Regras de Derivação

Nome	Forma Normal	Forma Derivada
Dorivada Bala Dofinicão		$f'(x) = y' = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}$ ou
Derivada Pela Definição		$f'(x) = y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
Derivada de Constante	y = c	y'=0
Derivada de Potência	$y = x^p$	$y' = p.x^{p-1}$
Derivada de Exponencial	$y = e^x$	$y' = \ln e \cdot e^x$
Derivada de Logaritmo Natural/Neperiano	$y = \ln x$	$y' = \frac{1}{x}$
Derivada de Logaritmo	$y = \log_a x$	$y' = \frac{1}{x \cdot \ln a}$
Derivada do Produto	$y = f \cdot g$	y' = f'.g + f.g'
Derivada do Quociente	$y = \frac{f}{g}$	$y' = \frac{f' \cdot g - f \cdot g'}{g^2}$
Regra da Cadeia	y = g(h(x))	$y' = g'(h(x)) \cdot h'(x) \cdot x'$
Derivada do Seno	y = sen(x)	$y' = \cos(x)$
Derivada do Cosseno	y = cos(x)	$y' = -\mathrm{sen}(x)$
Derivada da Tangente	$y = tg(x) = \frac{sen(x)}{\cos(x)}$	$y' = \sec^2(x)$
Derivada da Cotangente	$y = cotg(x) = \frac{cos(x)}{sen(x)}$	$y' = -\operatorname{cossec}^2(x)$
Derivada do Arco Seno	y = arc sen(x)	$y' = \frac{1}{\sqrt{1 - x^2}} \cdot x'$
Derivada do Arco Cosseno	$y = arc \cos(x)$	$y' = \frac{-1}{\sqrt{1 - x^2}} \cdot x'$

Derivada do Arco Tangente	$y = arc \ tg(x)$	$y' = \frac{1}{1+x^2} \cdot x'$
Derivada do Arco Cotangente	y = arc cotg(x)	$y' = \frac{-1}{1+x^2} \cdot x'$
Derivada da Função Inversa	$f^{-1}(x) = y^{-1} = x$	$y' = \frac{1}{f'(f^{-1}(x))}$