SECOND FOLLOWAGE

Daniel Felipe Gómez Martínez César Andrés García Posada Juan Sebastian Pérez Salazar Yhoan Alejandro Guzmán García

November 11 2020

Subject: Numerical Analysis

Professor in charge: Edwar Samir Posada Murillo

Semester: 6th

System name (project): SADA ANALYTICS

repository where we will work:

SADA_ANALYTICS

1 Methods test

for methods testing the following data is used

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 0 & 3 \\ 1 & 15.5 & 3 & 8 \\ 0 & -1.3 & -4 & 1.1 \\ 14 & 5 & -2 & 30 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \mathbf{Tol} = 1e - 7, \mathbf{Nmax} = 100$$

• LU with simple Gaussian

1. Matrix : A

2. $Constant\ vector: b$

1. Step 0:

$$\begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 1.000000 & 15.500000 & 3.000000 & 8.000000 \\ 0.000000 & -1.300000 & -4.000000 & 1.100000 \\ 14.000000 & 5.000000 & -2.000000 & 30.000000 \end{bmatrix}$$

2. Step 1:

4.000000	-1.000000	0.000000	3.000000
0.000000	15.750000	3.000000	7.250000
0.000000	-1.300000	-4.000000	1.100000
0.000000	8.500000	-2.000000	19.500000

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 3.500000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

3. Step 2:

4.000000	-1.000000	0.000000	3.000000
0.000000	15.750000	3.000000	7.250000
0.000000	0.000000	-3.752381	1.698413
0.000000	0.000000	-3.619048	15.587302

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.082540 & 1.000000 & 0.000000 \\ 3.500000 & 0.539683 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & -3.752381 & 1.698413 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

4. Step 3:

[4.00000	00 -1.000000	0.000000	3.000000
0.00000	00 15.750000	3.000000	7.250000
0.00000	0.000000	-3.752381	1.698413
0.00000	0.000000	0.000000	13.949239

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.082540 & 1.000000 & 0.000000 \\ 3.500000 & 0.539683 & 0.964467 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & -3.752381 & 1.698413 \\ 0.000000 & 0.000000 & 0.000000 & 13.949239 \end{bmatrix}$$

5. Solution:

$$\mathbf{x} = \begin{bmatrix} 0.525109 \\ 0.255459 \\ -0.410480 \\ -0.281659 \end{bmatrix}$$

• LU with partial pivoting

-Matrix: A

 $-\ Constant\ vector: b$

1. Step 0:

$$\mathbf{A} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 1.000000 & 15.500000 & 3.000000 & 8.000000 \\ 0.000000 & -1.300000 & -4.000000 & 1.100000 \\ 14.000000 & 5.000000 & -2.000000 & 30.000000 \end{bmatrix}$$

2. Step 1:

$$\mathbf{A} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.0000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & -1.300000 & -4.000000 & 1.100000 \\ 0.000000 & -2.428571 & 0.571429 & -5.571429 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.0000000 \\ 0.071429 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 0.285714 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.0000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.000000 & 0.000000 & 0.000000 & 1.0000000 \\ 0.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 1.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

3. Step 2:

$$\mathbf{A} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & 0.000000 & -3.730189 & 1.602830 \\ 0.000000 & 0.000000 & 1.075472 & -4.632075 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.071429 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.085849 & 1.000000 & 0.000000 \\ 0.285714 & -0.160377 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & 0.000000 & -3.730189 & 1.602830 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.000000 & 0.000000 & 0.000000 & 1.000000 \\ 0.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 1.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

4. Step 3:

$$\mathbf{A} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.0000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & 0.000000 & -3.730189 & 1.602830 \\ 0.000000 & 0.000000 & 0.000000 & -4.169954 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.071429 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.085849 & 1.000000 & 0.000000 \\ 0.285714 & -0.160377 & -0.288316 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 14.000000 & 5.000000 & -2.000000 & 30.000000 \\ 0.000000 & 15.142857 & 3.142857 & 5.857143 \\ 0.000000 & 0.000000 & -3.730189 & 1.602830 \\ 0.000000 & 0.000000 & 0.000000 & -4.169954 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 0.000000 & 0.000000 & 0.000000 & 1.0000000 \\ 0.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 1.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$$

5. Solution:

$$\mathbf{x} = \begin{bmatrix} 0.525109 \\ 0.255459 \\ -0.410480 \\ -0.281659 \end{bmatrix}$$

• Doolitle Method

-Matrix: A

 $-\ Constant\ vector: b$

1. Step 0:

$$\mathbf{L} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 1.000000 & 15.500000 & 3.000000 & 8.000000 \\ 0.000000 & -1.300000 & -4.000000 & 1.100000 \\ 14.000000 & 5.000000 & -2.000000 & 30.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.0000000 & 0.0000000 & 0.0000000 & 0.0000000 \\ 0.0000000 & 1.0000000 & 0.0000000 & 0.0000000 \\ 0.0000000 & 0.0000000 & 1.0000000 & 0.0000000 \\ 0.0000000 & 0.0000000 & 0.0000000 & 1.0000000 \end{bmatrix}$$

2. Step 1:

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 3.500000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

3. Step 2:

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.082540 & 1.000000 & 0.000000 \\ 3.500000 & 0.539683 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.0000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

4. Step 3:

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.082540 & 1.000000 & 0.000000 \\ 3.500000 & 0.539683 & 0.964467 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & -3.752381 & 1.698413 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

5. Step 4:

$$\mathbf{L} = \begin{bmatrix} 1.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.250000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & -0.082540 & 1.000000 & 0.000000 \\ 3.500000 & 0.539683 & 0.964467 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 0.000000 & 15.750000 & 3.000000 & 7.250000 \\ 0.000000 & 0.000000 & -3.752381 & 1.698413 \\ 0.000000 & 0.000000 & 0.000000 & 13.949239 \end{bmatrix}$$

6. Solution:

$$\mathbf{x} = \begin{bmatrix} 0.525109 \\ 0.255459 \\ -0.410480 \\ -0.281659 \end{bmatrix}$$

• Crout

- 1. Matrix : A
- **2.** $Constant\ vector:b$

1. Step 0:

$$\mathbf{A} = \begin{bmatrix} 4.000000 & -1.000000 & 0.000000 & 3.000000 \\ 1.000000 & 15.500000 & 3.000000 & 8.000000 \\ 0.000000 & -1.300000 & -4.000000 & 1.100000 \\ 14.000000 & 5.000000 & -2.000000 & 30.000000 \end{bmatrix}$$

2. Step 1:

$$\mathbf{L} = \begin{bmatrix} 4.000000 & 0.000000 & 0.000000 & 0.0000000 \\ 1.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 14.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.000000 & -0.250000 & 0.000000 & 0.750000 \\ 0.000000 & 1.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

3. Step 2:

$$\mathbf{L} = \begin{bmatrix} 4.000000 & 0.000000 & 0.000000 & 0.0000000 \\ 1.000000 & 15.750000 & 0.000000 & 0.000000 \\ 0.000000 & -1.300000 & 1.000000 & 0.000000 \\ 14.000000 & 8.500000 & 0.000000 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.000000 & -0.250000 & 0.000000 & 0.750000 \\ 0.000000 & 1.000000 & 0.190476 & 0.460317 \\ 0.000000 & 0.000000 & 1.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

4. Step 3:

$$\mathbf{L} = \begin{bmatrix} 4.000000 & 0.000000 & 0.000000 & 0.0000000 \\ 1.000000 & 15.750000 & 0.000000 & 0.000000 \\ 0.000000 & -1.300000 & -3.752381 & 0.000000 \\ 14.000000 & 8.500000 & -3.619048 & 1.000000 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.000000 & -0.250000 & 0.000000 & 0.750000 \\ 0.000000 & 1.000000 & 0.190476 & 0.460317 \\ 0.000000 & 0.000000 & 1.000000 & -0.452623 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

5. Step 4:

$$\mathbf{L} = \begin{bmatrix} 4.000000 & 0.000000 & 0.000000 & 0.000000 \\ 1.000000 & 15.750000 & 0.000000 & 0.000000 \\ 0.000000 & -1.300000 & -3.752381 & 0.000000 \\ 14.000000 & 8.500000 & -3.619048 & 13.949239 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1.000000 & -0.250000 & 0.000000 & 0.750000 \\ 0.000000 & 1.000000 & 0.190476 & 0.460317 \\ 0.000000 & 0.000000 & 1.000000 & -0.452623 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \end{bmatrix}$$

6. Solution:

$$\mathbf{x} = \begin{bmatrix} 0.525109 \\ 0.255459 \\ -0.410480 \\ -0.281659 \end{bmatrix}$$

• Cholesky

- 1. Matrix : A
- **2.** $Constant\ vector:b$

1. Step 0:

$$\begin{bmatrix} 4 & -1 & 0 & 3 \\ 1 & 15.5 & 3 & 8 \\ 0 & -1.3 & -4 & 1.1 \\ 14 & 5 & -2 & 30 \end{bmatrix}$$

2. Step 1:

$$\mathbf{L} = \begin{bmatrix} 2.0 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & & 0 \\ 0.0 & 0 & 0 & 0 \\ 7.0 & 0 & 0 & & 0 \end{bmatrix}$$

3. Step 2:

$$\mathbf{L} = \begin{bmatrix} 2.0 & 0 & 0 & 0 \\ 0.5 & 3.968626 & 0 & 0 \\ 0.0 & -0.327569 & 0 & 0 \\ 7.0 & 2.1417986 & 0 & 0 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 2.0 & -0.5 & 0.0 & 1.5\\ 0 & 3.968626 & 0.7559289 & 1.826828\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Step 4:

At this stage the method fails because it does not support imaginary numbers

• Jacobi

- **1.** *Matrix* : *A*
- **2.** $Constant\ vector: b$
- **3.** *x*0
- **4.** *Tol*
- **5.** *Nmax*

$$\mathbf{T} = \begin{bmatrix} 0.000000 & 0.250000 & 0.000000 & -0.750000 \\ -0.064516 & 0.000000 & -0.193548 & -0.516129 \\ 0.000000 & -0.325000 & 0.000000 & 0.275000 \\ -0.466667 & -0.166667 & 0.066667 & 0.000000 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0.250000 & 0.064516 & -0.250000 & 0.033333 \end{bmatrix}$$

Spectral radius = 0.753517

Results

iter	E				
1	3.6e-01	0.250000	0.064516	-0.250000	0.033333
2	1.5e-01	0.241129	0.079570	-0.261801	-0.110753
3	1.4e-01	0.352957	0.156793	-0.306317	-0.109909
4	7.5e-02	0.371630	0.157759	-0.331183	-0.177933
5	6.8e-02	0.422890	0.196476	-0.350203	-0.188466
6	4.0e-02	0.440469	0.202287	-0.365683	-0.220108
7	3.4e-02	[0.465653]	0.220480	-0.376273	-0.230312
8	2.2e-02	[0.477854]	0.226172	-0.384992	-0.245803
9	1.8e-02	[0.490895]	0.235067	-0.391102	-0.253027
10	1.3e-02	[0.498537]	0.239137	-0.395979	-0.261002
11	1.0e-02	[0.505536]	0.243705	-0.399495	-0.265572
12	7.3e-03	[0.510105]	0.246292	-0.402236	-0.269834
13	5.7e-03	0.513948	0.248727	-0.404249	-0.272580
14	4.2e-03	[0.516617	0.250286	-0.405796	-0.274914
15	3.2e-03	[0.518757]	0.251618	-0.406944	-0.276522
16	2.4e-03	0.520296	0.252532	-0.407819	-0.277819
17	1.8e-03	0.521498	0.253272	-0.408473	-0.278748
18	1.4e-03	0.522379	0.253801	-0.408969	-0.279476
19	1.0e-03	[0.523057]	0.254215	-0.409341	-0.280008
20	7.7e-04	[0.523560]	0.254518	-0.409622	-0.280418
21	5.8e-04	0.523943	0.254752	-0.409834	-0.280723
22	4.4e-04	0.524230	0.254925	-0.409993	-0.280954
23	3.3e-04	0.524447	0.255057	-0.410113	-0.281128
24	2.5e-04	0.524610	0.255156	-0.410204	-0.281259
25	1.9e-04	0.524733	0.255231	-0.410272	-0.281358
26	1.4e-04	0.524826	0.255287	-0.410323	-0.281432
27	1.1e-04	0.524896	0.255329	-0.410362	-0.281488
28	8.0e-05	0.524948	0.255361	-0.410391	-0.281530
29	6.0e-05	0.524988	0.255385	-0.410413	-0.281562
30	4.6e-05	0.525018	0.255403	-0.410430	-0.281586
31	3.4e-05	0.525040	0.255417	-0.410442	-0.281604
32	2.6e-05	0.525057	0.255427	-0.410452	-0.281618
33	1.9e-05	0.525070	0.255435	-0.410459	-0.281628
34	1.5e-05	0.525080	0.255441	-0.410464	-0.281636
35	1.1e-05	0.525087	0.255445	-0.410468	-0.281642
36	8.3e-06	[0.525092]	0.255448	-0.410471	-0.281646

37	6.3e-06	[0.525097]	0.255451	-0.410473	-0.281649
38	4.7e-06	0.525100	0.255453	-0.410475	-0.281652
39	3.6e-06	[0.525102]	0.255454	-0.410476	-0.281654
40	2.7e-06	[0.525104]	0.255455	-0.410477	-0.281655
41	2.0e-06	[0.525105]	0.255456	-0.410478	-0.281656
42	1.5e-06	[0.525106]	0.255457	-0.410479	-0.281657
43	1.1e-06	[0.525107]	0.255457	-0.410479	-0.281658
44	8.7e-07	[0.525107]	0.255457	-0.410479	-0.281658
45	6.5e-07	[0.525108]	0.255458	-0.410480	-0.281658
46	4.9e-07	[0.525108]	0.255458	-0.410480	-0.281659
47	3.7e-07	[0.525108]	0.255458	-0.410480	-0.281659
48	2.8e-07	[0.525109]	0.255458	-0.410480	-0.281659
49	2.1e-07	[0.525109]	0.255458	-0.410480	-0.281659
50	1.6e-07	[0.525109]	0.255458	-0.410480	-0.281659
51	1.2e-07	0.525109	0.255458	-0.410480	-0.281659
52	9.0e-08	0.525109	0.255458	-0.410480	-0.281659

• Gauss-Seidel

1. Matrix : A

2. $Constant\ vector: b$

3. *x*0

4. *Tol*

5. *Nmax*

$$\mathbf{T} = \begin{bmatrix} 0.000000 & 0.250000 & 0.000000 & -0.750000 \\ 0.000000 & -0.016129 & -0.193548 & -0.467742 \\ 0.000000 & 0.005242 & 0.062903 & 0.427016 \\ 0.000000 & -0.113629 & 0.036452 & 0.456425 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0.250000 & 0.048387 & -0.265726 & -0.109113 \end{bmatrix}$$

Spectral radius = 0.599488

Results

iter	E	
0		0.000000 0.000000 0.000000 0.000000
1	3.8e-01	$ \begin{bmatrix} 0.250000 & 0.048387 & -0.265726 & -0.109113 \end{bmatrix} $
2	1.7e-01	$\begin{bmatrix} 0.343931 & 0.150074 & -0.328780 & -0.174099 \end{bmatrix}$
3	1.0e-01	$\begin{bmatrix} 0.418093 & 0.191035 & -0.359964 & -0.217613 \end{bmatrix}$
4	6.0e-02	$\begin{bmatrix} 0.460969 & 0.216763 & -0.380292 & -0.243265 \end{bmatrix}$
5	3.6e-02	$\begin{bmatrix} 0.486640 & 0.232281 & -0.392389 & -0.258638 \end{bmatrix}$
6	2.1e-02	$\begin{bmatrix} 0.502049 & 0.241563 & -0.399633 & -0.267859 \end{bmatrix}$
7	1.3e-02	$\begin{bmatrix} 0.511285 & 0.247128 & -0.403978 & -0.273386 \end{bmatrix}$
8	7.7e-03	$\begin{bmatrix} 0.516822 & 0.250465 & -0.406582 & -0.276700 \end{bmatrix}$
9	4.6e-03	$\begin{bmatrix} 0.520141 & 0.252465 & -0.408143 & -0.278686 \end{bmatrix}$
10	2.8e-03	$\begin{bmatrix} 0.522131 & 0.253664 & -0.409079 & -0.279877 \end{bmatrix}$
11	1.7e-03	$\begin{bmatrix} 0.523324 & 0.254383 & -0.409640 & -0.280591 \end{bmatrix}$
12	1.0e-03	$\begin{bmatrix} 0.524039 & 0.254814 & -0.409977 & -0.281019 \end{bmatrix}$
13	6.0e-04	$\begin{bmatrix} 0.524467 & 0.255072 & -0.410179 & -0.281275 \end{bmatrix}$
14	3.6e-04	$\begin{bmatrix} 0.524724 & 0.255227 & -0.410299 & -0.281429 \end{bmatrix}$
15	2.1e-04	$\begin{bmatrix} 0.524879 & 0.255320 & -0.410372 & -0.281521 \end{bmatrix}$
16	1.3e-04	$\begin{bmatrix} 0.524971 & 0.255375 & -0.410415 & -0.281577 \end{bmatrix}$
17	7.7e-05	$\begin{bmatrix} 0.525026 & 0.255409 & -0.410441 & -0.281610 \end{bmatrix}$
18	4.6e-05	$\begin{bmatrix} 0.525059 & 0.255429 & -0.410457 & -0.281630 \end{bmatrix}$
19	2.8e-05	$\begin{bmatrix} 0.525079 & 0.255441 & -0.410466 & -0.281642 \end{bmatrix}$
20	1.7e-05	$\begin{bmatrix} 0.525091 & 0.255448 & -0.410472 & -0.281649 \end{bmatrix}$
21	1.0e-05	$\begin{bmatrix} 0.525098 & 0.255452 & -0.410475 & -0.281653 \end{bmatrix}$
22	6.0e-06	$\begin{bmatrix} 0.525103 & 0.255455 & -0.410477 & -0.281656 \end{bmatrix}$
23	3.6e-06	$\begin{bmatrix} 0.525105 & 0.255456 & -0.410479 & -0.281657 \end{bmatrix}$
24	2.1e-06	$\begin{bmatrix} 0.525107 & 0.255457 & -0.410479 & -0.281658 \end{bmatrix}$
25	1.3e-06	$\begin{bmatrix} 0.525108 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix}$
26	7.7e-07	$\begin{bmatrix} 0.525108 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix}$
27	4.6e-07	$\begin{bmatrix} 0.525109 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix}$
28	2.8e-07	$\begin{bmatrix} 0.525109 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix}$
29	1.7e-07	$\begin{bmatrix} 0.525109 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix}$
30	9.9e-08	$ \begin{bmatrix} 0.525109 & 0.255458 & -0.410480 & -0.281659 \end{bmatrix} $

• SOR

- 1. Matrix : A
- $\textbf{2. } Constant \, vector: b$
- **3.** *x*0
- **4.** *Tol*
- **5.** *Nmax*

$$\mathbf{T} = \begin{bmatrix} -0.500000 & 0.375000 & 0.000000 & -1.125000 \\ 0.048387 & -0.536290 & -0.290323 & -0.665323 \\ -0.023589 & 0.261442 & -0.358468 & 0.736845 \\ 0.335544 & -0.102283 & 0.036734 & 0.527515 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0.375000 & 0.060484 & -0.404486 & -0.268070 \end{bmatrix}$$

Spectral radius = 0.631208

Results

iter	${f E}$	
0		$\begin{bmatrix} 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{bmatrix}$
1	6.2e-01	$\begin{bmatrix} 0.375000 & 0.060484 & -0.404486 & -0.268070 \end{bmatrix}$
2	3.2e-01	$\begin{bmatrix} 0.511760 & 0.341976 & -0.450049 & -0.304696 \end{bmatrix}$
3	1.5e-01	$\begin{bmatrix} 0.590144 & 0.235228 & -0.390336 & -0.308594 \end{bmatrix}$
4	1.1e-01	$\begin{bmatrix} 0.515306 & 0.281526 & -0.444371 & -0.271236 \end{bmatrix}$
5	7.4e-02	$\begin{bmatrix} 0.528060 & 0.243909 & -0.383605 & -0.283362 \end{bmatrix}$
6	4.3e-02	$\begin{bmatrix} 0.521218 & 0.255125 & -0.424458 & -0.279399 \end{bmatrix}$
7	2.1e-02	$\begin{bmatrix} 0.524387 & 0.258003 & -0.403799 & -0.282252 \end{bmatrix}$
8	1.1e-02	$\begin{bmatrix} 0.527091 & 0.252514 & -0.412630 & -0.282229 \end{bmatrix}$
9	6.9e-03	$\begin{bmatrix} 0.523655 & 0.258137 & -0.410946 & -0.281073 \end{bmatrix}$
10	5.5e-03	$\begin{bmatrix} 0.526181 & 0.253697 & -0.409146 & -0.282129 \end{bmatrix}$
11	4.2e-03	$\begin{bmatrix} 0.524441 & 0.256380 & -0.411790 & -0.281318 \end{bmatrix}$
12	2.8e-03	$\begin{bmatrix} 0.525405 & 0.255085 & -0.409503 & -0.281846 \end{bmatrix}$
13	1.7e-03	$\begin{bmatrix} 0.525031 & 0.255513 & -0.411073 & -0.281584 \end{bmatrix}$
14	8.8e-04	$\begin{bmatrix} 0.525084 & 0.255547 & -0.410197 & -0.281673 \end{bmatrix}$
15	4.4e-04	$\begin{bmatrix} 0.525171 & 0.255337 & -0.410569 & -0.281674 \end{bmatrix}$
16	2.7e-04	$\begin{bmatrix} 0.525049 & 0.255562 & -0.410493 & -0.281637 \end{bmatrix}$
17	2.2e-04	$\begin{bmatrix} 0.525153 & 0.255389 & -0.410431 & -0.281679 \end{bmatrix}$
18	1.7e-04	$\begin{bmatrix} 0.525083 & 0.255497 & -0.410532 & -0.281646 \end{bmatrix}$
19	1.1e-04	$\begin{bmatrix} 0.525122 & 0.255443 & -0.410441 & -0.281667 \end{bmatrix}$
20	6.8e-05	$\begin{bmatrix} 0.525106 & 0.255461 & -0.410504 & -0.281656 \end{bmatrix}$

21	3.6e-05	[0.525108]	0.255462	-0.410469	-0.281660
22	1.8e-05	[0.525111]	0.255454	-0.410484	-0.281660
23	1.1e-05	[0.525107]	0.255463	-0.410481	-0.281659
24	8.4e-06	[0.525111]	0.255456	-0.410479	-0.281660
25	6.6e-06	0.525108	0.255460	-0.410482	-0.281659
26	4.5e-06	[0.525110]	0.255458	-0.410479	-0.281660
27	2.7e-06	[0.525109]	0.255459	-0.410481	-0.281659
28	1.5e-06	[0.525109]	0.255459	-0.410480	-0.281659
29	7.2e-07	[0.525109]	0.255458	-0.410481	-0.281659
30	4.2e-07	0.525109	0.255459	-0.410480	-0.281659
31	3.3e-07	0.525109	0.255458	-0.410480	-0.281659
32	2.6e-07	[0.525109]	0.255459	-0.410480	-0.281659
33	1.8e-07	[0.525109]	0.255458	-0.410480	-0.281659
34	1.1e-07	[0.525109]	0.255459	-0.410480	-0.281659
35	5.9e-08	0.525109	0.255459	-0.410480	-0.281659

• Vandermonde

1. Table

$$\mathbf{Vandermonde\ matrix} = \begin{bmatrix} -1.000000 & 1.000000 & -1.000000 & 1.0000000 \\ 0.000000 & 0.000000 & 0.000000 & 1.000000 \\ 27.000000 & 9.000000 & 3.000000 & 1.000000 \\ 64.000000 & 16.000000 & 4.000000 & 1.000000 \end{bmatrix}$$

${\bf Coefficients\ of\ the\ polynomial} =$

$$\begin{bmatrix} -1.141667 & 5.825000 & -5.533333 & 3.000000 \end{bmatrix}$$

Polynomial:

$$-1.141667x^3 + 5.825000x^2 - 5.533333x + 3.000000$$

• Newton

1. Table

$$\mathbf{divided\ differences} = \begin{bmatrix} 15.500000 & 0.000000 & 0.000000 & 0.000000 \\ 3.000000 & -12.500000 & 0.000000 & 0.000000 \\ 8.000000 & 1.666667 & 3.541667 & 0.000000 \\ 1.000000 & -7.000000 & -2.166667 & -1.141667 \end{bmatrix}$$

Coefficients of the Newton polynomial =

 $\begin{bmatrix} 15.500000 & -12.500000 & 3.541667 & -1.141667 \end{bmatrix}$

Newton polynomial:

$$15.500000 - 12.500000(x+1) + 3.541667(x+1)x - 1.141667(x+1)x(x-3)$$

• Lagrange

1. Table

Lagrange interpolating polynomials	
$-0.050000x^3 + 0.350000x^2 - 0.600000x - 0.0000000$	\mathbf{L}_0
$\mathbf{0.083333x^3} - 0.500000x^2 - 0.416667x + 1.000000$	\mathbf{L}_1
$-0.083333x^3 + 0.250000x^2 + 0.333333x - 0.000000$	\mathbf{L}_2
$\boxed{ \mathbf{0.050000x}^3 - 0.100000x^2 - 0.150000x + 0.000000}$	\mathbf{L}_3

Polynomial:

$$15.5L_0 + 3L_1 + 8L_2 + L_3$$

• Linear Spline

 $\mathbf{1.} \; Table$

$$\mathbf{Spline\ coefficients} = \begin{bmatrix} -12.500000 & 3.000000 \\ 1.666667 & 3.000000 \\ -7.000000 & 29.000000 \end{bmatrix}$$

Splines:

$$-12.500000x + 3.000000$$

$$1.666667x + 3.000000$$

$$-7.000000x + 29.000000$$

• Quadratic Spline

 $\mathbf{1.} \; Table$

Splines:

$$0.000000x^2 - 12.500000x + 3.000000$$
$$4.722222x^2 - 12.500000x + 3.000000$$

$$-22.833333x^2 + 152.833333x - 245.000000$$

• Cubic Spline

1. Table

$$\mathbf{Spline \ coefficients} = \begin{bmatrix} 2.533333 & 7.600000 & -7.433333 & 3.000000 \\ -1.522222 & 7.600000 & -7.433333 & 3.000000 \\ 2.033333 & -24.400000 & 88.566667 & -93.000000 \end{bmatrix}$$

Splines:

$$2.533333x^3 + 7.600000x^2 - 7.433333x + 3.000000$$
$$-1.522222x^3 + 7.600000x^2 - 7.433333x + 3.000000$$
$$2.033333x^3 - 24.400000x^2 + 88.566667x - 93.000000$$

• Gaussian elimination for tridiagonal matrices

1.
$$Matrix: A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

2. Constant vector :
$$b = \begin{bmatrix} 124 \\ 4 \\ 14 \end{bmatrix}$$

$$\mathbf{Final\ matrix} = \begin{bmatrix} 2.0000000 & -1.0000000 & 0.0000000 \\ 0.0000000 & 1.5000000 & -1.0000000 \\ 0.0000000 & 0.0000000 & 1.3333333 \end{bmatrix}$$

Solution = $\begin{bmatrix} 98.5000000 & 73.0000000 & 43.5000000 \end{bmatrix}$

• Gaussian elimination with stepped pivoting

1. Step 0:

$$\mathbf{Initial\,Matriz} = \begin{bmatrix} 2.11 & -4.21 & 0.921 \\ 4.01 & 10.2 & -1.12 \\ 1.09 & 0.987 & 0.831 \end{bmatrix}, \quad \mathbf{b\,vector} = \begin{bmatrix} 2.01 \\ -3.09 \\ 4.21 \end{bmatrix}$$

2. Step 1:

$$\mathbf{Ab} = \begin{bmatrix} 1.0900000 & 0.987 & 0.831 & 4.21 \\ 0.0000000 & 6.5689266 & -4.1771651 & -18.5781651 \\ 0.0000000 & -6.1206147 & -0.687633 & -6.139633 \end{bmatrix}$$

3. Step 2:

$$\mathbf{Ab} = \begin{bmatrix} 1.0900000e + 00 & 9.8700000e - 01 & 8.3100000e - 01 & 4.2100000e + 00 \\ 0.0000000e + 00 & -6.1206147e + 00 & -6.8763303e - 01 & -6.1396330e + 00 \\ 0.0000000e + 00 & 0.0000000e + 00 & -4.9151647e + 00 & -2.5167503e + 01 \end{bmatrix}$$

4. Solution:

$$\mathbf{x} = \begin{bmatrix} -0.4287342 \\ 0.4278478 \\ 5.1203784 \end{bmatrix}$$

• Crout for tridiagonal matrices

1.
$$Matrix: A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

2. Constant vector :
$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

1. Step 0:

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

2. Step 1:

$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 1.5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & -0.5 & 0.0 & 0 \\ 0 & 1 & -0.666666 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. Step 2:

$$\mathbf{L} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 1.5 & 0 & 0 \\ 0 & -1 & 1.333333 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{U} = \begin{bmatrix} 1 & -0.5 & 0.0 & 0\\ 0 & 1 & -0.666666 & 0\\ 0 & 0 & 1 & -0.749999\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Solution:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

• Neville's method

For this example, Y Values are calculated using Ln(x)

- **2.** X to interpolate = 2.1
- 1. Solution:

Yinterpolated = 0.7418697

Real Y (from the function Ln(x)) = 0.741937

- ullet Hermite interpolation
 - $\mathbf{1.} \; Table$

Method failed to run. You can see it here Click here