Differential Geometry

Thomas Brosnan

Notes taken in Professor Sergey Frolov's class, Michaelmas Term $2024\,$

"hokay" -Sergey Frolov

Contents

1	Def	finition of a Manifold
	1.1	Regions
	1.2	Differentiable Manifold
	1.3	Abuse of notation
2	Ele	ments of Topology
	2.1	Topological space
		2.1.1 Induced topology
		2.1.2 Continuity
		2.1.3 Homeomorphic
		2.1.4 Topology on a manifold
	2.2	Metric space
		2.2.1 Hausdorff
		2.2.2 Compact
		2.2.3 Connected
	2.3	Orientation
3	Ma	ppings on Manifolds
	3.1	Manifold mappings
	3.2	equivilent manifolds
	3.3	Tangent vector
	3.4	Push forward
	3.5	Directional derivative
	3.6	Riemann metric
4	Ten	nsors
	4.1	Tensor def
	4.2	Operations on Tensors
		4.2.1 Permutation of indices
		4.2.2 Contraction of indicies
		4.2.3 Product of Tensors
	4.3	Co-Vectors
	4.4	Skew-Symmetric Tesnsor

1 Definition of a Manifold

1.1 Regions

• A region ("open set") is a set of D points in \mathbb{R}^n such that together with each point p_0 , D also contains all points sufficiently closer to p_0 , i.e.:

$$\forall p_0 = (x_0^1, \dots, x_0^n) \in D \ \exists \ \epsilon > 0,$$

 $st : p = (x^1, \dots, x^n) \in D, \text{ iff } |x^i - x_0^i| < \epsilon.$

• A region with out a boundary is obtained fro ma region D by adjoining all boundary points to D. The boundary of a region is the set of all boundary points.

1.2 Differentiable Manifold

- A differentiable n-dimensional manifold is a set M together with the following structure on it. The set M is the union of a finite or countably infinite collection of subsets U_q with the following properties:
 - Each subset U_q has defined on it co-ords x_q^{α} , $\alpha = 1, \ldots, n$ called local co-ords by virtue of which U_q is identifiable with a region of Euclidean n-space \mathbb{R}^n with Euclidean co-ords x_q^{α} . The U_q with their co-ord systems are called *charts* or *local coordinate neighborhoods*.
 - Each non-empty intersection $U_q \cap U_p$ of a pair of charts thus has defined on it two co-ord systems, the restriction of x_p^{α} and x_q^{α} . It is required that under each of these coordinatizations the intersection $U_q \cap U_p$ is identifiable with a region of \mathbb{R}^n and that each of these co-ordinate systems be expressible in terms of the other in a one to one differentiable manner. Thus, if a the transition functions from x_p^{α} to x_q^{α} and back are given by:

$$x_p^{\alpha} = x_p^{\alpha}(x_q^1, \dots, x_q^n), \quad \alpha = 1, \dots, n$$

$$x_q^{\alpha} = x_q^{\alpha}(x_p^1, \dots, x_p^n), \quad \alpha = 1, \dots, n$$

Then the Jacobian $J_{pq} = det(\partial x_p^{\alpha}/\partial x_q^{\alpha})$ is non-zero on $U_p \cap U_q$.

1.3 Abuse of notation

• Regular partial derivative do not have the same "canceling" that total derivative have (dx*dy/dx = dy) But we can restore this property through Einstein summation convention. That is that:

$$\sum_{\gamma=1}^{n} \frac{\partial x_{p}^{\alpha}}{\partial x_{q}^{\gamma}} \frac{\partial x_{q}^{\gamma}}{\partial x_{q}^{\beta}} = \frac{\partial x_{p}^{\alpha}}{\partial x_{q}^{\gamma}} \frac{\partial x_{q}^{\gamma}}{\partial x_{q}^{\beta}} = \delta_{\beta}^{\alpha}$$

2 Elements of Topology

2.1 Topological space

- A topological space is a set X of points of which certain subsets called *open sets* of the topological space, are distinguished, these open sets have to satisfy:
 - The intersection of any two (and hence of any finite collection) open sets should again be an open set.
 - The union of any collection of open sets must again be open.
 - The empty set and the whole set X must be open.
- The compliment of any open set is called a *closed* set of the topological space.

In Euclidean space \mathbb{R}^n the "Euclidean topology" is the usual one where the open sets are the open regions.

2.1.1 Induced topology

• Given any subset $A \in \mathbb{R}^n$, the *induced topology* on A is that where the open sets are the intersections $A \cap U$, where U ranges over all open sets of \mathbb{R}^n .

2.1.2 Continuity

• A map $f: X \to Y$ of one topological space to another is called *continuous* if the complete inverse image $f^{-1}(U)$ of every open set $U \subset Y$ is open in X.

2.1.3 Homeomorphic

• Two topological space are *topologically equivalent* or *homeomorphic* if there is a one to one and onto map (bijective) between them, such that it and its inverse are continuous.

2.1.4 Topology on a manifold

• The topology on a manifold M is given by the following specifications of the open sets. In every local co-ordinate neighborhood U_q the open regions are to be open in the topology on M; the totality of open sets of M is then obtained by admitting as open, also arbitrary unions countable collections of such regions, i.e. by closing under countable unions.

2.2 Metric space

- A metric space is a set which comes equipped with a "distance function" i.e. a real-valued function $\rho(x,y)$, defined on pairs x,y of its elements and having the following properties:
 - Symmetry: $\rho(x,y) = \rho(y,x)$.
 - Positivity: $\rho(x,x) = 0$, $\rho(x,y) > 0$ if $x \neq y$.
 - The triangle inequality: $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

2.2.1 Hausdorff

• A topological space is called *Hausdorff* if any two points are contained in disjoint open sets. Any metric space is Hausdorff because the open balls of radius $\rho(x,y)/3$ with centers at c,y do not intersect.

All topological spaces we consider will be Hausdorff.

2.2.2 Compact

• A topological space X is said to be compact if every countable collection of open sets covering X contains a finite sub-collection already covering X.

If X is a metric space the compactness is equivalent to the condition that from every sequence of points of X a convergent sub-sequence can be selected.

2.2.3 Connected

• A topological space is connected if any two points can be joined by a continuous path.

2.3 Orientation

- A manifold M is said to be *orientated* of one can choose its atlas (collection of all the charts) so that for every pair U_p, U_q of intersecting co-ordinate neighborhoods the Jacobian of the transition functions is positive.
- We say that the co-ordinate systems x and y define the same orientation if J > 0 and the opposite orientation if J < 0.

3 Mappings on Manifolds

3.1 Manifold mappings

• A mapping $f: M \to N$ is said to be smooth of smoothness class k if for all p, q for which f determines functions $y_q^b(x_p^1, \ldots, x_p^m) = f(x_p^1, \ldots, x_p^m)_p^b$, these functions are, where defined, smooth of smoothness calss k (i.e. all theire partial derivatives up to those of k-th order exist and are continuous).

the smoothness class of f cannot exceed the maximum class of the manifolds.

3.2 equivilent manifolds

The manifolds M and N are said to be smoothly equivilent or diffeomorphic if there is a one to one and onto map f such that both f: M → N and f⁻¹: N → M are smooth of some class k ≥ 1.
 Since f⁻¹ exits then the jacobian J_{pq} ≠ 0 wherever it is defined.

3.3 Tangent vector

• A tangent vector to an m-dim manifold M at an arbritrary point x is represented in terms of local co-ords $x_{-}^{\alpha}p$ by an m tuple ξ^{α} of components which are linked to the components in terms of any oher system x_q^{β} of local co-ords by:

$$\xi_p^{\alpha} = \left(\frac{\partial x_p^{\alpha}}{\partial x_q^{\beta}}\right)_x \xi_q^{\beta}, \quad \forall \ \alpha \tag{3.1}$$

- The set of all tangent vectors to an m-dim manifold M at a point x forms an m-dm vector space $T_x = T_x M$, the tangent space to M at the point x.
- Thus, the velocity at x of any smooth curve M through x is a tangent vector to M at x.

3.4 Push forward

• A smooth map f from M to N gives rise for each x to a *push forward* or an *induced linear* map to tangent spaces:

$$f_*: T_xM \to T_{f(x)}N$$

defined as sending the velocity at x of any smooth curve $x = x(\tau)$ on M to the velocity vector at f(x) of the curve $f(x(\tau))$ on N. If the map f is given by: $y^b = f^b(x^1, \ldots, x^m)$ for $x \in M$ and $y \in N$, then the push forward map f_* is:

$$\xi^{\alpha} \to \eta^b = \frac{\partial f^b}{\partial x^{\alpha}} \xi^{\alpha}.$$

• For a real valued function $f: M - > \mathbb{R}$, the push-forward map f_* corresponding to each $x \in M$ is a real valued linear function on the tangent space to M at x:

$$\xi^a \to \eta = \frac{\partial f}{\partial x^\alpha} \xi^\alpha$$

and it is represented by the gradiant of f at x, and is a co-vector or one form. Thus f_* can be identified with the differential df, in particular:

$$dx_p^\alpha:\xi^\alpha\to\eta=\xi_p^\alpha$$

3.5 Directional derivative

• We can associate with each vector $\xi = (\xi^i)$ a linear differential operator as follows: Since the gradiant $\frac{\partial f}{\partial x^i}$ of a function f is a co-vector, the quantity:

$$\partial_{\xi} f = \xi^i \frac{\partial f}{\partial x^i}$$

is a scalar called the directional derivative of f in the direction of ξ .

• Thus an arbritrary vector ξ corresponds to the operator:

$$\partial_{\xi} = \xi^{i} \frac{\partial}{\partial x^{i}}$$

So we can identify $\frac{\partial}{\partial x^i} \equiv e_i$ as the Canonical basis of the tangent space.

3.6 Riemann metric

• A Riemann metric on a manifold M is a point-depedant, positive-definite quadratic form on the tangent vectors at each point, depending smoothly on the local co-ords of the points.

Thus at each point $x = (x_p^1, ..., x_p^m)$ of each call U_p , the metric is given by a symmetric matric $g_{\alpha\beta}(x_p^1, ..., x_p^m)$, and determines a symmetric scalar product of pairs of tangent vectors at the point x.

$$\left\langle \xi,\eta\right\rangle =g_{\alpha\beta}^{(p)}\xi_{p}^{\alpha}\eta_{p}^{\beta}=\left\langle \eta,\xi\right\rangle ,\quad\left|\xi\right|^{2}=\left\langle \xi,\xi\right\rangle$$

This scalar product is to be co-ordinate independent:

$$g_{\alpha\beta}^{(p)}\xi_p^{\alpha}\eta_p^{\beta} = g_{\alpha\beta}^{(q)}\xi_q^{\alpha}\eta_q^{\beta}$$

And therefor the coefficients $g_{\alpha\beta}^{(p)}$ of the quadratic form transform as:

$$g_{\gamma\delta}^{(q)} = \frac{\partial x_p^{\alpha}}{\partial x_q^{\gamma}} \frac{\partial x_p^{\beta}}{\partial x_q^{\delta}} g_{\alpha\beta}^{(p)}$$
(3.2)

For a psudo-Reimann metric M one just requires the quadratic fom to be nondegenerate. Note that 3.2 can be re-written as:

$$ds^{2} = g_{\alpha\beta}^{(p)} dx_{p}^{\alpha} dx_{p}^{\beta} = g_{\alpha\beta}^{(q)} dx_{q}^{\alpha} dx_{q}^{\beta}$$

Where ds is called a line element, and it is chart-independant. ds is used to measure the distance between two infitesimally close points.

Differential Geometry 4 Tensors

4 Tensors

4.1 Tensor def

• A tensor of type (k, l) and rank k + l on an m-dim manifold M is given each local co-ord system (x_n^i) by a family of functions:

$$^{(p)}T^{i_1,\dots,i_k}_{j_1,\dots,j_l}(x)$$
 of the point x .

In other local co-ord (x_q^i) the components $^{(p)}T_{j_1,\ldots,j_l}^{i_1,\ldots,i_k}(x)$ of the same tensor are:

$${}^{(p)}T^{s_1,\dots,s_k}_{t_1,\dots,t_l}(x) = \frac{\partial x^{s_1}_q}{\partial x^{i_1}_p} \cdots \frac{\partial x^{s_k}_q}{\partial x^{i_k}_p} \frac{\partial x^{j_1}_p}{\partial x^{t_1}_q} \cdots \frac{\partial x^{j_l}_p}{\partial x^{t_l}_q} \cdot {}^{(p)}T^{i_1,\dots,i_k}_{j_1,\dots,j_l}(x)$$

4.2 Operations on Tensors

4.2.1 Permutation of indices

• Let σ be some permutation of $1, 2, \ldots, l$. σ acrs on the ordered tuple (j_1, \ldots, j_l) as $\sigma(j_1, \ldots, j_l) = (j_{\sigma_1}, \ldots, j_{\sigma_l})$. We say that a tensor $\tilde{T}_{j_1, \ldots, j_l}^{i_1, \ldots, i_k}(x)$ =is obtained from a tensor $T_{j_1, \ldots, j_l}^{i_1, \ldots, i_k}(x)$ by means of a permutation σ of the lower indices if at each point of M:

$$\tilde{T}^{i_1,\dots,i_k}_{j_1,\dots,j_l}(x) = T^{i_1,\dots,i_k}_{\sigma(j_1,\dots,j_l)}(x)$$

Permutation of upper indicies is defined similarly.

4.2.2 Contraction of indicies

• By the contraction of a tensor $T_{j_1,\ldots,j_l}^{i_1,\ldots,i_k}(x)$ of type (k,l) with respect to the indcies i_a,j_a we mean the tensor (summation over n):

$$T^{i_1,\dots,i_{k-1}}_{j_1,\dots,j_{l-1}}(x) = T^{i_1,\dots i_{a-1},n,i_{a+1},\dots,i_k}_{j_1,\dots,j_{a-1},n,j_{a+1},\dots,j_l}(x)$$

Of type (k - 1, l - 1)

4.2.3 Product of Tensors

• Given two tensors $T = \left(T_{j_1,\dots,j_l}^{i_1,\dots,i_k}\right)$ of type (k,l) and $P = \left(P_{j_1,\dots,j_q}^{i_1,\dots,i_p}\right)$ of type (p,q), we define tehir product to be the tensor product $S = T \otimes P$ of type (k+p,l+q) with components:

$$S_{j_1,\dots,j_{l+q}}^{i_1,\dots,i_{k+p}} = T_{j_1,\dots,j_l}^{i_1,\dots,i_k} P_{j_{l+1},\dots,j_q}^{i_{k+1},\dots,i_p}$$

This multiplication is *not commutative* but it is associative.

• The result of applying the above three operations to tensors are again tensors.

Differential Geometry 4 Tensors

4.3 Co-Vectors

• Recall that the differential of a function f of x^1, \ldots, x^n corresponding to the incriments dx^i in the x^i is:

$$df = \frac{\partial f}{\partial x^i} dx^i$$

Since dx^i is a vector df has the same value in any co-ord system. In general, given any co-vector (T_i) , the differential form $T_i dx^i$ is invariant under change of chart. We can thus identify $dx^i \equiv e^i$ as the canonical basis of co-vectors or cotangent space.

4.4 Skew-Symmetric Tesnsor

• A skew-symmetric tensor of type (0,k) is a tensor $T_{i_1,...,i_k}$ satisfying:

$$T_{\sigma(i_1,\dots,i_k)} = \mathfrak{s}(\sigma)T_{i_1,\dots,i_k}$$

where for all permutations $\mathfrak{s}(\sigma)$ is the sign function. i.e. $\mathfrak{s}(\sigma) = +1(-1)$ for even(odd) permutation. If two indicies of T_{i_1,\ldots,i_k} are the same then the corresponding component of T_{i_1,\ldots,i_k} is 0. This means if k > n the tensor is automatically 0.

• The standard basis at a given point is:

$$dx^{i_1} \wedge \cdots \wedge dx^{i_k}, \quad i_1 < i_2 < \cdots < i_k$$

Where:

$$dx^{i_1} \wedge \cdots \wedge dx^{i_k} = \sum_{\sigma \in S_k} \mathfrak{s}(\sigma) e^{i\sigma_1} \otimes \cdots \otimes e^{i\sigma_k}$$

Here S_k is the symmetric group. i.e. the group of all permutations of k elements.

• The differential form of the skew-symmetric tensor (T_{i_1,\ldots,i_k}) is:

$$T_{i_1,\dots,i_k}e^{i_1} \otimes \dots \otimes e^{i_k} = \sum_{i_1 < i_2 < \dots < i_k} T_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$
$$= \frac{1}{k!} T_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$$

Where the last step can be made as both $dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ and T_{i_1,\dots,i_k} are anti-symmetric.

4.5 Volume element

• A metric g_{ij} on a manifold is a tensor of type (0,2) and on an oriented manifold of dim(M) = n such a metric gives rise to a *volume element*:

$$T_{i_1,\ldots,i_n} = \sqrt{|g|}\epsilon i_1,\ldots,i_n, \quad g = det(g_{ij})$$

It is covenient to write te volume element in the notation of differential forms:

$$\Omega = \sqrt{|g|} dx^1 \wedge \dots \wedge dx^n$$

If g_{ij} is Riemann then the volume V of M is:

$$V = \int_{M} \Omega = \int_{M} \sqrt{|g|} dx^{1} \wedge \dots \wedge dx^{n}$$