ITC6000 Database Management Systems CRN 22401

Signature Assignment #4: SQL Complex Query

Submitted to: Professor John C. Chan

Northeastern University Silicon Valley Campus

Submitted by: Sourabh D. Khot

CPS Analytics
NUID 002754952
March 21, 2022

Introduction

As a database designer and developer, I am helping a Donut shop create a mobile application to enable its customers to place orders. I had previously created four tables in Third Normal Form (3NF) form (Table 1), designed a normalized Entity-Relationship (E-R) model in crow's foot notation (Table 2), and created the database. In this report, I will insert dummy data and query the database using both simple and complex join queries using SQL Fiddle.

Table 1. Logical Table Schema

Primary Key	Customer										
Customer_ID	First_Name	Last_Name	Street_	_Address	Apt_No	City	State	ZIP	Mobile_Phone	Home_Phone	Other_Phone
833	John	Smith	615 Th	ird St	302	Lilburn	GA	30047	1234567890	9876543210	6789054321
Primary Key	Primary Key Foreign Key Invoice										
Order_ID	Customer	ID Order	_Date	Special	Notes						
4532	8	333 May 6	, 2014	Please i	Please include plates and napkins.						

Composite	Composite Primary Key			
Foreign Key	Foreign Key	Donut_Ord		
Order_ID	Donut_ID	Qty		
4532	1	1		
4532	2	5		
4532	3	12		
4532	4	3		
4532	5	4		
4532	6	5		

Primary Key		Donut	
Donut_ID	Donut_Name	Donut_Description	Unit_Price
1	Plain	Plain Donut	\$1.50
2	Glazed	Glazed Donut	\$1.75
3	Cinnamon	Cinnamon Donut	\$1.75
4	Chocolate	Chocolate Donut	\$1.75
5	Sprinkle	Sprinkle Donut	\$1.75
6	Gluten-Free	Gluten-Free Donut	\$2.00

Table 2. Entity-Relationship (E-R) model

1. Inserting Data

Database represented by schema and model was created in SQL Fiddle in the earlier work. Now, I will insert dummy data (satisfying data validations) into each table.

A. SQL Code for Inserting Data

```
INSERT INTO Donut
(Donut Name, Donut Description, Unit Price)
VALUES
 ("Plain", "Plain Donut", "1.50"),
 ("Glazed", "Glazed Donut", "1.75"),
 ("Cinnamon","Cinnamon Donut","1.75"),
 ("Chocolate", "Chocolate Donut", "1.75"),
 ("Sprinkle", "Sprinkle Donut", "1.75"),
 ("Gluten-Free", "Gluten-Free Donut", "2.00");
INSERT INTO Customer
(First Name, Last Name, Street Address, Apt No, City, State, ZIP,
Mobile Phone, Home Phone, Other Phone)
VALUES
 ("Adam", "Baut", "695-4588 Ac Av.", "#7", "Chicago", "IL", "44027",
"456-000-3982", NULL, NULL),
 ("John", "Chan", "1007 MLK Jr dr", "#9", "Seattle", "WA", "98122",
"206-000-3982", NULL, NULL),
 ("Jeraldine", "Lee", "275 Gay St", "#409", "Ripley", "TN", "38063",
"920-776-8013","918-724-9024",NULL),
 ("Kermit", "Smith", "109 Oak St", "#881", "Onamia", "MN", "56359",
"904-355-9854", "903-687-7243", "615-906-2930"),
 ("Hung", "Brown", "104 Senna Rd", "#137", "Fitchburg", "MA", "01420",
"607-241-9619", NULL, "405-912-7561");
INSERT INTO Invoice
(Customer ID,Order Date,Special Notes)
VALUES
 ("1","2014-05-06 11:34:21","Please include plates and napkins."),
 ("2","2014-05-07 09:54:49","Please cut each donut in half."),
 ("3","2014-05-07 15:18:23","Please add less sugar."),
 ("1","2014-05-08 10:12:28","Please pack donuts in separate boxes."),
 ("4","2014-05-08 13:16:31",""),
 ("3","2014-05-08 16:25:58","Please don't freeze donuts.");
```

```
INSERT INTO Donut_Order (Order_ID,Donut_ID,Qty)
VALUES
("1","2","3"),
("2","5","3"),
("2","1","2"),
("3","6","2"),
("4","6","2"),
("4","6","2"),
("4","3","2"),
("5","2","5"),
("6","4","2");
```

B. Demonstration for Inserting Data

All the values were inserted, and the schema was successfully built.

2. Simple & Complex Queries

A. SQL Code for Simple Query

Simple SELECT-FROM queries are implemented to display all the data present in the four tables. Since the entire data is to be displayed unfiltered, no 'WHERE' clause is used.

SELECT * FROM Donut; SELECT * FROM Customer; SELECT * FROM Invoice; SELECT * FROM Donut Order;

B. Demonstration for Simple Query

After running the above queries, screenshots of the one-screen view and the full output are given below.

(i) One-Screen View

(ii) Full Output

C. SQL Code for Complex Query

To display all the information from the original 'Sales Order Form' as closely as possible and in a condensed view:

- I have used the 'AS' command to create aliases for column names.
- The 'Line Total' column is computed by multiplying 'Qty' with 'Unit Price'
- The original form shows 'Total' including 10% sales tax totaled at the 'Order ID' level. However, since I am joining all tables in a single view, I am computing the tax-inclusive 'Total' at each 'Donut ID'-'Order ID' level. This view can easily be further combined to get Total at the 'Order ID' level.

```
SELECT Order Date as Date,
    Invoice.Order ID as 'Order ID',
    Invoice.Customer ID AS 'Cust ID',
    First Name AS 'First Name',
    Last Name AS 'First Name',
    Street Address AS 'Street Add.',
    Apt No AS Apt,
    City,
    State,
    ZIP,
    Mobile Phone AS 'Mobile',
    Home Phone AS 'Home',
    Other Phone AS 'Other',
    Qty,
    Donut Order. Donut ID AS 'Donut ID',
    Donut Name AS 'Donut Name',
    Donut Description AS Description,
    Unit Price as 'Unit Price',
    Unit Price*Qty AS 'Line Total',
    '10%' as 'Sales Tax',
    Unit Price*Qty*1.10 AS Total
  FROM Customer JOIN Invoice
      ON Customer.Customer ID = Invoice.Customer ID
  JOIN Donut Order
      ON Invoice.Order ID = Donut Order.Order ID
  JOIN Donut
      ON Donut Order.Donut ID = Donut.Donut ID
  ORDER BY Order Date;
```

D. Demonstration for Complex Query

After running the above queries, screenshots of the one-screen view and the full output are given below.

(i) One-Screen View

(ii) Full Output

Date Order	2014-05- 06T11:34:21Z	2014-05- 07T09:54:49Z	2014-05- 207T09:54:49Z	2014-05- 07T15:18:23Z	2014-05- 08T10:12:28Z	2014-05- 08T10:12:28Z	2014-05- 08T10:12:28Z	2014-05- 5	3:31Z
er Cust	_	2	2	ω	_	_	_	4	ω
First Name	Adam	John	John	Jeraldine	Adam	Adam	Adam	Kermit	Jeraldine
First Name	Baut	Chan	Chan	Lee	Baut	Baut	Baut	Smith	Lee
Street Add.	695- 4588 Ac Av.	1007 MLK Jr dr	1007 MLK Jr dr	275 Gay St	695- 4588 Ac Av.	695- 4588 Ac Av.	695- 4588 Ac Av.	109 Oak St	275 Gay St
Apt	#7	#9	#9	#409	#7	#7	#7	#881	#409
City	Chicago	Seattle	Seattle	Ripley	Chicago	Chicago	Chicago	Onamia	Ripley
State	F	WA	WA	٦	F	F	F	<u>S</u>	Z
ZIP	44027	98122	98122	38063	44027	44027	44027	56359	38063
Mobile	456- 000- 3982	206- 000- 3982	206- 000- 3982	920- 776- 8013	456- 000- 3982	456- 000- 3982	456- 000- 3982	904- 355- 9854	920- 776-
Home	(null)	(null)	(null)	918- 724- 9024	(null)	(null)	(null)	903- 687- 7243	918- 724-
Other	(null)	(null)	(null)	(null)	(null)	(null)	(null)	615- 906- 2930	(null)
Qty	ω	2	ω	2	Ν	Ν	Ν	O	2
Donut	2	_	Si	0	2	ω	0	2	4
Donut Name	Glazed	Plain	Sprinkle	Gluten- Free	Glazed	Cinnamon	Gluten- Free	Glazed	Chocolate
Description	Glazed Donut	Plain Donut	Sprinkle Donut	Gluten-Free Donut	Glazed Donut	Cinnamon Donut	Gluten-Free Donut	Glazed Donut	Chocolate Donut
Unit Price	1.75	1.5	1.75	N	1.75	1.75	2	1.75	1.75
Line Total	5.25	ω	5.25	4	3.5	3.5	4	8.75	3.5
Sales Tax	10%	10%	10%	10%	10%	10%	10%	10%	10%
Total	5.775	3.3	5.775	4.4	3.85	3.85	4.4	9.625	3.85

References

- (n.d.). Retrieved from SQL Fiddle MySQL 5.6: http://sqlfiddle.com/#!9/0c6fc9
- Donut Assignment. (n.d.). Northeastern ITC6000 Resources.
- How to Multiply Two Columns in SQL. (n.d.). Retrieved from LearnSQL.com: learnsql.com/cookbook/how-to-multiply-two-columns-in-sql/
- Random US Address | Best Random Tools. (n.d.). Retrieved from BestRandoms.com: bestrandoms.com/random-address
- Random US, UK, CA Phone Numbers. (n.d.). Retrieved from RandomPhoneNumbers.com: randomphonenumbers.com/
- SQL SELECT Statement. (n.d.). Retrieved from W3Schools: w3schools.com/sql/sql select.asp