Sprawozdanie – Laboratorium nr 9

Aproksymacja funkcji okresowych

Tomasz Rajchel 2019/05/09

Wstęp teoretyczny

Aproksymacja średniokwadratowa w bazie funkcji trygonometrycznych

Funkcje okresowe aproksymujemy przy użyciu funkcji trygonometrycznych, czyli w bazie:

$$1,\sin(x),\cos(x),\sin(2x),\cos(2x),\dots \tag{1}$$

Szukamy wielomianu w postaci:

$$F(x) = \frac{a_0}{2} + \sum_{j=1}^{m} \left[a_j \cos(jx) + b_j \sin(jx) \right]$$
 (2)

Gdzie współczynniki a_i oraz b_i wyznacza się z warunku minimalizacji wyrażenia:

$$\sum_{i=0}^{n-1} [f(x_i) - F(x_i)]^2 = min$$
(3)

I są one równe:

$$a_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \sin(kx_{i})$$
(4)

$$b_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \cos(jx_{i})$$
 (5)

Liczba punktów/węzłów funkcji aproksymowanej f(x) wynosi **n**.

Opis zadania

Naszym zadaniem jest aproksymacja funkcji:

$$f_1(x) = 2\sin(x) + \sin(2x) + 2\sin(3x) + \alpha$$
 (6)

$$f_2(x) = 2\sin(x) + \sin(2x) + 2\cos(x) + \cos(2x)$$
 (7)

$$f_3(x) = 2\sin(1.1x) + \sin(2.1x) + 2\sin(3.1x)$$
 (8)

Gdzie:

$$\alpha = \frac{rand()}{RAND_{MAX} + 1.0} - 0.5 \tag{9}$$

Jest liczbą pseudolosową, $\alpha \in [-0.5, 0.5]$.

Aproksymacji funkcji f_1 , f_2 , f_3 dokonamy w przedziale $x \in [0,2\pi]$, liczba węzłów n = 100, przy pomocy funkcji:

$$F(x) = \sum_{k=0}^{M_s} a_k \sin(kx) + \sum_{j=0}^{M_c} b_j \cos(jx)$$
 (10)

Gdzie współczynniki a i b są zdefiniowane we wzorach (4) (5).

Wykonamy 4 warianty:

- 1. funkcja f_1 , $\alpha = 0$, $(M_S, M_C) = \{(5, 5)\}$.
- 2. funkcja f_2 , $(M_S, M_C) = \{(5, 5)\}.$
- 3. funkcja f_3 , $(M_S, M_C) = \{(5, 0), (5, 5), (10, 10)\}$.
- 4. funkcja f_1 , α ze wzoru (9), $(M_S, M_C) = \{(5, 5), (30, 30)\}.$

Wyniki / Wnioski

Wariant 1

Indeks	a	Ъ
0	0	3.48474e-16
1	1.98	-1.44465e-16
2	0.99	-2.73251e-16
3	1.98	2.33011e-16
4	-1.52101e-16	1.10886e-16
5	-2.44249e-17	2.84081e-16

Funkcja jest aproksymowana z dużą dokładnością. Współczynniki przy kolejnych wyrazach szeregu trygonometrycznego funkcji aproksymującej są bardzo zbliżone do funkcji aproksymowanej.

Wariant 2

Indeks	a	b
0	0	0.06
1	1.98	2.04
2	0.99	1.05
3	2.75657e-16	0.06
4	1.18853e-16	0.06
5	2.57368e-16	0.06

Można zauważyć gorszą jakość aproksymacji na krańcach przedziału.

Wariant 3

Budując funkcję aproksymującą korzystamy z funkcji $\sin(\{0,1,2,...,\}x)$, a argument funkcji aproksymowanej jest przesunięty $\sin(\{1.1,2.1,3.1\}x)$ dlatego nie możemy dokładnie aproksymować używając samych sinusów.

Widać, że już przy pięciu wyrazach otrzymujemy dobrą aproksymację. Użycie 30 wyrazów dodatkowo ją poprawia.

Ponownie występuje gorsze dopasowanie na krańcach przedziału.

$M_{\rm S} = 5$, $M_{\rm C} = 0$			
Indeks	a	b	
0	0	0.20609	
1	1.86172	-	
2	0.770679	-	
3	1.55911	-	
4	-0.394767	-	
5	-0.241636	-	

$M_S = 5$, $M_C = 5$			
Indeks	a	b	
0	0	0.20609	
1	1.86172	0.740076	
2	0.770679	0.356492	
3	1.55911	0.59635	
4	-0.394767	-0.049075	
5	-0.241636	-0.00677342	

$M_S = 10, M_C = 10$			
Indeks	a	b	
0	0	0.20609	
1	1.86172	0.740076	
2	0.770679	0.356492	
3	1.55911	0.59635	
4	-0.394767	-0.049075	
5	-0.241636	-0.00677342	
6	-0.181425	0.00722941	
7	-0.146988	0.014097	
8	-0.124054	0.0180842	
9	-0.107438	0.0206372	
10	-0.0947271	0.0223822	

Wariant 4

Wprowadzono zaszumienie współczynnikiem α . Dla funkcji z 30 wyrazami szeregu sinusów i cosinusów występuje nadmierne dopasowanie. Funkcja dopasowuje się do szumu czego wolelibyśmy uniknąć.

Lepszy obraz funkcji aproksymowanej daje funkcja z zaledwie pięcioma wyrazami szeregu (sin i cos).