© Eskil Johnson, Göteborg 2001.

1.

$$f(u,v,w,x,y,z) = wx + uv'w + uwy + uv'x'z$$

2. a) Testvektorfunktionen $T_{\overline{p}}(w,x,y,z)$ till felet är $T_{\overline{p}}(w,x,y,z) = p(y,z) \cdot \frac{\partial}{\partial p} f_p(w,x,y,z,p)$, där p(y,z) = (yz)' = y'+z' och $f_p(w,x,y,z,p) = w'z + wp + xp$. $\frac{\partial}{\partial p} f_p(w,x,y,z,p) = w'z \oplus (w'z + w + x) = w + xz'$. $T_{\overline{p}} = (y'+z') \cdot (w+xz') = wy' + wz' + xz'$

		yz							
	00	01	11	10					
0	0 0	0	0	0					
wx 0	1 1	0	0	1					
11	1	1	0	1					
10	1	1	0	1					

Testvektorer:

2. b) Testvektorfunktionen $T_p(w, x, y, z)$ till felet är $T_p(w, x, y, z) = p'(y, z) \cdot \frac{\partial}{\partial p} f_p(w, x, y, z, p)$, där p'(y, z) = yz och $f_p(w, x, y, z, p) = w'z + wp + xp$. $\frac{\partial}{\partial p} f_p(w, x, y, z, p) = w'z \oplus (w'z + w + x) = w + xz'$. $T_p = yz \cdot (w + xz') = wyz$

Testvektorer: $\langle wxyz \rangle = \langle 1011 \rangle, \langle 1111 \rangle$.

3.											
$s_1 s_2 x_1 x_2$	$u_1u_2u_3$		00	X .	X 1 2 11	10		00	01	X 1 2 11	10
0000	000	00	00	lo	1	10	00	0	1	1	0
0001	010	01	0	0	1	0	01	0	1	0	1
0010	100	\$ ₁ \$ ₂		Ě		Ě	s ₁ s ₂	Ě		_	-
0011	110	· 11	1	1	1	1	11	1	1	0	0
0100	001	10	0	1	1	1	10	1	0	1	0
0101	010		u ₁				ı	u ₂			
0110	011			X	X ₂ 11			2			
0111	100		00		1	10					
1000	011	00	0	0	0	0	L				
1001	100	01 S.S ₀	1)	0	0	1					
1010	101	\$ ₁ \$ ₂ 11	1	0	0	1					
1011	110	10	1	0	0	1					
1100	111					<u> </u>	<u> </u>				
1101	110		u ₃								
1110	101	, ,	,		`	,					
1111	100	$u_3 = s_1 x_2 + s_2 x_2$	=($s_1 +$	s_2)	x_2					

Realisera u_1 och u_2 med 4-1 multiplexrar med x_1x_2 som styrvariabler.

1 st 7400, 1 st 7402, 1 st 74153.

4.

Maximala förenlighetsmängder: {1,3}, {1,4}, {1,6}, {2,3,5}, {2,4,5}.

C _i	I(C _i)
{1,3}	{3,5}
{1,4}	{2,4}
{1,6}	{1,3}
{2,3,5}	$\{2,4\}, \{4,5\}, \{1,4\}$
{2,4,5}	{1,6}
{3,5}	{4,5}

{2,4,5}, {1,6}, {1,3} och {3,5} bildar en minimal, sluten och täckande uppsättning av förenlighetsmängder.

δ(λ)	00	01	11	10
$A = \{1,3\}$	A∨B (-)	D(1)	C (1)	C (0)
$B = \{1,6\}$	A (0)	$A\lor D(1)$	C (1)	AvB (1)
$C = \{2,4,5\}$	C(1)	C (1)	C (0)	B (0)
$D = \{3,5\}$	C (1)	C (1)	C>D (-)	C (0)

5.

Tillståndskodning:

Tumregel 1: (Samma nästa tillstånd) AB, DFG, ACE, BDF.

Tumregel 2: (Från samma tillstånd) BE, BC, DE, GC (2 ggr), FE.

δ(λ)	0	1
A	B (0)	E (0)
В	B (0)	C (0)
С	D (0)	E (0)
D	G (1)	C (1)
Е	F (0)	E (0)
F	G (0)	C (0)
G	G (0)	G (0)

	q_2q_3							
	00	01	11	10				
0	A	-	Е	C				
q ₁	В	D	F	G				

5 fortsättning.

δ(λ)	0	1
A = 000	100 (0)	011 (0)
C = 010	101 (0)	011 (0)
G = 110	110 (0)	110 (0)
B = 100	100 (0)	010 (0)
001	-	-
E = 011	111 (0)	011 (0)
F = 111	110 (0)	010 (0)
D = 101	110 (1)	010 (1)

/		a	x					ıv	
	00	01	11 11	10	_	00	01	³ 11	10
00	1	0	0	1	00	0	1	[-	-
01	1	0	0	1	01 a a	0	1	1	1
$q_{1}q_{2}^{01}$	1	1	0	1	$q_{_{1}}q_{_{2}}^{_{01}}$	1	1	1	1)
10	1	0	0	1	10	0	1	1	1
	$\overline{q_1^+}$	-	-			q_2^+	-	-	-
		a	r						
	00	01	x 3 11	10		00	01	1 X 311	10 ,
00	00	9 01 1	x 311	10	00		01 9	1 x 311	10
01			x 311 -	10 -	00	00		0 x 311 -	10 -
	0	1	-	-	00	00	0	-	-
01	0	1	- 1	1	00	00 0 0	0	0	0

$$q_1^+ = x' + q_1 q_2 q_3'$$

$$q_2^+ = x + q_3 + q_1 q_2$$

$$q_3^+ = q_1 q_2 + q_1 x$$
 $u = q_2 q_3$

$$u = q_2 q_3$$

6.

δ(λ)	PR						
	00 01 11 10						
00	00 (0)	00 (0)	10(0)	01 (-)			
01	01 (1)	00 (-)	11 (-)	01 (1)			
11	-	-	10 (-)	-			
10	00 (0)	00(0)	10(0)	10 (0)			

Av tillståndsgrafen framgår, att man kan välja $u = q_2$

