First look at EFT DM model kinematics and rates with VBF/Monojet selections

Rebecca Pickles

November 27, 2015

Rebecca Pickles EFT DM Model Analysis November 27, 2015 1 / 25

Effective field theory Model Introduction

- Dimension BSM Operator and Tensor Structure
- Dark Matter Mass
- Mass of Mediating Particle (EFT Scale)
 - Affects the production rate (σ scales with $\Lambda^{-2(\hat{D}-4)}$

Introduction to MadGraph Models

- Models were originally discussed in Phys. Rev. D88 116009 (2013)
- Had to start from scratch from the general lagrangian:

```
( Mathematica \rightarrow FeynRules ) \rightarrow MadGraph generate p p \rightarrow chi chi j j
```

- Pythia (Not using yet)
- Rivet Analysis:
 - Basic selection cuts
 - Kinematic distributions
 - Based on Atlas VBF Z/W + jets Analysis

Outline of Different Operators

$$\mathcal{L}_{\mathrm{D5a}} = \frac{1}{\Lambda} \bar{\chi} \chi \left[\frac{Z_{\mu} Z^{\mu}}{2} + W_{\mu}^{+} W^{-\mu} \right] \quad \mathcal{L}_{\mathrm{D6a}} = \frac{g}{2 \cos \theta_{W} \Lambda^{2}} \bar{\chi} \gamma^{\mu} \partial^{\nu} chi \left[\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu} \right] \quad \mathcal{L}_{\mathrm{D7b}} = \frac{1}{\Lambda^{3}} \bar{\chi} \gamma^{5} \chi W^{i,\mu\nu} W^{i}_{\mu\nu}$$

$$\mathcal{L}_{\mathrm{D5b}} = \frac{1}{\Lambda} \bar{\chi} \gamma^5 \chi \left[\frac{Z_{\mu} Z^{\mu}}{2} + W_{\mu}^+ W^{-\mu} \right]^{-\mathcal{L}_{\mathrm{D6b}} = \frac{g}{2 \cos \theta_W \Lambda^2} \bar{\chi} \gamma_{\mu} \partial_{\nu} chi \epsilon^{\mu \nu \sigma \rho} \left[\partial_{\sigma} Z_{\rho} - \partial_{\rho} Z_{\sigma} \right]} \\ \mathcal{L}_{\mathrm{D7c}} = \frac{1}{\Lambda^3} \bar{\chi} \chi \epsilon^{\mu \nu \rho \sigma} W_{\mu \nu}^i W_{\rho \sigma}^i W_{\rho \sigma}^i$$

$$\mathcal{L}_{\mathrm{D5c}} = \frac{g}{2\cos\theta_{W}\Lambda}\bar{\chi}\sigma^{\mu\nu}\chi\left[\partial_{\mu}Z_{\nu} - \partial_{\nu}Z_{\mu}\right] \quad \mathcal{L}_{\mathrm{D7a}} = \frac{1}{\Lambda^{3}}\bar{\chi}\chi W^{i,\mu\nu}W^{i}_{\mu\nu} \\ \mathcal{L}_{\mathrm{D7c}} = \frac{1}{\Lambda^{3}}\bar{\chi}\gamma^{5}\chi\epsilon^{\mu\nu\rho\sigma}W^{i}_{\mu\nu}W^{i}_{\rho\sigma}$$

- DM Mass and Lagrangian term influences the rates and kinematics.
- Currently using baseline $\Lambda = 100 \text{GeV}$ for all values, scaling as $\Lambda^{-2(D-4)}$.
- Can study Higgs 'dark portal' where the interactions are the same as the BSM EFT:
 - Plan to do so soon
 - Cross-check results with existing models in programs such as Sherpa.

4□ > 4□ > 4□ > 4□ > 4□ > □
900

Phasespace Selection Cuts

VBFZ Baseline: Jet1PT >55 GeV; Jet2PT >45 GeV; NumJets ≥ 2 .

VBFZ HighMass: Mjj >1000 GeV; Jet1PT >55 GeV; Jet2PT >45 GeV; NumJets > 2.

VBFZ Search: Mjj >250 GeV; Jet1PT >55 GeV; Jet2PT >45 GeV; NumJets \geq 2.

VBFDM:

Mjj >250 GeV; Jet1PT >55 GeV; Jet2PT >45 GeV; NumJets \geq 2; abseta <4.4; MET >150 GeV.

Monojet: Mjj >250 GeV; Jet1PT >45 GeV; NumJets \geq 1; abseta <4.4; MET >150 GeV.

VBFDM OR Monojet: VBFDM; Monojet.

Rebecca Pickles EFT DM Model Analysis November 27, 2015

Distributions of interest:

Main distributions that have been produced:

- Transverse Momentum of Jets, $P_T(j1)$ and $P_T(j2)$.
- Dijet Mass, M_{jj}.
- Missing Transverse Energy, $\not E_T$.
- Difference in Jet Angle $\Delta \phi$.
- Difference in Jet Pseudorapidity, $\Delta \eta$.

Distributions for D5a, VBFDM Selection, 10 GeV

DeltaPhi spectrum peaks

Distributions for D5a, VBFDM Selection, 1000 GeV

Distributions for D5b, VBFDM Selection, 10 GeV

Distributions for D5b, VBFDM Selection, 1000 GeV

Distributions for D5c, VBFDM Selection, 10 GeV

• The interaction would allow a new Z decay channel, which creates an invisible Z width constraint of $\Lambda > 3.3$ TeV.

Distributions for D5c, VBFDM Selection, 1000 GeV

• Invisible Z width constraint of $\Lambda > 6.6$ TeV. This gives a very high suppression factor: 4.5×10^3 .

Distributions for D6a, VBFDM Selection, 10 GeV

• Invisible Z width constraint of $\Lambda > 230 \text{GeV}$. This gives a very high suppression factor: 30.

Distributions for D6a, VBFDM Selection, 1000 GeV

- DeltaEta distribution is quite low.
- DeltaPhi distribution is flat compared to the rest.

Distributions for D6b, VBFDM Selection, 10 GeV

• Invisible Z width constraint of $\Lambda > 330 \text{GeV}$. This gives a very high suppression factor: 120.

Distributions for D6b, VBFDM Selection, 1000 GeV

Very flat Jet P_T spectrum.

Distributions for D7a, VBFDM Selection, 10 GeV

- DeltaEta distribution is very broad.
- Perhaps some modulation in DeltaPhi?

Distributions for D7a, VBFDM Selection, 1000 GeV

Distributions for D7b, VBFDM Selection, 10 GeV

Distributions for D7b, VBFDM Selection, 1000 GeV

Distributions for D7c, VBFDM Selection, 10 GeV

Distributions for D7c, VBFDM Selection, 1000 GeV

Distributions for D7d, VBFDM Selection, 10 GeV

• DeltaPhi again has different structure.

Distributions for D7d, VBFDM Selection, 1000 GeV

Next Steps:

- Overlays of distributions for various operators/masses.
- Automation of current run through, as well as looking at:
 - Any other distributions of interest.
 - Any other phase spaces (Any gains from relaxed requirements?)
 - Scan all mass/dimension parameter space.
- · Look at invisible Higgs validation of Sherpa.
- Add three jet contributions later.
- Indicative simulated sample through Atlas production system.
- Check regions of differential distributions for EFT validity.
- Run through Rivet routine with background processes to compare to signal kinematics.
 - Mainly SM(Z ightarrow
 u $\bar{\nu}$) + j j.
- Any other thoughts?

