6. Definition of the Riemann Integral

Let I = [a, s], and Intoval.

Girm Xo=a < x, < x2 < ... < xn < xn=1,

we call P = { so, x, ..., xu} a partition of I

We denote $\overline{J}_i = [x_{ij}, x_i]$ and $\Delta x_i = x_i - x_{i-1}$ for i = 1, 2, ..., n.

A partition is called consideratify all It have equal length DX:

We denote the set of all potitions of I by P.

Pr is called a refinement of Pr if Pr = Pr

Two arbitrary partitions P, and P, have a common refinement,

for example P=P, UPz is only a refinement. The notion of

refrient defres a partial order on P.

 $\nabla(P) = \max \{ \Delta \times_{c} \} \text{ i.e., z., or }$ is welled the mesh of P

P_ EP2 implies \(\(P_1 \) \(\ge \) \(\Gamma \) , i.e. a refinement has a smaller with.

Examples 1) $P = \{a, a + \frac{b-a}{h}, a + 2 \frac{b-a}{h}, \dots, a + n \frac{b-a}{h} = 5\}$

is an equidistant partition will $\sigma(P) = \frac{b-a}{h}$

2) $P_2 = \left\{0, \frac{1}{2n}, \frac{2}{2n}, \dots, \frac{2n}{2n}\right\}$ is a refinant of $P_1 = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$

 $\nabla (P_i) = \frac{1}{2n} < \sigma (P_i) = \frac{1}{n}$

Note that P3 = 30, min, min, -, will is not a refresh of P1.

P= 3x0, x,, . , x, } be a partition of [a,5].

We define the upposum of f with respect to
$$P$$

$$U(J_1P) = \sum_{i=1}^{n} M_i D \times i$$

where Mizsup { J(x) | x = Ii], mi = my } J(x) | x = Ii].

Geometrically, the coea of lockween three x-axis and the graph of J(k) for a lob shall satisfy $L(J,P) \leq FI \leq U(J,P)$

(3 Feb 5)

Theorem 26 let f: [4,5] -> IT be bounded. If Po is a

refreend of the partition of them.

Proof

1) Let
$$P_1 = \{x_0, x_1, \dots, x_n\}$$
 and $P_2 = P_1 \cup \{y\}$

If $x_{i-1} < y < x_i$ then

 $M' = \sup_{x \in Y} \{f(x) \mid x_{i-1} \le x \le y\} \le M_i$

and $M' = \sup_{x \in Y} \{f(x) \mid y \le x \le x_i\} \le M_i$

and
$$M_i \Delta x_i = M_i (y - x_{i-1}) + M_i (x_i - y)$$

$$\geq M'(y - x_{i-1}) + M'(x_i - y)$$

so that

$$U(J_{1}(i)) = \sum_{j=1}^{n} M_{j} \otimes x_{j} + M_{i} \otimes x_{i}$$

$$\geq \sum_{j=1}^{n} M_{j} \otimes x_{j} + M'(y - x_{i+1}) + M''(x_{i}, y)$$

$$= U(J_{1}, P_{2})$$

2) Let P_2 be an orbitary refreend of P_1 . Then P_2 is obtained from P_3 by adding a fresh number of points P_3 , creating a chain of post-three $P_4 = Q_0 = Q_1 = \dots = Q_n = P_2$ and by i) $U(J_1,P_1) > U(J_1,Q_2) \geq \dots \geq U(J_n,Q_n)$

Ashila agent had be L(J, P2) ≥ L(J, P1)

Corollary Lt P, Pr & partitions of Ea,6). The $L(J,P_r) \leq U(J,P_r)$

Proof Let $P \geq P_1 \cup P_2$ be a comm refrest of P_1 and P_2 .

Then $L(J_1, P_1) \leq L(J_1, P_2) \leq U(J_1, P_2) \leq U(J_1, P_2) \leq U(J_2, P_2) \leq$

Corollary $\{U(f,P) \mid P \in P\}$ is bounded below $\{L(f,P) \mid P \in P\}$ is bounded above

We define the suppose on legace of of $\int_{a}^{\infty} \int_{a}^{\infty} \{U(J,P) \mid P \in P\}$

and the long integral of f

Sup {L(1, P) | P = 9}

Then qualities exist for bould $J \cdot [a, b] \rightarrow \mathbb{R}$, and we have $\int_{a}^{b} J(b) da \leq \int_{a}^{b} J(x) dx$

Defritor 27 A bounded from for for East of the Eman integrable

if the upper and lower integral of I agree. The quality of Japan. The quality of Japan.

is called the Riemann a begand of fore [45]