Multivariable Calculus Winter Notes

by Camila Restrepo

Last updated January 12, 2024

1 Classifying Critical Points

 $\mathbf{2}$

Note: Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

${f Week} \,\, 1$

Classifying Critical Points

Theorem 1.1 2nd Derivative Test

Let $f \in C^2(\Omega)$ and let $a \in \Omega(\Omega \subseteq \mathbb{R}^n)$ be a critical point of f.

- 1. If $H_f(a)$ is positive definite then f has a local minimum at a.
- 2. If $H_f(a)$ is negative definite then f has a local maximum at a.
- 3. If $H_f(a)$ is indefinite then f has a saddle point at a.

Recall: Any symmetric $n \times n$ matrix A can be diagonalized, i.e., \exists an orthonormal basis u_1, u_2, \ldots, u_n in \mathbb{R}^n and real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $Au_i = \lambda_i u_i \forall i = 1, 2, \ldots, n$.

Proposition 1.2

Let Q be the quadratic form associated with an $n \times n$ symmetric matrix A. Then:

- 1. Q is positive \iff all the eigenvalues of A are positive,
- 2. Q is negative \iff all the eigenvalues of A are negative,
- 3. Q is indefinite \iff A has both positive and negative eigenvalues.

Corollary 1.3

Let a be a critical point of a C^2 function $f: \Omega \to \mathbb{R}$. If det $H_f(a) \neq 0$, then f has either a local minimum or a local minimum or a saddle point at a.

Definition of degenerate critical points:

A critical point a of a C^2 function f is called non-degenerate if $\det H_f(a) \neq 0$ and degenerate otherwise.

Example of a degenerate critical point:

When $f(x,y) = x^3$ then (0,0) is a degenerate critical point of f, and f has neither a local extremum at (0,0) nor a saddle point.

Definition of the principal minors of a matrix:

Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix. Given k = 1, 2, ..., n, we will denote by A_k the $k \times k$ submatrix $A_k = (a_{ij})_{i,j=1}^k$.

The determinants det A_k are called the **principal minors of A**.

Proposition 1.4

Let A be a symmetric $n \times n$ matrix with det $A \neq 0$. Then:

- 1. A is positive definite \iff det $A_k > 0 \forall k = 1, 2, ..., n$.
- 2. A is negative definite \iff $(-1)^k \det A_k > 0 \forall k = 1, 2, \dots, n$.
- 3. A is indefinite \iff A is neither positive definite nor negative definite.

Corollary 1.5

Let
$$A = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}$$
. Then:

- 1. A is positive definite $\iff \alpha > 0$ and $\alpha \gamma \beta^2 > 0$
- 2. A is negative definite $\iff \alpha < 0$ and $\alpha \gamma \beta^2 > 0$
- 3. A is indefinite $\iff \alpha \gamma \beta^2 < 0$

Example of classifying a critical point:

We found that the function $f(x,y) = xye^{-x^2-y^2}$ has 5 critical points: $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$, $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$, and (0,0), with an absolute maximum at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ and an absolute minimum at $\left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right)$.

Investigate the nature of (0,0),

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[y(1 - 2x^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2x^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y} \left[x(1 - 2y^2)e^{-x^2 - y^2} \right] = -4xye^{-x^2 - y^2} - 2xy(1 - 2y^2)e^{-x^2 - y^2} \\ \frac{\partial^2 f}{\partial x \partial y} &= (1 - 2y^2)e^{-x^2 - y^2} - 2x^2(1 - 2y^2)e^{-x^2 - y^2} \end{split}$$

So $H_f(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is indefinite $\implies f$ has a saddle point at (0,0).

Example of non-degenerate critical points:

Find and classify the critical points of $f: \mathbb{R}^3 \to \mathbb{R}$ where $f(x,y,z) = x^3 - y^3 +$

$$\nabla f = (3x^2 + 3y, -3y^2 + 3x, 2z - 2) = 0 \implies x^2 = -y, y^2 = x, z = 1 \implies x^2 = -y, x^4 = x, z = 1 \implies x^2 = -y, x = 0 \text{ or } x = 1, z = 1 \implies (x, y, z) = (0, 0, 1), (1, -1, 1).$$

So
$$(0,0,1)$$
 and $(1,-1,1)$ are the critical points. We have $H_f(x,y,z) = \begin{bmatrix} 6x & 3 & 0 \\ 3 & -6y & 0 \\ 0 & 0 & 2 \end{bmatrix}$,

so $H_f(0,0,1) = \begin{bmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is clearly indefinite since the first principal minor is 0 and $H_f(1,-1,1) = \begin{bmatrix} 6 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is positive definite.

0 and
$$H_f(1,-1,1) = \begin{bmatrix} 6 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is positive definite.

So we have non-degenerate critical points (as det $H_f \neq 0$). Hence, (0,0,1) is a saddle point; (1, -1, 1) is a local minimum.

But f has no global extrema because $f(x,0,0) = x^3$ can take arbitrarily positive and negative values.

Example of a degenerate critical point:

Let
$$f(x,y) = x^4 + y^4$$
 (with $(x,y) \in \mathbb{R}^2$).
 $\nabla f = (4x^3, 4y^3) = 0 \iff (x,y) = (0,0)$.
 $H_f(x,y) = \begin{bmatrix} 12x^2 & 0 \\ 0 & 12y^2 \end{bmatrix}, H_f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

So (0,0) is a degenerate critical point and the 2nd derivative test does not apply. However, f has a global minimum at (0,0).

Theorem 1.6 The inverse function theorem

Th. A. Let $I\subseteq \mathbb{R}$ be an interval and $f:I\to \mathbb{R}$ is a continuous injective function. Then:

- 1. f is either strictly increasing or strictly decreasing.
- 2. f(I) is an interval containing the same number of endpoints as I.
- 3. f is a homeomorphism of I onto f(I).

- 1. Let us first consider the case that I = [a, b](a < b). Since f is injective, either f(a) < f(b) or f(b) < f(a). Assume that f(a) < f(b) (the other case can be done symmetrically). Let's show that f is strictly increasing on [a, b], i.e., f(x) < f(y)whenever $a \le x < y \le b$. We argue by contradiction, supposing that f(x) > f(y) for some $a \le x < y \le b$. Note that f(y) > f(a), for otherwise f(y) < f(a) < f(b) and by the Intermediate Value Theorem (IVT), $\exists \alpha \in (y, b)$ such that $f(\alpha) = f(a)$, contradicting the injectivity of f. Therefore f(a) < f(y) < f(x) and so, again, by the IVT $\exists y' \in (a, x)$ such that f(y') = f(y), again contradicting the injectivity of f. Next, let I be any interval. Pick up any $a, b \in I$ with a < b. Suppose that f(a) < f(b) (the case f(a) > f(b) can be done symmetrically). By the previous paragraph, we know that f is strictly increasing on [a, b]. Now, if $x, y \in I$ and x < y, then with $\alpha = \min\{a, x\}, \beta = \max\{y, b\}, \text{ we have } [a, b], [x, y] \subseteq [\alpha, \beta] \subseteq I.$ Since f is strictly increasing on [a, b], we must have (using the 1st paragraph again) $f(\alpha) < f(\beta)$ and f is strictly increasing on $[\alpha, \beta]$. Hence, we conclude that f is strictly increasing on I.
 - Since f is continuous, J = f(I) is an interval. Suppose that f is strictly increasing. Note that the inverse function f⁻¹ is then also strictly increasing.
 Now, if I contains its left endpoint a, then ∀x ∈ I, f(a) ≤ f(x), so f(a) is a left endpoint of J. Similarly, if I contains its right endpoint b, then f(b) is the right endpoint of J. Applying the same argument with f⁻¹ in place of f, we conclude if I contains its left (respectively, right) endpoint c, then f⁻¹(c) is the left (respectively, right) endpoint of I. It follows that I and J contain the same number of endpoints.
 - 3. If I = [a,b], then f is a homeomorphism of I onto f(I) because of our general result about continuous injective functions on compact sets. Otherwise, it follows that f|[a,b] is a homeomorphism onto f([a,b]) for any a,b ∈ I with a ≤ b. This implies that f⁻¹: f(I) → I is continuous (at any y ∈ f(I)). Indeed, let y ∈ f(I) and consider any sequence (y_n) in f(I) with y_n → y. Then the set S = {y} ∪ {y_n : n ∈ N} is compact, so it has both a smallest element c = f(a) and a largest element d = f(b). Assuming that f is strictly increasing we must have a ≤ b, and f([a,b]) = [c,d] ⊇ S. Since f|[a,b] is a homeomorphism onto [c,d] (i.e., (f|[a,b])⁻¹ = f⁻¹|[c,d] is continuous), we obtain f⁻¹(y_n) = (f⁻¹|[c,d])(y_n) → (f⁻¹|[c,d])(y) = f⁻¹(y). It follows that f⁻¹ is continuous at any y ∈ f(I).