1

EE5609 Assignment 18

Abhishek Thakur

Abstract

This document solves problem based on Matrix Theory.

Download all solutions from

 $https://github.com/abhishekt711/EE5609/tree/master/Assignment_18$

1 Problem

Let T be the linear operator on R^2 , the matrix of which in the standard ordered basis is $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

Let W_1 be the subspace of R^2 spanned by the vector $\epsilon_1 = (1,0)$

- a) Proove that W_1 is invariant under T.
- b) Prove that there is no subspace W_2 which is invariant under T and is complementary to W_1 : $R^2 = W_1 \oplus W_2$

(Compare with exercise 1 of section 6.5.)

2 solution

Statement	Solution
Given	T be the linear operator on R^2 the matrix of which in the standard ordered basis is $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ W_1 be the subspace of R^2 spanned by the vector $\epsilon_1 = (1,0)$.
To Proove	 a) W₁ is invariant under T. b) There is no subspace W₂ which is invariant under T and is complementary to W₁: R² = W₁ ⊕ W₂ c) Compare with exercise 1 of section 6.5.

	$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	(2.0.1)
	$ A - \lambda I = 0$	(2.0.2)
	$\Longrightarrow \begin{pmatrix} 2-\lambda & 1\\ 0 & 2-\lambda \end{pmatrix}$	(2.0.3)
	$=(2-\lambda)^2=0$	(2.0.4)
	$\therefore \lambda = 2$	(2.0.5)
Proof (a)	for $\lambda = 2$, the corresponding vector is	
	$(\mathbf{A} - \lambda I)X = 0$	(2.0.6)
	$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X = 0$	(2.0.7)
	$\therefore X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(2.0.8)
	Hence, W_1 be the subspace of R^2 spanned by the vector ϵ_1 = invariant under T .	(1,0) is
Proof (b)	Corresponding to $\lambda = 2$, Among, two eigen vectors only one is independent and other one is dependent. Thus, P^-1 does not exist and A can not be diagonalized. Hence, there is no subspace W_2 which is invariant under T and is complementary to W_1 : $R^2 = W_1 \oplus W_2$	
Observation	In exercise 1 of section 6.5, for 2×2 matrix there is 2 distinct characteristic value, corresponding to which there is a eigen vector. Hence, P^{-1} exists. \therefore the given matrix is diagonalizable.	

Table1:Solution