

第5章 机械零部件的可靠性设计

- 5.1概述
- 5. 2螺栓连接的可靠性设计
- 5.3弹簧的可靠性设计
- 5.4齿轮的可靠性设计
- 5.5轴的可靠性设计
- 5.6轴承的可靠性设计

第5章 机械零部件的可靠性设计

5.1概述

1)机械可靠性设计

- 基础:常规机械设计的原理、准则、计算方法
- 方法: 将设计变量认为是服从某种分布的随机变量,并应用概率论与数理统计方法推导出可靠度计算表达式。
- 内容:在给定的可靠度条件下确定零件的参数和结构尺寸;或已知零件的参数和结构尺寸确定其可靠度及安全寿命。

2) 不同机械产品的故障后果及可靠度要求

故障	旨后果	可靠度要求	机械产品类型
灾难性	失 事 重大 事故	R (t) ≥0.99999 —1.0	飞行器、军事装备、 制动系统等
经济性	损失 重大	R (t) ≥0.999	工艺装备、农业机械等
	一般 损失	R (t) ≥0.99	上 乙 妆 街 、
修理费用 在预算内		R (t) <0.9	机器的不重要零部件

3)产品的可靠度等级

可靠度等级	0	1	2	3	4	5
可靠度值 R(t)	<0.9	≥0.9	≥0.99	≥0.999	≥0.9999	≥0.99999

4)国外机械产品可靠性指标推荐值

产品类型	可靠性指标	可靠性指标数值
小汽车	R (t=1a)	0.9967
推土机行走机构	MTBF	4000—5000h
Volvo载重汽车	大修理周期	60万kM
汽车变速箱	MTBF	20000h
军用汽车	MTBF	12年
滚动轴承	R (N=106)	0.9
履带式液压挖掘机	平均寿命	10000h

5.2螺栓连接的可靠性设计

- 1) 受拉螺栓的连接设计步骤:
- (1) 确定设计准则
- (2) 选择螺栓材料,确定其强度分布
- (3) 确定螺栓的应力分布
- (4) 应用联结方程求解螺栓直径
- 变异系数——材料的尺寸、加工、热处理等引起的材料强度变化,为材料的强度标准差与其均值的比值。

受拉螺栓的连接的可靠性设计

实例:已知某汽缸内径 D=380mm,

缸内工作压力p=0— 1.7MPa,

螺栓数目n=8,采用金属垫片,

试设计此缸盖的螺栓,

且要求螺栓连接的可靠度 R=0.999999。

算 🔐 例

5.2螺栓连接的可靠性设计

- 2) 受剪切螺栓连接
 - (1) 按受剪螺栓进行设计
 - (2) 按挤压进行设计

设计步骤:

- (1) 确定设计准则
- (2) 选择螺栓材料,确定其强度分布
- (3) 确定螺栓的应力分布
- (4) 应用联结方程求解螺栓直径

受剪切螺栓连接

■实例:已知某受剪切连接的螺栓,载荷F为等幅交变载荷,呈正态分布,其均值和标准差为 F(\bar{F},σ_F)=F(24000,1440)N 承剪面数n=2,预紧力忽略不计。从安全考虑,在10000个螺栓中,只允许有两次因螺栓失效引起的停工,请设计此连接螺栓。

5.2螺栓连接的可靠性设计

分析比较:

- 安全系数设计法
- ■可靠性设计法

5. 3弹簧的可靠性设计

弹簧是机械产品中的重要基础件之一。它的种类很多,按形状划分有:螺旋弹簧、板(片)簧、碟形弹簧、环形弹簧、平面(截锥)蜗卷弹簧等;按承载特点划分有:压缩、拉伸、扭转等弹簧。还有按成形方式、材质等划分弹簧的方法。

弹簧承受的应力主要有:弯曲应力、扭转 应力、拉压应力和复合应力等。 弹簧的故障模式主要有:断裂、变形、松

弹簧的故障模式主要有:断裂、变形、松驰、磨损。其中最主析是断裂和变形。

弹簧的故障模式分类

模式分类		说明	
	脆性断裂	弹簧断裂中绝大部属于脆性断裂。只有当工作温度较式时,才有可能出现塑性断裂(如切变形断裂及蠕变断裂等)。在工程上把疲劳断裂、应力腐蚀断裂及复胞断裂等水为脆性断裂	
断裂	疲劳断裂	弹簧在循环载荷作用下的断裂	
w/14C	应力腐蚀断裂	在拉应力和腐蚀介质共同作用下引起弹簧断裂现象	
	腐蚀疲劳断裂	弹簧在循环载荷和腐蚀介质共同作用下发生的断裂	
	氢脆、镉脆、黑脆	由于弹簧材料中有害物质含量过高引起的脆断	
	松驰或变形		
	磨损	磨损分为: 磨料、疲劳和腐蚀磨损	

弹簧常规设计的主要公式:

最大剪切应力T

$$\tau = k \frac{8FD}{\pi d^3}$$

曲度系数Ks

$$ks = \frac{4C - 1}{4C + 1} + \frac{0.615}{C}$$

弹簧指数C

$$C = \frac{D}{d}$$

弹簧常规设计的主要公式:

弹簧受载后的轴向变形y

$$y = \frac{8 FD^{-3} n}{Gd^{-4}}$$

弹簧刚度k

$$k = \frac{F}{y} = \frac{Gd^{-4}}{8D^{3}n}$$

5. 3弹簧的可靠性设计

- ■圆柱型螺旋弹簧的可靠性设计
 - (1) 确定失效应力分布
 - (2) 确定强度分布
 - (3) 计算可靠度

- (1) 在设计寿命为 $N=5\times10^4$ 次时的可靠度;
- (2) 在设计寿命为№106次时的可靠度;

参 数	均 值	标准差	
d	2.0mm	0.008mm	
D	16.0mm	0.0928mm	
G	79250MPa	1585MPa	
n	14	0.0833	
Y	20mm	0.4mm	
σ_{b}	1667MPa	84MPa	

5. 4齿轮的可靠性设计

- ■1)齿轮轮齿的故障模式及其特征
- ■2) 齿轮可靠性设计的基本方法
- ■3) 齿面接触疲劳强度的可靠性设计
- ■4)齿根弯曲疲劳强度的可靠性设计

	故障模式特征	举 例	损坏部位示意图
	麼点疲劳到整 在轮齿节圆附近,由表面产生裂纹,造 成深浅不同的点状或豆状凹坑	承受较高的接触应力的 软齿面(正火调质状态) 和部分硬齿面齿轮	
表面接触疲劳损伤	浅层疲劳剥塞 在轮子齿节圆附近,由内部或表面产生 裂纹,造成深浅不同、面积大小不同的 片状剥落	承受高接触应力的重载 硬齿面(表面经强化处理)齿轮	100
	歷化层测整 经表面强化处理的齿轮在很大接触应力 作用下,由于应力/强度比值大于0.55, 在强化层过渡区产生平笔于表面的疲劳 裂纹、造成使化层压碎、大块剥落	承受高接触应力的重戴 硬齿面(表面经强化处 理)齿轮	建 化层深度

齿轮弯	麦劳斯拉	承受弯曲应力较大的变	製紋類
	表面硬化〈渗碳、碳氮共渗、感应淬火等)齿轮、一般在轮齿承受最大交变弯曲应力的齿轮根部产生疲劳斯裂。断口	速箱齿轮和最终传动齿	製紋が県区
	星疲劳特征	轮等	最后新製区
弯曲断裂	过载斯拉 一般发生在轮齿承受最大弯曲应力的齿根部位,由于材料脆性过大或实然受到过载和冲击,在齿根处产生脆性折断,断口粗糙	变速箱齿轮等	X

	應稅磨損 润滑介质中含有类角硬质颗粒和金属屑粒 尤如刀刃切削轮齿表面,使齿面几何形状 发生畸变,严重时会使齿顶变尖,磨得像 刀刃一样	在有灰沙环境工作的开 式齿轮,矿山机械传动 齿轮等	The state of the s
	廢蚀虧损 在润滑介质中含有化学腐蚀成分,与材料 表面皮生化学和电化学反应,产生红褐色 腐蚀产物(主要是二氧化铁),受啮合磨 擦和润滑剂的冲刷而脱落	在化学腐蚀环境中工作的齿轮	1
磨损	胶合廣摄 轮齿表面在相对运动时,由于速度大、齿面接触点局部温度升高(热粘合)或低速 重载(冷粘合)使表面油膜破坏,产生金 展局部粘合而又撕裂,一般在接近齿斑或 齿根部位速度大的地方,造成与轴线重直 的刮伤痕迹和细小密集的粘焊节瘤,齿面 被破坏、噪音变大	高速传动齿轮、蜗杆等	Single Street
	齿端冲击磨摄 变速箱换档齿轮在换档时齿端部受到冲击 载荷,使齿端部产生磨损、打毛或崩角	变速箱换档齿轮受多次 换档冲击载荷作用	

齿轮故障模式所占比例 序号 齿轮故障模式 占总故障模式所占比例/% 1 疲劳断齿 32.8 过载断齿 19.5 2 3 轮齿碎裂 4.3 轮子毂撕裂 4.6 5 表面疲劳 20.3 表面磨损 13.2 7 齿面塑性变形

失效形式

- 2. 齿面点蚀
- 轮齿在节圆附近一对齿受力
- 载荷大,滑动速度低形成油膜条件 差;
- 接触疲劳产生的

小裂纹-扩展-脱落-凹坑。

2) 齿轮可靠性设计的基本方法

以常规设计作为基础,以其 设计参数作为随机变量,将由设 计手册中查得的有关数据按统计 量处理。

3) 齿面接触疲劳强度的可靠性设计

- (1) 确定齿面接触应力的分布参数
- (2) 确定齿面接触疲劳强度的分布参数

4) 齿根弯曲疲劳强度的可靠性设计

- (1) 确定齿根弯曲应力的分布参数
- (2) 确定齿根弯曲疲劳强度的分布参数
- (3) 计算齿根弯曲疲劳强度下齿轮的可靠度

5. 5轴的可靠性设计

- 1)轴的力学模型
- 2) 传动轴的可靠性设计
- 3) 心轴的可靠性设计
- 4) 转轴的可靠性设计
- 5)轴的刚度可靠性模型
- 6) 轴强度可靠性模型的应用

轴件的故障模式

	模式分类	说 明
断裂	静载断裂	一次性施加的静载荷过大引起断裂
	冲击断裂	一次性高速冲击载荷引起的断裂
	应力腐蚀及 腐蚀疲劳断裂	在腐蚀性介质中使用的零件,在静应力或交变应力作 用下产生的新裂
	疲劳断裂	零件在交变应力作下产生的断裂
表面损伤	磨损	零件在交变载荷作用下产生的一种表面损伤
	腐蚀	零件表面与周围介质发生化学或电化学反应形成腐蚀 导致表面损伤
	接触疲劳	零件在交变接触应力作用下,出现表面剥落现象
塑性 变形	超出设计允许的过	度的弹性、塑性变形。

1) 轴的力学模型

- 心轴——弯矩作用(弯曲变形)
- 传动轴——扭矩作用(扭转变形)
- 转轴——弯扭作用(弯曲与扭转变形)

2) 传动轴的强度可靠性模型

- 传动轴的应力分布
- 传动轴的静强度分布
- 传动轴的剪切疲劳强度极限分布
- 传动轴的强度可靠性模型

常用国产机械材料剪切疲劳强度极限

材料	δ_{t-1}/MPa	材料	$\delta_{t\text{-}1}/\text{MPa}$
45(正火)	167.9	40C _r (调质)	296.9
45(调质)	200.3	40C _r N _i M ₀ (调质)	407.9

3) 心轴的强度可靠性模型

- 心轴的应力分布
- 心轴的静强度分布
- ■心轴的对称弯曲疲劳强度极限分布
- ■心轴的强度可靠性模型

4)转轴的强度可靠性模型

- 转轴的应力分布
- 转轴的静强度分布
- 转轴的疲劳强度极限分布
- 转轴的强度可靠性模型

- 5)轴的刚度可靠性模型
- ■轴的变形
- ■轴的刚度可靠性模型

- 6) 轴强度可靠性模型的应用
- ■轴的可靠性预测
- ■轴的可靠性设计

5.6轴承的可靠性设计

- 受力——径向力、轴向力(交变载荷)
- 失效——接触疲劳破坏
- 特点——寿命差异很大
- 疲劳寿命——to=0的二参数威布儿分布(失效 概率F(t)=0.07—0.60时)
- tso——指可靠度为90%时对应的寿命(额定寿命为1000万转)

再见 liuhunju@163.com