MA3238 (Stochastic Processes 1)

Jia Cheng

Jan 2022

Reference: Introduction to Probability Models (9th edition)

Note: The paragraphs in this document correspond to subsections in the textbook. For e.g. **4.2** corresponds to Chapman-Kolmogorov Equations.

4.1

We have $P_{i,j}=P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\ldots,X_0=i_0)$ for all i_0,\ldots,i_{n-1} in the state space. Hence, $P(X_{n+1}=j|X_n=i)=\sum P(X_{n+1}=j|X_n=i,X_{n-1}=i_{n-1},\ldots,X_0=i_0)P(X_{n-1}=i_{n-1},\ldots,X_0=i_0)=P_{i,j}$.

Hence, conditioning on $X_n = i$, the events $\{X_{n+1} = j\}$ and $\{X_{n-1} = i_{n-1}, \dots, X_0 = i_0\}$ are independent.

4.2

Claim: Consider the case of a state space with absorbing states A. Suppose states $i, j \notin A, k \in A$. Then $P(X_{n+m} = j \cap X_n = k | X_0 = i) = 0$. i.e. once state k is reached, the probability of reaching any other state distinct from k is 0.

Since $P(X_{n+m} = j \cap X_n = k | X_0 = i) = P(X_{n+m} = j | X_n = k \wedge X_0 = i) P(X_n = k | X_0 = i) = P(X_m = j | X_0 = k) P(X_n = k | X_0 = i)$, it suffices to show that $P_{k,j}^m = 0$.

This can be verified inductively. We shall only show the inductive step. Suppose $P_{k,j}^{\lambda}=0$ (in fact we need to assume the same for all j distinct from k). Then $P_{k,j}^{\lambda+1}=\sum_{l}P_{k,l}^{\lambda}\cdot P_{l,j}=P_{k,k}^{\lambda}\cdot P_{k,j}=1\cdot 0=0$.

4.3

Another way to interpret $P_{i,j}^n$ is the following. $P_{i,j}^n>0$ iff there is a sequence l_1,\ldots,l_{n-1} such that $P_{i,l_1},P_{l_1,l_2},\ldots,P_{l_{n-1},j}\neq 0$. This is equivalent to saying $i\to l_1\to l_2\to\cdots\to l_{n-1}\to j$. We can also let $l_0:=i,l_n:=j$ and obtain a sequence l_0,\ldots,l_n .

To take example 4.12 in this section as an example: Suppose we want to show that states 0, 1 cannot access state 2. One possible argument to make is to consider the candidates for states $l := l_{n-1}$ (for any n) such that $l_{n-1} \to 2$, or equivalently, $P_{l,2} > 0$. But looking at the 3rd column of the Markov matrix, we see that the only candidate for l is 2 itself. So it is impossible to have a series of state transition from 0 or 1 that ends up in 2. (A formal proof can involve induction on the number of state transitions.)

Characterization of recurrent and transient states For a state i, let f_i be the probability that state i is revisited, given that the current state is i.

Let $Y_i \sim Geom(p = (1 - f_i))$ be a r.v. counting the number of times state i was entered, given that the starting state is i. Transient states:

- Have a f_i value < 1
- Have a finite expectation $E[Y_i]$

Recurrent states:

- Have $f_i = 1$
- Have an infinite expectation $E[Y_i]$

 $Corollary\ 4.2$ We provide a more succint derivation of this result.

- State i recurrent implies $\sum_n p_{i,i}^n = \infty$
- $i \leftrightarrow j$ implies $\exists m_1, m_2, p_{i,j}^{m_1} > 0 \land p_{j,i}^{m_2} > 0$

Hence,

$$\sum_{n} p_{j,j}^{n} \geq \sum_{n \geq m_1 + m_2} p_{j,j}^{n} \geq \sum_{n \geq m_1 + m_2} p_{j,i}^{m_2} p_{i,i}^{n - m_1 - m_2} p_{i,j}^{m_1} = p_{j_i}^{m_2} p_{i,j}^{m_1} \sum_{n} p_{i,i}^{n}$$

The last sum is unbounded and we are done.