метрики

метрики расстояний

методы

кластеризации

hierarchical

проблемы

валидация кластер

деревья решений

Матрицы расстояний, кластеризация и деревья решений

Г. Мороз

Матрицы расстояний

метрики расстояний

метрики расстояний

методы

k-means hierarchical проблемы

дендрограммы валидация кластер

деревья

Матрица расстояний — это матрица $n \times n$, которая содержит значения меры расстояния/сходства между объектами в метрическом пространстве. Существует уйма мер расстояния/сходства, выбор из которых зависит от типа данных. К сожалению, не существует универсального алгоритма выбора метода, так что это остается на откуп исследователям. Кроме того, схожие методы, зародившиеся в биологии, называют string metric: они определяют расстояния между строками (расстояние Хэмминга, расстояние Левинштейна и т. п.)

метрики

метрики расстояний heatmap

методы кластеризаці

hierarchical

дендрограммы валилация кластер

деревья решений

Бинарные данные: коэффициент Жаккара

Компаративисты сравнивают языки на основе количества общих когнатов в списке Сводеша. Таким образом, для стословника составляются бинарные матрицы, которые отражают, какой когнат в каком идиоме встретился.

$$\begin{array}{lll} \mbox{df} < - \mbox{ data.frame} (& \mbox{Lithuanian} = & \mbox{c} (1, 1, 1, 1, 0), \\ \mbox{Latvian} = & \mbox{c} (1, 1, 1, 0, 0), \\ \mbox{Prussian} = & \mbox{c} (1, 1, 0, 0, 0), \\ \mbox{ChurchSlavonic} = & \mbox{c} (0, 0, 0, 0, 1) \end{array}$$

Для каждой пары идиомов строим таблицу сопряженности:

		идиом і		
			1	0
	идиом ј	1	a	b
		0	С	d

Коэффициент Жаккара расчитывается по формуле:

$$s(i,j) = \frac{a}{a+b+c} \qquad \qquad d(i,j) = \frac{b+c}{a+b+c}$$

В работе [Gower and Legendre 1986] есть и другие методы (14 шт.). Большинство из них есть в функции dist.binary() пакета ade4.

Бинарные данные: коэффициент Жаккара

```
метрики
расстояний
```

метрики расстояний

neatmap

методы кластеризаци

k-means

проблемы

дендрограммы

```
df <- data.frame(
                     Lithuanian =
                                         c(1, 1, 1, 1, 0).
                     Latvian =
                                         c(1, 1, 1, 0, 0).
                     Prussian =
                                         c(1, 1, 0, 0, 0),
                     ChurchSlavonic =
                                         c(0, 0, 0, 0, 1)
df <- t(df)
                  # кластеризации любят держать признаки в строках
dm <- dist(df, method = "binary")
dm
                                                  # матрица расстояний
                   Lithuanian
                                    Latvian
                                                Prussian
                   0.2500000
 Latvian
 Prussian
                   0.5000000
                                0.3333333
 ChurchSlavonic
                   1.0000000
                                 1.0000000
                                              1.0000000
round(100*(dm))
                                                     # удобнее смотреть
                   Lithuanian
                                Latvian
                                          Prussian
 Latvian
                           25
 Prussian
                           50
                                     33
 ChurchSlavonic
                          100
                                    100
                                               100
```

Небинарные категории: в бинарные

метрики расстояний

метрики расстояний

методы кластеризаци

k-means

проблемы

дендрограммы валидация кластеро

деревья

```
Ha основе WALS.
```

```
df <- data.frame(
  order = c("SVO "SOV "SVO "VOS"),
  gender = c("3 "0 "0 "0"),
  future = c("non.inflect "inflect "non.inflect "non.inflect"),
  row.names = c("English "Turkish "Estonian "Malagasy"))
df</pre>
```

	order	gender	future
English	SVO	3	non.infl
Turkish	SOV	0	infl
Estonian	SVO	0	non.infl
Malagasy	VOS	0	non.infl

model.matrix(. -1, data=df)

	orderSOV	orderSVO	orderVOS	gender3	futurenon.infl
English	0	1	0	1	1
Turkish	1	0	0	0	0
Estonian	0	1	0	0	1
Malagasy	0	0	1	0	1

Числовые категории

метрики расстояний

Если категории числовые, то чаще всего используют:

евклидово расстояние

method = "euclidean"

расстояние городских кварталов

method = "manhattan"

Картинка из Википедии: зеленое — евклидово, остальные манхэттенское.

Смешанные категории

расстояний метрики расстояний

методы

кластеризаци k-means

проблемы

валидация кластеро

деревья

Для данных содержащих как числовые, так и категориальные данные используется алгоритм преложенный в работе [Gower 1971]. В целом, если в данных нет пропущенных значений, эта мера достаточно близка к евклидову расстоянию. В R она реализована функцией daisy пакета cluster. Вот пример на основе данных по количеству согласных и наличию абруптивных (график):

```
df <- read.csv("http://goo.gl/919qoS row.names = 1)
df <- df[sample(1:27, 5),] # выборка из данных
```

library(cluster)

dm <- daisy(df); dm

строит матрицу и вызывает ее

Dissimilarities:

	Japanese	Hawaiian	Lakota	Pomo
Hawaiian	0.15909091			
Lakota	0.84090909	1.00000000		
Pomo	0.75000000	0.90909091	0.09090909	
Turkish	0.20454545	0.36363636	0.63636364	0.54545455

Metric : mixed ; Types = I, N

Number of objects: 5

Метрики расстояний для строк

метрики расстояний

метрики расстояний heatmap

методы кластеризаци

k-means hierarchical

дендрограммы валидация кластеров

деревья

Для решения ряда проблем NLP было создано несколько метрик для измерения расстояний между строками. Для подсчета этих метрик в R есть несколько пакетов, я приведу примеры использования пакета stringdist. Наиболее популярные в лингвистике расстояния:

```
○ Левенштейна (см. визуализацию) # methood = "lv"
```

o косинусное # methood = "c"

```
library(stringdist)
str1 <- "мама"
str2 <- "папа"
stringdist(str1, str2, method = "h")
[1] 2
str3 <- "мама"
str4 <- с("папа", "рампа", "лада", "рама")
stringdist(str3, str4, method = "lv")
[1] 2 2 2 1
```

Хэмминга

methood = "h"

Еще способы уменьшения размерностей?

метрики расстояний

метрики расстояний

методы кластеризаш

k-means hierarchical

проблемы

валидация кластеро

деревья

- регрессионный анализ
- кластеризация
- о многомерное шкалирование (multidimensional scaling)
- о компонентный анализ (principal component analysis)
- \circ метод k ближайших соседей (k-NN)

heatmap

метрики расстояний

heatmap

метолы

k-means hierarchical

дендрограммы валидация кластеро

деревья решений Как обычно, есть несколько способов визуализации:

- в Rbase есть функция heatmap(), но ее настройка сплошное мучение
- в ggplot2 есть geom_tile()

Обе функции принимают на вход матрицы, так что результат работы функции dist()надо трансформировать:

```
df <- data.frame( Lithuanian = c(1, 1, 1, 1, 0), Latvian = c(1, 1, 1, 0, 0), Prussian = c(1, 1, 0, 0, 0), ChurchSlavonic = c(0, 0, 0, 0, 1)) df <- t(df) # кластеризации любят держать признаки в строках dm <- as.matrix(dist(df, method = "binary"))
```

heatmap: ggplot

методы кластеризаци

hierarchical проблемы

дендрограммы валидация кластег

heatmap: ggplot

```
расстояний 
метрики расстояний 
heatmap
```

методы кластеризаци

hierarchical проблемы

дендрограммы валидация кластеров

```
df <- data.frame(
                    Lithuanian =
                                       c(1, 1, 1, 1, 0),
                    Latvian =
                                     c(1, 1, 1, 0, 0).
                    Prussian =
                                   c(1, 1, 0, 0, 0).
                    ChurchSlavonic = c(0, 0, 0, 0, 1)
df <- t(df)
                 # кластеризации любят держать признаки в строках
dm <- as.matrix(dist(df, method = "binary"))
                                                # считает расстояния
library(reshape)
dm.m <- melt(dm)
                                # преобразования матрицы для ggplot
library(ggplot2)
ggplot(dm.m, aes(X1, X2, fill=value)) +
       geom tile()+
                                                    # делает heatmap
       geom text(aes(X1, X2, label = round(value, 2)), # пишет значения
                  color = "white". size = 4)
```

Кластеризация

Кластеризация — это не метод, а задача, для решение которой придумано множество алгоритмов. Не существует "правильных"методов кластеризации, так как "clustering is in the eye of the beholder"[Estivill-Castro 2002]. В презентации рассказывается о представителях двух семейств алгоритмов:

- \circ метод k-средних (k-means)
- о иерархическая кластеризация (hierarchical clustering)

метрики расстояний метрики расстояний

методы кластеризации

к-means
hierarchical
проблемы
дендрограммы

деревья

метрики расстояний метрики расстояний

методы кластеризанг

k-means hierarchical проблемы дендрограммы

валидация кластер

деревья решений

Алгоритм k-means

Алгоритм k-means был разработан в статье [Lloyd 1982]:

- \circ на вход алгоритму подаются данные и k количество кластеров, на которые эти данные надо поделить;
- произвольно выбираются k точек (центроидов) и рассчитываются ближайшие расстояния (евклидово) от данных точек до центроидов, точки которые ближе всего к некоторому центроиду образуют кластер;
- на основе точек вошедших в кластер строится новый центроид, так чтобы расстояние от всех точек до нового центроида было минимально;
- часть точек становится ближе к новому центроиду и входят в его кластер, а часть от центроида отдаляется и начинают входить в другой/другие кластер/кластеры;
- ... все это повторяется, пока на некоторой итерации не происходит изменение положения центроидов.

Naftali Harris сделал визуализация *k*-means. презентация доступна: http://goo.gl/dqocQt

Задача

расстояний
метрики расстояний

методы кластеризаци

k-means hierarchical проблемы

дендрограммы валидация кластер

деревья решений В описании нанайского языка есть гласные і, і и ә (в данных закодированы і, І, е соответственно), однако совсем не понятно, одинаково ли произносят гласные і и і современные носители. В датасет записаны F1 и F2 этих трех гласных, произнесенных в нанайских словах шестью нанайцами из двух селений Найхин и Джуен. Если F1 и F2 достаточно для описания разницы между этими гласными, то тогда они должны кластеризоваться.

метрики

метрики расстояний

методы кластеризаци

k-means

проблемы

деревья решений

Задача

k-means

метрики расстояний

метрики расстояний heatmap

методы

кластеризаци k-means

hierarchical

дендрограммы валилация кластеров

деревья

```
Нашим примером будет носитель ssb:
```

```
n \leftarrow read.csv("http://goo.gl/YPMyl2", sep = ";") 
 <math>n \leftarrow n[n = "ssb",]
```

```
set.seed(5)  # устанавливаем определенное значение рандомизатора n.cl <- kmeans(n[, c(5,6)], centers = 3)  # датафрейм, k n.cl$cluster  # кластер каждой точки n.cl$centers  # координаты центроидов
```

Визуализация k-means: R-base

k-means

col = n.cl cluster# раскрашиваем по кластеру points(n.cl\$centers, col = "brown", pch = 8, cex = 2) презентация доступна: http://goo.gl/dqocQt # центроиды

Визуализация *k*-means: ggplot2

метрики

метрики расстояни

heatmap

ластеризан

k-means

hierarchical

дендрограммы

Визуализация *k*-means: ggplot2

```
расстояний
метрики расстояний
heatmap
```

методы

k-means

проблемы

валидация кластерс

k-means: продолжение

И что дальше? В наших данных есть информация о произнесениях, так что можно сравнить (следующий слайд) результат работы k-means (обозначено цветом) с тем, что ожидалось в данных словах (обозначено буквой) и посмотреть сколько раз k-means ошибся (слайд через один):

	and	eak	eik	ltk	rab	ssb
correct	393	426	278	515	549	682
mistaken	27	61	99	148	102	43
	and	eak	eik	ltk	rab	ssb
correct	0.94	0.87	0.74	0.78	0.84	0.94
mistaken	0.06	0.13	0.26	0.22	0.16	0.06

метрики расстояний

neatmap методы

k-means hierarchical

дендрограммы валидация кластер

Кластеры *k*-means

метрики расстояний heatmap

методы кластеризаци

k-means

проблемы дендрограммы

валидация класте деревья

Ошибки алгоритма k-means

методы кластеризации

k-means

hierarchical проблемы дендрограмы

валидация кластер

Иерархическая кластеризация

Иерархические кластеризации имеют два типа:

- снизу вверх (agglomerative): каждое наблюдение в начальной позиции является кластером, дальше два ближних кластера соединяются в один, а дендограмма отображает порядки таких соединений.
- **сверху вниз (divisive)**: все наблюдения в начальной позиции являются кластером, который дальше делится на более мелкие, а дендограмма отображает порядки таких разъединений.

Алгоритмы иерархической кластеризации требуют на вход матрицы расстояний. Алгоритмов кластерного анализа очень много, так что имеет смысл заглянуть в работу [Gordon 1987] и на страницу CRAN.

метрики расстояний метрики расстояний heatmap

методы кластеризациі k-means

проблемы дендрограммы валидация кластеров

деревья

hierarchical

Иерархическая кластеризация

метрики расстояний метрики расстояний

методы кластеризацин

k-means hierarchical

дендрограммы

валидация кластер

```
Нашим примером снова будет носитель ssb:
```

```
n \leftarrow read.csv("http://goo.gl/YPMyl2", sep = ";") 
 <math>n \leftarrow n[n = "sb",]
```

Функция hclust принимает на вход матрицу расстояний:

and

```
hc <- hclust(dist(n[,c(5,6)])) # agglomerative clustering plot(hc) # график получившихся кластеров plot(hc, labels = F) # график без подписей rect.hclust(hc, k=3) # выделить k кластеров
```

Функция cutree возвращает вектор номеров кластеров в соответсвтии с данными, так что можно строить все предыдущие графики:

eak

eik

ltk

rab

ssb

cluster <- cutree(hc, k=3)

correct mistaken	393 27	345 142		478 185		439 286
	and	eak	eik	ltk	rab	ssb
correct	0.94	0.71	0.62	0.72	0.76	0.61
mistaken	0.06	0.29	0.38	0.28	0.24	0.39
гоступна: h	ffn://ơn	n.øl/da	nc()t			

презентация доступна: http://goo.gl/dqocQt

Иерархическая кластеризация

метрики расстояни

методы

кластеризаци

hierarchical проблемы

дендрограммы валидация кластер

Кластеры иерархическая кластеризации

методы кластеризациі .

hierarchical проблемы

валидация кластер

Ошибки алгоритма иерархической кластеризации

методы кластеризации

k-means hierarchical

дендрограммы

валидация кластер

Проблемы приведенных методов

- \circ k-means может давать разные результаты на одних и тех же данных
- о при использовании *k*-means нужно знать k
- иерархическая кластеризация не может исправить ошибки, сделанные на предыдущих шагах: в работе [Hawkins 1982] приводится пример вектора с(2.2, 2, 1.8, 0.1, 0.1, 1.8, 2, 2.2), в котором очевидны три кластера, однако если на первом этапе алгоритм разобьет все на с(2.2, 2, 1.8, 0.1) и с(0.1, 1.8, 2, 2.2), то дальше это исправлено не будет.

метрики расстояний

методы кластеризаци

hierarchical проблемы

дендрограммы валидация кластер

решени

Дендрограммы

Дендограммой обычно называют граф, отображающий некоторые расстояния между единицами. Существует достаточно много методов построения графов на основе матрицы расстояний, напрямую связанный с используемым методом кластеризации. Надо отметить, что дендограмма это всего лишь семейство визуализаций матрицы расстояний. Примером для построения дендрограмм послужат данные фонетических особенностей адыгских идиомов:

```
ad <- read.csv("http://goo.gl/Rj92fh")
rownames(ad) <- ad[,1]
ad.d <- dist(ad, method = "binary")
ad.c <- hclust(ad.d)
library(ape)
ad.c <- as.phylo(ad.c) # этот формат лучше воспринимается
plot(ad.c, type = "phylogram")
```

метрики расстояний

heatmap метолы

кластеризации

hierarchical проблемы

дендрограммы валидация кластер

леревья

Дендрограммы: type = "phylogram"

метрики

метрики расстояний

.....

тетоды

k-means

hierarchical

дендрограммы

no 211 2011114 V 20022

Дендрограммы: type = "cladogram"

расстояний

метрики расстояния heatmap

летоды сластеризаци

k-means

проблемы

дендрограммы

деревья

Дендрограммы: type = "unrooted"

метрики расстояний

метрики расстояний

тетоды

k-means

проблемы

дендрограммы валилания кластеп

деревья решений

Плохо работает, нужно доводить руками.

Дендрограммы: type = "fan"

метрики

метрики расстоян

heatma

етоды

кластеризац

k-means

проблемы

дендрограммы

валидация кластер

.Kurgokovskoye Neshukav Out

Дендрограммы: type = "radial"

метрики расстояний

метрики расстояний

neau

стоды тастеризациі

k-means

проблемы

дендрограммы

валидация кластер

решений

Деревья решений

решений

Достаточно популярным средством построения моделей является дерево решений. В узлах дерева пишутся условия, ограничивающие предикторы, на ребрах записываются значения предикторов, а на листьях дерева записаны значения предсказываемой переменной. Деревья решений позволяют решать как задачи регрессии, так и классификации.

pro ДР легко интерпретировать contra Даже незначительные изменения в обучающих рго ДР могут работать с данных могут привести к переменными любого типа значительной перестройке модели рго ДР автоматически contra Невысокая подбирают модель, предсказательная точность учетывая взаимодействия

Для преодоления недостатков можно использовать случайные леса (random forest) и другие ансамбли деревьев. презентация доступна: http://goo.gl/dqocQt

Деревья решений

метрики
расстояний
метрики расстояний
heatmap
методы
кластеризации
kmeans
heatman
дендограммы
дендограммы
дендограммы
дендограммы
дендограммы
дендовы

```
phon.conf
                                                                             p < 0.001
                                            (pause, vowel
                                                                                       consonant
               actor(social
                                                                                                factor(social
               p < 0.001
                                                                                                 p < 0.001
                          {2, 3, 4}
                                                                                                             {2, 3, 4
                                    phon.com
                                                                                                                     factor(social)
                                    p < 0.001
                                                                                                                      p < 0.001
                                   vowel
                                                pause
                                                       factor(social)
                                                                                                                             {2, 3}
                                                        p < 0.001
Node 3 (n = 182)
                   Node 5 (n = 1806)
                                         Node 7 (n = 365)
                                                             Node 8 (n = 893)
                                                                                 Node 10 (n = 397) Node 12 (n = 2118) Node 13 (n = 3085)
                n 8
                                    0.8
                                                         0.8
                                                                              nα
                                                                                                  0.8
                                                                                                                       n 8
                                                                                                                                            n a
                0.6
                                    0.6
                                                         0.6
                                                                             0.6
                                                                                                  0.6
                                                                                                                       0.6
                                                                                                                                           0.6
                0.4
                                    0.4
                                                         0.4
                                                                             0.4
                                                                                                  0.4
                                                                                                                       0.4
                                                                                                                                           0.4
               0.2
                                   - 0.2
                                                        0.2
                                                                                                0.2
                                                                                                                      0.2
                                                                                                                                         - 0.2
```

```
df <- read.csv("http://goo.gl/NwbKsN")
df$social <- factor(df$social) # внимание! числовой vs. номинативный
```

library(party)

fit <- alertctree(s.deletion phon.cont+social, data=df)
plot(fit)</pre>

метрики

метрики расстояни

істоды ластепизани

k-means

проблемы

дендрограммы

валидация кластеро

деревья решений

Спасибо за внимание

Пишите письма agricolamz@gmail.com

Список литературы

расстояний метрики расстояний

методы кластеризация

k-means hierarchical проблемы

валидация кластер

- Estivill-Castro, V. (2002). Why so many clustering algorithms: a position paper. \underline{ACM} SIGKDD explorations newsletter 4(1), 65--75.
- Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 857–871.
- Gower, J. C. and P. Legendre (1986). Metric and euclidean properties of dissimilarity coefficients. Journal of classification 3(1), 5-48.
- Hawkins, D. M. (1982). $\underline{\text{Topics in applied multivariate analysis}}$, Volume 1. Cambridge University Press.
- Lloyd, S. P. (1982). Least squares quantization in pcm. <u>Information Theory, IEEE</u> Transactions on 28(2), 129–137.