- 22. The area of parallelogram ABCD is 48 cm² and $DE = 2 \cdot EC$. Find the area of:
 - \mathbf{a} . $\triangle ABE$
- b. $\triangle BEC$
- c. $\triangle ADE$

- **d.** $\triangle CEF$
- e. △DEF
- f. $\triangle BEF$

- 23. ABCD is a parallelogram. Find each ratio.
 - Area of $\triangle DEF$
 - Area of $\triangle ABF$ Area of $\triangle DEF$
 - Area of $\triangle CEB$
 - Area of \triangle *DEF* Area of trap. DEBA

The figures in Exercises 24 and 25 are trapezoids. Find the ratio of the areas of (a) $\triangle I$ and $\triangle III$, (b) $\triangle I$ and $\triangle II$, (c) $\triangle I$ and $\triangle IV$, (d) $\triangle II$ and $\triangle IV$, and (e) $\triangle I$ and the trapezoid.

24.

25.

Find the ratio of the areas of regions I and II.

26.

27.

28.

- 29. G is the intersection point of the medians of $\triangle ABC$. A line through G parallel to BC divides the triangle into two regions. What is the ratio of their areas? (Hint: See Theorem 10-4, page 387.)
 - **30.** In $\triangle LMN$, altitude \overline{LK} is 12 cm long. Through point J of LK a line is drawn parallel to MN, dividing the triangle into two regions with equal areas. Find LJ.
 - 31. If you draw the three medians of a triangle, six small triangles are formed. Prove whatever you can about the areas of these six triangles.

$$\frac{AP}{PB} = \frac{BQ}{QC} = \frac{CR}{RA} = \frac{2}{1}$$

Prove: Area of $\triangle XYZ = \frac{1}{7}$ (area of $\triangle ABC$)

Ex. 32