${\tt import\ pandas\ as\ pd}$ import numpy as np import matplotlib.pyplot as plt ${\it matplotlib}$ inline import seaborn as sns import warnings warnings.filterwarnings("ignore")

from google.colab import files uploaded = files.upload()

Choose Files Melbourne...g_FULL.csv

• Melbourne_housing_FULL.csv(text/csv) - 5018236 bytes, last modified: 9/20/2019 - 100% done

Saving Melbourne_housing_FULL.csv to Melbourne_housing_FULL.csv

df=pd.read_csv("Melbourne_housing_FULL.csv")

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	D
0	Abbotsford	68 Studley St	2	h	NaN	SS	Jellis	3/09/2
1	Abbotsford	85 Turner St	2	h	1480000.0	S	Biggin	3/12/2
2	Abbotsford	25 Bloomburg St	2	h	1035000.0	S	Biggin	4/02/2
3	Abbotsford	18/659 Victoria St	3	u	NaN	VB	Rounds	4/02/2
4	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2
34852	Yarraville	13 Burns St	4	h	1480000.0	PI	Jas	24/02/2
34853	Yarraville	29A Murray St	2	h	888000.0	SP	Sweeney	24/02/2
34854	Yarraville	147A Severn St	2	t	705000.0	S	Jas	24/02/2
34855	Yarraville	12/37 Stephen St	3	h	1140000.0	SP	hockingstuart	24/02/2
34856	Yarraville	3 Tarrengower St	2	h	1020000.0	PI	RW	24/02/2

34857 rows × 21 columns

df.head()

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Distar
0	Abbotsford	68 Studley St	2	h	NaN	SS	Jellis	3/09/2016	
1	Abbotsford	85 Turner St	2	h	1480000.0	S	Biggin	3/12/2016	
2	Abbotsford	25 Bloomburg St	2	h	1035000.0	S	Biggin	4/02/2016	
3	Abbotsford	18/659 Victoria St	3	u	NaN	VB	Rounds	4/02/2016	
4	Abbotsford	5 Charles St	3	h	1465000.0	SP	Biggin	4/03/2017	

5 rows × 21 columns

4

df.nunique()

Suburb 351 Address 34009 Rooms 12

```
Туре
                      3
                    2871
    Price
    Method
                      9
                    388
    SellerG
    Date
                     78
    Distance
                    215
    Postcode
                    211
    Bedroom2
                    15
    Bathroom
                     11
    Car
                     15
    Landsize
                   1684
    {\tt BuildingArea}
                    740
    YearBuilt
                    160
    CouncilArea
                     33
                   13402
    Lattitude
    Longtitude
                   14524
    Regionname
    Propertycount
    dtype: int64
df.shape
    (34857, 21)
df.columns
    cols=['Suburb','Rooms','Type','Method', 'SellerG','Regionname', 'Propertycount','Distance','CouncilArea','Bedroom2','Bathroom', 'Car',
      'Landsize', 'BuildingArea', 'Price']
df1=df[cols]
```

df1

	Suburb	Rooms	Туре	Method	SellerG	Regionname	Propertycount	Di
0	Abbotsford	2	h	SS	Jellis	Northern Metropolitan	4019.0	
1	Abbotsford	2	h	S	Biggin	Northern Metropolitan	4019.0	
2	Abbotsford	2	h	S	Biggin	Northern Metropolitan	4019.0	
3	Abbotsford	3	u	VB	Rounds	Northern Metropolitan	4019.0	
4	Abbotsford	3	h	SP	Biggin	Northern Metropolitan	4019.0	

34852	Yarraville	4	h	PI	Jas	Western Metropolitan	6543.0	
34853	Yarraville	2	h	SP	Sweeney	Western Metropolitan	6543.0	
34854	Yarraville	2	t	S	Jas	Western Metropolitan	6543.0	
34855	Yarraville	3	h	SP	hockingstuart	Western Metropolitan	6543.0	
34856	Yarraville	2	h	PI	RW	Western Metropolitan	6543.0	

34857 rows × 15 columns

#checking nan values df1.isna().sum()

Suburb	0
Rooms	0
Туре	0
Method	0
SellerG	0
Regionname	3
Propertycount	3
Distance	1
CouncilArea	3

```
Bathroom
                       8226
    Car
                       8728
     Landsize
                      11810
     {\tt BuildingArea}
                      21115
     Price
     dtype: int64
filling_zero=['Propertycount','Distance','Bedroom2','Bathroom','Car']
#filling this columns with zero
df1[filling_zero]=df1[filling_zero].fillna(0)
df1.isna().sum()
     Suburb
     Rooms
                          0
     Type
    Method
     SellerG
                          3
     Regionname
    Propertycount
     Distance
    CouncilArea
                          3
     Bedroom2
     Bathroom
                         0
    Car
                         0
     Landsize
                     11810
    BuildingArea
                     21115
                      7610
    Price
    dtype: int64
df1['Landsize'] = df1['Landsize'].fillna(df1['Landsize'].mean())
df1['BuildingArea'] = df1['BuildingArea'].fillna(df1['BuildingArea'].mean())
df1.isna().sum()
    Suburb
     Rooms
     Туре
                         0
     Method
     SellerG
     Regionname
    Propertycount
    Distance
     CouncilArea
     Bedroom2
     Bathroom
    Car
                         0
     Landsize
                         0
    {\tt BuildingArea}
                         0
    Price
                      7610
    dtype: int64
df1.dropna(inplace=True)
df1.isna().sum()
    Suburb
                      0
     Rooms
     Туре
     Method
                      0
     SellerG
                      0
     Regionname
     Propertycount
     Distance
                      0
     CouncilArea
     Bedroom2
                      0
    Bathroom
                      0
     Car
                      0
     Landsize
                      0
     BuildingArea
    Price
                      0
    dtype: int64
```

Bedroom2

8217

	Suburb	Rooms	Туре	Method	SellerG	Regionname	Propertycount	Dista
1	Abbotsford	2	h	S	Biggin	Northern Metropolitan	4019.0	
2	Abbotsford	2	h	S	Biggin	Northern Metropolitan	4019.0	
4	Abbotsford	3	h	SP	Biggin	Northern Metropolitan	4019.0	
5	Abbotsford	3	h	PI	Biggin	Northern Metropolitan	4019.0	
6	Abbotsford	4	h	VB	Nelson	Northern Metropolitan	4019.0	
4852	Yarraville	4	h	PI	Jas	Western Metropolitan	6543.0	
4853	Yarraville	2	h	SP	Sweeney	Western Metropolitan	6543.0	
						147 1		

df1 =pd.get_dummies(df1,drop_first=True)

df1

	Rooms	Propertycount	Distance	Bedroom2	Bathroom	Car	Landsize	Buil
1	2	4019.0	2.5	2.0	1.0	1.0	202.000000	
2	2	4019.0	2.5	2.0	1.0	0.0	156.000000	
4	3	4019.0	2.5	3.0	2.0	0.0	134.000000	
5	3	4019.0	2.5	3.0	2.0	1.0	94.000000	
6	4	4019.0	2.5	3.0	1.0	2.0	120.000000	
34852	4	6543.0	6.3	4.0	1.0	3.0	593.000000	
34853	2	6543.0	6.3	2.0	2.0	1.0	98.000000	
34854	2	6543.0	6.3	2.0	1.0	2.0	220.000000	
34855	3	6543.0	6.3	0.0	0.0	0.0	593.598993	
34856	2	6543.0	6.3	2.0	1.0	0.0	250.000000	

27244 rows × 745 columns

x=df1.drop('Price',axis='columns')
y=df1["Price"]

K

	Rooms	Propertycount	Distance	Bedroom2	Bathroom	Car	Landsize	Buil
1	2	4019.0	2.5	2.0	1.0	1.0	202.000000	
2	2	4019.0	2.5	2.0	1.0	0.0	156.000000	
4	3	4019.0	2.5	3.0	2.0	0.0	134.000000	
5	3	4019.0	2.5	3.0	2.0	1.0	94.000000	
6	4	4019.0	2.5	3.0	1.0	2.0	120.000000	
34852	4	6543.0	6.3	4.0	1.0	3.0	593.000000	
34853	2	6543.0	6.3	2.0	2.0	1.0	98.000000	
34854	2	6543.0	6.3	2.0	1.0	2.0	220.000000	
34855	3	6543.0	6.3	0.0	0.0	0.0	593.598993	
34856	2	6543.0	6.3	2.0	1.0	0.0	250.000000	

27244 rows × 744 columns

4

```
1
2
              1480000.0
              1035000.0
              1465000.0
     4
     5
               850000.0
              1600000.0
     6
              1480000.0
     34852
     34853
               888000.0
     34854
               705000.0
     34855
              1140000.0
     34856
              1020000.0
     Name: Price, Length: 27244, dtype: float64
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train\_test\_split(x, y, test\_size=0.3, random\_state=0)
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(xtrain,ytrain)
     LinearRegression()
lr.score(xtest,ytest)
     0.46005593338256245
lr.score(xtrain,ytrain)
     0.6889836348850227
from sklearn import linear_model
L1 = linear_model.Lasso(alpha=50,max_iter=100,tol=0.1)
L1.fit(xtrain,ytrain)
     Lasso(alpha=50, max_iter=100, tol=0.1)
L1.score(xtest,ytest)
     0.45553667151077504
L1.score(xtrain,ytrain)
     0.6848817128447398
from sklearn.linear_model import Ridge
L2 = Ridge(alpha=50,max_iter=100,tol=0.1)
L2.fit(xtrain,ytrain)
     Ridge(alpha=50, max_iter=100, tol=0.1)
L2.score(xtest,ytest)
[→ 0.427300726237817
L2.score(xtrain,ytrain)
     0.6710057617210479
```

• ×