CS1231: Discrete Structures

Tutorial 6

Li Wei

Department of Mathematics National University of Singapore

11 March, 2019

Quick Review

- Division Algorithm. The Remainder is Never Negative.
- ▶ If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then a is **congruent** to b modulo m if m|(a-b). We write $a \equiv b \pmod{m}$.

Menu

Question 1	Question 4
	Question 5
Question 2	Question 6
Question 3	Question 7

$$\left| \frac{n^2}{4} \right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4} \right] = \frac{n^2 + 3}{4}$$

 $\left| \frac{n^2}{4} \right| =$

 $\left\lceil \frac{n^2}{4} \right\rceil =$

Answer. Since n is odd, n =

ince
$$n$$
 is odd, $n =$

 $, \frac{n^2-1}{4} = , \frac{n^2+3}{4} =$

Hence

Since
$$n$$
 is odd, $n =$

$$n = n \text{ is odd}, n = n$$

r. Since
$$n$$
 is odd, $n =$

$$[4]$$
 4

$$n^2 \mid n^2 - 1 \mid$$

$$\lceil n^2 \rceil = n^2$$

$$\left| \frac{n^2}{4} \right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4} \right] = \frac{n^2 + 3}{4}$$

 $\left| \frac{n^2}{4} \right| =$

 $\left\lceil \frac{n^2}{4} \right\rceil =$

Answer. Since n is odd, n=2k+1 for some $k \in \mathbb{Z}$. Thus

Answer. Since
$$n$$
 is odd, $n=2k+1$ for some $k\in\mathbb{Z}$. Thus

Hence

 $, \frac{n^2-1}{4} = , \frac{n^2+3}{4} =$

Hence

$$\left| \frac{n^2}{4} \right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4} \right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

Answer. Since
$$n$$
 is odd, $n=2k+1$ for some $k\in\mathbb{Z}$. Thus

$$\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = \frac{n^2 + 3}{4} = \frac{n^2 + 3}{$$

swer. Since
$$n$$
 is odd, $n = 2k + 1$ for some k

 $\left| \frac{n^2}{4} \right| =$

 $\left\lceil \frac{n^2}{4} \right\rceil =$

$$\lfloor n^2 \rfloor \quad n^2 - 1 \quad \lceil$$

Hence

$$\left| \frac{n^2}{4} \right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4} \right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n=2k+1 for some $k \in \mathbb{Z}$. Thus

Answer. Since
$$n$$
 is odd, $n=2k+1$ for some $k\in\mathbb{Z}$. Thus

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k$

 $\left| \frac{n^2}{4} \right| =$

 $\left\lceil \frac{n^2}{4} \right\rceil =$

$$\left|\frac{n^2}{4}\right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4}\right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

Answer. Since
$$n$$
 is odd, $n = 2k + 1$ for some $k \in \mathbb{Z}$. Thu

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1.$

Hence $\left| \frac{n^2}{4} \right| =$

 $\left\lceil \frac{n^2}{4} \right\rceil =$

$$\left|\frac{n^2}{4}\right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4}\right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

Answer. Since
$$n$$
 is odd, $n = 2k + 1$ for some $k \in \mathbb{Z}$. Thu

$$n^2$$
 , 2 , 1 , 1 , n^2-1 , 2 , n^2+3 , 2 ,

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1.$

Hence $\left| \frac{n^2}{4} \right| = k^2 + k =$

 $\left| \frac{n^2}{4} \right| =$

$$\mid n^2 \mid n^2 - 1 \mid n^2 \rceil$$

Answer. Since
$$n$$
 is odd, $n = 2k + 1$ for some $k \in \mathbb{Z}$. Thu

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1.$

$$\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1$$

 $\left| \frac{n^2}{4} \right| = k^2 + k = \frac{n^2 - 1}{4}$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

 $\left| \frac{n^2}{4} \right| =$

 $\left| \frac{n^2}{4} \right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4} \right] = \frac{n^2 + 3}{4}$

$$\left|\frac{n^2}{4}\right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4}\right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

All swell. Since
$$n$$
 is odd, $n = 2n + 1$ for some $n \in \mathbb{Z}$. Thu

$$n^2$$
 . 2 . 1 $n^2 - 1$. 2 . $n^2 + 3$. 2

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1.$

Hence

 $\left| \frac{n^2}{4} \right| = k^2 + k = \frac{n^2 - 1}{4}$

$$\left[\frac{n^2}{4}\right] = k^2 + k + 1 =$$

$$\left|\frac{n^2}{4}\right| = \frac{n^2 - 1}{4} \qquad \left[\frac{n^2}{4}\right] = \frac{n^2 + 3}{4}$$

Answer. Since n is odd, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus

All Swell. Since
$$n$$
 is odd, $n = 2k + 1$ for some $k \in \mathbb{Z}$. Thus

 $\frac{n^2}{4} = k^2 + k + \frac{1}{4}, \quad \frac{n^2 - 1}{4} = k^2 + k, \quad \frac{n^2 + 3}{4} = k^2 + k + 1.$

Hence
$$\left|\frac{n^2}{4}\right|=k^2+k=\frac{n^2-1}{4}$$

$$\left[\frac{n^2}{4}\right] = k^2 + k + 1 = \frac{n^2 + 3}{4}$$

Idea. Suppose $(n-1) \div k = q \dots r$, $0 \le r \le k-1$.

$$\left\lceil \frac{n}{k} \right\rceil = \left\lfloor \frac{n-1}{k} \right\rfloor + 1$$

$$\left|\frac{1}{k}\right| = \left[\frac{1}{k}\right] + 1$$

 $\Rightarrow n-1=$

 $\Rightarrow \frac{n}{k} = ,$ $\Rightarrow \left\lceil \frac{n}{k} \right\rceil = .$

 $\Rightarrow \left\lfloor \frac{n-1}{k} \right\rfloor + 1 =$

$$\lceil \frac{n}{n} \rceil = \left\lfloor \frac{n-1}{n-1} \right\rfloor + 1$$

$$\lceil n \rceil \quad \lceil n-1 \rceil$$

$$\lceil n \rceil \quad \lceil n-1 \rceil$$

$$\lceil n \rceil \quad | n-1 |$$

$$\left|\frac{1}{k}\right| = \left[\frac{1}{k}\right] + 1$$

 $\Rightarrow n-1=kq+r \Rightarrow n=$

 $\Rightarrow \frac{n}{k} = \\ \Rightarrow \left\lceil \frac{n}{k} \right\rceil =$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lfloor \frac{n-1}{k} \right\rfloor + 1$$

$$\lceil n \rceil \quad | n-1 |$$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lceil \frac{n-1}{k} \right\rceil + 1$$

 $\Rightarrow n-1 = kq + r \Rightarrow n = kq + (r+1)$

 $\Rightarrow \frac{n}{k} = \\ \Rightarrow \left\lceil \frac{n}{k} \right\rceil =$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\left|\frac{1}{k}\right| = \left|\frac{1}{k}\right| + 1$$

$$\left|\frac{1}{k}\right| = \left[\frac{1}{k}\right] + 1$$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lfloor \frac{n-1}{k} \right\rfloor + 1$$

 $\Rightarrow n-1 = kq + r \Rightarrow n = kq + (r+1)$

 $\Rightarrow \frac{n}{k} = q + \frac{r+1}{k}, \quad < \frac{r+1}{k} \le$

 $\Rightarrow \left\lceil \frac{n}{k} \right\rceil =$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\left|\frac{\kappa}{k}\right| = \left|\frac{\kappa}{k}\right| + 1$$

$$\lceil n \rceil \quad \lceil n-1 \rceil$$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lceil \frac{n-1}{k} \right\rceil + 1$$

 $\Rightarrow n-1 = kq + r \Rightarrow n = kq + (r+1)$

 $\Rightarrow \frac{n}{k} = q + \frac{r+1}{k}, \ 0 < \frac{r+1}{k} \leqslant$

 $\Rightarrow \left\lceil \frac{n}{k} \right\rceil =$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\lceil n \rceil \quad | n-1 |$$

$$\left|\frac{n}{k}\right| = \left|\frac{n-1}{k}\right| + 1$$

 $\Rightarrow n-1=kq+r \Rightarrow n=kq+(r+1)$

 $\Rightarrow \frac{n}{k} = q + \frac{r+1}{k}, \ 0 < \frac{r+1}{k} \leqslant 1$

 $\Rightarrow \left\lceil \frac{n}{k} \right\rceil =$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lceil \frac{n-1}{k} \right\rceil + 1$$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lceil \frac{n-1}{k} \right\rceil + 1$$

 $\Rightarrow n-1 = kq + r \Rightarrow n = kq + (r+1)$

 $\Rightarrow \frac{n}{k} = q + \frac{r+1}{k}, \ 0 < \frac{r+1}{k} \leqslant 1$

 $\Rightarrow \left\lceil \frac{n}{k} \right\rceil = q + 1.$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 =$

$$\lceil n \rceil \quad \lceil n-1 \rceil$$

$$\left\lceil \frac{n}{k} \right\rceil = \left\lceil \frac{n-1}{k} \right\rceil + 1$$

 $\Rightarrow n-1=kq+r \Rightarrow n=kq+(r+1)$

 $\Rightarrow \frac{n}{k} = q + \frac{r+1}{k}, \ 0 < \frac{r+1}{k} \leqslant 1$

 $\Rightarrow \left\lceil \frac{n}{l_2} \right\rceil = q + 1.$

 $\Rightarrow \left| \frac{n-1}{k} \right| + 1 = q+1$

$$\lceil n \rceil \quad \mid n-1 \mid$$

- 3. What are the quotient and remainder when x is divided by y where $(x,y)=% {\displaystyle\int\limits_{x}^{y}} \left(x^{2}+y^{2}\right) dx$
- (a) (44,8). Idea. Quotient: [44/8] = . $44 = () \times 8 + .$ Remainder:
- (b) (777, 21). Idea. Quotient: [777/21] = ... $777 = (...) \times 21 + ...$ Remainder:
- (c) (-123, 19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = () \times 19 +$. Remainder:
- (d) (0,17). Idea. Quotient: [0/17] = ...0 = () × 17 + . Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

 $\not = r$: remainder. Notation: $r = n \mod d$

- 3. What are the quotient and remainder when x is divided by y where $(x,y)=% {\displaystyle\int\limits_{x}^{y}} \left(x,y\right) dx$
- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 +$. Remainder:
- (b) (777, 21). Idea. Quotient: [777/21] = ... $777 = (...) \times 21 + ...$ Remainder:
- (c) (-123, 19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = ($ $) \times 19 +$. Remainder:
- (d) (0,17). Idea. Quotient: [0/17] = ...0 = () × 17 + . Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. $n = dq + r \quad 0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$;

 $\not = r$: remainder. Notation: $r = n \mod d$

- 3. What are the quotient and remainder when x is divided by y where $(x,y)=% {\displaystyle\int\limits_{x}^{y}} \left(x,y\right) dx$
- (a) (44,8). Idea. Quotient: $\lfloor 44/8 \rfloor = 5$. $44 = (5) \times 8 + 4$. Remainder:
- (b) (777,21). Idea. Quotient: $\lfloor 777/21 \rfloor = ...$ $777 = () \times 21 + ...$ Remainder:
- (c) (-123, 19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = ($ $) \times 19 +$. Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777,21). Idea. Quotient: $\lfloor 777/21 \rfloor = ...$ $777 = () \times 21 + ...$ Remainder:
- (c) (-123,19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = () \times 19 +$. Remainder:
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = ...$ $0 = () \times 17 + ...$ Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: [777/21] = 37. $777 = (37) \times 21 +$. Remainder:
- (c) (-123,19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = () \times 19 +$. Remainder:
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = ...$ $0 = () \times 17 + ...$ Remainder:
- (e) (-100, 101). Idea. Quotient: $[-100/101] = -100 = () \times 101 +$. Remainder:

Recall

r: remainder. Notation: $r = n \mod d$

- (a) (44,8). Idea. Quotient: $\lfloor 44/8 \rfloor = 5$. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder:
- (c) (-123,19). Idea. Quotient: $\lfloor -123/19 \rfloor = -123 = () \times 19 +$. Remainder:
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = ...$ $0 = () \times 17 + ...$ Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

3. What are the quotient and remainder when x is divided by ywhere (x, y) =

- (a) (44,8). Idea. Quotient: |44/8| = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: |777/21| = 37. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: |-123/19| = $-123 = () \times 19 +$. Remainder:
- (d) (0, 17). Idea. Quotient: |0/17| = ... $0 = () \times 17 +$. Remainder:
- (e) (-100, 101). Idea. Quotient: |-100/101| =-100 = ($) \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. $n = dq + r \quad 0 \leq r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$;

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123,19). Idea. Quotient: $\lfloor -123/19 \rfloor = -7$. $-123 = (-7) \times 19 + \cdot$ Remainder:
- (d) (0,17). Idea. Quotient: [0/17] = ...0 = () × 17 + . Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. n = dq + r $0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder:
- (d) (0,17). Idea. Quotient: [0/17] = ... $0 = () \times 17 + ...$ Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

 $\not = r$: remainder. Notation: $r = n \mod d$

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = ...$ $0 = () \times 17 + ...$ Remainder:
- (e) (-100, 101). Idea. Quotient: $[-100/101] = -100 = () \times 101 +$. Remainder:

Recall

 $\not = r$: remainder. Notation: $r = n \mod d$

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = 0$. $0 = (0) \times 17 + .$ Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. n = dq + r $0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: [0/17] = 0. $0 = (0) \times 17 + 0$. Remainder:
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

 $\not = r$: remainder. Notation: $r = n \mod d$

- (a) (44,8). Idea. Quotient: $\lfloor 44/8 \rfloor = 5$. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = 0$. $0 = (0) \times 17 + 0$. Remainder: 0
- (e) (-100, 101). Idea. Quotient: $\lfloor -100/101 \rfloor = -100 = () \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. n = dq + r $0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: [0/17] = 0. $0 = (0) \times 17 + 0$. Remainder: 0
- (e) (-100, 101). Idea. Quotient: [-100/101] = -1. $-100 = (-1) \times 101 +$. Remainder:

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. n = dq + r $0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

- (a) (44,8). Idea. Quotient: $\lfloor 44/8 \rfloor = 5$. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: $\lfloor 0/17 \rfloor = 0$. $0 = (0) \times 17 + 0$. Remainder: 0
- (e) (-100, 101). Idea. Quotient: [-100/101] = -1. $-100 = (-1) \times 101 + 1$. Remainder:

Recall

3. What are the quotient and remainder when x is divided by y where (x,y)=

- (a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4
- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- (d) (0,17). Idea. Quotient: [0/17] = 0. $0 = (0) \times 17 + 0$. Remainder: 0
- (e) (-100, 101). Idea. Quotient: [-100/101] = -1. $-100 = (-1) \times 101 + 1$. Remainder: 1

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. n = dq + r $0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

3. What are the quotient and remainder when x is divided by y where (x,y)=

(a) (44,8). Idea. Quotient: [44/8] = 5. $44 = (5) \times 8 + 4$. Remainder: 4

(d) (0, 17). Idea. Quotient: |0/17| = 0.

- (b) (777, 21). Idea. Quotient: $\lfloor 777/21 \rfloor = 37$. $777 = (37) \times 21 + 0$. Remainder: 0
- (c) (-123, 19). Idea. Quotient: [-123/19] = -7. $-123 = (-7) \times 19 + 10$. Remainder: 10
- $0 = (0) \times 17 + 0$. Remainder: 0 (e) (-100, 101). Idea. Quotient: |-100/101| = -1.
- (e) (-100, 101). Idea. Quotient: [-100/101] = -1 $-100 = (-1) \times 101 + 1$. Remainder: 1

Recall

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. $n = dq + r \quad 0 \le r < d$ $\not = q$: quotient. Notation: q = n Div $d = \lfloor n/d \rfloor$; $\not = r$: remainder. Notation: r = n Mod d

Answer. (5,4), (37,0), (-7,10), (0,0), (-1,1).

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.
- a|b

- \Rightarrow b|a
- \Rightarrow
- \Rightarrow
- \Rightarrow

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.
- a|b
- $\Rightarrow |a| \leq |b|$
- $\Rightarrow |a| \leqslant |b|$ b|a
- **→**
- \Rightarrow
- $\stackrel{'}{\Rightarrow}$

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.
- a|b
- $\Rightarrow |a| \leq |b|$
- b|a
- $\Rightarrow |b| \leq |a|$
- \Rightarrow \Rightarrow

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.
- a|b
- $\Rightarrow |a| \leqslant |b|$ b|a
- $\Rightarrow |b| \leq |a|$
- $\Rightarrow |a| = |b|$
- \Rightarrow

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.
- a|b
- $\Rightarrow |a| \leqslant |b|$
- b|a
- $\Rightarrow |b| \leq |a|$
- $\Rightarrow |a| = |b|$
- $\Rightarrow a = b \text{ or } a = -b$

Recall

- Divisor is never 0.
- $\triangle x|y$ means: $\exists k(y=kx);$
- \triangle if x|y and $y \neq 0$, then $|x| \leq |y|$.

$$\Rightarrow |a| \leqslant |b|$$

b|a

$$\Rightarrow |b| \leqslant |a|$$
$$\Rightarrow |a| = |b|$$

$$\Rightarrow a = b \text{ or } a = -b$$

 $\Rightarrow a = b \text{ or } a = -b$

Answer. a|b implies |a|||b| implies $|a| \le |b|$. Similarly, b|a implies |b|||a|. Thus |a| = |b|. This means a = b or a = -b.

5. Prove or disprove that if $a \mid bc$, where a, b, and c are positive integers and $a \neq 0$, then $a \mid b$ or $a \mid c$.

5. Prove or disprove that if $a\mid bc$, where a,b , and c are positive integers and $a\neq 0$, then $a\mid b$ or $a\mid c$. Ans.

5. Prove or disprove that if $a \mid bc$, where a,b, and c are positive integers and $a \neq 0$, then $a \mid b$ or $a \mid c$.

Ans. Disprove: a = 4, b = 6, c = 10.

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. ...
- 3. Then
- 4. d is a positive divisor of b
- 5. . .
- 6. Then
- 7. d is a positive divisor of m
- 8. ..
- 9. Then

- 10. $a \equiv b \pmod{m}$.
- 11. ...
- 12. .: (Substitute 2,5,8 into 11)
- 13. . (Cancel
- common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. ...

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r =
- 4. d is a positive divisor of b
- 5. . .
- 6. Then
- 7. d is a positive divisor of m
- 8. ..
- 9. Then

- 10. $a \equiv b \pmod{m}$.
 - 11. . .
 - 12. .: (Substitute 2,5,8 into 11)
 - 13. (Cancel common factor in 12)
 - 14. Then (Substitute 3,6,9 into 13)
 - 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- **4**. d is a positive divisor of b
- 5. . .
- 6. Then
- 7. d is a positive divisor of m
- 8. ..
- 9. Then

- 10. $a \equiv b \pmod{m}$.
- 11. ...
- 12. ... (Substitute 2,5,8 into 11)
- 13. .. (Cancel
- common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. ...

$$a/d \equiv b/d \pmod{m/d}$$

Recall

 $\not \equiv$ Let $a,b\in \mathbb{Z}$ and $m\in \mathbb{Z}^+$. Then $a\equiv b\pmod m$ iff $\exists k\in \mathbb{Z}$ such that a=b+km.

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s =
- 7. d is a positive divisor of m
- 8. ..
- 9. Then

- 10. $a \equiv b \pmod{m}$.
- 11. . .
- 12. (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- **4**. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. ..
- 9. Then

- 10. $a \equiv b \pmod{m}$.
- 11. . . .
- 12. ... (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t =

- 10. $a \equiv b \pmod{m}$.
- 11. . . .
- 12. ... (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. . .
- 12. ... (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. ... (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. $\therefore dr = ds + kdt$ (Substitute 2,5,8 into 11)
- 13. ... (Cancel common factor in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. $\therefore dr = ds + kdt$ (Substitute 2,5,8 into 11)
- 13. \therefore (Cancel common factor d in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. $\therefore dr = ds + kdt$ (Substitute 2,5,8 into 11)
- 13. r = s + kt (Cancel common factor d in 12)
- 14. Then (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a
- 2. $\therefore a = dr$, for some $r \in \mathbb{Z}$. 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. $\therefore dr = ds + kdt$ (Substitute 2,5,8 into 11)
- 13. $\therefore r = s + kt$ (Cancel common factor d in 12)
- 14. Then a/d = b/d + k(m/d) (Substitute 3,6,9 into 13)
- 15. . .

$$a/d \equiv b/d \pmod{m/d}$$

Recall

- 1. d is a positive divisor of a2. $\therefore a = dr$, for some $r \in \mathbb{Z}$.
- 3. Then r = a/d
- 4. d is a positive divisor of b
- 5. $\therefore b = ds$, for some $s \in \mathbb{Z}$.
- 6. Then s = b/d
- 7. d is a positive divisor of m
- 8. $\therefore m = dt$, for some $t \in \mathbb{Z}$.
- 9. Then t = m/d

- 10. $a \equiv b \pmod{m}$.
- 11. $\therefore a = b + km$, for some $k \in \mathbb{Z}$.
- 12. $\therefore dr = ds + kdt$ (Substitute 2,5,8 into 11)
- 13. $\therefore r = s + kt$ (Cancel common factor d in 12)
- 14. Then a/d = b/d + k(m/d) (Substitute 3,6,9 into 13)
- 15. $\therefore a/d \equiv b/d \pmod{m/d}$

- 7. Find counter examples to each of these statements.
- (a) If $ac \equiv bc \mod m$, then $a \equiv b \mod m$.
- (b) If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a^c \equiv b^d \mod m$.

Recall

Answer.

Compare with the following

 $A = b \mod m$ and $c \equiv d \mod m$, then $a + b \equiv b + d \mod m$ and $ab \equiv bd \mod m$.

- 7. Find counter examples to each of these statements.
- (a) If $ac \equiv bc \mod m$, then $a \equiv b \mod m$.
- (b) If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a^c \equiv b^d \mod m$.

Answer.

(a) a = 1, b = 2, c = 3, m = 3.

Recall

Compare with the following

If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + b \equiv b + d \mod m$ and $ab \equiv bd \mod m$.

- 7. Find counter examples to each of these statements.
- (a) If $ac \equiv bc \mod m$, then $a \equiv b \mod m$.
- (b) If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a^c \equiv b^d \mod m$.

Answer.

- (a) a = 1, b = 2, c = 3, m = 3.
- (b) a = b = 2, c = 1, d = 4, m = 3.

Recall

Compare with the following

If $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + b \equiv b + d \mod m$ and $ab \equiv bd \mod m$.