

GPC: Generative and General Pathology Image Classier

Anh Tien Nguyen and Jin Tae Kwak School of Electrical Engineering, Korea University, Seoul, Republic of Korea

INTRODUCTION

- In computational pathology, pathological image classification has been extensively studied, in which numerous tasks are closely relevant. For example, cancer grading in different types of organs: prostate, colon, gastric, and breast.
- Current approaches require a separate model per task, which is challenging to transfer a pre-existing model to other related tasks
- We introduce a task-agnostic Generative and general Pathology image Classifier (GPC) that learn from arbitrary datasets of pathology images and perform multiple image classification tasks in a generative image-to-text fashion

METHOD

Problem formulation

- Given M datasets $\{D_1, D_2, ..., D_M\}$, with each dataset is $D_i = \{(xi^k, ci^k)\}_{k=1}^N$ where $x^{i,k}$ and $c^{i,k}$ denote the k-th pathology image and its ground truth in the i-th dataset.
- Since $c^{i,k}$ is a text label, it is spited and padded into a sequence of tokens $t^{i,k}$ with a length T, using a tokenizer of a language model \mathcal{L} .
- Each pathology image $x^{i,k}$ undergoes a feature extractor \mathcal{F} and a projector \mathcal{P} to produce a feature embedding $f^{i,k}$

$$f^{i,k} = \mathcal{P}(\mathcal{F}(x^{i,k}))$$

Afterward, the projected embedding $f^{i,k}$ is used as a condition for the language model \mathcal{L} to generate the m-th token $\tilde{t}_m^{i,k}$ autoregressively

$$\tilde{t}_{m}^{i,k} = \arg\max_{\hat{t}_{m}^{i,k}} p(\hat{t}_{m}^{i,k} \mid f^{i,k}, \tilde{t}_{1}^{i,k}, \tilde{t}_{2}^{i,k}, ..., \tilde{t}_{m-1}^{i,k})$$

As a result, the objective to optimize the parameter θ of GPC is

$$\theta = argmax \sum_{i=1}^{M} \sum_{k=1}^{N} \sum_{m=1}^{T} log \ p_{\widehat{\theta}}(\tilde{t}_{m}^{i,k} \mid f^{i,k}, \tilde{t}_{1}^{i,k}, \tilde{t}_{2}^{i,k}, ..., \tilde{t}_{m-1}^{i,k})$$

Network architecture

- Feature extractor \mathcal{F} is built upon ConvNeXt to extract high-level representations from input images.
- Projector \mathcal{P} maps the output features from the space of \mathcal{F} to that of a language model \mathcal{L} , constructed from a three-layer perceptron.
- Language model \mathcal{L} , based on OPT, generates the correct pathological text labels for the projected embeddings obtained from \mathcal{P} .

EXPERIMENT

Experimental design

 (E_{TS})

 (E_{TA})

 $model(E_{TAG})$

Datasets

Task	Dataset	Mag.	Patch size	# patches	Text labels				
Colorectal	Colon-1	20x	512 x 512	9,857	benign, well differentiated cancer, moderately differentiated cancer, poorly differentiated cancer				
cancer grading	Colon-2	20x	512 x 512	110,170					
Prostate cancer grading	Prostate-1	40x	750 x 750	22,022	benign, grade 3 cancer,				
	Prostate-2	40x	690 x 690	17,066	grade 4 cancer, grade 5 cancer				
Gastric cancer grading	Gastric	40x	512 x 512	265,066	benign, tubular well differentiated cancer, tubular moderately differentiated cancer, tubular poorly differentiated cancer				
Colorectal tissue typing	K19	K19 20x 224 x 224 1		100,000	adipose, background, debris, normal, lymphocyte, stroma, epithelium, muscle, mucus				

Results of colorectal cancer grading and tissue typing

Model	Type	Colon-1				Colon-2				K19			
Model		Acc	Acc_g	F1	κ_w	Acc	Acc_g	<i>F1</i>	κ_w	Acc	Pre	Re	F1
ConvNext		87.7	82.8	0.832	0.940	78.1	71.9	0.731	0.908	99.6	0.996	0.996	0.994
EfficientN		85.9	80.9	0.819	0.914	76.9	68.4	0.708	0.701	98.0	0.973	0.968	0.985
Resnet50	E	86.8	82.9	0.838	0.806	79.5	68.2	0.733	0.688	98.7	0.988	0.988	0.987
MaxViT	E_{TS}	87.9	84.0	0.838	0.805	76.3	72.8	0.723	0.895	98.3	0.988	0.991	0.988
SwinV2		88.0	82.7	0.829	0.839	77.9	73.7	0.729	0.885	99.4	0.996	0.993	0.991
ViT		87.5	82.0	0.838	0.838	79.8	72.8	0.728	0.899	98.2	0.989	0.996	0.988
ConvNext		85.9	80.4	0.823	0.933	74.4	66.5	0.698	0.868	98.8	0.986	0.991	0.988
EfficientN		83.2	79.2	0.793	0.882	72.5	63.4	0.670	0.722	98.5	0.982	0.982	0.974
Resnet50	\mathbf{E}_{-} .	84.1	81.0	0.807	0.824	70.1	61.9	0.622	0.671	97.7	0.984	0.983	0.986
MaxViT	E_{TA}	86.8	82.6	0.809	0.813	71.3	68.8	0.720	0.888	98.3	0.985	0.991	0.974
SwinV2		86.5	81.2	0.822	0.933	70.4	69.0	0.671	0.842	98.4	0.985	0.980	0.996
ViT		86.0	79.7	0.812	0.831	72.1	67.1	0.701	0.833	98.1	0.985	0.989	0.988
GIT	E _{TAG}	85.3	79.7	0.811	0.924	67.9	58.6	0.596	0.839	98.9	0.989	0.988	0.990
CLIP,OPT		82.5	75.6	0.795	0.914	72.7	67.4	0.653	0.791	99.0	0.989	0.992	0.985
GPC		88.4	83.8	0.848	0.944	79.0	74.0	0.722	0.898	99.4	0.995	0.995	0.996

Results of prostate and gastric cancer grading

Model	Type	Prostate-1					Pros	tate-2		Gastric			
Model		Acc	Acc_g	F1	κ_w	Acc	Acc_g	<i>F1</i>	κ_w	Acc	Acc_g	<i>F1</i>	κ_w
ConvNext		70.6	70.1	0.630	0.597	77.8	78.2	0.639	0.696	83.8	68.1	0.760	0.925
EfficientN		69.7	66.4	0.582	0.504	74.3	77.3	0.599	0.633	81.3	68.1	0.712	0.890
Resnet50	E_~	70.9	67.5	0.643	0.512	77.3	78.7	0.608	0.619	82.2	66.9	0.707	0.901
MaxViT	E_{TS}	71.6	70.2	0.652	0.649	75.9	76.7	0.605	0.678	83.2	68.5	0.758	0.926
SwinV2		71.9	72.0	0.637	0.639	73.9	75.1	0.623	0.669	83.9	68.5	0.771	0.935
ViT		71.9	72.2	0.641	0.643	75.4	75.9	0.608	0.690	84.4	69.2	0.774	0.930
ConvNext		68.5	69.7	0.576	0.578	73.3	76.3	0.562	0.616	83.0	67.2	0.757	0.930
EfficientN		65.2	62.1	0.522	0.511	71.9	73.1	0.512	0.589	80.5	63.5	0.701	0.832
Resnet50	\mathbf{F}_{-} .	69.2	68.1	0.582	0.539	73.6	77.3	0.599	0.601	82.9	64.0	0.713	0.890
MaxViT	E_{TA}	67.2	69.2	0.606	0.562	69.2	70.9	0.525	0.631	83.6	65.9	0.749	0.931
SwinV2		65.5	66.9	0.531	0.542	65.8	69.2	0.487	0.553	81.7	65.0	0.739	0.923
ViT		67.2	66.4	0.544	0.579	68.8	72.8	0.598	0.629	81.7	64.2	0.710	0.909
GIT	Γ E _{TAG}	65.9	67.2	0.538	0.476	68.3	71.7	0.467	0.616	80.7	63.7	0.727	0.867
CLIP,OPT		62.0	63.3	0.598	0.587	63.4	62.2	0.521	0.575	81.6	63.4	0.726	0.912
GPC		70.4	71.9	0.628	0.612	76.9	79.0	0.641	0.700	83.7	69.3	0.768	0.925

cancer.

Colon-1 Colon-2 K19 Gastric Prostate-2 Prostate-1 Pred: well-**Pred:** normal

Pred: grade 4 differentiated cancer, cancer GT: benign. **GT:** moderately-

differentiated cancer. differentiated cancer.

GT: debris. differentiated cancer.

Pred: grade 4 cancer. **GT:** grade 3

Pred: poorlydifferentiated cancer. moderately-GT: grade 4 cancer.

Pred: tubular differentiated cancer. GT: tubular poorlydifferentiated cancer.

differentiated cancer.

CONCLUSION

cancer.

The generative models hold great potential for pathology image analysis, paving the way for developing a universal model for multiple tasks of computational pathology.