

Mathématiques et Calcul 1

Contrôle continu n°2 — 25 novembre 2019 durée: 1h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Tous les exercices sont indépendants.

Question de cours: Énoncer le théorème des accroissements finis.

Exercice 1.

- (1) Rappeler l'expression des dérivées des fonctions ch, sh, th et Arccos (on précisera l'intervalle de définition dans chaque cas).
- (2) On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \operatorname{Arccos}(\operatorname{th} x).$$

Montrer que f est dérivable sur \mathbb{R} et calculer f'.

- (3) Montrer que f réalise une bijection de \mathbb{R} sur un intervalle I que l'on précisera.
- (4) Montrer que la bijection réciproque de f, notée g, est dérivable sur I, puis que

$$\forall y \in I, \quad g'(y) = -\frac{1}{\sin y}.$$

Exercice 2. Déterminer les limites suivantes quand elles existent, ou prouver que la limite n'existe pas.

(1)
$$\lim_{x \to 1} \frac{x^6 - 1}{x^7 - 1}$$
; (2) $\lim_{x \to 0} (\sin x) \cdot \sqrt{1 + \frac{1}{x^2}}$.

Exercice 3. Donner un équivalent (le plus simple possible) des quantités suivantes :

(1)
$$\sqrt{1+x} - \sqrt{1+x^2}$$
 quand $x \to 0$; (2) $\frac{x^3 - 3x^2 + 4\ln(x^4)}{\ln \cosh x + \sqrt{x}}$ quand $x \to +\infty$.

Exercice 4.

(1) Retrouver, à partir du développement limité à l'ordre 2 en 0 de $\frac{1}{1-x}$, le développement limité à l'ordre 3 en 0 de $-\ln(1-x)$.

En déduire le développement limité à l'ordre 3 en 0 de $\cos(x) - \ln(1-x)$.

- (2) Retrouver, à partir du développement limité à l'ordre 2 en 0 de $(1+y)^{-\frac{1}{2}}$, le développement limité à l'ordre 3 en 0 de $\frac{1}{\sqrt{1+x^2}}$.
- (3) Déduire des questions précédentes le développement limité à l'ordre 3 en 0 de

$$\frac{\cos(x) - \ln(1-x)}{\sqrt{1+x^2}}.$$

Exercice 5. On considère la fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ définie par

$$\forall x \geqslant 0, \quad f(x) = x e^x.$$

- (1) Montrer que f est dérivable sur \mathbb{R}_+ , strictement croissante, et bijective. Dans toute la suite, on note g la fonction réciproque de f. Que peut-on dire de la monotonie de g?
- (2) (a) Simplifier, pour tout $x \ge 1$, l'expression $\ln(x^x) f(\ln x)$.
 - (b) En déduire que l'équation $x^x = 2$ admet une unique solution dans $[1, +\infty[$, et exprimer cette solution à l'aide de la fonction g.
- (3) Dans cette question, on considère un réel $x \ge 0$ et la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, \quad u_{n+1} = x e^{-u_n}.$
 - (a) Montrer par récurrence que $\forall n \in \mathbb{N}, \ 0 \leq u_n \leq x$.
 - (b) Si la suite (u_n) converge vers une limite ℓ , que vaut $f(\ell)$? En déduire l'expression de ℓ à l'aide de la fonction g.
 - (c) Montrer que si ℓ est le réel considéré à la question précédente, alors

$$\forall n \in \mathbb{N}, \quad u_{n+1} - \ell = x(e^{-u_n} - e^{-\ell}).$$

(d) En déduire, grâce au théorème des accroissements finis, que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - \ell| \leqslant x|u_n - \ell|.$$

- (e) En déduire que si $0 \le x < 1$, la suite (u_n) converge.
- (4) Dans cette question, on cherche un équivalent de g en $+\infty$.
 - (a) Montrer que

$$\forall y \geqslant e, \quad f(\ln y - \ln \ln y) \leqslant y \leqslant f(\ln y).$$

(b) En déduire que $g(y) \underset{y \to +\infty}{\sim} \ln y$.