1. More NVA practice. Find $V_1 \& V_3$.

$$\frac{V_1 - 16}{5} + \frac{V_1}{3} + \frac{V_1 - V_3}{7} = 0$$
$$\frac{V_3 - V_1}{7} + \frac{V_3 - 16}{4} + \frac{V_3}{6} = 0$$

$$71 V_1 - 15 V_3 = 336$$

 $-24 V_1 + 94 V_3 = 672$

$$V_1 = 6.6 \text{ V}; V_3 = 8.83 \text{ V}$$

2. In this circuit, V₃=8.8 V.. You will be using Method (a.) to find the Thévenin Equivalent circuit.

Use the $V_{\text{OC}}\text{-}I_{\text{SC}}$ method to find the Thévenin Equivalent circuit, looking in through Port A-B.

From Problem 1,
$$V_3 = 8.8 \text{ V}$$

 $V_{OC} = V_3 = 8.8 \text{ V}$

Shorting Terminals A and B,

$$\frac{V_1 - 16}{5} + \frac{V_1}{3} + \frac{V_1}{7} = 0$$
$$\frac{0 - 16}{4} + \frac{0 - V_1}{7} + I_{SC} = 0$$

$$V_1 = \frac{336}{71} = 4.7324$$
$$I_{SC} = \frac{V_1 + 112}{28} = 4.6761$$

$$R_{th} = \frac{V_{OC}}{I_{SC}} = \frac{8.8}{4.6761} = 1.88 \ \Omega$$

NOTE: This problem shows Method (a.) to finding the Thévenin Equivalent circuit.

- 3. This time, you will find the Thévenin Equivalent circuit by using Method (b.). We zeroed out the 16 V battery and attached a test battery to the circuit as shown.
 - a. Find an expression for the current I_{T} .
 - b. Compute V_T / I_T . Units are ohms.
 - c. Compare your answer to Problem 2.

$$V_{2} = 0 \text{ V}; V_{3} = 1 \text{ V}$$

$$\frac{V_{1} - 0}{3} + \frac{V_{1} - 0}{5} + \frac{V_{1} - 1}{7} = 0$$

$$V_{1} = \frac{15}{71} = 0.2113 \text{ V}$$

$$-I + \frac{1 - 0 \text{ V}}{4 \Omega} + \frac{1 \text{ V}}{6 \Omega} + \frac{1 - 0.2113 \text{ V}}{7 \Omega} = 0$$

$$I = 0.53 \text{ A}$$

$$\frac{1 \text{ V}}{I} = \frac{1}{0.53} = 1.89 \Omega$$

- 4. This time, you will find the Thévenin Equivalent circuit by using Method (c.). We replaced the 16 V battery with a short.
 - a. Using your knowledge of series and parallel circuits, find the resistance of the circuit when looking in through the port.
 - b. Compare your answer to Problem 3.

 $(7+5||3) || (4||6) = 1.89 \Omega$

5a. Using the expressions for capacitive and inductive impedance, find the total impedance presented by the capacitor, inductor, and resistor to the voltage source. Set $\omega = 1000$ rad/s.

$$Z_{tot} = Z_C || Z_L + R$$

$$Z_C || Z_L + R = \frac{Z_C Z_L}{Z_C + Z_L} + R = \frac{\frac{j\omega L}{j\omega C}}{\frac{1}{j\omega C} + j\omega L} + R = \frac{\frac{j1000 \cdot 0.51}{j1000 \cdot 2.2e - 6}}{\frac{1}{j1000 \cdot 2.2e - 6} + j1000 \cdot 0.51} + 2200$$

$$Z_{tot} = 2200 - j4180$$

b. Now find the current through the voltage source if $v(t) = 10 \cos(1000t)$. Express in both rectangular and polar forms.

$$i_V(t) = \frac{v(t)}{Z_{tot}} = \frac{10 \angle 0^{\circ}}{2200 - j4180} = 0.99 + j1.87 \text{ mA} = 2.12 \text{ £ }62.1^{\circ}$$

d. Find the current through the inductor i_l . Express in both rectangular and polar forms.

$$i_L(t) = i_V(t) \left(\frac{Z_C}{Z_C + Z_L} \right) = (0.99 + j \, 1.87) \, \left(\frac{-j \, 454}{-j \, 454 + j \, 510} \right) = -8.1 - j \, 15.4 \, \text{ mA} = 17.4 \, \text{ \AA} - 118 \, \text{ }^{\circ}$$

e. Find the current through the capacitor i_C .

$$i_C(t) = i_V(t) \left(\frac{Z_L}{Z_L + Z_C} \right) = (0.99 + j \, 1.87) \, \left(\frac{j \, 510}{-j \, 454 + j \, 510} \right) = 9.1 + j \, 17.2 \, \text{ mA} = 19.5 \, \text{\AA} \, 62.1 \, \text{°}$$

f. Add i_L and i_C . The sum should equal the current in #2.

$$i_L + i_C = -8.1 - j \cdot 15.4 + 9.1 + j \cdot 17.2 = 0.99 + j \cdot 1.87 \text{ mA}$$

g. Compare the magnitudes of $i_L(t)$, $i_C(t)$, and $i_V(t)$. Can you explain the apparent anomaly?

NOTE: $|i_L(t)|$ and $|i_C(t)|$ are much larger than $|i_V(t)|!$