1. Fully associative caches

- a. Example
 - i. Same cache parameters as before, except now a FA cache
 - ii. 8-byte FA cache with line size of 2, and 4-bit address

Tag	Set	Offset	Address Bits
			=

- 2. Cache mapping example
 - a. Use same addresses and data from DM cache example previously

Address	Data
0110	0x1B
0111	0x59
1000	0xFE
1001	0x3D
1110	0x0C
1111	0x3A
1010	0x25
1011	0x98

b. Load addresses into cache in same fashion

Memory Access	Tag	Offset	Access Type	Data	Hit or Miss
0110			Read		
1000			Read		
1110			Read		
1010			Write	0xBE	
1011			Write	0xEF	

c. Place values from first three accesses into table below

Line in Cache	Tag	Byte 0	Byte 1
00			
01			
10			
11			

d. Now we introduce writes

Line in Cache	Tag	Byte 0	Byte 1
00			
01			
10			
11			

3. Set associative caches

- a. Example
 - i. Same cache parameters as before, except now a 2-way SA cache
 - ii. 8-byte 2-way SA cache with line size of 2, and 4-bit address

Tag Set	Offset	Address Bits
		=

4. Cache mapping example

a. Use same addresses and data from previous two examples

Address	Data
0110	0x1B
0111	0x59
1000	0xFE
1001	0x3D
1110	0x0C
1111	0x3A
1010	0x25
1011	0x98

b. Load addresses into cache into same fashion

Memory Access	Tag	Set	Offset	Access Type	Hit or Miss
0110				Read	
1000				Read	
1110				Read	
1010				Read	

- c. Place values from accesses into table below
 - i. How do we know which line in set 1 to evict?

Set	Line in Cache	Tag	Byte 0	Byte 1
0	0			
0	1			
1	2			
	2			
	3			

- 5. Cache replacement algorithms
 - a. How do we evict lines from a given set for non-DM caches?

- 6. Cache write policies
 - a. If we change values that reside in main memory, we make changes in cache first
 - b. What happens when we need to evict a line?
 - c. Write-through

d. Write-back