6 定积分

定积分的性质

性质 1. 设k为常数,则有

$$\int_{a}^{b} kf(x) \, \mathrm{d}x = k \int_{a}^{b} f(x) \, \mathrm{d}x$$

性质 2. (函数可加性)

$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

性质 3. (区间可加性)设 $\alpha < c < b$,则有

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

注记 1. 即使c不在α和b之间,上述性质依然是成立的.

性质 4.

$$\int_{a}^{b} 1 \, \mathrm{d}x = \int_{a}^{b} \, \mathrm{d}x = b - a$$

性质 5. 设在区间[a,b]上 $f(x) \ge g(x)$,则有

$$\int_a^b f(x) \, \mathrm{d}x \ge \int_a^b g(x) \, \mathrm{d}x.$$

特别地,如果在区间[a,b]上 $f(x) \ge 0$,则有

$$\int_a^b f(x) \, \mathrm{d} x \ge 0.$$

推论. $\left| \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^b \left| f(x) \right| \, \mathrm{d}x.$

性质 6. 如果函数f(x)在区间[a,b]上的最大值和最小值分别为M和m,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

性质 $\mathbf{7}$ (积分中值定理)。设f(x)在[a,b]上连续,则在[a,b]中至少存在一点 ξ ,使得

$$\int_{a}^{b} f(x) \, \mathrm{d}x = f(\xi)(b - a)$$

积分上限的函数及其导数

定义 **1.** 设函数f(x)在[a,b]上连续,令 $\Phi(x) = \int_a^x f(t) dt$, $x \in [a,b]$,称为积分上限的函数或变上限积分.

定理 1.

$$\Phi'(x) = \left(\int_{a}^{x} f(t) dt\right)' = f(x)$$

定理 2. 对于更一般的变限积分, 我们有下面求导公式:

(必考点)

$$\left(\int_{a(x)}^{b(x)} f(t) dt\right)' = f(b(x))b'(x) - f(a(x))a'(x)$$

原函数存在定理

定理 $\mathbf{3}$ (原函存在定理)。如果函数f(x)在[a,b]上连续,则函数

$$\Phi(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

就是f(x)在[a,b]上的一个原函数。

微积分基本公式

定理 4. 设f(x)在[a,b]上连续,且F(x)是f(x)的一个原函数,则有

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

它称为微积分基本公式或牛顿-莱布尼茨公式。

定积分的换元公式

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\phi(t))\phi'(t) dt$$

其中, 当 $x = \alpha$ 时, $t = \alpha$; 当 x = b 时, $t = \beta$ 。

换元公数注意事项(一)

- (1) 用 $x = \varphi(t)$ 把变量 x 换成新变量时,积分限也相应的改变.
- (2) 求出 $f[\varphi(t)]\varphi'(t)$ 的一个原函数 $\Phi(t)$ 后,不必象计算不定积分那样再要把 $\Phi(t)$ 变换成原变量 x 的函数,而只要把新变量的上、下限分别代入 $\Phi(t)$ 然后相减就行了.
- (3) 用第一类换元法即奏微分法解定积分时可以不换元, 当然也就不存在换上下限的问题了.

换元公数注意事项(二)

(1) 用换元法解题时,要注意看换元积分公式的内容;

考察
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$
, 令 $x = \frac{1}{t}$(x)

- (2) 对分段函数和含绝对值号的积分, 计算时必须分区间进行;
- (3) 对被积函数进行适当变形时, 要注意符号问题。

定理. (1) 若
$$f(x)$$
为奇函数,则 $\int_{-a}^{a} f(x) dx = 0$.

(2) 若
$$f(x)$$
为偶函数,则 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.

定理. f(x) 在 $(-\infty, +\infty)$ 上连续, 以 T 为周期则

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx. (a 为任意实数)$$

定积分的分部积分公式

设函数u(x)、v(x) 在区间[a,b]上具有连续导数,则有.

$$\int_a^b u \, dv = [uv]_a^b - \int_a^b v \, du$$

反常积分

反常积分有两种类型:

- 1. 无限区间上的积分: 无穷限的反常积分
- 2. 对无界函数的积分: 无界函数的反常积分

无限区间上的积分

定义 2. 设函数 f(x) 在 $[\alpha, +\infty)$ 上连续,如果

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx \quad (b > a)$$

存在, 就称此极限为 f(x) 在区间 $[\alpha, +\infty)$ 上的反常积分,记作

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

这时也称反常积分 $\int_a^{+\infty} f(x) dx$ 收敛. 如果上述极限不存在,就称反常积分 $\int_a^{+\infty} f(x) dx$ 发散.

定义 3. 设函数 f(x) 在 $(-\infty, b]$ 上连续,如果

$$\lim_{a \to -\infty} \int_{a}^{b} f(x) dx \quad (b > a)$$

存在,就称此极限为 f(x) 在区间 $(-\infty, b]$ 上的反常积分,记作

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

这时也称反常积分 $\int_{-\infty}^{b} f(x) dx$ 收敛, 如果上述极限不存在, 就称反常积分 $\int_{-\infty}^{b} f(x) dx$ 发散.

定义 4. 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续, 如果反常积分

$$\int_{-\infty}^{0} f(x) dx \not = \int_{0}^{+\infty} f(x) dx$$

都收敛,则称反常积分 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛. 上述两个反常积分之和为 f(x) 在 $(-\infty, \infty)$ 上的 反常积分,即

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx$$
$$= \lim_{a \to -\infty} \int_{a}^{0} f(x) dx + \lim_{b \to +\infty} \int_{0}^{b} f(x) dx$$

否则称反常积分 $\int_{-\infty}^{+\infty} f(x) dx$ 发散.

无界函数的反常积分

定义 **5.** 设函数 f(x) 在 (a,b] 上连续,且 $\lim_{x\to a^+} f(x) = \infty$,如果极限 $\lim_{\varepsilon\to 0^+} \int_{a+\varepsilon}^b f(x) \mathrm{d}x (\varepsilon > 0)$ 存在,就称此极限为无界函数 f(x) 在区间 (a,b] 上的反常积分,记作

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx$$

这时也称反常积分 $\int_a^b f(x) dx$ 收敛,如果上述极限不存在,就称反常积分 $\int_a^b f(x) dx$ 发散.

定义 **6.** 设函数 f(x) 在 [a,b] 上连续,且 $\lim_{x\to b^-} f(x) = \infty$,如果极限 $\lim_{\varepsilon\to 0^+} \int_a^{b-\varepsilon} f(x) \mathrm{d}x (\varepsilon > 0)$

0) 存在,就定义反常积分

$$\int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0^{+}} \int_{a}^{b-\epsilon} f(x) dx$$

否则称反常积分 $\int_a^b f(x) dx$ 发散.

定义 **7.** 设函数 f(x) 在 [a,b] 上除 x = c(a < c < b) 外连续,且 $\lim_{x \to c} f(x) = \infty$,如果两个 反常积分

$$\int_a^c f(x) dx \approx \int_c^b f(x) dx$$

都收敛,就定义反常积分

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
$$= \lim_{\epsilon \to 0^{+}} \int_{a}^{c-\epsilon} f(x) dx + \lim_{\epsilon' \to 0^{+}} \int_{c+\epsilon'}^{b} f(x) dx,$$

否则称反常积分 $\int_a^b f(x) dx$ 发散.

Γ函数

定义 **8.** $\Gamma(r) = \int_0^{+\infty} x^{r-1} e^{-x} dx \ (r > 0)$ 万函数.

性质 8. 「函数有如下公式

- 1. $\Gamma(1) = 1$
- 2. $\Gamma(r+1) = r\Gamma(r) \Rightarrow \Gamma(n+1) = n!$
- 3. 余元公式 $\Gamma(r)\Gamma(1-r) = \frac{\pi}{\sin(\pi r)}$ (0 < r < 1).
- 4. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

定义 9. 对任何实数X > -1, 定义其阶乘为

$$x! = \Gamma(x+1).$$

平面图形的面积

1. 由曲线 y = f(x), x轴,直线 $x = \alpha$ 以及直线 x = b 所围成的曲边梯形的面积为

$$S = \int_{a}^{b} |f(x)| \, \mathrm{d}x$$

2. 由 $y = f_1(x), y = f_2(x), x = a, x = b$ 所围成的平面图形的面积为

$$S = \int_{a}^{b} |f_2(x) - f_1(x)| \, \mathrm{d}x$$

计算面积的步骤

- 1. 画出曲线草图
- 2. 确定积分区间 ← 从曲线交点得到
- 3. 确定被积函数 ← 从曲线方程得到
- 4. 计算积分结果
- 1. 由曲线 $x = \varphi(y)$, y轴, 直线 $y = \alpha$ 以及直线 y = b 所围成的曲边梯形的面积为

$$S = \int_a^b |\varphi(y)| \, \mathrm{d}y$$

2. 由曲线 $x = \varphi_1(y)$, $x = \varphi_2(y)$, 直线y = a 以及直线 y = b 所围成的图形的面积为

$$S = \int_a^b |\varphi_1(y) - \varphi_2(y)| \, \mathrm{d}y$$

旋转体的体积

由曲线 y = f(x),直线 x = a, x = b 及x轴所围成的平面图形,绕x轴旋转而成的旋转体的体积是

$$V_x = \int_a^b \pi y^2 dx = \pi \int_a^b [f(x)]^2 dx$$

由曲线 $x = \varphi(y)$,直线 y = c, y = d 及y轴所围成的平面图形,绕y轴旋转而成的旋转体的体积是

$$V_y = \int_c^d \pi x^2 \, \mathrm{d}y = \pi \int_c^d [\varphi(y)]^2 \, \mathrm{d}y$$

注记。如果旋转体是由连续曲线 y = f(x)、直线 x = a, x = b 以及 x 轴所围成的曲边梯形 绕 y 轴旋转一周而成的立体,体积为

$$V_y = 2\pi \int_a^b x |f(x)| dx$$