

MICROCOMPUTER COMPONENTS

PRELIMINARY

SERIAL INPUT/OUTPUT CONTROLLER MK68564

FEATURES □ Compatible with MK68000 CPU □ Compatible with MK68000 Series DMA's ☐ Two independent, full-duplex channels □ Two independent baud rate generators Crystal oscillator input · Single-phase TTL clock input ☐ Directly addressable registers (all control registers are read/write) ☐ Data rate in synchronous or asynchronous modes • 0-1 M bits/second with 5.0 MHz system clock rate □ Self-test capability ☐ Receive data registers are quadruply buffered; transmit data registers are doubly buffered ☐ Daisy-chain priority interrupt logic provides automatic interrupt vectoring without external logic ☐ Modem status can be monitored. · Separate modem controls for each channel ☐ Asynchronous features • 5, 6, 7, or 8 bits/character • 1, 11/2, or 2 stop bits · Even, odd, or no parity x1, x16, x32, and x64 clock modes Break generation and detection · Parity, overrun, and framing error detection ☐ Byte synchronous features • Internal or external character synchronization · One or two sync characters in separate registers Automatic sync character insertion CRC-16 or CRC-CCITT block check generation and checking ☐ Bit synchronous features Abort sequence generation and detection · Automatic zero insertion and deletion · Automatic flag insertion between messages · Address field recognition I-field residue handling

Valid receive messages protected from overrun

CRC-CCITT block check generation and checking

PIN DESCRIPTION Figure 2

GENERAL DESCRIPTION

The MK68564 SIO is a dual-channel, Serial Input/Output Controller, designed to satisfy a wide variety of serial data communications requirements in microcomputer systems. Its basic function is a serial-to-parallel, parallelto-serial converter/controller; however, within that role, it is systems software configurable so that it may be optimized for any given serial data communications application.

The MK68564 is capable of handling asynchronous protocols, synchronous byte-oriented protocols (such as IBM Bisync), and synchronous bit-oriented protocols (such as HDLC and IBM SDLC). This versatile device can also be used to support virtually any serial protocol for applications other than data communications (cassette or floppy disk interface, for example).

applications other than data communications (cassette IACK Interrupt Acknowledge The MK68564 can generate and check CRC codes in any synchronous mode and may be programmed to check data integrity in various modes. The device also has facilities for modem controls in each channel. In applications where these controls are not needed, the ĪĒĪ modem controls may be used for general-purpose I/O. Interrupt Enable In SIO PIN DESCRIPTION IFO GND: Ground. Interrupt Enable Out V_{CC}: +5 volts ($\pm 5\%$). CS: Input active low. CS is used to select the Chip Select MK68564 SIO for access to the inter-XTAL1 nal registers. CS and IACK must not be XTAL2 Baud Rate asserted at the same time. Generator R/W: Input. R/W is the signal from the bus Inputs Read/Write master, indicating whether the current bus cycle is a read (high) or write (low) RxRDYA DTACK: RXRDYB Output, active low, tri-stateable, DTACK Data Transfer is used to signal the bus master that Receiver Acknowledge data is ready or that data has been Ready accepted by the MK68564 SIO. **TxRDYA** A1-A5: Inputs. The address bus is used to **TxRDYB** Address Bus select one of the internal registers dur-Transmitter ing a read or write cycle. Ready D0-D7: CTSA Bidirectional, tri-stateable. The data bus Data Bus is used to transfer data to or from the **CTSB** internal registers during a read or write Clear to cycle. It is also used to pass a vector Send during an interrupt acknowledge cycle. CLK: Input. This input is used to provide the Clock internal timing for the MK68564 SIO.

RESET Device Reset

Input, active low. Reset disables both receivers and transmitters, forces TxDA and TxDB to a marking condition, forces the modem controls high, and disables all interrupts. With the exception of the status registers, data registers, and the vector register, all internal registers are cleared. The vector register is reset to "0FH".

INTR Interrupt Request

Output, active low, open drain. INTR is asserted when the MK68564 SIO is requesting an interrupt. INTR is negated during an interrupt acknowledge cycle or by clearing the pending interrupt(s) through software.

Input, active low. IACK is used to signal the MK68564 SIO that the CPU is acknowledging an interrupt. CS and IACK must not be asserted at the same time. If interrupts are not used then IACK should be pulled high.

Input, active low. IEI is used to signal the MK68564 SIO that no higher priority device is requesting interrupt service.

Output, active low. IEO is used to signal lower priority peripherals that neither the MK68564 SIO nor another higher priority peripheral is requesting interrupt service.

Inputs.A crystal may be connected between XTAL1 and XTAL2, or XTAL1 may be driven with a TTL level clock. When using a crystal, external capacitors must be connected. When driving XTAL1 with a TTL level clock, XTAL2 must be allowed to float.

Outputs, active low. Programmable <u>DMA</u> output for the receiver. The RxRDY pins pulse low when a character is available in the receive buffer.

Outputs, active low. Programmable <u>DMA</u> output for the transmitter. The TxRDY pins pulse low when the transmit buffer is empty.

Inputs, active low. If Tx Auto Enables is selected, these inputs enable the transmitter of their respective channels. If Tx Auto Enables is not selected, these inputs may be used as general purpose input pins. The inputs are Schmitt-trigger buffered to allow slow rise-time input signals.

DCDA DCDB Data Carrier Detect

Inputs, active low. If Rx Auto Enables is selected, these inputs enable the receiver of their respective channels. If Rx Auto Enable is not selected, these inputs may be used as general purpose input pins. The inputs are Schmitt-trigger buffered to allow slow rise-time input signals.

RxDA RxDB Receive Data Inputs, active high. Serial data input to the receiver.

Receive Data

Outputs, active high. Serial data output of the transmitter.

Transmit Data

RxCA

RxCB

Receiver Clocks

TxDA

TxDB

Input/output. Programmable pin, receive clock input, or baud rate generator output. The inputs are Schmitt-trigger buffered to allow slow rise-time input signals.

TxCA TxCB Transmitter Clocks

Input/output. Programmable pin, transmit clock input, or baud rate generator output. The inputs are Schmitt-trigger buffered to allow slow rise-time input signals.

RTSA RTSB Request to Send Outputs, active low. These outputs follow the inverted state programmed into the RTS bit. When the RTS bit is reset in the asynchronous mode, the output will not change until the character in the transmitter is completely shifted out. These pins may be used as general purpose outputs.

DTRA DTRB Data Terminal Ready Outputs, active low. These outputs follow the inverted state programmed into the DTR bit. These pins may also be used as general purpose outputs.

SYNCA SYNCB Synchronization Input/output, active low. The SYNC pin is an output when Monosync, Bisync, or SDLC mode is programmed. It is asserted when a sync/flag character is detected by the receiver. The SYNC pin is a general purpose input in the Asynchronous mode and an input to the receiver in the External Sync mode.

MK68564 ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	-25°C to +100°C
Storage Temperature	-65°C to +150°C
Voltage on Any Pin with Respect to Ground	– .3 V to +7 V
Power Dissipation	1.5 Watt

^{*}Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0 V \pm 5%, GND = 0 Vdc, T_A = 0 to 70°C)

CHARACTERISTIC	SYM	MIN	MAX	UNIT
INPUT HIGH VOLTAGE ALL INPUTS	V _{IH}	GND + 2.0	V _{CC}	V
INPUT LOW VOLTAGE ALL INPUTS	V _{IL}	GND -0.3	GND +0.8	V
POWER SUPPLY CURRENT OUTPUTS OPEN	ILL		190	mA
INPUT LEAKAGE CURRENT (VIN = 0 to 5.25)	I _{IN}		±10	μΑ
THREE-STATE (OFF STATE) INPUT CURRENT $0 < V_{IN} < V_{CC}\overline{DTACK}$, D0-D7, \overline{SYNC} , \overline{TxC} , \overline{RxC} , INTR	I _{TSI}		20 ±10	μ Α μ Α
OUTPUT HIGH VOLTAGE $(I_{LOAD} = -400~\mu\text{A},~V_{CC} = \text{MIN})~\overline{\text{DTACK}},~D0\text{-D7} \ (I_{LOAD} = -150\mu\text{A},~V_{CC} = \text{MIN})~\text{ALL}~\text{OTHER} \ OUTPUTS~(EXCEPT~XTAL2~\&~\overline{\text{INTR}})*$	V _{OH}	GND+2.4		V
OUTPUT LOW VOLTAGE (I_{LOAD} =5.3 mA, V_{CC} =MIN) INTR, DTACK, D0-D7 (I_{LOAD} =2.4 mA, V_{CC} =MIN) ALL OTHER OUTPUTS (EXCEPT XTAL2)*	V _{OL}		0.5	V

^{*}XTAL2 SPECIAL INTR (OPEN DRAIN)

CAPACITANCE

 T_A =25°C, f=1 MHz unmeasured pins returned to ground.

CHARACTERISTIC		SYM	MAX	UNIT	TEST CONDITION
Input Capacitance	CS, IACK ALL OTHERS	C _{IN}	15 10	pf pf	Unmeasured pins
Tri-state Output Capa	citance	C _{OUT}	10	pf	returned to ground

AC ELECTRICAL CHARACTERISTICS

(V_{CC}=5.0 Vdc \pm 5%, GND=0 Vdc, T_A=0 to 70°C)

	3.0 MHz		MHz	4.0 MHz		5.0 MHz			
NUMBER	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
1	CLK Period	330	1000	250	1000	200	1000	ns	
2	CLK Width High	145		105		80		ns	
3	CLK Width Low	145		105		80		ns	
4	CLK Fall Time		30		30		30	ns	
5	CLK Rise Time		30		30		30	ns	
6	CS Low to CLK High (Setup Time)	0		0		0		ns	1
7	A1-A5 Valid to CS Low (Setup Time)	0		0		0		ns	
8	DATA Valid to CS Low (Write Cycle)	0		0		0		ns	
9	CS Width High	50		50	,,	50		ns	1
10	DTACK Low to A1-A5 Invalid (Hold Time)	0		0		0		ns	
11	DTACK Low to DATA Invalid (Write Cycle Hold Time)	0		0		0		ns	
12	CS High to DTACK High (Delay)		60		55		50	ns	
13	CLK High to DTACK Low		325		320		295	ns	
14	R/W Valid to CS Low (Setup Time)	0		0		0		ns	
15	DTACK Low to R/W Invalid (Hold Time)	0		0		0		ns	
16	CLK Low to DATA Out		550		450		450	ns	
17	CS High to DATA Out Invalid (Hold Time)	0		0		0		ns	
18	CS High to DTACK High Impedance		110		105		100	ns	
19	DTACK Low to CS High	0		0		0		ns	
20	DATA Valid to DTACK Low	70		70		70		ns	
21	IACK Width High	50		50		50		ns	1
22	IACK Low to CLK High (Setup Time)	0		0		0		ns	1
23	CLK Low to INTR Disabled		410		410		410	ns	2
24	CLK Low to DATA Out		330		330		330	ns	2
25	DTACK Low to IACK High	0		0		0		ns	
26	TACK High to DTACK High		60		55		50	ns	
27	IACK High to DTACK High Impedance		110		105		100	ns	
28	IACK High to DATA Out Invalid (Hold Time)	0		0		0		ns	
29	DATA Valid to DTACK Low	195		195		195		ns	2
30	CLK Low to IEO Low		220		220		220	ns	3

AC ELECTRICAL CHARACTERISTICS (Cont.) (V $_{\rm CC}$ =5.0 Vdc \pm 5%, GND=0 Vdc, T $_{\rm A}$ =0 to 70°C)

		3.0 MHz 4.0 M		MHz 5.0 MHz		MHz			
NUMBER	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
31	IEI Low to IEO Low		140		140		140	ns	3
32	IEI High to IEO High		190		190		190	ns	4
33	IACK High to IEO High		190		190		190	ns	4
34	IACK High to INTR Low		200		200		200	ns	5
35	IEI Low to CLK Low (Setup Time)	10		10		10		ns	
36	IEI Low to INTR Disabled		500		425		425	ns	6
37	IEI Low to DATA Out Valid		225		225		225	ns	6
38	DATA Out Valid to DTACK Low	55		55		55		ns	6
39	IACK High to DATA Out High Impedance		150		120		90	ns	
40	CS High to DATA Out High Impedance		150		120		90	ns	
41	CS or IACK High to CLK Low	100		100		100		ns	7
42	TxRDY or RxRDY Width Low		3		3		3	CLK Period	8,10
43	CLK High to TXRDY or RXRDY Low		300		300		300	ns	
44	CLK High to TXRDY or RXRDY High		335		300		300	ns	
	IACK High to CS Low or CS High to IACK Low (not shown)	50		50		50		ns	1
45	CTS, DCD, SYNC Pulse Width High	200		200		200		ns	
46	CTS, DCD, SYNC Pulse Width Low	200		200		200		ns	
47	TxC Period	1320	DC	1000	DC	800	DC	ns	9
48	TxC Width Low	180	DC	180	DC	180	DC	ns	
49	TxC Width High	180	DC	180	DC	180	DC	ns	
50	TxC Low to TxD Delay (X1 Mode)		300		300		300	ns	
51	TxC Low to INTR Low Delay	5	9	5	9	5	9	CLK Period	10
52	RxC Period	1320	DC	1000	DC	800	DC	ns	9
53	RxC Width Low	180	DC	180	DC	180	DC	ns	
54	RxC Width High	180	DC	180	DC	180	DC	ns	
55	RxD to RxC High Setup Time (X1 Mode)	0		0		0		ns	
56	RxC High to RxD Hold Time (X1 Mode)	140		140		140		ns	
57	RxC High to INTR Low Delay	10	13	10	13	10	13	CLK Period	10
58	RxC High to SYNC Low Delay (Output Modes)	4	7	4	7	4	7	CLK Period	10

AC ELECTRICAL CHARACTERISTICS (Cont.)

 $(V_{CC}=5.0 \text{ Vdc}\pm5\%, \text{ GND}=0 \text{ Vdc}, T_A=0 \text{ to } 70^{\circ}\text{C})$

		3.0	MHz	4.0 MHz		/Hz 5.0 MHz			
NUMBER	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
59	RESET Low	1		1		1		CLK Period	10
60	XTAL 1 Width High (TTL in)	145		100		80		ns	
61	XTAL 1 Width Low (TTL in)	145		100		80		ns	
62	XTAL 1 Period (TTL in)	330	2000	250	2000	200	2000	ns	
63	XTAL 1 Period (Crystal in)	330	1000	250	1000	200	1000	ns	

NOTES:

- 1. This specification only applies if the SIO has completed all operations initiated by the previous bus cycle, when So or IACK was asserted. Following a read, write, or interrupt acknowledge cycle, all operations are complete within two CLK cycles after the rising edge of So or IACK. If So IACK is asserted prior to the completion of the internal operations, the new bus cycle will be postponed.
- If IEI meets the setup time to the falling edge of CLK, 1½ cycles following the clocking in of IACK.
- No internal interrupt request pending at the start of an interrupt acknowledge cycle.
- 4. Time starts when first signal goes invalid (high).
- 5. If an internal interrupt is pending at the end of the interrupt acknowledge

cycle.

- 6. If Note 2 timing is not met.
- If this spec is met, the delay listed in note 1 will be one CLK cycle instead of two.
- Ready signals will be negated asynchronous to the CLK, if the condition causing the assertion of the signals is cleared.
- 9. If RXC and XC are asynchronous to the System Clock, the maximum clock rate into RXC and XC should be no more than one-fifth the System Clock rate. If RXC and XC are synchronized to the falling edge of the System Clock, the maximum clock rate into RXC and XC can be one-fourth the System Clock rate.
- 10. SIO Clock (CLK) Cycles as defined in Parameter 1.

OUTPUT TEST LOAD

Figure 3

for all outputs except DTACK, D0-D7, INTR, XTAL2

 C_L = 130 pf R_L = 16K Ω R_1 = 450 Ω

for DTACK, D0-D7 $C_L = 130 \text{ pf}$ $R_L = 6 \text{K } \Omega$ $R_1 = 200 \Omega$

READ CYCLE

Figure 5

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

= 2.0 Volts, logic low = 0.0 Volts

WRITE CYCLE Figure 6

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

INTERRUPT ACKNOWLEDGE CYCLE (IEI LOW) Figure 7

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

INTERRUPT ACKNOWLEDGE CYCLE (IEI HIGH) Figure 8

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

DMA INTERFACE TIMING

Figure 9

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

SERIAL INTERFACE TIMING

Figure 10

NOTE:

Waveform measurements for all inputs and outputs are specified at logic high = 2.0 volts, logic low = 0.8 volts.

MK68564 ORDERING INFORMATION

PART NO.	PACKAGE TYPE	MAX. CLOCK FREQUENCY	TEMPERATURE RANGE
MK68564N-03	Plastic	3.0 MHz	0° to 70°C
MK68564N-04	Plastic	4.0 MHz	0° to 70°C
MK68564N-05	Plastic	5.0 MHz	0° to 70°C