NOMBRES COMPLEXES

RACINES CARRÉES, ÉQUATIONS DU SECOND DEGRÉ

1 Racines carrées d'un nombre complexe non nul

1.1 Définition

On appelle racine carrée d'un nombre complexe z, tout nombre complexe dont le carré est égal à z, c'est-à-dire un nombre complexe ω tel que $\omega^2=z$.

1.2 Propriété

Tout nombre complexe non nul admet exactement deux racines carrées opposées.

2 Equations du second degré

2.1 Equations du second degré à coefficients dans $\mathbb C$

Théorème : Étant donnés trois **nombres complexes** a,b,c avec $a\neq 0$, l'équation $az^2+bz+c=0$ de discriminant $\Delta=b^2-4ac$ admet deux solutions :

$$z_1 = \frac{-b-\delta}{2a}$$
 et $z_2 = \frac{-b+\delta}{2a}$ où $\delta^2 = \Delta$.

On a

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2}).$$

2.2 Equations du second degré à coefficients dans $\mathbb R$

Théorème : Étant donnés trois nombres réels a,b,c avec $a\neq 0$, l'équation $az^2+bz+c=0$ de discriminant $\Delta=b^2-4ac$ admet :

1. si
$$\Delta=0$$
, une solution réelle $z_0=rac{-b}{2a}$ et

$$az^{2} + bz + c = a(z - z_{0})^{2}$$
.

2. Si $\Delta \neq 0$, deux cas à distinguer :

- si
$$\Delta>0$$
, deux solutions réelles $z_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $z_2=\frac{-b+\sqrt{\Delta}}{2a}$

- si $\Delta < 0$, deux solutions complexes conjuguées

$$z_1 = \frac{-b - i\sqrt{|\Delta|}}{2a}$$
 et $z_2 = \frac{-b + i\sqrt{|\Delta|}}{2a}$.

Dans les deux cas, on a :

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2}).$$

Remarque 1 1. Si z_1 et z_2 sont les solutions de $az^2 + bz + c = 0$, alors

$$z_1 + z_2 = \frac{-b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

1

NOMBRES COMPLEXES RACINES CARRÉES, ÉQUATIONS DU SECOND DEGRÉ

2. Lorsque les coefficients de l'équation sont complexes, les solutions ne sont pas conjuguées.

2 IONISX