Quasi-isometric embeddings in higher rank groups

Rafael Potrie Universidad de la República, Uruguay September 26, 2024

Contents

1	Groups as geometric/dynamical objects	1
2	Algebra questions	1
3	Morse lemma in \mathbb{H}^2	3

1 Groups as geometric/dynamical objects

 $\Gamma < G$, G is a Lie group,, we can think $G = SL(d,\mathbb{R}), SL(d,\mathbb{C}).$ Think Γ is finitely generated.

2 Algebra questions

Burnside Problem Γ is finitely generated in G and every element is torsion, then Γ is finite.

Selberg Lema

Tits alternative

Now suppose Γ is also discrete and quasi-isometric. This makes it more geometric. We want to look at deformations of Γ within G.

Let's explain what quasi-isometric means. Γ is a finitely generated group. Let $F=\{f_i\}$ be finite and symmetric ($f\in F\iff f^{-1}\in F$) generators. So $\Gamma=\langle f_i|r_j\rangle$ where r_j are relations. Consider $\rho:\Gamma\to G$ where $\rho(f_i)$ verify the relations r_j .

We are interested in $\text{Hom}(\Gamma, G) \subseteq G^{|\Gamma|}$

We can define a distance in this group

$$d_F(\gamma,\eta)=|\eta^{-1}\gamma|_F=\inf\{n:\eta^{-1}\gamma=f_{i_1}\dots f_{i_n} \text{ with } f_{i_k}\in F\}$$

Definition A *quasi-isometric embedding* is $q:(X,d_x)\to (Y,d_y)$ such that there exist two numbers $(0,1)\ni a,b>0$ such that

$$ad_{\mathbf{x}}(\mathbf{x},\mathbf{x}') - b < d_{\mathbf{y}}(\mathbf{x},\mathbf{q}(\mathbf{x}')) < a^{-1}d_{\mathbf{x}}(\mathbf{x},\mathbf{x}'+b)$$

Now we put $\rho : \Gamma \to \text{Isom}(X)$ so thinking of G as Isom(X)

Definition The *orbit map* for $\mathfrak{x} \in X$ is $\Phi : \gamma \mapsto \rho(\gamma)(\mathfrak{x})$. And ρ is quasi-isometric if the orbit map is a *quasi-isometric embedding*

Example (Teichmüler space)

$$\Gamma = \pi_1(S_g) = \left\langle a_1, b_1, \dots, a_g, b_g : \prod_i [a_i, b_i] = id \right\rangle$$

These representations are very well studied:

$$Isom(\mathbb{H})\ Hom(\Gamma,PSL(2,\mathbb{R}))/\ PSL(2,\mathbb{R})\supseteq Teich(S_q)\cong \mathbb{R}^{6g-6}\cong Hom_{fd}(\Gamma,PSL(2,\mathbb{R}))/\ PSL(2,\mathbb{R})$$

where Teich S_g is the space of hyperbolic metrics in S_g modulo isotopy. (See Svarc-Milnor).

Example (Hyperbolic space) Recall that SO(1,2) are the isometries of a quadratic form of signature (1,2) acting on \mathbb{R}^3 . These preserve the cone Q=0, and its interior. Restrict Q to the hyperboloid Q=1 inside the cone Q=0 to obtain a Riemannian manifold. Also you can intersect the cone at the plane z=0 to obtain the Klein model. Its metric is a logarithm of another metric.

Now do

$$\pi_1(S_g) \xrightarrow{\text{faithful (=injective) discrete}} SO(1,2) \hookrightarrow SL(3,\mathbb{R})]$$

See Hitchin. Using Higgs bundles and so on, the topology of (?) \mathbb{R}^{12g-12} was understood.

Theorem (Labourie) In all the connected components of the deformation space the embedding is quasi-isometric.

Question (Misha) Are there examples other than SL? Consider

$$\pi_1(S) \longrightarrow PSL(2,\mathbb{R}) \longrightarrow PSL(d,\mathbb{R})$$

And also

$$\pi_1(S) \xrightarrow{\ \rho_0 \ } PSL(2,\mathbb{R}) \ \longleftrightarrow \ SL(3,\mathbb{R})$$

Labourie introduced the notion of Anosov representation to show that sometimes being qi is an open property.

This is related to IMPA:

Theorem (Mañe, Bonatti-Diaz-Pujals) Robust "things" ⇒ dominated splitting, which is an open condition.

Looks like there is a dynamical system related to the space of "geodesics" insde $\Gamma = \pi_1(S) = \{F : \prod [a_i, b_i] = id\}$. This notion of geodesics, as I understand, is given by how far a word is from another word.

I think these geodesics are $\{f_{i_k}\}\subset F^\mathbb{Z}$ with $F=\{a_1^{\pm 1},b_1^{\pm 1},\ldots,a_g^{\pm 1},b_g^{\pm 1}\}$ with $|f_{i_k}\ldots f_{i_{k+\ell}}|=\ell$. Being QI implies

$$\|\rho_0(f_{i_k}\dots f_{i_{k+\ell}}\| > e^{k\ell}$$

Definition i-*domination*. $F: \Lambda \to \Lambda$, $\Phi: \Lambda \to SL(d, \mathbb{R})$ cocycle, $\Phi^{(n)} = \Phi(T^{n-1}(x)) \dots \Phi(x)$. Φ has i-*dominated splitting* if the i-th singular value is bigger than the (i+1)-th singular value, ie.

$$\exists c > 0, \lambda > 1 \text{ st } \forall x \in \Lambda \frac{\sigma_i(\Phi^{(n)}(x))}{\sigma_{i+1}(\Phi^{(n)})} > c\lambda^n$$

(Actually I think this is an equivalence by Bochi-Gourmelon).

Theorem (KLP,BPS) i-dom \implies Γ is word-hyperbolic

Definition (Rafael and collaborators=BPS) $\rho: \Gamma \to SL(d, \mathbb{R})$ is i-*Anosov* if the cocycle

$$\varphi: \Lambda \to SL(d,\mathbb{R})/\Phi(\{f_i\}) = \rho(f_0)$$

where Λ is the space of geoesics, has an i-dominated splitting.

Question Is being anosov a consequence of being faithful discrete (representation?)?

Question Take the free group on three generators inside $SL(3,\mathbb{R})$. Its robust quasi-isometric. Is it anosov?

3 Morse lemma in \mathbb{H}^2

Definition A sequence of points $\{a_n\}$ in \mathbb{H}^2 is an (a,b)-quasi geodesic if

$$a|n-m|b < d_{\mathbb{H}^2}(\alpha_n,\alpha_m) < \alpha^{-1}|n-m|b$$

Lemma (Morse) $\forall (a,b) \exists k := k(a,b)$ so that $\forall (a,b)$ -quasi geodesic $\{a_n\}$ there exists $\gamma : \mathbb{R} \to \mathbb{H}^2$ geodesic such tat $d(\gamma(n), a_n) < k$.

We wish to understand what happens in higher dimension.