Lézerfizika tételsor

Illés Gergő, Sarkadi Balázs 2023. május 30.

1. Mit rövidít a "laser" mozaikszó?

Light Amplification by Stimulated Emission of Radiation.

2. Min alapszik a mátrixokkal való sugárkövetés (mátrixoptika)?

A mátrixoptikai leírásban a sugarakat 2 paraméterrel jellemezzük. Az optikai tengelytől való távolsággal és az optikai tengellyel bezárt szöggel. Továbbá paraxiális közelítésben vagyunk ami azt jelenti, hogy a szögek szinuszait magával a szög értékével közelítjük. Egyes optikai elrendezést úgynevezett sugártranszfer (ABCD) mátrixszal jellemezhetünk, ami a következő egyenletrendszert kódolja.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \varphi_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ \varphi_2 \end{pmatrix} \tag{1}$$

3. Adja meg f fókusztávolságú vékony lencse és d távolságon való terjedés mátrixait!

$$\begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \text{ és } \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \tag{2}$$

4. Adja meg az optikai rezonátor stabilitási feltételét!

$$0 \le \left(1 - \frac{L}{R_1}\right) \left(1 - \frac{L}{R_2}\right) \le 1\tag{3}$$

$$0 \le \frac{A+D+2}{4} \le 1\tag{4}$$

5. Határozza meg a Gauss-nyalábok átmérőjét és görbületi sugarát adott helyen a nyalábnyak és a hullámhossz függvényében!

$$W(z) = w_0 \cdot \sqrt{1 + \left(\frac{z}{z_R}\right)^2} \tag{5}$$

$$R(z) = z \cdot \left[1 + \left(\frac{z_R}{z} \right)^2 \right] \tag{6}$$

$$z_R = \frac{nw_0^2 \pi}{\lambda} \tag{7}$$

6. Definiálja a Gauss nyalábokra felírható komplex nyaláb paramétert! Adja meg, hogy az 1-es számú síkban felvett q_1 hogyan viszonyol a 2-es síkban felvett q_2 -höz!

$$q(z) = z + iz_R \tag{8}$$

$$q_2 = \frac{Aq_1 + B}{Cq_1 + D} \tag{9}$$

7. Mekkora a frekvenciakülönbség egy L hosszúságú rezonátorban kialakuló módusok közötti frekvenciakülönbség?

$$\Delta f = \frac{c}{2L} \tag{10}$$

8. Mi az összefüggés a foton élettartama (τ_p) , a körülfordulási idő (τ_{RT}) és a "túlélési faktor" (S) között? Mi az összefüggés a foton élettartam és (Q) minőségi faktor között?

$$\tau_p = \frac{\tau_{RT}}{1 - S} \tag{11}$$

$$\tau_p = \frac{Q}{\omega_0} \tag{12}$$

9. Definiálja Einstein szerinti leírásban lévő B_{12} abszorpciós, B_{21} kényszerített emissziós és A_{21} spontán emissziós együtthatót!

$$\left. \frac{dN_2}{dt} \right|_{sp.e.} = -A_{21} \cdot N_2 \tag{13}$$

$$\left. \frac{dN_2}{dt} \right|_{st.e} = -B_{21} \cdot N_2 \cdot \rho(\nu) \tag{14}$$

$$\frac{dN_2}{dt}\Big|_{st.e.} = -B_{21} \cdot N_2 \cdot \rho(\nu)$$

$$\frac{dN_2}{dt}\Big|_{abs.} = B_{12} \cdot N_1 \cdot \rho(\nu)$$
(14)

$$\frac{N_2}{N_1} = \frac{B_{12} \cdot \rho(\nu)}{A_{21} + B_{21} \cdot \rho(\nu)} \tag{16}$$

$$g_2 B_{21} = g_1 B_{12} \qquad \frac{A_{21}}{B_{21}} = \frac{8\pi n^2 n_g h \nu^3}{c^3}$$
 (17)

10. Hogy viszonyulnak egymáshoz a kényszerített emisszió által kibocsátott és az azt kiváltó foton tulajdonságai?

Frekvencia, polarizáció, fázis és haladási irány megegyezik.

11. Definiálja a hatáskeresztmetszet empirikus jelentését!

A hatáskeresztmetszet a részecske olyan környezete ahol a fotonokkal interakcióba léphet.

Másképp:

Effektív terület vagy valószínűség abszorpcióra vagy foton emisszióra egy adott energia szinten.

Harmadképp:

Interakció valószínűsége az atom/molekula/ion és a beeső sugárzás között.

12. Adja meg az összefüggést az erősítési együttható, az emissziós és abszorpciós hatáskeresztmetszetek és populációk közti összefüggést adott energiaszinten!

$$\gamma(\nu) = N_2 \sigma_{em}(\nu) - N_1 \sigma_{abs}(\nu) \tag{18}$$

13. Írja fel egy három szintű lézer populációváltozásának egyenleteit s hatáskeresztmetszetek segítségével!

(0-2 pumpa, 2-1 spontán emissziós, 1-0 stimulált emisszió?) Csak a sugárzással járó átmeneteket figyelembe véve:

$$\frac{dN_2}{dt} = \frac{\sigma_{abs}I_{pumpa}}{h\nu_{pumpa}} \left(\frac{g_2}{g_0}N_0 - N_2\right) - \frac{N_2}{\tau_2} \tag{19}$$

$$\frac{dN_1}{dt} = \phi_{21} \frac{N_2}{\tau_2} - \frac{N_1}{\tau_1} - \frac{\sigma_{em} I_{opt}}{h\nu_{ont}} \left(N_1 - \frac{g_1}{g_0} N_0 \right)$$
 (20)

$$N = N_0 + N_1 + N_2 \qquad , \text{ ahol N konstans} \qquad (21)$$

14. Mi a spektrális kiszélesedés két fajtája? Mi a különbség az abszorpciós vagy emissziós szaturációban? (ellenőrizni)

- 1, Homogén kiszélesedés: Az erősítési térben lévő részecskék energia szintjei közötti különbség azonos. Több frekvencia komponens vesz részt az erősítésben abszorbens anyag jelenlétében ezáltal a szaturáció jelentősebb mértékű
- 2, Inhomogén kiszélesedés: égethető

Az erősítési térben a részecskék energiaszintjei közötti különbségek nem teljesen egyformák, így a kiszélesedés struktúrált lehet, ezáltal kevesebb frekvencia komponens vesz részt az erősítésben abszorbens anyag jelenlétében így a szaturáció mértéke is csökken.

15. Mit jelent a Q-kapcsolás? Mekkora a Q-kapcsolt lézerek impulzushossza? Hogyan viszonyul ez a körülfutási időhöz?

A Q-kapcsolás lényege az, hogy pumpálás alatt megnöveljük a rezonátorban lévő veszteséget, így az erősítés alacsony lesz és nagyon sok részecskét tudunk gerjesztett állapotba juttatni, mivel a spontán kibocsátott fotonok nem erősödnek jelentősen. Ezután a veszteséget lecsökkentjük, ilyenkor a spontán emisszió jele nagyon gyorsan nagy mértékeben megnő. Ezzel nagyenergiájú rövid impulzusokat hozhatunk létre. Könyv: körüljárási idő: $\approx 1,75$ ns, impulzushossz: $\approx 7,1$ ns tehát nagyjából 5 körülfutás.

16. Mi a módusszinkronizált lézer? Tipikusan milyen hullámhosszon működtethetőek? Hogyan viszonyul az impulzushossz a körülfutási időhöz?

A lézertérben különböző longitudinális hullámok alakulhatnak ki, (tegyük fel) azonos amplitúdóval és véletlenszerű fázissal, ezzel egy periodikusan változó intenzitás lefutású

impulzust kapunk. Módusszinkronizálásnak nevezzük azt amikor ezekből a módusokból csak bizonyos módusokat erősítünk. Ehhez plusz eszközöket telepítünk a rezonátorba.

1. ábra. Azonos amplitúdójú és véletlenszerű fázissal rezgő longitudinális módusok összege.

Aktív módusszinkronizálásról beszélünk, amikor ezt a szelekciót egy kívülről vezérelt berendezéssel tesszük meg. Pl egy idővezérelt kapuval a véletlenszerűen keletkező (de periodikusan állandó intenzitás lefutású) impulzus csak egy kiválasztott részét csatoljuk ki mindig a lézerből ($\frac{2L}{c}$ időközönként) ezzel megrövidítve az eredeti impulzust. Passzív módusszinkronizálásról beszélünk, amikor a rezonátorba egy telítődő abszor-

<u>Passzív módusszinkronizálásról</u> beszélünk, amikor a rezonátorba egy telítődő abszorpens anyagot helyezünk el, ami a nagyobb intenzitású sugárzás hatására gyorsan átlátszóvá válik (azt átengedve), a véletlen amplitúdójú hullám többi részét viszont kiszűri, így csak azokat a módusokat erősítjük, amikre szükségünk van és így rövidebb impulzusokat kaphatunk.

Impulzushossz: ps - fs tartományban működnek jellemzően. Körüljárási idő: 1-10 ps.

17. Nevezzen meg két gázlézert és két szilárdtest lézert! Írja le az ezekre jellemző paramétereket!

Gázlézerek:

- 1. HeNe: 5:1-től egészen 20:1 arányban tartalmaz héliumot és neont. A tipikus belső nyomás 1 torr (133 Pa). λ =632.8 nm. Folytonos üzemű. 50 mW optikai teljesítmény.
- 2. CO₂: λ =10.6 μ m, legrövidebb impulzushossz ~2 ps. Folytonos teljesítménye maximálisan 100 kW nagyságrendű, impulzus üzem esetén GW nagyságrendű.

Szilárdtest lézerek:

- 1. Ti:Sapphire: hangolható 650- és 1100 nm között, általában 800 nm. Al_2O_3 Ti³⁺ ionokkal szennyezve. Legrövidebb impulzushossz \sim 10 fs. Folytonos teljesítménye max \sim 2,5 W.
- 2. Nd:YAG: anyaga: Nd:Y $_3$ Al $_5$ O $_{12}$. Frekvenciák 946-, 1120-, 1320-, 1440 nm. Leggyakrabban 1064 nm-es átenet van használatban. Impulzus és folytonos üzem. Qkapcsolással 10-25 ns \sim 250 MW pillanatnyi teljesítmény. Jó hatásfokkal többszörzhető frekvencia.

18. Hogyan épül fel egy Szabad elektron Lézer (FEL)? Milyen összefüggés van a FEL sugárzási hullámhossza (λ) , az undulátor periodus hossza (Λ) , a wiggler konstans (a_w) és a Lorentz Faktor (γ) között?

A szabadelektron lézerek általában egy lineáris gyorsító szakaszból (több lineáris gyorsító egymás után) és egy undulátor szakaszból áll (szintén több darab van egymás után). A lineáris gyorsítóban az elektronokat relativisztikus sebességre (v \sim c) gyorsítják, amiket átvezetnek az undulátorba, ami egy periodikusan kialakított mágneses teret hoz létre, amiben az elektronok egy szinuszra emlékeztető pályán haladnak. Ennek következtében sugárzás keltődik a folyamatos gyorsulás miatt, ami az undulátorban való terjedés során folyamatosan erősödik. Pumpa lézert alkalmazva az elektronok makrocsomókba rendeződnek a pumpáló lézer térerősség térbeli lefutásának megfelelően és sugárzáskor azt fogják jelentősen erősíteni. A szabad elektron lézerek legnagyobb előnye, hogy az elektromágneses spektrum teljes szinte teljes egészében alkalmazható, hiszen a sugárzási hullámhossz az undulátor periódus hosszával egyenesen arányos.

$$\lambda = \frac{\Lambda}{2\gamma^2} \left(1 + a_w^2 \right) \tag{22}$$

2. ábra. Relativisztikus elektronok trajektóriája az undulátorban.