

## Politecnico di Milano Facoltà di Ingegneria dell'Informazione

per Applicazioni di Data Mining

Prof. Pier Luca Lanzi 29 Giugno 2007

Machine Learning and Data Mining Tecniche di Apprendimento Automatico

**MATRICOLA** 

NAME

Grades

Solve the following problems and write the answer inside the problem box.

The final consists of 5 sheets of paper. It must be returned with all the 5 sheets. No any other sheet can be

| Machine Learning and Data Mining |
|----------------------------------|
| Problems 1, 2, 5, 6, and 7       |

Tecniche di Apprendimento Automatico per Applicazioni di Data Mining Problems 1, 2, 3, 4, and 7

Students who completed the term project don't have to answer to problem 7.

Problem 1. Consider the following training set in the 2-dimensional Euclidean space. X and Y are the attributes, "Class" is the target class. (Suggestion: plot the data).

| Х  | Υ  | Class |  |
|----|----|-------|--|
| -1 | 1  | -     |  |
| 0  | 1  | +     |  |
| 0  | 2  | -     |  |
| 1  | -1 | -     |  |
| 1  | 0  | +     |  |
| 1  | 2  | +     |  |
| 2  | 2  | -     |  |
| 2  | 3  | +     |  |

What is the class predicted by the 3-nearest-neighbor classifier for the example (1,1)? (a)

What is the class predicted by the 5-nearest-neighbor classifier for the example (1,1)? (b)

What is the class predicted by the 7-nearest-neighbor classifier for the example (1,1)? (c)

**Problem 2.** Suppose you are given the following set of data with three Boolean input variables a; b; and c, and a single Boolean output variable K. Assume we are using a naive Bayes classifier to predict the value of K from the values of the other variables.

| a | b | c | K |
|---|---|---|---|
| 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |

According to the naive Bayes classifier, what is the probability of class K=1 when a=1, b=1, and c=0?

According to the naive Bayes classifier, what is the probability of class K=1 when a=1, b=1, and c is unknown?

Problem 3. What are association rules? What is the goal of association rule mining?

| <b>Problem 4.</b> What is a decision tree? Is it <b>true or false</b> that decision tree mining can be applied any type of data? If true, how? If false, why? | to |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
| Question 5. Explain the difference between apriori and fp-growth.                                                                                             |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |
|                                                                                                                                                               |    |

| <b>Question 6.</b> What is Bagging? Is there any relation between Bagging and Boostrap? If yes, which one? If no, why?                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
| <b>Question 7.</b> Your company has around 2000000 customers. In the company database, each customer is described by 400 attributes. You need a model of the high spending customers and therefore you ask to "WeMine!", a company specialized in data mining. |
| People at "WeMine!" propose three solutions: one based on decision trees, one based on k-nearest-neighbor, and one based on Naive Bayes classifiers.                                                                                                           |
| Knowing that the model will be deployed on a pocket pc with very limited CPU/memory resources (let's say around 16Mb of memory for data storage), which of the three options you would choose? Why?                                                            |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                |