第二章一数的表示 重点总结

1) 熟练四大口诀

口诀1(真值与原码之间转化)

- 1) 符号位: 0正1负
- 2) 小数分隔符号和数值用小数点"."整数分隔符号和数值用 逗号","

请大家做一下: 雨课堂随堂练习题

口诀2(原码与补码之间互相转化)

- 1) 正数不变
- 2) 负数使用扫描法: 符号位不变, 自右 向左从最先遇到的1的左边开始,每位取反 说明:口诀对整数和小数都是通用的 注意特例:原码的-0、补码的最小负数这 两种情况不能进行双向转化表示。 扫描法也只针对负数。

口诀3(原码与反码一一映射)

- 1) 正数不变
- 2) 负数:符号位不变,数值位按位取反

注意:

- 1) 原码与反码是一一映射,它们所能表示的数的范围一致。
- 2) 位数相同,补码也比反码所能表示的数的范围更广。

口诀4(补码与移码)

无论正负,移码与补码关系都是:

只有符号位对调(0变1,1变0)

- •补码与移码一一映射,所能表示的数的范围一致。
- •原码与反码一一映射,所能表示的数的范围一致。
- •<u>补码和移码</u>表示范围都比原码和反码广,多了一个最小的负数。
- 补码与移码一一映射的关系仅限于整数范围,因为移码只表示整数。

正数阵营

原码、补码、反码表示形式一样

机器码之间 转换口诀

前提: 小数对小数

整数对整数

整数 十 小数 口诀:符号位不变,按位取 反再加1,或者用扫描法 注意两种无法用口诀的情况: 1) - 0的补码是0 2) 补码超出原码表示范围的最小负数 (小数定点机十进制对应-1.0和 整数定点机十进制对应-2°)

- 1)原码和反码存在映射关系,因此表示的真值范围一致。
- 2) 补码和移码存在映射关系,因此表示的真值范围一致。
- 3)移码因为用途原因只能表示整数,不能表示小数。

整数

正负通吃阵营

(补码

不分正负,符号位取反 符号位0变1,1变0

移码

2)精通原码补码表示范围 (非规格化范围和规格化范围)

表示范围:原码对称,补码不对称

- 小数点按约定方式标出
- 定点表示

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

补码 $-1 \sim +(1-2^{-n})$ $-2^{n} \sim +(2^{n}-1)$

反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

移码 $-2^n \sim +(2^n-1)$

尾数规格化范围:原码对称,补码不对称

规格化只针对浮点数尾数进行 (而尾数其实就是定点小数)

• 规格化后的定点小数表示范围(分两段)

3) 熟练IEEE 754的计算

IEEE 754浮点数: 单精度为例

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S	s 8位指数(无符号数) 23位尾数(无符号数)														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
23位尾数(无符号数)															

指数	尾数	表示对象	换算方法
0	0	0	规定 (符号位不同, 存在+0.0和-0.0)
0	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
255	0	正负无穷 (inf)	规定
255	非零	NaN	规定

IEEE 754浮点数: 真值转二进制

- 例题
 - 将十进制 -0.75 转为单精度 IEEE 754格式二进制
- 解

```
根据十进制小数转二进制小数算法:-0.75_{10} = -0.11_2
  -0.11 = -1.1 * 2^{-1},<mark>说明可以隐藏1</mark>,属于正负浮点数表示
                           判断是否可以隐藏1
  负数说明符号位:1;
   IEEE754) 指数部分: (-1+127) 10=(126) 10=(011111110) 2;
   尾数部分: 0.1<sub>2</sub>
31 30 29 28 27 26 25 24 23 22 21 20 19
                                               18 17
       13
                  10
                      9
```

六进制:

BF400000

IEEE 754浮点数: 二进制转真值

• 例题

• 将二进制IEEE754浮点数表示转换为十进制浮点数(空白为0)

解

符号位为1,(IEEE754)指数字段为129,尾数字段为2⁻² = 0.25。是浮点数 $(-1)^S*(1+尾数_2)*2^{(129-127)}=(-1)^1*(1+0.25)*2^{(129-127)}=-1*1.25*2^2$ = $-1*1.25*2^2$ = -5.0

IEEE 754 重要结论

- IEEE 754表示的数在数轴上是不均匀的
- •越靠近0, IEEE 754表示的数越密集

3	指数	尾数	表示对象	换算方法
(O	0	0	规定
(O	非0	正负非规格化 数	正负非规格化数 = (-1) ^S * (尾数₂) * 2 ^(0 - 126) (S代表符号位,1为负数,0为正数)
	[1: 254]	任意	正负浮点数	正负浮点数 = (-1) ^S * (1 + 尾数 ₂) * 2 ^(指数 - 127)
2	255	0	正负无穷 (inf)	规定
2	255	非零	NaN	规定

4) 算术与逻辑移位

算术移位规则(重要)

无论正负,算术移位,符号位不变

真值	码制	添补代码
正数	原码、补码、反码	0
	原码	0
 负数	补 码	左移添0
	יןן אי	右移添1
	反 码	1

算术移位和逻辑移位的区别

算术移位 有符号数的移位 逻辑移位 无符号数的移位

算术移位,符号位不变 逻辑移位,左或右补0

逻辑左移

低位添 0, 高位移丢

逻辑右移

高位添 0, 低位移丢

例如

01010011

10110010

逻辑左移

10100110

逻辑右移

01011001

算术左移

00100110

算术右移

11011001 (补码)

5) 易错总结

数的表示: 易错总结

唐书P219

1) 以机器字长为 16 位为例,无符号数的表示范围为 0~65535,而有符号数的表示范围为 - 32768~+32767,因为所用的机器数是补码。

发散思维:

- 2)给定整数定点机字长是 n 位,无符号整数的范围是 $0 \sim 2^{n}-1$,含符号位1位时,原码、补码、反码、移码可以表示的范围分别是 $-(2^{n-1}-1)\sim 2^{n-1}-1$ 、 $-2^{n-1}\sim 2^{n-1}-1$ 、 $-(2^{n-1}-1)\sim 2^{n-1}-1$ 、 $-(2^{n-1}-1)\sim 2^{n-1}-1$ 。3)给定小数定点机字长是 n 位(含符号位1位),则原码、补码、反码可以表示的范围分别是 $-(1-2^{-(n-1)})\sim 1-2^{-(n-1)}$ 、 $-1\sim 1-2^{-(n-1)}$ 、 $-(1-2^{-(n-1)})\sim 1-2^{-(n-1)}$ 。
- 注意: 含符号位意味着的数值部分的位数其实是n-1

定点表示

- 小数点按约定方式标出
- 定点表示

定点机 小数定点机 整数定点机 原码
$$-(1-2^{-n}) \sim +(1-2^{-n})$$
 $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-2^n \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

注意: 要看好数值部分究竟多少位

再论补码

- 4)设机器数字长是 8 位(含1位符号位),对于整数,当其代表补码时,有一个数不能用原码表示,则该数对应的十进制真值是______。
- 5) 设机器数字长是 8 位(含1位符号位),对于小数,当其代表补码时,有一个数不能用原码表示,则该数对应的十进制真值是______。
- 6) 设小数定点机字长是 n 位(含1位符号位), $[-1]_{\dot{\gamma}}=1.000.....000$
- 7) 设整数定点机字长,符号位1位,数值位 n 位,十进制-2ⁿ的补码=

8) 设整数定点机字长是 16 位(含1位符号位),

例子: 机器数的真值

• 设机器数字长为8位(其中1位为符号位),对于整数:

8位	0~255	-127~±0~127	-128~+127	-127 ~±0~127
二进制代码	无符号数	原码对应	补码对应	反码对应
	对应的真值	的真值	的真值	的真值
00000000	0	+0	±0	+0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
01111111	: 127	÷127	÷ +127	+127
10000000	128	-0	-128	-127
10000001	129	-1	-127	-126
:	:	:	:	:
11111101	253	-125	-3	-2
11111110	254	-126	-2	-1
11111111	255	-127	-1	-0

例子: 机器数的真值(教材P225)

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

• 设机器数字长为8位(其中1位为符号位);对于整数,当其分别代表无符号数、原码、补码和反码时,对应的真值范围各为多少?

0在补码中不强调-0和+0