1	(L)	Vrai ou	faux?	Justifier.	Soient	d,n,a	$\in \mathbb{Z}$.

- 1) 45 possède 12 diviseurs.
- **2)** Si $n \equiv 1$ [35], alors n est impair.
- **3)** Si *a* et *b* divisent *d*, alors *ab* aussi.
- **4)** Si *d* divise *ab*, alors *d* divise *a* ou *d* divise *b*.
- **5)** L'intervalle d'entiers [[1, 1000]] contient 140 entiers divisibles par 7.
- **6)** Pour tous $p, q \in \mathbb{P}$, si q p = 11: p = 2q = 13.
- 7) Si d divise n^2 , alors d divise n.
- **8)** Si $a^2 \equiv 1 \lceil n \rceil$: $a \equiv \pm 1 \lceil n \rceil$.
- **9)** Si $4a \equiv 4b$ [13]: $a \equiv b$ [13].
- **10)** Si $4a \equiv 4b$ [6]: $a \equiv b$ [6].
- 11) Si tout diviseur premier de n est congru à ± 1 modulo 8 : $n \equiv \pm 1$ [8]. Et la réciproque?

DIVISIBILITÉ, DIVISION EUCLIDIENNE **ET CONGRUENCES**

- - 1) Montrer que $2^{123} + 3^{121}$ est divisible par 11.
 - 2) Calculer le reste de la division euclidienne :
 - **a)** de 3²¹⁸⁹ par 25.
- **b)** de 49⁹⁰⁰²¹ par 13.
- 1) 9 Montrer que n(n+2)(7n-5) est divisible par 6 pour tout $n \in \mathbb{Z}$.
 - 2) Pour quels entiers $n \in \mathbb{Z}$ est-il vrai que n+1divise n + 7?
 - **3)** P Pour quelles valeurs de $n \in \mathbb{Z}$ l'entier :

$$n^2 + (n+1)^2 + (n+3)^2$$

est-il divisible par 10?

- lesquels 3p + 4 est un carré parfait.
- **5)** Pour quels $n \in \mathbb{Z}$ le produit n(n+2) est-il une puissance de 2?
- \bigcirc Soit $n \in \mathbb{N}$. On note a_0, \ldots, a_r les chiffres de la décomposition de n en base 10. Par exemple, pour n = 156: $a_0 = 6$, $a_1 = 5$ et $a_2 = 1$.
 - 1) Montrer que n est divisible par 4 si et seulement si l'entier obtenu en ne conservant que les chiffres a_0 et a_1 l'est.
 - 2) Montrer que n est divisible par 3 (resp. 9) si et seulement si la somme $a_0 + \ldots + a_r$ l'est.
 - 3) Déterminer une condition nécessaire et suffisante sur a_0, \ldots, a_r pour que *n* soit divisible par 11.
- P Soient $x, y, z \in \mathbb{Z}$.
 - 1) Montrer que $x^2 + y^2$ est divisible par 7 si et seulement si x et y le sont.
 - 2) Montrer que si $x^3 + y^3 + z^3$ est divisible par 7, l'un des entiers x, y ou z l'est aussi.

- P Montrer que $p^2 \equiv 1$ [24] pour tout $p \in \mathbb{P}$ supérieur ou égal à 5.
- P Montrer que pour tous $n \in \mathbb{N}^*$ et $a, b \in \mathbb{Z}$, si $a \equiv b \lceil n \rceil$: $a^n \equiv b^n \lceil n^2 \rceil$.
- P Montrer que $a^{2^n} \equiv 1 \lceil 2^{n+1} \rceil$ pour tous $a \in \mathbb{Z}$ impair et $n \in \mathbb{N}$.
- 1) \bigcirc \bigcirc Montrer que pour tout $n \ge 6$ pair, n divise (n-1)!.
 - **2)** P P Soit $p \in \mathbb{P}$ supérieur ou égal à 7. Montrer que (p-1)! + 1 n'est pas une puissance de p.
- $\textcircled{P} \textcircled{P} \textcircled{Soit} (u_n)_{n \in \mathbb{N}}$ une suite réelle sous-additive, i.e. pour laquelle pour tous $m, n \in \mathbb{N}$: $u_{m+n} \le u_m + u_n$. On pose $A = \left\{ \frac{u_n}{n} \middle| n \in \mathbb{N}^* \right\}$.
 - 1) On suppose *A* minoré et on pose $a = \inf A$.
 - a) Soient $n, N \in \mathbb{N}^*$. La division euclidienne de npar N s'écrit n = Nq + r pour certains $q \in \mathbb{N}$ et
 - $r \in [0, N-1]$. Montrer que : $\frac{u_n}{n} \le \frac{u_N}{N} + \frac{u_r}{n}$.

 b) En déduire que $\lim_{n \to +\infty} \frac{u_n}{n} = a$.

 2) Montrer que $\lim_{n \to +\infty} \frac{u_n}{n} = -\infty$ dans le cas où An'est pas minoré.

En résumé, la suite $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ possède toujours une limite (lemme sous-additif de Fekete).

PGCD, PPCM

ET NOMBRES PREMIERS ENTRE EUX

- \bigcirc Déterminer tous les couples $(x, y) \in \mathbb{Z}^2$ d'entiers premiers entre eux pour lesquels xy = 150.
- 12 1) Montrer que n + 1 et 2n + 1 sont premiers entre eux pour tout $n \in \mathbb{N}$.
 - 2) En déduire, grâce à $\binom{2n+1}{n+1}$, que $\binom{2n}{n}$ est divisible par n+1 pour tout $n \in \mathbb{N}$.
- \bigcirc \bigcirc Soit $p \in \mathbb{P}$. 13 1) Montrer que p divise $\binom{p}{k}$ pour tout $k \in [1, p-1]$.
 - **2)** En déduire que pour tout $k \in [0, p-1]$:

$$\binom{p-1}{k} \equiv (-1)^k [p].$$

① ① Montrer que pour tous $a, b \ge 2$ premiers entre eux, $\frac{\ln a}{\ln b}$ est irrationnel.

Soient $a, b, n \in \mathbb{Z}$.

- 1) Montrer que $(n^3 + 3n^2 5) \land (n+2) = 1$.
- **2)** B Montrer que si $a \land n = 1$: $(ab) \land n = b \land n$.
- 3) (b) (c) Montrer que :

$$(n^4 + 3n^2 - n + 2) \wedge (n^2 + n + 1) = (n-2) \wedge 7.$$

- **4)** B B Simplifier $(a + b) \land (a \lor b)$.
- Soit $n \in \mathbb{Z}$. Montrer que $\frac{21n-3}{4}$ et $\frac{15n+2}{4}$ ne sont pas tous les deux entiers.
- - **2)** En déduire que $a^n \equiv 1$ [b] pour un certain $n \in \mathbb{N}^*$.
- 19 \bigcirc \bigcirc Soient $a, b \in \mathbb{N}^*$ premiers entre eux. Montrer que l'application « produit » $(x, y) \longmapsto xy$ est bijective de div⁺ $(a) \times \text{div}^+(b)$ sur div⁺(ab), où l'on a noté div⁺(n) l'ensemble des diviseurs positifs de n pour tout $n \in \mathbb{N}^*$.
- On dira qu'une partie non vide E de \mathbb{N}^* est *sympathique* si pour tous $x, y \in E$: $\frac{x+y}{x \wedge y} \in E$.
 - 1) Montrer que toute partie sympathique contient 2 et que {2} est une partie sympathique.
 - 2) ② ② Déterminer toutes les parties sympathiques qui contiennent 1.
 - 3) 9 9 9 Soit *E* une partie sympathique non réduite à $\{2\}$ et ne contenant pas 1.
 - a) Montrer que le plus petit élément de $E \setminus \{2\}$ est impair.
 - **b)** Montrer que $E = \mathbb{N} \setminus \{0, 1\}$.

VALUATIONS p-ADIQUES

- Soient $a, b \in \mathbb{Z}$. Montrer que si a^2 divise b^2 , alors a divise b.
- Soit $n \in \mathbb{N}$. Montrer que si n est à la fois un carré parfait et un cube parfait, alors il est la puissance sixième d'un entier.

- \bigcirc Montrer que $(a \wedge b)^n = a^n \wedge b^n$ pour tous $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}$.
- 24 © ① Le résultat de cet exercice est utile à la résolution de bon nombre d'équations diophantiennes, notamment de cette feuille d'exercices.
 - 1) Soient $a, b \in \mathbb{N}^*$ et $k \ge 2$ entier. Montrer que si a et b sont premiers entre eux et si ab est la puissance $k^{\text{ème}}$ d'un entier, alors a et b sont eux-mêmes des puissances $k^{\text{èmes}}$ d'entiers.
 - **2)** Le résultat de la question **1)** est-il vrai pour des entiers $a, b \in \mathbb{Z}$?

$$\begin{split} v_p \Big(n! \Big) &= \sum_{k=1}^{+\infty} \left\lfloor \frac{n}{p^k} \right\rfloor & \textit{(formule de Legendre)}, \\ \text{où la somme est faussement infinie car } \left\lfloor \frac{n}{p^k} \right\rfloor = 0 \\ \text{pour tout } k \in \mathbb{N}^* \text{ pour lequel } p^k > n. \end{split}$$

- 2) Par combien de zéros l'entier 100! s'achève-t-il?

NOMBRES PREMIERS

- ② Pour tout $n \in \mathbb{N}^*$, on note p_n le $n^{\text{ème}}$ nombre premier. Montrer que pour tout $n \ge 2$: $p_{n+1} < p_1 \dots p_n$.
- ② ③ Soient a ≥ 2 et n ≥ 2. On suppose aⁿ-1 premier.
 1) Montrer que a = 2.
 2) Montrer que n est premier.
 Pour tout n ≥ 2 l'entier M = 2^p 1 est appelé le

Pour tout $p \ge 2$, l'entier $M_p = 2^p - 1$ est appelé le $p^{\grave{e}me}$ nombre de Mersenne. Tous ne sont pas premiers, par exemple $M_{11} = 23 \times 89$.

29 ① ① ① ① 1) Montrer que pour tout $n \in \mathbb{N}^*$, si $2^n + 1$ est premier, n est une puissance de 2.

Pour tout $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$ est appelé le $n^{\grave{e}me}$ nombre de Fermat. Les nombres de Fermat F_0 , F_1 , F_2 , F_3 et F_4 sont premiers et on conjecture que ce sont les seuls.

- **2) a)** Montrer que $F_{n+1} = F_0 \dots F_n + 2$ pour tout $n \in \mathbb{N}$.
 - **b)** En déduire que F_m et F_n sont premiers entre eux pour tous $m, n \in \mathbb{N}$ distincts.
- 30 0 0
 - 1) a) Montrer que tout entier naturel congru à 3 modulo 4 possède au moins un diviseur premier congru à 3 modulo 4.

- **b)** Montrer qu'il existe une infinité de nombres premiers congrus à 3 modulo 4.
- **2)** Montrer qu'il existe une infinité de nombres premiers congrus à 5 modulo 6.

ÉQUATIONS DIOPHANTIENNES

- Résoudre les équations d'inconnue $(x, y) \in \mathbb{N}^2$:
 - $\begin{cases} x + y = 3 \\ x + y = 21. \end{cases}$
 - 2) $(x \wedge y) + (x \vee y) = 2x + 3y$.
 - 3) $x \lor y = x + y 1$.
- Résoudre les équations d'inconnue $(x, y) \in \mathbb{N}^2$ suivantes :
- **2)** $\bigcirc 9x^2 y^2 = 32.$
- 3) $x^2 2y^2 = 3$ en raisonnant modulo 8.
- **4)** 9 9 $15x^2 7y^2 = 9$ en raisonnant modulo 3.
- 33
- 1) P Soient $a, b, n \in \mathbb{Z}$ pour lesquels $a \land n = 1$.
 - a) Montrer que $aa' \equiv 1[n]$ pour un certain $a' \in \mathbb{Z}$.
 - b) En déduire, en fonction de a', b et n, les solutions de l'équation $ax \equiv b \ [n]$ d'inconnue $x \in \mathbb{Z}$.
- 2) \bigcirc Résoudre les équations suivantes d'inconnue $x \in \mathbb{Z}$: a) $5x \equiv 3 \lceil 28 \rceil$. b) $14x \equiv 6 \lceil 34 \rceil$.
- 3) Résoudre l'équation $ax \equiv b \ [n]$ d'inconnue $x \in \mathbb{Z}$ pour tous $a, b, n \in \mathbb{Z}$.
- 34 b b Soient $a, b, c \in \mathbb{Z}$ avec $(a, b) \neq (0, 0)$. On s'intéresse à l'équation : $ax + by = c \quad \bigstar$ d'inconnue $(x, y) \in \mathbb{Z}^2$.
 - 1) Montrer que \bigstar n'a pas de solution si c n'est pas un multiple de $a \land b$.
 - **2)** On suppose à présent que $a \wedge b$ divise c.
 - a) Montrer, grâce à une relation de Bézout de a et b, que \bigstar possède une solution (x_0, y_0) .
 - **b)** Résoudre ★ et interpréter le résultat géométriquement.
 - 3) Résoudre les équations d'inconnue $(x, y) \in \mathbb{Z}^2$:
 - a) 7x 12y = 3.
- **b)** 20x 53y = 3.
- 35 nue $x \in \mathbb{Z}$. Résoudre le système $\begin{cases} x \equiv 1 \mod 5 \\ x \equiv 2 \mod 11 \end{cases}$ d'incon
- 36 (Property Résoudre l'équation $x^2 + y^2 = 3z^2$ d'inconnue $(x, y, z) \in \mathbb{N}^3$, notamment en raisonnant modulo 3.
- Montrer que l'équation $2^n + 1 = m^3$ d'inconnue $(m, n) \in \mathbb{N}^2$ n'a pas de solution.

38 🖰 🖰

1) Soit $(x, y, z) \in (\mathbb{N}^*)^3$. On suppose que :

$$x^2 + y^2 = z^2 \qquad \text{et} \qquad x \land y = 1$$

- a) Montrer que $y \land z = 1$.
- **b)** Montrer que *x* ou *y* est pair. Quitte à les permuter, on suppose désormais *y* pair.
- **c)** Montrer que y+z et z-y sont premiers entre eux, puis que $y+z=a^2$ et $z-y=b^2$ pour certains $a,b\in\mathbb{N}^*$ impairs et premiers entre eux.
- **d)** En déduire la forme du triplet (x, y, z).
- 2) Résoudre finalement l'équation $x^2 + y^2 = z^2$ d'inconnue $(x, y, z) \in (\mathbb{N}^*)^3$.
- Bour montrer que l'équation $y^2 = x^3 + 7$ d'inconnue $(x, y) \in \mathbb{Z}^2$ n'a pas de solution, on suppose par l'absurde qu'elle en possède une (x, y).
 - 1) Montrer que $x \equiv 1$ [4].
 - 2) Montrer que $x^3 + 8$ possède un facteur premier p congru à 3 modulo 4.
 - 3) Calculer y^{p-1} modulo p de deux manières différentes, puis conclure.
- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ On veut résoudre l'équation $x^y = y^x$ d'inconnue $(x, y) \in \mathbb{N}^*$.
 - 1) Soient $x, y \in \mathbb{N}^*$ deux entiers pour lesquels $x \le y$ et $x^y = y^x$. Montrer que x divise y en étudiant leur PGCD.
 - 2) Conclure.
- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Résoudre l'équation $y^3 = x^2 + x$ d'inconnue $(x, y) \in \mathbb{Z}^2$.