

UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS

Carrera de Ingeniería Mecatrónica

REDES INDUSTRIALES (MC38 - IM65)

LABORATORIO N°1

COMUNICACIÓN 4-20mA

Profesor:

Ing. Jorge Luis Espinoza Caballero

Integrantes:

Apellidos y Nombres	Código	Participación
Cespedes Lozano, Eduardo	u201917518	100%
Oblitas Gonzales, Mariella	u201920737	100%
Salcedo Tapara, José Efraín	u202120892	100%
Gutierrez BarriosPaolo Ruben	u201816681	100%
Cami Alejo, Luis Alberto	u20201b841	90%
Bohorquez Gallegos, Richard Andre	u201713253	100%

2024-01 Lima- Perú

REDES INDUSTRIALES MC38

LABORATORIO N°1

COMUNICACIÓN 4-20mA

1. OBJETIVOS

El estudiante será capaz de reconocer un módulo analógico de 4-20mA y poder configurar el PLC para la lectura de su respectivo valor.

2. INTRODUCCIÓN

Los sistemas de 4-20 mA son utilizados para la transmisión de señales de control en aplicaciones industriales. Estos sistemas funcionan mediante la corriente de bucle, donde un valor de corriente entre 4 mA y 20 mA representa un rango específico de medición. Esta tecnología es ampliamente utilizada debido a su confiabilidad y capacidad para resistir interferencias. Los sistemas de 4-20 mA son especialmente útiles en entornos industriales donde se requiere una transmisión de señal estable y precisa.

En un sistema de 4-20 mA, la corriente eléctrica varía linealmente con respecto a la cantidad que se está midiendo o controlando. En general, se utiliza un rango de 4 mA para representar el valor mínimo o fuera de rango, mientras que 20 mA representa el valor máximo o la condición de alarma. El rango de 4 a 20 mA se usa comúnmente porque permite distinguir fácilmente entre una condición normal y una situación de alarma o falla.

Algunas de las principales ventajas de los sistemas 4-20 mA son:

- Inmunidad al ruido electromagnético: Al ser una señal de corriente, no es afectada por interferencias electromagnéticas como lo son las señales de voltaje.
- Transmisión de largas distancias: Pueden transmitir señales de forma confiable a distancias de hasta varios kilómetros.
- Detección de fallas: El rango de 4-20 mA permite detectar fácilmente circuitos abiertos o cortocircuitos.
- Simplicidad: Sólo requieren un par de hilos para la transmisión de la señal.

Los sistemas 4-20 mA son comúnmente utilizados en sensores de proceso como transmisores de presión, temperatura, flujo, nivel y otras variables de proceso en plantas industriales, edificios inteligentes, sistemas de control ambiental, entre otros.

3. DESARROLLO

Para llevar a cabo la conexión del laboratorio, se utilizará los siguientes componentes:

Componente	Funcionalidad	Precio (S/)	Imagen	
módulo de hart/4- 20mA SITRANS TH300	convierte señales de temperatura en señales digitales HART, permitiendo comunicación bidireccional con dispositivos de control. Está diseñado para soportar todos los termopares, resistencias y sensores de milivoltios comunes. Posee lectura directa de la corriente de salida con un multímetro sin tener que abrir el bucle de 4 - 20 mA.	554.50 Soles	SI MINO	
RTD PT100 de 3 hilos	Es un sensor de temperatura altamente preciso utilizado en diversas aplicaciones industriales. Su diseño de 3 hilos compensa la resistencia del cableado para mediciones más exactas.	40 Soles		
PLC S7-1200	Supervisa y controla dispositivos y maquinaria en tiempo real, basado en la lógica programada por el usuario. Ofrece una interfaz de programación intuitiva (Tia Portal - HMI, Simatic Step 7) y diversas opciones de comunicación	1200 - 2100 Soles	Process Bridge	

Tabla de Componentes, Elaboración Propia 2024

a) Desarrollar el esquema eléctrico de conexión entre el módulo de hart/4- 20mA SITRANS TH300 y el sensor RTD PT100 de 3 hilos.

Esquema eléctrico de conexión para el sensor RTD PT100

El esquema eléctrico de conexión entre el módulo SITRANS TH300 y el sensor RTD PT100 de 3 hilos se desarrolla siguiendo las especificaciones detalladas en el manual proporcionado por el fabricante. Este esquema garantiza una correcta lectura y transmisión de la temperatura medida. Se debe seguir el siguiente proceso: Conectar los cables de la fuente de energía adicional a los terminales marcados "1" (+) y "2" (-). Verificar que la polaridad sea la adecuada. El dispositivo está diseñado con protección contra posibles errores en la polaridad.

Fig 01: Esquema eléctrico con módulo SITRANS TH300 y el RTD PT100

b) Desarrollar el esquema eléctrico de conexión entre el PLC S7-1200 y el módulo TH300 Hart.

Esquema eléctrico de conexión entre el PLC S7-1200 y el módulo TH300 Hart

El esquema eléctrico de conexión entre el PLC S7-1200 y el módulo TH300 Hart se establece conforme a las instrucciones proporcionadas en el manual correspondiente. Este esquema asegura una comunicación efectiva entre el PLC y el módulo para la adquisición de datos de temperatura.

Fig 02: Esquema eléctrico con módulo SITRANS TH300, RTD PT100 y PLC S7-1200

Fig 03: Ecuaciones por ley de Ohm

Parámetros de entrada y salida de los bloques de funciones del PLC S7-1200

Los parámetros de entrada y salida de los bloques de funciones del PLC S7-1200 se configuran de acuerdo a las necesidades específicas del sistema. Para convertir la señal de entrada en un valor de temperatura medido, se utilizan los bloques de funciones adecuados, considerando factores como el rango de temperatura, la precisión requerida y las características del sensor utilizado.

Tabla A- 159 Representación de entradas analógicas de tensión (SB y SM)

Sistema	istema Rango de medida de tensión					
Decimal	Hexadecimal	±10 V	±5 V	±2,5 V	±1,25 V	
32767	7FFF	11,851 V	5,926 V	2,963 V	1,481 V	Rebase por exceso
32512	7F00					
32511	7EFF	11,759 V	5,879 V	2,940 V	1,470 V	Rango de
27649	6C01					sobreimpulso
27648	6C00	10 V	5 V	2,5 V	1,250 V	Rango nominal
20736	5100	7,5 V	3,75 V	1,875 V	0,938 V	
1	1	361,7 μV	180,8 μV	90,4 μV	45,2 μV	
0	0	0 V	0 V	0 V	0 V	
-1	FFFF					
-20736	AF00	-7,5 V	-3,75 V	-1,875 V	-0,938 V	
-27648	9400	-10 V	-5 V	-2,5 V	-1,250 V	
-27649	93FF					Rango de
-32512	8100	-11,759 V	-5,879 V	-2,940 V	-1,470 V	subimpulso
-32513	80FF					Rebase por defecto
-32768	8000	-11,851 V	-5,926 V	-2,963 V	-1,481 V	

Tabla A- 160 Representación de entradas analógicas de intensidad (SB y SM)

Sistema			Rango de medida de i	Rango de medida de intensidad	
Decimal	Hexadecimal	De 0 mA a 20 mA	De 4 mA a 20 mA		
32767	7FFF	23,70 mA	22,96 mA	Rebase por exceso	
32512	7F00				
32511	7EFF	23,52 mA	22,81 mA	Rango de sobreimpulso	
27649	6C01				
27648	6C00	20 mA	20 mA	Rango nominal	
20736	5100	15 mA	16 mA		
1	1	723,4 nA	4 mA + 578,7 nA		
0	0	0 mA	4 mA		
-1	FFFF			Rango de subimpulso	
-4864	ED00	-3,52 mA	1,185 mA		
-4865	ECFF			Rebase por defecto	
-32768	8000				

Tabla 7-89 Instrucciones SCALE_X y NORM_X

KOP / FUP	SCL	Descripción
SCALE_X Real to ??? - EN ENO - MIN OUT - VALUE - MAX	<pre>out :=SCALE_X (min:=_in_,</pre>	Escala el parámetro VALUE real normalizado (donde 0,0 <= VALUE <= 1,0) al tipo de datos y rango de valores especificados por los parámetros MIN y MAX: OUT = VALUE (MAX - MIN) + MIN
NORM_X ??? to Real = EN ENO - MIN OUT - VALUE - MAX	<pre>out :=NORM_X(min:=_in_,</pre>	Normaliza el parámetro VALUE dentro del rango de valores especificado por los parámetros MIN y MAX: OUT = (VALUE - MIN) / (MAX - MIN), donde (0,0 <= OUT <= 1,0)

Características del PLC s7-1200

4. APLICACIONES EN LA INDUSTRIA

Los sistemas de 4-20 mA se aplican en una amplia gama de industrias. Su uso permite el monitoreo y control preciso de variables críticas para el proceso, contribuyendo a mejorar la eficiencia y la seguridad operativa.

Industria	¿Como Opera?	Imagen referencial
Industria Quimica y Petroquimica	El módulo de Hart/4-20mA SITRANS TH300 Podria utilizarse para monitorear y controlar la temperatura en reactores, asimismo, torres de destilacion. Suponiendo una planta de petroleo, el sensor RTD PT100 de 3 hilos puede instalarse al horno para medicion de temperatura. La conexión eléctrica entre el sensor y el módulo TH300 Hart permitiría al PLC S7-1200 recibir y procesar datos de temperatura en tiempo real, lo que facilita el control en la industria	
Industria de Plastico y Caucho	En la fabricación de productos plásticos y de caucho, el control de la temperatura es crucial para asegurar la calidad y la consistencia del producto final. El módulo TH300 Hart junto con sensores RTD PT100 de 3 hilos podrían utilizarse para controlar la temperatura en extrusoras, moldes de inyección y sistemas de enfriamiento. Esto permitiría al PLC S7-1200 mantener condiciones óptimas de temperatura y mejorar la eficiencia del proceso de producción.	
Industria Farmaceutica	En productos farmacéuticos, mantener condiciones de temperatura controladas y documentadas es vital para la seguridad del producto. El módulo TH300 Hart y RTD PT100 de 3 hilos podrían utilizarse para monitorear y registrar la temperatura en autoclaves, fermentadores y cámaras de almacenamiento. La conexión con el PLC S7-1200 permitiría un control preciso del proceso y la generación de registros de datos para cumplir con los requisitos regulatorios.	
Industria Metalúrgica	En la fundición y procesamiento de metales el módulo TH300 Hart con sensores RTD PT100 de 3 hilos podrían utilizarse para monitorear la temperatura en hornos de fusión, equipos de forja y sistemas de enfriamiento. Esto permitiría al PLC S7-1200 ajustar automáticamente los parámetros de proceso para optimizar la producción y reducir errores	
Industria Alimentaria	En la producción de alimentos y bebidas, mantener un control de la temperatura en diferentes etapas del proceso, como la fermentación, la cocción y el enfriamiento. El módulo TH300 Hart podría utilizarse con sensores RTD PT100 de 3 hilos para monitorear la temperatura en tanques de fermentación, ollas de cocción y sistemas de enfriamiento. El PLC S7-1200 podría utilizar estos datos de temperatura para ajustar automáticamente los parámetros del proceso y garantizar la calidad del producto final	
Industria de energia	Tanto en plantas termoeléctricas como en plantas nucleares, el módulo TH300 y RTD PT100 de 3 hilos podrían utilizarse para monitorear la temperatura en calderas, intercambiadores de calor y sistemas de refrigeración. Esto permitiría al PLC S7-1200 detectar y responder rápidamente a cualquier desviación en la temperatura, ayudando a prevenir fallos y asegurar la continuidad de la producción	

Tabla de Variables Utilizada

- I = Entradas
- $\mathbf{O} = \text{Salidas}$
- $\mathbf{M} = \mathbf{M}$ emoria

Tabla de Variables, Elaboración Propia 2024

5. RECOMENDACIONES

Es fundamental realizar un adecuado mantenimiento y calibración de los sistemas de 4-20 mA para garantizar su correcto funcionamiento a lo largo del tiempo. Además, se recomienda seguir estrictamente las especificaciones y recomendaciones del fabricante en cuanto a la instalación y configuración de los equipos.

- De acuerdo a los cálculos se aplicó la ley de OHM, por ende de acuerdo al esquemático eléctrico se escogió una fuente de 10V y una resistencia de 500 ohm. Aplicando la ley de ohm (V = I x R) se determina 10 V = I x 500, eso nos da un valor de 0,02 que vendría a ser 20mA. Tal y como indica nuestro laboratorio se está evaluando la comunicación del TH300, PT100 y PLC.
- La comunicación HART utiliza señales digitales superpuestas a la señal analógica 4 20mA. Por ende, es factible utilizar una resistencia de 500 ohm ya que si usaramos una de 250 ohm sería el mínimo necesario. Funcionaria, sin embargo aplicando la resistencia de 500 ohm, podemos garantizar un mejor margen para la señal HART, ya que es beneficioso en entornos con altos ruidos eléctricos ya que estamos brindando los 20mA.
- Se recomienda seguir el conexionado eléctrico propuesto para un buen funcionamiento y conexión tanto del PLC-S71200, Sensor TH300 y PT100. Asimismo verificar las características del PLC para entender mejor la razón del porque se ha conectado de esa manera. Cabe mencionar, que el PLC resiste un voltaje de 220 240V por esa razón se colocó una fuente de 220V en la alimentación Eléctrica.

REDES INDUSTRIALES MC38

LABORATORIO Nº2

COMUNICACIÓN HART

1. OBJETIVOS

El estudiante podrá reconocer el módulo HART y configurar el PLC para su comunicación.

2. INTRODUCCIÓN

La comunicación en entornos industriales es crucial para el monitoreo y control efectivo de procesos y dispositivos. Uno de los protocolos ampliamente utilizados en este contexto es el protocolo HART, diseñado para la comunicación bidireccional con instrumentos de campo inteligentes. El protocolo HART combina la comunicación digital y analógica para permitir la transmisión de datos de proceso y diagnóstico entre un sistema de control y dispositivos de campo inteligentes.

El protocolo Hart usa el protocolo FSK estándar para superponer señales de comunicación digitales de bajo nivel por encima de las señales de 4-20mA. Algunos beneficios de utilizar la tecnología Hart.

- El protocolo Hart proporciona acceso a una gran variedad de información adicional como variables, diagnósticos, calibración, etc. proporcionados por los dispositivos de campo inteligentes que emplean esta tecnología.
- Comunicación analogica y digital simultánea
- El protocolo HART es de aplicación mundial y tiene aceptación en los diferentes mercados y sectores. Independiente de fabricantes y proveedores, proporciona comunicación abierta mediante comandos establecidos y estandarizados.

3. DESARROLLO

a) Desarrollar el esquema eléctrico de conexión entre el PLC S7-300 y el módulo TH300 Hart. Según Manual

Esquema eléctrico con módulo SITRANS TH300, RTD PT100 y PLC S7-300

SE CONECTA A LA EXPANSIÓN ANALÓGICA DEL PLC MEDIANTE UNA RESISTENCIA DE 250 OHMS AL NEGATIVO DEL SITRANS TH300. EL POSITIVO DEL TH800 SE CONECTA AL LADO POSITIVO DE LA BATERÍA Y EL LADO NEGATIVO DE LA BATERÍA SE CONECTA AL COMÚN DEL PLC según el manual.

Esquema eléctrico sacado del datasheet Transmisor de temperatura SITRANS TH200/TH300 Siemens

Módulo requerido que se adiciona al PLC y su respectivo bloque para la lectura desde el Sitrans TH300.

Módulo requerido y bloque de lectura desde el Sitrans TH300

Tensión de Alimentación	
Voltaje de Carga L+	
Valor Nominal	24V
Protección contra Polaridad Inversa	Si
Corriente de Entrada	
De la tensión de carga L+ (sin carga), máx.	20mA
Del bus de fondo 5 V CC, máx.	120mA
Tensión de salida	
Alimentación de los transmisores	
Valor nominal (CC)	24 V
Pérdida de potencia	
Pérdida de potencia, tip.	1.5W
Entradas analógicas	
Número de entradas analógicas	8
Para medición de resistencia	0
corriente de entrada admisible para entrada	40mA
de corriente (limite de destrucción), máx.	TOILE
Rangos de Entrada	
Corriente	Si
Rangos de entrada (valores nominales), corrientes	
0 a 10 mA	Si
Resistencia de entrada (0 a 20 mA)	125Ω
←20mA a 20mA	Si
Resistencia de entrada (0 a 20 mA)	125Ω
4mA a 20mA	Si
Resistencia de entrada (0 a 20 mA)	125Ω
Longitud del cable	
Blindado, máx.	800m
Generación de valores analógicos para las entradas	
Resolución con sobrerrango (bit incluido el signo), máx.	16 bits
Tiempo de integración, parametrizable	Si
Tiempo de integración (ms)	20 ms a 50 Hz; 16,6 ms a 60 Hz; 100 ms a 100 Hz
Supresión de perturbaciones de tensión para frecuencia perturbadora f1 en Hz	10/50/60 Hz

Tabla de Datos Técnicos del TH300

b) Desarrollar los bloques de programación y escalamiento en el TIA portal.

La entrada leerá una medida de tensión, las más usadas en la industria es de 0 a 10V.
 El simatic s7 300 tiene el rango de +/-10 V pero solo usaremos los valores positivos , el valor medido se traduce en un valor digital decimal. 27648 para 10V (valor máximo) y 0 para 0 V.

Sistema Rango de medición de tensión			tensión		
dec.	hex.	de 1 a 5 V	de 0 a 10 V		
32767	7FFF	5,741 V	11,852 V	Rebase por exceso	
32512	7F00				
32511	7EFF	5,704 V	11,759 V	Margen de saturación	
27649	6C01				
27648	6C00	5 V	10 V		
20736	5100	4 V	7,5 V	Rango nominal	
1	1	1 V + 144,7 μV	0 V + 361,7 μV		
0	0	1 V	0 V		
-1	FFFF			Margen de saturación por	
-4864	ED00	0,296 V	valores negativos imposibles	defecto	
-4865	ECFF			Rebase por defecto	
-32768	8000				

Representación de valores analógicos en el rango de medición de tensión de 1 a 5 V y de 0 a 10 V

• Vamos a configurar la primera entrada y salida en modo tensión de 0 a 10V, que representará el valor de la temperatura medida,

• En esta actividad escalamos el valor de la entrada analogica que representa temperatura entre -200 y 800 °C

Tabla de Variables

Módulo TH300 con comunicación HART.A

4. APLICACIONES EN LA INDUSTRIA

Industria	¿Cómo opera?	Imagen referencial
Procesos de construcción y máquinas en serie.	El PLC S7 300 junto con el módulo TH300 Hart y RTD PT100 se utilizan en procesos de construcción y en máquinas en serie para el monitoreo y control de variables críticas como la temperatura. El RTD PT100 proporciona mediciones precisas de temperatura, mientras que el módulo TH300 Hart permite la comunicación entre el PLC y dispositivos inteligentes, facilitando la supervisión y ajuste remoto de parámetros. Esto garantiza un funcionamiento eficiente y seguro de los procesos y máquinas, optimizando la producción y minimizando los riesgos.	
Líneas de producción PROFINET y PROFIBUS, descentralizadas	El PLC S7 300, con el módulo TH300 Hart y RTD PT100, opera en líneas de producción descentralizadas con PROFINET y PROFIBUS. Esto permite la integración fluida de dispositivos y sensores para monitoreo y control eficiente en tiempo real, asegurando una operación coordinada y eficiente.	
Industria alimentaria	El PLC S7 300, junto con el módulo TH300 Hart y RTD PT100, desempeña un papel fundamental en la industria alimentaria. El RTD PT100 garantiza una medición precisa de la temperatura en los procesos de producción y almacenamiento de alimentos, mientras que el módulo TH300 Hart facilita la comunicación con otros dispositivos para un control y monitoreo eficientes. Esto asegura la calidad y seguridad de los productos alimenticios al mantener condiciones óptimas de temperatura y control en todas las etapas del proceso.	
Automotriz	En la industria automotriz, el PLC S7 300 junto con el módulo TH300 Hart y RTD PT100 se emplea para supervisar y controlar procesos críticos como la fabricación de componentes, el ensamblaje de vehículos y la gestión de la cadena de suministro, asegurando precisión y eficiencia en cada etapa de producción.	
Empaquetado	En el sector del empaquetado, esta combinación de tecnologías garantiza un funcionamiento óptimo de las máquinas empacadoras, controlando el llenado, sellado y etiquetado de productos. La monitorización precisa de variables como la temperatura y la presión asegura la calidad y la integridad del empaquetado.	
Procesado de plásticos	En el procesado de plásticos, el PLC S7 300 con el módulo TH300 Hart y RTD PT100 controla las temperaturas y los tiempos de procesamiento en maquinaria como extrusoras e inyectoras, asegurando la consistencia y la calidad del producto final. Esto permite una producción eficiente y reduce el desperdicio de material.	
Esta gama se puede programar en lenguaje KOP	La capacidad de programación en lenguaje KOP del PLC S7 300 es especialmente útil en estas industrias, ya que este lenguaje, ampliamente utilizado en la industria, facilita el diseño y la implementación de sistemas de control complejos, optimizando la eficiencia y la fiabilidad de los procesos.	KOP (LD) Diagrama de contactos

Aplicaciones en industrias, Elaboración Propia 2024

5. RECOMENDACIONES

- Se aconseja implementar un nivel de protección 3 para los PLC S7-300. Esto se debe a que su documentación podría estar expuesta a riesgos mediante el software de programación o directamente desde la computadora utilizada. Al establecer esta protección, sólo quienes posean la contraseña adecuada podrán cargar o descargar contenido del PLC.
- Recomendamos la adopción de la estrategia conocida como "Protección de celdas" o bien la segmentación de la red. Esto facilitará la creación de una red del tamaño exacto de nuestro sistema de control integral, mejorando la gestión y seguridad del mismo.
- Es prudente utilizar conexiones VPN para el intercambio de datos entre las distintas celdas de la red. El uso de VPN garantizará que los datos transmitidos estén adecuadamente cifrados, protegiendo así la información de accesos no autorizados y de modificaciones ilícitas por parte de terceros.
- Por último, es importante comprobar la correcta polaridad de alimentación del PLC S7-300, así como de los módulos acoplados y de las entradas y salidas asociadas, para evitar errores de conexión que puedan afectar al funcionamiento del sistema.

6. REFERENCIAS BIBLIOGRÁFICAS

SiTrans th300: Siemens - DASTEC SRL (no date) Dastec. Available at: https://www.dastecsrl.com.ar/producto/sitrans-th300-siemens (Accessed: 04 April 2024).

RTD PT100 industrial 3 HILOS 1/4 × 12" vastago 1/2"NPT (no date) VZ Controles Industriales. Available at:

https://vzcontroles.com/producto/rtd-pt100-industrial-3hilos-1-4-x-12vastago-1-2npt-2/(Accessed: 04 April 2024).

PLC Simatic S7-1200 CPU 1214C, 14DI, 10do/trans. 2AI 0-10VDC aliment: 20,4-28,8VDC. Available at:

https://automaq.pe/producto/3829/plc-simatic-s7-1200-cpu-1214c-14di-10dotrans-2ai-0-10vdc-aliment-204-288vdc (Accessed: 04 April 2024).

Siemens Sitrans T, Transmisor de temperatura SITRANS TH200/TH300 Datasheet. Available at: A5E00393071-02es_TH200TH300_OI_es-ES.pdf

EIS Antonio Jose Cavanillas. (2018). *Sistemas programables avanzados*. Available at: https://www.emerson.com/documents/automation/training-engsch-buses-202-es-es-4 1576.pdf