Linear Algebra HW2 Hill Cipher

TA 陳品翔、何卓耀, Oct, 6th, 2023

Outline

- Cryptography
- Hill Cipher
- Encoding
- Decoding
- How to hack?
- HW2 Description

- Some Tips
- Sample Outputs
- Grading Policy
- Colab Link
- Reference

Cryptography

Cryptography

Hill Cipher

- A simple cryptographic algorithm using matrix multiplication
- We have a letter set *S* and divide the plaintext into several groups (every group has *n* letters)
- In this homework, we choose following letter set (S = 31) and n = 3

A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	_		,	?	!
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Hill Cipher

• E.g. Plaintext is THIS_IS_AN_APPLE.

$$\Rightarrow$$
 THI S_I S_A N_A PPL E..

$$\Rightarrow \begin{bmatrix} 19 & 18 & 18 & 13 & 15 & 4 \\ 7 & 26 & 26 & 26 & 15 & 27 \\ 8 & 8 & 0 & 0 & 11 & 27 \end{bmatrix}$$

A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	_		,	?	!
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Encoding

- Public key (Encoding matrix) @ plaintext \equiv ciphertext (mod S)
- @ means matrix multiplication
- mod means modulo
- E.g. $35 \equiv 4 \pmod{31}$, $-3 \equiv 28 \pmod{31}$

Encoding

• Public key (Encoding matrix) @ plaintext \equiv ciphertext (mod S)

• E.g.
$$\begin{bmatrix} 4 & 9 & -2 \\ 3 & 5 & 7 \\ 1 & -6 & 11 \end{bmatrix} \begin{bmatrix} 19 & 18 & 18 & 13 & 15 & 4 \\ 7 & 26 & 26 & 26 & 15 & 27 \\ 8 & 8 & 0 & 0 & 11 & 27 \end{bmatrix}$$

$$\equiv \begin{bmatrix} 30 & 11 & 27 & 7 & 13 & 19 \\ 24 & 23 & 29 & 14 & 11 & 26 \\ 3 & 12 & 17 & 12 & 15 & 15 \end{bmatrix} \pmod{31}$$

Decoding

• Private key (Decoding matrix) @ ciphertext \equiv plaintext (mod S)

• E.g.
$$\begin{bmatrix} 18 & 27 & 3 \\ 7 & 21 & 2 \\ 5 & 9 & 15 \end{bmatrix} \begin{bmatrix} 30 & 11 & 27 & 7 & 13 & 19 \\ 24 & 23 & 29 & 14 & 11 & 26 \\ 3 & 12 & 17 & 12 & 15 & 15 \end{bmatrix}$$

$$\equiv \begin{bmatrix} 19 & 18 & 18 & 13 & 15 & 4 \\ 7 & 26 & 26 & 26 & 15 & 27 \\ 8 & 8 & 0 & 0 & 11 & 27 \end{bmatrix} \pmod{31}$$

Decoding

• Private key (decoding matrix) is the modular inverse of public key

• E.g.
$$\begin{bmatrix} 18 & 27 & 3 \\ 7 & 21 & 2 \\ 5 & 9 & 15 \end{bmatrix}$$
 is the modular inverse of $\begin{bmatrix} 4 & 9 & -2 \\ 3 & 5 & 7 \\ 1 & -6 & 11 \end{bmatrix}$

How to hack?

- Public key (Encoding matrix) @ plaintext \equiv ciphertext (mod S)
- Given a pair of plaintext and ciphertext, we can calculate ciphertext @ plaintext⁻¹ (mod *S*) to get public key
- Private key (Decoding matrix) @ ciphertext \equiv plaintext (mod S)
- If we get public key, we can get private key and decrypt other ciphertexts easily

Inverse

• The inverse of a matrix A is $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$

• For a 2 × 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\det(A) = ad - bc$, $\operatorname{adj}(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Inverse

Modular Inverse

• How to calculate 1/200 mod 31?

Ans: Since
$$200 \times 20 \equiv 1 \pmod{31}$$
, $1/200 \equiv 20 \pmod{31}$

• How to calculate inverse of a matrix A?

Ans:
$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$$

• If det(A) = 200, then $A^{-1} = 1/200 \times adj(A)$

Modular Inverse

• How to calculate modular inverse of a matrix A?

Ans:
$$A^{-1} \equiv \frac{1}{\det(A)} \operatorname{adj}(A) \pmod{S}$$

- If S = 31, det(A) = 200, then $A^{-1} \equiv 1/200 \times adj(A) \equiv 20 \times adj(A) \pmod{31}$
- How to calculate modular inverse in the homework?

Ans: We provide a function, mod_inv(), in colab

• Problem 1

Given a pair of ciphertext and public key, find the plaintext

• Problem 2

Given a pair of ciphertext and plaintext, find the public key first.

Besides, we provide a ciphertext encrypted with same public key, find

the plaintext

• Please download your own file (B11901XXX.txt) at this link

• After completing p1.py, p2.py and running HW2.ipnyb, you will get an answer text file (B11901XXXX_ans.txt)

• Archive p1.py, p2.py and B11901XXX_ans.txt in a folder (named B11901XXX_HW2), compress B11901XXX_HW2 into

B11901XXX_HW2.zip and upload to NTU Cool

```
B10901112_HW2

B10901112_ans.txt

p1.py

p2.py

0 directories, 3 files
```

Turn Key & Text into Matrix

- Please use numpy.reshape to turn key & text into matrix
- E.g. Key is 11 12 13 14 15 16 17 18 19

```
[[11,12,13], np.reshape (key, (3, 3)) \Rightarrow [14,15,16], [17,18,19]]
```

Turn Key & Text into Matrix

- Remember to transpose after reshaping text
- E.g. Plaintext is ABCDEFGHIJKLMNO

$$[[0,3,6,9,12],$$
np.reshape (plaintext, (-1, 3)).T \Rightarrow [1,4,7,10,13],
$$[2,5,8,11,14]]$$

Sample Outputs

```
IVXOVNEU_NG.THK
18 11 22 26 0 3 16 15 16

Z.XIAHKLM

EXCEPT_I_
GTKWUVQVV
```

```
B10901112

DAMN_IT_,_HENRY

30 0 30 9 14 5 9 7 6

GET_YOUR_
```

```
XB?WOCEG.?.KTYC
6 30 19 11 7 6 27 2 3

HZMM.PYBY
SO_WE_FAK
BQJVE.,G,
```

```
B10901112
WHYNOTJUSTGETA_
20 23 11 17 19 4 5 11 3
JUST_GET_
```

Grading Policy

- Total score of HW2: 100
- Problem 1 (p1.py) accounts for 40% of the total score
- Problem 2 (p2.py) accounts for 40% of the total score
- B11901XXX_ans.txt accounts for 10% of the total score
- Correct submission format accounts for 10% of the total score

Grading Policy

- No plagiarism and don't submit other's answer, or your grade will be 0 in this homework
- Date due: Nov. 3rd, 2023 (Fri.), 23:59 (GMT+8)
- Late submissions will get a penalty of 20% deduction per day
- No work will be accepted after three day past the due date

Colab Link

• https://colab.research.google.com/drive/1y-

5kN7O_h6JNRUPr5IqNvBEjl0iCyMqB?usp=drive_link

Reference

Colab of LA_2022_HW2

(https://colab.research.google.com/drive/17sROjCLCoxV897TSXWM

jEEm3QrSG3bdA?usp=sharing)

• PDF of LA_2022_HW2