Name: Krishna Chaitanya Sripada

Ans 2.3

Since the set concepts are of the form $c = \{(x,y): x^2 + y^2 \le r^2\}$, the circle is around the origin with radius r. Let us choose a smaller radius q such that both of them have the same center i.e., origin.

Let A denote the region between circle with radius 'r' and circle with radius 'q' such that $A = \{x : q \le ||x|| \le r\}$. Let $P_r[A]$ denote the probability mass of the region defined by A, that is the probability that a point randomly drawn falls within A. Since errors made by the PAC-learning algorithm can be only due to points falling inside A, we can assume that $P_r[A] > \varepsilon$; otherwise the error of A is less than or equal to ε regardless of the training sample.

Let $R \in c$ be a target concept and H be a hypothesis and by contraposition, if $R(A) > \varepsilon$, then any point in H chosen accordingly will "miss" region A with a probability of at most $1 - \varepsilon$. Therefore, we get,

$$P_r[R(A) > \varepsilon] \le P_r[\{A \cap H = \varnothing\}]$$

$$\le (1 - \varepsilon)^m$$

$$\le e^{-m\varepsilon}$$

where for the last step, the identity $1-x \le e^{-x}$ is used which is valid for all $x \in \mathbb{R}$.

For any $\delta > 0$, to ensure that $P_r[R(A) > \varepsilon] \le \delta$, we can impose, $e^{-m\varepsilon} < \delta \Leftrightarrow m > (1/\varepsilon) \log(1/\delta)$

Ans 2.4

Given $X = \mathbb{R}^2$ and the set of concepts are of the form $c = \{x \in \mathbb{R}^2 : ||x - x_0|| \le r\}$ for some point $x_0 \in \mathbb{R}^2$ and real number r. Also the complexity is $m \ge (3/\varepsilon) \log(3/\delta)$ with three regions r_1, r_2, r_3 drawn around the edge of concept c have probability of $\varepsilon/3$ each.

Gertrude is relying on the implication that generalization $error > \varepsilon \Rightarrow H \cap r_i = \emptyset$ for some i and hypothesis H. Below is the illustration of an example where we have one training point in each region. The points in r_1 and r_2 are very close together, and the point in r_3 is very close to region r_1 . In this data, the learned circle includes these points and one diameter approximately traverses the corners of r_1 . In the illustration below, the circle with the thick border is our target circle and the darkened areas are the errors of this hypothesis. Apparently, the error can be greater that ε even while $H \cap r_i = \emptyset \ \forall i$ and this invalidates Gertrude's proof.

Figure 1: Non-concentric circles

Ans 2.6

- (a) The probability that R' misses region r_j is the product of the probability p for each point x_i of the training sample that
- i. Doesn't fall in r_i or be positive.
- ii. Fall in r_i with the label flipped to negative because of the noise.

Then, we have,

$$\begin{aligned} p &= P_r[x \not\in r_j \lor (x \in r_j \land x \text{ is positive } \land \text{ label of } x \text{ is flipped})] \\ &= P_r[x \not\in r_j \lor (x \in r_j \land \text{ label of } x \text{ is flipped})] \\ &= P_r[x \not\in r_j] + P_r[(x \in r_j \land \text{ label of } x \text{ is flipped})] \\ &= (1 - P_r[x \in r_j]) + \eta P_r[x \in r_j] \\ &= (1 - \eta)(1 - P_r[x \not\in r_j]) + \eta \\ &\leq (1 - \eta)(1 - \varepsilon/4) + \eta \text{ (by the definition of PAC learnability)} \\ &= (1 - \varepsilon/4) + \eta \varepsilon/4 \\ &\leq 1 - \varepsilon(1 - \eta')/4 \end{aligned}$$

(b) The probability that $P_r[R(R') > \varepsilon]$ is upper bound by the probability that R' misses at least one region r_j . Thus, by union bound, we get,

$$P_r[R(R') > \varepsilon] \le 4(1 - \varepsilon(1 - \eta')/4)^m$$

$$P_r[R(R') > \varepsilon] \le 4e^{-m\varepsilon(1 - \eta')/4}$$

By setting δ to match the upper bound will result in a probability of at least $1 - \delta$, $m \ge \frac{4}{(1 - \eta')\varepsilon} \log \frac{4}{\delta}$ with $R(R') \le \varepsilon$

Ans 3.5

Consider the case where H is reduced to the constant hypothesis $h_1: x \mapsto 1$ and $h_{-1}: x \mapsto -1$. Then by definition of Rademacher complexity,

$$\hat{R}_s(H) = \frac{1}{m} E_{\sigma}[\sup \{\sum_{i=1}^m \sigma_i, \sum_{i=1}^m -\sigma_i\}] = \frac{1}{m} E_{\sigma}[|\sum_{i=1}^m \sigma_i|]$$

Let $X = \sum_{i=1}^{m} \sigma_i$. Since $E[X^2] = E[\sum_{i,j=1}^{m} \sigma_i \sigma_j]$ and $\forall i \neq j$ and σ_i are independent, we get $E[\sigma_i \sigma_i] = E[\sigma_i]E[\sigma_i] = 0$. Thus,

$$E[X^2] = E[\sum_{i=1}^{m} \sigma_i \sigma_i] = E[\sum_{i=1}^{m} \sigma_i^2].$$

Since $m = E[X^2]$, it can be rewritten as $E[|X|^{\frac{2}{3}}|X|^{\frac{4}{3}}] \le E[|X|]^{\frac{2}{3}}E[X^4]^{\frac{1}{3}}$.

Therefore,

efore,
$$E[|X|] \ge \frac{m^{\frac{3}{2}}}{E[X^4]^{\frac{1}{2}}} = \frac{m^{\frac{3}{2}}}{\sqrt{E[\sum\limits_{i=1}^{m} \sigma_i^4 + 3\sum\limits_{i \ne j} \sigma_i^2 \sigma_j^2]}} = \frac{m^{\frac{3}{2}}}{\sqrt{m+3m(m-1)}} = \frac{m^{\frac{3}{2}}}{\sqrt{m(3m-2)}} \ge \frac{m^{\frac{3}{2}}}{\sqrt{m(3m)}} = \sqrt{\frac{m}{3}}.$$

Thus,

$$\hat{R}_s(H) \geq \sqrt{\frac{m}{3}}$$

Since $R_m(H) \le \hat{R_s}(H) + O(\frac{VCdim(H)}{\sqrt{m}})$, it implies $R_m(H) \le O(\frac{VCdim(H)}{\sqrt{m}})$, which contradicts $R_m(H) \le O(\frac{VCdim(H)}{m})$.

Ans 3.6

A sequence of 2k + 1 points on a line can't be shattered if successive points are labeled with alternate labels starting with a positive label. We need to choose intervals which contain a longest sequence of consecutive positive sample points and we can have at most 2k such intervals. Thus, VC dimension of the class of union of k intervals on a real line is 2k.

Ans 3.12

(a) For any $x \in \mathbb{R}$, let there exist an ω with labels --+-. Then $\sin(\omega x) < 0$, $\sin(2\omega x) < 0$, $\sin(3\omega x) > 0$ and $\sin(4\omega x) < 0$. If we show that this implies $\sin^2(\omega x) < \frac{1}{2}$ and $\sin^2(\omega x) \ge \frac{3}{4}$, then it will be a contradiction.

Using the identity $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$ and since $\sin(4\omega x) < 0$, we have, $2\sin(2\omega x)\cos(2\omega x) = \sin(4\omega x) < 0$.

Since $\sin(2\omega x) < 0$, we can divide both sides of the inequality by $2\sin(2\omega x)$ to get $\cos(2\omega x) > 0$. Applying the identity $\cos(2\theta) = 1 - 2\sin^2(\theta)$ yields $1 - 2\sin^2(\omega x) > 0$, or $\sin^2(\omega x) < \frac{1}{2}$.

Using the identity $\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)$ and $\sin(3\omega x) \ge 0$, we have $3\sin(\omega x) - 4\sin^3(\omega x) = \sin(3\omega x) \ge 0$.

Since $\sin(\omega x) < 0$ we can divide both sides of the inequality by $\sin(\omega x)$ to get $3 - 4\sin^2(\omega x) \le 0$ or $\sin^2(\omega x) \ge \frac{3}{4}$. Hence we have proved the contraction and thus $\forall x \in \mathbb{R}$, the points x, 2x, 3x and 4x cannot be shattered by this family of sine functions.

(b) For any m > 0, consider points $(x_1, x_2,, x_m)$ with arbitrary labels $(y_1, y_2,, y_m) \in \{-1, +1\}^m$. Now, let parameter $\omega = \pi (1 + \sum_{i=1}^{m} 2^{i} y_{i}^{\prime})$ where $y_{i}^{\prime} = \frac{1 - y_{i}}{2}$. If we can show that this parameter will classify the entire sample for any m > 0 and choice of labels, then we can show that the VC-dimension of the family of sine functions is infinite. $\forall \in [1, m]$, we have

$$\omega x_{j} = \omega 2^{-j} = \pi (2^{-j} + \sum_{i=1}^{m} 2^{i-j} y_{i}')$$

$$= \pi (2^{-j} + (\sum_{i=1}^{j-1} 2^{i-j} y_{i}') + y_{j}' + (\sum_{i=1}^{m-j} 2^{i} y_{i}'))$$

The last term can be ignored as it only contributes multiples of 2π . Since $y_i' \in \{0,1\}$ the sum of remaining terms is,

$$\pi(2^{-j} + (\sum_{i=1}^{j-1} 2^{i-j} y_i^{'}) + y_j^{'}) = \pi(\sum_{i=1}^{j-1} 2^{-i} y_i^{'} + 2^{-j} + y_j^{'})$$
 Now the upper and lower bounds are as follows:

$$\pi(\sum_{i=1}^{j-1} 2^{-i} y_i' + 2^{-j} + y_j') \le \pi(\sum_{i=1}^{j} 2^{-i} + y_j') < \pi(1 + y_j')$$

$$\pi(\sum_{i=1}^{j-1} 2^{-i} y_i' + 2^{-j} + y_j') > \pi y_j'$$

Thus, if $y_j = 1$ we have $y_j' = 0$ and $0 < \omega x_j < \pi$, which implies $\sin(\omega x_j) = 1$. Similarly, for $y_j = -1$ we have

Ans 3.19

(a) By definition of Oskar's prediction rule,

$$\begin{aligned} error(f_o) &= P_r[f_o(S) \neq x] \\ &= P_r[f_o(S) = x_A \land x = x_B] + P_r[f_o(S) = x_B \land x = x_A] \\ &= P_r[N(S) < \frac{m}{2}|x = x_B]P_r[x = x_B] + P_r[N(S) \ge \frac{m}{2}|x = x_A]P_r[x = x_A] \\ &= \frac{1}{2}P_r[NS < \frac{m}{2}|x = x_B] + \frac{1}{2}P_r[N(S) \ge \frac{m}{2}|x = x_A] \ge \frac{1}{2}P_r[N(S) \ge \frac{m}{2}|x = x_A] \end{aligned}$$

(b) Since $P_r[N(S) \ge \frac{m}{2}|x = x_A] = P_r[B(m, p) \ge k]$, with $p = \frac{1-\varepsilon}{2}, k = \frac{m}{2}$ and $mp \le k \le m(1-p)$. Thus, by the

binomial inequality given in the appendix,
$$error(f_o) \geq \frac{1}{2} P_r[N \geq \frac{\frac{m\varepsilon}{2}}{\sqrt{\frac{1}{4(1-\varepsilon^2)m}}}] = \frac{1}{2} P_r[N \geq \varepsilon \sqrt{\frac{m}{1-\varepsilon^2}}]$$
 Using the second inequality in the appendix, we get,

$$error(f_o) > \frac{1}{4} [1 - [1 - e^{-\frac{m\varepsilon^2}{1 - \varepsilon^2}}]^{\frac{1}{2}}]$$

(c) If m is odd, $P_r[N(S) \ge \frac{m}{2}|x = x_A] \ge P_r[N(S) \ge \frac{m+1}{2}|x = x_A]$, we use the lower bound, $error(f_o) \ge \frac{1}{2}P_r[N(S) \ge \frac{m+1}{2}|x = x_A]$ Thus we can use the lower bound expression with $\left\lceil \frac{m}{2} \right\rceil$ instead of $\frac{m}{2}$.

$$error(f_o) > \frac{1}{4} [1 - [1 - e^{-\frac{2[\frac{m}{2}]\epsilon^2}{1 - \epsilon^2}}]^{\frac{1}{2}}]$$

(d) If $error(f_o)$ is at most δ where $0 < \delta < 1/4$, then $\frac{1}{4}[1 - [1 - e^{-\frac{2\left\lceil \frac{m}{2}\right\rceil \varepsilon^2}{1 - \varepsilon^2}}]^{\frac{1}{2}}] < \delta$. Upon simplification, we get,

$$e^{-\frac{2\left\lceil\frac{m}{2}\right\rceil\epsilon^2}{1-\epsilon^2}} < 1 - (1-4\delta)^2$$

$$e^{-\frac{2\left\lceil\frac{m}{2}\right\rceil\epsilon^2}{1-\epsilon^2}} < 4\delta(2-4\delta)$$

$$e^{-\frac{2\left\lceil\frac{m}{2}\right\rceil\epsilon^2}{1-\epsilon^2}} < 8\delta(1-2\delta)$$

and solving for m, we get,

$$-\frac{2\lceil \frac{m}{2} \rceil \varepsilon^2}{1-\varepsilon^2} < \log(8\delta(1-2\delta))$$

$$-\lceil \frac{m}{2} \rceil < \frac{1-\varepsilon^2}{2\varepsilon^2} \log(8\delta(1-2\delta))$$

$$m > 2 \left\lceil \frac{1-\varepsilon^2}{2\varepsilon^2} \log(8\delta(1-2\delta)) \right\rceil$$

Thus lower bound varies as $\frac{1}{\epsilon^2}$.

(e) Let f be an arbitrary rule and X_A denote the set of samples for which $f(S) = x_A$ and F_B the complement. Then, by definition of error,

Hittor of error,
$$error(f) = \sum_{S \in X_A} P_r[S \wedge x_B] + \sum_{S \in X_B} P_r[S \wedge x_A]$$

$$= \frac{1}{2} \sum_{S \in X_A} P_r[S|x_B] + \frac{1}{2} \sum_{S \in X_B} P_r[S|x_A]$$

$$= \frac{1}{2} \sum_{S \in X_A, N(S) < m/2} P_r[S|x_B] + \frac{1}{2} \sum_{S \in X_A, N(S) \ge m/2} P_r[S|x_B] + \frac{1}{2} \sum_{S \in X_B, N(S) < m/2} P_r[S|x_A] + \frac{1}{2} \sum_{S \in X_B, N(S) \ge m/2} P_r[S|x_A]$$

If $N(S) \ge m/2$, then $P_r[S|x_B] \ge P_r[S|x_A]$ and if N(S) < m/2, then $P_r[S|x_A] \ge P_r[S|x_B]$. Thus the lower bound is,

$$\begin{split} error(f) &\geq \frac{1}{2} \sum_{S \in X_A, N(S) < m/2} P_r[S|x_B] + \frac{1}{2} \sum_{S \in X_A, N(S) \geq m/2} P_r[S|x_A] + \frac{1}{2} \sum_{S \in X_B, N(S) < m/2} P_r[S|x_B] + \frac{1}{2} \sum_{S \in X_B, N(S) \geq m/2} P_r[S|x_A] \\ &= \frac{1}{2} \sum_{N(S) < m/2} P_r[S|x_B] + \frac{1}{2} \sum_{N(S) \geq m/2} P_r[S|x_A] \\ &= error(f_o) \end{split}$$

Thus we can conclude that the lower bound can be applied to all rules.