Contents

1	Groups				
	1.1	Definitions			
		1.1.1	Subgroups		4

2 CONTENTS

Chapter 1

Groups

1.1 Definitions

Definition 1.1.1. Let G be a non empty set. We define a group as a pair (G, *) where * is a binary operation

$$\begin{array}{c}
*: G \times G \longrightarrow G \\
(g_1, g_2) \longmapsto g_1 * g_2
\end{array} \tag{1.1}$$

such that the following properties are satisfied.

- 1. Associativity: $(xy)z = x(yz) \ \forall x, y, z \in G$
- 2. Identity element: $\forall x \in G \ \exists e \in G \ \text{such that} \ eg = ge = g$
- 3. Inverse element: $\forall x \in G \ \exists x^{-1} \in G \ \text{such that} \ xx^{-1} = x^{-1}x = e$

Definition 1.1.2. Let (G,*) be a group. We say G is *commutative* or *abelian* if and only if

$$\forall g_1, g_2 \in G, \ g_1 g_2 = g_2 g_1. \tag{1.2}$$

Lemma 1.1.1. Let (G, *) be a group. Then,

- 1. The identity element is unique
- 2. The inverse element of $g \in G$ is unique.
- 3. Given $g, h \in G$ such that gh = e, then $h = g^{-1}$
- 4. Given $g, h \in G$, $(gh)^{-1} = h^{-1}g^{-1}$
- 5. Given $g, u, v \in G$ such that gu = gv, then u = v
- 6. Given $g, u, v \in G$ such that ug = vg, then u = v
- 7. Given $g \in G$, $(g^{-1})^{-1} = g$.

Corollary 1.1.2. Let $\varphi: G \longrightarrow be$ an application defined by $\varphi(g) = g^{-1}$. Then,

- 1. $\varphi^2 = \mathrm{id}_G$
- 2. $\varphi(g_1 * g_2) = \varphi(g_2) * \varphi(g_1)$.

1.1.1 Subgroups

Definition 1.1.3. Let (G, *) be a group and $H \subseteq G$ a subset of G. We say (H, *) is a *subgroup* of (G, *) if and only if

- $1. \ h_1, h_2 \in H \Rightarrow h_1 * h_2 \in H.$
- $2. e_G \in H.$
- 3. $h \in H \Rightarrow h^{-1} \in H$.

Proposition 1.1.3. Let (G,*) be a group and $H \subseteq G$ a subset of G. Then,

- 1. (H.*) is a subgroup of (G,*) if and only if $H \neq \emptyset$ and $\forall h_1, h_2 \in H$, $h_1 * h_2^{-1} \in H$.
- 2. (H.*) is a subgroup of (G,*) if and only if $H \neq \emptyset$ and $\forall h_1, h_2 \in H$, $h_1^{-1} * h_2 \in H$.

Proposition 1.1.4. Let (H,*) be a subgroup of $\mathbb{Z},+)$. Then there exists a number $n \in \mathbb{Z}$ such that $H = n\mathbb{Z}$.

Proposition 1.1.5. Let $(G_i, *_i)$ with i = 1, ..., n be n groups. Then, the product $G_1 \times \cdots \times G_n$ induces a group with the operation defined as

$$(g_1, \dots, g_n) *' (g'_1, \dots, g'_n) := (g_1 * g'_1, \dots, g_n * g'_n).$$
 (1.3)

1.1. DEFINITIONS 5

Definition 1.1.4. Let (G, *) be a group. We define the *order* of G as the number |G| of elements in G.

Lemma 1.1.6. Let (G,*) be a group and $(H_i,*)_I$ a collection of subgroups of (G,*). Then, the set

$$H := \bigcap_{i \in I} H_i \tag{1.4}$$

is a subgroup of (G, *).

Definition 1.1.5. Let (G,*) be a group and $X \subseteq G$ a subset of G. We define the *subgroup generated* by X as the smallest subgroup $(\langle X \rangle, *)$ that contains X.

Proposition 1.1.7. Let (G,*) be a subgroup and $X \subseteq G$ a subset of G. Then, the sbugroup $(\langle X \rangle, *)$ generated by X is determined by

$$\langle X \rangle = \bigcap_{H \le G, X \subseteq H} H. \tag{1.5}$$

Definition 1.1.6. Let (G,*) be a group, $g \in G$ an element and $n \in \mathbb{Z}$ a number. We define the n-th power of g as

$$g^{n} := \begin{cases} g * \cdots g & n > 0 \\ e & n = 0 \\ g^{-1} * \cdots * g^{-1} & n < 0 \end{cases}$$
 (1.6)

Lemma 1.1.8. Let (G,*) be a group and $g \in G$ an element. Then, for all $n, m \in \mathbb{Z}$ it is satisfied

$$g^{n} * g^{m} = g^{n+m} = g^{m} * g^{n}. (1.7)$$

Definition 1.1.7. Let (G, *) be a group. We say (G, *) is *cyclic* if and only if it is generated by one element.

Proposition 1.1.9. Let (G,*) be a group and $g \in G$ an element. Then,

$$\langle g \rangle = \bigcup_{i \in \mathbb{Z}} g^i \tag{1.8}$$

Definition 1.1.8. Let (G, *) be a group and $g \in G$ an element. We define the *order* of g as the number of elements of $\langle g \rangle$.

Proposition 1.1.10. $(\mathbb{Z},+)$ is a cyclic group generated by $1 \in \mathbb{Z}$ and all subgroups of $(\mathbb{Z},+)$ are cyclic.

Proposition 1.1.11. Let (G,*) be a group and $g \in G$ an element. If ord $g \neq |G|$, then (G,*) is not cyclic.

Proposition 1.1.12. Let (G,*) be a cyclic group. Then, (G,*) is abelian.

Proposition 1.1.13. Let (G,*) be a group and $g \in G$ an element. Then, ord $g < \infty$ if and only if there exists a $n \in \mathbb{Z}^*$ such that $g^n = e$.

Proposition 1.1.14. Let (G,*) be a group and $g \in G$ an element. Then,

ord
$$g = \min\{i > 0 \mid g^i = e\}.$$
 (1.9)

If no such i exists, we say ord $g = \infty$

Corollary 1.1.15. Let $n \in \mathbb{N}_{>1}$ a number and $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$. Then,

$$\operatorname{ord} \bar{a} = \frac{n}{\gcd(a, n)} = \frac{\operatorname{lcm}(a, n)}{a}.$$
(1.10)

Corollary 1.1.16. Let $\{(G_i, *_i)\}$ be a set of n group and $g_i \in G_i$ an element of each group to form $g = (g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$. Then,

$$\operatorname{ord} g = \operatorname{lcm}(\operatorname{ord} g_1, \dots, \operatorname{ord} g_n). \tag{1.11}$$

Corollary 1.1.17. Let $(G_1, *_1), (G_2, *_2)$ be two cyclic groups. Then, $G_1 \times G_2$ induces a cyclic group if and only if $gcd(\operatorname{ord} G_1, \operatorname{ord} G_2) = 1$, that is, $\operatorname{ord} G_1$ and $\operatorname{ord} G_2$ are coprime.

Proposition 1.1.18. Let (G,*) be a cyclic group of order n and g its generator. Then,

- 1. $g^m = e \Leftrightarrow n \mid m$
- 2. $g^a = g^b \Leftrightarrow a = b \mod n$
- 3. If $0 \le m leq n$, then $g^{-m} = (g^m)^{-1} = g^{n-m}$

Proposition 1.1.19. Let (G,*) be a group and $F \subseteq G$ a subset of G. Then,

$$\langle F \rangle = \{e\} \cup \{g_1^{\alpha_1} * \cdots g_n^{\alpha_n} \mid n \in \mathbb{N}, \alpha_i \in \mathbb{Z}, g_i \in F\}.$$
 (1.12)

Theorem 1.1.20. Every permutation is product of transposition. In particular, the symmetric group S_n is generated by

$$S_n = \langle (1,2), \dots, (1,n) \rangle. \tag{1.13}$$

Theorem 1.1.21. Let K be a field and $GL_n(K)$ the linear group. Every invertibe matrix of $GL_n(K)$ is product of elemental matrices. In other words, $GL_n(K)$ is generated by elemental matrices.