Teil II

Relationale Datenbanken – Daten als Tabellen

iei

Relationale Datenbanken – Daten als Tabellen

- Relationen für tabellarische Daten
- SQL-Datendefinition
- Grundoperationen: Die Relationenalgebra
- SQL als Anfragesprache
- 5 Änderungsoperationen in SQL

Relationenmodell

Konzeptuell ist die Datenbank eine Menge von Tabellen

WEINE	WeinID	Name	Farbe	Jahrgang	Weingut
	1042	La Rose Grand Cru	Rot	1998	Château La Rose
	2168	Creek Shiraz	Rot	2003	Creek
	3456	Zinfandel	Rot	2004	Helena
	2171	Pinot Noir	Rot	2001	Creek
	3478	Pinot Noir	Rot	1999	Helena
	4711	Riesling Reserve	Weiß	1999	Müller
	4961	Chardonnay	Weiß	2002	Bighorn
EUGER	Weingut	Anbaugeb	iet Re	gion	

ERZEUGER	Weingut	Anbaugebiet	Region
	Creek	Barossa Valley	South Australia
	Helena	Napa Valley	Kalifornien
	Château La Rose	Saint-Emilion	Bordeaux
	Château La Pointe	Pomerol	Bordeaux
	Müller	Rheingau	Hessen
	Bighorn	Napa Valley	Kalifornien

• Tabelle = "Relation"

Darstellung von Relationen und Begriffe

- Fett geschriebene Zeilen: Relationenschema
- Weitere Einträge in der Tabelle: Relation
- Eine Zeile der Tabelle: Tupel
- Eine Spaltenüberschrift: Attribut
- Ein Eintrag: Attributwert

Michael Gertz Datenbanksysteme Sommersemester 2019

Integritätsbedingungen: Schlüssel

- Attribute einer Spalte identifizieren eindeutig gespeicherte Tupel: Schlüsseleigenschaft
- etwa Weingut für Tabelle ERZEUGER

ERZEUGER	Weingut	Anbaugebiet	Region
	Creek	Barossa Valley	South Australia
	Helena	Napa Valley	Kalifornien
	Château La Rose	Saint-Emilion	Bordeaux
	Château La Pointe	Pomerol	Bordeaux
	Müller	Rheingau	Hessen
	Bighorn	Napa Valley	Kalifornien

- auch Attributkombinationen können Schlüssel sein!
- Schlüssel können durch Unterstreichen gekennzeichnet werden

Integritätsbedingungen: Fremdschlüssel

- Schlüssel einer Tabelle können in einer anderen (oder derselben!) Tabelle als eindeutige Verweise genutzt werden: Fremdschlüssel, referenzielle Integrität
- etwa Weingut in WEINE als Verweise auf ERZEUGER
- ein Fremdschlüssel ist ein Schlüssel in einer "fremden" Tabelle

Fremdschlüssel /2

WEINE	WeinID	Name	Farbe	Jahrgang	$ exttt{Weingut} ightarrow exttt{ERZEUGER}$
ĺ	1042	La Rose Grand Cru	Rot	1998	Château La Rose
	2168	Creek Shiraz	Rot	2003	Creek
	3456	Zinfandel	Rot	2004	Helena
	2171	Pinot Noir	Rot	2001	Creek
	3478	Pinot Noir	Rot	1999	Helena
	4711	Riesling Reserve	Weiß	1999	Müller
	4961	Chardonnay	Weiß	2002	Bighorn

ERZEUGER	Weingut	Anbaugebiet	Region
[Creek	Barossa Valley	South Australia
	Helena	Napa Valley	Kalifornien
	Château La Rose	Saint-Emilion	Bordeaux
	Château La Pointe	Pomerol	Bordeaux
	Müller	Rheingau	Hessen
	Bighorn	Napa Valley	Kalifornien

Die Anweisung create table

- Wirkung dieses Kommandos ist sowohl
 - die Ablage des Relationenschemas im Data Dictionary, als auch
 - die Vorbereitung einer "leeren Basisrelation" in der Datenbank

Michael Gertz Datenbanksysteme Sommersemester 2019

Mögliche Wertebereiche in SQL

- integer (oder auch integer4, int),
- smallint (oder auch integer2),
- float(p) (oder auch kurz float),
- decimal(p,q) und numeric(p,q) mit jeweils q Nachkommastellen,
- **character**(n) (oder kurz **char**(n), bei n = 1 auch **char**) für Zeichenketten (Strings) fester Länge n,
- character varying(n) (oder kurz varchar(n) für Strings variabler Länge bis zur Maximallänge n,
- bit(n) oder bit varying(n) analog für Bitfolgen, und
- date, time bzw. timestamp für Datums-, Zeit- und kombinierte Datums-Zeit-Angaben

Beispiel für create table

```
create table WEINE (
   WeinID int not null,
   Name varchar(20) not null,
   Farbe varchar(10),
   Jahrgang int,
   Weingut varchar(20))
```

primary key kennzeichnet Spalte als Schlüsselattribut

Michael Gertz Datenbanksysteme Sommersemester 2019

create table mit Fremdschlüssel

```
create table WEINE (
    WeinID int,
    Name varchar(20) not null,
    Farbe WeinFarbe,
    Jahrgang int,
    Weingut varchar(20),
    primary key(WeinID),
    foreign key(Weingut) references ERZEUGER(Weingut))
```

• foreign key kennzeichnet Spalte als Fremdschlüssel

Nullwerte

- not null schließt in bestimmten Spalten Nullwerte als Attributwerte aus
- Kennzeichnung von Nullwerte in SQL durch null; hier \(\pm\$
- null repräsentiert die Bedeutung "Wert unbekannt", "Wert nicht anwendbar" oder "Wert existiert nicht", gehört aber zu keinem Wertebereich
- null kann in allen Spalten auftauchen, außer in Schlüsselattributen und den mit not null gekennzeichneten

Weiteres zur Datendefinition in SQL

- Neben Primär- und Fremdschlüsseln können in SQL angegeben werden:
 - mit der default-Klausel Defaultwerte für Attribute,
 - mit der create domain-Anweisung benutzerdefinierte Wertebereiche und
 - mit der check-Klausel weitere lokale Integritätsbedingungen innerhalb der zu definierenden Wertebereiche, Attribute und Relationenschemata

Anfrageoperationen auf Tabellen

- Basisoperationen auf Tabellen, die die Berechnung von neuen Ergebnistabellen aus gespeicherten Datenbanktabellen erlauben
- Operationen werden zur sogenannten Relationenalgebra zusammengefasst
- Mathematik: Algebra ist definiert durch Wertebereich sowie darauf definierten Operationen
 - → für Datenbankanfragen entsprechen die Inhalte der Datenbank den Werten, Operationen sind dagegen Funktionen zum Berechnen der Anfrageergebnisse
- Anfrageoperationen sind beliebig kombinierbar und bilden eine Algebra zum "Rechnen mit Tabellen" – die sogenannte relationale Algebra oder auch Relationenalgebra

Relationenalgebra: Übersicht

Michael Gertz Datenbanksysteme Sommersemester 2019 2–14

Selektion σ

• Selektion: Auswahl von Zeilen einer Tabelle anhand eines Selektionsprädikats

$$\sigma_{\texttt{Jahrgang} > 2000}(\texttt{WEINE})$$

WeinID	Name	Farbe	Jahrgang	Weingut
2168	Creek Shiraz	Rot	2003	Creek
3456	Zinfandel	Rot	2004	Helena
2171	Pinot Noir	Rot	2001	Creek
4961	Chardonnay	Weiß	2002	Bighorn

Projektion π

Projektion: Auswahl von Spalten durch Angabe einer Attributliste

$$\pi_{\text{Region}}(\text{ERZEUGER})$$

Region South Australia Kalifornien

Bordeaux Hessen

Die Projektion entfernt doppelte Tupel.

Natürlicher Verbund M

 Verbund (engl. join): verknüpft Tabellen über gleichbenannte Spalten, indem er jeweils zwei Tupel verschmilzt, falls sie dort gleiche Werte aufweisen

WEINE ⋈ ERZEUGER

WeinID	Name	 Weingut	Anbaugebiet	Region
1042	La Rose Grand Cru	 Ch. La Rose	Saint-Emilion	Bordeaux
2168	Creek Shiraz	 Creek	Barossa Valley	South Australia
3456	Zinfandel	 Helena	Napa Valley	Kalifornien
2171	Pinot Noir	 Creek	Barossa Valley	South Australia
3478	Pinot Noir	 Helena	Napa Valley	Kalifornien
4711	Riesling Reserve	 Müller	Rheingau	Hessen
4961	Chardonnay	 Bighorn	Napa Valley	Kalifornien

 Das Weingut "Château La Pointe" ist im Ergebnis verschwunden → Tupel, die keinen Partner finden (dangling tuples), werden eliminiert

Michael Gertz Datenbanksysteme Sommersemester 2019 2–17

Kreuzprodukt ×

- Der natürliche Verbund entartet zum Kreuzprodukt (engl. *cross product*), wenn die beiden Relationen keine gemeinsamen Attribute haben.
- $R \times S$: Hierbei wird jedes Tupel der Relation R mit jedem Tupel der Relation S veknüpft, und es entstehen |R| * |S| Ergebnistupel.

Beispiel: gegeben zwei Relationen *R* und *S*:

Α	В
12	Foo
18	Bar

Х	Υ	Z
HD	400	12
KA	120	11
MA	19	18

Ergebnis zu $R \times S$:

Α	В	X	Υ	Z
12	Foo	HD	400	12
12	Foo	KA	120	11
12	Foo	MA	19	18
18	Bar	HD	400	12
18	Bar	KA	120	11
18	Bar	MA	19	18

Kombination von Operationen

 π Name,Farbe,Weingut $(\sigma_{Jahrgang}>_{2000}$ (WEINE) \bowtie $\sigma_{Region='Kalifornien'}$ (ERZEUGER))

ergibt

Name	Farbe	Weingut
Zinfandel	Rot	Helena
Chardonnay	Weiß	Bighorn

Umbenennung β

• Anpassung von Attributnamen mittels Umbenennung:

WEINLISTE	Name	EMPFEHLUNG	Wein
	La Rose Grand Cru		La Rose Grand Cru
	Creek Shiraz		Riesling Reserve
	Zinfandel		Merlot Selection
	Pinot Noir		Sauvignon Blanc
	Riesling Reserve	'	-

• Angleichen durch:

 $\beta_{\text{Name}\leftarrow\text{Wein}}$ (EMPFEHLUNG)

Mengenoperationen

- Vereinigung $r_1 \cup r_2$ von zwei Relationen r_1 und r_2 : sammelt die Tupelmengen zweier Relationen unter einem gemeinsamen Schema auf
- Attributmengen(/listen) beider Relationen müssen identisch sein

WEINLISTE $\cup \beta_{\text{Name}\leftarrow \text{Wein}}$ (EMPFEHLUNG)

Name

La Rose Grand Cru Creek Shiraz Zinfandel Pinot Noir Riesling Reserve Merlot Selection Sauvignon Blanc

Mengenoperationen /2

• Differenz $r_1 - r_2$ eliminiert die Tupel aus der ersten Relation, die auch in der zweiten Relation vorkommen

$$\texttt{WEINLISTE} - \beta_{\texttt{Name} \leftarrow \texttt{Wein}}(\texttt{EMPFEHLUNG})$$

ergibt:

Name

Creek Shiraz Zinfandel Pinot Noir

Mengenoperationen /3

• Durchschnitt $r_1 \cap r_2$: ergibt die Tupel, die in beiden Relationen gemeinsam vorkommen

WEINLISTE
$$\cap \beta_{\text{Name}\leftarrow \text{Wein}}(\text{EMPFEHLUNG})$$

liefert:

Name

La Rose Grand Cru Riesling Reserve

SQL-Anfrage als Standardsprache

Anfrage an eine einzelne Tabelle

```
select Name, Farbe
from WEINE
where Jahrgang = 2002
```

- SQL hat Multimengensemantik Duplikate in Tabellen werden in SQL nicht automatisch unterdrückt!
- Mengensemantik durch distinct

```
select distinct Name
from WEINE
```

Verknüpfung von Tabellen

Kreuzprodukt als Basisverknüpfung

```
select *
from WEINE, ERZEUGER
```

Verbund durch Operator natural join

```
select *
from WEINE natural join ERZEUGER
```

Verbund alternativ durch Angabe einer Verbundbedingung!

```
select *
from WEINE, ERZEUGER
where WEINE.Weingut = ERZEUGER.Weingut
```

Kombination von Bedingungen

Ausdruck in Relationenalgebra

```
\pi_{\text{Name},\text{Farbe},\text{Weingut}}(\sigma_{\text{Jahrgang}>2000} \text{ (WEINE)} \bowtie \sigma_{\text{Region='Kalifornien'}} \text{ (ERZEUGER)})
```

Anfrage in SQL

```
select Name, Farbe, WEINE.Weingut
from WEINE, ERZEUGER
where Jahrgang > 2000 and
    Region = 'Kalifornien' and
    WEINE.Weingut = ERZEUGER.Weingut
```

Mengenoperationen in SQL

- Vereinigung in SQL explizit mit union
- Differenzbildung durch geschachtelte Anfragen

```
select *
from WINZER
where Name not in (
    select Nachname
    from KRITIKER)
```

Änderungsoperationen in SQL

- insert: Einfügen eines oder mehrerer Tupel in eine Basisrelation oder Sicht
- update: Ändern von einem oder mehreren Tupel in einer Basisrelation oder Sicht
- delete: Löschen eines oder mehrerer Tupel aus einer Basisrelation oder Sicht
- Lokale und globale Integritätsbedingungen müssen bei Änderungsoperationen automatisch vom System überprüft werden

Die update-Anweisung

Syntax:

```
update basisrelation
set attribut<sub>1</sub> = ausdruck<sub>1</sub>,
    ...
    attribut<sub>n</sub> = ausdruck<sub>n</sub>
    [ where bedingung ]
```

Beispiel für update

WEINE

ΙE	WeinID	Name	Farbe	Jahrgang	Weingut	Preis
	2168	Creek Shiraz	Rot	2003	Creek	7.99
	3456	Zinfandel	Rot	2004	Helena	5.99
	2171	Pinot Noir	Rot	2001	Creek	10.99
	3478	Pinot Noir	Rot	1999	Helena	19.99
	4711	Riesling Reserve	Weiß	1999	Müller	14.99
	4961	Chardonnay	Weiß	2002	Bighorn	9.90

```
update WEINE
set Preis = Preis * 1.10
where Jahrgang < 2000</pre>
```

Beispiel für update: neue Werte

WEINE

E	WeinID	Name	Farbe	Jahrgang	Weingut	Preis
	2168	Creek Shiraz	Rot	2003	Creek	7.99
	3456	Zinfandel	Rot	2004	Helena	5.99
	2171	Pinot Noir	Rot	2001	Creek	10.99
	3478	Pinot Noir	Rot	1999	Helena	21.99
	4711	Riesling Reserve	Weiß	1999	Müller	16.49
	4961	Chardonnay	Weiß	2002	Bighorn	9.90

Weiteres zu update

Realisierung von Eintupel-Operation mittels Primärschlüssel:

```
update WEINE
set Preis = 7.99
where WeinID = 3456
```

Änderung der gesamten Relation:

```
update WEINE
set Preis = 11
```

Die delete-Anweisung

Syntax:

```
delete
from basisrelation
[ where bedingung ]
```

• Löschen eines Tupels in der WEINE-Relation:

```
delete from WEINE
where WeinID = 4711
```

Weiteres zu delete

• Standardfall ist das Löschen mehrerer Tupel:

```
delete from WEINE
where Farbe = 'Weiß'
```

• Löschen der gesamten Relation:

```
delete from WEINE
```

Weiteres zu delete /2

- Löschoperationen können zur Verletzung von Integritätsbedingungen führen!
- Beispiel: Verletzung der Fremdschlüsseleigenschaft, falls es noch Weine von diesem Erzeuger gibt:

```
delete from ERZEUGER
where Anbaugebiet = 'Hessen'
```

Die insert-Anweisung

Syntax:

```
insert
into basisrelation
  [ (attribut<sub>1</sub>, ..., attribut<sub>n</sub>) ]
values (konstante<sub>1</sub>, ..., konstante<sub>n</sub>)
```

• optionale Attributliste ermöglicht das Einfügen von unvollständigen Tupeln

insert-Beispiele

```
insert into ERZEUGER (Weingut, Region)
values ('Wairau Hills', 'Marlborough')
```

nicht alle Attribute angegeben --- Wert des fehlenden Attribut Land wird null

```
insert into ERZEUGER
values ('Château Lafitte', 'Medoc', 'Bordeaux')
```

Michael Gertz Datenbanksysteme Sommersemester 2019 2–37

Einfügen von berechneten Daten

Syntax:

```
insert
into basisrelation
     [ (attribut<sub>1</sub>, ..., attribut<sub>n</sub>) ]
     SQL-anfrage
```

Beispiel:

```
insert into WEINE (
    select ProdID, ProdName, 'Rot', ProdJahr,
    'Château Lafitte'
    from LIEFERANT
    where LName = 'Wein-Kontor' )
```

Zusammenfassung

- Relationenmodell: Datenbank als Sammlung von Tabellen
- Integritätsbedingungen im Relationenmodell
- Tabellendefinition in SQL
- Relationenalgebra: Anfrageoperatoren
- Grundkonzepte von SQL-Anfragen und -Änderungen