Autómatas finitos determinísticos y Lenguajes regulares

Autómata finito determinístico

Máquina de estados: En cada momento, la máquina se encuentra en un único estado

Estímulos/Interacciones: Para cada estímulo y en cada estado hay una única respuesta

AFD versión "reconocedor"

Grafo de transición

Cual es el alfabeto (Σ)?

Cual es el alfabeto (Σ)? $\Sigma = \{a, b\}$

Nota: Para todo estado, existe una única transición para cada símbolo en el alfabeto

Caso de aceptación

Cabezal ↓

Input: a b b a

Input: a b b a

El string "abba" es aceptado ya que finaliza con el estado final q4

Caso de rechazo

Cabezal ↓

Input: a b a

Otro caso de rechazo

Cual es el lenguaje aceptado por este autómata?

Cual es el lenguaje aceptado por este autómata?

$$L = \{abba\}$$

Resumiendo...

Para **aceptar** una cadena, el AFD consumió todo el string donde el último estado era el estado final

Para **rechazar** una cadena, el AFD consumió todo el string donde el último estado NO era el estado final

Vamos con otro

Qué pasa ahora con las cadenas aceptadas?

$$L = \{\lambda, ab, abba\}$$

Y otro...

$$L = \{a^n b : n \ge 0\}$$

Último?

$$L = \{a^n b^m : n, m \ge 0\}$$

Definición formal de AFD

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Conjunto de estados

Σ: Alfabeto de input

δ: Función de transición

 q_o : Estado inicial ($q_o \in Q$)

F: Conjunto de estados finales ($F \subset Q$)

Volvemos al ejemplo

Volvemos al ejemplo

Función de transición

$$\delta: Q \times \Sigma \to Q$$

La función de transición describe el resultado de una transición desde el estado q con símbolo símbolo x

Tabla de transición

δ	а	Ь
<i>9</i> 0	<i>9</i> ₁	<i>9</i> 5
<i>9</i> ₁	9 5	92
92	q_5	<i>9</i> ₃
<i>9</i> ₃	94	9 5
94	<i>9</i> ₅	9 5
<i>9</i> ₅	<i>9</i> 5	9 5

Función de transición extendida

$$\delta^*: Q \times \Sigma^* \to Q$$

La función de transición extendida describe el estado resultante luego de leer el string w a partir del estado q

$$\delta^*(q,w) = q'$$

Caso especial: Para cualquier estado q, $\delta^*(q,\lambda) = q$

Definición inductiva

$$\delta^*(q, \lambda) = q$$

$$\delta^*(q, aw) = \delta^*(\delta(q, a), w)$$

$$q \in Q, a \in \Sigma, w \in \Sigma^*$$

 $\delta^*(q, w) = q'$ implica que existe un camino de transiciones

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \sigma_2 \xrightarrow{\sigma_2} q'$$

Teorema!

Teo (asoc, δ):

$$\delta^*(q, vw) = \delta^*(\delta^*(q, v), w) \quad v \in \Sigma^*, w \in \Sigma^*$$

Demo (Por inducción sobre la estructura de v):

Ideas?

Teorema!

Teo (asoc, δ):

$$\delta^*(q, vw) = \delta^*(\delta^*(q, v), w) \quad v \in \Sigma^*, w \in \Sigma^*$$

Demo (Por inducción sobre la estructura de v):

(i) Caso base:
$$v = \lambda$$
,

$$\delta^*(q, vw) = \delta^*(q, \lambda w) \stackrel{def de \lambda}{=} \delta^*(q, w) \stackrel{def de \delta^*}{=} \delta^*(\delta^*(q, \lambda), w)$$
(ii) Hipótesis inductiva: Vale el enunciado para todo q' con v' de tamaño menor o igual a n
(iii) $v = av'$ (v de tamaño $n + 1$)
$$\delta^*(q, vw) = \delta^*(q, av'w) \stackrel{def de \delta^*}{=} \delta^*(\delta(q, a), v'w) \stackrel{\delta(q, a) = q'}{=} \delta^*(q', v'w) \stackrel{\text{(ii)}}{=} \delta^*(\delta^*(q', v'), w) \stackrel{\delta(q, a) = q'}{=} \delta^*(\delta^*(q, av'), w) \stackrel{\delta(q, a) = q'}{=} \delta^*(\delta^*(q, av'), w)$$

Lenguaje "aceptado" por un AFD

Sea M un AFD, denotamos L(M) como el lenguaje aceptado por M

$$M = (Q, \Sigma, \delta, q_0, F)$$

Decimos que L' es aceptado por M si L(M) = L'

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Lenguaje "rechazado" por un AFD

Sea M un AFD, denotamos L(M) como el lenguaje rechazado por M

$$M = (Q, \Sigma, \delta, q_0, F)$$

Decimos que L' es rechazado por M si $\overline{L(M)} = L'$

$$\overline{L(M)} = \left\{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \right\}$$

Un break ?:)

Ejemplitos

$$\Sigma = \{a,b\}$$

$$L(M) = ?$$

Más ejemplitos

L(M) = { todos los strings binarios que contienen el substring 001 }

Más ejemplitos

L(M) = { todos los strings binarios sin el substring 001 }

M satisface una especificación L?

$$L = \left\{ awa : w \in \left\{ a, b \right\}^* \right\}$$

M satisface una especificación L?

$$L = \{awa : w \in \{a, b\}^*\}$$

$$L(M) = \{x \in \Sigma^* : \delta^*(q_0, x) \in F\} =$$

$$= \{x \in \Sigma^* : \delta^*(q_0, x) = q_3\}$$

$$\xi L = L(M)?$$

Veremos que $L \subseteq L(M)$

Sea $x \in L$, entonces x es de la forma awa con $w \in \{a.b\}^*$

$$\delta^*(q_0, awa) = \delta^*(\delta(q_0, a), wa) = \delta^*(q_2, wa) \stackrel{asoc}{=} \delta^*(\delta^*(q_2, w), a)$$

En este punto $para \delta^*(q_2, w)$ hay dos casos posibles :

$$\delta^*(q_2, w) = q_3$$
 o bien $\delta^*(q_2, w) = q_2$, entonces

dado que
$$\delta^*(\delta^*(q_2, w), a) = \delta(\delta^*(q_2, w), a)$$
 y que

$$\delta(q_3, a) = \delta(q_2, a) = q_3$$
, tenemos que

$$\delta^*(q_0,x) = \delta^*(q_0,awa) = \delta^*(q_2,wa) = q_3 \text{ esto es, } x \in L(M)$$

La máquina expendedora

- Ranura para monedas (acepta monedas de 5 y 10 centavos)
- Bandeja expendedora (permite retirar chicles y caramelos)
- Botones "C" (para pedir un caramelo) y "CH" (para pedir un chicle)
- Parlante (hace "click" cada vez que se inserta 5 centavos y "click-click" cuando se inserta 10 centavos)
- Un caramelo cuesta 15 ctvs y un chicle 20ctvs.

Formalizamos las secuencias de entrada

- Olvidamos las salidas y los posibles errores para capturar la lógica básica del problema.
- Obtenemos una versión totalmente abstracta del problema: Un conjunto de secuencias correctas L0 y su clausura L₀*

La máquina expendedora (AFD)

 $Q = \{I, V, X, XV, XX\}$ $\Sigma = \{5, 10, C, CH\}$ $q_0 = I$ $F = \{I\}$

La máquina expendedora (AFD)

Debemos completarlo!

 L_0 ={ λ ,510C,555C,105C,5105CH,5555CH,1055CH,5510CH,1010CH }

 $Q = \{I, V, X, XV, XX, ERR\}$ $\Sigma = \{5, 10, C, CH\}$ q0 = I $F = \{I\}$

Nuevo estado ERR (estado trampa) y función de transición: $\delta(I,s) = \delta(V,s) = \delta(X,s) = ERR$, para $s \in \{C,CH\}$, $\delta(XV,s) = ERR$, para $s \in \{C,5,10\}$ $\delta(ERR,s) = ERR$, para $s \in \Sigma$

Teorema: El lenguaje L reconocido por el autómata M es L_o*

L₀={ λ,510C,555C,105C,5105CH,5555CH,1055CH, 5510CH, 1010CH }

Probamos que L(M) = L_0^* ?

Por **def** de igualdad de conjuntos, debemos mostrar que

- 1. $L(M) \subset L_0^*$
- 2. $L_0^* \subset L(M)$

Probamos 2) es decir, $(L_0^* \subset L(M))$, 1) queda como tarea

Sabemos que para cualquier lenguaje L, M tiene la forma $M=(Q,\Sigma,\delta,q_0,F)$ tenemos que

$$L(M) = \{ w^* \mid \delta^*(q_0, w) \in F \}$$

Entonces si mostramos que para todo i, para todo $w \in L_0^i$, $\delta^*(I, w)$

Por inducción en i

• Caso base $L_0^i \subset L(M)$ (i = 0)

Trivial, veamos caso por caso que cada uno de las nueve cadenas (que podría ser w) de L_0 ={ λ , 510C, 555C, 105C, 5105CH, 5555CH, 1055CH, 5510CH, 1010CH } que son aceptadas por M

• Caso inductivo $L_0^{i+1} \subset L(M)$ (i >= 0)

Sabemos que $L_0^{i+1} = L_0^i L_0$

HI: Suponemos que $L_0^i \subset L(M)$, para todo $w \in L_0^i$, sucede que $\delta^*(I,w) = I$

Entonces probar $L_0^{i+1} \subset L(M)$ equivale a probar que para todo $w \in L_0^{i+1}$, sucede que $\delta^*(I,w) = I$

Sea $w \in L_0^{i+1}$ entonces $w = xy \operatorname{con} x \in L_0^i \in y \in L_0$

Entonces

Por HI, $L_0^i \subset L(M)$ sabemos que $\delta^*(I, x) = I$, además sabemos por caso base que $\delta^*(I, y) = I$ y por asociación tenemos que

- $\delta^*(I, w) = \delta^*(I, xy)$ POR DEF
- $\delta^*(I, xy) = \delta^*(\delta^*(I, x), y)$ POR ASSOC
- $\delta^*(\delta^*(I, x), y) = \delta^*(I, y)$ POR HI + CASO BASE

Entonces $L_0^* \subset L(M)$

Lenguajes regulares

Def: Un lenguaje L es regular si existe un AFD M que lo acepta, es decir, que L(M) = L

Los lenguajes aceptados por todos los AFDs forman la familia de los lenguajes regulares

Ejemplos de lenguajes regulares

```
{abba} \{\lambda, ab, abba\} \{a^nb^m : n, m \ge 0\}

\{a^nb : n \ge 0\} \{awa : w \in \{a,b\}^*\}

{strings en {a,b}* con prefijo ab }

{strings binarios sin substring 001}

\{x : x \in \{1\}^* \text{ y } x \text{ es par}\}

\{\} \{\lambda\} \{a,b\}^*
```

Y si alguien se lo pregunta.... si! existen lenguajes que **NO** son regulares!

Eso significa que **NO** existe un **AFD** que acepte estos lenguajes

$$L=\{a^nb^n:n\geq 0\}$$

Lo demostramos en la próxima clase! :)