Date: 2024/08/05 ~ 2024/08/11

	Progress	To-do(short term)	Goal(long term)
김지윤	● T-BFA 코드 기반 Stochastic-Shield 기법 구현	 Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack 리뷰 및 코드 분석 	 INT8 QNN Adversarial Robustness 연구(~11.30) BFA / Adversarial attack Defense Method 분석 각 Method 별 성능 비교 및 한계점 분석
박형동	 Aliasing Triple 기반 bit flip 확률 계산 DDR5 구조 이해 	 Reparameterization 리뷰 논문 본문 작성 완료 Aliasing Triple Intro 작성 Aliasing Triple 본문 작성 	 Reparameterization 논문 완성 (~08.31) Aliasing Triple(가제) 논문 완성 (~08.31) BNN 에 majority voter 적용(~9.30)
여인국	 Reparameterization 리뷰 논문 3장 Figure 작성 완료 128bits ECC, verilog 합성 Aliasing Triple (가제) Intro 작성 	 Reparameterization 리뷰 논문 3장 Figure 작성 완료 Aliasing 현상 완화를 위한 방안 탐색 Aliasing Triple (가제) Intro 완료 	 Aliasing현상에 효과적인 in dram ecc 작성 (~09.30) Reparameterization 논문 완성 (~08.31) Aliasing Triple(가제) 논문 완성 (~08.31)
이수학	 Nonhomogeneous LDPC codes and their application to encrypted communication (2011) 리뷰 유한체 정리 	 Research Article Joint Scheme for Physical Layer Error Correction and Security (2011) 리뷰 A joint encryption and error correction scheme based on chaos and LDPC (2018) 리뷰 	● joint LDPC encoding and AES 논문 초안 작성 (~9.30)
여희주	 Physical layer error correction based cipher (2010) 리뷰 (진행중) 	 Joint scheme for physical layer error correction and security (2011) 리뷰 Enhanced cryptcoding: Joint security and advanced dual-step quasi-cyclic LDPC coding (2015) 리뷰 	● joint LDPC encoding and AES 논문 초안 작성 (~9.30)
이수현	 NeuroSim_V1.4 ResNet18 훈련 시도 WAGE Quantization paper 리뷰 	● NeuroSim_V1.4 ResNet18 훈련 결과 도출	● NeuroSim을 활용한 XNOR-Net++ 구현 (~8.31)
이성현	● NeuroSim_V1.4 code 분석 (진행 중)	● NeuroSim pytorch wrapper에서 model 만들기	● NeuroSim을 활용한 XNOR-Net++ 구현 (~8.31)