ECE 2101L Electrical Circuit Analysis II Laboratory

Lab 12 and 13 Maximum Power Transfer and Power Factor Correction

Report

Choi Tim Antony Yung May 10, 2020

1 Maximum power transfer

Figure 1: Simulation of the circuit with MATLAB Simulink

Result

 $C=220\,\mu F$ for Partner 3

Variant	Load Impedance Z_L R. ohm X. ohm		Calc Power P, W Q, VAR		Meas Power P, W Q, VAR		Error P, %
$0.5 Z_{L,OPT}$	0.5278600	0.01718051	l NA	NA	34.49	423.2	l NA
$0.8 Z_{L_OPT}$	0.8445760	0.02748882	NA	NA	237.7	2,916	NA
Z_{L-OPT}	1.055720	0.03436103	687.8733	NA	687.9	8,440	0.00
$1.2~Z_{L_OPT}$	1.266864	0.04123323	NA	NA	304.0	3,730	NA
$1.5 \ Z_{L_OPT}$	1.583580	0.05154154	NA	NA	94.04	1,154	NA

Analysis

After changing the $80\,\Omega$ resistor to a $330\,\Omega$ resistor and changing the load inductor and resistor such that the power transfer to load is maximized, the maximum average power increased from $687.9\,\mathrm{W}$ to $1502\,\mathrm{W}$. This is due to a decrease in load impedance and an increase of voltage of the load impedance.

Figure 2: Load Impedance versus Measured Load Power

2 Circuit maximum gain and phase shift Result

Load PF	Meas V1	Meas I1	Meas V2	Meas I2	Meas P	Meas Q
	RMS, V	RMS, A	RMS, V	RMS, A	loss, W	loss, VAR
Original PF 0.72 Corrected PF 0.95		4.911 3.813	229 232.4	$219.4 \\ 169.6$	2630 1980	2700 2020

Analysis

As seen in the above table, the current I1 and I2 decreased as the load draw less apparent power from the source. The voltage V2 decreased as the power dissipated from the wire decrease and the power dissipated from the load increase. As the current decreases, the power dissipated in wire decrease, hence the decrease in power loss.

Figure 3: Simulation of the circuit with original PF = 0.72

Figure 4: Simulation of the circuit with corrected PF = 0.95