Image Processing 1 - Exercise 6 - WiSe 2012/13

Weipeng He 2he@informatik.uni-hamburg.de 6411529

November 26, 2012

1

 \mathbf{a}

The probability of a pixel to be one of the following is:

•	background	.9
•	black	$.1 \times .8 = .08$
•	yellow	$.1 \times .01 = .001$
•	blue	$.1 \times .12 = .012$
•	red	$.1 \times .05 = .005$
•	green	$.1 \times .02 = .002$

Therefore, the entropy of the documents would be:

$$\begin{split} H &= \sum P(g)log_2\frac{1}{P(g)} \\ &= .9 \times log_2\frac{1}{.9} + .08 \times log_2\frac{1}{.08} + .001 \times log_2\frac{1}{.001} + .012 \times log_2\frac{1}{.012} \\ &+ .005 \times log_2\frac{1}{.005} + .002 \times log_2\frac{1}{.002} \\ &= 0.57100 \end{split}$$

b

Design the Huffman code according to the Huffan code tree shown below :

Thus the codes for each pixel should be:

•	background	1
•	black	01
•	yellow	00000
•	blue	001
•	red	0001
•	green	00001

 \mathbf{c}

The average code word length is

$$\bar{L} = .9 \times 1 + .08 \times 2 + .001 \times 5 + .012 \times 3 + .005 \times 4 + .002 \times 5$$

= 1.1310

 \mathbf{d}

The redundancy of the 4-bit-code is

$$4 - H = 3.4290$$

2

Source code can be found in src/segment.py.

Original and segmented picture are as shown below:

