Today's Roadmap

Foundations for Statistical Inference

- We carry out an experiment and get a random sample of the underlying population
- Data are the values in the sample
- Our aim is to infer the population probability distribution (parameters) from the data we observe in the sample
- Our assumption is that that samples behave approximately as the population

Foundations for Statistical Inference

- We carry out an experiment and get a random sample of the underlying population
- Data are the values in the sample
- Our aim is to infer the population probability distribution (parameters) from the data we observe in the sample
- Our assumption is that that samples behave approximately as the population

This is statistical inference!

Introduction to Random Variables

- ullet Consider some experiment for which the sample space is S
- A real-valued function that is defined on S is called a random variable
- ullet A random variable X is a random process with a numerical outcome.

Random Variables

Probability distribution for the sum of two dice:

Allows for computation of probabilities of events.

Types of Random Variables

 Discrete: finite or countable list of possible values; probability mass function (pmf) assigns a probability to each value

$$f_X(x) = Pr(X = x)$$

 Continuous: taking any numerical value in an interval; probability density function (pdf) assigns a probabilities to intervals

$$Pr(a \le X \le b) = \int_a^b f_X(x)dx$$

Statistical Inference: Point Estimates

- In many situations we want to estimated the population mean based on a sample.
- What should we do? Use the sample mean!
- The sample mean \overline{x} is called a point estimate of the population mean.

Point Estimates

- Point estimates from a sample may be used to estimate population parameters
- Point estimates are not exact: they vary from one sample to another
- We can quantify the standard error for the point estimate

Point Estimates

- Point estimates from a sample may be used to estimate population parameters
- Point estimates are not exact: they vary from one sample to another
- We can quantify the standard error for the point estimate

The sampling distribution represents the distribution of the point estimates based on samples of a fixed size from a certain population.

The Central Limit Theorem

Given certain conditions, the mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed, regardless of the underlying distribution.

The Central Limit Theorem

Given certain conditions, the mean of a sufficiently large number of iterates of independent random variables, each with a well-defined expected value and well-defined variance, will be approximately normally distributed, regardless of the underlying distribution.

Today's Roadmap

Beyond Point Estimates

• A point estimate provides a single best guess for the parameter

Beyond Point Estimates

- A point estimate provides a single best guess for the parameter
- Nest step: provide a plausible range of values for the parameter

Beyond Point Estimates

- A point estimate provides a single best guess for the parameter
- Nest step: provide a plausible range of values for the parameter
- A plausible range of values for the population parameter is called a confidence interval

• The Central Limit Thm tells us that the sampling distribution of our estimate of the mean, \overline{x} is approximately normal.

- The Central Limit Thm tells us that the sampling distribution of our estimate of the mean, \overline{x} is approximately normal.
- 95% of the time the estimate will be within 2 standard errors of the parameter

- The Central Limit Thm tells us that the sampling distribution of our estimate of the mean, \overline{x} is approximately normal.
- 95% of the time the estimate will be within 2 standard errors of the parameter

- The Central Limit Thm tells us that the sampling distribution of our estimate of the mean, \overline{x} is approximately normal.
- 95% of the time the estimate will be within 2 standard errors of the parameter

$$\Pr(\mu - 2\sigma \le x \le \mu + 2\sigma) = \Phi(2) - \Phi(-2)$$

$$\approx 0.9545$$

- We can construct a confidence interval for the mean for any confidence level
- If the point estimate follows the normal model with standard error SE, then a confidence interval for the population parameter is:

point estimate $\pm z \times SE$

where z corresponds to the confidence level selected.

Generalized Confidence Intervals

• We choose and interval (A,B) that has a high probability of containing $\theta.$

Generalized Confidence Intervals

- We choose and interval (A,B) that has a high probability of containing θ .
- A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(a,b)$ where $a=a(X_1,\ldots,X_n)$ and $b=b(X_1,\ldots,X_n)$ are functions of the data such that

$$Pr_{\theta}(\theta \in C_n) \ge 1 - \alpha$$

for all $\theta \in \Theta$.

• Commonly, people use 95% confidence intervals, which corresponds to $\alpha=0.05$.

- Commonly, people use 95% confidence intervals, which corresponds to $\alpha=0.05$.
- It is **not** correct to say that θ lies in the interval (a,b) with probability $1-\alpha$.

• On day 1 you collect data and construct a 95 percent confidence interval for some parameter θ_1 .

- On day 1 you collect data and construct a 95 percent confidence interval for some parameter θ_1 .
- On day 2 you collect data and construct a 95 percent confidence interval for some unrelated parameter θ_2 .

- On day 1 you collect data and construct a 95 percent confidence interval for some parameter θ_1 .
- On day 2 you collect data and construct a 95 percent confidence interval for some unrelated parameter θ_2 .
- On day 3 you collect data and construct a 95 percent confidence interval for some unrelated parameter θ_3 .

- On day 1 you collect data and construct a 95 percent confidence interval for some parameter θ_1 .
- On day 2 you collect data and construct a 95 percent confidence interval for some unrelated parameter θ_2 .
- On day 3 you collect data and construct a 95 percent confidence interval for some unrelated parameter θ_3 .
- And so on for a sequence of unrelated parameters θ_1, θ, \ldots , then 95 percent of your confidence intervals will trap the true parameter value.

• Frequently we see opinion polls reported in the newspaper.

- Frequently we see opinion polls reported in the newspaper.
- For example, "83 percent of the population support X".

- Frequently we see opinion polls reported in the newspaper.
- For example, "83 percent of the population support X".
- Hopefully you also see a statement such as "this poll is accurate with within 4 points 95% of the time.

- Frequently we see opinion polls reported in the newspaper.
- For example, "83 percent of the population support X".
- Hopefully you also see a statement such as "this poll is accurate with within 4 points 95% of the time.
- This is a confidence interval on their estimate, 83 ± 4 is the 95% CL

Normal-based Confidence Intervals

• In other words $\hat{\theta}_n \approx N(\theta, \hat{se}^2)$

Normal-based Confidence Intervals

- In other words $\hat{\theta}_n \approx N(\theta, \hat{se}^2)$
- Then we know that

$$Z_n = \frac{\hat{\theta}_n - \theta}{\hat{se}} \approx N(0, 1)$$

Normal-based Confidence Intervals

• Consider constructing a 95% CI for θ .

- Consider constructing a 95% CI for θ .
- For a standard normal random variable, we can construct an interval such that

- Consider constructing a 95% CI for θ .
- For a standard normal random variable, we can construct an interval such that

$$1 - \alpha = Pr(-z_{\alpha/2} < Z < z_{\alpha/2})$$

• where $z_{\alpha/2} = \Phi^{-1}(1 - (\alpha/2))$

- Consider constructing a 95% CI for θ .
- For a standard normal random variable, we can construct an interval such that

$$1 - \alpha = Pr(-z_{\alpha/2} < Z < z_{\alpha/2})$$

- where $z_{\alpha/2} = \Phi^{-1}(1 (\alpha/2))$
- Then,

$$1 - \alpha = Pr(-z_{\alpha/2} < Z < z_{\alpha/2})$$

$$= Pr(-z_{\alpha/2} < \frac{\hat{\theta}_n - \theta}{\hat{se}} < z_{\alpha/2})$$

$$= Pr(\hat{\theta}_n - z_{\alpha/2}\hat{se} < \theta < \hat{\theta}_n + z_{\alpha/2}\hat{se})$$

• For a 95% CI and $z_{\alpha/2}=1.96$ we have a CI for θ that is

$$C_n = (\hat{\theta}_n - 1.96\hat{se}, \ \hat{\theta}_n + 1.96\hat{se})$$

Normal-based Confidence Intervals Example

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$
- Let $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$. $\hat{\text{se}} = \sqrt{\hat{p}_n (1 \hat{p}_n)/n}$

Normal-based Confidence Intervals Example

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$
- Let $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$. $\hat{\text{se}} = \sqrt{\hat{p}_n (1 \hat{p}_n)/n}$
- Then by the CLT $\hat{p}_n \approx N(p, \hat{\text{se}})$.

Normal-based Confidence Intervals Example

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$
- Let $\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$. $\hat{\text{se}} = \sqrt{\hat{p}_n (1 \hat{p}_n)/n}$
- Then by the CLT $\hat{p}_n \approx N(p, \hat{\text{se}})$.
- So an approximate $1-\alpha$ CI for p is

$$\hat{p_n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p_n}(1-\hat{p_n})}{n}}$$

Break

Today's Roadmap

 \bullet Let Θ be the parameter space, all possible values of θ

- Let Θ be the parameter space, all possible values of θ
- Let Θ_0 and Θ_1 partition the space, $\Theta_0 \cup \Theta_1 = \Theta$

- Let Θ be the parameter space, all possible values of θ
- Let Θ_0 and Θ_1 partition the space, $\Theta_0 \cup \Theta_1 = \Theta$
- So we with to test

$$H_0: \theta \in \Theta_0$$

versus

$$H_1: \theta \in \Theta_1$$

- Let Θ be the parameter space, all possible values of θ
- Let Θ_0 and Θ_1 partition the space, $\Theta_0 \cup \Theta_1 = \Theta$
- So we with to test

$$H_0: \theta \in \Theta_0$$

versus

$$H_1:\theta\in\Theta_1$$

• We call H_0 the null hypotheses and H_1 the alternative hypothesis

• Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ be n independent coin flips.

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ be n independent coin flips.
- Suppose we want to test if the coin is fair, H_0 : fair.
- Let H_1 denote the hypothesis that this coin in not fair.

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ be n independent coin flips.
- Suppose we want to test if the coin is fair, H_0 : fair.
- Let H_1 denote the hypothesis that this coin in not fair.
- We have

$$H_0: p = 1/2$$

$$H_1: p \neq 1/2$$

- Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$ be n independent coin flips.
- Suppose we want to test if the coin is fair, H_0 : fair.
- Let H_1 denote the hypothesis that this coin in not fair.
- We have

$$H_0: p=1/2$$

$$H_1: p \neq 1/2$$

- It seems reasonable to reject H_0 if $T = |\hat{p}_n (1/2)|$ is large
- How large T should be to reject H_0 ?

• A procedure for deciding whether to reject H_0 is called a test procedure or simply test

- A procedure for deciding whether to reject H_0 is called a test procedure or simply test
- Hypothesis testing is like a legal trial

- A procedure for deciding whether to reject H_0 is called a test procedure or simply test
- Hypothesis testing is like a legal trial
- We assume someone is innocent unless proven guilty

- A procedure for deciding whether to reject H_0 is called a test procedure or simply test
- Hypothesis testing is like a legal trial
- We assume someone is innocent unless proven guilty
- Similarly we retain H_0 unless there is strong evidence to reject H_0 .

- In such a framework there are two types of errors we can make:
 - 1. We can reject H_0 when H_0 is true this is called type I error
 - 2. We can fail to reject H_0 when H_1 is true this is called type II error

	H_0 True	H_0 False
Reject H_0	Type I Error	Correct
Retain H_0	Correct	Type II Error

• Suppose we are trying to determine whether or not to reject the null hypothesis:

$$H_0: \theta \in \Theta_0$$

$$H_1:\theta\in\Theta_1$$

• Suppose we are trying to determine whether or not to reject the null hypothesis:

$$H_0: \theta \in \Theta_0$$

$$H_1:\theta\in\Theta_1$$

• We observe a random sample X_1, \ldots, X_n drawn from some distribution that is characterized by an unknown parameter θ .

 Suppose we are trying to determine whether or not to reject the null hypothesis:

$$H_0: \theta \in \Theta_0$$
$$H_1: \theta \in \Theta_1$$

- We observe a random sample X_1, \ldots, X_n drawn from some
- Partitioning the sample space of all possible outcome of the random sample into two subsets

distribution that is characterized by an unknown parameter θ .

 Suppose we are trying to determine whether or not to reject the null hypothesis:

$$H_0: \theta \in \Theta_0$$
$$H_1: \theta \in \Theta_1$$

- We observe a random sample X_1, \ldots, X_n drawn from some distribution that is characterized by an unknown parameter θ .
- Partitioning the sample space of all possible outcome of the random sample into two subsets
- One subset contains all the values of the observed data for which we reject H_0 and the other contains all the values of the observed data for which we retain H_0 .

 Suppose we are trying to determine whether or not to reject the null hypothesis:

$$H_0: \theta \in \Theta_0$$
$$H_1: \theta \in \Theta_1$$

- We observe a random sample X_1, \ldots, X_n drawn from some distribution that is characterized by an unknown parameter θ .
- Partitioning the sample space of all possible outcome of the random sample into two subsets
- One subset contains all the values of the observed data for which we reject H_0 and the other contains all the values of the observed data for which we retain H_0 .
- The subset for which H_0 will be rejected is called the critical or rejection region, R.

• In most hypotheses testing problems the critical region is defined by a test statistic, $T = r(\mathbf{X})$.

- In most hypotheses testing problems the critical region is defined by a test statistic, $T=r(\mathbf{X})$.
- Usually the rejection region has the form

$$R = \{x : T(\mathbf{X}) > c\}$$

- In most hypotheses testing problems the critical region is defined by a test statistic, $T = r(\mathbf{X})$.
- Usually the rejection region has the form

$$R = \{x : T(\mathbf{X}) > c\}$$

where T is the test statistic and c is called the critical value.

- In most hypotheses testing problems the critical region is defined by a test statistic, $T = r(\mathbf{X})$.
- Usually the rejection region has the form

$$R = \{x : T(\mathbf{X}) > c\}$$

- where T is the test statistic and c is called the critical value.
- So most tests are of a form "Reject H_0 if $T \ge c$ "

- In most hypotheses testing problems the critical region is defined by a test statistic, $T=r(\mathbf{X})$.
- · Usually the rejection region has the form

$$R = \{x : T(\mathbf{X}) > c\}$$

- where T is the test statistic and c is called the <u>critical value</u>.
- So most tests are of a form "Reject H_0 if $T \ge c$ "
- The problem of hypothesis testing is then to find the right test and right value of the $\it c$.

• A hypothesis test of the form

$$H_0: \theta = \theta_0$$

 $H_1:\theta\neq\theta_0$

is called a two-sided test.

A hypothesis test of the form

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

is called a two-sided test.

• A hypothesis test of the form

$$H_0: \theta \leq \theta_0$$

$$H_1: \theta > \theta_0$$

or

$$H_0: \theta \geq \theta_0$$

$$H_1: \theta < \theta_0$$

is called a two-sided test.

p-values

 Reporting that we have rejected the null hypothesis is not super informative

p-values

- Reporting that we have rejected the null hypothesis is not super informative
- \bullet Instead, we could ask for every level of α whether the test rejects at that level

- Reporting that we have rejected the null hypothesis is not super informative
- \bullet Instead, we could ask for every level of α whether the test rejects at that level
- If we reject the null at some level α then we will also reject for another $\alpha'>\alpha$

- Reporting that we have rejected the null hypothesis is not super informative
- \bullet Instead, we could ask for every level of α whether the test rejects at that level
- If we reject the null at some level α then we will also reject for another $\alpha'>\alpha$
- So there is a smallest α at which the test rejects, we call this number the p-value

The p-value is the probability (under H_0) of observing a value of the test statistic the same as or more extreme than what was actually observed.

A p-value (shaded green area) is the probability of an observed (or more extreme) result arising by chance

- We often say something is statistically significant, but note that something may be significant even if the actual effect is small.
- In this way it may be that a "significant result" has little real world effect, scientific significance, etc.

Today's Roadmap

Statistical Tests: Numerical Data

- 1. Determine which point estimate or test statistic is useful.
- 2. Identify an appropriate sampling distribution for the point estimate or test statistic.
- 3. Apply the previous ideas CIs and hypothesis testing

• Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.

- Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.
- Consider the following one-sided hypothesis test:

$$H_0: \mu \leq \mu_0$$

$$H_1: \mu > \mu_0$$

- Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.
- Consider the following one-sided hypothesis test:

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

• Consider the statistic,

$$T=\frac{\sqrt{n}(\overline{X}_n-\mu_0)}{S}$$
 where $\overline{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ and $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X}_n)^2$.

- Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.
- Consider the following one-sided hypothesis test:

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

• Consider the statistic,

$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S}$$

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

• When $\mu=\mu_0$ the distribution of T will be a t distribution with n-1 degrees of freedom.

- Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.
- Consider the following one-sided hypothesis test:

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

Consider the statistic,

$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S}$$

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

- When $\mu = \mu_0$ the distribution of T will be a t distribution with n-1 degrees of freedom.
- Then we reject H_0 when $T \ge t_{n-1}^{-1}(1-\alpha)$, the $1-\alpha$ quantile of the t distribution with n-1 degrees of freedom

• A random sample of students at State University were asked: "How many hours TV do you watch a day in average?"

- A random sample of students at State University were asked: "How many hours TV do you watch a day in average?"
- The sample data resulted in the following summary statistics: $\overline{X}_n = 2.09, \ S = 1.644$ and n = 175.

- A random sample of students at State University were asked: "How many hours TV do you watch a day in average?"
- The sample data resulted in the following summary statistics: $\overline{X}_n = 2.09, \ S = 1.644$ and n = 175.
- Is this sufficient evidence (significance 0.05) that to conclude that students at State University watch in average more than 2 hours TV per day?

- A random sample of students at State University were asked: "How many hours TV do you watch a day in average?"
- The sample data resulted in the following summary statistics: $\overline{X}_n = 2.09$, S = 1.644 and n = 175.
- Is this sufficient evidence (significance 0.05) that to conclude that students at State University watch in average more than 2 hours TV per day?
- Assume the number of hours of TV watched is normally distributed

[Example from Dr. Karen Buro]

• First let's construct the hypothesis that this question is asking us to evaluate:

$$H_0: \mu \le 2$$
$$H_1: \mu > 2$$

• The one-sample t test statistic is:

$$t_0 = \frac{2.09 - 2}{1.644 / \sqrt{175}} = 0.7242$$

which we compare to the quantiles of a t_{174} distribution.

• To compute the p-value we have

$$p - value = Pr(t > t_0) = Pr(t > 0.7242) > 0.1$$

• So since the p-value is greater than the α level we are going to use, we retain ${\cal H}_0$

t Tests Continued

- Suppose X_1, \ldots, X_n form a random sample from a normal distribution with mean μ and variance σ^2 both unknown.
- Consider the following two-sided hypothesis test:

$$H_0: \mu = \mu_0$$
$$H_1: \mu \neq \mu_0$$

• Again we have the test statistic

$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S}$$

• Now, we have a test that rejects H_0 if $|T| \ge t_{n-1}^{-1}(1 - \alpha/2)$.

- Suppose X_1, \ldots, X_m form a random sample from a normal distribution with mean μ_1 and variance σ^2 both unknown.
- And suppose Y_1, \ldots, Y_n form a random sample from a normal distribution with mean μ_2 and variance σ^2 both unknown.

- Suppose X_1,\ldots,X_m form a random sample from a normal distribution with mean μ_1 and variance σ^2 both unknown.
- And suppose Y_1, \ldots, Y_n form a random sample from a normal distribution with mean μ_2 and variance σ^2 both unknown.
- Consider the following hypothesis test, at a significance level of α

 $H_0: \mu_1 \leq \mu_2$

 $H_1: \mu_1 > \mu_2$

- Suppose X_1, \ldots, X_m form a random sample from a normal distribution with mean μ_1 and variance σ^2 both unknown.
- And suppose Y_1, \ldots, Y_n form a random sample from a normal distribution with mean μ_2 and variance σ^2 both unknown.
- Consider the following hypothesis test, at a significance level of α

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

• Define $S_X^2 = \sum_{i=1}^m (X_i - \overline{X}_m)^2$ and $S_Y^2 = \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$

- Suppose X_1, \ldots, X_m form a random sample from a normal distribution with mean μ_1 and variance σ^2 both unknown.
- And suppose Y_1, \ldots, Y_n form a random sample from a normal distribution with mean μ_2 and variance σ^2 both unknown.
- Consider the following hypothesis test, at a significance level of α

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

- Define $S_Y^2 = \sum_{i=1}^m (X_i \overline{X}_m)^2$ and $S_Y^2 = \sum_{i=1}^n (Y_i \overline{Y}_n)^2$
- Our test statistic is then.

$$T = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{1}{n})}\sqrt{(S_X^2 + S_Y^2)}}$$

- Suppose X_1, \ldots, X_m form a random sample from a normal distribution with mean μ_1 and variance σ^2 both unknown.
- And suppose Y_1, \ldots, Y_n form a random sample from a normal distribution with mean μ_2 and variance σ^2 both unknown.
- Consider the following hypothesis test, at a significance level of α

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

- Define $S_Y^2 = \sum_{i=1}^m (X_i \overline{X}_m)^2$ and $S_Y^2 = \sum_{i=1}^n (Y_i \overline{Y}_n)^2$
- Our test statistic is then.

$$T = \frac{\sqrt{m+n-2}(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{1}{m} + \frac{1}{n})}\sqrt{(S_X^2 + S_Y^2)}}$$

• Under the null hypothesis T will have a t distribution with m+n-2 degrees of freedom.

• If we instead assume that the variance is not the same for both distributions we have the following test statistic:

$$T = \frac{(\overline{X}_m - \overline{Y}_n)}{\sqrt{(\frac{S_X^2}{m} + \frac{S_Y^2}{n})}}$$

 Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).

- Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).
- Their reaction time to a stimulus was measured (in ms).

- Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).
- Their reaction time to a stimulus was measured (in ms).
- We want to perform a two-sample t-test for comparing the means of the treatment and control groups.

- Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).
- Their reaction time to a stimulus was measured (in ms).
- We want to perform a two-sample t-test for comparing the means of the treatment and control groups.
- Let μ_1 be the mean of the population taking medicine and μ_2 the mean of the untreated population.

- Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).
- Their reaction time to a stimulus was measured (in ms).
- We want to perform a two-sample t-test for comparing the means of the treatment and control groups.
- Let μ_1 be the mean of the population taking medicine and μ_2 the mean of the untreated population.
- The hypothesis of interest can be expressed as:

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 < 0$$

- Suppose 6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).
- Their reaction time to a stimulus was measured (in ms).
- We want to perform a two-sample t-test for comparing the means of the treatment and control groups.
- Let μ_1 be the mean of the population taking medicine and μ_2 the mean of the untreated population.
- The hypothesis of interest can be expressed as:

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 < 0$$

Suppose we assume equal variance for both groups.


```
Let's think about performing this test in R:
Control = c(91, 87, 99, 77, 88, 91)
Treat = c(101, 110, 103, 93, 99, 104)
t.test(Control, Treat, alternative="less", var.equal=TRUE)
Two Sample t-test
data: Control and Treat t = -3.4456, df = 10,
p-value = 0.003136
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval: -Inf -6.082744
sample estimates:
mean of x mean of y
88.83333 101.66667
```

- The two-sample t-test was used when we computed statistics from two independent random samples and we wanted to make decisions about how much they differed.
- Other times we may want to know the difference between pairs of things that are linked by some known relationship.
- A paired t-test follows the same pattern as with the one sample t-test, except that we perform the hypothesis test on a statistic computed from the differences between each pair of observations.

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{\sum_{i=1}^{n} y_{i1}}{n} - \frac{\sum_{i=1}^{n} y_{i2}}{n}$$

• For example, we might test whether or not the mean of the two populations is identical - the true difference in means is 0:

$$H_0: \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

• For example, we might test whether or not the mean of the two populations is identical - the true difference in means is 0:

$$H_0: \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

• Then,

$$t_d = \frac{\bar{d} - 0}{\hat{se}_{\bar{d}}}$$

 For example, we might test whether or not the mean of the two populations is identical - the true difference in means is 0:

$$H_0: \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

Then.

$$t_d = \frac{\bar{d} - 0}{\hat{se}_{\bar{d}}}$$

• As before, under H_0 this test statistic is t_{n-1} distributed.

• For example, we might test whether or not the mean of the two populations is identical - the true difference in means is 0:

$$H_0: \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

Then,

$$t_d = \frac{\bar{d} - 0}{\hat{se}_{\bar{d}}}$$

- As before, under H_0 this test statistic is t_{n-1} distributed.
- So the confidence interval for the difference $\mu_d=\mu_2-\mu_1$ is

$$\bar{d} \pm t_{n-1,\alpha/2} \hat{se}_{\bar{d}}$$

• Suppose we want to test two different prediction algorithm on the same test set of size n.

- Suppose we want to test two different prediction algorithm on the same test set of size n.
- Let $X_i = 1$ if algorithm 1 is correct on test case i and let $X_i = 0$ otherwise.
- Let $Y_i = 1$ if algorithm 2 is correct on test case i and let $Y_i = 0$ otherwise.

- Suppose we want to test two different prediction algorithm on the same test set of size n.
- Let $X_i = 1$ if algorithm 1 is correct on test case i and let $X_i = 0$ otherwise.
- Let $Y_i = 1$ if algorithm 2 is correct on test case i and let $Y_i = 0$ otherwise.
- Define $D_i = X_i Y_i$, then a typical data set would look like:

Test Case	X_i	Y_i	D_i
1	1	0	1
2	1	1	0
3	1	1	0
4	0	1	-1
5	0	0	0
:	:	:	÷
n	0	1	-1

• Let $\delta = \mathrm{E}(D_i)$ then $\hat{\delta} = \overline{D} = \frac{1}{n} \sum_{i=1}^n D_i$ and $\hat{\mathrm{se}}(\hat{\delta}) = S/\sqrt{n}$ where $S^2 = \frac{1}{n} \sum_{i=1}^n (D_i - \overline{D})^2$.

- Let $\delta = \mathrm{E}(D_i)$ then $\hat{\delta} = \overline{D} = \frac{1}{n} \sum_{i=1}^n D_i$ and $\hat{\mathrm{se}}(\hat{\delta}) = S/\sqrt{n}$ where $S^2 = \frac{1}{n} \sum_{i=1}^n (D_i \overline{D})^2$.
- To test

$$H_0: \delta = 0$$

$$H_1: \delta \neq 0$$

- Let $\delta = \mathrm{E}(D_i)$ then $\hat{\delta} = \overline{D} = \frac{1}{n} \sum_{i=1}^n D_i$ and $\hat{\mathrm{se}}(\hat{\delta}) = S/\sqrt{n}$ where $S^2 = \frac{1}{n} \sum_{i=1}^n (D_i \overline{D})^2$.
- To test

$$H_0: \delta = 0$$

$$H_1: \delta \neq 0$$

$$t_{\delta} = \frac{\bar{\delta}}{\hat{se}_{\bar{\delta}}}$$

- Let $\delta = \mathrm{E}(D_i)$ then $\hat{\delta} = \overline{D} = \frac{1}{n} \sum_{i=1}^n D_i$ and $\hat{\mathrm{se}}(\hat{\delta}) = S/\sqrt{n}$ where $S^2 = \frac{1}{n} \sum_{i=1}^n (D_i - \overline{D})^2$.
- To test

$$H_0: \delta = 0$$

$$H_1: \delta \neq 0$$

$$t_{\delta} = \frac{\bar{\delta}}{\hat{se}_{\bar{\delta}}}$$

• Reject H_0 if $|t_{\delta}| > t_{n-1}^{-1}(\alpha/2)$

Multiple Comparisons

• The scenario of testing many pairs of groups is called multiple comparisons.

Multiple Comparisons

- The scenario of testing many pairs of groups is called multiple comparisons.
- The Bonferroni correction suggests that a more stringent significance level is more appropriate for these tests:

$$\alpha^* = \frac{\alpha}{K\hat{\mathbf{I}}\acute{\mathbf{s}}}$$

where K is the number of comparisons being considered (formally or informally).

• If there are k groups, then usually all possible pairs are compared and $K=\frac{k(k \triangle \hat{L} \triangle 1)}{2}.$

Today's Roadmap

Statistical Tests in R

http://www.ats.ucla.edu/stat/r/whatstat/whatstat.htm

Today's Roadmap

Problem Set 1 Due Friday 11:59 am

Questions?

