐλάσσων — ἐλάχιστος. Τὰ τετράχορδα τοῦ εἴδους αὐτοῦ ὀνομάζονται διατονικὰ τετράχορδα α΄ σχήματος.

Στὰ τετράχορδα:

ή διάταξις τῶν τριῶν τόνων, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, εἶναι ἐλάσσων — ἐλάχιστος — μείζων. Τὰ τετράχορδα τοῦ εἴδους αὐτοῦ ὀνομάζονται διατονικὰ τετράχορδα β΄ σχήματος καὶ

Στὸ τετράχορδο 
$$\zeta \omega \sum_{8} N \eta \prod_{12} \Pi \alpha \bigcup_{10} Bov$$

ή διάταξις τῶν τριῶν τόνων, ἀπὸ τὸ βαρὰ πρὸς τὸ ὀξύ, εἶναι ἐλάχιστος — μείζων — ἐλάσσων. Τὸ τετράχορδον αὐτὸ ὀνομάζεται διατονικὸ τετράχορδον γ΄ σχήματος.

#### Β΄. Χρωματικά τετράχορδα

229. Τὸ χρωματικὸ γένος διακρίνεται σὲ μαλακό καὶ σύντονο ἢ σκληρό.

α΄. Τὰ μαλακὰ χρωματικὰ τετράχορδα παράγονται ἀπὸ τὰ διατονικὰ τετράχορδα α΄ σχήματος (δι - Νη καὶ Νη - Γα) μὲ ὕφεσι τοῦ δευτέρου τους φθόγγου (κε καὶ Πα) ἀξίας  $\frac{21}{20}$  ἢ  $\frac{20}{21}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα ( $\mathcal{S}$ ).

Κατ' αὐτὸν τὸν τρόπο, ὁ μείζων τόνος (δι - κε ἢ Νη - Πα) μειώνεται σὲ ἐπιτεσσαρακαιδέκατον =  $\frac{15}{14}$  ἢ  $\frac{14}{15}$  μ. χορδῆς ἢ 8 τμήματα  $\left(\frac{8}{9}:\frac{20}{21}=\frac{168}{180}=\frac{14}{15}$  ἢ 12-4=8 τμήματα  $\right)$ , ὁ ἐλάσσων τόνος (κε - ζω ἢ Πα - Βου) μεγαλώνει καὶ γίνεται ὑπερμείζων, ἐπίεκτος=  $\frac{7}{6}$  ἢ  $\frac{6}{7}$  μ. χορδῆς

δı

Nn

ἢ 14 τμήματα  $\left(\frac{9}{10} \cdot \frac{20}{21} = \frac{180}{210} = \frac{6}{7}$  ἢ 10 + 4 = 14 τμήματα ) καὶ ὁ ἐλάτιστος τόνος (ζω - νη ἢ Βου - Γα) παραμένει ἀναλλοίωτος, ὅπως φαίνονται στὸ ἐπόμενο συγκριτικὸ διάγραμμα.

β΄. Τὰ σύντονα ἢ σκληρὰ χρωματικὰ τετράχορδα παράγονται ἀπὸ τὰ διατονικὰ τετράχορδα β΄ σχήματος (κε - Πα καὶ Πα - Δι) μὲ ὕφεσι τοῦ δευτέρου τους φθόγγου (ζω καὶ Βου) ἀξίας ἀποτομῆς ἐλάσσονος τόνου =  $\frac{135}{128}$  ἢ  $\frac{128}{135}$  μ. χορδῆς <sup>1</sup> πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα ( $\mathcal P$ ) καὶ τὴν ὕψωσι τοῦ τρίτου φθόγγου (Νη καὶ Γα) κατὰ ἐλάσσονα τόνον =  $\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ  $\mathcal P$  τμήματα ( $\mathcal P$ ).

Nn

Κατ' αὐτὸν τὸν τρόπο, ὁ ἐλάσσων τόνος (κε - ζω ἢ Πα - Βου) μειώνεται σὲ λεῖμμα =  $\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα  $\left(\frac{9}{10}:\frac{128}{135}=\frac{243}{256}$  ἢ 10 - 4 = 6 τμήματα  $\right)$ , ὁ ἐλάχιστος τόνος (ζω - Νη ἢ Βου - Γα) μεγαλώνει καὶ γίνεται

<sup>1.</sup> Ἡ ἀποτομὴ ἐλάσσονος τόνου  $=\frac{135}{128}$  ἢ  $\frac{128}{185}$  μ. χορδῆς (σελ 78) ἐλάχιστα διαφέρει ἀπὸ τὸ  $\frac{21}{20}$  ἢ  $\frac{20}{21}$  μ. χορδῆς ὅπως φαίνεται καλύτερα ἂν τὰ κλάσματα γίνουν δμώνυμα:  $\frac{155}{128} = \frac{675}{640}$  καὶ  $\frac{21}{20} = \frac{672}{640}$ .

ύπερμείζων ἐπίπεμπτος  $=\frac{6}{5}$  ἢ  $\frac{5}{6}$  μ.χορδῆς ἢ 20 τμήματα  $\left(\frac{15}{16} \cdot \frac{128}{135} \cdot \frac{15}{16} \right)$   $=\frac{5}{6}$  ἢ 8+4+8=20 τμήματα  $^{1}$  καὶ ὁ μείζων τόνος (Νη - Πα ἢ Γα - Δι) μειώνεται σὲ ἀποτομὴ ἐλάσσονος τόνου  $=\frac{135}{128}$  ἢ  $\frac{128}{135}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα  $\left(\frac{8}{9} : \frac{15}{16} = \frac{128}{135}$  ἢ 12-8=4 τμήματα  $^{1}$  , ὅπως φαίνονται στὸ ἑπόμενο συγκριτικὸ διάγραμμα.

δύγκρισις τετραχόρδων διατονικῶν β'εχήματος καὶ συντόνου χρωμ. γένους

|            |     |                | , ,             | ,       | ,                 | X6-6.      | , • , • • , |     |     |
|------------|-----|----------------|-----------------|---------|-------------------|------------|-------------|-----|-----|
| Πα         | Δι  | παλμοί         | e xoesñs        | τμήματα | παλμοί            | 4 Xoedar   | τμήματα     | Ila | Δι  |
|            |     |                |                 |         | <u>435</u><br>128 | 128        | 4           | Nn  | Γα  |
|            |     | $\frac{9}{8}$  | 8 9             | 12      |                   |            |             |     |     |
| $N_{\eta}$ | Γα  |                |                 |         | - <b></b>         |            |             | ð   |     |
|            |     | 16<br>15       | <u>15</u><br>16 | 8       | <u>6</u><br>5     | 5 6        | 20          |     |     |
| ζω         | Bov | 15             | 16              | ,       |                   |            |             | ٥   |     |
|            |     | 10             | 9               | 40      |                   |            |             | ζω  | Воυ |
|            |     | <u>10</u><br>9 | 10              | 10      | 256<br>243        | 243<br>256 | 6           |     |     |
| ĸε         | Пœ  |                | <u> </u>        |         |                   | L          |             | Kε  | Πα  |

Αὐτὴ εἶναι ἡ διάταξις τῶν τόνων τῶν σκληρῶν χρωματικῶν τετραχόρ-δων κε-Πα καὶ Πα-Δι κατὰ τὴν ἀνιοῦσα διαδοχὴ τῶν φθόγγων τους. Κατὰ τὴν κατιοῦσα, ὅμως, διαδοχὴ ἡ σειρὰ αὐτὴ ἀντιστρέφεται καὶ ἔχομε Πα-Νη καὶ Δι-Γα ἴσο μὲ λεῖμμα, Νη-ζω καὶ Γα-Βου ἀμετά-βλητο ἐπίπεμπτο καὶ ζω-κε καὶ Βου-Πα ἴσο μὲ ἀποτομὴ ἐλάσσονος τόνου ἤ, σὲ τμήματα: 6-20-4.

#### Γ΄. Έναρμόνια τετράχορδα

230 α΄ Μὲ ὕφεσι τοῦ φυσικοῦ ζω ἀξίας ἀποτομῆς ἐλάσσονος τόνου=  $\frac{135}{128}$  η  $\frac{128}{135}$  μ. χορδῆς η 4 τμημάτων ( $^{\circ}$ ) ὁ ἐλάσσων τόνος κε - ζω =  $\frac{10}{9}$  η  $\frac{9}{10}$ 

<sup>1.</sup> Ὁ ἐπίπεμπτος τόνος  $\frac{6}{5}$  ἢ  $\frac{5}{6}$  μ. χορδῆς ἢ 20 τμήματα εἶναι ὁ ἀριθμητικὸς καὶ ἀρμονικὸς λόγος τῆς διὰ τριῶν μικρᾶς τελείας συμφωνίας ζω - Πα καὶ Βου - Δι. (Βλ. σελ. 93).

μ. χορδῆς ἢ 10 τμήματα μειώνεται σὲ λεῖμμα =  $\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα ἐνῶ, ταὐτόχρονα, ὁ ἐλάχιστος τόνος ζω - Νη =  $\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8 τμήματα μεγαλώνει καὶ γίνεται μείζων =  $\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα ( $\frac{15}{16} \cdot \frac{128}{135} = \frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα )

β΄. Μὲ δίεσι τοῦ φυσικοῦ ζω ἀξίας κόμματος  $=\frac{81}{80}$  ἢ  $\frac{80}{81}$  μ. χορδῆς ἢ 2 τμημάτων (σ΄) ὁ ἐλάσσων τόνος κε - ζω  $=\frac{10}{9}$  ἢ  $\frac{9}{10}$  μ. χορδῆς ἢ 10 τμήματα μεγαλώνει καὶ γίνεται μείζων  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα ἐνῶ, ταὐτόχρονα, ὁ ἐλάχιστος τόνος ζω -  $\mathbf{N}$ η  $\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8 τμήματα μειώνεται σὲ λεῖμμα  $=\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα (  $\frac{15}{16}$  :  $\frac{80}{81}$   $=\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα ) .

γ΄. Μὲ δίεσι τοῦ φυσικοῦ Βου ἀξίας κόμματος  $=\frac{81}{80}$  ἢ  $\frac{80}{81}$  μ. χορδῆς ἢ 2 τμημάτων (σ΄) ὁ ἐλάσσων τόνος  $\mathbf{\Pi}\mathbf{a}$  -  $\mathbf{Bov}=\frac{10}{9}$  ἢ  $\frac{9}{10}$  μ. χορδῆς ἢ 10 τμήματα μεγαλώνει καὶ γίνεται μείζων  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα ἐνῶ, ταὐτόχρονα, ὁ ἐλάχιστος τόνος  $\mathbf{Bov}$  -  $\mathbf{\Gamma}\mathbf{a}=\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8 τμήματα μειώνεται σὲ λεῖμμα  $=\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα  $\left(\frac{15}{16}:\frac{80}{81}=\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα  $\right)$ .

- δ΄. Μὲ ὕφεσι τοῦ φυσικοῦ  $\mathbf{Z} \mathbf{\omega}$  ἀξίας ἀποτομῆς ἐλάσσονος τόνου  $=\frac{135}{128}$  ἢ  $\frac{128}{135}$  μ. χορδῆς ἢ 4 τμημάτων (?) ὁ ἐλάσσων τόνος  $\mathbf{K} \mathbf{\epsilon} \mathbf{Z} \mathbf{\omega} = \frac{10}{9}$  ἢ  $\frac{9}{10}$  μ. χορδῆς ἢ 10 τμήματα μειώνεται σὲ  $\mathbf{\lambda} \mathbf{\epsilon} \mathbf{\tilde{\iota}} \mathbf{\mu} \mathbf{\mu} \mathbf{\alpha} = \frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα ἐνῶ, ταὐτόχρονα, ὁ ἐλάχιστος τόνος  $\mathbf{Z} \mathbf{\omega} \mathbf{N} \mathbf{\eta}' = \frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8 τμήματα μεγαλώνει καὶ γίνεται μείζων  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα  $\left(\frac{15}{16} \cdot \frac{128}{135} = \frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα  $\right)$  καὶ
- ε΄. Μὲ ὕφεσι τοῦ φυσικοῦ  $\mathbf{Bov}$ ΄ ἀξίας ἀποτομῆς ἐλάσσονος τόνου =  $\frac{135}{128}$  ἢ  $\frac{128}{135}$  μ. χορδῆς ἢ 4 τμημάτων ( $\mathfrak P$ ) ὁ ἐλάσσων τόνος  $\mathbf{\Pia}$   $\mathbf{Bov}$  =  $\frac{10}{9}$  ἢ  $\frac{9}{10}$

μ. χορδῆς ἢ 10 τμήματα μειώνεται σὲ  $\lambda$ εῖμμα  $=\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6τμήματα ἐνῶ, ταὐτόχρονα, ὁ ἐλάχιστος τόνος  $\mathbf{Bov}'$  -  $\mathbf{\Gamma}\mathbf{a}'=\frac{16}{15}$  ἢ  $\frac{15}{16}$ μ. χορδῆς ἢ 8 τμήματα μεγαλώνει καὶ γίνεται μείζων  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα  $(\frac{15}{16} \cdot \frac{128}{135} = \frac{8}{9}$  μ. χορδής ή 12 τμήματα ).

Μὲ τὶς ἀλλοιώσεις αὐτὲς παράγονται ἀπὸ τὴ φυσικὴ διατονικὴ δὶς διαπασών κλίμακα τέλεια έναρμόνια τετράχορδα πού τὸ καθένα περιέχει, ἀνεξαρτήτως σειρᾶς, δύο μείζονας ἢ ἐπογδόους τόνους  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς  $\mathring{\eta} 12$  τμήματα καὶ ἕνα λεῖμμα  $\mathring{\eta}$  ἡμιτόνιον  $= \frac{256}{243} \, \mathring{\eta} \, \frac{243}{256} \,$  μ. χορδ $\mathring{\eta}$   $\mathring{\delta}$ τμήματα, ὅπως φαίνονται στὸ ἐπόμενο συγκριτικὸ καὶ παραστατικὸ διάγραμμα, μὲ τοὺς τόνους σὲ τμήματα.<sup>1</sup>



ENAPMONIA TETPAXOPAA

231. Τὰ ἐναρμόνια τετράχορδα, ἀνάλογα μὲ τὴ θέσι ποὺ κατέχει σ' αὐτὰ τὸ λεῖμμα, διακρίνονται σὲ τρία σχήματα:

Τὰ τετράχορδα:

οπου, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, προηγοῦνται οἱ δύο μείζονες τόνοι καὶ ἀκολουθεῖ τὸ λεῖμμα, εἶναι ἐναρμόνια τετράχορδα α΄ σχήματος.

Έφεξης, γιὰ εὐκολία της γραφικης παραστάσεως, θὰ χρησιμοποιούμε τούς τόνους σὲ τμήματα.

όπου, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, τὸ λεῖμμα εἶναι ὁ δεύτερος τόνος, εἶναι ἐναρμόνια τετράχορδα β΄ σχήματος καὶ

ὅπου, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, προηγεῖται τὸ λεῖμμα καὶ ἀκολουθοῦν οἱ δύο μείζονες τόνοι, εἶναι ἐναρμόνια τετράχορδα γ΄ σχήματος.

**232.** Στὰ ἐναρμόνια τετράχορδα α΄ σχήματος ἐάν, κατὰ τὴν ἀνάβασι, δὲν γίνεται τονὴ  $^1$  στὸν  $\overline{\mathbf{Bov}}$  καὶ στὸν φυσικὸ  $\overline{\mathbf{Ke}}$  οἱ φθόγγοι αὐτοὶ μετατοπίζονται ὑψηλότερα κατὰ ἕνα  $\overline{\mathbf{κόμμα}} = \frac{81}{80}$  ἢ  $\frac{80}{81}$  μ.χορδῆς ἢ 2 τμήματα.

Τὴν ἴδια ἀλλοίωσι παθαίνουν οἱ φθόγγοι αὐτοὶ καὶ ὅταν, κατὰ τὴν κατάβασι, φθάνουμε σ' αὐτοὺς χωρὶς τονὴ καὶ ἀκολουθῆ, πάλιν, ἀνάβασις.

# Σχηματισμός των κλιμάκων των τριών γενών

**233.** Μὲ βάσι τὰ τετράχορδα τῶν τριῶν γενῶν οἱ κλίμακές τους σχηματίζονται μὲ ἔνα ἀπὸ τὰ τρία συστήματα (§ 217) ἢ ἀκολουθοῦν σύστημα μικτὸ (§ 221).

<sup>1.</sup> Βλ. § 56 ύποσ. 2.

<sup>2.</sup> Βλ. § 236. Ἐναρμόνιος κλῖμαξ κατὰ τριφωνίαν.

#### Α΄. Σχηματισμός των διατονικών κλιμάκων

**234.** Μὲ τὸ διαπασῶν σύστημα, ἀπὸ τοὺς ἑπτὰ φθόγγους τῆς φυσικῆς κλίμακος μποροῦν νὰ σχηματισθοῦν οἱ ἑξῆς ἑπτὰ δὶς διαπασῶν διατονικὲς κλίμακες.  $^1$ 



όπου ή διαπασών ἀποτελεῖται ἀπὸ ἕνα τετράχορδο α΄ σχήματος καὶ ἕνα τετράχορδο β΄ σχήματος διεζευγμένα μὲ ἕνα μείζονα τόνο.

β'. 'Η κε-Κε-Κε'

|           |      | ∝′       | و د م    | 71 × 6    | ۳v     | <b></b> |         |            |         | 6'           | δια | ι α π α ε ῶν |         |         |       |            |
|-----------|------|----------|----------|-----------|--------|---------|---------|------------|---------|--------------|-----|--------------|---------|---------|-------|------------|
| <b>λε</b> | ζω   | Νn       | πα       | Во        | υ Γα   |         | Δι      | "Κε        | Ζω      | Nη           | π   | α' :         | Βου΄    | ľα′     | Δί    | <br>Κε′    |
| 10        | 0    | 8        | 12       | 10        | 8      | 12      | 12      |            | 10      | 8            | 12  | 10           | 8       | 12      | 12    |            |
| 9 %       | æ,   | <u>~</u> | <b>4</b> | 8 2       | . ว่า  |         | ķ       | 16         | ァ/<br>ネ | <b>ว</b> ั๋า | 7   | , '          | 8'<br>% | น้ำ     | À.    | <b>⋥</b> ′ |
| ٠٠٠٠.     | ετρά | B' 67    |          | <b></b> . | -άχ β' |         | T. 2005 | 3 'i.<br>t | ټ ۶۲ وڅ | ¢ β 6χ       | ,,  | ۱<br>حو      | τράχ    | 8' 6xit | тробу | :<br>(     |

όπου ή διαπασῶν ἀποτελεῖται ἀπὸ δύο συνημμένα² τετράχορδα β΄ σχήματος καὶ ἕνα προσλαμβανόμενο³ τόνο.

$$\gamma'$$
. 'H  $\zeta \omega$  -  $Z \omega'$  -  $Z \omega''$ 

|   |          |       | α′  | ۍ د              | απο | ¢ 6 ω̃ γ | ,<br> |      |     |          |        | <b>3</b> ' & ( | απα             | εῶν<br>    |        | *********** |              |
|---|----------|-------|-----|------------------|-----|----------|-------|------|-----|----------|--------|----------------|-----------------|------------|--------|-------------|--------------|
| ζ | ω        | Nn    | П   | a B              | อง  | ľα       | Δι    | К    | ε Ζ | ω N      | ln'    | Πα' ]          | Bov' !          | ſα'        | Δι     | Κε'         | <u></u> Ζω΄  |
|   | 8        | 1     | 2   | ·10              | 8   | 4        | 2     | 12   | 10  | 8        | 12     | 10             | 8               | 12         | 12     | 10          |              |
| ć | ===<br>د | ኢ     | 77  |                  | 8 % | น์       | ٨     | ?    | 2   | ۲′<br>۲۰ | ňí     | π'<br>q        | <u>څ'</u>       | น้ำ        | å'     | 1¢'         | 립<br>조<br>첫: |
| • | τ        | ετράχ | 7'6 | κή <del>(-</del> |     | π.       | ένταχ | 6004 |     | ٠        | reax 7 | · 6xmju        | , <i>`</i> 6444 | 75 1 7 7 6 | Z06904 | ********    | ,            |

<sup>1.</sup> Bλ. § 125.

<sup>2.</sup> Βλ. Παρατηρήσεις γιὰ τὰ συστήματα (σελ. 197).

<sup>3.</sup> Ό τόνος αὐτὸς ὀνομάζεται προσλαμβανόμενος γιατὶ βρίσκεται ἔξω ἀπο τὰ δύο τετράχορδα καὶ δὲν ἀνήκει σὲ κανέναν ἀπὸ αὐτά. Βλ. καὶ Παρατηρήσεις γιὰ τὰ τρία γένη.

όπου ή διαπασῶν ἀποτελεῖται ἀπὸ ἕνα τετράχορδο γ΄ σχήματος καὶ ἕνα συνημμένο πεντάχορδο.

#### δ'. 'Η Νη - Νη' - Νη"



όπου ή φυσική διαπασών ἀποτελεῖται, ὡς γνωστὸν (§ 119, 138), ἀπὸ δύο διεζευγμένα, μὲ ἕνα μείζονα τόνο, τετράχορδα α΄ σχήματος.

#### ε'. 'Η Πα - Πα' - Πα"

|        | c           | x' & L    | απαεῶν | ,        | ξ' διαπαεών  |      |        |                     |        |            |           |       |  |  |  |  |
|--------|-------------|-----------|--------|----------|--------------|------|--------|---------------------|--------|------------|-----------|-------|--|--|--|--|
| No. Ba | ου Γο       | Δ Δ       | L KE   | Zω       | Nn'          | Tla  | Beo'   | Γα'                 | Δι΄    | <b>Κε'</b> | Zω' Nπ    | πα    |  |  |  |  |
| 10     | 8           | 12        | 12     | 10 8     | 12           |      | 10 8   | 12                  | 12     | 10         | 8         | 12    |  |  |  |  |
| r f    | ر<br>ا<br>ا | ·         | 3 4    | تر<br>بر | <b>น</b> ั่น | īā'  | گر     | า์า์                | خُرْدُ | á          | ξ″ ή      |       |  |  |  |  |
| ₹ £*   | τe=x β      | 3' 6 Xnje | διοζ.  | τειραχ   | β σχήμι      | e 14 | τετε≖χ | β 6 χη <sub>υ</sub> | 810    | ζ          | τετράχ β΄ | expr. |  |  |  |  |

όπου ή διαπασών ἀποτελεῖται ἀπὸ δύο τετράχορδα β΄ σχήματος ποὺ εἶναι διεζευγμένα μὲ ἕνα μείζονα τόνο.

στ'. 'Η Βου - Βου' - Βου"

|               |          |       | ×′ 6   | ιαπο | เธนึง  | β' διαπασῶν |          |      |           |          |         |     |       |          |        |                                        |  |
|---------------|----------|-------|--------|------|--------|-------------|----------|------|-----------|----------|---------|-----|-------|----------|--------|----------------------------------------|--|
| Bou           | ſα       |       | Δι     | Kε   | Zω     | Nn          | πα       | 13   | ου Γ      | «.'      | Δι'     | Ke' | zω' N | n' 1     | Ta'    | Bou"                                   |  |
|               | В        | 12    | .12    | 1    | 0 8    |             | 12       | 10   | 8         | 12       | 12      | 10  | 8     | 12       | 10     |                                        |  |
| <u>ا</u><br>ج | <u> </u> |       | ٨      | *    | ν<br>λ | ň           | X,       |      | g'<br>× - | ۲/<br>اد | Å,      | Ä   | .Z"   | ٧″<br>۲۲ | K"     | ************************************** |  |
| i             | •••••    | JL EY | 24×069 | av   |        | 26160       | 4χ· γ' 6 | Xnu. | ******    | πŧν      | τά χο ς | 504 | / '   | τιτράχ η | 44,79, | .,,                                    |  |

δπου ή διαπασῶν ἀποτελεῖται ἀπὸ ἕνα πεντάχορδο καὶ ἕνα συνημμένο τετράχορδο γ΄ σχήματος καὶ

#### ζ'. 'Η Γα - Γα' - Γα"



όπου ή διαπασών ἀποτελεῖται ἀπὸ ἕνα πεντάχορδο καὶ ἕνα συνημμένο τετράχορδο α΄ σχήματος.

Γιὰ τὸ σχηματισμὸ τῆς διατονικῆς κλίμακος μὲ τὸ πεντάχορδο σύστημα ἢ τὸν τροχὸ παίρνεται, σὰ βασικό, τὸ πεντάχορδο τῆς Μέσης Πα - Κε (§ 219).



Τέλος, γιὰ τὸ σχηματισμὸ τῆς διατονικῆς κλίμακος μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν παίρνεται, σὰ βασικό, τὸ τετράχορδο α΄ σχήματος Νη - Γα τῆς Μέσης (§ 220).



# Β΄. Σχηματισμός των χρωματικών κλιμάκων

- 235. Οἱ χρωματικὲς κλίμακες σχηματίζονται μὲ τὸ πεντάχορδο σύστημα ἢ τὸν τροχὸ ἀπὸ τὰ δύο ἀντίστοιχα χρωματικὰ τετράχορδα, τὸ μαλακὸ καὶ τὸ σύντονο ἢ σκληρό (§ 229).
- α΄. Γιὰ τὸ σχηματισμὸ τῆς μαλακῆς χρωματικῆς κλίμακος παίρνεται, σὰ βασικό, τὸ ἀντίστοιχο πεντάχορδο Νη Δι τῆς Μέσης.



β΄. Γιὰ τὸ σχηματισμὸ τῆς συντόνου ἢ σκληρᾶς χρωματικῆς κλίμακος παίρνεται, σὰ βασικό, τὸ ἀντίστοιχο πεντάχορδο Πα - Κε τῆς Μέσης.



"Αν πάρουμε ὀκτὰ διαδοχικούς φθόγγους ἀπὸ τὶς δύο αὐτὲς κλίμακες ἀρχίζοντας ἀπὸ τὸ βασικό τους πεντάχορδο.

παρατηρούμε πώς κάθε σειρὰ ἀποτελεῖ μιὰ διαπασῶν ἀπὸ δύο ὅμοια διεζευγμένα τετράχορδα.

'Επειδή πολλὲς ἐκκλησιαστικὲς μελωδίες μικρῆς ἐκτάσεως ἐξελίσσονται καὶ περιορίζονται μέσα σ' αὐτὰ τὰ τετράχορδα, ἡ μορφή αὐτὴ τῶν χρωματικῶν κλιμάκων είναι ἀρκετὰ συνηθισμένη.

#### Γ΄. Σχηματισμός των έναρμονίων κλιμάκων

**236.** 'Απὸ τὶς ἐναρμόνιες κλίμακες ποὺ μποροῦν νὰ σχηματισθοῦν μὲ τὸ διαπασῶν σύστημα χρησιμοποιεῖται, σὲ ὡρισμένες ἐκκλησιαστικὲς μελωδίες, ἡ ἑπομένη τοῦ ζω -  $\mathbf{Z}$ ω.

όπου ή διαπασών ἀποτελεῖται ἀπὸ δύο διεζευγμένα ἐναρμόνια τετράχορδα α΄ σχήματος.

Γιὰ τὸ σχηματισμὸ τῆς ἐναρμονίου κλίμακος μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν παίρνεται, σὰ βασικό, τὸ ἐναρμόνιο τετράχορδο α΄ σχήματος  $\Gamma \alpha$  -  $Z \omega$  τῆς Μέσης.



# Μαρτυρίες τῶν φθόγγων τῶν κλιμάκων τῶν τριῶν γενῶν

- **237.** Έχομε γνωρίσει (§ 38) πώς οί μαρτυρίες τῶν φθόγγων ἀποτελοῦνται ἀπὸ τὸ ἀρχικὸ γράμμα τοῦ φθόγγου καὶ ἀπὸ τὸ μαρτυρικὸ σημεῖο.
  - 238. Γιὰ τὴ διάκρισι τῶν φθόγγων, ἀνάλογα μὲ τὸ γένος τῆς κλίμακος

ποὺ ἀνήκουν καὶ τὸ σύστημα ποὺ ἀκολουθεῖ ὁ σχηματισμὸς τῆς κλίμακος, χρησιμοποιοῦνται διαφορετικὰ μαρτυρικὰ σημεῖα.

'Ένῶ δηλ. ὁ προσδιορισμὸς τῆς περιοχῆς τῶν φθόγγων ('Υπάτη - Μέση - Νήτη) γίνεται πάντοτε μὲ τὸν ἴδιο τρόπο σὲ ὅλες τἰς περιπτώσεις (τὸ γράμμα τοῦ φθόγγου κάτω ἢ ἐπάνω ἀπὸ τὸ μαρτυρικὸ σημεῖο, ἢ τονούμενο) ἄλλα εἶναι τὰ μαρτυρικὰ σημεῖα τῶν μαρτυριῶν τῶν φθόγγων τῶν κλιμάκων τοῦ διατονικοῦ γένους, ἄλλα τῶν φθόγγων τῶν χρωματικῶν κλιμάκων καὶ διαφορετικὰ τοῦ ἐναρμονίου γένους. Ἐπίσης, διαφοροποιημένα εἶναι καὶ τὰ μαρτυρικὰ σημεῖα τῶν φθόγγων τῶν διατονικῶν κλιμάκων ποὺ σχηματίζονται μὲ τὸ πεντάχορδο καὶ τὸ τετράχορδο σύστημα.

#### α'. Μαρτυρίες των φθόγγων των διατονικών κλιμάκων

239. Οἱ μαρτυρίες ποὺ μέχρι τώρα γνωρίσαμε (§ 37 - 42, 124, 128, 138–234) ἀνήκουν στοὺς φθόγγους τῆς φυσικῆς διατονικῆς κλίμακος μὲ τὸ διαπασῶν σύστημα καὶ εἶναι οἱ ἑξῆς ἀντίστοιχες μὲ τοὺς 15 φθόγγους τῆς δὶς διαπασῶν δι - Δι - Δι΄.

|      |    |    | <u>.</u> ' | å i a n | a 5 3 v |        |    |    |    |        |         | ا الا |    | ت ،     |      |     |    |
|------|----|----|------------|---------|---------|--------|----|----|----|--------|---------|-------|----|---------|------|-----|----|
| 8.   | M( | ζι | J.         | Nn      | Па      | Bou    | Γα | L  |    | Κε     |         | Nη    |    |         | ∄ານ່ | ſα′ | Àı |
| 12.  |    | 10 | 6          | 12      |         | 0 8    |    | 12 | 12 | 1      | 0       | 8     | 12 | 1:      | 0 6  | 8   | 12 |
| \$   | 9  | 2  | ٠,         | ň       | π<br>q  | δ<br>λ | น์ | Š  | (  | ¥<br>q | 7.<br>N | นั่   |    | π'<br>q | 8,   | ۲,  | Ž. |
| Ynat |    |    |            |         |         | M (    | 1  |    |    |        | ·       |       | 1  | งกรท    |      |     |    |

Όπως παρατηρούμε, ἐκτὸς ἀπὸ τὶς  $\overset{\sim}{\sim}$   $\overset{\sim}{\sim}$  καὶ  $\overset{\vee}{\sim}$  τὰ μαρτυρικὰ σημεία τῆς α΄ διαπασῶν εἶναι τὰ ἴδια μὲ τῆς β΄ διαπασῶν  $\overset{1}{\sim}$ .

Όπως δηλ. γιὰ νὰ σχηματισθή τὸ διαπασῶν σύστημα ἐπαναλαμβάνον-

<sup>1.</sup> Γιὰ τὰ μαρτυρικὰ σημεῖα  $\checkmark$  δ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς \$ 107) γράφει «Ἡ  $\checkmark$  μὴ ποιοῦσα ἴδιον μέλος συμπεριλαμβάνεται τῆ  $\checkmark$ 

ται έπτὰ ὡρισμένοι διαδοχικοὶ τόνοι, τὸ ἴδιο ἐπαναλαμβάνονται καὶ τὰ μαρτυρικὰ σημεῖα τῶν φθόγγων σὲ κάθε διαπασῶν.

Όταν ἡ διατονικὴ κλῖμαξ σχηματίζεται μὲ τὸ πεντάχορδο σύστημα ἢ τὸν τροχό, μὲ βασικὸ τὸ πεντάχορδο τῆς Μέσης Πα-Κε, ἐπαναλαμβάνονται, γιὰ τὸν ἴδιο λόγο, στὰ συνημμένα πεντάχορδα τὰ μαρτυρικὰ σημεῖα  $^2$  τῶν φθόγγων τοῦ πενταχόρδου του :  $^2$   $^2$   $^2$   $^2$   $^2$   $^2$   $^2$ 

#### Έτσι ἔχομε:



Τέλος, ὅταν ἡ διατονικὴ κλῖμαξ σχηματίζεται μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν, οἱ φθόγγοι τῶν συνημμένων τετραχόρδων μαρτυροῦνται μὲ τὰ σημεῖα τῶν φθόγγων τοῦ βασικοῦ τετραχόρδου Νη - Γα τῆς Μέσης ος η χ γγ καὶ ὅπου τὸ τελευταῖο, λόγφ τῆς συναφῆς, ἀντικαθίσταται μὲ τὸ πρῶτο:

Έτσι ἔχομε:



Είναι ευνόητο πώς, το μαρτυρικό σημεῖο Ίλ δὲν ἀλλάζει ὅταν, τελειώ-

<sup>2.</sup> Τὰ μαρτυρικὰ σημεῖα ἢ ἢ είναι γιὰ τοὺς φθόγγους Δι καὶ Κε τῆς Μέσης καθὼς γιὰ τοὺς ὑψηλοτέρους φθόγγους πού, στὴν πορεία ἐνὸς συστήματος, βρίσκονται στὴ θέσι τῶν δύο αὐτῶν φθόγγων. Γιὰ τοὺς χαμηλοτέρους των φθόγγους πού, γιὰ τὸν ἴδιο λόγο, βρίσκονται στὴν ἴδια θέσι τὰ μαρτυρικὰ αὐτὰ σημεῖα δὲν συνοδεύονται ἀπὸ τὶς δύο στιγμὲς καὶ είναι τὰ ἴδια μὲ τῶν φθόγγων Νη καὶ Πα β q.

νοντας τὸ ἕνα τετράχορδο, δὲν ὑπάρχη ἄλλο συνημμένο, π.χ.



#### β΄. Μαρτυρίες των φθόγγων των χρωματικών κλιμάκων

**240.** Γιὰ τοὺς φθόγγους τῶν δύο χρωματικῶν κλιμάκων ὑπάρχουν ἀπὸ δύο μόνον μαρτυρικὰ σημεῖα, τὰ ἑξῆς:

α΄. τῆς μαλακῆς χρωματικῆς κλίμακος 🤲 🥕 καὶ β΄. τῆς σκληρᾶς ἢ συντόνου χρωματικῆς κλίμακος 🥌 🛩

'  $A\pi$ ο τὰ σημεῖα αὐτὰ τὰ  $\stackrel{\smile}{\smile}$  εἶναι γιὰ τοὺς φθόγγους τῆς βάσεως τῶν ἀντιστοίχων τετραχόρδων καὶ τὰ  $\stackrel{\smile}{\nearrow}$   $\stackrel{\smile}{\nearrow}$  γιὰ τοὺς φθόγγους τῆς κορυφῆς των :

#### α΄. μαλακής χρωματικής κλίμακος

#### καὶ β΄. σκληράς ἢ συντόνου χρωματικής κλίμακος

$$\frac{\pi}{\omega}$$
 —  $\frac{\Delta}{\omega}$  καὶ  $\frac{\varkappa}{\omega}$  —  $\frac{\pi}{\omega}$  βάσις κορυφὴ

'Απὸ τοὺς φερομένους φθόγγους τῶν τετραχόρδων αὐτῶν, ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, ὁ πρῶτος παίρνει τὸ μαρτυρικὸ σημεῖο τοῦ φθόγγου τῆς κορυφῆς των καὶ ὁ δεύτερος τὸ σημεῖο τοῦ φθόγγου τῆς βάσεώς των. Έτσι τὰ σημεῖα αὐτὰ ἐναλλάσσονται ἀπὸ φθόγγο σὲ φθόγγο καὶ ἔχομε:

#### α΄. Στὸ μαλακὸ χρωματικὸ γένος:



καὶ β΄. Στὸ σύντονο ἢ σκληρὸ γρωματικὸ γένος:



Καὶ ἐπειδή, ὡς γνωστόν, καὶ οἱ δύο κλίμακες σχηματίζονται μὲ τὸ πεντάχορδο σύστημα ἢ τὸν τροχό, τὰ μαρτυρικὰ σημεῖα τῶν φθόγγων τῶν βασικῶν τους πενταχόρδων  $\overset{y}{\begin{subarray}{c} \begin{subarray}{c} \$ 

Οἱ μαρτυρίες τῶν φθόγγων τῆς μαλακῆς χρωματικῆς κλίμακος εἶναι οἱ ἑξῆς :



Καὶ οἱ μαρτυρίες τῶν φθόγγων τῆς συντόνου ἢ σκληρᾶς χρωματικῆς κλίμακος εἶναι οἱ ἀκόλουθες:



# γ΄. Μαρτυρίες τῶν φθόγγων τῶν ἐναρμονίων κλιμάκων

241. Ἐπειδή, ὡς γνωστόν (§ 236), γιὰ τὸ σχηματισμὸ τῶν ἐναρμονίων κλιμάκων παίρνεται, σὰ βασικό, τὸ ἐναρμόνιο τετράχορδο α΄ σχήματος  $\Gamma a$  -  $Z \omega$  τῆς Μέσης ὅπου μόνον ὁ  $Z \omega$  διαφέρει τοῦ φυσικοῦ  $Z \omega$  γιατὶ βρίσκεται μὲ ὕφεσι ἀξίας ἀποτομῆς ἐλάσσονος τόνου =  $\frac{135}{128}$  ἢ  $\frac{128}{135}$  μ. χορ-

δῆς ἢ 4 τμημάτων καὶ ἐπειδὴ ὁ φθόγγος αὐτὸς στὰ συνημμένα τετράχορδα γίνεται βάσις (Γα) τοῦ ἑπομένου ὀξυτέρου, τὰ μαρτυρικὰ σημεῖα τῶν φθόγγων του εἶναι:  $\mathbf{Q}$   $\mathbf{Q}$   $\mathbf{Q}$   $\mathbf{Q}$   $\mathbf{Q}$ 

Τὰ σημεῖα αὐτὰ ἐπαναλαμβάνονται, μὲ τὴν ἴδια σειρά, σ' ὅλα τὰ συνημμένα τετράχορδα $^{1}$ .

'Αλλὰ καὶ γενικώτερα, ὁποιοσδήποτε φθόγγος καὶ ἂν παρθή σὰν βάσις ἢ κορυφὴ ἐναρμονίου τετραχόρδου α΄ σχήματος μαρτυρεῖται μὲ τὸ σημεῖο ΥΥ ὡς π.χ.

Κατ' αὐτὸν τὸν τρόπο, οἱ φθόγγοι τῆς ἐναρμονίου κλίμακος ζῶ - Ζῶ΄ ποὺ σχηματίζεται μὲ τὸ διαπασῶν σύστημα ( $\S$  236) ἔχουν τὶς ἑξῆς ἀντίστοιχες μαρτυρίες:



Καὶ οἱ φθόγγοι τῆς ἐναρμονίου κλίμακος ποὺ σχηματίζεται μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ( $\S$  236) ἔχουν τὶς ἑξῆς ἀντίστοιχες μαρτυρίες:



<sup>1.</sup> Βλ. § 239 ὑποσ. 2.

#### ΟΙ ΦΘΟΡΕΣ

242. "Οπως γνωρίσαμε, μὲ τὶς διέσεις καὶ τὶς ὑφέσεις (§ 144) καθὼς καὶ τὰ συστήματα (§ 221) ἐπιτυγχάνεται διαστηματικὸς ἐμπλουτισμὸς τῆς μουσικῆς. Εἶναι φανερὸ πὼς καὶ τὰ τρία γένη τῆς μουσικῆς γιὰ τὸν ἴδιο λόγο ἐπινοήθηκαν καὶ δημιουργήθηκαν¹.

Τὰ συστήματα καὶ τὰ γένη μποροῦν νὰ χρησιμοποιοῦνται εἴτε ἀμιγῆ εἴτε καὶ ἐναλλασσόμενα.

Κατὰ τὴν πλοκὴ δηλ. καὶ ἐξέλιξι μιᾶς μελωδίας καὶ καθ' ὅλη της τὴ διάρκεια ἡ κλῖμαξ της μπορεῖ, στὸ σχηματισμό της, ν' ἀκολουθῆ εἴτε ἕνα καὶ τὸ αὐτὸ σύστημα καὶ ν' ἀνήκη σ' ἕνα καὶ τὸ αὐτὸ γένος, εἴτε καὶ νὰ μεταβάλλη, κατὰ τὶς ἀνάγκες, τὸ σύστημα ἢ τὸ γένος ἢ καὶ τὰ δύο καὶ τὶς μεταβολὲς αὐτὲς νὰ ἀκολουθοῦν ἄλλες νέες μεταβολὲς καὶ τελικὰ νὰ γίνη ἐπαναφορὰ στὸ ἀρχικὸ σύστημα καὶ γένος.

**243.** Οἱ διάφορες αὐτὲς μεταβολὲς τῶν κλιμάκων παρασημαίνονται μὲ τὶς φθορὲς ποὺ εἴναι οἱ ἑξῆς:

**244.** 'Απὸ αὐτές, οἱ ὀχτὼ πρῶτες ἀντιστοιχοῦν στοὺς ὀχτὼ φθόγγους τῆς φυσικῆς διατονικῆς κλίμακος τοῦ Νη καὶ παίρνουν ἀπὸ αὐτοὺς τὴν ὀνομασία τους.



Etsi,  $\hat{\eta}$  L. είναι  $\hat{\eta}$  διατονική φθορά του  $N\eta, \;\; \hat{\eta} \;\; \hat{\gamma}$  είναι  $\hat{\eta}$  διατονική φθορά τοῦ Πα κ.ο.κ.

<sup>1. «</sup>Κατανοήσαντες οί μουσικοὶ περιέργως, ὅτι ὅταν ψάλλωσι καὶ ἐπιμένωσι εἰς ἕνα τόνον... ἐπὶ πολύ, συνειθιζόμενον τὸ ἦθος αὐτοῦ... προκαλεῖ κόρον, εἰς τὸν ὁποῖον ἀκολουθεῖ δυσαρέσκεια· ὅταν δὲ πρὸ τοῦ κόρου μεταβαίνωσιν εἰς ἄλλον..., νέον ἦθος εἰσερχόμενον εἰς τὰ πνεύματα τῶν ἀκροατῶν, ἐξανιστᾶ ταῦτα καὶ τὰ καταστήνει προσεκτικά, ἐμεθοδεύθησαν νὰ μεταβαίνωσιν ἀπὸ τόνου εἰς τόνον, ἀπὸ γένους εἰς γένος..., διὰ νὰ ἀποφεύγωσι μὲ τὴν ποικιλίαν, τὴν ἀηδίαν ῆτις προξενεῖται ἀπὸ τὸ μονότροπον ἦθος τῆς μελωδίας» (Χρυσάνθου· Θεωρητικόν μέγα τῆς μουσικῆς § 377).

Οἱ ἑπόμενες δύο  $\longrightarrow$   $\nearrow$  εἶναι οἱ φθορὲς τοῦ μαλακοῦ χρωματικοῦ γένους καὶ ἀντιστοιχοῦν ἡ μὲν  $\longrightarrow$  στοὺς φθόγγους  $\mathbf{N}$ η καὶ  $\Delta$ ι, στὴ βάσι δηλ. τῶν τετραχόρδων του, ἡ δὲ  $\nearrow$  στοὺς φθόγγους  $\mathbf{\Gamma}$ α καὶ  $\mathbf{N}$ η΄, δηλ. στὴν κορυφή τους.

Ή φθορὰ τοῦ δευτέρου ἐπὶ τὸ ὀξὺ φθόγγου τῶν τετραχόρδων τοῦ μαλακοῦ χρωματικοῦ γένους εἶναι ἡ ἰδία μὲ τὴ φθορὰ τῆς κορυφῆς τους καὶ ἡ φθορὰ τοῦ τρίτου ἐπὶ τὸ ὀξὺ φθόγγου τους ἡ ἰδία μὲ τὴ φθορὰ τῆς βάσεώς τους —•• . Ετσι, οἱ δύο φθορὲς ἐναλλάσσονται ἀπὸ φθόγγο σὲ φθόγγο.



Γιὰ διάκρισι καὶ προσδιορισμὸ τῶν φερομένων φθόγγων Πα Βου καὶ Κε Ζω, ἡ φθορά τους συνοδεύεται, ὅπου εἶναι ἀνάγκη, ἀπὸ τὸ ἀρχικὸ γράμμα τοῦ ἀντιστοίχου φθόγγου.

$$\stackrel{\beta}{\longrightarrow}$$
  $\stackrel{\gamma}{\mapsto}$   $\stackrel{z}{\longrightarrow}$   $\stackrel{\kappa}{\mapsto}$   $\stackrel{\gamma}{\mapsto}$   $\stackrel{\gamma}{\mapsto}$ 

Ή φθορὰ τοῦ δευτέρου ἐπὶ τὸ ὀξὺ φθόγγου τῶν τετραχόρδων τοῦ συντόνου ἢ σκληροῦ χρωματικοῦ γένους εἶναι ἡ ἰδία μὲ τὴ φθορὰ τῆς κορυφῆς τους π καὶ ἡ φθορὰ τοῦ τρίτου ἐπὶ τὸ ὀξὺ φθόγγου τους ἡ ἰδία μὲ τὴ φθορὰ τῆς βάσεώς τους . Έτσι, οἱ δύο φθορὲς ἐναλλάσσονται ἀπὸ φθόγγο σὲ φθόγγο.



Γιὰ διάκρισι καὶ προσδιορισμὸ τῶν φερομένων φθόγγων **Βου Γα Ζω Νη**, ἡ φθορά τους συνοδεύεται ἀπὸ τὸ ἀρχικὸ γράμμα τοῦ ἀντιστοίγου φθόγγου  $\mathbf{x}^{\Gamma}$  ἢ  $\mathbf{x}^{\mathbf{y}'}$  καὶ  $\mathbf{x}^{\beta}$  ἢ  $\mathbf{x}^{\mathbf{z}'}$ 

Τέτοιες όμως περιπτώσεις στή μουσική γραφή είναι σπάνιες.

Τέλος, ή  $\mathcal{P}$  εἶναι **ἡ ἐναρμόνιος φθορὰ** κάθε φθόγγου ποὺ παίρνεται σὰν κορυφὴ ἐναρμονίου τετραχόρδου α΄ σχήματος ἐνῶ οἱ λοιποὶ φθόγγοι τοῦ τετραχόρδου διατηροῦν τὶς διατονικὲς φθορές, π.χ.



Κατ' αὐτὸν τὸν τρόπο, στὴν ἐναρμόνιο κλίμακα ζω - Ζω ποὺ σχηματίζεται μὲ τὸ διαπασῶν σύστημα (§ 236, 241) ἡ κεἶναι φθορὰ τῶν ζω καὶ Βου ποὺ βρίσκονται μὲ ὕφεσι ἀξίας ἀποτομῆς ἐλάσσονος τόνου (§ 230).



Καὶ στὴν ἐναρμόνιο κλίμακα ποὺ σχηματίζεται μὲ τό τετράχορδο σύστημα ἢ κατὰ τριφωνίαν (§ 236, 241) ἡ ρ ἐνῶ εἶναι φθορὰ τῶν Ζω καὶ Βου ποὺ βρίσκονται ὅπως καὶ στὸ διαπασῶν σύστημα, μὲ ὕφεσι ἀξίας ἀποτομῆς ἐλάσσονος τόνου (§ 230), ὅταν γράφεται στοὺς φθόγγους Νη καὶ Γα, ποὺ γίνονται κορυφὴ τοῦ ἐναρμονίου τετραχόρδου α΄ σχήματος, φανερώνουν, γι' αὐτὸν ἀκριβῶς τὸν λόγο, τοὺς φθόγγους ζω καὶ σ Βου μὲ δίεσι ἀξίας ἑνὸς κόμματος (§ 230 β΄, γ΄).



Στή κλίμακα αὐτὴ ἡ ὕφεσι τοῦ Ζω ἀποτομῆς ἐλάσσονος τόνου παρασημαίνεται καὶ μὲ τὴ γενικὴ ὕφεσι τοῦ Ζω ♀ καὶ ἡ δίεσις τοῦ Βου ἑνὸς κόμματος παρασημαίνεται καὶ μὲ τὴ γενικὴ δίεσι τοῦ Βου ὁ (§ 155-159), ὅπως γίνεται στὶς μελωδίες τοῦ γ΄ ἤχου (βλ. σχετικὸ Κεφάλαιο).

## Ή ἐνέργεια τῶν φθορῶν

Μεταβολή κατά γένος - κατά τόνον - κατά γένος καὶ τόνον

**245.** Ὁ φθόγγος τοῦ φθογγοσήμου ποὺ δέχεται μιὰ ὁποιαδήποτε φθορά, ἐκτὸς ἀπὸ τὴν ભ ὅπως παραπάνω εἴπαμε, διατηρεῖ τὸ ὕψος (τὴν ὀξύτητά) του καὶ παίρνει τὸ ὄνομα τοῦ φθόγγου τῆς φθορᾶς.

'Απὸ τὴν ἄποψι αὐτὴ ἡ φθορὰ μπορεῖ νὰ εἶναι:

α'. Τοῦ ἰδίου φθόγγου καὶ ἄλλου γένους, π.χ.

\*Αν, μετὰ τὴν μεταβολὴ ποὺ ἐπέρχεται κατ' αὐτὸν τὸν τρόπο, ὑπάρχη συνέχεια τῆς μουσικῆς γραμμῆς, ἡ ἀνάβασις καὶ ἡ κατάβασις γίνεται μὲ τοὺς τόνους τῆς κλίμακος ποὺ ἀνήκει ἡ φθορὰ π.χ.

Ή μεταβολή αὐτή ὀνομάζεται μεταβολή κατά γένος.

β'. Αλλου φθόγγου καὶ τοῦ ἰδίου γένους, π.χ.

"Αν, μετὰ τὴν μεταβολὴ ποὺ ἐπέρχεται κατ' αὐτὸν τὸν τρόπον, ὑπάρχη συνέχεια τῆς μουσικῆς γραμμῆς, ἡ ἀνάβασις καὶ ἡ κατάβασις γίνεται μὲ τοὺς τόνους τοῦ ἰδίου γένους καὶ μὲ τὴ πορεία τους ποὺ ἔχουν ἀπὸ τὸ φθόγγο τῆς φθορᾶς, π.χ.

ό Βου μὲ Α ἀποτομής ἐλάσσονος τόνου

Ή μεταβολή αὐτή ὀνομάζεται μεταβολή κατά τόνον.

γ΄. "Αλλου φθόγγου καὶ ἄλλου γένους, π.χ.

<sup>1.</sup> Στὸ παράδειγμα αὐτὸ καθὼς καὶ σ' ὅλα τὰ ἐπόμενα, ὅπως παρατηροῦμε, ὅταν γίνεται μία μεταβολή, μεταβάλλονται ἀνάλογα καὶ οἱ μαρτυρίες τῶν φθόγγων ποὺ ἀκολουθοῦν, π.χ.  $\begin{matrix} 6 \\ \gamma \end{matrix} \end{matrix} \begin{matrix} \Delta \end{matrix} \begin{matrix} \chi \end{matrix} \end{matrix}$  κλπ. Γι' αὐτὲς γίνεται λόγος ἐκτενέστερα στὸ ἑπόμενο § 246.

"Αν, μετὰ τὴν μεταβολὴ ποὺ ἐπέρχεται κατ' αὐτὸν τὸν τρόπο, ὑπάρχη συνέχεια τῆς μουσικῆς γραμμῆς, ἡ ἀνάβασις καὶ ἡ κατάβασις γίνεται μὲ τοὺς τόνους τῆς κλίμακος ποὺ ἀνήκει ἡ φθορά, π.χ.

Διατονικό Σύντονο ἢ σκληρ. χρωματικό 
$$\Delta$$
 ο διατονικός ως Πα σκληρ. χρωμ. γένους κλπ.

Σύντονο ἢ σκλ. χρωμ. 
$$\begin{array}{c|c} \Delta \text{ (ατονικό)} \\ \hline \pi \\ \hline \\ \dot{\phi} \\ \end{array}$$
  $\begin{array}{c|c} Q \\ \hline \\ \dot{\phi} \\ \end{array}$   $\begin{array}{c|c} \Delta \text{ (ατονικό)} \\ \hline \\ \end{matrix}$   $\begin{array}{c|c} \chi_{\text{(γένους)}} \\ \hline \\ \dot{\phi} \\ \end{array}$   $\begin{array}{c|c} \Delta \text{ (ατονικό)} \\ \hline \\ \dot{\phi} \\ \end{array}$   $\begin{array}{c|c} \chi_{\text{(γένους)}} \\ \hline \\ \dot{\phi} \\ \end{array}$ 

Η διπλή αὐτή μεταβολή ὀνομάζεται μεταβολή κατά γένος καὶ τόνον.

Αν, μετὰ ἀπὸ μιὰ ὁποιαδήποτε μεταβολή, συναντήσουμε ἄλλη φθορά, ὁποιουδήποτε γένους, ἐπέρχεται νέα μεταβολὴ κατὰ τὸν ἴδιο ἀκριβῶς τρόπο. Διατηρεῖται δηλ. τὸ ὕψος (ἡ ὀξύτης) ὅπου, μὲ τὴν προηγουμένη μεταβολή, βρέθηκε ὁ φθόγγος τοῦ φθογγοσήμου ποὺ ἔχει τὴ νέα φθορά, ἀλλὰ μετονομάζεται στὸ φθόγγο τῆς φθορᾶς αὐτῆς καὶ συνεχίζονται ἀπὸ αὐτὸν οἱ τόνοι τοῦ γένους της κ.ο.κ., π.χ.

Κατ' αὐτὸν τὸν τρόπο, ἐπιτυγχάνομε κάθε ἐπιθυμητὴ μεταβολὴ καὶ τελικὰ ἐπανερχόμαστε στὴν ἀρχικὴ κλίμακα καὶ τὸν τόνο.

Έγνωρίσαμε πώς, οἱ φθορὲς γράφονται στὰ φθογγόσημα. Μποροῦν ὅμως νὰ γράφωνται καὶ στὶς μαρτυρίες καὶ ὑπάρχουν περιπτώσεις ποὺ μόνον στὰ φθογγόσημα ἢ μόνο στὶς μαρτυρίες μποροῦν νὰ γραφοῦν.

Έτσι, τὸ προηγούμενο παράδειγμα τῶν ἀλλεπαλλήλων μεταβολῶν μποροῦμε νὰ τὸ παρασημαίνουμε καὶ ὡς ἑξῆς :

Στὸ παράδειγμα αὐτὸ παρατηροῦμε πώς:

α) στὴ μεταβολὴ  $\overset{\times}{q}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$  γιὰ νὰ γραφῆ ἡ φθορὰ ἐπάνω στὴ προηγουμένη μαρτυρία πρέπει ἡ  $\overset{\circ}{\wp}$  ν' ἀντικατασταθῆ μὲ τὴ  $\overset{\circ}{q}$   $\overset{\times}{q}$   $\overset{\circ}{\Longrightarrow}$   $\overset{\circ}{\longrightarrow}$  καὶ β) δὲν εἶναι δυνατὴ ἡ παρασήμανσις τῆς μεταβολῆς  $\overset{\times}{\chi}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$  μὲ φθορὰ ἐπάνω στὴ προηγουμένη μαρτυρία γιατὶ ἐνῶ  $\overset{\times}{\chi}$   $\overset{\Delta}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$  εἶναι ἐλάσσων τόνος =  $\frac{10}{9}$   $\overset{\circ}{\eta}$   $\frac{9}{10}$  μ. χορδῆς  $\overset{\circ}{\eta}$   $\overset{\circ}{\longrightarrow}$  10 τμήματα,  $\overset{\circ}{\eta}$   $\overset{\circ}{\longrightarrow}$  (ώς  $\overset{\circ}{\longrightarrow}$   $\overset{\circ}{\longrightarrow}$  (ώς  $\overset{\circ}{\longrightarrow}$   $\overset{\circ}$ 

δῆς ἢ 6 τμήματα καὶ κατεβαίνοντας στὸν  $\Pi \alpha$  θὰ βρισκόμασταν κατὰ μίαν ἀποτομὴν ἐλάσσονος τόνου  $=\frac{128}{125}$  ἢ  $\frac{128}{128}$  μ. χορδῆς ἢ 4 τμήματα ὑψηλότερα ἀπὸ τὸ κανονικό του ὕψος¹.

Ή ἔναρξις τῆς μεταβολῆς ποὺ γίνεται μὲ μιὰ φθορὰ ὀνομάζεται δέσις καὶ ἡ κατάργησίς της μὲ μιὰ ἄλλη, λύσις.

## Φθορικές μαρτυρίες

246. Όπως παρατηρήσαμε στὴν ὑποσ. τοῦ § 246, οἱ μαρτυρίες τῶν φθόγγων μετὰ ἀπὸ μιὰ μεταβολὴ εἶναι κι' αὐτὲς διαφορετικὲς ἀπὸ τὶς μαρτυρίες τῶν φθόγγων τῶν κλιμάκων τῶν τριῶν γενῶν ποὺ γνωρίσαμε στὰ προηγούμενα (§ 237 - 241).

"Ετσι, στὸ προηγούμενο παράδειγμα τῶν ἀλλεπαλλήλων μεταβολῶν βλέπομε πώς:

α΄. μὲ τὴ  $\infty$  ἐπάνω στὴ  $\frac{\Delta}{\partial \tilde{l}}$  ἔχομε μεταβολὴ ἀπὸ τὸ διατονικὸ στὸ σύντονο ἢ σκληρὸ χρωματικὸ γένος ἀπὸ τὸν ἴδιο φθόγγο. Γι' αὐτὸ ἡ ἑπομένη μαρτυρία τοῦ  $\Delta \mathbf{l}$  εἶναι ἡ  $\frac{\Delta}{\infty}$ 

β'. μὲ τὴ  $\[ \] α$  ἐπάνω στὴ  $\[ \frac{\Delta}{\omega} \]$  ἔχομε μεταβολὴ ἀπὸ τὸ σύντονο ἢ σκληρὸ χρωματικὸ στὸ διατονικὸ γένος ἀπὸ τὸν ἴδιο φθόγγο. Γι' αὐτό, ἡ ἑπομένη μαρτυρία τοῦ  $\[ \] \mathbf{K} \] \mathbf{E}$  εἶναι ἡ  $\[ \frac{\kappa}{\alpha} \]$ 

<sup>1. &#</sup>x27;Ο φθόγγος ποὺ γίνεται ἀρχὴ μεταβολῆς, πρέπει νὰ εἶναι ὁ κατάλληλος. 'Αλλιῶς, ἡ ἀρχικὴ βάσις τῆς μελωδίας μετατοπίζεται ὑψηλότερα ἢ χαμηλότερα ποὺ σὰν ἀποτέλεσμα ἔχει τὴ δημιουργία μιᾶς κακόηχης παραφωνίας. Σχετικὰ ὁ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς § 381), γράφει' «'Εξ αἰτίας τῶν φθορῶν συμβαίνει καὶ νὰ ἐκπίπτη ἡ φωνὴ τοῦ ψάλλοντος ἡ ἐπὶ τὸ βαρὺ ἢ ἐπὶ τὸ ὀξύ. 'Ο δὲ λόγος εἶναι ὅτι ὅταν ἡ λύσις τῆς φθορᾶς γένη ἀπὸ τόνου βαρυτέρου τοῦ φυσικοῦ ἐκπίπτει ἡ φωνὴ εἰς τὸ βαρὺ καὶ τὸ ἀνάπαλιν. Οἰον, ἐὰν διὰ φθορᾶς, μεταβάλω τὸν Γα εἰς Δι, ἔπειτα ποιήσω τήν λύσιν ἀπὸ τοῦ Γα τῆς φθορικῆς κλίμακος, ἐκπίπτει ἡ φωνὴ ἡμίτονον' εἰ δὲ ποιήσω τήν λύσιν ἀπὸ τοῦ Πα ἡ ἀπὸ τοῦ Δι οὺκ ἐκπίπτει διὰ τὸ ἰσότονον. Αὐτὸ τὸ πὰθος παρετηρήθη καὶ ἀπὸ τοὺς παλαιοὺς καὶ ὅταν συμβῆ ἔκπτωσις ἐπὶ τὸ βαρὺ ἐνὸς τόνου, προστιθέασιν ἕνα τόνον καὶ τὸν ὀνομάζουσι Δύ ν α μι ν. 'Όρα εἰς τὸ Δοξαστάριον 'Ιακώβου «Τῷ τριττῷ τῆς ἐρωτήσεως» εἰς τὸ «αὐτὸν ἰκέτευε».

γ΄. μὲ τὴ  $\mathfrak P$  ἐπάνω στὴ  $\overset{\mathcal X}{\mathsf q}$  τὸ διατονικὸ γένος μεταβάλλεται σὲ ἐναρμόνιο. Γι' αὐτὸ ἡ ἑπομένη μαρτυρία τοῦ  $\Delta \iota$  εἶναι ἡ  $\overset{\Delta}{\overset{\circ}{\mathsf Q}}$  (κοινὴ γιὰ τὰ δύο γένη).

δ΄. μὲ τὴ  $\phi$  ἐπάνω στὴν πρώτη  $\rightarrow$  ποὺ ἀκολουθεῖ τὴν προηγούμενη ἐναρμόνιο μαρτυρία τοῦ  $\overset{\Delta}{\bigcirc \bigcirc}$  τὸ γένος ἀπὸ ἐναρμόνιο μεταβάλλεται σὲ διατονικό. Γι' αὐτὸ ἡ ἑπομένη μαρτυρία τοῦ  $\mathbf{N}$ η τῆς  $\mathbf{N}$ ήτης εἶναι ἡ  $\overset{\mathbf{V}}{\mathbf{Q}}$ 

ε΄. μὲ τὴ  $\mathcal{A}$  ἔπάνω στὴ  $\mathbf{\gamma}_{\mathbf{\eta}}^{\mathbf{v}}$  ἔχομε μεταβολὴ ἀπὸ τὸ διατονικὸ στὸ σύντονο ἢ σκληρὸ χρωματικὸ γένος ποὺ εἶναι ταυτόχρονα καὶ μεταβολὴ κατὰ τόνον, γιατὶ στὴν ὀξύτητα τοῦ διατονικοῦ  $\mathbf{N}_{\mathbf{\eta}}$  τῆς  $\mathbf{N}$ ήτης μετατίθεται ὁ  $\mathbf{\Delta}_{\mathbf{i}}$  τῆς Μέσης τοῦ συντόνου ἢ σκληροῦ χρωματικοῦ γένους. Γι' αὐτό, ἀντίστοιχα, στὴν πορεία τῆς μεταβολῆς αὐτῆς, ὁ  $\mathbf{\Pi}_{\mathbf{\alpha}}$  βρίσκεται μὲ μετάθεσι στὸν  $\mathbf{\Delta}_{\mathbf{i}}$  καὶ αὐτὸ παρασημαίνεται μὲ τὴ  $\mathbf{\Delta}_{\mathbf{i}}$  ποὺ διαβάζεται: «ὀ  $\mathbf{\Delta}_{\mathbf{i}}$  ὡς  $\mathbf{\Pi}_{\mathbf{\alpha}}$  τοῦ συντόνου ἢ σκληροῦ χρωματικοῦ γένους». Ἡ διαφοροποιημένη, κατ' αὐτὸν τὸν τρόπο καὶ ἐνδεικτικὴ τῆς μεταβολῆς, μαρτυρία ὀνομάζεται φθορικὴ μαρτυρία.

Προχωρώντας στὴν ἐξέτασι τῶν ὑπολοίπων μαρτυριῶν τοῦ παραδείγματός μας διαπιστώνουμε πὼς καὶ οἱ  $\frac{\chi}{20}$ ,  $\frac{\chi}{\chi}$ ,  $\frac{\kappa}{\omega}$ ,  $\frac{6}{20}$  καὶ  $\frac{1}{20}$  εἶναι, ὡσαύτως, φθορικὲς μαρτυρίες ἐνῶ τελικὴ μαρτυρία  $\frac{\chi}{20}$  ἀνήκει στὸν φθόγγο Νη τῆς Μέσης, τὴ βάσι δηλ. τῆς φυσικῆς διατονικῆς κλίμακος.

## Μετάθεσις - παραχορδή

**247.** Όπως γνωρίσαμε (§ 223), τὰ τετράχορδα τὰ ἀντίστοιχα μὲ τὰ διατονικὰ διαστήματα τετάρτης ποὺ ἀποτελοῦν τελείαν διὰ τεσσάρων συμφωνίαν =  $\frac{4}{3}$  ἢ  $\frac{3}{4}$  μ. χορδῆς ἢ 30 τμήματα, ὀνομάζονται τέλεια τετράχορδα καὶ είναι τὰ ἑξῆς:

Στὸ μαλακὸ χρωματικὸ γένος (§ 235α΄ 240, 244) τὰ τέλεια τετράχορδα εἴναι τὰ έξῆς :

Στὸ σύντονο ἢ σκληρὸ χρωματικὸ γένος (§ 236 β' 240, 244) τὰ τέλεια τετράχορδα είναι τὰ έξῆς:

$$\stackrel{\smile}{\Delta} = \stackrel{\lor}{\wp} \qquad \stackrel{\pi}{\leadsto} = \stackrel{\Delta}{\wp} \qquad \stackrel{\varkappa}{\leadsto} = \stackrel{\pi'}{\wp} \qquad \stackrel{\delta'}{\leadsto} = \stackrel{\varkappa'}{\wp}$$

Καὶ στὸ ἐναρμόνιο γένος ἐνῶ μὲ τὸ διαπασῶν σύστημα σχηματίζονται τὰ τέλεια τετράχορδα:

$$\frac{\alpha}{\Delta} - \frac{2}{2} \qquad \frac{2}{2} - \frac{6}{2} \qquad \frac{\Gamma}{12} - \frac{2}{22} \qquad \kappa\alpha i \qquad \frac{2}{22} - \frac{6}{22}$$

τὸ τετράχορδό του σύστημα δίνει τέλεια τετράχορδα ἀπὸ κάθε φθόγγο.

Ή μεταβολή κατὰ τόνον ἢ κατὰ τόνον καὶ γένος (§ 245 β΄, γ΄) ποὺ μὰ αὐτήν, ἢ βάσις ένὸς ὁποιουδήποτε τελείου τετραχόρδου γίνεται βάσις όποιουδήποτε ἄλλου τελείου τετραχόρδου, ὁπότε συμπίπτουν καὶ οἱ κορυφές τους, ὀνομάζεται μετάθεσις.¹

Παραθέτομε μερικά παραστατικά παραδείγματα τῶν πολυποικίλων μεταθέσεων ποὺ μποροῦν νὰ πραγματοποιοῦνται κατὰ τὶς ἀνάγκες τῆς μελωδίας.

<sup>1. &</sup>quot;Οπως θὰ γνωρίσουμε στοὺς ἤχους (βλ. Κεφ. ΙΘ΄) μετάθεσις ὀνομάζεται, ἐπίσης, καὶ ἡ λῆψις ἄλλου τόνου ἀντὶ ἐκείνου ποὺ εἶναι ἡ φυσικὴ τονικὴ βάσις ἑνὸς ἤχου καὶ ὅπου διατηρεῖται, συνάμα, ἡ ἀναλογία τῶν διαστημάτων π.χ. 

Τ΄ ὅπου, δηλ. στὴν ὀξύτητα τοῦ Γα μετετέθη ὁ τόνος τοῦ Νη μὲ ἀποτέλεσμα ἡ φυσικὴ διατονικὴ κλῖμαξ Νη - Νη΄ νὰ ἀκούεται σὲ ὑψηλότερο ἀκουστικὸ ἐπίπεδο κατὰ ἕνα τετράχορδο.

Κάθε ἄλλη μεταβολὴ κατὰ τόνον ἢ κατὰ τόνον καὶ γένος ποὺ δὲν είναι μετάθεσις, ὅπου δηλ.

α΄. Ὁ φθόγγος ποὺ εἶναι βάσις τελείου τετραχόρδου καὶ μετατίθεται σὲ φθόγγο ποὺ δὲν εἶναι βάσις τελείου τετραχόρδου π.χ.

β΄. Ὁ φθόγγος ποὺ δὲν εἶναι βάσις τελείου τετραχόρδου καὶ μετατίθε-

ται σὲ φθόγγο ποὺ εἶναι βάσις τελείου τετραχόρδου, π.χ.

καὶ γ΄. Ὁ φθόγγος ποὺ δὲν εἶναι βάσις τελείου τετραχόρδου καὶ μετατίθεται σὲ φθόγγο ποὺ κι' αὐτός, δὲν εἶναι βάσις τελείου τετραχόρδου, π.χ.

ονομάζεται παραχορδή.

Έτσι, θὰ μπορούσαμε νὰ ποῦμε πώς, παραχορδὴ εἶναι ἡ μεταβολὴ κατὰ τόνον ἢ κατὰ τόνον καὶ γένος ὅπου τὰ ἄκρα τοῦ τετραχόρδου τῆς ἀρχικῆς κλίμακος στὸν ὁποῖο ἀνήκει ὁ φθόγγος ποὺ δέχεται τὴ φθορὰ δὲν συμπίπτουν μὲ τὰ ἄκρα τοῦ τετραχόρδου ποὺ ἀνήκει ὁ φθόγγος τῆς φθορᾶς.

## Μεταβολή κατά σύστημα

**248.** Τὰ συστήματα τῆς βυζαντινῆς μουσικῆς (§ 216 - 229, 235, 236) καθώς καὶ ἡ μετάβασις ἀπὸ τὸ ἕνα στὸ ἄλλο ἐπιτυγχάνονται, ὅπως ἀναφέραμε (§ 222), μὲ τὴ χρῆσι τῶν φθορῶν καὶ εἶναι, συνεπῶς, μεταβολές.

### Έτσι:

- Α΄. Τὸ πεντάχορδο σύστημα ἢ τροχός.
- α΄. τοῦ διατονικοῦ γένους, μὲ βασικὸ τὸ πεντάχορδο  $\frac{\pi}{q} \frac{\kappa}{\ddot{q}}$  γίνεται μὲ τὴν ἀλλεπάλληλη μετάθεσι, κατὰ μὲν τὴν ἀνάβασι, τοῦ  $\mathbf{H}\mathbf{a}$  στὸν  $\mathbf{K}\mathbf{e}$ , κατὰ δὲ τὴν κατάβασι, ἀντιστρόφως, τοῦ  $\mathbf{K}\mathbf{e}$  στὸν  $\mathbf{H}\mathbf{a}$ .

β΄. τοῦ μαλακοῦ χρωματικοῦ γένους, μὲ βασικὸ τὸ πεντάχορδο  $\overset{\nu}{\smile} - \overset{\Delta}{\smile}$ , γίνεται, κατὰ τὸν ίδιο τρόπο, μὲ τὴν ἀλλεπάλληλη μετάθεσι,

κατὰ μὲν τὴν ἀνάβασι, τοῦ Νη στόν Δι, κατὰ δὲ τὴν κατάβασι, ἀντιστρόφως, τοῦ Δι στὸν Νη.

καὶ γ΄. τοῦ σκληροῦ ἢ συντόνου χρωματικοῦ γένους, μὲ βασικὸ τὰ πεντά-χορδο  $\frac{\pi}{}-\frac{\varkappa}{}$ , γίνεται, ὁμοίως, μὲ τὴν ἀλλεπάλληλη μετάθεσι, κατὰ μὲν τὴν ἀνάβασι, τοῦ Πα στὸν Κε, κατὰ δὲ τὴν κατάβασι, ἀντιθέτως, τοῦ Κε στὸν Πα.

Β'. Τὸ τετράχορδο σύστημα ἢ τριφωνία.

α΄. τοῦ διατονικοῦ γένους, μὲ βασικὸ τὸ τετράχορδο  $\frac{\gamma}{Q_1} - \frac{\Gamma}{Q_2}$ , γίνεται μὲ τὴν ἀλλεπάλληλη μετάθεσι, κατὰ μὲν τὴν ἀνάβασι, τοῦ  $\mathbf{N}$  $\mathbf{\eta}$  στὸν  $\mathbf{\Gamma}$  $\mathbf{a}$ , κατὰ δὲ τὴν κατάβασι, ἀντιστρόφως, τοῦ  $\mathbf{\Gamma}$  $\mathbf{a}$  στὸν  $\mathbf{N}$  $\mathbf{\eta}$ 

καὶ β΄. τοῦ ἐναρμονίου γένους, μὲ βασικὸ τὸ τετράχορδο  $\frac{\Gamma}{2} - \frac{Z_0}{2}$ , γίνεται κατὰ τὸν ἴδιο τρόπο, μὲ τὴν ἀλλεπάλληλη μετάθεσι, κατὰ μὲν τὴν ἀνάβασι, τοῦ Γα στὸν Ζω΄, κατὰ δὲ τὴν κατάβασι, ἀντιστρόφως, τοῦ Ζω΄ στὸν Γα.

$$\begin{vmatrix} \frac{1}{\sqrt{\lambda_z}} & \frac{$$

Τέλος, ὅσον ἀφορᾶ τὸ διαπασῶν σύστημα, ὅπως γνωρίζομε, εἶναι τὸ φυσικὸ σύστημα ποὺ σχηματίζεται μὲ τὸ φαινόμενο τῆς ἀντιφωνίας.

Οί μεταβολές κατά σύστημα ή κατά σύστημα καὶ γένος παρασημαί-

νονται κι' αὐτές, μὲ τὶς ἀνάλογες φθορές, ὅπως στὸ έξῆς συνοπτικὸ παράδειγμα:

- Στὸ 70 μέτρο, μὲ τὸ Υίνεται μεταβολὴ τοῦ διατονικοῦ διαπασῶν συστήματος στὸ πεντάχορδό του σύστημα.
- Στὸ 140 μέτρο, μὲ τὸ 🧡 γίνεται ἐπάνοδος στὸ διαπασῶν σύστημα.
- Στὸ 19ο μέτρο, μὲ τὸ τὸ γίνεται μεταβολὴ τοῦ διατονικοῦ διαπασῶν συστήματος, στὸ πεντάχορδο σύστημα τοῦ μαλακοῦ χρωματικοῦ γένους.
- Στὸ 210 μέτρο, μὲ τὸ το γίνεται μεταβολὴ τοῦ μαλακοῦ χρωματικοῦ πενταχόρδου συστήματος στὸ σύντονο ἢ σκληρὸ χρωματικὸ πεντάχορδο σύστημα.
- Στὸ 230 καὶ τὸ 240 μέτρο, μὲ τὰ Δ΄ τὸ σκληρὸ χρωματικὸ πεντάχορδο σύστημα μεταβάλλεται σὲ τετράχορδο ἐναρμόνιο σύστημα.
- Στὸ 330 μέτρο, μὲ τὸ 🧢 ἔχομε μεταβολή σὲ διατονικὸ διαπασῶν σύστημα.
- Στὸ 350 μέτρο, μὲ τὸ  $\stackrel{\bigcirc}{\longleftarrow}$  γίνεται μεταβολὴ στὸ διατονικὸ τετράχορδο σύστημα καὶ

Στὸ 37ο μέτρο, μὲ τὸ 🤙 καταλήγομε στὸ διατονικὸ διαπασῶν σύστημα.

## Φθορικές κλίμακες

249. Μὲ τὶς διάφορες, κατὰ τὴν πορεία καὶ ἐξέλιξι μιᾶς μελωδίας, μεταβολὲς (κατὰ τόνον, γένος, σύστημα, σύστημα καὶ γένος, μετάθεσι καὶ παραχορδὴ) τῆς ἀρχικῆς της κλίμακος — ὅπως στὸ προηγούμενό μας παράδειγμα τῆς μεταβολῆς κατὰ σύστημα — σχηματίζονται οἱ φθορικὲς κλίμακες. Στὸ ἑξῆς παράδειγμα, ἡ φθορικὴ κλῖμαξ ἀρχίζει στὸ 3ο μέτρο μὲ τὴν παραχορδὴ (ὁ Κε ὡς Γα) καὶ καταργεῖται μὲ τὸ τοῦ 10ου μέτρου.

## Μικτές κλίμακες

**250.** Μὲ τὸ συνδυασμὸ τῶν τετραχόρδων ἢ τῶν τετραχόρδων μὲ τὰ πεντάχορδα τῶν τριῶν γενῶν σχηματίζονται οἱ μικτὲς κλίμακες πού, οἱ κυριώτερὲς τους στὶς ἐκκλησιαστικὲς μελωδίες, εἶναι οἱ ἑξῆς:

α΄. Ἡ μικτὴ κλῖμαζ ποὺ ἀποτελεῖται ἀπὸ τὸ διατονικὸ πεντάχορδο  $\overset{\mathsf{y}}{\circlearrowleft} = \overset{\Delta}{\overset{\circ}{\circlearrowleft}}$  καὶ τὸ συνημμένο μαλακὸ χρωματικὸ τετράχορδο  $\overset{\Delta}{\overset{\circ}{\circlearrowleft}} = \overset{\mathsf{y}}{\overset{\circ}{\backsim}}$ 



β΄. Ή μικτὴ κλίμαξ ποὺ ἀποτελείται ἀπὸ τὸ διατονικὸ πεντά-

χορδο  $\frac{\pi}{q} = \frac{\chi}{q}$  καὶ τὸ συνημμένο σύντονο ἢ σκληρὸ χρωματικὸ τετρά-χορδο  $\frac{\chi}{q} = \frac{\pi}{q}$ 



γ΄. Ἡ μικτὴ κλῖμαξ ποὺ ἀποτελεῖται ἀπὸ τὸ σύντονο ἢ σκληρὸ χρωματικὸ πεντάχορδο  $\frac{\pi}{\ddot{q}}-\frac{\varkappa}{\ddot{q}}$  καὶ τὸ συνημμένο διατονικὸ τετράχορδο β΄ σχήματος  $\frac{\varkappa}{\ddot{q}}-\frac{\pi}{\ddot{q}}$ 



δ΄. Ἡ μικτὴ κλῖμαξ ποὺ ἀποτελεῖται ἀπὸ τὸ σύντονο ἢ σκληρὸ χρωματικὸ πεντάχορδο  $\frac{\pi}{\ddot{q}}-\frac{\varkappa}{\ddot{q}}$  καὶ τὸ συνημμένο ἐναρμόνιο τετράχορδο γ΄ σχήματος  $\frac{\varkappa}{\ddot{q}}-\frac{\pi}{\ddot{q}}$ 



ε΄. ή μικτή κλίμαξ πού αποτελείται από τὸ διατονικό πεντάχορδο



καὶ στ΄. Ἡ μικτὴ κλῖμαξ ποὺ ἀποτελεῖται ἀπὸ τὸ σύντονο ἢ σκληρὸ χρωματικὸ πεντάχορδο  $\overset{\mathsf{y}}{\underset{\sim}{\smile}} -\overset{\Delta}{\underset{\sim}{\smile}}$  καὶ τὸ συνημμένο μαλακὸ χρωματικὸ τετράχορδο  $\overset{\Delta}{\underset{\sim}{\smile}} -\overset{\mathsf{y}}{\underset{\sim}{\smile}}$ 



"Όπως εἶναι εὐνόητο, οἱ μαρτυρίες καὶ οἱ φθορὲς τῶν φθόγγων τῶν μικτῶν κλιμάκων εἶναι τοῦ ἀντιστοίχου γένους τοῦ κάθε τμήματός των.

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΑ ΤΡΙΑ ΓΕΝΗ

Α΄. Στὴν παλαιὰ βυζαντινὴ μουσικὴ γιὰ τὴν ἐκτέλεσι τῶν κλιμάκων, ἀντὶ τῶν μονοσυλλάβων φθόγγων Νη Πα Βου Γα Δι Κε Ζω, χρησιμοποιοῦσαν πολυσυλλάβους φθόγγους πού, ὅπως φαίνεται στοὺς κατωτέρω πίνακες, ἦσαν διαφορετικοὶ στὸ διατονικὸ καὶ στὸ χρωματικὸ γένος καθὼς καὶ κατὰ τὴν ἀνάβασι καὶ τὴν κατάβασι.

Οἱ φθόγγοι τοῦ διατονικοῦ γένους ἤσαν ἀντιστοίχως.

| Σ                   | τὴν ἀνάβασι                                         | Στ       | ὴν κατάβασι                                               |
|---------------------|-----------------------------------------------------|----------|-----------------------------------------------------------|
| Μονοσύλ.            | Πολυσύλλαβοι                                        | Μονοσύλ. | Πολυσύλλαβοι                                              |
| Πα                  | ος α τηα μες <sup>π</sup>                           | Νη΄      | π΄ ζ α α μες γη                                           |
| οοοοχήσιας Γα<br>Γα | η γ με α μες δ                                      | Ζω΄      | γ΄ λε α μες π΄                                            |
| τα Γα               | 6 · <u>γα γα</u> γη                                 | Kε       | χ, α με α μες Ϋ                                           |
| Δι                  | η α γι α Α                                          | Δι       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      |
| Kε                  | ά α τηα μες Ϋ                                       | Γα       | ά λ α α μες ην                                            |
| οδο Σω<br>Νυ,       | ά β με α μες χ.                                     | Bov      | τη με χε α μες π                                          |
| β, τετρο            | אָר ע מַתְּיִלְיִינְיִינְיִינְיִינְיִינְיִינְיִינְי | Пα       | βα μες α μες σ                                            |
| Πα΄                 | γ΄ α γι α κ΄                                        | Nη       | 4 fε α λι ε ζί<br>2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / |

Οί φθόγγοι τῆς μαλακῆς χρωματικῆς κλίμακος ἦσαν ἀντιστοίχως.

|                 |                                                                                                                                                   |          | μακός ησαν αντιστοιχώς. |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
|                 | τὴν ἀνάβασι                                                                                                                                       | <u></u>  | ήν κατάβασι             |
| Μονοσύλ.        | Πολυσύλλαβοι                                                                                                                                      | Μονοσύλ. | Πολυσύλλαβοι            |
| Νη              | γ ζε ε χε α μες ζ                                                                                                                                 |          | <b>.</b>                |
| Пα              | ς με να νω σ                                                                                                                                      | Ζω΄      | γ΄ με χε α μες Ξ        |
| Bov             | π με α μες ς                                                                                                                                      | Kε̈́     | Z' Lie va no x          |
| Γα              | 6 λε γα γω Γ                                                                                                                                      | Δι       | χ ξε α μες Ξ            |
| Δι              | ζ με α μες Δ                                                                                                                                      | Γα       | A Lie na no s           |
| Kε <sup>°</sup> | $\begin{array}{c c} \Delta & \overline{} & \overline{} \\ \ddot{} & \iota_{\varepsilon} & \overline{} & \overline{} & \overline{} \\ \end{array}$ | Βου      | σ με χε α μες ς         |
| Ζω              | χ με α μες "                                                                                                                                      | Πἆ       | ε ζωε γα γο π           |
| Νη΄             | ζ. η ν ν ν κ ν κ ν κ ν κ ν κ ν κ ν κ ν κ ν                                                                                                        | Νη       | π λ χε α μες ς          |

Οί φθόγγοι τῆς συντόνου ἢ σκληρᾶς χρωματικῆς κλίμακος ἦσαν ἀντιστοίχως οἱ ἴδιοι μὲ τοὺς φθόγγους τῆς μαλακῆς χρωματικῆς κλίμακος.

| Σ                  | τὴν ἀνάβασι                                                                                         | Στ               | ὴν κατάβασι        |
|--------------------|-----------------------------------------------------------------------------------------------------|------------------|--------------------|
| Μονοσύλ.           | Πολυσύλλαβοι                                                                                        | Μονοσύλ.         | Πολυσύλλαβοι       |
| Πα                 | π με ε χε α μες π                                                                                   |                  |                    |
| Bou                | π λε να νω δ                                                                                        | *<br><b>Νη΄</b>  | π' ο με χε α μες ς |
| ්<br>Га            | σ α ηα μες ς                                                                                        | Zω̈́             | ν' l με να νο κ'   |
| Δι                 | Le va va                                                                                            | Κε               | σ με χε α μες χ    |
| Kε                 | α α α λες χ                                                                                         | Δι               | με ηα ηο Δ         |
| Zẅ́                | $x \int_{\mathbb{R}^{E}} \frac{1}{2\alpha} \left  \frac{1}{2\alpha} \right  \frac{2\alpha}{\alpha}$ | <b>ө</b> *<br>Га | α με χε α μες      |
| ్రే<br><b>N</b> η′ | α ηα μες ν΄                                                                                         | Bov              | L le sa so e       |
| Πα΄                | ν΄ λε γα γω π΄                                                                                      | Пα               | β χε α μες ς       |

Τέλος, ὅσον ἀφορᾶ τὸ ἐναρμόνιον γένος ὁ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς § 263) γράφει «φθόγγους δὲ καὶ παραλλαγήν, ἴδια τοῦ ἐναρμονίου γένους, οἱ διδάσκαλοι δὲν μᾶς παρέδωσαν, ἀλλὰ μὲ τοὺς φθόγγους καὶ μὲ τὴν παραλλαγὴν τοῦ διατονικοῦ γένους ἐφθέγγοντο καὶ κάθε μελωδίαν τοῦ ἐναρμονίου γένους».

 ${f B}'$ . Τὰ τρία γένη τῆς βυζαντινῆς μουσικῆς βασίζονται στὰ ὁμώνυμα γένη τῆς ἀρχαίας έλληνικῆς μουσικῆς ποὺ κι³ αὐτά, προέκυπταν μὲ τὴ μετακίνησι τῶν φερομένων φθόγγων τῶν τετραχόρδων ἀξίας  $\frac{4}{3}$  ἢ  $\frac{3}{4}$  μ. χορδῆς, ὅπου ὅμως οἱ φθόγγοι ἀκολουθοῦσαν πορεία ἀπὸ τὸ ὀξὺ πρὸς τὸ βαρὺ δηλ. ἀντίθετη μὲ τὴν καθιερωμένη, σήμερα, τάξι.

Τὸ Πυθαγόρειο σύντονο διατονικό τετράχορδο (σελ. 84) περιέκλειε, ἀπὸ τὸ ὀξὺ πρὸς τὸ βαρύ, δύο μείζονας ἢ ἐπογδόους τόνους  $=\frac{9}{8}$  ἢ  $\frac{8}{9}$  μ. χορδῆς καὶ ἕνα λεῖμμα  $=\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς  $\left(\frac{9}{8}\cdot\frac{9}{8}\cdot\frac{256}{243}\right)=\frac{4}{3}$  ἢ  $\frac{3}{4}$  μ. χορδῆς  $\left(\frac{9}{8}\cdot\frac{9}{8}\cdot\frac{256}{243}\right)$ .

Τὸ χρωματικό τετράχορδο περιέκλειε, ἀπὸ τὸ ὀξὸ πρὸς τὸ βαρύ, ἕνα-

ἀσύνθετο τριημιτόνιο ἀξίας  $\frac{32}{27}$  ἢ  $\frac{27}{32}$  μ. χορδῆς, μία ἀποτομὴ ἀξίας  $\frac{2187}{2048}$  ἢ  $\frac{2048}{2187}$  μ. χορδῆς καὶ ἕνα λεῖμμα ἀξίας  $\frac{2304}{2187}$  ἢ  $\frac{2187}{2304}$  μ. χορδῆς  $\left(\frac{32}{27}\cdot\frac{2187}{2048}\cdot\frac{2304}{2187}\right)$  .

Καὶ τὸ ἐναρμόνιο τετράχορδο, — ὅπως ἀναφέρει ὁ Πλούταρχος στὸ «περὶ Μουσικῆς» — σύμφωνα μὲ τὴν ἀρχικὴ θεωρία τοῦ Ὁλύμπου ποὺ τὸ εἰσήγαγε στὴν ἑλληνικὴ μουσικὴ κατὰ τὸ 734 - 695 π.Χ. ἐπὶ Μίδου τοῦ Β΄ καὶ διέπρεψε σὰν αὐλητής, γινόταν μὲ τὴ βάρυνσι σὲ ταὐτοφωνία τοῦ ὀξυτέρου ἀπὸ τοὺς δύο φερομένους φθόγγους μὲ τὸ χαμηλότερό του πού, ἐν συνεχεία, μετατοπίσθηκε κι' αὐτὸς χαμηλότερα κατὰ ἕνα τεταρτημόριο τοῦ μείζονος τόνου ἔτσι πού, τελικά, νὰ περικλείη, ἀπὸ τὸ ὀξὲ πρὸς τὸ βαρύ, ἕνα ἀσύνθετο δίτονο =  $\frac{84}{81}$  ἢ  $\frac{81}{84}$  μ. χορδῆς καὶ δύο τεταρτημόρια τοῦ μείζονος τόνου.

'Απὸ τὰ τρία γένη τῆς ἀρχαίας ἑλληνικῆς μουσικῆς τὸ ἀρχαιότερο καὶ ἐπικρατέστερο ἦταν τὸ διατονικὸ καὶ τὸ πιὸ δύσκολο, κατ' ἐξοχὴν καλλιτεχνικὸ καὶ γι' αὐτὸ προσιτὸ μόνον στοὺς μεγάλους δεξιοτέχνες, τὸ ἐναρμόνιο γένος πού, γι' αὐτὸν τὸν λόγο, ἐγκαταλείφθηκε ἀργότερα.

Ό ἐκ Σμύρνης Θέων (200 μ.Χ.) ὀνομάζει τὸ διατονικὸ γένος ἀνδρικόν, τὸ χρωματικὸ θρηνῶδες καὶ παθητικὸ καὶ τὸ ἐναρμόνιον, μυστικὸν καὶ τεχνικόν.

Οἱ τέσσερες φθόγγοι τοῦ ἀρχαίου ἑλληνικοῦ τετραχόρδου, ἀπὸ τὸ ὀξὺ πρὸς τὸ βαρύ, ὀνομαζόνταν

Μὲ βασικό τὸ σύντονο ἢ σκληρὸ Πυθαγόρειο τετράχορδο (σελ. 84)

τε τω τη τα 
$$\frac{8}{9} \times \frac{8}{9} \times \frac{243}{256} = \frac{3}{4} \text{ μ. χορδής}$$

όπου ό τε αντιστοιχούσε στην δζύτητα μὲ τὸν Κε τῆς Μέσης, οἱ κλίμακες σχηματιζόνταν μὲ ὅμοια, συνημμένα ἢ διεζευγμένα, τετράχορδα.

Έτσι, στὴν ἀρχή, στὸ βασικὸ αὐτὸ τετράχορδο προσετέθη συνημμένο τὸ ἀμέσως χαμηλότερό του καὶ μὲ τὴν προσθήκη ἐνὸς ἀκόμα χαμηλοτέρου φθόγγου πού, σὰν ἔξω ἀπὸ τὸ τετράχορδο, ὀνομαζόταν προσλαμβανόμενος, σχηματίσθηκε ἡ ὀκτάχορδος κλίμαξ ὅπου, τὸ βασικὸ τετράχορδο Κε-Δι-Γα-Βου ὀνομαζόταν τετράχορδο μέσων καὶ τὸ συνημμένο χαμηλὸ τετράχορδο, τετράχορδο ὑπατῶν

'Επὶ πλέον, κάθε φθόγγος, ἀνάλογα μὲ τὸ τετράχορδο ποὺ ἀνῆκε καὶ τὴ θέσι ποὺ κατεῖχε σ' αὐτό, διακρινόταν μὲ τὸ ὄνομα τῆς ἀντίστοιχης χορδῆς.

Διάγραμμα τῆς συντόνου ἢ σκληρᾶς ὀκταχόρδου κλίμακος

|           | 7        | ετράχοι          | δο μέσ           | ων             |             | τετράχ         | ၀၉၀၀ ပ်          | πατῶ                   | ٧               |          |                  |
|-----------|----------|------------------|------------------|----------------|-------------|----------------|------------------|------------------------|-----------------|----------|------------------|
| фөоггог   | Κε<br>τε | Δ<br>~           | r<br>N           | Γα<br>τη       | Bou         |                | ω                | <b>ჩ</b> п<br><b>ო</b> | ζω<br>τα        |          | ХE<br>ТЕ         |
| TONOI     |          | _8<br>_9         | <u>8</u><br>9    | 24             | 3<br>6      | 8 9            | 8 9              | 2                      | <u>43</u><br>56 | <u>8</u> |                  |
| X 0 0 0 X | μέφη     | אואמיסיל או נפחא | μέ σων" διάτονος | παρυπάτη μέσων | ύπάτη μέσων | λιχανός ύπατῶν | טאסדאין פועדטעסט | haponáth ingtw         | ύπάτη ὑπατῶν    |          | προοχαμβανόμενος |

'Αργότερα, μὲ τὴ συναφὴ στὴν ὀκτάχορδη αὐτὴ κλίμακα τοῦ ὀξυτέρου ὀκταχόρδου σχηματίσθηκε ἡ σκληρὰ ἢ σύντονος πεντεκαιδεκάχορδος κλῖμαξ τοῦ διεζευγμένου συστήματος ὅπου, τὰ συνημμένα τετράχορδα τοῦ βαρέος ὀκταχόρδου χωρίζονταν ἀπὸ τὰ τετράχορδα τοῦ ὀξέος ὀκταχόρδου μὲ τὸν μείζονα τόνο Ζω΄ (τα) - Κε (τε) καὶ γι' αὐτό, τὸ βαρὺ τετράχορδο Βου΄ (τε) - Πα΄ (τω) - Νη΄ (τη) - Ζω΄ (τα) τοῦ ὀξέος ὀκταχόρδου ὀνομαζόταν τετράχορδο διεζευγμένων. Τέλος, τὸ ὀξὲ τετράχορδο Κε΄ (τε) - Δι΄ (τω) - Γα΄ (τη) - Βου΄ (τα), τὸ συνημμένο στὸ τετράχορδο διεζευγμένων, ὀνομαζόταν τετράχορδο ὑπερβολαίων.

Καὶ στὴ κλίμακα αὐτή, κάθε φθόγγος, ἀνάλογα μὲ τὸ τετράχορδο ποὺ ἀνῆκε καὶ τὴ σειρὰ ποὺ κατεῖχε σ' αὐτό, διακρινόταν μὲ τὸ ὄνομα τῆς ἀντίστοιχης χορδῆς.

Διάγραμμα τῆς σκληρᾶς ἢ συντόνου πεντεκαιδεκαχόρδου κλίμακος τοῦ διεζευγμένου συστήματος

| \$60770J | τετρά<br>Κε΄<br>ΤΕ | ίχ ύπεφβο<br>Δι΄<br>Τω | γαίων<br>Γα Βου<br>τη τα<br>τε         | τετράχ δι<br>Πα΄<br>Τω | gerreë<br>Nn Z<br>Tn T | ζω' F         |                          | <u>λι</u> !  | Ta Bou                        | τετραχ ύ<br>Π <b>α</b><br>τω        | πατῶν<br>Νη ζώ<br>τη τα         | %E<br>TE        |
|----------|--------------------|------------------------|----------------------------------------|------------------------|------------------------|---------------|--------------------------|--------------|-------------------------------|-------------------------------------|---------------------------------|-----------------|
| TONOT    | <u>8</u>           | <u>8</u><br>9          | 243<br>256                             | \$<br>9                | 2-3                    | <u>8</u><br>9 | <u>8</u><br>9            | 8 9          | 243                           | 8 8 9                               | 2 <u>43</u><br>256              | <b>8</b><br>9   |
| XOPAEZ   | νήτη ὑπερβοχαίων   | ύπερβοງαίων σιάτουσ    | τρίτη υπερβογαίων<br>γήτη διεfευγμένων | διεζευγμένων διατονος  | τρίτη διεζευγμένων     | παραμεση      | ΙΝΕ ΕΚΉ<br>Βιγανός μέβων | <del>.</del> | παρυπατη μεσων<br>ὑπάτη μέσων | λιχανός ὑπατῶν<br>π ὑπατῶν διάτονος | παρυπάτη ύπατών<br>ὑπάτη ὑπατών | προσμαβανόμενος |

'Η πεντεκαιδεκάχορδος κλίμαξ παρουσιαζόταν καὶ μὲ ἄλλη μορφή.

Σ' αὐτήν, τὸ χαμηλὸ τετράχορδο τοῦ δευτέρου ὀκταχόρδου ήταν συνημμένο στὴν κορυφὴ τοῦ ὀξέος τετραχόρδου τοῦ πρώτου ὀκταχόρδου μὲ συνέπεια ὁ Ζω΄ (τη) νὰ βρίσκεται ἐν ὑφέσει καὶ τὸ τετράχορδο πού, στὴν προηγουμένη περίπτωση, ήταν τὸ τετράχορδο διεζευγμένων, ὀνομαζόταν τετράχορδο συνημμένων καὶ μεταξὺ αὐτοῦ καὶ τοῦ τετραχόρδου ὑπερβολαίων δημιουργόταν διάζευξις μὲ τὸν ἐπόγδοο τόνο Βου΄ (τα) - Πα΄ (τε).

Κι' ἐδῶ, κάθε φθόγγος, ἀνάλογα μὲ τὸ τετράχορδο ποὺ ἀνῆκε καὶ τὴ σειρὰ ποὺ κατεῖχε σ' αὐτό, διακρινόταν μὲ τὸ ὄνομα τῆς ἀντίστοιχης χορδῆς.

Διάγραμμα τῆς σκληρᾶς ἢ συντόνου πεντεκαιδεκαχόρδου κλίμακος τοῦ συνημμένου συστήματος

| <b>101,100</b> | τετούν δαερβονούου<br>Κε΄ Δι΄ Γάβου<br>Τε τω τη τα                                 | τετοάχ συνημιένων<br>Πα΄ Χη΄ ΖώΚ<br>Τε τω τη τ                      | τετούν μέσων<br>Ε Δι Γαβι<br>Ε τω τη τ                             | τιτράχ ύπατών<br>ύ Πα Νηζώ κε<br>ε τω τητα τε               |
|----------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|
| TONOL          | 8 9 243                                                                            | S 8 243                                                             | 8_ 8_ 2 <u>+3</u><br>9 9 256                                       | $\frac{9}{9}$ $\frac{8}{9}$ $\frac{243}{256}$ $\frac{8}{9}$ |
| XOPAEZ         | νήτη ὑπερβομαίων<br>ὑπερβομαίων σιάτονος<br>τρίτη ὑπερβομαίων<br>ὑπάτη ὑπερβομαίων | νήτη ευνημμένων<br>συνημμένων διάτονος<br>πουση<br>τρίτη ευνημμένων | λιχανός μέσων<br>ή μέσων διάτουσς<br>παρυπάτη μέσων<br>ὑπάτη μέσων |                                                             |

- Γ΄. Στὴν ἀρχαῖα ἑλληνικὴ μουσική, ἡ μεταβολὴ τοῦ ἐναρμονίου γένους σὲ χρωματικὸ ὀνομαζόταν σπονδειασμός καὶ ἡ μεταβολή του σὲ διατονικό, ἐκβολή.
- Δ΄. Στὴν εὐρωπαϊκὴ μουσικὴ δὲν ὑπάρχουν γένη μὲ τὴν ἔννοιά τους στὴν ἀρχαία ἑλληνικὴ καὶ τὴ βυζαντινὴ μουσική. Ἡ συγκεκραμένη της κλῖμαξ (σελ. 84), ἀνάλογα μὲ τὴν πορεία τῶν τόνων της, δημιουργεῖ δύο τρόπους, τὸν μείζονα (magiore) καὶ τὸν ἐλάσσονα (minore).

## ΚΕΦΑΛΑΙΟΝ ΙΕ΄

### ΟΙ ΧΡΟΕΣ

251. Οἱ διάφορες μορφὲς πού, μὲ τὴ διαρκὴ ἀλλοίωσι ἑνὸς ἢ περισσοτέρων φθόγγων, μπορεῖ νὰ πάρη ἡ διατονικὴ κλῖμαξ καὶ ποὺ δὲν μποροῦν νὰ καταταχθοῦν στὰ τρία γένη τῆς μουσικῆς γιατὶ δὲν μᾶς δίνουν τὰ χαρακτηριστικά τους τετράχορδα, ἀποδίδουν διάφορα, ὅπως εἶναι εὐνόητο, ἀπὸ ἐκείνην, σὰν ἀποχρώσεις της, ἀκούσματα, ὀνομάζονται χρόες.

Στή βυζαντινή μουσική, οἱ χρόες δὲν σχηματίζουν πλήρεις κλίμακες σὰν τὶς κλίμακες τῶν τριῶν γενῶν ἀλλὰ προκύπτουν μὲ τὴν διαρκὴ ἀλλοίωσι δύο φθόγγων ἐνὸς διατονικοῦ πενταχόρδου ἐνῶ οἱ ἄλλοι φθόγγοι τῆς κλίμακος παραμένουν φυσικοί.

Οἱ χρόες παρασημαίνονται μὲ εἰδικά, ὅπως καὶ οἱ φθορές, σημεῖα καὶ ἐνεργοῦν, ὅπως καὶ ἐκεῖνες, μὲ δέσι καὶ λύσι (§ 245).

Ο φθόγγος, δηλ. ὁποιουδήποτε γένους ποὺ δέχεται τὸ σημεῖο μιᾶς χρόας διατηρώντας τὸ ὕψος (τὴν ὀξύτητά) του, παίρνει τὸ ὄνομα τοῦ φθόγγου τῆς χρόας καὶ ἡ ἀνάβασις καὶ κατάβασις, ἐφόσον περιορίζονται στὴν ἔκτασι τοῦ πενταχόρδου τῆς χρόας, γίνονται μὲ τοὺς τόνους ποὺ ἀπαιτεῖ αὐτή.

Όταν ὅμως ἡ μελωδία ἐκτείνεται καὶ σὲ φθόγγους ἔξω ἀπὸ τὸ πεντά-χορδο τῆς χρόας, αὐτοὶ εἶναι πάντοτε φυσικοί.

Τὴ δέσι πού, κατ' αὐτὸν τὸν τρόπο, πραγματοποιεῖται, ἀκολουθεῖ λύστις μὲ φθορὰ ἢ ἄλλη χρόα.

Εύχρηστες καὶ συνηθισμένες χρόες είναι:

ό Ζυγός 💉 τό Κλιτὸν 🗷 καὶ ἡ Σπάθη - ο κ

### α δ ΖΥΓΟΣ σ

252. Ό Ζυγός παράγεται ἀπὸ τὸ διατονικὸ πεντάχορδο Nη - Δι (τῆς Μέσης) μὲ δίεσι τῶν φθόγγων Πα καὶ Γα ἔτσι ποὺ ὁ ἐλάσσων τόνος Πα - Βου καθὼς καὶ ὁ μείζων Γα - Δι νὰ μειώνωνται σὲ ἡμιτόνιον ἔλαττον  $=\frac{25}{24}$  ἢ  $\frac{24}{25}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα ὲνᾶ, συγχρόνως, ὁ μείζων τόνος Nη - Πα μεγαλώνει σὲ ὑπερμείζονα ἐπίπεμπτο  $=\frac{6}{5}$  ἢ  $\frac{5}{6}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 18 τμήματα καὶ ὁ ἐλάχιστος βου - Γα, διπλασιαζόμενος, γίνεται κι' αὐτός, ὑπερμεί-

ζων  $=\frac{144}{125}$  ἢ  $\frac{125}{144}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 16 τμήματα ὅπως στὸ ἑξῆς συγκριτικὸ διάγραμμα.

| 8                             | , ς      | ) {              | ς ¢      | ) t         | <u> </u>                                            |
|-------------------------------|----------|------------------|----------|-------------|-----------------------------------------------------|
| Διατονικό<br>πεντάχορδο Νη-Δι | 12       | 10               | 8        | 12          | = 42 τμήματα                                        |
| δ Ζυγός                       | 18       | 4                | 1        | 6 4         | = 42 τμήματα                                        |
| ø                             | <u>5</u> | 2 <u>4</u><br>25 | <u>1</u> | 25<br>44 25 | $=\frac{2}{3}$ $\mu$ $\chi$ 0 $\xi$ 6 $\eta$ $\eta$ |
| OFIET THE XPOAT               | •        |                  | o        |             | đ.                                                  |
| MAPTYPIEZ                     | ζ        | <u> </u>         | β        | ······ 5··· | . Δ<br>, φ                                          |

Τὸ σημεῖο τοῦ  $\mathbf{Z}$ υγοῦ  $\boldsymbol{\varphi}$  γράφεται στοὺς φθόγγους  $\boldsymbol{\Delta}$ ι καὶ  $\mathbf{B}$ ου καὶ καταργεῖται, ὅπως εἴπαμε, μὲ ἄλλη, έπομένη, φθορὰ ἢ χρόα, ὅπως στὸ ἀκόλουθο παράδειγμα:

"Όπως ἐμφανίζεται στὸ παρατιθέμενο διάγραμμα καθώς καὶ στὸ παράδειγμά μας φαίνεται, οἱ μαρτυρίες τῶν φθόγγων τοῦ πενταχόρδου τοῦ Ζυγοῦ εἶναι  $\overset{\bullet}{\bigcap}$   $\overset{\pi}{\bigcap}$   $\overset{\bullet}{\bigcap}$   $\overset{\Gamma}{\bigcap}$   $\overset{\Delta}{\bigcap}$ 

Ο Δι δηλ. καὶ ὁ Βου ἔχουν μαρτυρικὸ σημεῖο, τὸ σημεῖο τῆς χρόας ,σ΄, οἱ ἀλλοιωμένοι φθόγγοι Πα καὶ Γα τὸ ς παρμένο ἀπὸ τὸ σύντονο ἢ σκληρὸ χρωματικὸ γένος καὶ ὁ Νη καθώς καὶ οἱ λοιποί, ἔζω τοῦ πενταχόρδου, φθόγγοι, σὰν φυσικοί, ἔχουν τὶς διατονικὲς μαρτυρίες.

Ο Ζυγός, μὲ τὸν ὑπερμείζονα τόνο  $\mathbf{Bov} - \mathbf{\Gamma} \mathbf{\alpha} = \frac{125}{144}$  μ. χορδῆς ἢ 16 τμήματα καὶ τοὺς έκατέρωθεν τόνους  $\mathbf{Ha} - \mathbf{Bov}$  καὶ  $\mathbf{\Gamma} \mathbf{\alpha} - \mathbf{\Delta} \mathbf{\iota}$  ἴσους μὲ ἡμιτόνιον ἔλαττον  $= \frac{24}{25}$  ἢ 4 τμήματα πλησιάζει τὸ χρωματικὸ γένος.

## β' τὸ ΚΛΙΤΟΝ 🗷

**253.** Τὸ Κλιτόν παράγεται, ὅπως καὶ ὁ Ζυγός, ἀπὸ τὸ διατονικὸ πεντάχορδο Νη - Δι (τῆς Μέσης) ἀλλὰ μὲ δίεσι τοῦ Βου κατὰ ἕνα κόμμα =  $\frac{81}{80}$  ἢ  $\frac{80}{81}$  μ. χορδῆς ἢ 2 τμήματα ( σ ) καὶ δίεσι τοῦ Γα κατὰ  $\frac{27}{25}$  ἢ  $\frac{25}{27}$  μ. χορδῆς ἢ 8 τμήματα ( 💍 )

Κατ' αὐτὸν τὸν τρόπο, ὁ ἐλάσσων τόνος Πα - Βου γίνεται μείζων  $\left(\frac{16}{15}\cdot\frac{81}{80}=\frac{9}{8}\ \ddot{\eta}\ \frac{8}{9}\ \mu$ . χορδῆς  $\ddot{\eta}$  12 τμήματα  $\right)$ , ὁ ἐλάχιστος τόνος Βου-Γα αὐξάνει σὲ ὑπερμείζονα  $=\frac{256}{225}\ \ddot{\eta}\ \frac{225}{256}\ \mu$ . χορδῆς,  $\ddot{\eta}$ , πρακτικά, 14 τμήματα  $\left(\frac{16}{15}\cdot\frac{81}{80}\cdot\frac{27}{25}=\frac{256}{225}\right)$  καὶ ὁ μείζων τόνος Γα - Δι μειώνεται σὲ ἡμιτόνιον ἕλαττον  $\left(\frac{9}{8}:\frac{27}{25}\right)=\frac{25}{24}$  πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα, ὅπως στὸ ἑξῆς συγκριτικὸ διάγραμμα.

| 2 9 £ 9 ¤                                                                                                    |    |     |     |             |                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----|-----|-----|-------------|-------------------------------------------------------------------------|--|--|--|--|
| <b>Δι</b> ατονικό<br>πεντάχο <b>ς</b> δο Νη-Δι                                                               | 12 | 10  | 8   | 12          | = 42 τμήματα                                                            |  |  |  |  |
| τό Ήχιτόν                                                                                                    | 12 | 12  | 1   | 4 4         | = 42 τμήματα                                                            |  |  |  |  |
| to significan                                                                                                | 8_ | 8 9 | 2 2 | 25<br>56 25 | $=\frac{2}{3} \text{ w. } \chi o \varrho \delta \tilde{\eta} \varsigma$ |  |  |  |  |
| 9     9     256     25     3       ΘΕΣΙΣ ΤΗΣ ΧΡΟΑΣ     3     3     3       ΜΑΡΤΥΡΙΕΙ     3     3     3     3 |    |     |     |             |                                                                         |  |  |  |  |

Τὸ σημεῖο τοῦ Κλιτοῦ 🗷 γράφεται στὸν Δι καὶ καταργεῖται μὲ ἄλλη, ἐπομένη, φθορὰ ἢ χρόα, ὅπως, στὸ ἀκόλουθο παράδειγμα:

# 

Όπως εμφανίζεται στὸ παρατιθέμενο διάγραμμα καὶ στὸ παράδειγμά μας φαίνεται, οἱ μαρτυρίες τῶν φθόγγων τοῦ πενταχόρδου τοῦ Κλιτοῦ εἶναι

Τοῦ τετραχόρδου, δηλ. Πα - Δι μαρτυρικὰ σημεῖα εἶναι τὰ ἀντίστοιχα τοῦ διατονικοῦ τετραχόρδου Νη - Γα καὶ ὁ Νη καθώς καὶ οἱ λοιποί, ἔξω τοῦ πενταχόρδου, φθόγγοι, σὰν φυσικοί, ἔχουν τὶς διατονικὲς μαρτυρίες.

<sup>2</sup>Επειδή τὸ τετράχορδο τοῦ Κλιτοῦ Πα - Δι μὲ τὸ μέγεθος καὶ τὴ διάταξι τῶν τόνων ποὺ περιέχει (12 - 14 - 4) συγγενεύει πολὺ μὲ τὸ ἐναρμόνιο γένος, ἡ χρόα αὐτὴ ὀνομάζεται καὶ δεύτερον ἐναρμόνιον ἢ ἡμίφθορον.

**254.** Ἡ Σπάθη παράγεται ἀπὸ τὸ διατονικὸ πεντάχορδο  $\Gamma \alpha$  - Νη΄ μὲ δίεσι τοῦ  $\Delta \iota$  κατὰ ἐλάχιστο τόνο= $\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8 τμήματα (  $\overset{*}{\Diamond}$  ) καὶ ὕφεσι τοῦ  $\mathbf{Z}\omega$  κατὰ  $\frac{48}{45}$  ἢ  $\frac{45}{48}$  μ. χορδῆς (ἴση, περίπου, μὲ ἕνα λεῖμμα) ἢ 6 τμήματα ( $\overset{*}{\wp}$ ).

Κατ' αὐτὸν τὸν τρόπο, ὁ μείζων τόνος  $\Gamma \alpha$  - Δι γίνεται ὑπερμείζων ἐπίπεμπτος  $\left(\frac{9}{8} \cdot \frac{16}{15} = \frac{6}{5} \right) \frac{5}{6}$  μ. χορδῆς ἢ 20 τμήματα)  $\frac{1}{2}$  ἐνῶ, συγχρόνως, ὁ μείζων τόνος  $\frac{1}{2}$  Αι - Κε μειώνεται σὲ  $\frac{405}{384}$  ἢ  $\frac{384}{405}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 4 τμήματα καὶ ὁ ἐλάσσων τόνος  $\frac{1}{2}$  Κε - Ζω΄ μειώνεται σὲ  $\frac{1}{2}$  ἢ  $\frac{24}{25}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται κι'αὐτὸς σὲ 4 τμήματα ἐνῶ, συγχρόνως, ὁ ἐλάχιστος τόνος  $\frac{1}{2}$  Ζω΄ -  $\frac{1}{2}$  γίνεται ὑπερμείζων  $\frac{768}{675}$  ἢ  $\frac{675}{768}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 14 τμήματα, ὅπως στὸ ἑξῆς συγκριτικὸ διάγραμμα.

| ę                             | <u> </u> | <u> </u>   | ) !      | ξ ς        | <b>2</b>                                                         |  |  |  |  |
|-------------------------------|----------|------------|----------|------------|------------------------------------------------------------------|--|--|--|--|
| Διατονικό<br>πεντάχορδο Γα-Νη | 12       | 12         | 10       | 8          | = 42 τμήματα                                                     |  |  |  |  |
| ή Σπάθη<br>— Οι               | 20       | 4          | 4 1      | 4          | = 42 τμήματα                                                     |  |  |  |  |
|                               | _ 5<br>6 | 384<br>405 | 24<br>25 | 675<br>768 | $=\frac{2}{3}\psi \cdot \chi \circ \varrho \delta \tilde{n}_{j}$ |  |  |  |  |
| ΘΕΣΙΣ ΤΗΣ ΧΡΟΑΣ               |          |            |          |            |                                                                  |  |  |  |  |

Τὸ σημεῖο τῆς Σπάθης -οι γράφεται στὸν Κε καὶ καταργεῖται, ὅ-πως καὶ τὰ σημεῖα τοῦ Ζυγοῦ καὶ τοῦ Κλιτοῦ, μὲ ἄλλη, ἐπομένη, φθορά ἢ χρόα, ὅπως, καὶ στὸ ἀκόλουθο παράδειγμα:

## Ρυθμός ΟΙΙ 🖫

Όπως ἐμφανίζεται στὸ παρατιθέμενο διάγραμμα καὶ στὸ παράδειγμά μας φαίνεται, οἱ μαρτυρίες τῶν φθόγγων τοῦ πενταχόρδου τῆς Σπάθης εἶναι :

Οἱ φυσικοὶ δηλ. φθόγγοι  $\Gamma \alpha$  καὶ  $K \epsilon$  καθώς καὶ οἱ λοιποί, ἔξω τοῦ πενταχόρδου, φθόγγοι ἔχουν διατονικὲς μαρτυρίες, τοῦ  $\Delta \iota$  εἶναι τὸ  $\sim$  τοῦ συντόνου ἢ σκληροῦ χρωματικοῦ γένους ποὺ εἶναι ἐνδεικτικὸ ἀνιόντος ἡμιτονίου ἢ μικροτέρου διαστήματος καὶ οἱ φθόγγοι  $Z \omega'$  καὶ  $N \eta'$  μαρτυροῦνται μὲ τὰ ἀντίστοιχα σημεῖα τῶν φθόγγων τοῦ ἐναρμονίου γένους  $\Omega \gamma$  καὶ  $\partial \dot{\zeta}$ .

"Αν ἐπεκταθῆ τὸ πεντάχορδο αὐτὸ μὲ τὴν προσθήκη τοῦ **Βου** καὶ τοῦ **Πα**΄ ὅπως στὸ ἑξῆς διάγραμμα:



γίνεται φανερὸ πώς, ή Σπάθη μὲ τοὺς φθόγγους Βου - Γα - Δι - Κε δίνει

ἄκουσμα χρωματικό καὶ μὲ τοὺς φθόγγους Κε-Ζω'-Νη'-Πα' μετέχει τοῦ ἐναρμονίου γένους.

Σὲ μερικὲς περιπτώσεις τὸ σημεῖο τῆς Σπάθης γράφεται καὶ στὸ φθόγγο Γα ὁπότε ὅπως, στὸ έπόμενο συγκριτικὸ διάγραμμα καὶ τὸ παράδειγμα ποὺ ἀκολουθεῖ, φαίνεται:

α΄. ὁ φθόγγος  $\mathbf{Bov}$  εἴναι ἐν διέσει κατὰ ἕνα κόμμα  $\frac{81}{80}$  ἢ  $\frac{80}{81}$  μ. χορδῆς ἢ 2 τμήματα (σ) μὲ ἀποτέλεσμα ὁ ἐλάχιστος τόνος  $\mathbf{Bov}$  -  $\mathbf{\Gamma}$ α νὰ μειώνεται σὲ  $\lambda$ εῖμμα =  $\frac{256}{243}$  ἢ  $\frac{243}{256}$  μ. χορδῆς ἢ 6 τμήματα  $\left(\frac{16}{15} \colon \frac{81}{80} = \frac{256}{243}\right)$  καὶ ὁ ἐλάσσων τόνος  $\mathbf{\Pi}$ α -  $\mathbf{Bov}$  νὰ γίνη μείζων  $\left(\frac{16}{15} \cdot \frac{81}{80} = \frac{9}{8} \right)$  ἢ  $\frac{8}{9}$  μ. χορδῆς ἢ 12 τμήματα) ·

β΄. ὁ φθόγγος Δι εἶναι ἐν ὑφέσει κατὰ ἡμιτόνιον ἕλαττον  $\frac{25}{24}$  ἢ  $\frac{24}{25}$  μ. χορδῆς ἢ 4 τμήματα (  $\wp$  ) μὲ ἀποτέλεσμα ὁ μείζων τόνος Γα - Δι νὰ μειώνεται σὲ ἐλάχιστο τόνο  $\left(\frac{9}{8}:\frac{25}{24}=\frac{27}{25}=\frac{16}{15}$  ἢ  $\frac{15}{16}$  μ. χορδῆς ἢ 8τμήματα) καὶ ὁ μείζων τόνος Δι - Κε νὰ γίνη ὑπερμείζων  $\left(\frac{9}{8}\cdot\frac{25}{24}\right)=\frac{75}{64}$  ἢ  $\frac{64}{75}$  μ. χορδῆς πού, πρακτικά, ὁρίζεται σὲ 16 τμήματα καὶ

γ΄. ὁ φθόγγος  $\mathbf{Z}\mathbf{\omega}$ ΄ ὅταν κατὰ τὴν ἀνάβασι δὲν τὸν ὑπερβαίνουμε καὶ στὴν κατάβασι τὸν περνᾶμε, εἶναι κι' αὐτός, ὅπως καὶ στὸ κανονικὸ πεντάχορδο τῆς  $\mathbf{\Sigma}$ πάθης, ἐν ὑφέσει κατὰ  $\frac{48}{45}$  ἢ  $\frac{45}{48}$  μ. χορδῆς (ἴση, περίπου, μὲ ἕνα λεῖμμα) ἢ 6 τμήματα (  $\mathbf{\wp}$  ).

| ۸                               | ) { | ٠          | >                     | à               | ბ            | ξ <b>Q</b> | , ( | 9           |
|---------------------------------|-----|------------|-----------------------|-----------------|--------------|------------|-----|-------------|
| Διατονική<br>κχιμαξ<br>πα – πα΄ | 10  | 8          | 12                    | 12              | 10           | 8          | 12  |             |
| <del>-</del> <b>A</b> L         | 12  | 6          | 8                     | 16              | 4            | 14         | 12  |             |
| Ta Ta                           | 8 9 | 243<br>256 | 15 16                 | <u>64</u><br>75 | 24<br>25     | 675<br>768 | 8 9 |             |
| BERIX THE XPOAR MAPTYPIER       | Ĩ   | -€         | <del>ે</del><br>દૂર્ય | فر              | % z′<br>q iv | ,<br>,     | ,   | च<br>४<br>व |

## Ρυθμός ΟΙΙΙ 🦼

Καὶ ὅχι, ὅπως θὰ ἠταν μὲ τὴ πραγματικὴ μετάθεσι τοῦ  $\mathbf{K}$ ε τοῦ πενταχόρδου τῆς Σπάθης στὸν  $\mathbf{\Gamma}$ α, ποὺ δὲν συναντᾶται:

Σπανιώτατα τὸ σημεῖο τῆς Σπάθης βρίσκεται στὸν Νη΄. Στὴν περίπτωση αὐτὴ ἐνεργεῖ ἀπλῶς σὰν δίεσι στὸν Ζω΄ καὶ σὰν ὕφεσι στὸν Πα΄

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΊΑ ΤΙΣ ΧΡΟΕΣ

- Α΄. Κατὰ τὸν Χρύσανθο (Θεωρητικὸν μέγα τῆς μουσικῆς § 275) «ἀπὸ μιᾶς διατονικῆς κλίμακος τοῦ διαπασῶν εἶναι δυνατὸν νὰ παράγωνται χρόαι 740».
- Β΄. Στὴν ἀρχαῖα ἑλληνικὴ μουσικὴ χρόα ὀνομαζόταν εἰδικὴ διαίρεσις τῶν τετραχόρδων ποὺ δὲν ἀντιστοιχοῦσαν καθόλου μὲ τὰ τετράχορδα τῶν τριῶν γενῶν, τοῦ διατονικοῦ, χρωματικοῦ καὶ ἐναρμονίου.

### ΚΕΦΑΛΑΙΟΝ ΙΣΤ΄

### ΜΕΛΩΛΙΚΗ ΕΛΞΙΣ

255. Ύπάρχουν περιπτώσεις πού, ώρισμένοι φθόγγοι τῶν διαφόρων κλιμάκων, ἀνάλογα μὲ τὴν πλοκὴ τῆς μελωδίας καὶ ἄλλα ώρισμένα κύρια χαρακτηριστικά της, μετακινοῦνται ὑψηλότερα ἢ χαμηλότερα, κατὰ δύο ἢ περισσότερα τμήματα, ἀπὸ τὸ καθωρισμένο ὕψος τους δὲν εἶναι δηλ. σταθεροί. Τὸ φαινόμενο αὐτὸ ἀποτελεῖ τὸν νόμο τῆς μελωδικῆς ἕλξεως.

Έλξι παθαίνουν μόνον οἱ φερόμενοι (§ 224) καὶ οἱ ὑπερβάσιμοι φθόγγοι. $^1$ 

"Αν καί, στὴ θεωρία τῶν ὀκτὼ ἤχων² συμπεριλαμβάνοντοι οἱ διάφορες μελωδικὲς ἔλξεις ποὺ παθαίνουν ὡρισμένοι φθόγγοι τῶν κλιμάκων τους, ἐν τούτοις, εἶναι πιὸ σωστὸ νὰ παρασημαίνωνται αὐτὲς μὲ τὴν σκαὶ τὴν ρ.

Ή μελωδική ελξις είναι τὸ κυριώτερο στοιχεῖο ποὺ διαμορφώνει τὸ ἰδιαίτερο ὕφος <sup>3</sup> τῆς ἐκκλησιαστικῆς μουσικῆς καί, ὅπως μᾶς πληροφορεῖ ὁ ἱερομόναχος Γαβριὴλ Σευῆρος στὸ ἐγχειρίδιό του περὶ ἐκκλησιαστικῆς μουσικῆς μουσικῆς (1572), ἴσχυε καὶ στὴν παλαιοτέρα βυζαντινὴ μουσική.

Ο νόμος τῆς μελωδικῆς ελξεως ἴσχυε, ἐπίσης καὶ στὴν ἀρχαία έλληνική μουσική.

Στὸν ἴδιο βαθμό μὲ τὴ βυζαντινὴ μουσική, ἡ μελωδικὴ ἕλξις ἰσχύει καὶ στὰ δημοτικά μας τραγούδια.

<sup>1.</sup> Βλ. Κεφ ΙΘ΄ Τὰ χαρακτηριστικά τῶν ἤχων.

<sup>2.</sup> Βλ. Κεφ. ΙΘ΄

<sup>3.</sup> Ύφος στή μουσική είναι ὁ ξεχωριστός τρόπος τῆς μουσικῆς ἐκφράσεως μὲ οὐσιώδη χαρακτῆρα τὸ βαθμὸ τῆς πιστότητος ποὺ μ' αὐτή διερμηνεύονται οἱ σκέψεις καὶ τὰ συναισθήματα τοῦ συνθέτου.

### ΤΟ ΗΘΟΣ ΤΗΣ ΜΕΛΩΛΙΑΣ

256. Ἐγνωρίσαμε πὼς ἡ δύναμις ποὺ περικλείεται στὸ ρυθμὸ μὲ τὶς διάφορές του μορφὲς καὶ ποὺ ἐπενεργώντας στὸ ψυχικό μας κόσμο τὸν τροποποιεῖ ἀνάλογα καὶ προκαλεῖ διάφορα συναισθήματα ὀνομάζεται ἡθος τοῦ ρυθμοῦ (σελ. 59).

Ή θαυμαστή αὐτή δύναμις τοῦ ρυθμοῦ ἐνυπάρχει καὶ στή μελωδία μὲ τὶς διάφορες μορφὲς τῆς συνθέσεώς της καὶ ὀνομάζεται ἤθος τῆς μελωδίας.

Έτσι στή μουσική, ήθος ρυθμοῦ καὶ ήθος μελωδίας, κατάλληλα συνταιριασμένα καὶ ἀλληλοσυμπληρωμένα προκαλοῦν καὶ μεταλλάσσουν τὶς ψυχικὲς διαθέσεις τῶν ἀκροατῶν καὶ συντελοῦν στὴ διάπλασι καὶ διαμόρφωσι τοῦ χαρακτῆρος καὶ τοῦ ήθους των. Γι' αὐτό, ὁ Κλήμης ὁ 'Αλεξανδρεὺς (220 μ.Χ.) γράφει «'Απτέον ἄρα μουσικῆς εἰς κατακόσμησιν ήθους καὶ καταστολὴν» (Στρωμ. ΙΑ΄, 89).

 $^{\prime\prime}O\pi\omega\varsigma$  τὸ ήθος τοῦ ρυθμοῦ, τὸ ἴδιο καὶ τὸ ήθος τῆς μελωδίας διακρίνεται :

- α΄ σὲ διασταλτικό, ὅταν ἡ μελωδὶα ἐμπνέει ἐνθουσιασμό, φρονήματα γενναιότητος καὶ ἀνδρείας καὶ ἀποδίδει ἔννοιες μεγαλοπρεπείας, ψυχικῆς ἐξάρσεως καὶ ἄλλων ἀναλόγων ἰδιοτήτων.
- β΄ σὲ συσταλτικό, ὅταν ἀποδίδοντας ἔννοιες ἀγάπης, οἴκτου, ταπεινώσεως, μετανοίας καὶ πένθους προκαλεῖ ψυχικὴ συστολὴ καὶ ταπείνωσι καὶ
- γ΄ σὲ ἡσυχαστικό, ὅταν διερμηνεύει καὶ προκαλεῖ συναισθήματα γαλήνης, εἰρήνης καὶ ψυχικῆς ἠρεμίας.

Γενικά στη μελωδία, οἱ ύψηλοὶ φθόγγοι ἀποδίδουν ήθος διασταλτικόν καὶ οἱ χαμηλοὶ συσταλτικὸν ἢ ἡσυχαστικόν.

Σπουδαιοτάτη εἶναι, ἐπίσης, γιὰ τὴν ἀπόδοσι τοῦ ἐπιθυμητοῦ ἤθους, ἡ κατάλληλη χρησιμοποίησις καὶ ἐναλλαγὴ τῶν τονιαίων διαστημάτων, δηλ. τῶν τριῶν γενῶν καὶ τῶν διαφόρων μεταβολῶν.

## MEPOΣ A'



Στὸ Β΄ μέρος τοῦ βιβλίου αὐτοῦ (σελ. 99 - 190) περιλήφθηκαν μελωδικὲς ἀσκήσεις, στὸ διατονικὸ γένος μὲ τὸ διαπασῶν σύστημα. Ἡδη, ὕστερα ἀπὸ ὄσα, στὸ προηγούμενο Γ΄ μέρος, ἐκτέθηκαν γιὰ τὰ συστήματα, τὰ τρία γένη τῆς μουσικῆς καὶ τἰς χρόες, τὸ Δ΄ αὐτὸ μέρος ἀφιερώνεται στὶς σχετικὲς καὶ ἀπαραίτητες γιὰ τὰ θέματα αὐτὰ ἀσκήσεις. Ἔτσι, τὸ μέρος τοῦτο ἀποτελεῖ, οὐσιαστικά, τὴν συνέχεια τοῦ Β΄ μέρους καὶ τὸ ἀναγκαῖο συμπλήρωμα γιὰ τὴν ὁλοκλήρωσι τῆς μεθόδου τῶν μελωδικῶν ἀσκήσεών μας.

### ΚΕΦΑΛΑΙΟΝ ΙΖ΄

### Ι. ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΤΟΝΙΚΑ ΣΥΣΤΗΜΑΤΑ

## 256. Πεντάχορδο σύστημα ή τροχός

(§ 219, 221, σελ. 197 Παρατ. Α΄ § 234, 239, 242, 244, 245, 248)

305. 'Αμιγές πεντάχορδο σύστημα ἢ τροχὸς

Ρυθμός ΟΙΙΙ 🦼

306. Πεντάχορδο σύστημα καὶ μεταβολή στὸ διαπασῶν

Τονικός ρυθμός 🦪

 $\frac{\pi}{q}$  ο τι αυ τος ε στι ι ιν ο ο Θε ο ο ος  $\frac{\pi}{\eta}$  η η  $\frac{\pi}{\eta}$   $\frac$ 

307.  $\frac{1}{9}$   $\frac{1}{8}$   $\frac{1}{8}$ 

(306 καὶ 307. ᾿Απὸ τὸ ᾿Αναστασιματάριον Ἰ. Πρωτοψάλτου)

308. π ο τι συ ει ει ει μο ο νο ο ος Α α γι

ι ι ος η συ ει ει ει μο ο ο νο ο ος Κυ

υ ρι ι ι ος η Ι η σους Χρι ι στος η ει εις
δο ο ο ο ο ο ξαν η Θε ου Πα α τρο ος Α α

μη ην η

('Απὸ τὴν τετράφωνο δοξολογία 'Ιακ. Πρωτοψάλτου)

ο ο ο ο θυ υ υ υ υ υ υ υ ν και μα κρο θυ μον  $\ddot{q}$  προ ο ο ο ο ος τοι οι οι οις  $\ddot{q}$  α α α αυ τω ω ω ω ω ω  $\ddot{q}$  ('Απὸ τὸ ἀργὸ ἰδιόμελο «Θαυμαστὴ» 'Ιακ. Πρωτοψάλτου)

#### 258. Τετράχορδο σύστημα ή τριφωνία

(§ 220, 221, σελ. 197 Παρατ Β΄, § 234, 239, 242, 244, 245, 248)

#### Ρυθμός ΟΙΙΙ 🦪

314. \( \frac{1}{2} = \frac{1}

### Τονικός ρυθμός 🦼

315. Την σο φι ι αν και λο ο γον εν σοι γα

στρι θ συλ λα βου ου σα α φλε ε κτως Μη τηρ Θε

 $\frac{1}{00}$   $\frac{4}{0}$   $\frac{4}{10}$   $\frac{4}{10}$   $\frac{1}{10}$   $\frac{2}{10}$   $\frac{4}{10}$   $\frac{4}{10}$ |  $\frac{3}{\text{μελ λω πα}}$  ρι στα σθαι προ προ σω που του ου κτι στου  $\frac{1}{2}$   $\frac{2}{1}$   $\frac{2$ (Αὐτόμελον Κάθισμα)

κα αυ σε  $\frac{3}{6}$  δυ να α α μει δε ε κρει ειτ το ο  $\frac{3}{6}$  νι ι  $\frac{3}{6}$  πε ρι σω  $\frac{3}{6}$  θεν τας του ου ου τους ι  $\frac{2}{6}$  δω ων  $\frac{3}{6}$  τω  $\frac{3}{6}$  η μι ου ουρ γω και  $\frac{2}{6}$  τη α  $\frac{2}{6}$  νε βο ο α  $\frac{3}{6}$  οι παι δες ευ λο ο γει ει ει τε  $\frac{3}{6}$  λα ος υ περ υ  $\frac{3}{6}$  ψου ου τε ε ει εις πα αν τα ας τους αι  $\frac{3}{6}$  ω ω να α α α ας  $\frac{3}{6}$   $\frac{3}{6}$ 

(Η΄ 'Ωδή τῶν ἀργῶν Καταβασιῶν «'Αρματηλάτην Φαραώ».'Απὸ τὸ 'Αναστασιματάριον 'Ιωάν. Πρωτοψάλτου).

#### ΙΙ. ΑΣΚΗΣΕΙΣ ΣΤΟ ΧΡΩΜΑΤΙΚΟ ΓΕΝΟΣ

#### 259. Μαλακό χρωματικό γένος

(§ 229a', 235a', 240a', 242, 244, 245)

318. 
\[
\langle - \frac{\pi}{\pi} - \frac{\pi}{

1250 4

Γράφεται:

Ρυθμός ΟΙΙ 🦷

320.

#### Τονικός ρυθμός χ

322. ΔΑγ γε λι και δυ να α α μεις ε πι ι το

μνη μα σου και οι φυ λασ σον τες α πε νε κρω θη

σαν και ι στα το Μα ρι α εν τω τα φω ζη

του σα το α χραν τον σου σω μα ε σκυ λευ σας τον

Α δην μη πει ρα σθεις υπ αυ του υ πην τη σας

τη Παρ θε νω δω ρου με νος την ζω ην ο ο α να

στας εκ των νε κρων Κυ υ ρι ε δο ξα α σοι οι ς (Προπαρασκευή τῆς ἀσκήσεως αὐτῆς ἔγινε μὲ τὴν 278)

323.  $\chi \stackrel{\Delta}{\sim} \Pi\alpha \quad \alpha \quad \alpha \quad \alpha \quad \pi \text{ vo o} \quad \eta \quad \alpha \text{ 1} \quad \text{ ve } \quad \sigma\alpha \quad \alpha \text{ tw}$   $\uparrow \text{ tov} \quad \text{Ku} \quad \text{u} \quad \text{u} \quad \text{pi} \quad \text{ov} \quad \overset{3}{\sim} \quad \text{al} \quad \text{vel} \quad \text{te tov} \quad \text{Ku} \quad \text{pi} \quad \text{ov}$   $\downarrow \text{EK} \quad \tau \omega \quad \omega \quad \omega \text{v} \quad \text{ou} \quad \text{ou} \quad \text{ou} \quad \text{pa} \quad \alpha \quad \alpha \quad \text{vov} \quad \overset{3}{\sim} \quad \text{al} \quad \text{vel} \quad \text{el el el}$   $\uparrow \text{ te} \quad \alpha \quad \alpha \text{u} \quad \text{tov} \quad \varepsilon \quad \varepsilon \quad \text{ev} \quad \text{tol} \quad \text{ololg} \quad \text{u} \quad \text{u} \quad \text{u} \quad \text{u} \quad \text{ov}$   $\downarrow \text{Te} \quad \alpha \quad \alpha \text{u} \quad \text{tov} \quad \varepsilon \quad \varepsilon \quad \text{ev} \quad \text{tol} \quad \text{ololg} \quad \text{u} \quad \text{u} \quad \text{u} \quad \text{ov}$   $\downarrow \text{OE} \quad \varepsilon \quad \varepsilon \quad \text{ev}$   $\downarrow \text{Chaò tò 'Avastasihatáplov 'Iwávvou Πρωτοψάλτου}$ 

324.

Τρι η με ρος α α α νε ε στης Χρι ι

στε ε ε εκ τα φου κα θω ω ως γε ε ε

γρα α α α πται ε συ νε γει ει ει ρας το ον
προ πα α το ο ο ρα α η η η μων ε

δι ι ι ι ο ο ο σε και αι αι δο ξα α α α

ζει ς το γε νος των αν θρω ω ω πων ς και α νυ μνει ει σου τη η ην Α α να α στα α (Αργόν αὐτόμελον. Εἰρμολόγιον Ἰωάννου Πρωτοψάλτου)

 $= \int_{\mathbb{R}^{3}} \int$ ξα α α α α α προ ος σε ε ς ει ει σα νη η η η η η σ της δε η η η η η η η ('Απὸ τὸ ἀργὸν Κεκραγάριον 'Ιακώβου Πρωτοψάλτου)

### 260. Σύντονο ή σκληρό χρωματικό γένος

(§ 229B', 235B', 240B', 244, 545)

327.  $\pi \stackrel{\diamond}{=} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} |\stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} |\stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} |$ 

Γράφεται:

#### Τονικός ρυθμός χ

328.  $\pi$  ε λε η σον η μας τους πται ον τας σοι πολ  $\lambda$   $\lambda$   $\alpha$  καθ ε κα στην  $\omega$  ραν  $\omega$  Χρι στε μου  $\lambda$  και  $\lambda$  δος προ τε λους τρο πους του με τα νο ει ειν σοι  $\lambda$  ('Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

('Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

330.  $\frac{\pi}{\kappa} \frac{1}{\kappa \alpha \theta} = \frac{1}{\kappa \alpha} \frac{1}{\sigma \pi} \frac{1}{\eta \eta} \frac{1}{\eta$ 

αι νε ε ε σω το ο νο ο ο μα α α

σου ου εις τον αι ω ω ω ω να α και εις

τον αι ω ω να α του ου ου αι αι ω νο ος

('Απὸ τὴν ἀργὴ δοξολογία 'Ιακώβου Πρωτοψάλτου)

331.  $\underset{\alpha}{\Delta} \stackrel{3}{\sim} \stackrel{3}{\sim} \stackrel{7}{\alpha} \stackrel{2}{\alpha} \stackrel{2}{\alpha} \stackrel{3}{\alpha} \stackrel{7}{\alpha} \stackrel{7}{\alpha$ المحرب عضاء فرواط المعرب المحرب المحر  $\left| \frac{1}{2} \left( \frac{1}{2} \right) \right| = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac$ 

#### ΙΙΙ. ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΝΑΡΜΟΝΙΟ ΓΕΝΟΣ

#### 261. Διαπασῶν σύστημα

(§ 230, 231, 236, 241, 244, 245)

#### Ρυθμός ΟΙΙΙ 🦪

> 11 | × 10 Γράφεται: > " | ~ 23 Τονικός ρυθμός 🛴 333.  $\frac{2}{27} \frac{2}{20} \frac{4}{20} = \frac{1}{20} \frac{1}{20} = \frac{1}{20} \frac{1}{20} = \frac{1}{20} =$ το ο φω ως δο ξα α εν υ ψι ι στὸι οις Θε ε

334. 
$$\frac{2}{2^{3}}$$
  $\frac{3}{4}$   $\frac{1}{2^{3}}$   $\frac{3}{4}$   $\frac{3}{4}$ 

## **262.** Τετράχορδο σύστημα η τριφωνία (§ 236, 241, 244, 245, 248β')

### Τονικός ρυθμός 🧏

> (Ό Είρμὸς τῆς Γ΄ ᾿Ωδῆς τῆς Πεντηκοστῆς— Είρμολόγιον Ἰωάννου Πρωτοψάλτου).

337. 77 Thy  $\omega$  ration of the talk of the Harmonian in the Harmonian in

προ σα γω γω ε πα α ξι ον ἢ τι δε ο νο

μα σω ω σε α πο ρω ω και ε ξι στα μαι ἢ δι

ο ως προ σε τα γην βο ω σοι χαι αι ρε η

Κε χα ρι τω με νη η η (Αυτόμελον Κάθισμα)

(338, 339. 'Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

340.  $\frac{2}{\sqrt{7}} \frac{\sqrt{9}}{\sqrt{10}} \frac{\sqrt{4}}{\sqrt{6}} \frac{\sqrt{6}}{\sqrt{10}} \frac{\sqrt$ 

341.  $\frac{4}{q}$  Δο ο ο ο ξα Πα τρι ι ι ι και αι Υι υι  $\frac{2}{2}$   $\frac{9}{4}$   $\frac{1}{4}$   $\frac{1}{4}$ 

344. 
$$\frac{\rho}{\sqrt{2}}$$
  $\frac{1}{\sqrt{2}}$   $\frac{\pi}{\sqrt{2}}$   $\frac{\pi}{\sqrt{2}}$ 

(\*Απὸ τὸ Δόξα τοῦ Πολυελέου «\*Επὶ τῶν ποταμῶν Βαβυλῶνος» Χουρμουζίου Χαρτοφύλακος)

#### ΙΥ. ΑΣΚΗΣΕΙΣ ΜΕΤΑΒΟΛΩΝ

#### α΄ ΜΕΤΑΒΟΛΕΣ ΚΑΤΑ ΓΕΝΟΣ

# 263. Μεταβολή τοῦ διατονικοῦ γένους σὲ μαλακὸ χρωματικὸ καὶ τἀνάπαλιν

Τονικός ρυθμός χ

('Από 346—350. 'Από τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

351. Το πα α ρα κρι ι τω ω ω ω ω ω ω ω ω α α

Τὰ τρία τελευταία χρωματικά μέτρα τῆς ἀσκήσεως αὐτῆς βρίσκονται τὰ ἴδια καὶ στὸ σκληρὸ χρωματικὸ γένος (Βλ. ἄσκησι 358).

## 264. Μεταβολή τοῦ διατονικοῦ γένους σὲ σκληρὸ ἢ σύντονο χρωματικὸ καὶ τἀνάπαλιν

Τονικός ρυθμός 🦼

354. 
$$\frac{\pi}{q}$$
  $\frac{\pi}{\eta}$   $\frac{\pi}{\kappa\tau\tau}$   $\frac{\pi}{\sigma}$   $\frac{\pi}{\varsigma}$   $\frac{\pi}{\varsigma}$ 

358. 

Θ Μαι νο με νη ην κλυ δω ω νι Θ ψυ χο φθο

ο ο ρω ω σ Δε σπο ο τα Χρι ι στε Θ των

πα α α θων σ την θα α λα ασ σα αν κα τευ να

γε ε ε ε με ε ως ε ε ευ σπλα α α αγ χνο ο

ος Θ Θ

359.  $\frac{1}{\pi} = \frac{1}{\delta l} = \frac$ 

('Από 354-360, 'Από τό 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

(Πέτρου Πελοποννησίου, κατά σύντμησιν ὑπὸ Έμμ. Πρωτοψάλτου)

<sup>1.</sup> Στὴν ἄσκησι αὐτή ἡ λύσις τῆς πρώτης το ὡς ἐξῆς: Εν βου λη
η η α α σε ε ε βων ποὺ συναντᾶται στὰ μουσικά μας
βιβλία, εἰναι λάθος παρασημασμένη μὲ τὴν ξ στὸν ϐ ποὺ εἰναι Βου καὶ ὅχι φυσικός, ὅπως πρέπει.

<sup>1.</sup> Καὶ σ' αὐτὴ τὴν ἄσκησι, ἡ λύσις τῆς 🗢 στὰ μουσικά μας βιβλία εἶναι λάθος παρασημασμένη μὲ τὴν ἡ ἐπάνω στὸν ς ποὺ εἶναι Γα καὶ ὅχι φυσικὸς ὅπως πρέπει. Λείπει, δηλ. ἡ ρ ποὺ τοποθητήθηκε στὴν ἄσκησί μας Εἶναι, λοιπόν:

366.  $\frac{2}{2}$  Πε ρι  $\frac{2}{1}$   $\frac{3}{1}$   $\frac{2}{1}$   $\frac{3}{1}$   $\frac{2}{1}$   $\frac{1}{1}$   $\frac{$ 

('Από τὸ Κοινωνικόν «Σωμα Χριστού» Πέτρου Πελοποννησίου)

('Από τὴν τετράφωνο δοξολογία 'Ιακώβου Πρωτοψάλτου)

## 265. Μεταβολή τοῦ διατονικοῦ γένους σὲ ἐναρμόνιο καὶ τἀνάπαλιν

Τονικός ρυθμός 🦼

371.  $\frac{2}{\epsilon}$   $\frac{2}{\gamma \omega}$   $\frac{2}{\omega}$   $\frac{4}{\epsilon}$   $\frac{2}{\epsilon}$   $\frac{4}{\pi \alpha}$   $\frac{2}{\alpha}$   $\frac{4}{\kappa \upsilon}$   $\frac{2}{\kappa}$   $\frac{2}{\kappa}$   $\frac{4}{\kappa}$   $\frac{2}{\kappa}$   $\frac{2}{\kappa}$   $\frac{4}{\kappa}$   $\frac{2}{\kappa}$   $\frac{2}{\kappa}$   $\frac{4}{\kappa}$   $\frac{2}{\kappa}$   $\frac{2}{\kappa}$   $\frac{2}{\kappa}$   $\frac{4}{\kappa}$   $\frac{2}{\kappa}$   $\frac{$ 

('Απὸ τὸ Εἰρμολόγιον 'Ιωάννου Πρωτοψάλτου)

('Απὸ τὸ ἀργὸν ἰδιόμελον «Χαλινούς» 'Ιακώβου Πρωτοψάλτου)

374.  $\chi = \frac{3}{9} = \frac{1}{100} = \frac{1}{100}$ 

ξε ε ε το ον ξε ε ε ε ε ε ε νο ου ους το ο ο ον το τον ε εκ βρε ε φου ου ου ου ους το ('Απὸ τὸ ἀργὸν ἰδιόμελον «Τὸν ἡλιον κρύψαντα» Γερμανοῦ Νέων Πατρῶν)

376.  $\pi$   $\epsilon_{1C}$   $\kappa\alpha$   $\tau_{01}$   $\kappa_{1}$   $\epsilon_{1C}$   $\kappa\alpha$   $\epsilon_{1C}$   $\kappa\alpha$   $\epsilon_{1C}$   $\epsilon_{1C$ 

('Απὸ τὸ Κοινωνικὸν «'Εξελέξατο Κύριος» Πέτρου Πελοποννησίου)

377.  $\frac{4}{q}$  ε ε ε ε ε φρι ι ι ι ι ι ε ε φρι  $\frac{2}{\xi}$   $\frac{4}{\xi}$   $\frac{4}{\eta}$   $\frac{1}{\eta}$   $\frac{2}{\eta}$   $\frac{4}{\eta}$   $\frac{1}{\eta}$   $\frac{1}{\eta}$   $\frac{1}{\eta$ 

## 266. Μεταβολή του μαλακού χρωματικού γένους σὲ διατονικό καὶ τἀνάπαλιν

Τονικός ρυθμός 🛣

378.  $\frac{6}{6}$  εις την Γαλ λι λαι αι αι αν δρα α μει ει ει  $\frac{2}{6}$  ει ει ειν και αι  $\frac{2}{6}$  αι  $\frac{2}{6}$   $\frac{2}$ 

ρο ο ος  $\frac{7}{2}$  Αι κα τε ρι ι ι να α α α α  $\frac{2}{\alpha}$   $\frac{2}{\alpha}$ 

### 267. Μεταβολή του συντόνου ή σκληρού χρωματικού γένους σὲ διατονικὸ καὶ τὰνάπαλιν

Τονικός ρυθμός χ

381.  $\pi$  H o o ov two set ph vh ov Xpt t ot  $\pi$  H o o ov two set ph vh ov Xpt t ot  $\pi$  The photo  $\pi$  H o o ov two ove  $\pi$  E is  $\pi$  The photo  $\pi$  The photo

ο ο ο ραν ς αλ λα κα α τε ε στει ει ει λας τον τα ρα α χο ο ον αυ τω ων τη ης ψυ  $\frac{1}{\nu} \frac{1}{\nu} \frac{2}{\chi \eta \varsigma} \frac{\pi}{\pi} \frac{1}{\delta \epsilon_{1}} \frac{4}{\epsilon_{1}} \frac{1}{\epsilon_{1}} \frac{1}{\xi \alpha \varsigma} \frac{1}{\chi \epsilon_{1}} \frac{1}{\epsilon_{1}} \frac{1}{\epsilon_{1}}$ ρας και αι αι αι του ους πο ο ο ο δα α α ας τι τη της τρο φη η ης με ε τα λη η η  $|\underbrace{\frac{3}{\pi}}_{\text{Wel}} \underbrace{\frac{3}{\pi}}_{\text{Kal}} \underbrace{\frac{2}{\delta_{l}}}_{\text{\delta_{l}}} \underbrace{\frac{2}{\delta_{l}}}_{\text{A}} \underbrace{\frac{4}{\pi}}_{\text{We}} \underbrace{\frac{3}{\pi}}_{\text{W}} \underbrace{\frac{3}{\pi}}_{\text{W}} \underbrace{\frac{3}{\pi}}_{\text{W}} \underbrace{\frac{2}{\pi}}_{\text{W}} \underbrace{\frac{3}{\pi}}_{\text{W}} \underbrace{\frac{3}{\pi}}$  $| \stackrel{\smile}{\smile}_{\alpha\zeta}^2 \underset{\sigma}{\pi} | \stackrel{\smile}{\smile}_{\alpha\zeta}^4 ) \stackrel{\smile}{\smile}_{\alpha\zeta}^2 | \stackrel{\smile}{\smile}_{\alpha\zeta}^4 \underset{\varepsilon}{\longrightarrow}_{\alpha\zeta} | \stackrel{\smile}{\smile}_{\alpha\zeta}^4 \underset{\varepsilon}{\longrightarrow}_{\alpha\zeta}^5 | \stackrel{\smile}{\smile}_{\alpha\zeta}^4$  $3 \left[ \frac{2}{3} \right] 3 \left[ \frac{3}{3} \right] \left[ \frac{1}{3} \right] \left[ \frac{6}{3} \right] \left[ \frac{3}{3} \right] \left[ \frac{3}{3}$ 

(Τὸ Στ΄ Έωθινὸ Δοξαστικὸ — 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

('Απὸ τὴν ἀργὴ δοξολογία Γεωργίου Βιολάκη)

### 268. Μεταβολή του συντόνου ή σκληρού χρωματικού γένους σὲ ἐναρμόνιο καὶ τάνάπαλιν

Τονικός ρυθμός 🦼

386.  $\pi$   $\kappa\alpha\iota$   $\zeta\omega$   $\eta$   $\eta$   $\eta\varsigma$   $\chi o$  o  $\rho\eta$   $\eta$   $\gamma o\varsigma$   $\tau$ 

### 269. Μεταβολή τοῦ ἐναρμονίου γένους σὲ διατονικὸ καὶ τἀνάπαλιν

Τονικός ρυθμός 🦼

387.  $\ddot{q}$  και σαρ κο φο ο ο ο ρο ος ω ω ω ω φθη εν ε ξο ο ο δω ω Θε ε ε ος και με ε ε ε ε νει η πυ υ υ λη κε ε ε ε κλει ει σμε ε ε νη η  $\ddot{q}$  ('Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

### 270. Μεταβολή τοῦ ἐναρμονίου γένους σὲ μαλακὸ χρωματικὸ καὶ τὰνάπαλιν

Τονικός ρυθμός χ

388. π και α νε μνη σθη η σαν της πε ρι ι του ου

ου ου του γρα α φης μεθ ω ω ων και δι ι ων
και η μεις πι ι στευ σα αν τες δί α νυ μνου ου ου
ου ου ου ου με ε α νυ μνου ου με εν σε ε
τον ζω ο ο ο δο ο ο ο την Χρι ι στον ??

# 271. Μεταβολή το έναρμονίου γένους σὲ σύντονο ἢ σκληρὸ χρωματικὸ καὶ τἀνάπαλιν

Τονικός ρυθμός 🦎

389. 

1 δου σκο τι α και πρω ω ι και τι προς

το μνη η μει ει ει ον Μα ρι ι α ε στη κα

ας ηη πο λυ σκο ο ο το ος π ε ε χου

σα α α α α ται αις φρε ε σιν ηη

390. π δι α α πι στου ου ου ουν τες η οι οι οι οι Μα α α α α α θη η η οι Μα θη η ται αι γαι

αι αι αι η ο ω νει δι ι ζο ο ον το το το της κα α αρ δι ι ι ι α ας σκλη η η ρο ο ο αλ λα α α α τοις ση μει ει ει ει ει οις  $\ddot{q}$  (389 καὶ 390. 'Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

#### β' ΜΕΤΑΘΕΣΕΙΣ

(§ 247)

272 α΄ Μετάθεσις τοῦ Νη στὸν Πα  $\frac{\pi}{q} = \frac{2}{\sqrt{2}} \frac{\pi}{\sqrt{2}}$  καὶ  $\frac{\pi}{q} = \frac{2}{\sqrt{2}} \frac{\pi}{\sqrt{2}}$ 

Τονικός ρυθμός χ

391.  $\frac{1}{4}$  α πο λυ σον κρα α α α ζω ω ων ο ο ο  $\frac{1}{4}$  δου λο ος τω ω Δε ε ε σπο ο ο τη  $\frac{1}{4}$  (Κωνσταντίνου Πρίγγου Πρωτοψάλτου «'Ανοιγέσθω ή πύλη»)

(393 και 394. Χουρμουζίου Χαρτοφύλακος)

397.

το εκ του Πα α τρο ο ος εκ πο ρε ευ

ο ο ο α ο ο με ε πο ρευ ο ο με ε ε

νο ον χ΄ ('Απὸ τὰ «'Ανοιξαντάρια» Γεωργίου Ραιδεστηνοῦ)

#### β' Μετάθεσις τοῦ Πα στὸν Κε

Τονικός ρυθμός 🦼

401.  $\frac{2}{\delta \delta} = \frac{2}{\delta \delta} = \frac{4}{\delta \delta} = \frac{6}{\delta \delta} = \frac{2}{\delta \delta} = \frac{2}{\delta} = \frac{2}$ 

<sup>1. &</sup>quot;Όπως μᾶς είναι γνωστὸ (§ 248), μὲ τὴν μετάθεσι τοῦ **Πα** στὸν **Κ**ε (τῆς Μέσης) ἔχομε τὴν βάσι τοῦ α΄ ὑψηλοτέρου πενταχόρδου στὸ ὁμώνυμο σύστημα.

(402 καὶ 403. Χουρμουζίου Χαρτοφύλακος)

('Από τὸ δοξαστικὸ τοῦ 'Αγ. Ἰωάννου «'Ως τοῦ πνεύματος ἐραστὴς» Χουρμουζίου Χαρτοφύλακος)

406. 
$$\frac{\alpha}{\pi}$$
  $\frac{\Gamma}{\text{ou ou ou ou ou ou tog}} = \frac{2}{\text{otiv}} + \frac{1}{\pi}$ 

('Από τό δοξαστικό του 'Αγ. 'Ιωάννου «Δευτε μιμησώμεθα» Χουρμουζίου Χαρτοφύλακος)

#### δ΄ Μετάθεσις τοῦ Κε στὸν Δι

Τονικός ρυθμός 🦼

Τονικός ρυθμός 🦼

411. 

γω ω ω δε χ ευ φρα αν

| ο ο ο ο ο ο ο ο ο ο ο μαι q

('Απὸ τά «'Ανοιξαντάρια» Γεωργίου Ραιδεστηνού)

('Απὸ τὸ «'Εκλείποιεν» 'Ιωάννου Κλαδᾶ)

<sup>1. &</sup>quot;Οπως μᾶς είναι γνωστόν (§ 248), μὲ τὴν μετάθεσι τοῦ **Πα** στόν δι (τῆς Ύπάτης) ἔχομε τὴν βάσι τοῦ χαμηλοῦ πενταχόρδου στὸ δμώνυμο σύστημα.

414.  $\frac{1}{2}$   $\frac{1}{2}$ 

β' Μετάθεσις τοῦ Δι στὸν Νη  $\chi'$   $\zeta$   $\chi'$  καὶ  $\chi'$   $\zeta$   $\chi'$   $\chi'$   $\chi'$   $\chi'$   $\chi'$  Τονικὸς ρυθμὸς  $\chi'$ 

415. 
$$\Delta$$
 $K_{\mathcal{V}}$ 
 $V_{\mathcal{V}}$ 
 $V_{\mathcal{V}}$ 

422. 
$$\frac{1}{\sqrt{1}} = \frac{1}{\tau \eta \varsigma} = \frac{1}{\alpha} = \frac{1}{\tau \iota} = \frac{1}{\iota} =$$

423.  $\frac{1}{6}$  και κρι μα  $\frac{4}{70}$  ων σου α  $\frac{1}{6}$  υ υσ  $\frac{2}{6}$   $\frac{1}{7}$   $\frac{1}{15}$   $\frac{1}{6}$   $\frac{4}{6}$   $\frac{1}{6}$   $\frac$ 

#### $\gamma'$ ΜΕΤΑΒΟΛΕΣ ΚΑΤΑ ΓΈΝΟΣ ΜΕ ΜΕΤΑΘΈΣΕΙΣ (§ 245 $\gamma'$ , 247)

## 275. Μεταβολή τοῦ διατονικοῦ γένους σὲ μαλακὸ χρωματικὸ

('Από τη Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου)

428. 
$$\Delta$$
 ε ρε ρε ρε ε ρι $\Omega$  ρι ρε ε ε ρι  $\Omega$  ρε ε ρι  $\Omega$  ρε ε  $\Omega$  ('Από Χερουβικό Πέτρου Βυζαντίου)

430. Μετάθεσις τοῦ Δι στὸν Κε ἢ — — — ※ Τονικὸς ρυθμὸς Ζ

## 276. Μεταβολή του διατονικού γένους σὲ σύντονο ή σκληρό χρωματικό

432. Μετάθεσις τοῦ Πα στὸν Ζω

Τονικός ρυθμός 🦼

433. Μετάθεσις τοῦ Πα στὸν Νη ζ ς ς ς ζ

Τονικός ρυθμός 🦼

435. Μετάθεσις τοῦ Δι στὸν Πα q — ΔΔ π σ

Τονικός ρυθμός 🦼

('Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

436. π δι ο αι αν τι φα α α σεις της α σε βει ει ει ας Λ ('Απὸ τὴ Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου) 437. Μετάθεσις τοῦ Πα στὸν  $\Delta$ ι  $\ddot{\ddot{\eta}}$   $\leftarrow$   $\overset{\circ}{\leftarrow}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$  Τονικὸς ρυθμὸς  $\overset{\circ}{\checkmark}$ 

Δ κα θα ρι σμο ον τω ων πται αι σμα α α α ι των Δ

438.  $\kappa_{0}$   $\kappa_{0}$ 

440.  $\pi \sum_{\mathbf{x}} \mathbf{x} = \mathbf{x} = \mathbf{x}$   $\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$   $\mathbf{x} = \mathbf{x} = \mathbf$ 

(437-440. 'Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

442. 
$$\times$$
  $\varphi \alpha \alpha \alpha \tau \omega$   $\varphi \alpha \omega$   $\varphi \alpha \alpha \tau \omega$   $\varphi \alpha \omega$ 

## 277. Μεταβολή τοῦ διατονικοῦ γένους σὲ ἐναρμόνιο

445. Μετάθεσις τοῦ Γα στὸν Γα  $\frac{1}{2}$   $\frac{1}{2}$  Τονικὸς ρυθμὸς  $\frac{1}{2}$ 

$$\lambda \alpha = \begin{cases} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2$$

('Απὸ τὸ «Δοῦλοι Κύριον» Χουρμουζίου Χαρτοφύλακος)

446. 
$$\chi = \frac{1}{2} \left( \frac{1}{2} \right)^{2} \left( \frac{1}{2} \right$$

( 'Απὸ Κοινωνικὸν «Αἰνεῖτε» Πέτρου Βυζαντίου)

447. Μετάθεσις τοῦ 
$$\mathbf{Z}$$
 στὸν  $\mathbf{B}$  ου  $\mathbf{q}$   $\mathbf{q}$ 

$$\frac{1}{2} \frac{3}{\pi \alpha} \frac{1}{\sigma \alpha} \frac{1}{\eta} \frac{1}{\eta}$$

('Απὸ τὸ «'Επὶ σοὶ χαίρει» τοῦ ἐκδότη)

448. 
$$\pi$$
  $\pi \rho o \zeta$   $\tau o v \zeta$   $\sigma \tau \epsilon$   $\epsilon$   $v \alpha$   $\alpha \gamma$   $\mu o v$   $o v$ 

ου ου ου τους στε ε να α αγ μου ου ου ου ους χ (Χουρμουζίου Χαρτοφύλακος)

('Απὸ Κοινωνικὸν «Αἰνεῖτε» Πέτρου Πελοποννησίου)

450. Μετάθεσις τοῦ Γα στὸν Πα  $\frac{\pi}{q}$   $\frac{\phi}{2}$   $\frac{\pi}{2}$  Τονικὸς ρυθμὸς  $\frac{\pi}{2}$   $\frac{\pi}{2}$ 

451. Μετάθεσις τοῦ Γα στὸν Δι  $\frac{\Delta}{6\%}$   $\stackrel{\diamondsuit}{\longleftarrow}$   $\frac{\Delta}{2}$  Τονικὸς ρυθμὸς  $\frac{1}{2}$ 

452. Μετάθεσις του Κε στὸν Πα  $\frac{\pi}{q}$   $\stackrel{\circ}{\smile}$   $\frac{1}{2}$   $\frac{1}$ 

('Απὸ τὰ λεγόμενα «ἀνέκδοτα» Πέτρου Πελοποννησίου)

### 278. Μεταβολή τοῦ μαλακοῦ χρωματικοῦ γένους σὲ διατονικὸ

453. Μετάθεσις τοῦ Πα στὸν Δι ς Δ ς Δ q
Τονικὸς ρυθμὸς 7

454.  $\frac{6}{5}$   $\Sigma \nu$   $\mu \epsilon$   $\epsilon$   $\omega \nu$   $\epsilon \nu$   $\lambda o$   $\gamma \iota$   $\alpha \varsigma$   $\pi \lambda \eta$   $\sigma \theta \epsilon \iota$   $\epsilon \iota$ 

(453 και 454. 'Από τη Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου)

('Από τη Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου)

458. Μετάθεσις τοὺ Δὶ στὸν Ζω  $\frac{\chi}{2}$   $\frac{\chi}$ 

('Από τη Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου)

460. Μετάθεσις τοῦ Κε στὸν  $\frac{\Delta}{\Delta i}$   $\frac{\Delta}{\Delta i}$   $\frac{\Delta}{\alpha}$   $\frac{$ 

461. 
$$\frac{6}{6}$$
  $\frac{1}{6}$   $\frac{1}{6}$ 

(460 καὶ 451 Χουρμουζίου Χαρτοφύλακος)

#### 279. Μεταβολή του μαλακού χρωματικού γένους σε σύντονο ή σκληρὸ

462. Μετάθεσις τοῦ Πα στὸν Νη ς ς ς ς γ

Τονικός ρυθμός 🤾

463.  $\Delta$  εν Στα α α αυ ρω ω ω δε λε ε α α α  $\Delta$  ζε ε ε ε ται  $\Delta$  και πι ι ι ι πτει κα  $\Delta$  τε νε ε χθεις  $\Delta$  πτω μα αι ξαι αι σι ι  $\Delta$  ο ον  $\Delta$  (462 καὶ 463. ᾿Απὸ τὴ Μουσικὴ Κυψέλη Στεφάνου Λαμπαδαρίου)

464.  $\Delta = \frac{4}{5} = \frac{1}{5} = \frac{1}{5$ 

('Από τη Μουσική Κυψέλη Στεφάνου Λαμπαδαρίου)

466.  $\frac{6}{\omega}$  τας  $\frac{1}{\pi\eta}$   $\frac{4}{\gamma\alpha\varsigma}$   $\frac{1}{\tau\omega}$   $\frac{4}{\omega}$   $\frac{1}{\delta\alpha}$   $\frac{1}{\alpha}$   $\frac{1}{\omega}$   $\frac{1}{\omega}$ 

### 280. Μεταβολή του μαλακού χρωματικού γένους σὲ ἐναρμόνιο

468. Μετάθεσις τοῦ Zω στὸν Kε  $\overset{\nearrow}{\Box}$   $\overset{\nearrow}{\Box}$   $\overset{\nearrow}{\Box}$   $\overset{?}{\gamma}$ ? Ρυθμὸς ΟΙΗ  $\overset{?}{\gamma}$ 

469. Μετάθεσις τοῦ  $\frac{\lambda}{\Delta 1}$  στὸν  $\frac{\lambda}{N\eta}$   $\frac{\lambda}{2}$   $\frac{\lambda}{2$ 

## 281. Μεταβολή του συντόνου ή σκληρού χρωματικού γένους σὲ διατονικό

470. Μετάθεσις τοῦ  $\mathbf{Z}_{\omega}$  στὸν  $\mathbf{K}_{\epsilon}$   $\mathbf{Z}_{\omega}$   $\mathbf{Z}_{\omega}$ 

Τονικός ρυθμός 🦪

471. Μετάθεσις τοῦ Νη στὸν  $\overset{\circ}{\text{Ke}}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$   $\overset{\circ}{\sim}$  Τονικὸς ρυθμὸς  $\overset{\circ}{\sim}$ 

472. Μετάθεσις τοῦ Νη στὸν Πα  $\frac{\pi}{1}$   $\frac{2}{\pi}$   $\frac{\pi}{6}$  Τονικὸς ρυθμὸς  $\frac{\pi}{2}$ 

('Από τὸ ἰδιόμελο «'Ότε 'Ιωσὴφ Παρθένε λύπη ἐτιτρώσκετο» Χουρμουζίου Χαρτοφύλακος)

474. Μετάθεσις τοῦ  $\Delta$ ὶ στὸν  $\Pi$ α  $\frac{\pi}{\chi}$   $\frac{\lambda}{\chi}$  Τονικὸς ρυθμὸς  $\frac{\pi}{\chi}$ 

### 282. Μεταβολή του συντόνου ή σκληρού χρωματικού γένους σὲ μαλακό χρωματικό

476. Μετάθεσις τοῦ  $\overline{\Delta}$ ι στὸν  $\overline{\Pi}$ α  $\overline{\pi}$   $\overline{\pi}$   $\overline{\pi}$ 

Τονικός ρυθμός τ

 $\pi$  εκ δυσ σε βων ε εχ θρων σ αι σθη των και αι  $\frac{1}{2}$  νο ε ε ρων  $\frac{1}{2}$  ('Απὸ τὴ Μουσικὴ Κυψέλη Στεφάνου Λαμπαδαρίου)

478. Μετάθεσις τοῦ Δι στὸν Κε 💢 — 😅 💥

Τονικός ρυθμός 🖁

Δ και α νε και νι ι σθη μεν ε εκ της φθο ο ο α α ας ς ('Απὸ τὴ Μουσικὴ Κυψέλη Στεφάνου Λαμπαδαρίου)

479.  $\frac{4}{\pi}$  και η του Χρι στου  $\frac{4}{\pi}$  ε εκ κλη σι ι  $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{\pi}$   $\frac{2}{\pi}$   $\frac{4}{\pi}$   $\frac{4}{$ 

480. χ Πα τρι κης ου ρα α α νο ο ο θε εν χ μαρ τυ ρου ου ου σης αυ του ου ου την Υι τα ς ('Απὸ τὴ Μουσικὴ Κυψέλη Στεφάνου Λαμπαδαρίου)

## 283. Μεταβολή τοῦ συντόνου ή σκληροῦ χρωματικοῦ γένους σὲ ἐναρμόνιο

482. Μετάθεσις τοῦ Γα στὸν  $\frac{1}{\Delta}$  καὶ στὸν  $\frac{1}{\Delta}$   $\frac{\Delta}{2}$   $\frac{\Delta}{2}$   $\frac{\Delta}{2}$  Τονικὸς ρυθμὸς  $\frac{1}{2}$ 

δο ο ο γμα  $\frac{1}{x}$   $\frac{1}{y}$   $\frac{$ 

483. Μετάθεσις τοῦ Δὶ στὸν Πα 🙃 — 🔑 τη

Τονικός ρυθμός χ

 $\pi$  α κο λα σι ι ι σι ι ι α ας  $\pi$   $\zeta$  ο ο φω ω ω ω ω δη η η ζο φω ω δη

ης τε σ (Χουρμουζίου Χαρτοφύλακος)

## 284. Μεταβολή του ἐναρμονίου γένους σὲ διατονικὸ

484. Μετάθεσις τοῦ Γα στὸν Ζω τη ς

Τονικός ρυθμός χ

485. Μετάθεσις τοῦ  $\overset{\circ}{N\eta}$  στὸν  $\overset{\circ}{\Delta i}$   $\overset{\circ}{\overset{\circ}{\circlearrowleft}}$   $\overset{\circ}{\overset{\circ}{\circlearrowleft}}$ 

Τονικός ρυθμός χ

η θε ο ο τη η τα α α α θε ε ο ο τη

τα α α α α α α α α δ

486.  $\ddot{q}$  ζο  $\ddot{\varphi}$ ω  $\ddot{\omega}$ ω  $\ddot{\omega}$ ω  $\ddot{\omega}$ ω δη η η ζο  $\ddot{\varphi}$ ω  $\ddot{\omega}$  δη ης τε ε ε ε ε ε ε χ και α σε ε ε ε ε ε λη νο ο ος τι Χουρμουζίου Χωρτοφύλακος)

## 285. Μεταβολή του ἐναρμονίου γένους σὲ μαλακὸ χρωματικὸ.

Τονικός ρυθμός χ

# 286. Μεταβολή τοῦ ἐναρμονίου γένους σὲ σύντονο ή σκληρὸ χρωματικὸ

488. Μετάθεσις τοῦ 
$$\tilde{\Delta}$$
ι στὸν  $\tilde{\Gamma}$ α  $\tilde{\alpha}$   $\tilde{\alpha}$   $\tilde{\alpha}$   $\tilde{\alpha}$   $\tilde{\alpha}$ 

490. Μετάθεσις τοῦ Πα στὸν Γα τ

Τονικός ρυθμός χ

## 287. Μεταβολή κατὰ τόνον στὸ ἐναρμόνιο γένος

492. Μετάθεσις τοῦ Κε στὸν Δι Δ Δ Δ Δ Δ Θ ξί

## Τονικός ρυθμός χ

### ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΙΣ ΜΕΤΑΒΟΛΕΣ ΚΑΤΑ ΓΕΝΟΣ

Οί μεταβολές κατά γένος τῆς βυζαντινῆς μουσικῆς παρατηροῦνται καὶ στὰ δημοτικὰ μας τραγούδια.

Γιὰ παράδειγμα παραθέτομε τὸ γνωστὸ «τοῦ Κίτσου ἡ μάνα».

## Ρυθμός ΟΙΙΙ χ

493.  $\ddot{q}$  Α αχ του Κι τσουου η μα α α η μα α να κα θο ον ταν  $\ddot{q}$  αχ στην α κρα απ το ο πο τα α μι  $\ddot{q}$  με το ο ο πο τα πο τα α αμι μα α α α αλω νε  $\ddot{q}$  με το πο ο ο τα πο τα α α μι μα α α α α πο τα α α μι μα α α α α λω  $\ddot{q}$   $\ddot{q$ 

#### δ΄ ΠΑΡΑΧΟΡΛΕΣ

(\$ 247)

### 288. 'Απὸ διατονικό σὲ μαλακὸ χρωματικό γένος

Τονικός ρυθμός χ

495. Μεταβολή τοῦ Πα σέ Βοῦ  $\pi$   $\stackrel{\beta}{=}$   $\frac{\pi}{\pi}$ 

Τονικός ρυθμός χ

496. Μεταβολή τοῦ Γα σὲ Δι τ

Τονικός ρυθμός χ

 $\frac{\pi}{q}$  ο λο ον συ υγ κρο ο τει  $\frac{\pi}{2}$  τον  $\frac{\pi}{6}$  σμο ο ον τη η ης  $\frac{2}{E}$  ε εκ κλη η σι ι ι ας  $\frac{\pi}{6}$  (Τοῦ ἐκδότη)

### 289. 'Απὸ διατονικὸ σὲ σύντονο ή σκληρὸ

χρωματικό γένος

497. Μεταβολή του Βου σὲ Πα  $\frac{\pi}{2}$   $\frac{\pi}{2}$   $\frac{\pi}{6}$ 

Τονικός ρυθμός χ

δ Ο ε πι βλε ε ε πων ε ε πι ι ι ι τη η η ην γη η ην ος και ποι ω ων α αυ

την τρε ε ε ε ε ε ε μειν ς ('Απὸ τὰ «'Ανοιξαντάρια» Σωκράτους Παπαδοπούλου)

Τονικός ρυθμός χ

## 290. Παραχορδή στὸ μαλακὸ χρωματικὸ γένος

499. Μεταβολή του Δι σέ Βου Δ. Δ. Δ. Δ. Δ.

Τονικός ρυθμός χ

 $\frac{1}{2}$  ε λε ε ε ε η σο ο ο ο ο ον  $\frac{1}{2}$   $\frac{1}{$ 

## 291. 'Απὸ μαλακὸ χρωματικὸ γένος σὲ διατονικὸ

Τονικός ρυθμός χ

#### 292. 'Από μαλακό χρωματικό

σὲ σύντονο ή σκληρὸ χρωματικὸ γένος.

Τονικός ρυθμός χ

# 293. ᾿Απὸ σύντονο ἢ σκληρὸ χρωματικὸ σὲ διατονικὸ γένος.

502. Μεταβολή του Πα σὲ Γα 
$$\pi$$
  $\tau$   $\tau$   $\tau$   $\tau$   $\tau$ 

503. Μεταβολή τοῦ 
$$\Delta \tilde{i}$$
 σὲ  $K$ ε  $\Delta = \frac{\delta}{\tilde{q}}$   $\Delta = \frac{\tilde{d}}{\tilde{q}}$ 

## Τονικός ρυθμός χ

# 294. 'Από σύντονο ή σκληρό χρωματικό σὲ μαλακό χρωματικό γένος.

## Τονικός ρυθμός χ

## 295. Παραχορδές στὸ σύντονο ή σκληρὸ χρωματικὸ γένος.

505. Μεταβολή τοῦ Τα σὲ 
$$\Delta i_{\pi} = \Delta^{\Delta}_{\pi}$$

(Χουρμουζίου Χαρτοφύλακος)

Τονικός ρυθμός χ

$$\frac{1}{\pi}$$
 Κυρι ι ε κα τα φυ υ γη ς ε γεν νη  $\frac{1}{\eta}$  η  $\frac{3}{\theta \eta \varsigma}$  η  $\frac{3}{\eta}$  η  $\frac{3}{\eta}$  μι ιν  $\frac{3}{\eta}$   $\frac{3}{\Gamma \epsilon \omega \rho \gamma iou}$   $\frac{3}{\Gamma \epsilon \omega \rho \gamma iou}$ 

Τονικός ρυθμός χ

$$\frac{\pi}{5}$$
 Προ σηλ θε γυ νη δυ σω δης και βε βορ βο ('Απὸ τὴ Μεγάλη Έβδομάδα ρω με ε ε νη  $\frac{\Delta}{5}$ 

508 Μεταβολή τοῦ Ζω σὲ Δι τος Δο τος σο

Τονικός ρυθμός χ

$$\chi$$
 οι οι οι οι οι  $\chi$  ε ε ε ε  $\chi$  (Χουρμουζίου Χαρτοφύλακος)

# 296. 'Από σκληρό ή σύντονο χρωματικό σε έναρμόνιο γένος

509. Μεταβολή τοῦ  $\Delta \hat{\mathbf{i}}$  σὲ  $\hat{\mathbf{r}}$   $\hat{\mathbf{a}}$   $\Delta$ 

Τονικός ρυθμός χ

π Κυ ρι ε ε κα α τα φυ υ γη η ε γεν

νη θη ης η μι ιν τη εν γε νε α και αι

γε ε ε ε α τη δοξολογία Γεωργίου Βιολάκη)

#### **V. ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΧΡΟΕΣ**

**297.** δ **Ζυγός** ε (§ 251, 252)

## Τονικός ρυθμός χ

510.  $\frac{6}{λ}$  θα νατον κα τε δε ξω σαρ κι  $\frac{6}{λ}$  η μιν  $\frac{4}{λ}$  α θα να σι αν πραγ μα τευ σα με νος  $\frac{2}{λ}$  τηρ  $\frac{6}{λ}$  ('Η ἄσκησις αὐτὴ προπαρασκευάσθηκε μὲ τὴν 291)

511.  $\frac{3}{2}$   $\frac{3}{2}$ 

Α γι οι καρε σβευ σα τε α παυστως  $\frac{1}{9}$  υ περ  $\frac{1}{9}$  μων των  $\frac{1}{9}$  μαρ τω λων  $\frac{1}{9}$  α φε σιν πται σμα των αι του  $\frac{1}{9}$  με ε νοι  $\frac{1}{9}$  και ταις ψυ χαις  $\frac{1}{9}$  μων το με γα  $\frac{1}{9}$  ε λε ος  $\frac{1}{9}$  ('Η ἄσκησις αὐτὴ προπαρασκευάσθηκε μέ τὴν 292)

> ('Η ἄσκησις αὐτὴ προπαρασκευάσθηκε μέ τὴν 290.) (510 - 512, 'Απὸ τὸ 'Αναστασιματάριον 'Ιωάννου Πρωτοψάλτου)

513. 
δ νο ο σων και δει νων α μαρ τη μα των ε

λε ευ θε ρω ω σο ον δι Στεφάνου Λαμπαδαρίου)

514. 6 Οι κτιρ μων και ε λε η μων ο Κυ

ρι ος ἢ μα κρο θυ μος και πο λυ ε λε ος ε ουκ
εις τε λος ορ γι σθη σε ται ου δε ειςτοναι ω ναμυνη
ει ει ε

520. Μετάθεσις τοῦ  $\Delta$ ι στὸν  $\Pi$ α  $\pi$  q  $\pi$   $\pi$ 

## Τονικός ρυθμός χ

## **298.** Τὸ **Κλιτόν** Α (§ 251, 253)

## Τονικός ρυθμός χ

521. Δ΄ γε νο ο ο ο με ε νο ος α αν θρω ω ω πο ος q πα α σχει ει ει ει ω ως θνη η τος q και αι αι δι ι α πα α θου ου ους το

522.  $K_{0}$   $V_{0}$   $V_{0}$ 

('Από τὸ «Μακάριος ἀνὴρ» Πέτρου Πελοποννησίου, τὸ συντετμημένο καὶ καλλωπισμένο ἀπὸ τὸν 'Εμμανουὴλ Πρωτοψάλτη)

526. 
$$\pi$$
 οι οι οι οι μοι τι πε πον θα ο τα α α  $\frac{2}{100}$  λα ας ε ε  $\frac{2}{100}$   $\frac{1}{100}$   $\frac{2}{100}$   $\frac{1}{100}$   $\frac{2}{100}$   $\frac{2}{1$ 

Τονικός ουθμός γ

Μετάθεσις τοῦ Κε στὸν Πα  $\pi$   $\pi$   $\pi$ 

Τονικός ρυθμός χ

Μετάθεσις τοῦ Κε στὸν Δι  $\frac{\Delta}{0}$   $\frac{-\Theta}{0}$   $\frac{\Delta}{0}$ 

Τονικός ρυθμός χ

(528 καί 529. 'Απὸ τὸν Καλοφωνικό Είρμὸ «Πασαν την έλπίδα μου» Πέτρου Μπερεκέτου)

β' ή Σπάθη - στὸν Γα (σελίς 243)

Τονικός ρυθμός χ

530. 
$$\frac{\pi}{9} \underbrace{\frac{4}{\epsilon} \epsilon}_{\epsilon} \underbrace{\epsilon}_{\epsilon} \underbrace{\epsilon}_{\epsilon$$

## Τονικός ρυθμός χ

## δ΄ ή $\Sigma \pi \acute{\alpha} \theta \eta$ — στον $K \epsilon$ καὶ στον $\Gamma \alpha$

533. 
$$\pi$$
  $\varepsilon$   $\rho_1$   $\rho_2$   $\rho_3$   $\rho_4$   $\rho_5$   $\rho_6$   $\rho_6$ 

ρε ε ρε ε ρι ρε ε ρι ρεμ ς τε ρι ρερε

Τ΄ ('Από τὸ Κοινωνικὸν «Λύτρωσοιν ρε ε ρι ρε β ?? ἀπόστειλε» Πέτρου Πελοποννησίου)

## ε΄ Μεταβολή τῆς Σπάθης σὲ ἐναρμόνιο.

Τονικός ρυθμός χ

535.  $\frac{3\Gamma}{q} = \frac{3\Gamma}{\mu \nu} = \frac{3\Gamma}{\nu} = \frac$ 

# ΜΕΡΟΣ Ε΄



IWANNHO O AAMACKHNOO

#### ΚΕΦΑΛΑΙΟΝ ΙΗ΄

#### ΤΑ ΕΙΛΗ ΤΗΣ ΜΕΛΩΔΙΑΣ

## 'Ιδιόμελα, αὐτόμελα - προσόμοια Κανόνες, εἰρμοὶ - τροπάρια

**300.** Οἱ ἐκκλησιαστικές μελωδίες διακρίνονται σὲ ἰδιόμελα καὶ προσόμοια.

Ἰδιόμελα ὀνομάζονται οἱ συνθέσεις ποὺ ἄν καὶ, βασικὰ, στηρίζονται στὰ ἴδια τεχνικὰ δεδομένα (γένος, κλίμακα κτλ.) ἐν τούτοις, δέν συμπίπτουν, δὲν ταὐτίζονται καὶ ἡ καθεμιὰ τους διακρίνεται σὰν ἰδιαίτερη μελωδία (ἴδιον μέλος=ἰδιόμελον).

Προσόμοια ὸνομάζονται οἱ ὕμνοι ποὺ προσαρμόζονται σὲ ὡρισμένες δεδομένες μελωδίες ὶδιομέλων.

Στην περίπτωσι αὐτη, τὰ ἱδιόμελα ποὺ χρησιμοποιούνται σὰν πρότυπες μελωδίες, ὀνομάζονται αὐτόμελα.

Είναι εὐνόητον πὼς, γιὰ νὰ εἴναι δυνατὴ ἡ προσαρμογὴ ένὸς ὅμνου στὴ μελωδία ένὸς αὐτομέλου, ὁ νέος ὅμνος πρέπει νὰ εἴναι συντεθειμένος στὰ ἴδια ποιητικὰ μέτρα μὲ τὸν ὅμνο τοῦ αὐτομέλου, νὰ ἀπαρτίζεται δηλ. ἀπὸ τὸν ἴδιο ἀριθμὸ στίχων, κάθε στίχος νὰ ἀποτελῆται ἀπὸ τὸν ἴδιο ἀριθμὸ συλλαβῶν καὶ νὰ συμπίπτη ὁ τονισμός τους.

Ή χρῆσις προσομοίων στὴν Ἐκκλησία εἶναι ἀρχαιοτάτη καὶ ἀπὸ τὸν Δ΄ αἰῶνα, μὲ τὴ διόγκωσι τῆς ὑμνογραφίας ἀναλόγου συνθέσεως, ἐπεπεξετάθη περισσότερον.

Στὰ ἐκκλησιαστικὰ βιβλία, γιὰ ὁδηγία τῶν ψαλτῶν, τῶν προσομοίων προτάσσονται οἱ πρῶτες λέξεις τῶν αὐτομέλων τους, ὅπως π. χ.

#### \*Ηχος α'

Τῶν οὐρανίων ταγμάτων.

(τὸ αὐτόμελον)

Ο τὸν Θεσβίτην Ἡλίαν, πυρίνφ ἄρματι...

(τὸ προσόμοιον)

Γι' αὐτὸν τὸν λόγο, τὰ αὐτόμελα ὀνομάζονται καὶ πρόλογοι.

Στὴν κατηγορία τῶν αὐτομέλων (προλόγων) καὶ τῶν προσομοίων ἀνήκουν καὶ οἱ Κανόνες.

Οί Κανόνες είναι συντεταγμένοι μὲ βάσι τὶς ἐννέα ἀδὲς τῆς Παλαιᾶς Διαθήκης καὶ ἡ εἰσαγωγὴ τους στὴν ὑμνολογία ἀνάγεται στὸν Δ΄ μὲ Ε΄ αἰῶνα.

Ο πρώτος ύμνος τῆς κάθε ώδῆς είναι ή πρότυπος στροφή δηλ. τὸ αὐτόμελον (πρόλογος) καὶ ὀνομάζεται είρμὸς. Οἱ ὑπόλοιπες, δύο ἤ περισσότερες, στροφὲς τῆς ἰδίας ὼδῆς προσαρμόζονται στὴ μελωδία τοῦ είρμοδ, είναι δηλ. τὰ προσόμοιά του καὶ ὀνομάζονται τροπάρια, ὅπως π. χ.

Ήχος α΄ Ο Είρμὸς
«Χριστὸς γεννᾶται, δοξάσατε'»
'Ιδὰν ὁ Κτίστης ὀλλύμενον... (τὸ τροπάριον)
(Κοσμᾶ τοῦ μελωδοῦ Η΄ αἰὸν)

## Στιχηραρικόν, Είρμολογικόν και Παπαδικόν μέλος ή είδος

301. Ἐκτὸς ἀπὸ τὴν παραπάνω γενικὴ διάκρισι σὲ ἰδιόμελα καὶ προσόμοια, οἱ ἐκκλησιαστικὲς μελωδίες ἐξεταζόμενες ἀπὸ τὴν ἄποψι τεχνολογικῶν στοιχείων σὲ συνδυασμὸ καὶ μὲ τὴν ἔκτασί τους, κατατάσσονται στὰ ἑξῆς τρία εἴδη.

**1ον** Στὸ **Στιχηραρικὸν μέλος ή είδος** ποὺ περιλαμβάνει, γενικῶς, ὅ-λα τὰ **ἰδιόμελα** καὶ ποὺ ὑποδιαιρεῖται:

α΄ σὲ σύντομον στιχηραρικὸν μέλος ἥ εἶδος.
β΄ » νέον » » »
καὶ γ΄ » παλαιὸν ἥ ἀργὸν » » »

**2ον** Στὸ **Εἰρμολογικὸν μέλος ἥ εἰδος** ποὺ περιλαμβάνει, γενικῶς, ὅ-λα τὰ αὐτόμελα (προλόγους) καὶ τὰ προσόμοιά τους (συμπεριλαμβανομένων καὶ τῶν Κανόνων) καὶ ποὺ ὑποδιαιρεῖται:

α΄ σὲ σύντομον εἰρμολογικὸν μέλος ἢ εἰδος β΄ » ἀργὸν » » » » » καὶ γ΄ » καλοφωνικὸν » » » » καὶ 3ον Στὸ Παπαδικὸν μέλος ἢ εἰδος.

## Δομή καὶ ἔκτασις τῶν εἰδῶν τῆς μελωδίας

302α΄ 'Από τὰ προεκτεθέντα γίνεται φανερόν ὅτι, τὸ σύντομον στιχηραρικὸν καθώς καὶ τὸ σύντομον είρμωλογικὸν μέλος ἤ είδος περιλαμβάνουν τὶς πιὸ ἀπλὲς καὶ πιὸ σύντομες ἐκκλησιαστικὲς μελωδίες. Τὰ δύο αὐτὰ εἴδη χρησιμοποιοῦν τὰ ἴδια, ἀκριβῶς, τεχνικὰ στοιχεῖα καὶ ἐπειδὴ κάθε συλλαβὴ τῶν λέξεων τοῦ ποιητικοῦ τους κειμένου διαρκεῖ, συνήθως, ἕνα καὶ σπανίως, δύο ἤ τὸ πολὺ, τρεῖς ἀπλοὺς χρόνους, ἔχουν καὶ τὴν ἰδία ἔκτασι, ὅπως στὰ ἑξῆς παραδείγματα.

#### Σύντομον στιχηραρικόν μέλος ή είδος

## Τονικός ρυθμός χ



όπου ή συλλαβή σον (4ο μέτρο) είναι διαρκείας δύο χρόνων καὶ ἐκφέρεται μὲ τρεῖς φθόγγους, ή συλλαβή Κυ (προτελευταῖο μέτρο) καθώς καὶ ἡ συλλαβή ε (τελευταῖο μέτρο) είναι ἐπίσης, διαρκείας, ἡ καθεμιὰ, 2 χρόνων καὶ ἐκφέρονται μὲ ἕνα φθόγγο.

#### Σύντομον είρμολογικόν μέλος ή είδος

## Τονικός ρυθμός χ

ὅπου ἡ συλλαβὴ τυ (3ο μέτρο) εἶναι διαρκείας ἑνὸς χρόνου καὶ ἐκφέρεται μὲ 2 φθόγγους, ἡ ἑπομένη συλλαβὴ σιν καθὼς καὶ ἡ συλλαβὴ ε (τελευταῖο μέτρο) εἶναι διαρκείας 2 χρόνων, ἡ καθεμία καὶ ἐκφέρονται μὲ ἕνα φθόγγο καὶ ὅλες οἱ ὑπόλοιπες συλλαβὲς εἶναι διαρκείας ἐνὸς χρόνου καὶ ἐκφέρονται μὲ ἕνα φθόγγο.

Ή διάκρισις τῶν δύο αὐτῶν είδῶν γίνεται μὲ μόνο κριτήριο τὸ ἄν εἶναι ἰδιόμελα, ὁπότε ἀνήκουν στὸ στιχηραρικόν, ἢ ἄν εἶναι αὐτόμελα (πρόλογοι) καὶ προσόμοια, ὁπότε ἐντάσσονται στὸ εἰρμολογικὸν μέλος ἢ εἶδος.

β΄ Τὸ νέον στιχηραρικὸν μέλος ἤ είδος χρησιμοποιεῖ διαφορετικὰ τεχνικὰ στοιχεῖα ἀπὸ τὸ σύντομό του είδος καὶ είναι ἐκτενέστερο ἀπὸ αὐτό, γιατὶ κάθε συλλαβὴ τῶν λέξεων τοῦ ποιητικοῦ τους κειμένου ὅχι μονάχα δὲν περιορίζεται στὴ διάρκεια τοῦ ἐνὸς χρόνου ἀλλὰ, τὶς περισσότερες φορές, ἐπεκτείνεται σὲ 2 μέχρι καὶ 4 ἀπλούς χρόνους καὶ ἐκφέρε-

ται είτε μὲ ἕναν, είτε καὶ μὲ περισσοτέρους φθόγγους.

"Έτσι, ή πλοκή τοῦ εἴδους αὐτοῦ εἶναι συνθετώτερη, ὅπως ἐμφανίζεται στὸ ἑξῆς παράδειγμα ποὺ εἶναι, συνάμα, συγκριτικὸ μὲ τὸ προταχθὲν σύντομον στιχηραρικὸν εἴδος.

γ΄ Τὸ παλαιὸν ἤ ἀργὸν στιχηραρικὸν μέλος ἤ εἶδος, μὲ τὰ ἴδια τεχνικὰ στοιχεῖα τοῦ νέου του εἴδους, εἶναι πιὸ σύνθετο καὶ πολὺ περισσότερον ἐκτεταμένο ἀπὸ αὐτὸ, γιατὶ κάθε συλλαβὴ τοῦ ποιητικοῦ του κειμένου μπορεῖ νὰ ἐκφέρεται εἴτε μὲ ἕνα φθόγγο, εἴτε καὶ μὲ περισσοτέρους, μέχρι καὶ ὁλόκληρη μελωδικὴ φράσι μὲ ἀνάλογη, στὴν κάθε περίπτωσι, διάρκεια, ὅπως στὸ ἑξῆς παράδειγμα.

δ΄ Τὸ ἀργὸν εἰρμολογικὸν μέλος ἡ εἶδος προκύπτει ἀπὸ τὸ σύντομό του εἶδος μὲ τὸ διπλασιασμὸ τῆς χρονικῆς διαρκείας τῶν συλλαβῶν τοῦ ποιητικοῦ κειμένου καὶ τὴν ἐκφορά των εἴτε μὲ ἕναν, εἴτε καὶ μὲ περισσοτέρους φθόγγους.

Έτσι, τὸ παράδειγμα τοῦ συντόμου είρμολογικοῦ μέλους ἤ εἴδους ποὺ προτάξαμε, στὸ ἀργό του εἴδος ἀναπτύσσεται ὡς ἑξῆς.

ε΄ Τὸ Καλοφωνικὸν μέλος ἥ εἶδος, μὲ τεχνικὰ στοιχεῖα τοῦ εἰρμολογικοῦ, κατὰ βάσιν, εἴδους, ἀλλὰ καὶ μὲ σχετικὴ ἐλευθερία στὸ δανεισμὸ στοιχείων ἀπὸ τὰ λοιπὰ εἴδη, τὴν συχνότερη ἐναλλαγὴ κατὰ τὴν πορεία του, τοῦ ρυθμοῦ καὶ τῆς χρονικῆς ἀγωγῆς, εἶναι σύνθετο, ἔντεχνο καὶ ἐκτενές ,ὅπως στὸ ἑξῆς παράδειγμα.

Τονικός ρυθμός χ المسترادة المستردة المسترادة المسترادة المستردة المسترادة المسترادة المسترادة المسترادة المسترادة المستراد [2] [2] [2] [3] [5] [5] [5] [6] してきょううごろくろうしょう  $\begin{bmatrix} \frac{\rho}{2} & \frac{c^3}{3} & \frac{c^4}{3} & \frac{c^4}{3} & \frac{c^3}{3} & \frac{c^3}{3} \end{bmatrix} \xrightarrow{2 - \frac{c^3}{3}} \begin{bmatrix} \frac{c^3}{3} & \frac{c}{3} & \frac{c}{3} \end{bmatrix}$ و المالية ('Ιακώβου Πρωτοψάλτου)

καὶ στ΄ Τὸ Παπαδικὸν μέλος ή εἶδος μετέχει τοῦ ἀργοῦ στιχηραρικοῦ καὶ τοῦ καλοφωνικοῦ εἴδους καὶ εἶναι τὸ ἐκτενέστερον ἀπὸ ὅλα.

Τὸ εἴδος αὐτὸ εἰσήχθη στὴν 'Ανατολικὴ 'Εκκλησία ὅταν οἱ 'Ακολουθίες ποὺ ἀρχικὰ ἦσαν ἁπλὲς καὶ σύντομες, ἔγιναν ἐκτενέστερες, ἰδία μὲ τὶς παννυχίδες <sup>1</sup> στὰ μοναστήρια.

Τὸ Παπαδικὸν μέλος ἥ είδος εἰσήχθη κατὰ τὸν Στ΄ αἰῶνα καὶ στὴ Δυτικὴ Ἐκκλησία ἀπὸ τὸν πάπα Ρώμης Γρηγόριο τὸν Διάλογο καὶ ὀνομάζεται cantus planus.

Σὰν παράδειγμα τοῦ εἴδους αὐτοῦ παραθέτομε τὴν ἀρχὴ συντόμου Χερουβικοῦ ὕμνου, τονισμένου ἀπὸ τὸν Πέτρο Πελοποννήσιο (ΙΗ΄ αἰών).

Ή γνῶσις τῶν τεχνικῶν στοιχείων καὶ τῆς ἐν γένει δομῆς τῶν εἰδῶν τῆς μελωδίας θὰ ὁλοκληρωθῆ μὲ ὅσα, σχετικὰ, θὰ ἐκτεθοῦν στὸ ἑπόμενο Κεφάλαιο, περὶ τῶν ὀκτὼ ήχων.

Μαζὶ μ' αὐτὰ, πρέπει νὰ σημειωθῆ πὼς, μὲ ὅλα τὰ εἴδη τῆς μελωδίας ποὺ ἐπενδύουν τὴν ὑμνογραφία δὲν ἐπιδιώκεται τίποτε ἄλλο, παρὰ ἡ πιὸ ζωντανὴ ἀπόδοσις τῶν ἐννοιῶν τοῦ ποιητικοῦ κειμένου ², ἡ ἐντονώτερη δηλ. καὶ ἐν ἀναγλύφῳ, μὲ τὸ ἄϋλον καὶ ὑπερκόσμιον, ἠχητικὸν ὑλικόν, οἰκοδομὴ καὶ παράστασις τῶν ὑψηλῶν χριστιανικῶν διδαγμάτων καὶ τῶν ψυχικῶν διαθέσεων ποὺ οἱ ἱεροὶ ὑμνογράφοι ἐκφράζουν στὰ θεόπνευστα ποιήματά τους.

Έτσι, ή βυζαντινή μελωδία μετοχετεύοντας στούς πιστούς τὰ νάματα τῶν ἱερῶν σκιρτημάτων συντελεῖ στὴν ψυχικὴ τους ὰνάτασι, διδασκαλία καὶ προαγωγὴ καὶ πραγματοποιεῖ στὴν ἐντέλεια τὸ ἀπόλυτα χριστιανικὸ ἱδεῶδες τῆς αὐτοθυσίας καὶ τῆς ὑποταγῆς τοῦ ἀνθρώπου στὰ κελεύσματα τοῦ θείου ποὺ διέπουν τὶς τύχες ὅλης τῆς δημιουργίας.

<sup>1.</sup> Παννυχίδες ἡ ὰγρυπνίες ὀνομάζονται οἱ ὁλονύκτιες ᾿Ακολουθίες ποὺ διεξάγονται σὲ παραμονὲς μεγάλων ἑορτῶν στοὺς ναοὺς τῶν μοναστηρίων συνήθως καὶ σπανιώτερα τῶν πόλεων. Ἡ συνήθεια νὰ διανυκτερεύουν οἱ πιστοὶ τὴν προηγουμένη τῆς μνήμης ἑνὸς άγίου ἡ μάρτυρος είναι ἀρκετὰ παλαιὰ (Δ΄ αἰὼν). Στὴ Δυτικὴ Ἐκκλησία, οἱ ἀγρυπνίες παρουσιάζονται μεταγενέστερα (Θ΄ αἰὼν), συνδεδεμένες μὲ νηστεία καὶ ὀνομάζονται pervigilia ἡ pernoctationes.

<sup>2.</sup> BA. § 94.

#### ΚΕΦΑΛΑΙΟΝ ΙΘ΄

#### ΟΙ ΟΚΤΩ ΗΧΟΙ

- 303. "Ολα τὰ εἴδη τῆς μελωδίας ποὺ ἀναφέραμε στὸ προηγούμενο Κεφάλαιο, ἄν ἐξετασθοῦν λεπτομερέστερα ἀφ' ένὸς ἀπὸ τὴν ἄποψι τῆς κλίμακος ποὺ χρησιμοποιοῦν, τὸ γένος ποὺ ἀνήκει αὐτή, τὸ σύστημα ποὺ ἀκολουθεῖ στὸ σχηματισμό της, τὶς μελωδικὲς ἔλξεις ποὺ παθαίνουν ὁρισμένοι της φθόγγοι, ἐνῶ ἄλλοι φθόγγοι, σὰν πόλοι ἕλξεως, παραμένουν σταθεροί καί, μὲ τὸ νὰ ἀκούωνται συχνότερα καὶ διαρκέστερα, φαίνονται νὰ δεσπόζουν καὶ ἀφ' έτέρου ἀπὸ τὴν ἄποψι τοῦ ἤθους πού, μὲ τὴν ίδιαίτερη μελο ρυθμικὴ σύνθεσι καὶ ἔκτασί τους, ἀποδίδουν, διαπιστώνεται πὰς ὑπάγονται σὲ ώρισμένους καὶ μὲ ώρισμένους κανόνες, μουσικοὺς τρόπους ποὺ ὀνομάζονται ἡχοι Ι.
- 304. Ἡ έλληνική μουσική είχε πολλούς τρόπους. ᾿Από αὐτοὺς, ἡ ᾿Ανατολικὴ Ἐκκλησία διάλεξε μόνον ὀκτώ, τοὺς πιὸ καταλλήλους γιὰ τὸ σκοπὸ καὶ τὴ θεία της μελωδία, ἐκείνους ποὺ τὸ ἤθος τους συμβιβάζεται μὲ τὰ σεμνὰ καὶ ἱερὰ αἰσθήματα της, ποὺ συντελοῦν σὲ κατάνυξι καὶ ταιριάζουν γιὰ τὴ δοξολογία τοῦ Θεοῦ καὶ τὴν εὐχαριστία. Ὅλους τοὺς ἄλλους τρόπους τοὺς ἀπέκλεισε γιὰ τὸ ἀπρεπές, ἄσεμνο καὶ ἐν γένει ἀκατάλληλον ἦθος τους.
- 305. 'Απὸ τοὺς ὀκτὰ ήχους τῆς βυζαντινῆς μουσικῆς οἱ τέσσερεις εἶναι οἱ πρωτότυποι ἤ κύριοι καὶ ὀνομάζονται Πρῶτος, Δεύτερος, Τρίτος, Τέταρτος. Οἱ ἄλλοι τέσσερεις εἶναι παράγωγοι, ἔνας ἀπὸ κάθε κύριο ἦχο καὶ ὀνομάζονται Πλάγιος τοῦ α΄, Πλάγιος τοῦ β΄, Βαρύς καὶ Πλάγιος τοῦ δ΄.

### Τὰ χαρακτηριστικά τῶν ἤχων

306. 'Ονομάζονται χαρακτηριστικά των ήχων άφ' ένος τὰ τεχνολογικά τους στοιχεῖα πού τὰ ἀπαρτίζουν οἱ κλίμακες τους έξεταζόμενες ἀπὸ ἄπο-

<sup>1.</sup> Δὲν πρέπει νὰ γίνεται σύγχυσις τῆς ἐννοίας τῆς λέξεως ή χος, σὰν μουσικοῦ τρόπου, μὲ τὴν ἔννοιά της, σὰν αἰτίου ποὺ διεγείρει τὸ αἰσθητήριο τῆς ἀκοῆς (§ 104, 110).

ψι γένους, συστήματος καὶ ἐκτάσεως <sup>1</sup>, ἡ μελωδική βάσις, οἱ δεσπόζοντες φθόγγοι, οί μελωδικές έλξεις των υπερβασίμων φθόγγων 2, οί καταλήξεις καὶ τὸ ἀπήχημα· καὶ ἀφ' ἑτέρου τὸ ἡθος τῆς μελωδίας <sup>3</sup> ποὺ ἐπιτυγγάνεται μὲ τὰ τεγγολογικὰ στοιγεία σὲ κατάλληλο, γιὰ κάθε περίπτωσι, συνδυασμό με τὶς ποικίλες μορφές τοῦ ρυθμοῦ, τῆς χρονικῆς ἀγωγῆς καὶ τοὺς διαφόρους τρόπους της μουσικής έκφράσεως.

Οί ήγοι, ἀνάλογα μὲ τὸ γένος τῆς κλίμακος ποὺ γρησιμοποιοῦν, διακρίνονται σὲ διατονικούς, χρωματικούς καὶ ἐναρμονίους.

Έτσι, βασικά καὶ ὅπως κατά τὴν ἐξέτασι τους χωριστά θὰ γνωρίσουμε, ε πεωτοι, ε πράγιος του α΄, ε Τεταρτος,
Δεθμάτρος καὶ ὁ Πλάγιος τοῦ δ΄ είναι διατονικοὶ ήχοι

- ό Δεύτερος καὶ ὁ Πλάγιος τοῦ β΄ είναι γρωματικοὶ ήγοι.
- ό Τρίτος και ό Βαρύς είναι έναρμόνιοι ήγοι.

Ονομάζεται, μελωδική βάσις του ήχου, ὁ φθόγγος τῆς κλίμακος του πού, σὰν θεμέλιος λίθος, γίνεται στήριγμα καὶ ἀρχὴ τῆς μελωδίας του, ἀσκεῖ ἰσχυρὴ ἐπίδρασι στοὺς ἄλλους φθόγγους καὶ ὅχι μονάχα ἐξαναγκάζει τὴ μελωδία νά μὴ ἀπομακρύνεται ἀπὸ αὐτὸν ἀλλὰ, τὶς περισσότερες φορές, νὰ ἐπιστρέφη καὶ νὰ καταλήγη σ' αὐτὸν.

Κατά κανόνα, ή μελωδική βάσις των πλαγίων ήχων βρίσκεται γαμηλότερα ἀπὸ τὴ μελωδικὴ βάσι τῶν κυρίων τους κατὰ διάστημα πέμπτης, ἀξίας  $\frac{3}{2} = \frac{2}{3}$  μ. χορδῆς ή 42 τμημάτων.

Έτσι, ἐπειδὴ ἡ ἀρχαῖα μελωδική βάσις τοῦ Πρώτου ήχου εῖναι ὁ Κε (τῆς Μέσης), ή μελωδική βάσις τοῦ Πλαγίου τοῦ α΄ είναι ὁ Πα (τῆς Μέσης)· καὶ ἐπειδὴ ἡ μελωδικὴ βάσις τοῦ Τετάρτου ἤγου εἶναι ὁ Δι (τῆς Μέσης), ή μελωδική βάσις τοῦ Πλαγίου τοῦ δ΄ είναι ὁ Νη (τῆς Μέσης).

Τὸν κανόνα, ὅμως, αὐτὸν δὲν ἀκολουθοῦν ὁ Πλάγιος τοῦ β΄ καὶ ὁ Βαρύς.

Ή μελωδική βάσις τοῦ Πλαγίου τοῦ β΄ εἶναι ὁ Πα (τῆς Μέσης) καὶ βρίσκεται χαμηλότερα ἀπὸ τὸν Δι (τῆς Μέσης) ποὺ εἶναι ή μελωδικὴ βάσις τοῦ Δευτέρου ἤχου, κατὰ διάστημα τετάρτης, ἀξίας  $\frac{4}{3} = \frac{3}{4}$  μ. χορδῆς ἤ 30 τμημάτων.

Ο Βαρύς που έμφανίζεται σὲ τρεῖς μορφές, ἔχει καὶ ἰσάριθμες μελωδικές βάσεις.

<sup>1.</sup> Bλ. § 303

<sup>2.</sup> Ba. § 255

<sup>3.</sup> BA. § 256

Την ἐναρμόνιο κλίμακα μὲ τὸ τετράχορδο σύστημα  $^1$ , ἔχει τὴν ἰδια μελωδικὴ βάσι μὲ τὸν Τρίτο ἦχο, τὸν Γα (τῆς Μεσης) καί, ὅπως μαρτυροῦν τά μουσικὰ χειρόγραφα τῆς παλαιᾶς βυζαντινῆς μουσικῆς, ἡ ἀντινομία αὐτὴ εἶναι παλαιοτάτη ἰδιότης τοῦ ἥχου αὐτοῦ. Το ταν χρησιμοποιῆ τὴν ἐναρμόνιο κλίμακα μὲ τὸ διαπασῶν σύστημα  $^2$ , ἔνει μελωδικὴ βάσι τὸν ζω ποὺ βρίσκεται χαμηλότερα ἀπὸ τὸν Γα (τῆς Μέσης) κατὰ διάστημα πέμπτης, ἀξίας  $\frac{3}{2} = \frac{2}{3}$  μ. χορδῆς ἤ 42 τμημάτων καὶ ποὺ συμφωνεῖ μὲ τὸ βασικὸ κανόνα. Καὶ ὅταν μεταχειρίζεται τὴ διατονικὴ κλίμακα, ὁπότε εἶναι διατονικὸς Βαρύς, ἔχει μελωδικὴ βάσι τὸν φυσικὸ ζω (τῆς Μέσης) ποὺ βρίσκεται χαμηλότερα ἀπὸ τὸν Γα (τῆς Μέσης) κατὰ διάστημα πέμπτης, ἀξίας  $\frac{64}{45} = \frac{45}{64}$  μ. χορδῆς ἤ 38 τμημάτων.

γ΄ Δεσπόζοντες φθόγγοι. 'Ωρισμένοι σταθεροὶ φθόγγοι τῶν κλιμά-κων τοῦ κάθε ἤχου, ὅπως π. χ. ἡ μελωδικὴ βάσις του, ἀκούονται συχνότερα καὶ διαρκέστερα ἀπὸ τοὺς ἄλλους, γίνονται πόλοι τῆς τονικῆς ἔλξεως, ἐπηρεάζουν τὴ μελωδικὴ κίνησι, κυριαρχοῦν σ' αὐτήν καὶ μοιάζουν σὰ σκελετὸς ποὺ ἐπάνω σ' αὐτὸν χτίζεται ἤ σὰ στημόνι ποὺ σ' αὐτὸ ὑφαίνεται ἡ ὅλη μελωδία. Εἶναι οἱ δεσπόζοντες φθόγγοι.

δ΄ Μελωδικές ελξεις. Γιὰ τὸ νόμο τῆς μελωδικῆς ἔλξεως ἔγινε λόγος στὸ ΙΣΤ΄ Κεφάλαιον (§ 255).

Στὴν κλίμακα ἢ στὶς κλίμακες τοῦ κάθε ἤχου, οἱ μελωδικές Ελξεις προκύπτουν — ὅπως ἀναφέραμε παραπάνω — ἀπὸ τὴ φυσιολογικὴ ἐπίδρασι ποὺ ἀσκοῦν οἱ δεσπόζοντες φθόγγοι στοὺς δευτερεύοντας. Οἱ φθόγγοι αὐτοὶ ὀνομάζονται ὑπερβάσιμοι ³.

Οί μελωδικές ελξεις ἀποτελοῦν τὸ ἀπαραίτητο στοιχεῖο τῆς πλαστικότητος τῆς μελωδίας καὶ τοῦ ὕφους 4.

ε' Οἱ καταλήζεις εἶναι μελωδικές γραμμὲς μὲ τεχνολογική ἰδιοτυ-

<sup>1.</sup> Βλ. § 236, 241, 244, 245 και 248β'.

<sup>2,</sup> Βλ. § 230, 231, 236, 241, 244, καὶ 245.

<sup>3. «</sup>Ύπερβάσιμοι είναι οί φθόγγοι, τῶν ὁποίων ἡ ποιότης ἀπρακτεῖ παντάσιν εἰς τοὺς ἢχους, είναι ἐκεῖνοι εἰς τοὺς ὁποίους ὁ ἤχος δὲν θέλει νὰ ἐμφιλοχωρεῖ, ἀλλὰ ἢ διόλου τοὺς σιωπᾶ, ἢ ταχέως ἀπὸ αὐτοὺς φεύγει καὶ χρονοτριβεῖ τὸ περισσότερον εἰς τοὺς δεσπόζον τας» (Χρυσάνθου. Θεωρητικὸν μέγα τῆς μουσικῆς § 304).

<sup>4.</sup> Bh. § 255.

πία καὶ σὰν χαρακτηριστικές τοῦ κάθε ἤχου καὶ τοῦ εἴδους τῆς μελωδίας του (ἰδιόμελον, προσόμοιον, στιχηραρικόν, εἰρμολογικόν, παπαδικόν), διακρίνονται γιὰ τὴ φραστική τους μεστότητα.

Μὲ τὶς καταλήξεις τελειώνουν καὶ χωρίζουν οἱ μουσικές φράσεις καὶ οἱ περίοδοι καὶ περατοῦται ἡ ὅλη μελωδία. Καὶ ἐπειδὴ τὰ διάφορα τμήματα τοῦ μουσικοῦ κειμένου ἀντιστοιχοῦν στὶς φράσεις καὶ στὶς περιόδους τοῦ ποιητικοῦ κειμένου πού, ὡς γνωστὸν, χωρίζουν μὲ τὰ σημεῖα τῆς στίξεως, τὴν ὑποδιαστολή, τὴν ἄνω στιγμή καὶ τὴν τελεία, κατ' ἀναλογίαν καὶ οἱ καταλήξεις εἶναι τριῶν εἶδῶν καὶ διακρίνονται σὲ ἀτελεῖς, ἐντελεῖς καὶ τελικές.

\*Ατελείς καταλήξεις είναι ἐκείνες ποὺ ἀντιστοιχοῦν στὶς ὑποδιαστολές τοῦ ποιητικοῦ κειμένου, ἔχουν τελικὸ φθόγγο ἕναν ἀπὸ τοὺς δεσπόζοντας τοῦ ἥχου καὶ ἡ ἰδιόμορφη δομὴ τους αἰσθητοποιεῖ πὼς ἡ μελωδία δὲν ὡλοκληρώθηκε καὶ ὅτι ὑπάρχει συνέχεια.

\*Εντελείς καταλήξεις είναι ἐκεῖνες ποὺ ἀντιστοιχοῦν στὶς ἄνω στιγμές καὶ στὶς τελείες τοῦ ποιητικοῦ κειμένου, τελειώνουν στὸ φθόγγο τῆς μελωδικῆς βάσεως τοῦ ἥχου καὶ δίνουν τὴν ἐντύπωσι πὼς ἡ μελωδία περατώθηκε· καὶ

Τελικές καταλήξεις είναι ἐκεῖνες ποὺ κατέχουν τὸ τέλος τῆς μελωδίας καί, ὅπως οἱ ἐντελεῖς, τὸ ἴδιο κι' αὐτές, τελειώνουν στὸ φθόγγο τῆς μελωδικῆς βάσεως τοῦ ἤχου 1.

Οἱ τελικές καταλήξεις παίρνουν ἐντελῶς ἰδιαίτερη μορφὴ ὅταν, ὕστερα ἀπὸ μιὰ μελωδία ἢ σειρὰ μελωδιῶν, πρόκειται νὰ ἀκολουθήση ἐκφόνησις ἀπὸ τὸν ἱερέα. Ἔτσι ἔχομε τὶς ὁριστικές καταλήξεις ποὺ κι' αὐτές, τελειώνουν στὴ μελωδικὴ βάσι τοῦ ἤχου.

<sup>\*</sup>Εκτὸς ἀπὸ τὶς ὁριστικές, μετὰ ἀπὸ κάθε κατάληξι γράφεται ή μαρτυρία τοῦ τελικοῦ φθόγγου.

στ΄ Τὸ ἀπήχημα είναι σύντομη μελωδική γραμμή, περιεκτική των άδροτέρων χαρακτηριστικών τοῦ ήχου. Μὲ τέτοια σύνθεσι καὶ μὲ τὸ νὰ προτάσσεται, τὸ ἀπήχημα προετοιμάζει καὶ εἰσάγει τὸν ἐκτελεστή καὶ τὸν ἀκροατή στη μελωδία ποὺ θὰ ἀκολουθήση.

Ἐπειδή κατ' αὐτὸν τὸν τρόπο, τὸ ἀπήχημα είναι ἔξω ἀπὸ τὸ ποιητικὸ κείμενο, ἐκτελεῖται, ἀνάλογα μὲ τὸν ἦχο ποὺ ἀνήκει, μὲ ἕναν ἀπὸ

<sup>1.</sup> Στὸ στιχηραρικὸν είδος τοῦ Τετάρτου ἤχου καὶ τοῦ πλαγίου τοῦ α΄, δπως στὴ σειρὰ τους θὰ γνωρίσουμε, οἱ τελικές καταλήξεις δὲν γίνονται στὴ μελωδική τους βάσι.

τοὺς πολυσυλλάβους φθόγγους τῆς παλαιᾶς βυζαντινῆς μουσικῆς <sup>1</sup>. "Όταν ὅμως, τῆς μελωδίας προηγῆται ἐκφώνησις τοῦ ἱερέως ποὺ τελειώνει μὲ τὴ φράσι «νῦν καὶ ἀεί καὶ εἰς τοὺς αἰῶνας τῶν αἰώνων», πιὸ σωστὸ εἰναι νὰ ἐκτελῆται μὲ τὴ λέξι «'Αμήν» <sup>2</sup>.

'Απὸ τὰ προεκτεθέντα χαρακτηριστικά ποὺ θὰ τὰ γνωρίσουμε λεπτομερέστερα καὶ εἰδικώτερα κατὰ τὴν καθ' ἔκαστα ἐξέτασι τῶν ἤχων καὶ ὅπου θὰ γίνη λόγος καὶ γιὰ τὸ ἤθος, οἱ καταλήξεις καὶ τὸ ἀπήχημα ὀνομάζονται ἐπίσης καὶ γνωριστικὰ τοῦ ἤχου, γιατί καὶ μόνον αὐτὰ, εἶναι ἀρκετὰ νὰ τὸν φανερώσουν.

### Οἱ μαρτυρίες τῶν ἤχων

307. Για να δείξουμε σὲ ποιὸν ἡχο (γένος, κλίμακα, μελωδική βάσι) καὶ σὲ ποιὸ είδος (στιχηραρικόν, είρμολογικόν, παπαδικόν) ἀνήκει ἡ μελωδία ένὸς μουσικοῦ κειμένου προτάσσομε σχετικὰ δηλωτικὰ σημεία, τὶς μαρτυρίες τῶν ἡχων <sup>3</sup>.

Τὰ σημεῖα αὐτά, γιὰ διάκρισι, εἶναι διαφορετικὰ ἀπὸ τὶς μαρτυρίες τῶν φθύγγων τῶν κλιμάκων τῶν τριῶν γενῶν  $^4$ , τὶς φθορικὲς μαρτυρίες  $^5$  καὶ τίς μαρτυρίες ποὺ χρησιμοποιοῦμε στὶς χρόες  $^6$ .

Οἱ μαρτυρίες τῶν ἤχων ὀνομάζονται ἀρκτικὲς μαρτυρίες.

Σὲ καθέναν ἀπὸ τοὺς ὀκτὼ ἥχους θὰ γνωρίσουμε καὶ τὶς ἀρκτικὲς μαρτυρίες του.

## Οί μεταβολές στούς ήχους

308. Μὲ τὰ προεκτεθέντα (§304 - 307) γνωρίσαμε τὴν ἔννοια τῶν ἤχων

<sup>1.</sup> Βλ. σελ. 233

<sup>2.</sup> Τὸ ἀπήχημα ὸνομάζεται καὶ ἐνήχημα. «Ἐνήχημα ἐστὶν ἡ τοῦ ἤχου ἐπιβολή. Γίνεται δὲ καὶ μονοσυλλάβως τὸ ἀπήχημα, ὅμως ὁ ἀρχάριος
στοιχειοῦται διὰ τῶν πολυσυλλάβων φθόγγων τὴν ποιότητα» (Χρυσάνθου Θεωρητικὸν μέγα τῆς μουσικῆς. § 307 ὑποσ. α).

<sup>3.</sup> Οί μαρτυρίες τών ήχων άντιστοιχοῦν μέ τοὺς γνώμονας τῆς εὐρωπαϊκῆς μουσικῆς καὶ τοὺς ὁ πλισμο ὺς τῶν κλιμάκων της.

<sup>4.</sup> Bλ. § 37, 237 - 241.

<sup>5.</sup> Bλ. § 246.

<sup>6.</sup> Bλ. § 251 - 254.

σὰν τρόπων μελωδίας καθώς καὶ τὰ τεχνολογικὰ στοιχεῖα ποὺ τοὺς συνθέτουν.

Ή βυζαντινή μελοποιτα, γιὰ νὰ ἀποδώση τὰ νοήματα τοῦ ποιητικοῦ κειμένου ποὺ θέλει νὰ ἐπενδύση, διαλέγει τὸν προσιδιάζοντα, γιὰ κάθε περίπτωσι, ήχο.

Προχωρώντας περισσότερο, γιὰ τὸν ἐντελέστερο καὶ ἐντονώτερο τονισμὸ καὶ χρωματισμὸ τῶν ἐπὶ μέρους ἐννοιῶν μπορεῖ, κατὰ τὴν πορεία καὶ ἐξέλιξι τῆς μελωδίας τοῦ ἐκλεγέντος ῆχου, νὰ χρησιμοποιῆ παράλληλα καὶ ὁποιαδήποτε προσφορωτέρα μορφὴ ἀπὸ τὸν πλοῦτο τῶν μεταβολῶν (κατὰ γένος, κατὰ τόνον, κατὰ γένος καὶ τόνον, κατὰ σύστημα, μετάθεσι, παραχορδή), φθορικές καθὼς καὶ μικτὲς κλίμακες <sup>1</sup> καὶ νὰ μεταπηδᾶ, μὲ τἰς χαρακτηριστικές της γιὰ κάθε ἦχο, θέσεις <sup>2</sup>, ἀπὸ τὸν ἕνα στὸν ἄλλο. Τελικὰ ὅμως, ἡ μελωδία καταλήγει στὸν ἀρχικὸ ἦχο.

Σὰν παράδειγμα τῆς μεταβολῆς ἀπὸ ἦχο σὲ ἦχο ἀναφέρομε.

α΄ Τὸ ἰδιόμελον τῶν Αἴνων τῆς Μεγάλης Τρίτης «Ἐν ταῖς λαμπρότησι τῶν Ἁγίων σου» πού, ἐνῶ ἀνήκει στὸν Πρῶτο ἦχο, ἀπὸ τὴ φράσι «ἐἀν γάρ τολμήσω» μεταβάλλεται σὲ Δεύτερο ἦχο καὶ τελικά, στὴ φράσι «καὶ σῶσον με ὡς φιλάνθρωπος», μὲ νέα μεταβολή, ἐπανέρχεται καὶ καταλήγει στὸν ἀρχικὸ ἦχο.

β΄ Τὸ δοξαστικὸν <sup>3</sup> τοῦ 'Εσπερινοῦ τῆς Κοιμήσεως τῆς Θεοτόκου «Θεαρχίω νεύματι» ποὺ κι' αὐτό, ἐνῶ ἀνήκει στὸν Πρῶτο ἡχο, μεταβάλλεται, ἀπὸ φράσι σὲ φράσι, κατὰ σειράν, σὲ Πλάγιο τοῦ α΄, Δεύτερο, Πλάγιο τοῦ β΄, Τρίτο, Βαρύ, Τέταρτο, Πλάγιο τοῦ δ΄ καὶ τελικὰ στὴ φράσι «εἰς τοὺς αἰῶνας ἀγλαοφανῶς μακαρίσωμεν» ἐπανέρχεται καὶ καταλήγει στὸν ἄρχικὸ ἡχο, καὶ

γ΄ Τὸ ἀργόν, δίχορον, ἔντεχνον «Θεστόκε Παρθένε» τῆς ᾿Αρτοκλασίας, Πέτρου Μπερεκέτου τοῦ Γλυκέος, ὅπου οἱ ὀκτὰ ἤχοι διαδέχονται ὁ ἔνας τὸν ἄλλον καὶ στὸ τέλος, μὲ τὴν ἐπανάληψι τῆς φράσεως «τῶν ψυχῶν ἡμῶν» γίνεται ἐπαναφορὰ στὸν Πρῶτο ἤχο.

<sup>1.</sup> Bλ. § 245, 247 - 250.

<sup>2.</sup> Θέσεις ονομάζονται ώρισμένες μελωδικές γραμμές που χρησιμοποιούνται συχνά σ' εναν ήχο. Οἱ θέσεις, σύντομες ἡ ἐκτενέστερες, ἀνάλογα μὲ τὸ εἶδος τῆς μελωδίας, εἶναι ἐκφραστικὲς τῆς ποιότητος τῶν ἤχων καὶ πολλές ἀπὸ αὐτές εἶναι κοινὲς γιὰ ἤχους τοῦ ἰδίου γένους.

<sup>3.</sup> Ἡ ὀνομασία δοξαστικὸν προήλθε ἀπὸ τὸν στίχο «Δόξα Πατρί...» που προψάλλεται. Τὰ 11 δοξαστικὰ τῶν Αἴνων τῶν Κυριακῶν, ποίημα Λέοντος Στ΄ τοῦ Σοφοῦ (881 - 912), ὀνομάζονται Ἑωθινὰ, γιατὶ ἀναφέρονται στὴν ᾿Ανάστασι τοῦ Κυρίου ποὺ ἔγινε κατὰ τὴν ἕω (χαράγματα).

#### Παρείσακτα μέλη

309. Σὲ μερικὲς μελωδίες τοῦ εἰρμολογικοῦ εἴδους τοῦ Ιἰρώτου καὶ τοῦ Τετάρτου ἤχου, ἐκτὸς ἀπὸ τὶς μελωδικὲς ἔλξεις τῶν ὑπερβασίμων ἀπὸ τοὺς δεσπόζοντας φθόγγους τῶν κλιμάκων τους, μὲ τὴν πάροδο τοῦ χρόνου καὶ ἄλλοι τόνοι τους ἔχουν ὑποστῆ ἀλλοίωσι σὲ βαθμὸ νὰ μεταβληθοῦν ἐντελῶς κατὰ γένος.

Τὸ γεγονὸς ὅμως πὼς οἱ μελωδίες αὐτὲς ἀνήκουν στοὺς δύο αὐτοὺς ήχους εἶναι ἀναμφισβήτητον, ἀφοῦ τὰ ἄλλα χαρακτηριστικά τους (μελωδική βάσις, καταλήξεις, ἀπήχημα) παραμένουν ἀμετάβλητα.

Οἱ μελωδίες αὐτὲς ὀνομάζονται παρείσακτα ἤ ἐπείσακτα μέλη καὶ θὰ τὶς γνωρίσουμε κατὰ τὴν ἐξέτασι τῶν ἤχων τους.

#### ΗΧΟΣ ΠΡΩΤΟΣ

**310.** Γένος - κλίμαξ. 'Ο Πρώτος ήχος κάνει χρήσι διατονικών κλιμάκων. Είναι, συνεπώς, διατονικός ήχος.

Στὶς μελωδίες μικρῆς ἐκτάσεως μὲ περιωρισμένο μουσικὸ διάγραμμα (εἰρμολογικόν, σύντομον καὶ νέον στιχηραρικὸν εἶδος) ἡ κλῖμαξ τοῦ Πρώτου ἤχου σχηματίζεται μὲ τὸ διαπασῶν σύστημα (§ 218).

Σὲ ἐκτενέστερες καὶ μὲ μεγαλύτερο διάγραμμα, μελωδίες (παλαιόν ή ἀργὸν στιχηραρικόν, παπαδικόν καὶ καλοφωνικόν είδος) ή κλίμαξ του ἀκολουθεῖ, ὡς ἐπὶ τὸ πλείστον, τὸ πεντάχορδον σύστημα (§ 219).

Μελωδική βάσις. 'Ο Πρῶτος ήχος ἔχει δύο μελωδικὲς βάσεις. Τὸν Πα καὶ τὸν Κε (τῆς Μέσης). 'Απὸ σὐτές, ἐπικρατέστερη, σ' ὅλα του τὰ εἴδη, εἴναι ὁ Πα. Μὲ βάσι τὸν Κε εἴναι α΄) μερικές μελωδίες τοῦ ἀργοῦ Στιχηραρίου ¹ τοῦ Ἰακώβου Πρωτοψάλτου, ὅπως τὸ ἰδιόμελο τῶν ᾿Αποστίχων τοῦ Κατανυκτικοῦ Ἑσπερινοῦ τῆς Ε΄ Κυριακῆς τῶν Νηστειῶν «Θαυμαστὴ τοῦ Σωτῆρος», β΄) τὸ, σὲ σύντομον καὶ ἀργὸν εἰρμολογικὸν

<sup>1.</sup> Τὸν τίτλο στιχηράριον ἔχουν ὀγκώδεις χειρόγραφοι κώδικες γραμμένοι στὸ ἀρχαῖο στενογραφικὸ σύστημα τῆς βυζαντινῆς μουσικῆς καὶ περιέχουν μαθήματα τοῦ στιχηραρικοῦ εἴδους, ὅπως τὰ στιχηρά καὶ τὰ δοξαστικὰ τῆς ᾿Οκτωήχου, τῶν ἀκινήτων καὶ κινητῶν ἐορτῶν τοῦ ἔτους. Τὰ περισσότερα ἀπὸ αὐτὰ ἔχουν μεταγραφῆ στὴ σημερινὴ παρασημαντικὴ ἀπὸ τοὺς τρεῖς διδασκάλους ποὺ τὴν ἐπενόησαν καὶ τὴν καθιέρωσαν καὶ ἔχουν ἐκδοθῆ, ὅπως τὸ «᾿Αναστασιματάριον» ᾿Ιωάννου τοῦ Δαμασκηνοῦ καὶ τὸ «Στιχηράριον» Ἰακώβου Πρωτοψάλτου.

μέλος, Κάθισμα <sup>1</sup> «Τὸν τάφον σου Σωτήρ», γ΄) μερικοὶ καλοφωνικοὶ είρμοί, ὅπως τὸ «Συνέχομαι πάντοθεν δεινοῖς», Πέτρου Μπερεκέτου καὶ δ΄) ὁρισμένες μελωδίες τοῦ παπαδικοῦ εἴδους, ὅπως τὸ «Τὴν γὰρ σήν μήτραν» τῆς Λειτουργίας τοῦ Μεγάλου Βασιλείου, τὸ Κοινωνικὸν τῶν Χριστουγέννων «Λύτρωσιν ἀπέστειλε», Δανιὴλ Πρωτοψάλτου, τὸ Κοινωνικὸν τῆς Λειτουργίας τῶν Προηγιασμένων «Γεύσασθε», Ἰωάννου τοῦ Κλαδᾶ κ. ἄ.

Δεσπόζοντες φθόγγοι. Μὲ μελωδικὴ βάσι τὸν Πα, ὁ Πρῶτος ἦχος ἔχει δεσπόζοντας φθόγγους στὸ σύντομον καὶ ἀργὸν εἰρμολογικόν καθὼς καὶ στὸ σύντομο στιχηραρικὸν εἶδος του, τοὺς Πα καὶ Δι (τῆς Μέσης.) Στὸ νέον καὶ στὸ παλαιὸν ἤ ἀργὸ στιχηραρικὸν εἶδος του, τοὺς Πα καὶ Γα (τῆς Μέσης). Στὸ παπαδικὸν εἶδος, τοὺς Πα Γα Δι Κε (τῆς Μέσης). Καὶ στὸ καλοφωνικὸν εἶδος του, τοὺς Πα Δι Κε (τῆς Μέσης) καὶ τὸν Πα΄ (τῆς Νήτης).

Μὲ μελωδική βάσι τὸν Κε, δεσπόζοντες φθόγγοι τοῦ Πρώτου ήχου, στὸ ἀργὸν ή παλαιὸ στιχηραρικόν, στὸ παπαδικόν καθώς καὶ στὸ καλοφωνικὸν είδος του, είναι οἱ Πα Γα Κε (τῆς Μέσης) καὶ Νη΄ Πα΄ (τῆς Νήτης).

Μελωδικὲς ἔλξεις. α΄ Όχι μονάχα στὸν Πρῶτο ἦχο, ἀλλά - ὅπως θὰ γνωρίσουμε - καὶ σ' ὅλους τοὺς λοιποὺς διατονικοὺς ῆχους καὶ σ' ὅλα τὰ εἴδη τῆς μελωδίας τους, ἐφόσον ὁ Ζω (τῆς Νήτης) δὲν εἶναι δεσπόζων φθόγγος τους καὶ οὕτε παρουσιάζεται μὲ τονή ² ὁ φθόγγος αὐτὸς, τόσον κατὰ τὴν ἀνάβασι, στὴν περίπτωσι ποὺ δὲν τὸν ὑπερβαίνουμε, ὅσον καὶ κατὰ τὴν κατάβασι, στὴν περίπτωσι ποὺ κατεβαίνουμε χαμηλότερα ἀπὸ αὐτόν, ἕλκεται ἀπὸ τὸ χαμηλότερό του, τὸν Κε, ἕτσι ποὺ ὁ ἐλάσσων τόνος Νη - Ζω νὰ μειώνεται σὲ ἀποτομή ἐλάσσονος τόνου  $\left(\frac{135}{128} = \frac{128}{135} \mu$ . χορδῆς ἢ 4 τμήματα  $\right)$ , ὅπως στὰ ἑξῆς παραδείγματα.

<sup>1.</sup> Μερικές μελωδίες του "Ορθρου ὀνομάζονται Καθίσματα, γιατὶ, κατὰ τοὺς ἀρχαίους χρόνους, κατὰ τὴ διάρκειά τους, ἐπετρέπετο στοὺς ψάλτας καὶ στοὺς πιστοὺς νὰ κάθωνται γιὰ μικρὴ ἀνάπαυσι. Ἡ συνήθεια αὐτὴ ἔχει καταργηθή. Τὰ Καθίσματα ἀνήκουν στὸ εἰρμολογικὸν εἶδος καὶ ψάλλονται σὲ σύντομο μέλος τὶς Κυριακὲς καὶ Ἑορταῖς καὶ σὲ ἀργὸ κατὰ τοὺς "Ορθρους τῆς Μεγάλης Ἑβδομάδος.

<sup>2.</sup> Βλ. § 56 ὑποσ. 2.

β΄ Στὸ σύντομο στιχηραρικόν καθώς καὶ στὸ σύντομον εἰρμολογικὸν εἰδος τοῦ Πρώτου ἤχου καὶ μάλιστα μὲ τὴν ταχεῖα χρονικὴ ἀγωγὴ χ βρίσκονται ὑψωμένοι, ὁ Βου (τῆς Μέσης) κατὰ ἕνα κόμμα  $\left(\frac{81}{80} - \frac{80}{81} + \chi_0 \rho_0\right)$  δῆς ἢ 2 τμήματα καὶ ὁ ὑπερκείμενός του Γα κατὰ ἕνα ἐλάχιστον τόνον  $\left(\frac{10}{9} - \frac{9}{10} + \chi_0 \rho_0\right)$  καὶ ὁ ὑπερκείμενός του Γα κατὰ ἕνα ἐλάχιστον τόνον τοὶ ἐπανέρχονται στὴ φυσικὴ τους ὀξύτητα, ὅπως στὸ ἑξῆς παράδειγμα ποὺ περιέχει καὶ τὴν προαναφερθεῖσα ἕλξι τοῦ Ζω.

Τονικός ρυθμός χ

καὶ γ΄ Στὸ παπαδικὸν είδος τοῦ Πρώτου ήχου καὶ σπάνια στὸ στιχηραρικό του, ὁ Δι (τῆς Μέσης) βρίσκεται χαμηλωμένος κατὰ ἀποτομή ἐλάσσονος τόνου στὴν περίπτωσι ποὺ ἡ μελωδία δὲν τόν ὑπερβαίνη, ἀλλὰ ἐπιμένη καὶ περιστρέφεται στὸν Γα (τῆς Μέσης). Στὴν τελευταία αὐτὴ περίπτωσι καὶ ἐφόσον ἡ μελωδία δὲν κατεβαίνη χαμηλότερα ἀπὸ τὸν Βου (τῆς Μέσης) καὶ αὐτὸς ἀλλοιώνεται μὲ δίεσι ἴση μὲ ἀποτομή ἐλάσσονος τόνου ὅπως στὸ ἐξῆς παράδειγμα.

### Καταλήξεις: Α΄ Μέ μελωδική βάσι τοῦ Πρώτου ήχου τὸν Πα:

Στὸ σύντομον καὶ ἀργὸν εἰρμολογικὸν καθώς καὶ στὸ σύντομο στιχηραρικὸν εἰδος, ἀτελεῖς καταλήξεις γίνονται στὸν Δι (τῆς Μέσης) καὶ σπάνια στὸν ζω (τῆς Μέσης), ὅπως στὰ ἐξῆς παραδείγματα.

#### Είρμολογικοῦ είδους

<sup>1.</sup> Όταν, με τις έκατέρωθεν ελξεις, του Βου και του Δι, ο Πρώτος ήχος περιστρέφεται στον Γα, ονομάζεται, είδικα, Πρώτος δίφωνος.

## Συντόμου στιχηραρικού είδους

Στὰ εἴδη αὐτά, οἱ ἐντελεῖς, τελικές καὶ ὁριστικὲς καταλήξεις γίνονται στὴ μελωδικὴ βάσι τοῦ ἤχου, τὸν Πα, ὅπως στὰ ἐξῆς παραδείγματα.

## 1ον Έντελῶν καταλήξεων.

## α' του συντόμου καὶ άργου είρμολογικού είδους.

Α Των ου ρα νι ων ταγ μα α των το α γαλ

λι α μα 
$$\overset{3}{q}$$

Α την σα α αρ κω σι ιν υ υ πε ε ε φη η

να αν  $\overset{3}{q}$ 

β΄ τοῦ συντόμου στιχηραρικοῦ εἴδους.

$$\frac{\Delta}{6}$$
 ει σακου σον μου  $\frac{\pi}{6}$  Κα τε λαβον αι τι μι αι γυ ναι αι κες  $\frac{\pi}{6}$ 

## 2ον Τελικών καταλήξεων

α΄ του συντόμου είρμολογικού καὶ συντόμου στιχηραρικού είδους.

$$\pi$$
 Θε ο το κε α νε  $\theta$ ε ε με ε  $\theta$ α  $\pi$ 
 $\Lambda$ 
 $\Lambda$ 
ει σα κου σον μου  $K$ υ  $\nu$  ρι  $\iota$  ε  $\pi$ 

β΄ του άργου είρμολογικού είδους.

## 3ον 'Οριστικών καταλήξεων

α΄ τοῦ συντόμου είρμολογικοῦ καὶ συντόμου στιχηραρικοῦ είδους.

β΄ του άργου είρμολογικου είδους.

Στὸ νέο στιχηραρικὸν εἶδος, ἀτελεῖς καταλήξεις γίνονται στοὺς Πα καὶ Γα (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

$$\frac{\pi}{q}$$
 Τον σαρ κι εκου σι ως σταυ ρω θεν τα α δι η η

 $\frac{3}{\mu \alpha \zeta}$   $\frac{\pi}{q}$   $\frac{\pi}{\pi}$   $\frac{2}{\pi}$  θον τα και τα α φε εν τα  $\frac{\pi}{2}$ 

Σπανιώτερα, οί καταλήξεις αὐτὲς γίνονται καὶ στὸν Δι καθώς καὶ στὸν ζω (τῆς Μέσης) ὅπως στὰ ἑξῆς παραδείγματα.

Οἱ ἐντελεῖς, τελικές καὶ ὁριστικὲς καταλήξεις, στὸ στιχηραρικὸν αὐτὸ εἶδος, γίνονται στὴ μελωδικὴ βάσι τοῦ ἤχου, τὸν Πα, ὅπως στὰ ἑ-ξῆς παραδείγματα.

## 1ον Έντελους καταλήξεως.

$$\frac{1}{\pi} \frac{3}{\text{prosdexai A yi i } \epsilon} \left| \frac{4}{\text{Ku u u u}} \right| \frac{1}{\text{pi i i i } \epsilon} \frac{2}{\pi}$$

2ον Τελικής καταλήξεως.

Δ την Α να α α α στα α α στν 
$$q$$

3ον 'Οριστικής καταλήξεως.

Τέλος, στὸ καλοφωνικόν καὶ στὸ παπαδικὸν είδος οἱ ἀτελεῖς καταλήξεις γίνονται στούς Πα Δι Κε (τῆς Μέσης) καὶ οἱ τελικές καθώς καὶ οἱ ὁριστικὲς καταλήξεις στὴ μελωδικὴ βάσι τοῦ ἥχου, τὸν Πα, ὅπως μπορεῖ νὰ δῆ κανεὶς στὶς ἀργὲς δοξολογίες, στὰ Χερουβικὰ, στὰ Κοινωνικὰ καὶ στοὺς Καλοφωνικοὺς εἰρμούς.

## Β΄. Μὲ μελωδική βάσι τοῦ Πρώτου ήχου τὸν Κε:

Σὲ ὅλα τὰ εἴδη τοῦ Πρώτου ἤχου μὲ βάσι τὸν Κε, οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς Πα Γα Δι Κε (τῆς Μέσης) καὶ Νη΄ (τῆς Νήτης) καὶ οἱ ἐντελεῖς καταλήξεις στὸν Πα (τῆς Μέσης). Ἡ ὁριστικὴ ὅμως κατάληξις, στὸ ἀργό μὲν στιχηραρικὸν εἴδος, γίνεται στὴ μελωδικὴ βάσι τοῦ ἤχου, τὸν Κε, ὅπως, π. χ. στὸ ἰδιόμελον «Θαυμαστὴ τοῦ Σωτῆρος» Ἰακώβου Πρωτοψάλτου, στὸ παπαδικό δὲ στὸν Πα (τῆς Μέσης), ὅπως π. χ. στὸ Κοινωνικὸν «Γεύσασθε» Ἰωάννου τοῦ Κλαδᾶ.

'Αρκτικές μαρτυρίες. Όταν μελωδική βάσις τοῦ Πρώτου ήχου εξναι ὁ Πα (τῆς Μέσης), ἡ ἀρκτικὴ του μαρτυρία είναι  $\ddot{q}$  Πα καὶ ὅταν εξναι ὁ Κε (τῆς Μέσης), εἴναι ἡ  $\ddot{q}$  Κε.

'Απήχημα. Καὶ μὲ τὶς δύο μελωδικὲς βάσεις τοῦ Πρώτου ἤχου, τὸν Πα καὶ τὸν Κε (τῆς Μέσης), τὸ ἀπήχημά του σχηματίζεται μὲ τὴν ἀνάβασι ἐνὸς μείζονος τόνου ὡς ἐξῆς:

Μεταβολές στὸν Πρῶτο ήχο. Ἡ ἐπικρατέστερη μεταβολή ποὺ παρατηρεῖται σὲ ὅλα τὰ εἴδη τοῦ Πρώτου ήχου εἴναι σὲ σύντονο ή σκληρὸ χρωματικὸ γένος εἴτε ἀπλῶς κατὰ γένος (Βλ. ἀσκήσεις 354 καὶ 357), εἴτε καὶ μὲ μετάθεσι ἄλλοτε τοῦ Δι στὸν Πα (Βλ. ὑπ. ἀριθ. 435 ἄσκησι) καὶ ἄλλοτε τοῦ Πα στὸν Δι ὅπως στὸ ἑξῆς παράδειγμα.

'Apò tìς cróes, ὁ Πρώτος ήχος crhotimopoieι τὸ Κλιτόν  $\wp$  (Bl. ὑπ' ἀριθ. 521 ἄσκησι).

Καὶ οἱ ὑπ' ἀριθμόν 178, 189, 194, 225, 230, 236, 305 - 306, 308 - 311, 367 - 368, 375 - 376, 426, 436, καὶ 496 ἀσκήσεις τοῦ Βιβλίου αὐτοῦ ἀνήκουν στὸν Πρῶτο ἤχο καὶ στὶς μεταβολές του.

Ήθος. Ό Πρῶτος ήχος ἀποδίδει τὴν ἀπλότητα ἀλλά καὶ τὴ μεγαλοπρέπεια, τὴ σοβαρότητα μαζί καὶ τὴν ἱλαρότητα καὶ τὴ γλυκύτητα μὲ τὴ σεμνότητα. Ἔτσι τὸ ἦθος του πού βασικά, εἶναι ἡσυχαστικόν, πολλές φορές, μετέχει καὶ τοῦ διασταλτικοῦ.

Παρείσακτον μέλος. Στὸν Πρῶτο ήχο, παρείσακτο μέλος είναι τὸ εἰρμολογικόν «Τὸν τάφον σου Σωτήρ».

Σ' αὐτό, ἡ μελωδικὴ ελξις τοῦ Ζω΄ (τῆς Νήτης) ἀπὸ τὸν Κε, μὲ τὸ νὰ ἐπαναλαμβάνεται συνεχῶς, ἔχει παρασύρει, μὲ τὸν καιρό καὶ τὸν Γα (τῆς Μέσης) πρὸς τὸν ὑπερκείμενό του Δι. Στή συνέχεια, ὑπὸ τὴν ἐπίδρα-

<sup>1</sup> καί 2 Βλ. § 306 στ΄

## Ήχος Ϋ Κε Τονικός ουθαός γ

Τον τα φον σου Σω τη ηρστρα τι ω ταιτη ρουντες ενε κροι τη α στρα πη του ο φθεν τος Αγ γελου ε ε γε νον το ο κη ρυ υτ τον το ος γυ ναι ξι τη ην Α να α στα σιν σε ε δο ξα α ζο με εν τον της φθο ρας κα θαι ρε την σοι οι προ σπι ι πτο με εν τω α να σταν τι εκ τα φου και μο νω Θε ω η μων  $\ddot{q}$ 

Αὐτόμελα (πρόλογοι) καὶ Είρμοι τοῦ Πρώτου ἤχου.

α΄ Αὐτόμελα (πρόλογοι) στὸν Πρῶτο ἦχο εἶναι τὰ ἑξῆς: Τὸ ᾿Ανα-

στάσιμον 'Απολυτίκιον ' «Τοῦ λίθου σφραγισθέντος ὑπὸ τῶν 'Ιουδαίων», τὸ Κάθισμα «Τὸν τάφον σου Σωτήρ», ποὺ γνωρίσαμε παραπάνω σὰν παρείσακτο μέλος, τὰ Στιχηρά <sup>2</sup> «Τῶν οὐρανίων ταγμάτων», «Πανεύφημοι μάρτυρες», «¹Ω τοῦ παραδόξου θαύματος» καὶ «Νεφέλην σὲ φωτός».

β΄ Οἱ κυριώτεροι εἰρμοὶ τοῦ Πρώτου ἤχου εἶναι τῶν ἑξῆς Κανόνων ³: Τῆς ᾿Οκτωήχου «Σοῦ ἡ τροπαιοῦχος δεξιά», τῶν Εἰσοδίων τῆς Θεοτόκου «᾽Ωδὴν ἐπινίκιον», τῶν Χριστουγέννων «Χριστὸς γεννᾶται, δοξάσατε» καὶ «Ἔσωσε λαόν», τῆς Κοιμήσεως τῆς Θεοτόκου «Πεποικιλμένη τῆ θεία δόξη», τοῦ Πάσχα «᾿Αναστάσεως ἡμέρα» καὶ τῆς Κυριακῆς τοῦ Θωμᾶ «Ἦσων πάντες λαοί».

Τὰ αὐτόμελα καὶ οἱ εἰρμοὶ ὅλων, γενικῶς, τῶν ἤχων, σύντομα καὶ ἀργά, σὰν εἰρμολογικὸν εἶδος, περιλαμβάνονται στὸ Εἰρμολόγιον Ἰωάννου Πρωτοψάλτου.

#### ΗΧΟΣ ΔΕΥΤΈΡΟΣ

311. Γένος - κλίμαξ. Ο Δεύτερος ήχος χρησιμοποιεί τὶς δύο χρωματι-

<sup>1. &#</sup>x27;Απολυτίκια ὀνομάζονται σύντομα ποιήματα πού, περιληπτικά, περιέχουν τὴν ὑπόθεσι τῆς κάθε Εορτῆς. 'Η ὀνομασία ὀφείλεται στὸ ὅτι ψάλλονται κατὰ τὴν ἀπόλυσι τοῦ Ἑσπερινοῦ εὐθὺς μετὰ τὸ «Νῦν ἀπολύεις τὸν δοῦλον σου, δέσποτα». Τὰ 'Αναστάσιμα 'Απολυτίκια (τῆς 'Οκτωήχου) καθώς καὶ τῶν 'Αγίων, ψάλλονται ἐπίσης στὴν ἀρχὴ τοῦ 'Ορθρου καὶ στὸ τρίτο 'Αντίφωνο κατὰ τὴ Λειτουργία. Τῶν Δεσποτικῶν ὅμως 'Εορτῶν ψάλλονται, ἐπί πλέον καὶ στὸ τέλος τῆς Λειτουργίας ἀντὶ τοῦ «Εἴδομεν τὸ φῶς τὸ ἀληθινόν».

<sup>2.</sup> Στιχηρά χαρακτηρίζονται τὰ ἰδιόμελα καὶ τὰ προσόμοια ποὺ πρὶν ἀπὸ αὐτὰ ψάλλονται ώρισμένοι ψαλμικοί στίχοι. 'Ανάλογα μὲ τὴν 'Ακολουθία ποὺ ἀνήκουν εἶναι Στιχηρὰ ἰδιόμελα ἤ προσόμοια τοῦ 'Εσπερινοῦ, τῶν 'Αποστίχων καὶ τῶν Αἴνων.

<sup>3.</sup> Οἱ εἰρμοὶ τῶν Κανόνων ὀνομάζονται Καταβασίαι γιατί παλαιότερα, στὸ τέλος τῆς κάθε ἀδῆς, οἱ ψάλται καὶ τῶν δύο χορῶν κατεβαίνοντας ἀπὸ τἰς θέσεις τους, τοὺς ἔψαλλαν συνενωμένοι στὸ κέντρο τοῦ Ναοῦ. Ἡ συνήθεια αὐτὴ ἔχει ἐγκαταλειφθῆ. Τώρα, μόνον τὴν 21ην Νοεμβρίου (τῶν Εἰσοδίων τῆς Θεοτόκου), ὁπότε ἀρχίζουν οἱ Καταβασίες τῶν Χριστουγέννων, οἱ χοροὶ κατεβαίνουν καὶ ἀφοῦ ψάλουν τὴν πρώτη Καταβασία «Χριστὸς γεννᾶται, δοξάσατε» ἐπανέρχονται στὶς θέσεις τους. Τἡ Μεγάλη Ἑβδομάδα, τὸ Πάσχα, τὴ Διακαινήσιμο Ἑβδομάδα καὶ στὴν ᾿Απόδοσι τοῦ Πάσχα οἱ εἰρμοὶ ψάλλονται σὰν Καταβασίες στὸ τέλος τῆς κάθε ἀδῆς. Κατὰ τὶς λοιπὲς Κυριακὲς καὶ Ἑροτὲς οἱ Καταβασίες ψάλλονται ὕστερα ἀπὸ τοὺς Κανόνες. Ἦν ὑπάρχη ᾿Αρχιερατικὴ λειτουργία ἤ χοροστασία, αὐτὴ τή στιγμή προσέρχεται ὁ ᾿Αρχιερεύς στὸ Ναὸ καὶ τὶς ψάλλει ὁ ἴδιος.

κές κλίμακες που, ὅπως γνωρίσαμε ¹, σχηματίζονται μὲ τὸ πεντάχορδον σύστημα. Είναι συνεπῶς, χρωματικὸς ῆχος.

Τῆς μαλακῆς χρωματικῆς κλίμακος γίνεται χρῆσις στὸ νέο στιχηραρικόν (᾿Αργόν ᾿Αναστασιματάριον καὶ Δοξαστάριον Πέτρου Πελοποννησίου), στὸ παλαιὸν ἤ ἀργὸν στιχηραρικόν (ὅπως τὸ ἀργὸν Κεκραγάριον, τὸ Καὶ νῦν τῶν Αἴνων τῶν Χριστουγέννων «Σήμερον ὁ Χριστὸς ἐν Βηθλεὲμ γεννᾶται» Ἰακώβου Πρωτοψάλτου κ. ἄ.) καὶ στὸ παπαδικόν εἶδος (ὅπως τὰ Χερουβικά καὶ Κοινωνικά Θεοδώρου Φωκαέως).

Τῆς συντόνου ἡ σκληρᾶς χρωματικῆς κλίμακος γίνεται χρῆσις στὸ σύντομον καὶ ἀργὸν εἰρμολογικόν (Εἰρμολόγιον Ἰωάννου Πρωτοψάλτου), στὸ σύντομο στιχηραρικόν (Σύντομον ᾿Αναστασιματάριον Ἰωάννου Πρωτοψάλτου) καὶ στὸ παπαδικὸν είδος (ὅπως ἡ ἀργὴ δοξολογία Ἰακώβου Πρωτοψάλτου καὶ τὰ Χερουβικά καὶ Κοινωνικά Πέτρου Πελοποννησίου, Γρηγορίου Πρωτοψάλτου, Ἰωάννου Πρωτοψάλτου κ. ἄ.)

Κατ' ἐξαίρεσιν, οἱ στίχοι τοῦ ΡΜ΄ ψαλμοῦ «Θοῦ, Κύριε, φυλακὴν τῷ στόματί μου», σύντομο στιχηραρικὸν εἶδος, τὸ 'Αναστάσιμον Κάθισμα τῆς 'Οκτωήχου, «'Ο εὐσχήμων 'Ιωσήφ», ὁ ἰαμβικός Κανὼν τῶν Θεοφανείων «Στίβει θαλάσσης» καὶ τὰ 'Εξαποστειλάρια 2 «Τοῖς μαθηταῖς συνέλθωμεν», «Σαρκὶ ὑπνώσας ὡς θνητός», Γυναῖκες ἀκουτίσθητε», «Τῶν Μαθητῶν ὑρώντων σε ἀνελήφθης» καὶ «Σταυρός, ὁ φύλαξ πάσης τῆς οἰκουμένης», ὅλα τοῦ συντόμου εἰρμολογικοῦ εἴδους, εἶναι στὴ μαλακὴ χρωματικὴ κλίμακα.

<sup>\*</sup>Επί πλέον, ή μικτή καὶ ἐναλλασσομένη χρῆσις τῶν δύο χρωματικῶν κλιμάκων σὲ ὅλα τὰ εἴδη τοῦ Δευτέρου ἤχου εἶναι ἐπικρατέστερη στὸ παπαδικὸν εἶδος (Χερουβικά καὶ Κοινωνικὰ Πέτρου Πελοποννησίου κ. ἄ.)

Μελωδική βάσις. "Οταν ὁ Δεύτερος ήχος χρησιμοποιή τη μαλακή χρωματική κλίμακα, ή μελωδική του βάσις είναι ὁ Δι (τῆς Μέσης) τού, στὸ παλαιὸν ή ἀργὸν στιχηραρικόν ("Αργὸν Δοξαστάριον "Ιακώβου Πρωτοψάλτου) καὶ στὸ παπαδικὸν είδος (ὅπως τὰ Χερουβικὰ Χουρμουζίου Χαρτοφύλακος, Κοινωνικὰ Δανιήλ Πρωτοψάλτου κ. ἄ.), μετατίθεται, πολ-

<sup>1.</sup> Βλ. § 229, 235, 240, 244, 259 καὶ 260.

<sup>2. «</sup>Ἐκλήθησαν οὕτω ἐπειδὴ ἐτέθησαν ἀντί τῶν φωταγωγικῶν, εἰς τὰ ὁποῖα ἀναγινώσκομεν «ἐξαπόστειλον, Κύριε, τὸ φῶς σου». Πρὸ τῆς ἐπινοήσεως τῶν Ἐξαποστειλαρίων ἔψαλλεν ἡ Ἐκκλησία μετὰ τὸν Κανόνα τὰ λεγόμενα Φωταγωγικά, καθ' ἤν ὥραν ὑπέφωσκε. Κατ' ἄλλους δέ καὶ ἰδία κατὰ Νικηφόρον Κάλλιστον τόν Ξανθόπουλον, ἀνομάσθησαν Ἐξαποστειλάρια, διότι ὁ Χριστός, ἀναστάς ἐξαπέστειλε τὰς Μυροφόρους γυναϊκας πρὸς τοὺς ᾿Αποστόλους καὶ τούτους πάλιν εἰς τὰ ἔθνη». (Γ. Παπαδοπούλου: Συμβολαὶ εἰς τὴν Ἱστορίαν τῆς παρ' ἡμῖν Ἐκκλησιαστικῆς μουσικῆς, ὑποσ. 762).

Στὸ εἰρμολογικόν, ὅμως, εἶδος, ὅπως στὸν ἰαμβικό Κανόνα καὶ τὶς Καταβασίες τῶν Θεοφανείων «Στίβει θαλάσσης», μελωδικὴ βάσις εἶναι ὁ Βου (τῆς Μέσης) ৣ ποὺ μετατίθεται στόν Πα (τῆς Μέσης) τῆς συντόνου ἡ σκληρᾶς χρωματικῆς κλίμακος π τοῦ προηγουμένου, πρώτου, Κανόνος

"Όταν ὁ Δεύτερος ήχος χρησιμοποιή τὴ σύντονο ἤ σκληρὰ χρωματικὴ κλίμακα, ἡ μελωδική του βάσις εἶναι ὁ Πα (τῆς Μέσης) π πού, στό εἰρμολογικόν (σύντομον καὶ ἀργόν) εἶδος, μετατίθεται πολλὲς φορές, ὅπως στὰ αὐτόμελα «Οἰκος τοῦ Ἐφραθά» καὶ «Ὅτε ἐκ τοῦ ξύλου σε νεκρόν» στὸν Δι (τῆς Μέσης) Δ καὶ ἄλλοτε πάλιν, ὅπως στὸν Πρῶτο Κανόνα καὶ τίς Καταβασίες τῶν Θεοφανείων «Βυθοῦ ἀνεκάλυψε πυθμένα», στὸν Βου (τῆς Μέσης) τοῦ ἰαμβικοῦ Κανόνος «Στίβει θαλάσσης»

Δεσπόζοντες φθόγγοι. Σὲ ὅλα τὰ εἴδη τοῦ Δευτέρου ἤχου ποὺ κάνουν χρήσι τῆς μαλακῆς χρωματικῆς κλίμακος, δεσπόζοντες φθόγγοι εἴναι οἱ Νη Βου Δι (τῆς Μέσης) καὶ οἱ Ζω΄ καὶ Νη΄ (τῆς Νήτης) καὶ ἀπ' αὐτούς οἱ ἐπικρατέστεροι οἱ Βου καὶ Δι.

Στὸ σύντομο στιχηραρικόν, στὸ είρμολογικόν (σύντομον καὶ ἀργόν) ὅπου γίνεται χρῆσις τῆς συντόνου ἥ σκληρᾶς χρωματικῆς κλίμακος, δεσπόζοντες φθόγγοι είναι οἱ Πα καὶ Δι (τῆς Μέσης) καὶ στὸ παπαδικὸν είδος, στὴν ίδια κλίμακα, οἱ Πα, Δι καὶ Κε (τῆς Μέσης).

**Μελωδικές ἔλξεις.** Όταν ὁ Δεύτερος ήχος χρησιμοποιῆ τὴ μαλακή χρωματική κλίμακα παρατηρούνται οἱ ἑξῆς μελωδικές ἕλξεις.

Ο Πα (τῆς Μέσης), στήν περίπτωσι ποὺ ἡ μελωδία κατὰ τὴν κατά- βασι δέν τόν ξεπερνᾶ, ἔλκεται ἀπὸ τὸν ὑπερκείμενο δεσπόζοντα Βου καὶ ἐπανέρχεται στὴ φυσική του ὀξύτητα ἔτσι πού ὁ ἐπίεκτος τόνος Βου - Πα  $\left(\frac{7}{6} = \frac{6}{7} \right)$  μ. χορδῆς ἡ 14 τμήματα νὰ ξαναγίνη φυσικὸς ἐλάσσων τόνος  $\left(\frac{10}{9} = \frac{9}{10} \right)$  μ. χορδῆς ἡ 10 τμήματα, ὅπως στὰ ἑξῆς παραδείγματα.

$$β'$$
 χωρὶς ἔλξι.  $Δ$   $με$   $A$   $θα$   $να$  το  $ο$   $ο$   $ο$   $ο$   $ο$   $ο$ 

 $^\circ$ Ο Γα (τῆς Μέσης), ὅταν ἡ μελωδία κατὰ τὴν κατάβασι δέν τὸν ξεπερνᾶ, ἔλκεται ἀπὸ τὸν ὑπερκείμενο δεσπόζοντα Δι καὶ ὀξύνεται κατὰ ἀποτομὴ ἐλάσσονος τόνου  $\left(\frac{135}{128} = \frac{128}{135} \right)$  μ. χορδῆς ἥ 4 τμήματα . "Αλλιῶς, εἶναι σταθερός καὶ

Ο Κε (τῆς Μέσης), ὅταν ἡ μελωδία κατά τὴν ἀνάβασι δὲν τὸν ὑπερβαίνη, ἔλκεται ἀπὸ τὸν Δι ἔτσι ποὺ ὁ ἐπιτεσσαρακαιδέκατος τόνος Δί-Κε  $\left(\frac{15}{14} = \frac{14}{15} \right)$  μ. χορδῆς ἢ 8 τμήματα ) νὰ μειώνεται σὲ λεῖμμα  $\left(\frac{256}{243} = \frac{243}{256}\right)$  μ. χορδῆς ἢ 6 τμήματα ), ὅπως στό ἑξῆς παράδειγμα.

Καταλήξεις. 1ον Σὲ ὅλα, γενικῶς τὰ εἴδη τοῦ Δευτέρου ήχου ὅπου γίνεται χρῆσις τῆς μαλακῆς χρωματικῆς κλίμακος μὲ μελωδικὴ βάσι τὸν Δι (τῆς Μέσης), οἱ ἀτελεῖς καταλήξεις γίνονται στὴ μελωδικὴ βάσι Δι, ἄλλοτε στὸν Βου (τῆς Μέσης) καὶ, σπανίως, στὸν Ζω΄ καὶ στὸν Νη΄ (τῆς Νήτης), ὅπως στὰ ἑξῆς παραδείγματα.

## α΄. τοῦ συντόμου στιχηραρικοῦ είδους

$$\Delta$$
 που ρα  $\frac{3}{\text{VI}}$  ων ε κραυ γα ζον  $\frac{6}{\text{CO}}$ 

## β΄ του νέου στιχηραρικού είδους

Οἱ ἐντελεῖς καταλήξεις γίνονται στὸν Βου καὶ στὸν Δι (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

α΄ του συντόμου στιχηραρικού είδους

β΄ τοῦ νέου στιχηραρικοῦ είδους

Στὸ νέον καθώς καὶ στὸ παλαιόν ἤ ἀργὸ στιχηραρικὸν είδος οἱ ἐντελεῖς καταλήξεις γίνονται ἐπίσης καὶ στὸν Νη (τῆς Μέσης), ἀλλὰ ἀφοῦ προηγηθῆ μεταβολὴ τοῦ Γα (τῆς Μέσης), τῆς κορυφῆς δηλ. τοῦ τετραχόρδου  $\overset{\gamma}{\smile}$ , σὲ κορυφή Δι τοῦ σκληροῦ ἤ συντόνου χρωματικοῦ τετραχόρδου  $\overset{\gamma}{\smile}$  δ ὁπότε, κατ' ἀκολουθίαν καὶ ὁ Νη (τῆς Μέσης) βρίσκεται σὰν Πα τοῦ συντόνου ἤ σκληροῦ χρωματικοῦ γένους, ὅπως στὸ ἐξῆς παράδειγμα ἀπὸ τὸ νέο στιχηραρικὸν είδος.

Οἱ τελικές καὶ οἱ ὁριστικὲς καταλήξεις γίνονται στὴ μελωδικὴ βάσι, τὸν Δι, ὅπως στὰ ἑξῆς παραδείγματα.

## α' Τελικῶν καταλήξεων τοῦ συντόμου στιχηραρικοῦ εἴδους

$$\Delta$$
 Xρι στε ο Θε ος ημων δο ο ο ξα σοι  $\Delta$ 

## τοῦ νέου στιχηραρικοῦ είδους

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$

β΄ 'Οριστικών καταλήξεων

τοῦ συντόμου στιχηραρικοῦ εἴδους

τοῦ νέου στιγηραρικοῦ είδους

Παραδείγματα καταλήξεων στὸ παλαιόν ή άργὸ στιχηραρικόν καὶ στὸ παπαδικὸν είδος βρίσκει κανείς, ἀντιστοίχως, στὰ άργὰ δοξαστικὰ Ἰακώβου Πρωτοψάλτου καὶ στὰ διάφορα Χερουβικά καὶ Κοινωνικά.

2ον Στὸ σύντομον καὶ ἀργὸν εἰρμολογικόν καὶ στὸ σύντομο στιχηραρικὸν εἶδος τοῦ Δευτέρου ἤχου ὅπου γίνεται χρῆσις τῆς συντόνου ἤ σκληρᾶς χρωματικῆς κλίμακος μὲ μελωδικὴ βάσι τὸν Πα (τῆς Μέσης,) οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς Πα καὶ Δι (τῆς Μέσης,) ὅπως στά ἑξῆς παραδείγματα.

## α΄ τοῦ συντόμου είρμολογικοῦ είδους

$$\pi$$
 Οι κος του Ε φρα θα  $\pi$ 
 $\pi$ 
ευ τρε πι σον τον οι οι οι κον  $\pi$ 

## β΄ του άργου είρμολογικού είδους

$$\pi$$
 Eν βυ  $\theta \omega$  κα α  $\tau \varepsilon$  ε  $\sigma \tau \rho \omega$   $\sigma \varepsilon$   $\pi \sigma$   $\sigma$   $\tau \varepsilon$   $\sigma$ 

γ΄ τοῦ συντόμου στιχηραρικοῦ είδους

$$\pi$$
 Τον προ αι  $ω$  νων εκ Πα τρος γε εν νη θεν τα  $\pi$   $\pi$  τον Θε ον Λο γον σαρ κω θεν τα  $\pi$   $\pi$   $\pi$  εκ Παρ θε νου Μα ρι ι ας  $\pi$ 

Οἱ ἐντελεῖς καὶ οἱ τελικὲς καταλήξεις ποὺ εἶναι ὅμοιες μεταξύ τους, καὶ οἱ ὁριστικὲς γίνονται, ὅλες, στὴ μελωδικὴ βάσι, τὸν Πα, ὅπως στὰ ἑ-ξῆς παραδείγματα.

# α΄ Έντελῶν καὶ τελικῶν καταλήξεων τοῦ συντόμου εἰρμολογικοῦ εἴδους

## του άργου είρμολογικου είδους

## τοῦ συντόμου στιχηραρικοῦ εἴδους

$$\frac{\Delta}{\sigma}$$
 δευ τεπρο σκυ νη σωμεν  $\frac{\pi}{\sigma}$ 
 $\frac{3}{\pi}$  Πα σα πνο η αι νε σα α τω ω τον Κυ ρι ον  $\frac{\pi}{\sigma}$ 
 $\frac{\Delta}{\sigma}$  ως αυ τος η θε λη σε  $\frac{\pi}{\sigma}$ 

## γ΄ 'Οριστικών καταλήξεων

τοῦ συντόμου στιχηραρικοῦ καὶ είρμολογικοῦ είδους

Παραδείγματα καταλήξεων στὸ παπαδικὸν εἶδος βρίσκει κανεὶς στὰ Χερουβικά καὶ Κοινωνικὰ.

'Αρκτική μαρτυρία τοῦ ήχου. 'Όταν ὁ Δεύτερος ήχος χρησιμοποιῆ τὴ μαλακή χρωματική κλίμακα ή ἀρκτική του μαρτυρία, ἀνάλογα μὲ τὴ μελωδική βάσι του, τὸν Δι ἢ τὸν Βου (τῆς Μέσης) εἶναι, ἀντίστοιχα: 'Ηχος Δι ἢ 'Ηχος Βου.

Όταν ὁ Δεύτερος ήχος χρησιμοποιή τή σύντονο ή σκληρά χρωματική κλίμακα με μελωδική βάσι τὸν Πα (της Μέσης), ή άρκτική μαρτυρία του είναι Ήχος Πα.

Στήν περίπτωσι ὅμως ποὺ ἡ μελωδικὴ βάσις Πα μετατίθεται στὸν Βου, ἡ ἀρκτικὴ μαρτυρία του γίνεται Βου μὲ ἐπακόλουθο στὴ σημειογραφία τὶς ἑξῆς φθορικὲς μαρτυρίες: ϐ Ϳ Δ ζ ζ ζ΄ γ΄ π΄ κτλ. ποὺ φανερώνουν τὸν Βου ὡς Πα, τὸν Γα ὡς Βου, τὸν Δι ὡς Γα κτλ. Καί στὴν περίπτωσι ποὺ ἡ μελωδικὴ βάσις Πα μετατίθεται στὸν Δι , ἡ ἀρκτικὴ μαρτυρία του γίνεται Δι μὲ ἐπακόλουθο στὴ σημειογραφία τὸς ἑξῆς φθορικὲς μαρτυρίες: Δ ζ ζ΄ γ΄ κτλ. ποὺ φανερώνουν τὸν Δι ὡς Πα, τὸν Κε ὡς Βου, τὸν Ζω ὡς Γα κτλ.

'Αλλὰ καὶ ἡ μετάθεσις τῆς μελωδικῆς βάσεως Βου τῆς μαλακῆς χρωματικῆς κλίμακος στὴ μελωδικὴ βάσι Πα τῆς συντόνου ἡ σκληρᾶς χρωματικῆς κλίμακος συνεπάγεται καὶ αὐτή, τὴ δημιουργία φθορικῶν μαρτυριῶν ποὺ εἶναι οἱ ἑξῆς:  $\frac{\pi}{2}$   $\int_{0}^{6}$   $\int_{0}^{1}$   $\int_{0}^{1}$  κτλ. ποὺ φανερώνουν τὸν Πα

ός Βου, τὸν Βου ὡς Γα, τὸν Γα ὡς Δι κτλ.

Μεταβολές στὸν Δεύτερο ήχο. Γενικά, στὰ σύντομα είδη τοῦ Δευτέρου ήχου παρατηρεῖται μεταβολή τοῦ συντόνου ή σκληροῦ χρωματικοῦ σὲ διατονικὸ καὶ σὲ μαλακὸ χρωματικὸ γένος, ὅπως στὰ ἐξῆς παραδείγματα.

Στὸ ἀργὸν εἰρμολογικὸν εἴδος ἡ ἴδια μεταβολὴ σὲ διατονικὸ γένος γίνεται πιὸ ἐμφανής καὶ δίνει τὴν ἐντύπωσι πὼς σχηματίζεται μικτὴ κλίμαξ ἀπὸ τὸ σύντονο ἤ σκληρὸ χρωματικὸ πεντάχορδο πωραξά καὶ τὸ συννημένο σ' αὐτὸ διατονικὸ τετράχορδο β΄ σχήματος χωρά ποὺ, ὅμως, ποτὲ σχεδὸν δὲν ὁλοκληρώνεται, γιατὶ περιορίζεται μέχρι τὸν γίκαὶ ὅπου ἰσχύει ἡ ἔλξις τοῦ Ζω΄, ὅπως σχετικὰ ἐγνωρίσαμε στὸν Πρῶτο ἡχο (§ 310).

Καὶ ἡ μεταβολὴ σὲ μαλακὸ χρωματικὸ γένος γίνεται καὶ ἐδῶ, μὲ τὴ μετάθεσι τοῦ  $\overline{\Delta \iota}$  ἡ τοῦ  $\overline{Bov}$  στὸν  $\overline{\Pi a}$ , ὅπως στὰ ἑξῆς παραδείγματα.

$$\pi$$
 δυ υ να α α μις  $\pi$  σαρ κω θεις ο ο Λογο ος
$$\frac{2}{\delta \epsilon} \pi$$

$$\frac{2}{\delta$$

Στὸ νέον καὶ στὸ παλαιὸ στιχηραρικὸν είδος τοῦ Δευτέρου ἤχου χαρακτηριστική είναι ἡ μεταβολὴ σὲ σύντονο χρωματικὸ γένος (ποὺ ἀναφέραμε) προκειμένου νὰ γίνη κατάληξις στὸν Νη (τῆς Μέσης). Στὴν περίπτωσι αὐτὴ γίνεται μετάθεσις τοῦ Δι στὸν Γα καὶ κατ' ἀκολουθίαν ὁ Νη βρίσκεται σὰν Πα. Πολλὲς φορές, τῆς μεταβολῆς αὐτῆς προηγεῖται μεταβολὴ σὲ διατονικὸ γένος μὲ τὴ μετάθεσι τοῦ Κε στὸν Δι, ὅπως στὰ ἑξῆς παραδείγματα.

## α΄ τοῦ συντόμου στιχηραρικοῦ είδους

## β΄ τοῦ παλαιοῦ ή ἀργοῦ στιχηραρικοῦ είδους

('Από τὸ «Αὐγούστου μοναρχήσαντος» 'Ιακώβου Πρωτοψάλτου)

Χαρακτηριστική, ἐπίσης, είναι ἡ μεταβολὴ σὲ σύντονο χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Πα στὸν Δι , ὅπως στὰ ἑξῆς παραδείγματα.

Α Χρι στος ὰ νε ε στη εκ νε ε κρω ω ων ο ο Σω τη ηρ του κο ο ο σμου και ε πλη ρω σε τα  $\frac{\Delta}{\Delta}$  δι η η η η νυ σας  $\frac{\Delta}{\Delta}$  και νυ υν ε ε ε ε  $\frac{\Delta}{\Delta}$  εν ου ου ρα α νοι οι οι οι οις αυ λι ι ι  $\frac{\Delta}{\Delta}$  ('Απὸ τὸ Δόξα τῆς Λιτῆς τοῦ 'Αγίου Σάββα  $\frac{\Delta}{\Delta}$  «Τῶν ὑπὲρ νοῦν ἀγαθῶν» 'Ιακώβου Πρωτοψάλτου)

Στὸ παπαδικόν, τέλος, είδος, οἱ παραπάνω μεταβολὲς είναι συχνότερες καὶ ἐκτενέστερες.

'Απὸ τὶς ἀσκήσεις ποὺ περιλαμβάνονται στὸ Δ΄ μέρος τοῦ βιβλίου αὐτοῦ, οἱ ὑπ' ἀριθμόν 321, 323, 325, 378 - 380, 453 - 465 καὶ ἡ 470 ἀνήκουν στὸν Δεύτερο ἡχο καὶ εἶναι παραδείγματα τῶν διαφόρων μεταβολῶν του.

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Δευτέρου ήχου.

- α΄ Αὐτόμελα (πρόλογοι) στὸν Δεύτερο ἤχο εἶναι τὰ ἑξῆς: Τὸ ᾿Αναστάσιμον Κάθισμα «'Ο εὐσχήμων Ἰωσήφ», τὰ Στιχηρά «Οἴκος τοῦ Εφραθά», «'Ότε ἐκ τοῦ ξύλου σε νεκρόν», «Ποίοις εὐφημιῶν στέμμασιν ¹», τὰ Ἐξαποστειλάρια «Τοῖς μαθηταῖς συνέλθωμεν», «Σαρκὶ ὑπνώσας ὡς θνητός», «Γυναῖκες ἀκουτίσθητε», «Τῶν μαθητῶν ὁρώντων σε ἀνελήφθης» καὶ «Σταυρός, ὁ φύλαξ πάσης τῆς οἰκουμένης».
- β΄ Οἱ κυριώτεροι εἰρμοὶ τοῦ Δευτέρου ήχου εἰναι τῶν ἑξῆς Κανόνων: Τῆς ᾿Οκτωήχου «Ἐν βυθῷ κατέστρωσέ ποτε», τοῦ Γενεσίου τῆς Θεοτόκου «Αεῦτε λαοί», τῶν Θεοφανείων «Βυθοῦ ἀνεκάλυψε πυθμένα» καὶ «Στίβει θαλάσσης», τῆς Κυριακῆς τοῦ ᾿Ασώτου «Τὴν Μωσέως ἀδήν», τῆς Μεγάλης Δευτέρας «Τῷ τὴν ἄβατον», τῆς Μεγάλης Τρίτης «Τῷ δόγματι τῷ τυραννικῷ» καὶ τῆς Μεγάλης Τετάρτης «Τῆς πίστεως ἐν πέτρα με στερεώσας».

**Ήθος.** Ό Δεύτερος ήχος προσιδιάζει σὲ νοήματα ἀγάπης, ἀφοσιώσεως, θερμής παρακλήσεως καὶ μετανοίας καί, μὲ τὴ χαρακτηριστικὴ γλυκύτητά του, δημιουργεί κατάνυξι. Κατὰ συνέπειαν τὸ ήθος του είναι συσταλτικόν.

<sup>1. &#</sup>x27;Ανδρέας ὁ Πυρρός, ποὺ ἔζησε κατὰ τὸν Ε΄ αἰῶνα, εΙναι ὁ ποιητής τοῦ «Ποίοις εὐφημιῶν στέμμασιν» ποὺ ψάλλεται στὸν 'Εσπερινὸ τῶν 'Αποστόλων Πέτρου καὶ Παύλου (29 'Ιουνίου). Τὸ ποίημα αὐτὸ μελοποιήθηκε ἀρχικά σὰν ἰδιόμελο στὸ νέο στιχηραρικὸν είδος. 'Επειδή ὅμως ὁ ἴδιος ποιητής ἔχει συνθέσει ἄλλα δύο τροπάρια γιὰ τὸν ἴδιο 'Εσπερινὸ μὲ τὴν ἴδια μετρική καὶ ἀργότερα, κατὰ τὸν ΙΑ΄ αἰῶνα, 'Ιωάννης ὁ 'Επίσκοπος Εὐχαῖτων ἔχει γράψει, κατὰ τὸν ἴδιο τρόπο, τοὺς Αἴνους τῶν Τριῶν 'Ιεραρχῶν (30 'Ιννουαρίου), τὸ «Ποίοις εὑφημιῶν στέμμασιν», διατηρῶντας τὸ μαλακὸ χρωματικὸ γένος, καθιερώθηκε σὰν αὐτόμελο. Παρόμοιον ἔχει συμβῆ καὶ μὲ τὸ 'Αναστάσιμον ἰδιόμελον τῆς 'Οκτωήχου «Χαίρετε λαοί καὶ ἀγαλλιᾶσθε» καὶ ἄλλα ποὺ θὰ τὰ γνωρίσουμε στοὺς ἄλλους ἥχους.

#### ΗΧΟΣ ΤΡΙΤΟΣ

312. Γένος - κλίμαζ. 'Ο Τρίτος ήχος χρησιμοποιεί την εναρμόνιο κλίμακα που σχηματίζεται με το τετράχορδο σύστημα ή κατά τριφωνίαν <sup>1</sup>. Είναι, συνεπώς, εναρμόνιος ήχος.

Μελωδική βάσις. Ὁ φυσικὸς Γα (τῆς Μέσης) εἴναι ή μελωδική βάσις τοῦ Τρίτου ἤχου.

Στο παπαδικόν, ὅμως, είδος στη βάσι αὐτη γίνεται μετάθεσις τοῦ φυσικοῦ Νη (τῆς Μέσης) καὶ ἔτσι ή πορεία τῶν ἐναρμονίων τόνων:

μεταβάλλεται σὲ 
$$\frac{0}{\sqrt{1}} = \frac{12}{\sqrt{1}} = \frac{12}{12} = \frac{0}{12} = \frac{0}{12}$$

Μὲ τὴν καταληκτική, ἐν τούτοις, ὑπεροχή καὶ ἐπικράτησι τοῦ  $\mathbf{Z} \overset{\circ}{\mathbf{w}}$   $\overset{\circ}{\mathbf{w}}$ ς  $\mathbf{\Gamma} \overset{\circ}{\mathbf{a}}$  καὶ τὴν ἕλξι ποὺ ἀσκεῖ στὸν ὑποκείμενό του φθόγγο, ἀποκαθίσταται τὸ ἄκουσμα τοῦ ἐναρμονίου τετραχόρδου  $\mathbf{\Gamma} \overset{\circ}{\mathbf{a}}$  -  $\mathbf{Z} \overset{\circ}{\mathbf{w}}$  καὶ τὸ συνημμένο σ' αὐτό ὅμοιο τετράχορδον  $\mathbf{Z} \overset{\circ}{\mathbf{w}}$  -  $\mathbf{B} \overset{\circ}{\mathbf{v}}$  ὁλοκληρώνεται μὲ τὸν  $\mathbf{B} \overset{\circ}{\mathbf{v}}$  (τῆς Νήτης).

Δεσπόζοντες φθόγγοι. Σὲ ὅλα τὰ στιχηραρικά καὶ σὲ ὅλα τὰ εἰρμολογικὰ εἴδη τοῦ Τρίτου ἤχου, δεσπόζοντες φθόγγοι εἰναι οἱ Πα Γα καὶ Κε (τῆς Μέσης).

Στὸ παπαδικόν, ὅμως, εἶδος μὲ τὴ μεταβολὴ τῆς βάσεώς του — ὅπως  $\underbrace{ }_{\text{παραπάνω γνωρίσαμε}} \underbrace{ }_{\text{νωγ}} \underbrace{$ 

Μελωδικὲς ἔλξεις. Οἱ φθόγγοι Βου καὶ Κε (τῆς Μέσης) καὶ ὁ Πα΄ (τῆς Νήτης), σὰν τρίτος, ὁ καθένας τους, φθόγγος τῶν συνημμένων ἐναρμονίων τετραχόρδων α΄ σχήματος  $^2$  τῆς ἐναρμονίου κλίμακος, κατὰ τήν χωρὶς τονή ἀνάβασι, ἕλκονται ἀπὸ τὸν φθόγγο τῆς κορυφῆς των καὶ βρίσκονται ὑψωμένοι κατὰ ἕνα κόμμα  $\left(\frac{81}{20} = \frac{80}{21} \right)$  μ. χορδῆς ἤ 2 τμήματα).

σκονται δψωμένοι κατὰ ἕνα κόμμα 
$$\left(\frac{81}{80} = \frac{80}{81} \text{ μ. χορδῆς ἢ 2 τμήματα}\right)$$
.

<sup>1.</sup> Βλ. § 230 - 232, 236, 241 - 242 και 245,

<sup>2·</sup> Bλ. § 232,

Τὴν ἴδια ἕλξι παθαίνουν οἱ φθόγγοι αὐτοί καὶ ὅταν κατὰ τὴν κατάβασι δὲν τοὺς ξεπερνᾶμε.

Έπὶ πλέον, ὁ **Βο**υ (τῆς Μέσης), κατὰ τὴν κατάβασι σὲ χαμηλοτέρους του φθόγγους, εἶναι φυσικός.

Καταλήξεις. Στὰ στιχηραρικά καθώς καὶ στὰ εἰρμολογικὰ εἴδη τοῦ Τρίτου ήχου, οἱ ἀτελεῖς καὶ οἱ ἐντελεῖς καταλήξεις γίνονται συχνότερα στὸν Πα καὶ στὸν Κε (τῆς Μέσης) καὶ σπανιώτερα στὸν Νη καὶ στὸν Δι (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

τοῦ ήχου, τὸν Γα, ὅπως στὰ έξῆς παραδείγματα.

#### α΄ Τελικῶν καταλήξεων

$$\frac{2}{\sqrt{7}}$$
 $\frac{2}{\mu\epsilon}$ 
 $\gamma\alpha$ 
 $\frac{4}{\epsilon}$ 
 $\epsilon$ 
 $\epsilon$ 

## β΄ 'Οριστικών καταλήξεων

$$\frac{2}{\sqrt{2}}$$
 $\frac{3+2}{\sqrt{2}}$ 
 $\frac{7}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 

Στὸ παπαδικὸν είδος οἱ ἀτελεῖς καταλήξεις γίνονται στὸν Πα καὶ ξ στὸν Κε (τῆς Μέσης), στὸν Ζώ΄ καὶ στὸν Νη΄ (τῆς Νήτης), ὅπως μπορεῖ νὰ δῆ κανεὶς στὰ Χερουβικὰ καὶ στὰ Κοινωνικά.

Οἱ ἐντελεῖς, τελικές καὶ ὁριστικὲς καταλήξεις τοῦ εἴδους αὐτοῦ γίνονται στὴ μελωδική του βάσι, τὸν  $\Gamma$ α ὅπως στὰ ἑξῆς παραδείγματα.

'Αρκτική μαρτυρία. Συνηθέστερη άρκτική μαρτυρία τοῦ Τρίτου ήχου εἶναι ἰἱ Γα. Γράφεται ὅμως καὶ Γα. Στὸ παπαδικὸν εἶδος, ὅπου γίνεται μετάθεσις τοῦ Νη στὸν Γα, ἡ ἀρκτικὴ μαρτυρία συμπληρώνεται μὲ τὴ διατονικὴ φθορὰ & ὡς ἑξῆς: ἰἱ Γα.

'Απήχημα. 'Η μελωδική βάσις τοῦ Τρίτου ἤχου εἶναι καὶ τὸ ἀπήχημά του:

Το με το Α μην

Είδικὰ φθορικὰ σημεῖα. Στὸν Τρίτο ἡχο θεωροῦνται εἰδικὰ φθορικὰ σημεῖα ἡ γενικὴ ὕφεσις τοῦ  $\mathbf{Z}\omega'$  (τῆς Νήτης)  $\mathbf{\varphi}$  ποὺ γράφεται στὸν ὑποκείμενο  $\mathbf{K}$ ε καὶ ἡ γενικὴ δίεσις τοῦ  $\mathbf{B}$ ου (τῆς Μέσης)  $\mathbf{\delta}$  πού γράφεται στὸν ὑπερκείμενο  $\mathbf{\Gamma}$ α  $\mathbf{\sigma}$ 1.

**Μεταβολές στὸν Τρίτο ἦχο.** Γενικὰ, στὰ σύντομα εἴδη τοῦ **Τρίτου** ἤχου δέν γίνονται μεταβολές.

Στὸ νέον καὶ στὸ παλαιόν ἥ ἀργὸ στιχηραρικόν καθώς καὶ στὸ ἀργὸν εἰρμολογικὸν εἶδος, κατὰ τὴν ἀνάβασι, εἶναι πολὺ συνήθης ἡ μεταβολὴ σὲ διατονικὸ γένος ἀπὸ τὸν Κε (τῆς Μέσης) καὶ μάλιστα μὲ τὸ πεντάχορδο σύστημα, ὅπως στὰ ἑξῆς παραδείγματα.

<sup>1.</sup> Βλ. § 155 καὶ 244.

Στὸ νέο στιχηραρικόν καὶ στὸ ἀργὸν εἰρμολογικὸν εἰδος γίνεται, ἀνάλογα μὲ τὸν ἀπαιτούμενο στὴν κάθε περίπτωσι χρωματισμό, μετάθεσις τοῦ Πα ἥ τοῦ Δι στὸν Πα καὶ στὸν Κε (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

Τὸ παράδειγμα τοῦ § 159 καὶ οἱ ὑπ' ἀριθ. 335, 337, 339 - 341, 345, 387, 390, 395, 424 - 425, 449, 484 καὶ 488 ἀσκήσεις τοῦ  $\Delta'$  μέρους τοῦ βιβλίου αὐτοῦ ἀνήκουν στὸν Τρίτο ἦχο καὶ στὶς μεταβολές του.

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Τρίτου ήχου.

α΄ Αὐτόμελα (πρόλογοι) στὸν Τρίτο ήχο εἶναι τὰ ἑξῆς:
Τὸ ᾿Απολυτίκιον τοῦ ὑΟμολογητοῦ Παύλου ᾿Αρχιεπισκόπου Κωνσταντινουπόλεως (6 Νοεμβρίου) «Θείας πίστεως ὁμολογία», τὸ Κάθισμα τῆς ᾿Οκτωήχου καὶ τοῦ ᾿Ακαθίστου «Τὴν ὁραιότητα τῆς παρθενίας σου» ¹, τὸ Κοντάκιον ² τῶν Χριστουγέννων «Ἡ Παρθένος σήμερον», τὰ Ἦξαποστειλάρια «Ἐπεσκέψατο ἡμᾶς», «Ἐν πνεύματι τῷ ἱερῷ», «Ὁ οὐρανὸν τοῖς ἄστροις», «Τὸν νυμφῶνα σου βλέπω», «Τὸν ληστὴν αὐθημερόν» καὶ τὰ Στιχηρά «Μεγάλη τῶν μαρτύρων σου Χριστέ ἡ δύναμις», «Σταυροφανῶς Μωϋσῆς» καὶ «ὙΕσπερινὸν ὕμνον».

<sup>1.</sup> Βλ. ὑπ. ἀριθ. 337 ἄσκησι.

<sup>2.</sup> Ἡ ὀνομασία Κοντάκιον προέρχεται ἀπὸ τή λέξι κόντος ποὺ σημαίνει μικρὸ κυλινδρικὸ ξύλο. Κατὰ τὴν παράδοσι, Ρωμανός ὁ Μελωδὸς τὴ νύχτα τῶν Χριστουγέννων ὼνειρεύθηκε πὰς ἡ Θεοτόκος τοῦ ἔδωσε νὰ φάγη ἕνα χαρτί τυλιγμένο σὰν κόντος. Καὶ ὅταν ξύπνησε ἔψαλε, ἐμπνευσμένος, τὸ ὑπέροχον «Ἡ Παρθένος σήμερον» πού γι' αὐτό ἀνομάσθηκε Κοντάκιον.

β΄ Οἱ Εἰρμοὶ τοῦ Τρίτου ήχου εἴναι τῶν ἑξῆς Κανόνων: Τῆς ᾿Οκτωήχου «Ὁ τὰ ὕδατα πάλαι νεύματι θείω», τῆς Ὑπαπαντῆς τοῦ Κυρίου «Χέρσον ἀβυσσοτόκον» καὶ τῆς Κυριακῆς τοῦ Παραλύτου «Θαυμαστός, ἐνδόξως ποιῶν τέρατα».

\*Ηθος. 'Ο Τρίτος ήχος προσιδιάζει στὴν ἀπόδοσι ζωηρῶν, ἀνδροπρεπῶν, παρορμητικῶν καὶ πολεμικῶν νοημάτων. Κατὰ συνέπειαν, τὸ ἡθος του είναι διασταλτικόν.

#### ΗΧΟΣ ΤΕΤΑΡΤΟΣ

313. Γένος — κλίμαξ. Ο Τέταρτος ήχος χρησιμοποιεί διατονική κλίμακα κατά τὸ διαπασών σύστημα. Είναι, συνεπώς, διατονικὸς ήχος.

Μελωδική βάσις. Στὸ σύντομο στιχηραρικόν καὶ στὰ εἰρμολογικὰ εἴδη του (σύντομον καὶ ἀργόν) ὁ Τέταρτος ήχος ἔχει μελωδική βάσι τὸν Βου (τῆς Μέσης) <sup>1</sup>. Στὸ νέον καὶ στὸ παλαιὸν ή ἀργὸ στιχηραρικὸν εἴδος του, τὸν Πα (τῆς Μέσης) καὶ στὸ Παπαδικὸν εἴδος, τὸν Δι (τῆς Μέσης) πού, κατ' ἔξαίρεσιν, εἶναι καὶ βάσις τοῦ εἰρμολογικοῦ μέλους, τοῦ Καθίσματος «Κατεπλάγη Ἰωσήφ». Τὸ καλοφωνικὸν εἴδος του στηρίζεται, τὶς περισσότερες φορές, στὸν Δι (τῆς Μέσης) καὶ ἄλλοτε στὸν Βου (τῆς Μέσης).

Δεσπόζοντες φθόγγοι. Στὸ σύντομο στιχηραρικόν καὶ στὰ εἰρμολογικὰ εἴδη (σύντομα καὶ ἀργὰ) τοῦ Τετάρτου ἤχου, δεσπόζοντες φθόγγοι εἶναι ὁ Βου καὶ ὁ Δι (τῆς Μέσης). Στὸ νέον καὶ στὸ παλαιὸν ἤ ἀργὸ στιχηραρικὸν εἴδος του, οἱ φθόγγοι Πα Βου καὶ Δι (τῆς Μέσης) καὶ στὸ παπαδικὸν καὶ καλοφωνικὸν εἴδος του, οἱ Βου Δι (τῆς Μέσης) καὶ Ζω΄ (τῆς Νήτης).

Μελωδικές ἕλξεις. Ὁ Τέταρτος ήχος είναι πλουσιώτατος σὲ μελωδικές ἕλξεις. Στό σύντομο στιχηραρικὸν καὶ στὸ σύντομον εἰρμολογικὸν είδος του, ὁ Πα (τῆς Μέσης), ὅταν ἡ μελωδικὴ γραμμὴ δὲν κατεβαίνη χαμηλότερά του καὶ ὅταν ἀνεβαίνοντας τὸν ὑπερβαίνουμε χωρὶς τονἡ, βρίσκεται ὑψωμένος μὲ δίεσι ἀξίας λείμματος  $(\frac{256}{243} = \frac{243}{256} μ.$  χορδῆς ἡ 6 τμη-

<sup>1.</sup> Ό Τέταρτος ήχος μὲ βάσι τὸν Βου ὀνομάζεται καὶ Λέγετος. Στὸν τρόπο αὐτόν είναι — καίτοι μελωδίες τοῦ παπαδικοῦ είδους — οἱ ἀργὲς δοξολογίες Π. Πελοποννησίου καί Χουρμουζίου Χαρτοφύλακος.

μάτων), ὅπως στὰ έξῆς παραδείγματα.

$$\frac{6}{2}$$
 ε κου σι ωςπρο ση λω θεις  $\frac{6}{2}$  Ευ φραι νεται ε πι σοι  $\frac{4}{2}$   $\frac{2}{2}$   $\frac{6}{2}$  και α να στας εκτων νε κρων  $\frac{2}{2}$ 

"Η ίδια έλξις παρατηρείται, πολλές φορές καὶ στὸ άργὸν εἰρμολογικόν καθώς καὶ στὸ καλοφωνικὸν είδος, ὅπως στὰ έξῆς παραδείγματα.

Όπως στὸν Πρῶτο ήχο (§ 310), τὸ ἴδιο καὶ σὲ ὅλα τὰ εἴδη τοῦ Τετάρτου ήχου, ἐφόσον ὁ Ζω΄ (τῆς Νήτης) δὲν εἶναι δεσπόζων φθόγγος τους καὶ οὔτε παρουσιάζεται μὲ τονή, τόσον κατὰ τὴν ἀνάβασι, στὴν περίπτωσι ποὺ δὲν τὸν ὑπερβαίνουμε, ὄσον καὶ κατὰ τὴν κατάβασι, στὴν περίπτωσι ποὺ κατεβαίνουμε χαμηλότερά του, ἕλκεται ἀπὸ τὸν ὑποκείμενό του Κε ἔτσι ποὺ ὁ ἐλάσσων τόνος Κε — Ζω΄ νὰ μειώνεται σὲ ἀποτομὴ ἐλάσσονος τόνου  $\left(\frac{25}{24} = \frac{24}{25} \right)$  χορδῆς ἡ 4 τμήματα, ὅπως στὰ ἑξῆς παραδείγματα.

## α΄ του συντόμου στιχηραρικού είδους

$$\frac{6}{2}$$
 $\frac{1}{2}$ 
 $\frac{$ 

## β΄ τοῦ νέου στιχηραρικοῦ εἴδους

γ΄ τοῦ συντόμου είρμολογικοῦ είδους

δ΄ του άργου είρμολογικου είδους.

$$\frac{6}{2}$$
 Xο ροι οι Ι σρα α α ηλ  $\frac{\Delta}{3}$   $\frac{\Delta}{3}$ 

καὶ ε΄ τοῦ παπαδικοῦ εἴδους

Στὸ παπαδικόν, ὅμως, εἶδος, ὅταν ὁ Ζω΄ (τῆς Νήτης) γίνεται δεσπόζων φθόγγος, ἔλκει τὸν ὑποκείμενό του Κε κατὰ ἕνα κόμμα  $\left(\frac{81}{80} = \frac{80}{81} \right)$  μ.

χορδής ή 2 τμήματα). Καὶ ὅταν ή μελωδία ἐπιμένη στὸν  $\mathbf{Z}\mathbf{\omega}'$  ἡ δίεσις τοῦ  $\mathbf{K}\mathbf{\varepsilon}$  φθάνει τὴν ἀποτομὴ ἐλάσσονος τόνου  $\left(\frac{2.5}{2.4} = \frac{2.4}{2.5} \, \mu$ . χορδής ἡ 4 τμήματα $\right)$ , ὅπως στὸ ἑξής παράδειγμα.

Στὸ παπαδικὸν είδος καὶ στὸ αὐτόμελον Κάθισμα «Κατεπλάγη Ἰωσήφ» ὁ Γα (τῆς Μέσης) ὑπόκειται, συχνά, σὲ ἔλξι ἀπὸ τὸν ὑπερκείμενό του δεσπόζοντα  $\Delta \iota$  καὶ βρίσκεται ὑψωμένος κατὰ ἔνα ἐλάχιστον τόνον  $\left(\frac{16}{15} - \frac{15}{16} \mu$ . χορδῆς ἢ 8 τμήματα  $\right)$ , ὅπως στὰ ἑξῆς παραδείγματα.

Τέλος, ἀξιοσημείωτος είναι ἡ ἕλξις τοῦ Κε (τῆς Μέσης) ἀπὸ τὸν ὑποκείμενό του δεσπόζοντα  $\Delta \iota$  ποὺ παρατηρείται στὰ σύντομα εἴδη τοῦ Τετάρτου ἤχου, ἰδία μὲ τὴν ταχεῖα χρονικὴ ἀγωγή  $\frac{1}{\chi}$  ὅταν, κατὰ τὴν ἀνάβασι, δὲν τὸν ὑπερβαίνουμε, καὶ ποὺ εἶναι ὕφεσις ἀποτομῆς ἐλάσσονος τόνου  $\left(\frac{25}{24} = \frac{24}{25} \right)$  μ. χορδῆς ἡ 4 τμημάτων , ὅπως στὰ ἑξῆς παραδείγματα.

Καταλήξεις. Στὸ σύντομο στιχηραρικὸν τοῦ Τετάρτου ήχου καὶ στὰ εἰρμολογικά εἴδη του (σύντομον καὶ ἀργόν), οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Πα Βου καὶ Δι (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

## α΄ τοῦ συντόμου στιχηραρικοῦ είδους

β΄ του συντόμου καὶ άργου είρμολογικου είδους

Στὰ εἴδη αὐτά οἱ ἐντελεῖς, οἱ τελικές καί οἱ ὁριστικὲς καταλήξεις γίνονται στὸν Βου (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

## 1ον Έντελῶν καταλήξεων

α΄ τοῦ συντόμου στιχηραρικοῦ είδους

β΄ του συντόμου καὶ άργου είρμολογικού είδους

## 2ον Τελικών καταλήξεων

α΄ τοῦ συντόμου στιχηραρικοῦ είδους

β΄ του συντόμου και άργου είρμολογικου είδους

## 3ον 'Οριστικών καταλήξεων

α΄ του συντόμου στιχηραρικού είδους.

β΄ τοῦ συντόμου καὶ ἀργοῦ εἰρμολογικόῦ εἴδους

Στὸ νέον καὶ στὸ παλαιόν ἤ ἀργὸ στιχηραρικόν εἶδος οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Βου καὶ Δι (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

Στὰ εἴδη αὐτά οἱ ἐντελεῖς καταλήξεις γίνονται στὸν Πα (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

Οἱ τελικές τους καταλήξεις γίνονται στὸν Βου (τῆς Μέσης), ὅπως στὰ ἐξῆς παραδείγματα.

Καὶ οἱ ὁριστικές τους καταλήξεις εἶναι, ἐπίσης, στὸν Βου (τῆς Μέσης), ὅπως στὸ ἑξῆς παράδειγμα.

Τέλος, στὸ παπαδικὸν είδος οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Νη Πα Βου καὶ Δι (τῆς Μέσης) καὶ στοὺς Ζω΄ καὶ Νη΄ (τῆς Νήτης) καὶ οἱ ἐντελεῖς, οἱ τελικές καὶ οἱ ὁριστικές στὸν Δι (τῆς Μέσης), ὅπως μπορεῖ νὰ δῆ κανεὶς στὰ Χερουβικά καὶ στὰ Κοινωνικά.

'Αρκτική μαρτυρία τοῦ Τετάρτου ήχου. 'Αντίστοιχες, γιὰ τὰ εἶδη τοῦ Τετάρτου ήχου, εἶναι οἱ ἑξῆς ἀρκτικὲς μαρτυρίες.

Τοῦ συντόμου στιχηραρικοῦ εἴδους Ἦχος  $\ddot{\ddot{\alpha}}$   $\ddot{\dot{\alpha}}$   $\ddot{\dot{\alpha}}$   $\ddot{\dot{\alpha}}$  πλῶς Ἦχος δ΄ χ

Τοῦ νέου καὶ παλαιοῦ ή ἀργοῦ στιχηραρικοῦ εἴδους Ἦχος d Πα ή ἀπλῶς Ἦχος δ΄ Πα.

Τοῦ συντόμου καὶ ἀργοῦ εἰρμολογικοῦ εἴδους Ἦχος  $\overset{\Gamma}{\lambda}$  Βου ἡ τος  $\overset{\Gamma}{\lambda}$   $\overset{\Gamma}{\lambda}$   $\overset{\Gamma}{\lambda}$ 

καὶ Τοῦ παπαδικοῦ εἴδους Ἡχος ος Δι.

'Απήχημα. 'Ανάλογα μὲ τὴ μελωδικὴ βάσι τοῦ Τετάρτου ήχου τὸ ἀπήχημά του εἴναι:

Γιὰ τὸ σύντομο στιχηραρικόν καὶ τὰ εἰρμολογικά του εἴδη (σύντομον καὶ ἀργόν) τὸ :  $\frac{6}{6}$   $\frac{7}{16}$   $\frac{7}$ 

Γιὰ τὸ καλοφωνικὸν εἶδος, μὲ βάσι τὸν Βου κατὰ τὸν Ἰάκωβο Πρωτοψάλτη, τὸ:

Γιὰ τὸ νέον καὶ τὸ παλαιόν ή ἀργὸ στιχηραρικὸν εἶδος του τὸ:  $\pi \begin{tabular}{ll} $\kappa$ αὶ \\ $\P$ & Le \\ \end{tabular}$ 

Γιὰ τὸ παπαδικὸν είδος του, κατὰ τὸν Πέτρο Πελοποννήσιο, τὸ:

Καὶ στὰ ἀπηχήματα αὐτά, ἡ συλλαβή με μπορεῖ νὰ ἀντικατασταθῆ μὲ τὸ «᾿Αμήν».

**Μεταβολές στὸν Τέταρτο ήχο.** Οἱ μεταβολές ποὺ παρατηροῦνται στὸν **Τέταρτο ήχο** εἶναι οἱ ἑξῆς:

1ον Σὲ μαλακὸ χρωματικὸ γένος, ὅπως στὰ ἑξῆς παραδείγματα.

α΄ του συντόμου στιχηραρικού είδους.

$$\Delta$$
 την τρι η με ρο ον σου Α ναστασιν δο ξα ζομεν $\aleph$   $\beta$  τοῦ νέου στιχηραρικοῦ εἴδους.

γ΄ του άργου είρμολογικού είδους.

**2ον** Σὲ σύντονο ή σκληρὸ χρωματικὸ γένος, ὅπως στὰ ἑξῆς παραδείγματα.

α΄ του συντόμου στιχηραρικού εΐδους.

## β΄ τοῦ παλαιοῦ ή άργοῦ στιχηραρικοῦ είδους.

π πυ ρουου ου ου ου ου ου ου ου με ε ε ε ε ε ε υ πεο Χοι στου ου πυ υ οου ου ου με ε ε VOI OI SKαΙ ε στο 0 0 0 π ('Από τὸ δοξαστικόν τοῦ 'Αγ. Γεωργίου

«Τὸν νοερὸν ἀδάμαντα», Χουρμουζίου Χαρτοφύλακος)

('Απὸ τὸ ἰδιόμελον «Έλαμψεν ἡ χάρις σου Κύριε», 'Ιακώβου Πρωτοψάλτου)

Σὲ ἐναρμόνιο γένος, ὅπως στὰ ἑξῆς παραδείγματα.

τοῦ νέου στιχηραρικοῦ είδους.

$$\frac{\pi}{q} \frac{1}{\delta_{1}} = \frac{1}{2} \frac{1}{\delta_{1}}$$

του παλαιού ή άργου στιχηραρικού είδους.

ο α α κρο ο ο ο ο ο ο τη τη η ης τη ('Απὸ τὸ δοξαστικὸν «'Οτε ἐξεδήμησας», Χουρμουζίου Χαρτοφύλακος).

4ον Μετάθεσις του Δι στὸν Πα, ὅπως στὸ ἑξῆς παράδειγμα τοῦ παλαιοῦ ἡ ἀργοῦ στιχηραρικοῦ εἴδους.

$$\frac{2+4}{9}$$
  $\frac{2+4}{0}$   $\frac{2$ 

**5ον** Μεταβολή τοῦ διαπασῶν συστήματος σὲ πεντάχορδο, ὅπως στὸ «Εὐλογημένη» τοῦ ἀργοῦ, διχόρου «Θεοτόκε Παρθένε» τῆς ᾿Αρτοκλασίας, Πέτρου Μπερεκέτου (Βλ. 312 ἄσκησι) καὶ

6ον Χρῆσις τοῦ Ζυγοῦ ≠΄, ὅπως στὰ έξῆς παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ εἴδους.

β΄ τοῦ νέου στιχηραρικοῦ είδους.

γ΄ του συντόμου και άργου είρμολογικού είδους.

Καὶ στὸ παπαδικόν καθώς καὶ στὸ Καλοφωνικὸν είδος τοῦ Τετάρ-

του ήχου παρατηρούνται οἱ ίδιες παραπάνω μεταβολές, ὅπως μπορεῖ νὰ δῆ κανείς στὰ Χερουβικά, στὰ Κοινωνικά καὶ στὸ καλοφωνικὸν Εἰρμολόγιον Γρηγορίου Πρωτοψάλτου (ἔκδοσις Κων/πόλεως 1835), στοὺς εἰρμούς «Ἦν ἡρετίσω» Ἰακώβου Πρωτοψάλτου, «Παντάνασσα Πανύμνητε» Γερμανού Νέων Πατρών καὶ «Ἐσείσθησαν λαοί» Πέτρου Μπερεκέτου.

Οἱ ὑπ' ἀριθμόν 80 - 81, 191, 220, 227, 247, 304, 312, 343, 349, 353, 414 - 416, 497, 510 - 512, 514 - 515 καὶ 518 ἀσκήσεις τοῦ βιβλίου αὐτοῦ ἀνήκουν στὸν Τέταρτο ἦχο καὶ στὶς μεταβολές του.

Παρείσακτα μέλη. Στὸν Τέταρτο ήχο ὑπάρχουν δύο παρείσακτα μέλη.

1ον Στὸ «Θεὸς Κύριος», στὰ ᾿Απολυτίκια, στὰ Θεοτοκία ¹, στὰ Καθίσματα καὶ στὰ Κοντάκια (πλὴν τοῦ «Ἦπεφάνης σήμερον») ἡ μελωδία κατὰ τὴν ἀνάβασι φθάνει, κατ᾽ ἐπανάληψιν, στὸν Κε (τῆς Μέσης) χωρὶς νὰ τὸν ὑπερβαίνη καὶ ὁ φθόγγος αὐτὸς—ὅπως ἐγνωρίσαμε—ὑπόκειται σὲ ἔλξι ἀπὸ τὸν ὑποκείμενο δεσπόζοντα Δι. Καὶ ἐπειδή, μὲ τὴν πάροδο τοῦ χρόνου, ἡ ὕφεσις τοῦ Κε ἔχει σταθεροποιηθῆ, τὸ ἄκουσμα τῶν μελωδιῶν αὐτῶν ἔχει μεταβληθῆ σὲ μαλακοῦ χρωματικοῦ γένους.

Έτσι, τὸ παρείσακτο αὐτό μέλος γράφεται, πλέον, στὴ μαλακὴ χρωματικὴ κλίμακα ὡς ἑξῆς.

Θε ος Κυριος και ε πε φα νεν η μιν ευ
λο γη με νος ο ερ χο ομε νος εν ο νο μα τι Κυ
ρι ι ου ε

Στὸ εἴδος αὐτό ἡ ὁριστικὴ κατάληξις γίνεται στὸν  $\Delta \iota$  (τῆς Μέσης) ώς ἑξῆς:

<sup>1.</sup> Θεοτοκίον δνομάζεται ύμνος πού άναφέρεται στήν Θεοτόκο καὶ στήν ἐξύμνησι της.

2ον Στὸ Κάθισμα «Κατεπλάγη Ἰωσήφ», ἐπειδὴ ἡ μελωδία περιστρέφεται, κατ᾽ ἐπανάληψιν, στοὺς φθόγγους Γα Δι Κε (τῆς Μέσης) καὶ Ζω΄ (τῆς Νήτης) καὶ ὅπως ἐγνωρίσαμε, ὁ Γα ἔλκεται ἀπὸ τὸν Δι καὶ ὁ Ζω΄ ἀπὸ τὸν Κε, παράγεται ἄκουσμα συντόνου ἡ σκληροῦ χρωματικοῦ γένους. Ὑπό τὴν ἐπίδρασι τοῦ ἀκούσματος αὐτοῦ, μὲ τὴν πάροδο τοῦ χρόνου καὶ ὁ Βου (τῆς Μέσης) ἔχει ὑποστῆ πτῶσιν καὶ βρίσκεται ἐν ὑφέσει. Ἔτσι, ἀπὸ τὸν Πα (τῆς Μέσης) μέχρι καὶ τὸν Ζω΄ (τῆς Νήτης), ἡ μελωδία αὐτὴ ἀκούεται σὲ σύντονο ἡ σκληρὸ χρωματικὸ γένος, ἐνῶ ὑψηλότερα εἶναι, πάλιν, διατονική.

Γι' αὐτὸ, τὸ παρείσακτο αὐτὸ μέλος γράφεται, πλέον, στὴ σύντονη ή σκληρὰ χρωματικὴ κλίμακα, ὡς ἐξῆς.

'Ηχος 
$$\ddot{\mathcal{A}}$$
  $\ddot{\mathcal{A}}$   $\ddot{\mathcal{A}}$ 

'Αξιοσημείωτον είναι ὅτι, τὰ προεόρτια 'Απολυτίκια α') τοῦ Γενεσίου τῆς Θεοτόκου «'Εκ τῆς ρίζης 'Ιεσσαί» β') τῶν Χριστουγέννων «'Ετοιμάζου Βηθλεέμ» καὶ «'Απεγράφετό ποτε» γ') τῶν Θεοφανείων «'Ετοιμάζου Ζαβουλών», καὶ δ') τὸ 'Απολυτίκιον τῆς 'Αγίας Εὐφημίας «'Η άμνάς σου, 'Ιησοῦ», καίτοι προσόμοια τοῦ Καθίσματος «Κατεπλάγη 'Ιωσήφ», ἐπεκράτησε νὰ ψάλλωνται στὸ πρῶτο παρείσακτο είδος τοῦ Τετάρτου ἤχου, δηλ. μὲ τὴ μαλακὴ χρωματικὴ κλίμακα, ὡς ἑξῆς:

ΤΗχος 
$$\ddot{\alpha}$$
  $\Delta$ ι

Ε τοι μα ζου  $B$ η  $\theta$ λε εμ η νοικται  $\pi$ α σιν η  $E$ 

δεμ  $\ddot{\alpha}$ 

μέ τελική κατάληξι στὸν Βου, ὡς ἐξῆς:

άλλὰ καὶ στὸν Δι ὡς ἐξῆς:

Ή όριστική κατάληξις τῶν ᾿Απολυτικίων αὐτῶν γίνεται στὸν Δι ὡς έξῆς:

$$\Delta$$
 και τρο φοντης ζω ης η μω ω ων

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Τετάρτου ήχου.

- Αὐτόμελα (πρόλογοι) στὸν Τέταρτο ἦχο εἶναι τὰ ἑξῆς: Τὰ 'Απολυτίκια «Κανόνα πίστεως» και «Και τρόπων μέτοχος». Το κάθισμα τής 'Οκτωήχου «Κατεπλάγη 'Ιωσήφ». Τὰ Κοντάκια «Ταχύ προκατάλαβε», «'Ο ύψωθείς έν τῷ Σταυρώ» καὶ «Ἐπεφάνης σήμερον» καὶ τὰ Στιγηρά «'Ως γενναΐον εν μάρτυσιν», «Έδωκας σημείωσιν», «Ο εξ ύψίστου κληθείς» καὶ «"Ηθελον δάκρυσιν έξαλεῖψαι».
- Οἱ εἰρμοὶ τοῦ Τετάρτου ἤχου εἶναι τῶν ἑξῆς Κανόνων: Τῆς 'Οκτωήχου καὶ τῆς Α΄ Κυριακῆς τῶν Νηστειῶν «Θαλάσσης τὸ Ἐρυθραῖον πέλαγος», τοῦ Εὐαγγελισμοῦ τῆς Θεοτόκου καὶ τοῦ 'Ακαθίστου «'Avoiξω τὸ στόμα μου», Πέτρου καὶ Παύλου «Οὐκ ἔστι σοι ὅμοιος», τῆς Μεταμορφώσεως τοῦ Σωτήρος «Χοροί Ἰσραήλ», τῆς Κυριακῆς τῶν Βαΐων «ἸΩφθησαν αί πηγαί», της Κυριακής της Σαμαρείτιδος «'Ο πατάξας Αίγυπτον» καί τῆς Πεντηκοστῆς «Θείω καληφθείς».

\*Ηθος. Οι μελωδίες του συντόμου στιχηραρικού και του είρμολογικοῦ (συντόμου καὶ ἀργοῦ) εἴδους τοῦ Τετάρτου ἤχου εἶναι εὐχάριστες, τερπνές καὶ πανηγυρικές. Τοῦ νέου καὶ τοῦ παλαιοῦ ή άργοῦ στιχηραρικου είδους προσιδιάζουν στή σεμνότητα καί τή μεγαλοπρέπεια καί του παπαδικού καθώς και του καλοφωνικού είδους, έρμηνεύοντας τη σοβαρότητα καὶ τὴ μεγαλοπρέπεια, ἐμπνέουν εὐλάβεια καὶ κατάνυξι, χαρακτηριστικά του συσταλτικού ήθους.

#### ΗΧΟΣ ΠΛΑΓΙΟΣ ΤΟΥ ΠΡΩΤΟΥ

314. Γένος — κλίμαξ. 'Ο Πλάγιος τοῦ Πρώτου ἦχος, ὅπως καὶ ὁ Πρῶτος ἦχος, μεταχειρίζεται διατονικὴ κλίμακα. Είναι, συνεπῶς καὶ αὐτὸς, διατονικὸς ἦχος.

Συχνά, διμως, μὲ τὸν Ζω΄ (τῆς Νήτης), τὸ διατονικὸ τετράχορδον β΄ σχήματος Κε-Πα΄ μεταβάλλεται σὲ ἐναρμόνιο γ΄ σχήματος (§ 250ε΄), ὅπως στὰ ἑπόμενα παραδείγματα.

Τή μικτή αὐτή κλίμακα ἀκολουθοῦν καὶ οἱ στίχοι τοῦ PM΄ ψαλμοῦ «Θεῦ, Κύριε, φυλακὴν τῷ στόματί μου», τὸ Αὐτόμελον «Χαίροις ἀσκητικῶν», τὰ Ἑγκώμια τοῦ Ἐπιταφίου «Ἡ ζωὴ ἐν τάφῳ» καὶ «Ἅξιον ἐστίν», τὰ Εὐλογητάρια «Τῶν Ἅγγέλων ὁ δῆμος» τοῦ Πέτρου Πελοποννησίου κα-

θώς καὶ τὰ Νεκρώσιμα «Αἱ χεῖρες σου ἐποίησάν με» καὶ ποὺ, ὅπως γίνεται φανερὸν ἀπὸ τοὺς δεσπόζοντας φθόγγους καὶ τὶς καταλήξεις τους, ἀποτελοῦν μιὰ ἰδιάζουσα μορφὴ τοῦ στιχηραρικοῦ εἶδους τοῦ Πλαγίου τοῦ Πρώτου ἤχου.

Όταν ὁ Πλάγιος τοῦ Πρώτου ήχος χρησιμοποιή τὴ διατονική κλίμακα, στὸ σύντομο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) εἴδος του ὁ Πα (τῆς Μέσης) τῆς διατονικῆς κλίμακος μετατίθεται στὸν Κε (τῆς Μέσης), μεταβολή ποὺ γίνεται ἐμφανής μόνον ὅταν ἡ μελωδία ὑπερβαίνη τὸν Πα΄ (τῆς Νήτης) καὶ πού ἰσχύει καὶ κατὰ τὴν κατάβασι μέχρι τὸν Γα (τῆς Μέσης). Χαμηλότερα, ὅμως, ἡ κατάβασις μέχρι τὸν Πα (τῆς Μέσης) γίνεται μετὰ προηγουμένην κατάργησιν τῆς μεταβολῆς καὶ ὁπότε σχηματίζονται τὰ συνημμένα πεντάχορδα προξέγματα.

α΄ του συντόμου στιχηραρικού είδους.

β΄ του συντόμου καὶ άργου είρμολογικού είδους.

Στὸ νέον, στὸ παλαιόν ή άργὸ στιχηραρικόν, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν είδος, ένῶ ἡ διατονικὴ κλίμαξ φαίνεται νὰ ἀκολουθή τὸ διαπασών σύστημα, ἡ ὑπέρβασις τοῦ Πα΄ (τῆς Νήτης) γίνεται καὶ σ' αὐτά, μετὰ ἀπὸ προηγουμένη μετάθεσι τοῦ Πα στὸν Κε (τῆς Μέσης) καὶ ή κατάβασις χαμηλοτέρα, μέχρι τὸν κε (τῆς Ύπάτης), μετὰ ἀπὸ προηγουμένη μετάθεσι τοῦ Δι στὸν Πα (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

τοῦ παλαιοῦ ή ἀργοῦ στιχηραρικοῦ είδους.

γ΄ του παπαδικού είδους.

Κατ' έξαίρεσιν, στὴν ἀργὴ δοξολογία καὶ στὸ Χερουβικὸ τοῦ Πέτρου Βυζαντίου βλέπομε πὸς ἡ κατάβασις στὸν κε (τῆς 'Υπάτης) γίνεται χωρὶς προηγούμενη μετάθεσι τοῦ Δι στὸν Πα τῆς Μέσης.

δ΄ τοῦ καλοφωνικοῦ είδους.

$$\frac{\lambda}{0}$$
 πυ  $\frac{\lambda}{0}$  η η η η  $\frac{\lambda}{0}$  α α α α  $\frac{\lambda}{0}$  δι ι ι ι  $\frac{\lambda}{0}$  ου ου ου  $\frac{\lambda}{0}$   $\frac{\lambda}{0$ 

Μελωδική βάσις. Στὸ σύντομο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) εἴδος ὁ Πλάγιος τοῦ Πρώτου ἦχος ἔχει μελωδική βάσι τὸν Κε (τῆς Μέσης). Στὸ νέον, στὸ παλαιόν ἤ ἀργὸ στιχηραρικόν, στὸ παπαδικόν καὶ στό καλοφωνικὸν εἴδος βάσις εἴναι ὁ Πα (τῆς Μέσης).

Δεσπόζοντες φθόγγοι. Στὸ σύντομο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) εἶδος, δεσπόζοντες φθόγγοι εἶναι ὁ Κε (τῆς Μέσης), ὅπου, — ὅπως ἐγνωρίσαμε — μετατίθεται ὁ Πα καὶ ὁ Νη΄ (τῆς Νήτης), ὅπου μετατίθεται ὁ Γα.

Στὸ νέον, στὸ παλαιὸν ἢ ἀργὸ στιχηραρικὸν, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν είδος είναι οἱ Πα Δι καὶ Κε (τῆς Μέσης). Ἰδιαίτερα, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν είδος μὲ τὴ μικτὴ κλίμακα διατονικοῦ καὶ ἐναρμονίου γένους ποὺ ἐγνωρίσαμε, δεσπόζοντες φθόγγοι είναι, πολλὲς φορές, οἱ Πα Γα καὶ Δι (τῆς Μέσης) καὶ ὁ Ζω΄ (τῆς Νήτης), ὁ ἐπικρατέστερος των, ὁπότε ἔχομε τὸν λεγόμενο Πεντάφωνο τοῦ Πλαγίου τοῦ Πρώτου ἦχο, ὅπως στὶς ἀργὲς δοξολογίες τοῦ Βαλασίου Ἱερέως, τοῦ Γεωργίου Βιολάκη, στὸν καλοφωνικὸ εἰρμὸ «Ἔφριξε γῆ» τοῦ Παναγιώτου Χαλάτζογλου (βλ. 377 ἄσκησι) κ. ἄ.

$$\frac{\pi}{q}$$
 Δο  $\frac{4}{6}$   $\frac{\pi}{q}$  Δο  $\frac{\pi}{q}$   $\frac{\pi}{q}$ 

η η νη ζί εν α α αν θρω ω ποις ε ε ευ δο

(Βαλασίου Ἱερέως)

Τ Υ μνου με εν σε ευ λο γου ου με εν

σε τη προ σκυ νου ου μεν σε ε τη δο ξο λο

γου με εν σε ε τη δο του ου με εν

σοιοι ζί δι α την με γα α α α λη ην σουου ου

δο ο ο ο ξαν η

(Γεωργίου Βιολάκη)

Μελωδικές ελξεις. Στὸν Πλάγιο τοῦ Πρώτου ήχο μὲ τὴ διατονικὴ κλίμακα, ὁ Ζω΄ (τῆς Νήτης) ελκεται ἀπὸ τὸν ὑποκείμενο δεσπόζοντα Κε, ὅπως καὶ στοὺς Πρῶτον καὶ Τέταρτον ήχους (§ 310 καὶ 313). Παθαίνουν, ἐπίσης, ελξι οἱ φθόγγοι Βου καὶ Δι (τῆς Μέσης), ὅπως καὶ στὸν Πρῶτο ἡχο καθὸς καὶ στὰ έξῆς παραδείγματα.

α΄ τοῦ νέου στιχηραρικοῦ είδους.

β΄ τοῦ παλαιοῦ ή άργοῦ στιχηραρικοῦ είδους.

(Πέτρου Μπερεκέτου)

Τέλος, στὸν Πεντάφωνο Πλάγιο τοῦ Πρώτου ήχο ἰσχύει ή ἴδια ελξις τοῦ Κε (τῆς Μέσης) ἀπὸ τὸν  $\mathbf{Z}_{\omega}^{\wp}$  (τῆς Νήτης), ὅπως καὶ στὸν Τρίτο ήχο (§ 312) καὶ ὅπως σημειώνεται στὸ παραπάνω παράδειγμα ἀπό τὴ δοξολογία τοῦ Γεωργίου Βιολάκη.

Καταλήξεις. Στὸ σύντομο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) εἶδος (ἐκτὸς ἀπὸ τοὺς στίχους τοῦ PM΄ ψαλμοῦ καὶ ἐκείνα ποὺ μ' αὐτούς προαναφέραμε) οἱ ἀτελεῖς καταλήξεις γίνονται στὸν

**Κε** (τῆς Μέσης), ὅπου — ὅπως ἐγνωρίσαμε — μετατίθεται ὁ **Πα** καὶ στὸν **Νη΄** (τῆς Νήτης), ὅπου μετατίθεται ὁ **Γα**, ὅπως στὰ ἐπόμενα παραδείγματα.

## α΄ τοῦ συντόμου στιχηραρικοῦ είδους.

β΄ του συντόμου και άργου είρμολογικου είδους.

Στὰ εἴδη αὐτά οἱ ἐντελεῖς καὶ οἱ τελικὲς καταλήζεις γίνονται στὸν Κε (τῆς Μέσης), ὅπως στὰ ἐπόμενα παραδείγματα.

# 1ον Έντελοιν καταλήξεων

# α΄ τοῦ συντόμου στιχηραρικοῦ είδους.

β΄ τοῦ συντόμου καὶ άργοῦ είρμολογικοῦ είδους.

## 2ον Τελικών καταλήξεων

α΄ του συντόμου στιχηραρικού είδους.

β΄ του συντόμου και άργου είρμολογικου είδους.

Οἱ ὁριστικὲς καταλήξεις, στὰ εἴδη αὐτά, γίνονται στὴ μελωδικὴ βάσι τους, τὸν Κε (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

α΄ του συντόμου στιχηραρικού είδους.

β΄ τοῦ συντόμου καὶ άργοῦ είρμολογικοῦ είδους.

Στὸ νέον καὶ στὸ παλαιόν ἥ ἀργὸ στιχηραρικὸν είδος οἱ ἀτελεῖς καταλήξεις γίνονται στὸν Δι καὶ στὸν Κε (τῆς Μέσης), ὅπως στὰ ἐπόμενα παραδείγματα.

$$\frac{1}{2}$$
  $\frac{1}{2}$   $\frac{1$ 

Στὰ εἴδη αὐτά, οἱ ἐντελεῖς καταλήξεις γίνονται στὸν Πα καὶ στὸν Κε (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

τε 
$$\ddot{q}$$
 $\ddot{q}$  δι ι  $\dot{\omega}$  κε ε ται αι αι αι αι αι η η δυ  $\dot{\nu}$   $\dot{\nu$ 

Στὸ σύντομο στιχηραρικὸν εἶδος ἡ τελικὴ κατάληξις γίνεται στὸν Δι (τῆς Μέσης).

$$\frac{\chi}{\ddot{q}} \frac{1}{\delta \iota} \frac{3}{\eta \varsigma} \frac{1}{\epsilon} \frac{3}{\lambda \epsilon} \frac{3}{\epsilon} \frac{3}{\eta} \frac{3}{\eta \varsigma} \frac{3}{\eta \varsigma}$$

Ή ίδια κατάληξις στὸ παλαιόν ή άργὸ στιχηραρικὸν είδος γίνεται στὸν Πα, στὴ μελωδικὴ βάσι τοῦ ήχου.

Στὸ σύντομο στιχηραρικὸν εἴδος ἡ ὁριστικὴ κατάληξις γίνεται στὴ μελωδικὴ βάσι τοῦ ἤχου, τὸν Πα.

$$\frac{\chi}{\ddot{q}} = \frac{1}{\lambda \epsilon} \frac{4}{\eta} = \frac{1}{\sigma \sigma} \frac{3}{\sigma \sigma} \frac{1}{\eta} = \frac{3+2}{\eta} = \frac{1}{3+2} =$$

Στὸ παλαιόν ή ἀργὸ στιχηραρικὸν εἶδος ἡ δριστικὴ κατάληξις εἴναι ὁμοία μὲ τὴν τελική, ὅπως παραπάνω.

Στὸ Αὐτόμελον «Χαίροις ἀσκητικών» καὶ στὶς ἄλλες ὅμοιες μ' αὐτὸ μελωδίες ποὺ προαναφέραμε, οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Πα Δι καὶ Κε (τῆς Μέσης).

χ παμ μα ακαρ α να θε μενος 
$$\vec{q}$$
  $\vec{q}$  ταις α ρε ται αι αις δε  $\vec{\beta}$ 

Οί ἐντελεῖς καταλήξεις γίνονται στὸν Κε (τῆς Μέσης) καὶ εἶναι ὅ-μοιες μὲ τὶς ἀτελεῖς.

'Η τελική κατάληξις περατούται καὶ αὐτή στὸν Κε (τῆς Μέσης) καὶ ἔχει τὴν ἑξῆς μορφή.

Τέλος, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν εἶδος, οἱ καταλήξεις γίνονται μὲ περισσότερη ἐλευθερία στοὺς φθόγγους Πα Δι καὶ Κε (τῆς Μέσης), ὅπως μπορεῖ νὰ δῆ κανείς στὰ Χερουβικά, στὰ Κοινωνικά καὶ στοὺς καλοφωνικοὺς εἰρμούς.

Καὶ ἐδῶ, ὅπως καὶ στοὺς ἄλλους ἤχους, ὁ πολυσύλλαβος φθόγγος Αμεαμες μπορεῖ νὰ ἀντικατασταθῆ μὲ τὸ «᾿Αμήν».

Μεταβολὲς στὸν Πλάγιο τοῦ Πρώτου ήχο. Οἱ μελωδίες τοῦ συντόμου στιχηραρικοῦ καὶ τοῦ συντόμου εἰρμολογικοῦ εἴδους τοῦ Πλαγίου τοῦ Πρώτου ήχου εἶναι ἀπέριττες καὶ δὲν παρουσιάζουν μεταβολές.

Στὰ ἄλλα εἴδη του γίνονται οἱ έξῆς μεταβολές.

1ον Σὲ μαλακὸ χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Δι στὸν Κε, ὅπως στὸ ἀργὸν ἀρχαῖον «Χριστὸς ἀνέστη» (βλ. 431 ἄσκησι) καὶ στὸ ἑ-ξῆς παράδειγμα ἀπὸ τὸ παλαιόν ἥ ἀργὸ στιχηραρικόν εἴδος.

$$\frac{\pi}{q}$$
 φυ υ υ υ υ υ σι  $\frac{2}{q}$  φυ υ υ υ υ σι  $\frac{3}{q}$   $\frac{1}{q}$   $\frac{3}{q}$   $\frac{1}{q}$   $\frac{1}{q}$ 

2ον Σὲ σύντονο ἥ σκληρὸ χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Πα στὸν Κε, ὅπως στὸν εἰρμό «Μαινομένην κλύδωνι» (βλ. 358 ἄσκησι) καὶ στὰ ἑξῆς παραδείγματα ἀπὸ τὸ νέον καὶ τὸ παλαιόν ἤ ἀργὸ στιχηραρικὸν εἴδος, ὅπου, ἐπὶ πλέον, βρίσκομε καὶ τὴ μετάθεσι τοῦ Πα στὸν Δι.

καὶ 3ον Σὲ ἐναρμόνιο γένος, ὅπως γίνεται μὲ τὴ συχνὴ μεταβολή ποὺ προαναφέραμε, τοῦ διατονικοῦ τετραχόρδου β΄ σχήματος Κε — Πα΄ σὲ ἐναρμόνιο γ΄ σχήματος, ποὺ τὴ συναντοῦμε καὶ στὸν εἰρμό «Σὲ τὴν ὑπὲρ νοῦν», (βλ. 370 ἄσκησι).

 $^{\circ}$ Επὶ πλέον, στὴν ἀργὴ πεντάφωνο δοξολογία τοῦ Γρηγορίου Πρωτοψάλτου ἡ τελικὴ κατάληξις γίνεται μὲ τὴ μετάθεσι τοῦ  $\mathbf{Z}_{\omega}^{\circ}$  στὸν  $\mathbf{B}_{\omega}^{\circ}$ , ὡς ἑξῆς.

Καὶ οἱ ὑπ² ἀριθμόν 229, 307, 359 - 360, 369, 374 - 376, 425, 430, 446, 468, 498, 530 καὶ 535 ἀσκήσεις τοῦ βιβλίου αὐτοῦ ἀνήκουν στὸν Πλάγιο τοῦ Πρώτου ἡχο καὶ στὶς μεταβολές του.

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Πλαγίου τοῦ Πρώτου ήχου.

- α΄ Αὐτόμελα (πρόλογοι) στὸν Πλάγιο τοῦ Πρώτου ήχο εἶναι: Τὸ ᾿Αναστάσιμον Ἦπολυτίκιον «Τὸν συνάναρχον Λόγον», τὰ Στιχηρά «Χαίροις ἀσκητικῶν» καὶ «"Οσιε Πάτερ θεοφόρε Θεοδόσιε» σὲ νέο στιχηραρικὸν εἶδος ¹.
- β΄ Οἱ εἰρμοὶ τοῦ Πλαγίου τοῦ Πρώτου ἤχου εἰναι τῶν ἑξῆς Κανόνων: Τῆς ᾿Οκτωήχου «Ἦπον καὶ ἀναβάτην» καὶ τῆς ᾿Αναλήψεως «Τῷ σωτήρι Θεῷ».

<sup>1.</sup> Πρβλ. ὑποσ. σελ. 376

Ήθος. Οἱ δυνατότητες τῶν μελωδιῶν τοῦ Πλαγίου τοῦ Πρώτου ἤχου στὴν ἀπόδοσι ὁποιουδήποτε νοήματος εἴτε πανηγυρικοῦ («Πάσχα ἰερὸν ἡμῖν σήμερον... Τέρπου χόρευε καὶ ἀγάλλου Ἱερουσαλήμ», «᾿Αναστάσεως ἡμέρα καὶ λαμπρυνθῶμεν τῷ πανηγύρει... Χριστὸς ἀνέστη ἐκ νεκρῶν»),
εἴτε σοβαροῦ («Τὸ στάδιον τῶν ἀρετῶν ἡνέωκται»), εἴτε πράου (ἀργές καταβασίες τῆς ᾿Αναλήψεως «Τῷ σωτήρι Θεῷ»), εἴτε πομπώδους καὶ ἐπιβλητικοῦ (καλοφωνικὸς εἰρμός «Ἔφριξε γῆ» Παναγιώτου Χαλάτζογλου), εἴτε
ἐπιβλητικοῦ καὶ πανηγυρικοῦ (ἀργὴ πεντάφωνος δοξολογία Γεωργίου Βιολάκη), εἴτε καὶ θρηνώδους («Ἡ ζωὴ ἐν τάφῳ», «Οἴμοι, ὁ ᾿Αδάμ ἐν θρήνῳ
κέκραγεν») καὶ στήν περιγραφή καὶ τὸ χρωματισμὸ τῶν ψυχικῶν καταστάσεων καὶ μεταπτώσεων, εἶναι ἀπεριόριστες.

'Ανάλογα, λοιπόν, μὲ τὴν κάθε περίπτωσι τὸ ἦθος τοῦ Πλαγίου τοῦ Πρώτου ἤχου εἶναι συσταλτικόν, διασταλτικόν ἤ καὶ ἡσυχαστικόν.

#### ΗΧΟΣ ΠΛΑΓΙΟΣ ΤΟΥ ΔΕΥΤΕΡΟΥ

315. Γένος — κλίμαξ. 'Ο Πλάγιος τοῦ Δευτέρου ήχος χρησιμοποιεῖ καὶ τὶς δύο χρωματικὲς κλίμακες πού, ὅπως γνωρίζομε ¹, σχηματίζονται μὲ τὸ πεντάχορδο σύστημα. Εἶναι, συνεπῶς, χρωματικὸς ήχος.

Τής μαλακής χρωματικής κλίμακος γίνεται χρήσις στὸ νέο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) εἶδος καὶ τής συντόνου ή σκληρᾶς χρωματικής κλίμακος, στὸ νέον, στὸ παλαιόν ή ἀργὸ στιχηραρικόν, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν εἶδος τοῦ Πλαγίου τοῦ Δευτέρου ήχου.

Κατ' ἐξαίρεσιν, οἱ στίχοι τοῦ PM' ψαλμοῦ «ΘΦῦ, Κύριε, φυλακὴν τῷ στόματί μου», ἡ σύντομος δοξολογία κ. ἄ. παρόμοια, καίτοι μελωδίες τοῦ συντόμου στιχηραρικοῦ εἴδους, εἶναι στὴ σύντονο ἡ σκληρὰ χρωματικὴ κλίμακα.

Μελωδική βάσις. "Όταν ὁ Πλάγιος τοῦ Δευτέρου ήχος χρησιμοποιή τὴ μαλακὴ χρωματικὴ κλίμακα, ἡ μελωδικὴ βάσις του εἶναι ὁ Δι (τῆς Μέσης)  $\overset{\triangle}{\smile}$  καὶ ὅταν χρησιμοποιῆ τὴ σύντονο ἤ σκληρὰ χρωματικὴ κλίμακα, εἶναι ὁ Πα (τῆς Μέσης)  $\overset{\pi}{\smile}$ 

'  $\Omega$ ρισμένες, ὅμως, μελωδίες στὴ σύντονο ἥ σκληρὰ χρωματικὴ κλίμακα ἔχουν μελωδικὴ βάσι τὸν  $\Delta$ ι (τῆς Μέσης)  $\stackrel{\Delta}{\wp}$ , ὅπως τὸ «Κύριε τῶν

<sup>1.</sup> Bλ. § 229, 235, 240, 244, 259 καὶ 260.

δυνάμεων», τὸ ἀργὸν νεκρώσιμον «Ἄγιος ὁ Θεός» καὶ οἱ περισσότεροι καλοφωνικοὶ εἰρμοί καὶ ἀποτελοῦν ἰδιαίτερο κλάδο τοῦ Πλαγίου τοῦ Δευτέρου ἤχου ποὺ ὀνομάζεται [εθαθω].

Δεσπόζοντες φθόγγοι. Στὸ σύντομο στιχηραρικόν καὶ στὸ είρμολογικόν (σύντομον καὶ ἀργόν) είδος τοῦ Πλαγίου τοῦ Δευτέρου ἤχου, δεσπόζοντες φθόγγοι είναι ὁ Βου καὶ ὁ Δι (τῆς Μέσης) τῆς μαλακῆς χρωματικῆς κλίμακος. Στὸ νέον, στὸ παλαιόν ἤ ἀργὸ στιχηραρικόν, στὸ παπαδικόν καὶ στὸ καλοφωνικὸν είδος του δεσπόζοντες φθόγγοι είναι οἱ Πα Δι καὶ Κε (τῆς Μέσης) τῆς συντόνου ἤ σκληρᾶς χρωματικῆς κλίμακος.

Μελωδικές ελξεις. Στὸν Πλάγιο τοῦ Δευτέρου ῆχο μὲ τὴ μαλακὴ χρωματικὴ κλίμακα, ὁ Πα (τῆς Μέσης) ελκεται ἀπὸ τὸν Βου καὶ ὁ Γα (τῆς Μέσης) ἀπὸ τὸν Δι, ὅπως καὶ στὸν Δεύτερο ῆχο μὲ τὴν ἴδια κλίμακα (§ 311) καθώς καὶ στὰ ἐπόμενα παραδείγματα.

α΄ τοῦ Πα μὲ ἕλξι.

$$\frac{6}{5} \sum_{\nu} \frac{3}{\delta \nu} |\nabla^{2} \rangle | \frac{1}{\epsilon} \sum_{\kappa} \frac{4}{\delta \nu} |\nabla^{2} \rangle |^{2} \frac{6}{\delta \kappa} |^{2} \frac{6}{\delta \kappa} |\nabla^{2} \rangle |\nabla^{2} \rangle |^{2} \frac{6}{\delta \kappa} |\nabla^{2} \rangle |^{2} \frac{6}{\delta \kappa} |\nabla^{2} \rangle |\nabla^{2} \rangle$$

γ΄ του Πα και του Γα με ελξι.

<sup>1.</sup> Ὁ Ἰωάννης Κουκουζέλης στὰ προλεγόμενα τοῦ Μεγάλου Ἰσου τῆς Παπαδικῆς σημειώνει: «Τὸ δέ μεγαγω δέμα, ὑπάρχει ἔξω τῶν ὀκτὰ ἤχων». Ὁμοίως καὶ ὁ Ἰωάννης Πρωτοψάλτης ὁ Τραπεζούντιος, «Τὸ δὲ μεγαγω, ἐκτεταμένον μέλος, ὑπὲρ τοὺς ὀκτώ, ἔνατος ἦχος πέλει».

Στή σύντονο ή σκληρὰ χρωματική κλίμακα, ὁ Γα (τῆς Μέσης), ὅταν ἡ μελωδία δὲν κατεβαίνη χαμηλότερά του, ἕλκεται ἀπὸ τὸν ὑπερκείμενο δεσπόζοντα  $\Delta \iota$  κατὰ ἕνα κόμμα  $\left(\frac{81}{80}\!=\!\!\frac{80}{81}\right)$  μ. χορδῆς ἡ 2 τμήματα  $\left(\frac{81}{80}\!=\!\!\frac{80}{81}\right)$  μ. χορδῆς ἡ 2 τμήματα  $\left(\frac{81}{80}\!=\!\!\frac{80}{81}\right)$  μ. χορδῆς ἡ 2 τμήματα  $\left(\frac{81}{80}\!=\!\!\frac{80}{81}\right)$  μ. Κατεβαίνοντας, ὅμως, χαμηλότερα μέχρι τὸν Πα, ὁ Γα καὶ ὁ Βου (τῆς Μέσης), βρίσκονται μὲ ὕφεσι ἀξίας ἑνός κόμματος  $\left(\frac{1}{80}\right)$ .

Καταλήξεις. Στὸ σύντομο στιχηραρικόν καὶ στὸ εἰρμολογικόν (σύντομον καὶ ἀργόν) είδος τοῦ Πλαγίου τοῦ Δευτέρου ἤχου, οἱ ἀτελεῖς καταλήξεις γίνονται, συνηθέστερα, στοὺς φθόγγους Βου καὶ Δι (τῆς Μέσης) καὶ κάποτε, στὸν Νη (τῆς Μέσης) τῆς μαλακῆς χρωματικῆς κλίμακος, ὅπως στὰ ἀκόλουθα παραδείγματα.

α΄ του συντόμου στιχηραρικού είδους.

β΄ τοῦ συντόμου καὶ ἀργοῦ είρμολογικοῦ είδους.

<sup>1.</sup> Βλ. § 229 β'.

Τὶς περισσότερες, ὅμως, φορές, ἡ ἀτελὴς κατάληξις στὸν Νη (τῆς Μέσης) γίνεται μὲ προηγούμενη μετάθεσι τοῦ  $\Delta \hat{\mathbf{i}}$  στὸν  $\hat{\mathbf{\Gamma}}$ α, ὅπως στὰ ἑπόμενα παραδείγματα.

Δ Την εν Σταυ ρω ω σου ου ου ου θειει αν κε

ε νω ω ω σιν 
$$\frac{2}{6}$$
 $\frac{2}{5}$ 
 $\frac{4}{5}$ 
 $\frac{4}{5}$ 
 $\frac{2}{5}$ 
 $\frac{4}{5}$ 
 $\frac{4}{$ 

Στὰ εἴδη αὐτά, οἱ ἐντελεῖς καὶ οἱ τελικὲς καταλήξεις γίνονται στὸν Βου (τῆς Μέσης) τῆς μαλακῆς χρωματικῆς κλίμακος, ὅπως στὰ ἑπόμενα παραδείγματα.

# 1ον Έντελών καταλήξεων

α΄ τοῦ συντόμου στιχηραρικοῦ είδους.

β΄ τοῦ συντόμου καὶ άργοῦ είρμολογικοῦ εἴδους.

# 2ον Τελικών καταλήξεων

α΄ του συντόμου στιχηραρικού είδους.

β΄ του συντόμου καὶ άργου είρμολογικου είδους.

Καὶ ἡ ὁριστικὴ κατάληξις τους, στὸ σύντομο στιχηραρικὸν είδος, γίνεται στὸν Δι (τῆς Μέσης), ὅπως στὸ ἑξῆς παράδειγμα.

$$\Delta$$
 ε λε η θη ναιταςψυ χας η μω ω ων ενώ, στὸ εἰρμολογικὸν εἴδος, στὴν Η΄  $\Omega$ δή, στὸν **Βου** (τῆς Μέσης), ὅπως

ένῶ, στὸ εἰρμολογικὸν εἴδος, στὴν Η΄ Ὠδή, στὸν **Βου** (τῆς Μέσης), ὅπως στὸ ἐξῆς παράδειγμα.

καὶ στὴν Θ΄  $^{\circ}\Omega$ δή, στὸν  $\Delta\iota$  (τῆς Μέσης), ὅπως στὸ ἑξῆς παράδειγμα.

$$\Delta$$
 ορ θο  $\delta$ ο ξως με γα α  $\lambda$ υ  $\nu$  νο  $\mu$ ε ε  $\epsilon$   $\epsilon$   $\nu$ 

Στὸ νέον καὶ στὸ παλαιόν ή ἀργὸ στιχηραρικὸν είδος τοῦ Πλαγίου τοῦ Δευτέρου ήχου, οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Πα Δι

καὶ Κε (τῆς Μέσης) τῆς συντόνου ἤ σκληρᾶς χρωματικῆς κλίμακος, ὅπως στὰ ἐπόμενα παραδείγματα.

Στὰ εἴδη αὐτά, οἱ ἐντελεῖς καὶ οἱ τελικὲς καταλήξεις γίνονται στὸν Πα (τῆς Μέσης), ὅπως στὰ ἑπόμενα παραδείγματα.

α΄ ἐντελοῦς καταλήξεως.

καὶ β΄ τελικῆς καταλήξεως

Καὶ ἡ ὁριστικὴ κατάληξίς τους, ἀρχίζοντας ὅπως ἡ τελική, περατουται στὸν Δι (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

Τέλος, στὸ παπαδικὸν καὶ στὸ καλοφωνικὸν είδος οἱ καταλήξεις γίνονται μὲ περισσότερη ἐλευθερία ἀλλὰ καὶ μὲ διάφορες μεταβολές, ὅπως μπορεῖ νὰ δῆ κανεὶς στὰ Χερουβικά, στὰ Κοινωνικά, στὶς ἀργὲς δοξολογίες καὶ στοὺς καλοφωνικοὺς Εἰρμούς.

# Αρκτική μαρτυρία του Πλαγίου του Δευτέρου ήχου.

Τοῦ συντόμου στιχηραρικοῦ καὶ τοῦ εἰρμολογικοῦ (συντόμου καὶ ἀργοῦ) εἴδους τοῦ Πλαγίου τοῦ Δευτέρου ἤχου ἡ ἀρκτικὴ μαρτυρία εἶναι
Ήχος λ :: Βου Τοῦ

Τοῦ νέου, τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ καὶ τοῦ παπαδικοῦ εἴ-δους του Ἡχος λ  $\stackrel{\sim}{\pi}$  καὶ γιὰ τὸ λελαλω Ἡχος λ  $\stackrel{\sim}{\pi}$ 

'Απήχημα. Τὸ ἀπήχημα τοῦ Πλαγίου τοῦ Δευτέρου ἤχου, ὅταν χρησιμοποιῆ τὴ σύντονο ἢ σκληρὰ χρωματικὴ κλίμακα εἶναι, ἀνάλογα μὲ

Καὶ στὰ ἀπηχήματα αὐτά, ὅπως καὶ τῶν ἄλλων ἤχων, οἱ πολυσύλλαβοι φθόγγοι ὑεχεαὑες καὶ ὑελαλω μποροῦν, χάριν εὐφωνίας κατὰ τὴ ψαλμωδία, ν' ἀντικατασταθοῦν μὲ τὸ «'Αμήν».

Μεταβολὲς στὸν Πλάγιο τοῦ Δευτέρου ἦχο. Οἱ μελωδίες τοῦ συντόμου στιχηραρικοῦ καὶ τοῦ εἰρμολογικοῦ εἴδους, ὅπου γίνεται χρῆσις τῆς μαλακῆς χρωματικῆς κλίμακος δὲν παρουσιάζουν μεταβολὲς ἐκτὸς ἀπὸ τὴ μετάθεσι τοῦ Δι στὸν Γα πού, ὅπως εἴδαμε παραπάνω, προηγεῖται καταλήξεως στὸν Νη (τῆς Μέσης).

Στὰ εἴδη τοῦ Πλαγίου τοῦ Δευτέρου ἤχου ὅπου γίνεται χρῆσις τῆς συντόνου ἢ σκληρᾶς χρωματικῆς κλίμακος συνηθέστερες εἶναι οἱ ἑξῆς μεταβολές.

## 1ον Σὲ διατονικό γένος

α΄ Μὲ ἁπλὲς μεταβολὲς κατὰ γένος ἀπὸ τούς φθόγγους  $\Delta \iota$  καὶ  $K\epsilon$  (τῆς Μέσης), ὅπως στὶς ὑπ' ἀριθμὸν 381-384 ἀσκήσεις τοῦ βιβλίου αὐτοῦ καὶ ἀπὸ τοὺς φθόγγους  $N\eta$  καὶ  $\Pi \alpha$  (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

$$\Delta = \frac{1}{\nu} \left( \frac{2}{\nu} \sum_{\nu} \frac{3}{\delta \omega \rho} \sum_{\sigma} \frac{3}{\mu \epsilon \tau} \sum_{\epsilon \nu} \frac{2}{\phi \rho o} \sum_{\sigma} \frac{4}{\nu} \sum_{\nu} \frac{5}{\nu \eta} \right)$$

β΄ Μὲ τὴ μετάθεσι τοῦ Νη στοὺς φθόγγους Πα Δι καὶ Κε (βλ. 471-472 καὶ 486 ἀσκήσεις).

- $\gamma'$  Μὲ τὴ μετάθεσι τοῦ  $\Pi$ α στὸν Kε (βλ. 473 ἄσκησι).
- δ΄ Μὲ τὴ μετάθεσι τοῦ Δι στὸν Πα (βλ. 474 ἄσκησι).

καὶ ε΄ Μὲ τὴ μετάθεσι τοῦ Κε στὸν Πα, ὅπως στὴν ὑπ' ἀριθμὸν 475 ἄσκησι καὶ στὸ ἀκόλουθο παράδειγμα.

$$\frac{\pi}{\xi_{\varepsilon}} \underbrace{\xi_{\varepsilon}}_{\varepsilon} \underbrace{\xi$$

# 2ον Σὲ μαλακὸ χρωματικὸ γένος

α΄ Μὲ τὴ μετάθεσι τοῦ Δι στὸν Πα, ὅπως στὴν ὑπ' ἀριθμὸν 476 ἄσκησι καὶ στὸ ἀκόλουθο παράδειγμα.

$$\frac{\partial}{\pi} \underbrace{\partial}_{\varphi U} \underbrace{\partial}_{\sigma E I} \underbrace{\partial}_{\Theta E} \underbrace{\partial}_{E} \underbrace{\partial}_{\sigma} \underbrace{\partial}_{U} \underbrace{\partial}_{\sigma} \underbrace{\partial}_{U} \underbrace{\partial}_{\pi \alpha} \underbrace{\partial}_{\alpha} \underbrace$$

καὶ β΄ Μὲ τὴ μετάθεσι τοῦ Δι στὸν Κε (βλ. 478—471 ἀσκήσεις).

3ον Σὲ ἐναρμόνιο γένος (βλ. 386 καὶ 482 ἀσκήσεις).

4ον Παραχορδικές μεταβολές.

Μὲ τὴ μετάθεσι τοῦ Γα στὸν Πα καὶ στὸν Δι (βλ. 502 καὶ 509 ἀσκήσεις) καὶ τοῦ Πα στὸν Δι, ὅπως στὴν ὑπ' ἀριθμὸν 507 ἄσκησι καὶ στὸ ἀκόλουθο παράδειγμα.

'Απὸ τὶς ἀσκήσεις τοῦ βιβλίου αὐτοῦ καὶ οἱ ὑπ' ἀριθμὸν 322, 324, 329 καὶ 331 ἀνήκουν, ἐπίσης, στὸν Πλάγιο τοῦ Δευτέρου ἦχο.

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Πλαγίου τοῦ Δευτέρου ήχου.

α΄ Αὐτόμελα (πρόλογοι) στὸν Πλάγιο τοῦ Δευτέρου ήχο εἶναι: Τὸ ᾿Αναστάσιμον ᾿Απολυτίκιον «᾿Αγγελικαὶ δυνάμεις», τὸ Κάθισμα «Ἐλπὶς τοῦ κόσμου ἀγαθὴ», τὸ Κοντάκιον τῆς ᾿Αναλήψεως «Τὴν ὑπὲρ ἡμῶν πληρώσας οἰκονομίαν», τὰ Στιχηρὰ «Ὅλην ἀποθέμενοι», «Ἐκ γαστρὸς πρὸ Ἑωσφόρου», «Ἡ ἀπεγνωσμένη διὰ τὸν βίον», «Αἱ ᾿Αγγελικαί, προπορεύεσθαι, δυνάμεις», «Μετάνοιαν οὐ κέκτημαι», «Τριήμερος ἀνέστης Χριστέ», καὶ τὸ «Ἐκ δεξιῶν τοῦ Σωτῆρος» ποὺ εἶναι τονισμένο στὸ νέο στιχηραρικὸν είδος.

β΄ Οἱ Εἰρμοὶ τοῦ Πλαγίου τοῦ Δευτέρου ἤχου εἶναι τῶν ἑξῆς Κανόνων: Τῆς ᾿Οκτωήχου, τοῦ Τελώνου καὶ Φαρισαίου καὶ τῆς Τυροφάγου «ʿΩς ἐν ἡπείρῳ πεζεύσας», τῆς Κυριακῆς τῆς ᾿Απόκρεω «Βοηθὸς καὶ σκεπαστής», τῆς Μεγάλης Πέμπτης «Τμηθεὶς τμᾶται», τῶν ʿΑγίων Παθῶν «Πρὸς σὲ ὀρθρίζω» καὶ τοῦ Μεγάλου Σαββάτου «Κύματι θαλάσσης».

ΤΗθος. Οἱ μελωδίες τοῦ Πλαγίου τοῦ Δευτέρου ἤχου στὴ μαλακὴ χρωματικὴ κλίμακα ὑπερέχουν στὴ γλυκύτητα καὶ στὴ δημιουργία κατανύξεως ἀπὸ τὶς μελωδίες στὴν ἴδια κλίμακα τοῦ Δευτέρου ἤχου. Στὴ σύντονο ἢ σκληρὰ χρωματικὴ κλίμακα τὸ μὲν νέο στιγηραρικὸν καὶ τὸ καλοφωνικὸν εἶδος προσιδιάζουν στὴ διαζωγράφησι τῆς ἀμαρτίας, τῶν παθῶν, τῆς ἀπογνώσεως, τοῦ θρήνου καί, γενικά, τῶν διαφόρων δυσθυμικῶν

καταστάσεων, τὸ δὲ παλαιὸν ἤ ἀργὸ στιχηραρικὸν καὶ τὸ παπαδικὸν εἶδος ἀποδίδουν σοβαρὰ καὶ ὑψηλὰ διανοήματα. Συνεπῶς, τὸ ἦθος τοῦ Πλαγίου τοῦ Δευτέρου ἤχου εἶναι, μᾶλλον, ἡσυχαστικόν. Ἰδιαίτερα γιὰ τὸ μεγαγω ὁ Ἰωάννης Κλαδᾶς λέγει «καὶ τοῦ μεγαγω, ἤδιστον τὸ μέλος».

#### ΗΧΟΣ ΒΑΡΥΣ

316. Γένος - κλίμαξ. Στὰ στιχηραρικὰ καὶ στὰ εἰρμολογικὰ εἴδη του ὁ Βαρὺς ήχος <sup>1</sup> χρησιμοποιεῖ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα <sup>2</sup>. Ἐν τούτοις, πολλὲς μελωδίες τῶν εἰδῶν αὐτῶν εἰναι τονισμένες καὶ στὴν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα <sup>3</sup>.

Στὸ παπαδικὸν καὶ στὸ καλοφωνικὸν εἶδος, ὁ Βαρὺς ήχος χρησιμοποιεῖ τὴν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα. Ἐν τούτοις, ἡ ἀργὴ δοξολογία τοῦ Χουρμουζίου Χαρτοφύλακος εἶναι τονισμένη στὴν κατὰ τὸ διαπασῶν σύστημα ἐναρμόνιο κλίμακα <sup>4</sup>.

Έτσι, ὁ Βαρὺς ἦχος ἐμφανίζεται διγενής σὰν ἦχος Βαρὺς ἐναρμόνιος καὶ ἦχος Βαρὺς διατονικός.

Μελωδική βάσις. 'Ο Βαρύς ἐναρμόνιος ήχος μὲ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν κλίμακά του ἔχει μελωδική βάσι τὸν Γα (τῆς Μέσης) καὶ μὲ τὴν κατὰ τὸ διαπασῶν σύστημα κλίμακά του, τὸν Θ (τῆς Μέσης).

<sup>1. «</sup>Βαρὺν ἦχον ἀνόμασαν οἱ ψαλμωδοὶ τὸν Πλάγιον τοῦ Τρίτου ἥχου ἐξ ἀρχαιολογίας διότι, καθὼς λέγουσιν, ἐπινοήσας ὁ Ἑρμῆς τὴν λύραν ἐπτάχορδον, ἐδίδαξε καὶ φθόγγους ἑπτὰ καὶ ἤχους ἑπτά βαρύτατος δὲ τῶν ἑπτὰ φθόγγων ἦτο ὁ ζω διὰ τοῦτο καὶ ὁ ἦχος, ὅστις εἶχεν Ἰσον τὸν ζω, ἀνομάσθη Βαρὺς ἦχος. Ύστερον, ὁ Πυθαγόρας καὶ οἱ μετ αὐτὸν αὐξήσαντες εἰς ὀκτώ τὰς χορδὰς καὶ τοὺς φθόγγους καὶ τοὺς ἤχους, δὲν ἠθέλησαν νὰ ἀλλάξωσι τὸ ὄνομα τοῦ Βαρέος ἤχου, διὰ νὰ μὴν άλησμονηθῆ παντάπασιν ἡ ἀρχαιότροπος λύρα». (Χρυσάνθου. Θεωρητικὸν μέγα τῆς μουσικῆς § 362.) Βλ. καὶ σελ. 236-237 περὶ τῆς σκληρᾶς ἢ συντόνου πεντεκαιδεκαχόρδου κλίμακος.

<sup>2.</sup> Βλ. § 236, 241, 244-245, 248 Ββ΄ καὶ ὑπ' ἀριθ. 335-345 ἀσκήσεις.

<sup>3.</sup> Τέτοιες μελωδίες είναι τὸ ἀΑναστάσιμον ἀΑπολυτίκιον «Κατέλυσας τῷ Σταυρῷ σου», οἱ ἀργὲς Καταβασίες τοῦ ἀΑναστασιματαρίου «Νεύσει σου πρὸς γεώδη», ὁ Ν΄ ψαλμὸς «Ἐλέησόν με, ὁ Θεὸς» Θ. Φωκαέως καὶ Γ. Ραιδεστηνοῦ, τὸ δογματικὸν Θεοτοκίον «Μήτηρ μὲν ἐγνώσθης», τὸ Ζ΄ Ἑωθινὸν δοξαστικὸν «Ἰδοὺ σκοτία καὶ πρωί» Γ. Ραιδεστινοῦ, ἡ σύντομος δοξολογία Γρηγ. Πρωτοψάλτου καὶ Μανουὴλ Πρωτοψάλτου, ὁ Μακαρισμὸς «Ὠραῖος ἡν καὶ καλὸς εἰς βρῶσιν» κ. ἄ.

<sup>4.</sup> Βλ. § 236, 241, 244-245 καὶ ὑπ' ἀριθ. 332-334 ἀσκήσεις.

Μελωδική βάσις τοῦ διατονικοῦ Βαρέος ήχου στὴν κατὰ τὸ διαπασῶν σύστημα κλίμακά του εἶναι ὁ φυσικὸς ζω (τῆς Μέσης).

Δεσπόζοντες φθόγγοι. Μὲ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα, δεσπόζοντες φθόγγοι τοῦ Βαρέος ἤχου εἶναι οἱ Γα καὶ Δι (τῆς Μέσης) καὶ ὁ Ζω΄ (τῆς Νήτης). Μὲ τὴν κατὰ τὸ διαπασῶν σύστημα κλίμακά του, οἱ Βου καὶ Δι (τῆς Μέσης) καὶ ὁ Ζω΄ (τῆς Νήτης) καὶ στὴν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακά του, οἱ Πα Γα καὶ Δι (τῆς Μέσης) καὶ ὁ φυσικὸς Ζω΄ (τῆς Νήτης).

Μελωδικὲς ἕλξεις. Καὶ στὶς δύο ἐναρμόνιες κλίμακες ἰσχύει ἡ ἕλξεις τοῦ τρίτου ἀνιόντος φθόγγου τοῦ τετραχόρδου τους α΄ σχήματος ἀπὸ τὸ φθόγγο τῆς κορυφῆς του, μὲ τὶς ἴδιες προϋποθέσεις, ὅπως στὸν Τρίτο καὶ στὸν Πεντάφωνο Πλάγιο τοῦ Πρώτου ῆχο, κατά ἕνα κόμμα  $\left(\frac{81}{80} = \frac{80}{81} + \frac{1}{100} \right)^{-1}$ 

Στὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα ὅταν, κατιοῦσα μελωδικὴ θέσις, όδηγῆ σὲ κατάληξι στὸν Πα (τῆς Μέσης), ὁ ὑπερκείμενος Βου βρίσκεται φυσικός. Τὸ ἴδιο, ὁ φθόγγος αὐτὸς εἰναι φυσικός, ὅταν μετέχη προετοιμασίας γιὰ κατάληξι στὸν Δι (τῆς Μέσης), ὅπως στὸ ἀκόλουθο παράδειγμα.

Στὴ διατονικὴ κλίμακα ἰσχύει ἡ ἕλξις τοῦ Ζω΄ (τῆς Νήτης) ἀπὸ τὸν Κε (τῆς Μέσης), μὲ τίς ἴδιες προϋποθέσεις, ὅπως στὸν Πρῶτο καὶ στὸν Τέταρτο ἡχο.²

Συχνότατα, ὅμως, ὁ φθόγγος αὐτός, σὰν δεσπόζων, εἶναι φυσικός. Στὴν περίπτωση αὐτή, ὁ ὑποκείμενος Κε (τῆς Μέσης) βρίσκεται ὑψωμένος κατὰ ἕνα κόμμα, δίεσις πού, ὅταν ἡ μελωδία συνεχίζη καὶ περιστρέφεται στὸν Ζω΄, φθάνει τὴν ἀποτομὴ ἐλάσσονος τόνου  $\left(\frac{135}{128} = \frac{128}{135} \right.$ μ. χορδῆς ἢ 4 τμήματα), ὅπως στὸν Πρῶτο καὶ στὸν Τέταρτο ἤχο.²

<sup>1.</sup> Βλ. § 322, 312 καὶ 314.

<sup>2.</sup> Βλ. § 310 καὶ 313.

Κατὰ τὴν ἀνάβασι, ἰδία στὸ παπαδικὸν εἶδος, ἡ δίεσις αὐτὴ τοῦ  $\mathbf{K}$ ε (τῆς Μέσης) μεγαλώνει περισσότερο μέχρις ἀξίας  $\frac{78}{64} = \frac{64}{78}$ μ. χορδῆς ἢ  $\mathbf{6}$  τμημάτων, ὅπως στὴν ἑπομένη καταληκτικὴ θέσι, κοινὴ σὲ ὅλους τοὺς διατονικοὺς ῆχους καὶ ὅπου καὶ ὁ  $\mathbf{\Gamma}$ α (τῆς Μέσης) ὑφίσταται τὴν ἴδια ἕλξι ἀπὸ τὸν ὑπερκείμενο  $\mathbf{\Lambda}$ ι.

Στή διατονική κλίμακα βρίσκεται, πολλές φορές, καὶ ὁ **Βου** (τῆς Μέσης) καὶ ἰδία ὅταν δὲν τὸν ὑπερβαίνουμε, μὲ ὕφεσι ἀξίας ἀποτομῆς ἐλάσσονος τόνου, ὅπως στὸ ἀκόλουθο παράδειγμα.

Καταλήξεις. Μὲ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα, οἱ ἀτελεῖς καταλήξεις τοῦ Βαρέος ἤχου στὸ σύντομον καὶ στὸ νέο στιχηραρικὸν καθώς καὶ στὸ εἰρμολογικὸν (σύντομον καὶ ἀργὸν) εἶδος του, γίνονται στοὺς φθόγγους Πα Γα καὶ Δι (τῆς Μέσης), ὅπως στὰ ἐπόμενα παραδείγματα.

# α΄ τοῦ συντόμου στιχηραρικοῦ εἴδους

τη ε παρ σις των χει ρω ων μου 
$$q$$

τη με τα των α σω μα α των κραυ γα ζον τες τη

τη φυ σιν Θε ο το ο κε τη

τη ε μει νας δε Παρ θε ε νος  $\ddot{\eta}$ 
 $\ddot{\eta}$ 

της συλ λη ψε ως Α γνη  $\ddot{\eta}$ 

β΄ του νέου στιχηραρικού είδους

γ΄ τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ εἴδους οἱ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Πα Γα καὶ Κε (τῆς Μέσης) καὶ στὸν Νη΄ (τῆς Νήτης), ὅπως στὰ ἀκόλουθα παραδείγματα.

δ΄ τοῦ συντόμου είρμολογικοῦ είδους

καί ε΄ τοῦ ἀργοῦ είρμολογικοῦ είδους

Στὴν κλίμακα αὐτή, οἱ ἐντελεῖς καταλήξεις τοῦ συντόμου καὶ τοῦ νέου στιχηραρικοῦ εἴδους γίνονται στοὺς φθόγγους Πα καὶ Γα (τῆς Μέσης) καὶ τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ εἴδους, ὄμοιὲς μὲ τὶς ἀτελεῖς, στὸν Γα (τῆς Μέσης), ὅπως στὰ ἑξῆς παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ είδους

β΄ του νέου στιχηραρικοῦ είδους

γ΄ τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ εἴδους

δ΄ τοῦ συντόμου είρμολογικοῦ είδους

η πριν ευ δι α χυ τος υ δα των φυ σις Κυ ρι ε 
$$\frac{2}{9}$$
τω βρα δυ γλωσ σω και δυ ση χω Μω σει  $\frac{2}{3}$ 

καὶ ε΄ τοῦ ἀργοῦ είρμολογικοῦ είδους

Στὴν ἴδια κλίμακα, οἱ τελικές καὶ οἱ ὁριστικὲς καταλήξεις γίνονται στὸν Γα (τῆς Μέσης), ὅπως στὰ ἐπόμενα παραδείγματα.

## 1ον Τελικών καταλήξεων

α΄ του συντόμου στιχηραρικού καὶ είρμολογικού είδους

$$\frac{1}{\sqrt{2}}$$
ει σα κου σον μου Κυ υ ρι ι ε  $\frac{2}{\sqrt{2}}$ 
 $\frac{2}{\sqrt{2}}$ 
 $\frac{1}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 
 $\frac{3}{\sqrt{2}}$ 
 $\frac{4}{\sqrt{2}}$ 
 $\frac{2}{\sqrt{2}}$ 
 $\frac{2}{\sqrt{2}}$ 

β΄ του νέου στιχηραρικού καὶ του άργου είρμολογικού είδους

καὶ γ΄ τοῦ ἀργοῦ ἢ παλαιοῦ στιχηραρικοῦ είδους

Ή κατάληξις αὐτή, στὸ Ζ΄ Ἑωθινὸν δοξαστικὸν «Ἰδοὺ σκοτία», στὸ «Ἐξεπλήττετο ὁ Ἡρώδης» τῆς Θ΄ Ὠρας τῶν Χριστουγέννων καὶ στὸ «Θάμβος ἤν κατιδεῖν» τῆς Θ΄ Ὠρας τῆς Μ. Παρασκευῆς, γίνεται, ἀπὸ τὸν Ἰάκωβο Πρωτοψάλτη, στὴν κορυφὴ τοῦ τετραχόρδου, στὸν Ζω΄ ὡς ἑξῆς:

# 2ον 'Οριστικῶν καταλήξεων

α΄ τοῦ συντόμου στιχηραρικοῦ εἴδους

β΄ τοῦ νέου στιχηραρικοῦ είδους

γ΄ του άργου είρμολογικου είδους

Μὲ τὴν κατὰ τὸ διαπασῶν σύστημα ἐναρμόνιο κλίμακα, οἱ ἀτελεῖς καὶ οἱ ἐντελεῖς καταλήξεις τοῦ Βαρέος ἤχου γίνονται στὸν Δι (τῆς Μέσης) καὶ στὸν Ζω΄ (τῆς Νήτης), ὅπως στὰ ἑπόμενα παραδείγματα.

Ή τελική καὶ ἡ ὁριστικὴ κατάληξις γίνονται στὸν ζω (τῆς Μέσης), ὡς ἑξῆς :

Μὲ τὴν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα, οἱ ἀτελεῖς καὶ οἱ ἐντελεῖς καταλήξεις τοῦ Βαρέος ἤχου γίνονται στοὺς φθόγγους ζω Πα Γα καὶ Δι (τῆς Μέσης) καὶ στὸν Ζω΄ (τῆς Νήτης) καὶ οἱ τελικές καὶ ὁριστικὲς καταλήξεις, στὸν ζω (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

# α΄ ατελών καὶ έντελών καταλήξεων

$$\frac{\pi}{q}$$
 πυ λα ας ζω ο ο δο ο ο τα α  $\frac{\pi}{2}$ 
 $\frac{4}{2}$   $\frac{\pi}{q}$   $\frac{\pi}$ 

Στὸ σύντομο Χερουβικὸ τοῦ Πέτρου Πελοποννησίου καὶ ἀλλοῦ ἡ ὁριστικὴ κατάληξις τελειώνει στὸν Πα (τῆς Μέσης)

$$\stackrel{\mathcal{Z}}{\sim} A\lambda \lambda \eta \lambda 0 v v v \iota \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha$$

\*Αρκτική μαρτυρία τοῦ Βαρέος ήχου. Μὲ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα ἀρκτικὴ μαρτυρία τοῦ Βαρέος ήχου είναι Τηχος  $\stackrel{\sim}{\smile}$  Γα. Μὲ τὴν κατὰ τὸ διαπασῶν σύστημα ἐναρμόνιο κλίμακα, Τηχος  $\stackrel{\sim}{\uparrow}$  καὶ μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα, σὲ ὅλα τὰ εἴδη, Τηχος  $\stackrel{\sim}{\smile}$  Ζω

'Απήχημα. Μὲ τὶς ἐναρμόνιες κλίμακες, τὸ ἀπήχημα τοῦ Βαρέος ήχου είναι, ἀνάλογα.

καὶ μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονική κλίμακα

χ με ε ε ε ε χ πού, στὸ «Τὸν Δεσπότην καὶ 'Αρχιερέα», ἀναλύεται ἀπὸ τὸν Κωνσταντῖνο Πρῖγγο Πρωτοψάλτη ὡς ἑξῆς:

Καὶ τὰ ἀπηχήματα αὐτὰ μποροῦν νὰ ἐκτελοῦνται μὲ τὸ «᾿Αμήν».

Μεταβολὲς στὸν Βαρὺ ήχο. Ἐκτὸς ἀπὸ τὸ παλαιὸν ἢ ἀργὸ στιχηραρικόν, στὰ ἄλλα εἴδη τοῦ Βαρέος ήχου μὲ τὴν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα δὲν παρατηροῦνται μεταβολές.

Στὸ παλαιὸν ἢ ἀργὸ στιχηραρικὸν είδος τοῦ Βαρέος ἤχου ἐπικρατεῖ ἡ μεταβολή σὲ διατονικὸ γένος, σὲ τόσο μάλιστα μεγάλο βαθμό ποὺ καὶ ὁ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς, § 362) γράφει «τὸ παλαιὸν στιχηράριον μεταχειρίζεται τὴν διατονικὴν κλίμακα μὲ ὅλον τοῦτο, περὶ τὰς καταλήξεις τῶν στιχηρῶν ἄπτεται τῆς ἐναρμονίου κλίμακος». Παράδειγμα τῆς ἰδιομορφίας αὐτῆς είναι τὸ ἰδιόμελον τοῦ Κατανυκτικοῦ Ἑσπερινοῦ τῆς Δ΄ Κυριακῆς τῶν Νηστειῶν «'Ο τὸν ἀμπελῶνα» τοῦ Ἰακώβου Πρωτοψάλτου·

'Έκτός, ὅμως, ἀπὸ τὴ κυριαρχοῦσα αὐτή, στὸ παλαιὸν ἢ ἀργὸ στιχηραρικὸν εἶδος, μεταβολὴ σὲ διατονικὸ γένος, γίνεται σ' αὐτό, μεταβολὴ σὲ μαλακὸ χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Βου καὶ τοῦ Δι στὸν Κε (τῆς Μέσης) καὶ σὲ σύντονο ἢ σκληρὸ χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Δι στὸν Πα΄ (τῆς Νήτης) ἤ, τὸ ἴδιο, τοῦ Πα στὸν Κε (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα ἀπὸ τὸ ἀργὸ δοξαστάριον τοῦ Ἰακώβου Πρωτοψάλτου.

Μὲ τήν κατὰ τὸ διαπασῶν σύστημα ἐναρμόνιο κλίμακα, ἐνῶ στὴν ἀργὴ δοξολογία τοῦ Χουρμουζίου Χαρτοφύλακος δὲν παρουσιάζονται μεταβολές, στὴν «᾿Αθωνιάδα» τοῦ Πέτρου Φιλανθίδη βρίσκομε μεταβολὲς σὲ σύντονο ἢ σκληρὸ χρωματικὸ γένος μὲ τὴ μετάθεσι τοῦ Πα καὶ τοῦ Δι στὸν Γα καὶ στὸν ζω (τῆς Μέσης), ὅπως στὸ ἑξῆς περιληπτικὸ παράδειγμα.

Τέλος, μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα, στὸν Βαρὺ ἦχο, γίνονται οἱ ἑπόμενες μεταβολές.

### 1ον Σὲ μαλακὸ χρωματικὸ γένος

α΄ Απλή, κατά γένος, μεταβολή, ὅπως στὸ ἑξής παράδειγμα.

καὶ β΄ Μὲ τὴ μετάθεσι τοῦ Δι στὸν Πα (τῆς Μέσης)

## 2ον Σὲ σύντονο ἢ σκληρὸ χρωματικὸ γένος

α΄ 'Απλή, κατά γένος, μεταβολή, ὅπως στὸ έξῆς παράδειγμα.

καὶ β΄ Μὲ τὴ μετάθεσι τοῦ Δι στὸν Πα καὶ στὸν Βου (τῆς Μέσης) καὶ στοὺς Νη΄ καὶ Πα΄ (τῆς Νήτης), ὅπως στὰ ἀκόλουθα παραδείγματα.

(Γεωργίου Κρητός)

3ον Σὲ ἐναρμόνιο γένος

α΄ Μὲ ἁπλῆ, κατὰ γένος, μεταβολή, ὅκως στὸ ἑξῆς παράδειγμα.

$$\frac{2}{2}$$
 Ev τω νο ο ο ο τω ο σπει ρων θλι ι ι ι ι ψει εις νη η στει ει ει ει α ας με τα δα κρυ  $\frac{4}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{4}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{4}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{4}{2}$   $\frac{1}{2}$   $\frac{2}{2}$   $\frac{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$   $\frac{2}{2}$ 

 $m{\beta}'$   $\mathbf{M}$ ὲ τὴ μετάθεσι τοῦ  $\mathbf{Z} \mathbf{\omega}'$  στὸν  $\mathbf{Bov}$  (τῆς  $\mathbf{M}$ έσης), ὅπως στὸ ἑξῆς παράδειγμα.

καὶ  $\gamma'$  Μὲ τὴ μετάθεσι τοῦ Kε στὸν Πα (τῆς Μέσης), ὅπως στὴν ὑπὰ ἀριθμὸν 452 ἄσκησι.

Έκτὸς ἀπὸ τὶς κατὰ γένος μεταβολές, στὸν διατονικό Βαρὺ ήχο εἶναι συνήθης καὶ ἡ χρῆσις τῶν χροῶν, ὅπως στὰ ἀκόλουθα παραδείγματα.

α' Μὲ τὸν Ζυγὸ 💉

Καὶ οἱ ὑπ' ἀριθμὸν 120, 190, 256, 259 - 260, 269, 285, 312, 333 - 334, 336, 338, 342, 366, 388 - 389, 427, 432 καὶ 520 ἀσκήσεις τοῦ βιβλίου αὐτοῦ ἀνήκουν στὸν  $\mathbf{Baρὺ}$  ἤχο καὶ στὶς διάφορες μεταβολές του.

## Κλάδοι τοῦ διατονικοῦ Βαρέος ήχου

α΄ 'Ο διατονικός Βαρύς ήχος μὲ μελωδικὴ βάσι τὸν ζω (τῆς Μέσης) ὅταν, χρησιμοποιῆ σὰν δεσπόζοντας φθόγγους τὸν Πα καὶ τὸν Γα (τῆς Μέσης)·—περιστρέφεται, κατὰ προτίμησιν, στὸν Γα·—μὴ ὑπερβαίνοντας, κατὰ τὴν ἀνάβασι, τὸν Δι (τῆς Μέσης) καὶ τὸν Ζω΄ (τῆς Νήτης) τοὺς θέλει ἐν ὑφέσει, ὅπως καὶ στοὺς ἄλλους διατονικος ἤχους (§ 310, 313, 314)·—μεταβάλλη, ἐνίοτε, μὲ τὸν Ζω΄ (τῆς Νήτης) τὸ διατονικὸ τετράχορδο Κε-Πα΄ σὲ ἐναρμόνιο γ΄ σχήματος·—ἐναλλάση τὸν δεσπόζοντα Γα μὲ τὸν Δι (τῆς Μέσης), ζητῶντας συνάμα σὰν δεσπόζοντα καὶ τὸν Ζω΄ (τὴς Νήτης) μὲ συνέπεια τὴ δίεσι τοῦ Κε, ὅπως, παραπάνω, ἐγνωρίσαμε στὶς μελωδικὲς ἔλξεις·—καὶ τελικὰ καταλήγη στὸν ζω (τῆς Μέσης), ὀνομάζεται ήχος Βαρὺς τετράφωνος.

Στὸν κλάδο αὐτὸν τοῦ **Βαρέος ἤχου** ἀνήκουν τὸ «**Μακάριος ἀνήρ»** τοῦ Θεοδώρου Φωκαέως, τὸ **Δόξα καὶ νῦν** τοῦ Ν΄ ψαλμοῦ τοῦ Γεωργίου Ραιδεστηνοῦ, ἡ ἀργὴ δοξολογία τοῦ Ἰακώβου Πρωτοψάλτου (βλ. 285 ἄσκησι) κ. ἄ.

β΄ Ὁ διατονικὸς Βαρὺς ἡχος μὲ μελωδικὴ βάσι τὸν Ζω΄ (τῆς Νήσης) — μὲ ἔκτασι ἀπὸ τὸν Γα΄ (τῆς Μέσης) μέχρι καὶ τὸν Γα΄ (τῆς Νήτης). — δεσπόζοντας φθόγγους τὸν Δι (τῆς Μέσης) καὶ τὸν Ζω΄ (τῆς Νήτης), μὲ συνέπεια τὴν ἕλξι (ὅπως παραπάνω) τοῦ Κε τῆς Μέσης). — καὶ τελικὴ κατάληξι στὸν Ζω΄ (τῆς Νήτης), ὅπου, πολλὲς φορές, ὁ Βου΄ (τῆς Νήτης) βρίσκεται ἐν ὑφέσει, ὀνομάζεται ἡχος Βαρὺς ἐπτάφωνος.

Στὸν κλάδο αὐτὸν ἀνήκει ἡ ἀργὴ δοξολογία τοῦ Δανιὴλ Πρωτοψάλτου.

καὶ γ΄ Ὁ διατονικὸς Βαρὺς ήχος μὲ μελωδική βάσι τὸν ζω (τῆς Μέσης) ποὺ ἀρχίζει σὰν εἰρμολογικὸς Πρῶτος ήχος καὶ καταλήγει σὰν ήχος Βαρὺς τετράφωνος, ὀνομάζεται ήχος Πρωτόβαρυς ἡ Βαρὺς πεντάφωνος.

Στὸν κλάδο αὐτὸν ἀνήκουν ἡ σύντομος δοξολογία τοῦ Μανουὴλ Πρωτοψάλτου, ἡ ἀργὴ δοξολογία τοῦ Θεοδώρου Φωκαέως κ. ἄ.

$$\frac{1}{2}$$
  $\Delta$ 0 ξα σοι τω δει ξαν τι το φως  $\ddot{\alpha}$  δο ξα εν υ

 $\frac{1}{2}$   $\frac$ 

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Βαρέος ήχου

- α' Αὐτόμελα (πρόλογοι) στὸν Βαρὺ ἡχο εἶναι τὸ «Σήμερον γρηγορεῖ ὁ Ἰούδας» τοῦ Στ' ἀντιφώνου τῶν ἀΑγίων Παθῶν, τὸ Μαρτυρικὸν ακαταφρονήσαντες πάντων» καὶ τὸ στιχηρὸν «Οὐκ ἔτι κωλυόμεθα».
- β΄ Οἱ εἰρμοὶ τοῦ Βαρέος ἤχου εἶναι τῶν Κανόνων τῆς ᾿Οκτωή-χου «Νεύσει σου πρὸς γεώδη» καὶ τῆς Πεντηκοστῆς «Πόντῳ ἐκάλυψε».

\*Ηθος. 'Ο Βαρὺς ήχος μὲ τήν κατὰ τὸ τετράχορδο σύστημα ἣ κατὰ τριφωνίαν ἐναρμόνιο κλίμακα ἐκφράζει γαλήνην καί εἰρήνην καὶ ἔχει ἡθος, ὅπως παρατηρεῖ ὁ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς § 368) «δυνάμενον μετριάζειν τὸ ἐξορμητικὸν τοῦ Τρίτου ἤχου καὶ κατακοιμίζειν τὰ πνεύματα» δηλ. ἡσυχαστικόν. Μὲ τήν κατὰ τὸ διαπασῶν σύστημα ἐναρμόνιο κλίμακα ἀποδίδει τό μεγαλοπρεπές καὶ πομπῶδες καὶ μὲ τὴ διατονικὴ κλίμακα, ἐφόσον περιστρέφεται σὲ χαμηλοὺς τόνους, εἶναι γλυκύς καὶ παθητικός καὶ ὅταν χρησιμοποιῆ τόνους ὑψηλούς, πανηγυρικὸς καὶ εὐφρόσυνος.

#### ΗΧΟΣ ΠΛΑΓΙΟΣ ΤΟΥ ΤΕΤΑΡΤΟΥ

317. Γένος - Κλίμαξ. 'Ο Πλάγιος τοῦ Τετάρτου ήχος χρησιμοποιεῖ, ὅπως καὶ ὁ Τέταρτος, τήν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα.

Σὲ ὡρισμένες, ὅμως, μελωδίες του περιωρισμένης ἐκτάσεως ² μὲ

<sup>1. &</sup>quot;Ωρισμένα τροπάρια τοῦ συντόμου εἰρμολογικοῦ εἴδους ποὺ ψάλλονται κατὰ τὴ Μεγάλη Τεσσαρακοστὴ πρὶν ἀπὸ τὰ ἰδιόμελα καὶ τὰ προσόμοια τοῦ Τριφδίου καθὼς καὶ στὸν Έσπερινὸ τῆς Παρασκευῆς καὶ τὸν "Ορθρο τοῦ Σαββάτου ὀνομάζονται Μαρτυρικά, γιατὶ ἔχουν ὑπόθεσι τὰ μαρτύρια ποὺ ὑπέστησαν οἱ ἀθληταὶ τῆς Χριστιανικῆς πίστεως.

<sup>2.</sup> Τέτοιες μελωδίες είναι τὸ «Θεὸς Κύριος» καὶ τὸ «᾿Αλληλούτα» τοῦ "Ορθρου, τὰ ᾿Απολυτίκια, τὰ Θεοτοκία, τὰ Καθίσματα, ὁ Κανὼν «᾿Αρματηλάτην Φαραώ», οἱ Εἰρμοὶ τῆς Α΄ καὶ Δ΄ Ὠδῆς τοῦ Κανόνος τῆς Ύψώσεως τοῦ Τιμίου Σταυροῦ «Σταυρὸν χαράξας» καὶ «Εἰσακήκοα Κύριε», τὰ Κοντάκια, ὅπως τῆς Πεντηκοστῆς «"Οτε καταβάς» καὶ τῶν ʿΑγίων Πάντων «'Ως ἀπαρχὰς τῆς φύσεως» τὰ Νεκρώσιμα «Νεώτερος ὲγώ εἰμι» κ. ἄ.

τὴ μετάθεσι τοῦ  $\mathbf{N} \mathbf{\eta}$  στὸν  $\mathbf{\Gamma} \mathbf{\alpha}$  (τῆς Μέσης), ἡ κλῖμαξ μεταπίπτει στὸ τετράχορδο σύστημα.

Μελωδική βάσις. Μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονική κλίμακα μελωδική βάσις τοῦ Πλαγίου τοῦ Τετάρτου ἤχου εἶναι ὁ Νη (τῆς Μέσης) καὶ μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν, ὁ  $\Gamma$ α δηλ. ὁ  $\Gamma$ α (τῆς Μέσης) ὡς Νη.

Δεσπόζοντες φθόγγοι. Μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα δεσπόζοντες φθόγγοι τοῦ Πλαγίου τοῦ Τετάρτου ήχου είναι οἱ Νη Βου καὶ Δι (τῆς Μέσης) καὶ μὲ τὸ τετράχορδο σύστημα ἢ κατὰ τρι-

$$\mathcal{L}$$
  $\varphi$  ξ  $\varphi$  φωνίαν οἱ  $\Gamma$ α  $\Delta$ ι  $K$ ε (τῆς  $M$ έσης) καὶ ὁ  $Z$ ω΄ (τῆς  $N$ ήτης).

Μελωδικὲς ἕλξεις. Ὁ Πα (τῆς Μέσης), ἐφόσον δὲν κατεβαίνουμε χαμηλότερά του, ἕλκεται ἀπὸ τὸν δεσπόζοντα Βου κατὰ ἀποτομὴν ἐλάσσονος τόνου  $\left(\frac{135}{128} = \frac{128}{135} \; \mu$ . χορδῆς ἢ 4 τμήματα ), ὅπως στὰ ἀκόλουθα παραδείγματα.

$$\frac{1}{6}$$
 $\frac{1}{6}$ 
 $\frac{$ 

Τὸ ίδιο ἰσχύει καὶ στὸ τετράχορδο ἢ κατὰ τριφωνίαν σύστημα.

Κατά τήν, χωρίς τονή, ἀνάβασι, ὁ Βου (τῆς Μέσης) ἕλκεται ἀπὸ τὸν  $\Gamma$ α κατὰ ἕνα κόμμα  $\left(\frac{81}{80} = \frac{80}{81} \mu$ . χορδῆς ἢ 2 τμήματα  $\right)$  καὶ ὁ  $\Gamma$ α ἀπὸ τὸν

<sup>1.</sup> Βλ. σελ. 207-208, 212-213, § 248Β΄ καὶ ὑπ' ἀριθ. 314-316 ἀσκήσεις.

δεσπόζοντα  $\Delta \iota$  κατὰ ἀποτομὴν ἐλάσσονος τόνου  $\left(\frac{135}{128} = \frac{128}{135} \mu$ . χορδῆς ἢ 4 τμήματα  $\right)$ , ὅπως στὰ ἀκόλουθα παραδείγματα,

Ο Γα (τῆς Μέσης), ἐφόσον κατὰ τὴν κατάβασι δὲν τὸν ὑπερβαίνουμε, ἕλκεται ἀπὸ τὸν δεσπόζοντα  $\Delta$ ι κατὰ ἐλάχιστον τόνον  $\left(\frac{16}{15} = \frac{15}{16} \mu$ . χορδῆ5 ἢ 8 τμήματα  $\right)$ , ὅπως στὰ ἑπόμενα παραδείγματα.

Ό Ζω΄ (τῆς Νήτης), ὅταν δὲν παρουσιάζεται μὲ τονή, τόσον κατὰ τὴν ἀνάβασι στὴν περίπτωσι ποὺ δὲν τὸν ὑπερβαίνουμε, ὅσον καὶ κατὰ τὴν κατάβασι στὴν περίπτωσι ποὺ τὸν ὑπερβαίνουμε, ἕλκεται ἀπὸ τὸν ὑποκείμενό του Κε κατὰ ἕνα κόμμα  $\left(\frac{81}{80} = \frac{80}{81} \; \mu$ . χορδῆς ἢ 2 τμήματα ), ὅπως στὰ ἑξῆς παραδείγματα.

$$\frac{1}{\sqrt{2}}$$
  $\frac{1}{\sqrt{2}}$   $\frac{$ 

<sup>1.</sup> Βλ. 282 ἄσκησι.

Ό ἴδιος φθόγγος, ὅταν τὸν ὑπερβαίνουμε χωρὶς τονή καθὼς καὶ ὅταν δὲν κατεβαίνουμε χαμηλότερά του καὶ ἰδία στὶς καταλήξεις ποὺ γίνονται στὸν Νη (τῆς Μέσης καὶ τῆς Νήτης) καὶ μὲ τὰ δύο συστήματα—διαπασῶν καὶ τετράχορδο—βρίσκεται ὑψωμένος κατὰ ἀποτομὴν ἐλάσσονος τόνου  $\binom{1}{128} = \frac{128}{135}$  μ. χορδῆς ἢ 4 τμήματα ), ὅπως στὰ ἑπόμενα παραδείγματα.

Καταλήξεις. Μέ τήν κατὰ τὸ διαπασῶν σύστημα διατονικὴ κλίμακα οἱ ἀτελεῖς καταλήξεις τοῦ Πλαγίου τοῦ Τετάρτου ἢχου γίνονται στοὺς φθόγγους Νη Βου καί Δι (τῆς Μέσης), σπανίως στὸν δι (τῆς Ὑπάτης), στὸν Νη΄ (τῆς Νήτης) καὶ στὸ εἰρμολογικόν καθὼς καὶ στὸ παλαιὸν ἢ ἀργὸ στιχηραρικὸν εἶδος, ἐπὶ πλέον, καὶ στὸν Πα (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ εἴδους

β΄ τοῦ νέου στιχηραρικοῦ είδους

γ΄ τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ είδους

δ΄ του συντόμου είρμολογικού είδους

$$\frac{3}{6}$$
 αλλ ουκ α πε λει φθης του θρο ο ο νου  $\frac{3}{2}$   $\frac{1}{6}$  και α να στας εκ νε κρων  $\frac{3}{6}$   $\frac{3}{6}$ 

ε΄ του άργου είρμολογικου είδους

$$\frac{3}{0}$$
 $\frac{3}{0}$ 
 $\frac{$ 

Μὲ τὴν ἴδια κλίμακα οἱ ἐντελεῖς καταλήξεις γίνονται στὸν Νη (τῆς Μέσης) καὶ ἐνίοτε στὸν δι (τῆς Ὑπάτης), ὅπως στὰ ἑξῆς παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ εἴδους

β΄ τοῦ νέου στιχηραρικοῦ είδους

γ΄ του παλαιού η άργου στιχηραρικού είδους

δ΄ του συντόμου καὶ άργου είρμολογικου είδους

Μὲ τὴν ἴδια κλίμακα, ἡ τελικὴ κατάληξις γίνεται στὸν Νη (τῆς Μέσης) καὶ σπανίως, στὸ εἰρμολογικὸν εἶδος, στὸν Βου (τῆς Μέσης) ὅταν ἡ λέξις εἶναι ὀξύτονος, ὅπως στὰ ἑξῆς παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ είδους

β΄ τοῦ νέου στιχηραρικοῦ είδους

γ΄ του άργου η παλαιού στιχηραρικού είδους

δ΄ τοῦ συντόμου είρμολογικοῦ είδους

ε΄ τοῦ ἀργοῦ εἰρμολογικοῦ είδους

Καὶ ἡ ὁριστικὴ κατάληξις, μὲ τὴν ἴδια κλίμακα, γίνεται, ἐπίσης, στὸν Νη (τῆς Μέσης), ὅπως στὰ ἀκόλουθα παραδείγματα.

α΄ τοῦ συντόμου στιχηραρικοῦ εΐδους

#### β΄ του νέου στιχηραρικού είδους

γ΄ τοῦ παλαιοῦ ἢ ἀργοῦ στιχηραρικοῦ εἴδους

δ΄ τοῦ συντόμου είρμολογικοῦ είδους

ε΄ τοῦ ἀργοῦ εἰρμολογικοῦ εἴδους

καὶ στ΄ τοῦ παπαδικοῦ εἴδους

Μὲ τὴν ἴδια κλίμακα, οἱ λοιπὲς καταλήξεις ταῦ παπαδικοῦ καὶ τοῦ καλοφωνικοῦ εἴδους γίνονται στοὺς ἴδιους, παραπάνω, φθόγγους, ὅπως μπορεῖ νὰ δῆ κανεὶς σὲ ἀνάλογες μελωδίες.

Μὲ τήν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν κλίμακα οἱ & ρ ξ ἀτελεῖς καταλήξεις γίνονται στοὺς φθόγγους Γα Δι καὶ Κε (τῆς Μέσης) καὶ σπανίως στὸν Νη (τῆς Μέσης) ὅπως στὰ ἑπόμενα παραδείγματα.

### α΄ τοῦ συντόμου είρμολογικοῦ εἴδους

## β΄ τοῦ ἀργοῦ είρμολογικοῦ είδους

$$\frac{4}{6}$$
 $\frac{4}{6}$ 
 $\frac{1}{6}$ 
 $\frac{2}{6}$ 
 $\frac{1}{6}$ 
 $\frac{$ 

Μὲ τὸ ἴδιο σύστημα οἱ ἐντελεῖς, οἱ τελικές καὶ ἡ ὁριστικὴ κατάληξις γίνονται στὸν  $\Gamma$ α, ὅπως στὰ ἀκόλουθα παραδείγματα.

#### 1ον Έντελῶν καταλήξεων

α΄ τοῦ συντόμου είρμολογικοῦ είδους

β΄ τοῦ ἀργοῦ είρμολογικοῦ εἴδους

## 2ον Τελικῶν καταλήξεων

α΄ τοῦ συντόμου είρμολογικοῦ είδους

β΄ τοῦ ἀργοῦ είρμολογικοῦ είδους

$$\int_{\alpha}^{4} \int_{\alpha}^{3} \int_{\alpha}^{2} \int_{\alpha}^{2} \int_{\alpha}^{4} \int_{$$

3ον 'Οριστικών καταλήξεων

α΄ τοῦ συντόμου είρμολογικοῦ είδους

$$\int_{0}^{\phi} \frac{1}{\epsilon} \int_{0}^{4} \frac{1}{\lambda \epsilon} \int_{0}^{4} \frac{1}{\mu \alpha} \int_{0}^{4} \frac{1}{\alpha} \int_{0}^$$

Αρκτική μαρτυρία του Πλαγίου του Τετάρτου ήχου.

Μὲ τήν κατὰ τὸ διαπασῶν σύστημα διατονική κλίμακα ἀρκτική μαρτυρία τοῦ Πλαγίου τοῦ Τετάρτου ἤχου εἶναι Ἦχος λ  $\ddot{\beta}$  Νη ποὺ γιὰ τὸ Αὐτόμελον «ΓΩ τοῦ παραδόξου θαύματος» γράφεται Ἦχος λ  $\ddot{\beta}$  Νη καὶ μὲ τήν κατὰ τὸ τετράχορδο σύστημα ἢ κατὰ τριφωνίαν κλίμακά του, Ήχος λ  $\ddot{\beta}$  Νη  $\lambda$ 

'Απήχημα. 'Ανάλογα μὲ τὴ μελωδικὴ βάσι τοῦ Πλαγίου τοῦ Τετάρτου ήχου τὸ ἀπήχημά του εἶναι

Είδικά, στὸ Αὐτόμελον «\*Ω τοῦ παραδόξου θαύματος» στὸ Είρμολόγιο τοῦ Ἰωάννου Πρωτοψάλτου προτάσσεται ἀπήχημα τὸ

Μεταβολές στὸν Πλάγιο του Τετάρτου ήχο. Στὶς μελωδίες τοῦ Πλαγίου του Τετάρτου ήχου γίνονται οἱ ἑξῆς μεταβολές.

1ον Μεταθέσεις τῶν φθόγγων τῆς διατονικῆς κλίμακος.

α΄ Τοῦ Νη στὸν Πα (βλ. 392-394 ἀσκήσεις), στὸν Γα (βλ. 315-316 καὶ 410 ἀσκήσεις) καὶ στὸν Δι (βλ. 397-399 ἀσκήσεις).

 $\beta$ ΄ Τοῦ Πα στὸν Δι ( $\beta\lambda$ . 411-413 ἀσκήσεις) καὶ στὸν **Κε** ( $\beta\lambda$ . 400-403 ἀσκήσεις).

γ΄ Τοῦ Δι στὸν Νη (βλ. 415 καὶ 418-420 ἀσκήσεις), στὸν Πα (βλ. 404 καὶ 408 ἀσκήσεις) καὶ στὸν Κε (βλ. 396 ἄσκησι) καὶ

δ΄ Τοῦ Κε στὸν Πα (βλ. 421-423 ἀσκήσεις) καὶ στὸν Δι (βλ. 409 ἄσκησι).

## 2ον Σὲ μαλακὸ χρωματικὸ γένος

α΄ ΄Απλῆ, κατὰ γένος, μεταβολὴ (βλ. 346-348 καὶ 350-352 ἀσκήσεις) καὶ β΄ Παραχορδικά, μὲ τὴ μετάθεσι τοῦ  $\frac{}{}$  Βου στὸν  $\frac{}{}$  Νη (βλ. 494 ἄσκησι) καὶ στὸν  $\frac{}{}$  Πα (βλ. 495 ἄσκησι).

### 3ον Σὲ σύντονο ἢ σκληρὸ χρωματικὸ γένος

α΄ 'Απλή, κατὰ γένος, μεταβολὴ (βλ. 355 καὶ 361-364 ἀσκήσεις). καὶ β΄ Μὲ τὴ μετάθεσι τοῦ Πα στὸν Νη (βλ. 433-434 ἀσκήσεις), στὸν Γα (βλ. 490 ἄσκησι) καὶ στὸν Δι (βλ. 437-443 ἀσκήσεις).

Μὲ τὴ συστηματικὴ μεταβολὴ τοῦ Πλαγίου τοῦ Τετάρτου ἤχου σὲ μαλακὸ χρωματικὸ γένος ποὺ συνδυάζεται μὲ τὸ σύντονο ἢ σκληρὸ γένος εἶναι τονισμένη ἡ ἀργὴ δοξολογία τοῦ Γρηγορίου Πρωτοψάλτου.

ος Δο ο ξα α α α σοι οι τω δει ξα αν τι

το ο φω ως Α Δο ο ξα εν υ υ ψι ι

ι στοι οι οις Θε ε ε ω ω ω και ε πι γης
ει ει ρη η η νη δ εν αν θρω ω ποις ε ε

ευ δο ο κι ι ι α α α δ

4ον Σὲ ἐναρμόνιο γένος

- α΄ ΄Απλῆ, κατὰ γένος, μεταβολὴ (βλ. 371-372 ἀσκήσεις)  $_{\mathcal{S}}$
- β' Μὲ τὴ μετάθεσι τοῦ Ζω στὸν Βου (βλ. 447-449 ἀσκήσεις) καὶ στὸν Γα (βλ. 445-446 ἀσκήσεις)
- καὶ γ΄ Μὲ τὴ μετάθεσι τοῦ Γα στὸν Πα (βλ. 450 ἄσκησι) καὶ στὸν  $\Delta \iota$  (βλ. 451 ἄσκησι).

**5ον** Μὲ τὸν **Ζυγὸ** 🦽 (βλ. 513, 516-517 ἀσκήσεις), καὶ

**6ον** Μὲ τὸ Κλιτὸν ος (βλ. 522-525 ἀσκήσεις)

Έπὶ πλέον, καὶ οἱ ὑπ' ἀριθμὸν 23, 30, 40, 51, 67, 71, 82-83, 87, 98-100, 105-107, 113-114, 116-117, 129, 132, 134-135, 139, 154-162, 167-168, 177, 188, 192-193, 204-205, 219, 221-224, 226, 228, 237-240, 244-746, 248-250, 252, 254-255, 264-265, 267, 271-274, 282, 287, 299-300, 344, 466, 469, 473, 483, 485-489, 500-505 καὶ 508 ἀσκήσεις τοῦ βιβλίου αὐτοῦ ἀνήκουν στὸν Πλάγιο τοῦ Τετάρτου ἦχο καὶ στὶς μεταβολές του.

Αὐτόμελα (πρόλογοι) καὶ Είρμοὶ τοῦ Πλαγίου τοῦ Τετάρτου ήχου.

α΄ Αὐτόμελα (πρόλογοι) στὸν Πλάγιο τοῦ Τετάρτου ἦχο εἶναι: Τὰ ᾿Απολυτίκια «Τὸ προσταχθὲν μυστικῶς» καὶ «Ἐν σοί, μῆτερ, ἀκριβῶς», τὰ Καθίσματα «Τὴν σοφίαν καὶ λόγον» καὶ «᾿Ανέστης ἐκ νεκρῶν», τὸ Κοντάκιον «Τῆ ὑπερμάχω», τὰ Στιχηρά «϶Ω τοῦ παραδόξου θαύματος», «Τί, ὑμᾶς, καλέσωμεν Ἅγιοι», «Οἱ μάρτυρές σου Κύριε», «Κύριε, εἰ καὶ κριτηρίω» καὶ «'Ο ἐν Ἑδὲμ Παράδεισος».

β΄ Οἱ Εἰρμοὶ τοῦ Πλαγίου τοῦ Τετάρτου ἤχου εἶναι τῶν ἑξῆς Κανόνων: Τῆς Ὀκτωήχου καί τῆς Μεγάλης Παρακλήσεως «'Αρματηλάτην Φαραώ», τοῦ Γενεσίου τῆς Θεοτόκου «Τῷ συντρίψαντι πολέμους», τῆς 'Υψώσεως τοῦ Τιμίου Σταυροῦ «Σταυρὸν χαράξας», τῶν 'Αποστόλων Πέτρου καὶ Παύλου «'Η κεκομμένη τὴν ἄτομον ἔτεμε», τῆς Μεταμορφώσεως τοῦ Σωτῆρος «'Εκ σαρκός σου βολίδες», τοῦ Λαζάρου καὶ τῆς Μικρᾶς Παρακλήσεως «'Υγρὰν διοδεύσας» καὶ τῆς Μεσοπεντηκοστῆς «Θάλασσαν ἔπηξας».

\*Ηθος. Γιὰ τὸ ἦθος τοῦ Πλαγίου τοῦ Τετάρτου ἤχου ὁ Χρύσανθος (Θεωρητικὸν μέγα τῆς μουσικῆς § 375) παρατηρεῖ πὼς «σώζει χαρακτῆρα, κλίνοντα εἰς τὸ θελκτικόν, ἡδονικόν καὶ ἑλκυστικὸν εἰς πάθος... πρὸς τούτοις κλίνει καὶ εἰς τὸ σεμνόν, ὅτε συμβάλλει μεγάλως ἡ βραδεῖα ἀγωγὴ τοῦ χρόνου καὶ ἡ μετάθεσις τοῦ τόνου ἀπὸ τοῦ Νη ἐπὶ τοῦ Γα». Κατὰ ταῦτα τὸ ἦθος τοῦ Πλαγίου τοῦ Τετάρτου ἤχου εἶναι μᾶλλον ἡσυχαστικόν.

#### ΠΑΡΑΤΗΡΗΣΕΙΣ

Σχέσεις τῆς 'Οκταηχίας μὲ τοὺς τρόπους τῆς ἀρχαίας έλληνικῆς μουσικῆς καὶ τοῦ ἐκκλησιαστικοῦ ἄσματος τῆς Ρωμαιοκαθολικῆς 'Εκκλησίας·

Περὶ τὸ ἔτος 1000 π. Χ., στὴν ἀρχαῖα Ἑλλάδα, μετὰ τὴν κάθοδο τῶν Δωριέων, παγιώνονται οἱ Ἑλληνικὲς φυλές. Ἡ Δωρικὴ φυλὴ ἀναλαμβάνει τὴν ἡγεμονία καί μαζὶ μὲ τὸ χαρακτῆρα της ἐπιβάλλει καὶ τὴ μουσική της ποὺ κρίνεται περισσότερο ἀπὸ ἡθικὴ καὶ ποιοτικὴ παρὰ ἀπὸ αἰσθητικὴ ἄποψι. Ἡ ἀντίληψις αὐτὴ πού, γενικά, διέπει τὴν ἀρχαῖα ἑλληνικὴ μουσική, διατηρεῖται, μετέπειτα καὶ συνεχίζεται στὴ βυζαντινὴ μουσική. Ἡ μουσική, δηλ. δὲν εἶναι ὁ κύριος σκοπός. Δὲν ἔχει προορισμὸ μόνον τὴν εὐχαρίστησι τῶν αἰσθήσεων. Ἔχει ἀξία καὶ σημασία ἐφόσον ἀποδεικνύεται δύναμις πού προάγει τὴν παίδευσι τοῦ πνεύματος καὶ τοῦ σώματος καὶ συνεργεῖ στὴν ἄμεσο ἐπίδρασι τοῦ λόγου ἐπάνω στὸ πνεῦμα.

"Οπως μᾶς είναι γνωστόν, κατὰ τὸν 6ον π. Χ. αἰῶνα, ὁ Πυθαγόρας ὑπέβαλε σὲ ἐπιστημονικὲς ἔρευνες τὶς σχέσεις τῶν τόνων καὶ ἑδραίωσε τὴ μουσικὴ σὲ ἐπιστημονικὴ βάσι.

Στὸ σύστημα τῆς ἀρχαίας ἑλληνικῆς μουσικῆς βασικὸ ἦταν τὸ τετράχορδον ἢ συλλαβὴ (σελ. 94 Γ΄) τοῦ συντόνου ἢ σκληροῦ διατονικοῦ γένους καὶ οἱ φθόγγοι μετριούνταν ἀπὸ τὸ ὀξὸ πρὸς τὸ βαρύ. Τὸ τετράχορδο αὐτό, ἀνάλογα μὲ τὴ θέσι πού, κατὰ τὴν κατάβασι, κατεῖχε σ' αὐτό, τὸ λεἴμμα, διακρινόταν σὲ δώριο  $\left(\frac{9}{8} \times \frac{9}{8} \times \frac{256}{243}\right)$ , σέ φρύγιο  $\left(\frac{9}{8} \times \frac{256}{243} \times \frac{9}{8}\right)$  καὶ σὲ λύδιο  $\left(\frac{256}{243} \times \frac{9}{8} \times \frac{9}{8}\right)$ .

Κάθε κλίμας που δνομαζόταν τρόπος ἢ άρμονία, ἔπρεπε νὰ ἀποτελῆται ἀπὸ δύο ὅμοια τετράχορδα διεζευγμένα μὲ ἕνα μείζονα τόνο. Ἔτσι σχηματίζονταν:

δ 
$$\Delta$$
ώριος τρόπος : Βου'  $\frac{\Pi \alpha'}{8}$   $\frac{N\eta'}{8}$   $\frac{Z\omega'}{2^{43}}$   $\frac{K\epsilon}{8}$   $\frac{\Delta\iota}{9}$   $\frac{\Gamma\alpha}{8}$   $\frac{Bov}{2^{43}}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{243}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{2^{43}}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{2^{43}}$   $\frac{9}{8}$   $\frac{9}{8}$ 

ποκρίνεται στὴν παραπάνω διαίρεσι, ἀλλὰ ἀποτελεῖται ἀπὸ τὸν μείζονα τόνο Ζω΄ - Κε καὶ τὰ συνημμένα ὅμοια δώρια τετράχορδα, ὀνομαζόταν Μιξολύδιος τρόπος.

'Απὸ τοὺς τέσσερεις αὐτούς τρόπους ποὺ θεωρούνταν κύριοι, μὲ τὴν ἀφαίρεσι τοῦ ὑψηλοῦ τους τετραχόρδου καὶ τὴ συμπλήρωσί τους μὲ τοὺς χαμηλοτέρους φθόγγους σχηματίζονταν:

Υποδώριος τρόπος : Κε 
$$\frac{\Delta i}{8}$$
  $\frac{\Gamma \alpha}{8}$   $\frac{Bov}{8}$   $\frac{\Pi \alpha}{8}$   $\frac{N\eta}{8}$   $\frac{\zeta \omega}{243}$   $\frac{\kappa \epsilon}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{243}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{243}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{7}{8}$   $\frac{256}{243}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{9}{8}$   $\frac{256}{243}$   $\frac{9}{8}$   $\frac{9}{8}$ 

'Αντίθετα, μὲ τὴν ἀφαίρεσι τοῦ χαμηλοῦ τους τετραχόρδου καὶ τὴ συμπλήρωσί τους μὲ τοὺς ὀξυτέρους φθόγγους σχηματίζονταν:



Οἱ εξ αὐτοὶ τρόποι θεωρούνταν παράγωγοι καὶ ὅπως γίνεται φανερόν, ἀποτελούνταν ἀπὸ δύο ὅμοια συνημμένα τετράχορδα καὶ ενα πρόσθετο, ἐπὶ τὸ βαρὸ ἢ τὸ ὀξύ, μείζονα τόνο, ὅπως καὶ στὸ Μιξολύδιο τρόπο καὶ ποὺ γι' αὐτό, ὀνομαζόταν προσλαμβανόμενος.

"Όπως γνωρίζομε (σελ. 234), στὴν ἀρχαῖα έλληνικὴ μουσική, ἐκτὸς ἀπὸ τὸ διατονικό, ὑπῆρχε καὶ τὸ χρωματικό καθὼς καὶ τὸ ἐναρμόνιο γένος καὶ πού προέκυπταν μὲ τὴ μετακίνησι τῶν φερομένων φθόγγων τοῦ τετραχόρδου, ὅπως γίνεται καὶ στὴ βυζαντινὴ μουσική.

Ο μελωδικός χαρακτήρας τῶν τρόπων τῆς ἀρχαίας ἑλληνικής μουσικής ἀπαιτοῦσε ἡ τονικὴ κίνησις νὰ ἐφησυχάζη στὸν τελευταῖο τόνο τοῦ τετραχόρδου, ἔτσι ποὺ κάθε μελωδία νὰ ἔχη δικούς της, ὡρισμένους τελικούς τόνους καὶ τονικὲς πτώσεις, ὅπως καὶ στὴ βυζαντινὴ μουσικὴ καὶ ὁ τελικὸς φθόγγος τῆς κάθε μελωδίας ἔδινε τὸν ξεχωριστὸ χαρακτήρα της.

'Εκτὸς ἀπὸ τὰ τρία γένη καὶ ἡ διάκρισις τῶν χροῶν, ὅπως καὶ στὴ βυζαντινὴ μουσική, ὀφείλεται στὴ λεπτότητα τῆς ἀκοῆς τῶν ἀρχαίων 'Ελλήνων.

Τέλος, ἀξιοσημείωτον είναι πώς, ὅπως στὴ βυζαντινὴ μουσική, τὸ ἴδιο καὶ στὴν ἀρχαῖα ἑλληνική, ἡ ποίησις είναι ἐκείνη ποὺ ἀποδίδει τὸ ρυθμό καὶ ἀπὸ τὰ ποιητικὰ μέτρα γεννιοῦνται τὰ μουσικά.

Ένα ζήτημα ποὺ περιέπλεξε, πολλὲς φορές, τοὺς μουσικοὺς εἶναι ποὺ οἱ Θεωρητικοὶ τοῦ μεσαίωνος διατηρῶντας τὶς ὀνομασίες τῶν ἀρχαίων έλληνικῶν τρόπων, ἄλλαξαν τὴ βάσι τους, ἔτσι ποὺ μέχρι τὸν Glareanus—ἀνθρωπιστή καὶ μουσικό (1488-1563) ποὺ τὸ πραγματικὸ ὄνομά του ἦταν Ἑρρῖκος Λορίτι—οἱ τρόποι αὐτοὶ νὰ ἐμφανίζωνται ὡς ἑξῆς:

| ó | Φρύγιος             | σὰν        | Δώριος     | : | Πα΄ - Πα  |
|---|---------------------|------------|------------|---|-----------|
| δ | Δώριος              | <b>)</b> ) | Φρύγιος    | : | Βου'- Βου |
| δ | Λύδιος              | ))         | 'Ιώνιος    | : | Νη'- Νη   |
| δ | Μιξολύδιος          | ))         | Υποφρύγιος | : | Ζω΄- ζω   |
| ó | Ύποδώριος (Αἰολικός | ) »        | Αἰολικὸς   | : | Κε - κε   |
| δ | Ύποφρύγιος          | ))         | Μιξολύδιος | : | Δι - δι   |
| ò | Ύπολύδιος (Ἰώνιος)  | ))         | Λύδιος     | : | Γα - γα   |

Τὴ μουσικὴ τέχνη ἄρχισαν νὰ χρησιμοποιοῦν στὴν Ἐκκλησία, στὴν ὑπηρεσία τῆς θείας λατρείας, κατὰ πρῶτον, στὴν ἀνατολή. Στὴ Συρία ὁ Ἐπίσκοπος Ἰγνάτιος († 116) εἰσήγαγε τὸ ἀντίφωνον, τὸ ψάλσιμο δηλ. στίχου στὴν ἀρχὴ καὶ στὸ τέλος τοῦ ψαλμοῦ. Καὶ ἦταν ὁ στῖχος αὐτὸς παρμένος εἴτε ἀπὸ τὸν ἴδιο τὸν ψαλμὸ εἴτε ἀπὸ ἄλλον, μὲ σκοπό, τὸν τονισμὸ τῆς κεντρικῆς ἰδέας τοῦ ψαλλομένου.

Στὴ Δύσι, γίνεται πρώτη συστηματοποίησις τῆς μουσικῆς τῆς Ἐκκλησίας της στὴν ἐποχὴ τοῦ Ἐπισκόπου Μεδιολάνων ᾿Αμβροσίου (333-397). Εἰσάγεται τὸ ᾿Αντίφωνον (antienne), ἀπαγορεύεται ἡ χρῆσις ὀργάνου, ἀποκλείεται κάθε τι ποὺ θύμιζε τὸ θέατρο καὶ τὸν ἱππόδρομο καί καθιερώνονται οἱ ἑξῆς τέσσερεις τρόποι ποὺ ὀνομάζονται τόνοι.

Τόνος Πρῶτος :  $\Pi \alpha$  - Bou -  $\Gamma \alpha$  -  $\Delta \iota$  -  $K \varepsilon$  -  $Z \omega$  -  $N \eta$  -  $\Pi \alpha$  ' Τόνος  $\Delta \varepsilon \dot{\upsilon} \tau \varepsilon \rho \sigma \varsigma$  : Bou -  $\Gamma \alpha$  -  $\Delta \iota$  -  $K \varepsilon$  -  $Z \omega$  -  $N \eta$  -  $\Pi \alpha$  ' - Bou' -  $\Gamma \alpha$  ' Τόνος Τέταρτος :  $\Gamma \alpha$  -  $\Delta \iota$  -  $K \varepsilon$  -  $Z \omega$  ' -  $N \eta$  -  $\Pi \alpha$  ' - Bou' -  $\Gamma \alpha$  '  $\Delta \iota$  -  $K \varepsilon$  -  $Z \omega$  ' -  $N \eta$  -  $\Pi \alpha$  ' - Bou' -  $\Gamma \alpha$  '  $\Delta \iota$  -  $K \varepsilon$  -  $Z \omega$  ' -  $N \eta$  -  $\Pi \alpha$  ' - Bou' -  $\Gamma \alpha$  ' -  $\Delta \iota$  '

Ή διακανόνισις, ὅμως καὶ κωδικοποίησις τοῦ ἐκκλησιαστικοῦ μέλους τῆς Δυτικῆς Ἐκκλησίας ἀποδίδεται στὸν Πάπα Γρηγόριο τὸν Διάλογο (509-604), τὸν κυρίως ὀργανωτὴ τῆς Ρωμαιοκαθολικῆς Ἐκκλησίας. Τότε, οἱ τέσσερεις τονικὲς σειρὲς τοῦ ᾿Αμβροσιανοῦ μέλους αὐξήθηκαν σὲ ὀκτώ. Τέσσερεις αὐθεντικούς καὶ τέσσερεις πλαγίους (plagius, plaga, lateralis, subjegalis) δηλ. παραγώγους, τοὺς ἑξῆς:

```
Tonus I, protus : \Pi\alpha - Bov - \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega' - N\eta' - II\alpha' plagius proti : \kappa\epsilon - \zeta\omega - N\eta - II\alpha - Rov - \Gamma\alpha - \Delta\iota - K\epsilon

Tonus II, deuterus : Bov - \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega' - N\eta' - II\alpha' - Bov' plagius deuteri : \zeta\omega - N\eta - II\alpha - Bov - \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega'

Tonus III, tritus : \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega' - N\eta' - II\alpha' - Bov' - \Gamma\alpha' plagius triti : N\eta - II\alpha - Bov - \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega' - N\eta'

Tonus IV, tetartus : \Lambda\iota - K\epsilon - Z\omega' - N\eta' - II\alpha' - Bov' - \Gamma\alpha' - \Delta\iota' plagius tetarti : II\alpha - Bov - \Gamma\alpha - \Delta\iota - K\epsilon - Z\omega' - N\eta' - II\alpha'
```

Ο ὄγδοος τόνος, plagius tetarti εἶναι, βέβαια, ἐπανάληψις τοῦ πρώτου, Tonus I, μὲ τὴ διαφορὰ πὼς ὁ κύριος καὶ τελικὸς τόνος ὅπου καταλήγει ἡ μελωδία στὸν Tonus I εἶναι ὁ Πα, ἐνῶ στὸν plagius tetarti, ὁ Δι, ἄσχετα ἄν καὶ οἱ δύο τρόποι ἔχουν τὴν ἴδια ἔκτασι.

Παράλληλα, τὸ βυζαντινὸ λειτουργικὸ μουσικὸ σύστημα, μέ γοργὸ ρυθμό, εἶχε ἀρχίσει νὰ σχηματίζη τὴ μορφή του καὶ γιὰ ἀρκετοὺς αἰῶνες ἐπηρέασε σὲ μεγάλο βαθμό τὴ διαμόρφωσι τοῦ ᾿Αμβροσιανοῦ καὶ Γρηγοριανοῦ μέλους, ὅπως γίνεται φανερόν ἀπὸ τὴ συγκριτικὴ ἔρευνα ποὺ ἀποδεικνύει τὴν ταὐτότητα πολλῶν μελωδικῶν σχημάτων. Οἱ jubili τοῦ «᾿Αλληλούια» τοῦ Γρηγοριανοῦ μέλους, τόνοι δηλ. ποὺ πλεονάζουν καὶ ἀποτελοῦν ἄσμα χωρὶς κείμενον, εἶναι παρεμφερῆ μὲ τὰ κρατήματα (βλ. σελ. 174). Εἶναι ἀδὲς πνευματικὲς ποὺ γι᾽ αὐτές ὁ Ἱερὸς Αὐγουστῖνος λέγει «Οἱ ψάλται ἐκ τῶν λέξεων τῶν ἀσμάτων ἐνθουσιῶντες, ἐν ἀρχῆ ἀγαλλόμενοι, ταχέως καταλαμβάνονται ὑπὸ αἰσθημάτων μακαριότητος καὶ

άδυνατοῦσι πλέον διὰ λέξεων νὰ ἐκφράζωσιν ὅσα ἐνδομύχως αἰσθάνονται Τούτου ἔνεκα, ἀφίνουσι κατὰ μέρος τὴν λέξιν καὶ τὰ αἰσθήματα αὐτῶν ἐκδηλοῦσι διὰ φωνῆς ἀγαλλιάσεως. Τὸ πνεῦμα δηλ. τοῦτο εἶναι ἀδή ἐκδηλοῦσα τὴν ἀνύψωσιν τῆς καρδίας ἐκείνης, ἥτις διὰ λέξεων ἀδυνατεῖ νὰ ἐκφράση τὰ αὐτῆς αἰσθήματα» (Augustin, Enarratio in Psalmos Ps. 32 conc. I) καὶ ὁ Durandus (Ration div. off. V. 2) λέγει παρομοίως κό αἶνος τοῦ Θεοῦ εἶναι ἀνεκλάλητος, σημαίνει τὴν χαρὰν τοῦ αἰωνίου βίου, τὴν ὁποῖαν ἀδυνατεῖ λέξις νὰ ἐκφράση».

Κατὰ τὸ διάστημα αὐτό, στὴν ἀνατολικὴ Ἐκκλησία καὶ παρὰ τὴ ζωηροτάτη ἀντίδρασι τῶν Πατέρων τοῦ Δ΄ καὶ Ε΄ αἰῶνος, τὸ ἱερὸν ἄσμα, στὴν ἐξέλιξί του, εἶχεν ἐκτραπῆ στὸ θεατρικό. Τὴν ἀπαράδεκτη αὐτή κατάστασι ἔρχεται νὰ ἀποκαθάρη ὁ Ἅγιος Ἰωάννης ὁ Δαμασκηνός (676-756), μεγάλος ἀριστοτελικὸς φιλόσοφος πού, σὰ διάσημος θεολόγος, ἔβαλε τὰ θεμέλια τῆς δογματικῆς Θεολογίας καί σὰν ἄριστος μουσικός, διερρύθμισε τὴ μουσικὴ τῆς λατρείας καὶ ἄνοιξε νέα περίοδο.

'Απὸ τοὺς τρόπους τῆς ἀρχαίας ἑλληνικῆς μουσικῆς καὶ μὲ τὴ συγκεχυμένη τότε, ὅπως προαναφέραμε, ἀντίληψι γι' αὐτούς, ἔγιναν παραδεκτοί σὰν κατάλληλοι μόνον ὀκτὰ μὲ τὴν ὀνομασία ῆχοι καὶ γιὰ τὴν ἐν γένει τεχνολογικὴ συγκρότησι τοῦ βυζαντινοῦ μέλους ἔγιναν δεκτὲς οἱ θεωρητικὲς ἀρχὲς γιὰ τὰ τρία γένη, τὰ συστήματα. τὶς χρόες, τὶς μεταβολές καὶ τὸ ρυθμό, σὰν ἀπότοκο τῆς μετρικῆς τοῦ ποιήματος.

Μεταγενέστερα, κατὰ τὸν ΙΔ΄ αἰῶνα, Μανουήλ ὁ Βρυέννιος, ἔχοντας ὑπ' ὄψιν τοὺς ᾿Αλεξανδρινοὺς μουσικούς Εὐκλείδη, ᾿Αριστείδη, Πτολεμαῖο κ. ἄ., καὶ μὲ τὴν ἴδια σύγχυσι γιὰ τοὺς τρόπους τῆς ἀρχαίας ἑλληνικῆς μουσικῆς θεωρεῖ πὼς ταὐτίζεται ὁ

Τέτοια, ὅμως, ταύτισις δὲν νομίζουμε νὰ εὐσταθῆ, γιατί στοὺς τρόπους τῆς ἀρχαίας ἑλληνικῆς μουσικῆς οἱ κλίμακες μετριούνταν μὲ κίνησι ἀπὸ τὸ ὀξὺ πρὸς τὸ βαρύ, ἐνῷ, ἀπὸ τοὺς πρώτους, ἀκόμη, χρόνους, ἔγινε ἀποδεκτὴ ἡ ἀντίθετη κίνησις δηλ. ἀπὸ τὸ βαρὺ πρὸς τὸ ὀξύ, πρᾶγμα ποὺ συνεπάγεται τὴν οὐσιώδη διαφοροποίησι τῶν διαστημάτων ποὺ σχηματίζονται μεταξὺ τῆς βάσεως τῶν ἤχων καὶ τῶν δεσποζόντων φθόγγων τους καθώς καὶ μεταξὺ τῶν ἰδίων δεσποζόντων.

Στὴ συνέχεια, οἱ ψαλμφδοί (ἐκκλησιαστικοὶ μουσικοί), ὅπως Μανουήλ ὁ Χρυσάφης ποὺ διετέλεσε Λαμπαδάριος τῆς Ἡγίας Σοφίας πρὶν καὶ μετὰ τὴν ἄλωσι τῆς Κωνσταντινουπόλεως, τὴ σύστασι τῶν ἤχων συσχέτισαν μὲ τοὺς φθόγγους ἐνὸς πετναχόρδου κατὰ τὸν ἀκόλουθο τρόπο.

4

α΄ Στὸ πεντάχορδο Νη-Πα-Βου-Γα-Δι ἀνεβαίνοντας ἀπὸ τὸν Νη κατά:

 τόνο, στὸν Πα, τὸν θεώρησαν βάσι τοῦ Πρώτου 2 τόνους, Βου **Δευτέρου** 3 )) )) Γα )) Τρίτου καὶ )) )) ))

Τετάρτου

))

καί β΄ Στὸ πεντάχορδο Πα-Βου-Γα-Δι-Κε, ἀνεβαίνοντας ἀπὸ τὸν Δι κατὰ  $\mathbf{1}$  τόνο, στὸν Κε (ὅπως, ἀπὸ τὸν Νη στὸν Πα) δικαιολόγησαν τὴ δευτέρα βάσι τοῦ Πρώτου ἤχου καὶ κατεβαίνοντας τέσσερεις τόνους, ἄσχετα ἄν δίνουν διάστημα πέμπτης ἀξίας  $\frac{3}{2}=\frac{2}{3}$  μ. χορδῆς ἢ 42 τμήματα, δικαιολόγησαν,

ἀπὸ τὸν Κε, βάσι τοῦ Πρώτου ἤχου, τὸν Πα σὰ βάσι τοῦ Πλαγίου Πρώτου

» » Δι, » » Τετάρτου » , » Νη » » » Πλαγίου Τετάρτου

» » Γα, » » Τρίτου » , » ζω » » Βαρέος

Δι

))

» » Βου, » » Δευτέρου », » Κε » » » Πλαγίου Δευτέρου

Σχετικά μὲ τὶς δύο παραπάνω ἀπόψεις ἔχομε νὰ παρατηρήσουμε πώς:

- α΄ Δικαιολογούνται οἱ διπλὲς βάσεις τοῦ Πρώτου ἤχου (ὁ Πα καὶ ὁ Κε), τοῦ Δευτέρου ἤχου (ὁ Βου στὰ ἀργὰ στιχηραρικά ἢ Βου στὰ εἰρμολογικὰ εἴδη καὶ ὁ Δι στὸ νέο στιχηραρικό καὶ στὸ παπαδικὸν εἴδος ἢ Δι στὰ εἰρμολογικὰ εἴδη) καὶ τοῦ Τετάρτου ἤχου (ὁ Βου γιὰ τὸν Λέγετο καὶ Δι γιὰ τὸ Αγια).
- β΄ Ὁ Νη, βάσις, κατὰ Μανουήλ τὸν Βρυέννιο, τοῦ Πλαγίου τοῦ Δευτέρου ἤχου, δικαιολογεῖται, μερικά, μὲ τὴν προκαταληκτικὴ μετάθεσι τοῦ σ σ Δι στὸν Γα (σελ. 369) καὶ ὁ κε (τῆς Ὑπάτης), τῶν ψαλμωδῶν, φαίνεται πώς, σὰ χαμηλός, ἔχει, εὐθὺς ἐξ ἀρχῆς, μετατεθῆ στὸν Πα (τῆς Μέσης), στὴ σημερινὴ δηλ. παραδοσιακὴ βάσι τοῦ ἤχου αὐτοῦ.
- γ' 'Ενῶ δικαιολογεῖται ὁ ζω (τῆς Μέσης) σὰ βάσις τοῦ διατονικοῦ Βαρέος ἤχου (εἴδους ποὺ ἡ ἐμφάνισις του τοποθετεῖται γύρω στὸν ΙΑ΄ αἰῶνα), σὲ καμμιὰ περίπτωσι δὲν μᾶς δίνεται ὁ Γα (τῆς Μέσης), ἡ βάσις δηλ. τοῦ ἐναρμονίου Βαρέος ἤχου ποὺ εἶναι καὶ ὁ ἀρχαιότερος κλάδος του, καὶ
- δ΄ Ένῶ, κατὰ τοὺς ψαλμωδούς, ὁ Νη δικαιολογεῖται σὰ βάσις τοῦ Πλαγίου τοῦ Τετάρτου ἤχου, ὁ κε (τῆς Ύπάτης) ποὺ κατὰ Μανουήλ τὸν Βρυέννιον ἐμφανίζεται σὰ βάσις τοῦ ἤχου αὐτοῦ, δὲ σημειώνεται σὲ κανένα μουσικὸ κείμενο.

#### Μέσοι ήχοι

'Ο Χρύσανθος (Θεωρητικόν μέγα τῆς μουσικῆς § 306) σημειώνει πὼς μεταξύ τῶν κυρίων καὶ τῶν πλαγίων ἤχων σχηματίζονται ἄλλοι ἦχοι, οἱ λεγόμενοι μέσοι ἦχοι καὶ ἀναφέρει σχετικά «Κοινόν εἰς τοὺς ὀκτὼ ἤχους εἶναι

νὰ παράγωσιν ὁ κύριος καὶ ὁ πλάγιος, τοὺς τέσσαρες λεγομένους μέσους ἤχους, οἴτινες οὕτως ἀνομάσθησαν, διότι εὑρίσκονται μέσον τῶν κυρίων καὶ τῶν πλαγίων. Καὶ τοῦ μὲν ϥ ἤγουν τοῦ Πρώτου ἤχου εἶναι μέσος ὁ ᾳ΄ ἤγουν ὁ Τρίτος, διότι εὑρίσκεται μέσον τοῦ ᾳ΄ καὶ τοῦ λαὶ ᾳ΄. Τοῦ δὲ προυν τοῦ Δευτέρου εἶναι ὁ τοῦ λαὶ τοῦ λαὶ τοῦ τρίτου, εἶναι μέσος ὁ ᾳ΄. Καὶ τοῦ μαὶ ἡγουν τοῦ Τετάρτου, εἶναι μέσος λαὶ τοῦς προυν ὁ Λέγετος.

'Απηχήματα τῶν ήχων τῆς παλαιᾶς βυζαντινῆς μουσικῆς μὲ τοὺς πολυσυλλάβους φθόγγους της.

Ό Χρύσανθος (Θεωρητικόν μέγα τῆς μουσικῆς § 307), μὲ τὴ μεταγραφὴ στὴ νέα παρασημαντική, διέσωσε τὰ ἑξῆς παλαιὰ ἀπηχήματα.

Γιὰ τὸν Πρῶτο ἦχο

Γιὰ τὸν Δεύτερο ἦχο

Γιὰ τὸν Τρίτο ἦχο

Γιὰ τὸν Τέταρτο ἦχο (παπαδικὸν εἶδος)

καὶ γιὰ τὸν Λέγετο 
$$\frac{2}{2}$$
  $\frac{2}{2}$   $\frac{2}$ 

Γιὰ τὸν Πλάγιο τοῦ Πρώτου ἦχο

Γιὰ τὸν Πλάγιο τοῦ Δευτέρου ήχο

Γιὰ τὸν ἐναρμόνιο Βαρὺ ἦχο

Γιὰ τὸν Πλάγιο τοῦ Τετάρτου ἦχο

# ΜΕΡΟΣ ΣΤ΄



Τὸ κάλλος τῶν μελωδιῶν τῆς βυζαντινῆς ἐκκλησιαστικῆς μουσικῆς τονίζεται καὶ ἀναδεικνύεται περισσότερο μὲ τὴν ἐκτέλεσι των ἀπό συγκροτημένους χορούς. Στὴν περίπτωσι δηλ. τῆς χορωδίας βυζαντινῆς μουσικῆς, ἄλλες φωνὲς ἀποδίδουν τὴ μελωδία καί ἄλλες, συνηχῶντας μὲ καθωρισμένο ἀρμονικὸ σύστημα, τὴν ἐνισχύουν καὶ τὴν ἐμπλουτίζουν.

#### KEDAAAION K'

#### ΙΣΟΝ - ΙΣΟΚΡΑΤΗΜΑ

- **318.** Τό συνηχητικό σύστημα τῆς βυζαντινῆς ἐκκλησιαστικῆς μουσικῆς ὀνομάζεται **ἴσον.**<sup>2</sup>
  - 319. Ἡ ἐκτέλεσις τοῦ ἴσου ὀνομάζεται ἴσοκράτημα.
  - 320. Οἱ ἐκτελεστὲς τοῦ ἴσου ὀνομάζονται ἰσοκράτες.3
  - 321. Οἱ ἐκτελεστὲς τῆς μελωδίας ὀνομάζονται μελωδοί.
- 322. Τὸ ἴσον στηρίζεται στὴν ἀκριβῆ γνώσι τῶν συμφώνων καὶ διαφώνων διαστημάτων (σελ. 93), τῶν μεταβολῶν καὶ ἰδία τῆς τονικῆς διαρθρώσεως καὶ τοῦ ἤθους τοῦ κάθε ἤχου παρακολουθεῖ τὴ μελωδία σ' ὅλη τὴν ἐξέλιξί της καὶ ἐκτελεῖται, τὶς περισσότερες φορές, μὲ τὶς λέξεις τοῦ κειμένου τῆς μελωδίας καί, κάποτε, γιὰ λόγους ἐκφραστικούς, σὰ βόμβος συνοδευτικοῦ ὀργάνου.
- 323. Τὸ ἴσον καὶ οἱ μεταβολές του παρασημαίνονται μὲ τὰ κεφαλαῖα Ν Π Β Γ Δ Κ Ζ ποὺ ἀντιστιχοῦν στοὺς φθόγγους Νη Πα Βου Γα Δι Κε (τῆς Μέσης) καὶ Ζω΄ (τῆς Νήτης) καὶ τὰ μικρὰ π β γ δ κ ζ ποὺ ἀντιστοιχοῦν στοὺς φθόγγους πα βου γα δι κε (τῆς Ὑπάτης) καὶ ζω (τῆς Μέσης).
- 324. Ἐπειδὴ ἡ ἀλληλουχία τῆς μελωδικῆς βάσεως μὲ τοὺς δεσπόζοντας φθόγγους δίνει σύμφωνα διαστήματα, τὸ ἴσον, στὴν ἀπλουστέρα μορφή του, εἶναι ἡ συνήχησις τῆς μελωδικῆς βάσεως, ὅπως στὸ ἀκόλουθο παράδειγμα.

<sup>1.</sup> Ἡ λέξις  $\chi$  ο ρός είναι ἀπὸ τὸ ἀρχαῖο ἑλληνικὸ δρᾶμα, ὅπου ἡταν πολυμελής καὶ είχεν ἐπὶ κεφαλῆς τὸν κορυφαῖο.

<sup>3.</sup> Στὴν παλαιὰ βυζαντινή μουσική οἱ ἰσοκράτες ὀνομάζονταν βαστακταί.

 $\frac{1}{\pi}$  Δο ξα σοι τω δει ξαν τι το φως  $\frac{1}{6}$  δο ξα εν υ  $\frac{1}{\pi}$  Ψι ι στοις Θε ω  $\frac{3}{6}$  και ε πι γης ει ρη η νη εν αν θρω ποις ευ δο κι α  $\frac{\pi}{4}$  (Μανουήλ Πρωτοψάλτου)

325. Τὸ ἴσον ἐγκαταλείπεται σὲ κάθε περίπτωσι ποὺ δίνει διάφωνα διαστήματα, ὅπως στὴν περίπτωσι πού, μὲ διαστήματα δευτέρας, ἡ μελωδία περιστρέφεται στὴ βάσι της ἢ κατεβαίνουμε χαμηλότερα ἀπὸ αὐτήν. Ἡ ἐγκατάλειψις τοῦ ἴσου παρασημαίνεται μὲ τὸ μικρό α πού, γιὰ τοὺς ἰσοκράτες, σημαίνει «ἀκολούθει» τὴ μελωδία, ὅπως στὰ ἑπόμενα παραδείγμοτα.

 $\frac{\pi}{q}$   $\frac{\pi}{K}\nu$   $\frac{\pi}{V}$   $\frac$ 

**326.** Ἡ ἀνάγκη τῆς ἐγκαταλείψεως τοῦ ἴσου ἐκλείπει ἄν γίνη μετάθεσίς του κατὰ μίαν ὀγδόη χαμηλότερα.

Έτσι τὰ δύο τελευταῖα παραδείγματα μποροῦν νὰ ἔχουν συνεχὲς **ἴσον** τὸν δι (τῆς Ύπάτης).

**327.** Ἡ συνεκτέλεσις τῶν δύο, αὐτῶν, μορφῶν τοῦ **ἴσου** δίνει τὸ διπλοῦν ἰσυκράτημα ποὺ παρασημαίνεται στὰ παραπάνω δύο παραδείγματα, ὡς ἑξῆς:

328. Κατὰ τὴν ἐξέλιξι τῆς κάθε μελωδίας τὸ ἴσον παρακολουθεῖ ὅλες τὶς μεταβολές της. Ἔτσι, ἀντίστοιχα μὲ τοὺς δεσπόζοντας φθόγγους καὶ τοὺς τελικοὺς φθόγγους τῶν καταλήξεων γίνονται καὶ οἱ μεταβολὲς τοῦ ἴσου.

Γιὰ ἀσκήσεις παραθέτουμε μερικὰ παραδείγματα ἀπὸ τοὺς ὀκτὸ ἤχους.

# ΑΣΚΗΚΕΙΣ ΙΣΩΝ καὶ ΙΣΟΚΡΑΤΗΜΑΤΩΝ

# 329. Ἡχος Πρῶτος

537. 
$$\stackrel{\cancel{\ }}{\stackrel{\ }{\ }}$$
  $\stackrel{\ }{\ }$   $\stackrel$ 

δο ξα ω σπερ Πα τρι πρε πει α μα και Υι ω 🥊 | <del>""</del> ~ ~ 538.  $\stackrel{\cancel{I}}{\ddot{q}}$   $\Pi\alpha$   $\stackrel{\Pi}{\overset{}{\overset{}\overset{}{\overset{}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{$  $\frac{\Delta.\delta}{\theta\eta} = \frac{\pi^{0}}{\pi^{0}} \stackrel{4}{\sim} \stackrel{5}{\sim} \stackrel{\pi}{\sim} \stackrel{\pi}{\sim}$ χα μο θεν ?? ε ε πα αρ σι ιν ε ε πε στη η θει σαν ε ξου ου σι ι αν τη παν τα α χου ου ου 

 $\bigcap_{\kappa n}^{\Pi} \bigcap_{n}^{\Pi} \bigcap_{\rho \upsilon}^{u} \bigcup_{\upsilon}^{u} \bigcup_{\upsilon}^{u} \bigcap_{\upsilon}^{u} \bigcup_{\upsilon}^{\kappa n} \bigcap_{\kappa n}^{u} \bigcap_{\kappa n}^{u} \bigcap_{\kappa n}^{u} \bigcap_{\kappa n}^{u} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\kappa n}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa}^{\varepsilon} \bigcap_{\varepsilon \kappa \nu \varepsilon}^{\varepsilon} \bigcap_{\kappa \nu \omega \nu}^{\varepsilon} \bigcap_{\kappa \nu \omega \nu}^{\varepsilon} \bigcap_{\varepsilon \kappa \nu \omega$ δι αι ω ω νι ι και αι συ υν  $\frac{1}{\alpha} = \frac{1}{\alpha} = \frac{3}{\pi} = \frac{1}{\chi_{\text{pl}}} = \frac{4}{2\pi} = \frac{1}{2\pi} = \frac{1}{$ 

## 330. τηχος Δεύτερος

539.  $\Box$   $\Delta_1$   $\Delta_2$   $\Delta_3$   $\Delta_4$   $\Delta_4$   $\Delta_5$   $\Delta_5$   $\Delta_6$   $\Delta$ 

 $-3|5^2|-6^4-|-3^3|5^3|6^4$ αι δυ να μεις των ε που ρα νι ων ε κραυ γα ζον  $\zeta \omega$  ο δο τα Χρι στε ο Θε ος η μων δο ο ο ξα σοι 540.  $\frac{\Delta . \delta}{\Delta \iota} = \frac{\Delta .$ τι κτε ται ς 541.  $\frac{\alpha}{3} \frac{\alpha.\delta}{\Delta_1} \frac{\alpha.\delta}{2} > \frac{\alpha.\delta}{2} > \frac{1}{2} \frac{\Delta.\delta}{2} = \frac{\Delta.\delta}{2}$ Συ μου σκε πη κρα α ται αι πα α αρ χεις ο τρι με ρη ης Σταυ ρο ο ο ος

πα α αρ χεις ο τρι με ρη ης Σταυ ρο ο ο ος α.δ Λ.δ Λ.δ

## 331. ή Τρίτος

542. Γα α.γ Γ.γ + Ευ φραι νε σθω τα ου ρα νι  $\begin{array}{c|c} \Delta.\delta & \Gamma.\gamma & \alpha \\ \hline \end{array}$ ποι η σε κρα α τος ή εν βρα χι ο νι αυ του ο  $\frac{\alpha.\Pi}{\theta}$   $\frac{3}{\pi}$   $\frac{\lambda.\delta}{\pi}$   $\frac{2\pi}{\pi}$   $\frac{4}{\pi}$   $\frac{3}{\pi}$   $\frac{4}{\pi}$   $\frac{5}{\pi}$   $\frac{6}{\pi}$   $\frac{6}{\pi}$   $\frac{7}{\pi}$   $\frac{7}{\pi}$  $|\frac{\kappa}{\mu}|_{\mu} = \frac{\kappa}{q} = \frac{\kappa}{\kappa} = \frac{\kappa}{\pi} = \frac{\kappa}{\rho} = \frac{\kappa}{\sigma} = \frac{\kappa}{\kappa} = \frac{\kappa}{\kappa} = \frac{\kappa}{\sigma} = \frac{\kappa}{\kappa} = \frac{\kappa}{\kappa} = \frac{\kappa}{\sigma} = \frac{\kappa}{\kappa} = \frac{\kappa}{\sigma} = \frac{\kappa}{\kappa} = \frac{\kappa}{\sigma} = \frac{\kappa}{\sigma}$  $\sqrt{2}$ 

543.  $\Gamma \alpha \sim \frac{\alpha}{H \Pi \alpha \rho} = \frac{3}{\theta \epsilon} = \frac{N}{V \circ \zeta} = \frac{N}{V \circ \zeta}$ 

## 332. Ήχος Τέταρτος

546.  $\frac{\lambda}{0}$   $\frac{\lambda}{0}$ 

547.  $\frac{1}{0} \stackrel{\alpha}{\wedge} \stackrel{\alpha}{\wedge} \frac{1}{1} = \frac{\alpha \cdot \Pi}{\alpha \cdot \alpha} = \frac{\alpha \cdot \Pi}{\alpha} = \frac{\alpha$  $\begin{vmatrix} \mathbf{u} & \mathbf{a} & \mathbf{A}.\delta \\ \mathbf{\rho} & \mathbf{a} & \kappa \alpha \end{vmatrix} \underbrace{ \begin{array}{c} \mathbf{u} \\ \mathbf{r} & \mathbf{a} \end{array} }_{\mathbf{T} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{T} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{T} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{a}} \underbrace{ \begin{array}{c} \mathbf{a} \\ \mathbf{r} \end{array} }_{\mathbf{r} \mathbf{$ ار د د ساد د ساره د د κον πα λιν με νει Παρ θε ε

548.  $\int_{0}^{\pi} Bov$ At vere even the a au tov  $\pi a$  av

The coldant is a au tou  $\int_{0}^{\pi} a$   $\int_{0}^{\pi} a$ 

## 333. Ήχος Πλάγιος τοῦ Πρώτου

550.  $\frac{1}{\pi} \ddot{q} \Pi \alpha \longrightarrow \frac{1}{\pi} \frac{1}{\tilde{q}} \frac{1}{\tilde{q}}$ |  $\frac{4}{6\pi}$   $\frac{4}{6\pi}$   $\frac{6}{6\pi}$   $\frac{6}{6\pi}$   $\frac{1}{6\pi}$   $\frac{6}{6\pi}$   $\frac{6}{6\pi}$   $\frac{1}{6\pi}$   $\frac{6}{6\pi}$   $\frac{1}{6\pi}$   $\frac{1}$  $\theta$ ε με νος  $\theta$  σαρ κο ος κα τε πα τη σας το χα  $| \sim \stackrel{3}{\sim} - | - \sim > | \sim > \stackrel{5}{\sim} \stackrel{4}{\sim} - | \stackrel{K.\kappa}{\sim} | \sim | \sim > |$ λαρ να κα Σαβ βα της θει ει ει ας φι λαν θρω πι  $\begin{array}{c|c}
\stackrel{4}{\rightarrow} & \stackrel{2}{\bigcirc} & \stackrel{1}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{4}{\bigcirc} & \stackrel{1}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{2}{\bigcirc} & \stackrel{3}{\bigcirc} & \stackrel{3}{\bigcirc}$ ας αι του με θα τυ χειν σαις πρε σβει ει αις  $\ddot{q}$ 

 $\frac{\Delta.\delta}{\tau \omega}$  κο σμω δω ρη θη η ναι το με γα ε λε ος  $\ddot{q}$  Π.δ

## 334. Ἡχος Πλάγιος τοῦ Δευτέρου

552.  $\frac{\lambda}{\pi}$   $\stackrel{\Theta}{\hookrightarrow}$   $\stackrel{\Theta}{\to}$   $\stackrel{\Theta}{\to}$   $\stackrel{\Delta}{\to}$   $\stackrel{\Delta}{\to}$ 

 $\frac{1}{6}$   $\frac{6}{6}$   $\frac{1}{6}$   $\frac{2}{6}$   $\frac{1}{6}$   $\frac{$ A.δ A.δσι ας με τε δω καν ς ι να δι α παν των υ πη  $\frac{\Delta \cdot o}{\lambda \cdot o}$ κο οι γε νο με νοι Χρι στω εν παρ ρη σι α πρε σβευ ου σιν ς υ περ των ψυ χω ων η η η μω ων ς 553.  $\lambda \approx \Pi \alpha = 0$   $\Sigma \tau \alpha \nu =$  $\left| \frac{A.0}{C_{2}} \right| \left| \frac{A}{C_{2}} \right| \left| \frac{A}{$ ε ζω η και α να α στα α σις υ υ πα α 

## 335. ή Ήχος Βαρύς

554.  $\Box$   $\Gamma \alpha$   $K \alpha$   $K \alpha$   $\tau \epsilon$   $\lambda \nu$   $\sigma \alpha \varsigma$   $\tau \omega$   $\Sigma \tau \alpha \nu$   $\tau \omega$   $\tau$ 

νει ει τε α αυ το ον εν τοι οις  $\frac{\Delta \cdot \delta}{\sigma} = \frac{\Delta \cdot \delta}{\sigma} = \frac{\alpha \cdot \zeta}{\sigma} =$ α α φω ως ηη (Χουρμουζίου Χαρτοφύλακος) γω ω ω ση η με ε ρο ον γε γε ε ε νη η 

(Σωκράτους Παπαδοπούλου)

## 336. Ἡχος Πλάγιος τοῦ Τετάρτου

558.  $\frac{\lambda}{h}$   $\ddot{0}$   $\ddot{N}\eta$   $\overset{\alpha}{\smile}$   $\overset{\alpha}{\smile}$  $T\eta$  u per  $\mu\alpha$  cw stra th  $\gamma\omega$  $\begin{array}{c|c}
\Pi.\delta & N \\
\hline
\end{array} \begin{array}{c|c}
\alpha.N \\
\hline
\end{array} \begin{array}{c|c}
\alpha & \alpha.\Pi \\
\hline
\end{array} \begin{array}{c|c}
\alpha & \alpha.\Pi \\
\hline
\end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \begin{array}{c|c}
\end{array} \end{array} \begin{array}{c|$ σοι η πο λις σου Θε ο το κε d αλλ ως  $\pi$ αν τοι ων με κιν δυ νων ε λευ θε ρω ω σον dS Γ τε δ

559.  $\frac{\lambda}{\pi}$   $\frac{\pi}{6}$   $\frac{N\eta}{2}$   $\frac{2}{6}$   $\frac{\pi}{6}$   $\frac{2}{6}$   $\frac{\pi}{6}$   $\frac{2}{6}$   $\frac{\pi}{6}$   $\frac{\pi}{6}$ 

1 3 3 6 m 1 m 1 3 5 1 m r  $\widehat{\int_{\tau\omega}^{2} u} | \underbrace{\overset{\Delta.\delta}{\underset{\mu\epsilon}{\varepsilon}}}_{\varepsilon}^{4} \underbrace{\overset{\Gamma}{\varepsilon}}_{\varepsilon} \sum_{\varepsilon} \widehat{\int_{\varepsilon}^{2}} \underbrace{\overset{\alpha}{\underset{\varepsilon}{\varepsilon}}}_{\varepsilon}^{7} \underbrace{\overset{\gamma}{\underset{\varepsilon}{\varepsilon}}}_{\varepsilon}^{7} \underbrace{\overset{\beta}{\underset{\varepsilon}{\varepsilon}}}_{\varepsilon}^{3} \underbrace{\overset{\Delta.N}{\underset{\pi\alpha}{\varepsilon}}}_{\pi\alpha}$ ων το ο συ υ υ στη η μα η και αν θρω α.Ν  $\Delta.\delta$   $\alpha.\delta$   $\Delta.\delta$   $\alpha.\delta$   $\Delta.\delta$   $\alpha.\delta$   $\Delta.\delta$   $\alpha.\delta$   $\alpha.\delta$ 

μων ζ τη ην γα αρ σην μη η η η η τρα α  $\frac{\alpha}{\alpha} \sum_{\alpha = \alpha \vee \beta} \left| \frac{\alpha \cdot \delta}{\theta \circ \circ} \left| \frac{\alpha \cdot \delta}{\circ} \left| \frac{\beta}{\circ} \left| \frac{\beta}{\circ} \right| \right| \right|$  $-- \frac{\pi}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\alpha.0}{2} \sqrt{-\frac{5}{2}}$ και την ση η η η ην ρα ζί πλα τυ τε ε ρα αν ου ου ρα α νω ω 

## 337. 'Οκτάηχον

#### ΠΑΡΑΤΗΡΗΣΕΙΣ

Α΄ 'Ο Κωνσταντίνος Α. Ψάχος γιὰ τὸ συνηχητικὸ σύστημα τῆς βυζαντινῆς μουσικῆς ἐπρότεινε τὴ διπλῆ συνηχητικὴ γραμμή. 'Απὸ τή ΛΕΙ-ΤΟΥΡΓΙΑ του (1909) παραθέτομε, γιὰ παράδειγμα, τὴν ἀρχὴ τοῦ Κοντακίου τῶν Θεοφανείων «'Επεφάνης σήμερον».

 $^{7}$ Ηχος  $\overset{7}{0}$  Δι  $^{2}$ Ε πε φα νης ση με ρον  $\overset{7}{0}$  τη οι κου με ε ε ε ε  $^{2}$ Ε πε φα νης ση με ρον  $\overset{7}{0}$  τη οι κου με ε ε ε ε  $^{2}$ Ε πε φα νης ση με ρον  $\overset{7}{0}$  τη οι κου με ε ε ε  $^{2}$ 

Β΄ Οἱ κανόνες τῆς ἀρμονίας τῆς Εὐρωπαϊκῆς μουσικῆς, ἐπειδὴ στηρίζονται στὶς συγχορδίες τοῦ μείζονος (majeur) καὶ τοῦ ἐλάσσονος (mineur) τρόπου τῆς συγκεκραμένης κλίμακός της, δὲν ἔχουν ἐφαρμογή στὶς μελωδίες τῆς βυζαντινῆς ἐκκλησιαστικῆς μουσικῆς μὲ τοὺς φυσικοὺς τόνους, τὰ γένη, τὰ συστήματα, τὶς χρόες καὶ τὸ νόμο τῆς μελωδικῆς ἔλξεως.

Σχετικά, ὁ Θρασ. Γεωργιάδης, καθηγητής τῆς μουσικολογίας στὸ Πανεπιστήμιο τοῦ Μονάχου γράφει πὼς «ἡ ἐναρμόνισις κατὰ τὸν εὐρωπαϊκὸ τρόπο καθιστᾶ δυσκίνητη ἀκόμη καὶ τὴν πιὸ ἀνάλαφρη μελωδία, καταστρέφει τὸν «ἄϋλο» ρυθμὸ καὶ πρὸ παντὸς διαστρέφει τὴν ἐλαστικότητα καὶ ποικιλία τῶν διαστημάτων στὸ ἐλεύθερο πλάσιμο τῆς μελωδίας» (Περιοδικὸν «Νεοελληνικὰ Γράμματα» 21-5-1938) καὶ πὼς «νοθεύει, ἰσοπεδώνει, νεκρώνει τὴν ἑλληνικὴ μουσική τῆς παίρνει κάθε ἐκφραστικότητα, χωρὶς νὰ τῆς δίνη κανένα ἀντάλλαγμα (Ἐφημερὶς «Ἐλεύθερον Βῆμα» 20-4-1939). Καὶ ὁ ἀκαδημαϊκὸς Μανώλης Καλομοίρης κατακρίνει «τὴν ἀρμονία τῆς καντάδας, ποὺ μεταχειρίζονται, δυστυχῶς, καὶ σήμερα ἀκόμη σὲ μερικὲς ἐκκλησιαστικές μας χορωδίες» (Περιοδικὸν «Νέα Ἑστία» 15-7-1946).



## $MEPO\Sigma Z'$

Τὸ σωστὸ γράψιμο τῆς μουσικῆς ὑποβοηθεῖ σημαντικὰ τἡ σωστὴ ἐκτέλεσι καὶ ἀπόδοσί της. Γι' αὐτό, ἡ παρασημαντικὰ τἡ σωστὴ ἐκτέλεσι καὶ ἀπόδοσί της. Γι' αὐτό, ἡ παρασημαντικὴ ἀκολουθεῖ ὡρισμένους κανόνες ποὺ στηρίζονται στό συνδυασμὸ τῶν φθογγοσήμων μὲ τὰ λοιπὰ στοιχεῖα σὲ συνάρτησι πάντοτε, μὲ τὸν τονισμὸ καὶ τὴν ἔκτασι τῶν συλλαβῶν τοῦ ποιητικοῦ κειμένου καὶ τὸ ρυθμό, ἐν γένει καὶ ποὺ ἀπαρτίζουν τὴν ὀρθογραφία τῆς βυζαντινῆς μουσικῆς.

#### ΚΕΦΑΛΑΙΟΝ ΚΑ΄

#### ΟΡΘΟΓΡΑΦΙΑ ΤΟΥ ΦΘΟΓΓΟΣΗΜΟΥ ΤΗΣ ΤΑΥΤΟΦΩΝΙΑΣ

**338.** Τὸ φθογγόσημον τῆς ταὐτοφωνίας, τὸ σάσχετα μὲ τὴ χρονικὴ ἀξία του, δέχεται συλλαβὴ λέξεως

$$\epsilon$$
  $\delta \omega$   $\kappa \alpha \varsigma$   $\epsilon v$   $to i \varsigma$   $\delta \omega$   $\rho \alpha$ 

ἢ συνεχίζει τὴν προηγουμένη συλλαβή

$$\frac{\mathbf{n}}{\rho\epsilon} = \frac{1}{\epsilon} =$$

Τὸ γράφεται ἐπάνω στὸ στὸ ἰσχυρὸ μέρος τῶν μέτρων, σὲ τονιζομένη δηλ. συλλαβή α) ὅταν ἔπεται μὲ ἄτονη συλλαβή Α γι (περίπτωσις σπανία) β) ὅταν συνοδεύεται ἀπὸ τὰ ιο ὁπότε ἀκολουθοῦν εἴτε ἕνα ἢ καὶ περισσότερα φθογγόσημα καταβάσεως μὲ ἄτονη συλλαβή ἢ μὲ ἐπέκτασι τῆς τονιζομένης με γα πα α α σαν εἴτε ἕνα ἀπὸ τὰ ἑξῆς κ.ἄ. παρόμοια, μὲ ἀντίστοιχα ο ορ θρος κ.ἄ. παρόμοια, μὲ ἀντίστοιχα ο ορ θρος

κ. ἄ. παρόμοια καὶ γ) ὅταν προηγοίνται ς, ἀνήκουν ὅλα στὴν ἴδια συλλαβή καί ἔπεται κατάβασις μὲ ἄλλη συλλαβή

Τὸ σύνθετο φθογγόσημο γράφεται στὸ ἰσχυρὸ μέρος τῶν μέτρων, σὲ τονιζομένη δηλ. συλλαβή ποὺ θέλει τὴν ποιότητα τῆς . Στὴν περίπτωσι αὐτή ἀκολουθεῖ ὑποχρεωτικά ἕνα τοὐλάχιστον, φθογγόσημο καταβάσεως μὲ ἄτονη συλλαβή ἢ μὲ ἐπέκτασι τῆς τονιζομένης:

(ή **\** προτάσσεται ὅταν ὑπάρχη ζεῦγος > > μὲ ἄτονη συλλαβή καὶ ἀκολουθῆ ἀνάβασις).

Τὸ ΄ δέχεται τὸ Γ ἐπάνω ΄ ἢ κάτω ΄ τὸ ΄ ἐπάνω ΄ καὶ τὴ ΄ καὶ τὴν … κάτω ΄ ...

Δέχεται τὸ - καὶ τὸ - ἐπάνω -

Τὴν · δέχεται μόνον μὲ τὸ στὸ ἰσχυρὸ μέρος τῶν μέτρων, ὁπότε ἀκολουθεῖ φθογγόσημο καταβάσεως μὲ το ποὺ ἀνήκει στὴν ἴδια συλλαβή Α α . Τὸ παίρνει καὶ τὴ σταν βρίσκεται στὴ συνέχεια μὲ προηγούμενο σπως π.χ. ρε ρι ρι ρι

<sup>1.</sup> Βλ. καὶ § 241.

"Όπως βλέπομε παραπάνω, τὸ 5 δέχεται μόνον τὸ > καὶ τὸ --> κάτω

"Όπως βλέπομε παραπάνω, τὸ 5 δέχεται τὴ \ μόνον στὴν περίπτωσι \ 55

Τὸ ΄ δέχεται τὸ ΄ κατ' ἀρχήν, στὸ ἰσχυρὸ μέρος τῶν μέτρων α) ὅταν ἡ τονιζομένη συλλαβή του συνεχίζεται μὲ δύο ἢ τρία ἰσόχρονα φθογγόσημα καταβάσεως (συνήθως ) ὅπως: | Φυ υ υ

φθογγόσημα καταβάσεως δέχωνται ἄτονες συλλαβές, ὅπως: | δι δου μοι

<sup>1.</sup> Έξάσημα η συνεπτυγμένα τρίσημα μέτρα.

<sup>2. &#</sup>x27;Οκτάσημα ή συνεπτυγμένα τετράσημα μέτρα.

Τὸ δέχεται τὸ Τό ὅταν ἀκολουθῆ ἰσόχρονο φθογγόσημο καταβάσεως (συνήθως ) μὲ ἄτονη συλλαβή: | Το ὅταν τὸ Το ἀναλύεται προτάσσεται ἡ καὶ ἔπεται φθογγόσημο καταβάσεως ἀξίας ἑνὸς χρόνου (συνήθως ) καὶ ἐν συνεχείᾳ ἀνάβασις: Τὸ το κατέχει τὸ ἀσθενὲς μέρος τῶν μέτρων καὶ συνεχίζει τὴν προηγουμένη συλλαβή: | Τὸ δὲν δέχεται τὸ ο ος

Τὸ 🥌 καὶ τὸ 😽 δὲν δέχονται τὸ 🦳

Τὸ δέχεται τὸν α) μὲ προηγούμενο ἰσόχρονο (ἐκτὸς ἀπὸ καὶ ιι) φθογγόσημο καὶ προτασσομένη διαως βλέπομε παραπάνω στὰ έζης:

Τὸ δέχεται τὸν α) μὲ προηγούμενό του η η η η η οπότε ἀκολουθοῦν καὶ ἀνήκουν, ὅλα, στὴν ἴδια τονιζο-ζομένη συλλαβή Δ η πρε σβευ ε ε ε ε ε ε του η πρε ε σβε ευ ε ε ε ε του έπόμενό του δπότε ἀκολουθεῖ κατάβασις δο ο ε ε α α α

<sup>1. &#</sup>x27;Οκτάσημο ή συνεπτυγμένο τετράσημο μέτρο

#### ΚΕΦΑΛΑΙΟΝ ΚΒ΄

#### ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΦΘΟΓΓΟΣΗΜΩΝ ΑΝΑΒΑΣΕΩΣ

#### α' 'Ορθογραφία τοῦ 'Ολίγου

389. Τὸ δέχεται συλλαβή λέξεως α να βαι ερ χο η γράφεται ἀντὶ τῶν καὶ συνεχίζει τὴν προηγουμένη συλλαβή (§ 341).

Ή ὀρθογραφία τοῦ τος ἀσθενὲς μέρος τοῦ μέτρου 6 πα α αν τα 9 ἀντὶ πα α αν τα 9 τος τοῦ παρατηρεῖται καὶ μὲ τὰ ἄλλα σύνθετα μὲ τὴν φθογγόσημα ἀναβάσεως, ὡς π.χ. γ πα ρα πεμ πο με ε ε ε νη ἢ με ε ε ε ε

Τὸ — καὶ τὸ 5 δέχονται τὰ σημεῖα τοῦ χρόνου, ἀντιστοίχως, ὅπως τὸ — καὶ τὸ 5

Τὸ 🤝 δέχεται τὴ 🕽 ὅπως καὶ τὸ 😸

Τὸ — δέχεται τὸ — τὸ ΐδιο ὅπως καὶ τὸ — πα σα Τὸ Τὸ δὲν δέχεται τὸ —

Τὸ χωρὶς προγραφομένη ζοπως καὶ τὸ καὶ τὸ μὲ προγραφομένη ζατέχουν τὰ ἰσχυρὰ μέρη τῶν μέτρων Δ κω ρι κατέχουν τὰ ἐσχυρὰ μέρη τῶν μέτρων Δ κω ρι σμω ω ἢ Δ τε ε ε ρω ων η δ ευ τρε

Τὸ δέχεται τὸν ποὺ τὸ ένώνει μὲ προηγουμένη ἢ έπομένη δπως π.χ.  $\begin{cases} \delta \epsilon & \epsilon \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega \zeta & \pi \cdot \chi \end{cases}$   $\begin{cases} \delta \pi \omega$ 

## β΄ 'Ορθογραφία τῆς Πεταστῆς

340. ή 🔾 δέχεται τονιζομένη συλλαβή λέξεως, γράφεται στὸ ἰσχυ-

Ἡ ὀρθογραφία τῆς  $\bigcirc$  εἶναι ἡ ἰδία μὲ τῶν συνθέτων της  $\bigcirc$  Καταχρηστικῶς, βρίσκεται ἡ  $\bigcirc$  καὶ στὸ ἀσθενὲς μέρος τοῦ μέτρου ὅπως στὸ  $\stackrel{\Delta}{\bigcirc}$   $\begin{vmatrix} 3 \\ \alpha \end{vmatrix}$  τῆς ἀργῆς Καταβασίας «Χριστὸς γεννᾶται» ποὺ εἶναι καλύτερο νὰ γράφεται  $\begin{vmatrix} 3 \\ \alpha \end{vmatrix}$  σα  $\alpha$ 

 $^{\circ}$ Η  $\rightarrow$  δέχεται τὸ  $\rightarrow$  μόνον στὴν γραφή  $\leftarrow$   $\stackrel{\circ}{}_{\mathsf{K}}$  $_{\mathsf{U}}$  $_{\mathsf{U}}$ 

#### γ' 'Ορθογραφία τῶν Κεντημάτων

341. Τὰ Ν δὲν ἐπιδέχονται αὔξησι διαρκείας, οὔτε συλλαβή λέξεως, γράφονται πάντοτε, στὰ ἀσθενῆ μέρη τῶν μέτρων καί συνεχίζουν τὴ συλλαβὴ τοῦ προηγουμένου των φθόγγου ο φθο . Γιὰ τοὺς λόγους αὐτούς, τὰ Ν ἀντικαθίστανται ἀπὸ τὸ α) στὸ ἰσχυρὸ μέρος τῶν μέτρων στὴν περίπτωσι συνεχοῦς ἀναβάσεως μὲ τὴν ἴδια συλλαβή ποὺ ἐκτείνεται σὲ περισσοτέρους ἀπὸ δύο φθόγγους. Καὶ ὁ τελευταῖος φθόγγος τέτοιας ἀναβάσεως γράφεται μὲ ἢ ὅπως στὰ ἑξῆς παραδείγματα π η παι αι αι δας λ ε ε ε σω ω ω χρειάζεται αὕξησις διαρκείας δ α γα θε ε ε ε

Τὰ ν ἀντικαθίστανται ἀπὸ τὸ καὶ στὶς έξῆς, ἀκόμη, περιπτώσεις α) ὅπου συμπίπτουν μεταξύ δύο σπως π.χ.

Τὰ το δέχονται τὸ Γ α) μὲ προηγούμενο ἀπλὸ φθογγόσημο

Και αι νυν κ ε εξ υ υ υ ψους κ καὶ γ) κατὰ τὴν ἐκτέλεσι τῶν

Τὰ το δέχονται τὸ Γ α) μὲ προηγούμενο ἀπλὸ φθογγόσημο

Α Ε εξ υ υ υ ψους κ κ αὶ γ) κατὰ τὴν ἐκτέλεσι τῶν

Τὰ τὸ δέχονται τὸ Γ α) μὸ ο ο σχες κ καὶ γ) κατὰ τὴν ἐκτέλεσι τῶν

Τὰ τὸ δέχονται τὸ Γ α) μὸ ο ο σχες κ καὶ γ) κατὰ τὴν ἐκτέλεσι τῶν

Τὰ Ν δέχονται, ὡσαύτως, τὸ ς καὶ τὸ ς ὅπως στὰ ἑξῆς παραδείγματα  $\stackrel{\triangle}{0} \stackrel{\circ}{0} \stackrel$ 

ὅπως στὶς ἑξῆς συνθέσεις 
$$\ddot{\eta}$$
 καὶ  $\ddot{\kappa}$  καὶ  $\ddot{\sigma}$  ὅπως π.χ.  $\ddot{\delta}$   $\ddot{\alpha}$   $\ddot{\alpha}$ 

Τὰ Ν δέχονται τὸ 👉 στὰ σύνθετα μ' αὐτὰ φθογγόσημα καὶ ἀκολουθεῖ κατάβασις ὅπως στὰ ἑξῆς παραδείγματα

Τέλος, ὅπως ἐγνωρίσαμε (§ 338), του ἐπαναλαμβάνονται στὴν ἴδια συλλαβὴ μὲ ἑπομένη κατάβασι καὶ συλλαβή, γράφονται ἐπάνω στὸ

## δ΄ 'Ορθογραφία τοῦ Κεντήματος καὶ τῆς 'Υψηλῆς

342. Οἱ ὀρθογραφικοὶ κανόνες τοῦ — καὶ τῆς ἰσχύουν καὶ γιὰ τὰ σύνθετά τους μὲ τὸ ι καὶ τὴν ✓

Στὸ ἀσθενὲς μέρος τοῦ  $2^{\circ \circ}$  μέτρου τῆς γραμμῆς  $\overset{\times}{q}$   $\overset{\circ}{q}$   $\overset{\circ}{o}$   $\overset{\circ}{\circ}$   $\overset{\circ}{v}$  ει ει  $\overset{\circ}{\delta}$   $\overset{\circ}{\delta}$   $\overset{\circ}{\iota}$   $\overset{\circ}{\iota$ 

#### ΚΕΦΑΛΑΙΟΝ ΚΓ΄

#### ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΦΘΟΓΓΟΣΗΜΩΝ ΚΑΤΑΒΑΣΕΩΣ

## α΄ 'Ορθογραφία τῆς 'Αποστρόφου

343. Ἡ το δέχεται συλλαβὴ λέξεως ἢ συνεχίζει τὴν προηγουμένη, ὅπως καὶ τὸ Ἡ ὀρθογραφία τοῦ ἱσχύει καὶ γιὰ τὸ Το ٢٠٠٠ 

Η γράφονται ἐπάνω στὸ στὶς ἴδιες περιπτώσεις ὅπως καὶ τὸ

Ή δέχεται τὸ α) ὅταν γράφεται ἐπάνω στὸ ξαὶ ἀκολουθοῦν φθογγόσημα καταβάσεως ὅπως στὸ καὶ στὸ καὶ β) στὸ σύνθετο δια ὅπως καὶ στὶς περιπτώσεις Τὸ δὲν δέχεται τὸ

Ή δέχεται τὸ — ὅπως τό — καὶ τὸ — στὶς περιπτώσεις

Ή καὶ τὸ δέχονται μόνον μὲ τὸ ὅπως π.χ. π α υ υ καὶ τὸ ὅπως π.χ. π α υ υ δε ε ε χου

Ή δέχεται τὸν ποὺ τὴν ἑνώνει ἢ μὲ τὸ προηγούμενο φθογγόσημο κτλ. ἢ μὲ ἐπομένη, μὲ ἀνάβασι

Τὸ პ δέχεται τὸν μὲ ἐπόμενο Δ΄ ὅπως καὶ τὰ 5 5 ὡς ἐξῆς:

Τέσσερεις ᾿Απόστροφοι, ποὺ ἀνὰ δύο ἀνήκουν σὲ χωριστὲς συλλαβές μπροστὰ σὲ κάθε ζεῦγος των παίρνουν τὴ τος ἑξῆς ε και Μα α προ ο τος ε κυ υ υ

#### β΄ 'Ορθογραφία τῆς Ύπορροῆς

τους λόγους, ενώ ο πρώτος φθόγγος της δεν επιδέχεται χρονική αυξησι άλλὰ ἀντίθετα μπορεῖ νὰ πάρη τὸ Γ τὸ Γ καὶ τὸ Γ ὅπως καὶ τὸ δεύτερος φθόγγος της μπορεῖ νὰ δεχθῆ χρονικὴ αυξησι μὲ

Όταν τῆς κατάβασις ένὸς φθόγγου μὲ στὴν ἴδια συλλαβή, ὁ δεύτερος φθόγγος της, ὅπως καὶ ἡ δέχεται μόνον τὸ όπως π.χ. μο ο ο ο η τὴ καὶ τὴν μόνον μὲ τὸν μόνον μὲ τὸν

οπως στὸ έξῆς παράδειγμα το μο ο ο ο Τέλος, όταν ὁ

δεύτερος φθόγγος τῆς • χρειάζεται νὰ πάρη τὴν ἔκφρασι τῆς • καὶ ἔπονται δύο ἢ περισσότεροι κατιόντες φθόγγοι μὲ Γ στὸν πρῶτο καὶ ὅλοι ἀνήκουν στὴν ἴδια συλλαβή, ἀντὶ • δέχεται τὸ • ὅπως στὸ

## γ΄ 'Ορθογραφία τοῦ 'Ελαφροῦ καὶ τῆς Χαμηλῆς

345. Οἱ ὀρθογραφικοὶ κανόνες τῆς > καὶ τοῦ 3 ἰσχύουν τὸ ἴδιο γιὰ τὸ και τὴ καθώς καὶ γιὰ τὰ σύνθετα μ' αὐτὰ φθογγόσημα.

## ΠΗΓΕΣ καὶ ΒΟΗΘΗΜΑΤΑ

| Χρυσάνθου ἀρχιεπ. Δυρραχίου |                                                      |      |
|-----------------------------|------------------------------------------------------|------|
| τοῦ ἐκ Μαδύτων              | Θεωρητικόν μέγα τῆς μουσικῆς , Τεργέστη              | 1832 |
| Γρηγορίου Πρωτοψάλτου       | Είρμολόγιον Καλοφ. ἔκδ. Θ. Φωκαέως Κων/πολις         | 1835 |
| Ίωάν. Λαμπαδαρίου -         |                                                      |      |
| - Στεφ. Α΄ Δομεστίκου       | Πανδέκτης τῆς ἱερᾶς ἐκκλησιαστικῆς ὑμνωδίας »        | 1851 |
| Κυριακοῦ Φιλοξένους         | Θεωρητικόν στοιχειῶδες τῆς μουσικῆς »                | 1859 |
| Θεοδώρου Φωκαέως            | Ταμεῖον ἀνθολογίας , »                               | 1869 |
| Στεφάνου Λαμπαδαρίου        | Μουσική Κυψέλη, εκδοσις Δ. Ίω. Πρωτοψάλτου »         | 1882 |
| Γεωργίου Ραιδεστηνοῦ        | 'Η 'Αγία καὶ Μεγάλη 'Εβδομάς »                       | 1884 |
| » »                         | Πεντηκοστάριον »                                     | 1886 |
| Ίακώβου Πρωτοψάλτου         | 'Αργὸν δοξαστάριον, ἔκδ. Ἰω. Πρωτοψάλτου »           | 1888 |
| Μουσικῆς Ἐπιτροπῆς          |                                                      |      |
| Οἰκ. Πατριαρχείου           | Στοιχειώδης διδασκαλία της ἐκκλ. μουσικης »          | 1888 |
| Γεωργίου Παπαδοπούλου       | Συμβολαί είς τὴν ίστορίαν τῆς παρ'ἡμῖν ἐκκλ. μουσ. » | 1890 |
| Χουρμουζίου Χαρτοφύλακος    | Δοξαστάριον, εκδ. Νηφ. Σουβατζόγλου . Θεσ/νίκη       | 1901 |
| Γ. Παλαιολόγου              | Ο ρυθμός έν τῆ ἐκκλησιαστικῆ μουσικῆ . ᾿Αθῆναι       | 1903 |
| Ίωάννου Πρωτοψάλτου         | Είρμολόγιον Καταβ. Π. Πελοποννησίου Κων/πολις        | 1903 |
| Γεωργίου Παπαδοπούλου       | Ίστορική ἐπισκόπησις τῆς βυζαντ. μουσικῆς ᾿Αθῆναι    | 1904 |
| 'Αγαθ. Κυριαζίδου           | «Δύο μέλισσαι», συνοπτική πρακτική μέθοδος »         | 1906 |
| H. A. Köstlin               | Ίστορία τῆς μουσικῆς, μετάφρ. 'Αν. Μάλτου »          | 1908 |
| Κωνσταντίνου Ψάχου          | Λειτουργία μὲ διπλῆ συνηχητική γραμμή . »            | 1909 |
| Θεοδώρου Φωκαέως            | Κρηπίς τοῦ Θεωρ. καὶ πρακτ. τῆς ἐκκλ. μουσ. Θεσ/νίκη | 1912 |
| Ίωάννου Πρωτοψάλτου         | 'Αναστασιματάριον Π. Πελοποννησίου Κων/πολις         | 1914 |
| Κωνσταντίνου Ψάχου          | Ή παρασημαντική τῆς βυζαντινῆς μουσικῆς ᾿Αθῆναι      | 1917 |
| » »                         | Διάφορα ἄρθρα σὲ περιοδικά »                         | 1918 |
| Δημ. Χόνδρου Καθηγητοῦ      | Μανεπιστ. 'Αθηνών, Φυσική »                          | 1918 |
| 'Αλ. Εὐσταθιανοῦ            | 'Η φωνή πρός ἄσμα καὶ λαλιάν »                       | 1925 |
| Ι. Ν. Παπαγιαννοπούλου      | 'Ο λάρυγξ καὶ τὸ τραγοῦδι »                          | 1925 |
| Κωνστ. Παπαδημητρίου        | Μελωδικαὶ ἀσκήσεις βυζαντινής μουσικής . »           | 1928 |
| Α. Γ. 'Αργυροπούλου         | Μουσική ἀγωγή »                                      | 1933 |
| Μεγ. Έλλ. Έγκυκλ. «Πυρσός   | ς» "Αρθρα Ν. Χρυσοχοΐδη, Ν. Παπᾶ κλπ »               | 1934 |
| Θεοδ. Θωϊδου                | Περιοδικόν «Μουσικός κόσμος» »                       | 1936 |
| Σωκράτους Παπαδοπούλου      | Νέα Φόρμιγζ τῆς Ἐκκλησίας Θεσ/νίκη                   | 1950 |
| Karl Nef.                   | Ίστορία τῆς μουσικῆς, μετάφ. Φ. Ανωγειανάκη 'Αθῆναι  | 1957 |
| Διονυσίου Ψαριανοῦ Μητρο    |                                                      |      |
|                             | Μελέται καὶ ἄρθρα, τόμος «Μουσικολονικά» Κοζάνη      | 1961 |

| періехоме N А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T-13  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ΠΡΟΛΟΓΟΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Σελὶς |
| ΜΕΡΟΣ Α΄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| ΜΟΥΣΙΚΗ — ΒΥΖΑΝΤΙΝΗ ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΜΟΥΣΙΚΗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15    |
| ΚΕΦΑΛΑΙΟΝ Α΄ — § 6. Τὰ θεμελιώδη συστατικὰ τῆς μουσικῆς § 7. Ὁ φθόγγος (οἱ φθόγγοι, μουσικὴ ἔκτασις, ἔκτασις φωνῆς, ἔκτασις μουσικοῦ ὀργάνου, ἀνιοῦσα καὶ κατιοῦσα διαδοχή, ἀντιφωνία, κλῖμαξο ἀκταφωνία-διαπασῶν, βάσις (τονική), κορυφὴ κλίμακος, συνεχής καὶ ὅπερβατὴ ἀνάβασις καὶ κατάβασις, ταὐτοφωνία). § 22. Ἔκτασις τῆς ἔκκλ. μουσικῆς (Μέση, Ὁξεῖα, Βαρεία, Δίς διαπασῶν, Ὑπάτη, Μέση, Νήτη). § 25. Ὁ χρόνος (ὁρισμός, θέσις-ἄρσις). § 30. Ἡ ἔκφρασις ἢ ποιότης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| ΚΕΦΑΛΑΙΟΝ Β΄ — § 32. Τὰ σημεία τῆς μουσικῆς γραφῆς (παρασημαντική).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21    |
| § 37. Οἱ μαρτυρίες (μαρτυρίες τῶν φθόγγων Ὑπάτης, Μέσης, Νήτης, μαρτυρικὰ σημεῖα). § 43. Τὰ φθογγόσημα ἢ χαρακτῆρες ποσότητος (φθογγόσημα ἀναβάσεως, καταβάσεως, ταὺτοφωνίας). § 45. Ποσοτικὴ ἀξία τῶν φθογγοσήμων. § 51. Τὰ σύνθετα φθογγόσημα καὶ ἡ ποσοτικἡ τους ἀξία (σύνθεσις παραθετική, ἐνεργητική, παραπληρωματική). Πίναξ συνθέτων φθογγοσήμων. § 55. Τὰ σημεῖα τοῦ χρόνου ἡ ἔγχρονες ὑποστάσεις. § 57. ᾿Αξία τῶν σημείων τοῦ χρόνου (Κλάσμα, Ἡπλῆ, Διπλῆ, Τριπλῆ, Γοργόν, Γοργὰ παρεστιγμένα, ἡμίγοργον, τριημίγοργον. Συνεχὲς Ἐλαφρόν. Δίγοργον, Δίγοργα παρεστιγμένα, Τρίγοργον, Τρίγοργον παρεστιγμένα. ᾿Αργόν, Δίαργον, Τρίαργον, Παύσεις, Παύσις θέσεως καὶ ἄρσεως, χρόνου κενοί, Σταυρός, ἀναπνοή, Κορώνα, Ὑφέν). Παρατηρήσεις γιὰ τὰ σημεῖα τοῦ χρόνου. § 64. Τὰ σημεῖα τῆς ἐκφράσεως ἡ ποιότητος ἡ ἄχρονες ὑποστάσεις. § 66. ᾿Αξία τῶν σημείων ἐκφράσεως (Βαρεῖα, Ψηφιστόν, Όμαλόν, ᾿Αντικένωμα, Ἔτερον ἡ Σύνδεσμος, Ἐνδόφωνον) Παρατηρήσεις γιὰ τὴν ἔκφρασι (ἀνάλυσις Ἡλίγου, Πεταστῆς, Βαρείας, Ψηφιστοῦ, ἑτέρου) |       |
| ΚΕΦΑΛΑΙΟΝ Γ΄ — 'Ο ρυθμός                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47    |
| § 72. 'Ορισμός (διαστολή, μέτρον, μέτρο δίσημο-τρίσημο-τετράσημο, ρυθμός δίσημος-τρίσημος-τετράσημος, άπλᾶ καὶ σύνθετα μέτρα, άπλοῖ καὶ σύνθετοι ρυθμοί, ρυθμὸς σύνθετος κατὰ συζυγίαν—κατὰ περίοδον, πολυσύνθετοι ρυθμοί, ἰσχυρὸν καὶ ἀσθενὲς μέρος μέτρου, μετρικὸς τονισμός, λεῖμμα ρυθμοῦ, ἐλλιπὲς μέτρο, ρυθμοὶ θετικοὶ καὶ ἀρνητικοὶ. § 91. Μέτρο δίσημο-ρυθμὸς δίσημος. § 92. Μέτρο τρίσημο-ρυθμὸς τρίσημος. § 93. Μέτρο τετράσημος. § 94. 'Ο ρυθμὸς τῶν Ἐκκλησιαστικῶν μελωδιῶν (Τονικὸς ρυθμός). Παρατηρήσεις γιὰ τὸ ρυθμὸ (πρῶτος χρόνος-σημεῖον ἡ βραχεῖα, μακρὸς χρόνος, χρόνοι σύνθετοι, ποῦς, ἰσχυρὰ καὶ ἀσθενὴ μέρη ποδός, θέσις ἢ κάτω χρόνος, ἄρσις ἢ ἄνω χρόνος, πλῆρες μέτρο, διποδίαι, τριποδίαι, τετραποδίαι, πόδες τρίσημοι ἢ ἰαμβικοί, τετράσημοι ἢ δακτυλικοί, πεντάσημοι ἢ παιονικοί, ἔξάσημοι ἢ ἰανικοί, ἔπτάσημοι ἢ ἐπίτριτοι σύνθετοι, ὀκτάσημοι σύνθετοι, γένος ἴσονδιπλάσιον-ἡμιόλιον-ἀκανόνιστον, ἤθος ρυθμοῦ διασταλτικόν, συσταλτικόν, ἡσυχαστικόν, ρυθμὸς τροχαλὸς ἢ τροχερός.                      | 47-59 |
| ΚΕΦΑΛΑΙΟΝ Δ΄ — § 95. <b>Χρονική ἀγωγή</b> (βραδεῖα, μέση, μετρία, ταχετά, ταχυτάτη ἢ χῦμα).<br>§ 102. Μετρονόμος τοῦ Mälzel ἡ χρονόμετρον. Παρατηρήσεις                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59-62 |
| ΚΕΦΑΛΑΙΟΝ Ε΄ — § 104. Διατονικές κλίμακες                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62    |
| Παλμικὴ κίνησις άπλῆ, διπλῆ, συχνότης παλμικῶν κινήσεων, ἦχος, κρότος, φθόγγος, ἦχογόνα σώματα, ὕψος, ἔντασις καὶ χροιὰ φθόγγου.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |

| § 115. Μουσικὰ διαστήματα, τόνοι, διατονικὴ κλῖμαξ (τόνος μείζων, ἐλάσσων, ἐλάχιστος ἢ μεῖζον ἡμιτόνιον, κόμμα, ἀποτομὴ ἐλάσσονος τόνου, ἡμιτόνιον ἔλασσον). § 119. Διατονικὴ κλῖμαξ τοῦ Νη (τετράχορδα, διαζευκτικὸς τόνος, φυσικὴ ἢ θεμελιώδης κλῖμαξ). § 124. Δὶς διαπασῶν κλῖμαξ. § 125. Σχηματισμὸς διατονικῶν κλιμάκων. § 127. Σχέσις ὀξύτητος τῶν φθόγγων. Διατονικὰ διαστήματα (δευτέρας, τρίτης, τετάρτης, πέμπτης, ἔκτης, ἔβδόμης, ὀγδόης ἢ διαπασῶν). § 128. Χορδή, μονόχορδον ἢ φθογγόμετρον ἢ ἡχόμετρον, (Σχέσις τοῦ ὑψους τοῦ φθόγγου μὲ τἡν τάσι, τὸ μῆκος καὶ τὸ πάχος τῆς χορδῆς). § 132. ᾿Αξία τῶν τόνων καὶ τῶν διαστημάτων σὲ μῆκος χορδῆς (τόνος μείζων ἢ ἐπόγδοος, ἐλάσσων ἢ ἐπιένατος, ἐλάχιστος ἢ ἐπιπεντεκαιδέκατος, οἱ διαφορὲς τῶν τριῶν φυσικῶν τόνων, κόμμα, ἀποτομὴ ἐλάσσονος τόνου, ἔλασσον ἡμιτόνιον). § 138. Συγκερασμένη διαίρεσις τῆς κλίμακος (τμήματα, τὰ διαστήματα σὲ τμήματα). Παρατηρήσεις γιὰ τὴ κλίμακα (Πατριαρχικὴ Μουσικὴ Ἑπιτροπὴ 1885, Ψαλτήριον, συγκεκραμένη κλίμαξ Εὐρωπαϊκῆς Μουσικῆς, Πυθαγόρειος σκληρὰ διατονικὴ κλίμαξ, λεϊμμα, ἀποτομή). § 139. Τονοδότης ἢ διαπασῶν (Κανονικὸς La, πνευστὸς καὶ χρωματικὸς τονοδότης) | 62-87  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ΚΕΦΑΛΑΙΟΝ ΣΤ΄ § 144. 'Αλλοιώσεις (δίεσις - ὕφεσις)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87     |
| 'Αλλοιωμένος φθόγγος, φθόγγος ἐν διέσει καὶ ὑφέσει, ὑπερμείζων τόνος).<br>§ 155. Γενικὴ δίεσις τοῦ Βου, γενικὴ ὕφεσις τοῦ Κε. Παρατηρήσεις                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87-92  |
| ΚΕΦΑΛΑΙΟΝ Ζ΄ — § 160. Συμφωνίες                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92     |
| Συμφωνία σύμφωνος, δμόφωνος, διάφωνος, παράφωνος όμοφωνία, διαφωνία, παραφωνία διαστήματα σύμφωνα καὶ διάφωνα. Παρατηρήσεις                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92-94  |
| ΚΕΦΑΛΑΙΟΝ Η' — § 164. Γραφή και ανάγνωσις της μουσικής                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94     |
| Μουσικὸ κείμενο, μουσικὲς γραμμές, ἀνάγνωσις ρυθμική, παραλλαγή, μέλος. Παρατηρήσεις                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94-96  |
| $\mathbf{M} \mathbf{E} \mathbf{P} \mathbf{O} \mathbf{\Sigma} \mathbf{B}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| ΜΕΛΩΔΙΚΈΣ ΑΣΚΗΣΕΙΣ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ΚΕΦΑΛΑΙΟΝ Θ΄ — § 169. Ἡ φωνή                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99     |
| Φωνή, πνεύμονες, βρόγχοι, βρογχίδια, τραχεΐα, λάρυγξ, μήλον τοῦ ᾿Αδάμ (καρύδι) χόνδρος κρικοειδής, θυρεοειδής, άρυταινοειδής φωνητικὲς χορδές, γλωττίς καὶ γλωττιδική σχισμή, φάρυγξ, ρινικός θάλαμος, κοιλότητες τοῦ στόματος. § 171. Ἔκτασις καὶ εἴδη τῆς ἀνθρωπίνης φωνής (ἀνδρικὲς φωνές: βαθύφωνος, βαρύτονος, ὑψίφωνος ἢ ἀξύφωνος ἢ τενόρος, γυναικείες καὶ παιδικὲς φωνές: βαρύφωνος, μεσόφωνος, ὑψίφωνος, φωνή στηθικὴ καὶ κεφαλική). § 175. Μεταφώνησις. § 176. Προφύλαξις καὶ ἐξάσκησις τῆς φωνής, βοκαλισμός                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99-106 |
| ΚΕΦΑΛΑΙΟΝ Ι΄ — Ρυθμικές καὶ μελωδικές άσκήσεις συνεχούς ά-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| ναβάσεως καὶ καταβάσεως στη διατονική κλίμακα τοῦ Νη                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107    |
| § 181. Ό φθόγγος Νη. § 183. Ὁ φθόγγος Πα. § 184. Ὁ φθόγγος Βου. § 185. Τὸ τετράχορδο Νη-Γα. § 186. Τὸ πεντάχορδον Νη-Δι. § 187. Ἡ διατονικὴ κλτμαξ τοῦ Νη. § 188. Ἡ δὶς διαπασῶν δι-Δι΄. § 189. Ἡ Βαρεῖα. § 190. Τὸ Ψηφιστόν. § 192. Τὸ Γοργόν. § 193. Τὸ "Ετερον ἢ Σύνδεσμος. § 194. Τὸ 'Αντικένωμα. § 195. Κλάσμα πρὸ Γοργοῦ. § 196. Διπλῆ, Τριπλῆ πρό Γοργοῦ. § 197. Φθογγόσημον μὲ Γοργὸν καὶ 'Απλῆ, Διπλῆ, Τριπλῆ, § 198. Τὸ 'Ενδόφωνον. § 199. Τὸ 'Ομαλόν. § 200. Παύσεις. § 201. Συνεχές 'Ελαφρόν. § 202. 'Αργόν, Δίαργον, Τρίαργον. § 203. Γοργὰ παρεστιγμένα. § 204. Τὸ Δίγοργον.§ 205. Δίγοργα παρεστιγμένα. § 206. Τὸ Τρίγοργον 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07-155 |
| ΚΕΦΑΛΑΙΟΝ ΙΑ΄ — Ρυθμικές καὶ μελωδικές ἀσκήσεις διατονικών                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| διαστημάτων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155    |
| § 207. Διάστημα τρίτης. § 208. Διάστημα τετάρτης. § 209. Διάστημα πέμπτης. § 210. Διάστημα εκτης. § 211. Διάστημα έβδόμης. § 212. Διάστημα ὀγδόης                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55-174 |

| VERA A AION ID' 'A' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '                                                          | Σελὶς        |
|----------------------------------------------------------------------------------------------------------------|--------------|
| ΚΕΦΑΛΑΙΟΝ ΙΒ΄ — 'Αλλοιώσεις τῆς διατονικῆς κλίμακος                                                            | 174          |
| § 213. Φθόγγοι φυσικοί καὶ μέ ζφεσι. § 214. Φθόγγοι φυσικοί καὶ μέ δίεσι. § 215 Φθόγγοι μέ διέσεις καὶ ὑφέσεις | :<br>174-190 |
| ΜΕΡΟΣ Γ΄                                                                                                       |              |
| ΚΕΦΑΛΑΙΟΝ ΙΓ΄ — Τὰ συστήματα                                                                                   | 193          |
| § 218. 'Οκτάχορδον ἢ διαπασῶν, πεντάχορδον ἤ τροχός, τετράχορδον                                               | ,            |
| τριφωνία. § 221. Σύγκρισις των συστημάτων. Παρατηρήσεις για τα συ-                                             | -            |
| στήματα 1                                                                                                      | 193-197      |
| ΚΕΦΑΛΑΙΟΝ ΙΔ΄ — Τά γένη                                                                                        | 197          |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        |              |
| <b>ΚΕΦΑΛΑΙΟΝ ΙΕ΄</b> — § 251. <b>Οἱ χρόες</b>                                                                  | 238          |
| § 252. 'Ο Ζυγός. § 253. Τὸ Κλιτόν. § 254. 'Η Σπάθη. Παρατηρήσεις                                               | 20 244       |
| γιὰ τὶς χρόες                                                                                                  | 238-244      |
| VEDAAAION IST' Molossed 2020 2000 250 up of select                                                             |              |

## ΚΕΦΑΛΑΙΟΝ ΙΣΤ — Μελωδική έλξις - ήθος της μελωδίας

#### ΜΕΡΟΣ Δ΄

#### ΑΣΚΗΣΕΙΣ ΣΥΣΤΗΜΑΤΩΝ - ΓΕΝΩΝ - ΜΕΤΑΒΟΛΩΝ - ΧΡΟΩΝ

ΚΕΦΑΛΑΙΟΝ ΙΖ' — § 256. 'Ασκήσεις διατονικών διαστημάτων

§ 259. 'Ασκήσεις στὸ χρωματικὸ γένος. § 261. 'Ασκήσεις στὸ ἐναρμόνιο γένος. § 263. 'Ασκήσεις μεταβολῶν (κατά γένος, μεταθέσεις, κατὰ γένος μὲ μεταθέσεις, παραχορδές). § 297. 'Ασκήσεις στὶς χρόες 24 249-340

#### MEPOΣ E'

343

### ΚΕΦΑΛΑΙΟΝ ΙΗ΄ — Τὰ εἴδη τῆς μελωδίας

§ 300. Ἰδιόμελα, Προσόμοια, Αὐτόμελα - Πρόλογοι, Κανόνες (Είρμοίτροπάρια). § 301. Μέλος ή είδος στιχηραρικόν-Είρμολογικόν-Παπαδικόν. § 302. Δομή - ἔκτασις τῶν εἰδῶν τῆς μελωδίας 344-348 § 303. Ήχοι. § 305. Ήχοι κύριοι-πλάγιοι. § 306. Τὰ χαρακτηριστικὰ τῶν ήχων (διατονικοί-χρωματικοί-ἐναρμόνιοι, μελωδικὴ βάσις, δεσπόζοντες φθόγγοι, μελωδικὲς ἔλξεις, καταλήξεις ἀτελεῖς-ἐντελεῖς-τελικές-ὁριστικές, ἀπηχήματα, γνωριστικὰ τῶν ήχων). § 307. Οἱ μαρτυρίες τῶν ήχων (ἀρκτικὲς μαρτυρίες). § 308. Οἱ μεταβολὲς στοὺς ήχους. § 309. Παρείσακτα μέλη. § 310 Ἡχος Πρῶτος. § 311. Ἡχος Δεύτερος. § 312. Ἡχος Τρίτος. § 313. Ἡχος Τέταρτος. § 314. Ἡχος Πλάγιος τοῦ Πρῶτου. § 315. Ἡχος Πλάγιος τοῦ Δευτέρου. § 316. Ἡχος Βαρύς. § 317. Ἡχος Πλάγιος τοῦ Τετάρτου. Παρατηρήσεις (Σχέσις τῆς ὑκταηχίας μὲ τοὺς τρόπους τῆς ἀρχαίας Ἑλληνικῆς μουσικῆς καὶ τῆς Ρωμαιοκαθολικῆς Ἐκκλησίας, μέσοι ήχοι, ἀπηχήματα τῆς παλαιᾶς βυζαντινῆς μουσικῆς)

#### ΜΕΡΟΣ ΣΤ΄

#### ΚΕΦΑΛΑΙΟΝ Κ΄ — Ισον - Ισοκρατήματα

463

§ 318. Ίσον, ἰσοκράτημα, ἰσοκράτες, μελωδοί, διπλοῦν ἰσοκράτημα, μεταβολὲς τοῦ ἴσου. § 329. ᾿Ασκήσεις ἴσων καὶ ἰσοκρατημάτων στοὺς όκτὼ ήχους 463-484

#### $MEPO\Sigma Z'$

#### ΟΡΘΟΓΡΑΦΙΑ ΤΗΣ ΒΥΖΑΝΤΙΝΗΣ ΜΟΥΣΙΚΗΣ

# ΚΕΦΑΛΑΙΟΝ ΚΑ΄ — § 388. 'Ορθογραφία τοῦ φθογγοσήμου τῆς ταὐτοφωνίας

485

# ΚΕΦΑΛΑΙΟΝ ΚΒ΄ — 'Ορθογραφία τῶν φθογγοσήμων ἀναβάσεως \$339. 'Ορθογραφία τοῦ 'Ολίγου. § 340. 'Ορθογραφία τῆς Πεταστῆς. § 341. 'Ορθογραφία τῶν Κεντημάτων. § 342. 'Ορθογραφία τοῦ Κεντήματος καὶ τῆς 'Υψηλῆς.

ΚΕΦΑΛΑΙΟΝ ΚΓ΄ — 'Ορθογραφία τῶν φθογγοσήμων καταβάσεως 493 § 343. 'Ορθογραφία τῆς 'Αποστρόφου. § 344. 'Ορθογραφία τῆς 'Υπορ-

ροής. § 345. 'Ορθογραφία τος 'Ελαφρού, τής Χαμηλής

496

ΠΗΓΕΣ καὶ ΒΟΗΘΗΜΑΤΑ

νάκη στη Νεάπολι Κρήτης.

Τοῦ διδλίου αὐτοῦ οἱ σελίδες 1—320 καὶ 417—500 στοιχειοδετήδηκαν μὲ ἐπιμέλεια ἀπὸ τὸν κ. Μιλτιάδη Κατρανιᾶ Λαμπαδάριο τοῦ Μητροπολιτικοῦ Ναοῦ Θεσ/νίκης 'Αγ. Γρηγορίου τοῦ Παλαμᾶ καὶ τυπώδηκαν στὸ Τυπογραφεῖο τοῦ κ. Κων. Δ. Ζεϊμπέκη, 'Αχειροποιήτου 8 τηλεφ, 271367. Καὶ οἱ σελίδες 321-416 στοιχειοδετήδηκαν μὲ τὴν ἱδια ἐπιμέλεια ἀπὸ τὸν κ. 'ἰωάννη Πολυχρονάκη καὶ τυπώδηκαν στὸ Τυπογραφεῖο τοῦ κ. Μιχαὴλ Πολυχρονάκη καὶ τυπώδηκαν στὸ Τυπογραφεῖο τοῦ κ. Μιχαὴλ Πολυχρον

Τὰ σχεδιαγράμματα ἔγιναν ἀπὸ τὸν ἴδιο τὸν ἐκδότη.