# DoSA-3D User Manual

**Solenoid Example** 



2022-05-28 zgitae@gmail.com

# **DoSA Structure**

## **PC** Requirement

> CPU: 4 Core and above

> RAM: 16GB and above



## **Program Structure**



### **Toolbar**

#### 1. Operations

✓ New : Create a new design

✓ Open : Open previous design

✓ Save : Save the design

✓ SaveAs : Save in different name

✓ Shape: Check the 3D Shape



#### 2. Design

✓ Coil : Add a coil and specification design

✓ Magnet : Add a magnet and determine specifications

✓ Steel : Add a steel and determine specifications



#### 3. Virtual Test

✓ Force : Magnetic force estimation



### Work process

### **Product Design**

#### **Virtual Test**



# Analysis Model

## **Analysis Model**

#### 1. Model Shape



#### 2. Product Specifications

A. Coil Turns

• Coil Turns: 1040 turns

• Coil Resistance: 15.2 Ohm

B. Power

• Voltage: 14.5V

(Example Files : DoSA-3D Install Directory > Samples > Solenoid )



## New design

1. Toolbar > Click New Button

2. Design Name: "Solenoid"

3. Shape File (STEP): Select Solenoid.step ( provided with this tutorial document )



#### [ Cautions for the Shape Model ]

DoSA-3D still has the following functional limitations.

- A. Shape constraint
  - Coil central axis must coincide with Y axis.
  - The current is always applied in cylindrical form. ( Polygon coils can cause some differences )
- B. Limited number of parts
  - Actions only support one part.
  - Only one coil is supported.
- C. Drawing Guide
  - https://solenoid.or.kr/data/Drawing Guide ENG.pdf





### New design

- 4. Check the solenoid shape in Gmsh.
- 5. Exit the Gmsh.
- 6. Check the part names.
- 7. Click the OK button if there are no problem with the shape and part names.







## New design

8. Check the design creation.



# Parts Design

### Add a Coil

- 1. Toolbar > Click Coil button
- 2. Select "Coil" in the list box.
- 3. Click the OK button.







## Coil design

1. Input Coil specifications

✓ Inner Diameter: 9.6

✓ Outer Diameter: 21.6

✓ Coil Height : 16

✓ Copper Diameter: 0.27

2. Calculate the coil specification

✓ Click "Coil Design" button

3. Check the coil specification



| 4                          | Common Fields                                                                                                          |                                            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| _                          | Node Name                                                                                                              | Coil                                       |
| 4                          | Specification Fields                                                                                                   |                                            |
| _                          | Part Material                                                                                                          | Copper                                     |
|                            | Curent Direction                                                                                                       | IN                                         |
|                            | Moving Parts                                                                                                           | FIXED                                      |
| Δ                          | Calculated Fields                                                                                                      |                                            |
|                            | Coil Turns                                                                                                             | 1040                                       |
|                            | Coil Resistance [Ω]                                                                                                    | 15, 20945                                  |
|                            | Coil Layers                                                                                                            | 20                                         |
|                            | Turns of One Layer                                                                                                     | 52                                         |
| ■ Design Fields (optional) |                                                                                                                        |                                            |
|                            | Coil Wire Grade                                                                                                        | Enameled_IEC_Grade_2                       |
|                            | Con mic arade                                                                                                          | CHameleu_ICC_Grade_Z                       |
|                            | Inner Diameter [mm]                                                                                                    | 9,6                                        |
|                            |                                                                                                                        |                                            |
|                            | Inner Diameter [mm]                                                                                                    | 9,6                                        |
|                            | Inner Diameter [mm] Outer Diameter [mm]                                                                                | 9,6<br>21,6<br>16                          |
|                            | Inner Diameter [mm]<br>Outer Diameter [mm]<br>Coil Height [mm]                                                         | 9,6<br>21,6<br>16                          |
|                            | Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm]                                          | 9,6<br>21,6<br>16<br>0,27                  |
|                            | Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm]                       | 9,6<br>21,6<br>16<br>0,27<br>0,31072       |
|                            | Inner Diameter [mm] Outer Diameter [mm] Coil Height [mm] Copper Diameter [mm] Wire Diameter [mm] Coil Temperature [*C] | 9,6<br>21,6<br>16<br>0,27<br>0,31072<br>20 |

1





3

### **Add an Armature**

- 1. Toolbar > Click Steel button
- 2. Select "Armature" in the list box.
- 3. Click the OK button.







### **Armature setting**

1. Armature setting

✓ Part Material : SUS\_430

✓ Moving Parts: MOVING

Select the magnetic force calculation part

## [BH 곡선 ]





### Add a core

- 1. Toolbar > Click Steel button
- 2. Select "Core" in the list box.
- 3. Click the OK button.







## **Core setting**

1. Core settings

✓ Part Material : SUS\_430





1



### Add a case

- 1. Toolbar > Click Steel button
- 2. Select "Case" in the list box.
- 3. Click the OK button.









## Case setting

1. Case Settings

✓ Part Material : SUS\_430





1



# Virtual Test

## Test of the magnetic force

1. Toolbar > Click Force Button

2. Force Test Name: "Force"

3. Click OK Button

4. Setting of magnetic force test

✓ Voltage: 14.5

✓ B Rotation Angle: 45 ✓ Mesh Size Percent: 7

✓ Actuator Type : Solenoid

5. Click "Force Test" Button











### Run the virtual test

- 7. Click the Run button after checking the shape.
- 8. If you want to see the analysis progress, click the status bar of the Gmsh.





### Results of the virtual test

- 9. Check the magnetic density after solving. (The solving time is depend on you system specification)
- 10. Quit the Gmsh.
- 11. Check a magnetic force of the solenoid in DoSA-3D.



# Tips

## Open Design

- 1. Toolbar > Click Open Button
- 2. Double click the design directory.
- 3. Double click the design file.









## Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org