EE 360C – ALGORITHMS

Lecture 5 Complexity - 1

Vallath Nandakumar
University of Texas at Austin

"You'll only use the terms 'surjection,' 'injection,' and 'bijection' if you drink your beer out of a frosted glass. If you drink it from the bottle, you'll use 'one-to-one' and 'onto."

Proof-writing professor

Agenda

- Last class
 - Stable matching
- This class
 - Time complexity of algorithms

DEFINITION OF ALGORITHM

- Definition of Algorithm
 - Any well-defined computational procedure
 - Takes some value or set of values as input
 - Produces some value or set of values as output
- Algorithm
 - Sequence of computational steps that transforms input to output
 - Tool for solving well-specified computational problem
 - "Correct" if for every input instance halts with correct output
 - "Solve" computational problem if correct

ALGORITHM ANALYSIS BASICS

- Analyzing Algorithm
 - Predicting resources that algorithm requires
 - Need model of implementation technology to underlie analysis

Goal

 Develop (correct) efficient algorithms as solutions to well-defined problems

- Definition 1: Algorithm efficient if when implemented, it runs quickly on real input instances
- Limitations of Definition 1
 - Vague
 - Even bad algorithm can run fast when applied to small test cases
 - Good algorithms can run slow when implemented poorly
 - What is "real" input instance?
 - May not know a priori
 - Definition doesn't consider how well algorithm performance scales as problem size grows

- Ideally, would like definition of algorithm efficiency that is
 - Platform-independent
 - Instance-independent
 - Predictive value with respect to increasing instance sizes
- Example
 - Stable matching problem has size N, total sizes of input preferences lists
 - n men and n women, each with preference list of n length
 - $N = 2n^2$

ALGORITHM EFFICIENCY
Gredel, Escher, Bach

Input Size

- Definition depends on particular computational problem
 - · Generally running time grows with size of input

Running Time

- Number of primitive operations or steps executed
 - Should be machine independent
 - Assume constant amount of time required to execute each line of pseudocode

- Worst-case running time
 - Worst possible running time algorithm could have over all inputs of size N
- Average-case running time
 - Average running times over "random" instances

- Definition 2: Algorithm efficient if achieves qualitatively better worst-case performance at analytical level than brute-force search
- Limitations of Definition 2
 - Little vague What qualifies as "qualitatively better"?
- Example: Consider stable matching algorithm
 - Brute-force search generates all n! possible pairings
 - Running time on order of n² better

- Definition 3: Algorithm efficient if has polynomial running time
 - Precise definition and also negatable

- Limitation of Definition 3
 - Running time of n¹⁰⁰ not great
 - Running time of $n^{1+.02(\log n)}$ not bad

- Brute Force
 - For many non-trivial problems, natural search algorithm that checks every possible solution
 - Typically takes 2^N time or worse for size N
 - Unacceptable in practice for large input size
- Desirable Scaling Property
 - When input size doubles, algorithm should only slow down by some constant factor C
 - There exists constants c > 0 and d > 0 such that on every input size N
 - -Running time bounded by cNd steps
 - Algorithm considered poly-time if property holds

RUNNING TIMES

Running times for algorithms

• On processor executing million instructions per second

	n	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

ASYMPTOTIC NOTATION

- Asymptotic Efficiency
 - How running time of algorithm scales with increasing input size in limit
- Goal to identify similar classes of algorithms with similar behavior
 - Measure running times in number of primitive "steps" algorithm must perform

ASYMPTOTIC BOUNDS

- Not necessary to be precise about running times
 - Care about rates of growth

- Represent asymptotic running time of algorithm
 - Growth rate relative to input size
 - Independent of constant factors

ASYMPTOTIC UPPER BOUNDS: O-NOTATION

- \blacksquare Given function T(n) representing algorithm's running time
 - T(n) is O(f(n)) ("T(n) is order f(n)")
 - For sufficiently large n, T(n) bounded above by constant multiple of f(n)
- Definition
 - Given g(n), O(g(n)) denotes set of functions
 - $O(g(n)) = \{f(n) : \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- $\mathcal{O}(g(n))$ is set, but usually notation abused
 - f(n) = O(g(n))

O-NOTATION

- For all values of n to right of n_0
 - Value of f(n) on or below cg(n)
 - g(n) upperbound for f(n)

O-NOTATION: EXAMPLE

- $T(n) = pn^2 + qn + r$ is in $O(n^2)$
 - $T(n) = pn^2 + qn + r \le pn^2 + qn^2 + rn^2 = (p + q + r)n^2$ for all $n \ge 1$
- \blacksquare Required definition of O(·):
 - $T(n) \le cn^2$, where c = p + q + r

O-NOTATION: EXAMPLE

30+5

O-NOTATION

- Some texts use O to informally describe asymptotically tight bounds (i.e., when we use Θ)
- O-notation useful in quickly and easily bounding running time of algorithm by inspection

iClicker – running time of insertion sort

1. O(n) 2. $O(n^2)$ 3. $O(n\log n)$ 4. $O(n^3)$

In the worst case, the running time of insertion sort is:

A. 1

B. 2

C. 1, 2, 3

D. 2, 4

E. 2, 3, 4

ASYMPTOTIC LOWER BOUNDS: Ω -NOTATION

- Lower bounds useful for stating algorithm's running time is at least some magnitude
- Definition
 - Given f(n), $\Omega(g(n))$ denotes set of functions
 - $\Omega(g(n)) = \{f(n) : \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Ω -NOTATION

- For all values of n to right of n_0
 - Value of f(n) on or below cg(n)
 - g(n) lowerbound for f(n)

Ω-NOTATION EXAMPLE

$$T(n) = pn^2 + qn + r$$
 is in $\Omega(n^2)$

•
$$T(n) = pn^2 + qn + r \ge pn^2$$
 for all $n \ge 0$

- lacksquare Required definition of $\Omega(\cdot)$:
 - $T(n) \ge cn^2$, where c = p

iClicker – running time of insertion sort

1. $\Omega(n)$ 2. $\Omega(n^2)$ 3. $\Omega(\log n)$ 4. $\Omega(\operatorname{sqrt}(n))$

In the worst case, the running time of insertion sort will be:

A. 1, 2, 3

B. 1, 2, 3, 4

C. 2

D. 1, 3, 4

ASYMPTOTIC TIGHT BOUNDS: ⊕-NOTATION

- If running time T(n) both O(f(n)) and $\Omega(f(n))$, then tight bound

 Definition $3x^2 + 5x + C + C + C$
 - Given f(n), $\Theta(g(n))$ denotes set of functions
 - $\Theta(g(n)) = \{f(n) : \text{ there exists positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

$$3x^2+5n+1 \in O(n^2)$$
 7
 $4x^2$ is an upfer bound $SD(x^2)$?
1.5 x^2 is a (over bound $n > 00$)

O-NOTATION

- For all values of n to right of n_0
 - Value of f(n) at or above $c_1g(n)$ and at or below $c_2g(n)$
 - *g*(*n*) lowerbound for *f*(*n*)

