# Solving Recurrences CS313E - Elements of Software Design

Kia Teymourian

05/11/2022

Kia Teymourian

1 / 20

### Agenda

- 1. Solving Recurrences
- 2. Substitution Method
- 3. The Master Method



Kia Teymourian

## Recurrences - Running time of divide-and-conquer algorithms

- Recurrences provide us a good way to characterize the running time of divide-and-conquer algorithms.
- ▶ A recurrence is an equation or inequality to provide a function in terms of its value on smaller input sizes.

$$T(n) = C_1 + 2T(n/2) + C_2n$$

- $ightharpoonup C_1$ : cost of divide
- $\triangleright 2T(n/2)$  cost of recursion
- $\triangleright$   $C_2n$  merge

Kia Teymourian

### Recurrence Tree Visualization - Merge Sort



- $\triangleright$  We stat with cn because it dominates the costs
- $\triangleright$  Number of leaves: n
- $\triangleright$  Number of levels: 1 + lg(n)

$$T(n) = (1 + lg(n)) \times cn = \Theta(n \ lg(n))$$

4/20

#### Solving Recurrences

We have 3 main techniques for solving recurrences which means converting them to their closed forms:

- Visualization Recurrences Trees
- 2 Substitution Method (aka Induction)
- 3 The Master Method (aka Master Theorem)

Kia Teymourian

#### Substitution Method

- $\triangleright$  The substitution method or induction is the most general of the three methods.
- $\triangleright$  It requires to make an educational guess what the solution might be.
- ▶ We then can verify by doing a set of mathematical induction steps.
- > The guess can be obtained using recursion trees or experience.

6 / 20

# Example

#### **Substitution Method**

Solve the recurrence:  $T(n) = 2T(\lfloor n/2 \rfloor) + n$ Our solution guess is: T(n) = O(nlg(n))

#### Example

#### **Substitution Method**

```
Solve the recurrence: T(n) = 2T(\lfloor n/2 \rfloor) + n
Our solution guess is: T(n) = O(nlg(n))
```

- ▶ Based on the substitution method we need to prove  $T(n) \le cnlg(n)$  for a constance c > 0
- ▶ We assume this bond should hold for all positive m < n, in particular for  $m = \lfloor n/2 \rfloor$ ,  $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor lg(\lfloor n/2 \rfloor)$

We can then do:

$$T(n) \le 2(c\lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor) + n)$$

$$\le cn \lg(n/2) + n$$

$$= cn \lg(n) - cn \lg(2) + n$$

$$= cn \lg(n) - cn + n$$

$$\le cn \lg(n) \text{ holds as long as } c \ge 1$$

7/20

Kia Teymourian 05

 $T(n) \le cn \ lg(n)$  where the last step holds as long as  $c \ge 1$ .

Mathematical induction now requires us to show that our solution holds for the boundary conditions.

- ▶ We show that the boundary conditions are suitable as base cases for the inductive proof.
- $\triangleright$  We must show that we can choose the constant c large enough so that the bound  $T(n) \le cnlg(n)$  works for the boundary conditions as well.

This leads sometimes to problems.

8 / 20

 $T(n) \le cn \ lg(n)$  where the last step holds as long as  $c \ge 1$ .

Mathematical induction now requires us to show that our solution holds for the boundary conditions.

- We show that the boundary conditions are suitable as base cases for the inductive proof.
- $\triangleright$  We must show that we can choose the constant c large enough so that the bound  $T(n) \le cnlg(n)$  works for the boundary conditions as well.

This leads sometimes to problems.

- ightharpoonup Assume T(1) = 1 is the sole boundary condition of the recurrence.
  - ▶ For n = 1,  $T(n) \le cn$  lg(n), yields,  $T(1) \le c1lg(1) = 0$ , which is at odds with T(1) = 1

The base case of our inductive proof fails to hold.

We can solve this obstacle in proving an inductive hypothesis for a specific boundary condition.

We can solve this obstacle in proving an inductive hypothesis for a specific boundary condition.

- $\triangleright$  Use asymptotic notation that requiring us only to prove  $T(n) \le cnlgn$ , where  $n \ge 0$  is a constant that we get to choose.
- $\triangleright$  We can remove T(1) = 1 from our inductive proof.

9 / 20

We can solve this obstacle in proving an inductive hypothesis for a specific boundary condition.

- $\triangleright$  Use asymptotic notation that requiring us only to prove  $T(n) \le cnlgn$ , where  $n \ge 0$  is a constant that we get to choose.
- $\triangleright$  We can remove T(1) = 1 from our inductive proof.

Distinct between the base case of the recurrence (n=1) and the base cases of the inductive proof (n=2 and n=3).

9/20

We can solve this obstacle in proving an inductive hypothesis for a specific boundary condition.

- ▷ Use asymptotic notation that requiring us only to prove  $T(n) \le cnlgn$ , where  $n \ge 0$  is a constant that we get to choose.
- $\triangleright$  We can remove T(1) = 1 from our inductive proof.

Distinct between the base case of the recurrence (n=1) and the base cases of the inductive proof (n=2) and n=3.

- ▶ With T(1) = 1, we can drive from the recurrence T(2) = 4 and T(3) = 5. (We had  $T(n) = 2T(\lfloor \frac{n}{2} \rfloor) + n$ )
- ightharpoonup With the above, we can complete the inductive proof that  $T(n) \le cnlgn$  for some constant  $c \ge 1$  by choosing c large enough so that  $T(2) \le c2lg2$  and  $T(3) \le c3lg3$ .

Any choice of  $c \ge 2$  would be sufficient for the base cases of n=2 and n=3 to hold.

## Avoiding pitfalls

- ▶ Sometimes your guess is correct but somehow the math fails in the induction.
- > The inductive assumption is not strong enough to prove the detailed bound.

**Solution:** Revise the guess by subtracting a lower-order term, then the math often goes through.

#### Example

For the recurrence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- ▶ For guess O(n), we have to show  $T(n) \le cn$ . In induction, we get T(n) = cn + 1 which does not imply  $T(n) \le cn$  for any choice of c.
- ▶ We overcome our difficulty by subtracting a lower-order term from our previous guess.

Our new guess is O(n)-d, or  $T(n) \le cn-d$  where constant  $d \ge 0$ , can lead to

$$T(n) \le (c\lfloor n/2\rfloor - d) + (c\lceil n/2\rceil - d) + 1$$
$$= cn - 2d + 1$$
$$\le cn - d \text{ where } d \ge 0$$

Kia Teymourian 05/11/2022

10 / 20

### Making a good guess

- ▶ Unfortunately, there is no general way to guess the correct solutions to recurrences. (A good guess takes experience and creativity)
- ▶ You can use some heuristics to help you become a good guesser.
- ➤ You can also use recursion trees.

The Master Method

Kia Teymourian 05/11/2022 12/20

#### The Master Method

The master method provides a "Cookbook" method for solving recurrences of the form

$$T(n) = aT(\frac{n}{b}) + O(n^d)$$

Then the solution is:

$$T(n) = \begin{cases} O(n^d log(n)) & \text{if } a = b^d - \text{Case 1} \\ O(n^d) & \text{if } a < b^d - \text{Case 2} \\ O(n^{log_b a}) & \text{if } a > b^d - \text{Case 3} \end{cases}$$

#### Parameters are:

- $\triangleright$  a is the number of recursive calls, or the number of sub-problems that we solve in our recurse algorithm
- $\triangleright$  **b** is the factor of the sub-problems or the factor that we divide the n size of the main problem into smaller problems
- > d is the exponent of the running time outside of the recursive calls.

 4 □ > 4 □ > 4 □ > 4 ≧ > 4 ≧ > 4 ≧ > 2
 9 0 ○

 Kia Teymourian
 05/11/2022
 13/20

### Merge Sort Example

#### Example

#### Merge Sort

Using the master method, we need to identify the 3 parameters a, b, d.

- $\triangleright$  a is the number of recursive calls, in merge sort we do 2 recursive calls so a=2
- ${\color{red}\triangleright}\ b$  is the factor size of the subproblem, in merge sort, the sub-problems have size of n/2 so b = 2
- $\triangleright$  In merge sort, we do merge of the results, so that d the exponent of the running time outside of the recursive calls is d=1

So we plug in the above factors into the master method. and we have  $a = 2 = 2^1$ , so that  $T(n) = O(n^d \log(n))$  as we knew it before.

$$T(n) = O(n^d log(n)) = O(n log(n))$$

14 / 20

#### Example

#### Strassen's Method

Using the master method, we need to identify the 3 parameters a, b, d.

- $\triangleright$  a is the number of recursive calls, in Strassen's Method we do 7 recursive calls so a=7, we have  $(P_1,\ldots,P_7)$
- $\triangleright$  b is the factor size of the subproblem, in Strassen's Method, the sub-problems have size of n/2 so b=2 with respect to the dimensions of matrices
- $\triangleright$  We do merge of the results, d the exponent of the running time outside of the recursive calls is d=2

So we plug in the above factors into the master method.

$$a = 7$$
  
 $b^d = 2^2 = 4 < a$  — Case 3  
 $T(n) = O(n^{\log_b a})$   
 $T(n) = O(n^{\log_2 7}) = O(n^{2.81})$ 

And we know that the naive algorithm was  $O(n^3)$ , so the Strassen's algorithm is faster.

### A Case 2 Example

### Example

#### Recurrence examples

$$T(n) = 2T(n/2) + n^2$$

So we plug in the above factors into the master method.

$$a = 2$$

$$b = 2$$

$$d = 2$$

$$b^d = 2^2 = 4 > 2$$

So, we have

$$T(n) = O(n^d) = O(n^2)$$

### Additional Example - 1

$$T(n) = aT(\frac{n}{b}) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d - \text{Case 1} \\ O(n^d) & \text{if } a < b^d - \text{Case 2} \\ O(n^{\log_b a}) & \text{if } a > b^d - \text{Case 3} \end{cases}$$

### Example

#### Recurrence examples

$$T(n) = 7T(n/2) + n^2$$

a = ?

b =?

d = ?

Which Case?

4□ > 4□ > 4≡ > 4≡ > □

### Additional Example -2

$$T(n) = aT(\frac{n}{b}) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d - \text{Case 1} \\ O(n^d) & \text{if } a < b^d - \text{Case 2} \\ O(n^{\log_b a}) & \text{if } a > b^d - \text{Case 3} \end{cases}$$

#### Example

#### Recurrence examples

$$T(n) = 7T(n/3) + n^2$$

```
a = ?
```

a = ?

d = ?

Which Case?

### Additional Example - 3

$$T(n) = aT(\frac{n}{b}) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d log(n)) & \text{if } a = b^d - \text{Case 1} \\ O(n^d) & \text{if } a < b^d - \text{Case 2} \\ O(n^{log_b a}) & \text{if } a > b^d - \text{Case 3} \end{cases}$$

#### Example

#### Recurrence examples

$$T(n) = 2T(n/4) + \sqrt{n}$$

```
a = ?
```

$$d = ?$$

Which Case?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣り○

Readings from CLRS Book (Introduction to Algorithms, 3rd Edition)

- ▶ Section 4.3 The substitution method for solving recurrences
- ▶ Section 4.4 The recursion-tree method for solving recurrences
- ▶ Section 4.5 The master method for solving recurrences

20 / 20