Homework Notes: Hours spent on this HW: 11 hours. It took fairly long to figure out how to use the naiveBayes MatLab code, but it didn't take long to learn how to implement the code into Latex.

Naive Bayes classifier for binary fisheriris digits

MatLab Answer

```
>> HW2_MachineLearning
nerr =
36
errorRate =
0.7200 \ 0.6400
nerr =
35
errorRate =
0.7200 \ 0.7000
loadData('fisheriris')
% meas: [150x4 double]
% species: [150x1 cell]
fisheriris.raw = [meas ones(150,1)];
fisheriris.raw(51:100,5) = 2;
fisheriris.raw(101:150,5) = 3;
%Randomize Data
fisheriris.random = fisheriris.raw(randperm(size(fisheriris.raw,1)),:);
%Categorize
fisheriris.train_labels = fisheriris.random(1:100,5);
fisheriris.test_labels = fisheriris.random(101:150,5);
fisheriris.train_images = fisheriris.random(1:100,1:4);
fisheriris.test_images = fisheriris.random(101:150,1:4);
% reshape to be size Ntrain*Ndims
ytrain = fisheriris.train_labels;
ytest = fisheriris.test_labels;
Xtrain = reshape(fisheriris.train_images, [1*4 100]);
Xtest = reshape(fisheriris.test_images, [1*4 50]);
% Binarize
for c=1:10
```

Due: 11:59PM 10/9/2014

```
digit=c-1;
    ndx = find(ytrain==digit);
    mu = mean(Xtrain(ndx,:));
    Xtrain(ndx,:) = Xtrain(ndx,:) > repmat(mu,length(ndx),1);
    ndx = find(ytest==digit);
    Xtest(ndx,:) = Xtest(ndx,:) > repmat(mu,length(ndx),1);
end
% save space
clear mnist
Xtrain = logical(Xtrain);
Xtest = logical(Xtest);
%trainSize = [1000 5000 10000 30000 60000];
trainSize = [100 50]; % 10000];
Ntest = 50;
for trial=1:length(trainSize)
    Ntrain = trainSize(trial);
    model = naiveBayesFit(Xtrain(1:Ntrain,:), ytrain(1:Ntrain)+1);
    yhat = naiveBayesPredict(model, Xtest(1:Ntest,:))-1; % 0..9
    ndxError = find(yhat ~= ytest(1:Ntest));
    nerr = length(ndxError)
    errorRate(trial) = nerr/Ntest %#ok
end
classConf = classConfMat(ytest(1:Ntest), yhat)/Ntest;
figure;
plot(trainSize, errorRate, 'o-', 'linewidth', 3, 'markersize', 10)
xlabel('training set size')
ylabel('test error rate')
title('Naive bayes on binarized fisheriris digits')
printPmtkFigure('mnistNaiveBayesErrVsN')
C=setdiag(classConf,0);figure;imagesc(C);colorbar
set(gca,'yticklabel',0:9)
set(gca,'xtick',1:10,'xticklabel',0:9)
title('class confusion matrix')
for j=1:min(2,length(ndxError))
    i=ndxError(j);
    figure;
```

```
img = reshape(Xtest(i,:), [1 4]);
imagesc(img);
colormap(gray)
title(sprintf('testcase %d, ytrue = %d, yhat = %d', i, ytest(i), yhat(i)));
```

end

```
nerr =
    29
errorRate =
    0.5800
               0.7000
nerr =
    35
errorRate =
    0.5800
               0.7000
```


1