

				Sub	ject	Cod	le: I	KEF	603
Roll No:									

Printed Page: 1 of 4

BTECH (SEM VI) THEORY EXAMINATION 2021-22 POWER ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2*10 = 20

Atten	ipt an questions in orier.	0 – 20
Qno	Questions	CO
(a)	What are di/dt and dv/dt ratings of SCRs? What happens if these ratings are exceeded?	1
(b)	Give the merits and demerits of a GTO as compared to a conventional SCR.	1
(c)	Explain the following current ratings of SCR (i) Average ON state current (ii) RMS ON state current	2
(d)	What are the different methods for turning off (Commutation) of an SCR? Draw the power circuit diagram of ClassC and D Commutation methods.	2
(e)	Explain the effect of freewheeling diode in power converters. Also, justify the statement "Freewheeling diode improves the power factor of the system".	3
(f)	Write the comparison between non-circulating current mode and circulating current mode of operation of Dual-Converters.	3
(g)	List the advantages and disadvantages of single-phase half-wave a.c. voltage controllers.	4
(h)	Distinguish between two-stage and multi-stage sequence control of a.c. voltagecontrollers. What are the advantages of multistage sequence control over two-stage sequencecontrol?	4
(i)	Explain Pulse Width Modulation (PWM)techniqueand advantages of SinusoidalPulse Width Modulation (SPWM) technique.	5
(j)	Compare the constructional and operational differences between voltage source and current-source inverters.	5

SECTION B

2. Attempt any *three* of the following: 10*3 = 30

1100011	ipt any united of the following.	$-\mathbf{v}$
Qno	Questions	CO
(a)	Draw the turn-off characteristic of an SCR and explain the mechanism	1
	of turn-off in detail.	
(b)	A thyristor string is formed by the series and parallel connection of	2
	thyristors. The voltage and current ratings of the string are 6 kV, and 4	
	kA respectively. Available thyristors have the voltage and current	
	ratings of 1.2 kV and 1 kA, respectively. The string efficiency is 90%	
	for both the series and parallel connections. Calculate thenumber of	
	thyristors to be connected in series and parallel.	
(c)	A single-phase fully-controlled bridge circuit shown in Fig. 1is used for	3
	obtaining a regulated d.c. output voltage. The RMS value of the a.c.	
	input voltage is 230 V, and the firing angle is maintained at $\pi/3$, so that	
	the load-currentis 4 A.	

				Subject Code: KEE603						
Roll No:										

Printed Page: 2 of 4

BTECH (SEM VI) THEORY EXAMINATION 2021-22 POWER ELECTRONICS

SECTION C

3. Attempt any *one* part of the following: 10*1 = 10

TAUCH	$\mathbf{p}_{\mathbf{i}} \mathbf{m}_{\mathbf{j}} \mathbf{m}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}} \mathbf{m}_{\mathbf{i}} \mathbf{m}_{\mathbf{j}} \mathbf{m}$	
Qno	Questions	CO
(a)	Explain in detail the switching performance of BJT with relevant waveforms.	1
(b)	Latching current for an SCR inserted in between a DC voltage source of 200V and the load is 100 mA. Compute the minimum width of Gate Pulse current required to turn on this SCR in the case of load $R = 20 \Omega$ in series with $L = 0.2 H$.	1

4. Attempt any *one* part of the following: 10*1=10

Qno	Questions	CO
(a)	With the help of a neat circuit diagram and associated waveforms,	2
	discuss theoperation of Buck converter.List the advantages of Buck-	
	Boost converter over Buck and Boost converters.	
(b)	Consider the buck-boost converter of Fig. 2. The input voltageto this	2
	converter is $E_{dc} = 14$ V. The duty cycles $\alpha = 0.6$ and the switching	
	frequency is $25kHz$. The inductance $L = 180$ mH and filter capacitance	
	$C = 220$ mF. The average loadcurrent $I_0 = 1.5$ A.	

Printed Page: 3 of 4 Subject Code: KEE603 **Roll No:**

BTECH (SEM VI) THEORY EXAMINATION 2021-22 **POWER ELECTRONICS**

Attempt any one part of the following: **5.**

10*1 = 10						
	CO					
bridge	3					
ge and						

Qno	Questions							
(a)	Explain the operation of a three-phase, fully-controlled bridge converter with inductive load with the help of suitable voltage and	3						
	current waveforms at $\alpha = 30^{\circ}$ and derive the expression for average load voltage.							
(b)	Describe the working of single-phase fully-controlled bridge converter with Resistive-Inductive (RL) load	3						
	(i) Supply voltage and current, (ii) Load voltage and current.							

10*1 = 106. Attempt any *one* part of the following:

	per unit one pure of the fone wing.									
Qno	Questions	CO								
(a)	A single-phase a.c.voltage controller of Fig. 3 feeds power to a	4								
	resistiveload of 4 Ω from 230 V, 50 Hz source.									
	$ \begin{array}{c c} T_1 & \circ \\ \vdots & \vdots & \vdots \\ P & S & T_2 & P & P \\ \hline P & S & P & P & P \\ \hline P & S & P & P & P & P \\ \hline P & S & P & P & P & P & P \\ \hline P & S & P & P & P & P & P \\ \hline P & S & P & P & P & P & P \\ \hline P & S & P & P & P & P & P \\ \hline P & S & P & P & P & $									
	Fig. 3.									
	Determine and draw the suitable wave diagram of following:									
	(i) the RMS output voltage and current for any firing angle α									
	(ii) the peak values of average and RMS thyristor currents for any									
	firing angle α.									
	(iii) the minimum circuit turn-off time for any firing angle α .									
(b)	Describe the basic principle of working of a single-phase-to-single-	4								
	phasestep down cycloconverter for abridge-type cycloconverter.									

				Sub	ject	Coc	le: I	KEF	603
Roll No:									

BTECH (SEM VI) THEORY EXAMINATION 2021-22 POWER ELECTRONICS

7. Attempt any *one* part of the following:

1()*1	=	10)

Printed Page: 4 of 4

Qno	Questions	CO
(a)	With the help of neat circuit diagram and waveforms, explain briefly	5
	the operation of three-phase bridge inverter with resistive inductive	
	(RL) load in 180° conduction mode.	
(b)	A single-phase half bridge inverter has R Load R= 2 ohm, and DC	5
	source voltage Vs/2=115V. Sketch the waveforms of following	
	(i) Output voltage	
	(ii) Output Current	
	(iii) Thyristor current and diode current	
	(iv) Power delivered to the load due to fundamental current	