

Lecture 6: Examples of Bayesian Networks and Markov Networks

Zhenke Wu Department of Biostatistics, University of Michigan September 22, 2016

Lecture 5 Main Points Once Again

- Bayesian network (\mathcal{G}, P)
 - Directed acyclic graph (DAG): \mathcal{G} , comprised of nodes V and edges E
 - Joint distribution P over |V| random variables
 - P is Markov to G if variables in P satisfy $X_A \perp X_B \mid X_C$ whenever C d-separates A and B as read off from G
- Markov network (\mathcal{H},P)
 - Undirected graph (UG): \mathcal{H} , comprised of nodes V and edges E
 - Joint distribution P over |V| random variables
 - P is Global Markov to $\mathcal H$ if variables in P satisfy $X_A \perp X_B \mid X_C$ whenever C separates A and B as read off from the graph
- · Roughly, given Markov properties, graph \mathcal{G} , or \mathcal{H} is a valid guide to understand the variable relationships in distribution P

Lecture 5 Main Points Once Again (continued)

- Question: Given a distribution P that is Markov to a DAG \mathcal{G} , can we find an UG \mathcal{H} with the same set of nodes so that P is also Markov to it? (Yes, by moralization—"marrying the parents". But UG could lose some d-separations, e.g., v-structure; won't lose any if \mathcal{G} is already moralized.)
- · (Question above, but with DAG and UG reversed) (Yes, by constructing directed edges following certain node ordering. But DAG could lose some separations, e.g., four-node loop)
- · Are there distributions representable by both DAG and UG, but without loss of (d-)separations? (Yes.) If so, under what conditions? (Those distributions that are Markov to a **chordal network**.)
- **Definition** (chordal network): Any loop in the network has a chord, where a chord in the loop is an edge (from the original graph) connecting X_i and X_j for two nonconsecutive nodes (with respect to the loop).

Markov Network Example: Ising Model

- A mathematical model of ferromagnetism in statistical mechanics; Named after physicist Ernst Ising;
- The model consists of discrete variables that represent magnetic dipole moments of atomic spins that can be in one of two states (+1 or -1).
- The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors.

Markov Network Example: Ising Model

Formulation: Let $\mathcal{H} = (V, E)$ be an undirected graph, e.g., (lattice or non-lattice). Let the binary random variables $X_i \in \{-1, +1\}$. The Ising model takes the form

$$P(\mathbf{x}; \theta) \propto \exp\left(\sum_{i \in V} \theta_i x_i + \sum_{(i,j) \in E} \theta_{ij} x_i x_j\right)$$

• From the model form, Ising model is positive and Markov to \mathcal{H} . Using the local Markov property, and code the -1 into 0, the conditional distribution for a node X_i given all its neighbors is given by a logisitic regression:

$$Pr(X_i = 1 \mid X_j, j \neq i; \theta) = Pr(X_i = 1 \mid X_j, (i, j) \in E; \theta)$$
$$= sigmoid(\theta_i + \sum_{j:(i,j)\in E} \theta_{ij}x_j)$$

Markov Network Example: Special case of Ising Model

- No external field: $\theta_i = 0, X_i \in V$
- $\theta_{ij} = \beta J, \forall i, j.$
- · We have

$$P(\mathbf{x}; \theta) \propto \exp\left(\beta \cdot J \cdot \sum_{(i,j) \in E} x_i x_j\right)$$

- β : inverse temperature; large β , lower temperature (colder)
- J>0: neighboring nodes tend to align, so-called ferromagnetic model; J<0: anti-ferromagnetic.

Square-Lattice Ising Model under Different Temperatures

- $P(\mathbf{x}; \theta) \propto \exp(\beta \cdot J \cdot \sum_{(i,j) \in E} x_i x_j)$
 - Set J = 2, ferromagnetic
 - (Run Lecture6.Rmd RStudio)
 - Vary inverse temperature: β
 - Try different graph size: n^2

Bayesian Network Example: Naive Bayes for SPAM classification

- Features (words) assumed independent given SPAM or HAM status, hence "naive"
- Infer the SPAM status given observed evidence from the email
- Very fast, low storage requirements, robust to irrelevant features, good for benchmarking

Bayesian Network Example: Beta-Binomial Model

- · 30 soccer players' penalty shot score rates and the actual number of shots
- · What's the best estimaate of a player's scoring rate? (empirial Bayes estimate)
- · Information from other players could contribute to a given player's score rate estimate. Use moralized graph to explain.

Inference for Bayesian Network: Moralization

- Question: given observed evidence, what's the updated probability distribution for those unobserved variables? Or more specifically, which conditional independencies still hold, which don't?
- Proposition 4.7 Let \mathcal{G} be a Bayesian Network over \mathbf{V} and $\mathbf{Z} = \mathbf{z}$ an observation. Let $\mathbf{W} = \mathbf{V} \mathbf{Z}$. Then $P_{\mathcal{G}}(\mathbf{W} \mid \mathbf{Z} = \mathbf{z})$ is a Gibbs distribution defined by factors $\Phi = \{\phi_{X_i}\}_{X_i \in \mathbf{V}}$, where $\phi_{X_i} = P_{\mathcal{G}}(X_i \mid Pa_{X_i})[\mathbf{Z} = \mathbf{z}]$. The partition function for this Gibbs distribution is $P_{\mathcal{G}}(\mathbf{Z} = \mathbf{z})$, the marginal probability.
- Use the moralized graph to identify conditional independencies given observed data.
- Because the Gibbs distribution above factorizes according to a moralized graph $M(\mathcal{G})$ which creates cliques for a family (parents and a child).
- And P factorizing with respect to $M(\mathcal{G})$ amounts to P satisfying the Markov property. This means you can use the moralized graph as a "map", albeit it could miss some original conditional independence information.

Moralized Graph

- Natually, if a Bayesian network is already moral (parents are connected by directed edges), then moralization will not add extra edges and conditional independencies will not be lost.
- So in this case separations in UG $M(\mathcal{G})$ correspond one-to-one for d-separations in the original DAG \mathcal{G} .

Chordal Graph

- If \mathcal{H} is an UG, and let \mathcal{G} be any DAG that is minimal I-map for \mathcal{H} , then \mathcal{G} must have no immoralities. [Proof]
- Nonchordal DAGs must have immoralities
- *G* then must be chordal
- The conditional independencies encoded by an undirected chordal graph can be perfectly encoded by a directed graph. (Use clique tree proof)
- If \mathcal{H} is nonchordal, no DAG can encode **perfectly** the same set of conditional independencies as in \mathcal{H} . (Use the third bullet point.)

The connections among graphs and distributions (note from Lafferty, Liu and Wasserman)

- The intersection of Bayesian networks and Markov networks (or random fields) are those distributions Markov to a chordal graph
- Chordal DAGs mean the absence of immoralities
- Chordal graph ⇔ decomposable graph

Comment

- Next Lecture: Overview of Module 2 that discusses inference: more algorithmic-flavored and exciting ideas. Begin exact inference.
- No required reading.
- Homework 1 due 11:59PM, October 3rd, 2016 to Instructor's email.