

dbt meetup

From data engineer to analytics engineering

Analytics engineering is the data transformation work that happens between loading data into your warehouse and analyzing it.

- dbt

Agenda

- Who we are
- Leaving data engineering behind
- What is an analytics engineer?
- Airtaskers journey
- Our setup, challenges and learnings
- Tip: Cloning prod with Snowflake and dbt

Dan

Data Lead at Airtasker

Initial background in enterprise data warehouse consulting

Prior to AT was a Data Platform lead for Domain

Rif

Analytics Engineer at Airtasker

Varied background with last few years in project and product management

Previously at CSIRO/Data61

Leaving data engineering behind

Trends

New tools automating away mundane data engineering tasks

Analysts now have tools they can leverage to fast track data to insights

Trends

These trends help data teams move much **faster** and improve **quality**

Implications

Need to revisit the **composition** of data teams

Data engineering focuses on data infrastructure

Analytics engineering focuses on creating **actionable** data

Both roles act as **force multipliers**

Data engineering

Analytics engineering

Business Users

10 x

10 x

The analytics engineer role

- Strategic partner for business and its various functions
- Technical ownership from the data warehouse through to BI reports and dashboards
- Leverages software engineering practices and tooling approaches

Analytics engineer roles in the wild - Netflix

You are...

- A strong communicator who can own and deepen direct relationships with our business partners
- A senior analytics professional with a proven track record of **data** wrangling, analysis, reporting & visualization
- Comfortable with ambiguity; able to thrive with minimal oversight and process
- An expert in a data-oriented programming language (e.g. SQL, Python, R, Scala, etc.)

Analytics engineer roles in the wild - Pymetrics

Requirements...

- Experience implementing best-practices for data modelling, especially with regards to dimensional modelling for business intelligence. Experience with DBT is a plus.
- Experience with SQL-first, self-service visualization tools such as Mode Analytics, Tableau, Looker
- High level of comfort with SQL and proficiency in Python and its scientific libraries (pandas, scipy etc.)
- Experience with git and git-based workflows

Analytics engineer skills

- Software engineering practices (maintainable code, testing, CI/CD)
- SQL patterns
- Data oriented language (e.g. Python, R, Scala)
- Git and bash
- Database fundamentals and performance optimisation
- Data modelling (or dimensional modelling)
- Visual data communication
- Business analysis

Data Tribe @ Airtasker

- 3 x Analytics Engineers
- 2 x Data Scientists
- 1 x Software Engineer
- 1 x Data Analyst
- 1x Product Manager

Domain & Luigi

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

Domain & Luigi

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

Domain & Luigi

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

Domain & Luigi

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration and pipelines

Domain & Luigi

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration

- Custom built ETL
- Processing real time event streams
- Custom load strategies
- Python skills
- Customised orchestration

Our Setup

- Run dbt using Docker
- Snowflake is our data warehouse
- Scheduling is done via dbtcloud
- Every Github pull request has a full run and tests performed against it in a CI database which is cloned from prod
- We use macros sparingly as we've found them to decrease readability and clarity of intent in the models
- Most table loads are full refreshes, incremental loads are used sparingly on very large tables (e.g, our event stream)

Learning 1 - Bye bye pipelines

 Independent and separated workflows were a familiar pattern, e.g. a user pipeline, a task pipeline, finance pipeline, hourly pipeline, daily pipeline, etc, scheduled at different times based on source ingestion timeframes

Learning 1 - Bye bye pipelines

- datawarehouse
- location
- marketing
- offer
- **payment**
- poster
- seo
- support
- **task**
- ► **task_category**
- **tasker**
- user

Learning 1 - Bye bye pipelines

- Race conditions created failing tests
- Dbt works best when everything runs together
- We now have a single load that runs every 4 hours

Learning 2 - Thinking in layers

Our DAG has gotten large and complicated

DATA WAREHOUSE LAYERS

a historical view.

Learning 2 - Thinking in layers

We restructured our project to align with our

thinking

Learning 2 - Thinking in layers

 One of the team has developed a linter (i.e. code checker) that checks the DAG produced conforms to our desired conventions

```
RROR forbidden dependency: model.airtasker.<u>stg subscription task</u> (core_staging) depends on model.airtasker.<u>stg task primary locality</u> (staging)

ERROR forbidden dependency: model.airtasker.<u>stg subscription task</u> (core_staging) depends on model.airtasker.<u>core locality</u> (core)

ERROR forbidden dependency: model.airtasker.<u>stg standard task</u> (core_staging) depends on model.airtasker.<u>stg task primary locality</u> (staging)

ERROR forbidden dependency: model.airtasker.<u>stg standard task</u> (core_staging) depends on model.airtasker.<u>sore locality</u> (core)

ERROR forbidden dependency: model.airtasker.<u>stg project task</u> (core_staging) depends on model.airtasker.<u>stg subtask to task map</u> (staging)

ERROR forbidden dependency: model.airtasker.<u>stg project task</u> (core_staging) depends on model.airtasker.<u>stg task primary locality</u> (staging)

ERROR forbidden dependency: model.airtasker.<u>stg project task</u> (core_staging) depends on model.airtasker.<u>sog locality</u> (core)
```


Clone prod with Snowflake & dbt

3 macros

clone_prod_and_update_permissions()
clone_schema_from_prod()
clone_schemas_to_target_db()

Pre-hooks on models for older versions of dbt < 0.14

On the upgrade path, but running into challenges.

How to use pass arguments and variables to operations?

More details

https://medium.com/airtribe

Wrap Up

Dbt is just a tool

dbt collapses the orchestration and development into a single step, meaning you can effectively data model, design and deploy with great efficiency.

But success will *still* be dictated by the quality of your models, and quality of your data

Dbt helps us go faster with more safety

Thank you