Problem 1

Ch. 26, #56

Problem 2

The circuit below is used to measure the internal resistance of a battery. The battery being tested is a NiMH battery cell.

- a. A fresh battery is being tested, and it is found that the voltage V_{out} is 2.28 V with the switch open and 2.27 V with the switch closed. Find the internal resistance of the battery.
- b. The same battery is tested one year later, and V_{out} is found to be 2.2 V with the switch open but 0.31 V with the switch closed. Find the internal resistance of the battery.

Problem 3

For the circuit below, find the current through and voltage across each resistor. Place your results in a table for ease of reading.

Problem 4

A circuit you are building needs an ammeter that goes from 0 mA to a full-scale reading of 50 mA. Unfortunately, the only ammeter in the storeroom goes from 0 μ A to a full-scale reading of only 500 μ A. Fortunately, you have just finished a physics class, and you realized that you can make this ammeter work by putting a resistor in parallel with it, as shown in the Figure below. You have measured that the resistance of the ammeter is 50.0 Ω , not the 0 Ω of an ideal ammeter.

- (a) What value of R must you use so that the meter will go to full scale when the current I is 50 mA?
- (b) What is the effective resistance of your ammeter?

Problem 5

Use KCL/KVL method to solve Ch 26 # 32

Problem 6

Use KCL/KVL method to solve Ch 26 #33

Problem 7

Use KCL/KVL method to solve Ch 26 #34

Problem 8

Ch 26 #36

Problem 9

Let ϵ_1 = 6V, ϵ_2 = 10 V, r_1 = 0.01 Ω , r_2 = 0.02 Ω , and R = 0.01 Ω .

- (a) Use junction and loop rules to solve for currents in each branch.
- (b) What is the voltage across R?
- (c) Calculate the heating power on each resistor. For each battery, determine if it is discharging or charging. Calculate the rate of charging or discharging.

