Logic and Computer Design Fundamentals Chapter 3 – Combinational Logic Design

Part 2 - Combinational Logic

Yueming Wang (王跃明)

ymingwang@zju.edu.cn

2017

College of Computer Science, Zhejiang University

Qiushi Academy for Advanced Studies, Zhejiang University

Overview

- Part 2 Combinational Logic
 - Functions and functional blocks
 - Rudimentary logic functions
 - Decoding using Decoders
 - Implementing Combinational Functions with Decoders
 - Encoding using Encoders
 - Selecting using Multiplexers
 - Implementing Combinational Functions with Multiplexers

Functions and Functional Blocks

- The functions considered are those found to be very useful in design
- Corresponding to each of the functions is a combinational circuit implementation called a functional block.
- In the past, functional blocks were packaged as small-scale-integrated (SSI), medium-scale integrated (MSI), and large-scale-integrated (LSI) circuits.
- Today, they are often simply implemented within a very-large-scale-integrated (VLSI) circuit.

Rudimentary Logic Functions

- Functions of a single variable X
- Can be used on the inputs to functional blocks to implement other than the block's intended function
- TABLE 4-1 Functions of One Variable

X F = 0 F = X F =
$$\overline{X}$$
 F = 1

0 0 0 1 1

1 0 1

$$V_{CC} \text{ or } V_{DD}$$

$$1 - F = 1$$

$$F = 1 \quad X - F = X$$

$$0 - F = 0$$

$$F = 0$$

$$X - F = \overline{X}$$

$$(a) \quad (b) \quad (d)$$

$$Chapter 3 \quad 4$$

Multiple-bit Rudimentary Functions

Multi-bit Examples:

- A wide line is used to represent a bus which is a vector signal
- In (b) of the example, $F = (F_3, F_2, F_1, F_0)$ is a bus.
- The bus can be split into <u>individual bits</u> as shown in (b)
- Sets of bits can be split from the bus as shown in (c) for bits 2 and 1 of F.
- The sets of bits need not be continuous as shown in (d) for bits 3, 1, and 0 of F.

(d)

Enabling Function

- Enabling permits an input signal to pass through to an output
- Disabling blocks an input signal from passing through to an output, replacing it with a fixed value
- The value on the output when it is disable can be Hi-Z (as for three-state buffers and transmission gates), 0, or 1
- When disabled, 0 output
- When disabled, 1 output
- See Enabling App in text

Decoding

- Decoding the conversion of an n-bit input code to an *m*-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - generate 2^n (or fewer) minterms for the n input variables

Decoder Examples

1-to-2-Line Decoder A

2-to-4-Line Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3		
0	0	1	0	0	0		
0	1	0	1	0	0		
1	0	0	0	1	0		
1	1	0	0	0	1		
(a)							

Note that the 2-4-line made up of 2 1-to-2line decoders and 4 AND gates.

Decoder Expansion

- 3-to-8-line decoder
 - Number of output ANDs = 8
 - Number of inputs to decoders driving output ANDs = 3
 - Closest possible split to equal
 - 2-to-4-line decoder
 - 1-to-2-line decoder
 - 2-to-4-line decoder
 - Number of output ANDs = 4
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - Two 1-to-2-line decoders
- See next slide for result

Decoder Expansion - Example 1

Result

Decoder Expansion (n-to-2ⁿ-line decoder)

- The general procedure of expansion ()
 - 1. Let k = n;
 - 2. If k is even, design two decoders with output size 2^{k/2} to drive 2^k AND gates; If k is odd, design two decoders with output size 2⁽

k+1)/2 and $2^{(k-1)/2}$ to drive 2^k AND gates;

- 3. For each decoder resulting from step 2, repeat step 2 until k = 1;
- 4. For k = 1, use a 1-to-2 decoder.

Decoder Expansion - Example 2

- 7-to-128-line decoder
 - Number of output ANDs = 128
 - Number of inputs to decoders driving output ANDs =7
 - Closest possible split to equal
 - 4-to-16-line decoder
 - 3-to-8-line decoder
 - 4-to-16-line decoder
 - Number of output ANDs = 16
 - Number of inputs to decoders driving output ANDs = 4
 - Closest possible split to equal
 - 2 2-to-4-line decoders
 - Complete using known 3-8 and 2-to-4 line decoders

Decoder with Enable

- In general, attach *m*-enabling circuits to the outputs
- See truth table below for function
 - Note use of X's to denote both 0 and 1
 - Combination containing two X's represent four binary combinations
- Alternatively, can be viewed as distributing value of signal
 - EN to 1 of 4 outputs
- In this case, called a demultiplexer

EN	\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{D}_{0}	\mathbf{D}_1	\mathbf{D}_{2}	D_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

(a)

Combinational Logic Implementation

- Decoder and OR Gates

- Implement m functions of n variables with:
 - Sum-of-minterms expressions
 - One n-to- 2^n -line decoder
 - m OR gates, one for each output
- Approach 1:
 - Find the truth table for the functions
 - Make a connection to the corresponding OR from the corresponding decoder output wherever a 1 appears in the truth table
- Approach 2
 - Find the minterms for each output function
 - OR the minterms together

Decoder and OR Gates Example

- Implement a binary Adder Truth Table
- Finding sum of minterms expressions

$$S(X, Y, Z) = \Sigma_m(1, 2, 4, 7)$$

 $C(X, Y, Z) = \Sigma_m(3, 5, 6, 7)$

Find circuit

S

Decoder and OR Gates Example

Implement the following set of odd parity functions of

$$(A_7, A_6, A_5, A_4)$$

$$P_1 = A_7 \oplus A_5 \oplus A_4 \qquad A_7$$

$$P_2 = A_7 \oplus A_6 \oplus A_4 \qquad A_6$$

$$P_4 = A_7 \oplus A_6 \oplus A_5 \qquad A_5$$

Finding sum of minterms expressions

$$P_1 = \Sigma_m(1,2,5,6,8,11,12,15)$$

$$P_2 = \Sigma_m(1,3,4,6,8,10,13,15)$$

$$P_4 = \Sigma_m(2,3,4,5,8,9,14,15)$$

- Find circuit
- Is this a good idea?

BCD-to-Segment Decoder

Seven-Segment Displayer

(b) Numeric designation for display

BCD-to-Segment Decoder (Cont.)

 Truth Table for BCD-to-Seven-Segment Decoder

	BCD	Inpu	t	Seven-Segment Deco				ler			
Α	В	С	D		а	b	С	d	е	f	g
0	0	0	0		1	1	1	1	1	1	0
0	0	0	1		0	1	1	0	0	0	O
0	0	1	0		1	1	0	1	1	0	1
0	0	1	1		1	1	1	1	0	0	1
0	1	0	0		0	1	1	0	0	1	1
0	1	0	1		1	O	1	1	0	1	1
0	1	1	0		1	0	1	1	1	1	1
0	1	1	1		1	1	1	0	0	0	O
1	0	0	0		1	1	1	1	1	1	1
1	0	0	1		1	1	1	1	0	1	1
All	All other inputs				0	0	0	0	0	0	0

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Encoder Example

- A decimal-to-BCD encoder
 - Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoder Example (continued)

- Input D_i is a term in equation A_i if bit A_i is 1 in the binary value for i.
- Equations:

$$A_3 = D_8 + D_9$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_0 = D_1 + D_3 + D_5 + D_7 + D_9$$

• $F_1 = D_6 + D_7$ can be extracted from A_2 and A_1 Is there any cost saving?

Priority Encoder

- If more than one input value is 1, then the encoder just designed does not work.
- One encoder that can accept all possible combinations of input values and produce a meaningful result is a priority encoder.
- Among the 1s that appear, it selects the most significant input position (or the least significant input position) containing a 1 and responds with the corresponding binary code for that position.

Priority Encoder Example

■ Priority encoder with 5 inputs (D₄, D₃, D₂, D₁, D₀) - highest priority to most significant 1 present - Code outputs A2, A1, A0 and V where V indicates at least one 1 present.

No. of Min-	Inputs				Outputs				
terms/Row	D4	D3	D2	D1	D0	A2	A1	A0	V
1	0	0	0	0	0	X	X	X	0
1	0	0	0	0	1	0	0	0	1
2	0	0	0	1	X	0	0	1	1
4	0	0	1	X	X	0	1	0	1
8	0	1	X	X	X	0	1	1	1
16	1	X	X	X	X	1	0	0	1

Xs in input part of table represent 0 or 1; thus table entries correspond to product terms instead of minterms. The column on the left shows that all 32 minterms are present in the product terms in the table

Priority Encoder Example (continued)

Could use a K-map to get equations, but can be read directly from table and manually optimized if careful:

$$A_{2} = \overline{D}_{4}$$

$$A_{1} = \overline{D}_{4}D_{3} + \overline{D}_{4}\overline{D}_{3}D_{2} = \overline{D}_{4}F_{1}, F_{1} = (D_{3} + D_{2})$$

$$A_{0} = \overline{D}_{4}D_{3} + \overline{D}_{4}\overline{D}_{3}\overline{D}_{2}D_{1} = \overline{D}_{4}(D_{3} + \overline{D}_{2}D_{1})$$

$$V = D_{4} + F_{1} + D_{1} + D_{0}$$

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ... I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$Y = \overline{S}I_0 + SI_1$$

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - 1-to-2-line Decoder
 - 2 Enabling circuits
 - 2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2 × 2 AND-OR circuit:
 - 1-to-2-line decoder
 - 2 × 2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - n-to- 2^n -line decoder
 - $2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

- 2-to-2²-line decoder
- 2 2 2 \times 2 AND-OR

Example: 64-to-1-line Multiplexer

- 6-to-2⁶-line decoder
- $^{\circ}$ 2⁶ × 2 AND-OR

Multiplexer Width Expansion

Select "vectors of bits" instead of "bits"

• Use multiple copies of $2^n \times 2$ AND-OR in

parallel

Example:4-to-1-linequad multi-plexer

Other Selection Implementations

Three-state logic in place of AND-OR

Other Selection Implementations

 Distributing the decoding across the three-state drivers

Combinational Logic Implementation

- Multiplexer Approach 1
- Implement m functions of n variables with:
 - Sum-of-minterms expressions
 - An m-wide 2^n -to-1-line multiplexer
- Design:
 - Find the truth table for the functions.
 - In the order they appear in the truth table:
 - Apply the function input variables to the multiplexer inputs S_{n-1}, \ldots, S_0
 - Label the outputs of the multiplexer with the output variables
 - Value-fix the information inputs to the multiplexer using the values from the truth table (for don't cares, apply either 0 or 1)

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that X = C and the
 Y and Z are more complex

x y z 0 0 0 0 1
0 1 0
0 1 0
011
100
$\frac{1\ 0\ 1}{1\ 1\ 0}$
1 1 0 1 1 1

Gray to Binary (continued)

Rearrange the table so that the input combinations are in counting order

Functions y and z can be implemented using a dual 8-to-1-line multiplexer by:

Gray	Binary
A B C	хуz
0 0 0	0 0 0
0 0 1	1 1 1
0 1 0	0 1 1
0 1 1	1 0 0
100	0 0 1
1 0 1	1 1 0
1 1 0	0 1 0
1 1 1	1 0 1

- connecting A, B, and C to the multiplexer select inputs
- placing y and z on the two multiplexer outputs
- connecting their respective truth table values to the inputs

Gray to Binary (continued)

Combinational Logic Implementation

- Multiplexer Approach 2

- Implement any m functions of n + 1 variables by using:
 - An m-wide 2ⁿ-to-1-line multiplexer
 - A single inverter
- Design:
 - Find the truth table for the functions.
 - Based on the values of the first *n* variables, separate the truth table rows into pairs
 - For each pair and output, define a rudimentary function of the final variable (0, 1, X, X)
 - Using the first *n* variables as the index, value-fix the information inputs to the multiplexer with the corresponding rudimentary functions
 - Use the inverter to generate the rudimentary function X

Example: Gray to Binary Code

- Design a circuit to convert a 3-bit Gray code to a binary code
- The formulation gives the truth table on the right
- It is obvious from this table that X = C and the
 Y and Z are more complex

Gray	Binary
ABC	ХУZ
0 0 0	0 0 0
100	0 0 1
110	0 1 0
010	0 1 1
0 1 1	1 0 0
1 1 1	1 0 1
101	1 1 0
0 0 1	1 1 1

Gray to Binary (continued)

 Rearrange the table so that the input combinations are in counting order, pair rows, and find rudimentary functions

Gray A B C	Binary x y z	Rudimentary Functions of C for y	Rudimentary Functions of C for z
000	000	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \mathbf{C}$
010	011	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \overline{\mathbf{C}}$
100	001	$\mathbf{F} = \mathbf{C}$	$\mathbf{F} = \overline{\mathbf{C}}$
1 1 0 1 1 1	010	$\mathbf{F} = \overline{\mathbf{C}}$	$\mathbf{F} = \mathbf{C}$

Gray to Binary (continued)

Assign the variables and functions to the multiplexer inputs:

- Note that this approach (Approach 2) reduces the cost by almost half compared to Approach 1.
- **Extending, a function of more than** *n* **variables is decomposed into several** <u>sub-functions</u> defined on a subset of the variables. The multiplexer then selects among these sub-functions.

Assignments

3-24, 3-25, 3-27, 3-28, 3-29, 3-37, 3-44, 3-47