An MLIR-based Intermediate Representation for Accelerator Design with Decoupled Customizations

Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhiru Zhang

Cornell University

MLIR Open Design Meeting 08/11/2022

Rise of Specialized Computing

Accelerators in Data Centers

Accelerators in Edge Devices

Specialized Accelerator Design

- Accelerator design is different from programming on general processors
 - Custom processing engines (PEs)
 - Custom non-standard data type
 - Custom memory hierarchy
 - Custom data communication

High-Level Synthesis (HLS)

```
module dut(rst, clk, q);
 input rst;
 input clk;
 output q;
 reg [7:0] c;
 always @ (posedge clk)
 begin
  if (rst == 1b'1) begin
   c <= 8'b00000000;
 end
 else begin
  c <= c + 1;
 end
 assign q = c;
endmodule
```

RTL Verilog

uint8 dut() {
 static uint8 c;
 c+=1;
}
HLS C/C++

Accelerator Design with HLS: Single Kernel

Example: convolution

```
void conv1(...) {
  for (int y = 0; y < N; y++)
    for (int x = 0; x < N; x++)
    for (int r = 0; r < 3; r++)
      for (int c = 0; c < 3; c++)
        Out[y, x] += Input[y+r, x+c] * Filter[r, c]
}</pre>
```

Algorithm#1

Schedule Customization

Algorithm#2

Data Type Customization

Data Placement Cust.

Algorithm#3

Entangled hardware customization and algorithm

Optimized HLS code:

```
void conv1(...) {
 #pragma HLS array_partition variable=Filter dim=0
 hls::LineBuffer<3, N, ap_fixed<8,4> > buf;
 hls::Window<3, 3, ap_fixed<8,4> > window;
 for(int y = 0; y < N; y++) {
  for(int xo = 0; xo < N/M; xo++) {
                                    Custom schedule
   #pragma HLS pipeline II=1
                                    (Loop tiling)
   for(int xi = 0; xi < M; xi++) {
    int x = x_0 * M + x_i;
                                    Custom data type
    ap fixed<8,4> acc = 0;
    ap_fixed<8,4> in = Input[y][x]; (Quantization)
    buf.shift_up(x);
    buf.insert_top(in, x);
                                    Custom data
    window.shift_left();
    for(int r = 0; r < 2; r++)
                                    placement
     window.insert(buf.getval(r,x),
                                    (Reuse buffers)
                   i, 2);
    window.insert(in, 2, 2);
    if (y >= 2 \&\& x >= 2) {
     for(int r = 0; r < 3; r++) {
      for(int c = 0; c < 3; c++) {
       acc += window.getval(r,c) * Filter[r][c];
     0ut[y-2][x-2] = acc;
}}}}
```

Accelerator Design with HLS: Multi-Kernel

Example: Image blur

Optimized HLS code:

Algorithm#1 Schedule Customization Algorithm#2 Data Type Customization Data Placement Cust.

Algorithm#3

Entangled hardware customization and algorithm

- Less portable
- Less maintainable
- Less productive

```
Host-accelerator
void blur(DTYPE* input0, ..., DTYPE* input6,
DTYPE* output0, ..., DTYPE* output6) {
#pragma HLS interface port=input0 bundle=g0 burst=32
#pragma HLS interface port=input1 bundle=g1 burst=32
 stream<DTYPE> fifo in[8], fifo out[8];
 input_io_schedule(fifo_in, input0, ..., input6);
#pragma HLS dataflow
#pragma HLS stream var=fifo_inter[0] depth=32
#pragma HLS stream var=fifo_inter[1] depth=32
 conv1(fifo_in, fifo_inter);
                                   Inter-kernel
 conv2(fifo_inter, fifo_out);
output_io_schedule(fifo_out, output0, ..., output6);
```

```
void conv2(stream<DTYPE> fifo_inter[8], fifo_out[8]) {
  for (yo=0; yo<128; yo++)
    for (x00=0; x00<16; x00++) {
      for (xoi=0; xoi<8; xoi++) {
       #pragma HLS unroll
        stream<DTYPE> Xin[3], Yin[3], Yout[3];
        broadcast(fifo_inter, Xin[0], Xin[1], Xin[2]);
        PE(w2[0],Xin[0],Yin[0],Yout[0]); Yin[1]=Yout[0];
        PE(w2[1],Xin[1],Yin[1],Yout[1]); Yin[2]=Yout[1];
        PE(w2[2],Xin[2],Yin[2],Yout[2]);
        data_drainer(Yout[2], fifo_out); Intra-kernel
```

Decoupling Algorithm from Hardware Customizations

HLS C

Algorithm#1

Schedule Customization

Algorithm#2

Data Type Customization

Data Placement Cust.

Algorithm#3

Entangled algorithm specification and customization schemes [1,2,3]

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

Halide, TVM

Algorithm#1,2

Data Type Customization

Data Placement Cust.

Algorithm#3

Schedule Customization

Data Placement Cust.

Decoupled schedules [4,5,6,7,8,9]

- [4] Ragan-Kelly, et al. PLDI'13
- [5] Baghdadi, et al. arXiv'18
- [6] Rong, et al. arXiv'17
- [7] Pu, et al. TACO'17
- [8] Chen, et al. OSDI'18
- [9] Ikarashi, et al. PLDI'22

HeteroCL

Algorithm#1-3

Schedule Customization

Data Type Customization

Data Placement Customization

Fully decoupled customization schemes [10,11,12]

[10] Lai, et al., FPGA'19

[11] Lai, et al., ICCAD'20

[12] Xiang, et al., FPGA'22

Decoupling Algorithm from Hardware Customizations

HLS C

Algorithm#1

Schedule Customization

Algorithm#2

Data Type Customization

Data Placement Cust.

Algorithm#3

Entangled algorithm specification and customization schemes [1,2,3]

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

Halide, TVM

Algorithm#1,2

Data Type Customization

Data Placement Cust.

Algorithm#3

Schedule Customization

Data Placement Cust.

Decoupled schedules [4,5,6,7,8,9]

- [4] Ragan-Kelly, et al. PLDI'13
- [5] Baghdadi, et al. arXiv'18
- [6] Rong, et al. arXiv'17
- [7] Pu, et al. TACO'17
- [8] Chen, et al. OSDI'18
- [9] Ikarashi, et al. PLDI'22

HCL-MLIR

Algorithm#1-3

Processing

Schedule Customization

Structure Customization

Expression Customization

Data

Data Type Customization

Data Placement Customization

Data Layout Customization

Fully decoupled customization schemes

An MLIR-based Accelerator IR

decoupling customization

at the IR level

Imperative programming

Inherent support of nonstandard data types Generality (e.g., i4, bf16, !dialect.Type)

Features of MLIR

Customizations can be composed with other Composability programs

Reusable passes & opts

Different levels of IRs in the same module

Modularity

Multiple modules on different devices can work together

Benefits for accelerator design

- Support a wider range of applications
- Localized customization for different parts of design
- Verify the hardware design step by step

Overview of the HCL Dialect

HCL dialect can work for versatile MLIR programs composed with different levels of IRs

A (Partial) List of Customization Primitives in HCL Dialect

(a) Processing customization

Schedule customization

hcl.split(Op, i, v)	Split loop i of operation Op into a two-level nest loop with v as the factor of the inner loop.	
hcl.fuse(Op, i, j)	Fuse two sub-loops i and j of operation Op in the same nest loop into one.	
hcl.reorder(Op, i, j)	Switch the order of sub-loops i and j of operation Op in the same nest loop.	
hcl.compute_at(Op1, Op2, i)	Merge loop i of the operation Op1 to the corresponding loop level in operation Op2.	
hcl.unroll(Op, i, v)	Unroll loop i of operation Op by factor v.	
hcl.parallel(Op, i)	Schedule loop i of operation Op in parallel.	
hcl.pipeline(Op, i, v)	Schedule loop i of operation Op in pipeline manner with a target initiation interval v.	

Structure customization

hcl.outline(Op)	Outline operation Op as a function.	
hcl.clone(Func)	Create multiple cloning of function Func.	

Expression customization

hcl.rewrite(Pat, Expr)	Rewrite pattern Pat as a new expression Expr.
------------------------	---

(b) Data customization

Data type customization

hcl.quantize(A, d)	Quantize tensor A to data type d
	FixedType : Fixed point numbers with custom width and fractional bits
	StructType: Composite data types

Data placement customization

hcl.buffer_at(A, Op, i)	Create an intermediate buffer at dimension i of operation Op to store the results of tensor A.
hcl.reuse_at(A, Op, i)	Create a reuse buffer storing the values of tensor A, where the values are reused at dimension i of operation Op.
hcl.to(A, Dst, Mode)	Move a list of tensors A to destination Dst with Mode.

Data layout customization

hcl.partition(A, i, v)	Cyclic/Block partition dimension i of tensor A with a factor v.
hcl.pack(A, i, v)	Pack dimension i of tensor a into words with a factor v.
hcl.reform(A, Map)	Change the physical data layout of tensor A based on the given affine map Map.

Decoupled Schedule Customization with HCL Dialect

- Example: 1024x1024 matrix multiplication, tiled to 8x8, with unroll and pipeline
- Customization targets are specified with operation and loop handles

```
module {
  func.func @gemm(%A: memref<1024x512xf32>, %B: memref<512x1024xf32>, %C: memref<1024x1024xf32>) {
    // (a) algorithm specification
    linalg.matmul {op_name = "C", axes = ["i", "j", "k"]}
      ins(%A, %B: memref<1024x512xf32>, memref<512x1024xf32>)
      outs(%C: memref<1024x1024xf32>)
   // (b) handle declarations
    %s = hcl.create op handle "C"
    %li = hcl.create loop handle %s, "i"
                                                              Op and loop handle creation
    %lj = hcl.create loop handle %s, "j"
    %lk = hcl.create_loop_handle %s, "k"
    // (c) customizations
    %li outer, %li inner = hcl.split(%li, 8)
    %lj_outer, %lj_inner = hcl.split(%lj, 8)
    hcl.reorder(%li outer, %lj outer, %li inner, %lj inner)
                                                             Schedule customizations
    hcl.unroll(%lj inner)
    hcl.pipeline(%li_inner, 1)
    return
```

Decoupled Schedule Customization with HCL Dialect

- The MLIR assembly after all schedule customizations applied
- Loops are transformed, unroll and pipeline are attached as attributes for codegen

```
\#map0 = affine\_map < (d0) \rightarrow (d0 * 8) >
\#map1 = affine map < (d0, d1) -> (d1 + d0) >
func.func @gemm(%arg0: memref<1024x512xf32>, %arg1: memref<512x1024xf32>) -> memref<1024x1024xf32> {
 %0 = memref.alloc() {name = "C"} : memref<1024x1024xf32>
  affine.for %arg2 = 0 to 32 {
    affine.for %arg3 = 0 to 32 {
      affine.for %arg4 = 0 to 8 {
        affine.for %arg5 = 0 to 8 {
          %1 = affine.apply #map0(%arg3)
          %2 = affine.apply #map1(%1, %arg5)
          %3 = affine.apply #map0(%arg2)
          %4 = affine.apply #map1(%3, %arg4)
          %5 = memref.alloc() {name = "sum rv"} : memref<f32>
          %c0_f32 = arith.constant 0 : f32
          affine.store %c0 f32, %5[] {to = "sum rv"} : memref<f32>
          affine.for %arg6 = 0 to 512 {
            // more computation
          } {loop name = "k"}
        } {loop_name = "j.inner", unroll = 0 : f32}
      } {loop_name = "i.inner", pipeline_ii = 1 : f32}
                                                                       Schedule customizations applied
   } {loop name = "j.outer"}
 } {loop_name = "i.outer", op_name = "C"}
  return %0 : memref<32x32xf32>
```

Structure Customization: Function Outlining

- Outline one or multiple operations as a function
 - Essential for hardware resource sharing
 - Unify functions with arguments with different sizes

```
module {
 func.func @gemm(%A: memref<1024x512xf32>, %B: memref<512x1024xf32>,
                 %C: memref<1024x1024xf32>, %D: memref<1024x1024xf32>,
                 %E: memref<1024x1024xf32>)
 // (a) algorithm specification
  linalg.matmul {op_name = "s1", axes = ["i1", "j1", "k1"]}
    ins(%A, %B: memref<1024x512xf32>, memref<512x1024xf32>)
    outs(%C: memref<1024x1024xf32>)
  linalg.matmul {op_name = "s2", axes = ["i2", "j2", "k2"]}
    ins(%C, %D: memref<1024x1024xf32>, memref<1024x1024xf32>)
    outs(%E: memref<1024x1024xf32>)
 // (b) handle declarations
 %s1 = hcl.create_op_handle "s1"
  %s2 = hcl.create_op_handle "s2"
 // (c) customizations
  hcl.outline(%s1, %s2) {unify}
  return
}}
```

Structure Customization: Function Outlining

- Outline one or multiple operations as a function
 - Generate functions & call operations (1 function w/ 2 function calls)
 - 2 Automatically fetch the input & output parameters and change the memref size
 - 3 Parameterize loop bounds

```
module {
  func.func private @F_s1_s2(%arg0: memref<1024x<mark>1024</mark>xf32>,
                              %arg1: memref<1024x1024xf32>,
                              %arg2: memref<1024x1024xf32>, %arg3: index) {
   affine.for \%i = 0 to 1024 {(3)}
    affine.for %j = 0 to %arg3 {
     affine.for %k = 0 to 1024 {
      // actual payload
   }}}
  func.func @gemm(%A: memref<1024x1024xf32>, %B: memref<1024x1024xf32>, %C: memref<1024x1024xf32>,
                  %D: memref<1024x1024xf32>, %E: memref<1024x1024xf32>)
   %c512 = arith.constant 512 : index (3)
1 func.call @F_s1_s2(%A, %B, %C, %c512)
   %c1024 = arith.constant 1024 : index
   func.call @F_s1_s2(%C, %D, %E, %c1024)
   return
 }}
```

Data Customization Example: Binary Convolution

2D binary convolution (bconv)

```
IC KH KW
     B_{n,c,h,w} = \sum_{rc} \sum_{rh} \sum_{rw} (1 - 2 \cdot A_{n,rc,h+rh,w+rw} \oplus F_{c,rc,rh,rw})
                                        Data type
func.func @top(%A: memref<4x16x8x8xi1>,
               %F: memref<32x16x3x3xi1>)
  -> memref<4x32x6x6xi32> {
 // (a) algorithm specification
 %B = memref.alloc(): memref<4x32x6x6xi32>
 linalg.generic #bconv_trait
    ins(%A, %F: memref<4x16x8x8xi1>, memref<32x16x3x3xi1>)
    outs(%B: memref<4x32x6x6xi32>) { ... }
 // (b) handle declarations
                                                   Data layout
     (c) customizations
 pA = hcl.pack(%A, 1, 16) -> memref<4x1x8x8xi16>
 %pF = hcl.pack(%F, 1, 16) -> memref<32x1x3x3xi16>
 hcl.pipeline(%w, 1)
                                                Data placement
 %LB = hcl.reuse at(%pA, %h) -> memref<3x8xi16>
 %WB = hcl.reuse_at(%LB, %w) -> memref<3x3xi16>
  hcl.partition(%LB : memref<3x8xi16>) {axis=[0]}
 hcl.partition(%WB : memref<3x3xi16>) {axis=[0,1]}
  hcl.partition(%pF: memref<32x1x3x3xi16>) {axis=[2,3]}
  return %B: memref<4x32x6x6xi32>
                                                   Data layout
```

(a) Bitpacking

(b) Data reuse

(c) Array partition[1]

axis=1

axis=0

memref<3x6xi16> Comple

Complete partition along axis 0

Data Customization Example: Binary Convolution

```
\#map0 = affine_map < (d0, d1, d2, d3)
  \rightarrow (0, 0, d2, d3, d0, d1, 0, 0)>
                                                  Data layout
\#map1 = affine map < (d0, d1) \rightarrow (d0, 0, 0, d1) > customization
\#map2 = affine\_map < (d0, d1) -> (d0, d1, 0, 0) >
\#set = affine_set < (d0) : (d0 - 2 >= 0) >
                                             Data type
module {
                                            customization
 func.func @top(%arg0: memref<4x1x8x8xi16>, %arg1:
memref<32x1x3x3xi16, #map0>) -> memref<4x32x6x6xi32> {
  %c0 = arith.constant 0 : index
  %0 = memref.alloc() : memref<4x32x6x6xi32>
 %1 = memref.alloc(): memref<3x8xi16, #map1> Data placement
 %2 = memref.alloc() : memref<3x3xi16, #map2> customization
  affine.for %arg2 = 0 to 4 {
   affine.for %arg3 = 0 to 32 {
    affine.for %arg4 = 0 to 8 {
     affine.for %arg5 = 0 to 8 {
     // shift line buffer
      %3 = affine.load %1[1, %arg5] : memref<3x8xi16, #map1>
      affine.store %3, %1[0, %arg5] : memref<3x8xi16, #map1>
      %4 = affine.load %1[2, %arg5] : memref<3x8xi16, #map1>
      affine.store %4, %1[1, %arg5] : memref<3x8xi16, #map1>
      %5 = affine.load %arg0[%arg2, %c0, %arg4, %arg5] :
                  memref<4x1x8x8xi16>
      affine.store %5, %1[2, %arg5] : memref<3x8xi16, #map1>
```

```
affine.if #set(%arg4) {
      // shift window buffer
      affine.for %arg6 = 0 to 3 {
       %6 = affine.load %2[%arg6, 1]
       affine.store %6, %2[%arg6, 0]
       %7 = affine.load %2[%arg6, 2]
       affine.store %7, %2[%arg6, 1]
       %8 = affine.load %1[%arg6, %arg5]
       affine.store %8, %2[%arg6, 2]
      } {spatial}
      affine.if #set(%arg5) {
       // computation
  }}} {loop_name = "w", pipeline_ii = 1 : i32}
  } {loop name = "h"}
} {loop_name = "c"}
\{ \text{loop name} = \text{"n", op name} = \text{"B"} \}
return %0 : memref<4x32x6x6xi32>
```

Data Placement Customization: .to()

- Data placement: deliver the right data at the right moment with the right communication scheme
- Essential to performance: 3-8X ↑ with communication optimization only^[1]
- Coarse-grained: host-accelerator data placement
- Medium-grained: inter-kernel data placement within an accelerator
- Fine-grained: intra-kernel data placement between processing elements

Data Placement Customization: Host-Accelerator

- Example: stream I/O for two convolution layers on FPGA
 - Graph partition & generate two modules for host & xcel

```
func.func @top(%image : memref<1x32x32x3f32>,
               %w1 : memref<32x3x3x3xf32>, %w2 : memref<64x3x3x32xf32>) ->
              memref<1x32x32x64xf32> {
 // (a) algorithm specification
 %out1 = memref.alloc() : memref<1x32x32x32xf32>
  linalg.conv_2d_nhwc_fhwc {op_name = "conv1"}
    ins(%image : memref<1x32x32x3xf32>, %w1 : memref<32x3x3x3xf32>)
    outs(%out1 : memref<1x32x32x32xf32>)
 %out2 = memref.alloc() : memref<1x32x32x64xf32>
  linalg.conv 2d nhwc fhwc {op name = "conv2"}
    ins(%out1 : memref<1x32x32x32xf32>,
       %w2 : memref<64x3x3x32xf32>)
    outs(%out2 : memref<1x32x32x64f32>)
 // (b) handle declarations
 %conv2 = hcl.create op handle "conv2"
 // (c) host-xcel data placement customizations
 hcl.to([%image, %w1, %w2], Xcel) {mode="stream"}
                                                     Host-xcel
 hcl.to([%out2], Host) {mode="stream"}
                                                  data placement
 // (d) inter-kernel data placement customizations
 hcl.to([%out1], %conv2)
  return %out2 : memref<1x32x32x64xf32>
```


Host-xcel data placement modes:

- 1) DMA (direct streaming)
- 2 DMA (via device DRAM)
- (3) Cache-coherent interface

Data Placement Customization: Inter-Kernel

- Example: stream intermediate results between conv layers
 - Attach mode attribute to memref

```
func.func @top(%image : memref<1x32x32x3f32>,
               %w1 : memref<32x3x3x3xf32>, %w2 : memref<64x3x3x32xf32>) ->
               memref<1x32x32x64xf32> {
 // (a) algorithm specification
 %out1 = memref.alloc() : memref<1x32x32x32xf32>
  linalg.conv_2d_nhwc_fhwc {op_name = "conv1"}
    ins(%image : memref<1x32x32x3f32>, %w1 : memref<32x3x3x3xf32>)
    outs(%out1 : memref<1x32x32x32xf32>)
 %out2 = memref.alloc() : memref<1x32x32x64xf32>
  linalg.conv 2d nhwc fhwc {op name = "conv2"}
    ins(%out1 : memref<1x32x32x32xf32>,
       %w2 : memref<64x3x3x32xf32>)
    outs(%out2 : memref<1x32x32x64xf32>)
 // (b) handle declarations
 %conv2 = hcl.create op handle "conv2"
 // (c) host-xcel data placement customizations
 hcl.to([%image, %w1, %w2], Xcel) {mode="stream"} Host-xcel
 hcl.to([%out2], Host) {mode="stream"}
                                                  data placement
 // (d) inter-kernel data placement customizations
 hcl.to([%out1], %conv2) {mode="stream"}
                                                   Inter-kernel
  return %out2 : memref<1x32x32x64xf32>
                                                 data placement
```


producer consumers

(3) Broadcast/Scatter

Data Placement Customization: Intra-Kernel

Example: stream data between processing elements (PE) results inside kernels

```
func.func @top(%input : memref<1x32x32x3xf32>, %w1 : memref<32x3x3x3xf32>)
    -> memref<1x32x32x32xf32> {
 // (a) algorithm specification
 %out1 = memref.alloc() : memref<1x32x32x32xf32>
  linalg.conv 2d nhwc fhwc
    {op_name = "conv1", axes = ["n", "oc", "oh", "ow", "rc", "rh", "rw"]}
    ins(%image : memref<1x32x32x3xf32>, %w1 : memref<32x3x3x3xf32>)
    outs(%out1 : memref<1x32x32x32xf32>)
 // (b) handle declarations
 %conv1 = hcl.create op handle "conv1"
 %rw = hcl.create_loop_handle %conv1, "rw"
  // (c) intra-kernel data placement
 %pe = hcl.unroll(%rw, 3) {explicit}
                                             Unroll innermost loop, create 3 PEs
  hcl.to(%input, [%pe:0, %pe:1, %pe:2])
                                             Broadcast input
 %pe0_w = hcl.to(%w1, %pe:0)
 %pe1_w = hcl.to(%pe0_w, %pe:1)
                                             Pass on weights
                                                             X_2 X_1 X_0
  hcl.to(%pe1 w, %pe:2)
  return %out1 : memref<1x32x32x32xf32>
                                                                                     w_{1}[1]
                                                                         w_{1}[0]
                                                                                                         Yout
   Decoupled & concise specification of a
                                                                                                   PE_2
                                                                          PE_0
                                                                                      PE<sub>1</sub>
           weight stationary design
```

 $y_{out} = y_{in} + w \cdot x$

Parameterized Customization Template

- Reuse optimizations for kernels with different sizes
- hcl.customization: A sequence of optimization primitives
 - Modularity: Fully decoupled from alg spec; no need to be a monolithic design
 - Composability: Readable and parsable format; dump to file; plug in for different apps

```
hcl.customization @gemm_opt(
%A: memref<?x?x!hcl.Type>,
%B: memref<?x?x!hcl.Type>,
%C: memref<?x?x!hcl.Type>,
%S: !hcl.OpHandle,
%i: !hcl.LoopHandle,
%j: !hcl.LoopHandle,
%j: !hcl.LoopHandle
%k: !hcl.LoopHandle
}

hcl.pipeline(%s, %j, 1)
hcl.partition(%A: memref<?x?x!hcl.Type>, "CompletePartition", 2)
hcl.partition(%B: memref<?x?x!hcl.Type>, "CompletePartition", 2)
hcl.partition(%C: memref<?x?x!hcl.Type>, "CompletePartition", 2)
}
```

Parameterized Customization Template

- Reuse optimizations for kernels with different sizes
- hcl.apply: Apply a customization to a kernel

```
module {
 func.func @top(%A: memref<1024x512xi32>, %B: memref<512x1024xi32>,
                %C: memref<1024x1024xi32>)
         -> memref<1024x1024xi32>
 // loop and stage handle declaration
  // ...
 //D = A * B
  %D = memref.alloc() : memref<1024x1024xi32>
  // first kernel
 // . . . .
 //E = C * D
 %E = memref.alloc() : memref<1024 \times 1024 \times i32>
  // second kernel
  // ...
  // apply customizations
  hcl.apply @gemm_opt(%A, %B, %D, %s1, %i1, %j1, %k1)
  hcl.apply @gemm_opt(%C, %D, %E, %s2, %i2, %j2, %k2) ← Reuse opt
  return %E: memref<1024x1024xi32>
}}
```

Case Study: Matrix Multiplication (GEMM)

In a vanilla GEMM implementation, floatingpoint accumulation introduces carried dependency, slowing down the pipeline (II>1)

(2) GEMM w/ accumulation interleaving [1]

Optimized GEMM

M=1024, K=512, N=1024

```
void GEMM v2(
 float A[1024][512],
 float B[512][1024],
 float C[1024][1024]
for (int i = 0; i < 1024; i++) {
  float buf_C[1024];
  for (int j = 0; j < 1024; j++) {
                                        Init
    #pragma HLS pipeline II=1
                                        buffer
    buf C[i] = 0.0;
  for (int k = 0; k < 512; k++) {
    for (int j = 0; j < 1024; j++) {
                                        Reordered
      #pragma HLS pipeline II=1
                                        compute
      buf_C[j] += A[i][k] * B[k][j];
  for (int j = 0; j < 1024; j++) {
                                        Write
    #pragma HLS pipeline II=1
    C[i][j] = buf_C[j];
                                        back
}}
```

Case Study: Matrix Multiplication (GEMM)

- Accumulation interleaving using decoupled primitives
 - buffer_at() creates an intermediate buffer at a given axis
 - Algorithm code stays unchanged

	Initiation Interval (II)	Latency (cycles)	Speedup
GEMM baseline	8	4295M	1x
GEMM w/ Acc. Interleaving	1	539M	7.97x

GEMM Optimization

```
M=1024, K=512, N=1024
```

```
module {
 func.func @gemm(%A: memref<1024x512xf32>,
                 %B: memref<512x1024xf32>,
                 %C: memref<1024x1024xf32>)
 // (a) algorithm specification
  linalg.matmul {op_name = "s",
                 axes = ["i", "j", "k"]}
    ins(%A, %B: memref<1024x512xf32>,
                memref<512x1024xf32>)
    outs(%C: memref<1024x1024xf32>)
  // (b) handle declarations
  %s = hcl.create op handle "s"
 %li = hcl.create loop handle %s, "i"
  %lj = hcl.create_loop_handle %s, "j"
  %lk = hcl.create_loop_handle %s, "k"
  // (c) customizations
  hcl.reorder(%lk, %lj)
  hcl.buffer at(%C: memref<1024x1024xf32>, %li)
     -> memref<1024xf32>
  hcl.pipeline(%lj, 1)
  return
}}
```

Case Study: UltraNet

HeteroCL makes it convenient to integrate systolic kernels with other non-systolic ones

Baseline

+Systolic Array

60.2K

69.8K

39.6K

39.4K

377

375

508

594

2.97

2.27

231

233.8

https://github.com/heheda365/ultra_net

```
func.func @ultranet(%image : memref<1x224x224x3xf32>, ...) {
 // (a) algorithm specification
 %out1 = memref.alloc() : memref<1x224x224x32xf32>
  linalg.conv 2d nhwc fhwc {op name = "conv1"}
     ins(%image: memref<1x224x224x3xf32>, %w1: memref<32x3x3x3xf32>)
     outs(%out1 : memref<1x224x224x32xf32>)
  %out2 = memref.alloc() : memref<1x224x224x64xf32>
  linalg.conv_2d_nhwc_fhwc {op_name = "conv2"}
     ins(%out1 : memref<1x224x224x32xf32>, %w2 : memref<64x3x3x32xf32>)
     outs(%out2 : memref<1x224x224x64xf32>)
  . . .
    (b) handle declarations
    (c) customizations
    inter-kernel data movement
 hcl.to(%image, %conv1)
                 stationary systolic array
 %pe = hcl.unroll(%rw, 4) {explicit}
 hcl.to(%out2, [%pe:0, %pe:1, %pe:2, %pe:3])
 %pe0_w = hcl.to(%w1, %pe:0)
 %pe1 w = hcl.to(%w2, %pe:1)
 %pe2 w = hcl.to(%w2, %pe:2)
 hcl.to(%w2, %pe:3)
  // quantization
 hcl.quantize(%out1) : (memref<...xf32>) -> (memref<...x!hcl.Fixed<4,3>
  return
  Accelerating 3<sup>rd</sup> layer of UltraNet with a systolic array
                # LUTs # FFs # BRAM # DSPs Fmax(MHz) RT(ms)
```

Case Study: Binary Neural Network (BNN)

- FracBNN [1]: a state-of-the-art BNN model
 - CIFAR-10: 19 convolutional (conv) layers + 1 dense layer
 - BPReLU is parametric ReLU with a shifted origin
 - All conv layers are binarized with fractional activation

Design	Param Bits	Accuracy on CIFAR-10	Frame Rate (FPS)
Vanilla BNN ^[2]	13.4M	88.8%	168.4
FBNA [3]	13.4M	88.6%	520.8
FracBNN in HLS C++ [1] (1575 LoC)	0.27M	89.1%	2806.9
FracBNN in HeteroCL (250 LoC)	0.27M	89.1%	3530.1

M integer fmaps Sign **M** binary fmaps shortcuts 3x3 FracConv **Batch Norm BPReLU N** integer fmaps

FracBNN Building Block

Target embedded FPGA: Xilinx Ultra96V2

A SoTA BNN model is *productively* implemented in HeteroCL and achieving *high performance*

- [1] Zhang et al. FracBNN: Accurate and FPGA-Efficient Binary Neural Networks with Fractional Activations. FPGA'21.
- [2] Zhao et al. Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs. FPGA'17.
- [3] Guo et al. FBNA: A Fully Binarized Neural Network Accelerator. FPL'18.

Discussion: Decoupled Customizations at the IR Level

- General Platform for high-level DSLs
 - Most of DSLs with decoupled customizations have overlaps, and only support declarative
 - Need a common platform with declarative and imperative support and decoupled customization primitives
- Performance & Productivity
 - Useful for design space exploration to search the optimal design automatically
 - Localized customizations for different constraints and scenarios
- Verification
 - Easier to verify a spec composed of customization primitives
 - Scalable to many customizations

Summary and Ongoing Efforts

- Key Benefits of decoupled customizations in MLIR:
 Productive, performant, and portable accelerator design
- Ongoing efforts:
 - (1) Integration with other frontends and backend devices
 - (2) Auto generation/recommendation of custom primitives
 - (3) Leverage the facilities of the xform & PDL dialect

Related Publications

- Debjit Pal, Yi-Hsiang Lai, Shaojie Xiang, Niansong Zhang, Hongzheng Chen, Jeremy Casas, Pasquale Cocchini, Zhenkun Yang, Jin Yang, Louis-Noël Pouchet, Zhiru Zhang.
 Accelerator Design with Decoupled Hardware Customizations: Benefits and Challenges. In DAC, 2022. (Invited Paper)
- Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang, Debjit Pal, Zhiru Zhang. <u>HeteroFlow: An Accelerator Programming Model with Decoupled</u> <u>Data Placement for Software-Defined FPGAs</u>. In FPGA, 2022.
- Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, Zhiru Zhang. <u>HeteroCL: A Multi-Paradigm Programming Infrastructure for</u>
 Software-Defined Reconfigurable Computing. In FPGA, 2019. (Best Paper Award)

Acknowledgements

https://github.com/cornell-zhang/heterocl/tree/hcl-mlir

Contributors & Collaborators

- Cornell: Shaojie Xiang, Jie Liu, Zhongyuan Zhao, Andrew Butt, Alex Na, Yassine Ghannane
- UIUC: Hanchen Ye
- UCLA: Licheng Guo, Jason Lau, Yuze Chi, Jason Cong
- UIC: Debjit Pal
- CSU: Louis-Noël Pouchet
- AWS: Yi-Hsiang Lai
- Intel: Jeremy Casas, Pasquale Cocchini, Zhenkun Yang, Jin Yang, Hongbo Rong

Sponsors

