Санкт-Петербургский политехнический университет Петра Великого Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе

Дисциплина: Телекоммуникационные технологии **Тема**: Аналоговая, частотная и фазовая модуляция.

Выполнил студент гр. 33501/4 Преподаватель

Мальцев М.С. Богач Н.В.

Санкт-Петербург20 апреля 2018 г.

0 Содержание

1	Цель работы	2
2	Постановка задачи	2
3	Теоретический раздел 3.1 Сигналы	3
4	Ход работы 4.1 Моделирование синусоидального сигнала	3 3
5	Выводы	4
6	Используемые материалы	4
7	Приложение	4

1 Цель работы

Изучение амплитудной частотной и фазовой модуляции/демодуляции сигнала.

2 Постановка задачи

- 1. Сгенерировать однотональный сигнал низкой частоты.
- 2. Выполнить амплитудную модуляцию (АМ) сигнала по закону

$$u(t) = (1 + MU_m cos(\Omega t))cos(\omega_0 t + \phi_0)$$

для различных значений глубины модуляции М. Используйте встроенную функцию $\mathrm{MatLab}\ ammod.$

Выполнить фазовую модуляцию/демодуляцию сигнала по закону

$$u(t) = U_m cos(\Omega t + ks(t))$$

используя встроенную функцию MatLab pmmod, pmdemod

- 3. Получить спектр модулированного сигнала.
- 4. Выполнить модуляцию с подавлением несущей.

$$u(t) = MU_m cos(\Omega t) cos(\omega_0 t + \phi_0)$$

получить спектр.

5. Выполнить однополосную модуляцию:

$$u(t) = U_m cos(\Omega t) cos(\omega_0 t + \phi_0) + \frac{U_m}{2} \sum_{n=1}^{N} M_n (cos(\omega_0 + \Omega_n)t + \phi_0 + \Phi_n)$$

положив n=1.

6. Выполнить частотную модуляцию/демодуляцию по закону

$$u(t) = U_m cos(\omega_0 t + k \int_0^t s(t)dt + \phi_0)$$

используя встроенные функции MatLab fmmod, fmdemod.

- 7. Выполнить синхронное детектирование и получить исходный однополосный сигнал.
- 8. Рассчитать КПД модуляции.

$$\eta_{AM} = \frac{U_m^2 M^2 / 4}{P_U} = \frac{M^2}{M^2 + 2}$$

- 3 Теоретический раздел
- 3.1 Модуляция сигнала
- 4 Ход работы
- 4.1 Моделирование синусоидального сигнала
- 4.1.1 Получение непрерывного сигнала

Рис. 4.1: Полученный спектр для дискретного прямоугольного сигнала. Окно Spectrum Analyzer.

Рис. 4.2: Время затрачиваемое на кросс-корреляцию в зависимости от длины посылки

5 Выводы

6 Используемые материалы

1. Signal (Wikipedia)

7 Приложение