

CORE MESSAGE & HYPOTHESIS OF THE PROJECT

- If the GDP of a nation rises, then the nation will be able to import more and experience improvements in well-being (life expectancy & infant mortality).
- However, the nation will export less as it becomes more productive, since it will be able to produce more of its own goods.

DATA CLEANUP PROCESS

- We merged the tables for GDP per Capita, trade values, and well-being indicators.
- In order to do that, we had to use the Add_Suffix function to ensure that each set of columns could be properly identified.
- To enable merging by Country Code column, we then used the Rename function to drop the suffix for those.

```
In [3]: #Add Suffixes to Columns Except Country Code
            #Code found on https://stackoverflow.com/questions/34049618/how-to-add-a-suffix-or-prefix-to-each-column-name
            #Add a Suffix to Differentiate Columns For Merge
            gdp per capita df = gdp per capita df.add suffix(" GDP Cap")
            #Drop Suffix from 'CountryCode' column to Allow Merge
            gdp per capita df = gdp per capita df.rename(columns = {"CountryCode GDP Cap":"CountryCode"})
            #Add a Suffix to Differentiate Columns For Merge
            life expectancy df = life expectancy df.add suffix(" Life")
            #Drop Suffix from 'CountryCode' column to Allow Merge
           life expectancy df = life expectancy df.rename(columns = {"CountryCode Life":"CountryCode"})
            #Add a Suffix to Differentiate Columns For Merge
            infant mortality df = infant mortality df.add suffix(" Mortality")
            #Drop Suffix from 'CountryCode' column to Allow Merge
           infant mortality df = infant mortality df.rename(columns = {"CountryCode Mortality":"CountryCode"})
            #Add a Suffix to Differentiate Columns For Merge
            exports df = exports df.add suffix(" Exports")
            #Drop Suffix from 'CountryCode' column to Allow Merge
            exports df = exports df.rename(columns = {"CountryCode Exports":"CountryCode"})
            #Add a Suffix to Differentiate Columns For Merge
            imports df = imports df.add suffix(" Imports")
            #Drop Suffix from 'CountryCode' column to Allow Merge
            imports df = imports df.rename(columns = {"CountryCode Imports":"CountryCode"})
```

DATA CLEANUP PROCESS (RESULTS)

•	Cour	ntryName_GDP_0	Cap CountryCo	ode IndicatorN	lame_GDP_Cap	IndicatorCode	e_GDP_Cap 1	960_GDP_Cap	1961_GDP_Cap	1962_GDP_Cap	1963_GDP_
0		Ar	ruba A	BW GDP po	er capita (current US\$)	NY.GI	DP.PCAP.CD	NaN	NaN	NaN	
1		Afghanis	stan A	AFG GDP po	er capita (current US\$)	NY.GI	DP.PCAP.CD	59.773194	59.860874	58.458015	78.70€
2		Ang	gola A	GO GDP pe	er capita (current US\$)	NY.GI	DP.PCAP.CD	NaN	NaN	NaN	
3		Alba	ania A	ALB GDP po	er capita (current US\$)	NY.GI	DP.PCAP.CD	NaN	NaN	NaN	I
4		And	orra A	ND GDP po	er capita (current US\$)	NY.GI	DP.PCAP.CD	NaN	NaN	NaN	
)P Car		2010 Imports	2011 Imports	2012 Imports	2013 Imports	2014 Imports	2015 Imports	2016 Imports	2017 Imports	2018 Imports 2	019 Imports
DP_Cap		2010_Imports	2011_Imports	2012_Imports	2013_Imports	2014_Imports	2015_Imports	2016_Imports	2017_Imports	2018_Imports 2	019_Imports
DP_Cap								2016_Imports 1.975419e+09		2018_Imports 2	019_Imports NaN
	۱		2.136313e+09	2.089385e+09		2.113408e+09	2.035754e+09	1.975419e+09	2.031844e+09		
NaN	N	1.854190e+09	2.136313e+09 1.190656e+10	2.089385e+09 1.252506e+10	2.130726e+09 1.133990e+10	2.113408e+09 1.053200e+10	2.035754e+09 8.647160e+09	1.975419e+09 8.079197e+09	2.031844e+09 9.153344e+09	NaN	NaN
NaN .10830	· · · · · · · · · · · · · · · · · · ·	1.854190e+09 9.950050e+09 3.568226e+10	2.136313e+09 1.190656e+10	2.089385e+09 1.252506e+10	2.130726e+09 1.133990e+10 4.930420e+10	2.113408e+09 1.053200e+10	2.035754e+09 8.647160e+09 3.849951e+10	1.975419e+09 8.079197e+09 2.552939e+10	2.031844e+09 9.153344e+09 2.839711e+10	NaN NaN	NaN NaN
NaN .108309 NaN	N	1.854190e+09 9.950050e+09 3.568226e+10 5.792202e+09	2.136313e+09 1.190656e+10 4.394739e+10	2.089385e+09 1.252506e+10 4.591971e+10	2.130726e+09 1.133990e+10 4.930420e+10	2.113408e+09 1.053200e+10 5.047164e+10	2.035754e+09 8.647160e+09 3.849951e+10	1.975419e+09 8.079197e+09 2.552939e+10 5.436291e+09	2.031844e+09 9.153344e+09 2.839711e+10	NaN NaN NaN	NaN NaN NaN

DATA ANALYSIS PROCESS – EXPORTS & IMPORTS

- We started by looking at scatter plots showing the relationship between the trade indicators and GDP per Capita for years 1990 & 2017.
- Linear regression couldn't initially be done, because there were NaN values in the data.
- The NumPy.IsNaN function was used to create a mask to filter out the NaN values to enable regression.

```
#Create a Scatter Plot of Exports vs GDP per Capita
#1990
#Apply Mask to Handle NaN Data
#Code Found on https://stackoverflow.com/questions/13643363/linear-regression-of-arrays-containing-nans-in-python-numpy
mask = ~np.isnan(summary df['1990 GDP Cap']) & ~np.isnan(summary df['1990 Exports'])
#Make the Regression Parameters
(slope, intercept, rvalue, pvalue, stderr) = linregress(summary df['1990 GDP Cap'][mask], summary df['1990 Exports'][mask])
#Calculate the Regress Values
regress 1990 = slope * summary df['1990 GDP Cap'] + intercept
#Create the Line Equation
line eq 1990 = "y=" + str(round(slope,0)) + "x+ " + str(round(intercept,0))
#Plot the Export vs GDP per Capita Data
plt.scatter(summary_df['1990_GDP_Cap'], summary_df['1990_Exports'], c = "blue", edgecolors = "black")
#Plot the Regress Values
plt.plot(summary df['1990 GDP Cap'], regress 1990, c = "red")
#Annotate the Line Equation
plt.annotate(line eq 1990, xy = (15000, 2.5*10**12), fontsize = 15, color = "red")
#Create the Labels
plt.title("Exports vs GDP per Capita - 1990")
plt.xlabel("GDP per Capita (Current US$)")
plt.ylabel("Exports of Goods and Services (Current US$) * 10**12")
#Display the R squared Value
print(f"The Rsquared value is {round(rvalue,2)}.")
#Save the Plot as a PNG
plt.savefig("Exports vs GDP per Capita 1990.png")
#Show the Plot
plt.show()
```

DATA ANALYSIS PROCESS – EXPORTS & IMPORTS

- The data showed that within any given year, the Exports didn't have a strong correlation with GDP per Capita, but this was because of outliers.
- The same held true for imports.
- Because the data was heavily skewed by outliers, a decision was made to further investigate this data.

DATA ANALYSIS PROCESS – EXPORTS & IMPORTS (CONTINUED)

- To filter out the effects of the variation among countries, plots of average trade values vs average GDP per Capita were
 made.
- The mean values of individual year columns were calculated and put in lists.
- The results show that there is an extremely strong positive relationship between trade parameters and GDP per Capita.

DATA ANALYSIS PROCESS – EXPORTS & IMPORTS (VALIDATION)

- As a means of validating the data from the World Bank, the average of Imports of all countries was compared to the average Exports of all countries for every available year.
- The data shows a virtually perfect linear correlation, indicating that the dollar value of each import was matched by the dollar amount of each export.
- This would tend to make the data more trustworthy.

DATA ANALYSIS PROCESS – LIFE EXPECTANCY

- We started by looking at scatter plots showing the relationship between the life expectancy and GDP per Capita for years 1990 & 2017.
- The NumPy.IsNaN function was again used to create a mask to filter out the NaN values to enable regression.

```
#Create a Scatter Plot of Life Expectancy vs GDP per Capita
#1990
#Apply Mask to Handle NaN Data
#Code Found on https://stackoverflow.com/questions/13643363/linear-regression-of-arrays-containing-nans-in-python-numpy
mask = ~np.isnan(summary df['1990 GDP Cap']) & ~np.isnan(summary df['1990 Life'])
#Make the Regression Parameters
(slope, intercept, rvalue, pvalue, stderr) = linregress(summary df['1990 GDP Cap'][mask], summary df['1990 Life'][mask])
#Calculate the Regress Values
regress 1990 = slope * summary df['1990 GDP Cap'] + intercept
#Create the Line Equation
line eq 1990 = "y= " + str(round(slope,0)) + "x+ " + str(round(intercept,0))
#Plot the Export vs GDP per Capita Data
plt.scatter(summary df['1990 GDP Cap'], summary df['1990 Life'], c = "gold", edgecolors = "black")
#Plot the Regress Values
plt.plot(summary df['1990 GDP Cap'], regress 1990, c = "red")
#Annotate the Line Equation
plt.annotate(line eq 1990, xy = (15000, 75), fontsize = 15, color = "red")
#Create the Labels
plt.title("Life Expectancy vs GDP per Capita - 1990")
plt.xlabel("GDP per Capita (Current US$)")
plt.ylabel("Life expectancy at birth, total (years)")
#Display the R squared Value
print(f"The Rsquared value is {round(rvalue,2)}.")
#Save the Plot as a PNG
plt.savefig("Life Expectancy vs GDP per Capita 1990.png")
#Show the Plot
plt.show()
```

DATA ANALYSIS PROCESS – LIFE EXPECTANCY (CONTINUED)

The Rsquared value is: 0.69.

The Rsquared value is: 0.74.

- The data showed that there wasn't a linear relationship between Life Expectancy and GDP per Capita.
- It has been shown that there is a strong logarithmic relationship between Life Expectancy and GDP per Capita.
- This means that Life Expectancy grows with GDP, but the rate of improvement slows as an economy advances.

DATA ANALYSIS PROCESS – LIFE EXPECTANCY (CONTINUED)

It is unclear what is responsible for the dip in the data here.

- To filter out the effects of the variation among countries, the plot of average Life Expectancy vs average GDP per Capita was made.
- The mean values of individual year columns were calculated and put in lists.
- The results show that there is an extremely strong positive relationship between trade parameters and GDP per Capita.

DATA ANALYSIS PROCESS - INFANT MORTALITY RATE

- We started by looking at scatter plots showing the relationship between infant mortality rate and GDP per Capita for years 1990 & 2017.
- The NumPy.IsNaN function was again used to create a mask to filter out the NaN values to enable regression.

```
#Create a Scatter Plot of Infant Mortality Rate vs GDP per Capita
#1990
#Apply Mask to Handle NaN Data
#Code Found on https://stackoverflow.com/questions/13643363/linear-regression-of-arrays-containing-nans-in-python-numpy
mask = ~np.isnan(summary df['1990 GDP Cap']) & ~np.isnan(summary df['1990 Mortality'])
#Make the Regression Parameters
(slope, intercept, rvalue, pvalue, stderr) = linregress(summary df['1990 GDP Cap'][mask], summary df['1990 Mortality'][mask])
#Calculate the Regress Values
regress 1990 = slope * summary df['1990 GDP Cap'] + intercept
#Create the Line Equation
line eq 1990 = "y= " + str(round(slope,0)) + "x+ " + str(round(intercept,0))
#Plot the Export vs GDP per Capita Data
plt.scatter(summary_df['1990_GDP_Cap'], summary_df['1990_Mortality'], c = "cyan", edgecolors = "black")
#Plot the Regress Values
plt.plot(summary df['1990 GDP Cap'], regress 1990, c = "red")
#Annotate the Line Equation
plt.annotate(line eq 1990, xy = (15000, 75), fontsize = 15, color = "red")
#Create the Labels
plt.title("Infant Mortality Rate vs GDP per Capita - 1990")
plt.xlabel("GDP per Capita (Current US$)")
plt.ylabel("Infant Mortality Rate (per 1,000 Live Births)")
#Display the R squared Value
print(f"The Rsquared value is {round(rvalue**2,2)}.")
#Save the Plot as a PNG
plt.savefig("Infant Mortality vs GDP per Capita 1990.png")
#Show the Plot
plt.show()
```

DATA ANALYSIS PROCESS – INFANT MORTALITY RATE (CONTINUED)

The Rsquared value is: 0.73.

The Rsquared value is: 0.66.

- The data showed that there wasn't a linear relationship between Infant Mortality Rate and GDP per Capita.
- It has been shown that there is a strong logarithmic relationship between Infant Mortality Rate and GDP per Capita.
- This means that Infant Mortality falls with GDP, but the rate of improvement slows as an economy advances.

DATA ANALYSIS PROCESS – INFANT MORTALITY RATE (CONTINUED)

It is unclear what is responsible for the dip in the data here.

- To filter out the effects of the variation among countries, the plot of average Infant Mortality Rate vs average GDP per Capita was made.
- The mean values of individual year columns were calculated and put in lists.
- The results show that there is an extremely strong positive relationship between trade parameters and GDP per Capita.

PURPOSE

- We wanted to see the level of differences between the top 5 & bottom 5 countries in a couple of years.
- It was also desired to see whether any of the bottom 5 countries in one year "escaped" the bottom 5 and whether it was because of sharp increases in trade and/or whether it led to improvements in well-being values.

GDP PER CAPITA DIFFERENCES

- There is a several order of magnitude difference in GDP per Capita between the top 5 & bottom 5 countries.
- The countries of Nepal, Tanzania, and Sierra Leone "escaped" the bottom 5.

EFFECT OF TRADE ON GDP PER CAPITA

- Of the countries of Nepal, Tanzania, and Sierra Leone that "escaped" the bottom 5, Nepal & Tanzania had the largest increases in trade, but Sierra Leone didn't.
- This would likely indicate that trade can improve the productivity of a country, but it is not a perfect predictor for individual countries between two separate years.

EFFECT OF GDP PER CAPITA ON WELL-BEING

- Of the countries of Nepal, Tanzania, and Sierra Leone that "escaped" the bottom 5, all had relatively large improvements in life expectancy & infant mortality rates, but not always the largest.
- This would likely indicate that productivity of a country can improve well-being, but it is not a perfect predictor for individual countries between two separate years.