Bayes report

Esteban Quintana A01184855

Javier Rodríguez A01152572

The model is based on the probabilites of Graduating/Not Graduating this semester given different proyect conditions of each subject.

HUGIN LITE

Model

Probabilites

		Thesine A Graduate	Compilers
Thesine	Work Fast		Work Slow
HighGrad 0.8 LowGrade 0.2	0.6		
LowGrade 0.2	0.4		

Thesine	Work Fast			Work Slow				
Compilers	HighGrad	eOnProject	LowGrade	On Proyect	HighGrad	eOnProject	LowGrade	On Proyect
Al	HighGradeOnPr	LowGradeOnPro	HighGradeOnPr	LowGradeOnPro	HighGradeOnPr	LowGradeOnPro	HighGradeOnPr	LowGradeOnPro
Graduate	0.9	0.6	0.6	0.3	0.3	0.1	0.3	0
NotGradu	0.1	0.4	0.4	0.7	0.7	0.9	0.7	1

Tests

Bayes implementation

> \$ python3 bayes.py
Thesine,AI,Compilers,Graduate
13
+Thesine=0.5
+AI|+Thesine=0.8
+AI|-Thesine=0.6
8.11.4 [±m
8.11.4 [±

```
+Compilers|+Thesine=0.8
+Compilers | -Thesine=0.6
+Graduate|+Thesine,+Compilers,+AI=0.9
+Graduate|+Thesine,-Compilers,+AI=0.6
+Graduate|+Thesine,+Compilers,-AI=0.6
+Graduate|+Thesine,-Compilers,-AI=0.3
+Graduate|-Thesine,+Compilers,+AI=0.3
+Graduate | -Thesine, -Compilers, +AI=0.3
+Graduate|-Thesine,+Compilers,-AI=0.1
+Graduate|-Thesine,-Compilers,-AI=0.0
+AI
-Compilers
-Graduate | -Thesine, -Compilers, -AI
+Graduate|+Thesine,-Compilers,-AI
-Graduate | +Thesine, +Compilers, +AI
+Graduate|+Thesine,-Compilers,+AI
```

Result Comparison

Test	Result Hugin	Result Bayes
+AI	0.7	0.7
-Compilers	0.35	0.3
-Graduate -Thesine,-Compilers,-Al	1.0	1.0
+Graduate +Thesine,-Compilers,-Al	0.3	0.3
-Graduate +Thesine,+Compilers,+Al	0.1	0.1
+Graduate +Thesine,-Compilers,+Al	0.6	0.6

Hugin Tests

Category	Hugin Lite	Bayes implementation
User interface	Comprehensible interface	Command line
Queries	Through tables, using a UML alike system, in which every node has attributes with	Receives nodes as strings and parse it
	certain probability	through data structures

Intuition	Easy to use because of the interface. It shows graphically how the probabilities interact	Straight forward, only one string output	
Cost	Free, but includes more features when you pay for the complete version	Free. Lots of hours of work.	

Questions

What are the differences between what they generate?

Nothing, they generate the same results. Only changes that Hugin has a graphic interface.

Do they use the same algorithms?

Yes, they both use Bayes networks to calculate its output.

Which tool would you use for what cases in real life applications?

We would personally use our python algorithm, because it could be used in a lot of cases as an external library, receiving different input cases and returning the outputs in a straightforward way to complement other algorithms.

What are their common bases?

Both of them have the same base, they follow the rules to find the results in a Bayesian Probabilistic Network, and are able to provide accurate results according to the inputs.