UNCLASSIFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)			
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. (GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
RPI Math. Rep. No. 142			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED	
Influence of horizontally-random bottom structure on acoustic intensity in a shallow ocean			
		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)	
M. J. Jacobson, W. L. Siegmann, and C. E. Ashley		N00014-76-C-0288	
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Ponggolnov Polytechul		AREA & WORK UNIT NUMBERS	
Rensselaer Polytechnic Institute Troy, New York 12181		NR 386-606	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
Office of Naval Research, Code 425		15 April 1984	
Department of the Navy		13. NUMBER OF PAGES 43	
Arlington, Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)		15. SECURITY CLASS. (of this report)	
o.i.co		is county cens. (or the report)	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)			
This document has been approved for public release and sale; its distribution is unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Underwater Acoustics
Shallow-Water Acoustics
Random Ocean Bottoms
Intensity Variations

20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)

Effects of a model for random bottom structure on acoustic intensity in isospeed shallow water are studied. The randomness is due to stochastic variations in the bottom density and sound speed in the horizontal direction beneath a plane water-bottom interface. Ray geometry, spreading loss, and bottom loss and phase shift are examined in order to derive formulas for mean - continued -

UNCLASSIFIED

SECURITY CLASSIFICATION	N OF THIS PAGE (When Data Entered)	
are sufficient bottom-acoust illustrative developed by The distincti density mean, as are compar models. Inte	atly general to permit the cic models of sound reflec- and comparative purposes MacKenzie and the other b ve acoustic consequences variance, and horizontal cisons of results for the	tion. In this paper, for two such models, one by Rayleigh, are considered. of bottoms of different correlation are discussed,
l cociver rung	c and water depth.	

LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 32841

Rensselaer Polytechnic Institute

Troy, New York 12181

Influence of horizontally-random
 bottom structure on acoustic
 intensity in a shallow ocean

by

M. J. Jacobson, W. L. Siegmann and C. E. Ashley

Department of Mathematical Sciences

Rensselaer Polytechnic Institute,

Troy, New York 12181

RPI Math. Rep. No. 142
April 15, 1984

This work was sponsored by

Code 425, Office of Naval Research

Contract No. N00014-76-C-0288

NR 386-606

This document has been approved for public release and sale; its distribution is unlimited.

ABSTRACT

Effects of a model for random bottom structure on acoustic intensity in isospeed shallow water are studied. The randomness is due to stochastic variations in the bottom density and sound speed in the horizontal direction beneath a plane water-bottom interface. Ray geometry, spreading loss, and bottom loss and phase shift are examined in order to derive formulas for mean intensity and the variance of intensity. The expressions obtained are sufficiently general to permit their use with different bottom-acoustic models of sound reflection. In this paper, for illustrative and comparative purposes two such models, one developed by MacKenzie and the other by Rayleigh, are considered. The distinctive acoustic consequences of bottoms of different density mean, variance, and horizontal correlation are discussed, as are comparisons of results for the two bottom-reflection models. Intensity moments are obtained also for differing source-receiver range and water depth.

INTRODUCTION

The acoustical effects of random interface topography between the water and bottom has been and is the object of much research. In contrast, the influence of random variations in bottom structure has received relatively less attention. One recent perspective on the influence of these two general types of bottom effects on acoustic propagation is found in Ref. 1. Both types of bottom variations are particularly important in shallow water.² Indeed, ocean regions may be regarded, for acoustic propagation studies, as shallow whenever sound transmission is significantly influenced by the bottom (see for instance Ref. 3). However, there is such an overabundance of bottom input parameters for intensity calculations and predictions that one model, or even several, seem inadequate to account for them all. For example, Rogers 4 lists twenty-four separate inputs to a propagation loss model for shallowwater acoustics. Furthermore, some of these parameters are so poorly known that it would not be feasible to model their acoustical effects. Therefore, it has been suggested (for example, see Ref. 4) that a statistical approach could possibly give reasonably accurate predictions for propagation loss. In this paper, we use such an approach to study how horizontal random variations in bottom density and sound speed affect sound transmission.

The specific problem we address assumes an ocean of shallow depth, so that the water can be assumed to have constant sound speed and density. A horizontal water-bottom interface is also assumed, and the bottom is taken to have small random variations in sound speed and density in the horizontal direction. Associated with these random quantities are correlations which depend upon the horizontal distance separating two locations. The ray theory of propagation is used in the water, and more than one reflection theory at the water-bottom interface is studied. Since shallow-water propagation is

dominated by repeated bottom interactions, we are necessarily considering ocean areas such as the continental terrace region where depths are less than about 200 m.⁵ Our primary objective is to determine statistics of intensity at a fixed receiver, in terms of statistics of the bottom structure.

In Sec. I we derive expressions for per-ray travel time, geometrical spreading loss, bottom loss, and bottom phase shift. Rather general expressions for the mean intensity and its variance are developed in Sec. II, while Sec. III contains a specialization of the results when MacKenzie and Rayleigh bottom-loss models are used. The method by which bottom acoustic attenuation is incorporated, and the assumed type of horizontal bottom correlation function, are also discussed. Section IV presents and discusses numerical results obtained from the expressions we derived for the case of MacKenzie theory. In Sec. V, we compare those results obtained previously using MacKenzie theory with those employing Rayleigh theory. Finally, Sec. VI is a summary of the paper.

I. FORMULATION

We consider an isospeed ocean channel of constant depth, H, as suggested in Fig. 1(a). A point sound source S is located at a depth h_S and a point receiver R at depth h_R . The horizontal separation between S and R is denoted by R.

As stated in the introduction, ray theory is used here, and specular reflection at both surface and bottom is assumed. Rays are distinguished from each other by describing each by the ordered pair (n,j). Thus, a ray is denoted by r_{nj} , where n > 0 indicates the total number of bottom reflections between S and R. The symbol j specifies the type of ray, of which for n > 1 there are four, as illustrated in Fig. 1(b). For a ray that leaves S in a downward (or upward) direction and arrives at R from below, j is taken to be

one (or two). Similarly, j=3 and j=4 correspond to the other ray-direction pairs at S and R, as shown in the figure. For the special case n=0, when $h_S < h_R$, j takes on the values 3 and 4 but not 1 and 2; when $h_S > h_R$, j can be 2 and 4 but not 1 and 3 [see Fig. 1(b)]. Each bottom reflection of the ray r_{nj} can be labeled by the unique triple (i,j,n), where i numbers each bounce sequentially from one to n. These three indices will be essential in describing two bottom parameters in our model. In particular, we let $p_{nj}^{(n)}$ and $p_{nj}^{(n)}$ and $p_{nj}^{(n)}$ and sound speed at bottom bounce $p_{nj}^{(n)}$. The water density $p_{nj}^{(n)}$ and the sound speed $p_{nj}^{(n)}$ are taken constant. Returning to Fig. 1(a), the angle that ray $p_{nj}^{(n)}$ makes with the horizontal as it leaves the source is denoted by $p_{nj}^{(n)}$. Of course, this is also the magnitude of the inclination angle everywhere along $p_{nj}^{(n)}$. We define the inclination angle $p_{nj}^{(n)} < \frac{\pi}{2}$ to be measured from the horizontal, and to be positive counterclockwise, as indicated in the figure.

The sound source S is taken to emit a unity-amplitude omnidirectional cw signal \sin ωt , where ω is circular frequency and t is time. Then, ray r_{nj} arrives at the receiver after a time of travel T_{nj} in the form A_{nj} $\sin(\omega t - \theta_{nj})$. The relative per-ray amplitude A_{nj} differs from unity largely because of spreading loss and bottom loss, with other losses being neglected here. The per-ray travel time and phase shifts at surface and bottom reflections cause the phase ϕ_{nj} at the receiver to differ from that at the source. We may write

$$A_{nj} = \Lambda_{nj}^{-1/2} B_{nj} \tag{1}$$

$$\phi_{nj} = \omega T_{nj} - [n + \frac{1}{2} (\lambda + \nu)\pi] - \sum_{i=1}^{n} s_{ij}^{(n)}$$
 (2)

In Eq. (1), Λ_{nj} is spreading loss, given by

$$\Lambda_{nj} = P_{nj}^2$$
 (3)

where P_{nj} is the length of r_{nj} . The quantity B_{nj} represents the decrease in amplitude due to all the bottom reflections of ray r_{nj} , and may be written

$$B_{nj} = \prod_{i=1}^{n} B_{ij}^{(n)}, \qquad (4)$$

where $\mathcal{B}^{(n)}$ is the coefficient of reflection of r_{nj} at its ith bottom bounce. ij In Eq. (2),

$$T_{nj} = P_{nj}/c_1 \tag{5}$$

is travel time, while $S^{(n)}$ represents the phase shift at the ith bottom reflection of r_{nj} . The symbol λ and ν are parameters defined by

$$\lambda = (2.5-j)/|2.5-j|$$
 (6)

and

$$v = (-1)^{j} , \qquad (7)$$

which account for surface reflections in the family of rays with n bottom bounces. From geometric considerations, a formula for path length of $r_{\rm nj}$ can be shown to be

$$P_{nj} = [R^2 + (2nH + \lambda h_R + \nu h_S)^2]^{1/2}$$
 (8)

Thus, A_{nj} is given through Eqs. (1), (3), (4), and (8), and ϕ_{nj} by Eqs. (2) and (5)-(8). Note that, if the source and receiver are located on the surface (i.e., $h_R = h_S = 0$), then Eq. (8) reduces to

$$P_{n1} = [R^2 + [2nH]^2]^{1/2}, (9)$$

so that, in this particular case, the parameters λ and ν are not required.

Since the amplitudes of successive ray arrivals converge to zero with reasonable rapidity, because of increasing bottom and spreading losses, we need consider in total-field calculations only rays that experience some maximum number N or fewer bottom reflections. A typical condition to determine N, which we have used in our numerical examples, is to neglect rays which have amplitude less than one percent of the ray with largest amplitude. Consequently, the total acoustic field at R, of amplitude A and phase A, may be written in the form

$$A \sin (\omega t - \Phi) = \sum_{n=0}^{N} \sum_{j=1}^{4} A_{nj} \sin(\omega t - \phi_{nj}).$$
(10)

It follows from Eq. (10) that A can be written in terms of the per-ray amplitudes and phases as

$$A^{2} = \left(\sum_{n=0}^{N} \sum_{j=1}^{4} A_{nj} \sin \phi_{nj}\right)^{2} + \left(\sum_{n=0}^{N} \sum_{j=1}^{4} A_{nj} \cos \phi_{nj}\right)^{2}. \tag{11}$$

We shall employ Eq. (11) in Sec. II.

We turn now to expressions for $B^{(n)}$ and $S^{(n)}$, where bottom properties at ij ij, the location of each ray reflection are taken to vary in a small random fashion about fixed "average" values. In our model we consider variations both in the density $\rho^{(n)}$ of the bottom at the ith bounce of r and in the sound speed $c^{(n)}$ ij of the bottom at that point. Thus, we write

$$\rho_{ij}^{(n)}/\rho_{1} = (\rho_{2}/\rho_{1})(1 + \varepsilon_{ij}^{(n)}), \qquad (12)$$

where ρ is the constant horizontally-averaged density of the bottom, and $\epsilon^{(n)}$ ij is a small random quantity ($|\epsilon^{(n)}|$ << 1). In a similar manner, we let ij

$$c_{1}/c_{ij}^{(n)} = (c_{1}/c_{2})(1+\delta_{ij}^{(n)}),$$
 (13)

where c is the constant mean sound speed in the bottom and $\left| \begin{array}{c} \delta^{(n)} \\ ij \end{array} \right| <<$ 1. In the next section, we will discuss the first and second moments of the random quantities $\epsilon^{(n)}$ and $\delta^{(n)}$, including their correlation at pairs of points along ij ij

We now expand the bottom loss $\mathcal{B}^{(n)}$ in a Maclaurin series with respect to ij and $\delta^{(n)}$, keeping only second and lower degree terms. It follows that ij

$$B_{ij}^{(n)} = A_{nj} + B_{nj} \epsilon_{ij}^{(n)} + C_{nj} \delta_{ij}^{(n)} + D_{nj} (\epsilon_{ij}^{(n)})^{2} + E_{nj} (\epsilon_{ij}^{(n)} \delta_{ij}^{(n)}) + F_{nj} (\delta_{ij}^{(n)})^{2}, \qquad (14)$$

where the coefficients A_{nj} through F_{nj} depend on the reflection theory and mean bottom values that are selected. In Sec. IV we show explicit results for the reflection theories of MacKenzie and Rayleigh. Of course, other theories for which these equations are valid could also be utilized if desired. The per-ray bottom phase shift $S^{(n)}$ may be expanded similarly to give:

$$S^{(n)} = G + H \quad \varepsilon^{(n)} + I \quad \delta^{(n)} + J \quad \left(\varepsilon^{(n)}\right)^{2}$$

$$+ K_{nj} \quad \left(\varepsilon^{(n)}\right)^{2} + L_{nj} \left(\delta^{(n)}\right)^{2}. \tag{15}$$

Again, the coefficients G_{nj} through L_{nj} in Eq. (15) are prescribed by the chosen reflection theory and unperturbed bottom density and sound speed.

II. INTENSITY MOMENTS

We turn now to a consideration of the mean and variance of the relative intensity I at R. In view of our definition of A, I = A^2 where A^2 is given in Eq. (11). Since the per-ray quantities A_{nj} and ϕ_{nj} in Eq. (11) depend on the random variables $\epsilon^{(n)}$ and $\delta^{(n)}$ in Eqs. (12) and (13), I is necessarily a random ij variable. Our first objective is to express I in terms of these random variables.

We begin by expressing ϕ_{nj} from Eq. (2) in terms of quanitities $\overline{\phi}_{nj}$ and γ , where $\overline{\phi}$ does not depend upon the small stochastic perturbations $\epsilon^{(n)}_{nj}$ and $\delta^{(n)}_{nj}$, while γ does:

$$\phi_{nj} = \overline{\phi}_{nj} + \gamma_{nj} \tag{16}$$

To second-degree terms, Eqs. (2), (5), (8), and (15) give

$$\Phi_{nj} = \omega P_{nj}/c_1 - \left[n + \frac{1}{2} \left(\lambda + \nu\right)\right] \pi - n G_{nj}$$
(17a)

and

$$\gamma_{nj} = \sum_{i=1}^{n} \left[H_{nj} \, \epsilon_{ij}^{(n)} + I_{nj} \, \delta_{ij}^{(n)} + J_{nj} \left(\epsilon_{ij}^{(n)} \right)^{2} + K_{nj} \left(\epsilon_{ij}^{(n)} \, \delta_{ij}^{(n)} \right) + L_{nj} \left(\delta_{ij}^{(n)} \right)^{2} \right]. \tag{17b}$$

Next, we write Anj as

$$A_{nj} = \overline{A}_{nj} \Gamma_{nj}$$
 (18)

where similarly \overline{A} is independent of $\epsilon^{(n)}$ and $\delta^{(n)}$ and Γ is one when the nj ij ij nj small perturbations are zero. From Eqs. (1), (3), (4), and (14), we find

$$\frac{A}{nj} = A_{nj}^{n}/P_{nj}$$
 (19a)

$$\Gamma_{nj} = \prod_{i=1}^{n} \left[1 + \left(B_{nj} / A_{nj} \right) \varepsilon_{ij}^{(n)} + \left(C_{nj} / A_{nj} \right) \delta_{ij}^{(n)} \right]$$

$$+ \left(D_{nj} / A_{nj} \right) \left(\varepsilon_{ij}^{(n)} \right)^{2} + \left(E_{nj} / A_{nj} \right) \left(\varepsilon_{ij}^{(n)} \delta_{ij}^{(n)} \right)$$

$$+ \left(F_{nj} / A_{nj} \right) \left(\delta_{ij}^{(n)} \right)^{2} \right] . \tag{19b}$$

Substituting Eqs. (16) and (18) into Eq. (11), carrying out the squares, and combining terms, we obtain:

$$I = \sum_{n=0}^{N} \sum_{m=0}^{N} \sum_{j=1}^{4} \sum_{k=1}^{4} A_{nj} A_{mk} \Gamma_{nj} \Gamma_{mk} \cos \left(\frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \right).$$
 (20)

With an expression of the cosine that retains all terms to second order in the density and sound-speed perturbations, it follows from Eq. (20) that

$$I = \sum_{n=0}^{N} \sum_{m=0}^{N} \sum_{j=1}^{4} \sum_{k=1}^{4} \overline{A}_{nj} \overline{A}_{mk} \left\{ \left[1 - \frac{1}{2} \left(\gamma_{nj} - \gamma_{mk} \right)^{2} \right] \Gamma_{nj} \Gamma_{mk} \right\}$$

$$\times \cos \left(\overline{\Phi}_{nj} - \overline{\Phi}_{mk} \right) + \left(\gamma_{nj} - \gamma_{mk} \right) \Gamma_{nj} \Gamma_{mk} \sin \left(\overline{\Phi}_{nj} - \overline{\Phi}_{mk} \right) \right\}.$$

$$(21)$$

Thus, the intensity is known from Eqs. (8), (17), (19), and (21), correct to second-order terms in $\epsilon^{(n)}$ and $\delta^{(n)}$.

We are now in a position to determine the mean and variance of the intensity,

$$\mu(I) = E(I) \tag{22}$$

and

$$\sigma^2(I) = E(I^2) - E^2(I)$$
, (23)

where E denotes stochastic expectation. In doing so, we will take

$$E(\varepsilon_{ij}^{(n)}) = E(\delta_{ij}^{(n)}) = 0 , \qquad (24)$$

$$\sigma^{2}(\varepsilon^{(n)}) \equiv \sigma^{2},$$
(25a)

$$\sigma^2(\delta_{ij}^{(n)}) \equiv \sigma_{\delta}^2 . \tag{25b}$$

Equations (25) mean that all $\epsilon^{(n)}$ and all $\delta^{(n)}$ are assumed to have the same ij ij variance. Other second-order moments will be written as

$$E(\varepsilon_{ij}^{(n)} \varepsilon_{lk}^{(m)}) = \sigma_{\varepsilon}^{2} C(\varepsilon_{ij}^{(n)}, \varepsilon_{lk}^{(m)}), \qquad (26a)$$

$$E\left(\delta_{ij}^{(n)} \delta_{lk}^{(m)}\right) = \sigma_{\delta}^{2} C\left(\delta_{ij}^{(n)}, \delta_{lk}^{(m)}\right), \qquad (26b)$$

and

$$E(\varepsilon^{(n)} \delta^{(m)}) = \sigma \sigma C(\varepsilon^{(n)}, \delta^{(m)}). \tag{26c}$$

In Eqs. (26) σ and σ are the standard deviations of $\epsilon^{(n)}$ and $\delta^{(n)}$, introduced in Eqs. (25), and C(a,b) represents the correlation coefficient of the random quantities a and b.

In calculating moments involving the $\delta(n)$, we employ for convenience an ij approximate relationship between bottom sound-speed and density perturbations. For small enough perturbations, it may be anticipated that $\epsilon(n)$ and $\delta(n)$ are ij ij approximately proportional, which is confirmed by examination of data. In particular, from the extensive data in Table I of Ref. 6 and linear regression, or using appropriate equations from that reference, we found that to a good approximation,

$$\varepsilon_{ij}^{(n)} = -2\delta_{ij}^{(n)}. \tag{27}$$

This result can be used to write Eqs. (26b) and (26c) as

$$\sigma_{\delta}^{2} C(\delta_{ij}^{(n)}, \delta_{ik}^{(m)}) = \frac{1}{4} \sigma_{\varepsilon}^{2} C(\varepsilon_{ij}^{(n)}, \varepsilon_{ik}^{(m)})$$
(28a)

$$\sigma_{\varepsilon}\sigma_{\delta} C(\varepsilon_{ij}^{(n)}, \delta_{k}^{(m)}) = -\frac{1}{2}\sigma_{\varepsilon}^{2} C(\varepsilon_{ij}^{(n)}, \varepsilon_{k}^{(m)}),$$
 (28b)

so that only the single correlation function $\mathcal{C}\bigl(\epsilon^{(n)},\ \epsilon^{(m)}\bigr)$ enters our calculations.

We can now perform the stochastic averaging and write expressions for $\mu(I)$ and $\sigma^2(I)$ from Eqs. (22) and (23), by use of Eqs. (17b), (19b), (21), (24)— (26), and (28). These formulas, while important to our analysis, are quite lengthy, and thus will not be presented here. Instead, we next further simplify the mean and variance of the intensity, which after the stochastic averaging still contain the functions $\cos(\overline{\phi}_{nj}-\overline{\phi}_{mk})$ and $\sin(\overline{\phi}_{nj}-\overline{\phi}_{mk})$. We do this by performing an average over those phase contributions which are independent of our stochastic bottom variations. This procedure is essentially equivalent to the process of obtaining incoherent total-field intensity. Specifically, we assume that the $\overline{\phi}_{nj}$, and differences between them, are random and uniformly distributed over a 2π -radian interval. Performing such phase averages and denoting them by angular brackets, we obtain

$$\langle \mu(\mathbf{I}) \rangle = \sum_{\mathbf{n}=0}^{\mathbf{N}} \sum_{\mathbf{j}=1}^{\mathbf{4}} \overline{\mathbf{A}}^{2} \tag{29}$$

and

$$\langle \sigma^{2}(I) \rangle = \sum_{n=0}^{N} \sum_{m=0}^{N} \sum_{j=1}^{4} \sum_{k=1}^{4} 2\sigma_{\epsilon}^{2} \overline{A}_{nj}^{2} \overline{A}_{mk}^{2} \times \left\{ \left[A_{nj}^{-2} \left(B_{nj} - \frac{1}{2} C_{nj} \right)^{2} + \left(H_{nj} - \frac{1}{2} I_{nj} \right)^{2} \right] \sum_{i=1}^{n} \sum_{\ell=1}^{N} C(\epsilon_{ij}^{(n)}, \epsilon_{\ell j}^{(n)}) + \left[3A_{nj}^{-1} A_{mk}^{-1} \left(B_{nj} - \frac{1}{2} C_{nj} \right) \left(B_{mk} - \frac{1}{2} C_{mk} \right) - \left(H_{nj} - \frac{1}{2} I_{nj} \right) \times \left\{ \left(H_{nk} - \frac{1}{2} I_{nj} \right) \right\} \sum_{i=1}^{n} \sum_{\ell=1}^{m} C(\epsilon_{ij}^{(n)}, \epsilon_{\ell k}^{(m)}) \right\}.$$

$$(30)$$

It should be recalled that in Eqs. (29) and (30), n or m equal to zero is a special case with only two possible j values (see discussion at start of Sec. I).

Equations (29) and (30) represent the principal results of this section and will be analyzed in subsequent sections. At this point we content ourselves with two important observations. First, the mean intensity $\langle \mu(I) \rangle$ depends on mean per-ray amplitudes only, and does not vary with any of the bottom coefficients $B_{nj}, \ldots, F_{nj}, H_{nj}, \ldots, L_{nj}$ from Eqs. (14) and (15). Second, the variance $\langle \sigma^2(I) \rangle$ depends only on the coefficients B_{nj}, C_{nj}, H_{nj} , and I_{nj} of linear terms in $\epsilon^{(n)}$ and $\delta^{(n)}$ in Eqs. (14) and (15). That is, even though the ij variance is a second-order quantity in the density and sound-speed perturbations, and even though six coefficients of second-order terms (i.e., $D_{nj}, E_{nj}, F_{nj}, J_{nj}, K_{nj}$, and L_{nj}) are retained in calculating Eqs. (29) and (30), our final results are independent of these coefficients. This is a significant simplification, since these six coefficients represent certain higher-order information about the acoustic response of the bottom, which is thus not required for our intensity results.

III. BOTTOM MODELING

Having derived formulas for the mean intensity $\langle \mu(I) \rangle$ and variance $\langle \sigma^2(I) \rangle$, stochastically averaged over random bottom variations and incoherently averaged over per-ray phase, we wish to use them with two models of bottom reflection.

We consider first MacKenzie's model, 7 in which bottom loss is

$$B_{ij}^{(n)} = \left[\left(h_{+} - \sigma \sin \theta_{nj} \right)^{2} + h_{-}^{2} \right]^{1/2} \left[\left(h_{+} + \sigma \sin \theta_{nj} \right)^{2} + h_{-}^{2} \right]^{-1/2}, \quad (31a)$$

and bottom phase shift is

$$S_{ij}^{(n)} = \tan^{-1} \left\{ 2\sigma h_{-} \sin \theta_{nj} \left[\sigma^{2} \sin \theta_{-} - \left(h_{+}^{2} + h_{-}^{2} \right) \right]^{-1} \right\}.$$
 (31b)

In Eqs. (31)

$$h_{\pm} = \left\{ \pm g + \left[\left(\alpha/\beta \right)^2 + g^2 \right]^{1/2} \right\}^{1/2} , \qquad (32a)$$

$$g = \frac{1}{2} \left[1 - \left(v_2 / c_1 \right)^2 \cos^2 \theta_{nj} - \left(\alpha / \beta \right)^2 \right] , \qquad (32b)$$

$$\cos \theta_{nj} = R/P_{nj} , \qquad (32c)$$

and

$$\sigma = \rho_{ij}^{(n)} v_2/\rho_1 c_1 . \tag{32d}$$

The quantity v_2 is the phase speed of acoustic waves in the bottom and, to an excellent approximation, v = c(n). The term α/β is a factor that accounts v = c(n). The term v = c(n) is a factor that accounts for attenuation in the bottom, and in fact, v = c(n) is often referred to as the attenuation coefficient. This quantity provides a dissipative mechanism for sound which enters the bottom and is typically a function of bottom density. However, since the values of v = c(n) are usually extremely small compared to other quantities in our formulas for v = c(n) and v = c(n), we may reasonably express v = c(n) in terms of the mean density v = c(n) and v = c(n) in terms of v = c(n) in v = c(n) is negligible in v = c(n). We now turn to a model for the dependence of this quantity on v = c(n) in v = c(n) is negligible in v = c(n).

Hamilton⁹ gives an expression $k_p\omega/2\pi$ for α in terms of a quantity k_p , which characterizes natural saturated surface sediments, and the circular acoustic frequency ω . His findings are presented in the form of scatter diagrams and regression curves for k_p versus porosity. Since porosity can be expressed fairly accurately in terms of bottom density, 9 we can obtain expressions for k_p in terms of ρ_2 . We found from Hamilton's results that:

$$k_p = 1.1096 - 0.3058 \rho_2$$
, (33a)

for coarse, medium, and fine sand;

$$k_p = 5.9990 - 2.845 \rho_2$$
, (33b)

for very fine sand and lower porosity mixed-size sand;

$$k_p = -4.4240 + 2.837 \rho_2$$
, (33c)

for mixed-size sand; and

$$k_p = 0.3622 - 0.5712 \rho_2 + 0.2626 \rho_2^2$$
 (33d)

for silt-clay bottoms. The quantity β is given by $\omega/c^{(n)}$, and consistent with our earlier approximation, we may write

$$\alpha/\beta = k_p c_{ij}^{(n)} / 2\pi = k_p c_2 / 2\pi$$
 (34)

Note that α/β from Eqs. (33) and (34) is independent of frequency. Other investigators have proposed different models for attenuation, 10,11 and they could also be used if desired.

$$\overline{c} = c_{\lambda}/c_{\lambda} \tag{35a}$$

and

$$\sigma = \rho_2 c_2 / \rho_1 c_1$$
 (35b)

In addition we relate the bottom sound speed c_2 (in m/s) in our model to ρ_2 (in g/cm³) by the relation⁶

$$c_2(\rho_2) = 2270.9 - 1194.4 \rho_2 + 474.6 \rho_2^2$$
 (35c)

We then expand Eqs. (31a), (32a), and (32b) in a Maclaurin series in $\delta^{(n)}$. ij With the notation of Eq. (14), we find

$$A_{nj} = M_{nj}^{-}/M_{nj}^{+}$$
 (36a)

and

$$C_{nj} - 2B_{nj} = \left[Q_{nj}^{+} / \left(M_{nj}^{-} M_{nj}^{+}\right) - Q_{nj}^{-} M_{nj}^{-} / \left(M_{nj}^{+}\right)^{3}\right] / 2,$$
 (36b)

where

$$M_{nj}^{\pm} = \left[2T_{nj}^{\pm} \pm 2\overline{\sigma} R_{nj}^{+} \sin \theta_{nj}^{\pm} + \overline{\sigma}^{2} \sin^{2} \theta_{nj}^{\pm}\right]^{1/2}, \qquad (36c)$$

$$Q_{nj}^{\pm} = (\overline{c}^2 \cos^2 \theta_{nj})(s_{nj}/T_{nj}) - 6\overline{\sigma}^2 \sin^2 \theta_{nj}$$

$$+ \overline{\sigma} R_{nj}^{\dagger} \sin \theta_{nj} \left[\left(\overline{c}^2 \cos^2 \theta_{nj} \right) / T_{nj} \pm 6 \right], \qquad (36d)$$

$$R_{nj}^{\pm} = \left[T_{nj} \pm S_{nj}/2\right]^{1/2}$$
, (36e)

$$T_{nj} = [(\alpha/\beta)^2 + s_{nj}^2/4]^{1/2},$$
 (36f)

and

$$S_{nj} = 1 - \overline{c}^2 \cos^2 \theta_{nj} - (\alpha/\beta)^2 . \tag{36g}$$

These coefficients, though lengthy, present no difficulty for numerical evaluations. In a similar way, we find from Eqs. (31b), (32a), and (32b) that

$$I_{nj} - 2H_{nj} = \left[\left(-X_{nj}U_{nj} + V_{nj}W_{nj} \right) / \left(U_{nj}^2 + W_{nj}^2 \right) \right],$$
 (37a)

$$U_{nj} = \overline{\sigma}^2 \sin^2 \theta_{nj} - 2T_{nj} , \qquad (37b)$$

$$V = \overline{c^2}\cos^2\theta \left(S/T\right) + 6\overline{\sigma^2}\sin^2\theta ,$$
nj nj nj nj nj

$$W_{nj} = 2\sigma R_{nj} \sin \theta_{nj} , \qquad (37d)$$

$$x_{nj} = \overline{\sigma} R_{nj}^{-} \sin \theta_{nj} \left[\left(\overline{c}^{2} \cos^{2} \theta_{nj} \right) / T_{nj} + 6 \right]. \tag{37e}$$

A second and simpler bottom-reflection model is that obtained from the classical theory of Rayleigh.¹² Indeed, Rayleigh bottom loss and phase shift can be found from the corresponding MacKenzie results, Eqs. (31) and (32), by setting $\alpha/\beta=0$. In this case, the bottom loss can be written as

$$B_{ij}^{(n)} = \{ (\rho_{ij}^{(n)}/\rho_1) - [(c_1/c_{ij}^{(n)})^2 - \cos^2\theta_{nj}]^{1/2} [1 - \cos^2\theta_{nj}]^{-1/2} \}$$

$$\times \{ (\rho_{ij}^{(n)}/\rho_1) + [(c_1/c_{ij}^{(n)})^2 - \cos^2\theta_{nj}]^{1/2} [1 - \cos^2\theta_{nj}]^{-1/2} \}^{-1} ,$$

$$\theta_{c} < \theta < \pi/2 , \qquad (38a)$$

and

$$B_{ij}^{(n)} = 1 , \qquad 0 < \theta < \theta_{c} . \qquad (38b)$$

For the bottom phase shift, we may write

$$s_{ij}^{(n)} = 2\tan^{-1} \{ [\rho_1 \cos^2 \theta_{nj} - (c_1/c_{ij}^{(n)})^2]^{1/2} [\rho_2 (1-\cos^2 \theta_{nj})^{1/2}]^{-1/2} \}, \quad 0 < \theta < \theta_c, \quad (39a)$$

and

$$S_{ij}^{(n)} = 0 , \qquad \theta_{c} \leq \theta \leq \pi/2 . \tag{39b}$$

In Eqs. (38) and (39), the critical angle is defined by 12

$$\cos\theta_{c} = c_{1}/c_{ij}^{(n)}, \qquad (40)$$

and θ_{nj} is given by Eq. (32c).

Once again, by writing c $/c^{(n)}$ and $\rho^{(n)}/\rho$ as in Eqs. (12) and (13) and using Eq. (27), we can expand Eqs. (38)-(40) in a Maclaurin series in $\delta^{(n)}$ as if done for the MacKenzie model. This procedure determines the quantities $(B_{nj}-C_{nj}/2)/A_{nj}$ and $H_{nj}-I_{nj}/2$ which appear in Eq. (30). We do not display these results because they can be obtained from the case $\alpha/\beta=0$ of Eqs. (36) and (37).

For evaluation of the intensity variance $\langle \sigma^2(I) \rangle$ in Eq. (30), we also need the correlation coefficient in Eq. (28). For convenience we will use the Gaussian form¹³

$$C(\varepsilon_{ij}^{(n)}, \varepsilon_{k\ell}^{(m)}) = \exp\{-\left[\left(x_{ij}^{(n)} - x_{k\ell}^{(m)}\right)/L\right]^{2}\}, \qquad (41)$$

where $(x^{(n)} - x^{(m)})$ is the horizontal distance between the ith bottom reflection of ray r_{nj} and the kth bottom bounce of ray $r_{m\ell}$. The parameter L is called the correlation length, which is the value of $|x^{(n)} - x^{(m)}|$ where C takes the value of 1/e. Of course, correlation functions other than that in Eq. (41) could be used, if desired or if suggested by bottom data.

IV. MACKENZIE-BOTTOM RESULTS

We now discuss some results obtained using our expressions, Eqs. (29) and (30), for mean intensity, $\langle \mu(I) \rangle$, and intensity variance, $\langle \sigma^2(I) \rangle$. Equations (33) and (34) were used to determine values for α/β , Eqs. (36) and (37) for coefficients in Eq. (30), and the correlation coefficient in Eq. (41) was employed. For convenience, our numerical results were determined with the source and receiver located on the surface. Of course, other configurations could have been used. In all our computations, we found that all rays were included up to a maximum number N of 6 or 7 bottom bounces, according to the criterion stated in Sec. I. Rays with more bottom interactions were shown to negligibly affect our results.

Graphs of the function

$$M_{R} = 10 \log_{10} \langle \mu(I) \rangle / \langle \sigma(I) \rangle$$
 (42)

appear in Figs. 2 and 3 and will be discussed shortly. In addition, graphs of intensity ratios $I_{\rm R}$, where this symbol is used to denote both

$$I_R = 10 \log_{10} \langle \mu(I) \rangle / \langle \mu_0(I) \rangle$$
 (43a)

and

 $I_R = 10 \log_{10}(\langle \mu(I) \rangle \pm \langle \sigma(I) \rangle) / \langle \mu_0(I) \rangle$, (43b)

are considered in Figs. 4-7. The moment ratio M_R is the ratio in dB of mean intensity to the standard deviation of intensity. It can be thought of as a signal-to-noise ratio, in the sense that a small (i.e., a large negative) value of M_R means that the fluctuation in intensity is large relative to the mean; a large value corresponds to the standard deviation being small compared to the mean. Equation (43a) is a normalized dB-measure of intensity, in which the term $\langle \mu_0(I) \rangle$ is taken to be the mean intensity for a bottom density with the particular value $\rho_2 = 1.80 \text{g/cm}^3$. This value corresponds to a typical silty-sand bottom. In Eq. (43b), $\langle \mu_0(I) \rangle$ has the same interpretation as in Eq. (43a); Eq. (43b) itself is a normalized dB-measure of intensity spread. That is, the two expressions in Eq. (43b) describe the amount of intensity variation within one standard deviation of the mean, where the mean is given by Eq. (43a). A small difference in the values of the two quantities in Eq. (43b) indicates that the fluctuations in intensity are small, while a large difference suggests a significant fluctuation.

Figure 2 is a plot of the moment ratio, Eq. (42), versus mean bottom density ρ_2 . The values used for ρ_2 are typical of a bottom on the continental shelf. Density and sound-speed values in the water were taken to be ρ_1 = 1.025 g/cm³ and c_1 = 1523 m/s. In this figure, as in all our graphs except Fig. 7, we have chosen σ_{ϵ} = 0.1. This relation was made from an examination of Table I of Ref. 6. However, it should be pointed out that, due to the manner in which σ_{ϵ}^2 appears in Eq. (30), graphs of M_R would merely be shifted vertically if σ_{ϵ} were assigned a different value. Thus, the shapes and relative values of the curves would not be altered. In Fig. 2, we have taken L/H = 1, so that the bottom correlation length has been selected to be equal to the

water depth. Other numerical calculations, some of which are discussed in connection with a later figure, have explored the relatively small influence of different values for L/H.

Figure 2, then, illustrates the behavior of mean intensity as a function of mean bottom density, for four values of range-to-depth ratio R/H. We observe that $M_{\rm R}$ does not appear to exhibit a well-defined behavior as R/H changes. However, values of the moment ratio can be substantially different for different aspect ratios R/H. For example, when $\rho_2 = 1.6/\text{cm}^3$, the M_R value for R/H = 10 exceeds that for R/H = 5 by about 8 dB. All $M_{\rm R}$ versus ρ_2 curves exhibit a general upward trend, indicating that the mean intensity tends to increase as mean bottom density increases. As an illustration, Mp increases by nearly 20 dB as ρ_2 increases from 1.55 to 2.10 g/cm³. As described earlier, this behavior suggests a much greater fluctuation in received intensity for a low-density bottom, such as one composed of silty clay. Rogers 4 obtained the same anomalous type of conclusion using an algebraic model for propagation loss. Specifically, his loss model is based on a combination of information from Weston, 14 Urick, 15 and McPherson and Daintith. 16 However, Ref. 4 utilizes a combination of ray and mode theories of propagation over a deterministic bottom, while we employ ray propagation over a horizontally random bottom. Returning to Fig. 2, one way to explain the increase in $\ensuremath{M_{\mbox{\scriptsize R}}}$ with ρ_2 is to consider properties of MacKenzie reflection theory. 7 In particular, the change in bottom loss $B^{(n)}$ and bottom phase shift $S^{(n)}$ with increasing grazing angle is much greater for slow (low density) bottoms than for fast (high density) bottoms. This is particularly true for small ray angles, which are dominant in isospeed channels with large aspect ratios. Thus, these greater changes would account for larger values of $\langle \sigma(I) \rangle$ relative to values of $\langle \mu(I) \rangle$ when ρ_2 is small.

In Fig. 3 we have kept the aspect ratio constant (R/H = 20) and varied L/H, in graphs of moment ratio versus mean bottom density. It is readily observed that as ρ_2 increases, M_R exhibits an overall increasing trend. When the normalized correlation length is taken as L/H = 1, for example, M_R is observed to increase by about 14 dB as ρ_2 increases from 1.42 to 2.10 g/cm³.

We also find little dependence of $M_{\mbox{\scriptsize R}}$ on L/H, although the moment ratio tends to be larger for smaller L/H values when ρ_2 is large. However, $M_{\rm R}$ does not behave monotonically with L/H. As L becomes progressively larger, the correlation coefficient, Eq. (41), increases. Thus, for a small value of L, the correlation between random bottom properties at two points is small, and the fluctuations $\epsilon^{(n)}$ in the densities at these points tend to cancel. Consequently, $\langle \sigma(I) \rangle$ decreases, causing M_R to increase with L when L is small, as suggested by the L/H = 0 and 1 curves in Fig. 3. On the other hand, for larger L, there is more of a density relationship at two bottom points. The reduction in fluctuations will not occur to as great an extent as for small L, so that the value of $\langle \sigma(I) \rangle$ tends to be larger for larger L. This results in a decrease in M_R with increasing L, as observed in the L/H = 10 and ∞ curves of Fig. 3. Indeed, in our model, $L/H = \infty$ corresponds to a horizontally-uniform bottom of density which is unknown but is close to ρ_2 . Finally, we note that calculations with R/H values other than 20 were found to have little gross effect on the behavior of M_R with ρ_2 for the selected L/H values.

Figures 4 through 7 are graphs of intensity ratios, as given in Eqs. (43). As we discussed just following that equation, these ratios illustrate the amount of spread in intensity predicted by our model for different values of ρ_2 , R/H, and L/H. The quantity $\langle \mu_0(I) \rangle$ is the mean intensity for mean bottom density $\rho_2 = 1.80 \text{g/cm}^3$, and is used as the reference value in the dB plots.

In Figs. 4 and 5, the normalized bottom correlation length is unity, but the aspect ratio R/H is 5 in the former figure and 20 in the latter. The dashed curves describe mean intensity, and the vertical separation between solid curves represents the amount of intensity fluctuation within one standard deviation about the mean. In both figures, the dashed intensity curves show a general upward trend as ρ_2 increases, indicating that mean intensity increases as the bottom becomes increasingly fast. Both figures show that intensity variation is much greater for lower density bottoms than for higher density ones. This is consistent with our previous discussion of Fig. 2. In Fig. 4, for example, the spread between the $\langle \mu(I) \rangle \pm \langle \sigma(I) \rangle$ curves is nearly 10 dB when $\rho_2 = 1.70$. The spread in values of intensity (solid curves) tends to be greater in Fig. 5 than in Fig. 4, so that intensity variation appears to increase with R/H.

Figure 6 displays the effect on intensity ratios of the normalized correlation length L/H. Increasing the length is seen to widen the dB interval in which intensity is within one standard deviation of its mean. Again, we attribute this to the cancelling of fluctuations in bottom density, as discussed in conjunction with Fig. 3. For example, when $\rho_2 = 1.90$, the spread is 3.5 dB as L/H approaches zero, but is about 6.0 dB as L/H becomes very large. Changing the value of L appears to have a slightly greater effect for transmission over higher density bottoms. In slow bottoms the effects of large changes in bottom loss $\delta(n)$ and phase shift s(n) with grazing angle, discussed if previously, causes the large interval between the $\langle \mu \rangle \pm \langle \sigma \rangle$ curves.

The effect on intensity variation of changing σ_{ϵ} , the standard deviation of bottom-density variations in Eq. (25a), is illustrated in Fig. 7. Here, L/H and R/H are held constant, and σ_{ϵ} is assigned four different values. Increasing σ_{ϵ} is observed to cause widening of the spread of the intensity distribution.

This is reasonable since $\langle\sigma\rangle$ increases with σ_{ϵ} , causing a greater variance of the signal intensity. As an example, the one-standard-deviation spread increases from 0 dB when $\sigma_{\epsilon}=$ 0 to about 13 dB when $\sigma_{\epsilon}=$ 0.20, for $\rho_{2}=$ 1.80g/cm³. The zero intensity value corresponding to $\sigma_{\epsilon}=$ 0 results, of course, from the fact that there is no intensity fluctuation when the bottom has constant density. Finally, we note that the effect of increased σ_{ϵ} is greatest when dealing with low density bottoms.

V. RAYLEIGH-BOTTOM RESULTS

Up to this point, we have used MacKenzie reflection theory in examining the effects of bottom-structure variations on received acoustic intensity. In Figs. 8 and 9, however, we compare intensity results using both MacKenzie and Rayleigh bottom models. The former employs our expansions Eqs. (36) and (37) of Eqs. (31) and (32), while the latter uses analogous expansions of Eqs. (38) and (39). In Fig. 8 we plot the moment ratio M_R , Eq. (42), versus ρ_2 for R/H = 5 (solid curves) and 20 (dashed curves), while fixing L/H at the value one. The heavy curves, which appeared previously in Fig. 2, are the results for the MacKenzie bottom model. The light curves correspond to the Rayleigh-theory bottom. In Fig. 9 we plot M_R versus ρ_2 for L/H = 0 (solid) and L/H + ∞ (dashed), when R/H is fixed.

We observe that the light-dashed curves in Figs. 8 and 9, and the light-solid curve in Fig. 9, approach vertical asymptotes at several values of ρ_2 . The light-solid curve in Fig. 8 has a single vertical asymptote. In contrast, moment-ratio curves for a MacKenzie bottom do not exhibit this behavior. A brief explanation of these asymptotes is appropriate here. It is known that for $c_2 > c_1$ and $\rho_2 > \rho_1$, the Rayleigh bottom reflection coefficient increases to a value of unity as the angle of incidence varies from normal to the critical angle $\theta_{\mathbb{C}}$. At angles more grazing than $\theta_{\mathbb{C}}$, the relative amplitude of the

reflected wave remains one, but there is a phase change between the reflected and incident waves, given by Eqs. (40). 12 It follows from Eqs. (32c) and (40) that

$$[(R/P_{nj})^2 - (c_1/c_2)^2] = 0 (44a)$$

when the critical angle θ_{C} is attained. Equation (44a) is equivalent to

$$c_2 = c_1 [1 + (2nH/R)^2]^{1/2},$$
 (44b)

where we have used the path-length formula, Eq. (9). In our expansions of $g^{(n)}$ and $S^{(n)}$, Eqs. (38) and (39), the left side of Eq. (44a) occurs in the denominators of the terms C_{ni} and I_{ni} . Thus, for given number n of bottom reflections and given range R, a value of c_2 (and hence of ρ_2 , since they are related by Eq. (35c)) can occur for which C_{nj} and I_{nj} become infinite. This feature is also apparent in the graphs of $B^{(n)}$ and $S^{(n)}$, where it is manifested as the infinite slopes at the critical angle. 12 Therefore, asymptotes of the M_2 versus ρ_2 curves in Figs. 8 and 9 result from our expansions in $\epsilon^{(n)}$ and $\delta^{(n)}$, which are not valid at the critical angle. Because C $_{nj}$ and I become $_{nj}$ infinite, so does $\langle \sigma \rangle$, so that M_R expressed in dB approaches negative infinity. If the exact (and more complicated) dependence on $\epsilon^{(n)}$ and $\delta^{(n)}$, rather than our linear approximations, were in some asymptotic manner retained in $3^{(n)}$ and $S^{(n)}$, then the moment-ratio results would not be expected to possess discontinuities in values and slopes. Instead, it would be anticipated that $M_{\rm R}$ in dB would still exhibit sharp decreases at certain ho_2 values, but these decreases would not become infinite. We remark also that as R/H increases, more asymptotes (corresponding to different n values) appear in the $M_{\mbox{\scriptsize R}}$ versus ρ_2 curve, as implied by Eq. (44b).

Many of the same features pointed out in the discussion of Fig. 2 can be seen in Fig. 8. For instance, we observe that $M_{\rm R}$ exhibits a rather complicated

behavior as R/H changes, for either MacKenzie or Rayleigh theory. However, the values of the moment ratio can be quite different for different R/H values. For example, when ρ_2 = 1.85, the Rayleigh M_R value for R/H = 5 exceeds that for R/H = 20 by about 8 dB. The difference at the same ρ_2 value using the MacKenzie curves is about 5 dB. Apart from the previously-noted discontinuities in the Rayleigh curves, there are some general qualitative similarities in the curves for the two bottom theories. One illustration is the overall shapes of the two solid curves for R/H = 5. Also, we see that except for low-density bottoms, M_R tends to increase as ρ_2 increases. This same trend holds for the MacKenzie curves. For R/H = 5, the peak Rayleigh value in Fig. 8 is about 14 dB higher at ρ_2 = 2.10 than at ρ_2 = 1.76, indicating again the generally larger fluctuation in received intensity for low-density bottoms.

In Fig. 9, we have taken R/H = 20 and have graphed the limiting cases when L/H approaches zero and infinity. Of course, the MacKenzie curves are the same as two of those appearing in Fig. 3. There is a substantial difference between bottoms with ho_2 less than about 1.55 and those above this value. For ho_2 > 1.55, MacKenzie results are always greater than those with Rayleigh, for both L/H values; below this value, the opposite is true. For example, if L/H = 0and ρ_2 = 1.45, the moment ratio for a Rayleigh bottom is about 4 dB greater than that for the MacKenzie model. However, at ρ_2 = 2.05 and L/H = 0, the MacKenzie $M_{
m R}$ is about 2 dB more than the corresponding Rayleigh value. In all four curves, a small correlation length L corresponds to less variance in intensity, as discussed in conjunction with Fig. 3. Some bottom-model consistency appears in Fig. 9, in the sense that dB-difference between the two solid curves (L/H=0) are approximately equal to dB-differences between the two dashed curves (L/H= $^{\infty}$) at the peaks of the Rayleigh graphs. For example, at $\rho_2 = 1.87$, there is nearly a 2 dB difference between both the L/H = 0 and the L/H = ∞ curves.

The MacKenzie results in both Figs. 8 and 9 show vestiges of the discontinuities that appear in the approximate Rayleigh curves. These appear as local minima at values of ρ_2 where Rayleigh asymptotes occur. Indeed, if α/β were allowed to approach zero, the MacKenzie minima would progressively deepen. Thus, our intensity results reflect the proper relationship between the two bottom models. The MacKenzie model is commonly regarded as the more sophisticated of the two since it incorporates an additional physical effect (attenuation). Although certain relationships between the intensity results for these two bottom models have been described and illustrated, it is also true that the levels of corresponding curves show some definite differences. For example, the solid curves in Fig. 9 (corresponding to L/H = 0) demonstrate that, when comparing peak values of the Rayleigh curves with their MacKenzie equivalents, there may be up to 2 dB differences between the two. Thus, the physical features which are properly incorporated into the bottom model can be important in determining the values of the intensity moments.

VI. SUMMARY

In this paper we study the ramifications of horizontal random fluctuations in bottom structure on the intensity of a received acoustic signal. A shallow-water sound channel, having constant sound speed and density, is assumed and ray theory is used. The water-bottom interface is taken to be a plane horizon-tal surface, and the ocean bottom has random density and sound-speed fluctuations in the horizontal direction with a degree of relationship which varies with distance. For this stochastic bottom, we derive expressions for ray path length, spreading loss, travel time, and bottom loss and phase shift. Expressions for the latter two quantities are developed exploiting perturbation expansions, assuming small fluctuations in bottom density and sound speed.

Using these results, we find the mean acoustic intensity and variance of the intensity for a cw signal propagating in the shallow ocean channel. Stochastic averaging over bottom randomness and incoherent averaging over per-ray phases are performed to obtain the intensity moments. The results are sufficiently general that a variety of bottom-acoustic models can be employed with them. Also, the intensity moments are modeled to contain an arbitrary horizontal bottom correlation coefficient.

To illustrate our results, we chose bottom-reflection models of MacKenzie and Rayleigh. In order to use MacKenzie theory, a procedure was devised to specify values for the attenuation coefficient. Also, our numerical results assume a bottom coefficient of correlation of Gaussian form.

A number of conclusions are drawn from our calculations. For example, we find that the standard deviation of received intensity is less for sound transmission over fast (high density) bottoms than over slow (low density) bottoms. Also, when dealing with fast bottoms, i.e. mean densities over $1.76~g/cm^3$, the ratio of mean intensity to standard deviation in dB (moment ratio) increases as source-receiver range R decreases. The same conclusion cannot be drawn for slow bottoms, where no distinctive pattern exists. In general, we find that the moment ratio increases as mean bottom density increases.

It is shown that, due to a cancelling of bottom density fluctuations, the standard deviation of intensity increases as the correlation length L increases. This effect is a consequence of the features of our model. We find also that varying L/H (H is water depth) does not have as great an effect on the moment ratio as does varying the channel aspect ratio R/H.

We examine two quantities, normalized dB-measures of intensity and intensity spread, in order to determine when received intensity is within one standard deviation of its mean value. We find that a greater spread of intensity

values can be expected over a low-density bottom than over a high-density bottom. Also, the spread in expected intensity values about the mean increases with R/H.

We observe that, for a given water depth H, shortening the correlation length L narrows the interval in which the intensity is within one standard deviation of its mean. It is also shown that increasing the standard deviation of bottom density fluctuations causes a widening of the spread of intensity values.

Statistics of intensity using the Rayleigh model are compared with those found using MacKenzie theory. The two bottom-reflectivity models give results that are sometimes similar. However, one of the sharpest differences is the presence of deep fades in moment ratio, for some mean bottom densities, when calculations are performed for the Rayleigh bottom. These occur when the inclination angle of an acoustic-ray arrival in the total field approaches the critical angle, in which case the variance of intensity becomes very large. Such a behavior, with comparable magnitude, is not observed when a MacKenzie bottom model is used.

¹ W. A. Kuperman and F. B. Jensen, Eds., Bottom-Interacting Ocean Acoustics (Plenum, New York, 1980).

O. F. Hastrup and O. V. Oleson, "Sound Propagation in Shallow Water", SACLANTCEN Conference Proceedings No. 14, NATO SACLANT ASW Research Center, La Spezia (1974).

- 3 F. Ingenito, R. H. Ferris, W. A. Kuperman, and S. N. Wolf, "Shallow-Water Acoustics Summary Report (First Phase)", Naval Research Lab., Washington, D. C., NRL Rep. 8179 (1978).
- ⁴ P. H. Rogers, "Onboard Prediction of Propagation Loss in Shallow Water", Naval Research Lab., Washington, D.C., NRL Rep. 8500 (1981).
- 5 A. P. Lisitzin, <u>Sedimentation in the World Ocean</u> (George Banta, Menasha, 1972) pp. 18-19.
- 6 E. L. Hamilton, J. Geophysical Res. 75, 4423-4446 (1970).
- 7 K. V. MacKenzie, J. Acoust. Soc. Am. 32, 221-231 (1960).
- 8 E. L. Hamilton, J. Acoust. Soc. Am. 28, 1-15 (1956).
- ⁹ E. L. Hamilton, Geophysics 37, 620-646 (1972).
- 10 M. A. Biot, J. Acoust. Soc. Am. 28, 168-178 (1956).
- 11 J. M. Hovem, J. Acoust. Soc. Am. 67 1559-1563 (1980).
- 12 C. B. Officer, Introduction to the Theory of Sound Transmission (McGraw-Hill, New York, 1958) pp. 76-82.
- 13 J. S. Bendat, <u>Principles and Applications of Random Noise Theory</u> (Wiley, New York, 1958) pp. 18-22.
- 14 D. E. Weston, J. Acoust. Soc. Am. 42, 526-527 (1967).
- Naval Ordnance Lab., Silver Spring, NOLTR 67-12 (1967).
- 16 J. D. McPherson and M. J. Daintith, J. Acoust. Soc. Am. 41 850-860 (1967).

FIGURE LEGENDS

- Fig. 1 (a) A horizontal isospeed channel and the geometry of a ray.(b) Four possible ray configurations for n = 1 bottom reflections.
- Fig. 2 Moment ratio M_R versus mean bottom density ρ_2 for four R/H ratios: L/H = 1, $\sigma_\epsilon = 0.1$, $c_1 = 1523$ m/s, $\rho_1 = 1.025$ g/cm³. Surfaced source and receiver.
- Fig. 3 Moment ratio M_R versus mean bottom density ρ_2 for four L/H ratios: R/H = 20. Other parameters as in Fig. 2.
- Fig. 4 Intensity ratio I_R versus mean bottom density ρ_2 : L/H=1, R/H=5. Other parameters as in Fig. 2.
- Fig. 5 Intensity ratio I_R versus mean bottom density ρ_2 : L/H=1, R/H=20. Other parameters as in Fig. 2.
- Fig. 6 Intensity ratio I_R versus ρ_2 for two L/H ratios: R/H = 20. Other parameters as in Fig. 2.
- Fig. 7 Intensity ratio I_R versus ρ_2 for four σ_ϵ values: L/H = 1, R/H = 20. Other parameters as in Fig. 2.
- Fig. 8 Moment ratio M_R versus mean bottom density ρ_2 using MacKenzie theory (heavy curves) and Rayleigh theory (light curves) for R/H = 5 (solid) and 20 (dashed): L/H = 1. Other parameters as in Fig. 2.
- Fig. 9 Moment ratio M_R versus ρ_2 using MacKenzie theory (heavy curves) and Rayleigh theory (light curves) for L/H=0 (solid) and ∞ (dashed): R/H=20. Other parameters as in Fig. 2.

UNCLASSIFIED DISTRIBUTION LIST DEC 1981

Addressee	No. of Copies	Addressee	No. of Copi
* * * * * * * * * * * * * * * * * * *		Technical Director	
Office of Naval Research			
800 North Quincy Street		Naval Oceanographic Research and	
Arlington, Virginia 22217		Development Activity	
Attn: Code 425AC	2	NSTL Station	
102	1	Bay St. Louis, Mississippi 39522	
102C	- 1	Attn: Technical Director	1
210	1	Dr. L. Solomon	1
220	1	Dr. R. Gardner	1
		Mr. E. Chaika	1
Office of Naval Technology		Mr. R. Van Wyckhouse	1
800 North Quincy Street		Dr. S. W. Marshall	1
Arlington, Virginia 22217			
Attn: MAT 0721	1	Director	
MAT 0724	i	Naval Oceanographic Office	
		NSTL Station	
Director		Bay St. Louis, Mississippi 39522	
Naval Research Laboratory		Attn: Mr. H. Beck	4
		Dr. T. M. Davis	1
4555 Overlook Avenue, SW.			1
Washington, D.C. 20375		Mr. W. H. Geddes	1
Attn: Dr. J. C. Munson	1	Dr. W. Jobst	1
Mr. R. R. Rojes	1	Mr. R. Merrifield]
Dr. B. B. Adams	1	Mr. R. A. Peloquin	1
Dr. W. B. Moseley	1	Dr. M. K. Shank	1
Dr. J. P. Dugan	1		
Unclassified Library	1	Office of the Assistant Secretary of	
		the Navy for Research, Engineering	
Superintendent		and Systems	
Naval Research Laboratory		Washington, D.C. 20350	
Underwater Sound Reference Division		Attn: Dr. D. Barbe, Rm 4E732 Pentagon	1
P.O. Box 8337		Dr. J. H. Probus, Rm 5E779 Pent.	
Orlando, Florida 32806	1	·	
District			
Director			
Office of Naval Research Branch Office		Chief of Naval Operations	
1030 East Green Street		Room 50580, Pentagon	
Pasadena, California 91106	1	Washington, D.C. 20350	
		Attn: OP951F	1
Office of Naval Research			
Rm 239, Campbell Hall		Commander	
University of California		Naval Sea Systems Command	
Berkeley, California 94720	1	Department of Navy	
		Washington, D.C. 20362	
Director		Attn: Capt. James M. Van Metre PMS 409	9 1
Office of Naval Research Branch Office			•
495 Summer Street		Chief of Naval Operations	
Boston, Massachusetts 02210	1	Office of the Director	
	•	Naval Oceanographic Division	
Office of Naval Research		OP-952	
New York Area Office		Department of the Navy	
715 Broadway - 5th Floor		Washington, D.C. 20352	
New York, New York 10003	1	Attn: Dr. R. W. James	1
HER TOTA, HER TOTA 10005	1	Capt. J. C. Harlett	1
Commanding Officer		cape. J. C. Harrect	
Office of Naval Research Branch Office		Commander	
Box 39			
FPO New York 09510		Oceanographic System, Atlantic	
FFU NEW FULK U751U	.1	Box 100	
Disastas		Norfolk, Virginia 23511	1
Director		C	
Office of Naval Research Branch Office		Commander	
536 South Clark Street		Oceanographic System, Pacific	
Chicago, Illinois 60605	1	Box 1390	
066: 611 1.0		Pearl Harbor, Hawaii 96860	1
Office of Naval Research			
Resident Representative			
University District Building, Room 422			
1107 North East 45th Street			
Conttle Weshington 00105			

Seattle, Washington 98105

Addressee	No. of Copies	Addressee	No. of Copi
Defense Advanced Research Projects Ag 1400 Wilson Boulevard	ency	Commander Naval Surface Weapona Center	
Arlington, Virginia 22209		Acoustics Division	
Attn: Capt. V. Simmons	1	Silver Spring, Maryland 20910	1
ARPA Research Center		Commander	
Moffett Field Unit #1		Naval Surface Weapons Center	
California 94035		Science and Mathematics Research	
Attn: Mr. E. Smith	1	Group (KO5)	
Commanding Officer		Dahlgren, Virginia 22448	
Fleet Weather Central Box 113		Attn: Dr. E.W. Schwiderski	1
Pearl Harbor, Hawaii 96860	1	Commanding Officer	
Tears Harour, Hawars 70000	•	Naval Underwater Systems Center	1
Naval Ocean Systems Center (Kaneohe)		New London Laboratory	
Kaneohe, Hawaii 96863		New London, Connecticut 06320	
Attn: Mr. D. Hightower	1	Attn: Dr. William Von Winkle	1
Mr. B. Kishimoto	i	Dr. A. Nuttall	1
Mr. R. Buecher	1	Mr. A. Ellinthorpe	1
Tax III Duccher	· ·	Dr. D.M. Viccione	1
Commander		Mr. A. Donn Cobb	1
Naval Electronic Systems Command		Compandos	
2511 Jefferson Davis Highway		Commander	
National Center #1		Naval Air Development Center	
Arlington, Virginia 20360		Department of the Navy	•
Attn: CAPT C. A. Rose, PME 124	2	Warminster, Pennsylvania 18974	
LCDR P. Girard, NAVELEX 612		Attn: Unclassified Library	1 1
		Commanding Officer	
Commander		Naval Coastal Systems Laboratory	•
Naval Air Systems Command		Panama City, Florida 32401	
Jefferson Plaza #1		Attn: Unclassified Library	1 1
1411 Jefferson Davis Highway			
Arlington, Virginia 20360	1	Commanding Officer	
Commander		Naval Underwater Systems Center	
		Newport Laboratory	
Naval Sea Systems Command National Center #2		Newport, Rhode Island 02840	
2521 Jefferson Davis Highway		Attn: Unclassified Library	1
Arlington, Virginia 20362			
Attn: SEA 63R	1	Commander	
63Y	i	David W. Taylor Naval Ship Research	
051		and Development Center	
Commanding Officer		Bethesda, Maryland 20084	1
Fleet Numerical Weather Central		Attn: Dr. M. Sevik	
Monterey, California 93940		Constant of the second	
Attn: Mr. Paul Stevens	1	Superintendent	
Dr. D.R. McLain (NMFS)	i	Naval Postgraduate School	
		Monterey, California 93940	
Defense Documentation Center		Superintendent	
Cameron Station	1 7 10 12	U.S. Naval Academy	
Alexandria, Virginia 22314	12	Annapolis, Maryland 21402	
		Attn: Library	1
Commander			-
Naval Ocean Systems Center		Commanding Officer	
Department of the Navy		Naval Intelligence Support Center	
San Diego, California 92132		4301 Suitland Road	
Attn: Dr. Daniel Andrews	1	Washington, D.C. 20390	
Dr. Dean Hanna	1	Attn: NISC 20	1 ,
Mr. Henry Aurand	1		
Dr. Harry A. Schenck	i	Director	
DIE HOLLY HE SCHOOL		Applied Physics Laboratory	
		University of Washington	
		1013 North East 40th Street	
		Seattle, Washington 98105	
			1

Addressee	No. of Copies	Addressee	No. of Copies
Applied Research Laboratories		Hydroscoustics, Inc.	
University of Texas at Austin		321 Northland Ave.	
P.O. Box 8029		P.O. Box 3818	
10000 FM Road 1325		Rochester, New York 14610	•
Austin, Texas 78712		Institute for Acoustical Research	
Attn: Dr. Loyd Hampton	1	Miami Division for the Palisades	
Dr. Charles Wood	•	Geophysical Institute	
Ablantia Cassassabia and		615 South West 2nd Avenue	
Atlantic Oceanographic and		Miami, Florida 33130	
Meteorological Laboratories		Attn: Hr. M. Kronengold	1
15 Rickenbacker Causeway Miami, Florida 33149		Dr. J. Clark	_ i
Attn: Dr. John Proni	1	DIT OF CIAIN	
Actin Dis Soul Front	•	Institute of Geophysics and Planetary	
Bell Telephone Laboratories		Physics	
1 Whippany Road		Scripps Institute of Oceanography	
Whippany, New Jersey 07981		University of California	
Attn: Dr. Bruce Bogert	1	La Jolla, California 92093	
Dr. Peter Hirsch	1	Attn: Dr. W. Munk	1
		Mr. J. Spiesberger	1
Bolt, Beranek, and Newman, Inc.			
50 Moulton Street		Jaycor Incorporated	
Cembridge, Massachusetts 02238		205 South Whiting Street	
Attn: Dr. K. L. Chandiramani	1	Suite 607	
1-		Alexandria, Virginia 22304	
Chase, Inc.		Attn: Dr. S. Adams	1
14 Pinckney Street			
Boston, Massachusetts 02114		Massachusetts Institute of Technology	
Attn: Dr. David Chase	1	Acoustics and Vibration Laboratory	
D D 1441411		70 Massachusetts Avenue Room 5–222	
Dr. David Middleton		Cambridge, Massachusetts 02139	
127 East 91st Street	1	Attn: Professor Patrick Leehey	1
New York, New York 10028	•	Actin Trolessor Facilick Leeney	'
Duke University		Palisades Sofar Station	
Department of Electrical Engineering		Bermuda Division of Palisades	
Durham, North Carolina 27706		Geophysical Institute	
Attn: Dr. Loren Nolte	1	FPO New York 09560	
	·	Attn: Mr. Carl Hartdegen	1
General Electric Company			
Heavy Military Electronic Systems		Polar Research Laboratory	
Syracuse, New York 13201		123 Santa Barbara Avenue	
Attn: Mr. Don Winfield	1	Santa Barbara, California 93101	
		Attn: Mr. Beaumont Buck	1
General Electric Company			
P.O. Box 1088		Research Triangle Institute	
Schenect ady, New York 12301		Research Triangle Park	
Attn: Dr. Thomas G. Kincaid	1	Durham, North Carolina 27709	
Could Incommented		Attn: Dr. S. Huffman	1
Gould, Incorporated		Dancelon Del. Archeir Yeskikoko	
Chesapeake Instrument Division 6711 Baymeadow Drive		Rensselaer Polytechnic Institute	
Glen Burnie, Maryland 21061		Troy, New York 12181 Attn: Dr. Melvin J. Jacobson	
Attn: Dr. O. Lindemann	1	Actn: Dr. Felvin J. Jacobson	
Active Dr. O. Ciridemarin		Science Applications, Inc.	
,		8400 Westpark Drive	
G R Associates, Inc.		McLean, Virginia 22102	
10750 Columbia Pike		Attn: Dr. P. Tatro	
Suite 602		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Silver Spring, Maryland 20901		S.D.P. Inc.	
Attn: Dr. Sheldon Gardner		15250 Ventura Boulevard	
Dr. Frank Rees		Suite 518	
		Sherman Oaks, California 91403	
Hughes Aircraft Company		Attn: Dr. M. A. Basin	1
P.O. Box 3310			
Fullerton, California 92634			
Attn: Mr. S. W. Autrey	1		

Addressee	No. of Copies
Texas Instruments, Inc. 13500 North Central Expressway Dallas, Texas 75231	
Attn: Mr. Charles Black	1
Underwater Systems, Inc. 8121 Georgia Avenue	
Silver Spring, Maryland 20910	
Attn: Dr. M. Weinstein	1
University of Miami	
Rosenstiel School of Marine and	
Atmospheric Sciences	
4600 Rickenbacker Causeway	
Miami, Florida 33149	
Attn: Dr. H. DeFerrari	1
University of Michigan	
Department of Aerospace Engineering, North Campus	
Ann Arbor, Michigan 48109	
Attn: Dr. W. W. Wilmarth	
University of Michigan	
Cooley Electronics Laboratory	
Ann Arbor, Michigan 48105	
Attn: Dr. T. G. Birdsall	
Active Division Director	
University of Rhode Island	
Department of Electrical Engineering	
Wakefield, Rhode Island 02881	
Attn: Dr. Donald Tufts	.1
Woods Hole Oceanographic Institution	
Woods Hole, Massachusetts 02543	
Attn: Dr. Paul McElroy	1
Dr. R. Spindel	1

U212094