Admissible: $h(n) \leq total \omega st from node to Growt$ Consistent: $h(n) \leq C(n,n') + h(n')$ Step ωst

Fact: Consistent => Admissible

h, is Consistent and hence admissible

If heuristic is Consistent Graph-Search will Fact: lead to optimal solution

Gwo	yph-Search		1	f (n) = g (n)+ & (n)	Top priority	Experred
	frontier	g (n) total cost bill n	Heunistic GSt	f (n) = 9 (11)		
Sljep1	n, = A	0	25	25		
St-0p2	n2 = B	\ 0	17	27	n,	A
	m3 = c	((18	2 9		

Frontier	g (n) Total cost b. el n	Acn) Heunistic Cost	f (m) = g cn)+ & ca	Top priority	Experred
Step 3 $n_3 = C$ $n_4 = D$	20	1 B	29	h ₂ = B	A, B
Step 4 N3 = C N5 = E	30	18	29	$n_{4} = D$	A,B,D
$r_{k} = c$	31	\ 8			

Frontier g(n) g(n)

ad anything
new
specificially
Dis not
Laken up again

ns = E is wal

hencks -

Question: Can be betier than

Ans : No. Consistency ensures that the very first time a node is explored, it is already via the optimal shoute

f(n)=g(n)+h(n) gen) hen) γ C+ x Step & c'+y < c'+c"+x taking yor exporation B $C+2 \leq C'+y \leq C'+c''+x$ c < c'+c"
via B , A will be reached belocked belowe ont it be blocked because it is already explored or part of frontier First time A is taken for experration

Train distance?

Actual road aistance

> binds eye view

distance

use it as heuristic in constrained problem

