Университет ИТМО, факультет программной инженерии и компьютерной техники Двухнедельная отчётная работа по «Информатике»: аннотация к статье

дата проше	едшеи лекции: 27.09.2022	помер прошедшей лек	щии: 2	дага с	цачи: 11.1	.0.2022
Выполнил(а)	Балин А. А	Λ. , № 1	группы	P3112	, оценка	
· / -	Фамилия И.О. студ	цента			·	не заполня

Название статьи/главы книги/видеолекции What is ARQ (Automatic Repeat Request)?							
ФИО автора статьи (или e-mail)	Дата публикации	Размер статьи					
https://clck.ru/32K7wH	(не старше 2019 года) "08" июня 2021 г	(от 400 слов) 860					

Прямая полная ссылка на источник или сокращённая ссылка (bit.ly, tr.im и т.п.)

https://clck.ru/32K7vX

Теги, ключевые слова или словосочетания

Контроль ошибок, компьютерные сети

Перечень фактов, упомянутых в статье

- 1. ARQ протокол контроля ошибок в двусторонней системе связей.
- 2. Протокол отправляет потерянные/повреждённые пакеты данных автоматически.
- 3. Отправитель получает подтверждение, если пакет данных дошёл до получателя.
- 4. Если подтверждение не получено в течение определённого времени, пакет отправляется ещё раз до тех пор, пока он не будет полностью передан.
- 5. ARQ имеет широкий спектр применения: банковские системы, протокол TCP, двоичный синхронный протокол связи IBM и т.д.
- 6. Есть несколько способов реализации этого алгоритма: Stop and Wait, Go Back-N, Selective Repeat/Reject.
- 7. Первый вариант отправляет пакеты по одному до тех пор, пока не получит подтверждения от получателя, новые пакеты при этом не отправляются.
- 8. Второй вариант подразумевает, что получатель отслеживает, какой пакет он должен принять следующим, и отправляет номер пакета отправителю вместе с подтверждением текущего пакета.
- 9. При этом в варианте Go Back-N отправитель высылает пакеты по несколько штук без ожидания подтверждения, в случае потери одного он возвращается к последнему подтверждённому пакету и передаёт его и все последующие еще раз.
- 10. В алгоритме Selective Repeat/Reject в отличие от предыдушего, пакеты не отправляются повторно без необходимости.
- 11. В третьем варианте отправитель передаёт несколько пакетов до конца, в случае ошибки высылает проблемный пакет еще раз.
- 12. После исправления ошибок алгоритм продолжает с того же места, откуда закончил перед обнаружением ошибки

Позитивные следствия и/или достоинства описанной в статье технологии (минимум три пункта)

- 1. Алгоритмы обнаружения и исправления ошибок просты в реализации.
- 2. Для декодирования используется более простое оборудование (по сравнению с другими технологиями).
- 3. Существует несколько типов алгоритма для систем с более или менее высокой частотой ошибок.

Негативные следствия и/или недостатки описанной в статье технологии (минимум три пункта)

- 1. При высокой частоте ошибок объём передаваемой информации может оказаться на порядок больше.
- 2. В канале с высокой частотой ошибок сигнал от получателя может быть также потерян, этот случай никак не обрабатывается.
- 3. Нет эффективного алгоритма, который работал бы за минимальное время и отправлял наименьшее количество пакетов.