Table 1: Endogenous

Variable	Ŀ TEX	Description
Α	A	Productividad
$\mathtt{B}_{\mathtt{-}}\mathtt{star}$	B^{\star}	Deuda
$R_{ extsf{-}}$ star	i^{\star}	Tasa de interés externa
I	I	Inversión
Y	Y	Producción
С	C	Consumo
L	L	Trabajo
W	W	Salario
R_K	R^K	Renta del capital
T	au	Transferencias
NX	NX	Balanza comercial
K	K	Capital

Table 2: Exogenous

Variable	L TEX	Description
eps_A	ϵ^A	Choque de productividad
eps_T	ϵ^T	Choque de T

Table 3: Parameters

Variable	₽TEX	Description
ssigma	σ	sigma
bbeta	β	Factor de descuento
ddelta	δ	Depreciación del capital
aalpha	α	Parcipación del capital prod.
${\tt psi_l}$	ψ^L	psi
eta	η	${ m eta}$
rho_a	$ ho_A$	Persistencia de la productividad
$\mathtt{phi}_\mathtt{k}$	ϕ^K	Costo de ajuste del capital
${\tt rho_tau}$	$ ho_{ au}$	Persistencia de T
$\mathtt{phi}_{-}\mathtt{b}$	ϕ_B	Elasticidad de la deuda a la tasa
$Y_\mathtt{ss}$	Y	Y SS
$\mathtt{A}_{-}\mathtt{ss}$	A	Productividad de est. estacionario
B_ss	B	Deuda de est. estacionario
$T_{\mathtt{-}}ss$	T	T SS
R_star_ss	i^{\star}	Tasa de interés de est. estacionario

Table 4: Parameter Values

Parameter	Value	Description
σ	2.000	sigma
eta	0.980	Factor de descuento
δ	0.100	Depreciación del capital
α	0.300	Parcipación del capital prod.
ψ^L	1.000	psi
η	5.000	eta
$ ho_A$	0.750	Persistencia de la productividad
ϕ^K	0.100	Costo de ajuste del capital
$ ho_ au$	0.750	Persistencia de T
ϕ_B	-0.050	Elasticidad de la deuda a la tasa
Y	1.000	Y SS
A	1.000	Productividad de est. estacionario
B	-0.250	Deuda de est. estacionario
T	0.000	T SS
i^{\star}	0.100	Tasa de interés de est. estacionario

[name= 'Ley de acumuluación del capital']

$$I_{t} = K_{t} - (1 - \delta) K_{t-1} + \frac{\phi^{K}}{2} (K_{t} - K_{t-1})^{2}$$
(1)

[name= 'Oferta de trabajo']

$$\psi^L L_t^{\eta} = C_t^{(-\sigma)} W_t \tag{2}$$

[name= 'Ecuación de Euler']

$$C_t^{(-\sigma)} \left(1 + \phi^K \left(K_t - K_{t-1} \right) \right) = \beta C_{t+1}^{(-\sigma)} \left(1 - \delta + R^K_{t+1} - \phi^K \left(K_{t+1} - K_t \right) \right)$$
 (3)

[name= 'Demanda de bonos']

$$\left(\frac{C_{t+1}}{C_t}\right)^{\sigma} = \beta \left(1 + i^{\star}_{t+1}\right) \tag{4}$$

[name= 'Tasa de interés de la deuda']

$$i^{\star}_{t} = i^{\star} \exp\left(\phi_{B} \left(B^{\star}_{t} - B\right)\right) \tag{5}$$

[name= 'Función de producción']

$$Y_t = A_t K_{t-1}^{\alpha} L_t^{1-\alpha}$$
 (6)

[name= 'Demanda de capital']

$$R^{K}_{t} = \frac{Y_{t} \alpha}{K_{t-1}} \tag{7}$$

[name= 'Demanda de trabajo']

$$W_t = \frac{Y_t \ (1 - \alpha)}{L_t} \tag{8}$$

[name= 'Demanda agregada']

$$B^{\star}_{t} + I_{t} + C_{t} = Y_{t} + (1 + i^{\star}_{t}) B^{\star}_{t-1} + \tau_{t}$$

$$\tag{9}$$

[name= 'Productividad']

$$A_t = A_{t-1} \rho_A + A (1 - \rho_A) + \epsilon^A_{\ t}$$
 (10)

[name= 'Transferencias']

$$\tau_t = \tau_{t-1} \, \rho_\tau + T \, \left(1 - \rho_\tau \right) + \epsilon^T_{\ t} \tag{11}$$

[name= 'Exportaciones netas']

$$NX_t = Y_t - C_t - I_t \tag{12}$$

[name= 'Ley de acumuluación del capital']

$$I = K - K (1 - \delta) \tag{13}$$

[name= 'Oferta de trabajo']

$$\psi^L L^{\eta} = C^{(-\sigma)} W \tag{14}$$

[name= 'Ecuación de Euler']

$$C^{(-\sigma)} = C^{(-\sigma)} \beta \left(1 - \delta + R^K \right) \tag{15}$$

[name= 'Demanda de bonos']

$$1 = \beta \ (1 + i^*) \tag{16}$$

[name= 'Tasa de interés de la deuda']

$$i^* = i^* \exp\left(\phi_B \left(B^* - B\right)\right) \tag{17}$$

[name= 'Función de producción']

$$Y = A K^{\alpha} L^{1-\alpha} \tag{18}$$

[name= 'Demanda de capital']

$$R^K = \frac{Y \alpha}{K} \tag{19}$$

[name= 'Demanda de trabajo']

$$W = \frac{Y (1 - \alpha)}{L} \tag{20}$$

[name= 'Demanda agregada']

$$B^* + I + C = Y + (1 + i^*) B^* + \tau \tag{21}$$

[name= 'Productividad']

$$A = A \rho_A + A (1 - \rho_A) + \epsilon^A \tag{22}$$

[name = `Transferencias']

$$\tau = \tau \,\rho_{\tau} + T \,\left(1 - \rho_{\tau}\right) + \epsilon^{T} \tag{23}$$

 $[{\tt name=`Exportaciones\ netas'}]$

$$NX = Y - C - I \tag{24}$$