

Novelty Detection in Physical Activity

B. Leite, A. Abdalrahman, J. Castro, J. Frade, J. Moreira, C. Soares Department of Informatics Engineering Faculty of Engineering, University of Porto

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence Online Streaming | 4 - 6 February, 2021

Agenda

- Introduction
- Motivation
- Goals
- Literature Review
- Approach
- Experimental Setup
- Results
- Conclusions and Future Work

Introduction

- Artificial Intelligence (AI) is continuously improving several aspects of our daily lives
- There has been a **great use of gadgets & monitoring devices for health and physical activity** monitoring
- By analyzing large amounts of data and applying Machine Learning (ML) techniques, we have been able to perform useful tasks, e.g. **Activity Recognition**
 - With Activity Recognition it is possible to **recognize and monitor our daily actions**

Motivation

- Typically, the main focus of the traditional systems is only to detect pre-established activities
 according to the previously configured parameters, and not to detect novel ones
- When applying activity recognizers in real-world applications, it is necessary to detect new
 activities that were not considered during the training of the model

Goals

- To apply a method for Activity Recognition in the context of Physical Activity
 - Aims to **classify each activity** from the standard classes in the training set
- To apply a method for Novelty Detection in the context of Physical Activity
 - Aims to detect novel classes that were not seen in the training set

Literature Review - Domains

Novelty detection has its impact in many practical and real-life applications:

0	Information and Technology (IT) Security	[Helali, 2010]
0	Industrial Monitoring	[Surace and Worden, 2010]
0	Image Processing and Video Surveillance	[Yong et al., 2013]
0	Text Mining	[Zhang et al., 2005]
0	Sensor Networks	[Hasan et al., 2011]
0	Healthcare Informatics and Medical Diagnosis	[Clifton et al., 2011]
0	Activities of Daily Living (ADL)	[Rossi et al., 2018]

Literature Review - Approaches

Methods for Novelty Detection fall into distinct categories:

0	Probabilistic	[Clifton et al., 2012; Hazan et al., 2012]
0	Distance-based	[Ghoting et al., 2008] [Viegas et al., 2018]
0	Reconstruction-based	[Marchi et al., 2015; Xia et al., 2015]
0	Domain-based	[Le et al., 2010; Peng and Xu, 2012]
0	Information-theoretic techniques	[Wu and Wang, 2011]
0	Deep Learning	[Mello et al. 2018; Sobokrou et al. 2018]

Agenda

- Introduction
- Motivation
- Goals
- Literature Review
- Approach
- Experimental Setup
- Results
- Conclusions and Future Work

Our Approach - General Overview

01	Data Collection	 Choose a dataset that contains data of distinct corporal/physical activities Choose a dataset that contains data of inertial measurement units (IMU) for each activity 	
02	Data Pre-Processing	Clean, select and integrate data	
03	Activity Recognition	 Select data for <u>three</u> of the available activities Build and train models with distinct algorithms 	
04	Novelty Detection	 Select data for <u>five</u> (the original three + two others) of the available activities Establish a threshold confidence value, which determines whether an activity is novel or not 	of

(1) Data Collection

- PAMAP2 dataset [Reiss and Stricker, 2012]
 - From UCI Machine Learning Repository
- PAMAP2 contains 18 different physical activities (e.g, walking, cycling, etc...)
- We were able to retrieve **2,872,533 examples** (rows) equivalent to 10 hours of information
- **Each example** has the following **attributes**:
 - o (1) timestamp; (2) activityID; (3) heart rate (bpm); (4-20) IMU hand; (21-37) IMU chest; (38-54) IMU ankle

(2) Data Pre-Processing

Cleaning

- Remove attribute Heart Rate since a substantial part (90%) of the values were missing
- Remove attribute Timestamp (we did not consider it as relevant attribute)
- The IMUs (IDs 2-4 and 5-7) attributes were dropped since they were invalid in this data collection
- The examples that contained missing values were dismissed (only 0.5% of the whole dataset)

Selection and Integration

- Data for Activity Recognition:
 - Select examples corresponding to lying, sitting and standing
- Data for **Novelty Detection**:
 - Select examples corresponding to lying, sitting, standing, walking and running

When later applying the novelty detection method we classify the five activities as novel or not: **walking** and **running** should be.

(2.1) Data Distribution

- Number of examples (1,800) for Activity Recognition:
 - o lying (600)
 - o sitting (600)
 - o standing (600)
- Number of examples (1,250) for Novelty Detection:
 - o lying (250)
 - o sitting (250)
 - o standing (250)
 - o walking (250)
 - o running (250)

(3) Activity Recognition

- We use the examples from the selected activities (lying, sitting and standing) to train our classification models
- We train the models using these algorithms:
 - Decision Tree
 - maximal depth: 100
 - Random Forest
 - number of trees: 100
 - maximal depth: 50
 - splitting criterion: information gain
 - K-nearest Neighbors (k-NN)
 - *k*: 5

(3) Activity Recognition - Results

In order to estimate the statistical performance of our learning models, we perform Cross-Validation (10 folds). The performance results (Accuracy, Precision, Recall and F1-Score) can be analyzed in this table.

We recall that the presented models were trained considering **only lying**, **sitting and standing**.

Algorithm	Performance Measure (%)					
	Acc	P	R	F1		
Decision Tree	94.4	94.5	94.4	94.4		
Random Forest	96.7	96.7	96.7	96.7		
k-NN	95.0	95.1	95.0	95.0		

Review

(4) Novelty Detection

- For each <u>prediction</u> (lying, sitting and standing) each model presents the <u>confidence</u> value [0-1] for its respective decision
- In addition, each example has the <u>activityID</u> attribute that represents the correct/real activity
- Steps for Novelty Detection
 if activityID == (1 or 2 or 3), then isNovel = false, else isNovel = true)
 for each threshold value (0.5, 0.6, 0.7 and 0.8) do
 if confidence < threshold; then novelty_prediction = true; else novelty_prediction = false
- Performance Test
 By comparing *isNovel* with *novelty_prediction*

(4) Novelty Detection - Example

Steps for Novelty Detection

if activityID == (1 or 2 or 3), then isNovel = false, else isNovel = true) for each threshold value (0.5, 0.6, 0.7 and 0.8) do

if confidence < threshold; then novelty_prediction = true; else novelty_prediction = false

activityID	isNovel	prediction of activity_ID	confidence	threshold	novelty_pre diction	
1	false	1	0.90	0.8	false	Not Novel
4	true	3	0.70	0.8	true	Novel

(4) Novelty Detection - Results

Alg.	т.	Performance Measure (%)				
		Acc	P	R	F1	
	0.5	60.0	50.0	0.60	1.2	
Decision	0.6	59.9	47.8	2.2	4.2	
Tree	0.7	59.8	47.7	4.2	7.7	
	0.8	59.8	57.7	4.2	7.8	
	0.5	76.2	95.6	42.6	58.9	
Random	0.6	85.7	92.1	70.2	79.7	
Forest	0.7	89.9	90.5	83.6	86.9	
	0.8	90.9	85.1	93.8	89.3	
	0.5	63.3	93.6	8.8	16.1	
k-NN	0.6	70.2	88.0	29.4	44.1	
W-1414	0.7	74.5	83.4	45.2	58.6	
	0.8	80.2	84.9	61.6	71.4	

- Reasonable accuracy values are achieved for the Random Forest and k-NN, which are increased as the threshold value increases
- Decision Tree does not improve its correctly predicted observations ratio
- In general, the **best results** go for Random Forest, when using a threshold value of 0.8
- Precision values for Random Forest and k-NN are indeed very close (85.1% and 84.9%)

(4) Novelty Detection - More about results

Alg.	т.	Performance Measure (%)				
		Acc	P	R	F1	
	0.5	60.0	50.0	0.60	1.2	
Decision	0.6	59.9	47.8	2.2	4.2	
Tree	0.7	59.8	47.7	4.2	7.7	
	0.8	59.8	57.7	4.2	7.8	
	0.5	76.2	95.6	42.6	58.9	
Random	0.6	85.7	92.1	70.2	79.7	
Forest	0.7	89.9	90.5	83.6	86.9	
	0.8	90.9	85.1	93.8	89.3	
	0.5	63.3	93.6	8.8	16.1	
k-NN	0.6	70.2	88.0	29.4	44.1	
K-1414	0.7	74.5	83.4	45.2	58.6	
	0.8	80.2	84.9	61.6	71.4	

By increasing the threshold value:

- o more activities are classified as a novel
- higher accuracy and recall
- lower precision

By decreasing the threshold value:

- fewer activities are classified as a novel
- lower recall and higher precision

By choosing a threshold of 0.8:

more novel activities are detected but the model is less precise

Conclusions

- We recall our motivation to study novelty detection in the context of physical activity
- Our solution is based on the establishment of a threshold confidence value, which determines
 whether an activity is novel or not
- We built and train our models with **3 different algorithms** and by experimenting **4 threshold values**
- The best results were obtained by using the **Random Forest** algorithm with a **threshold value of 0.8**
- A higher threshold: higher recall and lower precision
- A lower threshold: lower recall and higher precision

Future Work

- To study a mechanism that would allow us to divide novel activities into different categories
 - Although we are detecting if these examples are novel or not, it does not necessarily means that they belong to the same activity
- Perform the task of tuning process, e.g., by varying maximum depth of the decision tree and number of k for k-NN
- Make use of the latest deep learning techniques can help improve the performance of novelty detection
- We see a promising outlook for this research area in the future, as novelty detection can help us by recognizing and monitor our daily actions with the fruitful purpose of providing useful information

Thank you!

B. Leite (bernardo.leite@fe.up.pt),
A. Abdalrahman, J. Castro, J. Frade, J. Moreira, C. Soares

Department of Informatics Engineering
Faculty of Engineering, University of Porto

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence Online Streaming | 4 - 6 February, 2021