Лабораторная работа №2. Первая краевая задача для стационарного уравнения теплопроводности

Вы	полнил(а)	·		
Гру	⁄ппа:	Вариант:		
		1. Пост	ановки задач	ı
			ная задача	
	$\frac{d}{dx}(k(x))$	$(x)\frac{du}{dx} - q(x) u(x)$	f(x) = -f(x) n	$pu \ x \in (0, \ 1)$
	$k(x) \geq 0$	$c_1 > 0, \ q(x) \ge 0,$	<i>u</i> (0) =	_, <i>u(1)</i> =
$k(x) = $ _		I	при $x \in (0,$),
k(x) =		I	при $x \in ($, 1),
q(x) =		1	при $x \in (0,$),
q(x) =		1	при $x \in ($, 1),
f(x) =		Г	ри $x \in (0,$),
f(x) =		Г	три <i>х ∈</i> (, <i>1</i>).
		Тестова	ıя задача №1	
	$\frac{d}{dx}(k^*)$	$\frac{du}{dx}$) $-q^* u(x) =$	$=-f^* npu x \epsilon$	=(0, 1)
	$k^* \geq c_1$	$>0, q^* \ge 0, u(0)$) =,	$u(1) = \underline{\hspace{1cm}},$
$k^*(x) = _{-}$			при $x \in (0,$),
$k^*(x) = _{-}$			при $x \in ($, 1),
$q^*(x) = _{-}$			_ при $x \in (0,$),
$q^*(x) = $			при $x \in ($, 1),

$$f^*(x) =$$
_____ при $x \in (0,$), $f^*(x) =$ _____ при $x \in (0,$ 1).

Укажите, как задана в программе точка разрыва: точно, приближенно, как функция, иным способом:

Тестовая задача №2

$$u(x) = \frac{d}{dx} \left(k^* \frac{du}{dx} \right) - q^* u(x) = -f^* npu \ x \in (0, 1)$$

$$k^* = \underline{\qquad \qquad }$$

$$q^* = \underline{\qquad \qquad },$$

$$u(0) = \underline{\qquad \qquad }, \ u(1) = \underline{\qquad \qquad },$$

2. Точное решение тестовой задачи №1

Запишите точное решение тестовой задачи:

при
$$x \in (0,$$

$$u(x) =$$

при
$$x \in x \in ($$
 , $1)$

$$u(x) =$$

Приведите выкладки и укажите, как получено решение (MatLab, вручную и т.п.), с какой точностью вычислены его коэффициенты (float, double), как использованы условия сопряжения:

3. Общий вид разностной схемы

4. Разностная схема тестовой задачи №1

Запишите разностную схему тестовой задачи Вашего варианта, в том числе сетку, формулы для расчета коэффициентов и отдельно формулы для коэффициентов в окрестности точки разрыва. Запишите, как Ваша программа вычисляет интегралы: 1) они вычислены аналитически и запрограммированы; 2) по формуле трапеций; 3) по формуле прямоугольников; 4) иначе (как).

5. Разностная схема тестовой задачи №2

Запишите разностную схему тестовой задачи Вашего варианта, в том числе сетку, формулы для расчета коэффициентов и отдельно формулы для коэффициентов в окрестности точки разрыва. Запишите, как Ваша программа вычисляет интегралы: 1) они вычислены аналитически и запрограммированы; 2) по формуле трапеций; 3) по формуле прямоугольников; 4) иначе (как).

6. Разностная схема основной задачи

Запишите разностную схему основной задачи Вашего варианта, в том числе сетку, формулы для расчета коэффициентов и отдельно формулы для коэффициентов в окрестности точки разрыва. Запишите, как Ваша программа вычисляет интегралы: 1) они вычислены аналитически и запрограммированы; 2) по формуле трапеций; 3) по формуле прямоугольников; 4) иначе (как).

7. Численное решение тестовой задачи №1

Для	решения	тестов	ой задачи	использ	ована	
сетк	а с число	м разб	иений по .	$x n = \ll$	<i>)</i> »;	
треб	буемая то	чность	решения	тестовой	задачи $\varepsilon = 0.5$	<i>10</i> ⁻⁶ ;
тест	овая зада	ча реш	ена с точі	ностью \mathcal{E}	₁ =«)	<i>);</i>
мако	симально	е откло	нение			
точн	ного и пр	иближе	енного рег	пений на	блюдается в точ	іке
$x = \alpha$		<i>)</i> »;				
Папа	е привел	ите табп	ицу и грас	huvu:		
, ,	с приведі		ицу и грас	рики.		
1)					1	_
	№ узла	x_i	$u(x_i)$	$v(x_i)$	$u(x_i) - v(x_i)$	
	0					
	•••					
	•••					
	•••					

- 2) точное решение u(x) и численное решение v(x) на одном графике;
- 3) разность точного и численного решения (график)

8 Численное решение основной задачи

Для	Для решения основной задачи использована						
сетк	сетка с числом разбиений по $x n = \langle \underline{\hspace{1cm}} \rangle$;						
при	при пересчете задачи с половинным шагом						
макс	максимальная разность приближенных решений						
сост	составила $\varepsilon_2 = \langle \langle \underline{\hspace{0.2cm}} \rangle \rangle$						
и со	и соответствует узлу $x = \langle \underline{\hspace{0.5cm}} \rangle$						
Дале	Далее приведите таблицу и графики:						
1)	1)						
	№ узла	x_i	$v(x_i)$	$v2(x_i)$	$v(x_i) - v2(x_i)$		
	0						
	•••						
	n						

- 2) численное решение v(x) и численное решение с половинным шагом v2(x) на одном графике;
 - 3) разность численных решений в общих узлах (график).

9. Проверка порядка сходимости

Выясните, какой порядок сходимости имеет разностная схема, реализованная в Вашей программе. Для этого проведите серию экспериментов на сетках 10, 100, 1000, 10000 или 53, 530, 5300, 53000, или 25, 250, 2500, 25000 и т.п. и заполните таблицы:

n	Тестовая задача №1
	$\max u(x_i) - v(x_i) $
Порядок сходимости	

n	Основная задача $\max v(x_i) - v2(x_i) $
Порядок сходимости	

10. Анализ поведения численных решений при постепенном сгущении сетки

Выясните, как меняется погрешность решения тестовой и основной задач при сгущении сетки. Попробуйте широкий диапазон сеток, например, от 2 до 100 000. Выясните, начиная с какого n вычислительные погрешности «меняют» порядок сходимости:

n	Тестовая задача №1	Тестовая задача №2	Основная задача
	$max u(x_i)-v(x_i) $	$max u(x_i)-v(x_i) $	$max v(x_i)-v2(x_i) $
2			
4			
1000			
1 000 000			
Торможение			
сходимости			

Постройте от руки график зависимости погрешности от n для основной и тестовой задач:

11. Наблюдения и выводы

12. Код программы