POMNENJE S KVANTNIMI CELIČNIMI AVTOMATI

Jasmina Pegan, Blaž Rojc

KVANTNI CELIČNI AVTOMATI

Kvantne celice

- 4 pike, 4 tuneli s pregradami, 2 elektrona
- 2 stabilni stanji elektrona na diagonali
- Prosto prehajata med pikami, ko pregrade niso vzpostavljene
- Kvantni celični avtomat
 - Konstrukt iz kvantnih celic
 - Teži k stanju najmanjše energije
 - Možnost organizacije v logično strukturo

PROBLEMATIKA POMNENJA

- Kvantna celica se obnaša nedeterministično
- Skupek celic se postavi v stanje najmanjše energije
- Sama po sebi ne pomni
- Pregrade v tunelih omogočijo zamrznitev stanja
- Smer toka podatkov ni določena
- Potrebujemo konstrukt, ki omogoči pomnenje

CIKEL KVANTNIH CELIC

- Konstrukt iz kvantnih celic z enosmernim tokom podatkov
- 4 urine cone, ki se ciklično izmenjujejo
- V 2 urinih conah so pregrade vzpostavljene, v 2 ne
- Za spreminjanje stanja moramo cikel prekiniti
- Različne implementacije prekinjanja

POMNILNIŠKE CELICE

- Osnovni gradniki kompleksnejših struktur
- Veliko obstoječih implementacij
 - Preizkusili smo 2
- Zanimata nas pravilnost in prostorska kompleksnost

$r \mid s \mid q \parallel D^1 q$			$j \mid k \mid q \parallel D^1 q$								
0	0 0	0	0	0 0	0						
0	0 1	1	0	0 1	1	\underline{t}	q	D^1q	d	$q \parallel D^1 q$	
0	1 0	1	0	1 0	1	0	0	0	0	0 0	
0	1 1	1	0	1 1	1	0	1	1	0	1 0	
1	0 0	0	1	0 0	0	1	0	1	1	0 1	
1	0 1	0	1	0 1	0	1	1	0	1	1 1	
1	1 0	×	1	1 0	1			•	·		
1	$1 \mid 1 \mid$	×	1	1 1	0						
RS celica			JK celica				T celica			D celica	

D CELICA

Implementacija 1

- 68 kvantnih celic
- Uporaba alternirajočih vodil, zasukanih celic
- 1,25 urine periode zamika
- Pričakovano obnašanje

- 43 kvantnih celic
- Brez uporabe zasukanih celic
- 1 urina perioda zamika
- Pričakovano obnašanje

JK CELICA

Implementacija 1

- 90 kvantnih celic
- Uporaba alternirajočih vodil, zasukanih celic
- 1,25 urine periode zamika
- Pričakovano obnašanje

- 78 kvantnih celic
- Brez uporabe zasukanih celic
- 1,5 urine periode zamika
- Pričakovano obnašanje

RS CELICA

Implementacija 1

- 76 kvantnih celic
- Uporaba alternirajočih vodil, zasukanih celic
- 1,25 urine periode zamika
- Pričakovano obnašanje

- 38 kvantnih celic
- Brez uporabe zasukanih celic
- 1 urina perioda zamika za
 Q, 1,25 za Qb
- Pričakovano obnašanje

T CELICA

Implementacija 1

- 92 kvantnih celic
- Uporaba alternirajočih vodil, zasukanih celic
- 1 urina perioda zamika
- Pričakovano obnašanje

- 81 kvantnih celic
- Brez uporabe zasukanih celic
- 1,5 urine periode zamika
 za Q, 1,75 za Qb
- Pričakovano obnašanje

ZAKLJUČEK

- Implementacije delujejo pravilno
- Prvi vir
 - Preprostejše urine cone
 - Nestandardni zamiki
 - Zasukane celice
- Drugi vir:
 - Manj površine
 - Podobne strukture
 - Kompleksnejše oblike urinih con