AntiPalindromic Strings

Problem Statement

You are given two integers, \$N\$ and \$M\$. Count the number of strings of length \$N\$ under the alphabet set of size \$M\$ that doesn't contain any palindromic string of the length greater than \$1\$ as a consecutive substring.

Input Format

Several test cases will be given to you in a single file. The first line of the input will contain a single integer, \$T\$, the number of test cases.

Then there will be \$T\$ lines, each containing two space-separated integers, \$N\$ and \$M\$, denoting a single test case. The meanings of \$N\$ and \$M\$ are described in the Problem Statement above.

Output Format

For each test case, output a single integer - the answer to the corresponding test case. This number can be huge, so output it modulo $$10^9+7$ \$.

Constraints

\$1 \leq T \leq 10^5\$ \$1 \leq N, M \leq 10^9\$

Sample Input

2 2 2 2 3

Sample Output

2 6

Explanation

For the 1^{st} testcase, we have an alphabet of size M=2. For the sake of simplicity, let's consider the alphabet as [A, B]. We can construct four strings of size N=2 using these letters.

AA AB BA BB

Out of these, we have two strings, AB and BA, that satisfy the condition of not having a palindromic string of length greater than 1. Hence, the answer 2.

For the 2^{nd} test case, we have an alphabet of size M=3. For the sake of simplicity, let's consider the alphabet as [A, B, C]. We can construct nine strings of size N=2 using these letters.

AA
AB
AC
BA
BB
BB BC
CA
CB
CC

Save AA, BB, and CC, all the strings satisfy the given condition; hence, the answer 6.