```
In[1]:= (* Clear content *)
                              ClearAll
 Out[1]= ClearAll
    In[2]:= (* Define the wavelenghts and corresponding summand *)
                             lambdai[i] = \lambda + (i - 1) * \delta
                             lambdaj[i_, j_] = \lambda + (j - 1) * \delta
                              summand[i_, j_] = FullSimplify [(lambdai[i] * lambdaj[i, j]/(lambdai[i] - lambdaj[i, j]))^2]
 Out[2]= (-1+i)\delta + \lambda
 Out[3]= (-1+j)\delta + \lambda
Out[4]= \frac{((-1+i)\delta + \lambda)^2((-1+j)\delta + \lambda)^2}{(i-j)^2\delta^2}
    In[5]:= (* Alternative, simplified form of the summand *)
                              summandFull [i_, j_] = 1/(i-j)^2 * (1+\Delta * (i-1))^2 * (1+\Delta * (j-1))^2
                             \frac{(1+(-1+i)\,\Delta)^2\,(1+(-1+j)\,\Delta)^2}{(i-j)^2}
 Out[5]=
    In[6]:= (* Calculate the inner sum over i. NN
                                   is the total number of wavelengths consider *)
                              summedInner[i_] = FullSimplify [Sum[summandFull[i, j], {j, i+1, NN}]]
Out[6]= \frac{1}{6} (1 + (-1 + i) \Delta)^2 (6 \Delta (2 \text{ EulerGamma} + (2 \text{ EulerGamma} (-1 + i) - i + NN) \Delta) + (\pi + (-1 + i) \pi \Delta)^2 + (\pi + (-1 + i) \Delta)^2 (-1 + i) \Delta (-1 + i)
                                              12 \Delta (1 + (-1 + i) \Delta) PolyGamma [0, 1 - i + NN] - 6 (1 + (-1 + i) \Delta)^2 PolyGamma [1, 1 - i + NN])
```

```
2 | asymptotic-analysis.nb
```

In[7]:= (* Calculate the outer sum over j *) Sum[summedInner[i], {i, 1, NN}] - summedInner[NN] Out[7]= $-\frac{1}{c} (1 + (-1 + NN) \Delta)^2 (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma } \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + (-1 + NN) \Delta) - \pi^2 (1 + (-1 + NN) \Delta)^2 + (-12 \text{ EulerGamma} \Delta (1 + ($ 6 Δ (2 EulerGamma + 2 EulerGamma (-1 + NN) Δ) + (π + (-1 + NN) π Δ)²) + $\frac{1}{360}$ (-360 EulerGamma + 60 NN π^2 + 720 EulerGamma Δ - 720 EulerGamma NN Δ -120 NN π^2 Δ + 120 NN 2 π^2 Δ - 360 EulerGamma Δ^2 + 1080 EulerGamma NN Δ^2 + 360 NN 2 Δ^2 -1080 EulerGamma NN 2 Δ^2 + 60 NN π^2 Δ^2 - 180 NN 2 π^2 Δ^2 + 120 NN 3 π^2 Δ^2 - 360 EulerGamma NN Δ^3 -360 NN 2 Δ^{3} + 1080 EulerGamma NN 2 Δ^{3} + 360 NN 3 Δ^{3} - 720 EulerGamma NN 3 Δ^{3} + 60 NN 2 π^{2} Δ^{3} -120 NN 3 π^2 Δ^3 + 60 NN 4 π^2 Δ^3 + 12 EulerGamma Δ^4 + 57 NN 2 Δ^4 - 180 EulerGamma NN 2 Δ^4 -186 $NN^3 \Delta^4 + 360$ EulerGamma $NN^3 \Delta^4 + 117 NN^4 \Delta^4 - 180$ EulerGamma $NN^4 \Delta^4 - 180$ 2 NN $\pi^2 \Delta^4 + 20 NN^3 \pi^2 \Delta^4 - 30 NN^4 \pi^2 \Delta^4 + 12 NN^5 \pi^2 \Delta^4 - 360 PolyGamma [0, 1 + NN] +$ 720 \triangle PolyGamma [0, 1 + NN] - 720 NN \triangle PolyGamma [0, 1 + NN] - 360 \triangle PolyGamma [0, 1 + NN] + 1080 NN Δ^2 PolyGamma [0, 1 + NN] - 1080 NN² Δ^2 PolyGamma [0, 1 + NN] -360 NN Δ^3 PolyGamma [0, 1 + NN] + 1080 NN² Δ^3 PolyGamma [0, 1 + NN] -720 NN 3 Δ^{3} PolyGamma [0, 1 + NN] + 12 Δ^{4} PolyGamma [0, 1 + NN] - 180 NN 2 Δ^{4} PolyGamma [0, 1 + NN] + 360 NN³ Δ^4 PolyGamma [0, 1 + NN] - 180 NN⁴ Δ^4 PolyGamma [0, 1 + NN] -360 NN PolyGamma [1, 1 + NN] + 720 NN Δ PolyGamma [1, 1 + NN] - 720 NN 2 Δ PolyGamma [1, 1 + NN] -360 NN Δ^2 PolyGamma [1, 1 + NN] + 1080 NN² Δ^2 PolyGamma [1, 1 + NN] -720 NN³ Δ^2 PolyGamma [1, 1 + NN] - 360 NN² Δ^3 PolyGamma [1, 1 + NN] + 720 NN³ Δ^3 PolyGamma [1, 1 + NN] - 360 NN⁴ Δ^3 PolyGamma [1, 1 + NN] + 12 NN Δ^4 PolyGamma [1, 1 + NN] - 120 NN³ Δ^4 PolyGamma [1, 1 + NN] + 180 $NN^4 \Delta^4 PolyGamma [1, 1 + NN] - 72 NN^5 \Delta^4 PolyGamma [1, 1 + NN])$ sumTot = FullSimplify[%]

In[8]:= (* Simplify this expression *)

Out[8]= $\frac{1}{360}$ (12 EulerGamma (-30 - 60 (-1 + NN) Δ - 30 (1 + 3 (-1 + NN) NN) Δ^2 - 30 (-1 + NN) NN (-1 + 2 NN) Δ^3 + $(1 - 15 (-1 + NN)^2 NN^2) \Delta^4) + NN (3 NN \Delta^2 (120 + 120 (-1 + NN) \Delta + (19 + NN (-62 + 39 NN)) \Delta^2) +$ $2 \pi^{2} (30 + (-1 + NN) \Delta (60 + \Delta (-30 + 60 NN + 30 (-1 + NN) NN \Delta + (1 + NN - 9 NN^{2} + 6 NN^{3}) \Delta^{2}))))$ $12(30 + 60(-1 + NN) \Delta + 30(1 + 3(-1 + NN) NN) \Delta^{2} + 30(-1 + NN) NN(-1 + 2NN) \Delta^{3} +$ $(-1 + 15 (-1 + NN)^2 NN^2) \Delta^4)$ PolyGamma [0, 1 + NN] -12 NN (30 + (-1 + NN) Δ (60 + Δ (-30 + 60 NN + 30 (-1 + NN) NN Δ + (1 + NN - 9 NN² + 6 NN³) Δ ²))) PolyGamma[1, 1+NN])

(* Use the ToMatlab extension to write this expression to Matlab *) << ToMatlab`

sumTot // ToMatlab

Out[10]=
$$(1/360) \cdot *(12 \cdot *EulerGamma \cdot *((-30) + (-60) \cdot *((-1) + NN) \cdot *\Delta + (-30) \cdot *(1 + 3 \cdot * \cdot \cdot \cdot) + ((-1) + NN) \cdot *\Delta \cdot ^2 + (-30) \cdot *((-1) + NN) \cdot *\Delta \cdot ^3 + (1 + (\cdot \cdot \cdot \cdot \cdot) + (-1) \cdot *((-1) + NN) \cdot *\Delta \cdot ^2 + (1 + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) + (-1) \cdot *((-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1) + (-1$$

In[11]:= (* Change Δ to Range / (N-1) *) variableChange = FullSimplify [sumTot $/. \{\Delta \rightarrow R/(NN-1)\}$]

$$\text{Out[11]=} \quad \frac{1}{360} \left(NN \left(\frac{3 \; NN \; R^2 \left(120 + R \left(120 + \frac{\left(19 + NN \left(-62 + 39 \; NN \right) \right) \; R}{\left(-1 + NN \right)^2} \right) \right)}{\left(-1 + NN \right)^2} + \frac{1}{360} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2$$

$$\frac{\text{R} \left(-30 + \text{R}^2 + 30 \text{ NN } (5 + \text{R}) - 15 \text{ NN}^4 (6 + \text{R} (4 + \text{R})) + 30 \text{ NN}^3 (9 + \text{R} (5 + \text{R})) - 15 \text{ NN}^2 (20 + \text{R} (8 + \text{R}))\right)}{\left(-1 + \text{NN}\right)^4}$$

30
$$(-1 + NN)^2 NN (-1 + 2 NN) R + (-1 + 15 (-1 + NN)^2 NN^2) R^2)$$
 PolyGamma [0, 1 + NN] -

$$12 \text{ NN} \left(30 + \text{R} \left(60 + \frac{\text{R} \left(-30 + 60 \text{ NN} + 30 \text{ NN R} + \frac{(1+\text{NN} - 9 \text{ NN}^2 + 6 \text{ NN}^3) \text{ R}^2}{(-1+\text{NN})^2} \right)}{-1 + \text{NN}} \right) \right) \text{PolyGamma} [1, 1 + \text{NN}]$$

 $_{ln[12]:=}$ (* Now define the Sum as shown in the article (Eq. 30) *) Sfunction = FullSimplify [variableChange / (NN^2 * R^2)]

Out[12]=
$$\frac{1}{360 \text{ NN}^2 \text{ R}^2} \left(\text{NN} \left(\frac{3 \text{ NN R}^2 \left(120 + \text{R} \left(120 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \right) \text{R}}{\left(-1+\text{NN} \right)^2} \right) \right)}{\left(-1+\text{NN} \right)^2} + \frac{1}{360 \text{ NN}^2 \text{ R}^2} \left(\frac{120 + \text{R} \left(120 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \right) \text{R}}{\left(-1+\text{NN} \right)^2} \right) \right)}{1 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \text{R}}{(-1+\text{NN})^2} \right)}{1 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \text{R}}{(-1+\text{NN})^2}} \right) + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \text{R}}{(-1+\text{NN})^2} \right)}{1 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \text{R}}{(-1+\text{NN})^2}} \right)}{1 + \frac{(19+\text{NN} \left(-62+39 \text{ NN} \right) \text{R}}{(-1+\text{NN})^2}} \right)}$$

$$\frac{R\left(-30+R^2+30\;NN\;(5+R)-15\;NN^4\;(6+R\;(4+R))+30\;NN^3\;(9+R\;(5+R))-15\;NN^2\;(20+R\;(8+R))\right)}{\left(-1+NN\right)^4}\right)$$

$$\frac{\text{R}\left(30\;(-1+\text{NN})^2\;(1+3\;(-1+\text{NN})\;\text{NN})+30\;(-1+\text{NN})^2\;\text{NN}\;(-1+2\;\text{NN})\;\text{R}+\left(-1+15\;(-1+\text{NN})^2\;\text{NN}^2\right)\;\text{R}^2\right)}{\left(-1+\text{NN}\right)^4}$$

$$\left(30 + R \left(60 + \frac{R\left(-30 + 60 \text{ NN} + 30 \text{ NN } R + \frac{(1+NN-9 \text{ NN}^2 + 6 \text{ NN}^3) R^2}{(-1+NN)^2}\right)}{-1 + NN}\right)\right) \text{ PolyGamma[1, 1+NN]}$$

```
In[13]:= (* To Matlab again *)
      Sfunction // ToMatlab
```

Out[13]=
$$(1/360) \cdot *NN \cdot ^{(-2)} \cdot *R \cdot ^{(-2)} \cdot *(NN \cdot *(3 \cdot *((-1) + NN) \cdot ^{(-2)} \cdot *NN \cdot *R \cdot ^{2} \cdot *(\dots 120 + R \cdot *(120 + ((-1) + NN) \cdot ^{(-2)} \cdot *(19 + NN \cdot *((-62) + 39 \cdot *NN)) \cdot *R)) + 2 \cdot * \dots$$

$$pi \cdot ^{2} \cdot *(30 + R \cdot *(60 + ((-1) + NN) \cdot ^{(-1)} \cdot *R \cdot *((-30) + 60 \cdot *NN + 30 \cdot *NN \cdot *R + ((\dots -1) + NN) \cdot ^{(-2)} \cdot *(1 + NN + (-9) \cdot *NN \cdot ^{2} + 6 \cdot *NN \cdot ^{3}) \cdot *R \cdot ^{2})))) + 12 \cdot * \dots$$

$$EulerGamma \cdot *((-30) + R \cdot *((-60) + ((-1) + NN) \cdot ^{(-4)} \cdot *R \cdot *((-30) + R \cdot ^{2} + 30 \cdot * \dots NN \cdot *(5 + R) + (-15) \cdot *NN \cdot ^{4} \cdot *(6 + R \cdot *(4 + R)) + 30 \cdot *NN \cdot ^{3} \cdot *(9 + R \cdot *(5 + R)) + (-15) \cdot \dots *NN \cdot ^{2} \cdot *(20 + R \cdot *(8 + R))))) + (-12) \cdot *(30 + R \cdot *(60 + ((-1) + NN) \cdot ^{(-4)} \cdot *R \cdot *(\dots 30 \cdot *((-1) + NN) \cdot ^{2} \cdot *(1 + 3 \cdot *((-1) + NN) \cdot *NN) + 30 \cdot *((-1) + NN) \cdot ^{2} \cdot *NN \cdot *((-1) \dots +2 \cdot *NN) \cdot *R + ((-1) + 15 \cdot *((-1) + NN) \cdot ^{2} \cdot *NN \cdot ^{2}) \cdot *R \cdot ^{2}))) \cdot *PolyGamma (0, 1 + \dots NN) + (-12) \cdot *NN \cdot *(30 + R \cdot *(60 + ((-1) + NN) \cdot ^{(-1)} \cdot *R \cdot *((-30) + 60 \cdot *NN + 30 \cdot * \dots NN \cdot *R + ((-1) + NN) \cdot ^{(-2)} \cdot *(1 + NN + (-9) \cdot *NN \cdot ^{2} + 6 \cdot *NN \cdot ^{3}) \cdot *R \cdot ^{2}))) \cdot * \dots PolyGamma (1, 1 + NN));$$

In[16]:= (* Asymptotic analysis as N is large *) Series[Sfunction, {NN, ∞, 1}]

$$\text{Out[16]=} \quad \frac{\pi^2 \left(5 + 10 \text{ R} + 10 \text{ R}^2 + 5 \text{ R}^3 + \text{R}^4\right)}{30 \text{ R}^2 \text{ NN}} + 0 \left[\frac{1}{\text{NN}}\right]^2$$

(* Same idea *)

infAsymptote = FullSimplify [Normal[Series[Sfunction, {NN, ∞, 1}]]]

Out[19]=
$$\frac{\pi^2 (5 + R (10 + R (10 + R (5 + R))))}{30 NN R^2}$$

(* Contour plot of the Sum (Figure 4 in article) *) ContourPlot [Sfunction, {R, 0.001, 10},

 $\{NN, 2, 100\}, Contours \rightarrow 20, PlotRange \rightarrow Automatic]$

(* Slice at N = 3 *) LogLogPlot[Sfunction /. $\{NN \rightarrow 3\}$, $\{R, 0.1, 100\}$]

(* Slice at R → 1.4587 (optimal R for large N) *) LogLogPlot[Sfunction /. $\{R \rightarrow 1.4587\}$, $\{NN, 3, 100\}$]

(* Find the optimal R for N=3 *)

dR = FullSimplify [D[Sfunction /. {NN → 3}, R]]

Out[27]=
$$\frac{\left(-3 + R^2\right) (3 + R (3 + R))}{18 R^3}$$

N[Solve[dR == 0, R]] In[28]:=

$$\texttt{Out[28]=} \quad \{ \{ \mathsf{R} \rightarrow -1.73205 \}, \ \{ \mathsf{R} \rightarrow 1.73205 \}, \ \{ \mathsf{R} \rightarrow -1.5 - 0.866025 \ \textit{ii} \}, \ \{ \mathsf{R} \rightarrow -1.5 + 0.866025 \ \textit{ii} \} \}$$

(* Find the optimal R for large N *)

(* First define the function of interest *)

 $fR[R] = 1/R^2 * (R^4/5 + R^3 + 2 * R^2 + 2 * R + 1)$

Out[30]=
$$\frac{1 + 2 R + 2 R^2 + R^3 + \frac{R^4}{5}}{P^2}$$

(* Then compute its derivative and solve the point for which the derivative is 0. Only a single positive real rool *) N[Solve[D[fR[R], R] == 0]]

 $\texttt{Out[31]=} \quad \{ \{ \mathsf{R} \rightarrow -1.81987 \}, \ \{ \mathsf{R} \rightarrow 1.45897 \}, \ \{ \mathsf{R} \rightarrow -1.06955 - 0.859767 \ \textit{ii} \}, \ \{ \mathsf{R} \rightarrow -1.06955 + 0.859767 \ \textit{ii} \} \}$