Parametrised Data Sampling for Fairness Optimisation

Vladimiro G. Zelaya, Paolo Missier and Dennis Prangle *Fairness, Transparency, Privacy*, The Alan Turing Institute 4 October 2019

What is This Talk About?

- Method for correcting classifier fairness
- Model and definition agnostic
- Tune correction level to optimise fairness

A Few Definitions

Protected Attribute (PA) Attribute on which unfairness is going to be corrected

Positive Ratio (PR) Proportion of positive labels in a data set

Favoured group (F) PA subgroup with highest PR

Unfavoured group (U) PA subgroup with lowest PR

Population Subgroups

By Protected Attribute (PA):

Favoured (F)

Unfavoured (U)

By Class Label:

Positive (+)

Negative (-

Train Set Correction

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010]

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

Ratio Form of Fairness Definitions

$$P\left(\hat{Y}=1 \mid PA=U\right) = P\left(\hat{Y}=1 \mid PA=F\right)$$

$$\frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)} = 1$$

Ratio Form of Fairness Definitions

$$P(\hat{Y} = 1 \mid PA = U) = P(\hat{Y} = 1 \mid PA = F)$$

$$\frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)} = 1$$

Some Fairness Ratios

Demographic Parity

$$DPR = \frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)}$$

Equality of Opportunity

$$EOR = \frac{P(\hat{Y} = 1 \mid PA = U, Y = 1)}{P(\hat{Y} = 1 \mid PA = F, Y = 1)}$$

Counterfactual (Proxy)

$$CFR = \frac{PR \left(Test_{PA \leftarrow U} \right)}{PR \left(Test_{PA \leftarrow F} \right)}$$

Experiments

Dataset	Protected	Favoured	Positive Class	Instances
COMPAS	Race	White	Won't reoffend	6907
Credit	Gender	Male	Will repay loan	1000
Income	Gender	Male	Income > \$50k	48842

Effects on Test Set (COMPAS, Undersampling)

· Effect is correlated with correction

- · But it occurs to a different extent
- Intersection is *not* at d = 0

Optimal Correction by Fairness and Sampling

Plots for Income dataset

Accuracy vs Fairness Trade-off

Plots for *Income* dataset corrected by Preferential Sampling

Classifier Comparison

How to extend it?

- Make the PA multi-class
- · Have more than one PA

Age	Country	Gender	Race	Combined PA
(20-30] (30-40]	Portugal France	Male Female		

Age	Country	Gender	Race	Combined PA
(20-30] (30-40]	Portugal France	Male Female		

Subgroup PR

Combined PA	Race	Gender	Country	Age
			Portugal France	
	0.1	0.4	0.3	0.2

	Age	Country	Gender	Race	Combined PA
	_	Portugal France		Black White	
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	Unfavoured
Subgroup PR	0.2	0.3	0.4	0.1	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	-0.1	+0.0	+0.1	-0.2	Sum = -0.2

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France			Unfavoured
Subgroup PR Dataset PR Difference	0.3	0.3	0.3	0.3	

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	Unfavoured
Subgroup PR	0.4	0.4	0.1	0.4	
Dataset PR	0.3	0.3	0.3	0.3	
Difference					

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	Unfavoured
Subgroup DD	0.1	0.7	0.1	0.7	
Subgroup PR Dataset PR	0.4	0.4	0.1 0.3	0.4	
Difference	+0.1	+0.1	-0.2	+0.1	

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	Unfavoured
Subgroup PR	0.4	0.4	0.1	0.4	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

	Age	Country	Gender	Race	Combined PA
	(20-30] (30-40]	Portugal France	Male Female	Black White	Unfavoured Favoured
Subgroup PR	0.4	0.4	0.1	0.4	
Dataset PR	0.3	0.3	0.3	0.3	
Difference	+0.1	+0.1	-0.2	+0.1	Sum = +0.1

Unfavoured Subgroup Proportions in Positive Train Set

PA Subgroup	PR Difference
Female	-0.13
Non-US	-0.04
Non-White	-0.09
Under 35	-0.13

Multi-PA Correction

PR Correction for Original PAs

Conclusions

- · Fairness-agnostic optimisation with a relatively small loss in accuracy
- · Ideal correction level is definition dependant
- · Different sampling strategies produced similar results

Future Work

- Optimise for more than one fairness definition
- Optimise for fairness and accuracy
- Worry about fairness Gerrymandering ³

³[Kearns et al., 2019]

Thank You!

These slides, XAI paper and Jupyter Notebooks:

https://github.com/vladoxNCL/fairCorrect

c.v.gonzalez-zelaya2@ncl.ac.uk

For Further Reading

- Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique.

 Journal of Artificial Intelligence Research, 16:321–357.
- Kamiran, F. and Calders, T. (2010).
 Classification with no discrimination by preferential sampling.
 In Proc. 19th Machine Learning Conf. Belgium and The Netherlands, pages 1–6.
 Citeseer.
- Kearns, M., Neel, S., Roth, A., and Wu, Z. S. (2019).

 An empirical study of rich subgroup fairness for machine learning.

 In Proceedings of the Conference on Fairness, Accountability, and

 Transparency, pages 100–109. ACM.