In The Claims

1. (Previously Presented) A friction material comprising a base material impregnated with at least one curable resin, the base material comprising i) a porous primary layer comprising a fibrous base material, and ii) a secondary layer comprising geometrically symmetrically shaped friction modifying particles at least partially covering an outer surface of the fibrous base material; the material of the primary layer holding the geometrically symmetrically shaped friction modifying particles on the surface of the porous primary layer,

wherein the secondary layer comprises a mixture of carbon particles and symmetrically shaped silica particles, the carbon and silica friction modifying particles being present at about 0.2 to about 80%, by weight, based on the weight of the primary layer material, and

wherein the secondary layer comprises about 20% to about 35%, by weight, of symmetrically shaped silica particles, and about 65% to about 80%, by weight, carbon particles, based on the total weight of the friction modifying particles.

2. (Original) The friction material of claim 1, wherein the primary layer material comprises fabric materials, woven and/or nonwoven materials.

3. (Previously Presented) The friction material of claim 2, wherein the primary layer material has a surface smoothness in the range of from about 0.02 mm Ra to about 0.2 mm Ra which smooth surface provides the friction material with consistent anti-shudder and coefficient of friction characteristics.

4-6. (Canceled)

- 7. (Original) The friction material of claim 1, wherein the friction modifying particles cover about 3% to about 90% of the surface area of the primary layer material.
- 8. (Previously Presented) The friction material of claim 1, wherein the friction modifying particles substantially cover the outer surface area of the primary layer material.
- 9. (Previously Presented) A friction material comprising a base material impregnated with at least one curable resin, the base material comprising i) a porous primary layer comprising a fibrous base material, and ii) a secondary layer comprising geometrically symmetrically shaped friction modifying particles at least partially covering an outer surface of the fibrous base material; the material of the

primary layer holding the geometrically symmetrically shaped friction modifying particles on the surface of the porous primary layer,

wherein the secondary layer comprises a mixture of symmetrically shaped diatomaceous earth particles and fully carbonized carbon particles or partially carbonized carbon particles, and mixtures thereof, and

wherein the secondary layer comprises about 20% to about 35%, by weight, of the symmetrically shaped particles, and about 65% to about 80% by weight of the carbon particles, based on the total weight of the friction modifying particles.

10. (Original) The friction material of claim 1, wherein the friction modifying particles comprises about 0.2% to about 50%, by weight, of friction modifying particles, based on the weight of the primary layer material.

11. (Canceled)

- 12. (Original) The friction material of claim 1, wherein the friction modifying particle size ranges from about 0.05 to about 20 microns.
 - 13. (Previously Presented) A friction material comprising a base material

impregnated with at least one curable resin, the base material comprising i) a porous primary layer comprising a fibrous base material, and ii) a secondary layer comprising geometrically symmetrically shaped friction modifying particles at least partially covering an outer surface of the fibrous base material; the material of the primary layer holding the geometrically symmetrically shaped friction modifying particles on the surface of the porous primary layer,

wherein the secondary layer comprises about 20 to 35%, by weight, of symmetrically shaped particles, based on the total weight of the friction modifying particles, and

wherein the friction modifying particles comprises symmetrically shaped diatomaceous earth.

- 14. (Original) The friction material of claim 1, impregnated with a phenolic resin or a modified phenolic resin.
- 15. (Original) The friction material of claim 14, wherein the friction material comprises about 40 to about 120% resin, by weight.
- 16. (Previously Presented) A friction material comprising a base material impregnated with at least one curable resin, the base material comprising i) a

porous primary layer comprising a fibrous base material, and ii) a secondary layer comprising geometrically symmetrically shaped friction modifying particles at least partially covering an outer surface of the fibrous base material; the material of the primary layer holding the geometrically symmetrically shaped friction modifying particles on the surface of the porous primary layer,

wherein the secondary layer comprises 20% to 35%, by weight, of symmetrically shaped particles, based on the total weight of the friction modifying particles, and

wherein the friction material is impregnated with a mixture of a phenolic resin and a silicone resin wherein the amount of silicone resin in the mixture ranges from approximately 5 to approximately 80%, by weight, based on the weight of the mixture, and optionally, wherein the phenolic resin is present in a solvent material and the silicone resin is present in a solvent material which is compatible with the solvent material of the phenolic resin.

17. (Original) The friction material of claim 14, wherein the modified phenolic resin comprises an epoxy phenolic resin.

18 - 27. (Canceled)

28. (Previously Presented) A friction material comprising a base material impregnated with at least one curable resin, the base material comprising i) a porous primary layer comprising a fibrous base material, and ii) a secondary layer comprising geometrically symmetrically shaped friction modifying silica particles at least partially covering an outer surface of the fibrous base material; the material of the primary layer holding the geometrically symmetrically shaped friction modifying particles on the surface of the porous primary layer,

wherein the secondary layer comprises about 20% to about 35% by weight, of symmetrically shaped silica particles, based on the total weight of the friction modifying particles, and

wherein the geometrically symmetrically shaped friction modifying silica particles have a substantially flat disc shape.

29 - 30. (Canceled)