JEDEC STANDARD

Addendum No. 1 to JESD209-4 - Low Power Double Data Rate 4X (LPDDR4X)

JESD209-4-1

JANUARY 2017

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Board of Directors level and subsequently reviewed and approved by the JEDEC legal counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or publication may be further processed and ultimately become an ANSI standard.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or refer to www.jedec.org under Standards and Documents for alternative contact information.

Published by
©JEDEC Solid State Technology Association 2017
3103 North 10th Street
Suite 240 South
Arlington, VA 22201-2107

This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.

PRICE: Contact JEDEC

Printed in the U.S.A. All rights reserved

Addendum No. 1 to JESD209-4 - LOW POWER DOUBLE DATA RATE 4X (LPDDR4X)

Contents

1	Scope	1
2	Package ballout and Pin Definition	
2.1	Pad Order	
2.2	Single Channel Pad Order	
2.3	LPDDR4X packages	
2.3.1	. •	
2.3.2	144 ball ePoP MCP One-Channel FBGA (top view) using MO-323A	5
2.3.3	200-ball x32 Discrete Package, 0.80 mm x 0.65 mm using MO-311	6
2.3.4	432-ball x64 HDI Discrete Package, 0.50 mm x 0.50 mm (MO-313)	7
	254 ball e•MMC MCP Two-Channel FBGA (top view) using MO-276	
	254 ball UFS MCP Two-Channel FBGA (top view) using MO-276	
2.3.7	254 ball e•MMC MCP One Channel FBGA (top view) using MO-276	10
2.4	Pad Definition and Description	13
2.5	Mode Register Definition	14
3	Command Definitions and Timing Diagrams	23
3.1	Pull Up/Pull Down Driver Characteristics and Calibration	23
3.2	ODT Mode Register and ODT Characteristics	23
3.3	On Die Termination for DQ, DQS and DMI	25
3.4	Output Driver and Termination Register Temperature and Voltage Sensitivity	27
4	AC and DC Operating Conditions	28
4.1	Recommended DC Operating Conditions for low voltage	28
4.2	Single Ended Output Slew Rate	28
4.3	Differential Output Slew Rate	29
5	V _{REF} Specifications	30
5.1	CA Internal V _{REF} Specifications	30
5.2	DQ Internal V _{REF} Specifications	30
6	Power-up, Initialization and Power-off Procedure	30
7	ODT Mode Register and ODT State Table	33
8	Core Timing	34

Contents (cont'd)

Tables	
Table 1 Pad Definition and Description	13
Table 2 Mode Register Assignment in LPDDR4 SDRAM	14
Table 3 V _{REF} Settings for Range[0] and Range[1]	18
Table 4 V _{REF} Settings for Range[0] and Range[1]	20
Table 5 LPDDR4X Byte Mode Device (MR11 OP[6:4] ≠ 000B Case	9)22
Table 6 Pull-down Driver Characteristics, with ZQ Calibration	23
Table 7 Terminated Pull-Up Characteristics, with ZQ Calibration	23
Table 8 Terminated Valid Calibration Points	23
Table 9 ODT DC Electrical Characteristics, assuming RZQ = 240 Ω operating temperature range after a proper ZQ calibration	
Table 10 ODT DC Electrical Characteristics, assuming RZQ = 240 operating temperature range after a proper ZQ calibration	
Table 11 Output Driver and Termination Register Sensitivity Definit	ion27
Table 12 Output Driver and Termination Register Temperature and	Voltage Sensitivity27
Table 13 Recommended DC Operating Conditions	28
Table 14 Output Slew Rate (single-ended) for 0.6 V V_{DDQ}	28
Table 15 Differential Output Slew Rate for 0.6 V V _{DDQ}	29
Table 16 CA Internal V _{REF} Specifications	30
Table 17 DQ Internal V _{REF} Specifications	29
Table 18 MRS defaults settings	30
Table 19 Command Bus ODT State	33
Table 20 Core Timing	34
Figures	
Figure 1 On Die Termination for CA	23
Figure 2 On Die Termination	25
Figure 3 Single Ended Output Slew Rate Definition	28
Figure 4 Differential Output Slew Rate Definition	29

Addendum No. 1 to JESD209-4 - LOW POWER DOUBLE DATA RATE 4X (LPDDR4X)

(From JEDEC Board Ballot JCB-16-49, formulated under the cognizance of the JC-42.6 Subcommittee on Low Power Memories.)

1 Scope

This document defines the LPDDR4 standard, including features, functionalities, AC and DC characteristics, packages, and ball/signal assignments. The purpose of this specification is to define the minimum set of requirements for a JEDEC compliant 16 bit per channel SDRAM device with either one or two channels. LPDDR4 dual channel device density ranges from 4 Gb through 32 Gb and single channel density ranges from 2 Gb through 16 Gb. This document was created using aspects of the following standards: DDR2 (JESD79-2), DDR3 (JESD79-3), DDR4 (JESD79-4), LPDDR (JESD209), LPDDR2 (JESD209-2) and LPDDR3 (JESD209-3).

Each aspect of the standard was considered and approved by committee ballot(s). The accumulation of these ballots was then incorporated to prepare the LPDDR4 standard.

This addendum defines LPDDR4X specifications that supersede the LPDDR4 Standard (JESD209-4) to enable low V_{DDQ} operation of LPDDR4X devices to reduce power consumption.

2 **Package Ballout and Pin Definition**

2.1 **Pad Order**

С	h. A Top		
1	VDD2	41	VDD2
2	VSS	42	CKE A
3	VDD1	43	CS A
4	VDD2	44	VSS
5	VSS	45	CA1_A
6	VSSQ	46	CA0_A
7	DQ8_A	47	VDD2
8	VDDQ	48	ODT(ca)_A
9	DQ9_A	49	VSS
10	VSSQ	50	VDD1
11	DQ10_A	51	VSSQ
12	VDDQ	52	DQ7_A
13	DQ11_A	53	VDDQ
14	VSSQ	54	DQ6_A
15	DQS1_t_A	55	VSSQ
16	DQS1_c_A	56	DQ5_A
17	VDDQ	57	VDDQ
18	DMI1_A	58	DQ4_A
19	VSSQ	59	VSSQ
20	DQ12_A	60	DMI0_A
21	VDDQ	61	VDDQ
22	DQ13_A	62	DQS0_c_A
23	VSSQ	63	DQS0_t_A
24	DQ14_A	64	VSSQ
25	VDDQ	65	DQ3_A
26	DQ15_A	66	VDDQ
27	VSSQ	67	DQ2_A
28	ZQ	68	VSSQ
29	VDDQ	69	DQ1_A
30	VDD2	70	VDDQ
31	VDD1	71	DQ0_A
32	VSS	72	VSSQ
33	CA5_A	73	VSS
34	CA4_A	74	VDD2
35	VDD2	75	VDD1
36	CA3_A	76	VSS
37	CA2_A	77	VDD2
38	VSS	Ch	. A Bottom
39	CK_c_A		
40	CK_t_A		
C	h. A Top		

		1		
	h. B Top			1/000
101			141	
102			142	
103			143	
104			144	
105			145	
106			146	
107	DQ8_B		147	
108	•			ODT(ca)_B
109			149	VSS
110	VSSQ		150	
111			151	VSSQ
112	VDDQ		152	DQ7_B
113	DQ11_B		153	VDDQ
114	VSSQ		154	DQ6_B
115	DQS1_t_B		155	VSSQ
	DQS1_c_B		156	DQ5_B
117	VDDQ		153	VDDQ
118	DMI1_B		158	DQ4_B
119	VSSQ		159	VSSQ
120	DQ12 B		160	DMI0_B
121	VDDQ		161	VDDQ
122	DQ13_B		162	DQS0_c_B
123	VSSQ		163	DQS0 t B
124	DQ14 B		164	VSSQ
125	VDDQ		165	
126	DQ15 B		166	VDDQ
127	VSSQ		167	
128			168	
129	VDDQ		169	
130			170	
131	VDD1		171	DQ0 B
132			172	
133			173	
134			174	
135	VDD2		175	
136	CA3_B		176	
137	CA2_B		177	
138	VSS			. B Bottom
139				
140	CK t B			
	h. B Top			

NOTE 1 Applications are recommended to follow bit/byte assignments. Bit or Byte swapping at the application level requires review of MR and calibration features assigned to specific data bits/bytes.

NOTE 2 Additional pads are allowed for DRAM mfg-specific pads ("DNU"), or additional power pads as long as the extra pads are grouped with like-named pads.

NOTE 3 V_{DDQ} pads ((#12,#21,#57,#66,#112,#121,#157 and #166) may be individually assigned to either V_{DDQ} or V_{DD2}. Please refer to vendor specification.

2.2 Single Channel Pad Order

	Тор		
1	VDD2	40	CK_c
2	VSS	41	CK_t
3	VDD1	42	VDD2
4	VDD2	43	CKE
5	VSS	44	CS
6	VSSQ	45	VSS
7	DQ8	46	CA1
8	VDDQ	47	CA0
9	DQ9	48	VDD2
10	VSSQ	49	ODT(ca)
11	DQ10	50	VSS
12	VDDQ	51	VDD1
13	DQ11	52	VSSQ
14	VSSQ	53	DQ7
15	DQS1_t	54	VDDQ
16	DQS1_c	55	DQ6
17	VDDQ	56	VSSQ
18	DMI1	57	DQ5
19	VSSQ	58	VDDQ
20	DQ12	59	DQ4
21	VDDQ	60	VSSQ
22	DQ13	61	DMI0
23	VSSQ	62	VDDQ
24	DQ14	63	DQS0_c
25	VDDQ	64	DQS0_t
26	DQ15	65	VSSQ
27	VSSQ	66	DQ3
28	ZQ	67	VDDQ
29	VDDQ	68	DQ2
30	VDD2	69	VSSQ
31	RESET_n	70	DQ1
32	VDD1	71	VDDQ
33	VSS	72	DQ0
34	CA5	73	VSSQ
35	CA4	74	VSS
36	VDD2	75	VDD2
37	CA3	76	VDD1
38	CA2	77	VSS
39	VSS	78	VDD2
			Bottom

NOTE 1 Applications are recommended to follow bit/byte assignments. Bit or Byte swapping at the application level requires review of MR and calibration features assigned to specific data bits/bytes.

NOTE 2 Additional pads are allowed for DRAM mfg-specific pads ("DNU"), or additional power pads as long as the extra pads are grouped with like-named pads.

NOTE 3 V_{DDQ} pads (#12, #21, #57 and #66) may be individually assigned to either V_{DDQ} or V_{DD2} . Please refer to vendor specification.

NOTE 4 A RESET_n pad is added. The RESET_n pad location is vendor specific. See vendor device datasheets for details about RESET_n pad location.

2.3 LPDDR4X packages

2.3.1 LPDDR4 34x34 Quad x16 Channel (Fits 14x14 0.4 mm pitch) - Using MO-317A

- NOTE 1 14 mm x 14 mm, 0.4 mm pitch.
- NOTE 2 376 ball count, 34 rows.
- NOTE 3 Top View, A1 in top left corner.
- NOTE 4 ODT(ca) [x] balls are wired to ODT(ca) [x] pads of Rank 0 DRAM die. ODT(ca) [x] pads for other ranks (if present) are disabled in the package.
- NOTE 5 Package Channel a and Channel d shall be assigned to die Channel A of different LPDDR4 die.
- NOTE 6 DRAM die pad V_{SS} and V_{SSQ} signals are combined to V_{SS} package balls.
- NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.2 144 ball ePoP MCP One-Channel FBGA (top view) using MO-323A

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Α	DNU	VSSm	VSSm	VCCQ m	VSSm	VSSm	DAT5 m	VCCQ m	DAT0 m	CLKm	VCCm	DAT6 m	VCCQ m	DAT7 m	VCCQ m	VSSm	RSTm	VSSm	DNU		VCCm
В	VSSm	VSSm	VCCm	VSSm	VDDI	VCCm	DAT1 m	DAT4 m	VSSm	VCCQ m	VSSm	DAT2 m	DAT3 m	VSSm	DSm	VSSm	CMDm	VCCm	VSSm	•ММС	VCCQ m
С	VSSm	VCCm																VSSm	VSSm		VSSm
D	VSF1	VSF3																VSF5	VSF8		
E	VSF2	VSF4																VSF6	VSF9		
F	RESET _n	vss																	RFU		VDDQ
G	ZQ1_A	ZQ0_A																	RFU	DDAM	VDD1
н	vss	vss																	vss	DRAM	VDD2
J	VDD1	VDD1																	VDD1		vss
К	VDD2	VDD2																	VDD2		
L	vss	VDDQ							eMC	P 144Fi 19x21	BGA							VDDQ	vss		
М	DQ8_A	DQ9_A																DQ1_A	DQ0_A		
N	VDD2	DQ10_ A																DQ2_A	VDD2		
P	DQ11_ A	vss																vss	DQ3_A		
R	DQS1_ t_A	DQS1_ c_A																DQS0_ c_A	DQS0_ t_A		
Т	vss	VDDQ																VDDQ	vss		
U	DM1_A	vss																vss	DM0_A		
V	VDD2	VDDQ																VDDQ	VDD2		
w	DQ12_ A	DQ13_ A																DQ5_A	DQ4_A		
Y	vss	VDD2	DQ14_ A	VDD1	CA5_A	vss	CA2_A	VDD2	CK_c_ A	vss	CKEO_ A	CS0_A	GA1_A	VDD2	vss	DQ7_A	DQ6_A	VDD2	vss		
AA	DNU	vss	VDDQ	DQ15_ A	VDD2	CA4_A	CA3_A	vss	CK_t_A	CKE1_ A	CS1_A	vss	CA0_A	ODT(c a)_A	VDD1	VDDQ	vss	vss	DNU		

NOTE 1 0.4 mm pitch, 2 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 Body size: 8 mm x 9.5 mm

NOTE 4 ODT(ca)_A balls are wired to ODT(ca)_A pads of Rank 0 DRAM die. ODT(ca) pads for other ranks (if present) are disabled in the package.

NOTE 5 DRAM die pad VSS and VSSQ signals are combined to V_{SS} package balls.

NOTE 6 The flash ball-out supports e•MMC 5.x

NOTE 7 Vendor specific function (VSF) - this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.

2.3.3 200-ball x32 Discrete Package, 0.80 mm x 0.65 mm using MO-311

						0.80m	m	Pito	h				
		1	2	3	4	5	6	7	8	9	10	11	12
	Α	DNU	DNU	VSS	VDD2	ZQ0			ZQ1	VDD2	VSS	DNU	DNU
	В	DNU	DQ0_A	VDDQ	DQ7_A	VDDQ			VDDQ	DQ15_A	VDDQ	DQ8_A	DNU
	С	VSS	DQ1_A	DMI0_A	DQ6_A	VSS			VSS	DQ14_A	DMI1_A	DQ9_A	VSS
	D	VDDQ	VSS	DQS0_t_A	VSS	VDDQ			VDDQ	VSS	DQS1_t_A	VSS	VDDQ
	E	VSS	DQ2_A	DQS0_c_A	DQ5_A	VSS			VSS	DQ13_A	DQS1_c_A	DQ10_A	VSS
	F	VDD1	DQ3_A	VDDQ	DQ4_A	VDD2			VDD2	DQ12_A	VDDQ	DQ11_A	VDD1
	G	VSS	ODTa	VSS	VDD1	VSS			VSS	VDD1	VSS	ZQ2	VSS
	Н	VDD2	CAO_A	CS1_A	CSO_A	VDD2			VDD2	CA2_A	CA3_A	CA4_A	VDD2
Pitch	J	VSS	CA1_A	VSS	CKEO_A	CKE1_A			CK_t_A	CK_c_A	VSS	CA5_A	VSS
Ţ	K	VDD2	VSS	VDD2	VSS	CS2_A			CKE2_A	VSS	VDD2	VSS	VDD2
	L												
דר	M												
0.65mm	N	VDD2	VSS	VDD2	VSS	CS2_B			CKE2_B	VSS	VDD2	VSS	VDD2
9	Р	VSS	CA1_B	VSS	CKEO_B	CKE1_B			CK_t_B	CK_c_B	VSS	CA5_B	VSS
0	R	VDD2	CAO_B	CS1_B	CSO_B	VDD2			VDD2	CA2_B	CA3_B	CA4_B	VDD2
	T	VSS	ODT_B	VSS	VDD1	VSS			VSS	VDD1	VSS	RESET_n	VSS
	U	VDD1	DQ3_B	VDDQ	DQ4_B	VDD2			VDD2	DQ12_B	VDDQ	DQ11_B	VDD1
	V	VSS	DQ2_B	DQS0_c_B	DQ5_B	VSS			VSS	DQ13_B	DQS1_c_B	DQ10_B	VSS
	W	VDDQ	VSS	DQS0_t_B	VSS	VDDQ			VDDQ	VSS	DQS1_t_B	VSS	VDDQ
	Υ	VSS	DQ1_B	DMI0_B	DQ6_B	VSS			VSS	DQ14_B	DMI1_B	DQ9_B	VSS
	AA	DNU	DQ0_B	VDDQ	DQ7_B	VDDQ			VDDQ	DQ15_B	VDDQ	DQ8_B	DNU
	AB	DNU	DNU	VSS	VDD2	VSS			VSS	VDD2	VSS	DNU	DNU

NOTE 1 0.8 mm pitch (X-axis), 0.65 mm pitch (Y-axis), 22 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3-rank package. For 1-rank and 2-rank package those balls are NC.

NOTE 5 Die pad V_{SS} and V_{SSQ} signals are combined to V_{SS} package balls.

NOTE 6 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.4 432-ball x64 HDI Discrete Package, 0.50 mm x 0.50 mm (MO-313)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Α	VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ		VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ	Α
В	VDDQ	VDD1	DQ0_A	VSS	CA0_A	VDD2		VDD2	CA4_A		DQ8_A	VDD1	VDDQ		VDDQ	VDD1	DQ0_C		CA0_C	VDD2		VDD2	CA4_C		DQ8_C	VDD1	VDDQ	В
С	VDDQ	DQ1_A		DQ5_A		CA2_A		CA3_A		DQ13_A		DQ9_A	VDDQ		VDDQ	DQ1_C		DQ5_C	VSS	CA2_C		CA3_C		DQ13_C		DQ9_C	VDDQ	С
D	VDDQ		DQ4_A	VSS	CA1_A	VDD2		VDD2	CA5_A		DQ12_A		VDDQ		VDDQ		DQ4_C		CA1_C	VDD2		VDD2	CA5_C		DQ12_C	VSS	VDDQ	D
Е	VDDQ	DQ2_A		DQ6_A	VSS	CLK_t_A		CLK_c_ A	VSS	DQ14_A		DQ10_A	VDDQ		VDDQ	DQ2_C		DQ6_C	VSS	CLK_t_C		CLK_c_C	VSS	DQ14_C		DQ10_C	VDDQ	Е
F	VDDQ	VSS	DQS0_t _A	VSS	CS1_A	VDD2		VDD2	CKEO_A	VSS	DQS1_t _A	VSS	VDDQ		VDDQ	VSS	DQS0_t _C	VSS	CS1_C	VDD2		VDD2	CKE0_C	VSS	DQS1_t _C	VSS	VDDQ	F
G	VDDQ	DQ3_A	VSS	DQS0_c _A	VSS	CSO_A		CKE1_A	VSS	DQS1_c _A	VSS	DQ11_A	VDDQ		VDDQ	DQ3_C	VSS	DQS0_c _C	VSS	CSO_C		CKE1_C	VSS	DQS1_c _C	VSS	DQ11_C	VDDQ	G
Н	VDDQ	VSS	DMI0_A		DQ7_A	VDD2		VDD2	DQ15_A	VSS	DMI1_A	VSS	VDDQ		VDDQ	VSS	DMI0_C	VSS	DQ7_C	VDD2		VDD2	DQ15_C	VSS	DMI1_C	VSS	VDDQ	н
J	VDDQ	Notes:															J											
К		Ca_A															К											
L		Notes: 1) 0.5mm ball pitch 2) 432 ball count															L											
М		2) 432 ball count 3) Top view, A1 in top left corner 4) ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package															М											
N		3) Top view, A1 in top left corner 4) ODT(ca)_[x] balls are wired to ODT(ca)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package 5) Package Channel A and Channel C shall be assigned to die Channel A of different DRAM die 6) ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3-rank package. ZQ3, CKE3_A,															N											
Р		5) Package Channel A and Channel C shall be assigned to die Channel A of different DRAM die															Р											
R		CKE3_B, CS3_A, and CS3_B balls are reserved for 4-rank package. For 1-rank and 2-rank package those balls are NC															R											
Т		7) Die pad VSS and VSSQ signals are combined to VSS package balls R) Package requires dual channel die or functional equivalent of single channel die-stack															Т											
٧	VDDQ	VSS	VSS	ca_B	CS3_B	CS2_B		CKE3_B	CKE2_B		VSS	n RESEI_	VDDQ		VDDQ		VSS	ca_D	CS3_D	CS2_D		CKE3_D	CKE2_D		VSS	NC	VDDQ	٧
W	VDDQ	VSS	DMI0_B		DQ7_B	VDD2		VDD2	DQ15_B	VSS DOS1 a	DMI1_B	VSS	VDDQ		VDDQ	VSS	DMI0_D	VSS	DQ7_D	VDD2		VDD2	DQ15_D		DMI1_D	VSS	VDDQ	w
Υ	VDDQ	DQ3_B	VSS	DQS0_c _B	VSS	CSO_B		CKE1_B	VSS	DQS1_c _B	VSS DOS1 A	DQ11_B	VDDQ		VDDQ	DQ3_D	VSS	DQS0_c _D	VSS	CSO_D		CKE1_D	VSS	DQS1_c _D	VSS DOS1 +	DQ11_D	VDDQ	Υ
AA	VDDQ	VSS	DQS0_t _B	VSS	CS1_B	VDD2		VDD2	CKE0_B	VSS	DQS1_t _B	VSS	VDDQ		VDDQ	VSS	DQS0_t _D	VSS	CS1_D	VDD2		VDD2	CKE0_D	VSS	DQS1_t _D	VSS	VDDQ	AA
AB	VDDQ	DQ2_B	VSS	DQ6_B	VSS	CLK_t_B		CLK_c_B	VSS	DQ14_B	VSS	DQ10_B	VDDQ		VDDQ	DQ2_D	VSS	DQ6_D	VSS	CLK_t_D		D D	VSS	DQ14_D	VSS	DQ10_D	VDDQ	AB
AC	VDDQ	VSS	DQ4_B	VSS	CA1_B	VDD2		VDD2	CA5_B	VSS	DQ12_B	VSS	VDDQ		VDDQ	VSS	DQ4_D	VSS	CA1_D	VDD2		VDD2	CA5_D	VSS	DQ12_D	VSS	VDDQ	AC
AD	VDDQ	DQ1_B	VSS	DQ5_B	VSS	CA2_B		CA3_B	VSS	DQ13_B	VSS	DQ9_B	VDDQ		VDDQ	DQ1_D	VSS	DQ5_D	VSS	CA2_D		CA3_D	VSS	DQ13_D	VSS	DQ9_D	VDDQ	AD
AE	VDDQ	VDD1	DQ0_B	VSS	CA0_B	VDD2		VDD2	CA4_B	VSS	DQ8_B	VDD1	VDDQ		VDDQ	VDD1	DQ0_D	VSS	CA0_D	VDD2		VDD2	CA4_D	VSS	DQ8_D	VDD1	VDDQ	AE
AF	VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ		VDDQ	VDD1	VDDQ	VDDQ	VDDQ	VDD2		VDD2	VDDQ	VDDQ	VDDQ	VDD1	VDDQ	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	

2.3.5 254 ball e•MMC MCP Two-Channel FBGA (top view) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Α	DNU	DNU	DQ0_	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	A
В	DNU		DQ1_	vss	VDDQ	vss	DQ4_ A	vss	VDD2				VDD2	VDD2	VDD1	ZQ0		DNU	В
С			DQ2_ A	vss	vss	DQ5_ A	vss	DQ7_ A	DQS0 t A				CA2_ A	vss	CA5_ A	ZQ1			С
D			DQ3_ A	vss	DMIO_ A	vss	DQ6_ A	vss	DQS0 c A				CA3_ A	vss	vss	ZQ2			D
E													CA4_ A	vss	CSO_ A	CKEO_			Е
F													CA1_	vss		CKE1_			F
G			DQ13 A	vss	vss	vss	VDD2	VDD2	VDD2				vss	CAO_ A	vss	CLK_c A			G
н			DMI1_	vss	VDDQ	DQ14 A	vss	DQ15 A	VDDQ				vss	CS2_	vss	CLK_t A			Н
J			DQ11 A	VDDQ	VDDQ	vss	DQ12 A	VDDQ	DQS1				ODT_ A	CKE2_ A	vccq		VCCQ		C
К		VDD2	DQ10 A	vss	DQ8_ A	DQ9_ A	vss	vss	DQS1 t A				VSSm	VSSm	VCCQ	VSSm	NC		к
L							VDD2	VDD2	VDD2			VSSm	DAT7	DAT6	VSSm	VSSm	VDDI		L
М			VSF1	VSF3	VSF5	VSF7	VSF9	VSSm	CMD			DS	VSSm	VSSm	DAT1	DAT4	vcc		М
N			VSF2	VSF4	VSF6	VSF8	NC	VSSm	RST_n			VSSm	DAT2	DAT5	VSSm	VSSm	vcc		N
Р							VDD2	VDD2	VDD2			CLK	VSSm	VSSm	DAT3	DAT0	vcc		Р
R		VDD2	DQ10 B	vss	DQ8_ B	DQ9_ B	vss	vss	DQS1 t B				VCCQ	VCCQ	VSSm	VSSm	VSSm		R
Т			DQ11 B	VDDQ	VDDQ	vss	DQ12 B	VDDQ	DQS1 c B				ODT_ B	CKE2_ B	VCCQ	VCCQ	NC		Т
U			DMI1_ B	vss	VDDQ	DQ14 B	vss	DQ15 B	VDDQ				vss	CS2_ B	vss	CLK_t B			U
٧			DQ13 B	vss	vss	vss	VDD2	VDD2	VDD2				vss	CA0_ B	vss	CLK_c B			٧
W													CA1_ B	vss	CS1_ B	CKE1_ B			w
Υ													CA4_ B	vss	CSO_ B	CKE0_ B			Y
AA			DQ3_ B	vss	DMIO_ B	vss	DQ6_ B	vss	DQS0 cB				CA3_ B	vss	vss	RESE T n			AA
АВ			DQ2_ B	vss	vss	DQ5_ B	vss	DQ7_ B	DQS0 t B				CA2_ B	vss	CA5_ B	NC			AB
AC	DNU		DQ1_ B	vss	VDDQ	vss	DQ4_ B	vss	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_ B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

NOTE 1 0.5 mm pitch, 24 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT_CA_[x] balls are wired to ODT_CA)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3 rank package, and for 1 rank and 2 rank package those balls are NC.

NOTE 5 DRAM die pad VSS and VSSQ signals are combined to VSS package balls.

NOTE 6 Vendor specific function (VSF) - this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.

NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.

NOTE 8 The flash ball-out supports e•MMC 5.x.

2.3.6 254 ball UFS MCP Two-Channel FBGA (top view) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A	DNU	DNU	DQ0_	VDD1	VDD2		VDDQ	VDD2					VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	A
В	DNU		DQ1_	VSS	VDDQ	VSS	DQ4_	VSS	VDD2				VDD2	VDD2	VDD1	ZQ0		DNU	В
С			DQ2_ A	VSS	vss	DQ5_ A	VSS	DQ7_ A	DQS0				CA2_	VSS	CA5_	ZQ1			С
D			DQ3_	vss	DMIO_ A	vss	DQ6_ A	VSS	DQS0				CA3_ A	vss	VSS	ZQ2			D
Е			_^_		_^_		_^		<u> </u>				CA4_ A	vss	CSO_ A	CKEO_ A			E
F													CA1_ A	vss	CS1_	CKE1_			F
G			DQ13 A	vss	vss	vss	VDD2	VDD2	VDD2				vss	CAO_ A	vss	CLK_c			G
н			DMI1_ A	vss	VDDQ	DQ14 A	vss	DQ15 A	VDDQ				vss	CS2_ A	vss	CLK_t A			Н
J			DQ11 A	VDDQ	VDDQ	vss	DQ12 A	VDDQ	DQS1				ODT_ A	CKE2_ A	VCCQ 2	VGGQ 2	VCCQ 2		J
к		VDD2	DQ10 A	vss	DQ8_ A	DQ9_ A	vss	vss	DQS1 t A				VSSm	VSSm	VCCQ 2	VSSm	VDDI Q2		K
L							VDD2	VDD2	VDD2			VSSm	DIN1_ c	DIN1_ t	VSSm	VSSm	VDDI		L
М			NC	VSF1	VSF3	VSF5	RFU	VSSm	RFU			RST_n	VSSm	VSSm	DINO_	DINO_ t	vcc		М
N			NC	VSF2	VSF4	VSF6	RFU	VSSm	RFU			VSSm	DOUT 1 c	DOUT 1 t	VSSm	VSSm	vcc		N
Р			D010		D00	D.00	VDD2	VDD2	VDD2			REF_ CLK	VSSm	VSSm	0 c	DOUT 0 t	vcc		Р
R		VDD2	DQ10 B DQ11	VSS	DQ8_ B	DQ9_ B	VSS DQ12	VSS	DQS1 t B DQS1				VCCQ ODT_	VCCQ CKE2_	VSSm	VSSm	VSSm VDDI		R
Т			B DMI1_	VDDQ	VDDQ	VSS DQ14	B	VDDQ DQ15	сВ				B B	B CS2_	VCCQ	VCCQ CLK_t	Q VDDI		Т
U			B DQ13	VSS	VDDQ	В	VSS	В	VDDQ				VSS	B CA0_	VSS	B CLK_c			U
V			В	VSS	vss	VSS	VDD2	VDD2	VDD2				VSS CA1_	В	VSS CS1_	B CKE1_			٧
w													B CA4_	VSS	B CSO_	B CKE0_			W
Y			DQ3_		DMIO_		DQ6_		DQS0				B CA3_	VSS	В	B			Y
AA			B DQ2_	VSS	В	VSS DQ5_	В	VSS DQ7_	c B				B CA2_	VSS	VSS CA5_	Tn			AA
AB	DNU		B DQ1_	VSS	VSS	В	VSS DQ4_	В	t B				В	VSS	В	NC		DAIL	AB
AC	DNU	DNU	B DQ0_	VSS VDD1	VDDQ	VSS	В	VSS	VDD2				VDD2	VDD2	VDD1	NC VDD1	DNII	DNU	AC
AD	1	2	<u>В</u> 3	4	VDD2 5	6 6	VDDQ 7	VDD2 8	VDD1	10	11	12	13	14	VDD1	VDD1	DNU 17	18	AD
	<u>'</u>	2	3	4	_ °	٥	′	đ	y	10	_ ' '	12	13	14	15	' "	17	18	

NOTE 1 0.5 mm pitch, 24 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT_CA_[x] balls are wired to ODT_CA)_[x] pads of Rank 0 DRAM die. ODT(ca)_[x] pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_A, CKE2_B, CS2_A, and CS2_B balls are reserved for 3 rank package, and for 1 rank and 2 rank package those balls are NC.

NOTE 5 DRAM die pad VSS and VSSQ signals are combined to VSS package balls.

NOTE 6 Vendor specific function (VSF) - this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vendor specific operations.

NOTE 7 Package requires dual channel die or functional equivalent of single channel die-stack.

2.3.7 254 ball e•MMC MCP One Channel FBGA (top view) using MO-276

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A	DNU	DNU	NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC	DNU	DNU	A
В	DNU		NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ0		DNU	В
С			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ1			С
D			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	ZQ2			D
E													NC	NC	NC	NC			E
F													NC	NC	NC	NC			F
G			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC			G
н			NC	NC	NC	NC	NC	NC	NC				NC	NC	NC	NC			Н
J			NC	NC	NC	NC	NC	NC	NC				NC	NC	vccq	vccq	VCCQ		J
K		NC	NC	NC	NC	NC	NC	NC	NC				VSSm	VSSm	vccq	VSSm	NC		К
L							NC	NC	NC			VSSm	DAT7	DAT6	VSSm	VSSm	VDDI		L
М			VSF1	VSF3	VSF5	VSF7	VSF9	VSSm	CMD			DS	VSSm	VSSm	DAT1	DAT4	vcc		М
N			VSF2	VSF4	VSF6	VSF8	NC	VSSm	RST_n			VSSm	DAT2	DAT5	VSSm	VSSm	vcc		N
Р							VDD2	VDD2	VDD2			CLK	VSSm	VSSm	DAT3	DAT0	vcc		Р
R		VDD2	DQ10 B	vss	DQ8_ B	DQ9_ B	vss	vss	DQS1 t B				1	VCCQ	VSSm	VSSm	VSSm		R
т			DQ11 B	VDDQ	VDDQ	vss	DQ12 B	VDDQ	DQS1 c B				ODT(ca) B	CKE2_ B	vccq	vccq	NC		Т
U			DMI1_ B	vss	VDDQ	DQ14 B	vss	DQ15 B	VDDQ				vss	CS2_ B	vss	CLK_t B			U
v			DQ13 B	vss	vss	vss	VDD2	VDD2	VDD2				vss	CA0_ B	vss	CLK_c B			v
w													CA1_ B	vss	CS1_ B	CKE1_ B			w
Υ													CA4_ B	vss	CSO_ B	CKE0_ B			Y
AA			DQ3_ B	vss	DMIO_ B	vss	DQ6_ B	vss	DQS0 cB				CA3_ B	vss	vss	RESE T n			AA
АВ			DQ2_ B	vss	vss	DQ5_ B	vss	DQ7_ B	DQS0 t B				CA2_ B	vss	CA5_ B	NC			АВ
AC	DNU		DQ1_ B	vss	VDDQ	vss	DQ4_ B	vss	VDD2				VDD2	VDD2	VDD1	NC		DNU	AC
AD	DNU	DNU	DQ0_ B	VDD1	VDD2	VDDQ	VDDQ	VDD2	VDD1				VDDQ	VDDQ	VDD1	VDD1	DNU	DNU	AD
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

NOTE 1 0.5mm pitch, 24 rows.

NOTE 2 Top View, A1 in top left corner.

NOTE 3 ODT_(ca)_B ball is wired to ODT_(ca)_B pad of Rank 0 DRAM die. ODT_(ca) pads for other ranks (if present) are disabled in the package.

NOTE 4 ZQ2, CKE2_B, and CS2_B balls are reserved for 3 rank package, and for 1 rank and 2 rank package those balls are NC.

NOTE 5 DRAM die pad V_{SS} and V_{SSQ} signals are combined to V_{SS} package balls.

NOTE 6 Vender specific function (VSF) – this terminal should not have any external electrical connections, but it may have an internal connection. The terminal may be routed to provide accessibility and may be used for general purpose vender specific operations.

NOTE 7 The flash ball-out supports *e*•MMC 5.x.

2.4 Pad Definition and Description

LPDDR4X pad definitions are the same as LPDDR4, except as described in Table 1.

Table 1 — Pad Definition and Description

Symbol	Type	Description									
ODT_CA_A ODT_CA_B	Input	CA ODT Control: The ODT_CA pin is ignored by LPDDR4X devices. ODT-CS/CA/CK function is fully controlled through MR11 and MR22. The ODT_CA pin shall be connected to either V_{DD2} or V_{SS} .									

2.5 Mode Register Definition

Table 2 — Mode Register Assignment in LPDDR4 SDRAM

MR#	OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
0	Reserved	RFU	RFU	RZ	.'QI	RFU	RFU	Refresh mode			
1	RPST	١	nWR (for AP))	RD-PRE	WR-PRE	Е	BL			
2	WR Lev	WLS		WL			RL				
3	DBI-WR	DBI-RD		PDDS		PPRP	WR PST	PU-CAL			
4	TUF	Therma	l Offset	PPRE	SR Abort		Refresh Rate	Э			
5				LPDDR4 Ma)					
6					on ID-1						
7					on ID-2		T				
8	IO Width Density Type										
9			Ve	endor Specifi	c Test Regis	ter					
10				RFU				ZQ-Reset			
11	RFU		CA ODT		RFU		DQ ODT				
12	CBT Mode	VR-CA				(CA)	T = = =				
13	FSP-OP	FSP-WR	DMD	RRO	VRCG	VRO	RPT	CBT			
14	RFU	VR(dq)				(DQ)					
15			Lower-Byt	e Invert Reg		Calibration					
16					ank Mask						
17					ment Mask						
18				QS Oscillato							
19				QS Oscillato							
20			Upper-Byt	e Invert Reg		Calibration					
21	ODT (0	0.1.(D. (.)		RI	=U						
22	ODT for x8		ODTD-CA	ODTE-CS	ODTE-CK		CODT				
23			DQS	interval time		etting					
24	TRR Mode	Т	RR Mode BA		Unlimited MAC		MAC Value				
25					esource						
26					=U						
27					-U						
28					=U						
29					=U						
30			Reserve	ed for testing		ill ignore					
31					=U						
32			DQ Calib	oration Patte		lt = 5AH)					
33					=U						
34					=U						
35					=U =						
36					=U =::						
37					=U =U						
38			Dagaria			illianoro					
39 40				ed for testing oration Patte							
40			DG CSIII	חמווטוו Patte	ııı ı (uelau	n – 30Π)					

2.5.1 MR0 Register Information (MA [7:0] = 00H)

OP[7]	OP[6]	OP[5]	OP[4]	OP[4] OP[3]		OP[1]	OP[0]
Reserved	RFU	RFU	RZ	ZQI	RFU	Latency Mode	Refresh mode

Function	Register Type	Operand	Data	Notes
Refresh mode		OP[0]	0 _B : Both legacy and modified refresh mode supported 1 _B : Only modified refresh mode supported	
Latency mode	Read-only	OP[1]	0 _B : Device supports normal latency 1 _B : Device supports byte mode latency	5,6
RZQI (Built-in Self-Test for RZQ)	Neau-Only	OP[4:3]	00B: RZQ Self-Test Not Supported 01B: ZQ pin may connect to V _{SSQ} or float 10B: ZQ-pin may short to V _{DDQ} 11B: ZQ-pin Self-Test Completed, no error condition detected (ZQ-pin may not connect to V _{SSQ} or float, nor short to V _{DDQ})	1,2,3, 4

NOTE 1 RZQI MR value, if supported, will be valid after the following sequence:

- a. Completion of MPC ZQCAL Start command to either channel.
- b. Completion of MPC ZQCAL Latch command to either channel then tZQLAT is satisfied.
 RZQI value will be lost after Reset.

NOTE 2 If the ZQ-pin is connected to V_{SSQ} to set default calibration, OP[4:3] shall be set to 01B. If the ZQ-pin is not connected to VSSQ, either OP[4:3] = 01_B or OP[4:3] = 10_B might indicate might indicate a ZQ-pin assembly error. It is recommended that the assembly error is corrected.

NOTE 3 In the case of possible assembly error, the LPDDR4-SDRAM device will default to factory trim settings for RON, and will ignore ZQ Calibration commands. In either case, the device may not function as intended.

NOTE 4 If ZQ Self-Test returns OP[4:3] = 11_B , the device has detected a resistor connected to the ZQ-pin. However, this result cannot be used to validate the ZQ resistor value or that the ZQ resistor tolerance meets the specified limits (i.e., $240 \Omega \pm 1\%$).

NOTE 5 See byte mode addendum spec for byte mode latency details.

NOTE 6 Byte mode latency for 2Ch. x16 device is only allowed when it is stacked in a same package with byte mode device.

2.5.2 MR3 Register Information (MA[7:0] = 03_H)

OP[7]	OP[6]	OP[5]	OP[5] OP[4]		OP[2]	OP[1]	OP[0]
DBI-WR	DBI-RD		PDDS		PPRP	WR PST	PU-CAL

Function	Register Type	Operand	Data	Notes
PU-Cal (Pull-up Calibration Point)		OP[0]	0 _B : V _{DDQ} *0.6 1 _B : V _{DDQ} *0.5 (default)	1,4
WR PST(WR Post-Amble Length)		OP[1]	0_B : WR Post-amble = 0.5*tCK (default) 1_B : WR Post-amble = 1.5*tCK(Vendor specific function)	2,3,5
Post Package Repair Protection		OP[2]	0 _B : PPR protection disabled (default) 1 _B : PPR protection enabled	6
PDDS (Pull-Down Drive Strength)	Write-only	OP[5:3]	000 _B : RFU 001 _B : RZQ/1 010 _B : RZQ/2 011 _B : RZQ/3 100 _B : RZQ/4 101 _B : RZQ/5 110 _B : RZQ/6 (default) 111 _B : Reserved	1,2,3
DBI-RD (DBI-Read Enable)		OP[6]	0 _B : Disabled (default) 1 _B : Enabled	2,3
DBI-WR (DBI-Write Enable)		OP[7]	0 _B : Disabled (default) 1 _B : Enabled	2,3

- NOTE 1 All values are "typical". The actual value after calibration will be within the specified tolerance for a given voltage and temperature. Re-calibration may be required as voltage and temperature vary.
- NOTE 2 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 4 For dual channel devices, PU-CAL setting is required as the same value for both Ch.A and Ch.B before issuing ZQ Cal start command.
- NOTE 5 Refer to the supplier data sheet for vender specific function. 1.5*tCK apply > 1.6GHz clock.
- NOTE 6 If MR3 OP[2] is set to 1b then PPR protection mode is enabled. The PPR Protection bit is a sticky bit and can only be set to 0b by a power on reset. MR4 OP[4] controls entry to PPR Mode. If PPR protection is enabled then DRAM will not allow writing of 1 to MR4 OP[4].

2.5.3 MR12 Register Information (MA[7:0] = $0C_H$)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]			
CBT Mode	VR-CA		$V_{REF}(CA)$							

Function	Register Type	Operand	Data	Notes	
V _{REF} (CA) (V _{REF} (CA) Setting)	Read/ Write	OP[5:0]	000000 _B : Thru 110010 _B : See table below All Others: Reserved	1,2,3, 5,6	
VR-CA (V _{REF} (CA) Range)		OP[6]	0 _B : V _{REF} (CA) Range[0] enabled 1 _B : V _{REF} (CA) Range[1] enabled (default)	1,2,4, 5,6	
CBT Mode	Write	OP[7]	0 _B : Mode1 (Default) 1 _B : Mode2		

- NOTE 1 This register controls the V_{REF}(CA) levels. Refer to Table 3 for actual voltage of V_{REF}(CA).
- NOTE 2 A read to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to '0'. See the section on MRR Operation.
- NOTE 3 A write to OP[5:0] sets the internal $V_{REF}(CA)$ level for FSP[0] when MR13 OP[6] = 0_B , or sets FSP[1] when MR13 OP[6] = 1_B . The time required for $V_{REF}(CA)$ to reach the set level depends on the step size from the current level to the new level. See the section on $V_{REF}(CA)$ training for more information.
- NOTE 4 A write to OP[6] switches the LPDDR4-SDRAM between two internal $V_{REF}(CA)$ ranges. The range (Range[0] or Range[1]) must be selected when setting the $V_{REF}(CA)$ register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event.
- NOTE 5 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 6 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.
- NOTE 7 This field can be activated in only Byte Mode: x8. Device.

2.5.3 MR12 Register Information (MA[7:0] = $0C_H$) (cont'd)

Table 3 — V_{REF} Settings for Range[0] and Range[1]

Step: 0.6% (1/167)

Function	Operand	Range	[0] Valu	es (% of	V _{DDQ})	Range	[1] Valu	es (% of \	DDQ)	Notes
		000000 _B :	15.0%	011010 _B :	30.5%	000000 _B :	32.9%	011010 _B :	48.5%	
		000001 _B :	15.6%	011011 _B :	31.1%	000001 _B :	33.5%	011011 _B :	49.1%	
		000010 _B :	16.2%	011100 _B :	31.7%	000010 _B :	34.1%	011100 _B :	49.7%	
		000011 _B :	16.8%	011101 _B :	32.3%	000011 _B :	34.7%	011101 _B : default	50.3%	
		000100 _B :	17.4%	011110 _B :	32.9%	000100 _B :	35.3%	011110 _B :	50.9%	
		000101 _B :	18.0%	011111 _B :	33.5%	000101 _B :	35.9%	011111 _B :	51.5%	
		000110 _B :	18.6%	100000 _B :		000110 _B :	36.5%	100000 _B :	52.1%	
		000111 _B :	19.2%	100001 _B :	34.7%	000111 _B :	37.1%	100001 _B :	52.7%	
		001000 _B :	19.8%	100010 _B :	35.3%	001000 _B :	37.7%	100010 _B :	53.3%	
		001001 _B :	20.4%	100011 _B :	35.9%	001001 _B :	38.3%	100011 _B :	53.9%	
		001010 _B :	21.0%	100100 _B :	36.5%	001010 _B :	38.9%	100100 _B :	54.5%	
V _{REF}		001011 _B :	21.6%	100101 _B :	37.1%	001011 _B :	39.5%	100101 _B :	55.1%	
Settings	OP	001100 _B :	22.2%	100110 _B :	37.7%	001100 _B :	40.1%	100110 _B :	55.7%	1,2,3
for MR12	[5:0]	001101 _B :	22.8%	100111 _B :	38.3%	001101 _B :	40.7%	100111 _B :	56.3%	
IVIKIZ		001110 _B :	23.4%	101000 _B :		001110 _B :	41.3%	101000 _B :	56.9%	
		001111 _B :	24.0%	101001 _B :	39.5%	001111 _B :	41.9%	101001 _B :	57.5%	
		010000 _B :	24.6%	101010 _B :	40.1%	010000 _B :	42.5%	101010 _B :	58.1%	
		010001 _B :	25.1%	101011 _B :		010001 _B :	43.1%	101011 _B :	58.7%	
		010010 _B :	25.7%	101100 _B :		010010 _B :	43.7%	101100 _B :	59.3%	
		010011 _B :	26.3%	101101 _B :	41.9%	010011 _B :	44.3%	101101 _B :	59.9%	
		010100 _B :	26.9%	101110 _B :	42.5%	010100 _B :	44.9%	101110 _B :	60.5%	
		010101 _B :	27.5%	101111 _B :		010101 _B :	45.5%	101111 _B :	61.1%	
		010110 _B :	28.1%	110000 _B :	43.7%	010110 _B :	46.1%	110000 _B :	61.7%	
		010111 _B :	28.7%	110001 _B :	44.3%	010111 _B :	46.7%	110001 _B :	62.3%	
		011000 _B :	29.3%	110010 _B :		011000 _B :	47.3%	110010 _B :	62.9%	
		011001 _B :	29.9%	All Oth Reser		011001 _B :	47.9%	All Oth Rese		

NOTE 1 These values may be used for MR12 OP[5:0] to set the $V_{\text{REF}}(\text{CA})$ levels in the LPDDR4-SDRAM.

NOTE 2 The range may be selected in the MR12 register by setting OP[6] appropriately.

NOTE 3 The MR12 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and unterminated operation, or between different high-frequency setting which may use different terminations values.

2.5.4 MR14 Register Information (MA[7:0] = $0E_H$)

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]				
RFU	VR(DQ)		V _{REF} (DQ)								

Function	Register Type	Operand	Data	Notes
V _{REF} (DQ) (V _{REF} (DQ) Setting)	Read/ Write	OP[5:0]	000000 _B : Thru 110010 _B : See Table 4 All Others: Reserved	1,2,3, 5,6
VR(dq) (V _{REF} (DQ) Range)		OP[6]	0 _B : V _{REF} (DQ) Range[0] enabled 1 _B : V _{REF} (DQ) Range[1] enabled (default)	1,2,4, 5,6

- NOTE 1 This register controls the $V_{REF}(DQ)$ levels for Frequency-Set-Point[1:0]. Values from either VR(DQ)[0] or VR(dq)[1] may be selected by setting OP[6] appropriately.
- NOTE 2 A read (MRR) to this register places the contents of OP[7:0] on DQ[7:0]. Any RFU bits and unused DQ's shall be set to'0'. See the section on MRR Operation.
- NOTE 3 A write to OP[5:0] sets the internal $V_{REF}(DQ)$ level for FSP[0] when MR13 OP[6] = 0_B , or sets FSP[1] when MR13 OP[6] = 1_B . The time required for $V_{REF}(DQ)$ to reach the set level depends on the step size from the current level to the new level. See the section on $V_{REF}(DQ)$ training for more information.
- NOTE 4 A write to OP[6] switches the LPDDR4-SDRAM between two internal $V_{REF}(DQ)$ ranges. The range (Range[0] or Range[1]) must be selected when setting the $V_{REF}(DQ)$ register. The value, once set, will be retained until overwritten, or until the next power-on or RESET event.
- NOTE 5 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.
- NOTE 6 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.

2.5.4 MR14 Register Information (MA[7:0] = $0E_H$) (cont'd)

Table 4 — V_{REF} Settings for Range[0] and Range[1]

Step: 0.6% (1/167)

Function	Operand	Range	[0] Valu	es (% of	V _{DDQ})	Range	[1] Valu	es (% of \	/ _{DDQ})	Notes
		000000 _B :	15.0%	011010 _B :	30.5%	000000 _B :	32.9%	011010 _B :	48.5%	
		000001 _B :	15.6%	011011 _B :	31.1%	000001 _B :	33.5%	011011 _B :	49.1%	
		000010 _B :	16.2%	011100 _B :	31.7%	000010 _B :	34.1%	011100 _B :	49.7%	
		000011 _B :	16.8%	011101 _B :	32.3%	000011 _B :	34.7%	011101 _B default:	50.3%	
		000100 _B :	17.4%	011110 _B :	32.9%	000100 _B :	35.3%	011110 _B :	50.9%	
		000101 _B :	18.0%	011111 _B :	33.5%	000101 _B :	35.9%	011111 _B :	51.5%	
		000110 _B :	18.6%	100000 _B :	34.1%	000110 _B :	36.5%	100000 _B :	52.1%	
		000111 _B :	19.2%	100001 _B :	34.7%	000111 _B :	37.1%	100001 _B :		
		001000 _B :	19.8%	100010 _B :	35.3%	001000 _B :	37.7%	100010 _B :		
		001001 _B :	20.4%	100011 _B :	35.9%	001001 _B :	38.3%	100011 _B :	53.9%	
		001010 _B :	21.0%	100100 _B :	36.5%	001010 _B :	38.9%	100100 _B :	54.5%	
V_{REF}		001011 _B :	21.6%	100101 _B :	37.1%	001011 _B :	39.5%	100101 _B :	55.1%	
Settings	OP	001100 _B :	22.2%	100110 _B :	37.7%	001100 _B :	40.1%	100110 _B :	55.7%	1,2,3
for MR14	[5:0]	001101 _B :	22.8%	100111 _B :	38.3%	001101 _B :	40.7%	100111 _B :	56.3%	
IVIN 14		001110 _B :	23.4%	101000 _B :	38.9%	001110 _B :	41.3%	101000 _B :		
		001111 _B :	24.0%	101001 _B :	39.5%	001111 _B :	41.9%	101001 _B :		
		010000 _B :	24.6%	101010 _B :	40.1%	010000 _B :	42.5%	101010 _B :		
		010001 _B :	25.1%	101011 _B :	40.7%	010001 _B :	43.1%	101011 _B :	58.7%	
		010010 _B :	25.7%	101100 _B :	41.3%	010010 _B :	43.7%	101100 _B :	59.3%	
		010011 _B :	26.3%	101101 _B :	41.9%	010011 _B :	44.3%	101101 _B :		
		010100 _B :	26.9%	101110 _B :	42.5%	010100 _B :	44.9%	101110 _B :		
		010101 _B :	27.5%	101111 _B :	43.1%	010101 _B :	45.5%	101111 _B :		
		010110 _B :	28.1%	110000 _B :		010110 _B :	46.1%	110000 _B :		
		010111 _B :	28.7%	110001 _B :	44.3%	010111 _B :	46.7%	110001 _B :		
		011000 _B :	29.3%	110010 _B :		011000 _B :	47.3%	110010 _B :		
		011001 _B :	29.9%	All Oth Reser		011001 _B :	47.9%	All Otl Rese		

NOTE 1 These values may be used for MR14 OP[5:0] to set the V_{REF}(DQ) levels in the LPDDR4-SDRAM.

NOTE 2 The range may be selected in the MR14 register by setting OP[7,6] appropriately.

NOTE 3 The MR14 registers represents either FSP[0] or FSP[1]. Two frequency-set-points each for CA and DQ are provided to allow for faster switching between terminated and un-terminated operation, or between different high-frequency setting which may use different terminations values.

2.5.5 MR22 Register Information (MA[7:0] = 16_{H})

OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	OP[2]	OP[1]	OP[0]
ODTD for x8	. `	ODTD-CA	ODTE-CS	ODTE-CK		SOC ODT	

Function	Register Type	Operand	Data	Notes
SoC ODT (Controller ODT Value for VOH calibration)		OP[2:0]	000_B : Disable (Default) 001_B : RZQ/1 (illegal if MR3 OP[0] = 0_B) 010_B : RZQ/2 011_B : RZQ/3 (illegal if MR3 OP[0] = 0_B) 100_B : RZQ/4 101_B : RZQ/5 (illegal if MR3 OP[0] = 0_B) 110_B : RZQ/6 (illegal if MR3 OP[0] = 0_B) 111_B : RFU	1,2,3
ODTE-CK (CK ODT enabled for nonterminating rank)	OT enabled for terminating OP[3] OP[3] OD I bond PAD is ignored OP[3] OP[3] OP[3] OB: ODT-CK Disable		2,3,4,	
ODTE-CS (CS ODT enable for nonterminating rank)	Write-only	OP[4]	ODT bond PAD is ignored 0B: ODT-CS Enable (Default) 1 _B : ODT-CS Disable	2,3,4
ODTD-CA (CA ODT termination disable)		OP[5]	ODT bond PAD is ignored 0_B : ODT-CA Enable (default) 1_B : ODT-CA Disable	2,3,4
X8ODTD[7:0] (CA/CLK ODT termination disable, [7:0] Byte select	CA/CLK ODT termination		Byte mode device x8 2ch only, lower [7:0] Byte selected Device 0 _B : ODT-CS/CA/CLK follows MR11 OP[6:4] and MR22 OP[5:3] (default) 1 _B : ODT-CS/CA/CLK Disabled	4
X8ODTD[15:8] (CA/CLK ODT termination disable, [15:8] Byte select		OP[7]	Byte mode device x8 2ch only, upper [15:8] Byte selected Device 0 _B : ODT-CS/CA/CLK follows MR11 OP[6:4] and MR22 OP[5:3] (default) 1 _B : ODT-CS/CA/CLK Disabled	4

NOTE 1 All values are "typical".

NOTE 2 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. Only the registers for the set point determined by the state of the FSP-WR bit (MR13 OP[6]) will be written to with an MRW command to this MR address, or read from with an MRR command to this address.

NOTE 3 There are two physical registers assigned to each bit of this MR parameter, designated set point 0 and set point 1. The device will operate only according to the values stored in the registers for the active set point, i.e., the set point determined by the state of the FSP-OP bit (MR13 OP[7]). The values in the registers for the inactive set point will be ignored by the device, and may be changed without affecting device operation.

NOTE 4 The ODT_CA pin is ignored by LPDDR4X devices. The ODT_CA pin shall be connected to either V_{DD2} or V_{SS} . CA/ CS/ CK ODT is fully controlled through MR11 and MR22. Before enabling CA termination via MR11, all ranks should have appropriate MR22 termination settings programmed.

2.5.5 MR22 Register Information (MA[7:0] = 16_H) (cont'd)

Table 5 — LPDDR4X Byte Mode Device (MR11 OP[6:4] ≠ 000B Case)

	OD		ODT	ODT	ODT	Jevice (i		ODT PAI			
MR22	Byte	mode	CA	CS	CK	С	Α		S		K
IVINZZ	OP[7]	OP[6]	OP[5]	OP[4]	OP[3]	Lower Byte	Upper Byte	Lower Byte	Upper Byte	Lower Byte	Upper Byte
	0	0	0	0	0	Т	Τ	Т	Т	Т	Т
	0	0	0	0	1	Т	Т	Т	Т		
	0	0	0	1	0	Т	Т			Т	Т
	0	0	0	1	1	Т	Т				
	0	0	1	0	0			Т	Т	Т	Т
	0	0	1	0	1			Т	Т		
	0	0	1	1	0					Т	Т
	0	0	1	1	1						
	0	1	0	0	0		Т		Т		Т
	0	1	0	0	1		Т		Т		
	0	1	0	1	0		Т				Т
LP4X	0	1	0	1	1		Т				
LF4A	0	1	1	0	0				Т		Т
	0	1	1	0	1				Т		
	0	1	1	1	0						Т
	0	1	1	1	1						
	1	0	0	0	0	Т		Т		Т	
	1	0	0	0	1	Т		Т			
	1	0	0	1	0	Т				Т	
	1	0	0	1	1	Т					
	1	0	1	0	0			Т		Т	
	1	0	1	0	1			Т			
	1	0	1	1	0					Т	
	1	0	1	1	1						

NOTE T means "terminated" condition. Blank is "unterminated"

3 Command Definitions and Timing Diagrams

3.1 Pull Up/Pull Down Driver Characteristics and Calibration

Table 6 — Pull-down Driver Characteristics, with ZQ Calibration

100000 10000000000000000000000000000000								
R _{ONPD} ,nom	Resistor	Min	Nom	Max	Unit			
40 Ω	R _{ON40PD}	0.9	1	1.1	RZQ/6			
48 Ω	R _{ON48PD}	0.9	1	1.1	RZQ/5			
60 Ω	R _{ON60PD}	0.9	1	1.1	RZQ/4			
80 Ω	R _{ON80PD}	0.9	1	1.1	RZQ/3			
120 Ω	R _{ON120PD}	0.9	1	1.1	RZQ/2			
240 Ω	R _{ON240PD}	0.9	1	1.1	RZQ/1			

NOTE All value are after ZQ Calibration. Without ZQ Calibration R_{ONPD} values are \pm 30%.

Table 7 — Terminated Pull-Up Characteristics, with ZQ Calibration

VOH _{PU} ,nom	VOH,nom(mV)	Min	Nom	Max	Unit
V _{DDQ} ∗0.5	300	0.9	1	1.1	VOH,nom
V _{DDQ} *0.6	360	0.9	1	1.1	VOH,nom

NOTE 1 All values are after ZQ Calibration. Without ZQ Calibration VOH(nom) values are ± 30%.

NOTE 2 VOH, nom (mV) values are based on a nominal $V_{DDQ} = 0.6 \text{ V}$.

Table 8 — Terminated Valid Calibration Points

VOU nom			SOC ODT Value			
VOH _{PU} ,nom	240	120	80	60	48	40
V _{DDQ} *0.5	VALID	VALID	VALID	VALID	VALID	VALID
V _{DDQ} *0.6	DNU	VALID	DNU	VALID	DNU	DNU

NOTE 1 Once the output is calibrated for a given VOH(nom) calibration point, the ODT value may be changed without recalibration.

NOTE 2 If the VOH(nom) calibration point is changed, then re-calibration is required.

NOTE 3 DNU = Do Not Use.

3.2 ODT Mode Register and ODT Characteristics

Figure 1 — On Die Termination for CA

3.2 ODT Mode Register and ODT Characteristics (cont'd)

Table 9 — ODT DC Electrical Characteristics

(assuming RZQ = $240 \Omega + 1\%$ over the entire operating temperature range after a proper ZQ calibration)

MR11 OP[6:4]	R _{TT}	Vout	Min	Nom	Max	Unit	Notes
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ	1,2
001	240 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/2	1,2
010	120 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/2	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/2	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/3	1,2
011	80 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/3	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/3	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/4	1,2
100	60 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/4	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/4	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/5	1,2
101	48 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/5	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/5	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/6	1,2
110	40 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/6	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/6	1,2
Mismatch CA-CA within clk group		0.50*V _{DDQ}	-		2	%	1,2,3

NOTE 1 The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see 3.4 on voltage and temperature sensitivity.

NOTE 2 Pull-dn ODT resistors are recommended to be calibrated at 0.50^*V_{DDQ} . Other calibration schemes may be used to achieve the linearity spec shown above, e.g., calibration at 0.75^*V_{DDQ} and 0.2^*V_{DDQ} .

NOTE 3 CA to CA mismatch within clock group (CA,CS) variation for a given component including CK_t and CK_c (characterized).

$$CA - CA_{Mismatch} = \frac{RODT(max) - RODT(min)}{RODT|T(avg)}$$

3.3 On Die Termination for DQ, DQS and DMI

On-Die Termination effective resistance R_{TT} is defined by MR11 OP[2:0].

ODT is applied to the DQ, DMI, DQS_t and DQS_c pins.

A functional representation of the on-die termination is shown Figure 2.

Figure 2 — On Die Termination

3.3 On Die Termination for DQ, DQS and DMI (cont'd)

Table 10 — ODT DC Electrical Characteristics

(assuming RZQ = 240 Ω +/-1% over the entire operating temperature range after a proper ZQ calibration)

MR11 OP[2:0]	R _{TT}	Vout	Min	Nom	Max	Unit	Notes
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ	1,2
001	240 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/2	1,2
010	120 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/2	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/2	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/3	1,2
011	80 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/3	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/3	1,2
	100 60 Ω	$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/4	1,2
100		$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/4	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/4	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/5	1,2
101	48 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/5	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/5	1,2
		$VOLdc = 0.20*V_{DDQ}$	0.8	1	1.1	RZQ/6	1,2
110	40 Ω	$VOMdc = 0.50*V_{DDQ}$	0.9	1	1.1	RZQ/6	1,2
		$VOHdc = 0.75*V_{DDQ}$	0.9	1	1.3	RZQ/6	1,2
Mismatch DQ-DQ within byte		0.50*V _{DDQ}	-		2	%	1,2,3

NOTE 1 The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see 3.4 on voltage and temperature sensitivity.

NOTE 2 Pull-dn ODT resistors are recommended to be calibrated at 0.75^*V_{DDQ} and 0.2^*V_{DDQ} . Other calibration schemes may be used to achieve the linearity spec shown above, e.g., calibration at 0.75^*V_{DDQ} and 0.1^*V_{DDQ} .

NOTE 3 DQ to DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized).

$$DQ - DQ_{Mismatch} = \frac{RODT(max) - RODT(min)}{RODT|T(avg)}$$

3.4 Output Driver and Termination Register Temperature and Voltage Sensitivity

If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 11 and Table 12.

Table 11 — Output Driver and Termination Register Sensitivity Definition

		atpat Billor alla Tollillana			
Resistor	cor Definition Min		Max	Unit	Notes
R _{ONPD}	0.50 x V _{DDQ}	90-($dR_{on}dT \times \Delta T $)- ($dR_{on}dV \times \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2
VOH _{PU}	0.50 x V_{DDQ} 90-(dVOHdT x $ \Delta T $)- (dVOHdV x $ \Delta V $)		110+(dVOHdT x ∆T)+ (dVOHdV x ∆V)	%	1,2,5
R _{TT(I/O)}	0.50 x V _{DDQ}	90-($dR_{on}dT \times \Delta T $)- ($dR_{on}dV \times \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2,3
R _{TT(In)}	0.50 x V _{DDQ}	90-($dR_{on}dT \times \Delta T $)- ($dR_{on}dV \times \Delta V $)	110+(dR _{on} dT x $ \Delta T $)+ (dR _{on} dV x $ \Delta V $)	%	1,2,4

NOTE 1 $\Delta T = T - T(@ Calibration), \Delta V = V - V(@ Calibration)$

NOTE 2 $dR_{ON}dT$, $dR_{ON}dV$, dVOHdT, dVOHdV, $dR_{TT}dV$, and $dR_{TT}dT$ are not subject to production test but are verified by design and characterization.

NOTE 3 This parameter applies to Input/Output pin such as DQS, DQ and DMI and the input pins such as CK, CA, and CS.

NOTE 4 Refer to 4.36, Pull Up/Pull Down Driver Characteristics for VOH_{PU}.

Table 12 — Output Driver and Termination Register Temperature and Voltage Sensitivity

Symbol	Parameter	Min	Max	Unit
$dR_{ON}dT$	R _{ON} Temperature Sensitivity	0.00	0.75	%/°C
dR _{oN} dV	dR _{ON} dV R _{ON} Voltage Sensitivity		0.20	%/mV
dVOHdT	VOH Temperature Sensitivity	0.00	0.75	%/°C
dVOHdV	VOH Voltage Sensitivity	0.00	0.35	%/mV
$dR_{TT}dT$	R_{TT} Temperature Sensitivity	0.00	0.75	%/°C
dR _{TT} dV	R _{TT} Voltage Sensitivity	0.00	0.20	%/mV

4 AC and DC Operating Conditions

4.1 Recommended DC Operating Conditions for low voltage

Table 13 — Recommended DC Operating Conditions

DRAM	Symbol	Min	Тур	Max	Unit	Notes
Core 1 Power	V_{DD1}	1.70	1.80	1.95	V	1,2
Core 2 Power/Input Buffer Power	V_{DD2}	1.06	1.10	1.17	V	1,2,3
I/O Buffer Power	V_{DDQ}	0.57	0.6	0.65	V	2,3,4,5

NOTE 1 V_{DD1} uses significantly less current than V_{DD2} .

NOTE 2 The voltage range is for DC voltage only. DC is defined as the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.

NOTE 3 The voltage noise tolerance from DC to 20 MHz exceeding a pk-pk tolerance of 45 mV at the DRAM ball is not included in the TdIVW.

NOTE 4 V_{DDQ}(max) may be extended to 0.67 V as an option in case the operating clock frequency is equal or less than 800 Mhz.

NOTE 5 Pull up, pull down and ZQ calibration tolerance spec is valid only in normal V_{DDQ} tolerance range (0.57 V - 0.65 V).

4.2 Single Ended Output Slew Rate

Figure 3 — Single Ended Output Slew Rate Definition

Table 14 — Output Slew Rate (single-ended) for 0.6 V V_{DDQ}

Parameter	Symbol	Va	Units			
Parameter	Symbol	Min ¹	Max ²	Offics		
Single-ended Output Slew Rate (VOH = $V_{DDQ}^*0.5$)	SRQse [†]	3.0	9	V/ns		
Output slew-rate matching Ratio (Rise to Fall)	-	0.8	1.2	-		
* SR: Slew Rate, O: Query Output (like in DQ, which stands for Data-in, Query-Qutout), se: Single-ended Signals						

NOTE 1 Measured with output reference load.

NOTE 2 The ratio of pull-up to pull-down slew rate is specified for the same temperature and voltage, over the entire temperature and voltage range. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation.

NOTE 3 The output slew rate for falling and rising edges is defined and measured between VOL(AC) = 0.2*VOH(DC) and VOH(AC) = 0.8*VOH(DC).

NOTE 4 Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.

4.3 Differential Output Slew Rate

Figure 4 — Differential Output Slew Rate Definition

Table 15 — Differential Output Slew Rate for 0.6 V VDDQ

Parameter	Symbol	Va	Units			
Parameter	Symbol	Min	Max	Ullits		
Differential Output Slew Rate (VOH = $V_{DDQ}^*0.5$)	SRQdiff [†]	6	18	V/ns		
SR: Slew Rate, Q: Query Output (like in DQ, which stands for Data-in, Query-Output), diff: Differential Signals						

NOTE 1 Measured with output reference load.

NOTE 2 The output slew rate for falling and rising edges is defined and measured between

VOL(AC) = -0.8*VOH(DC) and VOH(AC) = 0.8*VOH(DC).

NOTE 3 Slew rates are measured under average SSO conditions, with 50% of DQ signals per data byte switching.

5 V_{REF} Specifications

5.1 CA Internal V_{REF} Specifications

Table 16 — CA Internal V_{REF} Specifications

Tuble 10 OA Internal VREF Opcomoditions								
Parameter	Symbol	Min	Тур	Max	Unit	Notes		
V _{REF} Max operating point Range0	V _{REF} _max_R0	-	-	44.9%	V_{DDQ}	1,11		
V _{REF} Min operating point Range0	V _{REF} _min_R0	15%	ı	ı	V_{DDQ}	1,11		
V _{REF} Max operating point Range1	V _{REF} _max_R1	-	-	62.9%	V_{DDQ}	1,11		
V _{REF} Min operating point Range1	V _{REF} _min_R1	32.9%	-	-	V_{DDQ}	1,11		
V _{REF} Stepsize	V _{REF} _step	0.50%	0.60%	0.70%	V_{DDQ}	2		
V Set Telerance	\/	-11	0	11	mV	3,4,6		
V _{REF} Set Tolerance	V _{REF} _set_tol	-1.1	0	1.1	mV	3,5,7		
	V _{REF} _time_Short	-	-	100	ns	8		
V Stan Time	V _{REF} _time_Middle	-	-	200	ns	12		
V _{REF} Step Time	V _{REF} _time_Long	-	-	250	ns	9		
	V _{REF} _time_weak		-	1	ms	13,14		
V _{REF} Valid tolerance	V _{REF} _val_tol	-0.10%	0.00%	0.10%	V_{DDQ}	10		

- NOTE 1 V_{REF} DC voltage referenced to V_{DD2}_DC.
- NOTE 2 V_{REF} stepsize increment/decrement range. V_{REF} at DC level.
- NOTE 3 V_{REF}new = V_{REF}old + n*V_{REF}step; n= number of steps; if increment use "+"; if decrement use "-".
- NOTE 4 The minimum value of V_{REF} setting tolerance = V_{REF} _new 11 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 11 mV. For n>4.
- NOTE 5 The minimum value of V_{REF} setting tolerance = V_{REF} _new -1.1 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 1.1 mV. For n \leq 4.
- NOTE 6 Measured by recording the min and max values of the V_{REF} output over the range, drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 7 Measured by recording the min and max values of the V_{REF} output across 4 consecutive steps(n=4), drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 8 Time from MRS command to increment or decrement one step size for V_{REF}.
- NOTE 9 Time from MRS command to increment or decrement V_{REF} min to V_{REF} max or V_{REF} max to V_{REF} min change across the V_{REF} CA Range in V_{REF} voltage.
- NOTE 10 Only applicable for DRAM component level test/characterization purpose. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- NOTE 11 DRAM range 0 or 1 set by MR12 OP[6].
- NOTE 12 Time from MRS command to increment or decrement more than one step size up to a full range of V_{REF} voltage withiin the same $V_{REF}CA$ range.
- NOTE 13 Applies when VRCG high current mode is not enabled, specified by MR13[OP3] = 0.
- NOTE 14 V_{REF} _time_weak covers all V_{REF} (CA) Range and Value change conditions are applied to V_{REF} _time_Short/Middle/Long.

5.2 DQ Internal V_{REF} Specifications

Table 17 — DQ Internal V_{REF} Specifications

Table 17 — De internal VREF Opecinications								
Parameter	Symbol	Min	Тур	Max	Unit	Notes		
V _{REF} Max operating point Range0	V _{REF} _max_R0	-	-	44.9%	V_{DDQ}	1,11		
V _{REF} Min operating point Range0	V _{REF} _min_R0	15%	-	-	V_{DDQ}	1,11		
V _{REF} Max operating point Range1	V _{REF} _max_R1	-	-	62.9%	V_{DDQ}	1,11		
V _{REF} Min operating point Range1	V _{REF} _min_R1	32.9%	-	-	V_{DDQ}	1,11		
V _{REF} Stepsize	V _{REF} _step	0.50%	0.60%	0.70%	V_{DDQ}	2		
V Cot Toloropoo	\/ act tol	-11	0	11	mV	3,4,6		
V _{REF} Set Tolerance	V _{REF} _set_tol	-1.1	0	1.1	mV	3,5,7		
	V _{REF} _time_Short	-	-	100	ns	8		
V Stop Time	V _{REF} _time_Middle	-	-	200	ns	12		
V _{REF} Step Time	V _{REF} _time_Long	-	-	250	ns	9		
V _{REF} _time_weak		-	-	1	ms	13,14		
V _{REF} Valid tolerance	V _{REF} _val_tol	-0.10%	0.00%	0.10%	V_{DDQ}	10		

- NOTE 1 V_{REF} DC voltage referenced to V_{DDQ}_DC.
- NOTE 2 V_{REF} stepsize increment/decrement range. V_{REF} at DC level.
- NOTE 3 V_{REF}new = V_{REF}old + n*V_{REF}step; n= number of steps; if increment use "+"; If decrement use "-".
- NOTE 4 The minimum value of V_{REF} setting tolerance = V_{REF} _new 11 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 11 mV. For n>4.
- NOTE 5 The minimum value of V_{REF} setting tolerance = V_{REF} _new 1.1 mV. The maximum value of V_{REF} setting tolerance = V_{REF} _new + 1.1 mV. For n \leq 4.
- NOTE 6 Measured by recording the min and max values of the V_{REF} output over the range, drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 7 Measured by recording the min and max values of the V_{REF} output across 4 consecutive steps(n=4), drawing a straight line between those points and comparing all other V_{REF} output settings to that line.
- NOTE 8 Time from MRS command to increment or decrement one step size for V_{RFF}.
- NOTE 9 Time from MRS command to increment or decrement V_{REF} min to V_{REF} max or V_{REF} max to V_{REF} min change across the V_{REF} DQ Range in V_{REF} voltage.
- NOTE 10 Only applicable for DRAM component level test/characterization purpose. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- NOTE 11 DRAM range 0 or 1 set by MR14 OP[6].
- NOTE 12 Time from MRS command to increment or decrement more than one step size up to a full range of V_{REF} voltage withiin the same $V_{REF}DQ$ range.
- NOTE 13 Applies when VRCG high current mode is not enabled, specified by MR13[OP3] = 0.
- NOTE 14 V_{REF} _time_weak covers all V_{REF} (DQ) Range and Value change conditions are applied to V_{REF} _time_Short/Middle/Long.

6 Power-up, Initialization and Power-off Procedure

For power-up and reset initialization, in order to prevent DRAM from functioning improperly, default values of the following MR settings are defined as Table 18.

Table 18 — MRS defaults settings

Item	MRS	Default Setting	Description
FSP-OP/WR	MR13 OP[7:6]	00 _B	FSP-OP/WR[0] are enabled
WLS	MR2 OP[6]	0 _B	Write Latency Set 0 is selected
WL	MR2 OP[5:3]	000 _B	WL = 4
RL	MR2 OP[2:0]	000 _B	RL = 6, nRTP = 8
nWR	MR1 OP[6:4]	000 _B	nWR = 6
DBI-WR/RD	MR3 OP[7:6]	00 _B	Write and Read DBI are disabled
CA ODT	MR11 OP[6:4]	000 _B	CA ODT is disabled
DQ ODT	MR11 OP[2:0]	000 _B	DQ ODT is disabled
V _{REF} (CA) Setting	MR12 OP[6]	1 _B	V _{REF} (CA) Range[1] enabled
V _{REF} (CA) Value	MR12 OP[5:0]	011101 _B	Range1: 50.3% of V _{DDQ}
V _{REF} (DQ) Setting	MR14 OP[6]	1 _B	V _{REF} (DQ) Range[1] enabled
V _{REF} (DQ) Value	MR14 OP[5:0]	011101 _B	Range1: 50.3% of V _{DDQ}

7 ODT Mode Register and ODT State Table

ODT termination values are set and enabled via MR11. The CA bus (CK_t, CK_C, CS, CA[5:0]) ODT resistance values are set by MR11 OP[6:4]. The default state for the CA is ODT disabled.

ODT is applied on the CA bus to the CK_t, CK_c, CS and CA[5:0] signals. Generally, only one termination load will be present even if multiple devices are sharing the command signals. In contrast to LPDDR4 where the ODT_CA input is used in combination with mode registers, LPDDR4X uses mode registers exclusively to enable CA termination. Before enabling CA termination via MR11, all ranks should have appropriate MR22 termination settings programmed. In a multi rank system, the terminating rank should be trained first, followed by the nonterminating rank(s).

Table 19 — Command Bus ODT State

ODTE-CA MR11[6:4]	ODTD-CA MR22[5]	ODTF-CK MR22[3]	ODTF-CS MR22[4]	ODT State for CA	ODT State for CK_t/CK_c	ODT State for CS
Disabled ¹	Valid ²	Valid ²	Valid ²	Off	Off	Off
Valid ²	0	0	0	On	On	On
Valid ²	0	0	1	On	On	Off
Valid ²	0	1	0	On	Off	On
Valid ²	0	1	1	On	Off	Off
Valid ²	1	0	0	Off	On	On
Valid ²	1	0	1	Off	On	Off
Valid ²	1	1	0	Off	Off	On
Valid ²	1	1	1	Off	Off	Off

NOTE 1 Default Value.

NOTE2 Valid" means "0 or 1".

8 Core Timing

Table 20 — Core Timing

Parameter	Symbol	Min/ Max	Data Rate				Unit			
Core Pa	rameters	3	533 1066 1600 2133 2667 3200 3733					4266		
Active bank-A to active bank-B	tRRD	Min			Max(1	0ns, 4	nCK)		Max (7.5ns, 4nCK) ²	ns
Four bank ACT window	tFAW	Min				40			302	ns

NOTE 1 Precharge to precharge timing restriction does not apply to Auto-Precharge commands.

NOTE 2 Devices supporting 4266 Mbps specification shall support these timings at lower data rates.

Standard Improvement Form	JEDEC
The purpose of this form is to provide the Technical Cregarding usage of the subject standard. Individuals JEDEC. All comments will be collected and dispersed	or companies are invited to submit comments to
If you can provide input, please complete this form and	return to:
JEDEC Attn: Publications Department 3103 North 10 th Street Suite 240 South Arlington, VA 22201-2107	Fax: 703.907.7583
I recommend changes to the following: Requirement, clause number Test method number Clause	e number
The referenced clause number has proven to be: Unclear Too Rigid In Error Other	
2. Recommendations for correction:	
3. Other suggestions for document improvement:	
Submitted by	
Name:	Phone:
Company:	E-mail:
Address:	
City/State/Zip:	Date:

