(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-55294 (P2004-55294A)

(43) 公開日 平成16年2月19日(2004.2.19)

(51) Int.C1. ⁷	F I			テーマコ	 テーマコード (参考)	
HO1M 10/44	HO1M	10/44	Q	5HO1	7	
HO1M 2/34	HO1M	2/34	A	5H02	2	
HO1M 4/58	HO1M	4/58		5HO29		
HO1M 4/64	HO1M	4/64	A	5H030		
HO1M 10/40	HO1M	10/40	В	5HO5O		
		審査請求	未請求 請求	項の数 12 〇) L (全 11 頁)	
(21) 出願番号	特願2002-209896 (P2002-209896)	(71) 出願人	出願人 000003997			
(22) 出願日	平成14年7月18日 (2002.7.18)		日産自動車株式会社			
			神奈川県横浜市神奈川区宝町2番地			
		(74) 代理人	100072349			
			弁理士 八月	日 幹雄		
		(74) 代理人				
			弁理士 野_	上 敦		
		(74)代理人				
			弁理士 奈」	支 泰男		
		(74)代理人				
			弁理士 齋原	泰 悦子		
		(74)代理人				
			弁理士 宇	♪ 勝幸		
					最終頁に続く	

(54) 【発明の名称】電流バイパス回路を備えた二次電池

(57)【要約】

【課題】最適な充電環境を自ら作り出すことができる二次電池を提供する。

【解決手段】複数の単電池40が直列に接続された二次電池であって、単電池40の正極と負極との間に、単電池40の電圧が規定値を超えた場合に、正極と負極との間に介在する電解質をパイパスして正極と負極とを接続する電流パイパス回路素子50を接続する。

【選択図】

図 7

【特許請求の範囲】

【請求項1】

複数の単電池を直列に接続してなる二次電池であって、前記単電池の正極と負極との間に、前記単電池の電圧が規定値を超えた場合に、前記正極と負極との間に介在する電解質をバイパスして前記正極と負極とを接続する電流パイパス回路を接続したことを特徴とする電流パイパス回路を構えた二次電池。

【請求項2】

複数の単電池を直列に接続してなる二次電池であって、前記単電池は、正極と負極との間に電解質を介在させた構造を持つ単電池層を正極側と負極側から集電体で挟んで構成されるものであり、前記単電池の正極側の集電体と負極側の集電体との間に、前記単電池の電圧が規定値を超えた場合に、前記電解質をバイパスして前記正極と負極とを接続する電流パイパス回路を構えた二次電池。

【請求項3】

集電体の一方の面に正極が形成され他方の面に負極が形成されたバイポーラ電極を、電解質を介在させて複数直列に接続し、前記集電体の間に、前記集電体間で形成される単電池の電圧が規定値を超えた場合に、前記電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続したことを特徴とする電流バイパス回路を備えた二次電池。

【請求項4】

前記電流パイパス回路は、前記集電体上に、2つの集電体の間隔と同一寸法の厚さをもって形成されることを特徴とする請求項2または請求項3に記載の電流パイパス回路を備えた二次電池。

【請求項5】

前記電流パイパス回路は、前記二次電池の封止材内で、前記正極と負極とに接続されることを特徴とする請求項1から請求項3のいずれかに記載の電流パイパス回路を備えた二次電池。

【請求項6】

前記集電体の一部が前記二次電池の封止材から露出され、前記電流バイパス回路は、露出した2つの集電体に接続されることを特徴とする請求項2または請求項3に記載の電流バイパス回路を備えた二次電池。

【請求項7】

前記電流パイパス回路は、前記二次電池が備えるすべての単電池に対して個々に設けたことを特徴とする請求項1から請求項3のいずれかに記載の電流パイパス回路を備えた二次電池。

【請求項8】

前記電流パイパス回路は、前記二次電池が構える単電池の任意個数のまとまりに対して個々に設けたことを特徴とする請求項1から請求項8のいずれかに記載の電流パイパス回路を備えた二次電池。

【請求項9】

前記電流バイパス回路は、その両端が前記正極と負極とに接続される、ツェナーダイオードを含むことを特徴とする請求項1から請求項8のいずれかに記載の電流バイパス回路を備えた二次電池。

【請求項10】

前記電流バイバス回路は、その両端が前記正極と負極とに接続される、ツェナーダイオードと抵抗器との直列回路を含むことを特徴とする請求項1から請求項3のいずれかに記載の電流バイパス回路を備えた二次電池。

【請求項11】

前記正極には活物質としてリチウム-遷移金属複合化物を用い、前記負極には活物質としてカーボンまたはリチウム-遷移金属複合化物を用いたことを特徴とする請求項1から請求項3のいずれかに記載の電流パイパス回路を備えた二次電池。

【請求項12】

50

40

10

20

前記電解質にはゲル電解質または真性ポリマー電解質のいずれかを用いたことを特徴とする請求項1から請求項8のいずれかに記載の電流バイパス回路を備えた二次電池。

【発明の詳細な説明】

[00001]

【発明の属する技術分野】

本発明は、最適な充電環境を自ら作り出すことができる電流パイパス回路を備えた二次電池に関する。

[00002]

【従来の技術】

近年、電気自動車の開発が盛んになるにつれて、充電可能な二次電池の開発も活発になってきている。二次電池の中でも、特に、リチウム電池は、小型、軽量、高エネルギー密度 といった特徴をもつ高性能の電池であるため、電気自動車に搭載する電池としてふさわしい。

[0003]

その中でもバイポーラ型のリチウム電池は、1つの発電要素である単電池が多数直列に積層された構造を有している。したがって、充電は多数の単電池が直列に接続された状態で行われることになる。バイポーラ電池以外にも、単電池を多数直列に積層または接続した構造の電池が存在するが、この電池も充電は単電池が直列に接続された状態で行われる。 なお、この明細書に記載されている単電池とは、1つの電池を構成する個々の発電要素を指している。

[0004]

【発明が解決しようとする課題】

このように、バイポーラ電池内部では複数の単電池が直列に接続されているので、各単電池の電池容量や内部抵抗などの電池特性にばらっきがあると、充電をするとき、各単電池が均一に充電できないという問題がある。

[00005]

例えば、リチウム電池の場合、最大充電電圧を4.2Vと厳格に規定し、充電時にリチウム電池端子間の電圧がこの最大充電電圧に達したら即座に充電を終了する。

[0006]

ところが、各単電池の電池容量にばらつきがある場合、電池容量の小さり単電池が満充電状態に達しても、その単電池よりも電池容量の大きり単電池はまだ不足充電状態にある。 このような状態になっていても、バイポーラ電池端子間の電圧が最大充電電圧に達していなければ充電は継続されるため、電池容量の小さな単電池は過充電状態になってしまう。

[0007]

また、単電池の内部抵抗にばらっきがある場合、すべての単電池に同じ大きさの充電電流が流れるため、内部抵抗の大きな単電池の充電電圧はその単電池よりも内部抵抗の小さな単電池の充電電圧よりも大きくなる。したがって、単電池ごとにまちまちの充電状態となってしまう。

[0008]

通常、リチウム電池の最適な充電電圧範囲は±0.1 V程度と非常に狭い範囲に定められているので、各単電池に許される充電電圧のばらっきは非常に小さい。単電池の電池容量や内部抵抗が均一になるように、正負電極の塗布厚や集電体、固体電解質の厚みを高精度で制御するなど製造段階での工夫も行われているが、現時点では各単電池の電池特性を完全に均一化することは難しい。

[0009]

本発明は、以上のような従来の技術の問題点を解消するために成されたものであり、単電池の電池容量、内部抵抗などの電池特性の不均一を吸収し、最適な充電環境を自ら作り出すことができ、電池寿命を延ばすことができる、電流パイパス回路を備えた二次電池の提供を目的とする。

[0010]

50

10

20

30

20

30

40

50

【課題を解決するための手段】

上記した課題を解決し、目的を達成するため、本発明にかかる電流バイパス回路を備えた二次電池は、複数の単電池を直列に接続してなる二次電池であって、前記単電池の正極と負極との間に、前記単電池の電圧が規定値を超えた場合に、前記正極と負極との間に介在する電解質をバイパスして前記正極と負極とを接続する電流バイパス回路を接続している

[0011]

充電時、単電池の充電電圧が規定値を超えると、バイバス回路は単電池を構成する電解質をバイパスして、その単電池の正極と負極とを直接接続する。このため、単電池の充電電圧が規定値に達した時点でその単電池の充電が終了する。

[0012]

このように、単電池の過充電防止を目的とした充電電流バイバス回路を設置すると、満充電側で各単電池の充電状態をせるえることができ、充電状態のバラツキにより一部の単電池が過充電状態になることを防ぐことができる。

- [0013]
- 【発明の効果】

本発明の電流パイパス回路を構えた二次電池によれば、単電池の電圧が規定値を超えた場合に電解質をパイパスするようにしたので、単電池の電池容量、内部抵抗などの電池特性がばらついていても、二次電池を構成する単電池の充電状態をそろえることができる。

- [0014]
- 【発明の実施の形態】

以下に添付図面を参照して、本発明にかかる電流バイパス回路を構えた二次電池の好適な実施の形態を詳細に説明する。本実施の形態においては、バイポーラリチウムイオン二次電池を例に挙げて説明する。

[0015]

図1から図7は、電流パイパス回路を備えたパイポーラリチウムイオン二次電池の内部構造の説明に供する図である。本発明にかかるパイポーラリチウムイオン二次電池には、図1に示すような断面構造を有するパイポーラ電極10が用いられる。パイポーラ電極10には、集電体12の一方の面に正極14が形成され他方の面に負極16が形成されている。また、パイポーラ電極10には、集電体12の上部に電流パイパス回路素子50が形成されている。

[0016]

正極14は、集電体12を構成する厚す20μm程度のSUS箔の片面に正極スラリーを塗布し、熱重合によって硬化させて形成する。正極スラリーは、正極活物質としてリチウムー遷移金属複合化物、たとえばLiMn204、LiCo02、LiNi02またはこれらの遷移金属の一部を他の元素により置換したものを、導電助剤としてアセチレンプラックを、ポリマーとしてポリエチレンオキシド(PEO)を、支持塩としてLi(C2ド5S02)2Nを、スラリー粘度調整媒体としてNMPを、重合開始剤としてAIBNを され ぞれ所定の比率で混合して作成する。

[0017]

負極16は、正極14を塗布したSUS箔の反対面に負極スラリーを塗布し、熱重合によって硬化させて形成する。負極スラリーは、負極活物質としてハードカーボン、グラファイト、カーボンまたはリチウムー遷移金属複合化物、たとえばしに4 Ti5〇12を、導電助剤としてアセチレンブラックを、ポリマーとしてポリエチレンオキシド(PEO)を、支持塩としてLi(C2F5SO2)2Nを、スラリー粘度調整媒体としてNMPを、重合開始剤としてAIBNをせれぞれ所定の比率で混合して作成する。正極14、負極16に以上のような材料を用いるのは、これらの材料は反応性、サイクル耐久性に優れ、低コストだからである。

[0018]

正極14、負極16にこれらの材料を採用したのは、これらの材料は反応性が良好で、充

20

30

40

50

放電のサイクル耐久性に優れ、しかも低コストだからである。したがって、これらの材料を用いたバイポーラリチウムイオン二次電池は、出力特性に優れ、しかも安価なものとなる。

[0019]

集電体12のされざれの面に正極14と負極16とが形成されると、正極14と負極16の外表面に電解質膜を形成する。

[0020]

本発明にかかるパイポーラリチウムイオン二次電池には、図1 および図2 に示すように、集電体12 の上部に電流パイパス回路素子5 0 が形成される。電流パイパス回路素子5 0 は、等価的には図3 に示すようにツェナーダイオード5 2 2 2 抵抗器 5 4 2 を 直列に接続した回路である。電流パイパス回路素子5 0 は、公知の半導体製造技術を用いて集電体12 に直接形成しても良いし、あらかじめ作成しておいた電流パイパス回路素子5 0 を集電体12 に 導電性接着削で取り付けても良い。

[0021]

バイポーラ電極10は、バイポーラリチウムイオン二次電池を作成する際に積層されるが、電流バイパス回路素子50は、積層された2つの集電体の間隔と同一寸法の厚さになるように形成する。

[0022]

電流バイパス回路素子50は、ツェナー電圧を超えたとまに充電時の電流をバイパスさせるものであるから、抵抗器54を集電体12の正極14が形成されている面に取り付ける

[0023]

なお、本実施の形態では、電流パイパス回路素子50をツェナーダイオード52と抵抗器54とを直列に接続した回路としたが、ツェナーダイオードだけで構成しても良い。しかし、電流パイパス回路素子50が電流をパイパスしたときには、パイポーラリチウムイオン二次電池の充電電流が増加するので、電流パイパス回路素子50に過大な電流が流れないように、その電流の増加をある程度抑えることができる抵抗器54を持つほうが好ましい。なお、抵抗器の抵抗値は、電流パイパス回路素子50に流れる電流が過大にならないような大きさが選択される。

[0024]

上述のような構成を有する複数のバイポーラ電極10は、図4に示すように、それぞれの正極14と負極16が電解質20を挟んで対向するように積層される。

電解質20には、ゲル電解質または真性ポリマー電解質のいずれかを用いることができる。真性ポリマー電解質としては、たとえばPEO、PPOおよびこれらの共重合体を使用することができる。ゲル電解質または真性ポリマー電解質のいずれかを用いると、液漏れの心配がなく、電解質に液体を用いた場合に比較して、簡易な構成でバイポーラリチウムイオン二次電池を形成できる。ゲル電解質または真性ポリマー電解質といった固体状の高分子を用いると、液絡の問題が生じないため、信頼性が高く、出力特性に優れた二次電池を構成することができる。

[0025]

電流バイパス回路素子50は正極14、負極16および電解質20を合計した厚さに形成してあるので、電流バイパス回路素子50のツェナーダイオード52はバイポーラ電極10を積層する過程で隣の集電体12に接触する。バイポーラ電極10を積層するときにツェナーダイオード52が接触する方の集電体12に導電性接着剤を塗布しておけば、電池の製造時、バイポーラ電極10を積層して行くだけで、電流バイパス回路素子50を2つの集電体12間に接続することができる。つまりバイポーラ電極10の積層と同時に電流バイパス回路素子50が接続されることになる。したがって、電流バイパス回路素子50は一方の集電体12の正極14と他方の集電体12の負極16を接続することになる。

[0026]

このように、バイポーラ電極10を積層するだけで、集電体12の間で電流バイパス回路

20

30

40

50

素子50を接続できるようにすると、電流パイパス回路素子50を二次電池内部に容易に収めることができ、二次電池の大きさを変えずに、二次電池の充電状態を制御する機能を 盛り込むことができる。

[0027]

以上のように、パイポーラ電極10を、電解質20を介在させて5極直列に接続し、封止材60で包装すると、電池内に電流パイパス回路素子50が組み込まれた図5に示すような層構造のパイポーラリチウムイオン二次電池100となる。したがって、電流パイパス回路素子50は封止材60の内部で正極14と負極16とに接続されることになり、コンパクトな構成の電池にすることができる。なお、パイポーラリチウムイオン二次電池100の一端子となる集電体70には、一方の面にだけ負極16を形成し、その十端子となる集電体80には、一方の面にだけ正極14を形成する。

[0028]

図5に示されるパイポーラリチウムイオン二次電池100の層構造において、図6に示すように、2つの集電体12には負極16-電解質20-正極14の層構造が形成されるが、この明細書ではこの層構造を単電池層30と称する。また、集電体12-単電池層30-集電体12で1つの発電要素となるが、この発電要素は、パイポーラリチウムイオン二次電池100を構成するさらに小さな電池であると考えることができるので、この明細書ではこの発電要素を単電池40と称する。

[0029]

図6に示したように層構造の名称を付すると、図5に示されるパイポーラリチウムイオン 二次電池100は、図7の等価回路に示されるように、複数の単電池が直列に接続された電池と考えることができる。電流パイパス回路素子50は、すべての単電池40に対して個々に設けられ、電流パイパス回路素子50は、個々の単電池40の電圧がツェナーダイオード52で規定されるツェナー電圧を超えたときに、単電池40を通過する充電時の電流をパイパスする。

[0030]

以上のように構成されたバイボーラリチウムイオン二次電池100の充電時の動作について図7を参照しながら説明する。バイボーラリチウムイオン二次電池100を充電するときには、図示されていない充電器の+端子をバイポーラリチウムイオン二次電池100の+端子に、充電器の-端子をバイポーラリチウムイオン二次電池100の-端子にそれでれ接続する。充電器がバイポーラリチウムイオン二次電池100の生両端子に印加する充電電圧は、たとえば個々の単電池40の充電電圧が4.0Vに設定されているとすれば、4.0(単電池1個の充電電圧)×5(バイボーラリチウムイオン二次電池100が有する単電池40の個数)=20.0Vである。

[0031]

を電器がパイポーラリチウムイオン二次電池 100 に接続され、 充電電圧が印加されると、すべての単電池には、パイポーラリチウムイオン二次電池 100 の内部抵抗で決まる同一の電流が流れる。 たとえば、 5 つの単電池 40 の内部抵抗が R_1 、 R_2 、 R_3 、 R_4 、 R_5 であるとすると、 パイポーラリチウムイオン二次電池 100 の内部抵抗 R_1 に R_2 に R_3 に R_4 に R_2 に R_3 に R_4 に R_5 に R_5

[0032]

上記の場合、各単電池40の内部抵抗の大きさにばらっきがあるので、単電池40ごとに印加される充電電圧が異なってくる。たとえば、R1の抵抗値を持つ単電池40には、IR1Vの充電電圧が、R3の抵抗値を持つ単電池40には、IR3Vの充電電圧が、それでれ印加されることになる。したがって、充電状態は単電池40によってまちまちになる

[0033]

なお、各単電池40と並列に電流バイパス回路素子50が接続されているが、電流バイパ

20

30

40

50

ス回路素子50ではツェナーダイオード52が導通を阻止する方向に接続されている。充電が開始された当初は、各単電池40の充電電圧がツェナー電圧(電流バイパス回路素子50のツェナーダイオードが導通する電圧)にまでは達しないため、電流バイパス回路素子50に電流はほとんど流れない。

[0034]

充電が進むと各単電池40の端子間電圧が上昇するが、その電圧がツェナー電圧を超えると、電流パイパス回路素子50のツェナーダイオードが導通して単電池40に流れる電流をパイパスさせる。 たとえば、ツェナー電圧が4.0Vのツェナーダイオード52を用いると、端子間電圧が4.0Vになった時点でその単電池40の充電が終わる。

[0035]

端子間電圧が充電電圧に達した単電池40は自動的に充電が終了され、すべての電流バイバス回路素子50が単電池40をバイパスした時点でバイポーラリチウムイオン二次電池100の充電が終了する。なお、すべての単電池40がバイパスされた状態では、直列に接続された5つの電流バイパス回路素子50に充電器から供給される電流が流れるが、このときの電流は、ツェナーゲイオード52と直列に接続されている抵抗器51によって制限される。

[0036]

以上のように、本発明にかかる電流パイパス回路を備えた二次電池では、単電池の充電電圧が規定値を超えると電流パイパス回路が動作して充電を終了させるので、単電池の電池容量、内部抵抗などの電池特性が不均一であっても、均一で最適な充電環境を自ら作り出すことができる。単電池ごとに偏った充電状態とはならず、均一な充電ができるので、電池としての寿命が向上し、信頼性の高い電池となる。

[0037]

以上の実施の形態では、電流パイパス回路素子50を、封止材60の内部で正極14と負極16に取り付けた場合を説明したが、図8に示すように、電流パイパス回路素子50を封止材60の外部に設けるようにしても良い。この場合には、図に示すように、集電体12の一部を封止材60から露出させ、封止材60の外側から集電体12間に電流パイパス回路素子50を後付する。

[0038]

このように、電流パイパス回路素子50を電池の外側から後付けできるようにすれば、電流パイパス回路素子50の大きさや形状の自由度が増し、簡易かつ安価にその回路を構成することも可能になる。

[0039]

[0040]

図10は、上記の実施の形態のように、すべての単電池40ごとに電流パイパス回路50を設けるのではなく、バイポーラリチウムイオン二次電池100の内部において、2つの

直列に接続された単電池40Aに対して1つの電流パイパス回路素子50Aを設けたもの である。このように、2つの単電池40に対して1つの電流パイパス回路を設けるように す 3 と 、 必 要 な 電 流 バ イ パ ス 回 路 素 子 5 0 A の 数 が す べ て の 単 電 池 4 0 ご と に 設 け た と き の1/2になるので、コストダウンを図ることができる。

[0041]

けたが、これに限られず、3個単位、4個単位といったように、バイポーラリチウムイオ ン 二 次 電 池 1 0 0 が 備 え 3 単 電 池 の 任 意 個 数 の ま と ま り に 対 し て 個 々 に 設 け 3 こ と も 可 能 である。

[0042]

図 1 1 は、バイポーラリチウムイオン二次電池 1 0 0 の外部において、 2 つのグループに 分 け た 単 電 池 群 の そ れ ぞ れ の グ ル ー プ に 電 流 バ イ パ ス 回 路 素 子 5 0 B を 設 け た も の で あ る

[0043]

何 個 の 単 電 池 に 対 し て 1 つ の 電 流 バ イ パ ス 回 路 を 設 け 3 か 、 ま 友 は 電 流 バ イ パ ス 回 路 を 電 池 の 内 部 に 設 け 3 の か 、 外 部 に 設 け 3 の か と い っ た 選 択 は 、 バ イ ポ ー ラ リ チ ウ ム イ オ ン ニ 次電池100を構成する単電池の電池特性のばらっき具合、要求される電池性能の程度を 勘案して決める。

[0044]

本発明にかかるパイポーラリチウムイオン二次電池100は、複数直並列接続され、図1 2に示すように、組電池200として、車両の床下部に搭載される。この組電池200は 、電気自動車またはハイブリッド電気自動車の駆動用電源として使用される。なお、組電 池 200の 設 置 場 所 は 、 床 下 部 に 限 ら ず に エ ン ジ ン ル ー ム 内 、 ま た は 天 井 内 部 に も 設 置 可 能である。

[0045]

本 発 明 に か か る パ イ ポ ー ラ リ チ ウ ム イ オ ン 二 次 電 池 1 0 0 は 、 単 電 池 の 電 池 容 量 や 内 部 抵 抗にばらっきがあっても、すべての単電池が満充電状態にできるので、電池性能を最大限 に発揮させることができる。そのため、本発明にかかるバイポーラリチウムイオン二次電 池100を用りれば、高容量、高出力の組電池200を構成でき、この組電池200を搭 載すれば、始動性に優れた電気自動車を提供することができる。

【図面の簡単な説明】

【図1】バイポーラ電極の断面構造を示す図である。

【図2】バイポーラ電極の平面図である。

【図3】電流バイパス回路素子の構成説明に供する図である。

【図4】バイポーラ電極の積層状態を示す図である。

【 図 5 】 バ イ ポ ー ラ リ チ ウ ム イ オ ン 二 次 電 池 の 内 部 構 造 を 示 す 図 で あ る 。

【 図 6 】 図 5 に 示 し た バ イ ポ ー ラ リ チ ウ ム イ オ ン 二 次 電 池 の 層 構 造 の 説 明 に 供 す る 図 で あ 3.

【 図 7 】 図 5 に 示 し た バ イ ポ ー ラ リ チ ウ ム イ オ ン 二 次 電 池 の 等 価 回 路 を 示 す 図 で あ る 。

【図8】封止材の外で電流バイパス回路素子が取り付けられているバイポーラリチウムイ オンニ次電池の概略構成図である。

【図9】図3に示したものとは異なる構造の電流パイパス回路素子を示す図である。

【 図 1 0 】 封 止 材 内 で 複 数 の 単 電 池 単 位 に 電 流 パ イ パ ス 回 路 素 子 を 取 り 付 け 友 場 合 の 構 成

【 図 1 1 】 封 止 材 の 外 で 複 数 の 単 電 池 単 位 に 電 流 バ イ パ ス 回 路 素 子 を 取 り 付 け 友 場 合 の 構 成図である。

【 図 1 2 】 本 発 明 に か か る パ イ ポ ー ラ リ チ ウ ム イ オ ン 二 次 電 池 を 複 数 接 続 し て な る 組 電 池 を車両に取り付ける場合の説明図である。

【符号の説明】

10 バイポーラ電極、

10

20

30

40

- 12 集電体、
- 1 4 正極、
- 16 負極、
- 20 電解質、
- 30 単電池層、
- 40 単電池、
- 50 電流バイパス回路素子、
- 52 ツェナーダイオード、
- 54抵抗器、
- 56 電圧検出素子、
- 6 0 封止材、
- 70、80 集電体、
- 100 バイポーラリチウムイオン二次電池、
- 200 組電池。

【図4】

フロントページの続き

(72)発明者 福沢 達弘

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

(72)発明者 嶋村 修

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

(72)発明者 根本 好一

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社内

F ターム(参考) 5H017 AA03 AS03 BB08 CC03 EE01 HH05

5H022 AA09 CC12 CC22 KK01

5H029 AJ02 AJ12 AK03 AL03 AL07 AL08 AM12 AM16 BJ04 DJ05

DJ07 DJ09 EJ01

5H030 AA03 AA10 AS08 FF43

5H050 BA17 BA18 CA08 CA09 CB07 CB08 CB09 DA04 DA18