An algorithm for computing the *k***-numerical range** Alec J Ketterer

Introduction

The k-numerical range is defined as:

$$W_k(A) = \left\{ \frac{1}{k} \sum_{i=1}^k x_i^* A x_i : x_i^* x_j = \delta_{ij} \right\}$$

The k-numerical range:

- is convex
- is compact
- \blacksquare contains averages of k eigenvalues (counting multiplicity)

The real part of the k-numerical range

For $A \in M_n(\mathbb{C})$, $Re(W_k(A)) = W_k(Re(A))$.

Linear Transform Property

For $z, w \in \mathbb{C}$, $A \in M_n(\mathbb{C})$, $W_k(zA + wI) = zW_k(A) + w$.

Technical Lemma

For $\lambda_1 \geq \cdots \geq \lambda_n$, $0 \leq c_i \leq 1$, $\sum_{i=1}^n c_i = k \in \mathbb{N}$. Then $\sum_{i=1}^n c_i \lambda_i \leq \sum_{i=1}^k \lambda_i$.

Convex Combination Lemma

For $A=A^*$, any $z\in W_k(A)$ has the form $z=\frac{1}{k}\sum_{i=1}^n c_i\lambda_i$, where $\lambda_1\geq\cdots\geq\lambda_n$ are eigenvalues of A, $0\leq c_i\leq 1$, $\sum_{i=1}^n c_i=k$.

Maximum Real Part Theorem

Suppose $A \in M_n(\mathbb{C})$, and v_1, \dots, v_n are eigenvectors of Re(A) for eigenvalues $\lambda_1 \geq \dots \geq \lambda_n$. Then $\frac{1}{k} \sum_{i=1}^k v_i^* A v_i \in W_k(A)$ has maximum real part.

These results are the key tools necessary to generalize an algorithm due to Carl Cowen in the case when k=1.

Explanation of the algorithm

Figure 1: The point on $W_k(e^{-i\theta}A)$ with maximum real part is achieved by the k-largest eigenvectors of $\operatorname{Re}(e^{-i\theta}A)$. So, it suffices to find the eigenvectors corresponding to the k-largest eigenvalues of $\operatorname{Re}(e^{-i\theta}A)$ for various θ .

To compute a boundary point of $W_k(A)$ in the direction θ , we rotate the matrix: $e^{-i\theta}A$. The maximum part theorem shows that the point in $W_k(e^{-i\theta}A)$ with maximum real part is achieved by the k eigenvectors corresponding to the k-largest eigenvalues of $\mathrm{Re}(e^{-i\theta}A)$.

By evaluating this over many angles θ , we trace the boundary of $W_k(A)$.

How it works: Rotate $A \to \mathsf{Take}$ real part $\mathsf{Re}(e^{-i\theta}A) \to \mathsf{Use}\ k$ eigenvectors with largest eigenvalues $\to \mathsf{Average} \to \mathsf{Plot}$ the result.

To approximate the k-numerical range of $A_0 = \operatorname{diag}(i,-i,1,\dots,1) \in M_7(\mathbb{C})$, we compute x^*Ax for 1000 random unit vectors x. The vertices of the range lie at i,-i, and 1. Since most diagonal entries are 1, the values cluster near 1 on the real axis. The resulting approximation for k=1 is shown below.

Figure 2: Approximation of the numerical range of $\operatorname{diag}(i,-i,1,\ldots,1) \in M_7(\mathbb{C});$ computed x^*Ax for 1000 randomly chosen unit vectors x

Visual examples of the *k*-numerical range

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 & 0 \\ 0 & 0 & \omega^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \omega & 0 & 0 & 0 \\ 0 & 0 & \omega^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

where $\omega = rac{-1+i\sqrt{3}}{2}$

Figure 3: k-numerical range of A_1

Figure 4: k-numerical range of A_2

References

- [1] Carl C. Cowen, An effective algorithm for computing the numerical range, Aug 1995, Unpublished Manuscript.
- [2] Panayiotis J. Psarrakos and Michael J. Tsatsomeros, *Numerical range:* (in) a matrix nutshell, https://www.math.wsu.edu/math/faculty/ tsat/files/short.pdf, Aug 2002.