1 Typing Rules

 $\Theta; \Delta; \Gamma \vdash e : t$ Typing rules for expressions

$$\begin{array}{c} \overline{\Theta;\Delta;\cdot,x:t\vdash x:t} & \mathrm{TY_VAR_LIN} \\ \\ \frac{x:t\in\Delta}{\Theta;\Delta;\vdash x:t} & \mathrm{TY_VAR} \\ \\ \frac{\Theta;\Delta;\Gamma\vdash e:t}{\Theta;\Delta;\Gamma',x:t\vdash e':t'} & \mathrm{TY_LET} \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,x=e\,\mathrm{in}\,e':t'} & \mathrm{TY_LET} \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,x=e\,\mathrm{in}\,e':t'} & \mathrm{TY_UNIT_INTRO} \\ \\ \Theta;\Delta;\Gamma\vdash e:\mathrm{unit} & \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t}} & \mathrm{TY_UNIT_ELIM} \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t}} & \mathrm{TY_BOOL_TRUE} \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t'} & \mathrm{TY_BOOL_FALSE} \\ \hline \\ \Theta;\Delta;\Gamma'\vdash e:\mathrm{ltool} & \\ \overline{\Theta;\Delta;\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \Theta;\Delta;\Gamma\vdash e:\mathrm{lt} & \\ \hline \\ \Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,\mathrm{Many}\,v:\mathrm{lt} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,\mathrm{Many}\,x=e\,\mathrm{in}\,e':t' & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{fun}\,x:t'\to e:t'\to t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{fun}\,x:t$$

$$\begin{split} \frac{\Theta, fc; \Delta; \Gamma \vdash e : t}{\Theta; \Delta; \Gamma \vdash \mathbf{fun} \, fc \to e : \forall fc.t} & \text{Ty_Gen} \\ \frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta; \Delta; \Gamma \vdash e : \forall fc.t} & \frac{\Theta; \Delta; \Gamma \vdash e : \forall fc.t}{\Theta; \Delta; \Gamma \vdash e[f] : t[f/fc]} & \text{Ty_Spc} \\ \frac{\Theta; \Delta, g : t \multimap t'; \cdot, x : t \vdash e : t'}{\Theta; \Delta; \cdot \vdash \mathbf{fix} \, (g, x : t, e : t') : !(t \multimap t')} & \text{Ty_Fix} \end{split}$$

2 Operational Semantics

operational semantics

 $\langle \sigma, e \rangle \to StepsTo$

3 Interpretation

$$\begin{split} \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, r) \mid 2^{-63} \leq n \leq 2^{03} - 1\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, r) \mid f \text{ a IEEE Float64} \} \\ \mathcal{V}_{k}[\mathbf{f} \mathbf{mat}] &= \{(\{t \mapsto_{2^{-f}} -\}, t\}\} \\ \mathcal{V}_{k}[!(t' \multimap t'')] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[t' \multimap t'']\} \\ & \cup \{(\emptyset, \mathbf{fix}(g, x: t, e: t')) \mid \forall j \leq k, (\sigma', v') \in \mathcal{V}_{j}[t']\} \\ \mathcal{V}_{k}[!t] &= \{(\emptyset, \mathbf{Many} v) \mid \neg (\exists t', t''. t = t' \multimap t'') \land (\emptyset, v) \in \mathcal{V}_{k}[t]\} \\ \mathcal{V}_{k}[!t] &= \{(\sigma, \mathbf{fun} fc \to v) \mid \forall f. (\sigma, v[fc/f]) \in \mathcal{V}_{k}[t[fc/f]]\} \\ \mathcal{V}_{k}[t' \otimes t''] &= \{(\sigma, (v', v'')) \mid \exists \sigma', \sigma''. (\sigma', v') \in \mathcal{V}_{k}[t] \land (\sigma'', v'') \in \mathcal{V}_{k}[t''] \land \sigma = \sigma' \star \sigma''\} \\ \mathcal{V}_{k}[t \multimap t'] &= \{(\sigma, \mathbf{fun} x: t \to e) \mid \forall j \leq k, (\sigma', v') \in \mathcal{V}_{j}[t']. \sigma \star \sigma' \text{ defined} \Rightarrow (\sigma \star \sigma', (\mathbf{fun} x: t \to e) v') \in \mathcal{C}_{j}[t']\} \\ \mathcal{C}_{k}[t] &= \{(\sigma_{s}, e) \mid \forall j < k, \sigma_{r}. \sigma_{s} \star \sigma_{r} \text{ defined} \Rightarrow \langle \sigma_{s} \star \sigma_{r}. e \rangle \to^{j} \text{ err } \vee \exists \sigma_{f}, e'. (\sigma_{s} \star \sigma_{r}. e) \to^{j} \langle \sigma_{f} \star \sigma_{r}. e' \rangle \land (e' \text{ is a value} \Rightarrow \langle \sigma_{f} \star \sigma_{r}. e' \rangle \in \mathcal{V}_{k - j}[t])\} \\ \mathcal{I}_{k}[\Box \theta = \{[]\} \\ \mathcal{I}_{k}[\Box, x: t] \theta &= \{\delta[x \mapsto v_{x}] \mid \delta \in \mathcal{I}_{k}[\Delta] \theta \land (\emptyset, v_{x}) \in \mathcal{V}_{k}[\Gamma] \theta \land (\sigma_{x}. v_{x}) \in \mathcal{V}_{k}[\theta(t)]\} \\ \mathcal{L}_{k}[\Gamma, x: t] \theta &= \{(\sigma, [])\} \\ \mathcal{L}_{k}[\Gamma, x: t] \theta &= \{(\sigma, [])\} \\ \mathcal{O}_{r, \gamma}(\delta(e))) &\in \mathcal{O}_{k}[\theta(t)] \end{bmatrix}$$

4 Soundness Proof

PROOF SKETCH: Use the contrapositive both ways. This turns the negated existential into witnesses we can work with.

Let: $\phi(X) =$ $Note: \forall X. \ \phi(X) \subseteq X, \ \not\subset \equiv \not\subseteq \lor = and \not\subseteq \Rightarrow \ne a, b, c$ be elements of the Martelli's semiring $L^+ = a \cup \phi$ $L = \phi(L^+) = a \otimes (b \oplus c)$ $M^+ =$ $M = \phi(M^+) = (a \otimes b) \oplus (a \otimes c)$

Prove: Distributivity holds, i.e. L = M.

Suffices: Since \oplus and \otimes are commutative (definitions of \oplus and \otimes are symmetric in their arguments because $\exists x. \exists y. P(x,y) \Leftrightarrow \exists y. \exists x. P(x,y)$ and \cup is commutative) it suffices to show only left-distributivity.

PROOF: We show $L \subseteq M$ and $M \subseteq L$.

 $\langle 1 \rangle 1$. Case: $L \subseteq M$.

We show $m \notin M \Rightarrow m \notin L$ for arbitrary m.

PROOF: We do this by cases on $m \in M^+$.

SUFFICES: Because $L \subseteq L^+$, to show $m \notin L$ it suffices to show either $m \notin L^+$ or $\exists y \in L^+$. $y \subset m$.

 $\langle 2 \rangle 1$. Case: $m \in M^+$.

This means that $\exists x \in a \otimes b, \ y \in a \otimes c. \ x \cup y = m$ and because $m \notin M$, we have $\exists x' \in a \otimes b, \ y \in a \otimes c. \ x' \cup y' = m' \subset m = x \cup y$. Assume, without loss of generality, they are the smallest such x' and y'. Because $\phi(X) \subseteq X$ for any X, we proceed by cases: either $x' \in a$ or $y' \in a$ or both $x' \in b$ and $y' \in c$.

- $\langle 2 \rangle 2$. CASE: $m \notin M^+$. This means $\forall x \in \phi(a \cup b), y \in \phi(a \cup c). m \neq x \cup y$.
- $\langle 2 \rangle 3$. Thus, if $m \notin M$, then $m \notin L$. Q.E.D.
- $\langle 1 \rangle 2$. Case: $M \subseteq L$.

We show $l \notin L \Rightarrow l \notin M$ for arbitrary l.

SUFFICES: Because $M \subseteq M^+$, to show $l \notin M$ it suffices to show either $l \notin M^+$ or $\exists y \in M^+$. $y \subset l$.

 $\langle 2 \rangle 1$. Case: $l \notin L^+$.

This means $l \notin a$ and $l \notin b \oplus c = \phi$.

We conclude from the latter, that $\forall x \in b, y \in c. \ x \cup y \neq l.$

We reason by cases on why $l \notin a$, to show that $\exists y \in M^+$. $y \subset l$ or $l \notin M^+$.

 $\langle 2 \rangle 2$. Case: $l \in L^+$.

Under the assumption $l \notin L$, we need only consider two cases: the rest produce the contradiction $l \in L$.

 $\langle 1 \rangle 3$. Thus, L = M Q.E.D.