Informe Técnico del Proceso

Aprendiz: Juan Carlos Lopez Moreno

Actividad: GA2-220501096-AA2-EV01

Programa: Programación de Aplicaciones y Servicios Para la Nube

Profesor: Alvaro Esteban Betancourt Matoma

Servicio Nacional de Aprendizaje Guadalupe, Santander

Desarrollo de Los Ejercicios

 Diseñe un algoritmo en pseudocódigo y diagrama de flujo que lea tres números y, si el primero es positivo calcule el producto de los otros dos, y en otro caso, calcule la suma y muestre el resultado en pantalla.

Escribir 'La suma del numero 1 mas el numero 3 coincide con el valor del numero 2'

SiNo

Si numero3=(numero1+numero2) Entonces

Escribir 'La suma del numero 1 mas el numero 2

coincide con el valor del numero 3'

SiNo

Escribir 'Ninguno de los números coinciden con la suma de al menos 2'

FinSi

FinSi

FinSi

Diagrama

3. Diseñe un algoritmo que imprima y sume la serie de números múltiplos de 3 hasta 100, es decir, 3, 6, 9, 12, ... 99 (usar ciclos). Realizar la traza para las primeras cinco iteraciones.

Algoritmo series_de_3

Definir resultado Como Entero

resultado <- 0

Repetir

resultado <- resultado + 3

Escribir resultado

Hasta Que resultado = 99

4. Diseñe un algoritmo que presenta en pantalla todas las potencias enteras de 2 que sean menores o iguales que 100 (usar ciclos).

```
Algoritmo potencias_de_2

Definir potencia Como Entero

potencia <- 1

Repetir

Escribir potencia
```

potencia <- potencia * 2

FinAlgoritmo

Diagrama

 Diseñe un algoritmo que sume los números pares comprendidos entre 50 y 200, inclusive.

Algoritmo numeros pares rango

Para i <- 50 Hasta 200 Hacer

Si (i % 2) = 0 Entonces

Escribir i

Fin Si

Fin Para

FinAlgoritmo

6. Una temperatura Celsius (centígrados) puede ser convertida a una temperatura equivalente Fahrenheit, de acuerdo con la siguiente fórmula:

$$F = \left(\frac{9}{5}\right)C + 32$$

Diseñe un algoritmo que lea la temperatura en grados Celsius y la escriba en Fahrenheit.

Algoritmo celcius_to_fahrenheit

Definir fahrenheit, celsius Como Entero

Escribir "Ingrese los grados en celsius C°"

Leer celsius

Escribir "Los grados en Fahrenheit son: " fahrenheit FinAlgoritmo

Diagrama

7. Diseñe un algoritmo que lea la hora de un día de notación de 24 horas y la respuesta en notación de 12 horas, por ejemplo, si la entrada es 13, la salida será 1 p.m.

Algoritmo format_24_to_12

Definir hora_24, hora_12 Como Entero

Definir sufijo Como Caracter

Escribir "Ingresa la hora correspondiente en formato 24 (0 - 24)"

Leer hora 24

Si hora_24 < 0 o hora_24 > 24 Entonces

Escribir "Fuera del rango por favor digite el número correctamente"

SiNo

Si hora $_24 = 0$ entonces

Sino

Si hora_24 < 12 Entonces

Sino

Si hora $_24 = 12$ entonces

SiNo

FinSi

FinSi

FinSi

Escribir "La hora es ", hora_12, " " sufijo

FinSi

FinAlgoritmo

Diagrama

8. Diseñe un algoritmo en pseudocódigo para crear un vector de cinco elementos de cadenas de caracteres, inicializa el vector con datos leídos por el teclado, copie los

```
elementos del vector en otro vector, pero en orden inverso y, muéstrelo por la
pantalla.
Algoritmo Invertir Vector Cadenas
  // Declaración de variables
  Definir vectorOriginal, vectorInvertido Como Cadena
  Definir i Como Entero
  // Dimensionar los vectores para 5 elementos
  Dimension vectorOriginal[5]
  Dimension vectorInvertido[5]
  // Inicialización: Leer elementos del vector original
  Escribir "=== INGRESO DE DATOS ===="
  Para i <- 1 Hasta 5 Hacer
    Escribir "Ingrese la cadena ", i, ": "
    Leer vectorOriginal[i]
  FinPara
  // Proceso: Copiar elementos en orden inverso
  Para i <- 1 Hasta 5 Hacer
    vectorInvertido[i] <- vectorOriginal[6-i]
  FinPara
```

// Salida: Mostrar vector original

```
Escribir ""

Escribir "=== VECTOR ORIGINAL ==="

Para i <- 1 Hasta 5 Hacer

Escribir "Posición ", i, ": ", vectorOriginal[i]

FinPara

// Salida: Mostrar vector invertido

Escribir ""

Escribir "=== VECTOR INVERTIDO ==="

Para i <- 1 Hasta 5 Hacer

Escribir "Posición ", i, ": ", vectorInvertido[i]

FinPara
```

Diagrama de Flujo

9. Diseñe un algoritmo que lea por el teclado las cinco notas obtenidas por un alumno (comprendidas entre 0 y 10). A continuación, debe mostrar todas las notas, la nota promedio, la nota más alta que ha sacado y la menor.

Algoritmo notas alumno

```
// Definir las variables
```

Definir i, notas, suma, promedio, notaAlta, notaBaja Como Real

// Dimensionamos en un array las notas

Definir cantidad como entero

cantidad <- 5

Dimensionar notas[cantidad]

// Aplicamos un bucle for para ingresar las notas

Para i <- 1 Hasta 5 Hacer

Escribir "Ingrese la nota"

Leer notas[i]

FinPara

// Aplicacmos otro bucle para sumar las notas

Para i <- 1 hasta 5 hacer

suma <- suma + notas[i]

FinPara

```
// Calculo del promedio
promedio <- suma / cantidad
Escribir "El promedio es: " promedio
// Calculo de la nota mas alta
// Inicializar variables
notaBaja <- 5.1
notaAlta <- 0
Para i <- 1 hasta 5 Hacer
       notaActual <- notas[i]
       Si notaActual > notaAlta Entonces
               notaAlta <- notaActual
       FinSi
       Si notaActual < notaBaja Entonces
               notaBaja <- notaActual
       FinSi
FinPara
Escribir "Esta es la nota mas alta: ", notaAlta
Escribir "Esta es la nota mas baja: ", notaBaja
```

Diagrama

10. Diseñe el algoritmo correspondiente a un programa:

Cree una tabla bidimensional de longitud 3x4 y nómbrela "matriz".

Cargue la tabla con valores numéricos enteros.

Sume todos los elementos de cada fila, visualizando los resultados en la pantalla.

Sume todos los elementos de cada columna y muestre los resultados en la pantalla.