$C' = \$10,000, C^D = \$10,000,000$ One Period=7 days (costs scaled by 1,000,000 during optimization) Solved using solve_and_process_vaccination_T_vax_1_S0_antivax_factor_0.2_KV_0.05 Infected - No intervention Infected Cumulative Deaths - No intervention **Cumulative Deaths** \$700,000 Recovered - No intervention Recovered Susceptible - No intervention 250000 Susceptible \$600,000 Vaccinated - No intervention Vaccinated **Cumulative Cost Total** Cumulative Cost Total - No intervention 200000 \$400,000 <u>≧</u> 150000 \$300,000 100000 \$200,000 50000 \$100,000 20 33 35 37 40 43 60 Period 43 -27 -99 2 2 2. Social Gatherings (in a house) A: $\$[0, 0, 0, 0] \cdot 10^2$ B: $\$[0 , 0 , 0 , 0] \cdot 10^2$ C: $\$[8 , 10 , 12 , 14] \cdot 10^2$ 3. Non-Food Service (bank, retail, etc) 3 3 3 3 2 3 3 3 3 3 |3 2

1 1 1 1 1 1 1

\$6.2e+ \$4.9e+ \$4.1e+ \$3.4e+ \$2.8e+ \$2e+09 \$1.6e+ \$1.1e+ \$7.2e+ \$3.4e+ \$2.9e+ \$2.6e+ \$2.3e+ \$2.1e+ 0.579 0.677 0.732 0.791 0.856 \$1.7e+09 0.925

\$3.1e+08 \$0.0 \$3.1e+08 1.000

\$8.8e+09 \$3.2e+09 \$5.5e+09 0.536

Movement

A: $\$[5000, 10000] \cdot 10^2$

B: \$[10000,20000]·10² C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$

B: $\$[0 , 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

Education (University level)

P: [.99 ,.99 ,.97 ,.93]

A: \$[2500 ,5000 ,10000]·10²

B: $\{[5000, 10000, 20000] \cdot 10^2\}$

C: \$[8 ,10 ,14]·10² P: [.99 ,.95 ,.93]

A: $\$[0, 0, 0, 0] \cdot 10^2$

B: $\$[0 , 0 , 0] \cdot 10^2$

C: \$[8 ,10 ,14] 10² P: [.99 ,.95 ,.93]

A: $\$[2500,5000,10000]\cdot10^2$

B: \$[5000 ,10000,20000] 10² C: $\$[8 , 10 , 14] \cdot 10^2$ P: [.99 ,.95 ,.93]

4. Restaurants

5. Masking

6. Mega Events

7. Border Control A: \$[5000 ,10000] 10²

A: \$[0]] 10^2

B: \$[0] 10^2 C: $\$[10] \cdot 10^2$ P: [.93]

B: \$[10000,20000] 10² C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE \$1.5e+10 \$3.7e+09 \$1.1e+10 0.509

A: $\$[5000, 10000] \cdot 10^2$

B: $\$[10000,20000]\cdot10^2$ C: $\$[10 , 14] 10^2$ P: [.95 ,.93]