## CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

#### **Semester 1 Examinations 2014/15**

## **Module Title: Data Science and Analytics**

Module Code: DATA8001

**School:** Science and Informatics

**Programme Title:** Bachelor of Business (Hons) in Information Systems

Bachelor of Science (Hons) in Software Development &

Computer Networking

Bachelor of Science (Hons) in IT Management

Bachelor of Science (Hons) in Software Development

Programme Code: BBISY\_8\_Y1

KDNET\_8\_Y1 KITMN\_8\_Y1 KSDEV\_8\_Y1

**External Examiner(s):** Prof. Eamonn Murphy

**Internal Examiner(s):** Mr Aengus Daly

**Instructions:** Answer question one and any two other questions

**Duration:** 2 hours

Sitting: Winter 2014

#### **Requirements for this examination:**

**Note to Candidates:** Please check the Programme Title and the Module Title to ensure that you are attempting the correct examination.

If in doubt please contact an Invigilator.

# Q.1 Compulsory Question - Total 40 Marks – Answer any 4 parts.

| a) | What is exploratory data analysis (EDA) and why is important in data analytics?                                                                                                                                                    | 10 Marks |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| b) | In data mining explain what is meant by anomaly detection/deviation detection and detail some methods used.                                                                                                                        | 10 Marks |
| c) | What is the difference between supervised and unsupervised learning in data mining? Use at least 2 different algorithms to illustrate your answer.                                                                                 | 10 Marks |
| d) | Extract-Transform-Load (ETL) is used in data warehousing. Explain what this is and detail 2 challenges that are often encountered in the process.                                                                                  | 10 Marks |
| e) | Explain what is meant by the process Crisp-DM in data mining. Outline the <b>model building step</b> using 2 different models to illustrate to your answer.                                                                        | 10 Marks |
| f) | Mr Doo Beus runs a card game. One card is chosen from a pack of 52. You win €5 if it is a diamond and €20 if it is a queen or king. What is the minimum amount Mr Doo Beus should charge so that he will not expect to lose money? | 10 Marks |

[Total 40 Marks]

## Answer any 2 of the remaining 3 questions (all questions carry equal marks)

#### Q.2 Total 30 Marks

- a) Outline the main components of a datawarehouse. You may use a diagram here to illustrate your answer.
- b) Explain OLAP, in relation to datawarehousing, giving 2 advantages and 2 disadvantages.
- c) In datawarehousing explain how security is managed. Outline some of the main considerations in this regard when it comes to managing security within an organisation.

### Q.3 Total 30 Marks

- a) Explain what is meant by Business Performance Management and what is meant by the culture of an organisation. Outline a number of ways that the culture of an organisation can be changed to improve the use of data analytics in that organisation.
- b) Write a note on big data outlining its characteristics, 5 Marks

and

Outline what is Hadoop and give 4 advantages and 3 disadvantages with this technology.

#### Q.4 Total 30 Marks

- a) Detail the main characteristics of NoSQL databases and some of the 12 Marks main differences between them and relational database systems.
- b) List 6 of the 8 data protection rules as given by the Irish Data

  6 Marks

  Protection Commissioner.
- (c) A credit card company, *Spend2bHappy*, analyses fraud and has found that a certain person's transactions amount are approximately normally distributed and so the company uses a model of a normal distribution with a mean of €100 with a standard deviation of €22 to detect fraud.

Using the normal distribution table at the back of the exam paper to find

(i) The probability that a transaction of greater than €200 occurs.

4 Marks

(ii) Spend2bHappy are suspicious that a number of their credit details have been stolen and notices that there are many cards displaying unusually **low** transaction amounts. The company decides that any transaction amount **less than 90%** of the transactions is suspicious; what is this cut off transaction amount for the above person?

8 Marks

## **Standard Normal Cumulative Probability Table**



Cumulative probabilities for POSITIVE z-values are shown in the following table:

| Z          | 0.00    | 0.01   | 0.02             | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|------------|---------|--------|------------------|--------|--------|--------|--------|--------|--------|--------|
| 0.0        | 0.5000  | 0.5040 | 0.5080           | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1        | 0.5398  | 0.5438 | 0.5478           | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2        | 0.5793  | 0.5832 | 0.5871           | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3        | 0.6179  | 0.6217 | 0.6255           | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4        | 0.6554  | 0.6591 | 0.6628           | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
|            |         |        |                  |        |        |        |        |        |        |        |
| 0.5        | 0.6915  | 0.6950 | 0.6985           | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6        | 0.7257  | 0.7291 | 0.7324           | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7        | 0.7580  | 0.7611 | 0.7642           | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 8.0        | 0.7881  | 0.7910 | 0.7939           | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9        | 0.8159  | 0.8186 | 0.8212           | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0        | 0.8413  | 0.8438 | 0.8461           | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1        | 0.8643  | 0.8665 | 0.8686           | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2        | 0.8849  | 0.8869 | 0.8888           | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3        | 0.9032  | 0.9049 | 0.9066           | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4        | 0.9192  | 0.9207 | 0.9222           | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
|            | 0.0 102 | 0.0201 | O.OLLL           | 0.0200 | 0.0201 | 0.0200 | 0.0270 | 0.0202 | 0.0000 | 0.0010 |
| 1.5        | 0.9332  | 0.9345 | 0.9357           | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6        | 0.9452  | 0.9463 | 0.9474           | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7        | 0.9554  | 0.9564 | 0.9573           | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8        | 0.9641  | 0.9649 | 0.9656           | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9        | 0.9713  | 0.9719 | 0.9726           | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
|            | 0.0770  | 0.0770 | 0.0700           | 0.0700 | 0.0700 | 0.0700 | 0.0000 | 0.0000 | 0.0040 | 0.0047 |
| 2.0        | 0.9772  | 0.9778 | 0.9783           | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1        | 0.9821  | 0.9826 | 0.9830           | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2<br>2.3 | 0.9861  | 0.9864 | 0.9868<br>0.9898 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
|            | 0.9893  | 0.9896 |                  | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4        | 0.9918  | 0.9920 | 0.9922           | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5        | 0.9938  | 0.9940 | 0.9941           | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6        | 0.9953  | 0.9955 | 0.9956           | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7        | 0.9965  | 0.9966 | 0.9967           | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8        | 0.9974  | 0.9975 | 0.9976           | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9        | 0.9981  | 0.9982 | 0.9982           | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
|            |         |        |                  |        |        |        |        |        |        |        |
| 3.0        | 0.9987  | 0.9987 | 0.9987           | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1        | 0.9990  | 0.9991 | 0.9991           | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2        | 0.9993  | 0.9993 | 0.9994           | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3        | 0.9995  | 0.9995 | 0.9995           | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4        | 0.9997  | 0.9997 | 0.9997           | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |