TERRO'S REAL ESTATE AGENCY

Data Analysis Project

Project Done by

Ram K

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

AGE		INDUS		NOX		DISTANCE	
Mean	68.5749	Mean	11.13678	Mean	0.554695	Mean	9.549407
Standard		Standard		Standard		Standard	
Error	1.25137	Error	0.30498	Error	0.005151	Error	0.387085
Median	77.5	Median	9.69	Median	0.538	Median	5
Mode	100	Mode	18.1	Mode	0.538	Mode	24
Standard		Standard		Standard		Standard	
Deviation	28.14886	Deviation	6.860353	Deviation	0.115878	Deviation	8.707259
Sample		Sample		Sample		Sample	
Variance	792.3584	Variance	47.06444	Variance	0.013428	Variance	75.81637
Kurtosis	-0.96772	Kurtosis	-1.23354	Kurtosis	-0.06467	Kurtosis	-0.86723
Skewness	-0.59896	Skewness	0.295022	Skewness	0.729308	Skewness	1.004815
Range	97.1	Range	27.28	Range	0.486	Range	23
Minimum	2.9	Minimum	0.46	Minimum	0.385	Minimum	1
Maximum	100	Maximum	27.74	Maximum	0.871	Maximum	24
Sum	34698.9	Sum	5635.21	Sum	280.6757	Sum	4832
Count	506	Count	506	Count	506	Count	506

TAX		PTRATIO	AVG_ROOM			LSTAT		AVG_PRICE	
Mean	<mark>408.2372</mark>	Mean	18.45553	Mean	6.284634	Mean	12.65306	Mean	22.53281
Standard		Standard		Standard		Standard		Standard	
Error	7.492389	Error	0.096244	Error	0.031235	Error	0.317459	Error	0.408861
Median	330	Median	19.05	Median	6.2085	Median	11.36	Median	21.2
Mode	666	Mode	20.2	Mode	5.713	Mode	8.05	Mode	50
Standard		Standard		Standard		Standard		Standard	
Deviation	168.5371	Deviation	2.164946	Deviation	0.702617	Deviation	7.141062	Deviation	9.197104
Sample		Sample		Sample		Sample		Sample	
Variance	28404.76	Variance	4.686989	Variance	0.493671	Variance	50.99476	Variance	84.58672
Kurtosis	-1.14241	Kurtosis	-0.28509	Kurtosis	1.8915	Kurtosis	0.49324	Kurtosis	1.495197
Skewness	0.669956	Skewness	-0.80232	Skewness	0.403612	Skewness	0.90646	Skewness	1.108098
Range	524	Range	9.4	Range	5.219	Range	36.24	Range	45
Minimum	187	Minimum	12.6	Minimum	3.561	Minimum	1.73	Minimum	5
Maximum	711	Maximum	22	Maximum	8.78	Maximum	37.97	Maximum	50
Sum	206568	Sum	9338.5	Sum	3180.025	Sum	6402.45	Sum	11401.6
Count	506	Count	506	Count	506	Count	506	Count	506

• According to my perception from the dataset **TAX** has the highest average around (408.2372) comparing others and comparing every column data the median of **TAX** is higher than other data and value of mode is very low in **NOX**

• From the data,

AGE		INDUS		NOX		DISTANCE	
Skewness	-0.59896	Skewness	0.295022	Skewness	0.729308	Skewness	1.004815

TAX		PTRATIO		AVG_ROOM		LSTAT		AVG_PRICE	
Skewness	0.669956	Skewness	-0.80232	Skewness	0.403612	Skewness	0.90646	Skewness	1.108098

Highly Skewed

<u>+ve</u>

AVG_PRICE - 1.108098

DISTANCE - 1.004815

LSTAT - 0.90646

Here there are top 3 positively skewed values which lies towards left

<u>-ve</u>

PTRATIO - -0.80232

AGE - -0.59896

Here there are negatively skewed values which lies towards Right

• Measure of Dispersion

AGE		INDUS		NOX		DISTANCE	
Sample		Sample		Sample		Sample	
Variance	792.3584	Variance	47.06444	Variance	0.013428	Variance	75.81637
Standard		Standard		Standard		Standard	
Deviation	28.14886	Deviation	6.860353	Deviation	0.115878	Deviation	8.707259

TAX		PTRATIO		AVG_ROOM		LSTAT		AVG_PRICE	
Sample		Sample		Sample		Sample		Sample	
Variance	<mark>28404.76</mark>	Variance	4.686989	Variance	0.493671	Variance	50.99476	Variance	84.58672
Standard		Standard		Standard		Standard		Standard	
Deviation	168.5371	Deviation	2.164946	Deviation	0.702617	Deviation	7.141062	Deviation	9.197104

TAX FACTOR HAS THE HIGHEST VARIANCE (28404.76) SINCE MONEY INVOLVED IN THIS DATA SO WE CAN SEE HIGHER VARIENCE HERE AGAIN THE TAX HAS THE STANDARD DEVIATION (168.5371).

2) Plot a histogram of the Avg_Price variable. What do you infer?

- From above Histogram around (21-25)price has highest value
- From above Histogram around (37-41)price has very low value
- Here in average price histogram representation the avg_price value is arranged in ascending order range and then plotted it initially starts in low range reaches a peak point and again goes back to low range
- Since it has peak point the kurtosis is positive and which can be called as leptokurtic

3) Compute the covariance matrix. Share your observations.

С	RIME_RAT	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	NVG_ROON	LSTAT	AVG_PRICE
CRIME_RA	8.516148									
AGE	0.562915	790.7925								
INDUS	-0.11022	124.2678	46.97143							
NOX	0.000625	2.381212	0.605874	0.013401						
DISTANCE	-0.22986	111.55	35.47971	0.61571	75.66653					
TAX	-8.22932	2397.942	831.7133	13.0205	1333.117	28348.62				
PTRATIO	0.068169	15.90543	5.680855	0.047304	8.743402	167.8208	4.677726			
AVG_ROO	0.056118	-4.74254	-1.88423	-0.02455	-1.28128	-34.5151	-0.53969	0.492695		
LSTAT	-0.88268	120.8384	29.52181	0.48798	30.32539	653.4206	5.7713	-3.07365	50.89398	
AVG_PRIC	1.162012	-97.3962	-30.4605	-0.45451	-30.5008	-724.82	-10.0907	4.484566	-48.3518	84.41956

Here

Positive Covariance means both X and Y increases or decreases at same time.

Negative covariance means when X/Y increases the other variable decreases, X/Y is decreased then other variable will be increased

These are few Positive covariance in the above covariance table

(TAX, TAX)

(DISTANCE, TAX)

(AGE, TAX)

These are few Negative covariance in the above covariance table

(CRIME RATE, INDUS)

(CRIME RATE, DISTANCE)

(DISTANCE, AVG PRICE)

4) Create a correlation matrix of all the variables (Use Data analysis tool pack).

a) Which are the top 3 positively correlated pairs

1ST	DISTANCE AND TAX	0.910228
2ND	INDUS AND NOX	0.763651
3RD	AGE AND NOX	0.73147

b) Which are the top 3 negatively correlated pairs

1ST	LSTAT AND AVG PRICE	-0.73766
2ND	AVG ROOM AND LSTAT	-0.61381
3RD	PTRATIO AND AVG PRICE	-0.50779

5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.

Regression Statistics						
Multiple R	0.737663					
R Square	0.544146					
Adjusted R Square	0.543242					
Standard Error	6.21576					

Observations

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	34.55384	0.562627	61.41515	3.7E-236	33.44846	35.65922	33.44846	35.65922
LSTAT	-0.95005	0.038733	-24.5279	5.08E-88	-1.02615	-0.87395	-1.02615	-0.87395

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and the Residual plot? In Residual Plot

According to my view the graph is not in pattern

506

The values are scattered

The Coefficient of LSTAT is in negative but the value is near to -1

b) Is LSTAT variable significant for the analysis based on your model?

For preparing a **good model**The adjusted r value should be **0.8**

If adjusted r value is **0.9** it is **better**

If the adjusted r value is 1 it is accurate

Since the Adjusted R is Very Low (0.543242) So LSTAT variable is not significant

6). Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable.

Regression Statistics							
Multiple R	0.7991						
R Square	0.638562						
Adjusted R Square	0.637124						
Standard Error	5.540257						
Observations	506						

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	-1.35827	3.172828	-0.4281	0.668765	-7.5919	4.875355	-7.5919	4.875355
AVG_ROOM	5.094788	0.444466	11.46273	3.47E-27	4.22155	5.968026	4.22155	5.968026
					-		-	
LSTAT	-0.64236	0.043731	-14.6887	6.67E-41	0.72828	-0.55644	0.72828	-0.55644

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE? How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

Regression Equation

$$Y = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

Y=Intercept+(AVG_ROOM*7)+(LSTAT*20)

$$Y=-1.35827+(5.094588*7)+(-0.64236*20)$$

Y=21.45808

The company has coted value of 30000USD

But according to this question the value is around 21458.08

Hence the company is **Overcharging**

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

Previous Question Adjusted R square Value

Adjusted R Square	0.543242
-------------------	----------

Adjusted R Square value of this Question

Adjusted R Square	0.637124

Comparing both the Adjusted R square value

The performance of this model (0.637124) is better than previous question (0.543242)

Since the Adjusted value of this part increases comparing previous one so this give better performance

7). Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted Rsquare, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

Regression Statistics					
Multiple R	0.832979				
R Square	0.693854				
Adjusted R					
Square	0.688299				
Standard Error	5.134764				
Observations	506				

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	29.24132	4.817126	6.070283	2.54E-09	19.77683	38.7058	19.77683	38.7058
CRIME_RATE	0.048725	0.078419	0.621346	0.534657	-0.10535	0.202799	-0.10535	0.202799
AGE	0.032771	0.013098	2.501997	0.01267	0.007037	0.058505	0.007037	0.058505
INDUS	0.130551	0.063117	2.068392	0.039121	0.006541	0.254562	0.006541	0.254562
NOX	-10.3212	3.894036	-2.65051	0.008294	-17.972	-2.67034	-17.972	-2.67034
DISTANCE	0.261094	0.067947	3.842603	0.000138	0.127594	0.394593	0.127594	0.394593
TAX	-0.0144	0.003905	-3.68774	0.000251	-0.02207	-0.00673	-0.02207	-0.00673
PTRATIO	-1.07431	0.133602	-8.0411	6.59E-15	-1.3368	-0.81181	-1.3368	-0.81181
AVG_ROOM	4.125409	0.442759	9.317505	3.89E-19	3.255495	4.995324	3.255495	4.995324
LSTAT	-0.60349	0.053081	-11.3691	8.91E-27	-0.70778	-0.49919	-0.70778	-0.49919

- The adjusted R square Value is 0.693854
- This has good adjusted R square value so this model can be used for prediction
- The coefficient of this avg_room is higher comparing others then the distance, indus, crime_rate, age ,tax , LSTAT, PTRATIO, nox respectively
- The Coefficient Value of intercept is 29.24132
- Significant Variable

Distance

Indus

Age

Tax

LSTAT

PTRATIO

Nox

Avg_room

• Insignificant Variable

Crime_Rate (since it has higher p value than 0.05)

8). Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked

• Significant Variable

Distance

Indus

Age

Tax

LSTAT

PTRATIO

Nox

Avg_room

a) Interpret the output of this model.

		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	29.42847	4.804729	6.124898	1.85E-09	19.98839	38.86856	19.98839	38.86856
AVG_ROOM	4.125469	0.442485	9.3234	3.69E-19	3.256096	4.994842	3.256096	4.994842
DISTANCE	0.261506	0.067902	3.851242	0.000133	0.128096	0.394916	0.128096	0.394916
INDUS	0.13071	0.063078	2.072202	0.038762	0.006778	0.254642	0.006778	0.254642
AGE	0.032935	0.013087	2.516606	0.012163	0.007222	0.058648	0.007222	0.058648
TAX	-0.01445	0.003902	-3.70395	0.000236	-0.02212	-0.00679	-0.02212	-0.00679
LSTAT	-0.60516	0.05298	-11.4224	5.42E-27	-0.70925	-0.50107	-0.70925	-0.50107
PTRATIO	-1.0717	0.133454	-8.03053	7.08E-15	-1.33391	-0.8095	-1.33391	-0.8095
NOX	-10.2727	3.890849	-2.64022	0.008546	-17.9172	-2.62816	-17.9172	-2.62816

Regression Statistics					
Multiple R	0.832836				
R Square	0.693615				
Adjusted R					
Square	0.688684				
Standard Error	5.131591				
Observations	506				

Adjusted R Square Value is 0.688684

This model can be used to get good results

Every P value of this model are significant

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

The Adjusted R Square of this model is 0.688684

The Adjusted R Square of Previous Model is 0.688299

Since

0.688684>0.688299

This model performs better than the previous one

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

Values in Accending order

	Coefficients
NOX	-10.2727
PTRATIO	-1.0717
LSTAT	-0.60516
TAX	-0.01445
AGE	0.032935
INDUS	0.13071
DISTANCE	0.261506
AVG_ROOM	4.125469
Intercept	29.42847

Since Nox is negative If Nox increases the value of average price will get decreased

d) Write the regression equation from this model.

The Regression Equation is

$$Y {=} \beta_0 {+} \beta_1 X_{1i} {+} \beta_2 X_{2i} {\dots} \beta_n X_{ni}$$

Y=Intercept + co.eff of age*65.2+co.eff of INDUS*2.31+co.eff of nox*0.538+co.eff of Distance*1+co.eff of tax*296+co.eff of PTRATIO*15.3+co.eff of avg_room*6.575+co.eff of LSTAT*4.98

Y=29.42847+0.032935*65.2+0.13071*2.31-10.2727*0.538+0.261506*1-0.01445*296-1.0717*15.3+4.125469*6.575-0.60516*4.98

Y=30.04961738