Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation

Définitions

Parsing

Résultate

Conclusio

Formalisatio

Annexe

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

Enogad Le Biavant-Frederic

Alain René Lesage MPI

2025

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Parsing

Théorie des type

Resultats

_

Annexe

Karm, 2022

Comment optimiser la vitesse de compilation en fusionnant analyse syntaxique et sémantique ?

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant–

Présentation

générale

Parsing

Théorie des typ

Résultat

Conclusion

Formalisatio

$$\Gamma = \{ \texttt{+}: int \rightarrow int \rightarrow int \}$$
 let $succ = \lambda x. (+x1)$

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Définitions Parsing

Théorie des type

Resultati

_

$$\begin{split} \Gamma &= \{ \texttt{+}: int \rightarrow int \rightarrow int, \ \texttt{x}: \tau \} \\ \texttt{let} \ succ &= \lambda x. (\texttt{+} \ x \ 1) \end{split}$$

$$\begin{cases} x:\tau \end{cases} \bigwedge_{\mathsf{X}} \bigwedge_{\mathsf{Y}} + \\ \{x:\tau \} \bigwedge_{\mathsf{Y}} \bigwedge_{\mathsf{Y}} \bigwedge_{\mathsf{Y}} \begin{cases} x:\tau \end{cases}$$

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant–

Présentation générale

-Définitions

Parsing Théorie des tyn

Résultat:

Conclusion

Formalisatio

$$\Gamma = \{ \texttt{+}: int \rightarrow int \rightarrow int, \ \texttt{x}: \tau \}$$
 let $succ = \lambda x. (\texttt{+} \ x \ 1)$

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Définitions

Parsing Théorie des types

Résultat:

Conclusi

Formalisation

Annexe

$$\Gamma = \{ \texttt{+} : int \rightarrow int, \ \texttt{x} : \tau \}$$
 let $succ = \lambda x. (\texttt{+} \ x \ 1)$

Parsing récursif descendant

succ
$$\{x:\tau\} / \bigwedge \{\tau = int\}$$

$$\times + \{x:\tau\} / \bigwedge$$

$$\times 1$$

Grammaire

```
Optimisation
de la vitesse
de compilation
par la fusion
entre inférence
de types et
analyse
syntaxique
```

Enogad Le Biavant– Frederic

Présentation générale

Définitions

Parsing

57 ...

Formalisation

Anneve

```
program
                 expr
                 abs
expr
                 app
                 letbinding
            := term [\{ term \}]
app
abs
            := "\" id "." expr
               "let" id "=" expr "in" expr
letbinding
term
                 string
                 int
                 bool
                 id
                 "(" expr ")"
```

TT - Définitions

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Définitions

Théorie des types

Résultat

Conclusi

Formalisation

Annexe

Définition de Type : classification de termes (Church). Théorie de travail : Lambda calcul simplement typé (LCST), polymorphique.

let
$$id = \lambda x.x : \forall \sigma \to \sigma$$

Hindley-Milner

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Définitions

Parsing
Théorie des types

D.C. Jan

.

Farmalianti.

Anneve

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma} \text{ var }$$

$$\frac{\Gamma, x: \tau \vdash e: \tau'}{\Gamma \vdash \lambda x. e: \tau \rightarrow \tau'} \text{ abs }$$

$$\frac{\Gamma \vdash f: \tau \to \tau' \qquad \Gamma \vdash e: \tau}{\Gamma \vdash f \ e: \tau'} \ \mathsf{app}$$

Hindley-Milner

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

générale

Parsing

Théorie des types

Résultat

- . .

Anneve

Algorithme W

- Assignation de variables de types aux expressions
- 2 Génération de contraintes
- **3** Substitutions
- **4** Unification
- 5 Instantiation, généralisation

$$\begin{cases} x:\tau \rbrace / \bigwedge \{expr:\beta \rbrace \\ \times \quad \text{expr} \end{cases}$$

$$\{\beta = int, \tau = int \} \uparrow \\ \{x:\tau \rbrace / \bigwedge \\ \times \quad 1 \end{cases}$$

Résultats

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

Définitions

Parsing

Théorie des type

Résultats

Formalisatio

Annexe

$$\mathcal{W}: \tilde{\Gamma} \times Expr \rightarrow Subst \times Type \\ \mathcal{W}^*: \tilde{\Gamma} \times L \rightarrow Subst \times \Gamma \times Expr \times L$$

Machine: i7 5th gen 3.00Ghz

Fichier de test : 1000 premiers nombres de church

Version non optimisée : $\approx 26.37s$

Version optimisée : $\approx 3.88s$

Fichier de test : 10K application de fonction successeur

Version non optimisée : $\approx 1.48s$

Version optimisée : $\approx 1.51s$

Résultats

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentatio

générale

Définitions

Parsing Théorie des ty

Résultats

Conclus

Formalisation

Conclusion

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

générale

Théorie des tyn

Résultat

Conclusion

Formalisatio

Annexe

Bénéfices

Durée inférieure lorsque beaucoup d'unifications

Plus permissif envers les grammaires très imbriquées que les systèmes traditionnels

Formalisation

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentation générale

générale Définitions

Parsing

Résultat

Canalusia

Formalisation

Annexe

Automates d'arbres : $\mathcal{A} = (\mathcal{F}, Q, Q_f, \Delta)$

lacktriangle : Alphabet gradué (fonction d'arité ar)

On peut décrire la grammaire comme une NRTG

Annexe

Optimisation de la vitesse de compilation par la fusion entre inférence de types et analyse syntaxique

> Enogad Le Biavant– Frederic

Présentatio

Définitions

Parsing Théorie des tv

Récultate

_ . .

Formalisatio