سؤال ۱. اگر V یک فضای ضرب داخلی با بعد متناهی باشد و W_1, W_7 زیرفضای V باشند نشان دهید:

$$(W_1 + W_1)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$
 (الف

$$(W_{\mathbf{1}} \cap W_{\mathbf{7}})^{\perp} = W_{\mathbf{1}}^{\perp} + W_{\mathbf{7}}^{\perp}$$
 (\mathbf{U}

سؤال ۲. فرض کنید V یک فضای ضرب داخلی باشد و $\alpha,\gamma,\beta\in V$ نشان دهید:

$$||\alpha + \beta|| + ||\beta + \gamma|| + ||\gamma + \alpha|| \le ||\alpha|| + ||\beta|| + ||\gamma|| + ||\alpha + \beta + \gamma||$$

 $\epsilon > \cdot$ موال ۳. فرض کنید $v_1, v_2, ..., v_m \in \mathbb{R}^n$ بردارهای یکه باشند به طوری که برای هر $i \neq j$ داشته باشیم، $v_1, v_2, ..., v_m \in \mathbb{R}^n$ که $v_i, v_j < -\epsilon$ عددی ثابت است. ثابت کنید:

$$m \leq 1 + \frac{1}{\epsilon}$$

سؤال ۴. فرض کنید $W_1 \oplus W_1 \oplus V = W_1$ و f_1, f_7 توابع ضرب داخلی روی W_1, W_1 باشند. نشان دهید تابع ضرب داخلی یکتای $f: V \times V \to \mathbb{R}$

$$W_1^{\perp} = W_1$$
 (الف

$$f(lpha,eta)=f_k(lpha,eta)$$
 برای $k\in\{1,\mathbf{Y}\}$ داشته باشیم: اگر $lpha,eta\in w_k$ آن گاه

سؤال ۵. فرض کنید $v \in V$ که V فضای ضرب داخلی متناهی بعدی روی $\mathbb R$ است. اگر ||u|| و ||v|| حداکثر ۱ باشند، نشان دهید:

$$\sqrt{1 - ||u||^{\Upsilon}} \sqrt{1 - ||v||^{\Upsilon}} \le 1 - |< u, v > |$$

. $P^{\mathsf{Y}} = P$ ماتریس افکنش است، اگر و تنها اگر $P \in M_n(\mathbb{R})$ ماتریس

سؤال ۷. فرض کنید $\{e_1, e_7, ... v_n \in V \}$ پایهای متعامد و یکه برای فضای ضرب داخلی V باشد. اگر $v_1, v_7, ... v_n \in V$ به گونهای باشند که برای هر $i \leq i \leq n$ باشند که برای هر ای می

$$||e_i - v_i|| < \frac{1}{\sqrt{n}}$$

. است. V است. پایهای برای $\{v_1,...,v_n\}$ است