Lecture 07: Distribution of Random Variable Function

设 X 是一个随机变量,函数 $g(x):\mathbb{R}\to\mathbb{R}$ 。构造随机变量 Y,当 X=x 时,Y=g(x),称 Y 是 X 的函数,记为 Y=g(X)。在已知 X 的分布时,我们希望求出 Y 的分布。

Discrete Situation

设X是一个离散型随机变量,其分布律为

x_1	x_2	• • •	x_k	•••
p_1	p_2	• • •	p_k	

那么 $Y \in \{g(x_k)\}_{k=1}^n$,去重后可以写成 $\{y_1,y_2,\cdots,y_k,\cdots\}$,显然 Y 也是离散型随机变量。

考虑
$$P(Y=y)=P(g(X)=y)=P(x\in\{x|g(x)=y\})$$
,由可列可加性可知 $P(Y=y)=\sum_{x:g(x)=y}P(X=x)$ 。

【例】X 是离散型随机变量,P(X=0)=0,对于任意 $k\in\mathbb{N}$, $P(X=k)=P(X=-k)=p^k$ 。求 $Y=X^2$ 的分布律。

解:首先解出
$$p$$
: $\sum_{k=1}^{\infty} P(X=\pm k) = \sum_{k=1}^{\infty} 2P(X=k) = 2\sum_{k=1}^{\infty} p^k = 1$,解得 $p = \frac{1}{3}$

显然 Y 的取值只能是正整数。对于任意 $n \in \mathbb{N}$,有

$$P(Y=n)=P(X^2=n)=P(X=\pm\sqrt{n})=egin{cases} 2(rac{1}{3})^{\sqrt{n}} &,\sqrt{n}\in\mathbb{N} \ 0 &,otherwise \end{cases}$$

注: 可以看出即使 $P(X=k) \neq P(X=-k)$,只要 $P(X=\pm k) = 2p^k$,Y 的分布就是上述结果。也就是说,随机变量的分布和随机变量函数的分布并不是一一映射。

Continuous Situation

设 X 为连续型随机变量, y=g(x) 为连续函数, Y=g(X),一般地,可如下求 Y 的分布函数 $F_Y(y)$ 和密度函数 $P_Y(y)$:

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(x \in \{x | g(x) \le y\}) = \int_{x: g(x) \le y} p_X(x) dx$$

最后的积分式含参数 y, 结果是关于 y 的表达式。若 $F_Y(y)$ 可导,则 $p_Y(y) = F_Y'(y)$ 。

【例】 $X \sim N(0,1)$,求 $Y = X^2$ 的分布。

解: 注意到 $Y \ge 0$,所以对于任意 y < 0, $F_v(y) = 0$ 。

对于 $y \ge 0$,有

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

欲求 $p_Y(y)$, 我们要对 $F_Y(y)$ 求导, 注意使用链式法则:

$$\begin{split} P_Y(y) &= F_Y'(y) = F_X'(\sqrt{y}) - F_X'(-\sqrt{y}) \\ &= p_X(\sqrt{y}) \frac{1}{2\sqrt{y}} - p_X(-\sqrt{y}) \frac{-1}{2\sqrt{y}} \\ &= \frac{1}{\sqrt{y}} p_X(\sqrt{y}) = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} \end{split}$$

综上,

$$p_Y(y) = egin{cases} rac{1}{\sqrt{2\pi y}}e^{-rac{y}{2}} &, y \geq 0 \ 0 &, y < 0 \end{cases}$$

注: $Y=X^2$ 称为服从一个自由度的 χ^2 分布。 χ^2 分布是统计学中的一个重要分布。

上述做法需要先计算 $F_Y(y)$ 再求导计算 $p_Y(y)$ 。若 y=g(x) 严格单调,则对 g(x) 加以一些可导条件,可之间诶计算密度函数 $p_Y(y)$ 。

Theorem 7.1 设 X 为连续型随机变量,密度函数为 $p_X(x)$ 。设 y=g(x) 严格单调处处可导且恒有 g'(x)>0 或 g'(x)<0,则 Y=g(X) 也为连续型随机变量,且

$$p_Y(y) = egin{cases} p_X(g^{-1}(y)) \cdot \left| (g^{-1}(y))'
ight| &, Y$$
可取到 $y \ 0 &, Y$ 取不到 y

其中 $q^{-1}(y)$ 是 q(x) 的反函数。

注: 当 g(x) 单调且 $g'(x_0)$ 存在非零,可以证明 $g^{-1}(y)$ 在 $y_0 = g(x_0)$ 处可导。但即使严格单调, g'(x) 仍可能在某个 x_0 取到 0 (如 $f(x) = x^3$ 的 x = 0 处),此时 $g^{-1}(y)$ 在 $y_0 = g(x_0)$ 处的可导性 存在问题,故要求 g'(x) 不能取 0。

证明: 这里仅证单调递增的情况,单调递减大同小异(最终使结论添上绝对值):

$$F_Y(y_0) = P(Y \le y_0) = P(g(X) \le y_0) = \int_{-\infty}^{g^{-1}(y_0)} p_X(x) dx$$

作变量替换 $x = g^{-1}(y)$:

$$F_Y(y_0) = \int_{-\infty}^{y_0} p_X(g^{-1}(y)) dg^{-1}(y) = \int_{-\infty}^{y_0} p_X(g^{-1}(y)) (g^{-1}(y))' dy$$

根据微积分基本定理,

$$p_Y(y_0) = F_Y'(y_0) = p_X(g^{-1}(y_0))(g^{-1}(y_0))'$$

【例】 $X \sim N(\mu, \sigma^2)$, $Z = \frac{X-\mu}{\sigma}$,即 $g(x) = \frac{x-\mu}{\sigma}$,Z = g(X)。求Z的分布。

解:显然 g(x) 单调递增,且 $g'(x)=rac{1}{\sigma}>0$ 。 $g^{-1}(z)=\sigma z+\mu$ 。

$$egin{align} p_Z(z) &= p_X(g^{-1}(z)) \left| (g^{-1}(z))'
ight| = p_X(\sigma z + \mu) \cdot \sigma \ &= \sigma \cdot rac{1}{\sqrt{2\pi}\sigma} e^{-rac{(\sigma z + \mu - \mu)^2}{2\sigma^2}} \ &= rac{1}{\sqrt{2\pi}} e^{-rac{z^2}{2}} \end{split}$$

即 $Z \sim N(0,1)$ 。

【例】若X服从 $\left(-rac{\pi}{2},rac{\pi}{2}
ight)$ 上的均匀分布,Y= an X,求Y的分布。

解:
$$y = g(x) = \tan x$$
, $x = g^{-1}(y) = \arctan y$, $(\arctan y)' = \frac{1}{1+y^2}$ 。于是

$$p_Y(y) = p_X(rctan y) \cdot \left| rac{1}{1 + y^2}
ight|$$
 $= rac{1}{\pi} \cdot rac{1}{1 + y^2}$

注:Y的分布称为柯西分布。