Q1. Business Case: Target SQL Solved

Context:

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCn b

The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

Problem Statement:

Assuming you are a data analyst/ scientist at Target, you have been assigned the task of analyzing the given dataset to extract valuable insights and provide actionable recommendations.

What does 'good' look like?

1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

- 1. Data type of all columns in the "customers" table.
- 2. Get the time range between which the orders were placed.
- 3. Count the Cities & States of customers who ordered during the given period.

2. In-depth Exploration:

- 1. Is there a growing trend in the no. of orders placed over the past years?
- 2. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?
- 3. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn

7-12 hrs : Mornings

■ 13-18 hrs : Afternoon

• 19-23 hrs : Night

3. Evolution of E-commerce orders in the Brazil region:

- 1. Get the month on month no. of orders placed in each state.
- 2. How are the customers distributed across all the states?

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

- 1. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).
 - You can use the "payment_value" column in the payments table to get the cost of orders.
- 2. Calculate the Total & Average value of order price for each state.
- 3. Calculate the Total & Average value of order freight for each state.

5. Analysis based on sales, freight and delivery time.

1. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- time_to_deliver = order_delivered_customer_date order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_date order_delivered_customer_date
- 2. Find out the top 5 states with the highest & lowest average freight value.
- 3. Find out the top 5 states with the highest & lowest average delivery time.
- 4. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.

6. Analysis based on the payments:

- 1. Find the month on month no. of orders placed using different payment types.
- 2. Find the no. of orders placed on the basis of the payment installments that have been paid.

Question 1:

/*Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Data type of all columns in the "customers" table.

Get the time range between which the orders were placed.

Count the Cities & States of customers who ordered during the given period.*/

select column_name, data_type from Business_Case_Target_SQL.INFORMATION_SCHEMA.COLUMNS where table_name= 'customers';

column_name ▼	data_type ▼
customer_id	STRING
customer_unique_id	STRING
customer_zip_code_prefix	INT64
customer_city	STRING
customer_state	STRING
	customer_id customer_unique_id customer_zip_code_prefix customer_city

 ${\color{red} \textbf{select min}} ({\color{red} \textbf{order_purchase_timestamp}}) \ {\color{red} \textbf{as min_time}},$

max(order_purchase_timestamp) as max_time,

date_diff(max(order_purchase_timestamp), min(order_purchase_timestamp),day) as time_range
from `Business_Case_Target_SQL.orders`;

Row	min_time ▼	max_time ▼	time_range ▼
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC	772

select count(distinct c.customer_city) as city_count, count(distinct c.customer_state) as state_count from `Business_Case_Target_SQL.customers` as c inner join

`Business_Case_Target_SQL.orders` as o on c.customer_id = o.customer_id;

Row	city_count ▼	state_count ▼
1	4119	27

Question 2:

/*In-depth Exploration:

Is there a growing trend in the no. of orders placed over the past years?

Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning,

Afternoon or Night) 0-6 hrs : Dawn 7-12 hrs : Mornings 13-18 hrs : Afternoon 19-23 hrs : Night*/

select extract(month from order_purchase_timestamp) as order_month, extract(year from order_purchase_timestamp) as order_year ,count(order_id) as number_of_orders from `Business_Case_Target_SQL.orders`

group by order_month, order_year order by order month, order year;

Row	order_month ▼	order_year ▼	number_of_orders
1	1	2017	800
2	1	2018	7269
3	2	2017	1780
4	2	2018	6728
5	3	2017	2682
6	3	2018	7211
7	4	2017	2404
8	4	2018	6939
9	5	2017	3700
10	5	2018	6873
11	6	2017	3245
12	6	2018	6167
13	7	2017	4026

select extract(month from order_purchase_timestamp) as order_month,

count(order_id) as number_of_orders

from `Business_Case_Target_SQL.orders`

group by order_month
order by order_month;

Row	order_month ▼	number_of_orders
1	1	8069
2	2	8508
3	3	9893
4	4	9343
5	5	10573
6	6	9412
7	7	10318
8	8	10843
9	9	4305
10	10	4959
11	11	7544
12	12	5674

select case

when extract(hour from o.order_purchase_timestamp) between 0 and 6 then 'Dawn' when extract(hour from o.order_purchase_timestamp) between 7 and 12 then 'Mornings' when extract(hour from o.order_purchase_timestamp) between 13 and 18 then 'Afternoon' when extract(hour from o.order_purchase_timestamp) between 19 and 23 then 'Night' end as order_hour,

count(o.order_id) as number_of_orders
from `Business_Case_Target_SQL.orders` as o
group by order_hour;

Row	order_hour ▼	number_of_orders
1	Mornings	27733
2	Dawn	5242
3	Afternoon	38135
4	Night	28331

Question 3:

/*Evolution of E-commerce orders in the Brazil region: Get the month on month no. of orders placed in each state. How are the customers distributed across all the states?*/

select extract(month from o.order_purchase_timestamp) as order_month, extract(year from o.order_purchase_timestamp) as order_year, c.customer_state, count(o.order_id) as number_of_orders from `Business_Case_Target_SQL.orders` as o inner join

`Business_Case_Target_SQL.customers` as c

on o.customer_id= c.customer_id

group by order_month, order_year, c.customer_state

order by order month, order year;

Row	order_month ▼	order_year ▼	customer_state ▼	number_of_orders
1	1	2017	PR	65
2	1	2017	MG	108
3	1	2017	SP	299
4	1	2017	RJ	97
5	1	2017	PA	12
6	1	2017	SC	31
7	1	2017	MA	9
8	1	2017	BA	25
9	1	2017	MT	11
10	1	2017	ES	12
11	1	2017	CE	9
12	1	2017	RS	54

select customer_state, count(customer_id) as number_of_customers from `Business_Case_Target_SQL.customers` group by customer_state;

Row /	customer_state ▼	number_of_customer
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747
11	PE	1652
12	PB	536

Question 4:

/*Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders. Calculate the Total & Average value of order price for each state.

Calculate the Total & Average value of order freight for each state.*/

```
with cte1 as(
 select extract(year from o.order_purchase_timestamp) as year, extract(month from o.
order_purchase_timestamp) as month, p.payment_value
 from 'Business Case Target SQL.orders' as o
 inner join
 'Business Case Target SQL.payments' as p
 on o.order id=p.order id
 where extract(year from o.order purchase timestamp) between 2017 and 2018 and
 extract(month from o. order_purchase_timestamp) between 01 and 08
),
cte2 as (
 select cte1.year,sum(payment value) as cost
 from cte1
 group by cte1.year
)
select *.
 (cost- lag(cost, 1)over(order by cte2.year))*100/lag(cost, 1)over(order by cte2.year) as Percentage increase
from cte2
order by cte2.year;
```

Row	year ▼	11	cost ▼	Percentage_increase
1		2017	3669022.119999	null
2		2018	8694733.839999	136.9768716466

```
select c.customer_state, sum(oi.price) as total_price,avg(oi.price) as average_price from `Business_Case_Target_SQL.customers` as c inner join `Business_Case_Target_SQL.orders` as o on c.customer_id=o.customer_id inner join `Business_Case_Target_SQL.order_items` as oi on o.order_id= oi.order_id group by c.customer_state order by c.customer_state;
```

Row	customer_state ▼	total_price ▼	average_price ▼ //
1	AC	15982.94999999	173.7277173913
2	AL	80314.81	180.8892117117
3	AM	22356.84000000	135.4959999999
4	AP	13474.29999999	164.3207317073
5	BA	511349.9900000	134.6012082126
6	CE	227254.7099999	153.7582611637
7	DF	302603.9399999	125.7705486284
8	ES	275037.3099999	121.9137012411
9	GO	294591.9499999	126.2717316759
10	MA	119648.2199999	145.2041504854

select c.customer_state, sum(oi.freight_value) as total_freight,avg(oi.freight_value) as average_freight from `Business_Case_Target_SQL.customers` as c inner join

`Business_Case_Target_SQL.orders` as o

on c.customer_id=o.customer_id

inner join

`Business_Case_Target_SQL.order_items` as oi

on o.order_id= oi.order_id group by c.customer_state;

Row	customer_state ▼	total_freight ▼	average_freight ▼
1	MT	29715.43000000	28.16628436018
2	MA	31523.77000000	38.25700242718
3	AL	15914.58999999	35.84367117117
4	SP	718723.0699999	15.14727539041
5	MG	270853.4600000	20.63016680630
6	PE	59449.65999999	32.91786267995
7	RJ	305589.3100000	20.96092393168
8	DF	50625.499999999	21.04135494596
9	RS	135522.7400000	21.73580433039
10	SE	14111.46999999	36.65316883116

Question 5:

/*Analysis based on sales, freight and delivery time.

Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

time_to_deliver = order_delivered_customer_date - order_purchase_timestamp diff_estimated_delivery = order_estimated_delivery_date - order_delivered_customer_date Find out the top 5 states with the highest & lowest average freight value.

Find out the top 5 states with the highest & lowest average delivery time.

Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.*/

select order_id, date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as delivery_time, date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_time from `Business Case Target SQL.orders`;

Row	order_id ▼	delivery_time ▼	estimated_delivery_ti
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
	CO(47(FO(O4-4-LC774F7O-(4-	20	1

select a.customer_state,a.average_freight

(select c.customer_state,sum(oi.freight_value)/count(oi.order_id) as average_freight, row_number()over(order by sum(oi.freight_value)/count(oi.order_id) desc) as topfive,

row_number()over(order by sum(oi.freight_value)/count(oi.order_id)) as bottomfive

from `Business_Case_Target_SQL.order_items` as oi

inner join

`Business_Case_Target_SQL.orders` as o

on oi.order_id=o.order_id

inner join

`Business_Case_Target_SQL.customers` as c

on o.customer_id= c.customer_id

group by c.customer_state) as a

where a.topfive<=5 or a.bottomfive<=5;

Row	customer_state ▼	average_freight ▼
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596
6	PI	39.14797047970
7	AC	40.07336956521
8	RO	41.06971223021
9	PB	42.723803986711
10	RR	42.98442307692

select a.customer_state,a.avg_delivery_time from

(select c.customer_state, sum(date_diff(order_delivered_customer_date, order_purchase_timestamp, day))/count(order_id) as avg_delivery_time,

row_number()over(order by sum(date_diff(order_delivered_customer_date, order_purchase_timestamp,
day))/count(order_id)) as topfive,

row_number()over(order by sum(date_diff(order_delivered_customer_date, order_purchase_timestamp,
day))/count(order_id) desc) as bottomfive

from `Business_Case_Target_SQL.orders` as o inner join

`Business_Case_Target_SQL.customers` as c

on o.customer_id=c.customer_id

group by c.customer_state) as a

where a.topfive<=5 or a.bottomfive<=5;

Row	customer_state ▼	avg_delivery_time
1	AP	26.33823529411
2	RR	25.82608695652
3	AM	25.45945945945
4	AL	23.10895883777
5	PA	22.62256410256
6	SC	14.12125378058
7	DF	12.15841121495
8	MG	11.26600773528
9	PR	11.24796828543
10	SP	8.049393953911

select *, (a.estimated_delivery_time-a.delivery_time) as diff
from

(select c.customer_state, date_diff(order_delivered_customer_date, order_purchase_timestamp, day) as delivery_time, date_diff(order_estimated_delivery_date, order_delivered_customer_date, day) as estimated_delivery_time

from `Business_Case_Target_SQL.orders` as o

inner join `Business_Case_Target_SQL.customers` as c on o.customer_id=c.customer_id group by c.customer_state,order_delivered_customer_date, order_purchase_timestamp,order_estimated_delivery_date) as a where a.delivery_time<a.estimated_delivery_time order by diff desc limit 5;

Row	customer_state ▼	delivery_time ▼	estimated_delivery_t	diff ▼
1	SP	3	146	143
2	MA	6	139	133
3	RS	20	134	114
4	SP	16	123	107
5	RJ	7	108	101

Question 6:

/*Analysis based on the payments:

Find the month on month no. of orders placed using different payment types.

Find the no. of orders placed on the basis of the payment installments that have been paid.*/

select extract(month from o.order_purchase_timestamp) as month,extract(year from o.order_purchase_timestamp) as year, p.payment_type, count(o.order_id) as number_of_orders from `Business_Case_Target_SQL.payments` as p inner join `Business_Case_Target_SQL.orders` as o on p.order_id=o.order_id group by month,year, p.payment_type order by month, year, p.payment_type;

Row	month ▼	year ▼	payment_type ▼	number_of_orders
1	1	201	7 UPI	197
2	1	201	7 credit_card	583
3	1	201	7 debit_card	9
4	1	201	7 voucher	61
5	1	201	8 UPI	1518
6	1	201	8 credit_card	5520
7	1	201	8 debit_card	109
8	1	201	8 voucher	416
9	2	201	7 UPI	398
10	2	201	7 credit_card	1356
11	2	201	7 debit_card	13

select payment_installments, count(order_id) as number_of_orders from `Business_Case_Target_SQL.payments` group by payment_installments order by payment_installments;

Row	payment_installment	number_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328

Conclusion/insights drawn from the above submission for improving the business for Target:

Insights:

- 1. Based on the customer distribution, there are states like RN, MA, PB are comparatively lesser. Therefore, looking at the population proportion we can implement steps to increase the customers in these areas. For example: we can look at the age proportion in the areas and have more need-based products in there. Or we can give discounts on the products bought more in those areas.
- 2. Based on the difference in business between the different months and seasons there could be discounts given during the months like December where the business is less, on specific products like decorative items or clothes.
- 3. The business during dawn is the least also morning and night are less, there could be some discount coupons and special discount given during these times to boost the business during these periods.
- 4. As per the delivery time, we can work on the states with large delivery time and provide viable transportation modes as per the demographics or set up more warehouses to stock products nearby to reduce the delivery time.
- 5. As per the difference between actual delivery and estimated delivery time we can work on reducing the gap between the two so that customers will be more lured to buy the products and won't hesitate because of the estimated time.
- 6. The states where the freight values are more, we can work on clubbing more deliveries together which would fall in the same region and scheduling the deliveries accordingly so the cost of freight reduces, or we can look at other cheaper modes of transportation that would be viable.
- 7. Based on the number of orders and payment installments there could be no-cost-emi option, or some sort of discount provided on taking the emi option so people buy more expensive products and pay on installments even though they can't afford to buy those at once which can help boost up the business.