DEPARTAMENTO DE FÍSICA E MATEMÁTICA EXAME DE ANÁLISE MATEMÁTICA II

 $29/06/2012 \gg Duração: 2h30+30m$

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado. Exame da Época Normal – Teste A+B

- 1. Considere a equação não linear $4\cos x e^{-x} = 0 \Leftrightarrow f(x) = 0$
- [0.5] (a) Indique, justificando, um intervalo de amplitude igual a $\pi/2$ no qual a equação dada tem uma única raiz real negativa.
- [1.5] (b) Mostre que $x_0 = -\frac{\pi}{2}$ é uma aproximação inicial favorável à aplicação do método de Newton-Raphson ou das tangentes. Aplicando o método, uma vez, obtenha uma aproximação da raiz x_r negativa. Represente a aproximação e estabeleça uma simulação gráfica do método das tangentes.

Figura 1 – Gráficos de f, f' e f''

2. Na natureza existem formas e imagens expressas matematicamente por funções definidas por ramos.

Considere as funções reais de variável real definidas por:

$$f(x) = \begin{cases} \sqrt{1 - x^2} & \text{, se } -1 \le x < 0 \\ 1 + \sin x & \text{, se } 0 \le x \le \frac{3}{2}\pi \end{cases} \quad \text{e} \quad g(x) = -f(x)$$

[2.0] (a) Aplicando a interpoladora de Newton das diferenças divididas, determine o polinómio interpolador de grau 2 da função f(x) para $x \in \left[0,\pi\right]$. Redesenhe a figura 2, aproximando as funções por uma interpolação linear para $x \in \left[-1,0\right]$ e por uma interpolação quadrática para $x \in \left[0,\pi\right]$.

Figura 2 – Gráficos de fe q

[2.0] **(b)** Utilize as regras dos Trapézios simples (n=1) e de Simpson simples (n=2) para aproximar o valor dos integrais $\int_{-1}^{0} g(x) dx$ e $\int_{0}^{\pi} f(x) dx$ respetivamente. Recorrendo à figura 2, interprete os resultados obtidos.

- 3. Considere o problema de valor inicial $y'=2ty, y(1)=1, t\in [1,1.5]$
- [2.0] (a) Sabendo que $y = \exp(t \hat{\ } 2 1)$ é a solução exata do problema, complete a tabela seguinte e interprete os resultados da mesma.

			Aproximações			Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i) - y_i $	$ y(t_i)-y_i $
i	t_i	exata	Euler	RK2	RK4	Euler	RK2	RK4
0	1						0	0
1				1.7188				0.0006
2	1.5	3.4903			3.4865		0.1871	

[1.0] **(b)** Alguma das funções seguintes, implementadas em Matlab, traduz corretamente o método de Runge-Kutta de ordem 2 (RK2) para a resolução de um PVI? Justifique a sua resposta, efetuando as correções que achar convenientes e necessárias.

```
function y = RK2_v1(f,a,b,n,y0)
                                         function y = RK2_v2(f,a,b,n)
h=(b-a)/n;
                                         h=(b-a)/n;
t=a:h:b;
                                         t(1)=a;
y=y0;
                                         y(1) = 0;
for i=1:n
                                         for i=1:n
    k1=h*f(t(1),y(i));
                                             t(i+1)=t(i)+h;
                                             k1=f(t(i),y(i));
    k2=f(t(i+1),y(i));
                                             k2=h*f(t(i+1),y(i)+k1);
    y(i+1)=y(i)+(k1+k2)/2;
                                             y(i+1)=y(i)+k1+k2*0.5;
end
                                         end
```

4. Considere as funções $f(x,y) = -x^2 - y^2$, $g(x,y) = \sqrt{-f(x,y)}$ e h definida em forma de algoritmo por:

Se
$$x^2+y^2\leq 16$$

Então $z:=g(x,y)$
Senão Se $16< x^2+y^2\leq 32$
Então $z:=\sqrt{32+f(x,y)}$
Senão Se $x^2+y^2>32 \land -6\leq x\leq 6 \land -6\leq y\leq 6$
Então $z:=0$

- [1.0] (a) Determine o domínio da função h e represente-o geometricamente. O domínio é fechado? Justifique.
- [1.5] (b) Trace um esboço da superfície definida por z = h(x, y).
- [1.5] (c) Das alíneas seguintes resolva apenas <u>uma</u>

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

- (i) O vetor $[5, y, \sqrt{7}]$ define vectorialmente a equação da recta tangente à curva de interseção da superfície z = h(x, y) com o plano x = 5 no ponto $P(5, 0, \sqrt{7})$.
- (ii) A função h é contínua nos pontos do $cord\~ao$ de soldadura definido por $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 16\}$.

- [1.5] (d) Das alíneas seguintes resolva apenas uma
 - (i) Mostre que, se a temperatura em qualquer ponto do plano xOy for dada por T=g(x,y) (distância de qualquer ponto à origem), então a taxa de variação da temperatura em $P\left(2,2\right)$ segundo a direção e sentido do vetor $\vec{u}=-2\mathbf{i}-2\mathbf{j}$ é negativa, sendo máxima na direcção e sentido do vetor $\vec{v}=-\vec{u}$.

(ii) Mostre que, se
$$z = f(x-1, y-1) \wedge x = 1 + \cos \theta \wedge y = 1 + \sin \theta$$
 então $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y \partial x} = \frac{dz}{d\theta} - 2$.

- 5. Numa das tendas da Feira de Artesanato 2012 existiam candeeiros com a forma da figura 1, de densidade constante $\rho(x, y, z) = 2$, compostos por três partes:
- Calote esférica de raio $\sqrt{32}$ seccionada por um cone de raio e altura 4; Cone de raio r=4 e altura h=4;
- Cilindro de raio r = 4 e altura h = 1.

Figura 3

[2.5] (a) Associando os conjuntos seguintes a três sistemas de coordenadas 3D, mostre que o sólido é definido por $S = S_1 \cup S_2 \cup S_3$, onde:

$$\begin{split} S_1 &= \left\{ (R,\theta,\varphi) : 0 \leq R \leq \sqrt{32} \wedge 0 \leq \theta \leq 2\pi \wedge \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2} \right\} \\ S_2 &= \left\{ (\rho,\theta,z) : 0 \leq \rho \leq 4 \wedge 0 \leq \theta \leq 2\pi \wedge -4 \leq z \leq -\rho \right\} \\ S_3 &= \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \leq 16 \wedge -5 \leq z \leq -4 \right\} \end{split}$$

- [2.0] (b) Calcule o volume e a massa do sólido.
- [1.0] (d) Das alíneas seguintes resolva apenas <u>uma</u>
 - (i) Prove, usando coordenadas cilíndricas, que o volume de um cone de raio r e altura h é igual a $\frac{1}{2}\pi r^2 h$.
 - (ii) Complete a função seguinte e associe-a a uma transformação/mudança de variáveis.

4,5

Nome Completo:						
Número:						
Nome/login utilizado no LVM:						
Curso						
Licenciatura em Eng. Informática						
Licenciatura em Eng. Informática - Ramos						
Licenciatura em Eng. Informática - Pós-laboral						
Licenciatura em Eng. Informática - Ramos - Pós-laboral						
Licenciatura em Informática - Curso Europeu						
Frequência às aulas de AM2						
Regime diurno						
Regime Pós-laboral						
Trabalhador-Estudante						
Sim						
Não						
Atividades de aprendizagem e avaliação						
Não						
Sim						
At00_Matlab - ACrescimento + Prog.Geométrica						
At01_Matlab - Método da Secante e Método da Falsa Posição						
At02_Matlab - Integração Numérica (Presencial)						
At03_Matlab - Métodos de Euler e de Runge-Kutta com GUI						
At04_TP_Maple - Cálculo Diferencial e Integral em IR^n						
Participação nos fóruns (pelo menos 3 vezes)						
Acompanhou registos sobre AM2 e outros em » facebook/armeniocorreia						
Sim						
Não						