DEEP LEARNING

AUTOENCODERS

CONTENIDOS

01 INTRODUCCIÓN

O3 AUTOENCODER DENOISING

O2 AUTOENCODER LINEAL

AUTOENCODER VARIACIONAL SIMPLE

AUTOENCODER

Es un tipo de arquitectura de redes neuronales que pertenece al grupo de métodos de aprendizaje no supervisados. Son la base de algunos modelos de redes neuronales generativas.

AUTOENCODERS IMPLEMENTADOS

LINEAL

DENOISING

VARIACIONAL

EJERCICIO 1A

Implementar un Autoencoder básico para las imágenes binarias de la lista de caracteres del archivo "font.h".

- Plantear una arquitectura de red que permita representar los datos de entrada en dos dimensiones.
- Realizar el gráfico en dos dimensiones que muestre los datos de entrada en el espacio latente.
- Mostrar cómo la red puede generar una nueva letra que no pertenece al conjunto de entrenamiento.

REPRESENTACIÓN CONJUNTO DE DATOS INICIAL

15 iteraciones

error 0.001

15 iteraciones

error 0.001

130 iteraciones

error 0.001

15 iteraciones

[35 25 15 10 2 10 15 25 35]

[35 25 15 2 15 25 35]

[35 25 2 25 35]

50 iteraciones

[35 25 15 10 2 10 15 25 35]

[35 25 15 2 15 25 35]

[35 25 2 25 35]

Desplazamiento dentro de la capa latente

CONCLUSIONES

- A mayor cantidad de capas, más tarda el algoritmo.
- No hay un número correcto de capas.
- El gráfico bidimensional de la capa latente nos muestra qué letras tienen sus componentes principales similares.
- Con un conjunto de entrada muy grande (todo el alfabeto), el algoritmo no logra entender. Ni 15 ni 130 iteraciones son suficientes.
- Con conjuntos de datos más reducidos tiene éxito.
- La nueva letra generada se parece más a la letra que tiene más cerca.

O1 AUTOENCODER DENOISING

EJERCICIO 1B

Sobre el mismo dataset, implementar una variante que implemente un "Denoising Autoencoder".

- Plantear una arquitectura de red conveniente para esta tarea. Explicar la elección.
- Distorsionen las entradas en diferentes niveles y estudien la capacidad del Autoencoder de eliminar el ruido.

AUTOENCODER DENOISING

CONCLUSIONES

- Se logra asociar el valor ruidoso al valor original.
- Los valores con más ruido no se corresponden al valor original.
- A mayor cantidad de iteraciones, el resultado mejora notablemente.
- A mayor cantidad de neuronas en la capa latente, el resultado mejora.

AUTOENCODER VARIACIONAL SIMPLE

EJERCICIO 2

Elegir un conjunto de datos e intentar utilizar el Autoencoder para generar una nueva muestra que ustedes puedan juzgar que pertenece al conjunto de datos que le presentaron al autoencoder.

• Modificar el autoencoder planteando un esquema para poder solucionar el problema de la representación en el espacio latente.

CONCLUSIONES

- Los datos con características similares se agrupan juntos en el espacio latente.
- En el espacio latente se generan nuevas figuras, que son mezcla de los inputs.
- En el caso del conjunto numérico, si bien se puede distinguir cada número no hay una separación notable entre todos.
- En el caso del conjunto de indumentaria se puede ver que hay dos grupos muy marcados.

MUCHAS GRACIAS