What is Earned Value Management (EVM)?

Simply, it is a project monitoring and measurement system that establishes a clear relationship between planned accomplishments and actual accomplishments

 A method of integrating scope, schedule, and resources, and for measuring project performance.

• It compares the amount of work that was planned with what was actually earned with what was actually spent to determine if cost and schedule performance are as planned.

What is needed for EVM?

- A baseline plan
- A project budget (BAC Budget at Completion)
- A project end date
- Tasks are identified & scheduled
- Each task has a budget or effort (resource loaded / weighting)
- Actuals tracked

To perform EVM, three values need to be determined

- Planned Value (PV or BCWS) Budget Cost of Work Scheduled
- Actual Costs (AC or ACWP) Actual Cost of Work Performed
- Earned Value (EV or BCWP) Budgeted Cost of Work Performed

Planned Value (PV)

What are the budgeted costs of the work scheduled?

- •Time phased based on baseline budget
- •Only changes when baseline is changed
- •Also referred as "BCWS" & "BAC"

Actual Costs (AC)

What are the actual costs of the work performed?

- •Based on the actual completion of work packages
- Actual costs for reported work
- •Also referred as "ACWP"

Earned Value (EV)

What are the budgeted costs of the work performed?

- •Based on the actual completion of work packages
- Baseline value of the reported work
- Also referred as "BCWP"

Earned Value Management Example

Task – Drill & install 10 piezometers

- Budget \$100,000 (\$10K per piezometer)
- Time 10 weeks (1 piezometer per week)

At week 5:

- 4 piezometers drilled and installed
- \$47,500 spent to date

$$PV = $50,000$$

$$AC = $47,500$$

$$EV = $40,000$$

Calculating Earned Value and interpreting results

- to measure the progress of the project
- help identify trends
- forecast costs
- and identify ways to correct/mitigate project pitfalls.

Cost Variance (CV)

CV = EV - AC

- •Good News: If CV value is positive, the project is currently under budget (spending less than planned for the work)
- Bad News: If CV value is negative, the project is currently over budget (spending more than planned for the work)

Cost Performance Index (CPI)

CPI = EV/AC

- Good News: If CPI value is >1 or =1, the project cost trend is currently under or at planned budget
- Bad News: If CPI value <1, the project cost trend is currently over budget

$$CV\% = CV/EV$$

- •Good News: If CV% value is positive, the project is currently under budget by the CV%
- Bad News: If CV% value is negative, the project is currently over budget by the CV%

Schedule Variance (SV)

$$SV = EV - PV$$

- Good News*: If SV value is positive, the project is currently ahead of schedule
- •Bad News: If SV value is negative, the project is currently behind schedule

^{* -} not all positive SVs are good

Schedule Performance Index (SPI)

SPI = EV/PV

- Good News: If SPI value is >1 or =1, the project schedule trend is currently ahead or on planned schedule
- •<u>Bad News</u>: If SPI value <1, the project schedule trend is currently behind schedule

$$SV\% = SV/PV$$

- •Good News: If SV value is positive, the project is currently ahead of schedule
- •Bad News: If SV value is negative, the project is currently behind schedule

Estimate at Completion (EAC)

#1

Actual costs to date plus a new estimate for all remaining work (original plan no longer valid)

EAC = AC + ETC

(ETC | Estimate to Complete)

Estimate at Completion (EAC)

#2

Actual costs to date plus remaining budget (current variances are viewed as atypical of future variances)

EAC = AC + BAC - EV

Estimate at Completion (EAC)

#3 & #4

Actual costs to date plus remaining budget modified by a performance factor (CPI) (current variances are viewed as typical of future variances).

$$EAC = AC + [(BAC - EV) / CPI]$$

 $EAC = BAC / CPI$

Earned Value Management Example

Task – Drill & install 10 piezometers

- Budget \$100,000 (\$10K per piezometer)
- Time 10 weeks (1 piezometer per week)

At week 5:

- 4 piezometers drilled and installed
- \$47,500 spent to date

$$PV = $50,000$$
 $CV = -$7,500$ $SV = -$10,000$

$$AC = \$47,500$$
 $CPI = 0.82$ $SPI = 0.80$

$$EV = $40,000$$
 $CV\% = -19\%$ $SV\% = -20\%$

Monthly Project Status Report

SR999, Main Street Intersection Signal & Channelization

Dear Boss,

As of 5/30/04, we are 42% complete and have spent \$48,000.

Respectfully submitted,

John Doe, Project Manager

Monthly Project Status Report

SR999, Main Street Intersection Signal & Channelization

Dear Boss,

As of 5/30/04, we estimate that this project will be complete on 8/1/04, at a cost of \$100,000.

Respectfully submitted,

John Doe, Project Manager

Program Management Status Report

SR999, Main Street Intersection Signal & Channelization

Status as of 5/30/04

Planned expenditures to date are \$56,000
This is 56% of the project budget
Actual expenditures to date are \$48,000
This is 48% of the project budget
We estimate cost at completion of \$100,000

Respectfully Submitted, Jane Smith, Program Management

SR999, Main Street Intersection Signal & Channelization Schedule:

Current completion is 42% We estimate project completion on 8/1/04

Budget:

Expenditures to date are \$48,000 We estimate cost at completion of \$100,000

Respectfully submitted, John Doe, Project Manager

BAC = \$100,000 (current project budget)

EV = \$42,000 (42% of project completed, \$100,000 planned)

PV = \$56,000 (56% of project planned \$100,000 completed – initial aging report)

AC = \$48,000 (from actual expenditures reporting)

Is this project on schedule / budget?
Or is it in trouble?

```
Cost Variance (CV):
CV = EV - AC
   = $42,000 - $48,000
   = - $6,000
Cost Performance Index (CPI):
CPI = EV / AC
   = $42,000 / $48,000
   = 0.875
Cost Variance % (CV%):
CV\% = CV / EV
      = - $6,000 / $42,000
      = 14% OVER BUDGET
```

```
Schedule Variance (SV):
SV = EV - PV
   = $42,000 - $56,000
   = - $14,000
Schedule Performance Index (SPI):
SPI = EV / PV
   = $42,000 / $56,000
   = 0.750
Schedule Variance % (SV%):
SV\% = SV / PV
      = - $14,000 / $56,000
      = 25% BEHIND SCHEDULE
```

```
Estimate at Completion (EAC):
Method #1:
EAC = AC + ETC (say $68,000)
     = $48,000 + $68,000
     = $116,000
(Change Management for $16,000 funds
request)
Method #2:
EAC = AC + BAC - EV
     = $48,000 + $100,000 - $42,000
     = $106,000
(Change Management for $6,000 funds
request)
```

```
Estimate to Complete (ETC):
Method #3
EAC = AC + [(BAC - EV) / CPI]
     = $48,000 + [($100,000 - $42,000) / 0.875]
     = $48,000 + $66,285
     = $114,285
(Change Management for $14,285 funds
request)
Method #4
EAC = BAC / CPI
     = $100,000 / 0.875
     = $114,285
(Change Management for $14,285 funds
request)
```


Monthly Project Status Report

SR999, Main Street Intersection Signal & Channelization

Status as of 5/30/04:

 Planned Expenditures:
 \$56,000
 56%

 Progress (EV):
 \$42,000
 42%

 Actual Expenditures:
 \$48,000
 48%

CDT_0.75 CDT_0.075

SPI = 0.75 CPI = 0.875

Budgeted Cost at Completion: \$100,000

Estimated Cost at Completion: \$116,000*

Estimated Project Completion Date: 8/1/04

*(Change Management for the additional funds needed)

Respectfully submitted, John Doe, Project Manager

THANK YOU