Уровень 3

Шарик, коэффициент объемного расширения которого β , взвешивается в жидкости при температурах t_1 и t_2 . Вес вытесненной жидкости равен соответственно P_1 и P_2 . Определите коэффициент объемного теплового расширения жидкости β_1 .

Решение:

Пусть при t=0°С объем шарика равен V_0 , а плотность жидкости ρ_0 .

Вес вытесненной в обоих случаях жидкости равен произведению удельного веса жидкости на объем шарика при соответствующих температурах. Поэтому

$$\frac{P_1}{P_2} = \frac{\rho_1 g V_1}{\rho_2 g V_2}.$$

Отношение объемов шарика при температурах t_1 и t_2 :

$$\frac{V_1}{V_2} = \frac{V_0}{V_0} \frac{(1+\beta t_1)}{(1+\beta t_2)},$$

а отношение плотностей жидкости

$$\frac{\rho_1}{\rho_2} = \frac{\rho_0 (1 + \beta_1 t_2)}{\rho_0 (1 + \beta_1 t_1)}.$$

Отсюда

$$\frac{P_1}{P_2} = \frac{(1+\beta t_1)(1+\beta_1 t_2)}{(1+\beta t_2)(1+\beta_1 t_1)}.$$

Пренебрегая членами, содержащими произведение $\beta\beta_1$, вследствие их малости по сравнению с членами, содержащими β и β_1 , имеем:

$$\frac{P_1}{P_2} = \frac{1 + \beta_1 t_2 + \beta t_1}{1 + \beta_1 t_1 + \beta t_2} \; .$$

Решив это уравнение относительно β_1 , получим:

$$\beta_1 = \frac{P_2(1+\beta t_2) - P_1(1+\beta t_1)}{P_1 t_1 - P_2 t_2} \,.$$

Omsem:
$$\beta_1 = \frac{P_2(1+\beta t_2) - P_1(1+\beta t_1)}{P_1 t_1 - P_2 t_2}$$
.

Уровень 4

Стеклянная колба вмещает m_1 =330гр ртути при температуре t_1 =0°C и m_2 =325гр при t_2 =100°C. определить коэффициент линейного расширения стекла, если температурный коэффициент объемного расширения ртути γ_1 =0,00018°C⁻¹.

Решение:

Объем ртути в колбе при 0°C

$$V_1 = \frac{m_1}{\rho_1} \,, \tag{1}$$

а при 100°C

$$V_2 = \frac{m_2}{\rho_2} = \frac{m_2(1 + \gamma_1 t_2)}{\rho_1}, (2)$$

где ρ_1 - плотность ртути при 0°С.

Объем колбы при 0°С тоже V_1 , а после нагревания до температуры t_2 ее объем

$$V_2 = V_1(1 + \gamma_2 t_2)$$
,

где γ_2 - температурный коэффициент объемного расширения стекла. Учитывая равенства (1) и (2), получаем:

$$\frac{m_2(1+\gamma_1t_2)}{\rho_1} = \frac{m_1(1+\gamma_2t_2)}{\rho_1},$$

откуда

$$\gamma_2 = \frac{m_2(1 + \gamma_1 t_2) - m_1}{m_1 t_2} .$$

Т.к. температурные коэффициенты объемного и линейного расширения связаны простым соотношением

$$\gamma = 3\alpha$$
,

то искомый температурный коэффициент линейного расширения стекла

$$\alpha = \frac{m_2(1 + \gamma_1 t_2) - m_1}{3m_1 t_2};$$

 $\alpha = 0.000026^{\circ}\text{C}^{-1} = 26 \cdot 10^{-7} \,^{\circ}\text{C}^{-1}$.

Omeem: $\alpha = 26 \cdot 10^{-7} \, {}^{\circ}C^{-1}$.

Уровень 5

На сколько отстают за сутки маятниковые часы, если температура станет на 20° С выше той, при которой часы были сверены. Маятник часов железный.

Решение:

Период колебаний маятника данных часов (если считать его математическим) можно определить по формуле:

$$T=2\pi\sqrt{\frac{l}{g}}.$$

После повышения температуры длина маятника увеличится:

$$l_1 = l(1 + \alpha \Delta T)$$
,

поэтому

$$T_1 = 2\pi \sqrt{\frac{l_1}{g}} = 2\pi \sqrt{\frac{l(1+\alpha\Delta T)}{g}} \; .$$

Отставание часов за сутки равно

$$\Delta t = (T_1 - T) \cdot n,$$

где $n = \frac{t}{T_1}$ - число колебаний маятника.

T.o.

$$\Delta t = (1 - \frac{T}{T_1}) \cdot t = (1 - \frac{2\pi\sqrt{\frac{l}{g}}}{2\pi\sqrt{\frac{l(1 + \alpha\Delta t)}{g}}}) \cdot t = (1 - \frac{1}{\sqrt{1 + \alpha\Delta T}}) \cdot t.$$

Значение коэффициента линейного расширения железа $\alpha = 1,2$ $10^{-5}\,\mathrm{K}^{-1}$ находим из таблицы.

Числовое значение:

$$\Delta t = (1 - \frac{1}{\sqrt{1 + 12 \cdot 10^{-6} \cdot 20}}) \cdot 24 \cdot 3600 = 10,4(c)$$

Ответ: $\Delta t = 10,4$ с.