Predicting Mental Illness

Ayush Ranjan

Data Science Solution

AXA Data Science Task

Overview

- Introduction
- Modelling Approach
- Results
- Conclusion

Introduction

- Objective: Predict mental illness based on demographic and lifestyle data.
- Key Features: Age, income, marital status, smoking, physical activity.
- ▶ Challenge: Class imbalance fewer individuals with a history of mental illness.

Key Points:

- Mental health prediction for improving public health outcomes.
- Early identification of at-risk individuals.

Dataset Overview and Insights

- ► Size of Dataset: 400,000+ rows.
- Key Features:
 - Age: Skewed towards younger individuals.
 - Income: Variation exists, which may influence mental health.
 - Lifestyle Factors: Smoking, physical activity strongly correlated with mental health.
- ➤ Class Imbalance: 70% no history of mental illness, 30% with a history.

Dataset Overview and Insights

Dataset Overview and Insights

Modeling Approach

Models Used:

- Random Forest
- XGBoost
- LightGBM

Stacking Classifier:

- Logistic Regression as meta-learner.
- Combines predictions from base models.

Handling Class Imbalance:

- SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic data for minority class.
- Class weighting to penalize misclassifications of minority class.

Results and Model Performance

► Overall Accuracy: 63%

► ROC-AUC Score: 0.523

Class 0 (No History of Mental Illness):

▶ Precision: 0.71

► Recall: 0.79

► F1-Score: 0.75

Class 1 (History of Mental Illness):

Precision: 0.35

► Recall: 0.26

► F1-Score: 0.30

Confusion Matrix

	Predicted No (Class 0)	Predicted Yes (Class 1)
Actual No (Class 0)	45,678	11,793
Actual Yes (Class 1)	18,456	7,827

Limitations of the Current Approach

- ► Class imbalance remains an issue despite SMOTE and class weighting.
- ▶ Recall for Class 1 is low (26%) many true cases of mental illness were missed.
- ► Bias toward Class 0 persists.

Suggested Improvements

- Advanced Feature Engineering: Introduce new features or interaction terms.
- ► Hyperparameter Tuning: Use GridSearchCV or RandomizedSearchCV to optimize model parameters.
- Cost-Sensitive Learning: Penalize misclassifications of minority class more heavily.

Conclusion

- Stacking classifier achieved reasonable performance, but class imbalance remains a challenge.
- Next steps: Focus on improving recall for Class 1 through advanced techniques.

Takeaway: Early intervention can be enabled by improving mental illness prediction models.

The End