

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-03-01

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Definition

Given

- Given
 - o a set V of locations,

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and

- Given
 - a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - o open p locations of V, such that

- Given
 - o a set V of locations,
 - $\circ p \in \mathbb{Z}$, and
 - distances d_{ij} from location $i \in V$ to $j \in V$
- · we want to
 - open p locations of V, such that
 - the maximum distance of any location to its closest opened location is minimized.

The nesting property

p-center problem vs nested p-center problem

Definition part I

• given a set of locations *V*,

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

Definition part I

- given a set of locations V.
- time periods $\mathcal{H} = \{1, \dots, H\}$,
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h < p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H < |\mathcal{J}|$
- distances $d_{ii} \ge 0$ between each $i \in V$ and $i \in V$

Definition part II

• a feasible solution to the nested p-center problem consists of a set $\mathcal{J}^h \subset V$

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - \circ where $p^h \leq p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|\mathcal{J}^h| = p^h$ for $h \in \mathcal{H}$,
 - o for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds

Definition part I

- given a set of locations V,
- time periods $\mathcal{H} = \{1, \dots, H\},\$
- integers $\mathcal{P} = \{p^1, \dots p^H\}$
 - where $p^h \le p^{h+1}$ for $h = 1, \dots, H-1$ and
 - $\circ p^H \leq |\mathcal{J}|$
- distances d_{ij} ≥ 0 between each i ∈ V and j ∈ V

- a feasible solution to the nested p-center problem consists of a set J^h ⊆ V
 - \circ with $|\mathcal{J}^h| = p^h$ for $h \in \mathcal{H}$,
 - for which $\mathcal{J}^h \subseteq \mathcal{J}^{h+1}$ for $h = 1, \dots, H-1$ holds
- the goal is to find a feasible solution which minimizes $\sum_{h=1}^{H} d_h(\mathcal{J}^h)$,
 - \circ where $d_h(\mathcal{J}) = \max_{i \in \mathcal{I}} \min_{j \in \mathcal{J}} d_{ij}$ for $h \in \mathcal{H}$

The nested p-center problem: Potential applications

p-center problem

- First introduction of the *p*-center problem by Hakimi (1964)
- The standard textbook formulation of the p-center problem can be found in Daskin (2013)
- Solution approach based on the set cover problem by Contardo, Iori, and Kramer (2019a)
- A compact formulation by Ales and Elloumi (2018) and Elloumi, Labbé, and Pochet (2004)
- A formulation with a projection-based branch-and-cut algorithm for the p-center problem by Gaar and Sinnl (2022)

Nested facility location problems

- First introduction of the nesting property and constraint by Roodman and Schwarz (1975)
- Extension of the nesting to a phase-in and phase-out by Roodman and Schwarz (1977)
- Reintroduction of the nesting on the example of the p-median problem by McGarvey and Thorsen (2022)
- Other work on multi-period facility locations problems mainly focus on varying demand, distances, or cost over time f.e. Calogiuri et al. (2021)

MILP formulations

Decision variables $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in } \\ \text{time period } h \end{cases}$

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 $z^h \dots$ maximum distance between any customer i and its nearest open facility in period h

Decision variables

 $y_i^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

z^h... maximum distance between any customer i and its nearest open facility in period h

(nPC2) based on Gaar and Sinnl 2022

min
$$\sum_{i=1}^{n} z^h$$
 (1a)

min
$$\sum_{h \in \mathcal{H}} z^h$$
 (1a)
s.t.
$$\sum_{j \in V} y_j^h = p^h \qquad \forall h \in \mathcal{H}$$
 (1b)

$$z^h \geq d_{ij} - \sum_{j':d_{ij'} < d_{ij}} (d_{ij} - d_{ij'}) y_{j'}^h \qquad \forall i,j \in V, h \in \mathcal{H}$$
 (1c)

$$y_j^h \ge y_j^{h-1}$$
 $\forall j \in V, \forall h \in \mathcal{H} \setminus \{1\}$ (1d)

$$(y,z) \in |V| |\mathcal{H}| \times \mathbb{R}_{\geq 0}$$
 (1e)

2024-03-01

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

Decision variables

```
y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}
```

z^h... maximum distance between any customer i and its nearest open facility in period h

Decision variables

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

z^h... maximum distance between any customer i and its nearest open facility in period h

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \geq D_k \text{ in } \\ & \text{time period } h \end{cases}$$

Decision variables

$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

z^h... maximum distance between any customer i and its nearest open facility in period h

$$u_k^h \dots \begin{cases} 1 \dots \text{ if } z^h \ge D_k \text{ in } \\ & \text{time period } h \end{cases}$$

(nPC3) based on Ales and Elloumi 2018

$$\min \sum_{h \in \mathcal{H}} z^{h}$$
s.t.
$$\sum_{j \in V} y_{j}^{h} = p^{h} \qquad \forall h \in \mathcal{H}$$

$$D_{0} + \sum_{k=1}^{K} (D_{k} - D_{k-1}) u_{k}^{h} \leq z^{h} \ \forall h \in \mathcal{H}$$

$$u_{k}^{h} + \sum_{j: d_{j} < D_{k}} y_{j}^{h} \geq 1 \ \forall i \in V, \forall h \in \mathcal{H}, \forall k \in S_{i} \cup \{K\}$$

$$u_{k}^{h} \geq u_{k+1}^{h} \qquad \forall h \in \mathcal{H}, \forall k \in \mathcal{K} \setminus \{K\}$$

$$y_{i}^{h} \geq y_{i}^{h-1} \qquad \forall h \in \mathcal{H} \setminus \{1\}$$

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(min(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

Comparing formulations

Table: Comparison of complexity of the formulations

	(nPC1)	(nPC2)	(nPC3)
Variables	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{J} \mathcal{H})$	$\mathcal{O}((\mathcal{I} + \mathcal{K}) \mathcal{H})$
Constraints	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\mathcal{I} \mathcal{J} \mathcal{H})$	$\mathcal{O}(\min(\mathcal{I} \mathcal{J} , \mathcal{I} \mathcal{K}) \mathcal{H})$

The pCP version of formulation (nPC3) has the best known linear programming (\mathcal{LP})-bounds for the pCP, while the pCP versions of (nPC1) and (nPC2) have equally but worse \mathcal{LP} -bounds.

Improving the formulations

Strengthening constraints (nPC2)

Lemma 1

Let LB_h be a lower bound on the decision variable z_h of (nPC2) for every $i \in \mathcal{I}, j \in \mathcal{J}, h \in \mathcal{H}$ then

$$z^h \ge max\{LB^h, d_{ij}\} - \sum_{j': d_{ij'} < d_{ij}} (max\{LB^h, d_{ij}\} - max\{LB^h, d_{ij'}\})y_{j'}^h$$
 (nL-OPT)

is a valid inequality for (nPC2), i.e., every feasible solution of (nPC2) fulfills (nL-OPT). Theorem is based on Lemma 5 in Gaar and Sinnl (2022).

A similar strengthening can be done for (nPC1) which is based on Daskin 2013.

Reducing set K in (nPC3)

Lemma 2

Let $\underline{z^h}$ be a valid lower bound and $\overline{z^h}$ be a valid upper bound on the decision variable z^h for $h \in \mathcal{H}$, then the distinct distance D_k can only be the optimal distance for z^h if $\underline{z^h} \leq D^k \leq \overline{z^h}$ holds.

Therfore let set $S_i^h \subseteq S_i$ for $h \in \mathcal{H}$, where S_i^h contains only the indices k where $\underline{z}^h \leq D^k \leq \overline{z}^h$ holds.

Depending on the bounds $\underline{z^h}$ and $\overline{z^h}$ the sets S_i^h can be much smaller than S_i .

Obtaining bounds

Lemma 3

Let z'^{h*} be the optimal objective function value of pCP with $p = p^h$ for $h \in \mathcal{H} = \{1, 2, ..., H\}$ where $p^h > p^{h+1}$, then $UB = Hz'^{1*}$ is a valid upper bound on the optimal objective function value of n-pCP.

Then

$$\overline{z^h} = \frac{UB - \sum_{x=h+1}^{H} z'^{x*}}{h+1}$$

where $\overline{z^h}$ is a valid upper bound on the decision variable z^h of the n-pCP for $h \in \mathcal{H}$.

Implementation

2024-03-01

Implementation

- C++, CPLEX 20.1
- preprocessing
- (nPC2)
 - o branch-and-cut algorithm
 - separation similar to fixedCustomer from Gaar and Sinnl 2022
- (nPC3)
 - o branch-and-bound algorithm
 - \circ starting with the reduced set \mathcal{K}

Settings

- noPP: without preprocessing or any lifting
- PP: with preprocessing a lifting
 - \circ (nPC1) and (nPC2): set upper bounds on z^h and using lower bounds in (nL-OPT)
 - \circ (nPC3): problem initialized on reduced set $\mathcal K$
- PH: PP with an additional starting heuristic

Results

Instance from literature

- computational setup
 - o single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - timelimit of 3600 seconds

Instance from literature

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - o timelimit of 3600 seconds
- instance set PMED Çalık and Tansel 2013; D. Chen and R. Chen 2009; Contardo, lori, and Kramer 2019b
 - 40 instances
 - $\circ \mathcal{P} = \{p, p+1, p+2\}, p \text{ from 5 to 200, } |V| \text{ from 100 and 900 nodes}$

Instance from literature

- computational setup
 - single core of Intel Xeon X5570 with 2.93 GHz and 8 GB RAM
 - o timelimit of 3600 seconds
- instance set PMED Calik and Tansel 2013; D. Chen and R. Chen 2009; Contardo, Iori, and Kramer 2019b
 - 40 instances
 - $P = \{p, p + 1, p + 2\}, p \text{ from 5 to 200}, |V| \text{ from 100 and 900 nodes}$
- instance set TSPLIB Contardo, Iori, and Kramer 2019b: Gaar and Sinnl 2022
 - 80 instances
 - $\circ \mathcal{P} = \{4, 5, 6\}, |V| \text{ from 100 and 900 nodes}$

Formulation comparison

Setting comparison

2024-03-01

Managerial insights

Figure: On a subset of instances: Only if the problem was solved to optimality

Conclusion

- (nPC3) had the best runtimes over all instances
- For optimality gap the results are rather mixed
- The (nPC2) outperforms the (nPC1)
- Maximal relative regret of the objective value of 15%
- Maximal relative regret of number of facilities above 140%
- min-max regret as objective function was also analysed and can be found later in the thesis

On the nested p-center problem

Christof Brandstetter, Markus Sinnl Institute of Business Analytics and Technology Transformation / JKU Business School, Johannes Kepler University Linz 2024-03-01

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Formulations with non optimal instances

References I

- [1] Z. Ales and S. Elloumi. Compact MILP formulations for the p-center problem. In: Combinatorial Optimization: 5th International Symposium, ISCO 2018, Marrakesh, Morocco, April 11–13, 2018, Revised Selected Papers 5. 2018, pp. 14–25.
- [2] H. Çalık and B. C. Tansel. Double bound method for solving the p-center location problem. In: Computers & Operations Research 40.12 (2013), pp. 2991–2999.
- [3] T. Calogiuri et al. The multi-period p-center problem with time-dependent travel times. In: Computers & Operations Research 136 (2021), p. 105487.

References II

- D. Chen and R. Chen, New relaxation-based algorithms for the optimal solution [4] of the continuous and discrete p-center problems. In: Computers & Operations Research 36.5 (2009), pp. 1646–1655.
- [5] C. Contardo, M. Iori, and R. Kramer. A scalable exact algorithm for the vertex p-center problem. In: Computers & Operations Research 103 (2019), pp. 211–220.
- C. Contardo, M. Iori, and R. Kramer. A scalable exact algorithm for the vertex [6] p-center problem. In: Computers & Operations Research 103 (2019). pp. 211-220.

References III

- [7] M. S. Daskin. Network and Discrete Location: Models, Algorithms, and Applications, Second Edition. John Wiley & Sons, Ltd, 2013.
- [8] S. Elloumi, M. Labbé, and Y. Pochet. A new formulation and resolution method for the p-center problem. In: INFORMS Journal on Computing 16.1 (2004), pp. 84–94.
- [9] E. Gaar and M. Sinnl. A scaleable projection-based branch-and-cut algorithm for the p-center problem. In: European Journal of Operational Research 303.1 (2022), pp. 78–98.
- [10] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph. In: Operations Research 12.3 (1964), pp. 450–459.

References IV

- [11] R. G. McGarvey and A. Thorsen. Nested-solution facility location models. In: Optimization letters 16.2 (2022), pp. 497–514.
- [12] G. M. Roodman and L. B. Schwarz. Extensions of the multi-period facility phase-out model: New procedures and application to a phase-in/phase-out problem. In: AIIE Transactions 9.1 (1977), pp. 103–107.
- [13] G. M. Roodman and L. B. Schwarz. Optimal and heuristic facility phase-out strategies. In: AIIE transactions 7.2 (1975), pp. 177–184.

Decision variables $x_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables $X_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \end{cases}$ $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$

Decision variables $X_{ij}^{h} \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ & \text{location } j \text{ in time period } h \end{cases}$ $y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$ z^h ... maximum distance between any customer i and its nearest open facility in period h

2024-03-01

Decision variables

$$x_{ij}^h \dots \begin{cases} 1 \dots \text{ if location } i \text{ is assigned to} \\ \text{location } j \text{ in time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

$$y_j^h \dots \begin{cases} 1 \dots \text{ if location } j \text{ is open in} \\ & \text{time period } h \\ 0 \dots \text{ otherwise} \end{cases}$$

 z^h ... maximum distance between any customer i and its nearest open facility in period h

(nPC1) based on Daskin 2013

min
$$\sum_{h} z^h$$
 (3a)

s.t.
$$\sum_{j \in V} y_j^h = p^h \quad \forall h \in \mathcal{H}$$
 (3b)

$$\sum_{j\in V} x_{ij}^h = 1 \qquad \forall i\in V, h\in \mathcal{H} \qquad (3c)$$

$$x_{ij}^h \leq y_j^h \qquad \forall i,j \in V, h \in \mathcal{H} \quad (3d)$$

$$\sum_{j \in V} d_{ij} x_{ij}^h \le z^h \qquad \forall i \in V, h \in \mathcal{H} \qquad \text{(3e)}$$

$$y_j^h \ge y_j^{h-1} \quad \forall h \in \mathcal{H} \setminus \{1\}$$
 (3f)

$$(x,y,z)\in |V|^2|\mathcal{H}|\times |V||\mathcal{H}| imes \mathbb{R}_{\geq 0}$$
 (39)