Глава 1

Элементы векторной алгебры

1.1 Векторы и линейные операции над векторами

В аналитической геометрии как и в школьной геометрии вектор определяется как направленный отрезок или упорядоченная пара точек. Если первая из них есть A, а вторая B, то A называют началом, а B – концом вектора. Такой вектор записываем как \overline{AB} и изображаем в виде стрелки, идущей от A к B. Векторы также обозначаем малыми латинскими буквами, например $\bar{a} = \overline{AB}$ puc.~1 (см. рис. 1).

Среди всех векторов есть один специфичный вектор, который называют НУЛЕВЫМ вектором. По определению это вектор, у которого начало и конец совпадают: $\bar{0} = \overline{AA}$.

По определению принимают следующее соглашение:

<u>Соглашение 1</u>: $\bar{0}$ – это ЕДИНСТВЕННЫЙ вектор, направление которого НЕ ОПРЕДЕ-ЛЕНО.

С каждым вектором $\bar{a} = \overline{AB}$ связывается тело, равное расстоянию между точками A и B. Это тело называют длиной, модулем или абсолютной величиной вектора \bar{a} и обозначают $|\bar{a}|$. В последнее время это число стали называть нормой вектора и обозначать $||\bar{a}||$.

Из определения нулевого вектора и модуля вектора следует очевидное утверждение:

Утверждение 1.1. Вектор \bar{a} есть нулевой вектор $\bar{0}$ тогда и только тогда, когда $|\bar{a}|=0$.

Рассмотрим два вектора $\bar{a} \neq \bar{0}$ и $\bar{b} \neq \bar{0}$. Векторы \bar{a} и \bar{b} называют КОЛЛИНЕАРНЫМИ и обозначают $\bar{a} \parallel \bar{b}$, если они лежат на одной прямой или на параллельных прямых. Если $\bar{a} \parallel \bar{b}$ и, кроме того, они сонаправлены, то их называют ПРЯМОКОЛЛИНЕАРНЫМИ и записывают $\bar{a} \uparrow \uparrow \bar{b}$. Если же $\bar{a} \parallel \bar{b}$, но они ориентированы в противоположные стороны, то говорим, что они ОБРАТНОКОЛЛИНЕАРНЫ и записываем $\bar{a} \uparrow \downarrow \bar{b}$ (см. рис. 2).

(a) – прямо коллинеарные векторы и (e) – обратно коллинеарные векторы.

По соглашению 1 нулевой вектор не имеет направления и относительно него принимают ещё одно соглашение:

Соглашение 2: Нулевой вектор коллинеарен любому вектору $\bar{a}\colon \bar{0} \parallel \bar{a}$.

Замечание 1.1. В каждой математической дисциплине (здесь аналитическая геометрия) своя терминология. Мы говорим, что векторы коллинеарны, а не параллельны. Основание

для такой замены есть, но обсуждать это мы здесь не будем. Если вы скажите, что вектор параллелен, то я не расцениваю это как ошибку, а просто как безграмотность.

Рассмотрим определение равенства векторов:

Определение 1.1. Два вектора $\bar{a}, \bar{b} \neq \bar{0}$ называем pавными и пишем $\bar{a} = \bar{b}$ если выполнены два условия:

- (1) $|\bar{a}| = |\bar{b}|$;
- (2) $\bar{a} \uparrow \uparrow \bar{b}$.

Обсудим это определение. Пусть дан некоторый вектор $\bar{a}=\overline{AB}$ и некоторая точка A'. Построим параллелограмм ABB'A' (см рис.3). Положение точки B' однозначно определяется положением точки A'. Говорим, что вектор $\overline{A'B'}$ получен из \overline{AB} параллельным переносом (или сдвигом) начала A в точку A'. Так как ABB'A' – параллелограмм, то $|\overline{AB}|=|\overline{A'B'}|$ и $\overline{AB} \uparrow \uparrow \overline{A'B'}$. По определению равенства векторов \overline{AB} и $\overline{A'B'}$ это о $\theta u \mu \ u \ mom \ \varkappa e$ вектор: $\bar{a} = \overline{AB} = \overline{A'B'}$. Другими словами: \overline{AB} и $\overline{A'B'}$ это различные изображения одного и того же вектора \bar{a} .

Если вместо нового начала вектора \bar{a} брать новые точки A', A'', \ldots , то параллельным переносом (сдвигом) мы получим (бесконечный) класс векторов равных вектору \bar{a} (см. рис. 4). Весь класс таких векторов-стрелок называют СВОБОДНЫМ вектором $ar{a}$. Термин "свобода" здесь означает возможность произвольным сдвигом переносить начало д" вектора в любую точку.

Замечание 1.2. Данное выше определение равенства векторов не единственное. Существуют и другие определения, но мы будем придерживаться "нашего" определения, т.к. именно оно "заточено" под те задачи, с которыми мы будем иметь дело в дальнейшем.

Переходим к вопросу об алгебраических операциях над векторами. Две "школьные" операции сложения векторов и умножение вектора на действительное число будем обозначать римскими цифрами (I) и (II), соответственно. Эти две операции также называют ЛИНЕЙ-НЫМИ операциями.

Пусть даны два произвольных вектора \bar{a} и \bar{b} . Т.к. векторы свободные, то их начала можно перенести в некоторую (произвольную) точку $O: \bar{a} = \overline{OA}, \bar{b} = \overline{OB}$. Построим параллелограмм OACB (рис. 5a)

Определение операции (I): вектор \overline{OC} как диагональ параллелограмма OACB определим как сумму векторов \bar{a} и \bar{b} : $\bar{a} + \bar{b} = \overline{OC}$.

Определение операции сложения (I), связанное с построением параллелограмма называют ПРАВИЛОМ ПАРАЛЛЕЛОГРАММА. Существуют другие точки зрения на определение операции (I). Пусть $\bar{a}=\overline{OA}$, но начало вектора \bar{b} перенесём в точку A (рис 5e). Рассмотрим треугольник OAC. Тогда на вектор $\bar{a} + \bar{b} = \overline{OC}$ можно смотреть как на замыкающую ломаной OAC, состоящую у двух звеньев $\overline{OA} = \bar{a}$ и $\overline{AC} = \bar{b}$. Такую формулировку в определении суммы двух векторов, связанную с построением треугольника OAC называют ПРАВИЛОМ ТРЕУГОЛЬНИКА или ПРАВИЛОМ ЗАМЫКАЮЩЕЙ.

Замечание 1.3. Обе формулировки операции сложения векторов эквивалентности. Их "конкурентность" состоит в решении практических задач: иногда лучше использовать правило параллелограмма, а иногда правило треугольника (замыкающей).

Рассмотрим свойства операции сложения векторов (I):

(I.1) Сложение векторов коммутативно: $\bar{a} + \bar{b} = \bar{b} + \bar{a}$ для любых векторов \bar{a}, \bar{b} .

Доказательство. Рассмотрим параллелограмм OACB (рис. 6). Пусть $\overline{OA} = \bar{a}$ и $\overline{OB} = \bar{b}$.

Из определения равенства векторов следует, что также $\overline{BC} = \bar{a}$ и $\overline{AC} = \bar{b}$.

По правилу треугольника (замыкающей) имеем:

$$\underline{\bar{a}} + \overline{\bar{b}} = \underline{\overline{OA}} + \underline{\overline{AC}} = \underline{\overline{OC}}$$

$$\bar{b} + \bar{a} = \overline{OB} + \overline{BC} = \overline{OC}$$

Откуда следует, что $\bar{a} + \bar{b} = \bar{b} + \bar{a}$.

(I.2) Сложение векторов ассоциативно: $\bar{a}+(\bar{b}+\bar{c})=(\bar{a}+\bar{b})+\bar{c}$.

Доказательство.

Введём векторы $\bar{a} = \overline{OA}$, $\bar{b} = \overline{AB}$ и $\bar{c} = \overline{BC}$ (рис.7).

Рассмотрим сумму слева:

$$\bar{a} + (\bar{b} + \bar{c}) = \overline{OA} + (\overline{AB} + \overline{BC}) = \overline{OA} + \overline{AC} = \overline{OC}.$$

Здесь мы дважды использовали правило замыкающей:

$$\overline{AB} + \overline{BC} = \overline{AC}$$
 и $\overline{OA} + \overline{AC} = \overline{OC}$.

Аналогично составим цепочку равенств для суммы справа:

$$(\bar{a} + \bar{b}) + \bar{c} = (\overline{OA} + \overline{AB}) + \overline{BC} = \overline{OB} + \overline{BC} + \overline{OC}.$$

Таким образом получаем нужное равенство:

$$\bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c}.$$

Замечание 1.4. Значимость закона ассоциативности состоит в том, что в сумме трёх (и более) слагаемых скобки можно не ставить. Сумма $\bar{a} + \bar{b} + \bar{c}$ определяется однозначно при любом порядке действий: $\bar{a} + (\bar{b} + \bar{c})$ или $(\bar{a} + \bar{b}) + \bar{c}$.

(I.3) Для любого вектора \bar{a} выполняется $\bar{0} + \bar{a} = \bar{a}$.

 \mathcal{A} оказательство. Пусть $\bar{a}=\overline{AB}$ и $\bar{0}=\overline{AA}$. Тогда: $\bar{0}+\bar{a}=\overline{AA}+\overline{AB}=\overline{AB}$.

Определение 1.2. Вектор, обозначаемый $(-\bar{a})$, называем <u>противоположным</u> к вектору \bar{a} , если $\bar{a}+(-\bar{a})=\bar{0}$.

(I.4) Каждый вектор имеет противоположный.

Доказательство. Покажем, что противоположным к вектору $\bar{a} = \overline{AB}$ будет вектор $(-\bar{a}) = \overline{BA}$. Действительно, из определения правила замыкающей и определения нулевого вектора $\bar{0} = \overline{AA}$ следует: $\bar{a} + (-\bar{a}) = \overline{AB} + \overline{BA} = \overline{AA} = \bar{0}$.

Вторая операция (II) над вектором – умножение вектора на действительное число. Пусть α действительное число: $\alpha \in \mathbb{R}$ и \bar{a} – произвольный вектор.

Определение 1.3. Под произведением числа α на вектор \bar{a} понимают BEKTOP, обозначаемый $\alpha \bar{a}$, который удовлетворяет двум условиям:

$$1^{\circ} |\alpha \bar{a}| = |\alpha||\bar{a}|;$$

2°
$$\alpha \bar{a} \parallel \bar{a}$$
 и, если $\alpha \neq 0$, $\bar{a} \neq \bar{0}$, то
$$\begin{cases} \alpha \bar{a} \uparrow \bar{a} \text{ для } \alpha > 0 \\ \alpha \bar{a} \uparrow \downarrow \bar{a} \text{ для } \alpha < 0 \end{cases}$$

Во втором предложении этого определения не обговариваются случаи, когда $\alpha=0$ и/или $\bar{a}=\bar{0}$. Эти варианты исчерпываются следующим утверждением:

Утверждение 1.2. Вектор $\alpha \bar{a}$ есть нулевой вектор $\bar{0}$ тогда и только тогда, когда $\alpha=0$ и/или $\bar{a}=\bar{0}$.

Доказательство. 1. Необходимость. Покажем, что из условия $\alpha \bar{a} = \bar{0}$ следует, что $\alpha = 0$ и/или $\bar{a} = \bar{0}$. Так как $\alpha \bar{a} = \bar{0}$, то $|\alpha||\bar{a}| = |\alpha \bar{a}| = |\bar{0}| = 0$. Произведение двух чисел равно нулю, когда хотя бы один из сомножителей равен нулю: $\alpha = 0$ и/или $|\bar{a}| = 0$. Согласно утверждению 1.1 (стр 3.) $|\bar{a}| = 0 \Leftrightarrow \bar{a} = \bar{0}$, т.е. доказано, что из $\alpha \bar{a} = \bar{0}$ следует, что $\alpha = 0$ и/или $\bar{a} = \bar{0}$.

2. Достаточность. Пусть $\alpha = 0$ и/или $\bar{a} = \bar{0}$. Тогда $|\alpha \bar{a}| = |\alpha||\bar{a}| = 0$ и по утверждению 1.1 (стр 3.) из условия $|\alpha \bar{a}| = 0$ следует, что $\alpha \bar{a} = \bar{0}$.

Рассмотрим два свойства операции (II):

(II.1) Для любого вектора \bar{a} выполняется $1\bar{a} = \bar{a}$.

Доказательство. Из определения операции (II) для $\alpha = 1$ получаем:

$$1^{\circ} |1\bar{a}| = |1||\bar{a}| = |\bar{a}|;$$

$$2^{\circ}$$
 $\alpha = 1 > 0 \Rightarrow 1\bar{a} \uparrow \bar{a}$

и из определения равенства векторов следует, что $1\bar{a}=\bar{a}$.

(II.2) Ассоциативность операции умножения вектора на число: $(\lambda \mu)\bar{a} = \lambda(\mu \bar{a})$ для любых $\lambda, \mu \in \mathbb{R}$ и любого вектора \bar{a} .

Доказательство. Будем считать, что $\lambda, \mu \neq 0$ и $\bar{a} \neq \bar{0}$. Если хотя бы одно из условий нарушено, то доказываемое равенство $(\lambda \mu)\bar{a} = \lambda(\mu \bar{a})$ очевидно: $\bar{0} = \bar{0}$.

Из определения равенства векторов нам надо доказать:

$$|(\lambda \mu)\bar{a}| = |\lambda(\mu \bar{a})| \quad (a),$$

$$(\lambda \mu)\bar{a} \uparrow \uparrow \lambda(\mu \bar{a})$$
 (b).

Равенство (a) доказывается использованием предложения 1° в определении операции (II):

$$|(\lambda \mu)\bar{a}| = |\lambda \mu||\bar{a}| = |\lambda||\mu||\bar{a}| \quad (*)$$

$$|\lambda(\mu \bar{a})| = |\lambda||\mu \bar{a}| = |\lambda||\mu||\bar{a}| \quad (**)$$

Правые части в формулах (*) и (**) равны, следовательно, равны левые: $|(\lambda \mu)\bar{a}| = |\lambda(\mu\bar{a})|$.

Условие (b) проверяется перечислением всех возможных случаев в распределении знаков для чисел λ и μ . Все варианты можно отобразить таблицей:

№ случая	1	2	3	$\mid 4 \mid$
λ	+	+	_	_
μ	+		+	-

Случай 1.

Здесь $\lambda > 0$ и $\mu > 0$, следовательно, $\lambda \mu > 0$ и из предложения 2° в определении операции (II) следует: $(\lambda \mu) \bar{a} \uparrow \uparrow \bar{a}$. Аналогично, так как $\mu > 0$, то $\mu \bar{a} \uparrow \uparrow \bar{a}$ и так как $\lambda > 0$, то $\lambda(\mu \bar{a}) \uparrow \uparrow \bar{a}$. Получаем: $(\lambda \mu) \bar{a} \uparrow \uparrow \bar{a} \uparrow \uparrow \lambda(\mu \bar{a})$, т.е. $(\lambda \mu) \bar{a} \uparrow \uparrow \lambda(\mu \bar{a})$.

Отмеченные выше свойства операции сложения (I) и умножения на число (II) НЕ ЯВЛЯ-ЮТСЯ независимыми. Они связаны двумя законами ДИСТРИБУТИВНОСТИ (приставка ди означает двойной):

 $\lambda \bar{a} + \lambda \bar{b} = \lambda (\bar{a} + \bar{b})$ – первый закон дистрибутивности;

 $\lambda \bar{a} + \mu \bar{a} = (\lambda + \mu) \bar{a}$ – второй закон дистрибутивности.

Доказательства этих законов не сложное, но довольно громоздкое и здесь мы их рассматривать не будем.

Отмеченные свойства линейных операций (I),(II) собираем в единый список, вводя сквозную нумерацию:

нумерацию:
$$\begin{array}{c} (1) \ \bar{a} + \bar{b} = \bar{b} + \bar{a} \\ (2) \ \bar{a} + (\bar{b} + \bar{c}) = (\bar{a} + \bar{b}) + \bar{c} \\ (3) \ \exists \bar{0} : \bar{a} + \bar{0} = \bar{a} \\ (4) \ \forall \bar{a} \ \exists (-\bar{a}) : \bar{a} + (-\bar{a}) = \bar{0} \\ \end{array} \right\}$$
 свойства операции (I)
$$\begin{array}{c} (5) \ 1\bar{a} = \bar{a} \\ (6) \ (\lambda\mu)\bar{a} = \lambda(\mu\bar{a}) \\ (7) \ \lambda\bar{a} + \lambda\bar{b} = \lambda(\bar{a} + \bar{b}) \\ (8) \ \lambda\bar{a} + \mu\bar{a} = (\lambda + \mu)\bar{a} \end{array} \right\}$$
 свойства операции (II)
$$\begin{array}{c} (7) \ \lambda\bar{a} + \lambda\bar{b} = \lambda(\bar{a} + \bar{b}) \\ (8) \ \lambda\bar{a} + \mu\bar{a} = (\lambda + \mu)\bar{a} \end{array} \right\}$$
 дистрибутивность

Конечно, это не полный список всех свойств линейных операций. Можно отметить и другие свойства. Например, $0\bar{a}=\bar{0},\,\alpha\bar{0}=\bar{0},\,(-1\bar{a})=(-\bar{a})$ и т.д. Однако выделяют именно восемь перечисленных свойств, т.к. они будут базовыми в определении (абстрактного) векторного пространства с которым вы скоро встретитесь в курсе АЛГЕБРА.

Доказанные свойства обосновывают правило, что в рамках выполнения операций (I) и (II) мы имеем право "работать" с векторами также как с числами.

Например: $7\bar{a} - 3(8\bar{b} - 4\bar{a}) + \bar{c} = 19\bar{a} - 24\bar{b} + \bar{c}$ и т.д.

1.2 Базисы, координаты вектора в базисе. Линейные операции в координатной форме

Вводим понятие пропорциональности векторов: говорим, что два вектора \bar{a} и \bar{b} пропорциональны, если существует такое $\alpha \in \mathbb{R}$, что $\bar{b} = \alpha \bar{a}$ и/или существует такое $\beta \in \mathbb{R}$, что $\bar{a} = \beta \bar{b}$.

Утверждение 1.3. Нулевой вектор пропорционален любому другому.

Доказательство. Рассмотрим три случая:

Случай 1. Пусть $\bar{a} = \bar{0}$ (нулевой вектор), $\bar{b} \neq \bar{0}$. Пропорциональность векторов следует из равенства $\bar{a} = \beta \bar{b}$, которое выполняется при значении $\beta = 0$: $\bar{a} = \bar{0} = 0 \cdot \bar{b}$.

<u>Случай 2</u>. Пусть $\bar{a} \neq \bar{0}$, $\bar{b} = \bar{0}$. Пропорциональность следует из равенства $\bar{b} = \alpha \bar{a}$, которое выполняется при значении $\alpha = 0$: $\bar{b} = \bar{0} = 0 \cdot \bar{a}$.

Случай 3. Если $\bar{a} = \bar{0}$, $\bar{b} = \bar{0}$, то пропорциональность следует, например, из равенства $\bar{b} = \alpha \bar{a}$, которое выполнено для любого значения α : $\bar{0} = \alpha \bar{0}$.

Теорема 1.1 (Критерий коллинеарности векторов). Два вектора \bar{a} и \bar{b} коллинеарны ($\bar{a} \parallel \bar{b}$) тогда и только тогда, когда они пропорциональны.

Так как теорема является критерием, то надо доказать два утверждения: необходимость и достаточность. Предварительно маленькое замечание. Если хотя бы один из двух векторов нулевой: $\bar{a} = \bar{0}$ и/или $\bar{b} = \bar{0}$, то оба условия необходимости и достаточности выполнены, что с очевидностью следует из соглашения 2 (стр. 2) и утверждения 1.3 поэтому при доказательстве теоремы можно считать, что оба вектора ненулевые