Package 'LMoFit'

May 14, 2024

Type Package

Title Advanced L-Moment Fitting of Distributions

Version 0.1.7

Description A complete framework for frequency analysis is provided by 'LMoFit'. It has functions related to the determination of sample L-moments as in Hosking, J.R.M. (1990) <doi:10.1111/j.2517-6161.1990.tb01775.x>, the fitting of various distributions as in Zaghloul et al. (2020) <doi:10.1016/j.advwatres.2020.103720> and Hosking, J.R.M. (2019) https://CRAN.R-project.org/package=1mom>, besides plotting and manipulating L-space diagrams as in Papalexiou, S.M. & Koutsoyiannis, D. (2016) <doi:10.1016/j.advwatres.2016.05.005> for two-shape parametric distributions on the L-moment ratio diagram. Additionally, the quantile, probability density, and cumulative probability functions of various distributions are provided in a user-friendly manner.

Maintainer Mohanad Zaghloul <mohanad.zaghloul@usask.ca>

Depends R (>= 3.3)

Imports lmom, pracma, stats, ggplot2, sf, utils

License GPL-3

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.1.0

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Repository CRAN

Date/Publication 2024-05-14 07:33:23 UTC

R topics documented:

com_sam_lspace	
con_samlmom_lspace	
con_sam_lspace	5
dBrIII	6
dBrXII	7
dgam	7
dgev	8
dGG	9
dglo	
dgno	
dgpa	
dln3	
dnor	
dpe3	
it_BrIII	
fit BrXII	
lit_DIAH	
· ·	15
fit_gev	
fit_GG	16
fit_glo	17
fit_gno	18
fit_gpa	18
fit_ln3	19
fit_nor	20
fit_pe3	
FLOW_AMAX	
FLOW_AMAX_MULT	22
get_julian	23
get_sample_lmom	23
lspace_BrIII	24
lspace_BrIII.xy	25
Ispace_BrXII	25
lspace_BrXII.xy	26
Ispace_GG	
Ispace_GG.xy	
pBrIII	
pBrXII	
pemp	29
pgam	30
pgev	31
pGG	31
	32
pgno	33
pgpa	33
pln3	34
pnor	35

com_sam_lspace 3

11																											
qBrII	Ι	•	 •		•	 •	•	•	•	 •	•	•	 •	•			•	•	•	•		•	•			 •	•
qBrX	II		 																								
qgam																											
qgev			 																								
qGG			 																								
qglo			 																								
qgno																											
qgpa																											
qln3																											
qnor																											
qpe3																											
tBrIII			 							 																	
tBrXI	Ι		 							 																	
tgam			 																								
tgev																											
tGG			 							 																	
tglo			 							 																	
tgno																											
tgpa			 							 																	
tln3																											
tnor																											
tpe3			 							 																	
.pec		·	 •	·	•	 ·	·	•	•	•	•	•	 •	•	 ·	•	•		•	•	•	•	•	·	•	 •	

com_sam_lspace

Comparing sample L-moment ratios with L-spaces of various distributions on the L-moments ratio diagram

Description

 $Comparing \ sample \ L\text{-moment ratios with L-spaces of various distributions on the L-moments ratio diagram}$

Usage

```
com_sam_lspace(sample, type = "m", Dist = "BrIII", color = "red", shape = 8)
```

Arguments

sample	for a single site, sample is a vector of observations, e.x. FLOW_AMAX. For multiple sites, sample is a dataframe consisting of multiple columns where each column has the data observed at one site; this dataframe should have column names as station names, e.x. FLOW_AMAX_MULT.
type	the type of the sample. It can be "s" for single site, the default, or "m" for

multiple sites.

Dist select the distribution to plot its L-space in the background. This can be "BrIII"

for Burr Typr-III distribution, "BrXII" for Burr Typr-XII distribution, or "GG"

for Generalized Gamma distribution. The default Dist is "BrIII".

color color of the L-point/s, default is "red". shape shape of the L-point/s, default is 8.

Value

ggplot plot comparing sample/s L-point/s with L-space of a distribution on the L-moment ratio diagram

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
com_plot_BrIII <- com_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "BrIII")
com_plot_BrXII <- com_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "BrXII")
com_plot_GG <- com_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "GG")
com_plot_BrIII <- com_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "BrIII")
com_plot_BrXII <- com_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "BrXII")
com_plot_GG <- com_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "GG")</pre>
```

con_samlmom_lspace

Condition of sample lpoints, as inside/outside of specific L-spaces on the L-moments ratio diagram, using sample lmoments.

Description

Condition of sample lpoints, as inside/outside of specific L-spaces on the L-moments ratio diagram, using sample lmoments.

Usage

```
con_samlmom_lspace(samplelmom, Dist = "BrIII")
```

Arguments

sample1mom L-moments as c(11, 12, 13, 14, t2, t3, t4). Use get_sample_lmom() to obtain these

lmoments.

Dist select the distribution to plot its L-space in the background. This can be "BrIII"

for Burr Typr-III distribution, "BrXII" for Burr Typr-XII distribution, or "GG" for Generalized Gamma distribution. The default Dist is "BrIII". The default is

set to BrIII.

con_sam_lspace 5

Value

The condition of the L-points in regards to the selected L-space as inside or outside.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
sample <- LMoFit::FLOW_AMAX
samplelmom <- get_sample_lmom(x = sample)
con_samlmom_lspace(samplelmom, Dist = "BrIII")
con_samlmom_lspace(samplelmom, Dist = "BrXII")
con_samlmom_lspace(samplelmom, Dist = "GG")</pre>
```

con_sam_lspace	Condition of sample lpoints, as inside/outside of specific L-spaces on
	the L-moments ratio diagram, using sample.

Description

Condition of sample lpoints, as inside/outside of specific L-spaces on the L-moments ratio diagram, using sample.

Usage

```
con_sam_lspace(sample, type = "s", Dist = "BrIII")
```

Arguments

sample	for a single site, sample is a vector of observations, e.x. FLOW_AMAX. For multiple sites, sample is a dataframe consisting of multiple columns where each column has the data observed at one site; this dataframe should have column names as station names, e.x. FLOW_AMAX_MULT.
type	the type of the sample. It can be "s" for single site, the default, or "m" for multiple sites.
Dist	select the distribution to plot its L-space in the background. This can be "BrIII" for Burr Typr-III distribution, "BrXII" for Burr Typr-XII distribution, or "GG" for Generalized Gamma distribution. The default Dist is "BrIII".

Value

The condition of the L-points in regards to the selected L-space as inside or outside.

6 dBrIII

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
con_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "BrIII")
con_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "BrXII")
con_sam_lspace(LMoFit::FLOW_AMAX, type = "s", Dist = "GG")
con_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "BrIII")
con_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "BrXII")
con_sam_lspace(LMoFit::FLOW_AMAX_MULT, type = "m", Dist = "GG")
```

dBrIII

Probability density function of BrIII distribution

Description

Probability density function of BrIII distribution

Usage

```
dBrIII(x, para = c(1, 2, 0.5))
```

Arguments

```
x quantile/s
para parameters as c(scale, shape1, shape2)
```

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
d \leftarrow dBrIII(x = 108.4992, para = c(10, 0.25, 0.5))
```

dBrXII

 dBrXII

Probability density function of BrXII distribution

Description

Probability density function of BrXII distribution

Usage

```
dBrXII(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dBrXII(x = 108.4992, para = c(10, 0.25, 0.5))
```

dgam

Probability density function of Gamma distribution

Description

Probability density function of Gamma distribution

Usage

```
dgam(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(shape, scale)

8 dgev

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dgam(x = 0.1, para = c(0.1, 0.2))
```

dgev

Probability density function of GEV distribution

Description

Probability density function of GEV distribution

Usage

```
dgev(x, para)
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
d \leftarrow dgev(x = 108.4992, para = c(10, 1, 1))
```

dGG

dGG

Probability density function of Generalized Gamma (GG) distribution

Description

Probability density function of Generalized Gamma (GG) distribution

Usage

```
dGG(x, para = c(10, 0.25, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dGG(x = 108.4992, para = c(10, 0.25, 0.5))
```

dglo

Probability density function of Generalized Logestic Distribution

Description

Probability density function of Generalized Logestic Distribution

Usage

```
dglo(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

10 dgno

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dglo(x = 0.1, para = c(1, 2, 0.5))
```

dgno

Probability density function of Generalized normal Distribution

Description

Probability density function of Generalized normal Distribution

Usage

```
dgno(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
d \leftarrow dgno(x = 0.1, para = c(1, 2, 0.5))
```

dgpa 11

dgpa

Probability density function of Generalized Pareto Distribution

Description

Probability density function of Generalized Pareto Distribution

Usage

```
dgpa(x, para)
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dgpa(x = 0.1, para = c(1, 2, 0.5))
```

dln3

Probability density function of Lognormal-3 Distribution

Description

Probability density function of Lognormal-3 Distribution

Usage

```
dln3(x, para = c(0, 0, 1))
```

Arguments

x quantile/s

para parameters as c(zeta, mu, sigma) that is c(lower bound, mean on log scale, stan-

dard deviation on log scale).

dnor

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dln3(x = 12, para = c(0, 0, 1))
```

dnor

Probability density function of Normal Distribution

Description

Probability density function of Normal Distribution

Usage

```
dnor(x, para = c(1, 2))
```

Arguments

x quantile/s

para parameters as c(location, scale)

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
d \leftarrow dnor(x = 1.5, para = c(1, 2))
```

dpe3 13

dpe3

Probability density function of Pearson type-3 Distribution

Description

Probability density function of Pearson type-3 Distribution

Usage

```
dpe3(x, para = c(10, 1, 1.5))
```

Arguments

x quantile/s

para parameters as c(mu, sigma, gamma) that is c(location, scale, shape).

Value

Probability density function

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
d \leftarrow dpe3(x = 12, para = c(10, 1, 1.5))
```

fit_BrIII

Fit Burr Type-III (BrIII) Distribution

Description

Fit Burr Type-III (BrIII) Distribution

Usage

```
fit_BrIII(sl1, st2, st3)
```

Arguments

sl1	1st 1-moments
st2	2nd 1-moment ratio
st3	3rd 1-moment ratio

14 fit_BrXII

Value

A dataframe containing the scale parameter, the shape 1 parameter, the shape 2 parameter, the squared error of scale parameter, and the squared error of shape parameter

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
BrIII_par_valid <- fit_BrIII(sl1 = 10, st2 = 0.25, st3 = 0.1)
BrIII_par_invalid <- fit_BrIII(sl1 = 10, st2 = 0.5, st3 = 0.8)</pre>
```

fit_BrXII

Fit Burr Type-XII (BrXII) Distribution

Description

Fit Burr Type-XII (BrXII) Distribution

Usage

```
fit_BrXII(sl1, st2, st3)
```

Arguments

sl1	1st 1-moments
st2	2nd 1-moment ratio
st3	3rd 1-moment ratio

Value

A dataframe containing the scale parameter, the shape 1 parameter, the shape 2 parameter, the squared error of the scale parameter, and the squared error of the shape parameters.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
BrXII_par_valid <- fit_BrXII(sl1 = 10, st2 = 0.25, st3 = 0.25)
BrXII_par_invalid <- fit_BrXII(sl1 = 10, st2 = 0.5, st3 = 0.8)</pre>
```

fit_gam 15

 fit_gam

Fit Gamma distribution using the 'lmom' package

Description

Fit Gamma distribution using the 'lmom' package

Usage

```
fit_gam(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st 1-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th 1-moment ratio

Value

A vector of parameters as alpha (shape) and beta (scale).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
gam_par <- fit_gam(15, 1.7, 0.04, -0.02)
```

fit_gev

Fit GEV distribution

Description

Fit GEV distribution

Usage

```
fit_gev(sl1, sl2, st3)
```

16 fit_GG

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio

Value

A dataframe containing the location parameter, the scale parameter, the shape parameter, and the squared error of shape parameters.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
GEV_par \leftarrow fit_gev(sl1 = 10, sl2 = 0.5, st3 = 0.8)
```

fit_GG

Fit Generalized Gamma (GG) Distribution

Description

Fit Generalized Gamma (GG) Distribution

Usage

```
fit_GG(sl1, st2, st3)
```

Arguments

sl1	1st 1-moments
st2	2nd 1-moment ratio
st3	3rd 1-moment ratio

Value

A dataframe containing the scale parameter, the shape 1 parameter, the shape 2 parameter, the squared error of scale parameter, and the squared error of shape parameters.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

fit_glo

Examples

```
GG_par_valid \leftarrow fit_GG(sl1 = 10, st2 = 0.4, st3 = 0.2)

GG_par_invalid \leftarrow fit_GG(sl1 = 1, st2 = 0.25, st3 = 0.25)
```

fit_glo

Fit Generalized Logistic distribution using the 'lmom' package

Description

Fit Generalized Logistic distribution using the 'lmom' package

Usage

```
fit_glo(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th l-moment ratio

Value

A vector of parameters as xi (location), alpha (scale), and k (shape).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
glo_par <- fit_glo(15, 1.7, 0.04, -0.02)
```

fit_gpa

fit_gno

Fit Generalized Normal distribution using the 'lmom' package

Description

Fit Generalized Normal distribution using the 'lmom' package

Usage

```
fit_gno(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th 1-moment ratio

Value

A vector of parameters as xi (location), alpha (scale), and k (shape).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
gno_par <- fit_gno(15, 1.7, 0.04, -0.02)</pre>
```

fit_gpa

Fit Generalized Pareto distribution using the 'lmom' package

Description

Fit Generalized Pareto distribution using the 'lmom' package

Usage

```
fit_gpa(sl1, sl2, st3, st4)
```

fit_ln3

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th l-moment ratio

Value

A vector of parameters as xi (location), alpha (scale), and k (shape).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
gpa_par <- fit_gpa(15, 1.7, 0.04, -0.02)</pre>
```

fit_ln3

Fit LogNormal-3 distribution using the 'lmom' package

Description

Fit LogNormal-3 distribution using the 'lmom' package

Usage

```
fit_ln3(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th 1-moment ratio

Value

A vector of parameters as zeta (lower bound), mu (mean on log-scale), and sigma (st.dev. on log-scale)

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

20 fit_nor

Examples

```
ln3_par <- fit_ln3(15, 1.7, 0.04, -0.02)
```

fit_nor

Fit Normal distribution using the 'lmom' package

Description

Fit Normal distribution using the 'lmom' package

Usage

```
fit_nor(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st 1-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th 1-moment ratio

Value

A vector of parameters as mu (location) and sigma (scale).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
nor_par <- fit_nor(15, 1.7, 0.04, -0.02)
```

fit_pe3 21

fi	+	рe	٠ د
	it.	\sim	

Fit Pearson Type-3 distribution using the 'lmom' package

Description

Fit Pearson Type-3 distribution using the 'lmom' package

Usage

```
fit_pe3(sl1, sl2, st3, st4)
```

Arguments

sl1	sample 1st l-moment
s12	sample 2nd 1-moment
st3	sample 3rd 1-moment ratio
st4	sample 4th 1-moment ratio

Value

A vector of parameters as mu (location), sigma (scale), and gamma (shape).

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
pe3_par <- fit_pe3(15, 1.7, 0.04, -0.02)
```

FLOW_A	Μ.	A	Χ
--------	----	---	---

Annual maximum flow data at Water Survey of Canada WSC flow gauge number 08NA002 in BC, Vancouver, Canada. Lat: 51°14'36.8" N, Long: 116°54'46.6" W.

Description

Annual maximum flow data at Water Survey of Canada WSC flow gauge number 08NA002 in BC, Vancouver, Canada. Lat: 51°14'36.8" N, Long: 116°54'46.6" W.

Usage

FLOW_AMAX

Format

A vector of observations of length equal to 112

flow annual maximum flow observed per each year at one site

Source

coded in data-raw

FLOW_AMAX_MULT

Annual maximum flow data at 10 hypothetical flow gauge.

Description

Annual maximum flow data at 10 hypothetical flow gauge.

Usage

FLOW_AMAX_MULT

Format

A data frame with 112 rows and 10 variables:

flow_st1 annual maximum flow observed per each year at site 1

flow_st2 annual maximum flow observed per each year at site 2

flow_st3 annual maximum flow observed per each year at site 3

flow_st4 annual maximum flow observed per each year at site 4

flow_st5 annual maximum flow observed per each year at site 5

flow_st6 annual maximum flow observed per each year at site 6

flow_st7 annual maximum flow observed per each year at site 7

flow_st8 annual maximum flow observed per each year at site 8

flow_st9 annual maximum flow observed per each year at site 9

flow_st10 annual maximum flow observed per each year at site 10

Source

coded in data-raw

get_julian 23

get_julian

Get julian date from the begining of the year

Description

Get julian date from the begining of the year

Usage

```
get_julian(x)
```

Arguments

Χ

date or a series of dates such as, as.Date("yyyy-mm-dd")

Value

A julian date between 1 and 365, note that in leap years the day 366 is considered as 365

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
get_julian(x = as.Date("1979-01-15"))
```

 ${\tt get_sample_lmom}$

Estimate sample L-moments and L-moment ratios

Description

Estimate sample L-moments and L-moment ratios

Usage

```
get_sample_lmom(x)
```

Arguments

Х

a series of quantiles

24 lspace_BrIII

Value

A dataframe containing the 1st l-moment, the 2nd l-moment, the 3rd l-moment, the 4th l-moment, the 2nd l-moment ratio "L-variation", the 3rd l-moment ratio "L-skewness", and the 4th l-moment ratio "L-kurtosis"

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
sample_lmom \leftarrow get_sample_lmom((rnorm(n = 500, mean = 10, sd = 0.5)))
```

lspace_BrIII

L-space of Burr Type-III Distribution (BrIII)

Description

This is a plot of the L-space of BrIII Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.01 to 150.01, and by shape2 in the range of 0.005 to 0.999.

Usage

lspace_BrIII

Format

A ggplot

data

layers

scales

mapping

theme

coordinates

facet

plot_env

labels

Source

coded in data-raw

lspace_BrIII.xy 25

lspace_BrIII.xy

coordinates of the L-space of Burr Type-III Distribution (BrIII)

Description

This is a plot of the L-space of BrIII Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.01 to 150.01, and by shape2 in the range of 0.005 to 0.999.

Usage

```
lspace_BrIII.xy
```

Format

A ggplot

x 1-variatoin "t2"

y 1-skewness "t3"

Source

coded in data-raw

lspace_BrXII

L-space of Burr Type-XII Distribution (BrXII)

Description

This is a plot of the L-space of BrXII Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.1 to 150, and by shape2 in the range of 0.001 to 1.

Usage

```
lspace_BrXII
```

Format

A ggplot

data

layers

scales

mapping

26 lspace_BrXII.xy

theme

coordinates

facet

plot_env

labels

Source

coded in data-raw

lspace_BrXII.xy

coordinates of the L-space of Burr Type-XII Distribution (BrXII)

Description

This is a plot of the L-space of BrXII Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.1 to 150, and by shape2 in the range of 0.001 to 1.

Usage

lspace_BrXII.xy

Format

A ggplot

x 1-variatoin "t2"

y 1-skewness "t3"

Source

coded in data-raw

lspace_GG 27

lspace_GG

L-space of Generalized Gamma Distribution (GG)

Description

This is a plot of the L-space of GG Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.1 to 5.9, and by shape2 in the range of 0.19 to 38.

Usage

1space_GG

Format

A ggplot

data

layers

scales

mapping

theme

coordinates

facet

plot_env

labels

Source

coded in data-raw

lspace_GG.xy

coordinates of the L-space of Generalized Gamma Distribution (GG)

Description

This is a plot of the L-space of GG Distribution with L-variation on x-axis and L-skewness on y-axis. The L-space is bounded by shape1 in the range of 0.1 to 5.9, and by shape2 in the range of 0.19 to 38.

Usage

1space_GG.xy

28 pBrIII

Format

A ggplot

x 1-variatoin "t2"

y 1-skewness "t3"

Source

coded in data-raw

pBrIII

Cumulative distribution function of BrIII distribution

Description

Cumulative distribution function of BrIII distribution

Usage

```
pBrIII(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
u \leftarrow pBrIII(x = 108.4992, para = c(10, 0.25, 0.5))
```

pBrXII 29

pBrXII

Cumulative distribution function of BrXII distribution

Description

Cumulative distribution function of BrXII distribution

Usage

```
pBrXII(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s
para parameters as c(scale, shape1, shape2)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pBrXII(x = 108.4992, para = c(10, 0.25, 0.5))
```

pemp

Emperical cumulative distribution function

Description

Emperical cumulative distribution function

Usage

```
pemp(data)
```

Arguments

data

quantile/s

30 pgam

Value

A dataframe containing two columns as the sorted observations and the corresponding empirical probability of non-exceedance

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
output <- pemp(data = runif(n = 50, min = 10, max = 100))
```

pgam

Cumulative distribution function of Gamma distribution

Description

Cumulative distribution function of Gamma distribution

Usage

```
pgam(x, para = c(1.5, 1))
```

Arguments

```
x quantile/s
para parameters as c(shape, scale)
```

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
u \leftarrow pgam(x = 0.1, para = c(0.1, 0.2))
```

pgev 31

pgev

Cumulative distribution function of GEV distribution

Description

Cumulative distribution function of GEV distribution

Usage

```
pgev(x, para)
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pgev(x = 108.4992, para = c(10, 1, 1))
```

pGG

Cumulative distribution function of Generalized Gamma (GG) distribution

Description

Cumulative distribution function of Generalized Gamma (GG) distribution

Usage

```
pGG(x, para = c(10, 0.25, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

32 pglo

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pGG(x = 108.4992, para = c(10, 0.25, 0.5))
```

pglo

Cumulative distribution function of Generalized Logistic Distribution

Description

Cumulative distribution function of Generalized Logistic Distribution

Usage

```
pglo(x, para = c(10, 1.5, 1))
```

Arguments

x quantile/s
para parameters as c(location, scale, shape)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
u \leftarrow pglo(x = 0.1, para = c(10, 0.1, 0.2))
```

pgno 33

pgno

Cumulative distribution function of Generalized Normal Distribution

Description

Cumulative distribution function of Generalized Normal Distribution

Usage

```
pgno(x, para = c(10, 1.5, 1))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pgno(x = 10.1, para = c(10, 0.1, 0.2))
```

pgpa

Cumulative distribution function of Generalized Pareto Distribution

Description

Cumulative distribution function of Generalized Pareto Distribution

Usage

```
pgpa(x, para = c(1, 1, 1))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

34 pln3

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pgpa(x = 1.2, para = c(1, 2, 0.5))
```

pln3

Cumulative distribution function of Lognormal-3 Distribution

Description

Cumulative distribution function of Lognormal-3 Distribution

Usage

```
pln3(x, para = c(0, 0, 1))
```

Arguments

x quantile/s

para parameters as c(zeta, mu, sigma) that is c(lower bound, mean on log scale, stan-

dard deviation on log scale).

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
u \leftarrow pln3(x = 12, para = c(0, 0, 1))
```

pnor 35

pnor

Cumulative distribution function of Noramal Distribution

Description

Cumulative distribution function of Noramal Distribution

Usage

```
pnor(x, para = c(10, 1.5))
```

Arguments

x quantile/s

para parameters as c(location, scale)

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow pnor(x = 11, para = c(10, 1.5))
```

ppe3

Cumulative distribution function of Pearson type-3 Distribution

Description

Cumulative distribution function of Pearson type-3 Distribution

Usage

```
ppe3(x, para = c(10, 1, 1.5))
```

Arguments

x quantile/s

parameters as c(mu, sigma, gamma) that are c(location, scale, shape).

36 qBrIII

Value

Non-exceedance probability from the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
u \leftarrow ppe3(x = 12, para = c(10, 1, 1.5))
```

qBrIII

Quantile distribution function of BrIII distribution

Description

Quantile distribution function of BrIII distribution

Usage

```
qBrIII(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used" para parameters as c(scale, shape1, shape2)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
x \leftarrow qBrIII(u = 0.99, para = c(1, 10, 0.8))
x \leftarrow qBrIII(RP = 100, para = c(1, 10, 0.8))
```

qBrXII 37

qBrXII

Quantile distribution function of BrXII distribution

Description

Quantile distribution function of BrXII distribution

Usage

```
qBrXII(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used" para parameters as c(scale, shape1, shape2)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qBrXII(u = 0.99, para = c(1, 10, 0.8))
x \leftarrow qBrXII(RP = 100, para = c(1, 10, 0.8))
```

qgam

Quantile distribution function of Gamma distribution

Description

Quantile distribution function of Gamma distribution

Usage

```
qgam(u = NULL, RP = 1/(1 - u), para)
```

38 qgev

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used"

para parameters as c(shape, scale)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qgam(u = 0.99, para = c(0.1, 0.2))

x \leftarrow qgam(RP = 100, para = c(0.1, 0.2))
```

qgev

Quantile distribution function of GEV distribution

Description

Quantile distribution function of GEV distribution

Usage

```
qgev(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used" para parameters as c(location, scale, shape)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

qGG

Examples

```
x \leftarrow qgev(u = 0.99, para = c(10, 1, 1))

x \leftarrow qgev(RP = 100, para = c(10, 1, 1))
```

qGG

Quantile distribution function of the Generalized Gamma (GG) distribution

Description

Quantile distribution function of the Generalized Gamma (GG) distribution

Usage

```
qGG(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used"

para parameters as c(scale, shape1, shape2)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
x \leftarrow qGG(u = 0.99, para = c(10, 0.25, 0.5))
x \leftarrow qGG(RP = 100, para = c(10, 0.25, 0.5))
```

40 qgno

qglo

Quantile distribution function of Generalized Logistic Distribution

Description

Quantile distribution function of Generalized Logistic Distribution

Usage

```
qglo(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used" para parameters as c(location, scale, shape)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qglo(u = 0.99, para = c(10, 0.1, 0.2))

x \leftarrow qglo(RP = 100, para = c(10, 0.1, 0.2))
```

qgno

Quantile distribution function of Generalized normal Distribution

Description

Quantile distribution function of Generalized normal Distribution

Usage

```
qgno(u = NULL, RP = 1/(1 - u), para)
```

qgpa 41

Arguments

u	non-exceedance	probability
---	----------------	-------------

RP Return Period "don't use in case u is used"
para parameters as c(location, scale, shape)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qgno(u = 0.99, para = c(10, 0.1, 0.2))

x \leftarrow qgno(RP = 100, para = c(10, 0.1, 0.2))
```

qgpa

Quantile distribution function of Generalized Pareto Distribution

Description

Quantile distribution function of Generalized Pareto Distribution

Usage

```
qgpa(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used" para parameters as c(location, scale, shape)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

42 qln3

Examples

```
x \leftarrow qgpa(u = 0.99, para = c(10, 0.1, 0.2))

x \leftarrow qgpa(RP = 100, para = c(10, 0.1, 0.2))
```

qln3

Quantile distribution function of Lognormal-3 Distribution

Description

Quantile distribution function of Lognormal-3 Distribution

Usage

```
qln3(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used"

para parameters as c(zeta, mu, sigma) that is c(lower bound, mean on log scale, stan-

dard deviation on log scale).

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
x \leftarrow qln3(u = 0.99, para = c(0, 0, 1))

x \leftarrow qln3(RP = 100, para = c(0, 0, 1))
```

qnor 43

qnor

Quantile distribution function of Normal Distribution

Description

Quantile distribution function of Normal Distribution

Usage

```
qnor(u = NULL, RP = 1/(1 - u), para)
```

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used"

para parameters as c(location, scale)

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qnor(u = 0.99, para = c(10, 0.1))
x \leftarrow qnor(RP = 100, para = c(10, 0.1))
```

qpe3

Quantile distribution function of Pearson type-3 Distribution

Description

Quantile distribution function of Pearson type-3 Distribution

Usage

```
qpe3(u = NULL, RP = 1/(1 - u), para)
```

tBrIII

Arguments

u non-exceedance probability

RP Return Period "don't use in case u is used"

para parameters as c(mu, sigma, gamma) that is c(location, scale, shape).

Value

Quantile value/s using the inverse of the cumulative distribution function.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
x \leftarrow qpe3(u = 0.99, para = c(1, 1, 0))
x \leftarrow qpe3(RP = 100, para = c(1, 1, 0))
```

tBrIII

Return period function of BrIII distribution

Description

Return period function of BrIII distribution

Usage

```
tBrIII(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
RP <- tBrIII(x = 108.4992, para = c(10, 0.25, 0.5))
```

tBrXII 45

 tBrXII

Return period function of BrXII distribution

Description

Return period function of BrXII distribution

Usage

```
tBrXII(x, para = c(1, 2, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tBrXII(x = 108.4992, para = c(10, 0.25, 0.5))
```

tgam

Return period function of Gamma distribution

Description

Return period function of Gamma distribution

Usage

```
tgam(x, para = c(1.5, 1))
```

Arguments

x quantile/s

para parameters as c(shape, scale)

46 tgev

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tgam(x = 0.1, para = c(0.1, 0.2))
```

tgev

Return period function of GEV distribution

Description

Return period function of GEV distribution

Usage

```
tgev(x, para)
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
RP \leftarrow tgev(x = 108.4992, para = c(10, 1, 1))
```

tGG

tGG

Return period function of Generalized Gamma distribution

Description

Return period function of Generalized Gamma distribution

Usage

```
tGG(x, para = c(10, 0.25, 0.5))
```

Arguments

x quantile/s

para parameters as c(scale, shape1, shape2)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tGG(x = 108.4992, para = c(10, 0.25, 0.5))
```

tglo

Return period function of Generalized Logistic distribution

Description

Return period function of Generalized Logistic distribution

Usage

```
tglo(x, para = c(10, 1.5, 1))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

48 tgno

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tglo(x = 0.1, para = c(10, 0.1, 0.2))
```

tgno

Return period function of Generalized Normal distribution

Description

Return period function of Generalized Normal distribution

Usage

```
tgno(x, para = c(10, 1.5, 1))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
RP <- tgno(x = 10.1, para = c(10, 0.1, 0.2))
```

tgpa 49

tgpa

Return period function of Generalized Pareto distribution

Description

Return period function of Generalized Pareto distribution

Usage

```
tgpa(x, para = c(1, 1, 1))
```

Arguments

x quantile/s

para parameters as c(location, scale, shape)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tgpa(x = 1.2, para = c(1, 2, 0.5))
```

tln3

Return period function of Lognormal-3 distribution

Description

Return period function of Lognormal-3 distribution

Usage

```
tln3(x, para = c(0, 0, 1))
```

Arguments

x quantile/s

para parameters as c(zeta, mu, sigma) that is c(lower bound, mean on log scale, stan-

dard deviation on log scale).

50 tnor

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

Examples

```
RP <- tln3(x = 12, para = c(0, 0, 1))
```

tnor

Return period function of Noramal distribution

Description

Return period function of Noramal distribution

Usage

```
tnor(x, para = c(10, 1.5))
```

Arguments

x quantile/s

para parameters as c(location, scale)

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
RP \leftarrow tnor(x = 11, para = c(10, 1.5))
```

tpe3 51

tpe3

Return period function of Pearson type-3 distribution

Description

Return period function of Pearson type-3 distribution

Usage

```
tpe3(x, para = c(10, 1, 1.5))
```

Arguments

x quantile/s

para parameters as c(mu, sigma, gamma) that are c(location, scale, shape).

Value

Return Period/s corresponding to quantile/s.

Author(s)

Mohanad Zaghloul [aut, cre], Simon Michael Papalexiou [aut, ths], Amin Elshorbagy [aut, ths]

```
RP \leftarrow tpe3(x = 12, para = c(10, 1, 1.5))
```

Index

* datasets FLOW_AMAX, 21	<pre>get_sample_lmom, 23</pre>
FLOW_AMAX_MULT, 22	lspace_BrIII, 24
lspace_BrIII, 24	lspace_BrIII.xy, 25
lspace_BrIII.xy, 25	lspace_BrXII, 25
lspace_BrXII, 25	lspace_BrXII.xy, 26
lspace_BrXII.xy, 26	lspace_GG, 27
lspace_GG, 27	lspace_GG.xy, 27
lspace_GG.xy, 27	15pace_dd.xy, 27
1space_66.xy, 27	pBrIII, 28
com_sam_lspace, 3	pBrXII, 29
con_sam_lspace, 5	pemp, 29
con_samlmom_lspace, 4	pgam, 30
,	pgev, 31
dBrIII,6	pGG, 31
dBrXII, 7	pglo, 32
dgam, 7	pgno, 33
dgev, 8	pgno, 33
dGG, 9	pgpa, 33 pln3, 34
dglo, 9	
dgno, 10	pnor, 35
dgpa, 11	ppe3, 35
dln3, 11	qBrIII, 36
dnor, 12	qBrXII, 37
dpe3, 13	
	qgam, 37
fit_BrIII, 13	qgev, 38
fit_BrXII, 14	qGG, 39
fit_gam, 15	qglo, 40
fit_gev, 15	qgno, 40
fit_GG, 16	qgpa, 41
fit_glo, 17	qln3, 42
fit_gno, 18	qnor, 43
fit_gpa, 18	qpe3, 43
fit_ln3, 19	10 TTT 44
fit_nor, 20	tBrIII, 44
fit_pe3, 21	tBrXII, 45
FLOW_AMAX, 21	tgam, 45
FLOW_AMAX_MULT, 22	tgev, 46
	tGG, 47
get_julian, 23	tglo, 47

INDEX 53

- $\, \mathsf{tgno}, \frac{48}{}$
- tgpa, 49
- tln3, 49
- tnor, 50
- tpe3, 51