PRATICA S1/L4

L'esercizio di oggi consisteva nella progettazione di una rete di calcolatori con CISCO Packet Tracer, con lo scopo di capire come funzionano le comunicazioni al livello 1 e 3 del modello ISO/OSI.

Per prima cosa ho organizzato il mio laboratorio distribuendo nello spazio 2 Laptop(0 e 1) e 1 PC(0), tutti collegati allo stesso Switch(0), poi ho collegato lo Switch(0) ad un Router(0), che a sua volta ho collegato ad un nuovo Switch(1) che ho collegato ad un nuovo PC(1) e ad un nuovo Laptop(2).

Eseguo tutti i collegamenti con cavo Copper Straight Throughe noto che gli Switch non comunicano con il router, ma lo considerero' nel punto 2 dato che nel punto 1 le macchine appartengono alla stessa rete e quindi ho bisogno solo dello Switch.

PUNTO 1 – Mettere in comunicazione il Laptop(0) con IP: 192.168.100.100, con il PC(0) con IP: 192.168.100.103

Inizio con l'assegnare gli indirizzi IP ai rispettivi dispositivi:

A questo punto procedo a testare la comunicazione tra i 2 dispositivi, per farlo lancio un comando di ping dal PC(0) verso il Laptop(0), (potrei fare anche il contrario) con il Prompt dei Comandi:

Come vediamo la comunicazione e' riuscita in modo efficace, ce lo conferma sia il Prompt dei Comandi dove vediamo tempo di risposta e TTL, che lo storico dei passaggi dove vediamo che l'ARP Request e' tornata indietro, passando dallo Switch(0), come ARP Reply.

PUNTO 2 – Mettere in comunicazione il Laptop(0) con IP: 192.168.100.100, con il Laptop(2) con IP: 192.168.200.100

Inizio col risolvere il problema di comunicazione tra gli Switch e il router:

Per prima cosa assegno un IP alla porta GigabitEthernet0/0/0 del router, ma non un IP qualunque, bensi' l'IP Gateway corrispondente alla rete 192.168.200.0/24. Ora posso impostare su (ON) lo status porta e come si vede dai triangoli verdi la comunicazione si attiva:

Faccio lo stesso per l'altra rete con IP: 192.168.100.0/24 assegnando alla porta GigabitEthernet0/0/1 del Router l'IP Gateway 192.168.100.1, poi accendo il port status e anche qui ora la comunicazione e' attiva:

Ora imposto il default Gateway per ogni macchina della Rete (192.168.100.0/24), ovvero 192.168.100.1; e per ogni macchina della Rete 2 9192.168.200.0/24), ovvero 192.168.200.1

Ora procedo nel dimostrare la comunicazione efficace lanciando un comando di ping dal Laptop(0) al Laptop(2):

3.454	Laptop0	Switch0	ARP
3.455	Switch0	Laptop1	ARP
3.455	Switch0	PC0	ARP
3.455	Switch0	Router0	ARP
3.456	Router0	Switch0	ARP
3.457	Switch0	Laptop0	ARP
3.457		Laptop0	ICMP
3.458	Laptop0	Switch0	ICMP
3.459	Switch0	Router0	ICMP
3.460	Router0	Switch1	ICMP
3.461	Switch1	Laptop2	ICMP
3.462	Laptop2	Switch1	ICMP
3.463	Switch1	Router0	ICMP
3.464	Router0	Switch0	ICMP
3.465	Switch0	Laptop0	ICMP

Come si vede la comunicazione e' andata a buon fine passando da Laptop(0) - Switch(0) - Router(0) - Switch(1) - Laptop(2), per poi tornare indietro al Laptop(0).

COSA SUCCEDE QUANDO UN DISPOSITIVO INVIA UN PACCHETTO AD UN ALTRO DISPOSITIVO CHE SI TROVA SU UNA RETE DIVERSA?

- 1. Il mittente crea un pacchetto con i dati dell'applicazione (ad esempio, un ping) e lo incapsula in un frame.
- 2. Lo Switch 1 si rende conto che l'IP di destinazione non e' presente nella rete locale.
- 3. Poiché l'indirizzo IP di destinazione si trova in una rete diversa, lo Switch invia il pacchetto al router (Gateway predefinito).
- 4. Il Router riceve il pacchetto, esamina l'indirizzo IP di destinazione e determina che il pacchetto deve essere inoltrato alla rete di destinazione.
- 5. Il router inoltra il pacchetto alla rete di destinazione.
- 6. Il pacchetto raggiunge lo Switch 2, che conosce l'indirizzo MAC associato all'IP presente nel pacchetto.
- 7. A questo punto lo switch lo invia al dispositivo ricevente che lo "decapsula" e invia indietro una conferma di ricezione.