efine

(i)	displacement,
	[1
(ii)	acceleration.
	[1

(b) A remote-controlled toy car moves up a ramp and travels across a gap to land on another ramp, as illustrated in Fig. 1.1.

Fig. 1.1

The car leaves ramp P with a velocity of $5.5\,\mathrm{m\,s^{-1}}$ at an angle θ to the horizontal. The horizontal component of the car's velocity as it leaves the ramp is $4.6\,\mathrm{m\,s^{-1}}$. The car lands at the top of ramp Q. The tops of both ramps are at the same height and are distance d apart. Air resistance is negligible.

(i) Show that the car leaves ramp P with a vertical component of velocity of $3.0\,\mathrm{m\,s^{-1}}$.

[1]

(ii) Determine the time taken for the car to travel between the ramps.

(iii) Calculate the horizontal distance *d* between the tops of the ramps.

d=	m	[1]	
•		Г.Л	

(iv) Calculate the ratio

kinetic energy of the car at its maximum height kinetic energy of the car as it leaves ramp P

- (c) Ramp Q is removed. The car again leaves ramp P as in (b) and now lands directly on the ground. The car leaves ramp P at time t = 0 and lands on the ground at time t = T.
 - On Fig. 1.2, sketch the variation with time t of the vertical component v_y of the car's velocity from t = 0 to t = T. Numerical values of v_y and t are not required.

Fig. 1.2

[2]