1ACA RM 1,54109

757

NACA

RESEARCH MEMORANDUM

EFFECT OF A WING LEADING-EDGE FLAP AND CHORD-EXTENSION

ON THE HIGH SUBSONIC CONTROL CHARACTERISTICS OF A

SPOILER-SLOT-DEFLECTOR CONTROL LOCATED

AT TWO SPANWISE POSITIONS

By Robert F. Thompson and Robert T. Taylor

Langley Aeronautical Laboratory Langley Field, Va.

CLASSIFIED DOCUMENT

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

November 19, 1954

NACA RM L54109

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

EFFECT OF A WING LEADING-EDGE FLAP AND CHORD-EXTENSION
ON THE HIGH SUBSONIC CONTROL CHARACTERISTICS OF A

SPOILER-SLOT-DEFLECTOR CONTROL LOCATED

AT TWO SPANWISE POSITIONS

By Robert F. Thompson and Robert T. Taylor

SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of a wing leading-edge modification on the effectiveness of a spoiler-slot-deflector control. The control was tested on one semispan of a sting-mounted wing-fuselage model having a wing of aspect ratio 4, taper ratio 0.3, 450 sweepback, and NACA 65A006 airfoil sections. The wing leading-edge modification was the optimum configuration from a previous investigation and consisted of a chordextension over the outboard 35 percent of the semispan in combination with a full-span leading-edge flap deflected 60. The spoiler-slotdeflector control having equal spoiler and deflector projection was also chosen on the basis of a previous investigation. The control spanned 44 percent of wing semispan and was tested at two spanwise locations. A few comparative tests were made with the spoiler part of the control used as an unvented flap-type spoiler. Control projections up to 10 percent of the local wing chord were tested through an angle-of-attack range which varied with Mach number and a Mach number range from 0.40 to 0.94. Complete results are presented in tabular form as increments in aerodynamic coefficients due to control projection. A representative part of the data is presented graphically, and results are discussed on the basis of these data.

Modifying the wing leading edge generally had a beneficial effect on the static lateral control characteristics. On both the plain and modified wing, the spoiler-slot-deflector control was effective in producing rolling-moment coefficients over a greater angle-of-attack range than the plain flap-type spoiler and, in general, both types of controls were more effective when located at the inboard spanwise position. Except

for pitching moment, the increment in aerodynamic coefficient varied fairly regularly with control projection and the general shape of the curves was little affected by wing leading-edge modification.

INTRODUCTION

Detailed wind-tunnel investigations have shown that, for certain thin sweptback wings, leading-edge separation combines with a spanwise pressure gradient to create a vortex-type flow over most of the lift range. This flow can result in undesirable static longitudinal stability characteristics for certain aspect ratios and can lead to the objectionable characteristic termed "pitch-up" found in many current airplane designs having thin sweptback wings. A detailed discussion of this flow phenomenon is given in reference 1. Outboard leading-edge chord-extensions have been effective in improving the longitudinal-stability characteristics of wings of this type (ref. 2). In addition, appreciable improvement in the lift-drag ratio for thin sweptback wings up to Mach number of 0.90 was obtained with a deflected leading-edge flap (refs. 3 and 4). The investigation of reference 5, therefore, was made to determine to what extent these gains in longitudinal stability and lift-drag ratio could be combined at high subsonic speeds. For the model investigated, a leadingedge chord-extension over the outboard 35 percent of the semispan in combination with a full-span leading-edge flap deflected 60 gave best results from overall considerations of stability and performance. The purpose of the present investigation was to determine the effect of this wing leading-edge modification on the control characteristics of a spoiler control.

The control tested was chosen on the basis of the investigation made in reference 6. Results of reference 6 indicated that for speeds up to a Mach number of 0.91, a flap-type spoiler-slot-deflector control was effective in producing rolling moments over a greater angle-of-attack range than an unvented spoiler alone. Since flap-type spoilers are desirable on thin wings from a physical standpoint, the present investigation was made primarily with this flap-type spoiler-slot-deflector control. A few comparative tests were made with the spoiler part of the control used as a plain flap-type spoiler.

The present investigation was made on the wing-fuselage model used in reference 5 to determine the effects of the optimum wing leading-edge modification obtained in reference 5 on the control characteristics of a flap-type spoiler-slot-deflector control located at two spanwise positions. The wing had an aspect ratio of 4, a taper ratio of 0.3, 45° of sweepback of the quarter-chord line, and streamwise NACA 65A006 airfoil sections. Tests were made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.40 to 0.94 and an angle-of-attack range from -2°

to 24° at the lower speeds and -2° to 10° at a Mach number of 0.94. Complete incremental force and moment coefficients due to control projection are listed in tabular form and a representative part of the data is presented graphically.

SYMBOLS

The forces and moments measured on the model are presented about the wind axes which, for the conditions of these tests (zero yaw), correspond to the stability axes. The origin of the axes was in the plane of symmetry at a longitudinal position corresponding to the projection of the quarter-chord point of the wing mean aerodynamic chord (fig. 1).

All force and moment coefficients presented are based on the plan form of the basic wing without chord-extensions. The area of the chord-extensions was 3.8 percent of the basic wing area. Incremental effects due to control projection were produced by a control on only the right semispan of the complete wing.

	32 32 32 33 33 33 33 33 33 33 33 33 33 3
$\mathtt{C}_{\mathbf{L}}$	lift coefficient, Lift/qS
c_D	drag coefficient, Drag/qS
c_{m}	pitching-moment coefficient, Pitching moment/qSc
c_{i}	rolling-moment coefficient, Rolling moment/qSb
c_n	yawing-moment coefficient, Yawing moment/qSb
$\mathtt{C}_{\underline{Y}}$	lateral-force coefficient, Lateral force/qS (positive to right)
Δ	prefix signifying increment of coefficient due to control projection
đ	free-stream dynamic pressure, $\frac{1}{2}\rho V^2$, lb/sq ft
S	wing area before leading-edge modification, 2.25 sq ft

c mean aerodynamic chord of basic wing, 0.823 ft

c local wing chord of basic wing, ft

wing span, 3 ft

ъ

h local maximum height of control above wing surface, ft

- R Reynolds number based on c
- M free-stream Mach number
- V free-stream velocity, ft/sec
- ρ mass density of air, slugs/cu ft
- y_i spanwise location of inboard end of control, measured perpendicular to plane of symmetry, ft
- δ control projection, h/c
- angle of attack of fuselage center line and wing-chord line, deg

Subscripts:

- s spoiler, part of control deflected from upper surface
- d deflector, part of control deflected from lower surface
- avg average

MODEL AND APPARATUS

A drawing of the wing-fuselage model is given in figure 1 and a photograph of the model mounted in the tunnel is shown as figure 2. Ordinates of the fuselage are given in table 1.

The wing had 45° of sweepback referred to the quarter-chord line, an aspect ratio of 4, a taper ratio of 0.3, and NACA 65A006 airfoil sections parallel to the plane of symmetry. The wing was made of solid aluminum alloy and the stiffness was reduced in providing for the leading-edge flap and the slot for the control.

Provision for the wing leading-edge modification was made by cutting the wing along the 20-percent-chord line, and leading-edge flap angles of 0° and 6° were obtained with preset steel inserts. After setting a desired flap angle, the groove in the wing was filled and finished flush to the wing surface. The chord-extension was made by using a larger insert to extend the nose section forward 0.10c. The two segments of the airfoil (nose and trailing-edge sections) were joined by a smooth fairing. Angular distortion of the flap and chord-extension under load was checked analytically and found to be negligible.

The spoiler-slot-deflector control consisted of the following: a flap-type spoiler with the hinge line along the upper-surface 55-percent-chord line and extending 15 percent of the wing chord rearward, a flap-type deflector with the hinge line along the lower-surface 70-percent-chord line and extending 15 percent of the wing chord forward, and a chordwise opening (slot) between the two hinge lines equal to the spoiler and deflector in span except for a narrow stiffening web at the midpoint of the control. For the plain flap-type spoiler, the deflector was set at zero projection and effectively sealed the slot through the wing. The controls spanned 44 percent of the wing semispan and were tested on the right wing at spanwise stations of $\frac{y_1}{b/2} = 0.25$ and 0.47. Control projection was obtained with interchangeable plates preset to the desired spoiler or deflector projection. At zero projection, the spoiler and

spoiler or deflector projection. At zero projection, the spoiler and deflector maintained the original airfoil contour. The leading edge of the deflector was sharpened to facilitate flow through the control slot at low projections. Spoiler projection was approximately equal to deflector projection for all tests with the spoiler-slot-deflector control.

CORRECTIONS

Blockage corrections were determined by the method of reference 7 and were applied to the Mach numbers and dynamic pressures. Jet-boundary corrections, applied to the angle of attack and drag, were calculated by the method of reference 8. The angle of attack has been corrected for deflection of the sting support system under load. The basic model data (fig. 4) were obtained from reference 5 and therefore have the corrections of reference 5 applied.

Control projections were measured in the wind-off condition and were believed to be little affected by aerodynamic load.

TESTS

The sting-supported wing-fuselage model was tested in the Langley high-speed 7- by 10-foot tunnel. Data were obtained for each model configuration by setting the tunnel Mach number and then rotating the model through an angle-of-attack range. Tests were made through a Mach number range from 0.40 to 0.94. The angle-of-attack range varied from -20 to approximately 24° at the lower test speeds and from -20 to about 10° at M = 0.94. The angle of attack at the higher Mach numbers was limited by tunnel choking conditions.

1 1 1 1 1

The spoiler-slot-deflector controls were tested with essentially equal spoiler and deflector projections, through a projection range up to about 10 percent of the local wing chord. The plain flap-type spoiler was tested only at about 8-percent-chord projection.

The variation of average test Reynolds number with Mach number based on the wing mean aerodynamic chord is given in figure 3.

PRESENTATION OF DATA

Incremental aerodynamic coefficients due to control projection for the complete investigation are presented in tabular form as follows:

Table (*)	Type of control	Spanwise location of control, $\frac{y_i}{b/2}$	М	δ, h/c	æ
2 3 4 5 6 7 8 9 10 12 13 14 15 16 17	Plain flap-type spoiler Spoiler-slot-deflector Plain flap-type spoiler Plain flap-type spoiler	0.25	0.40 .60 .70 .81 .85 .90 .94 Range .40 .60 .70 .81 .85 .90 .94 Range	Range 0.08 Range	Range Range Range

*Parts (a) of the tables present data for the plain wing and parts (b) for the wing with the modified leading edge.

Lift, drag, and pitching-moment characteristics of the model with the control undeflected are presented in figure 4. These data were obtained from reference 5 to show the model characteristics with and without leading-edge modification since only incremental effects due to control projection were obtained in the present investigation and are presented without discussion.

A representative part of the test data is plotted in figures 5 to 11 to present graphically the general results of the investigation. The relative roll effectiveness of the spoiler-slot-deflector control is compared with the plain flap-type spoiler in figure 5.

The effect of modifying the wing leading edge on the spoiler-slot-deflector-control characteristics is presented in figures 6 to 9. Figures 10 and 11 present the effect of spanwise location on the aerodynamic effectiveness of the spoiler-slot-deflector control on the wing with the modified leading edge.

The values given for angle of attack α_{avg} in figures 6, 7, and 10 are averages of the angles of attack at which the test points were obtained. The absolute magnitude in angle-of-attack difference between any two appropriate test points is small, as shown in the tables, and results from the jet-boundary and sting-deflection corrections.

RESULTS AND DISCUSSION

Results of this investigation are discussed on the basis of data presented graphically in figures 5 to 11. These data were arbitrarily chosen as being representative. It should be emphasized, however, that complete results are presented in tables 2 to 17.

Comparison Between Plain Flap-Type Spoiler

and Spoiler-Slot-Deflector Control

Results presented in figure 5 for 8-percent control projection at M = 0.85 indicate that on both the plain and modified wing and at both spanwise positions the spoiler-slot-deflector control was effective in producing rolling moments over a greater angle-of-attack range than the unvented spoiler alone. These results for the plain wing are in general agreement with reference 6. At both spanwise positions, the spoiler-slot-deflector control produced increments in rolling-moment coefficient throughout the test angle-of-attack range, whereas the plain flap-type spoiler was relatively ineffective above $\alpha \approx 10^{\circ}$. Modifying the wing leading edge increased the effectiveness of both types of controls, especially at angles of attack greater than about 4° . In general, both types of controls gave higher static roll effectiveness when located at the inboard spanwise position.

Effect of Wing Leading-Edge Modification on the

Variation of Control Characteristics With Control Projection

The effect of modifying the wing leading edge on the variation of incremental aerodynamic coefficients with spoiler-slot-deflector projection is given for the two spanwise control positions in figures 6 and 7. Modifying the wing leading edge had little effect on the general shape of the curves except for drag and pitching-moment coefficient at the higher test angles of attack.

Rolling-moment coefficient. The control produced increments in rolling-moment coefficient that were in the proper direction for all test conditions and, in general, ΔC_l increased fairly regularly with control projection (see figs. 6(a) and 7(a)). Control static roll effectiveness was generally increased by modifying the wing leading edge and, in general, the increment in ΔC_l due to leading-edge modification increased with increasing control projection within the test range. Mach number had little effect on the control rolling-moment coefficient.

Yawing-moment coefficient. Incremental yawing-moment coefficient due to control projection was generally in a favorable direction, and the variation with control projection was fairly regular for angles of attack less than about 16° (figs. 6(b) and 7(b)). Modifying the wing leading edge generally had little effect but in some cases caused a small increase in ΔC_n with control projection. Above $\alpha \approx 16^\circ$, results were somewhat erratic and, in general, there was little variation in ΔC_n with control projection. Mach number had little effect on the control yawing-moment coefficient.

Lift coefficient. Incremental lift coefficient, in general, decreased fairly regularly with increasing control projection, and the magnitude of $\Delta C_{\rm L}$ for a given control projection was, in most cases, little affected by modifying the wing leading edge (figs. 6(c) and 7(c)). The increment in negative lift coefficient due to control projection was generally larger

for the inboard control
$$\left(\frac{y_{1}}{b/2} = 0.25\right)$$
.

Drag coefficient.- Incremental drag coefficient increased fairly regularly with increasing control projection for angles of attack up to about 12° , and above $\alpha \approx 12^{\circ}$ the variation was somewhat erratic (figs. 6(d) and 7(d)). Modifying the wing leading edge had little effect on ΔC_D due to control projection at zero angle of attack and generally increased the drag coefficient due to control projection at angles of attack greater than zero.

Pitching-moment coefficient.— Projecting the control generally gave a positive increase in pitching-moment coefficient, and ΔC_m usually increased with increasing control projection although the variation was somewhat erratic throughout the test range (figs. 6(e) and 7(e)). Modifying the wing leading edge had a larger effect on the pitching-moment characteristics of the outboard control, and, in general, the effect was to increase the incremental pitching-moment coefficient due to control projection. Increasing the Mach number in the angle-of-attack range from about 4° to 8° resulted in a large positive increase in ΔC_m for certain inboard control projections.

Effect of Wing Leading-Edge Modification on the Variation

of the Control Characteristics With Angle of Attack

The effect of modifying the wing leading edge on the variation of incremental rolling- and yawing-moment coefficients with angle of attack is presented for one control projection and the two spanwise control positions in figures 8 and 9. Modifying the wing leading edge did not change the general variation of ΔC_l and ΔC_n with angle of attack and had only a small effect on the absolute magnitude of incremental yawing-moment coefficient. Incremental rolling-moment coefficient was generally increased by leading-edge modification with the increase being larger in the angle-of-attack range from about $6^{\rm O}$ to $16^{\rm O}$. The variation of ΔC_l and ΔC_n with angle of attack was such that for both control spanwise positions the ratio of ΔC_l to ΔC_n was much larger at the higher angles of attack.

Effect of Control Spanwise Position on the Variation of Control Characteristics With Control Projection

The effect of control spanwise position on the variation of incremental aerodynamic coefficients with control projection on the wing with the modified leading edge is shown in figure 10. The general shape of the curves of ΔC_1 and ΔC_n with control projection was little affected by spanwise position, but there were erratic effects on the variation of ΔC_m with control projection. Generally speaking, at zero angle of attack the effectiveness of the control in producing increments in rolling-moment coefficient was not affected by control spanwise position, whereas in the angle-of-attack range from approximately 40 to 12 the inboard control

$$\left(\frac{y_i}{b/2} = 0.25\right)$$
 was more effective. The outboard control $\left(\frac{y_i}{b/2} = 0.47\right)$

gave larger increments in yawing-moment coefficient for a given control projection throughout the test range. In general, the outboard control also produced larger increments in pitching-moment coefficient although an increase in Mach number tended to reverse this effect in the angle-of-attack range from about 4° to 8° .

Effect of Control Spanwise Position on the Variation

of Control Characteristics With Angle of Attack

The effect of control spanwise position on the variation of \mathcal{L}_l and \mathcal{L}_n with angle of attack for one control projection on the wing with the modified leading edge is presented in figure 11. The general variation of \mathcal{L}_l and \mathcal{L}_n with angle of attack was unaffected by control spanwise location. The largest effect of control spanwise location on control rolling effectiveness was in the angle-of-attack range from approximately 4^o to 14^o where the inboard control was more effective. The outboard control produced higher increments of yawing-moment coefficient throughout the test range.

CONCLUSIONS

A wind-tunnel investigation of a wing-fuselage model was made through an angle-of-attack range to a Mach number of 0.94. The purpose was to determine the effects of a wing leading-edge modification on the incremental aerodynamic coefficients due to control projection of a spoiler-slot-deflector control located at two spanwise positions. A comparison was also made with the spoiler part of the control used as a plain flap-type spoiler. Results indicate the following conclusions:

- 1. Modifying the wing leading edge generally had a beneficial effect on the static lateral control characteristics of both the spoiler-slot-deflector and the plain flap-type spoiler controls.
- 2. On both the plain and modified wing, the spoiler-slot-deflector control was effective in producing rolling-moment coefficients over a greater angle-of-attack range than the plain flap-type spoiler and, in general, both types of control gave higher roll effectiveness when located at the inboard spanwise position.
- 3. The incremental yawing-moment coefficient due to spoiler-slot-deflector projection was generally in a favorable direction and higher for the outboard control.

- 4. For the spoiler-slot-deflector control, there were some fairly large erratic changes in incremental pitching-moment coefficient with either wing leading-edge modification or control projection.
- 5. With the exception of pitching moment, the increment in aerodynamic force and moment coefficients varied fairly regularly with control projection, and the general shape of the curves was little affected by wing leading-edge modification.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 27, 1954.

REFERENCES

- 1. Furlong, G. Chester, and McHugh, James G.: A Summary and Analysis of the Low-Speed Longitudinal Characteristics of Swept Wings at High Reynolds Number. NACA RM L52D16, 1952.
- 2. Goodson, Kenneth W., and Few, Albert G., Jr.: Effect of Leading-Edge Chord-Extensions on Subsonic and Transonic Aerodynamic Characteristics of Three Models Having 45° Sweptback Wings of Aspect Ratio 4. NACA RM L52K21, 1953.
- 3. Spreemann, Kenneth P., and Alford, William J., Jr.: Small-Scale Transonic Investigation of the Effects of Full-Span and Partial-Span Leading-Edge Flaps on the Aerodynamic Characteristics of a 50° 38' Sweptback Wing of Aspect Ratio 2.98. NACA RM L52E12, 1952.
- 4. Alford, William J., Jr., and Spreemann, Kenneth P.: Small-Scale Transonic Investigation of a 45° Sweptback Wing of Aspect Ratio 4 With Combinations of Nose-Flap Deflections and Wing Twist. NACA RM L52Kl3, 1953.
- 5. Spreemann, Kenneth P., and Alford, William J., Jr.: Investigation of the Effects of Leading-Edge Chord-Extensions and Fences in Combination With Leading-Edge Flaps on the Aerodynamic Characteristics at Mach Numbers From 0.40 to 0.93 of a 45° Sweptback Wing of Aspect Ratio 4. NACA RM L53A09a, 1953.
- 6. Vogler, Raymond D.: Wind-Tunnel Investigation at High Subsonic Speeds of a Spoiler-Slot-Deflector Combination on an NACA 65A006 Wing With Quarter-Chord Line Swept Back 32.6°. NACA RM L53D17, 1953.
- 7. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM A7B28.)
- 8. Gillis, Clarence L., Polhamus, Edward C., and Gray, Joseph L., Jr.: Charts for Determining Jet-Boundary Corrections for Complete Models in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. (Formerly NACA ARR L5G31.)

TABLE 1 .- FUSELAGE ORDINATES

Basic fineness ratio 12, actual fineness ratio 9.8 achieved by cutting off rear portion of body

Ordinates, pe	rcent length
Station	Radius
0 .61 .91 1.52 3.05 6.10 9.15 12.20 18.29 24.39 30.49 36.59 42.68 48.78 54.88 60.98 67.07 73.17 79.27 85.37 91.46 100.00	0 .28 .36 .58 1.47 1.97 2.46 1.77 2.46 4.56 4.99 5.08 4.31 4.81 5.35
Leading-edge ra	dius = 0.00061

(a) Plain leading edge.

Table 2. Incremental aerodynamic coefficients. $y_{i/b/p} = .25 M = .40$

δ_s	δ_d	a a	ΔC_L	ΔC_D	ΔCm	ΔCz	ΔC_n	ΔC_{Y}
, 029 , 029 , 029 , 029	.031 .031 .031	- 2.06 02 2.04 4.10	0436 0482 0477	.0131 .0112 .0091	.0054 .0078 .0114 .0117	.0035	.0036	.0020
029	.031 .031 .031 .031 .031 .031 .031	6.15 8.28 10.32 14.39 16.44 20.45	0613 0568 06445 0164 0021 0526 0184	- 0024 - 0004 - 0041 - 0003 - 0041 - 0003 - 0148 - 0240 - 0037	.01124 .0164 .0149 .0142 .0138 .0089 .0028 .0079	.0089 .0083 .0075 .0101 .0087 .0070 .0060 .0046 .0028	.0022 .0018 .0013 0004 0012 0020 0021 0026	0019 0020 .0002 .0010 .0040 .0040 .0061 .0070
049 049 049 049 049 049 049 049 049	. 0 4 9 9 . 0 4 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9 9 . 0 4 9	- 3.06 2.04 4.10 6.16 8.28 12.32 14.32 16.45 20.5	0541 0588 0726 0812 0758 0758 07592 0464 0366 0041 0395 01037	.0227 .0212 .0190 .0154 .0112 .0053 -0004 .0009 -00244 -0086 -0049	.0068 .0107 .0146 .0175 .0199 .0107 .0138 .0107 .01086 .0039 .0036	.0083 .01111 .0135 .0169 .0180 .0157 .0126 .0119 .0074 .0074	.0067 .0066 .0059 .0048 .0035 .0026 .0006 0014 0021 0023	0068 0098 0085 0075 0075 0038 0020 0035 0035
080 080 080 080 080 080 080 080 080	.0799 .0799 .0799 .0799 .0799 .0799 .0799	2.07 .03 4.08 6.14 8.20 10.25 12.35 14.36 16.40 18.45 23.46	09 24 10 73 12 32 13 18 13 59 13 59 13 91 10 66 04 78 07 41 01 34 04 15	.0491 .0479 .0448 .0406 .0325 .0231 .0114 .0094 .0066 .0044 -0098 .0039	.0253 .0292 .03375 .0406 .0357 .0295 .0278 .0278 .0171 .0128 .0175	.0176 .0215 .0249 .0284 .0311 .0299 .0281 .0239 .0204 .0122 .0082	.0126 .0123 .0113 .0103 .0080 .0062 .0031 .0014 00018 0018	0328 0328 0339 0331 0286 0239 01832 0085 0085 0085
999999999999999999999999999999999999999	.103 .103 .103 .103 .103 .103 .103 .103	- 2.08 04 2.04 2.11 8.17 10.23 12.25 14.34 16.43 20.447	1327 1482 1730 1962 1954 1900 1703 1359 1053 1053	.0691 .0677 .0653 .0482 .0342 .0218 .0135 .0086 .0116 0033 0118	.0332 .0379 .0425 .0535 .0471 .0359 .03699 .02214 .0268	.0219 .0262 .03091 .0386 .03276 .0312 .0276 .0238 .021545	.0182 .0178 .0171 .0131 .0099 .0043 .0022 .0028 0001 0043	0 2 7 5 0 3 3 5 6 0 3 3 5 7 0 3 4 8 0 3 4 8 0 3 4 4 0 1 2 4 0 1 2 6 0 0 0 4 6 . 0 0 0 8 8

(b) Modified leading edge.

Table 2. Concluded.

Table 2.	Concruaea.					
δ_s δ_d	a ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	$\Delta C_{\mathbf{y}}$
.011 .011 .011 .011	- 2.060342 020335 4.090413 6.150423 8.200527 10.260419 12.320359 14.360059 16.39 .0039 18.44 .0141 20.460298 23.50 .0023	.0049 .0032 .0012 -00024 -0038 -0038 -0034 -0038 .00034 -0129	.0003 .0016 .00016 .00029 .00017 .00012 00031 00031 00052 0060	.0029 .0034 .0025 .00339 .0029 .0043 .0013 .0014	.0009 .0010 .0008 .0007 .0001 .0001 0010 0010 0014 0029	0085 0096 0073 0060 0048 0049 0036 0027 0002
.029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031 .029 .031	- 2.080582030582 2.040577 4.070670 8.200628 10.260721 12.300477 14.360377 16.390273 18.430528 23.4900-4	.0117 .01077 .0077 .0056 .0023 0047 0056	.0032 .0007 .0057 .0093 .0053 .0043 .0047 .0022 0032	.0048 .0059 .0095 .0100 .0093 .0077 .0045 .00536 .0024	.0031 .0037 .0027 .0028 .0016 .0010 .0003 0009 0017 0019 0020	0074 0095 0095 0096 0069 0069 0069 0001
.049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049	2.060646 020397 2.040585 4.100676 6.130776 8.190673 10.2607-6 12.300496 14.360163 16.42 .0226 16.42 .0226 20.470208	0234 02209 02209 0114 00085 00053 00053	.0068 .0072 .0107 .0132 .0173 .0150 .0126 .0080 .0025 .0056 .0016 .0069	.0054 .0123 .01575 .0200 .0205 .0165 .0099 .0099 .0085 .00693	.0064 .0058 .0053 .0046 .0036 .0024 .0003 0003 0032 0032	0241 0241 0242 0232 0173 0114 0064 0044
.080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079 .080 .079	- 2.091325051476 4.041698 6.101685 10.21170 12.271096 14.321096 16.360866 18.39317 20.440966 23.46059	0 0484 00411 00346 00241 00182 00100 00009 1 -0047 -00913	.0221 .0238 .0334 .0353 .0371 .0270 .0167 .0132 .0074 .0092	.0215 .0239 .03141 .0357 .0355 .0305 .0215 .0166 .0118	.0128 .0120 .0105 .0091 .0069 .0045 .0007 0015 0037	0349 0373 0369 0349 0319 0232 0214 0119 0069
.096 .103 .096 .103 .096 .103 .096 .103 .096 .103 .096 .103 .096 .103 .096 .103 .096 .103 .096 .103	- 2.101646 071726 4.031996 6.092196 8.142387 10.202257 12.271412 14.311412 16.371002 18.401257 20.460952 23.470725	0684 0633 05425 00334 00334 00115 001067	. 0387 . 0383 . 0465 . 0494 . 0494 . 0484 . 0482 . 03582 . 0270 . 0295	.0264 .0288 .0378 .0407 .0440 .0435 .0376 .0294 .0194 .0173	.0182 .0179 .0166 .0148 .0120 .0096 .0069 .0036 .0007 0008	0467 0450 0481 0474 0436 0311 0161 01065

Table 3. Incremental aerodynamic coefficients. 1/b/2 = 25 M = 60

								72	
L	δ_s	Sa	. a	A CL	△ C _D	$\triangle C_m$	ΔC_{z}	$\triangle C_n$	ΔC_{γ}
	029999999999999999999999999999999999999	.031 .031 .031 .031 .031 .031 .031 .031	- 2.08 - 2.007 4.165 6.355 10.452 14.59 16.64 20.64	0377 0420 0485 0596 0480 0482 0452 0335 0335 0336 0036	.0136 .0126 .0104 .0049 .0038 .0010 0013 0021 0055 0074 0046 0029	.0031 .0067 .0097 .0136 .0110 .0131 .0131 .0131 .01071 .0027 .0049 .0049	.0028 .0049 .0071 .0086 .0079 .0075 .0115 .0057 .0057	.0036 .0034 .0029 .0022 .0019 .0011 0010 0015 0015 0020 0052	0032 0039 0041 0036 0027 0000 .0009 .0031 .0036 .0059 .0146
. 0	49 49 49 49 49 49 49 49 49 49 49 49	049 049 049 049 049 049 049 049 049 049	2.092 4.143 6.433 10.443 114.59 16.64 203.	0503 0670 0964 0892 0896 0712 0508 0375 0374 02089 0237	.0236 .0228 .0204 .0151 .0109 .0240 .0007 00028 0056 0057	.0043 .0095 .0147 .0213 .0213 .01187 .0130 .0118 .0109 .0036 .0051	.0074 .0100 .0136 .0171 .0174 .0145 .0129 .0129 .0120 .0081 .0034 .0063	.0065 .0063 .0064 .0031 .0021 0001 0016 0021 0015	0090 01142 01142 0084 00633 0009 .0009 .00076 .0119
000000000000000000000000000000000000000	8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0	.079 .079 .079 .079 .079 .079 .079 .079	2.10 2.04 4.12 6.21 8.30 10.50 14.56 16.63 20.65 23.70	0963 1158 1307 1518 1417 1178 0862 0731 0490 0237 0327	.0477 .0472 .0442 .0381 .0304 .0201 .0127 .0106 .0025 .0027 0002	.0341 .0352 .0420 .0420 .0425 .0329 .01223 .0163 .0142 .0192 .0195	.0169 .0214 .0252 .0395 .0319 .0302 .0254 .0212 .0160 .0127 .0091	.0124 .0122 .0115 .0099 .0079 .0054 .0021 .0001 -0005 -00017	0260 0284 0301 0305 0279 0138 0138 0139 0045 0007 0007
. 09	6 6 6 6 6 6 6 6 6	.103 .103 .103 .103 .103 .103 .103 .103	2.12 2.05 2.03 4.10 8.29 10.38 12.48 14.55 16.63 20.03	1211 1434 1037 1877 2037 1866 11380 1129 1116 0739 0629 0654	. 0673 . 0654 . 0632 . 0569 . 0469 . 0328 . 0236 . 0107 . 0100 . 0007 . 00034 . 0045	.0268 .0331 .0392 .0476 .0528 .0421 .0276 .0313 .0281 .0237 .0314 .0385	.0188 .0238 .0290 .0341 .0388 .0365 .03274 .0239 .0300 .0159	.0176 .0171 .0167 .0151 .0136 .0091 .0044 .0023 .0011 0008	0350 0356 03729 0373 02306 00156 0041 .0035 .0035

(b) Modified leading edge.

	Table	3. Concle	uded.			10	10	10
δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	△C _Y
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.11 - 002 4.15 6.24 8.33 10.41 12.54 16.59 18.68 23.68	0345 0366 0352 0342 03817 03551 01531 0123 .0106 .0037	.0052 .00430 .0028 .0016 .00164 0062 0062	.0047 .00341 .00352 .00078 .00066 .00063 -00047 .00064	.0031 .0037 .0045 .0045 .0043 .0032 .0015 .0014 -00013	.0012 .0008 .0008 .0004 00006 00005 00014 0019 0019	0066 0053 0040 0033 0021 0010 .0022 .0026 .0045
	.031 .031 .031 .0331 .0331 .0331 .0331	2 . 103 2 . 103 4 . 122 4 . 122 102 . 55 114 . 55 116 . 65 118 . 65 23	052 y 051 y 050 38 0630 0720 0438 03381 03384 03691	.0137 .0119 .01087 .0068 .0018 .0029 00318 0079 0026 0147	.0050 .0042 .0082 .0120 .0134 .0102 .0801 .0097 .0099 .0094 .0101	.0048 .0044 .0093 .0107 .0079 .0079 .0079 .0042 .0037 .0034 .0016	.0033 .0038 .0028 .0023 .0016 .0001 0008 0017 0015	0039 0078 0073 0053 0053 0054 0024 0020 0026
.049.049.049.049.049.049	.049	- 2.11 04 2.05 4.13 6.21 8.31 10.40 12.47 14.54 16.59 18.66 20.66	- 0 0 0 4 - 0 0 4 4 3 - 0 7 9 4 - 0 8 7 3 - 0 9 3 5 - 0 7 1 9 - 0 3 3 6 - 0 3 4 5 - 0 3 4 5 - 0 3 4 0	.0254 .0227 .0215 .02059 .0109 .0068 .0022 0027 0087	.0091 .0080 .0157 .0192 .0213 .0251 .0184 .0150 .0163 .0148 .0131 .0293	.0098 .0108 .0142 .0177 .0199 .0200 .0165 .0118 .0091 .0068 .0119	.0065 .0060 .0058 .0038 .0024 .0006 0019 0019 0035	0160 0188 0166 0162 0149 0139 0052 0032 0014
.080 .080 .080 .080 .080 .080 .080	0.079 0.079 0.079 0.079 0.079 0.079 0.079	20.66	1784 1978 1766 1496 0731 0449 0425	.0507 .0474 .04521 .0353 .02356 .00557 .00658 .00058	.0308 .0295 .0366 .0414 .0413 .0439 .03748 -0032 .0397 .0181	. 0216 . 0229 . 0239 . 0315 . 0353 . 0353 . 0263 . 0173 . 01128 . 0166	.0130 .0115 .0108 .0096 .0041 .0005 0005 0035	0314 0354 0194 0114 0051 0000
. 096	6 .103 6 .103 6 .103 6 .103 6 .103 6 .103 6 .103	4.08 6.16 8.25 10.34 12.48 14.49 16.50	1528 21521 21521 2321 1974 10391 10391 0963 1068	0542 0421 0351 0222 0080 0097 -0018	.0354 .0378 .0590	. 0247 . 0258 . 0367 . 0393 . 0437 . 0340 . 0245 . 0277 . 0237	.0175 .0174 .0162 .0140 .0111 .0084 .0061 .0030 .0011	0416 0436 0437 0376 0326 0316 00376 00376

Table 4.	Incremental	aerodynamic	coefficients. 1/b/2=.25	M = 70
14210 7.	morementar	acroaynanne	0001110101113, 70/220	11170

δ_{s}	δ_d	a	ΔC_L	ΔC_D	△ Cm	ΔC_z	ΔC_n	1 Cr
			<u>.</u>					207
99999999999999999999999999999999999999	.031 .031 .031 .031 .031 .031 .0331	- 2.10 00 2.10 4.19 6.30 8.41 10.5 16.71 18.71 20.73	0363 0455 04572 0512 0512 0437 0433 0087 02337 0096	.0135 .0127 .0107 .0067 .0040 .00042 0046 0083 0017 0021	.0034 .0068 .0121 .0154 .0159 .0107 .00621 .0042 .0043	.0023 .0047 .0070 .0079 .0079 .0073 .00542 .0019	.0034 .0034 .0032 .0023 .0007 00011 0015 0018 0005	0045 0054 0054 0018 0018 0022 0037
049 049 049 049 049 049 049 049 049	9990499 00499 00499 00499 00499 00499 00499 00499	2.11 2.08 4.17 6.29 8.4.17 6.29 10.50 12.59 14.66 16.71 18.73 20.73 23.79	0564 0691 0961 09247 0804 05195 0288 01288 01247 01475	.0239 .0229 .02201 .0150 .01059 0014 0031 0030 0015 0058	.0042 .0091 .0159 .0226 .0230 .0178 .0127 .0088 .0034 .0066 .0067	.0068 .00996 .01169 .01745 .01155 .01143 .0067 .0038 .0055	.0064 .00656 .0044 .0033 .0015 .0004 00014 0020 00114	0106 0117 0117 017 0073 0082 0003 0044 .0057 .0067
080 080 080 080 080 080 080 080 080	. 079 . 079 . 079 . 079 . 079 . 079 . 079 . 079 . 079 . 079	2.13 2.05 4.14 6.25 8.36 10.47 12.58 16.70 18.72 20.73	0990 1184 1374 15799 1710 1458 1275 0885 0582 02660 0388	.0467 .0429 .0429 .0365 .0271 .0175 .00723 0014 .00427 0068	.0219 .0298 .0374 .0447 .0467 .0218 .0218 .02158 .0145 .01185 .0195	.0156 .0205 .02055 .0300 .0314 .0219 .0188 .0107 .0079 .0080	.0120 .0112 .0096 .0076 .0032 .0016 -0001 -0003	0288 0288 02851 02164 001058 000353
096 096 096 096 096 096 096 096 096	.103 .103 .103 .103 .103 .103 .103 .103	2 . 13 2 . 03 4 . 12 8 . 33 10 . 55 14 . 64 16 . 69 120 . 78	1139 1321 1616 1841 2024 1919 1601 1400 1999 0920 0709 0633	.0656 .0648 .0613 .0530 .0530 .0306 .0134 .0086 .0059 .0059	.0291 .0291 .0362 .04524 .04521 .0520 .0309 .0391 .0275 .0317	.0265 .0265 .037663 .037663 .037663 .037663 .037663 .037663 .037663	.0169 .0167 .0160 .0140 .00148 .00859 .0041 .0029 .0007	0337 0347 0338 0308 0308 0192 01067 0023 . 00023 . 0112

(b) Modified leading edge.

Table 4. Concluded.

	Table	4. CONC.	uueu.					
δ_s	\mathcal{S}_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{l}	ΔC_n	ΔC_{Y}
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	2.12 2.037 4.538 8.38 10.456 14.63 16.75 20.77 23.79	0341 0376 0376 05442 0444 0246 0179 0285 0011	.0050 .00433 .00433 .003321 .00076 00522 00037 .00085 .00019	.0036 .0037 .0037 .0356 .0156 .0073 .0084 .0073 .0158	.0023 .0023 .0023 .0044 .0041 .0039 0018 .0083 .0099 0068	.0012 .0010 .0009 .0003 0001 0006 0005 0015 0018 .0004	0031 0068 0058 0016 0039 0006 0028 .0028 .0040 .0023 .0059
000000000000000000000000000000000000000	.031 .031 .031 .031 .031 .031 .031 .031	2.13 2.06 4.16 6.37 10.47 12.56 16.68 18.75 23.79	0619 0569 0687 0729 0830 0768 0511 0303 00353 00353 0245	.0139 .0121 .0104 .0085 .0064 .0096 0020 0020 0009 .0041 0063 0026	.0037 .0045 .0077 .01151 .0165 .00893 .0103 .00699 .0198	.0039 .0054 .0076 .0094 .0093 .0093 .0054 .0046 .0048 .0092	.0034 .0031 .0028 .0027 .0007 0002 0003 0010 0016 0033	0039 00875 00655 00556 00530 00136 00013 00013
. 049 . 049 . 049 . 049 . 049 . 049 . 049 . 049	.049 .049 .049 .049 .049 .049 .049	2.15 04 2.06 4.16 6.25 8.37 10.47 12.55 14.55 16.68 18.84 20.76	0760 0636 07930 07930 1067 100741 0347 0347 0075 06701 0006	.0258 .0235 .0232 .0193 .0165 .001851 .00786 .00267 .03107	.0094 .001457 .0012626 .002050 .001502 .001502 .001502 .002444 .00075	.0089 .0104 .01473 .0200 .0173 .0268 .01068 .0088 .0074 .0088 .0074 .0083	.0064 .0059 .0058 .0048 .0037 .0007 .0009 0020 0020	0159 0180 0158 0158 0153 0100 0032 0005 0005
. 08 0 . 08 0 . 08 0 . 08 0 . 08 0 . 08 0 . 08 0	079 079 079 079 079 079 079 079	- 2.176 - 3.01 4.11 6.21 8.31 10.50 14.57 16.57 20.79	1358 12318 1655 18416 19088 15104 0872 03716 03716	.0495 .0441 .04447 .0319 .0114 .00044 .00088 00236	.03037 .03730 .0477 .05435 .0345 .0342 .0054 .0146	. 0199 . 0225 . 0263 . 03133 . 03514 . 02354 . 02154 . 01127 . 011328 . 0071	.0126 .0131 .0114 .0107 .0087 .0038 .0036 .0007 0008	
096	103 103 103 103 103 103 103 103 103 103	- 2.18 - 08 4.09 6.19 8.30 10.41 12.51 14.57 16.65 18.73 20.75 23.79	1548 1448 20143 2143 1972 1250 1331 0806 0910 06-8	.0672 .0650 .05595 .0480 .02947 .0098 .0127 .00127	.0361 .0337 .0458 .0515 .0679 .05427 .0378 .0341 .0460 .0527	.0229 .0243 .0343 .0369 .0424 .0382 .0383 .0226 .0197 .0192	.0169 .0168 .0156 .0133 .01073 .0073 .0053 .0022 .0002	0393 0370 0306 0241 0161 0097 0071

V	
Table & Ingraman	al aerodynamic coefficients. 1/h/2 = 25 M = 81
Tuble 5. Increment	II
<u> </u>	- 101 - 101

δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔC_{γ}
					,			
99999999999999999999999999999999999999	.031 .031 .031 .031 .031 .031 .031 .031	- 2.10 - 2.11 4.23 6.36 8.49 10.59 12.67 16.78 18.83 23.91	0291 0496 04983 0565 06410 04017 0282 0103 . 00013	.0139 .0131 .0109 .0080 .0041 .0007 0052 0032 0038 0019	.0040 .0086 .01377 .0146 .0234 .0147 .0143 .0058 .0045 .0048	.0018 .0047 .0076 .0095 .0091 .01082 .0061 .0030 .0033 .0029	.0036 .0034 .0028 .0013 .00015 00014 0010 0009	004 005 005 003 002 002 003 003 004 004
049 049 049 049 049 049 049 049 049	. 0 4 9 . 0 4 9	- 2.133 2.099 4.20 6.33 8.457 12.68 14.78 16.78 18.793 23.90	0538 0706 0793 0922 0849 0549 0456 0300 0179 0179	. 0249 . 0236 . 0209 . 0118 . 0051 . 00532 0011 0040 0026 0035	.0058 .0111 .0178 .0259 .0240 .0239 .0164 .0164 .0067 .0067	.0061 .0099 .0135 .0181 .0158 .0100 .0074 .0053 .0040	.0065 .0062 .0056 .0045 .0010 .00104 0013 0013 0010	010 012 012 010 008 005 003 .004 .004
080 080 080 080 080 080 080 080 080 080	. 0799 . 0799 . 0799 . 0799 . 0799 . 0799 . 0799 . 0799	- 2.14 - 0.66 2.07 4.17 6.30 8.43 10.55 12.66 14.74 16.78 18.78 20.81 23.90	U9 4 0 11 7 0 13 9 9 15 6 4 15 6 4 14 4 9 U9 8 3 07 6 3 04 9 9 04 8 9 04 8 9 03 0 7	.0465 .0428 .0428 .0367 .0284 .0172 .0128 .0063 .00677 .00015	.0220 .0183 .0391 .0473 .0440 .0344 .0249 .0344 .0174 .0217 .0217	.0143 .0199 .0245 .0294 .0299 .0243 .0193 .0157 .0157 .0088	.0118 .0116 .0110 .0093 .0070 .0039 .0031 .0015 .0014 .0014	02368 02368 02368 02367 01381 00385 00385
096 0996 0996 0996 0996 0996 09996 0996 0996	.103 .103 .103 .103 .103 .103 .103 .103	2.15 2.04 4.15 6.29 8.40 10.53 12.63 14.72 16.76 18.77 20.81 23.88	09.79 1236 1525 1873 1287 1206 02917 0794 0794 0798	.0650 .0640 .0608 .0529 .0426 .0227 .0139 .0133 .0133 .0051	. 01977 . 0277 . 0378 . 0466 . 0456 . 0486 . 03557 . 0329 . 0329 . 0379	.0140 .0202 .0256 .0356 .0328 .03237 .0237 .0199 .0146 .0154	.0164 .0163 .0155 .0136 .0064 .0065 .0035 .0022 .0021	0339 03343 03244 0269 01666 01050 00199 00019

(b) Modified leading edge.

Table 5. Concluded

	Table	5. Conclu	iąeą.					10
δ_s	δ_d	a	ΔC_L	A CD	ΔC_m	ΔC_z		ΔCY
011 011 011 011 011 011 011 011 011 011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.14 03 2.10 4.21 6.34 8.46 10.53 12.64 14.71 16,77 18.82 20.84 23.92	0283 0320 0408 0420 0420 0183 0011 0000 .0011 0028 .0302	.0048 .0045 .0039 .0030 .0030 .0002 .0010 .0041 .0045 .0013	.0040 .0048 .0057 .0069 .00145 -0208 .0074 .0042 .0037 .0190 .0193	.0021 .0031 .0040 .0051 .0054 .0050 .0032 .0032 .0030 .0023	.0012 .0010 .0009 .0006 .0004 0011 0013 0013 0018	0029 0059 0041 0033 0015 0015 0031 0035 0035
000000000000000000000000000000000000000	.031 .031 .031 .031 .031 .031 .031 .031	14.69 16.74 18.81 20.82	0558 0602 0766 0816 0674 0818 0416 0192 0356 0356 0356 0362 0362	.0139 .0129 .0111 .0087 .0086 .0030 .0023 0051 0051 0094 .0034	.0045 .0061 .0161 .0141 .01699 .0062 .0083 .0083 .0093	.0041 .0053 .0104 .0112 .0096 .0067 .0068 .0048 .0044 .0049	.0033 .0033 .0030 .0024 .0009 0004 0011 0013 0008	0042 0066 0065 0058 0043 0016 .0016 .0017 .0026
. 049 . 049 . 049 . 049 . 049 . 049 . 049 . 049	049 049 049 049 049 049 049 049	2.05 4.19 6.312 8.423 10.53 12.649 14.669 16.76 18.83	0657 0707 0937 1064 1123 1126 0763 0369 0357 0247 0476 0094 0013	.0261 .0237 .0224 .01972 .0108 .00699 .0042 .0044 -00047	.0113 .0110 .0168 .0244 .03300 .0338 .0177 .0165 .0098	.0091 .0102 .0138 .0138 .0211 .0194 .0153 .0111 .0083 .0128 .0038	.0063 .0061 .0057 .0058 .0028 .0028 .0001 0010 0012	0155 0168 0155 0155 0152 0052 00047 0007 0007 0007
. 080 . 080	0 .079 0 .079 0 .079 0 .079 0 .079 0 .079 0 .079 0 .079	092 99	1219 1387 1753 1909 2051 2091 1783 1190 0680 0688 0783 0402	.0479 .0468 .0465 .0403 .03431 .0141 .0114 .0039 0037 0017	.0319 .0392 .04697 .04586 .03795 .0249 .0348 .03408	.0096 .0111 .0140 .0171 .0185 .0196 .0173 .0094 .00762	.0134 .0123 .0121 .0107 .0094 .0094 .0046 .0046 .0017	0307 0298 0262 0262 0157 0107 0004
.09	6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10 6 .10	3 - 2.19 33 - 0.09 3 - 2.09 3 - 4.11 3 - 4.13 10.46 11.4.56 11.4.56 11.4.56 11.4.56 11.4.56 11.4.56 11	2101 1463 1137 0788 1167	.0649 .0645 .0682 .05187 .03273 .03273 .03264 .01168 .00114	.0343 .03195 .0486 .0537 .0533 .0476 .0376 .0533 .0476	0206 0227 0333 037 037 037 0231 016 016 012	0156 0156 0156 0156 0106 00106 0004 0002 0002	037 038 037 036 032 032 038 011 007 007 007

Table 6. Incremental aerodynamic coefficients. 1/b/2 = 25 M = 85.

δ_s	δ_d	a	A CL	ΔC_D	ΔC_m	ΔC_{i}	ΔC_n	A CY
.029	.031	- 2.12 00	0353 0463	.0150	.0041 .0104	.0013	.0039	0054 0077
.0229	.031 .031 .031 .031 .031 .031 .031	00 2.12 4.26 6.38 8.53 10.63 12.76 16.82 18.85	0753 0652 0852 0489 0433 0349 0273 0273	.0139 .0111 .0082 .0024 .0026 0007 0056 0056 0054	.0152 .0200 .0069 .0171 .0155 .01104 .0074 .0075	.0048 .0106 .0098 .0098 .0078 .0053 .0048 .0032	.0031 .0023 .0013 .0002 0003 0014 00114 0017	0056 0056 0015 0016 .0014 .0029 .0049
049 049 049 049 049 049 049 049 049	. 0 4 9 . 0 4 9	- 2.13 2.02 2.10 4.23 6.35 8.50 10.67 14.76 16.83 18.85 20.89	0509 1019 1077 1131 0842 0595 0428 0282 0352 0198	.0256 .0244 .0166 .01061 .0061 .0032 0052 00578	.0073 .0144 .0198 .0293 .0123 .0182 .0182 .0127 .0097 .00958	.0061 .0097 .0148 .0189 .0167 .0122 .0071 .0074 .0074	.0067 .0064 .0058 .0045 .0032 .0010 0006 00013 0013 0015	0112 0139 0115 0081 0085 0035 0007 .0031 .0047 .0057
.080 .080 .080 .080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079 .079 .079	2.15 2.06 4.19 6.33 8.46 10.59 12.68 14.77 16.84 20.87	0897 1162 1038 1663 1435 1141 0754 0601 05371 0504	.0479 .0470 .0437 .0377 .0266 .0233 .0108 .0068 .00367 -00018	.0222 .0322 .0394 .0498 .0455 .0403 .0259 .0253 .0228 .0299	.0131 .0191 .0245 .0304 .0308 .0244 .0188 .0180 .0121 .0094 .0099	.0130 .0117 .0110 .0094 .0095 .0035 .0015 .0011 .0014 .0026	0262 0271 0277 0264 0151 0151 01372 0036 00192 0022
. 096 . 096	.103 .103 .103 .103 .103 .103 .103 .103	- 2.15 05 - 2.05 4.17 6.30 8.45 10.56 14.75 16.82 18.84 20.56	0907 1385 1829 20164 1730 1228 09995 0839	.0664 .0661 .0636 .0541 .0298 .0229 .0112 .01117 .0010	.0174 .0288 .0390 .0598 .0448 .0370 .0367 .0367 .0404 .0401	.0128 .0105 .0145 .0180 .0353 .0295 .0237 .0230 .0198 .0174 .0151	.0167 .0174 .0169 .0155 .0060 .0054 .0032 .0023 .0028	0340 0370 0374 0338 0184 0199 0049 0049 0027

(b) Modified leading edge.

Table 6. Concluded.

	Tubic			10	1.0	ΔC_{i}	ΔC_n	1 Cr
8	8	a	ΔC_{L}	ΔC_D	ΔC_m		.0013	0037
.011 .011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011 .011	- 2.15 03 2.11 4.24 6.38 8.49 10.67 14.73 16.81 18.87 20.88	0314 0379 0425 0575 0494 0329 0085 0094 00119 0063 0063	.0052 .0045 .0040 .0019 .0040 .0060 .0040 .0043 .0108 .0170	.0046 .0056 .0080 .0117 .0137 .0132 .0054 .0066 .0070 .0073	.0026 .0032 .0045 .0059 .0060 .0033 .0014 .0021 .0000	.0011 .0010 .0007 0000 0008 0011 0009 0009 0015 0008	00590 00399 00022 00022 .00034 .00036 .00345
000000000000000000000000000000000000000	.031 .031 .031 .031 .031 .031 .031 .031	- 2.17 05 2.10 4.22 6.34 8.47 10.56 14.74 16.88 20.91	0453 0615 0601 0980 0938 06391 0297 0198 0364 0044	.0138 .0131 .0123 .0085 .0081 .00428 .0035 .0035 .0036	.0044 .0068 .0146 .0203 .0201 .0169 .0121 .0101 .0065 .0093	.0039 .0056 .0086 .0119 .0127 .0108 .0073 .0042 .0042 .0048	.0034 .0035 .0026 .0016 0006 0007 00011 0000	0041 0067 0066 0054 0022 0002 0017 0019 0026 0028
. 049 . 049 . 049 . 049 . 049 . 049 . 049	049	- 2.16 - 05 2.06 4.19 6.33 8.46 10.57 12.66 14.74 16.80 20.93	0653 0699 1034 1328 0854 0585 0342 0342 0479 0479	.0257 .0247 .0229 .0188 .0179 .0132 .0116 .0120 .0053 .0148	.0109 .0120 .02304 .0309 .02652 .0153 .0138 .0018	.0092 .0107 .0158 .0236 .02158 .0094 .00757 .0109	.0066 .0063 .0059 .0058 .0036 0001 .0001 0013 0030	0002 .0017 .0018
.080	0799 0799 00799 00799 00799 00799 00799 00799	- 3.19 2.02 4.15 6.29 8.40 10.52 12.62 14.71 16.75	2092 2113 1902 1481 1169 07-4	0487 0478 0478 0451 0355 0242 0109 0101 01176	.0317 .0322 .0419 .0526 .0570 .05869 .0449 .0281 0083	.0177 .0206 .0257 .0350 .0357 .0275 .02152 .0157 .00157	000	0393 0393 0390 0247 0169 0186 0024 0024 0024
.09	6 .103 6 .103 6 .103 6 .103 6 .103 6 .103 6 .103 6 .103 6 .103	2.20 2.00 4.1 6.26 8.39 10.56 14.70 16.8 20.9	14286 13359 24860 22861 1841 1357 10998	.05187 .03197 .03246 .01895 .0235	.0309 .0300 .0417 .0553 .0595 .0698 .0574 .0424 .0366 .0404 .0463	.0147	.016 .016 .012 .009 .005 .003 .003	603849 103780 503897 103297 503297 80148 50059 90059

(a) Plain leading edge.

Table 7. Incremental aerodynamic coefficients. 1/b/2=25 M=90

δ_s	\mathcal{S}_d	a	ΔC_L	ΔC_D	△ C _m	ΔC_{i}	ΔC_n	ΔC_{Y}
.0299.0299.0299.0299	.031 .031 .031 .031 .031 .031	- 2.13 .01 2.13 4.27 6.41 8.54 10.66 12.73	0307 0507 0701 0831 0631 0538 0338 0126	.0160 .0146 .0119 .0077 .0037 0050 0039	.0051 .0116 .0242 .0295 .0258 .0237 .0237	.0008 .0048 .0092 .0120 .0150 .0083 .0057	.0041 .0037 .0032 .0025 .0013 0000 0007	0064 0079 0075 0035 0013 .0006 .0006
.049 .049 .049 .049 .049 .049	. 0 4 9 . 0 4 9	- 2.14 02 2.11 4.24 6.39 8.51 10.64 12.73	0597 0797 1062 1328 1217 0890 0708 0212 0263	. 0275 . 0258 . 0229 . 0159 . 0077 0023 0050 0010	.0090 .0172 .0315 .0409 .0451 .0334 .0141	.0051 .0105 .0163 .0207 .0209 .0162 .0134 .0090	.0070 .0066 .0061 .0048 .0031 -0003 .0001	0132 0139 0135 0130 0092 0008 0008
.080 .080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079 .079	- 2.15 04 2.08 4.21 6.34 8.46 10.61 12.71 14.79	0893 1820 1622 1897 1938 1189 0778	.0495 .0486 .0452 .0376 .0256 .0107 .0061	.0216 .0333 .0478 .0632 .0671 .0444 .0467 .0387	.0116 .0184 .0247 .0578 .0339 .0256 .0199 .0174	.0130 .0117 .0111 .0061 .0069 .0033 .0027 .0018	0363 0275 0283 0251 0220 0130 0173 0073
. 096 . 096 . 096 . 096 . 096 . 096 . 096	.103 .103 .103 .103 .103 .103 .103 .103	- 2.16 04 2.06 4.19 6.32 8.47 10.59 12.69 14.78	0865 1282 1824 2243 2260 1738 1098 1021	.0684 .0687 .0637 .0550 .0358 .0212 .0148 .0180	.0162 .0311 .0481 .0635 .0728 .0523 .0429 .0427	.0110 .0196 .0265 .0345 .0372 .0372 .0225	.0168 .0168 .0159 .0139 .0104 .0060 .0046 .0039	0354 0370 0378 0338 0280 0189 0126 0093 0049

(b) Modified leading edge,

Table 7. Concluded.

δ_s	Sd Sd	a	A CL	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ACY
.011 .011 .011 .011 .011 .011 .011	.011 .011 .011 .011 .011 .011 .011	- 2.17 04 2.11 4.26 6.39 8.49 10.80 12.70 14.80	0383 0453 0544 0531 0514 0314 0314 .0045	.0061 .0049 .0032 .0010 .0053 .0057 .0037	. 0084 .0095 .0160 .0193 .0223 .0053 .0067 0160	.0024 .0040 .0056 .0073 .0074 .0046 .0017 .0013	.0012 .0012 .0010 .0003 0007 00011 0007 0025	0040 0058 0047 0030 0009 .0009 .0023
.029	.031 .031 .031 .031 .031 .031 .031	- 2.19 - 0.6 2.07 4.22 6.35 8.46 10.58 12.69	0568 0692 1003 1174 1146 0703 0494 0171	.0140 .0253 .0096 .0035 .0045 .0046 .0054	.0074 .0097 .0182 .0371 .0427 .0076 .0064	.0034 .0057 .0097 .0135 .0144 .0107 .0041 0026	.0036 .0037 .0033 .0025 .0008 0007 .0002 .0004	0045 0070' 0069' 0086 0021 0013 0034
.049 .049 .049 .049 .049 .049 .049	.049 .049 .049 .049 .049 .049 .049	- 2.18 - 0.7 2.07 4.21 6.35 8.45 10.59 12,70	0842 1249 1491 1473 1102 0763 0342	.0278 .0262 .0227 .0163 .0154 .0192 .0069	.0155 .0163 .0318 .0506 .0565 .0365 .0257 .0040	.0077 .0105 .0163 .0324 .0350 .0234 .0115 .0024	.0067 .0066 .0061 .0051 0005 0001	0151 0157 0157 0144 00945 0026 .0004
.080 .080 .080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079 .079	- 2.21 - 0.09 4.17 6.30 8.43 10.53 12.63	1110 1406 1938 2344 2400 3043 1548 1187 0693	.0508 .0494 .0463 .0402 .0331 .0249 .0033	.0316 .0355 .0524 .0746 .0864 .0714 .0483 .0142	.0153 .0201 .0258 .0351 .0386 .0375 .0259 .0200	.0119 .0113 .0104 .0072 .0035 .0033 .0015	0390 0296 0291 0218 0109 0065
. 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6 . 09 6	.103 .103 .103 .103 .103 .103 .103	2.21 2.01 4.15 6.27 8.40 10.52 12.63	1107 1423 2094 2543 2807 2419 1495 1208	.0678 .0678 .0636 .0536 .0492 .0395 .0271 .0150	.0300 .0317 .0507 .0770 .0914 .0759 .0622 .0284	.0165 .0206 .0274 .0368 .0482 .0460 .0337 .0247	.0163 .0168 .0160 .0150 .0156 .0077 .0052 .0043	0367 0382 0379 03250 03144 008

Table 8. Incremental aerodynamic coefficients, yi/b/2 = .25 M = .94

δ_s	δ_d	a	ΔCL	ΔC_D	ΔC _m	ΔCn	ΔCz	ΔC _Y
029 029 029 029 029	.031 .031 .031 .031 .031	- 2.12 2.13 4.27 6.40 8.52 10.63	0223 0554 0800 0754 0623 0453	.0166 .0156 .0124 .0065 .0053 .0052	.0024 .0159 .0293 .0372 .0258 .0169	0008 .0047 .0109 .0137 .0116	.0042 .0040 .0033 .0021 .0004	
049 049 049 049 049	.049 .049 .049 .049 .049	- 2.11 03 2.11 4.25 6.38 8.52 10.65	0200 0856 1143 1256 1090 0723	.0273 .0268 .0226 .0151 .0099 .0073	.0088 .0235 .0419 .0538 .0452 .0333	.0035 .0106 .0173 .0216 .0330 .0163	.0071 .0068 .0061 .0044 .0025 .0010	0122 0141 0145 0104 0065 0041
080 080 080 080 080	.079 .079 .079 .079 .079	- 2.15 03 2.06 4.21 6.36 ,8.48 10.62	0734 1188 1643 1887 1802 1282 1067	.0523 .0505 .0447 .0370 .0255 .0205	.0178 .0362 .0557 .0759 .0760 .0431	.0097 .0176 .0247 .0329 .0358 .0271	.0125 .0119 .0110 .0095 .0066 .0036	0363 0386 0387 0313 0131
096 096 096 096 096	.103 .103 .103 .103 .103 .103	- 2.16 04 2.07 4.19 6.34 8.47 10.58	0727 1323 1854 2080 2090 1579 1757	.0699 .0702 .0674 .0607 .0405 .0291	.0140 .0346 .0561 .0732 .0786 .0537	.0105 .0193 .0277 .0366 .0384 .0314	.0168 .0167 .0162 .0143 .0100 .0062	0364 0376 0375 0364 0277 0198

(b) Modified leading edge.

Table 8. Concluded.

δ_s	\mathcal{S}_{d}	a	A CL	A Co.	ΔC_m	ΔC_n	△Cz	ΔC_{Y}
.011 .011 .011 .011 .011	.011 .011 .011 .011 .011	- 2.16 03 2.10 4.24 6.36 8.46 10.57	0359 0467 0518 0496 0404 0286	.0057 .0045 0011 .0010 .0003 .0009	.0080 .0169 .0243 .0244 .0162 0006	.0022 .0055 .0076 .0084 .0077 .0053	.0016 .0014 .0007 0003 0010 0011	- 0036 - 0064 - 0052 - 0019 - 00019
.029 .029 .029 .029 .029	.031 .031 .031 .031 .031	- 2.19 05 2.08 4.21 6.34 8.45 10.54	0470 0617 0919 0962 1009 0913	.0141 .0123 .0051 .0027 .0013 0054	.0047 .0145 .0330 .0437 .0348 .0280	.0024 .0067 .0104 .0146 .0147 .0117	.0039 .0039 .0033 .0030 0001 0006	0053 0073 0073 0047 0018 .0006
.049 .049 .049 .049 .049 .049	.049 .049 .049 .049 .049 .049	- 2.18 06 2.07 4.22 6.34 8.45 10.57	0505 0833 1157 1291 1271 1203 0769	.0362 .0277 .0189 .0135 .0078 .0004	.0087 .0220 .0448 .0597 .0566 .0524	.0068 .0110 .0170 .0228 .0251 .0330	.0070 .0070 .0061 .0046 .0019 0007	0149 0163 0163 0130 0084 0018
.080 .080 .080 .080 .080	.079 .079 .079 .079 .079 .079	- 2.20 09 2.03 4.17 6.30 8.42 10.51	0904 1261 1797 2103 2009 1924 1592	.0537 .0536 .0488 .0408 .0327 .0136	.0230 .0368 .0608 .0840 .0772 .0839	.0140 .0191 .0263 .0345 .0377 .0369	.0128 .0125 .0121 .0105 .0065 .0038	0298 0329 0313 0283 0197 0115
.096 .096 .096 .096 .096	.103 .103 .103 .103 .103	- 2.21 10 2.02 4.14 6.27 8.39	0953 1367 1979 2398 2378 2328	.0717 .0716 .0664 .0628 .0494	.0220 .0356 .0609 .0848 .0817	.0156 .0208 .0284 .0376 .0424	.0172 .0173 .0166 .0154 .0111	0374 0400 0415 0404 0325 0229

(a) Plain leading edge.

Table 9. Incremental aerodynamic coefficients. 1/b/2 = .25

	Tuble	9.	ncremenic	n ucrou	ynanic c		10/2	
δ_s	δ_d	a	ΔC_L	ΔC_D	ΔC_m	△ Cz	ΔC_n	1 CY
				M=.40				
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.06 2.004 4.10 6.17 8.29 12.39 14.36 16.42 18.44 23.45	0678 0254 0436 04169 0189 0182 0182 0019 04637 0846	.0214 .0188 .0156 .0155 .0089 .00026 .0004 ~.01438 0401	.0006 .0068 .0139 .0139 .0120 .0005 0000 .0021 .0006 0089 0044	.0087 .0126 .0145 .0184 .0179 .0190 .0090 .0048 .0043 .0034	.0063 .0063 .0064 .0054 .0046 .0022 .0005 0010 0027 0052	0076 0082 0091 0054 0014 0014 .0016 .01367 .0184
				M=.60				
.080 .080 .080 .080 .080 .080 .080 .080	.000	- 2.08 01 2.07 4.15 6.25 8.34 10.44 12.60 16.64 12.63 23.70	04 72 05 99 07 01 06 64 06 64 03 94 02 74 02 47 0105 0105 0036	.0198 .0197 .01845 .001359 .00031 .000167 000742 00068	.0097 .0128 .0160 .0204 .0150 .0004 0038 0022 0032 0032 0038 0039	.0136 .0158 .0189 .0205 .0199 .0143 .0085 .0034 .0034 .0034	.0058 .0058 .0058 .0044 .0036 .0017 .0008 .0007 0007 00234 0044	0087 0092 00100 001077 000336 .001055 .01133
				M=.70				
. Q8 0 . Q8 0	.000 .000 .000 .000 .000 .000 .000 .00	- 2.11 - 02 2.07 4.17 6.29 8.40 10.50 12.60 14.67 16.70 20.78	0153 0067 .0049 0101	.0195 .0189 .01738 .0104 .00025 000129 00026 00155 00108	.0127 .0148 .0187 .0229 .0163 .0082 0031 0051 00577 0053	.0149 .0173 .0191 .0220 .0198 .0144 .0061 .0053 .0021 .0003	.0056 .0055 .0053 .0039 .0039 .00006 0002 0010 0012 00131	0097 00995 00095 00065 00041 00132 01338

(a) Concluded.

Table	9.	Continued.

	Table	9.	Continue	ed.				
δ_{s}	\mathcal{S}_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{I}	ΔC_n	ΔC_{γ}
				M=81				
. 08 0 . 08 0	.000	- 2.12 - 2.02 4.23 6.33 8.46 10.56 14.75 16.879 20.82	0722 0855 0955 1049 10872 0872 0217 0059 0056 0151 0069	.0200 .0191 .0179 .0135 .0091 .0018 .0025 -0023 -0016 -0025 -0046	.0205 .0246 .0246 .0251 .0236 .0170 .0059 .0057 0008 0004 .0010	.0167 .0188 .0203 .0202 .0148 .0042 .0042 .0021 .0003	.0057 .0055 .0059 .0036 .0001 .0004 0007 0013 0017 0023	0092 0105 01105 0098 0020 .0038 0038 0091 .0093
		.		M=.85	5 _.			
. 080 . 080 . 080 . 080 . 080 . 080 . 080 . 080 . 080 . 080	.000	- 2.15 - 2.03 4.21 6.35 8.47 10.60 12.70 14.70 16.82 18.85 20.88	U8 2 y 09 5 5 12 3 0 8 12 3 0 8 10 3 12 05 12 02 11 01 11 00 6 2	.0205 .0196 .0171 .0127 .0065 0011 0025 0072 0072 0047	.0232 .0264 .0284 .0384 .0157 .0202 .0015 .0017 .0012 .0012	.0178 .0197 .0222 .0247 .0222 .0139 .0027 .00318 .0010	.0059 .0056 .0053 .0040 .0021 0004 0004 0015 0016	0104 0112 0100 0100 0001 .0013 .0055 .0097 .0097
				M = .90)			
.080 .080 .080 .080 .080 .080	.000	- 2.15 - 0.4 2.10 4.23 6.37 8.51 10.63 12.72 14.79	0953 1101 1286 1422 1378 0778 0559 0171 0135	.0217 .0204 .0184 .0134 .0036 0048 0088	.0292 .0303 .0392 .0430 .0438 .0187 .0137 .0080	.0194 .0216 .0276 .0276 .0346 .0157 .0046 .0027	.0061 .0057 .0055 .0042 .0024 0004 0002	0111 0117 0118 0096 0061 .0007
				M = .94				
.080 .080 .080 .080 .080	.000	- 2.13 03 2.10 4.24 6.37 8.49 10.62	1147 1303 1263 1218 0364	.0280 .0250 .0225 .0187 .0062 .0125	.0364 .0381 .0415 .0450 .0479 0086	.0191 .0226 .0248 .0269 .0271 .0167	.0071 .0065 .0061 .0049 .0023 .0013	011 013 013 013 009 003

(b) Modified leading edge.

	Table	9. 0	Continued.					
85	δ_d	a	△ C _L	A Co	ΔCm	ΔC_{z}	ΔC_n	ΔC_Y
				M = .40				
0800 0800 0800 00800 00800 00800 00800	.000	- 2.06 2.04 4.09 8.13 10.36 14.38 16.43 20.47 23.49	0493 0454	.0242 .0221 .0225 .0197 .0157 .0157 .0161 .0061 .0061 .0058 0048 0093	.0064 .0050 .0068 .0097 .0133 .0151 .0073 .0016 .0009 00087 0067	.0113 .0115 .0136 .0161 .0196 .02161 .0116 .00146 .0037 .0023	.0062 .0058 .0056 .0056 .0045 .0028 .0014 0015 0021	0165 0198 0198 0197 0174 01681 0025 0025 0039
	·			M 60				
080	.000	- 2.11	0528	M=.60	2111			
080 080 080 080 080 080 080 080 080 080	.000	2.054 4.12 6.21 10.40 12.46 14.55 16.60 18.63 20.68 23.70	0629 0732 0979 0862 1026 0616 0358 0002	.0234 .0209 .0188 .0155 .0092 .0092 .00936 -00336 -00339	.0116 .01160 .0160 .020 .0237 .0143 .0051 .0051 .0019 .0109	.0135 .0159 .0204 .0204 .0225 .0150 .0071 .0034 .0023 .0010 -0007	.0067 .0057 .0056 .0053 .0037 .0023 .0018 0007 0017 0023 0023	0130 0149 0162 0154 0154 0025 0025 0029 0039
			/	M=.70				
08 0 08 0 08 0 08 0 08 0 08 0 08 0 08 0	.000	2.15 .05 2.04 4.13 6.25 8.35 10.54 112.54 114.62 116.67 118.71 20.74	0800 0708 1060 1163 1118 1177 0735 0302 0300 0008 03447	.0242 .0208 .0188 .0168 .0147 .0154 .0047 .0049 .0.056 .0005 .0103	.0153 .0159 .0190 .0230 .0230 .0248 .0301 .0140 .0076 .0049 .0010 .0065 .0162	.0153 .0172 .0194 .0223 .0231 .0166 .0037 .0037 .0039 .0017 .0031	.0057 .0052 .0049 .0034	0140 0174 0154 0143 0130 0094 0094 0031 . 0031 . 0033 . 0031

	Table S		luded.	ΔC_D	ΔC_m	△ Cz	ΔC_n	DCY
δ_{s}	δ_d	<u>a</u>	ΔC_L					
				M = .81		2121	.0066	0136
080 080 080 080 080 080 080 080 080 080	.000	- 2.18 06 2.06 4.16 6.29 8.40 10.52 12.61 14.67 16.74 18.80 30.82 23.90	0940 0994 1111 1308 13-82 09-1 04-22 0169 0206 0210 0228	.0219 .0191 .01538 .0128 .00257 .0025 .0009 -00043 -0014	.0209 .0218 .0266 .0288 .0334 .01579 01074 0054 .01009	.0174 .01908 .0208 .0247 .0245 .0182 .00945 .0019 .00018	.0059 .0051 .0051 .0033 .0018 0008 0021 0023 0030	0164 0150 0141 0133 0107 0061 00034 .0043 .0043
				M = .85	5			0142
. 08 0 . 08 0 . 08 0 . 08 0 . 08 0 . 08 0		- 2.20 00 2.04 4.17 6.30 8.45 10.56 12.64 14.73 16.79 18.87 20.86	095803541654166311340766038102880008	.0224 .0198 .0175 .0143 .0379 .0048 .0048 .0049 .0072 .0072	.0221 .0317 .0327 .0343 .0343 .0363 .0262 .0059 .0059 .0079	.0186 .0210 .0228 .0261 .0271 .0257 .0170 .0079 .0030 .0009	.0068 .0061 .0052 .0048 .0031 .0006 0018 0018	0161 0158 0130 0063 0031
				M = .90)			****
. 08 . 08 . 08 . 08 . 08 . 08	0 .000	- 2.22 - 08 2.05 4.192 8.45 10.57 12.65	1238 1292 1637 1856 1786 1786 0739 07356 0231	.0259 .0215 .0182 .0120 .0110 .0070 .0095	0578 0593 0384 0169	.0209 .0229 .0251 .0288 .0300 .0279 .0131 .0061	.0070 .0062 .0042 .0042 0005 0005	017 016 014 010 003 001
				M=.9			.007	5014
.08	30 .000 30 .000 30 .000	- 2.21 08 2.05 4.18 6.34 10.5	1286 1527 1611 1402	.009	9 .040 7 .056 9 .063 4 .047 8 .055	0256 0286 0286 0286	.006 .005 .004 .008	5016 9016 1009

Table	10.	Incremental	aerodynamic	coefficients.	. yi, b/2 = .47	M=.40
-------	-----	-------------	-------------	---------------	--------------------	-------

							D/241	W=.40
δ_s	δ_d	a	A CL	ΔC_D	ΔC_m	ΔC_{i}	ΔC_n	1 Cr
00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 2.06 - 2.004 4.09 6.15 8.20 10.27 12.31 14.37 16.41 20.45 23.45	0306 0307 0357 0495 0495 0504 0527 0443 0405 0359 0317 0618	.0092 .0081 .0059 .0036 0018 0071 0066 0081 0071 00101	0052 .0015 0026 .0024 .0027 0065 0013 0089 0089 0029 0172	.0037 .0056 .0064 .0072 .00673 .0070 .0053 .0033 .0033	.0045 .0043 .0043 .0036 .0031 .0008 .0008 .0004 .0004 .0002	.0087 .0141 .01597 .0154 .0117 .0103 .0103 .0109 .0109
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	. 050 . 0550 . 0550 . 0550 . 0550 . 0550 . 0550 . 0550 . 0550 . 0550	- 3.06 03 2.04 4.10 6.15 10.27 12.35 14.37 16.44 20.43 23.48	0501 0264 0565 05414 0490 0490 0495 0405 0538 0626	.0170 .0156 .0143 .0112 -0073 -0045 -0027 -0062 -01138 -0310 -0196	.0053 .0102 .0064 .0114 .0117 .0062 .0113 -0062 .0020 .0020 .0019 -0108	.0082 .0106 .0127 .0148 .0137 .0118 .00057 .0057 .0053 .0040	.0080 .0078 .0076 .0076 .0056 .0036 .00016 .0009 .00003 .0003	.0109 .0183 .0203 .0189 .0169 .0066 .0068 .0062
.081 .081 .081 .081 .081 .081 .081 .081	. 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077	- 2.07 - 02 2.03 4.09 6.15 8.21 10.28 14.38 16.43 16.43 20.48	0850 0664 0976 0996 0945 0693 03693 0408 0408 0174 0097	.0362 .0336 .03279 .0058 .0133 .00052 .00059 .0019	.0327 .0402 .0335 .0415 .0410 .0384 .0309 .0274 .0244 .0289 .0146 .0143	.0166 .0193 .0219 .0246 .0257 .0157 .0157 .0157 .0108 .0107 .00977	.0168 .0162 .0162 .0163 .0129 .0129 .0053 .0053 .0036 .0031 .0020	.0424 .0448 .0446 .0446 .0435 .0355 .0196 .0178 .0169 .01539
100 100 100 100 100 100 100 100 100	. 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999	14.37 16.42 18.45 20.48	1024 0805 0926 1067 1106 0955 0955 0644 0602 0602 0461 0029	.0502 .0480 .0487 .0409 .0187 .0194 .0098 .0089 .0063 .0063 .0013	.0406 .0424 .0357 .0522 -11255 -1255 .0286 .02059 .0279 .0347	02330 02330 02360 03260 03276 00276 00188 001658 00142 001427	. 0242 . 0234 . 0234 . 0236 . 0196 . 0134 . 0069 . 0059 . 0059 . 0049 . 0049	00655550 00655550 006553996 0043494 0088772 0088772 008830

(b) Modified leading edge.

Table 10. Concluded.

δ_s	δ_d	α	ΔC_L	ΔC_D	ΔC_m .	ΔC_{z}	ΔC_n	ΔC_{γ}
. 0288 . 0288 . 0288 . 0288 . 0288 . 0288 . 0288 . 0288 . 0288	00000000000000000000000000000000000000	- 2.08 2.023 4.099 6.150 10.27 12.338 14.338 16.40 18.46 20.48	0142 .0096 0080 0175 00523 0195 .01054 0074 0074 .0254	.0081 .0074 .0082 .0080 .0090 .0070 .0037 .0065 .0072 .0003 .0112	.0283 .0283 .02285 .0383 .01310 .03206 .03558 .0356 .03256	.0063 .0067 .0089 .0092 .00986 .0068 .0039 .0043 .0044 .0026	.0038 .0035 .0031 .0030 .0020 .0013 0005 0005 0011 .0013	.0024 .0026 .0016 .0018 .0041 .0023 0020 0120 0074 0049 0064 0091
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	0550 0550 0550 0550 0550 0550 0550 055	2 . 21 2 . 04 4 . 16 8 . 22 10 . 23 14 . 36 16 . 43 20 . 49 23 . 51	0431 0387 0316 0295 0301 0372 .0072 .0078 .0078 .0056	.0194 .0106 .0106 .0157 .0141 .0014 .0014 .0094 .0064 .0375	27456 .03576 .03576 .0424 .05614 .05614 .03388 .03373 .0381	.0113 .0139 .0156 .0168 .0166 .0132 .0087 .0074 .0080 .0076 .0063	.0072 .0071 .0066 .0065 .0053 .0045 .0014 0000 0005 0013	.0146 .0220 .0199 .0214 .0214 .0214 .0068 .0068 .0062
. U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81 . U81	. 077 . 077	2.11 2.03 2.01 4.07 6.14 8.20 10.26 12.33 16.41 18.43 20.46 23.49	0940 0698 0933 09122 0787 0303 04164 00995 0384	.0381 .0361 .0347 .0323 .0306 .0250 .0176 .0176 .0034 -0034 -0201	.0474 .0583 .0524 .0842 .0569 .0780 .0574 .0553 .0550 .0540 .0560 .0414	.0205 .0219 .02270 .0293 .0393 .0375 .01879 .0178 .0178	.0161 .0161 .0153 .0151 .0135 .0118 .0094 .0056 .0031 .0018	.036493 .04493 .04451 .04561 .04562 .01468 .01168 .01168
.100 .100 .100 .100 .100 .100 .100 .100	099999999999999999999999999999999999999	- 2.10 2.051 4.06 6.11 8.16 10.24 12.25 16.38 18.42 20.44	1021 0939 11227 1261 1264 1231 0425 0905 1017 0433	.0488 .0484 .0463 .0429 .0335 .0232 .0177 .0113 .0005	.0561 .0537 .05898 .0782 .0750 .07530 .0686 .0686 .0323	.0236 .0267 .0325 .0353 .0358 .0346 .0265 .0265 .0267 .0267	.0226 .0233 .0224 .0227 .0184 .0154 .01068 .0053 .0039	.0571 .06432 .06691 .06562 .05522 .03321 .03721 .0238

(a) Plain leading edge.

Table 11. Incremental aerodynamic coefficients. $y_{b/2} = .47 M = .60$

						D/ Z		
δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
. 028 . 028	00000000000000000000000000000000000000	2.10 3.00 4.17 6.25 10.44 10.45 114.55 16.66 20.62 23.69	0261 0282 04284 0424 0425 0426 0430 0274 03154 0546 0163	.0098 .0090 .0077 .0051 0012 0016 0062 0044 0074 0034	0030 .0037 .0071 .0106 .0106 .0053 .0001 0018 0029 0162	.0035 .0057 .0067 .0083 .0066 .0073 .0073 .0033 .0026 .0008	.0044 .0045 .0045 .0036 .0035 .0005 .0011 .0007 .0007	.0093 .0130 .0133 .0133 .0104 .0086 .0084 .0085 .0095 .0100
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	0500 05500 005500 005500 005500 005500 005500	- 2.09 - 2.07 4.15 6.25 8.34 10.51 14.58 18.65 20.64	0270 0440 04572 0481 0442 04418 03526 0214 04397	.0174 .0166 .0147 .0118 .0090 .0035 0037 0037 0034 0037 0037	.0058 .0090 .0118 .0201 .0193 .0150 .0074 .0050 .0043 -0043	.0079 .0101 .0128 .0132 .0132 .0125 .0100 .0070 .0050 .0041	.0081 .0080 .0076 .0076 .0055 .0027 .0010 .0010 .0011	.0151 .0193 .0186 .0183 .01112 .00112 .00057 .0054 .0063 .0071
.081 .081 .081 .081 .081 .081 .081 .081	. 0 7 7 . 0 7 7	- 2.10 - 02 2.07 4.15 6.25 8.34 10.43 12.59 16.64 18.66 20.65 23.70	0717 0754 0948 0924 0583 0504 03504 0222 02444 0317	.0354 .0339 .0327 .0227 .0220 .0163 .0048 .0013 .0059	.0328 .0296 .0366 .0403 .0389 .0362 .0262 .0218 .0208 .0203 .0166	.0161 .0192 .02261 .0258 .02156 .01156 .0104 .0093 .0078	.0166 .0164 .0164 .0146 .0124 .0077 .0048 .0033 .0028 .0035 .0027	.0424 .0436 .04434 .0397 .0284 .0380 .0149 .0146 .0164 .0154
.100 .100 .100 .100 .100 .100 .100 .100	. 0999 . 0999 . 0999 . 0999 . 0999 . 0999	2.10 .03 4.14 6.23 8.34 10.43 12.51 14.60 16.64 18.67 23.69	0759 0898 1193 0687 0725 0444 04490 0314 0484	.0489 .0492 .0417 .0340 .0193 .0075 .0100 .0061 .0086 -0037	.0343 .0334 .0449 .0449 .03964 .0264 .0226 .0226 .0242 .0227	.0196 .0231 .0306 .0314 .0349 .0197 .0164 .0141 .0139 .0119	.0237 .0238 .0218 .0188 .0118 .0014 .0066 .0061 .0066 .0067	.0589 .0625 .0625 .05382 .03357 .03229 .03247 .03247

(b) Modified leading edge.

Table II. Concluded.

δ_s	δ_d	a	ΔC_{l}	ΔC_{D}	ΔC_m	△ C,	ΔC_n	ΔC_{Y}
. 028 . 028	.029 .029 .029 .029 .029 .029 .029 .029	- 2.11 - 03 2.06 4.16 6.24 8.33 10.42 12.49 14.57 16.61 18.66 23.71	0140 0223 0194 0189 0169 0244 0256 0115 .0010 .0056 0100.	.0087 .0086 .0087 .0077 .0073 .0047 .0029 .0019 .0012 .0059 .0062	.0219 .0106 .0199 .0261 .0202 .0181 .0013 .0232 .0144 .0169 .0141 .0188	.0060 .0069 .0089 .0092 .0105 .0086 .0060 .0060 .0038 .0039 .0029	.0041 .0039 .0039 .0035 .0030 .0024 .0016 .0004 .0001 0010 0019	.0107 .0104 .0083 .0081 .0081 .0066 .0046 .0018 0014 0000 0014
.048 .048 .048 .048 .048 .048 .048 .048	00000000000000000000000000000000000000	2.12 - 03 2.05 4.14 6.24 10.42 12.56 16.62 18.69 23.69	0388 0470 0489 0505 0552 0552 0550 0147 0147 0150 0150	.0181 .0170 .0145 .0143 .0092 .0072 .0072 .0002 .0042 .0023	.0308 .0241 .0330 .0405 .0421 .0371 .01339 .0267 .0267	.0108 .0115 .0137 .0161 .0178 .0159 .0108 .0066 .0077 .0066	.0076 .0074 .0072 .0067 .0057 .0032 .0014 .0006 0001 0021	.0215 .0233 .0203 .0217 .0215 .01442 .0045 .00055 .00245 .00118
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	- 2.14 04 2.04 4.14 6.230 10.41 12.49 14.56 16.61 18.50 20.67 23.70	0801 0886 0884 0906 1045 0979 0481 0508 0485 0485	.0355 .0347 .0333 .0311 .0280 .0207 .0126 .0032 .0041 0108	.0478 .0441 .05332 .0592 .0581 .03544 .0441 -10468 .0540	.0201 .0223 .0247 .0374 .0297 .0297 .0224 .0167 .0170 .0170	.0160 .0162 .0151 .0151 .0137 .01159 .0056 .0034 .0034 00004	.0114
.100 .100 .100 .100 .100 .100 .100 .100	. 0999 . 09999 . 09999 . 09999 . 09999 . 09999	- 2.14 - 2.02 4.11 6.29 10.40 12.45 16.58 18.68	1194 0835 1049 0928 0714 0562	. 0 49 4 . 0 48 8 . 0 48 8 . 0 43 5 . 0 3 0 7 . 0 2 2 5 . 0 1 7 4 . 0 0 2 3 5 . 0 0 4 4 0 0 2	. 0 5 2 3 9 . 0 4 2 5 . 0 5 2 2 0 . 0 6 2 0 3 . 0 5 5 9 2 . 0 5 2 0 5 2 0 5 6 7 . 0 5	.0253 .0366 .0395 .0357 .0357 .0364 .0319 .0244 .0244 .0244	.0036	.0654 .0640 .0645 .0625 .0568 .0478 .0386 .0301 .0216

(a) Plain leading edge.

Table 12. Incremental aerodynamic coefficients. 1/b/2 = .47 M = .70

C	0						7/2 .71	11170
δ _S	δ _d	. a	ΔC_L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	1CY
. 028 . 028	. 0229 . 0229 . 0229 . 0229 . 0229 . 0229 . 0229 . 0229 . 0229	- 2.10 2.08 4.19 6.29 8.41 10.59 14.66 16.71 18.72 20.72	0195 0328 03244 03399 04473 0363 0261 0447 0219 0219 0234	.0096 .00975 .0075 .00575 0017 0022 0032 0087 0032 0053	0014 .0037 .0096 .0129 .0093 .0111 .0047 0021 0026 0015	.0027 .0049 .0069 .0084 .0074 .0084 .0067 .0044 .0034 .0029 .0025 .0036	.0046 .0046 .0046 .0036 .0036 .0036 .0008 .0008 .0007 .0005 .0005	.0127 .0127 .01327 .01329 .01031 .00783 .00778 .0076
048 048 048 048 048 048 048 048 048 048	0550 00550 00550 00550 00550 00550 00550 00550	2.11 2.08 4.18 6.29 8.43 10.53 12.667 14.67 18.72 20.78	0300 0453 04598 0594 0407 04097 0093 0296 0139 0296	.0174 .0165 .0145 .00182 .0048 .0048 .0036 0043 0035 .0001	.0064 .0126 .0171 .0236 .0183 .0178 .0089 .0057 -0001 .00017 .0620	.0072 .0100 .0127 .0153 .0130 .0077 .0061 .0052 .0049 .0049	.0083 .0082 .0077 .0065 .0054 .0030 .0017 .0011 .0008 0012	.0171 .0187 .0194 .01183 .01618 .00698 .00052 .00052
081 081 081 081 081 081 081 081 081	. 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077	2.12 2.07 4.20 6.42 10.52 12.62 14.69 16.74 20.73 23.80	0700 0807 0833 0884 0966 0755 02345 0245 0245 0268 03505	.0349 .0340 .0316 .0280 .0289 .0107 .0069 .0039 .0048 .0041 -0007	.0314 .0320 .0366 .0448 .0418 .0315 .0219 .0229 .0160 .0192 .0168 .0146	.0153 .0187 .0226 .02263 .0246 .0198 .0111 .0094 .0087 .0084 .0112	.0166 .0164 .0160 .0149 .0070 .0038 .0038 .0034 .0038	.04439 .04439 .044382 .02488 .01854 .01144 .01613 .01095
100 100 100 100 100 100 100 100 100 100	. 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	03 4.17 6.29 8.41 10.51 14.68 16.73 18.74	0737 0948 1037 1150 1151 0885 0315 0489 0316 0316 0400 0827	. 0 4 8 4 . 0 4 8 0 . 0 4 5 3 . 0 4 0 0 . 0 3 2 8 . 0 1 8 2 . 0 1 3 3 . 0 1 6 4 . 0 1 0 8 . 0 1 0 8 . 0 1 0 8 . 0 1 0 8	.0350 .0361 .0415 .04468 .0469 .0377 .0211 .0203 .0189 .0284 .0229 .0246	.0192 .0324 .0365 .0303 .0304 .0240 .0178 .0123 .0123 .0124 .0151	. 0 2 3 5 . 0 2 3 3 4 . 0 2 3 3 1 . 0 2 0 9 . 0 1 7 9 . 0 1 0 7 . 0 0 8 4 . 0 0 7 7 . 0 0 6 8 . 0 0 7 1 . 0 0 4 8 . 0 0 2 7	.0591 .0625 .0591 .0593 .0323 .0323 .0321 .0321 .0337 .0327

Table 12. Concluded.

δ_{s}	δ_d	a ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{Y}
	2229 200229 200229 2002229 200	- 2.140173 030182 2.070240 4.160236 6.2803707 10.510102 12.570115 14.650009 16.700123 20.750023 23.790053	.0098 .0100 .0097 .009% .0059 .0059 .0048 .0090 .0049	.0171 .0109 .0105 .0166 .0199 .0116 .0150 .0074 .0074 .00747 .0047	.0058 .0066 .0083 .0095 .0097 .0067 .0043 .0030 .0047 .0051	.0040 .0041 .0039 .0035 .0024 .0012 .0005 0005	.0098 .0088 .0090 .0088 .0074 .0054 .0010 .0006 0009 0019
. 048 . 048	.0550 .0550 .0550 .0550 .0550 .0550 .0550 .0550	- 2.150392 030399 2.070494 4.170542 6.280542 8.390410 10.500456 12.560412 14.650125 16.690125 18.760153 20.750233 23.810162	.0187 .0182 .0174 .0160 .0128 .0116 .0063 .0021 .0054 .0054 .0004	.0278 .0265 .0270 .0375 .0407 .0324 .0235 .0198 .0219 .0261	.0103 .0111 .0140 .0164 .0176 .0149 .0084 .0055 .0082 .0090 .0087	.0075 .0075 .0073 .0067 .0056 .0047 .0014 .0010 0003 0003	.0185 .0204 .0205 .0204 .0158 .0158 .0103 .0061 .0039 .0034 .0018
.081 .081 .081 .081 .081 .081 .081 .081	. 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077 . 077	- 2.160785 .030783 2.050839 4.161028 6.261059 8.370908 10.490732 12.560310 16.700357 18.750458 20.750216 23.800405	.0355 .0354 .0349 .0270 .0226 .0157 .0086 .0113 .0093 .0044	.0435 .1109 .04338 .0597 .0503 .04415 .0405 .0401 .04163	.0198 .0214 .0244 .0277 .0302 .0281 .0224 .0174 .0176 .0181 .0284	.0156 .0159 .0154 .0146 .0131 .0111 .0081 .0037 .0037 .0019	.0392 .04415 .0426 .0398 .0351 .0260 .0181 .0106 .0079 .0084
.100 .100 .100 .100 .100 .100 .100 .100	099999999999999999999999999999999999999	- 2.160969 061014 2.041141 4.161197 6.261324 8.371183 10.461183 12.566846 14.630815 16.990597 18.750597 20.750597	.0476 .0485 .0468 .0440 .0380 .0327 .0226 .0164 .0091 .0019 .0059 .0030	.05499 .054991 .06615 .065438 .055438 .055438 .05495 .0538	.0244 .0262 .0287 .0358 .0354 .0354 .0246 .0242 .0236 .0247	.0220 .0233 .0227 .0218 .0198 .0172 .0131 .0095 .0076 .0054 .0026	.0571 .0604 .0614 .0623 .0587 .0531 .0416 .0321 .0249 .0221 .0180 .0191

(a) Plain leading edge.

Table 13. Incremental aerodynamic coefficients. 1/b/2 = .47 M = .81

							14	
δ_{s}	δ_d	а	△C _L	ΔC_D	ΔC_m	ΔC_z	ΔC_n	ΔCY
. 0238 . 0238	. 023999999999999999999999999999999999999	- 2.12 2.11 4.24 6.37 8.48 10.56 14.76 16.77 20.82 20.82	0149 0229 0331 0331 0287 0418 0453 0171 0130 0206 0330 0358	.0097 .0093 .0064 .0049 0037 0007 0004 0033 0099	.0041 .0054 .0099 .0128 .0121 .0120 .0087 .0042 .0036 0026	.0028 .0051 .0079 .0091 .0083 .0081 .0051 .0028 .0029 .0029	.0048 .0048 .0048 .0038 .0031 .0016 .0010 .0009 .0009 .0007 0037 0013	.0122 .0133 .0133 .0136 .00978 .0077 .0080 .0073 .00023 .00073
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .0550 .0550 .0550 .0550 .0550	- 2.13 - 011 2.10 4.23 6.36 8.48 10.56 12.68 14.76 16.77 18.80 20.82 33.86	0321 0353 04565 0565 0587 0186 0186 0406 0406	.0176 .0157 .0152 .0093 .0093 .0013 -0048 .0014 -0096 -0069 -0076	.0099 .0106 .0211 .0190 .0192 .0097 .0130 .0059 .0060 .0070	.0066 .0097 .0120 .0138 .0118 .0061 .0047 .0049 .0084 .0051	.0085 .0083 .0078 .0078 .0028 .0018 .0015 .0015 .0011	.0185 .0185 .0185 .0153 .0090 .0047 .0040 .0050 -00023 .0039
.081 .081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	- 2.14 - 2.02 2.09 4.22 6.35 10.58 12.68 14.78 16.81 18.83 23.90	0608 0699 0840 0994 0852 0798 0315 0097 0204 0556 0430 0195	.0341 .0333 .0314 .0266 .0201 .0072 .0069 .0123 .0074 0043	.0311 .0304 .0394 .0433 .0363 .0244 .0232 .0222 .0222 .0221	.0143 .0178 .0223 .0228 .0174 .0087 .0087 .0087 .0127 .0113	.0163 .0162 .0158 .0149 .0109 .0066 .0049 .0042 .0042	.0432 .0435 .0436 .04337 .0316 .0137 .01448 .0090 .0097
.100 .100 .100 .100 .100 .100 .100 .100	. 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999 . 0999	2.13 2.09 4.22 6.34 8.48 10.60 12.69 14.78 16.81 20.83 23.92	U712 U826 0925 1006 1006 10094 0686 001227 001237 0633	.0477 .0472 .04746 .0395 .0318 .0112 .0114 .01155 .0003 -0005	.0356 .0328 .0328 .0362 .0456 .0326 .0335 .0244 .0237 .0237 .0236 .0319	.0172 .0208 .0294 .0294 .0293 .0210 .0114 .0115 .0117 .0149 .0166	.0233 .0231 .0223 .0205 .0166 .0100 .0084 .0077 .0077 .0048 .0048	.0597 .0597 .05965 .05484 .0226 .02204 .02219 .0178 .01183

Table 13. Concluded

	Table	13. Col	icluded					
δ_s	δ_d	α	ΔC_{l}	ΔC_D	ΔC_m	△ Cz		ACY
. 028 . 028	. 0 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 2.16 - 04 2.08 4.21 6.35 8.46 10.57 12.65 14.71 16.77 18.82 20.83 23.91	0176 0250 0248 0228 0165 0097 0128 0128 0009 0379 0056 .0057	.0098 .0098 .0097 .0091 .0088 .0072 .0032 .0020 .0047	.0170 .0103 .0134 .0176 .0161 .0086 .0569 .0122 .0030 .0100 .0049 -0027 .0005	.0056 .0064 .0098 .0100 .0076 .0063 .0040 .0041 .0053 .0069	.0041 .0041 .0036 .0039 .0027 .0007 .0006 -0004 0024	.0077 .0087 .0085 .0078 .0076 .0007 0010 0045 0045
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .050 .050 .050 .050 .050	- 2.17 - 0.3 2.09 4.22 6.346 10.56 14.75 16.75 16.85 23.93	0404 0448 0461 04559 0270 0135 0071 0280 0208 0259 .0059	.0181 .0179 .0174 .0159 .0133 .0127 .0046 .0072 .0008 .0070	0295 02571 02770 03795 02499 021997 02297 02205 00142	.0108 .0105 .0136 .0165 .0166 .0134 .0170 .0070 .0072 .0083 .0096	.0075 .0075 .0078 .0056 .0049 .0017 .0013 .0002 0023 0005	.0175 .0198 .0199 .0199 .01763 .0064 .0018 0019 0017
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077	2.17 2.07 4.19 6.346 10.567 14.79 16.82 20.83 23.9	0751 0818 0912 1082 1082 0571 0459 0398 0495 0312	. 0340 . 0346 . 0334 . 03064 . 0320 . 01508 . 00195 . 0046 . 0036	.0465 .0430 .0474 .0561 .0489 .0482 .0482 .0486 .0412 .0284	.0188 .0195 .02377 .0300 .0250 .0166 .0163 .0176 .0095	.0153 .0158 .0158 .0146 .0147 .00166 .0048 .0033 .0021 0002	.0370 .0417 .0414 .0383 .0203 .0145 .0115 .0094 .0056
.100 .100 .100 .100 .100 .100 .100	0999 0000 0000 0000 0000 0000 0000 000	- 2.16 - 0.6 2.05 4.19 6.30 8.43 10.56 12.67 16.77 18.82	1107 11679 1123 0814 0799 0512 0523	.0160 .0093 .0113 .0088	.0517 .0469 .0483 .0580 .0621 .0520 .0956 .0479 .0450 .0418 .0375	.0228 .0340 .0269 .0327 .0357 .0325 .0280 .0230 .0210 .0209 .0223	.0044	.0329 .0257 .0313 .0184

(a) Plain leading edge.

Table 14. Incremental aerodynamic coefficients. \$\frac{y}{b/2} = .47 M = .85\$

δ_s	\mathcal{S}_{d}	a	△ C _L	ΔC_D	ΔC_m	ΔC_{I}	ΔC_n	ΔC_{Y}
.028 .028 .028 .028 .028 .028 .028 .028	.023 .023 .023 .023 .023 .023 .023 .023	- 2.14 - 000 2.12 4.20 6.39 8.53 10.64 12.70 14.76 16.84 18.85	0164 0231 0404 0398 0396 0395 0417 0197 0367 0072	.0103 .0100 .0086 .0054 .0039 0003 0024 0081 .0013	.0009 .0079 .0132 .0161 .0161 .0189 .0082 .0066 0004	.0026 .0056 .0059 .0091 .0086 .0061 .0061 .0033 .0031	.0050 .0051 .0048 .0040 .0031 .0015 .0009 .0010 .0009	.0139 .0135 .0136 .0136 .0077 .0077
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .0550 .0550 .0550 .0550 .0550	- 2.13 01 2.10 4.26 6.39 8.52 10.62 12.71 14.80 16.84 18.83	0391 0365 0535 0535 0488 0005 0582 0145 0091 0178	.0180 .0177 .0154 .0093 .0098 -0040 .0036 .0036	.0095 .0137 .0247 .0222 .0241 .0137 .0096 .0097	.0070 .0099 .0124 .0154 .0140 .0117 .0065 .0047 .0051	.0088 .0086 .00871 .0052 .0026 .0017 .0016 .0011	.0192 .0191 .0191 .0180 .0184 .0087 .0047 .0040 .0046 .0041
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.14 2.11 4.23 6.37 8.53 10.65 18.71 14.80 16.86	0597 0691 09016 0876 08420 02478 02428 0328	.0348 .0344 .0371 .0200 .0084 .0076 .0082 .0090	.0283 .0333 .0451 .0395 .0395 .0210 .0210 .0212 .0212	.0138 .0182 .02265 .0237 .0188 .0099 .0078 .0091	.0164 .0164 .0159 .0141 .0105 .0063 .0047 .0044 .0039	.0440 .0431 .0442 .0328 .0208 .0141 .0139 .0134
.100 .100 .100 .100 .100 .100 .100 .100	. 099 . 099 . 099 . 099 . 099 . 099 . 099	- 2.13 2.09 4.23 6.37 8.52 10.65 12.72 14.78 16.85 18.87	0610 0791 1132 1070 0810 0393 0250 0481 0293 0599	.0486 .0484 .0460 .0399 .0299 .0191 .0170 .0079 .0148	.0314 .0329 .0329 .0465 .0450 .0394 .0208 .0228 .0235	.0165 .0206 .03502 .0284 .0165 .0130 .0097 .01129 .0180	.0236 .0237 .02206 .0158 .0115 .0085 .0081 .0076	.0603 .0605 .0609 .0566 .0451 .0297 .0208 .0197 .0206

Table 14. Concluded.

δ_s	δ_{d}	a	ΔC_L	ΔC_D	ΔCm	ΔC_z	ΔC_n	ΔC_{Y}
.028 .028 .028 .028 .028 .028 .028 .028	.029 .029 .029 .029 .029 .029 .029 .029	- 2.18 04 2.11 4.24 6.38 8.51 10.60 12.69 14.75 16.81 18.87	0155 0161 0233 0261 0306 0098 00-7 0023 0189 .0038	.0096 .0103 .0104 .0085 .0069 .0057 .0029 .0016 .0001	.0143 .0133 .0172 .0172 .0169 .0070 .0103 .0151 .0134	.0052 .0064 .0099 .0109 .0105 .0092 .0069 .0047 .0061	.0041 .0045 .0049 .0039 .0031 .0018 .0008 .0007 0006	.0106 .0101 .0105 .0097 .0077 .0045 .0016 .0010 0004 0037
. 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048 . 048	.050 .050 .050 .050 .050 .050 .050 .050	- 2.17 2.104 2.10 4.24 6.36 8.43 10.62 12.70 14.92 16.82 18.89	03435 04462 04558 05589 0584 02041 00040	.0181 .0188 .0183 .0154 .0131 .0074 .0084 .0031 .0074 .0014	.0282 .0743 .0329 .0370 .0370 .0131 .0263 .0299 .1270 .0283	.0101 .0105 .0138 .0170 .0180 .0150 .0112 .0077 .0082 .0091	.0076 .0079 .0077 .0069 .0058 .0018 .0018 .0005	.0206 .0207 .0215 .0176 .0178 .0063 .00427 .0004
.081 .081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077 .077	2.18 - 04 2.08 4.23 6.36 8.49 10.60 12.69 14.78 16.83	0775 0759 0904 1013 1109 0816 0546 0445 04401 0397	.0343 .0343 .03257 .03267 .02097 .01495 .01066	.0447 .0447 .0518 .05589 .0514 .0471 .0466	.0191 .0203 .0242 .0287 .0315 .0275 .0275 .0176	.0153 .0160 .0155 .0144 .0125 .0099 .0059 .0042 .0030	.0414 .0434 .0435 .0371 .0392 .0186 .0086
.100 .100 .100 .100 .100 .100 .100	0999 0999 0999 0999 0999 0999	- 2.20 07 2.06 4.20 6.34 8.49 10.58 12.69 14.76 16.81	0918 0930 1141 1361 0978 0630 0630 0540 0706	.0408 .0486 .0457 .0427 .0365 .0288 .0255 .0154	.0496 .0466 .0498 .0592 .0571 .0489 .0488	.0223 .0234 .0269 .0330 .0369 .0321 .0224 .0204	.0217 .0231 .0220 .0213 .0188 -0008 .0114 .0086 .0072	1858048446 55585568416 000000000000000000000000000000000000

	7			I/	
Table 15.	Incremental	aerodynamic	coefficients.	$\frac{y_{b/2}}{4} = .47$	M = .90

δ_{s}	\mathcal{S}_d	a	$\triangle C_L$	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	ΔC_{γ}
. 028 . 028 . 028 . 028 . 028 . 028	.029 .029 .029 .029 .029 .029	- 2.14 - 00 2.14 4.29 6.42 8.55 10.66 12.73	0088 0206 0367 0375 0209 0235	.0099 .0101 .0091 .0061 .0021 .0023 0007	0005 .0076 .0152 .0219 .0240 .0127 .0117	.0023 .0053 .0081 .0096 .0087 .0069 .0040	.0051 .0053 .0049 .0043 .0028 .0015 .0015	.0127 .0139 .0145 .0139 .0106 .0080 .0072
.048 .048 .048 .048 .048 .048	.050 .050 .050 .050 .050 .050	- 2.14 01 2.13 4.27 6.42 8.56 10.81	0310 0376 0620 0653 0596 0376 0124	.0193 .0189 .0163 .0130 .0056 .0043 .0032	.0114 .0154 .0250 .0310 .0341 .0285 .1029	.0067 .0100 .0135 .0162 .0136 .0120 .0046	.0093 .0091 .0085 .0075 .0028 .0028	.0205 .0206 .0202 .0190 .0134 .0082 .0045
.081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077 .077	2.14 - 01 2.12 4.28 6.41 8.55 10.66 12.76	0542 0672 0963 1102 0979 0823 0248	.0355 .0356 .0324 .0269 .0171 .0079 .0120	.0276 .0339 .0468 .0592 .0598 .0486 .0166	.0129 .0179 .0227 .0286 .0246 .0198 .0071	.0169 .0162 .0143 .0102 .0065 .0057	.0445 .0445 .0443 .0449 .0305 .0201 .0141
.100 .100 .100 .100 .100 .100	.099 .099 .099 .099 .099 .099	- 3.15 03 3.12 4.27 6.41 8.53 10.66 12.76	0644 0769 1062 1232 1075 0907 0375	.0490 .0491 .0455 .0395 .0289 .0157 .0177	.0272 .0309 .0447 .0587 .0586 .0465 .0203	.0152 .0195 .0248 .0311 .0297 .0233 .0124	.0237 .0237 .0228 .0208 .0164 .0104 .0086	.0604 .0608 .0605 .0568 .0450 .0290 .0212

Table 15. Concluded.

δ_s	\mathcal{S}_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{z}	ΔC_n	1Cx
.026 .028 .028 .028 .028 .028	.029	- 2.18 04 2.11 4.25 6.40 8.52 10.63	0172 0182 0232 0302 0192 0053 0155	.0097 .0108 .0103 .0080 .0066 .0062 .0142	.0122 .0123 .0123 .0232 .0168 .01167 .0156	.0059 .0066 .0092 .0092 .0074 .0052	.0043 .0047 .0047 .0038 .0033 .0010	.0108 .0105 .0104 .0086 .0053 .0019 .0009
.048 .048 .048 .048 .048 .048 .048	.050 .050 .050 .050 .050	- 2.19 12 4.26 6.40 8.52 10.63	0340 1107 0508 0480 0512 0217 .0040	.0182 .0191 .0182 .0175 .0108 .0144	.0247 .0234 .0378 .0407 .0429 .0280 .0229	.0104 .0108 .0145 .0185 .0172 .0131 .0066	.0078 .0082 .0082 .0068 .0050 .0028 .0019	.0219 .0321 .0321 .0198 .0148 .0090 .0053
.081 .081 .081 .081 .081 .081	.077 .077 .077 .077 .077 .077	- 2.19 05 2.09 4.35 6.52 10.62 12.71	0704 0760 0979 1061 1030 0800 0274 0283	.0349 .0365 .0343 .0295 .0226 .0171 .0219	.0448 .0472 .0580 .0690 .0717 .0642 .0386	.0189 .0203 .0246 .0300 .0317 .0286 .0174	.0156 .0164 .0158 .0143 .0118 .0079 .0056	.0421 .0435 .0424 .0397 .0335 .0221 .0145
.100 .100 .100 .100 .100 .100	.099 .099 .099 .099 .099 .099	- 2.20 - 06 2.08 4.23 6.37 8.49 10.61 12.70	0813 0909 1162 1301 1229 1072 0598 0472	.0474 .0497 .0467 .0420 .0348 .0264 .0247	.0470 .0483 .0579 .0731 .0724 .0671 .0501	.0214 .0232 .0278 .0349 .0370 .0348 .0237	.0219 .0233 .0226 .0212 .0179 .0140	.0079 .0596 .0593 .0575 .0485 .0285

(a) Plain leading edge.

Table 16. Incremental gerodynamic coefficients. 1/b/2 = 47M=,94

δ_d	a	1CL	ΔC_D	ΔC_m	ΔC_z	ΔC_n	1CY
. 029 . 029 . 029 . 029 . 029	- 2.13 - 2.14 4.26 6.40 8.53	0107 0231 0327 0332 0289 0235	.0106 .0106 .0091 .0073 .0045	0023 .0071 .0130 .0147 .0150	.0009 .0046 .0083 .0093 .0067	.0053 .0055 .0050 .0038 .0035	.0133 .0141 .0158 .0116 .0087
.050 .050 .050 .050 .050	- 2.15 01 2.13 4.27 6.41 8.52	0252 0404 0579 0474 0460 0265	.0190 .0185 .0158 .0142 .0098 .0082	.0053 .0170 .0275 .0267 .0241	.0060 .0096 .0140 .0136 .0131	.0093 .0093 .0085 .0076 .0048	.0204 .0208 .0204 .0172 .0116
.077 .077 .077 .077 .077 .077	2.14 .01 2.13 4.27 6.40 8.53 10.66	0502 0704 0896 0913 0781 0693 0486	.0354 .03527 .0327 .0281 .0235 .0140	.0249 .0338 .0460 .0536 .0461 .0425	.0118 .0173 .0240 .0277 .0244 .0190	.0170 .0170 .0161 .0140 .0107 .0078	.0437 .0443 .0443 .0387 .0295 .0228
.099 .099 .099 .099 .099	2.15 03 2.12 4.26 6.40 8.53 10.66	0549 0782 1019 0984 0915 0696 0736	.0486 .0487 .0466 .0420 .0301 .0322	.0224 .0336 .0472 .0518 .0496 .0427	.0133 .0190 .0265 .0315 .0389 .0254	.0335 .0337 .0330 .0204 .0157 .0110	.0594 .0601 .06553 .05485 .0302
	.029 .029 .029 .029 .029 .029 .050 .050 .050 .050 .050 .0777 .0777 .0777 .0777 .0777 .0777	.029 - 2.13 .02900 .029 4.26 .029 8.53 .050 - 2.15 .050 - 2.13 .050 4.27 .050 6.41 .050 8.52 .077 - 2.14 .07701 .077 4.27 .077 4.27 .077 6.40 .077 6.40 .077 10.66	.029 - 2.130107 .029000231 .029000231 .029 4.260332 .029 4.260335 .050 - 3.150252 .050010404 .050 2.130579 .050 4.2130579 .050 4.2130579 .050 5.2130579 .050 6.410460 .050 8.520365 .077 - 2.140502 .077010704 .077 2.130896 .077 - 2.140502 .077010704 .077 8.530913 .077 10.660486	.029 - 2.130107 .0106 .029000231 .0106 .029000231 .0106 .029 4.260327 .0091 .029 4.260332 .0073 .029 6.400289 .0048 .029 8.530235 .0022 .050 - 2.150252 .0190 .050010404 .0185 .050010404 .0185 .050 2.130579 .0158 .050 4.270474 .0142 .050 6.410460 .0098 .050 8.520365 .0082 .077 - 2.140502 .0354 .077010704 .0352 .077010704 .0352 .077 8.530913 .0281 .077 8.5309913 .0281 .077 8.530693 .0140 .077 10.660486 .0169 .099020782 .0486 .099020782 .0486 .099020784 .0420 .099 8.530996 .0327	.029	.029	.029

Table 16. Concluded.

δ_{s}	δ_d	a	1CL	ΔC_D	ΔC_m	ΔC_{i}	ΔC_n	DC.Y
.028 .028 .028 .028 .028	.029 .029 .029 .029 .029	- 2.33 04 2.12 4.24 6.37 8.48	0179 0202 0077 0236 0139 0077	.0105 .0105 .0115 .0095 .0056	0721 .0141 .0187 .0183 .0130	.0052 .0062 .0089 .0106 .0089	.0045 .0048 .0045 .0033 .0016	.0114 .0112 .0100 .0074 .0028
.048 .048 .048 .048 .048	.050 .050 .050 .050 .050	- 2.17 04 2.12 4.25 6.38 8.50	0269 0373 0405 0473 0392 0254	.0206 .0200 .0192 .0182 .0140	.0337 .0303 .0361 .0379 .0358	.0097 .0110 .0147 .0176 .0171	.0084 .0085 .0080 .0063 .0038	.0233 .0233 .0222 .0186 .0119
.081 .081 .081 .081 .081	.077 .077 .077 .077 .077	2.19 .04 2.10 4.24 6.37 8.50	0041 0760 0868 0922 0827 0716	.0359 .0353 .0339 .0308 .0370	.0451 .0486 .0547 .0644 .0606	.0130 .0144 .0175 .0209 .0314	.0160 .0165 .0163 .0149 .0119	.0420 .0429 .0416 .0374 .0289
.100 .100 .100 .100 .100	.099 .099 .099 .099 .099	- 2.21 06 3.08 4.22 6.36 8.46	0721 0879 1034 1094 1034 0916	.0475 .0497 .0470 .0414 .0352	.0447 .0480 .0579 .0667 .0661	.0194 .0220 .0285 .0342 .0365	.0219 .0233 .0226 .0201 .0163 .0127	.0575 .0579 .0593 .0549 .0455 .0347

Tal	ble 17.	Incr	emental	aerodyn	amic co	efficien	ts. Yin a	=.47
δ_s	Sd	a	ΔCL	ΔC_D	ΔC_m	△C _z	ΔC_n	1CY
				M=.40		7 7		
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.04 .00 2.06 4.10 6.17 8.23 10.29 12.34 14.34 16.43 18.46 20.47 23.46	0035 0037 0037 0256 0178 0205 0205 0052 00135 00135 0001 0056	.0141 .0142 .0134 .0102 0065 .0063 0027 0020 0041 0056 0003 .0113	.0084 .0089 .0049 .0128 .0118 .0050 .0013 .0037 0034 0002 .0017	.0049 .0061 .0085 .0109 .0109 .0053 .0020 .0005 0005 0016 0016	.0065 .0066 .0069 .0058 .0041 .0021 0000 0007 0006 0002 0002	0026 0105 00105 00112 0075 00443 .0088 .0130 .0161 .0161 .0183
	·			M=.60				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.08 3.09 4.17 6.26 8.36 10.46 12.53 14.58 16.65 18.65 23.69	007601500292029901210118015901590080	.0148 .0151 .0132 .0105 .0096 .0048 .0020 0045 0051 0008 0020	.0107 .0070 .0110 .0139 .0093 .0054 .00054 .00015 -:00105 -:0090 -:01907 -:0068	.0075 .0095 .0119 .0143 .0119 .0052 .0009 00010 00112 00417 0009	.0065 .0067 .0066 .0055 .0037 .0013 0003 0003 0004 .0004 .0002	0073 0102 0097 0087 0039 .00086 .01137 .01375 .0231
				M=70				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.08 .01 2.10 4.21 6.32 8.42 10.52 14.59 14.71 18.70 20.71	0095 0192 0287 0226 0213 02160 0203 0053 00154 0146	.0150 .0148 .0127 .0108 .0088 .0026 0029 00613 0019 0055 0055	.0153 .0138 .0176 .0201 .0137 .0033 .0031 .0024 0029 0129	.0091 .01133 .0136 .0153 .0116 .0052 0015 0011 0012 0026 0000	.0065 .0066 .0065 .0052 .0035 .0012 0000 0003 0004 .0004	

(a) Concluded.

Table 17. Continued.

δ_{s}	δ_d	a	ΔC_L	ΔC_D	ΔC_m	△ Cz	ΔC_n	ACY
				M=.81				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.10 00 2.13 4.73 6.37 8.51 10.60 12.75 16.79 18.79 23.69	0167 0252 0339 .4424 0180 02244 0224 0039 0039 0065 0375 .0110	.0150 .0146 .0128 .0487 .0090 .0090 0039 0019 0023 0023 0047	.0225 .01733 .02584 .01525 .00063 00254 0014 0052	.0115 .0132 .0157 .0178 .0117 -00017 -00027 -00011 -0007 -0003 -0003	.0067 .0065 .0054 .0030 .0037 0003 0004 0006 0012	0193 0103 0064 000137 00077 00127 00127 0129 0294
				M=.85				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.11 2.13 4.27 6.37 8.53 10.64 12.71 14.77 16.82 18.85	0161 0294 0420 0421 0531 0176 0176 0206 0206	.0155 .0153 .0130 .0109 .0059 .0046 .0032 .0010 .0071 .0071	.0226 .0219 .0267 .0277 .0176 .0137 .0040 0013 .0002 0080	.0123 .0147 .0178 .0125 .0041 0013 0014 0007 0006	.0068 .0068 .0067 .0055 .0027 .0004 0004 0005 0005	0101 0137 0137 0079 0019 .0062 .0082 .01027 .0323
				M=90				
.081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000 .000	- 3.11 .15 .2.15 4.29 6.43 8.56 10.67 13.72	0195 .0859 0486 0607 0411 0056 0093	.0162 .0163 .0135 .0101 .0052 .0044 0029	.0270 .0350 .0330 .0386 .0329 .0107 .0075	.0167 .0159 .0186 .0208 .0139 .0061 0014	.0070 .0072 .0068 .0057 .0031 .0007 .0002	0136 0144 0128 0082 0082 .0047 .0061
				M =.94				
.081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000	- 2.09 .02 2.15 4.30 6.42 8.54	0245 0301 0462 0324 0373 0282	.0176 .0160 .0136 .0124 .0035 0010	.0340 .0284 .0336 .0310 .0339 .0288	.0153 .0163 .0199 .0202 .0133 .0054	.0075 .0073 .0068 .0050 .0026 .0008	0147 0160 0140 9083 0025 .0027

	able / i	. Com	rinued.					
δ_s	δ_d	a	ΔC_L	ΔC_D	ΔC_m	ΔC_{7}	ΔC_n	ACY
				M=.40				
.081 .081 .081 .081 .081 .081 .081 .081	.000	- 2.02 - 2.006 4.10 6.133 10.28 12.34 14.36 16.41 18.45 20.46 23.50	.0884 .03032 .00132 0062 .00150 .0274 .0274 .0272 .0142	.0115 .01163 .01146 .01146 .01135 .00089 .00087 .00084	.0275 .0330 .0319 .0310 .04629 .04265 .03355 .0265 .0305 .0167	.0067 .0072 .0097 .0128 .01428 .0110 .0060 .0046 .0029 .0017	.0071 .0068 .0065 .0055 .0052 .0035 .0000 0000 0003 00013	0004 00045 00045 000375 000197 000445 000445 00198 0198 0198
				M=60				
.081 .081 .081 .081 .081 .081 .081 .081	.000	2.10 2.07 4.16 6.25 8.33 10.49 14.55 16.65 20.67 23.70	.0013 0138 0194 0296 0229 0330 0134 0319 0224 0282	.015% .0151 .014% .014% .0113 .0105 .0051 .0029 0048 0063	.0239 .0161 .02523 .02469 .002470 .02170 .02170 .02145	.0080 .0104 .0129 .0157 .0172 .0142 .0101 .0073 .0025 .0021 .0016	.0072 .0065 .0065 .0063 .0056 .0048 .0011 .0003 .0001 0004	00649 000547 000547 00034 001118 01118 01148 01149 0033
				M = .70				
. 081 . 081 . 081 . 081 . 081 . 081 . 081 . 081 . 081	.000	- 2.11 - 02 2.07 4.20 6.29 8.40 10.51 12.57 14.63 16.70 18.74 20.74 23.78	.0018020202830324040302330141005400540056	.0158 .0162 .0155 .0140 .0113 .0023 0002 0008 0008	.0251 .0216 .02311 .0320 .0216 .0216 .0171 .0196 .0027 .0090 .0076 .0033	.0104 .0123 .0151 .0175 .0183 .0140 .0103 .0058 .0029 .0026 .0120	.0071 .0065 .0063 .0052 .0041 .0004 .0005 0001 0005	0074 0096 0063 0072 0041 .00106 .01106 .01135 .0136

(b) Concluded.

Table 17. Concluded.

δ_{s}	δ_d	a	△CL	ΔC_D	ΔC_m	ΔC_{i}	ΔC_n	ΔC_{Y}
				M=.81				
.081 .081 .081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000 .000 .000 .00	- 2.14 02 2.09 4.19 6.33 8.46 10.58 12.64 14.77 18.82 20.80 23.90	0138 0290 0372 0728 0477 0229 0054 0096 0096 0096	. 0141 .0141 .0131 .0086 .0089 .0083 .0013 0044 0025 00094	.0299 .02493 .0324 .0327 .01602 .01602 .01760 .01601 .00019	.0126 .0143 .0170 .0194 .0195 .0065 .0028 .0028 .0018 .0019	.0071 .0066 .0065 .0062 .0055 .0008 .0003 0001 0012 0014	0123 01288 00971 000355 .00072 .001183 .01188
			•	M=.85				
.081 .081 .081 .081 .081 .081 .081 .081	.000 .000 .000 .000 .000 .000 .000	- 2.16 03 2.10 4.24 6.37 8.48 10.59 12.68 14.74 16.83 18.90	0144 0257 0498 0516 0603 00173 00173 0284 .0047 .01029	.0138 .0142 .0132 .0110 .0091 .0003 -0003 -0005 .0056 .0035	.0279 .0279 .0337 .0371 .0364 .0097 .0185 .0145 .0047	.0134 .0148 0003 .0213 .0212 .0142 .0057 .0037 .0020 .0089 0004	.0072 .0068 .0084 .0063 .0129 .0029 .0006 .0001 0012 0013	0137 0138 0192 0099 0004 .0004 .0004 .00124 .0124
				M =.90				
.081 .081 .081 .081 .081 .081 .081	.000	- 2.16 03 2.13 4.13 6.36 8.51 10.00 12.71 14.76	0170 0350 0509 0487 0491 0453 .00102 0526	.0146 .0153 .0138 .0121 .0074 .0002 .0062 .0017	.0297 .0318 .0419 .0396 .0396 .0394	.0156 .0167 .0196 .0224 .0206 .0147 .0037 .0054	.0078 .0078 .0079 .0061 .0039 .0018 .0006	.0034
				M=.94	7			
.081 .081 .081 .081 .081	.000	- 2.15 02 2.12 4.25 6.36 8.46	0475 0475 0406	.0157 .0167 .0106 .0119	.0399 .0356 .0369 .0405 .0411 .0238	.0172 .0182 .0307 .0320 .0302 .0158	.0077 .0073 .0068 .0057 .0038	015 012 008 003

Figure 1.- General arrangement of model and controls.

Figure 2.- Photograph of the model mounted in the Langley high-speed L-74562 7- by 10-foot tunnel.

Figure 3.- Variation of average test Reynolds number with Mach number.

Figure 4.- Effect of wing leading-edge modification on the lift, drag, and pitching-moment characteristics of the model without controls. (Data taken from ref. 5.)

Flagged symbols modified leading edge

M = .85

Figure 5.- Comparison of the static roll effectiveness of the spoiler-slot-deflector control with the plain flap-type spoiler. Control span, 0.44b/2.

NACA RM 154109

(a) Rolling-moment coefficient.

85,1/6

.10 0

.10

 δ_s , h_C

1 15

.10 0

 δ_s , h_c

Figure 6.- Effect of wing leading-edge modification on the variation of incremental aerodynamic coefficients with inboard spoiler-slot-deflector projection.

 ΔC_n

.40 o

.10

8s, 1/c.

(b) Yawing-moment coefficient.

85, 1/6

.10

0

.10

 δ_s , $\frac{h}{c}$

Figure 6.- Continued.

(c) Lift coefficient.

Figure 6.- Continued.

(d) Drag coefficient.

Figure 6.- Continued.

(e) Pitching-moment coefficient.

Figure 6.- Concluded.

(a) Rolling-moment coefficient.

Figure 7.- Effect of wing leading-edge modification on the variation of incremental aerodynamic coefficients with outboard spoiler-slotdeflector projection.

(b) Yawing-moment coefficient.

Figure 7.- Continued.

(c) Lift coefficient.

Figure 7.- Continued.

(d) Drag coefficient.

Figure 7.- Continued.

(e) Pitching-moment coefficient.

Figure 7.- Concluded.

Flagged symbols denote modified leading edge.

(a) Rolling-moment coefficient.

Figure 8.- Effect of wing leading-edge modification on the variation of incremental aerodynamic moment coefficients with angle of attack for the inboard spoiler-slot-deflector control.

Flagged symbols denote modified leading edge

(b) Yawing-moment coefficient.

Figure 8.- Concluded.

Flagged symbols denotes modified leading edge

(a) Rolling-moment coefficient.

Figure 9.- Effect of wing leading-edge modification on the variation of incremental aerodynamic moment coefficients with angle of attack for the outboard spoiler-slot-deflector control.

Flagged symbols denote modified leading edge

(b) Yawing-moment coefficient.

Figure 9.- Concluded.

(a) Rolling-moment coefficient.

Figure 10.- Effect of control spanwise location on the variation of incremental aerodynamic moment coefficients with spoiler-slot-deflector projection on the wing with the modified leading edge.

(b) Yawing-moment coefficient.

Figure 10.- Continued.

(c) Pitching-moment coefficient.

Figure 10.- Concluded.

$$y_{i/b/2} = .25 \quad \delta_s = .096 \quad \delta_d = .103$$
 $y_{i/b/2} = .47 \quad \delta_s = .100 \quad \delta_d = .099$

(a) Rolling-moment coefficient.

Figure 11.- Effect of control spanwise location on the variation of incremental aerodynamic moment coefficients with angle of attack on the wing with the modified leading edge.

$$y_{i/b/2} = .25$$
 $\delta_s = .096$ $\delta_d = .103$ 0
 $y_{i/b/2} = .47$ $\delta_s = .100$ $\delta_d = .099$ 0

(b) Yawing-moment coefficient.

Figure 11.- Concluded.

NACA-Langley - 11-19-54 - 425