Modelling area-wide count outcomes with a spatial autoregressive model: An Analysis of Chicago Taxi Trips Data

Dongping Zhang | <dpzhang@uchicago.edu>
M.A. in Computational Social Science | The University of Chicago

Background

• Spatial Autocorrelation:
the correlation of a variable with itself
through space, which violates OLS
assumption of independence of
observations.

Data & Methods

- Taxi ridership is aggregated by 77
 Chicago communities and is analyzed by relating it to three categories of community-level variables.
- A spatial autoregressive model is implemented to account for the spatial dependence of taxi ridership.
- Three different spatial weights are used to test sensitivity, and they are queen-contiguity, rook-contiguity, and distance-based weights.

Global Model

$$log(\mathbf{PICKUPS}_i) = \beta_0 + \sum_{j=1}^{5} \beta_j X_{ij} + \beta_6 log(\mathbf{COMP})_i + \epsilon_i$$

List of Dependent Variables

Variable	Definition
PICKUPS	aggregated pickup density

List of Independent Variables

List of Independent variables				
Category 1: Socio-demographic				
Variable	Definition			
COMMUTER	density of commuters			
\mathbf{HARD}	the hardship index			
Category 2: Built-environment				
Variable	Definition			
RESP	% residential land			
\mathbf{COMP}	% commercial land			
Category 3: Urban-transportation				
Variable	Definition			

bus stops density

dummy L'Train stations

 \mathbf{BUSPA}

LTRAIND

Spatial Autocorrelation of Pickups per acre by Moran's I

Lagrange Multiplier Test for Spatial Dependence

Weight	S	Queen-	contiguity	Rook-c	contiguity	Distan	ce-based
Description	Test	χ^2	P-value	χ^2	P-value	χ^2	P-value
Spatial Lag	$\overline{LM_{ ho}}$	7.7862	0.00526**	8.1787	0.00424**	7.4904	0.00620**
Robust Spatial Lag	$LM_{ ho}^*$	6.4823	0.01090*	5.8552	0.01553^*	6.4515	0.01109*
Spatial Error	$\overline{LM_{\lambda}}$	1.9637	0.16111	2.7183	0.09920	1.2543	0.26274
Robust Spatial Error	LM_{λ}^{*}	0.6598	0.41662	0.3948	0.52980	0.2154	0.64260

Note: *p<0.05; **p<0.01

Spatial Autoregressive Model (Lag Model)

$$Y = \rho WY + X\beta + \epsilon$$

or

$$log(PICKUPS_i) = \rho W log(PICKUPS_i)$$

$$+ \beta_0 + \sum_{j=1}^{5} \beta_j X_{ij} + \beta_6 \log(\mathbf{PARK})_i + \epsilon_i$$

where ρ is the autoregressive coefficient

 $oldsymbol{W}$ is the spatial weighting matrix

and \boldsymbol{W} $log(\boldsymbol{PICKUPS_i})$ is the spatially lagged dependent

Results

	$Dependent\ variable:$				
	$\log(\text{TOTALPA})$				
	$Global\ Model$	$Spatial\ Autoregressive$			
	(OLS)	(SAR)			
ρ (spatial lag)		0.470***			
		(0.092)			
COMMUTER	0.144***	0.081***			
	(0.033)	(0.030)			
HARD	-0.032***	-0.024***			
	(0.006)	(0.005)			
RESP	-4.821***	-3.307***			
	(1.218)	(1.051)			
$\log(\text{COMP})$	0.498*	0.404*			
	(0.276)	(0.227)			
BUSPA	21.234***	11.151**			
	(6.364)	(5.414)			
LTRAIND	0.982***	0.567^{*}			
	(0.348)	(0.301)			
Constant	4.593***	3.423***			
	(1.271)	(1.075)			
$ m R^2$	0.82	0.87			
σ^2	1.35528	0.914			
Akaike Inf. Crit.	248.586	231.576			
Residual Std. Error	1.164 (df = 70)	0.956 (df = 69)			
F Statistic	$53.366^{***} (df = 6; 70)$				
Note: $\#obs. = 77$	*p<	(0.1; **p<0.05; ***p<0.01			

Conclusion

for both models

- Global Moran's I and the residuals of global model confirms spatial autocorrelation.
- A spatial autoregressive model greatly outperforms global OLS model in modelling community taxi demand.

Special Thanks

I would like to express my sincerest gratitude to Dr. Luc Anselin, Dr. Rick Evans, Dr. Ben Soltaff, and Ms. Ging Cee Ng for your teaching, guidance, and support throughout the quarter.