SUPERVISED LEARNING

Supervised Learning

 Example: Given a dataset of living areas and prices of houses in a given area.

- How can we learn to predict the prices of other houses in that same area, as a function of the size of the living area.
 - i.e. Can we learn a function h, such that h(x) is a good predictor for the corresponding value of y.

Supervised Learning

When trying to predict a **continuous variable**, that's called a **regression problem**.

When trying to predict only small number of <u>discrete values</u>, we call it a <u>classification problem</u>.

Outline

- Regression
 - Linear regression
- Classification
 - Logistic Regression

Linear Regression

 <u>Problem:</u> Need to find a function h, that approximates the target variable y as a linear function of the features x_i.

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- Assume training data has two features x₁ and x₂ (or input variables).
- The θ_i are the parameters (or weights) of the linear function.

Idea: choose θ_{0} , θ_{1} , and θ_{2} so that h(x) is close to y for our training examples

Objective Function for Linear Regression

• **Problem**: Need to find a function h, that approximates the target variable y as a linear function of the features x_i.

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- So, given the training data, how to pick the parameters θ_{i?}
 - Choose θ_i such that h(x) closely approximates y. i.e. choose θ_i that minimize the cost function.

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2}$$

 $J(\theta)$ is called squared error cost function

Summary of the problem

Find a function:

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

- Parameters/Weights: θ_0 , θ_1 , θ_2
- Cost Function: $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^i) y^i)^2$
- Goal: $\min_{\theta_0,\theta_1,\theta_2} J(\theta_0,\theta_1,\theta_2)$

- Idea: We want to choose θ that minimize J(θ), so we can start with an initial guess for θ and repeatedly change θ to make J(θ) smaller until we converge.
- We have some function $J(\theta_0, \theta_1)$ that we want to minimize.
- Outline:
 - Start with some value for θ_0 , θ_1
 - Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we end up at a minimum.

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1\text{)}$ } Learning rate

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta_i)$$

$$\theta_i = \theta_i - \alpha(pos\#)$$

$$\theta_{i} = \theta_{i} - \alpha \frac{\partial}{\partial \theta_{i}} J(\theta_{i})$$

$$\theta_{i} = \theta_{i} - \alpha (neg\#)$$

This line has a positive slope

This line has a negative slope

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (h(x^i) - y^i)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^i - y^i)^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h(x^i) - y^i)$$

$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h(x^i) - y^i) x^i$$

 $h_{\theta}(x)$ (for fixed θ_0,θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $\, heta_0, heta_1$)

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $\; \theta_0, \theta_1 \;$)

- "Batch" Gradient Descent: Each step of gradient descent uses all the training examples.
- "Stochastic" Gradient Descent: Each step of gradient descent uses one training example (or a smaller set of training examples).
 - Good for large datasets

Single Variable Linear Regression

Size (feet²) x	Price (\$1000)
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple Variable Linear Regression

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
		•••		

Linear Regression with 1 variable

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	h(x) =	$=\theta_0$	$+\theta_1 x$
---	--------	-------------	---------------

Size (feet²) X	Price (\$1000) Y
2104	460
1416	232
1534	315
852	178

Linear Regression with multiple variables

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

Size (feet ²)	Number of bedrooms	Number of floors	Age of home	Price (\$1000)
X_1	X_2	X_3	X_4	X ₅
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$ (simultaneously update for every j = 0 , 1, ..., n)

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\; \theta_0, \theta_1 \;$)

}

New algorithm $(n \ge 1)$: Repeat $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update $i=0,\ldots,n$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$
...

Gradient Descent

 Its very important to perform feature scaling and mean normalization when performing gradient descent.

Gradient Descent Tinkering

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- Debugging How to make sure gradient descent is working correctly.
- How to choose learning rate α.

Making sure gradient descent is working

These examples are of where gradient descent not working.

Solution: Use smaller α

- For sufficiently small α, α should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Summary

- If α is too small: slow convergence
- If α is too large, $J(\theta)$ may not decrease on every iteration; may not converge.
- To choose α, try:
 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Outline

- Regression
 - Linear regression
- Classification
 - Logistic Regression

Classification

- Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes / No)?
- Tumor: Malignant / Benign ?

$$y \in \{0,1\}$$
 1: "Positive C

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant

tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
 , predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
 , predict "y = 0"

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
 , predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
 , predict "y = 0"

Classification: y = 0 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Hence, Linear regression is not the way to go...need another method for classification problems.

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic Regression

We will choose to define our function h as follows:

$$h(x) = g(\theta^{T} x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$
Called logistic function

or sigmoid function

Notice that g(z) tends towards 1 as $z \to \infty$, and g(z) tends towards 0 as $z \to -\infty$. Hence it is always bounded by 0 and 1.

Logistic Regression Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

Logistic Regression Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Logistic Regression using Gradient Descent

```
Want \min_{\theta} J(\theta) :  \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)  (simultaneously update all \theta_j )  \}
```

Algorithm looks identical to linear regression!