Noise Analysis in the Majorana Dark Matter Detector

Greg Dooley

Princeton University

INT REU at the University of Washington, 2010

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

- Background
 - Dark Matter
 - Germanium Detectors
- - Overview
 - Find Optimal Filter
- - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

Dark Matter Evidence

- Galactic Rotation Curves
- Gravitational Lensing
- Matter distribution in early universe

Dark Matter Theories

Theories:

- WIMPS Weakly Interacting Massive Particles
- Axions

How to make detections?

- Nuclear recoil
- Annual modulations from dark matter halo
- Possible DAMA/LIBRE results

Goals of Majorana

- Search for WIMPs in the 1-10 GeV/c² mass range
- Resolve energies of < 1KeV
- Achieve ultra low background

- Background
 - Dark Matter
 - Germanium Detectors
- - Overview
 - Find Optimal Filter
- - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

Germanium Detector

High Purity P-type Point Contact (PPC) ⁷⁶Ge detector:

- Reverse biased semi-conductor
- Atomic interactions kick electrons into conduction band
- Charge collected on capacitor
- Signal varies linearly with incident energy
- Reduce leakage current by LN cooling

Simplified diagram of Ge detector

Signal Analysis

Measure pulse height (energy) with a trapezoidal filter

Germanium Detectors

CoGeNT Detector in the Majorana Lab

Overview

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

Find peaking time, P, that minimizes electronic noise

Noise measured by FWHM of energy peak

Objective 2

Understand the components of the noise power spectrum

Three components:

- Parallel: $V(f)^2 = \frac{k_1}{1 + k_2 f^2}$
- Series: $V(f)^2 = k_3$
- 1/f: $V(f)^2 = \frac{k_4}{f}$

- - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

$$H(f) = \frac{2}{\pi f P} sin(\pi f P) sin(\pi f (P + G))$$

Find Optimal Filter

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

- Obtain raw noise pulses
- Take fourier transform to get power spectrum
- Apply trapezoidal filter to the power spectrum
 - Compute transfer function
- Integrate over spectrum to get RMS, FWHM
- Repeat for various peaking times

FWHM² vs Peaking Time

- - Dark Matter
 - Germanium Detectors
- - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

FWHM² Curve

FWHM^2 vs Peak Shaping Time

$$FWHM^2 = aP + b/P + c$$

FWHM² vs Peaking Time

FWHM² Curve

- Tried to reproduce results by measuring the FWHM directly from an energy spectrum
- More work needs to be done

Noise Components

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

Components of Power Spectrum

Two problems:

- Fit to 1/f noise is highly variable.
- Parallel noise requires two constants. Fit to FWHM vs Peak Time only determines one.

Noise Components

Direct fit to power spectrum does no better.

Simulate Noise

- Background
 - Dark Matter
 - Germanium Detectors
- Noise Analysis
 - Overview
 - Find Optimal Filter
- Results
 - FWHM² vs Peaking Time
 - Noise Components
 - Simulate Noise

Simulate Noise

Simulated Noise

Actual noise

Simulated noise

Summary

- Optimal peak time can be determined from raw electronic noise.
- Parallel, series and 1/f noise components can be estimated with some work.
- Overall goal: Minimize noise to increase sensitivity to low energy DM interactions.
- Future Work
 - Calibrate of noise in eV
 - Collect accurate data on FWHM vs peak time directly
 - Understand features of power spectrum better

Acknowledgments:

- Mike Miller
- Mike Marino
- Jonathan Diaz Leon
- Tim Van Wechel
- Entire EWI group
- INT REU

Extra Slides

$$F(f(t)) = O(t)$$

$$f(t) \star I(t) = O(t)$$

$$\hat{f}(t) \star \hat{I}(t) = \hat{O}(t)$$

$$\hat{f}(t) \cdot \hat{I}(t) = \hat{O}(t)$$

$$H(f) = \frac{2}{\pi f P} sin(\pi f P) sin(\pi f (P + G))$$

FWHM² Curve

FWHM^2 vs Peak Shaping Time

Components of Power Spectrum

Two problems still remain:

- Fit to 1/f noise is highly variable.
- Parallel noise requires two constants. Fit to FWHM vs Peak Time only determines one.

Possibly very little 1/f noise?

Independence of Real and Imaginary Fourier Components

