ME 7247: Advanced Control Systems

Fall 2021-22

Homework 1

Due Date: Wednesday September 29, 2021

1. Mostly zeros. Consider the matrix

- (a) Find a basis for range(A) and find a basis for range(A).
- (b) Find a vector b such that Ax = b has no solutions, or explain why no such b can exist. Repeat for the case of exactly one solution, and the case of infinitely many solutions.
- 2. Predicting tree age. We want to estimate the age of maple trees in a particular forest based on the circumferences of their trunks. Finding the true age of a tree is invasive and time-consuming, so we only have data for N=10 trees. Our data is points (x_i, y_i) for $i=1,\ldots,N$, where, x_i and y_i are the circumference and age of tree i, respectively. Here are the data:

x_i (inches)	y_i (years)
18.1	83
8.0	42
16.8	79
2.8	16
3.9	24
12.7	73
11.5	60
9.5	44
8.0	47
13.2	67

- (a) Suppose age is proportional to circumference, so $y \approx mx$ for some m (no intercept). Find the slope m that minimizes the squared norm of the residual: $\sum_{i=1}^{N} (mx_i y_i)^2$.
- (b) Suppose we instead have the more complicated quadratic relationship $y \approx a_2 x^2 + a_1 x + a_0$. Find the choice of parameters a_0, a_1, a_2 that minimizes the squared norm of the residual.
- (c) Make a scatter plot of the data, with circumference on the x-axis and age on the y-axis. On your plot, include the curves of best fit from (a) and (b).
- (d) Suppose the data were changed so that $x_i = 10$ for all i, but the y_i are unchanged. Consider a linear-plus-intercept model $y \approx mx + b$. Show and explain why the least squares problem has infinitely many solutions in this case. Find a general expression for the set of all solutions, and make a plot showing what these solutions look like.

3. Perp properties. In this problem, we assume $S \subseteq \mathbb{R}^n$ is any subset of \mathbb{R}^n , not necessarily a subspace! In this case, the perp space S^{\perp} is defined as before:

$$S^{\perp} := \left\{ x \in \mathbb{R}^n \mid \langle x, s \rangle = 0 \text{ for all } s \in S \right\}.$$

- (a) Prove that S^{\perp} is a subspace of \mathbb{R}^n .
- (b) Prove that $S \subseteq S^{\perp \perp}$, where we defined $S^{\perp \perp} := (S^{\perp})^{\perp}$.
- 4. Sums and intersections. Consider the following two operations between sets $S, T \subseteq \mathbb{R}^n$.

Intersection:
$$S \cap T := \{x \in \mathbb{R}^n \mid x \in S \text{ and } x \in T\}$$

Sum: $S + T := \{s + t \mid s \in S \text{ and } t \in T\}.$

Suppose S and T are subspaces of \mathbb{R}^n .

- (a) Prove that $S \cap T$ and S + T are subspaces.
- (b) Prove that $(S+T)^{\perp} = S^{\perp} \cap T^{\perp}$.
- (c) Prove that $(S \cap T)^{\perp} = S^{\perp} + T^{\perp}$.
- 5. Hovercraft rendez-vous. You are in command of a hovercraft, which can move around in 2D through the use of two thrusters. The dynamics are described by the equations

$$x_{t+1} = x_t + v_t,$$
$$v_{t+1} = v_t + u_t,$$

where $x_t \in \mathbb{R}^2$, $v_t \in \mathbb{R}^2$, and $u_t \in \mathbb{R}^2$ are the position, velocity, and thruster input at time t. Our task is to reach the following waypoints at the following times:

$$x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \qquad x_{20} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \qquad x_{35} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}, \qquad x_{60} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

There are many sequences of thruster commands u_0, \ldots, u_{59} that achieve this. We want the solution that minimizes the total fuel consumption, which is given by

$$J = \sum_{t=0}^{59} \|u_t\|^2$$

- (a) Write the waypoint constraints as a large set of linear equations of the form Au = b, where u is the thruster input. Note that $u \in \mathbb{R}^{120}$ because $u_t \in \mathbb{R}^2$ and $t = 0, 1, \ldots, 59$.
- (b) Solve the minimum norm optimization problem to find the optimal thruster input \hat{u} . Make a 2D plot of the optimal trajectory x_t as a function of t and verify that the trajectory passes through the waypoints at the appropriate times.
- (c) Plot the optimal thruster inputs u_t as a function of t. What do you observe about the shape of these functions?

6. Smoothing via regularization. We want to estimate a smooth signal $y_{\text{true}} \in \mathbb{R}^{500}$. We have access to a noisy measurement $y_{\text{meas}} = y_{\text{true}} + w$, where $w \in \mathbb{R}^{500}$ is unknown noise. Here is a plot of the true signal and the noisy measurement.

The Matlab code that produces y_{true} and y_{meas} is:

To find a smooth estimate, we will use least squares with a regularizer that penalizes abrupt changes. One way to do this is by penalizing the norm squared of the first derivative. Our signal is discrete, so we'll use the approximation $y'(t) \approx y_t - y_{t-1}$ and solve the regularized least squares problem

$$y_{\text{est}} = \underset{y \in \mathbb{R}^{500}}{\text{arg min}} \quad \|y - y_{\text{meas}}\|^2 + \lambda \sum_{t=2}^{500} (y_t - y_{t-1})^2,$$

where $\lambda > 0$ is a trade-off parameter.

- (a) Transform the problem into an ordinary least squares problem $\min_x ||Ax b||^2$. What are A, b, and x, in this case?
- (b) Experiment with λ values in the range $0 < \lambda < 100$ and plot/compare the regularized estimates $y_{\rm est}$ for different values of λ . What happens as λ is increased?
- (c) Instead of penalizing the first derivative, let's instead penalize the norm squared of the second derivative (curvature penalty). For this, we'll use $y''(t) \approx y_{t+1} 2y_t + y_{t-1}$. Repeat parts (a) and (b) using this new regularizer. Adjust the λ range as needed.