IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2014-15**

EEE/EIE PART III/IV: MEng, BEng and ACGI

CONTROL ENGINEERING

Friday, 19 December 9:00 am

Time allowed: 3:00 hours

There are FOUR questions on this paper.

Answer ALL questions.

All questions carry equal marks

Corrected Copy

9:35 An CORRECTION ON GUESTION 2 a.ii) SEF INSIDE

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

A. Astolfi

Second Marker(s): D. Angeli

CONTROL ENGINEERING

1. Consider a linear, single-input, discrete-time, system of dimension n = 3, that is $x = [x_1, x_2, x_3]'$, with

$$A = \left[\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right], \qquad B = \left[\begin{array}{r} 0 \\ 1 \\ 0 \end{array} \right].$$

- a) Study the reachability and controllability properties of the system. [4 marks]
- b) Compute the set of states \mathcal{R}_2 that can be reached from x(0) = 0 in two steps. [4 marks]
- Determine the set of states \mathcal{C}_2 that can be controlled to zero in two steps. Explain why the set \mathcal{C}_2 is larger than the set \mathcal{R}_2 . [6 marks]
- d) Consider a state feedback control law u = Kx and determine the set of all matrices K such that the matrix A + BK has all eigenvalues equal to 0. Explain why the matrix assigning the closed-loop eigenvalues exists, but it is not unique, and determine the matrix K which is such that KK^T is minimal. [6 marks]

 Consider the problem of regulating the temperature of a shower. The system can be modeled as a linear discrete-time system described by the equation

$$T(t+h) = u(t),$$

in which h is a positive integer, T denotes the temperature of the water, and u is the user selected control signal. The constant h models how fast the boiler is to react to the user command. Most people update u depending on the difference between the current temperature and their favourite temperature T_0 , thus implementing the equation

$$u(t) = u(t-1) - \alpha(T(t) - T_0),$$

where $\alpha \in (1,2)$.

- a) Assume h = 1, that is the boiler is fast.
 - By eliminating the variable u write the equation of the closed-loop system as a difference equation in the variable T(t) with input T_0 .

[2 marks]

Study the stability properties of the system determined in part a: i) as a function of the parameter $\alpha \in (1,2)$. [2 marks]

- b) Assume h = 2, that is the boiler is slow.
 - By eliminating the variable u write the equation of the closed-loop system as a difference equation in the variable T(t) with input T_0 .

[4 marks]

ii) Let T(t) be the output of the system. Determine a state space representation for the system, that is write the equation of the system in the form

$$x^+ = Ax + Bu, y = Cx,$$

where x is the state vector with two components, y(t) = T(t) and $u(t) = T_0$. Write explicitly the matrices A, B and C. [6 marks]

- Study the stability properties of the system determined in part c.ii) as a function of the parameter $\alpha \in (1,2)$. [4 marks]
- c) Explain why a fast boiler gives a better shower. [2 marks]

3. A linear, continuous-time, descriptor system is a system described by the equations

$$E\dot{x} = Ax + Bu,$$
 $y = Cx,$

in which $x(t) \in \mathbb{R}^n$ denotes the state of the system, $u(t) \in \mathbb{R}^m$ the input signal and $y(t) \in \mathbb{R}^p$ the output signal. The matrix $E \in \mathbb{R}^{n \times n}$ is singular, whereas the matrices A, B and C are defined as for standard linear systems.

Descriptor systems often arise as the result of a modeling process whenever too many states have been introduced and can be transformed, under certain conditions, into standard linear systems using the simple procedure described in what follows for a specific example.

Let
$$x(t) = [x_1(t) \ x_2(t) \ x_3(t)]'$$

$$E = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \qquad A = \left[\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{array} \right], \qquad B = \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right], \qquad C = \left[\begin{array}{ccc} 1 & 1 & 1 \end{array} \right].$$

a) Write explicitly, that is one by one, the three equations

$$E\dot{x} = Ax + Bu$$
.

[2 marks]

- b) Observe that one of the equations in part a) does not contain any time derivative. Solve this equation for the variable x_3 and use the solution to eliminate the variable x_3 from the differential equations and from the equation that defines the output signal. [2 marks]
- Write the differential equations and the output equation computed in part b) in the form

$$\dot{\chi} = A_r \chi + B_r u, \qquad \qquad y = C_r \chi + D_r u,$$

with $\chi(t) \in \mathbb{R}^2$. Compute explicitly the matrices A_r , B_r C_r and D_r . [4 marks]

- The eigenvalues of the descriptor system are the solution of the equation $\det(\lambda E A) = 0$. Compute the eigenvalues of the considered descriptor system and show that these coincide with the eigenvalues of the matrix A_r . [4 marks]
- e) Show that the system determined in part c) is observable. The descriptor system is observable if

$$\operatorname{rank}\left[\begin{array}{c} \lambda E - A \\ C \end{array}\right] = 3,$$

for all λ which are eigenvalues of the descriptor system. Show that the descriptor system is observable. [4 marks]

f) Show that the system determined in part c) is controllable. Show using the definition of controllability and the simplest possible argument that the descriptor system is also controllable. [4 marks]

4. Consider a nonlinear, continuous-time, system described by the equations

$$\dot{x} = f(x) = \left[\begin{array}{c} x_2^2 \\ x_3^2 \\ 0 \end{array} \right],$$

with $x(t) = [x_1(t), x_2(t), x_3(t)]' \in \mathbb{R}^3$.

a) Compute all equilibrium points of the system.

[2 marks]

Compute the linearization of the system around the equilibrium points determined in part a) and write explicitly the matrix A of the linearized system.
(Hint: the matrix A is the same at all equilibrium points.)

[4 marks]

- c) Study the stability properties of the linearized system. [2 marks]
- d) Solve the differential equations of the nonlinear system to determine x(t) as a function of x(0), hence argue that all equilibrium points of the system are unstable. [6 marks]
- e) Consider the output equation $y = x_1$. Show that

$$\frac{d^4y}{dt^4} = 0,$$

hence argue that the nonlinear system with output can be rewritten as a linear system with equations

$$\dot{x}_e = A_e x_e, \qquad \qquad y = C_e x_e,$$

with $x_e(t) \in \mathbb{R}^4$. Write explicitly the matrices A_e and C_e . [6 marks]

b
141