FEM21045-20 & FEM31002-20 Machine Learning (in Finance) Unsupervised Learning - part 1

Dick van Dijk

Econometric Institute
Erasmus University Rotterdam

e-mail: djvandijk@ese.eur.nl

Block 1 (Sep-Oct 2020)

Unsupervised Learning

Unsupervised Learning

Outline

- ★ Unsupervised Learning: What and why?
- ★ Principal Components Analysis
- ★ Non-negative Matrix Factorization (or: The secret behind online recommendation systems)
- ★ K-means clustering
- ★ Hierarchical clustering
- ★ Gaussian mixture models and the EM algorithm
- ★ Google's PageRank Algorithm

Unsupervised Learning: What and why?

- \star Supervised learning: predict output Y using inputs X We learn about the relationship between Y and X using training sample $\{(x_i, y_i); i = 1, ..., N\}$
- ⇒ Key aspect: both inputs and outputs are observed.
- \bigstar Unsupervised learning: we only observe X \Rightarrow Thus, training sample now is $\{x_i; i=1,\ldots,N\}$ But still, we want to learn something...
- \bigstar Consider X and Y as random variables with joint probability density

$$Pr(X,Y) = Pr(Y|X)Pr(X).$$

Supervised learning focuses on Pr(Y|X), taking Pr(X) as given. Unsupervised learning is all about Pr(X).

Unsupervised Learning: What and why?

 $\star X^T = (X_1, X_2, \dots, X_p)$ is p-dimensional, and p can be large.

Unsupervised learning aims to get insight into characteristics of the joint density Pr(X), based on N observations (x_1, x_2, \ldots, x_N) . In particular, characterize X-values where Pr(X) is large.

Two main types of techniques:

- 1. Dimension reduction
- 2. Cluster analysis

Dimension reduction

 $\star X^T = (X_1, X_2, \dots, X_p)$ is p-dimensional, and p can be large.

 \star Probably, the X_j 's are not (all) independent.

For example, suppose we have information on 'features' of our customers such as age, years of schooling, income, level of education, ZIP code, brand/type of car, holiday expenses, etc, etc

Each feature possibly has some unique information, but they will probably also have some part (or in fact quite a lot) in common.

Hence, in order to analyze and exploit the information in the p variables, it might suffice to consider a lower-dimensional set of q 'driving forces'.

 \star Is it possible to reduce the dimension (p) of the X variables, while still describing a large fraction of their variation?

$$x_{ij} = \phi_{j1}z_{i1} + \phi_{j2}z_{i2} + \ldots + \phi_{jq}z_{iq} + e_{ij}, \qquad i = 1, \ldots, N; j = 1, \ldots, p.$$

 \bigstar Essential idea: we attempt to describe the (co-)variation in the p-dimensional variable $X^T = (X_1, \ldots, X_p)$ with a limited number of q factors $Z^T = (Z_1, \ldots, Z_q)$, where the 'factors' (directions) are linear combinations of X_1, \ldots, X_p .

Of course, in general we would look for those factors Z_1, \ldots, Z_q that can **best** describe the (co-)variation in X_1, \ldots, X_p .

⇒ This leads to principal components analysis [PCA]

US Treasury zero-coupon yields (p = 17)

Monthly observations, 1970:1-2009:12 (N = 480)

US Treasury zero-coupon yields
Monthly observations, 1970:1-2009:12

US Treasury zero-coupon yields

★ Principal components:

$$Z_j = \phi_{1j}X_1 + \phi_{2j}X_2 + \ldots + \phi_{pj}X_p$$

or, in terms of realizations:

$$z_{ij} = \phi_{1j}x_{i1} + \phi_{2j}x_{i2} + \ldots + \phi_{pj}x_{ip}$$

- $\star z_{ij}$ (i = 1, ..., N) are the scores of the jth principal component
- $\star \phi_{1j}, \ldots, \phi_{pj}$ are the *loadings* of the jth principal component
- \bigstar Assuming that variables are standardized to have mean zero the variance of z_j is equal to

$$\frac{1}{N} \sum_{i=1}^{N} (\phi_j^T x_i)^2 = \frac{1}{N} \phi_j^T \mathbf{X}^T \mathbf{X} \phi_j = \phi_j^T \widehat{\boldsymbol{\Sigma}}_{\mathbf{X}} \phi_j.$$

- \star Principal components of X are those linear combinations (directions) that have maximum variance and are uncorrelated:
- 1. The first PC is the linear combination $z_{i1} = \phi_1^T x_i$ that maximizes $\text{Var}(z_1) = \phi_1^T \widehat{\Sigma}_{\mathbf{x}} \phi_1$ subject to the constraint $\phi_1^T \phi_1 = \sum_{i=1}^p \phi_{i1}^2 = 1$.
- 2. The k-th PC is the linear combination $z_{ik} = \phi_k^T x_i$ that maximizes $\text{Var}(z_k) = \phi_k^T \widehat{\Sigma}_{\mathbf{x}} \phi_k$ subject to the constraints $\phi_k^T \phi_k = 1$ and $\phi_k^T \phi_j = 0$ for $j = 1, \dots, k-1$.
- \bigstar The principal component directions ϕ_1, ϕ_2, \ldots are the ordered sequence of eigenvectors of $\widehat{\Sigma}_{\mathbf{x}}$. The variances of the PCs are the corresponding eigenvalues $\lambda_1, \lambda_2, \ldots$ (with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p \geq 0$).

 $\star \frac{\lambda_k}{\sum_{j=1}^p \lambda_j}$ is the fraction of the total variance in $\mathbf X$ 'explained' by the k-th principal component.

 \star With PCA, we hope to find some $q \ll p$, such that

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_q}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

is reasonably large.

 \star Different approaches to determine an 'appropriate' value of q.

- \star What is an appropriate value of q?
- ⇒ Different criteria may be used:
 - Choose q as small as possible, but such that the first q PCs explain at least a fraction δ of the total variance, for some threshold $0<\delta<1$
 - Choose q such that $\lambda_q > 1$ but $\lambda_{q+1} \le 1$ [when X is standardized to have unit variances]
 - Scree plot
 - Choose q based on the interpretation of the PCs

US Treasury zero-coupon yields
Monthly observations, 1970:1-2009:12.

Example: US macro data

• 116 monthly US macro-economic variables for the period 1970:1-2003:12.

15 different categories [including real output, employment, housing starts, price indexes,...].

 \Rightarrow First 3 PCs explain roughly 60% of the variation.

'Tentative' interpretation:

- 1st PC: business cycle / real activity
- 2nd: inflation
- 3rd: monetary aggregates.

US macro data – 1st PC

 \mathbb{R}^2 of regression of individual variables on PC #1.

US macro data – 1st PC

Non-negative Matrix Factorization

Approximate the $N \times p$ data matrix \mathbf{X} by

$$X \approx WH$$

where W is $N \times r$ and H is $r \times p$, with r (hopefully) much smaller than N and p.

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
1	4	3	5	4	4

Non-negative Matrix Factorization

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
0	3	1	1	3	1
(1)	4	3	5	4	4

Non-negative Matrix Factorization

 ${f W}$ and ${f H}$ can be found by minimizing

$$||\mathbf{X} - \mathbf{W}\mathbf{H}||_F^2 = \sum_{(i,j)} (x_{ij} - w_i h_j)^2$$

- ★ Estimation can be done using Alternating Least Squares (but only gives local optimum)
- \star Estimation is done for fixed r
- * Regularization terms (Ridge, LASSO, etc) can be added
- **X** may have some empty cells, or may in fact be rather sparse (we only need to estimate (N + p)r unknown elements in **W** and **H**, which is substantially smaller than the Np cells in **X** for typical values of N, p and r.)
 - \Rightarrow In fact, empty cells are the most interesting ones, because they can be predicted once W and H have been estimated, and can then be used to make recommendations!