Assignment 6

Stat 623

Due on Thursday Nov 19, 2020

- 1. Thall and Vail (1990) give a data set (seizure.data) on two-week seizure counts for 59 epileptics. The number of seizures was recorded for a baseline period of 8 weeks, and then patients were randomly assigned to a treatment group or a control group. Counts y_1, y_2, y_3 and y_4 were then recorded for four successive two-week periods. The subject's age is the only covariate. Treatments were either a 'placebo' (0) or 'progabide' (1). The counts in the baseline 8-week period are given by the variable base. For simplicity, we shall only consider y_4 as our response variable and ignore counts y_1, y_2 and y_3 .
 - (a) Fit a Poisson regression model to the response variable y_4 that makes use of subject's age, treatment group assigned and baseline counts. Summarize your results using Tables and graphs. What conclusions do you draw from the analysis?
 - (b) Perform residual analysis to the above model. What conclusions do you draw?
 - (c) Fit a negative binomial regression to y_4 with subject's age, treatment group assigned and baseline counts. Summarize your results using Tables and graphs.
 - (d) Does a negative binomial regression provide a better fit to the data? If yes, how would you justify this.
- 2. Suppose that y follows an exponential distribution with mean μ . That is

$$f(y) = \mu^{-1}e^{-y/\mu}, \quad y > 0, \mu > 0.$$

In homework 4, you wrote down the pdf of y as

$$\exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}.$$

and identified θ , $b(\theta)$, ϕ , $a(\phi)$ and $c(y, \phi)$.

(a) Suppose that y_1, y_2, \ldots, y_n are n independent random variables and y_i follows an exponential distribution with mean μ_i . Furthermore, assume that

$$g(\mu_i) = \eta_i = x_i^T \beta,$$

for some suitable link function g. Let $r_{d,i}, r_{p,i}, r_{a,i}$ and $r_{w,i}$ respectively denote the deviance, Pearson, Anscombe and working residuals for the i observation y_i after fitting a generalized regression model. Write down formulas for $r_{d,i}, r_{p,i}, r_{a,i}$ and $r_{w,i}$ in terms of y, X, θ, μ, b and g.

(b) Simplify the expressions in 1(b) when g is the canonical link function.