

10/554308

JC06 Rec'd PCT/PTO 21 OCT 2005

SEQUENCE LISTING

<110> Takaiwa, Fumio
Takagi, Hidenori

<120> METHOD OF ACCUMULATING ALLERGEN-SPECIFIC T CELL ANTIGEN
DETERMINANT IN PLANT AND PLANT HAVING THE ANTIGEN
DETERMINANT ACCUMULATED THEREIN

<130> 201487/1160

<140>

<141>

<150> JP 2003-120639

<151> 2003-04-24

<150> PCT/JP04/005938

<151> 2004-04-23

<160> 11

<170> PatentIn Ver. 2.1

<210> 1

<211> 96

<212> PRT

<213> Homo sapiens

<400> 1

Gly Ile Ile Ala Ala Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys
1 5 10 15

Val Thr Val Ala Phe Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys
20 25 30

Asn Phe His Leu Gln Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser
35 40 45

Cys Leu Asn Tyr Gly Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro
50 55 60

Ser Gly Lys Tyr Glu Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe
65 70 75 80

Asn Val Glu Gln Phe Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg
85 90 95

<210> 2
<211> 192
<212> PRT
<213> Homo sapiens

<400> 2

Gly	Ile	Ile	Ala	Ala	Tyr	Gln	Asn	Pro	Ala	Ser	Trp	Lys	Ser	Met	Lys
1															15
Val	Thr	Val	Ala	Phe	Asn	Gln	Phe	Gly	Pro	Asp	Ile	Phe	Ala	Ser	Lys
		20													30
Asn	Phe	His	Leu	Gln	Lys	Asn	Lys	Leu	Thr	Ser	Gly	Lys	Ile	Ala	Ser
		35													45
Cys	Leu	Asn	Tyr	Gly	Leu	Val	His	Val	Ala	Asn	Asn	Asn	Tyr	Asp	Pro
		50													60
Ser	Gly	Lys	Tyr	Glu	Gly	Gly	Asn	Ile	Tyr	Thr	Lys	Lys	Glu	Ala	Phe
	65			70							75				80
Asn	Val	Glu	Gln	Phe	Ala	Lys	Leu	Thr	Gly	Phe	Thr	Leu	Met	Gly	Arg
		85									90				95
Gly	Ile	Ile	Ala	Ala	Tyr	Gln	Asn	Pro	Ala	Ser	Trp	Lys	Ser	Met	Lys
		100													110
Val	Thr	Val	Ala	Phe	Asn	Gln	Phe	Gly	Pro	Asp	Ile	Phe	Ala	Ser	Lys
		115													125
Asn	Phe	His	Leu	Gln	Lys	Asn	Lys	Leu	Thr	Ser	Gly	Lys	Ile	Ala	Ser
		130													140
Cys	Leu	Asn	Tyr	Gly	Leu	Val	His	Val	Ala	Asn	Asn	Asn	Tyr	Asp	Pro
	145			150							155				160
Ser	Gly	Lys	Tyr	Glu	Gly	Gly	Asn	Ile	Tyr	Thr	Lys	Lys	Glu	Ala	Phe
		165									170				175
Asn	Val	Glu	Gln	Phe	Ala	Lys	Leu	Thr	Gly	Phe	Thr	Leu	Met	Gly	Arg
		180									185				190

<210> 3
<211> 24
<212> PRT
<213> *Oryza sativaL. cv Mangetsumochi*

<400> 3
Met Ala Ser Ser Val Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu
1 5 10 15

Leu Leu Cys His Gly Ser Met Ala
20

<210> 4
<211> 24
<212> PRT
<213> *Oryza sativaL. cv Mangetsumochi*

<400> 4
Met Ala Ser Ile Asn Arg Pro Ile Val Phe Phe Thr Val Cys Leu Phe
1 5 10 15

Leu Leu Cys Asp Gly Ser Leu Ala
20

<210> 5
<211> 23
<212> PRT
<213> *Oryza sativaL. cv Mangetsumochi*

<400> 5
Met Ala Ser Lys Val Val Phe Phe Ala Ala Ala Leu Met Ala Ala Met
1 5 10 15

Val Ala Ile Ser Gly Ala Gln
20

<210> 6
<211> 3350
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Artificially

constructed DNA sequence

<220>

<221> CDS

<222> (2333)..(2713)

<400> 6

acagattctt gctaccaaca acttcacaaa gtagtagtca accaaaacta tgctaaggaa 60

tcacctcact tccgcccattg accgtgagca cgactgttca aacagttgt taatctctac 120

aaagaaggta cactttacct acacaacgccc actaacctga gttacccagc ccatgcaaaa 180

tagccacgtc ttgtgactta agggatttcg cgacaaggca tttcgaaagc ccacacaagg 240

acaccttatg aaaactggag gggtcccaca gaccaacaac aagttaggc ccaaaccatg 300

tttgtccagg aaaaatccaa ggggtcctcc ccaacaccac cccgacaaat ccacttgcc 360

attggcatca agatttgctt gacctagcta attactcagc caggcatgtc acaattcacc 420

catgtggta cacatgttat gggtggatga aattctaaag gaatcggtcc atatgagcaa 480

gaccgagaaa ccataccacc agtacttcta ccgaaatacg agtttagtaa actcatttgt 540

tttcaaggca cccgacccag gtgtgtcggg tttccaggg atttgtaaa cccaaaggttt 600

acccatagtt gatcattcaa attttgagga gggtcattgg tatccgtacc tgagggcacg 660

aataactgaga cctagcattt tagtcgacca aggaggtaa tgcagcaatt gtaggtgggg 720

cctgttggtt atattgcaaa ctgcggccaa catttcatgt gtaattttaga gatgtgcatt 780

ttgagaaatg aaatacttag tttcaaattt tgggctcaaa ataatcaaag gtgacctacc 840

ttgcttgata tcttgagctt cttcctcgta ttccgcgcac taggactctt ctggctccga 900

agctacacgt ggaacgagat aactcaacaa aacgaccaag gaaaagctcg tattagttag 960

tactaagtgt gccactgaat agatctcgat ttttgaggaa ttttagaagt tgaacagagt 1020

caatcgaaaca gacagttgaa gagatatgga ttttctaaga ttaattgatt ctctgtataa 1080

agaaaaaaaaaag tattattgaa ttaaatggaa aaagaaaaaag gaaaaagggg atggcttctg 1140

ctttttgggc tgaaggcggc gtgtggccag cgtgctgcgt gcggacagcg agcgaacaca 1200

cgacggagca gctacgacga acgggggacc gagtggaccc gacgaggatg tggccttagga 1260

cgagtgcaca aggctagtgg actcggtccc cgcgcggtat cccgagtggt ccactgtctg 1320
caaacacgat tcacatagag cgggcagacg cgggagccgt cctaggtgca ccggaagcaa 1380
atccgtcgcc tgggtggatt tgagtgacac ggcccacgtg tagcctcaca gctctccgtg 1440
gtcagatgtg taaaattatc ataatatgtg ttttcaaata agttaaataa tatatatagg 1500
caagttatat gggtaataa gcagtaaaaa ggcttatgac atggtaaaat tacttacacc 1560
aatatgcctt actgtctgat atatttaca tgacaacaaa gttacaagta cgtcatttaa 1620
aaatacaagt tacttatcaa ttgttagtgc tcaagtaaat gacaacaaac ctacaaattt 1680
gctatttga aggaacactt aaaaaatca ataggcaagt tatatagtca ataaactgca 1740
agaaggctt tgacatggaa aaattacata caccaatatg ctttattgtc cggtatattt 1800
tacaagacaa caaagttata agtatgtcat taaaaatac aagttactta tcaattgtca 1860
agtaaatgaa aacaaccta caaatttgc atttgaagg aacacctaata ttatcaaata 1920
tagcttgcta cgcaaaatga caacatgctt acaagttatt atcatcttaa agtttagactc 1980
atcttctcaa gcataagagc tttatggtgc aaaaacaaat ataatgacaa ggcaaagata 2040
catacatatt aagagtatgg acagacattt cttaacaaa ctccattgt attactccaa 2100
aagcaccaga agtttgcattt ggctgagtca tgaatgtat agtcaatct tgcaaagttg 2160
ccttccttt tgtactgtgt tttaacacta caagccatat attgtctgta cgtgcaacaa 2220
actatatcac catgtatccc aagatgctt tttattgcta tataaacttag cttggctgt 2280
ctttgaactc acatcaatta gcttaagttt ccataagcaa gtacaaatag ct atg gcg 2338
Met Ala
1

agt tcc ggt ttc tct cgg ttt tct ata tac ttt tgt gtt ctt cta tta 2386
Ser Ser Gly Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu Leu Leu
5 10 15

tgc cac ggt tct atg gcc cag ccc atg ggc atc atc gca gct tac caa 2434
Cys His Gly Ser Met Ala Gln Pro Met Gly Ile Ile Ala Ala Tyr Gln
20 25 30

aat cca gca agc tgg aag agt atg aag gtt aca gtt gca ttc aac caa 2482

Asn	Pro	Ala	Ser	Trp	Lys	Ser	Met	Lys	Val	Thr	Val	Ala	Phe	Asn	Gln	
35				40					45				50			
ttc ggt cct gat atc ttt gct agc aag aat ttc cac ctc cag aaa aat															2530	
Phe Gly Pro Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln Lys Asn																
55					60					65						
aag ctc aca agt ggc aag att gca agc tgc ttg aac tat gga ttg gtt															2578	
Lys Leu Thr Ser Gly Lys Ile Ala Ser Cys Leu Asn Tyr Gly Leu Val																
70				75					80							
cat gta gct aac aat aac tat gat cca agc ggt aag tat gag ggt ggc															2626	
His Val Ala Asn Asn Asn Tyr Asp Pro Ser Gly Lys Tyr Glu Gly Gly																
85				90					95							
aac atc tac act aag aag gaa gca ttc aac gta gag caa ttt gca aag															2674	
Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val Glu Gln Phe Ala Lys																
100				105					110							
ctc aca ggc ttc act ctc atg gga cgc aag gac gag ttg aagagctctg															2723	
Leu Thr Gly Phe Thr Leu Met Gly Arg Lys Asp Glu Leu																
115				120					125							
taatttgagaa ctagtatcggtcgtagatgaa aataaaacac cacaagtatg acacttggtg															2783	
gtgattctgt tcgatatacg tactaaataa aggttacaaa cttcttaatt ttcctacttc															2843	
atgccatgga tattccatta tggactatag tggacagggc cggcttatga ttttggggc															2903	
ccttaggaact catcgcgatg ggcctcaagc tataataaa atttatttat atatataagac															2963	
gctaatttta cttgcaaaat gaaaacaaat acatctatat attaaattta acattcctgg															3023	
taatttatcaa gaaataaaat cgacaaaaat aacaatatat ttgttaacttg gaactaatat															3083	
aattatttat taacttaatg aagaatagaa ccccgtcata tccattgctt cctatgaaaa															3143	
gatacttctt cgggtatttc ttgatgcaaa atcataaaga acggtattaa gatcaatagt															3203	
gtccaagata tccttctcga ttgagcacat agccaagcca tttaacctta tttgcgacag															3263	
ttgatctcaa atagttttc aacaacttca attttgataa acttatttca gctgaagcta															3323	
ccatcatagg taaagttaag agaattc															3350	

<210> 7

<211> 127

<212> PRT

<213> Artificial Sequence

<223> Description of Artificial Sequence: Artificially
constructed DNA sequence

<400> 7

Met Ala Ser Ser Gly Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu
1 5 10 15

Leu Leu Cys His Gly Ser Met Ala Gln Pro Met Gly Ile Ile Ala Ala
20 25 30

Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys Val Thr Val Ala Phe
35 40 45

Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln
50 55 60

Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser Cys Leu Asn Tyr Gly
65 70 75 80

Leu Val His Val Ala Asn Asn Tyr Asp Pro Ser Gly Lys Tyr Glu
85 90 95

Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val Glu Gln Phe
100 105 110

Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg Lys Asp Glu Leu
115 120 125

<210> 8

<211> 127

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Protein
encoded by artificially constructed DNA sequence

<400> 8

Met Ala Ser Ser Gly Phe Ser Arg Phe Ser Ile Tyr Phe Cys Val Leu
1 5 10 15

Leu Leu Cys His Gly Ser Met Ala Gln Pro Met Gly Ile Ile Ala Ala
20 25 30

Tyr Gln Asn Pro Ala Ser Trp Lys Ser Met Lys Val Thr Val Ala Phe
35 40 45

Asn Gln Phe Gly Pro Asp Ile Phe Ala Ser Lys Asn Phe His Leu Gln
50 55 60

Lys Asn Lys Leu Thr Ser Gly Lys Ile Ala Ser Cys Leu Asn Tyr Gly
65 70 75 80

Leu Val His Val Ala Asn Asn Asn Tyr Asp Pro Ser Gly Lys Tyr Glu
85 90 95

Gly Gly Asn Ile Tyr Thr Lys Lys Glu Ala Phe Asn Val Glu Gln Phe
100 105 110

Ala Lys Leu Thr Gly Phe Thr Leu Met Gly Arg Lys Asp Glu Leu
115 120 125

<210> 9

<211> 1474

<212> DNA

<213> Oryza sativa

<400> 9

tacagggttc cttgcgtgaa gaagggtggc ctgcgggttca ccattaacgg tcacgactac 60
ttccagctag tactggtgac caacgtcgcg gcggcagggt caatcaagtc catggaggtt 120
atgggttcca acacagcggg ttggatgccc atggcacgta actggggcgc ccaatggcac 180
tcactggcct acctcaccgg tcaaggctta tccttttaggg tcaccaacac agatgaccaa 240
acgctcgctc tcaccaacgt cgtgccacca ggatggaagt ttggccagac atttgcaagc 300
aagctgcagt tcaagtgaga ggagaagcct gaattgatac cggagcgtt cttttggag 360
taacatctc ggtgcctag caaacatatg attgtatata agtttcgttg tgcgtttatt 420
ctttcggtgt gtaaaataac atacatgctt tcctgatatt ttcttgtata tatgtacaca 480
cacacgacaa atccttccat ttcttattt attgaacaat ttaattgcga gggcgagttac 540
ttgtctgtt acctttttt tttcagatgg cattttatag tttaacctt catggaccgg 600
cagtagttt aaccatgaat gaaaagaaat catagtccac accacgcagg gacattgtgg 660
tcattttaga caagacgatt tgattaatgt cttgtatgat atggcgtaca gtgaggacta 720
acaaacatat ggcataatttt attaccggcg agttaataaa atttatgtca cagtaataaa 780
ctgcctaata aatgcacgccc agaaaatata atgataaaaaaa aaagaaaaaga tacataagtc 840
cattgcttct acttttttaa aaattaaatc caacattttc tatttttgg tataaacttg 900
gaagtacttag ttggatatgc aaaatcatct aacctccata tatttcatca atttgtttac 960
tttacatatg ggagaggata gtatgtcaaa gaaaatgaca acaagcttac aagtttctta 1020
ttttaaaagt tccgctaact tatcaagcat agtgtgccac gcaaaaactga caacaaacca 1080
acaaatttaa ggagcgccta acttacatc tatgacatac cgcacaaaat gataacatac 1140
tagagaaaact ttattgcaca aaagggaaatt tatccataag gcaaaggaac atcttaaggc 1200
tttggatata catttaccaa caagcattgt ttgttattacc cctaaagcgc aagacatgtc 1260
atccatgagt catagtgtgt atatctcaac attgcaaagc tacctttt ctattatact 1320
tttcgcattta taggctagat attatctata catgtcaaca aactctatcc ctacgtcata 1380

tctgaagatt cttttcttca ctatataagt tggctccct gtcattgaac tcacatcaac 1440
cagcccaagt ttccaataac atcctcaa at 1474

<210> 10
<211> 824
<212> DNA
<213> Oryza sativa

<400> 10
actggataat tataatataca gttaaaattg aaaataatgc aacttcatac ttgcatgg 60
tcagtagtgc ctgcctaaga aatgtgtctt gtcataat gattacatga aatatgtt 120
cttcctcgtt tctcttatt tgtaagataa agaactagat atgtggaaag taggatagca 180
aagagtatgg ccaaactcta atcttgctt tatttttg gatggaccca aaatttgg 240
ctccttact tcttccctt tacaacaatg ttcttactt ccaattctt ttaacaaaac 300
tccaaataca tgccaaactg catatgtatg tatgctatta aggcacattt acaaagctcc 360
aagtttacct actcaatcat tcacatatgg cgatgactca aactcttaat ttttatctgg 420
taagctgtga ctgtgttaac acattctaca agtcccatac gaattctgtt cacaagg 480
tcttgccttca gctcataatt tacaactg caaaatgcc aagcaatctg gcacaac 540
atcatcatat tttcttccca cgcattaaag cactggcaga attatcttg ttttagatatt 600
ccaaaatgtat tgggtgaata aatgtccaaa taaaattccat gcctcatgtat ttccagctt 660
tgtggcctcc actagggtgtt tttgcaagg ccaaactctt tcctggctt cacagctacc 720
agcatgtata aataggcccc taggcaacca ttattccatc atcctcaaca atattgtcta 780
caccatctgg aatcttgg 824
ttttaat aacactagta ttgtagaatc agca

<210> 11
<211> 931
<212> DNA
<213> Oryza sativa

<400> 11
gatctttaa ccgtgctacg ctgggttaat tagcgatgg gcaggtcacg tacccaaatt 60
tcttcactgt tggatcaact agagtagtta aacgagggca tggatgttgc gctagctatt 120
tggaaatttc caattatccc tgcataagtc aggctacaat agcacctgga ctacatgcag 180
ggattacaaa ataggtggta accacattt cccgttaac cctatcaat tcaaataat 240
ttttaaaatgta atttgatttt ttaataat tttgtatggt ttctcaagct ttatgg 300
taccgtgctt actgcccagg caatggaaa ccctcaactg aagttgcacc ttttcttgc 360
tgtgcaccat atcatgttga atcatgtcg ttgtgtctt cggagaacc gatttactac 420
atgactcatc aattccactt tacgtatcaa aaggttgtt atggggca tgctttgt 480
aaattaaatt tttatggc gtcacgtgt atcttagttaa acactaccta cctaccattt 540
caaaacctca ttccacaaa cgtatcatc agataaaaaa tatgacatgt aaagtgg 600
atgactcatg tttattatca aaaatcgata acaatcaa at gataggtt gtaaagtacc 660
tttggaaatgg catgtccaag tatgtgtac tccacccatc acaatatccc aagtgtatcat 720
cataaaaggc atacaaatac aagcagccga tggatgcac aagaaacaac acaaattgca 780
caaaaccaaa agcaaccgat gccttgagca tagagatcat gctattccca ctataaatac 840
aatgcacca tatcaagatg ctccctcaccc ttactgaaaa atcacaacca tcaaaacg 900
ataagagttc tctagcatcc atcacatagc c 931