Schizophrenia classification using multi-scale functional connectivity

Christian Dansereau

Université de Montréal

28 Avril 2015

Contexte général

Imagerie par résonance magnétique (IRM)

IRM fonctionnelle (IRMf)

Adapté de Heeger 2002.

Preprocessing de l'IRMf

http://www.nitrc.org/projects/niak/

Connectome

^{1.} http://www.nitrc.org/projects/niak/

Multiscale connectomes

Jeux de donnée

COBRE ² (The Center for Biomedical Research Excellence) Total: 147 sujets

- 72 patients atteints de schizophrénie
- 75 contôles
- Donnée phenotypic (age, genre, diagnostique)
- $\hat{a}ge = 18-65$

Multiscale connectomes COBRE

Méthod

1) Structure du pipeline d'analyse

- 10-fold Crossvalidation
- Normalisation
- Régression des composantes de non-intérêt
- Optimisation des parametres du SVM (C et Gamma)

2) Bagging multiéchelle

3) Sélection d'attribut par maximisation de la marge

```
Init set of chosen features F = \emptyset
for t = 1, 2, ... do
  pick a random permutation s of 1...N
  for i = 1 to N do
    e_1 = e(F \cup s(i))
    e_2 = e(F \setminus s(i))
     if e_1 > e_2 then
       F = F \cup s(i)
     else
       F = F \setminus s(i)
     end if
  end for
  if no change made in last step then break
end for
  Algorithm 1: Greedy feature flip
```

Gilad-bachrach et al. 2004

Résultats

Calibration

SVC linear, C=1, 64x64 scale

Optimisation de l'échelle

Sommaire des résultats

	Accuracy (%)	Std (%)	AUC
SVC linear calib 64x64	64.53	6.86	0.70
NC SVC linear 64x64	67.07	11.08	0.75
Opt NC SVC linear 64x64	69.89	8.69	0.80
Opt NC SVC linear 197x197	79.48	7.50	0.82
Opt NC SVC rbf 197×197	74.61	8.75	0.80
Opt NC multiscale bagging	80.14	8.36	0.82
Opt NC I-Relief 197×197	73.94	7.41	0.82

Acronyms: calib: calibration, NC: normalized and regression of confounds (age and gender), Opt: optimisation of the classification parameter using nested 10-fold cross-validation. The multiscale bagging was performed on 3 scales (122, 197 and 444) and I-Relief was perform on the scale 197.

Conclusion

Conclusion

- Autre model exploré : SVM with Gaussian kernel, LDA, Adaboost, Bagging, trees et random forest
- Bonne performance pour un problème assez difficile (80%).
- Bagging multiéchelle est probablement une meilleure idée.
- Généralisation à d'autres jeux de donnée et pathologie.

Merci