CS & IT

ENGINEERING

Digital Logic
Minimization
Lecture No. 04

By- CHAN DAN SIR

TOPICS TO
BE
COVERED

01 Question Practice

02 Discussion

Q.1

If
$$x \otimes y = \overline{x} + y$$
 and $z = x \otimes y$.
Then $z \otimes y$ will be -

$$\overline{X} + y$$

$$B$$
 $(x + y)$ Py

$$\mathbf{C}$$
 0

$$\begin{array}{l}
\overline{z} = \overline{z} + Y \\
= \overline{x} + Y + Y \\
= \overline{x} + Y + Y \\
= \overline{x} \cdot \overline{y} + Y \\
= \overline{x} \cdot \overline{y} + Y \\
= (x+y)(\overline{y} + y) \\
= x+y
\end{array}$$

Q.2

If $A * B = AB + \overline{A} \overline{B}$ and C = A * B. Then which one is/are correct

$$A = B * C$$

$$B = A * C$$

$$D \land A = B \land$$

AOB=X

6

1				(0)
A	B	cif	00 (10C)	AUC
0	0	1	0	0
U	1	0	O	1
1.	0.	0	1	0
-	1-	- 1	1	1

$$A=13$$

$$A + A = A + \overline{A}$$

$$= L$$

$$C=1$$

Q.3

$$f(A,B,C) = A \cdot B \cdot (AB+C)$$

= $AB \cdot AB+ABC$
= $AB+ABC=AB(I+C)-AB$

Consider the given logic circuit with the inputs A, B and C, then f(A, B, C) will be-

Q.4

The output f for the given logic circuit will be-

$$A + B$$

$$\overline{A} + B$$

$$\mathbf{D}$$
 $A\overline{B}$

Q.5

The output f for the given logic circuit will be-

- **A** 0
- B 1
- (C) A + B
- None

9						_<		The second second	
	A	B	C	AOB	BOC	AAC	Ptq	OHR	XOY
0	Ó	Q	0	.0	4.	0	1	.1	1.
1	Q	0	1	0	0	1	0.	1	0
2	O	1	0	J	0	0	1.	0	0
3	0	1	1	J	1	1	1	1	1
4	1	0	0	J	1	1	J	J	l.
5	1	0	1	1	0	0	j	0	0
6	1	1	σ	0	0	1	0	J	0
7	1 1	1	4	0	1-	0	J	J	1

KX C	700	01	. 11	10
0	1		(1)	
ľ	F			

$$f = P\bar{g}R + Pg + PR + Q + QR$$

$$f = P\bar{g}R + QTP + I+RTPR$$

$$f = P\bar{g}R + Q + PR$$

ABC	ABB	BOC	AOC.	X	14	XOY
000	0	Ţ	0	1		
001:	0	٥	1	0	1	0
0 10	1	0	O	1	0	0
0 1:1	4	J	1	1	1	•
100	1	.1	1	L	L	1
101	1	0	0	t	D	0
110	0	0	1	0	t	0
(· [·	6	1	0	1	1	1
1						

$$f = (A \oplus B) + X \otimes (A \oplus C) + X$$

$$= \overline{(A \oplus B)} + X \otimes (\overline{(A \oplus C)} + X) + \overline{(A \oplus B)} + X \cdot \overline{(A \oplus C)} + X \cdot \overline{(A \oplus C)} + X \cdot \overline{(A \oplus C)} + \overline{(A \oplus C)} +$$

$$= \overline{A\ThetaB} \cdot \overline{A\ThetaC} \times + (A\ThetaB) (A\ThetaC) + \times$$

Q.6

The Following logic gate circuit is equivalent to

- A NAND
- B OR
- C XOR
- D NOT

NOT GIATE :-

A	Transistor	8
0	cutoff	1
1	Saturation	O

Q.8

Figure shows the particle realization of a logic gate. Identify the logic gate.

NAND

B NOR

C XOR

D XNOR

Q.10

For the logic circuit shown, the simplified Boolean expression for the output Y is

B A

D

Q.13

For the circuit shown in fig. the Boolean expression for the output Y in terms of inputs P, Q, R and S is

$$\overline{P} + \overline{Q} + \overline{R} + \overline{S}$$

$$P+Q+R+S$$

(
$$\overline{P} + \overline{Q}$$
) ($\overline{R} + \overline{S}$)

$$(P+Q)(R+S)$$

Q.14

 $A_3A_2A_1A_0$, $B_3B_2B_1B_0$ is shown in fig. To get output Y = 0, choose one pair of correct input numbers

- A 1010, 1010
- B 0101, 0101
- 0010,0010

Q.18

The minimum number of two input NAND gates required to implement y = abcd is

Common data for Questions Q.21 and Q.22

All the logic gates in the circuit shown below, have equal finite propagation delay.

Q.21

The circuit can be used as clock generator, if

$$x = 1$$

- x = 0 or 1
- \mathbf{D} $\mathbf{x} = \mathbf{y}$

Q.22

If the output waveform has frequency of 10 MHz the propagation delay of each logic gate, is

- A 5 ns
- B 10 ns
- **C** 20 ns
- D 50 ns

$$f = \frac{1}{anxcpd}$$

The axinx
$$f = \frac{1}{ax 5x 10x 10^6}$$

$$\frac{1}{10^4} = \frac{1}{10^4} = \frac{1}{$$

$\bar{A}B + AC + \bar{B}C$ is equivalent to

(a)
$$\bar{A}B + AC$$

(b)
$$\bar{A}B + C$$

(c)
$$AC + \bar{B}C$$

(d)
$$\bar{A}B + \bar{B}C$$

$$f = \overline{AB} + A(+\overline{B})C$$

$$= \overline{AB}(\overline{C}+C) + A(\overline{B}+B)C + (\overline{A}+A)\overline{B}C$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{CM}(2,3,5,7,1)$$

$$A\bar{B} + (\bar{A}B + \bar{B}C + A\bar{B}D + A\bar{B}\bar{D})$$
 is equal to

(a)
$$(\bar{A} + B) \times \bar{A} = \bar{A}$$

(b)
$$(\bar{A} + B)(B + \bar{C})$$
 $B(\bar{A} + H(\bar{C}))$ $B(\bar{A} + H(\bar{C}))$

(c)
$$(\bar{A} + B)(A + \bar{B})$$
 $(B + \bar{A}\bar{C})$

(d)
$$\bar{A}B + \bar{B}D$$

ABTABE

$$(\bar{A} + \bar{B})(\bar{B} + \bar{C})$$
 is equal to

(a)
$$\bar{B}(A+C)$$

(b)
$$A(B+C)$$

(c)
$$B(A+C)$$

(d)
$$C(A+B)$$

Pw

$$\bar{A}\bar{B}+AC+\bar{B}C$$
 is equivalent to

(a)
$$(A + \overline{B}) \cdot (\overline{A}\overline{B} + C)$$

$$(b) \bar{A}\bar{B} + AC$$

(c)
$$AC + \bar{B}C$$

(d)
$$\bar{A}\bar{B} + \bar{B}C$$

A+BC=(A+B)(A+C)

$$(A + B) (A + C) (A + \overline{C})$$
 is equivalent to

(a)
$$A + BC$$

(b)
$$A + B\overline{C}$$

A logical function is given as:

$$f(A, B, C) = B\bar{C}[A + B\bar{C}D + \bar{B}CD + \bar{A}B\bar{C} + \bar{A}\bar{B}\bar{C}]$$

is equivalent to

- (a) ABCD
- (b) BC
- (c) $A\overline{B} + B\overline{C} + CD$
- (d) ABCD

A logical function

$$f(A, B, C) = (A + B) (\overline{B} + C) (A + C)$$
, then will be equal to

(a)
$$AB + \overline{B}C$$

(b)
$$\overline{AB} + B\overline{C}$$

(c)
$$\overline{AB} + \overline{AC}$$

(d)
$$AB + AC$$

Which of the following is true?

(a)
$$\overline{\overline{A}B + A\overline{B}} = (\overline{A} + \overline{B})(A + B)$$

(b)
$$\overline{ABCD} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

(c)
$$\overline{AB.C} = (A + \overline{C})(\overline{B} + \overline{C})$$

(d) None of these

A logical function

$$f(A, B, C) = (A + B) (\overline{B} + C) (A + C)$$
, then will be equal to

(a)
$$AB + \overline{B}C$$

(b)
$$\overline{AB} + B\overline{C}$$

(c)
$$\overline{AB} + \overline{AC}$$

(d)
$$AB + AC$$

Thank you

Soldiers!

