

COMPUTER REFERENCE MANUAL

WESTINGHOUSE 2500 INSTRUCTION SET

INSTRUCTION	MNEMONIC	FUNCTION CODE	TIMING (MICROSECONDS)
LOAD/STORE INSTRUCTIONS			
LOAD ACCUMULATOR LOAD B INDEX REGISTER LOAD C INDEX REGISTER LOAD EXTENDED ACCUMULATOR LOAD SHIFT DESCRIPTION REGISTER STORE ACCUMULATOR	LDA LDB LDC LDE LDG STA	00101 00001 00010 00100 00011 10101	1.4 1.4 1.4 1.4 1.4
STORE EXTENDED ACCUMULATOR	STE	10100	1.4
STORE ZERO	STZ	00111	1.4
JUMP INSTRUCTIONS	İ		
CARRY JUMP NEGATIVE JUMP OVERFLOW JUMP POSITIVE JUMP UNCONDITIONAL JUMP ZERO JUMP	CJP NJP OJP PJP JMP ZJP	11111 10111 01111 10110 01110 11110	1.0 1.0 1.0 1.0 1.0 1.0
CONTROL INSTRUCTIONS			
CHANGE POST-INDEX DESIGNATORS CLEAR OVERFLOW DESIGNATOR * CHANGE LOCKOUT DESIGNATORS * RESET PROCESSOR INTERRUPT LOCKOUT INITIATE EXTENDED FUNCTION CODE ENTER STATUS * STOP	CDR CDR CDR CDR CDR EST SST STP	00110 00110 00110 00110 00110 11100 11101 00000	1.0 1.0 1.0 1.0 1.0 7.65 9.0 0.9
ARITHMETIC INSTRUCTIONS	1		
ADD DOUBLE WORD TO ACCUMULATOR ADD WORD TO ACCUMULATOR DECREMENT LOCATION DIVIDE ACCUMULATOR INCREMENT LOCATION MULTIPLY ACCUMULATOR SUBTRACT FROM DOUBLE-LENGTH ACCUMULATOR SUBTRACT FROM ACCUMULATOR	ADA ADD DCR DIV INC MPY SDA SUB	11000 01000 01101 11011 01100 11010 11001 01001	2.6 1.3 1.4 26.0 1.4 18.0 2.0
LOGICAL INSTRUCTIONS			
AND WITH ACCUMULATOR EXCLUSIVE OR WITH ACCUMULATOR	AND EOR	01011 01010	1.3 1.3
SHIFT INSTRUCTIONS]		
SHIFT WORD LEFT ARITHMETIC SHIFT WORD LEFT CIRCULAR SHIFT DOUBLE WORD LEFT ARITHMETIC SHIFT DOUBLE WORD LEFT CIRCULAR SHIFT WORD RIGHT ARITHMETIC SHIFT WORD RIGHT CIRCULAR SHIFT DOUBLE WORD RIGHT ARITHMETIC SHIFT DOUBLE WORD RIGHT CIRCULAR	SHF SHF SHF SHF SHF SHF SHF	10011 10011 10011 10011 10011 10011 10011	Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1
INPUT/OUTPUT INSTRUCTIONS		İ	i
* INPUT TO ACCUMULATOR * OUTPUT FROM ACCUMULATOR * INPUT TRANSFER REQUEST * OUTPUT TRANSFER REQUEST	IOA IOA ITR OTR	10001 10001 10010 10000	0.9 0.9 4.235 4.235

^{*} NOT EXECUTABLE IN THE NON-PRIVILEGED MODE.

NOTE 1 SINGLE WORD SHIFT (2.00 + .74n) MICROSECONDS DOUBLE WORD SHIFT (2.80 + 1.57n) MICROSECONDS

n = NUMBER OF SHIFTS

Westinghouse

PUBLICATION NO. 25REF-001A

PRICE: \$4.75

SEPTEMBER 1971

COMPUTER REFERENCE MANUAL

WESTINGHOUSE COMPUTER AND INSTRUMENTATION DIVISION
COMPUTER DEPARTMENT
1200 W. COLONIAL DRIVE, ORLANDO, FLA. 32804
AREA CODE (305) 843-7030

LIST OF EFFECTIVE PAGES

	PAGE		ISSUE
i	THRU	vi	ORIGINAL
1-1	THRU	1-6	ORIGINAL
2-1	THRU	2-27	ORIGINAL
3-1	THRU	3-6	ORIGINAL
4-1	THRU	4-19	ORIGINAL
A-1	THRU	A-14	ORIGINAL

TABLE OF CONTENTS

Title	Page
Section 1 General Description	
Introduction	
Hardware Features	
Standard Features	
Hardware Options	. 1-1
Software Features	. 1-1
Description of Features	. 1-2
Physical Size	. 1-2
Memory Capacity	. 1-2
Memory Cycle Time	. 1-2
Modular Construction	. 1-2
Component Reliability	. 1-3
Hardware Multiply and Divide	. 1-3
Double Precision Add and Subtract	. 1-3
Power Failure Detection	. 1-3
Flexible I/O Design	. 1-3
External Interrupts	. 1-3
Direct I/O	. 1-3
Buffered I/O Controllers	
Direct Memory Access (DMA)	. 1-4
Memory Parity	. 1-4
Memory Protect	. 1-4
Auto-Restart	
Hardware Bootstrap	
External Memory	
External I/O Controller Chassis	. 1-4
Instruction Set	. 1-4
Standard Instructions	. 1-4
Extended Function Code	. 1-4
Multiple Addressing Modes	. 1-5
Machine Control Instructions	. 1-5
Fast Access Registers	. 1-5
• • • • • • • • • • • • • • • • • • • •	. 1-5
General Specifications	
Section 2 Functional Description	
Section 2 Functional Description	
Introduction	. 2-1
Memory	. 2-2
Fast Access Registers	. 2-2
Program (P) Register	. 2-3
Index (B & C) Registers	. 2-3
Shift Description (G) Register	. 2-3
Accumulator (A) Register	

TABLE OF CONTENTS (Continued)

Title	Page
Section 2 Functional Description (Continued)	
Extended Accumulator (E) Register	. 2-3
Reserved Memory Locations	. 2-3
Arithmetic and Control	. 2-3
S-Register	. 2-4
Z-Register	. 2-4
X-Register	. 2-4
Designator (D) Register	. 2-4
Designator Write	. 2-4
Designator Read	. 2-7
Control Counter (CC) Register	. 2-7
Arithmetic Logic Unit (ALU)	. 2-7
Fm-Register	. 2-7
Extended System Port	. 2-8
Input/Output Subsystem	. 2-8
Input/Output Subsystem	
	. 2-8
Direct I/O Timeout	. 2-9
Direct I/O Interrupt	. 2-10
Buffered I/O Transfers	. 2-10
Buffered I/O-SRI Number	
Buffered Output Operation	. 2-11
SRI Number 10 Memory Definition	. 2-11
Program Initialization	
SRI Operation	. 2-11
Buffered Input Operation	. 2-12
Buffer Overflow	. 2-12
Buffered I/O Timeout	. 2-12
Other Instructions in a Buffered Location	. 2-13
Direct Memory Access (DMA)	. 2-13
DMA Timeout	. 2-13
External Interrupt Processing	. 2-13
Standard Device Address Assignments	. 2-14
Memory Reference Instructions	. 2-14
General	. 2-14
Function (F) Field	. 2-14
Address Mode (m) Field	. 2-14
Displacement (y) Field	. 2-17
Memory Addressing	. 2-17
Direct Addressing	. 2-17
Direct Absolute Addressing	. 2-18
Direct Relative Addressing	
Direct Indexed Addressing	
Indirect Addressing	
Post Index Operations	2-18
Operand Addressing Summary	
Interrupts	
Procesor Interrunts	2 22

TABLE OF CONTENTS (Continued)

Title	Page
Section 2 Functional Description (Continued)	
Memory Write Violation	2-20
Instruction Violation	2-23
Power Failure	2-23
Memory Parity Error	2-23
External Interrupt	2-23
Service Request Interrupt (SRI)	2-24
Interrupt Suppression	2-25
SRI Suppression	2-25
El Suppression	2-25
PI Suppression	2-25
Protection Features	2-26
Un-Implemented Instruction Trap	2-26
Power Failure Interrupt	2-26
Optional Features	2-26
Memory Parity Error Detection	2-26
Memory Protect	2-26
Memory Write Protect	2-26
Non-Privileged Instruction Mode	2-26
Protect Operation	2-27
Auto Restart	2-27
Floating Point Arithmetic Unit	2-27
Real Time Clock Options	2-27
Total Time Clock Options 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Section 3. Operator's Control Panel	
Panel Control and Indicators	3-7
Enter the Hardware Bootstrap	
Manually Entered Bootstrap	3-
Display Memory	3-2
Load/Alter Memory	
Load A Program	3-3
Start A Program	3-2
Section 4 Computer Instructions	
Introduction	4-
Instruction Execution Times	4-
Instruction Descriptions	
Appendix A Conversion Tables	A-
Approximate a manufacture and the contract of	_

TABLE OF CONTENTS (Continued)

LIST OF ILLUSTRATIONS

Figu	re Title	Page
2-1 2-2 2-3 2-4 2-5 2-6 3-1	Block Diagram - Westinghouse 2500 Computer Functional Block Diagram - Arithmetic and Control Functional Block Diagram - Input/Output Subsystem Direct I/O Instruction Word Format - Memory Reference Instruction Addressing Schemes Westinghouse 2500 Control Panel	2-5 2-9 2-10 2-16 2-19
	LIST OF TABLES	
Table	e Title	Page
1-1 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 3-1 3-2 3-3	General Specifications Decimal/Binary/Hexadecimal Equivalents Reserved Memory Locations Designator Register Bits Standard Device Address Assignments Mode Field Codes Designator Register Post Index Mode Bits (Pre-Index, Indirect Only) Address Calculation Schemes Interrupt Priorities Panel Controls and Indicators Manually Entered Paper Tape Bootstrap Manually Entered Card Reader Bootstrap	2-1 2-4 2-6 2-15 2-17 2-17 2-20 2-22 3-4 3-6 3-6
4-1	Address Calculation Times	4-1

The Westinghouse 2500 Computer

SECTION 1

GENERAL DESCRIPTION

INTRODUCTION

The Westinghouse 2500 is a high-speed, 16-bit, general-purpose computer designed for use in a wide variety of advanced applications. Its speed and reliability make it ideal for the original equipment manufacturer (OEM), as well as for scientific, industrial, communications, and a variety of other applications.

Several standard hardware features are provided that are usually included only as options on other computers. Standard software packages are available to provide immediate capabilities beyond those normally associated with mini-computer systems.

HARDWARE FEATURES

Standard Features

The basic 2500 computer offers hardware features that include:

- Small Physical Size
- Large Memory Capacity
- Fast Memory Cycle Time
- Modular Construction
- Component Reliability
- Hardware Multiply and Divide
- Hardware Double Precision Add and Subtract
- Power Failure Detection
- Flexible I/O Design

Hardware Options

In addition to the standard features, the following options are available:

- Memory Parity
- Memory Protect
- Auto-Restart
- Hardware Bootstrap
- Memory Expansion
- External I/O Controller Chassis

SOFTWARE FEATURES

The Westinghouse 2500 Computer offers certain inherent features that provide for effective and efficient programming. These features include:

- Versatile Instruction Repertoire
- Extended Function Codes

- Multiple Addressing Modes
- Powerful Machine Control Instructions
- Sixteen Addressable Fast Access Registers

DESCRIPTION OF FEATURES

Brief descriptions of the features just presented are given in the following paragraphs.

Physical Size

The basic computer chassis, including up to 16K of core memory, is mounted in a RETMA 19-inch rack, taking 14 inches of vertical space and 21 inches of rack depth.

Memory Capacity

The memory capacity of the computer is 64K words. Core memory is provided in 4K (4096 words) increments. Up to 16K words of memory may be contained in the basic computer chassis.

Computer systems requiring core memory capacities in excess of 16K will require a configuration which includes:

- Basic computer chassis (first 16K of memory)
- Basic Computer power supply
- External memory chassis (can contain up to 48K of additional memory in increments of 4K)
- External memory power supply

Memory Cycle Time

Core memory cycle time is 750 nanoseconds. However, the first 16 addressable memory locations are integrated circuit, flip-flop registers with a cycle time of 450 nanoseconds.

Modular Construction

All circuits are constructed on printed circuit cards which plug into the basic chassis. Up to 34 printed circuit cards may be contained within the chassis. The maximum circuit card complement for the basic chassis is:

CARD TYPE	NO. OF CARDS
MEMORY SUBSYSTEM CARDS (ONE CONTROL CARD, ONE ADDITIONAL CARD FOR EACH 4K MODULE)	5
CENTRAL PROCESSOR CARDS	9
I/O SUBSYSTEM CAR DS	4
FLOATING-POINT ARITHMETIC CARDS	5
PERIPHERAL INTERFACE CARDS	9
MEMORY PROTECT OPTION	1
HARDWARE BOOTSTRAP OPTION	1
]

Component Reliability

Maintenance requirements are minimized by the use of TTL (Transistor-Transistor-Logic) integrated circuit elements. These elements are grouped into functional circuits constructed on printed circuit cards.

Hardware Multiply and Divide

The basic computer contains hardware multiply and divide as standard equipment. The multiply instruction multiplies a 16-bit memory word by the 16-bit accumulator and leaves the product in the 32-bit extended accumulator (E- and A-registers). The divide instruction divides the 32-bit extended accumulator by the 16-bit memory word. The quotient is placed in the 16-bit accumulator (A-register) and the remainder is placed in the 16-bit E-register.

Double Precision Add and Subtract

Double precision arithmetic operations are provided as a standard feature. In double precision arithmetic a double-length word (32-bits) is added to or subtracted from the extended accumulator (E and A registers) and the result is placed in the extended accumulator.

Power Failure Detection

Power failure detection is an inherent feature of the 2500 power supply. When power fails and voltage begins to fall, a processor interrupt is generated. Thus, if an external power failure occurs, an orderly CPU shutdown is provided.

Flexible I/O Design

One common I/O bus provides interfacing capabilities for any Direct Memory Access (DMA), Buffered I/O, or Direct I/O device. Priorities are determined by the relative positions of the peripheral interface cards on the I/O bus.

The I/O subsystem provides an addressing capability for 128 controllers. Each controller may include logic for External Interrupts, Direct I/O data transfers, Buffered I/O data transfers or Direct Memory Access (DMA).

A maximum of 120 controllers may be used for External Interrupts, Direct I/O, and Direct Memory Access (DMA). A maximum of 62 controllers may be used for Buffered I/O.

External Interrupts—External Interrupts are handled by the I/O subsystem on a priority basis established by the positions of the interrupt circuits on a "daisy-chained" interrupt acknowledge line. Each External Interrupt may be identified by an I/O address (one of 120) or it may be grouped with other External Interrupts (16 are identified by a single I/O address) and handled by a data word transfer.

Direct I/O—The Direct I/O circuits on a controller are used for status and control word transfers between the accumulator and the DMA or Buffered I/O interfaces or they may be used for direct data transfers between the accumulator and an external device.

Buffered I/O Controllers—The Buffered I/O controllers perform block transfers of data to and from memory under control of out-of-sequence instructions. The out-of-sequence instruction is issued in response to a Service Request Interrupt generated by the Buffered I/O controller. These Service Request Interrupts are all lower in priority than External

Interrupts and are arranged in a priority structure based on the relative position of each controller card on the I/O bus.

Direct Memory Access (DMA)—Direct Memory Access controllers perform data transfers between memory and the I/O device through the I/O subsystem. Transfers are made on a memory-cycle-steal basis in response to DMA requests from the DMA controllers.

Memory Parity

The memory parity option is provided in the memory subsystem. The subsystem generates odd parity on a word basis. When a parity error is detected, the subsystem generates a Processor Interrupt. If an out of core address is accessed, a parity error is also generated.

Memory Protect

The memory protect option is implemented in two ways: non-privileged instruction mode of operation, and memory write lockout. If the memory protect option is not installed, all programs are run in the privileged mode (all instructions are executed).

Auto-Restart

When the processor interrupt occurs in response to a power failure, an auto-restart circuit may be armed by the program as part of a normal power shutdown sequence. When power returns, the auto-restart circuit generates the START signal for the processor.

Hardware Bootstrap

The optional hardware bootstrap is instituted as a diode ROM (Read Only Memory). The contents of the ROM are automatically loaded into core memory by pressing the BOOTSTRAP switch on the control panel.

External Memory

Memory capacities above 16K require an external, rack-mounted, memory chassis which provides for an additional 48K of memory (may be in same cabinet with CPU).

External I/O Controller Chassis

Systems requiring more than nine peripheral controller cards must be supplied with the extended peripheral controller chassis. When the external chassis is used, the basic CPU is equipped with the peripheral expander card.

Instruction Set

Standard Instructions—The standard 44 instructions for the Westinghouse 2500 include hardware multiply and divide, double precision add and subtract, increment or decrement a location, exclusive OR and logical AND. The complete instruction set is summarized on the inside front cover of this manual and there is a description of each instruction in Section 4.

Extended Function Code—The Change Designator Register (CDR) instruction is further defined to provide additional instructions (extended function codes) for the operator's panel read and display functions. The extended function codes are described in Section 4 under the CDR instruction.

Multiple Addressing Modes

All memory reference instructions can specify direct (absolute or relative) or indirect (absolute or relative) addressing. Indexing operations are provided by two index registers which may be used for pre-indexing and post-indexing operations.

Machine Control Instructions

Four machine control instructions are provided: Enter Status (EST), Store Status (SST), Change Designator Register (CDR), and Stop (STP). These instructions facilitate entry and exit from subroutines, control the setting of the designator register, and stop the CPU for manual control.

Fast Access Registers

The first 16 addresses are fast access flip-flop registers. The first six of these registers are working registers (Accumulator, E-Register, P- Register, etc.) and the next ten are general purpose registers which may be used by the program whenever a fast access register is required

GENERAL SPECIFICATIONS

The general specifications for the Westinghouse 2500 are shown in Table 1-1.

Table 1-1. General Specifications

Specification	Characteristic	
Туре	Sixteen bit, general purpose stored program digital computer.	
Core Memory	4096 words standard, expandable to 64K in increments of 4096.	
Fast Access Registers (FAR)	The first 16 addresses are 16-bit fast access flip-flop registers. (Fast Access Registers)	
Memory Cycle Time:	450 nanoseconds - Fast Access Registers 750 nanoseconds - Core Memory	
Addressing	Direct and indirect, absolute and relative, pre-indexing and post-indexing.	
Arithmetic	Parallel, binary, fixed point, two's complement. Double precision add/subtract. Hardware multiply and divide. Optional floating point hardware.	
Instructions	8 Load/Store, 6 Jump, 8 Control, 8 Arithmetic, 2 Logical, 8 Shift, 4 Input/Output. Total = 44	
Input/Output	The I/O subsystem provides interfacing for any mix of External Interrupt, Direct I/O, DMA or Buffered I/O controllers providing total addresses do not exceed 120 and Buffered I/O controllers do not exceed 62.	
Packaging	Provided in 19 inch RETMA rack mounted configuration.	
Power	120 Vac, 60 Hz, single phase.	

SECTION 2

FUNCTIONAL DESCRIPTION

INTRODUCTION

This section describes the computer from a functional viewpoint to provide the user with a general knowledge of the processor operation and word formats.

The Westinghouse 2500 is a digital computer which uses, as its basic information unit, a 16-bit binary word constructed as shown in the following diagram:

Using this format, bit position 15 represents the most significant portion of the word and bit position 0, the least significant. This basic informational scheme is reflected in the operational registers and the adder.

This basic 16-bit structure makes it convenient to use hexadecimal notation to express the binary information processed by the computer. Using hexadecimal notation, a 16-bit binary number requires only four digits. Table 2-1 shows the hexadecimal and binary equivalents for decimal numbers 0 through 15.

Table 2-1. Decimal/Binary/Hexadecimal Equivalents

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Throughout this manual, hexadecimal notation is represented by a string of hexadecimal digits enclosed in single quotation marks and preceded by the letter X. For example, the hexadecimal notation for the decimal number 16,170 is written as X'3F2A'. More information on hexadecimal notation, including conversion tables, is given in Appendix A.

A functional block diagram of the computer showing the basic operational elements and data flow through these elements is shown in Figure 2-1. For descriptive purposes, the computer may be divided into four functional groups: memory, arithmetic and control, extended system port, and the input/output subsystem.

Figure 2-1. Block Diagram — Westinghouse 2500 Computer

MEMORY

The first 16 memory locations of the computer are high speed, flip-flop registers. These registers are designated Fast Access Register (FAR) and are physically separated from core memory. The remainder of memory is random access core which has a maximum capacity of 64K (K=1024) words. Core memory size is optional and is supplied in 4096 word increments up to 16,384 words internally, and up to 65,536 words using the external memory rack and power supply. Certain locations in memory are reserved as defined in subsequent paragraphs.

Fast Access Registers

The Fast Access Registers (FAR) are controlled by the arithmetic and control section in response to memory addressing or an instruction execution sequence. The FAR data bus is internal to the arthmetic and control section where it is used by the operational registers.

The first six Fast Access Registers are program working registers and are not used for general computation. The remaining ten locations are available for any function where the high-speed access time is desirable. The first six registers are described in the following paragraphs.

Program (P) Register—The program register, addressable as location X'0000', contains the address of the instruction being executed. At the initiation of an instruction execution, the P-register contains a number which is one less than the address of the instruction to be executed. If, for example, the instruction located at 01F3 is to be executed, the P-register contains 01F2 at the start of the instruction sequence. The P-register is then incremented to 01F3 and the instruction is fetched from memory.

Incrementing the P-register before the instruction is executed means that the operand for all jump, SST, and EST instructions that are coded directly in machine language must be specified as operand-1 so that control will be transferred correctly when the program is executed.

NOTE

When using one of the SYMBAL processors, the operand is automatically decremented for these instructions when direct addressing is used.

Index (B & C) Registers—The B and C index registers are addressable as memory locations X'0001' and X'0002', respectively. The index registers are also accessed by the arithmetic and control section during address calculations for pre- and post-indexing operations.

Shift Description (G) Register—The G-register is addressable as memory location X'0003'. It is loaded by the program, prior to a shift instruction, with a shift-description word which specifies the shift type and count. The G-register is read by the arithmetic and control section during the execution of a shift instruction. See LDG instruction in Section 4 for the shift-description word format.

Accumulator (A) Register—The A-register is addressable as memory location X'0005'. It stores the results of arithmetic operations, transfers data words to the I/O subsystem and Direct I/O Controllers, and serves as temporary storage for general program manipulations.

Extended Accumulator (E) Register—The E-register is addressable as memory location X'0004'. It augments the size of the accumulator in arithmetic operations which require a double-word length. In double precision operations, the E- register contains the most significant half of the double word and the A- register contains the least significant half.

Reserved Memory Locations

In addition to the FAR registers just defined, there are certain locations in core which are reserved for processor use. These locations are defined in Table 2-2.

ARITHMETIC AND CONTROL

A functional block diagram of the arithmetic and control section registers, and their transfer

paths, is shown in Figure 2-2. The registers shown in this diagram, along with the dedicated registers in FAR previously defined, are used to perform instruction executions.

Address Use X'0000' P (Program) Register X'0001' B Index Register X'0002' C Index Register X'0003' G (Shift Description) Register X'0004' E (Extended Accumulator) Register X'0005' A (Accumulator) Register X'0100' External Interrupt X'0101' Processor Interrupt (Memory Parity & Power Fail) X'0102' Buffer Overflow Service Request Interrupt (SRI) X'0103' Processor Interrupt (Memory Write & Instruction Violation) X'0104' Buffered I/O SRI

Table 2-2. Reserved Memory Locations

S-Register

The S-register is a 16-bit register, primarily used to store addresses during memory and I/O sequences. Inputs to the register are:

Buffered I/O SRI

- 1. The output of the P-register (incremented by one).
- 2. The Arithmetic Logic Unit

X'017F'

The output of the P-register is incremented by one and loaded into the S-register to fetch an instruction. The output of the Adder is loaded into the S-register as a result of operand address calculations. Outputs of the S-register address memory, drive the indicator lights on the operator's panel (ADDRESS), restore the incremented program count to the P-register, and provide true and complementary inputs to the X-register.

Z-Register

The Z-register serves as a buffer for the Extended System Port data bus, the input data bus, the D-register and the FAR data bus. It is also used to shift data during shift operations.

X-Register

The X-register is used for temporary storage of data from memory or the I/O subsystem to free the Z-register for another access. The X-register is also used as a buffer register for FAR when FAR and core memory are accessed simultaneously.

Designator (D) Register

The Designator (D) register is a 16-bit flip-flop register which contains binary information

showing the current status of the machine. Bit assignments for the D-register are shown below and are described in Table 2-3.

Figure 2-2. Functional Block Diagram — Arithmetic and Control

Table 2-3. Designator Register Bits

0 Post Index (M) CDR, EST* CDR, EST* execution.	Causes indexing as per Table
	2-5.
Zero Designator Result of arithmetic operation = 0, EST* execution. Arithmetic operation = 0, EST* execution.	ZJP (zero jump) instruction interrogates zero designator and makes decision.
Positive Designator Arithmetic operation, set when bit 15 of high order word = 0, EST* execution. Negative result, arithmetic opera- tion, EST* execu- tion.	NJP (negative jump) and PJP (positive jump) instructions interrogate positive designator and make decision.
4 Overflow Designator EST* execution, set if the sign bit changes during arithmetic operation.	OJP (overflow jump) instruc- tion interrogates overflow des- ignator and makes decision.
5 Carry Designator EST* execution, set by carry during arithmetic or shift operation. Carry Designator EST* execution, set by carry during arithmetic or shift operation.	CJP (carry jump) instruction interrogates carry designator and makes decision.
6 } Unassigned	
8 Memory Write Lockout (WLO) CDR execution (privileged), EST* execution (privileged), EST* execution (non-privileged) CDR execution (privileged), EST* execution (non-privileged)	Initiates Memory Write Protect. When set, an instruction execution outside of memory write limits causes a processor interrupt.
Privileged Instruction Lockout (PLO) CDR execution (privileged), EST* execution (privileged), EST* (non-privileged) CDR execution (privileged), EST* (non-privileged)	Initiates Privileged Instruction Mode. When set, the execution of CDR, IOA, ITR, OTR, or STP can be executed only when PLO is RESET. (Bit 9 = 0). Attempted execution of these instructions when bit 9 is set causes a Processor Interrupt.
Service Request CDR, EST* execution, CDR, EST* execution.	When set, prevents Service Request Interrupts from being serviced.
11 External Interrupt CDR, EST* execution, CDR, EST* execution.	When set, prevents External Interrupts from being serviced.
12 Memory Write Out of limit memory SST Violation write.	When set, causes a Processor Interrupt to location X'103'.
Instruction Violation Execution of: 1. Un-implemented extended op-code. 2. Non-privileged CPU mode and privileged instruction. 3. ITR/OTR instruction outside of SRI location.	When set, causes a Processor Interrupt to location X'103'.
14 Memory Parity Error Memory Parity Error SST during memory read.	When set, causes a Processor Interrupt to location X'101".
15 Power Failure Detection of an ac power interruption.	When set, causes a Processor Interrupt to location X'101'.

The contents of the D-register may be stored in memory by the SST instruction, loaded from memory by the EST instruction, and altered by the CDR instruction (See Section 4). In machines equipped with Privileged Instruction Lockout (see Memory Protect), reading and writing the D-Register differs slightly depending on the state of the Privileged Lockout designator (D-Register, bit 9). In machines not equipped with Privileged Instruction Lockout, the CPU operates in the privileged mode. The following summaries define the actions taken during a designator read and write in all modes of machine operation.

Designator Write—Bits 0 through 7 may be written by arithmetic operations, CDR instruction (m=0), and EST instructions regardless of the state of the Privileged Instruction Lockout designator (bit 9). Bits 8 through 11 may be written by CDR (m=1 or 3) instructions or EST instructions only when the Privileged Instruction Lockout designator (bit 9) is ZERO (privileged mode of operation). Bits 12 through 15 cannot be set by the program but are set when the appropriate violation occurs and cleared by an out-of-sequence SST in response to the appropriate Processor-Interrupt.

Designator Read—Bits 0 through 7 may be read by SST and conditional jump instructions regardless of the state of the Privileged Instruction Lockout (bit 9). Bits 8 through 11 may be read by an SST instruction when in the Privileged Mode or when executed as an out-of-sequence instruction.

Control Counter (CC) Register

The CC-register is used as a secondary sequencer during the execution of Shift, Multiply, Divide, Enter Status, and Store Status instructions. The upper three bits of the register are used to indicate the type of shift operation to be performed.

Arithmetic Logic Unit (ALU)

The ALU performs the following arithmetic and logical functions from inputs provided by the X- and Z-registers:

EXCLUSIVE OR AND ADD SUBTRACT

The ALU output is selectively gated to the I/O Subsystem and Memory Subsystem (via the CPU Bus), to the S-register, and to the Fast Access Registers (FAR).

The following list summarizes the operations performed by the 2500:

Operation	Designators Affected
A + W \rightarrow A "E+A" + "W+(W+1)" \rightarrow "E+A" A - W \rightarrow A "E+A" - "W+(W+1)" \rightarrow "E+A" W + 1 \rightarrow W W - 1 \rightarrow W A x W \rightarrow "E+A" "E+A" \rightarrow W \rightarrow A=Quotient F=Remainder	Zero (D2) Positive (D3) Overflow (D4) Carry (D5)
	A + W → A "E+A" + "W+(W+1)" → "E+A" A - W → A "E+A" - "W+(W+1)" → "E+A" W + 1 → W W - 1 → W A × W → "E+A"

Instruction	Operation		Designators Affected
Shift	$A \times [\pm S_2] \rightarrow A$ "E+A" $\times [\pm S_2] \rightarrow$ "E+A"	}	Zero (D2) Positive (D3) Overflow (D4) Carry (D5)
AND	$A \cdot W \rightarrow A$		Zero designator, positive designator only
Exclusive OR	$A + W \rightarrow A$		····,
E = conten W = conten S ₂ = numbe	ts of the accumulator ts of the E-register ts of designated memory location r of binary shifts concatenation of E + A		

Fm-Register

The Fm-register is an 8-bit register used to store the function code (f) and address (m) mode bits of an instruction for execution decode.

EXTENDED SYSTEM PORT

The Extended System Port (ESP) provides data transfer and control for the Operator's Control Panel. The ESP data bus is interfaced to the Arithmetic and Control section through the Z-register.

INPUT/OUTPUT SUBSYSTEM

A functional block diagram of the input/output subsystem is shown in Figure 2-3. The subsystem provides control for all data transfer between the peripheral devices and the CPU or memory. In addition, the subsystem handles all External Interrupts and Buffered I/O Service Request Interrupts on a priority basis and supplies interrupt numbers to the CPU. In general, the subsystem provides control for Direct I/O transfers, Buffered I/O transfers, Direct Memory Access transfers and External Interrupts.

Direct I/O Transfers

Direct I/O transfers are used to perform three basic functions for peripheral devices: data transfers, control word transfers, and status word transfers. All transfers are initiated by the execution of an IOA instruction in the CPU. IOA instructions may specify direct or indirect addressing (see Figure 2-4). In the direct mode, bits 0 through 6 of the instruction specify a controller address and bit 7 specifies direction of transfer. In the indirect mode, the operand contains the channel address in bits 0 through 6, the direction indicator in bit 7, and the function code or device address in bits 8 through 15. The I/O subsystem transfers the I/O controller address and direction bit (or the full operand word) to the device interface over the address lines and transfers the data word over the data lines. If a device does not respond within five microseconds after it is addressed by the I/O subsystem, an external interrupt is generated and the type of interrupt is stored at device address X'7D' (last direct I/O device time-out).

Figure 2-3. Functional Block Diagram — Input/Output Subsystem

Data Transfers are made between the A-register and the direct I/O interfaces by IOA instructions. An External Interrupt may be used by the direct I/O interface as a transfer completion signal.

Control Word Transfers are performed in the same manner as data transfers but are used to control or initiate data transfers between the CPU and buffered I/O or DMA devices. Completion interrupts may or may not be used in response to control word transfers.

Status Word Transfers are direct input data transfers used to transmit device status information. These transfers may be used to interrogate device status prior to data transfers or upon detection of an error condition.

Direct I/O Timeout—If a device does not respond within five microseconds after it is addressed by the I/O subsystem, an external interrupt is generated and the type of interrupt is stored at device address X'7D'. If more than one device times-out before X'7D' is read, the overrun indicator (bit 15) is set. The word format for location X'7D' is as follows:

Figure 2-4. Direct I/O Instruction

Direct I/O Interrupt—If a direct I/O device causes an External Interrupt, device address X'7F' will have bit 15 set and bits 6 through 0 will contain address X'7F'. NOTE: Device address X'7F' can contain notification of Buffered and DMA interrupts also. Refer to the section on External Interrupts for additional information.

Buffered I/O Transfers

The Buffered I/O transfers are usually initiated by an IOA instruction which transfers the control information to the device controller by means of the direct input/output interface. Thereafter, the controller generates Service Request Interrupts (SRI) as data is required or is available.

When the buffered I/O device is ready to transfer data, it generates a SRI. When the computer honors this request, it halts the running program, transfers a single data word, and resumes the program as soon as the transfer is complete. This method of executing out-of-sequence instructions transfers data efficiently and is transparent to the running program.

Buffered I/O-SRI Number—Each buffered device is assigned a Service Request Interrupt (SRI) number which is usually the same as the device number. For example, the teletype is assigned device number X'010' and SRI number X'010'. Additionally, each device's Service Request Interrupt (SRI) is hardware-assigned two memory locations which are defined as $X'100 + (2 \times SRI \times No.)$ and $X'101' + (2 \times SRI \times No.)$. The two memory locations contain an ITR or an OTR instruction and the buffer size as shown below:

```
Location No. 1

X'100 + (2 x SRI No.) contains an OTR (output) or ITR (input) instruction.
```

Location No. 2

X'101' + (2 x SRI No.) contains a number which is the two's complement of the buffer size (negative index count).

The special SRI operand address calculation for the first word is performed as follows:

- 1. X'100' + instruction word's displacement = indirect address.
- 2. Contents of indirect address + second word's negative index count = operand address.

Buffered Output Operation—In this example, it is assumed that the Teletype I/O controller is wired to SRI number 10 and the contents of the 3-word buffer X'5000' - '5002' are to be transferred to it. The programmer has loaded the 3-word output buffer with data in the format required by the I/O device (ASCII).

SRI Number 10 Memory Definition—The memory locations assigned to Service Request Interrupt number 10 are $X'100' + (2 \times 10) = X'120'$ and $X'101' + (2 \times 10) = X'121'$.

Program Initialization— Location X'180' contains the output buffer end address +1 (X'5003'). The SRI locations contain the following:

ADDRESS	CONTENTS		
X'120'	X'8080' (OTR INSTRUCTION WORD)		
X'121'	X'FFFD' (TWO'S COMPLEMENT OF THE BUFFER SIZE)		
X'180'	X'5003' (OUTPUT BUFFER END ADDRESS + 1)		

SRI Operation—The SRI operation is as follows:

- 1. The request mode of operation is initiated for Service Request Interrupt number 10.
- 2. The instruction in location X'120' is obtained and the address is calculated as follows:
 - X'100 is added to the instruction word displacement field; result: X'180'.
 - The contents of location X'0180' are obtained; result: X'5003'.
 - The contents of location X'0180' are added to the index count and the result (first cycle, X'5003-3 = X'5000') is the operand address.
 - The negative index count in location X'121' is incremented. (First transfer, to -2). When the incremented index count reaches zero, the Buffer Overflow Service Request Interrupt (No. 1) is generated.

- 3. The OTR is executed using the calculated operand address. Contents of location X'5000' are transferred to the I/O device.
- 4. The SRI number is used to address the channel, thus, the data is gated into the addressed I/O device.

After the OTR execution, the running program is immediately resumed. When the I/O device data transfer function is complete, the Service Request Interrupt operation is repeated. This cycling is continued until all the words in the buffer have been transferred. When the buffer is empty, the Buffer Overflow Interrupt is generated and cycling is stopped.

Buffered Input Operation—Buffered input channel operation is similar to output. Assume the same parameters as given in the output example, except that the 3-word buffer at X'5000' is to be loaded with data from the I/O device. The entire operation is then the same as for the output example with the following exceptions:

- 1. Location X'120' will contain ITR 80 (X'9080').
- 2. When the ITR is executed using the calculated operand address, the data is gated from the I/O device and stored directly in the buffer location.

Buffer Overflow—The buffer overflow interrupt is generated when a buffer index count goes to zero and signifies that a buffered transfer is complete. The buffer overflow interrupt location (X'102') is a special one- word SRI location which generally contains an SST instruction. The indirect operand address for this instruction is calculated by adding X'100' to the instruction's displacement field.

Standard device address X'7E' contains the address of the last buffered device which caused an overflow condition. If more than one overflow occurs before X'7E' is read, the overrun indicator (bit 15) is set. The buffer device overflow word format is shown below:

Buffered I/O Timeout—If a buffered I/O device does not respond to an ITR or OTR instruction within five microseconds after it is addressed by the I/O subsystem, an external interrupt is generated. Standard device address X'7C' contains the address of the last buffered I/O device that timed out. If more than one device times out before X'7C' is read, the overrun indicator (bit 15) is set. The buffer device timeout word format is shown below:

Other Instructions in a Buffered Location

Occasionally, instructions other than ITR and OTR instructions are used in a buffered location. The execution is the same as if the instruction were in any other location with the exceptions noted below and the address calculation is the same as that used by the ITR/OTR instruction.

Address Calculation:

- 1. Add X'100' to the displacement field.
- 2. Use the resulting address as an indirect address.
- 3. Add the index count contained in the second buffered location to the indirect address to obtain the operand address.
- 4. If the index count is negative, it is incremented each time the device generates an SRI until the count goes from -1 to 0. At this time the Buffer Overflow Interrupt is generated.
- 5. If the index count is zero or positive, the second word is added to the contents of the indirect address as described, but the count is not incremented.

The IOA and CDR instructions are exceptions to the above:

If an IOA instruction is placed in a buffered location, and the program attempts to execute it, a NO-OP is performed and an Instruction Violation Processor Interrupt is generated. If a CDR instruction is placed in a buffered location, the instruction is executed but address calculations are ignored and the index count is not incremented.

A jump instruction executed as an out-of-sequence instruction in a buffered location can cause the machine's status to be lost when control is transferred (use the SST to Preserve Status and to transfer control).

Direct Memory Access (DMA)

Direct memory access transfers are made between memory and the DMA device interface on a cycle-steal basis. These transfers are made automatically by the input/output system in response to priority requests from the DMA devices.

A DMA transfer is usually initiated by IOA instructions which provide necessary device control instructions, beginning memory address, transfer count, and a start command. Thereafter, data transmissions are made directly to or from memory through the I/O subsystem on a cycle-steal basis.

DMA Timeout—If a DMA device does not respond with a start signal to the I/O subsystem within five microseconds after being addressed, an external interrupt is generated. Memory location X'7F' then contains a word in which bit 13 is set to signify that there has been a DMA timeout. Additionally, the I/O subsystem forces a memory read cycle so as to protect the contents of memory from an erronous write cycle.

External Interrupt Processing

External Interrupts are acknowledged and processed on a priority basis, determined by the position of the interrupt controller on the I/O bus. Each controller can raise one common request line to the I/O subsystem. When this signal is raised and any current transfer is complete, the I/O subsystem acknowledges the External Interrupt by sending a signal through a "daisy-chain" line connecting all interrupt controllers. The first controller in the chain to have an external interrupt request terminates the acknowledge signal and sends its interrupt number to the I/O subsystem. The I/O subsystem then generates the External Interrupt for the CPU and holds the interrupt number in a register.

When the CPU is ready to process the External Interrupt, it executes an out-of-sequence instruction stored at location X'100'. This instruction should then transfer to a subroutine which contains an IOA instruction to read device address X'7F' and transfer the interrupt number (device address) to the A-register.

For additional information refer to the section on interrupts.

Standard Device Address Assignments

The standard addresses for devices are listed in Table 2-4. Normally, devices which use some combination of direct I/O, buffered I/O, and External Interrupt use the same device address throughout. For example: the line printer uses buffer channel X'OC', direct channel X'OC', and external interrupt X'OC'. Direct Memory Access (DMA) peripherals communicate with the CPU via IOA instructions.

MEMORY REFERENCE INSTRUCTIONS

General

Memory reference instructions are capable of addressing any memory location within the 64K capacity of the Westinghouse 2500. The methods used in addressing are diagrammed in Figure 2-5 which shows the word format and the relationship of the three fields (function, mode, and displacement address) to the hexadecimal printout or display. Note that the second hexadecimal character determines the addressing mode and that it ranges from 0 through 7 or 8 through F for each memory reference instruction. The second character is further defined by bits 0 and 1 of the Designator (D) register when pre-index indirect operations are specified.

Function (F) Field

The F-field is comprised of five bits (15 through 11) which specify the instruction to be executed. The contents of this field are expressed in hexadecimal notation and are referred to as the Op Code. The most significant hex digit of the op code is derived from bit 11 (the most significant bit of the next four bits) and is, therefore, always 0 or 8. For programming purposes, each op code is assigned a three-letter mnemonic symbol which can be read and interpreted by the Symbolic Assembler.

Address Mode (m) Field

The m field is comprised of three bits (bits 10, 9 and 8) which specify the address mode used to calculate the operand address. The address modes are defined in Table 2-5. If pre-indexing operations are specified for indirect addressing, then bits 1 and 0 of the Designator register are interrogated for the type of modification to be made to the operand address. The codes contained in these bits and their definitions are shown in Table 2-6.

Table 2-4. Standard Device Address Assignments

ADDRESS	DEVICE	ADDRESS	DEVICE
00)		30	TELETYPE # 3
01	NOT USED	31	UNASSIGNED
02	REAL TIME CLOCK (RTC 61) 60Hz FIXED	32)	ASYNCHRONOUS COMMUNICATION
03	REAL TIME CLOCK (RTC 61) 1000Hz FIXED	33	DEVICE # 3
04	CARD PUNCH	34 ´	CARD PUNCH #4
05) 06 }	ANALOG INPUT (ANI)	35 36	ANALOG INPUT # 4
07	ANALOG OUTPUT (ANO)	37	ANALOG OUTPUT #4
08	CONTACT CLOSURE INPUT (CCI)	38	CONTACT CLOSURE INPUT #4
09	CONTACT CLOSURE OUTPUT (CCO)	39	CONTACT CLOSURE OUTPUT # 4
0A } 0B }	SYNCHRONOUS COMMUNICATION DEVICE (SYNCH COMM)	3A) 3B }	DIGITAL INPUT/OUTPUT # 2
oc ′	LINE PRINTER (LP)	3c [′]	UNASSIGNED
0D	CARD READER (CR)	3D	UNASSIGNED
0E	PAPER TAPE PUNCH (PTP)	3E	CIC
0F	PAPER TAPE READER (PTR)	3F	INT #2
10	TELETYPE (TTY)	40	
11	UNASSIGNED	 	FIXED HEAD DISC (FHD)
12 } 13 }	ASYNCHRONOUS COMMUNICATION DEVICE (ASYNC COMM)	4F) 50)	
14	CARD PUNCH #2	 	MOVING HEAD DISC (MHD)
15	ANALOG NERUT # O	5F)	
16	ANALOG INPUT # 2	60	
17	ANALOG OUTPUT #2	+ }	MAGNETIC TAPE (MT)
18	CONTACT CLOSURE INPUT #2	6F)	
19	CONTACT CLOSURE OUTPUT # 2	70 }	COMMUNICATIONS CONTROL CONSOLE
1A 1B	SYNCHRONOUS COMMUNICATION DEVICE # 2	71 ∫ 72	AUTO-RESET
1C	LINE PRINTER #2	73	
1D	CARD READER # 2	\ \ \ \ \ \	NOT USED
1E	PAPER TAPE PUNCH #2	77	
1F	PAPER TAPE READER #2	78	LAST PARITY ERROR ADDRESS
20	TELETYPE # 2	79	MEMORY VIOLATION ADDRESS
21	UNASSIGNED	7A	LOWER LIMIT ADDRESS (MEMORY PROTECT)
22 } 23 }	ASYNCHRONOUS COMMUNICATION DEVICE #2	7B 7C	UPPER LIMIT ADDRESS (MEMORY PROTECT) LAST BUFFERED I/O DEVICE TIMEOUT
23)	CARD PUNCH # 3	7D	LAST DIRECT I/O DEVICE TIMEOUT
25	ANALOG INPUT #3	7E 7F	BUFFER OVERFLOW (DEVICE ADDRESS) DEVICE INTERRUPT NUMBER
26 ∫ 27	ANALOG OUTPUT # 3	[/] F	DEVICE INTERNOT I NOMBER
27	CONTACT CLOSURE INPUT # 3		
29	CONTACT CLOSURE OUTPUT #3		
2A	UNASSIGNED		
2B	UNASSIGNED		
2C	UNASSIGNED		
2D	UNASSIGNED		
2E	CIC	1	
2F	INT #1		

Figure 2-5. Word Format — Memory Reference Instruction

Table 2-5. Mode Field Codes

m FIELD BITS			ADDRESS CALCULATION
10	9	8	
0 0 1 1 0 0	0 1 0 1 0 1	0 0 0 0 1 1 1	DIRECT - ABSOLUTE DIRECT - RELATIVE DIRECT - PRE-INDEX B DIRECT - PRE-INDEX C INDIRECT - ABSOLUTE INDIRECT - RELATIVE INDIRECT - PRE-INDEX B INDIRECT - PRE-INDEX C

Displacement (y) Field

Bits 0 through 7 of the instruction word are the displacement field. The decoding of y is determined by the setting of the m field. When m specifies an absolute address, y is an absolute address between 0 and 255 (X'00' through X'FF'). When m specifies a relative address, y has a value relative to the P-register from -128 through +127 (X'80' through X'7F').

Table 2-6. Designator Register Post Index Mode Bits (Pre-Index, Indirect Only)

BITS 0		POST INDEX MODE		
0 0 1 1	0 1 0 1	NO POST MODIFICATION OPERAND ADDRESS IS SELF RELATIVE POST INDEXING REQUIRED - B INDEX POST INDEXING REQUIRED - C INDEX		

MEMORY ADDRESSING

The memory addressing scheme for the Westinghouse 2500 uses the three-bit code described under Word Format to specify address calculation. This code specifies addressing operations which can range from directly addressing the first 256 (000-255) locations in memory to indirectly addressing any location within the 64K memory capacity. A diagram of the addressing capabilities is shown in Figure 2-6. A summary of these addressing schemes is shown in Table 2-7. Each scheme is explained in detail in subsequent paragraphs.

Direct Addressing

If bit 8 in the mode field of a memory reference instruction is a ZERO, direct addressing is specified. In this mode, the calculated memory address is the location containing the operand of the instruction. The types of calculations used to obtain this direct address are:

Absolute

- Relative
- Indexed

If bit 10 of the mode field is ZERO, then bit 9 specifies absolute (bit 9=0) or relative (bit 9=1) addressing. If bit 10 of the mode field is ONE, then indexing operations are specified and bit 9 indicates whether the B-index register (bit 9=0) or the C-index register (bit 9=1) is used for calculations.

Direct Absolute Addressing—In this mode of addressing, the 8-bit displacement field contains the address of the operand. The addressing capability of this field ranges from location X'00' through X'0FF' (256 decimal locations).

Direct Relative Addressing—In this mode of addressing, the 8-bit displacement field is used to calculate the operand address relative to the address of the instruction being executed (contents of the P-register). Thus, the displacement field must contain a sign bit (bit 7) and a relative displacement (bits 6-0). If the sign bit is ONE, then the displacement may indicate -1 to -128 decimal locations expressed in two's-complement. If the sign bit is ZERO, the displacement may be +1 to +127 decimal locations. In either case, the displacement is sign-extended from bit 7 and algebraically added to the contents of the P-register to obtain the operand address.

Direct Indexed Addressing—In this mode of addressing, the 8-bit (absolute) displacement field is added to the contents of the 16-bit index register specified (B or C) and the result is used to obtain the operand from memory. Since the index register has a 16-bit capacity, this addressing method may be used for addressing any location within the 64K capacity of the machine.

Indirect Addressing

If bit 8 in the mode field of a memory reference instruction is a ONE, indirect addressing is specified. In this mode, memory must be accessed twice to obtain the operand. The first access of memory obtains the address of the operand and the second access obtains the operand. Obtaining the operand address in the indirect mode utilizes the same methods as direct mode does for obtaining the operand. That is, bits 9 and 10 are used in the same manner to specify absolute, relative or indexed calculations. These calculations and resulting memory addressing schemes are performed exactly the same as the direct addressing; however, if indexing operations are specified, post-indexing operations may be required and these operations are indicated by bits 1 and 0 of the Designator (D) register.

Post Index Operations—After the operand address is obtained through the pre-indexing operation, the address may be modified as specified by the Post-Index Mode bits (1 and 0) of the Designator Register. These mode bits are designated M in Table 2-6. If the M bits are both ZERO, the operand address is used, without alteration to address memory and fetch the operand. If bit 0 is ONE and bit 1 is ZERO, the operand address is calculated by adding the contents of the location fetched by the pre-indexing operation to the address location (Indirect Self-Relative). If bit 1 of the Designator register is ONE, then post-indexing calculations must be performed and bit 0 indicates the index register to be used (ZERO=B index, ONE=C index). The contents of the specified index register are algebraically added to the contents of the location fetched by the pre-index operation and the result is the operand address.

Table 2-7. Address Calculation Schemes

ADDRESSING	m		М		OPERAND ADDRESS	
MODE	10	9	8	1	0	CALCULATION
DIRECT ABSOLUTE	0	0	0	_	_	DF = OA
DIRECT - RELATIVE	0	1	0	-	-	(P) + DF = OA
DIRECT – INDEXED B	1	0	0	_	_	DF + (B) = OA
DIRECT - INDEXED C	1	1	0	-	_	DF + (C) = OA
INDIRECT – ABSOLUTE	0	0	1	_	_	(DF) = OA
INDIRECT – RELATIVE	0	1	1	-	_	((P) + DF) = OA
INDIRECT - PRE-INDEXED B	1	0	1	0	0	(DF + (B)) = OA
INDIRECT — PRE-INDEXED B, SELF RELATIVE	1	0	1	0	1	(DF + (B)) + DF + (B) = OA
INDIRECT — PRE-INDEXED B, POST-INDEXED B	1	0	1	1	0	(DF + (B)) + (B) = OA
INDIRECT — PRE-INDEXED B, POST-INDEXED C	1	0	1	1	1	(DF + (B)) + (C) = OA
INDIRECT - PRE-INDEXED C	1	1	1	0	0	(DF + (C)) = OA
INDIRECT — PRE-INDEXED C, SELF RELATIVE	1	1	1.	0	1	(DF + (C)) + DF + (C) = OA
INDIRECT — PRE-INDEXED C, POST-INDEXED B	1	1	1	1	0	(DF + (C)) + (B) = OA
INDIRECT — PRE-INDEXED C, POST-INDEXED C	1	1	1	1	1	(DF + (C)) + (C) = OA
DF = DISPLACEMENT FIELD () = CONTENTS OF OA = OPERAND ADDRESS						

P = PROGRAM COUNTER

B = BINDEX REGISTER

C = CINDEX REGISTER

Operand Addressing Summary

- 1. All displacement addresses specified by the machine instruction word in bits 7 through 0 are either absolute in the range 0-255(X'00'-X'FF') or are relative addresses within -128 (X'80') to +127 (X'7F') locations of the current instruction (P relative).
- 2. This address can be utilized as a direct address (the operand is obtained directly from the address location specified) or it can be

taken as an indirect address. In this case, the indirect address accessed by the displacement field contains a 16-bit address which is then the operand address.

- 3. Index registers B and C can add a bias to an absolute address in either the direct or indirect modes. This is called pre-indexing and it is added to the displacement field to obtain the operand address or address of the operand address.
- 4. When pre-indexing and indirect are specified, the setting of the D register bits 1 and 0 determine how the operand address is obtained.

INTERRUPTS

Westinghouse 2500 interrupts are structured in the following manner:

- 1. Processor Interrupts (PI) have the highest priority. There are two Processor Interrupts: one is generated by a Power Failure or a Memory Parity Error and the other is generated by:
 - Memory Write Violation
 - Instruction Violation
 - Auto Restart
 - Pressing START after pressing RESET without accessing the P register.
- 2. External Interrupts (EI) from the I/O subsystem have their priority determined by the physical location of their I/O interface card in the processor. If an External Interrupt and a Processor Interrupt occur simultaneously, the Processor Interrupt has priority.
- 3. Service Request Interrupts (SRI) have the lowest priority and are utilized by Buffered I/O devices to transfer data. Each peripheral which uses the buffered I/O transfer method has a pair of memory locations assigned to it. The first location usually contains an OTR or ITR instruction which will transfer a 16-bit data word each time a Service Request Interrupt (SRI) is generated. The second location contains a word count which keeps track of how many data words are transferred. At the completion of the transfer, the Buffer Overflow Interrupt is generated.

When an interrupt signal is detected by the CPU, the current instruction is completed, control is transferred to one of the dedicated memory locations shown in Table 2-8 and an out-of-sequence instruction is executed. Executions from any of these locations involve a modified addressing scheme. If the indirect bit (bit 8) of the instruction contained in one of these locations is set to ONE, the CPU will add X'100' to the displacement field before addressing memory to obtain the operand address. Direct addressing (bit 8=0) remains unchanged.

The Store Status (SST) and Enter Status (EST) instructions are provided so that interrupts can be serviced efficiently. Normally, except for SRI locations, a program should have an SST instruction stored at each memory location which is dedicated to an interrupt.

When an SST instruction is executed, the status of the processor is stored in seven memory locations and control is transferred to the address specified by the SST instruction displacement field. The EST instruction provides a means to restore the machine status that existed before the interrupt occurred and then to transfer control to the instruction that was to be next executed in the interrupted program.

Section 4 contains a detailed description of both the SST and EST instructions.

Table 2-8. Interrupt Priorities

TYPE OF INTERRUPT	PRIORITY	LOCATION
PROCESSOR INTERRUPT MEMORY WRITE VIOLATION (D12) INSTRUCTION VIOLATION (D13)	1	X'103'
PROCESSOR INTERRUPT POWER FAILURE (D15) MEMORY PARITY ERROR (D14) AUTO RESTART MANUAL START IMMEDIATELY FOLLOWING RESET WITHOUT DISPLAYING P-REGISTER	2	X'101'
EXTERNAL INTERRUPT CONSOLE INTERRUPT PERIPHERAL DEVICES	3	X'100'
SERVICE REQUEST INTERRUPT BUFFER OVERFLOW	4	X'102'
SERVICE REQUEST INTERRUPTS DEVICE SRI	5 THROUGH 63	X'104' THROUGH X'17F'

Processor Interrupts

There are two Processor Interrupts: the one of higher priority is generated by a Memory Write Violation or an Instruction Violation, and the other is generated by a Memory Parity Error or Power Failure.

Memory Write Violations or Instruction Violations set their respective designator bits in the D-register (Memory Write Violation, bit 12; Instruction Violation, bit 13) and cause the instruction in location X'103' to be executed out of sequence.

A Memory Parity Error or Power Failure will set their respective designator bits in the D-register (Memory Parity Error, bit 14; Power Failure, bit 15) and cause the instruction in location X'101' to be executed out of sequence.

During the out-of-sequence execution of either Processor Interrupt location, the Designator register is unaltered but the instruction is executed as if the CPU is in the privileged mode. At the end of the instruction execution, the Memory Write Lockout designator (D-register, bit 8) and the Privileged Lockout designator (D-register, bit 9) are reset to ZERO and the interrupt lockouts are set.

If the out-of-sequence instruction is an SST, the D-register image stored may be interrogated to determine the cause of the Processor Interrupt, and the stored P-register image will contain the address of the instruction executed just prior to the interrupt. Execution of the SST will set the interrupt lockouts, reset the Memory Write and Privileged Instruction lockouts, and reset only those Processor Interrupt designators associated with the interrupt.

The Processor Interrupt lockout must then be reset by a CDR instruction. Thus, both Processor Interrupts will be serviced in order of priority if they occur simultaneously, and if a Processor Interrupt occurs during the service routine, it will be serviced when the CDR is executed to reset the Processor Interrupt lockout.

Memory Write Violation—A Memory Write Violation occurs when any instruction is executed which attempts to modify a protected memory location (see Memory Protect Option). If the memory word address is not in the allowed range, the write is not permitted, Processor Interrupt is generated, and the violation address is stored in a 16-bit hardware register addressed as Direct I/O device X'79'. Bit 12 of the designator register is set.

Instruction Violation—Any of the following operations will cause an Instruction Violation and will set bit 13 of the designator register:

- 1. The execution of a CDR to initiate an extended op-code with the displacement field containing an un-implemented op-code.
- 2. The attempted execution of any privileged instruction when the CPU is operating in the non-privileged mode.
- 3. The attempted execution of an ITR or OTR instruction from any location other than an SRI.

In the first instance, the CDR will be executed and the word following the CDR will be fetched before the Processor Interrupt is generated. In the second and third instances, the instruction will not be executed and a Processor Interrupt will be generated.

Power Failure—When voltage falls below a certain point for a pre-determined period of time, the power failure designator (D-register, bit 15) is set and a Processor Interrupt is generated. Within two milliseconds after the Processor Interrupt is generated, the core memory power supply is shut down to prevent half-setting cores.

Memory Parity Error—Memory parity (odd) checking is performed during the memory read operation. Every memory cycle consists of a read/write or read/modify/write operation, so any instruction which access memory may result in a Memory Parity Error. If a Memory Parity Error is detected, the appropriate designator (D- register, bit 14) is set and a Processor Interrupt is generated.

External Interrupt

When an External Interrupt (EI) is received from the I/O subsystem and the EI lock-out is reset (Designator register, bit 11=0), the instruction in X'100' is executed out-of-sequence. If an EI and a PI occur simultaneously, the PI has priority. During the out-of-sequence execution, privileged mode is assumed, even through the lock-outs are not reset until the end of the execution. At the completion of the out-of-sequence instruction, the lock-out for EI is set (designator register, bit 11=1) and the privileged mode is entered.

Device priorities in the external interrupt structure are assigned by their relative position in a daisy-chain. The physical location of the device controller card determines the priority in

the chain. The Console Interrupt is one of the External Interrupts and is usually assigned the first priority.

When an external interrupt is detected by the CPU, an out-of-sequence execution of the instruction stored at location X'100' is performed. Generally, this will be an SST instruction so that the CPU's status will be saved. At this point in time, all that is known is that an external interrupt has occured. It is now necessary for the external interrupt, sub-routine to interrogate device address X'7F' by means of an IOA instruction to determine which device has caused an interrupt. (Note, if X'7F' is not read, interrupts will continue to be generated.) Upon conclusion of the IOA instruction, the accumulator will contain a word in the following format:

If the interrupt number is X'7F', the word in the accumulator will be further defined in bits 11 through 15:

If the standard device address assignments are used in the system, then bits 0 through 6 contain an interrupt number that corresponds to the device standard address listed in Table 2-4.

In addition to the standard device addresses, number X'7E' is defined as the console interrupt number. Once the interrupting device is determined, the program branches to the sub-routine for that device.

If the cause of the interrupt is a buffer request timeout, an interrupt request timeout, or a DMA timeout, the interrupt subroutine will not be able to directly determine the causing device as the I/O subsystem does not have any provision to save the address of the device(s) that is timing out. The only thing that can be identified under these three conditions is the type of interrupt (bits 11, 12, and 13 of the X'7F' status word).

The direct transfer timeout is described in the section covering direct transfer and the buffer transfer timeout is described in the section covering buffer transfer.

Service Request Interrupt (SRI)

The SRI number assigned to a device is usually the same as its direct I/O number. For example, the Teletype is assigned direct I/O number X'010' and SRI number X'010'. Additionally, each device's Service Request Interrupt (SRI) is hardware-assigned two memory locations which are defined as $X'100' + (2 \times SRI \text{ No.})$ and $X'101' + (2 \times SRI \text{ No.})$:

Location No. 1

X'100' + (2 x SRI No.) usually contains an OTR (output) or ITR (input) instruction.

(input) instruction

Location No. 2

X'101' + (2 x SRI No.) usually contains a number which is the two's complement of the buffer size (negative index

count).

The operand address calculation for the first word is performed as follows:

1. X'100' + first instruction's displacement field = indirect address.

2. Contents of indirect address + second word's negative address count = operand address.

After the operand is calculated, the instruction is executed as an out-of-sequence instruction. It should be noted that normally the first memory location contains an ITR or OTR instruction but any instruction in the first word is executed as an out-of-sequence instruction and the running program resumed. The buffered I/O and SRI sequence is described in the section on Buffered I/O Transfers.

Interrupt Suppression

Interrupts are suppressed immediately after the execution of certain transfer instructions. This suppression occurs only between the transfer instruction and the following instruction; this allows a subroutine to lockout various interrupts on its first instruction. The suppression occurs under the following conditions:

SRI Suppression—SRIs are suppressed immediately after the following command executions:

1. SST: PLO=0

2. SRI out-of-sequence execution

3. El out-of-sequence execution

El Suppression—Els are suppressed immediately after the following command executions:

1. All jumps: CIP, IMP, NJP, OJP, PJP, ZJP; if PLO=0

2. SST: PLO=0

3. STP: PLO=0

4. Single Instruction mode

PI Suppression—PIs are not suppressed immediately after the execution of any command.

PROTECTION FEATURES

Un-Implemented Instruction Trap

If an un-implemented extended function code instruction is encountered in a program, the CPU generates a Processor Interrupt and sets the Instruction Violation designator (bit 13) in the D-register.

Power Failure Interrupt

If there is a power outage, a high-priority Processor Interrupt is generated by the power failure interrupt circuitry. With standard software, this interrupt initiates a routine which saves register contents, designator settings, and (at the programmer's option) arms the auto-restart circuit.

OPTIONAL FEATURES

Memory Parity Error Detection

Memory parity (odd) is generated by the memory subsystem. If a parity error is detected by the subsystem, the CPU generates the Processor Interrupt and sets the Memory Parity Error designator (bit 14) in the D-register.

Memory Protect

The Memory Protect option consists of: Memory Write Protection and Privileged Instruction Mode. Use of this option allows a monitor system to operate in the Privileged Instruction Mode and limits user programs (or tasks) to writing in a monitor-defined area of core in the Non-Privileged Mode.

Memory Write Protect—The memory write protect option consists of three hardware registers (direct I/O addresses 79, 7A and 7B). Two of these registers are preset by IOA instructions (in Privileged Mode) to establish the unprotected lower limit (7A)and upper limit (7B). These limits define, inclusively, the unprotected area of memory. Once the limits are set, protection of memory outside these limits is initiated by setting either bit 8 (Write Lockout) or bit 9 (Privileged Lockout) of the Designator register. If an out of bounds write is attempted, after write protect is initiated, the write is not permitted, a Processor Interrupt is generated, and the violation address is stored in the third hardware register (direct I/O address 79).

Non-Privileged Instruction Mode—When initial power is applied to the Westinghouse 2500, the machine is placed in the privileged mode of operation. Under privileged mode conditions, all instructions are executed without restriction. When the computer is placed in the non-privileged mode, certain instructions cannot be executed. These instructions include:

- 1. All I/O instructions.
- 2. The STP (stop) instruction.
- 3. Three functions of the CDR instruction (see Section 4).

The non-privileged mode of operation is in effect whenever the Privileged Instruction Lockout designator (bit 9) of the D-register is set. There are several ways of setting this bit,

however, the most desirable method is by executing an EST (Enter Status) instruction while in the privileged mode. If execution of one of the above mentioned instructions is attempted while in the non-privileged mode, the following events occur:

- 1. A no-op is executed.
- 2. The Processor Interrupt is generated.
- 3. When the interrupt is acknowledged, an out-of-sequence instruction (location X'0103') is executed.
- 4. This out-of-sequence instruction sets all interrupt lock-outs including the Processor Interrupt lockout.
- 5. The machine is placed in the privileged mode.

Protect Operation—Normally, each program executed in the Westinghouse 2500 is run as a task under a Monitor program. If protect is installed, only the Monitor is privileged and each task is assigned the core limits within which it may write. If a task attempts to write outside its assigned core area, a memory write violation is generated. If a task attempts to execute a privileged instruction, an instruction violation is generated.

If protect is not installed, all programs including Monitor are privileged and each program runs under the following conditions:

- 1. An attempt to execute a CDR to set the Privileged Instruction Lockout results in a no-op.
- 2. Accessing non-existent core generates a memory parity violation.
- 3. No instruction violations are generated except un-implemented extended op-codes.

Auto Restart

After a power interruption, if the auto-restart has been armed, a start signal is generated. The parameters that were saved by the power failure interrupt then can be used to restore the program that was running before the power failure occurred.

Floating Point Arithmetic Unit

The Westinghouse 2500 Floating Point Arithmetic option provides hardware single precision addition, subtraction, multiplication and division. The data format is the same as described in the Westinghouse 2500 FORTRAN IV Reference Manual. Each floating point operation is initiated by a function code which is transferred to the floating point unit from the CPU by the execution of a CDR instruction.

Real Time Clock Options

The real time clock option issues Service Request Interrupts to the CPU at 60 and 1000 Hz frequencies. The 60 Hz clock is addressed as peripheral device X'02' and the 1000 Hz clock is addressed as peripheral device X'03'.

SECTION 3

OPERATOR'S CONTROL PANEL

PANEL CONTROL AND INDICATORS

The Westinghouse 2500 Control Panel is shown in Figure 3-1. The controls and indicators on this panel are listed and described in Table 3-1. Using the control panel, an operator may enter the optional hardware bootstrap, initiate loading of the absolute binary loaders, start a program, stop a program, step through a program, display and alter the general program registers.

ENTER THE HARDWARE BOOTSTRAP

Machines containing the hardware bootstrap are initialized by the following procedure:

- 1. Turn the keyswitch to ON.
- 2. If a device other than the standard ASR is to be used to input, the device address will have to be changed. Eight toggle switches are attached to the hardware bootstrap to permit this change.
- 3. Raise, then press the RESET/BOOTSTRAP switch.
- 4. Refer to the Loader Reference Manual (Publication No. 25REF-003) for instructions on loading the Absolute Binary Loader (Loader III).

MANUALLY ENTERED BOOTSTRAP

If the hardware bootstrap option is not used, the bootstrap program can be entered manually. The manually entered bootstrap consists of ten hand loaded instructions and are listed after the following procedure. To load the program perform the following sequence of operations:

- 1. Turn the keyswitch to ON.
- 2. Set the SWITCH REGISTER to the first address (X'0000').
- Press the LOAD ADDR switch.
- 4. Set the SWITCH REGISTER to the desired data word value (see Table 3-2 or 3-3). For example the first data word value will be X'0005'.
- 5. Raise the LOAD S switch.
- 6. Set the SWITCH REGISTER to the next address to be loaded.

- 7. Repeat steps 3 through 6 until the entire program is entered.
- 8. Refer to the Loader Reference Manual (Publication No. 25REF-003) for instructions on loading the Absolute Binary Loader (Loader III).

Figure 3-1. Westinghouse 2500 Control Panel

DISPLAY MEMORY

Locations in memory not provided with display switches on the control panel may be displayed using the following procedures:

- 1. Turn the keyswitch to the ON position.
- 2. Raise the RESET switch.
- 3. Set the desired memory location address in the SWITCH REGISTER.
- 4. Press the LOAD ADDR switch. The address lights indicate the desired address and the display lights show the contents of the address specified.

LOAD/ALTER MEMORY

Locations in memory not provided with load switches on the control panel may be altered or loaded using the following procedures:

- 1. Turn the keyswitch to the ON position.
- 2. Raise the RESET switch.

- 3. Set the SWITCH REGISTER to the address of the desired memory location.
- 4. Press the LOAD ADDR switch. The address lights should indicate the desired address.
- 5. Set the SWITCH REGISTER with the desired contents to be loaded into the indicated memory location.
- 6. Raise the LOAD [S] switch.
- 7. Press the DISPLAY [S] switch. The display lights should now show the new contents of the specified memory location.

LOAD A PROGRAM

To manually load a program, perform the following steps:

- 1. Turn the keyswitch to the ON position.
- 2. Raise the RESET switch.
- 3. Set the SWITCH REGISTER to the desired starting location.
- 4. Press the LOAD ADDR switch.
- 5. Set the SWITCH REGISTER with the data word to be entered.
- 6. Raise the LOAD [S] switch.
- 7. Raise the INC. & DIS switch.
- 8. Repeat Steps 5, 6 and 7 until the program is entered.

START A PROGRAM

To start a program perform the following steps:

- 1. Turn the keyswitch to the ON position.
- 2. Raise the RESET switch.
- 3. Set the SWITCH REGISTER to the program starting address, minus one.
- 4. Raise the LOAD P switch.
- 5. Set the INSTRUCTION switch for the desired mode of operation (if this switch is raised, the START switch will execute one instruction at a time).
- 6. Press the START switch.

Table 3-1. Panel Controls and Indicators

DESIGNATOR	ТҮРЕ	FUNCTION
OFF/PWR ON/LOCK	Key Switch	Turns power on and off, locks out all control switches except CONS INT and lamp test.
ADDRESS	16 Indicators	Displays the 16-bit content of the S register.
DISPLAY	16 Indicators	Displays the 16-bit content of the addressed location.
SWITCH REGISTER	16 Toggle Switches	Sets data word for input to memory or the hardware registers.
INCR & DISP/LOAD ADDR	Double Throw Momentary	Momentarily raising INCR & DISP switch increments the S register by one and displays the contents of the newly addressed location. Momentarily moving the switch to the LOAD ADDR position loads the S register with the contents of the SWITCH REGISTER and displays the contents of the addressed location.
LOAD/DISPLAY [S]	Double Throw Momentary	Momentarily moving the switch to the LOAD position enters the contents of the SWITCH REGISTER into the memory location specified by the address display. Momentarily moving the switch to the DISPLAY position displays the location specified by the address display.
LOAD/DISPLAY P,B,C,E,A	Double Throw Momentary	Momentarily moving the switch to the LOAD position enters the contents of the switch register into the specified register. Momentarily moving the switch to the DISPLAY position displays the contents of the specified register.
LOAD/DISPLAY D	Double Throw Momentary	Momentarily moving the switch to the LOAD position enters the status of the switch register into the designator (D) register. The bit designations are: 0 Post Index Mode 1 Post Index Mode 2 Zero Designator 3 Positive Designator 4 Overflow Designator 5 Carry Designator 6 not assigned (not loadable) 7 not assigned (not loadable) 8 Memory Write Lockout Bit 9 Privileged Instr. Lockout Bit 10 SR Lockout Bit 11 External Interrupt Lockout Bit 112-15 Processor Interrupt Section (not loadable) 12 Memory Violation Bit 13 Instruction Violation Bit 14 Parity Bit (Memory) 15 Power Failure Bit

Table 3-1. Panel Controls and Indicators (Continued)

DESIGNATOR	ТҮРЕ	FUNCTION
LOAD/DISPLAY D (Continued)	Double Throw Momentary	Momentarily moving the switch to the DISPLAY position displays the contents of the designator (D) register.
DISPLAY F	Single Throw Momentary	The function (F) register cannot be loaded through the operator's panel. Momentarily moving the switch to the DISPLAY position displays bits 8 through 15 (Function and Addressing Mode) of the Function (F) register.
RUN	Indicator	When lighted, indicates the CPU is running a program. When unlighted indicates that the CPU is stopped.
HALT/START	Double Throw Momentary	Momentarily depressing this switch will start the CPU at P + 1. The CPU will run the program or perform a single instruction depending on the setting of the INSTRUCTION switch. Momentarily raising this switch to the HALT position, stops the CPU after the current instruction (no other changes are made).
RESET/BOOTSTRAP	Double Throw Momentary	Momentarily raising this switch to the RESET position halts the CPU instantanously and performs the following: 1. The designator (D) register is cleared, the external interrupt lockout, and SRI lockout designators are set. 2. All interrupts are cleared. 3. Resets floating point hardware. 4. The I/O subsystem is reset. 5. The sequencer is placed in the idle state (0,0). After raising RESET, the operator has four options: 1. Press START. This forces a Processor Interrupt to location X'101' if P is not accessed before pressing start. 2. Press DISPLAY P to condition the CPU, and then press START (no Ploccurs). P + 1 is executed. 3. Alter the contents of P (this also conditions the CPU) and then press START. P + 1 is executed. 4. Press BOOTSTRAP and load the bootstrap program into the dedicated memory locations. BOOTSTRAP should be pressed only after RESET is raised.
SNGL INSTR/LAMP TEST	Double Throw Toggle	Raising this switch allows stepping through a program, by performing one instruction each time the START switch is depressed. It should be noted the external interrupts are suppressed when single instruction is active. The CPU

Table 3-1. Panel Controls and Indicators (Continued)

DESIGNATOR	ТҮРЕ	FUNCTION		
SNGL INSTR/LAMP TEST (Continued)	Double Throw Toggle	executes the program without stopping when the switch is in the center position. Depressing this switch turns on all lamps on the operating panel.		
CONS INT	Single Throw Momentary	Depressing this switch will generate an External Interrupt through the I/O subsystem.		

Table 3-2. Manually Entered Paper Tape Bootstrap

LOCATION	CONTENTS	COMMENTS
X'0000'	X'0005'	
X'0005'	X'5000'	}
X'0006'	X'31E0'	
X'0007'	X'8B02'	
X'0008'	X'6800'	· †
X'0009'	X'5BYY'	YY = 10 for ASR, 0F for PTR
X'0029'	X'00YY'	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X'0034'	LWA+1	= 1000 for Loader III in page of 4K.
X'0102'	X'7181'	page of the
X'0100' + 2YY	X'9080'	Loc = X'0120' for ASR, X'011E' for PTR.
X'0101' + 2YY	one's complement of word count	= X'FF00' for Loader III
X'0180'	LWA+1	= 1000 for Loader III in last page of 4K.
X'0181'	Transfer Address	= X'0EFF' for Loader III in 4K.

Table 3-3. Manually Entered Card Reader Bootstrap

LOCATION	CONTENTS	COMMENTS
X,0000,	X'0005'	
X'0006'	X'88FF'	
X'0007'	X'3IA0'	
X'0008'	X'8B02'	
X'0009'	X'6800'	
X'000A'	X'5B0D'	
X'0029'	X,000D,	
X'0034'	LWA+1	= 1000 for Loader III in
•		last page of 4K.
X'0100'	X'7005'	, page 51 1111
X'0102'	X'7181'	
X'011A'	X'9080'	
X'011B'	one's complement	= X'FEA0' for Loader III.
· · · · · · ·	of word count	777 E776 701 E04401 1111
X'0180'	LWA+1	= 1000 for Loader III in
		last page of 4K.
X'0181'	Transfer Address	, -
X'0181'	Transfer Address	= X'0E9F' for Loader III in 4K.

SECTION 4

COMPUTER INSTRUCTIONS

INTRODUCTION

This section of the manual provides necessary information for calculating instruction execution times, and presents a detailed description and word format for each instruction.

INSTRUCTION EXECUTION TIMES

Instruction execution time consists of the instruction fetch time, operand address calculation time, and action execution time. The times listed by the instruction descriptions reflect the fetch and action execution times. Operand address calculation times are shown in Table 4-1.

Table 4-1. Address Calculation Times

ADDRESS MODE	TIME IN MICROSECONDS
DIRECT – ABSOLUTE	NONE
DIRECT - RELATIVE	NONE
DIRECT - INDEXED	.650
NDIRECT – ABSOLUTE	.900
NDIRECT RELATIVE	.900
NDIRECT - PRE-INDEXED	1.550
NDIRECT - PRE-INDEXED, SELF RELATIVE	2.450
INDIRECT - PRE-INDEXED, POST-INDEXED	1.550

INSTRUCTION DESCRIPTIONS

The instruction descriptions are arranged in alphabetical order by mnemonics on the remaining pages of this section.

ADD DOUBLEWORD TO ACCUMULATOR

OP CODE:

C0 - C7

FORMAT:

DEFINITION:

ADA algebraically adds a double-length word to the contents of the accumulator and extended accumulator and places the result into the accumulator and extended accumulator.

End-around carry is not provided and negative quantities are expressed in two's complement,

Bit 15 of the most significant half of the doubleword indicates sign: all other bits indicate magnitude.

The designators are affected by the result of the addition.

DESIGNATORS:

Zero (D2) - Set if doubleword is all zeros Positive (D3) - Set if bit 15 of the E-Reg = 0

Overflow (D4) - Set if E-Reg overflows Carry (D5) - Set if carry is required

TIMING:

2.0 microseconds

ADD WORD TO ACCUMULATOR

OP CODE:

40 - 47

FORMAT:

DEFINITION:

ADD performs an addition of the contents of the accumulator and the contents of the calculated operand address. The result is stored in the accumulator. End-around carry is not provided and negative quantities are expressed in two's complement. The contents of the operand address are not changed.

SUMMARY EXPRESSION:

(A) + (OA) \rightarrow A

DESIGNATORS:

Zero (D2) - Set if result is all zeros Positive (D3) - Set if result has bit 15 = 0

Overflow (D4) - Set by a sign change of the accumulator.

Carry (D5) - Set if carry is required

TIMING:

1.3 microseconds

AND WITH ACCUMULATOR

OP CODE:

58 - 5F

FORMAT:

DEFINITION:

AND performs a logical "AND" between the accumulator and the operand on a strict bit basis, that is, each bit in the accumulator is "ANDed" with the corresponding bit of the operand.

0 & 0 = 0 0 & 1 = 0 1 & 0 = 0 1 & 1 = 1

SUMMARY EXPRESSION:

(A) & (OA) \rightarrow A

DESIGNATORS:

Zero (D2) - Set or cleared according to accumulator Positive (D3) - Set or cleared according to accumulator

Overflow (D4) - Do not change Carry (D5) - Do not change

TIMING:

1.3 microseconds

CHANGE DESIGNATOR REGISTER (PRIVILEGED)

OP CODE:

30 - 37 (Special Meaning)

FORMAT:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	1	0		m	•			See	De	r fini	itio	n	
	F	unc	tion		٨	/lod	le			Dis	pla	cen	nen:	r	

DEFINITION:

The CDR instruction is a multi-function instruction. That is, the mode field is used to indicate the desired function to be executed. Functions available are shown in the following table:

						
OP CODE	MODE	FUNCTION				
30	000	Change post-index designators or clear overflow				
31*	001	Change lockout designation*				
32*	010	Reset processor interrupt lockout*				
33*	0 1 1	Change lockout designation and reset processor interrupt lockout*				
34	100	Initiate Extended Function Code (calculate operand from next word)				
36	110	Initiate Extended Function Code (all 16 bits of next word is operand address)				
	* These are privileged instructions and are not executable when bit 9 of the D-register is set.					

The functions indicated by the mode field are defined as follows:

Change Post-Index Designators

When the mode field of the CDR instruction contains 000 and bit 2 of the displacement field is set, the status of bits 1 and 0 of the displacement field are copied into bits 1 and 0 of the Designator (D) register.

Clear Overflow Designator

When the mode field of the CDR instruction contains 000 and bit 3 of the displacement field is set, the overflow designator (bit 4 of the D-register) is reset to zero.

Change Lockout Designators (Privileged Instruction)

When the mode field of the CDR instruction contains a ONE in bit $8\,$ and a ZERO in bit $10\,$, the lockout designators will be

CHANGE DESIGNATOR REGISTER (PRIVILEGED) (Cont'd)

copied from the displacement field bits 0, 2, 4 and 6 as stipulated by displacement field bits 1, 3, 5 and 7 in the following manner:

 $\begin{array}{ll} y_1=1, \operatorname{copy}\ y_0 \ \operatorname{into}\ D_8 & (\operatorname{Memory\ Write\ Lockout}) \\ y_3=1, \operatorname{copy}\ y_2 \ \operatorname{into}\ D_9 & (\operatorname{Privileged\ Instruction\ Lockout}) \\ y_5=1, \operatorname{copy}\ y_4 \ \operatorname{into}\ D_{10} & (\operatorname{Service\ Request\ Lockout}) \\ y_7=1, \operatorname{copy}\ y_6 \ \operatorname{into}\ D_{11} & (\operatorname{External\ Interrupt\ Lockout}) \end{array}$

If bit 9 of the D-register is set (Non-Privileged Mode) prior to this instruction, the instruction will not be executed and an Instruction Violation will be generated to produce a Processor Interrupt.

Reset Processor Interrupt Lockout (Privileged Instruction)

When the mode field of the CDR instruction contains a ONE in bit 9 and a ZERO in bit 10, the Processor Interrupt Lockout will be reset to ZERO.

NOTE

The Processor Interrupt Lockout is set by the CPU hardware at the execution end of the instruction pointed to by the Processor Interrupt.

This instruction will not be executed (and will produce a Processor Interrupt) if bit 9 of the D-register (Privileged Instruction Lockout) is set.

Initiate Extended Function Code

When the mode field of the CDR instruction contains a ONE in bit 10, the displacement field is used to supply an extended function code. If bit 9 of the CDR instruction is ZERO, the word following the CDR is used to calculate the operand address in the normal manner where the function field (bits 15-11) is ZERO, bits 10-8 are the mode field, and bits 7-0 are the displacement field. If bit 9 of the CDR instruction is one, the operand address is taken to be the full 16-bit word following the CDR instruction. The extended function codes are defined below:

MNEMONIC	HEX CODE	DESCRIPTION
DSY	FE	Displays contents of memory location specified by operand address. The Display Register will remain unchanged until an operator panel operation is performed or another extended op code of X'FE' is executed. The Display Register is cleared when START is depressed.
RSR	FF	Loads operator panel switch register into location specified by operand address.

TIMING:

1.0 microseconds

CARRY JUMP

OP CODE:

F8 - FF

FORMAT:

DEFINITION:

CJP interrogates the status of bit 5 (Carry Designator) in the D-register. If bit 5 is set, the calculated operand address is transferred to the P-register. If bit 5 is not set, the jump is not executed.

SUMMARY EXPRESSION:

OA \rightarrow P, if D5 = 1

NEXT INSTRUCTION EXECUTED IF CARRY BIT IS SET:

Calculated Operand Address + 1

DESIGNATORS:

Zero (D2) - No change Positive (D3) - No change Overflow (D4) - No change Carry (D5) - No change

TIMING:

0.9 microseconds if no jump; 1.025 microseconds for jump taken

DCR

DCR

DIV

DIV

DECREMENT LOCATION

OP CODE:

68 - 6F

FORMAT:

DEFINITION:

DCR accesses a 16-bit word located at the calculated operand address, decrements the word by one, and restores the word to the same location. The result of the decrementing operation is used to set the zero, positive carry and overflow designators. The accumulator is not affected by this instruction.

SUMMARY EXPRESSION:

 $(OA) - 1 \rightarrow OA$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros
Positive (D3) - Set if bit 15 of result = 0
Overflow (D4) - Set if overflow occurs
Carry (D5) - Set if carry occurs

TIMING:

1.4 microseconds

DIVIDE

OP CODE:

D8 - DF

FORMAT:

DEFINITION:

DIV algebraically divides the contents of the double-length accumulator by the contents of the calculated operand address. The quotient is placed into the A accumulator and the remainder is placed into the E register (the sign of the remainder is always the same as the sign of the dividend). Negative quantities are expressed in two's complement.

SUMMARY EXPRESSION:

(E,A)/(OA) Q = AR = E

DESIGNATORS:

Zero (D2) - Set if quotient is all zeros Positive (D3) - Set if bit 15 of A = 0

Overflow (D4) - Set if quotient overflows accumulator

Carry (D5) - Set equal to the sign of the remainder

(1=negative, 0=positive)

TIMING:

26.0 microseconds

EOR

EST

EST

EXCLUSIVE OR WITH ACCUMULATOR

OP CODE:

50 - 57

FORMAT:

DEFINITION:

Each bit position of the operand is exclusively "ORed" with each corresponding bit position of the accumulator. The result is left in the accumulator.

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

SUMMARY EXPRESSION:

 $(A) + (OA) \rightarrow A$

DESIGNATORS:

Zero (D2) - Set or cleared according to accumulator Positive (D3) - Set or cleared according to accumulator

Overflow (D4) - No change Carry (D5) - No change

T1MING:

1.3 microseconds

ENTER STATUS (Privileged)

OP CODE:

E0 - E7

FORMAT:

DEFINITION:

EST loads the six program registers (P, B, C, G, E and A) and the D-register (bits 0 - 11, only) in that order, starting with the location specified by the calculated operand address and incrementing through the next six locations. If the CPU is operating in the privileged mode at execution time (D9=1), the EST instruction will not load bits 8, 9, 10 and 11 into the D-register.

SUMMARY EXPRESSION:

 $\begin{array}{c} (OA) \rightarrow P \\ (OA + 1) \rightarrow B \\ (OA + 2) \rightarrow C \\ (OA + 3) \rightarrow G \\ (OA + 4) \rightarrow E \\ (OA + 5) \rightarrow A \\ (OA + 6) \rightarrow D \end{array}$

NEXT INSTRUCTION EXECUTED:

(OA) + 1

TIMING:

7.65 microseconds

INC

INC

IOA ·

IOA

INCREMENT LOCATION

OP CODE:

60 - 67

FORMAT:

DEFINITION:

INC accesses a 16-bit word located at the calculated operand address, increments the word by one, and restores the word to the same location. The accumulator is not affected by this instruction. The result of the incrementing operation is used to set the zero, positive, carry and overflow designators.

SUMMARY EXPRESSION:

 $(OA) + 1 \rightarrow OA$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros
Positive (D3) - Set if bit 15 of the result = 0
Overflow (D4) - Set if overflow occurs
Carry (D5) - Set if carry occurs

TIMING:

1.4 microseconds

INPUT TO/OUTPUT FROM ACCUMULATOR (PRIVILEGED)

OP CODE:

88 - 8F (Special Meaning)

FORMAT:

DEFINITION:

IOA performs a 16-bit data transfer between the accumulator and the I/O subsystem. If direct addressing is used, bits 0 through 6 of the displacement field are used by the I/O subsystem to address channels 0 through 127.

If indirect addressing is used, bits 0 through 7 are used to calculate the operand address in the usual manner. Bits 0 through 6 of the calculated address will be used to address the device, bit 7 will indicate direction, and bits 8 through 15 may be used as a device function code. This code is specified in the reference manual for the specific device.

DESIGNATORS:

Zero (D2) - Set or cleared depending on accumulator
Positive (D3) - Set or cleared depending on accumulator
Overflow (D4) - No change

Carry (D5) - No change

TIMING:

2.0 microseconds

ITR

IMP

IMP

INPUT TRANSFER REQUEST (PRIVILEGED)

OP CODE:

90

FORMAT:

DEFINITION:

ITR is a privileged instruction and is only executed as an out-ofsequence instruction in response to a Buffered I/O request from the I/O subsystem. If encountered in a normal program sequence, a no-op is performed and an Instruction Violation (PI) is generated. Normal address calculations are not performed. The displacement field is added to X'0100' and the result is used to obtain the Buffer End Address.

The next contiguous location after the ITR instruction must contain the buffer word count in two's complement form. This word is incremented by one and added to the Buffer End Address. The result is used to address memory for the data 'transfer.

DESIGNATORS:

Zero (D2) - No change Positive (D3) - No change Overflow (D4) - No change Carry (D5) - No change

TIMING:

4.325 microseconds

JUMP UNCONDITIONAL

OP CODE:

70 - 77

FORMAT:

DEFINITION:

JMP transfers the calculated operand address to the P-register, thus transferring program control to the instruction contained in the operand address plus 1.

SUMMARY EXPRESSION:

OA → P

NEXT INSTRUCTION EXECUTED:

OA + 1

DESIGNATORS:

Zero (D2) - No change
Positive (D3) - No change
Overflow (D4) - No change
Carry (D5) - No change

TIMING:

1.025 microseconds

LDA

LDB

LDB

LOAD ACCUMULATOR

OP CODE:

28 - 2F

FORMAT:

DEFINITION:

LDA loads a 16-bit data word into the accumulator from the memory location specified by the calculated operand address.

SUMMARY EXPRESSION:

 $(OA) \rightarrow A$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 of accumulator = 0

Overflow (D4) - No change Carry (D5) - No change

TIMING:

1.4 microseconds

LOAD B INDEX REGISTER

OP CODE:

08 - OF

FORMAT:

DEFINITION:

LDB loads a 16-bit data word into the B index register from the memory location specified by the calculated operand address.

SUMMARY EXPRESSION:

 $(OA) \rightarrow B$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 = 0 Overflow (D4) - No change

Carry (D5) - No change

TIMING:

1.4 microseconds

LDC

LDE

LOAD EXTENDED ACCUMULATOR

LDE

OP CODE:

10 - 17

FORMAT:

LOAD C INDEX REGISTER

DEFINITION:

LDC enters a 16-bit data word into the C index register from the memory location specified by the operand address.

SUMMARY EXPRESSION:

 $(OA) \rightarrow C$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 = 0 Overflow (D4) - No change Carry (D5) - No change

TIMING:

1.4 microseconds

OP CODE:

20 - 27

FORMAT:

DEFINITION:

LDE enters a 16-bit data word into the extended accumulator from the memory location specified by the calculated operand address.

SUMMARY EXPRESSION:

 $(OA) \rightarrow E$

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 = 0

Overflow (D4) - No change

Carry (D5) - No change

TIMING:

1.4 microseconds

LDG

MPY

MPY

LOAD SHIFT DESCRIPTION REGISTER (G)

OP CODE:

18 - 1F

FORMAT:

DEFINITION:

LDG enters a 16-bit data word into the G-register from the memory location specified by the calculated operand address. The format for this word is:

15 14 13 12 11 10 9 8 7 6 5 4

The G-register is unaffected by the shift operation.

SUMMARY EXPRESSION:

(OA) → G

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 = 0 Overflow (D4) - No change Carry (D5) - No change

TIMING:

1.4 microseconds

MULTIPLY ACCUMULATOR

OP CODE:

D0 - D7

FORMAT:

DEFINITION:

MPY algebraically multiplies the contents of the A-register by the contents of the calculated operand address. The product is placed in the E-register and the A-register with the low-order bits in the A-register and the high-order bits with sign extension in the E-register. Negative quantities are expressed in two's complement. The zero and positive designators are set or cleared as indicated by the double-length product.

SUMMARY EXPRESSION:

(A) X (OA) \rightarrow EA

DESIGNATORS:

Zero (D2) - Set if product is all zeros Positive (D3) - Set if E-register bit 15 = 0

Overflow (D4) - No change Carry (D5) - Cleared to zero

TIMING:

18.0 microseconds

NJP

OJP

OJP

NEGATIVE JUMP

OVERFLOW JUMP

OP CODE:

B8 - BF

FORMAT:

DEFINITION:

NJP interrogates the status of bit 3 (Positive Designator) in the D-register. If bit 3 is set, the jump is not executed. If bit 3 is not set, the calculated operand address is transferred to the P-register.

SUMMARY EXPRESSION:

 $OA \rightarrow P$, if D3 = 0

NEXT INSTRUCTION EXECUTED IF POSITIVE NOT SET:

Calculated Operand Address + 1

DESIGNATORS:

Zero (D2) - No change Positive (D3) - No change Overflow (D4) - No change Carry (D5) - No change

TIMING:

0.9 microseconds 1.025 microseconds for jump taken OP CODE:

78 - 7F

FORMAT:

DEFINITION:

OJP interrogates the status of bit 4 (Overflow Designator) in the D-register. If bit 4 is set, the calculated operand address is transferred to the P-register. If bit 4 is not set, the jump is not executed.

SUMMARY EXPRESSION:

OA \rightarrow P, if D4 = 1

NEXT INSTRUCTION EXECUTED IF OVERFLOW SET

Calculated Operand Address + 1

DESIGNATORS:

Zero (D2) - No change
Positive (D3) - No change
Overflow (D4) - No change
Carry (D5) - No change

TIMING:

0.9 microseconds 1.025 microseconds for jump taken OTR

PJP

PIP

POSITIVE JUMP

80

OP CODE:

FORMAT:

OUTPUT TRANSFER REQUEST (PRIVILEGED)

DEFINITION:

OTR is a privileged instruction and is only executed as an out-of-sequence instruction in response to a Buffered I/O request from the I/O subsystem. If encountered in a normal program sequence, a no-op is performed and an Instruction Violation (PI) is generated. Normal address calculations are not performed. The displacement field is added to X'0100' and the result is used to obtain the Buffer End Address.

The next contiguous location after the OTR instruction must contain the buffer word count in two's complement. This word is incremented by one if the count is negative and added to the Buffer End Address. The result is used to address memory for the data transfer.

DESIGNATORS:

Zero (D2) - No change Positive (D3) - No change Overflow (D4) - No change Carry (D5) - No change

TIMING:

4.325 microseconds

OP CODE:

B0 - B7

FORMAT:

DEFINITION:

PJP interrogates the status of bit 3 (Positive Designator) in the D-register. If bit 3 is set, the calculated operand address is transferred to the P-register. If bit 3 is not set, the jump is not executed.

SUMMARY EXPRESSION:

OA P, if D3 = 1

NEXT INSTRUCTION EXECUTED IF POSITIVE SET:

Calculated Operand Address + 1

DESIGNATORS:

Zero (D2) - No change Positive (D3) - No change Overflow (D4) - No change Carry (D5) - No change

TIMING:

0.9 microseconds 1.025 microseconds for jump taken **SDA**

SHF

SHF

SUBTRACT DOUBLE-LENGTH ACCUMULATOR

OP CODE:

C8 - CF

FORMAT:

DEFINITION:

SDA algebraically subtracts a double-length operand from the double-length accumulator and leaves the difference in the double-length accumulator.

The double-length operand consists of the operand addressed through the normal calculation sequence and the word contained at the operand location + 1 (least significant half).

Bit 15 of the most significant half of the double word indicates sign: all other bits indicate magnitude.

DESIGNATORS:

Zero (D2) - Set or cleared by difference in accumulator Positive (D3) - Set or cleared by difference in accumulator Overflow (D4) - Set if overflow occurs

Carry (D5) - Set or cleared by difference in accumulator

TIMING:

2.6 microseconds

SHIFT LOCATION

OP CODE:

98 - 9F

FORMAT:

DEFINITION:

SHF performs a shifting operation on the data word contained in the calculated operand address location. Note: The G-register must be loaded, utilizing the load G (LDG) instruction, prior to the shift execution.

The type of shift operation is specified by the contents of the Shift Description (G) register at location X'0003'. (See Figure 4-1) The shift description word format is:

For doubleword shifts, the operand address contains the most significant word and the next contiguous location contains the least significant word. The CPU automatically obtains the second word:

The shifting operations specified by bits 13, 14 and 15 of the Gregister are shown on the following page. If a shift count of 0 is contained in the G-register, no shift is performed. However, the designators will be set according to the non-shifted value. The no-shift function is valuable for interrogating the contents of a core location. The G-register is unaffected by the shift operation.

DESIGNATORS:

Zero (D2) - Set if result of shift is all zeros

Positive (D3) - Set if most significant bit of result is a ZERO

Overflow (D4) - Set during left shift if sign bit changes

Carry (D5) - Set if bit shifted out of the word (or double-

word) is ONE

TIMING:

Single Word Shift = 2.0 + (74n) microseconds

Doubleword Shift = 2.80 + (1.57n) microseconds

where n = number of shifts

G-f	REGIS	TER B	ITS		
15	14	13	12	SHIFT TYPE	
0	0	0	0	Single Left Arithmetic (Zero Insert)	1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 PRE-SHIFTED WORD 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 ONE SHIFT COUNT
0	0	1	0	Single Left Circular	011001110101111
0	1	0	0	Single Right Arithmetic (Sign Extension)	$1 \rightarrow 1 1 0 1 1 1 0 1 1 1 $
0	1	1	0	Single Right Circular	1011001110101111 >1101100111010111
1	0	0	0	Double Left Arithmetic (Zero Insert)	$0 \ \ 1 \ \ 1 \ \ 0 \ \ \ 1 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 0 \ \ \ 1 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 0 \ \ \ 1 \ \ \ 1 \ \ \ 0 \ \ \ 1 \ \ \ \$
1	0	1	0	Double Left Circular	0110011101011110 101100111010111110 -1100111010111101 < 011001111010111110 <
1	1	0	0	Double Right Arithmetic (Sign Extension)	0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1
1	1	1	0	Double Right Circular	0110011101011110 1011100111101011111 -10110011101011111-0101110101111
					•

STORE STATUS

OP CODE:

E8 - EF (Special Meaning)

FORMAT:

DEFINITION:

SST stores the working registers (D, A, E, G, C, B and P) in descending order, in contiguous locations starting at the operand address

When bit 10 is ZERO, the calculated address determines the address location for storing the first register of the stack (D-register). Bits 8 and 9, as shown below, determine how the operand address is calculated.

Mode Bits 9 8 Address calculation

determine the next instruction.

0	0	Direct, absolute	000-255
0	1	Indirect, absolute	(000-255)
1	0	Direct, relative	(P) -128 through +127

1 1 Indirect, relative (P) -128 through +127

When bit 10 is ONE, the B index register must contain the address of the first storage location. After the working registers are stored the CPU decrements the contents of the B index register by seven. In this manner, the working registers for nested subroutines may be stored in contiguous locations in memory. The operand address is calculated as shown above to

In both cases, (index, not indexed), the next instruction executed after the storing operation is the calculated operand address + 1.

When SST is executed in a normal program sequence in the nonprivileged mode (D-register, bit 9=1), bits 8 through 11 (lockout designators) of the Designator Register are not stored.

When SST is executed as an out-of-sequence instruction in response to a Processor Interrupt, bits 12 through 15 (Processor Interrupt Condition Indicators) of the Designator Register are stored, then cleared, and all interrupt lockouts are set. Also, the privileged instruction lockout designator (D-register, bit 9) is reset

When SST is executed as an out-of-sequence instruction in response to an .External Interrupt, the privileged instruction lockout designator (D-register, bit 9) is reset and the External Interrupt lockout (D-register, bit 11) is set.

SST

STORE STATUS (Cont'd)

SUMMARY EXPRESSION:

 $(P) \rightarrow OA-6$

(B) → OA-5

 $(C) \rightarrow OA-4$

 $(G) \rightarrow OA-3$

(E) → OA-2

 $(A) \rightarrow OA-1$ $(D) \rightarrow OA$

NEXT INSTRUCTION EXECUTED:

OA + 1

DESIGNATORS:

The zero, positive, overflow and carry designators are not changed.

TIMING:

9.075 microseconds

STA

STE

STE

STORE ACCUMULATOR

OP CODE:

A8 - AF

FORMAT:

DEFINITION:

STA transfers the 16-bit word contained in the A (Accumulator) register to the memory location specified by the calculated operand address.

The contents of the accumulator are unchanged.

SUMMARY EXPRESSION:

(A) \rightarrow OA

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 of A = 0

Overflow (D4) - No change Carry (D5) - No change

TIMING:

1.4 microseconds

OP CODE:

A0 - A7

FORMAT:

STORE EXTENDED ACCUMULATOR

DEFINITION:

STE transfers the 16-bit word contained in the E-register to the memory location specified by the calculated operand address. The contents of E are unchanged.

SUMMARY EXPRESSION:

(E) \rightarrow OA

DESIGNATORS:

Zero (D2) - Set if word contains all zeros

Positive (D3) - Set if bit 15 of E = 0

Overflow (D4) - No change Carry (D5) - No change

TIMING:

1.4 microseconds

STOP (PRIVILEGED)

OP CODE:

00 - 07

FORMAT:

DEFINITION:

STP is a privileged instruction. When executed in the non-privileged mode (Designator Register, bit 9=1), the instruction executes a no-op, sets the Instruction Violation designator (bit 13) in the D-register and generates the Processor Interrupt. The Processor Interrupt causes the CPU to execute the instruction at location X'0103'.

When executed in the privileged mode, the STP instruction performs a normal address calculation, loads the S-register with the operand address and executes a processor halt. All processing and I/O transfers are stopped (with the exception of DMA transfers) until manually restarted at the control panel.

DESIGNATORS:

The designators are unchanged.

TIMING:

0.9 microseconds

STORE ZERO

OP CODE:

38 - 3F

FORMAT:

DEFINITION:

STZ clears the memory location specified by the calculated operand address.

SUMMARY EXPRESSION:

 $0 \rightarrow OA$

DESIGNATORS:

Zero (D2) - Equal to one
Positive (D3) - Equal to one
Overflow (D4) - No change
Carry (D5) - No change

TIMING:

1.4 microseconds

SUB

ZIP

ZJP

SUBTRACT ACCUMULATOR

OP CODE:

48 - 4F

FORMAT:

DEFINITION:

SUB algebraically subtracts the contents of the calculated operand address from the contents of the accumulator. End around carry is not provided, and negative quantities are expressed in two's complement notation.

SUMMARY EXPRESSION:

 $(A) - (OA) \rightarrow A$

DESIGNATORS:

Zero Set or cleared as indicated by the remainder

in the accumulator.

Set or cleared as indicated by the remainder Positive (D3) in the accumulator.

Overflow (D4) - Set by a sign change of the accumulator.

Set or cleared as indicated by the remainder Carry in the accumulator.

TIMING:

1.7 microseconds

ZERO JUMP

OP CODE:

F0-F7

FORMAT:

DEFINITION:

ZJP interrogates the status of bit 2 (Zero Designator) in the D-register. If bit 2 is set the calculated operand address is transferred to the P-register. If bit 2 is not set, the jump is not executed.

SUMMARY EXPRESSION:

OA \rightarrow P, if D2 = 1

NEXT INSTRUCTION EXECUTED IF ZERO

Calculated Operand Address + 1

DESIGNATORS:

(D2) - No change Positive (D3) - No change Overflow (D4) - No change (D5) - No change Carry

TIMING:

0.9 microseconds 1.025 microseconds for jump taken

APPENDIX

CONVERSION TABLES

This appendix contains the following reference tables:

Hexadecimal Arithmetic	<u>)</u>
Addition Table	2
Multiplication Table	2
Powers of 16 ₁₀	}
Powers of 10 ₁₆	}
Hexadecimal-Decimal Integer Conversion	ļ
Hexadecimal-Decimal Fraction Conversion	10
Powers of Two	4
Mathematical Constants	14

HEXADECIMAL ARITHMETIC

ADDITION TABLE

0	1 '	2	3	4	5	6	7	8	9	А	В	С	D	E	F
1	02	03	04	05	06	07	08	09	0A	0В	0C	0D	0E	0F	10
2	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11
3	04	05	06	07	08	09	0A	OB	0C	-0D	0E	0F	10	11	12
4	05	06	07	08	09	0A	ов	0C	0D	0E	0F	10	11	12	13
5	06	07	08	09	0A	0B	oc	0D	0E	0F	10	11	12	13	14
6	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14	15
7	08	09	0A	OB	0C	0D	ÖΕ	OF	10	11	12	13	14	15	16
8	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14	15	16	17
9	0A	OB	0C	0D	0E	0F	10	11	12	13	14	15	16	17	18
А	ОВ	0C	0D	0E	0F	10	11	12	13	14	15	16	17	18	19
В	0C	0 D	0E	0F	10	11	12	13	14	15	16	17	18	19	1A
С	0D	0E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	0E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1 C
E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	10	11	12	13	14	15	16	17	18	19	1 A	1B	1C	1D	1E

MULTIPLICATION TABLE

1	2	3	4	5	6	7	8	9	А	В	С	D	Ε	F
2	04	06	08	0A	0C	0E	10	12	14	16	18	1A	1C	1 E
3	06	09	0C	0F	12	15	18	1 B	1E	21	24	27	2A	2D
4	08	0C	10	14	18	1 C	20	24	28	2C	30	34	38	3C
5	0A	0F	14	19	1 E	23	28	2D	32	37	3 C	41	46	4B
6	0C	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	0E	15	1C	23	2A	31	38	3F	46	4D	54	5 B	62	69
8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	12	1 B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
А	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
С	18	24	30	3C	48	54	60	6C	78	84	90	9C	Α8	B4
D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	В6	C 3
E	1C	2A	38	46	54	62	70	7E	8C	9A	A8	В6	C4	D2
F	1E	2B	3C	4B	5A	69	78	87	96	A5	B 4	C 3	D2	E1

TABLE OF POWERS OF SIXTEEN 10

						16 ⁿ	n		10	6 ⁻ⁿ			
						1	0	0.10000	00000	00000	00000	x	10
						16	1	0.62500	00000	00000	00000	x	10 ⁻¹
						256	2	0.39062	50000		00000		_
					4	096	3	0.24414	06250	00000	00000		
					65	536	4	0.15258	78906	25000	00000		10 ⁻⁴
				1	048	576	5	0.95367	43164	06250	00000	x	10 ⁻⁶
				16	777	216	6	0.59604	64477	53906			_
				268	435	456	7	0.37252		46191	40625		
			4	294	967	296	8	0.23283		53869			
			68	719	476	736	9	0.14551		83668			
		1	099	511	627	776	10	0.90949		72928			
		17	592	186	044	416	11	0.56843	41886	08080	14870	x	10 ⁻¹³
		281	474	976	710	656	12	0.35527	13678	80050	09294	x	10-14
	4	503	599	627	370	496	13	0.22204					
	72	057	594	037	927	936	14	0.13877	78780	78144	56755	x	10 ⁻¹⁶
1	152	921	504	606	846	976	15	0.86736	17379	88403	54721	x	10-18

TABLE OF POWERS OF 10

			10 ⁿ	n		1	0 ⁻ⁿ			
			1	0	1.0000	0000	0000	0000		
			Α	1	0.1999	9999	9999	999A		
			64	2	0.28F5	C28F	5C28	F5C3	x	16 ⁻¹
			3E8	3	0.4189	374B	C6A7	EF9E	x	16 ⁻²
			2710	4	0.68DB	8BAC	710C	B296	x	16 ⁻³
		1	86A0	5	0.A7C5	AC47	1B47	8423	x	16 ⁻⁴
		F	4240	6	0.10C6	F7A0	B5ED	8D37	x	16 ⁻⁴
		98	9680	7	0.1AD7	F29A	BCAF	4858	x	16 ⁻⁵
		5F5	E100	8	0.2AF3	1DC4	6118	73BF	x	16 ⁻⁶
		3B9A	CA00	9	0.44B8	2FA0	9B5A	52CC	x	16 ⁻⁷
	2	540B	E400	10	0.6DF3	7F67	SEF6	EADF	x	16 ⁻⁸
	17	4876	E800	11	0.AFEB	FF0B	CB24	AAFF	x	16 ⁻⁹
	E8	D4A5	1000	12	0.1197	9981	2DEA	1119	x	16 ⁻⁹
	918	4E72	A000	13	0.1C25	C268	4976	81C2	x	16 ⁻¹⁰
	5AF3	107A	4000	14	0.2D09	370D	4257	3604	x	16-11
3	8D7E	A4C6	8000	15	0.480E	BE7B	9D58	566D	x	16 ⁻¹²
23	8652	6FC1	0000	16	0.734A	CA5F	6226	FOAE	x	16 ⁻¹³
163	4578	5D8A	0000	17	0.B877	AA32	36A4	B449	x	16 ⁻¹⁴
DE0	B6B3	A764	0000	18	0.1272	5DD1	D243	ABA1	x	16 ⁻¹⁴
8AC7	2304	89E8	0000	19	0.1D83	C94F	B6D2	AC35	x	16 ⁻¹⁵

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range 0-FFF and decimal integers in the range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal	Decimal	Hexadecimal	Decimal
01 000	4 096	20 000	131 072
02 000	8 192	30 000	196 608
03 000	12 288	40 000	262 144
04 000	16 384	50 000	327 680
05 000	20 480	60 000	393 216
06 000	24 576	70 000	458 752
07 000	28 672	80 000	524 288
08 000	32 768	90 000	589 824
09 000	36 864	A0 000	655 360
0A 000	40 960	B0 000	720 896
OB 000	45 056	C0 000	786 432
0C 000	49 152	DO 000	851 968
0D 000	53 248	E0 000	917 504
0E 000	57 344	F0 000	983 040
OF 000	61 440	100 000	1 048 576
10 000	65 536	200 000	2 097 152
11 000	69 632	300 000	3 145 728
12 000	73 728	400 000	4 194 304
13 000	77 824	500 000	5 242 880
14 000	81 920	600 000	6 291 456
15 000	86 016	700 000	7 340 032
16 000	90 112	800 000	8 388 608
17 000	94 208	900 000	9 437 184
18 000	98 304	A00 000	10 485 760
19 000	102 400	B 00 000	11 534 336
1 A 000	106 496	C 00 000	12 582 912
1B 000	110 592	D00 000	13 631 488
1C 000	114 688	E 00 000	14 680 064
1D 000	118 784	F 00 000	15 728 640
1E 000	122 880	1 000 000	16 777 216
1F 000	126 976	2 000 000	33 554 432

Hexadecimal fractions may be converted to decimal fractions as follows:

 Express the hexadecimal fraction as an integer times 16⁻ⁿ, where n is the number of significant hexadecimal places to the right of the hexadecimal point.

$$0.CA9BF3_{16} = CA9BF3_{16} \times 16^{-6}$$

2. Find the decimal equivalent of the hexadecimal integer

3. Multiply the decimal equivalent by 16⁻ⁿ

Decimal fractions may be converted to hexadecimal fractions by successively multiplying the decimal fraction by 16_{10} . After each multiplication, the integer portion is removed to form a hexadecimal fraction by building to the right of the hexadecimal point. However, since decimal arithmetic is used in this conversion, the integer portion of each product must be converted to hexadecimal numbers.

Example: Convert 0.895₁₀ to its hexadecimal equivalent

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
000	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	0010	0011	0012	0013	0014	0015
010	0016	0017	0018	0019	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	0030	0031
020	0032	0033	0034	0035	0036	0037	0038	0039	0040	0041	0042	0043	0044	0045	0046	0047
030	0048	0049	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	0060	0061	0062	0063
040	0064	0065	0066	0067	0068	0069	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079
050	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	0090	0091	0091	0093	0094	0095
060	0096	0097	0098	0099	0100	0101	0102	0103	0104	0105	0106	0107	0108	0109	0110	0111
070	0112	0113	0114	0115	0116	0117	0118	0119	0120	0121	0122	0123	0124	0125	0126	0127
080	0128	0129	0130	0131	0132	0133	0134	0135	0136	0137	0138	0139	0140	0141	0142	0143
090	0144	0145	0146	0147	0148	0149	0150	0151	0152	0153	0154	0155	0156	0157	0158	0159
0A0	0160	0161	0162	0163	0164	0165	0166	0167	0168	0169	0170	0171	0172	0173	0174	0175
0В0	0176	0177	0178	0179	0180	0181	0182	0183	0184	0185	0186	0187	0188	0189	0190	0191
0C0	0192	0193	0194	0195	0196	0197	0198	0199	0200	0201	0202	0203	0204	0205	0206	0207
0D0	0208	0209	0210	0211	0212	0213	0214	0215	0216	0217	0218	0219	0220	0221	0222	0223
0E0	0224	0225	0226	0227	0228	0229	0230	0231	0232	0233	0234	0235	0236	0237	0238	0239
0F0	0240	0241	0242	0243	0244	0245	0246	0247	0248	0249	0250	0251	0252	0253	0254	0255

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

ļ	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
100	0256	0257	0258	0259	0260	0261	0262	0263	0264	0265	0266	0267	0268	0269	0270	0271
110		0273			0276	0277	0278	0279			0282			0285		
120	0288	0289	0290	0291	0292	0293	0294	0295			0298			0301		
130	0304	0305	0306	0307	0308	0309	0310	0311	0312	0313	0314	0315	0316	0317	0318	0319
140		0321					0326				0330			0333		
150	0336	0337	0338	0339			0342				0346		_	0349		
160		0353					0358				0362			0365		
170	0368	0369	0370	0371	0372	0373	0374	0375	0376	03//	0378	0379	0380	0381	0382	0383
180		0385					0390				0394			0397 0413		
190		0401					0406				0410 0426			0413		
1A0	1	0417					0422 0438				0442			0445		
1B0	0432	0433	0434	0433	0436	0437	0436	0433								
1C0	0448	0449	0450	0451			0454				0458			0461		
1D0		0465					0470				0474			0477		
1E0		0481					0486				0490			0493		
1F0	0496	0497	0498	0499	0500	0501	0502	0503	0504	0505	0506	0507	0508	0509	0510	0511
200		0513					0518				0522			0525		
210		0529						0535			0538			0541		
220	1	0545						0551			0554			0557 0573		
230	0560	0561	0562	0563	0564	0565	0566	0567	0568	0569	0570	05/1	03/2	05/3	03/4	03/3
240		0577						0583			0586			0589		
250		0593						0599			0602			0605		
260		0609						0615			0618			0621		
270	0624	0625	0626	0627	0628	0629	0630	0631	0632	0633	0634	0635	0636	0637	0638	0639
280	0640	0641	0642	0643				0647			0650			0653		
290	0656	0657	0658	0659				0663			0666			0669		
2A0		0673						0679			0682			0685		
2B0	0688	0689	0690	0691	0692	0693	0694	0695	0696	0697	0698	0699	0700	0701	0702	0703
2C0	0704	0705	0706	0707	0708	0709	0710	0711			0714		0716	0717	0718	0719
2D0	0720	0721	0722	0723				0727			0730		0732	0733	0734	0735
2E0	0736	0737	0738	0739	0740	0741	0742	0743			0746			0749		
2F0	0752	0753	0754	0755	0756	0757	0758	0759	0760	0761	0762	0763	0764	0765	0766	0767
300	0768	0769	0770	0771				0775			0778					0783
310		0785						0791	0792	0793	0794	0795				0799
320		0801						0807			0810					0815
330	0816	0817	0818	0819	0820	0821	0822	0823	0824	0825	0826	0827	0828	0829	0830	0831
340	0832	0833	0834	0835				0839			0842					0847
350	0848	0849	0850	0851				0855			0858					0863
360		0865					0870				0874			0877		
370	0880	0881	0882	0883	0884	0885	0886	0887	0888	0889	0890	0891	0892	0893	0894	0895
380		0897						0903			0906					0911
390		0913						0919			0922					0927
3A0		0929						0935			0938					0943
3B0	0944	0945	0946	0947	0948	U949	0950	0951	0952	0953	0954	0935	0956	0327	บรวช	0959
3C0				0963				0967			0970					0975
3D0		0977						0983			0986					0991
3E0		0993						0999				1003				1007
3F0	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023
	_1															

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
400			1026		_	1029					1034			1037		
410			1042			1045					1050			1053		
420			1058			1061					1066			1069		
430	10/2	10/3	1074	10/3	1076	1077	10/8	10/9	1080	1081	1082	1083	1084	1084	1086	1087
440			1090		1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103
450			1106			1109					1114			1117		
460			1122			1125					1130			1133		
470	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151
480			1154			1157					1162			1165		
490			1170			1173					1178			1181		
4A0			1186			1189					1194			1197		
4B0	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215
4C0	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231
4D0			1234			1237					1242		1244	1245	1246	1247
4E0			1250			1253					1258			1261		
4F0	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279
500			1282			1285					1290		1292	1293	1294	1295
510			1298			1301					1306			1309		
520			1314			1317					1322			1325		
530	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343
540	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359
550	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375
560	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391
570	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407
580	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423
590	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439
5A0	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455
5B0	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471
5C0	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487
5 D 0	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499		1501		
5E0			1506			1509					1514			1517		
5F0	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535
600	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551
610			1554			1557					1562			1565		
620			1570			1573					1578			1581		
630	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599
640	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615
650		-	1618			1621					1626			1629		
660			1634			1637					1642			1645		
670	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663
680	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679
690			1682			1685					1690			1693		
6A0			1698			1701					1706			1709		
6B0	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727
6C0	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743
6D0			1746		-	1749					1754			1757		
6E0			1762			1765					1770			1773		
6F0			1778			1781					1786		_	1789		
	,															

ſ			2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	1												1005	1006	1007
700			1794				1798 1814				1802 1818		1804	1805 1821	1822	1823
710	1808	1809	1810 1826	1811			1830				1834		1836	1837	1838	1839
720			1842				1846				1850			1853		
730	1840	1041	1042	1043	1077	1045	1010	1017	.0.0							
740	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867		1869		
750			1874				1878		1880	1881	1882	1883		1885		
760			1890				1894				189 8			1901		
770	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
1												1001	1020	1022	1074	1025
780			1922				1926				1930			1933 1949		
790			1938				1942				1946 1962			1965		
7A0			1954				1958		1900	1077	1978	1903		1981		
7B0	1968	1969	1970	19/1	1972	19/3	1974	1973	1970	1911	1970	1010	1,700	1701	.,,,,	1,505
700	1004	1085	1986	1027	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
7C0 7D0			2002				2006				2010		2012	2013	2014	2015
7E0			2018				2022				2026		2028	2029	2030	2031
7F0			2034				2038				2042		2044	2045	2046	2047

800	2048	2049	2050	2051			2054		2056	2057	2058	2059		2061		
810			2066				2070		2072	2073	2074	2075		2077 2093		
820			2082				2086		2088	2089	2090	2091	2092	21093	2094	2073
830	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2100	2109	2110	2111
0.40	2112	2112	2114	2115	2116	2117	2118	2110	2120	2121	2122	2123	2124	2125	2126	2127
840 850			2114 2130				2134		2136	2137	2138	2139		2141		
860			2146		2137	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159
870			2162		2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175
1 0,0	1.00	2.0.														
880	2176	2177	2178	2179	2180	2181	2182	2183			2186		2188	2189	2190	2191
890	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203		2205		
8A0			2210		2212	2213	2214	2215	2216	2217	2218	2219		2221 2237		
8 B0	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2233	2230	2231	2230	2233
000	2240	2041	2242	2242	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255
8C0			2242 2258					2263	2264	2265	2266	2267		2269		
8D0 8E0	2230	2231	2274	2233	2200	2277	2278	2279	2280	2281	2282	2283		2285		
8F0	2288	2273	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303
L 0, 0	2200															
900			2306				2310		2312	2313	2314	2315	2316	2317	2318	2319
910	2320	2321	2322	2323				2327			2330		2332	2333	2334	2335
920	2336	2337	2338	2339	2340	2341	2342	2343			2346		2348	2349	2350	2351 2367
930	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2304	∠305	2300	2301
	2252	2262	0370	0071	2272	2272	7274	2276	2276	2277	2379	2379	2380	2381	2382	2383
940	2368	2369	2370	23/1	2372 2388			2375	23/6	3303 ₹311	2394	2315				2399
950	2384	2383	2386	2387 2403				2407				2411				2415
960 970				2403				2423				2427		2429		
1 3/0	1 2710	2411	2710	2117	2720							_				
980	2432	2433	2434	2435				2439				2443				2447
990	2448	2449	2450	2451	2452	2453	2454	2455				2459				2463
9A0	2464	2465	2466	2467	2468	2469	2470	2471				2475	2476	2477	2478	2479
9B0	2480	2481	2482	2483	2484	2485	2486	2487	2 48 8	2489	2490	2491	2492	2493	2494	2495
2-40	1									0000	2505	0507	2500	2500	2510	2511
9C0				2499	2500	2501	2502	2503				2507 2523				2527
9D0	2512	2513	2514	2515	2516	2517	2518	2519				2539				2543
9E0	2528	2529		2531	2332	2333	2334	2535 2551	2330	2553	2550	2555	2570	2557	25.5	2559
9F0		2545	7546	7647	25/10	7470) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	755	7557		/ / 7 7 4	2333	2.3.30	1 2331	2220	. ∠ 3 33

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
A00			2562		2564	2565	2566	2567	2568	2569	2570	2571	2572	2573	2574	2575
A10			2578					2583				2587	2588	2589	2590	2591
A20 A30			2594 2610					2599 2615				2603	2604	2605	2606	2607
7.50	2000	2007	2010	2011	2012	2013	2014	2013	2010	2617	2618	2619	2620	2621	2622	2623
A40	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639
A50			2642					2647	2648	2649	2650	2651		2653		
A60 A70			2658					2663				2667	2668	2669	2670	2671
A/0	2072	20/3	2674	26/5	2676	26//	26/8	2679	2680	2681	2682	2683	2684	2685	2686	2687
A80	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697	2698	2699	2700	2701	2702	2703
A90			2706				2710				2714			2717		
AA0			2722	-			2726				2730		2732	2733	2734	2735
AB0	2/36	2/3/	2738	2/39	2/40	2/41	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751
AC0	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767
AD0	2768	2769	2770	2771	2772	2773	2774	2775	2776	277 7	2778	27 79	2780	2781	2782	2783
AE0			2786				2790				2794		2796	2797	2798	2799
AF0	2800	2801	2802	2803	2804	2805	2806	2807	2808	2809	2810	2811	2812	2813	2814	2815
В00	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827	2828	2829	2830	2831
B10	2832	2833	2834	2835	2836	2837	2838	2839			2842			2845		
B20			2850				2854		2856	2857	2858	2859		2861		
B30	2864	2865	2866	2867	2868	2869	2870	2871	2872	2873	2874	287 <i>5</i>	2876	2877	2878	2879
B40	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	2891	2802	2893	2804	2805
B50			2898				2902		2904	2905	2906	2907		2909		
B60			2914		2916	2917	2918	2919			2922			2925		
B70	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942	2943
B80	2944	2945	2946	2947	2948	20/10	2950	2051	2052	2052	2054	2055	20.57	20.57	20.50	2050
B90			2962				2966				2954 2970			2957 2973		
BA0			2978				2982				2986			2989		
BB0	2992	2993	2994	2995	2996	2997	2998	2999	3000	3001	3002	3003		3005		
BC0	3008	3009	3010	3011	3012	3013	3014	3015	3016	3017	3018	3019	3020	3021	3022	3023
BD0			3026				3030				3034			3037		
BE0			3042				3046				3050		3052	3053	3054	3055
BF0	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067	3068	3069	3070	3071
C00	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3087
C10			3090		3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103
C20			3106				3110				3114		3116	3117	3118	3119
C30	3120	3121	31 2 2	3123	3124	3125	3126	3127	3128	3129	3130	3131	31 32	3133	3134	3135
C40	3136	3137	3138	3139	3140	3141	3142	3143	3144	3145	3146	3147	3148	3149	3150	3151
C50	3152	3153	3154	3155	3156	3157	3158	3159					3164			
C60	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179	3180	3181	3182	3183
C70	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197	3198	3199
C80			3202		3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215
C90			3218		3220	3221	3222	3223	3224	3225	3226	3227		3229		
CA0			3234		3236						3242			3245		
CB0	3248	3249	3250	3251	3252	3253	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263
CC0	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274	3275	3276	3277	3278	3279
CD0	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291		3293		
CE0			3298		3300				3304					3309		
CF0	3312	3313	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
D00			3330				3334				3338			3341		
D10 D20			3346 3362				3366	3351			3354 3370			3357 3373		
D30			3378				3382				3386			3389		
	3370	33	33.0	3373	3300	330.	3302	3303	330 .	3303	3300	220,	3300	3303	3330	333.
D40	3392	3393	3394	3395	3396	3397	3398	3399			3402		3404	3405	3406	3407
D50	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417	3418	3419	3420	3421	3422	3423
D60	B.		3426				3430				3434			3437		
D70	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450	3451	3452	3453	3454	3455
D80	3456	3457	3458	3459	3460	3461	3462	3463	3464	3465	3466	3467	3468	3469	3470	3471
D90			3474				3478				3482			3485		
DA0			3490				3494				3498		3500	3501	3502	3503
DB0	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519
200	2520	2501	2500	2502	2504	2505	2505	0.505	2.500	2500	2520	2521	2500	2522	2524	2525
DC0 DD0			3522 3538					3527 3543			3530 3546			3533		
DE0			3554					3559			3562			3549 3565		
DF0			3570				3574				3578			3581		
E00			3586				3590				3594			3597		
E10			3602					3607			3610			3613		
E20 E30			3618 3634				3622				3626			3629		
E30	3032	3033	3634	2032	3636	3637	3638	3639	3640	3641	3642	3643	3644	3645	3646	3647
£40	3648	3649	3650	3651	3652	3653	3654	3655	3656	3567	3658	3659	3660	3661	3662	3663
E50	3664	3665	3666	3667	3668	3669	3670	3671			3674			3677		
E60			3682					3687	3688	3689	3690	3691	3692	3693	3694	3695
E70	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
E80	3712	3713	3714	3715	2716	2717	2710	3719	2720	2711	3722	2722	2724	3725	2726	2727
E90			3730					3735			3738			3741		-
EA0			3746				3750				3754			3757		
EB0	3760	3761	3762	3763			3766				3770			3773		
FC0	2776	2777	2770	2770	2700	2701	2702	270.0	0.70.4	0705	270 6	0707	2=22			0704
EC0 ED0			3778 3794					3783 3799			3786			3789		
EE0			3810				3814				3802 3818			3805 3821	_	
EF0			3826				3830				3834			3837		
	ļ															
F00			3842				3846				3850			3853		
F10 F20			3858 3874				3862				3866			3869		
F30			3890				3894	3879			3882 3898			3885 3901		
' ' '	3000	3007	3070	3071	3092	3033	3034	3093	3690	3671	3636	3099	3900	3901	3902	3903
F40	3904	3905	3906	3907	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919
F50	3920	3921	3922	3923			3926				3930			3933		
F60			3938				3942				3946			3949		
F70	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963	3964	3965	3966	3967
F80	3968	3969	3970	3971	3077	3972	3974	3975	3076	3077	3978	3070	3080	3981	3082	2082
F90			3986				3990				3994			3997		
FA0			4002				4006				4010			4013		
FB0	4016	4017	4018	4019			4022				4026			4029		
	4000	4000	400 (4005	4000	4005	40-7									
FC0 FD0			4034 4050				4038				4042			4045		
FE0			4050				4054 4070				4058			4061		
FF0			4082				4076				4074 4090			4077 4093		
L					.001	.003	.000	1007	7000	7009	7070	7071	7072	TU23	7074	4023

HEXADECIMAL-DECIMAL FRACTION CONVERSION

Hexadecimal Dec	cimal Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00 00 00 00 .00000	00000 .40 00 00 00	.25000 00000	.80 00 00 00	.50000 00000	.CO 00 00 00	.75000 00000
.01 00 00 00 .00390	62500 .41 00 00 00	.25390 62500		.50390 62500	.C1 00 00 00	.75390 62500
.02 00 00 00 .00781		.25781 25000	.82 00 00 00		.C2 00 00 00	.75781 25000
.03 00 00 00 .01771		.26171 87500		.51171 87500	.C3 00 00 00	.76171 87500
.04 00 00 00 .01562 .05 00 00 00 .01953		.26562 50000 .26953 12500	.85 00 00 00	.51562 50000	.C4 00 00 00 .C5 00 00 00	.76562 50000 .76953 12500
.06 00 00 00 .02343		.27343 75000	.86 00 00 00		.C6 00 00 00	.77343 75000
.07 00 00 00 .02734	37500 .47 00 00 00	.27734 37500	.87 00 00 00		.C7 00 00 00	.77734 37500
.08 00 00 00 .03125		.28125 00000	.88 00 00 00		.C8 00 00 00	.78125 00000
.09 00 00 00 .03515 .0A 00 00 00 .03906	I	.28515 62500 .28906 25000	.89 00 00 00 .8A 00 00 00		.C9 00 00 00 .CA 00 00 00	.78515 62500 .78906 25000
.0B 00 00 00 .03306		.29296 87500	.8B 00 00 00		.CB 00 00 00	.79296 87500
.0C 00 00 00 .04687		.29687 50000	.8C 00 00 00		.CC 00 00 00	.79687 50000
.0D 00 00 00 .05078	12500 .4D 00 00 00	.30078 12500	.8D 00 00 00	.55078 12500	.CD 00 00 00	.80078 12500
.0E 00 00 00 .05468		.30468 75000	.8E 00 00 00		.CE 00 00 00	.80468 75000
.0F 00 00 00 .05859	37500 .4F 00 00 00	.30859 37500	.8F 00 00 00	.55859 37500	.CF 00 00 00	.80859 37500
.10 00 00 00 .06250	00000 .50 00 00 00	.31250 00000	.90 00 00 00	.56250 00000	.D0 00 00 00	.81250 00000
.11 00 00 00 .06640	62500 .51 00 00 00	.31640 62500	.91 00 00 00	.56640 62500	.D1 00 00 00	.81640 62500
.12 00 00 00 .07031			.92 00 00 00		.D2 00 00 00	.82031 25000
1.13 00 00 00 .07421	1 '	.32421 87500	.93 00 00 00		.D3 00 00 00	.82421 87500
.14 00 00 00 .07812	•	.32812 50000	94 00 00 00		.D4 00 00 00 .D5 00 00 00	.82812 50000 .83203 12500
.15 00 00 00 .08203 .16 00 00 00 .08593		.33203 12500 .33593 75000	.95 00 00 00 .96 00 00 00		.D6 00 00 00	.83593 75000
.17 00 00 00 .08984		.33984 37500	.97 00 00 00		.D7 00 00 00	.83984 37500
.18 00 00 00 .09375		.34375 00000	.98 00 00 00	.59375 00000	.D8 00 00 00	.84375 00000
.19 00 00 00 .09765	*	.34765 62500	.99 00 00 00		.D9 00 00 00	.84765 62500
.1A 00 00 00 .10156	I I	.35156 25000	.9A 00 00 00		.DA 00 00 00	.85156 25000
.1B 00 00 00 .10546	· ·	.35546 87500	.9B 00 00 00		.DB 00 00 00 .DC 00 00 00	.85546 87500 .85937 50000
.1C 00 00 00 .10937 .1D 00 00 00 .11328		.35937 50000 .36328 12500	.9C 00 00 00 .9D 00 00 00		.DD 00 00 00	.86328 12500
.1E 00 00 00 .11718		.36718 75000	.9E 00 00 00		.DE 00 00 00	.86718 75000
.1F 00 00 00 .12109		.37109 37500	.9F 00 00 00		.DF 00 00 00	.87109 37500
20 00 00 00 12500	00000 60 00 00 00	.37500 00000	.A0 00 00 00	(2500 00000	.E0 00 00 00	.87500 00000
.20 00 00 00 .12500 .21 00 00 00 .12890		.37890 62500	.A1 00 00 00		.E1 00 00 00	.87890 62500
.22 00 00 00 .13281			.A2 00 00 00		.E2 00 00 00	.88281 25000
.23 00 00 00 .13671		.38671 87500	.A3 00 00 00		.E3 00 00 00	.88671 87500
.24 00 00 00 .14062	1		.A4 00 00 00		.E4 00 00 00	.89062 50000
.25 00 00 00 .14453		.39453 12500 .39843 75000	.A5 00 00 00		.E5 00 00 00 .E6 00 00 00	.89453 12500 .89843 75000
.26 00 00 00 .14843 .27 00 00 00 .15234			.A6 00 00 00 .A7 00 00 00	.65234 37500	.E7 00 00 00	.90234 37500
.28 00 00 00 .15625		.40625 00000	.A8 00 00 00		.E8 00 00 00	.90625 00000
.29 00 00 00 .16015	62500 .69 00 00 00	.41015 62500	.A9 00 00 00	.66015 62500	.E9 00 00 00	.91015 62500
.2A 00 00 00 .16406			.AA 00 00 00	.66406 25000	.EA 00 00 00	.91406 25000
.2B 00 00 00 .16796		.41796 87500	.AB 00 00 00			.91796 87500
.2C 00 00 00 .17187 .2D 00 00 00 .17578		.42187 50000 .42578 12500	.AC 00 00 00 .AD 00 00 00		.EC 00 00 00	.92187 50000 .92578 12500
.2E 00 00 00 .17968		.42968 75000	AE 00 00 00			.92968 75000
.2F 00 00 00 .18359		.43359 37500		.68359 37500	.EF 00 00 00	
.30 00 00 00 .18750	00000 70 00 00 00	.43750 00000	.B0 00 00 00	68750 00000	F0 00 00 00	.93750 00000
.31 00 00 00 .19140		.44140 62500	.B1 00 00 00			.94140 62500
.32 00 00 00 .19531		.44531 25000		.69531 25000		.94531 25000
.33 00 00 00 .19921	87500 .73 00 00 00	.44921 87500		.69921 87500		.94921 87500
.34 00 00 00 .20312		.45312 50000	.B4 00 00 00			.95312 50000
.35 00 00 00 .20703		.45703 12500		.70703 12500		.95703 12500
.36 00 00 00 .21093 .37 00 00 00 .21484		.46093 75000 .46484 37500	.B6 00 00 00 .B7 00 00 00	.71093 75000 71484 37500		.96093 75000 .96484 37500
.38 00 00 00 .21484	I	.46875 00000		.71875 00000	.F8 00 00 00	.96875 00000
.39 00 00 00 .22265	I	.47265 62500		.72265 62500	.F9 00 00 00	.97265 62500
.3A 00 00 00 .22656	25000 .7A 00 00 00	.47656 25000		.72656 25000	.FA 00 00 00	.97656 25000
.3B 00 00 00 .23046		.48046 87500		.73046 87500	B .	.98046 87500
.3C 00 00 00 .23437		.48437 50000	1	.73437 50000	.FC 00 00 00	.98437 50000
.3D 00 00 00 .23828 .3E 00 00 00 .24218		.48828 12500 .49218 75000	1	.73828 12500 .74218 75000		.98828 12500 .99218 75000
.3F 00 00 00 .24218	- I	.49609 37500		.74609 37500		.99609 37500
			1.5. 55 55 50			

HEXADECIMAL-DECIMAL FRACTION CONVERSION (Cont'd)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00 00 00 00	.00000 00000	.00 40 00 00	.00097 65625	.00 80 00 00	.00195 31250	.00 CO 00 00	.00292 96875
.00 01 00 00	.00001 52587	.00 41 00 00	.00099 18212	.00 81 00 00	.00196 83837	.00 C1 00 00	.00294 49462
.00 02 00 00	.00003 05175	.00 42 00 00	.00100 70800 .00102 23388	.00 82 00 00	.00198 36425 .00199 89013	.00 C2 00 00 .00 C3 00 00	.00296 02050
.00 03 00 00	.00004 57763	.00 44 00 00	.00102 23388	.00 84 00 00	.00201 41601	.00 C4 00 00	.00299 07226
	.00007 62939	.00 45 00 00	.00105 28564	.00 85 00 00	.00202 94189		.00300 59814
•	.00007 52535	.00 46 00 00	.00106 81152	.00 86 00 00	.00204 46777	.00 C6 00 00	.00302 12402
.00 07 00 00	.00010 68115	.00 47 00 00	.00108 33740	.00 87 00 00	.00205 99365	.00 C7 00 00	.00303 64990
.00 08 00 00	.00012 20703	.00 48 00 00	.00109 86328	.00 88 00 00	.00207 51953	.00 C8 00 00	.00305 17578
.00 09 00 00	.00013 73291	.00 49 00 00	.00111 38916	.00 89 00 00	.00209 04541	.00 C9 00 00	.00306 70166
.00 0A 00 00	.00015 25878	.00 4A 00 00 .00 4B 00 00	.00112 91503 .00114 44091	.00 8A 00 00 .00 8B 00 00	.00210 57128 .00212 09716	.00 CA 00 00 .00 CB 00 00	.00308 22753
.00 0B 00 00 .00 0C 00 00	.00016 78466 .00018 31504	.00 4B 00 00	.00114 44091	.00 8C 00 00	.00212 03718	.00 CC 00 00	.00311 27929
.00 OD OO OO	.00010 31304	.00 4D 00 00	.00117 49267	.00 8D 00 00	.00215 14892	.00 CD 00 00	.00312 80517
.00 OE 00 00	.00021 36230	.00 4E 00 00	.00119 01855	.00 8E 00 00	.00216 67480	.00 CE 00 00	.00314 33105
.00 OF 00 00	.00022 88818	.00 4F 00 00	.00120 54443	.00 8F 00 00	.00218 20068	.00 CF 00 00	.00315 85693
.00 10 00 00	.00024 41406	.00 50 00 00	.00122 07031	.00 90 00 00	.00219 72656	.00 D0 00 00	.00317 38281
.00 11 00 00	.00025 93994	.00 51 00 00	.00123 59619	.00 91 00 00	.00221 25244	.00 D1 00 00	.00318 90869
.00 12 00 00	.00027 46582	.00 52 00 00	.00125 12207	.00 92 00 00	.00222 77832	.00 D2 00 00 .00 D3 00 00	.00320 43457 .00321 96044
.00 13 00 00	.00028 99169 .00030 51757	.00 53 00 00	.00126 64794 .00128 17382	.00 93 00 00	.00224 30419 .00225 83007	.00 D3 00 00	.00321 98044
.00 15 00 00	.00030 31737	.00 55 00 00	.00128 17382	.00 95 00 00	.00223 35595	.00 D5 00 00	.00325 01220
.00 16 00 00	.00032 04343	.00 56 00 00	.00131 22558	.00 96 00 00	.00228 88183	.00 D6 00 00	.00326 53808
.00 17 00 00	.00035 09521	.00 57 00 00	.00132 75146	.00 97 00 00	.00230 40771	.00 D7 00 00	.00328 06396
.00 18 00 00	.00036 62109	.00 58 00 00	.00134 27734	.00 98 00 00	.00231 93359	.00 D8 00 00	.00329 58984
.00 19 00 00	.00038 14697	.00 59 00 00	.00135 80322	.00 99 00 00	.00233 45947	.00 D9 00 00	.00331 11572
.00 1A 00 00	.00039 67285	.00 5A 00 00	.00137 32910	.00 9A 00 00		.00 DA 00 00 .00 DB 00 00	.00332 64160
.00 1B 00 00	.00041 19873	.00 5B 00 00 .00 5C 00 00	.00138 85498 .00140 38085	.00 9B 00 00 .00 9C 00 00		.00 DC 00 00	.00334 16748
.00 1C 00 00 .00 1D 00 00	.00042 72460 .00044 25048	.00 5C 00 00	.00140 38083	.00 9D 00 00		.00 DD 00 00	.00337 21923
.00 1E 00 00	.00044 23048	.00 5E 00 00	.00141 30073	.00 9E 00 00		.00 DE 00 00	.00338 74511
.00 1F 00 00	.00047 30224	.00 5F 00 00	.00144 95849	.00 9F 00 00		.00 DF 00 00	.00340 27099
.00 20 00 00	.00048 82812	.00 60 00 00	.00146 48437	.00 A0 00 00	.00244 14062	.00 E0 00 00	.00341 79687
.00 21 00 00	.00050 35400	.00 61 00 00	.00148 01025	.00 A1 00 00		.00 E1 00 00	.00343 32275
.00 22 00 00	.00051 87988	.00 62 00 00	.00149 53613	.00 A2 00 00		.00 E2 00 00	.00344 84863
.00 23 00 00	.00053 40576	.00 63 00 00	.00151 06201		.00248 71826	.00 E3 00 00	.00346 37451
.00 24 00 00	.00054 93164	.00 64 00 00	.00152 58789 .00154 11376	.00 A4 00 00	.00250 24414 .00251 77001	.00 E4 00 00 .00 E5 00 00	.00347 90039 .00349 42626
.00 25 00 00	.00056 45751 .00057 98339	.00 66 00 00	.00155 63964		.00251 77001	.00 E6 00 00	.00350 95214
.00 27 00 00	.00059 50927	.00 67 00 00			.00254 82177	.00 E7 00 00	.00352 47802
.00 28 00 00	.00061 03515	.00 68 00 00			.00256 34765	.00 E8 00 00	.00354 00390
.00 29 00 00	.00062 56103	.00 69 00 00	.00160 21728	1	.00257 87353	.00 E9 00 00	.00355 52978
.00 2A 00 00	.00064 08691	.00 6A 00 00	.00161 74316	.00 AA 00 00		.00 EA 00 00	.00357 05566 .00358 58154
.00 2B 00 00 .00 2C 00 00	.00065 61279 .00067 13867	.00 6B 00 00 .00 6C 00 00	.00163 26904 .00164 79492		.00260 92529 .00262 45117	.00 EB 00 00	.00360 10742
	.00067 13867	.00 6D 00 00			.00262 43117		.00361 63330
	.00070 19042	.00 6E 00 00		.00 AE 00 00	.00265 50292	.00 EE 00 00	.00363 15917
		.00 6F 00 00		.00 AF 00 00	.00267 02880	.00 EF 00 00	.00364 68505
	.00073 24218		.00170 89843		.00268 55468	.00 FO 00 00	
.00 31 00 00	.00074 76806		.00172 42431	4	.00270 08056	.00 F1 00 00	
	.00076 29394	1 ' '	.00173 95019		.02271 60644	.00 F2 00 00	
	.00077 81982		.00175 47607		.00273 13232 .00274 65820		.00370 78857 .00372 31445
.00 34 00 00	.00079 34570 .00080 87158	.00 74 00 00	.00177 00195 .001 7 8 52783		.00274 63820		.00372 31443
	.00082 39746	.00 76 00 00			.00277 70996		.00375 36621
	.00083 92333	.00 77 00 00		.00 B7 00 00	.00279 23583		.00376 89208
.00 38 00 00	.00085 44921	.00 78 00 00	.00183 10546	.00 B8 00 00	.00280 76171	.00 F8 00 00	
.00 39 00 00		.00 79 00 00			.00282 28759	.00 F9 00 00	
b	.00088 50097	.00 7A 00 00		1.00 BA 00 00	.00283 81347	.00 FA 00 00	
	.00090 02685 .00091 55273	.00 7B 00 00 .00 7C 00 00		1.00 BC 00 00	.00285 33935 .00286 86523		.00382 99560 .00384 52148
	.00091 33273	.00 7C 00 00		.00 BC 00 00	.00288 39111		.00384 32148
	.00094 60449	.00 7E 00 00		.00 BE 00 00	.00289 91699		.00387 57324
	.00096 13037	.00 7F 00 00			.00291 44287		
	· - · - · · · · · · ·	1				<u></u>	

HEXADECIMAL-DECIMAL FRACTION CONVERSION (Cont'd)

Hexadecimal Decimal	Hexadecimal Decimal	Hexadecimal Decimal	Hexadecimal Decimal
.00 00 00 00 .00000 00000	.00 00 40 00 .00000 38146	.00 00 80 00 .00000 76293	.00 00 C0 00 .00001 14440 .00 00 C1 00 .00001 15036 .00 00 C2 00 .00001 15633
.00 00 01 00 .00000 00596	.00 00 41 00 .00000 38743	.00 00 81 00 .00000 76889	
.00 00 02 00 .00000 01192	.00 00 42 00 .00000 39339	.00 00 82 00 .00000 77486	
.00 00 02 00 .00000 01192	.00 00 42 00 .00000 39339	.00 00 82 00 .00000 77486	.00 00 C2 00 .00001 13833
.00 00 03 00 .00000 01788	.00 00 43 00 .00000 39935	.00 00 83 00 .00000 78082	.00 00 C3 00 .00001 16229
.00 00 04 00 .00000 02384	.00 00 44 00 .00000 40531	.00 00 84 00 .00000 78678	.00 00 C4 00 .00001 16825
.00 00 05 00 .00000 02980	.00 00 45 00 .00000 41127	.00 00 85 00 .00000 79274	.00 00 C5 00 .00001 17421
.00 00 06 00 .00000 03576	.00 00 46 00 .00000 41723	.00 00 86 00 .00000 79870	.00 00 C6 00 .00001 18017
.00 00 07 00 .00000 04172	.00 00 47 00 .00000 42319	.00 00 87 00 .00000 80466	.00 00 C7 00 .00001 18613
.00 00 08 00 .00000 04768	.00 00 48 00 .00000 42915	.00 00 88 00 .00000 81062	.00 00 C8 00 .00001 19209
.00 00 09 00 .00000 05364	.00 00 49 00 .00000 43511	.00 00 89 00 .00000 81658	.00 00 C9 00 .00001 19805
.00 00 0A 00 .00000 05960	.00 00 4A 00 .00000 44107	.00 00 8A 00 .00000 82254	
.00 00 0B 00 .00000 06556	.00 00 4B 00 .00000 44703	.00 00 8B 00 .00000 82850	.00 00 CB 00 .00001 20997
.00 00 0C 00 .00000 07152	.00 00 4C 00 .00000 45299	.00 00 8C 00 .00000 83446	.00 00 CC 00 .00001 21593
.00 00 0D 00 .00000 07748	.00 00 4D 00 .00000 45895	.00 00 8D 00 .00000 84042	.00 00 CD 00 .00001 22189
.00 00 0E 00 .00000 08344	.00 00 4E 00 .00000 46491	.00 00 8E 00 .00000 84638	.00 00 CE 00 .00001 22785
.00 00 0F 00 .00000 08940	.00 00 4F 00 .00000 47087	.00 00 8F 00 .00000 85234	.00 00 CF 00 .00001 23381
.00 00 10 00 .00000 09536	.00 00 50 00 .00000 47683	.00 00 90 00 .00000 85830	.00 00 D0 00 .00001 23977
.00 00 11 00 .00000 10132	.00 00 51 00 .00000 48279	00 00 91 00 .00000 86426 .00 00 92 00 .00000 87022	.00 00 D1 00 .00001 24573
.00 00 12 00 .00000 10728	.00 00 52 00 .00000 48875		.00 00 D2 00 .00001 25169
.00 00 13 00 .00000 11324	.00 00 53 00	.00 00 93 00 .00000 87618	.00 00 D3 00 .00001 25765
.00 00 14 00 .00000 11920		.00 00 94 00 .00000 88214	.00 00 D4 00 .00001 26361
.00 00 15 00 .00000 12516		.00 00 95 00 .00000 88810	.00 00 D5 00 .00001 26957
.00 00 13 00 .00000 12310	.00 00 55 00 .00000 50055 .00 00 56 00 .00000 51259 .00 00 57 00 .00000 51856	.00 00 96 00 .00000 89406	.00 00 D3 00 .00001 20337 .00 00 D6 00 .00001 27553
.00 00 18 00 .00000 14305	.00 00 58 00 .00000 52452	.00 00 98 00 .00000 90599	.00 00 D8 00 .00001 28746
.00 00 19 00 .00000 14901	.00 00 59 00 .00000 53048		.00 00 D9 00 .00001 29342
.00 00 1A 00 .00000 15497	.00 00 5A 00 .00000 53644	.00 00 9A 00 .00000 91791	.00 00 DA 00 .00001 29938
.00 00 1B 00 .00000 16093	.00 00 5B 00 .00000 54240	.00 00 9B 00 .00000 92387	.00 00 DB 00 .00001 30534
.00 00 1C 00 .00000 16689	.00 00 5C 00 .00000 54836	.00 00 9C 00 .00000 92983	.00 00 DC 00 .00001 31130 .00 00 DD 00 .00001 31726
.00 00 1D 00 .00000 17285	.00 00 5D 00 .00000 55432	.00 00 9D 00 .00000 93579	
.00 00 1E 00 .00000 17881	.00 00 5E 00 .00000 56028	.00 00 9E 00 .00000 94175	.00 00 DE 00 .00001 32322
.00 00 1F 00 .00000 18477	.00 00 5F 00 .00000 56624	.00 00 9F 00 .00000 94771	.00 00 DF 00 .00001 32918
.00 00 20 00 .00000 19073 .00 00 21 00 .00000 19669	.00 00 60 00 .00000 57220 .00 00 61 00 .00000 57816	.00 00 A0 00 .00000 95367	.00 00 E0 00 .00Q01 33514
.00 00 22 00 .00000 20265	.00 00 62 00 .00000 58412	.00 00 A2 00 .00000 96559	.00 00 E2 00 .00001 34706
.00 00 23 00 .00000 20861	.00 00 63 00 .00000 59008	.00 00 A3 00 .00000 97155	.00 00 E3 00 .00001 35302
.00 00 24 00 .00000 21457	.00 00 64 00 .00000 59604	.00 00 A4 00 .00000 97751	.00 00 E4 00 .00001 35898
.00 00 25 00 .00000 22053	.00 00 65 00 .00000 60200	.00 00 A5 00 .00000 98347	.00 00 E5 00 .00001 36494
.00 00 26 00 .00000 22649	.00 00 66 00 .00000 60796	.00 00 A6 00 .00000 98943	.00 00 E6 00 .00001 37090
.00 00 27 00 .00000 23245	.00 00 67 00 .00000 61392	.00 00 A7 00 .00000 99539	.00 00 E7 00 .00001 37686
.00 00 28 00 .00000 23841	.00 00 68 00 .00000 61988	.00 00 A8 00 .00001 00135	.00 00 E8 00 .00001 38282
.00 00 28 00 .00000 23841 .00 00 29 00 .00000 24437 .00 00 2A 00 .00000 25033	.00 00 68 00 .00000 61388	.00 00 A8 00 .00001 00731 .00 00 AA 00 .00001 01327	.00 00 E8 00 .00001 38282 .00 00 E9 00 .00001 38878 .00 00 EA 00 .00001 39474
.00 00 2B 00 .00000 25629	.00 00 6B 00 .00000 63776	.00 00 AB 00 .00001 01923	.00 00 EB 00 .00001 40070
.00 00 2C 00 .00000 26226	.00 00 6C 00 .00000 64373	.00 00 AC 00 .00001 02519	.00 00 EC 00 .00001 40666
.00 00 2 D 00 .00000 26822 .00 00 2E 00 .00000 27418	.00 00 6D 00 .00000 64969	.00 00 AD 00 .00001 03116	.00 00 ED 00 .00001 41263
	.00 00 6E 00 .00000 65565	.00 00 AE 00 .00001 03712	.00 00 EE 00 .00001 41859
.00 00 2F 00 .00000 28014 .00 00 30 00 .00000 28610	.00 00 6F 00 .00000 66161	.00 00 AF 00 .00001 04308	.00 00 EF 00 .00001 42455
.00 00 30 00 .00000 28810	.00 00 70 00 .00000 68737	.00 00 B0 00 .00001 04904	.00 00 F0 00 .00001 43031
	.00 00 71 00 .00000 67353	.00 00 B1 00 .00001 05500	.00 00 F1 00 .00001 43647
	.00 00 72 00 .00000 67949	.00 00 B2 00 .00001 06096	.00 00 F2 00 .00001 44243
.00 00 33 00 .00000 30398 .00 00 34 00 .00000 30994	.00 00 73 00 .00000 68545	.00 00 B3 00 .00001 06692	.00 00 F3 00 .00001 44839
.00 00 35 00 .00000 31590	.00 00 75 00 .00000 69737	.00 00 B5 00 .00001 07884	.00 00 F5 00 .00001 46031
.00 00 36 00 .00000 32186	.00 00 76 00 .00000 70333	.00 00 B6 00 .00001 08480	.00 00 F6 00 .00001 46627
.00 00 37 00 .00000 32782	.00 00 77 00 .00000 70929 .00 00 78 00 .00000 71525	.00 00 B7 00 .00001 09076	.00 00 F7 00 .00001 47223
.00 00 38 00 .00000 33378		.00 00 B8 00 .00001 09672	.00 00 F8 00 .00001 47819
.00 00 39 00 .00000 33974 .00 00 3A 00 .00000 34570 .00 00 3B 00 .00000 35166	.00 00 79 00 .00000 72121 .00 00 7A 00 .00000 72717	.00 00 B9 00 .00001 10268 .00 00 BA 00 .00001 10864	.00 00 F9 00 .00001 48415 .00 00 FA 00 .00001 49011
.00 00 3B 00 .00000 35166	.00 00 7B 00 .00000 73313	.00 00 BB 00	.00 00 FB 00 .00001 49607
.00 00 3C 00 .00000 35762	.00 00 7C 00 .00000 73909		.00 00 FC 00 .00001 50203
.00 00 3D 00 .00000 36358	.00 00 7D 00 .00000 74505		.00 00 FD 00 .00001 50799
.00 00 3E 00 .00000 36338 .00 00 3E 00 .00000 36954 .00 00 3F 00 .00000 37550	.00 00 7E 00 .00000 75101 .00 00 7F 00 .00000 75697	.00 00 BE 00 .00001 12832 .00 00 BE 00 .00001 13248 .00 00 BF 00 .00001 13844	.00 00 FB 00 .00001 50799 .00 00 FE 00 .00001 51395
	l	1	1

HEXADECIMAL-DECIMAL FRACTION CONVERSION (Contd)

Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal	Hexadecimal	Decimal
.00 00 00 00	.00000 00000	.00 00 00 40	.00000 00149	.00 00 00 80	.00000 00298	.00 00 00 C0	.00000 00447
.00 00 00 01	.00000 00002	.00 00 00 41	.00000 00151	.00 00 00 81	.00000 00300	.00 00 00 C1	.00000 00449
.00 00 00 02	.00000 00004	.00 00 00 42	.00000 00153	.00 00 00 82	.00000 00302	.00 00 00 C2	.00000 00451
.00 00 00 03	.00000 00006	.00 00 00 43	.00000 00155	.00 00 00 83	.00000 00305	.00 00 00 C3	.00000 00454
.00 00 00 04	.00000 00009	.00 00 00 44	.00000 00158	.00 00 00 84	.Ó0000 00307	.00 00 00 C4	.00000 00456
.00 00 00 05	.00000 00011	.00 00 00 45	.00000 00160	.00 00 00 85	.00000 00309	.00 00 00 C5	.00000 00458
.00 00 00 06	.00000 00013	.00 00 00 46	.00000 00162	.00 00 00 86	.00000 00311	.00 00 00 C6	.00000 00461
.00 00 00 07	.00000 00016	.00 00 00 47	.00000 00165	.00 00 00 87	.00000 00314	.00 00 00 C7	.00000 00463
.00 00 00 08	.00000 00018	.00 00 00 48	.00000 00167	.00 00 00 88	.00000 00316	.00 00 00 C8	.00000 00465
.00 00 00 09	.00000 00020	.00 00 00 49	.00000 00169	.00 00 00 89	.00000 00318	.00 00 00 C9	.00000 00467
.00 00 00 0A	.00000 00023	.00 00 00 4A	.00000 00172	A8 00 00 00.	.00000 00321	.00 00 00 CA	.00000 00470
.00 00 00 0B	.00000 00025	.00 00 00 4B	.00000 00174	.00 00 08 B	.00000 00323	.00 00 00 CB	.00000 00472
.00 00 00 0C	.00000 00027	.00 00 00 4C	.00000 00176	.00 00 00 BC	.00000 00325	.00 00 00 CC	.00000 00474
.00 00 00 0D	.00000 00030	.00 00 00 4D	.00000 00179	.00 00 00 8D	.00000 00328	.00 00 00 CD	.00000 00477
.00 00 00 0E	.00000 00032	.00 00 00 4E	.00000 00181	.00 00 00 8E	.00000 00330	.00 00 00 CE	.00000 00479
.00 00 00 0F	.00000 00034	.00 00 00 4F	.00000 00183	.00 00 00 8F	.00000 00332	.00 00 00 CF	.00000 00481
.00 00 00 10	.00000 00037	.00 00 00 50	.00000 00186	.00 00 00 90	.00000 00335	.00 00 00 Do	.00000 00484
.00 00 00 11	.00000 00039	.00 00 00 51	.00000 00188	.00 00 00 91	.00000 00337	.00 00 00 D1	.00000 00486
.00 00 00 12	.00000 00041	.00 00 00 52	.00000 00190	.00 00 00 92	,00000 00339	.00 00 00 D2	.00000 00488
.00 00 00 13	.00000 00044	.00 00 00 53	.00000 00193	.00 00 00 93	.00000 00342	.00 00 00 D3	.00000 00491
.00 00 00 14	.00000 00046	.00 00 00 54	.00000 00195	.00 00 00 94	.00000 00344	.00 00 00 D4	.00000 00493
.00 00 00 15	.00000 00048	.00 00 00 55	.00000 00197	.00 00 00 95	.00000 00346	.00 00 00 D5	.00000 00495
.00 00 00 16	.00000 00051	.00 00 00 56	.00000 00200	.00 00 00 96	:00000 00349	.00 00 00 D6	.00000 00498
.00 00 00 17	.00000 00053 .00000 00055	.00 00 00 57 .00 00 00 58	.00000 00202	.00 00 00 97	.00000 00351	.00 00 00 D7	.00000 00500
.00 00 00 18	.00000 00058	.00 00 00 38	.00000 00204	.00 00 00 98	.00000 00353	.00 00 00 D8	.00000 00502
.00 00 00 1A	.00000 00060	.00 00 00 39	.00000 00207	.00 00 00 94	.00000 00358	.00 00 00 D4	.00000 00505
.00 00 00 1A	.00000 00062	.00 00 00 5A	.00000 00203	.00 00 00 9A	.00000 00338	.00 00 00 DA .00 00 00 DB	.00000 00507
.00 00 00 1C	.00000 00065	.00 00 00 5C	.00000 00211	.00 00 00 9C	.00000 00363	.00 00 00 DC	.00000 00303
.00 00 00 1D	.00000 00067	.00 00 00 5D	.00000 00214	.00 00 00 9D	.00000 00365	.00 00 00 DD	.00000 00512
.00 00 00 1E	.00000 00069	.00 00 00 5E	.00000 00218	.00 00 00 9E	.00000 00367	.00 00 00 DE	.00000 00514
.00 00 00 1F	.00000 00072	.00 00 00 5F	.00000 00221	.00 00 00 9F	.00000 00370	.00 00 00 DF	.00000 00519
.00 00 00 20	.00000 00074	.00 00 00 60	.00000 00223	.00 00 00 A0	.00000 00372	.00 00 00 E0	.00000 00521
.00 00 00 21	.00000 00076	.00 00 00 61	.00000 00225	.00 00 00 A1	.00000 00374	.00 00 00 E1	.00000 00523
.00 00 00 22	.00000 00079	.00 00 00 62	.00000 00228	.00 00 00 A2	.00000 00377	.00 00 00 E2	.00000 00526
.00 00 00 23	.00000 00081	.00 00 00 63	.00000 00230	.00 00 00 A3	.00000 00379	.00 00 00 E3	.00000 00528
.00 00 00 24	.00000 00083	.00 00 00 64	.00000 00232	.00 00 00 A4	.00000 00381	.00 00 00 E4	.00000 00530
.00 00 00 25	.00000 00086	.00 00 00 65	.00000 00235	.00 00 00 A5	.00000 00384	.00 00 00 E5	.00000 00533
.00 00 00 26	.00000 00088	.00 00 00 66	.00000 00237	.00 00 00 A6	.00000 00386	.00 00 00 E6	.00000 00535
.00 00 00 27	.00000 00090	.00 00 00 67	.00000 00239	.00 00 00 A7	.00000 00388	.00 00 00 E7	.00000 00537
.00 00 00 28	.00000 00093	.00 00 00 68	.00000 00242	.00 00 00 A8	.00000 00391	.00 00 00 E8	.00000 00540
.00 00 00 29	.00000 00095	.00 00 00 69	.00000 00244	.00 00 00 A9	.00000 00393	.00 00 00 E9	.00000 00542
.00 00 00 2A	.00000 00097	.00 00 00 6A	.00000 00246	AA 00 00 00 AA	.00000 00395	.00 00 00 EA	.00000 00544
.00 00 00 2B .00 00 00 2C	.00000 00100 .00000 00102	.00 00 00 6B .00 00 00 6C	.00000 00249 .00000 00251	.00 00 00 AB	.00000 00398	.00 00 00 EB	.00000 00547
.00 00 00 2C	.00000 00102	.00 00 00 6C	.00000 00251	.00 00 00 AC .00 00 00 AD	.00000 00400	.00 00 00 EC .00 00 00 ED	.00000 00549
.00 00 00 2E	.00000 00107	.00 00 00 6E	.00000 00256	.00 00 00 AD	.00000 00402	.00 00 00 EE	.00000 00554
.00 00 00 2F	.00000 00109	.00 00 00 6F	.00000 00258	.00 00 00 AE	.00000 00403	.00 00 00 EF	.00000 00334
.00 00 00 30	.00000 00111	.00 00 00 70	.00000 00260	.00 00 00 B0	00000 00400	00 00 00 50	
.00 00 00 30	.00000 00111	.00 00 00 70	.00000 00260	.00 00 00 B0	.00000 00409	.00 00 00 F0 .00 00 00 F1	.00000 00558
.00 00 00 32	.00000 00114	.00 00 00 71	.00000 00203	.00 00 00 B1	.00000 00412	.00 00 00 F1	.00000 00563
.00 00 00 33	.00000 00118	.00 00 00 72	.00000 00267	.00 00 00 B2	.00000 00414	.00 00 00 F2	.00000 00363
.00 00 00 34	.00000 00121	.00 00 00 74	.00000 00270	.00 00 00 B4	.00000 00410	.00 00 00 F4	.00000 00363
.00 00 00 35	.00000 00123	.00 00 00 75	.00000 00272	.00 00 00 B5	.00000 00421	.00 00 00 F5	.00000 00570
.00 00 00 36	.00000 00125	.00 00 00 76	.00000 00274	.00 00 00 B6	.00000 00423	.00 00 00 F6	.00000 00572
.00 00 00 37	.00000 00128	.00 00 00 77	.00000 00277	.00 00 00 B7	.00000 00426	.00 00 00 F7	.00000 00575
.00 00 00 38	.00000 00130	.00 00 00 78	.00000 00279	.00 00 00 B8	.00000 00428	.00 00 00 F8	.00000 00577
.00 00 00 39	.00000 00132	.00 00 00 79	.00000 00281	.00 00 00 B9	.00000 00430	.00 00 00 F9	.00000 00579
.00 00 00 3A	.00000 00135	.00 00 00 7A	.00000 00284	.00 00 00 BA	.00000 00433	.00 00 00 FA	.00000 00582
.00 00 00 3B	.00000 00137	.00 00 00 7B	.00000 00286	.00 00 00 BB	.00000 00435	.00 00 00 FB	.00000 00584
.00 00 00 3C	.00000 00139 .00000 00142	.00 00 00 7C .00 00 00 7D	.00000 00288 .00000 00291	.00 00 00 BC	.00000 00437	.00 00 00 FC	.00000 00586
.00 00 00 3D	.00000 00142	.00 00 00 7D	.00000 00291	.00 00 00 BD .00 00 00 BE	.00000 00440	.00 00 00 FD .00 00 00 FE	.00000 00589
.00 00 00 3E	.00000 00144	.00 00 00 7E	.00000 00293	.00 00 00 BE	.00000 00442	.00 00 00 FE	.00000 00591
30 00 31	.00000 001-10	.00 00 71	.00000 00233	.50 00 00 BF	.50000 00444	.00 00 0FF	.00000 00393

POWERS OF TWO

MATHEMATICAL CONSTANTS

2 1	0 1.0 0.5	Constant Dec	imal Value	Hexadecimal Value
8 3	2 0.25 3 0.125	π1 0.31	4159 26535 89793 1830 98861 83790	3.243F 6A89 0.517C C1B7
32 5 64 6	4 0.062 5 5 0.031 25 5 0.015 625 7 0.007 812 5	In π 1.14 e 1.71 e-1 0.36	7245 38509 05516 4472 98858 49400 1828 18284 59045 6787 94411 71442	1.C5BF 891C 1.250D 048F 2.B7E1 5163 0.5E2D 58D9
512 9 1 024 10	3 0.003 906 25 9 0.001 953 125 0 0.000 976 562 5 0 0.000 488 281 25	V e 1.64 log ₁₀ e 0.43 log ₂ e 1.44	4872 12707 00128 3429 44819 03252 4269 50408 88963 7721 56649 01533	1.A612 98E2 0.6F2D EC55 1.7154 7653 0.93C4 67E4
8 192 13 16 384 14	2 0.000 244 140 625 3 0.000 122 070 312 5 4 0.000 061 035 156 25 5 0.000 030 517 578 125	$ \begin{array}{cccc} & & & & & & \\ & & & & \\ & & & & \\ & & & &$	4953 93129 81645 1421 35623 73095 9314 71805 59945 0102 99956 63981	
131 072 17 262 144 18	5 0.000 015 258 789 062 5 7 0.000 007 629 394 531 25 8 0.000 003 814 697 265 625 9 0.000 001 907 348 632 812 5	√ 10 3.16	6227 76601 68379 0258 40929 94046	3.298B 075C 2.4D76 3777
2 097 152 21 4 194 304 22	0 0.000 000 953 674 316 406 25 0.000 000 476 837 158 203 125 2 0.000 000 238 418 579 101 562 5 3 0.000 000 119 209 289 550 781 25	;		
33 554 432 25 67 108 864 26	4 0.000 000 059 604 644 775 390 62 5 0.000 000 029 802 322 387 695 31 5 0.000 000 014 901 161 193 847 65 7 0.000 000 007 450 580 596 923 82	2 5 6 25		
536 870 912 29 1 073 741 824 30	3 0.000 000 003 725 290 298 461 91 9 0.000 000 001 862 645 149 230 95 0 0.000 000 000 931 322 574 615 47 0.000 000 000 465 661 287 307 73	7 031 25 8 515 625		
8 589 934 592 33 17 179 869 184 34	2 0.000 000 000 232 830 643 653 86 3 0.000 000 000 116 415 321 826 93 4 0.000 000 000 058 207 660 913 46 5 0.000 000 000 029 103 830 456 73	4 814 453 125 7 407 226 562 5		
137 438 953 472 37 274 877 906 944 38	0.000 000 000 014 551 915 228 36 0.000 000 000 007 275 957 614 18 0.000 000 000 003 637 978 807 09 0.000 000 000 001 818 989 403 54	3 425 903 320 312 5 1 712 951 660 156 25	5	
2 199 023 255 552 41 4 398 046 511 104 42	0 0.000 000 000 000 909 494 701 77 0.000 000 000 000 454 747 350 88 2 0.000 000 000 000 227 373 675 44 3 0.000 000 000 000 113 686 837 72	6 464 118 957 519 53 3 232 059 478 759 76	31 25 65 625	
35 184 372 088 832 45 70 368 744 177 664 46	4 0.000 000 000 000 056 843 418 86 5 0.000 000 000 000 028 421 709 43 6 0.000 000 000 000 014 210 854 71 7 0.000 000 000 000 007 105 427 35	0 404 007 434 844 97 5 202 003 717 422 48	70 703 125 85 351 562 5	
562 949 953 421 312 49 1 125 899 906 842 624 50	8 0.000 000 000 000 003 552 713 67 0 0.000 000 000 000 001 776 356 83 0 0.000 000 000 000 000 888 178 41 0 0.000 000 000 000 000 444 089 20	9 400 250 464 677 81 9 700 125 232 338 90	10 668 945 312 5 05 334 472 656 25	
9 007 199 254 740 992 53 18 014 398 509 481 984 54	2 0.000 000 000 000 000 222 044 60 6 0.000 000 000 000 000 111 022 30 7 0.000 000 000 000 000 055 511 15 8 0.000 000 000 000 000 027 755 57	2 462 515 654 042 36 1 231 257 827 021 18	63 166 809 082 031 81 583 404 541 015	25 625
144 115 188 075 855 872 57 288 230 376 151 711 744 58	0.000 000 000 000 000 013 877 78 0.000 000 000 000 000 006 938 89 0.000 000 000 000 000 003 469 44 0.000 000 000 000 000 001 734 72	3 903 907 228 377 64 6 951 953 614 188 82	47 697 925 567 626 23 848 962 783 813	953 125 476 562 5
2 305 843 009 213 693 952 61 4 611 686 018 427 387 904 62	0 0.000 000 000 000 000 000 867 36 0.000 000 000 000 000 000 000 433 68 0 0.000 000 000 000 000 000 216 84 0 0.000 000 000 000 000 000 108 42	0 868 994 201 773 60 0 434 497 100 886 80	02 981 120 347 976 01 490 560 173 988	684 570 312 5 342 285 156 25

PUBLICATION COMMENT FORM

From		Date	
Title		- Construction of Addition	
Company		Publication Title	
Address		Publication Number	V.114.0000
-			
Chack the	e appropriate item.		
		,	
Error	(Page No, Drawing N		
	(Page No, Drawing N		
Other	(Page No, Drawing N	0)	
Explanat	ion:		

FOLD

FOLD

POSTAGE WILL BE PAID BY ADDRESSEE NO
POSTAGE STAMP
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

PERMIT NUMBER 4991, ORLANDO, FLORIDA

Customer Support Group
WESTINGHOUSE COMPUTER DEPARTMENT
Westinghouse Electric Corporation
1200 West Colonial Drive
Orlando, Florida 32804

WESTINGHOUSE 2500 INSTRUCTION SET IN HEXADECIMAL

	ABSO	LUTE	RELA	TIVE	PRE-IN	NDEX B	PRE-IN	DEX C
INSTRUCTION	DIR	IND	DIR	IND	DIR	IND	DIR	IND
STP	00	01	02	03	04	05	06	07
LDB	08	09	0A	0B	0C	OD	0E	0F
LDC	10	11	12	13	14	15	16	17
LDG	18	19	1A	1B	1 C	1Đ	1E	1F
LDE	20	21	22	23	24	25	26	27
LDA	28	29	2A	2B	2C	2D	2E	2F
CDR	30*	31*	32*	33*	34*	35*	36*	37*
STZ	38	39	3A	3B	3C	3D	3E	3F
ADD	40	41	42	43	44	45	46	47
SUB	48	49	4A	4B	4C	4D	4E	4F
EOR	50	51	52	53	54	55	56	57
AND	58	59	5A	5B	5C	5D	5E	5F
INC	60	61	62	63	64	65	66	67
DCR	68	69	6A	6B	6C	6D	6E	6F
JMP	70	71	72	73	74	75	76	77
OJP	78	79	7 A	7B	7C	7D	7E	7F
OTR	80*							
IOA	88*	89*	8A*	8B*	8C*	8D*	8E*	8F*
ITR	90+							
SHF	98	99	9A	9B	9C	9D	9E	9F
STL	Α0	Al	A 2	A3	A4	A 5	A6	A7
STA	A8	A9	AA	AB	AC	AÐ	AE	AF
PJP	В0	B 1	82	B 3	B4	B5	86	В7
NJP	В8	В9	βА	88	вс	ВÐ	8E	BF
ADA	CO	CI	C2	C3	C4	C 5	C6	C 7
SDA	C8	C9	CA	СВ	сс	CD	CE	CF
MPY	òa	1G	D2	DЗ	D4	D5	D6	D7
ыv	D8	D9	DA	DB	DC	DD	DE	ÐΙ
EST	10	E.1	£2	į š	1,4	£.5	£.6	£.7
551	£8+	E9*	ŁA*	LB*	EC*	ED*	EL*	EF*
ZJP	10	10	1-2	5 3	1.4	1.5	F6	F 7
CJP	18	F 9	IA	I B	TC	FD	FE	FF
	NOT C	ISEQ		-	• SPECIAI	MEANIN	G	

