

04 – ÉTUDE DES SYSTÈMES ÉLECTRIQUES – ANALYSER, MODÉLISER, RÉSOUDRE, RÉALISER

CHAPITRE 1 – DIPÔLES, SOURCES ET CIRCUITS ÉLECTRIQUES

Résoudre:

Compétences

Objectifs

- Rés C4: Grandeurs électriques dans un circuit
 - Rés-C4. : Loi des noeuds, loi des mailles
 - Rés-C4-S1: Choisir une méthode de résolution pour déterminer les grandeurs électriques
 - Rés-C4-S2: Déterminer les grandeurs choisies.

Girouette – anémomètre de voilier

On s'intéresse à l'ensemble girouette-anémomètre d'une centrale de navigation monté en tête de mât d'un voilier et plus en particulier à la girouette permettant de connaître l'orientation du vent. Un potentiomètre rotatif dont l'axe est solidaire de la girouette permet de mesurer cette direction.

Le matériel de mesure sur le bateau permet de réaliser des mesures entre +4 et -4V. Le potentiomètre est alimenté en -5/+5V. Quelle valeur de résistance choisir pour qu'une rotation de la girouette comprise entre $-\pi$ et π soit traduite par une tension de sortie comprise entre -4 et 4V?

On donne le diagramme de bloc interne associé au système de mesure de la direction du vent ainsi que le le schéma de principe du potentiomètre rotatif : lorsque la girouette tourne, elle provoque la rotation de la tige OB et donc la variation de l'angle α .

Schéma de principe du potentiomètre rotatif

On suppose que l'angle du potentiomètre varie de $-\pi$ à π . On note $R_0=10~k\Omega$ la résistance totale entre A et C et R' la résistance de la piste comprise entre A et B.

Question 1 Déterminer l'expression de R' en fonction de α et R_0 .

Pour faciliter l'étude de ce capteur, on se ramène au schéma électrique équivalent ci-après.

Question 2 Quelles doivent être les expressions de R_1 et de R_2 en fonction de R, R' et R_0 et les valeurs de E_1 et de E_2 pour qu'il en soit ainsi?

On note E_{Th} et R_{Th} les éléments du générateur de Thévenin vus entre le point B et la masse.

Question 3 Exprimer E_{th} en fonction de E_1 , E_2 , R_1 et R_2 , puis en fonction de R, R_0 et α . Exprimer R_{Th} en fonction de R_1 et R_2 puis en fonction de R, R_0 et α .

Question 4 Calculer la valeur des résistances R pour que la tension V_s à vide varie entre -4 V et +4 V.

Question 5 Tracer les caractéristiques $E_{Th} = f(\alpha)$ et $R_{Th} = g(\alpha)$. Préciser les valeurs minimales et maximales.

Question 6 Conclure sur le comportement d'un capteur potentiométrique.