On-Chip Spiral Inductors for Silicon-Based Radio-Frequency Integrated Circuits

C. Patrick Yue

Center for Integrated Systems Stanford University, CA

Outline

- Overview
- A physical model for on-chip inductors
- Effects of process and layout parameters
- Design methodology
- Inductors with patterned ground shields
- Substrate noise coupling
- Conclusions

Worldwide Wireless Market

1996 Total: 87M

2000 Total: 300M

A Typical Cellular Phone

RF front-end component count:

Inductor Capacitor >100 Resistor >50 IC **Transistor 12** Crystal **Filter**

(Source: Bosch, 1997.)

Advantages of Integration

- Cost: assembly and packaging
- Power: fewer parasitics
- Design Flexibility: signals stay on chip
- Size
- Reliability
- Tolerance

Discrete Inductors

L: 2 to 20 nH(2 to 10%)

• Q: 50 to 200 (1 to 2 GHz)

	J	1	Н	G	F	20000 00		C Max.	1000000	A Max.
inch	.025	.025	.040	.034	.013	.030	.015	.040	.044	.071
mm	0,64	0,64	1,02	0,86	0,33	0,76	0,38	1,02	1,12	1,80

• srf: 4 to 10 GHz

(Source: Coilcraft, 1997.)

Active Inductors

- Excess Noise
- Extra Power
- Limited Linearity

$$L = \frac{C}{g_{m1}g_{m2}}$$

Bond Wire Inductors

Predictability

Unwanted Couplings

Repeatability

Limited Inductance

A Typical Planar Spiral Inductor

Multilevel Interconnects

(Source: Semiconductor International, 1997.)

A Typical Inductor On Silicon

Model Description

Model Description

Model Description

Physical Model of I	Effects	
	L _s : Greenhouse Method	Mutual Couplings
$C_{OX} C_{S} R_{S}$ $R_{Si} C_{Si} C_{Si} C_{S}$	$R_s = \frac{\rho \cdot I}{w \cdot \delta \cdot (1 - e^{-t/\delta})}$	Eddy Current
	$C_s = \mathbf{n} \cdot \mathbf{w}^2 \cdot \frac{\varepsilon_{ox}}{t_{ox M1-M2}}$	Feed-Through Capacitance
	$C_{ox} = \frac{1}{2} \cdot I \cdot w \cdot \frac{\epsilon_{ox}}{t_{ox}}$	Oxide Capacitance
	$C_{si} = \frac{1}{2} \cdot I \cdot w \cdot C_{Sub}$	Si Substrate Capacitance
	$R_{si} = \frac{2}{I \cdot w \cdot G_{Sub}}$	Si Substrate Ohmic Loss

Skin Effect

Effective Metal Thickness

Measurement Setup

Probe Station

Open Structure

Device Under Test

Parameter Extraction Procedure

Measured and Modeled Values of L_S and R_S

Substrate Modeling

Physical Model

Extracted Capacitance and Resistance

Measured and Modeled Values of Rp and Cp

Definition of Inductor Quality Factor

 $Q \ = \ 2\pi \frac{|Peak \ Magnetic \ Energy - Peak \ Electric \ Energy|}{Energy \ Loss \ in \ One \ Oscillation \ Cycle}$

$$\frac{\omega L_{s}}{R_{s}} \times \underbrace{\frac{R_{p}}{R_{p} + [(\omega L_{s}/R_{s})^{2} + 1] \cdot R_{s}}}_{R_{p} \times [(\omega L_{s}/R_{s})^{2} + 1] \cdot R_{s}} \times \underbrace{\left(1 - \frac{R_{s}^{2} (C_{p} + C_{s})}{L_{s}} - \omega^{2} L_{s} (C_{p} + C_{s})\right)}_{L_{s}}$$

Substrate Loss Factor

Self-Resonance Factor

Measured and Modeled Value of Q

Measured and Modeled Values of Substrate Factors

Comparison to Published Results

Effect of Metal Scheme on Q

Effect of Oxide Thickness on Q

Effect of Substrate Resistivity on Q

Effect of Layout Area on Q

Application of Model

Contour Plots of Q

Contour Plots of Q

Outline

- Overview
- A physical model for on-chip inductors
- Effects of process and layout parameters
- Design methodology
- Inductors with patterned ground shields
- Substrate noise coupling
- Conclusions

Overview

- Challenges
 - Q degraded by substrate loss
 - Substrate coupling
 - Modeling and characterization
 - Process constraints
- Approaches
 - Etch away Si substrate
 - Patterned Ground Shield

Suspended Inductors

Electromagnetic Fields of Conventional On-Chip Inductors

Problems with Solid Ground Shield

EM Fields of On-Chip Inductors with Patterned Ground Shield

Patterned Ground Shield Design

- Pattern
 - Orthogonal to spiral (induced loop current)
- Resistance
 - Low for termination of the electric field
 - Avoid attenuation of the magnetic field

Ground Strips

—— Slot between Strips

Induced Loop Current

Effect of Aluminum Ground Shields on L

Effect of Aluminum Ground Shields on R

Effect of Aluminum Ground Shields on C

Effect of Polysilicon Ground Shields on L

Effect of Polysilicon Ground Shields on R

Effect of Polysilicon Ground Shields on C

Circuit Models of On-Chip Inductors

Conventional Design

With Patterned Ground Shield

Effect of Aluminum Ground Shields on Q

Effect of Polysilicon Ground Shields on Q

Parallel LC Resonator at 2 GHz

Noise Coupling Measurement

Probe Station

Effect of Polysilicon GS on Isolation

A Single-Chip CMOS GPS Receiver

Conclusions

- A compact model for spiral inductors on silicon has been presented.
- Physical phenomena important to limitation and prediction of Q were investigated.
- Effects of various structural parameters on Q have been demonstrated.
- The scalable model can be used as a design tool for optimizing Q.

Conclusions on Patterned Ground Shield

- Improves Q by eliminating substrate loss (up to 33% at 1-2 GHz)
- Improves isolation by preventing substrate coupling (up to 25 dB at 1 GHz)
- Simplifies modeling
- Eliminates substrate dependency
- Requires no additional process steps

Acknowledgments

- Center for Integrated Systems Industrial Sponsors
- National Science Fundation (MIP-9313701)
- National Semiconductor FMA Fellowship (Dr. G. Li)

Acknowledgments

- Prof. Simon Wong
- Prof. Dwight Nishimura, Prof. Krishna Saraswat, and Prof. Robert Dutton
- Prof. Calvin Quate
- Prof. Tom Lee
- Rosanna Foster and Ann Guerra
- CIS and SNF Staff Members
- Friends
- Family