

2022-2023 ETS CPI2

Radoine: QUELQUES EXERCICES ET RÉSUMÉ DE COURS

1 Nombres complexes

Formules de trigonométrie

La fonction cos est 2π -périodique et paire, la fonction $\sin x$ est 2π -périodique et impaire et la fonction $\tan x$ est π -périodique et impaire

$$\cos(x + 2\pi) = \cos x$$
, $\sin(x + 2\pi) = \sin x$, $\tan(x + \pi) = \tan x$
 $\cos(-x) = \cos x$, $\sin(-x) = -\sin x$, $\tan(-x) = -\tan x$
 $-1 \le \cos x \le 1$, $-1 \le \sin x \le 1$, $-\infty < \tan x < \infty$
 $\cos^2 x + \sin^2 x = 1$

Valeurs particulières

Propriétés

$$\cos(\frac{\pi}{2} + x) = -\sin x, \ \cos(\frac{\pi}{2} - x) = \sin x$$
$$\sin(\frac{\pi}{2} + x) = \cos x, \ \sin(\frac{\pi}{2} - x) = \cos x$$

 et

$$\cos(\pi + x) = -\cos x, \ \cos(\pi - x) = -\cos x$$
$$\sin(\pi + x) = -\sin x, \ \sin(\pi - x) = \sin x$$

et enfin

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(2a) = 2\sin a \cos a$$

Exemple

considérons

$$\frac{1}{3-4i} = \frac{3+4i}{(3-4i)(3+4i)} = \frac{3+4i}{9+16} = \frac{3}{25} + i\frac{4}{25}$$

 et

$$\frac{1}{i} = -i$$

et enfin

$$\frac{1-i}{1+i} = \frac{(1-i)^2}{(1+i)(1-i)} = \frac{1+(-1)-2i}{2} = -i$$

Représentation graphique des nombres complexes

On muni le plan \mathcal{P} du repère orthonormé $(0, \vec{e}_1, \vec{e}_2)$ avec $\vec{e}_1 = (1,0)$ et $\vec{e}_2 = (0,1)$. A tout $z = x + iy \in \mathbb{C}$ on associe le point M(x,y) du plan. Le point M(x,y) est appelé l'image du nombre complexe z = x + i. Le nombre complexe z = x + iy s'appelle l'affixe du point M(x,y).

A tout nombre complexe z = x + iy on peut associer le vecteur $\vec{u} = (x, y)$ appelé le vecteur image de z.

Soient A et B deux point du plan \mathcal{P} d'affixes $z_A = x_A + iy_B$ et $z_B = x_B + iy_B$. Le vec teur $\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$ a pour affixe $z_B - z_A$. Si z = x + iy et son conjugué $z^* = x - iy$ alors z^* est le symétrique de l'image de z par rapport à l'axe des réels.

Représentation trigonométrique des nombres complexes

On appelle argument d'un nombre complexe z non nul toute mesure en radians de l'angle orienté $\theta = (\vec{e}_1, \vec{OM})$ où M a pour affixe z. On note $\theta = \arg(z)$. Un nombre complexe $z \neq 0$ a une infinité d'arguments. Si θ est un argument de z alors $\theta + 2k\pi$ avec $k \in \mathbb{Z}$ est aussi un argument de z. Deux arguments d'un même nombre complexe z different de $2k\pi$ pour un $k \in \mathbb{Z}$. On appelle argument principal de $z \neq 0$ l'argumen appartenant à $[-\pi, \pi]$ (ou $[0, 2\pi]$). L'argument principal de z est celui de 1 est l'angle 0.

Soit $z=x+\imath y\in\mathbb{C}$ non nul. On peut écrire $z=|z|(\frac{x}{|z|}+\imath\frac{y}{|z|})$. On notera alors que $(\frac{x}{|z|})^2+(\frac{y}{|z|})^2=1$ par définition de |z|. Ainsi le point $M(\frac{x}{|z|},\frac{y}{|z|})$ appartient au cercle $\mathcal C$ du plan $\mathcal P$ de centre (0,0) et de rayon 1. Soit $\theta\in[0,2\pi]$, $\theta=(\vec O,\vec OM)$ tel que $\cos\theta=\frac{x}{|z|}$ et $\sin\theta=\frac{y}{|z|}$. Donc θ est l'argument principal du nombre complexe $\frac{x}{|z|}+\imath\frac{y}{|z|}$. On déduit que la représentation trigonométrique (ou polaire) de z

$$z = |z|(\cos\theta + i\sin\theta)$$

on écrira aussi

$$z = re^{i\theta}$$
, avec $r = |z|$, $e^{i\theta} = \cos\theta + i\sin\theta$

ainsi on voit que

$$(re^{i\theta})^* = re^{-i\theta}, |e^{i\theta}| = 1$$

où on a utilisé la formule (théorème de Pythagore) $(\cos \theta)^2 + (\sin \theta)^2 = 1$. D'autre part pour $z = e^{i\theta}$ on a les formules d'Euler

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Exercice 1.

- 1. Résoudre dans \mathbb{C} l'équation (E) : $z^2 2\sqrt{3}z + 4 = 0$.
- 2. En déduire la nature du triangle OAB, où O, A et B sont respectivement le point d'affixe 0 et les deux solutions de (E).

Exercice 2. [] Soient A, B et C trois points d'affixe respective a = 2 + i, b = 4 - i, c = -2 - 3i.

- 1. Calculer $\frac{a-b}{c-a}$.
- 2. Que peut-on conclure sur les droites (AB) et (AC)?

Exercice 3. [] Donner une forme exponentielle du nombre complexe $z=(-1-i)\left(3+i3\sqrt{3}\right)$.

Exercice 4. [] Déterminer puis représenter graphiquement l'ensemble des points M du plan d'affixe z vérifiant :

- $\bullet \ \left|z 2 + \frac{3}{4}i\right| = 3$
- |z 3 + i| = -2

Exercice 5. [] En utilisant la formule d'Euler $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$, exprimer $\cos^3(x)$ en fonction d'une somme de cosinus de la forme $\cos(nx)$.

2 Suites 5

2.1 Limites à connaître

$$u_n = \frac{1}{n^{\alpha}} \to 0, \ \forall \alpha > 0$$

$$u_n = n^{\alpha} \to +\infty, \ \forall \alpha > 0$$

$$u_n = \frac{n^{\alpha}}{e^n} \to 0, \ \forall \alpha > 0$$

$$u_n = \frac{\ln n}{n^{\alpha}} \to 0, \ \forall \alpha > 0$$

$$u_n = n \ln(1 + \frac{1}{n}) \to 1$$

$$u_n = n \sin(\frac{1}{n}) \to 1$$

$$u_n = (1 + \frac{x}{n})^n \to e^x, \ \forall x \in \mathbb{R}$$

Observons que $n\ln(1+\frac{1}{n})=\frac{\ln(1+\frac{1}{n})}{\frac{1}{n}}$ et comme $1/n\to 0$ alors on utilise le résultat $\frac{\ln(1+x)}{x}\to 1$ quand $x\to 0$. On a aussi $n\sin(\frac{1}{n})=\frac{\sin(\frac{1}{n})}{\frac{1}{n}}\to 1$ quand $1/n\to 0$ car $\frac{\sin x}{x}\to 1$ quand $x\to 0$. Enfin en écrivant $(1+\frac{x}{n})^n=e^{n\ln(1+\frac{x}{n})}$ et en utilisant le fait que $n\ln(1+\frac{x}{n})=x\frac{\ln(1/\frac{x}{n})}{\frac{x}{n}}\to x\times 1=x$ quand $x/n\to 0$, on trouve bien le résultat $(1+\frac{x}{n})^n\to e^x$ quand $n\to +\infty$. Les autres limites se déduisent du comportement à l'infini des fonctions : exponentielle, logarithme et puissance.

2.2 Quelques suites importantes

Suites géométriques

Elle sont définies par : $u_{n+1} = qu_n$ de raison $q \in \mathbb{R}$, $u_0 \in \mathbb{R}$. On a $u_n = u_0 q^n$ pour tout $n \in \mathbb{N}$ et

$$\begin{array}{l} \mathrm{S}i \ -1 < q < 1 \Longrightarrow q^n \to 0 \\ \mathrm{S}i \ q = 1 \Longrightarrow q^n = 1^n = 1 \to 1 \\ \mathrm{S}i \ q = -1 \Longrightarrow q^n = (-1)^n \ \mathrm{ne} \ converge \ pas \\ \mathrm{S}i \ q > 1 \Longrightarrow q^n \to +\infty \\ \mathrm{S}i \ q < -1 \Longrightarrow q^n \ \mathrm{ne} \ converge \ pas \end{array}$$

Séries géométriques

Elles sont définies par : $u_n = \sum_{k=0}^n q^k = 1 + q + q^2 + \dots + q^n$ de raison $q \in \mathbb{R}$. On a

$$u_n = 1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}, \text{ si } q \neq 1$$

 $u_n = n + 1 \text{ si } q = 1 \text{ et } u_n \to +\infty$

Suites arithmétiques

Elles sont définies par : $u_{n+1} = u_n + r$ de raison $r \in \mathbb{R}$, $u_0 \in \mathbb{R}$. On a

$$u_n = u_0 + nr, n \in \mathbb{N}$$

Considérons la suite définie par $S_n = \sum_{k=0}^n u_k$ avec $u_{n+1} = u_n + 1$ et $u_0 = 0$. On a donc $u_n = n$ et $S_n = 1 + 2 + 3 + \cdots + n$. Alors

$$S_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Suites récurrentes linéaires d'ordre 2

Soit (u_n) la suite définie par $u_{n+2}=au_{n+1}+bu_n$ pour $n\in\mathbb{N}$ et $u_0,u_1\in\mathbb{R}$ donnés et $a,b\in\mathbb{R}$. Pour trouver u_n en fonction de n on procède comme suit : On considère le polynôme caractéristique $x^2-ax-b=0$. Soient q_1 et q_2 les racines réelles de l'équation.

Si $\Delta = a^2 + 4b > 0$ alors $q_1 \neq q_2$ et u_n est donné par

$$u_n = \lambda q_1^n + \mu q_2^n,$$

où λ et u sont déterminés en résolvant le système suivant (obtenu en faisant n=0 et n=1)

$$\lambda + \mu = u_0$$
$$\lambda q_1 + \mu q_2 = u_1$$

Si $\Delta=a^2+4b=0$ alors $q_1=q_2$ et u_n est donné par

$$u_n = \lambda q_1^n + \mu n q_1^n,$$

où λ et u sont déterminés en résolvant le système suivant (obtenu en faisant n=0 et n=1)

$$\lambda = u_0$$
$$\lambda q_1 + \mu q_1 = u_1$$

Exemple 1. Soit (u_n) définie par $u_{n+2} = u_{n+1} + u_n$, $u_0 = u_1 = 1$. Donner l'expression de la suite u_n

Théorème 1. (Théorème de la convergence monotone)

- (1) Si (u_n) est une suite croissante et majorée alors elle est convergente et $\lim u_n = \sup(u_n)$
- (2) Si (u_n) est croissante non majorée alors $\lim u_n = +\infty$
- (3) Si (u_n) est une suite décroissante et minorée alors elle est convergente et $\lim u_n = \inf(u_n)$
- (4) $Si(u_n)$ est décroissante non minorée alors $\lim u_n = -\infty$

Exercice 6. [] Soit (u_n) une suite vérifiant pour tout $n \in \mathbb{N}$, $u_{n+1} = 4u_n$ et $u_{n+1} = 4u$

Exercice 7. [] Soit $S = \frac{1}{3} + 1 + \frac{5}{3} + \ldots + \frac{19}{3} + 7$. Déterminer S après avoir vérifié que S est la somme de termes d'une suite arithmétique.

Exercice 8. [] Soit $(u_n)_n$ la suite récurrente $u_{n+1} = \sqrt{u_n + 1}$ avec $u_0 = 2$. Montrer par que la suite (u_n) est décroissante et minorée. La suite (u_n) est-elle convergente et si oui déterminer sa limite.

Exercice 9.

- 1. Soient a, b > 0. Montrer que $\sqrt{ab} \le \frac{a+b}{2}$.
- 2. Montrer les inégalités suivantes $(b \ge a > 0)$:

$$a \le \frac{a+b}{2} \le b$$
 et $a \le \sqrt{ab} \le b$.

3. Soient u_0 et v_0 des réels strictement positifs avec $u_0 < v_0$. On définit deux suites (u_n) et (v_n) de la façon suivante :

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$.

- (a) Montrer que $u_n \leq v_n$ quel que soit $n \in \mathbb{N}$.
- (b) Montrer que (v_n) est une suite décroissante.
- (c) Montrer que (u_n) est croissante En déduire que les suites (u_n) et (v_n) sont convergentes et quelles ont même limite.

3 Analyse: intégration et interpolation (DL)

8

Exercice 10. [] Calculer les intégrales suivantes

1.
$$I = \int_{e}^{e^2} \frac{1}{x \ln(x)} dx$$
.

2.
$$J = \int_0^1 x^2 e^{3x} dx$$
.

3.
$$K = \int_0^1 t^n \ln(t) dt$$

4. $L = \iint_{\mathcal{D}} e^{-(x^2+y^2)} dx dy$, où le domaine \mathcal{D} est de disque de centre 0 et de rayon R (On passera en coordonnées polaire, $x = rcos(\theta)$ et $y = rsin(\theta)$) Quelle est la limite de L quand R tend vers $+\infty$.

4 Équations différentielles

Exercice 11. []

- 1. Résoudre l'équation (E) y'(t) 5y(t) = 0 avec $t_0 = 0$ et $y_0 = 2$
- 2. Résoudre l'équation (F) $y' e^t y = 0$.
- 3. Résoudre l'équation (G) $y' \ln(t).y = 0$.
- 4. Résoudre l'équation (K) $y' \tan^2(t).y = 0$.

Exercice 12. []

- 1. Résoudre (E) $y'' + 2y' + y = 4te^t$.
- 2. Résoudre (F) $y'' + 2y' + y = 4te^{-t}$.

Exercice 13.

On considère le problème de Cauchy : (E) y'' - 3y' - 10y = 0 avec y(0) = 3, et y'(0) = 2.

1. L'équation (E) est-elle linéaire ? Homogène ? Factoriser le polynôme caractéristique

associé et donner la solution générale de (E) en fonction de deux constantes K_1 et K_2 .

2. Donner la solution au problème de Cauchy en prenant le soin d'expliquer la méthode utilisée pour obtenir de K_1 et K_2 .

5 Étude de données

Exercice 14.

Soit (X,Y) une série statistique de dimension 2. On note (x_i,y_i) les n valeurs prises par cette série. On considère la fonction f définie sur \mathbb{R}^2 par

$$f(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2.$$

A l'aide d'une étude de f, pouvez vous retrouver la pente et l'ordonnée à l'origine de la droite des moindres carrés. La droite des moindres carrés est la droite dont le carré des écarts verticaux entre les points (x_i, y_i) et celle-ci est minimal. Pour cela, il faut calculer le point critique de la fonction f et déterminer la nature de ce point critique.