Assignment 3 Avinash Iyer

Solution (20.1): We know that $\sin(z)$ is conformal when $\frac{d}{dz}(\sin(z)) \neq 0$, meaning that we verify when $\cos(z) \neq 0$. This occurs at $z = n\pi$, where $n \in \mathbb{Z}$.

We know that $\sin(z) = 0$ when $z = \pi$, with $\cos(z) = -1 = e^{i\pi}$. Therefore, the image of $z = \pi$ is not stretched, and is rotated by an angle of π .

We know that the image of $z = i\pi$ is stretched by a factor of $|\cos(i\pi)| = |\cosh(\pi)|$. Since $\cosh(\pi) = |\cosh(\pi)|$, the image is rotated by an angle of 0.

Evaluating $\cos(\pi/2 + i\pi)$, we get that it is equal to $-\sin(\pi/2)\sin(i)$, or $-i\sinh(1) = \sinh(1)e^{-i\pi/2}$. Therefore, the image of $z = \pi/2 + i$ is stretched by a factor of $\sinh(1)$ and rotated by an angle of $-\pi/2$.

Solution (20.9): Mapping |z-1| < 1 to the plane Re(w) > 0, with $w(0) = \infty$, we have

$$w(z) = \frac{az + b}{cz}.$$

Now, we want z = 2 to map to zero, giving

$$w(z) = \frac{a(z-2)}{cz}.$$

Finally, an entirely arbitrary decision made by the problem solver has it such that z = 1 maps to z = 1. Thus, we have

$$\frac{-\alpha}{c} = 1.$$

Therefore, we get the Möbius transformation of

$$w(z) = \frac{2-z}{z}.$$

Problem Solver's Note: It is not possible for |z-1| < 0, as norms are always at least equal to zero. The problem solver has decided to interpret the question such that it becomes nontrivial.

Solution (20.10): The first map of e^z has it such that Re(w) ranges from $e^{Re(z_1)}$ to $e^{Re(z_2)}$, while arg(w) ranges from 0 to π , which agrees with the map showing an annular strip in the w-plane.

The second map of e^z maps z_1 , z_2 , and z_3 to $e^{Re(z_1)}$, 1, and $e^{Re(z_3)}$, eventually converging to 0 as z_3 becomes more and more negative. Similarly, e^z maps z_4 , z_5 , and z_6 to $e^{i\pi Re(z_4)}$, -1, and $e^{i\pi Re(z_6)}$, similarly converging to 0 as z_4 becomes more and more negative.

- | **Solution** (20.11):
- | Solution (20.12):
- | Solution (20.14):
- | **Solution** (20.15):
- | Solution (20.16):
- | **Solution** (20.17):