ISIS 1105 Diseño y Análisis de algoritmos Semestre 2014-10 Parcial 2 Octubre 21, 2014 Profs. Rodrigo Cardoso / Germán Sotelo

```
1 (30/100)
   Dos arreglos f,g[0..n-1]:int, se pueden comparar lexicográficamente y establecer si
               \equiv (\exists k \mid 0 \le k < n : f[k] < g[k] \land (\forall i \mid 0 \le i < k : f[i] = g[i])
                \equiv q < f
               \equiv \neg (f < g \lor f > g)
  f = q
  Considere la siguiente especificación:
  Ctx C: f,g[0..n-1]:int
  Pre Q: true
  Pos R: (a \equiv f < g) \land (b \equiv f = g) \land (c \equiv f > g)
   1a (20/30) Escriba y anote (i.e., incluya aserciones, invariantes, cotas, etc.) un algoritmo que solucione
        el problema.
        k := 0;
        {Inv P: 0 \le k \le n \land (\forall i \mid 0 \le i < k : f[i] = q[i])}
        {Cota t: if f[k]=g[k] then 0 else n-k fi}
        do k\neq n \land f[k]=g[k] \rightarrow k:= k+1 od;
        \{R1: 0 \le k \le n \land (\forall i \mid 0 \le i < k : f[i] = g[i]) \land (k = n \lor (k \ne n \land f[k] \ne g[k])\}
        if
                        \rightarrow
                                 a,b,c:= false,true,false
        []
                k≠n
                        \rightarrow
                                 if
                                         f[k] < g[k] \rightarrow a,b,c := true, false, false
                                 []
                                         f[k]>q[k] \rightarrow a,b,c:= false,false,true
                                 fi
        fi
        {Pos R: (a \equiv f < g) \land (b \equiv f = g) \land (c \equiv f > g)}
   [Inv: 10/20]
                                                                                                 [Cota: 3/20]
                                                                                              [Guarda: 2/20]
                                                                                                  [if : 5/20]
```

Variante:

Paradigma BLI para buscar un índice $k \in 0..n-1$ tal que $f[k] \neq g[k]$:

Al terminar este paradigma se procede como en la solución ya explicada desde R1 en adelante:

```
k:=0;
kcent:=n;

kcent:=n;

kcent:=n;

kcent:=n;

kcent:=n;
```

```
[]
                                f[k]\neq g[k] \rightarrow kcent:= k
                        fi
od
\{R1: 0 \le k = k \le n \land (\forall i \mid 0 \le i < k : f[i] = g[i]) \land (k = n \lor (k \ne n \land f[k] \ne g[k])\}
if
       k=n
                        a,b,c:= false,true,false
[1
       k≠n
                        if
                                f[k] < q[k] \rightarrow a,b,c := true, false, false
               \rightarrow
                        []
                                f[k]>g[k] \rightarrow a,b,c:= false,false,true
                        fi
fi
{Pos R: (a \equiv f < g) \land (b \equiv f = g) \land (c \equiv f > g)}
                                                          [Anuncio de Paradigma BLI: 5/20]
                                                                            [Código BLI: 10/20]
                                                                                       [if : 5/20]
```

1b (5/30) Si ha usado invariantes y cotas, explique qué técnica(s) ha usado para desarrollarlo(s). Si ha usado paradigmas, explique cuáles y justifique su aplicabilidad.

El desarrollo de P responde a la técnica de eliminar una conjunción (la que se usa como guarda negada).

[3/5]

La cota t corresponde a lo que falta por procesar. Si se encuentra un elemento diferente se frena inmediatamente.

[2/5]

Variante con Paradigma BLI:

```
Espacio de búsqueda inicial: E = 0..n-1

Primer elemento: 0

Sucesor: s.k = k+1

Último elemento: n = (s(n-1))

Predicado de búsqueda: f[k] \neq g[k]
```

[5/5]

1c (5/30) Considere como operación básica la comparación con el elemento x. Estime y explique los costos en tiempo y en espacio del algoritmo propuesto.

La búsqueda de un elemento diferente cuesta $\theta(n)$ comparaciones. La determinación de a,b,c c uesta $\theta(2)$ comparaciones. En resumen:

```
T(n) = \theta(n+2)
= \theta(n).
```

[3/5]

No se usan estructuras de datos auxiliares de tamaño dependiente de n, es decir:

```
S(n) = \theta(1).
[2/5]
```

DAIgo 2014-10 P2 2 de 6

2 (40/100)

Dado b[0..n-1]:int, se quiere determinar la longitud del subarreglo más largo de b que contiene solo 0's.

2a (10/40) Especifique formalmente el problema que se quiere resolver.

```
Ctx: b[0..n-1]:int

Pre: true

Pos: r = xz(n)

donde:

xz(k) = "longitud del subarreglo de 0's más largo en b[0..k-1]"

= (\max p, q \mid 0 \le p < q < k \land z(p,q) : q-p)

z(p,q) \equiv (\forall i \mid p \le i < q : b[i] = 0) , 0 \le p < q < n. [10/10]
```

2b (10/40) Plantee un invariante P y una cota t.

```
Inv P : 0 \le k < n \land r = xz(k) \land s = xzf(k) [8/10] Cota t: n-k
```

donde:

```
xzf(k) = "longitud del subarreglo de 0's más largo en b[0..k-1], que incluye b[k-1]" = (\max i | 0 \le i < k \land z(i,k) : k-i)
```

2c (10/40) Desarrolle una solución de acuerdo con su especificación. Explique por qué se mantiene el invariante.

```
k,r,s:=0,0;
{Inv P : 0 \le k < n \land r = xz(k) \land s = xzf(k) }
{Cota t: n-k}
do k≠n
                    if
                            b[k]=0
                                            \rightarrow s:= s+1
                    []
                            b[k]≠0
                                           \rightarrow s:= 0
                    fi;
                    if
                            s>r
                                           \rightarrow r:= s
                    [ ]
                            s≤r

ightarrow skip
                    fi;
                    k := k+1
od
{Pos R: r = xz(n)}
```

[8/10]

El invariante se mantiene porque el cuerpo del ciclo actualiza s y calcula el nuevo r como el más largo entre el que se tenía calculado y el nuevo s, avanzando hacia terminación.

[2/10]

DAIgo 2014-10 P2 3 de 6

2d (10/40) Estime costos de tiempo y espacio. Operación básica: asignación. Explique sus respuestas.

El arreglo de longitud n se recorre una vez, y en cada elemento se usan $\theta(1)$ asignaciones. Por tanto $T(n) = \theta(n)$.

[5/10]

Se usan $\theta(1)$ variables auxiliares de tamaño 1. Así:

$$S(n) = \theta(1)$$
.

[5/10]

3 (40/100)

Un repaso sobre composición funcional: dadas dos funciones $g: \mathbb{A} \to \mathbb{B}$, $h: \mathbb{B} \to \mathbb{C}$, la función compuesta $h \cdot g: \mathbb{A} \to \mathbb{C}$ se define de manera que $(h \cdot g)(x) = h(g(x))$, para $x \in \mathbb{A}$. El operador • suele omitirse, de modo que $gh = g \cdot h$. La composición funcional es asociativa.

Suponga un conjunto de n funciones de valor entero $f_i:0..m_i-1 \rightarrow 0..m_{i+1}-1$, $0 \le i < n$, representadas con arreglos $F_i[0..m_i-1]:int$, con $F_i[x] = f_i(x)$, $0 \le x < m_i$.

Considere el problema de calcular de manera óptima la función resultante de componer las ${\tt n}$ funciones

$$f_{n-1}f_{n-2} \dots f_1f_0 : 0 \dots m_0-1 \rightarrow 0 \dots m_n-1$$

representando ésta con un arreglo $F[0..m_0-1]$:int, con $F[x] = f_{n-1}f_{n-2}$... $f_1f_0(x)$, $0 \le x < m_0$. Como operación básica considere min(.,.), el cálculo del mínimo de dos valores.

3a Establezca una notación para plantear una solución que utilice la metodología de desarrollo de algoritmos de programación dinámica estudiada en clase.

AYUDA: Diseñe una notación para componer las funciones entre dos índices i y j.

Se puede definir:

 $\mathtt{T(i,j)} \qquad \qquad \texttt{"Tiempo minimo para calcular } \ \mathtt{f_jf_{j-1}} \ \dots \ \mathtt{f_{i+1}f_i"}, \ 0 \leq i \leq j < n.$

[5/10]

$$T(0,n-1) = ?$$

[3/10]

T:
$$0..n-1 \times 0..n-1 \rightarrow nat$$
.

[2/10]

3b (20/40) Usando la notación establecida, continúe con los pasos de la metodología de desarrollo de algoritmos de programación dinámica estudiada. No es necesario que se escriba el algoritmo.

Considérense las funciones $g:0..p-1 \rightarrow 0..q-1$, $h:0..q-1 \rightarrow 0..r-1$ representadas con arreglos g y g como en el enunciado. La composición g debe calcularse de modo que (g)(x) = g(g)(x) = g(g)(x) = g(g)(x)

de modo que cada elemento del dominio 0..p-1 se calcula en $\theta(1)$. Puesto que son p elementos, la composición gasta $\theta(p)$. Resumiendo: la composición de dos funciones es $\theta(p)$, siendo p el tamaño del dominio de la primera función.

[3/20]

DAIgo 2014-10 P2 4 de 6

Recurrencia

$$\begin{array}{lll} T(\texttt{i},\texttt{i}) & = & 0 & , & 0 \leq \texttt{i} < n \\ T(\texttt{i},\texttt{j}) & = & (\texttt{min } \texttt{k} \big| & \texttt{i} \leq \texttt{k} \leq \texttt{j} : T(\texttt{i},\texttt{k}) + T(\texttt{k}+\texttt{1},\texttt{j}) + \texttt{m}_{\texttt{i}}) \;, & 0 \leq \texttt{i} < \texttt{j} \leq n \\ & = & \texttt{m}_{\texttt{i}} \; + \; (\texttt{min } \texttt{k} \big| & \texttt{i} \leq \texttt{k} \leq \texttt{j} : T(\texttt{i},\texttt{k}) \; + \; T(\texttt{k}+\texttt{1},\texttt{j})) \;, & 0 \leq \texttt{i} < \texttt{j} \leq n \end{array}$$

[5/20]

Diagrama de necesidades

[5/20]

Estructura de datos + Invariante

Como estructura de datos adicional se define una matriz M[0..n-1,0..n-1]:nat que se usa -en su diagonal superior- para guardar los valores de T, de modo que M[i,j]=T(i,j), $0 \le i \le j < n$.

El invariante P corresponde a un paso intermedio del proceso de llenar la parte superior de M por diagonales, del centro hacia la esquina superior izquierda, y cada diagonal de abajo arriba:

Inv P:

[4/20]

Cota t: "Tamaño del área blanca en el dibujo, en el triángulo superior"

El área blanca en el triángulo superior corresponde a los valores del dominio aún no calculados. Las iteraciones terminan cuando se haya calculado M[0, n-1].

[3/20]

DAIgo 2014-10 P2 5 de 6

3c (10/40) Estime los costos temporal y espacial correspondientes (como $\theta(...)$). Explique su respuesta.

El costo temporal corresponde al tamaño original del área triangular que mide la cota, el cual es $\theta(n^2/2)$ multiplicado por el costo del cálculo correspondiente a un elemento (i,j). En general, M[i,j] se puede calcular con $\theta(j-i)$ operaciones min. En el peor caso M[i,j] gastará $\theta(n)$ operaciones min.

Resumiendo:

$$T(0,n-1) = \theta(n^2/2) * \theta(n)$$

= $\theta(n^3)$ [5/10]

Claramente, el espacio adicional necesario requiere la matriz M:

$$S(0,n-1) = \theta(n^2/2)$$

= $\theta(n^2)$ [5/10]

DAIgo 2014-10 P2 6 de 6