Московский физико-технический институт

Вопрос по выбору по курсу «Основы современной физики»

SIS переход

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

1 Теория

1.1 Туннельные эффекты в сверхпроводниках

1.1.1 Принцип измерения

Наиболее прямое измерение энергетической щели в сверзпроводниках может быть проведено с помощью туннелных экспериментов.

- На стеклянную пластинку, с подготовленными контактами наносится узкая полоска пленки первого металла.
- Далее эта полоска окисляется и покрывается слоем изолирующего окисла толщиной ~ 10 ангерем.
- В поперечном направлении наносится узкая полоска пленки второго металла.

Место пересечения полосок ($S \sim 1 \text{ мм}^2$) и представляет собой туннелоный переход.

1.1.2 Туннельные характеристики

Случай T=0. Туннельный ток может возникнуть только тогда, когда к туннельному переходу будет приложено напряжение $V>(\Delta_1-\Delta_2)/e$, как видно из рис.1. Электронная пара в S_1 разрывается, один электрон туннелирует в S_2 с выделением энергии $\geq \Delta_1$. Второй электрон, поглащая эту энергию позбуждается в состояния спектра квазичастиц S_1 .

Рис. 1: Энергетические диаграммы для туннельного перехода $S_1IS_2,\ T=0$

Случай $T \neq 0$. Теперь в каждом из сверхпроводников имеется некое кол-во возбужденных одиночных электронов, равновесное кол-во которых определяется температурой.

Диаграммы изображены на рис. 3. Количеством точек указано количество возбуждений в данном состоянии. Если V=0, то не смотря на разные щели $\Delta_1 \neq \Delta_2$, кол-во возбуждений на противополжных уровнях в S_1 и S_2 будет одинаково. Кол-во туннелирующих из S_1 в S_2 и обратно буде одинаковым, как в равновесном процессе I=0.

Если приложить небольшое напряжение V, то равновесие нарушиться и возникнет ток квазичастиц. Плотность стостояний квазичастиц в сверхпроводнике имеет особенность при $E=\Delta$. Если приложить к переходу разность потенциалов $V: eV=\Delta_1-\Delta_2$, то друг против друга окажуться области с плотностью состояний $\rho=\infty$. Это вывовет **«всплеск»** туннельного тока, дальнейшее увеличение V приведет к уменьшению тока, т.к уровни разойдутся. Отсюда, в точке $V=(\Delta_1-\Delta_2)/e$ будет максимум тока. рис. 2

Рис. 2: Сверхпроводящие и квазичастичные ветви ВАХ у S_1IS_2 перехода для T=0 и $T\neq 0$.

Рис. 3: Туннелирование между двумя сверхпроводниками при $T \neq 0$: **a)** V = 0, концентрация возбуждений с одинаковой энергией S_1 , S_2 одинакова, поэтому I = 0; **б)** $eV = \Delta_1 - \Delta_2$, ток обусловлен переходом возбужденных частиц из S_2 в S_1 ; **в)** $eV = -(\Delta_1 - \Delta_2)$, возбужденная частица переходит из S_1 в S_2 (1), объединившись с электронами в S_2 , она образует пару и попадает на основной уровень (2), выделившейся энергии $2\Delta_1$, достаточно для разрыва пары в S_1 (3).

1.2 Спектр элементарных возбуждений сверхпроводника

1.2.1 Энергетическая щель

Возьмем пару состояний $(\mathbf{q}, -\mathbf{q})$ в импульсном пространстве сверхпроводника в основном состоянии. Эта пара вносит вклад в полную энергию w_p