\mathbf{R}^+ = the set of nonnegative real numbers $\mathbf{N} = \{0, 1, 2, 3, ...\}$

Let f, g, h: $\mathbb{N} \to \mathbb{R}^+$.

- f(n) = O(g(n)) if $\exists c, n_0 \in \mathbb{N}$ s.t. $\forall n \ge n_0$, $f(n) \le c$ g(n). The growth rate of f(n) is less than or equal to that of g(n).
- f(n) = o(g(n)) if $\lim_{n\to\infty} [f(n)/g(n)] = 0$. The growth rate of f(n) is less than that of g(n).
- $f(n) = \Theta(g(n))$ if $\exists c, c', n_0 \in \mathbb{N}$ s.t. $\forall n \ge n_0, c \ g(n) \le f(n) \le c' \ g(n)$. The growth rate of f(n) is equal to that of g(n).
- f(n) = g(O(h(n))) if $\exists h': \mathbf{N} \rightarrow \mathbf{R}^+$ s.t. f(n) = g(h'(n)) and h'(n) = O(h(n)).

Fact 1 If $\lim_{n\to\infty} [f(n)/g(n)] = c \ge 0$, f(n) = O(g(n)).

Fact 2 If $\lim_{n\to\infty} [f(n)/g(n)] = c > 0$, $f(n) = \Theta(g(n))$.

Fact 3 If f(n) = o(g(n)), f(n) = O(g(n)).

Fact 4 If $a_k > 0$, $a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0 = \Theta(n^k)$.

Fact 5 For all real numbers a, b > 1, $\log_a n = \Theta(\log_b n)$.

Fact 6 For all real numbers a, b,

- $n^a = o(n^b)$ iff a < b
- $n^a = O(n^b)$ iff $a \le b$
- $n^a = \Theta(n^b)$ iff a = b

Fact 7 For all real numbers 0 < a < b, $a^n = o(b^n)$.

Fact 8 $(\log_a)^k < n < n \log_a n < n^2 < n^3 < n^4 < \dots < 2^n < 3^n < 4^n < \dots$ (f(n) < g(n) abbreviates f(n) = o(g(n)).)

Fact 9 For all real numbers a, b > 1, $a^n = b^{O(n)}$.

Proof of Fact 9 $a^n = (b^{\log_b a})^n = b^{(\log_b a) \cdot n}$, and $(\log_b a) \cdot n = O(n)$.