Examen VWO

2011

tijdvak 1 maandag 23 mei 13.30 - 16.30 uur

natuurkunde (pilot)

Bij dit examen hoort een uitwerkbijlage.

Dit examen bestaat uit 28 vragen.

Voor dit examen zijn maximaal 78 punten te behalen.

Voor elk vraagnummer staat hoeveel punten met een goed antwoord behaald kunnen worden.

Als bij een vraag een verklaring, uitleg, berekening of afleiding gevraagd wordt, worden aan het antwoord meestal geen punten toegekend als deze verklaring, uitleg, berekening of afleiding ontbreekt.

Geef niet meer antwoorden (redenen, voorbeelden e.d.) dan er worden gevraagd. Als er bijvoorbeeld twee redenen worden gevraagd en je geeft meer dan twee redenen, dan worden alleen de eerste twee in de beoordeling meegeteld.

Formuleblad

Formules die bij het pilot-programma horen en die niet in BINAS staan.

C Beweging en wisselwerking

$$F_{\rm w,l} = \frac{1}{2} \rho c_{\rm w} A v^2$$

$$E_{\rm chem} = r_{\rm v} V$$

$$E_{\text{chem}} = r_{\text{v}}V$$
 $E_{\text{chem}} = r_{\text{m}}m$

$$\Sigma p_{\text{voor}} = \Sigma p_{\text{na}}$$

D Lading en veld

$$I = GU$$

E Straling en materie

$$\frac{P}{\Delta} = \sigma T^{\Delta}$$

$$\frac{P}{A} = \sigma T^4 \qquad \qquad L = 4\pi R^2 \sigma T^4 \qquad \qquad v = \frac{\Delta \lambda}{\lambda} c$$

$$v = \frac{\Delta \lambda}{\lambda} c$$

$$D = \frac{E}{m} \qquad \qquad H = QD$$

$$H = QD$$

Opgave 1 Splijtstof opsporen met neutrino's

Als splijtstof in een kernreactor wordt uranium-235 gebruikt. Deze isotoop heeft de eigenschap dat de kern splijt als er een neutron wordt ingevangen. Er ontstaan dan twee nieuwe kernen en een aantal nieuwe neutronen.

Bij een van de mogelijke splijtingsreacties ontstaan twee nieuwe neutronen en is barium-147 een van de splijtingsproducten.

3p 1 Geef de reactievergelijking van deze splijting.

Kerncentrales staan onder internationaal toezicht omdat splijtstof ook gebruikt kan worden bij de productie van kernwapens.

Er is een plan geopperd voor controle van buitenaf met behulp van neutrino's. In een kerncentrale ontstaan namelijk ontzettend veel neutrino's en antineutrino's. Figuur 1 toont het diagram van een deeltjesproces dat zich in een kerncentrale afspeelt.

figuur 1

- Leg uit of bij dit deeltjesproces een neutrino of een anti-neutrino ontstaat. Maak hierbij gebruik van een of meer behoudswetten.
- Voor welke van de vier fundamentele wisselwerkingen is het (anti-)neutrino gevoelig?

Het is niet mogelijk om (anti-)neutrino's rechtstreeks te detecteren. Via symmetrie kan aangetoond worden dat de volgende reactie kan optreden. Zie figuur 2.

figuur 2

3p **4** Beschrijf hoe deze reactie gebruikt kan worden om neutrino's te detecteren.

Opgave 2 Pioneer-10

De verkenner Pioneer-10 werd gelanceerd in 1972. Voordat Pioneer-10 het zonnestelsel verliet, beschreef hij een baan langs verschillende planeten.

Op een bepaald moment bevond Pioneer-10 zich op een afstand van $5,09\cdot10^{11}~\mathrm{m}$ van de zon en had een snelheid van $1,87\cdot10^4~\mathrm{m\,s}^{-1}$ loodrecht op de verbindingslijn van Pioneer-10 met de zon.

Deze snelheid is groter dan de snelheid die Pioneer-10 zou hebben als hij op dezelfde afstand in een éénparige cirkelbaan om de zon zou bewegen.

4p **5** Toon dat aan met een berekening.

De baan van Pioneer-10 is dus geen cirkelbaan maar een langgerekte baan richting Jupiter. Zie figuur 1. Tim en Maaike proberen de kromming van de baan van Pioneer-10 te verklaren.

figuur 1

aarde zon

Jupiter

Tim meent dat de aantrekkingskracht van de zon de kromming veroorzaakt. Maaike denkt dat de kromming het gevolg is van de lancering met de draaiing van de aarde mee.

2p **6** Verklaar voor beide standpunten of ze natuurkundig juist zijn.

In 1983 bewoog Pioneer-10 met een snelheid van ongeveer 2,6 AE per jaar in de richting van de rode ster Aldebaran. Zie figuur 2. Deze figuur is niet op schaal. Eén AE (Astronomische Eenheid) is gelijk aan de gemiddelde afstand van de zon tot de aarde.

figuur 2

^{3p} **7** Bereken hoeveel jaar Pioneer-10 over zijn reis naar Aldebaran zal doen als hij zijn hele reis met de gegeven snelheid beweegt.

In het begin van de reis wordt Pioneer-10 door de zon vertraagd. Aan het eind van zijn reis wordt Pioneer-10 door Aldebaran versneld. Tim en Maaike bespreken het effect hiervan op de gemiddelde snelheid van Pioneer-10. Tim denkt dat $v_{\rm gem}$ minder dan 2,6 AE per jaar is door de invloed van de zon. Maaike meent dat $v_{\rm gem}$ meer dan 2,6 AE per jaar is, omdat de massa van Aldebaran 25 keer zo groot is als de massa van de zon.

2p 8 Leg uit wie er gelijk heeft.

Om continu de snelheid van Pioneer-10 te bepalen en commando's over te brengen, gebruikt men radiocommunicatie. Hiertoe zendt men vanaf de aarde een draaggolf van 2,11 GHz uit (uplink), waarvan de frequentie na ontvangst in

Pioneer-10 met een factor $\frac{240}{221}$ wordt vermenigvuldigd en teruggezonden

(downlink). Uren later wordt het downlink-signaal op aarde ontvangen, terugvermenigvuldigd en met het oorspronkelijke signaal vergeleken.

De commando's worden gegeven door de draaggolf met een bandbreedte van $40~\mathrm{MHz}$ te moduleren. Het vermenigvuldigen met de factor $\frac{240}{221}$ zorgt ervoor dat

de uplink- en downlink-signalen in gescheiden kanalen zitten.

3p **9** Toon dat met een berekening aan.

Zonder kanaalscheiding treedt er storing op tussen de uplink- en downlink-signalen.

2p **10** Leg uit door welk natuurkundig verschijnsel deze storing veroorzaakt wordt.

Pioneer-10 beweegt op zijn reis door de Kuipergordel. Dit is een gebied van ijzig interplanetair stof dat ons zonnestelsel omgeeft, op een afstand tussen $30~\mathrm{AE}$ en $100~\mathrm{AE}$. Doordat Pioneer-10 dit interplanetaire stof 'opveegt', neemt de massa van Pioneer-10 toe.

Een voorwerp dat tijdens zijn beweging in massa toeneemt, ondervindt daardoor een tegenwerkende kracht: $F = \frac{\Delta m}{\Delta t} v. \tag{1}$

Voor de tegenwerkende kracht op Pioneer-10 ten gevolge van het 'opvegen' van het stof geldt: $F = A\rho v^2$. (2)

Hierin is:

- $-\rho$ de stofdichtheid in kg m⁻³;
- A de frontale oppervlakte van Pioneer-10 in m^2 ;
- v de snelheid van Pioneer-10 in ms⁻¹.
- 3p 11 Leid formule (2) af. Maak gebruik van formule (1) en van formules uit Binas.

De snelheid van Pioneer-10 blijkt iets sterker af te nemen dan verklaard kan worden door de aantrekkingskracht van het zonnestelsel. Als de extra vertraging het gevolg is van bovenstaande tegenwerkende kracht, is daarmee de waarde voor de stofdichtheid van de Kuipergordel te bepalen.

De antenneschotel van Pioneer-10 heeft een diameter van 2,74 m. De frontale oppervlakte van Pioneer-10 is gelijk aan de oppervlakte van de antenneschotel. Op een bepaalde plaats in de Kuipergordel had Pioneer-10 (massa = $241~\mathrm{kg}$) een snelheid v van $1,23\cdot10^4~\mathrm{m\,s}^{-1}$ en ondervond een extra vertraging van $8,74\cdot10^{-10}~\mathrm{m\,s}^{-2}$.

3p **12** Bereken hieruit de stofdichtheid op die plaats in de Kuipergordel, als aangenomen wordt dat deze extra vertraging volledig veroorzaakt wordt door het 'opvegen' van het stof.

Opgave 3 Formule van Einstein

Lees onderstaand artikel.

Amerikaanse en Europese wetenschappers hebben in 2005 in een gezamenlijk project de juistheid van de beroemde formule van Einstein $E = mc^2$ onderzocht. Ze gingen uit van de reactie waarbij Si-28 een neutron invangt. Hierbij ontstaat Si-29 en komen twee gamma-fotonen vrij. Volgens de formule van Einstein zou de energie van de twee fotonen samen overeen moeten komen met het massaverschil voor en na de reactie. In Boston (USA) werd het massaverschil bepaald en in Grenoble (Frankrijk) de golflengtes van beide fotonen. Beide metingen werden met zeer grote nauwkeurigheid verricht. De wetenschappers hebben hiermee de juistheid van de formule van Einstein met een nauwkeurigheid van één op tien miljoen aangetoond.

Op het Massachusetts Institute of Technology in Boston (USA) werd het massaverschil van Si-28 en Si-29 bepaald via een frequentiemeting. De atomen werden eerst éénmaal geïoniseerd, vervolgens versneld en daarna in een homogeen magnetisch veld gebracht. De snelheid van de Si⁺-ionen stond loodrecht op de richting van het magnetisch veld. Hierdoor kwamen beide ionen in een cirkelbaan.

Leg uit waarom de baan van de ionen cirkelvormig is. 13 2p

> De onderzoekers konden gedurende een half jaar heel nauwkeurig de frequenties meten waarmee de ionen ronddraaiden. De frequentie f waarmee een ion met lading q ronddraait in een magneetveld met sterkte B hangt af van zijn massa m en niet van zijn snelheid en de straal van de cirkel: $f = \frac{Bq}{2\pi m}$.

Leid deze formule af uit formules in Binas. 14 3р

De waarde van B was 8,5 T. Bereken voor één van de ionen de 2p frequentie waarmee hij ronddraaide.

> Omdat de massa van het neutron precies bekend was, konden de Amerikaanse onderzoekers uit de metingen van de frequenties het massadefect exact bepalen. Dit eindresultaat is in figuur 1 weergegeven.

Onderzoekers van het Institut Laue-Langevin in **Grenoble (Frankrijk)** beschikken over een spectrometer om zeer nauwkeurig de golflengte van gamma-fotonen te bepalen. De gammastraling die vrijkomt bij de invangreactie werd door hen gemeten. In figuur 2 staan de resultaten weergegeven. Bij elk foton is ook de energie ervan berekend.

figuur 2

Omdat de waarden in BINAS niet nauwkeurig genoeg zijn, staan in de tabel hieronder waarden van enkele constanten en grootheden die je moet gebruiken bij de volgende twee vragen.

Lichtsnelheid	$c = 2,997 924 6 \cdot 10^8 \text{ m s}^{-1}$
Constante van Planck	$h = 6,626\ 069\ 0 \cdot 10^{-34}\ \mathrm{J}\mathrm{s}$
Elementair ladingskwantum	$e = 1,602 \ 176 \ 5 \cdot 10^{-19} \ C$
Atomaire massa-eenheid	$u = 1,660 538 8 \cdot 10^{-27} \text{ kg}$

16 Laat zien dat de berekende energie E_1 van het eerste gamma-foton γ_1 overeenkomt met de gemeten golflengte λ_1 .

Hint: bereken eerst de frequentie van het foton.

In de laatste zin van het artikel wordt een bewering gedaan over de nauwkeurigheid.

3p 17 Ga met een berekening uitgaande van de gegevens in de figuren 1 en 2 na of met de experimenten de formule van Einstein met een nauwkeurigheid van één op tien miljoen is aangetoond.

In één van de genoemde wetenschappelijke instituten hadden de onderzoekers een neutronenbron nodig om hun experiment uit te kunnen voeren.

2p 18 Leg uit in welk instituut dat was.

Opgave 4 Bungee-trampoline

Lisa gaat trampolinespringen op een bungee-trampoline. Zie figuur 1.

figuur 1

Lisa krijgt een tuigje om waaraan twee elastische koorden zijn vastgemaakt. De elastische koorden zitten vast aan staalkabels. Deze kabels worden door een elektromotor om een haspel gewonden. Daardoor wordt Lisa langzaam verticaal omhooggetrokken totdat ze een flink stuk boven de trampoline stil hangt.

Elk elastisch koord heeft een veerconstante van $120~\mathrm{N\,m}^{-1}$ en wordt vanuit ontspannen toestand $3.1~\mathrm{m}$ uitgerekt. Het zwaartepunt van Lisa gaat hierbij $2.3~\mathrm{m}$ omhoog. De massa van Lisa met haar tuigje is $48~\mathrm{kg}$.

4p 19 Bereken de arbeid die de elektromotor hiervoor moet verrichten.

De situatie waarbij ze stil hangt is schematisch weergegeven in de figuur op de uitwerkbijlage.

4p **20** Bepaal met behulp van een constructie in de figuur op de uitwerkbijlage de grootte van de kracht in één elastisch koord.

Vervolgens wordt Lisa door een helper omlaag getrokken totdat haar voeten de trampoline raken en zij zich kan afzetten. Na een aantal keren afzetten maakt Lisa hoge, verticale sprongen. Zij komt hierbij niet boven de stellage uit. Van de sprongen worden met een videocamera opnamen gemaakt. Op grond hiervan is een (v,t)-grafiek gemaakt van het zwaartepunt van Lisa. Zie figuur 2.

figuur 2

Figuur 2 staat vergroot op de uitwerkbijlage.

- 3p **21** Bepaal met behulp van de figuur op de uitwerkbijlage het maximale hoogteverschil van het zwaartepunt van Lisa tijdens één sprong.
- 4p 22 Ga met behulp van een bepaling in de figuur op de uitwerkbijlage na of in het hoogste punt van de beweging de elastieken nog krachten uitoefenen op Lisa.

De sprongen van Lisa worden nagebootst in een model. Dit levert het diagram van figuur 3.

figuur 3

In figuur 3 staan energieën weergegeven als functie van de tijd:

- kinetische energie $E_{\mathbf{k}}$
- zwaarte-energie E_z
- veerenergie van de elastieken $E_{\text{v-el}}$
- veerenergie van de trampoline $E_{\text{v-tr}}$
- totale energie E_{tot}

Figuur 3 staat vergroot op de uitwerkbijlage.

^{3p} Vul op de uitwerkbijlage in hoe bovengenoemde energieën corresponderen met de grafieken 1 tot en met 5.

Let op: de laatste opgave van dit examen staat op de volgende pagina.

Opgave 5 Vol of leeg?

Op een batterij staat: $1.5~\rm V$; $2300~\rm mAh$. Dat betekent dat de batterij bij een spanning van $1.5~\rm V$ gedurende één uur een stroom van $2.3~\rm A$ kan leveren, of gedurende een half uur een stroom van $4.6~\rm A$ enz. We gaan er van uit dat de batterij de hele tijd een spanning van $1.5~\rm V$ levert en daarna helemaal leeg is.

2p **24** Bereken hoeveel elektrische energie de batterij kan leveren.

De batterij wordt gebruikt in een klok met een weerstand van $12 \text{ k}\Omega$.

3p **25** Bereken hoeveel jaar de klok op de batterij kan lopen.

In werkelijkheid blijft de spanning van de batterij niet voortdurend $1,5~\rm V$. De spanning zakt langzaam naarmate de batterij verder leeg raakt. Op sommige batterijen zit daarom een tester om te zien hoe 'vol' de batterij nog is. Zie figuur 1.

De tester bestaat uit een trapeziumvormige geleidende strip metaal met temperatuurgevoelige verf. Als je met twee vingers op de tester drukt, maakt hij contact met de beide polen van de batterij. Doordat er dan een stroom door de tester loopt, wordt deze warm. Hierdoor verkleurt de temperatuurgevoelige verf. In figuur 2 is de trapeziumvormige strip schematisch weergegeven.

We kunnen ons de strip voorstellen als vijf strookjes metaal die overal even dik zijn maar sprongsgewijs breder worden. Zie figuur 3.

figuur 1

figuur 2

Het dunste deel is 1,0 mm breed en heeft een weerstand van 1,3 Ω . De volgende strookjes zijn achtereenvolgens 2,0 mm, 3,0 mm, 4,0 mm en 5,0 mm breed.

3p **26** Bereken de weerstand van de gehele strip van figuur 3.

Als de batterij niet helemaal vol is, kleurt de strip aan de ene kant lichter dan aan de andere kant. Aan de ene kant van de strip is de temperatuur kennelijk hoger dan aan de andere.

2p **27** Leg uit aan welke kant van de strip de temperatuur het hoogst is: aan de smalle of aan de brede kant.

De fabrikant wil het ontwerp van de tester aanpassen, zodat die geschikt wordt voor een batterij van 9 V. Hierbij wordt dezelfde temperatuurgevoelige verf gebruikt.

Noem twee wijzigingen die hij in het ontwerp kan aanbrengen, zodat de batterijentester geschikt wordt voor een batterij van 9 V. Licht je antwoord toe.