Activation functions

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

Non-linearities

 Allow a deep network to model arbitrary differentiable functions

Zoo of activation functions

ReLU

Leaky ReLU

PReLU

ELU

tanh

Sigmoid

Maxout

Sigmoid

$$\bullet \quad \frac{1}{1 + e^{-x}}$$

- Same as tanh
- Do not use

ReLU

• $\max(x,0)$

$$f(x)$$

$$df(x)$$

dx

Dead ReLUs

- Prevent dead ReLUs:
 - Initialize Network carefully
 - Decrease the learning rate

Leaky ReLU

- $\max(x, \alpha x)$
- For $0 < \alpha < 1$
- Called PReLU if α is learned

ELU

ELU more expensive to compute

$$\begin{cases} x & \text{for } x \ge 0 \\ \alpha(e^x - 1) & \text{for } x < 0 \end{cases}$$

Maxout

 $\mathbf{max}(x_1, x_2)$

Which activation to choose?

- ReLU
 - Carefully initialize
 - Small enough learning rate
- If ReLU fails, try:
 - Leaky ReLU / PReLU
- Avoid sigmoid and tanh