PENDUGAAN PARAMETER

Objektif:

- Mahasiswa Mampu Memahami Mengenai Pendugaan Nilai Tengah dan Beda Dua Nilai Tengah.
- 2. Mahasiswa Mampu Memahami Mengenai Pendugaan Proporsi dan Selisih Dua Proporsi.

Penduga adalah suatu statistik dari sampel yang digunakan untuk menduga suatu parameter dari populasi. Kita dapat mengetahui seberapa jauh parameter suatu populasi yang tidak diketahui berada di sekitar sampel dengan menggunakan selang kepercayaan. Pendugaan parameter dilakukan karena umumnya kita tidak dapat mengamati seluruh populasi yang jumlahnya besar. Hal ini mungkin disebabkan oleh ketersediaan dana, keterbatasan waktu, sumber daya manusia, alat, bahan, dan lainnya. Dengan tidak dapat mendata seluruh populasi maka kita tidak dapat memperoleh nilai parameter populasi yang sesungguhnya. Oleh karena itu, diperlukan pengambilan sampel acak dari populasi. Data yang didapatkan dari pengambilan sampel acak ini dihitung dan kemudian statistik tersebut digunakan sebagai penduga parameter populasi.

4.1 Pendugaan Nilai Tengah dan Beda Dua Nilai Tengah

Secara garis besar, pendugaan seputar nilai tengah dapat diklasifikasikan sebagai berikut:

4.2.1 Pendugaan Nilai Tengah Satu Populasi

\triangleright n (jumlah sampel) berukuran besar (\ge 30) atau menyebar normal

Selang kepercayaan bagi μ ; σ diketahui. Bila \overline{x} adalah nilai tengah sampel acak berukuran n dari suatu populasi dengan ragam σ^2 diketahui. Maka selang kepercayaan $(1-\alpha)100\%$ bagi μ adalah

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Jika σ^2 tidak diketahui, tetapi sampel berukuran besar, σ^2 dapat diganti dengan $s^2.$

Contoh Soal 1:

Rata-rata nilai IPK 36 mahasiswa tingkat akhir adalah 2,6 dengan simpangan baku populasinya sebesar 0,3. Buat selang kepercayaan 95% dan 99% bagi nilai tengah mutu rata-rata seluruh mahasiswa tingkat akhir.

Penyelesaian:

- Selang Kepercayaan 95%
 - a. n = 36
 - b. Nilai duga μ adalah \bar{x} = 2,6.
 - c. Nilai σ dapat diduga dengan s = 0,3.
 - d. Selang kepercayaan 95% (α = 5% = 0,05)

$$\alpha/2 = 0.05/2 = 0.025$$

Untuk mencari nilai $Z_{0.025}$, maka kita menggunakan tabel z yang mana nilai pada perpotongan α baris 0.02 dengan α kolom 0,005.

Tabel Distribusi Z

a	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00		3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.326	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.054	2.034	2.014	1.995	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.881	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.751	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.645	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.555	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.476	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.405	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.341	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.282	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

Maka, nilai $Z_{0.025} = 1.96$

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$2.6 - (1.96) \left(\frac{0.3}{\sqrt{36}}\right) < \mu < 2.6 + (1.96) \left(\frac{0.3}{\sqrt{36}}\right)$$

$$2,50 < \mu < 2,70$$

Jadi, nilai tengah mutu rata-rata seluruh mahasiswa tingkat akhir sebesar 2,50 sampai 2,70.

- Selang Kepercayaan 99%
 - a. n = 36
 - b. Nilai duga μ adalah \overline{x} = 2,6.
 - c. Nilai σ dapat diduga dengan s = 0,3.
 - d. Selang kepercayaan 99% ($\alpha = 1\% = 0.01$)

$$\alpha/2 = 0.01/2 = 0.005$$

Untuk mencari nilai $Z_{0.005}$, maka kita menggunakan tabel z yang mana nilai pada perpotongan α baris 0.00 dengan α kolom 0,005.

Tabel Distribusi Z

a	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00		3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.326	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.054	2.034	2.014	1.995	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.881	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.751	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.645	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.555	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.476	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.405	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.341	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.282	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

Maka, nilai $Z_{0.005}=2.576$ atau dibulatkan menjadi 2.58

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$2.6 - (2.58) \left(\frac{0.3}{\sqrt{36}} \right) < \mu < 2.6 + (2.58) \left(\frac{0.3}{\sqrt{36}} \right)$$

$$2,47 < \mu < 2,73$$

Jadi, nilai tengah mutu rata-rata seluruh mahasiswa tingkat akhir sebesar 2,47 sampai 2,73.

$\rightarrow n$ (jumlah sampel) berukuran kecil (< 30)

Selang kepercayaan bagi μ ; σ tidak diketahui. Bila \bar{x} dan s adalah nilai tengah dan simpangan baku dan ragam σ^2 tidak diketahui, maka selang kepercayaan $(1-\alpha)100\%$ bagi μ adalah :

$$\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

Dalam hal ini, $t_{\alpha/2}$ adalah nilai t dengan v=n-1 derajat bebas yang di sebelah kanannya terdapat daerah seluas $\alpha/2$.

Contoh Soal 2:

Isi 7 kaleng asam sulfat sebagai berikut (dalam liter):

Dengan simpangan baku 0,283. Tentukan selang kepercayaan 95% bagi nilai tengah isi semua botol.

Penyelesaian:

$$\bar{x} = 10,0$$

$$s = 0,283$$

Selang kepercayaan 95% ($\alpha = 5\% = 0.05$)

$$t_{\alpha/2} = t_{0,025} dan v = n - 1 = 7 - 1 = 6$$

Pr 0.25 0.10 0.005 df 0.50 0.20 0.10 0.050 0.02 0.010 0.002 12.70(20) 1.00000 3.07768 6.31375 31.82052 63.65674 318.30884 2 4.30265 0.81650 1.88562 2.91999 6.96456 9.92484 22.32712 0.76489 1.63774 2.35336 3.18245 4.54070 5.84091 10.21453 0.74070 1.53321 2.13185 2.77645 3.74695 4.60409 7.17318 0.72669 1.47588 2.01505 2 570 58 3.36493 4.03214 5.89343 2.44691 3.14267 3.70743 5.20763 1.41492 1.89458 0.71114 2.99795 3.49948 4.78529 2.36462 0.70639 1.39682 1.85955 2.30600 2.89646 3.35539 4.50079 0.70272 1.38303 1.83311 2.26216 2.82144 3.24984 4 29681 0.69981 1.37218 1.81246 2.22814 2.76377 3.16927 4.14370 11 0.69745 1.36343 1.79588 2.20099 2.71808 3.10581 4.02470 12 0.69548 1.35622 1.78229 2.17881 2.68100 3.05454 3.92963 13 0.69383 1.35017 1.77093 2.16037 2.65031 3.01228 3.85198 14 0.69242 1:34503 1.76131 2 14479 2.62449 2.97684 3.78739 0.69120 1.34061 1.75305 2.13145 2.60248 2.94671 3.73283 0.69013 2.58349 16 1.33676 1.74588 2.11991 2 92078 3.68615 0.68920 1.33338 1.73961 2.10982 2.56693 2.89823 3 64577 0.68836 1.33039 1.73406 2.10092 2.55238 2.87844 3.61048 0.68762 1.32773 1.72913 2.09302 2.53948 2.86093 3.57940 20 0.68695 1.32534 1.72472 2.08596 2.52798 2.84534 3.55181 1.32319 2.07961 3.52715 21 0.68635 1.72074 2.51765 2.83136 22 0.68581 1.32124 1.71714 2.07387 2.50832 2.81876 3.50499 0.68531 1.31946 2.06866 2.49987 1,71387 2.80734 3.48496

Tabel Distribusi T

Nilai t_{0,025;6} = 2,447

$$\overline{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$$

$$10.0 - 2.447 \frac{0.283}{\sqrt{7}} < \mu < 10.0 + 2.447 \frac{0.283}{\sqrt{7}}$$

$$9,74 < \mu < 10,26$$

Jadi, nilai tengah mutu rata-rata Isi seluruh kaleng asam sulfat sebesar 9,74 sampai 10,26.

4.2.2 Pendugaan Beda Dua Nilai Tengah

Populasi Independen, Sampel Besar

Bila kita mempunyai dua populasi saling bebas dengan nilai tengah μ_1 dan μ_2 dan ragam σ_1^2 dan σ_2^2 maka penduga titik bagi selisih antara μ_1 dan μ_2 adalah \overline{x}_1 dan \overline{x}_2 .

Bila \overline{x}_1 dan \overline{x}_2 masing-masing adalah nilai tengah sampel acak bebas berukuran n_1 dan n_2 yang diambil dari populasi dengan ragam σ_1^2

dan σ_2^2 diketahui, maka selang kepercayaan (1 – $\alpha)100\%$ bagi μ_1 dan μ_2 adalah :

$$(\bar{x}_1 - \bar{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{x}_1 - \bar{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

 σ_1^2 dan σ_2^2 dapat diganti dengan s_1^2 dan s_2^2 .

Contoh Soal 3:

Suatu ujian kimia diberikan pada 50 siswa perempuan dan 75 siswa laki-laki. Rata-rata nilai ujian siswa perempuan adalah 76 dengan simpangan baku 6, sedangkan siswa laki-laki memperoleh rata-rata 82 dengan simpangan baku 8. Tentukan selang kepercayaan 96% bagi selisih rata-rata nilainya!

Penyelesaian:

Misalkan:

Nilai tengah semua skor siswa laki-laki = μ_1

Nilai tengah semua skor siswa perempuan = μ_2

Nilai dugaan titik bagi = $\mu_1 - \mu_2$ adalah $\bar{x}_1 - \bar{x}_2$ = 82 – 76 = 6

Karena $n_1\ dan\ n_2\$ cukup besar maka dapat mengganti $\sigma_1\ dan\ \sigma_2\$ dengan s_1 = 8 dan s_2 = 6

Selang kepercayaan 96% ($\alpha = 4\% = 0.04$)

$$\alpha/2 = 0.02 (Z_{0.02} = 2.054)$$

Tabel Distribusi Z

a	0		0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00			3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.32	26	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.05	54	2.034	2.014	1.995	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.88	31	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.75	51	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.64	15	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.55	55	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.47	76	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.40)5	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.34	11	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.28	32	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

$$6 - 2,05\sqrt{\frac{64}{75} + \frac{36}{50}} < \mu_1 - \mu_2 < 6 + 2,05\sqrt{\frac{64}{75} + \frac{36}{50}}$$

$$3,43 < \mu_1 - \mu_2 < 8,57$$

Jadi, selisih rata-rata nilai ujian kimia antara siswa laki-laki dan siswa perempuan adalah 3,43 dan 8,57

Populasi Independen, Sampel Kecil, Ragam Sama

Adapun penduga selang kepercayaan (1 – α)100% bagi $\mu_1 - \mu_2$ untuk sampel kecil; bila $\sigma_1^2 = \sigma_2^2$ tetapi nilainya tidak diketahui adalah :

$$(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) - \mathbf{t}_{\alpha/2} s_p \sqrt{\frac{1}{\mathbf{n}_1} + \frac{1}{\mathbf{n}_2}} < \mu_1 - \mu_2 < (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2) + \mathbf{t}_{\alpha/2} s_p \sqrt{\frac{1}{\mathbf{n}_1} + \frac{1}{\mathbf{n}_2}}$$

Dengan derajat bebas untuk distribusi t $\Rightarrow v = n_1 + n_2 - 2$ dan ragam gabungannya adalah :

$$s_p^2 = \frac{(\mathbf{n}_1 - 1)s_1^2 + (\mathbf{n}_2 - 1)s_2^2}{\mathbf{n}_1 + \mathbf{n}_2 - 2}$$

Contoh Soal 4:

Suatu pelajaran matematika diberikan kepada 12 siswa dengan metode pengajaran yang biasa. Pelajaran yang sama diberikan pula pada 10 siswa tetapi dengan metode pengajaran yang menggunakan bahan yang telah diprogramkan. Pada akhir semester pada setiap kelas diberikan ujian yang sama. Kelas yang pertama mencapai nilai rata-rata 85 dengan simpangan baku 4, sedangkan kelas yang kedua mencapai nilai rata-rata 81 dengan simpangan baku 5. Tentukan selang kepercayaan 90% bagi selisih antara kedua nilai tengah populasi. Bila diasumsikan kedua populasi menyebar menghampiri normal dengan ragam yang sama.

Penyelesaian:

$$\bar{x}_1 - \bar{x}_2 = 85 - 81 = 4$$

$$s_1 = 4$$
 $s_2 = 5$

Perhatikan bahwa:

$$s_p^2 = \frac{(11)(16) + (9)(25)}{12 + 10 - 2} = 20,05$$

$$s_p = 4,478$$

Selang kepercayaan 90% ($\alpha = 10\% = 0.1$)

$$\alpha/2 = 0.05 \, \text{dan} \, v = 12 + 10 - 2 = 20$$

Tabel Distribusi T

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.00
df	0.50	0.20	1.10	0.050	0.02	0.010	0.000
1	1.00000	3.07768	6.31375	12.70620	31.82052	63.65674	318.3088
2	0.81650	1.88562	2.91999	4.30265	6.96456	9.92484	22.3271
3	0.76489	1.63774	2.35336	3.18245	4.54070	5.84091	10.2145
4	0.74070	1.53321	2.13185	2.77645	3.74695	4.60409	7.1731
5	0.72669	1.47588	2.01505	2.57058	3.36493	4.03214	5.8934
6	0.71756	1.43976	1.94318	2.44691	3.14267	3.70743	5.2076
7	0.71114	1.41492	1.89458	2.36462	2.99795	3.49948	4.7852
8	0.70639	1.39682	1.85955	2.30600	2.89646	3.35539	4.5007
9	0.70272	1.38303	1.83311	2.26216	2.82144	3.24984	4.2968
10	0.69981	1.37218	1.81246	2.22814	2.76377	3.16927	4.1437
11	0.69745	1.36343	1.79588	2.20099	2.71808	3.10581	4.0247
12	0.69548	1.35622	1.78229	2.17881	2.68100	3.05454	3.9296
13	0.69383	1.35017	1.77093	2.16037	2.65031	3.01228	3.8519
14	0.69242	1.34503	1.76131	2.14479	2.62449	2.97684	3.7873
15	0.69120	1.34061	1.75305	2.13145	2.60248	2.94671	3.7328
16	0.69013	1.33676	1.74588	2.11991	2.58349	2.92078	3.6861
17	0.68920	1.33338	1,73961	2.10982	2.56693	2.89823	3.6457
18	0.68836	1.33039	1.73406	2.10092	2.55238	2.87844	3.6104
19	0.68762	1.32773	4 22 242	2.09302	2.53948	2.86093	3.5794
20	0.60606	1.02534	1.72472	2.08596	2.52798	2.84534	3.5518
21	0.68635	1.32319	1.72074	2.07961	2.51765	2.83136	3.5271
22	0.68581	1.32124	1.71714	2.07387	2.50832	2.81876	3.5049
23	0.68531	1.31946	1,71387	2.06866	2.49987	2 80734	3.4849

$$t(20; 0,05) = 1,72472 \approx 1.725$$

$$4 - (1,725)(4,478) \sqrt{\frac{1}{12} + \frac{1}{10}} < \mu_1 - \mu_2 < 4 + (1,725)(4,478) \sqrt{\frac{1}{12} + \frac{1}{10}}$$

$$0,69 < \mu_1 - \mu_2 < 7,31$$

Jadi, kita percaya 90% bahwa selang dari 0,69 sampai 7,31 mencakup selisih sesungguhnya nilai rata-rata pelajaran matematika untuk kedua metode pengajaran tersebut. Kedua ujung selang positif menunjukkan bahwa metode pengajaran biasa untuk pelajaran matematika lebih unggul daripada metode pengajaran dengan menggunakan bahan terprogram.

Populasi Independen, Sampel Kecil, Ragam Beda

Selang kepercayaan $(1-\alpha)100\%$ bagi $\mu_1-\mu_2$ untuk sampe kecil; bila $\sigma_1^2 \neq \sigma_2^2$ dan nilainya tidak diketahui adalah :

$$(\overline{x}_1-\overline{x}_2)-t_{\alpha/2}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}<\mu_1-\mu_2<(\overline{x}_1-\overline{x}_2)+t_{\alpha/2}\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}$$

Dengan derajat bebas untuk distribusi t adalah:

$$v = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{[(\frac{s_1^2}{n_1})^2/(n_1 - 1)] + [(\frac{s_2^2}{n_2})^2/(n_2 - 1)]}$$

Contoh Soal 5:

Catatan selama 15 tahun terakhir menunjukkan bahwa curah hujan ratarata di suatu daerah selama bulai Mei adalah 4,93 cm dengan simpangan baku 1,14 cm. Di daerah lain, catatan serupa selama 10 tahun terakhir menunjukkan bahwa curah hujan rata-rata di bulan Mei adalah 2,64 cm dengan simpangan baku 0,66 cm. Tentukan selang kepercayaan 95% bagi selisih curah hujan rata-rata yang sebenarnya selama bulan Mei di kedua

daerah tersebut. Bila diasumsikan bahwa pengamatan-pengamatan itu berasal dari dua populasi dengan ragam yang berbeda.

Penyelesaian:

$$\bar{x}_1 = 4.93$$
 $s_1 = 1.14$ $n_1 = 15$

$$\bar{x}_2 = 2,64$$
 $s_2 = 0,66$ $n_2 = 10$

$$\bar{x}_1 - \bar{x}_2 = 4,93 - 2,64 = 2,29$$

Selang kepercayaan 95% ($\alpha = 5\% = 0.05$)

$$\alpha/2 = 0.025$$

$$v = \frac{\left(\frac{1,14^2}{15} + \frac{0,66^2}{10}\right)^2}{\left[\left(\frac{1,14^2}{15}\right)^2/(14)\right] + \left[\left(\frac{0,66^2}{10}\right)^2/(9)\right]} = 22,7 \approx 23$$

Tabel Distribusi T

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0 050	0.02	0.010	0.002
1	1.00000	3.07768	6.31375	12.70 820	31.82052	63.65674	318.3088
2	0.81650	1.88562	2.91999	4.30265	6.96456	9.92484	22.32712
3	0.76489	1.63774	2.35336	3.18245	4.54070	5.84091	10.21453
4	0.74070	1.53321	2.13185	2.77845	3.74695	4.60409	7.17310
5	0.72669	1.47588	2.01505	2.57058	3.36493	4.03214	5.8934
6	0.71756	1.43976	1.94318	2.44591	3.14267	3.70743	5.20763
7	0.71114	1.41492	1.89458	2.36 462	2.99795	3,49948	4.78529
8	0.70639	1.39682	1.85955	2.30 600	2.89646	3.35539	4.50079
9	0.70272	1.38303	1.83311	2.26216	2.82144	3.24984	4.2968
10	0,69981	1.37218	1.81246	2.22814	2.76377	3.16927	4.1437
11	0.69745	1.36343	1.79588	2.20099	2.71808	3.10581	4.0247
12	0.69548	1.35622	1.78229	2.17881	2.68100	3.05454	3.9296
13	0.69383	1.35017	1.77093	2.16037	2.65031	3.01228	3.8519
14	0.69242	1.34503	1.76131	2.14479	2.62449	2.97684	3.7873
15	0.69120	1.34061	1.75305	2.13145	2.60248	2.94671	3.7328
16	0.69013	1.33676	1.74588	2.11991	2.58349	2.92078	3.6861
17	0.68920	1.33338	1.73961	2.10982	2.56693	2.89823	3.6457
18	0.68836	1.33039	1.73406	2.10092	2.55238	2.87844	3.6104
19	0.68762	1.32773	1.72913	2.09302	2.53948	2.86093	3.5794
20	0.68695	1.32534	1.72472	2.08 596	2.52798	2.84534	3.5518
21	0.68635	1.32319	1.72074	2.07961	2.51765	2.83136	3.5271
22	0.68581	1.32124	1.71714	2.07387	2.50832	2.81876	3.5049
23	0.00531	1.01040	1.71007	2.06866	2.49987	2.80734	3.4849

$$t(23; 0.025) = 2.06866 \approx 2.069$$

$$2,29 - 2,069\sqrt{\frac{1,14^2}{15} + \frac{0,66^2}{10}} < \mu_1 - \mu_2 < 2,29 + 2,069\sqrt{\frac{1,14^2}{15} + \frac{0,66^2}{10}}$$

$$1,54 < \mu_1 - \mu_2 < 3,04$$

Jadi, kita percaya 95% bahwa selisih curah hujan rata-rata yang sebenarnya selama bulan Mei di kedua daerah tersebut berada dalam selang dari 1,54 sampai 3,04 cm.

4.4 Pendugaan Proporsi dan Selisih Dua Proporsi

4.4.1 Pendugaan Proporsi

Bila \hat{p} adalah proporsi keberhasilan dalam suatu sampel acak berukuran n, dan $\hat{q}=1-\hat{p}$, maka selang kepercayaan kira-kira (1 – α)100% bagi parameter binom p diberikan oleh :

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Sedangkan $z_{\alpha/2}$ adalah nilai z yang luas daerah di sebelah kanannya sebesar $\alpha/2$.

Contoh Soal 5:

Dari suatu sampel acak 500 orang yang makan siang di sebuah restoran selama beberapa hari Jum'at, diperoleh informasi x = 160 orang yang menyukai makanan laut (*seafood*). Tentukan selang kepercayaan 95% bagi proporsi sesungguhnya orang yang menyukai makanan laut untuk makan siangnya pada hari Jum'at di restoran ini.

Penyelesaian:

Nilai dugaan bagi p adalah $\hat{p} = 160/500 = 0.32$

$$\hat{q} = 1 - 0.32 = 0.68$$

Selang kepercayaan 95% (α = 5% = 0,05)

$$z_{\alpha/2} = z_{0.025} = 1,96$$

Tabel Distribusi Z

a	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00		3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.326	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.054	2.034	2.014	1.005	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.881	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.751	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.645	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.555	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.476	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.405	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.341	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.282	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

$$0.32 - 1.96 \sqrt{\frac{(0.32)(0.68)}{500}}
$$0.28$$$$

Maka, proporsi sesungguhnya orang yang menyukai makanan laut untuk makan siangnya pada hari Jum'at di restoran ini berada diantara 0,28 dan 0,36

4.4.2 Pendugaan Selisih Dua Proporsi

Bila \hat{p}_1 dan \hat{p}_2 masing-masing adalah proporsi keberhasilan dalam sampel acak yang berukuran n_1 dan n_2 serta $\hat{q}_1=1-\hat{p}_1$ dan $\hat{q}_2=1-\hat{p}_2$, maka selang kepercayaan kira-kira (1 – α)100% bagi selisih antara dua parameter binom p_1-p_2 adalah :

$$(\hat{p}_1 - \hat{p}_2) - z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} < p_1 - p_2 < (\hat{p}_1 - \hat{p}_2) + z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$$

Contoh Soal 6:

Suatu pengumpulan pendapat umum dilakukan terhadap penduduk kota dan penduduk di sekitar kota tersebut untuk menyelidiki kemungkinan diajukannya rencana pembangunan suatu kompleks gedung serbaguna. Bila 2400 di antara 5000 penduduk kota dan 1200 di antara 2000 penduduk di sekitar kota tersebut yang diwawancarai menyetujui rencana tersebut, buat selang kepercayaan 90% bagi selisih proporsi sebenarnya yang menyetujui rencana tersebut.

Penyelesaian:

$$\hat{p}_1 = \frac{2400}{5000} = 0.48$$
 $\hat{p}_2 = \frac{1200}{2000} = 0.60$

$$\hat{q}_1 = 0.52$$
 $\hat{q}_2 = 0.40$

$$\hat{p}_1 - \hat{p}_2 = 0.48 - 0.60 = -0.12$$

Selang kepercayaan 90% ($\alpha = 10\% = 0.1$)

$$z_{\alpha/2} = z_{0.05} = 1,65$$

Tabel Distribusi Z

a	0		0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00			3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.3	26	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.0	54	2.034	2.014	1.995	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.8	81	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.7	51	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.6	45	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.5	555	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.4	176	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.4	105	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.3	341	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.2	282	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

$$-0.12 - 1.65 \sqrt{\frac{(0.48)(0.52)}{5000} + \frac{(0.60)(0.40)}{2000}} < p_1 - p_2 < -0.12 + 1.65 \sqrt{\frac{(0.48)(0.52)}{5000} + \frac{(0.60)(0.40)}{2000}}$$

$$-0.1415 < p_1 - p_2 < -0.0985$$

Karena kedua titik ujung selangnya negatif, maka kita juga dapat menyimpulkan bahwa proporsi penduduk sekitar kota yang menyetujui rencana tersebut lebih besar daripada proporsi penduduk kota yang menyetujui rencana tersebut.

Tabel Distribusi T

db	t _{0.10}	t _{0.05}	t _{0.025}	t _{0.01}	t _{0.005}
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3,707
6 7	1.415	1.895	2.365	2.998	3,499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2,602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2.660
120	1.289	1.658	1.980	2.358	2.617
00	1.282	1.645	1.960	2.326	2.576

Tabel Distribusi Z

a	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.00		3.090	2.878	2.748	2.652	2.576	2.512	2.457	2.409	2.366
0.01	2.326	2.290	2.257	2.226	2.197	2.170	2.144	2.120	2.097	2.075
0.02	2.054	2.034	2.014	1.995	1.977	1.960	1.943	1.927	1.911	1.896
0.03	1.881	1.866	1.852	1.838	1.825	1.812	1.799	1.787	1.774	1.762
0.04	1.751	1.739	1.728	1.717	1.706	1.695	1.685	1.675	1.665	1.655
0.05	1.645	1.635	1.626	1.616	1.607	1.598	1.589	1.580	1.572	1.563
0.06	1.555	1.546	1.538	1.530	1.522	1.514	1.506	1.499	1.491	1.483
0.07	1.476	1.468	1.461	1.454	1.447	1.440	1.433	1.426	1.419	1.412
0.08	1.405	1.398	1.392	1.385	1.379	1.372	1.366	1.359	1.353	1.347
0.09	1.341	1.335	1.329	1.323	1.317	1.311	1.305	1.299	1.293	1.287
0.10	1.282	1.276	1.270	1.265	1.259	1.254	1.248	1.243	1.237	1.232

Tabel Distribusi Chi Kuadrat

db	$\chi^{2}_{0.10}$	$\chi^{2}_{0.05}$	$\chi^{2}_{0.025}$	$\chi^{2}_{0.01}$	$\chi^{2}_{0.005}$
1	2.705	3.841	5.024	6.635	7.879
2	4.605	5.991	7.378	9.210	10.597
2 3	6.251	7.815	9.348	11.345	12.838
4	7.779	9.488	11.143	13.277	14.860
5	9.236	11.071	12.833	15.086	16.750
6	10.645	12.592	14.449	16.812	18.548
7	12.017	14.067	16.013	18.475	20.278
8	13.362	15.507	17.535	20.090	21.955
9	14.684	16.919	19.023	21.666	23.589
10	15.987	18.307	20.483	23.209	25.188
11	17.275	19.675	21.920	24.725	26.757
12	18.549	21.026	23.337	26.217	28.300
13	19.812	22.362	24.736	27.688	29.819
14	21.064	23.685	26.119	29.141	31.319
15	22.307	24.996	27.488	30.578	32.801
16	23.542	26.296	28.845	32.000	34.267
17	24.769	27.587	30.191	33.409	35.718
18	25.989	28.869	31.526	34.805	37.156
19	27.204	30.144	32.852	36.191	38.582
20	28.412	31.410	34.170	37.566	39.997
21	29.615	32.671	35.479	38.932	41.401
22	30.813	33.924	36.781	40.289	42.796
23	32.007	35.172	38.076	41.638	44.181
24	33.196	36.415	39.364	42.980	45.559
25	34.382	37.652	40.646	44.314	46.928
26	35.563	38.885	41.923	45.642	48.290
27	36.741	40.113	43.194	46.963	49.645
28 29	37.916	41.337	44.461	48.278	50.993
29	39.087	42.557	45.722	49.588	52.336
30	40.256	43.773	46.979	50.892	53.672
40	51.805	55.758	59.342	63.691	66.766
50	63.167	67.505	71.420	76.154	79.490
60	74.397	79.082	83.298	88.379	91.952
70	85.527	90.531	95.023	100.425	104.215
80	96.578	101.879	106.629	112.329	116.321
90	107.565	113.145	118.136	124.116	128.299
100	118.498	124.342	129.561	135.807	140.169

Tabel Distribusi F

Titik Persentase Distribusi F untuk Probabilita = 0,05

df untuk		df untuk pembilang (N1)													
penyebut (N2)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	161	199	216	225	230	234	237	239	241	242	243	244	245	245	246
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.42	19.43
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.8
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.6
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.9
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.5
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.2
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.0
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.8
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.7
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.6
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.5
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.4
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.4
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.3
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.3
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.2
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.2
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	22
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28	2.25	2.22	2.20	2.1
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.32	2.26	2.23	2.20	2.17	2.1
23	4.30	3.44	3.03	2.80	2.64	2.53	2.44	2.37	2.34	2.30	2.24	2.20	2.18	2.17	2.1
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.32	2.25	2.24	2.18	2.15	2.13	2.1
25	4.20	3.40	2.99	2.76	2.60	2.49	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.0
26	4.24	3.39	2.99	2.74	2.60	2.49	2.40	2.34	2.28	2.24	2.18	2.16	2.14	2.11	2.0
27	4.23	3.37	2.96	2.74	2.59	2.46	2.39	2.32	2.27	2.20	2.17	2.13	2.12	2.09	2.0
28	Follows:	MINE -	0.2500.00	2000000	MESS/ES	15-85-0	Mark Street	2.31			11/2002/24	1000000	200	20,000	100000
750	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.0
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.0
30 31	4.17	3.32	2.92	2.69	2.53	2.42	2.33	65530	2.21	2.16	2.13	577-22	2.06	2.04	9.795
	4.16	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15	2.11	2.08	2.05	2.03	2.0
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.10	2.07	2.04	2.01	1.9
33	4.14	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13	2.09	2.06	2.03	2.00	1.9
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.08	2.05	2.02	1.99	1.9
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.07	2.04	2.01	1.99	1.9
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.07	2.03	2.00	1.98	1.9
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.14	2.10	2.06	2.02	2.00	1.97	1.9
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.05	2.02	1.99	1.96	1.9
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08	2.04	2.01	1.98	1.95	1.9
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.9
41	4.08	3.23	2.83	2.60	2.44	2.33	2.24	2.17	2.12	2.07	2.03	2.00	1.97	1.94	1.9
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.06	2.03	1.99	1.96	1.94	1.9
43	4.07	3.21	2.82	2.59	2.43	2.32	2.23	2.16	2.11	2.06	2.02	1.99	1.96	1.93	1.9
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98	1.95	1.92	1.9
45	4.06	3.20	2.81	2.58	2.42	2.31	2.22	2.15	2.10	2.05	2.01	1.97	1.94	1.92	1.8

Referensi:

Walpole, Ronald E. 1992. *Pengantar Statistika (Edisi Terjemahan)*. Jakarta: PT. Gramedia Pustaka Utama.

Spiegel, Murray R., John Schiller, R. Alu Srinivasan. 2013. *Schaum's Outline of Probability and Statistics (4th edition)*. The McGraw Hill Companies.