

Data Science for Business – Becoming a Data Science Expert (D)

Pilot Presentation: for participants of and use in the pilot only

Agenda week four

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Schedule week four

		Week 4	
	Day 1 Tuesday, 21.09.2021		Day 2 Wednesday, 22.09.2021
Start: 12:00	Recap	Start: 12:00	Recap
	9 – Repetition (Part 1)		10 – Bias & Ethics in ML
14:00 – 15:00	Break	14:00 – 15:00	Break
	9 – Repetition (Part 2)		11 – Introduction to Data Science with AWS
End: 18:00	Q&A and Feedback	End: 18:00	Q&A and Feedback

We will also have several short coffee breaks in between.

Feedback for pilot training

We aim to provide a great training experience for you and are looking forward to receiving your feedback!

You will have three different ways to give us your feedback on each training day:

- 1. We will have an anonymized feedback collection after the last session of each day per Myforms.
- 2. We will have an open feedback round and discussion at the end of each training day.
- 3. Please also **take notes** regarding your ideas during the sessions: **locally or via the Mural Board** which you can reach via <u>LINK</u>.

Module 9

Repetition

Agenda

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Data Science methods

Data Analysis

Descriptive statistics

Description:

 Basic data analysis, for instance aggregation and summary of data

Application:

 Demonstrate distribution of age and sex of clinical trial participants

Description:

 Use of labeled datasets to train algorithms with the goal of classifying data or predicting outcomes

Supervised learning

Application:

Predict if someone would have a stroke or not

Machine Learning

Unsupervised learning

Description:

 Analyze unlabeled datasets in order to discover hidden patterns or data groupings

Application:

 Groups of shoppers based on their browsing and purchasing histories

Reinforcement learning

Description:

 A computer program interacts as an agent with a dynamic environment in which it must perform a certain goal.

Application:

Go-playing agents

Popularity/ business usage in the market

Data Science methods

Data Analysis

Descriptive statistics

Description:

 Basic data analysis, for instance aggregation and summary of data

Application:

 Demonstrate distribution of age and sex of clinical trial participants

Machine Learning

Supervised learning

Description:

 Use of labeled datasets to train algorithms with the goal of classifying data or predicting outcomes

Application:

 Predict if someone would have a stroke or not

Unsupervised learning

Description:

 Analyze unlabeled datasets in order to discover hidden patterns or data groupings

Application:

 Groups of shoppers based on their browsing and purchasing histories

Reinforcement learning

Description:

 A computer program interacts as an agent with a dynamic environment in which it must perform a certain goal.

Application:

Go-playing agents

Popularity/ business usage in the market

Supervised Learning

Linear models

Strengths

- Fast
- Need of less data
- Less prone to overfitting
- More interpretable

Weaknesses

- Can only fit simple linear problems
- Prone to underfitting

Complex models

Strengths

- Can fit non-linear problems
- Less prone to underfitting

Weaknesses

- Prone to overfitting
- Difficult to interpret

Important complex models

Decision Tree

- Use recursive splitting of nodes to increase the homogeneity in each leaf
- The final prediction is the majority class in each leaf

Support Vector Machines

- SVMs try to maximize the margin between support vectors
- The model can utilize kernels to transform the data into higher dimensional spaces

Neural networks

- Neural Networks stack multiple layers and combine them with a non-linear activation function
- They can be seen as a universal function approximator

Ensembles: Combining the views of multiple models

- Combine the learners to get a more stable model
- Methods of combination are
 - Majority voting
 - Weighted voting
 - Stacking
- The combined models should be as uncorrelated as possible
 - Highly correlated models predict the same way. Adding more of them does not add information

Ensembles

Bagging (Random Forest):

 By building weak learners on subsets of the data, we can systematically create an ensemble of uncorrelated learners

Boosting:

- By sequentially building weak learners to correct the error of the previous one, we can build a good performing ensemble
- A special case of boosting is gradient boosting

Stacking:

- Stacking combines arbitrary models into an ensemble
- A meta learner decides for each instance the weighting of the different decisions from the base leaner

Measure how well the model is performing

Level	Example	Area	Advantages	Disadvantages	Comment
1. Loss function	Mean squared error lossCross entropy loss	Model training	Easy to compute the derivativeEvaluates goodness of fit	Difficult to interpret	 How well do the current model parameters work on the training set?
2. Evaluation metrics	Mean absolute error (MAE)Accuracy	Data Science	 Easy to understand General applicability 	 Influence on the business is not apparent 	 How well does the model generalize?
3. Business metrics	 Return on investments (ROI) Click through rate (CRT) 	Management	Shows influence on business	 Has to be defined Strongly depends on definition 	 How much money will we gain/loose from applying this model in production?

Overview: Supervised metrics

Classification	Accuracy	$accuracy = \frac{TP + TN}{P + N}$
Metrics	Precision and recall	$Precision = \frac{TP}{TP+FP}$ and $Recall = \frac{TP}{TP+FN}$
	F1 score	$F1 = \frac{2 * precision * recall}{precision + recall}$
	Sensitivity and false positive rate	$Sensitivity = \frac{TP}{P}$ and $FPR = \frac{FP}{N}$
Regression Metrics	Mean absolute error	$MAE = \frac{1}{N} \sum y_i - \hat{y}_i $
	Mean squared error	$MSE = \frac{1}{N} \sum (y_i - \hat{y}_i)^2$
	Root mean squared error	$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{N}}$

HyperParameter Optimization

Grid search:

- Define a discrete list of parameters that should be checked
- Check all combinations of parameters

Random search:

- Define ranges and distributions of values for each hyperparameter
- Sample parameters from the distribution

Bayesian Optimization:

- Predict the best next hyperparameter combination to evaluate
- Update the model with the evaluated hyperparameter combination
- Loop until convergence

Data Science methods

Data Analysis

Descriptive statistics

Description:

 Basic data analysis, for instance aggregation and summary of data

Application:

 Demonstrate distribution of age and sex of clinical trial participants

Supervised learning

Description:

 Use of labeled datasets to train algorithms with the goal of classifying data or predicting outcomes

Application:

 Predict if someone would have a stroke or not

Machine Learning

Unsupervised learning

Description:

 Analyze unlabeled datasets in order to discover hidden patterns or data groupings

Application:

 Groups of shoppers based on their browsing and purchasing histories

Reinforcement learning

Description:

 A computer program interacts as an agent with a dynamic environment in which it must perform a certain goal.

Application:

Go-playing agents

Popularity/ business usage in the market

Overview Clustering Algorithms

Evaluation metric for clustering

Within-cluster sum-of-squares criterion (inertia)

Measures the **sum of squared distances** between each datapoint and its assigned cluster center

Increasing the number of clusters decreases the withincluster sum-of-squares criterion

Silhouette Score

- Calculates the difference between the average distance of samples within a cluster and the average distance between a sample and the nearest neighboring cluster
- A value of 1 is the best possible value. A value of 0 indicates overlapping clusters. A value -1 means points were assigned to the wrong cluster

Isolation Forest

Create a random forest as follows:

- Create a lot of random trees as follows:
 - Repeat until single sample in node or set depth reached:
 - Create split by randomly select a feature and a random split value between minimum and maximum of that feature
- For each sample: Compute a score based on the average path length (i.e., number of splits in the tree until we end up a that sample)
 - Outlier x_0 will have a lower score since the average path length smaller (x_0 is easier to "isolate")

Dimensionality Reduction

Goal

- Reducing the number of features, i.e. the dimensionality of the data set
- Feature selection: only use a subset of the available features
- Feature extraction/projection: Transform data from high-dimensional space to a space of fewer dimensions

Why to do it?

- High-dimensional data sets are hard to understand for humans and some models (this is sometimes called the curse of dimensionality)
- Speed up model training and evaluation
- Reduces noise and redundant/linear correlated feature in data (especially PCA) might increase model performance

Try it yourself!

In the following exercises

Applications and achievements of deep learning

More mature and industrial applications

Near-human-level image classification

Improved machine learning

Near-human-level speech recognition

Near-human-level handwriting transcription

In active development and research

Autonomous driving

Gradient Descent Algorithm

Minimize $L(\theta)$

Input (decide on): A function $f(x; \theta)$, input x, target y, loss $L(\theta)$

- **1.** Initialize θ randomly
- **2.** While θ still changes
 - 1. Build the model $f(x; \theta)$
 - 2. Evaluate the fit with $L(\theta) = \sum_{i=1}^{n} l(y_i, f(x_i; \theta))$
 - 3. Update the parameters based on the negative gradient: $\theta = \theta L'(\theta)$
- **3.** Return fitted model $f(x; \theta)$

The gradient gives us the direction of the update.

Deep Learning takeaways

Deep Learning is a subfield of Artificial Intelligence and is used for Problem with large data, like

- Image recognition
- Natural language processing

Filter layers are used as edge detectors. By combining the output of the edge detectors, a prediction about the content of the image is made. Parameters controlling the filter process are **filter size**, **padding and stride**.

Convolutional Neural Networks (CNN) automate the feature engineering steps normally involved in image recognition. A CNN consists of layers of **Convolutional** and **Max-pooling layers**.

Computer Vision takeaways

We can reuse state-of-the-art image recognition models by retraining them on a different dataset.

- Retraining reduces the data required
- Retraining reduces the compute power required

With a reduced number of training samples it is of high importance to choose the samples carefully and correct any inconsistencies in the labeling process. This is called **data-centric view**.

For many advanced use cases in image recognition, we can use pre-trained filters. The advanced cases of this session were:

- R-CNN
- U-Net
- Face Recognition

In most practical cases we reuse state-of-the-art models and architectures and make only small changes to it

Setting up a NLP pipeline is not trivial

Tokenization

Break sentences into words, sylables or letters.

Stemming/Normalization

Merge Tokens of the same stem.

Numericalization

Create word embeddings

NLP Use Cases

Chatbots:

- Use text classification and entity extraction to create natural language understanding
- Based on the understanding use predefined rules to perform the desired actions
- A natural language generator creates a response for the user

Image captioning:

 Combining the output of a convolutional neural network with a NLP model like an LSTM, we are able to describe the entities and actions depicted in the image

Visual question answering

- Multi-modal models combine two different modalities into a single model
- · Like in visual question answering where text and image information is combined

Try it yourself!

In the following exercises

Agenda

	Introduction
1	Recap Basic Machine Learning and Python
2	Complex Models
3	Model Evaluation
4	Hyperparameters
5	Unsupervised Learning
6	Gradient Descent
7	Deep Learning and Image Recognition
8	Deep Learning and Natural Language Processing
9	Repetition
10	Bias and Ethics in Machine Learning
11	Introduction to Data Science with AWS

Thank you

If you would like any further information please contact
Werner, Dr., Fabian_Georg (BI X) BIX-DE-I
<fabian_georg.werner@boehringer-ingelheim.com>

This presentation contains information that may be priviledged or confidential and is the property of the Capgemini Group.

Copyright© 2021 Capgemini. All rights reserved.

