Variable aléatoire discrète

1. Intro

Définition 1

Soit Ω un univers fini à N éventualités, $\Omega = \{\omega_1, \omega_2, ..., \omega_N\}$ $(N \in \mathbb{N})$. On appelle variable aléatoire toute application X de Ω dans \mathbb{R}

$$X:\Omega\to\mathbb{R}$$

$$\omega_k \mapsto x_i$$
 où $k \in \{1, 2, ..., N\}$

 x_i est appelé valeur de la variable aléatoire X.

Définition 2

Lorsque l'univers Ω est fini la variable aléatoire X est dite **discrète**.

Une urne contient 3 boules numérotées de 1 à 3, indiscernables au toucher. On procède à deux tirages successifs d'une boule, en remettant à chaque tirage la boule dans l'urne. On s'intéresse à la somme des numéros inscrits sur les 2 boules tirées.

a. Quels sont les tirages possibles ? En déduire l'univers. Pour répondre à cette question, on peut s'aider d'un tableau :

		2° tirage				
		1	2	3		
1° tirage	1	(1, 1)	(1, 2)	(1, 3)		
	2	(2, 1)	(2, 2)	(2, 3)		
	3	(3, 1)	(3, 2)	(3, 3)		

L'univers Ω est l'ensemble suivant :

 $\Omega = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ chaque événement élémentaire est un couple.

b. Quelles sont les sommes possibles ?

Les sommes possibles sont : 2, 3, 4, 5 et 6.

c. Quelle est la probabilité d'obtenir l'une de ces sommes ? Les événements élémentaires de Ω sont équiprobables :

$$P(\{(1,1)\}) = P(\{(1,2)\}) = \dots = \frac{1}{9}$$

À chaque couple, on fait correspondre la somme des numéros. On définit ainsi une application X de Ω dans \mathbb{R} .

La somme 2 correspond à l'événement $\{(1, 1)\}$, noté $\{X = 2\}$

d'où
$$P(\{(1, 1)\}) = P(\{X = 2\}) = \frac{1}{9}$$

Dans la suite on notera P(X = ...) pour alléger les notations. La somme 3 correspond à l'événement $\{(1, 2), (2, 1)\}$, noté (X = 3),

d'où
$$P(X = 3) = P(\{(1, 2), (2, 1)\}) = \frac{2}{9}$$
.

On définit de même P(X = 4), P(X = 5) et P(X = 6).

$$P(X = 4) = P(\{(1, 3), (2, 2), (3, 1)\}) = \frac{3}{9}$$

$$P(X = 5) = P(\{(2, 3), (3, 2)\}) = \frac{2}{9}$$

$$P(X = 6) = P(\{(3, 3)\}) = \frac{1}{9}$$

La variable aléatoire *X* peut toujours être définie de manière à avoir :

$$X_1 < X_2 < X_3 ... < X_n$$

$$x_1 < x_2 < x_3 ... < x_n$$
 $X(\Omega) = \{x_1, x_2, x_3 ..., x_n\}$.

Exemple 1: $X(\Omega) = \{2,3,4,5,6\}$.

L'ensemble des antécédents de x_i par X se note $\{X=x_i\}=\{\omega_k\in\Omega/X(\omega_k)=x_i\}$.

Exemple 1: $\{X=2\}=\{(1,1)\}$ $\{X=3\}=\{(1,2),(2,1)\}$ $\{X=4\}=\{(1,3),(2,2),(3,1)\}$ ${X=5}={(2,3),(3,2)}$ ${X=6}={(3,3)}$.

L'**ensemble des antécédents** des valeurs de *X* inférieurs ou égales à un réel *x* se note $\{X \leq x\} = \{\omega_k \in \Omega/X(\omega_k) \leq x\}$.

Exemple 1: par exemple $\{X \le 4\} = \{(1,1), (1,2), (2,1), (1,3), (2,2), (3,1)\}$.

2. Loi de probabilité d'une variable aléatoire discrète

Définition

Soit $i \in \{1, 2, ..., n\}$.

L'ensemble des couples $(x_i, P(X = x_i))$ constitue la loi de probabilité de la variable aléatoire X.

On la présente sous forme d'un tableau appelé tableau de probabilité de la variable aléatoire X.

On pose: $p_i = P(X = x_i)$.

Valeurs de X	x_1	x2	 x_i	 x_n
$P(X=x_i)$	p_1	p_2	 p_i	 p_n

La somme $p_1+p_2+\ldots+p_i+\ldots+p_n$ est égale à 1 $\sum_{i=1}^n P(X=x_i)=1.$

On représente la loi de probabilité de X par un diagramme en bâtons.

Exemple 1:

La loi de **probabilité de** X est définie par le tableau de probabilité suivant :

Valeurs de x _i	2	3	4	5	6	
P(Y-y)	1	2	3	2	1	1
$F(X=x_i)$	9	9	9	9	9	1

On vérifie que la somme des probabilités vaut 1.

Voici le diagramme en bâtons de la loi de probabilité de X.

3. Fonction de répartition d'une variable aléatoire discrète

Définition

On appelle fonction de répartition de la variable aléatoire X l'application F définie par :

$$F: \mathbb{R} \to [0, 1]$$

 $x \mapsto F(x) = P(X \le x)$

F(x) est la probabilité de l'événement « obtenir une valeur de X inférieure ou égale à x ».

Propriétés

Soit x et y deux réels.

- $P(X > x) = 1 P(X \le x) = 1 F(x)$.
- $P(x < X \le y) = P(X \le y) P(X \le x) = F(y) F(x)$.
- La fonction F est croissante.
- Si $x < x_1$, F(x) = 0; si $x \ge x_n$, F(x) = 1.

Exemple 1:

Soit F la fonction de répartition de X.

F(x) est la probabilité que la somme des numéros tirés soit inférieure ou égale à x.

Soit *x* réel, par exemple x=3,7. Alors $F(3,7)=P(X \le 3,7)=P(X=2)+P(X=3)$.

4. Valeurs caractéristique d'une variable aléatoire à n valeurs réelles

Définition

On appelle espérance mathématique de la variable aléatoire X le nombre réel, noté $\mathrm{E}(X)$, défini

par:

$$E(X) = \sum_{i=1}^{n} p_i x_i = p_1 x_1 + p_2 x_2 + \dots + p_n x_n.$$

Propriétés

Soit k une constante : $\bullet E(X + k) = E(X) + k$.

•
$$E(kX) = kE(X)$$
.

L'espérance mathématique correspond à la moyenne arithmétique définie en statistique.

Exemple 1:
$$E(X) = \sum_{i=1}^{n} p_i x_i = \frac{1}{9} \times 2 + \frac{2}{9} \times 3 + \frac{3}{9} \times 4 + \frac{2}{9} \times 5 + \frac{1}{9} \times 6 = 4$$
.

Définition

On appelle variance de la variable aléatoire X, le réel positif, noté V(X), défini par :

$$V(X) = E[(X - E(X))^{2}].$$

On a:
$$V(X) = \sum_{i=1}^{n} p_i (x_i - E(X))^2$$
.

L'écart type de la variable aléatoire X est le réel positif $\sigma(X)$ défini par :

$$\sigma(X) = \sqrt{V(X)}.$$

On a:
$$V(X)=E(X^2)-[E(X)]^2=\sum_{i=1}^n p_i x_i^2-[E(X)]^2$$

$$V(X+k)=V(X)$$
 $V(kX)=k^{2V}(X)$ $\sigma(kX)=|k|\sigma(X)$.

Exemple 1:
$$V(X) = \sum_{i=1}^{n} p_i x_i^2 - [E(X)]^2 = \frac{1}{9} \times 2^2 + \frac{2}{9} \times 3^2 + \frac{3}{9} \times 4^2 + \frac{2}{9} \times 5^2 + \frac{1}{9} \times 6^2 - 4^2 = \frac{4}{3}$$

$$V(X) \approx 1,33$$
 $\sigma(X) = \sqrt{V(X)} = \frac{2\sqrt{3}}{3} \approx 1,15$.

Exercices:

Variables aléatoires discrètes

• Exercice 1 *

Une machine est alimentée en résistances de 1 à 2 ohms. Elle doit souder successivement trois résistances en série : deux de 2 ohms, puis une de 1 ohm.

Elle se dérègle et soude trois résistances au hasard.

Un résultat est donné sous la forme d'un triplet : par exemple (1, 1, 2). Tous les triplets sont équiprobables.

- 1) Quelle est la probabilité d'obtenir le montage prévu ?
- **2**) On désigne par *X* la variable qui à chaque triplet associe la somme des trois résistances. Définir la loi de probabilité de *X*.
- 3) Calculer la probabilité d'obtenir un résultat inférieur ou égal à 4.
- 4) Calculer l'espérance mathématique de *X*, sa variance et son écart type.

• Exercice 2 **

Un entreprise fabrique des moteurs électriques en deux phases indépendantes. La première est susceptible de faire apparaître un défaut électrique A sur 2 % des moteurs et la seconde un défaut mécanique B sur 4 % des moteurs.

On prélève un moteur au hasard dans la production.

- 1) Calculer la probabilité des événements suivants.
 - a) Le moteur présente les 2 défauts.
 - b) Le moteur ne présente aucun des défauts.
 - c) Le moteur présente au moins un des deux défauts.
 - d) Le moteur présente un seul défaut.
- 2) Soit *X* la variable aléatoire désignant le nombre de types de défaut (électrique ou mécanique) présentés par le moteur.
 - a) Quelles sont les valeurs prises par X?
 - **b**) Déterminer la loi de probabilité de X.
 - c) Calculer l'espérance mathématique E(X).
 - d) Calculer la variance V(X) et en déduire l'écart type de X. On donnera les résultats à 10^{-2} près.

• Exercice 3 **

Dans un jeu vidéo, on vise une cible circulaire avec un rayon laser. La cible est formée de trois cercles concentriques, de rayons $r_1 = 10$ cm, $r_2 = 20$ cm, $r_3 = 30$ cm. L'intérieur du cercle de rayon r_1 est colorié en bleu, la zone comprise entre les cercles de rayons r_1 et r_2 est coloriée en vert, la zone comprise entre les cercles de rayons r_2 et r_3 est coloriée en rouge. Chaque lancer de rayon laser touche une zone de la cible avec une probabilité proportionnelle à l'aire de cette zone.

- 1) Calculer, pour un lancer et pour chaque zone, la probabilité de toucher cette zone.
- 2) Une partie se déroule en deux lancers. À chaque lancer, si l'on touche la zone bleue, on marque 10 points, la zone verte 5 points, la zone rouge 1 point.

On appelle *Y* la variable aléatoire : « nombre de points obtenus en une partie ».

Les résultats des deux lancers sont supposés indépendants.

- a) Quelles sont les valeurs prises par Y?
- **b**) Déterminer la loi de probabilité de la variable aléatoire *Y*.
- c) En déduire le score moyen obtenu pour une partie.