

Universidade Federal de Ouro Preto - UFOP Disciplina: BCC 326 - Processamento de Imagens

Disciplina: BCC 320 - Processamento de imag

Professor: Guillermo Cámara-Chávez

| A 1    | NT - |  |
|--------|------|--|
| Aluno: | 180. |  |
|        |      |  |

A cola não será tolerada. Se alguém for pego colando, será reprovado com Zero. É considerado cola: olhar/copiar da prova de outro ou deixar outro aluno olhar sua prova.

## 3ra. Avaliação

1. Calcular o código de cadeia e a primeira diferença das seguintes imagens. Utilize uma conectividade 4





2. A transformação HIT-MISS também conhecida como transformação de Serra permite capturar as informações do interior e do exterior de um objeto X. Para tal são necessários 2 elementos estruturantes, X e W, um para testar o interior e outro para testar o exterior do objeto.

Exemplo:

O objetivo é localizar um quadrado de  $3 \times 3$  como o objeto central da imagem

|  | • | • | • | • | • | • | • | • |   |  |
|--|---|---|---|---|---|---|---|---|---|--|
|  | • | • | • | • | • | • | • | • | • |  |
|  | • | • | • | • | • | • | • | • |   |  |
|  |   |   |   |   |   |   |   |   |   |  |

Se é executada uma erosão de  $A\ominus B$  com B sendo o elemento estruturante com a forma de quadrado de  $3\times 3$ , podemos obter a seguinte figura:



O resultado contem dois pixels, que são as posições em A onde foi localizado o elemento B. Imagine que de novo executamos uma erosão do complemento de A com o elemento estruturante C que casa exatemente ao redor do quadrado de  $3\times 3$ .  $\overline{A}$  e C são mostrado na seguinte figura.





Se é executada a erosão de  $\overline{A} \ominus C$  obtemos a seguinte figura.



A interseção das duas erosões produz um único pixel que é a posição central do objeto procurado.

De forma geral, para encontrar um objeto dentro de uma imagem, desenhamos dois elementos estruturante  $B_1$  que tem a mesma forma do objeto procurado, e  $B_2$  que casa ao redor do objeto. Logo, a transformação HIT-MISS é definida da seguinte forma:

$$A \otimes B = (A \ominus B_1) \cap (\overline{A} \ominus B_2)$$

onde  $B=(B_1,B_2)$ . A aplicação mais frequente da transformação HIT-MISS é no reconhecimento de objetos.

Implementar a função HIT-MISS

- 3. Imagene que você tem instalado o Matlab sem o *toolbox* de imagens. Implemente as operações de erosão e dilatação para imagens binárias.
- 4. A operação que permite achar o esqueleto (*skeletonization*) de um objeto pode ser definida através de métodos morfológicos. Considere a seguinte tabela:

| Erosões        | Aberturas                | Conjunto de diferenças                      |
|----------------|--------------------------|---------------------------------------------|
| A              | $A \circ B$              | $A - (A \circ B)$                           |
| $A \ominus B$  | $(A\ominus B)\circ B$    | $(A\ominus B)-((A\ominus B)\circ B)$        |
| $A\ominus 2B$  | $(A\ominus 2B)\circ B$   | $(A\ominus 2B)-((A\ominus 2B)\circ B)$      |
| $A \ominus 3B$ | $(A \ominus 3B) \circ B$ | $(A\ominus 3B)-((A\ominus 3B)\circ B)$      |
| :              | :                        | :                                           |
| $A\ominus kB$  | $(A\ominus kB)\circ B$   | $(A \ominus kB) - ((A \ominus kB) \circ B)$ |

A operação  $A\ominus kB$  denota uma seqüência de k erosões utilizando o mesmo elemento estruturante. A tabela é preenchida até que  $(A\ominus kB)\circ B$  é vazio. O esquele é obtido através da união de todas as diferenças. A operação de diferença A-B pode ser definada como  $A\&\overline{B}$ 

Implemente a função que permite encontrar o "esqueleto" de um objeto.

5. Seja a imagem A e o elemento estruturante B

$$A =$$

$$B =$$

Calcule a erosão, dilatação, abertura e fecho