CC1 - Lundi 5 octobre 2020.

durée: 1h30.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits.

La qualité de la rédaction sera prise en compte dans la notation.

Le barème est donné à titre indicatif.

Exercice 1. On considère 5 lancers successifs d'une pièce non biaisée.

- 1. Proposer un espace de probabilité pour modéliser cette expérience.
- 2. Écrire explicitement (en langage mathématique) la partie A de Ω correspondant à l'événement « il existe une séquence d'au moins 3 Piles successifs parmi les 5 lancers ». Donner la liste des éléments de A puis calculer sa probabilité.
- 3. Pierre et Paul choisissent lequel des deux paye l'addition en jouant un Pile ou Face. Pierre propose de modifier la règle : Paul réalise 5 lancers et paye s'il y a au moins une séries de 3 piles ou 3 faces successifs. Sinon c'est Pierre qui paye. Paul doit-il accepter?

Exercice 2. On considère un espace de probabilité (Ω, \mathcal{F}, P) et A une partie de Ω . On considère la fonction $X = 1_A$, fonction indicatrice de A, définie par $X(\omega) = 1$ si $\omega \in A$ et $X(\omega) = 0$ si $\omega \in A^c$.

- 1. Soit $B \in \mathcal{B}(\mathbb{R})$. Expliciter l'ensemble $\{X \in B\}$, c'est-à-dire écrire $\{X \in B\}$ à l'aide de parties de Ω en distinguant plusieurs cas.
- 2. En déduire que X est une variable aléatoire si et seulement si $A \in \mathcal{F}$.

On suppose jusqu'à la fin de l'exercice que $A \in \mathcal{F}$ et que P(A) = 1/2.

- 3. Donner la loi de X ainsi que sa fonction de répartition et la dessiner.
- 4. Montrer que Y = 1 X a même loi que X puis calculer P(X = Y).

Exercice 3. Soit (Ω, \mathcal{F}, P) un espace de probabilité et X une variable aléatoire réelle. Montrer que P(X = 0) = 1 si et seulement si P(|X| > 1/n) = 0 pour tout $n \ge 1$.

Exercice 4. Soit X une variable aléatoire admettant une densité f définie et continue sur \mathbb{R} et paire. On note F la fonction de répartition de X.

- 1. Montrer que pour tout réel x, F(x) + F(-x) = 1.
- 2. On suppose que la variable X^2 suit la loi exponentielle de paramètre 1, c'est-à-dire admet pour densité la fonction $t \to 1_{[0,+\infty[}e^{-t}$. Donner la fonction de répartition de X^2 puis déterminer la fonction de répartition F de X et enfin de la densité f.