Supporting Information for

Synthesis of a Tight Intramolecular OH---Olefin Interaction, Probed by IR, ¹H NMR and Quantum Chemistry

Mark D. Struble, Maxwell Gargiulo Holl, Gavin Coombs, Maxime A. Siegler, and

Thomas Lectka*

Contribution from the Department of Chemistry, New Chemistry Building, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland, 21218

lectka@jhu.edu

Table of Contents

ORTEP of 1	2
¹ H and ¹³ C NMR and IR spectra of 1	3-5
¹ H and ¹³ C NMR spectra of 4	6-7
¹ H and ¹³ C NMR spectra of 5	8-9
¹ H and ¹³ C NMR spectra of 7	10-11
¹ H and ¹³ C NMR spectra of 8	12-13
¹ H and ¹³ C NMR and IR spectra of 9	14-16
¹ H and ¹³ C NMR spectra of 10	17-18
Molecular modeling calculations for syn-7-norbornanol	19-20
Molecular modeling calculations for 1	20-22
Molecular modeling calculations for non-hydrogen bound 1	22-23
Molecular modeling calculations for 2	24-25
Molecular modeling calculations for methanol	25
Molecular modeling calculations for 9	26-27

All reflection intensities were measured at 110(2) K using a SuperNova diffractometer (equipped with Atlas detector) with Cu $K\alpha$ radiation (λ = 1.54178 Å) under the program CrysAlisPro (Version 1.171.36.32 Agilent Technologies, 2013). The program CrysAlisPro (Version 1.171.36.32 Agilent Technologies, 2013) was used to refine the cell dimensions and for data reduction. The structure was solved with the program SHELXS-2013 (Sheldrick, 2013) and was refined on F^2 with SHELXL-2013 (Sheldrick, 2013). Analytical numeric absorption corrections based on a multifaceted crystal model were applied using CrysAlisPro (Version 1.171.36.32 Agilent Technologies, 2013). The temperature of the data collection was controlled using the system Cryojet (manufactured by Oxford Instruments). The H atoms were placed at calculated positions (unless otherwise specified) using the instructions AFIX 13, AFIX 23 or AFIX 137 with isotropic displacement parameters having values 1.2 or 1.5 times Ueq of the attached C atoms. The H atoms attached to O4 was found from difference Fourier map. The O4–H4 distance was restrained to 0.970(5) using the DFIX restraint, and refines to 0.963(7) Å.* The isotropic temperature factor was refined freely.

* This O-H bond distance was restrained so that both experimental and calculated values are consistent. The exact location of the H atom cannot be accurately determined via X-ray crystallography.

IR spectrum of 1 (CCI₄)

IR spectrum of 9 (CCl₄)

Molecular Modeling Calculations:

Standard orientation coordinates are included for each calculation. Atoms in molecules (AIM) calculations were performed using the coordinates of the structures optimized to $\omega B97XD/cc-pVTZ$.

Equilibrium geometry at ωB97XD/cc-pVTZ for syn-7-norbornenol

opt freq rwb97xd/cc-pvtz maxdisk=12GB geom=connectivity

Center	Atomic Atom		omic	Coordinate	s (Angstroms)
Number	Nui	nber	Type	X Y	Z
1	6	0	-1.493714	-0.473030	-0.777181
2	6	0	-0.039566	-0.057201	-1.125235
3	6	0	-0.039700	-0.057987	1.125266
4	6	0	-1.493808	-0.473318	0.776801
5	1	0	-2.222990	0.216653	-1.196648
6	1	0	-1.707528	-1.465687	-1.172872
7	1	0	-2.222813	0.216762	1.196146
8	1	0	-1.708518	-1.465886	1.172197
9	6	0	0.723434	-0.790343	-0.000195
10	1	0	0.525385	-1.862566	-0.000598
11	6	0	0.116224	1.376269	-0.665812
12	1	0	0.116195	2.239260	-1.315448
13	6	0	0.116162	1.375817	0.666572
14	1	0	0.116076	2.238227	1.317001
15	1	0	0.270220	-0.278714	-2.142407
16	1	0	0.270158	-0.280032	2.142290

17	8	0	2.1	14735	-0.65	5522	0.0001	101	
18	1	0	2.3	11744	0.28	4912	-0.0017	761	
Frequenc	eies	3210.6	740	3	235.8	255	3	845.74	-00
Red. ma					1.1066	6		1.0646	5
Fre cons	ts	6.599	9		6.8269)		9.276	8
IR Inten		6.6357	7	1	2.720	1	2	22.623	8
Atom A	AN Y	X Y	Z	X	Y	Z	X	Y	Z
17 8 18 1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.06	0.00
18 1	0.00	0.00	0.00	0.00	0.00	0.00	-0.23	- 0.9/	0.00

AIM calculated structure for 1

Equilibrium geometry at $\omega B97XD/cc\text{-pVTZ}$ for 1

freq wb97xd/cc-pvtz maxdisk=29GB geom=connectivity

Center	Atomic	At	omic	Coordinate	s (Angstroms)
Number	Numb	er	Type	X Y	Z
1	6	0	0.782725	1.450756	-1.136176
2	6	0	2.237296	1.826412	0.782249
3	6	0	0.567329	-0.043614	0.772817
4	6	0	0.782568	1.450963	1.135969
5	6	0	0.567354	-0.043746	-0.772798
6	6	0	2.237420	1.826207	-0.782312
7	1	0	2.977977	1.149643	1.201313
8	1	0	2.463005	2.815569	-1.174991
9	1	0	0.485856	1.705342	-2.149761
10	1	0	2.462767	2.815887	1.174710
11	1	0	0.485544	1.705713	2.149467
12	1	0	2.978135	1.149293	-1.201085
13	6	0	0.091847	2.250262	-0.000223
14	1	0	0.504664	3.259295	-0.000281
15	6	0	-0.764983	-0.752904	1.137555
16	1	0	-1.093228	-0.561445	2.153082
17	6	0	-0.764994	-0.752993	-1.137486
18	1	0	-1.093231	-0.561590	-2.153026
19	6	0	1.762338	-0.892379	-1.145571
20	8	0	2.168304	-1.190580	-2.220278
21	6	0	1.762414	-0.892026	1.145772
22	8	0	2.168050	-1.190465	2.220537

```
23
       8
                   2.395187 -1.337011 0.000147
              0
24
       6
                   -0.651654 -2.257105
                                        0.780369
              0
25
       1
              0
                   -1.523855 -2.778712
                                        1.168606
26
       1
              0
                   0.226331 -2.738384
                                        1.206384
27
                   -0.651713 -2.257170 -0.780200
28
              0
                   -1.523962 -2.778772 -1.168334
29
              0
                   0.226224 -2.738513 -1.206238
30
              0
       6
                   -1.686619 -0.360025
                                        0.000022
31
              0
                   -2.980981 -0.051636
                                        0.000009
       6
32
       6
              0
                   -3.768483
                             0.148956
                                        1.263211
33
       1
              0
                   -4.592258 -0.567138
                                        1.307912
34
       1
              0
                   -3.168773
                              0.033214
                                        2.161893
35
       1
              0
                   -4.214563
                              1.145697
                                        1.278288
36
              0
                   -3.768483
                              0.148822 -1.263213
       6
37
                   -4.592246 -0.567290 -1.307846
38
              0
                   -4.214578
                              1.145554 -1.278394
39
              0
                   -3.168767
                              0.032999 -2.161880
       1
40
       8
              0
                   -1.282029
                              2.459092 -0.000339
41
                   -1.741431 1.612665 -0.000319
```

Frequencies 3174.7954 3176.5367 3736.0023							
Red. masses 1	1.0888	1.0904	1.0655				
Fre consts 6	5.4659	6.4823	8.7624				
IR Inten 36	6.6059	0.4024 468.9632					
Atom AN X	Y Z X	X Y Z	X - Y - Z				
40 8 0.00 0.0	00 0.00 0.00	0.00 0.00	0.03 0.05 0.00				
41 1 0.00 0.0	00.00 0.00	0.00 0.00	-0.50 -0.87 0.00				

Energy Calculation at ωB97XD/cc-pVTZ for non-hydrogen bound 1

wb97xd/cc-pvtz maxdisk=12GB geom=connectivity

Center Number	Atomic Numl		Atomic Type	Coordinate X Y	s (Angstroms) Z
1	·		0.7701.42	1 445046	1 12 (0.42
1	6	0	0.770143	1.445046	-1.136042
2	6	0	2.221875	1.831404	0.782408
3 4	6 6	$0 \\ 0$	0.565966 0.770004	-0.051080 1.445032	0.772808 1.136103
5	6	0	0.770004	-0.051063	-0.772807
6	6	0	2.221987	1.831351	-0.772807
7	1	0	2.221987	1.160163	1.201401
8	1	0	2.440150	2.822413	-1.174739
9	1	0	0.471367	1.697498	- 2.149601
10	1	0	2.439929	2.822503	1.174962
11	1	0	0.471088	1.697452	2.149627
12	1	0	2.967750	1.160046	-1.200997
13	6	0	0.073304	2.239243	-0.000007
14	1	0	0.478549	3.251341	0.000007
15	6	0	-0.760992	-0.770368	1.137488
16	1	0	-1.090653	-0.581471	2.153036
17	6	0	-0.761021	-0.770237	-1.137553
18	1	0	-1.090691	-0.581201	-2.153072
19	6	0	1.767284	-0.890683	-1.145671
20	8	0	2.175464	-1.185731	-2.220410
21	6	0	1.767377	-0.890550	1.145672
22	8	0	2.175246	-1.186045	2.220405
23	8	0	2.403456	-1.330672	-0.000001
24	6	0	-0.636399		0.780156
25	1	0	-1.504664	-2.801807	1.168349
26	1	0	0.245171	-2.748371	1.206118
27	6	0	-0.636470	-2.273558	-0.780413
28	1	0	-1.504790	-2.801643	-1.168591
29	1	0	0.245045	-2.748269	-1.206504
30	6	0	-1.685555	-0.384295	0.000000
31	6	0	-2.982191	-0.085613	0.000026
32	6	0	-3.771163	0.108952	1.263254
33	1	0	-4.589550	-0.613298	1.307892
34	1	0	-3.170595	-0.002380	2.161920
35	1	0	-4.224699	1.102321	1.278430
36	6	0	-3.771183	0.109061	-1.263170
37	1	0	-4.589558	-0.613198	-1.307866
38	1	0	-4.224734	1.102424	-1.278252
39	1	0	-3.170624	-0.002179	-2.161853
40	8	0	-1.302098	2.437774	-0.000093
41	1	0	-1.496320	3.381048	-0.000095

Equilibrium geometry at $\omega B97XD/cc\text{-pVTZ}$ for 2

opt wb97xd/cc-pvtz maxdisk=21GB geom=connectivity

Center Number	Atomic Num		Atomic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	0.849131	0.697204	0.233716
2	6	0	0.953160	-0.637631	0.177646
3	8	0	-1.949905	0.013952	-1.143646
4	6	0	-2.831534	-0.151978	-0.059384
5	1	0	-3.845816	-0.105542	-0.453147
6	1	0	-2.702662	-1.119665	0.438123
7	1	0	-2.721690	0.637310	0.692620
8	1	0	-1.049673	-0.017812	-0.804544
9	6	0	1.395818	1.633941	-0.812301
10	1	0	1.916753	2.463847	-0.330166
11	1	0	2.087686	1.169797	-1.507896
12	1	0	0.575954	2.071083	-1.388676
13	6	0	1.616866	-1.387467	-0.947452
14	1	0	2.494656	-1.924058	-0.578533
15	1	0	0.930872	-2.141725	-1.340582
16	1	0	1.926725	-0.762180	-1.778258
17	6	0	0.412230	-1.576122	1.224145
18	1	0	-0.367678	-2.211133	0.794891
19	1	0	1.204287	-2.247604	1.563821
20	1	0	0.000559	-1.082606	2.098672
21	6	0	0.146406	1.447139	1.334769
22	1	0	-0.401295	0.815059	2.026710
23	1	0	0.862895	2.039136	1.909570

24	1	0	-0.5	64784	2.15	53960	0.899	729	
Frequenc	cies	3177.8	3961	3	3178.8	8871	3	3788.	8611
Red. ma	isses	1.0	930		1.092	9	1.	.0668	
Fre cons	sts	6.503	34	6.	.5072		9.0	233	
IR Inten	ı	48.396	66	3.	.9820		338.	4017	
Atom A	AN :	X Y	Z	X	Y	Z	X	Y	Z
3 8	0.00	0.00	0.00	0.00	0.00	0.00	-0.06	0.00	0.02
8 1	0.00	0.00	0.00	0.00	0.00	0.00	0.94	-0.03	0.34

Equilibrium geometry at ωB97XD/cc-pVTZ for Methanol

opt freq b3lyp/cc-pvtz maxdisk=15GB geom=connectivity

		, tantaan	u Officia	tution.					
Center	Atom		tomic				es (Angs		s)
Number	Nur	nber	Type		X	Y	4	Z	
								-	
1	6	0	0.66	4866	-0.02	0024	0.000	000	
2	1	0	1.08	3605	0.98	5097	-0.000	001	
3	1	0	1.03	30345	-0.54	3067	-0.890	184	
4	1	0	1.03	30345	-0.54	3065	0.890	185	
5	8	0	-0.74	18847	0.12	1950	0.000	000	
6	1	0	-1.14	12722	-0.75	4419	0.000	000	
Frequence	ies	3027.0	903	•	3100.5	450	3	3828.3	3237
Red. mas	sses	1.10)51		1.096	4	1.	.0665	
Fre const	ts	5.966	2	6	5.2100		9.2	.093	
IR Inten		67.630	5	30	0.1465	i	25.	2290	
Atom A	N :	X Y	Z	X	Y	Z	X	Y	Z
5 8	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.06	0.00
6 1	0.00	0.00	0.00	0.00	-0.02	0.00	-0.42	-0.91	0.00

Equilibrium geometry at $\omega B97XD/cc\text{-pVTZ}$ for 9

opt freq wb97xd/cc-pvtz maxdisk=15GB geom=connectivity

Center	Atom		omic		s (Angstroms)
Number	Nun	nber	Type	X Y	Z
1	6	0	-0.664873	1.329876	1.135360
2	6	0	-2.099357	1.773411	-0.779643
3	6	0	-0.496934	-0.163722	-0.775123
4	6	0	-0.664963	1.329917	-1.135299
5	6	0	-0.496895	-0.163761	0.775118
6	6	0	-2.099291	1.773396	0.779835
7	1	0	-2.863724	1.124620	-1.201083
8	1	0	-2.295363	2.765520	1.185526
9	1	0	-0.356116	1.573925	2.148074
10	1	0	-2.295532	2.765531	-1.185307
11	1	0	-0.356265	1.574004	-2.148022
12	1	0	-2.863638	1.124616	1.201326
13	6	0	0.123563	2.022866	0.000014
14	6	0	0.840711	-0.863790	-1.135546
15	1	0	1.164066	-0.669409	-2.152516
16	6	0	0.840725	-0.863887	1.135451
17	1	0	1.164099	-0.669569	2.152421
18	6	0	0.738230	-2.365718	-0.779454
19	1	0	1.613004	-2.882552	-1.168203
20	1	0	-0.137931	-2.851781	-1.205274
21	6	0	0.738210	-2.365788	0.779248
22	1	0	1.612960	-2.882674	1.167977
23	1	0	-0.137976	-2.851865	1.205000

```
24
       6
                   1.747626 -0.430216 -0.000041
              0
25
                  -1.702260 -0.993691 1.147013
       6
              0
26
       8
              0
                  -2.120400 -1.277160 2.221060
27
       6
              0
                   -1.702278 -0.993689 -1.147006
28
       8
                   -2.120476 -1.277084 -2.221053
29
       8
              0
                   -2.335718 -1.435050 0.000002
30
       6
              0
                   2.992081 0.025620 -0.000002
31
                   1.174432 1.772997 -0.000037
       1
              0
32
       8
              0
                   0.093449
                             3.425832 0.000041
33
       1
              0
                   -0.811048 3.738816 -0.000286
34
                   3.745194 0.334738 1.261911
       6
              0
35
       1
              0
                   4.698165 -0.198768 1.279587
36
       1
              0
                   3.981146 1.401268 1.309177
37
       1
              0
                   3.194212 0.072420 2.161504
38
       6
              0
                   3.745096  0.335122  -1.261869
39
                   3.981450 1.401603 -1.308493
              0
       1
40
              0
                   4.697863 -0.198722 -1.280030
       1
              0
                   3.193846 0.073616 -2.161540
41
       1
```

Frequencies Red. masses	1	3215.3461 1.0870			3902.6614 1.0654			
Fre consts	6.44	95	(6.6211		9.:	5602	
IR Inten	1.684	3	5	.6146		18	3.9064	
Atom AN	X Y	Z	X	Y	Z	X	Y	Z
32 8 0.00	0.00	0.00	0.00	0.00	0.00	-0.06	0.02	0.00
33 1 0.00	0.00	0.00	-0.02	0.00	0.00	0.94	-0.34	0.00