MathLog

Ивченков Дмитрий М32341

March 2023

1 задание

- (a) A открыто тогда и только тогда, когда все точки A внутренние.
 - 1. Пусть A открытое. A является окрестностью для каждой своей точки, т.е. для любой точки $x \in A$ существует окрестность $V_x = A$ такая, что $V_x \subseteq A$. Значит, любая точка A внутренняя.
 - 2. Пусть любая точка $x \in A$ внутренняя, т.е. существует окрестность $V_x \subseteq A$. Рассмотрим множество $V = \bigcup_{x \in A} V_x$. V открытое, т.к. является объединением открытых множеств, и V = A, т.к. содержит все точки $x \in A$ вместе с окрестностями $V_x \subseteq A$. Значит, A открытое.

 $A^{\circ} = \{x \mid x \in A \& x$ – внутренняя точка $\}$

- 1. $A^{\circ} \subseteq A$, т.е. для любой точки $x \in A^{\circ}$ верно $x \in A$.
- 2. A° открытое, для любой точки $x\in A^\circ$ существует окрестность $V_x\subseteq A^\circ\subseteq A.$ Тогда $V_x\subseteq A$, т.е. x внутренняя точка A.
- (b)
- (c)
- (d) Пусть $A \subseteq B$. Как связаны A° и B° , а также \overline{A} и \overline{B} ?
 - 1. $A^{\circ}=\{x\mid x\in A\ \&\ \text{существует окрестность}\ V_x\subseteq A\}$ $A\subseteq B,$ тогда для любого $x\in A$ верно $x\in B$ и $V_x\subseteq A\subseteq B,$ т.е. все внутренние точки A являются также внутренними точками B. Таким образом, $A^{\circ}\subseteq B^{\circ}$
 - 2. $\overline{A}=\{x\mid x$ внутренняя или граничная точка $A\}$ В любой окрестности точки $x\in\overline{A}$ есть точки A. Если $A\subseteq B$, то в любой окрестности x есть точки B. Тогда $x\in\overline{B}$. Таким образом, $\overline{A}\subseteq\overline{B}$

- (e) Верно ли $(A\cap B)^\circ=A^\circ\cap B^\circ$ и $(A\cup B)^\circ=A^\circ\cup B^\circ$?
 - 1. $(A \cap B)^{\circ} = \{x \mid x \in A \cap B \& x$ внутренняя точка $A \cap B\} = \{x \mid x \in A \cap B \&$ существует окрестность $V_x \subseteq A \cap B\} = \{x \mid x \in A \& x \in B \& V_x \subseteq A \& V_x \subseteq B\} = \{x \mid x \in A \& x$ внутренняя точка $A\} \cap \{x \mid x \in B \& x$ внутренняя точка $B\} = A^{\circ} \cap B^{\circ}$ $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
 - 2. Пусть A:=[0,1], B:=[1,2]. Тогда $(A\cup B)^\circ=([0,1]\cup[1,2])^\circ=[0,2]^\circ=(0,2)$ $A^\circ\cup B^\circ=[0,1]^\circ\cup[1,2]^\circ=(0,1)\cup(1,2)$ $(A\cup B)^\circ\neq A^\circ\cup B^\circ$
- (f) Покажите, что $\overline{(\overline{A^\circ})^\circ} = \overline{A^\circ}$ $\overline{A^\circ} = \{x \mid x \text{внутренняя или граничная точка } A^\circ\}$ $(\overline{A^\circ})^\circ = \{x \mid x \text{внутренняя точка } \overline{A^\circ}\} = \{x \mid x \text{внутренняя точка } A^\circ\}$ $\overline{(\overline{A^\circ})^\circ} = \{x \mid x \text{внутренняя или граничная точка } (\overline{A^\circ})^\circ\} =$ $= \{x \mid x \text{внутренняя или граничная точка } A^\circ\} = \overline{A^\circ}$ Таким образом, $\overline{(\overline{A^\circ})^\circ} = \overline{A^\circ}$

2 задание

- (a) Связны ли \mathbb{Q} и $\mathbb{R} \setminus \mathbb{Q}$ как топологические подпространства \mathbb{R} ?
 - 1. Пусть $A:=(-\infty,\sqrt{2})\cap\mathbb{Q}, B:=(\sqrt{2},+\infty)\cap\mathbb{Q}.$ Тогда $A\cup B=\mathbb{Q}, A\cap B=\varnothing$ и $A\neq\varnothing, B\neq\varnothing$ Таким образом, \mathbb{Q} несвязно.
 - 2. Пусть $A:=(-\infty,0)\cap\mathbb{R}\setminus\mathbb{Q}, B:=(0,+\infty)\cap\mathbb{R}\setminus\mathbb{Q}.$ Тогда $A\cup B=\mathbb{R}\setminus\mathbb{Q}, A\cap B=\varnothing$ и $A\neq\varnothing, B\neq\varnothing$ Таким образом, $\mathbb{R}\setminus\mathbb{Q}$ несвязно.

7 задание

- (7) A подмножество упорядоченного множества
 - (\prec) отношение частичного порядка.

Даны высказывания:

- (а) наличие наибольшего элемента
- (б) наличие супремума
- (в) наличие единственного максимального элемента

Выполнено ли в общем случае, что

1. (а) влечёт (б) – Да.

Пусть x — наибольший элемент A, т.е. при всех $a \in A$ выполнено $a \prec x$.

Тогда x является верхней гранью множества A и содержится в нём. Значит, не существует такой верхней грани y, что $y \leq x$, потому что для $x \in A$ не выполняется $x \leq y$.

Таким образом, x – наименьшая верхняя грань, т.е. супремум.

2. (а) влечёт (в) – Да.

Пусть x — наибольший элемент A и существует другой наибольший элемент $y \in A$.

Тогда верно, что $x \leq y$ и $y \leq x$. По антисимметричности (\leq) получаем x = y, т.е. наибольший элемент единственен.

Наибольший элемент также является максимальным, т.к. для него выполнено определение максимального элемента:

при всех $a \in A$: $x \leq a$ влечёт a = x

Таким образом, x – единственный максимальный элемент.

3. (б) влечёт (а) – Нет.

Пусть $A = (-\infty, 0)$ с отношением (\leq).

Тогда $\sup A = 0$, но наибольшего элемента нет.

4. (б) влечёт (в) – Heт.

Рассмотрим тот же пример. Супремум есть, но максимального элемента нет.

5. (в) влечёт (a) – Да.

Докажем от противного. Пусть m – единственный максимальный элемент A и нет наибольшего элемента.

- 5.1. В таком случае существует x, не сравнимый с m, т.к. иначе для всех $a \in A$ было бы верно $a \leq m$ и m был бы наибольшим элементом, что противоречит условию.
- 5.2. Если не существует элементов, больших x, то для всех $a \in A$: $x \preceq a$ влечёт a = x, т.е. x является максимальным, что противоречит единственности m.
- 5.3. Если существуют элементы, большие x, то будем рассматривать их, пока не найдём самый большой элемент y в этой цепочке.
- 5.4. Если y не сравним с m, то по пункту (5.2) снова возникает противоречие с единственностью максимального элемента. Если y сравним с m, то либо y=m, либо $y \leq m$.
- 5.5. Если y=m, то было бы верно $x \leq y=m,$ что противоречит несравнимости x и m.

5.6. Если $y \leq m$, то по транзитивности (\leq) следует $x \leq y \leq m$, т.е. $x \leq m$, что снова противоречит несравнимости x и m.

Во всех случаях получили противоречия.

Таким образом, в А есть наибольший элемент.

(в) влечёт (б) – Да.
 Ранее доказано, что (в) влечёт (а) и (а) влечёт (б).
 Таким образом, (в) влечёт (б).

8 задание

(a) Монотонность: пусть $a \leq b, c \leq d$, тогда $a+c \leq b+d$, $a \cdot c \leq b \cdot d$ $a+c=\sup\{a,c\}=\max(upb\{a,c\})=x$ — наим. верхняя грань a и c. $b+d=\sup\{b,d\}=\max(upb\{b,d\})=y$ — наим. верхняя грань b и d. Получаем $a \leq b \leq y$ и $c \leq d \leq y$, т.е. y — верхняя грань a и c. x — наименьшая верхняя грань a и c, значит, $x \leq y$. x=a+c, y=b+d. Таким образом, $a+c \leq b+d$.

Аналогично

 $a\cdot c=\inf\{a,c\}=$ наиб $(lwb\{a,c\})=u$ – наиб. нижняя грань a и c. $b\cdot d=\inf\{b,d\}=$ наиб $(lwb\{b,d\})=v$ – наиб. нижняя грань b и d. Получаем $u\preceq a\preceq b$ и $u\preceq c\preceq d$, т.е. u – нижняя грань b и d. v – наибольшая нижняя грань b и d, значит, $u\preceq v$. $u=a\cdot c,\ v=b\cdot d$. Таким образом, $a\cdot c\preceq b\cdot d$.

(b) Законы поглощения: $a\cdot(a+b)=a,\ a+(a\cdot b)=a$ $a\cdot(a+b)=\inf\{a,\sup\{a,b\}\}$ $\sup\{a,b\}=\max\{x\mid a\preceq x,b\preceq x\}$ $a\cdot(a+b)=\inf\{a,\sup\{a,b\}\}=\inf\{a,x\}=\max\{y\mid y\preceq a\preceq x\}=a$ Таким образом, $a\cdot(a+b)=a$.

Аналогично

$$a+(a\cdot b)=\sup\{a,\inf\{a,b\}\}$$

$$\inf\{a,b\}=\max\{u\mid u\preceq a,u\preceq b\}$$

$$a+(a\cdot b)=\sup\{a,\inf\{a,b\}\}=\sup\{a,u\}=\max\{v\mid u\preceq a\preceq v\}=a$$
 Таким образом, $a+(a\cdot b)=a$.

(c) $a \leq b$ выполнено тогда и только тогда, когда $a \rightarrow b = 1$

1. Пусть $a \leq b$. Тогда $a \cdot 1 = \inf\{a,1\} = \max\{x \mid x \leq a \leq 1\} = a \leq b, \text{ т.е. } a \cdot 1 \leq b$ $a \to b = \max\{c \mid a \cdot c \leq b\} = 1, \text{ т.к. } 1 - \max$ решётки и $a \cdot 1 \leq b$.

Таким образом, $a \rightarrow b = 1$.

2. Пусть $a \to b = 1$. Тогда $a \cdot 1 \leq b$, т.е. $a \cdot 1 = \inf\{a, 1\} = a \leq b$ Таким образом, $a \leq b$.

(d) Из $a \leq b$ следует $b \rightarrow c \leq a \rightarrow c$ и $c \rightarrow a \leq c \rightarrow b$

1. Пусть $a \leq b$. $b \to c \leq b \to c$, по монотонности получаем $a \cdot (b \to c) \leq b \cdot (b \to c)$ По определению $b \cdot (b \to c) \leq c$, тогда $a \cdot (b \to c) \leq c$ $a \to c = \text{наиб}\{x \mid a \cdot x \leq c\}$ и $a \cdot (b \to c) \leq c$, тогда $b \to c \leq a \to c$

П

2. Пусть $a \leq b$. По определению $c \cdot (c \to a) \leq a \leq b$ $c \to b = \text{наиб}\{x \mid c \cdot x \leq b\} \text{ и } c \cdot (c \to a) \leq b, \text{ тогда}$ $c \to a \leq c \to b$

(e) Из $a \leq b \to c$ следует $a \cdot b \leq c$ Пусть $a \leq b \to c$ $b \leq b$, по монотонности получаем $b \cdot a = a \cdot b \leq b \cdot (b \to c)$ По определению $b \cdot (b \to c) \leq c$ Таким образом, $a \cdot b \prec c$

(f) $b \leq a \rightarrow b$ и $a \rightarrow (b \rightarrow a) = 1$

- 1. $\inf(a,b)=a\cdot b\preceq b$ $a\to b=$ наиб $\{x\mid a\cdot x\preceq b\}$ и $a\cdot b\preceq b$, тогда $b\preceq a\to b$
- 2. из (1) получаем $a\preceq b\to a$ $\inf\{a,x\}=a\cdot x\preceq a\preceq b\to a$ для любого x, тогда $a\to (b\to a)=\max\{x\mid a\cdot x\preceq b\to a\}=1$
- (g) $a \to b \preceq ((a \to (b \to c)) \to (a \to c))$ 1. $x \cdot y \cdot z = \inf\{x, y, z\} \preceq \inf\{x, y\} = x \cdot y$ для любых x, y, z.

2. по (1) пусть
$$x:=a,y:=(a\to b), z:=a\to (b\to c),$$
 тогда $a\cdot (a\to b)\cdot (a\to (b\to c))\preceq a\cdot (a\to b)$ По определению $a\cdot (a\to b)\preceq b,$ тогда

$$a \cdot (a \rightarrow b) \cdot (a \rightarrow (b \rightarrow c)) \leq b$$

3. по (1) пусть
$$x:=a,y:=(a\to (b\to c)), z:=a\to b$$
, тогда $a\cdot (a\to b)\cdot (a\to (b\to c))\preceq a\cdot (a\to (b\to c))$ По определению $a\cdot (a\to (b\to c))\preceq b\to c$, тогда $a\cdot (a\to b)\cdot (a\to (b\to c))\preceq b\to c$

4. из (2) и (3) получаем
$$a \cdot (a \to b) \cdot (a \to (b \to c)) \leq b \cdot (b \to c)$$

По определению
$$b\cdot(b\to c)\preceq c$$
, тогда $a\cdot(a\to b)\cdot(a\to(b\to c))\preceq c$

5.
$$a \to c = \text{наиб}\{x \mid a \cdot x \leq c\}$$
 и (4), тогда
$$(a \to b) \cdot (a \to (b \to c)) \leq a \to c, \text{ т.е.}$$

$$(a \to (b \to c)) \cdot (a \to b) \leq a \to c$$

6.
$$(a \to (b \to c)) \to (a \to c) = \text{наиб}\{x \mid (a \to (b \to c)) \cdot x \preceq a \to c\}$$
 и (5), тогда
$$a \to b \preceq (a \to (b \to c)) \to (a \to c)$$

П

(h)
$$a \leq b \rightarrow (a \cdot b)$$
 и $a \rightarrow (b \rightarrow (a \cdot b)) = 1$

1.
$$a\cdot b=b\cdot a\preceq a\cdot b$$
 $b\to (a\cdot b)=$ наиб $\{x\mid b\cdot x\preceq a\cdot b\}$, тогда $a\preceq b\to (a\cdot b)$

2. из (1) получаем
$$a \leq b \to (a \cdot b)$$
 $\inf\{a,x\} = a \cdot x \leq a \leq b \to a \cdot b$ для любого x , тогда $a \to (b \to (a \cdot b)) = \text{наи6}\{x \mid a \cdot x \leq b \to (a \cdot b)\} = 1$

(i)
$$a \to c \leq (b \to c) \to ((a+b) \to c)$$

1.
$$x \cdot y \cdot z = \inf\{x, y, z\} \leq \inf\{x, y\} = x \cdot y$$
 для любых x, y, z

2. по (1) пусть
$$x:=a,y:=(a\to c), z:=(b\to c),$$
 тогда $a\cdot (a\to c)\cdot (b\to c)\preceq a\cdot (a\to c)$ По определению $a\cdot (a\to c)\preceq c,$ тогда $a\cdot (a\to c)\cdot (b\to c)\preceq c$

3.
$$(a \to c) \cdot (b \to c) \to c =$$
 наиб $\{x \mid (a \to c) \cdot (b \to c) \cdot x \preceq c\}$ и (2) , тогда $a \preceq (a \to c) \cdot (b \to c) \to c$

4. Аналогично пунктам (2) и (3)
$$b\cdot (a\to c)\cdot (b\to c)\preceq c$$

$$b\preceq (a\to c)\cdot (b\to c)\to c$$

5.
$$a \leq (a \to c) \cdot (b \to c) \to c$$
 и $b \leq (a \to c) \cdot (b \to c) \to c$, тогда $a + b \leq (a \to c) \cdot (b \to c) \to c$

6.
$$(a \to c) \cdot (b \to c) \to c = \text{наиб}\{x \mid (a \to c) \cdot (b \to c) \cdot x \preceq c\}$$
 и (5), тогда $(a \to c) \cdot (b \to c) \cdot (a + b) \preceq c$

7.
$$(a+b) \to c =$$
 наиб $\{x \mid (a+b) \cdot x \leq c\}$ и (6) , тогда $(a \to c) \cdot (b \to c) \leq (a+b) \to c$

8.
$$(b \to c) \to ((a+b) \to c) =$$
 наиб $\{x \mid (b \to c) \cdot x \preceq ((a+b) \to c)\}$ и (7), тогда $a \to c \preceq (b \to c) \to ((a+b) \to c)$

(j) Импликативная решётка дистрибутивна: $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$

Пусть a, b, c – произвольные элементы импликативной решётки.

Для краткости обозначим
$$d := (a \cdot c) + (b \cdot c)$$

$$a \cdot c \leq \sup\{a \cdot c, b \cdot c\} = (a \cdot c) + (b \cdot c) = d$$
, r.e. $a \cdot c \leq d$

$$c \to d = \text{наиб}\{x \mid c \cdot x \preceq d\}$$
 и $c \cdot a = a \cdot c \preceq d$, значит $a \preceq c \to d$

Аналогично, $b \cdot c \preceq d$ и $b \preceq c \rightarrow d$

$$a \leq c \rightarrow d$$
 и $b \leq c \rightarrow d$, значит $a+b = \sup\{a,b\} \leq c \rightarrow d$

$$c \preceq c$$
 и $a+b \preceq c \to d,$ по монотонности получаем $c \cdot (a+b) \preceq c \cdot (c \to d)$

По определению $c \to d$ получаем $c \cdot (c \to d) \preceq d$.

Тогда
$$c \cdot (a+b) \leq c \cdot (c \to d) \leq d$$
, т.е. $c \cdot (a+b) \leq d$.

$$a \leq \sup\{a, b\} = a + b$$

$$c \leq c$$
 и $a \leq a+b$, по монотонности получаем $c \cdot a = a \cdot c \leq c \cdot (a+b)$

Аналогично, по монотонности получаем $c \cdot b = b \cdot c \leq c \cdot (a+b)$

$$\sup\{a \cdot c, b \cdot c\} = (a \cdot c) + (b \cdot c) = d \le c \cdot (a+b)$$

Итого, получили $d \leq c \cdot (a+b) \leq d$

Таким образом, $c \cdot (a+b) = d$, т.е.

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

9 задание

(9) Докажите, основываясь на формулах предыдущих заданий, что ИИВ корректно, если в качестве модели выбрать алгебру Гейтинга.

Корректность значит, что если $\vdash \alpha$, то $[\![\alpha]\!]=1$. Выберем в качестве модели алгебру Гейтинга.

Пусть α , β , γ – произвольные высказывания в ИИВ.

Тогда пусть $[\![\alpha]\!]:=a,\,[\![\beta]\!]:=b,\,[\![\gamma]\!]:=c.$

Алгебра Гейтинга – это импликативная решётка, её свойства (8a)-(8j) доказаны в задании 8. Докажем, что оценки аксиом ИИВ (И1)-(И10) в алгебре Гейтинга истинны.

(И1)
$$\alpha \to \beta \to \alpha$$

(8f) $a \to (b \to c) = 1$
 $[\alpha \to \beta \to \alpha] = a \to (b \to a) = 1$ по (8f)

$$\begin{aligned} &(\text{И2}) \ \, (\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) \\ &(\text{8g)} \ \, a \to b \preceq (a \to (b \to c)) \to (a \to c) \\ &\text{из (8g) следует, что для любого } x \\ &(a \to b) \cdot x \preceq (a \to (b \to c)) \to (a \to c) \\ &\text{Тогда} \\ &(a \to b) \to ((a \to (b \to c)) \to (a \to c)) = \\ &= \text{наиб} \{x \mid (a \to b) \cdot x \preceq (a \to (b \to c)) \to (a \to c)\} = 1 \\ &\text{Таким образом,} \\ & \| (\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) \| = \\ &= (a \to b) \to (a \to (b \to c)) \to (a \to c) = 1 \end{aligned}$$

(M3)
$$\alpha \to \beta \to \alpha \& \beta$$

(8h) $a \to (b \to (a \cdot b)) = 1$
 $\llbracket \alpha \to \beta \to \alpha \& \beta \rrbracket = a \to (b \to (a \cdot b)) = 1 \text{ no (8h)}$

- (И4) $\alpha \& \beta \to \alpha$ (8c) $a \leq b$ выполнено тогда и только тогда, когда $a \to b = 1$ $a \cdot b \leq a$, тогда по (8c) $(a \cdot b) \to a = 1$ $[\![\alpha \& \beta \to \alpha]\!] = (a \cdot b) \to a = 1$
- (И5) $\alpha\&\beta\to\beta$ Аналогично, $a\cdot b\preceq b$, тогда по (8c) $(a\cdot b)\to b=1$ $[\![\alpha\&\beta\to\beta]\!]=(a\cdot b)\to b=1$
- (Иб) $\alpha \to \alpha \lor \beta$ $a \preceq a+b, \text{ тогда по (8c) } a \to (a+b)=1$ $[\![\alpha \to \alpha \lor \beta]\!] = a \to (a+b)=1$
- (И7) $\beta \to \alpha \vee \beta$ Аналогично, $b \preceq a+b$, тогда по (8c) $b \to (a+b)=1$ $[\![\beta \to \alpha \vee \beta]\!] = b \to (a+b)=1$

$$\begin{split} &(a \to c) \to ((b \to c) \to ((a+b) \to c)) = \\ &= \text{наиб}\{x \mid (a \to c) \cdot x \preceq (b \to c) \to ((a+b) \to c)\} = 1 \\ \text{Таким образом,} \\ & [\![(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)]\!] = \\ &= (a \to c) \to ((b \to c) \to ((a+b) \to c)) = 1 \end{split}$$

(И9) $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ в ВНК-интерпретации (И9) можно записать как $(\alpha \to \beta) \to (\alpha \to (\beta \to \bot)) \to (\alpha \to \bot)$ и воспользоваться аксиомой (И2) $[(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha)] =$ $= [(\alpha \to \beta) \to (\alpha \to (\beta \to \bot)) \to (\alpha \to \bot)] =$ $= (a \to b) \to ((a \to (b \to 0)) \to (a \to 0)) = 1$

(И10)
$$\alpha \to \neg \alpha \to \beta$$
 в ВНК-интерпретации можно записать как $\alpha \to (\alpha \to \bot) \to \beta$ (8c) $a \le b$ выполнено тогда и только тогда, когда $a \to b = 1$ по определению $(a \to 0) \cdot a \prec 0 \prec b$

$$(a \to 0) \to b = \text{наиб}\{x \mid (a \to 0) \cdot x \leq b\}, \text{ значит}$$

$$a \leq (a \to 0) \to b$$
 тогда по (8c) $a \to ((a \to 0) \to b) = 1$
$$\llbracket \alpha \to \neg \alpha \to \beta \rrbracket = \llbracket \alpha \to (\alpha \to \bot) \to \beta \rrbracket = a \to ((a \to 0) \to b) = 1$$

Таким образом, модель алгебры Гейтинга корректна для аксиом ИИВ.

Докажем теперь, что правило вывода Modus Ponens $\alpha, \alpha \to \beta \vdash \beta$ выполняется для модели алгебры Гейтинга.

Таким образом, правило Modus Ponens выполняется.

Если высказывание α доказуемо в ИИВ, то существует его доказательство, состоящее из последовательности схем аксиом (И1)-(И10) и применений Modus Ponens (MP). Схемы аксиом и правило Modus Ponens корректны в модели алгебры Гейтинга, значит если высказывание доказуемо, то оно общезначимо в этой модели, т.е.

если
$$\vdash \alpha$$
, то $\llbracket \alpha \rrbracket = 1$.

Таким образом, ИИВ корректно, если в качестве модели выбрать алгебру Гейтинга.

12 задание

(12) Покажите, что в дистрибутивной решётке всегда $a + (b \cdot c) = (a + b) \cdot (a + c)$.

По дистрибутивности

$$(a+b) \cdot (a+c) = ((a+b) \cdot a) + ((a+b) \cdot c)$$

По закону поглощения и по дистрибутивности

$$((a+b)\cdot a)+((a+b)\cdot c)=a+((a\cdot c)+(b\cdot c))$$

По ассоциативности сложения

$$a + ((a \cdot c) + (b \cdot c)) = (a + (a \cdot c)) + (b \cdot c)$$

По закону поглощения

$$(a + (a \cdot c)) + (b \cdot c) = a + (b \cdot c)$$

Таким образом, $a + (b \cdot c) = (a + b) \cdot (a + c)$.

13 задание

(13) Покажите, что (\preceq) – отношение предпорядка, а (\approx) – отношение эквивалентности.

$$\alpha \preceq \beta := \alpha \vdash \beta$$

- 1. $\alpha \vdash \alpha$ верно, т.е. верно $\alpha \preceq \alpha$ (\preceq) рефлексивно.
- 2. Пусть $\alpha \leq \beta$ и $\beta \leq \gamma$. Тогда
 - 2.1. $\alpha \vdash \beta$, по теореме о дедукции $\vdash \alpha \rightarrow \beta$
 - 2.2. $\beta \vdash \gamma$, по теореме о дедукции $\vdash \beta \rightarrow \gamma$
 - 2.3. по схеме аксиом (2)

$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

2.4. по схеме аксиом (1)

$$(\beta \to \gamma) \to \alpha \to (\beta \to \gamma)$$

2.5. Modus Ponens (2.2) и (2.4)

$$\alpha \to \beta \to \gamma$$

2.6. Modus Ponens (2.1) и (2.3)

$$(\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

2.7. Modus Ponens (2.5) и (2.6)

$$\vdash \alpha \rightarrow \gamma$$

по теореме о дедукции $\alpha \vdash \gamma$, тогда

$$\alpha \leq \gamma - (\leq)$$
 транзитивно

Таким образом, (\leq) – отношение предпорядка.

```
\alpha \approx \beta, если \alpha \leq \beta и \beta \leq \alpha
```

- 1. $\alpha \leq \alpha$, тогда $\alpha \approx \alpha$ (\approx) рефлексивно.
- 2. $\alpha \approx \beta$, если $\alpha \leq \beta$ и $\beta \leq \alpha$ $\beta \approx \alpha$, если $\beta \leq \alpha$ и $\alpha \leq \beta$ Тогда $\alpha \approx \beta$ и $\beta \approx \alpha$ (\approx) симметрично.
- 3. Пусть $\alpha \approx \beta$ и $\beta \approx \gamma$. Тогда

2.1.
$$\alpha \leq \beta$$
, r.e. $\alpha \vdash \beta$, r.e. $\vdash \alpha \rightarrow \beta$

2.2.
$$\beta \leq \alpha$$
, r.e. $\beta \vdash \alpha$, r.e. $\vdash \beta \rightarrow \alpha$

2.3.
$$\beta \leq \gamma$$
, T.e. $\beta \vdash \gamma$, T.e. $\vdash \beta \rightarrow \gamma$

2.4.
$$\gamma \leq \beta$$
, r.e. $\gamma \vdash \beta$, r.e. $\vdash \gamma \rightarrow \beta$

$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

$$(\beta \to \gamma) \to \alpha \to (\beta \to \gamma)$$

2.7. Modus Ponens (2.3) и (2.6)

$$\alpha \to \beta \to \gamma$$

2.8. Modus Ponens (2.1) и (2.5)

$$(\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

2.9. Modus Ponens (2.7) и (2.8)

$$\alpha \to \gamma$$

2.10. по схеме аксиом (2)

$$(\gamma \to \beta) \to (\gamma \to \beta \to \alpha) \to (\gamma \to \alpha)$$

2.11. по схеме аксиом (1)

$$(\beta \to \alpha) \to \gamma \to (\beta \to \alpha)$$

2.12. Modus Ponens (2.2) и (2.11)

$$\gamma \to \beta \to \alpha$$

2.13. Modus Ponens (2.4) и (2.10)

$$(\gamma \to \beta \to \alpha) \to (\gamma \to \alpha)$$

2.14. Modus Ponens (2.12) и (2.13)

$$\gamma \to \alpha$$

Получаем $\vdash \alpha \to \gamma$, по теореме о дедукции $\alpha \vdash \gamma$, т.е. $\alpha \preceq \gamma$ Аналогично $\vdash \gamma \to \alpha$, по теореме о дедукции $\gamma \vdash \alpha$, т.е. $\gamma \preceq \alpha$ $\alpha \approx \gamma - (\approx)$ транзитивно.

Таким образом, (\approx) – отношение эквивалентности.