Formulario di Applicazioni ITPS

CONTENTS

1	Biocompatibilità	3
	1.1 Costante di affinità K	3
2	Emodialisi	4
	2.1 Concentrazione soluto	4
	2.2 Cleareance	
3	Vad	5
	3.1 HearthWare	5
	3.1.1 Shear Stress $ au$	5
	3.1.1.1 formula esplicita	
	3.1.2 Tempo di attraversamento	
	3.1.3 Volume meato	
	3.1.4 Portata del meato	6
4	Ossigenatore a Membrana	7
	4.1 Saturazione di ossigeno	7
Ъ	ocument made with typet: Link to typet documentation	
4	avillieti iliale Willi IVISI I IIIV IA IVISI (IAVIIMenialian	

1 BIOCOMPATIBILITÀ

1.1 Costante di affinità K

$$K = \frac{[PS]}{[P][S]}$$

- [PS] $\frac{ng}{cm^2}$: Densità dei siti di legame occupati.
- • [P] $\frac{ng}{ml}$: Concentrazione della soluzione contente la biomolecola che aderisce al biomateriale

2 EMODIALISI

2.1 Concentrazione soluto

$$C = \frac{\dot{m}}{Q}$$

2.2 Cleareance

$$Q_{\rm cleareance} = Q_{\rm plasma} \bigg(1 - \frac{C_{\rm finale}}{C_{\rm iniziale}} \bigg)$$

3_{VAD}

Ventricular Assist Device

3.1 HearthWare

Dispositivo caratterizzato da pompa di tipo centrifugo e levitazione magnetica del rotore combinata con propulsione delle palette (lifting) per il mantenimento della posizione flottante.

3.1.1 Shear Stress τ

$$\tau = \mu \cdot \gamma$$

- + μ : viscosità dinamica sangue = $3cP({
 m centiPoise})=0.03 {g\over cm\ s}=0.003 {Ns\over m^2}$
- γ : Velocità di deformazione angolare $\frac{\mathrm{rad}}{s}$

$$\gamma = \frac{U_t}{h_m}$$

- U_t : velocità di trascimento
- h_m^{ι} : altezza del singolo meato = $\frac{h_{\rm scatola} h_{\rm rotore}}{2}$

$$U_t = \omega r$$

- ω : velocità angolare, di rotazione del rotore.
- r : raggio del rotore, ce ne sono 2, interno ed esterno.

3.1.1.1 formula esplicita

$$\tau_i = \mu \frac{\omega r_i}{h_m}$$

• i = r. esterno o raggio interno

3.1.2 Tempo di attraversamento

$$t = rac{V_{
m me}}{Q_{
m me}}$$

• $V_{
m me}$: volume del meato • $Q_{
m me}$: portata del meato

3.1.3 Volume meato

$$V_{\mathrm{me}} = \frac{\pi}{4} (d_{\mathrm{est.}}^2 - d_{\mathrm{int.}}^2) \cdot h_m$$

3.1.4 Portata del meato

$$Q_{\mathrm{me}} = Q_{\mathrm{ematica}} \cdot \mathrm{Flusso}\%_{\mathrm{me}}$$

4 Ossigenatore a Membrana

4.1 Saturazione di ossigeno

$$SpO2 = \frac{(Po_2)^n}{(P_{50})^n + (Po_2)^n}$$