Linguaggio matematico

Insiemi

• Definizione: $A := \{1, 2, 3, 4\}$

• Appartiene: $2 \in A$

• Non appartiene: $7 \notin A$

• Unione: $A \cup B = \{x : x \in A \lor x \in B\}$

• Intersezione: $A \cap B = \{x : x \in A \land x \in B\}$

• Differenza: $A \setminus B = \{x : x \in A \land x \notin B\}$

• Insieme vuoto: $V := \emptyset$

• Contenuto: $A \subset B \iff \forall x \in A \ x \in B$

• Contenuto strettamente: $A \subsetneq B \iff A \subset B \land \exists x \in B : x \notin A$

• Uguaglianza: $A = B \iff A \subset B \land B \subset A$

Proposizioni

• Proposizione: P = "3 è un numero pari" è falsa

• Predicato: P(x) = x è un numero pari

• Implicazione: $P \implies Q$

ullet Ipotesi: P

Tesi: Q

• se P allora Q

ullet Q solo se P

• Doppi implicazione: $P \iff Q$

• P equivale a Q

· Leggi di De Morgan:

•
$$\neg (P \land Q) \iff (\neg P) \lor (\neg Q)$$

•
$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q)$$

Quantificatore esistenziale: ∃

Quantificatore universale: ∀

Negazione di una proposizione contente quantificatori:

$$\neg (\forall x \in A, P(x)) \iff \exists x \in A : \neg P(x)$$

- $\neg(\exists x \in A : P(x)) \iff \forall x \in A, \neg P(x)$

Maggiorante e minorante

 $A\subset \mathbb{R}, A
eq \emptyset$

- $M \in \mathbb{R}$ si dice maggiorante per A se $orall x \in A$ $M \geq x$
- $m \in \mathbb{R}$ si dice minorante per A se $\forall x \in A \ m \leq x$
- A si dice limitato:
 - superiormente se ammette almeno un maggiorante
 - inferiormente se ammette almeno un minorante
 - se è limitato sia superiormente che inferiormente

Massimo e minimo

 $A \subset \mathbb{R}, A \neq \emptyset$

- Può non esistere
- Se esiste è unico
- $M \in A$ si dice massimo per A ($M = \max(A)$) se $\forall x \in A \ M \geq x$
- $m \in A$ si dice minimo per A ($m = \min(A)$) se $\forall x \in A \ m \leq x$

Estremo

 $A\subset \mathbb{R}, A
eq \emptyset$

• $ar x \in \mathbb{R}$ si dice estremo superiore di A ($ar x = \sup A$) se è il più piccolo dei maggioranti, ovvero

$$\left\{ egin{aligned} orall x \in A & x \leq ar{x} \ orall \epsilon > 0 \ \exists x \in A : x - \epsilon < ar{x} \end{aligned}
ight.$$

• $x \in \mathbb{R}$ si dice estremo inferiore di A ($x = \inf A$) se è il più grande dei minoranti, ovvero

$$\begin{cases} \forall x \in A \ x \geq \underline{x} \\ \forall \epsilon > 0 \ \exists x \in A : x - \epsilon > \underline{x} \end{cases}$$

Assioma di completezza di ${\mathbb R}$

 $A\subset\mathbb{R},A
eq\emptyset$

se A è limitato superiormente, allora $\exists \sup A \in \mathbb{R}$

Proprietà di Archimede

 $orall x \in \mathbb{R} \; \exists n \in \mathbb{N} : n > x$, ovvero $\sup \mathbb{N} = +\infty$

Densità di $\mathbb Q$ in $\mathbb R$

 $a, b \in \mathbb{R}, \ a < b \ \exists q \in \mathbb{Q} : a < q < b$