Дискретная теория вероятностей. Неофициальный конспект

Лектор: Михаил Анатольевич Лифшиц Конспектировал Леонид Данилевич

II семестр, весна 2023 г.

Оглавление

1 Ди	искретная теория вероятностей	2
1.1	1 Основные определения и понятия	2
	1.1.1 Вероятностное пространство. События	
	1.1.2 Взаимосвязь событий	3
1.2		4
	1.2.1 Схема Бернулли	4
	1.2.2 Случайные блуждания	5
	1.2.3 Про условные вероятности	6
1.3	В Матожидание, дисперсия	7
	1.3.1 Простейшие свойства матожидания	7
	1.3.2 Неравенства, связанные с математическим ожиданием	
	1.3.3 Медиана	
	1.3.4 Дисперсия	
	1.3.5 Моменты	
1.4		
1.5		
	1.5.1 Производящие функции и моменты	
1.6		
	1.6.1 Процесс Гальтона-Ватсона	
	1.6.2 Некоторые другие виды процессов	
1.7		
	1.7.1 Локальная	
	1.7.2 Интегральная	
1.8		
	1.8.1 Инвариантные (стационарные) распределения	
	1.8.2 Классификация состояний в цепях Маркова	
	1.8.3 Периодичность	
	1.8.4 Связь периодов и эргодических классов	
	1.8.5 Возвратность	
1.9		
	1.9.1 Распределение максимума. Принцип отражения	
	1.9.2 Время пребывания на полуоси (закон арксинуса)	
	1.9.3 Задача о разорении игрока	
	1.9.4 Матожидание времени разорения	
1 1	10 Случайные графы	
1.1	1.10.1 Граф Эрдёша-Реньи	
	1.10.2 power law for degrees (степенной закон для степеней (вершин))	
	1.10.2 рожет там тог degrees (степенной закон для степеней (вершину)	
	1.10.4 Распределение степеней вершин	

Глава 1

Дискретная теория вероятностей

Лекция I 14 февраля 2023 г.

1.1 Основные определения и понятия

1.1.1 Вероятностное пространство. События

Рассмотрим конечное или счётное множество Ω .

Элементы множества $\omega \in \Omega$ называются элементарными исходами, само множество Ω называется пространством элементарных исходов.

Всякое подмножество $A \subset \Omega$ является событием.

Введём функцию $p:\Omega\to\mathbb{R}_{\geqslant 0}$, сопоставляющую элементарному исходу «его вероятность». Необходимым и достаточным условием является $\sum_{\omega\in\Omega}p(\omega)=1.$ Так как $p(\omega)\geqslant 0$, то сумма конечного

или счётного числа слагаемых корректно определена. А именно, сумма счётного числа слагаемых либо расходится при любой перестановке слагаемых, либо сходится к одному и тому же числу.

Определение 1.1.1 (Вероятностное пространство). Пространство элементарных исходов Ω с заданной на нём вероятностью $p:\Omega \to \mathbb{R}_{\geqslant 0}$.

Определение 1.1.2 (Вероятность события). Сумма вероятностей элементарных исходов — его элементов, как множества.

Пишут
$$\mathbb{P}: 2^{\Omega} \to \mathbb{R}; \qquad \mathbb{P}(A) = \sum_{\omega \in A} p(\omega).$$

Свойства (Свойства вероятностей).

- $0 \leqslant \mathbb{P}(A) \leqslant 1$.
- $A \subset B \Rightarrow \mathbb{P}(A) \leqslant \mathbb{P}(B)$.
- $\mathbb{P}(A) + \mathbb{P}(\overline{A}) = 1$, где $\overline{A} \stackrel{def}{=} \Omega \setminus A$.

•
$$\mathbb{P}\left(\bigsqcup_{j=1}^{n} A_j\right) = \sum_{j=1}^{n} \mathbb{P}(A_j).$$

Для пересекающихся событий посчитать вероятность их объединения сложнее. Используя формулу включений-исключений, можно записать

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

и так далее.

Замечание. Иногда случается так, что все элементарные исходы равновероятны. Так как сумма их вероятностей — 1, то в таком случае $|\Omega| < \infty$, и $\forall \omega \in \Omega : p(\omega) = \frac{1}{|\Omega|}$. Отсюда получаем, $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$.

1.1.2 Взаимосвязь событий

Условная вероятность

Зафиксируем некоторое событие $B\subset \Omega$, такое, что $\mathbb{P}(B)>0$.

Определение 1.1.3 (Условная вероятность события A (при условии B)). $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$.

Об этом удобно думать, как о вероятности того, что произошло A, npu условии того, что произошло B.

Рис. 1.1: Про условную вероятность

Красное событие довольно вероятно, что произойдёт, но при условии того, что произошло зелёное событие, вероятность красного существенно понижается.

Интуиция за этим определением следующая: все элементарные исходы, содержащиеся в B могут как произойти, так и не произойти, но все, не содержащиеся в B — точно не произошли.

Таким образом, вероятностное пространство «сузилось», ввели новую вероятностную функцию

$$\widetilde{p}: \Omega \to \mathbb{R}_{\geqslant 0}; \qquad \widetilde{p}: \omega \mapsto \begin{cases} \alpha \cdot p(\omega), & \omega \in B \\ 0, \omega \notin B \end{cases}$$

где α — коэффициент нормировки, необходимый для условия суммирования всех вероятностей в единицу. $\sum_{\omega \in B} p(\omega) = \mathbb{P}(B)$, поэтому $\alpha = \frac{1}{\mathbb{P}(B)}$.

Независимость событий

Интуитивно, независимость событий — это когда происхождение одного события не влияет на вероятность происхождения другого.

Воспользовавшись языком условной вероятности, $\mathbb{P}(A|B) = \mathbb{P}(A)$. За определение принимают формулу, полученную из этой домножением на $\mathbb{P}(B)$ — без деления.

Определение 1.1.4 (События A и B независимы). $\mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A \cap B)$.

Замечание. Приятным бонусом формулы оказалась симметричность относительно A и B.

Можно доказать, что независимость A и B влечёт независимость \overline{A} и \overline{B} .

Независимость множества событий бывает попарная и в совокупности.

Попарная независимость — гораздо более слабое условие, оно означает лишь независимость любой пары событий. Независимость множества событий $\mathcal{A} = \{A_1, A_2, \ldots\}$ в совокупности означает

$$\forall \mathcal{S} \subset \mathcal{A} : \prod_{A \in \mathcal{S}} \mathbb{P}(A) = \mathbb{P}\left(\bigcap_{A \in \mathcal{S}} A\right).$$

Контример (Пирамидка Бернштейна). Покажем, что попарная независимость отличается от независимости в совокупности. Рассмотрим четырёхгранную пирамидку (как кубик, только четыре грани, а не шесть), у которой грани белая, синяя, красная, бело-сине-красная.

При её броске возможны 4 элементарных исхода — выпала такая-то грань. Определим вероятностное пространство на этом множестве, введя вероятности каждого исхода $^{1}/_{4}$.

Рассмотрим три события W, B, R — выпала грань, на которой есть белое, синее или красное соответственно. Несложно заметить, что

$$\mathbb{P}(W) = \mathbb{P}(B) = \mathbb{P}(R) = \frac{1}{2}$$

$$\mathbb{P}(W \cap B) = \mathbb{P}(B \cap R) = \mathbb{P}(W \cap R) = \frac{1}{4}$$

$$\mathbb{P}(W \cap B \cap R) = \frac{1}{4}$$

1.2 Случайные величины

Определение 1.2.1 (Случайная величина). Отображение $X: \Omega \to \mathbb{R}$.

Определение 1.2.2 (Независимость случайных величин X_1, \ldots, X_n). $\forall r_1, \ldots, r_n \in \mathbb{R}$: события $\{X = r_1\}, \ldots, \{X_n = r_n\}$ независимы.

Запись $\{X=r_1\}$ является сокращением более длинной записи $\{\omega\in\Omega|X(\omega)=r_1\}.$

1.2.1 Схема Бернулли

Пусть $n \in \mathbb{N}, p \in [0, 1]$.

Введём независимые события A_1, \ldots, A_n , такие, что $\mathbb{P}(A_j) = p$. Назовём их *испытаниями*, посмотрим, какие испытания завершились «успехом» (событие произошло), а какие — нет.

Пример (Схема Бернулли для n=2). Обозначим $A_1=\{\omega_1,\omega_2\}, A_2=\{\omega_1,\omega_3\}$. Все вероятности элементарных исходов определены условием однозначно. Так, $p(\omega_1)=\mathbb{P}(A_1\cap A_2)=\sum_{\text{независимость}}\mathbb{P}(A_1)\mathbb{P}(A_2)=p\cdot p=p^2$.

Рассмотрим случайную величины $S(\omega)$ — количество успехов.

ω	A_1	A_2	$p(\omega)$	$S(\omega)$
ω_1	Успех	Успех	p^2	2
ω_2	Успех	Неудача	p(1-p)	1
ω_3	Неудача	Успех	(1-p)p	1
ω_4	Неудача	Неудача	$(1-p)^2$	0

Посчитаем для произвольного n вероятность того, что количество успехов — ровно k. Из базовой комбинаторики очевидно, что

$$\mathbb{P}(S=k) = \sum_{\omega \in \Omega: S(\omega)=k} p(\omega) = \sum_{\omega \in \Omega: S(\omega)=k} p^k (1-p)^{n-k} = \binom{n}{k} p^k (1-p)^{n-k}$$

Для всякой случайной величины S, удовлетворяющей формуле выше, говорят, что она подчинена биномиальному распределению $\mathcal{B}(n,p)$.

Заметим, что $\Omega = \bigsqcup_{k=0}^{n} \{S=k\}$, откуда мы получаем тождество

$$\sum_{k=0}^{n} \mathbb{P}(S=k) = 1 \quad \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = 1$$

Теорема 1.2.1 (Пуассон). Пусть $k \in \mathbb{N}_{\geqslant 0}, a \in \mathbb{R}_{>0}$.

Рассмотрим последовательность схем Бернулли с параметрами (n, p_n) , где $n \cdot p_n \xrightarrow[n \to \infty]{} a$.

Тогда $\mathbb{P}(S_n=k) \xrightarrow[n\to\infty]{} e^{-a\frac{a^k}{k!}}$. Случайные величины, удовлетворяющие этой формуле, имеют распределение Пуассона $\mathcal{P}(a)$.

Доказательство.

$$\mathbb{P}(S_n = k) = \frac{n!}{(n-k)!k!} p_n^k (1-p_n)^{n-k} = \frac{1}{k!} \cdot \underbrace{\frac{n!}{(n-k)! \cdot n^k}} \cdot \underbrace{(np_n)^k}_{\rightarrow a} \cdot \underbrace{(1-p_n)^{\frac{1}{p_n}}}_{e^{-1}} \underbrace{\underbrace{p_n(n-k)}_{\rightarrow a}}_{\rightarrow a} \longrightarrow e^{-a} \frac{a^k}{k!}$$

Лекция II

20 февраля 2023 г.

Введём в схеме Бернулли ещё одну случайную величину T — момент первого успеха, наименьший номер первого успешного события (и формальный элемент ∞ иначе).

 $T \in \{1, \dots, n, \infty\}$. (Эта запись не совсем формальна: она означает, что T, как отображение, принимает значения в данном множестве). Несложно по определению почитать

$$\mathbb{P}(T=k) = \mathbb{P}\left(\overline{A_1}, \dots, \overline{A_{k-1}}, A_k\right) = (1-p)^{k-1} \cdot p, 1 \leqslant k \leqslant n$$

Если же ни одно испытание не закончилось успехом, то $T=\infty, \mathbb{P}(T=\infty)=(1-p)^n.$

Рассмотрим случай $n=\infty$. Тогда событие «ни одно испытание не закончилось успехом» исключается, а сумма вероятностей остальных событий равна 1:

$$\sum_{k=1}^{\infty} \mathbb{P}(T=k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = \frac{1}{1-(1-p)} \cdot p = 1$$

Говорят, что T имеет $\emph{геометрическое распределение}.$

На самом деле дискретная теория вероятностей не позволяет создать схему Бернулли со счётным (любым бесконечным) количеством испытаний (при $0). Таким образом, рассматривая случай <math>n = \infty$, мы ведём себя неформально, в любом случае выходя за рамки дискретной теории вероятностей.

Доказательство невозможности счётной схеме Бернулли в дискретной теории вероятностей. Рассмотрим произвольный элементарный исход ω . Если ему соответствует бесконечное число успехов, то для любого m рассмотрим m успешных событий. Пусть это какие-то фиксированные A_{i_1},\ldots,A_{i_m} . Так как они произошли, то $\mathbb{P}(m)\leqslant p^m$, то есть на самом деле $\mathbb{P}(\omega)=0$. (В случае бесконечного числа неуспехов опять же можно оценить $\forall m\in\mathbb{N}:\mathbb{P}(\omega)\leqslant (1-p)^m$). Но раз вероятность каждого элементарного исхода равна 0, то они не могут суммироваться в 1, противоречие.

Это произошло из-за того, что в схеме Бернулли со счётным числом испытаний континуум возможных исходов.

Чтобы это обойти, можно рассматривать последовательность конечных схем, как в теореме Пуассона, или же просто закрыть на это глаза — в непрерывной теории вероятностей такое распределение возможно.

1.2.2 Случайные блуждания

Введём случайные величины $S_n: S_0=0, S_{n+1}=S_n+X_n,$ где $X_n=\begin{cases} 1, & \text{с вероятностью } p\\ -1, & \text{с вероятностью } 1-p, \end{cases}$ и все $\{X_n\}$ независимы.

Это та же схема Бернулли, просто успехам соответствуют движения в положительную сторону оси, и неуспехам — в отрицательную.

Исследуем распределение S_n . Очевидно, возможные значения S_n — это [-n;n], причём $k \equiv n \pmod 2$.

Событие $\{S_n = k\}$ эквивалентно событию «m величин равны 1 (остальные -1)», где $k = m - (n - m) \Rightarrow m = \frac{n+k}{2}$.

Отсюда согласно схеме Бернулли получаем $\mathbb{P}(S_n=k)=\binom{n}{(n+k)/2}p^{(n+k)/2}(1-p)^{(n-k)/2}.$

В симметричном случае, при p=1/2 формула упрощается, $\mathbb{P}(S_n=k)=\binom{n}{(n+k)/2}\cdot \frac{1}{2^n}.$

1.2.3 Про условные вероятности

Вероятность происхождения A при условии $B\colon \mathbb{P}(A|B)=\mathbb{P}_B(A)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$ (при $\mathbb{P}(B)>0$).

Применение условных вероятностей:

• Вычисление вероятностей вложенных событий. Пусть $A_1\supset A_2\supset \dots A_n$.

$$\mathbb{P}(A_n) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2|A_1) \cdot \ldots \cdot \mathbb{P}(A_n|A_{n-1})$$

Доказательство. По индукции.

$$\mathbb{P}(A_n) = \mathbb{P}(A_n \cap A_{n-1}) = \mathbb{P}(A_{n-1}) \cdot \mathbb{P}(A_n | A_{n-1})$$

• Формула полной вероятности Пусть вероятностное пространство Ω разбито на конечное (или счётное) число дизъюнктных события H_1, \ldots, H_n .

Рис. 1.2: Разбиение вероятностного пространства

Рассмотрим произвольное событие $A \subset \Omega$.

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \cap H_i) = \sum_{i=1}^{n} \mathbb{P}(A|H_j)\mathbb{P}(H_i)$$

• Формула Байеса. Пусть вероятностное пространство Ω разбито на конечное (или счётное) число дизъюнктных события H_1, \ldots, H_n . Теперь мы хотим узнать вероятность H_i для некоего i при условии наступления события A.

Запишем

$$\mathbb{P}(H_i|A) \underset{\text{по определению}}{=} \frac{\mathbb{P}(H_i \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|H_i)\mathbb{P}(H_i)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|H_i)\mathbb{P}(H_i)}{\sum\limits_{i=1}^n \mathbb{P}(A|H_i)\mathbb{P}(H_i)}$$

1.3 Матожидание, дисперсия

Говорят, что X и Y одинаково распределены, если $\forall r \in \mathbb{R} : \mathbb{P}(X=r) = \mathbb{P}(Y=r)$. Например, в схеме Бернулли из 6 испытаний случайные величины «количество успехов на первых 2 испытаниях» и «количество успехов на последних 2 испытаниях» одинаково распределены.

Если X и Y определены на одном и том же вероятностном пространстве, то можно определить арифметические действия (сумму, произведение...) случайных величин, как соответствующие арифметические действия над отображениями поточечно.

Определение 1.3.1 (Математическое ожидание случайной величины X). Обозначается

$$\mathbb{E}X \stackrel{def}{=} \sum_{\omega \in \Omega} X(\omega) p(\omega)$$

Математическое ожидание довольно неплохо описывает случайную величину одним числом: (1.3.1).

После приведения подобных членов, можно записать $\mathbb{E}(X) = \sum_r \mathbb{P}(X=r)r$ Если Ω конечно, то сумма считается; если же Ω — бесконечное вероятностное пространство, то матожидание может быть не определено, как сумма бесконечного ряда (тем не менее, сумма всегда существует, если X всегда принимает неотрицательные значения). Чтобы было удобно оперировать с матожиданиями, будем считать, что матожидание определено, если и только если ряд сходится **абсолютно**.

Чтобы исследовать существование $\mathbb{E} X$, введём функции положительной и отрицательной частей числа:

$$x_{+} \stackrel{def}{=} \max\{x, 0\}$$
$$x_{-} \stackrel{def}{=} \max\{-x, 0\}$$

Несложно видеть, что равенство $x = x_+ - x_-$ выполнено всегда.

Посчитав матожидание положительной и отрицательной частей X, $\mathbb{E}(X_+)$ и $\mathbb{E}(X_-)$, можно утверждать, что $\mathbb{E}(X)$ существует, если и только если хотя бы одно из $\mathbb{E}(X_+)$ и $\mathbb{E}(X_-)$ конечно. Если же $\mathbb{E}(X_+) = \mathbb{E}(X_-) = +\infty$, то $\mathbb{E}(X)$ не определено. (Если ровно одно из $\mathbb{E}(X_+)$ или $\mathbb{E}(X_-)$ бесконечно, то $\mathbb{E}X$ тоже можно мыслить, как бесконечность того или иного знака)

1.3.1 Простейшие свойства матожидания

- $X \geqslant 0 \Rightarrow \mathbb{E}(X) \geqslant 0$.
- $\forall c \in \mathbb{R} : \mathbb{E}(cX) = c\mathbb{E}(X)$.
- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

Доказательство.

$$\mathbb{E}(X) + \mathbb{E}(Y) = \sum_{r_1} r_1 \mathbb{P}(X = r_1) + \sum_{r_2} r_2 \mathbb{P}(Y = r_2) =$$

$$= \sum_{r_1} r_1 \sum_{r_2} \mathbb{P}(X = r_1 \land Y = r_2) + \sum_{r_2} r_2 \sum_{r_1} \mathbb{P}(X = r_1 \land Y = r_2) =$$

$$= \sum_{r_1, r_2} (r_1 + r_2) \mathbb{P}(X = r_1 \land Y = r_2)$$

Здесь важно заметить, что X и Y лишь должны быть определены на одном вероятностном событии; они не обязаны быть, например, независимы.

• $X\geqslant Y\Rightarrow \mathbb{E}(X)\geqslant \mathbb{E}(Y)$. Для доказательства можно записать Y=X+(Y-X). Тогда $\mathbb{E}Y=\mathbb{E}X+\mathbb{E}(Y-X)$.

Примеры (Матожидания случайных величин).

• X имеет распределение Бернулли с параметром p, записываемое $\mathcal{B}(p)$. Это по определению значит

$$\begin{cases} \mathbb{P}(X=1) = p \\ \mathbb{P}(X=0) = 1 - p \end{cases}$$

B таком случае $\mathbb{E}X = 1 \cdot \mathbb{P}(X = 1) + 0 \cdot \mathbb{P}(X = 0) = p$.

• Пусть S имеет распределение $\mathcal{B}(n,p)-$ число успехов в схеме Бернулли.

$$\mathbb{P}(S=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Матожидание S можно посчитать по определению: $\mathbb{E} S = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k}$.

Но это неоправданно сложно. Для упрощения работы запишем $S=\mathbb{1}_1+\dots+\mathbb{1}_n$, где $\mathbb{1}_1,\dots,\mathbb{1}_n$ — индикаторы событий A_1,\dots,A_n соответственно. По определению $\mathbb{1}_i=\begin{cases} 1,&A_i \text{ успешно}\\ 0,&A_i \text{ неуспешно} \end{cases}$

Каждый индикатор по отдельности имеет распределение Бернулли с параметром p, таким образом,

$$\mathbb{E}S = \sum_{i=1}^{n} \mathbb{E}X_i = n \cdot p$$

• Пусть X имеет распределение Пуассона $\mathcal{P}(a)$:

$$\mathbb{P}(X=k) = e^{-a} \frac{a^k}{k!}$$

Матожидание такой случайной величины равно

$$\sum_{k=0}^{\infty} k e^{-a} \frac{a^k}{k!} = e^{-a} \cdot a \sum_{k=1}^{\infty} \frac{a^{k-1}}{(k-1)!} = e^{-a} a e^a = a$$

Оказывается, параметр a в Пуассоновском распределении — матожидание данной случайной величины.

Лекция III

27 февраля 2023 г.

Известно, что $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$. Верно ли, что $\mathbb{E}(X\cdot Y)=\mathbb{E}(X)\cdot\mathbb{E}(Y)$?

Выберем в качестве X величину, распределённую по закону $\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}$.

В качестве Y возьмём эту же случайную величину: Y = X.

Тогда замечаем, что $\mathbb{E}X=0, \mathbb{E}Y=0, \mathbb{E}XY=\mathbb{E}X^2=1$, равенство не выполняется. «Увы, так устроен мир»

 ${\rm K}$ счастью, можно наложить дополнительные условия, а именно, о **независимости** случайных величин X и Y.

В таком случае формула выполняется:

$$\mathbb{P}(X=r_1,Y=r_2)$$
 = $\mathbb{P}(X=r_1)\cdot\mathbb{P}(Y=r_2)$

откуда

$$\sum_{r_1,r_2} r_1 r_2 \mathbb{P}(X = r_1, Y = r_2) = \sum_{r_1,r_2} r_1 r_2 \mathbb{P}(X = r_1) \cdot \mathbb{P}(Y = r_2) = \left(\sum_{r_1} r_1 \mathbb{P}(X = r_1)\right) \left(\sum_{r_2} r_2 \mathbb{P}(X = r_2)\right) = \mathbb{E}X \cdot \mathbb{E}Y$$

Конечно, можно доказать по индукции формулу для любого конечного числа сомножителей:

$$\mathbb{E}\left(X_1\cdot\ldots\cdot X_n\right)=\prod_{i=1}^n\mathbb{E}X_i$$

для независимых событий X_1, \ldots, X_n .

Рассмотрим следующую задачу, показывающее, что матожидание — число, наилучшим образом приближает случайную величину:

Задача 1.3.1. Дана случайная величина $X: \mathbb{E} X^2 < \infty$. Надо найти число r, минимизирующее $\mathbb{E}((X-r)^2)$.

Значит, надо минимизировать $\mathbb{E}\left(X^2-2rX+r^2\right)=\mathbb{E}\left(X^2\right)-2r\mathbb{E}(X)+r^2$. Это квадратный трёхчлен по r, минимум достигается при $r=\mathbb{E}(X)$.

1.3.2 Неравенства, связанные с математическим ожиданием

Пусть $f: \mathbb{R} \to \mathbb{R}$ — неубывающая неотрицательная функция.

Факт 1.3.1. $\forall X$ — случайная величина и $\forall r \in \mathbb{R}$ имеет место неравенство:

$$\mathbb{P}(X \geqslant r) \leqslant \frac{\mathbb{E}f(X)}{f(r)}$$

Доказательство. Рассмотрим вторую функцию $g(x) = \begin{cases} 0, & x < r \\ f(r), & x \geqslant r \end{cases}$. Несложно проверить, что $g(x) \leqslant f(x)$. Отсюда $g(X) \leqslant f(X)$ (f(X) — композиция двух функций), и, как следствие, $\mathbb{E}(g(X)) \leqslant \mathbb{E}(f(X))$. Но несложно видеть, что $\mathbb{E}(g(X)) = 0 \cdot \mathbb{P}(X < r) + f(r) \cdot \mathbb{P}(X \geqslant r) = f(r) \cdot \mathbb{P}(X \geqslant r)$, и неравенство выполнено.

• Следствие 1.3.1 (Экспоненциальное неравенство Чебышёва). Рассмотрим $f(x) = e^{\lambda x}$, где $\lambda > 0$.

Тогда
$$\mathbb{P}(X \geqslant r) \leqslant \frac{\mathbb{E}(e^{\lambda X})}{e^{\lambda r}}.$$

Более того, здесь возможна более сильная форма — оптимизация по λ :

$$\mathbb{P}(X \geqslant r) \leqslant \inf_{\lambda > 0} \frac{\mathbb{E}\left(e^{\lambda X}\right)}{e^{\lambda r}}$$

• Следствие 1.3.2 (Неравенство Маркова). $\forall r>0: \mathbb{P}(|X|\geqslant r)\leqslant \frac{\mathbb{E}(|X|)}{r}$

Доказательство. Применим неравенство 1.3.1 для $f(x) = \begin{cases} x, & x>0 \\ 0, & x\leqslant 0 \end{cases}$ и случайной величины |X|. Получим

$$\mathbb{P}(|X| \geqslant r) \leqslant \frac{\mathbb{E}f(|X|)}{r} = \frac{\mathbb{E}|X|}{r}$$

что и требовалось доказать.

• Следствие 1.3.3. $\mathbb{P}(|X|\geqslant r)\leqslant \frac{\mathbb{E}(X^2)}{r^2}$

Доказательство. Следует из предыдущего применением $\mathbb{P}(|X|\geqslant r)\iff \mathbb{P}(X^2\geqslant r^2)$.

Замечание. Несмотря на то, что это практически то же, что и выше, в мире случайных величин нам будет удобно оценивать не случайную величину, а её квадрат.

• Следствие 1.3.4 (Вероятностное неравенство Йенсена). Пусть X — случайная величина с конечным матожиданием, а $\phi: \mathbb{R} \to \mathbb{R}$ выпукла вниз (как x^2).

Тогда $\mathbb{E}(\phi(X))\geqslant \phi(\mathbb{E}X)$. (картинка, где X принимает два значения).

Доказательство. Пусть X принимает конечное число значений. Тогда

$$\mathbb{E}(\phi(X)) = \sum_{\omega \in \Omega} p(\omega) \phi(X(\omega)) \underset{\text{по неравенству Йенсена}}{\geqslant} \phi\left(\sum_{\omega \in \Omega} p(\omega) X(\omega)\right) = \phi(\mathbb{E}X)$$

Если X принимает счётное число значений, то можно устроить предельный переход. \Box

1.3.3 Медиана

Ещё одно число, которым можно характеризовать случайную величину — медиана.

Определение 1.3.2 (Медиана случайной величины X). Такое число m, что $\mathbb{P}(X \geqslant m) \geqslant \frac{1}{2}$ и $\mathbb{P}(X \leqslant m) \geqslant \frac{1}{2}$.

- 1. Можно доказать, что медиана (в отличие от матожидания) всегда существует.
- 2. Медиана необязательно единственна. Так, в случае случайной величины X, распределённой по закону $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=\frac{1}{2}$ медианой является любое число $m\in[-1,1]$.
- 3. Пусть X случайная величина, такая, что $\mathbb{P}(X=-1)=\mathbb{P}(X=0)=\mathbb{P}(X=1)=\frac{1}{3}.$ Единственная медиана это 0, причём $\mathbb{P}(X\geqslant 0)=\frac{2}{3}$, и $\mathbb{P}(X\leqslant 0)=\frac{2}{3}$ тоже.
- 4. На самом деле, медиана плохая метрика, которой никто не пользуется. Так, только матожидание линейно: медиана суммы вообще не выражается через медианы слагаемых.
- 5. *Интересный факт*. Если в задаче 1.3.1 заменить $\mathbb{E}((X-r)^2)$ на $\mathbb{E}(|X-r|)$, то минимизирующим r окажется не матожидание, но медиана.

1.3.4 Дисперсия

«Слово дисперсия знакомо тем, кто имеет дело с садоводством. Садоводы используют так называемую дисперсионную краску»

Вообще говоря, дисперсия описывает «меру разброса» данной случайной величины.

Пусть X – случайная величина, такая, что $\mathbb{E}(X^2) < \infty$.

Определение 1.3.3 (Дисперсия
$$X$$
). $\mathbb{D}(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}X)^2$.

Докажем эквивалентность двух определений:

Доказательство.

$$\mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}(X^2 - 2X\mathbb{E}X + (\mathbb{E}X)^2) = \mathbb{E}(X^2) - 2\mathbb{E}X \cdot \mathbb{E}X + (\mathbb{E}X)^2 = \mathbb{E}(X^2) - (\mathbb{E}X)^2 \qquad \Box$$

Замечание. В англоязычных текстах дисперсию обозначают Var(X) — от слова Variance.

- 1. $\mathbb{D}(X) \geqslant 0$, как матожидание неотрицательной величины.
- 2. У константы нет дисперсии: $\mathbb{D}(C) = 0$
- 3. Из определения очевидно $\mathbb{D}(X+C)=\mathbb{D}X$.
- 4. Из определения очевидно $\mathbb{D}(C \cdot X) = C^2 \cdot \mathbb{D}(X)$. В частности, $\mathbb{D}(-X) = \mathbb{D}(X)$.
- 5. Аддитивность: для **независимых** случайных величин $X,Y:\mathbb{D}(X+Y)=\mathbb{D}(X)+\mathbb{D}(Y).$

Доказательство.

$$\mathbb{D}(X+Y) = \mathbb{E}(X+Y)^2 - (\mathbb{E}(X+Y))^2 = \mathbb{E}(X^2 + 2XY + Y^2) - (\mathbb{E}X + \mathbb{E}Y)^2 = \\ = \left(\mathbb{E}X^2 - (\mathbb{E}X)^2\right) + \left(\mathbb{E}Y^2 - (\mathbb{E}Y)^2\right) + \underbrace{\left(2\mathbb{E}(XY) - 2\mathbb{E}X \cdot \mathbb{E}Y\right)}_{0 \text{ из-за независимости}} = \mathbb{D}(X) + \mathbb{D}(Y)$$

6. Определение дисперсии без вычитания матожидания: пусть X, X' независимы и одинаково распределены.

Тогда
$$\mathbb{D}X = \frac{1}{2}\mathbb{E}(X - X')^2$$
.

Доказательство.

$$\frac{1}{2}\mathbb{E}(X-X')^2 = \frac{1}{2}\mathbb{E}(X^2 + X'^2 - 2XX') = \frac{1}{2}\left(\mathbb{E}X^2 + \mathbb{E}X'^2 - 2(\mathbb{E}X \cdot \mathbb{E}X')\right) = \mathbb{E}X^2 - (\mathbb{E}X)^2 \ \Box$$

7. «Элементарное, но нетривиальное свойство».

Пусть $f:\mathbb{R} \to \mathbb{R}$ — 1-липшицева функция, то есть $|f(x)-f(y)|\leqslant |x-y|$.

Тогда для любой случайной величины $X:\mathbb{D}(f(X))\leqslant \mathbb{D}(X).$

Доказательство. Воспользоваться свойством
$$\mathbb{D}X = \frac{1}{2}\mathbb{E}(X-X')^2$$
, а также тем, что $(X-X')^2\geqslant (f(X)-f(X'))^2$ (поточечно).

8. Факт 1.3.2 (Неравенство Чебышёва). Пусть X- случайная величина, такая, что $\mathbb{D}(X)<\infty$. Тогда $\mathbb{P}(|X-\mathbb{E}X|\geqslant r)\leqslant \frac{\mathbb{D}X}{r^2}$.

Доказательство.

$$\mathbb{P}(|X - \mathbb{E}X| \geqslant r) \underset{\text{coffacho } 1.3.3}{\leqslant} \frac{\mathbb{E}(X - \mathbb{E}X)^2}{r^2} = \frac{\mathbb{D}X}{r^2}$$

Замечание (О единицах измерения). Если случайная величина принимает значения некой размерности (рубли, очки, километры), то матожидание имеет ту же размерность, а дисперсия — размерности квадрата измеряемой величины. Чтобы избавиться от такого неудобства, вводят среднеквадратическое отклонение.

Определение 1.3.4 (Среднеквадратическое отклонение случайной величины X). $\sigma(X) \stackrel{def}{=} \sqrt{\mathbb{D}(X)}$.

Пример. Пусть X имеет распределение Пуассона $\mathcal{P}(a)$.

По формуле $\mathbb{D}(X)=\mathbb{E}(X^2)-(\mathbb{E}X)^2$ получаем, что для вычисления дисперсии надо получить $\mathbb{E}(X^2)$ (нам уже известно, что $(\mathbb{E}X)^2=a^2$).

Необыкновенным образом получаем, что легче посчитать $\mathbb{E}(X(X-1)) = \mathbb{E}(X^2) - \mathbb{E}X$.

$$\mathbb{E}(X(X-1)) = \sum_{k=2}^{\infty} k(k-1) \frac{a^k}{k!} = a^2 \sum_{k=2}^{\infty} e^{-a} \frac{a^{k-2}}{(k-2)!} = a^2$$

Отсюда $\mathbb{E}(X^2) = \mathbb{E}(X(X-1)) + \mathbb{E}(X) = a^2 + a$, и, наконец, $\mathbb{D}X = \mathbb{E}X^2 - (\mathbb{E}X)^2 = a + a^2 - a^2 = a$.

Лекция IV

6 марта 2023 г.

Пусть X, Y — случайные величины.

Определение 1.3.5 (Ковариация X и Y).

$$cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

Про ковариацию говорят, что это мера линейной зависимости X и Y.

Ковариация билинейна (линейна по обоим аргументам) и симметрична.

Определение 1.3.6 (X и Y некоррелированы). Ковариация X и Y равна 0, т. е. $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

В частности, независимые величины с конечным матожиданием модуля некоррелированы. Из ковариации следует, что для некоррелированных случайных величин $X,Y:\mathbb{D}(X+Y)=\mathbb{D}(X)+\mathbb{D}(Y)$.

Когда говорят про некоррелированность случайных величин, то имеют в виду попарную некоррелированность.

1.3.5 Моменты

Для $k\in\mathbb{N}$ определяют k-й момент случайной величины X, он по определению равен $\mathbb{E}(X^k)$. Для k=1 это матожидание.

Также определяют k-й центральный момент случайной величины X, он по определению равен $\mathbb{E}(X-\mathbb{E}X)^k$. Для k=2 это дисперсия.

Если в определении звучит слово *абсолютный*, то матожидание берётся от модуля аргумента (k-й абсолютный момент, k-й абсолютный центральный момент).

k-й момент однороден — при домножении случайной величины на c он домножается на c^k или $|c|^k$. Для чётных k абсолютные моменты совпадают с обычными.

1.4 Законы больших чисел (ЗБЧ)

Если сложить много случайных величин, то в сумме получится что-то близкое к сумме их матожиданий.

Теорема 1.4.1 (Закон больших чисел Чебышёва). Пусть $X_1, X_2 \dots, X_n$ — некоррелированные случайные величины, такие, что $\mathbb{E} X_i^2 < \infty$. Запишем это как $\exists \sigma \in \mathbb{R} : \sup_i \mathbb{D} X_i \leqslant \sigma^2$.

Тогда

$$\forall \varepsilon > 0: \qquad \mathbb{P}\left(\left|\frac{\sum\limits_{i=1}^{n}X_{i}}{n} - \frac{\sum\limits_{i=1}^{n}\mathbb{E}X_{i}}{n}\right| > \varepsilon\right) \underset{n \to \infty}{\longrightarrow} 0$$

Доказательство.

$$\mathbb{P}\left(\left|\frac{\sum_{i=1}^{n} X_{i}}{n} - \frac{\sum_{i=1}^{n} \mathbb{E}X_{i}}{n}\right| > \varepsilon\right) = \mathbb{P}\left(\left|\sum_{i=1}^{n} (X_{i} - \mathbb{E}X_{i})\right| > n\varepsilon\right)$$

Согласно неравенству Чебышёва (1.3.2), это оценивается следующим образом:

$$\mathbb{P}\left(\left|\sum_{i=1}^{n}(X_{i}-\mathbb{E}X_{i})\right|>n\varepsilon\right)\leqslant\frac{\mathbb{D}\left(\sum_{i=1}^{n}X_{i}\right)}{(n\varepsilon)^{2}}\leqslant\frac{n\sigma^{2}}{(n\varepsilon)^{2}}\underset{n\to\infty}{\longrightarrow}0$$

Следствие 1.4.1. Пусть X_1, \ldots, X_n — независимые одинаково распределённые случайные величины.

 $\mathit{Если} \ \mathbb{E} X_i^2 < \infty, \mathbb{E} X_i = a$, то

$$\forall \varepsilon > 0: \qquad \mathbb{P}\left(\left|\frac{\sum\limits_{i=1}^{n}X_{i}}{n} - a\right| \geqslant \varepsilon\right) \underset{n \to \infty}{\longrightarrow} 0$$

Замечание. В заключении следствия ничего не говорится про второй момент величин X_j , и, на самом деле, следствие как теорема верно и без оценки $\mathbb{E} X_i^2$ в посылке. Это мы докажем через пару лет совсем не тривиальной математикой.

Следствие 1.4.2 (Закон больших чисел Бернулли). Пусть S_n — число успехов в схеме Бернулли с параметрами n, p. Тогда

$$\forall \varepsilon > 0: \qquad \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \underset{n \to \infty}{\longrightarrow} 0$$

На самом деле, в 1613 году Бернулли доказал закон больших чисел, названный позднее в честь него, используя довольно сложные вычисления.

Лишь только в 1870 году Чебышёв доказал общий закон больших чисел и следствие из него.

Докажем полученными средствами теорему из матанализа, не использующую в своей формулировке ничего случайностного.

Теорема 1.4.2 (Вейерштрасс). Пусть $f:[0,1] \to \mathbb{R}$ — непрерывная функция. Тогда

$$\exists \{P_n\}_{n=1}^{\infty} : \max_{t \in [0,1]} |f(t) - P_n(t)| \underset{n \to \infty}{\longrightarrow} 0$$

Доказательство.

Лемма 1.4.1 (О математических ожиданиях). Пусть $\{Z_n\}_{n=1}^{\infty}$ — последовательность случайных величин, такая, что $\exists a \in \mathbb{R}$:

$$\forall \varepsilon > 0 : \mathbb{P}(|Z_n - a| > \varepsilon) \xrightarrow[n \to \infty]{} 0$$

Пусть дана функция f, заданная в окрестности точки a, непрерывная в a и ограниченная неким числом $M \in \mathbb{R}$.

Тогда
$$\mathbb{E}(f(Z_n)) \underset{n \to \infty}{\longrightarrow} f(a)$$
.

Доказательство леммы.

$$|\mathbb{E}f(Z_n)-f(a)|=|\mathbb{E}(f(Z_n)-f(a))|\underset{\text{например, по неравенству Йенсена для модуля}}{\leqslant} \leqslant \mathbb{E}|f(Z_n)-f(a)| \leqslant \mathbb{E}\left[\underbrace{|f(Z_n)-f(a)|\cdot \chi_{\{|Z_n-a|\geqslant \varepsilon\}}}_{\leq 2M\cdot \mathbb{P}(|Z_n-a|\geqslant \varepsilon)} + \underbrace{|f(Z_n)-f(a)|\cdot \chi_{\{|Z_n-a|<\varepsilon\}}}_{\leq 2M\cdot \mathbb{P}(|Z_n-a|>\varepsilon)}$$

где $w(f,a,\varepsilon)=\sup_{|s-a|<\varepsilon}|f(s)-f(a)|.$ В силу непрерывности f это сходится к 0 при $s\to 0.$

Устремив ε к нулю, получаем, что $|\mathbb{E} f(Z_n) - f(a)| < \delta(\varepsilon)$, где $\delta(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0$, $\delta > 0$.

Левая часть не зависит от arepsilon, получается $|\mathbb{E} f(Z_n) - f(a)| = 0.$

Рассмотрим последовательность случайных величин S_n — число успехов в схеме Бернулли с параметрами (n,p), где p — фиксированное число из [0,1].

Согласно закону больших чисел Бернулли $\mathbb{P}\left(\left|\frac{S_n}{n}-p\right|>\varepsilon\right)\underset{n\to\infty}{\longrightarrow}0.$

Применим лемму для p и $f \colon \mathbb{E} f\left(\frac{S_n}{n}\right) \xrightarrow[n \to \infty]{} f(p)$. Подставим определение матожидания, отсюда

$$\sum_{k=0}^{n} \mathbb{P}(S_n = k) f\left(\frac{k}{n}\right) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} f\left(\frac{k}{n}\right) \underset{n \to \infty}{\longrightarrow} f(p)$$

Осталось сказать, что сходимость к f(p) равномерна при всех $p \in [0,1]$. Для этого улучшим оценку: заметим, что из леммы на самом деле следует, что

$$\left| \mathbb{E} f\left(\frac{S_n}{n}\right) - f(p) \right| \leqslant 2M \cdot \mathbb{P}\left(\left| \frac{S_n}{n} - p \right| \leqslant \varepsilon \right) + w(f, p, \varepsilon)$$

Первое слагаемое оценивается сверху в виде

$$2M \cdot \mathbb{P}\left(\left|\frac{S_n}{n} - p\right| \leqslant \varepsilon\right) = 2M \cdot \mathbb{P}\left(\left|S_n - np\right| \leqslant n\varepsilon\right) \leqslant 2M \frac{np(1-p)}{(n\varepsilon^2)} \leqslant \frac{2M}{n\varepsilon^2}$$

Чтобы показать, что $\left|\mathbb{E} f\left(\frac{S_n}{n}\right) - f(p)\right| \leqslant \delta$, выберем $\varepsilon > 0$ такой, что $\forall p \in [0,1]: w(f,p,\varepsilon) < \frac{\delta}{2}$ (это можно сделать, так как согласно теореме Кантора непрерывная на отрезке функция равномерно непрерывна), затем выберем настолько большое n, что $\frac{2M}{n\varepsilon^2} \leqslant \frac{\delta}{2}$.

1.5 Производящие функции

Пусть X — случайная величина, принимающая целые неотрицательные значения.

Определение 1.5.1 (Производящая функция величины X). Степенной ряд

$$\phi_X(z) = \mathbb{E}(z^X) = \sum_{k=0}^{\infty} \mathbb{P}(X=k)z^k$$

Так как $\sum\limits_{k=0}^{\infty}$, то ряд сходится при $|z|\leqslant 1$.

При рассмотрении производящих функций мы будем брать аргументы $z \in [0,1]$.

Заметим, что $\phi_X(0) = \mathbb{P}(X=0)$, $\phi_X(1)=1$, а сама функция неубывает и выпукла вниз (как x^2). Это следует из того, что $\phi_X(z)$ — линейная стандартных мономов, каждый из которых неубывает и выпуклый вниз.

Если X и Y независимы, то $\phi_{X+Y}(z) = \phi_X(z)\phi_Y(z)$.

Доказательство.

$$\phi_{X+Y}(z) = \mathbb{E}(z^{X+Y}) = \mathbb{E}(z^X \cdot z^Y) = \sum_{X \text{ if } Y \text{ hesabucumul}} \mathbb{E}(z^X) \cdot \mathbb{E}(z^Y) = \phi_X(z) \cdot \phi_X(z)$$

 Π екция V 13 марта 2023 г.

Обобщим данную формулу.

- 1. Пусть X_1,\ldots,X_n независимы. Тогда $\phi_{S_n}(z)=\prod\limits_{j=1}^n\phi_{X_j}(z)$, где $S_n\coloneqq\sum\limits_{j=1}^nX_j$ тоже случайная величина.
- 2. В частности, если X_1, \dots, X_n независимы и одинаково распределены, то $\phi_{S_n}(z) = \phi_{X_1}(z)^n$.

14

3. Пусть X_1, \ldots, X_n, \ldots — независимы (независимо любое конечное подмножество) и одинаково распределены. Пусть $N \in \mathbb{N}_0$ — случайная величина (формальнее, $N: \Omega \to \mathbb{N}_0$, где Ω — вероятностное пространство), не зависящая от всех X-ов.

Положим
$$S\coloneqq\sum_{i=1}^N X_i.$$

Тогда
$$\phi_S(z) = \phi_N(\phi_{X_1}(z)).$$

 $\it 3ameчahue$. Предыдущий пункт — частный случай данного. В самом деле, для неслучайной величины N, всегда равной n, производящая функция равна $\it z^n$.

Доказательство.

$$\phi_S(z) = \sum_{k=0}^{\infty} \mathbb{P}(S=k) z^k = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(S=k, N=n) z^k = \mathbb{P}(S_n=k, N=n) z^k = \mathbb{P}(S_$$

Воспользуемся независимостью, продолжив равенство

$$= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \mathbb{P}(S_n = k) \mathbb{P}(N = n) z^k = \sum_{n=0}^{\infty} \mathbb{P}(N = n) \underbrace{\sum_{k=0}^{\infty} \mathbb{P}(S_n = k) z^k}_{\phi_{S_n}(z)} =$$

$$= \sum_{n=0}^{\infty} \mathbb{P}(N = n) \cdot \phi_{X_1}(z)^n = \phi_S(\phi_{X_1}(z))$$

1.5.1 Производящие функции и моменты

Предложение 1.5.1. $\phi_X^{(k)}(1) = \mathbb{E}(X(X-1) \cdot \ldots \cdot (X-k+1)).$

В частности, для $k=1:\phi_X'(1)=\mathbb{E} X;$ для $k=2:\phi_X''(1)=\mathbb{E}(X(X-1))=\mathbb{E} X^2-\mathbb{E} X.$

Доказательство. Докажем для k=1.

Формально продифференцировав ряд, получаем $\phi_X'(z) = \left(\sum_{k=0}^\infty \mathbb{P}(X=k)z^k\right)' = \sum_{k=1}^\infty \mathbb{P}(X=k)k\cdot z^{k-1}$. При подстановке z=1 действительно получается $\mathbb{E} X$, но надо обосновывать, почему производная ряда в граничной точке круга сходимости равна сумме производных слагаемых ряда.

Другой вариант доказательства. Данный вариант тяжелее в смысле выкладок, но легче — в смысле теорем, на которые опирается доказательство.

Рассмотрим $z \in (0,1)$, близкое к единице.

$$\frac{\phi_X(1) - \phi_X(z)}{1 - z} = \frac{1 - \phi_X(z)}{1 - z} = \frac{1 - \sum_{k=0}^{\infty} \mathbb{P}(X = k) z^k}{1 - z} = \sum_{k=0}^{\infty} \mathbb{P}(X = k) \frac{1 - z^k}{1 - z}$$

По теореме Коши найдутся точки $\widetilde{z}_k \in (z,1)$, такие, что $\frac{1-z^k}{1-z} = k\widetilde{z}_k^{k-1}$.

Отсюда получаем оценку $\frac{\phi_X(1)-\phi_X(z)}{1-z}\leqslant \sum\limits_{k=0}^\infty \mathbb{P}(X=k)\cdot k$ (пользуемся тем, что все $\widetilde{z}_k\leqslant 1$). В пределе $\phi_X'(X)\leqslant \sum\limits_{k=0}^\infty \mathbb{P}(X=k)\cdot k$.

Чтобы получить оценку с другой стороны, заменим сумму на конечную, совершим предельный переход, получим $\phi_X'(X)\geqslant\sum\limits_{k=0}^K\mathbb{P}(X=k)\cdot k\cdot \tilde{z}^{k-1}$. Устремив z к единице, получаем оценку $\phi_X'(X)\geqslant\sum\limits_{k=0}^K\mathbb{P}(X=k)\cdot k$, затем можно перейти к предельному переходу по $K\to\infty$.

1.6 Ветвящиеся процессы

1.6.1 Процесс Гальтона-Ватсона

График: в момент времени t=0 есть частица (человек, электрон), которая в каждый момент времени порождает случайное число потомков.

Получается, если можно так выразиться, дерево. Будем считать, что числа потомков у каждой частицы— независимые одинаково распределённые случайные величины.

Гальтон и Ватсон интересовались генеалогией знатных родов, но потом внезапно оказалось, что процесс прекрасно описывает ядерные реакции.

Определение 1.6.1 (Процесс Галтона-Ватсона). Пусть $(X_{n,j})_{n\geqslant 0, j\geqslant 1}$ — независимые одинаково распределённые случайные величины.

Последовательность случайных величин определяется формулой $M_0=1, \quad M_{n+1}=\sum_{j=1}^{M_n} X_{n,j}$ и называется ветвящимся процессом.

Согласно рекурсивной формуле, M_n не зависит от $X_{n,1}, X_{n,2}, \ldots$

Значит, $\phi_{M_{n+1}}(z) = \phi_{M_n}(\phi_X(z))$, где ϕ_X — производящая функция любой из величин $X_{n,j}$.

Получаем $\phi_{M_0}(z)=z, \phi_{M_1}(z)=\phi_X(z), \phi_{M_2}(z)=\phi_X(\phi_X(z)).$ Вообще, $\phi_{M_n}(z)=\phi_X^{\circ n}(z).$

Задача о выживании и вырождении ветвящегося процесса

Определим вероятность того, что на n-м шаге процесс не выжил $q_n = \mathbb{P}(M_n = 0)$.

Очевидно, $q_{n+1} \geqslant q_n$, так как если процесс выродился, то так потом и будет, но он может выродиться на n+1-м шаге впервые.

Так как $q_n \leqslant 1$, то последовательность $\{q_n\}_{n\in\mathbb{N}}$ имеет предел q.

Говорят, что процесс вырождается, если q = 1.

Нарисуем график $\phi_X(z)$ при $z \in [0,1]$.

Предложение 1.6.1. q — наименьший корень уравнения $\phi_X(z) = z$.

 $\ \ \, \mathcal{A}$ оказательство. Рассмотрим M — множество корней уравнения. $1 \in M$, M замкнуто — прообраз нуля некоторого непрерывного отображения.

Отсюда следует, что в M существует наименьший элемент z_* .

Так как
$$q_n=\mathbb{P}(M_n=0)=\phi_{M_n}(0)=\phi_X^{\circ n}(0),$$
 то $q_{n+1}=\phi_X^{\circ n+1}(0)=\phi_X(q_n).$

Запишем $0\leqslant z_*$, откуда $\phi_X(0)\leqslant\phi_X(z_*)=z_*$. Так можно применять много раз, получаем $\forall n\in\mathbb{N}:$ $\phi_X^{\circ n}(0)\leqslant z_*$.

Перейдя к пределу у $q_{n+1} = \phi_X(q_n)$ получаем $q = \phi_X(q)$.

Используя $q\leqslant z_*$ и $\phi_X(q)=q$, получаем $q=z_*$.

Обозначим $m = \mathbb{E} X$ — среднее число потомков частицы.

Теорема 1.6.1. Процесс M_n не вырождается \iff либо m>1, либо X=1 всегда, то есть X — величина неслучайная.

Доказательство.

• Рассмотрим m>1. При z, близком к единице, $\phi_X(z)=1-m(1-z)+o(1-z)$, что при z достаточно близких к 1 меньше z.

Таким образом, нашлась точка $z:\phi_X(z)< z$. С другой стороны, $\phi_X(0)\geqslant 0$, значит, существует корень уравнения $\phi_X(z)=z$, строго меньший единицы. Отсюда следует, что процесс не вырождается.

- Рассмотрим m < 1. Функция $\phi_X(z)$ выпукла вниз, поэтому $\forall z \in [0,1]: \phi_X(z) \geqslant 1 + m(z-1)$. Таким образом, единственный корень уравнения $\phi_X(z) = z z = 1$.
- Рассмотрим m=1. Касательная прямая к $\phi_X(z)$ проходит по диагонали y=z.

Рассмотрим наименьший корень уравнения $\phi_X(z) = z$. Есть варианты:

- 1. Касание единицы происходит только в самом конце: $\phi_X(z)>z$ для z<1. Это случай вырождения процесса.
- $2. \ \forall z \in [0,1]: \phi_X(z) = z.$ Процесс не вырождается, $X_{n,j} = 1$ всегда.
- 3. Остался один случай, которого не бывает. Для некоего $a\in(0,1)$, совпадение $\phi_X(z)=z$ происходит только при $z\in[a,1]$.

На самом деле, с производящими функциями такое невозможно: если $\phi_X(z)=z$ в окрестности 1, то $\phi_X''(1)=0$.

Но $\phi_X''(1)=\mathbb{E}(X(X-1))=\mathbb{E}X^2-\mathbb{E}X$, а мы знаем, что $\mathbb{E}X=1$. Получается, $\mathbb{E}X^2=1$, и дисперсия этой величины нулевая: $\mathbb{D}X=\mathbb{E}X^2-(\mathbb{E}X)^2=0$. Таким образом, X- величина неслучайная.

1.6.2 Некоторые другие виды процессов

Процессы Беллмана-Харриса

Отличие от процессов Гальтона-Ватсона состоит в том, что каждый субъект живёт случайное время. В конце своего жизненного времени частица распадается на случайное количество частиц.

Многотиповые процессы

Распределение числа потомков зависит от типа данной частицы: синяя частица порождает либо два синие, либо две красные, а красная – одну жёлтую, и, возможно, одну зелёную.

Процессы с иммиграцией

На каждом поколении число частиц меняется каким-то фиксированным образом — частицы «прибывают откуда-то снаружи».

1.7 Предельные теоремы Муавра-Лапласа

1.7.1 Локальная

Запишем число успехов в схеме Бернулли $\mathcal{B}(n,p)$. Зафиксируем p и изучим $\mathbb{P}(S_n=k)$ для «типичных» значений k при $n\to\infty$.

Вспомним, что $\mathbb{E}S_n = np$, $\mathbb{D}S_n = np(1-p)$ для любого $n \in \mathbb{N}$.

Так как дисперсия — это квадрат «типичного отклонения», то для некой константы C величина S_n должна часто отклоняться от своего матожидания не больше, чем на $C\sqrt{n}$.

Определение 1.7.1 (Последовательности $A_{n,k}$ и $B_{n,k}$ равномерно эквивалентны при $n \to \infty$ на некоторой области $k \in C_n$).

$$\max_{k \in C_n} \left| \frac{A_{n,k}}{B_{n,k}} - 1 \right| \xrightarrow[n \to \infty]{} 0$$

Теорема 1.7.1 (Локальная предельная теорема Муавра-Лапласа). Локальность означает, что в рассмотрении находится фиксированное k.

Пусть последовательность ε_n стремится к нулю. Утверждается, что

$$\mathbb{P}(S_n = k) \sim \frac{1}{\sqrt{2\pi np(1-p)}} \cdot \exp\left\{-\frac{(k-np)^2}{2p(1-p)n}\right\}$$

равномерно по области $\left\{k\in\mathbb{N}\Big||k-np|\leqslant \varepsilon_n\cdot n^{2/3}\right\}$. «Название теоремы — историческое недоразумение. Теорему Муавра-Лапласа доказал Муавр, а Лаплас — лишь включил её в свой учебник. Впрочем, к распространению этой теоремы он всё-таки имел какое-то отношение»

Доказательство. Запишем

$$\mathbb{P}(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{(n-k)!k!} p^k (1-p)^k$$

$$\frac{n!}{(n-k)!k!} p^k (1-p)^k \sim \frac{\binom{n/e}{n} \sqrt{2\pi n} \cdot p^k (1-p)^{n-k}}{\binom{(n-k)/e}{n-k} \sqrt{2\pi (n-k)} \cdot \binom{k/e}{k} \sqrt{2\pi k}} \sim \frac{n^n p^k (1-p)^{n-k}}{\sqrt{2\pi n p (1-p)} \cdot (n-k)^{n-k} k^k}$$

Преобразовав ещё чуть-чуть выражение, получаем

$$\frac{1}{\sqrt{2\pi np(1-p)}} \cdot \frac{n^n p^k (1-p)^{n-k}}{(n-k)^{n-k} k^k} = \frac{1}{\sqrt{2\pi np(1-p)}} \cdot \left(\frac{np}{k}\right)^k \cdot \left(\frac{n(1-p)}{n-k}\right)^{n-k}$$

Определим новую переменную v таким образом: k = np + v. В таком случае $\left(\frac{k}{np}\right)^k = \left(\frac{np+v}{np}\right)^{np+v} = \left(1 + \frac{v}{np}\right)^{np+v} = \exp\left(\log\left(1 + \frac{v}{np}\right)(np+v)\right)$. Разложим \log в ряд с точностью до второго члена: $\exp\left(\left(\frac{v}{np} - \frac{v^2}{2(np)^2} + \mathcal{O}\left(\frac{v^3}{(np)^3}\right)\right)(np+v)\right) = \exp\left(v - \frac{v^2}{2np} + \frac{v^2}{np} - \frac{v^3}{2(np)^2} + \mathcal{O}\left(\frac{v^3}{(np)^2}\right)\right) = \exp\left(v + \frac{v^2}{2np} + o(1)\right)$ Слагаемое под $\mathcal O$ стремится к нулю, так как $|v| \leqslant \varepsilon_n \cdot n^{2/3}$ по условию на рассматриваемую область k.

Таким образом,
$$\left(\frac{np}{k}\right)^k = \exp\left(-(k-np) - \frac{(k-np)^2}{2np} + o(1)\right)$$
. Аналогично (подставив $p \iff (1-p); k \iff (n-k); v \iff -v$) получаем $\left(\frac{n(1-p)}{n-k}\right)^{n-k} = \exp\left(-(np-k) - \frac{(np-k)^2}{2n(1-p)} + o(1)\right)$

Перемножив, получаем

$$\left(\frac{np}{k}\right)^k \cdot \left(\frac{n(1-p)}{n-k}\right)^{n-k} = \exp\left\{-\frac{(k-np)^2}{2n}\left(\frac{1}{p} + \frac{1}{1-p}\right) + o(1)\right\} = \exp\left\{-\frac{(np-k)^2}{2np(1-p)}\right\} + o(1)$$

1.7.2 Интегральная

Что можно сказать о вероятности попадания числа успехов в определённый интервал?

Теорема 1.7.2 (Интегральная теорема Муавра-Лапласа). Пусть a < b.

$$\mathbb{P}\left(S_n \in \left[np + a\sqrt{p(1-p)n}; np + b\sqrt{p(1-p)n}\right]\right) \sim \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-\frac{x^2}{2}} dx$$

Вероятность переписывается в виде $\mathbb{P}\left(a\leqslant \frac{S_n-np}{\sqrt{p(1-p)n}}\leqslant b\right)=\mathbb{P}\left(a\leqslant \frac{S_n-\mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}}\leqslant b\right)$

Доказательство.

$$\mathbb{P}\left(S_n \in \left[np + a\sqrt{p(1-p)n}; np + b\sqrt{p(1-p)n}\right]\right) = \sum_{k \in \left[np + a\sqrt{p(1-p)n}; np + b\sqrt{p(1-p)n}\right]} \mathbb{P}(S_n = k)$$

Так как $k-np\sim\mathcal{O}\left(\sqrt{n}\right)$, то все последующие оценки равномерны по k.

$$\sum_{k} \mathbb{P}(S_n = k) \sim \sum_{k} \frac{1}{\sqrt{2np(1-p)}} \exp\left\{-\frac{(k-np)^2}{2p(1-p)n}\right\}$$

Слагаемые в сумме можно заменить на эквивалентные, так как оценка равномерна. Заменим сумму интегралом: для начала покажем $\frac{1}{\sqrt{2np(1-p)}}\exp\left\{-\frac{(k-np)^2}{2p(1-p)n}\right\}\sim\int\limits_k^{k+1}\frac{1}{\sqrt{2np(1-p)}}\exp\left\{-\frac{(x-np)^2}{2p(1-p)n}\right\}\mathrm{d}x.$ Покажем корректность этой эквивалентности, заменив $x=k+\theta$. $\frac{1}{\sqrt{2np(1-p)}}\exp\left\{-\frac{(x-np)^2}{2p(1-p)n}\right\}=\frac{1}{\sqrt{2np(1-p)}}\exp\left\{-\frac{(k-np)^2+2(k-np)\theta+\theta^2}{2p(1-p)n}\right\}$ Так как $(k-np)\theta=\mathcal{O}\left(\sqrt{n}\right)$, то этими слагаемыми действительно можно пренебречь — знаменатель порядка n, эти слагаемые — o(1).

$$\sum_{k} \mathbb{P}(S_n = k) \sim \int_{np+a\sqrt{np(1-p)}}^{np+b\sqrt{np(1-p)}} \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-\frac{(x-np)^2}{2np(1-p)}\right) dx + o(1)$$

Сделаем замену переменной: $u=\frac{x-np}{\sqrt{np(1-p)}}$. Тогда $\mathrm{d}u=\frac{\mathrm{d}x}{\sqrt{np(1-p)}}$.

Интеграл упрощается до
$$\frac{1}{\sqrt{2\pi}}\int\limits_a^b \exp\left(-\frac{u^2}{2}\right)\mathrm{d}u$$

Следствие 1.7.1.

$$\mathbb{P}\left(S_n \leqslant np + b\sqrt{np(1-p)}\right) \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{b} e^{-\frac{x^2}{2}} dx$$

Доказательство.

• Докажем, что $\lim_{n\to\infty}\mathbb{P}(S_n< np)=\frac{1}{2}$. Для этого покажем $\forall \varepsilon>0:\left|\lim_{n\to\infty}\mathbb{P}(S_n< np)-\frac{1}{2}\right|\leqslant \varepsilon$. Воспользуемся тем, что $\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty}e^{-\frac{x^2}{2}}\,\mathrm{d}x=1$. Значит, найдётся M>0:

$$\frac{1}{\sqrt{2\pi}} \int_{-M}^{0} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{+M} e^{-\frac{x^2}{2}} dx \geqslant \frac{1}{2} - \varepsilon$$

Отсюда

$$\mathbb{P}\left(np - M\sqrt{np(1-p)} \leqslant S_n < np\right) \leqslant \mathbb{P}(S_n < np) \leqslant 1 - \mathbb{P}\left(np \leqslant S_n \leqslant np + M\sqrt{np(1-p)}\right)$$

$$\downarrow n \to \infty$$

$$\int_{-M}^{0} e^{-\frac{x^2}{2}} dx \leqslant \lim_{n \to \infty} \mathbb{P}(S_n < np) \leqslant 1 - \int_{0}^{M} e^{-\frac{x^2}{2}} dx$$

ullet Теперь осталось посчитать $\mathbb{P}\left(S_n\leqslant np+b\sqrt{np(1-p)}\right)$. Без потери общности $b\geqslant 0$, тогда

$$\mathbb{P}\left(S_n \leqslant np + b\sqrt{np(1-p)}\right) = \mathbb{P}(S_n < np) + \mathbb{P}\left(np \leqslant S_n \leqslant np + b\sqrt{np(1-p)}\right) \underset{n \to \infty}{\longrightarrow} \\ \longrightarrow \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_0^b e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^b e^{-\frac{x^2}{2}} dx$$

Интересный факт. Интеграл в правой части описывает нормальное распределение, он не берётся.

Теорема Леви «выросла» из интегральной теоремы Муавра-Лапласа.

 $\mathit{Интересный}\ \phi$ акт (Теорема Леви). Пусть X_1,\ldots,X_n,\ldots — независимо распределённые случайные величины, $S_n\coloneqq X_1+\cdots+X_n$. Предположим, что $\mathbb{E}X_j^2<\infty$ для любого j.

Тогда для
$$\forall a < b : \mathbb{P}\left(a \leqslant \frac{S_n - \mathbb{E}S_n}{\sqrt{\mathbb{D}S_n}} \leqslant b\right) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{2\pi}} \int\limits_a^b e^{-\frac{x^2}{2}} \,\mathrm{d}x.$$

Лекция VI _{22 марта 2023 г.}

1.8 Цепи Маркова

Лекция пропущена.

Лекция VII

27 марта 2023 г.

Было: \mathcal{X} — множество состояний. $X_0, X_1, \ldots, \in \mathcal{X}$. $\pi_n(x) = \mathbb{P}(X_n = x), x \in \mathcal{X}$. Вероятность перехода $p(x \to y) = \mathbb{P}(X_{n+1} = y | X_n = x)$. π_0, p определяют состояние цепи. $\mathbb{P}(X_0 = x_0, \ldots, X_n = x_n) = \pi_0 p(x_0 \to x_1) \cdot \ldots \cdot \pi_n = \pi_0 \cdot p^n$.

1.8.1 Инвариантные (стационарные) распределения

Определение 1.8.1 (Распределение на множестве \mathcal{X}). Такое отображение $\pi: \mathcal{X} \to [0,1]$, что $\sum_{x \in \mathcal{X}} \pi(x) = 1$.

Определение 1.8.2 (Инвариантное распределение). Такое распределение π , что $\pi \cdot p = \pi$.

$$\forall y \in \mathcal{X} : \pi(y) = \sum_{x \in \mathcal{X}} \pi(x) p(x \to y).$$

Если π_0 инвариантно, то $\forall n \geqslant 0 : \pi_n = \pi \cdot p^n = \pi_0$. Следует из ассоциативности умножения матриц. *Примеры*.

• «Хороший пример»: блуждание по конечному неориентированному графу. Обозначим за E общее число рёбер, $\deg x$ — число рёбер, инцидентных x. Очевидно. $\sum_{x \in \mathcal{X}} \deg x = 2E$.

Рассмотрим цепь Маркова, где $\forall y: p(x \to y) = \begin{cases} \frac{1}{\deg x}, & \exists (x,y) \\ 0, & \nexists (x,y) \end{cases}$

Выберем распределение $\pi(x)=rac{\deg(x)}{2E}.$ Покажем, что оно инвариантно:

$$\frac{\deg(y)}{2E} = \pi(y) = \sum_{x \in \mathcal{X}} \pi(x) p(x \to y) = \sum_{x \in \mathcal{X}, \exists (x,y)} \frac{\deg(x)}{2E} \cdot \frac{1}{\deg x} = \sum_{x \in \mathcal{X}, \exists (x,y)} \frac{1}{2E} = \frac{\deg y}{2E}$$

• «Плохой пример»: случайное блуждание на множестве целых чисел \mathbb{Z} . Вероятности перехода $p(n \to n+1) = p(n \to n-1) = \frac{1}{2}$.

Граф бесконечный. и это всё разрушает. Поищем инвариантное распределение. Пусть это π .

Тогда $\pi(y)=\frac{1}{2}(\pi(y-1)+\pi(y+1)).$ Отсюда можно выразить $\forall y\in\mathbb{Z}:\pi(y)=\pi(0)+ky$, где k — некая константа. Несложно видеть, что во всех трёх случаях (k<0,k>0,k=0) π не является распределением.

Таким образом, для случайного блуждания на $\mathbb Z$ нет инвариантного распределения.

Теорема 1.8.1 (Марков). Пусть \mathcal{X} — конечная цепь, причём вероятность любого перехода ненулевая: $\delta \coloneqq \min_{x,y \in \mathcal{X}} p(x \to y) > 0$.

Тогда $\exists \pi$ — такое распределение, что

$$\forall x, y \in \mathcal{X}, n \in \mathbb{N} : |p^n(x \to y) - \pi(y)| \leqslant (1 - \delta)^n \tag{1.1}$$

При этом π — единственное инвариантное распределение цепи. Любое начальное распределение π_0 влечёт $\pi_n \xrightarrow[n \to \infty]{} \pi$.

Доказательство. В предположении истинности (1.1) получаем

$$\pi_n(y) = (\pi_0 p^n)(y) = \sum_{x \in \mathcal{X}} \pi_0(x) p^n(x \to y) \xrightarrow[n \to \infty]{} \underbrace{\left(\sum_{x \in \mathcal{X}} \pi_0(x)\right)}_{1} \pi(y) = \pi(y)$$

Предположим, что $\widetilde{\pi}$ — произвольное инвариантное распределение. Рассмотрим цепь для $\pi_0 = \widetilde{\pi}$. С одной стороны, в таком случае $\forall n \in \mathbb{N} : \pi_n = \widetilde{\pi}$. С другой стороны, $\pi_n \underset{n \to \infty}{\longrightarrow} \pi$. Значит, $\widetilde{\pi} = \pi$. Таким образом, все инвариантные распределения совпадают с π .

Теперь докажем что-то. Запишем в координатном виде $p^{n+1} = p^n \cdot p$.

$$p^{n+1}(x \to y) = \sum_{z \in \mathcal{X}} p^n(x \to z) p(z \to y)$$

$$\downarrow n \to \infty$$

$$\pi(y) = \sum_{z \in \mathcal{X}} \pi(z) p(z \to y)$$

Интересно, что мы доказали?

Покажем, что π — распределение, то есть сумма $\sum\limits_{x\in\mathcal{X}}\pi(x)=1$. Для любого фиксированного $x\in\mathcal{X}$

$$1 = \sum_{y \in \mathcal{X}} p^n(x \to y) \underset{n \to \infty}{\longrightarrow} \sum_{y \in \mathcal{X}} \pi(y)$$

Осталось доказать (1.1). Зафиксируем $y \in \mathcal{X}$. Рассмотрим последовательности $m_n = \min_{x \in \mathcal{X}} p^n(x \to y)$ и $M_n = \max_{x \in \mathcal{X}} p^n(x \to y)$.

 m_n неубывает, M_n невозрастает:

$$p^{n+1}(x \to y) = \sum_{z \in \mathcal{X}} p(x \to z) p^n(z \to y)$$

Так как $p^n(z \to y) \in [m_n, M_n]$, то $p^{n+1}(x \to y)$, как барицентрическая комбинация таких вероятностей, тоже лежит в $[m_n, M_n]$. Отсюда действительно m_n неубывает, M_n невозрастает.

Ещё докажем их сближение: $(M_{n+1}-m_{n+1})\leqslant (1-\delta)(M_n-m_n)$: Выберем такие x_1,x_2 , что максимум и минимум достигаются: $M_{n+1}=p^{n+1}(x_1\to y), m_{n+1}=p^{n+1}(x_2\to y).$

$$M_{n+1} - m_{n+1} = p^{n+1}(x_1 \to y) - p^{n+1}(x_2 \to y) = \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]p^n(z \to y)$$

Оценим эту сумму следующим образом:

$$\sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)] p^n(z \to y) \leqslant \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ M_n - \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_- m_n = \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ M_n - \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_- m_n = \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ M_n - \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_- m_n = \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ M_n - \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_- m_n = \sum_{z \in \mathcal{X}} [p(x_$$

Покажем равенство

$$\sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ = \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_-$$

Это верно, так как

$$\sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ - \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p^n(x_2 \to z)]_- =$$

$$\sum_{z \in \mathcal{X}} (p(x_1 \to z) - p(x_2 \to z)) = \sum_{z \in \mathcal{X}} p(x_1 \to z) - \sum_{z \in \mathcal{X}} p(x_2 \to z) = 1 - 1 = 0$$

Таким образом

$$M_{n+1} - m_{n+1} \leqslant \sum_{z \in \mathcal{X}} [p(x_1 \to z) - p(x_2 \to z)]_+ (M_n - m_n)$$

Если все слагаемые $[p(x_1 \to z) - p(x_2 \to z)]_+$ равны нулю, то доказывать нечего. Иначе найдётся положительное слагаемое $p(x_1 \to z) - p(x_2 \to z) > 0$. Согласно определению $\delta : p(x_1 \to z) - p(x_2 \to z) \le p(x_1 \to z) - \delta$.

Доказали сближение $(M_{n+1}-m_{n+1}) \leq (1-\delta)(M_n-m_n)$.

Таким образом, m_n неубывает, M_n невозрастает, $M_n - m_n \underset{n \to \infty}{\longrightarrow} 0$. Назначим за $\pi(y)$ общий предел последовательностей m_n и M_n . Так как $|p^n(x \to y) - \pi(y)| \leqslant M_n - m_n \leqslant (1-\delta)^n$, то (1.1) доказана.

Примеры (Теорема Маркова здесь неприменима).

- «Бесконечно плохой пример»: случайное блуждание на квадрате из четырёх вершин. Вероятность перехода в диагонально противоположную вершину равна 0, вероятности $p^n(x \to y)$ не сходятся они периодично меняются с $\frac{1}{2}$ до 0.
- Случайное блуждание по пятиугольнику из пяти вершин. Есть рёбра с вероятностью перехода 0, напрямую теорема неприменима. Но здесь за четыре шага можно попасть в любую вершину: $\forall x,y:p^4(x\to y)>0$.

Факт 1.8.1. Пусть цепь Маркова такова, что для некоторого $m \in \mathbb{N}: \forall x,y \in \mathcal{X}: p^m(x \to y) > 0$. Тогда $\exists !$ инвариантное распределение $\pi: p^n(x \to y) \xrightarrow{} \pi(y)$.

Доказательство. Доказательство Маркова применимо к прореженной цепи X_0, X_m, \ldots с матрицей перехода p^m . Согласно ему, $p^{mn}(x \to y) \xrightarrow[n \to \infty]{} \pi(y)$.

$$p^k(x \to y) = p^{mn+l}(x \to y) = \sum_{z \in \mathcal{X}} p^l(x \to z) p^{mn}(z \to y) \underset{n \to \infty}{\longrightarrow} \underbrace{\left(\sum_{z \in \mathcal{X}} p^l(x \to z)\right)}_{1} \pi(y) = \pi(y)$$

Лекция VIII 3 апреля 2023 г.

22

1.8.2 Классификация состояний в цепях Маркова

Рассмотрим для примера цепь Маркова на таком графе:

Существенные и несущественные состояния

Определение 1.8.3 (Состояние y достижимо из x). Существует такая последовательность состояний x_0, \ldots, x_m , такая, что

$$x_0 = x; x_m = y; \quad p(x_i \to x_{i+1}) > 0$$

Обозначается $x \cdot \cdot \cdot \to y$

Определение 1.8.4 (Существенное состояние x). $\forall y$ такого, достижимого из x, можно вернуться:

$$(x \cdots \to y) \Rightarrow (y \cdots \to x)$$

Пример. А — единственное несущественное состояние в графе в начала раздела.

Факт 1.8.2. Из существенного состояния можно перейти только в существенное.

Доказательство. От противного: $\exists z \in \mathcal{X} : (y \cdots \to z) \land \neg(z \cdots \to y)$. Тогда в частности $\neg(z \cdots \to x)$, но $x \cdots \to z$. Противоречие.

Факт 1.8.3. В конечной цепи Маркова всегда найдётся хотя бы одно существенное состояние.

Доказательство. Рассмотрим цепочку состояний. Если $x_0 \in \mathcal{X}$ (произвольный элемент) — существенное состояние, то доказывать нечего. Иначе выберем x_1 как такое состояние, что $x_0 \cdots \to x_1$, но не наоборот.

Так дальше продолжим цепочку: $x_n \cdots \to x_{n+1}$. От противного: пусть она стала бесконечной, никакие состояния в ней не оказались существенными. Если в какой-то момент окажется, что $x_i = x_j$, то значит мы нашли цикл $x_i \cdots \to \dots \to x_j$, и получили противоречие.

Контрпример. В бесконечной цепи $p(n \to n+1) = p(n \to n+2) = \frac{1}{2}$ существенных состояний нет. Но, она, конечно, бесконечная.

На множестве существенных состояний можно ввести отношение эквивалентности:

$$x \sim y \iff x \cdots \to y \vee x = y$$

Симметричность: по определению того, что x — существенное состояние: $(x \cdots \to y) \Rightarrow (y \cdots \to x)$. Транзитивность и рефлексивность очевидны из определения.

Следствие 1.8.1. Множество существенных состояний распадается на классы достижимых — эргодические классы.

Факт 1.8.4. Каждый эргодический класс замкнут: из любого эргодического класса нельзя вый-

Доказательство. Из всякого x из данного эргодического класса можно попасть только в существенные y, которые по определению эквивалентны x.

 Π ример. В графе выше эти классы — треугольник BCD и четырёхугольник EFGH.

Определение 1.8.5 (Неприводимая цепь Маркова). В данной цепи нет замкнутых множеств кроме всего пространства \mathcal{X} .

Рассмотрим произвольное состояние $x \in \mathcal{X}$. По определению, множество точек, достижимых из x (обозначим его T_x), замкнуто.

В неприводимой цепи $\forall x \in \mathcal{X} : T_x = \mathcal{X}$, значит, эквивалентным определением неприводимой цепи является то, что из любого состояния можно добраться до любого другого.

В частности, в неприводимой цепи все состояния — существенны, образуют один эргодический класс.

1.8.3 Периодичность

Рассмотрим произвольное состояние $x\in\mathcal{X}$, обозначим $I_x\coloneqq \big\{k\in\mathbb{N}\big|p^k(x\to x)>0\big\}$. Будем считать, что I_x непустое.

Определение 1.8.6 (Период состояния x). $d(x) = \gcd(I_x)$.

Замечание. Для произвольного x: I_x — полугруппа по сложению.

Факт 1.8.5. Существует конечное подмножество $I_x' \subset I_x$, такое, что $\gcd(I_x) = \gcd(I_x')$.

Доказательство. Положим $d_M \coloneqq \gcd(I_x \cap [1,M])$. С ростом M последовательность множеств увеличивается по включению, d_M убывает.

Так как d_M — натуральные числа, то последовательность стабилизируется: $\exists M_0: \forall M>M_0: \gcd(I_x\cap[1,M])=d_{M_0}.$ Очевидно, в таком случае $I_x\cap[1,M]$ — искомое подмножество.

Факт 1.8.6. $\exists k_0 \in \mathbb{N}$:

$$\{k \cdot d(x) | k \in \mathbb{N}, k \geqslant k_0\} \subset I_x \subset \{k \cdot d(x) | k \in \mathbb{N}\}$$

Доказательство. Правое включение очевидно верно независимо от k_0 .

- 1. Найдём конечное множество $I_x' \subset I_x$, такое, что $\gcd(I_x') = d(x)$.
- 2. Найдём линейную комбинацию элементов I_x' , такую, что $d(x) = \sum_i v_j \lambda_j, v_j \in I_x', \lambda_j \in \mathbb{Z}.$
- 3. Выберем $b\coloneqq \sum_j v_j |\lambda_j|.\ b\in I_x$, как линейная комбинация его элементов с неотрицательными коэффициентами $|\lambda_j|.$

Значит, b представимо в виде $b = \beta \cdot d(x)$.

- 4. Заметим, что $(\beta+1)d(x)=\sum_j v_j\cdot (\lambda_j+|\lambda_j|)$, что опять-таки линейная комбинация с неотрицательными коэффициентами, лежит в I_x .
- 5. Рассмотрим достаточно большое $k \in \mathbb{N}$. Разделив на β с остатком, получаем $k = r\beta + v$, где $0 \leqslant v < \beta$.

$$k = r\beta + v(\beta + 1) - v\beta = (r - v)\beta + v(\beta + 1)$$

Для $r-v\geqslant 0$, например, для $k\geqslant \beta^2$: $k\cdot d(x)\in I_x$, как линейная комбинация $\beta\cdot d(x)$ и $(\beta+1)\cdot d(x)$.

Таким образом, $k_0 = \beta^2$ подходит.

Следствие 1.8.2. В частности, $\exists k \in \mathbb{N} : kd \in I_x \land (k+1) \cdot d(x) \in I_x$ (например, $k = \beta$).

Факт 1.8.7. Если два состояния сообщаются: $x \cdots \to y$ и $y \cdots \to x$, то d(x) = d(y).

Доказательство. Пусть $p^a(x \to y) > 0$. Воспользуемся (1.8.2) применительно к y: есть два цикла, содержащих y, длин $k \cdot d(y)$ и $(k+1) \cdot d(y)$.

Тогда $a+k\cdot d(y)\in I_x$ и $a+(k+1)\cdot d(y)\in I_x$ тоже. Отсюда сразу получаем $d(x)\mid d(y)=(a+(k+1)\cdot d(y)-a-k\cdot d(y)).$ Аналогично $d(y)\mid d(x)$, значит они равны.

1.8.4 Связь периодов и эргодических классов

Для произвольного эргодического класса $\mathcal{C} \subset \mathcal{X}$: $x,y \in \mathcal{C} \Rightarrow d(x) = d(y)$.

Доказательство. x и y сообщаются, так как они в одном эргодическом классе.

Циклические подклассы

Рассмотрим один эргодический класс, например, $\mathcal{C} = \{E, F, G, H\}$. Заметим, что для $\mathcal{C}_0 = \{E, G\}$ и $\mathcal{C}_1 = \{F, H\}$: из одного класса на следующем шаге можно попасть только в другой.

Пусть \mathcal{C} — эргодический класс с периодом d. Тогда существует разбиение $\mathcal{C} = \mathcal{C}_0 \sqcup \mathcal{C}_1 \sqcup \cdots \sqcup \mathcal{C}_{d-1}$, такое, что вероятность перехода из \mathcal{C}_i в $\mathcal{C}_{(i+1) \pmod d}$ равна 1.

Иными словами, $\forall x \in \mathcal{C}_i : p(x \to y) > 0 \Rightarrow y \in \mathcal{C}_{(i+1) \pmod{d}}$. Это называется разбиением на ииклические подклассы.

Доказательство. Выберем произвольное $x_0 \in \mathcal{C}$. Для всякого $y \in \mathcal{C}$ найдём такое $l(y): p^{l(y)}(x_0 \to y) > 0$.

Положим $j(y) = l(y) \pmod{d} \ (0 \le j(y) < d).$

Определим $\forall j=0..d-1: \quad \mathcal{C}_j\coloneqq \{y\in \mathcal{C}|j(y)=j\}.$ Ясно, что $\bigcup_j \mathcal{C}_j=C.$

Заметим, что если $p(y \to z) > 0$, то $p^{l(y)}(x_0 \to y) > 0 \Rightarrow p^{l(y)+1}(x_0 \to z) > 0$. Значит, действительно, $p(x \to y) > 0 \Rightarrow y \in \mathcal{C}_{(i+1) \pmod{d}}$.

Осталось показать, что \mathcal{C}_j не пересекаются.

Пойдём от противного: пусть $y \in \mathcal{C}_{j_1} \cap \mathcal{C}_{j_2}$. Тогда $\exists l_1, l_2 \in \mathbb{N} : p^{l_1}(x_0 \to y) > 0, p^{l_2}(x_0 \to y) > 0$. Так как x_0 и y в одном эргодическом классе, то для некоторого $b \in \mathbb{N} : p^b(y \to x_0)$. значит, $l_1 + b \in I_{x_0}$ и $l_2 + b \in I_{x_0}$. Значит, они оба делятся на d, их разность делится на d, значит, $l_1 \equiv l_2 \pmod{d}$. \square

Лекция IX

10 апреля 2023 г.

Теорема 1.8.2 (Марков). Самая общая формулировка, которая у нас покамест встречалась, звучит так:

Если для конечной цепи $\mathcal X$ существует $m\in\mathbb N: \forall x,y\in\mathcal X: p^m(x\to y)>0$, то

$$\exists \pi$$
 — распределение, такое, что $p^n(x \to y) \underset{n \to \infty}{\longrightarrow} \pi$, а ещё $\pi \cdot p = \pi$ и $\forall \pi_0 : \pi_n(y) \underset{n \to \infty}{\longrightarrow} \pi$.

На этой лекции мы рассмотрим ещё две теоремы, далее обобщающие теорему Маркова.

Теорема 1.8.3 (Марков, для апериодических цепей). Пусть \mathcal{X} конечно и состоит из единственного эргодического класса с периодом 1.

Утверждается, что тогда верно утверждение предыдущей теоремы (истинна посылка).

Доказательство. Пусть x — произвольное состояние. Тогда, согласно предыдущей лекции, существует достаточно большое $K(x): \forall k \geqslant K(x): p^k(x \to x) > 0$.

По определению эргодического класса, $\exists a(x,y): p^{a(x,y)}(x \to y) > 0$. Тогда

$$\forall k \geqslant K(x) + a(x,y) : p^k(x \to y) > p^{k-a(x,y)}(x \to x) \cdot p^{a(x,y)}(x \to y) > 0$$

Так как пар конечное число, то $m\coloneqq \max_{x,y}\left(K(x)+a(x,y)\right)$ подойдёт.

Замечание. Рассмотрим цепь, в которой есть один эргодический класс $\mathcal C$ и много несущественных состояний, из которых достижим данный класс.

Формально, под условие теоремы эта цепь не подходит. Тем не менее, доказательство работает и здесь.

Упражнение. Если $\mathcal X$ конечно, и содержит единственный эргодический класс $\mathcal C$, причём его период — 1, то утверждение теоремы Маркова тоже верно (правда, посылка в записанной форме не истинна), причём предельное распределение сосредоточено на эргодическом классе: $\sum_{y \in \mathcal C} \pi(y) = 1$.

Теорема 1.8.4 (Марков, для периодических цепей). Пусть $\mathcal X$ конечно и состоит из единственного эргодического класса с периодом d>1.

Для краткости записи обозначим $i \oplus j \coloneqq (i+j \pmod{d}).$

Тогда, как уже доказано, $\mathcal{X} = \mathcal{C}_0 \sqcup \cdots \sqcup \mathcal{C}_{d-1}$, таких, что

$$p(x \to y) > 0 \Rightarrow \exists j \in [0, d) : x \in \mathcal{C}_i, y \in \mathcal{C}_{i \oplus 1}$$

Утверждается, что $\exists \{\pi_j\}_{j=0}^{d-1}$ — система распределений, такая, что $\forall j:\pi_j$ сосредоточено на \mathcal{C}_j , и

$$\forall x \in \mathcal{C}_i, y \in \mathcal{C}_{i \oplus j} : \lim_{n \to \infty} p^{nd+j}(x \to y) = \pi_{i \oplus j}(y)$$

Кроме того, условие инвариантности заменяется на условие $\pi_j \cdot p = \pi_{j \oplus 1}$.

Доказательство. Зафиксируем подкласс C_i и рассмотрим на нём марковскую цепь с переходной вероятностью $q \coloneqq p^d$. Заметим, что тогда C_i — эргодический класс в новой цепи, причём его период — 1. В самом деле,

$$\forall x \in \mathcal{C}_i : \exists K : \forall k \geqslant K : p^{kd}(x \to x) > 0$$
$$q^k(x \to x) > 0$$

Таким образом, период новой цепи равен 1, откуда получаем, что к новой цепи применима предыдущая теорема.

А именно, существует распределение π_i на \mathcal{C}_i :

$$\forall x, y \in \mathcal{C}_i : q^n(x \to y) \xrightarrow[x \to y]{} \pi_i(x \to y) \iff p^{nd}(x \to y) \xrightarrow[x \to y]{} \pi_i(x \to y)$$

Теперь рассмотрим два подкласса C_i и $C_{i \oplus j}$ и произвольные $x \in C_i, y \in C_{i \oplus j}$.

$$p^{nd+j}(x \to y) = p^{nd}p^j(x \to y) = \sum_{z \in \mathcal{C}_{i \oplus j}} p^j(x \to z) \cdot p^{nd}(z \to y)$$

Так как
$$p^{nd}(z \to y) \underset{n \to \infty}{\longrightarrow} \pi_{i \oplus j}(y)$$
, то $p^{nd+j}(x \to y) \underset{n \to \infty}{\longrightarrow} \left(\sum_{z \in \mathcal{C}_{i \oplus j}} p^j(x \to z)\right) \cdot \pi_{i \oplus j}(y) = \pi_{i \oplus j}(y)$.

Осталось доказать, что $\pi_j \cdot p = \pi_{j \oplus 1}$. Положим $y \in \mathcal{C}_{j+1}$, запишем

$$\pi_{j\oplus 1}(y) = \sum_{x\in\mathcal{C}_j} \pi_j(x) \cdot p(x\to y)$$

Для этого вспомним, что $\forall x_0 \in \mathcal{C}_j: \pi_j(x) = \lim_{n \to \infty} p^{nd}(x_0 \to x)$. Тогда

$$\pi_{j\oplus 1}(y) = \lim_{n\to\infty} \sum_{x\in\mathcal{C}_j} p^{nd}(x_0\to x)\cdot p(x\to y) = \lim_{n\to\infty} p^{nd+1}(x\to y) \underset{\text{предыдущее утверждение для } j=1}{=} \pi_{j\oplus 1}(y)$$

1.8.5 Возвратность

Пусть \mathcal{X} — быть может бесконечное пространство состояний.

Выберем $x_0 \in \mathcal{X}$, обозначим за f_i вероятность вернуться в \mathcal{X} на i-м шаге:

$$f_i(x_0) := \mathbb{P}((x_1 \neq x_0) \wedge \cdots \wedge (x_{i-1} \neq x_0) \wedge (x_i = x_0))$$

Так как события несовместны, то $\sum\limits_{i=1}^{\infty}f_i(x_0)\leqslant 1.$

Определение 1.8.7 ($x_0 \in \mathcal{X}$ — возвратное состояние). Такое состояние, для которого $\sum_{i=1}^{\infty} f_i(x_0) = 1$.

При этом говорят, что x_0 — *положительно возвратно*, если $\sum\limits_{i=1}^{\infty} i \cdot f_i(x_0) < \infty$, то есть матожидание времени возврата конечно. Иначе x_0 называется *нуль-возвратным*.

Теорема 1.8.5 (Критерий возвратности). $x \in \mathcal{X}$ возвратно $\iff \sum_{n=1}^{\infty} p^n(x \to x) = \infty$.

Доказательство. Запишем двумя способами вероятность события пройти цикл из x в x.

$$p^{n}(x \to x) = \sum_{i=1}^{n} f_{i}(x) \cdot p^{n-i}(x \to x)$$

Введём производящие функции $\mathcal{F}(z)=\sum\limits_{i=1}^{\infty}f_i(x)z^i$ и $\mathcal{P}(z)=\sum\limits_{n=0}^{\infty}p^n(x\to x)z^n$, действующие на $z\in[0,1)$. Для них

$$\mathcal{P}(z) = 1 + \mathcal{F}(z)\mathcal{P}(z)$$

Таким образом,

$$1 - \frac{1}{\mathcal{P}(z)} = \mathcal{F}(z)$$

Перейдём к пределу при $z \to 1$. Равенство обратится в

$$1 - \frac{1}{\sum_{n=1}^{\infty} p^n(x \to x)} = \sum_{i=1}^{\infty} f_i(x)$$

Факт 1.8.8. Если х и у сообщаются, то они либо оба возвратны, либо оба — невозвратны.

Доказательство. $\exists a,b \in \mathbb{N}: p^a(x \to y) > 0$ и $p^b(y \to x) > 0$. Тогда запишем

$$p^{n+a+b}(x\to x)\geqslant p^a(x\to y)p^n(y\to y)p^b(y\to x)$$

Отсюда видим, что ряды $\sum\limits_{n=1}^{\infty}p^n(x\to x)$ и $\sum\limits_{n=1}^{\infty}p^n(y\to y)$ сходятся (или нет) одновременно. \square

Следствие 1.8.3. Если в цепи все состояния сообщаются, то они все одновременно либо возвратны, либо нет.

Пример (Самый знаменитый пример). **Простое симметричное случайное блуждание на** \mathbb{Z}^d .

Пусть мы находимся в произвольной точке пространства $\mathbb{Z}^d \ni (x_1 \dots x_d)$. На каждом шагу меняется произвольная координата с вероятностью $\frac{1}{2d}$ — на ± 1 .

Все точки сообщаются, значит, все они возвратны или невозвратны одновременно.

Теорема 1.8.6 (Пойа). Симметричное случайное блуждание на целочисленной решётке \mathbb{Z}^d возвратно $\iff d \leqslant 2$.

Доказательство. Будем пользоваться не определением возвратности, а критерием — про сходимость ряда. Идея состоит в том, что $p^n(x \to x) \asymp n^{-d/2}$. Этот ряд сходится при $d \geqslant 3$.

 $p^{2n+1}(0 o 0) = 0$, поэтому для проверки расходимости ряда будем рассматривать чётные индексы.

d=1.

$$p_1^n(0 \to 0) = \binom{2n}{n} \left(\frac{1}{2}\right)^{2n} = \frac{(2n)!}{n! n! 2^{2n}} \sim \frac{(2n/e)^n \sqrt{2\pi 2n}}{(n/e)^n (n/e)^n \cdot \sqrt{2\pi n} \sqrt{2\pi n} \cdot 2^{2n}} = \frac{1}{\sqrt{\pi n}}$$

Так как ряд расходится, то блуждание возвратно.

d=2. Представим себе блуждание по плоскости x,y и рассмотрим замену переменных: $\begin{cases} u=x+y \\ v=x-y \end{cases}$. Теперь обе координаты (u,v) независимы:

$$\begin{cases} x \leadsto x + 1 & u \leadsto u + 1, v \leadsto v + 1 & \frac{1}{4} \\ x \leadsto x - 1 & u \leadsto u - 1, v \leadsto v - 1 & \frac{1}{4} \\ y \leadsto y + 1 & u \leadsto u + 1, v \leadsto v - 1 & \frac{1}{4} \\ y \leadsto y - 1 & u \leadsto u - 1, v \leadsto v + 1 & \frac{1}{4} \end{cases}$$

Таким образом, случайные блуждания по заменённым координатам независимы, откуда:

$$p_2^{2n}(0 \underset{(xy)}{\to} 0) = p_2^{2n}(0 \underset{(uv)}{\to} 0) = p_1^{2n}(0 \underset{u}{\to} 0) \cdot p_1^{2n}(0 \underset{v}{\to} 0) = \frac{1}{\pi n}$$

Ряд расходится, блуждание возвратно.

d=3. Введём M_1,M_2,M_3 — число шагов вдоль осей 1,2,3 — случайные величины, такие, что $M_1+M_2+M_3=2n$. Также введём событие

$$A_{m_1,m_2,m_3} = \{M_1 = 2m_1, M_2 = 2m_2, M_3 = 2m_3\}$$

Запишем $p_3^{2n}(0 \to 0) = \sum_{m_1,m_2,m_3} p_3^{2n}(0 \to 0 \land A_{m_1,m_2,m_3})$ — формулу полной вероятности.

Здесь есть плохие слагаемые, в которых одно из m_1, m_2, m_3 слишком мало.

$$\mathbb{E}M_1 = \mathbb{E}M_2 = \mathbb{E}M_3 = \frac{2n}{3}; \qquad \mathbb{D}M_1 = \mathbb{D}M_2 = \mathbb{D}M_3 \sim \text{const} \cdot n$$

Согласно неравенству Чебышёва

$$\mathbb{P}\left(M_1 \leqslant \frac{n}{3}\right) = \mathbb{P}\left(M_1 - \mathbb{E}M_1 \leqslant -\frac{n}{3}\right) \leqslant \mathbb{P}\left(|M_1 - \mathbb{E}M_1| \geqslant \frac{n}{3}\right) \leqslant \frac{\mathbb{D}M_1}{\binom{n}{3}}^2 = \frac{\text{const}}{n}$$

Эта оценка слишком слабая, она расходится и не помогает доказать сходимость.

Воспользуемся лучше экспоненциальным неравенством Чебышёва:

$$\mathbb{P}\left(M_{1} \leqslant \frac{n}{3}\right) = \mathbb{P}\left(-M_{1} \geqslant -\frac{n}{3}\right) \leqslant \frac{\mathbb{E}\left(e^{-M_{1}}\right)}{e^{-n/3}} =$$

$$= \mathbb{E}\left(e^{-M_{1}}\right) \cdot e^{n/3} = \left(\frac{2}{3} + \frac{1}{3} \cdot e^{-1}\right)^{2n} \cdot e^{n/3} = \left(\left(\frac{2 + e^{-1}}{3}\right)^{2} e^{1/3}\right)^{n} \approx 0.87^{n}$$

Теперь

$$\sum_{m_1,m_2,m_3} p_3^{2n}(0 \to 0 \land A_{m_1,m_2,m_3}) \leqslant \sum_{\substack{m_1,m_2,m_3 \\ m_1,m_2 \text{ или } m_3 \text{ меньше } n/3}} \mathbb{P}(A_{m_1,m_2,m_3}) + \sum_{\substack{m_1,m_2,m_3 \\ \text{иначе}}} \mathbb{P}(0 \to 0 \land A_{m_1,m_2,m_3})$$

Первая сумма сходится: оценивается суммой $\mathbb{P}\left(m_1\leqslant rac{n}{3}
ight)+\mathbb{P}\left(m_2\leqslant rac{n}{3}
ight)+\mathbb{P}\left(m_3\leqslant rac{n}{3}
ight),$ где каждое слагаемое оценено выше.

Вторая сумма оценивается из формулы полной вероятности: $p_3^{2n}(0 o 0 \wedge A_{m_1,m_2,m_3}) = p_3^{2n}(0 o 0 \wedge A_{m_1,m_2,m_3})$ $0|A_{m_1,m_2,m_3})\cdot \mathbb{P}(A_{m_1,m_2,m_3})$. Дальше $p_3^{2n}(0 o 0|A_{m_1,m_2,m_3})$ раскладывается на три множителя по каждой координате:

$$p_3^{2n}(0 \to 0 | A_{m_1, m_2, m_3}) = p_1^{m_1}(0 \to 0)p_2^{m_1}(0 \to 0)p_1^{m_3}(0 \to 0) \leqslant \frac{\text{const}}{\sqrt{m_1}} \cdot \frac{\text{const}}{\sqrt{m_2}} \cdot \frac{\text{const}}{\sqrt{m_3}} \leqslant \frac{\text{const}}{n^{3/2}}$$

Таким образом, $\sum\limits_{m_1,m_2,m_3, \text{ одно меньше } n/3} p_3^{2n}(0 \to 0|A_{m_1,m_2,m_3}) \cdot \mathbb{P}(A_{m_1,m_2,m_3}) \leqslant \frac{\text{const}}{n^{3/2}} - \text{события } A_{m_1,m_2,m_3}$ не пересекаются. Итак, ряд сходится, блуждание невозвратно.

d > 3. Доказывается аналогично d = 3.

Случайное блуждание в \mathbb{Z}^1 1.9

Случайное блуждание на $\mathbb Z$ можно воспринимать либо как сумму независимых случайных величин X_j , распределённых по закону $X_{i,j} = \begin{cases} +1, & \text{с вероятностью } p \\ -1, & \text{с вероятностью } q \end{cases}$ (и $S_n = X_1 + \dots + X_n$), или как марковскую цепь

$$\mathbb{P}(S_{n+1} = s + 1 | S_n = s) = p$$

$$\mathbb{P}(S_{n+1} = s - 1 | S_n = s) = q$$

Исследуем некоторые параметры данного случайного блуждания.

Обозначим за R_n количество шагов вправо среди первых n шагов. Это величина с биномиальным распределением $\mathcal{B}(n,p)$. $S_n=R_n-(n-R_n)=2R_n-n$, откуда вероятность $\mathbb{P}(S_n\geqslant m)$ переписывается в виде $\mathbb{P}(2R_n - n \geqslant m) = \mathbb{P}(R_n \geqslant \frac{n+m}{2}).$

Интегральная теорема Муавра-Лапласа говорит, что $\mathbb{P}\left(R_n\geqslant np+b\sqrt{np(1-p)}\right)\underset{n\to\infty}{\longrightarrow}\frac{1}{\sqrt{2\pi}}\int\limits_{\gamma}^{\infty}e^{-\frac{x^2}{2}}\,\mathrm{d}x.$

В частности, для p=1/2 получаем $\mathbb{P}(S_n\geqslant b\sqrt{n})=\mathbb{P}(R_n\geqslant \frac{n}{2}+\frac{1}{2}b\sqrt{n})\underset{n\to\infty}{\longrightarrow}\frac{1}{\sqrt{2\pi}}\int\limits_{1}^{\infty}e^{-\frac{x^2}{2}}\,\mathrm{d}x.$

Отсюда получаем следствие: характерное значение S_n при p=1/2 имеет порядок $\mathcal{O}(\sqrt{n})$:

$$\mathbb{P}\left(b_1\sqrt{n} \leqslant S_n \leqslant b_2\sqrt{n}\right) \underset{n \to \infty}{\longrightarrow} \frac{1}{\sqrt{2\pi}} \int_{b_1}^{b_2} e^{-\frac{x^2}{2}} dx$$

1.9.1 Распределение максимума. Принцип отражения

Рассмотрим симметричное случайное блуждание на \mathbb{Z}^1 . Обозначим за $M_n \coloneqq \max_{0 \leqslant j \leqslant n} S_j$. Только что мы оценили, что характерное значение S_n имеет порядок \sqrt{n} , а какого максимума следует ожидать?

Разобьём событие на три дизъюнктных:

$$\mathbb{P}(M_n \geqslant r) = \mathbb{P}(M_n \geqslant r, S_n > r) + \mathbb{P}(M_n \geqslant r, S_n = r) + \mathbb{P}(M_n \geqslant r, S_n < r) =$$

$$= \mathbb{P}(S_n > r) + \mathbb{P}(S_n = r) + \mathbb{P}(M_n \geqslant r, S_n < r)$$

Факт 1.9.1.
$$\mathbb{P}(S_n > r) = \mathbb{P}(M_n \geqslant r, S_n < r)$$
.

Доказательство. Рассмотрим произвольное случайное блуждание, в котором $\{M_n \geqslant r, S_n < r\}$. На картинке ниже оно схематично изображено сплошными линиями.

Выделим минимальное k_0 , такое что $S_{k_0}=r$ — оно очевидно существует, так как $M_n\geqslant r$. Отразим от оси $S_k=r$ всю часть графика при $k>k_0$.

Получили новый вариант развития случайного блуждания. Так как блуждание симметричное, то вероятность его появления такая же, как и у исходного. Более того, нетрудно видеть, что данное отражение задаёт биекцию между всеми событиями $\{S_n > r\}$ и $\{S_n < r, M_n \geqslant r\}$.

Таким образом, получаем, что $\mathbb{P}(M_n\geqslant r)=2\mathbb{P}(S_n>r)+\mathbb{P}(S_n=r)$. При стремлении $n\to\infty$ для любого конкретного $r:\mathbb{P}(S_n=r)\longrightarrow 0$, так как даже для r=0 вероятность эквивалентна $\frac{1}{\sqrt{\pi n}}$, а из биномиальной формулы ясно, что r=0— наиболее вероятно.

Таким образом, применяя интегральную теорему Муавра-Лапласа, получаем

$$\boxed{\mathbb{P}(M_n \geqslant b\sqrt{n}) \xrightarrow[n \to \infty]{} \frac{2}{\sqrt{2\pi}} \int_{b}^{\infty} e^{-\frac{x^2}{2}} \, \mathrm{d}x}$$

1.9.2 Время пребывания на полуоси (закон арксинуса)

Рассмотрим симметричное блуждание с $p=q=\frac{1}{2}$. Изобразим на своеобразном графике точки (k,S_k) , соединив последовательные отрезками.

Назовём временем, проводимым на положительной оси $T_n = \sum_{k=1}^n \mathbb{1}_{\{s_k \geqslant 0, s_{k-1} \geqslant 0\}}$. Пусть $a, b \in (0, 1)$, найдём, чему пропорциональна вероятность $\mathbb{P}(a \leqslant \frac{T_n}{n} \leqslant b)$.

Будем рассматривать чётные n, то есть обозначим их 2n. Интересно заметить, что T_{2n} всегда чётно: точки $S_k=0$ появляются всегда при чётных k, и между соседними точками либо всё время — пребывание на положительной полуоси, либо всё время — пребывание на отрицательной полуоси.

Будем использовать без доказательства факт $\mathbb{P}(T_{2n}=k)=\mathbb{P}(S_{2k}=0)\cdot\mathbb{P}(S_{2(n-k)}=0)$. (доказательство можно найти в учебнике Ширяева «Вероятность», глава 1, параграф 10).

Таким образом, мы можем выразить $(T_{2n} = k)$ с помощью простых методов:

$$\mathbb{P}(S_{2k} = 0) = 2^{-2k} \binom{2k}{k} = \frac{1}{\sqrt{\pi k}} (1 + o(1))$$
$$\mathbb{P}(S_{2(n-k)} = 0) = \frac{1}{\sqrt{\pi (n-k)}} (1 + o(1))$$

Теперь можно записать

$$\mathbb{P}\left(a < \frac{T_n}{n} < b\right) = \sum_{a < \frac{k}{n} < b} \frac{1}{\sqrt{\pi k}} \cdot \frac{1}{\sqrt{\pi (n-k)}} (1 + o(1)) = \frac{1}{\pi} \cdot \sum_{a < \frac{k}{n} < b} \frac{1}{\sqrt{\frac{k}{n}}} \cdot \frac{1}{\sqrt{1 - \frac{k}{n}}} \cdot \frac{1}{n} (1 + o(1))$$

Заметим, что теперь под суммой стоит сумма Римана-Дарбу, можем записать свойство интеграла Римана

$$\frac{1}{\pi} \cdot \sum_{a < \frac{k}{n} < b} \frac{1}{\sqrt{\frac{k}{n}}} \cdot \frac{1}{\sqrt{1 - \frac{k}{n}}} \cdot \frac{1}{n} (1 + o(1)) \xrightarrow[n \to \infty]{} \frac{1}{\pi} \int_{a}^{b} \frac{\mathrm{d}u}{\sqrt{u(1 - u)}} = I(b) - I(a)$$

где в качестве I подойдёт любая первообразная. Любопытно, что здесь есть две разные естественно выглядящие первообразные

$$I_1(x) = \frac{1}{\pi} \arcsin(2x - 1)$$
$$I_2(x) = \frac{2}{\pi} \arcsin(\sqrt{x})$$

Это можно видеть из тождества $\arcsin(2x-1)+\frac{\pi}{2}=2\arcsin(\sqrt{x})$ при $x\in[0,1]$. (Проверяется взятием косинуса от обоих частей)

График $\frac{1}{\sqrt{u(1-u)}}$ выглядит, как U-образная кривая, с концами, уходящими в бесконечность, поэтому распределение сосредоточено около границ.

Если рассмотреть случайную величину Z с распределением $\mathbb{P}(Z \in [a,b]) = \frac{1}{\sqrt{\pi}} \int\limits_a^b \frac{\mathrm{d}u}{\sqrt{u(1-u)}},$ то окажется, что она с очень большой вероятностью распределена близко к краю:

$$\mathbb{P}(Z \leqslant 0.024) \approx 0.1$$
 $\mathbb{P}(Z \leqslant 0.006) \approx 0.05$

1.9.3 Задача о разорении игрока

Пусть у I игрока есть |A| монет (мы будем считать A<0), у II игрока — B монет, и пусть они играют в азартную игру. У I игрока вероятность выигрыша p, у II игрока — q=1-p. По выигрышу проигравший платит одну монету другому, игра заканчивается, когда один из них разорится.

Исследуем эту модель. Заметим, что это на самом деле тоже случайное блуждание, заканчиваю-

щееся когда S_k выходит из интервала [A, B]:

Положим $\beta_k(x)$ — вероятность выйти на B раньше, чем на A не более чем за k шагов, исходя из точки x. Эти величины мы можем рассматривать в дискретной теории вероятностей, так как бесконечных траекторий несчётное количество.

Заметим, что $\beta_k(x)$ монотонно возрастает по k, но, очевидно, $\beta_k(x)$ ограничена. Значит, имеется предел, который мы и хотим вычислить.

Запишем своеобразную рекурренту на β : с вероятностью p первый шаг — в положительном направлении, с вероятностью q — в отрицательном

$$\beta_k(x) = p\beta_{k-1}(x+1) + q\beta_{k-1}(x-1)$$

Перейдя к пределу по k получаем

$$\beta(x) = p\beta(x+1) + q\beta(x-1) p\beta(x) + q\beta(x) = p\beta(x+1) + q\beta(x-1) q(\beta(x) - \beta(x-1)) = p(\beta(x+1) - \beta(x)) \beta(x+1) - \beta(x) = \frac{q}{p}(\beta(x) - \beta(x-1))$$

Таким образом, последовательные разности $\beta(x+1)-\beta(x)$ образуют геометрическую прогрессию. Воспользовавшись начальными условиями $\begin{cases} \beta(B)=1\\ \beta(A)=0 \end{cases}$ можно получить точную формулу. В частности, для $p=q=\frac{1}{2}$ получается неожиданно простая формула

$$\beta(0) = \frac{|A|}{B + |A|}$$

Если $p \neq q$, то можно решить систему из B + |A| + 1 линейных уравнений, результатом будет

$$\beta(x) = \frac{(q/p)^x - (1/p)^A}{(q/p)^B - (1/p)^A}$$

Замечание. Случайное блуждание не может бесконечное время болтаться внутри ограниченного отрезка. Вероятность того, что рано или поздно кто-то выиграет стремится к единице. Доказательство остаётся читателю в качестве упражнения.

1.9.4 Матожидание времени разорения

Задача прежняя — есть два игрока с капиталами |A|, B, p,q — вероятности их выигрышей соответственно.

Обозначим T(x) — время разорения одного из игроков, если блуждание началось в точке x. Чему равно $\mathbb{E}T(x)$?

Как и в предыдущей задаче, ограничим игру конечным числом ходов: $T_k(x) = \begin{cases} T(x), & T(x) \leqslant k \\ k, & T(x) \geqslant k \end{cases}$

Используемая выше T(x) — величина, которую мы не можем рассматривать в дискретной теории вероятностей. Чтобы этого избежать, рассмотрим величины $T_k(x)$ и найдём $\lim_{k\to\infty} \mathbb{E} T_k(x)$.

Обозначим $m_k(x) \coloneqq \mathbb{E} T_k(x)$. $m_k(x)$ тоже монотонно возрастет по k. Более того, у него есть предел — вероятность того, что T(x) > n экспоненциально убывает, но выкладок, обосновывающих это, нет.

$$m_k(x) = \begin{cases} pm_{k-1}(x+1) + qm_{k-1}(x-1) + 1, & x \in (A,B) \\ 0, & x = A \lor x = B \end{cases}$$

Преобразуем первое равенство, перейдя в нём к пределу по $k \to \infty$.

$$pm(x) + qm(x) = pm(x+1) + qm(x-1) + 1$$

$$p(m(x+1) - m(x)) = q(m(x) - m(x-1)) - 1$$

$$m(x+1) - m(x) = \frac{q}{p}(m(x) - m(x-1)) - \frac{1}{p}$$

Это опять же решаемая система, но для экономии времени лекции приведём лишь решение для $p=q=\frac{1}{2}$:

$$m(x+1) - m(x) = (m(x) - m(x-1)) - 2$$

Решением является многочлен второй степени с корнями в A и B. m(x) = K(x-A)(x-B). Подгоняя K так, чтобы выполнялось уравнение m(x+1)-m(x)=(m(x)-m(x-1))-2 понимаем, что K=-1.

$$m(x) = (B - x)(x - A)$$
; в частности, $m(0) = |A| \cdot B$

Если $p \neq q$, то ответ чуть более противный:

$$m(0) = \frac{B-A}{p-q} \cdot \frac{1 - (q/p)^A}{(q/p)^B - (q/p)^A} + \frac{A}{p-q}$$

1.10 Случайные графы

В нашей жизни есть огромное множество графов: графов друзей социальных сетей, граф аэропортов и авиалиний, граф совместных научных публикаций и граф цитирований...

small world — маленькость мира, диаметры реальных графов (длина пути — количество рёбер) очень малы. Так, в графе совместных публикаций научного мира диаметр порядка 10.

Графы бывают статические и динамические — во времени меняются последние.

Типичная статическая модель: граф Эрдёша-Реньи на n вершинах G(n,p), в котором каждое из $\binom{n}{2}$ рёбер проведено с вероятностью p.

Самая знаменитая динамическая модуль: модель преимущественного присоединения. Начнём с какого-то простого графа, на каждом шаге добавляем вершину и одно ребро из неё, ведущее к какой-нибудь из существующих вершин, причём вероятность пропорциональна степени вершины.

1.10.1 Граф Эрдёша-Реньи

Рассмотрим множество из n вершин, каждое из $\binom{n}{2}$ рёбер проведено в вероятностью p независимо от других — случайный граф G(n,p).

Рассмотрим последовательность p_n и изучим поведение G(n,p) при $n \to \infty$.

Интересный факт (Условие связности).

- ullet Если $\varinjlim_{n o \infty} rac{p_n}{\log n/n} > 1$, то $\mathbb{P}(G(n,p_n) \text{ связен}) \stackrel{}{\underset{n o \infty}{\longrightarrow}} 1.$
- Если $\overline{\lim_{n\to\infty}} \frac{p_n}{\log n/n} < 1$, то $\mathbb{P}(G(n,p_n) \text{ связен}) \overset{n\to\infty}{\longrightarrow} 0$.

Обозначим за M_n размер максимальной компоненты связности в $G(n, p_n)$.

Интересный факт (О гигантской компоненте).

- Если $\varliminf_{n \to \infty} \frac{p_n}{1/n} =: \gamma > 1$, то $\exists a(\gamma) : \mathbb{P}(M_n > a(\gamma) \cdot n) \underset{n \to \infty}{\longrightarrow} 1$.
- Если $\varlimsup_{n\to\infty} \frac{p_n}{1/n}=:\gamma<1$, то $\exists b(\gamma): \mathbb{P}(M_n\leqslant b(\gamma)\cdot \log n) \underset{n\to\infty}{\longrightarrow} 1.$

1.10.2 power law for degrees (степенной закон для степеней (вершин))

Рассмотрим большой граф из n вершин; обозначим за $V_n^{(d)}$ количество вершин степени d.

Оказывается, часто имеет место приближение $V_n^{(d)} \approx (ad^{-\alpha})n$, где $\alpha \in (2,5)$ — для разных графов предлагались разные значения. a и α — константы, зависящие от типа графа, но не зависящие от d, иначе было бы совсем неинтересно. Тем не менее, α меняется не очень сильно, а a находится из уравнения $V_n^{(0)} + V_n^{(1)} + \cdots + V_n^{(n)} = n$.

1.10.3 Дерево преимущественного присоединения

Рассмотрим в качестве начального состояния граф K_2 , состоящий из двух вершин и одного ребра.

На k-м шаге в граф добавляется вершина с номером k+2, и из неё добавляется ровно одно случайное ребро, причём оно проведено к вершине $i \in [1, k+1]$ с вероятностью, пропорциональной $\deg(i)$, где \deg — степень в графе на первых k+1 вершинах.

После шага n в графе n+2 вершины, n+1 ребро, несложно видеть, что граф связен и является деревом.

Поведение степеней вершин

Обозначим за $X_n^{(m)}$ степень вершины m после шага n.

«Кто не успел, тот опоздал»

Рассмотрим m=1. $X_0^{(1)}=1$ — после 0-го шага величина пока неслучайная. Запишем уравнения на развитие случайной переменной $X_n^{(1)}$.

$$\mathbb{P}\left(X_{n+1}^{(1)} - X_n^{(1)} = 1 \middle| X_n^{(1)} = k\right) = \frac{k}{2(n+1)}$$

$$\mathbb{P}\left(X_{n+1}^{(1)} - X_n^{(1)} = 0 \middle| X_n^{(1)} = k\right) = 1 - \frac{k}{2(n+1)}$$

Посчитаем от величины $X_n^{(1)}$ только её матожидание.

$$\mathbb{E}\left(X_{n+1}^{(1)}\right) - \mathbb{E}\left(X_{n}^{(1)}\right) = \mathbb{E}\left(X_{n+1}^{(1)} - X_{n}^{(1)}\right) = \mathbb{P}\left(X_{n+1}^{(1)} - X_{n}^{(1)} = 1\right) = \sum_{k=1}^{\infty} \mathbb{P}\left(X_{n}^{(1)} = k\right) \frac{k}{2(n+1)}$$

В этом месте чудесным образом появляется матожидание, получаем рекурренту на матожидание

$$\mathbb{E}\left(X_{n+1}^{(1)}\right) - \mathbb{E}\left(X_n^{(1)}\right) = \mathbb{E}\left(X_n^{(1)} \cdot \frac{1}{2(n+1)}\right)$$

откуда $\mathbb{E}X_{n+1}^{(1)}=\mathbb{E}X_n^{(1)}\left(1+\frac{1}{2(n+1)}\right)=\mathbb{E}X_n^{(1)}\cdot\frac{2n+3}{2(n+1)}=\frac{(2n+3)!!}{(2n+2)!!}.$ Используя формулу Стирлинга, получаем

$$(2n)!! = 2^n n! \sim 2^n \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \qquad (2n+1)!! = \frac{(2n+1)!}{(2n)!}$$

откуда

$$\mathbb{E} X_n^{(1)} = \frac{(2n+1)!}{((2n)!!)^2} \sim \frac{\sqrt{2\pi(2n+1)} \left(\frac{2n+1}{e}\right)^{2n+1}}{2^{2n}(2\pi n) \left(\frac{n}{e}\right)^{2n}} \sim \frac{1}{\sqrt{\pi}} \frac{\sqrt{2 \cdot 2n}}{2n} \underbrace{\left(\frac{2n+1}{2n}\right)^{2n}}_{} \underbrace{\frac{2n+1}{e}}^{2n} \sim \frac{2}{\sqrt{\pi}} \sqrt{n} \underbrace{\left(\frac{2n+1}{e}\right)^{2n+1}}_{} \underbrace{\frac{2n+1}{e}}^{2n} = \frac{2n+1}{e} = \frac{2n+1}{e}$$

Заметим, что в графе 2(n+1) рёбер всего, поэтому в среднем степень вершины порядка 2. Таким образом, видим, что степень первой вершины сильно больше средней степени.

Очевидно, $\mathbb{E}X_n^{(2)} = \mathbb{E}X_n^{(1)}$. Можно написать формулу для произвольной вершины, она доказывается примерно так же.

$$\mathbb{E} X_n^{(l+1)} \sim rac{2}{\sqrt{\pi}} rac{(2l-2)!!}{(2l-1)!!} \sqrt{n}$$
, где можно записать $rac{(2l-2)!!}{(2l-1)!!} \sim l^{-1/2}$

1.10.4 Распределение степеней вершин

Пусть $V_n^{(d)}$ — количество вершин степени d после шага n.

Рассмотрим d=1. После 0 шагов $V_0^{(d)}=2$ — величина ещё неслучайная. Опять же, выпишем условные вероятности. Заметим, что $V_{n+1}^{(1)}-V_{n+1}^{(1)}$ —всегда либо 0, либо 1 (добавляется вершина степени 1, но, быть может, одна из вершин степени 1 станет вершиной степени 2).

$$\mathbb{P}\left(V_{n+1}^{(1)} - V_{n+1}^{(1)} = 0 \middle| V_n = k\right) = \frac{k}{2(n+1)}$$

$$\mathbb{P}\left(V_{n+1}^{(1)} - V_{n+1}^{(1)} = 1 \middle| V_n = k\right) = 1 - \frac{k}{2(n+1)}$$

Аналогично подсчёту $\mathbb{E} X_n^{(1)}$ получаем

$$\mathbb{E}V_{n+1}^{(1)} - \mathbb{E}V_n^{(1)} = \mathbb{E}\left(V_{n+1}^{(1)} - V_n^{(1)}\right) = \mathbb{P}\left(V_{n+1}^{(1)} - V_n^{(1)} = 1\right) = \sum_{k=1}^{\infty} \left(1 - \frac{k}{2(n+1)}\right) \mathbb{P}\left(V_n^{(1)} = k\right)$$

Суммируя вероятности $\mathbb{P}(V_n^{(1)}=k)$ получаем 1; во второй половине правой части формулы опять получается матожидание. Значит,

$$\mathbb{E}V_{n+1}^{(1)} - \mathbb{E}V_n^{(1)} = 1 - \frac{\mathbb{E}V_n^{(1)}}{2(n+1)}$$

Чтобы решить эту рекурренту, предположим, что $\mathbb{E}V_n^{(1)}\sim \alpha n$ для некоего $\alpha\in\mathbb{R}$. По-хорошему, это надо обосновать, но давайте опустим.

Тогда решая уравнение $\alpha=1-\frac{\alpha}{2}$, получаем $\alpha=\frac{2}{3}$.

$$\mathbb{E}V_n^{(1)} \underset{n \to \infty}{\sim} \frac{2}{3}n$$

В общем случае получится формула

$$\mathbb{E}V_n^{(d)} \underset{n \to \infty}{\sim} \frac{4}{d(d+1)(d+2)} n \underset{d \to \infty}{\sim} \frac{4}{d^3} n$$