Empirical Evaluation of the Ensemble Framework for Feature Selection in DDoS Attack

Saikat Das, Deepak Venugopal, and Sajjan Shiva Department of Computer Scinece The University of Memphis Memphis, TN, USA {sdas1, dvngopal, sshiva}@memphis.edu Frederick T. Sheldon
Department of Computer Science
University of Idaho
Moscow, ID, USA
sheldon@uidaho.edu

I. INTRODUCTION

This document is meant to be used alongside the article "Empirical Evaluation of the Ensemble Framework for Feature Selection in DDoS Attack". The rest of this document is a collection of ROC curves and tables containing results of conducted all experiments. ROC curves are also stored as an image format in https://github.com/simplysaikat/EnFS/tree/master/ROC_AUC/

II. MORE EXPERIMENTAL RESULTS

In this section, ROC curves using seven selection methods and the overview of all experimental results are shown in graphically and in tabular form, respectively.

A) ROC Curves

Fig. 1. ROC curve using Pearson Method

Fig. 2. ROC curve using Chi-Square Method

Fig. 3. ROC curve using Mutual Information Method

Fig. 4. ROC curve using LASSO Method

Fig. 5. ROC curve using LR with L1 penalty Method

Fig. 6. ROC curve using Random Forest Method

Fig. 7. ROC curve using Recursive Feature Elimination Method

B) Tables

TABLE I. DATA CLASSIFICATION OVERVIEW WITH ENSEMBLE SUPERVISED FRAMEWORK [2] USING EXTRACTED FEATURES FROM SEVEN SELECTION METHODS AND FROM ENFS, AND WITHOUT USING ANY FEATURE SELECTION METHOD.

Method	Model Category	Model Name	F-1 Score	Accuracy	Precision	Recall	FPR
Pearson	Individual	LR	0.814	0.855	0.921	0.729	0.048
Correlation		NB	0.822	0.859	0.911	0.750	0.056
(F#1)		NN	0.344	0.656	0.998	0.208	0.000
		DT	0.808	0.857	0.976	0.689	0.013
		SVM	0.834	0.874	0.977	0.728	0.013
	Ensemble	Ens_MV	0.808	0.859	0.989	0.684	0.006
		Ens_LR	0.874	0.895	0.903	0.848	0.070
		Ens_NB	0.852	0.880	0.913	0.799	0.058
		Ens_NN	0.879	0.897	0.895	0.863	0.077
		Ens_DT	0.882	0.904	0.941	0.830	0.040
		Ens_SVM	0.882	0.904	0.940	0.830	0.041
Chi-Square	Individual	LR	0.802	0.848	0.923	0.709	0.045
(F#2)		NB	0.820	0.857	0.909	0.747	0.058
		NN	0.859	0.892	0.987	0.761	0.008
		DT	0.826	0.869	0.975	0.717	0.014
		SVM	0.887	0.910	0.980	0.810	0.013

	Ensemble	Ens MV	0.841	0.880	0.985	0.734	0.008
	Liisemole	Ens LR	0.912	0.929	0.980	0.853	0.013
		Ens NB	0.908	0.922	0.921	0.895	0.058
		Ens NN	0.916	0.926	0.900	0.932	0.079
		Ens DT	0.925	0.936	0.941	0.909	0.043
		Ens SVM	0.924	0.935	0.939	0.909	0.045
Mutual	Individual	LR LR	0.754	0.826	0.979	0.613	0.010
Mutual Information	individual	NB	0.732	0.731	0.646	0.846	0.357
(F#3)		NN	0.780	0.842	0.986	0.646	0.007
(1.43)		DT	0.780	0.842	0.955	0.763	0.028
		SVM	0.822	0.867	0.977	0.710	0.028
	Ensemble	Ens MV	0.823	0.867	0.981	0.709	0.013
	Liiseilible	Ens LR	0.864	0.891	0.937	0.802	0.041
		Ens NB	0.859	0.886	0.925	0.803	0.041
		Ens_NB Ens_NN	0.868	0.895	0.923	0.801	0.034
		Ens_NN Ens DT	0.869	0.895	0.948	0.801	0.034
		_			0.930		
LASSO	Individual	Ens_SVM	0.867	0.894		0.801	0.036
(F#4)	individuai	LR	0.869	0.894	0.936	0.811	0.043
(F# 4)		NB	0.812	0.852	0.907	0.735	0.058
		NN	0.873	0.901	0.988	0.781	0.007
		DT	0.914	0.931	0.991	0.848	0.006
	F	SVM	0.873	0.901	0.989	0.781	0.007
	Ensemble	Ens_MV	0.870	0.899	0.989	0.777	0.007
		Ens_LR	0.918	0.934	0.989	0.856	0.007
		Ens_NB	0.898	0.915	0.939	0.859	0.042
		Ens_NN	0.921	0.936	0.989	0.862	0.007
		Ens_DT	0.921	0.936	0.989	0.862	0.007
ID 11 I1	T 1' ' 1 1	Ens_SVM	0.919	0.935	0.988	0.859	0.008
LR with L1	Individual	LR	0.796	0.844	0.917	0.703	0.049
(F#5)		NB	0.565	0.447	0.429	0.828	0.846
		NN	0.861	0.893	0.985	0.765	0.009
		DT	0.820	0.866	0.986	0.702	0.008
	T 11	SVM	0.826	0.870	0.988	0.709	0.007
	Ensemble	Ens_MV	0.829	0.871	0.984	0.715	0.009
		Ens_LR	0.887	0.911	0.982	0.808	0.011
		Ens_NB	0.888	0.912	0.982	0.811	0.011
		Ens_NN	0.921	0.936	0.989	0.862	0.007
		Ens_DT	0.886	0.910	0.985	0.804	0.009
		Ens_SVM	0.888	0.912	0.982	0.811	0.011
Random	Individual	LR	0.798	0.846	0.928	0.700	0.042
Forests (F#6)		NB	0.835	0.871	0.934	0.755	0.041
		NN	0.325	0.650	1.000	0.194	0.000
		DT	0.834	0.875	0.983	0.725	0.010
		SVM	0.825	0.870	0.997	0.703	0.001
	Ensemble	Ens_MV	0.804	0.857	0.999	0.672	0.001
		Ens_LR	0.898	0.918	0.977	0.831	0.015
		Ens_NB	0.862	0.889	0.927	0.806	0.048
		Ens_NN	0.889	0.907	0.923	0.857	0.055
		Ens_DT	0.898	0.918	0.977	0.831	0.015
		Ens_SVM	0.898	0.918	0.977	0.831	0.015
Recursive	Individual	LR	0.841	0.874	0.928	0.770	0.046
Feature		NB	0.786	0.824	0.833	0.743	0.114
Elimination		NN	0.778	0.785	0.705	0.866	0.278
(F#7)		DT	0.818	0.864	0.981	0.702	0.011
		SVM	0.825	0.870	0.986	0.710	0.008

	Ensemble	Ens_MV	0.817	0.857	0.923	0.732	0.047
		Ens_LR	0.891	0.913	0.979	0.817	0.013
		Ens_NB	0.844	0.876	0.921	0.779	0.051
		Ens_NN	0.890	0.913	0.986	0.811	0.008
		Ens_DT	0.893	0.916	0.990	0.813	0.006
		Ens_SVM	0.893	0.916	0.990	0.814	0.006
EnFS	Individual	LR	0.885	0.905	0.933	0.842	0.046
		NB	0.836	0.861	0.857	0.815	0.104
		NN	0.830	0.866	0.923	0.754	0.048
		DT	0.920	0.935	0.986	0.863	0.009
		SVM	0.967	0.972	0.984	0.949	0.012
	Ensemble	Ens_MV	0.888	0.907	0.938	0.843	0.043
		Ens_LR	0.970	0.974	0.988	0.953	0.009
		Ens_NB	0.946	0.952	0.942	0.950	0.046
		Ens_NN	0.970	0.974	0.992	0.949	0.006
		Ens_DT	0.971	0.975	0.991	0.952	0.006
		Ens_SVM	0.970	0.974	0.989	0.952	0.009
Without any	Individual	LR	0.846	0.877	0.930	0.775	0.045
feature		NB	0.807	0.856	0.971	0.690	0.016
selection		NN	0.840	0.873	0.933	0.763	0.042
(Full Feature		DT	0.875	0.895	0.928	0.832	0.021
Set)		SVM	0.866	0.897	0.990	0.770	0.006
	Ensemble	Ens_MV	0.858	0.891	0.988	0.759	0.007
		Ens_LR	0.804	0.857	0.938	0.722	0.010
		Ens_NB	0.870	0.892	0.925	0.821	0.052
		Ens_NN	0.872	0.901	0.930	0.835	0.013
		Ens_DT	0.884	0.900	0.878	0.890	0.011
		Ens_SVM	0.834	0.845	0.882	0.791	0.012

REFERENCES

^[1] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set," Submitted to Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), 2009.

^[2] Das, Saikat, et al. "DDoS Intrusion Detection Through Machine Learning Ensemble." 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2019.