ET5302701

Homework Assignment #2

Date: October 11, 2024. Instructor: M. B. Lin

Due Date: November 1, 2024.

Homework is due at the class beginning. Please note that **NO late homework** will be accepted. Working together on homework is encouraged, but copying assignments will not be allowed.

- 1. Consider the switching function of XOR gate: $f(x,y) = \bar{x}y + x\bar{y}$.
 - (a) Prove that $f(x,y) = \overline{x+y} + xy$.
 - (b) Realize it using a CMOS logic circuit. Your design must be limited to use 10 transistors at most.
 - (c) Use HSPICE to verify the functionality of the resulting circuit. What is the maximum propagation delay of the resulting circuit?
 - (d) Draw the pMOS and nMOS logic graphs and find the Euler paths.
 - (e) Design and carry out a physical layout.
 - (f) Use HSPICE to verify the functionality and estimate the maximum propagation delay of the resulting physical layout.
- 2. Consider the switching function of the XNOR gate: $f(x,y) = xy + \bar{x}\bar{y}$.
 - (a) Prove that $f(x,y) = \overline{\overline{xy} \cdot (x+y)}$.
 - (b) Realize it using a CMOS logic circuit. Your design must be limited to use 10 transistors at most.
 - (c) Use HSPICE to verify the functionality of the resulting circuit. What is the maximum propagation delay of the resulting circuit?
 - (d) Draw the pMOS and nMOS logic graphs and find the Euler paths.
 - (e) Design and construct a physical layout.
 - (f) Use HSPICE to verify the functionality and estimate the maximum propagation delay of the resulting physical layout.