

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu

Assistant Professor, MED

Email: kishore.khanna@thapar.edu

OF ENGINEERING & TECHNOLOGY

(Deemed to be University)

Disclaimer

The content of this presentation for the course "*Mechanics*" posted by Thapar Institute of Engineering & Technology is only for the purpose of education (class teaching) & its not being used for the sale or promotion of production.

PROPERTIES OF PLANE SURFACES

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)

Properties of plane surfaces

- Area
- First moment of area
- Second moment of area

Planes of symmetry

Centroidal X axis

A line parallel to x axis which divides it into two equal areas

Centroidal Yaxis

A line parallel to y axis which divides it into two equal areas

Centroid

Centroid is point of intersection of centroidal x axis and y axis

Centroid is geometrical centre of area

Unsymmetrical Figures

To find centroid we use first moment of area

How to find centroid of unsymmetrical figure

$$\overline{y} = \frac{\int y \, dA}{A}$$

$$\bar{x} = \frac{\int x \, dA}{A}$$

Centroid of semi circle and quarter circle

Centroid of semi circle and quarter circle

S.No	Shape	Figure	Area	\bar{x}	\bar{y}	ti
1.	Rectangle	h	bh	$\frac{b}{2}$	$\frac{h}{2}$	THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY (Deemed to be University)
2.	Right-angled triangle	h b	$\frac{1}{2}bh$	$\frac{b}{3}$	$\frac{h}{3}$	
3.	Right-angled triangle	h	$\frac{1}{2}bh$	$\frac{2}{3}b$	$\frac{h}{3}$	
4.	Semicircle	R	$\frac{\pi R^2}{2}$	$\frac{4R}{3\pi}$	0	
5.	Semicircle	R	$\frac{\pi R^2}{2}$	0	$\frac{4R}{3\pi}$	
6.	Quadrant	R	$\frac{\pi R^2}{4}$	$\frac{4R}{3\pi}$	$\frac{4R}{3\pi}$	

Steps to find centroid of composite figure

- ☐ Break up the figure into parts whose centroid is known like rectangle, circle, triangle etc.
- \square Find area of each part A_1 , A_2 , A_3 ---- A_n
- \square Find location of centroid of each part separately $(x_1,y_1), (x_2,y_2), (x_3,y_3), --- (x_n,y_n)$
- ☐ Find total area A

$$\bar{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3 - - - A_n x_n}{A}$$

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 - - - A_n y_n}{A}$$

As section is symmetrical about y axis

$$\bar{x} = 0$$

	Area	у	Ау
1	20x100	140	20x100x140
2	20x100	80	20x100x80
3	150x30	15	150x30x15

$$\bar{y} = \frac{\sum A_i y_i}{\sum A_i} = 59.71 \, mm$$

Example: Find the location of the centroid of the shaded area

$$\bar{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3 - - - A_n x_n}{A}$$

$$\bar{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 - - - A_n y_n}{A}$$

Solution: Divide the composite area into simple areas

S.No	Element	A_i (cm ²)	\bar{x}_i (cm)	\overline{y}_i (cm)	$A_i \bar{x}_i (cm^3)$	$A_i \bar{y}_i (cm^3)$
1.	Rectangle-(1)	10 × 1.5 = 15	10/2 = 5	1.5/2 = 0.75	75	11.25
2.	Rectangle-(2)	$[12 - 2(1.5)] \times 2 = 18$	2/2 = 1	12/2 = 6	18	108
3.	Rectangle-(3)	$8 \times 1.5 = 12$	4	12 - 1.5/2 = 11.25	48	135
	Σ =	45			141	254.25

$$\bar{x} = \frac{\sum A_i \bar{x}_i}{\sum A_i}$$

$$= \frac{141}{45}$$

$$= 3.13 \text{ cm (or) } 31.3 \text{ mm}$$

$$\bar{y} = \frac{\sum A_i \bar{y}_i}{\sum A_i}$$

$$= \frac{254.25}{45}$$
= 5.65 cm (or) 56.5 mm

Example: Find the location of the centroid of the shaded area

Solution: Divide the composite area into simple areas

S.No	Element	A_i	\overline{x}_i	\bar{y}_i	$A_i \overline{x}_i$	$A_i \overline{y}_i$
1.	Triangle-(1)	$\frac{1}{2} \left(\frac{b-a}{2} \right) h$	$\frac{2}{3}\left(\frac{b-a}{2}\right)$	$\frac{h}{3}$	$\frac{(b-a)^2}{12}h$	$\frac{(b-a)h^2}{12}$
2.	Rectangle-(2)	ah	$\frac{b}{2}$	$\frac{h}{2}$	$\frac{abh}{2}$	$\frac{ah^2}{2}$
3.	Triangle-(3)	$\frac{1}{2} \left(\frac{b-a}{2} \right) h$	$\frac{2b+a}{3}$	$\frac{h}{3}$	$\frac{(2b+a)(b-a)h}{12}$	$\frac{(b-a)h^2}{12}$
	Σ =	$\frac{(b+a)}{2}h$			$\frac{bh}{4}(b+a)$	$\frac{h^2}{6}(b+2a)$

$$\bar{x} = \frac{\sum A_i \bar{x}_i}{\sum A_i} = \frac{b}{2}$$

$$\overline{y} = \frac{\sum A_i \overline{y}_i}{\sum A_i} = \frac{h}{3} \left[\frac{b+2a}{b+a} \right]$$

Find the location of the centroid of the shaded area

Component	A, mm ²	\bar{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	\overline{y} A, mm ³
Rectangle	$(120)(80) = 9.6 \times 10^3 \checkmark$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60) = 3.6 \times 10^3$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2}\pi(60)^2 = 5.655 \times 10^3$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\pi(40)^2 = -5.027 \times 10^3$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

$$\overline{X} = \frac{\sum A\overline{X}}{\sum A} = \frac{757.7 \times 10^3}{13.828 \times 10^3} = 54.79 \ mm$$

$$\overline{Y} = \frac{\sum A\overline{Y}}{\sum A} = \frac{506.2 \times 10^3}{13.828 \times 10^3} = 36.61 \ mm$$

THANK YOU