Combo 14

2 de julio de 2024

1. Enunciado

Explique en forma detallada la notación lambda

2. Resolución

- Una expresión es lambdificable con respecto a Σ si cumple las siguientes características:
 - Involucra variables numéricas (que se valuaran en números de ω), y variables alfabéticas (que se valuaran en palabras del alfabeto previamente fijado)
 - o En cuanto a notación, las numéricas son con letras latinas minúsculas (x,y,z) y las alfabéticas con letras griegas minúsculas (α,β,γ)
 - Para ciertas valuaciones de sus variables la expresión puede no estar definida (por ejemplo, $Pred(|\alpha|)$ para $\alpha = \varepsilon$)
 - Sea E la expresión, los valores que asuma cuando hayan sido asignados los valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas, deberán ser siempre elementos de $O \in \{\omega, \Sigma^*\}$ (es decir, no puede tomar valores mixtos)
 - La expresión puede involucrar lenguaje coloquial castellano (i.e., no únicamente operaciones matemáticas). Por ejemplo, "el menor número primo que es mayor que x"
 - A las expresiones booleanas (como x=0), se les considerará que asumen valores de $\{0,1\}\subseteq\omega$
- Definición: sea Σ un alfabeto finito fijo, E una expresión lambdificable respecto a Σ y $x_1,...,x_n,\alpha_1,...,\alpha_m$ variables distintas tales que las numéricas que ocurren en E están en $\{x_1,...,x_n\}$ y las alfabéticas en $\{\alpha_1,...,\alpha_m\}$, entonces $\lambda x_1...x_n\alpha_1...\alpha_m[E]$ denota la función definida por:
 - $D_{\lambda x_1..x_n\alpha_1..\alpha_m[E]} = \{(k_1,..,k_n,\beta_1,..,\beta_m) \in \omega^n \times \Sigma^{*m} : E \text{ está definida}$ cuando asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i }

• $\lambda x_1..x_n\alpha_1..\alpha_m[E](k_1,..,k_n,\beta_1,..,\beta_m)$ = valor que asume o representa E cuando asignamos a cada x_i el valor k_i , y a cada α_i , el valor β_i