

Sistemas Gráficos e Interacção

Época de Recurso	2023-02-10

N.º _____Nome ____

Duração da prova: 45 minutos

Cotação de cada pergunta: assinalada com parêntesis rectos

Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta

Parte Teórica 10%

- a. [3.3] Qual a dimensão em bytes de um frame buffer RGBA de 1024 x 1024 x 16 bits?
 - i. 1 Megabyte
 - ii. 2 Megabyte
 - iii. 4 Megabyte
 - iv. Nenhuma das anteriores
- b. [3.3] Dados três pontos P_1 , P_2 e P_3 e a combinação afim $Q = \alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3$, em que $\alpha_1 = 0.2$ e $\alpha_2 = 0.3$, é possível afirmar que

- i. $\alpha_3 = 0.5$
- ii. A combinação afim é convexa
- iii. O ponto Q pertence à envolvente convexa dos pontos P_1 , P_2 e P_3
- iv. Todas as anteriores
- c. [3.3] Dadas três transformações genéricas *T* (translação), *R* (rotação) e *S* (escala), a composição de transformações
 - i. T seguida de R produz o mesmo resultado que R seguida de T
 - ii. T seguida de S produz o mesmo resultado que S seguida de T
 - iii. R seguida de S produz o mesmo resultado que S seguida de R
 - iv. Nenhuma das anteriores

d. [3.3] Considere o objecto delimitado pela superfície descrita pela seguinte equação:

$$(x-1)^2 + (y-2)^2 + (z-3)^2 - 1 = 0$$

O ponto de coordenadas (1.0, 2.0, 4.0) encontra-se

- i. No interior do objecto
- ii. Na fronteira do objecto
- iii. No exterior do objecto
- iv. Nenhuma das anteriores
- e. [3.3] Qual das seguintes componentes do modelo de iluminação de Phong depende da posição do observador?
 - i. Ambiente
 - ii. Difusa
 - iii. Especular
 - iv. Todas as anteriores
- f. [3.3] No mapeamento de texturas fará sentido definir um filtro de magnificação do tipo *Nearest Mipmap Linear*?
 - i. Sim. Será calculada uma média pesada da matriz de 2 x 2 *texels* que mais se aproxima do centro do pixel no *mipmap* que melhor se adequa ao contexto existente
 - ii. Sim. Será escolhido o *texel* que mais se aproxima do centro do pixel em cada um dos dois *mipmaps* que melhor se adequam ao contexto existente; em seguida, é efectuada uma interpolação linear destes dois valores
 - iii. Não. Será sempre usado o mapa de maior resolução
 - iv. Nenhuma das anteriores

ii. É automática

iv. Nenhuma das anteriores

Sistemas Gráficos e Interacção

Épod	a de Recurso 2023-02	-10
N.º _	Nome	
Part	Teórico-Prática 20%	
a.	[4.0] Pretende-se definir os vectores normais para o cilindro da figura. Indique os valores para as normais do topo e da base, e a fórmula para a normal lateral, em função da variável theta, que contém o ângulo no plano OXY para o qual se está a calcular a normal.	ро
	Normal do topo:, base	
	Normal da base:,	
	Normal lateral:	
b.	[4.0] Pretende-se definir uma câmara de topo sobre a personagem de um videojogo, alinhar a parte superior da câmara com o eixo dos xx .	ndo
	Considerando que a altitude na cena está definida segundo o eixo dos zz , que a posição personagem está guardada em $pers.x$, $pers.y$ e $pers.z$, e que a distância da câmar personagem é dada pela constante $DIST$, preencha os parâmetros nas seguintes funções.	a à
	camera.lookAt(
	camera.up.set(
c.	[1.2] Para desenhar um círculo em <i>Three.js</i>	-/ '
C.	 i. Temos obrigatoriamente de usar as equações paramétricas da circunferência ii. Podemos usar a DiskGeometry iii. Podemos usar a CircumferenceGeometry iv. Podemos usar a CircleGeometry 	
d.	[1.2] Numa PerspectiveCamera, os parâmetros near e far	
	 i. Servem para definir o campo de visão (fov) ii. São obrigatoriamente valores maiores do que zero iii. Podem assumir valores negativos iv. Servem para definir o aspect ratio da câmara 	
e.	[1.2] A actualização dos valores alterados por programação numa entrada da interface lil-gui	
	i. Não é possível	

iii. Tem de ser requerida, invocando o método listen() aquando da criação da interface

Sistemas Gráficos e Interacção

Época de Recurso 2023-02-10

N.º	Nama	
IN.=	Nome	

- f. [1.2] O método mais eficiente de definir uma geometria em Three.js, é definindo os polígonos
 - i. Directamente a partir da lista de vértices
 - ii. Usando uma lista de arestas
 - iii. Usando uma lista de índices e uma lista de vértices
 - iv. Todos os métodos anteriores têm a mesma eficiência
- g. [1.2] As fontes de luz em *Three.js* que podem projectar sombras são:
 - i. DirectionalLight e PointLight
 - ii. DirectionalLight, SpotLight e PointLight
 - iii. AmbientLight, SpotLight e PointLight
 - iv. AmbientLight, DirectionalLight, SpotLight e PointLight
- h. [1.2] Um Render Target, é
 - i. O canvas onde o Three.js renderiza a frame
 - ii. É uma aplicação, para a qual é passado o resultado da renderização
 - iii. É um nome alternativo dado aos processadores gráficos
 - iv. Uma textura especial, para a qual podemos renderizar
- i. [1.2] A camara por omissão no Three.js
 - i. Está na origem a olhar para a parte negativa do eixo dos xx
 - ii. Está na origem a olhar para a parte negativa do eixo dos yy
 - iii. Está na origem a olhar para a parte negativa do eixo dos zz
 - iv. Está no ponto (0, 0, 5) a olhar para a origem
- j. [1.2] Na utilização de um RayCaster, as coordenadas normalizadas do rato são valores entre:
 - i. 0 e 1
 - ii. -1 e 1
 - iii. 0 e largura (ou altura) da janela
 - iv. -0.5 * largura (ou altura) da janela e 0.5 * largura (ou altura) da janela
- k. [1.2] O AlphaMap permite
 - i. Ajustar a altura dos vértices de uma mesh
 - ii. Ajustar a posição (x, y) dos vértices de uma mesh
 - iii. Definir áreas mais ou menos brilhantes/baças
 - iv. Definir áreas mais ou menos transparentes/opacas
- I. [1.2] A maneira mais simples de criar um billboard (sprite) em Three.js é criar um objecto
 - i. Mesh a partir de um PlaneGeometry e um StandardMaterial, e orientá-lo a cada frame
 - ii. Mesh a partir de um PlaneGeometry e um SpriteMaterial
 - iii. Sprite a partir de um SpriteMaterial
 - iv. Sprite a partir de um PlaneGeometry e um SpriteMaterial