# Econ 106: Data Analysis for Economics

Lecture 9

slides adapted from: https://jhudatascience.org/tidyversecourse/model.html#descriptive-and-

exploratory-analysis

#### Reminder

- Research Milestone #1 is due Sunday 11:59pm
- Please reach out to me if you have any questions about your choice of dataset (I'm happy to give suggestions)
- You can also post your dataset <u>here</u> and I will give feedback

# #tidytuesday

• code <u>here</u>



# Outline for Today

- Descriptive vs. Exploratory Analysis
- Summary tables and figures for:
  - single quantitative variable
  - single categorical variable

#### Descriptive vs. Exploratory Analysis

- The goal of a descriptive analysis is to generate simple summaries to describe the data you're working with
- The goal of an exploratory analysis is to explore the data and find relationships that weren't previously known.
- Today: descriptive
- next lecture: exploratory

# Descriptive Analysis Example: Single Variable

- In the US census, the government collects a series of measurements on all the country's residents.
- This table <u>describes</u>
   the age distribution of
   the population

|                   | Total       |
|-------------------|-------------|
| Subject           | Estimate    |
| Total population  | 309,349,689 |
| AGE               |             |
| Under 5 years     | 6.5%        |
| 5 to 9 years      | 6.6%        |
| 10 to 14 years    | 6.7%        |
| 15 to 19 years    | 7.1%        |
| 20 to 24 years    | 7.0%        |
| 25 to 29 years    | 6.8%        |
| 30 to 34 years    | 6.5%        |
| 35 to 39 years    | 6.5%        |
| 40 to 44 years    | 6.8%        |
| 45 to 49 years    | 7.3%        |
| 50 to 54 years    | 7.2%        |
| 55 to 59 years    | 6.4%        |
| 60 to 64 years    | 5.5%        |
| 65 to 69 years    | 4.0%        |
| 70 to 74 years    | 3.0%        |
| 75 to 79 years    | 2.3%        |
| 80 to 84 years    | 1.9%        |
| 85 years and over | 1.8%        |
|                   |             |

2010 US Census Data Summary Table (broken down by age)

#### Exploratory Analysis Example: Two Variables

- We can <u>explore</u>
   whether there is a
   relationship between
   age and gender
- The idea: does the age distribution look different for men vs women?

|                   |             | United States |             |            |
|-------------------|-------------|---------------|-------------|------------|
|                   | Total       | Male          | Female      |            |
| Subject           | Estimate    | Estimate      | Estimate    | and        |
| Total population  | 309,349,689 | 152,089,450   | 157,260,239 | stratified |
| AGE               |             |               |             |            |
| Under 5 years     | 6.5%        | 6.8%          | 6.3%        | sex        |
| 5 to 9 years      | 6.6%        | 6.8%          | 6.4%        |            |
| 10 to 14 years    | 6.7%        | 7.0%          | 6.4%        |            |
| 15 to 19 years    | 7.1%        | 7.5%          | 6.8%        |            |
| 20 to 24 years    | 7.0%        | 7.3%          | 6.7%        |            |
| 25 to 29 years    | 6.8%        | 6.9%          | 6.6%        |            |
| 30 to 34 years    | 6.5%        | 6.6%          | 6.4%        |            |
| 35 to 39 years    | 6.5%        | 6.6%          | 6.5%        |            |
| 40 to 44 years    | 6.8%        | 6.9%          | 6.7%        |            |
| 45 to 49 years    | 7.3%        | 7.3%          | 7.3%        |            |
| 50 to 54 years    | 7.2%        | 7.2%          | 7.2%        |            |
| 55 to 59 years    | 6.4%        | 6.3%          | 6.5%        |            |
| 60 to 64 years    | 5.5%        | 5.4%          | 5.6%        |            |
| 65 to 69 years    | 4.0%        | 3.9%          | 4.2%        |            |
| 70 to 74 years    | 3.0%        | 2.8%          | 3.2%        |            |
| 75 to 79 years    | 2.3%        | 2.1%          | 2.6%        |            |
| 80 to 84 years    | 1.9%        | 1.5%          | 2.2%        |            |
| 85 years and over | 1.8%        | 1.2%          | 2.4%        |            |

#### Numeric vs. Factor Variables

- How we summarize/describe a variable will depend on whether it is quantitative (numeric) or categorical (factor):
  - Quantitative:
    - histograms
    - density plot
  - Categorical:
    - bar plot

#### First, look at your data

- Remember to always look at your data
- GSS users: this is where you will see that variables you thought were quantitative are in fact categorical

| ^  | year <sup>‡</sup> | marital <sup>‡</sup> | age <sup>‡</sup> | race <sup>‡</sup> | rincome <sup>‡</sup> | partyid <sup>‡</sup> | relig <sup>‡</sup> | denom <sup>‡</sup> | tvhours <sup>‡</sup> |
|----|-------------------|----------------------|------------------|-------------------|----------------------|----------------------|--------------------|--------------------|----------------------|
| 1  | 2000              | Never married        | 26               | White             | \$8000 to 9999       | Ind,near rep         | Protestant         | Southern baptist   | 12                   |
| 2  | 2000              | Divorced             | 48               | White             | \$8000 to 9999       | Not str republican   | Protestant         | Baptist-dk which   | NA                   |
| 3  | 2000              | Widowed              | 67               | White             | Not applicable       | Independent          | Protestant         | No denomination    | 2                    |
| 4  | 2000              | Never married        | 39               | White             | Not applicable       | Ind,near rep         | Orthodox-christian | Not applicable     | 4                    |
| 5  | 2000              | Divorced             | 25               | White             | Not applicable       | Not str democrat     | None               | Not applicable     | 1                    |
| 6  | 2000              | Married              | 25               | White             | \$20000 - 24999      | Strong democrat      | Protestant         | Southern baptist   | NA                   |
| 7  | 2000              | Never married        | 36               | White             | \$25000 or more      | Not str republican   | Christian          | Not applicable     | 3                    |
| 8  | 2000              | Divorced             | 44               | White             | \$7000 to 7999       | Ind,near dem         | Protestant         | Lutheran-mo synod  | NA                   |
| 9  | 2000              | Married              | 44               | White             | \$25000 or more      | Not str democrat     | Protestant         | Other              | 0                    |
| 10 | 2000              | Married              | 47               | White             | \$25000 or more      | Strong republican    | Protestant         | Southern baptist   | 3                    |
| 11 | 2000              | Married              | 53               | White             | \$25000 or more      | Not str democrat     | Protestant         | Other              | 2                    |

#### Examining Quantitative Variables

- Missingness
- Shape
- Center
- Spread
- Unusual Values



# summary()

 We can see some detailed information on our quantitative data (year, age, tvhours)

```
> summary(gss_cat)
      year
                         marital
                                            age
                                                                   race
                                                                                        rincome
        :2000
                                            :18.00
                                                                              $25000 or more:7363
 Min.
                No answer
                              : 17
                                      Min.
                                                       Other
                                                                     : 1959
                Never married: 5416
 1st Qu.:2002
                                      1st Qu.:33.00
                                                       Black
                                                                     : 3129
                                                                              Not applicable:7043
                                                                              $20000 - 24999:1283
 Median :2006
                Separated
                              : 743
                                      Median :46.00
                                                       White
                                                                     :16395
        :2007
                Divorced
                             : 3383
                                             :47.18
                                                                              $10000 - 14999:1168
                                      Mean
                                                       Not applicable:
                Widowed
                             : 1807
                                      3rd Qu.:59.00
                                                                              $15000 - 19999:1048
 3rd Qu.:2010
                             :10117
        :2014
                Married
                                      Max.
                                              :89.00
                                                                              Refused
                                                                                            : 975
                                      NA's
                                              :76
                                                                              (Other)
                                                                                            :2603
                                  relia
                                                                           tvhours
               partyid
                                                            denom
 Independent
                                              Not applicable :10072
                                                                        Min. : 0.000
                    :4119
                           Protestant:10846
                           Catholic : 5124
 Not str democrat :3690
                                              Other
                                                               : 2534
                                                                        1st Qu.: 1.000
 Strong democrat
                   :3490
                           None
                                      : 3523
                                               No denomination: 1683
                                                                        Median : 2.000
 Not str republican:3032
                                        689
                                               Southern baptist: 1536
                                                                        Mean : 2.981
                           Christian :
 Ind, near dem
                   :2499
                                        388
                                               Baptist-dk which: 1457
                            Jewish
                                                                        3rd Qu.: 4.000
                                      : 224
                                              United methodist: 1067
 Strong republican :2314
                           Other
                                                                        Max.
                                                                               :24.000
                                                                        NA's
 (Other)
                   :2339
                           (Other)
                                        689
                                              (Other)
                                                               : 3134
                                                                               :10146
```

#### Better summaries with skimr

```
> skim(gss_cat)
- Data Summary
                           Values
Name
                           gss_cat
Number of rows
                           21483
Number of columns
Column type frequency:
  factor
                           6
  numeric
Group variables
                           None
-- Variable type: factor
  skim_variable n_missing complete_rate ordered n_unique top_counts
1 marital
                                      1 FALSE
                                                        6 Mar: 10117, Nev: 5416, Div: 3383, Wid: 1807
                                      1 FALSE
                                                        3 Whi: 16395, Bla: 3129, Oth: 1959, Not: 0
2 race
                                                       16 $25: 7363, Not: 7043, $20: 1283, $10: 1168
3 rincome
                                      1 FALSE
                                      1 FALSE
                                                       10 Ind: 4119, Not: 3690, Str: 3490, Not: 3032
4 partyid
5 reliq
                                      1 FALSE
                                                       15 Pro: 10846, Cat: 5124, Non: 3523, Chr: 689
                                                       30 Not: 10072, Oth: 2534, No : 1683, Sou: 1536
6 denom
                                      1 FALSE
-- Variable type: numeric
  skim_variable n_missing complete_rate
                                                         p0 p25 p50 p75 p100 hist
                                            mean
1 year
                                         <u>2</u>007.
                                                  4.45 <u>2000 2002 2006 2010 2014 ____</u>
                       76
                                  0.996
                                          47.2
                                                17.3
                                                              33
2 age
3 tvhours
                                  0.528
                                            2.98 2.59
                    10146
```

#### Missingness

- Look for variables that have a lot of missing data:
  - tvhours
- Why is it missing? What should we do about it?

```
> skim(gss_cat)
- Data Summary
                           Values
Name
                           gss_cat
Number of rows
                           21483
Number of columns
Column type frequency:
  factor
                           3
  numeric
Group variables
                           None
- Variable type: factor
  skim_variable n_missing complete_rate ordered n_unique top_counts
                                      1 FALSE
                                                       6 Mar: 10117, Nev: 5416, Div: 3383, Wid: 1807
1 marital
                                                       3 Whi: 16395, Bla: 3129, Oth: 1959, Not: 0
2 race
                                      1 FALSE
                                                      16 $25: 7363, Not: 7043, $20: 1283, $10: 1168
3 rincome
                                      1 FALSE
4 partyid
                                      1 FALSE
                                                      10 Ind: 4119, Not: 3690, Str: 3490, Not: 3032
                                                      15 Pro: 10846, Cat: 5124, Non: 3523, Chr: 689
5 relia
                                      1 FALSE
                                      1 FALSE
                                                      30 Not: 10072, Oth: 2534, No : 1683, Sou: 1536
6 denom
- Variable type: numeric
  skim_variable n_missing complete_rate
                                                                 p50 p75 p100 hist
                                        2007.
                                                 4.45 <u>2000 2002 2006 2010 2014 ____</u>
1 year
                                          47.2 17.3
2 age
                       76
                                  0.996
3 tvhours
                                  0.528
                                           2.98 2.59
                    10146
```

#### Missingness

- Data for a variable can be missing for a variety of reasons:
  - the variable was included in some survey years, not others
  - only a subset of people answered the question based on some characteristic
  - missing at random
- In the first two cases, missingness is conveying information

#### Example: Commute Times

- Examine the cases that have missing commute times and distance
- What is your student sample if you filter out cases where commute time is missing?

| Live off campus? | commute time | distance from campus |
|------------------|--------------|----------------------|
| TRUE             | 75           | 105                  |
| FALSE            |              |                      |
| TRUE             | 45           | 54                   |
| FALSE            |              |                      |
| TRUE             | 10           | 5                    |
| TRUE             | 5            | 65                   |
| TRUE             | 15           | 438                  |
|                  |              |                      |
| TRUE             | 60           | 6248                 |

# Summarizing a Quantitative Variable: Histograms

 Histograms are helpful when you want to understand what values you have in your dataset for a single variable.



# geom\_histogram()



# Looks kind of funny

- Weird looking distribution
- Why did this happen?
  - tvhours are reported in increments of 1 (values range from 0-24)
  - ggplot default is to create 30 bins
- Result:
  - bins start at some negative value
  - bins are in increments of less than 1



#### A Better Histogram

- Let's set the starting value (boundary)
- Let's also set the width of the bins (binwidth)

# A Better Histogram



# A Better Histogram (?)

```
ggplot(data = gss_cat,
      mapping=aes(x=tvhours))+
geom_histogram(boundary=0, binwidth=4)
                                            2500 -
```

#### A Better Histogram (?)

- With histograms, it can be hard to decide what's the "correct" bin width
- when your bins get too narrow, it creates patterns that aren't really there
- when your bins get too wide, it erases the finer details of the distribution





#### Exercise

• Make a histogram for age, then adjust the bin width as needed

#### Densityplot

- Densityplots are smoothed versions of histograms, visualizing the distribution of a continuous variable.
- Compared to histograms, they are less sensitive to the number of bins chosen for visualization.

# Densityplot Information about a single quantitative variable



# geom\_density()



# Too Lumpy

- The density plot looks "lumpy" because tvhours is an integer
- the lumps are at every integer (1,2,3,etc.)



# Adjusting the bandwidth

Let's select a larger bandwidth (smooth out the bumps):



#### Exercise

• Make a density plot for age, then adjust the bandwidth as needed

# Describing the Shape of the Distribution

#### A Normal Distribution



#### A Skewed Distribution



#### Tvhours Example

- Right-skewed distribution
- most people watch tv for between 0 and 5 hours per day
- very few watch 10 or more



#### Tvhours Example

- Right-skewed distribution
- mean>median
- 75% of the sample watches less than 4 hours of tv per day



#### Outliers

- Plotting the distribution is also helpful for identifying any unusually large or small values (outliers)
- Should we get rid of them?
   How do we decide?



#### Extreme Values

- Values that are much larger or smaller than the rest of your distribution should be investigated until you are able to classify them into one of these categories:
- 1. They are erroneous (and should be excluded).
  - Example: missing values coded as 9999998
  - a value is measured in meters when it should be in cm
- 2. They are correct and produced by the same process as less extreme values (and should be retained).

# What do we do about outliers? Mostly nothing.

I don't know who needs to hear this but we \$\don't\$\ get rid of outliers because they're extreme...

we get rid of them when their extremeness indicates they're not a part of the data generating process we want to study (like a typo that says your newborn is 1000 lbs)

— Chelsea Parlett-Pelleriti (@ChelseaParlett) February 1, 2021

https://pollev.com/vsovero

# Categorical Variables: summary()

 Be careful: summary() doesn't show all the levels in a factor if you are summarizing the entire data frame

```
> summary(gss_cat)
      vear
                         marital
                                                                     race
                                                                                           rincome
                                             age
Min.
        :2000
                No answer
                                       Min.
                                               :18.00
                                                        Other
                                                                       : 1959
                                                                                $25000 or more: 7363
1st Qu.:2002
                Never married: 5416
                                       1st Qu.:33.00
                                                        Black
                                                                       : 3129
                                                                                Not applicable:7043
Median :2006
                                                                       :16395
                Separated
                              : 743
                                       Median :46.00
                                                        White
                                                                                $20000 - 24999:1283
        :2007
                Divorced
                              : 3383
                                              :47.18
                                                        Not applicable:
                                                                                $10000 - 14999:1168
 Mean
 3rd Qu.:2010
                Widowed
                              : 1807
                                       3rd Ou.:59.00
                                                                                $15000 - 19999:1048
        :2014
                              :10117
                                       Max.
                                              :89.00
                                                                                Refused
                                                                                               : 975
                Married
 Max.
                                       NA's
                                              :76
                                                                                (Other)
                                                                                               :2603
               partyid
                                   relia
                                                                             tvhours
                                                             denom
Independent
                    :4119
                            Protestant: 10846
                                               Not applicable
                                                                :10072
                                                                                : 0.000
                                                                          Min.
 Not str democrat
                   : 3690
                            Catholic : 5124
                                                0ther
                                                                : 2534
                                                                          1st Qu.: 1.000
                                      : 3523
Strong democrat
                   :3490
                                                No denomination: 1683
                                                                          Median : 2.000
                            None
Not str republican:3032
                                         689
                                               Southern baptist: 1536
                                                                                : 2.981
                            Christian :
                                                                          Mean
Ind, near dem
                    :2499
                            Jewish
                                         388
                                               Baptist-dk which: 1457
                                                                          3rd Qu.: 4.000
Strong republican :2314
                            0ther
                                      : 224
                                               United methodist: 1067
                                                                                 :24.000
                                                                          Max.
                                         689
                                                                          NA's
                                                                                 :10146
(Other)
                    :2339
                            (Other)
                                               (Other)
                                                                : 3134
```

# Categorical Variables: summary()

• summary() will show all the levels in a factor if you summarize a single variable

| <pre>summary(gss_cat\$relig)</pre> |                    |                         |                 |
|------------------------------------|--------------------|-------------------------|-----------------|
| No answer                          | Don't know         | Inter-nondenominational | Native american |
| 93                                 | 15                 | 109                     | 23              |
| Christian                          | Orthodox-christian | Moslem/islam            | Other eastern   |
| 689                                | 95                 | 104                     | 32              |
| Hinduism                           | Buddhism           | Other                   | None            |
| 71                                 | 147                | 224                     | 3523            |
| Jewish                             | Catholic           | Protestant              | Not applicable  |
| 388                                | 5124               | 10846                   | 0               |

#### Summaries with skimr

With skim() you
 won't see all of the
 levels of a factor
 variable, but you will
 at least know how
 many levels there
 are

```
> skim(gss_cat)
-- Data Summary
                           Values
Name
                           gss_cat
Number of rows
                           21483
Number of columns
Column type frequency:
  factor
                           6
  numeric
Group variables
                           None
- Variable type: factor
  skim_variable n_missing complete_rate ordered n_unique top_counts
1 marital
                                     1 FALSE
                                                       6 Mar: 10117, Nev: 5416, Div: 3383, Wid: 1807
2 race
                                     1 FALSE
                                                        Whi: 16395, Bla: 3129, Oth: 1959, Not: 0
                                                     16 $25: 7363, Not: 7043, $20: 1283, $10: 1168
3 rincome
                                     1 FALSE
4 partyid
                                     1 FALSE
                                                     10 Ind: 4119, Not: 3690, Str: 3490, Not: 3032
                                                     15 Pro: 10846, Cat: 5124, Non: 3523, Chr: 689
5 relia
                                     1 FALSE
                                     1 FALSE
                                                      30 Not: 10072, Oth: 2534, No : 1683, Sou: 1536
6 denom
- Variable type: numeric
  skim_variable n_missing complete_rate
                                                           p25 p50
                                                                     p75 p100 hist
1 year
                                       2007.
                                                4.45 2000 2002 2006 2010 2014
                                         47.2 17.3
2 age
                       76
                                 0.996
3 tvhours
                                  0.528
                                           2.98 2.59
                    10146
```

#### Best Option: dplyr

```
marital_count<-gss_cat%>%
count(marital)%>%
arrange(desc(n))
```

| * | marital <sup>‡</sup> | n <sup>‡</sup> |
|---|----------------------|----------------|
| 1 | Married              | 10117          |
| 2 | Never married        | 5416           |
| 3 | Divorced             | 3383           |
| 4 | Widowed              | 1807           |
| 5 | Separated            | 743            |
| 6 | No answer            | 17             |

```
marital_summarize<-gss_cat%>%
  group_by(marital)%>%
  summarize(freq=n())%>%
  arrange(desc(freq))
```

| * | marital <sup>‡</sup> | freq <sup>‡</sup> |
|---|----------------------|-------------------|
| 1 | Married              | 10117             |
| 2 | Never married        | 5416              |
| 3 | Divorced             | 3383              |
| 4 | Widowed              | 1807              |
| 5 | Separated            | 743               |
| 6 | No answer            | 17                |

#### Exercise

• Create a frequency table for relig. Sort the levels from most to least frequent

#### Summarizing a Categorical Variable

 There are actually many options, but the most common is the bar plot



#### Bar plot from a Frequency Table

- Bar plot: reports frequencies of each level
- If you already created a frequency table (marital\_count), use geom\_col()

| <pre>ggplot(data = marital_count,</pre>    |
|--------------------------------------------|
| <pre>mapping=aes(x=marital, y=n )) +</pre> |
| geom_col()                                 |







#### Bar plot ordered by frequency

- If we want to sort the bar plot by frequency, we can use fct\_infreq()
- Arguments:
  - the name of the factor variable
  - The variable that counts the frequencies (only when your data is a frequency table)



#### Exercise

- Create a bar chart for relig using geom\_col().
- Display the levels by frequency.

#### Bar plot from the original data

- Bar plot: reports frequencies of each level
- If you didn't create a frequency table, use geom\_bar() with the original data frame (gss\_cat)



#### Bar plot ordered by frequency

- If we want to sort the bar plot by frequency, we can use fct\_infreq()
- Arguments:
  - the name of the factor variable



#### Horizontal Bar plot ordered by frequency

- When there are a lot of levels, it looks better to flip the direction of your bar plot
- we can use coord\_flip()
- note that we add this to our ggplot using the + operator



#### Exercise

- #Create a bar chart for relig using geom\_bar().
- Display the levels by frequency.
- Rotate the bars so they're horizontal.