

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES726 - Laboratório de Sistemas Pneumáticos e Hidráulicos

Projeto Final Partiu bar - Parte IV - A Terra e o Tempo

Nome:	RA
Daniel Dello Russo Oliveira	101918
Marcelli Tiemi Kian	117892
Vinicius Ragazi David	120258

10 de junho de 2015

Sumário

1	Descrição Técnica do Processo	2
2	Análise do Projeto	3
3	Tabela de designação	6
4	Implementação do sistema 4.1 Grafcet	6
5	Conclusões	6

1 Descrição Técnica do Processo

Este relatório consiste na descrição da solução encontrada para o problema da maturação e filtragem da produção de cerveja. O processo começa após a fermentação da cerveja verde que são mandados para os tanques de maturação (válvula VCV e timer1). No tanque a cerveja verde permanece entre 1h e 3h (timer2) com controle constante de sua temperatura, esta necessitando estar em 0°C, ou no máximo entre -5 e 5°C. Este controle de temperatura deve ser feito com base no acionamento do fluido refrigerante (VFR) e em um sensor de temperatura (ST).

Figura 1: Tanque de maturação da cerveja verde.

Passado este tempo e com sucesso do controle de temperatura a cerveja verde torna-se cerveja madura e é desepeja na próxima etapa (válvula VCM). A etapa consiste em passar por um filtro com terra diatomácea (válvula VTD), que retira partículas desagradáveis à cerveja.

O resíduo do filtro deve ser descatado após o uso, o seu descarte é feito pela acionamento de uma válvula (VR) que dependerá de um sensor (SBF).

Tanto a vávula de despejo da cerveja maturada quanto a da terra diatomácea dependem do sensor de volume do tanque de maturação (SBM).

Figura 2: Filtro da cerveja maturada.

Após a filtragem a cerveja é então destinada à próxima etapa da sua fabricação, sendo este não descrito por este trabalho.

2 Análise do Projeto

• Modo Automático

O modo automático consiste na mudança de estado automática. Quando todas as condições necessárias para a mudança de estado se tornam verdadeiras e o modo automático está ativo a mudança de estado acontecerá, sendo assim, não sendo necessária a atuação humana. Este modo permite um processo mais rápido e mais barato por não necessitar de um funcionário presente para fazer as transições. Contudo poderá haver problemas caso a verificação para as condições estiver com problema,

se os sensores, por exemplo, estiverem com problema o processo pode avançar mesmo não sendo o momento apropriado para tal.

• Modo Passo a Passo

O modo passo a passo é o oposto do modo automático, sendo assim necessário a atuação humana para a transição de estados. Com todas as condições de transição verdadeiras o processo apenas mudará de estado caso um botão no IHM (interface homem máquina) seja apertado manualmente. Caso ascondições de transição não sejam obdecidas e o operador utilizar o botão do IHM nada acontecerá.

O valor do modo passo a passo é verificado em teste, já que o processo pode ser totaltmente controlado pelo engenheiro de qualidade, testando todas as transições e funcionalidade das entradas (sensores e timers) do sistema.

• Modo Homming

O modo Homming quando acionado imposibilitará a transição do estado inicial (Home) para o próximo. A transição somente ocorrerá quando o botão "Iniciar" da IHM for apertado. Ele funciona como o modo passo a passo, mas somente para o estado Home, todos os demais funcionam normalmente, estamo no modo passo a passo ou no modo automático.

- Parada de emergência
- Alarmes e tratamentos de Erros
- IHM

Tabela 1: Tabela de Input.

Entrada	Utilidade	Posição
SBM	sensor de volume baixo no tanque de maturação	???
ST	sensor de temperatura no tanque de maturação	???
SBF	sensor de volume baixo do filtro	???

Tabela 2: Tabela de Output.

Atuador	Utilidade	Posição
VCV	acionamento da válvula da cerveja verde	???
VCM	acionamento da válvula da cerveja maturada	???
VFR	acionamento da válvula de fluido refrigerante	???
VTD	acionamento da válvula de terra diatomácia	???
VR	acionamento da vállvula de discarte	???

Tabela 3: Tabela de Temporizadores.

Nome	Utilidade	Posição
timer1	temporizador de entrada da cerveja verde	???
timer2	temporizador da maturação da cerveja verde	???

3 Tabela de designação

4 Implementação do sistema

4.1 Grafcet

5 Conclusões

Referências

[1] K. Ogata, Engenharia de Controle Moderno, 6ª edição, 2011.