See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232413203

Metal complexes of N-o-chlorobenzamido-meso-tetraphenylporphyrin: cis-Tl(N-NCO(o-Cl)C6H4-tpp)(OAc) and trans-Cd(N-NHCO(o-Cl)C6H4-tpp)(OAc) (tpp=5, 10, 15, 20-tetraphenylporphyrinat...

ARTICLE in INORGANIC CHEMISTRY COMMUNICATIONS · APRIL 2010

Impact Factor: 1.78 · DOI: 10.1016/j.inoche.2010.01.022

CITATIONS READS

2 14

5 AUTHORS, INCLUDING:

SEE PROFILE

EL SEVIER

Contents lists available at ScienceDirect

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Metal complexes of N-o-chlorobenzamido-meso-tetraphenylporphyrin: cis-Tl(N-NCO(o-Cl)C $_6$ H $_4$ -tpp)(OAc) and trans-Cd(N-NHCO(o-Cl)C $_6$ H $_4$ -tpp)(OAc) (tpp = 5, 10, 15, 20-tetraphenylporphyrinate)

Kwan-Tin Chen ^a, Ming Yang Tsai ^a, Jyh-Horung Chen ^{a,*}, Shin-Shin Wang ^b, Jo-Yu Tung ^{c,*}

- ^a Department of Chemistry, National Chung-Hsing University, Taichung 40227, Taiwan
- ^b Material Chemical Laboratories, Hsin-Chu 300, Taiwan
- ^c Department of Occupational Safety and Health, Chung Hwai University of Medical Technology, Tainan 717, Taiwan

ARTICLE INFO

Article history: Received 14 December 2009 Accepted 28 January 2010 Available online 4 February 2010

Keywords: Thallium Cadmium X-ray diffraction N-Substituted-N-aminoporphyrin Dynamic NMR

ABSTRACT

The crystal structures of diamagnetic (cis-acetato) (N-o-chlorobenzamido-meso-tetraphenylporphyrinato)thallium(III)·0.5 water solvate $[cis-Tl(N-NCO(o-Cl)C_6H_4-tpp)(OAc)\cdot0.5 H_2O;$ **3**·0.5 $H_2O]$ and diamagnetic (trans-acetato) (N-o-chlorobenzamido-meso-tetraphenylporphyrinato)cadmium(II) methylene chloride solvate [trans-Cd(N-NHCO(o-Cl)C₆H₄-tpp)(OAc)-CH₂Cl₂; **4**·CH₂Cl₂] were determined. The coordination sphere around the Tl^{3+} (or Cd^{2+}) in **3** (or **4**) is a distorted square-based pyramid in which the apical site is occupied by a chelating bidentate OAc^- group. In 3, TI^{3+} and N(5) are located on the same side at 1.18 and 1.26 Å from it 3N plane, but in 4, Cd^{2+} and N(5) are located on different sides at 1.06 and -1.55 Å from it 3N plane. The free energy of activation at the coalescence temperature T_c for the intermolecular acetate exchange process in 3 in CD_2Cl_2 solvent is found to be $\Delta G_{198}^* = 42.1$ kJ/mol through ¹H NMR temperature-dependent measurements. Likewise, the free energy of activation $\Delta G_{293}^{\neq} = 55.94 \text{ kJ/mol}$ is determined for the intramolecular exchange of the ortho protons between o'-H (34, 40) and o'-H (38, 44) in $\bf 3$ in CD₂Cl₂. VT NMR (1 H and 13 C) studies of $\bf 4$ show that the acetate acts as a bidentate ligand and the OAc- exchange does not occur in CD₂Cl₂. Moreover, the NH proton [i.e., H(5)] of **4** in CD₂Cl₂ is observed as a singlet at δ –0.09 ppm with $\Delta v_{1/2}$ = 13 Hz at 20 °C indicating that the NH protons undergo intermediate intermolecular proton exchange with water at this temperature.

 $\ensuremath{\text{@}}$ 2010 Elsevier B.V. All rights reserved.

Previously, we reported two-stage formation of (N-o-chlorobenzamido-meso-tetraphenylporphyrinato)(methanol)zinc(II) methanol solvate [Zn(N-NCO(o-Cl)C $_6$ H $_4$ -tpp)(MeOH)·MeOH; **1**·MeOH] [1]. Compound **1** is a zinc complex of N-NHCO(o-Cl) C $_6$ H $_4$ -Htpp) (**2**) (Chart 1). The absolute values of hardness η for Zn $^{2+}$, Tl $^{3+}$ and Cd $^{2+}$ are 10.88, 10.4, and 10.29 eV, respectively [2]. It is observed that the effective ionic radius (r) for the metal ion increases from 0.82 Å for Zn $^{2+}$ (S = 0) with coordination number (CN) = 5 [or 1.025 Å for Tl $^{3+}$ (S = 0) with CN = 6] to 1.09 Å for Cd $^{2+}$ (S = 0) with CN = 6 [3]. In these three metal ions the polarizing power z/r^2 (z = charge on the cation, r = ionic radius) decreases from 3.652 (Zn $^{2+}$) [or (Tl $^{3+}$)] to 2.041 (Cd $^{2+}$) [4,5]. The metal cations of different polarizing power selected were Tl $^{3+}$ and Cd $^{2+}$. The soft acid Tl $^{3+}$ with a larger polarizing power (2.855) similar to that of Zn $^{2+}$ attacks the two N–H protons of **2** and lead to a six-coordinate

distorted trigonal prismatic Tl (III) derivative, that is, (cis-acetato)(N-o-chlorobenzimido-meso-tetraphenylporphyrinato)thallium (III) $\cdot 0.5$ water solvate $[Tl(N-NCO(o-Cl)C_6H_4-tpp)(OAc)\cdot 0.5 H_2O;$ $3.0.5 \text{ H}_2\text{O}$] possessing a nitrene moiety inserted between the thallium atom and one nitrogen atom, N(4) (Scheme 1). During the metallation of free base 2 with Cd(OAc)2, the soft acid Cd2+ with a lower polarizing power (2.041) prefers to retain one OAc⁻ ligand and coordinate to the N-H proton [i.e. H(2A)] of 2 also to form a six-coordinate distorted trigonal prismatic complex, that is, (trans-acetato)(N-o-chlorobenzimido-meso-tetraphenylporphyrinato)cadmium(II) methylene chloride solvate [trans-Cd(N-NHCO(o-Cl)C₆H₄-tpp)(OAc)·CH₂Cl₂; **4**·CH₂Cl₂] (Scheme 1). In this paper, we describe the X-ray structural investigation on the complexation of Tl³⁺ and Cd²⁺ classified as C acids (covalent acids) but with different polarizing power into 2 leading to mononuclear complexes of cis-3 and trans-4 [4,5]. In addition, the ¹H and ¹³C NMR spectra of cis-3 in CD₂Cl₂ at various temperatures are used to investigate the intermolecular apical ligand (OAc⁻) exchange process and in turn to determine the free energy of activation at the coalescence temperature, ΔG_{Tc}^{\neq} , for the exchange process.

^{*} Corresponding authors. Tel.: +886 4 228 40411x612; fax: +886 4 228 62547 (J.H. Chen), tel.: +886 6 267 4567x815; fax: +886 6 289 4028 (J.Y. Tung).

E-mail addresses: JyhHChen@dragon.nchu.edu.tw (J.-H. Chen), joyuting@mail. hwai.edu.tw (J.-Y. Tung).

Using a d10 metal, namely, thallium(III) and cadmium(II), the new complexes 3 and 4 were synthesized. The synthetic strategy is outlined in Scheme 1. The complex cis-Tl(N-NCO(o-Cl)C₆H₄tpp)(OAc) (3) was produced in 63% yield by heating a N-NHCO(o-Cl) C₆H₄-Htpp) (**2**) solution in CH₂Cl₂/MeOH under aerobic conditions with an excess of Tl(OAc)₃ (Scheme 1). The complex trans-Cd(N-NHCO(o-Cl)C₆H₄-tpp)(OAc) (4) was synthesized in 53% yield by reacting 2 with excess Cd(OAc)₂ in CH₃CN under aerobic conditions (Scheme 1). The molecular frameworks are depicted in Fig. 1a for 3.0.5H₂O and in Fig. 1b for 4.CH₂Cl₂. The cadmium-nitrogen bond distances are comparable to those of Cd(1)-N(p) =2.301(5) Å in $Cd(N-NHCOC_6H_5-tpp)(OAc)$ [6]. The $Cd\cdots N(4)$ distance of 2.600(4) Å for 4 is longer than 2.301(5) Å but is significantly shorter than the sum of the van der Waals radii of Cd and N (3.15 Å) [3]. This longer $Cd \cdot \cdot \cdot N(4)$ contact in **4** may be viewed as a secondary intramolecular interaction. Most chemists seems to consider this secondary interaction between the metal ion and the fourth N as a weak bond in N-substituted porphyrin metal complexes [7,8].

We adopt the plane of three strongly bound pyrrole nitrogen atoms [i.e., N(1), N(2) and N(3)] for **3** and **4** as a reference plane,

3N. The geometry around Tl (III) (or Cd (II)) is a distorted square-based pyramid in which the apical site is occupied by a chelating bidentate OAc^- group in **3** (or **4**). In complex **3**, Tl (III) and N(5) are located on the same side at 1.18 and 1.26 Å from its 3N plane, but for complex **4**, Cd (II) and N(5) are located on different sides at 1.06 and -1.55 Å from its 3N plane. Apparently, chelating bidentate OAc^- in **3** is cis to the (o-Cl)BA group with O(2) and O(3) being located separately at 2.95 and 3.13 Å out of the 3N plane, and bidentate OAc^- in **4** is trans to the (o-Cl)BA group with O(2) and O(3) located at 3.21 and 2.85 Å out of the 3N plane.

The N(4) pyrrole rings bearing the (o-Cl)BA group in 3 and 4 deviate mostly from the 3N plane, thus orienting separately with a dihedral angle of 47.6° and 30.8°, whereas small angle of 7.5°, 13.5° and 9.8° occur with N(1), N(2) and N(3) pyrrole for 3 and the corresponding angles are 21.8° , 1.4° and 17.0° with N(1). N(2) and N(3) pyrrole for 4. In 3, such a large deviation from planarity for the N(4) pyrrole is also reflected by observing a 16.2-20.3 ppm upfield shift of the C_B (C17, C18) at 115.4 ppm compared to 134.1 ppm for C_{β} (C2, C13), 134.1 ppm for C_{β} (C3, C12) and 131.6 ppm for C_B (C7, C8). In **4**, a similar deviation is also found for N(4) pyrrole by observing a 7.4–10.1 ppm upfield shift of C_B (C17, C18) at 124.0 ppm compared to 134.1 ppm for C_6 (C3, C12), 134.0 ppm for C_{β} (C7, C8) and 131.4 ppm for C_{β} (C2, C13). The dihedral angles between the mean plane of the skeleton (3N) and the planes of the phenyl groups are 88.1° [C(24)], 54.1° [C(30)], 42.7° [C(36)] and 36.2° [C(42)] for **3** and the corresponding angles are 61.1°, 51.7°, 39.9° and 36.4° for 4.

In solution, the molecule has effective C_s symmetry with a mirror plane running through the N(4)–N(5)–Tl(1)–N(2) unit for **3** and the N(2)–Cd–N(4)–N(5) unit for **4**. As a result, the ¹H NMR spectrum will exhibit four pyrrole resonances [H_{β} (2, 13), H_{β} (3, 12), H_{β} (7, 8), H_{β} (17, 18)] for these two complexes (Figs. 2 and 3). Fig. 2 depicts the representative ¹H spectra for **3** in CD₂Cl₂ at 20 and –90 °C. The NMR study of **3** showed three different types of Tl–H coupling constants for H_{β}. In **3** at 20 °C, the doublet at 9.30 ppm is assigned as H_{β} (2, 13) with ⁴J(Tl–H) = 10.8 Hz and the other doublet at 8.59 ppm is due to H_{β} (7, 8) with ⁴J(Tl–

Scheme 1.

Fig. 1. (a) Molecular structure of cis-Tl(N-NCO(o-Cl)C $_6$ H $_4$ -tpp)(OAc)-0.5H $_2$ O (3.0.5H $_2$ O) and (b) trans-Cd(N-NHCO(o-Cl)C $_6$ H $_4$ -tpp)(OAc)-CH $_2$ Cl $_2$ (4.-CH $_2$ Cl $_2$), with 30% thermal ellipsoids. Hydrogen atoms, solvent H $_2$ O for 3.0.5H $_2$ O and solvent CH $_2$ Cl $_2$ for 4.-CH $_2$ Cl $_2$ are omitted for clarity. Selected bond distances (Å): Tl(1)-N(1), 2.382(3); Tl(1)-N(2), 2.148 (3); Tl(1)-N(3), 2.350(3); Tl(1)-N(5), 2.131(3); Tl(1)-O(2), 2.299(3); Tl(1)-O(3), 2.432(3) for 3.0.5H $_2$ O; Cd-N(1), 2.294(4); Cd-N(2), 2.246(4); Cd-N(3), 2.331(4); Cd-O(2), 2.281(12); Cd-O(3), 2.344(10) for 4?CH $_2$ Cl $_2$.

H) = 75.0 Hz. The singlet at 8.95 ppm is assigned to H_β (3, 12) and the other singlet at 7.26 ppm is due to H_β (17, 18) (Fig. 2a). In **4** at 20 °C, the doublet at 8.77 ppm is assigned to H_β (2, 13) with $^3J(H-H)$ = 4.2 Hz and the other doublet at 8.71 ppm with $^3J(H-H)$ = 4.2 Hz is due to H_β (3, 12) (Fig. 3a). The singlet at 8.81 ppm is assigned to H_β (7, 8) and the other singlet at 8.64 ppm is due to H_β (17, 18) (Fig. 3a).

The signal arising from the NH proton of **4** in CD₂Cl₂ was observed as a singlet at δ –0.99 ppm ($\Delta v_{1/2}$ = 13 Hz) at 20 °C. This NMR data suggests that the NH protons of **4** undergo intermediate intermolecular proton exchange with water at 20 °C. At low temperature the chemical exchange slows down that allows the observation of a broad singlet for the NH proton at –1.08 ppm ($\Delta v_{1/2}$ = 17 Hz) for **4** at –90 °C. In this case, the NH proton signal for **4** at –90 °C is broadened by the quadrupolar interaction of the ¹⁴N nucleus.

Non-equivalence of the two sides of the macrocycle will cause each phenyl ring have two distinct *ortho* resonances, with one set of ortho protons, o-H (22, 32) [or o-H (26, 32)] and o-H (26, 28) [or o-H (22, 28)], for phenyl C(24) and C(30) and the other set of ortho protons, o'-H (34, 40) [or o'-H (34, 44)] and o'-H (38, 44) [or o'-H (38, 40)] for phenyl C(36) and C(42) of **3** (or **4**), respectively. In **3** at 20 °C, the rotation of the phenyl group along C_1 – C_{meso} [C(5)-C(21) or C(10)-C(27)] bond is slow [9]. This slow rotation is supported by the two doublets at 8.25 and 8.12 ppm due to o-H (22, 32) and o-H (26, 28), respectively (Fig. 2a). Moreover, the rotation of phenyl group along C(15)-C(33) [or C(20)-C(39)] bond for **3** is at the near fast exchange region [9]. In this fast exchange region, the signals are observed as broad singlet at 8.47 ppm (Fig. 2a). At −90 °C, both rotations are extremely slow. Hence, the rate of intramolecular exchange of the ortho protons for 3 in CD₂Cl₂ is also extremely slow. The singlet at 8.16 ppm and the doublet at 8.13 ppm with ${}^{3}I(H-H) = 5.4 \text{ Hz}$ is assigned as ortho protons o-H (26) and o-H (28). The two sets of signals at 8.27 and 8.20 ppm is due to ortho protons o-H (22) and o-H (32) for 3 (Fig. 2b). Likewise, the two partially overlapping doublets at 8.72 ppm with ${}^{3}J(H-H) = 7.8 \text{ Hz}$ is

Fig. 2. ¹H NMR (599.95 MHz) spectra showing four different β-pyrrole protons H_β and phenyl protons (o-H, m,p-H) for 3 in CD₂Cl₂: (a) 20 °C and (b) –90 °C.

Fig. 3. 1 H NMR (599.95 MHz) spectra showing four different β-pyrrole protons H $_{\beta}$ and phenyl protons (o-H, m,p-H) for 4: (a) in CDCl₃ at 20 $^{\circ}$ C and (b) in CD₂Cl₂ at -90 $^{\circ}$ C.

due to *ortho* protons o'-H (34, 40). The same two sets of signals at 8.27 and 8.20 ppm is also due to ortho protons o'-H (38) and o'-H (44) for **3** (Fig. 2b). The free energy of activation $\Delta G_{293}^{\neq} = 55.94 \, \text{kJ/mol}$ is therefore, determined for the intramolecular exchange of the *ortho* protons between o'-H (34, 40) and o'-H (38, 44) in **3**.

In a similar fashion, the rotation of the phenyl group of **4** in CDCl₃ at $20 \,^{\circ}$ C along C(10)–C(27) [or C(5)–C(21)] bond is slow and the rotation along C(20)–C(39) [or C(15)–C(33)] is at the intermediate exchange region [9]. Hence the 1 H resonances for the *ortho*

protons of **4** in CDCl₃ at 20 °C were observed as two sets of doublets: one doublet at 8.65 ppm is assigned to *ortho* protons *o*-H (26, 32) with ${}^{3}J(H-H) = 6.6$ Hz and the other doublet at 8.44 is due to *ortho* protons *o*-H (22, 28) with ${}^{3}J(H-H) = 6.6$ Hz (Fig. 3a). Likewise, two sets of broad singlet at 8.37 and 8.08 ppm is due to *ortho* protons *o'*-H (34, 44) and *o'*-H (38, 40) (Fig. 3a). However, for *ortho* protons of **4** in CD₂Cl₂ at -90 °C, the rotation of phenyl group along C₁-C_{meso} bond in **4** is extremely slow, which is evident from the appearance of the four doublets at 8.49 [*o*-H (26, 32)],

8.42 [*o*-H (22, 28)], 8.31 and 8.04 ppm for *o*′-H (34, 44) and *o*′-H (38, 40) due to four different *ortho* protons of the aromatic ring in **4** (Fig. 3b).

Due to the ring current effect, upfield shifts for the ¹H resonances of (o-Cl)BA-Ph-H₆, (o-Cl)BA-Ph-H₃, (o-Cl)BA-Ph-H₅ and (o-Cl)BA-Ph-H₄ for **4** in CDCl₃ at 20 °C are $\Delta \delta = -3.2$ [from 7.77 (obtained from o-chlorobenzamide) to 4.57 ppm], -1.46 (from 7.42 to 5.96 ppm), -1.34 (from 7.35 to 6.01 ppm) and -1.08(from 7.40 to 6.32 ppm), respectively. As the distance between the geometrical center (C_t) of the 4N plane [i.e., N(1), N(2), N(3), N(4) for 3 and 4] and axial protons gets smaller, the shielding effect becomes larger. In 4, the distance for $C_{t} \cdot \cdot \cdot (o-Cl)BA-Ph-H_{6}$, $C_t \cdots (o\text{-Cl})BA\text{-Ph-H}_3$, $C_t \cdots (o\text{-Cl})BA\text{-Ph-H}_5$ and $C_t \cdots (o\text{-Cl})BA\text{-Ph-H}_4$, increases from 5.419, 6.284, 7.057 to 7.396 Å. As the (o-Cl)BA-Ph-H₆ proton of **4** is closer to C_t, the shielding gets larger for this (o-Cl)BA-Ph-H₆ protons. A similar ring current effect is also observed for 3. The average distance between $C_1 \cdots (o-C1)BA-Ph-H_6$, $C_t \cdots (o-Cl)BA-Ph-H_5$, $C_t \cdots (o-Cl)BA-Ph-H_3$ and $C_t \cdots (o-Cl)BA-Ph-H_4$ for **3** increases from 3.233, 4.866, 5.946 to 5.984 Å. The ¹H NMR spectra reveal that the aromatic protons of the (o-Cl)BA group appear as a doublet of triplets at 6.36 ppm [(o-Cl)BA-Ph-H₄], a doublet at 6.21 ppm [(o-Cl)BA-Ph-H₃], the triplet at 6.10 ppm [(o-Cl)BA-Ph-H₅] and the other doublet at 4.87 ppm [(o-Cl)BA-Ph-H₆] for **3**. The (o-Cl)BA bonding argument is further supported by the result that at 20 °C in ¹³C NMR the (o-Cl)BA-Ph-C₁ [i.e., C(46)] and the C(45) peaks in 3 were observed at 132.6 ppm with $^{3}J(Tl-C) = 20.1 \text{ Hz}$ and at 167.7 ppm with $^{2}J(Tl-C) = 665 \text{ Hz}$, respectively.

The 1H NMR spectrum for OAc $^-$ of **4** in CD $_2$ Cl $_2$ displays a sharp singlet for CH $_3$ at δ 0.06 ppm with $\Delta v_{1/2}$ = 3 Hz at 20 $^\circ$ C and remains a sharp singlet for the same methyl proton at δ -0.01 ppm with $\Delta v_{1/2}$ = 4 Hz at -90 $^\circ$ C. This minimum deviation in the value of line width ($\Delta v_{1/2}$) upon cooling indicates that OAc $^-$ exchange does not occur in compound **4**.

Upon cooling of a $0.02~\rm M~CD_2Cl_2$ solution of **3**, the methyl proton signal of OAc⁻, being a single peak at $20~\rm ^{\circ}C$ (δ 0.17 ppm), first broadened (coalescence temperature T_c = $-75~\rm ^{\circ}C$) and then split into peaks with a separation of 14.4 Hz at δ 0.08 ppm at $-90~\rm ^{\circ}C$. As the exchange of OAc⁻ within **3** is reversible, the results at 599.95 MHz confirm the separation as a coupling of 4J (Tl–H) rather than a chemical shift difference [10,11]. The most likely cause of loss of coupling is due to the reversible dissociation of acetate with a small dissociation constant.

 $Tl(\textit{N}\text{-}NCO(\textit{o}\text{-}Cl)C_6H_4\text{-}tpp)(OAc)$

$$\stackrel{CD_2Cl2}{=\!=\!=\!=} Tl(N\text{-NCO}(o\text{-Cl})C_6H_4\text{-tpp})^+ + OAc^-$$

Such a scenario would lead to the change in the chemical shift with temperature and no detectable free OAc⁻ and Tl(N-NCO(o-Cl)C $_6$ H₄-tpp)⁺ at low temperature, but would lead to the loss of coupling between acetate and thallium at higher temperature [10–12]. The chemical shift in the high-temperature limit is the average of the two species (i.e., Tl(N-NCO(o-Cl)C $_6$ H₄-tpp)(OAc) and OAc⁻) in Eq. (1) weighted by their concentration. The free energy of activation at the coalescence temperature T_c for the intermolecular exchange of OAc⁻ in $\bf 3$ is determined to be $\Delta G_{198}^{\neq} = 42.1$ kJ/mol. At 20 °C, intermolecular exchange of the OAc⁻ group for $\bf 3$ is rapid as indicated by the appearance of singlet signals due to carbonyl carbons at 175.0 ppm and methyl carbons at 18.5 ppm. At -90 °C, the rate of intermolecular exchange of OAc⁻ for $\bf 3$ in CD₂Cl₂ is slow. Hence,

at this temperature, the methyl and carbonyl carbons of OAc⁻ are observed at 17.5 ppm [with 3 J(Tl-C) = 200 Hz] and 174.7 ppm [with 2 J(Tl-C) = 204 Hz] as doublets, respectively [11].

X-ray diffraction analysis unambiguously confirms that **3** and **4** have a chelating bidentate OAc $^-$ ligand in the solid state. The ^{13}C NMR chemical shifts were shown to be a useful tool for diagnosing the nature of acetate ligands, whether unidentate or bidentate in diamagnetic complexes. Unidentate acetate ligands were located at 20.5 \pm 0.2 and 168.2 \pm 1.7 ppm and bidentate acetate ligands at 18.0 \pm 0.7 and 175.2 \pm 1.6 ppm [13]. The methyl and carbonyl chemical shifts of the acetate group in **3** (or **4**) at 20 °C in CDCl₃ are separately located at 18.5 (or 18.9) and 175.0 (or 176.4) ppm confirming that the acetate is chelating bidentately and is coordinated to the thallium (or cadmium) atom in **3** (or **4**) in the solution phase.

In conclusion, we have investigated two new, diamagnetic and mononuclear porphyrin complexes, namely, a thallium(III) complex $\mathbf{3}\cdot 0.5H_2O$ and a cadmium(II) complex $\mathbf{4}\cdot CH_2CI_2$ and their X-ray structures are established. In $\mathbf{3}$, the N-H bond of the o-chlorobenzamido ligand is cleaved and the o-chlorobenzamido nitrogen participates in bonding to the thallium ion. Complex $\mathbf{3}$ is a bridged metalloporphyrins with a metal-N-N linkage. In $\mathbf{4}$, the (o-Cl)BA substituent is left intact and the cadmium(II) ion is coordinated to the four nitrogens [N(1)-N(4)] of the macrocycle core. Compound $\mathbf{4}$ is a cadmium(II) N-substituted-N-aminoporphyrin complex.

Acknowledgments

The financial support from the National Research Council of the ROC under Grant NSC 98-2113-M-005-005 is gratefully acknowledged. We thank Dr. S. Elango for helpful discussions.

Appendix A. Supplementary material

CCDC 695921 (for $3.0.5H_2O$) and 695922 ($4.CH_2Cl_2$) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.inoche.2010.01.022.

References

- [1] C.Y. Chen, H.Y. Hsieh, J.H. Chen, S.S. Wang, J.Y. Tung, L.P. Hwang, Polyhedron 26 (2007) 4602.
- [2] R.G. Pearson, Inorg. Chem. 27 (1988) 734.
- [3] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, fourth ed., Harper Collins College Publishers, New York, 1993. pp. 114, 292.
- [4] Y. Zhang, Inorg. Chem. 21 (1982) 3886.
- [5] Y. Zhang, Inorg. Chem. 21 (1982) 3889.
- [6] F.A. Yang, J.H. Chen, H.Y. Hsieh, S. Elango, L.P. Hwang, Inorg. Chem. 42 (2003) 4603.
- [7] J.Y. Tung, J.H. Chen, Polyhedron 26 (2007) 589.
- [8] M. Ravikanth, T.K. Chandrashekar, Struct. Bond. 82 (1995) 105.
- [9] R.S. Drago, Physical Methods for Chemists, second ed., Saunder College Publishing, New York, 1992. pp. 290–295.
- [10] J.Y. Tung, J.I. Jang, C.C. Lin, J.H. Chen, L.P. Hwang, Inorg. Chem. 39 (2000) 1106.
- [11] F.A. Yang, K.Y. Cho, J.H. Chen, S.S. Wang, J.Y. Tung, H.Y. Hsieh, F.L. Liao, G.H. Lee, L.P. Hwang, S. Elango, Polyhedron 25 (2006) 2207.
- [12] J.P. Jenson, E.L. Muetteries, in: L.M. Jackman, F.A. Cotton (Eds.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1975, pp. 299–304.
- [13] S.J. Lin, T.N. Hong, J.Y. Tung, J.H. Chen, Inorg. Chem. 36 (1997) 3886.