We first show the existence. That is, for each postive integer m, $\exists \{a_k\}_{k\geq 1}$ such that $m = \sum_{k=1}^{\infty} a_k f_k$, with the given restrictions. Since $1 = f_1$, the result holds for m = 1. Suppose m > 1 and such a representation exists for each $1 \leq r \leq m$. Let n be chosen so that $f_n \leq m < f_{n+1}$. If $m = f_n$, then the result holds with

$$a_k = \begin{cases} 1, & k = n \\ 0, & k \neq n \end{cases}.$$

Suppose $m > f_n$. Note that $1 \le m - f_n < f_{n-1}$. By the Induction Hypothesis, $m - f_n = \sum_{k=1}^{\infty} b_k f_k$, with the desired restrictions on $\{b_k\}_{k \ge 1}$. Since $m - f_n < f_{n-1}$, we have $b_k = 0$ for $k \ge n - 1$. Hence, if we let $a_k = \begin{cases} 1, & k = n \\ b_k, & k \ne n \end{cases}$, then we have a desired representation for m.

For $n \geq 0$, define

$$g_n = \begin{cases} 0, & n = 0 \\ f_1, & n = 1 \\ g_{n-2} + f_n, & n \ge 2 \end{cases}$$

We show that for each n, $g_{n+1} = f_{n+1}$. This is clear for n < 2. Suppose $n \ge 2$ so that for each $0 \le m < n$, $g_m + 1 = f_{m+1}$. It holds that $g_n + 1 = g_{n-2} + 1 + f_n = f_{n-1} + f_n = f_{n+1}$.

Suppose $\{a_k\}_{k\geq 1}$ is a sequence of 0's and 1's so that for all $k\geq 1$, $\{a_k,a_{k+1}\}\neq \{1\}$, and there is some $r\geq 0$ such that $a_r=1$ if r>0, and $a_k=0$ if k>r. Define $S(\{a_k\}_{k\geq 1}):=\sum_{k=0}^\infty a_kf_k$. I claim that $S(\{a_k\}_{k\geq 1})\leq g_r$. We proceed with induction on r. If r=0, then all a_k are 0 and $S(\{a_k\}_{k\geq 1})=0=g_0$. If r=1, then $S(\{a_k\}_{k\geq 1})=f_1=g_1$. Fix some $r_0>1$ and assume $S(\{a_k\}_{k\geq 1})\leq g_r$ whenever $r< r_0$. Consider $r=r_0$. Define b_k to be 0 if k=r and a_k otherwise. Since $a_{r-1}=0$, we have $b_k=0$ for each $k\geq r-1$. Thus, $S(\{a_k\}_{k\geq 1})=S(\{b_k\}_{k\geq 1})+f_r\leq g_{r-2}+f_r=g_r$.

Lastly, we show that any positive integer m can be written **uniquely** in the given form. It is clear that $1 = f_1$ gives the unique representation for 1. Let m > 1 and assume desired representations are unique for each t = 1, 2, ..., m - 1. Suppose $m = S(\{a_k\}_{k \ge 1}) = S(\{b_k\}_{k \ge 1})$ with the desired restrictions for $\{a_k\}_{k \ge 1}$, $\{b_k\}_{k \ge 1}$. Let $p, q \ge 1$ be chosen so that $1 = a_p = b_q$, $a_k = 0$ for k > p, and $b_k = 0$ for k > q. Assume wlog that $p \le q$. If follows

that $m - f_p = \sum_{k=1}^{p-1} a_k f_k = \sum_{k=1}^{p-1} b_k f_k$. By the Induction Hypothesis, $a_k = b_k$ for k < p, and hence, $a_k = b_k$ for all k, proving the uniqueness.