Übungen zur Linearen Algebra I 4. Übungsblatt

Abgabe bis zum 14.11.19, 9:15 Uhr

Aufgabe 1 (1+5 Punkte). Bestimmen Sie alle Körperhomomorphismen $\mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ und alle Gruppenhomomorphismen $(\mathbb{Z}/3\mathbb{Z})^{\times} \to (\mathbb{Z}/5\mathbb{Z})^{\times}$.

Aufgabe 2 (3 + 3 Punkte). Bestimmen Sie alle $x, y \in \mathbb{R}^3$ mit

$$x \times \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$$

und

$$y \times \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

Aufgabe 3 (1 + 2 + 3 Punkte). Wir definieren die Abbildung $-^{\perp} : \mathbb{R}^2 \to \mathbb{R}^2$ durch

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{\perp} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}.$$

Zeigen Sie:

- (a) $x \perp x^{\perp}$ und $||x|| = ||x^{\perp}||$ für alle $x \in \mathbb{R}^2$.
- (b) Ist $x \in \mathbb{R}^2 \setminus \{0\}$ und $y \in \mathbb{R}^2$ mit $x \perp y$, so existiert ein $a \in \mathbb{R}$ derart, dass $y = a \cdot x^{\perp}$.
- (c) Für $x \in \mathbb{R}^2 \setminus \{0\}$ sei die Abbildung $f_x \colon \mathbb{R}^2 \to \mathbb{R}^2$ durch

$$y \longmapsto \frac{\langle y, x \rangle}{\langle x, x \rangle} \cdot x + \frac{\langle y, x^{\perp} \rangle}{\langle x, x \rangle} \cdot x^{\perp}$$

definiert. Zeigen Sie: Für beliebiges $x \in \mathbb{R}^2 \setminus \{0\}$ ist f_x gleich der Identität des \mathbb{R}^2 .

Aufgabe 4 (1+1+2+1+1 Punkte). Sei $G=(G,\cdot,e)$ eine Gruppe. Für $g\in G$ betrachten wir die Abbildung $c_g\colon G\to G$, welche definiert ist durch $c_g(x)=g\cdot x\cdot g^{-1}$. Zeigen Sie:

- (a) $c_{g^{-1}} \circ c_g = c_g \circ c_{g^{-1}} = \mathrm{id}_G$.
- (b) c_q ist ein Gruppenisomorphismus.
- (c) Ist $\varphi \colon G \to H$ ein Gruppenhomomorphismus, so gilt $c_q(\ker \varphi) = \ker \varphi$.
- (d) Die Abbildung $c \colon g \mapsto c_g$ ist ein Gruppenhomomorphismus $c \colon G \to \operatorname{Aut}(G)$.
- (e) c ist nicht notwendig injektiv.