Source Code

import numpy as np
import pandas as pd
from sklearn.datasets import load_boston
boston = load_boston()
data = pd.DataFrame(boston.data)
data.head()

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

data.columns = boston.feature_names

data['PRICE'] = boston.target
data.head(n=10)

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	PRICE
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

print(data.shape) data.isnull().sum() CRIM 0 0 ZN INDUS 0 CHAS 0 NOX 0 RM0 AGE 0 DIS 0 RAD 0 TAX 0 PTRATIO 0 В 0 LSTAT 0 PRICE 0 dtype: int64 data.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000

Course : Laboratory Practice V

data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 506 entries, 0 to 505

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	PRICE	506 non-null	float64

dtypes: float64(14)
memory usage: 55.5 KB

import seaborn as sns
sns.distplot(data.PRICE)

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d082c670>

sns.boxplot(data.PRICE)

<matplotlib.axes._subplots.AxesSubplot at 0x7f44d077ed60>

correlation = data.corr()
correlation.loc['PRICE']

CRIM -0.388305 ΖN 0.360445 **INDUS** -0.483725 CHAS 0.175260 NOX -0.427321 RM0.695360 AGE -0.376955 DIS 0.249929 **RAD** -0.381626 TAX -0.468536 PTRATIO -0.507787 В 0.333461 -0.737663 LSTAT PRICE 1.000000

Name: PRICE, dtype: float64

import matplotlib.pyplot as plt

fig,axes = plt.subplots(figsize=(15,12))

sns.heatmap(correlation, square = True, annot =

-1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

-0.6

```
Trueplt.figure(figsize = (20,5))
features = ['LSTAT','RM','PTRATIO']
for i, col in enumerate(features):
```


plt.subplot(1, len(features) , i+1) x =

data[col]

y = data.PRICE

plt.scatter(x, y, marker='o')

plt.title("Variation in House prices")

plt.xlabel(col)

plt.ylabel('"House prices in \$1000"')

X = data.iloc[:,:-1]

y= data.PRICE

import plotly.graph_objects as go

fig.add_trace(go.Scattergl(y=history.history['loss'],name='Train

fig = go.Figure()

'))

```
fig.add_trace(go.Scattergl(y=history.history['val_loss'],name='Valid'))
fig.update_layout(height=500, width=700, xaxis_title='Epoch', yaxis_title='Loss')
fig.show()
```



```
y_pred = model.predict(X_test)
mse_nn, mae_nn = model.evaluate(X_test, y_test)
print('Mean squared error on test data:', mse_nn)
print('Mean absolute error on test data: ', mae_nn)
Mean squared error on test data: 10.571733474731445
       absolute
Mean
                            test
                                  data:
                 error
                       on
2.2669904232025146:
from sklearn.metrics import mean_absolute_error
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
y_pred_lr = lr_model.predict(X_test)
mse_lr = mean_squared_error(y_test, y_pred_lr)
mae_lr = mean_absolute_error(y_test, y_pred_lr)
print('Mean squared error on test data:', mse_lr)
print('Mean absolute error on test data: ', mae_lr)
from sklearn.metrics import r2_score
r2 = r2_score(y_test, y_pred)
print(r2)
0.8812832788381159
  from sklearn.metrics import mean_squared_error
  rmse = (np.sqrt(mean_squared_error(y_test, y_pred)))
  print(rmse)
  3.320768607496587
  import sklearn
  new_data = sklearn.preprocessing.StandardScaler().fit_transform(([[0.1, 10.0,
  5.0, 0, 0.4, 6.0, 50, 6.0, 1, 400, 20, 300, 10]]))
  prediction = model.predict(new_data)
  print("Predictedhouseprice:", prediction)
```