2021 MIC

Bulk RNA-seq: Pathway Analysis

Jichun Xie

Duke University

June 2021

Section 1

Overview

WHAT IS PATHWAY ANALYSIS?

Many names for the same thing:

- ► Pathway analysis
- ► Gene set enrichment analysis
- ► Go-term analysis
- ► Gene list enrichment analysis

- ▶ Gene expression X_1, X_2, \ldots, X_m
- ightharpoonup Phenotype expression Y
- ► Study the relationship between the genes and the phenotype.

$$Y = \beta_{i0} + \beta_{i1}X_i + \epsilon$$

or

$$logit{P(Y = 1)} = \beta_{i0} + \beta_{i1}X_i$$

or other GLMs.

► For each gene, test the significance level

$$H_{0,i}: \beta_{i1} = 0.$$

- ▶ For each $H_{0,i}$, use Wald/score/likelihood ratio test to obtain test statistic and the corresponding P-value P_i .
- ▶ If P_i is large, then the chance that SNP/Gene i is associated with phenotype Y is small.
- ightharpoonup If P_i is small, we think SNP/Gene *i* could be important.
- ▶ Thresholding P-values: Claim SNP/Gene i is significantly associated with the phenotype (Reject $H_{0,i}$) if $P_i < c$.

- ► How to decide the threshold?
- ▶ The threshold c depends on the desired type I error α and the number of genes m.
- ▶ Different type I error measures:
 - ► Family-wise error rate (FWER):

P(falsely reject any one gene)

► False discovery rate (FDR):

 $\mathsf{E}\left(\frac{\text{number of the falsely rejected genes}}{\text{total number of the rejected genes}}\right)$

Type I Error Rate

 H_l : Gene set S_l is not associated with the phenotype, $l = 1, \ldots, m$.

	Claim significant	Claim non-significant	Total
True nulls	N_{00}	N_{01}	m_0
False nulls	N_{10}	N_{11}	m_1
Total	R	m-R	m

- ► FDR = $E(N_{00}/(R \vee 1))$.
- ► FWER = $P(N_{00} \ge 1)$.

- ▶ Typically, $\alpha = 0.05$.
- ightharpoonup Assume all P-values are i.i.d Unif(0,1),

$$FWER = \alpha = (1 - c)^m.$$

• With $\alpha = 0.05$,

with $\alpha = 0.00$,						
m	1	10	100	1000	10000	
c	5E-2	5E-3	5E-4	5E-5	5E-6	

- ► FWER is more conservative than FDR. This means, controlling FWER at level α will require $c(\alpha)$ to be smaller (than those for controlling FDR at level α).
- ightharpoonup If the threshold c is smaller, fewer genes will be rejected (identified).
- ▶ Because m is very large (too many candidate genes), to control type I error (no matter which one is used) usually requires c to be very small. Thus, the power of the test will be very small.

Manhattan plot for single gene/SNP analysis

Figure: An example from Gibson (2010).

PATHWAY ANALYSIS

- ► An analysis to investigate the relationship between a disease phenotype and a set of genes on the basis of shared biological or functional properties.
- ► A set of genes:
 - ► Genes involved in a pathway
 - ► Genes corresponding to a Gene Ontology term
 - ▶ Genes mentioned in a paper to have certain similarities
- ► Are many genes in the pathway differentially expressed (up-regulated/down-regulated)?
- ► What is the probability of observing these changes just by chance?
- ► The trick is to reduce the number of candidate features.

Numer of genes >> number of gene sets

WHY PATHWAY ANALYSIS?

Single gene approach: List top 10-50 most-significant genes.

Pathway analysis: List the pathways whose genes have consistent trend to affect the phenotype.

Why pathway analysis?

Single gene approach: List top 10-50 most-significant genes.

► Assumption 1: Single gene work solely to largely increase the disease susceptibility

Pathway analysis: List the pathways whose genes have consistent trend to affect the phenotype.

► Assumption 1: Multiple Genes in the same pathway work together to confer disease susceptibility.

WHY PATHWAY ANALYSIS?

Single gene approach: List top 10-50 most-significant genes.

- ► Assumption 1: Single gene work solely to largely increase the disease susceptibility
- ► Assumption 2: The most associated gene is the best candidate for therapeutic intervention.

Pathway analysis: List the pathways whose genes have consistent trend to affect the phenotype.

- ► Assumption 1: Multiple Genes in the same pathway work together to confer disease susceptibility.
- ► Assumption 2: Targeting susceptibility pathways have clinical implications for finding additional drug targets.

Section 2

Statistical Issues

TWO TYPES OF NULLS

- ► Self-contained analysis: None of those genes in the gene set are associated with the phenotype.
- ► Competitive analysis: None of those genes in the gene set are associated with the phenotype.

TWO TYPES OF NULLS

Figure: Schematic of the two-tier structures of GSA Leeuw et al. (2016).

Underlying Mechanism

Leeuw et al., 2016

Self-contained Tests Inflate Type I Error

Section 3

Gene Set Enrichment Analysis (GSEA)

GSEA

- ► Gen-Gen: Kai Wang, Mingyao Li, and Maja Bucan (Dec. 2007). "Pathway-based approaches for analysis of genomewide association studies". In: Am J Hum Genet 81.6, pp. 1278–83. DOI: 10.1086/522374
- ► GSEA: Aravind Subramanian et al. (Oct. 2005). "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles". In: *Proc Natl Acad Sci U S A* 102.43, pp. 15545–50. DOI: 10.1073/pnas.0506580102

NORMALIZED GENE EXPRESSION DATA

- ► Chi-square statistics cannot differentiate the over-expressed or under-expressed genes.
- ► Wald statistics can differentiate the over-expressed or under-expressed genes.

SUMMARIZE GENE-PHENOTYPE ASSOCIATION

- ightharpoonup In total N genes.
- ▶ For gene j, get the test statistics r_j .
- ightharpoonup Examples of r_i :
 - ► Score statistics
 - ► Wald statistics
 - ► Chi-square statistics

ENRICHMENT SCORE

- ▶ A given gene set S, $Card(S) = N_H$.
- ▶ For gene j, the larger the r_j is, the more associated gene j with the phenotype.
- ► Rank the association statistics from the largest to the smallest, denoted by

$$r_{(1)} \ge r_{(2)} \ge \ldots \ge r_{(N)}$$
.

► Calculate a weighted Kolmogrov-Smirnov like running sum statistic

$$\mathrm{ES}(\mathcal{S}) = \max_{1 \leq j \leq N} \left\{ \sum_{j^* \in \mathcal{S}, \ j^* \leq j} \frac{|r_{(j^*)}|^p}{N_R} - \sum_{j^* \not\in \mathcal{S}, \ j^* \leq j} \frac{1}{N - N_H} \right\},$$

where
$$N_R = \sum_{j^* \in \mathcal{S}} |r_{(j^*)}|^p$$
.

ENRICHMENT SCORE

Weighted Kolmogrov-Smirnov like running sum statistic

$$\mathrm{ES}(\mathcal{S}) = \max_{1 \leq j \leq N} \left\{ \sum_{j^* \in \mathcal{S}, \ j^* \leq j} \frac{|r_{(j^*)}|^p}{N_R} - \sum_{j^* \notin \mathcal{S}, \ j^* \leq j} \frac{1}{N - N_H} \right\},$$

where $N_R = \sum_{j^* \in \mathcal{S}} |r_{(j^*)}|^p$.

- ightharpoonup p is a parameter that gives higher weight to genes with extreme statistics.
- ▶ Common choice p = 1.
- ▶ p = 0 leads to regular KS statistic, usually not as powerful as p = 1.

NORMALIZED ENRICHMENT SCORE

- ▶ The enrichment score ES(S) relies on the maximum statistic, so that a larger gene set S tends to produce larger ES(S).
- ► Two-step normalization procedure:
 - 1. Permute the phenotype label of all samples
 - 2. During each permutation π , repeat the calculation of the enrichment score $ES(S, \pi)$.
- ► Then

$$NES(S) = \frac{ES(S) - mean\{ES(S, \pi)\}}{sd\{ES(S, \pi)\}}$$

- ► The NES adjusts for different sizes of genes.
- ► THE NES preserves correlations between SNPs on the same gene.

CONTROL FDR

► NES*: the normalized enrichment score in the observed data

FDR =
$$\frac{\% \text{ of all } (\mathcal{S}, \pi) \text{ with } \text{NES}(\mathcal{S}, \pi) \geq \text{NES}^*}{\% \text{ of observed } \mathcal{S} \text{ with } \text{NES}(\mathcal{S}) \geq \text{NES}^*}.$$

- ► Rationale
 - ► FDR = $E\{N_{00}/(R \vee 1)\}$.
 - ▶ N_{00}/m : Estimated by % of all (S, π) with NES $(S, \pi) \geq$ NES*.
 - ▶ R/m: Estimated by % of observed S with NES(S) ≥ NES*.
- ▶ Larger NES* corresponds to smaller \widehat{FDR} .
- ▶ If $\widehat{\text{FDR}} \leq \alpha$, claim the corresponding gene set significant.

Control fwer

- ► NES*: the normalized enrichment score in the observed data
- ▶ $\widehat{\text{FWER}} = \%$ of all π with the highest NES(\mathcal{S}, π) \geq NES*.
- ► Rationale:
 - FWER = $P(N_{00} \ge 1) = E\{I(N_{00} \ge 1)\}.$
 - ▶ Each permutation π can be viewed as a realization of the event. If the highest NES(\mathcal{S}, π) ≥ NES*, then there is a false rejection.
- ► Larger NES* corresponds to smaller FWER.
- ▶ If $\widehat{\text{FWER}} \leq \alpha$, claim the corresponding gene set significant.

Section 4

References

- Gibson, Greg (July 2010). "Hints of hidden heritability in GWAS". In: *Nat Genet* 42.7, pp. 558–60. DOI: 10.1038/ng0710-558.
- Leeuw, Christiaan A. de et al. (June 2016). "The statistical properties of gene-set analysis". In: *Nature Reviews Genetics* 17.6, pp. 353–364. ISSN: 1471-0064. DOI: 10.1038/nrg.2016.29.
- Subramanian, Aravind et al. (Oct. 2005). "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles". In: *Proc Natl Acad Sci U S A* 102.43, pp. 15545–50. DOI: 10.1073/pnas.0506580102.
 - Wang, Kai, Mingyao Li, and Maja Bucan (Dec. 2007). "Pathway-based approaches for analysis of genomewide association studies". In: *Am J Hum Genet* 81.6, pp. 1278–83. DOI: 10.1086/522374.