Compiler Construction

Finite State Machines with Output

- Mealy Machine
- Moore Machine

Mealy Machine & Moore Machine

- Finite automata are like computers in that they
 receive input and process the input by
 changing states. The only output that we have
 seen finite automata produce so far is a yes/no
 at the end of processing.
- We will now look at two models of finite automata that produce more output than a yes/no.

Mealy Machine

Transitions are labelled i/o where

- i is a character in the input alphabet and
- o is a character in the output alphabet.

- Mealy machines are complete in the sense that there is a transition for each character in the input alphabet leaving every state.
- There are no accept states in a Mealy machine because it is not a language recogniser, it is an output producer. Its output will be the same length as its input.

Mealy Machine

- Mealy Machines are exactly as powerful as Moore machines
 - (we can implement any Mealy machine using a Moore machine, and vice versa).
- However, Mealy machines move the output function from the state to the transition. This turns out to be easier to deal with in practice, making Mealy machines more practical.

Input: 010110 Output: 101001

The above Mealy machine takes the one's complement of its binary input. In other words, it flips each digit from a 0 to a 1 or from a 1 to a 0.

Mealy Machine & Moore Machine

- Moore Machine M1=(Q,Σ,λ,O,δ,qo)
 - ✓ Q: Set of States
 - ✓∑: input alphabet
 - √ O: Output alphabet
 - $\checkmark \lambda$: Output function, Q \rightarrow 0
 - $\checkmark \delta$: Transition Function, Qx $\Sigma \rightarrow Q$
 - ✓ qo: Initial State
 - Mealy Machine M1=(Q,∑,O, λ',Δ,qo)
 - ✓ Q: Set of States
 - ✓∑: input alphabet
 - ✓O: Output alphabet
 - $\checkmark \Delta$: Transition Function, Qx $\Sigma \rightarrow Q$
 - \checkmark λ' : Output function, Qx $\Sigma \rightarrow 0$
 - √ qo: Initial State

Moore Machine To Mealy Machine

 Replaces the first 1 with 0 from every substring starting with 1

Moore Machine To Mealy Machine

 Replaces the first 1 with 0 from every substring starting with 1

Input	Result
0111001	0011000
0001001110	0000000110
111010110	011000010

