Aufgabenblatt 9

Wenn Sie sich für das Niveau A der Übungen entschieden haben, brauchen Sie nur die ersten drei der folgenden Aufgaben zu bearbeiten.

Aufgabe 1. (Flächenberechnung) Skizzieren Sie jeweils den Graphen von f und berechnen Sie dann den Gesamtflächeninhalt des Gebietes, das zwischen der x-Achse und dem Graphen von f eingeschlossen ist.

(a)
$$f(x) = 1 - |x| + \frac{1}{2}x$$
 für $-2 \le x \le 2$,

(b)
$$f(x) = x^3 - x^2 - 2x$$
 für $-1 < x < 2$. (4 Punkte)

Aufgabe 2. (Stammfunktionen) Sei c > 0 gegeben. Überprüfen Sie folgende Stammfunktionen, indem Sie jeweils die Ableitungen berechnen:

(a)
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right|$$
 für $x^2 \neq 1$, (b) $\int \frac{dx}{c+x^2} = \frac{1}{\sqrt{c}} \arctan(\frac{x}{\sqrt{c}})$,

(c)
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) \quad \text{für } |x| < 1,$$

(d)
$$\int \frac{dx}{\sqrt{x^2 - 1}} = \operatorname{arcosh}(x)$$
 für $x > 1$, wobei $\operatorname{arcosh}: \mathbb{R}_{>1} \to \mathbb{R}_{>0}$ eine Umkehrfunktion von cosh bezeichnet.

Hinweise: Zu (d): Es gilt $\cosh^2(x) - \sinh(x)^2 = 1$ für alle x, wobei $\sinh(x) = \cosh'(x)$. (Wieso?) Ausserdem bei (c) und (d) Umkehrregel für Ableitungen verwenden.

(6 Punkte)

Aufgabe 3. (Partielle Integration) Sei a > 1 und $n \in \mathbb{N}$. Berechnen Sie mit partieller Integration folgende Integrale:

$$\int_0^{\pi} (x^2 + 1) \sin(x) dx, \qquad \int_1^a x^n \ln(x) dx, \qquad \int_0^a \sinh^2(x) dx.$$
 (4 Punkte)

Aufgabe 4. (Riemannsummen) Sei a > 0 vorgegeben.

- (a) Zeigen Sie durch vollständige Induktion: $\sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2$ für alle $n \in \mathbb{N}$.
- (b) Berechnen Sie nun mithilfe von Riemannsummen das Integral $\int_0^a x^3 dx$.

(3 Punkte)

Aufgabe 5. (Eindeutigkeit der Logarithmusfunktion) Sei $f: \mathbb{R}_{>0} \to \mathbb{R}$ stetig differenzierbar mit f(1) = 0, f'(1) = 1 und f(xy) = f(x) + f(y) für alle x, y > 0. Schliessen Sie hieraus, dass f mit dem natürlichen Logarithmus übereinstimmt.

Hinweis: Leiten Sie das Logarithmengesetz auf beiden Seiten nach x ab (wobei Sie als konstant betrachten). (3 Punk	
Und hier noch zwei Verständnisfragen zur Selbstkontrolle:	
Frage 1 . (Riemannsummen) Sei f eine integrierbare Funktion auf $[a, b]$, und sei er Folge von Zerlegungen des Intervalls gewählt, deren Feinheit gegen Null geht. Weld der folgenden Aussagen sind korrekt?	
(a) Die entsprechenden Riemannobersummen konvergieren gegen das Integral von über $[a,b].$	ı f
(b) Die Differenz zwischen Riemannobersumme und Riemannuntersumme für die esprechenden Zerlegungen konvergiert gegen Null.	nt-
(c) Die entsprechenden Riemannobersummen konvergieren gegen denselben Grenzwwie die entsprechenden Riemannuntersummen.	ert
Frage 2. (Stammfunktionen) Welche der folgenden Aussagen sind korrekt?	
(a) Jede integrierbare Funktion hat eine Stammfunktion.	
(b) Jede stetige Funktion hat eine Stammfunktion.	
(c) Jede elementare Funktion hat eine elementare Stammfunktion.	

Abgabe der Aufgaben: Donnerstag, den 18. November 2021, bis 12.30 Uhr als .pdf via ADAM bei Ihrem Tutor bzw. Ihrer Tutorin.