55
$$f'(x) = 3x^2 + 1$$
; $g'(x) = 4x^3 - 6x$.
56 • $f = u^3$ avec $u(x) = 2x + 1$; on lit dans le formulaire d'examen : $(u^{\alpha})' = \alpha u^{\alpha - 1} u'$;

Ainsi: $f'(x) = 3(2x + 1)^2 \times 2 = 6(2x + 1)^2$. • g = uv avec u(x) = x + 2 et $v(x) = e^x + 1$ d'où: g' = u'v + uv'; u'(x) = 1 et $v'(x) = e^x$ ainsi: $g'(x) = e^x + 1 + (x + 2)e^x = xe^x + 3e^x + 1$.

59 • $f(x) = e^{u(x)}$ avec u(x) = 2x + 3 d'où : $f'(x) = e^{u(x)} \times u'(x)$; u'(x) = 2

 $d'où : f' = 3u^2u' ; u'(x) = 2.$

ainsi: $f'(x) = 2e^{2x+3}$.