

Retours séminaire ARISTOTE « Réinventer l'informatique »

Hadrien Grasland LAL – Orsay 07/01/2019

Donne du temps CPU à un programmeur...

Donne du temps CPU à un programmeur...

Source: « Fin de l'ère 'logique binaire-architecture Von Neumann-CMOS': tapage ou véritable 'nouveau monde'? », Alain Cappy, 12/2018

Donne du temps CPU à un programmeur...

Source: Rapport « Rebooting the IT revolution: A Call to Action », SIA et SRC, 09/2015

Au programme

- Le trio de choc binaire CMOS Von Neumann
- Pourquoi certains pensent qu'il atteint ses limites
- Des idées pour dépasser ces dernières

Fondements du matériel moderne

Au coeur d'un ordinateur actuel :

Des transistors MOS...

Source (S)

Source (S)

Metal Electrode

 ...organisés selon une architecture Von Neumann... Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Source: Wiktionnaire

 - ...pour calculer de l'algèbre de Boole

Efficacité énergétique des calculs

Coût de transfert de charge

- Transition $0-1: E = CV^2/2$
- C prop. longueur du fil
- Transistor: V > V_{thr} ~ 1V

Parameter (scale factor = a)	Classic Scaling	Current Scaling
Dimensions	I/a	I/a
Voltage	I/a	1
Current	I/a	I/a
Capacitance	I/a	>1/a
Power/Circuit	I/a ²	I/a
Power Density	1	a
Delay/Circuit	I/a	~

Source : « Les challenges posés par les systèmes de calcul pour les applications cyber-physiques cognitives », Marc Duranton, 12/2018

Rétrécir les transistors?

- Loi d'échelle pas idéale
- Coût en augmentation...

Faut-il revoir les fondamentaux?

- La technologie CMOS atteint ses limites
 - Difficile de rétrécir davantage les transistors
 - Difficile de gérer le flux de chaleur qui en résulte
- Von Neumann ne l'exploite pas très efficacement
 - Séparation données-calcul → fils longs → dissipation
- Les évolutions itératives sont peu convaincantes
 - Rien de comparable au transistor CMOS à l'horizon
 - Pas de remplaçant à la charge électrique non plus

Approches plus révolutionnaires

- Spécialiser le matériel
- Renoncer au déterminisme
- Rapprocher le calcul des données
- Améliorer la complexité algorithmique

Pourquoi spécialiser?

Utile même dans le cadre Von Neumann

Type of device	Energy / Operation	
CPU	1690 pJ	
GPU	140 pJ	
Fixed function	10 pJ	

Google's TPU2: training and inference in a **180 teraflops**₁₆ board (over 200W per TPU2 chip according to the size of the heat sink)

Source : « Les challenges posés par les systèmes de calcul pour les applications cyber-physiques cognitives », Marc Duranton, 12/2018

Nécessaire pour le dépasser

- Calcul dans les capteurs
- Fonctions optiques
- Approches bayésiennes
- Circuits neuromorphiques
- Optim. & info. quantique

Calcul dans les capteurs

Communiquer coûte cher? Traitons à la source!

Source : « Les challenges posés par les systèmes de calcul pour les applications cyber-physiques cognitives », Marc Duranton, 12/2018

Source : « Bayes, de la cellule à la machine », Pierre Bessière, 12/2018

- Une idée bien connue de la physique des 2 infinis
 - *Trigger*, traitement de données *online*, satellites...

Fonctions optiques

- · Parfois, l'analogique va plus vite que le numérique
 - $FFT = O(N \times log(N))$ ops vs Fourier optique = O(1) ops
- Ici, on fait de la compression par diffusion...

Source : « Utiliser la lumière pour éclairer l'avenir de l'intelligence artificielle », Igor Carron, 12/2018

...pour réduire l'info dans un réseau de neurones

Approche bayésienne

- De nombreux calculs sont d'ordre statistique
- Proposition : Matériel pour le calcul probabiliste

Parlons biomimétisme

- « Réseau de neurones » ? Une imposture !
 - Le cerveau n'est pas une pile de régressions logistiques...

Source: « Les challenges posés par les systèmes de calcul pour les applications cyber-physiques cognitives », Marc Duranton, 12/2018

Circuits neuromorphiques / bio-inspirés

Certains tentent donc de mieux approximer

Au niveau du neurone...

Source : « Les challenges posés par les systèmes de calcul pour les applications cyber-physiques cognitives »,
Marc Duranton. 12/2018

...ou de la structure globale

Source: « Vers une IA organique intégrée », Patrick Pirim, 12/2018

Calculs quantiques

- Il existe différents types d'ordinateurs quantiques
- Recuit quantique ≈ ASIC de recuit simulé
 - Réseau Ising artificiel + champ magnétique + effet tunnel
 - Un algo inspiré par la physique qui revient aux sources...
- Logique quantique ≈ Algèbre de Boole généralisée
 - Applications nombreuses (pour du post-Von Neumann)
 - Mais beaucoup plus difficile à réaliser...

Bases de logique quantique

- En physique, un bit = un système à deux niveaux
- Leurs propriétés quantiques sont étonnantes
 - Superposition → « 2 états simultanés », mesure aléatoire
 - Intrication \rightarrow Proba({01, 10}) = 1/2, Proba({00, 11}) = 0
 - Mesure projective → Manipuler un bit influence un autre
- Une partie de la logique fonctionne en quantique
 - Opérations réversibles : Hadamard, CNOT...
 - ...mais ni copie d'état, ni instructions de contrôle!

Pourquoi c'est intéressant

• Meilleure complexité algo. sur certains problèmes

- Chimie quantique
- Problèmes d'optimisation
- Factorisation d'entiers

Source: « Quantum Computing with superconducting qubits: Applications in Chemistry », I. Tavernelli, 12/2018

• Lié à la possibilité d'explorer de nombreux états

- On parle parfois de « parallélisme quantique »
- L'exploiter nécessite des algorithmes adaptés!

Pourquoi c'est difficile

• Capacités dépendant du nombre de bits intriqués

- ~60 qubits: On ne sait plus simuler sur un ordi classique
- ~200 qubits : Simulation de molécules intéressantes
- ~2000 qubits: La cryptographie a du soucis à se faire

Et ça, c'est sans compter les erreurs...

- Un état quantique est très fragile (effets de décohérence)
- Correction Steane: 7x qubits, corrige erreur HW ~ 0,01 %
- Surface codes : ~1000x* qubits, corrige erreur HW ~ 1 %

Etat de l'art du matériel

	Google, Santa Barbara Superconductors	TU Delft Silicon	Blatt group, Innsbruck Trapped ions	O'Brien group, Bristol Photon
Nb of entangled qubits	20	2	20	10
Size	(100μm)²	(100nm) ²	(1mm) ²	(1mm) ²
Fidelity	~99.9%	~98%	99.99%	50% (measurement /generation) 98% (one, two-qubit gate)
Speed	100 ns	1 μs	100 μs	1 ms

Source: « Vers un traitement de l'information quantique à grande échelle basée sur les spins électroniques dans les semi-conducteurs », Tristan Meunier, 12/2018

Perspectives à court terme

• Il existe des algorithmes qui tolèrent les erreurs

- Potentiels chimiques
- Optimisation QAOA
- OK avec ~100 qubits bruités

Source : « Quantum Computing with superconducting qubits: Applications in Chemistry », I. Tavernelli, 12/2018

Source: « La programmation quantique », Cyril Hallouche, 12/2018

Ce qui est en bonne voie

- Systèmes bruités « NISQ »*
- Modèle de programmation
- Simulateurs « cloud »

Conclusion

- Il y a comme un problème d'efficacité énergétique
 - Cette fois, la techno CMOS ne va pas le régler pour nous
 - Surtout pas avec une architecture Von Neumann...
- Différentes pistes à l'étude, leurs points communs :
 - Spécialisées dans un domaine restreint (coprocesseurs)
 - Résultats stochastiques et entachés d'erreur
 - Rapprochement calcul + mémoire

Le mot de la fin

In "First Draft of a Report on the EDVAC," the first published description of a stored- program binary computing machine - the modern computer, John von Neumann suggested modelling the computer after Pitts and McCulloch's neural networks.

Des questions?