

Transfer Functions for Direct Volume Rendering

Gordon Kindlmann gk@cs.utah.edu

http://www.cs.utah.edu/~gk

Scientific Computing and Imaging Institute
School of Computing
University of Utah

Contributions: Many, as noted

Outline

1. Transfer Functions: what and why

2. Review of current methods

3. Ideas for future work

Introduction

Transfer functions make volume data visible by mapping data values to optical properties

Transfer Functions (TFs)

Optical Properties

Anything that can be composited with a standard graphics operator ("over")

- Opacity: "opacity functions"
 - Most important
- Color
 - Can help distinguish features
- Emittance
 - Why don't we use this more often?
- Phong parameters (k_a, k_d, k_s)
- Index of refraction

Alas...

Setting transfer functions is difficult, unintuitive, and slow

TFs as feature detection

TFs as feature detection

We are looking in the data value domain, not the spatial domain

TFs as feature detection

v = f(x)"here's the edge!"

Domain of the transfer function does not include position

Goals

- Make good renderings easier to come by
- Make space of TFs less confusing
- Remove excess "flexibility"
- Provide one or more of:
 - Information
 - Guidance
 - Semi-automation
 - Automation

Outline

1. Transfer Functions: what and why

2. Review of current methods

3. Ideas for future work

Organization

- 1. Trial and Error (manual)
- 2. Spatial Feature Detection
- 3. Image-Centric
- 4. Data-Centric
- 5. Others

1. Trial and Error

- 1. Manually edit graph of transfer function
- 2. Enforces learning by experience
- 3. Get better with practice
- 4. Can make terrific images

William Schroeder, Lisa Sobierajski Avila, and Ken Martin; Transfer Function Bake-off Vis '00

Organization

- 1. Trial and Error (manual)
- 2. Spatial Feature Detection
- 3. Image-Centric
- 4. Data-Centric
- 5. Others

2. Spatial Feature Detection

Transform TF specification to feature detection in the spatial domain

- extremely flexible
- different parameter space
- not exactly transfer functions ...
- 1. Fang, Biddlecome, Tuceryan (Vis '98) "Image-based Transfer Function Design..."
- 2. Rheingans, Ebert (Vis '00, TVCG July '01) "Volume Illustration: Non-photorealistic..."
- 3. Hladůvka, Gröller (VisSym '01) "Salient Representation of Volume Data"

Volume Illustration

Traditional Volume Rendering Pipeline

Volume Illustration Rendering Pipeline

Thanks to Penny Rheingans and David Ebert

Feature Enhancement

- Boundary, silhouette enhancement
 Depth and Orientation Cues
- Halos, depth cueing

Volume Illustration

Original TF

Boundaries (gradient)

Volume Illustration

Silhouettes

Halos

Blurs distinction between transfer functions and feature detection

Organization

- 1. Trial and Error (manual)
- 2. Spatial Feature Detection
- 3. Image-Centric
- 4. Data-Centric
- 5. Others

3. Image-centric

Specify TFs via the resulting renderings

- Genetic Algorithms ("Generation of Transfer Functions with Stochastic Search Techniques", He, Hong, et al.: Vis '96)
- Design Galleries (Marks, Andalman, Beardsley, et al.: SIGGRAPH '97; Pfister: Transfer Function Bake-off Vis '00)
- Thumbnail Graphs + Spreadsheets ("A Graph Based Interface...", Patten, Ma: Graphics Interface '98; "Image Graphs...", Ma: Vis '99; Spreadsheets for Vis: Vis '00, TVCG July '01)
- Thumbnail Parameterization ("Mastering Transfer Function Specification Using VolumePro Technology", König, Gröller: Spring Conference on Computer Graphics '01)

Genetic Algorithms

Initial stochastic search; refinement can be user driven or automated ("fitness functions")

"Generation of Transfer Functions with Stochastic Search Techniques", He, Hong, *et al.*: Vis '96

Design Galleries

Effective method for general class of "parameter tweaking" problems

- Provide convenient GUI to whole parameter space ("what's possible?")
- Sampling parameter space: dispersion
- Organize output images: arrangement

Organize Images for easy browsing

Design Galleries

VoIDG (software available)

Marks, Andalman, Beardsley, *et al.*: SIGGRAPH '97; Pfister: Transfer Function Bakeoff Vis '00

3. Image-Centric Thumbnail Graphs, Spreadsheets

Exploration guided by logically connected visual history or spreadsheet

"A Graph Based Interface for Representing Volume Visualization Results", Patten, Ma: Graphics Interface '98

"Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface", Jankun-Kelly, Ma: TVCG July 2001

3. Image-Centric Thumbnail Parameterization

"Mastering
Transfer
Function
Specification
Using
VolumePro
Technology",
König, Gröller:
Spring
Conference on
Computer
Graphics '01

Organization

- 1. Trial and Error (manual)
- 2. Spatial Feature Detection
- 3. Image-Centric
- 4. Data-Centric
- 5. Others

4. Data-centric

Specify TF by analyzing volume data itself

- 1. Salient Isovalues:
 - Contour Spectrum (Bajaj, Pascucci, Schikore: Vis '97)
 - Statistical Signatures ("Salient Iso-Surface Detection
 Through Model-Independent Statistical Signatures", Tenginaki, Lee,
 Machiraju: Vis '01)
 - Other computational methods ("Fast Detection of Meaningful Isosurfaces for Volume Data Visualization", Pekar, Wiemker, Hempel: Vis '01)
- 2. "Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering"

(Kindlmann, Durkin: VolVis '98; Kindlmann MS Thesis '99; Transfer Function Bake-Off Panel: Vis '00)

Salient Isovalues

What are the "best" isovalues for extracting the main structures in a volume dataset?

Contour Spectrum (Bajaj, Pascucci, Schikore: Vis '97; Transfer Function Bake-Off: Vis '00)

- Efficient computation of isosurface metrics
 - Area, enclosed volume, gradient surface integral, etc.
- Efficient connected-component topological analysis
- Interface itself concisely summarizes data

Contour Spectrum

Statistical Signatures

- Localized k-order central moments
- At each position P in volume, compute
 - LM: mean over local window W
 - m_k : local higher order moment (LHOM)

$$m_k = \frac{1}{w^2} \sum_{w} (x - LM)^k$$
, $(\forall x \in W)$

Example: m_3

(Thanks to Shiva Tenginaki, Jinho Lee, Raghu Machiraju)

Boundary Model

- Small window
- Boundary if $|C_1 C_2| > 0$
- Binomial distribution of materials

 Extrema and zero-crossings of moments and cummulants are influenced by presence of boundaries

-10

0.5

Moments + Cummulants

-2

Skew

1.5

No. of Boundary Particles, m

2

2.5

Kurtosis

1.5

No. of Boundary Particles, m

2.5

Scatterplots

Scatterplots

Tooth renderings

"Fast Detection of Meaningful Isosurfaces for Volume Data Visualization", Pekar et al.: Vis '01

Integral of gradient magnitude over isosurface

- High for isovalues of strong boundaries
- Can be computed with divergence theorem: Integral of vector field over surface is same as integral of divergence in the interior
- Application of classical vector calc
- Rapid computation with Laplacian-weighted histograms

Other Computational Methods 4. Data-Centric

Pekar et al. "Fast Detection of Meaningful Isosurfaces for Volume Data Visualization", Vis '01

Other Computational Methods 4. Data-Centric

MEAN gradient combined with the opacity transfer function

Pekar et al. "Fast Detection of Meaningful Isosurfaces for Volume Data Visualization", Vis '01

"Semi-Automatic ... '

Reasoning:

- TFs are volume-position invariant
- Histograms "project out" position
- Interested in boundaries between materials
- Boundaries characterized by derivatives
- → Make 3D histograms of value, 1st, 2nd deriv.

By (1) inspecting and (2) algorithmically analyzing histogram volume, we can create transfer functions

Derivative relationships

Edges at maximum of 1st derivative or zero-crossing of 2nd

(1) Scatterplots

Project histogram volume to 2D scatterplots

- Visual summary
- Interpreted for TF guidance
- No reliance on boundary model at this stage

(2) Analysis

(2) New Distance Maps

- Supports 2D distance map:
 d(v,g); g = gradient magnitude
- Produced automatically from histogram volume via boundary model

(2) Whole process

Automatically generated from histogram volume

Created by user

distance function: d(v)

"distance": X

boundary emphasis function:

opacity function:

 $\alpha(V)$

b(x)

data value: V

opacity: a

• Opacity function: $\alpha(v) = b(d(v))$ $\alpha(v,g) = b(d(v,g))$

Results: CT Head

Results: CT Head

Results: Tooth

Tooth: 2D transfer function

Detected 4 distinct boundaries between 4 materials

White regions in colormapped 2D distance function plot are boundary centers

Color transfer function

siggraph ⇔2002∺

2D Opacity Functions

Mostly accurate isolation of all material boundaries

Organization

- 1. Trial and Error (manual)
- 2. Spatial Feature Detection
- 3. Image-Centric
- 4. Data-Centric
- 5. Others

5. Other methods

New domains: curvature

New kinds of interaction

Curvature

"Curvature-Based Transfer Functions for Direct Volume Rendering", Hladůvka, König, Gröller: SCCG '00

• Uses 2D space of κ_1 and κ_2 : principal curvatures of isosurface at a given point

 Graphically indicates aspects of local shape

Specification is simple

Different Interaction

"Interactive Volume Rendering Using Multi-Dimensional Transfer Functions and Direct Manipulation Widgets" Kniss, Kindlmann, Hansen: Vis '01

- Make things opaque by pointing at them
- Uses 3D transfer functions (value, 1st, 2nd derivative)
- "Paint" into the transfer function domain

3D Transfer Function

3D transfer functions allow

- easier boundary selection
- accurate boundary visualization

Outline

- 1. Transfer Functions: what and why
- 2. Current Methods

3. Ideas for future work

Different domains, ranges

- Time-varying data ("A Study of Transfer Function Generation for Time-Varying Volume Data", Jankun-Kelly, Ma: Volume Graphics '01)
- Multi-dimensional TFs expressive and powerful
 - Leverage current techniques for ease of use
- 2D opacity functions: let's use them!
 - Marc Levoy's 1988 CG+A Paper

Ranges: Emitance, textures, what else?

Other directions

- Variations on the histogram volume:
 - Different quantities, assumptions, models, analysis?
- Histograms/scatterplots entirely loose spatial information
 - –Any way to keep some of it?
 - –Can TFs have volume position in domain?

Other directions

- Image-centric methods have a certain appeal
 - –Any way to steer and constrain them more effectively?
 - Image-space analysis of TF fitness?
- What kinds of tools do we really want?
 - –Analytical vs. expressive; simplifying vs. honest?
 - What is the proper role for human experimentation?

Questions?