

planetmath.org

Math for the people, by the people.

completion of a measure space

Canonical name CompletionOfAMeasureSpace

Date of creation 2013-03-22 14:06:59 Last modified on 2013-03-22 14:06:59

Owner Koro (127) Last modified by Koro (127)

Numerical id 9

Author Koro (127) Entry type Derivation Classification msc 28A12 If the measure space (X, \mathcal{S}, μ) is not complete, then it can be completed in the following way. Let

$$\mathscr{Z} = \bigcup_{E \in \mathscr{S}, \mu(E) = 0} \mathscr{P}(E),$$

i.e. the family of all subsets of sets whose μ -measure is zero. Define

$$\overline{\mathscr{S}} = \{A \cup B : A \in \mathscr{S}, \, B \in \mathscr{Z}\}.$$

We assert that $\overline{\mathscr{S}}$ is a σ -algebra. In fact, it clearly contains the emptyset, and it is closed under countable unions because both \mathscr{S} and \mathscr{Z} are. We thus need to show that it is closed under complements. Let $A \in \mathscr{S}$, $B \in \mathscr{Z}$ and suppose $E \in \mathscr{S}$ is such that $B \subset E$ and $\mu(E) = 0$. Then we have

$$(A \cup B)^c = A^c \cap B^c = A^c \cap (E - (E - B))^c = A^c \cap (E^c \cup (E - B)) = (A^c \cap E^c) \cup (A^c \cap (E - B)),$$

where $A^c \cap E^c \in \mathscr{S}$ and $A^c \cap (E - B) \in \mathscr{Z}$. Hence $(A \cup B)^c \in \overline{\mathscr{S}}$.

Now we define $\overline{\mu}$ on $\overline{\mathscr{S}}$ by $\overline{\mu}(A \cup B) = \mu(A)$, whenever $A \in \mathscr{S}$ and $B \in \mathscr{Z}$. It is easily verified that this defines in fact a measure, and that $(X, \overline{\mathscr{S}}, \overline{\mu})$ is the completion of (X, \mathscr{S}, μ) .