Artificial Intelligence

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub

Lecture Outline

- Artificial Intelligence
- Neural Networks

Lecture Outline

- Artificial Intelligence
- Neural Networks

How do real neurons work?

2-Minute Neuroscience: The Neuron

A neuron 'firing'

An artificial neuron

A neuron in a neural network with a ReLU activation.

One neuron

$$egin{array}{ll} z &= x_1 imes w_1 + \ & x_2 imes w_2 + \ & x_3 imes w_3. \end{array}$$

$$a = egin{cases} z & ext{if } z > 0 \ 0 & ext{if } z \leq 0 \end{cases}$$

Here, x_1 , x_2 , x_3 is just some fixed data.

A neuron in a neural network with a ReLU activation.

The weights w_1 , w_2 , w_3 should be 'learned'.

One neuron with bias

$$egin{array}{ll} z &= x_1 imes w_1 + \ & x_2 imes w_2 + \ & x_3 imes w_3 + b. \end{array}$$

$$a = egin{cases} z & ext{if } z > 0 \ 0 & ext{if } z \leq 0 \end{cases}$$

The weights w_1 , w_2 , w_3 and bias b should be 'learned'.

A basic neural network

A basic fully-connected/dense network.

Step-function activation

Perceptrons

Brains and computers are binary, so make a perceptron with binary data. Seemed reasonable, impossible to train.

Modern neural network

Replace binary state with continuous state. Still rather slow to train.

Note

It's a neural network made of neurons, not a "neuron network".

Try different activation functions

Flexible

One can show that an MLP is a **universal approximator**, meaning it can model any suitably smooth function, given enough hidden units, to any desired level of accuracy (Hornik 1991). One can either make the model be "wide" or "deep"; the latter has some advantages...

Feature engineering

The deep learning hammer

Deep learning is not always the answer!

The map of data science.

Quiz

In this ANN, how many of the following are there:

- features,
- targets,
- weights,
- biases, and
- parameters?

What is the depth?

An artificial neural network.

Package Versions

- 1 from watermark import watermark
- 2 print(watermark(python=True, packages="keras,matplotlib,numpy,pandas,seaborn,scipy,torch

Python implementation: CPython Python version : 3.11.8 IPython version : 8.23.0

keras : 3.2.0
matplotlib: 3.8.4
numpy : 1.26.4
pandas : 2.2.1
seaborn : 0.13.2
scipy : 1.11.0
torch : 2.2.2
tensorflow: 2.16.1
tf_keras : 2.16.0

Glossary

- activations, activation function
 labelled/unlabelled data
- artificial neural network
- biases (in neurons)
- classification problem
- deep network, network depth
- dense or fully-connected layer
- feed-forward neural network

- machine learning
- neural network architecture
- perceptron
- ReLU
- representation learning
- sigmoid activation function
- targets
- training/test split
- weights (in a neuron)

