

ADS AD VIDEO COSOUN

www.aduni.edu.pe

Razonamiento Matemático

Rotación y traslación de figuras

OBJETIVOS

- Desarrollar la habilidad visual para imaginar los movimientos de las figuras.
- Conocer las diferencias entre rotación, traslación y sus aplicaciones.

ROTACIÓN Y TRASLACIÓN DE FIGURAS

Posición y sobreposición de figuras

Rodamiento de figuras

Longitud del recorrido de un punto

Área de región generada

Nociones previas

ROTACIÓN O GIRO

Es un movimiento alrededor de un punto.

Una rotación se determina por tres elementos:

- Un punto llamado centro de rotación puede ser un punto de la figura o un punto exterior de la figura.
- Un **sentido de la rotación**, que puede ser del mismo sentido de las agujas del reloj (**horario**) o en sentido contrario a ellas (**antihorario**).
- Un ángulo que determina la amplitud de la rotación.

Entonces el resultado de una rotación es otra figura idéntica que ha sido girada un cierto ángulo.

TRASLACIÓN

Es el movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y a la misma distancia.

Entonces el resultado de una traslación es otra figura idéntica que se ha desplazado una cierta distancia en una dirección determinada.

Posición de figuras

Giro horario y antihorario:

Gira 270° en sentido horario

Gira 360° en sentido antihorario

Gira 180° en sentido antihorario

TENER EN CUENTA:

Gira 360° <> 1 vuelta

Cada vuelta la figura vuelve a su misma posición

Veamos que sucede si el ángulo de giro es mayor **Ejemplos:**

Girar 760° $<> 2(360^{\circ}) + 40^{\circ}$

2 vueltas

No se altera su posición

Luego

Luego

Girar 760° <> Girar 40°

Girar 2250° $<> 6(360^{\circ}) + 90^{\circ}$

6 vueltas

No se altera su posición

Girar 2250° <> Girar 90°

Ejemplo:

Si las siguientes figuras son láminas transparentes

Gira 180° (horario)

Gira 450° (antihorario)

Busquemos su posición final

TENER EN CUENTA:

Total <> 360°

Tenemos 8 sectores circulares

Cada sector <> 45°

La región sombreada se desplaza 4 sectores

La región sombreada se desplaza 2 sectores

Sobreposición de figuras luego de la rotación

Ejemplo

Las figuras I y II son triángulos equiláteros congruentes y han sido dibujados sobre láminas transparentes.

La figura I gira sobre su centro 120° en sentido antihorario y la figura II gira sobre su centro 240° en sentido horario. Luego de los giros realizados, se traslada sin rotar una figura sobre la otra; entonces la figura resultante es:

TENER EN CUENTA:

Total <> 360°

Tenemos 6 triángulos congruentes

Cada triángulo <> 60°

Para la figura I

El triángulo se mantiene La región sombreada y el punto se desplaza 2 espacios

Para la figura II

El triángulo se mantiene La región sombreada y el punto se desplaza 4 espacios

Luego de rotar cada figura tenemos

Superponemos las figuras para saber que figura resulta

Aplicación 1

La rueda de 4 cm de radio gira por el camino mostrado desde el punto A al punto B. ¿Cuántas vueltas dará en todo su trayecto?

Resolución:

Nos piden el número de vueltas que dará la rueda.

Luego

N.º de vueltas =
$$\frac{8\pi + 2\pi + 6\pi + 16\pi}{2\pi(4)} = \frac{32\pi}{8\pi} = 4$$

∴ *N.º de vueltas es 4*

Longitud de recorrido de un punto

Aplicación 2

Una plancha rectangular está ubicado como muestra la figura y gira en el sentido indicado por la flecha siempre apoyado en uno de sus vértices. ¿Cuál es la longitud, en centímetros, descrita por el vértice A cuando toque el piso?

A)
$$3\pi + 4$$

B)
$$4\pi + \sqrt{3}$$

C)
$$3,5\pi$$

$$2\pi + \sqrt{3}\pi$$

Resolución:

Nos piden el recorrido del vértice A

∴ Recorrido del vértice A es
$$2\pi + \sqrt{3}\pi$$

Área de región generada

Aplicación 3

En la figura se muestra un cuadrado de 9cm de lado. Si el cuadrado se hace rotar 120° en sentido horario con respecto al punto N y MN = 3cm, halle el perímetro, en centímetros, de la región generada por el cuadrado.

Resolución:

$$perimetro = 9 + 9 + 2\pi + 9 + 9 + 10\pi = 36 + 12\pi$$

∴ Perímetro de la región generada por el cuadrado es $36 + 12\pi$ cm

www.aduni.edu.pe

