Allez plus loin en planification

BE

Planification Gl313 - Optimisation

Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

Introduction

Représentations

Planification dans l'espace d'état

Allez plus loin en planification

ΒE

Introduction

Problèmes de planification Modèles de planification

Représentations

Planification dans l'espace d'état

Allez plus loin en planification

ΒE

				200				+ □ > ←団 > ←분 > - 분	୬୧୯
SEM GI313 - P	lanification				SEM Gl313 - Planification				
Introduction •000000000	Représentations 000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE 000	Introduction 0•00000000	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000
Dunhièmen de u	lanification				Dechlèmes de al	anification			

Qu'est-ce que planifier ?

- ▶ Planning : Analyse, vérification d'un plan
 - on connaît les actions, leur organisation, leurs ressources
 - on vérifie les contraintes, on obtient les chemins critiques
 - $\ensuremath{\mathsf{ex}}$: élaboration interactive de plans, réseaux PERT...

Qu'est-ce que planifier ?

- ▶ Ordonnancement : Organisation d'un plan
 - on connaît les actions à faire
 - on cherche leur organisation, les ressources à allouer
 - ex: ordonnancement, gestion de ressources...

SEM GI313 - PI	anification				SEM Gl313 - Planification					
Introduction Représentations Planification dans l'espace d'état Allez plus loin en planification BE Introduction Représentations ○○●○○○○○○○ ○○○○○○○○○○○ ○○○○○○○○○○○○○						Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000		
Problèmes de pl	Problèmes de planification				Problèmes de planification					

Qu'est-ce que planifier ?

- ▶ Planification : Synthèse d'un plan
 - on connaît les buts à satisfaire, les actions possibles
 - on cherche leur les actions à faire pour atteindre ces buts, leur organisation, les ressources à allouer
 - $\mbox{\rm ex}$: gestion de l'activité d'un système autonome. . .

Problèmes de planification

- ► Ingrédients :
 - ► Modèle de l'environnement
 - Modèles des actions possibles
 - Spécification des objectifs (buts, critères)
 - Données sensorielles sur l'état initial et l'état courant (si utilisation en ligne)
- Diverses formes selon :
 - Le type de tâches à planifier
 - La nature des modèles

SEM Gl313 - Planification SEM Gl313 - Planification

Modèle de la planification

Système Etat-Transition $\Sigma = (S, A, E, \gamma)$

- S ensemble dénombrable d'états
- A ensemble fini de symboles d'actions
- E ensemble fini de symboles d'événements
- γ fonction de transition d'états

$$\gamma: \mathcal{S} \times (\mathcal{A} \cup \mathcal{E}) \rightarrow 2^{\mathcal{S}}$$

- ▶ si $u \in E$, $\gamma(s, u)$ transitions contingentes
- ▶ si $u \in A$, $\gamma(s, u)$ transitions contrôlées

Problème de planification

Quelles actions appliquer dans quels états en vue de réaliser des objectifs ?

D	escript	ion de Σ
But, Etat initial $ ightarrow$	Planifi	cateur
	,	Plan

Modèle de la planification

SEM GI313 - PI	anification			SEM GI313 - Planification							
Introduction	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE 000	Introduction	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE 000		
Modèles de plan	Modèles de planification					Modèles de planification					

Modèle de la planification

Modèle de la planification

- ► Plan :
- $\pi: \mathcal{S}' \subset \mathcal{S} \to \mathcal{A}$
- ▶ Observations :
 - ► O ensemble fini d'observations
 - ▶ Fonction d'observation $\eta: S \rightarrow O$
- ▶ Plan :
- $\pi: \mathcal{O}' \subset \mathcal{O} \to \mathcal{A}$

SEM GI313 - PI	anification				SEM GI313 - Planification					
Introduction	Représentations 000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE ooo	Introduction	Représentations 000000000	Planification dans l'espace d'état	Allez plus loin en planification	BE ooo	
Modèles de plan	Modèles de planification				Modèles de planification					

Modèle de la planification

- ▶ Hypothèses classiques :
 - 1. Σ fini (monde fermé)

 - 2. Σ observable $(\eta = I)$ 3. Σ déterministe $(|\gamma(s, u) \le 1)$
 - 4. Σ statique
 - 5. Buts = états explicites
 - 6. Temps implicite
 - 7. Traitement hors-ligne

Modèle de la planification

- ► Hypothèses classiques :
 - 1. Σ fini (monde fermé)
 - 2. Σ observable $(\eta = I)$
 - 3. Σ déterministe $(|\gamma(s, u) \leq 1)$
 - 4. Σ statique
 - 5. Buts = états explicites
 - 6. Temps implicite
 - 7. Traitement hors-ligne
- ▶ $2+3 \Rightarrow$ contrôle en boucle ouverte

Formes de planification

- ▶ Planification de mouvements
 - Trajectoires géométriques en 3D, lois de commande le long des trajectoires
- ▶ Planification de la perception
 - ▶ Quelle information est requise ?
 - ▶ Quand ? Où ? Comment ? Pour quoi ?
- ▶ Planification de tâches de manipulation
 - ▶ Primitives sensori-motrices, utilisant les forces, la vision. . .

Formes de planification

- ► Planification de la communication
 - ► Interaction homme-robot
 - Coopération multi-robots
 - Quelles requêtes, comment, quels retours ?
- ► Planification de tâches générique
 - ► Modèles et algorithmes généraux à plusieurs types de problèmes

			4□ > 4Ø > 4≅ > 4ë > 3	প্র				←□ > ←□ > ←□ > ←□ > ←□ > ←□ > ←□ > ←□	200	
SEM Gl313 - Planification						SEM Gl313 - Planification				
Introduction 0000000000	Représentations	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000	Introduction 0000000000	Représentations •00000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000	

Introduction

Représentations

Planification de tâches Représentation graphique Langage de représentation

Planification dans l'espace d'état

Allez plus loin en planification

BE

Planification de tâches

- ▶ Définition :
 - ► Synthèse d'une trajectoire abstraite dans un espace de recherche
 - ▶ Pour choisir et organiser des actions en prédisant leurs effets
 - ► En vue de satisfaire un but ou un critère
- ► Ingrédients :
 - ▶ Description des états du monde et des buts
 - Description des actions

SEM GI313 - PI	anification				SEM Gl313 - Planification					
Introduction 000000000	Représentations 0•0000000	Planification dans l'espace d'état	Allez plus loin en planification	BE 000	Introduction 000000000	Représentations	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000	
Planification de	Planification de tâches					Représentation graphique				

Planification de tâches

- Système Etat-Transition $\Sigma = (S, A, \gamma)$
 - S ensemble fini d'états
 - A ensemble fini de symboles d'actions
 - γ fonction de transition d'états

 $\gamma: \mathcal{S} \times \mathcal{A} \to \mathcal{A}$

Représentation graphique

- ► Exemple des robots-dockers
 - N sites
 - ► K conteneurs à déplacer entre ces sites
 - P piles réparties sur ces sites
 - ► R robots pouvant acheminer ces conteneurs
- ► Actions :
 - ▶ move un robot r se déplace de l à l'
 - \blacktriangleright load un robot r charge un conteneur k porté par un bras c
 - ► unload
 - $\blacktriangleright \ \ \, \mathsf{take} \,\,\mathsf{un} \,\,\mathsf{bras}\,\,c\,\,\mathsf{saisit}\,\,\mathsf{un}\,\,\mathsf{conteneur}\,\,k\,\,\mathsf{sur}\,\,\mathsf{le}\,\,\mathsf{sommet}\,\,\mathsf{d'une}\,\,\mathsf{pile}\,\,p$
 - ► put

SEM GI313 - Planification

SEM GI313 - Planification

000
BE

Représentation graphique

- Complexité
 - Nombre d'états possibles : $\mathcal{O}(n^r p^k k!)$
 - n = 5, p = 15, r = 3, $k = 100 \Rightarrow \sim 10^{277}$ états!!
- ightharpoonup Impossible de construire Σ explicitement (et donc d'appliquer des techniques de recherche de chemin dans des graphes)

Langage de représentation

- Langage de représentation des états et des actions
- ► Hypothèses classiques :
 - ▶ transitions instantannées, pas de durée, pas de parallélisme
 - ▶ monde statique, pas de transitions contingentes
 - connaissance complète
 - actions déterministes
- ► Formule : conjonction de littéraux
- Hypothèse du monde clos : ce qui n'est pas explicitement affirmé est faux

			4 □ > 4 Ø > 4 € > 4 € > €	200				4 D > 4 B > 4 B > 3	200
SEM GI313 - P	lanification				SEM GI313 - P	anification			
Introduction 0000000000	Représentations	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE 000	Introduction 0000000000	Représentations	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE 000
Langage de rep	angage de représentation				Langage de ren	résentation			

Langage de représentation

```
(define (domain dock-worker-robot)
   (:requirements :strips :typing)
   (:types
   location ; several connected locations
   pile ; attached to location holds a pallet and a stack of containers
   robot ; holds at most 1 container, only 1 robot per location
   crane ; belongs to a location to pickup containres
   container

}
(spredicates
   (adjacent ?l1 ?l2 - location) ; l1 is adjacent to l2
   (attached ?p - pile ?l - location) ; p attached to l
   (belong ?c - crane ?l - location) ; r is at
   (occupied ?l - location) ; r is at
   (occupied ?l - location) ; there is a robot at l
   (loaded ?r - robot ?k - container) ; r loaded with container k
   (unloaded ?r - robot) ; r is empty
   (holding ?c - crane ?k - container) ; c is holding k
   (empty ?c - crane) ; c is empty
   (in ?k - container ?p - pile) ; k is within p
   (top ?k - container ?p - pile) ; k is on top of p
   (on ?k1 ?k2 - container) ; k1 is on k2
}
```

Langage de représentation

```
(:action move :parameters (?r - robot ?from ?to - location) :precondition (and (adjacent ?from ?to ) (at ?r ?from) (not (occupied ?to))) : effect (and (at ?r ?to) (not (occupied ?from)) (occupied ?to) (not (at ?r ?from)))) (: action load :parameters (?c - crane ?k - container ?r - robot) :vars (?! - location) :precondition (and (at ?r ?l) (belong ?c ?l) (holding ?c ?k) (unloaded ?r)) :effect (and (loaded ?r ?k) (not (unloaded ?r)) (empty ?c) (not (holding ?c ?k)))) (: action unload :parameters (?c - crane ?k - container ?r - robot) :vars (?! - location) :precondition (and (at ?r ?l) (belong ?c ?l) (loaded ?r ?k) (empty ?c)) :effect (and (unloaded ?r) (holding ?c ?k) (not (loaded ?r ?k)) (not (empty ?c))))
```

	A M N A DE N A E N A E N E	4)4(4				4 H Y 4 DY Y 4 E Y 4 E Y	=	4) d (4
			SEM GI313 - F	Planification				
Pana.	Aller of or father on of outfloods	DE	Industrial condition	D	Disciplination date Process disease	Allen older leter on older (Const.)		DE

Langage de représentation

SEM GI313 - Planification

```
(: action take
:parameters (?c - crane ?k - container ?p - pile)
:vars (?l - location ?else container)
:precondition (and (belong ?c ?l) (attached ?p ?l) (empty ?c)
(in ?k ?p) (top ?k ?p) (on ?k ?else))
:effect (and (holding ?c ?k) (top ?else ?p) (not (in ?k ?p))
(not (top ?k ?p)) (not (on ?k ?else)) (not (empty ?c))))
(: action put
:parameters (?c - crane ?k - container ?p - pile)
:vars (?l - location ?else container)
:precondition (and (belong ?c ?l) (attached ?p ?l)
(holding ?c ?k) (top ?else ?p))
:effect (and (in ?k ?p) (top ?k ?p) (on ?k ?else)
(not (top ?else ?p)) (not (holding ?c ?k)) (empty ?c)))
```

Langage de représentation

Langage de représentation

Langage de représentation

- ▶ forall (?x type) : boucle sur les éléments d'un type
- ▶ when cond effect : applique l'effet lorsque la condition est vraie

Introduction

Représentations

Planification dans l'espace d'état

Espace d'état Recherche en avant Heuristiques Recherche en arrière

Allez plus loin en planification

BE

			10/10//12/12/ 2	4)4(4				1011011121121 2	4) 4 (4		
SEM GI313 - P	lanification				SEM GI313 - Planification						
Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état	Allez plus loin en planification 000000	BE 000	Introduction 0000000000	Représentations 000000000	Planification dans l'espace d'état	Allez plus loin en planification	BE 000		
Espace d'état					Recherche en a	vant					

Transitions

- ► Calcul progressif : result(a, s)
 - $s \models precond(a) \Rightarrow s' = (s effets^{-}(a)) \cup effets^{+}(a)$
- ▶ Calcul inverse : regress(γ , a)
 - $\gamma \cap effets^-(a) = \emptyset \Rightarrow regress = precond(a) \cup (\gamma effets^+(a))$

Forward

```
Forward(S, S_g, path)

if s \models S_g then
    return path

else
    applicables \leftarrow \{a \in A / s \models precond(a)\}

if applicables = \emptyset then
    return FAIL

else
    Choose a \in applicables
    return Forward(result(a, s), S_g, path.a)

end if
end if
```

4	Þ	∢ 🗗	F -	(<u>=</u>	•	4	ŧ	١	臺	200

SEM Gl313 - Planification			SEM GI313 - Planification						
Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état ○●•○○○○○	Allez plus loin en planification	BE ooo	Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état ○00•00○○○	Allez plus loin en planification	BE 000
Recherche en avant			Recherche en avant						

Forward

- ▶ Forward(s_0, S_g, \emptyset)
- ► Algorithme simple
- Algorithme complet
- ▶ Méthode Choose permet de guider la recherche :
 - en largeur (Breath-First Search)
 - en profondeur (Depth-First Search)
 - en prenant en compte le coût des actions (Best-First Search)
 - ▶ guidée par une heuristique

Δ*

SEM GI313 - Planification

```
Require: G = (S, E) le graphe implicite, s_0 état initial, S_g but \forall s \in S, g(s) \leftarrow \infty, p(s) \leftarrow s c(s_0) \leftarrow 0, \mathcal{O} \leftarrow \{s_0\} while \mathcal{O} \neq \emptyset do x \leftarrow argmax_{argmin}g(i) + h(i)g(i) if x \models S_g then return SUCCESS end if \mathcal{O} \leftarrow \mathcal{O}/\{x\} for all y \in S/(x,y) \in E do if g(y) > g(x) + k(x,y) then g(y) \leftarrow g(x) + k(x,y) p(y) \leftarrow x \mathcal{O} \leftarrow \mathcal{O} \cup \{y\} end if end for end while
```

SEM GI313 - Planification

Introduction Représentations Occoologo 000000000 Planification dans l'espace d'état Allez plus loin en planification BE Introduction Représentations Occoologo 000000000 Planification dans l'espace d'état Allez plus loin en planification BO 000000000 0000000000 0000000000 000000	Backereke en eu	ant		Dackaraka an a	t		
							BE 000

 A^*

► Si *G* est fini, l'algorithme termine

► Si h est minorante, l'algorithme est complet et optimal

$$h$$
 minorante $\Leftrightarrow \forall s \in S, \ h(s) \leq g(s)$

► Complexité :

 A^*

► h minorante : $\mathcal{O}(N^2)$ ► h monotone : $\mathcal{O}(N)$

$$h$$
 monotone $\Leftrightarrow \forall (u, v) \in E, \ h(u) - h(v) \leq k(u, v)$

SEM GI313 - PI	lanification				SEM GI313 - P	anification			
Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état	Allez plus loin en planification 000000	BE 000	Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état	Allez plus loin en planification 000000	BE 000
Heuristiques					Heuristiques				

Heuristiques

- ▶ Relaxation : on simplifie le problème pour estimer les coûts
- ▶ Compromis entre temps de calcul et qualité de l'heuristique
- ► Voyageur de commerce :
 - $h_1 = d(r,s)$: distance à la ville suivante
 - $h_2 = d(r, s) + \sum_i \min_x d(x, s_i)$: on minimise les distances aux villes restantes
 - $h_3 = d(r,s) + \text{coût d'un arbre de recouvrement minimal}$

Heuristiques

Relaxation

- ▶ Ne prendre en compte que les *effets*+
 - admissible, mais difficile à calculer
- ► Supporser l'indépendance des sous-buts

	< □ >	450 +	$\leftarrow \Xi \Rightarrow$	$\leftarrow \Xi \rightarrow$	重	200
--	-------	-------	------------------------------	------------------------------	---	-----

SEM GI313 - PI	SEM Gl313 - Planification				SEM GI313 - Planification					
Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état	Allez plus loin en planification	BE 000	Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état	Allez plus loin en planification	BE 000	
Heuristiques			Recherche en arrière							

Heuristiques

Relaxation

ightharpoonup Coût pour réaliser p à partir de s :

$$h(p,s) = \begin{cases} O & \text{si } s \models p \\ \min_a (1 + h(precond(a), s)) & \text{sinon} \end{cases}$$

- ► Heuristiques possibles :
 - Somme des coûts des litéraux

$$h(s) = \sum_{p \in S_g} h(p, s)$$

► Litéral le plus coûteux

$$h(s) = \max_{p \in S_g} h(p, s)$$

$Backward(s_0, \gamma, path)$

Backward

```
if s_0 \models \gamma then return path else Choose g \in \gamma relevant \leftarrow \{a \in A \mid effects(a) \models g\} if relevant = \emptyset then return FAIL else Choose a \in relevant return Forward(s_0, regress(\gamma, a), a.path) end if end if
```

SEM Gl313 - Planification SEM Gl313 - Planification

Introduction

Représentations

Planification dans l'espace d'état

Allez plus loin en planification

Planification dans l'espace des plans Planification disjonctive Planification hiérarchique Représentation du temps

ΒE

Planification dans l'espace des plans

- L'espace de recherche n'est plus l'espace d'état mais l'espace des plans
- ▶ L'algorithme passe d'un plan à un autre en essayant de l'améliorer
- ▶ Au départ, seulement l'état initial et les buts sont dans le plan
- ▶ Le principe est de résoudre les défauts du plan en insérant des actions
- ► Moindre engagement (pas d'action inutile)
- ▶ PSP, POP

			4□ > 4₫ > 4 ≧ > 4 ≧ > - ≧	200				4 D > 4 B > 4 B > B	প্র
SEM GI313 - P	anification				SEM GI313 - P	lanification			
Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification ○●○○○○	BE 000	Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification ○○●○○○	BE 000
Planification dis	ionctive				Planification hi	rarchique			

Planification disjonctive

- Disjonction pas gérable par les méthodes précédentes
 - ▶ traitent un état/un but après l'autre
- ► GraphPlan
 - ► Accessibilité des litéraux buts
 - Phase de construction : élaboration descendante d'un P-graphe
 Phase d'extraction : recherche ascendant à partir des buts

Planification hiérarchique

- ► Structuration hiérarchique des actions
- ▶ Fournit une heuristique pour la recherche
- ► PSP, HTN, UMCP

SEM GI313 - PI	SEM Gl313 - Planification					SEM Gl313 - Planification				
Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000	Introduction 000000000	Représentations 000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE 000	
Représentation du temps				Représentation du temps						

Traitement du temps

- Le temps est une ressource particulière
 - écoulement indépendant de l'action
 - disponible pour tous (parallélisme)
- Le temps est structuré par une relation transitive et asymétrique
 - il est irréversible
 - ▶ il ordonne la causalité

Représentation du temps

- ► Représentation géométrique
- ► Représentation logique
 - ▶ argument d'un prédicat, en spécifiant les changements d'état
 - prédicats spécifiques pour les relations temporelles (algèbre
 - logiques temporisés (avec des valeurs numériques)

Planification temporelle

- ▶ Programmation par contrainte avec des contraintes temporelles
- ▶ Planification dans l'espace des plans, plans temporels
 - ▶ IxTeT, RAX, parcPLAN

Introduction

Représentations

Planification dans l'espace d'état

Allez plus loin en planification

BE

SEM GI313 - Planification

Mission Sujet ARD Sujet Planification

			1071077127127 2	4)4(4				10110111212	*) Q (*
SEM GI313 - P	lanification				SEM GI313 - P	lanification			
Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification 000000	BE ●○○	Introduction 0000000000	Représentations 0000000000	Planification dans l'espace d'état 0000000000	Allez plus loin en planification	BE ○●○
Mission					Suiet ARD				

Mission

- ► Mission de recherche et d'extinction d'incendie
- ▶ Zone de missions découpée en sous-zones
- Exploration des sous-zones à la recherche d'un feu
- Extinction d'un feu si trouvé
- ▶ Retour à la base si pas de feu ou plus de cartouche d'extinction

Sujet Application Robotique Dronique

- ▶ Développer l'architecture embarquée pour réaliser cette mission
- Environnement de développement en C++ à base de composants
- ► Composant de navigation (existants)
- ► Composant de détection (blob rouge sur image / à développer)
- ► Composant de cartographie (à développer)
- ► Composant de supervision (à développer)

SEM Gl313 - Planification Introduction Représentations 000000000 Planification dans l'espace d'état 000000000 Planification BE 0000000000 Planification 000000000 Planification Description Descripti

Sujet de planification

- ▶ Quelles actions réaliser pour accomplir la mission ?
- ▶ Planification des actions, qui seront intégrées dans le superviseur
- Algorithme FF (Fast Forward)
- 1. Modélisation le domaine de planification (prédicats, actions)
- 2. Modéliser un premier problème (en faisant des hypothèses sur l'environnement)
- 3. Générer un plan
- 4. Proposer une façon de rendre ce plan robuste aux défauts des hypothèses posées

→□ > ←回 > ← 豆 > ←豆 > −豆 − 夕 へ (