The Brainf*ck CPU Project

An Introduction to FPGA Development using VHDL http://www.clifford.at/bfcpu/

Clifford Wolf

ROCK Linux - http://www.rocklinux.org

CNGW - http://www.cngw.orig

LINBIT - http://www.linbit.com

Overview

- Building custom hardware
- The Brainf*ck CPU

Programmable Hardware

Introduction to VHDL

Overview

Clifford Wolf, www.clifford.at May 12, 2004

ROCK Linux – CNGW – LINBIT – p. 2

Building custom hardware

Programmable Hardware

Introduction to VHDL

With programable hardware (such as PLDs and FPGAs) it is possible to

- Instantly test hardware designs with almost no prototyping costs
- Simply "upload" hardware designs (bitstream files) to a chip like it would be software
- Have much fun with building hardware without touching a soldering gun

With HDLs (such as Verilog and VHDL) it is possible to

- Describe a hardware design like program source describes the behavior of a program
- Automatically create bitstream files for different chips from the same (portable) source
- Simulate the behavior of your hardware on various levels

The Brainf*ck CPU

Introduction to VHDL

A minimalistic CPU with 8 bit data-bus and 16 bit address-bus which can execute brainf*ck code. The VHDL design file for it has 260 lines of code. The optimised variation of the CPU with a 1 byte internal data cache has 340 lines of code.

Overview

Programmable Hardware

- PALs
- PLDs and CPLDs
- FPGAs
- Recommended reading

Introduction to VHDL

Programmable Hardware

Clifford Wolf, www.clifford.at May 12, 2004 ROCK Linux – CNGW – LINBIT – p. 5

PALs

Overview

Programmable Hardware PALs

- PLDs and CPLDs
- FPGAs
- Recommended reading

Introduction to VHDL

A PAL is a very simple and limited programable hardware device:

Inputs & Flip-flop feedbacks

It's programm only consists of a single truth table. Which is implemented as one big unit with d-flipflops (connected to one global clock) on the output lines.

PLDs and CPLDs

Overview

Programmable Hardware

PALs

PLDs and CPLDs

- FPGAs
- Recommended reading

Introduction to VHDL

A PLD consists of macrocells which are something like better PALs and one central interconnection logic. PLDs are usually used to connect a high number of pins with a more or less simple logic at very low cost. Typical PLD applications are "glue logic" for connecting other ASICS.

FPGAs

Overview

Programmable Hardware

PALs

PLDs and CPLDs

FPGAs

Recommended reading

Introduction to VHDL

FPGAs consist of even more complex logic blocks connected by a very complex interconnection matrix. FPGAs can implement a very complex logic on one chip. Typical applications are CPUs and DSPs up to very complex SoC setups.

Recommended reading

Overview

Programmable Hardware

- PALs
- PLDs and CPLDs
- FPGAs
- Recommended reading

Introduction to VHDL

The Xilinx "Detailed Functional Description" Datasheets

E.g.: "Spartan-IIE 1.8V FPGA Detailed Functional Description" http://direct.xilinx.com/bvdocs/publications/ds077_2.pdf

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

Introduction to VHDL

Clifford Wolf, www.clifford.at May 12, 2004 ROCK Linux - CNGW - LINBIT - p. 10

What is VHDL

Overview

Programmable Hardware

Introduction to VHDL

What is VHDL

- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- VHDL is the "VHSIC Hardware Description Language"
- VHSIC is a "Very High Speed Integrated Circuit"
- VHDL was originally design to document circuits
- Later on, programs have been developt to generate ciruct designs from VHDL code
- Only a small subset of correct VHDL code can be used to synthesize designs

A 2 bit counter (1)

Overview

Programmable Hardware

Introduction to VHDL

What is VHDL

A 2 bit counter (1)

- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- ----
- Credits

A simple clocked 2 bit counter (00, 01, 10, 11, 00, ..):

- 2 Output signals: D1 (lower bit) and D2 (higher bit)
- The following truth table shows how to calculate new D1 and D2 from the old values:

D2	D1		D2,	D1,	D2	2 D1		D2,	D1		D1,
		-+-					+			-+-	
0	0		0	1	C) 0		0	0		1
0	1		1	0	C	1		1	1		0
1	0		1	1	1	. 0		1	0		1
1	1		0	0	1	. 1		0	1		0

So it turns out:

D2 xor D1

not D1

A 2 bit counter (2)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)

• A 2 bit counter (2)

- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

The 2 bit counter as circuit:

And this is the VHDL code for the same thing:

```
process (clock) begin
  if rising_edge(clock) then
      output1 <= not output1;
      output2 <= output1 xor output2;
  end if;
end process;</pre>
```


Signals in VHDL

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)

Signals in VHDL

- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- Signals are single wires or buses in the circuit.
- Buses (multiple wires with one name) are usually called "signal vectors".
- There are multiple signal types (vitally important: bit and std_logic).
- Usually a signal my only have one single source (exception: std_ulogic).
- Many signal types have predefined operations (like "xor", "not", "+" or "*").
- Signals can be assigned a value using the "<=" operator</p>

Prozesses in VHDL (1)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL

Prozesses in VHDL (1)

- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- Processes are one way to group VHDL statements to a logical unit.
- A dependency list contains all signals the statements in the process depend on.

```
process (mysignal2, mysignal3) begin
    mysignal1 <= mysignal2 xor mysignal3;
end process;</pre>
```

Clocked processes are the prefered way to use d-flip-flops in the design:

Processes in VHDL (2)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)

Processes in VHDL (2)

- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

Clocked processes may also contain code for reset signals:

```
process (clk, rst) begin
   if rst = '1' then
       mysignal1 <= x"00";
   elsif rising_edge(clk) then
       mysignal1 <= mysignal1 + 1;
   end if;
end process;</pre>
```

- Remember: Only a small subset of synthactically and gramatically correct code can actually used to synthesize a real hardware design.
- No more than one "if rising_edge(clk)" per process.
- That "if" must surrond all other instructions in the process.
- The only allowed variation is the check for a reset signal.

Processes in VHDL (3)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)

Processes in VHDL (3)

- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

Processes may always contain code which implies a feedback of outputs. The first code fragment implies the else-tree of the 2nd one:

```
process (clk) begin
        if rising_edge(clk) then
                 if enable = 1 then
                          mysignal1 <= mysignal1 + 1;</pre>
                 end if;
        end if;
end process;
process (clk) begin
        if rising edge(clk) then
                 if enable = 1 then
                          mysignal1 <= mysignal1 + 1;
                 else
                          mysignal1 <= mysignal1;</pre>
                 end if;
```


Variables in VHDL

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)

Variables in VHDL

- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- Variables may be used just as variables in a traditional program.
- Variables are assigned values using the ":=" operator.
- Variables are always local to a process.

```
process (clk)
        variable temp : std_logic_vector std_logic_vect
begin
        if rising edge(clk) then
                 temp := mysignal1;
                 temp := temp + 25;
                 temp := temp * mysignal2;
                 if mysignal3 = '0' then
                          temp := mysignal2;
                 end if;
                 mysignal1 <= temp;</pre>
                 temp := temp + 844;
                 mysignal2 <= temp;</pre>
        end if;
```


Entities, archs and components

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL

Entities, archs and component

- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- A VHDL project is structured in so-called entities.
- An "architecture" is the concrete implementation of an entity.
- An entity may have multiple architectures (e.g. optimized for size or speed).
- When an entity is used in another entity, it is called a component.
- Components and signal types can be imported from libraries.

VHDL Example (1)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components

● VHDL Example (1)

- VHDL Example (2)
- The Brainf*ck CPU
- Credits

VHDL Example (2)

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)

● VHDL Example (2)

- The Brainf*ck CPU
- Credits

The Brainf*ck CPU

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)

● The Brainf*ck CPU

Credits

[Discussion the Brainf*ck CPU VHDL code]

Credits

Overview

Programmable Hardware

Introduction to VHDL

- What is VHDL
- A 2 bit counter (1)
- A 2 bit counter (2)
- Signals in VHDL
- Prozesses in VHDL (1)
- Processes in VHDL (2)
- Processes in VHDL (3)
- Variables in VHDL
- Entities, archs and components
- VHDL Example (1)
- VHDL Example (2)
- The Brainf*ck CPU
- Credits

- LINBIT Information Technologies GmbH: http://www.linbit.com/
- The ROCK Linux Project: http://www.rocklinux.org/
- Clifford Wolf: http://www.clifford.at/

http://www.clifford.at/bfcpu/