University of Oxford

Nonlinear Analysis and Applications -Problem Sheet Two

Aili Shao

Problem 1. Assume that $V_j \in L^p(\Omega, \mathbb{R}^d)$, $W_j \in L^0(\Omega, \mathbb{R}^d)$,

$$V_j \stackrel{Y^p}{\to} \nu$$
 and $V_j - W_j \to 0$ in measure.

(a) Show that (V_j) is weakly convergent in $L^p(\Omega, \mathbb{R}^d)$ and express its weak limit V in terms of ν . What is the p-Young measure generated by the shifted sequence $(V_j - V)$?

Proof. Let $\varphi \in C(\bar{\Omega})$ and put $\Phi(x,z) = \varphi(x)z_i$ for $1 \leq i \leq d$), then $\Phi \in \mathbb{E}_p$. Since $V_i \stackrel{Y^p}{\to} \nu$, we have

$$\langle \langle \varepsilon_{V_j}, \Phi \rangle \rangle \to \langle \langle \nu, \Phi \rangle \rangle$$
 as $j \to \infty$.

Here

$$\langle \langle \varepsilon_{V_j}, \Phi \rangle \rangle = \int_{\Omega} \varphi(x) V_j^i dx$$

and

$$\langle \langle \nu, \Phi \rangle \rangle = \int_{\Omega} \varphi(x) \langle \nu_x, z_i \rangle \, dx = \int_{\Omega} \varphi(x) \bar{\nu}_x^i \, dx \text{ for each } 1 \leq i \leq d.$$

Thus

$$\int_{\Omega} \varphi(x) V_j^i \, \mathrm{d}x \to \int_{\Omega} \varphi(x) \bar{\nu}_x^i \, \mathrm{d}x \text{ as } j \to \infty.$$

Since $C(\bar{\Omega})$ is dense in $L^{p'}(\Omega)$ with $\frac{1}{p} + \frac{1}{p'} = 1$, and $\bar{\nu}_x \in L^p(\Omega, \mathbb{R}^d)$ by the moment condition, we can conclude that $V_j \rightharpoonup V$ weakly in $L^p(\Omega, \mathbb{R}^d)$ and $V(x) = \bar{\nu}_x$ a.e. (that is, $V = \bar{\nu}$).

Let $\mu = ((\mu_x)_{x \in \Omega}), \lambda_{\mu}, (\mu_x^{\infty})_{x \in \overline{\Omega}})$ be the *p*-Young measure generated by the shifted sequence $(V_j - V)$.

Oscillation measure: For $\varphi \in C_c(\Omega), \psi \in C_c(\mathbb{R}^d)$, consider $\Phi(x,z) = \varphi(x)\psi(z)$, and $\tilde{\Phi}(x,z) = \varphi(x)\psi(z-V(x))$. Then we have

$$\langle \langle \varepsilon_{V_j-V}, \Phi \rangle \rangle = \int_{\Omega} \varphi \psi \circ (V_j - V) \to \int_{\Omega} \varphi \langle \mu_x, \psi \rangle \, dx.$$

$$\left\langle \left\langle \varepsilon_{V_j}, \tilde{\Phi} \right\rangle \right\rangle = \int_{\Omega} \varphi \psi \circ (V_j - V) \to \int_{\Omega} \varphi \left\langle \nu_x, \psi(\cdot - V(x)) \right\rangle dx.$$

This implies that

$$\int_{\Omega} \varphi \langle \mu_x, \psi \rangle \, dx = \int_{\Omega} \varphi \langle \nu_x, \psi(\cdot - V(x)) \rangle \, dx.$$

 μ_x satisfies $\langle \mu_x, \psi \rangle = \langle \nu_x, \psi(\cdot - V) \rangle$. Then we have $\mu_x = \nu_x * (-V_\# \delta_x)$.

Concentration measure: Let $S_j = V_j - V$, then $V_j, S_j \in L^p(\Omega, \mathbb{R}^d)$ and $V_j \stackrel{Y^p}{\to} \nu$, $S_j \stackrel{Y^p}{\to} \mu$. Note that $V_j - S_j = V$ is *p*-equi-integrable on Ω . Then we can use the theorem concerning L^p concentration from the lecture notes to conclude that $\lambda_{\mu} = \lambda_{\nu}$.

Concentration-angle measure: Similarly as the concentration measure, since $V_j - S_j = V$ is p-equi-integrable on Ω , then $\mu_x^{\infty} = \nu_x^{\infty} \lambda$ -a.e. $x \in \bar{\Omega}$ where $\lambda = \lambda_{\mu} = \lambda_{\nu}$.

(b) Let C be a closed subset of \mathbb{R}^d . Show that $V_j \in C$ in measure, meaning that

$$\forall \varepsilon > 0 \colon \mathcal{L}^n(\{x \in \Omega \colon V_j(x) \notin B_{\varepsilon}(C)\}) \to 0 \text{ as } j \to \infty,$$

if and only if the support supp $(\nu_x) \subseteq C$ for \mathcal{L}^n almost all $x \in \Omega$. Here $B_{\varepsilon}(C) := C + B_{\varepsilon}(0)$ is the ε -tube around C and the support of a positive measure is the smallest closest whose complement has zero measure.

Proof. Since $V_j \stackrel{Y^p}{\to} \nu$, for $\varphi \in C_c(\Omega)$, $\psi \in C_c(\mathbb{R}^d)$, we have

$$\int_{\Omega} \varphi \psi \circ V_j \, \mathrm{d}x \to \int_{\Omega} \varphi(x) \, \langle \nu_x, \psi \rangle \, \, \mathrm{d}x \text{ as } j \to \infty.$$

Consider $\psi \in C_c^C(\mathbb{R}^d) = \{g \in C_c^C(\mathbb{R}^d) \colon g_{|C} = 0\}$. It follows from the hypothesis that $V_i \to C$ in measure that $\psi \circ V_i \to 0$ in measure. Then

$$\int_{\Omega} \varphi(x) \langle \nu_x, \psi \rangle \, dx = \lim_{j \to \infty} \int_{\Omega} \varphi \psi \circ V_j \, dx = 0$$

for every $\varphi \in C_c(\Omega)$. Then we have for a.e. $x \in \Omega$,

$$\langle \nu_x, \psi \rangle = 0$$
 for every $\psi \in C_c^C(\mathbb{R}^d)$.

That is, $\operatorname{supp}\nu_x\subseteq C$.

Now assume that $\operatorname{supp}\nu_x\subseteq C$ for \mathcal{L}^n a.e. $x\in\Omega$. For each $\varepsilon>0$, $F(x,z):=1_{\Omega}(x)\min(\operatorname{dist}(z,C),\varepsilon)$. Then F(x,z) is a bounded Carathéodory function and thus $\{F(\cdot,V_j)\}$ is equi-integrable. By a proposition from lecture notes (pg 21 of L3), we know that

$$\begin{split} \int_{\Omega} \min(\operatorname{dist}(V_j, C), \varepsilon) &= \int_{\Omega} F(\cdot, V_j) \, \mathrm{d}x \\ &\to \int_{\Omega} \left\langle \nu_x, F(x, \cdot) \right\rangle \, \mathrm{d}x \\ &= \int_{\Omega} \int_{\mathbb{R}^d} \min(\operatorname{dist}(z, C), \varepsilon) \mathrm{d}\nu_x(z) dx \\ &= 0 \end{split}$$

since $\operatorname{supp}\nu_x\subseteq C$ for \mathcal{L}^n almost all $x\in\Omega$. Then by Vitali's convergence theorem, we have $\min(\operatorname{dist}(V_j,C),\varepsilon)\to 0$ in measure. That is, $V_j\to C$ in measure.

Now assume that $V_j \to C$ in measure, where C is some closed subset of \mathbb{R}^d . Show that the weak limit V has essential range contained in the closed convex hull of C. Recall that the essential range R of V is defined as

$$R := \bigcap A$$
,

where we take intersection over all closed subsets A of \mathbb{R}^d for which $V(x) \in A$ for \mathcal{L}^n a.e. $x \in \Omega$ and the closed convex hull of C is the intersection of all closed convex sets that contain C.

Proof. Since $V_j \to C$ in measure where C is some closed subset of \mathbb{R}^d , then $\operatorname{supp} \nu_x \subseteq C$ for \mathcal{L}^n almost all $x \in \Omega$. Note that

$$V(x) = \bar{\nu}_x = \int_{\mathbb{R}^d} z \, \mathrm{d}\nu_x(z).$$

If V(x) for \mathcal{L}^n a.e. $x \in \Omega$, then $V(x) \in B$ where B is a closed convex set that contains C. Then it follows that

$$R:=\bigcap_{V(x)\in A \text{ closed}} A\subseteq \bigcap_{B \text{ closed,convex } C\subseteq B} B.$$

Assume for contradiction that $\bar{\nu}_x$ is not in the convex hull of C. Then $\{\bar{\nu}_x\}$ is a compact closed convex set, then by Hahn-Banach Separation Theorem, there exists linear functional such that

 $L(\bar{\nu}_x) < d < L(x)$ for all x in the convex hull of C.

Thus

$$d < \int_{\Omega} L(x) \, \mathrm{d} \nu_x = L(\bar{\nu}_x),$$

yielding a contradiction.

(c) Show that for each bounded Carathéodory integrand $F \colon \Omega \times \mathbb{R}^d \to \mathbb{R}$ the representation

$$\lim_{j \to \infty} \int_{\Omega} F(\cdot, W_j) \, \mathrm{d}x = \int_{\Omega} \langle \nu_x, F(x, \cdot) \rangle \, \mathrm{d}x$$

holds. [Use the Scorza-Dragoni theorem.]

Proof. Without loss of generality, we may assume that $F \geq 0$ (since F^+, F^- are Carathéodory and can be considered separately.) Since F is bounded, there exists a M>0 such that $|F|\leq M$. By Scorza-Dragoni theorem, for each $\varepsilon>0$, there exists a compact set $C=C_\varepsilon\subset\Omega$ with $\mathcal{L}^n(\Omega\setminus C)<\frac{\varepsilon}{M}$ such that $F\colon C\times\mathbb{R}^d\to\mathbb{R}$ is jointly continuous. Next by Tietze extension theorem, we can find $G\colon\mathbb{R}^n\times\mathbb{R}^d\to\mathbb{R}$ continuous such that G=F on $C\times\mathbb{R}^d$ and $0\leq G\leq M$. Clearly, $G\in\mathbb{E}_p(\Omega,\mathbb{R}^d)$ and $G^\infty=0$, so

$$\lim_{j \to \infty} \int_{\Omega} G(\cdot, V_j) \, \mathrm{d}x = \int_{\Omega} \langle \nu_x, G(x, \cdot) \rangle \, \mathrm{d}x.$$

Note that

$$|\int_{\Omega} \langle \nu_x, G(x, \cdot) \rangle \, dx - \langle \nu_x, F(x, \cdot) \rangle \, dx| \le \int_{\Omega \setminus C} \langle \nu_x, |G - F|(x, \cdot) \rangle \, dx < \varepsilon.$$

Thus

$$\lim_{j \to \infty} \int_{\Omega} F(\cdot, V_j) \, \mathrm{d}x = \int_{\Omega} \langle \nu_x, F(x, \cdot) \rangle \, \mathrm{d}x.$$

For each $j \in \mathbb{N}$,

$$|\int_{\Omega} F(x, V_{j}) - F(x, W_{j})| \leq |\int_{\{|V_{j} - W_{j}| < \delta\}} F(x, V_{j}) - F(x, W_{j})|$$

$$+ \int_{\{|V_{j} - W_{j}| \geq \delta\}} |F(x, V_{j})| + \int_{\{|V_{j} - W_{j}| \geq \delta\}} |F(x, W_{j})|$$

$$\leq |\int_{\{|V_{j} - W_{j}| < \delta\}} F(x, V_{j}) - F(x, W_{j})| + 2M\mathcal{L}^{n}\{|V_{j} - W_{j}| \geq \delta\}$$

$$\to 0.$$

 $\mathcal{L}^n\{|V_j - W_j| \ge \delta\} \to 0$ since $V_j - W_j \to 0$ in measure. The first term converges to 0 by continuity of F. Then the desired result follows.

Problem 2. The recession cone of a subset $A \subset \mathbb{R}^d$ is defined as

$$A^{\infty} := \{ z \in \mathbb{R}^d \colon \exists z_i \to z, \exists t_i \to \infty \text{ so } t_i z_i \in A \}.$$

(a) Show that A^{∞} is a closed cone. [It is a cone provided $tz \in A^{\infty}$ whenever $z \in A^{\infty}$ and t > 0.] Show that A^{∞} is convex if A is.

Proof. For $z \in A^{\infty}$, there exists $z_j \to z, t_j \to \infty$ such that $t_j z_j \in A$. Now consider tz for t > 0, then $\tilde{z}_j = tz_j \to tz$ and $\tilde{t}_j = \frac{t_j}{t} \to \infty$, $\tilde{t}_j \tilde{z}_j = t_j z_j \in A$. This shows that $tz \in A^{\infty}$, so A^{∞} is a cone. Now we show that A^{∞} is closed. Consider a sequence $\{z^i\} \in A^{\infty}$ such that $z^i \to z$ as $i \to \infty$. We aim to show that $z \in A^{\infty}$. Note that for each $z^i \in A^{\infty}$, there exist $z^i_j \to z^i$, $t^i_j \to \infty$ such that $t^i_j z^i_j \in A$. Then we have $|z-z^i_j| \le |z-z^i| + |z^i-z^i_j| \to 0$ as $i,j \to \infty$. That is, we can find a sequence $z^i_j \to z$ and $t^i_j \to \infty$ such that $t^i_j z^i_j \in A$. Thus, $z \in A^{\infty}$.

Next, assume that A is convex, that is for $\alpha \in (0,1)$ $\alpha x + (1-\alpha)y \in A$ whenever $x,y \in A$. Consider $\alpha x + (1-\alpha)y$ for $x,y \in A^{\infty}$. Then there exist $x_j \to x$, $t_j \to \infty$ such that $t_j x_j \in A$. Similarly, then there exist $y_j \to y$, $s_j \to \infty$ such that $s_j y_j \in A$. Then for $z = \alpha x + (1-\alpha)y$, there exists $\tilde{z}_j = \alpha x_j + (1-\alpha)y_j \to z$, and there exists $\tilde{t}_j = t_j s_j \to \infty$ as $t_j, s_j \to \infty$ such that $\tilde{t}_j \tilde{z}_j = \alpha s_j t_j x_j + ((1-\alpha)t_j s_j y_j \in A)$ by convexity of A. This shows that A^{∞} is convex.

For $x, y \in A^{\infty}$, there exist $t_j, s_j \to \infty$, $x_j \to x$, $y_j \to y$ such that $s_j x_j \in A$, $t_j y_j \in A$. We aim to show that for $\lambda \in (0,1)$, $\lambda x + (1-\lambda)y \in A^{\infty}$. We want

$$\tau_j(\lambda x_j + (1 - \lambda)y_j) = \frac{\tau_j \lambda}{s_j} s_j x_j + \frac{(1 - \lambda)\tau_j}{t_j} t_j y_j \in A$$

for some $\tau_j \to \infty$. We can pick τ_j such that $\frac{\tau_j \lambda}{s_j} + \frac{(1-\lambda)\tau_j}{t_j} = 1$. Then by convexity of A, we can conclude that $\tau_j(\lambda x_j + (1-\lambda)y_j) \in A$, that is, A^{∞} is convex. \square

(b) Assume that $V_j \stackrel{Y^p}{\to} \nu$ and that for some closed set C, we have $V_j(x) \in C$ \mathcal{L}^n a.e. for all $j \in \mathbb{N}$. Show that the support $\sup(\nu_x^{\infty}) \subseteq C^{\infty}$ for λ a.e. $x \in \overline{\Omega}$.

Proof. Consider the transformation map

$$T \colon \mathbb{R}^d \to \mathbb{R}^d$$

defined by

$$z \mapsto \hat{z} = \frac{z}{1 + |z|}.$$

Then T maps C^{∞} to $\overline{T(C)} \cap \partial \mathbb{B}^d$. Let $\varphi \in C(\overline{\Omega})$, $\psi \in C(\partial \mathbb{B}^d \setminus C^{\infty})$, and put for $k \in \mathbb{N}$,

$$\psi_k(z) := \begin{cases} ((|z| - k)^+)^p \psi(\frac{z}{|z|}), & z \neq 0, \\ 0 & z = 0. \end{cases}$$

We record that $\psi_k(z) = 0$ for $|z| \le k$ and that for |z| = 1, $\frac{\psi_k(tz)}{t^p} \to \psi(z)$ as $t \to \infty$. Also $\varphi \otimes \psi_k \in \mathbb{E}_p$ with $(\varphi \otimes \psi_k)_p^{\infty} = \varphi \otimes \psi_0$. Since $V_j \stackrel{Y^p}{\to} \nu$, we have

$$\int_{\Omega} \varphi \psi_k \circ V_j \, \mathrm{d}x \to \int_{\Omega} \varphi \, \langle \nu_x, \psi_k \rangle \, \, \mathrm{d}x + \int_{\bar{\Omega}} \varphi \, \langle \nu_x^{\infty}, \psi \rangle \, \, \mathrm{d}\lambda \, \text{ as } j \to \infty.$$

First note that

$$\int_{\Omega} \varphi \langle \nu_x, \psi_k \rangle \, dx \to 0 \text{ as } k \to \infty.$$

Now we show that $\int_{\Omega} \varphi \psi_k \circ V_j = 0$. Note that $V_j(x) \in C$ \mathcal{L}^n a.e for all j. By the result from Problem 1, we know that $V_j \rightharpoonup \bar{\nu}$ weakly in $L^p(\Omega, \mathbb{R}^d)$ and the limit $\bar{\nu} \in C^{\infty}$ \mathcal{L}^n a.e. Then $\int_{\Omega} \varphi \psi_k \circ V_j = 0$ as $\psi \in C(\partial \mathbb{B}^d \setminus C^{\infty})$.

Then we have

$$\int_{\Omega} \varphi \langle \nu_x^{\infty}, \psi \rangle \, d\lambda = 0 \text{ for all } \varphi \in C(\bar{\Omega}).$$

For a.e. $x \in \Omega$,

$$\langle \nu_x^{\infty}, \psi \rangle = 0.$$

That is, $\operatorname{supp}(\nu_x^{\infty}) \subseteq C^{\infty}$.

Note that there is $\varepsilon > 0$ such that $B_{\varepsilon}(C^{\infty}) \cap \operatorname{supp} \psi = \emptyset$. Let k be sufficiently large so that $z \in B_k \setminus C$, which in turn implies that $\frac{z}{|z|} \in B_{\varepsilon}(C^{\infty})$. Then $\varphi_k \circ V_j = 0$ for such k. Note that $\int_{\Omega} \varphi \langle \nu_x, \psi_k \rangle \to 0$ as $k \to \infty$ by DCT.

Problem 3. Given an example of a sequence (V_j) and a p-admissible integrand Φ so $V_j \stackrel{Y^p}{\to} \nu$ and

$$\forall \varphi \in C(\bar{\Omega}) : \int_{\Omega} \varphi \Phi(\cdot, V_j) dx \to \int_{\Omega} \varphi \langle \nu_x, \Phi(x, \cdot) \rangle dx,$$

but the sequence $(\Phi(\cdot, V_j))$ is not equi-integrable on Ω . On the other hand, show that $(\Phi(\cdot, V_j))$ is equi-integrable on Ω if

$$\int_{O} \Phi(\cdot, V_j) dx \to \int_{O} \langle \nu_x, \Phi(x, \cdot) \rangle dx$$

holds for all open subsets O of Ω , [See the proof of Vitali-Hahn-Saks.]

Proof. Let $\Omega = (-1,1)$, $V_j = -j^{\frac{1}{p}} 1_{(-\frac{1}{j},0)} + j^{\frac{1}{p}} 1_{(0,\frac{1}{j})}$ and define $\Phi(x,z) = |z|^{p-1}z$. Then $(\Phi(\cdot,V_j))$ is not equi-integrable since

$$\int_{\Omega \cap |\{\Phi(\cdot, V_j)| > \frac{j}{2}\}} |\Phi(\cdot, V_j)| \, \mathrm{d}x = \int_{-\frac{1}{j}}^{0} j \, \mathrm{d}x + \int_{0}^{\frac{1}{j}} j \, \mathrm{d}x$$

does not tend to zero as $j \to \infty$.

But we know that $\Phi \in \mathbb{E}_p$ and $V_j \stackrel{Y^p}{\to} \nu$. Note that for $\varphi \in C(\bar{\Omega})$,

$$\int_{-1}^{1} \varphi \Phi(\cdot, V_j) \, \mathrm{d}x = \int_{-1}^{1} \varphi |V_j|^{p-1} V_j \, \mathrm{d}x$$

$$= -\int_{-\frac{1}{j}}^{0} \varphi j \, \mathrm{d}x + \int_{0}^{\frac{1}{j}} \varphi j \, \mathrm{d}x$$

$$= -\int_{-1}^{0} \varphi(\frac{y}{j}) \, \mathrm{d}y + \int_{0}^{1} \varphi(\frac{y}{j}) \, \mathrm{d}y$$

$$\to -\varphi(0) + \varphi(0) \text{ as } j \to \infty$$

$$= 0.$$

$$\int_{-1}^{1} \varphi(x) \langle \nu_x, \Phi(x, \cdot) \rangle dx = \int_{-1}^{1} \varphi \langle \nu_x, | \cdot |^{p-1}(\cdot) \rangle dx$$
$$=0$$

since we know that $\nu_x = \delta_0$ from the lecture notes.

Problem 4. (Principle of convergence of energies)

(a) Assume that $F: \mathbb{R}^d \to \mathbb{R}$ is strictly convex:

$$F(\lambda z_1 + (1 - \lambda)z_0) < \lambda F(z_1) + (1 - \lambda)F(z_0)$$

holds whenever $z_0 \neq z_1$ and $\lambda \in (0,1)$. Show that then the strict form of Jensen's inequality holds for F and any non-trivial probability measure ν :

$$\int_{\mathbb{R}^d} F \, \mathrm{d}\mu > F(\bar{\nu})$$

for probability measures μ on \mathbb{R}^d with centre of mass $\bar{\mu}$ and so $\mu \neq \delta_{\bar{\mu}}$.

Proof. Note that if $F = \infty$, the inequality is trivially true, so we assume that $F < \infty$. Since F is strictly convex, by Hahn-Banach Separation theorem, we have $x^* \in \mathbb{R}^d$ with

$$\langle z - x, x^* \rangle + F(x) < F(z).$$

That is, there exist constants $a \in \mathbb{R}^d$, $b \in \mathbb{R}$ such that

$$a \cdot z + b < F(z)$$
 for all $z \in \mathbb{R}^d$

and

$$a \cdot \bar{\mu} + b = F(\bar{\mu}).$$

Then, we have

$$\int_{\mathbb{R}^d} F(z) \, \mathrm{d}\mu(z) > \int_{\Omega} a \cdot z + b \, \mathrm{d}\mu(z)$$

$$= a \int_{\Omega} z \, \mathrm{d}\mu(z) + b$$

$$= a\bar{\mu} + b$$

$$= F(\bar{\mu}).$$

Note that for all $z_1 \neq z_0 \in \mathbb{R}^n$, there exists $v_0 \in \mathbb{R}^n$, such that

$$F(z_1) - F(z_0) \ge v_0 \cdot (z_1 - z_0).$$

We claim that only strict inequality holds in this case. Assume for contradiction that

$$F(z_1) - F(z_0) = v_0 \cdot (z_1 - z_0)$$

and define

$$z_{\lambda} = \lambda z_1 + (1 - \lambda)z_0.$$

Then

$$\lambda v_0 \cdot (z_1 - z_0) = v_0 \cdot (z_\lambda - z_0)$$

$$\leq F(z_\lambda) - F(z_0)$$

$$< \lambda F(z_1) + (1 - \lambda)F(z_0) - F(z_0) \text{ (by strict convexity)}$$

$$= \lambda v_0 \cdot (z_1 - z_0) + \lambda F(z_0) + (1 - \lambda)F(z_0) - F(z_0)$$

$$= \lambda v_0 \cdot (z_1 - z_0)$$

yields a contradiction.

Let $z_0 = \bar{\mu}$, then

$$\int_{\mathbb{R}^d} F \, d\mu = \int_{z_0} F \, d\mu + \int_{\mathbb{R}^d \setminus \{z_0\}} F \, d\mu$$

$$> \int_{\{z_0\}} F \, d\mu + \int_{\mathbb{R}^d \setminus \{z_0\}} v_0(z - z_0) \, d\mu + F(z_0)$$

$$= \int_{\{z_0\}} F \, d\mu + F(z_0)$$

where the middle term vanishes because $\int_{\mathbb{R}^d\setminus\{z_0\}} z \,\mathrm{d}\mu = \bar{\mu} = z_0$. Thus,

$$\int_{\mathbb{D}^d} F(z) \, \mathrm{d}\mu(z) > F(z_0) = F(\bar{\mu}).$$

(b) Assume that $V_j \rightharpoonup V$ weakly in $L^p(\Omega, \mathbb{R}^d)$ and that (with F as above)

$$\int_{\Omega} F(V_j) \, \mathrm{d}x \to \int_{\Omega} F(V) \, \mathrm{d}x \in \mathbb{R}.$$

Show that $F(V_j) \to F(V)$ in $L^1(\Omega)$ and $V_j \to V$ in $L^q(\Omega, \mathbb{R}^d)$ for each q < p.

Proof. Assume that $V_j \stackrel{Y^p}{\to} \nu$. We first show that $V_j \to V$ in measure. Recall from lecture notes that $V_j \to V$ in measure if and only if $V(x) = \bar{\nu}_x$ a.e. and $\nu_x = \delta_{\bar{\nu}_x}$ a.e. We have already known from Problem 1 that $V(x) = \bar{\nu}_x$ a.e., so it is sufficient to show that $\nu_x = \delta_{\bar{\nu}_x}$. Note that

$$\int_{\Omega} F(V) dx = \lim_{j \to \infty} \int_{\Omega} F(V_j) dx \text{ (by assumption)}$$

$$\stackrel{*}{=} \int_{\Omega} \langle \nu_x, F \rangle dx.$$

Now we need to verify *. We define $\tilde{F}(x,z) = 1_{\Omega}F(z)$. Then for \mathcal{L}^n a.e. $x \in \Omega$, $z \mapsto \tilde{F}(x,z)$ is continuous by convexity of F. For all $z \in \mathbb{R}^d$, $x \mapsto \tilde{F}(x,z)$ is measurable. This shows that \tilde{F} is a \mathcal{L}^n -Carathéodory integrand. Together with the fact that $\tilde{F}(\cdot,V_j)$ is equi-integrable (I am not sure about this part), we can show that

$$\lim_{j \to \infty} \int_{\Omega} \tilde{F}(\cdot, V_j) \, \mathrm{d}x = \int_{\Omega} \left\langle \nu_x, \tilde{F}(x, \cdot) \right\rangle \, \mathrm{d}x.$$

which implies *.

Since $V(x) = \bar{\nu}_x$ a.e., then $\nu_x = \delta_{\bar{\nu}_x}$. $V_j \to V$ in measure. Now we have

$$\int_{\Omega} |F(V_j) - F(V)| \, dx$$

$$= \int_{\{|V_j - V| < \delta\}} |F(V_j) - F(V)| \, dx + \int_{\{|V_j - V| \ge \delta\}} |F(V_j) - F(V)| \, ddx$$

$$\to 0.$$

The first term tends to 0 because of the continuity (which follows from convexity of) F while the second term converges to 0 since $V_j \to V$ in measure. Then we can conclude that $F(V_j) \to F(V)$ in $L^1(\Omega, \mathbb{R}^d)$.

For the second part of this question, we know that $V_j \to V$ in measure. If we can show that (V_j) is q-equi-integrable for q < p, then the strong convergence follows from Vitali's Convergence Theorem. The q-equi-integrability of (V_j) follows from the fact that

$$\sup_{j} \int_{\Omega \cap \{|V_{j}|^{q} > t\}} |V_{j}|^{q} dx \le \sup_{j} \int_{\Omega \cap \{|V_{j}|^{q} > t\}} |V_{j}|^{p} dx |\Omega|^{1 - \frac{q}{p}} \to 0 \text{ as } t \to \infty.$$

If $F \geq 0$, since F is a normal integrand, we have

$$\liminf_{j \to \infty} \int_{\Omega} F(V_j) \, \mathrm{d}x \ge \int_{\Omega} \langle \nu_x, F \rangle \, \, \mathrm{d}x.$$

Note that $\bar{\nu}(x) = V(x)$, then

$$\langle \nu_x, F \rangle > F(V(x))$$

if $\nu_x \neq \delta_{\nu(x)}$. For a.e $x \in \Omega$, $\langle \nu_x, F \rangle = F(V(x))$ implies that for a.e. $x \in \Omega$, $\nu_x = \delta_{\nu(x)}$. By weak convergence, we know that

$$\liminf_{j \to \infty} \int_{\Omega} F(V_j) dx = \int_{\Omega} F(V(x)) dx.$$

Thus for a.e. $x \in \Omega$, $\nu_x = \delta_{\nu(x)}$. This together with $V(x) = \bar{\nu}_x$ imply that $V_j \to V$ in measure. Since F is continuous, $F(V_j) \to F(V)$ in measure, and the result follows.

If we do not have the extra condition that $F \geq 0$, we can subtract a linear functional L such that $F - L \geq 0$ because F is strictly convex. The above argument works for F - L. Then the convergence result holds for F since L is affine.