Basic Prerequisite Mathematics

SET THEORY

Common Sets

- $\mathbb{N} = \{0, 1, 2, \dots\}$: the natural numbers, or non-negative integers. The convention in computer science is to include 0 in the natural numbers.
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$: the integers
- $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$: the positive integers
- $\mathbb{Z}^- = \{-1, -2, -3, \dots\}$: the negative integers
- \mathbb{Q} the rational numbers, \mathbb{Q}^+ the positive rationals, and \mathbb{Q}^- the negative rationals.
- \mathbb{R} the real numbers, \mathbb{R}^+ the positive reals, and \mathbb{R}^- the negative reals.

Notation

For any sets A and B, we will use the following standard notation.

- $x \in A$: "x is an element of A" or "A contains x"
- $A \subseteq B$: "A is a subset of B" or "A is included in B"
- A = B: "A equals B" (Note that A = B if and only if $A \subseteq B$ and $B \subseteq A$.)
- $A \subseteq B$: "A is a proper subset of B" (Note that $A \subseteq B$ if and only if $A \subseteq B$ and $A \neq B$.)
- $A \cup B$: "A union B"
- $A \cap B$: "A intersection B"
- A B: "A minus B" (set difference)
- |A|: "cardinality of A" (the number of elements of A)
- \emptyset or {}: "the empty set"
- $\mathcal{P}(A)$: "powerset of A" (the set of all subsets of A). If $A = \{a, 34, \triangle\}$, then $\mathcal{P}(A) = \{\{\}, \{a\}, \{34\}, \{\triangle\}, \{a, 34\}, \{a, \triangle\}, \{34, \triangle\}\}, \{a, 34, \triangle\}\}$. $S \in \mathcal{P}(A)$ means the same as $S \subseteq A$.
- $\{x \in A \mid P(x)\}$: "the set of elements x in A for which P(x) is true"

 For example, $\{x \in \mathbb{Z} \mid \cos(\pi x) > 0\}$ represents the set of integers x for which $\cos(\pi x)$ is greater than zero, *i.e.*, it is equal to $\{\ldots, -4, -2, 0, 2, 4, \ldots\} = \{x \in \mathbb{Z} \mid x \text{ is even}\}.$

NUMBER THEORY

For any two natural numbers a and b, we say that a divides b if there exists a natural number c such that b = ac. In such a case, we say that a is a divisor of b (e.g., 3 is a divisor of 12 but 3 is not a divisor of 16). Note that any natural number is a divisor of 0 and 1 is a divisor of any natural number.

A natural number p is prime if it has exactly two positive divisors (e.g., 2 is prime since its positive divisors are 1 and 2 but 1 is **not** prime since it only has one positive divisor: 1). There are an infinite number of prime numbers and any integer greater than one can be expressed in a unique way as a finite product of prime numbers (e.g., $8 = 2^3$, $77 = 7 \times 11$, 3 = 3).

Inequalities

For any integers m and n, m < n if and only if $m + 1 \le n$ and m > n if and only if $m \ge n + 1$. For any real numbers w, x, y, and z, the following properties always hold (they also hold when < and \le are exchanged throughout with > and \ge , respectively).

• if x < y and $w \le z$, then x + w < y + z

• if
$$x < y$$
, then
$$\begin{cases} xz < yz & \text{if } z > 0 \\ xz = yz & \text{if } z = 0 \\ xz > yz & \text{if } z < 0 \end{cases}$$

• if $x \le y$ and y < z (or if x < y and $y \le z$), then x < z

FUNCTIONS

We will use the standard notation

$$f:A\to B$$

to say that f is a function from set A to set B (i.e., to every element $x \in A$, f associates at most one element $f(x) \in B$).

Now, here are some common number-theoretic functions together with their definition and properties (unless noted otherwise, x and y stand for arbitrary real numbers and k, m, and n stand for arbitrary positive integers in what follows).

- $\min\{x,y\}$: "minimum of x and y" (the smallest of x or y) Properties: $\min\{x,y\} \le x$, $\min\{x,y\} \le y$.
- $\max\{x,y\}$: "maximum of x and y" (the largest of x or y) Properties: $x \leq \max\{x,y\}, y \leq \max\{x,y\}.$
- $\lfloor x \rfloor$: "floor of x" (the greatest integer less than or equal to x, e.g., $\lfloor 5.67 \rfloor = 5$, $\lfloor -2.01 \rfloor = -3$) Properties: $x 1 < \lfloor x \rfloor \le x$, $\lfloor -x \rfloor = -\lceil x \rceil$, $\lfloor x + k \rfloor = \lfloor x \rfloor + k$, $\lfloor \lfloor k/m \rfloor / n \rfloor = \lfloor k/mn \rfloor$, $(k m + 1)/m \le \lfloor k/m \rfloor$.

• $\lceil x \rceil$: "ceiling of x" (the least integer greater than or equal to x, e.g., $\lceil 5.67 \rceil = 6$, $\lceil -2.01 \rceil = -2$) Properties: $x \leq \lceil x \rceil < x + 1$, $\lceil -x \rceil = -\lfloor x \rfloor$, $\lceil x + k \rceil = \lceil x \rceil + k$, $\lceil \lceil k/m \rceil / n \rceil = \lceil k/mn \rceil$, $\lceil k/m \rceil \leq (k+m-1)/m$.

Additional property of | | and | |: |k/2| + | |k/2| = k.

- |x|: "absolute value of x" (|x| = x if $x \ge 0$; -x if x < 0, e.g., |5.67| = 5.67, |-2.01| = 2.01)

 BEWARE! The same notation is used to represent the cardinality |A| of a set A and the absolute value |x| of a number x so be sure you are aware of the context in which it is used.
- $m \operatorname{div} n$: "the quotient of $m \operatorname{divided}$ by n" (integer division of $m \operatorname{by} n$, e.g., $5 \operatorname{div} 6 = 0$, $27 \operatorname{div} 4 = 6$, $-27 \operatorname{div} 4 = -6$)

Properties: If m, n > 0, then $m \operatorname{div} n = \lfloor m/n \rfloor$. $(-m) \operatorname{div} n = -(m \operatorname{div} n) = m \operatorname{div} (-n)$.

- $m \operatorname{rem} n$: "the remainder of m divided by n" $(e.g., 5 \operatorname{rem} 6 = 5, 27 \operatorname{rem} 4 = 3, -27 \operatorname{rem} 4 = -3)$ Properties: $m = (m \operatorname{div} n) \cdot n + m \operatorname{rem} n$. $(-m) \operatorname{rem} n = -(m \operatorname{rem} n) = m \operatorname{rem} (-n)$.
- $m \mod n$: " $m \mod n$ " (e.g., $5 \mod 6 = 5$, $27 \mod 4 = 3$ $-27 \mod 4 = 1$) Properties: $0 \le m \mod n < n$, $n \text{ divides } m - (m \mod n)$.
- gcd(m, n): "greatest common divisor of m and n" (the largest positive integer that divides both m and n)

For example, gcd(3,4) = 1, gcd(12,20) = 4, gcd(3,6) = 3.

• lcm(m, n): "least common multiple of m and n" (the smallest positive integer that m and n both divide)

For example, lcm(3,4) = 12, lcm(12,20) = 60, lcm(3,6) = 6.

Properties: $gcd(m, n) \cdot lcm(m, n) = m \cdot n$.

CALCULUS

Limits and Sums

A sequence of real numbers $\{a_n\} = a_0, a_1, a_2, \ldots, a_n, \ldots$ converges to a limit $L \in \mathbb{R}$ if for every $\varepsilon > 0$, there exists a $n_0 \geq 0$ such that $|a_n - L| < \varepsilon$ for every $n \geq n_0$. In such a case, we write $\lim_{n \to \infty} a_n = L$ or simply $\{a_n\} \to L$. Otherwise, we say that the sequence diverges.

If $\{a_n\}$ and $\{b_n\}$ are two sequences of real numbers such that $\{a_n\} \to L_1$ and $\{b_n\} \to L_2$, then

$$\lim_{n \to \infty} (a_n + b_n) = L_1 + L_2 \quad \text{and} \quad \lim_{n \to \infty} (a_n \cdot b_n) = L_1 \cdot L_2.$$

In particular, if c is any real number, then

$$\lim_{n \to \infty} (c \cdot a_n) = c \cdot L_1.$$

The sum $a_0 + a_1 + \cdots + c_n$ of the finite sequence a_0, a_1, \ldots, a_n is denoted by

$$\sum_{i=0}^{n} a_i.$$

If the elements of the sequence are all different and $S = \{a_0, a_1, \dots, a_n\}$ is the set of elements in the sequence, this sum can also be denoted by

$$\sum_{a \in S} a.$$

Examples:

- For any $a \in \mathbb{R}$ such that -1 < a < 1, $\lim_{n \to \infty} a^n = 0$.
- For any $a \in \mathbb{R}^+$, $\lim_{n \to \infty} a^{1/n} = 1$.
- For any $a \in \mathbb{R}^+$, $\lim_{n \to \infty} (1/n)^a = 0$.
- $\lim_{n\to\infty} (1+1/n)^n = e = 2.71828182845904523536...$
- For any $a, b \in \mathbb{R}$, the arithmetic sum is given by:

$$\sum_{i=0}^{n} (a+ib) = (a) + (a+b) + (a+2b) + \dots + (a+nb) = \frac{1}{2}(n+1)(2a+nb).$$

• For any $a, b \in \mathbb{R}^+$, the geometric sum is given by:

$$\sum_{i=0}^{n} (ab^{i}) = a + ab + ab^{2} + \dots + ab^{n} = \frac{a(1 - b^{n+1})}{1 - b}.$$

EXPONENTS AND LOGARITHMS

Definition: For any $a, b, c \in \mathbb{R}^+$, $a = \log_b c$ if and only if $b^a = c$.

Notation: For any $x \in \mathbb{R}^+$, $\ln x = \log_e x$ and $\lg x = \log_2 x$.

For any $a, b, c \in \mathbb{R}^+$ and any $n \in \mathbb{Z}^+$, the following properties always hold.

•
$$\sqrt[n]{b} = b^{1/n}$$

$$\bullet \ b^a b^c = b^{a+c}$$

•
$$(b^a)^c = b^{ac}$$

•
$$b^a/b^c = b^{a-c}$$

•
$$b^0 = 1$$

•
$$a^b c^b = (ac)^b$$

•
$$b^{\log_b a} = a = \log_b b^a$$

•
$$a^{\log_b c} = c^{\log_b a}$$

•
$$\log_b(ac) = \log_b a + \log_b c$$

•
$$\log_b(a^c) = c \cdot \log_b a$$

•
$$\log_b(a/c) = \log_b a - \log_b c$$

•
$$\log_b 1 = 0$$

•
$$\log_b a = \log_c a / \log_c b$$

BINARY NOTATION

A binary number is a sequence of bits $a_k \cdots a_1 a_0$ where each bit a_i is equal to 0 or 1. Every binary number represents a natural number in the following way:

$$(a_k \cdots a_1 a_0)_2 = \sum_{i=0}^k a_i 2^i = a_k 2^k + \cdots + a_1 2 + a_0.$$

For example, $(1001)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 1 = 9$, $(01110)_2 = 8 + 4 + 2 = 14$. **Properties:**

- If $a = (a_k \cdots a_1 a_0)_2$, then $2a = (a_k \cdots a_1 a_0)_2$, e.g., $9 = (1001)_2$ so $18 = (10010)_2$.
- If $a = (a_k \cdots a_1 a_0)_2$, then $|a/2| = (a_k \cdots a_1)_2$, e.g., $9 = (1001)_2$ so $4 = (100)_2$.
- The smallest number of bits required to represent the positive integer n in binary is called the *length* of n and is equal to $\lceil \log_2(n+1) \rceil$.

Make sure you know how to add and multiply two binary numbers. For example, 1111+101=10100 and $1111\times 101=1001011$.