Chapitre 1

ENSEMBLES DE NOMBRES

I - Quelques ensembles de nombres

A) Nombres entiers naturels

Définition: Entier naturel

On appelle nombre entier naturel un nombre entier positif.

L'ensemble des nombres entiers naturels est noté $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$.

Exemples

4 et 287 sont des entiers naturels alors que -1 et 0,5 ne sont pas des entiers naturels.

Définition: Entier naturel non nul

On définit et on note \mathbb{N}^* l'ensemble des nombres entiers naturels non nuls.

Il s'agit donc de l'ensemble des nombres naturels **strictement** positifs et $\mathbb{N}^* = \{1, 2, 3, 4, ...\}$.

Remarque

Pour noter que a est un entier naturel, on écrira $a \in \mathbb{N}$ et s'il est non nul, $a \in \mathbb{N}^*$.

B) Nombres entiers relatifs

Définition: Entier relatif

On appelle nombre entier relatif un nombre entier positif ou négatif.

L'ensemble des nombres entiers relatifs est noté $\mathbb{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$.

Exemples

4, 287, 0 et -1 sont des entiers relatifs alors que 0,5 n'en est pas un.

Remarques

- Pour noter que a est un entier relatif, on écrira $a \in \mathbb{Z}$.
- Les nombres entiers naturels sont des nombres entiers relatifs.

C) Nombres rationnels

Définition: Rationnel

On appelle **nombre rationnel** un nombre qui peut s'écrire sous la forme d'un quotient $\frac{a}{b}$ où $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$.

L'ensemble des nombres rationnels est noté \mathbb{Q} .

Exemples

$$\frac{1}{3}$$
, $\frac{14}{-21} = -\frac{2}{3}$ et $\frac{2,5}{0,7} = \frac{25}{7}$ sont rationnels.

Les nombres entiers relatifs sont des nombres rationnels.

D) Nombres décimaux

Définition : Décimal

Un nombre décimal est un nombre rationnel qui peut s'écrire $\frac{a}{10^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$. L'ensemble des nombres décimaux est noté \mathbb{D} .

Exemples

- 0,5 est un nombre décimal car 0,5 = $\frac{1}{2} = \frac{5}{10}$.
- $-\frac{3}{25}$ est décimal car $-\frac{3}{25} = \frac{-12}{100} = \frac{-12}{10^2}$.

Remarque

Les nombres entiers relatifs sont des décimaux.

En effet, si $a \in \mathbb{Z}$, alors $a = \frac{a}{10^0}$.

Théorème : $\mathbb{Q} \neq \mathbb{D}$

 $\frac{1}{3}$ n'est pas un nombre décimal.

 $D\acute{e}monstration$. Supposons par l'absurde que $\frac{1}{3}$ est décimal.

Dans ce cas, $\frac{1}{3}$ s'écrirait sous la forme $\frac{1}{3} = \frac{a}{10^n}$ où $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Ainsi, on aurait $3a = 10^n$, c'est à dire que 10^n est un multiple de 3, ce qui est absurde car 3 ne divise aucune puissance de 10. En effet, il existe un critère de divisibilité par 3 qui dit qu'un nombre entier est divisible par 3 si, et seulement si, la somme de ses chiffres est divisible par 3.

Finalement, notre hypothèse était fausse et nous venons de prouver que $\frac{1}{3}$ n'est pas un nombre décimal.

Propriété: Développement décimal

Un nombre décimal admet un développement décimal avec un nombre fini de chiffres.

Exemples

•
$$\frac{1}{2} = 0.5$$

•
$$-\frac{3}{25} = -0.12$$

•
$$\frac{217}{125} = 1,736$$

E) Nombres réels

Définition: Réel

Un nombre est dit **réel** s'il est l'abscisse d'un point d'une droite graduée (ou numérique). L'ensemble des nombres réels est noté \mathbb{R} .

On peut aussi définir \mathbb{R} comme l'ensemble des nombres qui s'écrivent avec une partie entière et un nombre de décimal fini ou infini.

Exemples

 $\frac{1}{3}$, $\sqrt{2}$ et π sont des nombres réels.

II - Ensembles et inclusions

A) Notations ensemblistes

Nous avons déjà utilisé plusieurs notations depuis le début, nous allons tout préciser. Soient E et F deux ensembles de nombres. Voici une correspondance de notations :

x appartient à $E: x \in E$

x n'appartient pas à $E: x \notin E$

Ensemble E privé de $0: E^*$

E est inclus dans F : $E \subset F$

L'ensemble F est composé uniquement des éléments $a_1, \dots, a_n : F = \{a_1, \dots, a_n\}$

B) Classification des nombres

Théorème : Classification

On a la chaîne d'inclusion suivante :

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Remarque

On peut résumer le résultat précédent à l'aide du diagramme suivant :

Exercice

Compléter le tableau suivant avec \in ou \notin .

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
-2					
$\frac{2}{3}$					
$\sqrt{2}$					
$\frac{1}{4}$					
π					

III - Intervalles de $\mathbb R$

A) Définition

Définition : Intervalle

Soient a et b deux réels $(a \le b)$.

L'ensemble de tous les réels x tels que $a \le x \le b$ est appelé un **intervalle**, que l'on note [a;b].

Exemple

 $3 \in [1;5], \, 6 \not \in [1;5] \text{ et } 5 \in [1;5].$

Remarque

On peut définir d'autres intervalles en fonction des inégalités choisies :

 $a < x \le b$ définit l'intervalle :]a;b]

 $a \le x < b$ définit l'intervalle : [a; b]

a < x < b définit l'intervalle :]a; b[

Exemples

Donnons la représentation graphique de plusieurs intervalles.

• [1;3]

•]-1;4[

]0;+∞[

On notera très souvent :

- $[0; +\infty[=\mathbb{R}_+]$
- $]0; +\infty[=\mathbb{R}^*_+$
-] $-\infty$; 0] = \mathbb{R}_{-}
-] $-\infty$; $0[=\mathbb{R}^*_-$

Exercice

Compléter le tableau suivant :

Inégalité	Intervalle	Représentation graphique
$x < \pi$] – ∞; π[
5 ≤ <i>x</i> < 10		5 10
		-1 3
$\sqrt{2} \geqslant x$		
] - ∞; +∞[

Exercice

Compléter avec \in ou \notin .

- -1 [-4;1]
- $\frac{1}{3}$ [-4;1]
- -4,1 [-4;1]
- $\sqrt{3}$ [-4;1]

B) Union et intersection d'intervalles

Définition: Union

Soient A et B deux ensembles. On appelle **union** de A et B, notée $A \cup B$, l'ensemble des éléments qui appartiennent soit à A soit à B.

Définition : Intersection

Soient A et B deux ensembles. On appelle **intersection** de A et B, notée $A \cap B$, l'ensemble des éléments qui appartiennent à A et à B.

On visualise ces différents ensembles sur le diagramme suivant :

Exercice

Calculer l'union et l'intersection des intervalles I et J. Faire un diagramme.

- I =]1;4[et J = [3;5[
- I =]-1;0] et J = [0;1]
- $I = [1; +\infty[$ et $J =]-\infty; 2]$
- I = [-1; 0] et J = [1; 2]