

ORDER NO. ARP2255

PD-V455

PD-V455

CENTRAL COMPACT DISC PLAYER

PD-V455

KCXJS

PD-V450

UPW,KCXJS,MEMXJS,SD

- Refer to the service manual ARP2200, PD-M550, PD-M455 and PD-M450.
- This manual is applicable to the PD-M550/UPW, KCXJS, MEMXJS, UBXJS, SD, PD-M455 /KCXJS, PD-M450/UPW, KCXJS, MEMXJS and SD types.

1. SAFETY INFORMATION

(FOR EUROPEAN MODEL ONLY)

VARO!

AVATTAESSA JA SUOJALUKITUS ALTTIINA OHITETTAESSA OLET NÄKYMÄTTÖMÄLLE LASERSÄTEILYLLE. ÄLÄ KATSO SÄTEESEEN.

-ADVERSEL: -

USYNLIG LASERSTRÅLING VED ÅBNING NÅR SIKKERHEDSAFBRYDERE ER UDE AF FUNKTION UNDGA UDSAETTELSE FOR STRÅLING.

VARNING!

OSYNLIG LASERSTRÅLNING NÄR DENNA DEL ÄR ÖPPNAD OCH SPÄRREN ÄR URKOPPLAD. BETRAKTA EJ STRÅLEN.

Kuva 1 Lasersateilyn varoitusmerkki WARNING!

DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER

LASER Picture 1 Warning sign for laser radiation

IMPORTANT -

THIS PIONEER APPARATUS CONTAINS LASER OF HIGHER CLASS THAN 1. SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

LASER DIODE CHARACTERISTICS MAXIMUM OUTPUT POWER: 5 mw WAVELENGTH: 780-785 nm

LABEL CHECK (MULTI MAGAZINE type)

MEMXJS type

Avattaessa ja suojalukitus ohitetta-essa olet alttiina näkymättömälle lasersäteilylle. Älä katso säteeseen. VARNING!

Osynlig laserstrålning när denna är öppnad och spärren är urkoppli Betrakta ej strålen.

MEMXJS type

ÁDVARSEL USYNLIG LASERSTRÄLING VED ÁRNING NÅR SIKKERHED SAF-BRYDERE ER UDE AF FUNKTION. UNDGÅ UDSÆTTELSE FOR STRÅLING.

VORSICHTI UNSICHTBARE LASER-STRAHLUNG TRITT AUS, WENN DECKEL (ODER KLAPPE) GEÖFFNET IST! NICHT DEM STRAHL AUSSETZEN! **UBXJS** type

CAUTION INVISIBLE LASER RADIATION WHEN OPEN. AVOID EXPOSURE TO BEAM

PRW1018

Additional Laser Caution

1. Laser Interlock Mechanism

The ON/OFF (ON: low level, OFF: high level) status of the LPS1 (S601) and LPS2 (S602) switches for detecting the loading state is detected by the system microprocessor, and the design prevents laser diode oscillation when both switches LPS1 and LPS2 are not ON (low level)(clamped state).

Thus, interlock will no longer function if switches LPS1 (S601) and LPS2 (S602) are deliberately shorted.

Also, in the test mode *, the interlock mechanism does not operate too.

Laser diode oscillation will continue if pins 2 and 3 of CXA1471S (IC101) are connected to ground or pin 20 is connected to high level (ON) or the terminals of Q101 are shorted to each other (fault condition).

- 2. When the cover is opened with the servo mechanism block removed to be turned over, close viewing of the objective lens with the naked eye will cause exposure to a Class 1 or higher laser beam.
- *: Refer to Service manual ARP2200, For PD-M550, PD-M455, PD-M453 and PD-M450.

where we appeared a share to the contract of

MEMXJS and

UBXJS types

MEMXJS and

UBXJS types

PACKING FOR KCXJ, MEMXJ AND UBXJ TYPES

2. CONTRAST OF MISCERANEOUS PARTS

NOTES:

- Parts without part number cannot be supplied.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

2.1 FOR PD-M550/UPW, KCXJS, MEMXJS, UBXJS AND SD TYPESThe PD-M550/UPW, KCXJS, MEMXJS, UBXJS and SD types are the same as the PD-M550/KU type with the exception of the following sections.

				Par	t No.			
Mark	Symbol & Description	PD-M550/ KU type	PD-M550/ UPW type	PD-M550/ KCXJS type	PD-M550/ MEMXJS type	PD-M550/ UBXJS type	PD-M550/ SD type	Remarks
	Mother board assembly Power transformer (AC120V) Power transformer	PWM1474 PTT1187	PWM1475	PWM1483 PTT1203	PWM1484 PTT1204	PWM1484	PWM1476	
⚠	(AC220V - 230V) Power transformer (AC230V - 240V)	• • • •	PTT1189	••••	••••	PTT1205	• • • •	
⚠	Power transformer (AC110V, 120-127V, 220V-230V, 230V-240V)	••••	••••	• • • •	••••	••••	PTT1190	
<u>↑</u>	AC power cord Strain relief	RDG1010 CM-22	PDG1006 CM-22B	RDG1010 CM-22	PDG1003 CM-22B	PDG1036 CM-22B	PDG1013 CM-22B	
Δ	Line voltage selector (AC110V, 120-127V, 220V-230V, 230V-240V)	• • • •	••••	••••	••••	••••	PSB1002	
	Connection cord with mini plug Display window	PDE-319 PAM1477	PAM1477	PDE-319 PAM1477	PAM1505	PAM1505	PAM1477	
	CD packing case Operating instructions (English) Operating instructions (English/French/Dutch/ Italian/German/Swedish/ Spanish/Portuguese)	PHG1611 PRB1142	PHG1690 PRB1142	PHG1684 PRB1152	PHG1684 ••••• PRE1150	PHG1684 PRB1152	PHG1690 PRB1142	For packing
	Operating instructions (French)	••••	••••	PRC1037	••••	••••	PRC1032	

MOTHER BOARD ASSEMBLIES (PWM1475, PWM1483, PWM1484 AND PWM1476)

The mother board assemblies (PWM1475, PWM1483, PWM1484 and PWM1476) are the same as the mother board assembly (PWM1474) with the exception of the following sections.

Mark	Complete Description	Part No.						
	Symbol & Description	PWM1474	PWM1475	PWM1483	PWM1484	PWM1476	Remarks	
Λ	IC31		ICP-N10	• • • • •	ICP-N10	••••		
	D391-D394	1SS254	••••	1SS254	• • • • •	••••		
	C366	CKCYF103Z50	CKCYF103Z50	• • • • •	• • • •	CKCYF103Z50		
	C393	CCCSL101J50	••••	CCCSL101J50				
	VR102, VR151, VR152	VRTB6VS223	VRTB6VS223	RCP1046	RCP1046	VRTB6VS223		
	VR103	VRTB6VS102	VRTB6VS102	RCP1044	RCP1044	VRTB6VS102		
	R391	RD1/6PM244J		RD1/6PM244J		••••		
	R392	RD1/6PM102J	••••	RD1/6PM102J	• • • •	••••		
	JA391, JA392	PKN1004	••••	PKN1004	• • • •	• • • •		
	(CONTROL (IN, OUT))							

2.2 FOR PD-M455/KCXJS TYPE

The PD-M455/KCXJS type is the same as the PD-M455/KU

Mark	Symbol & Description	
Δ	Mother board assembly Power transformer (AC120V) CD packing case Operating instructions (English)	
	Operating instructions (English) Operating instructions (French)	

MOTHER BOARD ASSEMBLY (PWM1483)

As to the mother board assembly (PWM1483), refer to PD-M.

2.2	FO	R	PD	-M455	/KCXJS	TYPE

 $The \ PD-M455/KCXJS \ type \ is \ the \ same \ as \ the \ PD-M455/KU \ type \ with \ the \ exception \ of \ the \ following \ sections.$

		Part N		
Mark	Symbol & Description	PD-M455/ KU type	PD-M455/ KCXJS type	Remarks
△	Mother board assembly Power transformer (AC120V) CD packing case Operating instructions (English) Operating instructions (French)	PWM1474 PTT1187 PHG1596 PRB1142	PWM1483 PTT1203 PHG1685 PRB1152 PRC1037	For packing

MOTHER BOARD ASSEMBLY (PWM1483)

As to the mother board assembly (PWM1483), refer to PD-M550/KCXJS type.

PD-M550/UPW,KCPD-M455/KCXJS,F

1. RESISTORS:

Indicated in Ω , 1/4W, 1/6W and 1/8W, \pm 5% tolerance unless otherwise noted k;k Ω , M;M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance.

2. CAPACITORS

Indicated in capacity($\,\mu$ F)/voltage(V)unless otherwise noted p ; pF. Indication without voltage is 50V except electrolytic capacitor.

3. VOLTAGE, CURRENT :

;DC voltage(V)at play state.

⇔ mA ;DC current at play state.

Value in()is DC current at stop state.

4. OTHERS :

⇒ ;Signal route.⊘ ;Adjusting point.

The <u>A</u> mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

* marked capacitors and resistors have parts numbers.

This is the basic schematic diagram, but the actual circuit may vary due to improvements in design.

5. SWITCHES: (The underlined indicates the switch position) SWITCH BOARD ASSEMBLY

S801 : POWER ON - OFF

801 : POWER ON — OFF

S802 : EJECT

SERVO MECHANISM ASSEMBLY INSIDE SWITCH

LOADING BOARD ASSEMBLY S601 : LPS1 S602 : LPS2

SELECT BOARD ASSEMBLY

S603: MZS1 S604: MZS2 S605: DCHM S606: DCNT \$707 : DISCO \$708 : TIME \$709 : RAND \$710 : REPE \$711 : PAUS \$712 : AUTO \$713 : HI - L \$714 : COMI \$715 : PGM \$716 : DELE \$717 : TIME \$718 : 7 \$719 : 8 \$720 : 9

FUNCTION BOA

(PD - M550 T

\$701 : DISC1

S703 : DISC3

S704: STOP

S705 : DISC4

S706 : DISC

\$726:1 \$727:2 \$728:3 \$729:+10 \$730: < \$731: ▷▷ \$732:PLAY

\$733 : I≪ \$734 : ▷▷I \$735 : ADLO

S722:4

S723:5

S724:6

S725 : ≧20

2.3 FOR PD-M450/UPW, KCXJS, MEMXJS AND

The PD-M450/UPW, KCXJS, MEMXJS and SD types are the san following sections.

Mark	Symbol & Description	PD-M450/ KU type	PD-M UP typ	
•	Mother board assembly	PWM1468	PWM	
	Headphone board assembly	• • • • •		
Δ	Power transformer (AC120V)	PTT1187	• • • •	
\triangle	Power transformer (AC220V - 230V)	••••	• • •	
Δ	Power transformer (AC230V - 240V)	••••	PTT1	
Δ	Power transformer	••••	• • •	
	(AC110V, 120-127V, 220V-230V, 230V-240V)			
\triangle	Strain relief	CM-22	CM-	
Δ	AC power cord	RDG1010	PDG1	
	Line voltage selector (AC110V, 120-127V, 220V-230V, 230V-240V)	• • • •	•••	
	Headphone knob		• • •	
	Display window	PAM1478	PAM1	
	Function panel assembly	PEA1134	PEA1	
	Leg assembly	PXA1201	PXA1	
	Insulator	••••	• • •	
	Stopper	••••	• • •	
	Function panel	Non supply	Non su	
	CD packing case	PHG1597	PHG1	
	Operating instructions (English)	PRB1142	PRB1	
	Operating instructions	••••	• • •	
*	(English/French/Dutch/Italian/			
	German/Swedish/Spanish/Portuguese)			
	Operating instructions (French)	• • • • •	• • •	

The headphone board assembly of PD-M450/MEMXJS is the same

MOTHER BOARD ASSEMBLIES (PWM1480, PWM1481 and The mother board assemblies (PWM1480, PWM1481 and PWM1470 (PWM1468) with the exception of the following sections.

Mark	Symbol & Description	we have			
- Wark	Symbol & Description	PWM1468	PWM		
\triangle	IC31	• • • • •	• • •		
1	IC406		• • •		
	VR102, VR151, VR152	VRTB6VS223	RCP		
	VR103	VRTB6VS102	RCP		
	R445, R446	RD1/6PM681J	RD1/6F		
	D 447 D 449				
	R447, R448	••••	• • •		
	CN401	• • • • •	• • •		
	C366	CKCYF103Z50	• • •		
1					

Indicated in Ω , 1/4W, 1/6W and 1/8W, \pm 5% tolerance unless otherwise noted k;k Ω , M;M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance. **FUNCTION BOARD ASSEMBLY FUNCTION BOARD ASSEMBLY** Indicated in capacity($\mu\,\text{F})/\text{voltage(V)} unless otherwise noted p; pF. Indication without$ (PD- M455, AND PD- M450 TYPES) (PD - M550 TYPE) voltage is 50V except electrolytic capacitor. S701: DISC1 S701 : DISC1 S702 : DISC2 S702: DISC2 3. VOLTAGE, CURRENT: S703 : DISC3 S703: DISC3 ;DC voltage(V)at play state. S704: STOP S704: STOP ;DC current at play state. S705 : DISC4 S705 : DISC4 Value in()is DC current at stop state. S706 : DISC5 S706: DISC5 S707 : DISC6 S707: DISC6 4. OTHERS: S708 : TIME S708: TIME ⇒ ;Signal route. S709: RANDOM PLAY S709: RANDOM PLAY S710: REPEAT S710: REPEAT The A mark found on some component parts indicates the importance of the safety S711 : PAUSE S711: PAUSE factor of the part. Therefore, when replacing, be sure to use parts of identical S712: AUTO FADER S712: AUTO FADER designation. S713: HI - LITE SCAN S713: HI-LITE SCAN * marked capacitors and resistors have parts numbers. S714: COMPU PGM S714: COMPU PGM S715 : PGM This is the basic schematic diagram, but the actual circuit may vary due to S716: DELETE S716: DELETE S717: TIME FADE S717: TIME FADE S718:7 \$730 : ⊲⊲ MANUAL SEARCH 5. SWITCHES: (The underlined indicates the switch position) \$731 : ▷▷ _ S719:8 SWITCH BOARD ASSEMBLY S732: PLAY S720:9 S801: POWER ON - OFF S734: DDI TRACK SEARCH S721:10 S802: EJECT S722:4 SERVO MECHANISM ASSEMBLY S735 : ADLC S723:5 INSIDE SWITCH S724:6 LOADING BOARD ASSEMBLY S725 : ≧20 S601: LPS1 S602: LPS2 S727:2 SELECT BOARD ASSEMBLY S728:3 S603: MZS1 S729:+10 S730: MANUAL SEARCH S604: MZS2 S605 : DCHM S731: ⊳⊳ S606 : DCNT S732 : PLAY

/KU type with the exception of the following sections.

Par	t No.	
PD-M455/ KU type	PD-M455/ KCXJS type	Remarks
PWM1474 PTT1187 PHG1596 PRB1142	PWM1483 PTT1203 PHG1685 PRB1152 PRC1037	For packing

D-M550/KCXJS type.

2.3 FOR PD-M450/UPW, KCXJS, MEMXJS AND SD TYPES

1. RESISTORS:

The PD-M450/UPW, KCXJS, MEMXJS and SD types are the same as the PD-M450/KU type with the exception of the following sections.

S733: [⋈⊲

S734: ▷▷Ⅱ S735: ADLC TRACK SEARCH

Mark	Symbol & Description	PD-M450/ KU type	PD-M450/ UPW type	PD-M450/ KCXJS type	PD-M450/ MEMXJS type	PD-M450/ SD type	Remarks
\odot	Mother board assembly	PWM1468	PWM1468	PWM1480	PWM1481	PWM1470	
	Headphone board assembly		• • • • •	••••	Non supply	• • • • •	
Δ	Power transformer (AC120V)	PTT1187	• • • • •	PTT1203			
Δ	Power transformer (AC220V - 230V)	••••	••••		PTT1204	• • • • •	
1	Power transformer (AC230V - 240V)	••••	PTT1189	••••	••••		
1	Power transformer (AC110V, 120-127V, 220V-230V, 230V-240V)	••••	••••	• • • • •	••••	PTT1190	
\triangle	Strain relief	CM-22	CM-22B	CM-22	CM-22B	CM-22B	
\triangle	AC power cord	RDG1010	PDG1006	RDG1010	PDG1003	PDG1013	,
	Line voltage selector (AC110V, 120-127V, 220V-230V, 230V-240V)	••••		, ·	••••	PSB1002	
	Headphone knob				PAC1370		,
	Display window	PAM1478	PAM1478	PAM1478	PAM1506	PAM1478	
	Function panel assembly	PEA1134	PEA1134	PEA1134	PEA1160	PEA1134	
	Leg assembly	PXA1201	PXA1201	PXA1201	• • • • •	PXA1201	
	Insulator	• • • • •	• • • • •	• • • • •	VNK1095	• • • • •	
	Stopper		• • • • •	• • • • •	PNM1070	• • • • •	
	Function panel	Non supply	Non supply	Non supply	Non supply	Non supply	
	CD packing case	PHG1597	PHG1691	PHG1686	PHG1686	PHG1691	For packing
	Operating instructions (English)	PRB1142	PRB1142	PRB1152	• • • •	PRB1142	l or packing
	Operating instructions	••••	• • • • •	• • • •	PRE1150	••••	
	(English/French/Dutch/Italian/ German/Swedish/Spanish/Portuguese)				-1121100		·
	Operating instructions (French)	• • • • • •	• • • • •	PRC1037	• • • • •	PRC1032	

The headphone board assembly of PD-M450/MEMXJS is the same as that of PD-M550.

MOTHER BOARD ASSEMBLIES (PWM1480, PWM1481 and PWM1470)

The mother board assemblies (PWM1480, PWM1481 and PWM1470) are the same as the mother board assembly (PWM1468) with the exception of the following sections.

Mark	Symbol & Description	Part No.				
		PWM1468	PWM1480	PWM1481	PWM1470	Remarks
	IC31 IC406 VR102, VR151, VR152 VR103 R445, R446	VRTB6VS223 VRTB6VS102 RD1/6PM681J	RCP1046 RCP1044 RD1/6PM681J	ICP-N10 BA15218 RCP1046 RCP1044 RD1/6PM271J	VRTB6VS223 VRTB6VS102 RD1/6PM681J	
	R447, R448 CN401 C366	CKCYF103Z50	•••••	RD1/6PM471J Non supply	CKCYF103Z50	

 $\Theta \Theta \Theta \Theta \Theta \Theta$ RKP-533 CN201 PWM1483 : PD ¥ (TP1) : PD Qⁿ PWM1484 : PD TRI PWM1475 : PD PWM1476 : PD 2003 2009 1 05 1 05 1 05 2017 1007 1007 1004 VCC LDON 20 RFI 19 RFO 17 FE 16 QUGFS GTOP BLRCK (64) SOSO 50CK TRERA MUTE BCLK (64) B DATA (64) B BCLK (48) A DATA (48) A VddR LRCK (48) A SENS E 1 14 MEO 13 IC301 FOIN DATA DATA CLOK FICHK
SENS FISE IN
COUT FICHION
DATA FI
CLIK TRI CXD2500AQ R108 2.2K VR103 PSSL N NC D TEST4 N ASYON TEST3 22K THE RESTRICT MIRR & 22K 1.7 RZ11 12K 1.7 W 日間 で306~ 0.0019 R302 R304 LA6520 -0.30.0047

TZC
DV 96
RF0
RF1
45 0.0047(J)
RF1
47 79 C170 0.0033
CP
43 74 C169 77 (J)
CP
43 74 C169 77 (J)
CP
43 74 C169 77 (J) R160 270K 555 Z2K 22K TDFCT ATSC R201 FZC O x 3 0 FDFCT VC FGD CAN 37 40 C168 0. 39 FCOX YX CXA1 O 10 FLB FOK R203 13 SRCH DFCT C361 0.01 14 TGU MIRR MIRK
DGND 34
SENS 33 SENS
COUT 22 COUT
XRST 31 REST
DATA 30 DATA
XLT 29 XLT
CLK 28 CLK
LOCK 27 LOCK 15 TG2 ×351計 vss1014 \Box OAT 20 SLO LOCK 27 LOCK R206 390K 22 FSET 0.2-0.8 -0.2--0.8 **X** 3 MEMXJS, UBXJS OTHERS PD-M450/UPW,SD VRTB6VS223 VR 102 , VR 151 , VR 152 RCP1046 C366 VRTB6VS102 RCP 1044 LOUT 100K CN351 CN701 Se de 063 290 100 ξ03 **XD2** 900 DG5 Ž Kni 2223242526127261253031132333343536 SBX1610-51 PEL1053 V701 PD-M550 SERIES, FLUORESCENT DISPLAY PD- M455 ONLY FUNCTION BOARD ASSEMBLY PWZ2138: PD-M450 PWZ2140:PD-M455 PWZ2142:PD-M550

2.4 SCHEMATIC DIAGRAM SERVO MECHANISM ASSEMBLY PICKUP ASSEMBLY 0.01 \ \frac{2}{6} \ \frac{4}{5} PEA1030 R106 Q1 01 25AB545 3 IC101 0 CXA1471S C B B A @ 3 VC Ε **(1)** 6 7 8 9 10 TRACK ING COIL FEBIAS 16 (B) GND ⊕ VR 1 . 8 (0) MD 10 LD (GIND (3) TROR € TRRT C102 100/10 () FORT © FOOR -II-R212 33K D211 MTZ J6 . 2B INSIDE SW DSG1014 CN202 SPDR SPINDLE MOTOR ASSEMBLY PEA1 028 -0.7 1 INSD ▲ IC201 (3/3) (M) ASSEMBLY ↑ IC202 (3/3) LA6520 SPDR -0.3 (3) 6 CADR FODR L C202 T 0.01 MECHAN I SM O 1C202 (2/3) A LA6250 R155 270K R156≸ 33K1 C162 % S601, 602 : DSG1016 C216 833/16 8.4 \$601 LP\$1 \$602 LP\$2 LPS2 O 0 -M÷ A (C202 (1/3) -9.2 LA6520 FIN LOADING MOTOR
PEA1130
LOADING BOARD CN203 V-B ASSEMBLY R222 0 R221 100K _____ 100K O R223 0 MZ32 0 5603 0 MZS R224 5604 2 100K 8 . 4 V+B ODCNT 0 5605 3 DCH O 5606 (4) O DSEL R227 100 100K 100 R229 100K 100K 100K <u>|</u>=(M)⊋ DISC SELECTE MOTOR I BOARD I ASSEMBLY SELECT BOARD m CN204 -9.2 ⚠ IC201 (1/3) LA6520 ASSEMBLY D701-705, D709,710 1SS254 S730-735 PSG1006 S701-717, \$7.32 \$7.32 \$6.32 S722 3718 572 KD2 \$706 D5 S720 KD1 S710 REP | S729 SWITCH BOARD ASSEMBLY S802 ⇔EJECT S801, 802 Θ PD-M550 SERIES ONLY <u>3801 مج</u> D706-708 @ 155254 (3) S718-S729

PCX1018 D801 .

В

С

D

P.C.B. pattern diagram indication	Corresponding part symbol	Part name
	[2].[2]	Transistor
D S G		FET
□ 0H	○	Diode
dŢ	- ∕	Zenner diode
74←	~ <u>_</u>	LED
	 ←	Varactor
	ن	Tact switch
	••••	Inductor
0	٠٨٨٠	Coli
		Transformer
		Filter
(),		Ceramic capacitor
$C \supset$		Mylar capacitor
s ()		Styrol capacitor
<u>\$</u>	○ ·	Electrolytic capacitor (Non polarized)
		Electrolytic capacitor (Noiseless)
€	<u></u>	Electrolytic capacitor (Polarized)
		Electrolytic capacitor (Polarized)
	<u></u>	Power capacitor
		Semi-fixed resistor
		Resistor array
~		Resistor
-IDF		Resonator
	·	Thermistor
1. This P.C.B. connect	tion diagram is viewed	from the parts mounted

- those shown with the corresponding wiring symbols listed in the above Table.

 The capacitor terminal marked with shows negative terminal.

MOTHER BOARD ASSEMBLY

(PWM1483: PD-M550/KCXJS,PD-M455/KCXJS)

(PWM1484: PD-M550/MEMXJS,UBXJS)

(PWM1475: PD-M550/UPW) (PWM1476: PD-M550/SD)

(PWM1480: PD-M450/KCXJS) (PWM1481: PD-M450/MEMXJS)

(PWM1468: PD-M450/UPW) (PWM1470: PD-M450/SD)

6

Э

MOTHER BOARD ASSEMBLY

(PWM1483: PD-M550/KCXJS,PD-M455/KCXJS) (PWM1484: PD-M550/MEMXJS,UBXJS)

(PWM1484: PD-MS50/ MEMXJ: (PWM1475: PD-M550/ UPW)

(PWM1476: PD-M550/SD)

(PWM1480 : PD-M450/KCXJS)

(PWM1481: PD-M450/MEMXJS) (PWM1468: PD-M450/UPW)

(PWM1470: PD-M450/SD)

This P. C. B. connection diagram is viewed from the foil side.

XR128

ORDER NO. **ARP2200**

MULTI-PLAY COMPACT DISC PLAYER

PD-M550, PD-M455, PD-M453 AND PD-M450 HAVE THE FOLLOWING:

Tuna		Model			B	
Туре	PD-M550	PD-M455	PD-M453	PD-M450	Power Requirement	Remarks
KU	0	0	0	O.	AC120V only	
KUXJS	0	0	0	0	AC120V only	
KC	0	0	_	0	AC120V only	
KCXJS	0	0	_	0	AC120V only	
MEM	0	_	_	. 0	AC220V-230V	
MEMXJS	0	-	****	0	AC220V-230V	
UB	0	_	_	-	AC230V-240V	·
UBXJS	0		_	-	AC230V-240V	
UPW	0	-	-	0	AC230V-240V	
SD	0		_	0	AC110V, 120V - 127V, 220V, 240V(switchable)	

● The KUXJS type of PD- M550, PD- M455, PD- M453 and PD- M450, manufactured in singapore, are identical with the KU type of PD-M550, PD-M455, PD-M453 and PD-M450 respectively.

For identification, "MADE IN SINGAPORE" is shown on the rear panel of the product.

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan PIONEER ELECTRONICS SERVICE INC. P.O. Box 1760, Long Beach, California 90801 U.S.A. PIONEER ELECTRONICS OF CANADA, INC. 505 Cochrane Drive, Markham, Ontario L3R 8E3 Canada PIONEER ELECTRONIC [EUROPE] N.V. Keetberglaan 1, 2740 Beveren, Belgium
PIONEER ELECTRONICS AUSTRALIA PTY. LTD. 178-184 Boundary Road, Braeside, Victoria 3195, Australia TEL: [03] 580-9911

© PIONEER ELECTRONIC CORPORATION 1991

IFO MAR. 1991 Printed in Jar

- This manual is applicable to the PD-M550/KU, KC, KUXJS, MEM, UB, PD-M455/KU, KC, KUXJS, PD-M453/KU, KUXJS, PD-M450/KU, KC, KUXJS and MEM types.
- ◆ As to the PD- M550/KC, KUXJS, MEM, UB, PD- M455/KC, KUXJS, PD- M453/KUXJS, PD- M450/KC, KUXJS and MEM types, refer to page 74-84.
- As to the other types, refer to applicable service manuals.
- As to the mechanism descriptions, refer to the PD-Z84M service guide(ARP2190).
- Ce manuel pour le service comprend les explications de réglage en français.
- Este manual de servicio trata del método ajuste escrito en español.

CONTENTS

1. SAFETY INFORMATION 3	8. ADJUSTMENTS 29
2. EXPLODED VIEWS AND PARTS LIST5	RÉGLAGES 44
3. PACKING 11	AJUSTES 59
4. IC INFORMATION 12	9. FOR PD-M550/KUXJS, KC, MEM, UB,
5. SCHEMATIC DIAGRAM······ 13	PD-M455/KUXJS, KC, PD-M453/KUXJS,
6. P.C.BOARDS CONNECTION DIAGRAM······· 19	PD-M450/KUXJS, KC AND MEM TYPES ······ 74
7. P.C.B's PARTS LIST 27	10. PANEL FACILITIES 85
	11. SPECIFICATION 87

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

Lead in solder used in this product is listed by the California Health and Welfare agency as a known reproductive toxicant which may cause birth defects or other reproductive harm (California Health & Safety Code, Section 25249.5).

When servicing or handling circuit boards and other components which contain lead in solder, avoid unprotected skin contact with the solder. Also, when soldering do not inhale any smoke or fumes produced.

1. SAFETY INFORMATION

-(FOR USA MODEL ONLY)-

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a Δ on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which dose not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

(FOR EUROPEAN MODEL ONLY)

VARO! ——

AVATTAESSA JA SUOJALUKITUS OHITETTAESSA OLET ALTTIINA NÄKYMÄTTÖMÄLLE LASERSÄTEILYLLE. ÄLÄ KATSO SÄTEESEEN.

---ADVERSEL:

USYNLIG LASERSTRÅLING VED ÄBNING NÅR SIKKERHEDSAFBRYDERE ER UDE AF FUNKTION UNDGÅ UDSAETTELSE FOR STRÅLING.

- VARNING! -

MEM type

OSYNLIG LASERSTRÅLNING NÄR DENNA DEL ÄR ÖPPNAD OCH SPÄRREN ÄR URKOPPLAD. BETRAKTA EJ STRÅLEN.

LABEL CHECK (MULTI MAGAZINE type)

Avattaessa ja suojalukitus ohitettaessa olet alttiina näkymättömälle lasersäteilylle. Älä katso säteeseen

Osynlig laserstrålning när denna del är öppnad och spärren är urkopplad. Betrakta ej strålen.

LASER
Kuva 1
Lasersateilyn
varoitusmerkki

WARNING!

DEVICE INCLUDES LASER DIODE WHICH EMITS INVISIBLE INFRARED RADIATION WHICH IS DANGEROUS TO EYES. THERE IS A WARNING SIGN ACCORDING TO PICTURE 1 INSIDE THE DEVICE CLOSE TO THE LASER DIODE.

LASER
Picture 1
Warning sign for

laser radiation

IMPORTANT ----

THIS PIONEER APPARATUS CONTAINS LASER OF HIGHER CLASS THAN 1. SERVICING OPERATION OF THE APPARATUS SHOULD BE DONE BY A SPECIALLY INSTRUCTED PERSON.

LASER DIODE CHARACTERISTICS -MAXIMUM OUTPUT POWER: 5 mw WAVELENGTH: 780-785 nm

UB type

MEM type

ADVARSEL USYNLIG LASERSTRÅLING VED ÅBNING NÅR SIKKERHED SAF BRYDERE ER UDE AF FUNKTION. UNDGÅ UDSÆTTELSE FOR STRÅLING. VORSICHT!

VUNSICHTER
UNSICHTBARE LASER-STRAHLUNG TRITT AUS, WENN DECKEL
(ODER KLAPPE) GEÖFFNET IST! NICHT DEM STRAHL AUSSETZEN!
VRW1094

CAUTION
INVISIBLE LASER
RADIATION WHEN OPEN,
AVOID EXPOSURE
TO BEAM PRW1018

Additional Laser Caution

1. Laser Interlock Mechanism

The ON/OFF (ON: low level, OFF: high level) status of the LPS1 (S601) and LPS2 (S602) switches for detecting the

LPS1 (S601) and LPS2 (S602) switches for detecting the loading state is detected by the system microprocessor, and the design prevents laser diode oscillation when both switches LPS1 and LPS2 are not ON (low level)(clamped state).

Thus, interlock will no longer function if switches LPS1 (S601) and LPS2 (S602) are deliberately shorted.

Also, in the test mode *, the interlock mechanism does not operate too.

Laser diode oscillation will continue if pins 2 and 3 of CXA1471S (IC101) are connected to ground or pin 20 is connected to high level (ON) or the terminals of Q101 are shorted to each other (fault condition).

When the cover is opened with the servo mechanism block removed to be turned over, close viewing of the objective lens with the naked eye will cause exposure to a Class 1 or higher laser beam.

*: Refer to page 30.

MEM and UB types

MEM and UB types

LASER PRODUCT

2. EXPLODED VIEWS AND PARTS LIST

(PD-M455/KU, PD-M453/KU and PD-M450/KU types)

2.1 EXTERIOR

* The stopper consist of the big ring part and the small ring part.

If you stick the stopper to the leg, stick the big ring part to the front leg, and the small ring part to the rear leg.

Note; *1: PD-M550 and PD-M450/MEM types *2: PD-M455, PD-M453, PD-M450/KU, KUXJS and KC types

NOTES:

• Parts without part number cannot be supplied.

- ullet The Δ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.

Parts List

raits							
<u>Mark</u>	No.	Description	Part No.	<u>Mark</u>	No.	Description	Part No.
\triangle	1	Strain relief	CM-22		24	Function panel assembly	PEA1136
<u> </u>	2	Flexible cable (28P)	PDD1070		25	Function panel assembly	PEA1135
	3	Flexible cable (28P)	PDD1070			(For PD - M455 type)	. 2
	,	(For PD-M455 and PD-M4			25	Function panel assembly	PEA1162
		(1-01 1D 101455 and 1 D 1014	+33 types)		23	(For PD-M453 type)	1 11/11/02
	2	Plantile and (26D)	DDD1070			(For FD-101433 type)	
	3	Flexible cable (26P)	PDD1079		25	The 21 11	DEA1124
		(For PD-M450 type)	DT71107		25	Function panel assembly	PEA1134
Δ	. 4	Power transformer	PTT1187			(For PD - M450 type)	D . 01 # 4 .
	_	(AC120V)	77771		26	Track button A	PAC1564
Δ	5	AC power cord	RDG1010		•	(For PD-M455 type)	D . O1 ##O
		_			26	Track button	PAC1579
	6	Stopper	PNM1070			(For PD-M453 and PD-M	450 types)
		(PD-M550 type only)					
	7	Insulator	VNK1095	ledow	27	Mother board assembly	PWM1474
		(PD-M550 type only)				(For PD-M550 and PD-M	
	8	Leg assembly	PXA1201	\odot	27	Mother board assembly	PWM1472
		(PD-M455, PD-M453 and				(For PD-M453 type)	
		PD-M450 types only)		\odot	27	Mother board assembly	PWM1468
						(For PD - M450 type)	
	9	Bonnet	PYY1149			* /	
	10	Headphone knob	PAC1370	\odot	28	Function board assembly	PWZ2142
	11	Time button B	PAC1549	Ŏ	29	Function board assembly	PWZ2140
		(PD-M550 type only)	,	•		(For PD-M455 and PD-M	453 types)
	12	Mode button A	PAC1560	\odot	29	Function board assembly	PWZ2138
			11.101000	9		(For PD - M450 type)	
	13	Mode button B	PAC1563			(10.12)	
	14	Function button	PAC1562		30	Screw	BBZ30P060FMC
	15	Program button	PAC1577		31	Screw	BBZ30P080FZK
	16	Power button A	PAC1596		32	Screw	BBZ30P120FZK
	17	Power button A	PAC1596		33	Screw	FBT40P080FZK
	1 /	(For PD-M455 type)	1 AC1390		34	Screw	IBZ30P060FCC
		(1011D-10433 type)			J 4	Sciew	102301 0001 CC
	17	Power button	PAC1561		35	Screw	IBZ30P100FCC
	17	(For PD-M453 and PD-M4			36	Screw	IBZ30P180FMC
	18	Door name plate.	PAM1461		37	Screw	PDZ30P050FMC
	19	Door spring	PBH1022		31	Selew	1 152501 0501 1410
	20						
	20	Door BK	PNW1894				
	21	Display window	PAM1477				
	22	Display window Display window	PAM1476				
	22	(For PD-M455 type)	1 AW11470				
		(101 FD-101455 type)			101	Switch board assembly	
	22	Diantarraindan	PAM1511			Headphone board assembly	
	22	Display window	PAMISII		102		
	22	(For PD-M453 type)	DAN 41 470		103	PCB mold	
	22	Display window	PAM1478		104	Rear base	
		(For PD-M450 type)	D) 111 1001 0		10-		
	23	LED lens	PNW2019		105	Under base	
			•		106	Multi mechanism assembly	
					107	PIONEER badge	
					108	Function panel	

2.2 MULTI MECHANISM ASSEMBLY Parts List

Paris	LISL						
Mark	No.	Description	Part No.	<u>Mark</u>	No.	Description	Part No.
		Motor pulley	PNW1634		46	Belt	PEB1072
	1	Motor pulley			47	Drive screw	PLA1003
	2	Gear holder	PNW1929				
	3	Semi-fixed resistor (VR1)	PCP1008		48	Guide bar	PLA1071
	4	Cam gear	PNW1923		49	Pulley	PNW1066
	5	Belt	PEB1138		50	Half nut	PNW1605
	,	Beit	122120				
	6	Top guide	PNW1914		51		
	7	Gear pulley	PNW1918		52	Push switch (INSIDE)	DSG1014
	8	Gear S	PNW1919		53	D.C.motor (CARRIAGE)	PXM1013
		Gear L	PNW1920		54	Screw	PBZ30P080FMC
	9		PBH1107		55	D.C.motor assembly	PEA1028
	10	Eject spring	PDH110/		33	(with oil)(SPINDLE)	1 LATOZO
	11	Switch lever	PNW1927				
	12	Seven bar	PNW1931		56	Screw	JFZ20P040FMC
			PNW1933		57	Screw	BPZ20P080FZK
	13	Sub rotary lever					PMZ20P030FMC
	14	Sub rotary lever spring	PBH1111		58	Screw	
	15	Rotary lever	PNW1932		59	Pickup assembly	PEA1030
					60	Disc table assembly	PEA1035
	16	Drive plate	PNW1930			•	IDGGGDGGGEV (C
	17	Motor screw	PBA-112		61	Screw	IPZ30P080FMC
	18	Holder lever spring	PBH1110		62	Rubber spacer	PEB1178
	19	Disc holder	PNW1924		63	Rubber spacer	PEB1179
	20	Cushion A	PED1001		64	Silent ring	PBK1093
	20	Cushion A	1 ED1001		65	Washer	WA62D130D025
	21	Holder lever	PNW1925		05	· · · · · · · · · · · · · · · · · · ·	
		Float rubber	PEB1014				
	22		PEB1132				
	23	Float rubber	=		101	16.4	
	24	Float screw	PBA1055		101	Motor	
	25	Release lever	PNW1934		102	Eject lever	
					103	Upper chassis	
	26	Release spring	PBH1106		104	Servo mechanism assembly	M
			PNW1922		105	Loading board assembly	
	27	Clamper cam			105	Boading coard assembly	
	28	Clamper holder	PNW1921		100	0.1.1	
	29	Clamper spring	PBH1109		106	Sub chassis	
	30	Clamper	PNW1857		107	Rubber tube	
		•			108	Main chassis	
	31	Lock lever	PNW1917		109	Select board assembly	
			PBH1108		110	Motor board assembly	
	32	Lock spring			110	into to a court abbolitory	
	33	Stair L	PNW1915		111	Matanhasa	
	34	Stair R	PNW1916		111	Motor base	
	35	Synchronize lever	PNW1926		112	Yoke M	_
		•			113	Mechanism base assembly T	
	36	Motor assembly	PEA1130		114	Mechanism base	
	50	(LOADING, DISC SELECT			115	Mechanism chassis	
) DM726D040EMC		113	Wicchamom Chassis	
	37	Screw	PMZ26P040FMC				
	38	Screw	PPZ30P080FMC				
	39	Screw	BBZ30P060FMC				
	40	Washer	WT26D047D025				
	41	Washer	WA31D054D025				
	42	E ring	Z39-010				
	43	Earth spring	PBH1009				
	44	Drive spring	PBH1084				
	45	Plate spring	PBK1057				
	73	I mee abruip					

D

3. PACKING

Parts List

Mark		Description	Part No.	Mark No.	Description	Part No.
	1	Connection cord with mini plug	PDE-319	9	CD packing case (For PD-M550 type)	PHG1611
	2	Connection cord with pin plug	PDE1109	9	CD packing case (For PD-M455 type)	PHG1596
	3	Remote control unit (For PD-M550 type)	PWW1066	9	ČD packing case (For PD-M453 type)	PHG1668
	3	Remote control unit (For PD-M455 and PD-	PWW1068 M453 types)	9	CD packing case (For PD-M450 type)	PHG1597
	4	Battery cover (For PD-M550 type)	PZN1001	10 11	Mirror mat sheet PP case	Z23-007 PYY1141
	4	Battery cover (For PD-M455 and PD-	PZN1010 M453 types)			
	5	Magazine assembly	PXA1308	101	Dry cell battery(R03, AAA)
	6	Operating instructions (English)	PRB1142	102 103	Spacer F Spacer R	
	7	Styrol protector (L)	PHA1157		-	
	8	Styrol protector (R)	PHA1158			

4. IC INFORMATION

■ PD2026A

D/A converter

Pin Function

No.	Pin Name	1/0	Function	No.	Pin Name	1/0	Function	
1	P/S	I*	Switching the serial and parallel controls.				Data latch signal input for attenuator when	
2	RZ	0	Digital zero detection output of R ch.	20	LATCH (EM1)	I*	controlling the serial. Select the deemphasis filter mode when	
3	TEST	[*	Test terminal (usually, use at "H")		(controlling the parallel.	
4	VDA		Analog power supply for R ch DA converter.				Shift clock input for attenuator when	
5	RO	0	Data positive direction output of R ch.				controlling the serial. Select the deemphasis filter mode when	
6	RO		Data reverse direction output of R ch.	21	21 SHIFT (EM2)		controlling the parallel.	
7	GNDA	_	Analog ground for R ch DA converter.				EM1 L L H H	
8	GNDA	_	Analog ground for L ch DA converter.				EM2	
9	LO	_	Data reverse output of L ch.					
10	LO	0	Data positive output of L ch.	22	ATT	I	Data input for attenuator when controlling the serial. Becomes muting terminal when	
11	VDA	_	Analog power supply for L ch DA converter.		(MUTE)		controlling the parallel. Mute ON at "H".	
12	GNDX	-	Ground of oscillating section.	23	OSCE]*	System clock control.	
13	XI	I	Crystal oscillating circuit input.	23	USCE	1"	Stop the system clock at "L".	
14	хо	0	Crystal oscillating circuit output.	24	RESET	j*	Reset terminal. Reset the ΣΔ circuit at "L"	
15	VDX		Power supply of oscillating section.	24	KESEI	1"	and attenuate data becomes 00 (HEX).	
16	GND		Ground of logic section.	25	DATA		Data input.	
17	С	I*	Clock selection. "L": 256fs, "H": 384fs	26	BCK	I	Bit clock input.	
18	LZ	_	Digital zero detection output of L ch.	27	LRCK		LR clock input (L ch data at "H").	
19	мск	0	System clock output.	28	VDD	_	Power supply of the logic section.	

I*: Input terminals with pull-up resistor.

5. SCHEMATIC DIAGRAM

5.1 Waveforms

Note: The encircled numbers denote measuring in the schematic diagram.

- *1 50T-JUMP: After switching to the pause mode, press the manual search key.
- *2 FOCUS IN: Press the key without loading a disc.

- *3 POWER ON:Plug AC cord into AC wall socket.
- *4 POWER OFF: Unplug AC cord form AC wall socket.

• IC BLOCK DIAGRAMS


```
Indicated in \Omega, 1/4W, 1/6W and 1/8W, \pm 5% tolerance unless otherwise noted k;k \Omega,
   M;M \Omega , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance.
   Indicated in capacity( µF)/voltage(V)unless otherwise noted p; pF. Indication without
   voltage is 50V except electrolytic capacitor.
3. VOLTAGE, CURRENT:
                    ;DC voltage(V)at play state.
    ⇔ mA
                       ;DC current at play state.
                          Value in( )is DC current at stop state.
4. OTHERS:
   ⇒ ;Signal route.
   ;Adjusting point.
   The \Delta mark found on some component parts indicates the importance of the safety
    factor of the part. Therefore, when replacing, be sure to use parts of identical
    * marked capacitors and resistors have parts numbers.
   This is the basic schematic diagram, but the actual circuit may vary due to
5. SWITCHES: (The underlined indicates the switch position)
   SWITCH BOARD ASSEMBLY
         S801 : POWER ON - OFF
        S802 : EJECT
   SERVO MECHANISM ASSEMBLY
         INSIDE SWITCH
   LOADING BOARD ASSEMBLY
         S601: LPS1
         S602: LPS2
   SELECT BOARD ASSEMBLY
         S603: MZS1
         S604: MZS2
         S605: DCHM
         S606 : DCNT
                                                                               FUNCTION BOARD ASSEMBLY
   FUNCTION BOARD ASSEMBLY
     (PD - M550 TYPE)
                                                                               ( PD-M455 ,PD-M453 AND PD-M450 TYPES )
         S701: DISC1
                                                                                                          S701: DISC1
         S702 : DISC2
                                                                                                          S702 : DISC2
         S703: DISC3
                                                                                                           S703: DISC3
         S704: STOP
                                                                                                          S704: STOP
                                                                                                          S705: DISC4
         S705: DISC4
         S706: DISC5
                                                                                                          S706: DISC5
         S707 : DISC6
                                                                                                           S707: DISC6
          S708: TIME
                                                                                                           S708 : TIME
         S709: RANDOM PLAY
                                                                                                           S709: RANDOM PLAY
         S710: REPEAT
                                                                                                          S710: REPEAT
         S711: PAUSE
                                                                                                          S711: PAUSE
                                                                                                          S712 : AUTO FADER
         S712: AUTO FADER
                                                                                                          S713: HI-LITE SCAN
         S713: HI - LITE SCAN
                                                                                                          S714 : COMPU PGM
         S714: COMPU PGM
         S715 : PGM
                                                                                                          S715: PGM
         S716 : DELETE
                                                                                                          S716 : DELETE
         S717 : TIME FADE
                                                                                                          S717: TIME FADE
                                                                                                         S730: 

MANUAL SEARCH

S731: 

S730 → 

MANUAL SEARCH
         S718:7
         S719:8
                                                                                                          S732: PLAY
         S720:9
                                                                                                         S733: IMM TRACK SEARCH
         S721:10
         S722 : 4
                                                                                                          S735 : ADLC
         S723:5
         S724:6
         S725: ≧20
         S726:1
         S727:2
         S728:3
         S729:+10
        S730: 

S731: 

S731:
         S732 : PLAY
        S734: DO TRACK SEARCH
         S735 : ADLC
```


16

1 , ,

2

3

4

5

ı

7. P. C. B's PARTS LIST

NOTES:

- Parts without part number cannot be supplied.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex.1 When there are 2 effective digits(any digit apart from 0), such as 560 ohm and 47k ohm(tolerance is shown by J=5%, and K=10%).

$560 \ \Omega \rightarrow 56 \times 10^{1} \rightarrow 561 \cdots$	·· RD1/4PS 5 6 1 J
$47k \Omega \rightarrow 47 \times 10^3 \rightarrow 473 \cdots$	·· RD1/4PS 4 7 3 J
$0.5 \Omega \rightarrow 0R5$	·· RN2H OR 5 K
1 Ω→010 ·····	

Ex.2 When there are 3 effective digits(such as in high precision metal film resistors).

 $5.62k \Omega \rightarrow 562 \times 10^{1} \rightarrow 5621 \cdots RN1/4SR \boxed{5} \boxed{6} \boxed{2} \boxed{1} F$

nain	<u>No.</u>	Description	Part No.	Mark	No.	Description	Part No.
- BA (THER	BOARD ASSEMBL	v		C153	ELECTR. CAPACITOR	CEAS101M10
					C155	CERAMIC CAPACITOR	CKCYB182K5
		For PD - M550 and PD	- M455)		C156	CERAMIC CAPACITOR	CGCYX333K2
(P	WM1472	For PD - M453)			C157	CERAMIC CAPACITOR	CGCYX103K2
(P	WM1468	For PD - M450)			C158, 159		CGCYX104K2
EMI(CONDUC	TORS			C16	CERAMIC CAPACITOR	CKCYF103Z5
	IC101	PRE AMP IC	CXA1471S		C160	ELECTR. CAPACITOR	CEAS4R7M50
	IC151	SERVO IC	CXA1372S		C161	CERAMIC CAPACITOR	CGCYX104K2
	IC20	REGULATOR IC	M5298P		C162	ELECTR. CAPACITOR	CEAS010M50
		POWER OP-AMP, IC	LA6520		C163	CERAMIC CAPACITOR	CGCYX104K2
	IC21	REGULATOR, IC	NJM2930-L05				
					C164	CERAMIC CAPACITOR	CGCYX103K2
	IC301	EFM DEMODULATION IC	CXD2500AQ		C167	CERAMIC CAPACITOR	CKCYF103Z5
	IC351	MICROCOMPUTER, IC	PD4323A		C168	CERAMIC CAPACITOR	CGCYX333K2
	IC401	D/A CONVERTER, IC	PD2026A		C169	CERAMIC CAPACITOR	CGCYX103K2
	IC405	OP-AMP IC	NJM4558D-D		C170	CERAMIC CAPACITOR	CKCYB332K5
	IC406	OP-AMP IC (PWM1474 only)	BA15218				
					C171, 172	CERAMIC CAPACITOR	CKCYB472K5
	Q101	TRANSISTOR	2SA854S		C202	CERAMIC CAPACITOR	CKCYF103Z5
	Q391	TRANSISTOR	2SC1740S		C21	MYLOR FILM CAPACITOR	CQMA104K50
	Q403, 404	TRANSISTOR	2SD2144S		C212	CERAMIC CAPACITOR	CGCYX103K2
	Q405	TRANSISTOR	DTC124ES		C216, 217	ELECTR, CAPACITOR	CEAS330M16
	Q451, 452	TRANSISTOR	DTA124ES		,		
					C25	ELECTR. CAPACITOR	CEAS332M16
	Q453, 454	TRANSISTOR	2SB1296		C26	ELECTR. CAPACITOR	CEAS102M16
	D11-14	DIODE	11ES2		C27	ELECTROLYTIC CAPACIT	CEAS471M6R
	D211	ZENNER DIODE	MTZJ6. 2B		C28	ELECTR. CAPACITOR	CEAS101M10
	D351	DIODE	1SS254		C29	ELECTROLYTIC CAPACIT	CEAS471M6R
	D391	DIODE	1SS254		020	EDDCINODITIC CALACIT	CDIOTITION
	2001	(PWM1474 and PWM1472 only)			C301	CERAMIC CAPACITOR	CGCYX104K2
		(I marrie and I marrie only)			C302	ELECTROLYTIC CAPACIT	CEAS471M6R
	D392-397	DIODE	1SS254		C302	CERAMIC CAPACITOR	CKCYB152K5
	D403	DIODE	1SS254		C307	CERAMIC CAPACITOR	CGCYX473K2
	D52	DIODE	11ES2		C308		CGCYX103K2
	D54	ZENNER DIODE	MTZJ18B		C300	CERAMIC CAPACITOR	CGCIATUSKZ
					C309	ELECTR. CAPACITOR	CEASR47M50
APA	CITORS				C351	ELECTROLYTIC CAPACIT	CEAS471M6R
		ELECTR. CAPACITOR	CEAS101M10		C353, 361	CERAMIC CAPACITOR	CKCYF103Z5
	C103	CERAMIC CAPACITOR	CCCCH200J50		C397	MYLOR FILM CAPACITOR	CQMA104K50
	C104	ELECTR. CAPACITOR	CEAS101M10		C403	CERAMIC CAPACITOR	CCCCH120J5
	C11, 110	CERAMIC CAPACITOR	CKCYF103Z50				
	C13, 15	CERAMIC CAPACITOR	CKCYF103Z50		C404	CERAMIC CAPACITOR	CCCCH220J5
	•				C413-416		CQMA104K50
					C421	MYLOR FILM CAPACITOR	CQMA103K50
					C420 430	CERAMIC CAPACITOR	CCCCH390J5

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
	C435-438 C441, 442	ELECTR. CAPACITOR CERAMIC CAPACITOR MYLOR FILM CAPACITOR ELECTR. CAPACITOR CERAMIC CAPACITOR ELECTR. CAPACITOR ELECTR. CAPACITOR	CEAS220M25 CCCCH390J50 CQMA152J50 CEAS4R7M50 CKCYF103Z50 CEAS101M35 CEAS010M50	SWITO		SWITCH (PWZ2142 only) 'DISC1, DISC2, DISC3, STOP, DIS DISC5, DISC6, TIME, RANDOM PL REPEAT, PAUSE, AUTO FADER, HI SCAN, COMPU PGM, PGM, DELETE, FADE, 7-10, 4-6, ≥ 20, 1-3, +10 MANUAL SEARCH(⟨≺⟨, ▷⟩), TRACK SEARCH(⟨≺⟨, ▷⟩),	AY, -LITE TIME , PLAY,
RESIS	VR102 VR103 VR151, 152	VR(22k) VR(1k) VR(22k) Other resistors	VRTB6VS223 VRTB6VS102 VRTB6VS223 RD1/6PM□□□□J		S701-717	•	PSG1006 C4, \
OTHE	X351 X401 CN101 CN351	CERAMIC RESONATOR XTAL RES (OSC) CONNECTOR CONNECTOR (PWM1474 and PWM1472 only)	VSS1014 PSS1006 52045-1610 9602S-28C		\$730-735	HI-LITE SCAN, COMPU PGM, PGM DELETE, TIME FADE	PSG1006 PLAY,
	CN351 CN401 JA391, 392	CONNECTOR (PWM1468 only) 3P JUMPER CONNECTOR (PWM1474 only) JACK/12V (CONTROL (IN, OUT))	9602S-26C Non supply PKN1004	RESIS	R701	CARBON FILM RESISTOR	RD1/6PM471J
	JA393 JA401	JACK (CD+DECK SYNCHRO)	PKN1005 PKB1009		CN701 CN701 V701	CONNECTOR (PWZ2142 and PWZ2140 only) CONNECTOR (PWZ2138 only) FL INDICATOR TUBE	9602S-28F 9602S-26F PEL1053
LOA	CHES	PUSH SWITCH (LPS (1,2))	DSG1016	SWIT		REMOTE SENSOR (PWZ2142 only)	SBX1610-51
		ARD ASSEMBLY			CONDUC D801		PCX1018
SWIT		PUSH SWITCH [MZS (1,2), DCHM, DCNT)	DSG1016	SWIT	CHES S801, 802 (POWER, E		PSG1006
		ARD ASSEMBLY oplied parts in this assemb	ply.			IE BOARD ASSEME 0 and PD- M455 only)	
(P	WZ2142 WM2140	N BOARD ASSEME For PD – M550) For PD – M455 and PD For PD – M450)		CAPA	L501 ACITORS C501, 502 C504	RADIAL INDUCTOR CERAMIC CAPACITOR CERAMIC CAPACITOR	LFAR22M CKCYF103K50 CKCYF473Z50
•	CONDUC D701-705	ETORS DIODE DIODE (PWZ2142 only)	1SS254 1SS254 1SS254	OTHE		VARIABLE RESISTOR CARBON FILM RESISTOR JACK (PHONES)	PCS1003 RD1/6PM470J RKN1002

8. ADJUSTMENTS

8.1. Adjustment Methods

If a disc player is adjusted incorrectly or inadequately, it may malfunction or not work at all even though there is nothing at all wrong with the pickup or the circuitry. Adjust correctly following the adjustment procedure.

Adjustment Items/Verification Items and Order

Step	Item	Test Point	Adjustment Location	
1	Focus offset adjustment	TP1, Pin 6 (FCS. ERR)	VR103 (FCS. OFS)	
2	Grating adjustment	TP1, Pin 2(TRK. ERR)	Grating adjustment slit	
3	Tracking error balance adjustment	TP1, Pin 2(TRK. ERR)	VR102 (TRK. BAL)	
4	Pickup radial/tangential direction tilt adjustment	TP1, Pin 1 (RF)	Radial tilt adjustment screw, Tangential tilt adjustment screw	
5	RF level adjustment	TP1, Pin 1 (RF)	VR1 (RF level)	
6	Focus servo loop gain adjustment	TP1, Pin 5 (FCS. IN) TP1, Pin 6 (FCS. ERR)	VR152 (FCS. GAN)	
7	Tracking servo loop gain adjustment	racking servo loop gain adjustment TP1, Pin 3(TRK. IN) TP1, Pin 2(TRK. ERR)		
8	Focus error signal verification	TP1, Pin 6 (FCS. ERR)		

• Abbreviation table

FCS. ERR: Focus Error
FCS. OFS: Focus Offset
TRK. ERR: Tracking Error
TRK. BAL: Tracking Balance
FCS GAN: Focus Gain
TRK GAN: Tracking Gain
FCS. IN: Focus In
TRK. IN: Tracking In

Measuring Instruments and Tools

- 1. Dual trance oscilloscope (10:1 probe)
- 2. Low-frequency oscillator
- 3. Test disc (YEDS-7)
- 4. Low-pass filter (39 k Ω + 0.001 μ F)
- 5. Resistor (100 k Ω)
- 6. Standard tools

Test Point and Adjustment Variable Resistor Positions

Notes

- 1. Use a 10:1 probe for the oscilloscope.
- 2. All the knob positions (settings) for the oscilloscope in the adjustment procedures are for when a 10:1 probe is used.

● Test Mode

These models have a test mode so that the adjustments and checks required for service can be carried out easily. When these models are in test mode, the keys on the front panel work differently from normal. Adjustments and checks can be carried out by operating these keys with the correct procedure. For these models, all adjustments are carried out in test mode.

[Setting these models to test mode]

How to set this model into test mode.

- 1. Unplug the power cord from the AC socket.
- 2. Short the test mode jumper wires. (See Figure 1.)
- 3. Plug the power cord back into the AC socket.

When the test mode is set correctly, the display is different from what it usually is when the power is turned on. If the display is still the same as usual, test mode has not been set correctly, so repeat Steps 1-3.

[Release from test mode]

Here is the procedure for releasing the test mode:

- 1. Press the STOP key and stop all operations.
- 2. Unplug the power cord from the AC socket.

[Operations of the keys in test mode]

Code	Key Name	Function in Test Mode	Explanation
	PGM (PROGRAM)	Focus servo close	The laser diode is lit up and the focus actuator is lifted up, then lowered slowly and the focus servo is closed at the point where the objective lens is focused on the disc. With the player in this state, if you lightly rotate the stopped disc by hand, you can hear the sound the focus servo. If you can hear this sound, the focus servo is operating correctly. If you press this key with no disc mounted, the laser diode lights up, the focus actuator is pulled up, then the actuator is lowered and raised twice and returned to its original position.
	PLAY	Spindle servo ON	Starts the spindle motor in the clockwise direction and when the disc rotation reaches the prescribed speed (about 500 rpm at the inner periphery), sets the spindle servo in a closed loop. Be careful. Pressing this key when there is no disc mounted makes the spindle motor run at the maximum speed. If the focus servo does not go correctly into a closed loop or the laser light shines on the mirror section at the outermost periphery of the disc, the same symptom is occurred.
	PAUSE	Tracking servo close/open	Pressing this key when the focus servo and spindle servo are operating correctly in closed loops puts the tracking servo into a closed loop, displays the track number being played back and the elapsed time on the front panel, and outputs the playback signal. If the elapsed time is not displayed or not counted correctly or the audio is not played back correctly, it may be that the laser is shining on the section with no sound recorded at the outer edge of the disc, that something is out of adjustment, or that there is some other problem. This key is a toggle key and open/close the tracking servo alternately. This key has no effect if no disc is mounted.

Code	Key Name	Function in Test Mode	Explanation
⟨∀	MANUAL SEARCH REV	Carriage reverse (inwards)	Moves the pickup position toward the inner diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
DD	MANUAL SEARCH FWD	Carriage forward (outwards)	Moves the pickup position toward the outer diameter of the disc. When this key is pressed with the tracking servo in a closed loop, the tracking servo automatically goes into an open loop. Since the motor does not automatically stop at the mechanical end point in test mode, be careful with this operation.
	STOP	Stop	Initializes and the disc rotation stops. The pickup and disc remain where they are when this key is pressed.
<u></u>	EJECT	CD magazine eject	Stores Disc 1 in the CD magazine, then ejects the CD magazine. However, even though the CD magazine is ejected, the pickup does not return to the park position. Even if the CD magazine is mounted again, the pickup remains where it is.

Note: When inserting the magazine, disc 1 of the magazine is loaded automatically.

[How to play back a disc in test mode]

In test mode, since the servos operate independently, playing back a disc requires that you operate the keys in the correct order to close the servos.

Here is the key operation sequence for playing back a disc in test mode.

PGM(PROGRAM) Lights up the laser diode and closes the focus servo.

PLAY ▷ Starts the spindle motor and closes the spindle servo.

PAUSE □ Closes the tracking servo.

Wait at least 2-3 seconds between each of these operations.

1. Focus Offset Adjustment

Objective	Sets the DC offset for the focus error amp.						
Symptom when out of adjustment	The model does not focus in and the RF signal is dirty.						
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 6 (FCS. ERR)		Player state	Test mode, stopped (just the Power switch on)			
	[Settings]	5 mV/division 10 ms/division	● Adjustment location	VR103 (FCS. OFS)			
	DC mode		• Disc	None needed			

[Procedure]

Adjust VR103 (FCS. OFS) so that the DC voltage at TP1, Pin 6 (FCS. ERR) is -150 ± 50 mV.

2. Grating Adjustment

Objective	To align the tracking error generation laser beam spots to the optimum angle on the track.			
Symptom when out of adjustment	Play does not start, track search is impossible, tracks are skipped.			
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 2 (TRK. ERR)via a low pass filter. (See Figure 2)		Player state Adjustment location	Test mode, focus and spindle servos closed and tracking servo open Pickup grating adjustment slit
	[Settings]	50 mV/division 5 ms/division DC mode	● Disc	YEDS-7

[Procedure]

- 1. Move the pickup to midway across the disc (R=35mm) with the MANUAL SEARCH FWD ▷▷ or REV ▷○ or REV ○○ o
- 2. Press the PGM(PROGRAM) key, then the PLAY > key in that order to close the focus servo then the spindle servo.
- 3. Insert an ordinary screwdriver into the grating adjustment slit and adjust the grating to find the null point. For more details, see the next page.
- 4. If you slowly turn the screwdriver clockwise from the null point, the amplitude of the wave gradually increases, then if you continue turning the screwdriver, the amplitude of the wave becomes smaller again. Turn the screwdriver clockwise from the null point and set the grating to the first point where the wave amplitude reaches its maximum.

 Reference: Figure 3 shows the relation between the angle of the tracking beam with the track and the waveform.

Note : The amplitude of the tracking error signal is about 3 Vp-p (when a $39 \, \text{k}\,\Omega + 0.001 \,\mu$ F low pass filter is used). If this amplitude is extremely small (2 Vp-p or less), the objective lens or the pickup malfunction may be the cause. If the difference between the amplitude of the error signal at the innermost edge and outermost edge of the disc is more than 10%, the grating is not adjusted to the optimum point, so adjust it again.

5. Return the pickup to more or less midway across the disc with the MANUAL SEARCH REV < key, press the PAUSE ■ key and double check that the track number and elapsed time are displayed on the front panel. If they are not displayed at this time or the elapsed time changes irregularly, double check the null point and adjust the grating again.

[How to find the null point]

When you insert the regular screwdriver into the slit for the grating adjustment and change the grating angle, the amplitude of the tracking error signal at TP1, Pin 2 changes. Within the range for the grating, there are five or six locations where the amplitude of the wave reaches a minimum. Of these five or six locations, there is only one at which the envelope of the waveform is smooth. This location is where the three laser beams divided by the grating are all right above the same track. (See Figure 3.)

This point is called the null point. When adjusting the grating, this null point is found and used as the reference position.

3. Tracking Error Balance Adjustment

Objective	To correct	To correct for the variation in the sensitivity of the tracking photodiode.				
Symptom when out of adjustment	Play does not start or track search is impossible.					
Measurement instru- ment connections	TP1, Pin 2	e oscilloscope to (TRK. ERR). This may be via a low	Player state Adjustment location	Test mode, focus and spindle servos closed and tracking servo open VR102 (TRK. BAL)		
	[Settings]	50 mV/division 5 ms/division DC mode	● Disc	YEDS-7		

[Procedure]

- 1. Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD $\triangleright \triangleright$ or REV $\triangleleft \triangleleft$ key.
- 2. Press the PGM(PROGRAM) key, then the PLAY > key in that order to close the focus servo then the spindle servo.
- 3. Line up the bright line (ground) at the center of the oscilloscope screen and put the oscilloscope into DC mode.
- 4. Adjust VR102 (TRK. BAL) so that the positive amplitude and negative amplitude of the tracking error signal at TP1, Pin 2 (TRK. ERR) are the same (in other words, so that there is no DC component).

4. Pickup Radial/Tangential Tilt Adjustment

Objective	To adjust the angle of the pickup relative to the disc so that the laser beams are shone straight down into the disc for the best read out of the RF signals.					
Symptom when out of adjustment	Sound broken;some discs can be played but not others.					
Measurement instru- ment connections	Connect th TP1, Pin 1	e oscilloscope to (RF).	Player state	Test mode, play		
	[Settings]	20 mV/division 200 ns/division AC mode	Adjustment locationDisc	Pickup radial tilt adjustment screw and tangential tilt adjustment screw YEDS-7		

[Procedure]

- 1. Press the MANUAL SEARCH FWD ▷▷ or REV ▷▷ the pickup to halfway across the disc (R=35mm). Press the PGM(PROGRAM) key, the PLAY ▷ key, then the PAUSE □□ key in that order to close the focus servo then the spindle servo and put the player into play mode.
- 2. First, adjust the radial tilt adjustment screw with a Phillips screwdriver so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly.
- 3. Next, adjust the tangential tilt adjustment screw with a Phillips screwdriver so that the eye pattern (the diamond shape at the center of the RF signal) can be seen the most clearly (Figure 5).
- 4. Adjust the radial tilt adjustment screw and the tangential tilt adjustment screw again so that the eye pattern can be seen the most clearly. As necessary, adjust the two screws alternately so that the eye pattern can be seen the most clearly.

Note: Radial and tangential mean the directions relative to the disc shown in Figure 4.

Figure 5 Eye pattern

PD - M550,PD - M455 PD - M453,PD - M450

5. RF Level Adjustment

Objective	To optimize the playback RF signal amplitude				
Symptom when out of adjustment	No play or no search				
Measurement instru- ment connections	Connect the oscilloscope to TP1, Pin 1 (RF).				
	[Settings] 50 mV/division 10 ms/division		● Adjustment location	VRI(laser power)	
		AC mode	● Disc	YEDS-7	

[Procedure]

- 1. Move the pickup to midway across the disc (R=35 mm) with the MANUAL SEARCH FWD ⊳ or REV ⊲ key, then press the PGM (PROGRAM) key, then the PLAY ⊳ key in that order to close the respective servos and put the player into play mode.
- 2. Adjust VR1 (laser power) so that the RF signal amplitude is 1.2 Vp-p \pm 0.1 V.

6. Focus Servo Loop Gain Adjustment

● Objective	To optimize the focus servo loop gain.					
Symptom when out of adjustment	Playback does not start or focus actuator noisy.					
Measurement instru- ment connections	See figure 6. [Settings]	Player state	Test mode, play			
	CH1 CH2 20 mV/division 5 mV/division	Adjustment location	VR152 (FCS. GAN)			
	X-Y mode	• Disc	YEDS-7			

[Procedure]

- 1. Set the AF generator output to 1.2 kHz and 1 Vp-p.
- 2. Press the MANUAL SEARCH FWD ▷▷ or REV ◁< key to move the pickup to halfway across the disc (R=35 mm), then press the PGM (PROGRAM) key, the PLAY ▷ key, then the PAUSE [] key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR152 (FCS. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Focus Gain Adjustment

Higher gain

Optimum gain

Lower gain

7. Tracking Servo Loop Gain Adjustment

Objective	To optimize the tracking servo loop gain.					
Symptom when out of adjustment	Playback does not start, during searches the actuator is noisy, or tracks are skipped.					
Measurement instru- ment connections	See Figure 7.	● Player state	Test mode, play			
Ment connections	[Settings] CH1 CH2 50 mV/division 50 mV/division X-Y mode • Adjustment location VR151 (TRK. GAN) YEDS-7					

[Procedure]

- 1. Set the AF generator output to 1.2 kHz and 2 Vp-p.
- 2. Press the MANUAL SEARCH FWD ▷▷ or REV ▷▷ deep to move the pickup to halfway across the disc (R=35 mm), then press the PGM(PROGRAM) key, the PLAY ▷ key, then the PAUSE □□ key in that order to close the corresponding servos and put the player into play mode.
- 3. Adjust VR151 (TRK. GAN) so that the Lissajous waveform is symmetrical about the X axis and the Y axis.

Tracking Gain Adjustment

Higher gain

Optimum gain

Lower gain

8. Focus Error Signal (Focus S Curve) Verification

● Objective	To judge whether the pickup is ok or not by observing the focus error signal. The pickup is judged from the amplitude of the tracking error signal (as discussed in the section on adjusting the tracking error balance) and the waveform for the focus error signal.					
Symptom when out of adjustment						
Measurement instru- ment connections	1	e oscilloscope to (FCS. ERR).	Player state	Test mode, stop		
	[Settings] 100 mV/division	● Adjustment location	None			
	5 ms/division DC mode		● Disc	YEDS-7		

[Procedure]

- 1. Connect TP1 Pin 5 to ground.
- 2. Mount the disc.
- 3. While watching the oscilloscope screen, press the PGM (PROGRAM) key and observe the waveform in Figure 8 for a moment. Verify that the amplitude is at least 2.5 Vp-p and that the positive and negative amplitude are about equal. Since the waveform is only output for a moment when the PGM (PROGRAM) key is pressed, press this key over and over until you have checked the waveform.

[Judging the pickup]

Do not judge the pickup until all the adjustment have been made correctly. In the following cases, there may be something wrong with the pickup.

- 1. The tracking error signal amplitude is extremely small (less than 2 Vp-p).
- 2. The focus error signal amplitude is extremely small (less than 2.5 Vp-p).
- 3. The positive and negative amplitudes of the focus error signal are extremely asymmetrical (2:1 ratio or more).
- 4. The RF signal is too small (less than 0.8 Vp-p) and even if VR1 (laser power) is adjusted, the RF signal can not be brought up to the standard level.

8. RÉGLAGES

8.1 Méthodes de Réglage

Si le lecteur CD est mal réglé, il risque de ne plus fonctionner normalement, voire ne plus fonctionner du tout, même si le capteur et la circuiterie en présentent aucune anomalie. Par conséquent, ajuster le lecteur correctement en suivant les démarches de réglage.

● Points de Réglage/Point et Ordre de Vérification

Etape	Point	Point d'Essai	Emplacement du Réglage
1	Réglage du décalage de la mise au point	TP1, Broche 6 (FCS. ERR)	VR103 (FCS. OFS)
2	Réglage du réseau de diffraction	TP1, Broche 2 (TRK. ERR)	Fente de réglage du réseau de diffraction
3	Réglage d'équilibrage d'erreur d'alignement	TP1, Broche 2 (TRK. ERR)	VR102 (TRK. BAL)
4	Réglage d'inclinaison radiale/ tangentielle du capteur	TP1, Broche 1 (RF)	Vis de réglage d'inclinaison radiale, vis de réglage d'inclinaison tangentielle
5	Réglage du niveau RF	TP1, Broche 1 (RF)	VR1 (niveau RF)
6	Réglage de gain de bouncle asservie de la mise au point	TP1, Broche 5 (FCS. IN) TP1, Broche 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Réglage de gain de boucle asservie de l'alignement	TP1, Broche 3 (TRK. IN) TP1, Broche 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Vérification du signal d'erreur de la mise au point	TP1, Broche 6 (FCS. ERR)	

• Tableau des abbréviations

FCS. ERR :Erreur de mise au point FCS. OFS :Décalage de mise au point TRK. ERR :Erreur d'alignement

TRK. BAL :Équilibrage d'erreur d'alignement

FCS GAN :Gain de mise au point TRK GAN :Gain d'alignement FCS. IN :Mise au point correcte TRK. IN :Alignement correct

■ Intruments de Mesure et Outils

- 1. Oscilloscope cathodeique à deux faisceaux (sonde 10:1)
- 2. Oscillateur de basse fréquence
- 3. Disque d'essai (YEDS-7)
- 4. Filtre passe-bas (39 k Ω + 0.001 μ F)
- 5. Résistance (100 k Ω)
- 6. Outils conventionnels

Point d'Essai et Positions de Réglage de la Résistance Variable

Remarques

- 1. Utiliser une sonde 10:1 pour l'oscilloscope.
- 2. Toutes les positions (réglages) des boutons de l'oscilloscope, dans les démarches de réglage, sont conçues pour l'usage d'une sonde 10:1.

Mode d'Essai

Ces modèles sont munis d'un mode d'essai, de façon que les réglages requis à la réparation puissent être effectués aisément. Quand ces modèles sont en mode d'essai, les touches du panneau avant ne fonctionnent pas comme à l'ordinaire. Les réglages et les vérifications peuvent s'effectuer par l'enclenchement de ces touches, à conditions de suivre les démarches requises. Dans le cas de ces modèles, tous les réglages sont réalisés en mode d'essai.

[Mise en Mode d'Essai]

Voici la menière de mettre le modèle en mode d'essai.

- 1. Débrancher le cordon d'alimentation de la prise secteur.
- 2. Court-circuiter les fils de liaison du mode d'essai. (Voir Figure 1.)
- 3. Rebrancher le cordon d'alimentation dans la prise secteur.

Quand le mode d'essai est correctement réglé, l'affichage est différent de celui qui apparaît généralement à la mise souns tension. Si l'affichage reste le même, le mode d'essai n'a pas été réglé correctement. Dans ce cas, répéter les étapes 1 à 3.

[Pour sortir du mode d'essai]

Voici la procédure pour sortir du mode d'essai.

- 1. Appuyer sur la touche STOP pour arrêter toutes les opérations.
- 2. Débrancher le cordon d'alimentation de la prise secteur.

[Fonctionnement des touches en mode d'essai]

Code	Nom de la Touche	Fonction en Mode d'Essal	Explications
	PGM (PROGRAM)	Fermeture du circuit asservi de la mise au point	La diode laser s'allume et l'actuateur de la mise au point se reléve, puis s'abaisse lentement et le circuit servo de la mise au point se ferme au point où la lentille de l'objectif se focalise sur le disque. Quand l'appareil est dans cet état, si l'on fait légèrement tourner à la main le disque arrêté, le bruit produit par le circuit servo de la mise au point sera audible. Si ce bruit est perçu, le circuit servo de la mise au point fonctionne correctement. Si cette touche est enclenchée et qu'aucun disque n'est installé, la diode laser s'allume, l'actuateur de la mise au point se soulève, se relève, puis s'abaisse et se soulève une deuxième fois et enfin, revient à sa position de départ.
	PLAY	Asservissement de rotation en service	Démaire le moteur de rotation dans le sens des aiguilles d'une montre, quand la rotation du disque atteint la vitesse prescrite (environ 500 tours/min à la circonférence interne) et place le circuit servo de rotation dans une boucle fermée. Attention. Si cette touche est enfoncée et qu'un disque n'est pas installé, le moteur de rotation va tourner à la vitesse maximum. Si le circuit servo de la mise au point ne passe pas comme prévu dans une boucle fermée ou que la diode laser brille dans le miroir à la périphérie externe du disque, le même symptôme se produit.
	PAUSE	Ouverture/Fermeture du circuit servo de l'alignement	Le fait d'appuyer sur cette touche quand le circuit servo de la mise au point et de la rotation fonctionnent correctement en boucles fermées, place le circuit servo de l'alignement dans une boucle fermée, fait apparaître, sur le panneau avant, le numéro de la piste en coures de lecture et la durée écoulée, puis sort le signal de lecture. Si la durée écoulée n'est pas affichée ou n'est pas correctement calculée, ou si la reproduction sonore est anormale, il se peut que la diode laser s'active dans la section dépourvue de signaux enregistrés, au bord externe du disque, qu'un ajustement quelconque soit déréglé, ou qu'un autre problème se manifeste. Cette touche est de type à bascule, et ouvre/ferme alternativement le circuit servo de l'alignement. Cette touche est inopérante si un disque n'est pas installé.

Code	Nom de la Touche	Founction en Mode d'Essai	Explications
\forall	MANUAL SEARCH REV	Inversion du chariot (vers l'intérieur)	Déplace le capteur vers la périphérie interne du disque. Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte. Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.
DD	MANUAL SEARCH FWD	Inversion du chariot (vers l'extérieur)	Déplace le capteur vers la périphérie externe du disque. Quand cette touche est enclenchée et que le circuit servo de l'alignement travaille en boucle fermée, celui-ci change automatiquement dans une boucle ouverte. Comme le capteur ne s'arrête pas automatiquement au point de fin mécanique du mode d'essai, effectuer cette démarche avec précaution.
	STOP	Arrêt	Initialiser et la rotation du disque s'arrête. Le capteur et le disque ne bougnet pas lorsque cette touche est enclenchée.
≙	EJECT	Ejection du magasin à disques	Range le disque n° 1 dans le magasin à disques, puis éjecte celui-ci. Cependant, bien que le magasin soit éjecté, le capteur ne revient pas sur sa position de départ. Même si le magasin à disques est réinstallé, la position du capteur reste inchangée.

Remarque : Lors de l'insertion du magasin, le disque 1 est chargé automatiquement.

[Lecture de disque en mode d'essai]

En mode d'essai, comme les circuits servo fonctionnent de manière indépendante, la lecture d'un disque exige que les touches soient enclenchées dans l'ordre prescrit, afin de fermer les circuits servo. Voici l'ordre d'enclenchement des touches pour reproduire un disque en mode d'essai.

PGM (PROGRAM)

Allume la diode laser ferme le circuit servo de la mise au point.

PLAY

Démarre le moteur de rotation et ferme le circuit servo de la rotation.

PAUSE || Ferme le circuit servo de l'alignement.

Attendre 2 à 3 secondes entre chaque opération.

1. Réglage du Décalage de la Mise au Point

Objectif	Règle le décalage CC de l'amplificateur d'erreur de mise au point.				
 Symptôme quand déréglé 	Le lecteur ne procède plus à la mise au point et le signal RF n'est pas clair.				
Raccordement des instruments de mesure	Raccorder l'os broche 6 (FCS	scilloscope à TP1, . ERR). 5 mV/division	● Etat du lecteur	Mode d'essai, arrêté (juste l'interrupteur d'alimentation commuté sur marche)	
	[Regiages]	10 ms/division mode CC	● Emplacement du réglage	VR103(FCS. OFS)	
			Disque	Aucun requis	

[Marche à suivre]

Ajuster VR103 (FCS. OFS) de façon que la tension à TP1 broche 6 (FCS. ERR) soit –150 \pm 50 mV.

PD - M550,PD - M455 PD - M453,PD - M450

2. Réglage du Réseau de Diffraction

Objectif	Pour aligner les points du rayon laser producteur d'erreur d'alignement sur l'angle optimum de la piste.					
 Symptôme quand déréglé 	La lecture ne commence pas, la recherche de piste est impossible, les pistes sont sautées.					
Raccordement des instruments de mesure	Raccorder l'oscilloscope à TP1, broche 2 (TRK. ERR) via un filtre passe-bas. (Voir Figure 2) [Réglages] 50 mV/division 5 ms/division mode CC	 Etat du lecteur Emplacement du réglage Disque 	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circuit servo de l'alignement ouvert. Fente de réglage du réseau de diffraction du capteur. YEDS-7			

[Marche à suivre]

- 1. Déplacer le capteur à mi-chemin sur le disque (R=35 mm) par la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ◁◁.
- 2. Appuyer sur la touche PGM (PROGRAM), puis sur la touche PLAY ▷, dans cet ordre, pour fermer le circuit servo de la mise au point, puis celui de la rotation.
- 3. Insérer un tournevis ordinaire dans le réseau de diffraction pour trouver le point zéro. Pour plus de détails, voir page suivante.
- 4. Si l'on tourne lentement le tournevis dans le sens des aiguilles d'une montre à partir du point zéro, l'amplitude de l'onde augmente graduellement et si l'on continue à tourner le tournevis, l'amplitude de l'onde diminue de nouveau. Tourner le tournevis dans le sens des aiguilles d'une montre à paritir du point zéro et régler le réseau de diffraction au premier point oû l'amplitude de l'onde atteint son maximum.

Référence: La Figure 3 illustre la relation entre l'angle du faisceau de l'alignement et la piste et la forme d'onde.

Remarque: L'amplitude du signal d'erreur d'alignement se situe aux environs de 3 Vc-c (quand un filtre passe-bas de $39\,\mathrm{k}\,\Omega\pm0,001~\mu\,\mathrm{F}$ est utilisé). Si cette amplitude est extrêmement petite (2 Vc-c ou moins), il peut s'ensuivre un mauvais fonctionnement de la lentille d'objectif ou du capteur. Si la différence entre l'amplitude du signal d'erreur au bord le plus intérieur et au bord le plus extérieur du disque est supérieure à 10%, ceci signifie que le réseau de diffraction n'est pas réglé à son point optimum. Dans ce cas, recommencer le réglage.

5. Replacer le capteur plus ou moins à mi-chemin sur le disque par la touche MANUAL SEARCH REV ⊲ , appuyer sur la touche PAUSE II et vérifier que le numéro de piste et la durée écoulée sont affichés sur le panneau avant. Si ces paramètres 'apparaissent pas ce moment, ou que la durée écoulée change de manière irrégulière, vérifier le point zéro et recommencer le réglage du réseau de diffraction.

[Repérage du point zéro]

Quand le tournevis est introduit dans la fente de réglage du réseau de diffraction et que l'angle du réseau de diffraction est modifié, l'amplitude du signal d'erreur d'alignement à TP1, broche 2, change. Dans les limites de la plage du réseau de diffraction, il existe six emplacements où l'amplitude de l'onde atteint le minimum. Mais l'enveloppe de la forme d'onde n'est régulière qu'à un seul de ces emplacements. Ce point se situe à l'endroit où les trois rayons laser, divisés par le réseau de diffraction, se situent exactement sur la même piste (voir Figure 3).

Ce point s'appelle le point zéro. Lors du réglage du réseau de diffraction, ce point zéro est repéré et utilisé comme position de référnce.

PD - M550,PD - M455 PD - M453,PD - M450

3. Réglage d'Équilibrage d'Erreur d'Alignement

Objectif	Pour corriger	Pour corriger la variation de sensibilité de la photodiode d'alignement.				
Symptôme quand déréglé	La lecture ne commence pas, la recherche de piste est impossible.					
Raccordement des instruments de mesure	broche 2 (TR Cette connex	oscilloscope à TP1, K. ERR). ion peut être faite diaire d'un filtre	● Etat du lecteur	Mode d'essai, circuits servo de la mise au point et de la rotation fermés, circuit servo de l'alignement ouvert.		
	[Réglages]	50 mV/division 5 ms/division mode CC	● Emplacement du réglage	VR102(TRK. BAL)		
			Disque	YEDS-7		

[Marche à suivre]

- 1. Déplacer le capteur à mi-chemin sur le disque (R=35 mm) par la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ◁◁.
- 2. Appuyer sur la touche PGM (PROGRAM), puis sur la touche PLAY ▷, dans cet ordre, pour fermeer le circuit servo de la mise au point, puis celui de la rotation.
- 3. Aligner la ligne lumineuse (masse) au centre de l'écran de l'oscilloscope et placer celui-ci en mode CC.
- 4. Ajuster VR102 (TRK. BAL) de façon que l'amplitude positive et l'amplitude négative du signal d'erreur d'alignement à TP1, broche 2 (TRK. ERR) soient identiques (c'est-à-dire, qu'il n'y ait aucun composant CC).

S'il y a un composant CC

S'il n'y a pas de composant CC

4. Réglage d'Inclinaison Radiale/Tangentielle du Capteur

Objectif	Pour régler l'angle du capteur par rapport au disque, de façon que les rayons laser frappent vericalement le disque et permettre ainsi la lecture optimum des signaux RF.						
 Symptôme quand déréglé 	Son interrom	Son interrompu ; certains disques peuvent être lus et pas d'autres.					
Raccordement des instruments de	Raccorder l'oscilloscope à TP1, broche l (RF).			• Etat du lecteur	Mode d'essai, lecture		
mesure	[Réglages]	20 mV/division 200 ns/division mode CA		 Emplacement du réglage 	Vis de réglage d'inclinaison radiale. Vis de réglage d'inclinaison tan- gentielle.		
				Disque	YEDS-7		

[Marche à suivre]

- 1. Dans le cas d'un lecteur multidisque, utiliser la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ⊲⊲ pour déplacer le capteur à mi-chemin sur le disque (R=35 mm).
 - Appuyer sur la touche PGM (PROGRAM), PLAY > et PAUSE II dans cet ordre, afin de fermer le circuit servo de la mise au point, puis celui de la rotation et placer le lecteur en mode de lecture.
- 2. D'abord, ajuster la vis d'inclinaison radiale à l'aide un tournevis Phillips, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible.
- 3. Ensuite, ajuster la vis d'inclinaison tangentielle à l'aide un tournevis Phillips, de façon que le motif en oeil (c'est-à-dire, le diamant au centre du signal RF) soit le plus clairement visible (Figure 5).
- 4. Ajuster de nouveau la vis d'inclinaison radiale et la vis d'inclinaison tangentielle de façon que le motif en oeil soit le plus clairement visible. Le cas échéant, régler les deux vis de façon que le motif en oeil soit le plus clairement visible.

Remarque: "Radial" et "tangentiel" se rapportent aux sens par rapport au disque illustré à la Figure 4.

Figure 5 Motif en oeil

5. Réglage du Niveau RF (Niveau RF)

Objectif	Pour optimaliser l'amplitude du signal RF de lecture				
Symptôme quand déréglé	Pas de lecture ni de recherche				
Raccordement des instruments de	Raccorder l'oscilloscope à TP1, broche 1 (RF).		• Etat du lecteur	Mode d'essai, lecture	
mesure	[Réglages]	50 mV/division 10 ms/division	Emplacement du réglage	VR1 (alimentation du laser)	
		mode CA	Disque	YEDS-7	

[Marche à suivre]

- 1. Placer le capteur à mi-chemin sur le disque (R=35 mm) à l'aide de la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ◁◁.
 - Ensuite, appuyer sur la touche PGM (PROGRAM), puis sur la touche PLAY \triangleright , dans cet ordre, pour fermer les circuits servo respectifs et mettre le lecteur en mode de lecteur.
- 2. Ajuster VR1 (alimentation du laser) de façon que l'amplitude du signal RF atteigne 1,2 Vc-c $\pm 0,1$ V.

6. Réglage de Gain de Boucle Asservie de la Mise au Point

Objectif	Pour optimaliser le gain de la boucle d'asservissement de la mise au point.					
Symptôme quand déréglé	La lecture ne commence pas ou l'actuateur de la mise au point est parasité.					
Raccordement des instruments de	Voir Figure 6.		Etat du lecteur	Mode d'essai, lecture		
mesure	[Réglages] GAN: 1 20 mV/division	GAN. 2 5mV/division	 Emplacement du réglage 	VR152 (FCS. GAN)		
	mode X-Y		● Disque	YEDS-7		

[Marche à suivre]

- 1. Régler la sortie du générateur AF sur 1,2 kHz et 1 Vc-c.
- 2. Appuyer sur la touche MANUAL SEARCH FWD ▷▷ ou la touche REV ◁◁ pour placer le capteur à mi-chemin sur le disque (R=35 mm). Ensuite, appuyer sur la touche PGM(PROGRAM), la touche PLAY ▷, puis sur la touche PAUSE II , dans cet ordre, pour fermer les circuits servo respectifs et placer le lecteur en mode de lecture.
- 3. Ajuster VR152 (FCS. GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y.

Réglage de gain de mise au point

Gain supérieur

Gain optimum

Gain inférieur

7. Réglage de Gain de Boucle Asservie de l'Alignement

Objectif	Pour optimaliser le	Pour optimaliser le gain de la boucle d'asservissement de l'alignement.					
 Symptôme quand déréglé 	La lecture ne commence pas, l'actuateur est parasité pendant la recherche, ou des pistes sont sautées.						
Raccordement des instruments de	Voir Figure 7.		● Etat du lecteur	Mode d'essai, lecture			
mesure	[Réglages] GAN. 1 50 mV/division	GAN. 2 50 mV/division	 Emplacement du réglage 	VR151 (TRK. GAN)			
mode X - Y		Jo III V J dI V ISIOII	● Disque	YEDS-7			

[Marche à suivre]

- 1. Régler la sortie du générateur AF sur 1,2 kHz et 2 Vc-c.
- 2. Appuyer sur la touche MANUAL SEARCH FWD ▷ ou la touche REV ⊲ pour placer le capteur à mi-chemin sur le disque (R=35 mm). Ensuite, appuyer sur la touche PGM (PROGRAM), la touche PLAY ▷, puis sur la touche PAUSE 🗓, dans cet ordre, pour fermer les circuits servo respectifs et placer le lecteur en mode de lecture.
- 3. Ajuster VR151 (TRK. GAN) de façon que la forme d'onde de Lissajous soit symétrique aux alentours de l'axe X et l'axe Y.

Réglage de gain d'alignement

Gain supérieur

Gain optimum

Gain inférieur

8. Vérification du Signal d'Erreur de la Mise au Point

● Objectif	Pour juger si le capteur est bon ou pas, en observant le signal d'erreur de la mise au point. L'état du capteur s'évalue à partir de l'amplitude du signal d'erreur d'alignement (comme décrit dans le paragraphe relatif à l'équilibrage d'erreur d'alignement), ainsi qu'à paritir de la forme d'onde du signal d'erreur de mise au point.				
Symptôme quand déréglé					
Raccordement des instruments de	Raccorder 1 broche 6 (FC	'oscilloscope à TP1, S. ERR).	• Etat du lecteur	Mode de test, arrêt	
mesure	[Réglages]	100 mV/division	 Emplacement du réglage 	Aucun	
	. •	5 ms/division mode CC	● Disque	YEDS-7	

[Marche à suivre]

- 1. Raccorder TP1, broche 5 à la masse.
- 2. Installer le disque.
- 3. Tout en regardant l'écran de l'oscilloscope, appuyer sur la touche PGM (PROGRAM) et observer la forme d'onde de la Figure 8, pendant quelques instants. Vérifier que l'amplitude atteint au moins 2,5 Vc-c et que les amplitudes positive et négatives soient égales. Comme la forme ne sort que pour un moment, quand la touche PGM(PROGRAM) est enclenchée, appuyer sur à plusieurs reprises sur cette touche, jusqu'à ce que la forme d'onde ait été vérifiée.

[Evaluation du capteur]

Ne pas tenter d'évaluer l'état du capteur tant que tous les réglages ne sont pas corrects. Les cas suivants témoignent de l'anomalie du capteur.

- 1. L'amplitude du signal d'erreur d'alignement est extrêmement petite (inférieure à 2 Vc-c).
- 2. L'amplitude du signal d'erreur de mise au point est extrêmement petite (inférieure à 2,5 Vc-c).
- 3. Les amplitudes positive et négative du signal d'erreur de mise au point sont extrêmement asymétriques (taux 2:1 ou plus).
- 4. Le signal RF est trop petit (inférieur à 0,8 Vc-c) et même si VR1 (alimentation du laser) est ajustée, le signal RF ne peut être élevé au niveau standard.

8. AJUSTES

8.1 Métodos de Ajuste

Si un reproductor de discos compactos se ajusta incorrecta o inadecuadamente, puede funcionar mal o no trabajar incluso aunque no exista ningún problema en el captor ni en los circuitos. Ajuste correctamente siguiendo el procedimiento de ajuste.

● Ítemes de Ajuste/Verificación y Orden

Paso	Ítem	Punto de Prueba	Lugar de Ajuste
1	Ajuste del descentramiento de enfoque	TP1, Patilla 6(FCS. ERR)	VR103 (FCS. OFS)
2	Ajuste de retícula	TP1, Patilla 2(TRK. ERR)	Ranura de ajuste de retícula
3	Ajuste del equilibrio de ajuste de seguimiento	TP1, Patilla 2(TRK. ERR)	VR102 (TRK. BAL)
4	Ajuste de la inclinación en sentido radial / tangencial del captor	TP1, Patilla 1 (RF)	Tornillo de ajuste de la inclinación radial. Tornillo de ajuste de la inclinación tangencial
5	Ajuste del nivel de RF	TP1, Patilla 1 (RF)	VR1 (Nivel de RF)
6	Ajuste de la ganancia del bucle del servo de enfoque	TP1, Patilla 5 (FCS. IN) TP1, Patilla 6 (FCS. ERR)	VR152 (FCS. GAN)
7	Ajuste de la ganancia del bucle del servo de seguimiento	TP1, Patilla 3 (TRK. IN) TP1, Patilla 2 (TRK. ERR)	VR151 (TRK. GAN)
8	Verificación de la señal de error de enfoque	TP1, Patilla 6 (FCS. ERR)	

• Tabla de abreviaturas

FCS. ERR :Error de enfoque
FCS. OFS :Descentramiento de enfoque
TRK. ERR :Error de seguimiento
TRK. BAL :Equilibrio de seguimiento
FCS GAN :Ganacia de enfoque
TRK GAN :Ganacia de seguimiento
FCS. IN :Entrada de enfoque
TRK. IN :Entrada de seguimiento

Instrumentos y Herramientas de Medición

- 1. Osciloscopio de doble traza (Sonda de 10:1)
- 2. Oscilador de baja frecuencia
- 3. Disco de prueba (YEDS-7)
- 4. Filtro de paso bajo (39 k Ω + 0,001 μ F)
- 5. Resistor (100 k Ω)
- 6. Herramientas estándar

Ubicación de Los Puntos de Prueba y Los Resistores Variables de Ajuste

Notas

- 1. Emplee una sonda de 10:1 para el osciloscopio.
- 2. Todas las posiciones de los mandos (ajustes) para el osciloscopio de los procedimientos de ajuste son para cuando se emplee la sonda de 10:1.

Modo de Prueba

Estos modelos poseen un modo de prueba que permite realizar fácilmente los ajustes y las comprobaciones requeridos para el servicio. Cuando estos modelos estén en el modo de prueba, las teclas del panel frontal trabajarán de forma diferente a la normal. Los ajustes y las comprobaciones podrán realizarse accionando estas teclas de acuerdo con el procedimiento correcto. Para estos modelos, todos los ajustes se realizarán en el modo de prueba.

[Puesta de estos modelos en el modo de prueba]

A continuación se indica cómo poner estos modelos en el modo de prueba.

- 1. Desenchufe el cable de alimentación de la toma de CA.
- 2. Controcircuite los hilos de puenteado de mode de prueba. (Consulte la figura 1.)
- 3. Enchufe el cable de alimentación de la toma de CA.

Cuando haya ajustado correctamente el modo de prueba, la visualización será diferente a la obtenida normalmente al conectar la alimentación. Si la visualización sigue siento la normal, el modo de prueba no se habrá ajustado normalmente, por lo que tendrá que repetir los pasos 1 a 3.

[Desactivación del modo de prueba]

A continuación se indica el procedimiento para desactivar el modo de prueba.

- 1. Presione la tecla STOP y cese todas las operaciones.
- 2. Desenchufe el cable de alimentación de la toma de CA.

[Operaciones de teclas en el modo de prueba]

Código	Nombre de la Tecla	Función en el Modo de Prueba	Explicación
	PGM (PROGRAM)	Cierre del servo de enfoque	El diodo láser se encenderá y el actuador de enfoque se eleva, después se desciende lentamente, y el servo de enfoque se cerrará en el punto en el que el objetivo se enfoque sobre el disco. Con el reproductor en este estado, si gira ligeramente con la mano el disco parado, podrá oír el sonido del servo de enfoque. Si puede oír este sonido, el servo de enfoque estará funcionando correctamente. Si presiona esta tecla sin disco montado, el diodo láser se encenderá, el actuador de enfoque se vera empujado hacia arriba, y después se levantará y descenderá y se eleva dos veces, y volverá a su posición original.
\triangleright	PLAY	Activación del servo del eje	Pondrá en marcha el motor del eje haciéndolo girar hacia la derecha y después la rotación del disco alcanzará la velocidad prescrita (unas 500 rpm en la periferia interior), y pondrá el servo del eje en un bucle cerrado. Tenga cuidado. Si presiona esta tecla cuando no haya disco montado, el motor del eje girará a la velocidad máxima. Si el servo de enfoque no pasa correctamente a un bucle cerrado, o si el haz lasérico incide en la sección del espejo en el la periferia del disco, ocurrirá el mismo síntoma.
	PAUSE	Apertura/cierre del servo de seguimiento	Si presiona esta tecla cuando el servo de enfoque y el servo del eje están funcionando correctamente en bucles cerrados, el servo de seguimiento se pondrá en bucle cerrado, en el panel frontal se visualizarán el número de canción que esté reproduciéndose y el tiempo transcurrido, y se producirá la salida de la señal de reproducción. Si el tiempo transcurrido no se visualiza o no se cuenta correctamente, o si el sonido no se reproduce correctamente, es posible que el rayo lasérico esté incidiendo en la sección sin sonido grabado en el borde exterior del disco, o que exista algún otro problema. Esta tecla es basculante de acción alternativa, y abre/cierra el servo de seguimiento alternativamente. Esta tecla no funcionará cuando no haya disco montado.

Código	Nombre de la Tecla	Función en el Modo de Prueba	Explicación
₩	MANUAL SEARCH REV	Retroceso del carro (hacia adentro)	Moverá la posición del captor hacia el diámetro interior del disco. Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.
Δ	MANUAL SEARCH FWD	Avance del carro (hacia afuera)	Moverá la posición del captor hacia la periferia del disco. Si presiona esta tecla con el servo de seguimiento en bucle cerrado, dicho bucle pasará automáticamente a bucle abierto. Como el captor no se para automáticamente en el punto final mecánico en el modo de prueba, tenga cuidado cuando realice esta operación.
	STOP	Parada	Inicializa y se para la rotacion del desco. El captor y el disco permanecen donde están cuando se presiona esta tecla.
	EJECT	Expulsión del cargador de discos compactos	Almacenará el disco 1 en el cargador de discos compactos, y después expulsará dicho cargador. Sin embargo, aunque el cargador de discos compactos sea expulsado, el captor no volverá a su posición de reposo. Aunque vuelva a montar el cargador de discos compactos, el captor permanecerá donde estaba.

Nota: Cuando inserte el cargador, el disco 1 del mismo se cargará automáticamente.

[Cómo reproducir un disco en el modo de prueba]

En el modo de prueba, como los servos funcionan independientemente, la reproducción de un disco requiere el que usted emplee las teclas en el orden correcto para cerrar los servos.

A continuación se indica la secuencia de operación de teclas para reproducir un disco en el modo de prueba.

PGM (PROGRAM)

Hará que se encienda el diodo láser y cerrará el servo de enfoque.

PLAY >

Pondrá en marcha el motor del eje y hará que se cierre el servo del eje.

PAUSE []]

Cerrará el servo de seguimiento.

Espere de 2 a 3 segundos por lo menos entre cada una de estas operaciones.

1. Ajuste del Descentramiento del Enfoque

● Objetivo	Ajuste de la tensión de CC para el amplificador de error de enfoque.					
Síntomas en caso de desajuste	El reproductor no enfoca y la señal de RF contiene perturbaciones.					
Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla 6 (FCS. ERR)		Estado del reproductor	Mode de prueba, parado (con el interruptor de alimentación en ON)		
	[Ajustes]	5 mV/división 10 ms/división modo de CC	• Lugar de ajuste	VR103 (FCS. OFS)		
		Disco No es necesario				

[Procedimiento]

Ajuste VR103 (FCS. OFS) de forma que la tensión de CC de TP1, patilla 6 (FCS. ERR) sea de $-15.0\pm50\,\text{mV}$.

2. Ajuste de Retícula

Objetivo	Alineación de los puntos del haz lasárico de generación de error de seguimiento al ángulo óptimo en la pista.					
 Síntomas en caso de desajuste 	La reproducción no se inicia, la búsqueda de canciones es imposible, las pistas se saltan.					
Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla2 (TRK. ERR)a través de un filtro de paso bajo. (Consulte la figura 2) [Ajustes] 50 mV/división 5 ms/división modo de CC	1	Modo de prueba, servos de enfoque y del eje cerrados, y servo de seguimiento abierto. Ranura de ajuste de retícula del captor YEDS-7			

[Procedimiento]

- 1. Mueva el captor hasta el la mitad del disco (R=35mm) con la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ◁◁.
- 2. Presione la tecla PGM (PROGRAM), y después la tecla PLAY ▷, por este orden, a fin de cerrar el servo de enfoque y después el servo del eje.
- 3. Inserte un destornillador normal en la ranura de ajuste de la retícula y ajuste la retícula hasta encontrar el punto nulo. Para más detalles, consulte la página siguiente.
- 4. Si gira lentamente el destornillador hacia la derecha desde el punto nulo, la amplitud de la onda aumentará gradualmente. Después, si continúa girando el destornillador, la amplitud de la onda se volverá otra vez más pequeña. Gire el distornillador hacia la derecha desde el punto nulo y ajuste la retícula al primer punto en el que la amplitud de la onda alcance su valor máximo.

Referencia: En la figura 3 se muestra la relación entre el ángulo del haz de seguimiento con la pista y la forma de onda.

Nota

- : La amplitud de la señal de error de seguimiento será de aproximadamente 3 Vp-p (cuando se emplee un filtro de paso bajo de $39 \text{ k}\Omega$, $0,001 \,\mu$ F). Si la amplitud está extremadamente pequeña (2 Vp-p 6 menos), la causa será el funcionamiento malo en el lente objetivo o en el captador. Si la diferencia entre la amplitud de la señal de error en el borde interior y exterior del disco es superior al 10%, la retícula no estará ajustada al punto óptimo, por lo que tendrá que volver a ajustaria.
- 5. Devuelva el captor hasta la mitad más o menos del disco con la tecla MANUAL SEARCH REV <> , presione la tecla PAUSE []], y vuelva a comprobar si en el panel frontal se visualizan el número de canción y el tiempo transcurrido. Si no se visualizan esta vez, o si el tiempo transcurrido cambia irregularmente, vuelva a comprobar el punto nulo y ajuste otra vez la retícula.

[Cómo encontrar el punto nulo]

Cuando inserte el destornillador normal en la ranura para el ajuste de la retícula y cambie el ángulo de la misma. La amplitud de la señal de error de seguimiento de TP1, patilla 2, cambiará. Dentro del margen para la retícula existen cinco o seis lugares en los que la amplitud alcanza el valor mínimo. De estos cinco o seis lugares, solamente hay uno en el que la envolvente de la forma de onda es uniforme. Este lugar es donde los tres haces laséricos divididos por la retícula se encuentran exactamente sobre la misma pista. (Consulte la figura 3.)

Este punto se denomina punto nulo. Cuando ajuste la retícula, este punto se encontrará y empleará como posición de referencia.

Forma de onda del punto nulo

Forma de onda de amplitud máxima

Forma de onda que no es el punto nulo

3. Ajuste del Equilibrio de Error de Seguimiento

◆ Objetivo	Corrección de la variación de la sensibilidad del fotodiodo de seguimiento.			
Síntomas en caso de desajuste	La reproducción no se inicia o la búsqueda de canciones es imposible.			
Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla 2(TRK. ERR). Esta conexión puede realizarse a través de un filtro de paso bajo • Estado del reproductor del eje cerrados, y servo de seguimiento abierto			
	[Ajustes] 50 mV/división 5 ms/división	● Lugar de ajuste	VR102 (TRK. BAL)	
	modo de CC	• Disco	YEDS-7	

[Procedimiento]

- 1. Mueva el captor hasta la mitad del disco (R=35 mm) con la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ▷▷.
- 2. Presione la tecla PGM (PROGRAM), y después la tecla PLAY ▷, por este orden, a fin de cerrar el servo de enfoque y después el servo del eje.
- 3. Haga coincidir la línea brillante (masa) del centro de la pantalla del osciloscopio y ponga éste en el modo de CC.
- 4. Ajuste VR102 (TRK. BAL) de forma que la amplitud positiva y la negativa de la señal de error de seguimiento de TP1 patilla 2 (TRK. ERR) sean iguales (en otras palabras, de forma que no haya componente de CC).

PD - M550,PD - M455 PD - M453,PD - M450

4. Ajuste de la Inclinación en Sentido Radial / Tangencial del Captor

● Objetivo	Ajustar el ángulo del captor en relación con el disco de forma que los haces laséricos incidan perpendicularmente sobre el mismo a fin de poder leer con la mayor exactitud las señales de RF.					
 Síntomas en caso de desajuste 	Sonido quebrado, algunos discos pueden reproducirse pero otros no.					
Conexión de los instrumentos de medición	Conecte el osciloscopio a 1 (RF). [Ajustes] 20 mV/divisio 200 ns/divisio	reproductor • Lugar de ajuste	Modo de prueba, reproducción Tornillo de ajuste de la inclinación radial y tornillo de ajuste de la			
	modo de CA	• Disco	inclinación tangencial YEDS-7			

[Procedimiento]

- 1. Para un tipo de reproducción múltiple de disco compacto, emplee la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ◁◁ a fin de mover el captor hasta la mitad del disco (R=35 mm)

 Presione la tecla PGM (PROGRAM), la tecla PLAY ▷, y después la tecla PAUSE □ , por este orden, a fin de cerrar el servo de enfoque, dispués el servo del eje, y por último para poner el reproductor en el modo de reproducción.
- 2. En primer lugar, gire el tornillo de ajuste de inclinación radial con un destornillador Phillips hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad.
- 3. A continuación, ajuste el tornillo de ajuste de inclinación tangencial con un destornillador Phillips hasta que el patrón ocular (la forma de diamante del centro de la señal de RF) pueda verse con la mayor claridad (figura 5).
- 4. Vuelva a girar el tornillo de ajuste de inclinación radial y el tornillo de inclinación tangencial hasta que el patrón ocular pueda verse con la mayor claridad. Si es necesario, ajuste alternativamente los dos tornillos hasta que el patrón ocular pueda verse con la mayor claridad.

Nota: Radial y tangencial significan las direcciones en relación con el disco mostrado en la figura 4.

Figura 5 Patron optico

5. Ajuste del Nivel de RF

● Objetivo	Optimización de la amplitud de la señal de RF de reproducción.				
Síntomas en caso de desajuste	La reproducción no se inicia o la búsqueda de canciones es imposible.				
Conexión de los instrumentos de medición	Conecte el osciloscopio a TP1, patilla 1 (RF).	Estado del reproductor	Modo de prueba, reproducción		
	[Ajustes] 50 mV/división 10 ms/división	• Lugar de ajuste	VR1 (potencia de láser)		
	modo de CA	● Disco	YEDS-7		

[Procedimiento]

- 1. Mueva el captor hasta la mitad del disco (R=35 mm) con la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ◁◁, presione la tecla PGM (PROGRAM), después la tecla PLAY ▷, por este orden a fin de cerrar los servos respectivos, y ponga el reproductor en el mode de reproducción.
- 2. Ajuste VR1 (potencia de láser) de forma que la amplitud de la señal de RF sea de 1,2 Vp-p $\pm 0,1$ V.

6. Ajuste de la Ganancia del Bucle del Servo de Enfoque

Objetivo	Optimización de la ganancia del bucle del servo de enfoque.				
Síntomas en caso de desajuste	La reproducción no se inicia o el actuador de enfoque produce ruido.				
Conexión de los instrumentos de medición	Consulte la fugura 6.		Estado del reproductor	Modo de prueba, reproducción	
	[Ajustes] CH1 CH2 20 mV/división 5mV/di modo X - Y		• Lugar de ajuste	VR152 (FCS. GAN)	
		5mV/división	• Disco	YEDS-7	

[Procedimiento]

- 1. Ajuste la salida del generador de AF a 1,2 kHz y 1 Vp-p.
- 2. Presione la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ◁◁ para mover el captor hasta la mitad del disco (R=35 mm), y después presione la tecla PGM (PROGRAM), la tecla PLAY ▷, y después la tecla PAUSE □ , por este orden, a fin de cerrar los servos correspondientes y poner el reproductor en el modo de reproducción.
- 3. Ajuste VR152 (FCS. GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Figura 6

Ajuste de la ganancia de enfoque

Ganancia superio

Ganancia óptima

Ganancia inferior

7. Ajuste de la Ganancia del Bucle del Servo de Seguimiento

● Objetivo	Optimización de la ganancia del bucle	del servo de seguim	ento.
 Síntomas en caso de desajuste 	La reproducción no se inicia, el actuado	dor de enfoque produ	ce ruido, o se saltan pistas.
Conexión de los instrumentos de	Consulte la figura 7.	Estado del reproductor	Modo de prueba, reproducción
medición	[Ajustes] CH1 CH2 50 mV/división 50 mV/división	• Lugar de ajuste	VR151(TRK. GAN)
	modo X-Y	● Disco	YEDS-7

[Procedimiento]

- 1. Ajuste la salida del generador de AF a 1,2 kHz y 2 Vp-p.
- 2. Presione la tecla MANUAL SEARCH FWD ▷▷ o la tecla REV ◁◁ para mover el captor hasta la mitad del disco (R=35 mm), y después presione la tecla PGM (PROGRAM), la tecla PLAY ▷, y la tecla PAUSE □□, por este orden, a fin de cerrar los servos respectivos y poner el reproductor en el modo de reproducción.
- 3. Ajuste VR151 (TRK. GAN) hasta que la forma de onda de Lissajous sea simétrica alrededor del eje X y el eje Y.

Ajuste de la ganancia de seguimiento

Ganancia superior

Ganancia óptima

Ganancia inferior

8. Verificación de la Señal de Error de Enfoque (Curva S de Enfoque)

● Objetivo	amplitud d	e la señal de error de segui	miento (como se ha i	rror de enfoque. El captor se juzga por la indicado en la sección sobre el ajuste del a señal de error de enfoque.
Síntomas en caso de desajuste				
Conexión de los instrumentos de medición	Conecte el 6 (FCS. El	osciloscopio a TP1, patilla RR).	Estado del reproductor	Modo de prueba, parada
medicion	[Ajustes]	100 mV/división	• Lugar de ajuste	Ninguno
		5 ms/división modo de CC	• Disco	YEDS-7

[Precedimiento]

- 1. Conecte TP1, patilla 5, a masa.
- 2. Coloque el disco.
- 3. Contemplando la pantalla del osciloscopio, presione la tecla PGM (PROGRAM) y observe durante un momento la forma de onda de la figura 8. Verifique si la amplitud es de 2,5 Vp-p por lo menos y si la amplitud de las partes positiva y negativa son iguales. Como la forma de onda solamente sale durante un momento cuando se presiona la tecla PGM (PROGRAM), presione una y otra vez esta tecla hasta que logre comprobar la forma de onda.

[Juicio sobre el captor]

No juzgue el captor hasta haber finalizado correctamente todos los ajustes. En los casos siguiented es posible que haya algo erróneo en el captor.

- 1. La amplitud de la señal de error de seguimiento es extremadamente pequeña (menos de 2 Vp-p).
- 2. La amplitud de la señal de error de enfoque es extremadamente pequeña (menos de 2,5 Vp-p).
- 3. Las amplitudes de las partes positiva y negativa de la señal de error de enfoque son extremadamente asimétricas (relación de 2:1 o superior).
- 4. La señal de RF es demasiado pequeña (menos de 0,8 Vp-p) y aunque se ajuste VR1 (potencia de láser), la señal de RF no puede aumentarse hasta el nivel estándar.

PD - M550/KUXJS,KC,MEM,UB,PD - M455/KUXJS,KC, PD - M453/KUXJS,PD - M450/KUXJS,KC,MEM

9. FOR PD-M550 / KUXJS, KC, MEM, UB, PD-M455 / KUXJS, KC, PD-M453 / KUXJS, PD-M450 / KUXJS, KC AND MEM TYPES

NOTES:

- Parts without part number cannot be supplied.
- Parts marked by " " are not always kept in stock. Their delivery time may be longer than usual or they may be unavailable.
- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.

9.1 FOR PD-M550 / KUXJS, KC, MEM AND UB TYPES

CONTRAST OF MISCELLANEOUS PARTS

The PD-M550 / KUXJS, KC, MEM and UB types are the same as the PD-M550 / KU type with the exception of the following sections.

				Part No.			
Mark	Symbol & Description	PD-M550/ KU type	PD-M550/ KUXJS type	PD-M550/ KC type	PD-M550/ MEM type	PD - M550/ UB type	Remarks
	Mother board assembly Power transformer (AC120V) Power transformer (AC220V - 230V)	PWM1474* PTT1187*	PWM1483* PTT1203*	PWM1474 PTT1187	PWM1475 ••••• PTT1188	PWM1475	
Δ	Power transformer (AC230V-240V)	• • • •	• • • •	• • • •	•••••	PTT1189	
<u>∧</u>	Strain relief Display window AC power cord Connection cord with mini plug CD packing case	CM-22 PAM1477 RDG1010 PDE-319 PHG1611	CM-22 PAM1477 RDG1010 PDE-319 PHG1672	CM-22 PAM1477 RDG1010 PDE-319 PHG1663	CM-22B PAM1505 PDG1003 PHG1690	CM-22B PAM1505 PDG1036 PHG1690	For packing
	Operating instructions (English) Operating instructions (English / French / Dutch / Italian / German / Swedish / Spanish / Portuguese)	PRB1142	PRB1152	PRB1142	PRE1144	PRB1142	
	Operating instructions (French)		••••	PRC1031	••••	••••	

Note: As to the SCHEMATIC DIAGRAM and P. C. BOARDS CONNECTION DIAGRAM of the KUXJS and KC types, refer to those of the KU type.

Therefore, when exchanging mother board assembly, exchange the assembly with the corresponding transformer.

^{*:} PWM1474 with PTT1187 is compatible with PWM1483 with PTT1203.

PACKING FOR KUXJS TYPE

MOTHER BOARD ASSEMBLIES (PWM1483 AND PWM1475)The mother board assembly (PWM1483 and PWM1475) are the same as the mother board assembly (PWM1474) with the exception of the following sections.

	Cimbol & Doorintion		Part No.		Bemarks
Wark	symbol & Description	PWM1474	PWM1483	PWM1475	nellaina
• >	IC31	•	• • • •	ICP-N10	.*
	D391-D394	1SS254	1SS254	:	
	R391	RD1/6PM244J	RD1/6PM244J	:	
	R392	RD1/6PM102J	RD1/6PM102J	•	
	JA391, JA392 (CONTROL (IN, OUT))	PKN1004	PKN1004	:	
	L395 Ladial inductor	•	•	LFAR22M	

Note: The mother board assembly (PWM1483) is the same as the mother board assembly (PWM1474) for the service supply parts.

9.2 FOR PD-M455 / KUXJS AND KC TYPES

CONTRAST OF MISCELLANEOUS PARTS

The PD - M455 / KUXJS and KC types are the same as the PD - M455 / KU type with the exception of the following

₽	Mark
Mother board assembly Power transformer (AC120V) CD packing case Operating instructions (English) Operating instructions (French)	Symbol & Description
PWM1474 PTT1187 PHG1596 PRB1142	PD- M455/ KU type
PWM1483 PTT1203 PHG1673 PRB1152	Part No. PD- M455/ KUXJS type
PWM1474 PTT1187 PHG1661 PRB1142 PRC1031	PD- M455/ KC type
For packing	Remarks

Note: As to the SCHEMATIC DIAGRAM and P. C. BOARDS CONNECTION DIAGRAM of the KUXJS and KC types, refer to those of the KU type.

MOTHER BOARD ASSEMBLY (PWM1483)The mother board assembly (PWM1483) is the same as the mother board assembly (PWM1474) for the service supply parts excepting power supply section.

9.3 FOR PD-M453 / KUXJS TYPE

CONTRAST OF MISCELLANEOUS PARTSThe PD - M453 / KUXJS type is the same as the PD - M453 / KU type with the exception of the following sections.

MOTHER BOARD ASSEMBLY (PWM1482)

		Part No.	No.	
Mark	Symbol & Description	PD- M453/ KU type	PD-M453/ KUXJS type	Remarks
•	Mother board assembly	PWM1472	PWM1482	
⊳	Power transformer (AC120V)	PTT1187	PTT1203	
	CD packing case	PHG1668	PHG1674	For packing
	Operating instructions (English)	PRB1142	PRB1152	

The mother board assembly (PWM1482) is the same as the mother board assembly (PWM1472) for the service supply parts excepting power supply section.

9.4 FOR PD-M450 / KUXJS, KC AND MEM TYP

CONTRAST OF MISCELLANEOUS PARTS

The PD - M450 / KUXJS,KC and MEM types are the same as the

Mark	Symbol & Description	PD - M450/ KU type
•	Mother board assembly Headnhone board assembly	PWM1468
⊳	Power transformer (AC120V)	PTT1187
⇒Þ	Power transformer (AC220V-230V)	CM- 22
Þ	Strain relief	CM-22
⊳	AC power cord Headphone knob	RDG1010
	Display window	PAM1478
	Leg assembly	PXA1201
	Insulator Stopper	• • •
	Function panel	Non supply
	Operating instructions (English)	PRB1142
-	Operating instructions	:
	(English / French / Dutch / Italian / German / Swedish / Spanish / Portuguese)	
	Operating instructions (French)	

Note: As to the SCHEMATIC DIAGRAM and P. C. BOARDS Corefer to those of the KU type.

MOTHER BOARD ASSEMBLIES (PWM1480 and PWM140 The mother board assembly (PWM1480 and PWM1469) are the (PWM1468) with the exception of the following sections.

Mark Symbol & Description	PWM1468
	•
	::
R445, R446	RD1/6PM681J
R447, R448	:::
CN401	:
L395 Ladial inductor	:

Note: The mother board assembly (PWM1480) is the same as the supply parts excepting power supply section.

HEADPHONE BOARD ASSEMBLYThe headphone board assembly of the PD-M450 / HEM type is the property of the PD-M450 is the property of the PD-M450 in the PD-M450 in

9.4 FOR PD-M450 / KUXJS, KC AND MEM TYPES

he

CONTRAST OF MISCELLANEOUS PARTSThe PD-M450 / KUXJS,KC and MEM types are the same as the PD-M450 / KU type with the exception of the following

		\triangleright		Mark
Operating instructions (English / French / Dutch / Italian / German / Swedish / Spanish / Portuguese) Operating instructions (French)	Insulator Stopper Function panel CD packing case Operating instructions (English)	AC power cord Headphone knob Display window Function panel assembly Leg assembly	Mother board assembly Headphone board assembly Power transformer (AC120V) Power transformer (AC220V - 230V) Strain relief	Symbol & Description
	Non supply PHG1597 PRB1142	RDG1010 PAM1478 PEA1134 PXA1201	PWM1468 PTT1187 CM-22	PD-M450/ KU type
•	Non supply PHG1675 PRB1152	RDG1010 PAM1478 PEA1134 PXA1201	PWM1480 PTT1203 CM-22	Part No. PD- M450/P
PRC1031	Non supply PHG1662 PRB1142	RDG1010 ••••• PAM1478 PEA1134 PXA1201	PWM1468 PTT1187 CM-22	No. PD-M450/ KC type
PRE1144	VNK1095 PNM1070 Non supply PHG1691	PDG1003 PAC1370 PAM1506 PEA1160	PWM1469 Non supply PTT1188 CM-22B	PD-M450/ MEM type
	For packing			Remarks

Note: As to the SCHEMATIC DIAGRAM and P. C. BOARDS CONNECTION DIAGRAM of the KUXJS and KC types, refer to those of the KU type.

MOTHER BOARD ASSEMBLIES (PWM1480 and PWM1469)
The mother board assembly (PWM1480 and PWM1469) are the same as the mother board assembly (PWM1468) with the exception of the following sections.

Зy

<u></u>	Symbol & Description		Part No.		Tampulo .
	Cymron & Dogomphion	PWM1468	PWM1480	PWM1469	nelliding
\triangleright	IC31	•	• • • •	ICP-N10	
-	IC406	•	:	BA15218	
	R445, R446	RD1/6PM681J	RD1/6PM681J	RD1/6PM271J	
	R447, R448	•	•	RD1/6PM471J	
	CN401	•	:	Non supply	
	L395 Ladial inductor	:	•	LFAR22M	

Note: The mother board assembly (PWM1480) is the same as the mother board assembly (PWM1468) for the service supply parts excepting power supply section.

Эly

HEADPHONE BOARD ASSEMBLYThe headphone board assembly of the PD-M450 / HEM type is the same as that of the PD-M550 and PD-M455 types.

10: AD MANUAL SEARCH
11: DD MANUAL SEARCH
12: PLAY
13: DAD TRACK SEARCH
14: DDJ TRACK SEARCH
15: ADLC

9.5 SCHEMATIC DIAGRAM OF THE MEM AND U

2. CAPACITORS : Indicated in capacity(µF)/voltage(V)unless voltage is 50V except electrolytic capacitor. Indicated in Ω , 1/4W, 1/6W and 1/8W, \pm 5% tolerance M;M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm

4. OTHERS:

→ :Signal route.

⊘ :Adjusting point.

The △ mark found on some componen factor of the part. Therefore, when notes that the part of the part. * marked capacitors and resistors have parts numbers

par

This is the basic schematic improvements in design. but the actual

SWITCHES: (The underlined SWITCH BOARD ASSEMBLY

SELECT BOARD ASSEMBLY
S603: MZS1
S604: MZS2
S605: DCHM
S606: DCHT
FUNCTION BOARD ASSEMBLY
(PD - M550 TYPE) SERVO MECHANISM ASSEMBLY
INSIDE SWITCH
LOADING BOARD ASSEMBLY S801: POWER ON — OFF S802: EJECT

9:
10: REPE,
711: PAUSE
3712: AUTO FADER
3713: HI - LITE SCAN
S714: COMPU PGM
S715: PGM
S716: DELETE
S717: TIME FADE
S718: 7
S719: 8
S720: 9
S721: 10
S722: 4
S723: 5
S724: 6
S725: ≥ 20
S726: 1
S727: 2
S728: 3
S729: +1€
S730: <
S731: 1 RANDOM PLAY FUNCTION BOARD ASSEMBL

(PD-M455,PD-M453 AND P

\$701 : DISC1

\$702 : DISC2

\$703 : DISC3

\$704 : STOP

\$705 : DISC4

\$706 : DISC5

\$707 : DISC6

\$708 : TIME

\$709 : RANDO)

\$711 : PAUSE

\$712 : AUTO F/

\$713 : H-LITE

\$713 : H-LITE

\$715 : PGM

\$716 : DELETE

\$717 : TIME FA

\$731 : I>> J

\$732 : PAA7

\$732 : PAA7 5: DISC4
5: DISC5
7: DISC6
8: TIME
8: RANDON
0: REPEAT
1: PAUSE
1:

M TYPES

me as the PD-M450 / KU type with the exception of the following

	:	PRC1031	•	•
	PRE1144	•	•	•
For packing	VNK1095 PNM1070 Non supply PHG1691	Non supply PHG1662 PRB1142	Non supply PHG1675	n supply HG1597 RB1142
	PDG1003 PAC1370 PAM1506 PEA1160	RDG1010 PAM1478 PEA1134 PXA1201	PAM1478 PEA1134 PXA1201	DG1010 AM1478 EA1134 KA1201
	PWM1469 Non supply PTT1188 CM-22B	PWM1468 PTT1187 CM-22	PWM1480 PTT1203 CM-22	VM1468 IT1187 IM-22
Remarks	PD-M450/ MEM type	No. PD-M450/ KC type	Part No PD-M450/ F KUXJS type	- M450/ U type

ARDS CONNECTION DIAGRAM of the KUXJS and KC types,

PWM1469) are the same as the mother board assembly

	Part No.		Domarks
M1468	PWM1480	PWM1469	Dellial No
•	• • • •	ICP-N10	
:	•	BA15218	
6PM681J	RD1/6PM681J	RD1/6PM271J	
•	•	RD1/6PM471J	
•	• • • • •	Non supply	
•	•	LFAR22M	

ame as the mother board assembly (PWM1468) for the service

type is the same as that of the PD-M550 and PD-M455 types

9.5 SCHEMATIC DIAGRAM OF THE MEM AND UB TYPES

Indicated in Ω , 1/4W, 1/6W and 1/8W, \pm 5% tolerance unless otherwin, M;M Ω , (F); \pm 1%, (G); \pm 2%, (K); \pm 10%, (M); \pm 20% tolerance

3. VOLTAGE, CURRENT:

\[\sum_{\text{in}} \sum_{\text{in}} \subseteq \text{DC voltage(V)at play state.} \]

\(\text{cm A} \quad \text{;DC current at play state.} \)

Value in() is DC current at state. Indicated in capacity(µF)/voltage(V)uvoltage is 50V except electrolytic capaci

4. OTHERS:
→ :Signal route.
⊘ :Adjusting point.
The ∆ mark found on some component factor of the part. Therefore, when references the state of the part. ortance of the safety a parts of identical

marked capacitors and resistors have parts nu

This is the basic schematic diagram, improvements in design. but the actual circuit may vary due

5. SWITCHES: (The underlined indicated SWITCH BOARD ASSEMBLY S801: POWER ON — OFF S802: EJECT SERVO MECHANISM ASSEMBLY INSIDE SWITCH LOADING BOARD ASSEMBLY

SELECT BOARD ASSEMBLY
S603: MZS1
S604: MZS2
S605: DCHM
S606: DCNT
FUNCTION BOARD ASSEMBLY
(PD - M550 TYPE)

FUNCTION BOARD ASSEMBLY
(PD-M455, PD-M453 AND PD-M450 TYPES)
\$701: DISC1
\$702: DISC2
\$703: DISC3
\$704: STOP
\$706: DISC4

708: TIME
709: RANDOM PLAY
710: REPEAT
711: PAUSE
712: AUTO FADER
713: HI - LITE SCAN
714: COMPU PGM S708: TIME
S709: RANDOM PLAY
S710: REPEAT
S711: PAUSE
S712: AUTO FADER
S713: HI- LITE SCAN
S714: COMPU PGM
S715: PGM
S715: PGM
S716: DELETE
S717: TIME FADE
S730: CAC MANUAL SEARCH
S731: PA MANUAL SEARCH
S732: PLAY
S733: PAC TRACK SEARCH
S731: PAG TRACK SEARCH
S735: ADLC

\$729: +10 \$730: ▷▷ MANUAL SEARCH \$731: ▷▷ MANUAL SEARCH \$732: PLAY \$733: ▷▷□ TRACK SEARCH \$734: ▷▷□ TRACK SEARCH

77

.

ω

.

4

(n

.

4

<u>ග</u>

.

9.6 P.C.BOARD PATTERN OF THE MEM AND UB TYPES

P.C.B. pattern diagram indication	Corresponding part symbol	Part name	P.C.B. pattern diagram indication	Corresponding part symbol	Part name
	r\(\text{\text{\$7}}\)\(\text{\$\text{\$7}}\)	_	כם		
	المناه المالية	Transistor	, _ ,	- 11	Ceramic capacitor
D S C	or or s	FET	$\subset \supset$	○ ── ──○	Mylar capacitor
041			\$()	•	Styrol capacitor
C= 1	○	Diode	MP OF THE STATE OF	○	Electrolytic capacitor (Non polarized)
			Z Z		Electrolytic capacitor (Noiseless)
aţ	. [4]	7	€	<u> </u>	Electrolytic capacitor (Polarized)
~	0 1	Zenner diode			Electrolytic capacitor (Polarized)
74-	·	LED		⊶ ∘	Power capacitor
, ,	 -	Varactor			Semi-fixed resistor
	0 0	Tact switch			Resistor array
0					
^		Inductor	~	 ₩ ∘	Resistor
			0		
0	~ ~~	Coil	H0F	○── □ ├ ──○	Resonator
		Transformer		·	Thermistor
8 1	٦	Filter			
			_		

- 1. This P.C.B. connection diagram is viewed from the parts mounted side.
- 2. The parts which have been mounted on the board can be replaced with those shown with the corresponding wiring symbols listed in the
- The capacitor terminal marked with shows negative terminal.
 The diode marked with O shows cathode side.

MOTHER BOARD ASSEMBLY (PWM1475:PD-M550/MEM, UB) (PWM1469:PD-M450/MEM) ®**\$** ▲ CMK-54XT PRIMARY Q391 Q404 Q403 IC406 Q454 Q453 POWER TRANSFORMER В 2101 DIP Q451 Q405 Q452 IC31 IC405 IC101 VR102 VR103 | IC401 | IC21 10202 VR152 10301 TP2 IC151 10351 IC201

MOTHER BOARD ASSEMBLY (PWM1475:PD-M550/MEM, UB) (PWM1469:PD-M450/MEM)

> ®**₹ △** CMK-54X1 PRIMARY

9.6 P.C.BOARD PATTERN OF THE MEM AND UB TYPES

8

This P. C. B. connection diagram is viewed from the foil side.

0

PD - M550/MEM, UB,PD - M450/MEM

> 9404 Q403 IC406

> 1010 Q451 9405 0452 IC31 IC405

> > 1C101 1C20

1C401 IC21

10202

IC 301

10151

10351 10201 VRIOZ

VRIO3

VR152

TP2

10. PANEL FACILITIES

FRONT PANEL

- 1 POWER STANDBY/ON switch and STANDBY indicator
- 2 AUTO FADER button
- ③ TIME button
- 4 Remote sensor (PD-M550/PD-M455/PD-M453 only)

Receives the signal from the remote control unit.

- The PD-M450 is not equipped with the remote sensor.
- 5 Disc number buttons (DISC 1 DISC 6)
- 6 PGM (program) button
- TRACK NUMBER/Digit buttons (1-10, +10,≥20) (PD-M550 only)
- **8 TIME FADE EDIT button**
- 9 EJECT button (▲)
- 10 Magazine insertion slot

- 1 REPEAT button
- **12 RANDOM PLAY button**
- (13) HI-LITE SCAN button
- ⊕ Stop button (■)
- 15 Pause button (II)
- Manual search buttons (◄◄/▶►)
- **1** Play button (►)
- 18 Track search buttons (I◄◄/▶►)
- (19) ADLC (Automatic Digital Level Controller) button
- 20 DELETE button
- ② Headphones jack (PHONES) (PD-M550/PD-M455 only)
- ② COMPU PGM EDIT button
- ② Headphones volume (PHONES LEVEL) (PD-M550/PD-M455 only)

REMOTE CONTROL UNIT (PD-M550/PD-M455/PD-M453 only)

Remote control buttons with the same names or marks as buttons on the front panel of the player control the same operations as the corresponding front panel buttons.

- 1 POWER button
- ② ADLC (Automatic Digital Level Controller) button
- ③ MANUAL search buttons (◄◄ / ▶►)
- 4 TRACK search buttons (► / ►)
- (5) PAUSE button (11)
- ⑥ STOP button (■)
- ⑦ Track number/Digit buttons (1-10, +10, ≥ 20) (PD-M550 only)
- **8 PGM (program) button**
- CHECK button
- 10 DISC NUMBER buttons (1-6)
- 11 OUTPUT LEVEL buttons (+/-)
- 12 RANDOM PLAY button
- (13) HI-LITE SCAN button
- (14) PLAY button (►)
- 15 DELETE button
- 16 CLEAR button
- TADER button (PD-M455/PD-M453 only)

REMOTE CONTROL OPERATIONS (PD-M550/PD-M455/PD-M453 only)

When operating the remote control unit, point the unit's infrared signal transmitter at the remote control receiver (REMOTE SENSOR) on the front panel of the player. The remote control unit can be used within a range of about 7 meters (23 feet) from the remote sensor, and within angles of up to about 30 degrees.

NOTE:

If the remote control sensor window is in a position where it receives strong light such as sunlight or fluorescent light, control may not be possible.

Notes for PD-M450:

Operate the PD-M450 using the remote control unit which accompanies the amplifier.

11. SPECIFICATIONS

1. General	n n to to the Parameter of
Туре С	ompact disc digital audio system
Power requirements European models U.K. and Australian models U.S. and Canadian models Other modelsAC 110/	AC 220 - 230 V, 50/60 Hz AC 230 - 240 V, 60 Hz AC 120 V, 60 Hz 120 - 127/220/240 V (switchable), 50/60 Hz
Power consumption	12 W
Operating temperature	+5°C - +35°C (+41°F - +95°F)
Weight	3.9 kg (8 lb, 10 oz)
PD-M550	420(W) X 291(D) X 101(H) mm 16-9/16(W) X11-7/16(D) X 4(H) in
PD-M455/PD-M453/PD-M450	420(W) X 291(D) X 96(H) mm 16(W) X 11-7/16(D) X 3-12/16(H) in

Audio section

Zi Madio Commission	2 ロュー20 レビュ
Ereguency response	2 Hz - 20 kHz
C/NI rotio	102 ab of thore (Limb)
Dunamio rongo	96 dB or more (EIAJ)
Dynamic range	0.003% or less (EIAJ)
Harmonic distortion	2.0V
Output voltage	Limit of mesurement
	(±0.001% W.PEAK) or less (EIAJ)
Channels	

3. Output terminal

Audio line output

Headphone jack with volume control (PD-M550/PD-M455 only) Control input/output jacks (available with the PD-M450 and U.S. and Canadian models of the PD-M550, PD-M455 and PD-M453) CD-DECK SYNCHRO jack

4. Functions

Number of discs to be stored - maximum 6.

Basic operation buttons

PLAY, PAUSE, STOP

Search function

- Disc search
- Track search
- Manual search

Magazine Hi-Lite Scan

- DISC SCAN
- TRACK SCAN

Programming

- Maximum 32 steps
- Pause
- Program check/correction (remote control unit provided with PD-M550/PD-M455/PD-M453 only)
- Program clear (single track or all tracks) (remote control unit provided with PD-M550/PD-M455/PD-M453 only)
- Delete play

Repeat functions

- 1 track repeat
- All discs repeat
- Program repeat
- Random play repeat
- Delete play repeat
- Delete random play repeat
- Magazine Hi-Lite scan repeat

Random play

- Random play (repeat also available)
- Delete random play (repeat also available)

Switching display

Time consumed, remaining time (track/disc), and total time

Timer start

ADLC

Digital level controller (PD-M550/PD-M455/PD-M453 only) Volume control can be done.

One-touch fade

Fade-in and fade-out possible.

Time fade editing

Selects the tracks within the specified time. Playback pauses with a fade-out.

Compu program editing

Selects the tracks for both sides within the specified time.

Power ON/OFF function (remote control unit provided with PD-M550/PD-M455/PD-M453 only)

Automatic Power On

Power Down Eject

5. Accessories

Remote control unit (PD-M550/PD-M455/PU-M453 only)1 Size AAA/R03/dry batteries (PD-M550/PD-M455/PD-M453 only)2 Six-compact-disc magazine1 Control cord (provided with PD-M450 and U.S. and Canadian models of PD-M550/PD-M455/PD-M453 only)1 Output cable1 Operating instructions1

Specifications and design subject to possible modification without notice, due to improvements.

The Magazine Type Multi-Play CD Players with mark and the Magazines with the same mark are compatible for 5-inch (12cm) discs.