FEE.org Visitor Analysis & Content Recommendations

David Veksler

ARTICLES EVENTS RESOURCES MAGAZINE STORE

Latest Stories

Why We Trade

Daniel J. Ikenson - Aug 11, 2016

Bitcoin Wins in Court

Larry White - Aug 11, 2016

Poor Countries Need Market Access, Not "Assistance"

Note Mason - Aug 11 2016

The problem

Who are our visitors?

- What content engages users?
- What does a typical session look like?

Can we improve engagement?

Can we push relevant content to visitors?

Solution

Build content recommendation algorithm

- Analyze content on FEE.org
- Suggest related articles to visitors

Part 1: Content & Visitor Analysis

https://github.com/DavidVeksler/DS3-Projects/blob/master/Final%20Project/Part%203%20-%20 Exploratory%20Analysis.ipynb

Content Analysis

- 13000 articles over 66 years
- Source: content management system

Visitor Analysis

- 50,000 actions (page views) over 11 hours
- Source: Clicky web traffic logs

Articles per year, 1952-2016

Top Categories


```
articles_by_topic=data.groupby('Topic').Topic.o
articles by topic
Topic
Culture
                      329
Economics
                    1018
Entrepreneurship
                     207
History
                     152
Justice
                      420
Philosophy
                     728
Policy
                    1473
Politics
                      486
Technology
                      92
World
                      341
Name: Topic, dtype: int64
g = sns.factorplot(x="Topic", data=data, kind="
g.set xticklabels(step=2)
```

Top Editorial Tags

Actions per session


```
sigma = float(np.std(sessions_data))
print("std: %f" % sigma)
mu = float(np.mean(sessions_data))
print("mean: %f" % mu)
num_bins = 10
n, bins, patches = plt.hist(sessions_data[session normed=1)
plt.xlabel("Actions per session")
plt.ylabel('Probability')
# # add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
plt.plot(bins, y, 'r--')
```

Top Referring domains

facebook.com google.com

t.co

reddit.com google.co.uk bing.com

	ReferrerDomain			
ReferrerDomain				
facebook.com	10068			
google.com	3951			
t.co	1168			
reddit.com	342			
google.co.uk	100			
bing.com	88			
google.ca	77			
flipboard.com	72			
search.yahoo.com	71			
google.com.ph	71			
feedly.com	66			

google.ca flipboard.comarch.yahoo.cgoogle.com.ph feedly.comationalreview.comogle.co.incafehayek.compogle.com.au ReferrerDomain

Part 2: Similar Article Recommendations

Paige Marta Skiba - June 07, 2016

O Comments

Households up to \$1,500 a Year

Salim Furth - April 18, 2016

3 Comments

9 Ways Austin Blocks New Housing in Central City

Dan Keshet - April 07, 2016

Feds' Crazy Plan: Make Risky Loans, Don't Charge for Them

Ike Brannon - March 17, 2016

0 Comments

Process

Extract metadata

Build script which extracts all content from the CMS

Extract features

Convert all text fields in each article to a term frequency—inverse document frequency feature matrix

Find related content

Given a URL, return 5 similar articles

Step 1: Extract all text fields & URLs

- Build command-line interface to Umbraco Content Management System
- 2. Strip HTML.
- 3. Encode text to JSON.
- Extract all values to a CSV file.

Step 2: Pre-process CSV to Pandas Pickle

- Convert CSV to Pandas DataFrame
- 2. Parse dates and convert tag to list.
- 3. Decode JSON strings
- 4. Strip HTML from content from html.parser import HTMLParser
- 5. Save DataFrame to Pandas pickle data.to_pickle('assets\dataset\ArticleMetadata.pkl')

```
import pandas as pd
import json

articles = pd.read_pickle('ArticleMetadata.pkl')
articles.DatePublished = pd.to_datetime(articles.DatePublished)
articles.Tags = articles.Tags.map(lambda x: str(x))
articles.TagArray = articles.Tags.map(lambda x: x.split(','))
articles.TagArray[0]
articles.head(1)
```

	Url	Title	Tags	Topic	DatePublished	Abstract	FullText
ArticleId				9			
12897	/articles/amc-s- halt-and-catch- fire-is-capital	AMC's "Halt and Catch Fire" Is Capitalism's Fi	Capitalism, Competition, Property Rights, Entrepr	Economics	2015-09-02 10:56:24	"The show is a vibrant look at the early PC in	"AMC's Halt and Catch Fire is a brilliant

Step 3: TfidfVectorizer

1. Extract words as features with TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(stop_words='english',min_df=3).fit_transform(articles.RawText.dropna()) # no need to normalize, since Vectorizer will return normalized tf-idf pairwise similarity = tfidf * tfidf.T

Step 4: Compute Cosine Similarity

Compute the linear kernel between X and Y.

from sklearn.metrics.pairwise import linear_kernel

```
def FindSimiliarArticles(url, tfidf_matrix, articles):
   matches = articles.loc[articles['Url'] == url].index.tolist()
   originalArticleIndex = int(matches[0])
   print("original index: %s" % originalArticleIndex)
   cosine_similarities = linear_kernel(tfidf_matrix[originalArticleIndex], tfidf_matrix).flatten()
   print("cosine_similarities: %s" % cosine_similarities)
   related_docs_indices = cosine_similarities.argsort()[:-5:-1]
   print('related articles: ' % related_docs_indices)
   related_articles = []
   [related_articles.append(articles.iloc[index]) for index in related_docs_indices]
   return related_articles
```

Demo

Title

Name: 338, dtype: object1

related = FindSimiliarArticles('/articles/how-america-can-keep-the-entrepreneurs-we-train/',tfidf,articles) print(related) Original index: 13795 cosine_similarities: [0.05772269 0.04216487 0.04971372 ..., 0.00795316 0.03272186 0.024919] related articles: Url /articles/how-america-can-keep-the-entrepreneu... Title How America Can Keep the Entrepreneurs We Train Name: 13795, dtype: object, ArticleId 132805 Url /articles/immigrants-are-twice-as-likely-to-st... Title Immigrants Are Twice as Likely to Start a Busi... 108006 Name: 671, dtype: object, ArticleId Url /articles/why-government-jobs-programs-destroy... Why Government Jobs Programs Destroy Jobs Title Name: 1076, dtype: object, ArticleId 129584 Url /articles/5-charts-that-show-trumps-immigratio...

5 Charts that Show Trump's Immigration Paper I...

Part 3: Other Classifier & Clustering Experiments

Other experiments:

- Keyword modeling with Word2Vec Neutral Network
 - Useful for tag recommendations when tagging articles.
- Document clustering K means
 - Incomplete, too complex
- Topic modeling with latent Dirichlet allocation
 - Not very descriptive results:

```
In [12]: num_topics= 10
         num words per topic= 10
         for ti, topic in enumerate(lda model.show topics(num topics,num words per topic)):
             print("Topic:
                                 %d" % (ti))
             print(topic)
             print()
         Topic: 0
         (0, '0.001*government + 0.000*tax + 0.000*people + 0.000*moore + 0.000*tubman + 0.000*soto + 0.
         *education + 0.000*trade + 0.000*new + 0.000*economic')
         Topic: 1
         (1, '0.001*government + 0.001*venezuela + 0.001*market + 0.001*free + 0.001*state + 0.001*madur
          0.001*erhard + 0.001*economic + 0.001*jury + 0.001*amazon')
         Topic: 2
         (2, '0.002*government + 0.002*people + 0.002*market + 0.001*economic + 0.001*world + 0.001*free
          0.001*state + 0.001*new + 0.001*money + 0.001*percent')
```

The End