Lecture 06.
Better generalization of deep learning models in drug discovery

HITS 임 재 창

목차

- Physics informed neural network
- Data augmentation
- Uncertainty quantification for reliable prediction
- Semi-supervised learning
- Transfer learning

Physics informed neural network

- 대부분의 경우 분자의 성질을 예측하는 딥러닝 모델을 개발하기에 데이터가 부족함
- 숫자가 부족하고 dataset들이 많은 intrinsic bias를 내포하고 있음
- High quality의 추가 데이터를 생성하기 어려움
- 분자의 물리화학 성질을 학습하는 경우 관련된 물리법칙 혹은 모델들이 존재함
- 이러한 물리법칙과 모델들은 principle에 기반하기 때문에 높은 일반화 성능을 보여줌

Nature Communications volume 10, Article number: 2339 (2019)

Physics informed DTI prediction

$$E^{total} = \frac{E^{vdw} + E^{hbond} + E^{metal} + E^{hydrophobic}}{T^{rotor}}$$

$$d'_{ij} = r_i + r_j + c \cdot b_{ij}$$

Van der waal interaction: LJ potential을 이용하여 계산

$$E^{vdw} = \sum_{i,j} c_{ij} \left[\left(\frac{d'_{ij}}{d_{ij}} \right)^{12} - 2 \left(\frac{d'_{ij}}{d_{ij}} \right)^{6} \right]$$

Physics informed DTI prediction

Hydrogen bond, metal interaction, and hydrophobic interaction

$$e_{ij} = \begin{cases} w & \text{if } d_{ij} - d'_{ij} < c_1 \\ w \left(\frac{d_{ij} - d'_{ij} - c_2}{c_1 - c_2} \right) & \text{if } c_1 < d_{ij} - d'_{ij} < c_2 \end{cases}$$

$$0 & \text{if } d_{ij} - d'_{ij} > c_2$$

$$E = \sum_{i,j} e_{ij}$$

$$T^{rotor} = 1 + C_{rotor} \times N_{rotor}$$

Physics informed DTI prediction

Results

	CASF2016 Benchmark				CSAR		
	Scoring	Ranking	Docking	Screening		NRC-HiQ set1	NRC-HiQ set2
	R	ρ	Success Rate	Average EF	Success Rate	R	R
X-Score ¹⁰	0.631	0.604	63.5%	2.7%	7.0%	0.6	0.65
AutoDock Vina ⁸	0.604	0.528	84.6%	7.7%	29.8%	-	-
GlideScore-SP ¹³	0.513	0.419	84.6%	11.4%	36.8%	-	-
GlideScore-XP ¹³	0.467	0.257	81.8%	8.8%	26.3%	-	-
ChemPLP@GOLD ¹⁵	0.614	0.633	83.2%	11.9%	35.1%	-	-
KDEEP ³³	-	-	-	-	-	0.72	0.65
3D CNN based model	0.652	0.611	42.5%	1.4%	3.5%	0.692	0.787
GNN based model	0.723	0.583	67.7%	7.0%	26.3%	0.635	0.786
PIGNet	0.761	0.64	85.6%	15.1%	49.1%	0.736	0.763

Data augmentation

• Data augmentation 이란? 데이터가 부족한 경우, 데이터를 변형, 가공, 생성하여 데이터의 양을 늘리는 기술

Docking power

True binding pose를 실험으로 측정하는 것은 어려움. 그러나 하나의 true binding pose가 있으면, 무수히 많은 false binding pose를 생산할 수 있음

Screening power

대부분의 compound들은 타겟 단백질에 대해서 inactive함. Active한 compound를 확보하는 것은 어려우나, inactive한 compound는 쉽게 생산할 수 있음 (negative set에 대한 labeling 오류를 동반하게 됨)

Global and local minimum

X-ray구조들은 가장 안정한 구조. 따라서 potential surface상에서 global minimum이자 local minimum. 이러한 constraint를 적용하여 model의 overfitting risk를 줄일 수 있음

Docking augmentation

$$L_{docking} = \sum_{i} \max (y_{exp,i} - y_{decoy,i}, 0)$$

Screening augmentation

$$L_{random_screening} = \sum_{i} \max(-y_{random,i} - 6.8, 0)$$

$$L_{cross_screening} = \sum_{i} \max \left(-y_{cross,i} - 6.8, 0\right)$$

Global and local minimum constraint

$$L_{derivative} = \sum_{i} \left(\frac{\partial E^{total}}{\partial q_i} \right)^2 - min\left(\left(\frac{\partial^2 E^{total}}{\partial q_i^2} \right), C_{der2} \right)$$

Total loss function

$$L_{total} = L_{energy}$$

$$+ c_{derivative} L_{derivative}$$

$$+ c_{docking} L_{docking}$$

$$+ c_{random_screening} L_{random_screening}$$

$$+ c_{cross_screening} L_{cross_screening},$$

Results

	CASF2016 Benchmark				CSAR			
	Scoring	Ranking	Docking	Screening		NRC-HiQ set1	NRC-HiQ set2	
	R	ρ	Success Rate	Average EF	Success Rate	R	R	
3D CNN based model	0.695	0.589	20.4%	0.7%	1.8%	0.786	0.785	
W/O data augmentation								
3D CNN based model	0.652	0.611	42.5%	1.4%	3.5%	0.692	0.787	
with data augmentation		0.011						
GNN based model	0.773 0.617	0.617	28.1%	1.4%	5.3%	0.792	0.787	
W/O data augmentation	0.773 0.617		28.1%	1.470	3.3 %	0.752	0.707	
GNN based model	0.723	0.583	67.7%	7.0%	26.3%	0.635	0.786	
with data augmentation	0.723							
PIGNet	0.703	0.703 0.606	0.606	77.9%	6.0%	26.3%	0.72	0.789
W/O data augmentation	0.703	0.000	11.970	0.070	20.5%	0.72	0.707	
PIGNet	0.761	0.64	85.6%	15.1%	49.1%	0.736	0.763	
with data augmentation		0.04	05.070	13.1 70	47.1 70	0.730	0.703	

Uncertainty quantification

- Deep learning model은 항상 어떤 값을 제공해줌. 과연 이 값을 항상 신뢰할 수 있는가?
- Prediction의 신뢰도 범위를 정량적으로 측정할 수 있다면 모델의 결과를 받아드릴지 말지 결정하는데 있어 큰 도움이 됨. ex) 이 그림이 강아지일 확률이 90±5%이다.

Uncertainty quantification

Uncertainty quantification in DTI prediction

• Aleatoric uncertainty: data에 포함된 intrinsic noise

$$L_{aleatoric}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\sigma(x_i)^2} ||y_i - f(x_i)||^2 + \frac{1}{2} \log \sigma(x_i)^2.$$

- Epistemic uncertainty: model parameter에 내제된 uncertainty (MC dropout)
- atom-atom pair uncertainty and distance dependency uncertainty

$$\sigma^2 = \prod_{i,j} \sigma_{ij}^2 = \prod_{i,j} |W_2^{var}(ReLU(W_1^{var}(h_{ij}^{concat}))) \times a \exp(-bd_{ij})|,$$

Uncertainty quantification

Semi-supervised learning

• 소수의 labeled 데이터와 다수의 unlabeled 데이터를 동시에 사용하는 방법

Semi-supervised learning

a b

 $x \longrightarrow y \qquad x \longrightarrow z \longrightarrow x$

x: molecule, y: property, z: latent

→: explicit conditional dependence

····»: implicit conditional dependence

Results

frac. labeled	property	ECFP	GraphConv	predictor network	$VAE_{property}$	SSVAE
5%	MolWt	17.713 ± 0.396	6.723 ± 2.116	2.582 ± 0.288	3.463 ± 0.971	1.639 ± 0.577
	LogP	0.380 ± 0.009	$0.187 {\pm} 0.015$	0.162 ± 0.006	0.125 ± 0.013	0.120 ± 0.006
	QED	0.053 ± 0.001	0.034 ± 0.004	0.037 ± 0.002	0.029 ± 0.002	0.028 ± 0.001
10%	MolWt	15.057 ± 0.358	5.255 ± 0.767	1.986 ± 0.470	$2.464 {\pm} 0.581$	1.444 ± 0.618
	LogP	0.335 ± 0.005	$0.148 {\pm} 0.016$	0.116 ± 0.006	0.097 ± 0.008	0.090 ± 0.004
	QED	0.045 ± 0.001	0.028 ± 0.003	0.027 ± 0.002	0.021 ± 0.002	0.021 ± 0.001
20%	MolWt	12.047 ± 0.168	4.597 ± 0.419	1.228 ± 0.229	1.748 ± 0.266	1.008 ± 0.370
	LogP	0.249 ± 0.004	0.112 ± 0.015	0.070 ± 0.007	0.074 ± 0.006	0.071 ± 0.007
	QED	0.033 ± 0.001	0.021 ± 0.002	0.017 ± 0.002	0.015 ± 0.001	0.016 ± 0.001
50%	MolWt	9.012 ± 0.184	4.506 ± 0.279	1.010 ± 0.250	1.350 ± 0.319	1.050 ± 0.164
	LogP	0.180 ± 0.003	$0.086 {\pm} 0.012$	0.045 ± 0.005	0.049 ± 0.008	0.047 ± 0.003
	QED	0.023 ± 0.000	0.018 ± 0.001	0.011 ± 0.001	0.009 ± 0.002	0.010 ± 0.001

• Transfer learning이란?

어떤 학습과정에서 얻어진 knowledge를 다른 유사 학습 문제에 적용하는 방법. 이를 통해 적은 데이터를 이용하지만 빠른 속도로 학습 가능하며, overfitting의 위험성을 줄일 수 있다.

- 대규모 데이터 (Zinc, pubchem 등 100만개 이상)을 이용해서 생성모델을 1차로 학습시킴
- 학습된 모델을 초기 모델로 해서 소규모 데이터셋 (5-HT_{2A} active compounds, 732 molecules)
- Target prediction model (TPM))을 이용해서 생성된 분자의 활성 검증

no.	pIC_{50}	training	test	gen mols	reprod (%)	EOR ^a
1	>8	1239	1240	128,256	28	66.9
2	>8	100	1240	93,721	7	19.0
3	>9	100	1022	91,034	11	35.7

^aEOR: Enrichment over random.

Thank you