

Estrutura de Dados

Árvores de Pesquisa Balanceadas

Professores: Anisio Lacerda e Wagner Meira Jr.

Árvores binárias de pesquisa

Pior caso para uma busca é O(n)

Árvore completamente balanceada

 Nós folha (externos) aparecem em no máximo dois níveis diferentes

- Minimiza o tempo médio de pesquisa
 - Assumindo distribuição uniforme das chaves
- Problema: manter árvore completamente balanceada após cada inserção é muito caro

Árvore completamente balanceada

 Para inserir a chave 1 na árvore à esquerda e manter a árvore completamente balanceada precisamos movimentar todos os nós

Árvores Balanceadas

- A solução é criar estruturas que mantenham um certo balanceamento mas que não exijam o balanceamento completo
 - Tradeoff entre o custo de pesquisa e manutenção
 - Garantias de custos máximos
- Exemplos
 - Árvores 2-3-4
 - Árvores Vermelha e Preta
 - Árvores SBB
 - Árvores AVL

Estrutura de Dados

Árvore AVL

Professores: Luiz Chaimowicz e Raquel Prates

Árvore AVL

- Árvore Binária de Pesquisa Balanceada
- Foi proposta por Georgy Adelson-Velsky e Yevgeniy Landis em 1962
- Ideia: À medida em que as operações de inserção e remoção são efetuadas a árvore é balanceada

AVL – CONCEITOS E OPERAÇÕES BÁSICAS

Balanceamento

- Considera a altura da árvore
- Fator de Balanceamento (FB): Subtrai a altura da subárvore da direita da altura da subárvore da esquerda
 - Se o Fator de Balanceamento for: -1<=0<=1 →
 Balanceada
 - Se for <-1 ou >1 → Desbalanceada

Balanceamento - Exemplo

<-1 ou >1 → Desbalanceada -1<=0<=1 → Balanceada

$$h(d) = 3 e h(e) = 2 \rightarrow FB = 1$$

Balanceada!

Desbalanceada!

Árvores Balanceadas

Como computar o balanceamento de um nó?

Representando o nó

- Por simplicidade
 - Vamos assumir que é fácil achar o ascendente direto de um nó
 - Para isto podemos apenas colocar um ponteiro para cima
 - Outra opção é uma função parent
- Não mostramos os links para cima nas figuras
 - Pois podemos fazer tudo sem eles se necessário

```
typedef struct node {
  int value;
  struct node *leftChild;
  struct node *rightChild;
  struct node *parent;
} node_t;
```


Altura de um Nó

```
int height(node_t *node) {
  if (node == NULL) return 0;
  return 1 + max(height(node->leftChild),
                                                                      13
                 height(node->rightChild));
                                                                 10
                                                          6
                                                                           14
```

Altura de um Nó

```
int height(node_t *node) {
  if (node == NULL) return 0;
  return 1 + max(height(node->leftChild),
                                                   3
                                                                       13
                 height(node->rightChild));
                                                                  10
                                                                           14
                                                          6
```

Altura de um Nó

- Observação:
 - Normalmente conta-se a altura da folha como sendo 0
 - Basta reduzir -1 de todos os casos acima

Balanceamento

Desbalanceamento


```
int max(int v1, int v2) {
 if (v1 > v2) return v1;
 return v2;
int height(node t *node) {
 if (node == NULL) return 0;
 return 1 + max(height(node->leftChild),
                 height(node->rightChild));
int balanceFactor(node_t *node) {
 if (node == NULL) return 0;
 int balance = height(node->rightChild) -
                height(node->leftChild);
 return balance;
```



```
int max(int v1, int v2) {
 if (v1 > v2) return v1;
 return v2;
int height(node t *node) {
 if (node == NULL) return 0;
 return 1 + max(height(node->leftChild),
                 height(node->rightChild));
int balanceFactor(node_t *node) {
 if (node == NULL) return 0;
 int balance = height(node->rightChild) -
                height(node->leftChild);
 return balance;
```



```
int max(int v1, int v2) {
  if (v1 > v2) return v1;
  return v2;
                       Calcula apenas para o nó chamado
int height(node t *node) {
                                                                              13
  if (node == NULL) return 0;
  return 1 + max(height(node->leftChild),
                 height(node->rightChild));
                                                                        10
                                                                                    14
                                                                6
int balanceFactor(node t *node) {
  if (node == NULL) return 0;
  int balance = height(node->rightChild) -
                height(node->leftChild);
  return balance;
```

```
int max(int v1, int v2) {
  if (v1 > v2) return v1;
  return v2;
int height(node t *node) {
  if (node == NULL) return 0;
  return 1 + max(height(node->leftChild),
                 height(node->rightChild));
int balanceFactor(node t *node) {
  if (node == NULL) return 0;
  int balance = height(node->rightChild) -
                height(node->leftChild);
  return balance;
```


Fator de balanceamento: Depende da altura das sub-árvores

Altura

 Podemos armazenar a altura do nó (e não calculá-la sempre)

Calculo apenas ao inserir o nó

Necessário atualizar

 a altura do antecedentes ao
 inserir novo nó

Pre-Computando Alturas

```
typedef struct node {
  int value;
  int height;
  struct node *leftChild;
  struct node *rightChild;
  struct node *parent;
} node_t;
```


Altura ao Inserir (x = 5)

- Inicializa o struct
 - value = 5;
 - leftChild = NULL;
 - rightChild = NULL;
 - height = 1;

height = 4

Altura ao Inserir (x = 5)

 Acha a posição dele na árvore

height = 4

Altura ao Inserir (x = 5)

Insere ele na posição

Nó:

```
value = 5;
leftChild = NULL;
rightChild = NULL;
height = 1;
node->parent = nó 4;
```


Altura ao Inserir (x = 5)

- Caminhar para cima (até a raiz), atualizando os antecedentes
- Quando atualizar:
 - Quando pai não tem nenhum filho
 - Quando altura do pai= altura do filho

Sabendo Computar Altura

Balanceamento é fácil

```
int balanceFactor(node_t *node) {
  if (node == NULL) return 0;
  int balance = node->rightChild->height - node->leftChild->height;
  return balance;
}
```

Até Agora

- Sabemos computar a altura de um nó
- Sabemos manter a altura computada ao inserir
- Sabemos computar o balanceamento de um nó

ROTAÇÕES

Rotações

Rotação é uma operação utilizada na árvore
 AVL para manter o balanceamento

Resultado

Como 5 é maior do que 3 tem que ir para direita

node->parent->leftChild = node->rightChild;

Rotação para Direita

node->parent->leftChild = node->rightChild;

node->rightChild = node->parent;

Resultado é este, só redesenhar

Resultado da Rotação para Direita

Rotação para Esquerda

Mesma Ideia

Atualiza filho da direita do parent

node->parent->rightChild = node->leftChild;

Atualiza filho da direita do parent

node->parent->rightChild = node->leftChild;

node->leftChild = node->parent;

Resultado é este, só redesenhar

(assumindo que atualizamos os parents)

Resultado da Rotação para Esquerda

Outros Cuidados

- Se em alguma rotação o parent for o root
- Atualizar o root também

Custo de Rotações

O(1)

 Estamos apenas definindo valores de ponteiros

AVL – MANTENDO O BALANCEAMENTO

Árvore AVL

- Sempre mantém a árvore balanceada
- Faz uso do fator de balanceamento e de rotações

Até Agora

- Sabemos computar a altura de um nó
- Sabemos manter a altura computada ao inserir
- Sabemos computar o balanceamento de um nó
- Sabemos rotacionar

balance = 0

Sempre inserimos embaixo de um nó folha

Sempre inserimos embaixo de um nó folha

 O fator de balanceamento do parent vai ficar entre [-1, 1]

- Sempre inserimos embaixo de um nó folha
- Por definição:
 - $lue{}$ O fator de balanceamento do parent vai ficar entre [-1, 1]
 - ☐ Se era 0 (sem filhos), vira 1 ou -1
 - Se era 1 ou -1 (com 1 filho) vira 0

 Sempre inserimos embaixo de um nó folha

- O fator de balanceamento do parent
 vai ficar entre [-1, 1]
 - ☐ Se era 0 (sem filhos), vira 1 ou -1
 - ☐ Se era 1 ou -1 (com 1 filho) vira 0

 O "avô", por consequência pode desbalancear

- Ao inserir:
 - Atualizar alturas
 - Atualizarbalanceamentos
- Olhar para o nó "avô"

- Ao inserir:
 - Atualizar alturas
 - Atualizarbalanceamentos
- Olhar para o nó "avô"
 - O mesmo desbalanceou?

- Ao inserir:
 - Atualizar alturas
 - Atualizarbalanceamentos
- Olhar para o nó "avô"
 - O mesmo desbalanceou?

Sim!

- Ao inserir:
 - Atualizar alturas
 - Atualizar balanceamentos
- 🔲 🛮 Olhar para o nó "avô"
 - O mesmo desbalanceou?
 - □ Sim!
- Consertamos com uma rotação para a direita

- Ao inserir:
 - Atualizar alturas
 - Atualizar balanceamentos
- Olhar para o nó "avô"
 - O mesmo desbalanceou?
 - □ Sim!
- Consertamos com uma rotação para a direita

- Ao inserir:
 - Atualizar alturas
 - Atualizar balanceamentos
- Olhar para o nó "avô"
 - O mesmo desbalanceou?
 - □ Sim!
- Consertamos com uma rotação para a direita

- Ao inserir:
 - Atualizar alturas
 - Atualizar balanceamentos
- Olhar para o nó "avô"
 - O mesmo desbalanceou?
 - □ Sim!
- Consertamos com uma rotação para a direita

- Ao inserir:
 - Atualizar alturas
 - Atualizar balanceamentos
- 🔲 🛮 Olhar para o nó "avô"
 - O mesmo desbalanceou?
 - □ Sim!
- Consertamos com uma rotação para a direita

Inserção: Outro Caso

Inserindo nó 9

Inserção: Outro Caso

- Inserindo nó 9
- Inserindo nó 10

Inserção: Outro Caso

- Inserindo nó 9
- Inserindo nó 10

Inserção – Vimos 2 Casos

 Caso 1: Inserimos na esquerda do parent e avô tinha desbalanceamento negativo

Solução: Rotação para a direita

 Caso 2: Inserimos na direita do parent e avô tinha desbalanceamento positivo

Solução: Rotação para a esquerda

Inserção – Caso 3

 Insere na direita do parent e avô fica com desbalanceamento negativo

Inserindo nó 10

Inserindo nó 10

Inserindo nó 10

Caso 1 – Avô com desbalanceamento negativo s o ra filho da como desbalanceamento

filho da (todos neg

Solução: direita

Como rotacionar?

- Solução: Transformar em um dos casos conhecidos
- 2 rotações

1. Rotação para esquerda no 7

- Solução: Transformar em um dos casos conhecidos
- 2 rotações

1. Rotação para esquerda no 7

Solução: Transformar em um dos casos conhecidos

2 rotações

1. Rotação para esquerda no 7

- Solução: Transformar em um dos casos conhecidos
- 2 rotações

- 1. Rotação para esquerda no 7
- 2. Rotação para direita no 10

- Solução: Transformar em um dos casos conhecidos
- 2 rotações

- 1. Rotação para esquerda no 7
- 2. Rotação para direita no 10

Inserção – Caso 4

 Insere na esquerda do parent e avô fica com desbalanceamento positivo

b = 1

Inserindo nó 20

- Solução: Transformar em um dos casos conhecidos (caso 2)
- 2 rotações

- Solução: Transformar em um dos casos conhecidos (caso 2)
- 2 rotações

1. Rotação para direita no 22

- Solução: Transformar em um dos casos conhecidos (caso 2)
- 2 rotações

1. Rotação para direita no 22

- Solução: Transformar em um dos casos conhecidos (caso 2)
- 2 rotações

- 1. Rotação para direita no 22
- 2. Rotação para esquerda no 20

- Solução: Transformar em um dos casos conhecidos (caso 2)
- 2 rotações

- 1. Rotação para direita no 22
- 2. Rotação para esquerda no 20

Inserção – 4 Casos Possíveis:

 Caso 1: Insere na esquerda do parent e avô fica com desbalanceamento negativo

 Caso 2: Insere na direita do parent e avô fica com desbalanceamento positivo

 Caso 3: Insere na direita do parent e avô fica com desbalanceamento negativo

Caso 4: Insere na esquerda do parent e avô fica com desbalanceamento positivo

Inserção - Código

```
node * insert(node * T, int x) {
 if (T == NULL) { initialize(T);
 } else
    if (x > T->data) \{ T->right = insert(T->right, x);
         if (BF(T) == -2)
             if (x > T-> right-> data) T = RR(T);
             else T = RL(T);
    } else if (x < T->data) \{ T->left = insert(T->left, x);
        if (BF(T) == 2)
             if (x < T->left->data) T = LL(T);
             else T = LR(T);
 T->ht = height(T);
 return (T);
```

Análise da Inserção - Custos

- \square Achar o local do nó $O(\log(n))$
- \Box Atualizar alturas $O(\log(n))$
- $lue{}$ Cada rotação é O(1)
- Custo Total

$$O(\log(n)) + O(\log(n)) + O(1) + O(1) = O(\log(n))$$

Inseriu 30:Antes de RR

Inseriu 10,20,30,40

Inseriu 50:Antes de RR

Inseriu 60:Antes de RR

Inserção

Inserção

Passo a Passo

https://visualgo.net/en/bst

ÁRVORE AVL - REMOÇÃO

- Lembrando de árvores binárias de pesquisa
- Existem 3 casos de remoção
 - Nó folha
 - Nó tem 1 filho
 - Nó tem 2 filhos
- Na AVL: ao remover um nó temos que corrigir a árvore

Retira o 18

- Retira o 18
- Tudo OK

Retira o 21

- Retira o 21
- Olhamos para o balanceamento do pai
 - Caso esteja ok, continue subindo

- Achamos caso problema
- Vamos chamar tal nó de X

- Achamos caso problema
- Vamos chamar tal nó de X
- Identificamos um filho de tal nó com maior altura
 - Chamamos de Y

- Achamos caso problema
- Vamos chamar tal nó de X
- Identificamos um filho de tal nó com maior altura
 - Chamamos de Y
- Achamos o neto de maior altura
 - Chamamos de Z

Olhando para X, Y e Z

 Caímos em um dos casos de desbalanceamento

Caso 1

- Olhando para X, Y e Z
 - Caímos em um dos casos de desbalanceamento
 - Caso 1

- Olhando para X, Y e Z
 - Caímos em um dos casos de desbalanceamento
 - Caso 1
- Repetimos tudo olhando para o avô
 - Nó 3
 - Neste caso tudo OK

Caso mais Complicado – Nó tem 2 filhos

- Remover o nó 3
- Lembrando de árvores binárias de pesquisa, trocamos com o antecessor (nó 2)

- Remover o nó 3
- Trocamos com o nó 2
- A remoção do mesmo ocorre em um nó folha

- Removemos o nó 3 (agora folha)
- O nó 1 continua ok, vamos olhar para cima

- Removemos o nó 3 (agora folha)
- O nó 1 continua ok, vamos olhar para cima
- O nó 2 não está ok
- Chamamos de nó X

- O nó 2 é X
- O filho de maior altura é Y

- O nó 2 é X
- O filho de maior altura é Y
- O neto de maior altura é Z

Estamos no Caso 4

- Estamos no Caso 4
- Rotação para direita

- Estamos no Caso 4
- Rotação para direita

- Estamos no Caso 4
- Rotação para direita

- Estamos no Caso 4
- Rotação para direita
- Agora para esquerda

- Estamos no Caso 4
- Rotação para direita
- Agora para esquerda

- Estamos no Caso 4
- Rotação para direita
- Agora para esquerda

Intuição para Remoção

- Achar um nó desbalanceado
 - a. X
- 2. Achar a subárvore com maior altura
 - a. Raiz dessa subárvore é Y
 - É intuitivo perceber que é esta subárvore que causa o desbalanceamento
 - i. balance = altura(esq)-altura(dir). A maior das 2 faz o valor <> -1, 1, 0
- 3. Repetir a mesma coisa a partir de Y
 - a. Achamos o nó Z
- 4. Corrigir com os casos de desbalanceamento (inserção)

Em alguns casos temos que continuar corrigindo

- Enquanto algum nó está desbalanceado
 - Anda para cima
 - Verifica
 - Corrige

Remoção - Código

```
node * Delete(node * T, int x) {
 node * p;
 if (T == NULL) { return NULL;
 } else
 if (x > T \rightarrow data) \{ T \rightarrow right = Delete(T \rightarrow right, x);
       if (BF(T) == 2) // rebalancear
               if (BF(T \rightarrow left) >= 0) T = LL(T); else T = LR(T);
 } else {
 if (x < T \rightarrow data) \{ T \rightarrow left = Delete(T \rightarrow left, x);
       if (BF(T) == -2) // rebalancear
               if (BF(T \rightarrow right) <= 0) T = RR(T); else T = RL(T);
 } else {
       if (T -> right != NULL) { //remove sucessor
               p = T \rightarrow right; while (p \rightarrow left != NULL) p = p \rightarrow left;
               T \rightarrow data = p \rightarrow data:
               T -> right = Delete(T -> right, p -> data);
               if (BF(T) == 2) // rebalancear
                       if (BF(T \rightarrow left) >= 0) T = LL(T); else T = LR(T);
       } else return (T -> left);
 T \rightarrow ht = height(T);
 return (T);
```


Removeu 70:Antes de LL

Análise da Remoção - Custos

- ullet Achar o antecessor (ou sucessor) é $O(\log(n))$
- \square Realizar a retirada $O(\log(n)) + O(1)$
- Verificar se tem desbalanceamento O(log(n))
 - □ Para cada desbalanceamento corrigir O(1) + O(1)
- Custo Total

$$O(\log(n)) + O(\log(n) \times O(1)) = O(\log(n))$$

