Zauważmy, że a_i to współczynnik stojący przy x^i w wyrażeniu $(1 + x + x^2 + x^3)^n$ (wystarczy wyłuskać x^i z obydwu stron zależności).

Zinterpretujmy sumę, którą mamy uprościć. Ta suma odpowiada współczynnikowi stojącemu przy x^k w wyrażeniu $(1+x+x^2+x^3)^n(1-x)^n$.

 a_{k-i} - współczynik stojący przy potędze x^{k-i} w wyrażeniu $(1+x+x^2+x^3)^n$ $\binom{n}{i}$ - wybór iiksów z $(1-x)^n$. Odpowiada to wartości bezwględnej współczynnika stojącego przy x^i w wyrażeniu $(1-x)^n$ $(-1)^i$ - znak współczynnika wyżej.

Przekształcając algebraicznie wyrażenie $(1+x+x^2+x^3)^n(1-x)^n$ otrzymujemy $(1-x^4)^n$. Współczynnik stojący przy x^i w tym wyrażeniu (a zarazem wartość sumy, jaką mamy uprościć) wyraża się jako:

$$f(i) = \begin{cases} 0 & 4 \nmid i \\ 1 & i = 1 \\ {\binom{n}{\frac{i}{4}}} (-1)^{\frac{i}{4}} & 4 \mid n \end{cases}$$