SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Ryals, John Delaney, Terry Friedrich, Leslie Weymann, Kristianna

Lawton, Kay Ellis, Daniel Uknes, Scott Jesse, Taco Vos, Pieter

- (ii) TITLE OF INVENTION: GENE ENCODING A PROTEIN INVOLVED IN THE SIGNAL TRANSDUCTION CASCADE LEADING TO SYSTEMIC ACQUIRED RESISTANCE IN PLANTS
 - (iii) NUMBER OF SEQUENCES: 17
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Novartis Corporation
 - (B) STREET: 520 White Plains Road, P.O. Box 2005
 - (C) CITY: Tarrytown
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10591
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Meigs, J. Timothy
 - (B) REGISTRATION NUMBER: 38,241
 - (C) REFERENCE/DOCKET NUMBER: CGC 1909
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (919) 541-8587
 - (B) TELEFAX: (919) 541-8689
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9919 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGATCATGAA TTGCGTGTAG	G GGTTGTGTTT	TAAAGATAGG	GATGAGCTGA	AGAAGGCGGT	60
GGACTGGTGT TCCATTAGAC	G GGCAGCAAAA	GTGTGTAGTA	CAAGAGATTG	AGAAGGACGA	120
GTATACGTTT AAATGCATCA	A GATGGAAATG	CAATTGGTCG	CGTCGGGCAG	ATTGAATAGA	180
AGAACATGGA CTTGTTAAGA	A TAACTAAGTG	TAGTTGGTCC	ACATACTTGI	TGTTCTATTA	240
AGCCGGAAAA CTTCAACTTC	TAATTTGCAG	CAGAAGAGAT	TGAGTGTCTG	ATCAGGGTAC	300
AACCCACTCT AACAGCAGAC	TTGAAAAGTT	TGGTGACATG	CTTAAAACTT	CAAAGCTGCG	360
GGCAGCAGAA CAGGAAGTAA	TCAAAGATCA	GAGTTTCAGA	GTATTGCCTA	AACTAATTGG	420
CTGCATTTCA CTCATCTAAT	GGGCTACTTG	TGGACTGCAA	TATGAGCTTT	TCCCTAATCC	480
TGAATTTGCA TCCTTCGGTC	GCGCGTTTTG	GGCGTTTCCA	CAGTCCATTG	AAGGGTTTCA	540
ACACTGTAGA CCTCTGATCA	TAGTGGATTC	AAAAGACTTG	AACGGCAAGT	ACCCTATGAA	600
ATTGATGATT TCCTCAGGAC	TCGACGCTGA	TGATTGCTTT	TTCCCGCTTG	CCTTTCCGCT	660
TACCAAAGAA GTGTCCACTG	ATAGTTGGCG	TTGGTTTCTC	ACTAATATCA	GAGAGAAGGT	720
AACACAAAGG AAAGACGTTT	GCCTCGTCTC	CAGTCCTCAC	CCGGACATAG	TTGCTGTTAT	780
TAACGAACCC GGATCACTGT	GGCAAGAACC	TTGGGTCTAT	CACAGGTTCT	GTCTGGATTG	840
TTTTTGCTTA CAATTCCATG	ATATTTTTGG	AGACTACAAC	CTGGTGAGCC	TTGTGAAGCA	900
GGCTGGATCC ACAAGTCAGA	AGGAAGAATT	TGATTCCTAC	ATAAAGGACA	TCAAAAAGAA	960
GGACTCAGAA GCTCGGAAAT	GGTTAGCCCA	ATTCCCTCAA	AATCAGTGGG	CTCTGGCTCA	1020
TGACCAGTGG TCGGAGATAT	GGAGTCATGA	CGATAGAAAC	AGAAGATTTG	AGGGCAATTT	1080
GTGAAAGCTT TCAGTCTCTT	GGTCTATCAG	TGACAGCGAA	CGCACCTGCA	CATGTGGGAA	1140
GTTTCAATCG AAGAAGTTTC	CATGTATGCA	CCCAGAAATG	GTGCAAAGGA	TTGTTAACTT	1200
GTGTCATTCA CAAATGTTGG	ATGCAATGGA	GCTGACTAGG	AGAATGCACC	TTACACGCCC	1260
ACTCAGTGTT CTCTTATCTC	TAGACCTGAA	ACTAACTTGC	TGTGTAATTC	GAGTTACAAA	1320
AGGTTAAAGG AAGAATTAGG	AAGATACATA	TAACATGAAT	GTTGCCAGAA	GTTCAGGGAA	1380
CTTGAATATT CTTTTGGTTC	TTGGTGGAAA	ATATCCAACA	GATGAACAAT	TTGACATTAT	1440
TTCACACTTT GATTCTAGCA	ACTCTGTAAC	ACCATCATGG	GTTATTGTTG	ATGTACATAA	1500
ATATATATTA CAAATCTGTA	TACCATTGGT	TCAAATTGTT	ACAACATTTG	TTTGAAGCAC	1560
ACCTGCAGCA ATAATACACA	GGATGCAAAA	CGAAGAGCGA	AACTATATGA	CGCCAACGAT	1620
AGACATAAAC AGTTACAGTC	ATCATGAAAA	CAGAATTATA	TGGTACAGCA	AAAATTACAC	1680
TAAGAGGCAA GAGTCTCACC	GACGACGATG	AGAGAGTTTA	CGGTTAGACC	TCTTTCCACC	1740
GGTTGATTTC GATGTGGAAG	AAGTCGAATC	TGTCAGGGAC	GAATTTCCTA	ATTCCAAATT	1800
GTCCTCACTA AAGGCCTTCT	TTAGTGTCTC	TTGTATTTCC	ATGTACCTTT	GCTTCTTTTG	1860

TAGTCGTTTC	TCAGCAGTGT	CGTCTTCTCC	C GCAAGCCAGI	TGAGTCAAGT	CCTCACAGTT	1920
CATAATCTGG	TCGAGCACTC	CCGAACAGCG	G CGGGAAGAAT	CGTTTCCCGA	GTTCCACTGA	1980
TGATAAAAA	AACAAGGTCA	GACAGCAAGT	AACAAAACCA	TGTTTAAAGA	A TCATTTAGTT	2040
TTGTTTTTT	G TGATAAGGAG	TCCGATGAAG	TGGGTGAGAA	TCCATACCGG	TTTTAGAAAG	2100
CGCTTTTAGT	CTACTTTGAT	GCTCTTCTAG	GATTCTGAAA	GGTGCTATCT	TTACACCCGG	2160
TGATGTTCTC	TTCGTACCAG	TGAGACGGTC	AGGCTCGAGG	CTAGTCACTA	TGAACTCACA	2220
TGTTCCCTTC	ATTTCGGCGA	TCTCCATTGC	AGCTTGTGCT	TCCGTTGGAA	AAAGACGTTG	2280
AGCAAGTGCA	ACTAAACAGT	GGACGACACA	AAGAATAGTT	' ATCATTAGTT	CACTCAGTTT	2340
CCTAATAGAG	AGGACATAAA	TTTAATTCAA	ACATATAAGA	AATAAGACTT	GATAGATACC	2400
TCTATTTTCA	AGATCGAGCA	GCGTCATCTT	CAATTCATCG	GCCGCCACTG	CAAAAGAGGG	2460
AGGAACATCT	CTAGGAATTT	GTTCTCGTTT	GTCTTCTTGC	TCTAGTATTT	CTACACATAG	2520
TCGGCCTTTG	AGAGAATGCT	TGCATTGCTC	CGGGATATTA	TTACATTCAA	CCGCCATAGT	2580
GGCTTGTTTT	GCGATCATGA	GTGCGGTTCT	ACCTTCCAAA	GTTGCTTCTG	ATGCACTTGC	2640
ACCTTTTTCC	AATAGAGATA	GTATCAATTG	TGGCTCCTTC	CGCATCGCAG	CAACATGAAG	2700
CACCGTATAT	CCCCTCGGAT	TCCTATGGTT	GACATCGGCA	AGATCAAGTT	TTAAAAGATC	2760
TGTTGCGGTC	TTCACATTGC	AATATGCAAC	AGCGAAATGA	AGAGCACACG	CATCATCTAG	2820
ATTGGTGTGA	TCCTCTTTCA	AAAGCAACTT	GACTAACTCA	ATATCATCCG	AGTCAAGTGC	2880
CTTATGTACA	TTCGAGACAT	GTTTCTTTAC	TTTAGGTACC	TCCAAACCAA	GCTCTTTACG	2940
TCTATCAATT	ATCTCTTTAA	CAAGCTCTTC	CGGCAATGAC	TTTTCAAGAC	TAACCATATC	3000
TACATTAGAC	TTGACAATAA	TCTCTTTACA	TCTATCCAAT	AGCTTCATAC	AAGCTTTACC	3060
ACATATATTA	GCAAGCTTGA	GTATAACCAA	TGTGTCCTCT	ATAACAACTT	TGTCTACAAC	3120
GTCCAATAAG	TGCCTCTGAA	ATACAAATAC	AAGTACTCAA	GTAAGAACAT	ATTCATGAAT	3180
GTGTAACCAT	AGCTTAATGC	AGATGGTGTT	TTACCTGATA	GAGAGTAATT	AATTCAGGGA	3240
TCTTGAAGAT	GAAAGCCAAA	TAGAGAACCT	CCAACATGAA	ATCCACCGCC	GGCCGGCAAG	3300
CCACGTGGCA	GCAATTCTCG	TCTGCGCATT	CAGAAACTCC	TTTAGGCGGC	GGTCTCACTC	3360
TGCTGCTGTA	AACATAAGCC	AAAACAGTCA	CAACCGAATC	GAAACCGACT	TCGTAATCCT	3420
TGGCAATCTC	CTTAAGCTCG	AGCTTCACGG	CGGCGGTGTT	GTTGGAGTCT	TTCTCCTTCT	3480
TAGCGGCGGC	TAAAGCGCTC	TTGAAGAAAG	AGCTTCTCGC	TGACAAAACG	CACCGGTGGA	3540
AAGAAACTTC	CCGGCCGTCG	GAGAGAACAA	GCTTAGCGTC	GCTGTAGAAA	TCATCCGGCG	3600
AGTCAAAGAC	GGATTCGAAG	CTGTTGGAGA	GCAATTGCAG	AGCAGATACA	TCAGGTCCGG	3660
TGAGTACTTG	TTCGGCGGCC	AGATAAACAA	TAGAGGAGTC	GGTGTTATCG	GTAGCGACGA	3720
AACTAGTGCT	GCTGATTTCA	TAAGAATCGG	CGAATCCATC	AATGGTGGTG	TCCATCAACA	3780
GGTTCCGATG	AATTGAAATT	САСАААТТАА	AGAGATCTCT	GCTAATCAAC	GAAGAGACCT	3840

TATCAACTGG	ATTTGGTTAA	AGATCGAAGA	TAACCATTGA	CGAGCAGAGC	CAAGTCAAGT	3900
CAACGAGAGT	GGTGGTGAGA	TATGAAGAAG	CATCCTCGTC	CCACGGTTTA	CATTTCACCA	3960
AAACCGGTAA	ATTTCCAGGA	AAGGAATCTT	TGTCAGAGAT	СТТТТТТААА	AAGATATAAC	4020
AGGAAGCTAA	ACCGGTTCGG	GTTATAAATG	TTAGTATTTA	TACCGGAGAC	ATTTTGTGTT	4080
GCTAATTTTT	GTATATGAGA	AGTTCAATCC	GGTTCGGTAA	GCCCTGAAC	CAAACTAGAT	4140
TTGGAGATGA	TATAAATATA	TAAAATTTAT	TTTTCATCCG	GTTCGTTATT	TTCATATAAA	4200
ТАТАТАААТА	TTATTTTTTA	AATTTAAGAA	TTAGATTTAC	ATGTGAAAGT	TACATTTCTG	4260
TTTATTTTCT	TTGAAGTAAA	ATGATAAAGG	GAACGTATAT	TAAGTTTCAT	GCTTTATTCA	4320
CATAAGTTTT	GTAATGTATA	TTATATTTTT	CGTTTATTGA	AAAAGTAATT	TTCAGTGTTC	4380
AGCATGTTTA	CACTATAATT	AAATCAAGTC	GAATATTTCC	TGGAACTATT	CTCCTTGTTC	4440
TATAGCAAAT	GAAAACGCTC	TTCACAACAA	AATCATTATA	GATATAGGAA	ТАААТТАСАТ	4500
TAAAAACATG	AAAGTCATAA	TGAATATATT	TTTTTAATTA	GGATTTGATT	ТАААААСААТ	4560
TATTGTATAC	ATATAAAAGA	CTTCTTTAGT	TATTTGCCTT	CAACTTCTCG	TTCTGAATCA	4620
TGCGATAAAT	CAGCTTTTTC	AATAACTACG	ACGTAAAAGC	AAATTCATAA	CACGTCTAAA	4680
CAAATTTGGC	TCATCCTTCA	CTTGATTGGT	GTTTTCCGGA	CTCGATGTTG	CTGGAAACTG	4740
AGAAGAAGAA	GGAATCTGCA	TAATCACCTC	TTGGTTCCTC	ACCGGTAGAC	TCATTTTGTT	4800
GGATCGAAAA	CGATCGAGAT	CAGAAAATGA	AAAGATAGGT	TAAAGATGCC	TATGAATACA	4860
ACAACGTAAG	ATTATGTTGA	ATAAACAGAG	TACTTTATAT	AGGAGTTATA	ATAAGGTAAA	4920
TAAATTATTG	CTTTCCGCGT	TTTTTACTTT	TGTATTTCTT	AAATGATAAG	TTAAATTAGG	4980
ATAAGATTTG	TATGATTTTA	AGTAAATTTA	CAATAACTCT	CTATAACTCA	ATAGCATCAC	5040
ATATTTAATT	AATTTTACTA	ATTATCTTTT	GAACAATTTT	ATGAAATAGT	TTTCTTTTAA	5100
TTAATTTTTT	AAAATGATAT	ATTATAAAAT	TTAATTGAAT	CAATCTGATA	TAATTTTTTT	5160
ATCTTCTACC	ATCTATTATA	GTTGATAAAT	ATTGTGATAA	ACTTTAGATA	AACACCCAAT	5220
TGCCAAATAT	TTAATAAATT	TTGTGTACCA	TGCGTTTTTT	TTGGAGAATA	TATATACGTG	5280
GACAGCATAC	CGTACATATA	TTGTATAAAA	GCTTATAAAA	CATAGATACG	GGTTATATTG	5340
GTAAGCTATA	AATATATGTA	AACAATAGTA	AGATATTACG	TGTTGTGTCT	AAATATGTGT	5400
TGCTTTAGAT	ATTATGTATA	тстаататат	TAAAATATCT	TTTATTAACT	AATATATTAT	5460
TTAAGAGAGA	AAATTGGGAC	ACTATTTTCT	ATACAGTAAC	TGTTTTCAAC	TATAAACAGG	5520
AACCCTTGAT	ТАААТААТА	AACTAGCCAA	AAAATCAGAT	ТАААТАТТСА	TAAAACAATG	5580
TTTGGTATTA	TTACATAAAC	CTAAGAAACA	AAATTCAATA	TTCCTTTTTA	ССТТАТАААА	5640
AACAATTAAA	CATCACTAGA	TATATTTATG	CCCCACAATG	AGCGAGCCAA	TTGAGACTTG	5700
AGACTTGAGA	TCCTTGTCAA	CTACGTTTGC	ATTTGTCGGC	CCATTTTTTT	TATTTTTTTT	5760

TTAAAGTGTC	GGCCCGTTGC	TTCTTCCGTT	CAGATCAACC	CTCTCGTAAT	CAGAACAAAA	5820
CGGAAAACAA	ACGAAAGAAC	AATCAGATCC	CTCTTTTTT	GCATAAACTA	AATTCAACTT	5880
CTCTGCGTTT	ATGTTGTAGA	GGCAACCACG	ATCACTACTA	CGAAACAATA	CAACGTCGTT	5940
GCTTGGAGTC	CACGTAATCA	AATCTACTCC	AATGCTTTTA	ATATCTTTCA	CTTTAACCCA	6000
CGACTTTTCA	AAACTGCTCT	TTAAAACCCA	TAACTCGTGA	ACATCTTCTT	GATCTTTGTT	6060
TGTCCACTGA	CGAATAGCAC	CTAGCTTCCC	TTCGTATCTG	ACTAATCCTG	AGAAAACATC	6120
AGAGTTCGGA	GTATGGAAGA	AGGACCAAGT	TTCGGTTTTG	AGACAAAACC	GGATCACATT	6180
GTTGTTCCGT	GATATCCAAT	GCAAGAACCC	CGAAACTTGT	ATCGGGTTGG	AAAAAATTAA	6240
TCTGTCTGTT	TTTGGTAGAC	GCAAATTTTC	TAATCTCTTC	CAGGTAAACG	AATCAGAATC	6300
GAAAACTTCG	CACATAAAAG	TTCTGTGATT	CAAATGGTAG	ATACCCCGAG	ACATACACAT	6360
ACGCCGAGAC	TGCGAAAGCC	TTTGTATTTT	ATACCGGAAA	GGGTTCAATC	CGATTACCGC	6420
TAAACCCAAT	GACATATCCC	AACCCTTCAC	TTCTGGCTTT	GGTATGACCT	GATACTGTTT	6480
AGTGGTTGGT	TTGAAGACTA	TGTATCCACG	TGATGGTTTT	GTATACTTAA	CACAAAGCAA	6540
TATCCCATGA	CTTGCATCAC	AAGCTTCGAT	CTTTATCATT	CCGGGTGGCA	GAAAGTCGAT	6600
GGAGACTCCA	TTGTTTTGTA	AATCACTCCT	CTCATGGACA	AAACTGGTTC	GAAGTTCGTG	6660
TCCTTTTACT	ATGTAGTGTT	GTATGAAGTA	TCCCGAAATA	CGATTGGTTC	TAAGGAGATT	6720
AAGATTGACA	AACCATGACT	CGTAGCTTCT	CTTGTTGCAC	TCTTTATTCA	GGAGCCTGAA	6780
TTTTCCGATT	TTTGACGCCG	GAAGATAAGA	AAGAAATTCT	TGGATCATGT	CTTGATTTAT	6840
CACCGGAGAA	CTCATGATCC	TGTCGGGAAT	AAAGAGATGA	GCACGATCAC	TGAATGAGAA	6900
ATGAAAAAAT	CAGGATCGGT	AGAGAACAAC	TTATGATGAA	TAAAGTGTTT	ATATATCCTT	6960
TCTTTGTTTA	AGGAAAGTAT	CAAAATTTGC	CTTTTTCTTC	GCTAGTCCTA	AAACAAACAA	7020
ATTAACCAAA	AGATAAAATC	TTTCATGATT	AATGTTACTT	GTGATACCTT	AAGCCAAAAC	7080
TTTATCTTTA	GACTTTTAAC	CAAATCTACA	GTAATTTAAT	TGCTAGACTT	AGGAAACAAC	7140
TTTTTTTTT	ACCCAACAAT	CTTTGGATTT	TAATTGTTTT	TTTTTCTACT	AATAGATTAA	7200
CAACTCATTA	TATAATAATG	TTTCTATCAT	AATTGACAAT	TCTTTCTTTT	ТААТАААСАТ	7260
CCAGCTTGTA	TAATAATCCA	CAAGTCAATT	TCACCATTTT	GGCCAATTTA	TTTTCTTATA	7320
AAAATTAGCA	CAAAAAAGAT	TATCATTGTT	TAGCAGATTT	AATTTCTAAT	TAACTTACGT	7380
AATTTCCATT	TTCCATAGAT	TTATCTTTCT	TTTTATTTCC	TTAGTTATCT	TAGTACTTTC	7440
TTAGTTTCCT	TAGTAATTTT	AAATTTTAAG	АТААТАТАТТ	GAAATTAAAA	GAAGAAAAA	7500
AACTCTAGTT	ATACTTTTGT	TAAATGTTTC	ATCACACTAA	СТААТААТТТ	TTTTTAGTTA	7560
AATTACAATA	TATAAACACT	GAAGAAAGTT	TTTGGCCCAC	ACTTTTTTGG	GATCAATTAG	7620
TACTATAGTT	AGGGGAAGAT	TCTGATTTAA	AGGATACCAA	AAATGACTAG	TTAGGACATG	7680
AATGAAAACT	татаатстса	АТААСАТАСА	TACGTGTTAC	TGAACAATAG	TAACATCTTA	7740

CGTGTTTTGT	CCATATATTT	GTTGCTTATA	AATATATTCA	TATAACAATG	TTTGCATTAA	7800
GCTTTTAAGA	AGCACAAAAC	САТАТААСАА	AATTAAATAT	TCCTATCCCT	ACCAAAAAA	7860
AAAATTAAAT	ATTCCTACAG	CCTTGTTGAT	TATTTTATGC	CCTACGTTGA	GCCTTGTTGA	7920
CTAGTTTGCA	TTTGTCGGTC	CATTTCTTCT	TCCGTCCAGA	TCAACCCTCT	CGTAATCAGA	7980
ACAAAAGGGG	AAACAAACGT	AAGAGGCAAA	ATCCTTGTTT	GTATGAACTA	AGTTTAACTT	8040
CTCTGTGTTT	AAGTTGTAGA	GGCAAACATG	ATCCCAACTA	GAAAGCATTA	CGACGTCGTT	8100
GCTTGGTATC	CACGTAATAT	GCTCTACTCC	AATGCTTTCA	ATATCTTTCA	CTTTTTCCCA	8160
CGACTTTTCA	AAACTGCTCT	TTAAAACCCA	TAATCTGTGA	ACATCTTCTT	GATTGTTGTT	8220
TATCCAGTGA	CGAATAACAC	CTAGCTTCCC	TTCGTAGCTG	ACTAACTCTG	GGAATAAACC	8280
AACGTTTGGA	GTATGTAAGA	AAGACCAAGT	TTCGGTTTTG	GGACATAACC	GGATCACATT	8340
GTGGTTCCAT	GATCTCCAAT	GCAAGAACCC	TGAAGCTTGT	ACCGGGTTTG	AAAGAATTAG	8400
ACCGTCTGTT	CTCGGTAGAC	GCAAATTTTT	TAATCTCTTC	CACATAAACG	AATCGGAATC	8460
AAAAACTTCG	CACGCAAAAG	TTCTGAGATT	CCGAGTCATA	CCAGGCGATT	TCGAAAGCCT	8520
AAATATTTTA	TACCGGAAAG	GCTGCAATCC	GGTTACCGTT	AGACCTAATG	ACTTATCACA	8580
ACTCCTCACT	TTTGGGTTTG	GTATGATCTG	ATACTGTTTT	GTTGTTGGTT	TGCAGACTAT	8640
GTATTCCGGT	ATTGGTCTTG	TATCATTATA	ACAAAGCAAT	ATCCCATGAC	GTGCATCACA	8700
AGCTTTGATC	TTTACCTCTC	CTTGTGGCAG	AAAATCGATG	GAGACTCCTT	TGTTATCCAA	8760
ATCTCTCCTC	TCATGGAAAA	AACTGGTATC	AAGTTTGTAT	CCTCTTTCGT	AGCGTTCTAG	8820
GAAGTATCCA	GAGATATTGT	TGGTTCGATG	GAGATTTAGG	TTGACAAACC	AAGACTCGTA	8880
GCTTCTCTTG	TTGCACTCTT	TATTGATGAG	CCTCAATTTT	CCGATTTCGG	ACCCCCGAAG	8940
ATAAGAAAGA	ACCTCTTGGA	TCGTGTCCTG	ATTTATCACC	GGAGAACTCA	TGATCTTATT	9000
GGAAAAAAGA	AAGAAAGAGA	TGAGCACGAT	CAGTGAATGA	GATATATAGA	AATCAGGATT	9060
GGTAGAGAAC	CGACGATGAT	GAATATACAA	GTGTTTATAA	GTATCACAAA	TTGCCTTTTT	9120
CTTCGCTAGT	CCCAAAACAA	GCAAATTAAC	CAAAGATAAA	ATCTTCATTA	ATGTTTTCCT	9180
TTTTCTTCGC	CAGTCCCAGA	ТАААААТАТА	ТАТААААТАТ	TTCATTAGGT	TACTTGTAGT	9240
ACCTTGAGCC	CAAAGTTTCT	CTTTTGACTT	TTAACCAAAT	TAACAGTAAT	TTAATAGCTA	9300
GACTTAGAAA	ACAACATTTT	GTATATATAT	TCTTTGACAT	СААААТТСАА	CAATCTTTGG	9360
GTTTCTATAG	TGTTTTTTT	СТТАТТСТАА	TAGATTACCA	CTCATTATAT	CATATACAAA	9420
GTGTTTCCTT	TTCAATCAAC	ATCCATTTTC	TTTAAAAATT	AGCAAGTTTG	TTCTTATATC	9480
ATCATTCAGC	AGATTTCTTA	ATTAAACTTA	GTGATTTCCA	TTTTGCACCT	ATATGTTTCT	9540
CTTTCTTAGT	TTAGTACTTT	AAATTTTCAT	АТАТАТААТТ	TATTAAAATT	AAAAGTAAAA	9600
ACTCCAGTTT	AACTTATGTT	AAATGTTTCA	TCACACTAAA	AGAGCATTAA	GTAATAAATA	9660

TTTTAGCTTT ATGAAAAAA ATATCAAATC AC	TGAAGACA TTTGTTGGCC TATACTCTAT 9720					
TTTTTATTTG GCCAATTAGT AATAGACTAA TA	GTAACTCA TATGATATCT CTCTAATTCT 9780					
GGCGAAACGA ATATTCTGAT TCTAAAGATA GT	AAAAATGA ATTTTGATGA AGGGAATACT 9840					
ATTTCACACA CCTAGAAAGA GTAAGGTAGA AAG	CCTTTTTT TTTTTGGTCA GATTCTTGTA 9900					
TCAAGAAGTT CTCATCGAT						
(2) INFORMATION FOR SEQ ID NO:2:						

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2787..3347
 - (D) OTHER INFORMATION: /product= "1st exon of NIM1"
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 3427..4162
 - (D) OTHER INFORMATION: /product= "2nd exon of NIM1"
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 4271..4474
 - (D) OTHER INFORMATION: /product= "3rd exon of NIM1"
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 4586..4866
 - (D) OTHER INFORMATION: /product= "4th exon of NIM1"
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join(2787..3347, 3427..4162, 4271..4474, 4586..4866)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TGTGATGCAA	GTCATGGGAT	ATTGCTTTGT	GTTAAGTATA	CAAAACCATC	ACGTGGATAC	60
ATAGTCTTCA .	AACCAACCAC	TAAACAGTAT	CAGGTCATAC	CAAAGCCAGA	AGTGAAGGGT	120
TGGGATATGT	CATTGGGTTT	AGCGGTAATC	GGATTGAACC	CTTTCCGGTA	ТААААТАСАА	180
AGGCTTTCGC	AGTCTCGGCG	TATGTGTATG	TCTCGGGGTA	TCTACCATTT	GAATCACAGA	240
ACTTTTATGT (GCGAAGTTTT	CGATTCTGAT	TCGTTTACCT	GGAAGAGATT	AGAAAATTTG	300
CGTCTACCAA 2	AAACAGACAG	ATTAATTTTT	TCCAACCCGA	TACAAGTTTC	GGGGTTCTTG	360
CATTGGATAT (CACGGAACAA	CAATGTGATC	CGGTTTTGTC	TCAAAACCGA	AACTTGGTCC	420

	TTCTTCCATA	CTCCGAACTC	TGATGTTTT	C TCAGGATTAG	TCAGATACG	A AGGGAAGCTA	480
	GGTGCTATTC	GTCAGTGGAC	AAACAAAGA	CAAGAAGATO	TTCACGAGT	r atgggttta	540
	AAGAGCAGTT	TTGAAAAGTC	GTGGGTTAAZ	A GTGAAAGATA	TTAAAAGCA	TGGAGTAGAT	600
	TTGATTACGT	GGACTCCAAG	CAACGACGTT	GTATTGTTTC	GTAGTAGTG	A TCGTGGTTGC	660
	CTCTACAACA	TAAACGCAGA	GAAGTTGAAT	TTAGTTTATG	CAAAAAAAG	GGGATCTGAT	720
	TGTTCTTTCG	TTTGTTTTCC	GTTTTGTTCT	GATTACGAGA	GGGTTGATCT	GAACGGAAGA	780
	AGCAACGGGC	CGACACTTTA	TAAAAAAAA	· AAAAAAATG	GGCCGACAA	TGCAAACGTA	840
	GTTGACAAGG	ATCTCAAGTC	TCAAGTCTCA	ATTGGCTCGC	TCATTGTGGG	GCATAAATAT	900
	ATCTAGTGAT	GTTTAATTGT	TTTTTATAAG	GTAAAAAGGA	ATATTGAATT	TTGTTTCTTA	960
	GGTTTATGTA	АТААТАССАА	ACATTGTTTT	' ATGAATATTT	AATCTGATTI	TTTGGCTAGT	1020
	TATTTTATTA	TATCAAGGGT	TCCTGTTTAT	AGTTGAAAAC	AGTTACTGTA	TAGAAAATAG	1080
	TGTCCCAATT	TTCTCTCTTA	AATAATATAT	TAGTTAATAA	AAGATATTT	AATATATTAG	1140
	ATATACATAA	TATCTAAAGC	AACACATATT	TAGACACAAC	ACGTAATATC	TTACTATTGT	1200
	TTACATATAT	TTATAGCTTA	ССААТАТААС	CCGTATCTAT	GTTTTATAAG	CTTTTATACA	1260
	ATATATGTAC	GGTATGCTGT	CCACGTATAT	ATATTCTCCA	AAAAAAACGC	ATGGTACACA	1320
	AAATTTATTA	AATATTTGGC	AATTGGGTGT	TTATCTAAAG	TTTATCACAA	TATTTATCAA	1380
	CTATAATAGA	TGGTAGAAGA	ТАААААААТТ	ATATCAGATT	GATTCAATTA	AATTTTATAA	1440
	TATATCATTT	ТАААААТТА	ATTAAAAGAA	AACTATTTCA	TAAAATTGTT	CAAAAGATAA	1500
	TTAGTAAAAT	TAATTAAATA	TGTGATGCTA	TTGAGTTATA	GAGAGTTATT	GTAAATTTAC	1560
	TTAAAATCAT	ACAAATCTTA	TCCTAATTTA	ACTTATCATT	TAAGAAATAC	AAAAGTAAAA	1620
	AACGCGGAAA	GCAATAATTT	ATTTACCTTA	TTATAACTCC	TATATAAAGT	ACTCTGTTTA	1680
	TTCAACATAA	TCTTACGTTG	TTGTATTCAT	AGGCATCTTT	AACCTATCTT	TTCATTTTCT	1740
	GATCTCGATC	GTTTTCGATC	CAACAAAATG	AGTCTACCGG	TGAGGAACCA	AGAGGTGATT	1800
	ATGCAGATTC	CTTCTTCTTC	TCAGTTTCCA	GCAACATCGA	GTCCGGAAAA	CACCAATCAA	1860
	GTGAAGGATG .	AGCCAAATTT	GTTTAGACGT	GTTATGAATT	TGCTTTTACG	TCGTAGTTAT	1920
	TGAAAAAGCT	GATTTATCGC	ATGATTCAGA	ACGAGAAGTT	GAAGGCAAAT	AACTAAAGAA	1980
	GTCTTTTATA '	TGTATACAAT	AATTGTTTTT	AAATCAAATC	СТААТТАААА	AAATATATTC	2040
	ATTATGACTT '	ICATGTTTTT	AATGTAATTT	ATTCCTATAT	CTATAATGAT	TTTGTTGTGA	2100
	AGAGCGTTTT (CATTTGCTAT	AGAACAAGGA	GAATAGTTCC	AGGAAATATT	CGACTTGATT	2160
,	TAATTATAGT (GTAAACATGC	TGAACACTGA	AAATTACTTT	TTCAATAAAC	GAAAAATATA	2220
i	ATATACATTA (CAAAACTTAT	GTGAATAAAG	CATGAAACTT	AATATACGTT	CCCTTTATCA	2280
,	TTTTACTTCA A	AAGAAAATAA .	ACAGAAATGT	AACTTTCACA	TGTAAATCTA	ATTCTTAAAT	2340

TTAAAAAATA ATATTTATAT ATTTATATGA AAATAACGAA CCGGATGAAA AATAAATTTT	2400
ATATATTAT ATCATCTCCA AATCTAGTTT GGTTCAGGGG CTTACCGAAC CGGATTGAAC	2460
TTCTCATATA CAAAAATTAG CAACACAAAA TGTCTCCGGT ATAAATACTA ACATTTATAA	2520
CCCGAACCGG TTTAGCTTCC TGTTATATCT TTTTAAAAAA GATCTCTGAC AAAGATTCCT	2580
TTCCTGGAAA TTTACCGGTT TTGGTGAAAT GTAAACCGTG GGACGAGGAT GCTTCTTCAT	2640
ATCTCACCAC CACTCTCGTT GACTTGACTT GGCTCTGCTC GTCAATGGTT ATCTTCGATC	2700
TTTAACCAAA TCCAGTTGAT AAGGTCTCTT CGTTGATTAG CAGAGATCTC TTTAATTTGT	2760
GAATTTCAAT TCATCGGAAC CTGTTG ATG GAC ACC ACC ATT GAT GGA TTC GCC Met Asp Thr Thr Ile Asp Gly Phe Ala 1 5	2813
GAT TCT TAT GAA ATC AGC AGC ACT AGT TTC GTC GCT ACC GAT AAC ACC Asp Ser Tyr Glu Ile Ser Ser Thr Ser Phe Val Ala Thr Asp Asn Thr 10 15 20 25	2861
GAC TCC TCT ATT GTT TAT CTG GCC GCC GAA CAA GTA CTC ACC GGA CCT Asp Ser Ser Ile Val Tyr Leu Ala Ala Glu Gln Val Leu Thr Gly Pro 30 35 40	2909
GAT GTA TCT GCT CTG CAA TTG CTC TCC AAC AGC TTC GAA TCC GTC TTT Asp Val Ser Ala Leu Gln Leu Leu Ser Asn Ser Phe Glu Ser Val Phe 45 50 55	2957
GAC TCG CCG GAT GAT TTC TAC AGC GAC GCT AAG CTT GTT CTC TCC GAC Asp Ser Pro Asp Asp Phe Tyr Ser Asp Ala Lys Leu Val Leu Ser Asp 60 65 70	3005
GGC CGG GAA GTT TCT TTC CAC CGG TGC GTT TTG TCA GCG AGA AGC TCT Gly Arg Glu Val Ser Phe His Arg Cys Val Leu Ser Ala Arg Ser Ser 75 80 85	3053
TTC TTC AAG AGC GCT TTA GCC GCC GCT AAG AAG GAG AAA GAC TCC AAC Phe Phe Lys Ser Ala Leu Ala Ala Lys Lys Glu Lys Asp Ser Asn 90 95 100 105	3101
AAC ACC GCC GCC GTG AAG CTC GAG CTT AAG GAG ATT GCC AAG GAT TAC Asn Thr Ala Ala Val Lys Leu Glu Leu Lys Glu Ile Ala Lys Asp Tyr 110 115 120	3149
GAA GTC GGT TTC GAT TCG GTT GTG ACT GTT TTG GCT TAT GTT TAC AGC Glu Val Gly Phe Asp Ser Val Val Thr Val Leu Ala Tyr Val Tyr Ser 125 130 135	3197
AGC AGA GTG AGA CCG CCG CCT AAA GGA GTT TCT GAA TGC GCA GAC GAG Ser Arg Val Arg Pro Pro Pro Lys Gly Val Ser Glu Cys Ala Asp Glu 140 145 150	3245
AAT TGC TGC CAC GTG GCT TGC CGG CCG GCG GTG GAT TTC ATG TTG GAG Asn Cys Cys His Val Ala Cys Arg Pro Ala Val Asp Phe Met Leu Glu 155 160 165	3293
GTT CTC TAT TTG GCT TTC ATC TTC AAG ATC CCT GAA TTA ATT ACT CTC Val Leu Tyr Leu Ala Phe Ile Phe Lys Ile Pro Glu Leu Ile Thr Leu 170 185	3341
TAT CAG GTAAAACACC ATCTGCATTA AGCTATGGTT ACACATTCAT GAATATGTTC Tyr Gln	3397

TTACTTGAGT ACTTGTATTT GTATTTCAG	AGG CAC TTA TTG GAC GTT GTA GAC Arg His Leu Leu Asp Val Val Asp 190 195	3450
	GTT ATA CTC AAG CTT GCT AAT ATA Val Ile Leu Lys Leu Ala Asn Ile 205 210	3498
	TTG GAT AGA TGT AAA GAG ATT ATT Leu Asp Arg Cys Lys Glu Ile Ile 220 225	3546
	AGT CTT GAA AAG TCA TTG CCG GAA Ser Leu Glu Lys Ser Leu Pro Glu 240	3594
	AGA CGT AAA GAG CTT GGT TTG GAG Arg Arg Lys Glu Leu Gly Leu Glu 255	3642
	TCG AAT GTA CAT AAG GCA CTT GAC Ser Asn Val His Lys Ala Leu Asp 270 275	3690
	TTG CTT TTG AAA GAG GAT CAC ACC Leu Leu Lys Glu Asp His Thr 285 290	3738
	CAT TTC GCT GTT GCA TAT TGC AAT His Phe Ala Val Ala Tyr Cys Asn 300 305	3786
	AAA CTT GAT CTT GCC GAT GTC AAC Lys Leu Asp Leu Ala Asp Val Asn 320	3834
	GTG CTT CAT GTT GCT GCG ATG CGG Val Leu His Val Ala Ala Met Arg 335	3882
	CTA TTG GAA AAA GGT GCA AGT GCA Leu Leu Glu Lys Gly Ala Ser Ala 350 355	3930
TCA GAA GCA ACT TTG GAA GGT AGA Ser Glu Ala Thr Leu Glu Gly Arg 360	ACC GCA CTC ATG ATC GCA AAA CAA Thr Ala Leu Met Ile Ala Lys Gln 365 370	3978
	AAT ATC CCG GAG CAA TGC AAG CAT Asn Ile Pro Glu Gln Cys Lys His 380 385	4026
	GAA ATA CTA GAG CAA GAA GAC AAA Glu Ile Leu Glu Gln Glu Asp Lys 400	4074
	CCT CCC TCT TTT GCA GTG GCG GCC Pro Pro Ser Phe Ala Val Ala Ala 415	4122
GAT GAA TTG AAG ATG ACG CTG CTC Asp Glu Leu Lys Met Thr Leu Leu 420 425		4162

GTATCTATCA AGTCTTATTT CTTATATGTT TGAATTAAAT TTATGTCCTC TCTATTAGGA	4222
AACTGAGTGA ACTAATGATA ACTATTCTTT GTGTCGTCCA CTGTTTAG TT GCA CTT Val Ala Leu 435	4278
GCT CAA CGT CTT TTT CCA ACG GAA GCA CAA GCT GCA ATG GAG ATC GCC Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met Glu Ile Ala 440 445 450	4326
GAA ATG AAG GGA ACA TGT GAG TTC ATA GTG ACT AGC CTC GAG CCT GAC Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu Glu Pro Asp 455 460 465	4374
CGT CTC ACT GGT ACG AAG AGA ACA TCA CCG GGT GTA AAG ATA GCA CCT Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys Ile Ala Pro 470 475	4422
TTC AGA ATC CTA GAA GAG CAT CAA AGT AGA CTA AAA GCG CTT TCT AAA Phe Arg Ile Leu Glu Glu His Gln Ser Arg Leu Lys Ala Leu Ser Lys 485 490 495	4470
ACC G GTATGGATTC TCACCCACTT CATCGGACTC CTTATCACAA AAAACAAAAC	4524
TAAATGATCT TTAAACATGG TTTTGTTACT TGCTGTCTGA CCTTGTTTTT TTTATCATCA	4584
G TG GAA CTC GGG AAA CGA TTC TTC CCG CGC TGT TCG GCA GTG CTC Val Glu Leu Gly Lys Arg Phe Phe Pro Arg Cys Ser Ala Val Leu 505 510	4629
GAC CAG ATT ATG AAC TGT GAG GAC TTG ACT CAA CTG GCT TGC GGA GAA Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala Cys Gly Glu 520 530	4677
GAC GAC ACT GCT GAG AAA CGA CTA CAA AAG AAG CAA AGG TAC ATG GAA ASp Asp Thr Ala Glu Lys Arg Leu Gln Lys Lys Gln Arg Tyr Met Glu 535	4725
ATA CAA GAG ACA CTA AAG AAG GCC TTT AGT GAG GAC AAT TTG GAA TTA Ile Gln Glu Thr Leu Lys Lys Ala Phe Ser Glu Asp Asn Leu Glu Leu 550 560	4773
GGA AAT TCG TCC CTG ACA GAT TCG ACT TCT TCC ACA TCG AAA TCA ACC Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser Lys Ser Thr 565	4821
GGT GGA AAG AGG TCT AAC CGT AAA CTC TCT CAT CGT CGT CGG TGA Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg Arg * 580 585 590	4866
GACTCTTGCC TCTTAGTGTA ATTTTTGCTG TACCATATAA TTCTGTTTTC ATGATGACTG	4926
TAACTGTTTA TGTCTATCGT TGGCGTCATA TAGTTTCGCT CTTCGTTTTG CATCCTGTGT	4986
ATTATTGCTG CAGGTGTGCT TCAAACAAAT GTTGTAACAA TTTGAACCAA TGGTATACAG	5046
ATTTGTAATA TATATTTATG TACATCAACA ATAACCCATG ATGGTGTTAC AGAGTTGCTA	5106
GAATCAAAGT GTGAAATAAT GTCAAATTGT TCATCTGTTG GATATTTTCC ACCAAGAACC	5166
AAAAGAATAT TCAAGTTCCC TGAACTTCTG GCAACATTCA TGTTATATGT ATCTTCCTAA	5226
TTCTTCCTTT AACCTTTTGT AACTCGAATT ACACAGCAAG TTAGTTTCAG GTCTAGAGAT	5286

AAGAGAACAC	TGAGTGGGCG	TGTAAGGTGC	ATTCTCCTAG	TCAGCTCCAT	TGCATCCAAC	5346
ATTTGTGAAT	GACACAAGTT	AACAATCCTT	TGCACCATTT	CTGGGTGCAT	ACATGGAAAC	5406
TTCTTCGATT	GAAACTTCCC	ACATGTGCAG	GTGCGTTCGC	TGTCACTGAT	AGACCAAGAG	5466
ACTGAAAGCT	TTCACAAATT	GCCCTCAAAT	CTTCTGTTTC	TATCGTCATG	ACTCCATATC	5526
TCCGACCACT	GGTCATGAGC	CAGAGCCCAC	TGATTTTGAG	GGAATTGGGC	TAACCATTTC	5586
CGAGCTTCTG	AGTCCTTCTT	TTTGATGTCC	TTTATGTAGG	AATCAAATTC	TTCCTTCTGA	5646
CTTGTGGAT						5655

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 594 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Asp Thr Thr Ile Asp Gly Phe Ala Asp Ser Tyr Glu Ile Ser Ser 1 10 15

Thr Ser Phe Val Ala Thr Asp Asn Thr Asp Ser Ser Ile Val Tyr Leu 20 25 30

Ala Ala Glu Gln Val Leu Thr Gly Pro Asp Val Ser Ala Leu Gln Leu 35 40 45

Leu Ser Asn Ser Phe Glu Ser Val Phe Asp Ser Pro Asp Asp Phe Tyr 50 55 60

Ser Asp Ala Lys Leu Val Leu Ser Asp Gly Arg Glu Val Ser Phe His 65 70 75 80

Arg Cys Val Leu Ser Ala Arg Ser Ser Phe Phe Lys Ser Ala Leu Ala 85 90 95

Ala Ala Lys Lys Glu Lys Asp Ser Asn Asn Thr Ala Ala Val Lys Leu 100 105 110

Glu Leu Lys Glu Ile Ala Lys Asp Tyr Glu Val Gly Phe Asp Ser Val 115 120 125

Val Thr Val Leu Ala Tyr Val Tyr Ser Ser Arg Val Arg Pro Pro Pro 130 135 140

Lys Gly Val Ser Glu Cys Ala Asp Glu Asn Cys Cys His Val Ala Cys 145 150 155 160

Arg Pro Ala Val Asp Phe Met Leu Glu Val Leu Tyr Leu Ala Phe Ile 165 170 175

Phe Lys Ile Pro Glu Leu Ile Thr Leu Tyr Gln Arg His Leu Leu Asp 180 185 190

Val Val Asp Lys Val Val Ile Glu Asp Thr Leu Val Ile Leu Lys Leu 195 200 205

Ala Asn Ile Cys Gly Lys Ala Cys Met Lys Leu Leu Asp Arg Cys Lys Glu Ile Ile Val Lys Ser Asn Val Asp Met Val Ser Leu Glu Lys Ser Leu Pro Glu Glu Leu Val Lys Glu Ile Ile Asp Arg Arg Lys Glu Leu Gly Leu Glu Val Pro Lys Val Lys Lys His Val Ser Asn Val His Lys Ala Leu Asp Ser Asp Asp Ile Glu Leu Val Lys Leu Leu Lys Glu Asp His Thr Asn Leu Asp Asp Ala Cys Ala Leu His Phe Ala Val Ala Tyr Cys Asn Val Lys Thr Ala Thr Asp Leu Leu Lys Leu Asp Leu Ala Asp Val Asn His Arg Asn Pro Arg Gly Tyr Thr Val Leu His Val Ala Ala Met Arg Lys Glu Pro Gln Leu Ile Leu Ser Leu Leu Glu Lys Gly Ala Ser Ala Ser Glu Ala Thr Leu Glu Gly Arg Thr Ala Leu Met Ile Ala Lys Gln Ala Thr Met Ala Val Glu Cys Asn Asn Ile Pro Glu Gln Cys Lys His Ser Leu Lys Gly Arg Leu Cys Val Glu Ile Leu Glu Gln Glu Asp Lys Arg Glu Gln Ile Pro Arg Asp Val Pro Pro Ser Phe Ala Val Ala Ala Asp Glu Leu Lys Met Thr Leu Leu Asp Leu Glu Asn Arg 425 Val Ala Leu Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met Glu Ile Ala Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu Glu Pro Asp Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys Ile Ala Pro Phe Arg Ile Leu Glu Glu His Gln Ser Arg Leu Lys Ala Leu Ser Lys Thr Val Glu Leu Gly Lys Arg Phe Phe Pro Arg Cys Ser Ala Val Leu Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala Cys Gly Glu Asp Asp Thr Ala Glu Lys Arg Leu Gln Lys Lys Gln Arg 535

Tyr Met Glu Ile Gln Glu Thr Leu Lys Lys Ala Phe Ser Glu Asp Asn

Leu Glu Leu Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser 575

Lys Ser Thr Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg 580 585 590

Arg *

and the train had been than the first term than the

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val

5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35 40

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Pro Thr Gly Lys Thr Ala Leu His Leu Ala Ala Glu Met Val Ser Pro 1 5 10 15

Asp Met Val Ser Val Leu Leu Asp His His Ala Asp Xaa Asn Phe Arg

Thr Xaa Asp Gly Val Thr 35

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant

- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35 40

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Arg Arg Pro Asp Ser Lys Thr Ala Leu His Leu Ala Ala Glu Met Val

Ser Pro Asp Met Val Ser Val Leu Leu Asp Gln

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Arg Arg Pro Asp Ser Lys Thr Ala Leu His Leu Ala Ala Glu Met Val 1 5 10 15

Ser Pro Asp Met Val Ser Val Leu Leu Asp Gln 20 25

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35 40

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro Thr Gly Lys Thr Ala Leu His Leu Ala Ala Glu Met Val Ser Pro 1 5 10 15

Asp Met Val

(2) INFORMATION FOR SEQ ID NO:12:

1	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
i)	i) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
(>	(i) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
AATTCT	CAAAG CATGCCGATC GG	22
(2) IN	FORMATION FOR SEQ ID NO:13:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
i)	i) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
()	i) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
AATTCC	CGATC GGCATGCTTT A	21
(2) IN	FORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
(х	ri) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
AATTCI	PAAAC CATGGCGATC GG	22
(2) IN	FORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:415:		
	AATTCCGATC GCCATGGTTT A	21	
	(2) INFORMATION FOR SEQ ID NO:16:		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 15 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	15	
	CCAGCTGGAA TTCCG		
(2) INFORMATION FOR SEQ ID NO:17:			
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 19 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear		
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:		
	CGGAATTCCA GCTGGCATG	19	