

Data Sheet No. PD60019 Rev.P

IR2130/IR2132(J)(S) & (PbF)

3-PHASE BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for all channels
- Over-current shutdown turns off all six drivers
- Independent half-bridge drivers
- Matched propagation delay for all channels
- 2.5V logic compatible
- Outputs out of phase with inputs
- Cross-conduction prevention logic
- Also available LEAD-FREE

Description

The IR2130/IR2132(J)(S) is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-cur-

Product Summary

Voffset	600V max.
I _O +/-	200 mA / 420 mA
V _{OUT}	10 - 20V
t _{on/off} (typ.)	675 & 425 ns
Deadtime (typ.)	2.5 µs (IR2130) 0.8 µs (IR2132)

Packages

rent or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to V_{S0}. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.

Symbol	Definition	Min.	Max.	Units	
V _{B1,2,3}	High Side Floating Supply Voltage	High Side Floating Supply Voltage			
V _{S1,2,3}	High Side Floating Offset Voltage		V _{B1,2,3} - 25	$V_{B1,2,3} + 0.3$	
V _{HO1,2,3}	High Side Floating Output Voltage		V _{S1,2,3} - 0.3	$V_{B1,2,3} + 0.3$	
V _{CC}	Low Side and Logic Fixed Supply Voltage		-0.3	25	
V _{SS}	Logic Ground		V _{CC} - 25	V _{CC} + 0.3	
V _{LO1,2,3}	Low Side Output Voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3 &	ITRIP)	V _{SS} - 0.3	(V _{SS} + 15) or	V
				$(V_{CC} + 0.3)$	
				whichever is	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FALUE Output Valtage	\/ 0.2	lower		
V _{FLT}	FAULT Output Voltage	V _{SS} - 0.3	$V_{CC} + 0.3$ $V_{CC} + 0.3$		
V _{CAO}	Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage				
V _{CA} -				V _{CC} + 0.3	V/ns
dV _S /dt	Allowable Offset Supply Voltage Transient		_	1.5	V/IIS
P _D	Package Power Dissipation @ TA≤+25°C (28 Lead DIP)			1.6	W
	(28 Lead SOIC)				VV
Dth	Thermal Desigtance, Junction to Ambient	(44 Lead PLCC)	_	2.0	
Rth _{JA}	Thermal Resistance, Junction to Ambient	(28 Lead DIP)	_	83 78	°C/W
		(28 Lead SOIC)	_		-C/VV
<u> </u>	(44 Lead PLCC)		_	63	
TJ	Junction Temperature			150	20
T _S	Storage Temperature	-55	150	. ℃	
TL	Lead Temperature (Soldering, 10 seconds)	-	300		

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to V_{S0} . The V_{S} offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.

Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High Side Floating Supply Voltage	V _{S1,2,3} + 10	V _{S1,2,3} + 20	
V _{S1,2,3}	High Side Floating Offset Voltage	Note 1	600	
V _{HO1,2,3}	High Side Floating Output Voltage	V _{S1,2,3}	V _{B1,2,3}	
V _{CC}	Low Side and Logic Fixed Supply Voltage	10	20	
V _{SS}	Logic Ground	-5	5	
V _{LO1,2,3}	Low Side Output Voltage	0	V _{CC}	
V _{IN}	Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP)	V _{SS}	V _{SS} + 5	V
V_{FLT}	FAULT Output Voltage	V _{SS}	V _{CC}	
V_{CAO}	Operational Amplifier Output Voltage	V _{SS}	V _{SS} + 5	
V _{CA} -	Operational Amplifier Inverting Input Voltage	V _{SS}	V _{SS} + 5	
T _A	Ambient Temperature	-40	125	°C

Note 1: Logic operational for V_S of $(V_{S0}$ - 5V) to $(V_{S0}$ + 600V). Logic state held for V_S of $(V_{S0}$ - 5V) to $(V_{S0}$ - $V_{BS})$. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, $V_{BS1,2,3}$) = 15V, $V_{S0,1,2,3}$ = V_{SS} , C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-On Propagation Delay	11	500	675	850		
t _{off}	Turn-Off Propagation Delay	12	300	425	550		V _{IN} = 0 & 5V
t _r	Turn-On Rise Time	13	_	80	125		$V_{S1,2,3} = 0$ to 600V
t _f	Turn-Off Fall Time	14	_	35	55		
t _{itrip}	ITRIP to Output Shutdown Prop. Delay	15	400	660	920		V _{IN} , V _{ITRIP} = 0 & 5V
t _{bl}	ITRIP Blanking Time	_	_	400	_	ns	V _{ITRIP} = 1V
t _{flt}	ITRIP to FAULT Indication Delay	16	335	590	845		V_{IN} , $V_{ITRIP} = 0 & 5V$
t _{flt,in}	Input Filter Time (All Six Inputs)	_	_	310	_		V _{IN} = 0 & 5V
t _{fltclr}	LIN1,2,3 to FAULT Clear Time	17	6.0	9.0	12.0		V _{IN} , V _{ITRIP} = 0 & 5V
DT	Deadtime (IR2130)	18	1.3	2.5	3.7	μs	\/ _ 0 % 5\/
	(IR2132)	18	0.4	0.8	1.2		$V_{IN} = 0 \& 5V$
SR+	Operational Amplifier Slew Rate (+)	19	4.4	6.2	-	.,,	
SR-	Operational Amplifier Slew Rate (-)	20	2.4	3.2		V/µs	

NOTE: For high side PWM, HIN pulse width must be $\geq 1.5 \mu sec$

Static Electrical Characteristics

 $V_{BIAS}\left(V_{CC},V_{BS1,2,3}\right)=15V,\ V_{S0,1,2,3}=V_{SS}\ \text{and}\ T_A=25^{\circ}C\ \text{unless otherwise specified.}$ The V_{IN},V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six logic input leads: $\overline{HIN1,2,3}$ & $\overline{LIN1,2,3}$. The V_O and I_O parameters are referenced to $V_{S0,1,2,3}$ and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "0" Input Voltage (OUT = LO)	21	2.2	_		V	
V_{IL}	Logic "1" Input Voltage (OUT = HI)	22	_	_	0.8	V	
V _{IT,TH+}	ITRIP Input Positive Going Threshold	23	400	490	580		
V _{OH}	High Level Output Voltage, VBIAS - VO	24	_	_	100	mV	$V_{IN} = 0V, I_{O} = 0A$
V _{OL}	Low Level Output Voltage, VO	25	_	_	100		$V_{IN} = 5V, I_{O} = 0A$
I_{LK}	Offset Supply Leakage Current	26	_	_	50		$V_{B} = V_{S} = 600V$
I _{QBS}	Quiescent V _{BS} Supply Current	27	_	15	30	μΑ	$V_{IN} = 0V \text{ or } 5V$
I _{QCC}	Quiescent V _{CC} Supply Current	28	_	3.0	4.0	mA	$V_{IN} = 0V \text{ or } 5V$
I _{IN+}	Logic "1" Input Bias Current (OUT = HI)	29	_	450	650		$V_{IN} = 0V$
I _{IN-}	Logic "0" Input Bias Current (OUT = LO)	30	_	225	400	μA	$V_{IN} = 5V$
I _{ITRIP+}	"High" ITRIP Bias Current	31	_	75	150		ITRIP = 5V
I _{ITRIP} -	"Low" ITRIP Bias Current	32	_	_	100	nA	ITRIP = 0V
V _{BSUV+}	V _{BS} Supply Undervoltage Positive Going	33	7.5	8.35	9.2		
	Threshold						
V _{BSUV} -	V _{BS} Supply Undervoltage Negative Going	34	7.1	7.95	8.8		
	Threshold					V	
V _{CCUV+}	V _{CC} Supply Undervoltage Positive Going	35	8.3	9.0	9.7	V	
	Threshold						
V _{CCUV} -	V _{CC} Supply Undervoltage Negative Going	36	8.0	8.7	9.4		
	Threshold						
R _{on,FLT}	FAULT Low On-Resistance	37	_	55	75	Ω	

International

TOR Rectifier

Static Electrical Characteristics -- Continued

 V_{BIAS} (V_{CC}, V_{BS1,2,3}) = 15V, V_{S0,1,2,3} = V_{SS} and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six logic input leads: $\overline{HIN1,2,3}$ & $\overline{LIN1,2,3}$. The V_O and I_O parameters are referenced to V_{S0,1,2,3} and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.

Symbol	Definition	Figure	Min.	Тур.	Max.	Units	Test Conditions
I _{O+}	Output High Short Circuit Pulsed Current	38	200	250	_		$V_O = 0V, V_{IN} = 0V$
							PW ≤ 10 µs
I _{O-}	Output Low Short Circuit Pulsed Current	39	420	500	_	mA	$V_0 = 15V, V_{IN} = 5V$
							PW ≤ 10 µs
Vos	Operational Amplifer Input Offset Voltage	40	_	_	30	mV	$V_{S0} = V_{CA} = 0.2V$
I _{CA} -	CA- Input Bais Current	41	_	_	4.0	nA	$V_{CA-} = 2.5V$
CMRR	Op. Amp. Common Mode Rejection Ratio	42	60	80	_		V _{S0} =V _{CA} =0.1V & 5V
PSRR	Op. Amp. Power Supply Rejection Ratio	43	55	75	_	dB	$V_{S0} = V_{CA} = 0.2V$
							V _{CC} = 10V & 20V
V _{OH,AMP}	Op. Amp. High Level Output Voltage	44	5.0	5.2	5.4	V	$V_{CA} = 0V, V_{S0} = 1V$
V _{OL,AMP}	Op. Amp. Low Level Output Voltage	45	_	_	20	mV	$V_{CA} = 1V, V_{S0} = 0V$
I _{SRC,AMP}	Op. Amp. Output Source Current	46	2.3	4.0	_		$V_{CA} = 0V, V_{S0} = 1V$
							$V_{CAO} = 4V$
I _{SRC,AMP}	Op. Amp. Output Sink Current	47	1.0	2.1	_		$V_{CA} = 1V, V_{S0} = 0V$
						mA	$V_{CAO} = 2V$
I _{O+,AMP}	Operational Amplifier Output High Short	48	_	4.5	6.5		$V_{CA} = 0V, V_{S0} = 5V$
	Circuit Current						$V_{CAO} = 0V$
I _{O-,AMP}	Operational Amplifier Output Low Short	49	_	3.2	5.2		$V_{CA-} = 5V, V_{S0} = 0V$
	Circuit Current						$V_{CAO} = 5V$

Lead Assignments

Functional Block Diagram

Lead Definitions

Symbol	Description
HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3	Logic inputs for low side gate driver output (LO1,2,3), out of phase
FAULT	Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
Vcc	Low side and logic fixed supply
ITRIP	Input for over-current shutdown
CAO	Output of current amplifier
CA-	Negative input of current amplifier
Vss	Logic ground
V _{B1,2,3}	High side floating supplies
HO1,2,3	High side gate drive outputs
V _{S1,2,3}	High side floating supply returns
LO1,2,3	Low side gate drive outputs
V _{S0}	Low side return and positive input of current amplifier

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Deadtime Waveform Definitions

Figure 4. Input/Output Switching Time Waveform Definitions

Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions

Figure 5.5 Input Filter Function

Figure 6. Diagnostic Feedback Operational Amplifier Circuit

Figure 7. Operational Amplifier Slew Rate Measurement

Figure 8. Operational Amplifier Input Offset Voltage Measurement

 $\begin{aligned} &\text{Measure V}_{\text{CAO1}} \text{ at V}_{\text{S0}} = 0.1 \text{V} \\ &\text{V}_{\text{CAO2}} \text{ at V}_{\text{S0}} = 5 \text{V} \end{aligned}$ $&\text{CMRR} = -20 * \text{LOG} \left| \frac{\left(\text{V}_{\text{CAO1}} \text{-} 0.1 \text{V} \right) - \left(\text{V}_{\text{CAO2}} \text{-} 5 \text{V} \right)}{4.9 \text{V}} \right| \text{ (dB)}$

Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements

Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements

Figure 11A. Turn-On Time vs. Temperature

Figure 11C. Turn-On Time vs. Voltage

Figure 12B. Turn-Off Time vs. Supply Voltage

Figure 11B. Turn-On Time vs. Supply Voltage

Figure 12A. Turn-Off Time vs. Temperature

Figure 12C. Turn-Off Time vs. Input Voltage

Figure 13A. Turn-On Rise Time vs. Temperature

Figure 14A. Turn-Off Fall Time vs. Temperature

Figure 15A. ITRIP to Output Shutdown Time vs. Temperature

Figure 13B. Turn-On Rise Time vs. Voltage

Figure 14B. Turn-Off Fall Time vs. Voltage

Figure 15B. ITRIP to Output Shutdown Time vs. Voltage

Figure 16A. ITRIP to FAULT Indication Time vs.
Temperature

Figure 16B. ITRIP to $\overline{\textbf{FAULT}}\,$ Indication Time vs. Voltage

Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature

Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage

Figure 18A. Deadtime vs. Temperature (IR2130)

Figure 18B. Deadtime vs. Voltage (IR2130)

Figure 18C. Deadtime vs. Temperature (IR2132)

Figure 19A. Amplifier Slew Rate (+) vs. Temperature

Figure 20A. Amplifier Slew Rate (-) vs. Temperature

Figure 18D. Deadtime vs. Voltage (IR2132)

Figure 19B. Amplifier Slew Rate (+) vs. Voltage

Figure 20B. Amplifier Slew Rate (-) vs. Voltage

Figure 21A. Logic "0" Input Threshold vs. Temperature

Figure 22A. Logic "1" Input Threshold vs. Temperature

Figure 23A. ITRIP Input Positive Going Threshold vs. Temperature

Figure 20B. Logic "0" Input Threshold vs. Voltage

Figure 22B. Logic "1" Input Threshold vs. Voltage

Figure 23B. ITRIP Input Positive Going Threshold vs. Voltage

Figure 24A. High Level Output vs. Temperature

Figure 25A. Low Level Output vs. Temperature

Figure 26A. Offset Supply Leakage Current vs. Temperature

Figure 24B. High Level Output vs. Voltage

Figure 25B. Low Level Output vs. Voltage

Figure 26B. Offset Supply Leakage Current vs. Voltage

Figure 27A. V_{BS} Supply Current vs. Temperature

Figure 27B. V_{BS} Supply Current vs. Voltage

Figure 28A. V_{CC} Supply Current vs. Temperature

Figure 28B. V_{CC} Supply Current vs. Voltage

Figure 29A. Logic "1" Input Current vs. Temperature

Figure 29A. Logic "1" Input Current vs. Voltage

Figure 30A. Logic "0" Input Current vs. Temperature

Figure 30B. Logic "0" Input Current vs. Voltage

Figure 31A. "High" ITRIP Current vs. Temperature

Figure 31B. "High" ITRIP Current vs. Voltage

Figure 32A. "Low" ITRIP Current vs. Temperature

Figure 32B. "Low" ITRIP Current vs. Voltage

Figure 33. V_{BS} Undervoltage (+) vs. Temperature

Figure 35. V_{CC} Undervoltage (+) vs. Temperature

Figure 37A. FAULT Low On Resistance vs.
Temperature

Figure 34. V_{BS} Undervoltage (-) vs. Temperature

Figure 36. V_{CC} Undervoltage (-) vs. Temperature

Figure 37B. FAULT Low On Resistance vs. Voltage

Figure 38A. Output Source Current vs. Temperature

Figure 39A. Output Sink Current vs. Temperature

Figure 40A. Amplifier Input Offset vs. Temperature

Figure 38B. Output Source Current vs. Voltage

Figure 39B. Output Sink Current vs. Voltage

Figure 40B. Amplifier Input Offset vs. Voltage

Figure 41A. CA- Input Current vs. Temperature

Figure 42A. Amplifier CMRR vs. Temperature

Figure 43A. Amplifier PSRR vs. Temperature

Figure 41B. CA- Input Current vs. Voltage

Figure 42B. Amplifier CMRR vs. Voltage

Figure 43B. Amplifier PSRR vs. Voltage

Figure 44A. Amplifier High Level Output vs. Temperature

Figure 45A. Amplifier Low Level Output vs. Temperature

Figure 46A. Amplifier Output Source Current vs. Temperature

Figure 44B. Amplifier High Level Output vs. Voltage

Figure 45B. Amplifier Low Level Output vs. Voltage

Figure 46B. Amplifier Output Source Current vs. Voltage

5.00
4.00
4.00
7
4.00
1.00
10
12
14
16
18
20
V_{CC} Supply Voltage (V)

Figure 47A. Amplifier Output Sink Current vs. Temperature

Figure 47B. Amplifier Output Sink Current vs. Voltage

Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature

Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltage

Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature

Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage

Figure 50. Maximum VS Negative Offset vs. V_{BS} Supply Voltage

Figure 51. IR2130/IR2132 TJ vs. Frequency (IRF820) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 53. IR2130/IR2132 TJ vs. Frequency (IRF840) $R_{GATE} = 15\Omega, V_{CC} = 15V$

Figure 52. IR2130/IR2132 TJ vs. Frequency (IRF830) $R_{GATE} = 20\Omega$, $V_{CC} = 15V$

Figure 54. IR2130/IR2132 T_J vs. Frequency (IRF450) $R_{GATE} = 10\Omega, V_{CC} = 15V$

Figure 55. IR2130J/IR2132J T_J vs. Frequency (IRGPC20KD2) $R_{GATE} = 33\Omega$, $V_{CC} = 15V$

Figure 57. IR2130J/IR2132J T_J vs. Frequency (IRGPC40KD2) $R_{GATE} = 15\Omega$, $V_{CC} = 15V$

Figure 56. IR2130J/IR2132J T_J vs. Frequency (IRGPC30KD2) $R_{GATE} = 20\Omega$, $V_{CC} = 15V$

Figure 58. IR2130J/IR2132J T_J vs. Frequency (IRGPC50KD2) $R_{GATE} = 10\Omega$, $V_{CC} = 15V$

Case outlines

Case outline

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

28-Lead PDIP IR2130 order IR2130 28-Lead SOIC IR2130S order IR2130S 28-Lead PDIP IR2132 order IR2132 28-Lead SOIC IR2132S order IR2132S 44-Lead PLCC IR2130J order IR2130J 44-Lead PLCC IR2132J order IR2132J

Leadfree Part

28-Lead PDIP IR2130 order IR2130PbF 28-Lead SOIC IR2130S order IR2130SPbF 28-Lead PDIP IR2132 order IR2132PbF 28-Lead SOIC IR2132S order IR2132SPbF 44-Lead PLCC IR2130J order IR2130JPbF 44-Lead PLCC IR2132J order IR2132JPbF

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 4/2/2004