Dynamic Rate Control Algorithms for HDR Throughput Optimization

Sem Borst , Phil Whiting

Mathematics Research Center, Bell Laboratories

Figure 1: A Single HDR Cell

Preliminaries

The HDR Concept

- Time divided into 1.67ms. slots
- Pilot signals enable channel prediction
- Users scheduled one at a time within a cell

Our Approach

- ullet Apply Max-Min Fair Rule using Throughput Targets: $\max \min_m y_m/lpha_m$
- Utilise Weights Shadow Costs
- Allow for statistical dependence between user rate declarations
- Weights determined via Stochastic Control

An Optimality Principle

$$Y_m(n) = X_m(n)R_m(n), m = 1, \dots, M$$

$$y_m(N) = \mathbb{E} \sum_{n=1}^{N} \frac{Y_m(n)}{N}$$

where $X_m(n)$ are binary 0-1 indicator variables. The objective is to maximise some $H(y_1, \dots, y_M)$ where $y_m = \liminf y_m(N)$ where H is increasing.

Throughput Balancing

Principle 0.1 If $\exists w \geq 0$ such that

- i) w^Ty is maximal and
- ii) $y_1 = \cdots = y_M$

then y is optimal max-min fair.

Figure 2: Applying the Revenue Vector w

Existence of Optimal Revenue Vector w^*

This says we can find an optimal policy by solving a linear program using the stationary probabilities.

 $R_{i,j}$ be the rate that user i would receive when the system is in state j and p_j the corresponding stationary probabilities.

Lemma 0.1 Policy π is optimal iff x_{ij}^{π} , z^{π} are an optimal solution to the following linear program:

$$\max z$$

$$\sup z \le \sum_{j \in J} p_j R_{ij} x_{ij} \qquad i = 1, \dots, M$$

$$\sum_{i=1}^{M} x_{ij} \le 1 \qquad j \in J$$

$$x_{ij} \ge 0 \qquad i = 1, \dots, M, j \in J.$$

$$(1)$$

Given the above, this says that an optimal revenue vector exists.

Theorem 0.1 If policy π is optimal, then there exists a vector $w^* \geq 0$ such that

$$x_{ij}^{\pi} \left[w_i^* R_{ij} - \max_{m=1,\dots,M} w_m^* R_{mj} \right] = 0, \tag{2}$$

for all $i = 1, \ldots, M$, $j \in J$.

Control Outline I

User selection: Revenue based

- $m = \arg\max w_k R_k$
- Price updates based on sample throughputs at current price

Increments: Determines the size of the updates:

- $\sum_{n} \delta_n < \infty$
- Resets increments changed according to process behaviour
- Each user becomes max, each user becomes above average

 $\mathbf{Samples:}$ Sets the sample size at the nth step

- K_n , $K_n \to \infty$
- Samples continuously perturbed to avoid tie breaks

Control Outline II

Control Update: Determined recursively

- $w(n+1) = w(n) \delta(n) \cdot \mathbf{v}(w(n))$
- \bullet n is the nth measurement period. \mathbf{v} is random.
- ullet $L(n)=n^{eta},eta>0$, number of samples in the nth period

Throughput Measurements: These are used to determine v

- ullet w(n) is fixed during the sample period
- Samples continuously perturbed to avoid tie breaks
- $X_m^n = \sum_{k=K(n)+1}^{K(n+1)} X_{m,k}$
- ullet $X_{m,k}$ total throughput in slot k for user m, X_m^n total user throughput

Resets: Reduce the step size

- $\delta(n) = \delta_{k(n)}$ with $\{\delta_k, k = 1, 2 \cdots\}$
- E.g. $\delta_k = a^{-k}, a > 1\delta_k = k^{-\alpha}, \alpha > 1.0$

Assumptions

Large Deviations

Assumption 0.1 (Large-Deviations Assumption)

Let $X_m^n(w)$ be the throughput per slot obtained by user m in a sample period of length n under price vector w.

Given a price vector $w\in \mathcal{W}$ and $\xi>0$, there exist a ζ -neighborhood $N_\zeta^\xi(w)$ of w and numbers $D_m^\xi(w)>0$ such that

$$\mathbb{P}\{|X_m^n(w') - \Xi_m(w)| > \xi\} \le e^{-D_m^{\xi}(w)n}$$

for all $w' \in N_{\zeta}^{\xi}(w)$, $m = 1, \dots, M$.

Boundary Conditions

Assumption 0.2 There exists a positive constant $\delta^* > 0$ such that for all price vectors $w \in \mathcal{W}_{\nu}$, for any 'right direction' v(w), and for any $\delta \in (0, \delta)$,

$$w + \delta v(w) \in \mathcal{W}_{\nu}$$
.

T Function

Assumption 0.3 There exist positive constants $\delta^* > 0$, $\eta > 0$ such that for all price vectors $w \notin \Gamma_{\epsilon}$, for any 'right direction' v(w), and for any $\delta \in (0, \delta^*)$,

$$T(w + \delta v(w)) < T(w) - \delta \eta.$$

Choices for the Lyapunov Function T

The first is Max - Min Expected Throughput

$$T(w) = \Xi_{\max}(w) - \Xi_{\min}(w).$$

This can be shown to be a Lyapunov function with the move to average algorithm.

The second choice that we consider is Expected Revenue

$$T(w) = \sum_{m=1}^{M} w_m \Xi_m(w).$$

To see this is a Lyapunov function consider i, j with

$$\Xi_i(w') < \Xi_j(w')$$

and $w' = w + \delta (\mathbf{e}_i - \mathbf{e}_j)$.

Then

$$T(w') = \sum_{m=1}^{M} w'_{m} \Xi_{m}(w')$$

$$= \sum_{m=1}^{M} w_{m} \Xi_{m}(w') + \delta (\Xi_{i}(w') - \Xi_{j}(w'))$$

$$\leq \sum_{m=1}^{M} w_{m} \Xi_{m}(w) + \delta (\Xi_{i}(w') - \Xi_{j}(w'))$$

$$= T(w) + \delta (\Xi_{i}(w') - \Xi_{j}(w'))$$

Figure 3: Illustrating the Two Algorithms

Two Algorithms

Move to Average

The update direction v(w) is determined using the below average set Ω^- and the above average set Ω^+ .

$$v_i(w) = \frac{w_i}{\sum_{m \in \Omega^-} w_m}, \quad i \in \Omega^-$$

$$v_j(w) = \frac{-w_j}{\sum_{k \in \Omega^+} w_k}, \quad j \in \Omega^-$$

Update Extreme

Increment the minimum user and decrement the maximum user:

$$i(1) = \arg\min_{m=1,\dots,M} O_m(k)$$

$$i(2) = \arg \max_{m=1,\dots,M} O_m(k)$$

$$(R_{m}, R_{k})$$
 revenue $w = w_{m}R_{m} + w_{k}R_{k}$

$$(R'_j, 0)$$
 revenue $w = w_j R'_j$ B switched off

$$(0, R'_n)$$
 revenuew = wR'_n A switched off

Figure 4: Fast Power Control

Two Cells using On-Off Power Control

A Coordination Example

- Power Control Decisions via the Prices
- Predictions necessary for each state

Numerical Results

w for Two Users, Independent Exponential w For two Users

Figure 5: Normalized expected throughput $\Xi_i(w)$ as function of w.

Figure 6: Price trajectories for 2 users vs. w^* (non-geometric step sizes).

Rayleigh Fading w for Eight Users

Figure 7: Sample Rayleigh fading

Figure 8: Price trajectories for 8 users over 15000 slots vs. w^* (Move-to-Average algorithm).

Eight Users Continued

Figure 9: Price trajectories for 8 users with 15,000 slots vs. w^* (Update-Extreme algorithm).

Cycling the Control

Figure 10: Cycled control: lowered SNR, user 3 (Move-to-Average algorithm with $\delta_k = k^{-2}$).

Conclusions

- Acheivable rates determined by using revenue vector plus throughput balancing.
- This principle applies generally not just for one-at-a-time scheduling
- Impractical to estimate optimal weight from empirical channel statistics
- Wide range of stochastic approximation algorithms can be used to determine revenue vector for given targets using throughput balancing
- Algorithms may be used for admission control and coordinated operation
- Proportional fair is a revenue based algorithm with revenue proportional to the reciprocal throughput
- The proportional fair algorithm converges to a unique fixed point
- Fixed point lies on the boundary and maximise sum log throughputs