12 въпрос. Електрически заряд. Закон на Кулон. Електростатично поле. Интензитет на полето.

Всички експерименти, извършени до сега над широк кръг от електрически явления, ни дават правото да формулираме следните основни постулати:

1. Съществуват два вида електрични заряди: *положителен заряд и отрицателен заряд*. Едноименните електрични заряди се отблъскват, а разноименните електрични заряди се привличат.

Електричните заряди са дискретни, т.е. всеки електричен заряд q съдържа цяло число елементарни електрични заряди

$$q = \pm Ne$$

където N = 1, 2, 3, ... е естествено число, а $e = 1, 6 \times 10^{-19}$ С e големината на елементарния електричен заряд. В международната система СИ единицата за електричен заряд е кулон [C].

2. Електричният заряд се запазва в смисъл, че определено количество положителен електричен заряд се поражда или изчезва само с равно на него количество отрицателен заряд, в резултат на което алгебричната сума от зарядите в дадена електрически изолирана система остава постоянна величина.

Телата, притежаващи електричен заряд (наелектризирани или заредени тела), изпитват влиянието на електрични сили и самите те пораждат електрични сили.

Ако заредените тела са неподвижни, тези сили се наричат *електростатични сили*.

Количествен израз за електростатичните сили в случая на взаимодействие на два неподвижни точкови заряда във вакуум е получен от Кулон.

Под *точков електричен заряд* ще разбираме наелектризирано тяло, чийто линейни размери са пренебрежимо малки в сравнение с разстоянията до останалите наелектризирани тела, с които то взаимодейства.

Съгласно *закона на Кулон*: силата на взаимодействие между два неподвижни точкови заряди q_1 и q_2 във вакуум е пропорционална на големината на зарядите и обратно пропорционална на квадрата на разстоянието r_{12} между тях, т.е.

$$F_{12} = k \frac{q_1 q_2}{r_{12}^2}$$

Във векторна форма закона на Кулон има вида

$$\vec{F}_{12} = k \frac{q_1 q_2}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}}$$

където \vec{F}_{12} е силата, с която заряда q_1 действа върху заряда q_2 , q_1 и q_2 са големините на взаимодействащите си заряди, \vec{r}_{12} е вектор с посока от заряда q_1 към заряда q_2 и големина, равна на разстоянието между тях r_{12} , $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m е електричната константа, k е коефициент на пропорционалност, зависещ от избора на системата единици. В системата СИ $k = \frac{1}{4\pi\varepsilon_0} \approx 9 \times 10^9 \, \frac{\text{N.m}^2}{\text{C}^2}$.

$$\vec{r}_{21}$$
 \vec{r}_{21}
 \vec{q}_1
 \vec{r}_{12}
 \vec{r}_{12}

От фигурата се вижда, че $\vec{r}_{12} = -\vec{r}_{21}$, където \vec{r}_{21} е вектор с посока от заряда q_2 към заряда q_1 и големина, равна на разстоянието между тях. Следователно за силата, с която заряда q_2 действа върху заряда q_1 , получаваме

$$\vec{F}_{21} = -\vec{F}_{12}$$

Това равенство ни показва, че третият принцип на механиката е в сила и за електростатичните сили.

Направлението на електричната сила на взаимодействие между двата заряда по съединяващата ги права е установено опитно и следва от хомогенността и изотропността на пространството.

Закона на Кулон дава израз за силата F_{12} на взаимодействие между два неподвижни точкови заряда във вакуум. Ако зарядите се намират в друга среда, е установено опитно, че при равни други условия силата F_{12cp} , с която зарядите си взаимодействат в средата зависи от свойствата на средата като

$$\frac{F_{12}}{F_{12\text{cp}}} = \varepsilon_r$$

където ε_r е безразмерна величина, характеризираща електричните свойства на средата. Тя се нарича *относителна диелектрична проницаемост* на средата. За вакуум $\varepsilon_r = 1$, за всички останали среди $\varepsilon_r > 1$. Следователно

$$F_{12\text{cp}} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q_1q_2}{r_{12}^2}$$

Опитно е установено, че силата на взаимодействие между два неподвижни точкови заряда не се изменя при наличие на други заряди. Това свойство на заряда изразява *принципа за независимост на електричните сили*, т.е. ако има точков заряд q_0 и N на брой точкови заряда $q_1, q_2, ..., q_N$, разположени по произволен начин около q_0 , то резултантната сила \vec{F}_0 , действаща върху заряда q_0 се дава чрез векторната сума

$$\vec{F}_0 = \sum_{i=1}^{N} \vec{F}_{0i} = \frac{q_0}{4\pi\varepsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_{0i}^2} \frac{\vec{r}_{0i}}{r_{0i}}$$

където \vec{r}_{0i} е радиус-вектор, описващ i-тия заряд q_i , относно заряда q_0 , \vec{F}_{0i} е силата, с която i-тия заряд q_i действа върху заряда q_0 .

Пример 1: Два равни точкови заряда се отблъскват във вакуум със сила 10 N и се намират на разстояние 6 ст. Какви са зарядите и каква е големината им?

Дадено: $F_{12}=10~\mathrm{N}$, $r_{12}=6~\mathrm{cm}=6\times10^{-2}~\mathrm{m}$ $q_1=q_2=q=?$

Решение: Силата на взаимодействие между два неподвижни точкови заряда във вакуум се дава чрез израза

$$F_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r_{12}^2} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{r_{12}^2}$$

Следователно

$$q = \sqrt{4\pi\varepsilon_0 r_{12}^2 F_{12}} = \sqrt{4 \times 3.14 \times 8.85 \times 10^{-12} \times (6 \times 10^{-2})^2 \times 10} = 2 \times 10^{-6} \text{ C}$$

Тъй като в условието на задачата е дадено, че зарядите се отблъскват, то двата заряда са едноименни, т.е. дадени са два положителни заряда ($q_1=q_2=2\times 10^{-6}$ C) или два отрицателни заряда ($q_1=q_2=-2\times 10^{-6}$ C).

Пример 2: В острите ъгли на равнобедрен правоъгълен триъгълник във вакуум са разположени заряди с големини 2×10^{-5} С и 7×10^{-5} С. Разстоянието между зарядите е 5×10^{-2} m. С каква сила двата заряда действат върху трети заряд с големина 1×10^{-6} С , разположен във върха на правия ъгъл на триъгълника?

Дадено: $q_1=2\times 10^{-5}~{\rm C}$ и $q_2=7\times 10^{-5}~{\rm C}$, $r=5\times 10^{-2}~{\rm m}$ $q_3=1\times 10^{-6}~{\rm C}$

$$F_{\text{pes}} = ?$$

Решение: Разположението на зарядите е показано на фигурата. Заряда q_1 действа върху заряда q_3 със сила \vec{F}_{13} . Заряда q_2 действа върху заряда q_3 със сила \vec{F}_{23} . Резултантната сила \vec{F}_{pe_3} е векторната сума на двете сили $\vec{F}_{\text{pe}_3} = \vec{F}_{13} + \vec{F}_{23}$ Триъгълникът е правоъгълен, следователно от теоремата на Питагор имаме

$$F_{\text{pe3}} = \sqrt{F_{13}^2 + F_{23}^2}$$

Силите F_{13} и F_{23} намираме от закона на Кулон

$$F_{13} = k \frac{|q_1||q_3|}{r_{13}^2}$$
 и $F_{23} = k \frac{|q_2||q_3|}{r_{23}^2}$

Триъгълникът е и равнобедрен, следователно

$$r_{13}=r_{23}$$
 ; $r_{13}^2+r_{23}^2=r^2$ или $2r_{13}^2=r^2$

Следователно

$$r_{13} = r_{23} = \frac{r}{\sqrt{2}} = \frac{5 \times 10^{-2}}{1,41} = 3,55 \times 10^{-2} \text{ m}$$

Следователно

$$F_{\text{pes}} = \sqrt{F_{13}^2 + F_{23}^2} = \sqrt{\left(k \frac{|q_1||q_3|}{r_{13}^2}\right)^2 + \left(k \frac{|q_2||q_3|}{r_{23}^2}\right)^2}$$
$$= k \sqrt{\left(\frac{|q_1||q_3|}{r_{13}^2}\right)^2 + \left(\frac{|q_2||q_3|}{r_{23}^2}\right)^2}$$

$$F_{\text{pes}} = 9 \times 10^9 \sqrt{\left(\frac{2 \times 10^{-5} \times 1 \times 10^{-6}}{(3,55 \times 10^{-2})^2}\right)^2 + \left(\frac{7 \times 10^{-5} \times 1 \times 10^{-6}}{(3,55 \times 10^{-2})^2}\right)^2} = 262 \text{ N}$$

В съвременната физика е приета хипотезата на М. Фарадей, съгласно която всеки заряд (или заредено тяло) създава в пространството около себе си електрично силово поле. За дефиниране и характеризиране на свойствата на електричното поле в дадена точка от пространството се въвеждат понятията пробен електричен заряд $q_{\rm пp}$ и вектор на интензитета \vec{E} на електричното поле. Пробният електричен заряд $q_{\rm np}$ е положителен електричен заряд с толкова малка големина, че да не предизвиква преразпределение на зарядите, създаващи електричното поле.

Нека пробен заряд $q_{\rm np}$ е разположен в произволна точка A в близост до точков заряд q. Тогава съществуването на електрично поле, създавано от заряда q в т. A, ще се изразява в действието на електрична сила върху заряда $q_{\rm np}$.

Като количествена характеристика на силовото действие на електричното поле върху пробния заряд $q_{\rm np}$ се въвежда величината интензитет \vec{E} на електричното поле

$$ec{E} = rac{ec{F}_{
m np}}{q_{
m np}}$$

т.е. интензитетът на електричното поле, създавано от заряда q в дадена точка от пространството е равен на силата $\vec{F}_{\rm np}$, с която електричното поле действа върху пробния заряд $q_{\rm np}$, разположен в разглежданата точка, разделена на големината на пробния заряд. В системата СИ интензитетът на електричното поле се измерва в нютон върху кулон [N/C]. В практиката по често се използва единицата волт върху метър [V/m], която ще въведем в следващите въпроси.

Но съгласно закона на Кулон силата $\vec{F}_{\rm np}$ е пропорционална на големината на пробния заряд. Следователно, интензитетът на електричното поле в дадена точка от пространството няма да зависи от големината на пробния заряд $q_{\rm np}$, а ще зависи само от големината на заряда q, създаващ полето. Това означава, че интензитетът \vec{E} на електричното поле характеризира силовото действие на полето и върху заряд с произволна големина Q. Следователно силата, с която полето ще действа върху произволен заряд Q се дава чрез израза

$$\vec{F} = Q\vec{E}$$

От принципа за независимост на електричните сили следва принципът на суперпозицията на електричните полета

$$\vec{E} = \sum_{i=1}^{N} \vec{E}_i = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_N$$

т.е. интензитетът \vec{E} на електричното поле, създавано от система от N точкови заряди е равен на векторната сума от интензитетите на полетата, създавани от всеки един от зарядите поотделно.

Този принцип ни позволява да изчисляваме интензитета на поле, създавано от произволна система от заряди в дадена точка от пространството. Той може да се използва и в случаите, когато дадено заредено тяло не може да се разглежда като точков заряд.

Пример 3: Определете интензитета на електричното поле в точка, разположена на еднакво разстояние между два равни по големина, но противоположни по знак точкови заряди q_1 и q_2 . Относителната диелектрична проницаемост на средата, в която са поставени зарядите е ε .

Дадено:
$$q_1 = |-q_2|$$
, ε $E = ?$

Решение: Съгласно принципа за суперпозиция на електричните полета имаме, че интензитетът \vec{E} на полето в дадената точка се дава чрез

$$\vec{E} = \vec{E}_1 + \vec{E}_2$$

където \vec{E}_1 е интензитета на полето, създавано от заряда q_1 и \vec{E}_2 е интензитета на полето, създавано от заряда q_2 .

Тъй като зарядите са разноименни, то двата вектора на интензитетите имат една и съща посока. Следователно

$$E = E_1 + E_2$$

Интензитетите E_1 и E_2 , създавани от точковите заряди q_1 и q_2 се дават чрез

$$E_1 = k \frac{q_1}{\varepsilon r_1^2} \ \text{и} \ E_2 = k \frac{q_2}{\varepsilon r_2^2}$$
 Но $r_1 = r_2 = r$ и $q_1 = |-q_2| = q$ Следователно

$$E = E_1 + E_2 = k \frac{q_1}{\varepsilon r_1^2} + k \frac{q_2}{\varepsilon r_2^2} = 2k \frac{q}{\varepsilon r^2} = \frac{2}{4\pi\varepsilon_0\varepsilon} \frac{q}{r^2}$$