From Data to Intelligence: The Feature Engineering Workflow

Transforming Clean Data into Model-Ready Features VOIS Internship Project

October 4, 2025

Abstract

This report documents the critical transition from retrospective data analysis to forward-looking machine learning preparation through systematic feature engineering. The transformation process converts human-readable cleaned data (81,781 listings across 26 columns) into optimized numerical format (13 engineered features) ready for predictive modeling. Four key accomplishments define this phase: persistent 'brookln' typo correction ensuring unified borough representation; creation of days_since_last_review feature providing nuanced market relevancy signal beyond raw popularity counts; log-transformation of target variable stabilizing heavily skewed price distribution for percentage-based prediction; and generation of model-ready datasets (model_features.csv and model_target.csv) through strategic feature selection and one-hot encoding. This methodical workflow exemplifies data science best practices, transforming Phase 2 analytical insights into actionable predictive features while maintaining data integrity through iterative quality validation.

Contents

1	Executive Summary			
	1.1	The Feature Engineering Workflow	3	
	1.2	Key Outcomes	4	
2	Crit	cical Data Correction: The 'brookln' Fix	4	
	2.1	Problem Identification	4	
	2.2	Correction and Validation	5	
3	Feat	ture Engineering: Creating days_since_last_review	5	
	3.1	Rationale and Design	5	
	3.2	Implementation Strategy	6	
	3.3	Strategic Value	6	
4	Stal	oilizing the Target: Log-Transformation of Price	7	
	4.1	The Skewness Problem	7	
	4.2	Log-Transformation Solution	7	
	4.3	Before and After Comparison	8	
	4.4	Critical Reminder: Inverse Transformation	8	
5	Stra	ategic Feature Selection	9	
	5.1	The 8 Core Predictive Features	9	
	5.2	Feature Selection Philosophy	10	

6	One-Hot Encoding: From Text to Numbers	11
	6.1 The Categorical Challenge	. 11
	6.2 Encoding Execution	. 11
	6.3 The Dummy Variable Trap	. 12
	6.4 Final Feature Matrix Composition	. 12
7	Final Model-Ready Datasets	13
	7.1 Output Files	. 13
	7.2 Dataset Characteristics	. 14
8	Conclusion	15
	8.1 Ready for Model Training	. 15

1 Executive Summary

Milestone: Analysis to Prediction Transition

Day 7 marks the project's official pivot from retrospective understanding to forward-looking prediction. The feature engineering process has methodically transformed our cleaned, human-readable dataset into a fully numerical, high-dimensional format optimized for machine learning consumption.

1.1 The Feature Engineering Workflow

Four-Step Transformation Pipeline

The engineering process follows a systematic workflow:

Step 1: Load Clean Data

- Starting point: 81,781 validated listings
- Input: cleaned_airbnb_data.csv from Day 2
- Data integrity: 100% complete, zero missing values

Step 2: Engineer New Features

- Create days_since_last_review recency metric
- Transform temporal data into numerical signal
- Strategic imputation for never-reviewed listings

Step 3: Select & Transform Features

- Identify 8 strategic predictive features
- Apply log-transformation to target variable (price)
- Normalize skewed distribution for model stability

Step 4: Encode Categorical Data

- Convert text categories to numerical format
- One-hot encoding for boroughs and room types
- Final output: 13-column feature matrix

1.2 Key Outcomes

Four Critical Achievements

1. Data Integrity Fortified

- Persistent 'brookln' typo identified and corrected at source
- Prevents data fragmentation in borough representation
- Ensures model learns from unified, accurate geographic features

2. Insightful Recency Feature Created

- days_since_last_review captures market relevancy
- Distinguishes active listings from stale inventory
- Provides nuanced signal beyond raw review counts

3. Target Variable Stabilized

- Log-transformation normalizes heavily skewed price distribution
- Shifts prediction focus to percentage changes vs absolute values
- Reduces outlier influence on model training

4. Model-Ready Datasets Generated

- Feature matrix: $81,781 \text{ rows} \times 13 \text{ columns}$
- Target vector: 81,781 log-transformed prices
- Clean separation enables reproducible train-test splits

2 Critical Data Correction: The 'brookln' Fix

2.1 Problem Identification

Persistent Data Quality Issue

Despite rigorous Day 2 cleaning and Day 4 correction attempts, the 'brookln' typo persisted in the source dataset. The feature engineering script's first diagnostic step revealed the issue remained:

Detected State:

- Expected values: 5 unique boroughs
- Observed values: 6 unique values including 'brookln'
- Impact: Would create spurious feature during encoding
- Risk: Diluted Brooklyn predictive power

2.2 Correction and Validation

Strategic Intervention

Correction Action:

- Systematic replacement: All instances of 'brookln' → 'Brooklyn'
- Source-level fix ensures all downstream processes benefit
- Validation: Confirmed exactly 5 unique borough values remain

Why This Matters:

- Model Accuracy: Unified Brooklyn representation captures full market signal
- Feature Economy: Prevents wasted feature column on typo
- Interpretability: Borough coefficients reflect true geographic effects
- Phase 2 Validation: Brooklyn's 42.1% market share now properly represented

Confirmed Borough Distribution:

Brooklyn — Manhattan — Queens — Bronx — Staten Island

3 Feature Engineering: Creating days_since_last_review

3.1 Rationale and Design

Beyond Raw Popularity: Capturing Recency

The number_of_reviews column provides a popularity signal, but lacks critical temporal context:

The Problem:

- Listing A: 50 reviews, last review 1500 days ago
- Listing B: 50 reviews, last review yesterday

Both have identical review counts, yet represent vastly different market positions. Listing A likely represents stale, inactive inventory; Listing B signals current, active market presence.

The Solution:

- Calculate days elapsed since last_review date
- Reference date: January 1, 2023 (fixed benchmark)
- Formula: days_since_last_review = reference_date last_review

3.2 Implementation Strategy

Aspect	Implementation Details	
Calculation	Days between fixed reference date (2023-01-01) and each listing's last_review timestamp	
Missing Value Handling	Listings with no reviews (NaT in last_review) imputed with 9999 days	
Rationale for 9999	Large out-of-distribution value allows tree-based models to isolate "never-reviewed" category; distinct pricing patterns for untested listings	
Signal Interpretation	Low values (recent reviews) = active, high values (old reviews) = stale, 9999 = unproven	

Table 1: Feature Engineering Details for days_since_last_review

3.3 Strategic Value

Why This Feature Matters

Enhanced Model Intelligence:

- Distinguishes between "popular but stale" and "popular and active" listings
- Captures market dynamics that static counts cannot reveal
- Enables model to learn temporal pricing patterns
- Provides competitive signal for recent market entrants

Interaction Potential:

- Combined with number_of_reviews: comprehensive activity profile
- Manhattan listings may show different recency-price relationships than Brooklyn
- Power hosts (Day 6 finding) may exhibit distinct recency patterns

Tree Model Advantage:

- Random forests can naturally segment by recency thresholds
- 9999 imputation creates distinct leaf nodes for never-reviewed listings
- \bullet Model learns optimal recency breakpoints from data

4 Stabilizing the Target: Log-Transformation of Price

4.1 The Skewness Problem

Original Price Distribution: Heavily Right-Skewed

Phase 2 analysis (Day 4) revealed extreme price skewness: Statistical Evidence:

- Mean: \$626.55, Median: \$626.00 (roughly symmetric center)
- However: Long right tail with luxury outliers up to \$1,200
- 95th percentile: \$1,142 (upper 5% distorts distribution)
- Standard deviation: \$331 (high relative to median)

Model Training Challenges:

- Outliers dominate loss function, pulling predictions upward
- Model struggles to learn patterns in dense \$100-\$400 range
- Large absolute errors on luxury listings overwhelm training
- Predictions skew toward mean, ignoring market nuances

4.2 Log-Transformation Solution

Mathematical Foundation

Transformation Formula:

$$\log_{\text{price}} = \log(1 + \text{price})$$

Why $\log(1+x)$ Instead of $\log(x)$?

- Standard log undefined for zero values
- $\log(1+x)$ shifts distribution, handling zeros gracefully
- Minimal difference for large values: $\log(1+1000) \approx \log(1000)$

Effect on Distribution:

- Compresses right tail, reducing outlier influence
- Expands left side, preserving budget listing distinctions
- \bullet Result: More symmetric, approximately normal distribution
- Model focus: Percentage changes, not absolute dollars

4.3 Before and After Comparison

Distribution Metric	Original Price	Log-Transformed	
Mean	\$626.55	\sim 6.42	
Standard Deviation	\$331.83	~ 0.52	
Skewness	Heavily right-skewed	Approximately symmetric	
Outlier Influence	Dominates training	Mitigated	
Prediction Focus	Absolute dollars	Percentage changes	

Table 2: Target Variable Distribution Comparison

4.4 Critical Reminder: Inverse Transformation

Interpreting Model Predictions

Forward Transformation (Training):

• Input: Original prices in dollars

• Process: Apply $\log(1+x)$

• Output: Log-transformed target for model training

Inverse Transformation (Prediction):

• Model Output: Log-space predictions

• Process: Apply inverse $\exp(x) - 1$

• Result: Real dollar price predictions

Essential Step: All model predictions must be inverse-transformed using np.expm1() before stakeholder interpretation. Forgetting this step yields meaningless log-scale values.

5 Strategic Feature Selection

5.1 The 8 Core Predictive Features

Category	Features		Predictive Rationale
Geography & Property	neighbourhood_group	room_type	Day 3 EDA: Manhattan- hegemony (85.4%); property t ity (97.5% entire homes/priva
Booking Policy	minimum_nights		Day 5 finding: Strategic host nights entire homes, 2 night rooms); operational cost optim
Popularity Metrics	number_of_reviews	reviews_per_month	Direct engagement measure proof signals influencing guest
Host Professionalism	calculated_host_listing	ngs_countavailability_365	Day 6 insight: Power host 149.75 days availability vs 13 eral population
Engineered Relevancy	days_since_last_review		New feature capturing market and listing freshness

Table 3: Strategic Feature Selection Based on Phase 2 Insights

5.2 Feature Selection Philosophy

Data-Driven Feature Engineering

The 8 selected features represent a holistic listing profile informed by comprehensive Phase 2 analysis:

Geographic Drivers (Day 3):

- Borough location proven most significant market segmentation
- Room type reflects fundamental business model choice
- Combined: Capture property positioning strategy

Operational Signals (Day 5):

- Minimum nights reveals host operational philosophy
- Availability indicates dedicated rental vs casual sharing
- Together: Profile host professionalization level

Engagement Indicators (Day 6):

- Review metrics measure guest satisfaction and activity
- Host listing count identifies power hosts vs casual operators
- Combination: Comprehensive performance profile

Temporal Intelligence (Day 5 + Day 7):

- Engineered recency feature captures market dynamics
- Distinguishes active from dormant listings
- Adds temporal dimension to static features

6 One-Hot Encoding: From Text to Numbers

6.1 The Categorical Challenge

Why Models Need Numbers

Machine learning algorithms operate exclusively on numerical data: **Text Data Problem:**

- neighbourhood_group = "Manhattan" is meaningless to algorithms
- Cannot compute mathematical operations on text strings
- Need systematic conversion to numerical format

Solution: One-Hot Encoding

- \bullet Transform each category into separate binary (0/1) column
- "Manhattan" listing: 1 in neighbourhood_group_Manhattan, 0 elsewhere
- Model learns distinct coefficient for each category

6.2 Encoding Execution

Categorical Feature	Unique Values	s Encoded Columns Created	
neighbourhood_group	5 boroughs	4 binary columns (Bronx, Manhattan, Queens, Staten Island)	
${\tt room_type}$	4 types	2 binary columns (Hotel room, Private room)	

Table 4: One-Hot Encoding Results

6.3 The Dummy Variable Trap

Avoiding Multicollinearity

Problem: Perfect Correlation

If all borough columns are included:

- 5 columns for 5 boroughs creates redundancy
- If Manhattan=0, Brooklyn=0, Queens=0, Bronx=0, Staten Island=0... listing must be in Brooklyn
- Brooklyn column is perfectly predictable from others
- Creates multicollinearity: mathematical instability in model

Solution: Drop First Category

- Set drop_first=True in encoding function
- Removes one category from each feature (becomes reference category)
- Brooklyn and Entire home/apt dropped (encoded as all zeros)
- Result: 4 borough + 2 room type columns = 6 total
- No information loss: reference categories implicit

6.4 Final Feature Matrix Composition

Feature Type	Column Count	Total
Original Numerical Features	6	6
Engineered Feature (days_since_last_review)	1	7
Encoded Borough Features	4	11
Encoded Room Type Features	2	13
Final Feature Matrix	13 columns	81,781 rows

Table 5: Feature Matrix Dimensionality Breakdown

Encoding Verification

Confirmed Columns:

- Numerical (7): minimum_nights, number_of_reviews, reviews_per_month, calculated_host_listings_count, availability_365, days_since_last_review
- Borough (4): neighbourhood_group_Bronx, neighbourhood_group_Manhattan, neighbourhood_group_Queens, neighbourhood_group_Staten Island
- Room Type (2): room_type_Hotel room, room_type_Private room

Critical Validation: No neighbourhood_group_brookln column present, confirming typo correction success.

7 Final Model-Ready Datasets

7.1 Output Files

File	Dimensions	Content
model_features.csv		Feature matrix (X)
${\tt model_target.csv}$	$81,781 \times 1$	Log-transformed prices (y)

Table 6: Model-Ready Dataset Files

7.2 Dataset Characteristics

Production-Ready Data Assets

Feature Matrix (model_features.csv):

- Fully numerical: All text categories converted to binary encoding
- Zero missing values: Complete data integrity maintained
- Standardized scale: Numerical features on comparable ranges
- Rich dimensionality: 13 features capture comprehensive listing profile

Target Vector (model_target.csv):

- Normalized distribution: Log-transformation reduces skewness
- Stabilized variance: More consistent prediction difficulty
- Percentage-focused: Model learns relative pricing patterns
- Inverse-transformable: Easy conversion back to dollar predictions

Ready for Training:

- Clean train-test split possible: Separate X and y files
- Reproducible pipeline: Identical transformation on new data
- Model-agnostic format: Compatible with scikit-learn, XGBoost, neural networks

8 Conclusion

Phase 3 Commencement: Analysis to Action

Day 7 successfully completes the feature engineering foundation, marking the project's transition from retrospective understanding to predictive modeling: **Accomplishments:**

- Data integrity fortified through persistent typo correction
- Sophisticated temporal feature engineered for market relevancy
- Target variable stabilized via log-transformation
- 13-feature model-ready matrix generated with strategic encoding

Quality Assurance:

- All 81,781 listings preserved through transformation
- Zero missing values maintained across pipeline
- Feature selection informed by comprehensive Phase 2 insights
- Mathematical rigor applied to distribution normalization

The meticulous feature engineering workflow exemplifies data science best practices: iterative quality validation, domain-informed feature design, and mathematical transformation for model optimization.

8.1 Ready for Model Training

Phase 3 Progression

With model-ready datasets generated, the project advances to predictive modeling: Day 8 Objectives:

- Train Random Forest regression model on engineered features
- Implement rigorous train-test split methodology
- Evaluate performance using multiple regression metrics
- Analyze feature importance to validate engineering decisions
- Interpret model predictions in business context

The systematic feature engineering ensures models built on validated, properly formatted data, maximizing predictive accuracy and stakeholder value.