Eloïse BERTHIER & Julien CHHOR

January 29, 2019

Introduction

Safety guarantees are essential to bring RL into real world applications.

There are different definitions of safety, leading to different safe RL algorithms.

Layout

- Increasing Performance
- 2 Surpassing a Performance Baseline

Increasing Performance

Definition

An algorithm is safe if it guarantees an improvement of the policy performance over time.

The performance of a policy is measured by: $J^\pi_\mu = \mathbb{E}_{s\sim \mu}[V^\pi(s)].$

This is true for exact policy iteration as $V^{\pi_{k+1}} \geq V^{\pi_k}$.

 \rightarrow Aim: ensuring a monotonic improvement even if the algorithm makes approximations.

Lower bounds on the performance gap

Lemma ([KL02])

For any policies π and π' and any initial state distribution μ

$$J_{\mu}^{\pi'} - J_{\mu}^{\pi} = \int_{\mathcal{S}} d_{\mu}^{\pi'}(s) A_{\pi}^{\pi'}(s) \mathrm{d}s$$

Theorem ([PRPC13])

For any π and π' and μ ,

$$|J^{\pi'}_{\mu} - J^{\pi}_{\mu} \geq \int_{\mathcal{S}} d^{\pi}_{\mu}(s) A^{\pi'}_{\pi}(s) \mathrm{d}s - rac{\gamma}{2(1-\gamma)^3} ||\pi' - \pi||^2_{\infty}$$

This lower bound can be used to design safe algorithms.

- Conservative policy update [KL02]: $\pi' = \alpha \bar{\pi} + (1 \alpha)\pi$.
- α is chosen to maximize the lower bound.
- It guarantees that [PRPC13]: $J_{\mu}^{\pi'} J_{\mu}^{\pi} \geq \frac{(1-\gamma)^2 \mathbb{A}_{\pi,\mu}^{\bar{\pi}}^2}{2\gamma ||\bar{\pi} \pi||_{\infty} \Lambda A^{\bar{\pi}}}.$

SPI Algorithm (one step):

select $\bar{\pi}$ maximizing a sample-based version of the Q-function produce $\hat{\mathbb{A}}_{\pi}^{\bar{\pi}}$, an estimate of $\mathbb{A}_{\pi}^{\bar{\pi}}$

if $\hat{\mathbb{A}}_{\pi,\mu}^{\bar{\pi}} \geq \eta$ then

set α maximizing the lower bound $\pi \leftarrow \alpha \bar{\pi} + (1 - \alpha)\pi$

else

stop and return π

end

Adaptive Step-Size for Policy Gradient

Gaussian policies $\pi(.|s,\theta) \sim \mathcal{N}(\theta^{\top}\phi(s),\sigma^2)$.

- Policy gradient update: $\theta' = \theta + \alpha \nabla_{\theta} J_{\mu}(\theta)$.
- ullet α is chosen to maximize the lower bound.
- It guarantees that [PRB13]: $J_{\mu}(\theta') J_{\mu}(\theta) \geq \frac{1}{2} \alpha^{\star} ||\nabla_{\theta} J_{\mu}(\theta)||_{2}^{2}$

PG Algorithm with adaptive step-size (one step): estimate $\nabla_{\theta}J_{\mu}(\theta)$ with REINFORCE set α maximizing the lower bound $\theta' \leftarrow \theta + \alpha \nabla_{\theta}J_{\mu}(\theta)$

Layout

- 1 Increasing Performance
- 2 Surpassing a Performance Baseline
- Constraining the Set of Policies
- 4 Discussion

Definition

Definition

An algorithm is safe if it ensures a return $\geq J_-$ with probability $\geq 1-\delta$

Moreover: no hyper parameters ⇒ further source of safety

Idea: Offline Estimation

Increasing Performance

We know trajectories already executed: $\mathcal{D} = \{(\tau_i, \theta_i) | i = 1, ..., n\}$

For a new policy π_e , importance sampling gives an unbiased estimator of $J(\pi_e)$

$$\hat{J}(\pi_e, \tau_i, \theta_i) = \mathcal{R}(\tau_i) \frac{Pr(\tau_i | \theta)}{Pr(\tau_i | \theta_i)}$$

(Condition: $\forall a, s, \theta_i : \pi(a|s, \theta_i) = 0 \Rightarrow \pi(a|s, \theta) = 0$) Otherwise

the $\hat{J}(\pi_e, \tau_i, \theta_i)$ are underestimated \Rightarrow more conservative

Constraining the Set of Policies

3 ways to compute $1 - \delta$ lower bound:

- Concentration inequality
- Asymptotic normality
- Bootstrapping

1. Concentration Inequality

Lemma

 $X = (X_i)_{i=1}^n$ independent, ≥ 0 , bounded, with $E(X_i) \leq \mu$. $c_i \in \mathbb{R}$, $\delta > 0$, and $Y_i := \min(X_i, c_i)$. Then $w.p. \geq 1 - \delta$

$$\mu \ge \left(\sum_{i=1}^n \frac{1}{c_i}\right)^{-1} \left\{\sum_{i=1}^n \frac{Y_i}{c_i} - \frac{7c_i \log(2/\delta)}{3(n-1)} - \sqrt{\frac{\log(2/\delta)}{n-1} \sum_{i=1}^n \left(\frac{Y_i}{c_i} - \frac{Y_j}{c_j}\right)}\right\}$$

1. Concentration Inequality

Theorem

Let $J_{-}(X, \delta, n, c)$ be a $1 - \delta$ confidence lower bound on \overline{x} computed thanks to X from the lemma with $c_i = c$, where X contains n random variables. If we had made the computation thanks to a set X' containing m random variables, where X' has the same variance as X, then the lower bound would have been:

$$J_{-}(\mathbf{X}, \delta, m, c) = \frac{1}{n} \sum_{i=1}^{n} Z_{i} - \frac{7c \log(2/\delta)}{3(m-1)}$$

$$-\sqrt{\frac{2\log(2/\delta)}{mn(n-1)}}\left(n\left(\sum_{i=1}^n Z_i^2\right)-\left(\sum_{i=1}^n Z_i\right)^2\right)$$

where $Z_i = \min(X_i, c)$.

2. Asymptotic normality

"Under mild conditions":

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$
 is asymptotically normally distributed

Hence $1-\delta$ lower bound

$$\hat{X} - \frac{\hat{\sigma}}{\sqrt{m}} t_{1-\delta,m-1}$$

where
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{X})$$

And we apply that to $X_i = \hat{J}(\pi_e, \tau_i, \theta_i)$

Constraining the Set of Policies

3. Bootstrap

Idea: Estimate the true distribution of the $\hat{J}(\pi_e, \tau_i, \theta_i)$

Using bias corrected and accelerated bootstrapping

Hence: $1 - \delta$ confidence lower bound

Policy Improvement Algorithm

Goal: Find
$$\pi' = \arg\max_{\mathsf{safe}\ \pi}\ \hat{J}(\pi|\mathcal{D})$$

We split \mathcal{D} into \mathcal{D}_{train} (20%) and \mathcal{D}_{test} (80%)

PolicyImprovement $(\mathcal{D}_{train}, \mathcal{D}_{test}, \delta, J_{-})$

- ullet Find the best π_c on $\mathcal{D}_{\textit{train}}$
- Test it on \mathcal{D}_{test} : if $\geq J_{-}$ return π_c else NSF

To find π_c on \mathcal{D}_{train} we can use cross-validation

Deadalus

Idea: At every step:

Threshold ← best lower bound so far.

Incremental algorithm ⇒ brings back to the first definition

Layout

- Increasing Performance
- 2 Surpassing a Performance Baseline
- Constraining the Set of Policies

Constrained MDP

An extension to the MDP: $(S, A, P, R, \gamma, \mu, (C_i, d_i)_{1 \le i \le m})$.

Constraint satisfaction is required in expectation:

$$J_{C_j}^{\pi} = \mathbb{E}_{s \sim \mu, a \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t C_j(s_t, a_t) | s_0 = s \right] \leq d_j$$

Solving the MDP:

$$\mathop{\arg\max}_{\pi \ s.t. \ \forall j, J^\pi_{C_j} \leq d_j} J^\pi_\mu$$

Definition

An algorithm is safe if it provides policies satisfying the constraints.

Algorithms for CMDPs

- Solving the Lagrangian is numerically hard and gives no safety guarantee during training.
- Local policy search over a trust region:

$$\pi_{k+1} = \argmax_{\pi \in \Pi_\theta} J^\pi_\mu \text{ s.t. } \mathbb{E}_{s \sim \pi_k} [\mathit{KL}(\pi||\pi_k)(s)] \leq \delta \text{ and } \forall j, J^\pi_{C_j} \leq d_j$$

 Results from [KL02] are extended to simultaneously lower-bound the performance increase and the constraint decrease.

Constrained Policy Optimization

Theorem ([AHTA17])

For any policies π and π' :

$$J_{\mu}^{\pi'} - J_{\mu}^{\pi} \geq \mathbb{A}_{\pi,\mu}^{\pi'} - \frac{2\gamma\epsilon^{\pi'}}{(1-\gamma)^2} \int_{\mathcal{A}} \pi'(\mathsf{a}|\mathsf{s}) \sqrt{\frac{1}{2}\mathbb{E}\big[\mathsf{KL}(\pi'||\pi)(\mathsf{s})\big]} \mathsf{d}\mathsf{a}$$

$$J_{C_j}^{\pi'}-J_{C_j}^{\pi} \leq \mathbb{A}_{\pi,C_j}^{\pi'}+rac{2\gamma\epsilon_{C_j}^{\pi'}}{(1-\gamma)^2}\int_{\mathcal{A}}\pi'(a|s)\sqrt{rac{1}{2}\mathbb{E}ig[extit{ extit{KL}}(\pi'||\pi)(s)ig]}\mathrm{d}a$$

With high probability:

- the constraints are enforced;
- the performance increases at each iteration.

Layout

- Increasing Performance
- 2 Surpassing a Performance Baseline
- Discussion

Discussion

Three approaches (among others):

- increasing performance
- surpassing a baseline
- enforcing constraints

Direct comparisons:

- (2) covers (1) with a sliding baseline;
- (3) can cover (2) for a fixed baseline on performance;
- (3) enables constraints on other criteria.

Generalization: CMDP with varying constraint level during training?

References I

- Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel, Constrained policy optimization, International Conference on Machine Learning, 2017, pp. 22–31.
- Sham Kakade and John Langford, *Approximately optimal approximate reinforcement learning*, 2002.
- Matteo Pirotta, Marcello Restelli, and Luca Bascetta, *Adaptive step-size for policy gradient methods*, Advances in Neural Information Processing Systems, 2013, pp. 1394–1402.
- Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello, *Safe policy iteration*, International Conference on Machine Learning, 2013, pp. 307–315.