Weather Forecasting

ARIMA, Exponential Smoothing and Support Vector Regressiong Model

Jawad Ahmed 20P-0165

National University of Computer and Emerging Sciences

April 30, 2023

Outline

- Introduction
- Research Problem
- 3 Literature Review
- Results
- Conclusion
- 6 Future Work
- References

Introduction

- Weather forecasting is crucial for many industries
- Machine learning has improved forecast accuracy
- More accurate, localized forecasts needed in complex regions
- Project aims to develop tailored ML model for target region
- Data sources include historical weather and satellite imagery
- Goal is to provide accurate forecasts for informed decision making
- Improved forecasts can benefit multiple industries
- Field of Study: Time Series, Machine Learning

Research Problem

- Comparative study of statistical and machine learning models for weather forecasting in Göztepe, İstanbul, Turkey
- 11 years of data (2009-2019) used for developing models based on daily average temperature (dry-wet), air pressure, and wind speed
- ARIMA, Exponential Smoothing, and Support Vector Regression (SVR) models applied and evaluated using different training and test data sets
- Performance evaluated using metrics such as MAE, RMSE, and R2 to compare models
- Machine learning models formulated using different learning methods to analyze reliability for practical weather forecasting

Literature Review

- Previous research used ARIMA and ANFIS models to forecast weather in Istanbul (2000-2008).
- There is limited research on using Exponential Smoothing and Support Vector Regression on more recent data.

Results

Model	Best Param-	MAE	RMSE	R2
	eters			
ARIMA	(1,0,0)	3.520	5.225	-0.010
Exponential	('add',	9.304	9.576	-2.39
Smooth-	'add', 7)			
ing				
Support	'C': 10, 'ep-	2.000	4.570	0.23
Vector	silon': 0.1,			
Regres-	'gamma':			
sion	0.1			

Conclusion

- Support Vector Regression model was the most accurate, with a mean absolute error of 2.000 and an R2 value of 0.23.
- ARIMA Model better then Exponential Smoothing

Future Work

In the future work will apply these models:

- Neural Networks (e.g. LSTM, GRU) for time series prediction
- Prophet, a forecasting library developed by Facebook for time series prediction
- Gaussian Processes for time series prediction
- Hybrid models combining multiple techniques (e.g. ARIMA with machine learning models) for improved accuracy.

References

1 Box, G.E.P. and G.M.Jenkins, 1976. Time Series Analysis: Forecasting and Control. Holden Day Inc. San Francisco, CA.