CROSS-PLATFORM ANALYSIS OF CLOUD RESOURCE UTILIZATION PATTERNS FOR OPTIMIZED RESOURCE ALLOCATION

CS 8803: Datacenter Networks & Systems (Spring 2025) Akshat Karwa, Mehul Rastogi

Table of Contents

BACKGROUND + MOTIVATION

DATA + APPROACH + CHALLENGES + METHODOLOGY

CONCLUSIONS + RECOMMENDATIONS

Introduction

Background & Challenges

- We observed that there is a critical gap existing between the cloud resources allocated versus utilized creating inefficiencies.
- Moreover, predicting the amount of resources required is extremely challenging. Thus, cloud providers end up over provisioning resources.
- On top of this, there are variations in workloads which lead to suboptimal resource allocation.
- Overall, these inefficiencies increase costs for consumers and reduce the efficiency of cloud providers making allocation suboptimal.

Introduction

Related Work & Current Research Gap -

- Analysing existing studies, we found that their focus is on the isolated analysis of individual cloud providers: Google* and Alibaba*.
- There is limited comparative research and analysis available that can clearly show contrast between the major cloud providers.
- There is no clear generalization of patterns recognized across different cloud providers.
 Therefore, the most optimal techniques have not been identified yet.
 We aim to reduce this lack of cross-platform insights into common patterns and provider-specific approaches.

^{*} Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., Kozuch, M. A., Intel Science and Technology Center for Cloud Computing, & Carnegie Mellon University. (2012) Towards understanding heterogeneous clouds at scale: Google trace analysis (Report ISTC-CC-TR-12-101)

Introduction

Motivation & Objectives

- We aim to compare trace data across 3 cloud providers Google Cloud, Microsoft Azure, and Alibaba Cloud to identify optimal resource management strategies and the inefficiencies that are either common between them or specific to providers.
- The goal is to:
 - a. Develop insights which can be generalized and utilized to improve resource allocation strategies.
 - b. Analyze diverse approaches of infrastructure management, evaluating their effectiveness.
 - c. Help cloud providers reduce costs by eliminating unnecessary allocation of resources that will not be optimally utilized.
 - d. Identify current best practices and suggest better infrastructure designs.
 - e. Overall, we will try to increase data center efficiency.

Approach

- Preprocessing heterogeneous trace data
- Exploratory data analysis
- Informative plotting
- Predicting utilization using XGBoost Regression ML model
- Output comparison
- Drawing insightful conclusions

Challenges

- Large datasets
- Compute resources
- Heterogeneous data
- Parameter selection for training ML model
- Drawing/Developing insights from different observations and findings

Methodology

Data Sources

- Google Cluster Data (2019)
- Microsoft Azure Public Dataset (2019)
- Alibaba Cluster Trace Data (2018)

Methodology - Google Cluster Data (2019)

- Traces from Google clusters spanning 31 days of data from 2019.
- For each cluster, there are 8 different cells (a through h).
- Based on the Borg cluster management system, the data is further split into shards, where each shard has the following tables:

• Core Tables:

- MachineEvents
- MachineAttributes
- CollectionEvents
- InstanceEvents
- InstanceUsage

Methodology - Google Cluster Data (2019)

- Data Cleaning
- Inner Join on Instance Usage Data and Instance Events Data
 - Instance Index
 - Collection ID
 - Machine ID
- Calculated CPU Utilization Percentage and Memory Utilization Percentages
- Instance-level & Machine-level Analysis
- Plotting
- Predictions

Methodology - Google Cluster Data (2019)

- Merged Instance Usage & Instance Events data tables
- Got time-series utilization data

start_time	end_time	collection_id	machine_id	type	scheduling_class	priority	cpus_util_perc	mem_util_perc
300000000	3300000000	291839435167	92043472820	3	3	200	20.083333	88.477801
529000000	600000000	374675861423	1638822237	10	1	105	11.661808	22.525473
2808000000	2812000000	374909856633	35974924787	3	0	0	2.300861	17.358398
300000000	3300000000	374675978279	2448218583	10	1	105	29.524887	81.513828
300000000	3300000000	374675978279	2448218583	10	1	105	33.634021	81.513828

Machine-Level Analysis - Google Cluster Data (2019)

Task-Type Analysis - Google Cluster Data (2019)

Predictive Analysis - Google Cluster Data (2019)

- XGBoost Regression Machine Learning Model
 - 1500 Decision Trees
 - 95% Training Set
 - 5% Testing Set

- Training Data Variables:
 - Start Hour (0-23)
 - Total Time
 - Task Type
 - Task Priority
 - Scheduling Class

Predictive Analysis - Google Cluster Data (2019)

- CPU Utilization Evaluation Metrics
 - o RMSE 9.2035
 - Prediction Accuracy 81.8068%
- Memory Utilization Evaluation Metrics
 - o RMSE 15.8080
 - Prediction Accuracy 67.2593%

Methodology - Azure Cluster Data (2019)

• Traces from Microsoft Azure's clusters for the year 2019.

• Core Tables:

- VMTable
- Deployments
- Subscriptions
- VM_CPU_Readings
- The CPU readings are further divided into 195 shards.

Methodology - Azure Cluster Data (2019)

	vm_id	subscription_id	deployment_id
0	r KggHO/04j31UFy65mDTwtjdMQL/G03xWfl3xGeiilB4/W	ub4ty8ygwOECrlz7eaZ/9hDwnCsERvZ3nJJ03sDSpD85et	+ ZralDUNaWYDZMBiBtZm7xSjr+j3zcHGjup1+wyKxHFmyJ
1	YrR8gPtBmfNaOdnNEW5If1SdTqQgGQHEnLHGPjySt53bKW	9 LrdYRcUfGbmL2fFfLR/JUg2OTkjGRe3iluwlhDRPnPDPa	${\sf GEyIEIfPSFupze8T+T1niQMepeqG88VpLNuxUMyIDbz8VF}$
2	xzQ++JF1UAkh70CDhmzkiOo+DQn+E2TLErCFKEmSswv1pl	0 XnZZ8sMN5HY+Yg+0 dykYB5 oenlgsrCpzpgFSvn/MX42Ze	7aCQS6fPUw9rwCPiqvghk/WCEbMV3KgNJjA+sssdfY5Ybl
3	v Z Eivnhab Rm Im Dr + Jq Kq Znp IM 3 Wx typ woxj fjnkl R/idy R	HUGaZ+piPP4eHjycCBki2yq0raJywdzrVuriR6nQceH3hA	/s/D5VtTQDxyS6wq7N/VQAMczx61Ny1Ut3a3iFmDSOCXxp
4	MqvcZ6Au5oul6if56MJHmoSqHtX8oRv0dPkaxCld3aUcr1	$\tt p14cXGYqCKCcF7b7OdV6bdr/0gCim+u1LeqKoyEkyNNMWf$	${\sf ZFCk80slQzr43FUSqy2DOrcvBhuQkyfVz7gus8SORhyBxC}$

vm_creation_timestamp	vm_deletion_timestamp	max_cpu	avg_cpu	p95_max_cpu	vm_category	vm_core_count	vm_memory
424500	425400	37.879261	3.325358	37.879261	Unknown	4	32
1133100	1133700	0.304368	0.220553	0.304368	Unknown	4	32
0	2591400	98.573424	30.340054	98.212503	Interactive	2	4
228300	229800	82.581449	13.876299	82.581449	Unknown	2	4
1395600	1397700	0.097875	0.035215	0.097875	Unknown	4	32

Azure Analysis - Avg CPU Utilization vs Allocation

Azure Analysis - Max CPU Utilization vs Allocation

Azure Analysis - Number of VMs by Memory

Azure Analysis - Number of VMs by Core Count

Azure Analysis - Number of VMs

Machine-Level Analysis - Azure Cluster Data (2019)

Predictive Analysis - Azure Cluster Data (2019)

- XGBoost Regression Machine Learning Model
 - o 1500 Decision Trees
 - 95% Training Set
 - 5% Testing Set
- Training Data Variables
 - Start Hour (0 23)
 - Total Time
 - VM Core Count
 - VM Memory
 - VM Category
- CPU Utilization Evaluation Metrics
 - o RMSE 14.8718
 - Prediction Accuracy 65.3044%

Methodology - Alibaba Cluster Data (2018)

- Traces from Alibaba clusters for 4000 machines.
- Traces spanning 8 days of data from 2018 (247 million rows).
- Alibaba's 2018 Trace Data with tables:
 - MachineMeta
 - MachineUsage
 - ContainerMeta
 - ContainerUsage
 - o BatchTask
 - o BatchInstance

Methodology - Alibaba Cluster Data (2018)

instance_name	task_name	task_type	start_time_instance	end_time_instance	machine_id	cpu_avg	cpu_max	mem_avg	mem_max
ins_74901673	task_LTg0MTUwNTA5Mjg4MDkwNjIzMA==	10	673795	673797	m_2637	0.13	0.16	0.02	0.02
ins_815802872	M1	1	158478	158520	m_3430	0.03	0.19	0.13	0.18
ins_564677701	M1	1	372602	372616	m_1910	0.87	1.16	0.04	0.05
ins_257566161	M1	1	372602	372615	m_2485	0.91	1.23	0.05	0.05
ins_688679908	M1	1	372602	372615	m_993	0.93	1.41	0.05	0.05

machine_id	time_stamp	cpu_util_percent	mem_util_percent	mem_gps	mkpi	net_in	net_out	disk_io_percent
m_425	0	47	89	NaN	NaN	34.90	28.60	3
m_626	0	20	90	NaN	NaN	37.23	32.58	5
m_3089	0	7	88	NaN	NaN	29.93	20.88	1
m_111	0	18	92	NaN	NaN	39.17	32.09	3
m_796	0	24	75	NaN	NaN	41.86	37.79	5

Alibaba Analysis - CPU Utilization vs Allocation

Alibaba Analysis - Memory Utilization vs Allocation

Machine-Level Analysis - Alibaba Cluster Data (2018)

Alibaba Analysis - Tasks Running Per Hour

Alibaba Analysis - Usage by Task Type

Predictive Analysis - Alibaba Cluster Data (2018)

- XGBoost Regression Machine Learning Model
 - o 1500 Decision Trees
 - 95% Training Set
 - 5% Testing Set
- Training Data Variables
 - Start Hour (0 23)
 - Total Time
 - Task Type
- CPU Utilization Evaluation Metrics
 - o RMSE 23.3734
 - Prediction Accuracy 52.5361%
- Memory Utilization Evaluation Metrics
 - o RMSE 18.4607
 - Prediction Accuracy 87.7181%

Conclusions

Google

- Average CPU utilization ~26% =>
- Average Memory utilization ~44%

Dynamic scheduling Moderately utilized

• Azure

- Average Mean CPU utilization ~16% =>
- Average Maximum CPU ~ 56%

Moderately idle on-demand workloads
Occasional usage spikes

Alibaba

- Average CPU utilization ~38% =>
- Average Memory utilization ~88%

Consistent, batch-heavy usage High sustained memory pressure

Conclusions

Google

- CPU Utilization Prediction ~82%
- Memory Utilization Prediction ~67%

Azure

• CPU Utilization Prediction ~65%

• Alibaba

- CPU Utilization Prediction ~53%
- Memory Utilization Prediction ~88%

Conclusions

Incorrect assumptions for datacenters developed due to isolated cloud provider analysis -

• CPU utilization is low for majority consumers.

Azure (\sim 16%), not Google (\sim 26%), Alibaba (\sim 38%) - wide variations exists in reality

• Datacenters have significant memory that remains underutilized.

Google (~44%), not Alibaba (~88%), diverse.

Cloud workloads have random rare spikes.

Google => random, Azure => flat, idle, Alibaba => periodic.

Clouds use centralized scheduling.

Google => Borg, Azure => user-managed (no global coordination), Alibaba => dynamic

Cloud workloads behave similarly.

Each provider has distinct workload types and resource patterns.

THANK YOU!

QUESTIONS?

