Исследование явления осмоса на базе лабораторного стенда и расчёт зависимостей

Нестеров И.Д.

Содержание

Введение	2
Осмос	2
Осмотическое давление	3
Осмотические поток	3
Ход работы	4
Растворы	4
Установка	4
Наблюдения	6
Обработка данных	8
Результаты и Выводы	8

Введение

Цель работы: Ознакомиться и научиться проводить исследования осмотических процессов в частности провести расчёты осмотического давления и осмотического потока, используя законы Фика.

Осмос

Осмос — частный случай диффузии. Другими словами, это диффузия воды через полупроницаемую мембрану вниз по градиенту концентрации, когда растворенное вещество не может диффундировать через мембрану, а вода может, если мембрана проницаема для воды, но не для растворенного вещества, вода будет выравнивать свою собственную концентрацию путем диффундирования в сторону с более низкой концентрацией воды.

- Вода считается универсальным растворителем она связывает и растворяет полярные или заряженные молекулы (растворённые вещества)
- Поскольку растворённые вещества не могут проникнуть через клеточную мембрану без посторонней помощи, вода будет перемещаться, чтобы уравнять оба раствора
- При более высокой концентрации растворённого вещества в растворе меньше свободных молекул воды, поскольку вода связана с растворённым веществом

Осмотическое давление

Осмотическое давление можно определить как минимальное давление, которое необходимо приложить к раствору, чтобы остановить поток молекул растворителя через полупроницаемую мембрану (осмос). Это коллигативное свойство, которое зависит от концентрации частиц растворенного вещества в растворе. Поэтому, по Вант-Гоффу, для вычисления осмотического давления можно воспользоваться уравнением Менделеева-Клапейрона:

$$P = \frac{m}{MV}RT = CRT\tag{1}$$

где C — молярная концентрация растворенного вещества в растворе, R — универсальная газовая постоянная, T — температура, m — масса растворенного вещества, V — объем раствора, M — молярная масса растворенного вещества.

Осмотический поток

Для расчёта потока используем стандартную формулу для диффузного потока, однако с учетом того, что осмос является односторонним процессом диффузии, где движущая жидкость является вода, интерпретируя закон Фика под эту цель.

Первый закон Фика:

$$J = -D\frac{dC}{dx} \tag{2}$$

где D - коэффициент диффузии, $\frac{dC}{dx}$ - градиент концентрации вещества.

Коэффициент диффузии можно рассчитать как:

$$D = \frac{m_{\text{H}_2\text{O}} \cdot \Delta V \cdot \rho_{\text{H}_2\text{O}}}{M_{\text{H}_2\text{O}} \cdot S \cdot t}$$
 (3)

где $m_{\rm H_2O}$ - масса воды, ΔV - какой-то объём, $\rho_{\rm H_2O}$ - плотность воды, $M_{\rm H_2O}$ - молярная масса воды, S - площать какого-то сечения, t - время чего-то.

Подставив (3) в (2) и немного пренебрегая точностью расчётов, получим уравнение для осмотического потока:

$$J = -\frac{m_{\text{H}_2\text{O}} \cdot \Delta V \cdot \rho_{\text{H}_2\text{O}} \cdot |C_1 - C_2|}{M_{\text{H}_2\text{O}} \cdot L} \tag{4}$$

Ход работы

Растворы

Было приготовлено два раствора ${\rm CuSO_4\cdot 5\,H_2O}$ с разными концентрациями. Концентрация первого раствора составляла 10%, второго - 20%.

Установка

Для наблюдения и демонстрации осмотических процессов идеально подходит камера для осмоса и электрохимии. В обычной форме устройство имеет две стеклянные концевые камеры и двух резиновых уплотнительных колец, соединенных с помощью фланцевого держателя. Все камеры располагают стеклянную короткую трубку с резьбой GL25, на которую можно накрутить винтообразную крышку с кольцом уплотнения (25/8 мм). Экспериментируя с осмосом, стеклянные капиллярные трубки вставляют в эти соединительные крышки.

Чтобы собрать двухкамерное устройство, Необходимо расположить подходящую полупроницаемую мембрану, изготовленную из целлофана, между двумя уплотнительными кольцами, а затем скрепить вместе две камеры прямоугольный зажимом, вместе с уплотнительными кольцами.

Характеристики компонентов:

- \bullet Внутренний диаметр камеры: $D_i \approx 3$ см
- Диаметр фланца: $D_o=4.7~{\rm cm}$
- Толщина фланца: $d_o=1$ мм
- Длина сегмента: $L \approx 90$ мм
- Высота: $H \approx 85$ мм
- ullet Объём одного сегмента: $V \approx 65$ мл

Наблюдения

После сбора установки и начала эксперимента каждые 5 минут производились измерения высоты столбцов с растворами.

Динамика высоты жидкости в первом сосуде, в котором концентрация составляла 10%:

Динамика высоты жидкости во втором сосуде, в котором концентрация составляла 20%:

Обработка данных

В соответствии с формулой (1) были вычислены значения осмотического давления в течение эксперимента.

Зависимость осмотического давления от времени отражена на графике ниже.

Результаты и Выводы