MODEL FITTING & TIKHONOV REGRESSION

Prof. Alexander Huth 9/26/2017

RECAP

* Regularized linear regression!!!

1D EXAMPLE

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

beta

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

beta

RIDGE REGRESSION

- * Multivariate normal (MVN) prior on beta
- * L2 penalty on beta
- * Gradient descent w/ early stopping

RIDGE REGRESS!

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_2^2 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ [||Y - X\beta||_2^2 + \lambda ||\beta||_2^2]$$

 Error or loss penalty

RIDGE REGRESSION

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

$$\hat{\beta} = X_{ridge}^{+} Y$$

RIDGE REGRESSION

* Efficient solution with SVD

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

$$(SVD) X = USV^\top \ D = \frac{S}{S^2 + \lambda^2}$$

$$\hat{\beta} = VDU^{\top}Y$$

 $\hat\beta = (X^{top X + \lambda I})^{-1}$ $X^{top Y}$

 $D = \frac{S}{S^2 + \lambda^2}$ $\text{hat} = V D U^{top Y}$

* A measure of the "joint variability" of two variables

 $\label{eq:mbox} $$ \mbox{cov}(X,Y) = E[(X-E[X])(Y-E[Y])] $$$

 $\label{eq:mbox} $$ \mbox{cov}(X,X) = E[(X-E[X])(X-E[X])] = E[(X-E[X])^2] = \mbox{var}(X)$

$$cov(\vec{x}, \vec{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$cov(X, X) = E[(X - E[X])(X - E[X])] = E[(X - E[X])^{2}] = var(X)$$

$$cov(x,y) > 0$$
?

$$cov(x,y) < 0$$
?

$$cov(x,y) > 0$$
?

$$cov(x,y) < 0$$
?

COVARIANCE MATRIX

\\\\mbox{cov}(A_1,A_2) & \mbox{\((A_2) \end{bmatrix}\)

\mbox{cov}(A) = \begin{bmatrix} \mbox{var}(A_1) & \mbox{cov}(A_

 $\label{eq:mbox} $$ \operatorname{cov}(A) = \left(\frac{1}{n}\right)^{n} A^T $$$

$$cov(A) = \begin{bmatrix} var(A_1) & cov(A_1, A_2) \\ cov(A_1, A_2) & var(A_2) \end{bmatrix}$$

(assuming A is mean 0)
$$cov(A) = \left(\frac{1}{n}\right) AA^T$$

 $Y = X\beta + \epsilon$

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_2^2 \right]

\hat\beta = \underset{\beta}

* RIDGE REGRESSION

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ [||Y - X\beta||_2^2 + \lambda ||\beta||_2^2]$$
 Error or loss penalty

* TIKHONOV REGRESSION

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left[||Y - X\beta||_2^2 + \lambda ||C\beta||_2^2 \right]$$

- * RIDGE REGRESSION is a special case of TIKHONOV REGRESSION
- * TIKHONOV REGRESSION puts a ZERO-MEAN MULTIVARIATE NORMAL PRIOR on the weights
- * in RIDGE REGRESSION the covariance matrix of the prior has a constant diagonal
 - * i.e. the prior is a **SPHERE**
- * in TIKHONOV REGRESSION the covariance matrix can be *ANYTHING*

* the multivariate normal prior given by TIKHONOV REGRESSION

$$\beta \sim N(0, \sigma^2(C^TC)^{-1})$$

\beta \sim N(0, \sigma^2 \Lambda^{-1}), \Lambda = $C^T C$

\begin{eqnarray*}
A &=& XC^{-1}\\
\hat\beta_A &=& \unc {\mbox{argmax}} \left \lambda ||\beta|| 2^2

TIKHONOV REGRESSIOI

* any TIKHONOV problem can be converted into a RIDGE problem

Rank-Deficient and Discrete Ill-Posed Problem: Numerical Aspects of Linear Inversion (1998; Per Christian Hansen)

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss ridge penalty

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
ridge
penalty
total

* Suppose we strongly suspect that **beta1** and **beta2** should be similar

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
Tikhonov
penalty

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
Tikhonov
penalty

total

- * any TIKHONOV problem can be converted into a RIDGE problem by a LINEAR TRANSFORMATION
- * conversely, **ANY LINEAR TRANSFORMATION** of X followed by **RIDGE REGRESSION** is equivalent to some **TIKHONOV REGRESSION** problem

- * WORD EMBEDDING MODELS
- * think of stimulus matrix as WORDS over time projected onto WORD EMBEDDING

\underset{t\times n}{X} = \underset{t \times w}{W} \underset{w\times n}{E}

* this is equivalent to TIKHONOV REGRESSION on the WORDS with a prior determined by the WORD EMBEDDING

$$\frac{1}{\sigma^2} \Sigma_\beta = (C^T C)^{-1} = E^T E$$

* i.e. the prior covariance between two words' weights is equal to the dot product of their embedding vectors word_1

 $E^T E =$

EMBEDDING
INNER PRODUCT,
english1000

\underset{w \times v}{
\underset{w \times n}{
\underset{n \times v}{\\underset{n \times v}{\\underset{n \times v}}}

* to get WEIGHTS ON WORDS we just project onto the EMBEDDING

WEIGHTS IN WORD SPACE EMBEDDING WEIGHTS IN EMBEDDING SPACE
$$\hat{eta}_W = E \hat{eta}_X \ w imes v = w imes n \times v$$

* (this is equivalent to simulating responses to single words)

NEXT TIME

* Data quality!