

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

3. Übung zur Vorlesung Theoretische Informatik I

Aufgabe 1 ($\bullet \bullet$): Sei $R := \{(1,2), (3,2)\}$ eine Relation über der Menge $\{1,2,3\}$.

- a) Prüfen Sie, ob R reflexiv, symmetrisch und / oder transitiv ist.
- b) Schließen Sie R symmetrisch und transitiv ab, d.h. erweitern Sie R durch eine minimale Menge von weiteren Paaren (x, y), so dass R danach symmetrisch und transitiv ist.
- c) Ist R danach sogar eine Äquivalenzrelation?

Aufgabe 2 ($\bullet \bullet$): Sei $A := \{1, 2, 3\}$. Geben Sie eine Relation R über A mit $|R| \geq 3$ an, die

- a) symmetrisch und transitiv, aber nicht reflexiv ist,
- b) reflexiv und transitiv, aber nicht symmetrisch ist,
- c) reflexiv und symmetrisch, aber nicht transitiv ist.

Aufgabe 3 (\bullet): Prüfen Sie, welche der nachfolgenden Relationen R über den angegebenen Mengen A reflexiv, symmetrisch, und / oder transitiv sind.

- a) $A := \mathcal{P}(\mathbb{N}), R := \{(x, y) | x \cap y = \emptyset\}.$
- b) $A := \mathcal{P}(\mathbb{N}), R := \{(x, y) \mid x \subseteq \mathbb{N} \setminus y\}.$
- c) $A := \mathbb{Z}, R := \{(x, y) | xy \ge 0\}.$

Aufgabe 4 (•••): Eine Relation R über einer Menge A heißt irreflexiv, wenn für alle $x \in A$ stets $\neg(xRx)$ gilt. R ist antisymmetrisch, wenn für alle $x, y \in A$ aus xRy und yRx stets x = y folgt. R ist asymmetrisch, wenn für alle $x, y \in A$ die Bedingung xRy stets $\neg(yRx)$ impliziert.

- a) Drücken Sie die drei Begriffe Irreflexivität, Antisymmetrie und Asymmetrie formal (und mit Hilfe von Quantoren) aus.
- b) Geben Sie ein Beispiel für R und A an, so dass R alle drei Bedingungen erfüllt.
- c) Geben Sie ein Beispiel für R und A an, so dass R keine der drei Bedingungen erfüllt.
- d) Geben Sie ein Beispiel für R und A an, so dass R zwar antisymmetrisch, aber weder asymmetrisch noch irreflexiv ist.
- e) Zeigen Sie, dass für jede Relation R gilt:

R ist asymmetrisch \iff R ist irreflexiv und antisymmetrisch.

Aufgabe 5 (•••): Für zwei nichtleere endliche Mengen A und B bezeichne B^A die Menge aller Funktionen, die von A nach B abbilden. Zeigen Sie, dass $|B^A| = |B|^{|A|}$ gilt.

Aufgabe 6 ($\bullet \bullet$): Sei A eine beliebige Menge mit $n := |A| \in \mathbb{N}$. Zeigen Sie, dass es genau 2^n unäre Prädikate über A gibt. (*Tipp*: Bearbeiten Sie zuerst Aufgabe 5.)