

Stroke Prediction Algorithm

"This is about saving lives"

VU University Medical Center, Amsterdam 30/04/2019

Mathieu Stremsdoerfer

Dataset

https://www.kaggle.com/asaumya/healthcare-dataset-stroke-data Program: Github

We were given three days to...

Build an algorithm to predict if patient will suffer from stroke or not

Try out a few different Learning Algorithms, evaluate them, compare them and choose the best model

Walk you through the solution and present the next steps

Crisp-DM was used*

*Cross Industry Standard Process for Data Mining

Stroke Detection Objectives, KPIs and metrics

Save lives

Correctly categorize
patients at risk of stroke =

Maximize DETECTION

Be efficient

Limit patients visits if not necessary = Minimize
FALSE ALARMS

KPIs

Performance gain versus logistic regression model >90% Stroke detection

Metrics

Minimize False Alarms when Detection is maximal

Recommendation

Gradient Boosting tuned model: +19% higher performance versus Logistic regression +5.7% versus non tuned

Prediction		Predicted		
for 100	people	no stroke stroke		
reality	no stroke	93.5%	4.9%	
	stroke	0.15%	1.5%	

Detection rate: 91.3% vs 78%

False alarm rate:

4.96% vs 25%

Stroke missed: 8.7% vs 18%

How we got there...

Learning from the data exploration

Imbalanced binary classification

43385 observations, 783 strokes (1.8%)

- Mix data (3 Numeric and 13 Categorical)
- Missing data
 30% smoking, 3% BMI
- Irrelevant data
 Children (0.03% stroke), Gender = Other
- Incorrect data: IDs
 > 18000 duplicates with non matching data
- Some correlations, but low for all attributes except age

Higher % stroke tend to increase with combination of following attributes

Older people

Male

Non Married

High Average Glucose (>140 mg/l)

Overweight (but not obese)

30-50 BMI level

Self employed

Conducting the data preparation steps

- 1 Cleaning, binarizing, binning Train & test split (70/30)
- 2 Standardization of the data, rebalancing of the data set (using Smote/Tomek)
- **3** Enrichment of the data through polynomial approach (121 attributes) then selection using Machine Learning (RFE) method, Random Forest, PCA

RESULT: Base Model Logistic regression baseline performance: Stroke detection: 78%, False Alarm: 25%, Missed Stroke: 17.9%

Six models were compared to maximize Stroke Detection and minimize False alarm using Sklearn

1 Logistic Regression (Baseline model)

"Probability of log-odd linear combination of the attributes" (+)Good for binary classification

- (-) Need clean data, no outliers
- (2) Gaussian Naive Bayes

"Arg max of Naive Bayes probability model"

- (+) Simple. Works well on classification problems
- (-) Feature should not correlate with each other
- **3** Decision Tree

"Trees of decisions"

- (+) No data preparation, easy to understand
- (-) Works less well with binarized data

(4) Random Forest

"Forest of Decision trees"

(+) Less susceptible to overfitting

5 Gradient Boosting

"Random Forest + Use the gradient to correct the biggest mistakes and iterate"

- (+) Very Powerful
- (-) Must have clean data

6 Simple Neural Network

"Mathematical models defining multiple transformation function"

- (+) No need to create features
- (-) Requires lots of data to avoid overfitting, black box

The Best algorithm (Detection/False Alarm) is...

0.8 0.6 0.4 0.2 Gradient Boosting ROC (area = 0.88) Gradient Boosting Tuned ROC (area = 0.93) 0.2 0.4 0.8 1.0

Gradient Boosting: 0.88 score + 13%

Gradient Boosting Tuned*: 0.93 score +19%

^{*}learning_rate=1.0,n_estimators=600, min_samples_split=0.04, max_features=12, max_depth=8

Most important features...

Gradient Boosting: 0.88 score

Gradient Boosting Tuned*: 0.93 score

Next Steps

Quick Win: 2.5 days

Fine tune the threshold to minimize missed Strokes (increase detection and false alarm): 0.5 day

Re-run model with binned data to see if models improves: 1 day

Code documentation: 1 day

Data Correction: 4 days with VU hospital support

Correct data (ID, Smoking, BMI).
Rerun predictions with Gradient
Boosting method (H2o framework:
mix data friendly algorithm) Could
further improve performance by 1-2
basis point: 4 days

Option: Tune neural network to improve model. 1-2 basis point improvement: 2 days Model explainability (using Lime, Shape) to help Doctors in their discussions with patients: 3 days

Outlook

Feasibility study: add more data in quantity: 5 days

Get at least 20%-30% more data in quantity to create a train/test/validation sample to increase the confidence with the model results

Atos could investigate getting more data in partnerships with other hospital in the Nethelands / in the EU and make recommendations.

Feasibility study: Enrich the Data: 5 days with VU hospital support

Predict the type of Strokes:

Ischemic, Transient Ischemic, Hemorrhagic

Capture lifestyle habits:

Eating, physical activity, drinking

Capture medical conditions:

Blood pressure, Cholesterol, Diabetes, Circulation problem, Arterial fibrillation

Outcome: recommendations.

Thank you!

Appendix

VU Medical Center Stroke Prediction Objectives

- -Maximize detection of patients at risk of stroke with no MISS to SAVE LIVES
- -Minimize FALSE ALARMS: visits of patients which are not needed to be efficient

PREDICTION OUTCOME	Predict: No Stroke	Predit: Stroke
Actual: No Stroke	SAVE TIME	FALSE ALARMS
Actual: Stroke	MISS	SAVE LIVES

Smoking_Status = unknown Smoking_Status = never smoked Smoking_Status = formerly smoked Smoking_Status = smokes 100 80 60 40 20 20 20 Gender - Age - Avg_Glucose - Stroke Ever_Married - Age - BMI - Stroke Gender = Male Gender = Female Ever_Married = Yes Ever_Married = No 300 100 250 80 Avg_Glucose 120 60 BMI 40 BMI mean 100 20

Smoking- Age - BMI - Stroke

Exploration of the Data

Exploration of the data

Model Performance metrics:

Accuracy: 0.7843 Precision: 0.7858 Recall: 0.7843

F1 Score: 0.784

Service of the servic

Model Classification report:

	precision recall		f1-score	support	
0	0.81	0.75	0.78	12755	
1	0.76	0.82	0.79	12755	
avg / total	0.79	0.78	0.78	25510	

Prediction Confusion Matrix:

Predicted:

Actual: 0 9539 3216

1 2287 10468

Model Performance metrics:

Accuracy: 0.7752 Precision: 0.7757 Recall: 0.7752 F1 Score: 0.7751

Model Classification report:

	precision recal		f1-score	support	
0	0.79	0.75	0.77	12755	
1	0.76	0.80	0.78	12755	
avg / total	0.78	0.78	0.78	25510	

Prediction Confusion Matrix:

Predicted:

0 1 Actual: 0 9629 3126 1 2608 10147

Logistic Regression Algorithm: no improvements in performance with polynomial features (right)

Model Performance metrics:

Accuracy: 0.8519 Precision: 0.8536 Recall: 0.8519

F1 Score: 0.8517

Model Performance metrics:

Accuracy: 0.9302 Precision: 0.9307 Recall: 0.9302 F1 Score: 0.9302

Model Classification report:

Model Classification report:

	precision	recall	fl-score	support		precision	recall	f1-score	support
0	0.88	0.82	0.85	12755	0	0.92	0.95	0.93	12755
1	0.83	0.89	0.86	12755	1	0.95	0.91	0.93	12755
avg / total	0.85	0.85	0.85	25510	avg / total	0.93	0.93	0.93	25510

Prediction Confusion Matrix:

Predicted:

0 1 Actual: 0 10426 2329

1 1449 11306

Prediction Confusion Matrix:

Predicted:

Actual: 0 12087 668 1 1112 11643

Gradient Boosting Algorithm: clear performance improvement tuned (right) versus not tuned (left)

Optimization of Gradient Boosting Parameters