Multiplication-based Arithmetic Divider

RHGL

May 4, 2020

1 Applicable Usage

This is document describes RTL implementation of a very fast unsigned fixed-point number divider with low cost. The division operation is realized by multiplication operator that is easily synthesizable in most of tools. Considering scenarios and characters below for adoptions:

1. limited number of divisor:

In the RTL implementation, each divisor is handled separately in a case statement, associated with an unique hard-coded *magic number*. So, if there are hundreds of possible divisors in the application, this is not a suitable solution. In the provided RTL example, multiplication_based_divider.sv and multiplication_based_divider.vhdl, the dividend is 32 bits width and possible divisor are [1,2,3, ..., 15].

- 2. synthesizable
- 3. high speed
- 4. low cost

Section 2 explains how to convert a division operation to a multiplication operation. Section 3 shows the usage of the SV module to calculate *magic number*.

2 Mathematical Proof

We denote **dividend** as N (numerator), **divisor** as D (denominator), **quotient** as Q and **reminder** as R. The fundamental equation to be solved is

$$\frac{N-R}{D} = Q$$

, where N/D can be re-written as $\frac{N}{2^k}\frac{2^k}{D}$, N is a N_-W bits unsigned number and $Q = \left\lfloor \frac{N}{D} \right\rfloor = \left\lfloor \frac{N}{2^k}\frac{2^k}{D} \right\rfloor$. Assuming there are n divisors, $D_0, D_1, ..., D_{n-1}$, for each D_i , because $2^{k_i}/D_i$ can be an non-integer number, we precompute the closest integer number of $\frac{2^{k_i}}{D_i}$ and denote it as $M_i = \left\lceil \frac{2^{k_i}}{D_i} \right\rceil$. To compensate the difference caused by *ceiling* operation, $\left\lceil \right\rceil$, we introduce e into equation:

$$M_i = \left\lceil \frac{2^{k_i}}{D_i} \right\rceil = \frac{2^{k_i} + e}{D_i}$$

, where $0 \le e \le D_i - 1$. Because M_i is an integer number, by replacing $\frac{2^k}{D}$ with M_i , we can calculate Q':

$$Q' = \left| \frac{NM_i}{2^{k_i}} \right| = \left| \frac{N}{2^{k_i}} \frac{2^{k_i} + e}{D_i} \right| = \left| \frac{N}{D_i} + \frac{Ne}{D_i 2^{k_i}} \right|$$

We need to find the smallest k_i so that Q is equal to Q'. The constraints are

- a) $\frac{Ne}{D_i 2^{k_i}} < 1$
- b) The sum of the fractional part of $\frac{N}{D_i}$ and the fractional part of $\frac{Ne}{D_i 2^{k_i}}$ is less than 1

For a), the maximum value of N is $2^{N-W}-1$ and $e \leq D_i$, so to satisfy a), we have

$$k_i \ge N_- W$$
 (constraint_a)

For b), the maximum value of the fractional part of $\frac{N}{D_i}$ is $\frac{D_i-1}{D_i}$. So b) is equivalent to

$$\begin{split} &\frac{D_i-1}{D_i} + \frac{Ne}{D_i 2^{k_i}} < 1 \\ \Rightarrow &\frac{Ne}{D_i 2^{k_i}} < \frac{1}{D_i}, \text{for all } N \\ \Rightarrow &2^{k_i} > e N_{max} \end{split} \tag{constraint_b}$$

, where $0 \le e \le D_i - 1$ and is used to round up $\frac{2^{k_i}}{D_i}$ to the closest integer number. When **constraint_a** and **constraint_b** are both met, the integer part of Q' is the same as the integer part of Q, and the fractional part will be wiped out by the $\lfloor \rfloor$ operation, so we have Q == Q'.

2.1 An Example

Considering an example, where $N_-W == 32$ and $D \in [1, 2, 3, ..., 15]$, for the D_i that is not a power of 2, the corresponding M_i , K_i are

D_i	3		5	6			7		9	10	
M_i in Hex	AAAA_AAAB CC		CCCC_CCCD		AAAA_AAAB		2492_4925 381		E3_8E39	CCCC_CCCD	
M_i width	32	;	32		32		33		30	32	
$\overline{K_i}$	33		34	34			35		33	35	
	D_i	11		12			14		15		
	M_i in Hex	ba2e_8ba3	AAAA_AAAB		$4ec4_ec4f$		1_2492_49	925	8888_888	389	
	M_i width	32		32			33		32		
	K_i	35	35		34		36		35		

Table 1: An example: $N_-W == 32$ and $D \in [1, 2, 3, ..., 15]$

2.2 Calculation Shortcuts

In the circumstances below, it is not necessary to calculate M_i for D_i .

- 1. When $D_i == 2^k$, division can be simplified by logic shift followed by \square operation.
- 2. When $D_i == D_a D_b \ (i > a; i > b)$,

$$Q_i = \left| \frac{N}{D_i} \right| = \left| \frac{NM_i}{2^{k_i}} \right| \tag{1}$$

$$Q_i' = \left\lfloor \frac{\left\lfloor \frac{NM_a}{2^k a} \right\rfloor M_b}{2^{k_b}} \right\rfloor \tag{2}$$

If Q_i (in (1)) is equal to Q'_i (in (2)), then Q_i can be calculated step-by-step without pre-computing M_i . (2) can be rewritten as

$$N = Q_a * D_a + R_a, Q_a = \left\lfloor \frac{NM_a}{2^{k_a}} \right\rfloor, 0 \le R_a < D_a$$

$$Q_a = Q_b * D_b + R_b, Q' = Q_b = \left\lfloor \frac{Q_a M_b}{2^{k_b}} \right\rfloor, 0 \le R_b < D_b$$

$$\Rightarrow N = Q_b * D_b * D_a + R_b * D_a + R_a$$

$$\Rightarrow \frac{N}{D_a D_b} = Q_b + \frac{R_b}{D_b} + \frac{R_a}{D_a D_b}$$
(3)

Obviously, $\frac{R_a}{D_aD_b} < \frac{1}{D_b}$, so $\frac{R_b}{D_b} + \frac{R_a}{D_aD_b} < \frac{R_b}{D_b} + \frac{1}{D_b} \le 1$. Therefore, in (3), $\lfloor \frac{N}{D_aD_b} \rfloor == \lfloor Q_b + \frac{R_b}{D_b} + \frac{R_a}{D_aD_b} \rfloor$ and Q_b is the final quotient which can be calculated in two steps.

3. Furthermore, when $D_i == D_a D_b * ... * D_z$, we can calculate Q_z step-by-step and it is easy to prove the finial Q_z (Q') is equal to Q, so that we don't bother to calculate M_i for each D_i .

In Table 1, it is not necessary to calculate M_i for 6, 9, 10, 12, 14, 15.

3 SV module to calculate M_i

Use find_magic_number.sv to calculate magic numbers for the given dividend width and divisor. There are 3 localparam in this file:

- 1. dividend_width
- 2. **k_upbou**: The SVmodule iteratively tries k is equal to an integer number from **dividend_width** to **k_upbound** until the magic number is found. *k_upbound* should be greater than dividend at least. If there no *magic number* is found, increase *k_upbound* to a larger number.
- 3. divisor

Note: need to set **UVMHOME** for your simulator, because 'uvm_info is used.

4 Verification

To be continued...