Homework 3 - Solutions

Problems (not review questions): 5.18, 5.19, 5.27, 5.38, 5.39, 5.44, 5.45

5.18 A particular MOSFET for which $V_m = 0.5 \text{ V}$ and $k_n'(W/L) = 1.6 \text{ mA/V}^2$ is to be operated in the saturation region. If i_D is to be 50 μ A, find the required v_{GS} and the minimum required v_{DS} . Repeat for $i_D = 200 \mu$ A.

5.18
$$V_{tn} = 0.5 \text{ V}, \quad k_n = 1.6 \text{ mA/V}^2$$

$$I_D = 0.05 = \frac{1}{2} \times 1.6 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.25 \text{ V} \text{ and } V_{DS} \ge 0.25 \text{ V}$$

$$V_{GS} = 0.5 + 0.25 = 0.75 \text{ V}$$

$$I_D = 0.2 = \frac{1}{2} \times 1.6 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.5 \text{ V} \text{ and } V_{DS} \ge 0.5 \text{ V}$$

$$V_{GS} = 0.5 + 0.5 = 1 \text{ V}$$

5.19 A particular *n*-channel MOSFET is measured to have a drain current of 0.4 mA at $V_{GS} = V_{DS} = 1$ V and of 0.1 mA at $V_{GS} = V_{DS} = 0.8$ V. What are the values of k_n and V_t for this device?

5.19 For $V_{GS} = V_{DS} = 1$ V, the MOSFET is operating in saturation,

$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2$$

$$0.4 = \frac{1}{2}k_n(1 - V_t)^2$$
(1)

$$0.1 = \frac{1}{2}k_n(0.8 - V_t)^2 \tag{2}$$

Dividing Eq. (1) by Eq. (2) and taking square roots gives

$$2 = \frac{1 - V_t}{0.8 - V_t}$$

$$\Rightarrow V_t = 0.6 \text{ V}$$

Substituting in Eq. (1), we have

$$0.4 = \frac{1}{2}k_n \times 0.4^2$$

$$\Rightarrow k_n = 5 \text{ mA/V}^2$$

*5.27 The table above lists 10 different cases labeled (a) to (j) for operating an NMOS transistor with $V_i = 1$ V. In each case the voltages at the source, gate, and drain (relative to the circuit ground) are specified. You are required to complete the table entries. Note that if you encounter a case for which v_{DS} is negative, you should exchange the drain and source before solving the problem. You can do this because the MOSFET is a symmetric device.

5.27
$$V_{DS} = V_D - V_S$$
 $V_{GS} = V_G - V_S$ $V_{OV} = V_{GS} - V_t = V_{GS} - 1.0$

According to Table 5.1, three regions are possible.

Case	V_S	V_G	V_D	V_{GS}	V_{OV}	V_{DS}	Region of operation
a	+1.0	+1.0	+2.0	0	-1.0	+1.0	Cutoff
b	+1.0	+2.5	+2.0	+1.5	+0.5	+1.0	Sat.
c	+1.0	+2.5	+1.5	+1.5	+0.5	+0.5	Sat.
d	+1.0	+1.5	0	+0.5	-0.5	-1.0	Sat.*
e	0	+2.5	1.0	+2.5	+1.5	+1.0	Triode
f	+1.0	+1.0	+1.0	0	-1.0	0	Cutoff
g	-1.0	0	0	+1.0	0	+1.0	Sat.
h	-1.5	0	0	+1.5	+0.5	+1.5	Sat.
i	-1.0	0	+1.0	+1.0	0	+2.0	Sat.
j	+0.5	+2.0	+0.5	+1.5	+0.5	0	Triode

^{*} With the source and drain interchanged.

5.38 A PMOS transistor has $k_p'(W/L) = 100 \,\mu\text{A/V}^2$, $V_i = -1.0 \,\text{V}$, and $\lambda = -0.02 \,\text{V}^{-1}$. The gate is connected to ground and the source to +5 V. Find the drain current for $v_D = +4 \,\text{V}$, +2 V, +1 V, 0 V, and -5 V.

5.38

$$k_p = k'_p \left(\frac{W}{L}\right) = 100 \text{ } \mu\text{A/V}^2$$

 $V_{tp} = -1 \text{ } V \text{ } \lambda = -0.02 \text{ } V^{-1}$
 $V_G = 0, \quad V_S = +5 \text{ } V \Rightarrow V_{SG} = 5 \text{ } V$
 $|V_{OV}| = V_{SG} - |V_{tp}| = 5 - 1 = 4$

• For $v_D = +4$ V, $v_{SD} = 1$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(1 \times 4 - \frac{1}{2} \times 1 \right) = 350 \,\mu\text{A}$

• For $v_D = +2$ V, $v_{SD} = 3$ V $< |V_{OV}| \Rightarrow$ triode-region operation,

$$i_D = k_p \left[v_{SD} |V_{OV}| - \frac{1}{2} v_{SD}^2 \right]$$

= $100 \left(3 \times 4 - \frac{1}{2} \times 9 \right) = 750 \,\mu\text{A}$

• For $v_D = +1$ V, $v_{SD} = 4$ V = $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2}k_p|V_{OV}|^2(1+|\lambda|v_{SD})$$

= $\frac{1}{2} \times 100 \times 16(1+0.02 \times 4) = 864 \,\mu\text{A}$

• For $v_D = 0$ V, $v_{SD} = 5$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 5) = 880 \,\mu\text{A}$$

• For $v_D = -5$ V, $v_{SD} = 10$ V > $|V_{OV}| \Rightarrow$ saturation-mode operation,

$$i_D = \frac{1}{2} \times 100 \times 16(1 + 0.02 \times 10) = 960 \,\mu\text{A}$$

5.39 A p-channel transistor for which $|V_i| = 0.8 \text{ V}$ and $|V_A| = 40 \text{ V}$ operates in saturation with $|v_{GS}| = 3 \text{ V}$, $|v_{DS}| = 4 \text{ V}$, and $i_D = 3 \text{ mA}$. Find corresponding signed values for v_{GS} , v_{SG} , v_{DS} , v_{SD} , V_i , V_A , λ , and $k_p'(W/L)$.

5.39
$$V_{tp} = 0.8 \text{ V}, \quad |V_A| = 40 \text{ V}$$

$$|v_{GS}| = 3 \text{ V}, \quad |v_{DS}| = 4 \text{ V}$$

$$i_D = 3 \text{ mA}$$

$$|V_{OV}| = |v_{GS}| - |V_{tp}| = 2.2 \text{ V}$$

$$|v_{DS}| > |V_{OV}| \Rightarrow \text{ saturation mode}$$

$$v_{GS} = -3 \text{ V}$$

$$v_{SG} = +3 \text{ V}$$

$$v_{DS} = -4 \text{ V}$$

$$v_{SD} = 4 \text{ V}$$

$$V_{tp} = -0.8 \text{ V}$$

$$V_A = -40 \text{ V}$$

$$\lambda = -0.025 \text{ V}^{-1}$$

$$i_D = \frac{1}{2} k_p (v_{GS} - V_{tp})^2 (1 + \lambda v_{DS})$$

$$3 = \frac{1}{2}k_p[-3 - (-0.8)]^2(1 - 0.025 \times -4)$$

$$\Rightarrow k_p = 1.137 \text{ mA/V}^2$$

Note: If λ is not specified, assume it is zero.

D 5.44 Design the circuit of Fig. P5.44 to establish a drain current of 0.1 mA and a drain voltage of +0.3 V. The MOSFET has $V_i = 0.5 \text{ V}$, $\mu_n C_{ox} = 400 \text{ }\mu\text{A/V}^2$, $L = 0.4 \text{ }\mu\text{m}$, and $W = 5 \text{ }\mu\text{m}$. Specify the required values for R_s and R_D .

5.44

Since $V_{DG} > 0$, the MOSFET is in saturation.

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{OV}^{2}$$

$$0.1 = \frac{1}{2} \times 0.4 \times \frac{5}{0.4} \times V_{OV}^{2}$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$V_{GS} = V_{t} + V_{OV} = 0.5 + 0.2 = 0.7$$

$$V_{S} = 0 - V_{GS} = -0.7 \text{ V}$$

$$R_{S} = \frac{V_{S} - (-1)}{I_{D}} = \frac{-0.7 + 1}{0.1} = 3 \text{ k}\Omega$$

$$R_{D} = \frac{1 - V_{D}}{I_{D}} = \frac{1 - 0.3}{0.1} = \frac{0.7}{0.1} = 7 \text{ k}\Omega$$

5.45 The NMOS transistor in the circuit of Fig. P5.44 has $V_t = 0.4 \text{ V}$ and $k_n = 4 \text{ mA/V}^2$. The voltages at the source and the drain are measured and found to be -0.6 V and +0.2 V, respectively. What current I_D is flowing, and what must the values of R_D and R_S be? What is the largest value for R_D for which I_D remains unchanged from the value found?

5.45

Since $V_{DG} > 0$, the MOSFET is operating in saturation. Thus

$$I_D = \frac{1}{2}k_n(V_{GS} - V_t)^2$$

$$R_D$$

$$= \frac{1}{2} \times 4 \times (0.6 - 0.4)^2$$

$$= 0.08 \text{ mA}$$

$$R_D = \frac{1 - V_D}{I_D} = \frac{1 - 0.2}{0.08} = \frac{0.8}{0.08} = 10 \text{ k}\Omega$$

$$R_S = \frac{-0.6 - (-1)}{I_D} = \frac{-0.6 + 1}{0.08} = 5 \text{ k}\Omega$$

For I_D to remain unchanged from 0.08 mA, the MOSFET must remain in saturation. This in turn can be achieved by ensuring that V_D does not fall below V_G (which is zero) by more than V_t (0.4 V). Thus

$$1 - I_D R_{Dmax} = -0.4$$

 $R_{Dmax} = \frac{1.4}{0.08} = 17.5 \text{ k}\Omega$