Integrating over Regions

Matthew Seguin

49.1

Recall that if a continuous function f has an antiderivative F throughout a domain D then for any contour C going from z_1 to z_2 contained in D we know:

$$\int_C f(z)dz = F(z)\Big|_{z_1}^{z_2}$$

Now let's look at $f(z) = z^n$ where $n \in \{0, 1, 2, ...\}$.

We have seen before that for $n \in \mathbb{Z} \setminus \{0\}$ that $\frac{d}{dz}z^n = nz^{n-1}$, therefore we can apply this to $n \in \{1, 2, 3, ...\}$.

So we have that $\frac{d}{dz} \frac{z^n}{n} = z^{n-1}$ for all $n \in \{1, 2, 3, \ldots\}$.

Then letting m=n-1 we see that n=m+1 and $\frac{d}{dz}\frac{z^{m+1}}{m+1}=z^m$ where $m\in\{0,1,2,\ldots\}$.

Therefore for all $m \in \{0, 1, 2, ...\}$ we have that the antiderivative of z^m is $\frac{z^{m+1}}{m+1}$.

Recall that z^m is entire for all $m \in \{0, 1, 2, ...\}$.

This means that for all $m \in \{0, 1, 2, ...\}$ we know that for any contour C going from z_1 to z_2 :

$$\int_C z^m dz = \frac{z^{m+1}}{m+1} \Big|_{z_1}^{z_2} = \frac{1}{m+1} \left(z_2^{m+1} - z_1^{m+1} \right)$$

49.3

Recall that if a continuous function f has an antiderivative F throughout a domain D then for any contour C going from z_1 to z_2 contained in D we know:

$$\int_C f(z)dz = F(z)\Big|_{z_1}^{z_2}$$

We have seen before that for $n \in \mathbb{Z} \setminus \{0\}$ that $\frac{d}{dz}z^n = nz^{n-1}$.

Therefore we know that $\frac{d}{dz}\frac{z^n}{n}=z^{n-1}$ for all $n\in\mathbb{Z}\backslash\{0\}$.

If a contour C_0 does not pass through z_0 then we know that for each $z \in C_0$ there must exist some neighborhood where $z_0 \notin V_{\epsilon_z}(z)$ for every point $z \in C_0$.

So there must exist some domain D_0 (which can be the union of all these neighborhoods) that contains C_0 and not z_0 . Therefore for $n \in \{\pm 1, \pm 2, \pm 3, ...\}$ we know $(z - z_0)^{n-1}$ is continuous and has an antiderivative on D_0 (negative powers aren't a problem since $z \neq z_0$).

Therefore for any contour C_0 going from z_1 to z_2 that does not pass through z_0 we may say that for $n \in \{\pm 1, \pm 2, \pm 3, ...\}$:

$$\int_{C_0} (z - z_0)^{n-1} dz = \frac{(z - z_0)^n}{n} \Big|_{z_1}^{z_2} = \frac{1}{n} \Big((z_1 - z_0)^n - (z_2 - z_0)^n \Big)$$

Therefore if C_0 is a closed contour (i.e. $z_1=z_2=z$) that does not pass through z_0 we may say that for $n \in \{\pm 1, \pm 2, \pm 3, ...\}$:

$$\int_{C_0} (z - z_0)^{n-1} dz = \frac{(z - z_0)^n}{n} \Big|_{z_1}^{z_2} = \frac{1}{n} \Big((z_1 - z_0)^n - (z_2 - z_0)^n \Big) = \frac{1}{n} \Big((z - z_0)^n - (z - z_0)^n \Big) = 0$$

Let
$$f_2(z)$$
 be the branch $f_2(z) = \sqrt{r}e^{i\frac{\theta}{2}}$ of $z^{\frac{1}{2}}$ where $\frac{\pi}{2} \le \theta \le \frac{5\pi}{2}$.

Then let C_2 be the contour as shown in the example (although the exact shape doesn't matter) which goes from -3 to 3.

Now consider the function $F_2(z) = \frac{2}{3}z^{\frac{3}{2}} = \frac{2}{3}\sqrt{r^3}e^{i\frac{3\theta}{2}} = \frac{2}{3}r^{\frac{3}{2}}(\cos(\frac{3\theta}{2}) + i\sin(\frac{3\theta}{2}))$ with the same bounds on θ .

Then we can write $F_2(z) = u(r,\theta) + iv(r,\theta)$ where $u(r,\theta) = \frac{2}{3}r^{\frac{3}{2}}cos(\frac{3\theta}{2})$ and $v(r,\theta) = \frac{2}{3}r^{\frac{3}{2}}sin(\frac{3\theta}{2})$.

Looking at the partial derivatives:

$$u_r = r^{\frac{1}{2}}cos(\frac{3\theta}{2}), \ u_{\theta} = -r^{\frac{3}{2}}sin(\frac{3\theta}{2}), \ v_r = r^{\frac{1}{2}}sin(\frac{3\theta}{2}), \ v_{\theta} = r^{\frac{3}{2}}cos(\frac{3\theta}{2})$$
Clearly $ru_r = r^{\frac{3}{2}}cos(\frac{3\theta}{2}) = v_{\theta} \text{ and } u_{\theta} = -r^{\frac{3}{2}}sin(\frac{3\theta}{2}) = -r(r^{\frac{1}{2}}sin(\frac{3\theta}{2})) = -rv_r.$

So the polar Cauchy Riemann equations are satisfied.

Furthermore the partial derivatives are continuous so we know that $F_2(z)$ is differentiable and $F'_2(z) = e^{-i\theta}(u_r + iv_r)$.

So
$$F_2'(z)=e^{-i\theta}\left(r^{\frac{1}{2}}(\cos(\frac{3\theta}{2})+ir^{\frac{1}{2}}\sin(\frac{3\theta}{2})\right)=r^{\frac{1}{2}}e^{-i\theta}e^{i\frac{3\theta}{2}}=\sqrt{r}e^{i\frac{\theta}{2}}=f_2(z)$$
 since they have the same θ bounds.
So $F_2(z)=\frac{2}{3}z^{\frac{3}{2}}=\frac{2}{3}\sqrt{r^3}e^{i\frac{3\theta}{2}}$ is an antiderivative for $f_2(z)$.

Therefore we know:

$$\int_{C_2} f_2(z) dz = F_2(z) \Big|_{-3}^3 = \frac{2}{3} \sqrt{27} \left(e^{i\frac{3(2\pi)}{2}} - e^{i\frac{3(\pi)}{2}} \right) = 2\sqrt{3} \left(e^{3i\pi} - e^{i\frac{3\pi}{2}} \right) = 2\sqrt{3} \left(-1 + i \right)$$

Note then that:

$$\int_{C_2-C_1} z^{\frac{1}{2}} dz = \int_{C_2} f_2(z) dz - \int_{C_1} f_1(z) dz = 2\sqrt{3}(-1+i) - 2\sqrt{3}(1+i) = -4\sqrt{3}$$

53.1

C. Let $f(z) = \frac{1}{z^2 + 2z + 2}$ and let C be the unit circle |z| = 1.

We know we can solve for the roots of $z^2 + 2z + 2$ with the quadratic equation, as shown in a previous sample work.

So
$$z = \frac{-2 \pm \sqrt{2^2 - 4(1)(2)}}{2} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2 \pm 2i}{2} = -1 \pm i$$
.

Clearly neither of these roots are interior to or on the contour C, this can be easily shown by noticing

$$|-1 \pm i| = \sqrt{(-1)^2 + (\pm 1)^2} = \sqrt{2} > 1.$$

Recall both polynomials and constant functions are entire, and therefore analytic at all points interior to and on C.

So since $P(z)=z^2+2z+2$ and g(z)=1 are analytic at all points interior to and on C, and since $P(z)\neq 0$ for any point interior to or on C we know that $f(z)=\frac{1}{z^2+2z+2}=\frac{g(z)}{P(z)}$ is analytic at all points interior to and on C.

Therefore since C is a simple closed contour (being just the unit circle |z| = 1) we may use the Cauchy-Goursat Theorem.

So we have that:

$$\int_{C} f(z)dz = \int_{C} \frac{1}{z^{2} + 2z + 2} dz = 0$$

Notice that the direction of C was unspecified and the integral still evaluates to 0, this is because no matter the direction it is still a simple closed contour.

53.2

b. Let
$$f(z) = \frac{z+2}{\sin(\frac{z}{2})}$$
.

Then let C_1 be the positively oriented unit square whose sides lie on $x = \pm 1$ and $y = \pm 1$ and C_2 be the positively

Clearly C_1 is interior to C_2 .

Furthermore since $sin(\frac{z}{2}) = 0$ if and only if $\frac{z}{2} = n\pi$ and hence only if $z = 2n\pi$ for some $n \in \mathbb{Z}$ we know that $sin(\frac{z}{2}) \neq 0$ for any point lying on or in between the contours C_1 and C_2 .

This is because for $n \in \mathbb{Z}\setminus\{0\}$ we know $|\pm 2n\pi| = 2n\pi \geq 2\pi = |\pm 2\pi|$ and clearly $2\pi > 4$ so all of these points lie outside of the region between C_1 and C_2 . Also, as clearly seen above z=0 is not on or lying between the contours C_1 and C_2 .

Recall that polynomials and sin(w) are entire, therefore we have that $g(z) = sin(\frac{z}{2})$ and P(z) = z + 2 are analytic on and between the contours C_1 and C_2 .

Since $sin(\frac{z}{2}) \neq 0$ on or between the contours C_1 and C_2 we know $f(z) = \frac{z+2}{sin(\frac{z}{2})} = \frac{P(z)}{g(z)}$ is analytic on and between the contours C_1 and C_2 .

Therefore since C_1 and C_2 are positively oriented simple closed contours where C_1 is interior to C_2 and we know $f(z) = \frac{z+2}{\sin(\frac{z}{2})}$ is analytic on and between the contours C_1 and C_2 we may use the corollary in the book to say:

$$\int_{C_1} f(z)dz = \int_{C_1} \frac{z+2}{\sin(\frac{z}{2})} dz = \int_{C_2} \frac{z+2}{\sin(\frac{z}{2})} dz = \int_{C_2} f(z)dz$$

Let C be the boundary of the rectangle $0 \le x \le 3$ and $0 \le y \le 2$ taken in the positive orientation.

Now let C_0 be the boundary of the circle |z - (2+i)| = 3 taken in the positive orientation.

Clearly C is interior to C_0 .

Since polynomials are entire we have that z - (2 + i) is analytic on and between the contours C and C_0 .

Furthermore we know that $z - (2 + i) \neq 0$ for any z lying on or between the contours C and C_0 .

Consequently $(z - (2 + i))^{n-1}$ is analytic on and between the contours C and C_0 for any $n \in \mathbb{Z}$ (since $z - (2 + i) \neq 0$ for any z on or between the contours C and C_0 negative powers are not a problem).

Therefore since C and C_0 are positively oriented simple closed contours where C is interior to C_0 and we know $(z-(2+i))^{n-1}$ is analytic on and between the contours C and C_0 we may use the corollary in the book to say:

$$\int_C (z - (2+i))^{n-1} dz = \int_{C_0} (z - (2+i))^{n-1} dz$$

Recall from problem in a previous sample work that when C_0 denotes the positively oriented circle of radius R centered at z_0 :

If
$$n = 0$$
:

And if
$$n \in \{\pm 1, \pm 2, \pm 3, ...\}$$
:

$$\int_{C_0} (z - z_0)^{n-1} dz = 2\pi i$$

$$\int_{C_0} (z - z_0)^{n-1} dz = 0$$

Therefore we have for our contour C_0 centered at $z_0 = 2 + i$ with R = 3:

If n = 0:

And if
$$n \in \{\pm 1, \pm 2, \pm 3, ...\}$$
:

$$\int_C (z-(2+i))^{n-1} dz = \int_{C_2} (z-(2+i))^{n-1} dz = 2\pi i$$

$$\int_C (z - (2+i)^{n-1} dz = \int_{C_0} (z - (2+i)^{n-1} dz = 0$$

Even if we have an function f = u + iv that is nowhere analytic we can still write the following (for a simple closed contour C) so long as the partial derivatives of u and v are well defined and integrable:

$$\int_C f(z)dz = \int_a^b f(z(t))z'(t)dt = \int_a^b \Big(u\big(x(t),y(t)\big) + iv\big(x(t),y(t)\big)\Big)\Big(x'(t) + iy'(t)\Big)dt = \int_a^b f(z)dz = \int_a^b f(z(t))z'(t)dt = \int_a^b f(z(t))z'(t)d$$

$$\int_{a}^{b} (ux' - vy')dt + i \int_{a}^{b} (vx' + uy')dt = \int_{C} u \, dx - v \, dy + i \int_{C} v \, dx + u \, dy$$

Now recalling Green's Theorem (R is the region bounded by C):

$$\int_C P \, dx + Q \, dy = \int \int_R (Q_x - P_y) dA$$

We now have that:

$$\int_{C} f(z)dz = \int_{C} u \, dx - v \, dy + i \int_{C} v \, dx + u \, dy = \int_{R} (-v_{x} - u_{y})dA + i \int_{R} (u_{x} - v_{y})dA$$

Let $f(z) = \overline{z} = x - iy$ then f(z) = u + iv where u = Re z = x and v = -Im z = -y.

Then we have that $u_x = 1$, $u_y = 0$, $v_x = 0$, and $v_y = -1$, all of which are clearly well defined and integrable.

Now let C be any positively oriented simple closed contour.

Then we have the following where R is the region bounded by C):

$$\int_{C} \overline{z} dz = \int \int_{R} (-0 - 0) dA + i \int \int_{R} (1 - (-1)) dA = i \int \int_{R} 2 dA = 2i \int \int_{R} dA = 2Ai$$

Where A is the area of the region bounded by C.

Therefore we have that:

$$\frac{1}{2i} \int_C \overline{z} dz = \frac{1}{2i} (2Ai) = A$$

So if C is any simple closed contour taken in the positive sense then the area enclosed by C can be written as:

$$A = \frac{1}{2i} \int_C \overline{z} dz$$

Problem 2

Suppose that f is analytic on and inside a simple closed contour C except at one point z_0 in the interior of C.

Further assume that f is bounded in some neighborhood of z_0 .

Then we know there exists some $\alpha > 0$ such that if $|z - z_0| < \alpha$ then $|f(z)| \le M$ for some M > 0.

Let $\epsilon > 0$ be arbitrary. Then let C_{ϵ} be a simple closed contour in the positive sense such that it is contained in both the above α neighborhood of z_0 , $V_{\alpha}(z_0)$, and the interior of C.

Furthermore let C_{ϵ} be such that z_0 is in the interior of C_{ϵ} , and the length of C_{ϵ} is less than $\frac{\epsilon}{M}$ (that is $L < \frac{\epsilon}{M}$). Such a contour exists because $\alpha > 0$, so for any given direction there is always a point between z_0 and the boundary of $V_{\alpha}(z_0)$. We already know that since z_0 is interior to C there must exist a point for any given direction between z_0 and C. Also the distance of points from z_0 can be made arbitrarily small and hence the length of the contour can be made arbitrarily small.

Take C in the positive sense and call it C_+ (I will show later that the same holds true for negative orientation). Then since z_0 is in the interior of C_{ϵ} we know that f is analytic everywhere on and between the simple closed contours C_+ and C_{ϵ} and so we may use the deformation of paths theorem.

So we have that:

$$\int_{C_+} f(z)dz = \int_{C_{\epsilon}} f(z)dz$$

Therefore since C_{ϵ} is contained inside of $V_{\alpha}(z_0)$, f is bounded (by M) on C_{ϵ} so:

$$\left| \int_{C_+} f(z) dz \right| = \left| \int_{C_{\epsilon}} f(z) dz \right| \le ML < M \frac{\epsilon}{M} = \epsilon$$

This was true for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

Therefore when C is taken in the positive sense:

$$\int_C f(z)dz = 0$$

By which it follows immediately that if C is taken in the negative sense:

$$\int_{C} f(z)dz = \int_{-C_{+}} f(z)dz = -\int_{C_{+}} f(z)dz = 0$$

So when C is taken in either the positive or negative sense we get:

$$\int_C f(z)dz = 0$$