Topology Qualifying Exam Notes

D. Zack Garza

Friday 29th May, 2020

Contents

1	Theorems 1.1 Van Kampen	1
2	General Topology	2
3	Algebraic Topology 3.1 Homology:	2 2
4	References	3
5	Definitions	3
6	Examples	3
7	Theorems	3
8	Unsorted 8.1 Definitions	4
	8.2 Sandbox of Spaces	
	8.3 Definitions	
	8.4 Common Spaces and Operations	
	8.5 Theorems	

1 Theorems

1.1 Van Kampen

If $X = U \bigcup V$ where $U, V, U \bigcap V$ are all path-connected then

$$\pi_1(X) = \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: If we have presentations

$$\pi_1(U, w) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, w) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \langle u_{1}, \dots, u_{k}, v_{1}, \dots, v_{m} \rangle$$

$$\mod \langle \alpha_{1}, \dots, \alpha_{l}, \beta_{1}, \dots, \beta_{n}, I(w_{1}) J(w_{1})^{-1}, \dots, I(w_{p}) J(w_{p})^{-1} \rangle$$

$$= \frac{\pi_{1}(U) * \pi_{1}(B)}{\langle \{I(w_{i})J(w_{i})^{-1} \mid 1 \leq i \leq p\} \rangle}$$

where

$$I: \pi_1(U \cap V, w) \to \pi_1(U, w)$$
$$J: \pi_1(U \cap V, w) \to \pi_1(V, w).$$

Revised May 2006.

The weight of topics on the exam should be about 1/3 general topology and 2/3 algebraic topology.

2 General Topology

- Topological spaces, continuous functions, product and quotient topology [1, ch. 2]
- Connectedness and compactness [1, ch. 3]
- Countability and separation axioms, Urysohn lemma, Tietze theorem [1, ch. 4, except §36]
- Complete metric spaces and function spaces [1, §43, 45]

3 Algebraic Topology

- Classification of surfaces [2, ch. I]
- Fundamental group [2, ch. II], [3, §1.1]
- van Kampen's theorem [2, ch. III, IV], [3, §1.2]
- Classification of covering spaces [2, ch. V], [3 §1.3]

3.1 Homology:

- Simplicial, singular, cellular; computations and applications [3, ch. 2], [4, ch. 4]
- Degree of a map $S^n \longrightarrow S^n$ [3, p. 134], [4, §21]
- Euler characteristic [3, p. 146]
- Lefschetz fixed point theorem [3, p. 179], [4, §22]

4 References

- [1] J. Munkres, Topology, second edition, Prentice-Hall, 2000.
- [2] W. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, 1991.
- $\bullet~[3]$ A. Hatcher, Algebraic Topology , Cambridge U. Press, 2002.
 - Revisions and corrections http://www.math.cornell.edu/~hatcher/AT/ATpage.html
- [4] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.

5 Definitions

Basis: A subset $\{B_i\}$ is a basis iff

- $x \in X \implies x \in B_i$ for some i.
- $x \in B_i \cap B_j \implies x \in B_k \subset B_i \cap B_k$.
- Topology generated by this basis: $x \in N_x \implies x \in B_i \subset N_x$ for some i.

Dense: A subset $Q \subset X$ is dense iff $y \in N_y \subset X \implies N_y \cap Q \neq \emptyset$ iff $\overline{Q} = X$.

6 Examples

The cofinite topology:

- Non-Hausdorff
- Compact

The discrete topology:

- Discrete iff points are open
- Always Hausdorff
- Compact iff finite
- Totally disconnected
- If the domain, every map is continuous

The indiscrete topology:

- Only open sets are \emptyset, X
- Non-Hausdorff
- If the codomain, every map is continuous
- Compact

Non-Hausdorff spaces:

- The cofinite topology on any infinite set.
- $\bullet \mathbb{R}/\mathbb{Q}$
- The line with two origins.

7 Theorems

Theorem: Points are closed in T_1 spaces.

Theorem: A metric space X is sequentially compact iff it is complete and totally bounded.

Theorem: A metric space is totally bounded iff every sequence has a Cauchy subsequence.

Theorem: A metric space is compact iff it is complete and totally bounded.

Theorem (Baire): If X is a complete metric space, then the intersection of countably many dense open sets is dense in X.

Theorem: A continuous bijective open map is a homeomorphism.

Theorem: A closed subset A of a compact set B is compact.

Proof:

- Let $\{A_i\} \rightrightarrows A$ be a covering of A by sets open in A.
- Each $A_i = B_i \cap A$ for some B_i open in B (definition of subspace topology)
- Define $V = \{B_i\}$, then $V \rightrightarrows A$ is an open cover.
- Since A is closed, $W := B \setminus A$ is open
- Then $V \bigcup W$ is an open cover of B, and has a finite subcover $\{V_i\}$
- Then $\{V_i \cap A\}$ is a finite open cover of A.

Theorem: The continuous image of a compact set is compact.

Theorem: A closed subset of a Hausdorff space is compact.

8 Unsorted

8.1 Definitions

- Neighborhood: A neighborhood of a point x is any open set containing x.
- Hausdorff
- Second Countable: admits a countable basis.
- Closed (several characterizations)
- Closure in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.
- Bounded
- Compact: A topological space (X, τ) is **compact** if every open cover has a *finite* subcover. That is, if $\{U_j \mid j \in J\} \subset \tau$ is a collection of open sets such that $X \subseteq \bigcup_{j \in J} U_j$, then there exists

a finite subset
$$J' \subset J$$
 such that $X \subseteq \bigcup_{j \in J'} U_j$.

- Locally compact For every $x \in X$, there exists a $K_x \ni x$ such that K_x is compact.
- Connected: There does not exist a disconnecting set $X = A \coprod B$ such that $\emptyset \neq A, B \subsetneq$, i.e. X is the union of two proper disjoint nonempty sets. Equivalently, X contains no proper nonempty clopen sets.
 - Additional condition for a subspace $Y \subset X$: $\operatorname{cl}_Y(A) \cap V = A \cap \operatorname{cl}_Y(B) = \emptyset$.

- Locally connected: A space is locally connected at a point x iff $\forall N_x \ni x$, there exists a $U \subset N_x$ containing x that is connected.
- Retract: A subspace $A \subset X$ is a retract of X iff there exists a continuous map $f: X \longrightarrow A$ such that $f \Big|_{A} = \mathrm{id}_{A}$. Equivalently it is a left inverse to the inclusion.
- Uniform Continuity: For $f:(X,d_x)\longrightarrow (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

• Lebesgue number: For (X, d) a compact metric space and $\{U_{\alpha}\} \rightrightarrows X$, there exist $\delta_L > 0$ such that

$$A \subset X$$
, diam $(A) < \delta_L \implies A \subseteq U_\alpha$ for some α .

- Paracompact
- Components: Set $x \sim y$ iff there exists a connected set $U \ni x, y$ and take equivalence classes.
- Path Components: Set $x \sim y$ iff there exists a path-connected set $U \ni x, y$ and take equivalence classes.
- Separable: countable dense subset.
- Limit Point: For $A \subset X$, x is a limit point of A if every punctured neighborhood P_x of x satisfies $P_x \cap A \neq \emptyset$, i.e. every neighborhood of x intersects A in some point other than x itself. Equivalently, x is a limit point of A iff $x \in \operatorname{cl}_X(A \setminus \{x\})$.

8.2 Sandbox of Spaces

- Finite discrete sets with the discrete topology
- Subspaces of \mathbb{R} : $(a,b),(a,b],(a,\infty)$, etc.

$$- \{0\} \bigcup \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1} \right\}$$

- 0
- The topologist's sine curve
- One-point compactifications
- \mathbb{R}^{ω}

Alternative topologies to consider:

- Cofinite
- Discrete and Indiscrete
- Uniform

8.3 Definitions

• Topology: arbitrary unions, finite intersections

8.4 Common Spaces and Operations

Spaces

$$S^n, \mathbb{D}^n, T^n \mathbb{RP}^n, \mathbb{CP}^n, M, K, \Sigma_g, \mathbb{RP}^\infty, \mathbb{CP}^\infty.$$

- \bullet Knot complements in S^3
- Lens spaces
- Prism spaces
- \mathbb{HP}^n
- Dunce Cap
- Matrix groups
- Pair of pants
- Covering spaces (hyperbolic geometry)
- Seifert surfaces
- Surgery
- Hawaiian earring
- Horned sphere
- \bullet Cantor set
- Simplicial Complexes
 - Nice minimal example:

Operations

- Cartesian product $A \times B$
- Wedge product $A \vee B$

- Connect Sum A # B
- Quotienting A/B
- Puncturing $A \setminus \{a_i\}$
- Smash product
- Join
- Cones
- Suspension
- Loop space
- Identifying a finite number of points

8.5 Theorems

General Topology

- Closed subsets of Hausdorff spaces are compact? (check)
- Cantor's intersection theorem?
- Tube lemma
- Properties pushed forward through continuous maps:
 - Compactness?
 - Connectedness (when surjective)
 - Separability
 - Density **only when** f is surjective
 - Not openness
 - Not closedness
- A retract of a Hausdorff/connected/compact space is closed/connected/compact respectively.

Proposition 8.1.

A continuous function on a compact set is uniformly continuous.

Proof.

Take $\left\{B_{\frac{\varepsilon}{2}}(y) \mid y \in Y\right\} \rightrightarrows Y$, pull back to an open cover of X, has Lebesgue number $\delta_L > 0$, then $x' \in B_{\delta_L}(x) \implies f(x), f(x') \in B_{\frac{\varepsilon}{2}}(y)$ for some y.

- Lipschitz continuity implies uniform continuity (take $\delta = \varepsilon/C$)
 - Counterexample to converse: $f(x) = \sqrt{x}$ on [0, 1] has unbounded derivative.
- Extreme Value Theorem: for $f: X \longrightarrow Y$ continuous with X compact and Y ordered in the order topology, there exist points $c, d \in X$ such that $f(x) \in [f(c), f(d)]$ for every x.

Algebraic Topology

Theorem 8.2 (Van Kampen).

The pushout is the northwest colimit of the following diagram

$$A \coprod_{Z} B \longleftarrow A$$

$$\iota_{A} \uparrow$$

$$B \longleftarrow_{\iota_{B}} Z$$

For groups, the pushout is given by the amalgamated free product: if $A = \langle G_A \mid R_A \rangle$, $B = \langle G_B \mid R_B \rangle$, then $A *_Z B = \langle G_A, G_B \mid R_A, R_B, T \rangle$ where T is a set of relations given by $T = \{\iota_A(z)\iota_B(z)^{-1} \mid z \in Z\}$.

Example: $A = \mathbb{Z}/4\mathbb{Z} = \langle x \mid x^4 \rangle$, $B = \mathbb{Z}/6\mathbb{Z} = \langle y \mid x^6 \rangle$, $Z = \mathbb{Z}/2\mathbb{Z} = \langle z \mid z^2 \rangle$. Then we can identify Z as a subgroup of A, B using $\iota_A(z) = x^2$ and $\iota_B(z) = y^3$. So

$$A *_{Z} B = \langle x, y \mid x^{4}, y^{6}, x^{2}y^{-3} \rangle$$

Suppose $X = U_1 \bigcup U_2$ such that $U_1 \cap U_2 \neq \emptyset$ is path connected. Then taking $x_0 \in U := U_1 \cap U_2$ yields a pushout of fundamental groups

$$\pi_1(X; x_0) = \pi_1(U_1; x_0) *_{\pi_1(U:x_0)} \pi_1(U_2; x_0).$$