

CAPA I – Física

Medio de Transporte de Bits. Elementos de la capa física:

- Medios Físicos y Conectores
- ❖Representación de Bits
- Codificación de datos y de la información de Control
- ❖Sistema de circuitos del receptor y transmisor en los dispositivos de red (Recepción de bits)

Funcionamiento:

Los medios no transportan la trama como una única entidad

Tres tipos básicos de medios de red:

- Cables Pulsos eléctricos
- Fibra patrón de luz
- > Inalámbricos radiofrecuencia

IDENTIFICACIÓN DE UNA TRAMA

Se debe distinguir dónde termina una trama y dónde se inicia la siguiente

Estándares

Componentes Físicos

Dispositivos electrónicos de hardware u otro medio que transmiten las señales

Codificación

Los códigos son grupos de bits utilizados para ofrecer un patrón predecible que pueda reconocer tanto el emisor como el receptor

Señalización

La capa física debe generar las señales que representan el "1" y el "0" en los medios

Señalización

Todas las comunicaciones desde la red humana se convierten en dígitos binarios que se transportan individualmente a través de los medios físicos.

Cada señal cuenta con un plazo específico de tiempo Tiempo de Bits

SEÑALIZACIÓN NRZ

Sin retorno a cero (NRZ,) el stream de bits se transmite como una secuencia de valores de voltaje

Codificación Manchester

Codificación de Manchester

Los valores de bit se representan como transiciones de

voltaje

Codificación - Agrupación de Bit

Al utilizar el paso de codificación antes de ubicar las señales en los medios, mejoramos la eficiencia mediante una transmisión de datos de mayor velocidad.

Codificación - Agrupación de Bit Ventajas de la utilización de Grupo de Código

- > Reducción de error en el nivel de bits
- > Limitación de energía efectiva transmitida a los medios
- > Ayuda para distinguir los bits de datos de los bits de control
- > Mejora la detección de errores en los medios

Codificación 4b / 5b

Los grupos de códigos se utilizan actualmente en las redes modernas, si bien este proceso genera una sobrecarga en las transmisiones de bits, también incorpora características que ayudan a la transmisión de datos a velocidades superiores.

Símbolos de código 4B/5B

Códigos de datos

Código 4B	Símbolo 5B
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Códigos no válidos y de control

Código 4B	Símbolo 5B
inactivo	11111
inicio del stream	11000
inicio del stream	10001
final del stream	01101
final del stream	00111
error de transmisión	00100
inválido	00000
inválido	00001
inválido	00010
inválido	00011
inválido	00100
inválido	00101
inválido	00110
inválido	01000
inválido	10000
inválido	11001

Capacidad para transportar datos

ANCHO DE BANDA: Capacidad que posee un medio de transportar datos

Unidad de ancho de banda	Abreviatura	Equivalencia
Bits por segundo	bps	1 bps = unidad fundamental de ancho de banda
Kilobits por segundo	kbps	1kbps = 1000bps = 10^3bps
Megabits por segundo	Mbps	1Mbps = 1000000bps = 10^6bps
Gigabits por segundo	Gbps	1Gbps = 1000000000bps = 10^9bps
Terabits por segundo	Tbps	1Tbps = 1000000000000bps = 10^12bps

RENDIMIENTO: Es la medida de transferencia de bits a través de los medios durante un período de tiempo determinado

CAPACIDAD DE TRANSFERENCIA ÚTIL: Es la medida de datos utilizables transferidos durante un período de tiempo determinado.

Grafico... ir

Tipos de Medios Físicos

Muchas organizaciones que establecen estándares han contribuido con la definición de las propiedades mecánicas, eléctricas y físicas de los medios disponibles para diferentes comunicaciones de datos

	10BASE-T	100BASE-TX	100BASE-FX	1000BASE-CX	1000BASE-T	1000BASE-SX	1000BASE-LX	1000BASE-ZX	10GBASE-ZR
Medios	UTP Categoria 3, 4, 5 EIA/TIA, cuatro pares	UTP Categoría 5 EIA/TIA, dos pares	50/62,5m fibra multimodo	STP	UTP Categoria 5 (o superior) EIA/TIA, cuatro pares	fibra multimodo de 50/62,5 micrones	fibra multimodo de 50/62,5 micrones o fibra monomodo de 9 micrones	fibra monomodo de 9m	fibra monomodo de 9m
Longitud máxima del segmento	100m (328 pies)	100m (328 pies)	2km (6562 pies)	25m (82 pies)	100m (328 pies)	Hasta 550m (1804 pies) según la fibra utilizada	550m (MMF)10km (SMF)	Aprox. 70km	Hasta 80km
Topología	Estrella	Estrella	Estrella	Estrella	Estrella	Estrella	Estrella	Estrella	Estrella
Conector	ISO 8877 (RJ- 45)	ISO 8877 (RJ- 45)		ISO 8877 (RJ- 45)					

Medios inalámbricos				
Estándares	Bluetooth 802.15	802.11 (a, b, g, n), HiperLAN 2	802, 11, MMDS, LMDS	GSM, GPRS, CDMA, de 2,5 a 3G
Velocidad	<1Mbps	de 1 a 54+ Mbps	22Mbps+	de 10 a 384Kbps
Rango	Corto	Medio	De medio a largo	Largo
Aplicaciones	Punto a punto dispositivo a dispositivo	Redes empresariales	Fijo, acceso de última milla	PDA, teléfonos móviles, acceso celular

Medios de Cobre

Es el medio de por si mas utilizado, las comunicaciones de datos generalmente consiste en una secuencia de alambres individuales de cobre que forman circuitos que cumplen objetivos

específicos de señalización.

Interferencia de la señal externa

Conexiones RJ-45

Los valores de voltaje y sincronización en estas señales son susceptibles a la interferencia o "ruido" que se genera fuera del sistema de comunicaciones.

Cable par trenzado no blindado (UTP)

Se utiliza en las LAN Ethernet, consiste en cuatro pares de alambres codificados por color que han sido trenzados y cubiertos por un revestimiento de plástico flexible

Estándares de cable UTP

Asociación de las Industrias de las Telecomunicaciones (TIA) y la Asociación de Industrias Electrónicas (EIA). TIA/EIA-568A estipula los estándares comerciales de cableado para las instalaciones LAN y es el estándar de mayor uso en entornos de

cableado LAN

Tipos de cable UTP

Según las diferentes situaciones, es posible que los cables UTP necesiten armarse según las diferentes convenciones para los cableados.

Tipos de cables directo, de conexión cruzada			
Tipo de cable	Estándar	Aplicación	
Cable directo de Ethernet	Ambos extremos T568A o ambos extremos T568B	Conexión de un host de red a un dispositivo de red como un switch o un hub.	
Cruzado Ethernet	Un extremo T568A, otro extremo T568B	Conexión de dos hosts de red. Conexión de dos dispositivos intermediarios de red (switch a switch o router a router).	

1. Coaxial:

Consiste en un conductor de cobre rodeado de una capa de aislante flexible. Es el medio de uso más frecuente para transportar señales de radiofrecuencia elevadas mediante cableado, especialmente señales de televisión por cable o en tecnologías de acceso inalámbrico (antenas en los dispositivos

inalámbricos)

Otros medios de cobre

2. Par trenzado blindado (STP)

Utiliza cuatro pares de alambres que se envuelven en una malla de cobre tejida o en una hoja metálica. STP fue la estructura de cableado de uso específico en instalaciones de red Token Ring.

El nuevo estándar de 10 GB para Ethernet incluye una disposición para el uso del cableado STP.

de

CAPA FISICA

Medios de Fibra Óptica

En la fibra el núcleo que se utiliza es de plástico o de vidrio para guiar los impulsos de luz desde el origen hacia el destino.

Ventaja:

- ➤ Medio inmune a la interferencia electromagnética.
- > No conduce electricidad.
- >Longitudes mayores que UTP antes de regenerar la señal.
- ➤ Baja perdida de la señal debido a su delgadez y composición física.

el UTP. √Se necesitan diferentes habilidades y equipos.

√ Más costoso en comparación que

✓ Manejo mas cuidadoso.

Medios de Fibra Óptica

Composición de la Fibra Óptica

Revestimiento exterior de PVC y un conjunto de materiales de refuerzo que rodean la fibra óptica y su revestimiento.

Núcleo, de plástico o de vidrio Operación Full duplex

Los láseres o diodos de emisión de luz (LED) generan impulsos de luz que se utilizan para representar los datos transmitidos como bits en los medios.

Los **Fotodiodos**, detectan los impulsos de luz y los convierten en voltajes que pueden reconstruirse en tramas de datos.

Medios de Fibra Óptica

La fibra óptica **MONOMODO** transporta un sólo rayo de luz, generalmente emitido desde un láser. Puede transmitir distancias mu largas.

La fibra óptica **MULTIMODO** normalmente utiliza emisores LED que no generan una única ola de luz coherente.

Medios Inalámbricos

Los medios inalámbricos transportan señales electromagnéticas mediante frecuencias de microondas y radiofrecuencias que representan los dígitos binarios de las comunicaciones de datos

Tipos de redes inalámbricas

- ➤IEEE estándar 802.11 Wi-Fi CSMA/CD
- >IEEE estándar 802.15 Bluetooth
- ►IEEE estándar 802.16 WiMax
- ➤ Sistema global para comunicaciones móviles (GSM)
- ➤ (GPRS -permiten la transferencia de datos entre estaciones terrestres y enlaces satelitales-)

Medios Inalámbricos

LAN Inalámbrica

Una implementación común de transmisión inalámbrica de datos permite a los dispositivos conectarse en forma inalámbrica a través de una LAN

- ➤ Punto de acceso inalámbrico (AP)
- ➤ Adaptadores NIC inalámbricos

Estándares

IEEE 802.11a: Opera en una banda de frecuencia de 5 GHz y ofrece velocidades de hasta 54 mbps. es menos efectivo al penetrar estructuras edilicias ya que opera en frecuencias superiores.

IEEE 802.11b: opera en una banda de frecuencia de 2.4 GHz y ofrece velocidades de hasta 11 mbps. mayor alcance y pueden penetrar mejor las estructuras edilicias que los dispositivos basados en 802.11a.

IEEE 802.11g: opera en una frecuencia de banda de 2.4 GHz y ofrece velocidades de hasta 54 mbps. Por lo tanto, los dispositivos que implementan este estándar operan en la misma radiofrecuencia y tienen un alcance de hasta 802.11b pero con un ancho de banda de 802.11a.

IEEE 802.11n: define la frecuencia de 2.4 Ghz o 5 GHz. La velocidad típica de transmisión de datos que se espera es de 100 mbps a 210 mbps, con un alcance de distancia de hasta 70 metros.

Estándares - Características

CARCTERISTICAS DEL ESTÁNDAR IEEE 802.11a				
	IEEE 802.11a			
Frecuencia longitud de onda	5 Ghz			
Ancho de banda de datos	54 Mbps, 48 Mbps, 36 Mbps, 24 Mbps, 12 Mbps, 6 Mbps			
Medidas de seguridad	WEP, OFPM			
Rango de operación óptima	50 en interiores y 100 en exteriores			
Adaptado para un propósito especifico o para un tipo de dispositivo	Computadoras portátiles móviles en entornos corporativos, puestos de trabajo donde cablear sea un inconveniente			

CARACTERISTICAS DEL ESTÁNDAR IEEE 802.11b				
	IEEE 802.11b			
Frecuencia longitud de onda	2,4 Ghz (2.400 – 2.4835 en America del Norte)			
Ancho de banda de datos 11 Mbps, 5 Mbps, 2 Mbps, 1 Mbps				
Medidas de seguridad	WEP (Wireless Equivalency Protocol) en combinación con espectro de dispersión directa			
Rango de operación óptima	50 metros interiores y 100 metros exteriores			
Adaptado para un propósito especifico o para un tipo de dispositivo	Computadoras portátiles, puestos de trabajo donde cablear presenta dificultades, PDAs			

CARACTERISTICAS DEL ESTÁNDAR IEEE 802.11b

	IEEE 802.11b
Frecuencia longitud de onda	2,4 Ghz (2.400 – 2.4835 en America del Norte)
Ancho de banda de datos	11 Mbps, 5 Mbps, 2 Mbps, 1 Mbps
Medidas de seguridad	WEP (Wireless Equivalency Protocol) en combinación con espectro de dispersión directa
Rango de operación óptima	50 metros interiores y 100 metros exteriores
Adaptado para un propósito especifico o para un tipo de dispositivo	Computadoras portátiles, puestos de trabajo donde cablear presenta dificultades, PDAs

Comunicación y Redes

CAPA FISICA

Conectores de Medios - UTP

Los estándares establecen las dimensiones mecánicas de los conectores y las propiedades eléctricas aceptables de cada tipo de implementación diferente en el cual se implementan.

Conectores de medios de cobre

El conector **RJ-45** definido por ISO 8877

Conectores de medios de cobre Terminación RJ-45

Conector defectuoso: Los hilos están sin trenzar en un trecho demasiado largo.

Conector correcto: Los hilos están sin trenzar sólo en el trecho necesario para unir el conector.

Bloque de inserción a presión 110

Conectores UTP RJ-45

Socket UTP RJ-

Terminación correcta del conector

Conectores de Medios - Fibra Óptica

Errores comunes de empalme y terminación de fibra óptica.

- ➤ Desalineación: los medios de fibra óptica no se alinean con precisión al unirlos.
- >Separación de los extremos: no hay contacto completo de los medios en el empalme o la conexión.
- ➤ Acabado final: los extremos de los medios no se encuentran bien pulidos o puede verse suciedad en la terminación.

El **OTDR** calculará la distancia aproximada en la que se detectan estas fallas en toda la longitud del cable

Estándares

Velocidad de Transmisión Capacidad de Carga Útil

La velocidad de transmisión (throughput) de datos es el rendimiento real de la red. La capacidad de transferencia útil es una medida de la transferencia de datos utilizables una vez que se ha eliminado el tráfico de encabezado de protocolo.

Estándar	Velocidad máxima	Frecuencia	Compatible con modelos anteriores
802.11a	54Mb/s	5 GHz	No
802.11b	11 Mb/s	2,4 GHz	No
802.11g	54Mb/s	2,4 GHz	802.11b
802.11n	600 Mb/s	2,4GHz o 5GHz	802.11a/b/g
802.11ac	1,3 Gb/s (1300 Mb/s)	2,4GHz y 5GHz	802.11a/n
802.11ad	7 Gb/s (7000 Mb/s)	2,4GHz, 5GHz y 60 GHz	802.11a/b/g/n/ac

