

Assessing Instruction Following Capabilities of LLMs

Baidyanath Kundu, Garima Singh, Piyushi Goyal D-INFK, ETH Zurich, Switzerland

1 Introduction

- Large Language Models (LLMs) excel in problem-solving and Instruction-Following (*IF*), making them valuable for many applications.
- As such, several research works have been dedicated to better understand the abilities of LLMs, especially in the context of *IF*.
- This project builds on existing works and performs a comprehensive study on the *IF* capabilities of popular LLMs through 5 different experimental analyses.

2 Experiments

3 Results

3.1 Base Evaluation

	IFEval	InfoB	IFEval	InfoB
	IFEval	IFEval	InfoB	InfoB
GPT4	67	64	61	74
GPT4o	66	51	63	80
Llama 3	52	57	56	69
Mistral	53	43	54	46
Gemma	63	45	54	52

Fully closed-source LLMs take the lead. The GPT4 family greatly outperforms its open counterparts.

Within the open-source models, Llama3 performs the best, followed by Gemma and Mistral.

	Mathwell		MMLU	
	IFEval	InfoB	IFEval	InfoB
GPT4	65	24	47	22
GPT4o	56	28	56	20
Llama 3	42	19	31	14
Mistral	24	22	12	13
Gemma	25	20	21	13

For quantitative instructions, IFEval leads to higher accuracy because it is closer to the true degree of *IF*.

InfoBench suffers from several issues – interpreting judging criteria incorrectly, sensitivity to phrasing of judging criteria, issues with input formatting, etc.

3.3 Step-by-Step Prompting

Models	All at once	Step-by- step	Step-by-step (aided)
Llama 3	42	48	50
Mistral	29	15	18
Gemma	25	12	11

*we report the mean ± std. deviation over 3 runs, std. dev. between 1-3%

Deterioration of accuracy for some LLMs using step-by-step prompting. Possibly due to smaller context windows.

3.2 Instruction v/s Prompt Difficulty

Increasing instruction complexity leads to a quicker decline in accuracy as compared to increasing the base prompt difficulty.

4 Conclusion

- Judge LLM based metrics should be used with caution, they may not fully reflect the *IF* abilities of LLMs.
- Instruction difficulty has a greater impact on *IF* accuracy when compared to the base prompt difficulty.
- The efficacy of prompt engineering techniques is highly dependent on the underlying architecture.

References

- 1. Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. 2023.
- 2. Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei Liu, Pengfei Liu, and Dong Yu. 2024. <u>Infobench: Evaluating instruction following ability in large language medals.</u>
- 3. Bryan R Christ, Jonathan Kropko, and Thomas Hartvigsen. 2024. Mathwell: Generating educational math word problems at scale
- 4. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2021. Measuring massive multitask language understanding