





### Introduction

- © Computer games:
  - —A virtual world simulating a real or imagined world
- **<sup>⊕</sup> Visual effects (VFXs) in computer games** 
  - -All graphics effects
  - -with special purposes
- Purposes:
  - Simulate certain phenomena in our lives (e.g. lighting and shadowing, fire)
  - Evoke an immersive illusion or a special emotional feeling (e.g. motion blur → sense of motion, fog → sense of mystery)

Digital ART Lab, 87T la











| Computation stage           | Global illumination<br>effect                                                                                                  | Environmental<br>effect                                                  | Sensor effect                                                                                                                                                                                          | Flexibility   | Computational complexity                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------|
| Precomputation<br>(offline) | Irradiance, shadow, color<br>bleeding, precomputed<br>radiance transfer (PRT),<br>ambient occlusion (AO),<br>irradiance volume | Skybox                                                                   | None                                                                                                                                                                                                   | Static scene  | Scene complexity<br>and level of detail                        |
| Object space<br>(real-time) | Shadow, reflection,<br>refraction, AO                                                                                          | Fog, sun shaft, smoke,<br>fire, water, clouds,<br>rain, snow, explosions | Motion blur                                                                                                                                                                                            | Dynamic scene | Scene complexity,<br>level of detail, and<br>screen resolution |
| Screen space<br>(real time) | Refraction, color<br>bleeding, SSAO, SSDO                                                                                      | Fog, sun shaft, rain,<br>snow, heat distortion                           | Depth of field, motion blur,<br>bloom, glare, afterimage,<br>tone mapping, color<br>correction, lens distortion,<br>vignetting, chromatic<br>abbreviation, film grain,<br>night vision, thermal vision | Dynamic scene | Screen resolution only                                         |





### **Typical Visual Effects Workflow**

- Visual effects artist
  - —conceive a visual effect
  - —Painting tool quickly draw a conceptual image
  - Realize the effect using an existing tool (e.g. game editor plugin module)
  - -Ask for a suitable tool

- Programmer
  - —Implement a tool and provide parameters for the artist to control
- Iteration
- **Trends:** 
  - —programmer doing more work
  - —automate the production process

Digital ART Lab, 871



# **Global illumination effects**

- direct illumination vs. indirect illumination
- Model indirect illumination effects and complex phenomenon
  - -reflection
  - -refraction
  - -color bleeding
  - -soft shadows
  - **—...**
- More complexity
  - -Light sources
  - -Materials
  - -Light transport paths

Digital ART Lab, 2774











### **Light Map**

- ® Radiosity is too slow for real time computation
- A light map is a 3D engine light data structure which contains the brightness of surfaces in a game.
- Light maps are pre-computed and used for static scenes/objects.





Digital ART Lab, \$776



## Light map tech (offline pre-lighting)

- Assume static relationship of light and scene object
  - —the GI light transport will be constant for static scenes
  - pre-computation of light transport result and store at pervertex or per-texel (exitance value, irradiance value or irradiance direction)
    - View-independent effects: (such as Lambertian diffuse reflection): store exitance value
    - View-dependent effects (such as normal map, mirror reflection): store irradiance value and direction, and calculate at run time
- dynamic object are treated in additional

Digital ART Lab. \$37



### **Evolution of Light map techniques**

- Light maps
  - -1996, Quake:
    - · static light map
  - -1999, Quake III:
    - · per-vertex lighting
    - · hardware acceleration
  - -2004, Doom 3:
    - · per-pixel lighting
    - dynamic shadows
  - -2007, Halo 3:
    - dynamic Gl
    - Spherical harmonic light maps



Digital ART Lab, 8774



### [Quake III Arena]

- Tech Info
  - · Publisher: Activision
  - · Developer: id Software
  - · Genre: Sci-Fi First-Person Shooter
  - · Release Date: Dec 2, 1999
  - Minimum System Requirements
    - · System: PII 233 or equivalent
  - RAM: 64 MB
  - · Video Memory: 8 MB
  - · Hard Drive Space: 70 MB
- Official Site
  - www.quakelive.com



Digital ART Lab, 877 U











### **Ambient Occlusion (AO)**

- Shadowing of ambient light
- $L_i(\mathbf{l}) = L_A$
- -the softest shadow
- ambient light lacks any directional variation (so without AO, objects appear flat)

$$E(\mathbf{p},\mathbf{n}) = \int_{\Omega} L_A \cos \theta_i d\omega_i = \pi L_A$$







1 ART Lab, 877 ld







- $^{\scriptsize \textcircled{\$}}$  Use the probability of being occluded by near objects to calculate AO factors (visibility v(p,l))
- AO factors do not consider light direction, only an approximation of ambient light shadowing

$$E(\mathbf{p}, \mathbf{n}) = L_A \int_{\Omega} v(\mathbf{p}, \mathbf{l}) \cos \theta_i d\omega_i$$

Digital ART Lab, 871



**⊕** AO factor K<sub>A</sub> (ambient visibility: value [0,1])

$$k_A(\mathbf{p}) = rac{1}{\pi} \int_{\Omega} v(\mathbf{p}, \mathbf{l}) \cos heta_i d\omega_i.$$

$$E(\mathbf{p}, \mathbf{n}) = k_A(\mathbf{p})\pi L_A$$

- Techniques:
  - -Pre-processing as in light map (for static object)
  - Dynamic object (may use object-space method)
  - -Screen-based AO

Digital ART Lab, 8774



### **Ambient Occlusion**

From Ubisoft's Endwar (AO map)







- Object space methods:
  - -dependent on scene complexity





### **SSAO**

- Screen space ambient occlusion
  - -independent of scene complexity
  - -depth buffer as a height field
  - —samples neighborhood points and computes the number of points passing the depth test.
- © Crytek's SSAO (Crysis, 2007)
  - -Only 16 texture fetches per pixel
  - —Use random rotated kernel
  - -make the noise high-frequency
  - -Post-blur step
  - Edge-preserving blur





Digital ART Lab, \$77



### **Optimization**

- a brute force method
  - require about 200 texture reads per pixel for good visual quality.
  - -not acceptable for real-time rendering on GPU
- In order to get high quality results with <u>far fewer</u> <u>reads</u>
  - sampling is performed using a randomly-rotated kernel
  - —The kernel orientation is repeated every N screen pixels in order to have <u>only high-frequency noise</u> in the final picture.

Digital ART Lab, 8774



### Crytek's SSAO

- The algorithm
  - is executed purely on GPU and implemented as a pixel shader
  - analyzing the scene depth buffer which is stored in a texture.
  - For every <u>pixel</u> on the screen, the pixel shader samples the depth values around the current pixel and tries to compute the amount of occlusion from each of the sampled points.
  - In its simplest implementation, the occlusion factor depends only on the depth difference between sampled point and current point.





### **Optimization**

- In the end, this high frequency noise is greatly removed by a NxN post-process blurring step taking into account depth discontinuities
  - using methods such as comparing adjacent normals and depths.
- Such a solution allows
  - a reduction in the number of depth samples per pixel to about 16 or less while maintaining a high quality result,
  - —and allows the use of SSAO in real-time applications like computer games.

Digital ART Lab, 877 U



### **SSAO**

- Advantages:
  - Independent from scene complexity
  - no data pre-processing, no loading time
  - dynamic scenes
  - consistent way for every pixel
  - no CPU usage completely on GPU
  - easily integrated into any modern graphics pipeline
- Disadvantages:
  - local and often view-dependent (dependent on adjacent texel depths)
  - Blurring noise may cause bleeding at object edges

Digital ART Lab, 877 lk





