1 Introduction

2 Background

We consider the propagation dynamics in a multi-core fiber consisting of N waveguides arranged in a ring (Figure 1).

Figure 1: Schematic of N twisted fibers arranged in a ring.

Each fiber is twisted in a uniform fashion along the propagation direction z. The dynamics are given by the coupled system of equations

$$i\partial_z c_n = k \left(e^{-i\phi} c_{n+1} + e^{i\phi} c_{n-1} \right) + i\gamma_n c_n + d|c_n|^2 c_n \tag{1}$$

for n = 1, ..., N, where $c_0 = c_N$ and $c_{N+1} = c_1$ due to the circular geometry. The quantities $c_n(z)$ are the complex-valued amplitudes of each waveguide, k is the strength of the nearest-neighbor coupling, γ_n is the optical gain or loss at site n, and ϕ is a parameter representing the twist of the fibers. (See [CCSS⁺, (2.1)] for a description of the parameters in terms of the optical waveguide system). If $\gamma_n = 0$ for all n, i.e. there is no gain or loss at each node, equation (1) becomes

$$i\partial_z c_n = k \left(e^{-i\phi} c_{n+1} + e^{i\phi} c_{n-1} \right) + i\gamma_n c_n + d|c_n|^2 c_n, \tag{2}$$

which is Hamiltonian with energy given by

$$H = \sum_{n=1}^{N} k(c_{n+1}c_n^* e^{-i\phi} + c_n c_{n+1}^* e^{i\phi}) + \frac{d}{2}|c_n|^4.$$
 (3)

We will consider the Hamiltonian case here, and will comment on the case with loss/gain at the end.

We are interested in standing wave solutions to (2), which are bound states of the form

$$c_n = a_n e^{i(\omega z + \theta_n)}, \tag{4}$$

where $a_n \in \mathbb{R}$, $\theta_n \in (-\pi/2, \pi/2]$, and ω is the frequency of oscillation. (Since a_n can be negative, we can restrict θ_n to that interval). Making this substitution and simplifying, equation (2) becomes

$$k\left(a_{n+1}e^{i((\theta_{n+1}-\theta_n)-\phi)} + a_{n-1}e^{-i((\theta_n-\theta_{n-1})-\phi)}\right) + \omega a_n + da_n^3 = 0,\tag{5}$$

which can be written as the system of 2n equations

$$k (a_{n+1}\cos(\theta_{n+1} - \theta_n - \phi) + a_{n-1}\cos(\theta_n - \theta_{n-1} - \phi)) + \omega a_n + da_n^3 = 0$$

$$a_{n+1}\sin(\theta_{n+1} - \theta_n - \phi) - a_{n-1}\sin(\theta_n - \theta_{n-1} - \phi) = 0$$
(6)

by separating real and imaginary parts. We note that the exponential terms in (5) depend only on the phase differences $\theta_{n+1} - \theta_n$ between adjacent sites. Due to the gauge invariance of (2), if c_n is solution, so is $e^{i\theta}c_n$, thus we may without loss of generality take $\theta_1 = 0$. If $\phi = 0$, i.e. the fibers are not twisted, we can take $\theta_n = 0$ for all n, and so (5) reduces to the untwisted case with periodic boundary conditions. Similarly, if we take $\phi = 2\pi/N$ and $\theta_n = (n-1)\phi$ for all n, the exponential terms do not contribute, and (5) once again reduces to untwisted case. The interesting case, therefore, occurs when $0 < \theta < 2\pi/N$.

3 Construction of solutions

In the anti-continuum (AC) limit, which occurs when k = 0, the sites are decoupled. Each a_n can take on the values $\{0, \pm \sqrt{-\omega/d}\}$, the phases θ_n are arbitrary, and ϕ does not contribute. The amplitudes $\sqrt{-\omega/d}$ are real if d and ω have opposite signs.

We construct solutions to (6) by parameter continuation from the AC limit with no twist using AUTO. As an initial condition, we choose a single excited site at node 1, i.e. $a_1 = \sqrt{-\omega/d}$ and $a_n = 0$ for all other n; for the phases, $\theta_n = 0$ for all n. We also take $\phi = 0$. We first continue in the coupling parameter k, and then, for fixed k, we continue in the twist parameter ϕ . In doing this, we observe that the solutions have the following symmetry:

$$a_k = a_{N-k+2}$$
 $k = 2, ..., M-1$
 $\theta_k = -a_{N-k+2}$ $k = 2, ..., M-1,$ (7)

where M = (N/2) + 1 for N even and M = (N+1)/2 for N odd. See Figure 2 for an illustration of these symmetry relations for N = 6 and N = 7.

Figure 2: Schematic of symmetry relationship between nodes for N=6 and N=7. For nodes connected with arrows, the amplitudes a_k are the same and the phases θ_k are opposite.

For N even, node M is the node directly across the ring from node 1, and $\theta_M = 0$. For all N, $\theta_1 = 0$. Figure 3 shows an example of a standing wave solution produced by numerical parameter continuation for N = 6. The right panel illustrates the symmetry relations (7) among the amplitudes a_k .

Figure 3: Standing wave solution for N=6, $\omega=1$, and $\phi=0.25$. Left is real part of solution c_n versus z for each node over a full period (2π) , right is amplitude a_n solution at each node. k=0.25, d=-1.

3.1 *N* even

Numerical parameter continuation for N even, starting from a single excited node at node 1, suggests that when the twist parameter $\phi = \pi/N$, the opposite node is completely dark, i.e. has an amplitude of 0. Using the symmetries (7), when $a_M = 0$, the system (6) reduces to

$$2ka_{2}\cos(\theta_{2}-\phi) + \omega a_{1} + da_{1}^{3} = 0$$

$$k(a_{n+1}\cos(\theta_{n+1}-\theta_{n}-\phi) + a_{n-1}\cos(\theta_{n}-\theta_{n-1}-\phi)) + \omega a_{n} + da_{n}^{3} = 0 \quad n = 2, ..., M-1$$

$$a_{n+1}\sin(\theta_{n+1}-\theta_{n}-\phi) - a_{n-1}\sin(\theta_{n}-\theta_{n-1}-\phi) = 0 \qquad n = 2, ..., M-1$$

$$2ka_{M-1}\cos(\theta_{M-1}+\phi) = 0$$

$$\theta_{1} = \theta_{M} = 0.$$
(8)

It follows that $a_n = 0$ for all n unless

One solution to this is

$$\theta_{M-1} + \phi = \pi/2$$

 $\theta_n - \theta_{n-1} - \phi = 0 \quad n = 3, \dots, M-1$ (10)
 $\theta_2 - \phi = 0$,

from which it follows that we can have a single dark node at site M when $\phi = \pi/N$. If this is the case, the system of equations (8) reduces to the simpler system

$$2ka_{2} + \omega a_{1} + da_{1}^{3} = 0$$

$$k(a_{n+1} + a_{n-1}) + \omega a_{n} + da_{n}^{3} = 0 \qquad n = 2, \dots, M - 2$$

$$ka_{M-2} + \omega a_{M-1} + da_{M-1}^{3} = 0.$$
(11)

This system is of the form F(a,k) = 0, where $a = (a_1, \ldots, a_{M-1})$. $F(\tilde{a},0) = 0$, where $\tilde{a} = (\sqrt{-\omega/d}, 0, \ldots, 0)$. Since $D_F(\tilde{a},0) = \operatorname{diag}(-2\omega, \omega, \ldots, \omega)$, which is invertible for $\omega \neq 0$, the system (11) has a solution for sufficiently small k by the implicit function theorem. Once (11) has been solved, we obtain the full solution to (6) using

$$a_{M} = 0$$

 $a_{M+k} = a_{M-k}$ $k = 1, ..., M-2$
 $\theta_{0} = 0$
 $\theta_{k} = (k-1)\phi$ $k = 2, ..., M-1$
 $\theta_{M} = 0$
 $\theta_{M+k} = -\theta_{M-k}$ $k = 1, ..., M-2$.

Figure 4 shows this solution for N=6. This observation of a dark node for N=6 when $\phi = \pi/6$ agrees with what was shown in [CCSS⁺].

Figure 4: Standing wave solution for N=6 and $\phi=\pi/6$. Left is real part of solution for each node, right is absolute value of solution at each node. Node 1 has maximum amplitude, and node 4 is a dark node. $\omega=1, k=0.25, d=-1$.

3.2 *N* **odd**

We can also obtain a dark node when N is odd by taking node 1 to be the dark node; in this case, the dark node will be opposite a pair of bright nodes at a_M and a_{M+1} with the same

amplitude. Using the symmetries (7), when $a_1 = 0$, the system (6) reduces to

$$2ka_{2}\cos(\theta_{2}-\phi)=0$$

$$ka_{3}\cos(\theta_{3}-\theta_{2}-\phi)+\omega a_{2}+da_{2}^{3}=0$$

$$a_{3}\sin(\theta_{3}-\theta_{2}-\phi)=0$$

$$k\left(a_{n+1}\cos(\theta_{n+1}-\theta_{n}-\phi)+a_{n-1}\cos(\theta_{n}-\theta_{n-1}-\phi)\right)+\omega a_{n}+da_{n}^{3}=0 \quad n=3,\ldots,M-1$$

$$a_{n+1}\sin(\theta_{n+1}-\theta_{n}-\phi)-a_{n-1}\sin(\theta_{n}-\theta_{n-1}-\phi)=0 \qquad n=3,\ldots,M-1$$

$$k(a_{M}\cos(-2\theta_{M}-\phi)+a_{M-1}\cos(\theta_{M}-\theta_{M-1}-\phi))+\omega a_{M}+da_{M}^{3}=0$$

$$a_{M}\sin(-2\theta_{M}-\phi)-a_{M-1}\sin(\theta_{M}-\theta_{M-1}-\phi)=0.$$
(12)

It follows that $a_n = 0$ for all n unless

$$\cos(\theta_2 - \phi) = 0$$

$$\sin(\theta_n - \theta_{n-1} - \phi) = 0 \qquad n = 3, \dots, M - 1$$

$$\sin(2\theta_M + \phi) = 0.$$
(13)

One solution to this is

$$\theta_2 - \phi = -\pi/2$$
 $\theta_n - \theta_{n-1} - \phi = 0$
 $n = 3, ..., M - 1$
 $2\theta_M + \phi = 0,$
(14)

from which it follows that we can have a single dark node at a_1 when $\phi = \pi/N$. This condition for a dark node is the same as for N even case. For this case, (12) reduces to the simpler system of equations

$$ka_{3} + \omega a_{2} + da_{2}^{3} = 0$$

$$k(a_{n+1} + a_{n-1}) + \omega a_{n} + da_{n}^{3} = 0 \qquad n = 3, \dots, M - 1$$

$$k(a_{M} + a_{M-1}) + \omega a_{M} + da_{M}^{3} = 0.$$
(15)

This system of equations is again of the form F(a, k) = 0, where $a = (a_2, \ldots, a_M)$. $F(\tilde{a}, 0) = 0$, where $\tilde{a} = (0, \ldots, 0, \sqrt{-\omega/d}, 0)$. Since $D_F(\tilde{a}, 0) = \operatorname{diag}(\omega, \ldots, \omega, -2\omega)$, which is invertible for $\omega \neq 0$, the system (15) has a solution for sufficiently small k by the implicit function theorem. Once (15) has been solved, we obtain the full solution to (6) using

$$a_1 = 0$$

 $a_{M+k} = a_{M-k+1}$ $k = 1, ..., M-1$
 $\theta_0 = 0$ $k = (k-1)\phi - \pi/2$ $k = 2, ..., M$
 $\theta_{M+k} = -\theta_{M-k+1}$ $k = 1, ..., M-1$

Figure 5 shows this solution for N=7.

Figure 5: Standing wave solution for N=7 and $\phi=\pi/7$. Left is real part of solution for each node, right is absolute value of solution at each node. Nodes 4 and 5 have equal and maximum amplitude, and node 1 is a dark node. $\omega=1, k=0.25, d=-1$.

4 Stability

The linearization about a standing wave solution $c_n = a_n e^{i(\omega z + \theta_n)} = (v_n + iw_n)e^{i\omega z}$ is the $2N \times 2N$ block matrix

$$A(\phi) = k \begin{pmatrix} S & C \\ -C & S \end{pmatrix} + \omega \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} - \begin{pmatrix} \operatorname{diag}(2v_n w_n) & \operatorname{diag}(v_n^2 + 3w_n^2) \\ -\operatorname{diag}(3v_n^2 + w_n^2) & -\operatorname{diag}(2v_n w_n) \end{pmatrix}$$

where each block is $N \times N$, C is the periodic banded matrix with $\cos \phi$ on the first upper and lower diagonals, and S is the periodic banded matrix with $\sin \phi$ on the first lower diagonal and $-\sin \phi$ on the first upper diagonal.

For spectral stability, all solutions generated this way (from AC limit with single excited node or the solutions with a single dark node) are spectrally neutrally stable, for both N even and N odd. In other words, the spectrum is purely imaginary. In particular, this is true for the two case described above with a single dark node. This is verified by timestepping for a perturbations of the standing wave solutions. Results of this for N=6 is shown in Figure 6. Similar results are obtained for N=7

Figure 6: $|c_n|$ versus t. Solution with N=6 with dark node, perturbed by adding 0.01 to initial condition at dark node. RK4 for timestepping, k=0.25, d=-1.

References

[CCSS⁺] Claudia Castro-Castro, Yannan Shen, Gowri Srinivasan, Alejandro B Aceves, and Panayotis G Kevrekidis, *Light dynamics in nonlinear trimers and twisted multicore fibers* (2016), 11 (en).