

Lecture #4 Fragility analysis

Chiara Nardin – Ph.D., M.Sc., Eng. in Civil Engineering

Fragility (or Vulnerability) Analysis is the second step of the PBEE-PEER framework

Useful definitions:

seismic fragility function := the conditional probability of an event (e.g. a defined limit/damage state) given the observation of an intensity measure which describe the seismic event.

The fragility curve is defined as the conditional probability of failure of a structure, or its critical components, at given values of seismic intensity measures (*IMs*).

$$\lambda(dv) = \sum_{d} \int_{edp} \int_{im} G(dv|d) P(d|im) |d\lambda(im)|$$

In practice, a fragility curve is calculated as the conditional probability that the damage measure (*D*) exceeds a critical threshold, for a given seismic *IM*.

$$P(D > d_{threshold} \mid IM = im)$$

Fragility Analysis: key aspects

INTENSITY MEASURE (IM)

in terms of:

- *Efficiency*, i.e. variability of an *EDP* for a given *IM*;
- *Robustness*, i.e. efficiency between *IM-EDP* at different period ranges;
- *Practicality*, i.e. correlation to known and easy identifiable engineering quantities;
- <u>Sufficiency</u>, i.e. validity of *EDP* | *IM* as statistically independent from gm site characteristics;
- <u>Effectiveness</u>, i.e. ability to evaluate an analytical relation.

DAMAGE STATE (D)

Should suit the specific structural problem \rightarrow associate each damage state to a specific *EDP*

- Categorical variables, i.e. D_0 no damages $-D_1$ minor $-D_2$ moderate - ... $-D_f = C$ collapse;
- Probabilistic or deterministic
 relationship between *EDP* and *D*

Class of fragilities

EMPIRICAL

 by fitting a function to observational data from past earthquakes or lab tests

collections pairs of level of excitation and categorical variables of damage or collapse

ANALYTICAL

 by defining analytical structural model and analyzing its performance under different levels of the seismic hazard

static, i.e. hazard as response spectrum and push-over analysis

<u>dynamic</u>, i.e. collection of gms and simulations on FEM via NLA

EXPERT OPINION

 by polling one or more experts of the given structural asset

to guess or estimate the failure probability for a given hazard level

HYBRID

based on combination of the different methods

Analytical fragility functions: steps

- i) Definition of a numerical model: $y(t) = \mathcal{M} \left[\ddot{x}_g(t|IM = im); \boldsymbol{\theta}_{\mathcal{M}}(t) \right]$
- ii) Selection of a suitable *IM* given the structure
- iii) Selection of a suitable set of *N* gms for the location
- iv) Selection of an *EDP* of interest
- v) Definition of damage limit states *D* via *EDP* thresholds
- vi) Scale each gm based on the given *IM* eventually until collapse
- vii) Save each $[EDP \rightarrow D]$ threshold- im_n pair for each gm

a) Full IDA

b) Truncated IDA

Computation of fragility function

Hp: - assume a *lognormal probability distribution* for the random variable *IM* associated with given *D*

FULL IDA

 \forall damage state \rightarrow N results, since \forall $IM_n = im_n$, y(t) reached the given damage state

$$P(D > d|IM = im) = \Phi\left(\frac{\ln(im_n) - \hat{\mu}}{\hat{\sigma}}\right)$$

where $\Phi(\cdot)$ is the CDF of the normal distribution and

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} \ln(im_n)$$

$$\hat{\sigma} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\ln(im_n) - \hat{\mu} \right)^2},$$

TRUNCATED IDA

IM upper limit;

- a) data that causes collapse $n \in [1, \overline{N}]$,
- b) data that do not cause collapse $n \in [\overline{N} + 1, N]$

a)
$$\rightarrow \underline{\mathcal{L}}(\mu, \sigma) \alpha \prod_{n=1}^{\bar{N}} \varphi \left(\frac{\ln(im_n) - \mu}{\sigma} \right)$$

b)
$$\rightarrow \overline{\mathcal{L}}(\mu, \sigma) \alpha \prod_{n=\overline{N}+1}^{N} \left[1 - \Phi\left(\frac{\ln(\overline{IM}) - \mu}{\sigma}\right) \right] = \left[1 - \Phi\left(\frac{\ln(\overline{IM}) - \mu}{\sigma}\right) \right]^{N-\overline{N}}$$

Computation of fragility function

TRUNCATED IDA

The likelihood for the entire set of data

$$\mathcal{L}(\mu,\sigma) = \underline{\mathcal{L}}(\mu,\sigma)\overline{\mathcal{L}}(\mu,\sigma) = \prod_{n=1}^{\bar{N}} \varphi\left(\frac{\ln(im_n) - \mu}{\sigma}\right) \left[1 - \Phi\left(\frac{\ln(\overline{IM}) - \mu}{\sigma}\right)\right]^{N - \overline{N}} \tag{1}$$

And the log likelihood

$$\ln \mathcal{L}(\mu, \sigma) = \sum_{n=1}^{\overline{N}} \varphi \left(\frac{\ln(im_n) - \mu}{\sigma} \right) + (N - \overline{N}) \left[1 - \Phi \left(\frac{\ln(\overline{IM}) - \mu}{\sigma} \right) \right]$$
 (2)

Estimation of parameters by optimization

$$[\hat{\mu}, \hat{\sigma}] = \underset{\mu, \sigma}{\operatorname{argmin}} [-\ln \mathcal{L}(\mu, \sigma)].$$

Lecture #4
Fragility Analysis – MatLab Tutorial

Chiara Nardin – Ph.D., M.Sc., Eng. in Civil Engineering

MatLab

References

Goal: to perform fragility analysis

Given the provided set of ground motions, perform a classical and truncated incremental dynamic analysis (*IDA*) and determine fragility curves for:

- ATTEL moment resistant frame (MRF);
- ATTEL braced frame (BF)

by considering both

- Linear elastic behaviour
- Bouc Wen model for hysteresis

3D model of the case study ATTEL – SERA project.

MatLab

References

Main steps:

- 1) Definition of the numerical model
- 2) Input and *IM* selection
- 3) Definition of *damage limit states* and reference *EDP*
- 4) Performing non-linear time histories analysis (IDA, truncated IDA, cloud, MSA ...)
- 5) Collecting results pairs and computing fragility

Designed according to EC8 and modelled in OS:

 beam and column elements with linear elastic behavior

elasticBeamColumn

mechanical nonlinearities

uniaxialMaterial BoucWen uniaxialMaterial Pinching4 uniaxialMaterial Parallel

 $\stackrel{Model\ of\ tar{h}e\ structure\ in\ OpenSees.}{ ext{e}}$ Parallel $matBoucWen\ matPinching\ SIz\ stransfTag$

High number of analysis for seismic simulations

- to reduce computational burden
- to reduce required simulation times

Calibration oriented to correspondence of:

- main periods
- modes of vibrating
- dissipative behavior

Elastic Postyielding Spring F^{el}, u uHysteretic Spring F^{h}_{max} $(1-a)k_{i}$ u F^{h}, u

Hysteretic model of Bouc Wen.

MatLab References

Hysteretic model of Bouc Wen

$$m\ddot{u}(t) + c\dot{u}(t) + F_s(t) = F(t)$$

$$F_s(u(t), \dot{u}(t), z(t)) = F_{el}(t) + F_h(t) = \alpha k_i u(t) + (1 - \alpha) k_i z(t)$$

$$\dot{z} = \frac{A\dot{u} - \left\{\beta \mid \dot{x} \mid z \mid z \mid^{n-1} + \gamma \dot{u} \mid z \mid^{n}\right\} v}{\eta}$$

Formulation of the problem and examples of hysteretic cycles.

PGD [cm]

Fragility Analysis MatLab Step 2: input and *IM* selection 206 ground motions Dataset NGA-WEST 2 crustal earthquakes reverse REV $M_w > 6$ $R_{rup} > 10 \text{ km}$ $V_{s30} > 600 \text{ m/s}$ fault main features mechanism strike slip SS IMs investigated PGA [g] (T) [cm rad/s] PGV [cm/s]

 $Sd(T_1)[cm]$

MatLab

References

Step 2: input and *IM* selection

1) Data exploration of recorded gms

2) Scatter plot and statistic tools to evaluate proper *IM*

Acceleration, velocity and displacement response spectra with mean value, 10^{-th} and 90^{-th} quantile.

Scatter plot for correlation.

MatLah

References

Step 2: input and *IM* selection

```
Codes:
%% Ground motions
Ground motions = load('accelrot_cellarray.mat');
%
NN = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 24,...
   25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37]; % number ID of the SS ground motions
DT = [0.01, 0.01, 0.005, 0.005, 0.005, 0.005, 0.02, 0.02, 0.02, 0.01,...]
   0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01,...
   0.005, 0.005, 0.005, 0.005, 0.02, 0.005, 0.005, 0.01, 0.01, 0.01,...
   0.01, 0.005, 0.005, 0.02, 0.005, 0.01, 0.01]; % integration time step
```

Step 3: Definition of *damage limit states* and reference *EDP*

MRF		Structural Performance Levels						Structural Performance Levels				
		Collapse Prevention	Life Safety	Service	Immediate Occupancy			Collapse Prevention	Life Safety	Service	Immediate Occupancy	
Drift	[%]	5%	2,50%	1%	0,70%	Drift	[%]	2,00%	1,00%	0,50%	0,30%	
	[m]	0,175	0,088	0,035	0,025		[m]	0,07	0,035	0,0175	0,0105	

Document FEMA 356 - Prestandard and Commentary for the Seismic Rehabilitation of Buildings; Table C1-3 - Structural Performance Levels and Damage.

MatLab

References

Step 3: Definition of *damage limit states* and reference *EDP*

Codes:	•••					
%% MDOF Properties	%% Limit States					
% Choose between the structural system	LS = [0.50 0.75 1 2 3]*4/100;					
MDOF_properties_BW_MRF	for ls_i = 1:numel(LS) ls_val = LS(ls_i) Main_IDA_o_t ls_i = ls_i + 1;					
MDOF_properties_BW_BF						
% and between linear or hysteretic behaviour						
%% Structural behaviour						
System_type = 'le'; % 'bw'	end					
% bw = bouc-wen						
% le = linear elastic						

MatLab

References

Step 4: Performing non-linear time histories analysis

```
Codes:
%% Initial condition
Mat.dFe=zeros(Mat.NDOF,numel(a_g_norm)); % Preallocation for the load for the time series
                                % Scaled ground motion
a_g = a_g_norm*scale;
Mat.Fe=Mat.M*Mat.r'*a_g'*g;
%% Computation response
[HistVarBw]=ResponceMDF_Bw(Mat);
edp = max(abs(HistVarBw.eps(1,:)));
EDP(i) = edp; %store the EDP for each time history analysis
SCALE(i) = scale; %store the scale factor for each time history analysis...
```


MatLab

References

Step 5: Computing fragilities

```
\mathcal{L}(\mu, \sigma) = \underline{\mathcal{L}}(\mu, \sigma)\overline{\mathcal{L}}(\mu, \sigma) = \prod_{n=1}^{\overline{N}} \varphi\left(\frac{\ln(im_n) - \mu}{\sigma}\right) \left[1 - \Phi\left(\frac{\ln(\overline{IM}) - \mu}{\sigma}\right)\right]^{N-N}
Codes:
%% Untruncated IDA
                                                                            \ln \mathcal{L}(\mu, \sigma) = \sum_{n=1}^{\overline{N}} \varphi \left( \frac{\ln(im_n) - \mu}{\sigma} \right) + (N - \overline{N}) \left[ 1 - \Phi \left( \frac{\ln(\overline{IM}) - \mu}{\sigma} \right) \right]
[parmhat,parmci] = lognfit(IM_t_c,0.01);
mu_IDA = parmhat(1);
sigma_IDA = parmhat(2);
%% Truncated IDA
IM max = 2.2;
IM_trunc = IM_t_c(IM_t_c < IM_max); % take only the results with IM < IM_max
eq_over = sum(IM_t_c >= IM_max); % number of analyses reached IM_max without collapsing
% Maximum likelihood fit, using equation (1) and (2) of previously slides
[mu_IDA_t, sigma_IDA_t] = truncated_ida(IM_trunc, IM_max, eq_over);
```

(2)

Step 5: Computing fragilities - Results

Step 5: Computing fragilities - Results

MatLab

References

References:

- Baker J. W. (2008). An Introduction to Probabilistic Seismic Hazard Analysis (PSHA), White Paper, Version 1.3, 72 pp.
- Kramer, S.L. (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, N.J.
- Wells, D.L. and Coppersmith, K.J. (1994) *New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement.* Bull. Seism. Soc. Am., 84, 974-1002.
- Cornell, C.A. (1968). *Engineering seismic risk analysis*, Bull. Seism. Soc. Am., 58, 1583-1606.
- Broccardo, M. (2018) *Probabilistic seismic risk analysis for civil systems*, Lecture Notes
- Stucchi M., Meletti C., Montaldo V., Akinci A., Faccioli E., Gasperini P., Malagnini L., Valensise G. (2004). Pericolosità sismica di riferimento per il territorio nazionale MPS04. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/sh/mps04/agKramer, S.L. (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, N.J.
- http://zonesismiche.mi.ingv.it/ → Italian database

References:

- Mackie, K & Stojadinovic, Bozidar. (2003). Seismic Demands for Performance-Based Design of Bridges.
- Bursi, Pucinotti, Tondini, Zanon, *Tests and model calibration of high strength steel tubular beam-to-column and column-base composite joints for moment-resisting structures*, Earthquake Engineering and Structural Dynamics, (2015).
- Broccardo, M. (2018) *Probabilistic seismic risk analysis for civil systems*, Lecture Notes
- Charalampakis, A. & Koumousis, V. (2010). Parameters of Bouc–Wen Model Revisited, Applied Mechanics.
- Haukaas, T. & Der Kiureghian, A. (2004). *Finite Element Reliability and Sensitivity Methods for Performance-Based Earthquake Engineering*, tech. rep., PEER Pacific Earthquake Engineering Research Center.

Thanks for the attention!

Chiara Nardin – Ph.D., M.Sc., Eng. in Civil Engineering