Лабораторная работа № 2. Компьютерное моделирование динамики трех тел

Цель работы: получить навык численного расчета траекторий движения небесных тел под действием гравитационных сил.

Задание на лабораторную работу

Задача І. Рассматривается динамика трех разновеликих небесных тел: звезды, планеты и ее спутника. В качестве примера рассматривается Солнечная система. Масса Солнца $M_1 = 2 \cdot 10^{30}~$ кг. Параметры двух других тел выбираются в соответствии с индивидуальным номером варианта из нижеследующей таблицы.

No	Пар	аметры н	второго тела	ļ	Параметры третьего тела			
варианта	M_2 ,	R_2 ,	R_{12} ,	V_2 ,	M_3 ,	R_3 ,	R_{23} ,	V_3 ,
	КГ	КМ	МЛН. КМ	км/с	ΚΓ	КМ	тыс. км	км/с
1	$1.9 \cdot 10^{27}$	71500	780	13	$1.1 \cdot 10^{23}$	2400	1883	8.2
2	$6.4 \cdot 10^{23}$	3390	228	24	$1.1 \cdot 10^{16}$	11.1	9.4	2.14
3	$6.0 \cdot 10^{24}$	6378	150	30	$7.3 \cdot 10^{22}$	1737	384	1.0
4	$5.7 \cdot 10^{26}$	60270	1429	9.7	$1.4 \cdot 10^{23}$	2575	1222	5.57
5	$1.0 \cdot 10^{26}$	24760	4498	5.5	$2.1 \cdot 10^{22}$	1353	355	4.5
6	$8.7 \cdot 10^{25}$	25560	2871	6.8	$1.4 \cdot 10^{21}$	579	191	5.51
7	$1.9 \cdot 10^{27}$	71500	780	13	$4.8 \cdot 10^{22}$	1561	671	13.7
8	$6.4 \cdot 10^{23}$	3390	228	24	$2.4 \cdot 10^{15}$	6.2	23.5	1.35
9	$1.9 \cdot 10^{27}$	71500	780	13	$1.5 \cdot 10^{23}$	2634	1070	10.9
10	$5.7 \cdot 10^{26}$	60270	1429	9.7	$2.3 \cdot 10^{21}$	764	527	7.54
11	$8.7 \cdot 10^{25}$	25560	2871	6.8	$3.0 \cdot 10^{21}$	761	584	3.15
12	$1.9 \cdot 10^{27}$	71500	780	13	$8.9 \cdot 10^{22}$	1821	421	17.3

- 1) Составить уравнения движения второго и третьего тела в системе отсчета, связанной с первым (самым массивным) телом. Предполагается, что движение всех тел происходит в одной плоскости.
- 2) Написать программу численного интегрирования составленных уравнений движения и построить траектории движения тел. В качестве начальных условий принять следующие: все тела находятся на одной прямой, вектора скоростей движения второго и третьего тела сонаправлены. Расстояния между первым и вторым, а также вторым и третьим телами приведены в таблице выше. Там же указаны значения начальных скоростей второго и третьего тела.

Задача II. На круговой орбите второго тела высотой H находится космический корабль. В тот момент, когда корабль, второе тело и третье тело находятся на одной прямой, включаются двигатели космического корабля, которые работают в течение времени T, выводя корабль на новую орбиту. Вектор тяги двигателя в любой момент времени направлен по касательной к траектории движения. Определить стартовую массу корабля из условия, что на поверхность третьего тела необходимо доставить полезный груз массой M_0 . Масса корабля складывается из массы топлива, полностью выгорающего за время T, массы конструкции (0.1 стартовой массы) и массы полезной нагрузки M_0 . В конце активного участка траектории (через время T) происходит отделение полезного груза, который движется далее только под действием гравитационных сил. Скорость

	Н, км	T , c	$M_{\scriptscriptstyle 0}$, кг	Характеристики топлива			
№ варианта				Горючее	Окислитель	Скорость истечения, м/с	
1	500	3250	50	Керосин		3070	
2	200	1200	10	ΤΓ-02	Азотная	3040	
3	300	2400	120	Анилин (80 %) +фурфуриловый спирт (20 %)	кислота (98 %)	3060	
4	1000	4100	95	Спирт (94 %)		2500	
5	250	3800	20	Водород (жидкий)		3835	
6	400	1900	220	Керосин	Кислород	3285	
7	2000	5100	40	НДМГ	(жидкий)	3375	
8	700	2300	30	Гидразин		3395	
9	900	1600	75	Аммиак (жидкий)		3170	
10	350	3400	100	Керосин	A normal ve	3031	
11	450	2250	55	НДМГ	Азотный	3120	
12	800	3900	85	Гидразин	тетраоксид	3160	

Рекомендации:

- 1) использовать результаты решения задачи І;
- 2) расчет активного участка траектории движения корабля произвести на основе уравнения Мещерского.

Отчетность

По результатам решения задач I и II составить отчет по лабораторной работе, который должен содержать постановки решенных задач, алгоритмы численного расчета траекторий, результаты численных расчетов траекторий и их графики, анализ полученных результатов и выводы по работе.

Трудоемкость выполнения задания: 4 часа аудиторной работы + 12 часов СРС. Максимальное количество баллов за выполнение и защиту работы - 8:

- 1 балл за посещение Л.Р. (балл начисляется, если студент присутствовал на протяжении всех 4 часов лабораторной работы),
- 1 балл за вовремя сданную лабораторную работу (т.е. лабораторная работа сдана до Нового года),
- 4 балла за выполнение лабораторной работы,
- 2 балла за отчет и защиту лабораторной работы.