Lecture 4

General Equivalent Positions

- A general position is an arbitrary (x, y) occupied by a motif
- Given (x, y), tells us which other positions are equivalent
 - e.g. for p2, (x,y) and $(\overline{x},\overline{y})$ are equivalent
- Number of equivalent positions for a given point is called its multiplicity
- Special position: position where multiplicity is not at maximum
 - e.g. multiplicity of a general element in p4 is 4, but that of (0,0) is 1

Wyckoff Symbols

- Starts from a
- Increases with multiplicity

Terminology

- Chirality: property of a chemical whose mirror reflection **cannot** be produced by any combination of rotation and translation
- Enantiomer: object that demonstrates chirality. Comes in pairs

Centre of Symmetry

- Denoted by $\overline{1}$
- Does not exist in 2D as it simplifies to a mirror transformation
 - However it is unique in 3D

Rotoinversion

- Compound Inversion: a rotation then an inversion about the centre of symmetry
- also known as improper rotation
- n-fold rotoinversion: a $2\pi/n$ rotation about the axis, then an inversion about the centre of symmetry
- Denoted as \overline{n}

Rotoreflection

- Compound Inversion: a rotation then an inversion about the centre of symmetry
- also known as improper rotation
- n-fold rotoreflection: a $2\pi/n$ rotation about an axis **normal** to the mirror plane, then a reflection about the plane
- Denoted as \tilde{n}

3-D Point Group Symbol Nomenclature

 Table 4.2
 The order of the Hermann-Mauguin symbols in point groups

Crystal system	Primary	Secondary	Tertiary
Triclinic	_	_	_
Monoclinic	[010], unique	_	_
	axis b		
	[001], unique		
	axis c		
Orthorhombic	[100]	[010]	[001]
Tetragonal	[001]	[100], [010]	$[1\bar{1}0], [110]$
Trigonal, Rhombohedral axes	[111]	$[1\bar{1}0], [01\bar{1}], [\bar{1}01]$	
Trigonal, Hexagonal axes	[001]	[100], [010], [$\bar{1}\bar{1}0$]	
Hexagonal	[001]	[100], [010], [$\bar{1}\bar{1}0$]	$[1\bar{1}0]$, $[120]$, $[\bar{2}\bar{1}0]$
Cubic	[100], [010], [001]	$[111], [1\overline{1}\overline{1}], [\overline{1}1\overline{1}], [\overline{1}\overline{1}1]$	$[1\bar{1}0]$, $[110]$, $[01\bar{1}]$, $[011]$, $[\bar{1}01]$, $[101]$

3-D Point Groups

- Primary, Secondary, Tertiary axes in order Example: mP has a symbol of $\frac{2}{m}$, as along its primary axis, there is a 2-fold rotational symmetry and a mirror plane perpendicular to it

Crystallographic Point Groups

- 7 lattice symmetries
- Allowed point group operations: $1,2,3,4,6,\overline{1},\overline{3},\overline{4},\overline{6},m$
- 33 in total