DATA ANALTYICS WITH COGNOS

PROJECT: AIR QUALITY ANALYSIS TAMILNADU PHASE 4 PROJECT

TEAM MEMBERS:

- 1. S. BALAKANDAN 820421205012 balakandan50@gmail.com
- 2. R. BHARATH RAJ 820421205015 bharathrajravi2004@gmail.com
- 3. V. ARUN KUMAR 820421205008 arurarun0088@gmail.com
- 4. M. MUKILAN 820421205042 mukilmuruga07@gmail.com
- 5. T. LOGESH 820421205039 logeshselvan6@gmail.com

Table of Contents:

- 1. Introduction
- 2. Problem Statement
- 3. Data Collection
- 4. Data Cleansing
- 5. Air Quality Index
- 6. Program
- 7. Conclusion

1. Introduction:

Recently, much has been discussed about air pollution and its consequences on the environment. These discussion always gain prominence when some of their consequences haunt the world and leave us wondering what will be of future generation. Air quality is a critical concern for public health and environmental well-being. Tamil Nadu have PM 2.5 of 28.2 microgram/m3 levels. This Project emphasis by analysing and pre-processing the air quality dataset which is essential for informed decision-making and effective pollution control measures.

2. Problem Statement:

In this part we will build our project to:

- Perform the air quality analysis and create visualizations.
- Calculate average SO2, NO2, and RSPM/PM10 levels across different monitoring stations, cities, or areas. Identify pollution trends and areas with high pollution levels.
- Create visualizations using data visualization libraries (e.g., Matplotlib, Seaborn)

3. Data Collection:

The dataset containing location-wise daily ambient air quality records for Tamil Nadu in the year 2014 has been obtained from the below datalink.

Dataset Link: https://tn.data.gov.in/resource/location-wise-daily-ambient-air-quality-tamil-nadu-year-2014

Dataset:

	Α	В	C	D	E	F	G	Н	1	J	K
1	Stn Code	Sampling E	State	City/Town	Location o	Agency	Type of Lo	SO2	NO2	RSPM/PM	PM 2.5
2	38	1/2/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	11	17	55	NA
3	38	1/7/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	13	17	45	NA
4	38	21-01-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	12	18	50	NA
5	38	23-01-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	16	46	NA
6	38	28-01-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	13	14	42	NA
7	38	30-01-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	18	43	NA
8	38	2/4/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	12	17	51	NA
9	38	2/6/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	13	16	46	NA
10	38	#######	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	10	19	50	NA
11	38	13-02-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	14	48	NA
12	38	18-02-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	16	32	NA
13	38	20-02-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	14	29	NA
14	38	25-02-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial A	13	17	17	NA
15	38	27-02-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial A	15	16	44	NA
16	38	3/4/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	12	17	25	NA
17	38	3/6/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	13	16	29	NA
18	38	#######	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	11	18	29	NA
19	38	13-03-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	16	41	NA
20	38	18-03-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	17	43	NA
21	38	20-03-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	14	42	NA
22	38	25-03-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	17	54	NA
23	38	27-03-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	19	62	NA
24	38	4/1/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	15	66	NA
25	38	4/3/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	11	16	40	NA
26	38	4/8/2014	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	14	17	56	NA
27	38	########	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial A	15	17	50	NA
28	38	15-04-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	12	14	49	NA
29	38	17-04-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	16	63	NA
30	38	22-04-14	Tamil Nad	Chennai	Kathivakka	Tamilnadu	Industrial /	15	18	42	NA
24	<u> </u>	cpcb-dlv-	ag-tamil-n	adu-2014	(2)	+)					

4. Data Cleansing:

<u>Data cleaning is one of the important parts of machine learning.</u> It plays a significant part in building a model.

Data pre-processing is a crucial step in preparing the dataset for machine learning.

Data Cleansing involves:

- Identifying and removing any missing, duplicate or irrelevant data.
- Handling missing data.
- Removing outliers.
- Scaling the data.

Using Methods Such as:

- dropna()
- drop()
- drop_duplicates()
- > scale()
- get_dummies()

5. Air Quality Index:

Air quality is a measure of how clean or polluted the air is. Monitoring air quality is important because polluted air can be bad for our health—and the health of the environment. Air quality is measured with the Air Quality Index, or AQI. The AQI works like a thermometer that runs from 0 to 500 degrees. However, instead of showing changes in the temperature, the AQI is a way of showing changes in the amount of pollution in the air.

Air Quality Index Levels of Health Concern	Numerical Value	Meaning
Good	0 to 50	Air quality is considered satisfactory, and air pollution poses little or no risk.
Moderate	51 to 100	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.
Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is not likely to be affected.
Unhealthy	151 to 200	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.
Very Unhealthy	201 to 300	Health alert: everyone may experience more serious health effects.
Hazardous	301 to 500	Health warnings of emergency conditions. The entire population is more likely to be affected.

6. Program:

• First, import the required Python libraries. As given below.

```
import pandas as pd
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go

✓ 1.2s
```

• To import the database into the jupyter notebook, you can use the following Python code given below.

```
# In[2]:data =pd.read_csv(r"C:\Users\Administrator\Downloads\airquality.csv")
# In[3]:print(data.head())
```

OP [3]:

	Stn	Code	Sampli	ng Date		Sta	te Ci	ty/Town/Vil	llage/Area	\
0		38	0	1-02-14	Ta	mil Na	du		Chennai	
	1		20	01 07 1		T1	NI d		Chann	_ :
	1	-	38	01-07-1	L4	ramii	Nadu		Chenn	aı
	2	3	38	21-01-1	L4	Tamil	Nadu		Chenn	ai
	3	3	38	23-01-1	L4	Tamil	Nadu		Chenn	ai
	4	3	38	28-01-1	L4	Tamil	Nadu		Chenn	ai

```
Location of Monitoring Station \
  O Kathivakkam, Municipal Kalyana Mandapam, Chennai
  1 Kathivakkam, Municipal Kalyana Mandapam, Chennai
  2 Kathivakkam, Municipal Kalyana Mandapam, Chennai
  3 Kathivakkam, Municipal Kalyana Mandapam, Chennai
  4 Kathivakkam, Municipal Kalyana Mandapam, Chennai
                                     Agency Type of Location
                                                              S02
                                                                    NO2
   Tamilnadu State Pollution Control Board Industrial Area 11.0 17.0
    Tamilnadu State Pollution Control Board Industrial Area 13.0 17.0
    Tamilnadu State Pollution Control Board Industrial Area 12.0 18.0
  3 Tamilnadu State Pollution Control Board Industrial Area 15.0
                                                                   16.0
    Tamilnadu State Pollution Control Board Industrial Area 13.0 14.0
    RSPM/PM10 PM 2.5
  0
         55.0
                  NaN
         45.0
                  NaN
  1
  2
         50.0
                  NaN
  3
         46.0
                  NaN
         42.0
                  NaN
```

- Data Cleansing and Transformation are done by following Python Code.
 - ➤ <u>drop()</u> To drop an entire Column.
 - ➤ <u>dropna()</u> To drop a the NaN Values.
 - ➤ <u>drop_duplicates()</u> To drop the Duplicates in the Dataset.
 - ➤ <u>scale()</u> In cases where all the columns have a significant difference in their scales, are needed to be modified in such a way that all those values fall into the same scale.
 - ≥ get_dummies() indicate whether each row in the original dataset belongs to a particular category or not.

```
# In[3]: df=data.drop(['PM 2.5'],axis=1)
# In[4]: df.head()
# OP[4]:
```

	Stn Cod e	Sampli ng Date	Stat e	City/Town/Village /Area	Location of Monitori ng Station	Agency	Type of Locati on	SO 2	NO 2	RSPM/P M10
0	38	01-02- 14	Ta mil Nad u	Chennai	Kathivakk am, Municipal Kalyana Mandapa m, Chennai	Tamilna du State Pollutio n Control Board	Industr ial Area	11.	17. 0	55.0
1	38	01-07- 14	Ta mil Nad u	Chennai	Kathivakk am, Municipal Kalyana Mandapa m, Chennai	Tamilna du State Pollutio n Control Board	Industr ial Area	13.	17. 0	45.0
2	38	21-01- 14	Ta mil Nad u	Chennai	Kathivakk am, Municipal Kalyana Mandapa m, Chennai	Tamilna du State Pollutio n Control Board	Industr ial Area	12.	18.	50.0
3	38	23-01- 14	Ta mil Nad u	Chennai	Kathivakk am, Municipal Kalyana Mandapa m, Chennai	Tamilna du State Pollutio n Control Board	Industr ial Area	15. 0	16. 0	46.0
4	38	28-01- 14	Ta mil Nad u	Chennai	Kathivakk am, Municipal Kalyana Mandapa m, Chennai	Tamilna du State Pollutio n Control Board	Industr ial Area	13.	14.	42.0

Stn Co de	Sampl ing Date	Sta te	City/Town/Villa ge/Area	Locatio n of Monito ring Station	Agency	Type of Locati on	SO2	N 02	RSPM/P M10	
0	38	01- 02- 14	Tamil Nadu	Chennai	Kathivak kam, Municipa I Kalyana Mandap am, Chennai	Tamiln adu State Polluti on Contro I Board	Indust rial Area	11.	17.0	55 .0
1	38	01- 07- 14	Tamil Nadu	Chennai	Kathivak kam, Municipa I Kalyana Mandap am, Chennai	Tamiln adu State Polluti on Contro I Board	Indust rial Area	13.	17.0	45 .0
2	38	21- 01- 14	Tamil Nadu	Chennai	Kathivak kam, Municipa I Kalyana Mandap am, Chennai	Tamiln adu State Polluti on Contro I Board	Indust rial Area	12.	18.0	50 .0
3	38	23- 01- 14	Tamil Nadu	Chennai	Kathivak kam, Municipa I Kalyana Mandap am, Chennai	Tamiln adu State Polluti on Contro I Board	Indust rial Area	15. 0	16.0	46 .0
4	38	28- 01- 14	Tamil Nadu	Chennai	Kathivak kam, Municipa I Kalyana Mandap am, Chennai	Tamiln adu State Polluti on Contro I Board	Indust rial Area	13.	14.0	42 .0

• Constructing a Time series plot for each Air Pollution using the data visualization library-pyplot:

Time Series Analysis of Air Pollutants in Tamil Nadu:

Time Series Analysis of Air Pollutants in Tamil Nadu

Calculating Air Quality Index using RSPM/PM10 and Categorizing Air Quality
 Index:

```
# Define AQI breakpoints and corresponding AQI values
aqi_breakpoints = [
    (0, 12.0, 50), (12.1, 35.4, 100), (35.5, 55.4, 150),
    (55.5, 150.4, 200), (150.5, 250.4, 300), (250.5, 350.4, 400),
    (350.5, 500.4, 500)
def calculate_aqi(pollutant_name, concentration):
    for low, high, aqi in aqi_breakpoints:
        if low <= concentration <= high:</pre>
            return aqi
    return None
def calculate_overall_aqi(row):
    aqi_values = []
    pollutants = ['NO2', 'SO2', 'RSPM/PM10']
    for pollutant in pollutants:
        aqi = calculate_aqi(pollutant, row[pollutant])
        if agi is not None:
            aqi_values.append(aqi)
    return max(aqi_values)
# Calculate AQI for each row
data['AQI'] = data.apply(calculate_overall_aqi, axis=1)
    # Define AQI categories
    aqi_categories = [(0, 50, 'Good'), (51, 100, 'Moderate'), (101,
150, 'Unhealthy forSensitive Groups'),
    (151, 200, 'Unhealthy'), (201, 300, 'Very Unhealthy'), (301, 500,
'Hazardous')
def categorize_aqi(aqi_value):
    for low, high, category in aqi_categories:
        if low <= aqi_value <= high:</pre>
            return category
    return None
# Categorize AQI
data['AQI Category'] = data['AQI'].apply(categorize_aqi)
print(data.head())
```

AQI Categories:

```
State City/Town/Village/Area
   Stn Code Sampling Date
                01-02-14 Tamil Nadu
                                                   Chennai
1
        38
                01-07-14 Tamil Nadu
                                                   Chennai
                21-01-14 Tamil Nadu
2
        38
                                                   Chennai
        38
                23-01-14 Tamil Nadu
                                                   Chennai
4
        38
                28-01-14 Tamil Nadu
                                                   Chennai
                    Location of Monitoring Station \
0 Kathivakkam, Municipal Kalyana Mandapam, Chennai
1 Kathivakkam, Municipal Kalyana Mandapam, Chennai
2 Kathivakkam, Municipal Kalyana Mandapam, Chennai
3 Kathivakkam, Municipal Kalyana Mandapam, Chennai
4 Kathivakkam, Municipal Kalyana Mandapam, Chennai
                                   Agency Type of Location
                                                            502
                                                                  NO2
0 Tamilnadu State Pollution Control Board Industrial Area 11.0 17.0
1 Tamilnadu State Pollution Control Board Industrial Area 13.0 17.0
2 Tamilnadu State Pollution Control Board Industrial Area 12.0 18.0
3 Tamilnadu State Pollution Control Board Industrial Area 15.0 16.0
4 Tamilnadu State Pollution Control Board Industrial Area 13.0 14.0
   RSPM/PM10 AQI
                                    AQI Category
       55.0 150 Unhealthy for Sensitive Groups
0
1
       45.0 150 Unhealthy for Sensitive Groups
       50.0 150 Unhealthy for Sensitive Groups
2
3
       46.0 150 Unhealthy for Sensitive Groups
       42.0 150 Unhealthy for Sensitive Groups
```

• Identify pollution trends and areas with high pollution levels by <u>highlight function</u>:

```
def highlight_unhealthy(val):
    color = 'red' if val == 'Unhealthy' else ''
    return f'background-color: {color}'

# Apply the highlight function to the 'AQI Category' column
styled_df1= newd.style.apply({'AQI Category': highlight_unhealthy}, subset=pd.IndexSlice[newd[newd['AQI Category'] == 'Unhealthy'].index, 'AQI Category'])
# Display the styled DataFrame
styled_df1
styled_df1
```

Areas with High Pollution Levels:

Unhealthy for Sensitive Groups	150	54.000000	17.000000	14.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	25-03-14	38	20
Unhealthy	200	62.000000	19.000000	15.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	27-03-14		21
Unhealthy	200	66.000000	15.000000	14.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	04-01-14	38	22
Unhealthy for Sensitive Groups	150	40.000000	16.000000	11.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	04-03-14		23
Unhealthy	200	56.000000	17.000000	14.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	04-08-14	38	24
Unhealthy for Sensitive Groups		50.000000	17.000000	15.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	04-10-14		25
Unhealthy for Sensitive Groups	150	49.000000	14.000000	12.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	15-04-14	38	26
Unhealthy	200	63.000000	16.000000	15.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	17-04-14		27
Unhealthy for Sensitive Groups	150	42.000000	18.000000	15.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	22-04-14	38	28
Unhealthy for Sensitive Groups		44.000000	18.000000	12.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	29-04-14		29
Unhealthy for Sensitive Groups	150	43.000000	13.000000	13.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	05-06-14	38	30
Unhealthy for Sensitive Groups		48.000000	14.000000	14.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	05-08-14		31
Unhealthy	200	63.000000	13.000000	14.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	13-05-14	38	32
Unhealthy	200	119.000000	15.000000	12.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	15-05-14		33
Unhealthy	200	61.000000	18.000000	13.000000	Industrial Area	Tamilnadu State Pollution Control Board	Kathivakkam, Municipal Kalyana Mandapam, Chennai	Chennai	Tamil Nadu	20-05-14	38	34

• Area plot for the Dataset

9.Con	clusion:
The	proposed approach aims to enhance the accuracy of predictive models for ambient air
qual	lity in Tamil Nadu through the incorporation of machine learning algorithms. The success
of th	nis project will lead to better air quality predictions, enabling more effective pollution