

Dasar-Dasar Bahasa Pemrograman

Pembicara

Mohammad Rosidi

- Course Producer Technaut Education
- Asisten Peneliti Teknik Lingkungan ITB bidang keahlian Teknologi Management Lingkungan
- Penulis buku
 - Metode Numerik Menggunakan R untuk Teknik Lingkungan
 - Analisis Statistika Menggunakan R Commander

mohrosidi

Apa yang akan dipelajari?

- Jenis dan struktur data R
- Control Flow
- Function
- Analisis data

Jenis dan Struktur Data

R Sebagai Kalkulator

- R dapat digunakan untuk melakukan operasi Matematika
- Terdapat sejumlah operator dan fungsi yang memungkinkan operasi Matematika dan logika di R

```
1+2*3/7
```

[1] 1

Variabel

Sebuah label yang dibuat untuk membedakan data yang tersimpan

 $A \leftarrow 1$ atau A = 1

Simpan angka 1 ke dalam sebuah variabel dengan nama A

DO's

- Menggunakan huruf besar atau kecil
- Dapat menggunakan tanda titik (.) atau garis bawah (_)
 - ➤ Apel <- 1</p>
 - > apel <- 1</p>
 - > apel_merah <- 1
 - > apel.merah <- 1</p>

DON'T

- Menggunakan spasi
- Dimulai dengan angka, titik, atau garis bawah
 - angur merah <- 1.apel <- 1

 - > 2apel<- 1

R bersifat Case Sensitive

Apel ≠ apel

Jenis Data

- Integer (1L, 2L,....)
 Compex (1i, 1+4i,)

Character/String/Text

Factor

Struktur Data

DIMENSI	HOMOGEN	HETEROGEN
1D	Atomic Vector	List
2D	Matrix	Dataframe
3D	Array	

Struktur Data (Cont.)

Struktur Data	Fungsi	Contoh
Vector	c()	C(1, 2, 3,)
Matrix	matrix()	matrix(1:10, nrow=5, ncol = 2)
Dataframe	data.frame()	data.frame(a = vec1, b = vec2)
List	list()	list(a = matrix, b = vector, c = dataframe)

Subset Data

 Misalkan terdapat sebuah dataframe disimpan dalam objek dengan nama teman

nama	usia
Andi	15
Ani	16
Dika	18

Subset Data (Cont.)

teman\$usia

15, 16, 18

teman[2]

	usia
	15
-	16
	18

teman[[2]]

15, 16, 18

Menambah Kolom/ Merubah Data

teman\$jns_klmn<-c(L, P, L)

nama	usia	Jns_klmn
Andi	15	L
Ani	16	Р
Dika	18	L

Menambah Kolom/ Merubah Data

teman[1, 3]<- 17

nama	usia
Andi	15
Ani	16
Dika	17

Control Flow

Apa itu control flow?

• Control flow merupakan urutan statemen, instruksi atau fungsi dieksekusi atau dievaluasi.

Conditional Statements
Flow
Loops

Conditional Statements?

 Jika suatu kondisi terpenuhi (bernilai TRUE) maka suatu aksi dilakukan. Jika tidak (bernilai FALSE), aksi lainnya yang akan dilakukan.

```
If(condition) true_action

If(condition) {
         true_action
}else{
         false_action
}
```

Apa itu loops?

• Perintah/sintaks yang dijalankan berulang-ulang

For Loops

Digunakan ketika kita mengetahui jumlah iterasi yang akan dilakukan dan urutan iterasi penting

for(item in vector) perform_actions

```
# subset berdasarkan nomor index
for(i in 1:3){
         print(i*2)
}
```

```
# [1] 2
# [1] 4
# [1] 6
```

next dan break

Cara untuk menghentikan proses loop

- next: keluar dari operasi saat ini (loncat ke operasi berikutnya)
- break: menghentikan seluruh operasi loop

```
# [1] 3
# [1] 4
# [1] 5
```

While Loops

• Iterasi / loop dilakukan selama kondisi terpenuhi

for(condition) perform_actions

```
# subset berdasarkan nomor index
A <- 4

while(A < 8){
    print(A+1)
    A <- A + 1
}</pre>
```

```
# [1] 5
# [1] 6
# [1] 7
```


Function

Apa itu packages?

- Ekstensi dari R
- Berisi sejumlah fungsi spesifik untuk menyelesaikan masalah
- Packages dapat meningkatkan fungsionalitas R

Cara Menginstall Packages

CRAN

Install.packages("nama_packages")

Bioconductor

source("https://bioconductor.org/biocLite.R")
biocLite(" nama_packages ")

Github

install.packages("devtools")
devtools::install_github("user/repository")

Memuat Fungsi Dalam Packages

Memuat seluruh fungsi dalam packages

library(nama_packages)

Memuat sebuah fungsi dalam packages

nama_packages::nama_fungsi(argument)

Cek Dokumentasi Fungsi

Dokumentasi suatu fungsi, biasanya berisi:

- Nama fungsi
- Deskripsi fungsi
- Penggunaan fungsi
- Keterangan argumen dalam fungsi
- Contoh penggunaan fungsi

?nama_fungsi

Kenapa Perlu Membuat Fungsi pada R

- Mengurangi proses eksekusi perintah yang berulang
- Fungsi yang diinginkan tidak tersedia pada R atau pada packages lainnya

Hal yang Dibutuhkan

Permasalahan Input/Output Algoritma Fungsi

Struktur Fungsi

```
nama_fungsi <- function(argument){</pre>
```

Perintah.....

}

```
add <- function(a, b){
    a+b
}
```


Analisis Data

Membuat Ringkasa Data

Fungsi-fungsi yang digunakan untuk membuat ringkasan data

- str(): melihat struktur data
- summary(): membuat ringkasan data
- head(): melihat data 6 bari pertama (default)
- tail(): melihat data 6 bari terakhir (default)
- cor(): membuat matriks korelasi

Visualisasi Data

Fungsi-fungsi yang digunakan untuk Visualisasi data

- plot()
- boxplot()
- hist()
- barplot()

Praktek

