Моделирование канала электрического пробоя методом диффузной границы

Пономарев Андрей Сергеевич^{1,2}

¹МФТИ (НИУ) ²ИПМ им. М. В. Келдыша РАН

Вычислительная классическая и многофазная гидродинамика и термомеханика сплошной среды

4-8 ноября 2024 года

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Ф Численный анализ
- Исследование обобщения модели
- 3аключение

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- 3аключение

Физическое явление

Электрический пробой

Явление резкого возрастания тока в диэлектрике при приложении электрического напряжения выше критического.

- Рассматриваем твердый диэлектрик
- Деградация диэлектрических свойств материала
- Процесс развивается в ограниченной зоне канале пробоя
- Сложная физическая природа

Модель типа диффузной границы

Вещество находится в разных фазах. Состояние вещества описывается гладкой функцией $\phi({m x},t)$ — фазовым полем.

- ullet $\phi=1$ неповрежденная среда
- $oldsymbol{\phi} \phi = 0$ полностью разрушенная среда
- ullet Зона $\phi \in (0,1)$ диффузная граница
- На разрушение среды тратится энергия

Модель, предложенная в работе [1]:

$$ullet$$
 $\pi = -rac{1}{2}\epsilon[\phi]\left(
abla\Phi,
abla\Phi
ight) + \Gamma\left(rac{1-f(\phi)}{l^2} + rac{1}{4}(
abla\phi,
abla\phi)
ight)$ – плотность свободной энергии

- Г энегрия роста канала пробоя на единицу длины
- / величина «размытия» канала
- ullet $\epsilon(x,t)$ диэлектрическая проницаемость среды
- $f(\phi)$ интерполирующая функция

$$ullet$$
 $\epsilon(m{x},t)=rac{\epsilon_0(m{x})}{f(\phi(m{x},t))+\delta}$ — диэлектрическая проницаемость среды

ullet $f(\phi)=4\phi^3-3\phi^4$ — интерполирующая функция

Уравнения модели

• Уравнение электрического потенциала Ф:

$$\operatorname{div}(\epsilon[\phi]\nabla\Phi) = 0\tag{1}$$

• Уравнение фазового поля ϕ :

$$\frac{1}{m}\frac{\partial\phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)\left(\nabla\Phi,\nabla\Phi\right) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma\Delta\phi\tag{2}$$

Свойства:

- ullet связанная система уравнений на ϕ и Φ ;
- ullet уравнение для ϕ типа Аллена-Кана, нелинейное.

Пример вычислительного эксперимента

Расчет из работы [2]

Цель работы

Цель работы

Исследовать качественные характеристики системы уравнений (1), (2) и выполнить ее численный анализ.

Для этого рассмотрим задачу в определенных краевых условиях, упрощающих ее, но позволяющих установить интересующие свойства.

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- 3аключение

Одномерная задача

- ullet Область $\overline{\Omega} = [0,W]_{ extit{x}} imes [0,H]_{ extit{y}} imes extit{I}_{ extit{z}}$ в форме параллелепипеда
- ullet $\phi({m x},0)=\phi_0({m x})=\phi_0({m x})$, $\epsilon_0({m x})=\epsilon_0({m x})$ не зависят от ${m y}$ и ${m z}$
- $ullet \Phi|_{y=0} = \Phi^- \in \mathbb{R}, \; \Phi|_{y=h} = \Phi^+ \in \mathbb{R}$

Подробнее в работе [3].

Решением является функция электрического потенциала

$$\Phi(\mathbf{x},t) = \Phi^- + \frac{y}{h}(\Phi^+ - \Phi^-).$$

Тогда уравнение на ϕ принимает вид

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}K_{\Phi}^{2}\epsilon'(\phi) + \frac{\Gamma}{l^{2}}f'(\phi) + \frac{1}{2}\Gamma\frac{\partial^{2}\phi}{\partial x^{2}}$$

$$\mathcal{K}_{\Phi} = rac{\Phi^+ - \Phi^-}{h} = \|
abla \Phi \|.$$
 Будем считать $\epsilon_0 = \mathsf{const.}$

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- 3аключение

Анализ положений равновесия

- Канал пробоя может развиваться из малых возмущений свойств неповрежденной среды. Выясним условия развития.
- Рассмотрим положения равновесия вида $\phi(x,t)\equiv C$. Положению равновесия соответствует ноль C функции

$$\chi(\phi) = \frac{1}{2} K_{\Phi}^2 \epsilon'(\phi) + \frac{\Gamma}{l^2} f'(\phi).$$

- Исследуем положения равновесия на устойчивость спектральным методом: к $\phi \equiv C$ прибавим возмущение $\delta \phi = e^{\alpha t} \sin(\omega x)$, линеаризуем уравнение на $\delta \phi$.
- $\chi(\phi)$ возрастает в $C\Longrightarrow$ равновесие неустойчиво; $\chi(\phi)$ убывает в $C\Longrightarrow$ равновесие устойчиво.

Анализ положений равновесия

«Слабое» напряжение

$$0 \leqslant \frac{K_{\Phi}^2 I^2 \epsilon_0}{2\Gamma} < \delta^2$$

 $\phi \equiv 0$ неустойчивое $\phi \equiv 1$ устойчивое

«Среднее» напряжение

$$\delta^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma} < (1+\delta)^2$$

 $\phi \equiv 0$ устойчивое

 $\phi \equiv \mathrm{C}_3$ неустойчивое

 $\phi \equiv 1$ устойчивое

«Сильное» напряжение

$$(1+\delta)^2 < \frac{K_\Phi^2 I^2 \epsilon_0}{2\Gamma}$$

 $\phi \equiv 0$ устойчивое

 $\phi \equiv 1$ неустойчивое

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- 3аключение

Разностная схема

Разностная задача

$$\frac{1}{m} \frac{\phi_{i}^{j+1} - \phi_{i}^{j}}{\tau} = \frac{1}{2} K_{\phi}^{2} \epsilon'(\phi_{i}^{j}) + \frac{\Gamma}{l^{2}} f'(\phi_{i}^{j}) + \frac{\Gamma}{2} \frac{\phi_{i+1}^{j} - 2\phi_{i}^{j} + \phi_{i-1}^{j}}{h^{2}}$$
$$\phi_{i}^{0} = \phi_{0}(ih); \quad \phi_{0}^{j} = \phi_{l}(j\tau); \quad \phi_{n}^{j} = \phi_{r}(j\tau)$$

Сетка регулярная; τ — шаг по времени, h — шаг по пространству.

Явная разностная схема первого порядка по времени, второго – по пространству.

Оценка устойчивости

• Рассмотрим возмущенное решение $\phi_i^j+\delta_i^j$. Линеаризуем уравнение на возмущение δ_i^j в точке $\phi_i^j=P$:

$$\delta_i^{j+1} = \delta_i^j + m\tau \left(\frac{1}{2} K_{\Phi}^2 \epsilon''(P) \delta_i^j + \frac{\Gamma}{I^2} f''(P) \delta_i^j + \frac{\Gamma}{2} \frac{\delta_{i+1}^j - 2\delta_i^j + \delta_{i-1}^j}{h^2} \right).$$

• Применим спектральный признак устойчивости:

$$1>|\lambda(heta)|=\left|1+m au\left(rac{1}{2} extstyle{\mathcal{K}}_{\Phi}^2\epsilon''(P)+rac{\Gamma}{l^2}f''(P)-rac{2\Gamma}{h^2}\sin^2rac{ heta}{2}
ight)
ight|.$$

ullet Исследуем вблизи P=0.

Оценка устойчивости

Условие устойчивости

$$\tau \leqslant \frac{1}{2m} \left(\frac{K_{\Phi}^2 \epsilon_0}{\delta^{5/3}} + \frac{\Gamma}{h^2} \right)^{-1}$$

Упрощенное условие устойчивости

$$au \leqslant rac{1}{4m} \min \left(rac{\delta^{5/3}}{K_{\Phi}^2 \epsilon_0}, rac{h^2}{\Gamma}
ight)$$

Вычисления: типичное решение

Узлов по измерениям: $N_{\rm x}=10^3,\ N_{\rm t}=10^5$

Вычисления: проверка устойчивости

Условие устойчивости:

$$\tau \leqslant \frac{1}{2m} \left(\frac{K_{\Phi}^2 \epsilon_0}{\delta^{5/3}} + \frac{\Gamma}{h^2} \right)^{-1}$$

Вычисления: проверка сходимости

Здесь, согласно оценке устойчивости, $au = rac{h^2}{4m\Gamma}$

Вычисления: положения равновесия

$$(1+\delta)^2 < rac{\mathcal{K}_\Phi^2 l^2 \epsilon_0}{2\Gamma}$$
 — «сильное» напряжение

Свободная энергия

$$\Pi(t) = \int\limits_{\Omega} \pi(x,t) dx$$
 $\pi = -rac{1}{2} \epsilon [\phi] \left(
abla \Phi,
abla \Phi
ight) + \Gamma \left(rac{1 - f(\phi)}{l^2} + rac{1}{4} (
abla \phi,
abla \phi)
ight)$

- Уравнения (1), (2) выведены так, что система в ходе эволюции стремится в состояние с как можно меньшей полной свободной энергией П.
- Необходимо, чтобы указанное свойство выполнялось при моделировании.

Вычисления: свободная энергия

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- б Заключение

Постановка задачи

Исследуем распределение фазового поля вокруг проводников ($\phi=0$) различного вида. Пусть $\Phi\equiv 0$. Рассмотрим следующие краевые задачи:

- $oldsymbol{\Omega}=[0,+\infty)_{\mathsf{X}} imes I_{\mathsf{Y}} imes J_{\mathsf{Z}},\;\phi|_{\mathsf{X}=\mathsf{0}}=\mathsf{0},\;\phi o 1$ при $r=\mathsf{X} o +\infty$ плоский случай;
- ② $\overline{\Omega}=\mathbb{R}_{x} imes\mathbb{R}_{y} imes J_{z},\;\phi|_{x,y=0}=0,\;\phi\to 1$ при $r=\sqrt{x^2+y^2}\to +\infty$ цилиндрический случай;
- $oxed{3}$ $ar{\Omega}=\mathbb{R}_x imes\mathbb{R}_y imes\mathbb{R}_z$, $\phi|_{x,y,z=0}=0$, $\phi o 1$ при $r=\sqrt{x^2+y^2+z^2} o +\infty$ сферический случай.

Ищем стационарное решение $\phi=\phi(r)$.

Суть проблемы

Плоский случай

Задача Коши:

$$\phi(0) = 0;$$
 $\frac{\partial \phi}{\partial x} = \frac{2}{I} \sqrt{1 - f(\phi)}$

Цилиндрический случай

Задача поставлена некорректно и решения не имеет [4].

Вместе с тем канал пробоя – одномерный объект в трехмерном пространстве!

Обобщение модели

Обобщение модели, предложенное в работе [4]

• Уравнение электрического потенциала Ф:

$$\mathsf{div}(\epsilon[\phi]\nabla\Phi)=0$$

• Уравнение фазового поля ϕ :

$$\frac{1}{m}\frac{\partial \phi}{\partial t} = \frac{1}{2}\epsilon'(\phi)\left(\nabla\Phi, \nabla\Phi\right) + \frac{\Gamma}{l^2}f'(\phi) + \frac{1}{2}\Gamma\Delta\phi - \alpha\frac{\Gamma l^2}{4}\Delta^2\phi + \beta\Gamma l^{p-2}\operatorname{div}(\|\nabla\phi\|_2^{p-2}\nabla\phi)$$

- ullet $\Delta^2 \phi = \Delta(\Delta \phi)$ билапласиан
- $\operatorname{div}(\|\nabla\phi\|_2^{p-2}\nabla\phi) p$ -лапласиан

Везде далее p=4.

Разностная схема

На границе r=0 области моделирования у решения ϕ ожидается особенность. Идея подхода:

- ullet используем метод конечных объемов: к ячейке Ω_i отнесено среднее $\widetilde{\phi}_i$ функции ϕ ;
- в первой и второй ячейках приближаем ϕ ЛК базисных функций, одна из которых имеет тот же вид особенности, что решение ϕ ;
- ullet как и в классическом МКО, уравнения на $\widetilde{\phi}_i$ являются следствием балансовых соотношений.

Преимущества подхода:

- точно учитываются граничные условия;
- ullet точно учитывается асимптотика решения ϕ при r o +0.

Разностная схема

$$\frac{1}{m} (\widetilde{\phi}_{i}^{j+1} - \widetilde{\phi}_{i}^{j}) = \tau \frac{\Gamma}{l^{2}} f'(\widetilde{\phi}_{i}^{j}) + \frac{\tau}{dV_{i}} \Gamma(\rho_{i+1/2}^{j} S_{i+1/2} - \rho_{i-1/2}^{j} S_{i-1/2});$$

$$dV_{i} = r_{i+1/2}^{k+1} - r_{i-1/2}^{k+1}; \qquad S_{i\pm 1/2} = (k+1)r_{i\pm 1/2}^{k};$$

$$\rho_{i\pm 1/2}^{j} = \frac{1}{2} \left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} - \alpha \frac{l^{2}}{4} \left[\frac{\partial (\Delta \phi)}{\partial r} \right]_{i\pm 1/2}^{j} + \beta l^{2} \left(\left[\frac{\partial \phi}{\partial r} \right]_{i\pm 1/2}^{j} \right)^{3};$$

$$\widetilde{\Delta \phi}_{i}^{j} = \frac{1}{dV_{i}} \left(\left[\frac{\partial \phi}{\partial r} \right]_{i+1/2}^{j} S_{i+1/2} - \left[\frac{\partial \phi}{\partial r} \right]_{i-1/2}^{j} S_{i-1/2} \right)$$

Подробнее в работе [5].

Полученные результаты

Предполагаемые виды особенности решения ϕ в точке r=0

	$\alpha = 0$, $\beta = 0$	$\alpha = 0, \ \beta \neq 0$	$\alpha \neq 0$
Плоский случай	Без особенности	Без особенности	Без особенности
Цилиндрический случай	Не имеет решения	$r^{2/3}$	r ² ln r
Сферический случай	Предположительно не имеет решения	$r^{1/3}$	Предположительно не имеет решения

• Базисная функция g подбирается так, чтобы

$$\rho[\phi=g]\cdot S \to C > 0$$
 при $r \to +0$.

Полученные результаты

Цилиндрический случай, $\alpha=1$: особенность вида $r^2 \ln r$

Полученные результаты

Сферический случай, lpha=0, eta=1: особенность вида $r^{1/3}$

Содержание

- Введение
- Постановка задачи
- Теоретический анализ
- Численный анализ
- Исследование обобщения модели
- 3аключение

Заключение

Основные результаты работы.

- Проведен теоретический анализ модели.
- Построена разностная схема, дана содержательная оценка ее устойчивости.
- Исследовано обобщение исходной модели; на основе метода конечных объемов построена специальная разностная схема, учитывающая особенности решений на границе области моделирования.

Заключение

Вопросы будущих исследований.

- Насколько адекватно «классические» уравнения метода диффузной границы описывают включения высшей коразмерности?
- Каково возможное развитие моделей?

Литература

- [1] K. C. Pitike u W. Hong. "Phase-field model for dielectric breakdown in solids". *Journal of Applied Physics* (2014).
- [2] Е. В. Зипунова, А. А. Кулешов и Е. Б. Савенков. "Численное исследование модели фазового поля для описания развития канала электрического пробоя в неоднородной среде". 2024.
- [3] А. С. Пономарев, Е. В. Зипунова и Е. Б. Савенков. "Устойчивость стационарных решений в модели развития канала электрического пробоя типа «диффузной границы»". 2024.
- [4] Е. В. Зипунова и Е. Б. Савенков. "О моделях диффузной границы для описания динамики объектов высшей коразмерности". *Препринты ИПМ им. М. В. Келдыша* (2020).
- [5] А. С. Пономарев, Е. В. Зипунова и Е. Б. Савенков. "Численное исследование обобщения модели развития канала электрического пробоя типа «диффузной границы»". 2024.

Спасибо за внимание!

