Deep Learning - Theory and Practice

IE 643 Lectures 5, 6

August 11 & 14, 2025.

- Recap
 - Perceptron Convergence

2 Moving on from Perceptron

- Multi Layer Perceptron
 - MLP-Data Perspective

Recap: Convergence of Perceptron Training

Perceptron Convergence - Separability Assumption

Linear Separability Assumption

Let $D=\{(x^t,y^t)\}_{t=1}^\infty$ denote the training data where $x^t\in\mathbb{R}^d$, $y^t\in\{+1,-1\}$, $\forall t=1,2,\ldots$ Then there exist $\mathbb{R}^d\ni w^*\neq 0,\ \gamma>0$, such that:

$$\langle w^*, x^t \rangle > \gamma$$
 where $y^t = 1$, $\langle w^*, x^t \rangle < -\gamma$ where $y^t = -1$.

Perceptron Convergence - Separability Assumption

Linear Separability Assumption

Let $D=\{(x^t,y^t)\}_{t=1}^\infty$ denote the training data where $x^t\in\mathbb{R}^d$, $y^t\in\{+1,-1\}$, $\forall t=1,2,\ldots$ Then there exist $\mathbb{R}^d\ni w^*\neq 0,\ \gamma>0$, such that:

$$y^t \langle w^*, x^t \rangle > \gamma.$$

- We will try to derive useful bounds on the number of mistakes that a perceptron can commit during its training.
- Assumption on data: Linear Separability
- Assume that the T rounds of training have been completed in perceptron training. Assume T to be some large number.
- Assume that M mistakes are made by the perceptron in these T rounds. (Obviously, M ≤ T.)
- We ask if the number of mistakes M can be bounded by some suitable quantity.

Recall: Initially we got the lower bound for the inner product $\langle w^*, w^{T+1} \rangle$ as:

$$\langle \mathbf{w}^*, \mathbf{w}^{T+1} \rangle > M\gamma$$

Recall: We wanted to handle the inner product term:

$$\langle \mathbf{w}^*, \mathbf{w}^{T+1} \rangle > M\gamma$$

Recall: We wanted to handle the inner product term:

$$\langle \mathbf{w}^*, \mathbf{w}^{T+1} \rangle > M\gamma$$

Then using Cauchy-Schwarz inequality we had

$$M\gamma < \langle w^*, w^{T+1} \rangle \le ||w^*||_2 ||w^{T+1}||_2$$

Recall: We wanted to handle the inner product term:

$$\langle \mathbf{w}^*, \mathbf{w}^{T+1} \rangle > M\gamma$$

Then using Cauchy-Schwarz inequality we had

$$M\gamma < \langle w^*, w^{T+1} \rangle \le ||w^*||_2 ||w^{T+1}||_2$$

Using the bound $||w^{T+1}||_2^2 \le MR^2$ we obtain:

$$M^2 \gamma^2 < \|w^*\|_2^2 M R^2$$

$$\implies M < \frac{\|w^*\|_2^2 R^2}{\gamma^2}$$

Recall: We wanted to handle the inner product term:

$$\langle \mathbf{w}^*, \mathbf{w}^{T+1} \rangle > M\gamma$$

Then using Cauchy-Schwarz inequality we had

$$M\gamma < \langle w^*, w^{T+1} \rangle \le ||w^*||_2 ||w^{T+1}||_2$$

Using the bound $||w^{T+1}||_2^2 \le MR^2$ we obtain:

$$M^2 \gamma^2 < \|w^*\|_2^2 M R^2$$

$$\implies M < \frac{\|w^*\|_2^2 R^2}{\gamma^2}$$

Thus, assuming that $||w^*||_2$ and R can be controlled, the number of mistakes M is inversely proportional to γ^2 , which determines the closeness of the data points to the separating hyperplane.

- Not suitable when linear separability assumption fails
- Example: Classical XOR problem

- Not suitable when linear separability assumption fails
- Example: Classical XOR problem

Heavily criticized by M. Minsky and S. Papert in their book: **Perceptrons**, *MIT Press*, 1969.

- Not suitable when linear separability assumption fails
- Example: Classical XOR problem

$\overline{x_1}$	<i>x</i> ₂	$y=x_1\oplus x_2$	
0	0	-1	
0	1	1	
1	0	1	
1	1	-1	

- Not suitable when linear separability assumption fails
- Example: Classical XOR problem

x_1	<i>x</i> ₂	$y=x_1\oplus x_2$	$\hat{y} = \operatorname{sign}(w_1 x_1 + w_2 x_2 - \theta)$
0	0	-1	sign(- heta)
0	1	1	$sign(w_2 - \theta)$
1	0	1	$sign(\mathit{w}_1 - \theta)$
1	1	-1	$\operatorname{sign}(w_1 + w_2 - \theta)$

- Not suitable when linear separability assumption fails
- Example: Classical XOR problem

$$\begin{aligned} \operatorname{sign}(-\theta) &= -1 \implies \theta > 0 \\ \operatorname{sign}(w_2 - \theta) &= 1 \implies w_2 - \theta \ge 0 \\ \operatorname{sign}(w_1 - \theta) &= 1 \implies w_1 - \theta \ge 0 \\ \operatorname{sign}(w_1 + w_2 - \theta) &= -1 \implies -w_1 - w_2 + \theta > 0 \end{aligned}$$

Note: This system is inconsistent. (Homework!)

• Assume that the sample features $x \in \mathbb{R}^d$.

- Assume that the sample features $x \in \mathbb{R}^d$.
- Idea: Use a transformation $\psi: \mathbb{R}^d \to \mathbb{R}^q$, where $q \gg d$, to lift the data samples $x \in \mathbb{R}^d$ into $\psi(x) \in \mathbb{R}^q$ hoping to see a separating hyperplane in the transformed space.

- Assume that the sample features $x \in \mathbb{R}^d$.
- Idea: Use a transformation $\psi: \mathbb{R}^d \to \mathbb{R}^q$, where $q \gg d$, to lift the data samples $x \in \mathbb{R}^d$ into $\psi(x) \in \mathbb{R}^q$ hoping to see a separating hyperplane in the transformed space.
- Forms the core idea behind kernel methods. (Will not be pursued in this course!)

• **Idea:** The separating surface need not be linear and can be assumed to take some non-linear form.

- **Idea:** The separating surface need not be linear and can be assumed to take some non-linear form.
- Hence for an input space \mathcal{X} and output space \mathcal{Y} , the learned map $h: \mathcal{X} \to \mathcal{Y}$ can take some non-linear form.

- **Idea:** The separating surface need not be linear and can be assumed to take some non-linear form.
- Hence for an input space \mathcal{X} and output space \mathcal{Y} , the learned map $h: \mathcal{X} \to \mathcal{Y}$ can take some non-linear form.
- Forms the idea behind multi-layer perceptrons!

Some notations

- n_k^{ℓ} denotes k-th neuron at layer ℓ .
- a_k^ℓ denotes the activation of the neuron n_k^ℓ .

• Activation at neuron n_1^1 :

$$a_1^1 = \max\{px_1 + qx_2 + b_1, 0\}.$$

• Activation at neuron n_2^1 :

$$a_2^1 = \max\{rx_1 + sx_2 + b_2, 0\}.$$

• Activation at neuron n_1^2 :

$$a_1^2 = \operatorname{sign}(ta_1^1 + ua_2^1 + b_3).$$

• Activation at neuron n_1^2 :

$$a_1^2 = \operatorname{sign}(ta_1^1 + ua_2^1 + b_3).$$

• **Note:** The activation a_1^2 is the output of the network denoted by \hat{y} .

<i>X</i> ₁	<i>x</i> ₂	a_1^1	a_2^1	ŷ	у
0	0	$\max\{b_1,0\}$	$\max\{b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	-1
0	1	$\max\{q+b_1,0\}$	$\max\{s+b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	+1
1	0	$max\{p+b_1,0\}$	$\max\{r+b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	+1
1	1	$\max\{p+q+b_1,0\}$	$\max\{r+s+b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	-1

<i>x</i> ₁	<i>X</i> ₂	a_1^1	a_2^1	ŷ	у
0	0	$\max\{b_1,0\}$	$\max\{b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	-1
0	1	$\max\{q+b_1,0\}$	$\max\{s+b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	+1
1	0	$\max\{p+b_1,0\}$	$\max\{r+b_2,0\}$	$sign(\mathit{ta}_1^1 + \mathit{ua}_2^1 + \mathit{b}_3)$	+1
1	1	$\max\{p+q+b_1,0\}$	$\max\{r+s+b_2,0\}$	$sign(ta_1^1 + ua_2^1 + b_3)$	-1

Homework: Find weights $p, q, r, s, t, u, b_1, b_2, b_3$ such that the MLP solves the XOR problem.

A different Multi Layer Perceptron (MLP) architecture is given for XOR problem in:

David. E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams.
 Learning Internal Representations by Error Propagation,
 Technical Report, UCSD, 1985.

Multi Layer Perceptron

Multi Layer Perceptron

Notable features:

Notable features:

• Multiple layers stacked together.

- Multiple layers stacked together.
- Zero-th layer usually called input layer.

- Multiple layers stacked together.
- Zero-th layer usually called input layer.
- Final layer usually called output layer.

- Multiple layers stacked together.
- Zero-th layer usually called input layer.
- Final layer usually called output layer.
- Intermediate layers are called hidden layers.

Notable features:

• Each neuron in the hidden and output layer is like a perceptron.

- Each neuron in the hidden and output layer is like a perceptron.
- However, unlike perceptron, different activation functions are used.

- Each neuron in the hidden and output layer is like a perceptron.
- However, unlike perceptron, different activation functions are used.
- $\max\{x,0\}$ has a special name called **ReLU** (Rectified Linear **U**nit).

• This MLP contains an input layer L_0 , 2 hidden layers denoted by L_1 , L_2 , and output layer L_3 .

Recall:

- n_k^{ℓ} denotes k-th neuron at ℓ -th layer.
- a_k^ℓ denotes activation of neuron n_k^ℓ .

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• w_{ij}^{ℓ} denotes weight of connection connecting n_i^{ℓ} from $n_j^{\ell-1}$.

• In this particular case, the inputs are x_1 and x_2 at input layer L_0 .

- At layer L₁:
 - At neuron n_1^1 :
 - * $a_1^1 = \phi(w_{11}^1 x_1 + w_{12}^1 x_2)$.

- At layer L₁:
 - At neuron n_1^1 :
 - * $a_1^1 = \phi(w_{11}^1 x_1 + w_{12}^1 x_2) =: \phi(z_1^1)$.

- At layer L_1 :
 - At neuron n_2^1 :

- At layer L₁:
 - At neuron n_2^1 :
 - * $a_2^1 = \phi(w_{21}^1 x_1 + w_{22}^1 x_2) =: \phi(z_2^1)$.

• At layer L_1 :

$$\begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \begin{bmatrix} \phi(z_1^1) \\ \phi(z_2^1) \end{bmatrix} = \begin{bmatrix} \phi(w_{11}^1 x_1 + w_{12}^1 x_2) \\ \phi(w_{21}^1 x_1 + w_{22}^1 x_2) \end{bmatrix}$$

• Letting $W^1=\begin{bmatrix}w_{11}^1&w_{12}^1\\w_{21}^1&w_{22}^1\end{bmatrix}$ and $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$, we have at layer L_1 :

$$\begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \phi \left(\begin{bmatrix} z_1^1 \\ z_2^1 \end{bmatrix} \right) = \phi \left(\begin{bmatrix} w_{11}^1 x_1 + w_{12}^1 x_2 \\ w_{21}^1 x_1 + w_{22}^1 x_2 \end{bmatrix} \right) = \phi(W^1 x)$$

• Letting $a^1 = \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix}$, we have at layer L_1 :

$$a^1 = \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix} = \phi(W^1 x)$$

- At layer L_2 :
 - At neuron n_1^2 :
 - $\star \ a_1^2 = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1) \ .$

- At layer L_2 :
 - At neuron n_1^2 :
 - * $a_1^2 = \phi(w_{11}^2 a_1^1 + w_{12}^2 a_2^1) =: \phi(z_1^2)$.

- At layer L_2 :
 - At neuron n_2^2 :
 - $\star \ a_2^2 = \phi(w_{21}^2 a_1^1 + w_{22}^2 a_2^1) \ .$

- At layer L_2 :
 - At neuron n_2^2 :
 - * $a_2^2 = \phi(w_{21}^2 a_1^1 + w_{22}^2 a_2^1) =: \phi(z_2^2).$

• At layer L₂:

$$a^{2} = \begin{bmatrix} a_{1}^{2} \\ a_{2}^{2} \end{bmatrix} = \begin{bmatrix} \phi(z_{1}^{2}) \\ \phi(z_{2}^{2}) \end{bmatrix} = \begin{bmatrix} \phi(w_{11}^{2}a_{1}^{1} + w_{12}^{2}a_{2}^{1}) \\ \phi(w_{21}^{2}a_{1}^{1} + w_{22}^{2}a_{2}^{1}) \end{bmatrix}$$

• Letting $W^2 = \begin{bmatrix} w_{11}^2 & w_{12}^2 \\ w_{21}^2 & w_{22}^2 \end{bmatrix}$, we have at layer L_2 :

$$a^{2} = \begin{bmatrix} a_{1}^{2} \\ a_{2}^{2} \end{bmatrix} = \phi \left(\begin{bmatrix} z_{1}^{2} \\ z_{2}^{2} \end{bmatrix} \right) = \phi \left(\begin{bmatrix} w_{11}^{2} a_{1}^{1} + w_{12}^{2} a_{2}^{1} \\ w_{21}^{2} a_{1}^{1} + w_{22}^{2} a_{2}^{1} \end{bmatrix} \right) = \phi \left(W^{2} \begin{bmatrix} a_{1}^{1} \\ a_{2}^{1} \end{bmatrix} \right)$$

• We have at layer L₂:

$$a^2 = \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix} = \phi\left(\begin{bmatrix} z_1^2 \\ z_2^2 \end{bmatrix}\right) = \phi\left(W^2 \begin{bmatrix} a_1^1 \\ a_2^1 \end{bmatrix}\right) = \phi(W^2 a^1)$$

- At layer L_3 :
 - At neuron n_1^3 :
 - $\star \ a_1^3 = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2) \ .$

- At layer L_3 :
 - At neuron n_1^3 :
 - * $a_1^3 = \phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2) =: \phi(z_1^3)$.

• At layer L_3 :

$$a^3 = [a_1^3] = [\phi(z_1^3)] = [\phi(w_{11}^3 a_1^2 + w_{12}^3 a_2^2)]$$

• Letting $W^3 = \begin{bmatrix} w_{11}^3 & w_{12}^3 \end{bmatrix}$, we have at layer L_3 :

$$a^3 = \left[a_1^3\right] = \phi\left(\left[z_1^3\right]\right) = \phi\left(\left[w_{11}^3 a_1^2 + w_{12}^3 a_2^2\right]\right) = \phi\left(W^3 \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix}\right)$$

• Letting $W^3 = \begin{bmatrix} w_{11}^3 & w_{12}^3 \end{bmatrix}$, we have at layer L_3 :

$$a^3 = \begin{bmatrix} a_1^3 \end{bmatrix} = \phi\left(\begin{bmatrix} z_1^3 \end{bmatrix}\right) = \phi\left(W^3 \begin{bmatrix} a_1^2 \\ a_2^2 \end{bmatrix}\right) = \phi(W^3 a^2)$$

$$a^3 = \phi(W^3 a^2)$$

Multi Layer Perceptron - More notations

$$a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1))$$

Multi Layer Perceptron - More notations

$$a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1)) = \phi(W^3 \phi(W^2 \phi(W^1 x)))$$

Multi Layer Perceptron - More notations

$$\hat{y} = a^3 = \phi(W^3 a^2) = \phi(W^3 \phi(W^2 a^1)) = \phi(W^3 \phi(W^2 \phi(W^1 x)))$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x)))$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Note: The same activation function ϕ was assumed for simplicity. Typically different activations functions are used for different layers. Then we can write:

$$\hat{y} = \phi_3(W^3\phi_2(W^2\phi_1(W^1x))) =: MLP(x)$$

where ϕ_1, ϕ_2 and ϕ_3 are activation functions for layers L_1, L_2 and L_3 respectively.

P. Balamurugan Deep Learning - Theory and Practice August 11 & 14, 2025. 78 / 96

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3\phi(W^2\phi(W^1x))) =: \mathsf{MLP}(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

Aim: To change the weights W^1, W^2, W^3 , such that the error $E(y, \hat{y})$ is minimized.

- 4 ロ b 4 個 b 4 差 b 4 差 b - 差 - 釣りで

Given data (x, y), multi layer perceptron predicts:

$$\hat{y} = \phi(W^3 \phi(W^2 \phi(W^1 x))) =: MLP(x)$$

Similar to perceptron, if $y \neq \hat{y}$ an error $E(y, \hat{y})$ is incurred.

Aim: To change the weights W^1, W^2, W^3 , such that the error $E(y, \hat{y})$ is minimized.

Leads to an error minimization problem.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○

- Input: Training Data $D = \{(x^s, y^s)\}_{s=1}^S$.
- For each sample x^s the prediction $\hat{y}^s = MLP(x^s)$.
- **Error:** $e^s = E(y^s, \hat{y}^s)$.
- Aim: To minimize $\sum_{s=1}^{S} e^{s}$.

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s}$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s)$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^S e^s = \sum_{s=1}^S E(y^s, \hat{y}^s) = \sum_{s=1}^S E(y^s, \mathsf{MLP}(x^s))$$

Optimization perspective

• Given training data $D = \{(x^s, y^s)\}_{s=1}^S$,

$$\min \sum_{s=1}^{S} e^{s} = \sum_{s=1}^{S} E(y^{s}, \hat{y}^{s}) = \sum_{s=1}^{S} E(y^{s}, MLP(x^{s}))$$

• Note: The minimization is over the weights of the MLP W^1, \ldots, W^L , where L denotes number of layers in MLP.

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

$$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2) = \frac{1}{1 + \exp(-[w_{11}^1 x_1 + w_{12}^1 x_2])}$$

Property of 0-1 sigmoid $\sigma: \mathbb{R} \to [0,1]$

- \bullet σ is continuous
- \bullet σ is monotonic

•
$$\sigma(z) \to \begin{cases} 0 & \text{if } z \to -\infty \\ 1 & \text{if } z \to +\infty \end{cases}$$

88 / 96

Let

$$D = \{(x^{1} = (-3, -3), y^{1} = 1), (x^{2} = (-2, -2), y^{2} = 1), (x^{3} = (4, 4), y^{3} = 0), (x^{4} = (2, -5), y^{4} = 0)\}.$$

90 / 96

• **Assume:** $Err(y, \hat{y}) = (y - \hat{y})^2$.

- **Assume:** $Err(y, \hat{y}) = (y \hat{y})^2$.
- Popularly called the squared error.

• Total error (or loss):

$$E = \sum_{i=1}^{4} e^{i} = \sum_{i=1}^{4} Err(y^{i}, \hat{y}^{i})$$

• Total error (or loss):

$$E = \sum_{i=1}^{4} \left(y^{i} - \frac{1}{1 + \exp\left(-\left[w_{11}^{1} x_{1}^{i} + w_{12}^{1} x_{2}^{i}\right]\right)} \right)^{2}$$

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹ペ

• Aim: To minimize the total error (or loss), which is

$$\min_{w_{11}^1, w_{12}^1} E = \sum_{i=1}^4 \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q @

Visualizing the loss surface:

<i>x</i> ₁	<i>X</i> ₂	у	$\hat{y} = \sigma(w_{11}^1 x_1 + w_{12}^1 x_2)$
-3	-3	1	$\sigma(-3w_{11}^1-3w_{12}^1)$
-2	-2	1	$\sigma(-2w_{11}^1-2w_{12}^1)$
4	4	0	$\sigma(4w_{11}^1+4w_{12}^1)$
2	-5	0	$\sigma(2w_{11}^1-5w_{12}^1)$

$$E = \sum_{i=1}^{4} \left(y^i - \frac{1}{1 + \exp\left(-\left[w_{11}^1 x_1^i + w_{12}^1 x_2^i\right]\right)} \right)^2$$