dm25s1

Topic 05: Exploratory Data Analysis2

Part 01: EDA Pass3

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2025

Outline

- What is EDA Pass 3?
- Datasets = Tips, Titanic and Algae Blooms
- Identifying and resolving issues (missing value, outliers)

Data Mining (Week 5) Introduction Motivating Example Preparation Building Models Exploring Data 2 Data Handling Exploring Data 1 Prediction Regression Regression Classification ${\bf Classification}$ Clustering 2 Wrap up 2 of 32

EDA Pass3 — Summary

- 1. Review of previous week
- 2. Second Pass Individual Features and Target
- 2.1 Target
- 2.2 Individual Features
- 3. Third Pass Relationships Between Features and Target
- 3.1 Multi-relation Plots

Acknowledgment

A big thanks to Dr Kieran Murphy, who provided some of the slides for today's lecture.

Categorical vs Numerical Variables

Recall statistical *Levels of Measurement*

Туре	Drawn from	Examples	Used to		
Nominal	Finite Set, Unrelated	Manufacturers, Countries, Gender	Categorise with descriptive label		
Ordinal	Finite Set, Ordered	Size (S,M,L), Army Ranks, Satisfaction	Categorise with descriptive label		
Interval	Ordered, Differences matter	Exam Scores, Temperatures (Celsius)	Assign numeric score to		
Ratio	Ordered, Differences and ratios matter	Distance (m), Cost (\$), Temperatures (Kelvin)	Assign numeric score to		

Generally, *Nominal* and *Ordinal* are considered categorical, *Interval* and *Ratio* are considered Numerical

But what about a variable which contains *Months of the year*?

First Pass—Load Dataset and Initial Clean

Load dataset

- Typically either csv or more general "table" format
- Can be local file or url (read over network)

Check variables names

- Should be meaningful and distinct
- Avoid clashes with reserved words (python or statistical)

Verify variable types

- Convert strings to categories, possibly grouping, where possible
- Ensure numeric data is stored as number (watch out for "Unknown" etc.)

Identify (and possibly address) missing values

- Missing values by row or column
- Leave blank, impute value, drop row/column?

Second Pass — Individual Features and Target

- Categorical vs numerical target
- Categorical vs numerical features
- Identify (and possibly address) issues
- Relationship to target.

Is it usable?

Is it useful?

df.Survived.value_counts(normalize=True, dropna=False)

df.Survived.describe()

Survived

0 0.616162

1 0.383838

Name: proportion, dtype: float64

sns.countplot(x="Survived", data=df);

count 891 unique 2 top 0 freq 549

Name: Survived, dtype: int64

df.Survived.unique()

[0, 1] Categories (2, int64): [0, 1]

- Simplest classification problem (two classes) with both classes nearly equal frequency.
- In a unbalanced classification problem where the minority class occurs about 20% or lower, models can focus on the majority class.

Dataset: Algae Blooms, Target: a1,..., a7

```
targets = [c for c in df.columns if c[0]=="a"]
targets
['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']
```

plt.figure(figsize=(4,6))
sns.histplot(x="a6", data=df);

df[targets].describe()

	a1	a2	a 3	a4	a5	a6	a7
count	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000	198.000000
mean	16.996465	7.470707	4.334343	1.997475	5.115657	6.004545	2.487374
std	21.421713	11.065461	6.976788	4.439205	7.511846	11.711053	5.181536
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.525000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	6.950000	3.000000	1.550000	0.000000	2.000000	0.000000	1.000000
75%	24.800000	11.275000	4.975000	2.400000	7.500000	6.975000	2.400000
max	89.800000	72.600000	42.800000	44.600000	44.400000	77.600000	31.600000

All distributions are heavily skewed to the right, many with outliers (see next slide). All of the zero measurements are probably due to population levels too low to be measured.

Dataset: Algae Blooms, Target: a1,..., a7

```
fig, axs = plt.subplots(1, 7, figsize=(24,6))
for k, c in enumerate(targets):
    sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
    axs[k].set_xlabel(c)
```


The outliers are likely to be true measurements, but their presence can heavily influence the model training — common strategy is to fit two models (one with the case with target outliers and one without) to assess impact of outliers.

Individual Features

To keep this more manageable we will focus more on the Algae Blooms data set ...

	Season	Size	Speed	max_pH	[min_(O2 mean_(Cl mean_	_NO3_mean_NH4	l mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
4	<u> </u>		٠.	~ ~ ~	~ ~	0-0	40 440		= 0 00000	o= =oooo	10 = 00	^ ^	~ ~	

Sneak perview

- Three categorical variables Season, Size, and Speed.
 - No missing values
 - No high cardinality, and reasonable balanced.
- Eight numerical variables max_pH, ..., mean_Chlor
- Missing values present
- Some variables heavily skewed might need to transform.
- Possibility of features being interrelated multicollinearity try principal component analysis.

Dataset: Algae Blooms, Feature: Season, Target: a1

df.groupby("Season")["a1"].agg(["min","max","mean","count","std"])

	min	max		mean	count	std
Season			\bar{x}	n		σ
spring	0.0	89.8	16.6	549057	53	23.093786
summer	0.0	64.2	16.0	38636	44	17.920798
autumn	0.0	86.6	17.7	45000	40	21.611203
winter	0.0	81.9	17.4	198361	61	22.568256

- Countplot shows no issues with feature Season all levels approximately equally represented.
- Countplots show slightly less spread in a1 for Season="summer" observations.
- No/weak relationship between Season feature and a1 target.

Dataset: Algae Blooms, Feature: Size, Target: a1

df.groupby("Size")["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Size					
small	0.0	89.8	27.255714	70	24.895426
medium	0.0	86.6	11.267857	84	17.163124
large	0.0	56.8	11.611364	44	16.556123

- Countplot shows no issues with feature Size.
- Size="small" rivers have higher frequencies of a1 alga ((point) catplot), and observed frequencies for small rivers is much more widespread across the domain of frequencies than for other types of rivers (boxplot).

Dataset: Algae Blooms, Feature: Speed, Target: a1

df.groupby("Speed", observed=False)["a1"].agg(["min","max","mean","count","std"])

	min	max	mean	count	std
Speed					
low	0.0	58.7	9.209091	33	13.164758
medium	0.0	89.8	12.548148	81	21.146986
high	0.0	81.9	24.345238	84	22.209123

- Countplot shows no issues with feature Speed.
- Speed="high" rivers have average population of a1 alga ((point) catplot), and observed frequencies is much more widespread across the domain of frequencies than for other types of rivers (boxplot).

Categorical Variables — Dealing with Missing Values

In terms of our three datasets, only Titanic has missing values in categorical features:

- Location of cabin's missing values are important (1st class passengers were most likely to have a cabin) so add new category level "Unknown".
- Replace Embarked's 2 missing values with mode ("S", 644/891=72%).

 Note: Use df.Embarked.value_counts(dropna=False) to include missing values in count tables.

Numerical Variables — Dealing with Missing Values

In terms of our three datasets:

- In Titanic, feature Fare appears to have no missing values, but has 15 zero entries. Are these missing values? or free tickets due to age? ...
- In Algae Blooms, some of the 8 numeric features have NAs ... next few slides.

Dataset: Algae Blooms, Feature: max_ph

- Data is relatively normal minor issue with (left) outliers.
- Will replace (single) NA by mean

Dataset: Algae Blooms, Feature: mean_Chlor

- Data is not normal, heavily skewed to the right
- skew \Rightarrow mean is a poor representative of the central location.
- So will replace (single) NA by median, not the mean

df.mean_Chlor = df.mean_Chlor.fillna(df.mean_Chlor.median()

After Target and Individual Feature Pass — Where are we?

Tips `

- Reviewed each feature location, spread, shape, issues.
- No missing values
- total_bill, and total_tip have possible outliers.

Titanic >

- Reviewed each feature location, spread, shape, issues.
- Generated ToDo list for cleaning, feature extraction
 - Identified features that appear to be related to the target.
 - Feature age has missing values.
 - Feature Fare
 - has 15 measurements with value 0 decide missing value or not.
 - distribution has large outliers and is skewed remove/fix outliers and transform.
 - Feature Name has could be used to obtain new feature Title.
 - . . .

Algae Blooms

- Reviewed each feature location, spread, shape, issues.
- Imputed missing values using feature distributions (mean/median).
- Identified features that appear to be related to the target.

Aside: Steps needed to create new feature Title from feature Name

Third Pass — Relationships Between Features (and Target)

Correlations

We distinguish later between feature-feature and feature-target correlations

Categorical and Numerical variables

A Selection of Statistical Visualisations and Metrics

Categorical Variables — Relationship with (Numerical) Target

sns.countplot(x="Size", data=df);

• Shows the counts of observations in each categorical level using bar (height/width).

sns.catplot(x="Size", y="a4", data=df, kind='bar');

- Shows the average level (mean) and uncertainty (std) of the numerical target (a4) in each categorical level of the categorical variable.
- Vertical bar shows 95% confidence interval.

Is it useful?

Example — Dataset: Algae_Blooms, Feature: all numeric

```
fig, axs = plt.subplots(1, 8, figsize=(24,6))
for k, c in enumerate(df.columns[3:11]):
     sns.histplot(data=df, x=c, color="lightblue", ax=axs[k])
     axs[k].set_xlabel(c)
                                                                                              60
                                                                               80
                                60
                                                               70
                                                40
  40
                                                                                                              80
                                                                               70
                 40
                                                                                              50
                                                               60
                                 50
                                                                               60
  30
                                                               50
                                                                                              40
                                                                             50
40
               Count
Count
20
                              Count
                                              Count
20
                                                             Count
40
                                                                                                            Count
                                                                                            Count
00
                                                               30
                                                                               30
                                                                                              20
                                 20
                                                               20
                                                                               20
 10
                                                10
                                                                                                              20
                 10
                                                                                              10
                                10
                                                               10
                                                                               10
                                                                                0
                                          250
                                                                          20000
                                                                                           500
                                                                                                                           100
                                                         25
                                                                                                        500
        max pH
                       min O2
                                      mean_Cl
                                                     mean NO3
                                                                    mean NH4
                                                                                   mean oPO4
                                                                                                   mean PO4
                                                                                                                  mean Chlor
```

• Most features are heavily skewed, max_pH appears to be least skewed.

Example — Dataset: Algae_Blooms, Feature: all numeric

```
fig, axs = plt.subplots(1, 8, figsize=(24,6))
for k, c in enumerate(df.columns[3:11]):
     sns.boxplot(data=df, y=c, color="lightblue", ax=axs[k])
     axs[k].set_xlabel(c)
                                                                 25000
                                                                                                     800
                                  400
                                                                                               0
                                                             0
                                                                                                                0
                                            0
                                                                                                                                 0
          O
                                                                                                                      100
                                                                                                     700
                                  350
                                                                                                                                 0
                                                                                    500
                  12
                                                    40
                                                                 20000
  9
                                                                                               0
                                                                                                                0000
                                                                                                     600
                                  300
                                                                                               8
                                                                                                                       80
                  10
                                                                                    400
                                                 mean_NO3
                                                                                  mean_0P04
                                                                                                   mean PO4 1400 300
                                                                                                     500
                                                               mean NH4 10000
                                                                                                                    Chlor
                                  250
max_pH
∞
                                \overline{\Box}
                min_02
                               200
E 150
                                                                                                                       40
                                  100
                                                                                                     200
                                                    10
                                                                  5000
                   4
                                                                                    100
                                                                                                                       20
                                  50
                                                                                                     100
  6
          8
                                    0
                                                                                                                        0
                         min_O2
                                                         mean NO3
                                                                          mean NH4
                                                                                          mean oPO4
                                                                                                            mean PO4
                                                                                                                            mean Chlor
       max_pH
                                         mean Cl
```

- Outliers are much clearer. mean_NH4, mean_N03, and meanCL have clear outliers that need to be addressed.
- On the other hand features like mean_Chlor and mean_oP04 appear to follow a skewed distribution and need to be transformed.

Dataset: Algae Blooms, Feature: max_ph, Target: a1

Is there a relationship between feature max_pH and target a1?

(Pearson's) Correlation coefficient, *r*, measures the strength of a **linear** relationship between two numerical variables.

- near zero means no/weak linear relationship.
- near ± 1 zero means strong linear relationship.
- sign indicates direction of relationship

sns.lmplot(x="max_pH", y="a1", data=df);

- Correlation coefficient, r = -0.27, shows (at most) a weak negative linear relationship.
- No obvious relationship visible in scatter plot.

Correlations — Relationship Between two Variables

> Pearson's correlation coefficient,r >

is a measure of linear correlation between two variables. Its value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation.

> Spearman's rank correlation coefficient, ho

is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. Its value also lies between -1 and +1, with values near zero indicating no monotonic relation.

Kendall rank correlation coefficient, au

measures ordinal association between two variables. Its value lies between -1 and +1 with values near zero indicating no relation.

$$>$$
 Phi-k, ϕk

is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. Its value also lies between 0 and +1, with values near zero indicating no relation.

Pearson's Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=True) corr = df[columns].corr(numeric_o sns.heatmap(corr, square=True, vmin=-1, vmax=1, cmap=cmap);

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1
max_pH	1.000000	-0.167981	0.136369	-0.130762	-0.093521	0.158769	0.179885	0.445864	-0.268539
min_O2	-0.167981	1.000000	-0.278333	0.099444	-0.087478	-0.416163	-0.487486	-0.153265	0.285564
mean_Cl	0.136369	-0.278333	1.000000	0.225041	0.071913	0.391054	0.457449	0.149856	-0.371171
mean_NO3	-0.130762	0.099444	0.225041	1.000000	0.721444	0.144588	0.168601	0.139679	-0.241211
mean_NH4	-0.093521	-0.087478	0.071913	0.721444	1.000000	0.227237	0.208180	0.088947	-0.132656
mean_oPO4	0.158769	-0.416163	0.391054	0.144588	0.227237	1.000000	0.914365	0.115621	-0.417358
mean_PO4	0.179885	-0.487486	0.457449	0.168601	0.208180	0.914365	1.000000	0.253621	-0.487023
mean_Chlor	0.445864	-0.153265	0.149856	0.139679	0.088947	0.115621	0.253621	1.000000	-0.277987
a1	-0.268539	0.285564	-0.371171	-0.241211	-0.132656	-0.417358	-0.487023	-0.277987	1.000000

- Categorical variables are not included.
- Suggests best predictors for a1 are mean_P04, mean_oP04, and meanC1.
- mean_P04 and mean_oP04 are highly correlated (0.91) could use values of one to estimate missing values of the other.

Spearman's Rank Correlation Coefficient — Dataset: Algae Blooms

columns = df.columns[:12] corr

cmap = sns.diverging_palette(230, 20, as_cmap=T) corr = df[columns].corr(method='spearman', nume sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	r a1
max_pH	1.000000	-0.148676	0.159079	-0.145182	0.026160	0.290245	0.214569	0.394813	-0.247787
min_O2	-0.148676	1.000000	-0.405142	0.057610	-0.348226	-0.457805	-0.519786	-0.217714	0.283418
mean_Cl	0.159079	-0.405142	1.000000	0.530374	0.592052	0.670399	0.713479	0.564915	-0.546845
mean_NO3	-0.145182	0.057610	0.530374	1.000000	0.425010	0.432303	0.451272	0.346805	-0.382403
mean_NH4	0.026160	-0.348226	0.592052	0.425010	1.000000	0.603157	0.646690	0.406656	-0.449194
mean_oPO4	0.290245	-0.457805	0.670399	0.432303	0.603157	1.000000	0.914921	0.510930	-0.671019
mean_PO4	0.214569	-0.519786	0.713479	0.451272	0.646690	0.914921	1.000000	0.554167	-0.656670
mean_Chlor	0.394813	-0.217714	0.564915	0.346805	0.406656	0.510930	0.554167	1.000000	-0.537823
a1	-0.247787	0.283418	-0.546845	-0.382403	-0.449194	-0.671019	-0.656670	-0.537823	1.000000

Now best predictors for a1 also include mean_Chlor and mean_NH4.

Phik Correlation Coefficient — Dataset: Algae Blooms

import phik
columns = df.columns[:12]
corr = df[columns].phik_matrix()
corr

cmap = sns.diverging_palette(230, 20, as_cmap=Tr sns.heatmap(corr, square=True, vmin=-1, vmax=1,

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_C
Season	1.000000	0.000000	0.000000	0.000000	0.343496	0.000000	0.000000	0.034202	0.000000	0.093199	0.04536
Size	0.000000	1.000000	0.620101	0.655207	0.270013	0.268198	0.182410	0.000000	0.000000	0.531635	0.17351
Speed	0.000000	0.620101	1.000000	0.445096	0.437356	0.339237	0.000000	0.101348	0.483298	0.594480	0.47973
max_pH	0.000000	0.655207	0.445096	1.000000	0.125231	0.000000	0.000000	0.000000	0.000000	0.175105	0.52813
min_O2	0.343496	0.270013	0.437356	0.125231	1.000000	0.353196	0.000000	0.416999	0.492457	0.535996	0.29637
mean_Cl	0.000000	0.268198	0.339237	0.000000	0.353196	1.000000	0.243887	0.073692	0.443047	0.472824	0.225583
mean_NO3	0.000000	0.182410	0.000000	0.000000	0.000000	0.243887	1.000000	0.642789	0.158463	0.259915	0.368142
mean_NH4	0.034202	0.000000	0.101348	0.000000	0.416999	0.073692	0.642789	1.000000	0.734681	0.776197	0.16753
mean_oPO4	0.000000	0.000000	0.483298	0.000000	0.492457	0.443047	0.158463	0.734681	1.000000	0.954601	0.00000
mean_PO4	0.093199	0.531635	0.594480	0.175105	0.535996	0.472824	0.259915	0.776197	0.954601	1.000000	0.19292
mean_Chlor	0.045361	0.173516	0.479735	0.528134	0.296376	0.225583	0.368142	0.167533	0.000000	0.192920	1.00000
a1	0.000000	0.353390	0.369374	0.372031	0.000000	0.000000	0.000000	0.000000	0.000000	0.221308	0.00000

• Now include categorical variables — Season is not related, but Size and Speed are.

Multi-Relation Plots

After Third Pass — Where are we?

- Reviewed each feature location, spread, shape, issues.
- Identified any correlation among features and with target.
- Located and resolved missing values.
- Generated list of possible feature engineering tasks.