ΘΕΜΑ 4

Ένας δορυφόρος Α, μάζας $m_1=300 {\rm Kg}$, κινείται σε κυκλική τροχιά γύρω από τη Γη σε ύψος $h=R_\Gamma$ από την επιφάνειά της, όπου R_Γ , η ακτίνα της Γης.

Να υπολογίσετε:

4.1. τη δυναμική ενέργεια του συστήματος Γη-δορυφόρος Α.

Μονάδες 5

4.2. το μέτρο της γωνιακής ταχύτητας ω, με την οποία περιστρέφεται ο δορυφόρος Α γύρω από τη Γη.

Μονάδες 6

4.3. Την ελάχιστη ενέργεια η οποία πρέπει να δοθεί σε ένα σώμα Γ, μάζας m=2Kg, που βρίσκεται μέσα στο δορυφόρο Α, προκειμένου να εγκαταλείψει το δορυφόρο Α και να φτάσει σε άπειρη απόσταση από τη Γη.

Μονάδες 7

Ένας άλλος δορυφόρος B, μάζας $m_2=100 {\rm Kg}$, κινείται στην ίδια κυκλική τροχιά γύρω από τη Γη με αυτήν που κινείται ο δορυφόρος A, αλλά με αντίθετη φορά. Κάποια στιγμή οι δύο δορυφόροι A και B συγκρούονται πλαστικά.

4.4. Να υπολογίσετε το ποσοστό % της αρχικής ενέργειας του συστήματος των δύο δορυφόρων Α και Β που χάνεται κατά την κρούση.

Μονάδες 7

Δίνονται: η ακτίνα της Γης $R_\Gamma=64\cdot 10^5\,$ m και η επιτάχυνση βαρύτητας στην επιφάνεια της Γης $g_o=10\,$ m/s². Για τους αριθμητικούς υπολογισμούς δίνεται $\sqrt{2}=1$,4.