Caminhos mínimos de uma única origem 5189-31

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

Introdução

- Como encontrar o caminho mínimo entre duas cidades?
- O problema para encontrar este caminho é conhecido como problema de caminho mínimo
- Entrada
 - Um grafo direcionado G = (V, A)
 - Uma função peso $w: A \rightarrow \mathbf{R}$

Introdução

- O peso do caminho $p = \langle v_0, v_1, \dots, v_k \rangle$ é
 - a soma dos pesos das arestas no caminho

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

O peso do caminho mínimo de u até v é definido como

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v\}, \text{ se existe um caminho de } u \text{ até } v\\ \infty, \text{ caso contrário} \end{cases}$$

• Um caminho mínimo do vértice u até o vértice v é qualquer caminho p com peso $w(p) = \delta(u, v)$

Introdução

 Os pesos das arestas podem representar outras métricas além da distância, como o tempo, custo, ou outra quantidade que acumule linearmente ao longo de um caminho e que se deseja minimizar

 O algoritmo de busca em largura é um algoritmo de caminhos mínimos que funciona para grafos não valorados (ponderados), isto é, as arestas tem peso unitário

Tipos de problemas de caminhos mínimos

- Origem única: Encontrar um caminho mínimo a partir de uma dada origem s ∈ V até todo vértice v ∈ V
- **Destino único**: Encontrar um caminho mínimo até um determinado vértice de destino *t* a partir de cada vértice *v*
- Par único: Encontrar o caminho mínimo de u até v
- Todos os pares: Encontrar um caminho mínimo de u até v para todo par de vértices u e v

Exemplo de caminhos mínimos de única origem

- Observe que:
 - O caminho mínimo pode não ser único
 - Os caminhos mínimos de uma origem para todos os outros vértices formam uma árvore

Caminhos mínimos

- Características de caminhos mínimos:
 - Subestrutura ótima
 - Ciclos e arestas de pesos negativos
 - Representação
 - Relaxamento
 - Propriedades

Subestrutura ótima

- Em geral os algoritmos de caminhos mínimos se baseiam na seguinte propriedade
 - Lema 24.1 Qualquer subcaminho de um caminho mínimo é um caminho mínimo
 - Como provar este lema?

Arestas de pesos negativos

- Não apresentam problemas se nenhum ciclo com peso negativo é alcançável a partir da origem
- Nenhum caminho da origem até um vértice em um ciclo negativo pode ser mínimo
- Se existe um ciclo de peso negativo em algum caminho de s até v, definimos $\delta(s, v) = -\infty$

Ciclos

• Caminhos mínimos podem conter ciclos?

Ciclos

- Caminhos mínimos podem conter ciclos? Não
- Ciclos de peso negativo: $\delta(s, v) = -\infty$
- Ciclos de peso positivo: Pode-se obter um caminho mínimo eliminando o ciclo
- Ciclos de peso nulo: Não existe razão para usar tal ciclo

- <u>Todo caminho mínimo não possui ciclos</u>
- Qualquer caminho acíclico em um grafo G = (V, A) contém no máximo |V| vértices distintos e no máximo |V| 1 arestas

Representação

- Os caminhos mínimos são representados de forma semelhante às árvores primeiro na extensão produzidas pelo algoritmo bfs
- Para cada vértice $v \in V$, a saída dos algoritmos consiste em
 - $v.d = \delta(s, v)$
 - Inicialmente $v.d = \infty$
 - Diminui conforme o algoritmo progride, mas sempre mantém a propriedade $v.d \ge \delta(s, v)$
 - *v.d* pode ser chamado de **estimativa do caminho mínimo**
 - $v.\pi$ = predecessor de v no caminho mínimo a partir de s
 - Se não existe predecessor, então $v.\pi = nil$
 - π induz uma árvore, a árvore de caminhos mínimos

Representação

- A partir dos valores de π gerados em algoritmos de caminhos mínimos, têm-se como resultado um grafo G_{π} que é uma **árvore de caminhos mínimos**
- G_{π} é uma árvore que contém um caminho mínimo desde a raiz a todo vértice que pode ser alcançado a partir da raiz.
- Árvore de caminhos mínimos é semelhante à arvore primeiro na extensão
- Definida como um grafo G' = (V', A'), onde $V' \subseteq V$ e $A' \subseteq A$:
 - V' é o conjunto de vértices alcançáveis a partir da raiz
 - G' forma uma árvore enraizada
 - Para todo $v \in V'$, o único caminho simples da raiz até v em G' é um caminho mínimo da raiz até v em G.

Sendo os vértices inicializados com a função

```
initialize-single-source(G, s)
1 for cada vértice v em G.V
2  v.d = ∞
3  v.π = nil
4 s.d = 0
```

 Podemos melhorar a estimativa do caminho mínimo para v, passando por u e seguindo (u, v)?

- Relaxamento de uma aresta (u, v) consiste em testar se o caminho mínimo até um vértice v, passando por u, pode ser melhorado. Se for possível, os atributos $v.\pi$ e v.d são atualizados.
- Relaxamento é o único meio de mudar as estimativas de caminhos mínimos e predecessores.
- Os algoritmos para encontrar caminhos mínimos diferem na quantidade de vezes que cada aresta é relaxada e a ordem que tal relaxamento ocorre.


```
relax(u, v, w)
1 if v.d > u.d + w(u, v)
2 v.d = u.d + w(u, v)
3 v.π = u
```

- Desigualdade triangular (Lema 24.10)
 - Para toda aresta $(u, v) \in A$, têm-se que $\delta(s, v) \le \delta(s, u) + w(u, v)$

- Desigualdade triangular (Lema 24.10)
 - Para toda aresta $(u, v) \in A$, têm-se que $\delta(s, v) \le \delta(s, u) + w(u, v)$

- Para as próximas propriedades, é suposto que
 - O grafo é inicializado com uma chamada a initialize-singlesource
 - O único modo de modificar v.d e $v.\pi$ (para qualquer vértice) e pela chamada de **relax**

- Propriedade do limite superior (Lema 24.11)
 - Sempre têm-se que $v.d \ge \delta(s, v)$ para todo v. Uma vez que $v.d = \delta(s, v)$, ele nunca muda

- Propriedade do limite superior (Lema 24.11)
 - Sempre têm-se que $v.d \ge \delta(s, v)$ para todo v. Uma vez que $v.d = \delta(s, v)$, ele nunca muda
- Propriedade de inexistência de caminho (Lema 24.12)
 - Se $\delta(s, v) = \infty$, então sempre $v.d = \infty$

- Propriedade do limite superior (Lema 24.11)
 - Sempre têm-se que $v.d \ge \delta(s, v)$ para todo v. Uma vez que $v.d = \delta(s, v)$, ele nunca muda
- Propriedade de inexistência de caminho (Lema 24.12)
 - Se $\delta(s, v) = \infty$, então sempre $v.d = \infty$
- Propriedade de convergência (Lema 24.14)
 - Se $s \rightsquigarrow u \rightarrow v$ é um caminho mínimo e se $u.d = \delta(s, u)$ em qualquer instante antes da chamada relax(u, v, w), então $v.d = \delta(s, v)$ em todos os instantes posteriores.

- Propriedade do limite superior (Lema 24.11)
 - Sempre têm-se que $v.d \ge \delta(s, v)$ para todo v. Uma vez que $v.d = \delta(s, v)$, ele nunca muda
- Propriedade de inexistência de caminho (Lema 24.12)
 - Se $\delta(s, v) = \infty$, então sempre $v.d = \infty$
- Propriedade de convergência (Lema 24.14)
 - Se $s \rightarrow u \rightarrow v$ é um caminho mínimo e se $u.d = \delta(s, u)$ em qualquer instante antes da chamada relax(u, v, w), então $v.d = \delta(s, v)$ em todos os instantes posteriores.
- Propriedade de relaxamento de caminho (Lema 24.15)
 - Seja $p = \langle v_0, v_1, \dots, v_k \rangle$ o caminho mínimo v_0 até v_k , se a função **relax** for chamada na ordem $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, mesmo que intercalada com outros relaxamentos, então, então v_k . $d = \delta(s, v_k)$

Algoritmos de caminhos mínimos

- Inicialização dos atributos $v.d \in v.\pi$
- Relaxamento das arestas

 Os algoritmos diferem na ordem e na quantidade de vezes que cada aresta é relaxada.

- Resolve o problema para o caso geral, as arestas podem ter pesos negativos
- Detecta ciclos negativos acessíveis a partir da origem:
 - Retorna *false*, se encontrar ciclos negativos
 - Retorna *true*, caso contrário
- Calcula v.d e $v.\pi$ para todo $v \in V$
- Ideia
 - Relaxar todas as arestas, |V| 1 vezes

```
bellman-ford(G, w, s)
1 initialize-single-source(G, s)
2 for i = 1 to |G.V| - 1
3   for cada aresta (u, v) em G.A
4   relax(u, v, w)
5 for cada aresta (u, v) em G.A
6   if v.d > u.d + w(u, v)
7   return false
8 return true
```

```
bellman-ford(G, w, s)
1 initialize-single-source(G, s)
2 for i = 1 to |G.V| - 1
3   for cada aresta (u, v) em G.A
4   relax(u, v, w)
5 for cada aresta (u, v) em G.A
6   if v.d > u.d + w(u, v)
7   return false
8 return true
```

- Análise do tempo de execução:
 - A inicialização na linha 1 demora Θ(V)
 - Cada uma das |V|-1 passagens das linha 2 a 4 demora o tempo $\Theta(A)$, totalizando O(V.A)
 - O laço das linha 5 a 7 demora O(A)
 - Tempo de execução do algoritmo $\Theta(V.A)$

Ordem em que as arestas foram relaxadas:
 (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y)

- Por que o algoritmo funciona ?
 - Propriedade de relaxamento de caminho
 - Seja v acessível a partir de s, e seja $p = \langle v_0, v_1, \ldots, v_k \rangle$ um caminho mínimo acíclico entre $s = v_0$ e $v = v_k$. p tem no máximo |V| 1 arestas, e portanto $k \le |V| 1$
 - Cada iteração do laço da linha 2 relaxa todas as arestas
 - A primeira iteração relaxa (v_0, v_1)
 - A segunda iteração relaxa (v₁, v₂)
 - •
 - A k-ésima iteração relaxa (v_k-1, v_k)
- Pela propriedade de relaxamento de caminho $v.d = v_k .d = \delta(s, v_k) = \delta(s, v)$

Algoritmo para gad

- Grafo acíclico direcionado (gad) ponderado
- Caminhos mínimos são sempre bem definidos em um gad, pois não existem ciclos (de peso negativo)
- Ideia
 - Relaxar as arestas em uma ordem topológica de seus vértices

Algoritmo para gad

```
dag-shortest-paths(G, w, s)
1 ordenar topologicamente os vértices de G
2 initialize-single-source(G, s)
3 for cada vértice u tomado na ordem topológica
4 for cada vértice v em u.adj
5 relax(u, v, w)
```

Algoritmo para gad

```
dag-shortest-paths(G, w, s)
1 ordenar topologicamente os vértices de G
2 initialize-single-source(G, s)
3 for cada vértice u tomado na ordem topológica
4 for cada vértice v em u.adj
5 relax(u, v, w)
```

- •Análise do tempo de execução:
 - A ordenação topológica da linha 1 demora $\Theta(V + A)$
 - initialize-single-source na linha 2 demora $\Theta(V)$
 - Nos laços das linhas 3 e 4, a lista de adjacências de cada vértices é visitada apenas uma vez, totalizando V + A (análise agregada), como o relaxamento de cada aresta custa O(1), o tempo total é Θ(A)
 - Portanto, o tempo de execução do algoritmo é $\Theta(V + A)$

Caminhos mínimos única origem: gad

Caminhos mínimos única origem: qad

- Por que o algoritmo funciona ?
 - Como os vértices são processados em ordem topológica, as arestas de qualquer caminho são relaxadas na ordem que aparecem no caminho
 - Pela propriedade de relaxamento de caminho, o algoritmo funciona corretamente

Aplicação

- Caminhos críticos na análise de diagramas PERT (program
- evaluation and review technique)
- As arestas representam serviços a serem executados
- Os pesos de arestas representam os tempos necessários para execução de determinados serviços
 - (u, v), v, (v, x): serviço (u, v) deve ser executado antes do serviço (v, x)
- Um caminho através desse gad: sequencia de serviços
- Caminho crítico: é um caminho mais longo pelo gad
- Tempo mais longo para execução de uma sequencia ordenada
- O peso de um caminho crítico é um limite inferior sobre o tempo total para execução de todos os serviços

Aplicação

- Um caminho crítico pode ser encontrado de duas maneiras:
 - Tornando negativos os pesos das arestas e executando dag-shortestpaths; ou
 - Executando dag-shortest-paths, substituindo "∞" por "-∞" na linha 2 de initialize-single-source e ">" por "<" no procedimento relax

- Caminho mínimo de única origem em um grafo direcionado ponderado
- Todos os pesos de arestas são não negativos, ou seja $w(u, v) \ge 0$ para cada aresta $(u, v) \in A$

- Ideia
 - Essencialmente uma versão ponderada da busca em largura
 - Ao invés de uma fila FIFO, usa uma fila de prioridades
 - As chaves são os valores v.d
 - Mantém dois conjuntos de vértices
 - S: vértices cujo caminho mínimo desde a origem já foram determinados
 - Q = V S: fila de prioridades
 - O algoritmo seleciona repetidamente o vértice u ∈ Q com a mínima estimativa de peso do caminho mínimo, adiciona u a S e relaxa todas as arestas que saem de u

```
dijkstra(G, w, s)
1 initialize-single-source(G, s)
2 S = {}
3 Q = G.V
4 while Q != {}
5     u = extract-min(Q)
6     S = S U {u}
7     for cada vértice v em u.adj
8     relax(u, v, w)
```


- Análise do tempo de execução
 - Linha 1, Θ(*V*)
 - Linhas 4 a 8, O(V + A) (sem contar as operações com fila)
 - Operações de fila
 - insert implícita na linha 3 (executado uma vez para cada vértice)
 - extract-min na linha 5 (executado uma vez para cada vértice)
 - decrease-key implícita em relax (executado no máximo de |A| vezes, uma vez para cada aresta relaxada)
 - Depende da implementação da fila de prioridade

- Análise do tempo de execução
 - Arranjos simples
 - Como os vértices são enumerados de 1 a |V|, o valor v.d é armazenado na v-ésima entrada de um arranjo
 - Cada operação insert e decrease-key demora O(1)
 - Cada operação extract-min demora O(V) (pesquisa linear)
 - Tempo total de $O(V^2 + A) = O(V^2)$

- Análise do tempo de execução
 - Heap
 - Se o grafo é esparso, em particular, $A = o(V^2 / \lg V)$ é prático utilizar um heap binário
 - O tempo para construir um heap é O(V)
 - Cada operação de extract-min e decrease-key demora O(lg V)
 - Tempo total de $O((V + A) \lg V + V)$, que é $O(A \lg V)$ se todos os vértices são acessíveis a partir da origem

- Análise do tempo de execução
 - Heap de Fibonacci
 - Cada operação extract-min demora O(lg V)
 - Cada operação **decrease-key** demora o tempo amortizado de O(1)
 - Tempo total de $O(V \lg V + A)$

- Por que o algoritmo funciona ?
 - Invariante de laço: no início de cada iteração do laço **while**, $v.d = \delta(s, v)$ para todos $v \in S$
 - Inicialização: $S = \emptyset$, então é verdadeiro
 - Término: No final, $Q = \emptyset \Rightarrow S = V \Rightarrow v.d = \delta(s, v)$, para todo $v \in V$
 - Manutenção: é necessário mostrar que $u.d = \delta(s, u)$ quando u é adicionado a S em cada iteração

Bibliografia

Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition.
 Capítulo 24.

 Nivio Ziviani. Projeto de Algoritmos com Implementações em Pascal e C. 3a Edição Revista e Ampliada, Cengage Learning, 2010. Capítulo 7. Seção 7.8