Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6 Работа с системой компьютерной вёрстки Т<u>Е</u>X Вариант: 7

> Выполнил: Девятых Павел Леонидович Группа Р3110 Проверил: Практик по предмету информатика: Рыбаков Степан Дмитриевич

Отсюда из леммы вытекает, что из чётных сомножителей можно огранuumbcs только двойками, четвёркми и восьмёрками. Далее ясно, что $2 \cdot 2$ хуже, чем 4, поскольку

$$(\left[\frac{2}{2}\right]+1)^2=4>\left[\frac{4}{2}\right]+1=3.$$
 Выгодно

 $2\cdot 4$ заменить на 8, поскольку $2\cdot 3=6>5; 4\cdot 4$ лучше, чем $2\cdot 8$, поскольку $3\cdot 3=9; 2\cdot 5=10$ и, наконец, $4\cdot 4\cdot 4$ менее выгодно, чем $8\cdot 8$, поскольку $3\cdot 3\cdot 3=27; \ 5\cdot 5=25$, так что больше двух четвёрок оставлять нельзя.

Итак, окончательный ответ такой: пусть $N=2^dp_1\dots p_m$, где $m\geq 0, d\geq 0$ — целые, p_1,\dots,p_m — нечётные простые числа. Обозначим произведение

$$\frac{p_1+1}{2} \dots \frac{p_m+1}{2}$$
 через P .

Тогда наименьшее число сторонников Мирафлореса, достаточное для победы, равно

$$B=2$$
 P , если $d=1$ (т. е. $N=2p_1\dots p_m$); $B=5^nP$, если $d=3n$ $(N=8^n\ p_1\dots p_m)$; $B=3\cdot 5^nP$, если $d=3n+2$ $(N=4\cdot 8^np_1\dots p_m)$; $B=9\cdot 5^nP$, если $d=3n+4$ $(N=4^2\cdot 8^np_1\dots p_m)$; здесь n-целое число,

Этот ответ нашли ученик 9-го класса из Томска A. $\Gamma puшков$ и (в другой форме) ещё несколько читателей. В частности, для N=20 000 000 = $2^8 \cdot 5^7 = 4 \cdot 8^2 \cdot 5^7$ получаем $B=3 \cdot 5^2 \cdot 3^7 = 164 025$.

M2. Дана сфера радиуса 1. На ней расположены равные окружности $\gamma_0, \gamma_1, \ldots, \gamma_n$ радиуса $r \ (n \geq 3)$. Окружность γ_0 касается всех окружностей $\gamma_1, \ldots, \gamma_n$; кроме того, касаются друг друга окружности γ_1 и $\gamma_2; \gamma_2$ и $\gamma_3; \ldots; \gamma_n$ и $\gamma_1;$

При каких n это возможно? Вычислить соответствующий радиус r.

O т в е т: n = 3, 4, 5.

$$r = \sqrt{1 - \frac{1}{4\sin^2\frac{\pi}{n}}}$$

Каждой окружности на сфере можно сопоставить её «центр на сфере» — конец радиуса сферы, проходящего через центр окружности (никогда не лежащий на сфере). Эту точку мы будем называть «центром» окружности в кавычках, подчеркивающих, что это не «обычный» центр (рис. 2, *a*).

Заметим для точности, что такого определенного «центра» нет у окружностей двух больших кругов сферы, у которых центр совпадает с центром сферы. Но окружности, о которых идет речь в условии задачи, заведомо не могут иметь радиус 1, потому что окружности двух больших кругов не могут друг друга касаться, — они всегда пересекают друг друга в двух диаметрально противоположных точках сферы.

Точка касания двух окружностей, расположенных на сфере (см. рис. 2,), лежит в плоскости p, проходя-

Paur povini r	1	2	3	1	- 5	-6	7	Q	0
Pанг группы r	1	∠ ~?	~ ડ •	'1 ►1	-5	- 6	-7	οΛ - 7	28 - 7
Общее число групп ранга <i>r</i>	5	5^{2}	5^{3}	5^4	5^{5}	5^{6}	5^{7}	$2^4 \cdot 5^7$	$2^{\circ} \cdot 5'$
Сколько из них чёрных	3	3^{2}	3^{3}	3^{4}	3^5	3^{6}	3^{7}	3^{9}	3^{11}
Сколько человек в одной груп-	$4 \cdot 10^{6}$	$8 \cdot 10^{5}$	$16 \cdot 10^4$	$32 \cdot 10^3$	$64 \cdot 10^2$	1280	256	16	1
пе ранга r									
На сколько групп ранга $(r+1)$	5	5	5	5	5	5	16	16	-
разбивается каждая группа ран-									
ra r									
Сколько чёрных подгрупп ран-	3	3	3	3	3	3	9	9	-
га $(r+1)$ у чёрной группы ран-									
ra r									