MICHIGAN STATE

AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Wrap-up of multivariate probability distributions October 17, 2017

Nicole Mason Michigan State University Fall 2017

MICHIGAN STATE

GAME PLAN

- Hand back graded in-class exercises
- Midterm details
 - Covers material through today (except conditional exp. & var.)
 - Please bring blank paper with the last 4 digits of your PID written on each sheet, cheat sheet, pencil, calculator (preferably NOT your phone)
 - Format similar to last year's midterm but slightly shorter
- Review material from last class and complete discussion of multivariate probability distributions
 - Additional covariance example (discrete RVs) questions?
 - Rules for expected values, variances, and covariances of linear functions of RVs
 - Conditional expectations & variances
- Q & A / review based on your questions

1

Review: Independent random variables

Recall that two events A and B are **independent** if:

$$P(A \cap B) = P(A)P(B)$$

Two RVs, Y_1 and Y_2 , are **independent** if:

Discrete probability distribution:

$$p(y_1, y_2) = p_1(y_1)p_2(y_2)$$

Continuous probability density function:

$$f(y_1, y_2) = f_1(y_1) f_2(y_2)$$

or

$$f(y_1, y_2) = g(y_1)h(y_2)$$

where $g(y_i)$ is a nonnegative function of y_i alone and $h(y_2)$ is a nonnegative function of y_2 alone ***BUT only if $f(y_1, y_2) > 0$ for $a \le y_1 \le b$ and $c \le y_2 \le d$ for constants a,b,c,d***.

Review: The expected value of a function of RVs

For the **bivariate** case,

Discrete RVs:

$$E[g(Y_1, Y_2)] = \sum_{\text{all } y_2 \text{ all } y_1} g(y_1, y_2) p(y_1, y_2)$$
Continuous RVs:

Continuous RVs:

$$E[g(Y_1, Y_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) f(y_1, y_2) dy_1 dy_2$$

Rules

1.
$$E[cg(Y_1, Y_2)] = cE[g(Y_1, Y_2)]$$
 for any constant c

2.
$$E[g_1(Y_1, Y_2) + g_2(Y_1, Y_2) + ... + g_k(Y_1, Y_2)]$$

= $E[g_1(Y_1, Y_2)] + E[g_2(Y_1, Y_2)] + ... + E[g_k(Y_1, Y_2)]$

3.
$$E(c_1Y_1 + c_2Y_2 + ... + c_kY_k) = c_1E(Y_1) + c_2E(Y_2) + ... + c_kE(Y_k)$$

4. If Y_1 and Y_2 are independent then, $E(Y_1Y_2) = E(Y_1)E(Y_2)$ and, more generally, $E[g(Y_1)h(Y_2)] = E[g(Y_1)]E[h(Y_2)]$

Review: Covariance & correlation of 2 RVs

$$Cov(Y_1, Y_2) = E[(Y_1 - \mu_1)(Y_2 - \mu_2)] = E(Y_1 Y_2) - E(Y_1)E(Y_2) = E(Y_1 Y_2) - \mu_1 \mu_2$$

$$Corr(Y_1, Y_2) \equiv \rho = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2}$$

Independence implies zero cov/corr

BUT zero cov/corr does NOT imply independence. Why?

Any questions on this example?

Calculating the covariance – example #2

Show that Y_1 and Y_2 are dependent but have zero covariance.

	y_1		
<i>y</i> ₂	-1	0	+1
-1	1/16	3/16	1/16
0	3/16	0	3/16
+1	1/16	3/16	1/16

$$E[g(Y_1, Y_2)] = \sum_{\text{all } y_2 \text{ all } y_1} \sum_{q_1, q_2} g(y_1, y_2) p(y_1, y_2)$$

$$Cov(Y_1, Y_2) = E(Y_1 Y_2) - E(Y_1) E(Y_2)$$

Rules for the expected value, variance, and covariance of linear functions of RVs:

The bivariate case (see WMS pp. 271-273 for proof & multivariate case)

Random variables Y_1 and Y_2 , and constants a_1, a_2, b_1 and b_2 :

1.
$$E(a_1Y_1 + b_1 + a_2Y_2 + b_2) = a_1E(Y_1) + b_1 + a_2E(Y_2) + b_2$$

EX)
$$E(3Y_1 - 2 - 8Y_2 + 5)$$

2.
$$V(a_1Y_1 + b_1 + a_2Y_2 + b_2) = a_1^2V(Y_1) + a_2^2V(Y_2) + 2a_1a_2Cov(Y_1, Y_2)$$

EX)
$$V(Y_1 + Y_2)$$

EX)
$$V(Y_1 - Y_2)$$

EX)
$$V(3Y_1 - 2 - 8Y_2 + 5)$$

3.
$$Cov(a_1Y_1 + b_1, a_2Y_2 + b_2) = a_1a_2Cov(Y_1, Y_2)$$

EX)
$$Cov(Y_1, -Y_2)$$

EX)
$$Cov(3Y_1 - 2, -8Y_2 + 5)$$

C

MICHIGAN STATE

Conditional expectations

Motivation

- Covariance and correlation measure the <u>linear</u> relationship (linear dependence) between two RVs and treat them symmetrically
- In applied economics, we often want to explain one RV (Y) in terms of another RV (X)
- Call Y the "explained" variable, X the "explanatory" variable
- Recall conditional probability distributions and PDFs: p(y|x) and f(y|x)
- We are often interested in the <u>conditional expectation</u> (a.k.a. the <u>conditional mean</u>):

E(Y|X=x) or, for shorthand, E(Y|X) or sometimes E(Y|x)

MICHIGAN STATE UNIVERSITY

Conditional expectations & variances - formulas

Conditional expectation of Y given X

Discrete RVs:

$$E(Y | X = x) = E(Y | X) = \sum_{\text{all } y} y \ p(y | x)$$

Continuous RVs:

$$E(Y \mid X = x) = E(Y \mid X) = \int_{-\infty}^{\infty} y f(y \mid x) dy$$

How would you use the E[g(Y)|X] formula to find the conditional variance, V(Y|X)?

$$V(Y|X)$$

$$= E(Y^2|X) - \left\lceil E(Y|X) \right\rceil^2$$

Conditional expectation of g(Y) given X

Discrete RVs:

$$E[g(Y) | X = x] = E[g(Y) | X] = \sum_{\text{all } y} g(y) p(y | x)$$

Continuous RVs:

$$E[g(Y)|X=x] = E[g(Y)|X] = \int_{-\infty}^{\infty} g(y) f(y|x) dy$$

8

Conditional expectations & variances

Gist: treat the variable you are conditioning on as a constant

EX) Suppose $E(u \mid X) = 0$ and $Y = \beta_0 + \beta_1 X + u$, what is $E(Y \mid X)$?

RULES

1.
$$E[g(Y)|Y] = g(Y)$$
 for any function $g(.)$

$$\mathrm{EX})\,E(Y^2\,|\,Y)$$

$$2. E[g(X)Y | X] = g(X)E(Y | X)$$

$$EX) E(2X^2Y \mid X)$$

3. If *X* and *Y* are independent,

then
$$E(Y|X) = E(Y)$$
 and $V(Y|X) = V(Y)$

4. If
$$E(Y|X) = E(Y)$$
, then $Cov(X,Y) = 0$

5.
$$E[E(Y|X)] = E(Y)$$
 "the law of iterated expectations"

See next slide for example

MICHIGAN STATE

5. E[E(Y|X)] = E(Y) "the law of iterated expectations"

EX) If $E(WAGE \mid EDUC) = 4 + 0.6 EDUC$ and E(EDUC) = 11.5, find E(WAGE).

10

MICHIGAN STATE

Homework:

- WMS Ch. 5 (part 3 of 3) NOT collected
 - Expected value of a function of RVs & special theorems: 5.72, 5.74
 - Covariance: 5.89, 5.91, 5.92 (Hint: $E(Y_1)=0.25$ and $E(Y_2)=0.5$)
 - Expected values, variances, covariances, and correlations of linear functions of RVs: 5.102, 5.103 (consult Theorem 5.12), 5.110
 - Conditional expectations: none but review & internalize the rules
 - Include the various rules on your cheat sheet

After midterm:

- Sampling distributions, estimation, hypothesis testing, and intro to linear regression/OLS
- Before our next class after the midterm, please watch https://www.youtube.com/watch?
 v=BwE2a18Th4c&feature=youtu.be
 covers the sampling distribution of the sample mean, the Law of Large Numbers and the Central Limit Theorem