MATH 1432, SECTION 12869 SPRING 2014

HOMEWORK ASSIGNMENT 3 DUE DATE: 2/3/16 IN LAB

Name:
ID:

INSTRUCTIONS

- Print out this file and complete the problems. You must do all the problems!
- . If the problem is from the text, the section number and problem number are in parantheses
- Use a blue or black pen or a pencil (dark)
- . Write your solutions in the spaces provided. You must show work in order receive credit for a problem.
- Remember that your homework must be complete, neatly written and stapled.
- · Submit the completed assignment to your Teaching Assistant in lab on the due date
- If you do not do all of the problems, then your recitation quiz from the previous Friday will automatically become a ZERO.

1. (Section 7.6, Problem 2)
Suppose the initial money is Ao and
We want to find the time to sit, a
Sum of money to 2 Ao (r interest rate
=> = Ao = Ao ert => ert=z
takely rt=lnz. => t= lnz

(a)
$$V=0.06$$
 $\Rightarrow f = \frac{\ln 2}{0.06} = \frac{0.69}{0.06} = 11.55 \text{ years}$
(b) $V=0.08$ $\Rightarrow f = \frac{\ln 2}{0.08} = 8.66 \text{ years}$
(c) $V=0.01$ $\Rightarrow f = \frac{\ln 2}{0.0} = 6.66 \text{ years}$

2. (Section 7.6, Problem 3)

Twitigl: Ao. t=20 years. Find r sit. Ao e=34 $\Rightarrow 3=e^{0} \Rightarrow 2n = 20$ $r=\frac{2n3}{20} = 5.5\%$

3. (Section 7.6, Problem 5)

Initial: 1000 bacteria

After 30 mins, there are 2000

After 2 Mrs >?

Grow proportional A(t) = A(0) ekt

2000 = A(015) = A(0) · ek-015 = 1000 · ek-015

> 2 = ex = 202 = k = 202 =

A(2) = 1000 · ex = 2000 = 1000 · 10 = 16,000

Initial: Po

After Every four hours \Rightarrow Triple. After 12 hours \Rightarrow 10° $3P_0 = P(4) = P_0 e^{K*} \Rightarrow 3 = e^{M^3} \Rightarrow K = \frac{2M^3}{4}$ (a) $(0^6 = P(1^2) = P_0 \cdot e^{M^3} \cdot 1^2 \Rightarrow P_0 = \frac{10^9}{3^3} = 37039$ (b) $2P_0 = P_0 \cdot e^{M^3} \cdot 1^2$

initial Ao, $A(1620) = \frac{1}{2}$ $A(500) = \frac{1}{2}$ A(t) = (1-75%) Ao, Find t? $\frac{A_0}{2} = A(1620) = A_0 \cdot e^{\frac{1620}{1620}} = A_0 \cdot (\frac{1}{2})^{\frac{1620}{1620}} = A_0 \cdot (\frac{1}{2})^{\frac{1620}{1620}}$ => A(500) = (=) (620 (2) (620) (2) (620) (2) (1620) 9. Vection 7.6, Problem 22)
In Feg (= Ao A (513) = 2 0A(8)=? @ Find Ao if A(3)=100 40 = A(513) = A0 e^{k·513} ⇒ K= (13 ln(€)) DA(8) = A0. existants).8 = A0(2)43 Initial: 16,000. Q(+)=16,000xet. r=0,05 ⇒ Q(3)= 16000× e^{0,057,3}=18589. € r=0.08 => 16000xe = 2,0339 (3) V= DIIZ >> 16000 xe0112x3 = 22933.

(Section 7.7. Problem 3)
$$(\alpha) \cos \left(-\frac{1}{z}\right) = \frac{2\pi}{3}$$

$$= \operatorname{arctan}(-1) = -\frac{\pi}{4}$$

(a)
$$\sin(2\cos^{3}(\frac{1}{2}))$$

= $\sin(2\cdot\frac{\pi}{3}) = \frac{13}{3}$

$$\left(\frac{\sin^{-1}4}{5} = X \iff \sin x = \frac{4}{5} \Rightarrow \sqrt{\frac{4}{3}} \Rightarrow \cos x = \frac{3}{5} \right)$$

$$\cos(2x) = (\cos x)^{2} - (\sin x)^{2}$$

14. (Section 7.7, Problem 12)

$$y = \tan \sqrt{x}$$
 $find y$
 $x = \tan y$
 $find y$
 $x = \tan y$
 $find y$

$$f(x) = e^{x} \sin^{x} x$$

$$f(x) = e^{x} \sin^{2}x + \frac{e^{x}}{\sqrt{1-x^{2}}}$$

 $f(x) = \frac{1}{[2x^2] \sqrt{(2x^2)^2 - 1}}$

= X, Ayel

$$y = \frac{xan}{x}$$

$$y = \frac{x}{1+x^2} - \frac{x}{2}an^{-1}(x)$$

$$x = \frac{x^2}{x^2}$$

$$x = \frac{x}{1+x^2} + \frac{x}{2}an^{-1}x$$

18. (Section 7.7, Problem 22)
$$f(x) = Qn(f(x)) + \frac{1}{f(x)} + \frac{1}{f($$

$$y = tan'(lnx)$$
.
 $y = \frac{1}{1+(lnx)^2} \cdot \frac{1}{x}$

20. (S) tion 7.7, Problem 25)
$$0 = SIM \left(JI - Y^{2} \right).$$

$$0 = I - \left(JI - Y^{2} \right).$$

$$1 - \left(JI - Y^{2} \right).$$

21. (Section 7.7, Problem 41)

$$\int_{0}^{\infty} \frac{dx}{\sqrt{1+x^{2}}} = \sin x / \sqrt{x} = \frac{\pi}{4} - 0 = \frac{\pi}{4}.$$

22. (Section 7.7, Problem 42)

$$\int_0^1 \frac{dx}{\sqrt{4-x^2}} = \sin \left(\frac{x}{2}\right) = \frac{\pi}{6}.$$

$$\int_0^2 \frac{dx}{\sqrt{4-x^2}} = \sin \left(\frac{x}{2}\right) = \frac{\pi}{6}.$$

$$\int \frac{5 \, dx}{0.25 + x^2} = \frac{1}{5} t a n^{\frac{1}{5}} \frac{x}{5} \left[5 = \frac{1}{5} \cdot \left(\frac{x}{4} \right) = \frac{\pi}{20} \right]$$

$$\int \frac{5 \, dx}{0.25 + x^2} = \frac{1}{5} t a n^{\frac{1}{5}} \frac{x}{5} \left[5 = \frac{1}{5} \cdot \left(\frac{x}{4} \right) = \frac{\pi}{20} \right]$$

$$\int \frac{5 \, dx}{0.25 + x^2} = \frac{1}{5} t a n^{\frac{1}{5}} \frac{x}{5} \left[5 = \frac{1}{5} \cdot \left(\frac{x}{4} \right) = \frac{\pi}{20} \right]$$

$$\int_{0}^{\frac{3}{2}} \frac{dx}{9+4x^{2}} = \int_{0}^{\frac{3}{2}} \frac{dx}{4(\frac{9}{4}+x^{2})} = \frac{1}{4} \int_{0}^{\frac{3}{2}} \frac{dx}{4+x^{2}}$$

$$=\frac{1}{4} \cdot \frac{2}{3} \cdot \tan^{3} \left(\frac{2}{3}x\right) \Big|_{0}^{\frac{2}{3}}$$

$$\frac{1}{6} \frac{(T_{1} - 0)}{(T_{2} - 0)} = \frac{1}{24}$$
25. (8) Jion 7.7, Problem 46)
$$\frac{0}{25} \frac{0}{9} = \frac{1}{3} \frac{1}{4} \frac{1}{3} \left(\frac{X-2}{3}\right) = \frac{1}{2}$$

$$\frac{1}{2} \frac{1}{4} \frac{1}{4}$$

$$\int_{0}^{26. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} \frac{du}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7, Problem 51)}} \frac{\left| e^{4} \right|^{2}}{\left| + e^{2x} \right|^{2}} = \int_{0}^{24. \text{ (Section 7.7$$

$$\int \frac{|et u=x^2|}{\sqrt{1-x^4}} dx = \int \frac{du}{\sqrt{1-u^2}} = \int \frac{du}{\sqrt{1-u$$

$$\int \frac{\text{se3x}}{9 + \tan^2 x} dx = \int \frac{1}{9 + 4z} du$$

$$= \frac{1}{3} \tan^{3}\left(\frac{y}{3}\right) + C$$

$$= \frac{1}{3} \tan^{3}\left(\frac{y}{3}\right) + C$$

$$\int \frac{STN'X}{\sqrt{1-x^2}} dx = \int u du = \frac{u^2}{z} + C$$

$$= \frac{(STN'X)^2}{z} + C$$

$$du = \frac{dx}{\sqrt{1-x^2}}$$

$$\int \frac{dx}{x} = \int \frac{du}{1+u^2} = \int \frac{du}{$$

322 (Section 7.7) Problem 65)
$$A = A = A = A = Sin(X) + A = II - (-T) = T = T$$

(or by def.
$$sinhx^2 = \frac{e^{x^2} - e^{x^2}}{2}$$

$$= 2 \times \left(\frac{e^{\chi^2 + e^{\chi^2}}}{2 \times e^{\chi^2 + e^{\chi^2}}}\right) = 2 \times \cos h \chi^2$$

$$y = \sqrt{\cosh \alpha x} = (\cosh \alpha x)^{\frac{1}{2}}$$

$$y = \frac{1}{2} \cdot \alpha \frac{1}{\sqrt{\cosh \alpha x}}$$

$$\mathcal{J} = \frac{\sinh x}{\cosh x - 1}$$

$$\mathcal{J} = \frac{(\cosh x)(\cosh x - 1) - (\sinh x)^2}{(\cosh x - 1)^2}$$

$$= \frac{(\cosh x)^2 - (\sinh x)^2 - \cosh x}{(\cosh x - 1)^2}$$

$$= \frac{(\cosh x)^2 - (\sinh x)^2 - \cosh x}{(\cosh x - 1)^2}$$

$$= \frac{1 - \cosh x}{(\cosh x - 1)^2}$$

37. (Section 7.8. Problem 12) $\cosh x - \sinh^2 x = 1$

$$y = \left[\sinh \left(\ln x^{3} \right) \right] \cdot \frac{3x^{2}}{x^{3}}$$

$$= \frac{3}{x} \left[\sinh \left(\ln x^{3} \right) \right]$$

39. (Section 7.8, Problem 15)

$$y = ln(\cosh x)$$

$$y' = \frac{(\sinh x)}{(\cosh x)}$$

40. (Section 7.8, Problem 17)
$$y = (Sinh \times)^{X} = e^{\ln(Sinh \times)} = e^{X \ln(Sinh \times)}$$

$$y = \left[x \cdot \ln(Sinh \times) \right] \cdot e^{X \ln(Sinh \times)}$$

$$= \left[\ln(Sinh \times) + \frac{x \cdot (\cosh \times)}{57h \times} \right] \cdot (Sinh \times)^{X}$$

41. (3 tion 7.8, Problem 27)

Find abs. extr. value.
$$y=0 \Rightarrow -e+qe=0$$

 $e=0$

$$y = -5\cosh x + 4\sinh x \Rightarrow e^{x} = \pm 3 (\tan e^{x} > 0).$$

= $-5(e^{x} + e^{x}) + 4(e^{x} - e^{x}) \Rightarrow e^{x} = 3.$

$$= -5(e^{x} + e^{x}) + 4(e^{x} - e^{x})$$

$$= \frac{-e^{x} - qe^{x}}{2} \Rightarrow y' = \frac{-e^{x} + qe^{x}}{2}$$

Y has max value
$$\frac{3-3}{2}=-3$$

(*) |y(0)=2

y=Acsinh cx+Bc cosh cx y'(0) = 1 $y'' = Ac^2 \cosh cx + Bc^2 \sinh cx - (2)$

by (*) $(2)-9x(1)=0 \Rightarrow (Ac^2-9A)\cosh cx + (Bc^2-9B)\sinh cx = 0 \Rightarrow Ac^2-9A$

y(0)= 1=) |= y(0)= Bc => 22-9=0 (= 3 B B = 5

Bsinh
$$0 = A \Rightarrow A=2$$

43. (Section 7.8, Problem 33)

Ac-9A=0 => c-9=0 (since A+0) => (=3 (since (>0) B= + (since BC=1

 $\int \cosh \alpha x dx = \frac{\sinh \alpha x}{1 + c}$

$$\int (\sinh \alpha x) \cdot (\cosh^2 \alpha x) dx$$

$$= \frac{(\cosh \alpha x)^3}{3\alpha} + C$$

 $= -\frac{e^{x} - qe^{x}}{2} = y' = -\frac{e^{x} + qe^{x}}{2}$ $y \text{ has max value} = \frac{3-\frac{1}{2}}{2} = -3 \quad \text{(or let } u = (\cosh ax.), du = \pi \sinh ax dx}$ $\frac{1}{a}\int d^3dq = \frac{u^3}{2a} + C = \frac{\cosh ax^3}{2a} + C$

for lot u=sinh ax, du=a ash dx.

$$\frac{du}{dx} = \frac{1}{\alpha} \ln |u| + C$$

$$= \frac{1}{\alpha} \ln |\sin h| + C$$

$$\int \frac{\sinh ax}{\cosh ax} dx = \int \frac{dy}{u^2} = \int \frac{1}{u} + C$$

$$\int \frac{dy}{\cosh ax} dx = \int \frac{dy}{u^2} = \int \frac{1}{u} + C$$

$$\int \frac{dy}{\cosh ax} dx = \int \frac{1}{u} + C$$

$$\int \frac{dy}{ax} dx = \int \frac{1}{u} + C$$

147. (Section 7.8. Problem 43)
$$\int \frac{\sin h \, x}{\int x} \, dx = 2 \cosh \int x + C$$

$$\int \int \frac{1}{\int x} \, dx = 2 \cosh \int x + C$$

$$\int \int \frac{1}{\int x} \, dx = 2 \cosh \int x + C$$

$$\int \int \frac{1}{\int x} \, dx = 2 \cosh \int x + C$$

$$= 2 \cosh \int x + C$$

Average value of fin on [aib] = $\frac{1}{b-a} \int_a^b f(x) dx$.

$$A_i V_i = \frac{1}{1+(1)} \int_{-1}^{1} \cosh x \, dx$$

$$= \pm sinh \times H = \pm \left(\frac{e - e^{-1}}{2}\right) - \left(\frac{e^{-1} - e^{-1}}{2}\right) = \frac{e - e^{-1}}{2} \left(= sinh (1)\right)$$

By Washer

$$\pi \int_{0}^{1} (\cosh^{2}x) - (\sinh^{2}x) dx$$

$$y = sinhx$$