BUSES

Buses

- Hay una cantidad posible de sistemas de interconexiones
- Es un camino de comunicaciones entre dos o mas sistemas o equipos internos
- Usualmente se comunican por difusion
- Usualmente no se muestran las lineas de señales de tensión

1RA GENERACION

2da GENERACION

DATOS

• Transmiten datos (a este nivel no hay diferencias entre datos e instrucciones). Performance dada por el ancho:8, 16, 32, 64 bits

DIRECCIONES

- Identifican la fuente o el destino de los datos
- El ancho del bus determina la máxima capacidad de direccionar memoria del sistema

CONTROL

• Proveen información de control y temporizacion

ANCHO DE CANAL

BUS DE DATOS:

Cantidad de bits que pueden ser transferidos simultáneamente.

Ej el bus de datos puede transferir 8 bytes por vez

BUS DE DIRECCIONES:

Cantidad de direcciones diferentes que puede alcanzar el microprocesador. Ej en bus de 32 bits seran 2^{32} (mas de 4.000.000.000 direcciones diferentes)

- 1. El BUS no solo posee elementos físicos (hardware) sino que incluye un PROTOCOLO DE COMUNICACIONES
- 2. Todos los dispositivos conectados escuchan, pero solo uno transmite por vez.
- 3. Uno de los dispositivos será el BUS MASTER y el resto ESCLAVOS.
- El MAESTRO tiene el control del bus.

Esquema de interconexion de los buses CPU Memory Memory I/O 1/O 1/O Buses Bus Data Lines

	875P chip set	845GL chip set
Target segment	Performance PC	Value PC
System bus (64 bit)	800/533 MHz	400 MHz
Memory	y controller hub ("north brid	ge")
Package size, pins	42.5 x 42.5 mm, 1005	37.5 x 37.5 mm, 760
Memory speed	DDR 400/333/266 SDRAM	DDR 266/200, PC133 SDRAM
Memory buses, widths	2 × 72	1×64
Number of DIMMs, DRAM Mbit support	4, 128/256/512 Mbits	2, 128/256/512 MBits
Maximum memory capacity	4 GB	2 GB
Memory error correction available?	yes	no
AGP graphics bus, speed	yes, 8X or 4X	no
Graphics controller	external	Internal (Extreme Graphics)
CSA Gigabit Ethernet interface	yes	no
South bridge interface speed (8 bit)	266 MHz	266 MHz
I/0 c	ontroller hub ("south bridge	")
Package size, pins	31 × 31 mm, 460	31 x 31 mm, 421
PCI bus: width, speed, masters	32-bit, 33 MHz, 6 masters	32-bit, 33 MHz, 6 masters
Ethernet MAC controller, interface	100/10 Mbit	100/10 Mbit
USB 2.0 ports, controllers	8, 4	6, 3
ATA 100 ports	2	2
Serial ATA 150 controller, ports	yes, 2	no
RAID 0 controller	yes	no
AC-97 audio controller, interface	yes	yes
I/O management	SMbus 2.0, GPIO	SMbus 2.0, GPIO

Ciclo de bus

- Tiempo en que la CPU realiza una transferencia de datos completa con el exterior
- En ese tiempo se produce la activación de las señales necesarias para que el procesador realice operaciones de lectura/escritura en la memoria
 - ➤ Ciclo de bus sencillo
 - ➤ Ciclo de bus en rafaga
 - ➤ Ciclos especiales (interrupciones)

CENTRALIZADO

- Todos los dispositivos comparten una línea de pedido de bus (bus request) que llega al arbitro
 - Este determina si se puede conceder (bus grant) el uso del bus
 - Si lo autoriza, como la señal esta en serie con los dispositivos (daisy chained), el primero que lo recibe y necesita usarlo no se lo pasa al resto
 - Los que están mas cerca eléctricamente siempre tienen mas prioridad

#CASO a: Arbitraje simple centralizado

Puede haber mas de una línea de pedido con diferente prioridad con lo cual las mas alejadas no necesariamente tienen menos prioridad.

****CASO** b: Arbitraje centralizado con niveles de prioridad

El extremo es cuando cada dispositivo tiene su propia línea. Es el mas caro y menos escalable.

CASO C: DESCENTRALIZADO

- Si el dispositivo necesita el BUS (es decir convertirse en maestro), activa su <u>linea de</u> <u>pedido de bus</u>, y luego verifica si el bus esta ocupado.
- Si no esta en uso, envía un 0 al dispositivo que le sigue en la cadena, activa la línea de ocupado y transmite
- Este sistema funciona hasta con 8 equipos y que deben ser muy rapidos.

Arquitectura de BUS basadas en puentes

- Hasta lo visto, todos los componentes del sistema se conectan en forma directa al bus
- Esto lleva a conflictos por colisiones de intentos de transferencia simultáneos.
- Las transferencias pueden separarse sobre BUSES diferentes a través del uso de PUENTES (BRIDGES)
- El ejemplo es sobre un Pentiun II en configuración MULTIPROCESADOR SIMETRICO (SMP).
- El sistema operativo realiza el balance de cargas por medio de la selección de un procesador sobre el otro en el momento de asignarle las tareas.
- Cada procesador tiene su propio BUS sobre su memoria CACHE.
- A su vez, ambos procesadores convergen sobre el bus del sistema (FRONT SIDE BUS)
- HOST BRIDGE INTEL 440 GX AGP set: Conecta el bus del sistema a los distintos buses. Actúa de intermediario entre el bus del sistema, la memoria principal, el procesador grafico y diferentes tipos de buses.

- AGP: Advanced Graphic Port: 533 Mb/seg. Es necesaria esa velocidad por la composicion de graficos (rendering: rellenar un objeto con colores)
- Por debajo del HOST BRIDGE hay un bus para la interconeccion de perifericos (PCI: Peripheral Component Interconect)
- Sobre el PCI hay un controlador SCSI (Small Computer System Interface).
- Hay un puente PCI ISA que conecta a otros buses
 - USB (Universal Serie Bus)
 - IDE (Integrated Drive Electronics)
 - ISA (Industry Standard Arquitecture)

Semantica

- PCI: Peripheral Component Interfase
 - 133 Mb/s
- · SCSI: Small Computer System Interfase
 - 40 Mb/s
- ISA: Industry Standard Arquitecture OBSOLETO
 - 16,7 Mb/s
- IDE: Integrated Drive Electronic
 - 33 Mb/s
- FIREWIRE (IEEE 1894)
 - 25 a 400 Mb/s
- USB: Universal Serie Bus
 - 1.0 1,5 Mbps.; 2.0: 125Mbps; 3.0: 4.8Gbps

PCI

- Interconecta componentes perifericos
- Desarrollado por INTEL
- 32 o 64 bits
- 50 lineas
- · Lineas del sistema
- Incluyen clock y reset
- Direcciones y Datos
- 32 lineas multiplexadas para datos y direcciones
- · Lineas de interrupcion y validacion
- · Control de la interface
- Arbitaje

PCI - TIPOS

Cardbus es un formato PCMCIA de 32 bits, 33 MHz PCI Compact PCI, utiliza módulos de tamaño Eurocard conectado

en una placa hija PCI.

Tarjeta de expansión PCI-X Gigabit Ethernet

PCI 2.2 funciona a 66 MHz

PCI 2.3 permite el uso de 3.3

PCI 3.0 es el estándar final oficial del bus

PCI-X aumenta la transferencia de datos a 133

PCI-X 2.0 especifica un ratio de 266 MHz

Mini PCI es un nuevo formato de PCI 2.2 para utilizarlo internamente en los portátiles

PC/104-Plus es un bus industrial que utiliza las señales PCI con diferentes conectores.

Dimensiones de las tarietas

Una tarjeta PCI de tamaño completo tiene un alto de 107 mm (4.2 pulgadas) y un largo de 312 mm (12.283 pulgadas). La altura incluye el conector de borde de tarjeta.

Además de estas dimensiones el tamaño del backplate está también estandarizado. El backplate es la pieza de metal situada en el borde que se utiliza para fijarla al chasis y contiene los conectores externos. La tarjeta puede ser de un tamaño menor, pero el backplate debe ser de tamaño completo y localizado propiamente. Respecto del anterior bus ISA, está situado en el lado opuesto de la placa para evitar errores.

Las tarjeta de media altura son hoy comunes en equipos compactos con chasis **Small Form Factor**, pero el fabricante suele proporcionar dos backplates, con el de altura completa fijado en la tarjeta y el de media altura disponible para una fácil sustitución.

Controladora PCI SCSI de 32 bits

SCSI Small Computer System Interfase

- Originada en Macintosh en 1984
- Tres versiones
 - SCSI 1: 8 lineas de datos, 5 MHz, 7 dispositivos en serie
 - SCSI 2: 8 y 16 lineas de datos, 10 MHz
 - SCSI 3.x: 8 y 16 lineas de datos, de 20 a 80 Mb/s según version. Incluye enlaces de coaxil y fibra optica.
- Si bien se considera un BUS, los dispositivos se conectan en serie en forma encadenada (daisy chain)
- Todos los dispositivos trabajan en forma independiente y pueden intercambiar datos entre ellos. Ej: un disco duro puede guardar datos en una cinta sin que intervenga la computadora

IDE - Integrated Drive Electronic

El sistema **IDE** (*Integrated Device Electronics*, "Dispositivo con electrónica integrada") o **ATA** (*Advanced Technology Attachment*), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y **ATAPI** (*Advanced Technology Attachment Packet Interface*) y además añade dispositivos como las unidades <u>CD-ROM</u>.

En el sistema IDE el controlador del dispositivo se encuentra integrado en la electrónica del dispositivo.

3ra GENERACION

BUSES SERIE

CÁLCULO DE LA VELOCIDAD REAL DE SATA 1.5 GB/S Y SATA 3 GB/S

	SATA I	SATA II	SATA III
Frecuencia	1500 MHz	3000 MHz	6000MHz
Bits/clock	1	1	1
Codificación	8b10b	8b10b	8b10b
bits/Byte	8	8	8
Velocidad rea	150 MB/s	300 MB/s	600 MB/s

DISCOS RIGIDOS

Disco rigido

Captor de disco

Electronica de control del disco

Codificacion Manchester • (a) Codificacion (NRZ) de ASCII `F'; • (b) Codificacion Manchester encoding de ASCII `F'. (a) Sagro Time

Tiempo de búsqueda

Tiempo que tarda la cabeza en posicionarse en la pista a leer

Retardo rotacional (o Latencia rotacional)

Tiempo que el controlador del disco espera hasta que el sector buscado rote hasta alinearse con la cabeza

TIEMPO DE ACCESO

Tiempo de búsqueda + Retardo rotacional

TIEMPO DE TRANSFERENCIA DE DATOS

Tiempo de lectura o escritura con la cabeza posicionada

Tiempo de busqueda

Ts: $m \times n + s$

Donde

Ts: Tiempo de búsqueda estimado

m: constante que depende del disco

n: numero de pistas atravesadas

s: Tiempo de comienzo de la busqueda

Ejemplo

Disco economico m: 0,3 mseg

s: 20 mseg

Disco de mejor performance

m: 0,1 mseg

s: 3 mseg

Retardo rotacional

Tr: 1/2r

Disco duro: 3200 rpm → 18,75 mseg/rotacion

Retardo medio 9,375 mseg

7200 rpm → 8,33 mseg/rotacion

Retardo medio 4,165 mseg

Disquette: 600 rpm → 100 mseg/rotacion

Retardo medio 50 mseg

Tiempo de transferencia (hacia o desde el disco)

Donde

Tt: tiempo de transferencia b: numero de bytes a transferir N: numero de bytes de una pista v: velocidad de rotacion en rpseg

Tiempo medio de acceso total

Ta: $(m \times n + s) + (1/2v) + (b/vN)$

Donde

Ts: Tiempo de busqueda

Tr: Retardo rotacional

Tt: Tiempo de transferencia

Ejemplo

Leer un fichero de 128 kbytes desarrollado en 256 sectores

Parámetros del disco rígido:

Tiempo de búsqueda media: 20 mseg Velocidad de trasferencia: 1 Mbyte/seq

Sectores de 512 bytes 32 sectores por pista

1er Caso: el fichero ocupa todos los sectores de 8 pistas advacentes

(8 pistas x 32 sectores x pista : 256 sectores)

1. Lectura de la primer pista

Tiempo de busqueda: 20 mseg Retardo rotacional: 9,375 mseg Leer 32 sectores: 16,7 mseg

46,075 mseg

2. El resto de las pistas se pueden leer sin tiempo de busqueda

Retardo rotacional: 9,375 mseg Leer 32 sectores: 16,7 mseq 26,075 mseg

3. Para leer el fichero entero

Tiempo total: 46,075 mseg + 7 x 26.075 mseg: 228,6 mseg :

0,23 seg

2do Caso: el fichero esta escrito en forma aleatoria en el disco (no secuencial)

1. Lectura de la primer pista

Tiempo de busqueda: 20 mseg

Retardo rotacional: 9,375 mseg

Leer 1 sectores: 0,5 mseg

29,875 mseg

2. Para leer el fichero entero

Tiempo total: 256 sectores x 29,875 mseg/sector: 7.648 mseg

:7,65 seg

Especificaciones de discos WESTERN DIGITAL

Modelos	Tipo	Velocidad	Capacidad	Uso
WD Raptor	SATA	10.000	36 GB-150GB	Empresarial
WD RE2-GP	SATA	IntelliPower*	500GB - 1TB	
WD RE2	SATA	7.200	160 GB – 750 GB	
WD Raptor X	SATA	10.000	150 GB	Para Escritorio
WD Caviar SE16	SATA	7.200	250 GB - 750 GB	
	EIDE	7.200	400 GB - 500 GB	
WD Caviar GP	SATA	IntelliPower*	500GB – 1TB	
WD Caviar SE	SATA	7.200	40GB – 500GB	
	EIDE	7.200	40GB - 500GB	
WD Caviar	SATA	7.200	40GB – 160GB	
	EIDE	7.200	40GB – 250GB	
WD Scorpio	SATA	5.400	40GB – 320GB	
	EIDE	5.400	40GB – 250GB	
WD AV	SATA		80GB – 500GB	Electrónica de consumo
	EIDE		80GB - 500GB	
WD AV-GP	SATA		500GB – 1 TB	My Book Live

Specifications ¹	1 TB	750 GB	500 GB	320 GB	250 GB
Model number	WD1002FBYS	WD7502ABYS	WD5002ABYS	WD3202ABYS	WD2502ABYS
Interface	SATA 3 Gb/s	SATA 3 Gb/s	SATA 3 Gb/s	SATA 3 Gb/s	SATA 3 Gb/s
Formatted capacity	1,000,204 MB	750,156 MB	500,107 MB	320,072 MB	251,059 MB
User sectors per drive	1,953,525,168	1,465,149,168	976,773,168	625,142,448	490,350,672
Native command queuing	Yes	Yes	Yes	Yes	Yes
SATA latching connector	Yes	Yes	Yes	Yes	Yes
Actuator latch/auto park	Yes	Yes	Yes	Yes	Yes
Form factor	3.5-inch	3.5-inch	3.5-inch	3.5-inch	3.5-inch
RoHS compliant ²	Yes	Yes	Yes	Yes	Yes
Performance					
Data transfer rate (max) Buffer to host Host to/from drive (sustained)	3 Gb/s 113 MB/s	3 Gb/s 113 MB/s	3 Gb/s 113 MB/s	3 Gb/s 118 MB/s	3 Gb/s 118 MB/s
Cache (MB)	32	32	16	16	16
Average latency (ms)	4.2	4.2	4.2	4.2	4.2
Rotational speed (RPM)	7200	7200	7200	7200	7200
Average drive ready time (sec)	17	17	11	6.5	6.5
Configuration/Organization					
Heads/disks	6/3	5/3	4/2	2/1	2/1
Bytes per sector (STD)	512	512	512	512	512
Reliability/Data Integrity					
Load/unload cycles ³	300,000	300,000	300,000	300,000	300,000
Non-recoverable read errors per bits read	< 1 in 10 ¹⁵	<1 in 10 ¹⁵	< 1 in 10 ¹⁵	< 1 in 10 ¹⁵	< 1 in 10 ¹⁵
Limited warranty (years)4	5	5	5	5	5

- Discos espejados
- Los datos se distribuyen a traves de distintos discos
- Se realizan 2 copias de cada bloque en discos separados
- Se leen desde cualquiera de ellos
- Se escribe en ambos
- La recuperacion es muy simple
- Caro

- ➤ Los discos estan sincronizados
- > Bloques muy pequeños
 - Comunmente palabras o bytes unicos
- Correccion de errores calculados a traves de los bits correspondientes en los discos
- Multiples discos de paridad almacenan codigos de error de Hamming
- Mucha redundancia
 - Caro
 - No se usa

- Similar a RAID 2
- Un solo disco redundante, sin importar el tamaño del array
- Los datos en los discos que fallan se pueden reconstruir de los datos sobrevivientes e informacion de paridad
- Muy altas transferencias de datos

- Cada disco opera independiente
- Bueno para grandes requerimientos de E/S
- Largos bloques de datos
- Paridad bit a bit se calcula en cada disco
- La paridad se almacena en discos de paridad

- **#**Similar a RAID 4
- **# Paridad distribuida a traves de todos los discos**
- **₩Usada normalmente en servidores de red**

CATEGORIA	NIVEL	DESCRIPCION	GRADO DE E/S SOLIC ITADO ENTRADA/SALIDA	GRADO DE TRANSFERENCIAS DE DATOS ENTRADA/SALIDAS	APLICACION TIPICA
Estructura en tiras	0	No redundante	Tiras largas EXCELENTE	Tiras cortas EXCELENTE	Aplicaciones que requieren altas prestaciones con datos no críticos
Estructura en espejo	1	Espejo	BUENO / REGULAR	REGULAR / REGULAR	Controladores de sistemas; Ficheros críticos
Acceso paralelo	2	Redundancia con código Hamming	POBRE	EXCELENTE	
	3	Bit de paridad intercalado	POBRE	EXCELENTE	Aplicaciones con numerosas E/S (ej, CAD)
Acceso independiente	4	Bloque de paridad intercalado	EXCELENTE / REGULAR	EXCELENTE / POBRE	
	5	Paridad distribuida en bloques intercalados	EXCELENTE / REGULAR	EXCELENTE / POBRE	Grado de petición alto, lectura intensiva, consulta de datos
	6	Paridad distribuida dual en bloques intercalados	EXCELENTE / REGULAR	EXCELENTE / POBRE	Aplicaciones que requieren alta disponibilidad