Problem Set 3-Monday

Please indicate the members who are present. Also indicate the group coordinator.

	·	
Group Number:		
Members:		

If
$$y = \int_{\sqrt[3]{x}}^{0} \sin(t^3) dt$$
. Find $\frac{dy}{dx}$.

Evaluate the integral

$$\int_0^4 2^x dx$$

Let
$$\int_0^{x^2} \frac{2f(\sqrt{t})}{t^2} dt = x^2 - 1$$
. If $x > 0$, find $f'(2)$

If
$$G(u) = \int_1^u g(x) dx$$
 where $g(x) = \int_1^{x^2} \frac{\sqrt{9 + t^2}}{t} dt$. Find $G''(2)$.

Problem (Challenge)

Show that

$$0 \le \int_5^{10} \frac{x}{x^4 + x^2 + 1} \le 0.6$$

(Hint: compare the integrand to a simpler function.)