Project 4 Predictive Modeling

Optical Character Recognition

Group 2

Index

- Project Goal
- Error Detection
- Feature Extraction
- Model: Adaboost
- Evaluation
- More Thoughts...

PROJECT GOAL

Pre-processing and Word recognition:

- 1. converting scanned images into machine readable character streams
- 2. process raw scanned images relying on the Tessearct OCR machine

Methods:

- 1. Rule-based techniques
- 2. Supervised model correction regressor

Evaluation on:

- 1. Precision: is the percentage of correctly found words with respect to the total word count of the OCR output
- 2. Recall: the percentage of words in the original text correctly found by the OCR engine

PROCEDURE

Error Detection

- Example: ?3//la'.
- Example: b?bl@bjk.1e.322
- Example: aaaaaBIE
- Example: BBEYaYYq
- Example: jabwqbpP
- Example: buauub
- Example: awwgrapHic

	Leading Co.	
	Tesseract	Ground_Truth
0	1nd1v1duals	individuals
1	representlng	representing
2	you	your
3	companles	companies
4	1ndustry	industry
5	commlttee	committee
6	companles	companies
7	placing	placing
8	1ncrease	increased
9	communications	communications
10	skllls	skills
11	senlor	senior
12	on	0n
	medla	media
14	reltlons	relations
15	1n	in

FEATURE

Levenshtein edit distance

$$score(\mathbf{w}_c, \mathbf{w}_e) = 1 - \frac{dist(\mathbf{w}_c, \mathbf{w}_e)}{\delta + 1}$$

String similarity

$$score(\mathbf{w}_c, \mathbf{w}_e)$$

$$= \alpha_1 \cdot nlcs(\mathbf{w}_c, \mathbf{w}_e) + \alpha_2 \cdot nmnlcs_1(\mathbf{w}_c, \mathbf{w}_e)$$

$$+ \alpha_3 \cdot nmnlcs_n(\mathbf{w}_c, \mathbf{w}_e) + \alpha_4 \cdot nmnlcs_z(\mathbf{w}_c, \mathbf{w}_e).$$

Language popularity

$$score(\mathbf{w}_c, \mathbf{w}_e) = \frac{freq_1(\mathbf{w}_c)}{\max_{\mathbf{w}'_c \in C} freq_1(\mathbf{w}'_c)}.$$

Lexicon existance

$$score(\mathbf{w}_c, \mathbf{w}_e) = \begin{cases} 1 & \text{if } \mathbf{w}_c \text{ exists in the lexicon} \\ 0 & \text{otherwise} \end{cases}$$

Exact-context popularity

$$score(\mathbf{w}_c, \mathbf{w}_e) = \frac{\sum_{\mathbf{c} \in \mathcal{G}_c} freq_n(\mathbf{c})}{\max_{\mathbf{w}_c' \in \mathcal{C}} \{\sum_{\mathbf{c}' \in \mathcal{G}_c'} freq_n(\mathbf{c}')\}}$$

Relaxed-context popularity

Candidate Search

 $\{ w_c | w_c \in \mathcal{L}, dist(w_c, w_e) \leq \delta \},$

Candidate Search Results:

	Туро	Truth	Candidate	led_score	ss_score	lp_score	Label	predicted_confidence	
0	willlam	william	will	0.25	1.636364	1.000000	0	0.418665	
1	willlam	william	willful	0.25	1.607143	0.001712	0	0.082236	
2	willlam	william	william	0.75	2.142857	0.039954	1	0.636513	
3	willlam	william	williams	0.50	1.866667	0.003995	0	0.095767	
4	willlam	william	willing	0.25	1.285714	0.006849	0	0.056328	
5	willlam	william	wills	0.25	1.500000	0.000571	0	0.056328	
6	nvolvng	involving	cooling	0.25	0.857143	0.011494	0	0.026191	
7	nvolvng	involving	evolve	0.25	0.961538	0.045977	0	0.027614	
8	nvolvng	involving	evolved	0.25	0.892857	0.034483	0	0.027614	
9	nvolvng	involving	evolves	0.25	0.892857	0.011494	0	0.027614	
10	nvolvng	involving	evolving	0.50	1.633333	0.057471	0	0.108891	
11	nvolvng	involving	involvad	0.25	0.833333	0.011494	0	0.026191	
12	nvolvng	involving	involve	0.25	0.892857	0.126437	0	0.027614	
13	nvolvng	involving	involved	0.25	0.833333	1.000000	0	0.026191	
14	nvolvng	involving	involves	0.25	0.833333	0.160920	0	0.026191	
15	nvolvng	involving	involve	0.25	0.833333	0.011494	0	0.026191	
16	nvolvng	involving	involving	0.50	1.656250	0.505747	1	0.609977	

Adaboost

MODEL SELECTION

- AdaBoost (with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.
- When used with decision tree learning, information gathered at each stage of the AdaBoost algorithm about the relative 'hardness' of each training sample is fed into the tree growing algorithm such that later trees tend to focus on harder-to-classify
- AdaBoost is sensitive to noisy data and outliers. In some problems it can be less susceptible to the overfitting problem than other learning algorithms.

Adaboost

Parameter Tuning

```
In [70]: for mean score, params in zip(cvres["mean test score"], cvres["params"]):
             print(mean score, params)
         0.40374915824108776 {'learning rate': 0.01, 'loss': 'linear', 'n estimators': 50}
         0.3680232694914383 {'learning rate': 0.01, 'loss': 'linear', 'n estimators': 100}
         0.4023762621878514 {'learning_rate': 0.01, 'loss': 'square', 'n estimators': 50}
         0.34098242730811906 {'learning rate': 0.01, 'loss': 'square', 'n estimators': 100}
         0.4083847633391772 {'learning rate': 0.01, 'loss': 'exponential', 'n estimators': 50}
         0.39643609293192866 {'learning rate': 0.01, 'loss': 'exponential', 'n estimators': 100}
         0.15414374962757887 {'learning rate': 0.05, 'loss': 'linear', 'n estimators': 50}
         -0.23349487386235154 {'learning_rate': 0.05, 'loss': 'linear', 'n_estimators': 100}
         -0.10284196383632471 {'learning rate': 0.05, 'loss': 'square', 'n estimators': 50}
         -0.9978515475452031 {'learning rate': 0.05, 'loss': 'square', 'n estimators': 100}
         0.27868712935106005 {'learning rate': 0.05, 'loss': 'exponential', 'n estimators': 50}
         -0.05210748438201115 {'learning_rate': 0.05, 'loss': 'exponential', 'n estimators': 100}
         -0.18220429066384375 {'learning rate': 0.1, 'loss': 'linear', 'n estimators': 50}
         -0.3433878616741871 {'learning rate': 0.1, 'loss': 'linear', 'n estimators': 100}
         -0.9308229281848934 {'learning_rate': 0.1, 'loss': 'square', 'n_estimators': 50}
         -1.0131045582770672 {'learning rate': 0.1, 'loss': 'square', 'n estimators': 100}
         -0.06313284282744469 {'learning rate': 0.1, 'loss': 'exponential', 'n estimators': 50}
         -0.7592209661142575 {'learning rate': 0.1, 'loss': 'exponential', 'n estimators': 100}
         -0.31279929981489774 {'learning rate': 0.3, 'loss': 'linear', 'n estimators': 50}
         -0.37670143401303086 {'learning_rate': 0.3, 'loss': 'linear', 'n estimators': 100}
         -1.0867650054545688 {'learning rate': 0.3, 'loss': 'square', 'n estimators': 50}
         -0.976816075191342 {'learning rate': 0.3, 'loss': 'square', 'n estimators': 100}
         -1.0901767341119117 {'learning rate': 0.3, 'loss': 'exponential', 'n estimators': 50}
         -1.5741717968173896 {'learning rate': 0.3, 'loss': 'exponential', 'n estimators': 100}
         0.37608463662658714 {'learning rate': 1, 'loss': 'linear', 'n estimators': 50}
         0.38336523445017 {'learning rate': 1, 'loss': 'linear', 'n estimators': 100}
         0.38065389767817553 {'learning rate': 1, 'loss': 'square', 'n estimators': 50}
         0 202122207256122755 ('loopping mate', 1 'loop', 'cause' 'm actimatere', 100)
```

Parameter Tuning

```
ada_grid_search_fit.best_estimator_
```

AdaBoostRegressor(base_estimator=None, learning_rate=0.01, loss='exponential', n estimators=50, random state=None)

EVALUATION

- Recall is the percentage of words in the original text correctly found by the OCR engine
- Precision is the percentage of correctly found words with respect to the total word count of the OCR output

	Measure	Tesseract	Post
0	word_wise_recall	0.645514	0.737842
1	word_wise_precision	0.651473	0.744653
2	character_wise_recall	0.921204	0.941582
3	character_wise_precision	0.950425	0.969046

If we have more time ...

- Larger vocabulary dictionary
- Contextual constraints
- Study other methods, e.g ngrams, nn

Thanks!

Refence

- 1. (C2) Mei, Jie, et al. Statistical Learning for OCR Text Correction. School of Computing and Informatics, University of Louisiana at Lafayette, 2016.
- 2. (D1) Kulp, Scott, and April Kontostathis. On Retrieving Legal Files: Shortening Documents and Weeding Out Garbage. Collegeville, Department of Mathematics and Computer Science, Ursinus College.