

INSTITUTO FEDERAL DE SANTA CATARINA

ESTUDANTE:	7	ΓURMA:	

Laboratório de Contadores Assíncronos e Síncronos

Este roteiro deve ser utilizado como base para a experimentação dos diferentes tipos de contadores binários. Durante a experimentação, anote os resultados e quaisquer modificações que você realizou. Anote as dúvidas e erros que tiver para poder esclarecer posteriormente com outros colegas e professores. Após concluir todo o roteiro, você deverá entregar o relatório contendo os resultados indicados ao longo do roteiro.

Objetivos:

- Utilizar o simulador Falstad para entender o funcionamento de contadores binários
- Diferenciar os tipos de contadores
- Observar a borda do clock que ativa a contagem
- Verificar como é realizada a contagem binária

Atividades:

- Analisar o circuito do contador binário 1
- Analisar o circuito do contador binário 2
- Analisar o circuito do contador binário 3
- Analisar o circuito do contador binário 4
- Preencher o relatório (folhas a seguir)
- Note que a simulação pode ser realizada em qualquer computador, mas no IFSC existem disponíveis diversos computadores no lab de alunos.

Entregas

- Relatório individual das atividades.
- Respeitar o prazo estipulado no moodle
- A entrega deve ser física.

ESTUDANTE: ____TURMA: ____

Contador 1: Abra o circuito do contador no simulador digital link:https://tinyurl.com/2yk8zbvp

Figura 1. Diagrama eletrônico do circuito do contador.

Figura 2. Diagrama de tempo do circuito do contador.

Tabela 1. Tabela verdade do circuito do contador.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

1.	Pare a simulação do	circuito,	clicando	no botão	[Parar],	e mude a	chave C	H1 para	a posição 2
	clicando sobre o conf	tato da c	nave.						

2.	Identifique o tipo de flip-flop que é utilizado no projeto deste contador.
	() flip-flop tipo T; () flip-flop tipo JK; () flip-flop tipo D.;

- Identifique pelo diagrama eletrônico se o flip-flop é acionado por:
 () nível alto; () nível baixo; () borda de subida; () borda de descida.
- 4. Quantos bits tem esse contador?
- 5. Analise o circuito do contador, e determine se ele é: () síncrono; () assíncrono.
- 6. Coloque a chave CH1 na **posição 2** e verifique se ao acionar a entrada **clk_manual**, se o contador realiza a contagem binária nas saídas Q3 até Q0.

7.	Determine se o contador realiza contagem:
	() crescente; () decrescente; () crescente e decrescente.

- 8. Reinicie o circuito, clicando no botão [Reiniciar] e [Continuar]. Obtenha a tabela verdade do circuito, observando atentamente o momento em que ocorrem as mudanças nas saídas Q. Para estes testes acione sucessivamente a entrada **clk_manual**, até completar a tabela.
- 9. Obtenha o diagrama de tempo do funcionamento do circuito em um ciclo completo.

ESTUDANTE: _____TURMA: _____

Contador 2: Abra o circuito do contador no simulador digital link:https://tinyurl.com/2dyp53ap

Figura 3. Diagrama eletrônico do circuito do contador.

Figura 4. Diagrama de tempo do circuito do contador.

Tabela 2. Tabela verdade do circuito do contador.

Bordas do cik	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18	·					
19						
20						

1.	are a simulação do circuito, clicando no botão [Parar], e mude a chave CH1 para a posição 2	2
	icando sobre o contato da chave.	

2.	Identifique o tipo de flip-flop que é utilizado no projeto deste contador.
	() flip-flop tipo T; () flip-flop tipo JK; () flip-flop tipo D.;

- Identifique pelo diagrama eletrônico se o flip-flop é acionado por:
 () nível alto; () nível baixo; () borda de subida; () borda de descida.
- 4. Quantos bits tem esse contador?
- 5. Analise o circuito do contador, e determine se ele é: () síncrono; () assíncrono.
- 6. Coloque a chave CH1 na **posição 2** e verifique se ao acionar a entrada **clk_manual**, se o contador realiza a contagem binária nas saídas Q3 até Q0.

7.	Determine se o c	ontador realiza co	ontagem:
	() crescente; () decrescente; () crescente e decrescente.

- 8. Reinicie o circuito, clicando no botão [Reiniciar] e [Continuar]. Obtenha a tabela verdade do circuito, observando atentamente o momento em que ocorrem as mudanças nas saídas Q. Para estes testes acione sucessivamente a entrada **clk_manual**, até completar a tabela.
- 9. Obtenha o diagrama de tempo do funcionamento do circuito em um ciclo completo.

INSTITUTO FEDERAL DE SANTA CATARINA

ESTUDANTE:	TURMA:	
------------	--------	--

Contador 3: Abra o circuito do contador no simulador digital link: https://tinyurl.com/2aksfsve

Figura 5. Diagrama eletrônico do circuito do contador.

Figura 6. Diagrama de tempo do circuito do contador.

Tabela 3. Tabela verdade do circuito do contador.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

- 1. Pare a simulação do circuito, clicando no botão [Parar], e mude a chave CH1 para a posição 2 clicando sobre o contato da chave.
- Identifique o tipo de flip-flop que é utilizado no projeto deste contador.
 () flip-flop tipo T; () flip-flop tipo JK; () flip-flop tipo D.;
- 3. Identifique pelo diagrama eletrônico se o flip-flop é acionado por:

 () nível alto; () nível baixo; () borda de subida; () borda de descida.
- 4. Quantos bits tem esse contador?
- 5. Analise o circuito do contador, e determine se ele é: () síncrono; () assíncrono.
- 6. Coloque a chave CH1 na **posição 2** e verifique se ao acionar a entrada **clk_manual**, se o contador realiza a contagem binária nas saídas Q3 até Q0.
- 7. Determine se o contador realiza contagem:() crescente; () decrescente; () crescente e decrescente.
- 8. Reinicie o circuito, clicando no botão [Reiniciar] e [Continuar]. Obtenha a tabela verdade do circuito, observando atentamente o momento em que ocorrem as mudanças nas saídas Q. Para estes testes acione sucessivamente a entrada **clk_manual**, até completar a tabela.
- 9. Obtenha o diagrama de tempo do funcionamento do circuito em um ciclo completo.

ESTUDANTE: _____TURMA: _____

Contador 3: Abra o circuito do contador no simulador digital link: https://tinyurl.com/27zaro8k

Figura 7. Diagrama eletrônico do circuito do contador.

Figura 8. Diagrama de tempo do circuito do contador.

Tabela 4. Tabela verdade do circuito do contador.

Bordas do clk	clk	Q3 (MSB)	Q2	Q1	Q0 (LSB)	Valor decimal
início						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

- 1. Pare a simulação do circuito, clicando no botão [Parar], e mude a chave CH1 para a posição 2 clicando sobre o contato da chave.
- Identifique o tipo de flip-flop que é utilizado no projeto deste contador.
 () flip-flop tipo T; () flip-flop tipo JK; () flip-flop tipo D.;
- 3. Identifique pelo diagrama eletrônico se o flip-flop é acionado por:

 () nível alto; () nível baixo; () borda de subida; () borda de descida.
- 4. Quantos bits tem esse contador?
- 5. Analise o circuito do contador, e determine se ele é: () síncrono; () assíncrono.
- 6. Coloque a chave CH1 na **posição 2** e verifique se ao acionar a entrada **clk_manual**, se o contador realiza a contagem binária nas saídas Q3 até Q0.
- Determine se o contador realiza contagem:
 () crescente; () decrescente; () crescente e decrescente.
- 8. Reinicie o circuito, clicando no botão [Reiniciar] e [Continuar]. Obtenha a tabela verdade do circuito, observando atentamente o momento em que ocorrem as mudanças nas saídas Q. Para estes testes acione sucessivamente a entrada **clk manual**, até completar a tabela.
- 9. Obtenha o diagrama de tempo do funcionamento do circuito em um ciclo completo.