Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Ed Discussion (so that everyone can benefit from the answer) or stop at the office hours.

Problem 4.1 (2.5 points). Given $x \in \mathbb{R}^n$, define

$$N(x) := \max\{|x_1|, |x_2|, ..., |x_n|\}.$$

- (a) Show that this defines a valid norm, i.e., verify that $N(\cdot)$ satisfies the three norm properties.
 - 1. Triangle Inequality: $\forall x, y \in \mathbb{R}^n$, we have

$$\begin{split} N(x+y) &= \max\{|x_1+y_1|, |x_2+y_2|, \cdots, |x_n+y_n|\} \\ &\leq \max\{|x_1|+|y_1|, |x_2|+|y_2|, \cdots, |x_n|+|y_n|\} \\ &= \max\{|x_1|, |x_2|, \cdots, |x_n|\} + \max\{|y_1|, |y_2|, \cdots, |y_n|\} \\ &= N(x) + N(y) \end{split}$$

2. Homogenity: $\forall x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, we have

$$N(\alpha x) = \max\{|\alpha x_1|, |\alpha x_2|, \cdots, |\alpha x_n|\}$$

$$= \max\{|\alpha||x_1|, |\alpha||x_2|, \cdots, |\alpha||x_n|\}$$

$$= |\alpha|\max\{|x_1|, |x_2|, ..., |x_n|\}$$

$$= |\alpha|N(x)$$

- 3. Positive Definiteness: $\forall x \in \mathbb{R}^n$, we have $N(x) \geq 0$ since $|x_i| \geq 0 \forall i$. When N(x) = 0 we have $\max\{|x_1|, |x_2|, ..., |x_n|\} = 0$ which means $|x_i| \leq |x_{max}| \leq 0 (|x_{max}| = \max\{|x_1|, |x_2|, ..., |x_n|\})$, which implies $|x_i| = 0$ and x = 0.
- (b) Let x = (10,0) and y = (9,9). Using the norm $N(\cdot)$, which of x and y has bigger norm? Using the Euclidean norm, which of x and y has bigger norm?

Using $N(\cdot)$, we have $N(x) = \max\{|10|, |0|\} = 10, N(y) = \max\{|9|, |9|\} = 9$, which implies that x has bigger L-infinity norm.

Using Euclidean norm, we have ||x|| = 10 and $||y|| = 9\sqrt{2} > 10$, which implies y has bigger euclidean norm.

(c) Show that N(x) > 1 implies the Euclidean norm of x is also greater than 1, i.e., $||x||_2 > 1$.

$$\begin{split} N(x) &= \max\{|x_1|, |x_2|, \cdots, |x_n|\} > 1, \text{ which implies that } |x_{max}| > 1\\ &(\text{where } x_{max} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}).\\ &Moreover, \ \|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{\sum_{i \neq i_{max}} |x_i|^2 + x_{max}^2} \ge \sqrt{x_{max}^2} > 1. \end{split}$$

Problem 4.2 (2 points). Decide whether each of the following functions $N(\cdot)$ is a valid norm. If yes, you do not have to justify your answer. If no, then provide an explicit counterexample and state which norm property is violated.

$$(a) \ x \in \mathbb{R}^2. \ N(x) := x^\top A x, \ where \ A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}.$$

It is not a valid norm. And it violates the homogeneity property, we check it: $\forall \alpha \in \mathbb{R}$ and $x \in \mathbb{R}^2$ we should have $N(\alpha x) = (\alpha x)^{\top} A(\alpha x) = \alpha^2 x^{\top} Ax$ if $N(\cdot)$ is indeed a valid norm, but $\alpha^2 \neq \alpha$ in general, so this is not a valid norm.

(b)
$$x \in \mathbb{R}^2$$
. $N(x) := x^{\top} A x$, where $A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.

It is not a valid norm. And it violates the positive definiteness condition. $\exists \vec{x} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$ such

that
$$\begin{bmatrix} -2 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \end{bmatrix} = 8 - 9 = -1 < 0.$$

(c) $x \in \mathbb{R}^3$. $N(x) := 2|x_1| + \max\{|x_2|, |x_3|\}$.

It is a valid norm and we check the three properties:

1. Triangle Inequality: $\forall x, y \in \mathbb{R}^3$, we have

$$\begin{split} N(x+y) &= 2|x_1+y_1| + \max\{|x_2+y_2|, |x_3+y_3|\} \\ &\leq 2|x_1| + 2|y_1| + \max\{|x_2| + |y_2|, |x_3| + |y_3|\} \\ &= 2|x_1| + 2|y_1| + \max\{|x_2|, |x_3|\} + \max\{|y_2|, |y_3|\} \\ &= 2|x_1| + \max\{|x_2|, |x_3|\} + 2|y_1| + \max\{|y_2|, |y_3|\} \\ &= N(x) + N(y) \end{split}$$

2. Homogenity: $\forall \alpha \in \mathbb{R} \text{ and } \forall x \in \mathbb{R}^3$, we have

$$N(\alpha x) = 2|\alpha x_1| + \max\{|\alpha x_2|, |\alpha x_3|\}$$

= $|\alpha|2|x_1| + |\alpha|\max\{|x_2|, |x_3|\}$
= $|\alpha|N(x)$

- 3. Positive Definiteness: We know that $|x_i| \ge 0, \forall x_i, \text{ so } N(x) \ge 0, \forall x \in \mathbb{R}^3$. When N(x) = 0, we know that $2|x_1| + \max\{|x_2|, |x_3|\} = 0$ and $|x_i| \ge 0$, which implies x = 0.
- . Thus we know that N(x) satisfies all three properties.
- (d) $x \in \mathbb{R}^n$. $N(x) := (\prod_{i=1}^n |x_i|)^{1/n} + \max_{i \in [n]} \{|x_i|\}$.

It is not a valid norm. And we can check it as follows:

$$N(\alpha x) = \left(\prod_{i=1}^{n} |\alpha x_i|\right)^{\frac{1}{n}} + \max_{i \in [n]} |\alpha x_i|$$
$$= |\alpha|^{\frac{1}{n}} \left(\prod_{i=1}^{n} |x_i|\right)^{\frac{1}{n}} + |\alpha| \cdot \max_{i \in [n]} |x_i|$$

, which is not equal to $|\alpha|N(x)\forall \alpha$. Thus we can conclude that it is not a valid norm.

Problem 4.3 (1 point). Show that for any vector $x \in \mathbb{R}^n$,

$$\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2.$$

Hint: use Cauchy-Schwarz.

Pick two vectors $\vec{1}_n = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^\top$ and $\vec{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ and we use the Cauchy-Schwarz Inequality to get $|\vec{1}_n^\top \vec{x}| \leq ||\vec{1}_n||_2 ||\vec{x}||_2$, squaring on both sides we can get exactly what we want:

 $\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2.$

.

Problem 4.4 (1.5 points). Consider the set V of random variables (on a probability space Ω) with a finite second moment (i.e., for $X \in V$, $\mathbb{E}[X^2] < \infty$), with the inner product $\langle X, Y \rangle = \mathbb{E}[XY]$. Prove the Cauchy-Schwarz inequality:

$$|\mathbb{E}[XY]| \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}.$$

Hint: given constants $a, b \geq 0$, evaluate the expression $\mathbb{E}[(aX - bY)^2]$. Then find appropriate values of a, b to prove the statement.

We evaluate the expression in the hint as follows:

$$\begin{split} \mathbb{E}[(aX - bY)^2] &= \mathbb{E}[a^2X^2 - 2abXY + b^2Y^2] \\ &= a^2\mathbb{E}[X^2] - 2ab\mathbb{E}[XY] + b^2\mathbb{E}[Y^2] \\ &= \mathbb{E}[X^2]a^2 - 2\mathbb{E}[XY]b \cdot a + \mathbb{E}[Y^2]b^2 \\ &\geq 0 \end{split}$$

This hold for all $a, b \in \mathbb{R}$, then we have $4\mathbb{E}^2[XY] \times b^2 - 4\mathbb{E}[X^2]\mathbb{E}[Y^2]b^2 \leq 0$. Since $b^2 \geq 0$, we have $\mathbb{E}^2[XY] \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$. If $\mathbb{E}[X^2] = 0$, then $\mathbb{E}[XY] = 0$ where the inequality still holds. So we take the square root on both sides to get $|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$.

Another perspective is to first choose the appropriate a and b, here we choose $a = |\mathbb{E}[XY]| \ge 0$ and $b = \mathbb{E}[X^2] \ge 0$ and fit them into $\mathbb{E}[(aX - bY)^2]$, using the lienarity of expectation we could get:

$$\mathbb{E}[(|\mathbb{E}[XY]|X - \mathbb{E}[X^2]Y)^2] = \mathbb{E}[\mathbb{E}^2[XY]X^2 - 2\mathbb{E}[XY]\mathbb{E}[X^2]XY + \mathbb{E}^2[X^2]Y^2]]$$

$$= \mathbb{E}^2[X^2]\mathbb{E}[Y^2] - \mathbb{E}^2[XY]\mathbb{E}[X^2]$$

$$> 0$$

and we could get $\mathbb{E}[X^2]\mathbb{E}[Y^2] \geq \mathbb{E}^2[XY]$, taking the square root we get the inequality of interest.

Problem 4.5 (3 points). Let S be a subspace of \mathbb{R}^n with $x \mapsto P_S(x)$ the orthogonal projector of all $x \in \mathbb{R}^n$. We will use the Euclidean dot product as our inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Show that for any $x \in \mathbb{R}^n$,

- (a) $\langle x,y\rangle = \langle P_S(x),y\rangle$, for any vector y in S. Suppose the orthonormal basis for subspace S is (v_1,\cdots,v_k) and V if we organize them by columns. We know that the projection of x on to the subspace S is $P_S(x) = V(V^\top V)^{-1}V^\top \vec{x} = VV^\top \vec{x}$, then $\langle P_S(\vec{x}), \vec{y}\rangle = \langle VV^\top \vec{x}, \vec{y}\rangle = \vec{x}^\top VV^\top \vec{y}$. On the other hand, $VV^\top \vec{y}$ is the projection of \vec{y} onto the subspace S, which is just \vec{y} . In other words, $VV^\top \vec{y} = \vec{y}(Short\ proof\ here,\ since\ \vec{y} \in S$, we have $\vec{y} = V\vec{\alpha}$ for some $\vec{\alpha} \in \mathbb{R}^k$, thus $VV^\top \vec{y} = VV^\top V\vec{\alpha} = V\vec{\alpha} = \vec{y}$. Thus $\vec{x}^\top \vec{y} = \langle P_S(\vec{x}), \vec{y}\rangle$.
- (b) $x P_S(x)$ is orthogonal to S, We just need to prove that $\vec{x} - VV^{\top}\vec{x} \perp \vec{y}, \forall \vec{y} \in S$. We evaluate the inner product and could get $(\vec{x} - VV^{\top}\vec{x})^{\top}\vec{y} = \vec{x}^{\top}\vec{y} - VV^{\top}\vec{x}^{\top}\vec{y} = 0$ by part (a).
- (c) $||P_S(x)|| \le ||x||$, and the equality holds when $x \in S$. By the Pythagorean theorem we have $||P_S(\vec{x})||_2^2 + ||\vec{x} - P_S(\vec{x})||_2^2 = ||\vec{x}||_2^2 (since \vec{x} - P_S(\vec{x}) \perp P_S(\vec{x}))$. Then since $||\vec{x} - P_S(\vec{x})||_2^2 \ge 0$, we have $||P_S(x)||_2^2 \le ||x||_2^2$, then taking the square root on both sides and we have $||P_S(x)|| \le ||x||$ as desired.

Hint: express y in terms of the orthonormal basis of S: $(v_1, v_2, ..., v_k)$.

Problem 4.6 (*). Given $x \in \mathbb{R}^n$ and $p \in (1, \infty)$, define the ℓ_p -norm as

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

Prove that the ℓ_p -norm satisfies the triangle inequality, that is, for any $x, y \in \mathbb{R}^n$, show that

$$||x+y||_p \le ||x||_p + ||y||_p.$$

You may use the following inequality, known as Hölder's inequality, without proof: for any $x, y \in \mathbb{R}^n$, and constants $p, q \in \mathbb{R}_+$ satisfying $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q.$$

We first apply holder's inequality as follows:

$$\begin{aligned} \|x+y\|_{p}^{p} &= \sum_{i=1}^{n} |x_{i}+y_{i}|^{p} \\ &= \sum_{i=1}^{n} |x_{i}+y_{i}||x_{i}+y_{i}|^{p-1} \\ &\leq \sum_{i=1}^{n} |x_{i}||x_{i}+y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}||x_{i}+y_{i}|^{p-1} \\ &\leq (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{(p-1)q})^{\frac{1}{q}} + (\sum_{i=1}^{n} |y_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{(p-1)q})^{\frac{1}{q}} \\ &\leq (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{(p-1)q})^{\frac{1}{q}} + (\sum_{i=1}^{n} |y_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{(p-1)q})^{\frac{1}{q}} \\ &= (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{p})^{\frac{p-1}{p}} + (\sum_{i=1}^{n} |y_{i}|^{p})^{\frac{1}{p}} (\sum_{i=1}^{n} |x_{i}+y_{i}|^{p})^{\frac{p-1}{p}} \\ &= \|x\|_{p} \|x+y\|_{p}^{p-1} + \|y\|_{p} \|x+y\|_{p}^{p-1} \\ &= (\|x\|_{p} + \|y\|_{p}) \|x+y\|_{p}^{p-1} \end{aligned} \qquad \text{(Arithmetic Operations)}$$

, thus we have $||x+y||_p^p \le (||x||_p + ||y||_p)||x+y||_p^{p-1}$, canceling on both sides we have $||x+y||_p \le ||x||_p + ||y||_p$.

If $||x+y||_p = 0$ we have $x+y = \vec{0}$ by definition of the norm and in this case $||x+y||_p \le ||x||_p + ||y||_p$ definitely holds.