Non-Parametric Learners: KNN, Decision Trees

Isaac Laughlin

May 9, 2016

Objectives

At the end of today's lecture you should:

- Be able to describe the KNN algorithm.
- ② Describe the curse of dimensionality.
- Recognize the conditions under which the curse may be problematic.
- Enumerate strengths and weaknesses of KNN.

KNN

Figure 1:A classification problem

New data point

Figure 2:An uknown point

KNN

Figure 3:The approach

The KNN algorithm

Training:

Store all data.

Prediction:

- Calculate the distance from new point to all points in dataset.
- Yeep the k nearest points to new point.
- Predict the majority label.

What's k?

Figure 4:k = 5, 10, 40

Figure 5:k=1

Figure 6:k=3

Figure 7:k = 10

Figure 8:k = 100

Distance Metrics

So far we haven't been explicit about what distance metrics we're using. Some choices:

• Euclidean:

$$\sqrt{\sum_i (a_i - b_i)^2}$$

Manhattan:

$$\sum_{i} |a_i - b_i|$$

Cosine:

$$1 - \frac{a \cdot b}{||a||||b||}$$

Variants

- One variant is to weight the votes by $\frac{1}{d_i}$ so closer points get more weight.
- Use for regression, take (optionally, weighted) mean of continuous target rather than vote.
- Approximate nearest neighbors, overcomes performance issues.

Curse of Dimensionality

Curse of dimensionality

Figure 9: Curse of Dimensionality

Another view

Figure 10:Hypercubes

Still another view

You have a dataset with 100 samples and one predictor.

You decide 1 predictor isn't enough so you decide to measure 10 predictors instead.

How many samples do you need to achieve the same sample density you originally had?

$$100^10 = 1,000,000,000,000,000,000$$

Last one

$$lim_{d\rightarrow\infty}\frac{V_{sphere}(R,d)}{V_{cube}(R,d)}=lim_{d\rightarrow\infty}\frac{\frac{\pi^{d/2}R^d}{\Gamma(d/2+1)}}{(2R)^d}=lim_{d\rightarrow\infty}\frac{\pi^{d/2}}{2^d\Gamma(d/2+1)}=0$$

