O Aprokovmosio Doissono Obsistania naisista :
8 - Aproksymacja Poissona. Obciążenie najcięższej urny.
Saturday, 3 February 2024 22:36
Rzucamy m kul do n uvn
Niech X; (m) healzie licetra kul maucona di ti
Niech / (m) (m) (m) (m) (m) (m) (m) (m)
O vozkladzie Poissona z parrametrem $\frac{m}{n}$
Rozkład (y(m) y(m))
jest taki sam jak rozktad $(\chi_1^{(k)}, \chi_1^{(k)})^{i=1}$
$ \left[\left($
$= \frac{k!}{k_1! \cdot k_n! \cdot n^k}$
$\left\ \left[\left(\begin{array}{c} y_{1}^{(m)} \\ 1 \end{array} \right) , y_{n}^{(m)} \right) = \left(k_{1}, \ldots, k_{n} \right) \left\ \begin{array}{c} \sum_{i=1}^{n} y_{i}^{(m)} \\ 1 \end{array} \right\ = k \right\ = k \ $
$= \mathbb{P}\left[Y_1^{(m)} = k_1\right] \cdots \mathbb{P}\left[Y_n^{(m)} = k_n\right]$
$\frac{1}{\left \sum_{i=1}^{n} Y_{i}^{(m)} = k\right } =$
$= \frac{\prod_{i=1}^{n} e^{-\frac{m}{n}} \frac{\binom{m}{n}^{k_i}}{k_i!}}{e^{-m} \frac{m^k}{k!}} = \frac{k!}{\prod_{k=1}^{k} \binom{m}{k}}$
$\frac{1}{k!} \qquad \qquad \lim_{i \ge 1} k_i \cdot N^k$
Niech f(x1,, xn) byolzie nieujemna, funkcja,
$\left[\left\{ \left\{ \left(X_{1}^{(m)}, X_{n}^{(m)} \right) \right\} \right\} \in e\sqrt{m} \left[\left[\left\{ f\left(Y_{1}^{(m)}, Y_{n}^{(m)} \right) \right\} \right]$
$ E[f(Y_{1}^{(m)}, Y_{n}^{(m)})] = \sum_{k=0}^{\infty} E[f(Y_{1}^{(m)}, Y_{n}^{(m)}) \sum_{i=1}^{n} Y_{i} = k] \cdot P[\sum_{i=1}^{n} Y_{i}^{(m)} = k]$
$ > E[f(Y_{n}^{(m)}, Y_{n}^{(m)}) \geq Y_{i} = m] \cdot P[\leq Y_{i} = m]$
$= \left[\mathbb{E} \left[f\left(X_{1}^{(m)}, X_{n}^{(m)}\right) \right] \cdot \left[P\left[\sum_{i=1}^{n} Y_{i}^{(m)} = m \right] \right]$
$\left\ \sum_{i=1}^{n} y_{i}^{(m)} = k \right\ = e^{-m} \cdot \frac{m^{m}}{m!}$
$n! < e \sqrt{n} \left(\frac{n}{e}\right)^n$ $\int \ln x dx > \frac{\ln k-1 + \ln k}{2}$
$ m n! = \sum_{k=1}^{n} m _k \le \int_{k=1}^{n} m _X dx + \frac{1}{2} m _N$ Szocononie tropezany' log jest while T.

 $||\mathbf{n}|| = \frac{1}{2} ||\mathbf{n}|| \leq |\mathbf{n}|| + |\mathbf{n$

 $\int \log x \, dx = x \log(x) - x$

Naybordziej obciejsona urna zawiera $\Omega(\frac{\ln n}{\ln \ln n})$ kul $z p. 1-\frac{1}{n}$ Many n kul n urn. Mozeny nasz model przybliżać aproksynają Poissona.

Niech $M = \frac{\ln n}{\ln \ln n}$ $P[Y_{:}^{(n)}] > M] > P[Y_{:}^{(m)}] = e^{-1} \frac{1}{M!} = \frac{1}{e \cdot M!}$ Szamsa, że wszystkie nie obciążone $\langle (1 - \frac{1}{e \cdot M!})^n \rangle = e^{-1} \frac{1}{M!} = \frac{1}{e \cdot M!}$ Chamy: $e^{-\frac{n}{e \cdot M!}} \langle n^{-2} \rangle = -\frac{n}{e \cdot M!} \langle -2 \ln n \rangle = \frac{n}{2e \ln n} > M!$ Lub rownowożnie $\ln M! \langle \ln n - \ln \ln n - \ln 2e$

 $M! \leq e \sqrt{m} \left(\frac{M}{e}\right)^{M} \leq M \left(\frac{M}{e}\right)^{M} \qquad | M$

 $\frac{\ln n}{\ln \ln n} \cdot \ln \left(\frac{\ln n}{\ln \ln n} \right) - \frac{\ln n}{\ln \ln n} + \ln \frac{\ln n}{\ln \ln n} =$

 $ln M! \leq M ln M - M + ln M | M = \frac{ln n}{ln ln n}$

 $=\frac{\ln n}{\ln \ln n}\left(\frac{\ln \ln n - \ln \ln \ln n}{\ln \ln n}\right) - \frac{\ln n}{\ln \ln n} + \ln \ln n - \ln \ln \ln n$ $\ln \ln n$

 $\langle \ln n - \frac{\ln n}{\ln \ln n} + \ln \ln n - \frac{\ln n}{\ln \ln n} \cdot \ln \ln \ln n \rangle$

 $\begin{cases} lm n - \frac{lm n}{ln ln n} >> ln ln n \end{cases}$

 $\ln n - \frac{\ln n}{\ln \ln n} \leq \ln n - \ln \ln n - \ln 2e = 1$