Synchronous counters

- Limitations of asynchronous counters
- Synchronous counter design
- Synchronous counter ICs

Limitation of asynchronous counters

RIPPLE Counters

Limitations: 1. Not suitable for high frequency applications

2. Not suitable for higher mod counters

Synchronous counter design

- All the flip flops are clocked simultaneously using same clock.
- Suitable for high frequency applications
- Designed using sequential circuit design process which can be used for any synchronous circuit designs

1. Design 2-bit synchronous binary UP counter using T ffs

■ Counter states: $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$

State diagram

State table

	\sim					(
	Present state		Next state		Flip-flop inputs	
	A_1	A_0	A_1^{\dagger}	A_0^{\dagger}	TA ₁	TA_0
>	0	0 —	0_	1	0	1
>	0	1	1	0	1	1
∍	1	0	1	1	0	1
	1	1)	0	0	1	1

$$TA_1 = A_0$$

$$TA_0 = 1$$

$$TAI(A_1A0) = A0$$

$$TAi = 1$$

2-bit synchronous binary UP counter using JK ffs: circuit diagram

2. Design 2-bit synchronous binary UP counter using JK ffs

3-bit synchronous binary UP counter using JK ffs contd...

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = 90$$

$$Solve \sim Verify$$

$$J_2 = K_2 = 9,90$$

3. Design 3-bit synchronous binary UP counter (MOD

Present State Next State
$$a_1 \times a_2 + a_1 \times a_2 + a_1 \times a_2 + a_2 + a_1 \times a_2 + a_2$$

$$S_2 = 0_2 0_1 0_0$$
 $R_2 = 0_2 0_1 0_0$
 $R_1 = 0_1 0_0$
 $R_1 = 0_1 0_0$
 $R_2 = 0_2 0_1 0_0$
 $R_1 = 0_1 0_0$
 $R_2 = 0_2 0_1 0_0$
 $R_3 = 0_2 0_1 0_0$
 $R_4 = 0_2 0_1 0_0$
 $R_5 = 0_2 0_1 0_0$
 $R_6 = 0_2 0_1 0_0$
 $R_7 = 0_2 0_1 0_0$
 $R_8 = 0_2 0_1 0_0$
 $R_9 = 0_2 0_1 0_0$
 $R_9 = 0_2 0_1 0_0$

3-bit synchronous binary UP counter (MOD 8)using SR ffs

$$S_0 = S_0$$
 $R_0 = S_0$
 $S_1 = S_1 S_0$ $R_0 = S_1 S_0$
 $S_2 = S_2 S_1 S_0$ $R_2 = S_2 S_1 S_0$

4. Draw the circuit of 3-bit synchronous binary up counter (MOD 8) using Tffs

Analyse the previous examples and draw the circuit directly without the design

MOD 4

5. Design 2-bit synchronous binary down counter (MOD 4) using D ffs

2-bit synchronous binary down counter (MOD 4) using D ffs

6. Design 3-bit synchronous binary down counter (MOD 8) using D ffs

7. Design decade (BCD) synchronous up counter (MOD 10)using T ffs $\rightarrow 4 - 15$

 $(0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 0)$

10 to 15 -> Not required, unused

Decade (BCD) synchronous up counter contd..

Design 3-bit synchronous counter to count according to the given sequence using D ffs. All the undefined/vnosed states should go to state 0.—Self correcting counters.

Design 3-bit synchronous counter to count according to the given sequence using D ffs. All the undefined states should go to next valid/defined state.

8. Design 3-bit gray code counter using JK ffs

3-bit gray code counter using JK ffs

