Probeklausur

Hinweise zur Klausur:

- Klausurtermin: 21.02.2014 um 9 Uhr (Einlass) in RUD26 0'110 und 0'115.
- Anmeldung nur mit Übungsschein.
- Die Bearbeitungszeit wird 120 Minuten betragen.
- Bitte bringen Sie Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.
- Am 18.2.2014 um 15:15 Uhr und am 20.2.2014 um 13:15 Uhr findet jeweils in RUD26 1'305 eine Fragestunde statt.

Hinweis zur Probeklausur:

• Für die Probeklausur sollten Sie von einer Bearbeitungszeit von 180 Minuten ausgehen (d. h. 1 Punkt entspricht 1 Minute).

Aufgabe 1 Sei R eine Relation auf einer Menge A. Wir definieren zu R folgende Relation R' auf der Menge $A \times A$:

$$(a_1, a_2)R'(b_1, b_2) :\Leftrightarrow a_1Rb_1 \wedge a_2Rb_2.$$

Zeigen Sie:

- (a) R' ist genau dann eine Ordnung, wenn R eine Ordnung ist.
- (b) R' ist genau dann eine lineare Ordnung, wenn $R = id_A$ und ||A|| = 1 ist.
- (c) R ist genau dann eine Äquivalenzrelation, wenn $id_A \subseteq R^2 \subseteq R^T$ gilt.

Aufgabe 2 Betrachten Sie den folgenden NFA N.

- (a) Welche der Wörter ε , bb, aba und bab gehören zu L=L(N)?
- (b) Wandeln Sie N mit der Potenzmengenkonstruktion in einen äquivalenten DFA M um.
- (c) Minimieren Sie M mit dem Verfahren aus der Vorlesung.
- (d) Geben Sie für jedes Wortpaar $x,y\in\{\varepsilon,aa,abb,bbb\}$ an, ob xR_Ly gilt oder nicht. Begründen Sie.
- (e) Geben Sie ein Repräsentantensystem für ${\cal R}_L$ an.
- (f) Geben Sie einen möglichst kurzen regulären Ausdruck für $\overline{L(N)}$ an.

Aufgabe 3 Betrachten Sie die Sprachen $A = \{a^i b^j c^k | \min(i, j) \le k\}$, **40 Punkte** $B = \{a^i b^j c^k | 0 < i < j < k\}$ und $C = \{a^{2^n} | n \ge 0\}$.

- (a) Geben Sie einen PDA für A an.
- (b) Zeigen Sie ohne Benutzung des Pumping-Lemmas, dass A nicht regulär ist.
- (c) Geben Sie eine kontextfreie Grammatik für \overline{B} an.
- (d) Geben Sie eine kontextsensitive Grammatik für B an.
- (e) Zeigen Sie, dass B nicht kontextfrei ist.
- (f) Beschreiben Sie informell einen DLBA für die Sprache C.

Aufgabe 4 15 Punkte

Betrachten Sie die kontextfreie Grammatik $G = (\{S, A, B, C\}, \{a, b\}, P, S)$ mit den Produktionen $P: S \to AB, AC; A \to AA, a; C \to SB; B \to a, b$.

- (a) Geben Sie eine explizite Beschreibung von L(G) an.
- (b) Testen Sie mit dem CYK-Algorithmus, ob x = aabbb in L(G) ist.

Aufgabe 5 30 Punkte

Bestimmen Sie, welche der folgenden Sprachen entscheidbar, semi-entscheidbar, oder nicht semi-entscheidbar sind. Begründen Sie.

- (a) $L_1 = \{ w \in \{0, 1\}^* \mid w \in L(M_w) \}$
- (b) $L_2 = \{ w \in \{0,1\}^* \mid w \notin L(M_w) \}$
- (c) $L_3 = \{ w \in \{0,1\}^* \mid ||L(M_w)|| > 5 \}$
- (d) $L_4 = \{ w \in \{0,1\}^* \mid ||L(M_w)|| < 5 \}$
- (e) $L_5 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) = x \}$
- (f) $L_6 = \{ w \in \{0, 1\}^* \mid \exists x \in \{0, 1\}^* : M_w(x) \neq x \}$

Aufgabe 6 10 Punkte

Sei EXACT-3-SAT die Einschränkung von 3-SAT auf KNF-Formeln mit genau 3 verschiedenen Literalen pro Klausel. Zeigen Sie, dass EXACT-3-SAT NP-vollständig ist. Hinweis: Finden Sie eine EXACT-3-SAT-Formel G mit $G(x, y, z) = 1 \Leftrightarrow x = y = z = 0$.

Aufgabe 7

25 Punkte

35 Punkte

Bestimmen Sie für nebenstehenden Graphen G folgende Parameter. Begründen Sie.

- (a) $\alpha(G) = \max\{\|S\| \mid S \text{ ist stabil in } G\},$
- (b) $\chi(G) = \min \{k \ge 1 \mid G \text{ ist } k\text{-färbbar}\},$
- (c) $\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\},$
- (d) $\omega(G) = \max\{\|C\| \mid C \text{ ist eine Clique in } G\},$
- (e) $\beta(G) = \min \{ ||U|| \mid U \text{ ist eine Kantenüberdeckung in } G \}$.

25 Punkte

Wie viele Kanten müssen zu G mindestens hinzugefügt werden, um eine Eulerlinie, Eulertour, einen Hamiltonpfad oder Hamiltonkreis zu erhalten? Begründen Sie.