LL(1) Parsing, Refactoring and Recursive Descent

CSCI 3136: Principles of Programming Languages

Agenda

- Announcements
 - Assignment 4 is out and due June 14 (hopefully)
 - Midterm on Wednesday, June 19, in CHEB 170, 10 11:30am.
 - Final Exam on Friday, August 2, in CHEB 170, 1:00 4:00pm
- Readings:
 - Today: 2.3.0, 2.3.1
 - Note: I recommend using alternative texts for this part of the course:
 - E..g, Hopcorft et al, "Introduction to Automata Theory"
- Lecture Contents
 - Building an LL(1) Parser
 - The PREDICT Table
 - Constructing FIRST, FOLLOW, and PREDICT
 - Is a Grammar LL(1)?
 - Refactoring
 - Recursive Descent

Building an LL(1) Parser

 Basic Challenge: Given current token, which production does the parser select if next item in sentential form is a nonterminal

E.g., if S is on the stack and input is +, then parser must select production $S \rightarrow +SS$

- In general: for input **a**, sentential form A . . ., either
 - $A \Rightarrow \alpha \Rightarrow^* a\beta$
 - $A \Rightarrow \alpha \Rightarrow^* \epsilon$ and derivation of A is succeeded by **a**.
- Intuitively, a is in the predictor set of A→α
 if Aβ ⇒ αβ ⇒* aγ, for β,γ ∈ Σ*
 I.e., the parser selects A → α if a is the input and in the predictor set of A → α

LL(1) Grammars

- **Definition**: A grammar is LL(1) if the predictor sets of all productions with the same LHS are disjoint.
- E.g. S-Grammars are LL(1)
 Grammar

1.
$$S \rightarrow + SS$$

2.
$$S \rightarrow -SS$$

3.
$$S \rightarrow * SS$$

4.
$$S \rightarrow /SS$$

5.
$$S \rightarrow \text{neg } S$$

6. $S \rightarrow integer$

PREDICT Table

Production	Predictor Set
$S \rightarrow + S S$	{+}
$S \rightarrow -SS$	{-}
$S \rightarrow * S S$	{*}
$S \rightarrow / S S$	{/}
$S \rightarrow \text{neg } S$	{neg}
$S \rightarrow integer$	{integer}

Constructing PREDICT: The 3 Tables

• FIRST(α): the set of leftmost terminals **a** to be derived from $\alpha \in (V \cup \Sigma)^*$

$$\alpha \Rightarrow^* \mathbf{a}\beta$$

 FOLLOW(X): the set of first terminals a that follows variable X in a derivation

$$S \Rightarrow^* \alpha Xa\beta$$

• **PREDICT(A** \rightarrow α): the set of terminals that predict this production given **A**

The FIRST Table: Example

•	Т	\rightarrow	Δ	R
•		$\overline{}$	\vdash	D

- $A \rightarrow PQ$
- $A \rightarrow BC$
- $P \rightarrow pP$ Σ
- $P \rightarrow \epsilon$
- $Q \rightarrow qQ$
- $Q \rightarrow \epsilon$
- $B \rightarrow bB$
- $B \rightarrow e$
- $C \rightarrow cC$ V
- $C \rightarrow f$

	Sym: σ	FIRST(σ)
	р	{p}
	q	{q}
	b	{b}
	е	{e}
	С	{c}
	f	{ f }
	Т	{p,q,b.e}
	Α	$\{p,q,b.e,\pmb{\epsilon}\}$
	Р	{p, € }
\	Q	{q, € }
	В	{b,e}
	С	{c,f}

The FIRST Table

• **Definition:** FIRST(σ), $\forall \sigma \in (V \cup \Sigma)^*$:

• For $a \in \Sigma$, $a \in FIRST(\sigma)$ if $\sigma \Rightarrow^* a\beta$

• $\varepsilon \in FIRST(\sigma)$ if $\sigma \Rightarrow^* \varepsilon$

Precompute FIRST sets for all terminals and variables

Notes:

- For $a \in \Sigma$, FIRST(a) = {a}
- Precompute FIRST(X) only for $X \in V$
- Generate FIRST(σ), $\sigma \in (V \cup \Sigma)^*$ as needed

To compute FIRST for terminals and variables

- For $a \in \Sigma$, FIRST(a) = {a}
- For $X \in V$, FIRST(X) = \emptyset
- Repeat until no new additions to FIRST(X), X ∈ V are possible:
 ∀ (X → α) ∈ P,
 FIRST(X) = FIRST(X) ∪ FIRST(α)

The FIRST Table (Part 2)

- To compute $FIRST(\alpha)$ (in general)
 - $\alpha = \alpha_1 \alpha_2 ... \alpha_k$, $\alpha_i \in V \cup \Sigma$
 - FIRST(α) = \emptyset
 - For i = 1,2...k:
 - $FIRST(\alpha) = FIRST(\alpha) \cup (FIRST(\alpha_i) \setminus \{\epsilon\})$
 - if $\epsilon \notin FIRST(\alpha_i)$ then return
 - $FIRST(\alpha) = FIRST(\alpha) \cup \epsilon$

The FIRST Table: Example

Loop until no no more changes: $\forall X \rightarrow \alpha \in P$, $FIRST(X) = FIRST(X) \cup FIRST(\alpha)$

(¬	ra	m	m	ar
\sim	ıu			иı

- $T \rightarrow AB$
- $A \rightarrow PQ$
- $A \rightarrow BC$
- $P \rightarrow pP$ Σ -
- $P \rightarrow \epsilon$
- $Q \rightarrow qQ$
- $Q \rightarrow \epsilon$
- $B \rightarrow bB$
- $B \rightarrow e$
- $C \rightarrow cC$ V
- $C \rightarrow f$

	Symbol	Iter. 0	Iter. 1	Iter.2	Iter. 3
	р	{p}	{p}	{p}	{p}
	q	{q}	{q}	{q}	{q}
	b	{b}	{b}	{b}	{b}
	е	{e}	{e}	{e}	{e}
	С	{c}	{c}	{c}	{c}
	f	{ f }	{f}	{ f }	{ f }
	Т	Ø	Ø	Ø	{p,q,b.e}
	Α	Ø	Ø	$\{p,q,b.e,\pmb{\epsilon}\}$	$\{p,q,b.e,\pmb{\epsilon}\}$
	P	Ø	{p, € }	{p, € }	{p, € }
1	Q	Ø	$\{q,\pmb{\epsilon}\}$	{q, € }	{q, € }
	В	Ø	{b,e}	{b,e}	{b,e}
	С	Ø	{c,f}	{c,f}	{c,f}

The FOLLOW Table

- **Definition:** FOLLOW(X), \forall X \in V:
 - For $a \in \Sigma$, $a \in FOLLOW(X)$ if $\exists S \Rightarrow^* \alpha Xa\beta$
 - $\varepsilon \in FOLLOW(X)$ if $S \Rightarrow^* \alpha X$
- To Compute FOLLOW
 - FOLLOW(S) = $\{\epsilon\}$
 - For $X \in V$, $FOLLOW(X) = \emptyset$
 - Repeat until no new additions to FOLLOW(X), X ∈ V are possible:
 - For each B ∈ V
 - $\forall (X \rightarrow \alpha B\beta) \in P$,
 - FOLLOW(B) = FOLLOW(B) \cup (FIRST(β)\{ ϵ })
 - if $\varepsilon \in FIRST(\beta)$ then $FOLLOW(B) = FOLLOW(B) \cup FOLLOW(X)$

The FOLLOW Table: Example

- $T \rightarrow AB$
- $A \rightarrow PQ$
- $A \rightarrow BC$
- $P \rightarrow pP$
- $P \rightarrow \epsilon$
- $Q \rightarrow qQ$
- $Q \rightarrow \epsilon$
- $B \rightarrow bB$
- $B \rightarrow e$
- $C \rightarrow cC$
- $C \rightarrow f$

Symbol	Iter. 0	Iter. 1	Iter.2
Т	$\{oldsymbol{\epsilon}\}$	{ ε }	$\{oldsymbol{\epsilon}\}$
Α	Ø	{b,e}	{b,e}
Р	Ø	{q}	{q,b,e}
Q	Ø	Ø	{b,e}
В	Ø	{ € ,c,f}	{ € ,c,f}
С	Ø	Ø	{b,e}

```
FOLLOW(S) = \{\epsilon\}

For X \in V, FOLLOW(X) = \emptyset

Repeat until no new additions to FOLLOW(X), X \in V are possible:

For each B \in V

\forallX \rightarrow \alphaB\beta \in P,

FOLLOW(B) = FOLLOW(B) U (FIRST(\beta)\{\epsilon})

if \epsilon \in FIRST(\beta) then FOLLOW(B) = FOLLOW(B) U FOLLOW(X)
```

The PREDICT Table

- **Definition:** For $a \in \Sigma \cup \{\epsilon\}$, $a \in PREDICT(A \rightarrow \alpha)$ if
 - a \in FIRST(α)\{ ϵ } or
 - $\varepsilon \in FIRST(\alpha)$ and $a \in FOLLOW(A)$
- To Compute PREDICT
 - For each $(A \rightarrow \alpha) \in P$, PREDICT $(A \rightarrow \alpha) = \emptyset$
 - For each $(A \rightarrow \alpha) \in P$
 - PREDICT(A $\rightarrow \alpha$) = FIRST(α)\{ ϵ }
 - if $\varepsilon \in FIRST(\alpha)$ then $PREDICT(A \rightarrow \alpha) = PREDICT(A \rightarrow \alpha) \cup FOLLOW(A)$

The PREDICT Table: Example

Symbol	FIRST	FOLLOW
Т	{p,q,b,e}	{ € }
Α	$\{p,q,b,e,oldsymbol{\epsilon}\}$	{b,e}
Р	{p, € }	{q,b,e}
Q	{q, € }	{b,e}
В	{b,e}	{ € ,c,f}
C	{c,f}	{b,e}

For each $(A \rightarrow \alpha) \in P$ $\mathsf{PREDICT}(\mathsf{A} \!\to\! \alpha) = \mathsf{FIRST}(\alpha) \setminus \{\epsilon\}$ if $\varepsilon \in FIRST(\alpha)$ then

 $PREDICT(A \rightarrow \alpha) = PREDICT(A \rightarrow \alpha) \cup FOLLOW(A)$

Predictor Set
{p,q,b,e}
{p,c,b,e}
{b,e}
{p}
{q,b,e}
{q}
{b,e}
{b}
{e}
{c}
{f}

Since the predictor sets overlap for A productions, this is not an LL(1) grammar

How to Prove a Grammar is LL(1)

- Construct PREDICT Table for the grammar
- This grammar is not LL(1) if and only If two productions with the same left hand side have non-disjoint predictor sets.
- Note: It's actually possible to build the FIRST, FOLLOW, and PREDICT tables by simply looking at the grammar.
- What happens if our grammar is not LL(1)?

Limitations and Problems with LL(1)

- There exist context free languauges that do not have LL(1) grammars
- There is no known algorithm to determine whether a language is LL(1)
- There is an algorithm to decide whether a grammar is LL(1) (we just saw it)
- Most obvious grammars for most programming languages are usually not LL(1)
- In many cases a non-LL(1) grammar can be refactored into an LL(1) grammar

Refactoring Grammars

- Two common problems: Which production do you use? (Both have α in FIRST)
- Left recursion
 - $A \rightarrow A\beta$
 - $A \rightarrow \alpha$
- Common Prefix
 - $A \rightarrow \alpha\beta$
 - $A \rightarrow \alpha \gamma$

Dealing with Left Recursion

• Idea: Replace Left Recursion with Right Recursion

 Note: As a side-effect the grammar may cease to capture some properties such as left-associativity

Example of Eliminating Left Recursion

Consider the grammar fragment:

```
Block → '{' Statements '}'

Statements → Statements Statement

Statements → ε
```

Replace this with:

```
Block → '{' Statements '}'

Statements → Statement Statements

Statements → ε
```

Dealing with Common Prefix

• Idea: Remove common prefix by left factoring

Example of Eliminating Common Prefix

Bad Grammar

Array $\rightarrow \epsilon$

```
Field → Type Identifier ';'

Field → Type identifier '(' Args ')' ';'

Type → Identifier Array

Array → '['']' Array
```

Better grammar

```
Field \rightarrow Type Identifier FieldBody ';'
FieldBody \rightarrow '(' Args ')'
FieldBody \rightarrow \epsilon
Type \rightarrow Identifier Array
Array \rightarrow '['']' Array
Array \rightarrow \epsilon
```

LL(1) Parser Implementation

- Two efficient approaches:
 - Recursive Descent
 - Deterministic Pushdown Automata (DPDA)
- Recursive Descent is easier to understand and implement.

Recursive Descent

Use PREDICT table

Idea: For each variable X, write a procedure: parse_X()


```
parse X:
  t = peek next token()
   select X \rightarrow \alpha based on t
   for each \alpha_i \in \alpha:
     if \alpha_i == Y_1 \in V:
        parse Y_1()
     elseif \alpha_i == Y_2 \in V:
        parse Y_2()
     elseif \alpha_i == Y_k \in V:
        parse_Y_k()
     elseif \alpha_i == t:
        remove token()
        t = peek next token()
     else:
        syntax error
```

Example

- $S \rightarrow Add \mid Sub \mid Mul$
- S → Div | Neg | Val
- Add \rightarrow + S S
- Sub \rightarrow S S
- Mul \rightarrow * S S
- Div \rightarrow / S S
- Neg → neg S
- Val → integer

```
parse S:
  t = peek at token()
  select S \rightarrow \alpha based on t
  for each \alpha_i \in \alpha:
     if \alpha_i == Add \in V:
        parse Add()
     elseif \alpha_i == Sub \in V:
        parse Sub()
     elseif \alpha_i == \mathbf{Val} \in V:
        parse Val()
     elseif \alpha_i == t:
        remove token()
        t = peek at token()
     else:
        syntax error
```

Example t = peek_at_t More Concrete if t == '+':

- S → Add | Sub | Mul
- S \rightarrow Div | Neg | Val
- Add \rightarrow + S S
- Sub \rightarrow S S
- Mul \rightarrow * S S
- Div \rightarrow / S S
- Neg \rightarrow neg S
- Val → integer

```
parse S:
  t = peek at token()
    n = parse Add()
  elseif t == '-':
    n = parse Sub()
  elseif t == '*':
    n = parse Mul()
  elseif t == '/':
    n = parse Div()
  elseif t == 'neg':
    n = parse Neg()
  elseif t is integer:
    n = parse Val()
  else:
    syntax error
  return TreeNode(n)
```

Example More Concrete

- $S \rightarrow Add \mid Sub \mid Mul$
- S \rightarrow Div | Neg | Val
- Add \rightarrow + S S
- Sub \rightarrow S S
- Mul \rightarrow * S S
- Div \rightarrow / S S
- Neg → neg S
- Val → integer

```
parse_Add:
    t = peek_at_token()
    if t != '+':
        # never happens
        syntax error
    remove_token()
    s1 = parse_S()
    s2 = parse_S()
    return TreeNode(t,s1,s2)
```