Curso de Introdução Prática ao Simulador de Redes NS2

Instrutor

Eduardo da Silva

Monitores

Elisa Mannes

Fernando H. Gielow

Urlan S. de Barros

Coordenador

Prof. Aldri L. dos Santos

Roteiro

Introdução

- Conceitos de simulação
- O simulador Network Simulator
- Um exemplo simples de comunicação
- Um exemplo mais avançado com roteadores
- Exercícios

O que é simulação?

- "Uma gama variada de métodos e aplicações que reproduzem o comportamento de sistemas reais, usualmente utilizando-se de ferramentas computacionais" (Kelton et al., 1998)
- "Processo de elaboração de um modelo de um sistema real (ou hipotético) e a condução de experimentos com a finalidade de entender o comportamento de um sistema ou avaliar sua operação" (Shannon, 1975)

Princípio básico da simulação

- Analistas constroem modelos do sistema de interesse
- Escrevem programas desses modelos
- Utilizam um computador para inicializar o comportamento do sistema e submetê-lo a diversas políticas operacionais

"A melhor política deve ser selecionada" (Pidd, 2000)

Terminologia básica

- Sistema → agrupamento de partes
 - Operam juntas
 - Possuem um objetivo em comum

Modelo

- Representação das relações dos componentes de um sistema
- Abstração → tende a se aproximar do verdadeiro comportamento do sistema

Tipos de modelos

Introdução •0000

- Modelos Simbólicos
- Modelos Analíticos
- Modelos de Simulação

Modelo simbólico

- Símbolos gráficos (fluxogramas, DFD, Layouts etc.)
- Muito utilizado para comunicação e documentação
- Limitações:
 - Estáticos
 - Não fornece elementos quantitativos
 - Não entra no detalhe do sistema

Modelo simbólico: teoria de filas

Modelo Simbólico:

Simbologia:

Modelo analítico

- Forte modelagem matemática (Programação Linear, Teoria de Filas, etc.)
- Limitações:
 - Modelos, na grande maioria, estáticos
 - Complexidade → pode impossibilitar a busca de soluções analíticas diretas
- Vantagens:
 - Solução exata, rápida e, às vezes, ótima

Modelo de simulação

- Captura o comportamento do sistema real
- Permite a análise pela pergunta: "E se...?"
- Capaz de representar sistemas complexos de natureza dinâmica e aleatória
- Limitações:
 - Podem ser de construção difícil
 - Não há garantia do ótimo

Técnicas de simulação

Simulação não computacional

- Protótipo em túnel de vento
- Simulação de acontecimentos

Simulação computacional

- Simulação estática ou de Monte Carlo
- Simulação de sistemas contínuos
- Simulação de eventos discretos

Simulação de eventos discretos

Por que simular?

- Analisar um novo sistema antes de sua implantação
- Melhorar a operação de um sistema já existente
- Compreender melhor o funcionamento de um sistema
- Confrontar resultados
- Medir eficiências

Quando simular?

O Network Simulator 2

- Simulador de eventos discretos para redes
- Código aberto e livre
 - Disponível em www.isi.edu/nsnam/ns/
- Orientado a objetos
 - Escrito em C++/oTCL
- Um interpretador de scripts oTCL

Instalando o NS-2

- Usaremos a versão atual (ns-2.34)
- Instalação "all-in-one"
- Disponível em:
 - http://downloads.sourceforge.net/project/nsnam/ allinone/ns-allinone-2.34/ns-allinone-2.34.tar. gz?use_mirror=ufpr
 - http://www.nr2.ufpr.br/downloads/ns-allinone-2. 34.tar.gz
- Descompactar e executar "./install"
- Colocar diretórios do ns e nam no PATH


```
set ns [new Simulator]
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
  global ns nf f
  $ns flush-trace
  close $nf
  close $f
  exec nam out.nam &
  exit 0
set n0 [$ns node]
set n1 [$ns node]
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
$ns connect $udp0 $null0
$ns at 0.5 "$cbr0_start"
$ns at 4.5 "$cbr0, stop"
$ns at 5.0 "finish"
$ns run
```

set ns [new Simulator]

Gera instância do simulador

```
set nf [open out.nam w]
$ns namtrace-all $nf
set f [open out.tr w]
$ns trace-all $f
proc finish {} {
  global ns nf f
  $ns flush-trace
  close $nf
  close $f
  exec nam out.nam &
  exit 0
set n0 [$ns node]
set n1 [$ns node]
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
```

```
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize 500
$cbr0 set interval 0.005
$cbr0 attach-agent $udp0
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
$ns connect $udp0 $null0
$ns at 0.5 "$cbr0_start"
$ns at 4.5 "$cbr0_stop"
$ns at 5.0 "finish"
```

\$ns run

```
Opções para arquivos de registro
set ns [new Simulator < \dag{
                           $ns aun agent $nu $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                            Procedimento de finalização
set f [open out.tr w]
                           $cbr0 Interval 0.005
$ns trace-all $f
                           $cl attach-agent $udp0
proc finish {}
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1\
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
$ Agendamento da "finalização" set interval 0.005
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                              connect $udp0 $null0
  close $f
  exec nam out.nam &
                                 7.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1
```

1Mb 10ms DropTail

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns Criação dos nós $null0
  $ns flush-trace
  close $nf
                           $ns cor ect $udp0 $null0
  close $f
  exec nam out.nam &
                               at 0.5 "$cbr0_start"
  exit 0
                           ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1\
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                            Criação do enlace full-duplex
  $ns flush-trace
  close $nf
                           $ns cop
                                        $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns/
                                  0.5 "$cbr0_start"
  exit 0
                                at 4.5 "$cbr0_stop"
                               at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach agent $n0 $udp0
set nf [open out.nam w]
                           et cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w
                           ♣obr0 set interval 0.005
$ns tr Criação de um agente
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0, stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
$ns t Criação de outro agente 0 set interval 0.005
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set nullO [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $mat 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set Conectando dois agentes
set n1 | $ns node |
                           $ns run
$ns duplex-link $n0 $n1\
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application / Traffic / CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                               nullo [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  cle Configurando a aplicação
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns at 4.5 "$cbr0, stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out.nam &
                           $ns at 0.5 "$cbr0_start"
  exit 0
                           $ns_at_4.5 "$cbr0_stop"
                           $ns at 5.0 "finish"
set no Início e fim da transmissão
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1\
 1Mb 10ms DropTail
```

```
set udp0 [new Agent/UDP]
set ns [new Simulator]
                           $ns attach-agent $n0 $udp0
set nf [open out.nam w]
                           set cbr0 [new Application/Traffic/CBR]
$ns namtrace-all $nf
                           $cbr0 set packetSize 500
set f [open out.tr w]
                           $cbr0 set interval 0.005
$ns trace-all $f
                           $cbr0 attach-agent $udp0
proc finish {} {
                           set null0 [new Agent/Null]
  global ns nf f
                           $ns attach-agent $n1 $null0
  $ns flush-trace
  close $nf
                           $ns connect $udp0 $null0
  close $f
  exec nam out nam &
  exit Início da simulação ns at 0.5 "$cbr0 start"
                           $ns at 4.5 "$cbr0, stop"
                           $ns at 5.0 "finish"
set n0 [$ns node]
set n1 [$ns node]
                           $ns run
$ns duplex-link $n0 $n1\
 1Mb 10ms DropTail
```

via Network Animator

via Arquivo de Trace

evt	temp.	ori.	dst.	tp pct	tam	flags	fluxo	# orig.	# dest.	# seq	ID pct
r	0.529	0	1	cbr	500		0	0.0	1.0	3	3

r 0.529 0 1 cbr 500 - - - - - 0 0.0 1.0 3 3

Eventos

- +: pacote adicionado na fila
- -: pacote saiu da fila
- r: pacote recebido
- s: pacote enviado
- d: pacote descartado
- entre outros

Network Simulator (NS)

00000

Vamos exercitar?

- Executar o exemplo apresentado
- Fazer algumas alterações
 - Aumentar/diminuir o tamanho dos pacotes
 - Aumentar/diminuir a taxa de envio de dados

Um exemplo mais complicado

Criação dos nós e enlaces

Como era

```
set n0 [$ns node]
set n1 [$ns node]
$ns duplex—link $n0 $n1 1Mb 10ms DropTail
```

Como fica

```
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set r0 [$ns node]
set r1 [$ns node]
```

```
$ns duplex-link $n0 $r0 2Mb 10ms DropTail
$ns duplex-link $n1 $r0 2Mb 10ms DropTail
$ns duplex-link $n2 $r1 500Kb 30ms DropTail
$ns duplex-link $n3 $r1 500Kb 40ms DropTail
$ns duplex-link $r0 $r1 300Kb 100ms DropTail
```

Criação dos agentes de transporte

Como era

```
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
set null0 [new Agent/Null]
$ns attach-agent $n1 $null0
```

\$ns connect \$udp0 \$null0

Como fica

```
set tcp0 [new Agent/TCP]
$tcp0 set class_ 2
$tcp0 set packetSize 552
$ns attach-agent $n1 $tcp0
set sink0 [new Agent/TCPSink]
$ns attach-agent $n2 $sink0
```

\$ns connect \$tcp0 \$sink0

Criação das aplicações

Como era

```
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

$ns at 0.5 "$cbr0_start"
$ns at 4.5 "$cbr0_stop"
```

Como fica

```
set ftp0 [new Application/FTP]
$ftp0 attach—agent $tcp0

$ns at 0.5 "$ftp0_start"
$ns at 4.5 "$ftp0_stop"
```


Definindo cores para os fluxos

Adicionar ao código

\$ns color 1 Blue \$ns color 2 Red

via Network Animator

Exercícios 1

- Introduzir congestionamento no exemplo anterior, limitando o tamanho máximo da fila entre os roteadores em 15 pacotes
- Simular uma rede com 10 nós ligados em anel, usando um protocolo de roteamento dinâmico
 - Criar duas fontes de tráfego CBR. Uma entre 1 e 4 e outra entre 2 e 5
 - Simule um queda do enlace entre os nós 2 e 3 entre os tempos 3.0 e 5.0
 - Use o comando "\$ns rtproto DV" para o roteamento dinâmico

Exercícios 2

- Oriar um cenário com as seguintes características:
 - Um servidor de FTP conectado a um roteador R1 a 100Mbps e atraso de 8ms
 - 5 clientes conectados a um roteador R2 a 16Mbps e atraso de 25ms
 - Roteador R1 e R2 interligados a 56Mbps e atraso de 12ms
 - Todos os cliente solicitam dados do servidor entre os tempos 0.5 e 4.5
- Para melhorar o desempenho do cliente 1, responda:
 - Ele deveria aumentar o seu enlace para 25Mbps ou 50Mbps?
 - Seria melhor investir num enlace Fast-Path que reduzisse o atraso para 15ms?
 - Poderia ser usada uma disciplina de enfileiramento para influenciar a decisão do usuário?

OBRIGADO!

