Thermochemistry (Chapter 5)

- 1. Energy.
- 2. Work and heat.
- 3. Enthalpy.
- 4. Standard enthalpies of reactions and formations.

Our body gains internal energy by ingesting foods; dissipates the excess heat to surroundings by sweating.

Energy

- The ability to do work or transfer heat.
 - ➤ Work (w): Energy used to cause an object to move.

$$[J] w = F \cdot d \quad [N m]$$

where F is the force, and d is the distance over which the force is exerted.

(a)
© 2012 Pearson Education, Inc.

Energy

- \triangleright Heat (q): Energy used to cause the temperature to rise.
- ➤ Heat always flows from warmer objects to cooler objects.

3

Energy

➤ Potential energy: Energy an object possesses by virtue of its position or chemical composition.

due to the interaction between atom

➤ Kinetic energy: Energy an object possesses by virtue of its motion.

Unit of energy

 $(\equiv kg m^2s^{-2})$

- The SI unit of energy is the Joule (J). ($\equiv N$ m)
- An older, non-SI unit is still in widespread use: calorie (cal).

1 calories = 4.184 J

 $1 \text{ kWh} \equiv 3600 \text{ kJ}$

5

System and Surroundings

- The system includes the gaseous molecules we want to study.
- The surroundings are everything else, i.e., the cylinder and piston.

First Law of Thermodynamics

- Energy can neither be created nor destroyed.
- The total energy of the universe is constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

Internal Energy

- The internal energy of a system is the sum of all kinetic and potential energies of all components of the system; we call it E.
- By definition, the change in internal energy, ΔE , is the difference between the final energy of the and initial energy of the system:

$$\Delta E = E_{\text{final}} - E_{\text{initial}}$$

- If $\Delta E > 0$, \Rightarrow endergonic (system absorbs energy from the surroundings).
- If $\Delta E < 0$, \Rightarrow exergonic (system releases energy to the surroundings).

Changes in Internal Energy

• When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).

$$\Delta E = q + w$$

For q + means system gains heat

means system *loses* heat

For w + means work done on system

means work done by system

For ΔE + means *net gain* of energy by system – means *net loss* of energy by system

Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is endothermic.
- When heat is released by the system to the surroundings, the process is exothermic.

Internal energy is a state function

- Internal energy is a state function because it
 - > depends only on the initial and final states of the system;
 - is independent of the path from the initial to final state.
- ΔE depends only on $E_{
 m initial}$ and $E_{
 m final}$.

The ΔE for water to be cooled from 100 °C to 25 °C is independent of the way (or path) how we cool it.

11

Work and heat are not state functions

- However, q and w are not state functions.
- The changes in q and w are depended on the pathway.

When a battery is shorted out or is discharged by running the fan, its ΔE is the same. But q and w are different.

Work done in an expansion (P-V work)

• When a process occurs in an open container, the work done is change in volume of a gas pushing on the surroundings (or being pushed on by the surroundings).

Work done in an expansion work:

$$w = -P\Delta V$$
 expansion: ΔV is +ve
work is done by the system (-v²)

Enthalpy

- Enthalpy, a thermodynamic function, accounts for the heat flow in processes at constant pressure, when no other form of work except *P-V* work.
- Enthalpy is the internal energy plus the P-V work:

$$H = E + PV$$

$$\Delta H = \Delta (E + PV) = \Delta E + \Delta (PV) = \Delta E + V \Delta P + P \Delta V$$

$$\Delta H = \Delta E + P \Delta V$$

• H is a state function because E, P and V are all state functions.

Enthalpy

But we know that:

• Thus,
$$\Delta E = q + w \quad \text{and} \quad w = -P\Delta V$$
 • Thus,
$$\Delta H = \Delta E + P\Delta V = q + w + P\Delta V$$

$$= q - P\Delta V + P\Delta V$$

$$= q$$

• Enthalpy is the heat change at constant pressure.

$$\Delta H > 0 \implies$$
 the process is endothermic.

$$\Delta H < 0 \implies$$
 the process is exothermic

Enthalpies of Reaction

• The change in enthalpy, ΔH , is the enthalpy of the products minus the enthalpy of the reactants:

$$\Delta H = H_{\rm products} - H_{\rm reactants}$$

- Some properties of enthalpy:
- 1. Enthalpy is an extensive property its value is proportional to the amount.

2 H₂(g) + O₂(g)
$$\rightarrow$$
 2 H₂O(g) $\Delta H = -486.3 \text{ kJ}$
1 H₂(g) + ½ O₂(g) \rightarrow 1 H₂O(g) $\Delta H = -243.15 \text{ kJ}$

15

2. ΔH for a reaction in the forward direction is equal, but opposite in sign, to ΔH for the reverse reaction.

$$2 \text{ H}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ H}_2\text{O}(g)$$
 $\Delta H = -486.3 \text{ kJ}$
 $2 \text{ H}_2\text{O}(g) \rightarrow 2 \text{ H}_2(g) + \text{O}_2(g)$ $\Delta H = +486.3 \text{ kJ}$

3. ΔH for a reaction depends on the physical state of products and reactants.

2 H₂(g) + O₂(g)
$$\rightarrow$$
 2 H₂O(l) $\Delta H = -574.3 \text{ kJ}$
2 H₂(g) + O₂(g) \rightarrow 2 H₂O(g) $\Delta H = -486.3 \text{ kJ}$
2 H₂O(l) \rightarrow 2 H₂O(g) $\Delta H = +88 \text{ kJ}$

Boiling 1 mole of water into gas requires +44 kJ of energy.

17

Hess's Law

- Hess's law states that "If a reaction is carried out in a series of steps, ΔH for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps."
- The reaction for ΔH_1 may be broken down into two steps:

$$\Delta H_1 = \Delta H_2 + \Delta H_3$$

Example: calculate ΔH for this reaction:

$$2 C(s) + H_2(g) \rightarrow C_2H_2(g)$$

using enthalpy changes of the following reactions:

$$C_2H_2(g) + \frac{5}{2} O_2(g) \longrightarrow 2 CO_2(g) + H_2O(l)$$
 $\Delta H_1 = -1299.6 \text{ kJ}$
 $C(s) + O_2(g) \longrightarrow CO_2(g)$ $\Delta H_2 = -393.5 \text{ kJ}$
 $H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l)$ $\Delta H_3 = -285.8 \text{ kJ}$

Standard Enthalpies of Formation

- Standard enthalpy of formation (ΔH^o_f) is defined as the heat change for the formation reaction of one mole of a compound from its constituent elements under standard conditions (25 °C and 1.00 atm pressure).
- If the element exists in more than one forms, we use the most stable one for the $\Delta H^o{}_f$.
- By definition, the ΔH^o_f for the most stable form of any elements is zero.

$$\Delta H^{o}_{f}[H_{2}(g)], \ \Delta H^{o}_{f}[O_{2}(g)], \ \Delta H^{o}_{f}[C(graphite)] = 0$$

$$\Delta H^{o}_{f}[C(diamond)] \neq 0$$

Calculation of ΔH

$$C_{3}H_{8}(g) + 5 O_{2}(g) \xrightarrow{\Delta H} 3 CO_{2}(g) + 4 H_{2}O(l)$$

$$\Delta H^{o}_{f}(C_{3}H_{8}) \qquad 3 \Delta H^{o}_{f}(CO_{2}) \qquad 4 \Delta H^{o}_{f}(H_{2}O)$$

$$3 C(graphite) + 4 H_{2}(g) + 5 O_{2}(g)$$

$$\Delta H = 4 \Delta H^{o}_{f}(H_{2}O) + 3 \Delta H^{o}_{f}(CO_{2}) - \Delta H^{o}_{f}(C_{3}H_{8})$$

$$= 4 (-285.8) + 3 (-393.5) - (-103.85)$$

$$= -2219.85 \text{ kJ/mol}$$

Calculation of ΔH

Reactants $\xrightarrow{\Delta H}$ Products

We can use Hess's law in this way:

 $\Delta H = \sum n \Delta H^{o}_{f}(\text{products}) - \sum m \Delta H^{o}_{f}(\text{reactants})$

where n and m are the stoichiometric coefficients.

Substance	Formula	ΔH_f° (kJ/mol)	Substance	Formula	$\Delta H_f^{\circ}(\mathrm{kJ/mol})$
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	CH ₃ OH(l)	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	NaHCO ₃ (s)	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	Na ₂ CO ₃ (s) 1	- 130.9
Ethanol	C2H5OH(1)	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

Exercise: The ΔH for the reaction

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

is 178.1 kJ/mol. Calculate the ΔH_f^o [CaCO₃(s)].