Misura di gutilizzando una molla

Scopo dell'esperienza

Lo scopo è la misura dell'accelerazione di gravità al livello del suolo a partire degli allungamenti di una molla.

Cenni teorici

Per stimare g ci viene fornita una molla di cui non conosciamo la costante elastica k, per cui essa va ricavata mettendo in oscillazione la molla e ricavando k attraverso la seguente formula dove T_i è il periodo, m_p è la massa del piattino, m_i è la massa in questione e m_m è la massa della molla.

$$T_i = 2\pi \sqrt{\frac{m_p + m_i + m_m/3}{k}}$$

Una volta ricavato k stimiamo g
 attraverso la legge di Hooke: $gm_i=k\Delta l$ dove Δl è l'allungamento della molla.

Materiale a disposizione

- Una molla
- Un piattino
- Pesetti da 5, 10, 20, 50g
- Cronometro (risoluzione da 0,01s)
- Bilancia (risoluzione da 1mg)
- Metro a nastro (risoluzione da 1mm)

Misure

Il primo set di misure è stato determinare la differenza tra Δl col piattello e con i pesetti di massa m_i

Pesetti	$\Delta l(cm)$	$m_i(g)$	
20g	8,8 <u>±</u> 0,1	19,95 <u>±</u> 0,01	
10g	4,4 <u>±</u> 0,1	9,95 <u>±</u> 0,01	
5g	2,4 <u>±</u> 0,1	4,99 <u>±</u> 0,01	
30g	13,4 <u>±</u> 0,1	29,9 <u>±</u> 0,01	
40g	18,2 <u>±</u> 0,1	39,85 <u>±</u> 0,01	
50g	22,7 <u>±</u> 0,1	50,01±0,01	

Il secondo set è stato effettuato per verificare come varia il periodo T in 10 oscillazioni al variare della massa m_i e poi il risultato è stato diviso per 10 per ottenere il singolo periodo

L L	1	1 1	
T(20g)	T(30g)	T(40g)	T(50g)
0,753	0,871	0,955	1,066
0,757	0,865	0,965	1,060
0,759	0,863	0,962	1,057
0,758	0,870	0,954	1,047
0,755	0,871	0,959	1,065
0,763	0,868	0,967	1,065
0,763	0,872	0,969	1,053
0,755	0,859	0,964	1,050
0,756	0,863	0,968	1,069
		0,951	1,040

Analisi dati

Dopo aver calcolato il periodo medio per ogni peso e ricavato k con la seguente formula e convertiamo k da g/s^2 in kg/s^2 .

T(s)	0,76	0,87	0,96	1,06
$m_p + m_i + m_m/3$	30,90	40,85	50,80	60,86
$k(kg/s^2)$	2,125	2,145	2,169	2,153

$$k = \frac{4\pi^2(m_p + m_i + m_m/3)}{T_i^2}$$

Dopo di che utilizziamo l'equazione della deviazione standard di k per calcolare l'errore E_k e otteniamo che k_m ha un valore di $2,15\pm0,01$ kg/s^2

$$E_k = \pm \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (k_i - k)^2}$$

Infine calcoliamo g attraverso la legge di Hooke $g=k\frac{\Delta l}{m_p}$ e, una volta calcolati i risultati si determina la media e la deviazione standard della media ottenengo $g=9,751\pm0,128$

Pesetti	Δl	m_i	g
20g	8,8	19,95	9,477090508
10g	4,4	9,95	9,500902293
5g	2,4	4,99	10,33346451
30g	13,4	29,9	9,628726837
40g	18,2	39,85	9,812469466
50g	22,7	50,01	9,752237264

Conclusione

I dati sperimentali sono in accordo con il nostro modello teorico e dimostrano che l'accelerazione di gravità è costante indipendentemente dalla massa campione.

Ven 4/nov/2016

Francesco Tarantelli Giovanni Sucameli Francesco Sacco