Principle Component Analysis For Dimension Reduction

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Contents

- 1 Motivation
- 2 Principle Component Analysis
 - Maximum Variance Formulation
 - Minimize Error Formulation
 - AutoEncoder
- 3 Example
- 4 Conclusion

Contents

- 1 Motivation
- 2 Principle Component Analysis
 - Maximum Variance Formulation
 - Minimize Error Formulation
 - AutoEncoder
- 3 Example
- 4 Conclusion

Motivation: Data Redundancy

Data may contain very similar or even the same columns

Highly Correlated Data!

Curse of Dimensionality for Big Data!

G	F	Е	D	С	В	Α
效数学	人工智能	机器学习	概率论	数学分析2	数学分析1	线性代数
86	84	88	88	89	91	91
90	82	80	66	90	89	73
66	84	60	71	60	62	71
80	83	82	72	85	93	85
86	81	80	69	94	66	78
87	80	90	64	73	73	69
87	85	86	70	96	97	83
88		88	97	100	100	95
73	78	76	72	60	68	69
80	80	76	62	84	68	78
81	83	86	73	79	87	84
87	79	81	80	88	91	80
83	86	92	85	87	92	85
86	80	86	75	100	65	71
60	83	71	60	66	79	68
95	81	89	78	81	92	82
87	74	80	76	89	88	96
83	85	88	71	94	82	85
85	79	78	70	91	78	81

Motivation: Noise

Some columns are random noises

Highly contaminated!

高级语言编程	高级语言编程II	java程序设计	编程语言训练	大学英语	大学物理 III (2)
72	76	72	78	79	79
84	86	82	88	84	63
61	64	54	80	66	61
87	80	82	82	81	83
74	73	63	87	82	53
73	72	69	85	82	93
81	77	68	78	73	72
93	85	84	90	78	75
73	76	73	82	78	65
67	81	65	84	71	48
84	89	74	84	82	79
84	83	80	85	86	73
91	89	86	94	76	84
72	75	71	80	92	79
79	64	60	0	74	60
90	89	93	100	85	92
88	87	77	89	74	80
80	80	78	88	82	83
80	81	61	88	88	69

Motivation: Data Visualization

We are only interested in some useful column

Α	В	С	D	Е	F	G	Н
	数学分析1	数学分析2	概率论	机器学习	人工智能		计算机网络
91	91	89	88	88	84	86	76
73	89	90	66	80	82	90	82
71	62	60	71	60	84	66	63
85	93	85	72	82	83	80	89
78	66	94	69	80	81	86	65
69	73	73	64	90	80	87	90
83	97	96	70	86	85	87	77
95	100	100	97	88	84	88	76
69	68	60	72	76	78	73	79
78	68	84	62	76	80	80	63
84	87	79	73	86	83	81	71
80	91	88	80	81	79	87	72
85	92	87	85	92	86	83	81
71	65	100	75	86	80	86	85
68	79	66	60	71	83	60	84
82	92	81	78	89	81	95	94
96	88	89	76	80	74	87	64
85	82	94	71	88	85	83	82
81	78	91	70	78	79	85	80

Motivation: Dimension Reduction

Motivation: Distributed Representation

• Principle component analysis (PCA) z = Wx

Contents

- 1 Motivation
- 2 Principle Component Analysis
 - Maximum variance formulation
 - Minimize Error formulation
 - AutoEncoder
- 3 Example
- 4 Conclusion

Maximum Variance Formulation

Reduce to 1-D:

$$z_1 = \mathbf{w}_1 \cdot \mathbf{x}$$

Project data \mathbf{x} onto \mathbf{w}_1 , and obtain \mathbf{z}_1

We want the variance of \mathbf{z}_1 as large as possible argmax $var(z_1) = \frac{1}{N} \sum (z_1 - \bar{z}_1)^2$

$$s.t. \|\mathbf{w}_1\|_2 = 1$$

Where N is the number of samples

Maximum Variance Formulation

$$z = Wx$$

Reduce to 1-D:

$$z_1 = \mathbf{w}_1 \cdot \mathbf{x}$$

$$z_2 = \mathbf{w}_2 \cdot \mathbf{x}$$

$$\mathbf{W} = \begin{bmatrix} (\mathbf{w}_1)^{\mathrm{T}} \\ (\mathbf{w}_2)^{\mathrm{T}} \\ \vdots \end{bmatrix}$$

Orthogonal matrix

Project data \mathbf{x} onto \mathbf{w}_1 and obtain z_1

We want the variance of z_1 as large as possible

$$\underset{\mathbf{w}_1}{\operatorname{argmax}} var(z_1) = \frac{1}{N} \sum (z_1 - \bar{z}_1)^2$$

$$s.t. \|\mathbf{w}_1\|_2 = 1$$

Project data x onto \mathbf{w}_2 and obtain \mathbf{z}_2

We want the variance of z_2 as large as possible

$$\underset{\mathbf{w}_2}{\operatorname{argmax}} var(z_2) = \frac{1}{N} \sum (z_2 - \bar{z}_2)^2$$

s.t.
$$\|\mathbf{w}_2\|_2 = 1 \ \mathbf{w}_1 \cdot \mathbf{w}_2 = 0$$

Formula Derivation

 $= (\mathbf{w}_1)^{\mathrm{T}} \mathbf{S} \mathbf{w}_1$

$$Var(\mathbf{Z}_{1}) = \frac{1}{N} \sum (\mathbf{z}_{1} - \bar{\mathbf{z}}_{1})^{2}$$

$$= \frac{1}{N} \sum (\mathbf{w}_{1} \cdot \mathbf{x} - \mathbf{w}_{1} \cdot \bar{\mathbf{x}})^{2}$$

$$= \frac{1}{N} \sum (\mathbf{w}_{1} \cdot (\mathbf{x} - \bar{\mathbf{x}}))^{2}$$

$$= \frac{1}{N} \sum ((\mathbf{w}_{1})^{\mathrm{T}} (\mathbf{x} - \bar{\mathbf{x}}))^{2}$$

$$= \frac{1}{N} \sum ((\mathbf{w}_{1})^{\mathrm{T}} (\mathbf{x} - \bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}})^{\mathrm{T}} \mathbf{w}_{1})$$

$$= (\mathbf{w}_{1})^{\mathrm{T}} \frac{1}{N} \sum ((\mathbf{x} - \bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}})^{\mathrm{T}}) \mathbf{w}_{1}$$
Find \mathbf{w}_{1} maximizing $(\mathbf{w}_{1})^{\mathrm{T}} \mathbf{S} \mathbf{w}_{1}$
where $\|\mathbf{w}_{1}\|_{2}^{2} = (\mathbf{w}_{1})^{\mathrm{T}} \mathbf{w}_{1} = 1$

$$= (\mathbf{w}_{1})^{\mathrm{T}} \frac{1}{N} \sum ((\mathbf{x} - \bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}})^{\mathrm{T}}) \mathbf{w}_{1}$$
where $\|\mathbf{w}_{1}\|_{2}^{2} = (\mathbf{w}_{1})^{\mathrm{T}} \mathbf{w}_{1} = 1$

$$\mathbf{w}_1 \cdot \mathbf{x}$$

$$\bar{z}_1 = \frac{1}{N} \sum z_1 = \frac{1}{N} \sum \mathbf{w}_1 \cdot \mathbf{x}$$
$$= \mathbf{w}_1 \cdot \frac{1}{N} \sum \mathbf{x} = \mathbf{w}_1 \cdot \bar{\mathbf{x}}$$

$$S = Cov(X)$$

Formula Derivation

$$\underset{\mathbf{w}_1}{\operatorname{argmax}}(\mathbf{w}_1)^{\mathrm{T}}\mathbf{S}\mathbf{w}_1 \qquad s.t. \quad (\mathbf{w}_1)^{\mathrm{T}}\mathbf{w}_1 = 1$$

$$S = Cov(X)$$
 Symmetric Positive-semidefinite (non-negative eigenvalues)

Using Lagrange multiplier:

$$g(\mathbf{w}_1) = (\mathbf{w}_1)^{\mathrm{T}} \mathbf{S} \mathbf{w}_1 - \alpha ((\mathbf{w}_1)^{\mathrm{T}} \mathbf{w}_1 - 1)$$

$$\partial g(\mathbf{w}_1) / \partial w_{11} = 0$$

$$\partial g(\mathbf{w}_1) / \partial w_{12} = 0$$

$$\vdots$$

$$\mathbf{S} \mathbf{w}_1 - \alpha \mathbf{w}_1 = 0$$

$$\mathbf{S} \mathbf{w}_1 = \alpha \mathbf{w}_1 \quad \mathbf{w}_1 : \text{eigenvector}$$

$$(\mathbf{w}_1)^{\mathrm{T}} \mathbf{S} \mathbf{w}_1 = \alpha (\mathbf{w}_1)^{\mathrm{T}} \mathbf{w}_1 = 0$$

$$\vdots$$

$$\mathbf{C} \text{hoose the maximum one}$$

 \mathbf{w}_1 is the eigenvector of the covariance \mathbf{S} matrix, corresponding to the largest eigenvalue λ_1

Formula Derivation

$$\underset{\mathbf{w}_{2}}{\operatorname{argmax}}(\mathbf{w}_{2})^{\mathsf{T}}\mathbf{S}\mathbf{w}_{2} \qquad s.t. \quad (\mathbf{w}_{2})^{\mathsf{T}}\mathbf{w}_{2} = 1 \quad (\mathbf{w}_{2})^{\mathsf{T}}\mathbf{w}_{1} = \mathbf{0}$$

$$g(\mathbf{w}_{2}) = (\mathbf{w}_{2})^{\mathsf{T}}\mathbf{S}\mathbf{w}_{2} - \alpha((\mathbf{w}_{2})^{\mathsf{T}}\mathbf{w}_{2} - 1) - \beta((\mathbf{w}_{2})^{\mathsf{T}}\mathbf{w}_{1} - 0)$$

$$\frac{\partial g(\mathbf{w}_{2})}{\partial w_{21}} = 0$$

$$\frac{\partial g(\mathbf{w}_{2})}{\partial w_{22}} = 0$$

$$\vdots$$

$$\vdots$$

$$= (\mathbf{w}_{1})^{\mathsf{T}}\mathbf{S}\mathbf{w}_{2} - \alpha(\mathbf{w}_{1})^{\mathsf{T}}\mathbf{w}_{2} - \beta(\mathbf{w}_{1})^{\mathsf{T}}\mathbf{w}_{1} = 0$$

$$\vdots$$

$$= (\mathbf{w}_{1})^{\mathsf{T}}\mathbf{S}\mathbf{w}_{2} = (\mathbf{w}_{2})^{\mathsf{T}}\mathbf{S}\mathbf{w}_{1}$$

$$= \lambda_{1}(\mathbf{w}_{2})^{\mathsf{T}}\mathbf{w}_{1} = 0$$

$$\beta = 0 : \longrightarrow \mathbf{S}\mathbf{w}_{2} - \alpha\mathbf{w}_{2} = 0 \longrightarrow \mathbf{S}\mathbf{w}_{2} = \alpha\mathbf{w}_{2}$$

 \mathbf{w}_2 is the eigenvector of the covariance matrix \mathbf{S} , corresponding to the 2^{nd} largest eigenvalue λ_2

How to Reduce Dimension?

To reduce dimension of data **X** from d to k (k < d), we perform:

- Step1: Calculate the covariance matrix S = Cov(X)
- Step2: Select a set of orthonormal eigenvectors corresponding to the *k* largest eigenvalues, resulting in the projection matrix **W**
- **Step3:** Reduce the dimension by calculating:

$$\mathbf{Z} = \mathbf{W}\mathbf{X} = \begin{bmatrix} (\mathbf{w}_1)^{\mathrm{T}} \\ (\mathbf{w}_2)^{\mathrm{T}} \\ \vdots \\ (\mathbf{w}_k)^{\mathrm{T}} \end{bmatrix} \mathbf{X}$$

Example: Decorrelation

$$\mathbf{Z} = \mathbf{W} \mathbf{X}$$

$$\mathbf{Cov}(\mathbf{Z}) = \mathbf{D}$$

$$\mathbf{Diagonal\ matrix}$$

$$Cov(\mathbf{Z}) = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{z} - \overline{\mathbf{z}})(\mathbf{z} - \overline{\mathbf{z}})^{T} = \mathbf{W}\mathbf{S}\mathbf{W}^{T}$$

$$= \mathbf{W}[\mathbf{S}\mathbf{w}_{1} \cdots \mathbf{S}\mathbf{w}_{k}]$$

$$= \mathbf{W}[\lambda_1 \mathbf{S} \mathbf{w}_1 \cdots \lambda_k \mathbf{S} \mathbf{w}_k]$$

$$= [\lambda_1 \mathbf{e}_1 \cdots \lambda_k \mathbf{e}_k] = \mathbf{D} \longrightarrow$$
 Diagonal matrix

Basic Component:

$$\mathbf{x} - \tilde{\mathbf{x}} \approx c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \hat{\mathbf{x}}$$

Find $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ to minimize the following reconstruction error:

$$L = \underset{\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}}{\operatorname{argmax}} \| (\mathbf{x} - \tilde{\mathbf{x}}) - \underline{\sum_{i=1}^k c_i \mathbf{u}_i} \|_2$$

PCA:
$$\mathbf{z} = \mathbf{W}\mathbf{x}$$

$$\mathbf{z} = \begin{bmatrix} (\mathbf{w}_1)^T \\ (\mathbf{w}_2)^T \\ \vdots \\ (\mathbf{w}_k)^T \end{bmatrix} \mathbf{x}$$

$$\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\} \text{ (from PCA) is the component } \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\} \text{ (minimizing } \mathbf{L})$$
Proof in [Bishop, Chapter 12.1.2]

$$\mathbf{x} - \tilde{\mathbf{x}} \approx c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \hat{\mathbf{x}}$$

Find $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ to minimize the following reconstruction error:

k columns of U: a set of orthonormal eigenvectors corresponding to the top k eigenvalues of $\mathbf{X}\mathbf{X}^{\mathrm{T}}$

Autoencoder

PCA looks like a neural network with one hidden layer (linear activation function)

If $\{\mathbf w_1, \mathbf w_2, \cdots, \mathbf w_k\}$ is the component $\{\mathbf u_1, \mathbf u_2, \cdots, \mathbf u_k\}$, then we have

$$\hat{\mathbf{x}} = \sum_{i=1}^{n} c_i \mathbf{w}_i \quad \mathbf{x} - \hat{\mathbf{x}}$$

For the case where k=2:

Contents

- 1 Motivation
- 2 Principle Component Analysis
 - Maximum variance formulation
 - Minimize Error formulation
 - AutoEncoder
- 3 Example
- 4 Conclusion

Example: Pokemon

■Inspired from:

https://www.kaggle.com/strakul5/d/abcsds/pokemon/principal-component-analysis-of-pokemon-data

- 800 Pokemons with 6 features:
 - HP, Atk, Def, Sp Atk, Sp Def, Speed
- How many principle components?

$$\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6}$$

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
ratio	0.45	0.18	0.13	0.12	0.07	0.04

Using 4 components is good enough

Example: MNIST

$$= \mathbf{a}_1 \mathbf{w}_1 + \mathbf{a}_2 \mathbf{w}_2 + \cdots$$
images

30 components:

Example: Face

Eigen-face

30 components:

http://www.cs.unc.edu/~lazebnik/research/spring08/assignment3.html

Contents

- 1 Motivation
- 2 Principle Component Analysis
 - Maximun variance formulation
 - Minimize Error formulation
 - AutoEncoder
- 3 Example
- 4 Conclusion

Conclusion

Unsupervised

• Linear

http://www.astroml.org/book_figures/chapter7/fig_S_manifold_PCA.html

Conclusion

Appendix

- http://4.bp.blogspot.com/_sHcZHRnxlLE/S9EpFXYjfvI/AAAAAAAB
 Z0/_oEQiaR3WVM/s640/dimensionality+reduction.jpg
- https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Red uction_Review_2009.pdf

Thank You