







FROM CHIPS TO SYSTEMS — LEARN TODAY, CREATE TOMORROW

DEC 5 - 9, 2021 San Francisco, California

# Universal Symmetry Constraint Extraction for Analog and Mixed-Signal Circuits with Graph Neural Networks

Hao Chen, Keren Zhu, Mingjie Liu, Xiyuan Tang, Nan Sun, and David Z. Pan

ECE Department, The University of Texas at Austin



## High Demand of Analog/Mixed-Signal ICs

- Internet of Things (IoT), autonomous and electric vehicles, communication and 5G networks...
- Every sensor-related application needs analog circuits!!





### Symmetry Matching in Analog Circuits

- Device-level matching
  - Symmetry constraints for primitive devices (transistors, capacitors, resistors, etc.)
- System-level matching
  - Symmetry constraints for building block circuits in larger systems (DACs, inverters, etc.)





### Sizing Information for Symmetry Matching



Matched capacitors considering sizing information

Matched subcircuits considering sizing information



### Prior Art of Symmetry Constraint Extraction

|                        | [Xu+, ICCAD'19]          | [Liu+,<br>ASPDAC'20]      | [Kunal+,<br>ICCAD'20] | [Gao+,<br>ASPDAC'21]                    | Ours                        |
|------------------------|--------------------------|---------------------------|-----------------------|-----------------------------------------|-----------------------------|
| Circuit representation | Graph                    | Graph                     | Bipartite graph       | Graph                                   | Heterogeneous<br>multigraph |
| Training method        | N/A                      | N/A                       | Supervised            | Supervised<br>(+path-based<br>features) | Unsupervised                |
| Circuit embedding      | N/A                      | Graph Laplacian<br>matrix | GNN                   | GNN                                     | GNN                         |
| Sizing consideration   | N/A                      | N/A                       | Devices               | N/A                                     | Devices +<br>Circuits       |
| Device-level matching  | SFA + Heuristic patterns | N/A                       | Heuristic patterns    | GNN<br>classification                   | Cosine similarity           |
| System-level matching  | N/A                      | K-S test                  | GED                   | N/A                                     | Cosine similarity           |



### Our Symmetry Extraction Framework





### Heterogeneous Multigraph Representation



- Edge (to passive)
- Edge (to drain)
- → Edge (to gate)
- → Edge (to source)



Four edge types



### Graph Node Features and Training

#### **Features**

Device type (15) Geometry Width Length (1) #Layers (1)

#### Aggregation function

$$h_v^{(k)} = GRU(h_v^{(k-1)}, \sum_{u \in \mathcal{N}_{in(v)}} W_{e_{uv}} h_u^{(k-1)})$$

#### **Training loss function**

$$\begin{split} \mathcal{L}(z_v) &= -\sum_{u \in \mathcal{N}_{in}(v)} \log \left(\sigma(z_u^\intercal z_v)\right) - \sum_{i=1}^B \mathbb{E}_{\widetilde{u} \sim Neg(v)} \log \left(1 - \sigma(z_{\widetilde{u}}^\intercal z_v)\right) \\ \mathcal{L}_{total} &= \sum \mathcal{L}(z_v) \end{split}$$



Courtesy of [Kipf, GLWS4'19]



### Circuit Feature Embedding



Circuit multigraph representation

Extract the top-k most representative nodes

#### C1 feature

 $\begin{bmatrix} h_{1,1} \\ \vdots \\ h_{1,m} \\ \vdots \\ h_{3,1} \\ \vdots \\ h_{3,m} \end{bmatrix}$ 



### Symmetry Constraint Generation

For each valid circuit pair  $(c_i, c_j)$ 



Compute the Cos. similarity of the two embedded feature



### Experimental Results (Setup)

#### Setup

- Python with DGL
- CPU: Intel i9-7900X @ 3.3GHz

#### Benchmark circuits

- System-level circuits x5:
  - 2<sup>nd</sup>-order CT ΔΣ modulator x2
  - 3<sup>rd</sup>-order CT ΔΣ modulator x1
  - SAR x1
  - Hybrid CT ΔΣ SAR x1
- Block-level circuits x15:
  - OTA x6, COMP x6, DAC x2, LATCH x1



## Experimental Results (System-level)





>200X speedup

Comparison on system-level symmetry constraint extraction ROC curve

Training time:  $\sim 30s$ 



## Experimental Results (Device-level)

Signal flow analysis with pattern matching





### Conclusions

### **GNN-based AMS symmetry constraint extraction**

- Heterogeneous multigraph circuit representation
- Circuit feature with sizing information consideration
- Unsupervised learning on GNNs for generalizability

#### **Future directions**

- More analog constraints (common-centroid, etc.)
- Improvement on precision/accuracy
- Handling extended circuit classes



# Thank you!!