CPSC 2610

Quoc Ho

ID: 001200151

Assignment 2

1.

a.
$$(x+y)' = x'y'$$

х	у	x+y	(x+y)'	x'	y'	<u>x'y</u> '
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

b.
$$(xy)' = x' + y'$$

х	у	xy	<u>(xy)'</u>	x'	y'	<u>x'+y</u> '
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

2.

a.
$$xyz' + x'yz + xyz + x'yz'$$

 $= xy(z + z') + x'y(z + z')$ Postulate 4(a)
 $= xy.1 + xy.1$ Postulate 5(a)
 $= xy + xy$ Postulate 2(b)
 $= xy$ Theorem 1(a)

b.
$$(x + y)'(x' + y)$$

 $= (x'y')(x' + y)$ Theorem 5(a)
 $= x'y'x' + x'y'y$ Postulate 4(a)
 $= (x' \cdot x')y' + x'(y' \cdot y)$ Theorem 4(b)
 $= x'y' + x'(y' \cdot y)$ Theorem 1(b)
 $= x'y' + x' \cdot 0$ Theorem 5(b)
 $= x'y' + 0$ Theorem 2(b)
 $= x'y'$ Postulate 2(a)
 $= (x + y)'$ Theorem 5(a)

3.

b.
$$(xz' + y)' + y + xz + wy$$

 $= ((xz')'y') + y + xz + wy$ Theorem 5(a)
 $= x'zy' + y + xz + yy$ Postulate 3(a)
 $= x'zy' + xz + y + yw$ Postulate 3(b)
 $= x'zy' + xz + y$ Postulate 3(b)
 $= x'zy' + xz + y$ Postulate 3(b)
 $= z(x'y' + x) + y$ Postulate 4(a)
 $= z((x' + x)(y' + x) + y)$ Postulate 5(a)
 $= z(y' + x) + y$ Postulate 2(b)
 $= z(y' + x) + y$ Postulate 2(b)
 $= zy' + zx + y$ Postulate 5(a)
 $= zy' + zx + (z + z')y$ Postulate 5(a)
 $= z(y' + y) + zx + z'y$ Postulate 4(a)
 $= z(y' + y) + zx + z'y$ Postulate 4(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + y) + zx + z'y$ Postulate 5(a)
 $= z(x' + x) + y + z'y$ Postulate 5(a)
 $= z(x' + x) + z'y + z'y$ Postulate 2(b)
 $= z(x' + x) + z'y + z'y$ Postulate 2(b)
 $= z(x' + x) + z'y + z'y$ Postulate 2(b)
 $= z(x' + x) + z'y + z'y + z'y + z'y$ Postulate 2(b)
 $= z(x' + x) + z'y + z'y$

4. F(x,y,z) = x + y' + y(x+z')

x	у	Z	F(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

5.

Duality:
$$((A' + B)(C + D)) + E \cdot E'$$

Take complement of each literal:

$$((A'' + B')(C' + D')) + E' \cdot E''$$
= $((A + B')(C' + D')) + E' \cdot E$
= $((A + B')(C' + D')) + 0$ Postulate 5(b)
= $(A + B')(C' + D')$ Postulate 2(a)

b.
$$(x' + y + z')(x + y')(x + z)$$

Duality:
$$(x'yz') + (xy') + (xz)$$

Take complement of each literal:

x'

6.

a.
$$F(A,B,C,D) = \sum m(2, 9, 10, 12, 14)$$

 $F' = \sum m(0, 1, 3, 4, 5, 6, 7, 8, 11, 13, 15)$

b.
$$F(x,y,z) = \prod M(1, 4, 5, 7)$$

 $F' = \prod M(0, 2, 3, 6)$
 $= \sum m(1, 4, 5, 7)$

7.

a.
$$F(x,y,z) = \sum m(2, 4, 7)$$

= $\prod M(0, 1, 3, 5, 6)$

b.
$$F(A, B, C, D) = \prod M(0, 1, 3, 4, 7, 11, 12)$$

$$= \sum m(2, 5, 6, 8, 9, 10, 13, 14, 15)$$

8.

a.
$$F(x, y, z) = \sum m(0, 1, 6, 7)$$

= x'y' + xy

b.
$$F(x, y, z) = xyz + x'y'z + xy'z'$$

111 001 100
 $= \sum m(1, 4, 7)$
 $= x'y'z + xz'y' + xyz$

9.

a.
$$F(w, x, y, z) = \sum m(1, 4, 5, 6, 8, 13)$$

= $w'y'z + w'xz' + xy'z + wxy'z'$

b.
$$F(A, B, C, D) = \sum m(0, 2, 3, 5, 6, 7, 8, 10, 13, 15)$$

= B'D' + A'CD + A'BD + A'BC + BCD

10.
$$F(A, B, C, D) = C'D' + A'B'C + ABC' + AB'C$$

- = (A + A')C'D' + A'B'C(D + D') + ABC'(D + D') + AB'C(D + D')
- = AC'D' + A'C'D' + A'B'CD + A'B'CD' + ABC'D + ABC'D' + AB'CD + AB'CD'
- = A(B + B')C'D' + A'(B + B')C'D' + A'B'CD + A'B'CD' + ABC'D' + AB'CD + AB'CD'
- = <u>ABC'D'</u> + AB'C'D' + A'BC'D' + A'B'C'D' + A'B'CD + A'B'CD' + ABC'D + AB'CD' + AB'CD'
- = ABC'D' + AB'C'D' + A'BC'D' + A'B'C'D' + A'B'CD + A'B'CD' + AB'CD + AB'CD'
- $= \sum m(0, 2, 3, 4, 8, 10, 11, 12, 13)$

$$F = C'D' + ABC' + B'CD + A'B'C$$