

Ministerul Educației și Cercetării Serviciul Național de Evaluare și Examinare Olimpiada Națională de Fizică $T \hat{a} rgovi \\ \hat{s} te - 2002$

X

 R_3

 R_2

 R_1

E

Proba teoretică

Subiectul 1. A. Un fascicul de electroni monoenergetici, obținut prin accelerarea la o diferență de potențial U_0 , foarte îngust, se îndreaptă spre o sferă metalică neutră de rază R. Distanța de la raza sferei, paralela cu viteza electronilor la direcția vectorului viteza inițială, este \mathbf{d} (d < R). La ce potențial maxim ajunge sfera

după un timp lung de interacțiune cu fasciculul de electroni? Aplicație numerică: $U_0 = 1120 \text{ V}$ și $d = \frac{R}{4}$.

B. Două particule identice, de masă $\mathbf{m} = 0.90\mathbf{g}$ și sarcină electrică $\mathbf{q} = 10^{-6}\mathbf{C}$, sunt ținute în repaus la distanța $\mathbf{r} = 10$ cm una de alta. Întâi se eliberează una din particule și când aceasta s-a îndepărtat la distanța $\mathbf{R} = 2\mathbf{r}$, se lasă liberă și cealaltă particulă. Calculează vitezele finale ale particulelor după un interval de timp foarte mare scurs, din momentul eliberării particulelor

Subiectul 2 Se dă schema din figura alăturată în care $R_1 = R_3 = 90 \Omega$, $R_2 = 180 \Omega$, E = 54 V. Rezistența interioară a generatorului este neglijabilă.

- a) Să se determine tensiunea la bornele becului dacă iluminarea lui nu depinde de poziția întrerupătorului (închis sau deschis).
- **b**) Se înlocuiește becul cu un condensator C. Inițial întrerupătorul este închis. Să se determine potențialul punctului A imediat după deschiderea întrerupătorului.
- c) Calculează valoarea rezistenței unui rezistor R₄ conectat în locul întrerupătorului, între bornele B și C, astfel încât introducerea unui dielectric între armăturile condensatorului să se facă fără ca în sistem să se efectueze lucru mecanic;

Subiectul 3. Un plan divide spațiul în două semispații. Un semispațiu este umplut cu un material conductor, iar experimentatorul se află în cealalt semispațiu (o astfel de situație este aceea a unei plăci omogene foarte întinse și foarte groase având o față plană). Pe suprafața plană a conductorului sunt dispuse, în colțurile unui pătrat de latură **a** (**a** mult mai mică decât oricare dintre dimensiunile lineare ale plăcii), contacte electrice punctiforme - ca în figură.

- a) În nodul A "intră" curentul I_0 . Ce distribuție are vectorul densitate de curent? Care este densitatea de curent la distanța \mathbf{r} de contact în materialul conductor?
- **b**) Descrie cantitativ câmpul electric din materialul conductor în condițiile de la punctul **a**).
- c) Determină distribuția potențialului electric în materialul conductor. Se consideră cunoscut că un câmp electric cu simetrie radială pentru care intensitatea are modulul de forma $\mathbf{E}(\mathbf{r}) = \mathbf{C} \cdot \mathbf{r}^{-2}$ este caracterizat printr-o distribuție a potențialului cu simetrie sferică având expresia $\mathbf{V}(\mathbf{r}) = \mathbf{C} \cdot \mathbf{r}^{-1}$.
- A a B Io D Uo

d) Când prin contactele A şi B circulă curentul I_0 , între contactele C şi D se măsoară tensiunea electrică U_0 . Care este rezistivitatea materialului?

Probleme selectate și adaptate de prof. univ. dr. Florea Uliu - Universitatea din Craiova; prof. univ. dr. Ștefan Antohi- Univ. București; conf. univ. dr. Adrian Dafinei- Univ. București; prof.Seryl Talpalaru- Colegiul Național "Emil Racoviță" Iași