\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	✓ Herzlichen Glückwunsch! Sie haben bestanden! zum Bestehen 75 % oder höher Lernen Sie weiter	BEWERTUNG 100 %
	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation NEUESTE EINREICHUNGSBEWERTUNG 100%	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	TrueFalse	
	\checkmark Richtig The symbol \notin stands for "is not an element of." Since 3 is in an element of the set B , the given	
	statement is not true.	
	2. Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$. Which of the following sets is equal to the union $A\cup B$? $\bigcirc \ \{1,10,18\}$	1 / 1 Punkten
	 (3,5,10,11,14) (1,3,5,10,11,14) 	
<u></u>	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min Richtig	Fällig 23. Aug. 23:59 PDT
	The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here.	
	$^{3.}$ How many real numbers are there between the integers 1 and 4 ? $\bigcirc \ 4$	1 / 1 Punkten
	O 2 O None	
	● Infinitely many ✓ Richtig	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	4. Suppose I tell you that x and y are two real numbers which make the statement $x \geq y$ true. Which pair of numbers \emph{cannot} be values for x and y ?	1 / 1 Punkten
	$\bigcirc \ x=2$ and $y=1$ $\bigcirc \ x=10$ and $y=10$	
	$igodelightarrow x = -1$ and $y = 0$ $\hfill x = 5$ and $y = 3.3$	
	Recall that the statement $x \geq y$ means that x is either equal to y or x is to the right of y on the real number line. Since -1 is actually to the left of 0 , these cannot be values for x and y .	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	$\bigcirc -z > -w$ $\bigcirc z+3 < w+3$	
	$igodesign{array}{cccccccccccccccccccccccccccccccccccc$	
	\checkmark Richtig	
	would give $-5z>-5w.$ For an example, try $z=1$ and $y=2$ and see what happens!	
	6. Find the set of all x which solve the inequality $-2x+5 \le 7$ $\bigcirc x \le -1$	1 / 1 Punkten
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test \cdot 35 min $\bigcirc x = -1$	Fällig 23. Aug. 23:59 PDT
	✓ Richtig	
	Subtracting 5 from both sides of the given inequality gives $-2x \leq 2$. Then we divide both sides by -2 , remembering to flip the inequality sign, and we obtain this answer	
	7. Which of the following real numbers is not in the closed interval $[2,3]$ $\cite{1}$	1 / 1 Punkten
	○ 2.1○ 2	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min Richtig	Fällig 23. Aug. 23:59 PDT
	Recall that the closed interval $[2,3]$ consists of all real numbers x which satisfy $2 \le x \le 3$. Since $2 \le 1$ is false, $1 \notin [2,3]$	
	8. Which of the following intervals represents the set of all solutions to:	1 / 1 Punkten
	$-5 \le x+2 < 10$? $\bigcirc [-7,8]$ $\bigcirc [-5,10)$	
	\odot $[-7,8)$ \bigcirc $(7,8)$	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	x which make that true is exactly the half-open interval $[-7,8)$.	
	$^{9.}$ Which of the numbers below is equal to the following summation: $\Sigma_{k=2}^5 2k$? $\bigcirc 14$	1 / 1 Punkten
	○ 4● 28	
	O 10	
\leftarrow	We compute $\Sigma_{k-2}^5 2k = 4+6+8+10=28$. Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	$^{10.}$ Suppose we already know that $\Sigma_{k=1}^{20}k=210$. Which of the numbers below is equal to $\Sigma_{k=1}^{20}2k$? $igodeta$	1 / 1 Punkten
	○ 40○ 210	
	○ 2 ✓ Richtig	
	By applying one of our Sigma notation simplification rules, we can rewrite the summation in question as $2\left(\Sigma_{k=1}^{20}k\right)=2 imes210=420$.	
	$^{11.}$ Which of the numbers below is equal to the summation $\Sigma_{i=2}^{10}7$? Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation	1 / 1 Punkten
<u></u>	Bewerteter Test · 35 min	Fällig 23. Aug. 23:59 PDT
	O 48	
	According to one of our Sigma notation simplification rules, this summation is just equal to 9 copies of the number 7 all added together, and so we get $9 \cdot 7 = 63$.	
	12. Which of the following numbers is the variance of the set $Z=\{-2,4,7\}$?	1 / 1 Punkten
	○ 69○ 14	
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Fällig 23. Aug. 23:59 PDT
	Richtig To get the variance of a set of numbers, you need to perform four steps:	
	First compute the mean (which is 3) Then calculate all the squared differences between the numbers in the set and this mean (here	
	you get $25,1,16$) Then add all these up (here you get 42)	
		Fällig 23. Aug. 23:59 PDT
\leftarrow	Graded quiz on Sets, Number Line, Inequalities, Simplification, and Sigma Notation Bewerteter Test • 35 min	Failig 25. Aug. 25.59 FDT
\leftarrow		Failig 23. Aug. 23.39 FD1
<u> </u>	Bewerteter Test $ullet$ 35 min Therefore, the variance of Z	Failig 23. Aug. 23.39 FD1
<u></u>	Bewerteter Test • 35 min	1/1 Punkten
	Therefore, the variance of Z $= \left\{ \frac{13. \text{ Which of the following sets does } not \text{ have zero variance? (hint: don't do any calculation here, just think!)} \right\}$	