

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

FORMUŁA OD 2015 ("NOWA MATURA")

MATEMATYKA POZIOM PODSTAWOWY

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

Zadanie 1. (0-1)

Wymagania ogólne	Wymagania szczegółowe	Poprodp.	awna (1 p.)
II. Wykorzystanie i interpretowanie	Liczby rzeczywiste. Zdający posługuje się pojęciem przedziału liczbowego, zaznacza	Wersja I	Wersja II
reprezentacji.	przedziały na osi liczbowej (1.8).	C	D

Zadanie 2. (0-1)

II. Wykorzystanie	1. Liczby rzeczywiste. Zdający wykorzystuje definicję logarytmu i stosuje w obliczeniach	Wersja I	Wersja II
i interpretowanie reprezentacji.	wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (1.6).	В	C

Zadanie 3. (0-1)

III. Modelowanie	Liczby rzeczywiste. Zdający wykonuje obliczenia procentowe, oblicza podatki, zysk	Wersja I	Wersja II
matematyczne.	z lokat (1.9).	C	A

Zadanie 4. (0-1)

II. Wykorzystanie i interpretowanie	2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia na $(a \pm b)^2$	Wersja I	Wersja II
reprezentacji.	oraz $a^2 - b^2$ (2.1).	В	C

Zadanie 5. (0-1)

II. Wykorzystanie i interpretowanie	3. Równania i nierówności. Zdający wykorzystuje interpretację geometryczną	Wersja I	Wersja II
reprezentacji.	układu równań pierwszego stopnia z dwiema niewiadomymi (3.2).	В	C

Zadanie 6. (0-1)

I. Wykorzystanie i tworzenie	3. Równania i nierówności. Zdający korzysta z własności iloczynu przy rozwiązywaniu	Wersja I	Wersja II
informacji.	równań typu $x(x+1)(x-7) = 0$ (3.7).	C	D

Zadanie 7. (0-1)

II. Wykorzystanie	3. Równania i nierówności. Zdający rozwiązuje proste równania wymierne,	Wersja I	Wersja II
i interpretowanie reprezentacji.	prowadzące do równań liniowych lub kwadratowych, np. $\frac{x+1}{x+3} = 2$, $\frac{x+1}{x} = 2x$ (3.8).	D	A

Zadanie 8. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający odczytuje z wykresu	Wersja I	Wersja II	
reprezentacji.	własności funkcji (4.3).	D	A	

Zadanie 9. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wyznacza wzór funkcji liniowej na podstawie informacji o funkcji lub	Wersja I	Wersja II
reprezentacji.	o jej wykresie (4.6).	В	D

Zadanie 10. (0-1)

I. Wykorzystanie i tworzenie	4. Funkcje. Zdający interpretuje współczynniki występujące we wzorze funkcji	Wersja I	Wersja II
informacji.	liniowej (4.7).	C	A

Zadanie 11. (0-1)

II. Wykorzystanie i interpretowanie	4. Funkcje. Zdający wyznacza wzór funkcji kwadratowej na podstawie pewnych	Wersja I	Wersja II
reprezentacji.	informacji o tej funkcji lub o jej wykresie (4.9).	A	D

Zadanie 12. (0-1)

II. Wykorzystanie i interpretowanie	3. Równania i nierówności. Zdający rozwiązuje nierówności pierwszego stopnia	Wersja I	Wersja II
reprezentacji.	z jedną niewiadomą (3.3).	A	D

Zadanie 13. (0-1)

III. Modelowanie	5. Ciągi. Zdający stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i> początkowych wyrazów ciągu	Wersja I	Wersja II	
matematyczne.	geometrycznego (5.4).	C	D	

Zadanie 14. (0-1)

II. Wykorzystanie i interpretowanie	6. Trygonometria. Zdający wykorzystuje definicje i wyznacza wartości funkcji sinus,	Wersja I	Wersja II
reprezentacji.	cosinus i tangens kątów o miarach od 0° do 180° (6.1).	D	A

Zadanie 15. (0-1)

IV. Użycie	6. Trygonometria. Zdający stosuje proste zależności między funkcjami	Wersja I	Wersja II
i tworzenie strategii.	trygonometrycznymi: $\sin^2 \alpha + \cos^2 \alpha = 1$, $\frac{\sin \alpha}{\cos \alpha} = \operatorname{tg} \alpha \text{ oraz } \sin(90^\circ - \alpha) = \cos \alpha \text{ (6.4)}.$	A	В

Zadanie 16. (0-1)

IV. Użycie i tworzenie	7. Planimetria. Zdający stosuje zależności między kątem środkowym i kątem wpisanym	Wersja I	Wersja II	
strategii.	(7.1).	C	В	

Zadanie 17. (0-1)

III. Modelowanie	7. Planimetria. Zdający korzysta z własności funkcji trygonometrycznych w łatwych obliczeniach geometrycznych, w tym ze	Wersja I	Wersja II
matematyczne.	wzoru na pole trójkąta ostrokątnego o danych dwóch bokach i kącie między nimi (7.4).	A	В

Zadanie 18. (0-1)

II. Wykorzystanie i interpretowanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
reprezentacji.	prostych na podstawie ich równań kierunkowych (8.2).	A	В

Zadanie 19. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający bada równoległość i prostopadłość	I	II
1	prostych na podstawie ich równań kierunkowych (8.2).	A	D

Zadanie 20. (0-1)

II. Wykorzystanie	8. Geometria na płaszczyźnie kartezjańskiej.	Wersja	Wersja
	Zdający wyznacza współrzędne środka	I	II
i interpretowanie reprezentacji.	odcinka i znajduje obrazy niektórych figur geometrycznych w symetrii środkowej względem początku układu (8.5, 8.7).	D	В

Zadanie 21. (0-1)

I. Wykorzystanie i tworzenie	9. Stereometria. Zdający rozpoznaje w graniastosłupach i ostrosłupach kąty między	Wersja I	Wersja II
informacji.	odcinkami i płaszczyznami (9.2).	A	В

Zadanie 22. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający stosuje trygonometrię do obliczeń długości odcinków,	Wersja I	Wersja II
reprezentacji.	miar kątów, pól powierzchni i objętości (9.6).	В	C

Zadanie 23. (0-1)

II. Wykorzystanie i interpretowanie	9. Stereometria. Zdający stosuje trygonometrię do obliczeń długości odcinków,	Wersja I	Wersja II
reprezentacji.	miar kątów, pól powierzchni i objętości (9.6).	D	A

Zadanie 24. (0-1)

II. Wykorzystanie i interpretowanie reprezentacji.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
	Zdający oblicza średnią ważoną i odchylenie standardowe zestawu danych (10.1).	D	C

Zadanie 25. (0-1)

II. Wykorzystanie	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka.	Wersja I	Wersja II
i interpretowanie reprezentacji.	Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3).	В	A

Zadanie 26. (0-2)

Rozwiąż nierówność $2x^2 - 4x > (x+3)(x-2)$.

II. Wykorzystanie i interpretowanie reprezentacji.

3. Równania i nierówności. Zdający rozwiązuje nierówności kwadratowych z jedną niewiadomą (3.5).

Rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap, wyznaczenie pierwiastków trójmianu, może być realizowany na 2 sposoby:

I sposób rozwiązania (realizacja pierwszego etapu)

Zapisujemy nierówność w postaci $x^2 - 5x + 6 > 0$ i znajdujemy pierwiastki trójmianu $x^2 - 5x + 6$

• obliczamy wyróżnik tego trójmianu:

$$\Delta = 25 - 4 \cdot 1 \cdot 6 = 1$$
, stad $x_1 = \frac{5-1}{2} = 2$ oraz $x_2 = \frac{5+1}{2} = 3$

albo

• stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = 6$$
 oraz $x_1 + x_2 = 5$, stąd $x_1 = 2$ oraz $x_2 = 3$

albo

• podajemy je bezpośrednio, np. zapisując pierwiastki trójmianu lub postać iloczynową trójmianu, lub zaznaczając je na wykresie (wystarczy szkic wykresu, oś liczbowa itp.):

$$x_1 = 2$$
, $x_2 = 3$ lub $(x-2)[2x-(x+3)]$ lub $(x-2)(x-3)$

lub

II sposób rozwiązania (realizacja pierwszego etapu)

Wyznaczamy postać kanoniczną trójmianu kwadratowego $x^2 - 5x + 6$ i zapisujemy nierówność w postaci, np. $\left(x - \frac{5}{2}\right)^2 - \frac{1}{4} > 0$, a następnie

 przekształcamy nierówność tak, aby jej lewa strona była zapisana w postaci iloczynowej

$$\left[\left(x - \frac{5}{2} \right) - \frac{1}{2} \right] \cdot \left[\left(x - \frac{5}{2} \right) + \frac{1}{2} \right] > 0,$$

$$\left(x - \frac{6}{2} \right) \left(x - \frac{4}{2} \right) > 0,$$

albo

 przekształcamy nierówność do postaci równoważnej, korzystając z własności wartości bezwzględnej

$$\left(x - \frac{5}{2}\right)^2 > \frac{1}{4},$$

$$\left|x-\frac{5}{2}\right| > \frac{1}{2}.$$

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $(-\infty, 2) \cup (3, +\infty)$ lub $x \in (-\infty, 2) \cup (3, +\infty)$.

Schemat oceniania

Zdający otrzymuje......1 p. gdy:

- zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności, np.
 - o obliczy lub poda pierwiastki trójmianu kwadratowego $x_1 = 2$, $x_2 = 3$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zaznaczy na wykresie miejsca zerowe funkcji $f(x) = x^2 5x + 6$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o rozłoży trójmian kwadratowy na czynniki liniowe, np. (x-2)(x-3) i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,
 - o zapisze nierówność $\left|x-\frac{5}{2}\right| > \frac{1}{2}$ i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności,

albo

- realizując pierwszy etap rozwiązania zadania popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego zapisze zbiór rozwiązań nierówności, np.
 - popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - o błędnie zapisze równania wynikające ze wzorów Viète'a, np.: $x_1 + x_2 = -\frac{5}{2}$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - o błędnie zapisze nierówność, np. $\left|x+\frac{5}{2}\right|<\frac{1}{2}$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności.

Zdający otrzymuje......2 p. gdy:

• poda zbiór rozwiązań nierówności: $(-\infty, 2) \cup (3, +\infty)$ lub $x \in (-\infty, 2) \cup (3, +\infty)$ lub (x < 2 lub x > 3),

albo

• sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: x < 2, x > 3,

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

- 1. Jeżeli zdający dzieli obie strony nierówności przez x-2 bez stosownego założenia, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający dzieli obie strony nierówności przez x-2, rozważając dwa przypadki x-2>0 oraz x-2<0, rozwiąże nierówność w każdym z tych przypadków, ale nie rozważy przypadku x-2=0, to otrzymuje **1 punkt**.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy zapis przedziału nieuwzględniający porządku liczb na osi liczbowej, np.: $(2, -\infty)$.
- 2. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = 2$, $x_2 = 3$ i zapisze, np. $(-\infty, -2) \cup (3, +\infty)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.

Zadanie 27. (0-2)

Wykaż, że dla dowolnej liczby rzeczywistej x i dla dowolnej liczby rzeczywistej y prawdziwa jest nierówność $4x^2 - 8xy + 5y^2 \ge 0$.

V. Rozumowanie i argumentacja.

2. Wyrażenia algebraiczne. Zdający używa wzorów skróconego mnożenia na $(a\pm b)^2$ oraz a^2-b^2 (2.1).

I sposób rozwiązania

Nierówność $4x^2 - 8xy + 5y^2 \ge 0$ przekształcamy w sposób równoważny

$$y^2 + 4x^2 - 8xy + 4y^2 \ge 0,$$

$$y^2 + (2x - 2y)^2 \ge 0$$
.

Ta nierówność jest prawdziwa dla dowolnych liczb rzeczywistych *x* i *y*, gdyż kwadrat każdej liczby jest nieujemny i suma kwadratów liczb nieujemnych również jest nieujemna. To kończy dowód.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje 1 p. gdy zapisze nierówność w postaci równoważnej $y^2 + (2x-2y)^2 \ge 0$ i na tym poprzestanie lub dalej popełnia błedy.

II sposób rozwiązania

Nierówność $4x^2 - 8xy + 5y^2 \ge 0$ możemy potraktować jak nierówność kwadratową z niewiadomą x lub – analogicznie – z niewiadomą y. Wyróżnik trójmianu stojącego po lewej stronie nierówności jest równy

$$\Delta = (-8y)^2 - 4 \cdot 4 \cdot (5y^2) = -16y^2 \le 0.$$

Stąd i z faktu, że współczynnik przy x^2 trójmianu $f(x) = 4x^2 - 8xy + 5y^2$ jest dodatni wynika, że trójmian ten przyjmuje tylko wartości nieujemne. To kończy dowód.

Schemat oceniania II sposobu

Zdający otrzymuje......2 p.

gdy wyznaczy wyróżnik trójmianu $f(x) = 4x^2 - 8xy + 5y^2$, zapisze, że jest on niedodatni i wyciągnie wniosek, że trójmian przyjmuje tylko wartości nieujemne.

III sposób rozwiązania

Dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność $x^2 + y^2 \ge 2xy$. Stąd wynika, że prawdziwa jest nierówność

$$4x^2 + 4y^2 \ge 8xy$$
, czyli $4x^2 - 8xy + 4y^2 \ge 0$.

Zatem, dla dowolnych liczb x, y mamy

$$4x^2 - 8xy + 5y^2 \ge 4x^2 - 8xy + 4y^2 \ge 0$$
.

To kończy dowód.

Schemat oceniania III sposobu rozwiązania

Zdający otrzymuje......2 p. gdy przeprowadzi pełny dowód.

IV sposób rozwiązania

Gdy co najmniej jedna z liczb x, y jest równa 0, to nierówność $4x^2 - 8xy + 5y^2 \ge 0$ jest prawdziwa, gdyż suma trzech liczb, z których co najmniej dwie są równe 0, a trzecia nieujemna, jest nieujemna.

Gdy liczby x, y są przeciwnych znaków, to xy < 0, więc -8xy > 0. Zatem nierówność $4x^2 - 8xy + 5y^2 \ge 0$ jest prawdziwa, gdyż lewa jej strona jest sumą trzech liczb dodatnich.

Pozostaje wykazać prawdziwość nierówności w przypadku, gdy liczby x, y są tego samego znaku.

Zauważmy najpierw, że dla dowolnych liczb rzeczywistych x, y prawdziwa jest nierówność

$$(2x - \sqrt{5}y)^2 \ge 0$$
, czyli $4x^2 - 4\sqrt{5}xy + 5y^2 \ge 0$.

Wykażemy teraz prawdziwość nierówności

$$4x^2 - 8xy + 5y^2 \ge 4x^2 - 4\sqrt{5}xy + 5y^2,$$

równoważnie

$$-8xy \ge -4\sqrt{5}xy ,$$

$$xy \le \frac{\sqrt{5}}{2} xy \ .$$

Skoro x i y są tego samego znaku, to xy > 0, więc dzieląc obie strony nierówności przez xy, otrzymujemy nierówność równoważną $1 \le \frac{\sqrt{5}}{2}$, co jest prawdą. To kończy dowód.

Schemat oceniania IV sposobu rozwiązania

Uwaga

Gdy zdający sprawdza jedynie prawdziwość nierówności dla konkretnych liczb x i y, to otrzymuje $\mathbf{0}$ punktów.

Zadanie 28. (0-2)

Dany jest kwadrat ABCD. Przekątne AC i BD przecinają się w punkcie E. Punkty K i M są środkami odcinków – odpowiednio – AE i EC. Punkty L i N leżą na przekątnej BD tak, że $\left|BL\right| = \frac{1}{3}\left|BE\right|$ i $\left|DN\right| = \frac{1}{3}\left|DE\right|$ (zobacz rysunek). Wykaż, że stosunek pola czworokąta KLMN do pola kwadratu ABCD jest równy 1:3.

V. Rozumowanie i argumentacja.

G10. Figury płaskie. Zdający oblicza pola i obwody trójkątów i czworokątów. (G10.9).

I sposób rozwiązania

Przekątne w kwadracie *ABCD* są równe, więc $|AC| = |BD| = d = a\sqrt{2}$.

Pole kwadratu ABCD jest równe $P_{ABCD} = a^2$. Czworokąt KLMN składa się z czterech trójkątów prostokątnych przystających do trójkąta KEN. Pole każdego z nich jest równe

$$P = \frac{1}{2} \cdot \left(\frac{1}{4}d\right) \cdot \left(\frac{2}{6}d\right) = \frac{1}{24}d^2 = \frac{1}{24}\left(a\sqrt{2}\right)^2 = \frac{1}{24} \cdot 2a^2 = \frac{1}{12}a^2.$$

Zatem pole czworokąta KLMN jest równe

$$P_{KLMN} = 4 \cdot \frac{1}{12} a^2 = \frac{1}{3} a^2$$
.

Stad

$$\frac{P_{KLMN}}{P_{ABCD}} = \frac{\frac{1}{3}a^2}{a^2} = \frac{1}{3}.$$

II sposób rozwiązania

Przekątne w kwadracie *ABCD* są równe, więc $|AC| = |BD| = d = a\sqrt{2}$.

Pole kwadratu ABCD jest równe $P_{ABCD} = a^2$. Czworokąt KLMN składa się z dwóch trójkątów przystających do trójkąta KLN. Pole każdego z nich jest równe

$$P = \frac{1}{2} \cdot \left(\frac{4}{6}d\right) \cdot \left(\frac{1}{4}d\right) = \frac{1}{12}d^2 = \frac{1}{12}\left(a\sqrt{2}\right)^2 = \frac{1}{12} \cdot 2a^2 = \frac{1}{6}a^2.$$

Zatem pole czworokąta KLMN jest równe

$$P_{KLMN} = 2 \cdot \frac{1}{6} a^2 = \frac{1}{3} a^2$$
.

Stad

$$\frac{P_{KLMN}}{P_{ABCD}} = \frac{\frac{1}{3}a^2}{a^2} = \frac{1}{3}.$$

III sposób rozwiązania

Przekątne w kwadracie ABCD są równe, więc $|AC| = |BD| = d = a\sqrt{2}$.

Pole kwadratu ABCD jest równe $P_{ABCD} = a^2$. Czworokąt KLMN składa się z dwóch trójkątów przystających do trójkąta KMN. Pole każdego z nich jest równe

$$P = \frac{1}{2} \cdot \left(\frac{1}{2}d\right) \cdot \left(\frac{2}{6}d\right) = \frac{1}{12}d^2 = \frac{1}{12}\left(a\sqrt{2}\right)^2 = \frac{1}{12} \cdot 2a^2 = \frac{1}{6}a^2.$$

Zatem pole czworokąta KLMN jest równe

$$P_{KLMN} = 2 \cdot \frac{1}{6} a^2 = \frac{1}{3} a^2$$
.

Stad

$$\frac{P_{KLMN}}{P_{ABCD}} = \frac{\frac{1}{3}a^2}{a^2} = \frac{1}{3}.$$

IV sposób rozwiązania

Ponieważ przekątne w kwadracie są równe, więc |AE| = |ED|. Niech |AE| = |ED| = 6x.

Wtedy

$$|AK| = |KE| = |EM| = |MC| = 3x$$
, $|DN| = |LB| = 2x$ oraz $|NE| = |EL| = 4x$.

Stad

$$|KM| = |KE| + |EM| = 6x \text{ oraz } |NL| = |NE| + |EL| = 8x$$
.

Pole kwadratu ABCD jest równe

$$P_{ABCD} = \frac{1}{2} |AC| \cdot |BD| = \frac{1}{2} \cdot 12x \cdot 12x = 72x^2$$
.

Pole czworokata KLMN jest równe

$$P_{KLMN} = \frac{1}{2} |KM| \cdot |NL| = \frac{1}{2} \cdot 6x \cdot 8x = 24x^2$$
.

Stad

$$\frac{P_{KLMN}}{P_{ABCD}} = \frac{24x^2}{72x^2} = \frac{1}{3}.$$

Schemat oceniania

Zdający otrzymuje......1 p.

• gdy wyznaczy pole jednego z trójkątów: *KLE*, *LME*, *MNE*, *NKE* ($P = \frac{1}{12}a^2$)

albo

• gdy wyznaczy pole jednego z trójkątów: *NLM*, *LNK* ($P = \frac{1}{6}a^2$)

albo

• gdy wyznaczy pole jednego z trójkątów: *KMN*, *KLM* ($P = \frac{1}{6}a^2$)

albo

• gdy wyznaczy pole czworokąta KLMN w zależności od jego przekątnych, np.

$$P_{KLMN} = \frac{1}{2} |KM| \cdot |LN| = \frac{1}{2} \cdot 6x \cdot 8x = 24x^2$$

i na tym poprzestanie lub dalej popełnia błędy.

Zdający otrzymuje......2 p.

gdy wykaże, że
$$\frac{P_{KLMN}}{P_{ABCD}} = \frac{1}{3}$$
.

- 1. Jeżeli zdający przy wyznaczaniu pola kwadratu i pola czworokąta *KLMN* przyjmuje konkretne wartości liczbowe bez stosownego komentarza i rozwiązuje zadanie do końca, to otrzymuje **1 punkt**.
- 2. Jeżeli zdający przy wyznaczaniu pól trójkątów lub pól czworokątów o prostopadłych przekątnych pomija współczynnik $\frac{1}{2}$, otrzymując poprawny stosunek pola czworokąta *KLMN* do pola kwadratu *ABCD*, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający w swoim rozumowaniu wykorzystuje tezę, to za całe rozwiązanie otrzymuje **0 punktów**.

Zadanie 29. (0-2)

Oblicz najmniejszą i największą wartość funkcji kwadratowej $f(x) = x^2 - 6x + 3$ w przedziale $\langle 0, 4 \rangle$.

II. Wykorzystanie i interpretowanie reprezentacji.	4. Funkcje. Zdający wyznacza wartość najmniejszą i wartość największą funkcji kwadratowej w przedziale domkniętym (4.11).
reprezentacji.	(4.11).

Rozwiązanie

Obliczamy pierwszą współrzędną wierzchołka paraboli o równaniu $y=x^2-6x+3$: $x_w=\frac{6}{2}=3$. Argument $x_w=3$ należy do przedziału $\langle 0,4\rangle$, więc najmniejszą wartością funkcji f w przedziałe $\langle 0,4\rangle$ jest f(3)=-6. Obliczamy wartości funkcji f na końcach przedziału $\langle 0,4\rangle$:

$$f(0) = 3 \text{ oraz } f(4) = -5.$$

Największą wartością jaką przyjmuje funkcja f w przedziale $\langle 0, 4 \rangle$ jest f(0) = 3.

Schemat oceniania

Zdający otrzymuje 1 p. gdy

- obliczy pierwszą współrzędną wierzchołka paraboli $x_w=3$ i stwierdzi, że $x_w\in \left<0,\,4\right>$, albo
 - obliczy wartości funkcji f na końcach przedziału (0, 4): f(0) = 3 oraz f(4) = -5.

- 1. Jeżeli zdający obliczy <u>jedynie</u> trzy wartości funkcji: f(0)=3, f(3)=-6 i f(4)=-5 oraz sformułuje odpowiedź: największa wartość funkcji w przedziale $\langle 0, 4 \rangle$ jest równa 3, a najmniejsza wartość funkcji jest równa -6, to otrzymuje **2 punkty**.
- 2. Jeżeli zdający obliczy tylko współrzędne wierzchołka paraboli $x_w = 3$, f(3) = -6, ale nie zapisze, że $x_w \in \langle 0, 4 \rangle$, to otrzymuje **0 punktów.**

Zadanie 30. (0-2)

W układzie współrzędnych są dane punkty A = (-43, -12), B = (50, 19). Prosta AB przecina oś Ox w punkcie P. Oblicz pierwszą współrzędną punktu P.

- II. Wykorzystanie i interpretowanie reprezentacji.
- 3. Równania i nierówności. Zdający wyznacza równanie prostej przechodzącej przez dwa dane punkty. (8.1).

I sposób rozwiązania

Wyznaczamy równanie prostej AB

$$y = \frac{1}{3}x + \frac{7}{3}$$
 lub $x - 3y + 7 = 0$.

Pierwsza współrzędna punktu P jest miejscem zerowym funkcji liniowej określonej wzorem

$$y = \frac{1}{3}x + \frac{7}{3}$$
.

Rozwiązujemy zatem równanie

$$\frac{1}{3}x + \frac{7}{3} = 0$$
.

Stad x = -7.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje1 p.

gdy wyznaczy równanie prostej AB, np. w postaci $y = \frac{1}{3}x + \frac{7}{3}$ i na tym poprzestanie lub dalej popełnia błędy.

- 1. Jeżeli zdający przy wyznaczaniu równania prostej *AB*, popełni błąd rzeczowy, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający wyznaczy równanie prostej AB, popełniając błędy rachunkowe (np. zapisze (19-12)(x-50)-(50-43)(y-19)=0) i konsekwentnie obliczy pierwszą współrzędną punktu P, to otrzymuje **1 punkt**.

II sposób rozwiązania

Niech P = (p,0) będzie punktem przecięcia prostej AB z osią Ox układu współrzędnych, a punkty C i D będą rzutami prostokątnymi punktów odpowiednio A i B na tę oś.

Wtedy C = (-43,0) i D = (50,0). Trójkąty PAC i PBD są podobne (oba są prostokątne, a ich kąty ostre przy wierzchołku P są równe). Zatem

$$\frac{|PD|}{|BD|} = \frac{|PC|}{|AC|}$$
, czyli $\frac{50-p}{19} = \frac{p-(-43)}{12}$.

Stad

$$12(50-p)=19(p+43)$$
,

$$600-12p=19p+817$$
,

$$-31p = 217$$
,

$$p = -7$$
.

Schemat oceniania II sposobu rozwiązania

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeżeli zdający obliczy pierwszą współrzędną punktu P, zapisując np. x = -7, ale popełni błąd formułując odpowiedź, np. P = (7,0), P = (0,-7), to otrzymuje **2 punkty**.

Zadanie 31. (0-2)

Jeżeli do licznika i do mianownika nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy $\frac{4}{7}$, a jeżeli do licznika i do mianownika dodamy 1, to otrzymamy $\frac{1}{2}$. Wyznacz ten ułamek.

	G7. Równania. Zdający za pomocą równań lub układów
III. Modelowanie	równań opisuje i rozwiązuje zadania osadzone w kontekście
matematyczne.	praktycznym, a także rozwiązuje układy równań stopnia
	pierwszego z dwiema niewiadomymi (G7.7, G7.6).

I sposób rozwiązania

Niech *x* i *y* oznaczają odpowiednio licznik i mianownik szukanego ułamka nieskracalnego. Z treści zadania otrzymujemy układ równań

$$\frac{x + \frac{1}{2}x}{y + \frac{1}{2}x} = \frac{4}{7} \text{ oraz } \frac{x+1}{y+1} = \frac{1}{2},$$

$$7 \cdot \frac{3}{2}x = 4\left(y + \frac{1}{2}x\right) \text{ oraz } 2(x+1) = y+1,$$

$$\frac{21}{2}x = 4y + 2x \text{ oraz } 2x + 1 = y.$$
Stad
$$\frac{17}{2}x = 4(2x+1),$$

$$17x = 16x + 8,$$

$$x = 8, \text{ wiec } y = 2 \cdot 8 + 1 = 17.$$

Zatem szukany ułamek to $\frac{8}{17}$. Jest to ułamek nieskracalny.

Schemat oceniania I sposobu rozwiązania

• zapisze układ równań z dwiema niewiadomymi, np.: $\frac{x + \frac{1}{2}x}{y + \frac{1}{2}x} = \frac{4}{7}$ i $\frac{x + 1}{y + 1} = \frac{1}{2}$

albo

• zapisze równanie z jedną niewiadomą, np.: $\frac{17}{2}x = 4(2x+1)$.

II sposób rozwiązania

Niech *x* i *y* oznaczają odpowiednio licznik i mianownik szukanego ułamka nieskracalnego. Z treści zadania otrzymujemy równanie

$$\frac{x + \frac{1}{2}x}{y + \frac{1}{2}x} = \frac{4}{7},$$

$$\frac{\frac{3}{2}x}{y+\frac{1}{2}x} = \frac{4}{7},$$

$$\frac{21}{2}x = 4y + 2x$$
,

$$\frac{17}{2}x = 4y.$$

Stad

$$\frac{x}{y} = \frac{8}{17}.$$

Otrzymany ułamek jest nieskracalny oraz $\frac{x+1}{y+1} = \frac{9}{18} = \frac{1}{2}$.

Stąd wynika, że $\frac{8}{17}$ to jedyny szukany ułamek.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje 1 p.

gdy zapisze równanie z dwiema niewiadomymi: $\frac{x + \frac{1}{2}x}{y + \frac{1}{2}x} = \frac{4}{7}$ i doprowadzi je postaci $\frac{x}{y} = \frac{8}{17}$ i na tym zakończy

gdy zapisze równanie z dwiema niewiadomymi: $\frac{x + \frac{1}{2}x}{y + \frac{1}{2}x} = \frac{4}{7}$, doprowadzi je postaci $\frac{x}{y} = \frac{8}{17}$

i sprawdzi, że ułamek ten spełnia drugi z warunków podanych w treści zadania: $\frac{x+1}{y+1} = \frac{9}{18} = \frac{1}{2}$.

- 1. Jeżeli zdający od razu poda ułamek $\frac{8}{17}$ i nie sprawdzi, że $\frac{8+1}{17+1} = \frac{1}{2}$, to otrzymuje **0 punktów**.
- 2. Jeżeli zdający od razu poda ułamek $\frac{8}{17}$ i sprawdzi, że spełnia on drugi z warunków podanych w treści zadania $\frac{8+1}{17+1} = \frac{1}{2}$, to otrzymuje **1 punkt.**

Zadanie 32. (0-4)

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy $\frac{3}{5}$. Oblicz pole powierzchni całkowitej tego graniastosłupa.

IV. Użycie i tworzenie strategii.	9. Stereometria. Zdający stosuje trygonometrię do obliczeń długości odcinków, miar kątów, pól powierzchni i objętości (9.6).
-----------------------------------	--

I sposób rozwiązania

Niech a oznacza długość krawędzi podstawy tego graniastosłupa i niech α będzie kątem nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy (zobacz rysunek).

Ponieważ $\cos \alpha = \frac{3}{5}$, więc kąt α jest ostry oraz $\sin \alpha = \frac{4}{5}$. Stąd wynika, że $\tan \alpha = \frac{4}{3}$.

Z drugiej strony $\operatorname{tg}\alpha = \frac{16}{a\sqrt{2}}$. Obliczamy długość krawędzi podstawy graniastosłupa.

Rozwiązujemy równanie:

$$\frac{16}{a\sqrt{2}} = \frac{4}{3}$$
, skąd $a = 6\sqrt{2}$.

Szukane pole powierzchni całkowitej tego graniastosłupa jest równe:

$$P_c = 2 \cdot (6\sqrt{2})^2 + 4 \cdot 6\sqrt{2} \cdot 16 = 144 + 384\sqrt{2} = 48(3 + 8\sqrt{2}).$$

II sposób rozwiazania

Niech a oznacza długość krawędzi podstawy tego graniastosłupa, α – kąt nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy oraz niech przekątna podstawy graniastosłupa ma długość 3x, a przekątna graniastosłupa 5x (zobacz rysunek).

Z twierdzenia Pitagorasa otrzymujemy równanie

$$(3x)^2 + 16^2 = (5x)^2$$
,

$$9x^2 + 256 = 25x^2$$
.

$$256 = 16x^2$$
,

$$16 = x^2$$

Stąd x = 4. Zatem przekątna podstawy graniastosłupa ma długość $3x = 3 \cdot 4 = 12$.

Obliczamy długość krawędzi podstawy graniastosłupa:

$$a\sqrt{2} = 12$$
, skad $a = 6\sqrt{2}$.

Szukane pole powierzchni całkowitej tego graniastosłupa jest równe:

$$P_c = 2 \cdot (6\sqrt{2})^2 + 4 \cdot 6\sqrt{2} \cdot 16 = 144 + 384\sqrt{2} = 48(3 + 8\sqrt{2}).$$

Uwaga

Możemy również zauważyć, że trójkąt prostokątny o kącie ostrym α takim, że $\cos\alpha = \frac{3}{5}$ jest podobny do trójkąta pitagorejskiego o bokach długości 3, 4 i 5. Skala tego podobieństwa jest równa $x = \frac{16}{4} = 4$. W rezultacie szukane pole P_c powierzchni całkowitej graniastosłupa jest równe x^2P_m , gdzie P_m to pole powierzchni całkowitej graniastosłupa, którego przekątna ma długość 5, a przekątna podstawy długość 3. Długość krawędzi podstawy tego graniastosłupa jest równa $\frac{3}{\sqrt{2}} = \frac{3}{2}\sqrt{2}$, więc $P_m = 2\cdot\left(\frac{3}{2}\sqrt{2}\right)^2 + 4\cdot\frac{3}{2}\sqrt{2}\cdot 4 = 9 + 24\sqrt{2}$.

Zatem
$$P_c = 4^2 \cdot P_m = 16(9 + 24\sqrt{2}) = 48(3 + 8\sqrt{2}).$$

Schemat oceniania I i II sposobu rozwiązania

• zapisze, że $tg\alpha = \frac{4}{3}$

albo

• zapisze równanie, z którego można obliczyć skalę x podobieństwa trójkąta o bokach długości 3, 4 i 5 do trójkąta o przyprostokątnej długości 16 leżącej naprzeciw kąta α , np. $(3x)^2 + 16^2 = (5x)^2$

albo

• poda skalę x podobieństwa trójkąta o bokach długości 3, 4 i 5 do trójkąta o przyprostokątnej długości 16 leżącej naprzeciw kąta α , x = 4

albo

• zaznaczy na rysunku kąt nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy

albo

• zapisze, że długość d przekątnej graniastosłupa jest równa 20

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym jest istotny postęp2 p. Zdający:

- obliczy długość e przekątnej podstawy tego graniastosłupa e =12 albo
 - zapisze równanie, z którego można obliczyć długość krawędzi podstawy tego graniastosłupa, np. $16^2 + \left(a\sqrt{2}\right)^2 = \left(\frac{5a\sqrt{2}}{3}\right)^2$

$$16^2 + (a\sqrt{2})^2 = 20^2$$
 lub $\frac{16}{a\sqrt{2}} = \frac{4}{3}$

albo

 zapisze układ równań, z którego można obliczyć długość krawędzi podstawy tego graniastosłupa, np.

$$\begin{cases} \frac{a\sqrt{2}}{d} = \frac{3}{5} \\ \left(a\sqrt{2}\right)^2 + 16^2 = d^2 \end{cases}$$

gdzie d oznacza długość przekątnej tego graniastosłupa

i na tym zakończy lub dalej popełni błędy.

- 1. Akceptujemy sytuację, w której zdający wprowadza do rozwiązania poprawne przybliżenia dziesiętne liczb rzeczywistych.
- 2. Jeżeli zdający przyjmie miarę kąta nachylenia, która nie wynika z treści zadania (np. $\alpha = 30^{\circ}$), i w rozwiązaniu z tego korzysta, to za całe rozwiązanie otrzymuje **0 punktów**.
- 3. Jeżeli zdający błędnie zaznaczy na rysunku podany kąt i korzysta z tego kąta, to za całe rozwiązanie otrzymuje **0 punktów**.
- 4. Jeżeli zdający zapisze, że $\sin \alpha = \frac{3}{5}$ i korzysta z tej równości, to za całe rozwiązanie może otrzymać co najwyżej **1 punkt**.

5. Jeżeli zdający zapisze błędnie, że $e = a\sqrt{3}$, to za całe rozwiązanie może otrzymać co najwyżej **2 punkty**.

Zadanie 33. (0-4)

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj ku biletów	upionych	Liczba osób
ulgowe		76
normalne		41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

III. Modelowanie matematyczne.	10. Elementy statystyki opisowej. Teoria prawdopodobieństwa i kombinatoryka. Zdający oblicza prawdopodobieństwa w prostych sytuacjach, stosując klasyczną definicję prawdopodobieństwa (10.3)
	prawdopodobieństwa (10.3).

I sposób rozwiązania

Oznaczmy:

A – zdarzenie polegające na wylosowaniu osoby, która kupiła bilet ulgowy,

B – zdarzenie polegające na wylosowaniu osoby, która kupiła bilet normalny,

C – zdarzenie polegające na wylosowaniu osoby, która nie kupiła żadnego z wymienionych biletów.

Ankietę przeprowadzono wśród 115 osób, zatem $|\Omega| = 115$.

Ponieważ wśród badanych występują osoby, które kupiły bilety obu rodzajów, więc

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Stąd
$$|A \cup B| = 76 + 41 - 27 = 90$$
.

Zatem
$$|C| = |\Omega| - |A \cup B| = 25$$
, wiec

$$P(C) = \frac{25}{115} = \frac{5}{23}$$

Odp. Prawdopodobieństwo zdarzenia, polegającego na tym, że losowo wybrana spośród badanych osoba nie zakupiła żadnego z wymienionych biletów jest równe $\frac{5}{23}$.

II sposób rozwiązania

Oznaczmy:

C – zdarzenie polegające na wylosowaniu osoby, która nie kupiła żadnego biletu.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 115$.

Liczba wszystkich osób, które kupiły co najmniej jeden bilet jest równa 49 + 27 + 14 = 90.

Zatem |C| = 115 - 90 = 25.

Stąd
$$P(C) = \frac{25}{115} = \frac{5}{23}$$
.

Odp. Prawdopodobieństwo zdarzenia, polegającego na tym, że losowo wybrana spośród badanych osoba nie zakupiła żadnego z wymienionych biletów jest równe $\frac{5}{23}$.

Schemat oceniania I i II sposobu rozwiązania

• zapisze liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 115$

albo

- obliczy, ile jest wszystkich osób, które kupiły tylko bilety ulgowe: 49 albo
- obliczy, ile jest wszystkich osób, które kupiły tylko bilety normalne: 14 albo
 - obliczy, ile jest wszystkich osób, które kupiły co najmniej jeden bilet: 90.

• zapisze liczbę wszystkich zdarzeń elementarnych oraz obliczy, ile jest wszystkich osób, które kupiły tylko bilety ulgowe: $|\Omega| = 115$, 49

albo

• zapisze liczbę wszystkich zdarzeń elementarnych oraz obliczy, ile jest wszystkich osób, które kupiły tylko bilety normalne: $|\Omega| = 115$, 14

albo

• zapisze liczbę wszystkich zdarzeń elementarnych oraz obliczy, ile jest wszystkich osób, które kupiły co najmniej jeden bilet: $|\Omega| = 115$, 90

albo

• obliczy, ile jest wszystkich osób, które nie kupiły żadnego biletu: 25.

Uwagi

- 1. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(C) > 1 lub P(C) < 0, to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający poda tylko wynik końcowy $P(C) = \frac{5}{23}$ lub $P(C) = \frac{25}{115}$, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający obliczy $P(C) = \frac{25}{115}$ i nie przedstawi wyniku w postaci ułamka nieskracalnego, to otrzymuje **3 punkty**.
- 4. Jeżeli zdający popełni błąd rachunkowy przy wyznaczaniu $|A \cup B|$ lub |C|, i konsekwentnie do popełnionego błędu rozwiąże zadanie do końca, to otrzymuje co najwyżej **3 punkty**.
- 5. Jeżeli zdający sporządził diagram, na którym zapisał liczby 49, 27, 14 i 25,

i na tym zakończył, to otrzymuje 2 punkty.

Zadanie 34. (0-5)

W nieskończonym ciągu arytmetycznym (a_n) , określonym dla $n \ge 1$, suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy a_1 , a_3 , a_k ciągu (a_n) , w podanej kolejności, tworzą nowy ciąg – trzywyrazowy ciąg geometryczny (b_n) . Oblicz k.

IV. Użycie i tworzenie strategii.

5. Ciągi. Zdający stosuje wzór na *n*-ty wyraz i na sumę *n* początkowych wyrazów ciągu arytmetycznego stosuje wzór na *n*-ty wyraz i na sumę *n* początkowych wyrazów ciągu geometrycznego (5.3, 5.4).

Rozwiązanie

Korzystamy ze wzoru na sumę *n* początkowych wyrazów ciągu arytmetycznego i zapisujemy równanie:

$$\frac{2a_1 + 10r}{2} \cdot 11 = 187,$$
$$(a_1 + 5r) \cdot 11 = 187,$$

$$a_1 + 5r = 17$$
.

Korzystamy z informacji o średniej arytmetycznej trzech wyrazów i zapisujemy równanie:

$$\frac{a_1 + a_1 + 2r + a_1 + 8r}{3} = 12,$$

$$\frac{3a_1+10r}{3}=12$$
,

$$a_1 + \frac{10}{3}r = 12$$
.

Zapisujemy układ równań:

$$\begin{cases} a_1 + 5r = 17 \\ a_1 + \frac{10}{3}r = 12. \end{cases}$$

Z pierwszego równania otrzymujemy $a_1 = 17 - 5r$.

Otrzymaną wartość a_1 podstawiamy do drugiego równania i otrzymujemy równanie z niewiadomą r:

$$17 - 5r + \frac{10}{3}r = 12,$$

$$r = 3$$

Obliczamy pierwszy wyraz: $a_1 = 2$.

Uwaga

W rozwiązaniu układu równań zdający może najpierw wyznaczyć niewiadomą $r = \frac{17}{5} - \frac{1}{5}a_1$.

Otrzymaną wartość r podstawiamy do drugiego równania i otrzymujemy równanie z niewiadomą a_1 :

$$a_1 + \frac{10}{3} \left(\frac{17}{5} - \frac{1}{5} a_1 \right) = 12$$
,

geometryczny, np.: $a_3^2 = a_1 \cdot a_k$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 p. Zdający

• zapisze równanie z niewiadomą k wynikające z faktu, że ciąg (a_1, a_3, a_k) jest geometryczny oraz a_k jest k-tym wyrazem ciągu arytmetycznego, np.: $8^2 = 2(2 + (k-1) \cdot 3)$

albo

• rozwiąże układ równań z błędem rachunkowym i konsekwentnie do popełnionego błędu obliczy k, o ile otrzymana wartość k jest całkowita dodatnia.

- 1. Jeżeli zdający od razu poda $a_1 = 2$ i r = 3 lub wypisze kolejne wyrazy ciągu arytmetycznego: 2, 5, 8, 11, ..., ale nie uzasadni, że jest to jedyny ciąg spełniający warunki zadania i na tym zakończy, to otrzymuje **1 punkt**.
- 2. Jeżeli zdający od razu poda $a_1 = 2$ i r = 3 lub wypisze kolejne wyrazy ciągu arytmetycznego: 2, 5, 8, 11, ..., ale nie uzasadni, że jest to jedyny ciąg spełniający warunki zadania i wskaże lub obliczy k = 11, to otrzymuje **3 punkty**.
- 3. Jeżeli zdający od razu poda $a_1 = 2$ i r = 3 lub wypisze kolejne wyrazy ciągu arytmetycznego: 2, 5, 8, 11, ..., ale nie uzasadni, że jest to jedyny ciąg spełniający warunki zadania i zapisze równanie z niewiadomą k i popełni błąd rachunkowy w trakcie jego rozwiązywania, to otrzymuje **2 punkty**.
- 4. Jeżeli zdający od razu przyjmie ciąg arytmetyczny nie spełniający warunków zadania (suma 11 początkowych jego wyrazów jest różna od 187 lub średnia pierwszego, trzeciego i dziewiątego wyrazu jest różna od 12), to za całe zadanie otrzymuje **0 punktów**.