Programación básica con Python

Taller para el análisis y visualización de datos básico con Python

~ Estructura

- 1. Presentación personal
- 2. ¿Qué lograremos hoy?
- **3.** Conceptos iniciales
- **4.** Introducción a Python
- 5. Análisis de datos con Pandas y visualización con Altair
- 6. ¡Manos al código!

Presentación personal

∼ Francisca B. Medina Concha

 Team Leader de equipo DataViz en LATAM Airlines

¿Qué lograremos hoy?

Distribución de Popularidad en Spotify según el Contenido Explícito

frani.be

Top 10 Artistas por reproducciones en spotify y cantidad de canciones, 2024 (Gráfico de Dona)

Conceptos iniciales

~¿Qué es la programación?

Indicar al dispositivo computacional lo que tiene que hacer, mediante algoritmos

Conjunto ordenado y finito de **operaciones** que permite hallar la solución de un problema.

Se describe en tres partes básicas: entrada (escritura), proceso (ejecución) y salida (resultado).

~ Lenguaje de programación

Es una herramienta traductora de un lenguaje fuente basado en algoritmos, a un lenguaje máquina comprensible por el computador, para la realización de un determinado proceso.

Y muchos, MUCHOS más...

~ Librería

Una librería es una colección preescrita de código que los desarrolladores pueden utilizar para realizar tareas comunes o repetitivas. En lugar de escribir código desde cero para realizar una función específica, un desarrollador puede usar una función predefinida desde una librería.

~ Análisis de datos

El análisis de datos se refiere al proceso de inspeccionar, limpiar, transformar y modelar datos con el objetivo de descubrir información útil, llegar a conclusiones y apoyar la toma de decisiones. Utiliza técnicas cuantitativas y cualitativas para entender patrones, relaciones y estructuras dentro de los datos.

En la vida cotidiana usamos la palabra "datos" de manera general como sinónimo de "información", pero debemos comenzar a entenderlo como un concepto más específico para este taller.

~¿Qué son los datos?

- → Se refiere a hechos, eventos, transacciones, entre otros, que han sido registrados.
- → Es la unidad más pequeña de información *fáctica.
- → Puede ser empleado para el cálculo, el razonamiento, la discusión, la inferencia, la deducción, y su presentación o visualización.

Fáctico: Alude a aquello vinculado a los hechos. El término suele usarse para calificar a lo que depende de los hechos o se fundamenta en ellos

~Diferencia entre datos e información

Entrada sin procesar de la cual se produce la información.

Datos Información

Datos procesados y comunicados para ser interpretados por el receptor.

Un dato por sí mismo no constituye información, es el procesamiento de los datos lo que nos proporciona información.

~Diferencia entre datos e información

~ Herramientas para el análisis de datos

- → Excel: Una herramienta básica pero poderosa para la manipulación y visualización de datos.
- → Python (especialmente con bibliotecas como Pandas): Lenguaje de programación versátil para análisis de datos y aprendizaje automático.
- → R: Lenguaje de programación diseñado específicamente para análisis estadístico.
- → **Tableau:** Herramienta de visualización de datos para transformar datos crudos en gráficos interactivos.
- → SQL: Lenguaje de consulta estructurado para gestionar y recuperar datos de bases de datos relacionales.
- → Power BI: Herramienta de Microsoft para visualización y análisis de datos.

~ Visualización de datos

La visualización de datos es el acto de representar información en forma gráfica. Permite a los usuarios ver y comprender tendencias, patrones y correlaciones que podrían no ser evidentes en los datos brutos. La visualización eficiente de datos puede ayudar a simplificar complejas relaciones de datos y facilitar su interpretación.

~ Importancia

- → Comprensión rápida
- → Descubrimiento de patrones
- → Facilita la toma de decisiones
- → Comunicación efectiva

∼ Diagrama InfoVis

- → Simple
- → Con uso adecuado de colores
- → Consistente

~ Cuarteto Anscombe

	1		П		III		IV	
	x	у	x	у	×	у	x	у
	10,0	8,04	10,00	9,14	10,00	7,46	8,00	6,58
	8,0	6,95	8,00	8,14	8,00	6,77	8,00	5,76
	13,0	7,58	13,00	8,74	13,00	12,74	8,00	7,71
	9,0	8,81	9,00	8,77	9,00	7,11	8,00	8,84
	11,0	8,33	11,00	9,26	11,00	7,81	8,00	8,47
	14,0	9,96	14,00	8,1	14,00	8,84	8,00	7,04
	6,0	7,24	6,00	6,13	6,00	6,08	8,00	5,25
	4,0	4,26	4,00	3,1	4,00	5,39	19,00	12,50
	12,0	10,84	12,00	9,13	12,00	8,15	8,00	5,56
	7,0	4,82	7,00	7,26	7,00	6,42	8,00	7,91
	5,0	5,68	5,00	4,74	5,00	5,73	8,00	6,89
media	9,0	7,50	9,0	7,50	9,0	7,50	9,0	7,50
std	3,3	2,03	3,3	2,03	3,3	2,03	3,3	2,03
arianza	11,0	4,13	11,0	4,13	11,0	4,12	11,0	4,12

https://es.wikipedia.org/wiki/Cuarteto_de_Anscombe

~ Cuarteto Anscombe

	ī		П		Ш		IV	
	×	у	x	у	x	у	x	у
media	9,0	7,50	9,0	7,50	9,0	7,50	9,0	7,50
std	3,3	2,03	3,3	2,03	3,3	2,03	3,3	2,03
varianza	11,0	4,13	11,0	4,13	11,0	4,12	11,0	4,12

https://es.wikipedia.org/wiki/Cuarteto_de_Anscombe

~ Cuarteto Anscombe

https://es.wikipedia.org/wiki/Cuarteto_de_Anscombe

~Tabla de datos original

	Α	В
1	nombreColor	valorHexadec
2	rojo	#f00
3	verde	#0f0
4	azul	#00f
5	cyan	#Off
6	magenta	#fOf
7	amarillo	#ff0
8	negro	#000

~JSON

```
json
  "arrayColores": [
      "nombreColor": "rojo",
      "valorHexadec": "#f00"
      "nombreColor": "verde",
"valorHexadec": "#0f0"
      "nombreColor": "azul",
      "valorHexadec": "#00f"
      "nombreColor": "cyan",
      "valorHexadec": "#0ff"
      "nombreColor": "magenta",
      "valorHexadec": "#f0f"
      "nombreColor": "amarillo",
      "valorHexadec": "#ff0"
      "nombreColor": "negro",
      "valorHexadec": "#000"
```



```
nombreColor, valorHexadec
rojo, #f00
verde, #0f0
azul, #00f
cyan, #0ff
magenta, #f0f
amarillo, #ff0
negro, #000
```



```
xm1
<?xml version="1.0" encoding="UTF-8" ?>
<arrayColores>
  <nombreColor>rojo</nombreColor>
  <valorHexadec>#f00</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>verde</nombreColor>
  <valorHexadec>#0f0</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>azul</nombreColor>
  <valorHexadec>#00f</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>cyan</nombreColor>
  <valorHexadec>#0ff</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>magenta</nombreColor>
  <valorHexadec>#f0f</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>amarillo</nombreColor>
  <valorHexadec>#ff0</valorHexadec>
</arrayColores>
<arrayColores>
  <nombreColor>negro</nombreColor>
  <valorHexadec>#000</valorHexadec>
```

</arrayColores>

Introducción a Python

Inicialmente diseñado como una forma de escribir scripts que "automatizan las cosas aburridas"

Líder en ciencia de datos, machine learning y gestión de infraestructura

~ Características de Python

- → Lenguaje interpretado
- → Lenguaje de fácil lectura y escritura
- → Amplio repertorio de librerías y frameworks

∼ Sintaxis de Python

Python es conocido por su **legibilidad** y **simplicidad**, lo que hace que aprender y escribir código en este lenguaje sea más sencillo en comparación con muchos otros.

Python utiliza la **indentación** (espacios o tabulaciones) para definir bloques de código. La cantidad de espacio debe ser consistente dentro del mismo bloque.

~ Elementos básicos

- Comentarios
- Print
- Variables
- Tipos de datos
- Operaciones matemáticas
- Condicionales

- Bucles
- Funciones
- Listas, tuplas, diccionarios
- Importación de módulos

~ Comentarios

Los comentarios de una sola línea se inician con #.
Para comentarios
multilínea, se pueden usar tres comillas dobles o simples.

Esto es un comentario 77 77 77 Esto es un comentario multilínea 77 77 77

~ Print

Un print es una función que nos permite mostrar un mensaje en la pantalla. En este caso, el mensaje es 'Hola mundo'.

print('Hola mundo')

~ Variables

Una variable es un espacio en la memoria de la computadora donde podemos guardar un valor. En este caso, el valor es 'Hola mundo', y el nombre de la variable es mensaje.

mensaje = 'Hola mundo'
print(mensaje)

∼ Tipos de datos

- int: números enteros
- → float: números decimales
- → str: texto
- → bool: booleano (True o False)
- → list: lista
- → tuple: tupla
- → dict: diccionario

~ Operaciones matemáticas

Los operadores son símbolos que nos permiten hacer operaciones matemáticas.

```
print(1 + 2)
print(1 - 2)
print(1 * 2)
print(1 / 2)
print(1 // 2)
print(1 % 2)
print(1 ** 2)
```

~ Condicionales

Los condicionales son instrucciones que nos permiten tomar decisiones.

```
a = 1
b = 2
if a == b:
  print('a es igual que b')
else:
  print('a es diferente de
b')
```

~ Condicionales

Los condicionales son instrucciones que nos permiten tomar decisiones.

```
a = 1
b = 2
if a > b:
  print('a es mayor que b')
elif a < b:
  print('a es menor que b')
else:
  print('a es igual a b')
```

~ Bucles

Es una estructura de control que permite repetir un conjunto específico de instrucciones varias veces, según se cumpla una condición o hasta que una condición determinada se cumpla.

~ Bucle for

Este bucle se utiliza para iterar sobre una secuencia o para ejecutar un bloque de código un número determinado de veces.

```
for i in range(5):
 print(i)
```


Permite ejecutar un conjunto de instrucciones mientras una condición sea verdadera.

```
contador = 0
while contador < 5:
  print(contador)
  contador += 1
```

~ Funciones

Una función es un bloque de código organizado y reutilizable que se utiliza para realizar una tarea determinada.

- → Permiten la reutilización de código
- → Facilitan la modularidad
- → Hacen que el código sea más legible y mantenible

~ Funciones

Una función se define utilizando la palabra clave def. Se invoca la función por su nombre seguido de paréntesis, y pasando los argumentos necesarios.

```
def suma(a, b):
  return a + b
total = suma(5, 3)
```

~Listas, tuplas, diccionarios


```
lista = [1, 2, 3, 4]
tupla = (1, 2, 3, 4)
diccionario = {
  "clave1": "valor1",
  "clave2": "valor2"
```

- Listas: Colecciones ordenadas y mutables.
- Tuplas: Colecciones ordenadas e inmutables.
- Diccionarios:
 Colecciones no
 ordenadas, mutables e
 indexadas. Compuestos
 por pares clave-valor.

~ Importación de módulos

Un módulo es un archivo que contiene definiciones, como funciones, clases y variables, así como código ejecutable. La importación de módulos permite reutilizar código escrito por otros o por ti mismo en diferentes programas y scripts.

La capacidad de importar módulos es esencial para mantener el código organizado, modular y reutilizable.


```
import math
from datetime import date
```


Análisis de datos con Pandas y visualización con Altair

~Librería Pandas

Pandas es una librería que proporciona estructuras de datos y herramientas de análisis de datos de alto rendimiento y fáciles de usar.

pandas.pydata.org/

- Lectura y escritura de datos en múltiples formatos (CSV, Excel, SQL, etc)
- Filtrado, selección y manipulación de datos.
- Gestión de datos faltantes.
- Fusionar y unir datos.
- Transformación de datos.
- Funcionalidades de análisis.

~Librería Altair

Altair es una librería de visualización de datos. Está diseñada para crear visualizaciones atractivas y es útil para visualizar datos estadísticos.

altair-viz.github.io/

- Está integrado con Pandas, lo que facilita la visualización directa de DataFrames.
- Incluye una amplia variedad de estilos y paletas de colores.
- De código simple y legible.
- Las visualizaciones se pueden exportar a HTML.

~ Ejemplo gráfico de barras


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark bar() .encode(
    x='Nombre:0',
   y='Calificación:Q'
).properties(width=400)
```

~ Ejemplo gráfico de puntos


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark circle().encode(
    x='Nombre:0',
    y='Calificación:Q'
).properties(width=400)
```

~ Ejemplo gráfico de línea


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark line(point=True).encode
   x='Nombre:0',
   y='Calificación:Q'
).properties(width=400)
```

~ Ejemplo gráfico de área


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark area() .encode(
    x='Nombre:0',
    y='Calificación:Q'
).properties(width=400)
```

~ Ejemplo gráfico de dona


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark arc(innerRadius=50,
outerRadius=100).encode(
    theta='Calificación:Q',
    color='Nombre:N'
).properties(width=400)
```

~ Ejemplo histograma


```
import pandas as pd
import altair as alt
data = {
    'Nombre': ['Ana', 'Juan', 'Luis',
'Sofía', 'Carlos'],
    'Calificación': [85, 90, 78, 92, 88]
df = pd.DataFrame(data)
alt.Chart(df).mark bar().encode(
    x=alt.X("Calificación:Q", bin=True),
   y='count()'
```


¡Manos al código!

https://www.kaggle.com/datasets/nelgiriyewithana/most-streamed-spotify-songs-2024

~ Pasos iniciales

- 1. Abrir Google Colab
- Click "New Notebook"
- Activar Drive
- 4. Actualizar
- 5. Subir CSV a la carpeta Colab Notebooks
- 6. ¡Escribir código!

github.com/frani-be/pycon-taller
 _de_visualizacion_de_datos