Problem 1

Исходная, начальная идея. Вначале численный способ, а приближенный на него опирается. Есть подгон под линеаризацию, при этом замечено от нее отклонение. Уравнения в обоих случаях разные.

Задача № 1

<u>Условие</u>: Миномет установлен у основания некоторой горы под углом $\alpha=1,5$ радиана к горизонту. Минометный расчет ведет записи о том, насколько далеко падают мины в зависимости от их начальной скорости. Определите по этим данным высоту и примерную форму горы.

v_0 , м/с	10	14	18	22	26	30	34	38	42	46
<i>l</i> , м	0,710576	1,611942	2,85057	4,45474	6,48101	8,9838	12,0195	15,6393	19,879	24,7493
v_0 , м/с	50	54	58	62	66	70	74	78	82	
<i>l</i> , м	30,2305	36,2765	42,8294	49,8405	57,2941	65,2363	73,8201	83,4179	95,0382	

Решение: Сопротивлением воздуха при решении задачи пренебрегаем. Введем систему координат, как на рис. 1.1. Рассмотрим движение снаряда, выпущенного из начала координат со скоростью v_0 под углом α к горизонту. Его координаты при таком движении зависят от времени по законам $x(t) = v_0 t \cos \alpha$ и $y(t) = v_0 t \sin \alpha - g t^2/2$ соответственно. Выразив t из первого уравнения и подставив во второе, получим уравнение траектории:

$$y = x \operatorname{tg} \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha}.$$
 (1)

Далее приведем два способа решения: точный численный и приближенный в общем виде.

Рис. 1.1. Ось Ox горизонтальна, ось Oy вертикальна. Миномет расположен в начале координат.

1. Точное решение.

Пусть снаряд упал в точке (x, y). Тогда эта пара точек удовлетворяет уравнению (1). Также, из теоремы Пифагора следует уравнение:

$$x^2 + y^2 = l^2. (2)$$

Подставив y из (1) в (2), получим:

$$x^{2} \left(1 + \left[\operatorname{tg} \alpha - \frac{gx}{2v_{0}^{2} \cos^{2} \alpha} \right]^{2} \right) = l^{2}.$$
 (3)

Получили уравнение четвертой степени, которое нереально трудно решить в общем виде. Поэтому его решили численно при помощи программы $Mathematica^1$. Каждому значению x найдено соответствующее значение координаты y в соответствии с уравнением (2). По полученным данным была составлена таблица (ее элементы перечислены в порядке их предоставления в таблице из условия) и построен график (см. рис. 1.2).

х, м	0,0521	0,1196	0,2111	0,3307	0,4822	0,6699	0,8985	1,1720	1,4936	1,8642
у, м	0,7086	1,6150	2,8427	4,4425	6,4631	8,9588	11,9859	15,5953	19,8228	24,6790
<i>x</i> , м	2,2824	2,7445	3,2460	3,7827	4,3534	4,9617	5,6203	6,3601	7,2650	
<i>y</i> , м	30,1442	36,1725	42,7062	49,6967	57,1285	65,0473	73,6058	83,1751	94,7601	

За высоту горы примем высоту наивысшей точки, в которую попал снаряд: H = 94,7601 м.

¹Имеется в виду программа компании Wolfram Research, Inc., см. www.wolfram.com/mathematica

Рис. 1.2. График поверхности горы по точкам (не в масштабе). Зеленым изображена поверхность горы, другими цветами изображены траектории снарядов. Справа приведен график в масштабе.

Обратите внимание на рис. 1.2: экспериментальные точки достаточно точно ложатся на прямую. Траектории снарядов выглядят настолько прижатыми к поверхности из-за малой разности угла α и угла наклона горы.

Предполагая линейную зависимость y(x), найдем наклон этой горы и оценим его погрешность. Погрешность исходных величин по условию не задана, поэтому их считаем определенными с достаточной точностью. Воспользуемся методом наименьших квадратов. Пусть уравнение поверхности горы имеет вид y=kx. Будем минимизировать сумму²

$$S = \sum (y_i - kx_i)^2,$$

где суммирование ведется по всем i от 1 до n=19 — количество измерений. Так как единственным параметром является k, то необходимо выполнение условия dS/dk=0. Продифференцировав, получим:

$$\sum 2x_i \left(y_i - kx_i \right) = 0,$$

откуда

$$k = \frac{\sum x_i y_i}{\sum x_i^2}. (4)$$

Погрешность оцениваем по формуле

$$\Delta k \approx \sqrt{\frac{1}{n-1} \frac{\sum (y_i - mx_i)^2}{\sum x_i^2}} = \sqrt{\frac{1}{n-1} \frac{\sum x_i^2 \sum y_i^2 - (\sum x_i y_i)^2}{\left(\sum x_i^2\right)^2}}.$$
 (5)

 $^{^2}$ Метод подробно описан в книге Squires, G.L. *Practical physics*. 4^{th} ed. Cambridge University Press, 2001, см. формулы (4.34) и (4.35)

По формулам (4) и (5) получаем $k=13,10\pm0,01$. Угол наклона горы $\overline{\varphi}=\arctan k=(85,636\pm0,004)^\circ$. Погрешность оцениваем по формуле

$$\Delta \overline{\varphi} = \Delta k \frac{d\varphi}{dk} = \frac{\Delta k}{1 + k^2}.$$

Такое резкое уменьшение относительной погрешности связано с тем, что функция арктангенса растет очень медленно при аргументах, близких к $\pi/2$.

2. Приближенное решение.

Решим задачу приближенно, не основываясь на численных методах. Введем полярные координаты (l, φ) . Координаты точек падения снаряда $x = l \cos \varphi$ и $y = l \sin \varphi$. Подставим их в уравнение (1) и разделим обе его части на x:

$$\operatorname{tg}\varphi = \operatorname{tg}\alpha - \frac{gl\cos\varphi}{2v_0^2\cos^2\alpha},$$

откуда, с использованием тождества $\operatorname{tg} x - \operatorname{tg} y = \frac{\sin(x-y)}{\cos x \cos y}$ получим

$$\sin(\alpha - \varphi) = \frac{gl\cos^2\varphi}{2v_0^2\cos\alpha}.$$
 (6)

Такое уравнение невозможно решить стандартными способами, его можно только привести к уравнению четвертой степени (см. первый способ).

Рис. 1.3. Зависимость квадрата начальной скорости от дальности полета по данным из условия.

Если считать форму горы плоскостью, то угол φ должен быть одинаковым для всех экспериментальных точек. Учитывая уравнение (6), получим постоянство величины l/v_0^2 . В самом деле, рассмотрите рис. 1.3. Зависимость $v_0^2(l)$ достаточно близка к линейной.

Найдем тогда угол φ наклона горы. Будем считать углы α и φ близкими между собой и к $\pi/2$. А именно, применим приближения $\sin(\alpha-\varphi)\approx\alpha-\varphi$ и $\cos\varphi=\sin(\pi/2-\varphi)\approx\pi/2-\varphi$. Уравнение (6) примет вид

$$\alpha - \varphi = \frac{gl}{2v_0^2 \cos \alpha} \left(\frac{\pi}{2} - \varphi\right)^2,$$

которое легко привести к виду

$$q\varphi^2 - \varphi (q\pi - 1) + \left(\frac{q\pi^2}{4} - \alpha\right) = 0, \quad q = \frac{gl}{2v_0^2 \cos \alpha}.$$

Получили квадратное уравнение, корни которого

$$\varphi_{1,2} = \frac{1}{2q} \left(q\pi - 1 \pm \sqrt{(q\pi - 1)^2 - q\pi^2 + 4\alpha} \right).$$

Во всех случаях искомый корень — с плюсом перед радикалом (второй корень не подходит, так как он не соответствует примененным приближениям). В таблице представлены решения этого уравнения для всех случаев, представленных в условии, в порядке их перечисления. По сравнению с точным решением ошибка в угле $\Delta \varphi = 0.001^{\circ}$.

$\varphi,$ °	85,7915	85,7645	85,7517	85,7419	85,7326	85,7229	85,7126	85,7018	85,6907
85,6797	85,6695	85,6604	85,6528	85,6466	85,6416	85,6373	85,6328	85,6266	85,6151

Наилучшая величина для угла наклона горы — среднее этих величин³: $\overline{\varphi}=85,69^\circ$. По полученным данным можно утверждать, что гора имеет небольшую выпуклость вверх. Как и в предыдущем случае, высота горы равна $H=l_{19}\sin\varphi_{19}=94,7601$ м. В ответе приведем значение, полученное точным способом.

<u>Ответ</u>: Высота H = 94,76 м, форма близка к наклонной плоскости (с небольшой выпуклостью вверх), образующей угол $\overline{\varphi} = (85,636 \pm 0,004)^{\circ}$ с горизонтом.

³На самом деле правильно усреднять не углы, а их тангенсы, как это было сделано в первом случае.