

Basic instrument design

Paul F. Henry

Instrument Scientist, ISIS Neutron & Muon Source

Instrument design steps

Define a science case!!

Instruments are designed and built to perform defined science.

The science case generates the primary requirements

McStas is a tool. If used incorrectly it can be dangerous

Primary requirements

Defining primary requirements

Count-rate

Q(d) range

But also:

- Single crystal, powder, non-crystalline
- Unit cell volume
- Sample environment restrictions
- Need for in situ capability
- Sample size / geometry
- Detector type / coverage / stability
- Parasitic scattering
- Etc...

Which come from:

- Science case requirements
- Available technology
- Space limitations
- Budget
- Etc...

Diffractometer types

$$\lambda = 2d\sin\theta$$

$$\lambda = \frac{2d_c \sin \theta_B}{n}$$

$$\lambda = \frac{3956}{v} = \frac{3956 (t - t_0)}{L_1 + L_2}$$

Diffractometer type

 $\lambda = 2d\sin\theta$

- Monochromatic (CW)
 - Fix wavelength and scan detector angle
 - Multiple 2θ required to cover Q(d) spacing range
 - Q(d) spacing limit $4\pi/\lambda$ ($2\pi/d$)
 - Instrumental count rate factors: Source power, monochromator reflectivity, detector coverage and efficiency, etc
- TOF
 - Fix detector angle and scan wavelength
 - Single 2θ covers range of Q(d) space
 - Q(d range) determined by λ_{max} , λ_{min} and θ
 - Instrumental count rate factors: Source power, moderator performance, beam transport efficiency, detector coverage and efficiency, etc

Number of reflections

Reflection density (for CW)

CW instruments designed to have best resolution at highest peak density

Resolution

Monochromatic

$$\frac{\Delta d}{d} = \frac{1}{2} \sqrt{U.\cot^2(\theta) + V.\cot(\theta) + W}$$

- U, V and W are functions of the collimation and U, V also takeoff angle to the monochromator
- Resolution minimum found near the takeoff angle of the monochromator $2\theta_{\text{R}}$
- Higher takeoff angle gives higher resolution for identical wavelength
- Wavelength produced by monochromator is takeoff angle dependent for any particular hkl plane

Time-of-flight

$$\Delta d_d = \left[\Delta \theta^2 \cot^2 \theta + \left(\Delta t_t \right)^2 + \left(\Delta L_t \right)^2 \right]^{\frac{1}{2}}$$

- $\Delta\theta$ is the angular uncertainty
- The main component of Δt is the moderation time of the neutron
- ΔL is the flight path uncertainty of the neutron mainly due to the finite width of the moderator
- First term can be minimised by moving to higher scattering angle
- Second and third terms minimised by increasing instrument length

Resolution functions: CW v TOF examples

TOF Q-resolution tends to be flat, change at high Q caused by moderator residence time

Resolution function example: CW

Choose wavelength to match Q resolution required by science in a given Q range

Resolution function with θ_B : CW

Resolution function example TOF: Polaris

Facilities Council

Importance of Q-max and Q-resolution

Reproduced from Michel, SSRL workshop (2010)

Summary of Q resolution and range

• CW:

- Simple, symmetric peakshape function
- Best resolution where diffraction peak density is highest in scattering angle
- Different wavelength can be used to give Q resolution where required
- Different takeoff angle can be used to change resolution function and wavelength
- Instrument can have high Q resolution over a very limited Q range

• TOF:

- Complex asymmetric peakshape related to moderator characteristics
- Instrument length and moderator give wavelength band and overall resolution
- Q resolution almost constant for a given detector bank so increasing peak density with Q can be an issue
- Q resolution improved by moving to higher scattering angle detector bank
- Q range determined by scattering angle of detector bank

Defining primary requirements

But also:

- Single crystal, powder, noncrystalline
- Unit cell volume
- Sample environment restrictions
- Need for in situ capability
- Sample size / geometry
- Detector type / coverage / stability
- Parasitic scattering
- Etc...

Count-rate

Rank them in importance to the proposed instrument role

Instrument layout

Instrument layout: follow the neutrons

Understand the impact of complexity on performance v cost Identify potential issues early

Identify necessary development / proof of concept studies

Prepare yourself for discussions with engineers and vendors

Source

Source influence on CW or TOF

Some of the neutrons all of the time or all of the neutrons some of the time

Moderators

	cold	thermal	hot
moderator	liquid D ₂	Liquid D ₂ O	graphite
moderator temperature	20K	300K	2000K
neutron wavelength	3→20Å	1→3Å	0.3→1Å
sample lengthscale	1Å→100 nm	0.3→5Å	0.1→2Å
sample timescale	1kHz→1 THz	0.1→10 THz	1→100 THz

- Wavelength range
- Peak-shape (residence time)
- Temperature stability
- Viewing angle
- Viewing multiple moderators
- Poisoning
- Moderator development

Moderators: short pulse

Moderators: long pulse

Source brightness for CW or TOF

Source stability / availability

Spallation sources have lower availability than reactors. Does this compromise science case?

Instrument type v source type

- Reactors build CW instruments*
 - Low peak brilliance, high time-average brilliance
 - Variable reflectivity from monochromators limit low λ use
 - High Q not easily reached
 - Match moderator and monochromator take-off angle to Q range and resolution
 - Beam always on

- Pulsed sources build TOF instruments#
 - High peak brilliance, low time-averaged brilliance
 - Require efficient beam transport
 - High Q possible
 - Increase instrument length to improve resolution at expense of bandwidth
 - Variable Q range and resolution from detector angles
 - Beam availability can compromise science

^{*}Remains to be seen for long pulse sources

^{*}Except when significantly restricted geometry constraints from science case necessitate use of TOF

Summary

Q(d) Resolution

 Different source types offer complementary possibilities

 Don't limit yourself to a particular source type without good reason

It may be that our spallation source is not ideally suited to your science case requirements!

Q(d) range

Count-rate

Beam transport

Monochromator reflectivity for CW

Choose a material and plane to access necessary Q-range Reflectivity falls as wavelength decreases

Q-range accessible with CW

Higher reflection order contamination: CW

High reflection order contamination complicates analysis with CW data

Beam transport for pulsed sources

Q-range and resolution for CW and TOF

For CW:

- For monochromatic instruments the Q_{max} is $4\pi/\lambda$ i.e. when $\sin\theta = 1$, $\theta = 90^{\circ}$, $2\theta = 180^{\circ}$
- If a high Q_{max} is required a shorter wavelength must be used.
- Shorter wavelengths are produced by higher order hkl planes
- Reflectivity is lower for shorter wavelengths
- Realistic Q_{max} of around 25 Å⁻¹

For TOF:

- Q_{max} depends on λ_{min} and detector θ .
- λ_{min} can be much lower than for the CW case allowing $Q_{max} > 100 \ \text{Å}^{-1}$
- λ_{min} determined by the moderator, transport characteristics of the guide and which frame the instrument is working in

Other factors

- Line-of-sight loss v T_{zero} v beamstop shielding v background v etc...
- Phase space homogeneity (primarily divergence)
- Footprint of guide
- Need for /positioning of choppers
- Shielding requirements
- £ longer = more expensive
- £ higher M-coatings = more expensive
- £ complex guide geometries = more expensive
- £ large guide cross-sections = more expensive
- £££!

Sample area

Vacuum v air?

Restricted geometry: Pearl

Parasitic scattering: collimation

Other factors

- Beam definition close to sample slits and / or guide snouts
- Accessing sample environment during experiment
- Sample environment scattering / materials
- Difficulty running under vacuum v background / beam attenuation from air scattering
- Shadowing from collimation
- Sample geometry
- Non-magnetic components to allow magnetism studies
- Future upgrades e.g. polarisation
- Etc...

Detectors

Detector efficiency

³He detection efficiency as a function of detection depth

Predicted detector efficiency CASCADEdetector for 20 ¹⁰B layers

Detector coverage v sample geometry

Copyright © International Union of Crystallography

Home Contact us Site index About us Partners and site credits Help Terms of use Privacy and cookies

The IUCr is a scientific union serving the interests of crystallographers and other scientists employing crystallographic methods.

Other factors

- Count-rate / saturation
- Known / proven technology?
- Pixel size
- Sample geometry / shadowing
- Performance variation
- Static or moveable?
- Restricted geometry
- Detector stability v time v T
- Maintenance / replacement
- In vacuum?
- Unit £

Figure of Merit

What to use in the figure of merit?

- Flux at sample position
- Total count-rate on detector
- Divergence profile
- Brilliance transfer
- Resolution of a particular diffraction peak(s) at detector
- Number of unwanted neutrons
- Combinations
- Effects of sample volume / geometry
- Detector layout / varying resolution

McStas optimisation

What might be optimised in McStas?

- Detector layout in plane
- Detector coverage out of plane
- Sample size / geometry
- M-coatings of a complex guide
- Cost v performance of a guide
- Divergence acceptance / transport
- Chopper positioning / performance
- Maximising good:bad neutron transport
- Optimal detector resolution / pixel size vs sample geometry vs beam transport
- Etc...

Final thoughts

Instrument design v reality: GEM

Initially constructed in the late 1990s this powder/liquids diffractometer hybrid changed the way TOF diffraction instruments were designed and built

Instrument design: Polaris rebuild v 2006

Instrument design: Polaris

Instrument reality: Polaris

Instrument performance: Polaris

- Increased count rate ×3 at high scattering angle to >20 for low angle banks
- Resolution improvement e.g. bank 5 and 6 of 3 × 10⁻³ cf. 5 × 10⁻³
- Improvement in data at high Q

