CARNEGIE MELLON UNIVERSITY

ROBOTICS CAPSTONE PROJECT

System Readiness Review

Friction Force Explorers:

Don Zheng Neil Jassal Yichu Jin Rachel Holladay

supervised by Dr. Cameron RIVIERE

Contents

1	Bui	ld Progress	2
	1.1	Electromechanical Updates	2
	1.2	Software Update	2
		1.2.1 Communication	3
		1.2.2 Locomotion	3
		1.2.3 Localization	4
		1.2.4 Scheduling, Distribution and Planning (SDP)	4
2	Pro	ject Management	7
	2.1	Work Breakdown Schedule	7
	2.2	Schedule	20
3	Rec	quirements Tracking	20
	3.1	Objectives Tree	20
	3.2	Requirements Traceability Matrix	20
4	Ris	k Management	20
5	Tes	ting and Evaluation Plan	23
${f L}$	ist	of Figures	
			0
	$\frac{1}{2}$	Prototype Overview, from left view (left) and right view (right)	2 3
	3	Locomotion System (left), Chair Holder CAD (right)	9
	3	(right)	3
	4	80/20 Parts	3 4
	5	Planning Output	5
	6	Example Planner Output on Test Cases	6
	7	Full WBS for the project	7
	8	Electromechanical WBS section	8
	9	Software WBS section	9
	10	Integration WBS section	10
	11	Schedule via Gantt Chart	20

1 Build Progress

This section details system development and progress made since the last milestone presentation. Progress is split into two major sections: electromechanical and software. Electromechanical updates detail chassis build progress, as well as setup of the electronics to drive the motors for locomotion and using the writing implement. Software updates describe progress towards subsystem completion.

1.1 Electromechanical Updates

As shown below in Fig.1, we have built a physical robot prototype that incorporates chassis, painting mechanism, and locomotion system. The chassis is made of laser patterned acrylic. It is designed to be compact, as possible because smaller robots are less likely to collide with each other during drawing operations. This prototype proves that the chassis' current cutout sizes have no clearance issues with moving components.

Figure 1: Prototype Overview, from left view (left) and right view (right)

The painting mechanism is composed of a 3D printed chalk holder and a micro gear motor which is shown in Fig.2. The driving motor is mounted to the chassis via an off-the-shelf motor case. When designing the chalk holder, four internal ribs were added inside the holder to securely hold the chalk marker in place. This also allows users to easily switch out the marker. A thin cap is added on the bottom of the chalk holder to prevent the chalk marker from sliding out while drawing. One flaw of this design is that the holder's D-shaft cutout is slightly undersized. As a result, the chalk holder broke while pressing the motor shaft through the holder. This problem will be addressed in the next iteration.

Fig.3 shows the locomotion system. Four Mecanum wheels are oriented in a "X" shape to minimize motor workload. These wheels are connected to driving motors through 3D printed wheel adaptors. These adaptors contain two segments: a standard Lego technic axle and D-shaft housing. Like the chalk holder, the D-shaft cutout is a little undersized. Therefore, we had to press fit the motors in.

Besides mechanical update, motor controller code was also completed. However, we did not get enough time to wire all electronics to this prototype and test the code. This would be the next step of system development.

Since we have enough left-over budget, we plan to use 80/20 aluminum frames, instead of wood, to construct the camera jig. The jig will be built using components listed in Fig.4. We are in the process of testing camera's optimal height, and will then incorporate that information to the camera jig CAD design.

1.2 Software Update

We detail the software progress made across the following subsystems. Many subsystems are near full development, allowing us to begin integration.

Figure 2: Painting Mechanism (left), Chalk Holder CAD (right)

Figure 3: Locomotion System (left), Locomotion System Components (center), Wheel Adaptor CAD (right)

1.2.1 Communication

The goal of the communication subsystem is to abstract out networking operations such that other subsystems can maintain modularity. Currently, this subsystem is mostly complete. The system is able to easily establish, maintain, and close TCP connections between the separate robots, given their IP addresses. It also contains code to generate a singular protobuf data containing all data necessary to send robots, and pass it through the TCP connection. Onboard communication code is able to continually receive these TCP protobuf messages, and parse them accordingly.

In order to further isolate communication code from the actual subsystems, other subsystems fill in a data struct containing relevant information to send to the robots. For example, the localization subsystem will enter information into a localization data struct, which is passed to the communication subsystem at runtime. The communication subsystem will then parse relevant localization data into the protbuf message to send across the network. These data structs have the additional use of allowing for convenient transfer of data between other subsystems as well.

1.2.2 Locomotion

The locomotion subsystem has had some major changes. Previously, we planned to run locomotion off-board, where it would generate motor powers to send to the robot system. However, analysis showed that offboard motor processing incurs a higher latency than an accurate control could easily use. Decreased latency allows the motor PID controller to provide more accurate stabilization, to better enable the robot

Figure 4: 80/20 Parts

to follow a path. As a result, the locomotion subsystem is being moved to an onboard robot system. The offboard system will send the robot's current position and orientation, as well as a target position and orientation. The robot will compute the locomotion commands necessary to reach the target, and run the position and velocity controller accordingly. The positional localization and target data is able to be sent via protobul message to the onboard system. The encoder and localization motor control is written, and will be tested with sample data once chassis construction is completed.

1.2.3 Localization

The localization subsystem is mostly unchanged, and currently in progress. Integration of the AprilTags C++ library is in progress, which requires setting up the C++ environment, and passing functions to the Python subsystem via Boost.

1.2.4 Scheduling, Distribution and Planning (SDP)

In order to our SDP module, we first had to add a few basic UI elements. We laid out a file format for specifying the lines to be drawn and wrote the UI functionality to parse the data in.

Given the data the next step is to distribute the work between the two robots, offline. We will later

describe a first pass distribution algorithm along with the UI developed to visualize its results. We will conduct further testing to see if a more advanced algorithm is needed. Luckily, this can be done in parallel with other developments since we have fixed the input and output of the system, allowing us to swap in different distribution tactics. The output of the distributor is a set of vectors that specify the plan for each robot. These vectors will then be handed off to the locomotion module, described above, that will follow each of them in sequence. Therefore, this gives us two next steps: to integrate the planning with the locomotion and to develop a collision avoidance strategy.

To handle collisions, we will start off with a naive strategy. We define a robot's boundary as a fixed radius circle around robot, where the radius exceeds that of the robot to provide cushion. As each robot moves, it will check if the other robot's boundary intersects with its own boundary. If this condition is true, one robot (Bad) will stop execution, allowing the other robot (Blue) to pass until the condition is false. While we believe this method will always prevent collisions, it may not be the most efficient. Therefore we will implement this and test accordingly to check performance.

For our distributor, we developed a very greedy method. We start Blue the robot at one corner of the drawing area and Bad the robot at the other corner. Our goal is greedily balance their cost, where cost corresponds to the length of the line drawn so far. We initialize both robots with cost zero. From there, we loop over the line count. We pick the robot with the lower cost, defaulting to one in the case of equality. Whichever robot has the lower cost, we pick the line with the closest starting point to the robot's current position. We then calculate the cost as the distance to drive to the line plus the distance to drive to draw out that line. Having updated the robot's position, we continue.

To illustrate the output of our planner we developed a visualization, shown below in Fig.5. The red path represents Bad the robot and the blue path represents Blue the robot. Solid lines corresponding to drawing lines and hence making a mark on the pavement while dotted lines correspond to purely transit. In Fig.5, Blue the robot starts from the top right corner and transits to draw one line and then return home. In contrast, Bad the robot draws two intersecting, nearby lines.

Figure 5: Planning Output

In some cases, such as in Fig.6a, we see a nice breakdown of work as each robot is responsible for one box. The occurs because at the end of each step, the next closest line is directly adjacent, making the transit distance zero. In Fig.6b we see that the greedy approach segments the lines less cleanly and raises the possibility of collision. We note that at every intersection of two robots there is a possibility of collision, but not necessarily if the robots traverse those areas at different times. Additionally the robots could collide outside of intersections since we are not dealing with point robots. As mentioned above, we will continue to explore collision avoidance.

(a) Good Distribution

(b) Plan with Possible Collisions

Figure 6: Example Planner Output on Test Cases

2 Project Management

2.1 Work Breakdown Schedule

In this section, we present the Work Breakdown Schedule for the project.

Figure 7: Full WBS for the project

Figure 8: Electrome@nanical WBS section

Figure 9: Software WBS section

Figure 10: Integration WBS section

The WBS dictionary entries include more information on each of the work elements of the project. Information such as estimates for the amount of time each task will take and their dependencies will help us adhere to our schedule, while determining the owner of each task will improve tractability of the workflow.

WBS#:	1.1.1	Task:	Finalize CAD Design	
Est. Effort (hrs):	3	Owner:	Eric	
Resources:	CAD software	Work products:	CAD files	
Description:	Update the CAD	design to fit the f	inal design of the robot	
Input:	Previous designs	s, new design ide	as and requirements	
Dependencies:	Complete design	review		
Risks:	Designs cannot be completed on time			

WBS#:	1.1.2	Task:	Obtain Parts	
Est. Effort (hrs):	20	Owner:	Don	
Resources:	Parts list	Work products:	Parts order receipt	
Description:	Finalize the parts list, and contact the necessary people to ensure that parts are ordered			
Input:	CAD designs, electronics designs			
Dependencies:	Finalized CAD designs			
Risks:	Parts ordering procedure is more time consuming than expected			

WBS#:	1.1.3.1	Task:	Fabricate Chassis
Est. Effort (hrs):	4	Owner:	Eric
Resources:	CAD designs, MechE shop	Work products:	Chassis components
		cal Engineering essary to build th	machine shop to fabricate e chassis
Input:	CAD designs, parts		
Dependencies: Obtain parts			
Risks:	Machine shop is not available, injury from operating machines		

WBS#:	1.1.3.2	Task:	Fabricate Writing Tool
Est. Effort (hrs):	4	Owner:	Eric
Resources:	CAD designs, MechE shop	Work products:	Writing tool components
Description:	Use the Mechanical Engineering machine shop to fa components necessary to build the writing implement		
Input:	CAD designs, parts		
Dependencies: Obtain parts			
Risks:	Machine shop is not available, injury from operating machines		

WBS#:	1.1.4.1	Task:	Assemble Camera Rig
Est. Effort (hrs):	3	Owner:	Don
Resources:	Scrap wood	Work products:	Camera rig
Description:	Build the rig used to hold the camera for the vision system above the drawing space		
Input:	Measurements from demo space		
Dependencies:	Confirmation of demo space location		
Risks:	No extra wood is available, demo space does not have adequate room for the camera rig		

WBS#:	1.1.4.2	Task:	Assemble Robot Agents
Est. Effort (hrs):	5	Owner:	Eric ▼
Resources:	Tools, fasteners	Work products:	Two robot agents
Description:	Use fabricated components to build in the system		ld the two robot agents
Input:	Fabricated components		
Dependencies: Fabricate chassis		s and fabricate w	riting tool
Risks:	Parts are broken during assembly, extra parts or fasteners are needed		

WBS#:	1.1.5	Task:	Mechanical Testing
Est. Effort (hrs):	3	Owner:	All
Resources:	Tools, fasteners	Work products:	Two robot agents
Perform mechanical testing Our testing guidelines			e robots in accordance with
Input:	Mechanically complete robots		
Dependencies:	Assemble robot a	agents	
Tests are failed, and significant time or extra resources needed to correct the tests			ne or extra resources are

WBS#:	1.2.1	Task:	Software Arch. Design	
Est. Effort (hrs):	3	Owner:	All	
Resources:	None	Work products:	Function headers	
Description:	Design function I/O, and create function headers for al we will use in the robot			
Input:	Software flowchart, decisions on software libraries			
Dependencies: Complete design		review		
Risks:	Selected software libraries have compatability issues			

WBS#:	1.2.2.1	Task:	Localization Subsystem
Est. Effort (hrs):	6	Owner:	Neil
Resources:	AprilTag library	Work products:	Working localization
Description:			localization system to solution for the robots
Input:	Function headers	s and design for l	ocalization system
Dependencies:	Software archited	cture design	
Risks:	Localization system or library is unable to perform to expectations		

WBS#:	1.2.1	Task:	Locomotion Subsystem
Est. Effort (hrs):	5	Owner:	Don
Resources:	Adafruit Motor controller library	Work products:	Control system for motors, robust motion model
Description:			s that can be used to space
Input:	Software flowcha	art, decisions on s	software libraries
Dependencies:	Software archited	cture design	
Risks:	Interfacing issues with motors, damanged electronics hardware, unreliable motion models		

WBS#:	1.2.1	Task:	User Interface Subsystem
Est. Effort (hrs):	4	Owner:	Rachel
Resources:	Various UI libraries	Work products:	User interface including calls to other subsystems
Description:	Create a visually appealing and intuitive user interface for the robot system		
Input:	Software flowchart, decisions on software libraries		
Dependencies: Software architec		cture design	
Risks:	Libraries are not available		

WBS#:	1.2.2.4	Task:	Comunication				
Est. Effort (hrs):	8	Owner:	Neil				
Resources:	Wireless comm. libraries	Work products:	Functions for sending info. back and forth from robots				
Description:		Create a reliable communication system between the robots and the central data processing unit					
Input:	Software flowcha	Software flowchart, decisions on software libraries					
Dependencies:	Software archited	cture design					
Risks:	Wireless hardwa other software or		r interfaces poorly with				

WBS#:	1.2.2.5	Task:	SDP Subsystem				
Est. Effort (hrs):	15	Owner:	Rachel				
Resources:	SDP research, implementations	Work products:	Complete SDP functions				
Description:		Create a flexible scheduling, distribution, and planning subsystem that efficiently assigns work to robots					
Input:	Software flowcha	Software flowchart, decisions on software libraries					
Dependencies:	Software archited	cture design					
Risks:	SDP algorithms a	are not efficient e	nough to meet requirements				

WBS#:	1.2.3	Task:	Subsystem Testing				
Est. Effort (hrs):	4	Owner:	All				
Resources:	Software subsystems	Work products:	Complete software subsystems				
Description:		Test all software subsystems to ensure that they give the expected output when provided with testing inputs					
Input:	Completed softw	Completed software subsystems					
Dependencies:	All software subs	ystem tasks					
Risks:	Software subsyst	•	mented incorrectly and do				

WBS#:	1.3.1	Task:	Software Integration				
Est. Effort (hrs):	3	Owner:	All				
	Software		Complete software				
Resources:	subsystems	Work products:	pipeline				
	Test integration of	all software comp	onents by creating an end				
Description:	to end pipeline co	nsisting of all softv	vare subsystems				
Input:	Completed and in	dividually verified	software subsystems				
Dependencies:	Subsystem testing	Subsystem testing					
Risks:	Subsystems cann	ot integrate with e	ach other				

WBS#:	1.3.2	Task:	Full System Integration					
Est. Effort (hrs):	3	Owner:	All					
Resources:	S.W. and H.W. subsystems	Work products:	Working robot system					
Description:	Complete integra	Complete integration of software components with hardware components						
Input:	Completed and individually verified software and hardware subsystems							
Dependencies:	Software integrat	tion						
Risks:		Software and hardware cannot interface with one another, models do not work in in practice						

WBS#:	1.3.3	Task:	Requirements Testing				
Est. Effort (hrs):	5	Owner:	All				
Resources:	Working robot	Work products:	Complete, working robot system				
Description:	•	Verify the reliability and effectiveness of the robot by conducting our full testing suite					
Input:	Unverified but working robot system						
Dependencies:	Full system integ	ration					
Risks:	Robot fails tests,	need to rework s	some subsystems				

2.2 Schedule

NJ: Add in notes about schedule

Figure 11: Schedule via Gantt Chart

3 Requirements Tracking

3.1 Objectives Tree

NJ: Insert in images and some comment

3.2 Requirements Traceability Matrix

NJ: Insert images and some comment

4 Risk Management

DZ: Don update this with new information

In this section, we enumerate the risks that our project involves in the form of risk tables. Each table entry details the relevant information about a risk, and explains our plans for mitigating that risk. It also visually displays the risk in the likelihood and consequence diagram.

Risk ID:	Risk Title:		Risk Owner:							
1	Defective Pa	ective Parts Don								
Description	Description:									
	ve ordered arri specifications	ived defective	or do not							
Consequen	ces:	Risk Type:		Consequence	ce					
We need to	reorder			1	2	3	4	5		
parts, expe time and bu		Parts							5	
Risk Reduc		Expected Ou	tcome						4	
that have b									3	
we have ex		We will be ab properly deal	with any		X				2	
with, and or parts	der extra	parts that bre the developm							1	Likelihood
		N.	Risk							
Risk ID:	Risk Title: Unvavailable	Group	Owner:							
2	Member	Отопр	All							
Description	i .									
A group me	ember become	es unavailable	for work due							
		er emergencie								
Consequen		Risk Type:		Consequence	ce					
	outed to that ber needs to			1	2	3	4	5		
be reassign	ned	Logistical							5	
Risk Reduc	tion Plan:	Expected Ou	tcome						4	
	ure that every ber is always	If a member	becomes				X		3	
on the sam progress so		unavailable, for a short tin							2	
lose too mu	ich progress	be easily dea	alt with						1	Likelihood
Risk ID:	Risk Title:	A.	Risk Owner:							
Description	Breaking par	ts	Eric							
Description	•									
Parts unexp	Parts unexpectedly break as a result of accidents or improper use									
Consequences: Risk Type:		Consequence	ce							
We need to reorder		1	2	3	4	5				
parts, expending extra time and budget Parts								5		
Risk Reduction Plan: Expected Outcome							4			
We will pro	ctice sofo								3	
procedures			ll break, and				Х		2	
working with parts and order extras in case even if the have extra		have extras							1	Likelihood

Risk ID:	Risk Title:		Risk Owner:							
4	Mecanum Dr Unstable	rive Too	Eric							
Description	Description:									
	nechanism for e or unreliable									
Consequen		Risk Type:		Consequen	ce					
We will nee	d to redesign	rtion Type.		1	2	3	,	4	5	
the drive me expending of time and eff	considerable	Design flaw		1	2			4 3	5	
Risk Reduc	tion Plan:	Expected Ou	ıtcome						4	
							X		3	
We will build		The instabilit	v resulting						2	
deal with it i	if necessary,	from the whe	eels will be							Likalibaad
and will use	suspension	manageable	<u> </u>						1	Likelihood
Risk ID:	Risk Title:		Risk Owner:							
	Localization	not precise								
	enough		Neil							
Description										
	ation system is the drawings		enough to							
representat	ions of input									
Consequen	ces: d to redesign	Risk Type:		Consequen	ce					
the localizat	tion system	Design flaw		1	2	3		4 (5	
or redefine requiremen									5	
Risk Reduc	tion Plan:	Expected Ou	ıtcome						4	
We will test	the								3	
	system early to catch any					x			2	
design flaws	s within the	Localization will work we enough for our purpos							1	Likelihood
	*	3								
Risk ID:	Risk Title:		Risk Owner:							
6	Unexpected Overruns	Budget	Rachel							
Description:										
We unexpe	ctedly run out	of budget, be	cause parts							
We unexpectedly run out of budget, because parts cost more than expected or other parties reduce our budget										
Consequences: Risk Type:		Consequen	ce							
We need to scale down our project, or possibly even acquire funds through other means				1	2	2 3	3	4	5	
		Logicstical							5	
Risk Reduction Plan: Expected Outcome		utcome						4		
									3	
We will leave	uffer in our	We will have			V					
budget in ca unexpected			er that mp <mark>onents will</mark>		X				2	
occur		be acquired							1	Likelihood

5 Testing and Evaluation Plan

YJ: Eric update this with new information