

VinMin = 2.7V VinMax = 4.1V Vout = 3.3V Iout = 2.0A Device = TPS630242YFFR
Topology = Buck_Boost
Created = 2018-02-09 13:36:43.723
BOM Cost = \$1.58
BOM Count = 5
Total Pd = 1.14W

WEBENCH® Design Report

Design: 5175827/5 TPS630242YFFR TPS630242YFFR 2.7V-4.1V to 3.30V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	MuRata	GRM188R60J106ME47D Series= X5R	Cap= 10.0 uF ESR= 9.0 mOhm VDC= 6.3 V IRMS= 2.74 A	1	\$0.02	0603 5 mm ²
2.	Cout	MuRata	GRM31CR60J476ME19L Series= X5R	Cap= 47.0 uF ESR= 3.735 mOhm VDC= 6.3 V IRMS= 4.091 A	1	\$0.11	1206_190 11 mm ²
3.	Coutx	MuRata	GRM188R60J106ME47D Series= X5R	Cap= 10.0 uF ESR= 9.0 mOhm VDC= 6.3 V IRMS= 2.74 A	1	\$0.02	0603 5 mm ²
4.	L1	Vishay-Dale	IHLP1212BZER1R0M11	L= 1.0 μH DCR= 24.0 mOhm	1	\$0.56	IHLP-1212BZ 19 mm²
5.	U1	Texas Instruments	TPS630242YFFR	Switcher	1	\$0.87	YFF0020AEBA 9 mm²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	84.188 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	1.141 A	Current	Output capacitor RMS ripple current
3.	Coutx IRMS	168.654 mA	Current	Output capacitor_x RMS ripple current
4.	IC lpk	3.0 A	Current	Peak switch current in IC
5.	lin Avg	2.866 A	Current	Average input current
6.	L lpp	291.64 mA	Current	Peak-to-peak inductor ripple current
7.	BOM Count	5	General	Total Design BOM count
8.	FootPrint	48.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	2.5 MHz	General	Switching frequency
10.	Mode	BOOST PWM CCM	General	PWM/PFM Mode
11.	Pout	6.6 W	General	Total output power

#	Name	Value	Category	Description
12.	Total BOM	\$1.58	General	Total BOM Cost
13.	Duty Cycle	30.023 %	Op_point	Duty cycle
14.	Efficiency	85.29 %	Op_point	Steady state efficiency
15.	IC Tj	80.712 degC	Op_point	IC junction temperature
16.	ICThetaJA	53.8 degC/W	Op_point	IC junction-to-ambient thermal resistance
17.	IOUT_OP	2.0 A	Op_point	lout operating point
18.	VIN_OP	2.7 V	Op_point	Vin operating point
19.	Vout p-p	7.237 mV	Op_point	Peak-to-peak output ripple voltage
20.	Cin Pd	63.789 μW	Power	Input capacitor power dissipation
21.	Cout Pd	0.0 W	Power	Output capacitor power dissipation
22.	Coutx Pd	0.0 W	Power	Output capacitor_x power loss
23.	IC Pd	942.594 mW	Power	IC power dissipation
24.	L Pd	195.64 mW	Power	Inductor power dissipation
25.	Total Pd	1.138 W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	2.0	Maximum Output Current
2.	VinMax	4.1	Maximum input voltage
3.	VinMin	2.7	Minimum input voltage
4.	Vout	3.3	Output Voltage
5.	base_pn	TPS630242	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. TPS630242 Product Folder: http://www.ti.com/product/TPS630242: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.