Question:Suppose than 90% of people are right-handed. What is the probability that atmost 6 of a random sample of 10 people are right-handed?

Solution: :Calculating Probability Using Bernoulli Distribution

Given that 90% of people are right-handed, let $p = \frac{9}{10}$ be the probability of success (right-handed), and $(1 - p) = \frac{1}{10}$ be the probability of failure (left-handed).

TABLE 0 TABLE-1

Parameters	values	Description
	1	if right-handed
X_i	0	if not right-handed
n	10	Total people
k	6	People right-handed
p	0.9	probability of being right-handed

$$X \sim \operatorname{Ber}(p)$$
 (1)

Suppose X_i , $1 \le i \le n$ represent each of the n draws. Define Y as

$$Y = \sum_{i=1}^{n} X_i \tag{2}$$

Then, since the X_i are iid, the pmf of Y is given by

$$Y \sim \operatorname{Bin}(n, p) \tag{3}$$

The cdf of Y is given by

$$F_Y(k) = \Pr\left(Y \le k\right) \tag{4}$$

$$= \begin{cases} 0 & k < 0 \\ \sum_{i=1}^{k} {n \choose i} p^{i} (1-p)^{n-i} & 1 \le k \le n \\ 1 & k \ge n \end{cases}$$
 (5)

1) We require $Pr(Y \le 6)$. Since n = 10,

$$Pr(Y \le 6) = 1 - Pr(Y > 6)$$
 (6)

$$= 0.01279$$
 (7)