Conv. Eletrom. De Energia 2

Análise de Partida Direta e Comportamento de Motor de Indução Trifásico.

Avaliação V Alunos: Luiz Felipe da Cunha Silva <u>João Victor F. Cabral da Silva</u>

Introdução e Objetivos

Motores de indução trifásicos do tipo gaiola de esquilo são amplamente utilizados na indústria devido à sua robustez, simplicidade construtiva e baixo custo de manutenção. Esses motores operam com boa eficiência e são frequentemente empregados em sistemas que não exigem controle fino de velocidade.

- Nesta apresentação, será analisado o comportamento de um motor de indução selecionado no ambiente Simulink/MATLAB, submetido a uma partida direta com carga de 90% do torque nominal.
- 2. Além disso, será feita uma comparação com um motor real da WEG, de características semelhantes, com foco nos aspectos térmicos e de proteção.
- Por fim, serão geradas expressões do torque em função da velocidade e da velocidade em função da corrente, com base nos dados de placa do motor real.

1. Modelo Escolhido no Simulink

Modelo Selecionado:

- Bloco: Asynchronous Machine SI Units
- Tipo de rotor: Gaiola de esquilo (Squirrel-cage)
- Modelo escolhido: Modelo 4 (pré-configurado pelo Simulink)

O que é a partida direta?

A partida direta é o método mais simples de acionamento de motores elétricos. Nela, o motor é ligado diretamente à rede elétrica, recebendo a tensão nominal completa logo no instante da partida.

Características principais:

- Corrente de partida muito elevada (6 a 8 vezes a nominal)
- Torque de partida também alto, proporcional ao quadrado da tensão (∝ V²)
- Simples, barata e sem necessidade de equipamentos auxiliares
- Indicado apenas para cargas leves ou com baixo torque inicial

Limitação:

 Para cargas pesadas ou com torque inicial elevado, o torque de partida pode não ser suficiente, causando falhas na partida ou até rotação reversa, como observado na simulação.

Inicialmente, calculamos o torque nominal da máquina:

$$T_n = \frac{P_n}{\omega_s}$$

$$\omega_s = \frac{n_s \cdot 2\pi}{60} = \frac{1780 \cdot 2\pi}{60} = 186,40 rad/s$$

$$T_n = \frac{37 \times 10^3}{186,40} = 198,5 Nm$$

Deve ser aplicado um torque de 90% de Tn, portanto: 178,65Nm.

Na entrada do bloco inserimos uma constante com os 90% do torque nominal, conforme a Figura:

Nessa situação não existe partida com 90% de torque e tensão nominal (460 V), já que velocidade não evolui para um valor de regime estável.

A falha ocorre porque o torque eletromagnético produzido pelo motor na tensão nominal não é suficiente para superar a soma do torque de carga e das perdas rotacionais em toda a faixa de aceleração.

A corrente permanece em níveis de partida, indicando uma condição de rotor bloqueado.

Como não foi possível realizar partida na situação convencional, foi alterado a tensão na fonte para 20% a mais da tensão nominal do motor, conforme a

figura:

Dia de Deserve		
DIOCK Parame	eters: Three-Phase Programmable Voltage Source	×
Three-Phase Pr	rogrammable Voltage Source (mask) (link)	
(neutral) of the amplitude, pha harmonics can Note: For "Pha	ements a three-phase zero-impedance voltage source. The common node three sources is accessible via input 1 (N) of the block. Time variation for the se and frequency of the fundamental can be pre-programmed. In addition, twe be superimposed on the fundamental. Isor simulation", frequency variation and harmonic injection are not allowed. and Seq=1,2 or 0 to inject additional fundamental components A and B in	
Parameters Positive-sequen	Load Flow ce: [Amplitude(Vrms Ph-Ph) Phase(deg.) Freq. (Hz)] [460 0 60]	10
Time variation o	of: Amplitude	•
Type of variatio	n: Table of time-amplitude pairs	·
☐ Variation on	phase A only	
Amplitude value	s (pu): [1.2 1.0]	
	0.1.0]	
Time values: [0 1.0]	

Portanto, temos os seguintes resultados

tempo de partida de aproximadamente 0,75s.

Portanto, temos os seguintes resultados

Portanto, temos os seguintes resultados

3. Motor WEG semelhante

O motor WEG escolhido foi o W22 IR3 Premium Trifásico

3. Motor WEG semelhante

Conforme a curva do rotor bloqueado frio, observa-se que o motor suporta uma corrente de aproximadamente 8 vezes a nominal, no tempo de 27s.

3. Coordenograma de proteção do motor

Foi elaborado um coordenograma referente a proteção do motor, analisando os parâmetros de corrente de partida, tempo de partida, tempo de rotor bloqueado e proteção do motor.

Definimos o disjuntor MPW80 da WEG, este possui faixa de operação de 50–65A, a curva característica de disparo do disjuntor eh a seguinte:

3. Coordenograma de proteção do motor

Observa-se na figura o coordenograma da proteção do motor de indução estudado.

3. Viabilidade da partida direta

A partida direta é considerada inadequada para o motor em estudo com 90% de torue nominal. A análise revelou uma conclusão dupla: por um lado, a coordenação da proteção é tecnicamente viável, pois o tempo de partida simulado de aproximadamente 0.75s é muito inferior tanto ao tempo de atuação do disjuntor WEG MPW80 (≈5s) quanto ao limite de suportabilidade térmica do motor WEG W22 (27s).

Por outro lado, e de forma mais crítica, a simulação demonstrou que o motor não possui torque suficiente para partir sob a carga especificada em sua tensão nominal, tornando a partida fisicamente inviável. Portanto, a inadequação não reside na segurança da proteção, mas na incapacidade do motor de realizar o trabalho, exigindo a especificação de um motor com maior torque de partida ou um método de partida assistida, como um inversor de frequência.

4. Expressão do Torque em função da Velocidade

Conforme visto em sala de aula pode-se obter a equação de torque em função da velocidade, por meio da seguinte relação:

$$T(n) = \frac{P_{nom}}{2\pi \cdot \frac{n_{nom}}{60}} \cdot \left(\frac{n_s - n}{ns - n_{nom}}\right)$$

$$T(n) = \frac{37 \times 10^3}{2\pi \cdot \frac{1780}{60}} \cdot \left(\frac{1800 - n}{20}\right)$$

$$T(n) = 198.5 \cdot \left(\frac{1800 - n}{20}\right)$$

4. Expressão Velocidade em função da Corrente

Conforme visto em sala de aula pode-se obter a equação de velocidade em função da corrente, por meio da seguinte relação:

$$n(I) = n_s + \left(\frac{I - I_0}{I_{nom} - I_0}\right) (n_{nom} - n_s)$$

$$n(I) = 1800 + \left(\frac{I - 26.4}{61.9 - 26.4}\right) (1800 - 1780)$$

$$n(I) = 1800 + \left(\frac{I - 26.4}{35.5}\right) \cdot 20$$

Conclusão

A análise da partida direta para o motor de 50 HP com 90% de carga nominal conclui que, embora o sistema de proteção seja adequadamente coordenado, o método de partida é inadequado devido à insuficiência de torque.

A simulação em MATLAB/Simulink demonstrou que o motor de uso geral não parte na tensão nominal de 460V, sendo necessária uma sobretensão para validar a partida em 0.75s, o que evidencia a relação fundamental entre torque e tensão.

A coordenação com um motor e disjuntor WEG equivalentes se mostrou segura, com o tempo de partida (0.75s) sendo muito inferior ao tempo de atuação da proteção (~5s) e ao limite de suportabilidade do motor (27s).

Referências

FITZGERALD, A. E.; KINGSLEY, C.; UMANS, S. D.

Máquinas elétricas. 7. ed. Porto Alegre: Bookman, 2014.