Probability and Random Processes (15B11MA301)

Lecture-1

Department of Mathematics

Jaypee Institute of Information Technology, Noida

Course Description

Module No.	Title of the Module	Topics in the Module	
1.	Probability	Three basic approaches to probability, conditional probability, total probability theorem, Bayes' theorem.	
2.	Random	One dimensional random variables (discrete and	
	Variables	continuous), distribution of a random variable (dens	
		function and cdf). MGF and characteristic function of a	
		random variable and its utility. Bivariate random variable	
		joint, marginal and conditional distributions, covariance	
		and correlation.	

Module	Title of the	Topics in the Module		
No.	Module			
3.	Probability	Bernoulli, binomial, Poisson, negative binomial,		
	Distributions geometric distributions. Uniform, exponential, norm			
		gamma, Earlang and Weibull distributions.		
4.	Reliability	Concept of reliability, reliability function, hazard r		
		function, mean time to failure (MTTF). Reliability of		
		series, parallel, series-parallel, parallel-series systems.		

Module	Title of the	Topics in the Module		
No.	Module			
5.	Random	Introduction, Statistical description of random processes		
	Processes I	Markov processes, processes with independent		
		increments. Average values of random processes. Strict		
		sense and wide sense stationary processes, their		
		averages. Random walk, Wiener process. Semi-random		
		telegraph signal and random telegraph signal process.		
		Properties of autocorrelation function.		
6.	Random	Ergodic processes. Power spectral density function and i		
	Processes II properties. Poisson processes. Markov cha			
		transition probability matrix (TPM).		

Course Outcomes

After purs	COGNITIVE LEVELS	
C201.1	explain the basic concepts of probability, conditional probability and Bayes' theorem	Understanding Level (C2)
C201.2	identify and explain one and two dimensional random variables along with their distributions and statistical averages	Applying Level (C3)
C201.3	apply some probability distributions to various discrete and continuous problems.	Applying Level (C3)
C201.4	solve the problems related to the component and system reliabilities.	Applying Level (C3)
C201.5	identify the random processes and compute their averages.	Applying Level (C3)
C201.6	solve the problems on Ergodic process, Poisson process and Markov chain.	Applying Level (C3)

Recommended Books

Origins of Probability

The study of probabilities originally came from gambling!

Why are probabilities important?

- They help you to make good decisions, e.g.,
 Decision theory
- They help you to minimize risk, e.g.,
 Insurance
- They are used in average-case time complexity analyses of Computer algorithms.
- They are used to model processes in
 - Engineering.

Probability theory is a study of random or unpredictable experiments and is helpful in investigating the important features of these random experiments.

In many different fields of science and technology, it has been observed that, under a long series of experiments, the proportion of the time that an event occurs may appear to approach a constant. It is these constants that probability theory aims at predicting and describing as quantitative measures of the chance of occurrence of events.

- An experiment whose outcome or result can be predicted with certainty is called a deterministic experiment.
- Although all possible outcomes of an experiment may be known in advance, the outcome of a particular performance of the experiment cannot be predicted owing to a number of unknown causes. Such an experiment is called a random experiment.
- A random experiment is an experiment that can be repeated over and over, giving different results.

e.g A fair 6-faced cubic die, the no. of telephone calls received in a board in a 5-min. interval.

Thank You