Lab 13 Autoencoder & GANs

DataLab

Department of Computer Science, National Tsing Hua University, Taiwan

13-1 Autoencoder

Autoencoder

Autoencoder without noise

Autoencoder

Autoencoder with noise

13-2 GAN Outline

• Reviewing GAN Structure

Loss Functions

• WGAN

• WGAN-GP (improved WGAN)

Architecture of Generative Adversarial Network (GAN)

Loss Functions

• Minimax Loss:

• For D: maximize $E_x[\log(D(x))] + E_z[\log(1 - D(G(z)))]$

• For G: minimize $E_x[\log(D(x))] + E_z[\log(1 - D(G(z)))]$

GAN's Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Fixed G, Train D
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

Fixed D, Train G

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D \left(G \left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Gradient Vanishing Issue in Generator's Loss

loss of
$$G = \max(E_{x \sim P_{data}}[\log(D(x))] + E_{\tilde{x} \sim P_{G}}[\log(D(\tilde{x}))])$$

$$\approx -2\log(2) + 2D_{JS}(P_{data}||P_{G})$$

Wasserstein GAN

Loss Function of Wasserstein GAN

- Minimax Loss:
 - For D: maximize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
 - For G: minimize $E_x[\log(D(x))] + E_z[\log(1 D(G(z)))]$
- Wasserstein Loss:
 - For D: maximize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$
 - For G: minimize $E_{x \sim P_x}[f_w(x)] E_{z \sim P_z}[f_w(G(z))]$

 $f_w \in K - Lipschitz functions$ for some K

Loss Functions

• Lipschitz continuity: a function $f: X \to Y$ is called **Lipschitz continuous** if there exists a real constant $K \ge 0$ such that, for all x_1 and x_2 in X

$$d_Y(f(x_1),f(x_2)) \leq K d_X(x_1,x_2)$$

• How to make the discriminator Lipschitz continuous?

Weight clipping – clip all weights in f_w into a certain range.

WGAN Algorithm

12: end while

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\rm critic} = 5$.

```
Require: : \alpha, the learning rate. c, the clipping parameter. m, the batch size.
     n_{\text{critic}}, the number of iterations of the critic per generator iteration.
Require: : w_0, initial critic parameters. \theta_0, initial generator's parameters.
 1: while \theta has not converged do
          for t = 0, ..., n_{\text{critic}} do
  2:
                Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
 3:
               Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
               g_w \leftarrow \nabla_w \left[ \frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]
 5:
               w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)
 6:
               w \leftarrow \text{clip}(w, -c, c)
          end for
 8:
          Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
          g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
          \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta})
```

Main Differences Between WGAN and GAN

The WGAN, compared to the first form of the original GAN, only has four changes:

- 1. The last layer of the discriminator removes the sigmoid.
- 2. The loss for both the generator and discriminator does not take the logarithm.
- 3. After updating the parameters of the discriminator, their absolute values are clipped to not exceed a fixed constant c.
- 4. Do not use momentum-based optimization algorithms (including momentum and Adam); RMSProp is recommended, SGD is also acceptable.

Clipping Issue

• In comparison with WGAN

WGAN-GP

• Instead of weight clipping, adding gradient penalty can also achieve Lipchitz continuity.

$$L = \underbrace{\mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_g} \left[D(\hat{\boldsymbol{x}}) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_r} \left[D(\boldsymbol{x}) \right]}_{\text{Original critic loss}} + \underbrace{\lambda \, \mathbb{E}_{\hat{\boldsymbol{x}} \sim \mathbb{P}_{\hat{\boldsymbol{x}}}} \left[(\|\nabla_{\hat{\boldsymbol{x}}} D(\hat{\boldsymbol{x}})\|_2 - 1)^2 \right]}_{\text{Our gradient penalty}}.$$

WGAN-GP's Algorithm

```
Algorithm 1 WGAN with gradient penalty. We use default values of \lambda=10, n_{\rm critic}=5, \alpha=0.0001, \beta_1=0, \beta_2=0.9.
```

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α, β_1, β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

```
1: while \theta has not converged do
              for t = 1, ..., n_{\text{critic}} do
  3:
                     for i = 1, ..., m do
                            Sample real data x \sim \mathbb{P}_r, latent variable z \sim p(z), a random number \epsilon \sim U[0,1].
  4:
  5:
                           \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1 - \epsilon)\tilde{\boldsymbol{x}}
 6:
                           L^{(i)} \leftarrow D_w(\tilde{\boldsymbol{x}}) - D_w(\boldsymbol{x}) + \lambda(\|\nabla_{\hat{\boldsymbol{x}}} D_w(\hat{\boldsymbol{x}})\|_2 - 1)^2
                     end for
                    w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
 9:
              end for
10:
              Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
              \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(z)), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```

WGAN-GP

Assignment

- Assignment requirements
 - Implementation of Improved WGAN (WGAN-GP) and train on CelebA.
 - Build dataset to read and resize image to 64×64 for training
 - Training loop(s) / routine(s) for GAN. Pre-trained models are not allowed.
 - Show at least 8×8 animated image of training and some best generated samples.
 - Draw the curve of discriminator loss and generator loss during training process in a single image.
 - Brief report about what you have done.

Assignment

Submission

- Upload notebook and attachments to google drive and submit the link to eeclass.
- Your notebook should be named after "Lab13_{student id}.ipynb".
- Deadline : 2022/12/14 23:59