Please write an outline of the main contents of the lecture.

$$F(x) = \int_{a}^{x} f(t)dt x \in [a, b]$$

$$\frac{dF}{dx} = \frac{d}{dx} \int_{\alpha}^{x} f(t) dt = f(x) \square$$

$$\frac{d}{dx} \left(\int_{-\pi}^{x} \left(\cos^{2} t \right) dt \right) = \frac{\cos^{2} x}{\ln(x - \sqrt{x})}$$

$$\begin{pmatrix} A & B & C \\ K & 5 & 1 \end{pmatrix}$$

Please write an outline of the main contents of the lecture.

PDF:
$$f_{x}(x) = \frac{1}{b-q}$$
, $a \leq x \leq b$

(Moment generating func.)
$$\begin{cases} x - a \\ 5 - a \end{cases}$$
 $\begin{cases} x - a \\ 6 - a \end{cases}$ $\begin{cases} x - a \\ 6 - a \end{cases}$

MG FD:
$$M_{x}(t) = \frac{2e^{bt}-e^{at}}{(beautienty)}$$

Dery of
$$F_{x}(x) = P(x \leq 0)$$

$$F_{x}(x) = P(x cx) = 0$$

$$x \in (a, b)$$

$$F_{x}(x) = \int_{-\infty}^{x} f(x) dx = \int_{-\alpha}^{x} f(x) d$$

$$F_{x}(b) = \frac{b-a}{b-a} = 1$$

Please write an outline of the main contents of the lecture.

Proof
$$e^{i\alpha} = \cos(x) + i \sin(x)$$

First proof $\sin^2(x) + \cos^2(x) = 1$

Euler's formula: $e^{i\alpha} = \cos(x) + i \sin(x)$
 $e^{i\alpha} \cdot e^{i\alpha} = 1$
 $\cos^2(x) + \sin^2(x)$

Next proof $\sin^2(x) + \sin^2(x)$

Next proof $\cos^2(x) + \sin^2(x)$

Next proof $\cos^2(x) + \sin^2(x)$
 $\sin^2(x) + \sin^2(x)$
 $\cos^2(x) + \sin^2(x)$
 $\sin^2(x) + \cos^2(x) + \cos^2(x)$
 $\sin^2(x) + \cos^2(x)$