Matemática IV- 2020 TP1 - Límites y Continuidad

1. Determinar el dominio (cuando sea posible graficarlo) de las siguientes funciones:

(a)
$$f(x,y) = \frac{x}{x^2 + y^2}$$

(b)
$$f(x, y, z) = x^2 + 2y^2 - z^2$$

(c)
$$f(x, y, z) = \frac{x^2}{y^2 - z^2}$$

(d)
$$f(x,y) = \sqrt{16 - x^2 - y^2}$$

(e)
$$f(x,y) = x^2 - y^2$$

(f)
$$f(x,y) = e^{x^2 + y^2}$$

(g)
$$f(x,y) = e^{-x^2 + y^2}$$

(h)
$$f(x,y) = \log(9 - x^2 - 9y^2)$$

(i)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

(j)
$$f(x,y) = \sqrt{9 - x^2 - 9y^2}$$

2. Evaluar las siguientes funciones en los puntos dados (cuando los puntos pertenezcan al dominio):

(a)
$$f(x,y) = \log(9 - x^2 - 9y^2)$$
 en $(1,0); (1,1); (0,1); (-1,1)$

(b)
$$f(x,y) = \sqrt{4-x^2-4y^2}$$
 en $(1,0);(1,1);(0,1);(-1,1);(2,2)$

(c)
$$f(x,y) = e^{x^2+y^2}$$
 en $(1,0); (1,1); (0,1); (-1,1)$

3. Calcular los siguientes límites, o demostrar que no existen:

(a)
$$\lim_{(x,y)\to(3,1)} 5x - x^2 + 3y^2$$

(b)
$$\lim_{(x,y)\to(0,0)} \left(\frac{(7x^2-2y^2)}{x^2+y^2}+1\right)$$

(c)
$$\lim_{(x,y,z)\to(1,1,0)} e^{x+y^2-z}$$

(d)
$$\lim_{(x,y,z)\to(0,0,0)} \sin(x+y+z)$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^4}$$

(f)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

(h)
$$\lim_{(x,y)\to(0,0)} \frac{xye^x}{x^2+y^2}$$

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{x^2 - 2xy + y^2}$$

(j) $\lim_{(x,y)\to(0,0)} \frac{x^2 - 2xy + y^2}{x - y}$

(j)
$$\lim_{(x,y)\to(0,0)} \frac{x^2\cos(x)}{x^2+y^2}$$

4. Estudiar la continuidad de las siguientes funciones. En caso de no estar definida, redefinirla de manera que pueda extenderse su continuidad.

(a)
$$f(x,y) = xy\left(\frac{x^2 - y^2}{x^2 + y^2}\right)$$

(b)
$$f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 1 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

(c) $f(x,y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$
(d) $f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$

(c)
$$f(x,y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

(d)
$$f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- Generar un código que permita construir una función que evaluada en un punto de R^3 mida su distancia a la superficie obtenida como gráfica de la función $f(x, y, z) = x^2 + 2y^2 - z^2$
 - Calcular el siguiente límite por definición: $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$

Luego, para entender intuitivamente el límite, generar un código que muestre cómo se va acercando $f(x_0, y_0)$ a su límite L cuando (x, y) se acerca a (0, 0). Es decir, escribir un programa que devuelva la lista con los resultados de hacer |f(x,y)-0| para $(x,y)=(\frac{1}{n},\frac{1}{m})$ por ejemplo, tales que $|(0,0)-(\frac{1}{n},\frac{1}{m})|=\frac{1}{n^2+m^2}<\delta$ (p.e para $n=10,\,m=10,\,n=100,\,m=1000,\,\text{etc...})$

Ejercicios Adicionales

1. Analizar los siguientes límites:

(a)
$$\lim_{(x,y)\to(0,0)} \left(\frac{2x^2y^3}{x^2+y^4}\right)$$

$$\begin{array}{ll} \text{(a)} & \lim_{(x,y)\to(0,0)} & \left(\frac{2x^2y^3}{x^2+y^4}\right) \\ \text{(b)} & \lim_{(x,y)\to(0,0)} & \left(\frac{x(x^2-y^2)}{\sqrt{x^2+y^2}}\right) \\ \text{(c)} & \lim_{(x,y)\to(0,1)} & \left(\frac{2xy-2x}{\sqrt{x^2+(y-1)^2}}\right) \end{array}$$

(c)
$$\lim_{(x,y)\to(0,1)} \left(\frac{2xy-2x}{\sqrt{x^2+(y-1)^2}}\right)$$

(d)
$$\lim_{(x,y)\to(0,0)} (\frac{yx^3-xy^3}{x^2+y^2})$$

- 2. Dada la función $f(x,y)=xy.\frac{y^2-x^2}{x^2+y^2}$ definir f(0,0) de manera que f sea continua en el origen y demostrarlo.
- 3. Estudiar la continuidad en todo el plano \mathbb{R}^2 de las siguientes funciones:

(a)
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{si} \quad (x,y) \neq (2,2) \\ 2 & \text{si} \quad (x,y) = (2,2) \end{cases}$$

(a)
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{si} \quad (x,y) \neq (2,2) \\ 2 & \text{si} \quad (x,y) = (2,2) \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{x^2+2xy^2+y^2}{x^2+y^2} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$