Modelo BHZ

Volkov, Pankratov: 1985

[JETP Lett. 42, 178 ('85)] [Solid State Comm. 61, 93 ('87)] [Landau Level Spectroscopy, Chap. 14 ('91)]

Bernevig, Hughes, Zhang: 2006

[Science 314, 1757 (2006)]

Bandas de condução/valência do HgTe (x=0), não podem ser continuamente deformadas nas bandas do CdTe (x=1)

Inversão de bandas em bulk

Inversão de bandas em bulk

Estados confinados

Trocam de ordem como função

Trocam de ordem como função da largura do poço quântico

Trocam de ordem como função da largura do poço quântico

"massa": M = E1-H1

Trocam de ordem como função da largura do poço quântico

"massa": M = E1-H1

$$h(\mathbf{k}_{\parallel}) = C - D\mathbf{k}_{\parallel}^2 + A(\sigma_x k_x - \sigma_y k_y) + (M - B\mathbf{k}_{\parallel}^2)\sigma_z$$

Massa M??

Massa M??

 $H = A(\sigma_x k_x - \sigma_y k_y) + M\sigma_z$

Massa M??

$$H = A(\sigma_x k_x - \sigma_y k_y) + M\sigma_z$$

 $H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$

$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

Para x < 0

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

$$\begin{aligned} \text{Para } \mathbf{x} < \mathbf{0} \\ \varphi_L(x) &= N e^{\lambda x} \phi_L \end{aligned}$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$

$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

Para
$$x < 0$$

$$\varphi_L(x) = Ne^{\lambda x} \phi_L$$

$$\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$

$$M(x) = M_0 \operatorname{sgn}(x)$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

$$\begin{aligned} &\text{Para } \mathbf{x} < \mathbf{0} \\ &\varphi_L(x) = N e^{\lambda x} \phi_L \\ &\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2} \\ &\phi_{L,\pm} = \binom{M_0 - \varepsilon_{\pm}}{i A \lambda} \end{aligned}$$

Para x > 0
$$\varphi_R(x) = Ne^{-\lambda x}\phi_R$$

$$\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$\phi_{R,\pm} = \binom{M_0 + \varepsilon_{\pm}}{iA\lambda}$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

$\begin{array}{c|c} \operatorname{Para} \, \mathbf{x} < \mathbf{0} & \operatorname{Para} \, \mathbf{x} > \mathbf{0} \\ \varphi_L(x) = N e^{\lambda x} \phi_L & \varphi_R(x) = N e^{-\lambda x} \phi_R \\ \varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2} & \varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2} \\ \phi_{L,\pm} = \begin{pmatrix} M_0 - \varepsilon_{\pm} \\ iA\lambda \end{pmatrix} & \phi_{R,\pm} = \begin{pmatrix} M_0 + \varepsilon_{\pm} \\ iA\lambda \end{pmatrix} \end{array}$

Continuidade na interface $\rightarrow \lambda = M_0/A$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

$\begin{aligned} &\text{Para } \mathbf{x} < \mathbf{0} \\ &\varphi_L(x) = N e^{\lambda x} \phi_L \\ &\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2} \\ &\phi_{L,\pm} = \binom{M_0 - \varepsilon_{\pm}}{iA\lambda} \end{aligned}$

Para x > 0
$$\varphi_R(x) = Ne^{-\lambda x}\phi_R$$

$$\varepsilon_\pm = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$\phi_{R,\pm} = \binom{M_0 + \varepsilon_\pm}{iA\lambda}$$

Continuidade na interface $\rightarrow \lambda = M_0/A$

Para ky $\neq 0$

$$\varphi(x,y) = Ne^{ik_y y} e^{-\lambda|x|} \phi$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

Para x < 0

$$\varphi_L(x) = Ne^{\lambda x} \phi_L$$

$$\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$\phi_{L,\pm} = \binom{M_0 - \varepsilon_{\pm}}{iA\lambda}$$

Para x > 0

$$egin{aligned} \mathbf{x} > \mathbf{0} \ & arphi_R(x) = Ne^{-\lambda x}\phi_R \ & arepsilon_\pm = \pm \sqrt{M_0^2 - (A\lambda)^2} \ & \phi_{R,\pm} = egin{pmatrix} M_0 + arepsilon_\pm \ iA\lambda \end{pmatrix} \end{aligned}$$

Continuidade na interface $\rightarrow \lambda = M_0/A$

Para ky $\neq 0$

$$\varphi(x,y) = Ne^{ik_y y} e^{-\lambda|x|} \phi$$

$$\varepsilon_{\pm}(k_y) = \pm Ak_y$$

$$H = A(\sigma_x k_x - \sigma_y k_y) + M(x)\sigma_z$$
$$M(x) = M_0 \operatorname{sgn}(x)$$

Considerar ky=0 por simplicidade

Para x < 0

$$\varphi_L(x) = Ne^{\lambda x} \phi_L$$

$$\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$\phi_{L,\pm} = \binom{M_0 - \varepsilon_{\pm}}{iA\lambda}$$

Para x > 0

$$\mathbf{x} > \mathbf{0}$$

$$\varphi_R(x) = Ne^{-\lambda x} \phi_R$$

$$\varepsilon_{\pm} = \pm \sqrt{M_0^2 - (A\lambda)^2}$$

$$\phi_{R,\pm} = \begin{pmatrix} M_0 + \varepsilon_{\pm} \\ iA\lambda \end{pmatrix}$$

Continuidade na interface $\rightarrow \lambda = M_0/A$

Para ky $\neq 0$

$$\varphi(x,y) = Ne^{ik_y y} e^{-\lambda|x|} \phi$$

$$\varepsilon_{\pm}(k_y) = \pm Ak_y$$

