Matrizes

Produto de matrizes

Definição

Definição

O **produto de matrizes** é uma operação que combina duas matrizes A e B, resultando em uma nova matrizC.

Condição de existência:

Se A é de dimensão $m \times n$ e B é de dimensão $n \times p$, então o produto $C = A \cdot B$ existe e terá dimensão $m \times p$.

Regra de Cálculo

Regra de cálculo

O elemento c_{ij} da matriz resultante é obtido fazendo o **produto escalar** da linha i da matriz A pela coluna j da matriz B.

$$c_{ij} = a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \cdots + a_{in} \cdot b_{nj}$$

Exemplo Prático

Exemplo prático

Sejam:

$$A=egin{bmatrix}1&2\3&4\end{bmatrix},\quad B=egin{bmatrix}2&0\1&3\end{bmatrix}$$

O produto $C = A \cdot B$:

$$C = \begin{bmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 0 + 2 \cdot 3 \\ 3 \cdot 2 + 4 \cdot 1 & 3 \cdot 0 + 4 \cdot 3 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 10 & 12 \end{bmatrix}$$

Propriedades Importantes

Propriedades importantes

Associatividade: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.

Distributividade: $A \cdot (B + C) = A \cdot B + A \cdot C$.

Não comutatividade: em geral, $A \cdot B \neq B \cdot A$.

Matriz identidade: existe uma matriz I tal que $A \cdot I = I \cdot A = A$.

Aplicações Práticas

Aplicações práticas

Resolver sistemas lineares.

Representar transformações lineares (rotação, escala, reflexão).

Usar em computação gráfica e inteligência artificial.

Modelos em economia, engenharia e física.

Resumo Esquemático

Resumo esquemático

Só é possível multiplicar quando número de colunas da 1ª = número de linhas da 2ª.

O resultado terá dimensão (linhas da 1ª) × (colunas da 2ª).

Calculado pelo produto escalar linha × coluna.

Não comutativo.

Usado em várias áreas aplicadas.