Matt Approach: Pick time constants from ggov1 model to put into the tgov1 model.

Figure 1: LTD tgov1 Model.

Figure 2: PSDS ggov1 Model

Results: While this was relatively easy to do, and the required parsing of ggov1 infromation from the .dyd is useful - dynamic testing shows that this is not a very accurate dynamic approach. Steady state results match in all cases tested. Probably need to use an alternative approach.

T1	T2	Т3	Result
Ta	Тс	Tb	Faster response than desired, minimal overshoot.(Figure 3)
Tact	Tc	Tb	Similar to Ta Tc Tb case, slightly more overshoot
Tpelec	Tc	Tb	Faster and more overshoot than desired. (Figure 4)
Tpelec	Tc	Tact	Similar to Tpeclec Tc Tb case, less damping (more overshoot)

Figure 3: PSDS and LTD results. Case: T1=Ta, T2=Tc, T3=Tb

Figure 4: PSDS and LTD results. Case: T1=Tpelec, T2=Tc, T3=Tb