

Linear Algebra II Conic Sections

Ming-Hsuan Kang

Curve of Binary Quadratic Polynomials

Consider the zero set $\mathcal{Z}(g)$ of a general binary quadratic polynomial over \mathbb{R}

$$g(x,y) = ax^2 + bxy + cy^2 + dx + ey + f.$$

called a quadratic curve. The goal of this section is to classify the set $\mathcal{Z}(g)$.

Zero sets of Binary Quadratic Forms

When g(x, y) is a nonzero quadratic form, we have the following result.

Theorem

The set
$$\mathcal{Z}(g)$$
 is
$$\begin{cases} \{(0,0)\} & \text{, if } b^2-4ac<0; \\ \text{the union of two lines} & \text{, if } b^2-4ac>0; \\ \text{a line} & \text{, if } b^2-4ac=0. \end{cases}$$

When g(x,y) is not a quadratic form, regard $\mathcal{Z}(g)$ as the intersection of the plane z=1 and the zero set of the quadratic form

$$Q(x,y,z) = ax^2 + bxy + cy^2 + dxz + eyz + fz^2 = (x,y,z)A\begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Here

$$A = \begin{pmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{pmatrix}.$$

The quadratic curve $\mathcal{Z}(g)$ is called non-degenerated if A has full rank. (In this case, we also call Q a non-degenerated quadratic form.)

Zero Sets of Non-degenerated Ternary Quadratic Form

When Q(x, y, z) is a non-degenerated quadratic form, we have the following result.

Theorem

If three eigenvalues of A are of the same sign, $\mathcal{Z}(Q) = \{(0,0,0)\}$. Otherwise, Z(Q) is a double cone (the union of two cones).

When $\mathcal{Z}(Q) = \{(0,0,0)\}$, $\mathcal{Z}(Q)$ and $\mathcal{Z}(z-1)$ does not intersect, then $\mathcal{Z}(g)$ is the empty set.

When $\mathcal{Z}(Q)$ is a double cone, $\mathcal{Z}(Q) \cap \mathcal{Z}(z-1)$ is called a conic section.

Conic Sections

There are three possible types of conic sections:

- 1. Parabola
- 2. Circle and ellipse
- 3. Hyperbola

Here we draw the picture under the eigenbasis of A. Therefore, the position of the plane z=1 varies in different cases.

(The figure is copied from wikipedia.)

From the figures


```
 \begin{cases} \text{ a line} &, \text{ if } \mathcal{Z}(G) \cap \mathcal{Z}(z-1) \text{ is a parabola;} \\ \{(0,0)\} &, \text{ if } \mathcal{Z}(G) \cap \mathcal{Z}(z-1) \text{ is an ellipse;} \\ \text{the union of two lines} &, \text{ if } \mathcal{Z}(G) \cap \mathcal{Z}(z-1) \text{ is a hyperbola.} \end{cases}
```

On the other hand, $\mathcal{Z}(G) \cap \mathcal{Z}(z)$ can be identified as the zero set of $ax^2 + bxy + cy^2$ by mapping (x, y, 0) to (x, y).

Together with the previous theorem, we obtain the following result.

Theorem

For a non-degenerated non-empty quadratic curve $\mathcal{Z}(g)$ where $g(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$,

$$\text{the curve } \mathcal{Z}(g) \text{ is } \begin{cases} \text{an ellipse} & \text{, if } b^2 - 4ac < 0; \\ \text{a hyperbola} & \text{, if } b^2 - 4ac > 0; \\ \text{a parabola} & \text{, if } b^2 - 4ac = 0. \end{cases}$$