Big Data Management

Micha Kaiser

Learning objectives

- After this lecture you should...
 - ...understand how a decision tree for classification works
 - ...understand how a decision tree for regression works
 - ...understand how to acquire the data for your final project

Agenda

Decision tree for classification

Decision tree for regression

Various useful data sources

AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists	Errors	Salary	NewLeague
	293	66	1	30	29	14	1	293	66	1	30	29	14 A	E		446	33	20 NA	A
	315	81	7	24	38	39	14	3449	835	69	321	414	375 N	W		632	43	10	475 N
	479	130	18	66	72	76	3	1624	457	63	224	266	263 A	w		880	82	14	480 A
	496	141	20	65	78	37	11	5628	1575	225	828	838	354 N	E		200	11	3	500 N
	321	87	10	39	42	30	2	396	101	12	48	46	33 N	E		805	40	4	91.5 N
	594	169	4	74	51	35	11	4408	1133	19	501	336	194 A	w		282	421	25	750 A
	185	37	1	23	8	21	2	214	42	1	30	9	24 N	E		76	127	7	70 A
	298	73	0	24	24	7	3	509	108	0	41	37	12 A	W		121	283	9	100 A
	323	81	6	26	32	8	2	341	86	6	32	34	8 N	W		143	290	19	75 N
	401	92	17	49	66	65	13	5206	1332	253	784	890	866 A	E		0	0	0	1100 A
	574	159	21	107	75	59	10	4631	1300	90	702	504	488 A	E		238	445	22	517.143 A
	202	53	4	31	26	27	9	1876	467	15	192	186	161 N	w		304	45	11	512.5 N
	418	113	13	48	61	47	4	1512	392	41	205	204	203 N	E		211	11	7	550 N
	239	60	0	30	11	22	6	1941	510	4	309	103	207 A	E		121	151	6	700 A
	196	43	7	29	27	30	13	3231	825	36	376	290	238 N	E		80	45	8	240 N
	183	39	3	20	15	11	3	201	42	3	20	16	11 A	W		118	0	0 NA	A
	568	158	20	89	75	73	15	8068	2273	177	1045	993	732 N	W		105	290	10	775 N
	190	46	2	24	8	15	5	479	102	5	65	23	39 A	W		102	177	16	175 A
	407	104	6	57	43	65	12	5233	1478	100	643	658	653 A	W		912	88	9 NA	A
	127	32	8	16	22	14	8	727	180	24	67	82	56 N	W		202	22	2	135 N
	413	92	16	72	48	65	1	413	92	16	72	48	65 N	E		280	9	5	100 N
	426	109	3	55	43	62	1	426	109	3	55	43	62 A	W		361	22	2	115 N
	22	10	1	4	2	1	6	84	26	2	9	9	3 A	W		812	84	11 NA	A
	472	116	16	60	62	74	6	1924	489	67	242	251	240 N	W		518	55	3	600 N
	629	168	18	73	102	40	18	8424	2464	164	1008	1072	402 A	E		1067	157	14	776.667 A

Source: https://gist.github.com/keeganhines/59974flebef97bbaa44fb19143f90bad#file-hitters-csv

Numeric!

AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists	Errors	Salary	NewLeague
	293	66	1	30	29	14	1	293	66	1	30	29	14 A	E		446	33	20 NA	А
	315	81	7	24	38	39	14	3449	835	69	321	414	375 N	w		632	43	10	475 N
	479	130	18	66	72	76	3	1624	457	63	224	266	263 A	w		880	82	14	480 A
	496	141	20	65	78	37	11	5628	1575	225	828	838	354 N	E		200	11	3	500 N
	321	87	10	39	42	30	2	396	101	12	48	46	33 N	E		805	40	4	91.5 N
	594	169	4	74	51	35	11	4408	1133	19	501	336	194 A	w		282	421	25	750 A
	185	37	1	23	8	21	2	214	42	1	30	9	24 N	E		76	127	7	70 A
	298	73	0	24	24	7	3	509	108	0	41	37	12 A	w		121	283	9	100 A
	323	81	6	26	32	8	2	341	86	6	32	34	8 N	w		143	290	19	75 N
	401	92	17	49	66	65	13	5206	1332	253	784	890	866 A	E		0	0	0	1100 A
	574	159	21	107	75	59	10	4631	1300	90	702	504	488 A	E		238	445	22 5	17.143 A
	202	53	4	31	26	27	9	1876	467	15	192	186	161 N	w		304	45	11	512.5 N
	418	113	13	48	61	47	4	1512	392	41	205	204	203 N	E		211	11	7	550 N
	239	60	0	30	11	22	6	1941	510	4	309	103	207 A	E		121	151	6	700 A
	196	43	7	29	27	30	13	3231	825	36	376	290	238 N	E		80	45	8	240 N
	183	39	3	20	15	11	3	201	42	3	20	16	11 A	W		118	0	0 NA	A
	568	158	20	89	75	73	15	8068	2273	177	1045	993	732 N	W		105	290	10	775 N
	190	46	2	24	8	15	5	479	102	5	65	23	39 A	W		102	177	16	175 A
	407	104	6	57	43	65	12	5233	1478	100	643	658	653 A	W		912	88	9 NA	A
	127	32	8	16	22	14	8	727	180	24	67	82	56 N	W		202	22	2	135 N
	413	92	16	72	48	65	1	413	92	16	72	48	65 N	E		280	9	5	100 N
	426	109	3	55	43	62	1	426	109	3	55	43	62 A	W		361	22	2	115 N
	22	10	1	4	2	1	6	84	26	2	9	9	3 A	W		812	84	11 NA	A
	472	116	16	60	62	74	6	1924	489	67	242	251	240 N	W		518	55	3	600 N
	629	168	18	73	102	40	18	8424	2464	164	1008	1072	402 A	E		1067	157	14 7	76.667 A

Roughly speaking, there are two steps of building a regression tree:

- 1. We divide the predictor into J distinct and non-overlapping regions, R_1 , R_2 , R_3 ,..., R_J by *recursive binary splitting*
- 2. For every observation that falls into Region R_J we make the same prediction, which is simply the mean of the response values for the training observations in R_J

The main goal is to minimize the RSS: $\sum \sum (y_i - \hat{y}_{R_j})^2$

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Advantages:

- It is easy to interpret and easy to explain to people
- Some people believe that decision trees more closely mirror human decision-making
- Has a nice graphical representation
- Perform well if the underlying data generating process is complex and highly non-linear
- Disadvantages
 - Overfitting (if not pruned) and hence poor performance on the test data
 - Oversimplification

Decision tree for classification

- Classification trees are very similar to regression trees
- Instead of predicting a quantitative response we predict a qualitative response
- Instead of minimizing the RSS we want to minimize
 - The classification error rate
 - The Gini index
 - The entropy
- Here, \hat{p}_{mk} presents the proportion of training observations in the mth region that are from the kth class

$$E = 1 - \max_{k} (\hat{p}_{mk})$$

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Decision tree for classification

Small example

ID	Α	В	С	Classification
1	Т	Т	Т	F
2	Т	T	Т	Т
3	Т	F	F	F
4	F	Т	Т	Т
5	F	F	Т	Т

Decision tree for classification

1. Entropy before first split:

$$H(T) = -\frac{3}{5} * log_2\left(\frac{3}{5}\right) - \frac{2}{5} * log_2\left(\frac{2}{5}\right) = 0.971$$

2. The conditional entropy of split 1 at A:

$$H(T|A) = \frac{3}{5} * \left(-\frac{1}{3} * log_2\left(\frac{1}{3}\right) - \frac{2}{3} * log_2\left(\frac{2}{3}\right) \right) + \frac{2}{5} * \left(-1 * log_2(1) \right) = 0.551$$

3. Calculate information gain:

$$IG(T, A) = H(T) - H(T|A) = 0.42$$

4. Repeat these steps for all candidate splits and pick the one with the highest information gain

Various useful data sources

- www.kaggle.com
- Online community for data scientists
- All kind of data sets, covering various topics

Various useful data sources

Survey data - examples

- German Socio Economic Panel (GSOEP)
- British Household Panel Survey (BHPS)
- Panel Study of Income Dynamics (PSID)
- Household, Income and Labor Dynamics (HILDA)
- Korean Labor and Income Panel Study (KLIPS)
- Russian Longitudinal Monitoring Survey (RLMS)
- Swiss Household Panel (SHP)
- ...and many more...

Various useful data sources

Public data/Census data/official statistics

- https://www.dst.dk/en (Denmark)
- https://www.census.gov/ (USA)
- https://www.usa.gov/statistics (USA)
- https://www.destatis.de/EN/Home/_node.html
 (Germany)
- https://www.ons.gov.uk/census (UK)
- https://ec.europa.eu/eurostat/data/database (EU)

Literature

• James, Gareth, et al. *An introduction to statistical learning*. Vol. 112. New York: springer, 2013. **Chapter 8.1.**

