Kriging prediction for manifold-valued data

Generated by Doxygen 1.8.14

Contents

1	Wha	ıt is Maı	nifoldgstat Package	1
2	Hier	archica	Index	3
	2.1	Class	Hierarchy	3
3	Clas	s Index		5
	3.1	Class	_ist	5
4	File	Index		7
	4.1	File Lis	it	7
5	Clas	s Docu	mentation	9
	5.1	Coordi	nates Class Reference	9
		5.1.1	Detailed Description	9
		5.1.2	Constructor & Destructor Documentation	9
			5.1.2.1 Coordinates()	9
		5.1.3	Member Data Documentation	10
			5.1.3.1 _coords	10
	5.2	design	_matrix::AdditiveDM Class Reference	10
		5.2.1	Detailed Description	10
		5.2.2	Member Function Documentation	11
			5.2.2.1 compute_design_matrix() [1/2]	11
			5.2.2.2 compute_design_matrix() [2/2]	11
	5.3	design	_matrix::Coord1DM Class Reference	12
		5.3.1	Detailed Description	12

ii CONTENTS

	5.3.2	Member Function Documentation	12
		5.3.2.1 compute_design_matrix() [1/2]	12
		5.3.2.2 compute_design_matrix() [2/2]	13
5.4	design	_matrix::Coord2DM Class Reference	13
	5.4.1	Detailed Description	14
	5.4.2	Member Function Documentation	14
		5.4.2.1 compute_design_matrix() [1/2]	14
		5.4.2.2 compute_design_matrix() [2/2]	14
5.5	design	_matrix::DesignMatrix Class Reference	15
	5.5.1	Detailed Description	15
	5.5.2	Member Function Documentation	15
		5.5.2.1 compute_design_matrix() [1/2]	15
		5.5.2.2 compute_design_matrix() [2/2]	16
5.6	design	_matrix::InterceptDM Class Reference	16
	5.6.1	Detailed Description	17
	5.6.2	Member Function Documentation	17
		5.6.2.1 compute_design_matrix() [1/2]	17
		5.6.2.2 compute_design_matrix() [2/2]	17
5.7	distanc	es::Distance Class Reference	18
	5.7.1	Detailed Description	18
	5.7.2	Member Function Documentation	18
		5.7.2.1 compute_distance()	18
		5.7.2.2 create_distance_matrix()	19
		5.7.2.3 create_distance_vector()	19
5.8	distanc	es::EuclDist Class Reference	20
	5.8.1	Detailed Description	20
	5.8.2	Member Function Documentation	20
		5.8.2.1 compute_distance()	20
5.9	distanc	es::GeoDist Class Reference	21
	5.9.1	Detailed Description	21

CONTENTS

	5.9.2	Member Function Documentation	21
		5.9.2.1 compute_distance()	21
	5.9.3	Member Data Documentation	22
		5.9.3.1 Earth_R	22
		5.9.3.2 eps_dbl	22
5.10	distanc	es_manifold::Chol Class Reference	22
	5.10.1	Detailed Description	23
	5.10.2	Member Function Documentation	23
		5.10.2.1 compute_distance()	23
5.11	distanc	es_manifold::DistanceManifold Class Reference	23
	5.11.1	Detailed Description	24
	5.11.2	Member Function Documentation	24
		5.11.2.1 compute_distance()	24
5.12	distanc	es_manifold::Frobenius Class Reference	25
	5.12.1	Detailed Description	25
	5.12.2	Member Function Documentation	25
		5.12.2.1 compute_distance()	25
5.13	distanc	es_manifold::LogEuclidean Class Reference	26
	5.13.1	Detailed Description	26
	5.13.2	Member Function Documentation	26
		5.13.2.1 compute_distance()	26
5.14	distanc	es_manifold::SqRoot Class Reference	27
	5.14.1	Detailed Description	27
	5.14.2	Member Function Documentation	27
		5.14.2.1 compute_distance()	27
5.15	distanc	es_tplane::Chol Class Reference	28
	5.15.1	Detailed Description	28
	5.15.2	Member Function Documentation	28
		5.15.2.1 norm()	28
		5.15.2.2 set_members()	29

iv CONTENTS

5.16	distanc	es_tplane::DistanceTplane Class Reference	29
	5.16.1	Detailed Description	30
	5.16.2	Member Function Documentation	30
		5.16.2.1 compute_distance()	30
		5.16.2.2 norm()	30
		5.16.2.3 set_members()	31
5.17	distanc	es_tplane::Frobenius Class Reference	31
	5.17.1	Detailed Description	32
	5.17.2	Member Function Documentation	32
		5.17.2.1 norm()	32
		5.17.2.2 set_members()	32
5.18	distanc	es_tplane::FrobeniusScaled Class Reference	33
	5.18.1	Detailed Description	33
	5.18.2	Member Function Documentation	33
		5.18.2.1 norm()	33
		5.18.2.2 set_members()	34
	5.18.3	Member Data Documentation	34
		5.18.3.1 _SigmaInv	34
		5.18.3.2 _p	34
5.19	generio	c_factory::Factory< AbstractProduct, Identifier, Builder > Class Template Reference	35
	5.19.1	Detailed Description	36
	5.19.2	Member Function Documentation	36
		5.19.2.1 create()	36
5.20	generio	c_factory::Proxy< Factory, ConcreteProduct > Class Template Reference	36
	5.20.1	Detailed Description	37
5.21	map_fu	Inctions::expMapChol Class Reference	38
	5.21.1	Detailed Description	38
	5.21.2	Member Function Documentation	38
		5.21.2.1 map2manifold()	38
		5.21.2.2 set_members()	39

CONTENTS

		5.21.2.3 set_tolerance()	39
!	5.21.3	Member Data Documentation	39
		5.21.3.1 _tolerance_map_cor	39
		5.21.3.2 _Sigma	40
5.22 1	map_fu	Inctions::expMapFrob Class Reference	40
!	5.22.1	Detailed Description	40
!	5.22.2	Member Function Documentation	40
		5.22.2.1 map2manifold()	40
		5.22.2.2 set_members()	41
		5.22.2.3 set_tolerance()	41
!	5.22.3	Member Data Documentation	41
		5.22.3.1 _sqrtSigma	41
		5.22.3.2 _sqrtSigmaInv	42
5.23	map_fu	Inctions::expMapLogEucl Class Reference	42
!	5.23.1	Detailed Description	42
!	5.23.2	Member Function Documentation	42
		5.23.2.1 map2manifold()	42
		5.23.2.2 set_members()	43
		5.23.2.3 set_tolerance()	43
!	5.23.3	Member Data Documentation	43
		5.23.3.1 _Sigma	43
5.24 ।	map_fu	ınctions::expMapSqRoot Class Reference	44
;	5.24.1	Detailed Description	44
!	5.24.2	Member Function Documentation	44
		5.24.2.1 map2manifold()	44
		5.24.2.2 set_members()	45
		5.24.2.3 set_tolerance()	45
!	5.24.3	Member Data Documentation	45
		5.24.3.1 _Sigma	45
5.25 1	map_fu	ınctions::exponentialMap Class Reference	46

vi

	5.25.1	Detailed Description	46
	5.25.2	Member Function Documentation	46
		5.25.2.1 map2manifold()	46
		5.25.2.2 set_members()	47
		5.25.2.3 set_tolerance()	47
5.26	map_fu	unctions::logarithmicMap Class Reference	48
	5.26.1	Detailed Description	48
	5.26.2	Member Function Documentation	48
		5.26.2.1 map2tplane()	48
		5.26.2.2 set_members()	49
		5.26.2.3 set_tolerance()	49
5.27	map_fu	unctions::logMapChol Class Reference	49
	5.27.1	Detailed Description	50
	5.27.2	Member Function Documentation	50
		5.27.2.1 map2tplane()	50
		5.27.2.2 set_members()	51
		5.27.2.3 set_tolerance()	51
	5.27.3	Member Data Documentation	51
		5.27.3.1 _Sigma	51
		5.27.3.2 _tolerance_map_cor	51
5.28	map_fu	unctions::logMapFrob Class Reference	52
	5.28.1	Detailed Description	52
	5.28.2	Member Function Documentation	52
		5.28.2.1 map2tplane()	52
		5.28.2.2 set_members()	53
		5.28.2.3 set_tolerance()	53
	5.28.3	Member Data Documentation	53
		5.28.3.1 _sqrtSigma	53
		5.28.3.2 _sqrtSigmaInv	54
5.29	map_fu	unctions::logMapLogEucl Class Reference	54

CONTENTS vii

	5.29.1	Detailed Description	54
	5.29.2	Member Function Documentation	54
		5.29.2.1 map2tplane()	54
		5.29.2.2 set_members()	55
		5.29.2.3 set_tolerance()	55
	5.29.3	Member Data Documentation	55
		5.29.3.1 _Sigma	56
5.30	map_fu	unctions::logMapSqRoot Class Reference	56
	5.30.1	Detailed Description	56
	5.30.2	Member Function Documentation	56
		5.30.2.1 map2tplane()	56
		5.30.2.2 set_members()	57
		5.30.2.3 set_tolerance()	57
	5.30.3	Member Data Documentation	57
		5.30.3.1 _Sigma	58
5.31	model_	fit::Model Class Reference	58
	5.31.1	Detailed Description	59
	5.31.2	Member Function Documentation	59
		5.31.2.1 update_model()	59
	5.31.3	Member Data Documentation	59
		5.31.3.1 _data_tspace	59
		5.31.3.2 _design_matrix_model	59
		5.31.3.3 _design_matrix_tot	59
		5.31.3.4 _distance_Manifold_name	59
		5.31.3.5 _N	60
		5.31.3.6 _p	60
		5.31.3.7 _num_cov	60
		5.31.3.8 _num_coeff	60
		5.31.3.9 _beta_matrix	60
		5.31.3.10 _fitted_values	60

viii CONTENTS

		5.31.3.11 _residuals	60
5.32	variogr	am_evaluation::EmpiricalVariogram Class Reference	61
	5.32.1	Detailed Description	62
	5.32.2	Member Function Documentation	62
		5.32.2.1 update_emp_vario()	62
	5.32.3	Member Data Documentation	62
		5.32.3.1 _n_h	62
		5.32.3.2 _N	62
		5.32.3.3 _distanceMatrix	63
		5.32.3.4 _emp_vario_values	63
		5.32.3.5 _hvec	63
		5.32.3.6 _N_hvec	63
		5.32.3.7 _card_h	63
		5.32.3.8 _d	63
		5.32.3.9 _hmax	63
		5.32.3.10 _weights	64
5.33	variogr	am_evaluation::ExpVariogram Class Reference	64
	5.33.1	Detailed Description	64
	5.33.2	Member Function Documentation	65
		5.33.2.1 get_init_par()	65
		5.33.2.2 get_vario_univ()	65
5.34	variogr	am_evaluation::FittedVariogram Class Reference	66
	5.34.1	Detailed Description	67
	5.34.2	Member Function Documentation	67
		5.34.2.1 weighted_median()	67
		5.34.2.2 get_init_par()	67
		5.34.2.3 evaluate_par_fitted_E()	68
		5.34.2.4 evaluate_par_fitted_W()	69
		5.34.2.5 get_vario_univ()	69
		5.34.2.6 get_covario_univ()	70

CONTENTS

			5.34.2.7 get_vario_vec() [1/2]	70
			5.34.2.8 get_vario_vec() [2/2]	70
			5.34.2.9 compute_gamma_matrix()	71
			5.34.2.10 set_parameters()	71
			5.34.2.11 get_covario_vec()	71
		5.34.3	Member Data Documentation	72
			5.34.3.1 _parameters	72
	5.35	variogr	am_evaluation::GaussVariogram Class Reference	72
		5.35.1	Detailed Description	73
		5.35.2	Member Function Documentation	73
			5.35.2.1 get_init_par()	73
			5.35.2.2 get_vario_univ()	73
	5.36	variogr	am_evaluation::SphVariogram Class Reference	74
		5.36.1	Detailed Description	74
		5.36.2	Member Function Documentation	74
			5.36.2.1 get_init_par()	74
			5.36.2.2 get_vario_univ()	75
6	File	Docume	entation	77
	6.1		nates.hpp File Reference	77
		6.1.1	Detailed Description	77
	6.2	Design	Matrix.hpp File Reference	77
		6.2.1	Detailed Description	78
	6.3	Distanc	ce.hpp File Reference	78
		6.3.1	Detailed Description	78
	6.4	Distanc	ceManifold.hpp File Reference	79
		6.4.1	Detailed Description	79
	6.5	Distanc	ceTplane.hpp File Reference	79
		6.5.1	Detailed Description	80
	6.6		calVariogram.hpp File Reference	80
	-	6.6.1	Detailed Description	80
			•	

CONTENTS

6.7	Factory	hpp File F	eference	 	 	. 80
	6.7.1	Detailed	Description	 	 	. 80
6.8	FittedV	ariogram.h	pp File Reference	 	 	. 81
	6.8.1	Detailed	Description	 	 	. 81
6.9	Helpers	s.hpp File	Reference	 	 	. 81
	6.9.1	Detailed	Description	 	 	. 82
	6.9.2	Function	Documentation	 	 	. 82
		6.9.2.1	expMat()	 	 	. 82
		6.9.2.2	logMat()	 	 	. 83
		6.9.2.3	sqrtMat()	 	 	. 83
		6.9.2.4	bigMatrix2VecMatrices()	 	 	. 83
		6.9.2.5	VecMatrices2bigMatrix()	 	 	. 84
		6.9.2.6	Chol_semidef()	 	 	. 84
		6.9.2.7	Chol_decomposition()	 	 	. 84
6.10	Helpers	sFactory.h	p File Reference	 	 	. 85
	6.10.1	Detailed	Description	 	 	. 86
6.11	interfac	e_function	cpp File Reference	 	 	. 86
	6.11.1	Detailed	Description	 	 	. 87
	6.11.2	Function	Documentation	 	 	. 87
		6.11.2.1	get_model()	 	 	. 87
		6.11.2.2	get_kriging()	 	 	. 89
		6.11.2.3	get_model_and_kriging()	 	 	. 90
		6.11.2.4	intrinsic_mean()	 	 	. 93
		6.11.2.5	distance_manifold()	 	 	. 93
6.12	Intrinsio	cMean.hpp	File Reference	 	 	. 94
	6.12.1	Detailed	Description	 	 	. 94
	6.12.2	Function	Documentation	 	 	. 94
		6.12.2.1	intrinsic_mean_C()	 	 	. 95
		6.12.2.2	extrinsic_mean()	 	 	. 96
6.13	MapFu	nctions.hp	File Reference	 	 	. 96
	6.13.1	Detailed	Description	 	 	. 97
6.14	Model.I	hpp File R	ference	 	 	. 97
	6.14.1	Detailed	Description	 	 	. 97
6.15	Proxy.h	pp File Re	erence	 	 	. 98
	6.15.1	Detailed	Description	 	 	. 98

Chapter 1

What is Manifoldgstat Package

R Package to make inference and prediction for manifold-valued data analysis. This package provides a C++ implementation of the functions to create a model, for spatial dependent manifold valued data, in order to perform kriging. In each location, specified by a vector of coordinates ([lat,long], [x,y] or [x,y,z]), the datum is supposed to be a symmetric and positive definite matrix (possibly a correlation matrix). The algorithm exploits a projection of these data on a tangent space, where the tangent point is either provided by the user or computed as intrinsic mean of the data in input.

References

JD. Pigoli, A. Menafoglio & P. Secchi (2016). Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Coordinates	
design_matrix::DesignMatrix	15
design_matrix::AdditiveDM	
design_matrix::Coord1DM	
design_matrix::Coord2DM	
design_matrix::InterceptDM	. 16
distances::Distance	18
distances::EuclDist	. 20
distances::GeoDist	. 21
distances_manifold::DistanceManifold	23
distances_manifold::Chol	. 22
distances_manifold::Frobenius	. 25
distances_manifold::LogEuclidean	. 26
distances_manifold::SqRoot	. 27
distances_tplane::DistanceTplane	29
distances tplane::Chol	. 28
distances_tplane::Frobenius	. 31
distances_tplane::FrobeniusScaled	. 33
generic_factory::Factory< AbstractProduct, Identifier, Builder >	35
generic_factory::Factory< AbstractProduct, Identifier, Builder >	36
generic_factory::Factory< AbstractProduct, Identifier, Builder >	36 46
generic_factory::Factory< AbstractProduct, Identifier, Builder >	36 46 . 38
generic_factory::Factory< AbstractProduct, Identifier, Builder >	36 46 . 38 . 40
generic_factory::Factory< AbstractProduct, Identifier, Builder >	36 46 . 38 . 40 . 42
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl	36 46 . 38 . 40 . 42 . 44
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot	36 46 . 38 . 40 . 42 . 44 48
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap . map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap .	36 46 . 38 . 40 . 42 . 44 48 . 49
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap map_functions::logMapChol	36 46 . 38 . 40 . 42 . 44 48 . 49 . 52
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap map_functions::logMapChol map_functions::logMapFrob	36 46 . 38 . 40 . 42 . 44 48 . 49 . 52 . 54
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap map_functions::logMapChol map_functions::logMapFrob map_functions::logMapFrob map_functions::logMapLogEucl	36 46 38 40 42 44 48 49 52 54
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap map_functions::logarithmicMap map_functions::logMapChol map_functions::logMapFrob map_functions::logMapLogEucl map_functions::logMapApRoot	36 46 38 40 42 44 48 52 52 54 56
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::expMapSqRoot map_functions::logarithmicMap map_functions::logMapChol map_functions::logMapFrob map_functions::logMapFrob map_functions::logMapLogEucl map_functions::logMapApApOpEucl map_functions::logMapApApOpEucl map_functions::logMapSqRoot model_fit::Model	36 46 38 40 42 44 48 49 52 54 56 58
generic_factory::Factory< AbstractProduct, Identifier, Builder > generic_factory::Proxy< Factory, ConcreteProduct > map_functions::exponentialMap map_functions::expMapChol map_functions::expMapFrob map_functions::expMapLogEucl map_functions::logarithmicMap map_functions::logarithmicMap map_functions::logMapChol map_functions::logMapFrob map_functions::logMapLogEucl map_functions::logMapLogEucl map_functions::logMapApSqRoot model_fit::Model variogram_evaluation::EmpiricalVariogram	36 46 38 40 42 44 48 49 52 55 54 56 61 66
generic_factory::Factory	36 46 38 40 42 44 48 52 54 55 61 66 66

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Coordinates	
Class to store the coordinates of the data points	9
design_matrix::AdditiveDM	
Class for the computation of the design_matrix when model_ts=="Additive"	10
design_matrix::Coord1DM	
Class for the computation of the design_matrix when model_ts=="Coord1"	12
design_matrix::Coord2DM	
Class for the computation of the design_matrix when model_ts=="Coord2"	13
design_matrix::DesignMatrix	
Abstract class for the computation of the design_matrix	15
design_matrix::InterceptDM	
Class for the computation of the design_matrix when model_ts=="Intercept"	16
distances::Distance	
Abstract class for the computation of the distance between data locations	18
distances::EuclDist	
Class for the computation of the distance between data locations when $distance=="\leftarrow"$	
Eucldist"	20
distances::GeoDist	
Class for the computation of the distance between data locations when $distance=="\leftarrow"$	
Geodist"	21
distances_manifold::Chol	
Class for the computation of the distance on the manifold when $manifold_metric=="\leftarrow"$	
Chol"	22
distances_manifold::DistanceManifold	
Abstract class for the computation of the distance on the manifold	23
distances_manifold::Frobenius	
Class for the computation of the distance on the manifold when $manifold_metric=="\leftarrow"$	
Frobenius"	25
distances_manifold::LogEuclidean	
Class for the computation of the distance on the manifold when $manifold_metric=="\leftarrow"$	
LogEuclidean"	26
distances_manifold::SqRoot	
Class for the computation of the distance on the manifold when $manifold_metric == "Sq \leftarrow $	
Root "	27

6 Class Index

distances_tplane::Chol	
Class for the computation of the distance on the tangent space when ts_metric=="← Correlation"	28
distances_tplane::DistanceTplane	
Abstract class for the computation of the distance on the tangent space	29
distances_tplane::Frobenius	
Class for the computation of the distance on the tangent space when $ts_metric=="\leftarrow"$	
Frobenius"	31
distances_tplane::FrobeniusScaled	
Class for the computation of the distance on the tangent space when $ts_metric=="\leftarrow"$	
FrobeniusScaled"	33
generic_factory::Factory < AbstractProduct, Identifier, Builder >	
A generic factory	35
generic_factory::Proxy< Factory, ConcreteProduct >	
A simple proxy for registering into a factory	36
map_functions::expMapChol	
Class for the computation of the exponential map when manifold_metric=="←	
Correlation"	38
map_functions::expMapFrob	
Class for the computation of the exponential map when manifold_metric=="←	
Frobenius"	40
map_functions::expMapLogEucl	
Class for the computation of the exponential map when manifold_metric=="Log←"	
Euclidean"	42
map_functions::expMapSqRoot	
Class for the computation of the exponential map when manifold_metric=="SqRoot".	44
map functions::exponentialMap	
Abstract class for the computation of the exponential map	46
map functions::logarithmicMap	
Abstract class for the computation of the logarithmic map	48
map_functions::logMapChol	
Class for the computation of the logarithmic map when manifold_metric=="	
Correlation"	49
map_functions::logMapFrob	
Class for the computation of the logarithmic map when manifold_metric=="	
Frobenius"	52
map_functions::logMapLogEucl	52
Class for the computation of the logarithmic map when manifold_metric=="Log↔	
Euclidean"	54
map_functions::logMapSqRoot	J +
Class for the computation of the logarithmic map when manifold_metric=="SqRoot" .	56
model_fit::Model	50
Class to compute and store the linear model on the tangent space	58
variogram evaluation::EmpiricalVariogram	50
	61
Class for computation and storage of the empirical variogram	61
variogram_evaluation::ExpVariogram	
Class for computation and storage of the fitted variogram when vario_model=="←	
Exponential"	64
variogram_evaluation::FittedVariogram	-00
Abstract class for computation and storage of the fitted variogram	66
variogram_evaluation::GaussVariogram	
Class for computation and storage of the fitted variogram when vario_model=="←	_
Gaussian"	72
variogram_evaluation::SphVariogram	
Class for computation and storage of the fitted variogram when $vario_model=="\leftarrow"$	
Spherical"	74

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

Coordinates.hpp	
Coordinates class	77
DesignMatrix.hpp	
Classes to create the design_matrix according to the model on the tangent space	77
Distance.hpp	
Classes to create the compute the distances between data locations	78
DistanceManifold.hpp	
Classes to compute the distance on the manifold according to its metric	79
DistanceTplane.hpp	
Classes to compute the distance on the tangent space according to its metric	79
Empirical Variogram.hpp	
Class to compute the empirical variogram	80
Factory.hpp	
Factory class	80
FittedVariogram.hpp	
Classes to fit a model variogram (Gaussian, Exponential or Spherical) to an empirical one	81
Helpers.hpp	
Functions to manipulate matrices	81
HelpersFactory.hpp	
Typedefs for the factory	85
interface_function.cpp	
Main functions to create the model and perform kriging, along with functions to compute the distance on the manifold and the intrinsic mean	86
IntrinsicMean.hpp	
Functions to compute intrinsic and extrinsic mean for manifold data	94
MapFunctions.hpp	
Classes to compute the exponential and logarithmic map according to the manifold metric	96
Model.hpp	
Model class	97
Proxy.hpp	
Proxy class	98

8 File Index

Chapter 5

Class Documentation

5.1 Coordinates Class Reference

Class to store the coordinates of the data points.

```
#include <Coordinates.hpp>
```

Public Member Functions

- Coordinates (const std::shared_ptr< const MatrixXd > coords)
 Constructor.
- unsigned int get_N_station () const

Return the number of data points in the analysis.

- const std::shared_ptr< const MatrixXd > get_coords () const
 - Return the matrix of the coordinates.

unsigned int get_n_coords () const

Return the number of coordinates for each data point.

Private Attributes

const std::shared_ptr< const MatrixXd > _coords

5.1.1 Detailed Description

Class to store the coordinates of the data points.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 Coordinates()

```
Coordinates::Coordinates ( {\tt const \ std::shared\_ptr<\ const \ MatrixXd > coords}\ ) \quad [inline]
```

Constructor.

Parameters

coords Matrix co	ntaing the coordinates of the data points
------------------	---

5.1.3 Member Data Documentation

5.1.3.1 _coords

```
const std::shared_ptr<const MatrixXd> Coordinates::_coords [private]
```

Matrix of the coordinates

The documentation for this class was generated from the following files:

- · Coordinates.hpp
- · Coordinates.cpp

5.2 design_matrix::AdditiveDM Class Reference

Class for the computation of the design_matrix when model_ts=="Additive"

```
#include <DesignMatrix.hpp>
```

Inheritance diagram for design_matrix::AdditiveDM:

Public Member Functions

- MatrixXd compute_design_matrix (const Coordinates &coords) const override
 - Compute the design matrix with no covariates besides the coordinates.
- MatrixXd compute_design_matrix (const Coordinates &coords, const MatrixXd &X) const override
 Compute the design matrix with extra covariates besides the coordinates.
- ∼AdditiveDM ()=default

Destructor.

5.2.1 Detailed Description

Class for the computation of the design_matrix when model_ts=="Additive"

5.2.2 Member Function Documentation

5.2.2.1 compute_design_matrix() [1/2]

Compute the design matrix with no covariates besides the coordinates.

Parameters

coords Matrix of the coordinates of the loca
--

Returns

Design matrix

Implements design_matrix::DesignMatrix.

5.2.2.2 compute_design_matrix() [2/2]

Compute the design matrix with extra covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
X	Matrix of the additional covariates for the locations

Returns

Design matrix

 $Implements\ design_matrix:: DesignMatrix.$

The documentation for this class was generated from the following files:

- DesignMatrix.hpp
- DesignMatrix.cpp

5.3 design_matrix::Coord1DM Class Reference

Class for the computation of the design_matrix when model_ts=="Coord1"

```
#include <DesignMatrix.hpp>
```

Inheritance diagram for design_matrix::Coord1DM:

Public Member Functions

- MatrixXd compute_design_matrix (const Coordinates &coords) const override

 Compute the design matrix with no covariates besides the coordinates.
- MatrixXd compute_design_matrix (const Coordinates &coords, const MatrixXd &X) const override
 Compute the design matrix with extra covariates besides the coordinates.
- ~Coord1DM ()=default
 Destructor.

5.3.1 Detailed Description

Class for the computation of the design_matrix when model_ts=="Coord1"

5.3.2 Member Function Documentation

```
5.3.2.1 compute_design_matrix() [1/2]
```

Compute the design matrix with no covariates besides the coordinates.

Parameters

coords Matrix of the coordinates of the locations

Returns

Design matrix

Implements design_matrix::DesignMatrix.

5.3.2.2 compute_design_matrix() [2/2]

Compute the design matrix with extra covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
Χ	Matrix of the additional covariates for the locations

Returns

Design matrix

Implements design_matrix::DesignMatrix.

The documentation for this class was generated from the following files:

- DesignMatrix.hpp
- DesignMatrix.cpp

5.4 design_matrix::Coord2DM Class Reference

Class for the computation of the design_matrix when model_ts=="Coord2"

```
#include <DesignMatrix.hpp>
```

Inheritance diagram for design_matrix::Coord2DM:

Public Member Functions

- MatrixXd compute_design_matrix (const Coordinates &coords) const override
 Compute the design matrix with no covariates besides the coordinates.
- MatrixXd compute_design_matrix (const Coordinates &coords, const MatrixXd &X) const override
 Compute the design matrix with extra covariates besides the coordinates.
- Coord2DM ()=default

Destructor.

5.4.1 Detailed Description

Class for the computation of the design_matrix when model_ts=="Coord2"

5.4.2 Member Function Documentation

```
5.4.2.1 compute_design_matrix() [1/2]
```

Compute the design matrix with no covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
--------	--

Returns

Design matrix

Implements design_matrix::DesignMatrix.

5.4.2.2 compute_design_matrix() [2/2]

Compute the design matrix with extra covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
X	Matrix of the additional covariates for the locations

Returns

Design matrix

Implements design_matrix::DesignMatrix.

The documentation for this class was generated from the following files:

- DesignMatrix.hpp
- DesignMatrix.cpp

5.5 design_matrix::DesignMatrix Class Reference

Abstract class for the computation of the design_matrix.

```
#include <DesignMatrix.hpp>
```

Inheritance diagram for design_matrix::DesignMatrix:

Public Member Functions

- virtual MatrixXd compute_design_matrix (const Coordinates &coords) const =0

 Compute the design matrix with no covariates besides the coordinates.
- virtual MatrixXd compute_design_matrix (const Coordinates &coords, const MatrixXd &X) const =0
 Compute the design matrix with extra covariates besides the coordinates.
- virtual ~DesignMatrix ()=default Destructor.

5.5.1 Detailed Description

Abstract class for the computation of the design matrix.

5.5.2 Member Function Documentation

```
5.5.2.1 compute_design_matrix() [1/2]
```

Compute the design matrix with no covariates besides the coordinates.

Parameters

```
coords Matrix of the coordinates of the locations
```

Returns

Design matrix

Implemented in design_matrix::AdditiveDM, design_matrix::Coord2DM, design_matrix::Coord1DM, and design_matrix::InterceptDM.

5.5.2.2 compute_design_matrix() [2/2]

Compute the design matrix with extra covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
Χ	Matrix of the additional covariates for the locations

Returns

Design matrix

Implemented in design_matrix::AdditiveDM, design_matrix::Coord2DM, design_matrix::Coord1DM, and design_matrix::InterceptDM.

The documentation for this class was generated from the following file:

DesignMatrix.hpp

5.6 design_matrix::InterceptDM Class Reference

Class for the computation of the design_matrix when model_ts=="Intercept"

```
#include <DesignMatrix.hpp>
```

Inheritance diagram for design_matrix::InterceptDM:

Public Member Functions

- MatrixXd compute_design_matrix (const Coordinates &coords) const override
 Compute the design matrix with no covariates besides the coordinates.
- MatrixXd compute_design_matrix (const Coordinates &coords, const MatrixXd &X) const override
 Compute the design matrix with extra covariates besides the coordinates.
- ∼InterceptDM ()=default

Destructor.

5.6.1 Detailed Description

Class for the computation of the design_matrix when model_ts=="Intercept"

5.6.2 Member Function Documentation

5.6.2.1 compute_design_matrix() [1/2]

Compute the design matrix with no covariates besides the coordinates.

Parameters

coords	Matrix of the coordinates of the locations
--------	--

Returns

Design matrix

Implements design_matrix::DesignMatrix.

5.6.2.2 compute_design_matrix() [2/2]

Compute the design matrix with extra covariates besides the coordinates.

Parameters

С	oords	Matrix of the coordinates of the locations
λ	(Matrix of the additional covariates for the locations

Returns

Design matrix

Implements design_matrix::DesignMatrix.

The documentation for this class was generated from the following files:

- · DesignMatrix.hpp
- DesignMatrix.cpp

5.7 distances::Distance Class Reference

Abstract class for the computation of the distance between data locations.

```
#include <Distance.hpp>
```

Inheritance diagram for distances::Distance:

Public Member Functions

- virtual double compute_distance (const Vec &P1, const Vec &P2) const =0
 Compute the distance between two locations.
- std::shared_ptr< const MatrixXd > create_distance_matrix (const Coordinates &coordinates, unsigned int N) const

Compute the distance matrix among a set of locations.

std::vector< double > create_distance_vector (const Coordinates &coordinates, const Vec &new_coord)
 const

Compute the vector of distances between a point and a set of locations.

virtual ∼Distance ()=default

Destructor.

5.7.1 Detailed Description

Abstract class for the computation of the distance between data locations.

5.7.2 Member Function Documentation

5.7.2.1 compute_distance()

Compute the distance between two locations.

Parameters

P1	Vector of coordinates for the first location
P2	Vector of coordinates for the second location

Returns

Points' distance

Implemented in distances::GeoDist, and distances::EuclDist.

5.7.2.2 create_distance_matrix()

```
std::shared_ptr< const MatrixXd > Distance::create_distance_matrix ( const Coordinates & coordinates, unsigned int N ) const
```

Compute the distance matrix among a set of locations.

Parameters

coordinates	Matrix of the coordinates of the locations
N	Number of locations

Returns

Matrix of distances

5.7.2.3 create_distance_vector()

Compute the vector of distances between a point and a set of locations.

Parameters

coordinates	Matrix of the coordinates of the locations
new_coord	Vector of coordinates of the new location

Returns

Vector of distances

The documentation for this class was generated from the following files:

- · Distance.hpp
- Distance.cpp

5.8 distances::EuclDist Class Reference

Class for the computation of the distance between data locations when distance=="Eucldist"

```
#include <Distance.hpp>
```

Inheritance diagram for distances::EuclDist:

Public Member Functions

- double compute_distance (const Vec &P1, const Vec &P2) const override
 Compute the distance between two locations.
- ~EuclDist ()=default
 Destructor.

5.8.1 Detailed Description

Class for the computation of the distance between data locations when distance=="Eucldist"

5.8.2 Member Function Documentation

5.8.2.1 compute_distance()

Compute the distance between two locations.

Parameters

P1	Vector of coordinates for the first location
P2	Vector of coordinates for the second location

Returns

Points' distance

Implements distances::Distance.

The documentation for this class was generated from the following files:

- Distance.hpp
- · Distance.cpp

5.9 distances::GeoDist Class Reference

Class for the computation of the distance between data locations when distance=="Geodist"

```
#include <Distance.hpp>
```

Inheritance diagram for distances::GeoDist:

Public Member Functions

- double compute_distance (const Vec &P1, const Vec &P2) const override
 Compute the distance between two locations.
- ~GeoDist ()=default
 Destructor.

Static Private Attributes

- static double constexpr Earth R = 6371.0
- static double constexpr eps_dbl = std::numeric_limits<double>::epsilon()

5.9.1 Detailed Description

Class for the computation of the distance between data locations when distance=="Geodist"

5.9.2 Member Function Documentation

5.9.2.1 compute_distance()

Compute the distance between two locations.

Parameters

P1	Vector of coordinates for the first location
P2	Vector of coordinates for the second location

Returns

Points' distance

Implements distances::Distance.

5.9.3 Member Data Documentation

5.9.3.1 Earth_R

double constexpr distances::GeoDist::Earth_R = 6371.0 [static], [private]

Earth radius

5.9.3.2 eps_dbl

double constexpr distances::GeoDist::eps_dbl = std::numeric_limits<double>::epsilon() [static],
[private]

Machine epsilon

The documentation for this class was generated from the following files:

- · Distance.hpp
- · Distance.cpp

5.10 distances_manifold::Chol Class Reference

Class for the computation of the distance on the manifold when manifold_metric=="Chol"

#include <DistanceManifold.hpp>

Inheritance diagram for distances_manifold::Chol:

Public Member Functions

double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const override

Compute the distance between two matrices on the manifold.

∼Chol ()=default

Destructor.

5.10.1 Detailed Description

Class for the computation of the distance on the manifold when manifold_metric=="Chol"

Note

The data on the manifold must be correlation matrices

5.10.2 Member Function Documentation

5.10.2.1 compute_distance()

Compute the distance between two matrices on the manifold.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

Implements distances manifold::DistanceManifold.

The documentation for this class was generated from the following files:

- · DistanceManifold.hpp
- · DistanceManifold.cpp

5.11 distances_manifold::DistanceManifold Class Reference

Abstract class for the computation of the distance on the manifold.

#include <DistanceManifold.hpp>

Inheritance diagram for distances_manifold::DistanceManifold:

Public Member Functions

- virtual double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const =0
 Compute the distance between two matrices on the manifold.
- virtual ~DistanceManifold ()=default
 Destructor.

5.11.1 Detailed Description

Abstract class for the computation of the distance on the manifold.

5.11.2 Member Function Documentation

5.11.2.1 compute_distance()

```
virtual double distances_manifold::DistanceManifold::compute_distance ( const MatrixXd & M1, const MatrixXd & M2) const [pure virtual]
```

Compute the distance between two matrices on the manifold.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

Implemented in distances_manifold::Chol, distances_manifold::SqRoot, distances_manifold::LogEuclidean, and distances_manifold::Frobenius.

The documentation for this class was generated from the following file:

• DistanceManifold.hpp

5.12 distances_manifold::Frobenius Class Reference

Class for the computation of the distance on the manifold when manifold_metric=="Frobenius"

```
#include <DistanceManifold.hpp>
```

Inheritance diagram for distances_manifold::Frobenius:

```
distances_manifold::DistanceManifold

distances_manifold::Frobenius
```

Public Member Functions

- double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const override
 Compute the distance between two matrices on the manifold.
- ~Frobenius ()=default
 Destructor.

5.12.1 Detailed Description

Class for the computation of the distance on the manifold when manifold_metric=="Frobenius"

5.12.2 Member Function Documentation

5.12.2.1 compute_distance()

Compute the distance between two matrices on the manifold.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

Implements distances_manifold::DistanceManifold.

The documentation for this class was generated from the following files:

- DistanceManifold.hpp
- · DistanceManifold.cpp

5.13 distances_manifold::LogEuclidean Class Reference

Class for the computation of the distance on the manifold when manifold_metric=="LogEuclidean"

```
#include <DistanceManifold.hpp>
```

Inheritance diagram for distances_manifold::LogEuclidean:

```
distances_manifold::DistanceManifold

distances_manifold::LogEuclidean
```

Public Member Functions

- double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const override
 Compute the distance between two matrices on the manifold.
- ~LogEuclidean ()=default Destructor.

5.13.1 Detailed Description

Class for the computation of the distance on the manifold when manifold_metric=="LogEuclidean"

5.13.2 Member Function Documentation

5.13.2.1 compute_distance()

Compute the distance between two matrices on the manifold.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

Implements distances_manifold::DistanceManifold.

The documentation for this class was generated from the following files:

- · DistanceManifold.hpp
- DistanceManifold.cpp

5.14 distances_manifold::SqRoot Class Reference

Class for the computation of the distance on the manifold when manifold_metric=="SqRoot"

```
#include <DistanceManifold.hpp>
```

Inheritance diagram for distances manifold::SqRoot:

Public Member Functions

- double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const override
 Compute the distance between two matrices on the manifold.
- ~SqRoot ()=default
 Destructor.

5.14.1 Detailed Description

Class for the computation of the distance on the manifold when manifold_metric=="SqRoot"

5.14.2 Member Function Documentation

5.14.2.1 compute_distance()

Compute the distance between two matrices on the manifold.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

Implements distances manifold::DistanceManifold.

The documentation for this class was generated from the following files:

- DistanceManifold.hpp
- · DistanceManifold.cpp

5.15 distances_tplane::Chol Class Reference

Class for the computation of the distance on the tangent space when ts_metric=="Correlation"

```
#include <DistanceTplane.hpp>
```

Inheritance diagram for distances_tplane::Chol:

Public Member Functions

∼Chol ()=default

Destructor.

• double norm (const MatrixXd &M1) const override

Compute the norm of a matrix on the tangent space.

void set_members (const MatrixXd &Sigma) override

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

5.15.1 Detailed Description

Class for the computation of the distance on the tangent space when ts_metric=="Correlation"

5.15.2 Member Function Documentation

```
5.15.2.1 norm()
```

Compute the norm of a matrix on the tangent space.

M1	Matrix
	i i i i a ci i i i

Returns

Norm

Implements distances_tplane::DistanceTplane.

5.15.2.2 set_members()

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

Parameters

Implements distances_tplane::DistanceTplane.

The documentation for this class was generated from the following files:

- · DistanceTplane.hpp
- · DistanceTplane.cpp

5.16 distances_tplane::DistanceTplane Class Reference

Abstract class for the computation of the distance on the tangent space.

```
#include <DistanceTplane.hpp>
```

Inheritance diagram for distances_tplane::DistanceTplane:

Public Member Functions

double compute_distance (const MatrixXd &M1, const MatrixXd &M2) const

Compute the distance between two matrices on the tangent space.

• virtual double norm (const MatrixXd &M1) const =0

Compute the norm of a matrix on the tangent space.

• virtual void set_members (const MatrixXd &Sigma)=0

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

virtual ∼DistanceTplane ()=default

Destructor.

5.16.1 Detailed Description

Abstract class for the computation of the distance on the tangent space.

5.16.2 Member Function Documentation

5.16.2.1 compute_distance()

Compute the distance between two matrices on the tangent space.

Parameters

M1	First matrix
M2	Second matrix

Returns

Distance

5.16.2.2 norm()

Compute the norm of a matrix on the tangent space.

M1	Matrix
	i i i i a ci i i i

Returns

Norm

 $Implemented \ in \ distances_tplane::FrobeniusScaled, \ and \ an$

5.16.2.3 set_members()

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

Parameters

Implemented in distances_tplane::Chol, distances_tplane::FrobeniusScaled, and distances_tplane::Frobenius.

The documentation for this class was generated from the following files:

- DistanceTplane.hpp
- · DistanceTplane.cpp

5.17 distances_tplane::Frobenius Class Reference

Class for the computation of the distance on the tangent space when $ts_metric=="Frobenius"$

```
#include <DistanceTplane.hpp>
```

Inheritance diagram for distances_tplane::Frobenius:

Public Member Functions

∼Frobenius ()=default

Destructor.

• double norm (const MatrixXd &M1) const override

Compute the norm of a matrix on the tangent space.

• void set_members (const MatrixXd &Sigma) override

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

5.17.1 Detailed Description

Class for the computation of the distance on the tangent space when ts_metric=="Frobenius"

5.17.2 Member Function Documentation

```
5.17.2.1 norm()
```

Compute the norm of a matrix on the tangent space.

Parameters

```
M1 Matrix
```

Returns

Norm

Implements distances tplane::DistanceTplane.

5.17.2.2 set_members()

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

Sigma	Tangent point
-------	---------------

Implements distances_tplane::DistanceTplane.

The documentation for this class was generated from the following files:

- DistanceTplane.hpp
- · DistanceTplane.cpp

5.18 distances_tplane::FrobeniusScaled Class Reference

Class for the computation of the distance on the tangent space when ts_metric=="FrobeniusScaled" #include <DistanceTplane.hpp>

Inheritance diagram for distances_tplane::FrobeniusScaled:

Public Member Functions

∼FrobeniusScaled ()=default

Destructor.

• double norm (const MatrixXd &M1) const override

Compute the norm of a matrix on the tangent space.

· void set members (const MatrixXd &Sigma) override

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

Private Attributes

- MatrixXd SigmaInv
- unsigned int _p

5.18.1 Detailed Description

Class for the computation of the distance on the tangent space when ts_metric=="FrobeniusScaled"

5.18.2 Member Function Documentation

5.18.2.1 norm()

Compute the norm of a matrix on the tangent space.

Parameters

M1 N	∕latrix
------	---------

Returns

Norm

Implements distances_tplane::DistanceTplane.

5.18.2.2 set_members()

Set the members that will be used in the computation of the norms and distances, according to the metric on the tangent space.

Parameters

Implements distances_tplane::DistanceTplane.

5.18.3 Member Data Documentation

```
5.18.3.1 _SigmaInv
```

```
MatrixXd distances_tplane::FrobeniusScaled::_SigmaInv [private]
```

Inverse of the tangent point Sigma

```
5.18.3.2 _p
```

```
unsigned int distances_tplane::FrobeniusScaled::_p [private]
```

Dimension of the matrices on the tangent space

The documentation for this class was generated from the following files:

- DistanceTplane.hpp
- DistanceTplane.cpp

5.19 generic_factory::Factory< AbstractProduct, Identifier, Builder > Class Template Reference

A generic factory.

```
#include <Factory.hpp>
```

Public Types

using AbstractProduct_type = AbstractProduct

The container for the rules.

• using Identifier_type = Identifier

The identifier.

• using Builder_type = Builder

The builder type.

Public Member Functions

• std::unique_ptr< AbstractProduct > create (Identifier const &name) const

Get the rule with given name.

void add (Identifier const &, Builder_type const &)

Register the given rule.

std::vector< Identifier > registered () const

Returns a list of registered rules.

void unregister (Identifier const &name)

Unregister a rule.

∼Factory ()=default

Destructor.

Static Public Member Functions

• static Factory & Instance ()

Method to access the only instance of the factory. We use Meyer's trick to istantiate the factory.

Private Types

typedef std::map< Identifier, Builder_type > Container_type

Type of the object used to store the object factory.

Private Member Functions

• Factory ()=default

Constructor made private since it is a Singleton.

Factory (Factory const &)=delete

Copy constructor deleted since it is a Singleton.

• Factory & operator= (Factory const &)=delete

Assignment operator deleted since it is a Singleton.

Private Attributes

· Container_type _storage

It contains the actual object factory.

5.19.1 Detailed Description

 $template < typename\ AbstractProduct,\ typename\ Identifier,\ typename\ Builder = std::function < std::unique_ptr < AbstractProduct > () >>$

class generic_factory::Factory < AbstractProduct, Identifier, Builder >

A generic factory.

It is implemented as a Singleton. The compulsory way to access a method is Factory::Instance().method(). Typycally to access the factory one does

```
auto& myFactory = Factory<A,I,B>::Instance();
myFactory.add(...)
```

5.19.2 Member Function Documentation

5.19.2.1 create()

Get the rule with given name.

The pointer is null if no rule is present.

The documentation for this class was generated from the following file:

· Factory.hpp

5.20 generic_factory::Proxy< Factory, ConcreteProduct > Class Template Reference

A simple proxy for registering into a factory.

```
#include <Proxy.hpp>
```

Public Types

typedef Factory::AbstractProduct_type AbstractProduct_type

The container for the rules.

typedef Factory::ldentifier_type Identifier_type

The identifier.

· typedef Factory::Builder_type Builder_type

The builder type.

typedef Factory Factory_type

The factory type.

Public Member Functions

• Proxy (Identifier_type const &)

The constructor does the registration.

Static Public Member Functions

static std::unique_ptr< AbstractProduct_type > Build ()
 The builder.

Private Member Functions

• Proxy (Proxy const &)=delete

Copy onstructor deleted since it is a Singleton.

Proxy & operator= (Proxy const &)=delete

Assignment operator deleted since it is a Singleton.

5.20.1 Detailed Description

```
{\it template}{<} {\it typename Factory, typename ConcreteProduct}{>} \\ {\it class generic\_factory::Proxy}{<} {\it Factory, ConcreteProduct}{>} \\ {\it typename ConcreteProduct}{>} \\ {\it
```

A simple proxy for registering into a factory.

It provides the builder as static method and the automatic registration mechanism.

Parameters

Factory	The type of the factory.
ConcreteProduct	Is the derived (concrete) type to be registered in the factory

Note

I have to use the default builder provided by the factory. No check is made to verify it

The documentation for this class was generated from the following file:

• Proxy.hpp

5.21 map_functions::expMapChol Class Reference

Class for the computation of the exponential map when manifold_metric=="Correlation"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::expMapChol:

Public Member Functions

∼expMapChol ()=default

Destructor.

• MatrixXd map2manifold (const MatrixXd &M) const override

Map a tangent space matrix to the manifold.

• void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

- double _tolerance_map_cor
- MatrixXd _Sigma

5.21.1 Detailed Description

Class for the computation of the exponential map when manifold_metric=="Correlation"

5.21.2 Member Function Documentation

5.21.2.1 map2manifold()

```
\label{eq:matrixXd} $$\operatorname{MatrixXd} \exp\operatorname{MapChol}:::map2manifold ($$\operatorname{const} \operatorname{MatrixXd} \& M$)$ const [override], [virtual]
```

Map a tangent space matrix to the manifold.

```
M Tangent space matrix to map
```

Returns

Manifold matrix identifying the mapped data

Implements map_functions::exponentialMap.

5.21.2.2 set_members()

Set class members.

Parameters

oigina Tangoni ponii	Sigma	Tangent point
------------------------	-------	---------------

Implements map_functions::exponentialMap.

5.21.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

 $Implements\ map_functions:: exponential Map.$

5.21.3 Member Data Documentation

5.21.3.1 _tolerance_map_cor

```
double map_functions::expMapChol::_tolerance_map_cor [private]
```

Tolerance on the norm of the columns to avoid Nan

5.21.3.2 _Sigma

```
MatrixXd map_functions::expMapChol::_Sigma [private]
```

Tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- · MapFunctions.cpp

5.22 map_functions::expMapFrob Class Reference

Class for the computation of the exponential map when manifold_metric=="Frobenius"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map functions::expMapFrob:

Public Member Functions

∼expMapFrob ()=default

Destructor.

MatrixXd map2manifold (const MatrixXd &M) const override

Map a tangent space matrix to the manifold.

· void set_members (const MatrixXd &Sigma) override

Set class members.

· void set tolerance (double tolerance map cor) override

Set tolerance.

Private Attributes

- MatrixXd _sqrtSigma
- MatrixXd _sqrtSigmaInv

5.22.1 Detailed Description

Class for the computation of the exponential map when manifold_metric=="Frobenius"

5.22.2 Member Function Documentation

5.22.2.1 map2manifold()

Map a tangent space matrix to the manifold.

M Tangent space matrix to map

Returns

Manifold matrix identifying the mapped data

Implements map_functions::exponentialMap.

5.22.2.2 set_members()

Set class members.

Parameters

Sigma Tangent point	Sigma	Tangent point
-----------------------	-------	---------------

Implements map_functions::exponentialMap.

5.22.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

 $Implements\ map_functions:: exponential Map.$

5.22.3 Member Data Documentation

5.22.3.1 _sqrtSigma

MatrixXd map_functions::expMapFrob::_sqrtSigma [private]

Square root of the tangent point Sigma

5.22.3.2 _sqrtSigmaInv

```
MatrixXd map_functions::expMapFrob::_sqrtSigmaInv [private]
```

Inverse of the square root of the tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- MapFunctions.cpp

5.23 map_functions::expMapLogEucl Class Reference

Class for the computation of the exponential map when manifold_metric=="LogEuclidean"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::expMapLogEucl:

```
map_functions::exponentialMap

map_functions::expMapLogEucl
```

Public Member Functions

∼expMapLogEucl ()=default

Destructor.

MatrixXd map2manifold (const MatrixXd &M) const override

Map a tangent space matrix to the manifold.

void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

· MatrixXd Sigma

5.23.1 Detailed Description

Class for the computation of the exponential map when manifold_metric=="LogEuclidean"

5.23.2 Member Function Documentation

5.23.2.1 map2manifold()

Map a tangent space matrix to the manifold.

```
M Tangent space matrix to map
```

Returns

Manifold matrix identifying the mapped data

Implements map_functions::exponentialMap.

5.23.2.2 set_members()

Set class members.

Parameters

Sigma Tangent point

Implements map_functions::exponentialMap.

5.23.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

Implements map_functions::exponentialMap.

5.23.3 Member Data Documentation

5.23.3.1 _Sigma

MatrixXd map_functions::expMapLogEucl::_Sigma [private]

Tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- · MapFunctions.cpp

5.24 map_functions::expMapSqRoot Class Reference

Class for the computation of the exponential map when manifold_metric=="SqRoot"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map functions::expMapSqRoot:

Public Member Functions

∼expMapSqRoot ()=default

Destructor.

MatrixXd map2manifold (const MatrixXd &M) const override

Map a tangent space matrix to the manifold.

· void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

MatrixXd _Sigma

5.24.1 Detailed Description

Class for the computation of the exponential map when manifold_metric=="SqRoot"

5.24.2 Member Function Documentation

5.24.2.1 map2manifold()

Map a tangent space matrix to the manifold.

M Tangent space matrix to map

Returns

Manifold matrix identifying the mapped data

Implements map_functions::exponentialMap.

5.24.2.2 set_members()

Set class members.

Parameters

Sigma Tangent point

Implements map_functions::exponentialMap.

5.24.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

Implements map_functions::exponentialMap.

5.24.3 Member Data Documentation

5.24.3.1 _Sigma

MatrixXd map_functions::expMapSqRoot::_Sigma [private]

Tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- · MapFunctions.cpp

5.25 map_functions::exponentialMap Class Reference

Abstract class for the computation of the exponential map.

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::exponentialMap:

Public Member Functions

virtual ∼exponentialMap ()=default

Destructor.

virtual MatrixXd map2manifold (const MatrixXd &M) const =0

Map a tangent space matrix to the manifold.

virtual void set_members (const MatrixXd &Sigma)=0

Set class members.

virtual void set_tolerance (double tolerance_map_cor)=0
 Set tolerance.

5.25.1 Detailed Description

Abstract class for the computation of the exponential map.

5.25.2 Member Function Documentation

5.25.2.1 map2manifold()

Map a tangent space matrix to the manifold.

M Tangent space matrix to map

Returns

Manifold matrix identifying the mapped data

 $Implemented \ in \ map_functions::expMapChol, \ map_functions::expMapSqRoot, \ map_functions::expMapLogEucl, \ and \ map_functions::expMapFrob.$

5.25.2.2 set_members()

Set class members.

Parameters

 $Implemented \ in \ map_functions::expMapChol, \ map_functions::expMapSqRoot, \ map_functions::expMapLogEucl, \ and \ map_functions::expMapFrob.$

5.25.2.3 set tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor | Tolerance
```

 $Implemented \ in \ map_functions::expMapChol, \ map_functions::expMapSqRoot, \ map_functions::expMapLogEucl, \ and \ map_functions::expMapFrob.$

The documentation for this class was generated from the following file:

MapFunctions.hpp

5.26 map_functions::logarithmicMap Class Reference

Abstract class for the computation of the logarithmic map.

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::logarithmicMap:

Public Member Functions

virtual ∼logarithmicMap ()=default

Destructor.

- virtual MatrixXd map2tplane (const MatrixXd &M) const =0
 - Map a manifold matrix to the tangent space.
- virtual void set_members (const MatrixXd &Sigma)=0

Set class members.

virtual void set_tolerance (double tolerance_map_cor)=0
 Set tolerance.

5.26.1 Detailed Description

Abstract class for the computation of the logarithmic map.

5.26.2 Member Function Documentation

5.26.2.1 map2tplane()

Map a manifold matrix to the tangent space.

Parameters

M Manifold matrix to map

Returns

Tangent space matrix identifying the mapped data

Implemented in map_functions::logMapChol, map_functions::logMapSqRoot, map_functions::logMapLogEucl, and map_functions::logMapFrob.

5.26.2.2 set_members()

Set class members.

Parameters

Sigma	Tangent point
-------	---------------

Implemented in map_functions::logMapChol, map_functions::logMapSqRoot, map_functions::logMapLogEucl, and map_functions::logMapFrob.

5.26.2.3 set_tolerance()

Set tolerance.

Parameters

tolerance_map_cor	Tolerance

Implemented in map_functions::logMapChol, map_functions::logMapSqRoot, map_functions::logMapLogEucl, and map_functions::logMapFrob.

The documentation for this class was generated from the following file:

• MapFunctions.hpp

5.27 map_functions::logMapChol Class Reference

Class for the computation of the logarithmic map when manifold_metric=="Correlation" #include <MapFunctions.hpp>

Inheritance diagram for map_functions::logMapChol:

Public Member Functions

∼logMapChol ()=default

Destructor.

• MatrixXd map2tplane (const MatrixXd &M) const override

Map a manifold matrix to the tangent space.

• void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Member Functions

• Vec proj2tspace (const Vec &, const Vec &) const Project a matrix in Chol(p) to the tangent space.

Private Attributes

- MatrixXd _Sigma
- double _tolerance_map_cor

5.27.1 Detailed Description

Class for the computation of the logarithmic map when manifold_metric=="Correlation"

5.27.2 Member Function Documentation

5.27.2.1 map2tplane()

Map a manifold matrix to the tangent space.

Parameters

M Manifold matrix to map

Returns

Tangent space matrix identifying the mapped data

Implements map_functions::logarithmicMap.

5.27.2.2 set_members()

Set class members.

Parameters

```
Sigma Tangent point
```

Implements map_functions::logarithmicMap.

5.27.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

Implements map_functions::logarithmicMap.

5.27.3 Member Data Documentation

5.27.3.1 _Sigma

```
MatrixXd map_functions::logMapChol::_Sigma [private]
```

Tangent point Sigma

5.27.3.2 _tolerance_map_cor

```
double map_functions::logMapChol::_tolerance_map_cor [private]
```

Tolerance on the norm of the columns to avoid Nan

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- MapFunctions.cpp

5.28 map_functions::logMapFrob Class Reference

Class for the computation of the logarithmic map when manifold_metric="Frobenius"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::logMapFrob:

Public Member Functions

∼logMapFrob ()=default

Destructor.

MatrixXd map2tplane (const MatrixXd &M) const override

Map a manifold matrix to the tangent space.

void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

- MatrixXd _sqrtSigma
- MatrixXd _sqrtSigmaInv

5.28.1 Detailed Description

Class for the computation of the logarithmic map when manifold_metric=="Frobenius"

5.28.2 Member Function Documentation

5.28.2.1 map2tplane()

Map a manifold matrix to the tangent space.

```
M Manifold matrix to map
```

Returns

Tangent space matrix identifying the mapped data

Implements map_functions::logarithmicMap.

5.28.2.2 set_members()

Set class members.

Parameters

Sigiria Tangent point	Sigma	Tangent point
-------------------------	-------	---------------

Implements map_functions::logarithmicMap.

5.28.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

 $Implements\ map_functions::logarithmic Map.$

5.28.3 Member Data Documentation

5.28.3.1 _sqrtSigma

MatrixXd map_functions::logMapFrob::_sqrtSigma [private]

Square root of the tangent point Sigma

5.28.3.2 _sqrtSigmaInv

```
MatrixXd map_functions::logMapFrob::_sqrtSigmaInv [private]
```

Inverse of the square root of the tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- MapFunctions.cpp

5.29 map_functions::logMapLogEucl Class Reference

Class for the computation of the logarithmic map when $manifold_metric == "LogEuclidean"$

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::logMapLogEucl:

Public Member Functions

• ~logMapLogEucl ()=default

Destructor.

MatrixXd map2tplane (const MatrixXd &M) const override

Map a manifold matrix to the tangent space.

void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

· MatrixXd Sigma

5.29.1 Detailed Description

Class for the computation of the logarithmic map when manifold_metric=="LogEuclidean"

5.29.2 Member Function Documentation

5.29.2.1 map2tplane()

Map a manifold matrix to the tangent space.

M Manifold matrix to map

Returns

Tangent space matrix identifying the mapped data

Implements map_functions::logarithmicMap.

5.29.2.2 set_members()

Set class members.

Parameters

Sigma Tangent p	ooint
-----------------	-------

Implements map_functions::logarithmicMap.

5.29.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

Implements map_functions::logarithmicMap.

5.29.3 Member Data Documentation

5.29.3.1 _Sigma

```
MatrixXd map_functions::logMapLogEucl::_Sigma [private]
```

Tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- · MapFunctions.cpp

5.30 map_functions::logMapSqRoot Class Reference

Class for the computation of the logarithmic map when manifold_metric=="SqRoot"

```
#include <MapFunctions.hpp>
```

Inheritance diagram for map_functions::logMapSqRoot:

Public Member Functions

∼logMapSqRoot ()=default

Destructor.

MatrixXd map2tplane (const MatrixXd &M) const override

Map a manifold matrix to the tangent space.

void set_members (const MatrixXd &Sigma) override

Set class members.

 void set_tolerance (double tolerance_map_cor) override Set tolerance.

Private Attributes

· MatrixXd Sigma

5.30.1 Detailed Description

Class for the computation of the logarithmic map when manifold_metric=="SqRoot"

5.30.2 Member Function Documentation

5.30.2.1 map2tplane()

```
\label{eq:matrixXd} $$\operatorname{MatrixXd logMapSqRoot::map2tplane (} $$\operatorname{const MatrixXd \& $M$ ) const [override], [virtual]$}
```

Map a manifold matrix to the tangent space.

M Manifold matrix to map

Returns

Tangent space matrix identifying the mapped data

Implements map_functions::logarithmicMap.

5.30.2.2 set_members()

Set class members.

Parameters

Sigma Tangent point

 $Implements\ map_functions::logarithmic Map.$

5.30.2.3 set_tolerance()

Set tolerance.

Parameters

```
tolerance_map_cor Tolerance
```

Implements map_functions::logarithmicMap.

5.30.3 Member Data Documentation

5.30.3.1 _Sigma

```
MatrixXd map_functions::logMapSqRoot::_Sigma [private]
```

Tangent point Sigma

The documentation for this class was generated from the following files:

- MapFunctions.hpp
- MapFunctions.cpp

5.31 model_fit::Model Class Reference

Class to compute and store the linear model on the tangent space.

```
#include <Model.hpp>
```

Public Member Functions

Model (const std::shared_ptr< const MatrixXd > data_tspace, const std::shared_ptr< const MatrixXd > design_matrix_model, unsigned int p, const std::string &distance_Manifold_name)

Constructor.

Model (const std::shared_ptr< const MatrixXd > data_tspace, const std::shared_ptr< const MatrixXd > design_matrix_model, const std::shared_ptr< const MatrixXd > design_matrix_tot, unsigned int p, const std::string &distance_Manifold_name)

Constructor.

void update_model (const MatrixXd &gamma_matrix)

Update_beta_matrix,_fitted_values and_residuals according to the new covariogram matrix.

· MatrixXd get beta () const

Return_beta_matrix

MatrixXd get_residuals () const

Return_residuals

MatrixXd get_fitted_values () const

```
Return_fitted_values
```

Private Attributes

- const std::shared_ptr< const MatrixXd > _data_tspace
- const std::shared_ptr< const MatrixXd > _design_matrix_model
- const std::shared_ptr< const MatrixXd > _design_matrix_tot
- const std::string _distance_Manifold_name
- · const unsigned int _N
- const unsigned int _p
- const unsigned int _num_cov
- const unsigned int _num_coeff
- MatrixXd <u>beta_matrix</u>
- · MatrixXd fitted values
- MatrixXd <u>residuals</u>

5.31.1 Detailed Description

Class to compute and store the linear model on the tangent space.

5.31.2 Member Function Documentation

5.31.2.1 update_model()

Update _beta_matrix, _fitted_values and _residuals according to the new covariogram matrix.

Parameters

gamma_matrix	Covariogram matrix	
--------------	--------------------	--

5.31.3 Member Data Documentation

5.31.3.1 _data_tspace

```
const std::shared_ptr<const MatrixXd> model_fit::Model::_data_tspace [private]
```

BigMatrix of the data on the tangent space

5.31.3.2 _design_matrix_model

```
const std::shared_ptr<const MatrixXd> model_fit::Model::_design_matrix_model [private]
```

Design matrix for the data in the cell (used to compute the beta)

5.31.3.3 _design_matrix_tot

```
const std::shared_ptr<const MatrixXd> model_fit::Model::_design_matrix_tot [private]
```

Design matrix for all the data in the domain (used ti compute the residuals)

5.31.3.4 _distance_Manifold_name

```
\verb|const| std::string| model_fit::Model::\_distance\_Manifold\_name | [private]| \\
```

Name of the metric on the manifold

```
5.31.3.5 N
const unsigned int model_fit::Model::_N [private]
Number of stations in the cell
5.31.3.6 _p
const unsigned int model_fit::Model::_p [private]
Dimension of the matrices on the manifold
5.31.3.7 _num_cov
const unsigned int model_fit::Model::_num_cov [private]
Number of covariates in the model
5.31.3.8 _num_coeff
const unsigned int model_fit::Model::_num_coeff [private]
Number of significant entries in a symmetric (p * p) matrix. _num_coeff = \frac{p*(p+1)}{2}
5.31.3.9 _beta_matrix
MatrixXd model_fit::Model::_beta_matrix [private]
( num cov * num coeff) matrix where the i^{th} row contains the upper triangular part of \beta_{..i}, the i^{th} coefficient of
the tangent space linear model
5.31.3.10 _fitted_values
MatrixXd model_fit::Model::_fitted_values [private]
(N tot * num coeff) matrix where the i^{th} row contains the upper triangular part of the matrix fitted in the i^{th}
location on the tangent space by the linear model. _fitted_values = (* (_design_matrix_tot)) * _beta_matrix
5.31.3.11 _residuals
MatrixXd model_fit::Model::_residuals [private]
```

 $(N_{tot} * _num_coeff)$ matrix where the i^{th} row contains the upper triangular part of the residual matrix in the i^{th}

The documentation for this class was generated from the following files:

location. $_$ residuals $= (*(_$ data $_$ tspace $)) - _$ fitted $_$ values

- Model.hpp
- Model.cpp

5.32 variogram_evaluation::EmpiricalVariogram Class Reference

Class for computation and storage of the empirical variogram.

```
#include <EmpiricalVariogram.hpp>
```

Public Member Functions

• EmpiricalVariogram (const std::shared_ptr< const MatrixXd >, unsigned int, const Coordinates &, const distances::Distance &)

Constructor.

EmpiricalVariogram (const std::shared_ptr< const MatrixXd >, unsigned int, unsigned int, const Vec &, double)

Constructor.

 void update_emp_vario (const std::vector< MatrixXd > &res, const distances_tplane::DistanceTplane &distanceTplane)

```
Update _emp_vario_values, _hvec and _N_hvec according to the new residuals \Delta\left(s_{i}\right)i=1,\ldots,\_N.
```

std::vector< double > get_emp_vario_values () const

```
Return _emp_vario_values
```

std::vector< unsigned int > get_N_hvec () const

Return_N_hvec

• std::vector< double > get_hvec () const

Return_hvec

unsigned int get_card_h () const

Return_card_h

• unsigned int get_N () const

 $Return _N$

double get_hmax () const

 $Return_hmax$

Private Member Functions

• void compute_hmax (const Coordinates &, const distances::Distance &)

Compute the maximum distance to be considered.

Private Attributes

- const unsigned int _n_h
- const unsigned int _N
- const std::shared ptr< const MatrixXd > distanceMatrix
- std::vector< double > _emp_vario_values
- std::vector< double > _hvec
- std::vector< unsigned int > _N_hvec
- · unsigned int card h
- Vec d
- double hmax
- Vec _weights

5.32.1 Detailed Description

Class for computation and storage of the empirical variogram.

5.32.2 Member Function Documentation

5.32.2.1 update_emp_vario()

Update _emp_vario_values, _hvec and _N_hvec according to the new residuals $\Delta\left(s_{i}\right)i=1,\ldots,_N.$

_emp_vario_values are estimated through the method of moments:

$$\widehat{\gamma}\left(h\right) = \frac{\sum\limits_{N(h)} w\left(s_{i}\right) w\left(s_{j}\right) \left\|\Delta\left(s_{i}\right) - \Delta\left(s_{j}\right)\right\|^{2}}{2\sum\limits_{N(h)} w\left(s_{i}\right) w\left(s_{j}\right)}$$

where
$$N\left(h\right) = \left\{\left(\boldsymbol{s}_{i}, \boldsymbol{s}_{j} \in D\right) : h - \Delta h \leq \|\boldsymbol{s}_{i} - \boldsymbol{s}_{j}\| \leq h + \Delta h\right\}$$

Parameters

res	Vector of the N residual matrices
distanceTplane	Distance on the tangent space

5.32.3 Member Data Documentation

```
5.32.3.1 _n_h
```

const unsigned int variogram_evaluation::EmpiricalVariogram::_n_h [private]

Number of bins

5.32.3.2 N

Number of data points used to compute the empirical variogram

```
5.32.3.3 _distanceMatrix
```

```
\verb|const| std::shared_ptr < const| MatrixXd > variogram_evaluation::EmpiricalVariogram::_distance \leftarrow Matrix| [private]
```

Matrix of distances among the N locations

```
5.32.3.4 _emp_vario_values
```

```
std::vector<double> variogram_evaluation::EmpiricalVariogram::_emp_vario_values [private]
```

Vector storing the variogram estimates. $_emp_vario_values[i] = \hat{\gamma} (_hvec[i])$

```
5.32.3.5 _hvec
```

```
std::vector<double> variogram_evaluation::EmpiricalVariogram::_hvec [private]
```

Vector storing the distances at which the variogram is estimated

```
5.32.3.6 _N_hvec
```

```
\verb|std::vector<| unsigned int> variogram_evaluation:: \verb|EmpiricalVariogram::_N_hvec [private]| \\
```

Vector storing the number of data used in the estimation of the corresponding empirical variogram value

```
5.32.3.7 _card_h
```

```
unsigned int variogram_evaluation::EmpiricalVariogram::_card_h [private]
```

Number of distances for which the variogram has been evaluated. _card_h = _hvec.size()

5.32.3.8 _d

```
Vec variogram_evaluation::EmpiricalVariogram::_d [private]
```

Vector of equispaced distances whose midpoints are the candidates to enter in *hvec*

```
5.32.3.9 _hmax
```

```
double variogram_evaluation::EmpiricalVariogram::_hmax [private]
```

Maximum distance considered

5.32.3.10 _weights

```
Vec variogram_evaluation::EmpiricalVariogram::_weights [private]
```

Vector of the weights for the N data

The documentation for this class was generated from the following files:

- · EmpiricalVariogram.hpp
- · EmpiricalVariogram.cpp

5.33 variogram_evaluation::ExpVariogram Class Reference

Class for computation and storage of the fitted variogram when vario_model == "Exponential"

```
#include <FittedVariogram.hpp>
```

Inheritance diagram for variogram_evaluation::ExpVariogram:

Public Member Functions

- double get_vario_univ (const double &h) const override
 - Compute the value of the model variogram at a given distance, according to the variogram type.
- \sim ExpVariogram ()=default

Destructor.

Private Member Functions

• void get_init_par (const EmpiricalVariogram &) override

*Initialize*_parameters

• MatrixXd compute_jacobian (const std::vector< double > &, unsigned int) const override

Compute the jacobian of the variogram residuals (which coincides with the one of the model variogram), according to the variogram type.

Additional Inherited Members

5.33.1 Detailed Description

Class for computation and storage of the fitted variogram when vario_model=="Exponential"

5.33.2 Member Function Documentation

5.33.2.1 get_init_par()

```
\label{local_parameters} $$\operatorname{Init\_par}(\ \operatorname{const}\ \operatorname{EmpiricalVariogram}\ \&\ \operatorname{emp\_vario})\ [\operatorname{override}],\ [\operatorname{private}],\ [\operatorname{virtual}]$$ Initialize \_parameters $$ \operatorname{Initialize}\ \operatorname{Initialize}\ \operatorname{are}\ \operatorname{initialize}\ \operatorname{as}\ \operatorname{follows}:\ \operatorname{parameters}(0) = \operatorname{weighted\_median}(\ \operatorname{emp\_vario\_values.head}(2),\ \operatorname{N\_hvec.head}(2))$$ _parameters $(1) = \operatorname{weighted\_median}(\ \operatorname{emp\_vario\_values.tail}(4),\ \operatorname{N\_hvec.tail}(4)) - \operatorname{parameters}(0)$$ _parameters $(2) = \ \operatorname{hvec}(i^*)$$ where $i^*$ is the first $i$ s.t. $|\ \operatorname{emp\_vario\_values}(i) - (\ \operatorname{parameters}(0) + \ \operatorname{parameters}(1))| < \operatorname{tol}(i^*)$$ and $i^* = i^* = i^*
```

Parameters

```
emp_vario | Empirical variogram
```

Implements variogram_evaluation::FittedVariogram.

5.33.2.2 get_vario_univ()

Compute the value of the model variogram at a given distance, according to the variogram type.

Parameters

h The distance where to evaluate the variogram

Returns

Variogram value at distance h: $\gamma_m(h)$

Implements variogram_evaluation::FittedVariogram.

The documentation for this class was generated from the following files:

- · FittedVariogram.hpp
- · FittedVariogram.cpp

5.34 variogram_evaluation::FittedVariogram Class Reference

Abstract class for computation and storage of the fitted variogram.

```
#include <FittedVariogram.hpp>
```

Inheritance diagram for variogram_evaluation::FittedVariogram:

Public Member Functions

• double get_tau2 () const

Return _parameters (0), i.e. the nugget.

• double get_sigma2 () const

Return _parameters (1), i.e. the sill-nugget.

• double get_a () const

Return_parameters (2), i.e. the practical range.

void evaluate_par_fitted_E (const EmpiricalVariogram &emp_vario, double max_sill, double max_a)

Compute the parameters of the fitted variogram.

void evaluate_par_fitted_W (const EmpiricalVariogram &emp_vario, double max_sill, double max_a)

Compute the parameters of the fitted variogram.

virtual double get_vario_univ (const double &h) const =0

Compute the value of the model variogram at a given distance, according to the variogram type.

• double get_covario_univ (const double &h) const

Compute the value of the model covariogram at a given distance, according to the variogram type.

 $\bullet \ \ \text{Vec get_vario_vec} \ (\text{const std::vector} < \text{double} > \& \text{h_vec}, \text{unsigned int card_h}) \ \text{const} \\$

Compute the values of the model variogram at a given vector of distances, according to the variogram type.

Vec get_vario_vec (const Vec &h_vec, unsigned int card_h) const

Compute the values of the model variogram at a given vector of distances, according to the variogram type.

MatrixXd compute_gamma_matrix (const std::shared_ptr< const MatrixXd > distanceMatrix, unsigned int N)
const

Compute the covariogram matrix, according to the variogram type.

• Vector3d get_parameters () const

Return_parameters

void set_parameters (const Vector3d ¶meters)

Set_parameters.

Vec get_covario_vec (const std::vector< double > &h_vec, unsigned int card_h) const

Compute the values of the model covariogram at a given vector of distances, according to the variogram type.

• virtual \sim FittedVariogram ()=default

Destructor.

Protected Member Functions

- double weighted_median (const std::vector< double > &values, const std::vector< unsigned int > &card)

 Compute weighted median.
- virtual void get_init_par (const EmpiricalVariogram &emp_vario)=0
 Initialize_parameters
- void backtrack (const Vector3d &dir, Vector3d &gk, Vec &res, const std::vector< double > &h_vec, unsigned int card_h, double c, double s, const Vec &emp_vario_values, double max_sill, double max_a)

Update _ parameters moving along dir

• virtual MatrixXd compute_jacobian (const std::vector< double > &h_vec, unsigned int card_h) const =0

Compute the jacobian of the variogram residuals (which coincides with the one of the model variogram), according to the variogram type.

Protected Attributes

Vector3d parameters

5.34.1 Detailed Description

Abstract class for computation and storage of the fitted variogram.

5.34.2 Member Function Documentation

5.34.2.1 weighted_median()

Compute weighted median.

Parameters

values	Values whose median must be computed
card	Weights

Returns

Median of values, weighted using card

5.34.2.2 get_init_par()

Initialize _parameters

Parameters

```
emp_vario | Empirical variogram
```

Implemented in variogram_evaluation::SphVariogram, variogram_evaluation::ExpVariogram, and variogram_evaluation::GaussVariogram_e

5.34.2.3 evaluate_par_fitted_E()

Compute the parameters of the fitted variogram.

Note

Like variogram_evaluation::FittedVariogram::evaluate_par_fitted_W, but different stopping criteria. This function is used when equal weights are considered

The parameters are computed using Gauss-Newton with backtrack method to solve the non-linear least square problem:

The starting values for the _parameters are obtained through variogram_evaluation::FittedVariogram::get_init_par.

The stopping criteria is based on the decrease of the error norm.

Parameters

emp_vario	Empirical variogram
max_sill	Maximum value for the sill
max_a	Maximum value for a

5.34.2.4 evaluate_par_fitted_W()

Compute the parameters of the fitted variogram.

Note

Like variogram_evaluation::FittedVariogram::evaluate_par_fitted_E, but different stopping criteria. This function is used when kernel weights are considered

The parameters are computed using Gauss-Newton with backtrack method to solve the non-linear least square problem:

The starting values for the _parameters are obtained through variogram evaluation::FittedVariogram::get init par.

The stopping criteria is based on the difference in the decrease of the error norm between two consecutive iterations.

Parameters

emp_vario	Empirical variogram
max_sill	Maximum value for the sill
max_a	Maximum value for a

5.34.2.5 get_vario_univ()

Compute the value of the model variogram at a given distance, according to the variogram type.

Parameters

```
h The distance where to evaluate the variogram
```

Returns

Variogram value at distance h: $\gamma_m(h)$

Implemented in variogram_evaluation::SphVariogram, variogram_evaluation::ExpVariogram, and variogram_evaluation::GaussVariogram

5.34.2.6 get_covario_univ()

```
double FittedVariogram::get_covario_univ (  {\tt const\ double\ \&\ h\ )\ const}
```

Compute the value of the model covariogram at a given distance, according to the variogram type.

Parameters

```
h The distance where to evaluate the covariogram
```

Returns

```
Covariogram value at distance h:C_{m}\left(h\right)=\left(\text{\_parameters}\left(0\right)+\text{\_parameters}\left(1\right)\right)-\gamma_{m}\left(h\right)
```

```
5.34.2.7 get_vario_vec() [1/2]
```

Compute the values of the model variogram at a given vector of distances, according to the variogram type.

Parameters

h_vec	The distances where to evaluate the variogram
card←	Number of distances where the variogram must be computed. $card_h = h_vec.size()$
_h	

Returns

Vector of variogram values at distances $h \in h_vec$

```
5.34.2.8 get_vario_vec() [2/2]
```

Compute the values of the model variogram at a given vector of distances, according to the variogram type.

Parameters

h_vec	The distances where to evaluate the variogram
card←	Number of distances where the variogram must be computed. $card_h = h_vec.size()$
_h	

Returns

Vector of variogram values at distances $h \in h_vec$

5.34.2.9 compute_gamma_matrix()

```
MatrixXd FittedVariogram::compute_gamma_matrix (  {\tt const~std::shared\_ptr} < {\tt const~MatrixXd} > {\tt distanceMatrix}, \\ {\tt unsigned~int} ~N~)~{\tt const}
```

Compute the covariogram matrix, according to the variogram type.

Parameters

distanceMatrix	Matrix of distances among the N locations
N	Number of data locations

Returns

Covariogram matrix

5.34.2.10 set_parameters()

Set _parameters.

Parameters

parameters	Vector of parameters' values
------------	------------------------------

5.34.2.11 get_covario_vec()

Compute the values of the model covariogram at a given vector of distances, according to the variogram type.

Parameters

h_vec	The distances where to evaluate the covariogram	
-card⇔	Number of distances where the covariogram must be computed. $card_h = h_vec.size()$	
Gen e rated by	Doxygen	

Returns

Vector of covariogram values at distances $h \in h_vec$

5.34.3 Member Data Documentation

5.34.3.1 _parameters

Vector3d variogram_evaluation::FittedVariogram::_parameters [protected]

Vector storing the three parameters of the fitted varriogram (nugget, sill-nugget, practical range)

The documentation for this class was generated from the following files:

- · FittedVariogram.hpp
- FittedVariogram.cpp

5.35 variogram_evaluation::GaussVariogram Class Reference

Class for computation and storage of the fitted variogram when vario_model == "Gaussian"

```
#include <FittedVariogram.hpp>
```

Inheritance diagram for variogram_evaluation::GaussVariogram:

Public Member Functions

- double get_vario_univ (const double &h) const override
 - Compute the value of the model variogram at a given distance, according to the variogram type.
- ∼GaussVariogram ()=default

Destructor.

Private Member Functions

void get_init_par (const EmpiricalVariogram &) override

Initialize _ parameters

• MatrixXd compute_jacobian (const std::vector< double > &, unsigned int) const override

Compute the jacobian of the variogram residuals (which coincides with the one of the model variogram), according to the variogram type.

Additional Inherited Members

5.35.1 Detailed Description

Class for computation and storage of the fitted variogram when vario_model=="Gaussian"

5.35.2 Member Function Documentation

5.35.2.1 get_init_par()

The _parameters are initialized as follows:

```
 \begin{tabular}{ll} $\_$ parameters (0) = weighted\_median (\_emp\_vario\_values.head (2) , \_N\_hvec.head (2)) \\ $\_$ parameters (1) = weighted\_median (\_emp\_vario\_values.tail (4) , \_N\_hvec.tail (4)) - \_parameters (0) \\ $\_$ parameters (2) = \_hvec (i^*) \\ where $i^*$ is the first $i$ s.t. $|\_emp\_vario\_values (i) - (\_parameters (0) + \_parameters (1))| < tol. $|\_emp\_vario\_values (i) - (\_parameters (0) + \_parameters (1))| < tol. $|\_emp\_vario\_values (i) - (\_parameters (i) + \_parameters (i))| < tol. $|\_emp\_vario\_values (i) - (\_parameters (i) + \_parameters (
```

Parameters

emp_vario Empirical variogram

 $Implements\ variogram_evaluation:: Fitted Variogram.$

5.35.2.2 get_vario_univ()

Compute the value of the model variogram at a given distance, according to the variogram type.

Parameters

h The distance where to evaluate the variogram

Returns

Variogram value at distance h: $\gamma_m(h)$

Implements variogram_evaluation::FittedVariogram.

The documentation for this class was generated from the following files:

- · FittedVariogram.hpp
- · FittedVariogram.cpp

5.36 variogram_evaluation::SphVariogram Class Reference

Class for computation and storage of the fitted variogram when $vario_model==$ "Spherical"

```
#include <FittedVariogram.hpp>
```

Inheritance diagram for variogram_evaluation::SphVariogram:

Public Member Functions

- double get_vario_univ (const double &h) const override
 - Compute the value of the model variogram at a given distance, according to the variogram type.
- ∼SphVariogram ()=default

Destructor.

Private Member Functions

- void get_init_par (const EmpiricalVariogram &) override
 - *Initialize*_parameters
- MatrixXd compute_jacobian (const std::vector< double > &, unsigned int) const override

Compute the jacobian of the variogram residuals (which coincides with the one of the model variogram), according to the variogram type.

Additional Inherited Members

5.36.1 Detailed Description

Class for computation and storage of the fitted variogram when vario_model == "Spherical"

5.36.2 Member Function Documentation

Parameters

emp_vario	Empirical variogram
-----------	---------------------

Implements variogram_evaluation::FittedVariogram.

5.36.2.2 get_vario_univ()

Compute the value of the model variogram at a given distance, according to the variogram type.

Parameters

h The distance where to evaluate the variogram

Returns

Variogram value at distance h: $\gamma_m(h)$

Implements variogram_evaluation::FittedVariogram.

The documentation for this class was generated from the following files:

- FittedVariogram.hpp
- · FittedVariogram.cpp

Chapter 6

File Documentation

6.1 Coordinates.hpp File Reference

Coordinates class.

```
#include <iostream>
#include <string>
#include <memory>
#include "Helpers.hpp"
```

Classes

• class Coordinates

Class to store the coordinates of the data points.

6.1.1 Detailed Description

Coordinates class.

6.2 DesignMatrix.hpp File Reference

Classes to create the design_matrix according to the model on the tangent space.

```
#include <memory>
#include <iostream>
#include <utility>
#include <map>
#include <string>
#include <Eigen/Dense>
#include "Coordinates.hpp"
```

Classes

```
    class design_matrix::DesignMatrix
        Abstract class for the computation of the design_matrix.
    class design_matrix::InterceptDM
        Class for the computation of the design_matrix when model_ts=="Intercept"
    class design_matrix::Coord1DM
        Class for the computation of the design_matrix when model_ts=="Coord1"
    class design_matrix::Coord2DM
        Class for the computation of the design_matrix when model_ts=="Coord2"
    class design_matrix::AdditiveDM
    Class for the computation of the design_matrix when model_ts=="Additive"
```

6.2.1 Detailed Description

Classes to create the design_matrix according to the model on the tangent space.

6.3 Distance.hpp File Reference

Classes to create the compute the distances between data locations.

```
#include "Helpers.hpp"
#include "Coordinates.hpp"
#include <vector>
#include <utility>
#include <map>
#include <functional>
```

Classes

· class distances::Distance

Abstract class for the computation of the distance between data locations.

· class distances::EuclDist

Class for the computation of the distance between data locations when distance=="Eucldist"

· class distances::GeoDist

Class for the computation of the distance between data locations when distance=="Geodist"

6.3.1 Detailed Description

Classes to create the compute the distances between data locations.

6.4 DistanceManifold.hpp File Reference

Classes to compute the distance on the manifold according to its metric.

```
#include "Helpers.hpp"
#include <vector>
#include <utility>
#include <map>
#include <functional>
#include <memory>
```

Classes

· class distances manifold::DistanceManifold

Abstract class for the computation of the distance on the manifold.

· class distances_manifold::Frobenius

Class for the computation of the distance on the manifold when manifold_metric=="Frobenius"

· class distances manifold::LogEuclidean

Class for the computation of the distance on the manifold when manifold_metric=="LogEuclidean"

class distances_manifold::SqRoot

Class for the computation of the distance on the manifold when manifold_metric=="SqRoot"

· class distances manifold::Chol

Class for the computation of the distance on the manifold when manifold_metric="Chol"

6.4.1 Detailed Description

Classes to compute the distance on the manifold according to its metric.

6.5 DistanceTplane.hpp File Reference

Classes to compute the distance on the tangent space according to its metric.

```
#include "Helpers.hpp"
#include <vector>
#include <utility>
#include <map>
#include <functional>
#include <memory>
```

Classes

class distances_tplane::DistanceTplane

Abstract class for the computation of the distance on the tangent space.

class distances_tplane::Frobenius

Class for the computation of the distance on the tangent space when ts_metric=="Frobenius"

· class distances_tplane::FrobeniusScaled

Class for the computation of the distance on the tangent space when ts_metric=="FrobeniusScaled"

class distances_tplane::Chol

Class for the computation of the distance on the tangent space when $ts_metric=="Correlation"$

6.5.1 Detailed Description

Classes to compute the distance on the tangent space according to its metric.

6.6 Empirical Variogram.hpp File Reference

Class to compute the empirical variogram.

```
#include "Helpers.hpp"
#include "DistanceTplane.hpp"
#include "Distance.hpp"
#include "Coordinates.hpp"
```

Classes

• class variogram_evaluation::EmpiricalVariogram

Class for computation and storage of the empirical variogram.

6.6.1 Detailed Description

Class to compute the empirical variogram.

6.7 Factory.hpp File Reference

Factory class.

```
#include <map>
#include <vector>
#include <memory>
#include <functional>
#include <stdexcept>
#include <type_traits>
#include <Rcpp.h>
```

Classes

 class generic_factory::Factory < AbstractProduct, Identifier, Builder > A generic factory.

6.7.1 Detailed Description

Factory class.

6.8 FittedVariogram.hpp File Reference

Classes to fit a model variogram (Gaussian, Exponential or Spherical) to an empirical one.

```
#include "EmpiricalVariogram.hpp"
#include <iostream>
#include <Rcpp.h>
```

Classes

• class variogram_evaluation::FittedVariogram

Abstract class for computation and storage of the fitted variogram.

· class variogram_evaluation::GaussVariogram

Class for computation and storage of the fitted variogram when vario_model == "Gaussian"

• class variogram_evaluation::ExpVariogram

Class for computation and storage of the fitted variogram when vario_model == "Exponential"

• class variogram_evaluation::SphVariogram

Class for computation and storage of the fitted variogram when vario_model == "Spherical"

6.8.1 Detailed Description

Classes to fit a model variogram (Gaussian, Exponential or Spherical) to an empirical one.

6.9 Helpers.hpp File Reference

Functions to manipulate matrices.

```
#include <Eigen/Sparse>
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include <Eigen/Cholesky>
#include <Eigen/SparseCholesky>
#include <cmath>
#include <string>
```

Typedefs

typedef Eigen::VectorXd Vec

Eigen dynamic vector of doubles.

Functions

MatrixXd matrix_manipulation::expMat (const MatrixXd &A)

Compute the exponential of a matrix.

MatrixXd matrix_manipulation::logMat (const MatrixXd &A)

Compute the logarithm of a matrix.

• MatrixXd matrix_manipulation::sqrtMat (const MatrixXd &A)

Compute the square root of a matrix.

std::vector< MatrixXd > matrix_manipulation::bigMatrix2VecMatrices (const MatrixXd &bigMatrix, unsigned int p, const std::string &distance_Manifold_name)

Transform a $\left(N, \frac{p*(p+1)}{2}\right)$ matrix (where each row represents a symmetric matrix) in a vector of length N of p*p psymmetric matrices.

MatrixXd matrix_manipulation::VecMatrices2bigMatrix (const std::vector< MatrixXd > &vecMatrices)

Transform a vector of length N of p*p symmetric matrices in a $\left(N, \frac{p*(p+1)}{2}\right)$ matrix (where each row represents a symmetric matrix)

• MatrixXd matrix_manipulation::Chol_semidef (const MatrixXd &M1)

Compute the Cholesky decomposition of a matrix not positive definite.

MatrixXd matrix_manipulation::Chol_decomposition (const MatrixXd M1)

Compute the Cholesky decomposition of a matrix.

6.9.1 Detailed Description

Functions to manipulate matrices.

6.9.2 Function Documentation

6.9.2.1 expMat()

Compute the exponential of a matrix.

Parameters

A Matrix whose exponential must be computed

Returns

Expontial of A

6.9.2.2 logMat()

Compute the logarithm of a matrix.

Parameters

A Matrix whose logarithm must be computed

Returns

Logarithm of A

6.9.2.3 sqrtMat()

Compute the square root of a matrix.

Parameters

```
A Matrix whose square root must be computed
```

Returns

Square root of A

6.9.2.4 bigMatrix2VecMatrices()

Transform a $\left(N, \frac{p*(p+1)}{2}\right)$ matrix (where each row represents a symmetric matrix) in a vector of length N of p*psymmetric matrices.

Parameters

bigMatrix	Matrix whose rows store the values of the upper triangular parts of $Np \ast p$ symmetric matrices
p	Dimension of the matrices
distance Manifold name	Name of the metric on the manifold to use. If
Generated by Doxygen	distance_Manifold_name=="Correlation" then only the upper triangular parts of the matrices is filled

Returns

Vector of length N of p * p symmetric matrices corresponding to the transformation of bigMatrix

6.9.2.5 VecMatrices2bigMatrix()

Transform a vector of length N of p*p symmetric matrices in a $\left(N,\frac{p*(p+1)}{2}\right)$ matrix (where each row represents a symmetric matrix)

Parameters

vecMatrices	Vector of symmetric matrices whose upper trinagular parts will be stored in the rows of the	
	output matrix	

Returns

```
Matrix \left(N, \frac{p*(p+1)}{2}\right) correponsing to the transformation of vecMatrices
```

6.9.2.6 Chol_semidef()

Compute the Cholesky decomposition of a matrix not positive definite.

Parameters

M1 Positive semidefinite matrix whose Cholesky decomposition must be computed

Returns

Matrix in Chol(p), representing the upper trianglar matrix of A's Cholesky decomposition

6.9.2.7 Chol_decomposition()

Compute the Cholesky decomposition of a matrix.

Parameters

M1 Positive definite or semidefine matrix whose Cholesky decomposition must be computed

Returns

Matrix in Chol(p), representing the upper trianglar matrix of A's Cholesky decomposition

6.10 HelpersFactory.hpp File Reference

Typedefs for the factory.

```
#include "FittedVariogram.hpp"
#include "DesignMatrix.hpp"
#include "Distance.hpp"
#include "MapFunctions.hpp"
#include "DistanceManifold.hpp"
#include "DistanceTplane.hpp"
#include "Factory.hpp"
#include "Proxy.hpp"
```

Typedefs

- typedef generic_factory::Factory < variogram_evaluation::FittedVariogram, std::string > vario_factory::VariogramFactory
 Factory for the fitted variogram.
- template<typename ConcreteProduct >
 using vario_factory::VariogramProxy = generic_factory::Proxy< VariogramFactory, ConcreteProduct >
 Proxy for the fitted variogram.
- typedef generic_factory::Factory < design_matrix::DesignMatrix, std::string > design_factory::DesignFactory Factory for the design matrix.
- template<typename ConcreteProduct >
 using design_factory::DesignProxy = generic_factory::Proxy< DesignFactory, ConcreteProduct >
 Proxy for the design matrix.
- typedef generic_factory::Factory< distances::Distance, std::string > distance_factory::DistanceFactory Factory for the distance.
- template<typename ConcreteProduct >
 using distance_factory::DistanceProxy = generic_factory::Proxy< DistanceFactory, ConcreteProduct >
 Proxy for the distance.
- typedef generic_factory::Factory < map_functions::logarithmicMap, std::string > map_factory::LogMapFactory Factory for the logarithmic map.
- typedef generic_factory::Factory < map_functions::exponentialMap, std::string > map_factory::ExpMapFactory Factory for the exponential map.
- template<typename ConcreteProduct >
 using map_factory::LogMapProxy = generic_factory::Proxy< LogMapFactory, ConcreteProduct >
 Proxy for the logarithmic map.
- template<typename ConcreteProduct >
 using map_factory::ExpMapProxy = generic_factory::Proxy< ExpMapFactory, ConcreteProduct >
 Proxy for the exponential map.
- typedef generic_factory::Factory < distances_manifold::DistanceManifold, std::string > manifold_factory::ManifoldFactory

Factory for the distance on the manifold.

template<typename ConcreteProduct >
 using manifold_factory::ManifoldProxy = generic_factory::Proxy< ManifoldFactory, ConcreteProduct >
 Proxy for the distance on the manifold.

• typedef generic_factory::Factory < distances_tplane::DistanceTplane, std::string > tplane_factory::TplaneFactory Factory for the distance on the tangent space.

```
    template<typename ConcreteProduct >
        using tplane_factory::TplaneProxy = generic_factory::Proxy< TplaneFactory, ConcreteProduct >
        Proxy for the distance on the tangent space.
```

6.10.1 Detailed Description

Typedefs for the factory.

6.11 interface_function.cpp File Reference

Main functions to create the model and perform kriging, along with functions to compute the distance on the manifold and the intrinsic mean.

```
#include <iostream>
#include <vector>
#include <utility>
#include <memory>
#include <Rcpp.h>
#include <RcppEigen.h>
#include "Coordinates.hpp"
#include "DesignMatrix.hpp"
#include "DistanceManifold.hpp"
#include "DistanceTplane.hpp"
#include "Distance.hpp"
#include "EmpiricalVariogram.hpp"
#include "FittedVariogram.hpp"
#include "Helpers.hpp"
#include "HelpersFactory.hpp"
#include "MapFunctions.hpp"
#include "Model.hpp"
#include "IntrinsicMean.hpp"
```

Functions

RcppExport SEXP get_model (SEXP s_data_manifold, SEXP s_coordinates, SEXP s_X, SEXP s_Sigma, SEXP s_distance, SEXP s_manifold_metric, SEXP s_ts_metric, SEXP s_ts_model, SEXP s_vario_model, SEXP s_n_h, SEXP s_max_it, SEXP s_tolerance, SEXP s_max_sill, SEXP s_max_a, SEXP s_weight_vario, SEXP s_distance_matrix_tot, SEXP s_data_manifold_tot, SEXP s_coordinates_tot, SEXP s_X_tot, SEXP s_hmax, SEXP s_indexes_model, SEXP s_weight_intrinsic, SEXP s_tolerance_intrinsic, SEXP s_weight_\(\limits \) extrinsic, SEXP s_suppressMes, SEXP s_tolerance_map_cor)

Given the coordinates and corresponding manifold values, this function creates a GLS model on the tangent space.

RcppExport SEXP get_kriging (SEXP s_coordinates, SEXP s_new_coordinates, SEXP s_Sigma, SEXP s
_distance, SEXP s_manifold_metric, SEXP s_ts_model, SEXP s_vario_model, SEXP s_beta, SEXP s_
gamma_matrix, SEXP s_vario_parameters, SEXP s_residuals, SEXP s_X_new, SEXP s_tolerance_map_
cor)

Given the GLS model kriging prediction on new location is performed.

RcppExport SEXP get_model_and_kriging (SEXP s_data_manifold, SEXP s_coordinates, SEXP s_X, SEXP s_Sigma, SEXP s_distance, SEXP s_manifold_metric, SEXP s_ts_metric, SEXP s_ts_model, SEXP s_wario_model, SEXP s_n_h, SEXP s_max_it, SEXP s_tolerance, SEXP s_max_sill, SEXP s_max_a, SEXP s_weight_vario, SEXP s_distance_matrix_tot, SEXP s_data_manifold_tot, SEXP s_coordinates_tot, SEW s_X_tot, SEXP s_hmax, SEXP s_indexes_model, SEXP s_weight_intrinsic, SEXP s_tolerance_intrinsic, SEXP s_weight_extrinsic, SEXP s_new_coordinates, SEXP s_X_new, SEXP s_suppressMes, SEXP s_weight_extrinsic, SEXP s_new_coordinates

Given the coordinates and corresponding manifold values, this function firstly creates a GLS model on the tangent space, and then it performs kriging on the new locations.

 RcppExport SEXP intrinsic_mean (SEXP s_data, SEXP s_N, SEXP s_manifold_metric, SEXP s_ts_metric, SEXP s_tolerance, SEXP s_weight_intrinsic, SEXP s_weight_extrinsic, SEXP s_tolerance_map_cor)

Evaluate the intrinsic mean of a given set of symmetric positive definite matrices.

RcppExport SEXP distance_manifold (SEXP s_data1, SEXP s_data2, SEXP s_N1, SEXP s_N2, SEXP s_
manifold_metric)

Compute the manifold distance between symmetric positive definite matrices.

6.11.1 Detailed Description

Main functions to create the model and perform kriging, along with functions to compute the distance on the manifold and the intrinsic mean.

6.11.2 Function Documentation

6.11.2.1 get_model()

```
RcppExport SEXP get_model (
             SEXP s_data_manifold,
             SEXP s_coordinates,
             SEXP s_X,
             SEXP s_Sigma,
             SEXP s_distance,
             SEXP s_manifold_metric,
             SEXP s_ts_metric,
             SEXP s_ts_model,
             SEXP s_vario_model,
             SEXP s_n_h,
             SEXP s_max_it,
             SEXP s_tolerance,
             SEXP s_max_sill,
             SEXP s_{max_a}
             SEXP s_weight_vario,
             SEXP s_distance_matrix_tot,
             SEXP s_data_manifold_tot,
             SEXP s\_coordinates\_tot,
             SEXP s_X_{tot}
             SEXP s_hmax,
             SEXP s_indexes_model,
             SEXP s_weight_intrinsic,
             SEXP s_tolerance_intrinsic,
```

```
SEXP s_weight_extrinsic,
SEXP s_suppressMes,
SEXP s_tolerance_map_cor )
```

Given the coordinates and corresponding manifold values, this function creates a GLS model on the tangent space.

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of $gamma_matrix$. The residuals (residuals = $data_ts - fitted$) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the $gamma_matrix$) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise.

Note

Reference: "Kriging prediction for manifold-valued random fields."

Authors: D. Pigoli, A. Menafoglio & P. Secchi (2016) Periodical: Journal of Multivariate Analysis, 145, 117-131.

Parameters

s_data_manifold	list of N symmetric positive definite matrices of dimension $\left(p*p\right)$
s_coordinates	(N*2) or $(N*3)$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
s_X	matrix Matrix with N rows and unrestricted number of columns of additional covariates for the tangent space model, possibly \mathtt{NULL}
s_Sigma	Matrix $(p*p)$ representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of s_data_manifold
s_distance	Type of distance between coordinates. It must be either "Eucldist" or "Geodist"
s_manifold_metric	Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
s_ts_metric	Metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"
s_ts_model	Type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"
s_vario_model	Type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"
s_n_h	Number of bins in the emprical variogram
s_max_it	Max number of iterations for the main loop
s_tolerance	Tolerance for the main loop
s_max_sill	Maximum value allowed for \emph{sill} in the fitted variogram. If <code>NULL</code> it is defined as $1.15*\max(\text{emp_vario_values})$
s_max_a	Maximum value for \emph{a} in the fitted variogram. If NULL it is defined as $1.15*h_{max}$
s_weight_vario	Vector of length N_tot to weight the locations in the computation of the empirical variogram
s_distance_matrix_tot	$\label{eq:matrix} \operatorname{Matrix}\left(N_{tot}*N_{tot}\right) \text{ of distances between the locations,}$
s_data_manifold_tot	List of N_tot symmetric positive definite matrices of dimension $(p*p)$
s_coordinates_tot	(N_tot*2) or (N_tot*3) matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees),
s_X_tot	Matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly \mathtt{NULL}

Parameters

s_hmax	Maximum value of distance for which the variogram is computed
s_indexes_model	<pre>Indexes corresponding to coords in coords_tot. Required only in the case metric_manifold=="Correlation"</pre>
s_weight_intrinsic	Vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided
s_tolerance_intrinsic	Tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided
s_weight_extrinsic	Vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold=="Correlation"
s_suppressMes	Boolean. If TRUE warning messagges are not printed
s_tolerance_map_cor	Tolerance to use in the maps. Required only if metric_manifold=="Correlation"

Returns

A list with the following fields:

- · beta Vector of the beta matrices of the fitted model
- fit_vario_values Vector of fitted variogram values in correspondence of hh
- hh Dense vector of positions at which fit_vario_values is computed
- gamma_matrix Covariogram matrix (N * N)
- ullet residuals Vector of the N residual matrices
- emp_vario_values Vector of empircal variogram values in correspondence of h_vec
- h_vec Vector of positions at which the empirical variogram is computed
- fitted_par_vario Estimates of nugget, sill-nugget and practical range
- iterations Number of iterations of the main loop
- Sigma Tangent point

6.11.2.2 get_kriging()

```
RcppExport SEXP get_kriging (

SEXP s_coordinates,

SEXP s_new_coordinates,

SEXP s_Sigma,

SEXP s_distance,

SEXP s_manifold_metric,

SEXP s_ts_model,

SEXP s_vario_model,

SEXP s_beta,

SEXP s_gamma_matrix,

SEXP s_vario_parameters,

SEXP s_residuals,

SEXP s_X_new,

SEXP s_tolerance_map_cor)
```

Given the GLS model kriging prediction on new location is performed.

The model provided is used to perform simple kriging on the tangent space in correspondence of the new locations. The estimates are then mapped to the manifold to produce the actual prediction.

Note

Reference: "Kriging prediction for manifold-valued random fields."

Authors: D. Pigoli, A. Menafoglio & P. Secchi (2016) Periodical: Journal of Multivariate Analysis, 145, 117-131.

Parameters

s_coordinates	(N*2) or $(N*3)$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
s_new_coordinates	(N*2) or $(N*3)$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
s_Sigma	Matrix $(p*p)$ representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of s_data_manifold	
s_distance	Type of distance between coordinates. It must be either "Eucldist" or "Geodist"	
s_manifold_metric	Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"	
s_ts_model	Type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"	
s_vario_model	Type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"	
s_beta	Vector of the beta matrices of the fitted model	
s_gamma_matrix	Covariogram matrix $(N*N)$	
s_vario_parameters	Estimates of nugget, sill-nugget and practical range	
s_residuals	Vector of the N residual matrices	
s_X_new	Matrix (with the same number of rows of s_new_coordinates) of additional covariates for the new locations, possibly NULL	
s_tolerance_map_cor	Tolerance to use in the maps. Required only if metric_manifold=="Correlation"	

Returns

A list with the following field:

• prediction Vector of matrices predicted at the new locations

6.11.2.3 get_model_and_kriging()

```
SEXP s_max_sill,
SEXP s_{max_a},
SEXP s_weight_vario,
SEXP s_distance_matrix_tot,
SEXP s_data_manifold_tot,
SEXP s_coordinates_tot,
SEXP s_X_{tot}
SEXP s_hmax,
SEXP s_indexes_model,
SEXP s_weight_intrinsic,
SEXP s_tolerance_intrinsic,
SEXP s_weight_extrinsic,
SEXP s_new_coordinates,
SEXP s_X_new,
SEXP s\_suppressMes,
SEXP s_tolerance_map_cor )
```

Given the coordinates and corresponding manifold values, this function firstly creates a GLS model on the tangent space, and then it performs kriging on the new locations.

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals (residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise. Once the model is computed, simple kriging on the tangent space is performed in correspondence of the new locations and eventually the estimates are mapped to the manifold.

Note

Reference: "Kriging prediction for manifold-valued random fields."

Authors: D. Pigoli, A. Menafoglio & P. Secchi (2016) Periodical: Journal of Multivariate Analysis, 145, 117-131.

Parameters

s_data_manifold	list of N symmetric positive definite matrices of dimension $(p \ast p)$
s_coordinates	(N*2) or $(N*3)$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
s_X	matrix Matrix with N rows and unrestricted number of columns of additional covariates for the tangent space model, possibly \mathtt{NULL}
s_Sigma	Matrix $(p*p)$ representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of s_data_manifold
s_distance	Type of distance between coordinates. It must be either "Eucldist" or "Geodist"
s_manifold_metric	Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
s_ts_metric	Metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"
s_ts_model	Type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"
s_vario_model	Type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"
s_n_h	Number of bins in the emprical variogram
s_max_it	Max number of iterations for the main loop

Parameters

s_tolerance	Tolerance for the main loop	
s_max_sill	Maximum value allowed for \emph{sill} in the fitted variogram. If <code>NULL</code> it is defined as $1.15*\max(\text{emp_vario_values})$	
s_max_a	Maximum value for a in the fitted variogram. If \mathtt{NULL} it is defined as $1.15*\mathtt{h_max}$	
s_weight_vario	Vector of length N_tot to weight the locations in the computation of the empirical variogram	
s_distance_matrix_tot	${\it Matrix}\; (N_tot*N_tot) \; {\it of distances between the locations},$	
s_data_manifold_tot	List of N_tot symmetric positive definite matrices of dimension $(p*p)$	
s_coordinates_tot	(N_tot*2) or (N_tot*3) matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees),	
s_X_tot	Matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly NULL	
s_hmax	Maximum value of distance for which the variogram is computed	
s_indexes_model	<pre>Indexes corresponding to coords in coords_tot. Required only in the case metric_manifold=="Correlation"</pre>	
s_weight_intrinsic	Vector of length N to weight the locations in the computation of the intrinsic mean. If \mathtt{NULL} a vector of ones is used. Not needed if \mathtt{Sigma} is provided	
s_tolerance_intrinsic	Tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided	
s_weight_extrinsic	Vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold=="Correlation"	
s_new_coordinates	(N*2) or $(N*3)$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
s_X_new	Matrix (with the same number of rows of s_new_coordinates) of additional covariates for the new locations, possibly NULL	
s_suppressMes	Boolean. If TRUE warning messagges are not printed	
s_tolerance_map_cor	Tolerance to use in the maps. Required only if metric_manifold=="Correlation"	

Returns

A list with the following fields:

- beta Vector of the beta matrices of the fitted model
- fit_vario_values Vector of fitted variogram values in correspondence of hh
- hh Dense vector of positions at which ${\tt fit_vario_values}$ is computed
- gamma_matrix Covariogram matrix (N*N)
- residuals $\mbox{\sc Vector}$ of the N residual matrices
- emp_vario_values Vector of empircal variogram values in correspondence of h_vec
- h_vec Vector of positions at which the empirical variogram is computed
- fitted_par_vario Estimates of nugget, sill-nugget and practical range
- \bullet iterations Number of iterations of the main loop
- Sigma Tangent point
- prediction Vector of matrices predicted at the new locations

6.11.2.4 intrinsic_mean()

Evaluate the intrinsic mean of a given set of symmetric positive definite matrices.

Parameters

s_data	list of N symmetric positive definite matrices of dimension $(p \ast p)$
s_N	Number of data. N = s_data.size()
s_manifold_metric	Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
s_ts_metric	Metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"
s_tolerance	Tolerance for the computation of the intrinsic_mean
s_weight_intrinsic	Vector of length N to weight the locations in the computation of the intrinsic mean. If \mathtt{NULL} a vector of ones is used
s_weight_extrinsic	Vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used
s_tolerance_map_cor	Tolerance to use in the maps. Required only if metric_manifold=="Correlation"

Returns

A matrix representing the intrinsic mean of the s_data

6.11.2.5 distance_manifold()

```
RcppExport SEXP distance_manifold (

SEXP s_data1,

SEXP s_data2,

SEXP s_N1,

SEXP s_N2,

SEXP s_manifold_metric )
```

Compute the manifold distance between symmetric positive definite matrices.

If N1 == N2 then the result is a vector of length N1 = N2 containing in position \mathtt{i} the manifold distance between $\mathtt{data1[[i]]}$ and $\mathtt{data2[[i]]}$. Instead if N2 == 1 and N1! = 1 the result is a vector of length N1 containing in position \mathtt{i} the manifold distance between $\mathtt{data1[[i]]}$ and $\mathtt{data2[[i]]}$

Parameters

s_data1	list of $N1$ symmetric positive definite matrices of dimension $(p * p)$	
s_data2	list of $N2$ symmetric positive definite matrices of dimension $(p \ast p)$	
s_N1	Number of data1. N1 = s_data1.size()	
s_N2	Number of data2. N2 = s_data2.size()	
s_manifold_metric	Metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean",	
	"SquareRoot", "Correlation"	

Returns

A double or a vector of distances

6.12 IntrinsicMean.hpp File Reference

Functions to compute intrinsic and extrinsic mean for manifold data.

```
#include <Eigen/Dense>
#include <memory>
#include "DistanceTplane.hpp"
#include "Helpers.hpp"
#include "MapFunctions.hpp"
```

Functions

MatrixXd intrinsic_mean_C (const std::vector< MatrixXd > &data_manifold, std::string distance_
 —
 Manifold_name, map_functions::logarithmicMap &logMap, map_functions::exponentialMap &expMap,
 distances_tplane::DistanceTplane &distanceTplane, double tolerance, const Vec &weight_intrinsic, const
 Vec &weight_extrinsic)

Compute the intrinsic mean of a set of manifold matrices.

MatrixXd extrinsic_mean (const std::vector< MatrixXd > &data_manifold, const Vec &weight_extrinsic)
 Compute the extrinsic mean of a set of matrices in Chol (p).

6.12.1 Detailed Description

Functions to compute intrinsic and extrinsic mean for manifold data.

6.12.2 Function Documentation

6.12.2.1 intrinsic_mean_C()

Compute the intrinsic mean of a set of manifold matrices.

Parameters

data_manifold	Vector of manifold matrices
distance_Manifold_name	Name of the metric on the manifold
logMap	Logarithmic map
ехрМар	Exponential map
distanceTplane	Distance on the tangent space
tolerance	Tolerance for the algorithm's loop
weight_intrinsic	Weights
weight_extrinsic	Weights for the computation of the extrinsic mean (used if
	distance_Manifold_name=="Correlation")

Returns

Matrix identifying the intrinsic mean of data_manifold

6.12.2.2 extrinsic_mean()

Compute the extrinsic mean of a set of matrices in Chol(p).

Parameters

data_manifold	Vector of matrices in $Chol\left(p\right)$
weight_extrinsic	Weights

Returns

Matrix identifying the extrinsic mean of data_manifold

6.13 MapFunctions.hpp File Reference

Classes to compute the exponential and logarithmic map according to the manifold metric.

```
#include <memory>
#include "DistanceManifold.hpp"
```

Classes

• class map_functions::logarithmicMap

Abstract class for the computation of the logarithmic map.

class map_functions::logMapFrob

Class for the computation of the logarithmic map when manifold_metric=="Frobenius"

· class map functions::logMapLogEucl

Class for the computation of the logarithmic map when manifold_metric=="LogEuclidean"

class map_functions::logMapSqRoot

Class for the computation of the logarithmic map when manifold_metric=="SqRoot"

class map_functions::logMapChol

Class for the computation of the logarithmic map when manifold_metric=="Correlation"

class map functions::exponentialMap

Abstract class for the computation of the exponential map.

class map_functions::expMapFrob

Class for the computation of the exponential map when manifold_metric="Frobenius"

· class map_functions::expMapLogEucl

Class for the computation of the exponential map when manifold_metric=="LogEuclidean"

class map_functions::expMapSqRoot

Class for the computation of the exponential map when manifold_metric=="SqRoot"

class map_functions::expMapChol

Class for the computation of the exponential map when manifold_metric=="Correlation"

6.13.1 Detailed Description

Classes to compute the exponential and logarithmic map according to the manifold metric.

6.14 Model.hpp File Reference

Model class.

```
#include <vector>
#include <iostream>
#include <string>
#include <utility>
#include <Eigen/IterativeLinearSolvers>
#include <memory>
#include "Helpers.hpp"
```

Classes

· class model fit::Model

Class to compute and store the linear model on the tangent space.

6.14.1 Detailed Description

Model class.

6.15 Proxy.hpp File Reference

Proxy class.

```
#include <string>
#include <memory>
#include <iostream>
#include <type_traits>
```

Classes

class generic_factory::Proxy < Factory, ConcreteProduct >
 A simple proxy for registering into a factory.

6.15.1 Detailed Description

Proxy class.