AD-A063 993

NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/G 13/2

NATIONAL DAM SAFETY PROGRAM, LARCHMONT WATER COMPANY DAM NUMBER-ETC(U)

UNCLASSIFIED

OBJORD

DATE FILMED

LONG ISLAND BASIN

3 AD A 0 6399

LARCHMONT WATER COMPANY DAM Nº 2

WESTCHESTER COUNTY **NEW YORK** INVENTORY Nº 112

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

FILE COPY. 3

NEW YORK DISTRICT CORPS OF ENGINEERS

JULY 1978

DISTRIBUTION STATEMENT A Approved for public releases

Distribution Unlimited

79 01 29 070

NANEXH-F Honorable Hugh L. Carey & OCT 1978

It was arranged to have distribution of the reports to the owners made by NYS DEC. One copy of each report has been furnished Mr. George Koch, your designated contact at DEC for this purpose. Under the provisions of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, after 31 August 1978.

An important facet of the Dam Safety Program is the implementation of recommendations made in the reports. We appreciate the efforts of the State in providing the impetus for the fulfillment of the recommendations and of keeping the New York District informed of the proposed actions to be taken.

Sincerely yours,

CLARK H. EERN Colonel, Corps of Engineers District Engineer

NANEN-P

Honorable Hugh L. Carey Governor of New York Albany, New York 12224

Dear Governor Carey:

In accordance with President Carter's directive under Public Law 92-367 (National Dam Safety Program), the New York District, Corps of Engineers, has initiated Phase I inspections of dams in New York State. Approved final inspection reports of the following Cams have been sent to the New York State Department of Environmental Conservation, the designated State contact for this program:

Woodland Reservoir Dam	I.D. 412 N.Y.	Onondaga County
Seneca Falls Dam	I.D. 708 N.Y.	Seneca County
Colliersville Dam	I.D. 685 N.Y.	Otsejo County
Caneadea Dam	I.D. 464 N.Y.	Allegany County
Hew Central Park Receiving		
Reservoic	I.D. 183 H.Y.	New York County
Ridgewood Reservoir	I.D. 160 M.Y.	Kings County
Attica Dam	I.D. 445 N.Y.	Wyoning County
Newtown-Hoffman Creek		the state of the s
Watershed Site 3A	I.D. 617 N.Y.	Cheaung County
Grassy Sprain Reservoir	I.D. 188 N.Y.	Westchester County
Hillview Reservoir	I.D. 187 N.Y.	Westchester County
Brookside Reservoir	I.D. 168 N.Y.	Hontgomery County
Larchmont Water Company		
Dag No. 2	I.D. 112 a.Y.	Westchester County
Cannonsville Dam	I.D. 542 N.Y.	Delaware County
Downsville Dam	I.D. 342 N.Y.	Delaware County
Cuba Lake Dam	I.D. 455 N.Y.	Allegany County
Conklingville Dam	I.D. 146 N.Y.	
Conklingville Dam		Saratoga County

Of the above transmitted reports, Cuba Lake Dam has been assessed as "un-safe, non-emergency" and as such you were notified by telegram on 20 July 1978 of this condition.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Sublitio)
Phase I Inspection Report 5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report Larchmont Water Company Dam No. 2 National Dam Safety Program Long Island Basin, Westchester Co. N.Y. 6. PERFORMING ORG. REPORT NUMBER Inventory No. N.Y. 112 AUTHOR(4) 8. CONTRACT OR GRANT NUMBER(*) John B./Stetson DACW51-78-C-003 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Dale Engineering Company, Inc. Bankers Trust Building Utica, New York 13501 11. CONTROLLING OFFICE NAME AND ADDRESS New York State Department of Environmental Con-28 Jul 1 servation / 50 Wolf Road Albany, New York . 12233 14. MONITORING AGENCY NAME & ADDRESS(It dilierent from Controlling Oitice) 15. SECURITY CLASS. (of this report) Department of the Army 26 Federal Plaza / New York District, CofE UNCLASSIFIED 154. DECLASSIFICATION DOWNGRADING New York, New York 10007 16. DISTRIBUTION STATEMENT (of this Report Approved for public release; Distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) National Dam Safety Program. Larchmont Water Company Dam Number 2, 18. SUPPLEMENTARY NOTES Long Island Basin, Westchester County, New York, Inventory Number 112. Phase I Inspection Report. 19. KEY WORDS (Centinue on reverse side II necessary and Identity by block number) Dam Safety Westchester County National Dam Safety Program Larchmont Water Company Visual Inspection Sheldrake River Hydrology, Structural Stability ABSTRACT (Comtinue on reverse side if necessary and identity by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. Larchmont Water Company Dam No. 2 was judged to be unsafe-non-emergency due to a seriously inadequate spillway.

DD (FORM 7) 1473

EDITION OF THOUGHT IS DESOLETE

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE (When Date Enfored)

TABLE OF CONTENTS

11 1

ABCDE

	raye
Assessment of General Conditions	1
Photographic Overview of Dam	ii-vi
Section 1 - Project Information	1-4
Section 2 - Visual Inspection	5
Section 3 - Hydrology & Hydraulics	6
Section 4 - Structural Stability	7-8
Section 5 - Assessment/Remedial Measures	9

FIGURES

Figure	1	-	Location Map
			Larchmont Reservoir Property
Figure			Topographical Plan and Layout
Figure		-	Profile of 20 Inch Main
Figure			Spillway
Figure			Gate House
			Raising Spillway
			Raising Dam, Profile
			Raising Dam, Loads and Stresses
Figure	10	-	Raising Dam, Flashboards
Figure	11	-	Geology Map

APPENDIX

field Inspection Re Previous Inspection Hydrologic and Hydro Stability Computation	Reports/Relevent	Correspondence
tability Computation	ons	1
eferences		ACCESSION TO
	1	NTIS
		DDC
		JUST -
		BY STATE OF THE ST
		DD: All

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Mame	of	Dam L	archmont H	Reservoir - NY 112	
		State Lo	cated	New York	
		County L	ocated	Westchester	
		Stream		Sheldrake River	
		Date of	Inspection	June 23 1978	

ASSESSMENT OF GENERAL CONDITIONS

The Larchmont Dam No. 2, also known as Sheldrake Lake, is a backup water supply source for the Village of Larchmont. The stone faced rubble and masonry structure is in excellent condition and the facility is reasonably well maintained. Some evidence of minor vandalism has occurred and is apparent where a small area of stone fill placed in back of the masonry dam should be replaced. The rock ogee spillway has been found to be seriously inadequate to pass the 1/2 Probable Maximum Flood. The Village of Larchmont indicated that prior to the dam being overtopped flows would be diverted into Pine Brook at the north end of the reservoir. Further investigations should be performed to refine the flood routing analysis and to consider alternative remedial measures.

Approved By:

Date:

as July 18

Dale Engineering Company

John B. Stetson, President

Col. Clark H. Benn New York District Engineer

UPSTREAM

 View across top of dam looking east. Gate house at opposite side of spillway.

2. Closeup of spillway with concrete cap and masonry ogee section.

3. Detail of ogee section. Notice excellent condition of masonry. Stilling basin area below founded in rock shows some erosion.

4. View Back across spillway, looking west.

 View looking west from location near east abutment.

6. Closeup of east abutment.

7. Closeup of landmark indicating site of conservation area.

8. Detail of downstream masonry embankment. Typical of all-over good condition.

9. View of downstream area below spillway.

10. Closeup of top of dam showing concrete section on left modification and masonry section on right. Section in between filled with rock. This section has been vandalized, leaving a 2.0-foot hole.

NATIONAL DAM SAFETY PROGRAM NAME OF DAM - LARCHMONT ID# - NY112

SECTION 1 - PROJECT INFORMATION

1.1 General

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The New York State Department of Environmental Conservation.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the structural and hydraulic condition of the Larchmont (Sheldrake Lake) Dam and appurtenant structures, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the State of New York.

This Phase I inspection report does not relieve an Owner or Operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

Larchmont Dam is a masonry dam that was constructed in 1924. In 1934 and 1935 the dam was raised by the construction of a concrete cap on the existing masonry structure. At this time, a rockfill was placed on the downstream of the dam. The present length of the dam is approximatley 1,000 feet. The top width is 10 feet wide; 6 feet of this width is composed of the reinforcing rock fill while the upstream 4 feet is made up of the concrete cap which is placed above the original masonry structure.

The spillway is located approximately 650 feet from the south abutment. The spillway consists of a broad crested weir 50 feet wide which discharges down an ogee shaped masonry spillway into a re-

ceiving pool at the toe of the dam. Slopes in the spillway end-walls allow the placement of flashboards which are capable of raising the elevation of the outlet weir 1-1/2 feet above the masonry weir elevation. Drain lines from the dam consists of two 20 inch cast iron pipe controlled by gate valves. The receiving channel downstream from the emergency spillway is a masonry channel approximately 80 to 100 feet long which discharges immediately into a small pond just downstream from the dam. This small pond is presently used as a conservation area by the local community.

b. Location

The Larchmont Dam is located in the Town of Mamaroneck in West-chester County, New York. The dam is built across the Sheldrake River and impounds a body of water known locally as Sheldrake Lake. The dam is situated 2.75 miles upstream from the confluence of the Sheldrake River with Mamaroneck Creek.

c. Size Classification

The maximum height of the dam is approximately 30 feet. The impoundment has a normal pool capacity of 424 acre feet. Therefore, the dam is in the small size category as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The Sheldrake River downstream from the impoundment meanders through a heavily developed residential area. Flood discharges from Sheldrake Lake could cause substantial damage in this area. The small lake area below the dam does not appear adequate by visual inspection to absorb the 1/2 PMF dam break flood wave in the event the dam should fail. Therefore, the dam is in the high hazard category as defined by the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the Village of Larchmont Water Works.

f. Purpose of Dam

The original purpose for the dam was for water supply use. Presently, the dam provides off line, standby public water supply capabilities. Its present use appears to be mainly that of a recreational and conservation area for the community.

g. Design and Construction History

The dam was designed by George B. Burbank and Louis L. Tribus in 1897. There is no information regarding the construction period of the original dam. In 1924, Hazen and Wipple, Civil Engineers from

New York City, designed flashboards for the existing structure. In 1934, the original masonry dam was capped with a concrete structure and rockfill was placed behind the existing stone masonry. This work was designed by Fuller and Everett, Civil Engineers, 22 East 40th Street, New York City. There are no details regarding the construction procedures.

h. Normal Operational Procedures

No specific relevant operating information has been given. The Village of Larchmont maintains the dam and makes routine inspections of the facility.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of Larchmont dam is 2.66 square miles.

b. Discharge at Dam Site

No discharge records are available for the dam site.

Computed discharge capacities:

Ungated spillway, t	op of dam	987 cfs
Gated 24 in. drawdo		w 56 cfs

c. Elevation (feet above MSL)

Top of Dam Maximum pool - design discharge	136.35 137.50 (1/2 PMF)
Spillway Crest	133.35
Stream bed at centerline dam	105.00

d. Reservoir

Length of maximum pool	600 feet (1/2 PMF)
Length of normal pool	600 feet

e. Storage

Top of	dam	500 acre feet
	surcharge	550 acre feet (1/2 PMF)
Normal	pool	424 acre feet

f. Reservoir Surface

Top of dam	25.00 acre
Maximum pool	29.00 acre (1/2 PMF)
Spillway pool	29.00 acre

g. Dam

Type - Masonry.
Length - 1000 feet.
Height - 30 feet.
Freeboard between normal reservoir and top of dam - 3 feet.
Top width - 10 feet.
Side Slopes - See plans.
Zoning - Masonry.
Impervious core - None reported.
Grout curtain - None reported.

SECTION 2 - VISUAL INSPECTION

2.1 SUMMARY

a. General

The visual inspection of Larchmont No. 2 Reservoir also known as Sheldrake Lake took place on June 23, 1978. The dam was modified in 1936 to raise the crest an additional 5 feet. Portions of both the original plans and plans for the raising of the dam are included in this report. At the time of inspection, the resevoir was not in operation as a water supply source. The dam and reservoir functions as an emergency supply source.

b. Dam

The dam visually conforms to the plans shown in this report. The original portion of the dam is a masonry structure of cut and hand layed stone. The stone work is still in excellent condition. The raised portion of the dam was constructed over the original structure on the upstream face and contains a concrete cap. The toe abutments and downstream slope of the dam were inspected with no seepage or movement noted.

c. Appurtenant Structures

The spillway is an ogee stone masonry structure and is also in excellent condition. The drawdown pipe was partially open at the time of inspection and was discharging below the spillway.

d. Reservoir Area

The reservoir area is surrounded by woods and residential properties. Rock outcropping exists along the edge of a large portion of the reservoir. There was no evidence of rock slides or siltation problems in the reservoir. The reservoir is free of debris.

e. Downstream Channel

The immediate downstream discharge flows through a rock conveyance section into a large pond (approximately 5 acres). No channel obstructions were noted in the immediate area below the dam. Further downstream, the Sheldrake River flows through residential areas and through an industrial area discharging into Long Island Sound. The structures in this area are reported to be susceptable to flooding.

SECTION 3 - HYDROLOGY AND HYDRAULICS

3.1 EVALUATION OF FEATURES

a. Design Data

No information was obtained relevant to design of the dam. For this investigation, the dam was evaluated for a Probable Maximum Flood (PMF) hydrograph using Probable Maximum Precipitation rainfall data obtained in Hydrometeorlogical Report No. 51. Both the PMF and 1/2 PMF were evaluated whereas the 1/2 PMF was assumed to be approximately the Standard Project Flood (SPF) in utilizing the U.S. Army Corps of Engineers Hydrologic Engineering Center's Computer Program UHCOMP. The program UHCOMP was used to develop a unit hydrograph computed by Snyder Method parameters and a flood hydrograph. These parameters were developed in a previous investigation done for the Corps of Engineers. The high resulting runoff is probably accurate due to the high degree of urbanization of the upstream drainage area. The U.S. Army Corps of Engineers Hydrologic Engineering Center's Program HEC-1 was used to route the flood through the dam emergency spillway using the Modified Puls Method. The drawdown pipe was assumed not to be in operation during the flood crest since it requires manual operation and is capable of only a negligible amount of discharge. It was assumed that the spillway crest was on the threshold of spilling at the start of the flood routing and there was no flood storage available below the top of spillway elevation. Peak flow discharges were approximately 6325 cfs and 3450 cfs for the PMF and 1/2 PMF events routed through the spillway. The relatively small reservoir impoundment area above the dam face had no effect on the PMF and 1/2 PMF discharges. The computed stage - discharge relationship on page C-19 indicates the dam would be overtopped by more than one foot.

b. Experience Data

No information was obtained from knowledgeable people at the site relevant to performance of the spillway during extreme rainfall events - only that in the spring of each year the spillway discharges, but routinely that it is not significant. It should be noted that the dam cannot be observed from a roadway and that it is relatively inaccessible and not visible from off property.

SECTION 4 - STRUCTURAL STABILITY

4.1 Evaluation of Structural Stability

a. Visual Observations

The dam's masonry wall reservoir facing and rockfill backing is in good condition with no indication of misalignment, settlement or other structural movement.

A limited depth of rubble in the dam core between the upstream masonry facing and rock faced downstream slope in the vicinity adjacent to the spillway's southerly headwall has been removed, presumably by vandals. The condition has not yet had any significant structural effect.

The rock face of the dam's downstream slope is covered with low foliage for much of the dam's length, but no evidence of rock displacement because of the condition was noted. No indication of seepage through or beneath the dam was observed on the downstream face or in the area below the downstream toe.

b. Geology and Seismic Stability

The original report concerning the reservoir indicates this dam rests on granite and the area is surrounded by rock. According to the New York State Geologic Map (1971) the eastern, lower reservoir is underlain by Harrison Gneiss whereas the higher reservoir to the west is underlain by rocks of the Hartland Formation. The Hartland is a fine-grained schist with an amphibolite unit. Serpentinite intrusions are not uncommon in these units.

Foliation generally strikes northwest and dips northwest. As noted on the map, several faults are present in the area. A linear feature may be located along the west side of the reservoir, according to the Preliminary Brittle Structures Map of New York, Lower Hudson sheet of the New York State Geological Survey (1977). If this linear feature is a shear zone, extensive weathering is possible. The above mentioned serpentinite also weathers extremely rapidly.

Earthquakes recorded for the area are tabulated below:

Date	Intensity-Modified Mercalli	Location Relative to Dam
1872	IV	3 mi. SSW
1874	V	3 mi. SSW
1916	IV	4 mi. NNW
1926	V	7 mi. SW
1933	III	4 mi. NNW
1938	III	5 mi. NE
1947	V	10 NE Greenwich, Conn.
1950	IV	10 NE Greenwich, Conn.

Although this area is designated as being in Zone 1 of the Seismic Probability Map, the New York State Geological Survey believes this area of Westchester County should be upgraded to at least Zone 2 with possibility of Zone 3 potential.

C. Data Review and Stability Evaluation

Design drawings relating to the construction of the original mason-ry dam provide limited data pertinent to the as-built structure. Design drawings applicable to the dam modification undertaken in the 1930's (increasing the height and installing a rockfill backing) provide limited information on the structure's foundation and do not include stability analysis. A stability analysis performed as part of this study (see Appendix D), utilizing, simplifying, conservative assumptions when information was lacking, indicate the present structure is stable against the effects of static overturning and sliding forces for the conditions of a full reservoir, flow overtopping the dam by one foot, and a drawndown reservoir.

Only one section of the raised dam was analyzed due to lack of information on the drawings which were made available to the dam inspection team. It could not be determined whether this was the critical section. The section was taken from Figure 7, Section C-C. The downstream elevation shown in Figure 3 generally indicates that the location of Section C-C is in the higher section of the dam. Further work on the structure could seek to determine whether higher dam sections exist. In the event they can be located and measured, additional stability computations should be performed.

Mr. Crawley of the Village of Larchmont indicated that the reservoir was not drawn down during the 1936 raising of the dam. He said in 1949-50 a drought occurred and the water level was 14 feet below the spillway.

The reservoir site is located in an area having a Seismic Zone 1 designation (with a suggested change to Zone 2). This seismic zoning is conventionally assumed to present no earthquake hazard. The dam structure has performed well under the effects of past loading conditions, and it is expected that stability will be retained for future loadings that are comparable to past effects providing the structure is properly maintained. Maintenance should include repair of the limited deteriorated/vandalized core section adjacent to the spillway, removal of foliage on the dam's downstream rock face, and placement of riprap on the exposed shore area adjacent to the north end (abutment area) of the dam.

SECTION 5 - ASSESSMENT/REMEDIAL MEASURES

5.1 DAM ASSESSMENT

On the basis of the Phase I visual examination, Larchmont Dam appears to be adequate for normal reservoir operation. The dam is in excellent condition and the area around the dam is heavily used by local residents for recreational purposes. Minor vandalism has occurred and is evidenced by removal of some of the stone fill that was placed in back of the masonry dam. The facility is reasonably well maintained by the Village of Larchmont. Hydrology computations indicate that the 1/2 Probable Maximum Flood will top the dam. These hydrology computations were based on relatively high runoff factors in the unit hydrograph parameters which were developed in a previous investigation done for the Corps of Engineers. These high runoff factors are probably accurate due to the high degree of urbanization of the upstream drainage area. It has been determined that the discharges from a 1/2 Probable Maximum Flood will top the dam by more than one foot. Stability computations show the structure to be adequate (at one location where information was available on the drawings.).

5.2 REMEDIAL MEASURES

a. Alternatives

A further investigation should be done to refine the hydrologic computation performed herein and to determine the effect of topping of the dam by the 1/2 Probable Maximum Flood. A number of remedial measures could be considered - among them would be lowering down the spillway, widening the spillway, or diversion around the reservoir.

Further work on the structure could locate the critical sections for dam stability and perform additional stability computations based on field measurements.

b. Operation and Maintenance

No specific relevant operating information has been given. The Village of Larchmont maintains the dam and makes routine inspections of the facility.

LOCATION PLAN

FIGURE 1

....

FIGURE 3

?

PROVILE OF 20 MOW MAIN.
FROM DETTO IT HAN DOGENICE.
SCALE HER F. STAND. F. SO.

The state of the state of

MASONRY DAM AND STORAGE RESERVOR
ON SHELDRAKE RIVER
WESTCHESTER CO. N.Y.

FIG.

MASONRY DAM AND STORAGE RESERVOR
ON SHELDRAKE RIVER.
WESTCHESTER CO. N.Y.

FIGURE 5

ENDS.

MASONRY DAM AND STORAGE RESERVAN

FRONT.

ELEMTIONS OF GATE HOUSE.

MASONRY DAM AND STORAGE RESERVOIR
ON SHELDRAKE RIVER,
WESTCHESTER CO. N.T.
GELLLINGER BOTO

Control of

FIGURE 7

FIGURE OF

Statement Comments

Parameter 1

-

Section 4

- Constant

APPENDIX A
FIELD INSPECTION REPORT

CHECK LIST VISUAL THEFECTION

Extractal a

Total Indiana Francis

Contraction of the last

PHASE 1

Z am	1	Name Dam Larchmont Dam #2	12	County	Westchester	State	County Westchester State New York 10 # 112	10 # 112	
Type of Dem	Des	Masonry		1	Hazar	Hazard Category	-		
Dete(s)	Inspect	Dete(s) Inspection June 23, 197	8/61 ,	Veather	Weather Clear	Temper	Temperature 75-80°		
Pool El	evation 4	t Time of	Pool Elevation at Time of Inspection 147 ± 1.0 M.S.L.	147 ± 1.0		failwater at	Tailwater at Time of Inspection below outlet pipe	on below outlet	8

Inspection Personnel:

N. F. Dunlevy	Dale Engineering Company
F. W. Byszewski	Dale Engineering Company
David McCarthy	Dale Engineering Company

Neal F. Dunlevy

Recorder

CONCRETE/MASONRY DANS

Total Control

Francis .

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	None observed.	
STRUCTURE TO ABUTHENT/EMBANKHENT JUNCTIONS	Good condition.	Substantial portion of dam founded on rock outcropping.
DRAIMS	12-inch drain spilling from below spillway in center of dam. No blockage observed.	
WATER PASSAGES	No apparent erosion.	
FOUNDATION	Surface condition excellent.	Substantial portion of dam founded on rock outcropping.

CONCRETE/MASONRY DAMS

- Constant

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Generally, dam in excellent shape. Surface cracks noted in one location. Not serious.	Dam is inspected weekly by Village of Larchmont staff.
STRUCTURAL CRACKING	None observed.	
VERTICAL & HORIZONTAL ALIGNMENT	Good.	
MONOLITH JOINTS	Masonry joints in good condition.	
CONSTRUCTION JOINTS	None.	
STAFF GAGE OF RECORDER	None.	

EMBANKHENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	N/A	
UNUSUAL MOVENENT OR CRACKING AT OR BEYOND THE TOE	N/A	
SLOUGHING OR EROSION OF EMBANIMENT AND ABUTHENT SLOPES	H/A	
VERTICAL AND HORIZONTAL ALINEMENT OF THE CREST	N/A	
RIPRAP FAILURES	W/W	

EMBANKMENT

Employed Total

Parente Control

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANICHENT AND ABUTHENT, SPILLMAY AND DAM	N/A	
ANY NOTICEABLE SEEPAGE	N/A	
STAFF GAGE AND RECONDER	N/A	
DRAINS	N/A	

SHEET 6

UNGATED SPILLMAY

Emiles Committee

[Country Country

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR MASONRY OGEE SPILLWAY	Excellent condition.	
APPROACH CHANNEL	Reservoir.	
DISCHARGE CHANNEL	Founded in rock. Little or no erosion.	
BRIDGE AND PIERS	Mone.	

GATED SPILLWAY

Property.

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	None.	
APPROACH CHANNEL	None.	
DISCHARGE CHANNEL	None.	
BRIDGE AND PIERS	None.	
GATES AND OPERATION EQUIPMENT	None.	

SHEET

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	No concrete.	
INTAKE STRUCTURE	Building locked; not inspected. Submerged intake.	
OUTLET STRUCTURE	Pipe protruded through spillway channel below ogee. Good condition. Water flowing.	
OUTLET CHANNEL	Founded in rock. Little or no weathering.	Below reservoir is a 25-acre pond
EMERGENCY GATE	Outlet works described here consist of blow-down or drawing pipe. Village Engineer Indicated gate is operable.	

SWEET 9

DOWNSTREAM CHANNEL

-

Principle Control

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Good condition. Channel immediately below spillway founded in rock, opens into large pond (25 acres) approx. 150' below ogee spillway.	
STOPES	Mone.	
APPROXIMATE NO. OF HOMES AND POPULATION	Below dam, Town of Mamaroneck industrial section and village. Some existing flooding problems on Brookside Drive. USACF did study 2 to 3 years ago.	

SHEET 10

INSTRUMENTATION

- I

I

OBSERVATION VELLS None. WEIRS None. PIEZOWETERS None.	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ATION WELLS	NOMUMENTATION/SURVEYS	Mone.	
ETERS	OBSERVATION WELLS	Mone.	
ETERS	WEIRS	Mone.	
	P I EZOMETERS	None.	
	ОТИЕ В		

RESERVOIR

Committee Protection Committee Commi

Constitution

Topped a

Kinesa Consul

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
STOPES	Treed slopes with significant rock outcropping.	
SEDIMENTATION	None observed. Drainage area above dam is residential with gutter and open channel collection into reservoir.	

		7		
	<	DEBAT		
	NG PAT	1014	-	
CHECK LIST	INEERI	CONCTBILLT		PHAS
	ENG		4	
		DESIG		

12			
Dem			1
rchaont			1
Brc		112	
			-
NAME OF DAM LEY			
E 0		-	
₹		9	
		*	1
		ATIC	
	_	PER	
-	ž	2	
12	9	10	

Contract Contract

Comment

ITEM	REMARKS
AS-BUILT DRAWINGS	Mone.
REGIONAL VICINITY MAP	See this report.
CONSTRUCTION MISTORY	Little or no data available. To our knowledge, all available data has been included in this report.
TYPICAL SECTIONS OF DAM	See this report.
OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS	See this report.
RAINFALL/RESERVOIR RECORDS	Not collected at dam. Records available for vicinity.

7000	
	REMARKS
DESIGN REPORTS	Mone.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	Mone supplied. See work done for this report.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	None available.
POST-CONSTRUCTION SURVEYS OF DAM	None.
BORROW SOURCES	None.

	REMARKS
MONITORING SYSTEMS	Mone.
HODIFICATIONS	In 1936 dam raised 5' to increase pool volume. Effectively, original dam was used as core wall for new dam.
HIGH POOL RECORDS	Information not obtained.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Mone.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Mone.
MAINTENANCE OPERATION: RECORDS	Dam inspected weekly by Village of Larchmont.

TEN	REMARKS	
SPILLMAY PLAN SECTIONS DETAILS	See this report.	
OPERATING EQUIPMENT PLANS & DETAILS	None.	

- Control

LARCHMONT RESERVOIR

CHECK LIST HYDROLOGIC & HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTERIS	TICS: 9.90 square r	miles
ELEVATION	TOP NORMAL POOL	(STORAGE CAPACITY):	133.35 feet*
ELEVATION	TOP FLOOD CONTR	OL POOL (STORAGE CAPACITY):	133.35 feet*
ELEVATION	MAXIMUM DESIGN	POOL: 136.35	
ELEVATION	TOP DAM:	136.35	
CREST:			
٠.	Elevation	133.35	ž.
b.	Туре	Concrete cap or masonry	v snillway
c.	Width	4 feet	
d.	Length	50 feet	
e.	Location Spillo	ver_ Center of dam	
f.	Number and Type	of Gates None	
ъ. ь.	Location	36" diameter pipe Base of dam	
c.	Entrance Invert	\$ 12/	
d.	Exit Inverts	125	
e.	Emergency Drain	down Facilities 36" diamet	ter pipe
HYDROMETE	OROLOGICAL GATES	•	
	Туре	Facility not operational; no	rainfall data availab
b.	Location		
c.	Records		
MAXIMUM N	ON-DAMAGING DISC	HARGE: Not determined. Down	nstream flood areas
		affected by tributar	
*Flashboa report of	n raising of the	134.85 feet shown on plans main dam. Were not found of	contained in this on site during in-

APPENDIX B
PREVIOUS INSPECTION REPORTS

APPENDIX C
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

DARE

DESIGN BRIEF

			_	_	_		_	_	_	_	-			_		_				,	_											•	AGI	2	<u>:</u> _	1	_	or_	_		_
	67 N	A.	7.	_																			AK A			DE -	CT		<u></u>	_			.	•w	06.	_	_	_		<u>-</u>	-
	E	5	1	A	2	1		T	£	To	I		¢	E	R	1	T			I		5	51	34	4	E	0	-	عاء	A	e K	2	F	41	-04	EI	V.	5	I		1
_	T		=	4		2	1	1	V	1)	+	38	5	+		3	4	9		4	1.2	27	2	1	10	6		51	-	•	2.	2	2/2	7	He		+	+	\dashv	_	+
_		-	1			1		+			+		_	1			+	_		+				1	1				1				\pm				\pm	\pm	+		
	3	1				-		+	_	_	+			-			+			+			-	+	+			-	+		_	-	+			-	+	+	+		
_	-	+	4	=						201		.7	-	T	4	22	1	(de)			(.5	i) [1				+			-	7	9	*	19	9	-	0	3_	-
	+-	T	+			_		1			1			+			4		_	1			1	#	7		_	F	+	_			+		_	-	+	+	_		+
	 	1		-	1		4	4	5	0	4		=	+		5	7	9		+				+	1			 	+			-	+		_	<u> </u>	+	+	+	_	+
	†	1.	Te		I	1	1	1	-		1		1.4	+++			1			†	2		79:	+	+			-	+				+	_		-	+-	+	+	_	+
-	1	!												-											-	el	~		1	17	2	<u> </u>	†			-	1-	+	+	_	+
		T	J		3			T					1	I		1	1	1.	25			11	T	+	7				I	-	L	1		_		5	+	+	++		+
	-	1				-	-	+	ļc	0				+	_	-	+	_		+		3	+	+	+			-	+				+				+	+	1	_	+
		†			2 1			4	.1	6			<u> </u>	†	_		+			+			+	+	-	_		-	+	_			+				- -	+	+	_	-
	-	+	1		1			1		-	+			+		<u> </u>	+	_		+			+	+	-				1			-	+				-	+	-+	_	++
	-	+	-		+-			+	-		+			+			+		-	+			F	+	1	_			1				+			-	1	+	1	_	
	+	+-	-		†			+		+-	+			+			+	_	-	†			+	+	1			-	†		-	+	+	_		-	+	#	#	_	+
	-	1	1		-			+			-		 	+		-	+			+			+	+	1			+-	+			+	+			+	+	+	+		+
	+	-			1		-	+		ļ			 -	++	_	-	+	_		+		_	+	+	1			-	+			-	+			-	#	+	#	_	+
	•									1	-		-	+		+	+	_	-	+		-	+	+	+		-	+	+		-	+	+		-	-	+	+	+		1

DALE

DESIGN BRIEF

																							-2		_0	
_	•	21	0				-				1. Y			A I	24	PE	CT	10	~		-					
—		-	_		-						١		-			-										
NOC.		~~	CH	~ 0.	-		> 1	-	-						-			-				. 01	V 06.	-	-	-
T	TT	T	7	-	_	_	T	-	Γ-			_		П		_	_	T	Т	T	T —		T	T	ī	_
+	++	+	\dashv			-	5	T	~^	TE	0	-	SA	Y	7	-15			100	2	5	-	+-	+-	-	_
+	+-+-	+	-			-	-			-			_		_	_	_	_	-	_	1	_	1			
-	640	C	7	•	5	12		*4	ron	-	Lon	-	H	uls	~	1th	5	7	M	7.	0.1	1-	1_	↓_		
1		4	1	-	0	8	*	_										<u>'</u>	_							
		C	Z	= 1	0.9	5_	*																			
L		1								0					4		en	14	1	11	ma	2	ein	1	Le	
		4	0	= (1+	1.	4	Lc							Lea	1		•	16	1			1	ra m		
T								1				2					1	en	T .	1	Li	1 /1				
		£	0	=	1.9	51	14	22	41	71	200													1	1	
1	1	1					1			1			1					1	1		1	1	1	1	1-	-
+	† †	1			3.		1	-	-	1	1	_	-					1	+	†	+		+	+-	 	-
+-	+-+	-		-	2.	7	-	-	-	+-		-	 		-	-	-	 	+	+	+	+	+-	+	-	
+ -	+	-			-	-	+	-	-	 	-					-		-	-	+-	-	+	+	-	-	
-	+-+	4	1		7/	15	5=	-	40	-	-	-						-		+-	-	├ -		-	+-	-
-	+-+	-	-		,-	-	+	_	-		+-	7				_		-	-	-	-	-	-	1_	 	
-	↓ _ .	+	11	3	1	+	0.	25		12:	+	2		_			_		_	_	-		-	-	ļ 	
-	4	4								1_	_		_			_		<u></u>	_	_		_	<u> </u>	1_		
1_		7	P	y =	3	15	4 +	a	25	11	-0	-6	11			_			_					Ĺ.	l	
1		+	2	•	- 3	5	4+	0.	09	L								L			L			1		
1_		+	,		1	6	3																			
																			Π	Π				T		
5	umn	- 4	14	٥	4	A	om	ite.	15	Π																
+		i																	T	T	T		T		1	
7-	CV	116			1	Ī	1			T	1		1					1	1.	de	10	1	1			
1						1	1		Г				1					-	1		-	1		1	1	-
1	BP	R				T		-		-	2.2	2	1		-		1	-	-	, :	3	1	5	1	-	
1	CI	1		AA.	44.	1	1	1	-		,	10	I	***		1	-	1	Y		13	28	5	1	†	-
1-	200	1	~	4		1	1	-4		=	2.5	1	+-			 	-	1	4	-	+ 4	-0	-	+	1-	-
+-	Non	5	~1			1	Y :	1-1		F		-	+			-	-	-	1-	+	+	+-	+	+-	+-	-
+	+-	4		7	5	10	YOU!	-	-	+		-	+-			-	-	+-	-	+	+-	+-	-	+-	+	-
+	+-+			ST	ma	L	R	+-	-	+-	+	-	-		_	-	-	+-	+	+	+	-	+-	+-	+	-
+-						-	+	-	-	+	-	-	-	-		-	-	-	-	+	-	-	+-	4-	-	-
<u> </u>			2	4	Te	+1	4)	10	4	-	-	_	-			_	-	-	-	-	-	-	-	-		_
	.i.		2	1	12.	6-	(E)	20	1-4	-	-	_	-				_	_	_	_	_	-	1	-		
	1				R		1-7	3												L		L				

DALE

DESIGN BRIEF

MD 87	N.				-		_																		
D 07	221			-			_		۸. ۱	_	Da		T						PA	Ot_	<u>c-</u>	3	_01	-	
ET 140 1 SUBJECT			+ /	Ch	11	16	me_	7	les	7			-									-			
· succest.	LAIC	M price.		1100						7	-			-					_ 80	, DY	VGS.				-
TIT			TT				Π	T	T	Ι.	Γ	Γ					Ī	Γ	1	Г	T	Π		T	
 	+++		++			N .	A	-	6	1	lel	+	~	14.	. 4	*	-	<u> </u>	\vdash	-	+-	-			
† † † †			1		-					Ė						=	-			\vdash	†	-		-	
1-1-1				N	14			Y.	14		le		11	4	-	0	IZ.	1	ie		+				
111	11		1				L	1	1			-	10		9-		Ü		T	2	†			\dashv	
1-1-1	11	1	1			<u> </u>		1		7	1		- "	,	7	n	ni	~	1		1	-			
111	1			01	4.	_	-	-	†		De	+4		-		-		10	1	-	de	,			
					K							.0					=		1	10		-			
			1		HR							.0							4	12					
				24					1		1	5								13					
			-	18								0							1	15	1				
				12								0								15	7				
																			1		T				
																_									
						P	MP		I.	de	K.	Ru	4	4	C										
										4														,]	
			-		<u> </u>		_									Ц							-		
	_		1					<u> </u>	_			_										ļ			
		<u> </u>				E	05	2	F	10	2							_	<u> </u>	_					
4-4-4			-					<u> </u>			<u></u>			_			_		-						
1-1-1		-	Est	m	44		2	gul	h	L	t,	ec	ce	40	(25	5	ruc	1	m	le		-		
1-1-1		-	-				-	-	-	_	-			_			_	1_	 	ļ	<u> </u>				
			+		6.	4	£	las	4	*	17	\$_7	27	3		. 4	}	5	lay	5	(1	_	-+	
+-+		-	-				-	-	-	-	-		_						-	_	-				
$\{-+-\}$			-			L	55		Ka	4	1	-		_				-	ļ	-	-				
+			+	,			-		-		\vdash	-					-		+-	-	-	-		-+	
+-+	-+-	Init	red.	Lu	7	-	\vdash	-	+	-0	-		-//	-		-	-	-	+		-	-		+	
 		Cors	/an		10	22	+	+-	+	-	+	~	16	-		-	-	-	+-	-	+				
1	Fram	ti.	11	_			11.	16.	10	1	Pa	-	+	J ₀		51	-	-	+	+	+-	-			
*	t tu	Leve	100	1	il	-	1		4.	2				-9	•	_	<u></u>		100			1	00	51-	
									-	1	-		- V	. "	يس	~					1	-		1	
1																									
	1		1							T							Ī		1		1				

DALE

JOHED BY.	ND	DESIGN BRIEF	DATE 7-12-78
-VI 6883	2210	- SHORT WILL LY DAY ENERGY	Mas C- 4 or
1011 8404	co Larchno	-t (Sheldraha Lake)	
Ш			
-+-			
++		CHICAMP Commeter Runs	
		(Prior To Ratury The S,	a. 1 (ug)
++		 	++++++++++
	run No	Description	Peak Perch
		PMF Clark TC = 2.6, R-4.73	G400 5-L
	2 -	spr, clash	3400 7-9
	3	PMF Smale (P= . 4, TP= 3.0	10-11
	4	SPE Sme	+ + - + - + - + - + - + - + - + - + - +
			3000 12-14
		SYNOPSES	
- -	Value from	- Nos 1 & 2 will be use	<u> </u>
-1-1			
++			
-			
1 .			

```
SELECT 1-6 (1=TIME INT/2=UNIT H/3=RAIM/4=RUNOFF/5=PNT/6=STOP)
ENTER TIME INTERVAL (MIN) = 60.
SELECT 1-6 (1=TIME INT/2=UNIT H/3=RAIN/4=RUNOFF/5=PNT/6=STOP)
                                                                      2
ENTER DRAINAGE AREA (SOMI) = 2.70
SELECT 1-3 (1=INPUT UH, 2=CLARK, 3=SNYDER )
ENTER NUMBER OF TIME-AREA ORDINATES (O=NONE)=
ENTER CLARKS TC AND R (HRS) =
                                     2.00
      TP
              CP
                    TC
    2.10
           0.580
                     2.60
                            1.73
SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAIN, 4=RUNCFF, 5=PHT, 6=STOP)
                                                                     3
ENTER RATIO IMPERVIOUS = 0.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
ENTER PMS INDEX RAINFALL (IN) = 24.50
ENTER RO, R12, R24, R48, R72, R96 = 106.00 122.00 137.00 ENTER TRSPC AND TRSDA (SQMI) = 0.00 2.70
                                                            151.00
                                                                     155.00
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, 3=SCS)
                                                     1
ENTER INITIAL LOSS (IN), CONSTANT LOSS (IN/HR) =
                                                     1.00
                                                                C.10
SELECT 1-0 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)
ENTER A TITLE PLEASE - LARCHMONT 2 PMF
ENTER STRTQ,QRCSN,AND RTIOR =
                                    5.00
                                             5.00 -389.00
 HR MIN
         RAIN
               LOSS EXCESS
                             UNIT I.G
                                        RECSN
                                                 FLOW
                             132.
                                                    5.
  1
      O
         0.02
               0.02 0.00
                                          5.
                               402.
                                           5.
  4
         U.U2
               0.02
                     0.00
                                                    5.
                               481.
  3
      0
         0.02
               0.02
                     0.00
                                           5.
         0.02
      0
               0.02
                    0.00
                               327.
                                           5.
                               180.
  5
      0
         0.02
               0.02 0.00
                                           5.
        0.02
  6
      C
               0.02 0.00
                               100.
                                           5.
  7
               0.05 0.00
      0
        0.05
                               55.
                                           5.
               0.05 0.00
        0.05
                               31.
  0
      U
               0.05 0.00
  9
                                           5.
      0
         0.05
                                17.
               0.05 0.00
0.05 0.00
0.05 0.00
 10
                                10.
         6.05
                                           5.
                                           5.
                                 6.
                                                    5.
 11
      0
         0.05
 12
      0
         0.05
                                 3.
                                                    5.
                                           5.
 13
      C
         0.20
               0.20 0.00
                                                    5.
 14
                     0.00
         0.24
               0.24
      C
                                                    5.
 15
      C
         0.30
               0.19 0.11
                                                   19.
                     0.65
                                           5.
 10
      C
         C.75
               0.10
                                                  135.
 17
      0
         U.28
               0.10
                     0.18
                                           5.
                                                  343.
 18
                     0.12
                                           5.
         6.22
               0.10
      U
                                                  442.
 19
      0
         0.03
               0.03
                      0.00
                                           5.
                                                  372.
 20
         0.03
                                           5.
      Û
               0.03
                      0.00
                                                  250.
 21
      0
         0.03
               0.03
                      0.00
                                           5.
                                                  148.
         L.03
 26
      Ü
               0.43
                      0.00
                                           5.
                                                   84.
                      0.00
 23
               0.03
                                           5.
                                                   49.
      0
         0.03
                                           5.
                                                   29.
 24
      0
         6.03
               0.03
                      0.00
               0.10 0.08
 25
      0
         C.18
                                                   29.
                                           5.
         0.18
                                           5.
                                                   56.
               0.10
                      U.U8
 26
 27
               0.10
                                           5.
                                                   91.
      0
         C.18
                      0.08
 23
         0.18
               0.10
                      30.0
                                                  114.
```

TOTAL	L	28.41	4.57	23.64	1744.	415.	41981.
83	0					5.	5.
53	U					5.	5.
81	0					5.	5.
03	0					5.	5.
79	Č					5.	5.
78	C				•	5.	5.
77	ŏ					5.	5.
76	Ö					5.	5.
75	Ö					5.	5.
74	Ü					5.	6.
73	0	0.01	0.01	0.00		5.	7.
71	0	0.01	0.01	0.00		5.	9.
70	0	0.01	0.61	0.00		5.	12.
69	0	0.01	0.01	0.00			17.
66	0	0.01	0.01	0.00		5.	27.
	C	0.01	0.01	0.00		5.	44.
66	0	0.00	0.06	0.00		5.	63.
65	0	0.08	0.08	0.00		5.	53.
64	0	0.22	0.10	0.12		5.	21.
63	0	0.09	0.09	0.00		5.	5.
62	0	0.07	0.07	0.30		5.	5.
61	0	0.06	0.06	0.00		5.	5.
60	0	0.01	0.01	0.00		5.	5.
59	C	0.01	0.01	0.00		5.	6.
58	C	0.01	0.01	0.00		5.	7.
57	0	0.01	0.01	0.00		5.	8.
56	Ū	0.01	0.01	0.00		5.	11.
55	C	0.01	0.01	0.00		5.	16.
54	C	6.01	0.01	0.00		5.	26.
53	0	0.01	0.01	0.00		5.	49.
52	0	0.01	0.01	0.00		5.	92.
51	0	0.01	0.01	0.00		5.	184.
50	0		0.01	0.00		5.	315.
49	0	C.01	0.01	0.00		5.	469.
48	0	0.27	0.10	0.17		5.	644.
47	0	0.27	0.10	0.17		5.	917.
46	C	U.27	0.10	0.17		5.	1410.
45	0	0.27	0.10	0.17		5.	2305.
44	U	U.27	0.10	0.17		5.	3720.
43	0	0.27	0.10	0.17		5.	5344.
42	Ü	2.14	0.10	2.04		5.	6381.
41	Ö	2.72	0.10	2.62		5.	5777.
40	O	7.38	0.10	7.28		5.	3922.
39	Ō	2.91	0.10	2.81		5.	2436.
38	0	2.35	0.10	2.23		5.	150C.
37	0	1.94	0.10	1.84		5.	855.
36	U	0.49	0.10	0.39		5.	647.
35	0	0.49	0.10	0.39		5.	616.
34	U	L.49	0.10	6.39		5.	560.
33	Ü	0.49	0.10	0.39		5.	458.
32	ō	0.49	0.10	0.39		5.	307.
31	Ö	0.49	0.10	0.39		5.	180.
30	Ü	0.18	0.10	80.0		5.	135.
29	0	0.18	0.10	0.08		5.	127.

```
SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAIN, 4=RUNOFF, 5=PNT, 6=STOP)
FATER TIME INTERVAL (MIN) = 60.
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)
                                                                2
ENTER DRAINAGE AREA (SQMI) =
                               2.70
SELECT 1-3 (1=INPUT UH, c=CLARK, 3=SNYDER )
ENTER NUMBER OF TIME-AREA ORDINATES (O=NONE)=
ENTER CLARKS TC AND R (HRS) = 2.60 1.73
     TP
             CP
                   TC
    2.10
          0.580 2.60 1.73
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)
                                                                3
ENTER RATIO IMPERVIOUS = U.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
ENTER SPS INDEX RAINFALL (IN) = 12.25
ENTER TRSPC AND TRSDA (SQMI) =
                                      1.00
                                                2.70
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, 3=SCS)
                                              1.00
ENTER INITIAL LOSS(IN), CONSTANT LOSS(IN/HR) =
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNCFF,5=PNT, 6=STOP)
ENTER A TITLE PLEASE - LARCHMONT 2 SPF
                              5.00 5.00 1.00
ENTER STRTG, GRCSN, AND RTIOR =
 FR MIN
        RAIN
             LOSS EXCESS UNIT HG
                                    RECSN FLOW
   0 0.00 0.00 0.00 132. 5.
 1
                         402. 5.
481. 5.
327. 5.
                                            5.
     0 6.06 0.00 0.00
             0.00 0.00
     U
       0.00
             0.00 0.00
0.00 0.00
0.00 0.00
        1.00
                                       5.
     0
        C.00
                            180.
                            100.
  6
     C
        0.00
                                       5.
                    0.00
                             55.
  7
     0 0.01
             0.01
                                       5.
  8
             0.01
        6.01
                    0.00
                             31.
                                       5.
 4
                             17.
     C
        0.01
             0.01
                    0.00
                                       5.
                                                5.
 10
     C C.01
             0.01
                    0.00
                             10.
                                       5.
 11
    0
        U.U1
             0.01
                    0.00
                             ć.
                                       5.
    U
        4.61
                             3.
 16
             0.01
                    0.00
                                       5.
13 0 0.03
14 0 0.04
15 0 0.05
             0.03
                    0.00
                                       5.
             0.04
                    0.00
                                       5.
             0.05
                    0.00
                                       5.
   U
 16
        U.12
             U.12
                    0.00
    0
 17
        0.04
             0.04
                    0.00
                                       5.
             0.03
 10
    U
        0.03
                    0.00
                                       5.
 19 0
        0.01
             0.01
                    0.00
                                       5.
 26
        L.U1
             0.01
                    0.00
                                       5.
    C
 21
        0.01
             0.01
                    0.00
                                       5.
     U
 22
        0.01
             0.01
                    0.00
                                       5.
 23
     0
        0.01 0.01
                    0.00
                                       5.
        U.U1
             0.61
 44
                    U. UL
                                       5.
 25
             0.02
     C
        0.02
                    0.00
                                       5.
                                                5.
 26
     0
        U.02
             0.02
                    U.0U
                                       5.
                                                5.
 27
        0.02
             0.02 0.00
                                       5.
 68
     U 1.02
             0.02
```

29	C	0.02	0.02	0.00	5.	5.
30	0	0.00	0.02	0.00	5.	5.
31	O	U.U4	0.04	0.00	5.	5.
52	U	1.44	U. U4	0.00	5.	5.
33	0	0.04	0.04	0.00	5.	5.
34	0	0.04	0.04	0.00	5.	5.
35	0	0.04	0.04	0.00	5.	5.
56	U	U.04	0.04	0.00	5.	5.
37	0	0.14	0.14	0.00	5.	5.
38	0	6.16	0.13	0.03	5.	9.
39	0	0.20	0.10	0.10	5.	30.
40	U	0.52	0.10	0.42	5.	115.
41	0	0.19	0.10	0.09	5.	244.
42	0	0.15	0.10	0.05	5.	288.
43	U	0.03	0.03	0.00	5.	227.
44	U	0.03	0.03	U.00	5.	146.
45	O	0.03	0.03	0.00	5.	86.
46	0	0.03	0.03	0.00	5.	50.
47	O	0.03	0.03	0.00	5.	30.
48	G	4.03	0.03	0.00	5.	19.
49	0	0.13	0.10	0.03	5.	17.
50	U	0.13	0.10	0.03	5.	25.
51	0	0.13	0.10	0.03	5.	38.
52	ú	U.13	0.10	0.03	5.	46.
53	0	0.13	0.10	0.03	5.	51.
54	0	0.13	0.10	0.03	5.	54.
55	U	0.34	0.10	0.24	5.	83.
56	U	0.34	0.16	0.24	5.	168.
57	C	0.34	0.10	0.24	5.	270.
50	C	0.34	0.10	0.24	5.	339.
59	0	0.34	0.10	0.24	5.	377.
60	G	6.34	U.10	0.24	5.	398.
61	0	1.05	0.10	0.95	5.	503.
62	0	1.26	0.10	1.16	5.	823.
63	U	1.57	0.10	1.47	5.	1293.
64	ti	5.98	0.10	3.88	5.	2070.
65	0	1.47	0.10	1.37	5.	3057.
66	U	1.15	0.10	1.05	5.	3374.
67	0	0.21	0.10	0.11	5.	2818.
80	Ü	0.21	0.10	0.11	5.	1965.
69	C	U.21	0.10	0.11	5.	1231.
70	0	0.21	0.10	0.11	5. 5.	769.
71	0	0.21	0.10	0.11	5.	514.
14	U	6.21	0.16	0.11	5.	374.
73	0	0.01	0.01	0.00	5.	280.
74	C	0.01	0.01	0.00	5.	192.
75	0	0.01	0.01	0.00	5.	114.
76	U	6.01	0.01	0.00	5.	59.
77	0	6.01	0.01	0.00	5.	32.
78 79	0	C.01	0.01	0.00	5.	18.
86		0.02	0.02	0.00	5.	12.
61	0	0.02	0.02	0.00	5.	9. 7.
0.	U	20.0	0.02	0.00		

0.66	5. 5. 5. 5. 5. 5. 5.	8. 7. 6. 6. 5. 5. 5. 5.
	5. 5. 5. 5. 5. 5. 5.	6. 6. 5. 5. 5. 5.
	5. 5. 5. 5. 5. 5.	6. 6. 5. 5. 5.
	5. 5. 5. 5. 5.	6. 6. 5. 5. 5.
	5. 5. 5. 5. 5.	6. 6. 5. 5. 5.
	5. 5. 5. 5. 5.	6. 6. 5. 5.
	5. 5. 5. 5.	6. 6. 5. 5.
	5. 5. 5.	6. 6. 5.
	5. 5. 5.	6. 6. 5.
	5. 5.	6.
	5. 5.	
	5.	7.
		0.
0.00	5.	8
0.00	5.	11.
0.00	5.	15.
0.00	5.	23.
0.00	5.	38.
0.00	5.	53.
0.00	5.	45.
U.1U	5.	.81
0.00	5.	5.
0.00	5.	5.
0.00	5.	5.
0.00	5.	5.
0.00	5.	5.
0.00	5.	6.
	0.00	0.00 5.

SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)

```
ENTER DRAINAGE AREA (SQMI) =
                                 2.70
SELECT 1-3 (1=INPUT UH, 2=CLARK, 3=SNYDER )
                                    0.80 3.63
ENTER SNYDERS CP AND TP (HRS) =
                                                              0.00
ENTER INITIAL EST. CLARKS TO 8 (HRS) (U=DEFAULT)= 0.00
              CF
                     TC
      TP
                             R
    3.02
           0.560
                    4.36
                            2.06
           0.718
    3.37
                    4.70
                            1.84
    3.58
           0.763
                   4.77
                            1.76
    3.59
           0.773
                    4.82
                            1.70
           0.780
                    4.82
    3.60
                            1.66
                    4.89
    3.58
           0.782
                            1.62
                            1,59
           0.789
    3.62
                    4.89
           0.790
                    4.89
                            1.57
    3.61
           0.791
                    4.89
    3.59
                            1.56
                    4.95
    3.58
           0.792
                            1.54
CF OR TP POSSIBLY NOT SATISFIED
SELECT 1-6 (1=TIME INT/2=UNIT H,3=RAIN/4=RUNGFF/5=PNT/6=STOP)
                                                                   3
ENTER RATIO IMPERVIOUS = C.00
SELECT 1-3 ( 1=RAIN, 2=SPS, 3=PMS )
ENTER PMS INDEX RAINFALL (IN) = 24.50
ENTER R6,R12,R24,R48,R72,R96 = 106.00 122.00 137.00
                                                           151.00
                                                                   155.00
ENTER TRSPC AND TRSDA (SQMI) =
                                       0.00
                                                   2.70
SELECT 1-3 (1=INIT+CONST, 2=ACUM LOSS, 3=SCS)
                                                    1
ENTER INITIAL LOSS(IN), CONSTANT LOSS(IN/HR) =
                                                    1.00
                                                              0.10
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNCFF,5=PNT, 6=STOP)
ENTER A TITLE PLEASE - LARCHMONT 2 PMF
ENTER STRTQ, GRCSN, AND RTIUR = 5.00
                                           5.00
                                                     1.00
         RAIN LOSS EXCESS UNIT HG
                                      RECSN
 FR MIN
                                              FLCW
  1
      0
         0.02
              0.02 0.00
                              55. 5.
                                                  5.
              0.02
  2
         0.02
                     0.00
                              186.
                                          5.
                                        5.
  3
      0
         0.02
              0.02
                    0.00
                              320.
         L.02
              0.02
                     0.00
                              385.
                                         5.
                                                   5.
      U
                                         5.
      0
         0.02
              0.02 0.00
                              342.
                                                   5.
                                         5. .
  6
      0 0.02
              0.02 0.00
                              222.
                                                   5.
              0.05 0.00
  7
      0
        0.05
                              114.
                                         5.
                    0.00
  8
      U
         U.05
              0.05
                               59.
                                         5.
                                                   5.
                    0.00
                                         5.
                                                   5.
  4
      0
         0.05
              0.05
                               31.
 10
                                         5.
      U
         U.05
              0.05
                    0.00
                              16.
                                                   5.
                               8.
                                          5.
 11
      0
        0.05
              0.05 0.00
                                                   5.
         0.05
 12
      U
              0.05
                     0.00
                                5.
                                          5.
 13 0 0.20
              0.20
                    0.00
                                3.
                                          5.
 14 0 0.24
                                          5.
                                                   5.
              0.24
                     0.00
                                          5.
                                                  11.
 15
     0 0.30
              0.19
                     0.11
 16
     0 L.75
               0.10
                     0.65
                                                 61.
                                          5.
 17
    0
        0.28
               0.10
                     31.0
                                                 171.
     0
        0.22
              0.10
                     0.12
 16
                                                 295.
 19
     0
               0.03
                     0.00
        0.03
                                          5.
                                                 373.
 20
              0.03
                                          5.
     U
         L.U3
                     0.06
                                                 359.
        C.03
 21
     C
               0.03
                     0.00
                                          5.
                                                 270.
 22
      0
         0.03
               0.03
                     0.00
                                          5.
                                                 167.
      0
                                         5.
 23
         0.03
               0.03
                     0.00
                                                  94.
                     0.GL
 24
        6.03
      U
              0.63
                                          5.
                                                  51.
 25
      C
         0.18
                     0.08
                                          5.
               0.10
                                                  33.
                                         5.
 20
      C
         0.18
               0.10
                     0.08
                                                  37.
 27
         C.18
               0.10
                     80.0
                                         5.
                                                  57.
                                                             C-10
                     0.08
 28
         6.18
               0.10
                                         5.
                                                 84.
```

TOTAL		28.41	4.57	23.84	1745.	420.	42027.
						5.	5.
83	0					5.	5.
82	C					5.	5.
61	C					5.	5.
. bu	U					5.	5.
79	U					5.	5.
78	C					5.	5.
77	Ö					5.	5.
76	U					5.	5.
75	C					5.	6.
74	0					5.	7. 6.
72	0	0.01	0.01	0.00		5.	9.
71	0	0.01	0.01	0.00		5.	12.
70	C	0.01	0.01	0.00		5.	19.
69	C	C.01	0.01	0.00		5.	32.
80	U	0.01	0.01	0.00		5.	46.
67	0	0.01	0.01	0.00		5.	51.
66	C	0.06	0.06	0.00		5.	43.
65	0	0.08	0.08	0.00		5.	27.
04	U	0.22	0.16	6.12		5.	12.
63	Ü	0.09	0.09	0.00		5.	5.
62	O	0.07	0.07	0.00		5.	5.
61	Ö	0.06	0.06	0.00		5.	5.
60	ū	0.01	0.01	0.00		5.	5.
59	0	0.01	0.01	0.00		5.	8. 6.
57	C	0.01	0.01	0.00		5.	10.
56	0	0.01	0.61	0.00		5.	16.
55	C	0.01	0.01	0.00		5.	26.
54	0	0.01	0.01	0.00		5.	50.
53	0	6.01	0.01	0.00		5.	98.
52	U	L.01	U.01	0.00		5.	187.
51	0	0.01	0.01	0.00		5.	296.
50	0	U.01	0.01	0.00		5.	435.
49	C	0.01	0.01	0.00		5.	627.
48	6	0.27	0.10	6.17		5.	946.
47	O	0.27	0.10	0.17		5.	1547.
46	C	0.27	0.10	0.17		5.	2549.
45	0	0.27	0.10	0.17		5.	3921.
44	Ü	6.27	0.10	0.17		5. 5.	5746. 5207.
43	0	0.27	0.10	2.04		5.	5275.
41	0	2.72	0.10	2.62		5.	4063.
46	0	7.38	0.10	7.28		5.	2657.
39	0	2.91	0.10	2.81		5.	1615.
30	0	2.33	0.10	2.23		5.	1037.
57	0	1.94	0.10	1.84		5.	728.
56	0	0.49	0.10	U.39		5.	612.
35	0	0.49	0.10	0.39		5.	543.
34	0	0.49	0.10	0.39		5.	436.
33	0	0.49	0.10	0.39		5.	316.
32	0	0.49	0.10	0.39		5.	214.
31	0	0.49	0.10	0.39		5.	152.
30	0	0.18	0.10	0.08		5.	126.
29	0	0.16	0.10	80.0		5.	109.

```
SELECT 1-6 (1=TIME INT, 2=UNIT H, 3=RAIN, 4=RUNOFF, 5=PNT, 6=STOP)
ENTER TIME INTERVAL (MIN) = 60.
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNCFF,5=PNT, 6=STOP)
                                                               2
ENTER DRAINAGE AREA (SQMI) = 2.70
SELECT 1-5 (1=INFUT UH, 2=CLARK, 3=SNYDER )
ENTER SNYDERS CP AND TP (HRS) = 0.80
                                               3.63
ENTER INITIAL EST. CLARKS TO & (HRS) (O=DEFAULT)= 0.00
                                                        C.0C
     TP
             CP
                   TC
                4.36 2.06
4.70 1.84
   5.62
         U.566
         0.718
   3.37
          0.763
                          1.76
   3.58
                  4.77
   3.59
          0.773
                4.82
                         1.70
   3.60
          U.780
                 4.82
                          1.66
   3.58
         0.782
                   4.89
                         1.62
   3.62 0.789
                  4.89
                         1.59
   3.61 0.790
                   4.89
                          1.57
   3.59
          0.791
                   4.89
                          1.56
   3.58
          0.792
                  4.95
                          1.54
CF OR TP POSSIBLY NOT SATISFIED
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNGFF,5=PNT,'6=STOP)
ENTER RATIO IMPERVICUS = C.00
SELECT 1-3 ( 1=KAIN, 2=SPS, 3=PMS )
ENTER SPS INDEX RAINFALL (IN) = 12.25
ENTER TRSPC AND TRSDA (SQMI) =
                                     1.00
                                               2.70
SELECT 1-3 (1=IN1T+CONST, 2=ACUM LOSS, 3=SCS)
                                               1
ENTER INITIAL LOSS(IN), CONSTANT LOSS(IN/HR) =
                                                1.00
                                                        0.10
SELECT 1-6 (1=TIME INT,2=UNIT H,3=RAIN,4=RUNOFF,5=PNT, 6=STOP)
ENTER A TITLE PLEASE - LARCHMONT 2 SPF
ENTER STRTG, GRCSN, AND RTIOR = 5.00
                                        5.00
                                               1.00
 HR MIN RAIN LOSS EXCESS UNIT HG
                                   RECSN
                                           FLOW
             0.00 0.00 55. 5.
                                              5.
 1
     0 0.06
                                      5.
                                               5.
     0 0.00
             0.00 0.00
                            186.
                            320.
385.
342.
222.
                                     5.
                                              5.
     0 0.00 0.00 0.00
     0 0.00 0.00 0.00
                                      5.
     0 C.00 0.00 0.00
0 C.01 0.01 0.00
0 C.01 0.01 0.00
                                      5.
  6
                                      5.
                                               5.
                                      5.
                                               5.
  8
                            59.
                                      5.
                                               5.
 9
     0 0.01 0.01 0.00
                             31.
                                      5.
                                               5.
    0 0.01 0.01 0.00
 10
                             16.
                                               5,
                                       5.
                             8.
11
     0 0.01 0.01 0.00
                                      5.
                                               5.
                                      5.
12
    0 0.01 0.01 0.00
                              5.
                                               5.
13
     0 6.03 0.03 0.00
                                       5.
                              3.
                                               5.
14
    0 0.04 0.04 0.00
                                       5.
                                               5.
15
     0 0.05 0.05 0.00
                                      5.
 16
    0 0.12 0.12 0.00
                                       5.
                                               5.
 17
     0
        C.04
             0.64
                   0.00
                                      5.
                                               5.
 18
    0 C.03
                   0.00
                                      5.
              0.03
                                               5.
 19
     G C.01
              0.01
                   0.00
                                               5.
                   0.00
 20 0 0.01 0.01
                                      5.
                                               5.
 21
    G C.61 0.01
                   0.00
     0 0.01 0.01
 22
                   0.00
```

23	0	C.01	0.01	0.00	5. 5.
24	O	0.01	0.01	0.00	5. 5.
25	ō	4.02	0.02	0.00	5. 5.
26	Ö	0.02	0.02	0.00	5. 5.
27				0.00	
	0	0.02	0.02		5. 5.
28	0	0.02	0.02	0.00	5. 5.
59	U	0.02	0.02	0.00	5. 5.
30	0	0.02	0.02	0.00	5. 5.
31	0	U.04	0.04	0.00	5. 5.
32	0	C.04	0.04	0.00	5. 5.
33	0	0.04	0.04	0.00	5. 5.
34	C	0.04	0.04	0.00	5. 5.
35	0	0.04	0.04	0.00	5. 5.
36	C	C.04	0.04	0.00	5. 5.
37	ú	0.14	0.14	U.00	5. 5.
38	Ö	0.16	0.13	0.03	5. 7.
39	Ö	0.20	0.10	0.10	
40		0.52		0.42	
	0		0.10		5. 56.
41	0	0.19	0.10	0.09	5. 131.
42	0	0.15	0.10	0.05	5. 207.
43	0	0.03	0.03	0.00	5. 246.
44	0	0.03	0.03	0.00	5. 225.
45	C	0.03	0.03	0.00	5. 162.
46	C	0.03	0.03	0.00	5. 97.
47	0	0.03	0.03	0.00	5. 55.
48	0	0.03	0.03	0.00	5. 31.
49	0	0.13	0.10	0.03	5. 20.
50	0	0.13	0.10	0.03	5. 19.
51	C	0.13	0.10	0.03	5. 26.
52	0	0.13	0.10	0.03	5. 35.
53	Ü	4.13	0.10	0.03	5. 44.
54	Č	0.13	0.10	0.03	5. 50.
55	ō	0.34	0.10	0.24	5. 65.
56	Ö	0.34	0.10		
57			0.10	0.24	5. 106.
	C	6.34		0.24	5. 174.
58	0	0.34	0.10	0.24	5. 255.
59	U	0.34	0.10	0.24	5. 327.
60	0	0.34	0.10	0.24	5. 374.
01	U	1.05	0.10	0.95	5. 438.
62	0	1.26	0.10	1.16	5. 593.
63	0	1.57	0.10	1.47	5. 593. 5. 883.
64	0	3.98	0.10	3.88	5. 1418.
65	C	1.47	0.10	1.37	5. 2150.
66	0	1.15	0.10	1.05	5. 2787.
67	G	0.21	0.10	0.11	5. 2787. 5. 3035.
68	0	0.21	0.10	0.11	5. 2751.
09	Ü	0.21	0.10	0.11	5. 2075.
70	Ö	0.21	0.10	0.11	5. 1358.
			0.10	0.11	J. 1330.

Special Control

TOTAL		17.65	4.70	12.95	1745.	540.	23141.
100	U					5.	5.
108	0					5.	5.
107	0					5.	5.
106	U					5.	5.
104	0					5.	5.
	0					5.	5.
103	0					5.	5.
102						5.	5.
161	0					5.	5.
100	0					5.	5.
99						5.	6.
98	0					5.	?.
97		0.01	0.01	0.00		5.	8.
56	0	0.01	0.01	0.00		5.	11.
95	0	0.01	0.01	0.00		5.	16.
93 94	0.	0.01	0.01	0.00		5.	21.
92	0	0.01	0.01	0.00		5.	39. 27.
91	0	0.01	0.01	0.00		5.	43.
90	0	0.06	0.06	0.00		5.	37.
89	0	0.07	0.07	0.00		5.	24.
88	0	0.20	0.10	0.10		5.	11.
87	0	0.03	80.0	0.00		5.	5.
86	C	0.06	0.06	0.00		5.	5.
85	0	0.05	0.05	0.00		5.	5.
84	0	0.02	0.02	0.00		5.	5.
83	0	0.02	0.02	0.00		5.	6.
82	0	0.02	0.02	0.00		5.	7.
81	C	0.02	0.02	0.00		5.	8.
28	0	0.02	0.02	0.00		5.	12.
79	C	0.02	0.02	0.00		5.	18.
78	0	0.01	0.01	0.00		5.	33.
77	U	0.01	0.01	0.00		5.	63.
76	0	0.01	0.01	0.00		5.	117.
75	C	U.01	0.01	0.00		5.	182.
74	0	0.01	0.01	0.00		5.	260.
15	U	0.01	0.01	0.00		5.	364.
72	0	0.21	0.10	0.11		5.	529.
71	0	C.21	0.10	0.11		5.	839.

LARCHMONT (PRINC SPILLWAY)

DIAMETER OF PIPE (FT) 2.GO START ELEV OF PIPE (FT) 127.GO ROUGH COEFFICIENT 0.0140 HEIGHT-HEAD (FT) 35.GO FIPE LENGTH (FT) 50.GO

KT.KG.KENT.KEXT 1.81 0.71 0.10 1.00

c 0.742

ELEV	HEIGHT	G2gH	(2gH)**1/2	G/C	•
128	1.00	64.40	8.02	25.21	18.72
129	2.00	128.80	11.35	35.65	26.47
130	3.00	193.20	13.90	43.67	32.42
131	4.00	257.60	16.05	50.42	37.44
132	5.00	322.00	17.94	56.37	41.86
133	6.00	386.40	19.66	61.75	45.85
134	7.00	450.00	21.23	66.70	49.52
135	8.00	515.20	22.70	71.31	52.94
156	9.00	579.60	24.07	75.63	56.15
137	10.00	644.00	25.38	79.72	59.19
138	11.00	708.40	26.62	83.62	62.08
139	12.00	772.80	27.80	87.33	64.84
140	13.00	837.20	28.93	90.90	67.49
141	14.00	901.60	30.03	94.33	70.04
142	15.00	966.00	31.08	97.64	72.50
143	16.00	1030.40	32.10	100.84	74.87
144	17.00	1094.80	33.09	103.95	77.18
145	18.00	1159.20	34.05	106.96	79.41
146	19.00	1223.60	34.98	109.89	81.59
147	20.00	1288.00	35.89	112.75	83.71
148	21.00	1352.40	36.77	115.53	85.78
149	22.00	1416.80	37.64	118.25	87.80
150	23.00	1481.20	38.49	120.91	89.77
151	24.00	1545.60	39.31	123.51	91.70
152	25.00	1610.00	40.12	126.66	93.59
153	26.00	1674.40	40.92	128.55	95.44
154	27.00	1738.80	41.70	131.CO	97.26
155	28.00	1803.20	42.46	133.40	99.05
150	29.00	1867.60	43.22	135.77	100.80
157	30.00	1932.00	43.95	138.C9	102.52
158	31.00	1996.40	44.68	140.37	104.22
159	32.00	2060.80	45.40	142.62	105.89
160	33.00	2125.20	46.10	144.83	107.53
161	34.00	2189.60	46.79	147.00	109.15
162	35.00	2254.00	47.48	149.15	110.74

LARCHMONT WEIR FLOW PROGRAM

1

GIAE	ENL	3.80	50	.00				
GIVE	ELEVATION	TO ST	ART	FLOW	AND	HEIGHT	133	20
	ELEV	134	FT	01	SCH	ARGE	190	. CFS
	ELEV	135	FT	D1	SCH	ARGE	537	. CFS
	ELEV	136	FT	D	ISCH	ARGE	987	. CFS
	ELEV	137	FT	DI	SCH	ARGE	1520	. CFS
1	ELEV	138	FT	01	SCH	ARGE	2124	. CFS
	ELEV	139	FT	D:	SCH	ARGE	2792	. CFS
	ELEV	140	FT	D:	ISCH	ARGE	3519	. CFS
	ELEV	141	FT	01	SCH	ARGE	4299	. CFS
	ELEV	142	FT	D:	LSCH	ARGE	5130	. CFS
	ELEV	143	FT	D:	SCH	ARGE	6008	. CFS
	ELEV	144	FT	0	SCH	ARGE	6932	. CFS
	ELEV	145	FT	D:	SCH	ARGE	7898	. CFS
	ELEV	146	FT	D	LSCH	ARGE	8906	. CFS
	ELEV	147	FT	0	ESCH	ARGE	9953	. CFS
	ELEV	148	FT	D:	ISCH	ARGE	11038	. CFS
	ELEV	149	FT	D:	ISCH	ARGE	12160	. CFS
	ELEV	150	FT	D :	ESCH	ARGE	13318	. CFS
	ELEV	151	FT	0	ISCH	ARGE	14510	. CFS
	ELEV	152	FT	D:	ISCH	ARGE	15736	. CFS
	ELEV	153	FT	D	SCH	ARGE	16994	. CFS

LARCHMONT WEIR FLOW PROGRAM

GIVE	CAL	2.64	950	.00				
e 1 A F	ELEVATION	TO ST	ART	FLOW	AND	HEIGHT	136	12
	ELEV	137	FT	0	ISCH	ARGE	2508.	CFS
	ELEV	138	FT	D.	ISCH	ARGE	7094.	CFS
	ELEV	139	FT	D:	ISCH	ARGE	13032.	CFS
	ELEV	140	FT	D:	SCH	ARGE	20064.	CFS
	ELEV	141	FT	D:	LSCH	ARGE	28040.	CFS
	ELEV	142	FT	D:	ISCH	ARGE	36860.	CFS
	ELEV	143	FT	D.	ISCH	ARGE	46449.	CFS
	ELEV	144	FT	D.	ISCH	ARGE	56749.	CFS
	ELEV	145	FT	D:	ISCH	ARGE	67716.	CFS
	ELEV	146	FT	D	ISCH	ARGE	79310.	CFS
	ELEV	147	FT	D.	ISCH	ARGE	91499.	CFS
	ELEV	148	FT	D	ISCH	ARGE	104255.	CFS

EDOM CREST OF SPILLWAY

	FROM	CIZE	st of spin	LLWAY	1 -	
HAME	ELEV.	H	PEINC SPWY	EMERG SAWY	DAM	FOT
LARCHMONT	133					
	134	1		.190		190
	135	2		537		537
TOP OF DAM	136	3		987		987
П	137	4		1520	2508	4028
Ц	138	5		2124	7094	9218
	139	6		2792	13032	15824
п	140	7		3519	20064	23583
N N	141	8		4299	28040	32339
ī	142	9		5130	36860	41990
	143	10		6008	46449	52457
I	140			6932	56749	63681
T	145	12	,	7898	67716	75614
1	146	. 13		8906	79310	88216
1	147	14		9953	91499	101452
	148	15		11038	104255	115293
1						
Π						
Li	- 1		-	•		
П					. +	
Ш	-					
		ш				
П						
U						
П	-w					
u !						
1						C-19


```
FOLD MY112PH
 ALIUFF
 00100 A LANCHMONT SHELDRAKE LAKE
0110 A RESERVOIR ROUTING OUF PNF OVER STRUCTURE
 6126 A INCLUSES ENERGENCY SPILLMAY ONLY
 6136 B
                     1
 6140 1
             3
 0150 K
 6146 H
                          2.67
 6176 H
           27
                    56
                            11
                                   114
                                           127
                                                   135
                                                           185
                                                                   357
                                                                           438
                                                                                   544
 6186 H
           616
                   647
                           855
                                  1500
                                          2436
                                                  3922
                                                          5777
                                                                  4381
                                                                          5344
                                                                                  3729
 6176 H
          2365
                  1416
                           917
                                   44
                                           467
                                                   315
                                                           184
                                                                    12
                                                                            41
                                                                                    24
 6266 K
             1
 0210 T
                                     1
 0220 1
             1
6236 2
                 22.
                         43.
                                 45.
                                                107.
                                                        132.
                                                                        177.
                                                                154.
6246 3
                  190.
                        537.
                                 987.
                                                7218.
                                                       15024. 23503. 32337. 41796.
6250 K
8248 A
0270 A
0200 A
FOLD WY1129P
PLINET
60166 A LARCHWENT DAN
                        SHELDRAKE LAKE
0110 A RESERVOIR ROUTING OF SPF OVER STRUCTURE
9128 A INCLUSES ENERGENCY D SPILLMAY ONLY
0130 B
           24
                    1
6146 1
            3
0156 K
6146 H
           -1
                         2.67
6186 H
           51
                   54
                           83
                                  148
                                          276
                                                  337
                                                          377
                                                                                   823
6196 H
         1293
                 2576
                                 3374
                         3657
                                         2018
                                                 1965
                                                         1231
                                                                   769
                                                                           514
                                                                                   374
0200 H
          200
                  192
                          114
                                   57
                                           32
                                                   18
6216 K
            1
6226 T
0230 1
0246 Z
                        43.
                               45.
                                        87.
                                               107.
                                                       132.
                                                               154.
                                                                       177.
6256 3
                196.6 537.6 967.6 4620. 9218.6 15824.6 23583.6 32339.6 41996.6
OZLO K
6278 A
0200 A
6296 A
```

EC-1 VERSION BATED JAM 1973
PBATED AUG 74
NAMEE NO. 61

LARCHIONT SHELDRANE LANE
RESERVOIR ROUTING OFF PMF OVER STRUCTURE
INCLUDES EMERGENCY SPILLMAY ONLY

SUB-AREA NAMOFF COMPUTATION

1STAG ICOMP DECON TAPE JPLT JPRT IMME

INTEGRAPH DATA

INTEGRAPH DATA

INTEGRAPH DATA

INTEGRAPH DATA

TROPC DATE ISSUM ISSUE LOCAL

-1 0 2.67 0.0 0.0 0.0 0.0 0 0 0

INPUT MYBROCRAPH 27. 56. 357. 54. 91. 114. 127. 135. 185. 458. 47. 2436. 4301. 5344. 3725. 616. **835.** 1505. 3722. 5777. 315. 2365. 1416. 917. 184.

> 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME PEAK CFS 1322. 4301. 4997. 1438. INCIES 14.01 22.83 23.63 23.63 AC-FT 2291. 3252. 3296. 3226.

ISTAN ICOMP IECOM ITAPE JPLT JPRT IMME

ROUTING BATA

GLOSS CLOSS AND IRES ISAME

9.0 9.0 9.0 1

NOTES NOTEL LAC ANSWER I TOK STORM

STURNES 6. 22. 43. 45. 86. 169. 132. 154. 177. 286. 80TFLONS 6. 196. 537. 967. 4628. 9218. 13024. 23583. 32399. 41996.

				**		•		
		TIME	EOP STOR	MC IN	EOP OUT			
		1	3.	27.	29.			
		1	4.	43.	36.			
		1	6.	74.	54.			
		i	7.	163.	W.			
		5	12.	121.	161.			
		4	14.	131.	117.			
		1	16.	138.	130.			
			22.	244.	196.			
		•	32.	383.	347.			
		10	37.	507.	479.			
		11	45.	500.	571.			
		12	47.	632.	626.			
		13	53.	751.	741.			
		14	67.	1170.	1271.			
		15	76.	1960.	2447.			
		14	85.	3179.	3683.			
		17	75.	4856.	5781.			
		18	97.	6677.	6324.			
		19	N.	5043.	5404.			
		2	8.	4532.	3776.			
		21	76.	3613.	2487.			
		22	44.	1838.	1421.			
		23	45.	1164.	106.			
		24	54.	781.	798.			
		25	45.	557.	577.			
		24	36.	392.	422.			
		27	21.	250.	202.			
		28	25.	130.	174.			
		27	14.	71.	129.			
		*	1.	30.	76.			
				•	70.			
		SUN			31625.			
		PEAK	4-HOUR	24-HOUR	72-HOUR	TOTAL WEL		
	CFS	4324.	4500.	1435.	1321.	3962		
	INCHES	••••	15.99	22.79	23.01	23.		
	AC-FT		2276.	3245.	3276.	327		
	m-T1		LL/V.	activ.	JL/4.	-	••	
*******		*********	•	*******		*******	•	
			MOFF SUM	ART, AVERA	E FLOW			
			-	4-HOUR	24-HOUR	70_		i.
	OCRAPH AT		PEAK 4301.		1430.		2.67	
	ED TO		4324.			1321.	2.67	
			0067.	West.	1657.	1961.	2.07	

EC-1 VERSION BATED JAM 1973
POATED AUG 74
MINIÈ NO. 01

LARCHMONT DAM SHELDRAME LAME
RESERVOIR ROUTING OF SPF OVER STRUCTURE
INCLUDES EMERGENCY D SPILLMAY ONLY

SUB-AREA RUNOFF COMPUTATION

ISTAG ICOMP IECON ITAPE JPLT JPRT IMME

INVOC IUNG TAREA SMAP TRISA TRIPC RATIO ISMON ISAME LOCAL
-1 6 2.67 6.6 6.6 6.6 6.6

INPUT HYDROCOUPH 51. 54. 83. 144. 270. 337. 377. 398. 563. 823. 1293. 3657. 2576. 3374. 2818. 1965. 1231. 769. 514. 374. 192. 114. 37. 32. 18.

> PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME CFS 3374. 2435. 802. 814. 21224. INCHES 1.4 12.30 12.33 12.33 AC-FT 1255. 1751. 1755. 1755.

METPS METBL LAG AMERIX X TSK STORA

STORAGES 6. 21. 43. 45. 87. 109. 132. 154. 177. 288 CUTFLEMS 6. 190. 537. 967. 4628. 9218. 13024. 23503. 32339. 41990.

. . . 1

1 6. 51. 51. 2 6. 53. 52. 3 7. 69. 61. 4 11. 126. 96. 5 10. 219. 163. 6 26. 305. 262. 7 30. 350. 330. 8 33. 300. 377. 9 37. 451. 435. 10 47. 643. 627. 11 65. 1050. 1052. 12 73. 1602. 2124. 13 79. 2564. 2072. 14 83. 3216. 3456. 15 70. 3096. 2043. 16 73. 2392. 2075. 17 67. 1590. 1263. 10 40. 1000. 994. 19 49. 642. 643. 20 39. 444. 473. 21 32. 327. 350. 22 26. 236. 262. 23 20. 153. 100. 24 14. 87. 129. 25 9. 46. 90. 26 6. 25. 52. 900 21242.
2 6. 53. 52. 3 7. 69. 61. 4 11. 126. 96. 5 18. 219. 163. 6 26. 385. 262. 7 38. 358. 338. 8 33. 388. 377. 9 37. 451. 435. 16 47. 643. 627. 11 65. 1658. 1652. 12 73. 1682. 2124. 13 79. 2564. 2072. 14 83. 3216. 3456. 15 78. 3896. 2043. 16 73. 2392. 2675. 17 67. 1598. 1263. 18 48. 1600. 894. 19 49. 642. 643. 28 39. 444. 473. 21 32. 327. 350. 22 26. 236. 262. 23 29. 153. 100. 24 14. 87. 129. 25 9. 46. 96. 26 6. 25. 52.
2

3374. 3456. 814. 817. 2.67 2436. 2437. 962. 961.

CFS INCHES AC-FT

APPENDIX D
STRUCTURAL STABILITY COMPUTATIONS

I. Overturning about toe due to water lice effects. Monart about toe due to water = 1620 1/4 x 26 = 26 = 183,000 ft. 16 } que to ice = 2000 1 x 52, = 132'000 Resisting moment due to mass of masonry dama = [10, x 58, x (3 x 10,) x 140 \$43 + [58, x 1, x 15, x 140 \$43] = 255'0002 Resisting moment due to 10° lateral torce from rockfill = = 10" × 10 ft moment arm (scaled) = 100,0005 FS against overturning for assumed forces = = 322,000 + 100,000 = 1.4 ± II. Resistance to sliding effects caused by water/ice. Lateral force due to water and ice = (1620 betx 20 = \$) + 2000 = 58,000 /linear ft. Resistance due to friction on plane of sliding at base of masonry dam and rockfill (assuming 12=0.6)= [58, x (140 bot + Ar'000] (0.2) = 118'000 + FS against sliding = 48,600° III. Resistance to overturning about heel after reservoir drawdown

Moment about heel due to leteral pressure of rockfill =

10x x & moment arm(scaled) = 60,000 145

Resulting moment due to mass of masonry and rockfill

= (10 x 28 x \frac{1}{2} x 7 x 140 pcf) + (28 x 4 x 2 x 140 pcf) + 10 x 14 x 12

= 14,000 + 31,000 + 60,000 14 (for 11=0.5) = 104,000)

FS = 104,000 (6,000) = 1.7 +

- am does
- temp change of 10F due to ice one-to-this 3

Recistance to overturning When Reservoir Level M. Overtops Dam By One Fast

EL 137.55' w. El. overtopping water ydrostetic Moment about top of dan due to lasting the calculation, was extine diagram up to Elev. 137.35, do not bottom to subtract topment one first) essure Moment = 1810 pet x 29' x 29' = 252,000 ft.ll/ini.ft. moment resisting overlining . Use, 000 14/4. 14'2 5 Toe of dan Pw = 29'x 62.4 pcf = 1810 pcf FS against Overturning = 422,000

I. Method to Determine Force Created by Rockfill Against Backface of Masonry Dam

Assume masonry dam and rockfill beer on a firm/rock toundation (no settlement occurs), and movement or deflection of masonry dam has not occurred; therefore no friction developes (no movement/slipping of rockfill) relative to back of dam. Statical analysis of them rockfill mass then resolves to be a three-force concurrent aptem where The Three forces are weight the rock mass, and the normals (reactions) on the back facts of the dam and on the baseline of the rock fill. The normal appearst The backface of the dam is used in evaluating the stability of the dam:

Ca. determined backles gosphically

APPENDIX E REFERENCES

Total Section 1

Contract

APPENDIX

REFERENCES

- 1. Edward Wegmann: The Design and Construction of Dams, John Wiley and Sons (1918)
- The University of the State of New York The State Education Department - State Museum and Science Service - Geological Survey: Geological Map of New York (1961)
- 3. Water Resources Engineers, Inc., Lower Hudson River Basin, Hydrologic Flood Routing Model, January 1977
- 4. Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
- Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
- 6. Sherard, Woodward, Gizienski, Clevenger: Earth and Earth Rock Dams, John Wiley and Sons, Inc., 1963
- 7. Louis C. Schreiner and John T. Riedel: Hydrometeorological Report No. 51, U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Weather Service, Office of Hydrology; Silver Springs, Maryland, September 1976
- 8. Delaware Water Supply News, 1942-1953, N.Y. State Library, Library No. S628-1097471 qD349
- 9. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
- 10. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
- 11. The Hydrologic Engineering Center, Art Pabst: Computer Program UHCOMP, Unpublished, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616
- 12. North Atlantic Regional Water Resources Study Coordinating Committee: Appendix C, Climate, Meteorology and Hydrology, February 1972
- 13. Soil Conservation Service (Engineering Division): Urban Hydrology for Small Watersheds, Technical Release No. 55, U.S. Department of Agriculture, January 1975
- 14. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963