Examen de Théorie des Graphes

Document autorisé: 1 page manuscripte recto-verso

Vendredi 27 Mars 2015

Les quatre exercices sont indépendants.

Exercice 1: Multiplication latine

On considère quatre villes v_1 , v_2 , v_3 , v_4 dans un pays où le trafic aérien est encore très réduit : il existe seulement un vol direct de v_1 vers v_2 et vers v_4 , de v_2 vers v_3 , de v_3 vers v_1 et vers v_4 , de v_4 vers v_2 .

- 1. Modélisez ce problème par un graphe,
- 2. Vérifier qu'il existe au moins un vol de chaque ville v_i vers chaque ville v_j , $i \neq j$, comportant au plus deux escales.
- 3. Ecrivez la matrice d'adjacence M associée à ce graphe.
- 4. En utilisant la multiplication latine, trouvez tous les trajets d'une ville à l'autre effectuant une escale.
- 5. Calculez M^2 et M^3 (multiplication classique de matrice), et retrouvez le résultat de la question 2.

Exercice 2 : Une propriété des graphes bipartis

Montrer qu'un graphe est biparti si et seulement si il ne content aucun cycle de longueur impaire.

Exercice 3: Notion de rang sur les DAG

Le graphe orienté G est sans circuit (appelé DAG) si et seulement si on peut attribuer un nombre r(v), appelé le rang de v, à chaque sommet v de manière que pour tout arc (u, v) de G on ait

$$r(u) < r(v) \tag{1}$$

- 1. Montrer que si G a un cycle, alors il n'est pas possible d'attribuer un rang à chaque sommet vérifiant la propriété (1).
- 2. Proposer un algorithme (pseudo-code) permettant d'associer un rang à tout sommet d'un DAG.

Exercice 4 : Propriétés des arbres

Montrer l'équivalence des propositions suivantes pour un graphe G connexe

- 1. G est sans cycle et a n-1 arêtes;
- 2. G est connexe et non connexe dès qu'on enlève une arête.