-1-

SEQUENCE LISTING

<110> Chesnut, Jonathan D.

Carrino, John

Leong, Louis

Madden, Knut

Gleeson, Martin

Fan, James

Brasch, Michael A.

Cheo, David

Hartley, James L.

Byrd, Devon R.N.

Temple, Gary F.

<120> Methods and Compositions for Synthesis of Nucleic Acid Molecules Using Multiple Recognition Sites

<130> 0942.5340002

<140> 10/005,876

<141> 2001-12-07

<150> 60/254,510

<151> 2000-12-08

<150> 60/291,972

<151> 2001-05-21

<150> 60/318,9\$2

<151> 2001-09 14

<150> 60/32/5,092

a

- <151> 2001-09-28
- <150> 60/333,124
- <151> 2001-11-27
- <150> 09/732,914
- <151> 2000-12-11
- <160> 78
- <170> PatentIn version 3.1
- <210> 1
- <211> 27
- <212> DNA
- <213> artificial sequence
- <220>
- <223> oligonucleotide primer
- <400> 1 tatgtatcat acacatacga tttaggt
- <210> 2
- <211> 20
- <212> DNA
- <213> artificial sequence
- <220>
- <223> oligonucleotide primer
- <400> 2 accgcctctc cccgcgcgtt
- <210> 3

20

27

<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	3 aagg gggcgataca gtcaactgtc tttg	34
<210>	4	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ttggcc	4 aagg gtatctagaa gcttctgcag acgcgt	36
<210>	5	
<211>		
	34	
<212>		
	DNA	
	DNA	
<213> <220>	DNA	
<213> <220> <223> <400>	DNA artificial sequence oligonucleotide primer	34
<213> <220> <223> <400>	DNA artificial sequence oligonucleotide primer 5 gaagg gccaccgtac tcgtcaattc caag	34
<213> <220> <223> <400> gttccg	DNA artificial sequence oligonucleotide primer 5 gaagg gccaccgtac tcgtcaattc caag	34
<213> <220> <223> <400> gttccg	DNA artificial sequence oligonucleotide primer 5 gaagg gccaccgtac tcgtcaattc caag 6 36	34

. . .

<220>		
<223>	oligonucleotide primer	
<400> ggccaaa	6 aagg gaacttgttt attgcagctt ataatg	36
<210>	7	
<211>	22	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ctctga	7 cttg agcgtcgatt tt	22
<210>	8	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> cggaa	8 caagg ggaattccct gtcaccgaga cc	32
<210>	9	
<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<223>	oligonucleotide primer	
<400	> 9 acaagg ggaattcccg gggatctgga attc	34

-4-

-5-

<210>	10	
<211>	29	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> tcgaaa	10 gggt cgaggtcgac ctgcagctg	29
<210>	11	
<211>	26	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> aattca	11 acatt gattattgag tagtta	26
<210>		
<211>		
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> tcgaa	. 12 lagggt aatggccagc aaaggagaag	30
<210>	. 13	
<211:	27	
<212	DNA	
010	artificial semience	

<220>		
<223>	oligonucleotide primer	
<400> ggccaag	13 ggt ttgtagaget catecat	27
<210>	14	
<211>	29	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ggccaa	14 gggt ctgaatgggg ccgcatagt	29
<210>	15	
<211>	20	
<212>	AND	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> aagcca	15 ataga gcccgggcca	20
<210>	16	
<211>	31	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	. 16 gaagg gtcgaggtcg acctgcagct g	31

-6-

<210>	17	
<211>	30	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> cggaac	17 aagg gatggccagc aaaggagaag	30
<210>	18	
<211>	31	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	18 caagg gtttgtagag ctcatccatg c	31
- 55		
<210>	19	
<211>	29	
<212>		
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> ggcct	. 19 aaagg gtgaatgggg ccgcatagt	2
<210>	20	
<211>	50	
<212>	DNA	
<213	artificial sequence	

-7-

<220>		
<223>	oligonucleotide primer	
<400> gaaggag	20 gtaa tacgactcac tatagggagc caccatgggc ccttcggaac	50
<210>	21	
<211>	50	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttccg	21 aagg gcccatggtg gctccctata gtgagtcgta ttactccttc	50
<210>	22	
<211>	21	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gaagga	22 gtaa tacgactcac t	21
<210>	23	
<211>	38	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400>	23 aaagg gtccctttag tgagggttaa ttgcgcgc	38

-8-

<210>	24	
<211>	38	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gcgcgc	24 aatt aaccctcact aaagggaccc tttaggcc	38
<210>	25	
<211>	34	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> cggaac	25 caagg gatgatagat cccgtcgttt taca	34
<210>	26	
<211>	32	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> taggc	26 caagg ggaccatttt caateegeae et	32
<210>	27	
<211>	32	
<212>	DNA	
<213>	artificial sequence	

-9-

<220>		
<223>	oligonucleotide primer	
<400> taggcca	27 aagg ggaggcactt caccgcttgc ca	32
<210>	28	
<211>	33	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> taggco	28 aagg gtttgacacc agaccaactg gta	33
<210>	29	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
	Vaccinia topoisomerase cleavable sequence	
<400> gccct	29 tattc cc	12
<210>	30	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Vaccinia topoisomerase cleavable sequence	
<400> tcgcc	octtat to	12

-11-

<210>	31	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Vaccinia topoisomerase cleavable sequence	
<400> tgtcgc	31 cctt at	12
<210>	32	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Vaccinia topoisomerase cleavable sequence	
<400>	32 gecet ta	12
505005		
<210>	33	
<211>	28	
<212>		
<213>	artificial sequence	
<220>		
<223>	adapter oligonucleotide, TOPO D1	
<400> aattg	33 atccc ttcaccgaca tagtacag	28
<210>	34	
<211>	12	
<212>	DNA	
<213>	artificial sequence	

<220>		
<223>	adapter oligonucleotide, TOPO D2	
<400> ggtgaag		12
<210>	35	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	adapter oligonucleotide, TOPO D5	
<400> aagggc		11
<210>	36	
<211>	19	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	adapter oligonucleotide, TOPO D4	
<400> cgccct	36 Etgac atagtacag	19
<210>	37	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide overhang sequence of TOPO D1 and TOPO D4	
<400>	37 agtac ag	12

-13-

```
<210> 38
<211> 15
<212> DNA
<213> artificial sequence
<220>
<223> annealing oligonucleotide sequence, TOPO D3
<400> 38
                                                                    15
caactgtact atgtc
<210> 39
<211>
       23
<212> DNA
<213> artificial sequence
<220>
<223> adapter oligonucleotide, TOPO H
<400> 39
                                                                      23
agctcgccct tattccgata gtg
<210>
      40
<211> 11
<212> DNA
<213> artificial sequence
 <220>
       adapter oligonucleotide, TOPO 16
 <223>
 <400> 40
                                                                      11
 gaataagggc g
 <210> 41
 <211> 23
 <212> DNA
 <213> artificial sequence
```

<220>		
<223>	adapter oligonucleotide, TOPO 1	
<400> aattcgc	41 ccct tattccgata gtg	23
<210>	42	
<211>	12	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide overhang sequence of TOPO 1	
<400> attccg	42 gatag tg	12
<210>	43	
<211>	15	
<212>	DNA	
<213>	artificial sequence	
<220>	TOPO 3	
	annealing oligonucleotide, TOPO 3	
<400> caaca	43 ctatc ggaat	15
<210>	44	
<211>	14 .	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<223>	DNA sequence of the N-terminus of a theoretical protein	
<400> atgga	> 44 atctga taaa	14

-15-

<213> artificial sequence

```
<210> 45
<211> 14
<212> DNA
<213> artificial sequence
<220>
<223> PCR primer
<400> 45
                                                                     14
accgatctga taaa
<210> 46
       27
<211>
<212> DNA
<213> artificial sequence
<220>
<223> DNA sequence of the C-terminus of a theoretical protein
<400> 46
                                                                      27
aagtcggagc actcgacgac ggtgtag
<210> 47
 <211> 17
 <212> DNA
 <213> artificial sequence
 <220>
 <223> reverse PCR primer sequence
 <400> 47
                                                                      17
 aaacaccgtc gtcgagt
 <210> 48
 <211> 33
 <212> DNA
```

<220>		
<223>	DNA sequence of the C-teminus of a theoretical protein	
<400> gcggtta	48 agt cggagcactc gacgactgca tag	33
<210>	49	
<211>	24	
<212>	DNA	
<213>	artificial sequence	
<220>	•	
<223>	sequence of reverse primer without stop codon	
<400> tgcagt	49 cgtc gagtgctccg actt	24
<210>	50	
<211>	27	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	sequence of reverse primer with stop codon	
<400> ctatgo	50 cagtc gtcgagtgct ccgactt	27
<210>	51	
<211>	22	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide primer	
<400> gttga	51 cattg attattgact ag	22

```
<210> 52
<211> 32
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 52
                                                                      32
gttccgaagg gttaacgcta gagtccggag gc
<210> 53
<211> 32
<212> DNA
<213> artificial sequence
<220>
 <223> oligonucleotide primer
 <400> 53
                                                                       32
gactcaaagg gaaggtaagc ctatccctaa gg
 <210> 54
 <211> 20
 <212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 54
                                                                      20
 gcgcagatct gctatggcag
 <210> 55
 <211> 37
  <212> DNA
  <213> artificial sequence
```

<220>		
<223>	oligonucleotide primer	
<400> cggaac	55 aagg gaccatggag aaaaaaatca ctggata	37
<210>	56	
<211>	36	
<212>	DNA	
<213>	artificial sequence	
<220>		•
<223>	oligonucleotide primer	
<400> tgagto	56 caagg gegeeeegee etgetgeeae teateg	36
<210>	57	
<211>	41	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	oligonucleotide sequence	
<400> gggga	. 57 Icaagt ttgtacaaaa aagcaggett eeetteggaa e	41
<210>	58	
<211>	41	
<212	> DNA	
<213:	> artificial sequence	
<220	>	
<223	> oligonucleotide primer	
<400	> 58 cgaagg gaagcctgct tttttgtaca aacttgtccc c	41

-19-

```
<210> 59
<211> 40
<212> DNA
<213> artificial sequence
<220>
<223> oligonucleotide primer
<400> 59
                                                                     40
gactcaaagg gacccagctt tcttgtacaa agtggtcccc
<210> 60
<211> 40
<212> DNA
<213> artificial sequence
<220>
 <223> oligonucleotide primer
 <400> 60
                                                                      40
 ggggaccact ttgtacaaga aagctgggtc cctttgagtc
 <210> 61
 <211> 20
 <212> DNA
 <213> artificial sequence
 <220>
 <223> oligonucleotide primer
 <400> 61
                                                                      20
 cacgacgttg taaaacgacg
 <210> 62
  <211> 22
  <212> DNA
  <213> artificial sequence
```

<220>		
<223>	oligonucleotide primer	
<400> atgtaat	62 acg actcactata gg	22
<210>	63	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	nucleotide primer	
<400> cggaac		11
<210>	64	
<211>	11	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	nucleotide primer	
<400> taggco	64 caagg g	11
<210>	65	
<211>	16	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	amplified end of PCR product	
<400>	65 cggaa caaggg	16

```
<210> 66
<211> 16
<212> DNA
<213> artificial sequence
<220>
<223> amplified end of PCR product
<400> 66
                                                                      16
cccttggcca taaggg
<210>
       67
<211>
       75
<212> DNA
<213> artificial sequence
<220>
       map of multiple cloning sites in plasmids pcDNAGW-DT9(sc) and pEN
<223>
       TR-DT (sc)
<400> 67
ttgtacaaaa aagcaggctc cgcggccgcc gtactcgaga aagggcgcgc cgacccagct
                                                                      60
                                                                      75
ttcttgtaca aagtg
<210>
      68
<211> 10
<212> PRT
 <213> artificial sequence
 <220>
 <223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
 <400> 68
 Leu Tyr Lys Lys Ala Gly Ser Ala Ala Ala
 <210> 69
```

```
<211>
      11
      PRT
<212>
<213> artificial sequence
<220>
<223> Amino acid sequence for pcDNAGW-DT9(sc) and pENTR-DT(sc)
<400>
       69
Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
<210>
       70
      2591
<211>
       DNA
<212>
<213> artificial sequence
 <220>
       Nucleotide sequence of plasmid pENTR/D-TOPO
 <223>
 <220>
 <221> Unsure
       (691)..(699)
 <222>
 <223> N can be any nucleotide: a, t, c, g.
 <400> 70
 ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
                                                                        60
 taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
                                                                       120
 gegeccaata egeaaacege eteteceege gegttggeeg atteattaat geagetggea
                                                                       180
 cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc
                                                                       240
 tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta
                                                                       300
 gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc
                                                                       360
 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa
                                                                       420
 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg
                                                                       480
 gcagtteect actetegegt taacgetage atggatgttt teccagteac gaegttgtaa
                                                                       540
```

aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtg	ac 600
ctgttcgttg caacaaattg atgagcaatg cttttttata atgccaactt tgtacaaa	
agcaggetee geggeegeee etteaceatg nnnnnnnna agggtgggeg egeegaee	
gctttcttgt acaaagttgg cattataaga aagcattgct tatcaatttg ttgcaacg	
caggicacta tcagicaaaa taaaatcatt attigccatc cagcigatat cccctata	
gagtcgtatt acatggtcat agctgtttcc tggcagctct ggcccgtgtc tcaaaatc	
tgatgttaca ttgcacaaga taaaaatata tcatcatgaa caataaaact gtctgctt	
ataaacagta atacaagggg tgttatgagc catattcaac gggaaacgtc gaggccgc	
ttaaattcca acatggatgc tgatttatat gggtataaat gggctcgcga taatgtcg	
caatcaggtg cgacaatcta tcgcttgtat gggaagcccg atgcgccaga gttgtttc	
aaacatggca aaggtagcgt tgccaatgat gttacagatg agatggtcag actaaact	
ctgacggaat ttatgcctct tccgaccatc aagcatttta tccgtactcc tgatgatg	
tggttactca ccactgcgat ccccggaaaa acagcattcc aggtattaga agaatatc	
gattcaggtg aaaatattgt tgatgcgctg gcagtgttcc tgcgccggtt gcattcga	
cctgtttgta attgtccttt taacagcgat cgcgtatttc gtctcgctca ggcgcaat	
cgaatgaata acggtttggt tgatgcgagt gattttgatg acgagcgtaa tggctgg	
gttgaacaag tctggaaaga aatgcataaa cttttgccat tctcaccgga ttcagtc	
actcatggtg atttctcact tgataacctt atttttgacg aggggaaatt aataggt	
attgatgttg gacgagtcgg aatcgcagac cgataccagg atcttgccat cctatgg	
tgcctcggtg agttttctcc ttcattacag aaacggcttt ttcaaaaata tggtatt	
aatcctgata tgaataaatt gcagtttcat ttgatgctcg atgagttttt ctaatca	
ttggttaatt ggttgtaaca ctggcagagc attacgctga cttgacggga cggcgca	
tcatgaccaa aatcccttaa cgtgagttac gcgtcgttcc actgagcgtc agacccc	
gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttg	
acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaact	
tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtg	
ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctg	
atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggac	
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcaca	
cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gcattga	
agegecaege tteeegaagg gagaaaggeg gaeaggtate eggtaagegg eagggte	

acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc	2460		
gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc	2520		
ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt	2580		
gctcacatgt t	2591		
<210> 71			
<211> 2607			
<212> DNA			
<213> artificial sequence			
<220>			
<223> Nucleotide sequence of plasmid pENTR/SD/D-TOPO			
<220>			
<221> Unsure			
<222> (710)(715)			
<223> N can be any nucleotide: a, t, c, g.			
<400> 71	60		
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga	60		
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga	120		
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca	180		
the standard grant aggregation and the standard grant aggregation aggregation and the standard grant aggregation and the standard grant aggregation aggregat	240		

cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgc 240 tagccaggaa gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgctta 300 gtttgatgcc tggcagttta tggcgggcgt cctgcccgcc accctccggg ccgttgcttc 360 acaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa 420 caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctg 480 gcagttccct actctcgcgt taacgctagc atggatgttt tcccagtcac gacgttgtaa 540 aacgacggcc agtcttaagc tcgggcccca aataatgatt ttattttgac tgatagtgac 600 ctgttcgttg caacaaattg atgagcaatg cttttttata atgccaactt tgtacaaaaa 660 agcaggetee geggeegeet tgtttaactt taagaaggag eeetteaeen nnnnnaaggg 720 tgggcgcgcc gacccagctt tcttgtacaa agttggcatt ataagaaagc attgcttatc 780 aatttgttgc aacgaacagg tcactatcag tcaaaataaa atcattattt gccatccagc 840

tgatatcccc tatagtgagt cgtattacat ggtcatagct gtttcctggc agctctggcc	900
cgtgtctcaa aatctctgat gttacattgc acaagataaa aatatatcat catgaacaat	960
aaaactgtct gcttacataa acagtaatac aaggggtgtt atgagccata ttcaacggga	1020
aacgtcgagg ccgcgattaa attccaacat ggatgctgat ttatatgggt ataaatgggc	1080
tegegataat gtegggeaat caggtgegae aatetatege ttgtatggga ageeegatge	1140
gccagagttg tttctgaaac atggcaaagg tagcgttgcc aatgatgtta cagatgagat	1200
ggtcagacta aactggctga cggaatttat gcctcttccg accatcaagc attttatccg	1260
tactcctgat gatgcatggt tactcaccac tgcgatcccc ggaaaaaacag cattccaggt	1320
attagaagaa tatcctgatt caggtgaaaa tattgttgat gcgctggcag tgttcctgcg	1380
ccggttgcat tcgattcctg tttgtaattg tccttttaac agcgatcgcg tatttcgtct	1440
cggttgcat tcgattcctg tetgeddoly read cgctcaggcg caatcacgaa tgaataacgg tttggttgat gcgagtgatt ttgatgacga	1500
gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg cataaacttt tgccattctc	1560
accggattca gtcgtcactc atggtgattt ctcacttgat aaccttattt ttgacgaggg	1620
gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct	1680
gaaattaata ggttgtattg atgitggatg agttggatto gang sang gettttttca	1740
tgccatccta tggaactgcc tcggtgagtt tcctctcta tanget tgcatcta tgctcgatga	1800
aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga	1860
gtttttctaa tcagaattgg ttaattggtt gtaacactgg cagagcatta cgctgacttg	1920
acgggacggc gcaagctcat gaccaaaatc ccttaacgtg agttacgcgt cgttccactg	1980
agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt ttctgcgcgt	2040
aatotgotgo ttgcaaacaa aaaaaccaco gotaccagog gtggtttgtt tgcoggatca	2100
agagetacea aetetttte egaaggtaae tggetteage agagegeaga taccaaatae	2160
tgtccttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag caccgcctac	2220
atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct	2280
taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg	
gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga gatacctaca	2340
gegtgageat tgagaaageg eeaegettee egaagggaga aaggeggaea ggtateeggt	2400
aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa acgcctggta	2460
tetttatagt eetgtegggt ttegeeacet etgaettgag egtegatttt tgtgatgete	2520
gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac ggttcctggc	2580
cttttgctgg ccttttgctc acatgtt	2607

<210> 72

<211> 5543

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of plasmid pcDNA3.2/V5/GWD-TOPO

<220>

<221> Unsure

<222> (958)..(966)

<223> N can be any nucleotide: a, t, c, g.

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg <400> 72 60 ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgeccagta catgacetta tgggaettte etaettggea gtacatetae gtattagtea 600 tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggacttteca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt 900 taagctatca acaagtttgt acaaaaaagc aggctccgcg gccgcccctt caccatgnnn 960 nnnnnaagg gtgggcgcgc cgacccagct ttcttgtaca aagtggttga tctagagggc 1020 cegeggtteg aaggtaagee tateeetaae eeteteeteg gtetegatte taegegtaee 1080 ggttagtaat gagtttaaac gggggaggct aactgaaaca cggaaggaga caataccgga 1140

aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcgt 1200 ttgttcataa acgcggggtt cggtcccagg gctggcactc tgtcgatacc ccaccgagac 1260 cccattgggg ccaatacgcc cgcgtttctt ccttttcccc accccacccc	
cccattgggg ccaatacgcc cgcgtttett cctttteece aceceaecee ccaagttegg 1320 gtgaaggece agggetegea gecaaegteg gggeggeagg ccetgecata geagatetge 1380	
gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgccata gcagatctgc 1380	
)
gcagctgggg ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg 1440)
gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt 1500)
tegetttett ceetteettt etegecaegt tegeeggett teecegteaa getetaaate 1560)
ggggcatccc tttagggttc cgatttagtg ctttacggca cctcgacccc aaaaaacttg 1620)
attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga 1680)
cgttggagtc cacgttcttt aatagtggac tcttgttcca aactggaaca acactcaacc 1740)
	0
ctatctcggt ctattctttt gatttataag ggattttggg gatttcggcc tattggttaa 1800	0
aaaatgaget gatttaacaa aaatttaacg egaattaatt etgtggaatg tgtgteagtt 186	0
agggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa 192	0
ttagtcagca accaggtgtg gaaagtcccc aggeteecca geaggeagaa geaggeaang	
catgcatctc aattagtcag caaccatagt cocycecta actecycour toosycore	
aactccgccc agttccgccc attctccgcc ccatggctga ctaatcttte coacstags	
agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gcttttttgg 216	
aggectagge ttttgeaaaa ageteeeggg agettgtata teeatttteg gatetgatea 222	
agagacagga tgaggatcgt ttcgcatgat tgaacaagat ggattgcacg caggttctcc 228	
ggccgcttgg gtggagaggc tattcggcta tgactgggca caacagacaa tcggctgctc 234	.0
tgatgccgcc gtgttccggc tgtcagcgca ggggcgcccg gttctttttg tcaagaccga 240	0
cctgtccggt gccctgaatg aactgcagga cgaggcagcg cggctatcgt ggctggccac 246	0
gacgggcgtt ccttgcgcag ctgtgctcga cgttgtcact gaagcgggaa gggactggct 252	20
gctattgggc gaagtgccgg ggcaggatct cctgtcatct caccttgctc ctgccgagaa 258	30
agtatecate atggetgatg caatgeggeg getgeataeg ettgateegg etaeetgeee 264	10
attcgaccac caagcgaaac atcgcatcga gcgagcacgt actcggatgg aagccggtct 270	00
tgtcgatcag gatgatctgg acgaagagca tcaggggctc gcgccagccg aactgttcgc 270	60
caggetcaag gegegeatge eegaeggega ggatetegte gtgacecatg gegatgeetg 28	20
	80
cttgccgaat atcatggtgg aaaatggccg cttttctgga ttcatcgact gtggccggct 28	
cttgccgaat atcatggtgg aaaatggccg cttttctgga ttcatcgact gtggccggct 28 gggtgtggcg gaccgctatc aggacatagc gttggctacc cgtgatattg ctgaagagct 29	40

gcgcatcgcc ttctatcgcc ttcttg	_{jacga} gttcttctga	gcgggactct	ggggttcgcg	3060
aaatgaccga ccaagcgacg cccaac				3120
totatgaaag gttgggotto ggaato				3180
geggggatet catgetggag ttette				3240
gttacaaata aagcaatagc atcaca				3300
ctagttgtgg tttgtccaaa ctcatc				3360
				3420
ctagctagag cttggcgtaa tcatgg				3480
tcacaattcc acacaacata cgagco				3540
gagtgagcta actcacatta attgc				3600
tgtcgtgcca gctgcattaa tgaat				3660
ggcgctcttc cgcttcctcg ctcac				
cggtatcagc tcactcaaag gcggt				3720
gaaagaacat gtgagcaaaa ggcca				3780
tggcgttttt ccataggctc cgccc	ccctg acgagcatca	a caaaaatcga	cgctcaagtc	3840
agaggtggcg aaacccgaca ggact	ataaa gataccaggo	gtttcccct	ggaagctccc	3900
tegtgegete teetgtteeg accet	gccgc ttaccggata	a cctgtccgcc	tttctccctt	3960
cgggaagcgt ggcgctttct caatg	geteae getgtaggta	a tctcagttcg	gtgtaggtcg	4020
ttcgctccaa gctgggctgt gtgca				4080
ccggtaacta tcgtcttgag tccaa				4140
ccactggtaa caggattagc agago				4200
ggtggcctaa ctacggctac actac				4260
cagttacctt cggaaaaaga gttgg				4320
gcggtggttt ttttgtttgc aagca				4380
atcctttgat cttttctacg gggt				4440
ttttggtcat gagattatca aaaa				4500
gttttaaatc aatctaaagt atat				4560
tcagtgaggc acctatctca gcga				4620
				4680
ccgtcgtgta gataactacg atac				4740
taccgcgaga cccacgctca ccgg				4800
gggccgagcg cagaagtggt cctg				4860
gccgggaagc tagagtaagt agtt	cgccag ttaatagt!	t gcgcaacgt	t grigeearig	4000

ctacaggcat cgtggtgtca	cgctcgtcgt	ttggtatggc	ttcattcagc	tccggttccc	4920
aacgatcaag gcgagttaca	tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	4980
gtcctccgat cgttgtcaga	agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	5040
cactgcataa ttctcttact	gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	5100
actcaaccaa gtcattctga	gaatagtgta	tgcggcgacc	gagttgctct	tgcccggcgt	5160
caatacggga taataccgcg	ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	5220
gttcttcggg gcgaaaactc	tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	5280
ccactcgtgc acccaactga	tcttcagcat	cttttacttt	caccagcgtt	tctgggtgag	5340
caaaaacagg aaggcaaaat	gccgcaaaaa	agggaataag	ggcgacacgg	aaatgttgaa	5400
tactcatact cttccttttt	caatattatt	gaagcattta	tcagggttat	tgtctcatga	5460
gcggatacat atttgaatgt	atttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	5520
cccgaaaagt gccacctgac	gtc				5543

<210> 73

<211> 5173

<212> DNA

<213> artificial sequence

<220>

<223> Nucleotide sequence of plasmid pcDNA6.2/V5/GWD-TOPO

<220>

<221> Unsure

<222> (958)..(966)

<223> N can be any nucleotide: a, t, c, g.

ccgcatagtt aagccagtat ctgctccctg cttgtgttt ggaggtcgct gagtagtgcg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttagggttag gcgttttgcg ctgcttcgcg atgtacggc cagatatacg cgttgacatt 240 gattattgac tagttataa tagtaatcaa ttacgggtc attagtcat agcccatata 300 tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360

cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 600 togotattac catggtgatg oggttttggc agtacatcaa tgggcgtgga tagoggtttg 660 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc 720 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780 gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt 900 taagctatca acaagtttgt acaaaaaagc aggctccgcg gccgcccctt caccatgnnn 960 nnnnnnaagg gtgggcgcgc cgacccagct ttcttgtaca aagtggttga tctagagggc 1020 ccgcggttcg aaggtaagcc tatccctaac cctctcctcg gtctcgattc tacgcgtacc 1080 ggttagtaat gagtttaaac gggggaggct aactgaaaca cggaaggaga caataccgga 1140 aggaacccgc gctatgacgg caataaaaag acagaataaa acgcacgggt gttgggtcgt 1200 ttgttcataa acgcggggtt cggtcccagg gctggcactc tgtcgatacc ccaccgagac 1260 1320 gtgaaggeee agggetegea geeaacgteg gggeggeagg eeetgeeata geagatetge 1380 gcagctgggg ctctaggggg tatccccacg cgccctgtag cggcgcatta agcgcggcgg 1440 gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag cgccctagcg cccgctcctt 1500 tegetttett ecetteettt etegecaegt tegeaggett teecegteaa getetaaate 1560 ggggcatece tttagggtte egatttagtg etttaeggea eetegaeece aaaaaaettg 1620 attagggtga tggttcacgt agtgggccat cgccctgata gacggttttt cgccctttga 1680 cgttggagtc cacgttettt aatagtggac tettgtteca aactggaaca acaetcaace 1740 ctatctcggt ctattctttt gatttataag ggattttggg gatttcggcc tattggttaa 1800 aaaatgagct gatttaacaa aaatttaacg cgaattaatt ctgtggaatg tgtgtcagtt 1860 agggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa 1920 ttagtcagca accaggtgtg gaaagtcccc aggctcccca gcaggcagaa gtatgcaaag 1980 catgcatete aattagteag caaccatagt ecegeceeta aeteegeeea teeegeeeet 2040 aacteegeee agtteegeee atteteegee eeatggetga etaatttttt ttatttatge 2100 agaggccgag gccgcctctg cctctgagct attccagaag tagtgaggag gcttttttgg 2160 aggectagge ttttgcaaaa ageteeeggg agettgtata teeatttteg gatetgatea 2220 gcacgtgttg acaattaatc atcggcatag tatatcggca tagtataata cgacaaggtg 2280 aggaactaaa ccatggccaa gcctttgtct caagaagaat ccaccctcat tgaaagagca 2340 acggctacaa tcaacagcat ccccatctct gaagactaca gcgtcgccag cgcagctctc 2400 tctagcgacg gccgcatctt cactggtgtc aatgtatatc attttactgg gggaccttgt 2460 gcagaactcg tggtgctggg cactgctgct gctgcggcag ctggcaacct gacttgtatc 2520 gtcgcgatcg gaaatgagaa caggggcatc ttgagcccct gcggacggtg ccgacaggtg 2580 cttctcgatc tgcatcctgg gatcaaagcc atagtgaagg acagtgatgg acagccgacg 2640 gcagttggga ttcgtgaatt gctgccctct ggttatgtgt gggagggcta agcacttcgt 2700 ggccgaggag caggactgac acgtgctacg agatttcgat tccaccgccg ccttctatga 2760 aaggttgggc ttcggaatcg ttttccggga cgccggctgg atgatcctcc agcgcgggga 2820 teteatgetg gagttetteg eccaececaa ettgtttatt geagettata atggttacaa 2880 ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcactgc attctagttg 2940 tggtttgtcc aaactcatca atgtatctta tcatgtctgt ataccgtcga cctctagcta 3000 gagettggeg taateatggt catagetgtt teetgtgtga aattgttate egeteacaat 3060 tccacacaac atacgageeg gaagcataaa gtgtaaagee tggggtgeet aatgagtgag 3120 ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 3180 ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 3240 ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 3300 agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 3360 catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 3420 tttccatagg ctccgcccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 3480 gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 3540 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 3600 egtggegett teteataget caegetgtag gtateteagt teggtgtagg tegttegete 3660 caagetggge tgtgtgeacg aacceecegt teagecegae egetgegeet tateeggtaa 3720 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 3780 taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 3840 taactacggc tacactagaa gaacagtatt tggtatctgc gctctgctga agccagttac 3900 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggttt 3960 ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 4020 cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 4080

gagattatca	aaaaggatct	tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	4140
aatctaaagt	atatatgagt	aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	4200
acctatctca	gcgatctgtc	tatttcgttc	atccatagtt	gcctgactcc	ccgtcgtgta	4260
gataactacg	atacgggagg	gcttaccatc	tggccccagt	gctgcaatga	taccgcgaga	4320
cccacgctca	ccggctccag	atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	4380
cagaagtggt	cctgcaactt	tatccgcctc	catccagtct	attaattgtt	gccgggaagc	4440
tagagtaagt	agttcgccag	ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat	4500
cgtggtgtca	cgctcgtcgt	ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	4560
gcgagttaca	tgatccccca	tgttgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	4620
cgttgtcaga	agtaagttgg	ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	4680
ttctcttact	gtcatgccat	ccgtaagatg	cttttctgtg	actggtgagt	actcaaccaa	4740
gtcattctga	gaatagtgta	tgcggcgacc	gagttgctct	tgcccggcgt	caatacggga	4800
taataccgcg	ccacatagca	gaactttaaa	agtgctcatc	attggaaaac	gttcttcggg	4860
gcgaaaactc	tcaaggatct	taccgctgtt	gagatccagt	tcgatgtaac	ccactcgtgc	4920
acccaactga	tcttcagcat	cttttacttt	caccagcgtt	tctgggtgag	caaaaacagg	4980
aaggcaaaat	gccgcaaaaa	agggaataag	ggcgacacgg	aaatgttgaa	tactcatact	5040
cttcctttt	caatattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	5100
atttgaatgt	atttagaaaa	ataaacaaat	aggggttccg	cgcacatttc	cccgaaaagt	5160
gccacctgac	gtc					5173

<210> 74

<211> 69

<212> DNA

<213> artificial sequence

<220>

<223> Partial sequence of pENTR/SD-dTOPO

<220>

<221> Unsure

<222> (64)..(69)

<223> N can be any nucleotide: a, t, c, g.

<400>	74	
ttgtaca	aaaa aagcaggctc cgcggccgcc ttgtttaact ttaagaagga gcccttc	57 69
accatgr	nnnn nn	0,5
<210>	75	
<211>	52	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D71	
<400> ggccgc	75 cttg tttaacttta agaaggagcc cttcaccgac tatgtacagtt g	52
<210>	76	
<211>	31	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D73	
<400> ggccgc	76 cccc ttcaccgact atgtacagtt g	31
<210>	77	
<211>	28	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Nucleotide sequence of TOPO-D75	
<400> cgcgc	77 ccacc cttgacatag tacagttg	28
<210>	78	

4 > 5

```
<211> 14
<212> PRT
<213> artificial sequence
<220>
      Partial amino acid sequence of pENTR-dTOPO and pcDNAGW-dTOPO
<223>
<400> 78
Leu Tyr Lys Lys Ala Gly Ser Ala Ala Pro Phe Thr Met
<210>
       79
<211>
       13
<212> PRT
<213> artificial sequence
<220>
      Partial amino acid sequence of pENTR/SD-dTOPO, pENTR-dTOPO, and
<223>
             pcDNAGW-dTOPO
<400> 79
Lys Gly Gly Arg Ala Asp Pro Ala Phe Leu Tyr Lys Val
 <210>
      80
 <211> 15
 <212> DNA
 <213> artificial sequence
 <220>
       Product of binding a topoisomerase to part of a nucleic acid molecule
 <223>
 <220>
 <221> Unsure
 <222> (13)..(15)
 <223> N can be any nucleotide: a, t, c, g.
```

<400> 80 cccttcacca tgnnn

٠ . . .

15

_ .