PW: 'Smart' Traffic Lights

By

Asm Nurussafa

Scope of the project

- 1. An autonomous line following car.
- 2. Determining the speed and location of the car.
- 3. Determining the location of the traffic light system.
- 4. Establishing communication with traffic light via MQTT communication.
- 5. Gauging distance from the traffic light.
- 6. Making a decision based on the traffic light state.

Use-case Diagram

Activity Diagram

Sequence Diagram

Traffic Light

- red: the signal stays RED for 15 seconds.
- redYellow: After it stays RED for 15 seconds, the YELLOW light turns on and stays on for 3 seconds.
- green: After YELLOW light stays for 3 seconds, the GREEN light turns on and stays on for 20 sec.
- greenYellow: After Green light stays on for 20 seconds, the YELLOW light turns on and stays on for 4 seconds and goes back to RED.

Making Decision Logic

- ty= time remaining till next state = 15 time elapsed since first triggered to red.
- ty_redYellow = 3 sec (as a buffer time)
- tx = time required to reach the signal at current speed (distance it needs to travel = distance till signal 1 m)
- t_decel = stopping time for the deceleration
- ty + ty_redYellow < tx + t_decel = initiate stop () : the car has to stop and wait for green signal.
- ty+ ty_redYellow > tx+ t_decel: = continue going () the car does not have to stop, since the signal will change within that time.
- Assumptions:
- sensors are accurate.
- message passing are instantaneous.
- -calculations and executions are instantaneous.

State Machine Diagram

UPPAAL Model