- (1) (a) Let $\{r_n\}$ be an enumeration of rationals in (0,1). Does $\lim_{n\to\infty} r_n$ exists? Justify! [3] (b) We say that l is a limit point of the sequence $\{x_n\}$ if there exists a sub-sequence $\{x_{n_k}\}$ such that $x_{n_k} \to l$ as $k \to \infty$.

If $\{x_n\}$ is a bounded sequence with 1 being the only limit point show that the sequence $\{x_n\}$ converges.

(c) Let $\{a_j\}$ and $\{b_j\}$ be two sequences of real numbers. Define $c_n = \sum_{j=0}^n a_{n-j}b_j$.

Show that if $\sum_{j=0}^{\infty} |a_j| < \infty$ and $\sum_{j=0}^{\infty} |b_j| < \infty$ then the series $\sum_{n=0}^{\infty} c_n$ converges. [4] Let $a_j = \begin{cases} 2 & j=0 \\ 2^j & j \ge 1 \end{cases}$ and $b_j = \begin{cases} -1 & j=0 \\ 1 & j \ge 1 \end{cases}$. What can you say about the series $\sum_{n=0}^{\infty} c_n$? Justify your answer.