Understanding BB84 and BBM92 Protocol

June 10, 2025

BB84 Protocol: Basic Overview

- Proposed in 1984, BB84 is a foundational Quantum Key Distribution (QKD) protocol.
- Goal: Securely generate and share a secret cryptographic key between two parties — Alice and Bob.
- How it works:
 - Alice prepares a random string of qubits in one of four states:

$$|0\rangle, |1\rangle, |+\rangle, |-\rangle$$

- Alice sends these qubits to Bob over a quantum channel.
- Bob randomly chooses to measure each qubit in either:
 - Standard basis: $|0\rangle, |1\rangle$
 - Hadamard basis: $|+\rangle, |-\rangle$
- Bob publicly announces which basis he used for each measurement.
- Alice tells Bob which measurements used the matching basis.
- Only qubits measured in matching bases are kept; the rest are discarded.
- On average, Bob's basis matches Alice's basis 50% of the time.
- Retained qubits form the raw key, which should be identical for both.

BB84 Protocol: Key Verification

- To verify correctness and detect eavesdropping:
 - Bob selects a random subset of the raw key (verification string).
 - Bob publicly announces the measurement results and positions of these qubits.
 - Alice compares with her own bits.
- If the error rate exceeds a tolerable threshold, the key is discarded potential eavesdropping detected.
- Otherwise, Alice and Bob share a perfectly symmetric, random, and unconditionally secure quantum key.

BBM92 Protocol: Basic Overview

- BBM92 is an entanglement-based QKD protocol proposed in 1992.
- Uses pairs of entangled particles called EPR pairs, shared between Alice and Bob.

• Protocol steps:

- Alice generates EPR pairs and sends one particle from each pair to Bob.
- Bob randomly measures each incoming particle in either:
 - Standard (Z) basis
 - Hadamard (X) basis
- Alice publicly reveals the basis she used for each particle.
- Bob discards measurements done in the wrong basis, keeping only the rest (the sifted key).
- On average, bases match with probability $\frac{1}{2}$.
- Alice and Bob publicly compare a subset of remaining bits to estimate the error rate.
- They apply reconciliation and privacy amplification to distill a secure secret key.

Security and Significance of BBM92

- Security comes from **quantum entanglement**:
 - Any eavesdropping attempt disturbs the entanglement, detectable as errors.
 - Cloning entangled particles is impossible (no-cloning theorem), so attacks are detected.
- Ensures unconditional security under ideal conditions.
- The entanglement link provides intrinsic correlation for generating a shared secret key.
- Widely studied and forms the basis for many modern entanglement-based QKD implementations.

QBER Formula

Quantum Bit Error Rate (BB84)

$$e_{84} = rac{c \cdot p_{\mathsf{signal}} + rac{1}{2}(p_{\mathsf{dark}} + p_{\mathsf{straycounts}})}{p_{\mathsf{click}}}$$

- Estimates the fraction of detected bits that are erroneous.
- Includes both signal-based and noise-based contributions to error.

Term Definitions

- c: Intrinsic error rate (e.g., imperfect preparation, polarization drift, basis mismatch).
- p_{signal} : Probability of photon detection originating from Alice.
- p_{dark}: Probability of detection due to internal detector noise.
- p_{straycounts}: Probability of detection due to external photons (environmental).
- p_{click}: Overall probability of any detection:

$$p_{\text{click}} = p_{\text{signal}} + p_{\text{dark}} + p_{\text{straycounts}}$$

Why Do Errors Happen in QKD?

Signal Error (c):

- Decoherence of quantum states in fiber.
- Misalignment between Alice's and Bob's polarization bases.
- Imperfect detectors or waveplates.

Dark Counts (p_{dark}):

- Thermal noise or spontaneous electron emission inside detector.
- Unrelated to any incoming signal.

• Stray Counts ($p_{\text{straycounts}}$):

- Ambient light leakage (daylight, moonlight).
- Reflected photons from atmosphere or surroundings.
- More dominant in free-space QKD.

Contribution from Valid Signal

Signal Error =
$$c \cdot p_{\text{signal}}$$

- Even valid photons may be incorrectly measured.
- c is typically a small number (1-2%).
- Models inherent system imperfections.

Contribution from Noise Sources

Noise Error
$$=\frac{1}{2}(p_{\mathsf{dark}}+p_{\mathsf{straycounts}})$$

- These events are uncorrelated with Alice's signal.
- ullet Bob assigns a random bit o 50% chance of error.
- Noise dominates when p_{signal} is weak (e.g., over long distance or in bad weather).

Normalization by p_{click}

Interpretation

$$e_{84} = \frac{\text{Errors from signal and noise}}{\text{Total detection events}}$$

- p_{click} ensures QBER reflects actual error rate among observed events.
- Allows accurate estimation of key loss due to noise and imperfections.

Signal Detection Probability in QKD

Formula:

$$p_{\mathsf{signal}} = 1 - \mathsf{exp}(-\eta_{\mathsf{d}}\eta_{\mathsf{T}}\mu)$$

Where:

- η_d = Detector efficiency
- η_T = Channel transmittance efficiency
- ullet $\mu=$ Average number of photons per pulse

Physical Meaning:

- Models the probability that Bob detects at least one photon from Alice.
- The term $\exp(-\eta_d \eta_T \mu)$ is the probability of *zero* detections.

Derivation: Poisson Statistics

Photon emission is Poisson-distributed:

$$P(n) = \frac{\mu^n e^{-\mu}}{n!}, \quad P(0) = e^{-\mu}$$

After transmission and detection losses:

$$\lambda = \eta_d \eta_T \mu$$

$$P(0 \text{ photons detected}) = e^{-\lambda} = e^{-\eta_d \eta_T \mu}$$

Thus,

$$p_{\mathsf{signal}} = 1 - \exp(-\eta_{\mathsf{d}}\eta_{\mathsf{T}}\mu)$$

Intuition: Detection = "at least one photon survives and is detected."

Dark Count Probability in QKD

Formulas:

$$p_{\mathsf{dark}} = 4d$$
 $d = D \cdot t_w$

Where:

- D = Dark count rate (counts per second per detector)
- $t_w = \text{Detection time window (in seconds)}$
- ullet d = Probability of a dark count in one detector during one window
- p_{dark} = Total dark count probability across 4 detectors

Intuition Behind Dark Count Formula

Why does this happen?

- Detectors can click even without a photon—due to thermal noise or electronics.
- These are called dark counts and occur randomly.

Explanation of Terms:

- $d = D \cdot t_w$: probability that one detector fires during a time window.
- 4*d*: there are 4 detectors in BB84's passive detection module (2 bases × 2 outcomes).

Impact:

- When p_{signal} is low (due to high loss or low μ), p_{dark} becomes significant.
- This increases the QBER because dark count detections are random $\Rightarrow 50\%$ error chance.

Why Stray Photons Matter in QKD

- QKD detectors cannot distinguish between photons sent by Alice and stray photons (environmental noise).
- Stray photons cause false detections, increasing the Quantum Bit Error Rate (QBER).
- Managing stray photons is crucial to maintain secure key rates.

Stray Photons in Uplink (Ground \rightarrow Satellite) at Night

 Background photons mainly come from sunlight reflected by the Moon and Earth:

$$\mathsf{Sun} \to \mathsf{Moon} \to \mathsf{Earth} \to \mathsf{Telescope}$$

Number of stray photons entering the detector:

$$N_{
m up,\ night} = A_E A_M R_M^2 rac{a^2 \Omega_{
m fov}}{d_{EM}^2} \cdot B_f \cdot \Delta t \cdot H_{
m sun}$$

Parameter significance:

- H_{sun} : Solar brightness sets total background light level
- \bullet A_M , A_E : Reflectivity (albedo) how much light the Moon and Earth reflect
- a: Telescope radius larger aperture collects more photons
- \bullet $\Omega_{\text{fov}}:$ Field of view wider FOV lets in more background light
- B_f: Filter bandwidth wider bandwidth lets in more wavelengths (more noise)
- Δt: Detection time window longer window accumulates more stray photons

Stray Photon Detection Probability (Uplink)

$$p_{\mathsf{straycounts}} = \eta_d \cdot \mathsf{N}_{\mathsf{up, night}}$$

- η_d : Detector efficiency probability to register an incoming stray photon.
- Stray photons increase false click rate, raising QBER.

Stray Photons in Downlink (Satellite → Ground)

- Background photons depend on sky brightness H_b , affected by moon phase, weather, city lights.
- Background power at telescope:

$$P_b = H_b \cdot \Omega_{\text{fov}} \cdot \pi a^2 \cdot B_f$$

• Convert to photon counts in time window Δt :

$$N_{\mathsf{down}} = \frac{P_b}{h\nu} \cdot \Delta t = \frac{H_b}{h\nu} \cdot \Omega_{\mathsf{fov}} \cdot \pi a^2 \cdot B_f \cdot \Delta t$$

Where:

• $h\nu$: photon energy (Planck constant \times frequency)

Stray Photon Detection Probability (Downlink)

$$p_{\mathsf{straycounts}} = \eta_d \cdot \mathsf{N}_{\mathsf{down}}$$

- Increased background brightness or wider FOV increases stray photon noise.
- This directly affects QBER and the security of the key.

Summary: Controlling Stray Photons

- Minimize Field of View (Ω_{fov}) : narrower FOV reduces background light.
- Use narrow spectral filters (B_f) : blocks out-of-band light.
- Optimize detection window (Δt): short window limits noise accumulation.
- Improve detector efficiency (η_d) carefully more efficiency means more signal but also more stray photon detection.

Proper balance ensures secure QKD operation with low QBER.

QBER for BBM92 Protocol: Overview

- QBER depends on:
 - Losses in the quantum channel (fiber, free-space)
 - Detector quality (efficiency, noise)
 - Environmental noise and stray photons
- Define combined channel and detector efficiency:

$$\alpha_L = \eta_{\text{det}} \times \eta_T$$

where

- η_{det} : Detector efficiency (probability detector clicks if photon arrives)
- η_T : Channel transmittance (fraction of photons reaching detector)

Coincidence Probability Breakdown

The total coincidence probability at Bob's side:

$$p_{\text{coin}} = p_{\text{true}} + p_{\text{false}} + p_{\text{straycounts}}$$

- p_{true}: Probability of detecting genuine entangled photon pairs.
- p_{false}: Probability of false coincidences caused by detector noise and accidental detections.
- p_{straycounts}: Probability of counts caused by stray environmental photons (e.g., background light).

True Coincidence Probability

$$p_{\text{true}} = \alpha_{\text{x}} \times \alpha_{\text{L-x}} = \eta_{\text{det}} \times \alpha_{\text{L}}$$

- Represents the chance both entangled photons successfully reach and are detected by Alice and Bob.
- Depends on channel loss on each path (α_x, α_{L-x}) .
- Detector efficiency η_{det} accounts for imperfect photon detection.
- True coincidences carry useful quantum information.

False Coincidence Probability: Physical Origins

$$p_{\mathsf{false}} = 4\alpha_{\mathsf{X}}d + 4\alpha_{\mathsf{L}-\mathsf{X}}d + 16d^2$$

where d is the dark count probability per detector.

- **Dark Counts:** False detections caused by thermal noise or electronics in detectors.
- Accidental Coincidences: Random overlaps of independent dark counts or noise events.
- Terms explained:
 - $4\alpha_x d$: One genuine photon at Alice's side coincides with a dark count at Bob's detectors.
 - $4\alpha_{L-x}d$: One genuine photon at Bob's side coincides with a dark count at Alice's detectors.
 - 16d²: Both detections are dark counts occurring simultaneously by chance.
- False coincidences introduce errors because they do not carry entangled photon information.

Why Does Source Position Affect False Coincidences?

- α_X and α_{L-X} depend on distance losses placing the source closer to one party reduces their channel loss but increases it for the other.
- p_{false} depends on these efficiencies multiplied by dark count probabilities.
- Minimizing false coincidences means balancing the losses:

Optimal source position:
$$x = \frac{L}{2}$$

 At halfway, losses are balanced, minimizing false coincidence probability:

$$p_{\mathsf{false}} = 8\alpha_{L/2}d + 16d^2$$

QBER Formula for BBM92

$$e_{\mathsf{BBM92}} = rac{c \cdot p_{\mathsf{true}} + rac{1}{2}(p_{\mathsf{false}} + p_{\mathsf{straycounts}})}{p_{\mathsf{coin}}}$$

- c: intrinsic error rate from imperfect entanglement or alignment errors.
- p_{true} errors contribute fully (scaled by c).
- False and stray counts are random and cause errors with 50% probability (random bit values).
- Numerator = total error contribution.
- Denominator = total detected coincidences (signal + noise).

Summary: Physical Significance

- True coincidences are desired events carrying secure quantum info.
- False coincidences arise from detector noise and accidental overlaps:
 - Detector dark counts cause fake clicks.
 - Imbalance in source placement changes how losses affect noise.
- Stray photons add environmental noise, increasing error rates.
- Minimizing false and stray counts is crucial for low QBER and secure key generation.

Graph of QBER with transmittance

Graph of QBER with zenith angle

Conclusion from QBER Graphs

• QBER vs Channel Transmittance η_t :

- QBER for both BB84 and BBM92 decreases rapidly as transmittance increases.
- At high η_t , both protocols asymptotically approach a minimum QBER close to the intrinsic error (around 2%).
- BB84 and BBM92 show nearly identical performance at higher transmittance levels.

QBER vs Zenith Angle:

- As zenith angle increases (i.e., link becomes more oblique), QBER increases for both protocols.
- BBM92 shows slightly higher QBER than BB84 across all zenith angles.
- The steep increase in QBER at high zenith angles is due to increased atmospheric attenuation and background noise.

Conclusion: BB84 vs BBM92

- In theory, BB84 and BBM92 are equivalent in ideal conditions same QBER and SKR.
- In practice, BBM92 uses **entangled photon pairs**, which are:
 - More sensitive to channel loss and timing jitter.
 - Affected by coincidence detection inefficiency and multi-photon noise.
- BB84, based on single-photon preparation, is more robust in lossy and noisy environments.
- In the simulated night-time downlink:
 - BBM92 shows slightly higher QBER due to degraded entanglement fidelity.
 - BB84 maintains marginally lower QBER across zenith angles and transmittance.
- **Conclusion:** BB84 performs marginally better under realistic conditions with noise and attenuation.

Secure Key Rate for BB84 and Parameters

The secure key rate under photon number splitting (PNS) attack for BB84:

$$R_{BB84} = rac{1}{2} p_{ ext{click}} \left[(1 - au') + f(e_{84}) \left(e_{84} \log_2(e_{84}) + (1 - e_{84}) \log_2(1 - e_{84})
ight)
ight]$$

Key Parameters:

- p_{click} : Total probability of detector clicks (signal + noise).
- e₈₄: Quantum Bit Error Rate (QBER).
- $f(e_{84})$: Error correction inefficiency factor.
 - Accounts for the extra bits revealed during classical error correction beyond the Shannon limit.
 - Typical values: 1.15–1.22, meaning actual error correction leaks 15-22% more information than ideal.
- \bullet τ' : Effective privacy amplification term, quantifying bits to discard for security.

This formula accounts for sifting, error correction, and privacy amplification.

Privacy Amplification Term au'

$$au' = au \left(rac{e_{84}}{eta}
ight)$$

$$au(e) = egin{cases} \log_2(1 + 4e - 4e^2), & ext{if } e < rac{1}{2} \\ 1, & ext{if } e \geq rac{1}{2} \end{cases}$$

Origin of the τ formula:

- Derived from information-theoretic security bounds on Eve's maximum knowledge.
- The term inside the logarithm estimates Eve's guessing probability based on error rate.
- For $e \ge 0.5$, the key is considered insecure; all bits must be discarded.

Privacy Amplification Term au'

Why bits are discarded in privacy amplification:

- To eliminate any partial information Eve might have about the key.
- Privacy amplification shortens the raw key, sacrificing bits for unconditional security.
- The function $\tau'(e)$ sets how many bits must be removed based on effective error rate and security parameter.

Security Parameter β

$$\beta = \frac{p_{\text{click}} - p'}{p_{\text{click}}}$$

- β is the fraction of detection events considered secure (not vulnerable to multiphoton attacks).
- p' is the probability of insecure multiphoton pulses that an eavesdropper could exploit.
- Bits corresponding to insecure multiphoton pulses must be discarded or treated carefully to maintain security.
- ullet Therefore, eta reduces the effective error rate used in privacy amplification, reflecting the realistic secure fraction of the key.

Why bits are discarded due to β :

- Multiphoton pulses can leak information to Eve without detection.
- To be conservative, bits from these insecure pulses are excluded from the final key.
- This ensures only detections from single-photon (secure) pulses contribute to the final secure key.

Insecurity from Multiphoton Pulses

The term p' accounts for multi-photon pulses:

$$p' = 1 - \left(1 + \mu + \frac{\mu^2}{2} + \frac{\mu^3}{12}\right) e^{-\mu}$$

Where:

- μ : mean photon number per pulse.
- This models the probability of pulses with > 4 photons.

Significance of pulses with > 4 photons:

- In weak coherent sources, photon number follows a Poisson distribution.
- Multiphoton pulses are vulnerable to Photon Number Splitting (PNS) attacks.
- Pulses with 4 or more photons provide Eve multiple copies, increasing information leakage risk.
- Including these pulses in p' offers a conservative estimate of insecure pulses.
- Bits from such pulses must be discarded or treated cautiously to maintain security.

Summary

- The key rate R_{BB84} combines detection, error correction, and security bounds.
- Multiphoton pulses are considered insecure due to vulnerability to PNS attacks.
- Privacy amplification compensates for leaked information, quantified by au'.
- Error correction leakage is accounted for by f(e).
- The goal is to maximize secure key generation while bounding Eve's knowledge.

BBM92 Key Rate under Double Blinding Attack

The secure key rate is given by:

$$R_{BBM92} = \frac{p_{\text{coin}}}{2} \left\{ \tau(e_{M92}) + f(e_{M92}) \left[e_{M92} \log_2(e_{M92}) + (1 - e_{M92}) \log_2(1 - e_{M92}) \right] \right\}$$

- p_{coin} : Coincidence probability (both detectors click simultaneously).
- $\frac{1}{2}$: Basis sifting factor only matched basis outcomes count.
- $\tau(e_{M92})$: Privacy amplification term.
- $f(e_{M92})$: Error correction inefficiency factor.
- e_{M92} : Quantum Bit Error Rate (QBER).

Privacy Amplification Term $\tau(e_{M92})$

- Quantifies bits that must be discarded to eliminate Eve's partial knowledge.
- Depends on measured QBER e_{M92} .
- Under **double blinding attack**, Eve's presence is undetectable:

$$\tau(e_{M92})=0$$

 No bits are discarded for privacy amplification — security is compromised.

Error Correction and QBER Terms

- $f(e_{M92})$: Efficiency factor accounting for overhead in practical error correction.
- $e_{M92} \log_2(e_{M92}) + (1 e_{M92}) \log_2(1 e_{M92})$: Shannon entropy of error distribution.
- Represents the fraction of bits lost during error correction.
- Overall, this term reduces the key rate due to noise/errors.

Summary and Security Implications

- The formula combines raw detection rates and bits lost to error correction and privacy amplification.
- Double blinding attack leads to $\tau=0$, meaning Eve's presence is invisible.
- No privacy amplification means Eve can potentially know the entire key.
- Security of BBM92 is severely compromised under such an attack.

Graph of SKR with transmittance

Graph of SKR with zenith angle

Conclusion from SKR Graphs

SKR vs Transmittance:

- BB84 shows significantly higher secure key rate than BBM92 across all values of channel transmittance η_t .
- SKR for both protocols increases with transmittance, but BB84 scales more efficiently.

SKR vs Zenith Angle:

- As zenith angle increases (i.e., more atmospheric attenuation), SKR for both protocols decreases.
- BB84 consistently outperforms BBM92, especially at lower zenith angles.
- SKR for BBM92 drops more sharply near high zenith angles.
- **Overall:** BB84 achieves higher secure key rates than BBM92 for the same channel conditions.

Conclusion: BB84 vs BBM92 (Key Rate Perspective)

- Although both protocols are theoretically secure, their practical efficiency differs.
- BBM92 is based on coincidence detection of entangled photon pairs, which results in:
 - Lower raw detection rates due to photon-pair splitting.
 - More susceptibility to background noise and timing errors.
 - Sifting factor of 1/2 further reduces SKR.
- BB84 benefits from:
 - Direct single-photon detection with higher transmission probability.
 - Lower overhead in detection and post-processing.
- **Conclusion:** BB84 provides a higher SKR than BBM92 in realistic conditions, especially under free-space loss.

BB84 Protocol over FSO Channel

Introduction to FSO-QKD

- Free-Space Optical (FSO) QKD uses open-air or satellite links instead of optical fibers.
- Although many QKD protocols have been implemented over optical fiber, the achievable distance is limited to a few hundred kilometers due to exponential fiber loss.
- In contrast, FSO channels (both terrestrial and satellite) allow global-scale secure quantum communication.
- FSO QKD overcomes the distance limitation of fiber-based QKD, making it suitable for long-distance quantum communication.
- However, the main challenge for FSO-QKD is atmospheric losses, such as turbulence, scattering, and absorption.
- Protocols discussed:
 - BB84 (Prepare-and-measure)
 - BBM92 (Entanglement-based)

Free-Space Losses in QKD

- Geometric Losses: Due to beam spreading between transmitter and receiver.
 - Expressed as:

$$\left(\frac{d_r}{d_t + DL}\right)^2$$

- Where d_r , d_t : diameters of receiver/transmitter apertures D: beam divergence (mrad), L: channel length (m).
- Atmospheric Losses: Due to absorption and scattering in the atmosphere.
 - Modeled using Beer-Lambert Law:

$$\tau = \exp(-\alpha L)$$

• α : atmospheric attenuation coefficient (in dB/km)

Total Free-Space Transmittance

Combined Loss Formula

$$T = \left(\frac{d_r}{d_t + DL}\right)^2 \exp(-\alpha L)$$

- Combines both geometric and atmospheric attenuation.
- Interpretation:
 - At short range (e.g., lab): geometric loss dominates.
 - At long range (e.g., ground-satellite): exponential atmospheric loss dominates.

BB84 QBER Formula:

Quantum Bit Error Rate (QBER):

$$Q = P_{\mathsf{opt}} + \frac{\beta \cdot P_{\mathsf{nc}} \cdot n}{T \eta q \mu}$$

Parameter Explanations:

- *P*_{opt}: Probability of incorrect detections due to imperfect polarization contrast or interference (e.g., optical misalignment).
- P_{nc}: Probability of noise counts includes detector dark counts and background light from the environment.
- β : Protocol-dependent factor.
 - For BB84: $\beta = \frac{1}{2}$
 - For six-state protocol: $\beta = \frac{2}{3}$
- n: Number of detectors (typically 4 for BB84).
- T: Total channel transmittance (geometric × atmospheric).

BB84 QBER Formula:

Remaining Parameters:

- η : Detector quantum efficiency (typical value: 0.6–0.7).
- q: Correction factor due to non-interfering basis combinations; q = 0.5 for BB84.
- ullet μ : Mean photon number; $\mu=1$ for single-photon sources.

Interpretation:

- As the transmittance T decreases (i.e., under higher loss), the noise term becomes dominant and QBER increases.
- \bullet High QBER means less secure key bits. A typical security threshold for BB84 is Q<11%.
- Optimizing all these parameters is critical to achieving secure key generation in FSO links.

BB84 Secret Key Rate (SKR)

Secret Key Rate Formula:

$$S_{\text{BB84}} = \frac{1}{2} \nu_s T \left[1 + 2Q \log_2 Q + 2(1 - Q) \log_2 (1 - Q) \right]$$

Parameters:

- ν_s : Heralded single-photon count rate at the sender's side.
 - For this study: $\nu_s = 0.64 \times 10^6$ counts per second per mW (from SPDC source brightness).
- T: Channel transmittance (includes geometric and atmospheric loss).
- Q: QBER, affects the binary entropy and hence the extractable key.

Key Points:

- The SKR decreases sharply as QBER increases due to increased redundancy from error correction.
- High transmittance and low QBER maximize SKR.

Impact of Detector Efficiency and Noise on BB84 Performance

Observation from QBER and SKR analysis for BB84:

- Detector efficiency values analyzed: $\eta = 0.4, \ 0.6, \ 0.8$
- Noise count probabilities considered: $P_{nc} = 10^{-5}, 10^{-4}, 10^{-3}$
- Fixed parameters: q=0.5, $\mu=1$, $P_{\rm opt}=0.001$, $\nu_{\rm S}=0.64\times 10^6$ cps, n=4

Key Results for BB84:

- Threshold QBER: 11%
- Noise Tolerance: BB84 tolerates up to **33 dB channel loss** at $\eta = 0.4$.
- Trends:
 - Increasing $\eta \Rightarrow$ reduces QBER and extends secure distance.
 - Decreasing $P_{nc} \Rightarrow$ reduces background-induced errors.
 - SKR remains high under low loss, but drops sharply near the QBER threshold.
- Inference: Use high-efficiency, low-noise detectors to support longer secure communication distances in BB84-based FSO QKD.

BBM92 Protocol over FSO Channel

Two-Photon Interference and Visibility in BBM92

Entangled photon quality is characterized by:

Visibility in polarization bases:

$$V_{\rm tot} = \frac{V_{HV} + V_{\pm 45}}{2}$$

- V_{HV}: visibility in the horizontal/vertical (rectilinear) basis
- $V_{\pm 45}$: visibility in the diagonal basis
- Intrinsic QBER due to source imperfection:

$$q_i = \frac{1 - V_{\text{tot}}}{2}$$

ullet High-quality entangled sources yield $V_{\mathsf{tot}} o 1$ and hence $q_i o 0$

Physical meaning:

- Visibility measures how strongly the detection outcomes are correlated.
- Any deviation from perfect correlation indicates decoherence, loss, or experimental error.
- experimental error.
 q_i sets the lower bound of error even in ideal conditions (without Eve).

Coincidence Rate and Signal Detection in BBM92

Coincidence rate r_c :

- Number of simultaneous photon detections at Alice and Bob's detectors.
- Dependent on:
 - Source rate: $r_1 = r_2 = \nu_s$
 - Detector efficiency: η
 - Collection efficiency into fibers: η_c
- Modeled as:

$$r_c = \eta^2 \eta_c^2 r_1$$

Signal coincidence rate (raw key rate):

$$r_{\rm sig} = \frac{1}{2} r_c T$$

- Represents valid, correlated detections from entangled pairs.
- The factor 1/2 arises from basis matching probability.

Accidental Coincidence Rate in BBM92

Accidental coincidence rate r_a :

- Results from false coincidences not from entangled pairs.
- Caused by dark counts and external background (e.g., stray light).
- Source at Alice's side:

$$r_a = \frac{1}{2}(r_1 - Tr_c)(r_{bg} + T(r_2 - r_c))\tau_c$$

Source in the middle (both arms exposed):

$$r_a = \frac{1}{2}(r_{bg} + T(r_1 - r_c))(r_{bg} + T(r_2 - r_c))\tau_c$$

Parameters:

- $r_{\rm bg} = P_{nc} \cdot r_1$: background count rate
- ullet $au_c=2$ ns: coincidence timing window

Impact: Accidental coincidences increase QBER and reduce key generation rate. Positioning the source in the middle increases their contribution.

BBM92 QBER Formula and Interpretation

Total QBER:

$$Q = \frac{1}{r_{\rm sig} + r_a} \left(q_i r_{\rm sig} + \frac{1}{2} r_a \right)$$

Interpretation:

- First term: QBER contribution from source imperfections (via q_i)
- Second term: QBER contribution from accidental coincidences
- When accidental rate r_a is large (due to high P_{nc}), QBER increases sharply
- Entanglement-breaking by eavesdropper also manifests as a QBER rise
- Source in the middle increases accidental coincidences in both arms

BBM92 Secret Key Rate (SKR)

Formula:

$$S_{\text{BBM92}} = \frac{1}{2} \nu_s T \left[1 - f(Q) h_2(Q) - h_2(Q) \right]$$

Where:

- ν_s : photon pair rate from the source (e.g., 0.64×10^6 cps)
- f(Q): bidirectional error correction efficiency
- $h_2(Q) = -Q \log_2 Q (1-Q) \log_2 (1-Q)$: binary entropy function

Insight:

- SKR decreases as QBER increases.
- ullet BBM92 tolerates up to $\sim 11\%$ QBER at threshold.
- Best performance with low QBER, high η , and low P_{nc} .

Effect of Source Placement in BBM92

- Case 1: Source at Alice's side
 - Only Bob's channel faces losses and noise.
 - Lower QBER, better performance.
- Case 2: Source in the middle
 - Both arms face free-space losses and noise.
 - QBER increases significantly.
- Detector noise and background impact are effectively doubled.

Recommendation: For long-distance FSO-QKD, prefer source placement strategies that minimize exposure to background noise and loss on both arms.

Note: We have used Case - 2 for plotting the graphs.

Graph of QBER with transmittance for BB84 protocol

Graph of QBER with transmittance for BBM92 protocol

QBER vs Transmittance :BB84 and BBM92

QBER vs Zenith Angle :BB84 and BBM92

QBER Trends for BB84 and BBM92 over FSO

Observation Summary:

Transmittance Graph:

- QBER is high at low transmittance due to noise; drops rapidly with increasing T and stabilizes.
- BB84 shows lower QBER than BBM92 across all T.
- Secure region: T > 0.04 (approx) where QBER < 11%.

Zenith Angle Graph:

- QBER increases steeply with zenith angle due to atmospheric losses.
- BB84 becomes insecure (QBER > 11%) beyond 42°, while BBM92 remains below threshold until 78°.
- BBM92 is more robust against atmospheric path length increase than BB84 in this setting.

Interpretation

Underlying Physics and Security Implications:

- At low transmittance or high zenith angles, signal photons are attenuated, and dark counts dominate, increasing QBER.
- BB84 and BBM92 respond differently to noise and losses based on their protocol design.
- The QBER threshold (11%) is a critical boundary for secure key generation defined by privacy amplification limits.
- FSO performance:
 - BB84 is more efficient at lower zenith angles or higher transmittance.
 - BBM92 tolerates higher zenith angles due to entanglement-based resilience but has slightly higher QBER at optimal conditions.
- Overall, protocol selection for FSO QKD depends on operating conditions (e.g., elevation, noise, distance).

SKR vs Transmittance :BB84 and BBM92

SKR vs Zenith Angle :BB84 and BBM92

Conclusion from SKR Graphs (BB84 vs BBM92 over FSO)

SKR vs Channel Transmittance:

- Secure key rate (SKR) increases approximately **linearly** with transmittance *T* for both BB84 and BBM92.
- This is because SKR $\propto T$ when QBER is nearly constant and other factors (e.g., dark counts, multi-photon noise) are small.
- BB84 consistently outperforms BBM92, achieving over twice the SKR across all T values.

SKR vs Zenith Angle:

- SKR drops as zenith angle increases, due to rising atmospheric losses.
- BB84 remains significantly more robust under angular degradation.
- **Summary:** In free-space optical links, BB84 provides higher and more stable key rates across all transmittance and angular ranges.

Conclusion: BB84 vs BBM92 in FSO Channels

The SKR for both BB84 and BBM92 scales approximately as:

$$\mathsf{SKR} \propto \mathcal{T} \times (1 - h(Q))$$
 when $\mathsf{QBER}\ Q \approx \mathsf{constant}$

- Since QBER is low and stable in the FSO case, SKR becomes a linear function of transmittance.
- BB84 is more efficient because:
 - It uses single-photon detection (not coincidences).
 - Has a higher raw detection probability.
 - Lower sifting loss (no need for pairwise correlations).
- BBM92 limitations:
 - Entanglement-based, requiring photon-pair coincidences.
 - Coincidence probability scales as T^2 , but sifting and post-selection reduce it further.
- Conclusion: BB84 achieves a better SKR slope and higher overall key rates in realistic FSO links due to lower loss and greater detection efficiency.

BB84 Protocol over Optical Fiber

QKD over Optical Fibre

- Optical fibre is the most practical channel due to telecom infrastructure.
- Decoy-state BB84 helps detect photon number splitting (PNS) attacks in weak coherent pulse sources.
- Goal: Minimize Quantum Bit Error Rate (QBER) and maximize Secure Key Rate (SKR).

Decoy-State BB84 Protocol

- Alice randomly chooses basis (Z/X) and bit (0/1), encodes using weak coherent pulses.
- Uses multiple intensities: signal (e.g., $\mu=0.5$), decoy (e.g., $\nu=0.1$), vacuum.
- Bob randomly chooses basis and measures incoming photon.
- Only events where bases match contribute to sifted key.
- Decoy states allow estimation of single-photon events.

Experimental Parameters

- Wavelength: 1550 nm
- Clock rate: 1 GHz, Pulse flux: \sim 0.5 photons/pulse
- Detection efficiency: $\eta_{\mathsf{Bob}} = 0.2$
- Dark count probability: P_d
- ullet Temporal filtering: gate width ~ 100 ps
- Fibre loss: \sim 0.2 dB/km

Quantum Bit Error Rate (QBER) - Formula

QBER measures the error rate in the sifted key. It is defined as:

Basic QBER Formula:

$$e = e_{\mathsf{intrinsic}} + e_{\mathsf{noise}}$$

Where:

- $e_{\text{intrinsic}} = e_{\text{opt}} + \frac{1}{2}P_{\text{a}}$
- e_{noise}: error from dark counts and Raman noise

Typical values:

- $e_{\rm intrinsic} \approx e_{\rm opt} + 0.5 \cdot P_{\sf a} \approx 2.8\%$
- e_{opt}: due to phase errors, modulation imperfections
- $P_{\rm a} \approx 0.01$: detector afterpulse probability

Interpretation:

- *e*_{intrinsic} is independent of distance.
- e_{noise} increases with distance as signal weakens and noise becomes dominant.

QBER Noise Term e_{noise} Explanation

Noise Error Model:

$$e_{\mathsf{noise}} = \frac{1}{2} \cdot \frac{P_d + P_R(L)}{\mu e^{-\alpha L} \eta_{\mathsf{Bob}} + P_d + P_R(L)}$$

Parameter details:

• P_d : dark count probability per gate. For 500 cps and 1 GHz clock:

$$P_d = \frac{500}{10^9} = 5 \times 10^{-7}$$

- $P_R(L)$: Raman-scattered photon probability per gate.
 - Increases with fibre length due to scattering from classical data channels.
 - Modeled from measured Raman coefficients (see paper Appendix C).
- μ : mean photon number per pulse (e.g., 0.5 for signal states)
- α : fibre attenuation (e.g., 0.2 dB/km)
- η_{Bob} : detector efficiency at Bob (e.g., 0.2)

Secure Key Rate (SKR) - Formula

Based on Koashi's proof and decoy-state estimation:

$$R = rac{1}{t} \left[Q_1 (1 - H(e_1)) - Q f_{\mathsf{EC}}(e) H(e) + Q_0
ight]$$

Where:

- R: secure key rate (bits per unit time)
- t: time duration of the key session
- Q₁: gain of single-photon states
- e₁: error rate of single-photon states
- Q: total gain (i.e., fraction of pulses where a detection occurs)
- $f_{EC}(e)$: error correction efficiency factor (≈ 1.1)
- Q_0 : contribution from vacuum states (usually small)

Secure Key Rate (SKR) - Term Significance

Explanation of Terms:

- Q₁: Estimated from decoy-state protocol. Represents the secure contribution.
- $H(e) = -e \log_2 e (1-e) \log_2 (1-e)$: binary Shannon entropy.
- $f_{EC}(e)$: Accounts for inefficiency in practical error correction.
- ullet Q_0 : Zero-photon (vacuum) contribution. Important in decoy analysis.

Dependence on Distance (L):

- Q_1 and Q decrease with L due to fibre attenuation: $e^{-\alpha L}$
- e₁ increases with L due to higher QBER
- ullet R o 0 beyond a certain distance (QBER threshold exceeded)

Note: Optimal μ , f_{EC} , and decoy intensities are crucial for maximizing R.

Fibre Transmittance and Noise

• Fibre transmittance:

$$T = 10^{-\alpha L/10}$$
, where $\alpha = 0.2$ dB/km

- Noise sources:
 - Dark counts: P_d
 - Raman photons: $P_R(L)$ (from bidirectional data channels)

Results

- Secure key rate:
 - 935 kbps over 35 km
 - 507 kbps over 50 km
 - 7.6 kbps over 90 km
- QBER increases with length:
 - \sim 3% at < 50 km
 - $\sim 8\%$ at 90 km
 - ullet No key beyond 100 km due to QBER >10%

Conclusion

- Decoy-state BB84 over fibre enables long-distance QKD with high bit rates.
- Key challenges:
 - Fibre attenuation
 - Raman noise from classical channels
- Filtering and power control are critical for noise mitigation.
- Practical deployment possible in metropolitan networks.

BBM92 Protocol over Optical Fiber

Quantum Bit Error Rate (QBER)

QBER quantifies the fraction of incorrect bits in the raw key:

$$\mathsf{QBER} = \frac{R_{\mathsf{opt, err}} + R_{\mathsf{acc, err}}}{R_{\mathsf{key, raw}}}$$

- $R_{\text{opt, err}} = \frac{1}{2}R_{\text{coin}} \cdot p_o$ error rate due to imperfections in the optical setup, where p_o is the intrinsic bit-flip probability from misalignment, drift, or source noise.
- $R_{\text{acc, err}} = \frac{1}{4}R_{\text{acc}}$ error rate from accidental coincidences (random or dark-count-induced events), with only half yielding bits and half of those being incorrect.
- $R_{\text{key, raw}}$ raw key rate after basis sifting.

Note: A low QBER ensures high fidelity of the entangled state and the security of the BBM92 protocol.

Raw Key Rate (Post-sifting)

Raw key rate is the number of bits retained after basis sifting (but before error correction):

$$R_{
m key,\ raw} = rac{1}{2} R_{
m coin}$$

- The factor ¹/₂ accounts for sifting only the events where Alice and Bob choose the same basis are kept.
- $R_{\text{coin}} = R_{\text{coin, pairs}} + R_{\text{acc}}$ is the total coincidence rate:
 - R_{coin, pairs}: True coincidences from entangled pairs.
 - R_{acc}: Accidental coincidences (e.g., noise or unrelated detections).
- $R_{\text{coin, pairs}} = B\eta_A \eta_B \eta_D^2 \eta_{\text{dt,}A} \eta_{\text{dt,}B} \eta_r$

Secure Key Rate

$$R_{\text{key, sec}} = R_{\text{key, raw}} [1 - 2.1 H(\text{QBER})]$$

 $H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)$

- H(x): Binary Shannon entropy
- 2.1: Efficiency factor for finite-key error correction

Parameter Definitions

- B: Pair emission rate (brightness)
- η_A, η_B : Link efficiencies
- η_D : Detector quantum efficiency
- $\eta_{dt,i}$: Efficiency due to dead time:

$$\eta_{\mathrm{dt},i} = \frac{1}{1 + (B\eta_i\eta_D + D_i)t_d/n_d}$$

• D_i : Dark counts per second at party i

Parameter Definitions

- t_c: Coincidence window time interval in which a detection at Alice and Bob is considered a valid coincidence.
- t_r : Detection resolution (FWHM) combined timing uncertainty from detector jitter, dispersion, and photon coherence time.
- η_r : Coincidence timing efficiency:

$$\eta_r = \operatorname{erf}\left(\sqrt{\ln(2)} \cdot \frac{t_c}{t_r}\right)$$

Approaches 1 when $t_c \gg t_r$ (i.e., negligible jitter).

- S_A , S_B : Singles count rates at Alice and Bob total photon detection rate (signal + noise) at each side.
- $P_{\text{acc},t_c} \approx (1 e^{-S_A t_c})(1 e^{-S_B t_c})$: Probability that an accidental coincidence occurs within t_c .
- $R_{\text{acc}} = \frac{P_{\text{acc},t_c}}{t_c}$: Accidental coincidence rate uncorrelated detection events falsely appearing as coincidences.

Experiment Parameters from Paper

- Visibility: 94%
- Wavelength: 810 nm, Bandwidth: 3 nm
- $\bullet \ B = 1.5 \times 10^6 \ \mathrm{cps}$
- $\eta_D = 0.6$, $t_r = 1600$ ps
- Dark counts: Alice = 500 cps, Bob = 1800 cps
- Link Loss: 12 dB (both)
- Detector Dead Time: 45 ns

Graph of QBER and SKR with transmittance for BB84 protocol

BB84 Protocol Observations

- QBER decreases significantly with increasing transmittance
- SKR remains low at low transmittance, improves only at high values
- QBER increases sharply with zenith angle, showing sensitivity to misalignment and atmospheric effects
- More affected by detector inefficiencies and channel imperfections
- Best suited for stable, high-quality optical links such as fiber

Graph of QBER and SKR with transmittance for BBM92 protocol

BBM92 Protocol Observations

- QBER remains nearly constant across all transmittance values
- SKR increases steadily with increasing transmittance
- QBER also shows minimal variation with zenith angle
- Indicates strong robustness to noise and channel loss
- Suitable for dynamic or lossy environments such as free-space or satellite QKD

Graph of QBER with transmittance

Graph of SKR with transmittance

BB84 vs BBM92: QBER and SKR Behavior

QBER Comparison:

- BB84: QBER varies significantly with both transmittance and zenith angle
- BBM92: QBER remains nearly constant across parameters
- **Justification:** BBM92 uses entangled photon pairs—more resilient to noise; BB84 relies on basis reconciliation, more prone to errors

SKR Comparison:

- BBM92: Achieves higher SKR consistently, even at low transmittance
- BB84: SKR improves only at high transmittance; remains low otherwise
- Justification: Entanglement in BBM92 ensures better sifting and lower QBER; BB84 suffers from basis mismatch and losses

Conclusion and Recommendation

BB84:

- Suitable for high-transmittance, low-noise conditions (e.g., optical fiber channels)
- Highly sensitive to zenith angle and atmospheric variations

BBM92:

- Robust across a wide range of transmittance and zenith angles
- Consistently low QBER and high SKR make it suitable for dynamic environments
- Ideal for free-space QKD, satellite communication, or mobile applications
- Recommendation: Use BB84 for stable, high-quality links; prefer BBM92 for noisy, lossy, or mobile channels

Graph of QBER with zenith angle

Graph of SKR with zenith angle

References

 Analysing QBER and Secure Keyrate under Various Losses for Satellite Based Free Space QKD

Muskan, Ramniwas Meena, Subhashish Banerjee arXiv:2308.01036 [quant-ph] https://arxiv.org/abs/2308.01036

 FSO-QKD Protocols Under Free-Space Losses and Device Imperfections: A Comparative Study

Mitali Sisodia, Omshankar, Vivek Venkataraman, Joyee Ghosh arXiv:2309.09994 [quant-ph]

https://arxiv.org/abs/2309.09994

 Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber

K.A. Patel, J.F. Dynes, I. Choi, A.W. Sharpe, A.R. Dixon, Z.L. Yuan, R.V. Penty, A.J. Shields

References

Phys. Rev. X, 2, 041010
(2012)https://doi.org/10.1103/PhysRevX.2.041010

 Realistic Quantum Network Simulation for Experimental BBM92 Key Distribution

Michelle Chalupnik, Brian Doolittle, Suparna Seshadri, et al. arXiv:2505.24851 [quant-ph] https://arxiv.org/abs/2505.24851

• Decoy State Quantum Key Distribution

Hoi-Kwong Lo, Xiongfeng Ma, Kai Chen Phys. Rev. Lett. 94, 230504 (2005) https://doi.org/10.1103/PhysRevLett.94.230504

