Sistemas Digitais Multiplexadores e Demultiplexadores

Aula 09

Prof. Leandro Nogueira Couto UFU – Monte Carmelo 05/2013

E AND		A B S 0 0 0 0 1 0 1 0 0 1 1 1	Função E: Assume 1 quando todas as variáveis forem 1 e 0 nos outros casos.	S=A.B
OU OR		A B S 0 0 0 0 1 1 1 0 1 1 1 1	Função OU: Assume 0 quando todas as variáveis forem 0 e 1 nos outros casos.	S=A+B
NÃO NOT	->>-	A S 0 1 1 0	Função NÃO: Inverte a variável aplicada à sua entrada.	S=A
NE NAND		A B S 0 0 1 0 1 1 1 0 1 1 1 0	Função NE: Inverso da função E.	S=(A.B)
NOU NOR	→	A B S 0 0 1 0 1 0 1 0 0 1 1 0	Função NOU: Inverso da função OU.	S=(A+B)
OU EXCLUSIVO	#>-	A B S 0 0 0 0 1 1 1 0 1 1 1 0	Função OU Exclusivo: Assume 1 quando as variáveis assumirem valorem diferentes entre si.	$S = A \oplus B$ $S = \overline{A}.B + A.\overline{B}$
COINCIDÊN CIA	#>>-	A B S 0 0 1 0 1 0 1 0 0 1 1 1	Função Coincidência: Assume 1 quando houver coincidência entre os valores das	$S = A_{\odot}B$ $S = \overline{A}.\overline{B} + A.B$

Mux e Demux

- Multiplexador?
- Demultiplexador?

(Não é eletrodoméstico nem equipamento médico)

- Multiplexador: selecionar um dentre vários canais de informação
- Como vimos, com n variáveis booleanas podemos realizar 2ⁿ combinações
- Ex: com 1 bit seletor, podemos fazer Z = input A ou B

- Queremos que quando S0 = 0, Z = A. E quando S0 = 1, Z = B.
- Como fazer? Fazer tabela-verdade + Karnaugh

• Circuito seletor 2 entradas:

- E se quisermos selecionar entre 4 entradas?
- Podemos extrapolar e fazer um circuito seletor para quantas entradas quisermos:

 O que obtemos no fundo é um circuito do tipo chave seletora:

 Essa é a lógica utilizada para endereçamento de memória!

• FAT32:

Default Cluster size: 4096 Bytes (4KB)

Maximum disk size: 2 terabytes

Maximum file size: 4 gigabytes

Bits de endereçamento: 32

Maximum number of files on disk: 268,435,437 (aprox. 2^32 / 16)

Maximum number of files in a folder: 65,534 (2^16)

Projeto de circuito multiplexador:

Variáv Sele A	eis de ção B	Saida S
0	0	I ₀ -
0	1 -	I,
1	0	I ₂
1	1	I_3

Variáveis de Seleção:

Caso
$$0 \cdot (P_0 = \overline{A} \cdot \overline{B})$$

Caso
$$0.1(P_1 = \overline{A} \cdot B)$$

Caso 10
$$(P_2 = A \cdot \overline{B})$$

Situação na saída:

$$S = I_0$$

$$S = I_1$$

$$S = I_2$$

$$S = I_3$$

 Chamamos o circuito que resolve esse problema, para quantas variáveis forem necessárias, de "Gerador de Produtos Canônicos"

Na notação de blocos:

• Mux de 16 entradas:

- Outras formas de gerar multiplexador
- Matriz de encadeamento:

 Podemos também ampliar a capacidade de um mux com outros mux:

• Outro exemplo, Mux de 16 a partir de 2 Mux de 8:

• Program Counter, ou leitor sequencial de memória:

- O demultiplexador realiza tarefa inversa. Seleciona que saída receberá a entrada.
- Ex: internet discada

- O demultiplexador realiza tarefa inversa. Seleciona que saída receberá a entrada.
- Ex: internet discada

- O demultiplexador realiza tarefa inversa. Seleciona que saída receberá a entrada.
- Chave seletora de saída:

 Vamos fazer a tabela verdade para achar o circuito que realiza essa tarefa? Para 2 saídas.

 Vamos fazer a tabela verdade para achar o circuito que realiza essa tarefa? Para 2 saídas.

• Para 4 canais:

Vari A	ávcis B		Canais d	e Saida	1 1,
O	0	E	0	0	0
0 ,	1	0	E	0.	0
.1	0	. 0	0, -	E	Ο.
1	1	. 0	0	0	E

• Para 4 canais:

• Para 4 canais:

 Análogo ao Mux, podemos concatenar Demuxes pra fazer um Demux de maior capacidade:

