

ELEC 207 Part B

Control Theory Lecture 7: Simple Control System Design

Prof Simon Maskell
CHAD-G68
s.maskell@liverpool.ac.uk
0151 794 4573

This lecture covers:

- Three term PID controller
- Finding the open and closed loop poles and zeros
- Pole and zero placement design for a PID controller

ELEC 207B: Timeline

This lecture on "Introduction" covers:

- (Introduction to part B of ELEC207 module)
- Function, architecture, history and applications of a control system
- Open-loop and closed-loop systems
- Mathematical model of a control system

Lecture 1

Lecture 2

This lecture on "Control System Modelling (1)" covers:

- Laplace Transforms
- Transfer Function
- Characteristic Equations
- · Poles and zeros
- State-space model
- Transformation between transfer function and state-space model

This lecture on "Control Systems I

- How to use Laplace Transform Response of a Dynamic System
- Typical Input Signals

Lecture 3 • Lectu

This lecture on "Control System Modelling (2)" covers:

- Single-input single-output and multi-input multi-output systems
- · Components and the underpinning mathematics of block diagrams
- Block diagram manipulation and reduction
- · Closed-loop transfer function of a negative feedback system

This lecture on "Control Systems Performance (1)" covers:

- How to use Laplace Transforms to Solve the Time Response of a Dynamic System
- Typical Input Signals

Pı

Lecture 5

This lecture on "Control Systems Performance (2)" covers:

- First-order system and second-order system
- Generalized second-order system

Lecture 6

This lecture on "Steady-State Response Design" covers:

- General Steady-state response
- Steady-state accuracy and errors
- System Characterization by order and type number

ELEC 207B: Timeline

This lecture covers:

- Three term PID controller
- Finding the open and closed loop poles and zeros
- Pole and zero placement design for a PID controller

Finding the Open and Closed Loop Poles and Zeros

Open-loop

Zeros: Z(s)

Poles: P(s)

Closed-loop

Zeros: Z(s)

Poles: P(s)+Z(s)

Closed Loop Control System (recap)

PID Controller Design

$$u(t) = \underbrace{K_p e(t)}_{\text{(P)roportional control}} + \underbrace{K_i \int_0^t e(\tau) d\tau}_{\text{(I)ntegral control}} + \underbrace{K_d \frac{d}{dt} e(t)}_{\text{(D)ifferential control}}$$

	Error Type			
		Fast transient	Zero	Small
Component	Stability	response	steady-state error	overshoot
Proportional	Excessively large instability	Large values the response	Non-zero stead	Largi will cause—shoot
Integral	Integral lps stability	The trans	Integral to error invest the	transie o o o ned
Differential	Excertives alues ampoonum stability	Diffe slows down esponse	Non-ze dy-state error result	decrees

$$K(t) = \underbrace{K_p e(t)}_{\text{(P)roportional control}} + \underbrace{K_i \int_0^t e(\tau) d\tau}_{\text{(I)ntegral control}} + \underbrace{K_d \frac{d}{dt} e(t)}_{\text{(D)ifferential control}}$$

	Error Type			
		Fast transient	Zero	Small
Component	Stability	response	steady-state error	overshoot
Proportional	Excessively larger ause instability	Large values the response	Non-zero stead	Larg shoot
Integral	Integral lps stability	The transfer s to pensated for with the second seco	Integral rives the steady-s to zero	transier er en
Differential	Excercity landsuse amposition instability	Diffe slows down to sponse	Non-ze ty-state error result	decries

Stability

response

The trans sto pensated for with the snsun vershoot

steady-state erro

UVCI SIIUU

$$K(t) = \underbrace{K_p e(t)}_{\text{(P)roportional control}} + \underbrace{K_i \int_0^t e(\tau) d\tau}_{\text{(I)ntegral control}} + \underbrace{K_d \frac{d}{dt} e(t)}_{\text{(D)ifferential control}}$$

	Error Type			
		Fast transient	Zero	Small
Component	Stability	response	steady-state error	overshoot
Proportional	Excessively larger ause instability	Large values the response	Non-zero stead	Larg shoot
Integral	Integral lps stability	The transfer s to pensated for with the second seco	Integral rives the steady-s to zero	transier er en
Differential	Excercity landsuse amposition instability	Diffe slows down to sponse	Non-ze ty-state error result	decries

The trans sto pensated for with the snsun vershoot

$$K(t) = \underbrace{K_p e(t)}_{\text{(P)roportional control}} + \underbrace{K_i \int_0^t e(\tau) d\tau}_{\text{(I)ntegral control}} + \underbrace{K_d \frac{d}{dt} e(t)}_{\text{(D)ifferential control}}$$

	Error Type			
		Fast transient	Zero	Small
Component	Stability	response	steady-state error	overshoot
Proportional	Excessively larger ause instability	Large values the response	Non-zero stead	Larg shoot
Integral	Integral lps stability	The transfer s to pensated for with the second seco	Integral rives the steady-s to zero	transier er en
Differential	Excercity landsuse amposition instability	Diffe slows down to sponse	Non-ze ty-state error result	decries

for with overshoot

$$K(t) = \underbrace{K_p e(t)}_{\text{(P)roportional control}} + \underbrace{K_i \int_0^t e(\tau) d\tau}_{\text{(I)ntegral control}} + \underbrace{K_d \frac{d}{dt} e(t)}_{\text{(D)ifferential control}}$$

	Error Type			
		Fast transient	Zero	Small
Component	Stability	response	steady-state error	overshoot
Proportional	Excessively larger ause instability	Large values the response	Non-zero stead	Larg shoot
Integral	Integral lps stability	The transfer s to pensated for with the second seco	Integral rives the steady-s to zero	transier er en
Differential	Excercity landsuse amposition instability	Diffe slows down to sponse	Non-ze ty-state error result	decries

Application of PID Controllers

First Order System

$$P(s) = \frac{b}{s+a}$$

$$Proportional Control$$

$$C(s) = K_p$$

$$\frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1+P(s)C(s)}$$

$$= \frac{K_p \frac{b}{s+a}}{1+K_p \frac{b}{s+a}}$$

$$= \frac{K_p b}{s+a+K_p b}$$
1 param 1 pole

Second Order System

$$P(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

Application of PID Controllers

First Order System

$$P(s) = \frac{b}{s+a}$$

$$Proportional Control$$

$$C(s) = K_p$$

$$\frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1+P(s)C(s)}$$

$$= \frac{K_p \frac{b}{s+a}}{1+K_p \frac{b}{s+a}}$$

$$= \frac{K_p b}{s+a+K_p b}$$
1 param 1 pole

Second Order System

$$P(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

First Order System

$$P(s) = \frac{b}{s+a}$$

Proportional Control

$$C(s) = K_p$$

$$\frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$$
$$= \frac{K_p \frac{b}{s+a}}{1 + K_p \frac{b}{s+a}}$$

$$Y(s) = \frac{K_p b}{s + a + K_p b}$$

Second Order System

$$P(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

Proportional Control

$$\begin{split} C(s) &= K_p \quad \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)} \\ &= \frac{K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}{1 + K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}} \\ &- \frac{K_p (b_1 s + b_2)}{s^2 + a_1 s + a_2 + K_p (b_1 s + b_2)} \\ &= \frac{K_p (b_1 s + b_2)}{s^2 + (a_1 + K_p b_2) s + a_2 + K_p b_2} \overset{1 \text{ parameter}}{\overset{2}{2} \text{ poles}} \end{split}$$

PI Control

$$\begin{split} C(s) &= K_p + \frac{K_i}{s} & \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)} \\ & = \frac{(K_p + \frac{K_i}{s'}) \frac{b_1 s \cdot b_2}{s^2 + a_1 x \cdot a_2}}{1 + (K_p + \frac{K_i}{s'}) \frac{b_1 s \cdot b_2}{s^2 + a_2 x \cdot a_2}} \\ & = \frac{(K_p s + K_i) (b_1 s + b_2)}{s^3 + a_1 s^2 + a_2 s + (K_p s + K_i) (b_1 s + b_2)} \\ & \stackrel{?}{\longrightarrow} \frac{2 \text{ parameters }}{3 \text{ poles}} \end{split}$$

PID Control

Proportional Control

$$C(s) = K_p \qquad \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$$= \frac{K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}{1 + K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}$$

$$= \frac{K_p (b_1 s + b_2)}{s^2 + a_1 s + a_2 + K_p (b_1 s + b_2)}$$

 $= \frac{K_p(b_1s + b_2)}{s^2 + (a_1 + K_pb_1)s + a_2 + K_pb_2}$

<mark>1 parame</mark>ter

2 poles

PI Control

$$C(s) = K_p + \frac{K_i}{s} \qquad \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$$= \frac{\left(K_p + \frac{K_i}{s}\right) \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}{1 + \left(K_p + \frac{K_i}{s}\right) \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}$$

$$= \frac{\left(K_p s + K_i\right) \left(b_1 s + b_2\right)}{s^3 + a_1 s^2 + a_2 s + \left(K_p s + K_i\right) \left(b_1 s + b_2\right)}$$

2 parameters3 poles

PID Control

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

$$\frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)}$$

$$= \frac{\left(K_p + \frac{K_i}{s} + K_d s\right) \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}{1 + \left(K_p + \frac{K_i}{s} + K_d s\right) \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}$$

$$= \frac{(K_p s + K_i + K_d s^2)(b_1 s + b_2)}{s^3 + a_1 s^2 + a_2 s + (K_p s + K_i + K_d s^2)(b_1 s + b_2)}$$

3 parameters

3 poles

Note that the parameters affect the zeros as well

Second Order System

$$P(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

Proportional Control

$$\begin{split} C(s) &= K_p \quad \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)} \\ &= \frac{K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}}{1 + K_p \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}} \\ &- \frac{K_p (b_1 s + b_2)}{s^2 + a_1 s + a_2 + K_p (b_1 s + b_2)} \\ &= \frac{K_p (b_1 s + b_2)}{s^2 + (a_1 + K_2 b_1) s + a_2 + K_2 b_2} \quad \stackrel{\text{1 parameter}}{\text{2 poles}} \end{split}$$

PI Control

$$\begin{split} C(s) &= K_p + \frac{K_i}{s} & \frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1 + P(s)C(s)} \\ & = \frac{(K_p + \frac{K_i}{k^*}) \frac{b_1 s + b_2}{s^* + a_1 x + a_2}}{1 + (K_p + \frac{K_i}{k^*}) \frac{b_1 s + b_2}{s^* + a_2 x + a_2 x}} \\ & = \frac{(K_p s + K_i) (b_1 s + b_2)}{s^3 + a_1 s^2 + a_2 s + (K_p s + K_i) (b_1 s + b_2)} \\ & \stackrel{?}{\underset{3}{\sim}} \text{prezioneters} \\ & \stackrel{?}{\underset{3}{\sim}} \text{poles} \end{split}$$

PID Control

Application of PID Controllers

First Order System

$$P(s) = \frac{b}{s+a}$$

$$Proportional Control$$

$$C(s) = K_p$$

$$\frac{Y(s)}{X(s)} = \frac{P(s)C(s)}{1+P(s)C(s)}$$

$$= \frac{K_p \frac{b}{s+a}}{1+K_p \frac{b}{s+a}}$$

$$= \frac{K_p b}{s+a+K_p b}$$
1 param 1 pole

Second Order System

$$P(s) = \frac{b_1 s + b_2}{s^2 + a_1 s + a_2}$$

This lecture covers:

- Three term PID controller
- Finding the open and closed loop poles and zeros
- Pole and zero placement design for a PID controller

