Changements de coordonnées astronomiques par calcul matriciel d''après "connaissance des temps" édition 2018

Fichier

coord.py

Auteur

Marc COATANHAY

Table des matières

Fichier	1
Auteur	1
rotation1(theta, U)	
rotation2(theta, U)	
rotation3(theta, U)	
vecteur(x, y, z)	
xyzdepolaire(psi, phi, r)	2

rotation1(theta, U)

Transforme le vecteur U par une rotation d'angle theta autour de l'axe (Ox).

Entrée:

- theta angle de rotation
- U = [[x]]
 - [y]
- [z]]

Retour:

Vecteur image V

rotation2(theta, U)

Transforme le vecteur U par une rotation d'angle theta autour de l'axe (Oy).

Entrée :

- theta angle de rotation
- U = [[x]]
 - [y]
 - [z]]

Retour:

Vecteur image V

rotation3(theta, U)

Transforme le vecteur U par une rotation d'angle theta autour de l'axe (Oz).

Entrée :

- theta angle de rotation
- U = [[x]]
 - [y]
- [z]]

Retour:

Vecteur image V

vecteur(x, y, z)

Compose un vecteur à trois dimensions avec les valeurs données.

Entrée :

• x, y et z

Retour:

Vecteur image V

xyzdepolaire(psi, phi, r)

Calcul les coordonnées x, y et z à partir des coordonnées polaires psi, phi et r.

Entrée:

• psi, phi et r

Retour:

Vecteur image V