Notes on Probability and Statistics

November 13, 2019

Contents

1	Descriptive Statistics
	1.1 Measures of Location of the Data
2	Combinatorics
3	The Basics of the Theory of Probability
	3.1 Axiomatization
	3.2 Independence and Conditional Probability
	3.3 Random Variables
	3.4 Expectation and Variance
4	Distributions
	4.1 Discrete Distributions
	4.1.1 Binomial
	4.1.2 Negative Binomial
	4.1.3 Hypergeometric
	4.1.4 Poisson
	4.2 Continuous Distributions

Some conventions:

- $\mathbb{N} = \{0, 1, 2, \ldots\},\$
- A_+ with $A = \mathbb{R}, \mathbb{Q}, \mathbb{N}, \mathbb{Z}$, refers to the respective subset of positive elements,
- A_{-} is the same as above but for negative elements.

1 Descriptive Statistics

1.1 Measures of Location of the Data

Definition 1.1. The sample mean of a numerical sample (x_1, \ldots, x_n) is

$$\overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Definition 1.2. Consider the numerical sample (x_1, \ldots, x_n) . Its median M is

$$M := \begin{cases} x_{\frac{n+1}{2}:n} & \text{if } n \text{ is odd,} \\ \frac{1}{2} (x_{\frac{n}{2}:n} + x_{\frac{n+1}{2}:n}) & \text{if } n \text{ is even.} \end{cases}$$

Where $(x_{1:n}, \ldots, x_{n:n})$ is the initial sample but ascendingly ordered.

Definition 1.3. The *sample mode* of a numerical sample (x_1, \ldots, x_n) is the value, or values, that most frequently occur.

Definition 1.4. The *rank* of an element of a sample (x_1, \ldots, x_n) is the position of this element in the ordered sample.

When we $rank\ down$, the highest value is ranked as 1, the second highest as 2, and so on. When we $rank\ up$, the lowest value is ranked 1, the second lowest as 2, and so on.

The *depth* of an element of a sample (x_1, \ldots, x_n) is the minimum between its two ranks (up and down).

Remark 1. Depth $(M) = \frac{n+1}{2}$, where M is the median of a sample.

Definition 1.5. The lower fourth and upper fourth of a sample are

2 Combinatorics

Definition 2.1. Let n be a natural number. The factorial of n, denoted n!, is defined by

$$n! := \begin{cases} 1 & \text{if } n = 0, \\ n(n-1)! & \text{otherwise.} \end{cases}$$

Proposition 2.1. Let $A = \{x_1, \ldots, x_n\}$ be a set, such that $x_i \neq x_j$ whenever $i \neq j$. There are exactly n! bijections from A to itself.

Proof.
$$\Box$$

Definition 2.2. Let $n \ge k \ge 0$ positive integers. The binomial coefficient is defined as

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} \tag{1}$$

3 The Basics of the Theory of Probability

3.1 Axiomatization

Definition 3.1. Consider a non-empty set Ω together with a function $\mathbb{P}: \mathcal{E} \subset \mathcal{P}(\Omega) \to [0,1]$. The triple $(\Omega, \mathcal{E}, \mathbb{P})$ is said to be a *probability space* if the following propositions are true:

- 1. \mathcal{E} is closed under complementation and under countable unions,
- 2. $\Omega \in \mathcal{E}$;
- 3. $\forall E \in \mathcal{E}, \mathbb{P}(E) \geq 0;$
- 4. Let $(E_n \in \mathcal{E} : n \in \mathbb{N})$ be a pairwise disjoint, then

$$\mathbb{P}(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mathbb{P}(E_i);$$

5. $\mathbb{P}(\Omega) = 1$.

The set Ω is conventionally called the *sample space*, a set $E \in \mathcal{E}$ is called an *event*, the function \mathbb{P} is called a *measure of probability* on \mathcal{E} .

Remark 2. There are other equivalent axiomatizations, and later we will cover the same ground through the measure-theoretic perspective. For now, assume that whenever we speak of a probability space, the set of events $\mathcal{E} = \mathcal{P}(\Omega)$, so that an event is simply a subset of Ω .

We now state some elementary consequences of these axioms.

Theorem 3.1. Let $(\Omega, \mathcal{E}, \mathbb{P})$ be a probability space and $A, B \in \mathcal{E}$, then

- 1. $\mathbb{P}(\emptyset) = 0$,
- 2. If E_1, \ldots, E_n are pairwise disjoint events, then

$$\mathbb{P}(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} E_i,$$

- 3. $\mathbb{P}(\Omega \setminus A) = 1 \mathbb{P}(A)$,
- 4. If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$,
- 5. $0 \leq \mathbb{P}(A) \leq 1$,
- 6. $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(A \cap B)$,
- 7. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$
- 8. $\mathbb{P}(A \cap B) > 1 \mathbb{P}(\Omega \setminus A) \mathbb{P}(\Omega \setminus B)$.

We may sometimes write $\Omega \setminus A$ as A^{\complement} for the sake of brevity.

3.2 Independence and Conditional Probability

Definition 3.2. Let $(\Omega, \mathcal{E}, \mathbb{P})$ be a probability space, and let $A, B \in \mathcal{E}$, with $\mathbb{P}(B) > 0$. The conditional probability of A given B is

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Definition 3.3. Events A and B are said to be independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

3.3 Random Variables

Definition 3.4. Let $(\Omega, \mathcal{E}, \mathbb{P})$ be a probability space.

- By a random variable X, we mean a function $X: \Omega \to \mathbb{R}$.
- If $X(\Omega)$ is a countable set, then X is said to be a discrete random variable.
- If X is a discrete random variable and $(x_i \in \mathbb{R} : i \in I)$ is an indexed list of the values it takes, the function $x_i \mapsto \mathbb{P}(X = x_i) = p_i$ is called the *probability mass function* of X. Furthermore it satisfies

$$\sum_{i \in I} p_i = 1 \text{ and } \forall i \in I : p_i \ge 0.$$

• The cumulative distribution function of X is the function $F_X : \mathbb{R} \to \mathbb{R}$ given by $x \mapsto \mathbb{P}(X \leq x)$.

The expression $\mathbb{P}(X = x)$ is merely an abbreviation of $\mathbb{P}(\{y \in \Omega : X(y) = x\})$. The set $\{y \in \Omega : X(y) = x\} = X^{-1}(\{x\})$ is simply the pre-image of $\{x\}$, which is clearly a subset of Ω . Similarly $X \leq x$ may represent $\{y \in \Omega : X(y) \leq x\}$, we will henceforth make use of this convention whenever unambiguous.

¹But is it an element of \mathcal{E} ?

Theorem 3.2 (Properties of cumulative distribution functions). Let F_X the cumulative distribution function of X, then

- 1. $0 \le F_X(x) \le 1$.
- 2. $\lim_{x\to+\infty} F_X(x) = 1.$
- 3. $\lim_{x \to -\infty} F_X(x) = 0.$
- 4. $a < b \Rightarrow F_X(a) \le F_X(n)$.

3.4 Expectation and Variance

Definition 3.5. Let X be a discrete random variable

4 Distributions

4.1 Discrete Distributions

- 4.1.1 Binomial
- 4.1.2 Negative Binomial
- 4.1.3 Hypergeometric
- 4.1.4 Poisson

4.2 Continuous Distributions