High-Throughput Sequencing Course Introduction

Biostatistics and Bioinformatics

Summer 2018

FROM RAW UNALIGNED READS

```
OWZATOOLGCOX: -/CURRENT/INts-course-stat/CURRENT/Sides 89x24

@SRR546799.1 HWI-1KL120.92:COF56ACXX:1:1101:1203:2232 Length=50

CATGGCTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGAAC
+SRR546799.1 HWI-1KL120.92:COF56ACXX:1:1101:1203:2232 Length=50

B@CFFFEFHHHHHFGHIGHHIJHIIIJJIHBFHG=FFCEIIFAACECDE

@SRR546799.2 HWI-1KL120.92:COF56ACXX:1:1101:11203:2232 Length=50

CTGGTGAACTCATCTCCGGGGGTAGAGCATGTTGGGCAAGGGGTCAT
+SRR546799.2 HWI-1KL120.92:COF56ACXX:1:1101:1152:2242 Length=50

G=7DBDBDFHHDDGHGHGTGGG77BFHIFIHIIIGHHFF=?ADDB-A

G@RR546799.3 HWI-1KL120.92:COF56ACXX:1:1101:1429:2119 length=50

ACCACGTGTCCCGCCCTACTCATCAGCAGCTCACAGCATGTGCATTTTTGTG
+SRR546799.3 HWI-1KL120.92:COF56ACXX:1:1101:1429:2119 length=50

@@GFFFDFHHHH:EGTHGIEHEGHHHEHFHCFGCGGFHGHHIHIIIIII

GSRR546799.4 HWI-1KL120.92:COF56ACXX:1:1101:1376:2136 length=50

GTTAATCGGGCAGGGTGAGTCGACCCCTAAGCGAGGCCGAAAGCGTA

+SRR546799.4 HWI-1KL120.92:COF56ACXX:1:1101:1376:2136 length=50

G?@FFFFFHGHHHHJJ9CBGGHIIIJJJFGIGIIIBGHHFFDDDDDDD;?

@@GRF546799.5 HWI-1KL120.92:COF56ACXX:1:1101:1417:2140 length=50

CTGGGTTGTTTCCCTCTTCACGACGAGAGTTAGCACCCGCGTGTGTCTC

+SRR546799.5 HWI-1KL120.92:COF56ACXX:1:1101:1417:2140 length=50

B?BFFFFDFHHHGJFHHGIGJFGHJGBGHIIJJGFHGIGGIHHEDDECEE

GSRR546799.6 HWI-1KL120.92:COF56ACXX:1:1101:1320:2224 length=50

B?BFFFFDFHHHGJFHHGIGJFGHJGBGHIIJGFHGIGGIHHEDDECEE

GSRR546799.6 HWI-1KL120.92:COF56ACXX:1:1101:1320:2224 length=50

CCCAGAGCCTGAATCAGTGTGTGTTTAGTGGAAAGGCGC

+SRR546799.6 HWI-1KL120.92:COF56ACXX:1:1101:1320:2224 length=50

CCCAGAGCCTGAATCAGTGTGTGTTTAGTGGAAAGGCGC

+SRR546799.6 HWI-1KL120.92:COF56ACXX:1:1101:1320:2224 length=50
```

To Aligned Reads

To Counts

```
| Overand | Goods | Current | First | Course | First | Goods | Current | First | Course | First | Goods | Current | First | Goods | Current | First | Goods | First | Goods |
```

DIFFERENTIAL EXPRESSION

```
| Owzar001@cox: -/CURRENT/hts-course-stat/CURRENT/Sildes | Owzar001@cox: -/CURRENT/Hts-course-stat/CURRENT/
```

DIFFERENTIAL EXPRESSION

CLASS DISCOVERY

PCR/MICROARRAY VERSUS RNA-SEQ: COMMON OBJECTIVES AND CHALLENGES

- ► Hypothesis testing: Is the mRNA abundance related to a phenotype, or changed in response to treatment or over time
- ► Effect size estimation: How to quantify the effect size and then how to estimate it from data
- ► Classification: Predict an outcome on the basis of baseline RNA levels from multiple genes
- ► Class Discovery: Discover subsets on the basis of baseline levels or changes in the levels of multiple genes
- ▶ Multiplicity: how to deal with testing not a single marker but thousands if not millions of markers (P < 0.05 makes no sense here or anywhere)

RNA-SEQ: A TOOL FOR MEASURING ABUNDANCE OF RNA FROM CELLS

- ► The data observed are not gene expressions (quantified on a continuum)
- ▶ We observe the number of reads mapped to each gene
- ► These are counts
- ► Microarrays: consider distributions and regression models for quantitative traits (often assume that these are normally distributed)
- RNA-Seq: consider distributions and regression models for counts

MRNA ABUNDANCE, GENE EXPRESSIONS AND READ COUNTS

- ► Suppose that Y is the true abundance for a gene of interest
- \hat{Y} : the "expression" measured by microarray transcript (e.g., oligo nucleotide)
- \blacktriangleright K: The number of RNA-Seq reads mapped to the gene
- ► Questions:
 - ▶ Is \hat{Y} close to Y (the truth)?
 - ▶ Is K close to Y (the truth)?
 - ightharpoonup Should K even be compared with Y?

RNA-SEQ: TWO APPROACHES

- ► Two-stage method:
 - Convert counts to "Expression" (e.g., RPKM, FPKM, TPM)
 - ▶ plug these into a standard tests or regressions models
 - ▶ In essence: Force things into a microarray problem
- ► One-stage method:
 - $\,\blacktriangleright\,$ Relate the counts directly to the phenotype
 - ► Use distributions and regression models for counts

EMPHASIS, FOCUS, APPROACH AND TOPICS

- ► Concepts rather than on mechanics (e.g., which software or method to use to fit a regression model)
- ► How statistical concepts are misunderstood or misinterpreted
- ▶ How and why things could go wrong
- ▶ Use simulation as a tool to illustrate these issues
- ► Topics:
 - ► Statistical Inference (testing and estimation)
 - ► Supervised learning (classification and regression)
 - ► Unsupervised learning (class discovery)
 - ► Multiple testing
 - ► Pathway/Gene-Set Analysis
 - $\,\blacktriangleright\,$ Meta-Analysis
 - ▶ Distributions and regression models for counts

DECISION VERSUS TRUTH

- ► Any statistical method will yield a decision
- ► Whether that conclusion of the decision is close to the truth or even reasonable will remain unknown
- ► We have to accept that the decision may be wrong
- ► Goal: Bound the probability of a wrong decision through the use of proper statistical design and methods
- ▶ and *proper* and *measured* interpretation of the results

THE SIMULATION METHOD

- ► Simulate data from the "truth" in silico using computers
- ► Apply your proposed statistical method to the simulated (synthetic) data
- ► Repeatedly compare the decision at which you arrive (by virtue of the chosen statistical method) to the truth (under your control)

THE SIMULATION METHOD: NOISE DISCOVERY

- ► Simulate data from noise
- ► Example: simulate treated and untreated samples from the same distribution
- ► Assess the proportion of times you arrive at the wrong conclusion
- ▶ Wrong conclusion: Conclude that there a treatment effect
- ▶ Important tool for identifying self-fulfilling prophecies.

ON STATISTICS, CONCLUSIONS AND SOLUTIONS

"No isolated experiment, however significant in itself, can suffice for the experimental demonstration of any natural phenomenon; for the 'one chance in a million' will undoubtedly occur, with no less and no more than its appropriate frequency, however surprised we may be that it should occur to us."

Ronald Aylmer Fisher (The Design of Experiments (1935), 16)

"Doing statistics is like doing crosswords except that one cannot know for sure whether one has found the solution."

John Wilder Tukey (Annals of Statistics, 2002:30(6))