Vocabulaire Opérations sur les ensembles Parties d'un ensemble Produit Cartésien Fini et Infini

Mathématiques Discrètes

Chapitre 2 Ensembles

Leo Donati Noëlle Stolfi

Université de Nice Sophia Antipolis IUT Nice Côte d'Azur DUT Informatique

2015-2016

Ensembles Sous-ensembles Ensemble vide Sous-ensemble et prédicat Ensembles usuels

Chapitre 2 : Ensembles

- 1 Vocabulaire
 - Ensembles
 - Sous-ensembles
 - Ensemble vide
 - Sous-ensemble et prédicat
 - Ensembles usuels
 - 2 Opérations sur les

ENSEMBLES

- Union
- Intersection
- Complémentaire
- Différence
- Propriétés des opérations

- 3 Parties d'un ensemble
- 4 Produit Cartésien
 - Couples
 - Produit Cartésien
 - Plan Cartésien
- 5 FINI ET INFINI
 - Infini dénombrable
 - Infini non dénombrable

Ensembles
Sous-ensembles
Ensemble vide
Sous-ensemble et prédicat
Ensembles usuels

Ensembles

DÉFINITION

Un ensemble est une collection d'objets. Un élément est un objet appartenant à l'ensemble.

EXEMPLE ET NOTATION

 $A = \{a, b, c, d, e\}$ signifie que l'ensemble A est constitué des éléments a,b,c,d,e sans ordre. Alors :

- a ∈ A signifie que a est un élément de A; et se lit a appartient à A;
- $f \notin A$ signifie que f n'appartient pas à A.

Ensembles
Sous—ensembles
Ensemble vide
Sous-ensemble et prédicat

EGALITÉ ENTRE ENSEMBLES

REMARQUE

Un ensemble est uniquement défini par les éléments qui le composent.

Ce qui fait que

DÉFINITION

Deux ensembles sont égaux si et seulement si ils ont les mêmes éléments.

$$A = B \Leftrightarrow ((x \in A \Rightarrow x \in B) \text{ et } (x \in B \Rightarrow x \in A))$$

Ensembles
Sous-ensembles
Ensemble vide
Sous-ensemble et prédicat
Ensembles usuels

CARDINALITÉ D'UN ENSEMBLE

DÉFINITION

Si un ensemble A a un nombre fini d'éléments, alors on appelle cardinalité de A son nombre d'éléments. Noté $\operatorname{card}(A)$.

EXEMPLES

- Un singleton est un ensemble qui a un seul élément.
- $card({a,b,c,d,e}) = 5$

Sous-ensembles Ensemble vide Sous-ensemble et prédicat

Sous-ensemble

DÉFINITION

Soient A et B deux ensembles. Si chaque élément de A appartient aussi à B, on dit que A est un sous-ensemble de B. On note : $A \subseteq B$ (A est contenu dans B), ou encore $B \supseteq A$ (B contient A).

EXEMPLE

Soit $E = \{1, 2, 3\}$ et $F = \{1, 2, 3, 4, 5\}$. On a bien $E \subseteq F$. Mais pas $F \subseteq E$, bien que l'on puisse écrire $F \supset E$.

REMARQUE

On peut donc aussi dire que deux ensembles sont égaux si chacun est un sous-ensemble de l'autre.

$$A = B \Leftrightarrow (A \subseteq B \text{ et } B \subseteq A)$$

M1201-2

Ensembles
Sous-ensembles
Ensemble vide
Sous-ensemble et prédicat
Ensembles usuels

Ensemble vide

DÉFINITION

L'ensemble vide est l'ensemble ne contenant aucun élément.

Notation : \emptyset

REMARQUES:

- $card(\emptyset) = 0$
- Tout ensemble a pour sous-ensemble l'ensemble vide
- De même tout ensemble est un sous-ensemble de lui-même

Ensemble vide Sous-ensemble et prédicat

Sous-ensemble et Prédicat

Sous ensemble défini par un prédicat

Si E est un ensemble et P(x) est un prédicat dont la variable x peut prendre des valeurs dans l'ensemble E alors on peut définir un sous-ensemble

$$E_P = \{x \in E \mid P(x) \text{ vrai } \}$$

qui contient toutes les façons d'instancier x dans E en obtenant une proposition vraie.

PROPOSITION

- $\forall x \in E \ P(x) \sim E_P = E$
- $\exists x \in E \ P(x) \sim E_P \neq \emptyset$

Ensembles
Sous-ensembles
Ensemble vide
Sous-ensemble et prédicat
Ensembles usuels

Ensembles de nombres

Ensembles fondamentaux

- \mathbb{N} est l'ensemble des entiers naturels; Quand on note \mathbb{N}^* , cela signifie que l'on enlève 0;
- \bullet \mathbb{Z} est l'ensemble des entiers relatifs :
- $\mathbb{Q} = \{ \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}^* \}$ est l'ensemble des rationnels;
- R est l'ensemble des réels.
- C est l'ensemble des nombres complexes.
- On a $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Ensembles
Sous-ensembles
Ensemble vide
Sous-ensemble et prédicat
Ensembles usuels

INTERVALLES

INTERVALLES DE LA DROITE RÉELLE

Soient a et b deux réels avec a < b ; les intervalles sont un type particulier de sous–ensembles de $\mathbb R$

- $[a,b] = \{x \in \mathbb{R}, \ a \le x \le b\}$ intervalle fermé à droite et à gauche.
-]a, b[= { $x \in \mathbb{R}, \ a < x < b$ } intervalle ouvert à droite et à gauche
- $]a,b] = \{x \in \mathbb{R}, \ a < x \le b\}$ intervalle ouvert à gauche et fermé à droite
- $[a, +\infty[=\{x \in \mathbb{R}, x \ge a\}]$ demi-droite fermée à gauche,

Chapitre 2 : Ensembles

- VOCABULAIRE
 - Ensembles
 - Sous—ensembles
 - Ensemble vide
 - Sous-ensemble et prédicat
 - Ensembles usuels
- 2 OPÉRATIONS SUR LES ENSEMBLES
 - Union
 - Intersection
 - Complémentaire
 - Différence
 - Propriétés des opérations

- 3 Parties d'un ensemble
- 4 Produit Cartésien
 - Couples
 - Produit Cartésien
 - Plan Cartésien
- 5 Fini et Infini
 - Infini dénombrable
 - Infini non dénombrable

UNION

DÉFINITION

Soient A et B deux sous-ensembles d'un ensemble E.

L'union de A et B, noté $A \cup B$ est le sous—ensemble de E constitué par tous les éléments qui appartiennent à A ou à B.

$$A \cup B = \{x \in E \text{ tel que } x \in A \text{ ou } x \in B\}$$

EXEMPLE D'UNION

EXEMPLE

Prenons
$$A = \{a, b, c, d, e\}$$
 et $B = \{d, f, g\}$, alors $A \cup B = \{a, b, c, d, e, f, g\}$.

Remarque

On a toujours $A \subset A \cup B$

INTERSECTION

DÉFINITION

Soient A et B deux sous-ensembles d'un ensemble E.

L'intersection de A et B, noté $A \cap B$ est le sous—ensemble de E constitué par tous les éléments qui appartiennent à A ou à B.

$$A \cap B = \{x \in E \text{ tel que } x \in A \text{ et } x \in B\}$$

M1201-2

EXEMPLE D'INTERSECTION

EXEMPLE

Prenons $A = \{a, b, c, d, e\}$ et $B = \{d, f, g\}$, alors $A \cap B = \{d\}$.

Remarque

On a toujours $A \cap B \subset A$

Complémentaire

DÉFINITION

Soient A un sous—ensemble d'un ensemble E. Le complémentaire de A dans E, noté $\mathbb{C}_E A$ (ou $\mathbb{C} A$ ou \overline{A}) est le sous—ensemble de E constitué par tous les éléments qui n'appartiennent pas à A.

$$C_E A = \{x \in E \text{ tel que } x \notin A\}$$

Donati & Stolfi

Exemple de complémentaire

EXEMPLE

- Si $E=\mathbb{R}$ alors $\mathbb{C}_{\mathbb{R}}([0\ ;\ 1])=]-\infty\ ;0[\cup]1;+\infty[$
- Si $A = \{a, b, c, d, e\}$ et $D = \{a, c, e\}$ alors $C_A D = \{b, d\}$.

Remarque

On a toujours que
$$A \cap C_E A = \emptyset$$
 et $A \cup C_E A = E$

DIFFÉRENCE

DÉFINITION

Soient A et B deux sous—ensembles d'un ensemble E. La différence de A et B, notée $A \setminus B$ est le sous—ensemble de E constitué par tous les éléments qui appartiennent à A mais pas à B.

$$A \setminus B = \{x \in E \text{ tel que } x \in A \text{ et } x \notin B\}$$

Exemple de différence

EXEMPLE

Prenons $A = \{a, b, c, d, e\}$ et $B = \{d, f, g\}$, alors $A \setminus B = \{a, b, c, e\}$.

DÉFINITION

La différence symétrique de A et de B, notée $A\Delta B$ est définie par :

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Propriétés de Union et Intersection

Propriétés

Soient A,B,C trois sous–ensembles de *E*.

- Commutativité : $A \cup B = B \cup A$ et $A \cap B = B \cap A$,
- Associativité : $A \cup (B \cup C) = (A \cup B) \cup C$ et $A \cap (B \cap C) = (A \cap B) \cap C$,
- Distributivité : $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ et $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- $A \cup \emptyset = A$ et $A \cap \emptyset = \emptyset$,
- $A \cup E = E$ et $A \cap E = A$,
- $A \cup A = A$ et $A \cap A = A$.

Lois de De Morgan

PROPRIÉTÉS

Soient A, B deux sous-ensembles de E.

•
$$C(A \cup B) = CA \cap CB$$

•
$$C(A \cap B) = CA \cup CB$$

Propriétés de Différence et complémentaire

Propriétés

Soient A,B deux sous-ensembles de E:

•
$$C(CA) = A$$

•
$$C_E A = E \setminus A$$

•
$$C_F\emptyset = E$$

•
$$C_E E = \emptyset$$

•
$$A \setminus B = A \cap CB$$

•
$$C(A \setminus B) = CA \cup B$$

•
$$A \subset B \Rightarrow CB \subset CA$$

Chapitre 2 : Ensembles

- VOCABULAIRE
 - Ensembles
 - Sous—ensembles
 - Ensemble vide
 - Sous-ensemble et prédicat
 - Ensembles usuels
- ENSEMBLES
 - Union
 - Intersection
 - Complémentaire
 - Différence
 - Propriétés des opérations

- 3 Parties d'un ensemble
- 4 Produit Cartésien
 - Couples
 - Produit Cartésien
 - Plan Cartésien
- 5 Fini et Infini
 - Infini dénombrable
 - Infini non dénombrable

PARTIES D'UN ENSEMBLE

DÉFINITION

Soit E un ensemble. L'ensemble des parties de E, que l'on note $\mathcal{P}(E)$ est l'ensemble de tous les sous—ensembles de E.

EXEMPLE

Soit $E = \{a, b, c\}$ alors

$$\mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

THÉORÈME

Si E est fini de cardinal n alors $card(\mathcal{P}(E)) = 2^n$.

Chapitre 2 : Ensembles

- 1 Vocabulairi
 - Ensembles
 - Sous—ensembles
 - Ensemble vide
 - Sous-ensemble et prédicat
 - Ensembles usuels
 - ENSEMBLES
 - Union
 - Intersection
 - Complémentaire
 - Différence
 - Propriétés des opérations

- 3 Parties d'un ensemble
- PRODUIT CARTÉSIEN
 - Couples
 - Produit Cartésien
 - Plan Cartésien
- 5 Fini et Infini
 - Infini dénombrable
 - Infini non dénombrable

COUPLE

COUPLE

Un couple est une liste ordonnée de deux éléments.

À ne pas confondre avec un ensemble à deux éléments $\{a,b\}$.

$$(1,2) \neq (2,1)$$
 alors que $\{1,2\} = \{2,1\}$

Produit Cartésien

DÉFINITION

Soient A et B deux ensembles. Le produit cartésien de A et B, noté $A \times B$, est constitué de tous les couples composés d'un élément de A et d'un élément de B :

$$A \times B = \{(a,b), a \in A, b \in B\}$$

EXEMPLE

Prenons $A = \{1, 2, 3\}$ et $B = \{a, b\}$. Alors

$$A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

et

$$B^2 = B \times B = \{(a, a), (a, b), (b, a), (b, b)\}\$$

n-UPLETS

GÉNÉRALISATION

On peut étendre le produit cartésien à un nombre fini d'ensembles A_i , $i=1\ldots n$:

$$A_1 \times A_2 \times A_3$$

ou encore

$$A_1 \times A_2 \times \cdots \times A_n$$

On parle alors des triplets, des quadruplets, des n-uplets.

CARDINALITÉ

Théorème

Dans le cas où A et B sont des ensembles finis, le produit cartésien est aussi un ensemble fini et on a :

$$card(A \times B) = card(A) \times card(B)$$

LE PLAN CARTÉSIEN

PLAN CARTÉSIEN

Le plan cartésien est un exemple de produit cartésien

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$

et sert à représenter tous les points du plan comme des couples de réels (x,y); x est l'abscisse et y est l'ordonnée.

EXEMPLE

Dans le plan cartésien \mathbb{R}^2 , le produit cartésien de deux intervalles $[1,2] \times [3,4]$ est représenté par la surface d'un carré : tous les points qui ont une abscisse entre 1 et 2 et une ordonnée entre 3 et 4.

Chapitre 2 : Ensembles

- 1 Vocabulaire
 - Ensembles
 - Sous—ensembles
 - Ensemble vide
 - Sous-ensemble et prédicat
 - Ensembles usuels
- 2 Opérations sur les ensembles
 - Union
 - Intersection
 - Complémentaire
 - Différence
 - Propriétés des opérations

- PARTIES D'UN ENSEMBLE
- 1 Produit Cartésien
 - Couples
 - Produit Cartésien
 - Plan Cartésien
- 5 Fini et Infini
 - Infini dénombrable
 - Infini non dénombrable

DÉNOMBRABILITÉ

REMARQUE

Lorsqu'on peut dénombrer les éléments d'un ensemble, c'est à dire qu'on peut les numéroter tous en commençant par 1, alors on va dire qu'un ensemble est dénombrable.

DÉFINITION

Plus précisément, un ensemble E est dénombrable si :

- soit il est fini (il a un nombre fini d'éléments);
- soit on peut trouver une bijection entre E et l'ensemble des entiers naturels \mathbb{N} . On parle alors d'infini dénombrable.

ALEPH ZÉRO

Exemples d'infini dénombrable

Les ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} sont dénombrables.

En général, si A et B sont dénombrables, alors aussi $A \times B$

NOTATION

On dénote par le symbole \aleph_0 la cardinalité de $\mathbb N$ et de tous les ensembles infinis dénombrables.

REMARQUE

 \aleph_0 n'est pas un nombre mais une "mesure" de l'infini des entiers.

Infini non dénombrable

REMARQUE

Il existe des ensembles infinis qui ne sont pas dénombrables.

THÉORÈME

- R est infini non dénombrable.
- Tout intervalle de $\mathbb R$ non vide et non réduit à un point est infini non dénombrable.