ONLINE RETAIL RECOMMENDATION SYSTEM

1. INTRODUCTION:

In the era of digital commerce, online retail recommendation system Play a crucial role in enhancing customer experience and driving sales. These systems analyze customer behavior, purchase history, and product features to provide personalized recommendations. By leveraging data-driven techniques, business can improve customer engagement, increase conversion rates, and optimize inventory management. This document outlines the development of an online retail recommendation system, detailing data preprocessing, existing methodologies, and the implementation of an effective recommendation model.

2. OVERVIEW:

The online retail recommendation system is built using a structured approach that includes data loading, preprocessing, model training, and visualization. The dataset, 'onlineRetail.csv', contains transaction records from e-commerce platform. The workflow consists of the following steps:

- Data Loading & Cleaning: Handling missing values, removing duplicates, and standardizing data formats.
- Exploratory Data Analysis (EDA): Understanding customer purchasing patterns and product popularity.
- Model Selection & Training: Implementing recommendation algorithms such as collaborative filtering and content-based filtering.
- Evaluating & visualization: Assessing model performance and visualizing recommendation insights.

3. EXISTING METHOD:

Several recommendation techniques have been used in online retail systems, including:

Collaborative Filtering: Suggests items based on user interactions and preferences. Methods include:

- User-based collaborative filtering
- Item-based collaborative filtering

Content-Based Filtering: Recommends items based on product attributes and user profiles.

Hybrid Methods: Combines collaborative and content-based approaches for improved accuracy.

4. PRESENT WORK:

This project implements a recommendation system based on collaborative filtering. The key contributions include:

- Data Preprocessing: Cleaning and structuring the 'OnlineRetail.csv' dataset to handle inconsistencies.
- Recommendation Model: Implementing user-based and item-based collaborative filtering techniques.
- Model Training & Evaluation: Training the recommendation model and assessing its accuracy using metrics like RMSE and precision-recall.
- Visualization & Insights: Plotting recommendation distributions, customer segmentation, and sales trends to enhance interpretability.

This work aims to provide an efficient and scalable recommendation system for online retail platforms, improving user satisfaction and business growth.

5. HARDWARE / SOFTWARE TOOLS

REQUIREMENT SPECIFICATIONS (S/W & H/W)

Hardware Requirements:

System : Pentium 4, Intel Core i3, i5, i7 and 2GHz Minium

RAM : 4GB or above

Hard Disk : 10 GB or above

Input : Keyboard and Mouse

Output : Monitor or PC

Software Requirements:

OS : Windows or Higher Versions

Platform : Jupiter Notebook

Programming Language: Python

Libraries : NumPy, Pandas, Scikit-Learn, Matplotlib, Seaborn

6. PROPOSED METHOD

The proposed method Leverages collaborative filtering to generate personalized recommendations for online retail customers. This involves analysing purchase history and user behaviour to predict future purchases.

ARCHITECTURE DIAGRAM:

1. Retail Database

- Acts as the Primary data source
- Contains transactional data
- Could be a CSV, SQL database or other structured data source

2. Data Description

- Performs basic Exploratory Data Analysis (EDA)
- Summarizes the dataset using
 - o Descriptive Statistics
 - o Datatypes, null values etc.
 - o Initial visualization

3. Find popular Items

- Conducted using Pivot tables for summarization and seaborn for visualization
- Items are categorized
 - o Globally
 - o Country-Wise
 - o Month-Wise

4. Recommendation Engine

 A Custom function that analyses identified trends, print recommendation for business decision (example stocking, marketing)

5. Can Output Insight like

- Top products focus on
- Seasonal trends
- Country specific Favourities

7. DATASET

Providing a dataset from Kaggle, which contains historical information about Online Retail data which can be used to detect which product is highly recommended. The dataset used in this project is OnlineRetail.csv, which contains:

• Invoice Number: This is the number that identifies a transaction.

• Stock Code : This refers to the product ID.

Description : This describes the product that a user purchased.
Quantity : It specified the quantity of the item purchased.
Invoice Date : The date on which the transaction took place.

Unit Price : Price of one product.Customer ID : It identifies the customer.

Country : The country where the transaction was performed.

	А	В	С	D	Е	F	G	Н
1	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
2	536365	85123A	WHITE HANGING HEART T-LIGHT HOLD	6	12/1/2010 8:26	2.55		United Kingdom
3	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850	United Kingdom
4	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850	United Kingdom
5	536365	84029G	KNITTED UNION FLAG HOT WATER BOT	6	12/1/2010 8:26	3.39	17850	United Kingdom
6	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850	United Kingdom
7	536365	22752	SET 7 BABUSHKA NESTING BOXES	2	12/1/2010 8:26	7.65	17850	United Kingdom
8	536365	21730	GLASS STAR FROSTED T-LIGHT HOLDE	6	12/1/2010 8:26	4.25	17850	United Kingdom
9	536366	22633	HAND WARMER UNION JACK	6	12/1/2010 8:28	1.85	17850	United Kingdom
10	536366	22632	HAND WARMER RED POLKA DOT	6	12/1/2010 8:28	1.85	17850	United Kingdom
11	536367	84879	ASSORTED COLOUR BIRD ORNAMENT	32	12/1/2010 8:34	1.69	13047	United Kingdom
12	536367	22745	POPPY'S PLAYHOUSE BEDROOM	6	12/1/2010 8:34	2.1	13047	United Kingdom
13	536367	22748	POPPY'S PLAYHOUSE KITCHEN	6	12/1/2010 8:34	2.1	13047	United Kingdom
14	536367	22749	FELTCRAFT PRINCESS CHARLOTTE DO		12/1/2010 8:34	3.75	13047	United Kingdom
15	536367	22310	IVORY KNITTED MUG COSY	6	12/1/2010 8:34	1.65	13047	United Kingdom
16	536367	84969	BOX OF 6 ASSORTED COLOUR TEASPO	6	12/1/2010 8:34	4.25	13047	United Kingdom
17	536367	22623	BOX OF VINTAGE JIGSAW BLOCKS	3	12/1/2010 8:34	4.95	13047	United Kingdom
18	536367	22622	BOX OF VINTAGE ALPHABET BLOCKS	2	12/1/2010 8:34	9.95	13047	United Kingdom
19	536367	21754	HOME BUILDING BLOCK WORD	3	12/1/2010 8:34	5.95	13047	United Kingdom
20	536367	21755	LOVE BUILDING BLOCK WORD	3	12/1/2010 8:34	5.95	13047	United Kingdom
21	536367	21777	RECIPE BOX WITH METAL HEART	4	12/1/2010 8:34	7.95	13047	United Kingdom
22	536367	48187	DOORMAT NEW ENGLAND	4	12/1/2010 8:34	7.95	13047	United Kingdom
23	536368	22960	JAM MAKING SET WITH JARS	6	12/1/2010 8:34	4.25	13047	United Kingdom

Fig 1. Attributes and labels of the Online Retail Recommendation System

25900 unique values

4070 unique values

Fig 2. Visualizing all attributes

8. METHODOLOGY

Data Preprocessing:

- Load the dataset and handle missing values.
- Remove duplicate records and correct inconsistencies.
- Convert categorical variables to numerical representations where necessary.
- Normalize data to ensure consistency.

Exploratory Data Analysis (EDA):

- Analyse purchase trends and customer segmentation.
- Visualize product popularity and sales distributions.

Model Implementation:

- Apply user-based and item-based collaborative filtering techniques.
- Utilize similarity metrics such as cosine similarity and Pearson correlation.

Training & Evaluation:

- Train the recommendation model using historical transaction data.
- Evaluate the model using RMSE, precision-recall, and other relevant metrics.

Visualization & Insights:

- Generate recommendation visualizations.
- Display customer purchase trends and segment behaviour insights.

The proposed system aims to enhance user experience by delivering relevant product recommendations based on purchasing behaviour, ultimately improving sales and customer engagement.

9. CODE

STEP-1:

Loading and cleaning the dataset for better result

File: Data Loading & Cleaning File.ipynb

Purpose: Loads and cleans the raw dataset (OnlineRetail.csv).

- Handles missing values
- Removes duplicates
- Filters invalid transactions
- Prepares the data for modelling

#Step 1: Importing necessary libraries import pandas as pd

#Step 2: Load the dataset into jupyter notebook data = pd.read_csv('OnlineRetail.csv')

#Step 3: Viewing 5 rows of data data.head(5)

[3]:		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12-1-2010 8:26	2.55	17850.0	United Kingdom
	1	536365	71053	WHITE METAL LANTERN	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
	2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12-1-2010 8:26	2.75	17850.0	United Kingdom
	3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
	4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12-1-2010 8:26	3.39	17850.0	United Kingdom

#Step 4: getting the dataset information and the total count data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns): Column Non-Null Count Dtype --------0 InvoiceNo 541909 non-null object 1 StockCode 541909 non-null object 2 Description 540455 non-null object 3 Quantity 541909 non-null int64 4 InvoiceDate 541909 non-null object 5 UnitPrice 541909 non-null float64 CustomerID 406829 non-null float64 541909 non-null object Country dtypes: float64(2), int64(1), object(5) memory usage: 33.1+ MB

#Step 5: Checking for empty columns in dataset data.isnull().sum()

```
: InvoiceNo 0
StockCode 0
Description 1454
Quantity 0
InvoiceDate 0
UnitPrice 0
CustomerID 135080
Country 0
dtype: int64
```

#Step 6: Dropping the empty columns in dataset data.dropna(inplace=True)

#Step 7: Dropping the duplicates values from dataset data.drop_duplicates(inplace=True)

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 406829 entries, 0 to 541908
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	InvoiceNo	406829 non-null	object
1	StockCode	406829 non-null	object
2	Description	406829 non-null	object
3	Quantity	406829 non-null	int64
4	InvoiceDate	406829 non-null	object
5	UnitPrice	406829 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	406829 non-null	object
dtyp	es: float64(2), int64(1), obje	ct(5)

memory usage: 27.9+ MB

#Step 8: displaying the unique product and customer count
#Here we use "stock code" for unique products and "CustomerID" for unique customers.
print(f'Number of unique products : {data['StockCode'].nunique()}')
print(f'Number of unique customers : {data['CustomerID'].nunique()}')

Number of unique products : 3684 Number of unique customers : 4372 #Displaying the top 10 products from the dataset top_products = data['Description'].value_counts().head(10) print (top_products)

Description	
WHITE HANGING HEART T-LIGHT HOLDER	2070
REGENCY CAKESTAND 3 TIER	1905
JUMBO BAG RED RETROSPOT	1662
ASSORTED COLOUR BIRD ORNAMENT	1418
PARTY BUNTING	1416
LUNCH BAG RED RETROSPOT	1358
SET OF 3 CAKE TINS PANTRY DESIGN	1232
POSTAGE	1196
LUNCH BAG BLACK SKULL.	1126
PACK OF 72 RETROSPOT CAKE CASES	1080
Name and drawn date.	

Name: count, dtype: int64

STEP-2:

Let's visualize using plot for better analyzing Exploratory Data Analysis

File: Plotted Data File.ipynb

Purpose: Visualizes cleaned data to understand customer behaviour and product patterns.

- Time-based plots
- Top products
- Top customers

#Step 1: Importing necessary libraries

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

#Step 2: Load the dataset into jupyter notebook

data = pd.read csv('OnlineRetail.csv')

#Step 3: Viewing 5 rows of data

data.head(5)

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kinadom

#Step 4: Creating and displaying the pivot table to find the total quantity of each product bought by each customer

```
total_product_quantity = data.pivot_table(
  index = 'CustomerID',
  columns = 'Description',
  values = 'Quantity',
  aggfunc = 'sum',
  fill_value = 0
)
```

display(total_product_quantity)

	Description	10 COLOUR SPACEBOY PEN	12 COLOURED PARTY BALLOONS	DAISY PEGS IN WOOD BOX	12 EGG HOUSE PAINTED WOOD	12 HANGING EGGS HAND PAINTED	12 IVORY ROSE PEG PLACE SETTINGS	12 MESSAGE CARDS WITH ENVELOPES	12 PENCIL SMALL TUBE WOODLAND	12 PENCILS SMALL TUBE RED RETROSPOT	12 PENCILS SMALL TUBE SKULL	 ZINC STAR T- LIGHT HOLDER	ZINC SWEETHEART SOAP DISH	ZII SWEETHEA WIRE LETT RA
(CustomerID													
	12346.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	12347.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	12348.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	12349.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	12350.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	18280.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	18281.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	18282.0	0	0	0	0	0	0	0	0	0	0	 0	0	
	18283.0	46	0	0	0	0	0	0	1	0	1	 0	0	
	18287.0	0	0	0	0	0	0	0	0	0	0	 0	0	

4372 rows × 3885 columns

```
#Plot the distribution of the number of products bought by each customer using histogram plt.figure(figsize=(10, 6))
sns.histplot(data=total_product_quantity.sum(axis=1), kde=True)
plt.title('Distribution of the Number of Products Bought by Each Customer')
plt.xlabel('Number of Products')
```

plt.ylabel('Frequency') plt.show()

#Step 5: Identifying Globally Popular Products
globally_popular_products = data['Description'].value_counts().head(10)
print("Globally Popular Products:")
print(globally_popular_products)

```
Globally Popular Products:
Description
WHITE HANGING HEART T-LIGHT HOLDER
                                       2369
REGENCY CAKESTAND 3 TIER
                                       2200
JUMBO BAG RED RETROSPOT
                                       2159
PARTY BUNTING
                                       1727
LUNCH BAG RED RETROSPOT
                                       1638
ASSORTED COLOUR BIRD ORNAMENT
                                       1501
SET OF 3 CAKE TINS PANTRY DESIGN
                                       1473
PACK OF 72 RETROSPOT CAKE CASES
                                       1385
LUNCH BAG BLACK SKULL.
                                       1350
NATURAL SLATE HEART CHALKBOARD
                                       1280
Name: count, dtype: int64
```

#Plotting globally popular products

```
plt.figure(figsize=(10, 6))
sns.barplot(x=globally_popular_products.values, y=globally_popular_products.index)
plt.title('Top 10 Globally Popular Products')
plt.xlabel('Quantity Sold')
```

plt.ylabel('Product Description')

plt.show()

#Step 6: Identify Country-wise Popular Products

country_popular_products=data.groupby('Country')['Description'].value_counts().groupby(le vel=0).nlargest(10).reset index(level=0, drop=True).reset index()

print("Country-wise Popular Products:")

print(country popular products.head(20))

Country-wise Popular Products:

	Country	Description	count
0	Australia	SET OF 3 CAKE TINS PANTRY DESIGN	10
1	Australia	LUNCH BAG RED RETROSPOT	9
2	Australia	RED TOADSTOOL LED NIGHT LIGHT	9
3	Australia	BAKING SET 9 PIECE RETROSPOT	8
4	Australia	BAKING SET SPACEBOY DESIGN	8
5	Australia	HANGING HEART JAR T-LIGHT HOLDER	8
6	Australia	LUNCH BAG SPACEBOY DESIGN	8
7	Australia	PAPER BUNTING RETROSPOT	8
8	Australia	PARTY BUNTING	8
9	Australia	ROSES REGENCY TEACUP AND SAUCER	8
10	Austria	POSTAGE	14
11	Austria	RETROSPOT TEA SET CERAMIC 11 PC	4
12	Austria	ROUND SNACK BOXES SET OF 4 FRUITS	4
13	Austria	ROUND SNACK BOXES SET OF4 WOODLAND	4
14	Austria	BREAD BIN DINER STYLE RED	3
15	Austria	DOLLY GIRL BABY GIFT SET	3
16	Austria	DOLLY GIRL LUNCH BOX	3
17	Austria	LUNCH BOX WITH CUTLERY RETROSPOT	3
18	Austria	PLASTERS IN TIN CIRCUS PARADE	3
19	Austria	PLASTERS IN TIN VINTAGE PAISLEY	3

```
#Plot country-wise popular products for a specific country
country = input('Enter country name: ').capitalize() # enter country from dataset
if country not in data['Country'].unique():
  print(f"Country name '{country}' not found in the data. check the country name.")
else:
  popular products = country popular products[country popular products['Country'] ==
country]
  plt.figure(figsize=(10, 6))
  sns.barplot(x=popular products['Description'].value counts().values,
         y=popular products['Description'].value counts().index )
  plt.title(fTop 10 Popular Products in {country}')
  plt.xlabel('Quantity Sold')
  plt.ylabel('Product Description')
  plt.show()
 Enter country name: mumbai
 Country name 'Mumbai' not found in the data. check the country name.
#Plot country-wise popular products for a specific country
country = input('Enter country name: ').capitalize() # enter country from dataset
if country not in data['Country'].unique():
  print(f''Country name '{country}' not found in the data. check the country name.")
else:
  popular products = country popular products[country popular products['Country'] ==
country]
  plt.figure(figsize=(10, 6))
  sns.barplot(x=popular products['Description'].value counts().values,
         y=popular_products['Description'].value counts().index )
  plt.title(f'Top 10 Popular Products in {country}')
  plt.xlabel('Quantity Sold')
  plt.ylabel('Product Description')
  plt.show()
```


Quantity Sold

#Step 7: Identifying Month-wise Popular Products

#Convert InvoiceDate to datetime

data['InvoiceDate'] = pd.to datetime(data['InvoiceDate'])

#Extract month and year from InvoiceDate

data['MonthYear'] = data['InvoiceDate'].dt.to_period('M')

month_popular_products = data.groupby('MonthYear')['Description'].value_counts().groupby(level=0).nlargest(10).reset _index(level=0, drop=True).reset_index()

print("Month-wise Popular Products:")

print(month_popular_products.head(20))

```
Month-wise Popular Products:
   MonthYear
                                       Description
0
     2010-12
              WHITE HANGING HEART T-LIGHT HOLDER
                                                       241
                         REGENCY CAKESTAND 3 TIER
1
     2010-12
                                                       191
     2010-12
                   PAPER CHAIN KIT 50'S CHRISTMAS
                                                       175
3
     2010-12
                     HAND WARMER BABUSHKA DESIGN
                                                       170
     2010-12
                     SCOTTIE DOG HOT WATER BOTTLE
                                                       162
     2010-12
                       CHOCOLATE HOT WATER BOTTLE
     2010-12
                            HEART OF WICKER SMALL
                                                       144
6
                        HOT WATER BOTTLE BABUSHKA
     2010-12
                                                       142
8
     2010-12
                           JAM MAKING SET PRINTED
                                                       141
9
     2010-12
               PAPER CHAIN KIT VINTAGE CHRISTMAS
                                                       139
10
     2011-01
              WHITE HANGING HEART T-LIGHT HOLDER
                                                       185
     2011-01
                         REGENCY CAKESTAND 3 TIER
                                                       156
11
                SET OF 3 CAKE TINS PANTRY DESIGN
12
     2011-01
                                                       156
                            HEART OF WICKER SMALL
                                                       145
13
     2011-01
14
     2011-01
                   NATURAL SLATE HEART CHALKBOARD
                                                       126
15
     2011-01
                          JUMBO BAG RED RETROSPOT
                                                       122
16
     2011-01
                    SET OF 3 HEART COOKIE CUTTERS
                                                       110
17
     2011-01
                         JAM MAKING SET WITH JARS
                                                       109
     2011-01
               SET OF 6 SPICE TINS PANTRY DESIGN
                                                       103
18
19
     2011-01
                            HEART OF WICKER LARGE
                                                       100
```

```
#Plot month-wise popular products for a specific month
specific month = input('Enter year and month (yyyy-mm): ')
if specific month not in data['MonthYear'].unique():
       print(f"Year and month '{specific month}' not found in the data. check the year and
month.")
else:
  monthly popular products
month popular products[month popular products['MonthYear'] == specific month]
  plt.figure(figsize=(10, 6))
  sns.barplot(x=monthly popular products['Description'].value counts().values,
         y=monthly popular products['Description'].value counts().index)
  plt.title(f'Top 10 Popular Products in {specific month}')
  plt.xlabel('Quantity Sold')
  plt.ylabel('Product Description')
  plt.show()
 Enter year and month (yyyy-mm): 2024-12
 Year and month '2024-12' not found in the data. check the year and month.
#Plot month-wise popular products for a specific month
specific month = input('Enter year and month (yyyy-mm): ')
if specific month not in data['MonthYear'].unique():
       print(f"Year and month not'{specific month}' found in the data. check the year and
month.")
else:
  monthly popular products
                                                                                         =
month popular products[month popular products['MonthYear'] == specific month]
  plt.figure(figsize=(10, 6))
  sns.barplot(x=monthly popular products['Description'].value counts().values,
         y=monthly popular products['Description'].value counts().index)
  plt.title(fTop 10 Popular Products in {specific month}')
  plt.xlabel('Quantity Sold')
  plt.ylabel('Product Description')
  plt.show()
```


STEP-3: Item-to-Item Product Recommendation by Collaborative Filtering Load & Prepare the Data

Model Building – Item-to-Item Collaborative Filtering

File: item to item by collaborative filtering.ipynb

Purpose:

- Builds a recommender based on product similarity
- Uses co-purchases to recommend similar products to users

Import necessary libraries.

import pandas as pd

from sklearn.metrics.pairwise import cosine similarity

Read data source Excel files.

data = pd.read csv('OnlineRetail.csv')

Check dataframe information.

data.info()

<class 'pandas.core.trame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	object
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dtyp	es: float64(2), int64(1), obje	ct(5)
memo	ry usage: 33.	1+ MB	

Read header of dataframe.

data.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12-1-2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12-1-2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12-1-2010 8:26	3.39	17850.0	United Kingdom

Check any column containing the null value.

data.isnull().any()

InvoiceNo	False
StockCode	False
Description	True
Quantity	False
InvoiceDate	False
UnitPrice	False
CustomerID	True
Country	False
dtype: bool	

Count the number of null value records in the CustomerID column.

data['CustomerID'].isna().sum()

```
np.int64(135080)
```

dataa = data.dropna(subset=['CustomerID'])

Check dataframe information.

dataa.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 406829 entries, 0 to 541908
Data columns (total 8 columns):
    Column
               Non-Null Count
                                Dtype
                                ----
--- -----
               _____
    InvoiceNo 406829 non-null object
0
    StockCode 406829 non-null object
1
2
    Description 406829 non-null object
    Quantity 406829 non-null int64
3
4
   InvoiceDate 406829 non-null object
    UnitPrice 406829 non-null float64
5
    CustomerID 406829 non-null float64
            406829 non-null object
7
    Country
dtypes: float64(2), int64(1), object(5)
memory usage: 27.9+ MB
```

Read header of dataframe.

dataa.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12-1-2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12-1-2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12-1-2010 8:26	3.39	17850.0	United Kingdom

Create CustomerID vs Item (Purchased Items, by StockCode) matrix by pivot table function.

```
CustomerID_Item_matrix = dataa.pivot_table(
index='CustomerID',
columns='StockCode',
```

values='Quantity',
aggfunc='sum'

Display the shape of matrix, 4372 rows of CustomerID, 3684 columns of Item.

CustomerID Item matrix.shape

```
(4372, 3684)
```

Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.

 $CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda \ x: 1 \ if \ x > 0 \ else \ 0)$

Read header of CustomerID vs Item matrix.

CustomerID Item matrix.loc[12680:].head()

StockCode	10002	10080	10120	10125	10133	10135	11001	15030	15034	15036	 90214Y	90214Z	BANK CHARGES	C2	CRUK	D	DOT	М	PADS	POST
CustomerID																				
12680.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12681.0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12682.0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12683.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12684.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1	0	1

5 rows × 3684 columns

Calculate the Item to Item similarity by Cosine Similarity

Create Item to Item similarity matrix.

```
item_item_similarity_matrix = pd.DataFrame(
    cosine_similarity(CustomerID_Item_matrix.T)
)
```

Display header of Item to Item similarity matrix.

item item similarity matrix.head()

	0	1	2	3	4	5	6	7	8	9		3674	3675	3676	3677	3678	3679	3680	3681	3682	368
0	1.000000	0.0	0.094868	0.091287	0.0	0.000000	0.090351	0.063246	0.098907	0.095346		0.0	0.0	0.0	0.029361	0.0	0.0	0.0	0.059423	0.0	0.07005
1	0.000000	1.0	0.000000	0.000000	0.0	0.000000	0.032774	0.045883	0.047836	0.000000		0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.017244	0.0	0.00000
2	0.094868	0.0	1.000000	0.115470	0.0	0.000000	0.057143	0.060000	0.041703	0.060302		0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.075165	0.0	0.00000
3	0.091287	0.0	0.115470	1.000000	0.0	0.000000	0.164957	0.000000	0.000000	0.000000		0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.000000	0.0	0.00000
4	0.000000	0.0	0.000000	0.000000	1.0	0.447214	0.063888	0.044721	0.000000	0.000000		0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.000000	0.0	0.00000
E -	France v 2604 columns																				

Update index to corresponding Item Code (StockCode).

```
item_item_similarity_matrix.columns = CustomerID_Item_matrix.T.index
item_item_similarity_matrix['StockCode'] = CustomerID_Item_matrix.T.index
item_item_similarity_matrix = item_item_similarity_matrix.set_index('StockCode')
```

Display header of Item to Item similarity matrix.

item_item_similarity_matrix.head()

```
11001 ... 90214Y 90214Z BANK CHARGES
       10002 10080 10120 10123C 10124A 10124G
StockCode
                                      10125
                                            10133
                                                 10135
                                                                                C2 CRUK D DOT
  10002 1.000000 0.0 0.094868 0.091287
                             0.0 0.000000 0.090351 0.063246 0.098907 0.095346 ...
                                                                           0.0 0.029361
                                                                                    0.0 0.0 0.0
  \textbf{10080} \quad 0.000000 \qquad 1.0 \quad 0.000000 \quad 0.000000 \qquad 0.0 \quad 0.000000 \quad 0.032774 \quad 0.045883 \quad 0.047836 \quad 0.000000 \quad \dots
                                                               0.0
                                                                   0.0
                                                                          0.0 0.000000
                                                                                    0.0 0.0 0.0
  0.0 0.0 0.0 0.000000
                                                                                    0.0 0.0 0.0
 0.0 0.0 0.0 0.000000 0.0 0.0 0.0
 5 rows × 3684 columns
```

Randomly pick StockCode (23166) to display the most similar StockCode.

```
top_10_similar_items = list(
  item_item_similarity_matrix\
    .loc[23166]\
    .sort_values(ascending=False)\
    .iloc[:10]\
    .index
```

Display top 10 similar items of StockCode (23166).

```
top_10_similar_items
[23166, 23165, 23167, 22993, 23307, 22722, 23243, 22666, 22720, 22961]
```

Display the list of similar items of StockCode (23166) with item Description.

```
df1a.loc[
    df1a['StockCode'].isin(top_10_similar_items),
    ['StockCode', 'Description']
].drop_duplicates().set_index('StockCode').loc[top_10_similar_items]
```

Description

StockCode	
23166	MEDIUM CERAMIC TOP STORAGE JAR
23165	LARGE CERAMIC TOP STORAGE JAR
23167	SMALL CERAMIC TOP STORAGE JAR
22993	SET OF 4 PANTRY JELLY MOULDS
23307	SET OF 60 PANTRY DESIGN CAKE CASES
22722	SET OF 6 SPICE TINS PANTRY DESIGN
23243	SET OF TEA COFFEE SUGAR TINS PANTRY
22666	RECIPE BOX PANTRY YELLOW DESIGN
22720	SET OF 3 CAKE TINS PANTRY DESIGN
22961	JAM MAKING SET PRINTED

square=True)

```
# And optionally, use the heatmap to display the Item to Item similarity matrix. import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize = (30,30)) ax = sns.heatmap( item_item_similarity_matrix, vmin=-1, vmax=1, center=0,
```


STEP-4: User-to-User Product Recommendation by Collaborative Filtering Load & Prepare the Data

Model Building-User-to-User Collaborative Filtering

File: user_to_user_by_collaborative_filtering.ipynb

Purpose:

- Recommends items by finding users with similar buying patterns
- Based on user-user cosine similarity

Import necessary libraries.

import pandas as pd

from sklearn.metrics.pairwise import cosine_similarity

#Step 2: Load the dataset into jupyter notebook

df1 = pd.read_csv('OnlineRetail.csv')

Check dataframe information.

dfl.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

Column Non-Null Count Dtype

O InvoiceNo 541909 non-null object

StockCode 541909 non-null object

Description 540455 non-null object

Quantity 541909 non-null int64

4 InvoiceDate 541909 non-null datetime64[ns]

5 UnitPrice 541909 non-null float64 6 CustomerID 406829 non-null float64 7 Country 541909 non-null object

dtypes: datetime64[ns](1), float64(2), int64(1), object(4)

memory usage: 33.1+ MB

Read header of dataframe.

df1.head()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Check any column containing the null value.

dfl.isnull().any()

```
InvoiceNo False
               False
Collapse Output
               True
ocaci apeaon
Quantity
               False
InvoiceDate
               False
UnitPrice
               False
CustomerID
                True
               False
Country
dtype: bool
# Count the number of null value records in the CustomerID column.
df1['CustomerID'].isna().sum()
135080
dfla = dfl.dropna(subset=['CustomerID'])
# Check dataframe information.
dfla.info()
 <class 'pandas.core.frame.DataFrame'>
 Int64Index: 406829 entries, 0 to 541908
 Data columns (total 8 columns):
      Column
                 Non-Null Count
                                     Dtype
      -----
                   -----
                                     ----
      InvoiceNo 406829 non-null object
StockCode 406829 non-null object
  0
  1
  2
      Description 406829 non-null object
      Quantity 406829 non-null int64
  3
  4
      InvoiceDate 406829 non-null datetime64[ns]
  5
      UnitPrice 406829 non-null float64
  6
      CustomerID 406829 non-null float64
  7
                  406829 non-null object
      Country
 dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
 memory usage: 27.9+ MB
# Read header of dataframe.
dfla.head()
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Create CustomerID vs Item (Purchased Items, by StockCode) matrix by pivot table function.

CustomerID_Item_matrix = dfla.pivot_table(

```
index='CustomerID',
columns='StockCode',
values='Quantity',
aggfunc='sum'
```

Display the shape of matrix, 4372 rows of CustomerID, 3684 columns of Item.

CustomerID_Item_matrix.shape

```
(4372, 3684)
```

)

Update illustration of the matrix, 1 to represent customer have purchased item, 0 to represent customer haven't purchased.

CustomerID_Item_matrix = CustomerID_Item_matrix.applymap(lambda x: 1 if x > 0 else 0)

Read header of CustomerID vs Item matrix.

CustomerID_Item_matrix.loc[12680:].head()

StockCode	10002	10080	10120	10125	10133	10135	11001	15030	15034	15036	 90214Y	90214Z	BANK CHARGES	C2	CRUK	D	DOT	M	PADS	POST
CustomerID																				
12680.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12681.0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12682.0	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12683.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	1
12684.0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	1	0	1

5 rows × 3684 columns

Calculate the User to User similarity by Cosine Similarity

```
# Create User to User similarity matrix.
user_to_user_similarity_matrix = pd.DataFrame(
    cosine_similarity(CustomerID_Item_matrix)
)
# Display header of User to User similarity matrix.
```

1 ,

user to user similarity matrix.head()

```
0
                                                    9 ... 4362 4363
                                                                  4364 4365
                                                                            4366
                                                                                  4367 4368
                                                                                            4369
0.0 0.000000
                                                                       0.0 0.000000 0.000000 0.0 0.000000 0.00000
1 0.0 1.000000 0.063022 0.046130 0.047795 0.038814 0.0 0.025876 0.136641 0.094742 ... 0.0
                                                             0.0 0.054656
                                                                       0.0 0.032844 0.062318
2 0.0 0.063022 1.000000 0.024953 0.051709 0.027995 0.0 0.027995 0.118262 0.146427 ... 0.0 0.0 0.118262
                                                                       0.0 0.000000 0.000000 0.0 0.000000 0.17090
3 0.0 0.046130 0.024953 1.000000 0.056773 0.138314 0.0 0.030737 0.032461 0.144692 ... 0.0 0.0 0.000000 0.0 0.039014 0.000000 0.0 0.067574 0.1371;
```

Update index to corresponding CustomerID.

```
user_to_user_similarity_matrix.columns = CustomerID_Item_matrix.index
user_to_user_similarity_matrix['CustomerID'] = CustomerID_Item_matrix.index
user_to_user_similarity_matrix = user_to_user_similarity_matrix.set_index('CustomerID')
# Display header of User to User similarity matrix.
```

user to user similarity matrix.head()

Ci	ustomerID	12346.0	12347.0	12348.0	12349.0	12350.0	12352.0	12353.0	12354.0	12355.0	12356.0	 18273.0	18274.0	18276.0	18277.0	18278.0	1828
Ci	ustomerID																
	12346.0	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.000000	0.000000	0.000000	 0.0	0.0	0.000000	0.0	0.000000	0.000
	12347.0	0.0	1.000000	0.063022	0.046130	0.047795	0.038814	0.0	0.025876	0.136641	0.094742	 0.0	0.0	0.054656	0.0	0.032844	0.062
	12348.0	0.0	0.063022	1.000000	0.024953	0.051709	0.027995	0.0	0.027995	0.118262	0.146427	 0.0	0.0	0.118262	0.0	0.000000	0.000
	12349.0	0.0	0.046130	0.024953	1.000000	0.056773	0.138314	0.0	0.030737	0.032461	0.144692	 0.0	0.0	0.000000	0.0	0.039014	0.000
	12350.0	0.0	0.047795	0.051709	0.056773	1.000000	0.031846	0.0	0.000000	0.000000	0.033315	 0.0	0.0	0.000000	0.0	0.000000	0.000

5 rows × 4372 columns

- # Randomly pick CustomerID (12702) to display the most similar CustomerID.
- # The most similar CustomerID is 14608, which has 51% similarity.

user to user similarity matrix.loc[12702.0].sort values(ascending=False)

```
CustomerID
             1.000000
 12702.0
 14608.0
             0.510310
 15758.0
             0.481125
 18259.0
             0.444444
 15434.0
             0.427121
             0.000000
 14895.0
 14896.0
             0.000000
 14897.0
             0.000000
 14898.0
             0.000000
 15301.0
             0.000000
 Name: 12702.0, Length: 4372, dtype: float64
# Display CustomerID (12702) purchased items.
items purchased by X = set(CustomerID Item matrix.loc[12702.0].iloc[
  CustomerID Item matrix.loc[12702.0].to numpy().nonzero()].index)
items purchased by X
 {21479,
  21481,
  22111,
  22113,
  22114,
  22835,
  23355,
  23356,
  23357,
  23439,
  '84032A',
  'POST'}
# Display CustomerID (14608) purchased items.
items purchased by Y = set(CustomerID Item matrix.loc[14608.0].iloc[
  CustomerID Item matrix.loc[14608.0].to numpy().nonzero()].index)
items purchased by Y
{21481, 22111, 22112, 22114, 22207, 23355, 23357, '84029E'}
# Find out items which purchased by X (12702) but not yet purchased by Y (14608).
items to recommend to Y = items purchased by X - items purchased by Y
# Display the list of items recommended for Y (14608).
items to recommend to Y
```

```
{21479, 22113, 22835, 23356, 23439, '84032A', 'POST'}
```

```
# Display the list of items recommended for Y (14608) with item Description.

dfla.loc[
    dfla['StockCode'].isin(items_to_recommend_to_Y),
    ['StockCode', 'Description']

].drop_duplicates().set_index('StockCode')
```

Description

StockCode

POST POSTAGE	POST
22835 HOT WATER BOTTLE I AM SO POORLY	22835
21479 WHITE SKULL HOT WATER BOTTLE	21479
22113 GREY HEART HOT WATER BOTTLE	22113
84032A CHARLIE+LOLA PINK HOT WATER BOTTLE	84032A
23356 LOVE HOT WATER BOTTLE	23356
23439 HAND WARMER RED LOVE HEART	23439

vmin=-1, vmax=1, center=0,

square=True)

```
# And optionally, use the heatmap to display the User to User similarity matrix. import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize = (30,30)) ax = sns.heatmap(
    user_to_user_similarity_matrix,
```


STEP-5: Model Integration

File: Online Retail Recommendation System Complete File.ipynb

Purpose:

- Integrates all components (cleaned data, models, recommendations)
- Finalizes logic to recommend products to users
- Possibly includes evaluation and recommendation UI

#Step 1: Importing necessary libraries

import pandas as pd

#Step 2: Load the dataset into jupyter notebook

data = pd.read_csv('OnlineRetail.csv')

#Step 3: Viewing 10 rows of data data.head(10)

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	12-1-2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12-1-2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12-1-2010 8:26	3.39	17850.0	United Kingdom
5	536365	22752	SET 7 BABUSHKA NESTING BOXES	2	12-1-2010 8:26	7.65	17850.0	United Kingdom
6	536365	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6	12-1-2010 8:26	4.25	17850.0	United Kingdom
7	536366	22633	HAND WARMER UNION JACK	6	12-1-2010 8:28	1.85	17850.0	United Kingdom
8	536366	22632	HAND WARMER RED POLKA DOT	6	12-1-2010 8:28	1.85	17850.0	United Kingdom
9	536367	84879	ASSORTED COLOUR BIRD ORNAMENT	32	12-1-2010 8:34	1.69	13047.0	United Kingdom

#Step 4: getting the dataset information and the total count data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
# Column Non-Null Count Dtype
   InvoiceNo 541909 non-null object
0
1 StockCode 541909 non-null object
2 Description 540455 non-null object
   Quantity 541909 non-null int64
4 InvoiceDate 541909 non-null object
5 UnitPrice 541909 non-null float64
6 CustomerID 406829 non-null float64
    Country 541909 non-null object
7
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
```

#Step 5: Checking for empty columns in dataset data.isnull().sum()

InvoiceNo	0
StockCode	0
Description	1454
Quantity	0
InvoiceDate	0
UnitPrice	0
CustomerID	135080
Country	0
dtype: int64	

#Step 6: Dropping the empty columns in dataset data.dropna(inplace=True)

```
#Step 7: Dropping the duplicates values from dataset
data.drop duplicates(inplace=True)
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 401604 entries, 0 to 541908
Data columns (total 8 columns):
 # Column Non-Null Count Dtype
                -----
 0 InvoiceNo 401604 non-null object
 1 StockCode 401604 non-null object
 2 Description 401604 non-null object
 3 Quantity 401604 non-null int64
   InvoiceDate 401604 non-null object
 5 UnitPrice 401604 non-null float64
 6 CustomerID 401604 non-null float64
 7 Country 401604 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 27.6+ MB
#Step 8: displaying the unique product and customer count
#Here we use "stock code" for unique products and "CustomerID" for unique customers.
print(f'Number of unique products : {data['StockCode'].nunique()}')
print(fNumber of unique customers : {data['CustomerID'].nunique()}')
Number of unique products: 3684
Number of unique customers: 4372
#Displaying the top 10 products from the dataset
top products = data['Description'].value counts().head(10)
print (top_products)
Description
WHITE HANGING HEART T-LIGHT HOLDER 2058
REGENCY CAKESTAND 3 TIER 1894
                                    1659
JUMBO BAG RED RETROSPOT
                                    1409
PARTY BUNTING
ASSORTED COLOUR BIRD ORNAMENT
LUNCH BAG RED RETROSPOT
                                   1405
                                    1345
SET OF 3 CAKE TINS PANTRY DESIGN 1224
                                    1196
POSTAGE
LUNCH BAG BLACK SKULL.
                                    1099
                                   1062
PACK OF 72 RETROSPOT CAKE CASES
Name: count, dtype: int64
Lets visualize using plot for better analyzing
```

#Step 1: importing necessary library

import seaborn as sns

import matplotlib.pyplot as plt

#Step 2: Creating and displaying the pivot table to find the total quantity of each product bought by each customer

```
total_product_quantity = data.pivot_table(
  index = 'CustomerID',
  columns = 'Description',
  values = 'Quantity',
  aggfunc = 'sum',
  fill_value = 0
)
display(total_product_quantity)
```

4372 rows × 3885 columns

Description	10 COLOUR SPACEBOY PEN	12 COLOURED PARTY BALLOONS	PEGS IN	12 EGG HOUSE PAINTED WOOD	12 HANGING EGGS HAND PAINTED	12 IVORY ROSE PEG PLACE SETTINGS	12 MESSAGE CARDS WITH ENVELOPES	12 PENCIL SMALL TUBE WOODLAND	12 PENCILS SMALL TUBE RED RETROSPOT	12 PENCILS SMALL TUBE SKULL	 ZINC STAR T- LIGHT HOLDER	ZINC SWEETHEART SOAP DISH	ZI SWEETHEA WIRE LETT RA
CustomerID													
12346.0	0	0	0	0	0	0	0	0	0	0	 0	0	
12347.0	0	0	0	0	0	0	0	0	0	0	 0	0	
12348.0	0	0	0	0	0	0	0	0	0	0	 0	0	
12349.0	0	0	0	0	0	0	0	0	0	0	 0	0	
12350.0	0	0	0	0	0	0	0	0	0	0	 0	0	
18280.0	0	0	0	0	0	0	0	0	0	0	 0	0	
18281.0	0	0	0	0	0	0	0	0	0	0	 0	0	
18282.0	0	0	0	0	0	0	0	0	0	0	 0	0	
18283.0	46	0	0	0	0	0	0	1	0	1	 0	0	
18287.0	0	0	0	0	0	0	0	0	0	0	 0	0	

#Plot the distribution of the number of products bought by each customer using histogram

```
plt.figure(figsize=(10, 6))
sns.histplot(data=total_product_quantity.sum(axis=1), kde=True)
plt.title('Distribution of the Number of Products Bought by Each Customer')
plt.xlabel('Number of Products')
plt.ylabel('Frequency')
plt.show()
```


#Step 3: Identifying Globally Popular Products
globally_popular_products = data['Description'].value_counts().head(10)
print("Globally Popular Products:")
print(globally_popular_products)

75000

100000

Number of Products

125000

150000

175000

200000

50000

Globally Popular Products:

25000

Description

100

0

WHITE HANGING HEART T-LIGHT HOLDER	2058
REGENCY CAKESTAND 3 TIER	1894
JUMBO BAG RED RETROSPOT	1659
PARTY BUNTING	1409
ASSORTED COLOUR BIRD ORNAMENT	1405
LUNCH BAG RED RETROSPOT	1345
SET OF 3 CAKE TINS PANTRY DESIGN	1224
POSTAGE	1196
LUNCH BAG BLACK SKULL.	1099
PACK OF 72 RETROSPOT CAKE CASES	1062
Name: count, dtype: int64	

#Plotting globally popular products

```
plt.figure(figsize=(10, 6))
```

sns.barplot(x=globally_popular_products.values, y=globally_popular_products.index) plt.title('Top 10 Globally Popular Products')

plt.xlabel('Quantity Sold')
plt.ylabel('Product Description')
plt.show()

#Step 4: Identify Country-wise Popular Products

country_popular_products =
data.groupby('Country')['Description'].value_counts().groupby(level=0).nlargest(10).reset_in
dex(level=0, drop=True).reset_index()

print("Country-wise Popular Products:")

print(country_popular_products.head(20))

Country-wise Popular Products:

	Country	Description	count
0	Australia	SET OF 3 CAKE TINS PANTRY DESIGN	10
1	Australia	LUNCH BAG RED RETROSPOT	9
2	Australia	RED TOADSTOOL LED NIGHT LIGHT	9
3	Australia	BAKING SET 9 PIECE RETROSPOT	8
4	Australia	BAKING SET SPACEBOY DESIGN	8
5	Australia	HANGING HEART JAR T-LIGHT HOLDER	8
6	Australia	LUNCH BAG SPACEBOY DESIGN	8
7	Australia	PAPER BUNTING RETROSPOT	8
8	Australia	PARTY BUNTING	8
9	Australia	ROSES REGENCY TEACUP AND SAUCER	8
10	Austria	POSTAGE	14
11	Austria	RETROSPOT TEA SET CERAMIC 11 PC	4
12	Austria	ROUND SNACK BOXES SET OF 4 FRUITS	4
13	Austria	ROUND SNACK BOXES SET OF4 WOODLAND	4
14	Austria	BREAD BIN DINER STYLE RED	3
15	Austria	DOLLY GIRL BABY GIFT SET	3
16	Austria	DOLLY GIRL LUNCH BOX	3
17	Austria	LUNCH BOX WITH CUTLERY RETROSPOT	3
18	Austria	PLASTERS IN TIN CIRCUS PARADE	3
19	Austria	PLASTERS IN TIN VINTAGE PAISLEY	3

#Step 5: Identifying Month-wise Popular Products

```
#Convert InvoiceDate to datetime
data['InvoiceDate'] = pd.to_datetime(data['InvoiceDate'])
#Extract month and year from InvoiceDate
data['MonthYear'] = data['InvoiceDate'].dt.to_period('M')
```

month_popular_products=data.groupby('MonthYear')['Description'].value_counts().groupby(level=0).nlargest(10).reset_index(level=0, drop=True).reset_index()

print("Month-wise Popular Products:")

print(month popular products.head(20))

Month-wise Popular Products:

MonthYear		Description	count
0	2010-12	WHITE HANGING HEART T-LIGHT HOLDER	213
1	2010-12	REGENCY CAKESTAND 3 TIER	153
2	2010-12	HAND WARMER BABUSHKA DESIGN	141
3	2010-12	PAPER CHAIN KIT 50'S CHRISTMAS	137
4	2010-12	SCOTTIE DOG HOT WATER BOTTLE	130
5	2010-12	CHOCOLATE HOT WATER BOTTLE	123
6	2010-12	HEART OF WICKER SMALL	107
7	2010-12	HOT WATER BOTTLE BABUSHKA	107
8	2010-12	JAM MAKING SET PRINTED	107
9	2010-12	PAPER CHAIN KIT VINTAGE CHRISTMAS	106
10	2011-01	WHITE HANGING HEART T-LIGHT HOLDER	164
11	2011-01	SET OF 3 CAKE TINS PANTRY DESIGN	137
12	2011-01	REGENCY CAKESTAND 3 TIER	132
13	2011-01	HEART OF WICKER SMALL	119
14	2011-01	NATURAL SLATE HEART CHALKBOARD	96
15	2011-01	SET OF 3 HEART COOKIE CUTTERS	95
16	2011-01	RED HANGING HEART T-LIGHT HOLDER	91
17	2011-01	JAM MAKING SET WITH JARS	89
18	2011-01	HEART OF WICKER LARGE	86
19	2011-01	SET OF 6 SPICE TINS PANTRY DESIGN	84

#Plot month-wise popular products for a specific month

specific month = input('Enter year and month (yyyy-mm): ')

if specific month not in data['MonthYear'].unique():

print(f"Year and month not'{specific_month}' found in the data. check the year and
month.")

```
monthly_popular_products
month_popular_products[month_popular_products['MonthYear'] == specific_month]

plt.figure(figsize=(10, 6))

sns.barplot(x=monthly_popular_products['Description'].value_counts().values,
```

s.varpion(x-monumy_popular_products[Description].value_counts().values

y=monthly_popular_products['Description'].value_counts().index)

plt.title(f'Top 10 Popular Products in {specific_month}')

plt.xlabel('Quantity Sold')

plt.ylabel('Product Description') plt.show()

Getting product recommendations for customer

Here I use collaborative filtering using the surprise library for getting recommendations

#Step 1: Importing necessary library

from surprise import Dataset, Reader, SVD

from surprise.model selection import cross validate

#Creating a Reader object and specifying the rating scale

reader = Reader(rating scale=(0, data['Quantity'].max()))

#Creating the dataset from the pandas dataframe

data_for_surprise = Dataset.load_from_df(data[['CustomerID', 'StockCode', 'Quantity']],
reader)

#Using the Singular value decomposition (SVD) algorithm for collaborative filtering algo = SVD()

#Evaluating the algorithm with cross-validation

cross_validate(algo, data_for_surprise, measures=['RMSE', 'MAE'], cv=5, verbose=True)

```
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
RMSE (testset) 80982.261480984.513580983.805580982.470480982.966680983.20350.8438
MAE (testset) 80981.814280984.078680982.777080982.458280982.955780982.81670.7412
Fit time
                2.98 3.07 3.22 3.04 3.03 3.07 0.08
Test time
               0.64 0.34 0.55 0.51 0.63 0.53 0.11
{'test_rmse': array([80982.26143101, 80984.51352719, 80983.80545102, 80982.47039541,
        80982.96659102]),
 'test_mae': array([80981.81415819, 80984.07858468, 80982.77700726, 80982.45819898,
        80982.95568974]),
 'fit time': (2.9794485569000244,
  3.067841053009033,
  3.223778247833252,
  3.0433733463287354,
  3.025991439819336),
  'test_time': (0.6426393985748291,
  0.34101009368896484,
  0.5457763671875,
  0.5076525211334229,
  0.6278979778289795)}
#Training the model on the entire dataset
trainset = data for surprise.build full trainset()
algo.fit(trainset)
<surprise.prediction algorithms.matrix factorization.SVD at 0x1b1815a4ad0>
#Function to get top n recommendations for a given customer
def top recommendations (customer id, n=15):
  customer id = float(customer id)
  #list of all products
  all products = data['Description'].unique()
  #list of products the customer has already bought
  purchased products = data[data['CustomerID'] == customer id]['Description'].unique()
  #list of products the customer has not bought yet
  products to predict = [product description for product_description in all_products if
product description not in purchased products]
```

Evaluating RMSE, MAE of algorithm SVD on 5 split(s).

```
# Predict the ratings for all products the customer has not bought yet
  predictions = [algo.predict(customer_id, product_description) for product_description in
products to predict]
  # Sort the predictions by estimated rating
  predictions.sort(key=lambda x: x.est)
  # top N recommendations
  top recommendations = [pred.iid for pred in predictions[:n]]
  return top recommendations
customer id = float(input('Enter the Customer ID'))
if customer_id not in data['CustomerID'].unique():
      print(f"Customer ID {customer id} not found in the data.")
else:
  top product recommendations = top recommendations (customer id, n=5)
  print(f\nTop 10 recommendated products for {customer id}:\n')
  for product in top product recommendations:
    print(product)
Enter the Customer ID 18283
Top 10 recommendated products for 18283.0:
WHITE METAL LANTERN
CREAM CUPID HEARTS COAT HANGER
KNITTED UNION FLAG HOT WATER BOTTLE
RED WOOLLY HOTTIE WHITE HEART.
SET 7 BABUSHKA NESTING BOXES
customer id = float(input('Enter the Customer ID'))
if customer id not in data['CustomerID'].unique():
      print(f"Customer ID {customer_id} not found in the data.")
else:
  top product recommendations = top recommendations (customer id, n=5)
```

```
print(f\nTop 10 recommendated products for {customer_id}:\n')
 for product in top_product_recommendations:
   print(product)
Enter the Customer ID 12345
Customer ID 12345.0 not found in the data.
```

STEP-6: Load Trained Model

File: Trained Model File.ipynb

Purpose:

- Loads saved models or pipelines
- Could be for inference or demonstration
- Might not need to run if you're training from scratch

Getting product recommendations for customer

Here I use collaborative filtering using the surprise library for getting recommendations #Step 1: Importing necessary libraries import pandas as pd from surprise import Dataset, Reader, SVD from surprise.model selection import cross validate #Step 2: Load the dataset into jupyter notebook data = pd.read csv('OnlineRetail.csv')

#Step 3: Viewing 5 rows of data data.head(5)

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850.0	United Kingdom

#Step 4: Creating a Reader object and specifying the rating scale reader = Reader(rating_scale=(0, data['Quantity'].max()))

#Step 5: Creating the dataset from the pandas dataframe

data_for_surprise = Dataset.load_from_df(data[['CustomerID', 'StockCode', 'Quantity']],
reader)

#Step 6: Using the Singular value decomposition (SVD) algorithm for collaborative filtering algo = SVD()

#Step 7: Evaluating the algorithm with cross-validation cross_validate(algo, data_for_surprise, measures=['RMSE', 'MAE'], cv=5, verbose=True)

```
Evaluating RMSE, MAE of algorithm SVD on 5 split(s).
                 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean
RMSE (testset) 80747.188480757.405180757.478980756.594180742.277480752.18886.2903
MAE (testset) 80509.576580528.749380530.345080528.356680498.772480519.160012.7211
Fit time
                 5.18 5.39 5.11 4.99 5.03 5.14 0.14
                1.10 0.71 0.92 1.01 0.70 0.89 0.16
Test time
{'test_rmse': array([80747.18841081, 80757.4050995, 80757.47889524, 80756.59411981,
       80742.27740388]),
 'test_mae': array([80509.57652417, 80528.74934292, 80530.34502347, 80528.3566206,
       80498.77239529]),
 'fit_time': (5.1846535205841064,
  5.390363454818726,
  5.112430572509766,
  4.992536306381226,
  5.032274484634399),
 'test time': (1.101330041885376,
  0.707421064376831,
  0.9241266250610352,
  1.0134682655334473,
  0.7025132179260254)}
#Step 8: Training the model on the entire dataset
trainset = data for surprise.build full trainset()
algo.fit(trainset)
 <surprise.prediction_algorithms.matrix_factorization.SVD at 0x1280a8eb830>
#Step 9: Function to get top n recommendations for a given customer
def top recommendations (customer id, n=15):
  customer id = float(customer id)
  #list of all products
  all products = data['Description'].unique()
  #list of products the customer has already bought
  purchased products = data[data['CustomerID'] == customer id]['Description'].unique()
  #list of products the customer has not bought yet
  products to predict = [product description for product description in all products if
product description not in purchased products]
```

```
# Predict the ratings for all products the customer has not bought yet
  predictions = [algo.predict(customer_id, product_description) for product_description in
products to predict]
  # Sort the predictions by estimated rating
  predictions.sort(key=lambda x: x.est)
  # top N recommendations
  top recommendations = [pred.iid for pred in predictions[:n]]
  return top recommendations
#Step 10: Getting the recommendated product list
customer id = float(input('Enter the Customer ID'))
if customer id not in data['CustomerID'].unique():
      print(f"Customer ID {customer id} not found in the data.")
else:
  top product recommendations = top recommendations(customer id, n=5)
  print(f\nTop 10 recommendated products for {customer id}:\n')
  for product in top product recommendations:
    print(product)
Enter the Customer ID 123456
Customer ID 123456.0 not found in the data.
customer id = float(input('Enter the Customer ID'))
if customer id not in data['CustomerID'].unique():
      print(f"Customer ID {customer id} not found in the data.")
else:
  top product recommendations = top recommendations(customer id, n=5)
  print(f\nTop 10 recommendated products for {customer id}:\n')
  for product in top product_recommendations:
    print(product)
 Enter the Customer ID 18283
 Top 10 recommendated products for 18283.0:
 WHITE METAL LANTERN
 CREAM CUPID HEARTS COAT HANGER
 KNITTED UNION FLAG HOT WATER BOTTLE
 RED WOOLLY HOTTIE WHITE HEART.
 SET 7 BABUSHKA NESTING BOXES
```

10.CONCLUSION & FUTURE SCOPE

CONCLUSION

The development and implementation of an online retail recommendation system using collaborative filtering have demonstrated promising results. The system effectively analyses customer purchase patterns and delivers personalized recommendations, improving user engagement and sales. While the model performed well, challenges such as data sparsity and cold start issues were observed, highlighting areas for further optimization.

FUTURE SCOPE

Hybrid Models: Combining collaborative filtering with content-based approaches and deep learning techniques to enhance accuracy.

Real-Time Recommendations: Implementing real-time recommendation generation to improve user experience dynamically.

Scalability: Enhancing the system to handle larger datasets efficiently using cloud-based solutions.

Customer Behaviour Analysis: Integrating advanced analytics to refine recommendations based on user behaviour trends.

A/B Testing: Conducting real-world testing to measure the effectiveness of recommendations in live retail environments.

Future advancements will ensure the recommendation system remains robust, scalable, and capable of delivering more personalized shopping experiences.