

Mark Scheme (Results)

January 2021

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Question Number		Scheme			·ks
1(a)	B(30, 0	.05)		B1	
					(1)
(b)	The probability (oe) of an <u>oyster</u> surviving/not surviving is constant			B1	
		vival of each <u>oyster</u> is independent of the others			(1)
(c)(i)	$^{30}C_{24}(0.05)^6(0.95)^{24}$ oe			M1	
		= 0.002708 awr	rt 0.0027	A1	
(ii)	$P(Y \ge 3) = 1 - P(Y \le 2)$ from $Y \sim B(30, 0.05)$ or $P(X \le 27)$ from $X \sim B(30, 0.95)$			M1	
		= 1 - 0.8122			
		= 0.1878 aw	vrt 0.188	A1	
					(4)
(d)	$A \sim Po($, , , , , , , , , , , , , , , , , , ,		B1	
	$P(A \geqslant n)$				
	, ,	$(n-1) < 0.2 \text{ or } P(A \le 6) = 0.1301\text{ awrt } 0.13 \text{ or } P(A \ge 7) = 0.8699$	0.87	M1	
	n = 7			A1cao	
	TT	0.05 11005		D.1	(3)
(e)		$0.05, H_1: p > 0.05$		B1	
		$C \sim B(25, 0.05)$ and $P(C \ge 4)$ Using $D \sim B(25, 0.95)$ and $P(D \le 21)$		M1	
	$P(C \ge 4) = 0.0341 / CR C \ge 4$ $P(D \le 21) = 0.0341 / CR D \le 21$			A1	
	Evidence to reject H ₀ , in the CR, significant			dM1	
	There is evidence that the proportion of oysters not surviving has increased (oe)/ Jim's belief is supported.			A1cso	
					(5)
				Tota	al 14
(-)	D1	Notes	(-)		
(a) (b)	B1 B1	Must include B(inomial), $n = 25$ and $p = 0.05$. Do not allow $p = 0.95$ in part For either correct assumption in context. Ignore extraneous non-contradicting		C	
(c)(i)	M1	allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le 5)$ with one correct probability	g comment		
(C)(1)	A1	awrt 0.0027 (correct answer scores 2 out of 2)			
(ii)	M1	Writing/using $1-P(Y \le 2)$ with B(30, 0.05) or writing/using $P(X \le 27)$ wi	ith B(30, 0.	95)	
	A1	awrt 0.188 (correct answer scores 2 out of 2)			
(d)	B1	Writing or using Po(10) (sight of 0.1301 or 0.8699 can imply this mark)			
	M1	Allow $P(A < n) < 0.2$ or $P(A < 7) = awrt 0.13$ or $P(A > 6) = awrt 0.87$			
	A1cao	n = 7 which must come from use of Po(10) or N(10, 9.5)			
	Note:	Use of normal approx. with $\mu = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ can s	score M1		
		Exact binomial gives $P(A \le 6) = 0.14 / P(A \ge 7) = 0.86$ scores B0M0A0			
(e)	B1	Both hypotheses correct (allow use of p or π). Allow $H_0: p = 0.95, H_1: p < 0.95$			
	M1	Using B(25, 0.05) and writing/using $P(C \ge 4)$ or if CR given $P(C \ge 3)$ using B(25, 0.05).	ing B(25, 0	.95) an	d
		writing/using P($D \leqslant 21$) or if CR given P($D \leqslant 20$)			
	A1	Correct probability to 3sf (must not go on and give incorrect CR) or correct	CR (ignore	upper	tail)
	dM1	(dep on 1st M1) A correct non-contextual statement (do not allow contradicti	ing non-con	itextual	
		comments) which is consistent with their prob and 0.05 (If not stated, may be implied by A1)			
SC.	A1cso All previous marks must be awarded. Correct contextual conclusion with bold words (oe)				
SC:	2-tail	Use of two-tailed test can score max: B1M1A1M1A0, but must not reject H	10 IOr 2" M	1	

Question Number	Scheme			Marks	
2(a)	1-F(3.5	=1-0.97127		M1	
		= 0.028727	awrt 0.0287	A1	
				(2)	
(b)	$W \sim B(3)$	30,"0.0287")		M1	
	1-P(W	≤ 1) = 1 - $\left(\left(1 - "0.0287" \right)^{30} + {}^{30}C_1 \left("0.0287" \right)^1 \left(1 - "0.0287" \right)^{29} \right)$ oe		M1	
		$= 1 - 0.78748 \dots = 0.2125\dots$ awrt 0.213 to	awrt 0.216	A1	
				(3)	
(c)	$\frac{\mathrm{d}\mathrm{F}(w)}{\mathrm{d}w} =$	$=\frac{1}{3}\left(1-\frac{w^3}{64}\right)$		M1	
	$E(W^2) =$	$\int_0^4 \frac{1}{3} \left(w^2 - \frac{w^5}{64} \right) dw = \frac{1}{3} \left[\frac{w^3}{3} - \frac{w^6}{384} \right]_0^4$		dM1	
		$=\frac{32}{9}$		A1	
		$=\frac{32}{9}-1.6^2$		M1	
	_	$=\frac{224}{}$		A1	
	<u>- 225</u>				
	T	Notes			
(a)	M1	For writing or using $1 - F(3.5)$ Implied by correct answer			
	A1	awrt 0.0287			
(b)	M1 For writing or using B(30,"0.0287") allow n ("their 0.0287") $(1-$ "their 0.028		37") ²⁹		
(0)	ignore any number for n (allow their p to 2sf)				
	M1	For $1 - ((1 - 0.0287)^{30} + {}^{30}C_1(0.0287)^1(1 - 0.0287)^{29})$ Allow ${}^{30}C_{29}$ in any form			
	A1	allow answer in the range awrt 0.213 to awrt 0.216			
(c)	M1	Differentiating $F(w)$ at least one term correct			
	dM1	(Dep on previous M1). Attempting to integrate expanded $w^2 f(w)$. At least one $w^n \to w^{n+1}$ Ignore limits for this M mark.			
	A1	awrt 3.56 must come from correct algebraic integration (may be	embedded)		
	M1	Use of correct formula with values substituted. Must see the sub		\tilde{j}^2	
	A1	Dependent upon 2 nd M1 awrt 0.996			
	(A correct answer with no algebraic integration seen may score M1M0A0M1A0)			A 0)	

Question Number	Chama					
3(a)	$P(X \neq 4$	$A = 1 - P(X = 4)$ oe $\left(= 1 - \frac{e^{-7}7^4}{4!} $ or $1 - (0.1730 - 0.0818) \right)$	M1			
		= 0.90877 awrt 0.9	909 A1			
			(2)			
(b)	P(Y=1)	$=(1-0.90877)(0.90877)^{4}\times {}^{5}C_{1}$	M1M1			
		= 0.311	A1			
			(3)			
(c)(i)	$\lambda = 0.0$		B1			
	`	07n, 0.07n	M1			
	$\frac{3.5 - 0.07}{\sqrt{0.07}}$		M1			
			P.1			
		$\frac{7n}{n} = -1.55$ or "0.07n" $-\left(1.55\sqrt{0.07}\right)\sqrt{n} - 3.5 = 0$	B1			
	$n - \left(\frac{1.55}{0.07}\right)$	$\left(\frac{5}{7}\sqrt{0.07}\right)\sqrt{n} - \frac{3.5}{0.07} = 0 \Rightarrow n - 1.55\sqrt{\frac{n}{0.07}} - 50 = 0$	A1cso			
			(5)			
(ii)	$\sqrt{n} = \frac{\frac{1.5}{0.0000000000000000000000000000000000$	$\frac{\frac{55}{0.07} \pm \sqrt{\left(\frac{1.55}{\sqrt{0.07}}\right)^2 + 4 \times 50}}{2} = \text{awrt} - 4.72 \text{ or awrt } 10.6 (4\sqrt{7})$	M1			
	n = 112		A1cao			
			(2)			
(d)	$H_0: \lambda =$	$=7 \mathbf{H}_{_{1}}: \lambda > 7$	B1			
	$P(X \ge 1)$	$15) = 1 - P(X \le 14) \qquad P(X \ge 14) = 0.0128$	M1			
		$= 1 - 0.9943 P(X \ge 15) = 0.0057$				
		$= 0.0057$ CR $X \ge 15$	A1			
	Reject F	H ₀ , in the CR, Significant	dM1			
	There is	evidence that the number of water fleas per 100 ml of the pond water has increased	<u> </u>			
			(5)			
		Notes	Total 17			
(a)	M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe				
(b)	M1	$(1 - \text{"their } 0.909\text{"})^4$ ("their $0.909\text{"})$ or $(1 - \text{"their } 0.909\text{"})$ ("their $0.909\text{"})^4$ allow their values to 2	s f			
(0)						
	M1 A1	$P(Y=1) = (1 - \text{"their } 0.909\text{"})(\text{"their } 0.909\text{"})^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311				
(c)(i)	B1	Writing or using mean as 0.07 <i>n</i>				
	M1	Normal with the mean = variance which must be in terms of n (may be implied by correct				
	M1	Standardising with their mean and their $\sqrt{\text{var}}$. If not stated they must be correct. Allow 2.5, 3, 3.5,4, 4.5 (A				
	D4	correct standardisation implies B1M1M1)				
	B1	Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between standardisation				
	A1cso	indicating division by 0.07 and correct equation.	ardisatiOff			
(ii)	M1	Correct method to solve given quadratic <u>or</u> sight of awrt –4.72 or awrt 10.6				
(1)	A1cao	* · · · · · · · · · · · · · · · · · · ·				
(d)	B1					
	M1 For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$					
	A1 awrt 0.0057 or correct CR allow X > 14					
	33/11	dM1 (dep on 1 st M1) A correct non-contextual statement (do not allow contradicting non-contextual comments) which is consistent with their prob and 0.01. (If not stated, may be implied by A1)				
	alvii	which is consistent with their prob and 0.01. (If not stated, may be implied by A1)				

Question Number		Scheme		Marks	
4(a)	$\int_0^a k(a -$	$ -x)^{2} dx = \left[k \left(a^{2}x - ax^{2} + \frac{x^{3}}{3} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k(a-x)^{3}}{3} \right]_{0}^{a} $			
	$\int k \left(a^3 - a^3\right)$	$\left(\frac{a^3}{3}\right) = 1$ or $\frac{ka^3}{3} = 1$ $\Rightarrow ka^3 = 3$			
				(3)	
(b)	$\int_0^a kx(a-$	$-x)^{2} dx = \left[k \left(\frac{a^{2}x^{2}}{2} - \frac{2ax^{3}}{3} + \frac{x^{4}}{4} \right) \right]_{0}^{a} \text{or} \left[\frac{-kx(a-x)^{3}}{3} + \frac{k(a-x)^{4}}{12} \right]_{0}^{a}$			
	$k\left(\frac{a^2a^2}{2}\right)$	$-\frac{2aa^3}{3} + \frac{a^4}{4} = 1.5$ or $\left[\frac{ka(a)^3}{3} - \frac{k(a)^4}{12}\right]_0^a = 1$	$\left[\frac{2aa^3}{3} + \frac{a^4}{4}\right] = 1.5$ or $\left[\frac{ka(a)^3}{3} - \frac{k(a)^4}{12}\right]_0^a = 1.5$ or $ka^4 = 18$ oe		
	$\frac{ka^4}{ka^3} = 6$	or $\frac{18}{3} = 6$ [: $a = 6$]			
				(4)	
(c)	F(x) =	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right)$	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right) = 0.5$ oe	M1	
	F(1.15)(= 0.47) and $F(1.25) (= 0.5038)$	1.2377	M1	
	(0.47(18	therefore the median is 1.2 to 1 decimal place.			
		The test decimal place.			
				Total 10	
		Notes			
(a)	M1	Integrating f(x) at least 1 term correct. For M1 allow $\frac{\pm k(a-x)^3}{3}$			
	A1	Correct integration (ignore limits)			
<i>(</i> 1)	A1cso	Substitute limits and equating to 1 to form one		g to $ka^3 = 3$	
(b)	M1	Indicating that they are integrating $xf(x)$ with a Correct integration	an attempt at integrating $x^n \to x^{n+1}$		
	A1	(dep on previous M1). Substitute limits and eq	uating to 1.5 to form a 2 nd expression	in terms of	
	dM1	k and a	unding to 110 to 101m u 2 Capicosion	111 (011115 01	
	A1cso	Correct method shown to solve their 2 equations to eliminate k and show $a=6$			
(c)	M1	Finding correct F(x). Allow F(x) = $1 - \frac{(6-x)^3}{216}$ but F(x) = $\frac{(6-x)^3}{216}$ is M0 Allow in terms of k for this mark			
	M1	For attempting their $F(1.15)$ and their $F(1.25)$ of	or a suitable tighter interval or for 'sol	ving' cubic	
		leading to a value awrt 1.24	ov. v. = 1.2) ov o	on alwai ac	
	A1	Both correct values and correct conclusion (allow $x = 1.2$) or awrt 1.24 and correct conclusion (allow $x = 1.2$). Allow change of sign argument if they have subtracted 0.5 (i.e. $-0.028 < 0 < 0.0038$).			

Question Number		Scheme		Marks	
5(a)	U[0, 3]		M1	
	3-1.8	$\frac{3}{2} = 0.4$		A1	
	3			(2)	
(b)	$X^2 = W^2 + (3 - W)^2$			M1	
(0)		$\frac{1}{2} + 9 + W^2 - 6W \Rightarrow X^2 = 2W^2 - 6W$	´+0	A1	
	11 ,,	$10^{-10} \text{ or } \Rightarrow 10^{-20} \text{ or }$		(2)	
(c)	E(W) = 1	1.5		B1	
	Var(W)	$=\frac{9}{12}=\frac{3}{4}$		B1	
	$E(W^2)=$	$= \frac{9}{12} = \frac{3}{4}$ $= \frac{3}{4} + 1.5^{2}$		M1	
	$E(W^2) =$	=3		A1	
	So E(X	$(2) = 2 \times "3" - 6 \times "1.5" + 9 = 6$		M1A1	
				(6)	
(d)	$P(X^{2} > 5) = P(2W^{2} - 6W + 4 > 0)$			M1	
	= P((2W-2)(W-2)>0)				
	= P(W > 2) + P(W < 1)				
	$=\frac{2}{3}$ oe			A1	
				(4)	
		N		Total 14	
(a)	Notes 1.8 c MIAO				
(a)	M1	Writing or using the correct distributi	on Allow: $\frac{1.8}{3}$ for M1A0		
	A1	0.4 oe			
(b)	M1	Using Pythagoras to find the length	Note: $X^2 = W^2 + (W - 3)^2$ so		
	A1	Brackets multiplied seen leading to 2	$K^2 = 2W^2 - 6W + 9$ with no incorre	ect working	
(c)	B1	1.5		3 1	
	B1	Var(W) = 0.75	Using integration: $E(W^2) = \int_0^3$	$\int_{0}^{1} \frac{1}{3} w^{2} dw$ (ignore limits)	
	M1	Writing or using $E(W^2) = Var(W) + [E(W)]^2$	$\left[\frac{1}{9}w^3\right]_0^3$ (correct integration	with correct limits)	
	A1	3			
	M1 Use of $E(X^2) = 2E(W^2) - 6E(W) + 9$ with their values.				
	A1	6 An answer of 6 from correct work			
(d)	M1	For realising they need to find the pro-			
		M1 Solving their 3-term quadratic ($W = 1$ and $W = 2$ implies 1^{st} two M marks)			
	dM1 A1	(dep on 2 nd M1) Realising they need to awrt 0.667	to add the 2 outer areas		

Question Number		Scheme	Marks		
6(a)	Taking a random sample is quicker/cheaper/easier (compared to asking all of the youth club members).				
			(1)		
(b)	A <u>list/reg</u>	gister/database of all the youth club members	B1		
			(1)		
(c)	The mem	<u>nbers</u>	B1 (1)		
	25		(1)		
(d)	$p^2 = \frac{25}{64}$		M1		
	$p = \frac{5}{8}$		A1		
	$\frac{5}{8}$ + $q + r = 1$ or $2qr = \frac{1}{16}$ or $\frac{25}{64} + 2 \frac{5}{8}$ $q + 2 \frac{5}{8}$ $r + q^2 + \frac{1}{16}$ $+ r^2 = 1$				
		equations from above	B1		
	$\frac{3}{8}q - q^2 =$	$=\frac{1}{32}$	dM1		
	$q = \frac{1}{4}$		A1		
	P(M=50)	$0) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} *$	A1cso*		
			(7)		
			Total 10		
(a)	B1	Notes			
(a) (b)	В1 В1	Any one of the given reasons. Ignore extraneous non-contradictory reasons. Idea of list(oe). Need all (oe) (eg complete list) and members.			
(c)	B1	The members/a member			
(d)	M1	Correct method, may be implied			
(4)		<u> </u>			
	A1	$p = \frac{5}{8}$ or $P(X = 20) = \frac{5}{8}$			
	B1	One equation in q and r from use of $p + q + r = 1$, $P(M = 60)$ or $\sum P(M=m) = 1$ see Note (allow ft on their value of p)			
	B1 Two correct equations in q and r Some will substitute directly into the third equation so not see: $\frac{25}{64} + \frac{5}{4}q + \frac{5}{128q} + q^2 + \frac{1}{16} + \frac{1}{1024q^2} = 1$ which is correct and scores B1B1				
	dM1	(dep on 1 st B1) Correct method to solve simultaneous equation leading to a probe (may be implied by $q = \frac{1}{4}$ or $r = \frac{1}{8}$ provided B1B1 scored)			
	A1	Correct probability for q (dependent on all previous marks in part (d))			
	A1cso*	Correct solution with use of $P(M = 50) = q^2$ and all previous marks awarded.			
	Note:	m 20 35 45 50 60 70			
		$P(M=m) \qquad \frac{25}{64} \qquad 2pq \qquad 2pr \qquad q^2 \qquad \frac{1}{16} \qquad r^2$			
		$\frac{25}{64} + 2pq + 2pr + q^2 + \frac{1}{16} + r^2 = 1$			