In [1]: #problem statement

#a real state agents want help to predict the house price for regions in the usa.
#he gave you the dataset to work on and you decided to use the linear regression model.
#create a model that will help him to eliminate of what the house would sell for.

In [2]: import numpy as np

import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

from sklearn import preprocessing, svm

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701	
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA	
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482	
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820	
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386	
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Williams\nFPO AP 30153-7653	
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 9258, Box 8489\nAPO AA 42991- 3352	
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tracy Garden Suite 076\nJoshualand, VA 01	
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace\nFPO AE 73316	
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 George Ridges Apt. 509\nEast Holly, NV 2	

5000 rows × 7 columns

In [4]: df.head(10)

Out[4]:

•	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael Ferry Apt. 674∖nLaurabury, NE 3701
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raymond\nFPO AE 09386
5	80175.754159	4.988408	6.104512	4.04	26748.428425	1.068138e+06	06039 Jennifer Islands Apt. 443\nTracyport, KS
6	64698.463428	6.025336	8.147760	3.41	60828.249085	1.502056e+06	4759 Daniel Shoals Suite 442\nNguyenburgh, CO
7	78394.339278	6.989780	6.620478	2.42	36516.358972	1.573937e+06	972 Joyce Viaduct\nLake William, TN 17778-6483
8	59927.660813	5.362126	6.393121	2.30	29387.396003	7.988695e+05	USS Gilbert\nFPO AA 20957
9	81885.927184	4.423672	8.167688	6.10	40149.965749	1.545155e+06	Unit 9446 Box 0958\nDPO AE 97025

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5000 entries, 0 to 4999
        Data columns (total 7 columns):
            Column
                                          Non-Null Count Dtype
            Avg. Area Income
                                          5000 non-null float64
            Avg. Area House Age
                                                        float64
                                          5000 non-null
           Avg. Area Number of Rooms
                                          5000 non-null
                                                        float64
            Avg. Area Number of Bedrooms
                                         5000 non-null
                                                        float64
           Area Population
                                                        float64
                                          5000 non-null
         5 Price
                                          5000 non-null
                                                        float64
            Address
                                          5000 non-null
                                                        object
        dtypes: float64(6), object(1)
        memory usage: 273.6+ KB
```

In [6]: df.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

```
In [7]: df.columns
```

```
In [8]: sns.pairplot(df)
```

Out[8]: <seaborn.axisgrid.PairGrid at 0x1b31c81b750>

Price

1e6

```
In [10]: sns.displot(df['Area Population'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1b33cb20050>

In [12]: sns.heatmap(Housedf.corr())

Out[12]: <Axes: >


```
In [13]: x=Housedf[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
                 'Avg. Area Number of Bedrooms', 'Area Population']]
         y=df['Price']
In [14]:
         from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.3,random state=101)
In [15]: from sklearn.linear model import LinearRegression
         lm=LinearRegression()
         lm.fit(x train,y train)
          print(lm.intercept )
          -2641372.6673014304
In [16]: coeff df=pd.DataFrame(lm.coef ,x.columns,columns=['coefficient'])
In [17]: coeff df
Out[17]:
                                        coefficient
                      Avg. Area Income
                                         21.617635
                   Avg. Area House Age 165221.119872
             Avg. Area Number of Rooms 121405.376596
          Avg. Area Number of Bedrooms
                                       1318.718783
                       Area Population
                                         15.225196
```

```
In [19]: predictions=lm.predict(x_test)
    plt.scatter(y_test, predictions)
```

Out[19]: <matplotlib.collections.PathCollection at 0x1b33fbdbf90>


```
In [21]:
    sns.displot((y_test,predictions),bins=50);
    from sklearn import metrics
    print('MAE:',metrics.mean_absolute_error(y_test,predictions))
    print('MSE:',metrics.mean_squared_error(y_test,predictions))
    print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.55795855941 MSE: 10169125565.897606 RMSE: 100842.08231635048

In []:	
In []:	