

CZ3005 Artificial Intelligence

Week 11b – Default Logic (Process)

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

Learning Goals

Understanding the:

Improved variant of Reiter's Default Logic (RDL)

Recap

- A default rule can be applied to a theory
 - if its precondition is entailed by the theory; and
 - its justifications are all consistent with the theory.
- The application of a default rule leads to the addition of its consequence to the theory.
- Other default rules may then be applied to the resulting theory.
- When the theory is such that no other default can be applied, the theory is called an <u>extension</u> of the default theory.
- The default rules may be applied in <u>different orders</u>, and this may lead to <u>different extensions</u>.

Makinson Approach

- Order **ground** instances of defaults in Δ : d_1 , d_2 , ...
- Initialize beliefs $\Xi_0 = \Phi$ and used defaults set $\Delta_0 = \emptyset$
- Define Ξ_{n+1} from Ξ_n ,
 - Find $d = \frac{\alpha(c) : \beta_1(c),...,\beta_n(c)}{\gamma(c)} \notin \Delta_n$ such that
 - Triggered?: $\Xi_n \vdash \alpha(c)$
 - Justified?: Ξ_n is consistent with $\beta_1(c)$, ..., $\beta_m(c)$
 - If $\Xi_n \cup \{\gamma(c)\}$ is consistent with each $\beta'(c')$ in $\Delta_n \cup \{d\}$
 - $\Xi_{n+1} = \Xi_n \cup \{\gamma(c)\}, and \Delta_{n+1} = \Delta_n \cup \{d\}$
 - else abort -- no extension for this order of defaults
- The extension is $\Xi = \bigcup_{i \geq 0} \Xi_i$

Makinson Approach

- No extension guessing
 - Choose the order of defaults in Δ : d_1 , d_2 , ...
- There still may be more than one possible extension
 - Different orders of defaults can lead to different Ξ
- We get the same extensions as in Reiter's approach
 - If they exist at all

Remember ...

Cn means applying any known

inference rules to expand the KB

Operational Semantics

Given a default theory $T = \langle \Delta, \Phi \rangle$, let $\Pi = (\delta_0, \delta_1, ...)$ be (a finite or infinite) sequence of (closed) defaults from Δ without multiple occurrences.

 $\Pi[k]$ denotes the initial segment of sequence Π with length k.

Model of the world

Each sequence Π is associated with two sets:

- $In(\Pi) = Cn(\Phi \cup \{consequence(\delta) | \delta \ occurs \ in \ \Pi\})$
- Out(Π) = { $\neg \phi | \phi \in justifications(\delta) for some \delta in <math>\Pi$ }

Example

Consider $T = \langle \Delta, \Phi \rangle$ with $\Phi = \{\alpha\}$ and defaults from Δ :

$$\delta_1 = \frac{\alpha : \neg \beta}{\neg \beta}, \qquad \delta_2 = \frac{\beta : \gamma}{\gamma}$$

For
$$\Pi_a=(\delta_1)$$
 we have
$$\ln(\Pi_a)=Cn(\{\alpha,\neg\beta\}), \operatorname{Out}(\Pi_a)=\{\beta\}$$
 For $\Pi_b=(\delta_2,\delta_1)$ we have
$$\ln(\Pi_b)=Cn(\{\alpha,\neg\beta\}), \operatorname{Out}(\Pi_b)=\{\beta\}$$

Process, Successful, Closed

 Π is a process of $T = \langle \Delta, \Phi \rangle$ iff default δ_k is applicable to $In(\Pi[k])$ for every k such that δ_k occurs in Π .

Let Π be a process. We define:

- Π is **successful** iff $In(\Pi) \cap Out(\Pi) = \emptyset$ (Nothing in the out set can be inferred from the in set); Otherwise, it **fails**.
- Π is **closed** iff every $\delta \in \Delta$ that is applicable to $In(\Pi)$ already occurs in Π .

Example

Consider $T = \langle \Delta, \Phi \rangle$ with $\Phi = \{\alpha\}$ and defaults from Δ :

$$\delta_1 = \frac{\alpha : \neg \beta}{\eta}, \qquad \delta_2 = \frac{true : \gamma}{\beta}$$

$$\Pi_1=(\delta_1)$$
 is successful,
$$In(\Pi_1)=Cn(\alpha,\eta) \text{ and } Out(\Pi_1)=\{\beta\}$$
 but not closed, since δ_2 is applicable, too.

$$\Pi_2 = (\delta_1, \delta_2)$$
 is closed, but not successful
$$In(\Pi_2) = Cn(\alpha, \eta, \beta) \text{ and } Out(\Pi_2) = \{\beta, \neg \gamma\},$$

$$In(\Pi_2) \cap Out(\Pi_2) = \beta$$

$$\Pi_3 = (\delta_2)$$
 is a closed and successful process T $In(\Pi_3) = Cn(\alpha, \beta)$ and $Out(\Pi_3) = \{\neg\gamma\}$, $In(\Pi_3) \cap Out(\Pi_3) = \emptyset$

Extension

– Let $T = \langle \Delta, \Phi \rangle$ be a default theory. A set of formulae Ξ is an **extension** of T iff there is some *closed and successful* Π such that Ξ = $In(\Pi)$.

– To **find a successful** process: generate a process Π , test whether in(Π) \cap $Out(\Pi) = \emptyset$. If not, then backtrack (try another process).

Process Tree

 $T = \langle \Delta, \Phi \rangle$ be a default theory. A **process tree** is a tree G = (V, E) such that all nodes $v \in V$ are labelled with two sets of formulae:

- an In-set In(v) and
- an Out-set Out(v).

The root of G is labelled with $Cn(\Phi)$ as the In-set and \emptyset as the Out-set. Every $e \in E$ denotes a default application and is labelled by it.

A process is thus a path in G starting from the root.

A node $v \in V$ is **expanded** if $In(v) \cap Out(v) = \emptyset$. Otherwise, it is a "failed" leaf of the tree.

Process Tree Example

Let T = (W, D) be the default theory with $W = \emptyset$ and $D = \{\delta_1, \delta_2\}$ with

Process Tree: Properties

- A process is thus a path in G starting from root.
- A node $v \in V$ is **expanded** if $In(v) \cap Out(v) = \emptyset$.
- Otherwise, it is a "failed" leaf of the tree.
- Expanded $v \in V$ has a child node, w_{δ} , for every $\delta = \frac{\alpha : \beta_1, ..., \beta_n}{\gamma}$
 - w_{δ} does not appear on the path from the root to v
 - δ is applicable to In(v)
 - w_{δ} connected to v by an edge labelled with δ
 - \mathbf{w}_{δ} is labelled with $In(\mathbf{w}_{\delta}) = Cn(In(v) \cup \{\gamma\})$ and $Out(\mathbf{w}_{\delta}) = Out(v) \cup \{\neg \beta_1, \dots, \neg \beta_n\}$

Thank you!

