

Absolute error, 93 Abstraction dePnition, 9, 33£84 units, 14£15 Accuracy, dePnition, 94 Acoustic resonator fundamental frequency determination, 228£232	Approximations, see Algebraic approximation; SigniPcant Pgures; Taylor series Arrow impossibility theorem, 266 Arrow, K. J., 266 Automobile suspension system, vibration modeling, 232EP34
impedance, 243	Balance principles
oscillator equation, 230	abstraction, 10
voice box, 50£51	law derivation, 10Đl 1
Activation energy, nucleation, 276	Beam, see also Cantilever beam
Adiabatic gas law, 228E229	bending stiffness, 60
Aircraft	dimensional analysis of compliance, 32
drag, 278£280	scaling and experimental design
drag-to-lift ratio, 278, 280£281	considerations, 59£61, 68£69 stiffness model validation, 91
geometric programming for ßight speed	Binomial expansion, model approximation,
optimization, 282£285	77F80
glider glide angle modeling, 296	Bird ßight
lift, 278£279	geometric scaling of ßight muscle fraction,
lift-to-drag ratio, 278	36Đ87
range optimization, 278£282	hovering ßight dimensional analysis
Algebraic approximation, heating of solid	limit to hovering size, 47
bodies, 82 E 84	power availability, 46
Amplitude, pendulum motion, 189	power requirements, 45£46

n: 10: 1. (C h	
Bird ßight (<i>Continued</i>) range optimization, 278£282	Continuous optimization modeling
wing loading, 44Đ45	equality constraints, 250
Bishop, R. E. D., 175	inequality constraints, 250
Borda count	minimization problem example, 248£252
	multi-dimensional optimization
comparison with pairwise comparison	problems, 250
chart, 268£269	package volume maximization example, 250£253
failures, 271£273	
independence of irrelevant alternatives violation, 266	Continuum hypothesis, trafÞc modeling, 159Ð162
Boundary conditions, scaling effects, 52	CPI, see Consumer Price Index
Buckingham Pi theorem	Curve-Ptting
dimensional analysis, 24£28	extrapolation, 96
pendulum modeling, 26£28, 178£179	hand-drawn curves, 96
Buildings	interpolation, 96
fundamental period of tall slender	line equation, 97Đ98
buildings, 221£225	method of least squares, 97
geometric scaling of church buildings,	quality of Þt, 98Đ99
40 D 44	Cyclotron
	frequency determination, 226£227, 243
Cable	representation, 225£226
catenary parameter, 75, 81	
sag determination using Taylor series,	Damping forces
75 D 77	pendulum modeling, 186Đ187
Cantilever beam	spring-mass oscillator, 214£215
examples, 286	Decay time, see Characteristic time
lightest diving board problems, 286£290	Delay time, trafbc modeling, 163
Capacitors	De Moivre theorem, 108
capacitance, 130, 217	Differential equations
characteristic time, 54£55	Prst-order differential equation of
charge modeling, 133ĐI36	exponential function, 126Đ127
current ßow over time, 130, 131	forcing functions, 127
discharge modeling, 131ĐI33	homogeneous equations, 127
resistance, 130	inhomogeneous differential equation
voltage drop equation, 130, 217	solution in vibration modeling,
Cauchy inequality, geometric programming,	234Đ236
282Đ283	linear model of freely-vibrating
Cell growth, scaling examples, 67, 69	pendulum, 191Đ192
Characteristic decay time, pendulum, 187	Dimensional analysis
Characteristic length, cable, 54	advantages and limitations, 16Đ19
Characteristic time	dePnition, 13
capacitor discharge, 54£55	dimension checking in model validation,
pendulum, 184	89Đ90
Circular frequency, spring-mass oscillator,	dimensionless groups of variables,
213\frac{1}{2}14	identiPcation techniques
Compliance of a beam, dimensional	basic method, 20£24
analysis, 32	Buckingham Pi theorem, 24£28
Condorcet cycles, rank reversals, 267	homogeneity and consistency of
Conservation principles	equations, 9, 13, 15Đ16
abstraction, 10	hovering ßight in birds
conservation of cars in traffic	limit to hovering size, 47
modeling, 153ĐI55	power availability, 46
energy conservation in pendulum	power requirements, 45Đ46
movement, 184ĐI 86	peanut butter mixing example, 17Đ19,
law derivation, 10Đl 1	25 E 26
Consumer Price Index (CRI) infection	pendulum modeling, see Pendulum
Consumer Price Index (CPI), inßation	quantity derivation, 14ĐI5
monitoring, 140	units, 14Ð15, 28Ð80

Doubling time, dePnition, 123	Free energy change, nucleation, 276£277
DufÞn, R. J., 282	Fundamental diagram of road trafPc, trafPc
Dumbbell, stability of a two-mass	ßow-density relationship, 155Đ158, 173
pendulum, 195Đ198	Fundamental frequency
Dynamic programming, 258£259	acoustic resonator, 50E51, 228E232
	eardrum, 49£50
Ear	strings, 50
anatomy, 48	Fundamental period, tall slender buildings,
fundamental frequency of eardrum, 49£50	221Đ225
scaling effects on hearing, 48£50	
Einstein Øgeneral theory of relativity,	Galileo, 286
scaling, 35	Geometric programming (GP)
Electrical-mechanical analogy, 216E220	applications, 285
Elementary transcendental functions	ßight speed optimization, 282£285
behavoiral features, 109	principles, 282
derivatives and integrals, 109	Geometric scaling
natural logarithm formal dePnition, 107	cube, 35£86
types, 107	
	ßight muscle fraction in birds, 36£87
Engineering design, 5£6	linear proportionality in similar objects,
Error	37 E 88
absolute error, 93	log-log plots of data, 38Đ44
dePnition, 93	GP, see Geometric programming
mistake comparison, 94	
percentage error, 93E94	Half-life
random error, 93	calculation, 123
relative error, 93	radioisotopes, 128
systematic error, 93	Hayakawa, S. I., 12
Exponential function, formal dePnition,	Helmholtz resonator, 228£232
107Ð108	Henry, J., 217
Exponential models	Hertz, G. L., 48
capacitor charging and discharging, see	Hertz, H. R., 193
Capacitors	Histogram, data display, 102Đ106
doubling time and half-life, 123	0 , 1 ,
exponential functions	Imaginary number notation 107
calculation, 122Đl24	Imaginary number, notation, 107 Impedance
display, 124Đl25	•
Prst-order differential equation,	acoustic resonator, 243
126Ð127	forced vibration, 237£239
Pnancial models	Inductance, 217
inßation, 138ĐI40	Inßation
interest compounding, 136ĐI38	Consumer Price Index, 140
Lanchester@law of Þghting armies,	exponential modeling, 138Đ140
144Đl 46, 149Đl 50	Integer programming, 259
negative proportionality factor	Interest compounding, exponential
characteristics, 120Đ121	modeling, 136ĐI38
radioisotopes, see Radioactive decay	Iterative loop, model-building, 8
world population growth	
nonlinear model, 141Đ143	Jam density, trafPc modeling, 155, 168
projections, 118ĐI20	
	KCL, see Kirchhoff@current law
Falling body, dimensional analysis using	KE, see Kinetic energy
basic method, 20£21	Kepler@third law of planetary motion,
Faraday, M., 217	209£210
	Keynes, J. M., 28
FBD, see Free-body diagram Elight, see Aircraft, Bird Right	Kinetic energy (KE)
Flight, see Aircraft; Bird ßight	pendulum equations, 184Đ185
Free-body diagram (FBD)	spring-mass oscillator, 195, 215
aircraft modeling, 278£279	
pendulum modeling, 180Ð181	Kirchhoff@current law (KCL), 218

plane equations, 179

Kirchhoff Övoltage law (KVL), 134	radial equation, 181
KVL, see Kirchhoff @voltage law	tangential equation, 181
	Nonlinear programming, 258 Nucleation
Lanchester, F. W., 144	
Lanchester@law, 144Đ146, 149Đ150	activation energy, 276 dePnition, 276
Langhaar, H. L., 13	free energy change, 276£277
Larynx, see Voice box	free energy change, 2701277
Linear model	
dePnition, 11	Ohm, G. S., 218
principle of superposition, 11	Ohm@law, 131
Linear programming (LP)	Operations research, see Linear
distribution network transportation	programming
problem, 260£265	Optimization
feed-mix problems, 258	best alternative selection
generic problems, 253£255	Borda count, 266£269
graphic solutions, 294	decision-making, 273£275
operations research, 255	failures, 271£273
optima dePning and assessment, 259£260	independence of irrelevant alternatives
product-mix problems, 258	violation, 266£267
proPt maximization in furniture business,	pairwise comparisons, 265 ₽2 66 rank reversals, 267, 270 ₽2 71
255£257	rankings, 265, 272
simplex method, 258	cantilever beam problem, 286£290
variable number, 258	continuous optimization modeling
Line equation, curve-Ptting, 97£98	equality constraints, 250
Log-log plots, geometric scaling data, 38Đ44	inequality constraints, 250
Logistic growth curve, population growth,	minimization problem example,
143	248£252
Lotka-Volterra model, population growth,	multi-dimensional optimization
201£202	problems, 250
LP, see Linear programming	package volume maximization example
Lumped element model, dePnition, 34E85	250£253
	dynamic programming, 258£259
Mathematical model	ßight range maximization, 278£282
dePnition, 4	geometric programming for ßight speed
depiction of reality, 11Đ12	optimization, 282£285
=	goals, 247
principles of modeling, 6£8 Mean, dePnition, 100	integer programming, 259
Median, dePhition, 100	linear programming
Method of least squares, curve-Ptting, 97	distribution network transportation
	problem, 260£265
Mistake, comparison with error, 94 Model	feed-mix problems, 258
dePnition, 3	generic problems, 253£255
	operations research, 255
languages, 3Đ4	optima deÞning and assessment,
Modulus of elasticity fundamental period of tall slender	259E260
buildings, 224£225	product-mix problems, 258
	proPt maximization problems,
signiÞcant Þgures, 86	255£257, 295
	simplex method, 258
Natural logarithm	variable number, 258
base, 123	nonlinear programming, 258
calculation, 123	nucleation energy problem, 276£278
formal dePnition, 107	Oscilloscope, scaling and data acquisition
Newton@law of gravitational attraction,	considerations, 58E59
binomial expansion, 79£81	
Newton@second law	Pairwise comparisons

charts, 267£269

comparison with Borda count, 268£269 decision-making, 273£275	Predator-prey interactions, population growth modeling, 201F206
failures, 271E273	Principle of superposition, dePnition, 11
principles, 265£266	
rank reversals, 270Ð271	Radioactive decay
Parasite-host interactions, population	·
growth modeling, 201£206	decay constant calculation, 129 generic plot, 128Ð129
PE, see Potential energy	
Pendulum	half-life, 128
model validation, 91E92	short-lived versus long-lived
amplitude of motion, 189	radioisotopes, 129
damping forces, 186Đ187	Random error, 93
dimensional analysis of freely-vibrating	Rank reversals, 267, 270£271, 273
pendulum	Rate equation, examples, 10, 54
Buckingham Pi theorem, 26£28,	Rational equation, dimensional consistency
178Ð179	and homogeneity, 13, 15ĐI6, 24
data collection, 176Đ178	Rayleigh, Lord, 211
dimensionless equation formulation,	Reaction time, trafPc modeling, 163
183Đ184	Relative error, 93
dissipating energy in pendulum	Resistor
movement, 186Đ188	resistance, 130
energy conservation in pendulum	voltage drop equation, 218
movement, 184Đ186	Resonance, forced vibration, 236E237
free-body diagram, 180ĐI81	Revolving bodies, dimensional analysis using
fundamental dimensions of descriptive	basic method, 21£23
parameters, 182	Rotational inertia, scaling and data
scaling factor, 182Đ183	acquisition considerations, 55£57
equations of equilibrium, 179Đ180	
equations of motion, 180ĐI81	Saari, D. G., 266
linear model of freely-vibrating pendulum	Sample variance, dePnition, 100Đ101
characteristics, 192Đ193	Scaling
differential equations, 191Đ192	consequences
linearization of nonlinear model,	data acquisition considerations, 55£59
188Ð190	experimental design considerations,
nonlinear model, 199£201	59F61
period equations, 16	perceptions of presented data, 62£65
period of free vibration, 176Đ178	Einstein@general theory of relativity, 35
spring-mass oscillator, physical	equations, 52£54
interpretations, 194Đ195	geometric scaling
stability of a two-mass pendulum,	cube, 35£86
195£198	ßight muscle fraction in birds, 36£87
Percentage error, 93£94	linear proportionality in similar objects,
Period of free vibration	37E88
length-dependence for a pendulum, 178	log-log plots of data, 38Đ44
measurement for a pendulum, 176Đ177	hearing example, 48F50
Population growth	hovering ßight dimensional
effective growth rate, 141	analysis in birds
logistic growth curve, 143	limit to hovering size, 47
nonlinear model, 141Đ143	power availability, 46
projections, 118Đ120, 148Đ149	power requirements, 45£46
Taylor series, 142	imposition, 35
vibration modeling of coupled species,	Newtonian versus relativistic mechanics,
201E204	52
Posynomial, dePnition, 282	
	scale factor, 53, 182Ð183
Potential energy (PE)	speech example, 50£51
pendulum equations, 185	spring models, 9, 34, 68
spring-mass oscillator, 195, 215	technological advances and
Precision, dePnition, 94Đ95	nanotechnology, 51£52

ScientiPc method	descriptive variables, 153
models, 4Đ5	ßuid models, 152
observation, 4	fundamental diagram of road trafPc for
prediction, 5	ßow-density relationship,
ScientiPc notation, signiPcant Pgures, 86	155Đ158, 173
Semi-logarithmic plots, exponential functions, 124Đl25	speed-density relationships, 155Ð156, 159
Sensitivity, measuring devices, 95	microscopic models
SigniPcant Pgures	comparison of car-following models,
addition and subtraction, 86£87	170Ð171
assignment, 84£86	elementary linear car-following model,
exact values without decimals, 87	162Ð169
multiplication and division, 86	following distance, 168
rounding off exercises, 88	improved car-following model, 169Đ170
Simon, H. A., 247	speed-density relationships, 164Đ167
SI units, see Syst•me International units	theory, 151Đ152
Spring models	Transcendental functions, power series, 53
scaling, 9, 34, 68	, r
spring-mass oscillator	
applied force, 212	Units
	British system, 28£29
circular frequency, 213£214	checking in model validation, 90
damper, 214	dimensional analysis, 14ĐI5
dissipating energy, 215£216	interconversion, 15
electrical-mechanical analogy, 216£220	prePxes for orders of magnitude, 29£80
energy storage, 215	Syst•me International units, 29
equation of motion, 214	
physical interpretations in free	Validation, models
vibration, 194Đ195	accuracy, 94£95
restoring force, 213	checks
stiffness-to-mass ratio, 214	dimensions, 89£90
Standard deviation	qualitative and limit behavior, 91Đ92
calculation, 101ĐI02	units, 90
dePnition, 101	curve-Ptting of data, 96E99
distribution rules, 102	errors, see Error
Stimuli response, traffic modeling, 162Đ163	experimental validation, 88
Suspension system, vibration modeling,	inherent validity, 89
232£234	precision, 94 D 95
Swift, J., 33	Vibration models, <i>see also</i> Pendulum; Spring
Systematic error, 93	models
Syst•me International (SI) units, 29	automobile suspension modeling,
Tl	232Đ234
Taylor series	cyclotron frequency, 225£227
amplitude of pendulum motion, 189	fundamental frequency of acoustic
binomial expansion, 77£80	resonator, 228Đ232
derivation, 72	fundamental period of tall slender
hyperbolic functions, 74£78	buildings, 221£225
one-term series, 72£73	impedance in forced vibration, 237E239
population growth, 142	inhomogeneous differential equation
remainder term, 74	solution, 234£236
three-term series, 72Đ/3	linearized model, oscillatory solution,
trigonometric functions, 74£78	204E206
two-term series, 72£73	nonlinear model, qualitative solution,
Taylor@formula, 72£73	203E204
TrafPc ßow modeling	population growth of coupled species,
macroscopic models	201£206
conservation of cars, 153ĐI55	resonance in forced vibration, 236E237
continuum hypothesis, 159Đ162	vibratory phenomena, 175

Voice box anatomy, 49E50 fundamental frequency of acoustic resonator, 50E51 scaling effects on, 50E51 Volume ßow rate, dimensional analysis, 32 Weber number, derivation using dimensional analysis, 31

Zener, C., 282