

FOS Molecular Data Science 2020

Aging -

a multi-dimensional process: translation from human to models

Vered Raz
Human Genetics
Leiden University Medical centre

When	What: Animal models on ageing	Who	Where
13.30-14.00	Lecture: aging process and models	Vered Raz	
14.00-15.30	Self Study: <u>Mouse</u> <u>model of Ageing</u>	You	
15.30-17.00	Mouse model of Ageing: Presentation and Discussion	You	

Definitions:

- A multifactorial process
- Aging
- Models: human, animals or cellular

Spatial

- Systemic: all tissues are involved vs
- A tissue-specific involvement

Temporal (time-dependent)

- Age of onset
- An age-associated pattern
- Progression: linear or non-linear

Molecular (regulators vs. signatures)

- Key regulators vs. multiple regulators
- Key cellular processes vs. multiple processes

Spatial

- Systemic: all tissues are involved vs
- A tissue-specific involvement

Temporal (time-dependent)

- Age of onset
- An age-associated pattern
- Progression: linear or non-linear

Molecular (regulators vs. signatures)

- Key regulators vs. multiple regulators
- Key cellular processes vs. multiple processes

Prediction models

Aging – definition(s)

Aging – definition(s)

L U M C

Aging – definition(s)

Evolutionary biology:

- 1. An age-dependent or age-progressive decline in intrinsic physiological function, leading to an increase in age-specific mortality rate and a decrease in age-specific reproductive rate.
- 2. an age-progressive loss or de-tuning of **fitness (natural section)** or the *state of adaptation*.

Medical: The process of becoming older, a process that is genetically determined and environmentally modulated leading to an increase in disease risk.

Britannica:

Progressive physiological changes in an organism that lead to a **decline** of **biological functions** and of the organism's ability to adapt to metabolic stress (senescence).

Senescence: A

biological process of growing older in a deleterious (harmful) sense.

WHO:

Biological: a process that is genetically determined and environmentally modulated. Social: life transitions (causes and/or triggers)

Aging in human

Evolutionary biology:

- 1. An age-dependent or age-progressive decline in intrinsic physiological function, leading to a decrease in social function and overall activity.
- 2. an age-progressive loss or de-tuning *adaptation*.

Medical: The process of becoming older, a process that is genetically determined and environmentally modulated leading to an increase in disease risk. — what about the elderly who are are active and healthy?

Britannica:

Progressive physiological changes in an organism that lead to a **decline** of **biological functions** and of the organism's ability to adapt to metabolic stress (senescence).

Senescence: A biological process of growing older in a deleterious (harmful?) sense.

WHO:

Biological: a process that is epi-genetically determined and environmentally modulated. Social: life transitions (causes and/or triggers)

Aging- a multifactorial biological process

Onset

When onset start?
Diagnosis (Biomarkers?)

How to study?

- Chronological age?
- Molecular age?
- Metabolic age?

progression

- Cellular degeneration
- Tissue degeneration
- Organ function
- Tissue and organ communication

Aging-associated disorders

An Age-associated genomic instability

DNA damage

Modified from Andrii I. Rozhok & James DeGregori

Age-associated somatic instability

Møllersen et al., PLoS Genet 2010

An Age-associated genomic instability

DNA damage

Modified from Andrii I. Rozhok & James DeGregori

Age-associated somatic instability

Tissue-specific somatic instability

Møllersen et al., PLoS Genet 2010

Tissue specific age-associated changes

Study design: Healthy individuals Longitudinal MRI scan (2-3 per subject) Age-range: (48-87)

Tissue specific age-associated changes

Study design: Healthy individuals Longitudinal MRI scan (2-3 per subject) Age-range: (48-87)

A tissue-specific functional decline within the humn brain

Age (years)

Age-associated shoulder diseases

PMID: <u>26733863</u>

Progression of RC tear is age-associated

PMID: <u>26733863</u>

Spatial (MRI)

- All tissues or
- A tissue specific involvement

Temporal

- Age of onset
- Age-associated pattern

Molecular

- Key regulators vs. multiple regulators
- Key cellular processes vs. multiple processes

Prediction models

Assessment of aging using molecular data system

Large dataset (omics) - statistics

The *globaltest*: determine whether a global expression pattern of all genes or a group of genes is significantly related to a feature, such as disease, clinical feature, biological pathway or physiological condition.

J. Goeman

Age-associated expression profiles in human organs

The globaltest in cross-sectional RNA microarray

				Effect	size		%खage-	
Tissue 🛚	Nrabf? samples	i Agellangel	<i>P</i> -value⊡	Statistics[Expected	SD?	regulated genes* ?	%age-regulated KEGG pathways
Whole®blood?	1502	42-1022	0.0012	1.28?	0.68?	0.102	22.0?	69.42
Kidney@cortex2	70?	27-92?	0.0022	4.25?	1.42?	0.592	13.32	69.02
Brain@cortex2	302	26-1062	0.004?	8.96?	3.57?	1.352	23.5?	58.27
Vastus? lateralis? muscles?	29?	35-89🛚	0.0152	5.52?	3.70?	0.682	11.72	52.3?
Kidney ?! medulla ?!	60121	29-927	0.1502	2.27?	1.72?	0.572	5.5?	7.02
Rectus ?! abdominis ?! muscles ?!	622	24-83🛚	0.2472	2.00?	1.672	0.782	5.9?	5.32

Globaltest analysis in Aging datasets

Globaltest analysis in Aging datasets

Globaltest analysis in Aging datasets

L U M C

What is a multifactorial process?

- Spatial (RNA expression profiles)
 - all tissues or
 - Tissue specific involvement
- Temporal
 - onset
 - age-associated pattern
- Molecular
 - Key regulators vs. multiple regulators
 - Key cellular processes vs. multiple processes

Prediction models

Age-associated temporal changes: which model is the best?

Average correlation							
Comparison	Fitted	Residuals					
Cubic spline - Quadratic B-spline	0.951	0.998					
Quadratic B-spline - LOESS	0.885	0.994					
LOESS - Cubic spline	0.965	0.996					
Linear - Quadratic B-spline	0.701	0.983					

Average covariance Comparison Fitted Residuals Cubic spline - Quadratic B-spline 0.015 0.173 Quadratic B-spline - LOESS 0.017 0.171LOESS - Cubic spline 0.016 0.170 0.179 Linear - Quadratic B-spline 0.010

Regression models: which to use in aging studies?

PMID: 24524210

Age-associated temporal changes A bio-statistical approach

PMID: 24524210

Age-associated temporal changes A bio-statistical approach

PMID: 24524210

Age

L U M C

What is a multifactorial process?

- Spatial (RNA expression profiles)
 - all tissues or
 - Tissue specific involvement
- Temporal
 - Age of onset (??)
 - Tissue specific age-associated pattern
- Molecular
 - Key regulators vs. multiple regulators
 - Key cellular processes vs. multiple processes

Prediction models

Molecular examples:

Key regulators vs. multiple regulators

Key cellular processes vs. multiple processes

Aging – model organisms

worm

adulthood

Years

Months

Days

Time scale

The choice of the model system

Which model to choose?

Every group gets a different an aging-related assignment:

- Describe the ageing-associated condition (problem): consider tissue specificity, age of onset, progression.
- Discuss potential models for the condition and the tools to develop potential option(s) to study it in order to develop therapy.

Aim: to find the fastest and least expensive path to develop a therapy

Aid: Attached literature

Conditions:

- Sarcopenia :reduced muscle function: muscle weakness and atrophy
- Dementia: reduced cognitive capacity with age
- Autoimmune disorders: reduced ability to distinguish self from nonself (identification of foreign antigens
- Arthrosis: Degeneration of connective tissues

literature:

- Sarcopenia :reduced muscle function: muscle weakness and atrophy 10.1016/j.ijcard.2017.03.152
 https://www.sciencedirect.com/science/article/pii/S0142961215002483
- Dementia: reduced cognitive capacity with age https://doi.org/10.1016/j.neubiorev.2020.02.012 10.1016/j.brainres.2019.146427
- Autoimmune (blistering) disorders: reduced ability to distinguish self from nonself (identification of foreign antigens https://onlinelibrary.wiley.com/doi/full/10.1111/exd.13415
- Arthrosis: Degeneration of connective tissues
- https://www.sciencedirect.com/science/article/abs/pii/S001429991500
 2642