ALPhA Summer Weeks 7 & 8 Presentation

BRADEN KRONHEIM
JULY 22, 2019

Summary

- Generated dataset of 500,000 softsusy points labeled valid/not valid
 - Trained on dataset using both normal neural net and the BNN
- Generated 538,759 mass data points from softsusy using BNN to prescreen points
 - Trained a normal neural network on all of the mass data
 - Tried to train a BNN on all the mass data
 - Trained a BNN on just the higgs data
- Generated heatmaps of cross section when filtering out invalid softsusy points and Higgs mass outside of 124-126 GeV
 - Examined impact of BNN uncertainty
 - Examined impact of uniform scaling

Summary (cont.)

- Ran other general tests:
 - ▶ PCA on high percent error, bad spread cross section points
 - Compared leading order cross sections to neural net predictions
 - Created a sort of relevance detector for masses
- BNN performance improvements:
 - Added more @tf.function decorators
 - Determined GPU now offers speedup
 - ► Fixed PReLU implementation
- Ctrl + S freezes command prompt, Ctrl + Q unfreezes it

Softsusy valid/not valid dataset

- ▶ 500,000 points
 - ▶ 68.17% valid, 31.83% invalid
 - ▶ 20% of data used for test, 16% for validation, 64% for training
 - ▶ Binary classification, 1 is valid, 0 is invalid

Metric used to split	Precision	Recall	f1
Mean - 3sd	0.969	0.891	0.928
Mean	0.940	0.938	0.939
Mean + 3sd	0.900	0.968	0.933

split	Valid flagged invalid/ total flagged invalid		Valid flagged invalid/ total valid
Mean	2.81%	94.8%	6.23%
Mean + 3sd	1.20%	90.8%	2.57%

Softsusy mass data

Generated by screening 1,250,000 parameter combinations through the valid/not valid classifier with mean + 3sd as the split metric

Particle	% error	Particle	% error	Particle	% error
MW	0.00281%	Chi_2+	0.833%	stau_1	5.42%
h0	0.516%	d_L	0.608%	nu_tau_L	2.52%
H0	0.827%	U_L	0.611%	d_R	0.900%
A0	1.96%	s_L	0.608%	u_R	0.734%
H+	0.827%	c_L	0.611%	s_R	0.900%
g	1.81%	b_1	2.73%	c_R	0.734%
Chi_1	118.1%	t_1	3.50%	b_2	1.48%
Chi_2	9.91%	e_1	1.22%	†_2	1.40%
Chi_1+	23.5%	nue_L	1.24%	e_R	2.47%
Chi_3	6.68%	mu_L	1.22%	mu_R	2.47%
Chi_4	3.41%	numu_L	1.24%	stau_2	1.63%

Softsusy mass data (cont.)

Degenerate masses	Percent difference	Degenerate masses	Percent difference
d_L, s_L	0.000933%	d_R, s_R	0.0019%
u_L, c_L	0.000923%	u_R, c_R	0.00028%
e_1, mu_L	0.015%	e_R, mu_R	0.039%
nue_L, numu_L	0.015%		

Softsusy mass data (cont.)

- ▶ BNN did not effectively train on the full mass data, the step size to obtain non zero acceptance rate was very small.
 - Trained on just the higgs data instead
 - After 2050 epochs:
 - ▶ Percent error test: 0.312%
 - > % inside 3 sd test: 57.2%
 - ► Epoch 2050 squared error train: 0.00516
 - ► Epoch 2050 squared error validate: 0.02358

Heatmaps:

General Tests

- ► PCA on points with a high percent error and bad distribution fit with cross section network revealed that these are all randomly scattered, as the principle eigenvalue was only ever responsible for about 8% of the variance
- ► LO vs. BNN prediction for cross sections:

General Tests (cont.)

- Relevance detectors:
 - ► Trained a normal neural net on a single mass
 - Added a layer at the beginning connecting each input to a single neuron with a weight and a tanh activation function
 - Trained for a few epochs, ploted activated values of first layer

Goals for next week

- Modify PReLU to accept square root of slope
 - ▶ This allows it to be negative, prevents a discontinuity as 0
 - Normal tensorflow PReLU allows the parameter to be negative, giving a negative slope
- Pretrain a normal neural net with Relu, train a BNN using the modified PReLU
- Integrate relevance detector into BNN
- Regenerate heatmaps using BNN higgs predictor
- Storm T&I and make them turn the second node on