EC435

สูตรสำหรับการสอบกลางภาค

- สมมุติให้เราสุ่มตัวอย่าง $y_1,...,y_T$ ซึ่งมีขนาดเท่ากับ T ค่าเฉลี่ยของตัวอย่าง (sample mean): $\hat{\mu}_Y = \frac{1}{T} \sum_{t=1}^T y_t$
- ค่าความแปรปรวนของตัวอย่าง: $\hat{\sigma}_Y^2 = \frac{1}{T-1} \sum_{t=1}^T (y_t \hat{\mu}_Y)^2$
- ค่าความเบ้าองตัวอย่าง (sample skewness): $\hat{S}(Y) = \frac{1}{(T-1)\hat{\sigma}_Y^3} \sum_{t=1}^T (y_t \hat{\mu}_Y)^3$
- ค่าความโค่งของตัวอย่าง (sample kurtosis): $\hat{K}(Y) = \frac{1}{(T-1)\hat{\sigma}_Y^4} \sum_{t=1}^T (y_t \hat{\mu}_Y)^4$
- การทคสอบความเบ้าาเท่ากับศูนย์หรือไม่ $(H_0:S(Y)=0 ext{ vs. } H_1:S(Y)
 eq 0)$ ใช้ตัวสถิติ $t = \frac{\hat{S}(Y)}{\sqrt{6/T}} \sim N(0, 1)$
- การทคสอบค่าความโค่งส่วนเกินว่าเท่ากับศูนย์หรือไม่ $(H_0:\hat{K}(Y)-3=0 \text{ vs.})$ $H_1: \hat{K}(Y) - 3 \neq 0$) ใช้ตัวสถิติ $t = \frac{\hat{K}(Y) - 3}{\sqrt{24/T}} \sim N(0,1)$
- การทคสอบการแจกแจงปกติใช้ตัวทคสอบ Jarque and Bera (1987): $JB = \frac{\hat{S}^2(Y)}{6/T} + \frac{[\hat{K}(Y) - 3]^2}{24/T} \sim \chi^2_{df = 2}$
- ฟังก์ชันค่าแปรปรวนร่วมในตนเอง(autocovariance ที่ค่าล่า k): $\gamma_{k,t} = Cov(Y_t, Y_{t-k}) = E((y_t - E(Y_t))(y_{t-k} - E(Y_{t-k})))$
- ฟังก์ชันค่าสหสัมพันธ์ร่วมในตนเอง (autocorrelation ที่ค่าถ่า k): $\rho_k = \frac{Cov(Y_t,Y_{t-k})}{[Var(Y_t)Var(Y_{t-k})]^{1/2}}$
- ตัวทคสอบ Ljung and Box (1978) $Q^*(m)$: $Q(m) = T(T+2) \sum_{k=1}^m \frac{\hat{\rho}_k^2}{T-k} \sim \chi_{df=m}^2$

์ ตารางสถิติ

ตารางสถิติสำหรับการแจกแจงปกติ

Percentile	90	95	97.5	99	99.5
พื้นที่หางด้านขวา	.1	.05	.025	.01	.005
ค่า critical value	1.28	1.645	1.96	2.33	2.58

Table 1: Critical Values of the Chi-square Distribution

Significance Level							
df	0.10	0.05	0.01				
1	2.71	3.84	6.63				
2	4.61	5.99	9.21				
3	6.25	7.81	11.34				
4	7.78	9.49	13.28				
5	9.24	11.07	15.09				
6	10.64	12.59	16.81				
7	12.02	14.07	18.48				
8	13.36	15.51	20.09				
9	14.68	16.92	21.67				
10	15.99	18.31	23.21				
11	17.28	19.68	24.72				
12	18.55	21.03	26.22				
13	19.81	22.36	27.69				
14	21.06	23.68	29.14				
15	22.31	25.00	30.58				

Table 2: ค่าวิกฤตของการแจกแจง Dickey-Fuller t statistics กรณีไม่มีค่าคงที่

จำนวน	ความถี่สะสม							
ตัวอย่าง	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01
500	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00
∞	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00

Table 3: ค่าวิกฤตของการแจกแจง Dickey-Fuller t statistics กรณีมีค่าคงที่

	1							
จำนวน	ความถี่สะสม							
ตัวอย่าง	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99
25	-3.75	-3.33	-3.00	-2.63	-0.37	0.00	0.34	0.72
50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66
100	-3.51	-3.17	-2.89	-2.58	-0.42	-0.05	0.26	0.63
250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62
500	-3.44	-3.13	-2.87	-2.57	-0.43	-0.07	0.24	0.61
∞	-3.43	-3.12	-2.86	-2.57	-0.44	-0.07	0.23	0.60

Table 4: ค่าวิกฤตของการแจกแจง Dickey-Fuller t statistics กรณีมีค่าคงที่และแนวโน้ม

จำนวน	ความถี่สะสม							
ตัวอย่าง	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99
25	-4.38	-3.95	-3.60	-3.24	-1.14	-0.80	-0.50	-0.15
50	-4.15	-3.80	-3.50	-3.18	-1.19	-0.87	-0.58	-0.24
100	-4.04	-3.73	-3.45	-3.15	-1.22	-0.90	-0.62	-0.28
250	-3.99	-3.69	-3.43	-3.13	-1.23	-0.92	-0.64	-0.31
500	-3.98	-3.68	-3.42	-3.13	-1.24	-0.93	-0.65	-0.32
∞	-3.96	-3.66	-3.41	-3.12	-1.25	-0.94	-0.66	-0.33