Федеральное агентство по образованию Центральный оргкомитет Всероссийских олимпиад

XXXV Всероссийская олимпиада школьников по физике

Заключительный этап

Экспериментальный тур

Методическое пособие

Саратов, 2000/2001 уч.г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Министерства образования и науки Российской Федерации Телефоны: (095) 408-80-77, 408-86-95.

E-mail: fizolimp@mail.ru (с припиской antispam к теме письма)

Авторы задач

9 класс 10 класс 11 класс 1. 1. Вениг С. 2. 2. Мельников Л.

Общая редакция — Слободянин В.

Техническая редакция — Чудновский А.

Оформление и верстка — Чудновский А.

При подготовке оригинал-макета использовалась издательская система \LaTeX 2ε . © Авторский коллектив Подписано в печать 14 марта 2005 г. в 22:41.

141700, Московская область, г.Долгопрудный Московский физико-технический институт

9 класс

Задача 1. Скользящие спички

Определите коэффициент трения скольжения спичечной головки о шероховатую (покрытую серой) поверхность спичечного коробка.

Оборидование. Коробка со спичками, динамометр, грузы, дист бумаги, динейка, нить.

Задача 2. Световод (1)

Деталь волоконно-оптического соединителя представляет собой стеклянный пилиндр (показатель преломления стекла n = 1.51), в котором имеется два круглых цилиндрических канала. Торцы детали заклеены. Определить расстояние между каналами.

Оборудование. Деталь соединителя, миллиметровая бумага, лупа.

10 класс

Задача 1. Поверхностное натяжение

Определите коэффициент поверхностного натяжения жидкости (плотность жидкости $\rho = 1082 \text{ кг/м}^3$).

Оборудование. Каппиляр, емкость с жидкостью, шприц, миллиметровая бумага.

Задача 2.

11 класс

Задача 1. «Черный ящик»

Электрическая схема в черном ящике содержит три одинаковых резистора и два диода. Определите схему соединения элементов в черном ящике и значение сопротивления резисторов.

Примечание. Батарейку можно подключать только к выводам 1 и 2 черного ящика; к остальным выводам ее подключать запрещено.

Оборидование. «Черный ящик» с четырымя выводами, тестер, батарейка, соединительные провода.

Задача 2. Световод (2)

Оптический световод состоит из цилиндрической сердцевины и оболочки, сделанных из стекол с различными показателями преломления, лежащими в диапазоне 1,5—1,7. Показатель преломления одного из стекол 1,512. Определите показатель преломления другого стекла.

Оборудование. Световод, лазер, миллиметровая бумага.

ХХХУ Всероссийская олимпиада школьников по физике

Возможные решения 9 класс

Задача 1. Скользящие спички

Первый способ решения. Вынуть спички из коробка и вложить в коробку грузы. С помощью динамометра определить вес коробки с грузом. Далее уложить спички так, чтобы их головки составляли дорожку (можно, например, втыкать их в бумагу), а затем положить на эту дорожку коробку с грузами. С помощью динамометра определить силу, при которой коробка начинает скользить по спичечной дорожке. Из отношения измеренных сил определяется коэффициент трения.

Второй способ решения. Положить на выложенную дорожку из спичек коробок и попытаться его опрокинуть, толкая острием ручки или линейкой в широкую вертикальную стенку. Найти расстояние a от нижней грани коробка до точки, при нажатии на которую коробок от скольжения переходит к опрокидыванию, и определить коэффициент трения из соотношения $\mu = b/2a$, где *b* — ширина спичечного коробка.

Третий способ решения. Связать аккуратно две спички так, чтобы их головки были на противоположенных концах. Положить на шероховатую поверхность спичечного коробка и. наклоняя коробок, определить угол скатывания. В этом случае $\mu = \operatorname{tg} \alpha$.

Примечание. В работе требовалось определить именно коэффициент трения скольжения, хотя этими же методами можно определить и коэффициент трения покоя.

Задача 2. Световод (1)

Световод можно рассматривать как цилиндрическую линзу. Нарисуем на миллиметровке клин с углом $\alpha \approx 0.1$ (прямоугольный треугольник с катетами 5 мм и 50 мм). При помощи лупы можно определить размеры изображений канавок. Расстояние между краями канавок L== 2.5 мм. диаметр изображения канавки d = 1.1 мм. значит расстояние между канавками a' = L - 2d = 0.3 мм. Изображения канавок находятся почти в центре световода. Увеличение световода равно показателю преломления стекла n=1.5. Следовательно, расстояние между канавками a=a'/n=0.2 мм. При этом погрешность велика, так как a' определяется как разность больших (по сравнению с ней) величин.

10 класс

Задача 1. Поверхностное натяжение

Первый метод, который приходит в голову при взгляде на список оборудования, — это метод измерения поверхностного натяжения по поднятию жидкости в капилляре. Пусть h — высота поднятия жидкости в каппиляре, r — радиус капилляра, тогда поверхностное натя-

Рис. 1

жение определится по очевидной формуле: $\sigma = \rho qhr/(2\cos\theta)$, где θ — краевой угол. Для случая полного смачивания стенок капилляра жидкостью $\cos \theta = 1$ Тогда, проводя серию измерений высоты поднятия h найдем σ . Но мы видим, что у нас есть еще одна неизвестная величина — внутренний радиус капилляра r. Для его нахождения с наибольшей точностью мы должны провести следующий опыт. Заполним капилляр данной нам жидкостью после чего все

содержимое капилляра откачаем из него шприцом. Повторим эту процедуру n раз. Число n выбираем из тех соображений чтобы объем жидкости, накопившейся в шприце, был достаточно велик для его точного определения. В результате радиус капилляра найдется из выражения: $\pi r^2 l = V/n$, где l-длина капилляра. Откуда $r = \sqrt{V/(\pi n l)}$. На данном оборудовании можно было измерить радиус r капилляра с точностью 3%, причем сам радиус был равен r=0.9 мм. Высота поднятия h оказалась 9,8 мм. Таким образом $\sigma=0.047\pm0.003$ Н/м, при условии полного смачивания поверхности капилляра жидкостью. Однако выданная жидкость не обладала свойством полного смачивания и поэтому для правильного определения коэффициента поверхностного натяжения этой жидкости следовало определить краевой угол θ . Как оказалось, с учетом краевого угла $\sigma=0.066\pm0.004$ Н/м. К сожалению, участникам не было выдано необходимых приборов, чтобы они могли найти $\cos\theta$ с приемлемой точностью.

Задача 2. 11 класс Задача 1. «Черный ящик»

Отличие вольтамперных характеристик реальных диодов от их идеальной модели заключается в том, что при малых напряжениях сопротивление диода достаточно велико, а падает оно, начиная лишь с напряжения открытия. Выданные тестеры в режиме омметра давали в схему напряжение много меньшее напряжения открытия диода.

Измерив тестером сопротивления между каждой парой клемм черного ящика и рассмотрев все возможные схемы соединения резисторов, можно показать, что только одна схема схема (рис. 2) не противоречит измерениям. О положении диодов по этим данных ничего сказать нельзя — они все время закрыты.

Далее следует подключать батарейку к клеммам 1(+), 2(-) и измерить напряжение между всеми клеммами. Напряжение между клеммами 1 и 3 почти нулевое, значит один из диодов занимает положение 1-3 (рис. 3). Теперь подключаем батарейку к 1(-), 2(+). Поскольку диоды не идеальные, то есть небольшой ток 3-1. Измерив напряжения 2-3 и 4-3, можно сделать вывод, что второй диод занимает положение 2-4.

Задача 2. Световод (2)

Если посветить лазером на торец световода, то лучи на выходе образуют конус, угол раствора которого определяется углом падения лазерного луча,

XXXV Всероссийская олимпиада школьников по физике

но не превышает некоторого значения, которое можно рассчитать из геометрических соображений (рис. 4). Преломление луча на торце: $\sin \alpha = n_c \sin \beta$, где n_c — показатель преломления сердцевины. Боковая поверхность световода матовая, поэтому лучи, попавшие в оболочку, рассеются. Выйдут же лучи, для которых выполнено условие полного внутреннего отражения: $n_c \sin \left(\frac{\pi}{2} - -\beta\right) = n_o$, где n_o — показатель преломления оболочки. Исключив β , получим $\sin \alpha = \sqrt{n_c^2 - n_o^2}$. Очевидно, что если $n_o \geqslant n_c$, то полного внутреннего отражения не будет.

Направим световой конус на экран из миллиметровки и измерим его наибольший угол раствора 2α . Полученное $\alpha\approx30^\circ$ подставим в выражение $\sin^2\alpha=n_c^2-n_o^2$. Если предположить, что $n_c=1,512$, то n_o будет вне диапазона 1,5-1,7, значит $n_o=1,512$, тогда $n_c=1,593$.

Рис. 4