CS 188: Artificial Intelligence Conclusion

Dan Klein, Pieter Abbeel

University of California, Berkeley

Contest Results

P1 Mini-Contest Results!

P2 Mini-Contest Results!

Final Contest

Final Contest Results!

 Challenges: Long term strategy, multiple agents, adversarial utilities, uncertainty about other agents' positions, plans, etc.

Starcraft

Starcraft

What is Starcraft?

Image from Ben Weber

Why is Starcraft Hard?

- The game of Starcraft is:
 - Adversarial
 - Long Horizon
 - Partially Observable
 - Realtime
 - Huge branching factor
 - Concurrent
 - Resource-rich
 - ...
- No single algorithm (e.g. minimax) will solve it off-the-shelf!

Starcraft Als: AIIDE 2010

28 Teams: international entrants, universities, research labs...

The Berkeley Overmind

http://overmind.eecs.berkeley.edu

Search for Pathing

Minimax for Targeting

Machine Learning for Micro Control

Inference / VPI / Scouting

[Scouting]

AIIDE 2010 Competition

Pac-Man Beyond the Game!

Pacman: Beyond Simulation?

Bugman?

- AI = Animal Intelligence?
 - Wim van Eck at Leiden University
 - Pacman controlled by a human
 - Ghosts controlled by crickets
 - Vibrations drive crickets toward or away from Pacman's location

[DEMO]

http://pong.hku.nl/~wim/bugman.htm

Where to Go Next?

Where to go next?

Congratulations, you've seen the basics of modern AI

... and done some amazing work putting it to use!

How to continue:

Machine learning: cs189

Convex optimization: ee127

Cognitive modeling: cog sci 131

Graphical models: cs281a

Learning theory: cs281b

■ Vision: cs280

Robotics: cs287

NLP: cs288

... and more; ask if you're interested

Next term:

cs189, ee127, cog sci 131, cs281, cs281b

That's It!

Help us out with some course evaluations

Have a good break, and always maximize your expected utilities!

