Vision Transformer

CS331.P21 - Thị giác máy tính nâng cao

Trương Huỳnh Thúy An

Hoàng Đức Chung Nguyễn Hải Đăng

Khoa Khoa hoc Máv tính Trường Đai học Công nghệ Thông tin, ĐHQG-HCM

Thứ Ba, ngày 27 tháng 5, 2025

Overview

1. Attention

2. Transformer

3. Vision Transformer

Overview

1. Attention

2. Transformer

3. Vision Transformer

Mô hình Seq2Seq

Decoder RNN

Decoder RNN

Decoder RNN

• Trạng thái ẩn ở encoder (values):

$$s_1, s_2, \dots, s_N \in \mathbb{R}^{d_1}$$

- Vector truy vấn (query) $h \in \mathbb{R}^{d_2}$
- Attention thực hiện các bước sau:
 - (1) Tính attention scores: r
 - (2) Tính attention distribution α :

$$\alpha = \operatorname{softmax}(r)$$

(3) Tính attention output c để tổng hợp thông tin:

$$c = \sum_{i=1}^{N} \alpha_i s_i$$

- Attention cho hiệu suất dịch cao hơn hẳn so với các phương pháp trước
 - Cho phép decoder nhìn lại toàn bộ câu văn nguồn
 - Cho phép decoder tập trung một số phần nhất định của câu văn nguồn
- Attention giải quyết vấn đề "điểm nghẽn" của trạng thái ẩn từ cuối
- Attention giải quyết vấn đề vanishing gradient
 - Tạo các "đường tắt" khi huấn luyện với back propagation
- Attention cho khả năng diễn đạt, giải thích kết quả
 - Với attention distribution, ta có thể quan sát decoder đang tập trung vào đâu

Attention và Seft-attention

- Attention: một từ truy vấn (query) ở decoder, truy vấn và tổng hợp thông tin từ các tập giá trị (values) của encoder
- **Selt-attention**: là cơ chế attention trên encoder-encoder (hoặc decoder-decoder), trong đó mỗi từ "chú ý" đến nhau trong cùng input (hoặc output)

Overview

1. Attention

2. Transformer

3. Vision Transformer

Transformer sử dụng Self-Attention

- Mô hình sequence-to-sequence, gồm 2 thành phần chính:
 Encoder và Decoder
- Loại bỏ tính tuần tự (recurrence)
- Self-Attention là tầng quan trọng trong mỗi lớp của Transformer. Với mỗi token, tính toán truy vấn (Q), khóa (K), giá trị (V).

$$\mathsf{Attention}(Q, K, V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Encoder

- Encoder gồm N=6 lớp giống nhau (thường là 6, 12 hoặc 24).
- Mỗi lớp gồm:
 - Multi-head Self-Attention
 - Feed-Forward Network
- Mỗi tầng con được bao quanh bởi:
 - Residual Connection
 - Layer Normalization

Multi-Head Self-Attention

- Cho phép mô hình học mối quan hệ giữa các từ trong câu.
- Công thức:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

• Multi-head: nhiều attention song song để học các mối quan hệ khác nhau.

Feed Forward và Residual

• Feed Forward Network:

$$FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$$

- Áp dụng độc lập tại từng vị trí.
- Residual Connection: x + Sublayer(x)
- Layer Normalization: ổn định huấn luyện.

Tổng kết Encoder

Thành phần	Vấn đề giải quyết	Cơ chế
Self-Attention	Phụ thuộc dài hạn	Attention đa hướng
Positional Encoding	Thiếu vị trí từ	Sin/Cos tuần hoàn
Feed Forward	Phi tuyến tính	Mạng 2 lớp
${\sf Residual} + {\sf Norm}$	Gradient	Lan truyền ổn định

Decoder

Mỗi lớp decoder gồm 3 tầng con:

- Masked Multi-head Self-Attention layer (bổ qua các token tương lai)
- Encoder-Decoder Attention layer (chú ý đến đầu ra của encoder)
- Feed Forward layer

Mỗi tầng con cũng theo sau bởi bước "Add & Normalize"

Masked Multi-head Self-Attention layer

Vấn đề: Decoder là quá trình giải mã tuần tự dạng mô hình ngôn ngữ, ta không thể "nhìn đáp án phía sau".

 \Rightarrow Tại mỗi bước tính của Decoder, ta mở rộng dần tập key và value.

Vấn đề mới: Không tính toán song song được.

Giải pháp: Sử dụng Masked Multi-head Self-Attention, che các attention của các từ phía sau bằng cách gán attention score bằng $-\infty$.

Encoder-Decoder Attention (Cross-Attention)

 Trong bài Cơ chế Attention, key đến từ decoder. value đến từ encoder, Transformer cũng vậy: Output probabilities • $s_1, s_2, \dots, s_T \in \mathbb{R}^d$ là các output của encoder $h_1, h_2, \dots, h_T \in \mathbb{R}^d$ là các input của decoder Add & Norm Khi đó key, value và guery: Multi-head Add & Norm Decoder $k_i = Ks_i$ Lặp 6x Feed forward Add & Norm $v_i = V s_i$ Encoder #laver = 6 Add & Norm Masked Multi $q_i = Qh_i$ Lặp 6x head Attention #laver = 6 Multi-head Attention Output Input embedding embedding Output (shifted right)

Inputs

Decoder - Những bước cuối cùng

Overview

1. Attention

2. Transformer

3. Vision Transformer

Vision Transformer

Bài toán: Làm thế nào để đưa dữ liệu hình ảnh vào mô hình Transformer?

Ånh: Tổng quan mô hình Vision Transformer

Vision Transformer - Lớp Linear Projection

Giải pháp: Chia ảnh đầu vào $x \in \mathbb{R}^{H \times W \times C}$ thành các mảnh (patches), trải phẳng (flatten), và mã hóa (encode) bằng một lớp tuyến tính (linear projection).

Vision Transformer - Cho bài toán phân loại ảnh

