ANÁLISIS MATEMÁTICO I - 2025

Esta es una asignatura de régimen anual, dividida en dos cuatrimestres:

1er. Cuatrimestre hasta julio y 2do. Cuatrimestre, de agosto a noviembre.

$$N_1 = \frac{1}{4}EC_1 + \frac{3}{4}P_1 \qquad \qquad N_2 = \frac{1}{4}EC_2 + \frac{3}{4}P_2$$

RÉGIMEN DE APROBACIÓN DE ANÁLISIS MATEMÁTICO I - AÑO LECTIVO 2025

ITEM	1° CUATRIMESTRE	2° CUATRIMESTRE	SITUACIÓN DIC_2025	OBSERVACIONES	
1	Ausente	Ausente	LIBRE	Ausente sin justificación.	
2	Ausente	Nota < 4	INT_FEB_2026	Ausente sin justificación.	
3	Nota < 4	AUS	INT_FEB_2026	Ausente sin justificación.	
4	Nota < 4	Nota < 4	INT_FEB_2026		
5	Nota < 4	Nota >= 4	REC_1°P		
6	Nota >= 4	Nota < 4	REC_2°P		
	4 <= Nota < 6	Nota >= 6	REGULAR	Rinde Examen Final.	
7			REC_1°P (para APD)	Opcional Para lograr APD ver Referencia 1 .	
			REGULAR	Rinde Examen Final.	
8	Nota >= 6	4 <= Nota < 6	REC_2°P (para APD)	Opcional Para lograr APD ver Referencia 1 .	
9	Ausente (Justificado)	Nota >= 4	REC_1°P	Para JUSTIFICAR AUSENCIA, ver Referencia 2. Si Nota >= 6 puede acceder a APD según Referencia 1.	
10	Nota >= 4	Ausente (Justificado)	REC_2°P	Para JUSTIFICAR AUSENCIA, ver Referencia 2. Si Nota >= 6 puede acceder a APD según Referencia 1.	
11	Nota >= 6	Nota >= 6	APD (PROMOCIÓN)	Se exige al menos 80% de asistencia y presentación de carpeta de trabajos prácticos.	

Referencia 1: Válida únicamente para instancia de RECUPERACIÓN DIC_2025.

Si Nota >= 6 habrá alcanzado la APD; si 4 <= Nota < 6 estará REGULAR y si Nota < 4 debe rendir INTEGRAL FEB_2026.

Referencia 2: Presentar por Mesa de Entrada, nota dirigida al Profesor de teoría de la comisión en la cual cursa. Plazo, hasta 24 horas posteriores a la fecha de la evaluación.

ITEM	RECUPERACIÓN DIC_2025	SITUACIÓN REC_DIC_2025	OBSERVACIONES
12	Ausente	LIBRE	Ausente sin justificación.
13	Ausente (Justificado)	te (Justificado) RINDE INT_FEB_2026 Para JUSTIFICAR AUSENCIA, ver Referencia 2	
14	Nota < 4	RINDE INT_FEB_2026	
15	Nota >= 4	REGULAR	
16	Nota >= 6	APD (PROMOCIÓN)	Si encuadra según Ítem 7, 8, 9 o 10.

ITEM	INTEGRAL FEB_2026	SITUACIÓN FINAL	OBSERVACIONES	
17	Ausente	LIBRE		
18	Nota < 4	RECURSA		
19	Nota >= 4	REGULAR	Debe realizar al menos el 50% de contenidos de cada cuatrimestre.	

FUNCIONES EN UNA VARIABLE REAL

En esta asignatura trabajaremos con funciones en una variable real y veremos los principales tipos de funciones que aparecen en el Cálculo, describiendo cómo se utilizan para modelar matemáticamente fenómenos en la ingeniería y en el mundo real.

Una función, que podemos llamar f, es una regla que asigna a cada elemento x de un conjunto A uno y sólo un elemento, llamado y=f(x) de otro conjunto B.

Al conjunto A se lo denomina Dominio y al conjunto B, se lo denomina Rango o Imagen de la función.

También se la puede interpretar como una máquina:

Nosotros, en general, trabajaremos con funciones de reales en reales; vale decir que tanto los elementos del conjunto A como los de B son números Reales.

Distintas formas de representar funciones de una variable real:

Verbalmente:

- 1) El perímetro L de una circunferencia depende de su radio r.
- 2) El perímetro de la circunferencia es igual la doble de su radio multiplicado por π .

Algebraicamente:

$$Mf_i = -qx^2 + q \cdot \frac{l}{2} \cdot x$$

Visualmente mediante Diagrama de Venn o Diagrama de flechas Sirven para representar funciones de variable discreta y otras.

Numéricamente:

El crecimiento en Argentina de los contagiados C, en miles, por COVID 19, en marzo del 2.020, dependió del tiempo t [semanas], según se muestra en la siguiente tabla. semana | Contagios

_		en miles
Por signals: $C(2) \sim 4.000$	0	0
Por ejemplo: $C(3) \approx 4.000$	1	1
	2	2
	3	4
	4	8

Visualmente en el *Sistema Cartesiano*. Sirve para representar funciones de variable continua y discreta.

Este tipo de representación de funciones nos interesa particularmente.

EL PLANO REAL

Es el sistema de representación gráficas de relaciones y funciones en 922

En este sistema, *cada punto del plano* se puede representar por *un único Par Ordenado de Números Reales* y viceversa.

En general: $(x, y) \neq (y, x)$

EJEMPLO:

Representar en el Sistema cartesiano los siguientes Pares Ordenados: (1, -1), (0, 3), (2, 2); (-1, -3), (3, 0); (-2, 1).

Los pares ordenados: (0, 3) y (3, 0) ¿son los mismos?: **NO**

Ahora determinemos los pares ordenados que corresponden a los siguientes puntos del plano

FUNCIÓN REAL DE VARIABLE REAL

Definición: Una función de variable real es un conjunto de pares ordenados de números reales tales que a cada elemento del dominio (primera componente: x), le corresponde uno y solo un elemento del rango o imagen (segunda componente: y).

Criterio de la regla vertical:

Notaciones:

$$f = \{(x, y)/y = f(x)\}$$
 $f = \{(x, f(x))\}$

$$f = \{(x, f(x))\}$$

$$y = f(x) \Leftrightarrow (x, y) \in f$$

x: variable independiente

y: variable dependiente (depende de x)

Dominio de una Función: $dom f = \{x \in \mathbb{R} / y \in \mathbb{R}\}\$

El Dominio de una función es el conjunto de valores reales que puede tomar la variable independiente "x" para que la variable dependiente "y" (el resultado o valor numérico de la función), sea un número real.

Rango o Imagen de una Función:

El Rango o Imagen de una función es el conjunto de valores reales que toma la variable dependiente "y" cuando la variable independiente "x" pertenece al dominio de f.

EJEMPLO:

Determinar el dominio de la siguiente función: $f = \left\{ (x, y)/y = \frac{1}{x} \right\}$

Solución:

Evidentemente, x No puede tomar el valor 0, porque no se puede dividir en 0; entonces:

$$dom f = R - \{0\}$$
$$dom f = (-\infty, 0) \cup (0, \infty)$$

La representación gráfica de esta función es:

¿Cuá será su rango o imagen?

$$rgo f = R - \{0\}$$

Esta función recibe el nombre de Hipérbola y es una función racional que Estudiaremos más adelante.

Mientras que $R = \{(x, y) / x^2 + y^2 = 4\}$ es una relación pero *No es función*, pues para ciertos elementos del dominio hay más de un valor de rango (en este caso, dos).

$$R = \{(x,y) / x^2 + y^2 = 4\}$$
Es Re l ación; NOesFunción

domR = [-2,2]; rgoR = [-2,2]

CLASIFICACIÓN DE FUNCIONES

Funciones de variable continua

Funciones Explícitas

EJEMPLO:

$$y = 3x^2 - 2x + 5$$

Funciones Implícitas y Ecuaciones Implícitas

EJEMPLO:

$$x - 2y = sen(x + y)$$

No siempre son funciones.

Funciones de variable discreta

$$f = \{(-1,3); (0,0); (1,0); (3,3)\}$$

Entre ellas:

Sucesiones

EJEMPLO:

$$f(n) = \{a_n\}; n \in \mathbb{N}$$

ESTUDIO DE FUNCIONES

En esta asignatura trabajaremos con funciones en una variable real: $f: \mathbb{R} \to \mathbb{R}$, entre las que dominaremos algunas.

A continuación, veremos los conceptos más relevantes del análisis de funciones continuas de una variable real.

DOMINIO:

Ya lo definimos. Es, tal vez, el concepto fundamental Del estudio de funciones.

INTERSECCIÓN CON LOS EJES COORDENADOS

Intersección con el eje OX: f(x) = 0

$$\cap con \overrightarrow{OX} \Rightarrow x / f(x) = 0$$

$$P_1(-1,0)$$

$$P_2(2,0)$$

Intersección con el eje OY: x = 0

$$\cap con \overrightarrow{OY} \Rightarrow x = 0$$

$$P_3(0,-2)$$

Una función puede tener **más de una intersección con el eje** x; pero **No puede tener más de una intersección con el eje** y

PARIDAD (simetría):

Una función es PAR, si:

$$\forall x \in dom f; \ \mathbf{f}(x) = \mathbf{f}(-x)$$

Si f es PAR, su gráfica es sim 'etrica respecto al eje OY

Una función es IMPAR, si:

$$\forall x \in dom f; f(x) = -f(-x)$$

Si f es IMPAR, su gráfica es sim'etrica respecto al origen de Coordenadas $P(\theta, \theta)$

Existen funciones que no cumplen ninguna de estas condiciones. En tal caso *la función no tiene simetría*.

FUNCIÓN BIUNÍVOCA o UNO A UNO

Definición:

Una función f es uno a uno si y sólo si a dos elementos distintos cualesquiera de su dominio, le corresponde dos imágenes distintas.

O bien; no existen dos pares ordenados con igual imagen.

$$\forall x_1, x_2 \in dom f, con x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

Criterio de la regla horizontal

Es función Biunívoca Uno a uno

NO es función Uno a uno

FUNCIÓN MONÓTONA CRECIENTE Y DECRECIENTE

Definic.: Función monótona creciente

Una función f es monótona creciente en un intervalo abierto (a, b) incluido en el dom f, si para todo par de valores x_1 y x_2 \in a ese intervalo se verifica que si:

$$x_{1} < x_{2} \Rightarrow f(x_{1}) \leq f(x_{2})$$

$$f(x_{2})$$

$$x_{1}$$

$$x_{2}$$

$$b$$

$$x$$

$$f(x_{1})$$

$$x$$

$$f(x_{2})$$

Def.: Función monótona decreciente

Una función f es monótona decreciente en un intervalo abierto (a, b) incluido en el dom f, si para todo par de valores x_1 y $x_2 \in$ a ese intervalo se verifica que si:

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

Es decir: una función es monótona creciente si no decrece y viceversa.

Además, se puede definir función monótona creciente o decreciente en un intervalo. Por ejemplo: Una función f es monótona creciente en un intervalo semiabierto a izquierda (a, b] incluido en el dom f, si para todo par de valores x_1 y $x_2 \in$ a ese intervalo se verifica que si: $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$

FUNCIÓN ESTRICTAMENTE CRECIENTE Y DECRECIENTE

 $x_2 \in$ a ese intervalo se verifica que si: a ese intervalo se verifica que si:

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

Def.: Función estrictamente creciente Def.: Función estrictamente decreciente Una función f es estrictamente creciente Una función f es estrictamente decreciente en un intervalo abierto (a, b) incluido en en un intervalo abierto (a, b) incluido en el el dom f, si para todo par de valores x_1 y dom f, si para todo par de valores x_2 y $x_2 \in$

Es decir: una función es estrictamente creciente si siempre crece y viceversa.

Además, se puede definir función estrictamente creciente o decreciente en un intervalo. Por ejemplo: Una función f es estrictamente decreciente en un intervalo semiabierto a derecha [a, b] incluido en el dom f, si para todo par de valores x_1 y $x_2 \in a$ ese intervalo se verifica que si: $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

ASÍNTOTAS:

Una asíntota es una recta, a la cual la curva, gráfica de una función, se le acerca indefinidamente sin intersectarla ni hacerse tangente.

Asíntota Vertical (AV):

Si cuando
$$x \to a$$
, con $a \in \Re$, $f \to \pm \infty$

Significa que x = a es A. V. de f $x = a \notin dom f$

Asíntota Horizontal (AH)

$$Si\ cuando\ x \to \pm \infty, f \to k, con\ k \in \Re$$

Significa que y = k es A. H. de f

f(-x) + f(x)

ESTUDIO DE FUNCIONES - Resumen

- 1) DOMINIO DE f
- 2) INTERSECCIÓN CON LOS EJES COORDENADOS

Intersección con el eje OX: y=0 $\cap con \overrightarrow{OX} \Rightarrow x/f(x) = 0$

Intersección con el eje OY: x=0 $\cap con \overrightarrow{OY} \Rightarrow x = 0$

4) ASÍNTOTAS

Asíntota Vertical (AV):

$$Si \ x \rightarrow a : f(x) \rightarrow \pm \infty \Rightarrow x = a \ es \ AV \ de \ f$$

Asíntota Horizontal (AH):

$$Si \ x \to \pm \infty : f(x) \to c, c \in \Re \Rightarrow y = c \ es \ AH \ de \ f$$

- 5) TABLA DE VALORES
- 6) GRÁFICA
- 7) RANGO DE f
- 8) INTERVALOS DE CRECIMIENTO Y DECRECIMIENTO
- 9) FUNCIÓN BIUNÍVOCA

f Decrece en todo

su dominio

EJEMPLO 1:

$$f(x) = \frac{x}{x^2 - 9}$$

x = 2.99:

 $f(2,99) = \frac{2,99}{(2,99)^2 - 9}$

x = -1.000:

 $f(-1.000) = \frac{-1.000}{(-1000)^2 - 9}$

 ≈ -0.0019

Dominio de f:

condición única es que denominador No puede ser θ :

$$x^2 - 9 \neq 0$$

$$x^2 \neq 9$$

$$|x| \neq 3$$
 $\begin{cases} x \neq 3 \end{cases}$

$$\sqrt{x^2} \neq \sqrt{9}
|x| \neq 3$$

$$\begin{cases} x \neq -3 \\ x \neq 3 \end{cases}$$

$$= \frac{+2,99}{-0,0599}
\approx -49,92$$

$$Dom f = (-\infty, -3) \cup (-3, 3) \cup (3, \infty)$$

$$Dom f = R - \{-3, 3\}$$

Intersecciones con ejes:

$$\cap OX: \frac{x}{x^2 - 9} = 0$$

$$x = 0 \quad 0 \in dom f \quad P(0, 0)$$

$$\cap OY: x = 0 \ P(0,0)$$

Simetría:

$$f(-x) = \frac{-x}{(-x)^2 - 9} = \frac{-x}{x^2 - 9}$$

 $f(-x) \neq f(x)$ f No es Par

$$-f(-x) = \cancel{/}\frac{\cancel{/}x}{x^2 - 9}$$

$$-f(-x) = \frac{x}{x^2 - 9}$$

$$f(x) = -f(-x)$$
 fes IMPAR

Asíntotas:

A.V., debemos estudiar en x=-3 y en x=3

$$\begin{array}{l} x \rightarrow 3^{(-)}, \ f \rightarrow -\infty \\ x \rightarrow 3^{(+)}, \ f \rightarrow +\infty \end{array} \} \ x=3 \ \text{es } A.V. \ \text{de } f$$

Por Simetría: x=-3 es A.V. de f

A.H.:
$$x \to -\infty$$
, $f \to 0$
 $x \to +\infty$, $f \to 0$ $y=0$ es A.H. de f

CLASIFICACIÓN DE FUNCIONES EXPLÍCITAS

FUNCIONES ALGEBRAICAS

 $f=\{(x, f(x))\}$ donde f(x) puede ser expresada mediante un número finito de una o varias de las operaciones de suma, resta, multiplicación, división, potenciación y radicación para "x", y constantes. Se clasifican en

Funciones Polinomiales

Funciones Racionales Funciones Irracionales

FUNCIONES TRASCENDENTES Funciones Trigonométricas

Función Exponencial

Función Logarítmica

Funciones Trigonométricas Inversas

FUNCIONES Función Valor Absoluto

Funciones POLINOMIALES:

Están definida por f/f(x)=P(x) donde P(x) es un polinomio real en x.

$$P(x) = f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

 $a \in \Re$; $con \ a_0 \neq 0 \ y \ n \in N$

Se denomina función polinomial de grado n.

El dominio de toda función polinomial es:

$$dom f = \Re$$

Función Constante

$$f(x) = c$$
; $con c \in \Re$;
$$\begin{cases} dom f = \Re \\ rgof = \{c\} \end{cases}$$

Función Lineal

$$f(x) = mx + b; m \in \Re; m \neq 0$$

$$\begin{cases} dom f = \Re \\ rgo f = \Re \end{cases}$$

Su representación gráfica es una recta oblicua.

La pendiente de la recta está dada por m

$$m = \frac{\Delta y}{\Delta x} = \frac{Variación\ en\ y}{Variación\ en\ x}$$

EJEMPLO 1:

$$f(x) = 2x + 1$$

$$m = 2$$
 $m = \frac{2}{1} : \begin{cases} \Delta y = 2 \\ \Delta x = 1 \end{cases}$

El término independiente: b, representa la ordenada al origen; es el punto en el que la recta corta al eje OY b=1

$$rgof = \Re$$

f Es Creciente en todo su dominio

EJEMPLO 2:

$$f(x) = -2x + 3$$

$$m = -2$$
 $m = \frac{-2}{1}$ $\therefore \begin{cases} \Delta y = -2 \\ \Delta x = 1 \end{cases}$

El término independiente es: b = 3 $rgo f = \Re$

f Es Decreciente en todo su dominio

EJEMPLO 3:

$$f(x) = \frac{3}{5}x - 2$$

$$m = \frac{3}{5} \quad m = \frac{3}{5} : \begin{cases} \Delta y = 3\\ \Delta x = 5 \end{cases}$$

El término independiente es: b = -2

(0, -2)

$$rgo f = \Re$$

f Es Creciente en todo su dominio

Función Cuadrática

$$f(x) = \mathbf{a}x^{2} + \mathbf{b}x + c$$

$$a; b \ y \ c \in \Re; \ a \neq 0$$

$$\begin{cases} dom f = \Re \\ rgof = \begin{cases} (-\infty; k]; si \ a < 0 \\ [k; \infty); si \ a > 0 \end{cases}$$

Su representación gráfica es una parábola de eje vertical.

- a: Coeficiente del término cuadrático: Indica la apertura de la parábola.
- ramas hacia arriba o hacia abajo ramas más abiertas o más cerradas

- b: Coeficiente del término lineal:
 La gráfica se desplaza Horizontalmente respecto del eje OY
- c: Término independiente: Indica la ordenada del punto de intersección con el eje OY

EJEMPLOS:

1)
$$y = x^2 - 3x + 2$$
 $dom f = \Re$

$$a = 1 \Rightarrow a > 0$$
 Ramas ascendentes

$$x_{1,2} = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} =$$

$$= \frac{3 \pm \sqrt{1}}{2} \therefore \begin{cases} x_1 = 1 \\ x_2 = 2 \end{cases}$$

f intersecta al eje OX en: (1, 0) y (2, 0)

C=2; fintersecta al eje OY en: (0, 2)

$$h = \frac{-(-3)}{2 \cdot 1} = \frac{3}{2}$$

$$k = f(h) = \left(\frac{3}{2}\right)^2 - 3\frac{3}{2} + 2$$

$$V = \left(\frac{3}{2}, -\frac{1}{4}\right)$$

$$k = -\frac{1}{4}$$

$$rgo f = \left[-\frac{1}{4}, \infty \right]$$

2)
$$y = -x^2 + 2x - 2$$

 $dom f = \Re$

$$a = -1 \Rightarrow a < 0$$
 Ramas descendentes

$$x_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot (-1) \cdot (-2)}}{2 \cdot (-1)} = \frac{-2 \pm \sqrt{-4}}{-2}$$

 $x_{1,2} \notin \Re$ f no tiene intersección con el eje OX

C=-2; fintersecta al eje OY en: (0, -2)

$$h = \frac{-2}{2 \cdot (-1)} = 1$$

$$k = \frac{-2^{2}}{4 \cdot (-1)} - 2 = -1$$

$$rgo f = (-\infty, -1]$$

PROBLEMA:

Se desea construir un puente colgante peatonal para atravesar un río, como muestra la figura. La luz entre apoyos es de 50m y el nivel mínimo del puente debe estar 5m por arriba del Nivel de máxima crecida. Si el desarrollo es parabólico: ¿cuál es la ecuación que lo describe? Dar dominio y rango de la función y grafica la situación.

$$dom f = [-25, 25]$$
 $rgo f = [-5, 0]$

$$f(x) = ax^2 + bx + c$$

$$f(0) = c$$
; $c = -5$

La parábola es de ramas ascendentes y su vértice está sobre el eje OY

$$a > 0$$
 y $b = 0$

$$f(x) = ax^2 - 5$$

El apoyo derecho es el punto P(25,0)

$$f(25) = a(25)^2 - 5 = 0$$

$$a = \frac{5}{(25)^2}$$
; $a = \frac{1}{625}$ $a = 0.0016$
 $a = 1.6 \cdot 10^{-3}$

$$f(x) = \frac{1}{625}x^2 - 5$$

CUESTIONARIO 1:

En cada uno de los siguientes apartados aplica los conocimientos estudiados para respóndelo; justifica matemáticamente tu razonamiento. Puedes usar representaciones gráficas.

- a). ¿Qué relación existe entre (x, y) y un punto del plano real?
- b). ¿Para qué valores de $x, y \in R$ se verifica que: (x, y) = (y, x)?
- c). ¿Una función cuadrática, es uno a uno?
- d). Si una función tiene asíntota vertical x=2, ¿significa que: dom f = R?
- e). Si una función es estrictamente creciente en todo su dominio, ¿entonces es biunívoca?
- d). Si una función tiene una asíntota vertical x=1 y es función Impar; ¿tiene o no otra asíntota vertical? Si es que la tiene: ¿cuál es su ecuación?
- f). ¿Qué se determina con el criterio de la regla vertical?
- g). Dada la función: $y = ax^2 + c$, ¿Qué indican en la gráfica los coeficientes a y c? ¿La gráfica tiene cambios respecto de $y = x^2$?
- h). Si la gráfica de una función es simétrica respecto al eje OY, ¿es uno a uno?
- i). Si f es una función y $(0,2) \in f$, ¿puede suceder que $(0,0) \in f$?