Life of a Particle: Passage of Particles Through Matter

Claire David

Due Date: DD/MM/2019

1 Why do we see muons on Earth?

Cosmic rays colliding with air in the upper atmosphere (10,000 km) produce muons. The lifetime of the muon is $\tau_{\mu} = 2.2 \times 10^{-6}$ s.

A rough estimation on their average distance would be in the order of 600 m.

Question A: Accounting for relativistic effects, what is the average distance a muon of kinetic energy $E_{\mu} = 2$ GeV will cover?

Question B: What would be this distance for pions?

Data:

The total kinetic energy of a particle of rest mass m_0 and velocity v is given by:

$$E = mc^2 = \sqrt{pc^2 + m_0^2 c^4} \tag{1}$$

with p the momentum of the particle, $p = m_0 v \gamma$

The relativistic factor γ is defined by:

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{2}$$

where c is the speed of light.

The muon has a rest mass of $m_{\mu} = 105 \text{ MeV}$.

2 Stopping power

Calculate the stopping power of 5 MeV α -particles in air.