Problem 1

- (1) * is clearly a binary relation on \mathbb{R} since both multiplication and addition are binary relations on \mathbb{R} .
- (2) We already know that the operation is closed. It is also the case that it is associative (this is trivial to show, just tedious). Searching for an identity we see

$$a * e = a = a + e + ae$$
$$0 = e(1+a)$$

And this is always true if e = 0. Now looking at inverses

$$a*b = 0 = a+b+ab$$
$$-a = b(1+a)$$
$$\frac{-a}{1+a} = b$$

So clearly we must exclude $a_0 = -1$ from the set, because it would not have an inverse.

(3) Examine $a * a = 2a + a^2$. If we plug in -2 = a this clearly equals 0 so -2 has order 2.

(4)

$$2 * x * 3 = 7$$
$$(2 + 3x) * 3 = 7$$
$$14 + 12x = 7$$
$$x = \frac{-7}{12}$$

Problem 2

First we know that $|S_3| = 6$ so every subgroup should have an order that divides 6. The first group we can identify is the trivial group $\{e\}$. Next all the transpositions $\{e, (12)\}, \{e, 13\}, \{e, 23\}$. Then if we look at the cyclic groups generated by (123), (132) we see we get the same group $\{e, (123), (132)\}$.

Problem 3

Let G be a group. Let $a \neq e$ be an element of G. Then consider the subgroup $\langle a \rangle \leq G$. But since G has no non-trivial subgroups by assumption we must have $\langle a \rangle = G$.

Problem 4

Let the group $G = \{z \in \mathbb{C} : |z| = 1\}$ and let the operation be multiplication. The group is clearly closed, associative, and the identity element e = 1. Consider some element $e^{2\pi i/n}$ will clearly have order n and any element e^{ix} where $x \notin \mathbb{Q}$ will have order ∞ .

Problem 5

Let G be a finite group and let $a \in G$, I claim that $|a| \le |G|$. Let's assume for the sake of contradiction that |a| > n = |G|. We then find that there is some element in $\{a, a^2, a^3, \dots, a^n, a^{n+1}\}$ that is not in G so then G is not closed under the group operation and cannot be a group, so our assumption that the order of an arbitrary element can be greater than the order of the group must be wrong

Problem 6

Since $(ab)^{-1} = a^{-1}b^{-1}$. We have

$$e = (ab)(ab)^{-1}$$
$$= (ab)a^{-1}b^{-1}$$
$$b = (ab)a^{-1}$$
$$ba = ab$$

Thus the group must be abelian since a, b are arbitrary and they commute with each other.