HM321 Engineering Economics Fall 2024 – Lecture 2

Instructor: Dr. Ali Ahmad

Bring Calculator Always

- Always bring your calculator with you in lectures
- Without practice you will not be able to do the calculations in your exams

For Record

 Scheduled lecture on Friday, 18 October, 2024, did not take place due to announcement by Government and subsequent notice by UMT

Time Value of Money (TVM)

- The change in the amount of money over a given time period is called the time value of money
- \$100 today is worth more than \$100 one year from today

TVM is the most important concept in engineering economy

Interest

- Interest the manifestation of the time value of money
 - Fee that one pays to use someone else's money
 - Interest is the difference between an ending amount of money and a beginning amount of money

Interest = end amount - original amount

Interest Rate

 Interest rate – Interest paid over a time period expressed as a percentage of principal

$$Interest\ rate(\%) = \frac{interest\ accrued\ per\ time\ unit}{principal} \times 100\%$$

Rate of Return (ROR)

 Interest <u>earned</u> over a period of time is expressed as a percentage of the original amount (principal)

```
Rate of return (%) = \frac{\text{interest accrued per time unit}}{\text{original amount}} \times 100\%
```

- Borrower's perspective interest rate paid
- <u>Lender's or investor's perspective</u> rate of return <u>earned</u>

Interest paid

Interest earned

Interest rate

Rate of return

Minimum Attractive Rate of Return

 MARR is a reasonable rate of return (percent) established for evaluating and selecting alternatives

 An investment is justified economically if it is expected to return at least the MARR

MARR Characteristics

- MARR is established by the financial managers of the firm
- MARR is fundamentally connected to the cost of capital
- Both types of capital financing are used to determine the <u>weighted average cost of</u> <u>capital (WACC)</u> and the MARR
- MARR usually considers the risk inherent to a project

Types of Financing

- <u>Equity Financing</u> Funds either from retained earnings, new stock issues, or owner's infusion of money
- <u>Debt Financing</u> Borrowed funds from outside sources – loans, bonds, mortgages, venture capital pools, etc. Interest is paid to the lender on these funds
- For an economically justified project

ROR ≥ MARR > WACC

Economic Equivalence

- <u>Definition</u>: Combination of interest rate (rate of return) and time value of money to determine different amounts of money at different points in time that are economically equivalent
- How it works: Use rate i and time t in upcoming relations to move money (values of P, F and A) between time points t = 0, 1, ..., n to make them equivalent (not equal) at the rate i

FIGURE 1.2

Equivalence of three amounts at a 6% per year interest rate.

6% per year interest rate

Commonly Used Symbols

- t = time, usually in periods such as years or months
- P = value or amount of money at a time t designated as present or time 0
- F = value or amount of money at some future time, such as at t = n periods in the future
- A = series of consecutive, equal, end-of-period amounts of money
- n = number of interest periods; years, months
- i = interest rate or rate of return per time period;
 percent per year or month

Cash Flow Terms

- Cash Inflows Revenues (R), receipts, incomes, savings generated by projects and activities that flow in. <u>Plus sign used</u>
- Cash Outflows Disbursements (D), costs, expenses, taxes caused by projects and activities that flow out. <u>Minus sign used</u>
- Net Cash Flow (NCF) for each time period:
 NCF = cash inflows cash outflows = R D
- End-of-period assumption:
 - Funds flow at the end of a given interest period

Cash Flow Diagrams

Simple and Compound Interest

- Simple interest is calculated using principal only
- Interest = (principal)(number of periods)(interest rate)

$$I = Pni$$

- Example:
- \$100,000 lent for 3 years at simple i = 10% per year.
 What is repayment after 3 years?
- Interest = 100,000(3)(0.10) = \$30,000
- Total due = 100,000 + 30,000 = \$130,000

Simple and Compound Interest - 2

- Compound Interest
- At the <u>end</u> of each interest period:
 - Interest for that period is calculated on the accumulated amount at the beginning of that period
 - The calculated interest is added to (compounded) the accumulated amount at the beginning
 - This becomes the accumulated amount at the beginning of the next interest period

Compound Interest Example

- **Example:** \$100,000 lent for 3 years at i = 10% per year compounded. What is repayment after 3 years?
- Interest, year 1: I1 = 100,000(0.10) = \$10,000
- Total due, year 1: T1 = 100,000 + 10,000 = \$110,000
- Interest, year 2: I2 = 110,000(0.10) = \$11,000
- Total due, year 2: T2 = 110,000 + 11,000 = \$121,000
- Interest, year 3: I3 = 121,000(0.10) = \$12,100
- Total due, year 3: T3 = 121,000 + 12,100 = \$133,100
- Compounded: \$133,100 Simple: \$130,000

Formula for Compound Amount

 The following formula was derived in the class during lecture:

$$F = P(1+i)^{n}$$

Where

F = Future amount (compound amount)

P = Principal amount

i = Interest rate (in decimal)

n = Number of interest periods

Reference

 Basics of Engineering Economy by Leland Blank and Anthony Tarquin, 2nd edition, McGraw-Hill