Electricity and Magnetism

- Physics 259 L02
 - •Lecture 34

Chapters 26 & 27

Last time

Chapter 25- Capacitance

Chapters 26 and 27

26-4 Ohm's Law

When a voltage difference ΔV is applied across a resistor R, the voltage difference causes electrons to flow through the resistor

$$V_A \bullet \longrightarrow V_B$$

This flow of electrons is the electric current *I*. These quantities are related by Ohm's Law:

$$\Delta V = IR$$

Ohmic vs non-Ohmic devices

Materials with isotropic electrical properties

Materials with anisotropic electrical properties (pn junction diode)

Microscopic view of Ohm's law (resistivity)

Electrons bounce around inside the metal at speeds very high speeds on the order of 0.5% light speed.

When an electric field is applied in the conductor, there is a net force on the electrons, leading to "drift speed"

 $r_d = \frac{J}{ne}$

microscopic picture of resistivity:

$$r = \frac{m}{ne^2 t}$$

$$\Gamma - \Gamma_0 = \Gamma_0 a (T - T_0)$$

Temperature Dependent Resistance

$$R - R_0 = R_0 \left(\frac{2}{3} \mathcal{A}\right) \left(T - T_0\right)$$

Proof: Appendix 2-Chapter 26

$$\Gamma - \Gamma_0 = \Gamma_0 a (T - T_0)$$

Resistance vs. Temperature

26-5 Power in circuits

Recall that **POWER** is the rate at which work is done

$$P = \frac{W}{\Delta t}$$

A battery with voltage ΔV raises the **potential energy** of a single charge q by an amount $q \Delta V$. This is the work done by the battery. For N charges

$$P = \frac{Nq \ V}{\Delta t} = \left(\frac{Nq}{\Delta t}\right) \ V = IV$$

Power in circuits
$$\rightarrow$$
 $P = IV = RI^2 = \frac{V^2}{R}$

27 Circuits: continue of last section

Grounding

This symbol is called "ground" and it represents the place in the circuit where V=0.

27-3 The Ammeter and The Voltmeter

Non-ideal Batteries: internal resistance

Appendix 2-Chapter 26

Every voltage source has **some** internal resistance to it. Usually this can be ignored but not always.

The internal resistance simply acts as a resistor in series with the rest of the circuit.

$$e - Ir - IR = 0$$

$$I = \frac{e}{(r+R)}$$

$$P_{e} = Ie = \frac{e^{2}}{R + r}$$

$$P_{R} = I^{2}R = \frac{e^{2}R}{(R + r)^{2}}$$

27-4 RC Circuits (resistors + capacitors)

Until now→ steady and continuous currents
many important circuit applications use a combination of capacitors and
resistors to produce time dependent currents

Examples: wireless signals in a cordless phone, remote control, etc.

Simple RC Series Circuit

Open switch→

- ✓ no current can flow
- ✓ charge and voltage on capacitor
- → Zero

Closed switch for a long time→

- ✓ Charge on capacitorQ = CV
- ✓ Voltage across capacitor is V and no current flows in the circuit.

What happens immediately after switch is closed or opened? We get time dependent currents!

Case 1: Charging a capacitor

(a) Capacitor initially uncharged

R could be the internal resistance of the battery, resistance of the connecting wires, an actual resistance in the circuit or combination of all the above.

Switch is suddenly closed at t=0

Case 1: Charging a capacitor

Case 1: Charging a capacitor

$$i = i_0 e^{-t/RC}$$

$$q = \varepsilon C \left(1 - e^{-t/RC} \right) = Q_f \left(1 - e^{-t/RC} \right)$$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Case 2: Discharging a capacitor

Switch is connected to the left for a long time until t=0-

Capacitor charges up to voltage V

Switch is suddenly flipped to the right at t=0+

Capacitor discharges

Once the switch is flipped to right
$$\Rightarrow \frac{q(t)}{C} - iR = 0 \Rightarrow \frac{q}{RC} = i = -\frac{dq}{dt}$$

NOTE here dq < 0

Solving for the charge q(t) on the capacitor \rightarrow

$$q(t) = q_0 e^{-t/RC}$$

$$i(t) = i_0 e^{-t/RC}$$

$$q_0 = CV$$

This section we talked about:

Chapters 26 and 27

See you on Thursday

