| An | දෙවන වාර පරීක්ෂණය - 2019 මාර්තු<br>අධනයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 අගෝස්තු                                                                                                                                                                                                                                                                                                                                    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | රසායන විදනාව I 12 ශේණිය පැය 1                                                                                                                                                                                                                                                                                                                                                                                              |
|    | සාර්වතු වායු නියනය $R=8.314\mathrm{JK^{-1}mol^{-1}}$ ඇවගාඩ්රෝ නියනය $N_A=6.022\times10^{23}\mathrm{mol^{-1}}$ ප්ලාන්ක් නියනය $\mathrm{h}=6.624\times10^{-34}\mathrm{Js}$ ආලෝකයේ පුවේගය $c=3\times10^8\mathrm{ms^{-1}}$                                                                                                                                                                                                     |
| 1. | වැඩිම වියුග්ම ඉලෙක්ටුෝන සංඛ්‍යාවක් ඇති පරමාණුව/අයනය වන්නේ,                                                                                                                                                                                                                                                                                                                                                                 |
|    | (1) N (2) $Fe^{3+}$ (3) $Cr^{3+}$ (4) $Ni^{2+}$ (5) V                                                                                                                                                                                                                                                                                                                                                                      |
| 2. | ක්වොන්ටම් අංක ${f n}=3$ සහ ${f m}_\ell=-1$ ලෙස යම් පරමාණුවක් තුළ පැවතිය හැකි උපරිම ඉලෙක්ටුෝන<br>සංඛාභාව වනුයේ,                                                                                                                                                                                                                                                                                                             |
|    | (1) 2 (2) 4 (3) 6 (4) 8 (5) 10                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. | අඩුම ද්විධුැව සූර්ණයක් ඇත්තේ පහත කුමන අණුවේ ද? $(1)$ CO $(2)$ O $_3$ $(3)$ NO $_2$ $(4)$ BF $_3$ $(5)$ NCl $_3$                                                                                                                                                                                                                                                                                                            |
| 4. | BF <sub>4</sub> , NO <sub>3</sub> , ClO <sub>3</sub> යන අයනවල මධා පරමාණුව වටා හැඩයන් පිළිවෙලින් නිවැරදිව දක්වා ඇත්තේ (1) සී-සෝ හැඩය, නිුයානති පිරමිඩ, තලීය නිකෝණාකාර (2) චතුස්තලීය, තලීය නිුකෝණාකාර, T - හැඩය (3) තලීය සමචතුරශු, නිුයානති පිරමිඩ, නිුයානති පිරමිඩ (4) චතුස්තලීය, තලීය නිුකෝණාකාර, නිුයානති පිරමිඩ (5) තලීය සමචතුරශු, තලීය නිුකෝණාකාර, නිුයානති පිරමිඩ (5) තලීය සමචතුරශු, තලීය නිුකෝණාකාර, තලීය නිුකෝණාකාර. |
| 5. | තරංග ආයාමය $470~\mathrm{nm}$ ක් වන එක්තරා ආලෝකයක් නිපදවන බල්බයක් තත්පරයට $3\mathrm{J}$ ක ශක්තියක් නිපදවයි. මෙම බල්බයට ෆෝටෝන $5\times10^{19}$ ක් ජනනය කිරීම සඳහා කොපමණ කාලයක් ගත වේ ද් $(1)$ $3.6~\mathrm{s}$ $(2)$ $5.6~\mathrm{s}$ $(3)$ $7.05~\mathrm{s}$ $(4)$ $8.05~\mathrm{s}$ $(5)$ $9.21~\mathrm{s}$                                                                                                                |
| 6. | $NaNO_3$ සහ $NaHCO_3$ පමණක් අඩංගු ඝන මිශුණයකින් 2.64 g ක් නදින් රත් කරන ලදී. එවිට ඉතිරි<br>වූ ඝන ශේෂය 1.96 g ක් විය. මෙම ඝන මිශුණයේ අඩංගු $NaNO_3$ ස්කන්ධ පුතිශනය වනුයේ,<br>$(H=1,\ C=12,\ N=14,\ O=16,\ Na=23)$<br>2 $NaNO_3\longrightarrow$ 2 $NaNO_2+O_2$                                                                                                                                                               |
|    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                      |
| 7. | H - විමෝචන වර්ණාවලිය සම්බන්ධව පහත කුමන පුකාශය සතාා නොවේ ද? (1) එහි බාමර් ශේණිය පමණක් දෘශා කලාපයේ පිහිටයි. (2) $H_{\alpha}$ , $H_{\beta}$ , $H_{\gamma}$ සහ $H_{\delta}$ රේඛා වලින් වැඩිම තරංග ආයාමය ඇත්තේ $H_{\delta}$ වලය. (3) එහි වැඩිම ශක්තියෙන් යුත් රේඛාව ලයිමාන් ශේණිය තුළ පවතී. (4) එය අසන්තත වර්ණාවලියකි.                                                                                                          |

- $\mathrm{NH_4^+,\ NH_3,\ NO_2^-,\ NO_2^+}$  යන පුභේදවල  $\mathrm{N}$  හි මුහුමකරණය පිළිවෙලින්,
  - (1)  $sp^3$ ,  $sp^3$ ,  $sp^2$ , sp
- (2)  $sp^3$ ,  $sp^3$ , sp, sp
- (3)  $sp^3, sp^2, sp^2, sp^2$

- (4)  $sp^3$ ,  $sp^3$ ,  $sp^2$ ,  $sp^2$
- (5)  $sp^3$ ,  $sp^3$ ,  $sp^3$ ,  $sp^2$
- පහත දී ඇති අණුවල බන්ධන කෝණ වැඩිවන නිවැරදි අනුපිළිවෙල වනුයේ,
  - (1)  $H_2O < H_2S < NH_3 < NCl_3 < CH_4$
  - (2)  $H_2O < H_2S < NH_3 < CH_4 < NCl_3$
  - (3)  $H_2S < H_2O < NCl_3 < NH_3 < CH_4$
  - (4)  $NH_3 < H_2O < H_2S < CH_4 < NCl_3$
  - (5)  $H_2S < H_2O < NH_3 < NCl_3 < CH_4$
- 10. දී ඇති සංයෝගවල තාපාංක වැඩිවීමේ අනුපිළිවෙල තිවැරදිව දැක්වෙන්නේ කුමන සැකසුමෙන් ද?
  - (1)  $C_2H_5F < CH_3OH < H_2O < H_2O_2$  (2)  $C_2H_5F < CH_3OH < H_2O_2 < H_2O_2$
  - $(3) \quad \text{CH}_3\text{OH} < \text{H}_2\text{O} < \text{H}_2\text{O}_2 \quad < \text{C}_2\text{H}_5\text{F} \qquad \quad \text{(4)} \quad \text{C}_2\text{H}_5\text{F} < \text{H}_2\text{O}_2 \quad < \text{CH}_3\text{OH} < \text{H}_2\text{O}_2$
  - (5)  $H_2O_2 < C_2H_5F < CH_3OH < H_2O$
- 11. Be සිට Ba දක්වා දෙවන කාණ්ඩයේ කැටායනවලින් සෑදෙන කාබනේට පිළිබඳව පහත කුමන පුකාශය අසතා වේ ද?
  - (1) වැඩිම ධුැවීකරණ බලය ඇත්තේ  $\mathrm{Ba}^{2+}$  වලට ය.
  - (2) කාණ්ඩයේ පහලට අයනික ලක්ෂණ වැඩි වේ.
  - (3) තාප වියෝජන උෂ්ණත්වය වැඩිම වත්තේ BaCO3 වලය.
  - (4) ඇතායනයේ ධුැවණශීලතාවය සමාන වේ.
  - (5) වැඩිම සහ-සංයුජ ගුණ ඇත්තේ  $BeCO_3$  වලටය.
- 12.  ${}^{9}_{4}\text{Be} + \alpha \rightarrow X + {}^{1}_{0}\text{n}$

 $^9_4\mathrm{Be}$  පරමාණුවක් lpha අංශුවක් සමග අන්තර් කිුියා කළවිට X නැමති පරමාණුවක් සහ නියුටෝනයක් සාදයි. X සම්බන්ධයෙන් සතා වන්නේ,

- (1) X හි පරමාණුක කුමාංකය 5 කි.
- (2) X හි ස්කන්ධ කුමාංකය 13 කි.
- (3) X හි නියුටෝන 6 ක් ඇත.
- (4) X බෝරෝන් හි සමස්ථානයකි.
- (5) X බෙරලියම්වල ම වෙනත් සමස්ථානිකයකි.
- 13.  $CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$  යන පුතිකිුයාව 298 K දී ස්වයංසිද්ධ නොවන නමුත් 1170 K දී පමණ ඉහළ උෂ්ණත්වයේ දී එය ස්වයංසිද්ධ වේ. 1170 K දී මෙම පුතිකිුයාව සම්බන්ධයෙන් පහත සඳහන් කුමක් සතා වේ ද?
  - (1)  $\Delta H$  සෘණ සහ  $\Delta G$  සහ  $\Delta S$  ධන වේ.
  - (2)  $\Delta H$ ,  $\Delta G$  සහ  $\Delta S$  යන සියල්ල සෘණ වේ.
  - (3)  $\Delta H$  සහ  $\Delta S$  ධන සහ  $\Delta G$  ඍණ වේ.
  - (4)  $\Delta H$  සහ  $\Delta G$  ධන සහ  $\Delta S$  සෘණ වේ.
  - (5)  $\Delta H$ ,  $\Delta G$  සහ  $\Delta S$  යන සියල්ල ධන වේ.
- 14.  $400~{
  m K}$  සහ පීඩනය  $1.0 \times 10^5~{
  m Nm}^{-2}~$  දී  ${
  m H}_2$  සහ Ne අඩංගු වායු මිශුණයක පරිමාව අනුව 25 % ක්  ${
  m H}_2$  වායුව වේ. වායු මිශුණයෙන්  $25.00~\mathrm{m}^3$  ක් ගෙන  $5.00~\mathrm{m}^3$  ක් දක්වා සම්පීඩනය කරන ලදී. සම්පීඩිත වායුවේ Ne හි අාංශික පීඩනය  $Nm^{-2}$  වලින් වනුයේ,
  - (1)  $1.00 \times 10^5$

- (2)  $1.25 \times 10^5$  (3)  $2.50 \times 10^5$  (4)  $3.75 \times 10^5$
- (5)  $5.00 \times 10^5$
- ${
  m CuSO_4\cdot 5\,H_2O}$  2.495 g ක් ජලය  $100.00~{
  m cm}^3$ ක දියකර සාදාගන්නා දුාවණයක  ${
  m Cu}^{2+}$  අයන සංයුතිය ppm වලින්, (H = 1, O = 16, S = 32, Cu = 63.5)
  - (1) 249
- (2) 635
- (3) 1590
- (4) 2490
- (5) 6350

• අංක 16 සිට 20 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන පුනිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛෳාවක් හෝ නිවැරදි ය. නිවැරදි පුනිචාරය/පුනිචාර කවරේ දැ'යි තෝරන්න.

- (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
- (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
- (c) සහ (d) පමණක් තිවැරදි නම් (3) මත ද
- (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

## උපදෙස් සම්පිණ්ඩනය

| (1)        | (2)        | (3)        | . (4)      | (5)                    |
|------------|------------|------------|------------|------------------------|
| (a) සහ (b) | (b) සහ (c) | (c) සහ (d) | (d) සහ (a) | වෙනත් පුතිචාර          |
| පමණක්      | පමණක්      | පමණක්      | පමණක්      | සංඛෂාවක් හෝ            |
| නිවැරදියි  | නිවැරදියි  | නිවැරදියි  | නිවැරදියි  | සංයෝජනයක් හෝ නිවැරදියි |

- 16. CO සමග සම ඉලෙක්ටුෝනික වන්නේ පහත අයන අතුරින් කුමන එක ද?/ඒවා ද?
  - (a)  $O_2^{2-}$
- (b) CN-
- (c)  $O_2^-$
- (d)  $NO_2^+$

17. පාසල් වීදාහාගාරයේ ඇති සිව්දඩු තුලාව සම්බන්ධයෙන් නිවැරදි වන්නේ,

- (a) කුඩාම මිනුම 0.01 mg වේ.
- (b) විශාලතම මිනුම 311 g වේ.
- (c) බල සූර්ණ මූලධර්මය යෙදෙන උපකරණයකි
- (d) සීරුමාරු ඇණයේ ස්කන්ධය වෙනස් කිරීමෙන් මිනුම් පරාසය වෙනස් කළ හැකිය.

18. 
$$CH_3 - C = C - C \equiv C - H$$
 සලකන්න. 
$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$
 p q r s

- (a) මෙම අණුවේ සියළුම C පරමාණු එකම තලයක පිහිටා ඇත.
- (b) මෙම අණුවේ සියළුම C H බන්ධන දිගින් එක සමාන වේ.
- (c) C-C බන්ධන දිග s < q < p < r ලෙස වැඩි වේ.
- (d) මෙම අණුවේ C පරමාණු 3 ක් සරල රේඛීයව පිහිටා ඇත.
- 19. පහත සඳහන් කුමන කිුියාවලිය/කිුියාවලි තාප අවශෝෂක වේ ද?
  - (a)  $Na_{(g)}^+ + aq \longrightarrow Na_{(aq)}^+$

(b)  $\operatorname{NaCl}_{(s)} + \operatorname{aq} \longrightarrow \operatorname{NaCl}_{(aq)}$ 

(c)  $S_{(g)}^- + e \longrightarrow S_{(g)}^{2-}$ 

- (d)  $H_{(g)} \longrightarrow H_{(g)}^+ + e$
- 20. පරිපූර්ණ වායු සම්බන්ධව පහත කුමන පුකාශය/පුකාශ සතා වේ ද?
  - (a) දී ඇති වායු පරිමාවක උෂ්ණත්වය නියත නම්, අණුවල මධාන චාලක ශක්තිය නියත වේ.
  - (b) දී ඇති වායු පරිමාවක උෂ්ණත්වය වැඩිකරන විට එහි උපරිම සම්භාවා වේගය ඇති අණු භාගය වැඩි වේ.
  - (c) දී ඇති වායු පරිමාවක පීඩනය වැඩිකරන විට එහි සම්පීඩාංතා සාධකය 1 ට වඩා අඩු හෝ වැඩි වේ.
  - (d) ඒවා වායු තියම සියල්ලම පිළිපදිත අතර වැත්ඩවාල්ස් සමීකරණයට ද එකඟ වේ.

• අංක 21 සිට 25 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

| පුතිවාරය | පළමුවැනි පුකාශය | දෙවැනි පුකාගය                                       |
|----------|-----------------|-----------------------------------------------------|
| (1)      | සතා වේ.         | සතාෳ වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.   |
| (2)      | සතා වේ.         | සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි. |
| (3)      | සතා වේ.         | අසතා වේ.                                            |
| (4)      | අසතා වේ.        | සතා වේ.                                             |
| (5)      | අසතා වේ.        | අසතා වේ.                                            |

|     | පළමුවැනි පුකාශය                                                                             | දෙවැනි පුකාශය                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 21. | පාථමික සම්මතයක් මගින් පාමාණික<br>දාවණයක් පිළියෙල කල හැකිය.                                  | පුාථමික සම්මතයක සංයුතිය වායුගෝලය තුළ<br>ගබඩා කර තැබීමේදී වෙනස් නොවේ.                                                                        |
| 22. | පරිපූර්ණ වායු අණු එකිනෙක ගැටීමෙන්<br>පසු ඒවායේ පුවේග වෙනස් නොවේ.                            | පරිපූර්ණ වායු අණු ගැටීමෙන් ඒවායේ චාලක<br>ශක්තිය වෙනසක් සිදු නොවේ.                                                                           |
| 23. | තාපදායක පුතිකිුයාවක් සිදුවන විට පරිසරයේ<br>උෂ්ණත්වය වැඩි නම් සිදුවන එන්ටෝපි<br>වෙනස අඩු වේ. | පරිසරයේ එන්ටුෝපි වෙනස $\Delta S_{surr}$ නම් සහ පද්ධතියේ එන්තැල්පි වෙනස $\Delta H_{sys}$ නම් $\Delta S_{surr}$ $lpha$ – $\Delta H_{sys}$ වේ. |
| 24. | CO <sub>2</sub> සහ HCHO යන ඒවායින් C පරමාණුවේ<br>විදායූත් ඍණකාවය HCHO හි ඉහළ වේ.            | පරමාණුවක විදාූූත් සෘණතාවය කෙරෙහි<br>ඔක්සිකරණ අංකයත් මුහුම්කරණයත් බලපායි.                                                                    |
| 25. | α, β, γ කිරණවලට විනිවිද යෑමේ<br>බලයක් සහ අයණිකාරක බලයක් ඇත.                                 | α, β, γ කිරණ විදසූත් චුම්භක විකිරණ<br>විශේෂ වේ.                                                                                             |

\*\*\*

## සියලුම හිමිකම් ඇවිරිණි.



Judento In Arenda College Colombe In Annata College, Colombo In Annata College Colombo In Arenda College Colombo In Annata College Colombo In Annat

02 S II

දෙවන වාර පරීක්ෂණය - 2019 මාර්තු

2019.03.21/8.10 - 9.40

අධනයන පොදු සහතික පතු (උසස් පෙළ) විතාගය, 2020 අගෝස්තු

රසායන විදනව II Chemistry II

12 ශුේණිය

පැය  $1\frac{1}{2}$ 

නම :

# උපදෙස් :

- 🌣 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- 🅸 අංක 4 සහ 8 පුශ්නවලට පිළිතුරු සැපයීමේදී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරූපණය කළ හැකිය.

- 🔲 A කොටස වනුහගත රචනා (පිටු 2-5)
- 🗱 සියලුම පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- එ ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතුය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
- □ B කොටස සහ C කොටස රචනා (පිටු 6-8)
  - B හා C කොටසේ පුශ්න 2 බැගින් තෝරා ගනිමින් පිළිතුරු සපයන්න.
- සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස්වලට පිළිත්‍රරු, A කොටස මුලින් තිබෙන පරිදි අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🌞 පුශ්න පතුයෙහි B සහ C කොටස් පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යා හැකිය.

#### පර්ක්ෂකගේ පුයෝජනය සඳහා පමණි.

| (02        | 2) රසායන විද ාෑ | D II       |
|------------|-----------------|------------|
| කොටස       | පුශ්න අංකය      | ලැබූ ලකුණු |
|            | 1               |            |
| A          | 2               |            |
|            | 3               |            |
|            | 4               |            |
| 2          | 5               |            |
| <b>B</b> . | 6               |            |
|            | 7               |            |
|            | 8               |            |
| С          | 9               |            |
|            | 10              |            |
| එකතුව      |                 |            |
| පුතිශතය    |                 |            |

අවසාන ලකුණු

ඉලක්කමෙන් අකුරින්

සංඉක්ත අංක

උත්තර පනු පරීක්ෂක
පරීක්ෂා කළේ : 1
2
අධීක්ෂණය

| හයන විදැ      | හව - II                                                                        | - 2 -                                 |                            | 12 ශුේණි          |
|---------------|--------------------------------------------------------------------------------|---------------------------------------|----------------------------|-------------------|
|               | සාර්වතු වායු නියස                                                              | R = 8.314  J                          | $K^{-1} \text{ mol}^{-1}$  |                   |
|               | ඇවගාඩ්රෝ නියත                                                                  | $ω$ , $N_A = 6.022 ×$                 | $10^{23} \text{ mol}^{-1}$ |                   |
|               | A කොටස                                                                         | - වසුහගත රචන                          | )                          |                   |
|               | <b>සියළුම</b> පුශ්න අ                                                          | ෘඳහා පිළිතුරු සප                      | යන්න.                      |                   |
| (a) ආා<br>ලෙස | වර්තිතා වගුවේ පරමාණුක කුමාංකා<br>ත්වත මූලදුවාවල රසායනික සංම                    | s 1 - 20 දක්වා මූ<br>ක්ත ලියා දක්වන්න | ලදුව¤ පදනම් කර<br>ා.       | ගතිමින් පහත ගුණ   |
| (i)           | වැඩිම දෙවන අයණීකරන ශක්තිය                                                      | 3                                     |                            |                   |
| (ii)          | වැඩිම විදාූුත් සෘණතාවය                                                         |                                       |                            |                   |
| (iii)         | වැඩිම ඔක්සිකරණ අංකය                                                            |                                       |                            |                   |
| (iv)          | වැඩිම පරමාණුක අරය                                                              |                                       |                            |                   |
| (v)           | ඉහළම ඔක්සිකාරක ගුණය                                                            |                                       |                            |                   |
|               | YZH <sub>2</sub> O <sub>2</sub> ]  යන අයනය සළකන්න<br>මක්ත මනාවන අතර ඒවා දෙවන අ | ආවර්තයට අයත් ෙ                        |                            | 3 X, Y සහ Z සම්මත |
| (i)           | X, Y සහ Z හඳුනාගන්න. ඒවයේ                                                      | සැබෑ සංකේත ලිං                        | ෘත්ත.                      |                   |
|               | X Y                                                                            |                                       |                            |                   |
| · (ii)        | මෙම අයනය සඳහා වඩාත්ම පිළිග                                                     | ාත හැකි ලුවිස් වෘ                     | <sub>]</sub> හය අඳින්න.    |                   |
|               |                                                                                | · · · · ·                             |                            |                   |
| (iii)         | ඉහත (ii) හි ව <b>ූ</b> ුනය හැර මෙම අය                                          | ානලයහි සම්පුයුක්ස                     |                            | ත.                |
|               |                                                                                |                                       | · ;                        |                   |
|               |                                                                                |                                       |                            |                   |
| (iv)          | one (ii) onelowe e .e                                                          | ,                                     |                            |                   |
| (17)          | ඉහත (ii) කොටසෙහි ඇඳි ලුවිස් ව                                                  | පුහය සළකා පහත<br>X                    | වගුව සමපූර්ණ ක<br>Y        | Z Z               |
|               | I. මුහුම්කරණය                                                                  | A                                     | 1                          | 2                 |
|               | II. ඉලෙක්ටුෝන යුගල ජාාමිතිය                                                    |                                       |                            |                   |
|               | III. පරමාණුව වටා හැඩය                                                          |                                       |                            |                   |

IV. ඔක්සිකරණ අංකය

— –1560 kJ mol<sup>–1</sup>

(c) H පරමාණුවක පළමු පුධාන ශක්ති මට්ටම් 5 ක් සහ ඒවායේ ශක්තිය පහත රූපයේ දැක්වේ. A, B සහ C වූ ඉලෙක්ටුෝන සංකුමණ 3 ක් ලකුණු කර ඇත.  $\left(h = 6.626 \times 10^{-34} \, \text{Js}, c = 3 \times 10^8 \, \text{ms}^{-1}\right)$ 





C- .....

..... < ..... < ......

(iii) A විකිරණයේ ෆෝටෝනයක ශක්තිය ගණනය කරන්න.

(iv) B විකිරණයේ තරංග ආයාමය ගණනය කරන්න.

(v) ඉහළ වේග ඉලෙක්ටෝන කදම්බයක් අංශුමය මෙන්ම තරංගමය ගුණ ද පෙන්වයි.  $68\,\mathrm{ms}^{-1}$  වේගයෙන් ගමන් කරන ඉලෙක්ටෝනයක තරංග ආයාමය ගණනය කරන්න. ඉලෙක්ටෝනයේ ස්කන්ධය  $9.109 \times 10^{-31}\mathrm{kg}$  වේ.

| රසා | යන | ව්ද     | නව        | - II - 4 - 12                                                                                                                                      | ශේණිය         |
|-----|----|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |    | X<br>©E | හා<br>නේව | Y යනු ආන්තරික නොවන එකම කාණ්ඩයට අයත් අනුයාත මූලදුවා දෙකකි. X බහුරුදි<br>වන අතර එය ඔක්සිජන් සමග ස්ථායි ඔක්සයිඩ දෙකක් සාදයි.<br>හා Y හඳුනාගන්න.       | <b>ී</b> තාවය |
|     |    |         |           | X Y                                                                                                                                                |               |
|     |    | (ii)    | X         | හි ඔක්සයිඩ දෙකෙහි රසායනික සූතු ලියා ඒවායේ ලුවිස් වනුහ ඇඳ දක්වන්න.                                                                                  |               |
|     |    |         |           |                                                                                                                                                    |               |
|     |    | (iii)   |           | සහ Y හි පහත ලක්ෂණ සඳහා සාපේක්ෂ විශාලත්වයන් දක්වන්න.                                                                                                |               |
|     |    |         |           | වළමු අයනීකරණ ශක්තිය                                                                                                                                |               |
|     |    |         |           | X හි ඩයි ඔක්සයිඩයේ හා Y හි                                                                                                                         |               |
|     |    |         | IV.       | X හි ඩයි ඔක්සයිඩයේ හා Y හි <<br>ඩයි ඔක්සයිඩයේ තාපාංකය                                                                                              |               |
|     | (  | (iv)    | පහ        | අයත් වන කාණ්ඩයේ හයිඩුයිඩවල තාපාංක විචලනය වන ආකාරය සඳහා දළ පුස්තා<br>ත අක්ෂ මත අඳින්න.<br>ම්පූර්ණ ලකුණු ලබාගැනීම සඳහා පුස්තාරයේ අක්ෂ නම් කළ යුතුය.) | ාරයක්         |
|     |    |         |           |                                                                                                                                                    |               |
|     | (  | v)      | ඉහෘ       | න (iv) හි සඳහන් ආකාරයට තාපාංක විචලනය වීමට හේතු සඳහන් කරන්න.                                                                                        |               |
|     |    |         |           |                                                                                                                                                    |               |
| (b  |    | -       |           | රයේදී ඔක්සිජන් වායුවේ මවුලික පරිමාව සෙවීම සඳහා සිදුකරන ලද පරීක්ෂණයක ඇටදි<br>ප සටහනේ දැක්වේ.                                                        | වුමක්         |
|     |    |         |           | කපු පුළුන්<br>න් කිරීම ජලය                                                                                                                         |               |
|     |    |         |           |                                                                                                                                                    |               |

## B කොවස - රචනා

සියළුම පුශ්න සඳහා පිළිතුරු සපයන්න.

- 3. (a) (i) PV = nRT සමීකරණය භාවිතා කර වායුවක ඝනත්වය d සඳහා පුකාශනයක් ලබාගන්න.
  - (ii) .  $P_1$  පීඩනයක දී  $T_1$  උෂ්ණත්වයක දී  $3\,\mathrm{dm}^3$  භාජනයක් තුළ  $N_2$  වායුව  $0.1\,\mathrm{mol}$  ක් ඇත. එම උෂ්ණත්වය හා පීඩනයේදී ම  $2\,\mathrm{dm}^3$  භාජනයක් තුළ Ar වායුව ඇත. I කොටසේ දී ව්යුත්පන්න කරන ලද සමීකරණය භාවිත නොකර Ar වායුවේ සනත්වය සොයන්න.  $N_2I4$
  - (iii) පරිමාව  $400 \, \mathrm{dm}^3$  වූ භාජනයක් තුළ  $27 \, ^\circ\mathrm{C}$  දී  $N_2$  වායුව  $3 \times 10^5 \, \mathrm{Pa}$  ජීඩනයක් යටතේ පවතී. පරිමාව  $500 \, \mathrm{dm}^3$  වූ තවත් භාජනයක් තුළ He වායුව  $127 \, ^\circ\mathrm{C}$  දී  $0.8 \times 10^5 \, \mathrm{Pa}$  ජීඩනයක් යටතේ පවතී. භාජන දෙක සිහින් නලයකින් සම්බන්ධ කර මිශුණයේ උෂ්ණත්වය  $0 \, ^\circ\mathrm{C}$  දක්වා පහත හෙලන ලදී. වායුන් පරිපූර්ණ ලෙස හැසිරේ නම් පහත ඒවා ගණනය කරන්න.
    - (1) එක් එක් වායුවේ ආංශික පීඩනය
    - (2) මිශුණයේ මුළු පීඩනය
    - (3) මිශුණය තුළදී  $N_2$  සහ He හි මවුල භාගය
  - (b) (i) දුව මක්ටෙන්  $1\,\mathrm{dm}^3$  ක් දහනය කළවිට  $33\! imes\!10^3\,\mathrm{kJ}$  ක ශක්තියක් පිටවේ. එන්ජිමක් තුළ සිදුවන සියළු ශක්ති හානින් සැළකු විට යාන්තික ශක්තිය ලෙස පුයෝජනයට ගනු ලබන්නේ පිටවන මුළු ශක්තියෙන් 30% පමණකි. මෝටර් රථයක් ඔක්ටෙන්  $1\,\mathrm{dm}^3$  න්  $15\,\mathrm{km}$  ධාවනය කළ හැකි වේ. මෝටර් රථයට  $1\,\mathrm{km}$  ධාවනය සඳහා සැපයිය යුතු ශක්තිය කිලෝ ජූල් කොපමණ ද?
    - (ii) මෙතතෝල් යනු ඔක්ටෙන් වෙනුවට යොදාගත හැකි ඉන්ධනයකි.  ${
      m CH_3OH_{(g)}}, {
      m CO}_{2(g)}$  සහ  ${
      m H_2O_{(g)}}$  සඳහා සම්මත උත්පාදන එන්තැල්පි අගයන්  $-200.7\,{
      m kJ\,mol}^{-1}, -394\,{
      m kJ\,mol}^{-1}$  සහ  $-286\,{
      m kJ\,mol}^{-1}$  වේ. තාප රසායනික චකුයක් භාවිතා කොට මෙතතෝල්  ${
      m CH_3OH_{(g)}}$  හි සම්මත දහන එන්තැල්පිය

    - (iv) ඔබට ඉහත ගණනයේ දී සිදු කිරීමට වන වැදගත් උපකල්පනයක් සඳහන් කරන්න.
  - (c)  $A_{(s)}, B_{(s)}, C_{(g)}$  හි සම්මත උත්පාදන එන්නැල්පි අගයන් සහ සම්මත එන්ටුොපි අගයන් පහත දැක්වේ.

| පුභේදය           | $\Delta H_f^{\theta}/kJ \text{ mol}^{-1}$ | $S^{\theta}/J k^{-1} mol^{-1}$ |
|------------------|-------------------------------------------|--------------------------------|
| A(s)             | -1206.9                                   | 92.9                           |
| B <sub>(s)</sub> | - 635.6                                   | 39.8                           |
| C <sub>(g)</sub> | - 393.5                                   | 213.6                          |

$$A_{(s)} \longrightarrow B_{(s)} + C_{(g)}$$

- (i) මෙම පුතිකිුයාව 298 K හි දී ස්වයංසිද්ධව සිදු තොවන බව ගණනය කිරීමක් මගින් පෙන්වන්න.
- (ii) එම පුතිකිුයාව ස්වයංසිද්ධව සිදුවන අවම උෂ්ණත්වය ගණනය කරන්න.
- (iii) ඉහත (ii) කොටසේ ගණනයේදී ඔබ කරන ලද උපකල්පන දෙකක් සඳහන් කරන්න.
- 4. (a) (i) I. අයනික බන්ධනය යනුවෙන් අදහස් කරන්නේ කුමක් ද?
  - II. අයනික බන්ධනයක පුබලතාවයට බලපාන සාධක මොනවා ද?
  - III. අයනික සංයෝග ඝන අවස්ථාවේදී විදාූතය සන්නයනය නොකරන නමුත්, විලීන අවස්ථාවේදී හා දුාවණ අවස්ථාවේ විදාූතය සන්නයනය කරයි. මෙය පැහැදිලි කරන්න.
  - (ii)  $\mathrm{Na_2CO_3}$  තාප වියෝජනය නොවන නමුදු  $\mathrm{MgCO_3}$  තාප වියෝජනය වේ. පැහැදිලි කරන්න.

(b) අසංශුද්ධ  $(NH_4)_2 Cr_2 O_7$  සාම්පලයක 35.2~g සම්පූර්ණයෙන් තාප වියෝජනය කළවිට ලැබුණු අවශේෂයේ ස්කන්ධය 25.2~g ක් විය.  $(NH_4)_2 Cr_2 O_7$  පහත පරිදි තාප වියෝජනයට ලක්වේ.  $(H=1\ ,\ O=16\ ,\ N=14\ ,\ Cr=52)$ 

$$(NH_4)_2 Cr_2O_7 \xrightarrow{\Delta} N_{2(g)} + Cr_2O_{3(g)} + H_2O_{(g)}$$
(කුලික නැත)

- (i) ඉහත සාම්පලයේ  $(NH_4)_2 Cr_2 O_7$  හි සංශුද්ධතා පුතිශතය නිර්ණය කරන්න. (සාම්පලයේ  $(NH_4)_2 Cr_2 O_7$  පමණක් තාප වියෝජනයට ලක්වන බව සලකන්න.)
- (ii) අවශේෂයේ ඇති  $Cr_2O_3$  හි ස්කන්ධය ගණනය කරන්න.
- (c)  $\operatorname{Fe}_2(\operatorname{SO}_4)_3$  මගින් අපවිතු වී ඇති  $\operatorname{Fe} \operatorname{C}_2\operatorname{O}_4$  සාම්පලයක  $\operatorname{Fe} \operatorname{C}_2\operatorname{O}_4$  පුතිශතය සෙවීම සඳහා ශිෂායෙක් පහත කුමය අනුගමනය කරන ලදී.

ඉහත සාම්පලයෙන්  $10.0~{
m g}$  ක් ආසුැත ජලය  $25.0~{
m cm}^3$  ක දියකර දුාවණය  $250.0~{
m cm}^3$  ක් දක්වා පරිමාමිතික ප්ලාස්කුවක තනුක කරන ලදී. එම දුාවණයෙන්  $25.0~{
m cm}^3$  ක්  ${
m H}_2{
m SO}_4$  අම්ලයෙන් ආම්ලික කරන ලද  $1.0~{
m dm}^3{
m mol}^{-1}~{
m KMnO}_4$  දුාවණයෙක් සමග අනුමාපනය කල විට අන්ත ලක්ෂය සඳහා  $30.0~{
m cm}^3$  ක් වැය විය. (Fe = 56, S = 32, O = 16, Ba = 137, C = 12)

- (i) ඉහත අනුමාපනයේදී සිදුවන පුතිකිුයා සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) සාම්පලයේ  $\operatorname{FeC}_2\operatorname{O}_4$  පුතිශතය නිර්ණය කරන්න.
- (iii) ඉහත මුල් දුාවණයෙන්  $25.0\,\mathrm{cm}^3$  ක් ගෙන එහි ඇති සියඑ  $\mathrm{SO}_4^{2-}$  අයන  $\mathrm{BaCl}_2$  දුාවණයක් මගින්  $\mathrm{BaSO}_4$  ලෙස අවක්ෂේප කරන ලදී. ලැබෙන අවක්ෂේපයේ ස්කන්ධය ගණනය කරන්න.
- 5. (a) (I) පහත සඳහන් අණු සලකන්න.

BeCl<sub>2</sub>, CO, NH<sub>3</sub>, CO<sub>2</sub>, BCl<sub>3</sub>, CCl<sub>4</sub>, CH<sub>4</sub>, HCl, H<sub>2</sub>O

මේවායින් පහත සඳහන් අවස්ථා සඳහා උචිත අණු තෝරා ලියන්න.

- (i) නිර්ධැවීය අණු වන්නේ මොනවා ද?
- (ii) මධා පරමාණුවේ ඉලෙක්ටුෝන අෂ්ටකය සම්පූර්ණ වී නොමැති අණු මොනවා ද?
- (iii) රේඛීය අණු වන්නේ මොනවා ද?
- (iv) තලීය අණු වන්නේ මොනවා ද?
- (v) පිරිසිදු දුව අවස්ථාවේ H බන්ධන ඇති අණු මොනවා ද?
- (II) පහත පුභේද අතර ඇති ආකර්ශණ බල වර්ගය/වර්ග සඳහන් කරන්න.
  - (i) Br<sub>2</sub> සහ ICl අතර
  - (ii) CH3COCH3 සහ Cl අතර
  - (iii)  $H_2C_2O_4$  හා  $H_2O$  අතර
- (III) වරහන් තුළ ඇති ලක්ෂණ පදනම් කරගෙන පහත දක්වා ඇති දෑ ආරෝහණ පිළිවෙලට සකසන්න.

ඔබේ තේරීම සඳහා හේතු කෙටියෙන් දක්වන්න.

- (i) MgCO3, CaCO3, BeCO3, BaCO3 (වියෝජන උෂ්ණත්ව)
- (ii)  $NO_2^-$  හා  $NO_2^+$  (N පරමාණුවේ විදාූත් ඍණතාවය)
- (iii)  $VO_2, V_2O_3, V_2O_5, VO$  (ආම්ලික පුබලතාවය)

(b) පහත දී ඇති එන්තැල්පි මට්ටම් සටහනට අනුව අසා ඇති පුශ්නවලට පිළිතුරු සපයන්න.(එන්තැල්පි මට්ටම් සටහන සම්පූර්ණ නැත.)



- (i) X හා Y වලට අදාළ සුදුසු අගයන් ලියන්න.
- (ii) එන්තැල්පි මට්ටම් සටහනේ O මට්ටමට අදාල පරමාණු/අණු ලියා ති්රස් මට්ටම සම්පූර්ණ කරන්න.
- (iii) දුව ජලය මවුලයක සම්මත උත්පාදන එන්තැල්පි විපර්යාසය ගණනය කරන්න.
- (c) ඩොලමයිට් නැමැති බනිජය Mg සහ Ca වල ද්විත්ව කාබනේටයකි. එය  $CaMg(CO_3)_2$  යන්නෙන් නිරූපණය කරයි. අපදුවා අඩංගු ඩොලමයිට් සාම්පලයක 1g ක් වැඩිපුර HCl අම්ලයෙහි දියකළ විට පිට වූ  $CO_2$  ස්කන්ධය 0.44~g ක් වේ. ඩොලමයිට් සාම්පලයේ ඇති අපදුවායේ බර අනුව පුතිශතය සොයන්න

$$(Ca = 40 : C = 12 : O = 16 : Mg = 24)$$

\*\*\*

|     | 1  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2  |
|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| ì   | H  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | He |
|     | 3  | 4  |     |     |     |     |     |     |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10 |
| 2   | Li | Be |     |     |     |     |     |     |     |     |     |     | В   | C   | N   | 0   | F   | Ne |
|     | 11 | 12 | 1   |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18 |
| 3   | Na | Mg |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | CI  | Ar |
|     | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36 |
| 4   | K  | Ca | Sc  | Ti  | v   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr |
|     | 37 | 38 | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54 |
| 5   | Rb | Sr | Y   | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe |
|     | 55 | 56 | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86 |
| 6   | Cs | Ba | Lu  | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | TI  | Pb  | Bi  | Po  | At  | Rn |
|     | 87 | 88 | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |     |     |     |     |    |
| 7 [ | Fr | Ra | Lr  | Rf  | DЬ  | Sg  | Bh  | Hs  | Mt  | Uun | Uuu | Uub | Uut |     |     |     |     |    |
|     |    |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|     |    |    | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  |    |
|     |    |    | La  | Ce  | Pr  | Nd  | Pm  | Sm  | Eu  | Gđ  | Tb  | Dy  | Ho  | Er  | Tm  | Yb  | Lu  |    |
|     |    |    | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 |    |
|     |    |    | Ac  | Th  | Pa  | U   | Np  | Pu  | Am  | Cm  | Bk  | Cf  | Es  | Fm  | Md  | No  | Lr  |    |