Copy #3-Lee Lucier

DMS-DR-1230 CR-120,087 OCTOBER 1972

-SPACE SHUTTLE-

AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGUR-ATIONS WITH PARALLEL BURN PRESSURE-FED AND SRM BOOSTERS

VOLUME V ORBITER, TANKS AND BOOSTER **ALONE CONFIGURATIONS**

by

T. W. Jarrett, MDAC

N73-11905

SPACE SHUTTLE: AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN T.W. Jarrett (Chrysler CSCL 22B G3/31 corp.) Oct. 1972

unclas 48238

MDAC 4-FOOT

WIND TUNA

SADSAC SPACE SHUTTLE **AEROTHERMODYNAMIC** DATA MANAGEMENT SYSTEM

CONTRACT NAS8-4016 MARSHALL SPACE FLIGHT CENTER

This document should be referenced as NASA CR-120.087

NASA Series Number: S-0441

DMS-DR-1230 VOLUME V CR-120,087 OCTOBER, 1972

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

CONFIGURATION:	MDAC Pressure Fed and SRM Parallel Burn Ascent Configurations			
TEST PURPOSE:	To Define the Aerodynamic Characteristics of an Ascent			
	Configuration, the Individual Component Contribution,			
	Relative Orbiter and Booster Position and Interference Effects			
TEST FACILITY:	MDAC Aerophysics Lab. 4 Foot Trisonic Wind Tunnel			
TESTING AGENCY:	MDAC (W)			
TEST NO. & DATE:	S-222: 2 Dec. 1971 - 18 Jan. 1972, 25 Jan. 1972 - 8 Feb. 1972			
FACILITY COORDINA	TOR: T. W. Jarrett, MDAC			
PROJECT ENGINEER(S): <u>T. W. Jarrett, MDAC</u>			

DATA MANAGEMENT SERVICES

for T. L. Mulkey DATA OPERATIONS: W. R. Morgan

RELEASE APPROVAL:

N D. Kemp, Supervisor Aero Thermo Data Group

CONTRACT NAS 8-4016

AMENDMENT 174

DRL 297-84a

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

FACILITY COORDINATOR & PROJECT ENGINEER:

Mr. T. W. Jarrett McDonnell Douglas Aircraft Corporation 5301 Bolsa Avenue Building 13, Mail Stop 14 Huntington Beach, California 92647

Phone: (213) 896-4044

SADSAC LIAISON:

Mr. T. L. Mulkey c/o Ames Research Center Mail Stop 226-4 Moffett Field, California 94035

Phone: (415) 965-6118

SADSAC OPERATIONS:

Mr. W. R. Morgan Chrysler Corporation Space Division P. O. Box 29200 Department 2780 New Orleans, Louisiana 70129

Phone: (504) 255-2304

TABLE OF CONTENTS

	PAGE
Introduction	2
Nomenclature	4
Configurations Investigated	7
Test Facility	9
Models & Support Equipment	9
Data Reduction	10
Tables	
1. Test Conditions	13
2. Dataset Collation Sheets	15
3. Model Component Descriptions	36
4. Plume Definitions	62
5. Index of Model Figures	64
6. Index of Data Figures	68
Figures	
Model	87
Data	145

AERODYNAMIC CHARACTERISTICS OF VARIOUS MDAC SPACE SHUTTLE ASCENT CONFIGURATIONS WITH PARALLEL BURN PRESSURE-FED AND SRM BOOSTERS (M = 0.4 - 4.5)

By

T. W. Jarrett

INTRODUCTION

Various space shuttle ascent configurations were tested in the MDAC Aerophysics 4 x 4 Ft. Trisonic Wind Tunnel. The models were 0.6 percent scale. The ascent configurations consisted of a NASA/MSC 040A orbiter in combination with various HO centerline tank and booster geometries. The purposes of the tests were to determine the aerodynamics of the ascent configurations, the aerodynamic interference between components and its effect on orbiter aerodynamics, and to determine orbiter aileron effectiveness.

The model was sting mounted with either a single internal balance (in the orbiter HO tank) or dual internal balances (one in the orbiter and one in the orbiter HO tank). With the dual balance setup, three types of runs were made; one with tank alone on the tank balance, one with tank and two attached boosters on the tank balance, and one with the tank and one booster attached on the tank balance and the other booster isolated on a separate sting but in proximity to the tank and orbiter. In addition to the 6-component force and moment balance data, base pressure data were taken for the boosters, the tank and the orbiter. Angle of attack data included α sweeps at 0° and 6° β (the latter involving a knuckle change) and β sweeps at 0° and 6° α . Through the use of a remote roll device it was usually possible to get both an α sweep and a β sweep in a single run.

INTRODUCTION (Continued)

The report consists of five volumes arranged in the following manner:

Volume I	Ascent configurations with centerline HO tanks T_1 and T_2
Volume II	Ascent configurations with centerline HO tank T3
Volume III	Ascent configurations with centerline HO tank $\mathrm{T}_{l_{4}}$
Volume IV	Ascent configuration plume studies and configuration buildup
Volume V	Orbiter alone, Tanks alone and Boosters alone

NOMENCLATURE General

SYMBOL	SADSAC SYMBOL	DEFINITION
8		speed of sound; m/sec, ft/sec
$C_{\mathbf{p}}$	CP	pressure coefficient; $(p_l - p_{\infty})/q$
M	MACH	Mach number; V/a
p		pressure; N/m ² , psf
Q	Q(NSM) Q(PSF)	dynamic pressure; $1/2\rho V^2$, N/m^2 , psf
RN/L	RN/L	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
ϕ	PHI	angle of roll, degrees
ρ		mass density; kg/m^3 , $slugs/ft^3$
	Refe	erence & C.G. Definitions
Ab		base area; m ² , ft ²
b	BREF	wing spen or reference spen; m, ft
c.g.		center of gravity
£ REF ē	LREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing area or reference area; m ² , ft ²
	MRP	moment reference point
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRIPTS b 1 s t	<u> </u>	base local static conditions total conditions free stream

NOMENCLATURE (Continued) Body-Axis System

SYMBOL	SADSAC SYMBOL	DEFINITION
C_{N}	CN	normal-force coefficient; $\frac{\text{normal force}}{qS}$
C _A	CA	axial-force coefficient; $\frac{\text{axial force}}{\text{qS}}$
$\mathtt{C}_{\mathtt{Y}}$	CY	side-force coefficient; $\frac{\text{side force}}{qS}$
c_{A_b}	CAB	base-force coefficient; $\frac{\text{base force}}{q^S}$
		$-A_b(p_b - p_{\infty})/qS$
$^{\mathrm{C}}\!_{A_{\mathbf{f}}}$	CAF	forebody axial force coefficient, c_A - c_{A_b}
C_{m}	CLM	pitching-moment coefficient; pitching moment qSLREF
C_n	CYN	yawing-moment coefficient; yawing moment q5b
^C L	CBL	rolling-moment coefficient; rolling moment qSb
		Stability-Axis System
${\tt C_L}$	CL	lift coefficient; $\frac{\text{lift}}{\text{qS}}$
c_{D}	CD	drag coefficient; <u>drag</u> qS
c_{D_b}	CDB '	base-drag coefficient; base drag
$^{\mathrm{c}}_{\mathrm{D}_{\mathbf{f}}}$	CDF	forebody drag coefficient; c_D - c_{D_0}
$c_{\mathbf{Y}}$	CY	side-force coefficient; side force qS
$C_{\mathbf{m}}$	CLM	pitching-moment coefficient; pitching moment qs/REF
C_n	CLN	yawing-moment coefficient; yawing moment qSb
C L	CSL	rolling-moment coefficient; rolling moment qSb
L/D	r/d	lift-to-drag ratio; $C_{ m L}/C_{ m D}$

ADDITIONS TO NOMENCLATURE

SYMBOL	SADSAC SYMBOL	DEFINITION
$\mathrm{c}^{\mathbf{\Gamma}}_{\mathbf{S}}$	CLSQR	lift coefficient squared.
å a	AILRON	aileron, total aileron deflection angle, degrees, (left aileron-right aileron)/2.
ø e	ELEVON	elevon, surface deflection angle, positive deflection, trailing edge down; degrees.
ø _r	RUDDER	rudder, surface deflection angle, positive deflection, trailing edge to the left; degrees
6 rf	RUDFLR	rudder flare, split rudder deflection angle, left split rudder trailing edge left and right split rudder trailing edge right, $\delta_{rf} = (\delta_{rL} + \delta_{rR})/2$, positive deflection; degrees.

CONFIGURATIONS INVESTIGATED

The wind tunnel models were 0.6 percent scale models and included one orbiter configuration, four tank configurations, and seven booster configurations. The orbiter centerline HO propellant tanks included variations in diameter (302 and 325 in.), nose cone angle (10° and 15°), and axial position (120 inch travel). Of the boosters, three were solid rocket motors with the remainder being pressure fed boosters. The pressure fed boosters included variations in diameter (206 and 248 inch), nose cone angle (15° and 20°) and base flare (5° and 15°). The solid rocket motors included variations in diameter (156 and 120 in.) and base flare (0° and 15°) for the 156 in. motor.

In addition, simulated rocket plumes were tested at M = 1.5 and 2.2 for both pressure fed and solid rocket motor boosters. These plumes were made up of three solid aluminum bodies each of which represented an envelope of individual engine plumes for the orbiter and each booster. These envelopes were generated by taking the outermost plume boundary of the outermost engine for each component and rotating this boundary about the null thrust vector of the component (orbiter or booster). The individual engine plumes were generated at MSC with the plume boundary defined by a method of characteristics solution with the flow field originating at the exit plane, and the effects of the external flow on the boundary calculated by Newtonian impact theory.

The contours of the various plumes tested are defined in Table 4 and Figure 43 through 46. The matrix of plume testing was as follows:

CONFIGURATION	BOOSTER PLUME	ORBITER PLUME	$\frac{M_{TEST}}{M_{TEST}}$
OlTlBl	LOX/PROP M = 2.5	4 ENG. J2S M = 2.5	2.2
OlTlBl	LOX/PROP M = 1.5	3 ENG. HiPc $M = 1.5$	1.5
$O_1T_1B_1$	LOX/PROP M = 1.5	3 ENG. HiPc $M = 1.5$	2.2
017386	156" SRM M = 1.5	3 ENG. HiPc $M = 1.5$	1.5
O ₁ T ₃ B ₆	156" SRM M = 2.2	3 ENG. HiPc $M = 2.2$	2.2
O <u>1</u> T4B7A <u>1</u> _4	120" SRM M = 1.5	3 ENG. HiPc M = 1.5	1.5
O ₁ T4B7A ₁ -4	120" SRM M = 2.2	3 ENG. HiPc M = 2.2	2.2

Symbols for Orbiter Configuration:

Symbol	Description
Ol Wl Bl El Vl V2 V _{OFF}	WlBlElV2R2PlMlCO Wing Body Elevon Centerline vertical (Replaces V2R2) Centerline vertical No centerline vertical
CO Rl R2 Pl ML Cl C2	Canopy Rudder for V1 Rudder for V2 ACPS Engine Pod OMS Engine Pod Cupola Canopy Off (Replaces CO)
Symbols for Tanks	
Symbol	Description
т ()	Tank complete
T () _a	Tank complete at an alternate position with respect to the boosters and orbiter
Fl	Fin for $\mathrm{T}_{l_4.}$
Symbols for Boosters:	
Symbol	Description
B () S F4 A	Boosters complete Skirt for booster Fins for B ₄ Thrust vectoring fuel tank for B ₇
Symbols for Plumes:	
Symbol	Description
+ Plume (2.5)	3 Plumes (Orbiter + 2 Boosters) at M = 2.5
+ Plume (1.5)	3 Plumes (Orbiter + 2 Boosters) at M = 1.5
+ Plume (2.2)	3 Plumes (Orbiter + 2 Boosters) at M = 2.2

TEST FACILITY

The MDAL 4' Trisonic Wind Tunnel facility is a blowdown type operation capable of Mach numbers of 0.2 to 5.0 and Reynolds numbers from approximately 1 x 10⁶ to 2 x 10⁶ per inch. The subsonic and transonic Mach numbers are run in a porous wall test section which is removed for supersonic testing. The supersonic test section utilizes a two dimensional flexible plate nozzle to obtain Mach numbers 1.5 to 5.0. The models are mounted on a sting that is supported from a vertical translating strut with a vertical plane rotating pod having a pitch range of -15° to +25° when no offset adapters are present.

MODELS AND SUPPORT EQUIPMENT

The test models with all of their interchangeable component parts were 0.60 percent of full scale.

The orbiter model had a blended body contoured into a low delta wing. Effects of orbiter position and booster relative to the tank was investigated at two longitudinal locations on the tank (nominal and aft). The orbiter and boosters can be bolted to the tank (T1) in both nominal and aft positions as well as independently mounted from the tank. For the bolted orbiter case, the orbiter balance was inoperative and there were no force or moment data for the orbiter.

Effects of the orbiter control surfaces and control surface deflections were investigated for elevons, ailerons, and rudder with the surfaces deflected and undeflected.

Transition strips of No. 120 carborundum grit were used to insure boundary layer transition from laminar to turbulent flow. These strips were 3/32 inches wide and were located 3/4 inches aft of the orbiter nose, 1/2 inch aft of the booster nose, 1/2 inch aft of the tank nose, and at 5 percent local chord (both surfaces) on the wings, vertical tails and fins.

To achieve the required test angles of attack and sideslip two straight balance adapters were used in combination with the MDAL 6 degree sting adapter. A straight sting section positioned the model properly in the test section.

Pressure data for the orbiter, tank or the booster were obtained from base and balance cavity pressure pickups that were cantilevered off the sting. Leads for these pickups were routed externally over the model support system and into the tunnel strut. The boosters in the presence of the tank each had a base pressure pickup.

DATA REDUCTION

The data are corrected for such factors as model tares, sting bending and balance deflections, interactions, and bilinearities.

Composite Configurations

- 1. The orbiter data were reduced about the orbiter MRP using its reference dimensions and about the tank MRP, using orbiter reference dimensions (ā for longitudinal and b for lateral).
- 2. The tank data were reduced about the tank MRP using orbiter reference dimensions (c̄ for longitudinal and b for lateral).
- 3. A <u>summation</u> of the orbiter (tank MRP) and tank (tank MRP) data with all data corrected for angular attitudes to the tank body axes.

Orbiter Alone Configurations

1. The orbiter data were reduced about the orbiter MRP using the orbiter reference dimensions (c̄ for longitudinal and b for lateral).

Tank Alone Configurations

1. The tank data were reduced about the tank MRP using the orbiter reference dimensions.

Booster Alone Configurations

1. The booster data were reduced about the booster MRP using the orbiter reference dimensions.

Ascent configuration composite tank MRP data, orbiter alone data, tank alone data and booster alone data are presented in this report, with the remaining data on file and available upon request.

Reference quantities used in these data reductions are as follows:

ORBITER

Quantity	Full Scale Dimensions (Reference only)	Model Dimensions
Reference Area (S)	3155.3 Ft ²	16.37 In ²
Reference Span (b)	882 In.	5.292 In
Reference MAC (c)	609.5 In.	3.657 In
Moment Reference Points		See Figures 13 & 14

DATA REDUCTION (CONTINUED)

Areas:		
Total Base (AB)	298 Ft ²	1.546 In ²
	TANK	
Quantity	Full Scale Dimensions (Reference only)	Model Dimensions
Reference Area (S)	3155.3 Ft ²	$16.37 in^2$
Reference Length (b)	882 In.	5.292 in.
Reference Length (c)	609.5 In.	3.657 in.
Moment Reference Points	•	See Figures 13 & 15
Areas:		
Total Base $(A_B)/T$ ank	Tl - 422 Ft ²	2.125 In ²
	T2 - 422 Ft ²	2.125 In ²
· .	T3 - 518 Ft ²	2.613 In ²
	T4 - 537 Ft ²	2.785 In ²
·	BOOSTER	
<u>Quantity</u>	Full Scale Dimensions (Reference only)	Model Dimensions
Reference Area (S)	3155.3 ft ²	$16.37 in^2$

882 in.

609.5 in.

5.292 in.

3.657 in.

See Figures 13 & 16 through 19

Reference Length (b)

Reference Length (c)

Moment Reference Points

DATA REDUCTION (CONTINUED)

Areas:

Total Base (AB)/Booster	B1.	_	901.0 Ft ²	4.539 In ²
	BlSl	-	2 1 25 Ft ²	11.0093 In ²
	B1S2	-	4 7 85 Ft ²	24.7887 In ²
	B 2	-	137.8 Ft ²	0.694 In ²
	B 2S	-	428 Ft ²	2.158 In ²
	B 3	-	902 Ft ²	4.545 In ²
	B ¹ 4	-	568 Ft ²	2.865 In ²
	B 5	-	557 Ft ²	2.883 In ²
	в6	-	95.4 Ft ²	0.481 In ²
	B7	-	79.3 Ft ²	0.408 In ²

TABLE 1.

TEST CONDITIONS
TEST S-222

MACH NUMBER	REYNOLDS NUMBER per (inch)	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
0.4	0.50 x 10 ⁶	3.3	53
0.6	0.83 x 10 ⁶	7.6	47
0.7	0.74×10^6	7.8	68
0.9	0.79 x 10 ⁶	10.0	50
0.95	0.67 x 10 ⁶	8.8	53
1.05	0.69 x 10 ⁶	9.5	50
1.1	0.69 x 106	9.8	52
1.5	0.63 x 10 ⁶	10.0	55
2.2	0.63 x 10 ⁶	9.9	68
2,25	0.94 x 10 ⁶	14.0	52
2.5	0.66 x 10 ⁶	10.3	91
4.5	1.15 x 10 ⁶	10.6	120
·		·	

BALANCE UTILIZED: See	Listing on next page.	·
CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF		·
SF		
AF		
PM		
YM		
RM		

COMMENTS:

TABLE 1.

TEST CONDITIONS (CONTINUED)

BALANCES UTILIZED

Several balances were required during the test. Listed below are the balances used, their capacity and the corresponding tunnel runs which apply to each.

· -	Orbiter 3/4" D.	Tank Balance
Runs 1-10 Runs 11-113 Runs 114-184 Runs 185-197 Runs 198-270 Runs 271-420 Runs 421-424 Runs 425-459 Runs 460-474 Runs 475-569 Runs 570-646	#7 DAL - #5 DAL - #58 DAL #58 DAL	#13 NAR #13 NAR

Balance	MK. 3la 3/4" d.#7 dal	MK. 2A 3/4" D.#5 DAL	MK. 10 3/4" D.#58 DAL	MK. 7 1" D.#13 NAR	MK. 3C 1" D. #11 DAL
Gage			Capacity		
NF (each) 2 gages	100 lb.	100 lb.	100 lb.	500 lb.	250 lb.
SF (each) 2 gages	100 lb.	50 lb.	100 lb.	300 lb.	250 lb.
AF	80 lb.	25 lb.	50 lb.	500 lb.	150 lb.
RM	20 in.lb.	60 in.lb.	40 in.1b.	150 in.lb	. 150 in.lb.

DATA SET DENTIFIER

RD7101

	(Ø1) 71 83 A O	(p1)71 (BZL)BZR A 6	AE	OD	(Ø1) TI BZL (BZR) A O	(Ø1) 7182 A6	(\$1) T1 (814) BIR A 6	AR	07	(d1) T1 B14 (BIR) A 0	AO	AG	00	(Ø1) TI BI A O	CONFICORALION	SCHD.	P	ORBITER & ORBITER
١.	0	0	0	Ó	0	0	0	0	0	0	20	0	0	0	64	CONT		MRC
	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	38	ROL 1		Q
	0	0	0	0	0	0	c	0	0	0	0	0	0	0	SE SR	CONTROL DEFLECTION NO.		
-								:								CTIO		
)	0	N	N	N	1	12	10	N	10	4	0	2	W	W	RUNS	NO.		
-															0.4			
	39/										3)3		396	396				
	391 390		•	357	387				4.08.	374	373 37/		396 395	396 395	0.6 0.9 0.45 1.05 1.1		(B)	\widehat{g}
-															0.45		(BAX) BOOSTER WITHOUT	OI) ORBITER
								-,							1.05	MACH	Boos	RB.T
	3079			368	300				375	375	370		394	394	111	MACH NUMBERS	BOOSTER /	SEPARATE
-	255			V	4	20			01	141	254	206		ν,	15	RS	150	
į	5 256	355	227	<u> </u>	259	205 255	22/	215		257	1253	224					150LATED 17. BALANCE	4750
_	2.	1	7		0	υį	/	51		7	J.	4			2.2 2.25	1	N. W.	4 5
	1.32	243	ly.		260		455	245		267	266				4 5		4.1	
	149	13	242		عکن		41	3		7	6				7.5		Pos	PRE
_													-			1	POSTTEST	PRETEST
										ļ							T .	⊣
		J	L5											3 . 2	*			

91

112

E

114 13

115

116

11834

B3K

4 F 0

0

C

1 w W 0

D

0 0

> 0 0

N

362 392

363 393

230 229

340 24/ 6 A

> 0 0

Ø 0

0 0

36/

390

350

202 227

١

25/

592 234 10P

107 106 105 104 163 102

109

110

	α or β SCHEDULES	COEFFICIENTS:
D = 607 - 60	B = 100 7-100	A = -10° 710°

BXR- RICHT BOOSTER

BXLL BX -

LEFT BOSTER

BOTH LEFT & RIGHT BOISTERS

 \Rightarrow IDPVAR(1)| IDPVAR(2)|NDV

19

120

(\$1) T1 (B3L) B3K

Þ

6 0

0

 \bigcirc \mathcal{C}' 0

N N

37 EXX.

64

S

1 9

MACH

BELA

 \mathcal{F} 0

0

0 0

ICA.

CAF

1084 25

CLM

19 .

PRETEST

__ DATA SET COLLATION SHEET (CONTINUED)

MATE SET CONFIGURATION CONFIGURATION CONF				•														ES	α or β SCHEDULES
CONFIGURATION CONFIGURATIO	2) ND1	(1) IDPVAR(= IDPVAR													. .[ENTS:	COEFFIC
Prefer Confidention Sciil Confidentic Sciil Sciil Confidentic Sciil Confidentic Sciil Sciil Confidentic Sciil Sc		- -			-		-			- ·	• . •			_		-		·	
CONFIGURATION SCHILL CONTROL DEFLECTION OF CASS	75 76	67	61		55	9	+	ω		37		31		25	·	19	_	7	-
FIFTER CONFIGURATION a B $\frac{1}{2}A$ $\frac{1}{2}E$ $\frac{1}{2}A$ $\frac{1}{2}E$ $\frac{1}{2}A$ $\frac{1}{2}E$ $\frac{1}{2}A$ $\frac{1}{2}E$ $\frac{1}{2}A$ $\frac{1}{$					406			40	408	-	W	-	-	-	0	4	72 B		160
SET CONFIGURATION SCID. CONTROL DEFLECTION OF RINKS OF 0.4 C/G			<u> </u>	222							_	-	-		6	4	(B)L)	$(\phi_l)_{TZ}$	159
SET CONFIGURATION SCHOUTSOL DEPLECTION OF RINKS OH OLG 0.4 0.4 0.6 0.9 0.95 1.05 1.1 1.5 2.2 2.25 THIR CONFIGURATION REPLECTION OF RINKS OH OLG 0.4 0.45 1.05 1.1 1.5 2.2 2.25 THE PLAN OF THE PLANTION REPLECTION OF RINKS OH OLG 0.4 0.45 1.05 1.1 1.5 2.2 2.25 THE PLANTION REPLECTION OF RINKS OH OLG 0.4 0.45 1.05 1.1 1.5 2.2 2.25 THE PLANTION REPLECTION OF RINKS OH OLG 0.4 0.4 0.45 1.05 1.1 1.5 2.2 2.25 THE PLANTION REPLECTION OF RINKS OH OLG 0.4 0.4 0.45 0.45 1.05 1.1 1.5 2.2 2.25 THE PLANTION REPLECTION OF RINKS OH OLG 0.4 0.4 0.45 0.45 0.45 0.45 0.45 0.45 0				200								ľ	┼	0	0	4	*		\S\$
SET CONFIGURATION SCID. CONTROL DEPLECTION NO. ALL NUMBERS REFIER CONFIGURATION REFI					418			├	420		W			-	D	0		f	157
SET CONFIGURATION SCHUL CONTROL DEPLECTION NO. MACH NUMBERS 1/41					418		-	_	420	<u> </u>	W		-	-	0	7		(\phi)	156
SET CONFIGURATION SCID. α S \overline{A}				203							-		-	-	1,	4	}	(P)	155
SET CONFIGURATION SCHID. CONTROL DEFLECTION NO. NO. PAGE NUMBERS NO. NO. <td></td> <td></td> <td></td> <td>204</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0</td> <td>61</td> <td>7</td> <td>1</td> <td>(4)</td> <td>154</td>				204			-						-	0	61	7	1	(4)	154
SCII CONFIGURATION SCIID CONTROL DEFLECTION NO.			14	12									 	0	0	4	814		153
SET CONFIGURATION SCHO CONTROL DEPLECTION NO. NO. PARCH NUMBERS 1/41 $(\phi_1 VI)TI$ A O			23								N		-	 -	0,	4	*		152
SET IFIER CONFIGURATION SCHID. CONTROL DEPLECTION NO. or 8 SA SE			,		417			-	2/4		W			-	Ü	0		(151
SET IFIER CONFIGURATION SCHID. ON FROM THE CONTROL DEFLECTION NO. THE PROPERTY OF TH					417		-	 	4/5		ω		<u> </u>	├	0	Z	N		150
SET IFIER CONFIGURATION SCHUD CONTROL DEPLECTION NO. α NO. α SCHUD CONTROL DEPLECTION NO. α NO.		235	134	Ň							2			-	6	Z	*		149
SET CONFIGURATION SCHID. CONTROL DEFLECTION of GENERAL CONTROL DEFLECTION OF GENE					365	364	<u> </u>			ļ	6		┼─	-	Ü	0			Sh/
SET CONFIGURATION SCIID. CONTROL DEFLECTION NO. NO. MACH NUMBERS 7141 $(\phi_1 V_1) T_1$ α β δA δE δE δR α		263	0.50	N.	365	364		1			80	<u> </u>		<u> </u>	0	Z	7/	(ϕI)	(41
SET CONFIGURATION SCIID CONTROL DEFLECTION of LEFT (INC.) NO. SMACH NUMBERS NUMBERS NO. PRINT OF LEFT (INC.) NO.					403				40		w	3.	_	<u> </u>	G	0	V	_	741
SET CONFIGURATION $\begin{array}{ c c c c c c c c c c c c c c c c c c c$					403			1	400		u	0			0	4			541
SET (FIER) CONFIGURATION SChib. CONTROL DEFLECTION of Off 3 SA NO. MACH NUMBERS 7/4/1 ϕ (γ) 7/1 A O O O O O O S RUNS 0.4 O.6 O.9 C.45 (.05 1.1 1.5 2.2 2.25 2.25 1.4) 1.5 2.2 2.25 1.42 1.5 1/42 0 T O O O S 3 349 349 349 347 1.5 347 347 347 347 347 1.5 347 347 347 347 347 347 347 347 347 347					400		13		43,		(v)					0	-		144
SET CONFIGURATION SCHU. CONTROL DEFLECTION NO. MACH NUMBERS [FIER CONFIGURATION α β βA βE					400				401	-	W			1	-	4		•	14.3
SET CONFIGURATION SCHID. CONTROL DEFLECTION NO. MACH NUMBERS [FIER CONFIGURATION α β βA δE δA Runs of Runs ϕ ϕ , ϕ ϕ , ϕ					847		-		399		w			-	A	0		۲	142
SET CONFIGURATION SCHID. CONTROL DEFLECTION NO. MACH NUMBERS OF CONFIGURATION OF CONTROL DEFLECTION OF CONTROL NUMBERS OF CONFIGURATION OF CONTROL NUMBERS OF CONFIGURATION OF CONTROL NUMBERS MACH NUMBERS OF CONFIGURATION OF CONTROL NUMBERS OF CON					397				399		ω				 	4	V) 7/	(ø)	
SET SCHIL CONTROL DEFLECTION NO. MACH NUMBERS			2	1		1.05	-		K	1	RUN	8		SAS		Ω	IGURATION	CONF	DENTIFIER
1 1					UMBERS	1ACH N					NO.	LECTIO		ONTRO		SCI			DATA SET
	EST	POSTI			. 			i		i k	é	<u>_</u>	ļ						

TABLE 2. TEST 5-222 DATA SET COLLATION SHEET (CONTINUED)

															-	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
IDPVAR(1) IDPVAR(2) NDV	IDPVAR(1														ENTS:	COEFFICIENTS
.1		المسلم	1	-		k		<u> </u>		- - -	<u> </u>	}	_			-
67	61	5	9 55	6.4	1+3		37		31	5	2.5		19	13	7	
314	3/3		327		328	-	7:	-	C	0	0	0	7	BIL) BIR	(41) 573 (B	180
311	3/2					-	2		0	0	0	~	4			179
			336	 	335		N		0	0	0	C	0			128
280	28/		336		335	-	4		0	0	0	0) A	L (BIR)	(\$1)73 B1L	177
310	300	309					W		0	0	0	6.	7		¥	176
			332		334 330	لنا	W		0	a	0	2	0		-	Z
279	278	277	33/	-	333 329	W	e		0	0	0	0	4	81	$(\phi_1)73$	40
			369	•	368		10	-	0	0	0	B	0		<	173
			369		23E		10	-	0	0	0	0	Z	Þ	(Ø1) 72A	172
			362	-	367	_	10		9	0	0	D	0		7	121
			7.98.	-	367		ル		0	0	0	0	7	7)	(d) 72	00
	2/2						_		0	0	0	0	A A	314) BIR	(\$1) TZA (BIC	169
	2/3					_	_		0	0	0	6.	R) A	814 (BIR	(\$1)72A	S
	0/2/6	602					N	:	0	0	0	0	4		~	167
			4/2		414 413	4	W		0	0	0	D	0			166
			4/2	<u>~v</u>	414 413	4	W		0	0	0	0	4			165
	211								0	0	0	4	6	7 B/	(ϕ_t) TZA	164
			411	•	409 410	1	W		0	0	0	D	0			163
			11/4	1	409 410	14	(v)		0	ô	10	0	Z	A B5	(\$1V1) TZA	63
		× ,	406		408 407	4	W		0	 -	Ö	Ü	0	85	(d141) 7.2	RP7161
4.5	2.2 2.25	1.5	1.05 1.1	0.45	609	40.	RUNS 0.		SE	JE	JA	ω	Ω	MOTIV	CONFIGURATION	DENTIFIER
		3	MACA NUMBERS	1			ή <u>:</u>	NOTI	DEFLECTION	(OL 1)	CONTROL	SCHD.	SC	TON.	COMETCIE	DATA SET

LCL	7 70 7
())(
ţ	_
	>
۲	-
,	>
t	j
Į	•

TABLE 2.

5-222
DATA SET
COLLATION SHEET
SHEET
(CONTINUED)

PRETEST

TABLE 2.

TEST

DATA SET DENTIFIER THE STATE OF THE RD7/A2 a or B COEFFICIENTS: SCHEDULES 1A6 IA3 181 IAS 1A7 145 102 185 184 182 103 10 180 181 187 83 IAG IAU 186 (Ø1V1)73(B5L (\$1V1) T185 (\$1) T3 B4L (B4R (\$1)73 B4 F4 Ø1 V1) 72 Ø1)T1 B6 (\$1) T3 (BYL) BYR Ø171).T 19111)73 (Ø1 VI) CONFIGURATION . / 73 85 85L (BSR 50)*85*≈ SCHD. Þ 0 4 4 0 7 0 0 4 Z 4 4 T 4 O C ァ 0 0 0 0 3 0. φ A B 0 Ü 0 0 0 0 0 U CONTROL DEFLECTION 5A 20 30 12 0 0 0 0 0 0 Ç 0 O 0 \mathcal{C} Ö 0 Ç O O 0 100 0 0 0 0 0 0 0 0 0 c 0 0 a 0 0 0 \dot{C} O Ò 0 38 0 6 0 Oʻ 0 C 0 Ø 0 C 0 O O 0 0 0 Ô 0 0 NO. of RUNS ۲. W W d) N N W N 0 W iv 4 N 0 10 \mathcal{N} 349 349 348 347 346 345 344 4.0 496 496 348 347 346 345 344 0.6 462 494 341 339 34/ 0 334 342 342 0.35 1.05 1.1 64 MACH NUMBERS 340 343 340 343 493 555 554 5 556 55C 1,5 559 564 557 562 557 562 558 563 322 292 5 3/6 325 304 307 2.2 290 324 32/ 295 261 ⇒|IDPVAR(1)|IDPVAR(2)|NDV 2:25 4.5 569 395 DOSTTEST 567 566 305 306 315 204 293 289 ١ 20

	•	•
	ō	2
		3
Į		
I		
ı	ł	,
١	١	′.
١		١
ı		١

TABLE 2. TE

5-222 DATA SET COLLATION SHEET (CONTINUED)

PRETEST

CHED	COEFFI α or β	-]-	165	184	183	1E2	E.	Pal	128	107	1,26	105)D4	123	1,02	/D/	169	108	JC7	106	105	RD7 ICH	DENTIFIER	DATA SET	
JLES	COEFFICIENTS:	<u> </u>	7 13	V.	4 (pi) TY B7A1-5	3	2		9 (61) 74	8	7 (61) 74 87-4	•		4	3	2		9		7 (\$1) TH B7A1-4	(\$IVI) TIBS		(bi) 7186	R		
	-/0	-	19	0	F	17.	F	0	7	0	4	4	0	A	£	0	Z	A	0	4	4		0	۵	SCHD.	
	9	ţ		D	0	0	0	D	0	D	0	0	Ø	0	0	D	0	0	D	0	0		A	Ω		
	300	-	2.5	0	0	0	0	0	0	0	0	0	0	0	20	20	20	0	0	0	0		20	JA	CONTROL	
	0	}		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	38		
		-	31	0	0	0	0	0	0	0	0	10	10	0	Ō	0	0	0	0	Ċ	0		0.	SR	DEFLECTION	
				0										6	6	6		6	6		l w	<u> </u>		RU	ION NO.	
	j.	1	37		6			6	6	W	W	6	6				0	\	V `	10	W		0	S		
		+		4	4:			4	7	4,	7,	N	4	4	Ŋ	4	4	2	4	4			4	0.4 0.		
		F	43	584 h8h	484 485		-	490 4		489 4	484 4	5/2/5	483 4	483 4	5// 5	4 864	4864	506 5	477 4	477 4			495 4	6		
		}		128	3.			491	194	488	484	513	482	482	508	W. H.	479	507	76.6	476			494	0.40 0		
1 1		+	1+9	_	,							-	<u> </u>				<u></u>							0.95 1	NVC	
				1,	7.			1	4	4	4	M	7.	4	Ŋ	7	4	5	4	4			4	1.05 1	MACH NUMBERS	
	-	-	55	4865	486 5			492 5	492 5	184	487	5145	481 5	184	509 5	480 5	3 OSH	504 5	475 5	475 5	l Vi		493 5	111	BERS	
		-		552545	552 5			5485	548 5			5/5 5	55/5	5515	516 5	5505	5505		5 W S	544 5	558 5		5555	1.5 2.	-	İ
	AUIP	- -	61	57,	545			547	242			522	544	544	52/	543	543	520	543	542	563		25.4	10	-	
	VAR(1			S	(V)	2	tri	72	٧:			N.	Vi.	V ₁	5	N	75	5	V:	U ₁	U ₁		ห	2.25		<u> </u>
) IDP\	- -	67	540	240	53/	534	236	725			525	537	537	526	537	538	527	539	539	566		569	7.5		E POSTIEST
	4 IDPVAR(1) IDPVAR(2) NDV											_				ļ 										7 1 1
) NDV		75 76	<u>_</u>									<u></u>													1

21

TEST 5-222 DATA SET COLLATION SHEET (CONTINUED)

PRETEST

TABLE 2.

VAR(2) 1						1												
	= IDPVAR(1) IDPVAR(2) NDV	IDPVA	V			,											IENTS: —	COEFFICIENTS:
	+		•	F	-	F		-	F	ţ ţ	}	ļ	+		F	<u> </u>		
75 76	67	61		55		64		4 3	37		31.		25		19	u	7	-
		-	-	-								-	-	-	-			
		-	-		-	-						-	-		-			
			-	-											-			
			_									 	-		-			
		 		-							-	-			-			
												-			-			
												_	-		-			
			-				-				-	-	-		-			
				-	-							-	_					
											-		-		-			
									20.20									
	568	\$/	0561	560						W		0	00	D	0 1	1	/	1F1
	568	5/	0 561	560						ω		Ú,	0 0	0 0	A 6) 72A BS	(0111	159
	525	4	9 564	559						w		0	00	DE	10)72 B5	17/0)	188
	528										-	0	0	-		*		167
	530	9	J 519	7513	497					0		0	00	6	A	4 8741-5	(b,1)TH	RD7 IEG
	5 45	2 2,25	2,2	1 1.5	1.05 1.	25	0.40 0.	0.6	0,4	$ \partial A \partial E \partial E $ RUNS	H	= Je	4 4	B	ρ	CONFIGURATION	CONFI	IDENTIFIER
				3ERS	MACH NUMBERS	JVV			Ī	N 0 0	ECTIO	DEFL	NTROL		SCHD.		CONET	DATA SET

*830-528

TABLE 2.

TEST

S-222 DATA SET COLLATION SHEET (CONTINUED)

EC DATA SET IDENTIFIER RP7201 SCHEDULES a or p COEFFICIENTS: 207 205 202 206 204 203 220 219 217 216 2/5 214 213 212 211 210 204 208 TANK & BOOSTERS @ TANK MRC NOTE: SAME AS 15Y CONFIGURATION RD71XX DATA SETS F.4 SCHD. CAF ρ 19 CONTROL DEFLECTION NO. CBL W75 EYN 64 MACH NUMBERS 55 →IDPVAR(1)|IDPVAR(2)|NDV MACH POSTTEST PRETEST ALPHA

*830-528

TABLE 2. TEST

DATA SET COLLATION SHEET (CONTINUED)

DATA SET IDENTIFIER RD7301 a or s SCHEDULES COEFFICIENTS: 315 314 37 3/7 3/3 308 307 306 320 319 3/6 312 311 310 309 305 304 303 300 757 ORBITER @ TANK MRC YOTE: SAME AS CONFIGURATION RD71XX SETS 2 SCHD. EAF Ω CONTROL DEFLECTION NO. 16.84 CYM CXN 37 ÷3 6 4 MACH NUMBERS 55 IDPVAR(1) IDPVAR(2) NDV 61 MACH POSTIEST PRETEST BETA : 24

5-222 DATA SET COLLATION SHEET (CONTINUED)

5 G DATA SET IDENTIFIER RD7401 or p SCHEDULES COEFFICIENTS: 419 418 420 417 416 415 414 407 4/3 114 9/10 408 402 412 409 406 405 404 403 NOTE: SAME AS COMPOSITE @ TANK MRC CONFIGURATION RDTIXX DATA SETS 5 SCHD. CAF CONTROL DEFLECTION NO. of RUNS CBL CLM EYN 37 49 MACH NUMBERS 55 HIDPVAR(1) IDPVAR(2) NDV ガイのエ POSTTEST PRETEST ALPHA 67

TABLE

'n

TEST

5-222 DATA SET COLLATION SHEET (CONTINUED)

a or 6 SCHEDULES	CN		520	519	518	5/2	516	5/5	514	513	5/2	2/1	510	509	305	507	506	505	405	503	502	RP7501	IDENTIFIER	DATA SET	-
NIS:	CY CA	7 13	\$1 T384	~	\$17382	4	Ø171 B2S	~	Ø1.7182						11.00	\$17181+Pune (2.5)	~					Ø17181	CONFIGURATION	CONETCHBATION	
	tó	19	Z	4	4	7	4	4	Z	0	0	0	A	P	7	<u>v</u> 4	0	0	0	A	7	4	Ω	SCI	
	CAF		0	6	0	0	0	0	0	D	C	D	0	0	0.	0	7	Ğ	K	6	6	0		SCHD.	
	10	2.5	0	0	0	0	0	0	0	0	10	0	0	20	0	0	c	O	0	0	0		SA	CONTR	
	C81		Ç	C	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0		38	OL DI	
	T.	31	O	Ö	0	0	0	0	0	10	0	0	10	0	0	0	0	0	0	0	0	Ċ	SR	CONTROL DEFLECTION	
	CLM		6	3		1	W	0	6	_	_		2	2		2			Ţ.	_	0		RUNS	ION NO.	
	EYN	37					,														•		-	· 	
	×		77			2	₽3	87	84										77		95	7	0.4 0.6		
	-	13	7			2 91	3 82	7 88	4 85										7 78		5 94	86. 66.	60.9		
			2				2	8	5										70		4		9 0.95		
		64																					85 1.05	MVCF	
			73			90	1.3	89	86					 			80				93	79	5 1.1	MACH NUMBERS	
	}	55	51	48	49	22	14	24	15										16		25	16	7.5	ERS	
<u>\</u>		6	56	39		12,52	/3	27	12				187	186	196	1,25			1	197	26	1	2.2		
TVA ACT.	MACH	61				<u> </u>				424	423	422	7 424	423	V.	7 422		421		7	ļ. <u>.</u>	421	2,25		
((1)	1007	67	59	3,3		3/		32	23	4	is)	V;	4	3		12	 	-			33	121	5 4.5		d D
IDFVAR(I) IDFVAR(Z) NOV	BETA	-				-																	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		POSTTEST
ומאוני		75 76																-							EST

TEST

TABLE 2.

DATA SET COLLATION SHEET (CONTINUED)

LG

PRETEST

TABLE 2. TEST

AR (2)	IDPVAR(1) IDPVAR(2) NDV	₩IDPVA		\cdot											LENTS:	COEFFICIENTS:
	- - - - -		-	-	-		-	1		-		F				
75 76	67	61		55	649		1,3	37		31	ľ	2.5	٠	13 1	7	
-		-	453						-	10	0	0	74 0		~	560
_			454						_	0	0	20	O			559
			454						_	0	0	20	0	4		558
_			554							0	0	0	40			557
-			455						_	0	0	0	0	+Paurie (1.5) 17	\$17386+Paine	556
-		744							_	10	0	0	Ą	0	<u> </u>	555
-		446	ļ_							10	Ç	0	20			554
		444	1546						2	10	0	0	OB			553
		144	244						2	10	0	C	0			552
-		747	CHF 444						2	0	0	20	Ü	0		557
-		747	444 447		-				7	C	0	20	0	A		550
-		448	443 448						12	0	0	0	D	0		549
	-	448	443		-				2	0	0	0	0	86	\$173	348
 		7440	441						12		1	J	D	0	~ -	547
-		044	1441			-			2	1	1	1	40	М	73 B	546
		437	442			-			10	i		}	Ö	0	~	24.5
-		439	240	<u> </u>					13		1	1	0	12	73 B	544
-		436	435						12	ò	Ö	0	Ď	c	-	543
		436	435						2	10	O	0	0	A	 	542
		438	433					 	17	0		20	Ä	017181+ PLUME (1.5) 0	Ø17181+	P7541
	35 4.5	2.2 2.25	1.5	5///	0.95 1.05	0.80.	0.6	0,4	RUNS	<u>S</u> R	38	ŚА	12		CONFIGURALION	IDENTIFIER
			0	PACE NUMBERS	יישיכת			Ī	02	CONTROL DEFLECTION	טר חב	CONTR	SCHD.		COMETCH	DATA SET

_ DATA SET COLLATION SHEET (CONTINUED)

·																			RET	PRETEST POSTTEST	T
DATA SET	CONFICIRATION	SChb.		ONTRO	E I	CONTROL DEFLECTION		NO.				اخ	ACH N	MACH NUMBERS	S		1		$\left\{ \ \right\}$	$\left\{ \ \right\}$	
IDENTIFIER		Ω		84 5	36	SR		RUNS	0.4	0.6	0.90	0.45	1.05	1.1	1.5	2,2	2,25	5 4.5	1		
RD7561	\$173BL+PLUME (1.5)	0	D			./0		_							753						
562	\$17386+PLUME (2.2)	4	0	ø	0	ō		/								450	Ť				
563			D	0	0	0	-	\								450					
564		4	0	20	0	0	·	`								451					
565		0	\mathcal{D}	20	C	0		<u> </u>								451					
566		4	0	0	0	ò		\								452	10				
567		0	Ø	0	0	10		<u></u>								452	10_	<u></u>			
568	7185	4	0	1	1	١		2							457		V		-	-	
569	~	0	B	1		1		N							457	457	<u>v</u>		-		
570	7/86	4	0	1	<u>'</u>	1		0		47/	470			469	154	456 459	10	605	12	-	<u> </u>
571		0	A	1		1		0		47/	470			469	75H	458	10	605	5	-	
572	Ø17487A1-4	4	0	0	0	0		4			460		 	461	598	598 572	13	_		-	29
5.73	~	0	A	0	0	0		4			460			461	59P	572	2				<u> </u>
574	\$17487A1-4+ Pure/1.5	4	0	0	0	0		\							586					-	
575		0	d	0	0	0		\							588			-	-	-	
5.76		A	0	20	0	0									588		-	 		-	<u></u>
572		0	B	20	0	0		-							588	-		<u></u>	-	-	
578		$\overline{\mathcal{F}}$	0	0	0	10		`							587	- 1			_	-	
579	~	0	D	0	0	10		^							55.7	7		-	-	-	<u></u>
580	\$17487A1-4+ PEUME (2.2)	A	0	0	\dot{o}	0										577		-	-		L,
]-	7 13	19		2.5		3			37	43		6.4		55	5	 	61	6	67		75 76
-		-		-					F	-	}	L		-			Ì				
COEFFICIENTS:	IENTS:							.								1	[DPVA	R(1)	IDPV.	IDPVAR(1) IDPVAR(2) NDV	NDV
a or p	ES																				

595 595 595 595 595 595 595	9										
593 592 593 592 594 591 595 590 596 599 596 589 61		_	-		}	-	<u> </u>		}	<u> </u>	
595 595 595 595 595 595 595 595			14.3	37		31	2.5	2	19	7 13	-
595 595 595 595		-			0 /	0	0	0	20	\$\doldary \langle \doldary \tag{\doldary \tanx \tag{\doldary \tag{\doldary \tag{\doldary \tag{\doldary \tag{\	54/1
595 595 595					20 2	10 2	0	0	07	<	
593 593 594 595				, ,	20 2	10 2	0	0	A 0		865
593 593 594 594				, ,	20 2	0	0	0	0		597
593 593 594		-			20 2	0	¢.	0	40		596
593 593 594					0 2	10 0	0	0	00	-	595
593 543					0	100	0	0	40		594
593				2	0 2	0	0	0	00		593
	-			2	0 2	0	0	0	40	\$1V17487A1-4	592
	646	644	6426	4	4	1	1	1	OD	•	165
259	646	644	645 6	1	1 4	1	1	1	40	T4F187A1-4	590
12 600 573 604	462	463		v `	0	1	i	1	0	*	589
52 600 573 604	462	463	474 4		16	1	Ī	ì	40	TH 87A1-4	485
597 570					0 2	0	o	0	00		587
597570					0	0	0	0	A O	Ø174F187A1-4	
5:72					0/	10	0	0	0 7		585
576					0 /	10	0	0	0		185
578					0 /	0	0	20	0 2		583
575					0	0	0	20	40		582
577					0 /	0	0	0	00	\$17487A1-4+PENME(2.2)	RD7581
1 1.5 2.2 2.25 4.5	S 1.05 1.1	0.4 0.95	0,60	NS 0.7	STION NO	DEFLECTION OF OF RUNS	ROL D	CONTROL	SCHD.	CONFIGURATION	DATA SET IDENTIFIER
POSTTEST											
PRETEST											

5-222

DATA SET COLLATION SHEET (CONTINUED)

COEFFICIENTS:		1				583	587	586	5BS	185	583	582	581		5A8	5A7	546	545	5A4	543	RD7542	IDENTIFIER	DATA SET
IENTS:		7				<						_	PIVITYBTAL-4+PLIME(2.2)		Y						RD7542 \$14/T487A1-4+Pwne(1.5) 0	CONFIGURATION	
	_		77.20				- to														Pume(1.5)		
	ľ	٥				OD	A 0	OD	A O	0 D	A O	0 0	AO		0 D	40	Q: 0	0	07	0	D	Ω	SCHD.
	_	΄,				0	0	0	0	0	0	Ó	0		0	0	0	0	0	0	0	SA	CONT
		25				0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	SA SE SE SE RUNS	ROL D
						10	10	0	0	10	10	0	0		10	0	0	0	10	10	0	9	EFLE
		31				20	20	20	.20	0	0	0	0		20	20	20	20	0	0	0	SRE	CTION
						_	/	\	/	\	/	/	\		\	_	\	_	\	\	1	RUNS	NO.
		37																				0.4	
								-						-								10.6	
	•	- 3												_					<u> </u>	-		0	
			 																	-		9 0.95	
	•	64	 	-	_									_					,	-		15/1.05	MAC
		į	 															<u> </u>		_	ļ		MACH NUMBERS
$\cdot \downarrow$	-	55	 	-						-		-	-	_	10	N	Ŋ	V1	5	7	5	1.1/	BERS
			 	_		10	10	10	16		10				485	584	285	585	583	583	582	1.5	
	-	61	 			579	579	82.5	578	520	520	581	581									2.2.2	
PVAR (ļ. 	25	
빌	-	67			ļ. 		·							 								4.5	
IDPVAR(1) IDPVAR(2) NDV																							
2		75 76	 		-	-	-	-						-		<u> </u>	<u> </u>						1

*830-528

RDIGXX

TABLE 2. TANK (a) TEST

5-222

TANK MRC

DATA SET COLLATION SHEET (CONTINUED)

*830-528

BOOSTER @ BOOSTER MRC FITCH FLANE TABLE 2. TEST

5-222

DATA SET COLLATION SHEET (CONTINUED)

			ļ.						ļ			٤	ζ 							ļ	70	IDE	UΑ
COEFFICIENTS:	C'A'	1								812	8//	810	809	808	807	806	50°S	804	803	802	RD7801	IDENTIFIER	TA OFT
IENTS:	· KY.	7						,		8127	8106	8122	8172	8172	8/52	8151	BY	83	825	82	\mathcal{B}'	CONFIGURATION	アイロバンナロバンン
= 7	CA.	1 3								7	0	2	2	N								TON	101
30°	0	19								W	Z	H	N	E	<i>F</i> .	7	ţ,	4	4	4	4	ρ	001110.
0	CAF									0	0	0	0	0	0	0	0	0	Ċ	O	0	В	
161	CB2	25								75	56.	45	75	75	١	1]	i	<u> </u>	١	i	RUNS RUNS	- ATT 110
9	}	31					-	_															
	W73										-											77 C	
		37			_			_		0	6	W	2	0	9	6	1	1.	1	4	4		n T
	EYN	7					_	_														0.4	
	-	43																				0,6	
		ω								634	633			626	642	637						0.7	
	L			·													//.3	116	123	120	117	0.9	
		64								635	63.7	630		627	641	638						0.95	
	}							<u> </u>		636	63/	629		7 628	40	639	///2	1118	/22	121	116	1/./	1
		55				-		-		611	1 610	70		B 609	0 613	1612	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				1.5	1
V					 _	-			 		0		ļ	0	ω	10	1,88	171	173	172	170	2:2	
IDPV.	MACH	61	-			-	-	-		619	618	62/	624	6:	623	622	8	-	3	10	0	バ	
AR (1)	\mathcal{H}				 	_	-			1		2/	46	620 608	3	50	10	16	100	16	16	7 5	
IDPVAR(1) IDPVAR(2) NDV	ALPHA	67					-			616	617		625	000	607	606	195	168	167	166	169	4,5	
(2) N	4	75 76					-								<u> </u>						-		1

*830-528

TABLE 2. TEST S-222

DATA SET COLLATION SHEET (CONTINUED)

COEFFICIENTS: a or 6 SCHEDULES]-				885	884	883	882	881			8A5	844	8A3	842	RD7841	IDENTIFIER		٠
ENTS:		7 13			•	· 84	<i>B</i> 3	828	B:2	81			48	<i>B</i> 3	825	82	81	CONFIGURATION	RD788X B	RD78AX B
		19 25				A0-	140-	A0-	40-	A 0 -			A 0 1	40-	A 0 -	A 0 -	A 0 -	SCHD: CONTROL	OUSTER @ TA	BOOSTER @ TA
		31				4	7	H	7	H			4	7	4	4	4	SD DEFLECTION OF RUNS	TANK T3 MRC.	13
		37 43				113 112 188	_	123 122 173	120 121 172	117 116 170			113 112 188		123 122 173	 	117 116 170	s 0,9 1,1 2.2	77707	
		64				195	168	167		169							169	4.5 HISTORY	1	" * \text{\text{L}}
. <u> </u>	1	55 61																b LNO		
JIDPVAR(1) IDPVAR(2) NDV		67																	Prostr	<pre>PRETEST</pre>
AR(2)[NDV		75 76																	TTEST	TEST

SCHEDULES	COEFFICIENTS;	CX	-	985	984	983	982	981		9A5	944	9,43	9A2	9,41		905	404	903	902	RP7901	DENTIFIER	DATA SET		•	*830-528
S	ENTS:	ICY. ICA.	7 13	84	83	B2S	82	B!.		BY	8:3	825	82	8/		BY	B:3	B2S	82	<i>B</i> /	CONFIGURATION	COURT CHILD THINGS		×	TABLE 2.
		EAF	19	0 4	0 A	0 4	OA	0 A		0 A	0 A	0 4	0 A	04		0 4	0 4	OA	0 4	0 4	α 13	SClib.		BOOSTER	TEST
		1684	2.5	7	1	i	1	1		J	١	١	1	١			1	1	١		SD	CONTROL DEFLECTION	@ TANK TI	@ BoosTER	5-222
		W73	31																	·	77.0	EFLECTION N	33	<u> ۲</u>	
		EYN	37	4 1/3	4 119	4 123	4 120	4 117		4 1/3	4 119	4 123	4 /20	4 117		4 //3	4 119	4 123	4 120	4 117	RUNS 0.9	Ö	RO YAW		DATA SE
			· ₊ 3	112 188	118 171	122 173	121 172	116 170			118 171	10	12/ 172	116 170		112 188	118 171	122 173	121 172	116 170	1.1 2.2		N PLANE N PLANE		T COLLATI
			64	 τ –	168	/67	1	169	-	195	168	167	166	169		195	160	167	166	169	4.5	МУСН	. m. m		ON
			55															 				MACH NUMBERS			SHEET (
	IDPV/	MACH	61																						(CONCLUDED)
	IDPVAR(1) IDPVAR(2) NDV	H BETA	67								·												D PRETEST	į	
	2) NDV	7	75 76																				EST		

TABLE 3. MODEL COMPONENT DESCRIPTIONS

MODEL COMPONENT: BOD	Y - B1 , B2		
GENERAL DESCRIPTION:	040A Orbiter Body		
	B. INCLUDES CANO	PY	
	B2 WITHOUT CAN	OPY	
DRAWING NUMBER:	JLP SDD 9-24-71	,	• • • • • • • • • • • • • • • • • • • •
P'MENSIONS:		FULL-SCALE	MODEL SCALE
Length, inch		1315.	7.89
Max. Width, inch	L	204.	1.224
Max. Depth , inc	.	238.	1.427
Fineness Ratio		7.07	7.07
Areas, inch		•	. •
Max. Cross	-Sectional	306.2 ft ²	1.590 in. ²
Planform		1676. ft ²	8.68 in. ²
Wetted		6530. ft ²	33.8 in. ²
Base		298. ft ²	1.546 in. ²

GENERAL DESCRIPTION:	040A Orbite	r clippe	d delta	wing	
• • • • • • • • • • • • • • • • • • •				anne and the second	
				11	
			•		
			* 		
DRAWING NUMBER:	JLP S	DD 9-24-	7 <u>1</u>		
DIMENSIONS:				FULL-SCALE	MODEL SCALE
TOTAL DATA, INCL	UDES ELEVONS		2.1		
Area					
Planform	•		•	3155.3 ft ²	16.37 in. ²
Wetted	•	·	• •	5360. ft ²	27.8 in. ²
Span (equiva	alent), inch			882.	5.292
Aspect Ratio	0	•		1.712	1.712
Rate of Tape	er			**	4-0
Taper Ratio			•	. 1486	.1486
	ngle, degree:			7.0	7.0
	ngle, degrees			1.5	1.5
	Twist, degre	es	,	0	0
Toe-In Angle	2				
Cant Angle	0				
	Angles, degra	562		.:	60
Leading I		•		60.	60.
Trailing	ment Line			0	0
Chords: inch				52.4	52.4
	ng Sta. 0.0)	•		00.7	F 00
	uivalent) (y	- 4411	•	_89 <i>7</i>	5.38
MAC	aryaremay (1	- 441)		609.5	
	. of .25 MAC		x	1057.5	6.36
W.P. of			. Z	302.3	1.812
B.L. of		* •	. 7	165.7	.996
' Airfoil Sec		•		103.1	.770
Root			NA	CA 0009-64	NACA 0008-64
Tip			· NA	CA 0008-64	NACA 0008-64
EXPOSED DATA, IN	CLUDES ELEVO	NS			
Area	•			2010. ft ²	14.45 in. ²
	valent), inc	h .		678.	4.07
Aspect Ratio		14. € 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•	1.590	1.590
Taper Ratio				.1850	.1850
Chords, inc	h	 , - •		• 1000	
Root (Y1		••••	t	720.	4.32
Tip (Y4				133.3	.800
MAC	•			494.	2.97
Fus. Sta	. of .25 MAC		х	1145.5	6.87
W.P. of	.25 MAC		Z	308.1	1.87
B.L. of			Ÿ	232.8	1.397

MODEL COMPONENT: _E	Levons		
GENERAL DESCRIPTION:			
•			
DRAWING NUMBER:	JLP SDD 9-24-71		
DIMENSIONS: (FOR BOTH	ELEVONS)	FULL-SCALE	MODEL SCALE
Area		456. ft ²	2.36 in. ²
. Span (equivaler	nt), INCH	556.	3.33
Inb'd equivale	nt chord , INCH	118.	.708
Outb'd equival	ent chord , INCH	118.	.708
Ratio movable : total surfac			•
At Inb'd	equiv. chord	.1662	.1662
At Outb'd	equiv. chord	517	.517
Sweep Back Ang	les, degrees		
Leading E	dge -	0	0
Tailing E	dge	0	0
Hingeline		0	0
Area Moment (N	ormal to hinge line)	2240. ft ³	.835 in.

GENERAL DE	SCRIPTION:	040A Orbite	r Vertical Fin.	Both leading	and trailing edg
swept.					
	٠.			N.	
				• /	
DRAWING NI	IMP CO •	ח פ דו	DD 9-24-71	•	
1				F18.1 CO41.0	MODEL COME
DIMENSIONS	.		•	FULL-SCALE	MODEL SCALE
TOTAL	_ DATA, INCL	UDES RUDDER, I	EXCLUDES TIP PO	D	
	Area	,		2.2	2
	Planform	T .		342. ft ² 684. ft ²	$\frac{1.772 \text{ in.}^2}{3.55 \text{ in.}^2}$
	Span (equiv	(alont)		246.2	3.55 in. ²
	Aspect Rati	in		1.228	1.228
	Rate of Tap				
•	Taper Ratio			.374	.374
		Angle, degree:	s		
	Incidence A	Angle, degree	S	0	0
		: Twist, degr		0	0
•	Toe-In Angl				
	Cant Angle	•	•		
		Angles, degre	ees	•	
	Leading			45.	45.
	Trailing		•	15.	15.
		ement Line		40.75	40.75
	Chords: INC		·/		
•		tabostaccocox		291.6	1.750
•		quivalent)(Z	740.2)	109.0	.654
	MAC	OF WAC	· .	214.0	1.284
		a. of .25 MAC .25 MAC			
		.25 MAC	Z		
	Airfoil Sec	tion		0	** **
	Root	- C1 OII	N.	ACA 0012-64	NACA 0012-64
,	Tip		1	t <u>' 11 11 11 </u>	11 11 11
EXP0	SED DATA)		·
	Area				
~	'Span, (equ'				
	Aspect Rat	io			
•	Taper Ratio	0	1		
	Chords	•			•
• • • •	Root	•	SAME		
Joseph Land Comment	Tip	•	AS		
	MAC		ABOVE		
•		a. of .25 MAC .25 MAC			
•		.25 MAC			

MODEL COMPONENT: RUDDER- R1			•
GENERAL DESCRIPTION:		· · · · · · · · · · · · · · · · · · ·	
	The resident description for Principles		
			galedystell arrander Magga, vertil fernional field en globald de

DRAWING NUMBER: JLP SDD 9	-24-71		
DIMENSIONS:		-FULL-SCALE	MODEL SCALE
Area		135.6 ft ²	.702 in. ²
Span (equivalent), INCH		246,3	1.475
Inb'd equivalent chord, INCH	•	115.	690
Outb'd equivalent chord, INCH	. •	43.8	.263
Ratio movable surface chord/ total surface chord	•		
At Inb'd equiv. chord	•	.40 •	.40
At Outb'd equiv. chord		.40	40
Sweep Back Angles, degrees	·	•	
Leading Edge		29.1	29.1
Tailing Edge		15.0	15.0
Hingeline		29.1	
Area Moment (Normal to hinge 1	ine)	448. ft ³	.145 in. ³

MODEL COMPONENT: VERTICAL TATL - V2		
GENERAL DESCRIPTION: Centerline Stabilizer	•	,
	•	
DRAWING NUMBER: NR	-	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA		
Planform Wetted Span (equivalent) Aspect Ratio Rate of Taper Taper Ratio Diehedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Toe-In Angle Cant Angle Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Wing Sta. 0.0) Tip, (equivalent) MAC Fus. Sta. of .25 MAC W.P. of .25 MAC Airfoil Section Root Tip EXPOSED DATA Area Span, (equivalent) Aspect Ratio Taper Ratio Chords Root Tip MAC Tip MAC Tip MAC	MACA 0012-64 NACA 0012-64 NACA 0012-64 69,837.3 in 369.17 in 1.95 0.3137 288.0 in 90,35 in 206.38 in	2.514 in ² 2.215 in 1.95 3137 1.728 in 0.542 in 1.238 in
Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	206.38 in 1469.04 652.44	8.814 3.915 0

MODEL COMPONENT: RUDDER R2		a namagan (1986) - Kalaga apilika naga apina ana an
GENERAL DESCRITION:		
	The state of the s	Constitution of the Consti
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area	181 ft ²	.939 in ²
Span (equivalent)	346 in	2.073 in
Inb'd equivalent chord	115 in	.691 in
Outb'd equivalent chord	36 in	.217 in
Ratio Elevator chord/horizontal tail chord	•	
At Inb'd equiv. chord	40	.40
At Outb'd equiv. chord	.40	.40
Sweep Back Angles, degrees		. *
Leading Edge	32°	. 32°
Tailing Edge	21°	21°
Hingeline	32°	32°
Area Moment (Normal to hinge line)	569 ft ³	.212 in ³

MODEL COMPONENT: BODY - ACPS ENGINE I	POD P1	<u> </u>
GENERAL DESCRIPTION: Blunt pod mounted	on both wing tips.	
		•
		•
DRAWING NUMBER: JLP SDD 9-24	3-71	•
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length, inch	165.	
Max. Width, inch	55.	
Max. Depth , inch	28.	.168
Fineness Ratio		
Areas, in. ²		•
Max. Cross-Sectional	1540.	.0555
Planform	8280.	.298
Wetted	15,800.	. 568
Base	1540.	.0555

MODEL COMPONENT: BODY	- oms engine	POD , MI		
GENERAL DESCRIPTION:	Pods mounted	on both s	sides of aft en	d of fuselage.
	,			
				•
		·		
DRAWING NUMBER:	JLP SDD	9-24-71		•
DIMENSIONS:		• .	FULL-SCALE	MODEL SCALE
Length, inch			251.	1.509
Max. Width, inch		•	42.8	.257
Max. Depth, inch			59.0	.354
Fineness Ratio				
Areas, in. ²		•	•	
Max. Cross-S	Sectional	•	1828.	.0658
Planform			9880.	356
Wetted		•	25,400.	.915
Base	*:	•	1807.	.0651

MODEL COMPONENT: BODY - HO Tank - T2		
GENERAL DESCRIPTION:		· .
Blunt cone-cylinder centerline tank w	ith aft boat tail.	
θ cone = 10°. Nose radius = 22 in. fu	ll-scale.	
Diameter at base = 274 in. full-scale		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	_2022_in.	12.133 in.
Max. Width Dia. Max. Depth	30 <u>l_in.</u> 30l_in.	1.806 in. 1.806 in.
Fineness Ratio	6.73	6.73
Area		
Max. Cross-Sectional	<u>494</u> ft ²	2.562 ln. ²
Planform		
Wetted		***
Base	422 ft ²	2.125 in. ²

MODEL COMPONENT: BODY - HO Tank - T		
GENERAL DESCRIPTION:		
Blunt cone-cylinder centerline tank with a	ft boat tail.	•
θ cone = 15°. Nose radius = 22 in. full-sc	ale.	
Diameter at base = 274 in. full-scale.		

DRAWING NUMBER:		•
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1867 in.	11.205 in.
Max. Width	301 in.	1.806 in.
D ia. Max. Depth	301 in.	1.806 in.
Fineness Ratio	6.2	6.2
Area		
Max. Cross-Sectional	494 ft ²	2.562 in. ²
Planform		
Wetted	***	
Base	422 ft ²	2.125 in. ²

MODEL COMPONENT: BODY - HO Tank - T3		
GENERAL DESCRIPTION:		
Blunt cone-cylinder centerline tank with aft	boat tail.	
θ cone = 10°. Nose radius = 22 in. full-sca	le.	
Diameter at base = 304 in. full-scale.		:
DRAWING NUMBER:		•
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1914 in.	11.442 in.
Max. Width	323.5 in.	<u>1.941_in.</u> ,
Dia. Max. Depth	323.5 in.	1.941 in.
Fineness Ratio	5.92	5.92
Area		
Max. Cross-Sectional	_587_ft ²	2.959 in. ²
Planform		
Wetted		
Base	518 ft ²	2.613 in. ²

MODEL COMPONENT: BODY - HO-TANK-T4		
GENERAL DESCRIPTION: Blunt Cone-Cylin	der Centerline Tank wi	th Aft Boat Tail
θCone = 20°. Nose Radius = 22 In. Ful	1-Scale. Maximum Diam	eter = 334 In.
Full Scale.		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1700 In.	10.200 In.
Max. Width Dia.	334 In.	2.004 In.
Max. Depth	334 In.	2.004 In.
Fineness Ratio	5.09	5.09
Area		
Max. Cross-Sectional	608 Ft. ²	3.154 In. ²
Planform		
Wetted		
Base	537 Ft. ²	2.785 In. ²

MODEL COMPONENT: TANK VENTRAL FIN, F		
GENERAL DESCRIPTION: <u>Single Fin Mounted</u> Fin has no movable surface.	on Tank, T ₄ .	

DRAWING NUMBER:	_	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area	337 Ft. ²	1.747 In. ²
Span (equivalent)	237 In.	1.420 In.
Inb'd equivalent chord	323 In.	1.940 In.
Outb'd equivalent chord	87 In.	0.520 In.
Ratio Elevator chord/horizontal tail chord		
At Inb'd equiv. chord	-	
At Outb'd equiv. chord		
Sweep Back Angles, degrees		
Leading Edge	45	45
Tailing Edge	0	0
Hingeline		
Area Moment (Normal to hinge line)		

MODEL COMPONENT: BODY - Booster, B7		
GENERAL DESCRIPTION: Parallel burn version	of recoverable pre	essure-fed booster
(RPFB). Blunt cone-cylinder with afterbody	flare. Ocone - 20°	θ flare = 15°.
Nose radius = 22 in. full-scale.		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	<u>1799 in.</u>	10.792 in.
Dia. Body	206 in.	1.236 in.
Max. Dia. Flare	402 in.	2.412 in.
Fineness Ratio	8.73	8.73
Area		•
Cross-Sectional (Body)	231 ft ²	1.200 in. ²
Planform		
Wetted	40 45 40 	
Base (flare)	901 ft ²	4.539 in. ²

MODEL COMPONENT: EODY - Booster, B S		·
GENERAL DESCRIPTION: Pressure-Fed Booste	er	
		
· · · · · · · · · · · · · · · · · · ·		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1799 In.	10.792 In.
Dia. Body	206 In	1.236 In.
Max. Dia. Flare	624 In.	3.744 In.
Fineness Ratio	8.73	8.73
Area		• •
Max. Cross-Sectional (Body)	231_Ft ²	1.200 In. ²
Planform		***
Wetted	s data data data An-alian data data An-alian data data data data data data data da	
Base (Flare)	2125 Ft ²	11.0093 In. ²

MODEL COMPONENT: CODY - Booster, B1S2		
GENERAL DESCRIPTION: Pressure-Fed Booste	.	
DRAWING NUMBER:	-	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1799 In.	_10.792_In.
Dia. Body	206 In.	<u>1.236 In.</u>
Max. Dia. Flare	936.3 In.	5.618 In.
Fineness Ratio	8.73	8.73
Area .		
Max. Cross-Sectional (Body)	231 Ft ²	1.200 In. ²
Planform		
Wetted	,	
Base (Flare)	4785 Ft ²	24.7887_In. ²

MODEL COMPONENT: BODY - Booste	r - B ₂	
GENERAL DESCRIPTION:		
SRM Booster . Blunt cone-cyl	inder. θ cone = 20°. N	ose radius = 16.67 in
full-scale.		, , , , , , , , , , , , , , , , , , ,
	engala mangan digunggan dikalam 4-1971, a ayan di angan mangan di angan sebagai sebagai sebagai sebagai sebaga	and the second of the second o
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1 <u>775</u> in.	1 <u>0.633 in.</u>
Max. Width Dia.	156 in.	0.936 in.
Max. Depth	156 in.	0.936 in.
Fineness Ratio	11.37	11.37
Area		
Max. Cross-Sectional	137.8 ft ²	0.694 in. ²
Planform	•••	
Wetted	43 to 64	
Base	137.8 ft ²	0.694 in. ²

MODEL COMPONENT: BODY - Booster - B2S		
GENERAL DESCRIPTION:		
SRM Booster , B ₂ booster with 15° after	rbody flare. Nose ra	dius = 16.67
in. full-scale.		
DRAWING NUMBER:		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	<u> 1775 in.</u>	10.633 in.
Dia. Body	<u>156 in.</u>	_0.936 in.
Max. Dia. Flare	<u>275 in.</u>	<u>l.650 in.</u>
Fineness Ratio	11.37	11.37
Area		
Cross Sectional (Body)	137.8 ft ²	0.694 in. ²
Planform	***	
Wetted		
Base (Flare)	428 ft ²	2.158 in. ²

MODEL COMPONENT: BOD	γ _ Booster -	B ₃		····	
GENERAL DESCRIPTION: booster (RPFB). Blunt	Parallel burn cone-cylinder				
Nose radius - 22 in. f	ull-scale. 0F1	are = 15°	•		
DRAWING NUMBER:					•
DIMENSIONS:			FULL-SCALE		MODEL SCALE
Length			<u>1800 in.</u>		10.800 in.
Dia. Body			206 in.		1.236 in.
Max. Dia. Flare	•		402 in.	•	2.412 in.
Fineness Ratio		•	8.74	*	8.74
Area					· · · · · · · · · · · · · · · · · · ·
Cross-Sect	ional (Body)		231 ft ²		1.200 in. ²
Planform					
Wetted					
Base (Flare	e)		902 ft ²		4.545 in. ²

MODEL COMPONENT: BODY - Booster - B ₄		
GENERAL DESCRIPTION: Parallel burn version	on of recoverable p	ressure-fed
booster (RPFB). Blunt cone-cylinder wit	h afterbody flare.	Θcone = 20°.
8 flare = 5°. Nose radius = 22 in. full	scale.	
DRAWING NUMBER:	-	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1503 in.	9.025 in.
Dia. Body	247 in.	1.483 in.
Max. Dia. Flare	318 in.	1.909 in.
Fineness Ratio	6.09	6.09
Area		
Cross-Sectional (Body)	343 ft ²	1.727 in. ²
Planform		
Wetted		
Base (Flare)	568 ft ²	2.865 in. ²

MODEL COMPONENT: Fin, F4		
GENERAL DESCRIPTION: Single fin mounted	on each B ₄ booster	flare.
Roll-out angle is 45° down. Fin has no m	movable surface.	
DRAWING NUMBER:	• •	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area (exposed planform, 1 fin)	503 ft ²	2.610 in ²
Span (equivalent, to booster Q)	424 in	2.544 in
Inb'd equivalent chord	410 in	2.460 in
Outb'd equivalent chord	110 in	0.660 in
Ratio Elevator chord/horizontal tail chord		
At Inb'd equiv. chord		
At Outb'd equiv. chord		
Sweep Back Angles, degrees		
Leading Edge	45	45
Tailing Edge	0	0
Hingeline		7) 4 4
Avea Memont (Newmal to hinge line)	·	e e e e e e e e e e e e e e e e e e e

MODEL COMPONENT: BODY - Booster, B ₅	·	
GENERAL DESCRIPTION: Pressure-Fed Booste	<u>r</u>	
•		
DRAWING NUMBER:	<u></u>	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1799 In.	10.792 In.
Dia. Body	206 In.	1.236 In.
Max. Dia. Flare	319.3 In.	1.916 In.
Fineness Ratio	8.73	8.73
Area .		•
Max. Cross-Sectional (Body)	231 Ft ²	1.200 In. ²
Planform		
Wetted		***
Base (Flare)	557 Ft ²	2.88 In. ²

MODEL COMPONENT: BODY - Booster, B6		Control of the Contro
GENERAL DESCRIPTION: SRM Booster		
DRAWING NUMBER		
DIMENSION:	FULL SCALE	MODEL SCALE
Length	1613 in.	9.673 in.
Dia. (Body)	156 in.	0_936_in
Max Depth	156 in.	0.936 in.
Fineness Ratio	10.35	10.35
Area		·
Max Cross-Sectional	137.8 ft ²	0.694 in ²
Planform		
Wetted	** ** ***	
Base (Nozzle)	95.4 ft ²	0.481 in 2

MODEL COMPONENT: BODY - Booster, B,		
GENERAL DESCRIPTION: 120" Dia. SRM		
•		
DRAWING NUMBER:	_	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	1403 In.	8.418 In.
Dia. Body	120 In.	0.72 In.
Max. Dia. Flare		
Fineness Ratio	11.7	11.7
Area		•
Max. Cross-Sectional (Body)	79.3 Ft ²	0.408 In. ²
Planform .		
Wetted		
Base	79.3 Ft ²	0.408 In. ²

TABLE 3. (CONCLUDED)

MODEL COMPONENT: BODY - TVC Tank A1 for B	,	
GENERAL DESCRIPTION: Thrust Vectoring Fue	1 Tank	
DRAWING NUMBER:		· . • •
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	381.8 In.	2.291 In.
Dia. Body	42 In.	0.252 In.
Max. Dia. Flare		
Fineness Ratio	9.08	9.08
Area .		•
Max. Cross-Sectional (Body)	9.65 Ft ²	0.05 In. ²
Planform		
Wetted		
Base	•••	

TABLE 4.
Plume Definition

M = 1.5

	<u>B</u> 1	B ₆	;	0 ₁ (3 Eng.	HiPc)
r _e =	187 in.	r _e = 6	6 in.	r _e = 92	2.5 in.
x/r _e	r/r _e	x/r _e	r/r _e	x/r _e	r/r _e
0 0.5 1.0 1.5 2.0	1.00 1.17 1.22 1.23 1.20	0 0.5 1.0 1.5 2.0 2.5 3.0	1.00 1.23 1.48 1.70 1.88 2.00 2.11	0 0.5 1.0 1.5 2.0	1.0 1.0 1.0 1.0

M = 2.2

В	5	0 ₁ (3 Eng	HiPc)
r _e = (r _e = 11	8 in.
x/r _e	r/r _e	x/r _e	r/r _e
0	1.00	0	1.00
0.5	1.33	0.5	1.10
1.0	1.62	1.0	1.20
1.5	1.88	1.5	1.26
2.0	2.13	2.0	1.33
2.5	2.33	2.5	1.41
3.0	2.51	3.0	1.47
4.0	2.84	4.0	1.57
5.0	3.12	5.0	1.62
6.0	3.35	6.0	1.65
7.0	3.55	7.0	1.66
8.0	3.72	8.0	1.64
9.0	3.87		
10.0	3.97		
11.0	4.03		
12.0	4.11		
13.0	4.15		
14.0	4 17		

TABLE 4, cont.

M = 2.5

$\mathbf{r}_{e} \stackrel{\frac{\mathbf{B}_{1}}{=}}{=}$	- 187 in.			$\frac{O_1 (4 \text{ Eng.}}{r_e} = 8$	-J2S) 39 in.
x/r_e	r/r_e	1		x/r_e	r/r_e
0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0	1.00 1.34 1.53 1.77 1.91 2.03 2.13 2.30 2.30 2.23			0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0	1.00 1.21 1.34 1.46 1.56 1.61 1.67 1.71
М	= 1.5	<u>B7</u>	•	M =	2.2
\mathbf{r}_{e}	= 60 in.			r _e =	60 in.
x/r_e	r/r_e			x/r_e	r/r_e
0 0.026 0.100 0.240 0.320 0.430 0.680 1.000 1.400 1.870 2.430 3.410 4.150 4.970 5.830	1.00 1.01 1.05 1.10 1.14 1.18 1.27 1.34 1.50 1.61 1.72 1.87 1.94 1.98 2.00			0 0.04 0.17 0.23 0.30 0.38 0.48 0.58 0.70 0.83 1.13 1.30 1.69 2.13 2.64 3.22 3.87 4.58 5.36	1.00 1.02 1.09 1.12 1.16 1.20 1.24 1.40 1.52 1.60 1.73 1.87 2.02 2.17 2.31 2.45 2.57

TABLE 5.

INDEX OF MODEL FIGURES

FIGURE NUMBER		
1.	Axis System	87
2.	Photograph of Configuration (Ol)T4B7Al-4	88
3•	Photograph of Configuration (O1)T4B7A1-5	89
4.	General Arrangement-Ascent Configuration OlTlBl	90
5•	General Arrangement-Ascent Configuration with Booster Bl or B5	91
6.	General Arrangement-Ascent Configuration with Booster B2 or B2S	92
7.	General Arrangement-Ascent Configuration with Booster B3	93
8.	General Arrangement-Ascent Configuration with Booster B4	94
9•	General Arrangement-Ascent Configuration OlT4B7-4 (Side View)	95
10.	General Arrangement-Ascent Configuration OlT4B7-4 (Top View)	96
11.	General Arrangement-Ascent Configuration OlT4B7-4 (Rear View)	97
12.	Centerline HO Tank Locations	98
13.	Moment Transfer Diagram for Ascent Configuration	99
14.	Moment Transfer Diagram for Orbiter Alone	100
15.	Moment Transfer Diagram for Centerline Tank Alone	101
16.	Moment Transfer Diagram for Bl Booster Alone	102
17.	Moment Transfer Diagram for B2 and B2S Boosters Alone	103
18.	Moment Transfer Diagram for B3 Booster Alone	101
10	Moment Thenefer Diagram for Bl. Booster Alone	109

TABLE 5.

INDEX OF MODEL FIGURES (CONTINUED)

FIGURE NUMBER		
20.	General Arrangement 040A Orbiter	106
21.	Orbiter Body, Bl	107
22.	Wing and Elevon, Wl	108
23•	Elevon Deflections and Rudder Flare	109
24.	Vertical Fin and Rudder, Vl	110
25.	Vertical Fin and Rudder, V2	111
26.	ACPS Engine Pod, Pl and OMS Engine Pod, Ml	112
27.	Centerline HO Tank, Tl	113
28.	Centerline HO Tank, T2	114
29•	Centerline HO Tank, T3	115
30.	Centerline HO Tank T4 With Tank Ventral Fin, Fl	116
31.	Centerline Ventral Fin, Fl	117
32.	Boosters, Bl and B5	118
33•	Booster, BlS1	119
34.	Booster, BlS2	120
35•	Booster, BlD2	121
36.	Booster, BlD6	123
37•	Booster, BlD7	124
38.	Boosters, B2, B2S & B6	125
39•	Booster, B3	126
40.	Booster, B4	127

TABLE 5. INDEX OF MODEL FIGURES (CONTINUED)

FIGURE NUMBER		
41.	Booster Fin F4 Mounted on Booster B4	128
42.	Booster, B7Al	129
43.	Plume Contours for Pressure Fed Boosters	130
44.	Plume Contours for 156 Inch Solid Rocket Motors	131
45.	Plume Contour for Orbiter	132
46.	Sketch of Plume for Booster B7	133
47.	Tunnel Installation for the OBT Configuration- Pitch Series (Orbiter, Tank and Booster Independently Supported)	134
48.	Tunnel Installation for the OBT Configuration- Pitch Series (Booster and Orbiter Fixed to Centerline Tank)	135
49.	Tunnel Installation for the OBT Configuration- Pitch Series (Booster Fixed to Centerline Tank	136
50.	Tunnel Installation for the OBT Configuration- Pitch Series (Right Booster Fixed to Centerline Tank, Left Booster Independently Supported)	137
51.	Tunnel Installation for the OBT Configuration- Pitch Series (Left and Right Booster Independently Supported)	138
52.	Tunnel Installation for the OBT Configuration With 6 ^O Sideslip Angle-Pitch Series (Boosters Fixed to Centerline Tank)	139
53•	Tunnel Installation for the OBT Configuration With OO Angle of Attack-Yaw Series (Boosters Fixed to Centerline Tank)	140

TABLE 5.

INDEX OF MODEL FIGURES (CONTINUED)

FIGURE NUMBER		
54.	Tunnel Installation for the OBT Configuration With 6° Angle of Attack-Yaw Series (Boosters Fixed to the Centerline Tank)	141
55•	Tunnel Installation for the Orbiter Alone Configuration	142
56.	Tunnel Installation for the Tank Alone Configuration	143
57•	Tunnel Installation for the Booster Alone Configuration	144

TABLE 6. INDEX OF DATA FIGURES

TITLE Longitudinal Effects of a Bl Booster on (O1)TlBl	PLOTTED COEFFICIENTS SCHEDULE A	CONDITIONS VARYING Ascent Configuration
Effects of a Bl	A	
Longitudinal Effects of a Bl Booster on (01)TLB1 at Beta = 6	А	
<pre>Lateral-Directional Effects of a Bl Booster on (01)TlBl at Beta = 0</pre>	В	
<pre>Lateral-Directional Effects of a Bl Booster on (01)TlBl at Beta = 6</pre>	ᅜ	
<pre>Iateral-Directional Effects of a Bl Booster on (01)TLBl with Beta at Alpha = 0</pre>	Ħ	
Iongitudinal Effects of a Bl Booster on (01)扣Bl with Beta at Alpha = 0	Ħ	
Effect of Beta on Longitudinal Characteristics of OlTLB1	Α	
Effect of Beta on Lateral-Directional Characteristics of OlTLB1	뮹	
<pre>Lateral-Directional Characteristics of Configuration OlTLBL with Beta at Alpha = 0</pre>	a	
Aileron Effectiveness of Configuration (O1)T1Bl at Beta	= 0 B	
Aileron Effectiveness of Configuration OlTLBl at Beta = 0	0 В	
Variation of Aileron Control at Alpha = 0 with Beta of OlTIB1	a	
Longitudinal Effects of a B2 Booster on (O1)TIB2 at Beta = 6	A	

TABLE 6. (CONTINUED)

			·			· · · · · · · · · · · · · · · · · · ·			· · · · ·		T
<pre>Longitudinal Effects of a B3 Booster on (01)TlB3 with Beta at Alpha = 0</pre>	<pre>Lateral-Directional Effects of a B3 Booster on (01)TLB3 with Beta at Alpha = 0</pre>	<pre>Lateral-Directional Effects of a B3 Booster on (01)TlB3 at Beta = 6</pre>	<pre>Iateral-Directional Effects of a B3 Booster on (01)T1B3 at Beta = 0</pre>	Longitudinal Effects of a B3 Booster on (O1)T1B3 at Beta = 6	<pre>Longitudinal Effects of a B3 Booster on (01)TlB3 at Beta = 0</pre>	Effect of Beta on Lateral-Directional Characteristics of OlT1B2S	Effect of Beta on Longitudinal Characteristics of OlTLB2S	Effect of Beta on Lateral-Directional Characteristics of OlTLB2	Effect of Beta on Longitudinal Characteristics of OlTLB2	<pre>Lateral-Directional Effects of a B2 Booster on (01)TlB2 at Beta = 6</pre>	TITIE
E J .	Ð	В	ㅂ	А	А	ස	A	ы	A	ᅜ	PLOTTED COEFFICIENTS SCHEDULE
Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Beta	Beta	Beta .	Beta	Ascent Configuration Booster Isolation	CONDITIONS VARYING
1/570-579	1/564-569	I/558-563	1/546-557	1/526-545	I/466-525	I/448-465	1/388-447	1/370-387	1/310-369	1/304-309	VOLUME/ PAGE NO.

TABLE 6. (CONTINUED)

Effects of a B4 Booster on (O1)TLB4 at	of a B4 Booster on (01)T1B4 of a B4 Booster on (01)T1B4 Effects of a B4 Booster on (Effects of a B4 Booster on (Effects of a B4 Booster on (a = 0 of a B4 Booster on (01)T1B4 of a B5 Booster on (01)T1B4 of a B5 Booster on (01V1)T11 of a B5 Booster on (01V1)T11 effects of a B5 Booster on (01V1)T11 Effects of a B5 Booster on (01V1)T11 Effects of a B5 Booster on (01V1)T11 Effects of a B5 Booster on (01V1)T11 Effects of a B5 Booster on (01V1)T11	D B B A E	Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration	1/580-639 1/640-659 1/660-674 1/675-680 1/681-689 1/690-704 1/705-724 1/725-730 1/721-800 1/791-800 1/813-815 1/816-824
	TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME/ PAGE NO.
	見かずめっ †な つず	Þ		T/6),0-650
Effects of a B4 Booster on (O1)T1B4 at A Ascent Configuration				,
Effects of a B4 Booster on (01)T1B4 at A Ascent Configuration Booster Isolation	Effects of a B4	ᅜ	Ascent Configuration Booster Isolation	1/660-674
Effects of a B4 Booster on (O1)T1B4 at A Ascent Configuration Booster Isolation ctional Effects of a B4 Booster on (O1)T1B4 B Ascent Configuration Booster Isolation	Effects of a B4	В	Ascent Configuration Booster Isolation	1/675-680
Effects of a B4 Booster on (O1)T1B4 at A Ascent Configuration Booster Isolation Ctional Effects of a B4 Booster on (O1)T1B4 Ctional Effects of a B4 Booster on (O1)T1B4 B Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation	Effects of a B4 ha = 0	D	Ascent Configuration Booster Isolation	1/681-689
Effects of a B4 Booster on (O1)T1B4 at A Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation	Effects of a B4 lpha = 0	뵨	Ascent Configuration Booster Isolation	1/690-704
Effects of a B4 Booster on (O1)T1B4 at A Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Booster Isolation Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation	Effects of a	А	Ascent Configuration Booster Isolation	1/705-724
Effects of a B4 Booster on (O1)TIB4 at A Ascent Configuration Booster Isolation Ctional Effects of a B4 Booster on (O1)TIB4 Ctional Effects of a B4 Booster on (O1)TIB4 B Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Effects of a B4 Booster on (O1)TIB4 B Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Effects of a B4 Booster on (O1)TIB4 at Ascent Configuration Booster Isolation	of a B5	₩	Ascent Configuration Booster Isolation	1/725-730
Effects of a B4 Booster on (O1)TIB4 at A Ascent Configuration Cotional Effects of a B4 Booster on (O1)TIB4 Cotional Effects of a B4 Booster on (O1)TIB4 B Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Effects of a B4 Booster on (O1)TIB4 with Effects of a B5 Booster on (O1)TIB4 with Effects of a B5 Booster on (O1)TIB5 at Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Booster Isolation	Effects of	А	Ascent Configuration Booster Isolation	1/731-790
Effects of a B4 Booster on (01)TIB4 at A Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Effects of a B4 Booster on (01)TIB4 with Effects of a B5 Booster on (01)TIB5 at Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation	Effects of a B5	А	Ascent Configuration Booster Isolation	1/791-800
Effects of a B4 Booster on (O1)TIB4 at A Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Booster Isolation Booster Isolation Booster Isolation Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation Ascent Configuration Booster Isolation	Effects of a B5	₩	Ascent Configuration Booster Isolation	I/801-812
Effects of a B4 Booster on (O1)TIB4 at Ctional Effects of a B4 Booster on (O1)TIB4 Ctional Effects of a B4 Booster on (O1)TIB4 Ctional Effects of a B4 Booster on (O1)TIB4 at Alpha = O Effects of a B4 Booster on (O1)TIB4 Effects of a B4 Booster on (O1)TIB4 at Alpha = O Effects of a B5 Booster on (O1)TIB5 at Ctional Effects of a B5 Booster on (O1)TIB5 at Effects of a B5 Booster on (O1)TIB5 at Effects of a B5 Booster on (O1)TIB5 at Effects of a B5 Booster on (O1V1)TIB5 at Ascent Configuration Booster Isolation Booster Isolation Ascent Configuration Booster Isolation Booster Isolation Ascent Configuration Booster Isolation Booster Isolation	Effects of a B5	뮹		I/813-815
Effects of a B4 Booster on (O1)TIB4 at A Ascent Configuration Ctional Effects of a B4 Booster on (O1)TIB4 B Ascent Configuration A Ascent Configuration A Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Effects of a B4 Booster on (O1)TIB4 Effects of a B5 Booster on (O1)TIB5 B Ascent Configuration Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Booster Isolation Ascent Configuration Ascent Configuration Booster Isolation of a B5	D	Ascent Configuration Booster Isolation	1/816-824	

TABLE 6. (CONTINUED)

	TTTLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME/ PAGE NO.
	Longitudinal Effects of a B5 Booster on (OlV1)TlB5 with Beta at Alpha = 0	H	Ascent Configuration Booster Isolation	I/825-839
	Longitudinal Characteristics of (01)T1B6 at Beta = 0	А	Mach No.	1/840-849
	<pre>Lateral-Directional Characteristics of (01)T1B6 at Alpha = 0</pre>	a	Mach No.	I/850-853
	Longitudinal Characteristics of (Ol)TLB6 with Ailerons = 20 at Beta = 0	А	Mach No.	1/854-863
	Lateral-Directional Characteristics of (O1)T1B6 with Ailerons = 20 at Beta = 0	₩	Mach No.	1/864-866
10	Lateral-Directional Characteristics of (O1)T1B6 with Allerons = 20 at Alpha = 0	D	Mach No.	1/867-869
	Iongitudinal Characteristics of (Ol)TLB6 with Ailerons = at Alpha = O	20 E	Mach No.	1/870-874
	Tank Nose Cone Effect on Longitudinal Characteristics of Configuration (O1)TlBl at Beta = 0	А	Configuration	1/875-904
	Longitudinal Effects of a Bl Booster on (Ol)T2Bl at Beta = 6	Α	Ascent Configuration Booster Isolation	1/905-914
	Lateral-Directional Effects of a Bl Booster on (O1)T2Bl at Beta = 6	ᅜ	Ascent Configuration Booster Isolation	1/915-917
	Tank Nose Cone Effect on Longitudinal Characteristics of Configuration (OlV1)T1B5 at Beta = 0	Α	Configuration	1/918-947
	Tank Nose Cone Effect on Lateral-Directional Characteristics of Configuration (OlV1)T1B5 at Alpha = 0	ics C	Configuration	1/948-959
_				

TABLE 6. (CONTINUED)

ξ.	סו אוייוניין		
TITLE	COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME/. PAGE NO.
Effect of Tank T2 Longitudinal Position on (01)T2Bl at Beta = 0	A	Configuration	1/960-989
Longitudinal Effects of a Bl Booster on (01)T2ABl at Beta = 6	А	Ascent Configuration Booster Isolation	I/990=999
<pre>Iateral-Directional Effects of a Bl Booster on (01)T2ABl at Beta = 6</pre>	В	Ascent Configuration Booster Isolation	1/1000-1002
Effect of Tank T2 Longitudinal Position on (OlV1)T2B5 at Beta = 0	А	Configuration	1/1003-1032
Effect of Tank T2 Longitudinal Position on (OlV1)T2B5 at Beta = 0	А	Configuration	1/1033-1062
Effect of Tank T2 Longitudinal Position on (OlV1)T2B5 with Beta at Alpha = 0	Ω	Configuration	1/1063-1074
Effect of Tank T2 Longitudinal Position on (O1V1)T2B5 with Beta at Alpha = 0	Ω	Configuration	1/1075-1082
Iongitudinal Effects of a Bl Booster on (01)T3Bl at Beta = 0	А	Ascent Configuration Booster Isolation	11/1-40
Iongitudinal Effects of a Bl Booster on (01)T3Bl at Beta = 6	А	Ascent Configuration Booster Isolation	11/41-60
<pre>Lateral-Directional Effects of a Bl Booster on (01)T3Bl at Beta = 0</pre>	В	Ascent Configuration Booster Isolation	11/61-72
<pre>Lateral-Directional Effects of a Bl Booster on (01)T3Bl at Beta = 6</pre>	ㅂ	Ascent Configuration Booster Isolation	11/73-78
<pre>Lateral-Directional Effects of a Bl Booster on (01)T3Bl with Beta at Alpha = 0</pre>	; D	Ascent Configuration Booster Isolation	11/79-84

TABLE 6. (CONTINUED)

	TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME PAGE NO.
	<pre>Longitudinal Effects of a Bl Booster on (01)T3Bl with Beta at Alpha = 0</pre>	Ħ	Ascent Configuration Booster Isolation	II/85-99
	<pre>Longitudinal Effects of a B2 Booster on (01)T3B2 at Beta = 0</pre>	А	Ascent Configuration Booster Isolation	11/100-139
	<pre>Lateral-Directional Effects of a B2 Booster on (01)T3B2 at Beta = 0</pre>	₩	Ascent Configuration Booster Isolation	11/140-151
	<pre>Lateral-Directional Effects of a B2 Booster on (01)T3B2 with Beta at Alpha = 0</pre>	-α 	Ascent Configuration Booster Isolation	II/152-157
	<pre>Longitudinal Effects of a B2 Booster on (01)T3B2 with Beta at Alpha = 0</pre>	, ਦ	Ascent Configuration Booster Isolation	11/158-167
	<pre>Longitudinal Characteristics of Configuration OlT3B2 at Beta = 0</pre>	А	·	11/168-177
	<pre>Longitudinal Characteristics of Configuration OlT3B2 at Beta = 6</pre>	A	Mach No.	11/178-187
	<pre>Lateral-Directional Characteristics of Configuration OlT3B2 at Beta = 6</pre>	₩.	Mach No.	11/188-190
	<pre>Longitudinal Effects of a B3 Booster on (01)T3B3 at Beta = 0</pre>	А	Ascent Configuration Booster Isolation	11/191-230
	<pre>Longitudinal Effects of a B3 Booster on (01)T3B3 at Beta = 6</pre>	А	Ascent Configuration Booster Isolation	II/231-240
	Lateral-Directional Effects of a B3 Booster on (O1)T3B3 at Beta = 0	₩	Ascent Configuration Booster Isolation	II/241-252
,	<pre>Lateral-Directional Effects of a B3 Booster on (01)T3B3 at Beta = 6</pre>	₿	Ascent Configuration Booster Isolation	II/253-255

TABLE 6. (CONTINUED)

		H	7	.	<u>н</u>	Н	bet	H	H	н	H	H	
Effect of Booster Fin F4 on Longitudinal Characteristics	Effects of Alpha on Rudder Effectiveness of Configuration (O1)T3B4 at Beta = 0	Effects of Alpha on Rudder Effectiveness of Configuration OlT3B4 at Beta = O	Alleron Effectiveness of Configuration (O1)T3B μ at Beta = 0	Aileron Effectiveness of Configuration OlT3B4 at Beta = O	<pre>Lateral-Directional Characteristics of Configuration (01)T3B4 with Beta at Alpha = 0</pre>	<pre>Lateral-Directional Characteristics of OlT3B4 with Beta at Alpha = 0 and 6</pre>	Effect of Beta on Lateral-Directional Characteristics of OlT3B4	Effect of Beta on Longitudinal Characteristics of OlT3B4	B3 Boosters Contribution to Lateral-Directional Characteristics of (O1)T3B3 at Alpha = 0	B3 Boosters Contribution to Longitudinal Characteristics of (O1)T3B3 at Beta = 0	<pre>Longitudinal Effects of a B3 Booster on (O1)T3B3 with Beta at Alpha = 0</pre>	Lateral-Directional Effects of a B3 Booster on (01)T3B3 with Beta at Alpha = 0	TTTTE
>	뮹	ㅂ	ㅂ	ы	a	a	ᅜ	А	a	A	Ħ	Ð	PLOTTED COEFFICIENTS SCHEDULE
	Rudder Deflection	Rudder Deflection	Aileron Deflection	Aileron Deflection		Alpha	Beta	Beta	Configuration	Configuration	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	CONDITIONS VARYING
II/482-541	11/479-481	11/461-478	II/458-460	17/440-457	11/436-439	11/412-435	11/394-411	II/334-394	II/322-333	11/272-321	11/262-271	11/256-261	VOLUME/ PAGE NO.

	····	* · · · · · · · · · · · · · · · · · · ·				L	<u>,</u>				
Effects of Beta on Lateral-Directional Characteristics of (01)T4B7Al-4	Effects of Beta on Longitudinal Characteristics of (O1)T4B7A1-4	Longitudinal Effects of a B5 Booster on (OlV1)T3B5 with Beta at Alpha = 0	<pre>Lateral-Directional Effects of a B5 Booster on (OLV1)T3B5 with Beta at Alpha = 0</pre>	<pre>Iateral-Directional Effects of a B5 Booster on (OLVI)T3B5 at Beta = 6</pre>	<pre>lateral-Directional Effects of a B5 Booster on (OlV1)T3B5 at Beta = 0</pre>	Longitudinal Effects of a B5 Booster on (OlV1)T3B5 at Beta = 6	<pre>Longitudinal Effects of a B5 Booster on (OlV1)T3B5 at Beta = 0</pre>	Effect of Booster Fin F4 on Lateral-Directional Characteristics of (O1)T3B4 at Beta = 6	Effect of Booster Fin F † on Longitudinal Characteristics of (O1)T3B † at Beta = 6	Effect of Booster Fin F4 on Longitudinal Characteristics of (01)T3B4 at Beta = 0	TITIE
₩	А	H	Ð	ㅂ	В	А	A	₩	A	A	FLOTTED SCHEDULE
Be ta	Beta	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Ascent Configuration Booster Isolation	Configuration	Configuration	Configuration	CONDITIONS VARYING
111/61-78	111/1-60	11/701-710	II/695-700	11/692-694	11/680-691	11/670-679	11/630-669	11/612-629	11/552-611	II/542-551	VOLUME/ PAGE NO.

TABLE 6. (CONTINUED)

TABLE 6. (CONTINUED)

	TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME/ PAGE NO.
	Effects of Fin Fl on Lateral-Directional Characteristics on Configuration OlT4B7Al-4 at Alpha = O	a	Configuration	III/335-342
•	Effects of Fin Fl on Longitudinal Characteristics of Configuration $\text{T}^{\dagger}\text{B}7\text{Al-}^{\dagger}$ at Beta = 0	А	Configuration	111/343-402
	Effects of Fin Fl on Lateral-Directional Characteristics on Configuration T4B7Al-4 at Alpha = 0	a	Configuration	111/403-426
	Effects of B7Al-4 on Longitudinal Characteristics of Configuration (O1)T4B7Al-4 at Beta = O	Α	Configuration	111/427-486
<u></u>	Effects of B7Al-4 on Lateral-Directional Characteristics of Configuration (Ol)T4B7A-1 at Alpha = O	Q	Configuration	111/487-510
UU	Comparison of the Longitudinal Characteristics of (01)T4B7A1-4 and (01)T4B7A1-5 at Beta = 0	A	Configuration	III/511-570
·	Comparison of the Lateral-Directional Characteristics of (O1)T4B7Al-4 and (O1)T4B7Al-5 at Beta = 6	₩	Configuration	III/571-588
	Comparison of the Lateral-Directional Characteristics of $(O1)$ T4B7A1-4 and $(O1)$ T4B7A1-5 at Alpha = 0	a	Configuration	III/589-612
	Effects of Beta on Longitudinal Characteristics of (01)T4B7A1-5	A	Beta	111/613-672
	Effects of Beta on Lateral-Directional Characteristics of (01)T4B7A1-5	₩.	Beta	III/673-690
-	<pre>Longitudinal Effect of Exhaust Plumes on Configuration OlTLB1 at Beta = 0</pre>	Α	Plume	IV/ 1-20
	Longitudinal Effect of Exhaust Plumes on Configuration OlTLB1 at Beta = 6	A	Plume	I V /21-30

TABLE 6. (CONTINUED)

_				
	IV/106-115	Plume	А	Longitudinal Effect of Mach No.=1.5 Exhaust Plumes on Configuration OlT3B6 at Beta = 0
	IV/96-105		А	<pre>Longitudinal Characteristics of Configuration OlTlBl+Plume(2.5) with Deflected Rudder at Beta = 0</pre>
	IV/93-95		₩ .	<pre>Lateral-Directional Characteristics of Configuration OlTlBl + Plume(2.5) with Deflected Rudder at Beta = 0</pre>
	IV/85-92	Plume and Rudder Deflection	a	Effects of M=1.5 Exhaust Plumes on Rudder Effectiveness with Beta at Alpha = 0 of OlTLB1
	IV/79-84	Plume and Rudder Deflection	В	Variation of Rudder Control at Beta = 0 with Alpha and M=1.5 Exhaust Plumes OlTIBl
	rv/71-78	Plume and Aileron Deflection	α	Variation of Aileron Control at Alpha = 0 with Beta and M=1.5 Exhaust Plumes OlTIBL
	IV/65-70	Plume and Aileron Deflection		Effects of M=1.5 Exhaust Plumes on Aileron Effectiveness of Configuration OlTlBl at Beta = 0
	IV/62-64	Plume	В	Effect of Exhaust Plumes on Aileron Effectiveness of Configuration OlTLB1 on Beta = 0
	IV/54-61	Plume	α	<pre>Lateral-Directional Effect of M=1.5 Exhaust Plumes on Configuration OlTIB1 at Alpha = 0</pre>
ar angga tirangan and transit or the	IV/34-53	Plume	Α	<pre>Longitudinal Effect of M = 1.5 Exhaust Plumes on Configuration OlTlBl at Beta = 0</pre>
	IV/31-33	Plume	ㅂ	Lateral-Directional Effect of Exhaust Plumes on Configuration OlTIBL at Beta $= 6$
1	VOLUME/ PAGE NO.	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	TTTTE

TABLE 6. (CONTINUED)

1				
T	TITLE	SCHEDULE COEFFICIENTS	CONDITIONS VARYING	VOLUME/ PAGE NO.
	Longitudinal Effect of Mach No=2.2 Exhaust Plumes on Configuration OlT3B6 at Beta = 0	A	Plume	IV/116-125
	<pre>Lateral-Directional Effect of Mach No.=1.5 Exhaust Plumes on Configuration OlT3B6 at Alpha = 0</pre>	C	Plume	IV/126-129
	Lateral-Directional Effect of Mach No=2.2 Exhaust Plumes on Configuration OlT3B6 at Alpha = 0	a	Plume	IV/130-133
	Effects of M=1.5 Exhaust Plumes on Aileron Effectiveness of Configuration OlT3B6 at Beta = 0	₽	Plume and Aileron Deflection	10/134-136
	Effects of M=2.2 Exhaust Plumes on Aileron Effectiveness of Configuration OlT3B6 at Beta = 0	В	Plume and Aileron Deflection	IV/137-139
	Variation of Aileron Control at Alpha = 0 with Beta and M=1.5 Exhaust Flumes OlT3B6	a	Plume and Aileron Deflection	IV/140-143
·	Variation of Aileron Control at Alpha = 0 with Beta and M=2.2 Exhaust Plumes OlT3B6	Ω	Plume and Aileron Deflection	TV/144-147
	Variation of Rudder Control at Beta = 0 with Alpha and M=1.5 Exhaust Plumes OlT3B6	B	Plume and Rudder Deflection	IV/148-150
	Effects of M=1.5 Exhaust Plumes on Rudder Effectiveness with Beta at Alpha = 0 of OlT3B6	Q	Plume and Rudder Deflection	IV/151-154
······································	Variation of Rudder Control at Beta = 0 with Alpha and M=2.2 Exhaust Plumes OlF3B6	В	Plume and Rudder Deflection	IV/155-157
	Effects of M=2.2 Exhaust Plumes on Rudder Effectiveness with Beta at Alpha = 0 of OlT3B6	G ,	Plume and Rudder Deflection	IV/158-161
	Longitudinal Effect of M=1.5 Exhaust Plumes on Configuration OlT4B7Al-4 at Beta = 0	А	Plume	IV/162-171

TABLE 6. (CONTINUED)

L				
	IV/215-217	Rudder Deflection	₩	<pre>Effects of Alpha on Rudder Control of Configuration OlT4B7Al-4+Plume(2.2) at Beta = 0</pre>
	IV/212-214	Rudder Deflection	₩	Effects of Alpha on Rudder Control of Configuration OlT4B7Al-4+Plume(1.5) at Beta = 0
	IV/208-211	Rudder Deflection	a	Rudder Effectiveness of Configuration OlT4B7Al-4+Plume(2.2) at Alpha = 0
	IV/204-207	Rudder Deflection	С	Rudder Effectiveness of Configuration OlT4B7Al-4+Plume(1.5) at Alpha = 0
	IV/200-203	Aileron Deflection	С	Effects of Beta on Aileron Control of Configuration OlT4B7Al-4+Plume(2.2) at Alpha = 0
	IV/196-199	Aileron Deflection	С	Effects of Beta on Aileron Control of Configuration OlT4B7Al-4+Plume(1.5) at Alpha = 0
	IV/193-195	Aileron Deflection	ᅜ	Aileron Effectiveness of Configuration OlT4B7Al-4+Plume(2.2) at Beta = 0
	IV/190-192	Aileron Deflection	₩	Aileron Effectiveness of Configuration OlT4B7Al-4+Plume(1.5) at Beta = 0
	IV/186-189	Plume	a	Lateral-Directional Effects of M=2.2 Exhaust Plumes on Configuration OlT4B7Al-4 at Alpha = 0
	IV/182-185	Plume	С	Lateral-Directional Effects of M=1.5 Exhaust Plumes on Configuration OlT4B7Al-4 at Alpha = O
	IV/172-181	Plume	A	<pre>Longitudinal 'Effect of M=2.2 Exhaust Plumes on Configuration OlT4B7Al-4 at Beta = 0</pre>
	VOLUME/ PAGE NO.	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	TITIE CO.

TABLE 6. (CONTINUED)

												<u> </u>	
Tongitudinal Chanactanistics Companison of VI and VO on	<pre>Lateral-Directional Characteristics of Vl and V2 on (01)Tl at Alpha = 0</pre>	Effects of Beta = 6 on Lateral-Directional Characteristics of Configuration (O1)Tl	Effects of Beta = 6 on Longitudinal Characteristics of Configuration (O1)Tl	Variation of Rudder Control with and without Rudder Flare and M=2.2 Exhaust Plume	Variation of Rudder Control with and Without Rudder Flare and M=1.5 Exhaust Plume	Effects of M=2.2 Exhaust Plumes on Rudder Effectiveness with and without Rudder Flare	Effects of M=1.5 Exhaust Plumes on Rudder Effectiveness with and without Rudder Flare	Lateral-Directional Effects of $M=2.2$ Exhaust Plumes on Configuration $O1V1T4B7A1-4$ at $A1pha=0$	Iongitudinal Effects of M=2.2 Exhaust Plumes on Configuration OlVlT4B7Al-4 at Beta = 0	<pre>Lateral-Directional Effects of M=1.5 Exhaust Plumes on Configuration OlVlT4B7Al-4 at Alpha = 0</pre>	Iongitudinal Effects of M=1.5 Exhaust Plumes on Configuration OlVlT4B7Al-4 at Beta = 0	TITLE	
ম	U	₩	А	Α	А	C	a	a	A	a	A	PLOTTED COEFFICIENTS SCHEDULE	,
	Configuration	Beta	Beta	Plume,Rudder Deflection, Rudder Flare	Plume,Rudder Deflection, Rudder Flare	Plume, Rudder Deflection, Rudder Flare	Plume, Rudder Deflection, Rudder Flare	Plume	Plume	Plume	Plume	CONDITIONS VARYING	
IV/337-351	IV/328-336	IV/322-327	IV/302-321	IV/282-301	IV/262-281	IV/254-261	IV/246-253	IV/242-245	IV/232-241	IV/228-231	IV/218-227	VOLUME/ PAGE NO.	

TABLE 6. (CONTINUED)

	IV/450-452	Configuration	₩	<pre>Lateral-Directional Characteristics of Various Boosters on Configuration (01)T2 at Beta = 6</pre>
	644-044/AI	Configuration	А	<pre>Longitudinal Characteristics of Various Boosters on Configuration (01)T2 at Beta = 6</pre>
	IV/432-439	Configuration	a	Effect of Tank T2 Longitudinal Position on (01)T2 with Beta at Alpha = 0
· · · · · · · · · · · · · · · · · · ·	IV/412-431	Configuration	A	Effect of Tank T2 Longitudinal Position on (01)T2 at Beta=0
	IV/403-411	Rudder Deflection	쓩	Effects of Alpha on Rudder Effectiveness of Configuration (OlV1)T1 at Beta = 0
	IV/391-402	Rudder Deflection	a	Rudder Effectiveness of Configuration (OlV1)T1 at Alpha = 0
	IV/386-390	Mach No.	ĸ	<pre>Iongitudinal Characteristics of (OlVI)TI with Ailerons=20 at Alpha = 0</pre>
	IV/383-385	Mach No.	Ð	Lateral-Directional Characteristics of (OlVI)T1 with Ailerons = 20 at Alpha = 0
-	IV/380-382	Mach No.	₩	Lateral-Directional Characteristics of (OlV1)T1 with Ailerons = 20 at Beta = 0
	IV/370-379	Mach No.	A	<pre>Longitudinal Characteristics of (OlVI)TI with Ailerons=20 at Beta = 0</pre>
	IV/361-369	Aileron Deflection	Ð	Effects of Beta on Aileron Effectiveness of Configuration (OlV1)Tl at Alpha = 0
	IV/352-360	Aileron Deflection	В	Aileron Effectiveness of Configuration (OlV1)T1 at Beta = 0
	VOLUME/ PAGE NO.	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	C

TABLE 6. (CONTINUED)

TITLE	COEFFICIENTS SCHEDULE	CONDITIONS VARYING	VOLUME/ PAGE NO.
Effects of Beta = 6 on Longitudinal Characteristics of Configuration (O1)T3	ics A	Beta	IV/453-472
Effects of Beta = 6 on Lateral-Directional Characteristics of Configuration (O1)T3	cteristics B	Beta	IV/473-478
Effects of Beta on Longitudinal Characteristics of (O1)T4	of (O1)T4 A	Beta	IV/479-488
Effects of Beta on Lateral-Directional Characteristics of (O1)T4	istics B	Beta	IV/489-491
Longitudinal Characteristics of Configuration TLB5 at Beta = 0	.B5 at A	Mach No.	IV/492-501
Lateral-Directional Characteristics of Configuration T1B5 at Alpha = 0	tion C	Mach No.	IV/502-505
Longitudinal Characteristics of Configuration TLB6 at Beta = 0	.B6 at A	Mach No.	IV/506-515
<pre>Lateral-Directional Characteristics of Configuration T1B6 at Alpha = 0</pre>	tion C	Mach No.	IV/516-519
Longitudinal Characteristics of Configuration T3B2 at Beta = 0	3B2 at A	Mach No.	IV/520-529
Lateral-Directional Characteristics of Configuration T3B2 at Alpha = 0	ıtion C	Mach No.	IV/530-533
Longitudinal Characteristics of Configuration T3B5 at Beta = 0	\$B5 A	Mach No.	IV/534-543
<pre>Lateral-Directional Characteristics of Configuration T3B5 at Alpha = 0</pre>	tion C	Mach No.	IV/544-547

TABLE 6. (CONTINUED)

Lon	roj	Eff	1.7E	12	E F	1.1	Eff	智	12 E	1.1	330	TULL
Longitudinal at Beta =	Longitudinal	Effects of of OlCl	Effects of of OlCl	Effects of Ol	Effects o	Effects of of OlVl	Effects o	胚fects o OlVl	Effects o	Effects of Ol	Effects o	H
				of Beta l V Of	of Beta	of Beta LVI	of Beta	of Alp	of Alp t Beta	of Beta l	of Beta	
harac	haracı	Beta on 1	Beta on 1	нg	g	a o	a on]	ha on	Alpha on ta = 0	g	a on i	
Characteristics o	Characteristics	Latera	Latera	Latera	bongi t	Latera	Longit	Rudde	Rudder	Latera	Gongit	
ics of	ics of	1-Dire	l-Dire	1-Dire	udina.	1-Dir	udina.	r Effe	r Eff	1-Dir	udina.	
Various	Various	ction	ction	Lateral-Directional	. Char	Lateral-Directional	Char	Alpha on Rudder Effectiveness	Effectiveness	ection	Char	
		Lateral-Directional Characteristics	Lateral-Directional Characteristics	al Cha	Longitudinal Characteristics	al Cha	on Longitudinal Characteristics			Lateral-Directional Characteristics	on Longitudinal Characteristics of Ol	
Boosters	Tanks at	racter	racter	Characteristics	st ics	Characteristics	stics	of Configuration	of Configuration	racter	stics	
Alone	Beta	istics	istica	istic	V Off	istice	of OIVI	'i gurat	igura	istic	of 01	
(b	0	0,2	u2	u	Off	u	ב	tion	tion	a		Ω
A	Α	. В	ㅂ	В	A	₩	Α	ы	В	ь	А	ECHEDULE COEFFICIENIS
												SIMEL
Confi,	Confi.	Beta	Beta	Beta	Beta	Beta	Beta	Rudde	Rudde	Beta	Beta	CONDITIONS VARYING
Configuration	Configuration							r Defj	r Def]			TIONS
go	qo							Rudder Deflection	Rudder Deflection			
								p	Þ			
۷/	٧/	٧/	∀ /	4	۷/	۷/	</td <td>V</td> <td>4</td> <td>. 4</td> <td></td> <td>h <</td>	V	4	. 4		h <
V /262-301	v/202-261	V/187-201	v/172-186	v/163-171	v/133-162	V/124-132	v/94-123	v/91-93	v/79-90	v/61-78	V/1-60	VOLUME/ PAGE NO.
	—— <u> </u>	<u> </u>	<u> </u>	<u> </u>	™.	آن	ٽٽ 					

TABLE 6. (CONTINUED)

-	င္ပ	<u>α</u>	₽ .	F	<u></u>	<u>g</u>	<u>г</u>	 5	<u></u>	H
Comparison of Longitudinal Characteristics of Booster Bl with Various Flaps	Comparison of Longitudinal Characteristics of Booster Bl with Flaps D2 at Various Deflection	Comparison of Longitudinal Characteristics of Booster Bl with Larger Aft Flares S	Lateral-Directional Characteristics of Various Boosters Alone at Alpha = 0 and Tank 3 MRC	Lateral-Directional Characteristics of Various Boosters Alone at Alpha = 0 and Tank 1 MRC	Lateral-Directional Characteristics of Various Boosters Alone at Alpha = 0 and Nominal MRC	Iateral-Directional Characteristics of Various Boosters Alone at Beta = 0 and Tank 3 MRC	Lateral-Directional Characteristics of Various Boosters Alone at Beta = 0 and Tank 1 MRC	Iongitudinal Characteristics of Various Boosters Alone at Beta = 0 and Tank 3 MRC	Longitudinal Characteristics of Various Boosters Alone at Beta = 0 and Tank 1 MRC	TTTLE
A	Α.	A	Ω	Q	G		뮹	A	А	PLOTTED COEFFICIENTS SCHEDULE
Flap Deflection	Flap Deflection	Configuration	Configuration	Configuration	Configuration	Configuration	Configuration	Configuration	Configuration	CONDITIONS VARYING
v/584-643	v/524-583	V/ 454-523	v /438-453	V/422-437	V/406-421	v/394-405	√/382-393	v/342-381	V/302-341	VOLUME/ PAGE NO.

TABLE 6. (CONCLUDED)

PLOTTED COEFFICIENTS SCHEDULE:

- (A) CN, CA, CAF, CLM, CL & CDF vs. ALPHA
 CN & CL vs. CLM, CL & CLSQR vs. CDF
- (B) CY, CYN & CBL vs. ALPHA
- (C) CY, CYN, CBL & CAF vs. BETA
- (D) CY, CYN, CBL vs. BETA
- (E) CN, CAF, CLM, CL & CDF vs. BETA

Notes:

- Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

Figure 4. General Arrangement-Ascent Configuration $O_{
m 1}T_{
m 1}B_{
m 1}$

Figure 9. General Arrangement-Ascent Configuration OlT4B7-4 (Side View)

íå

Figure 10. General Arrangement-Ascent Configuration OlT4B7-4 (Top View)

C. 2

Figure 12. Centerline HO Tank Locations

Figure 13. Moment Transfer Diagram for Ascent Configuration

MOMENT TRANSFER DIAGRAM ORBITER ALONE

All dimensions are model scale, in inches Orbiter stations are given in both full scale and model scale dimensions.

Figure 14. Moment Transfer Diagram for Orbiter Alone

MOMENT TRANSFER DIAGRAM CENTERLINE TANK ALONE

Figure 15 Moment There is not the

Figure 15. Moment Transfer Diagram for Centerline Tank Alone

MOMENT TRANSFER DIAGRAM B₁ Booster Alone

		Dimension	
TANK	Α	В	C
-	1.664	0.238	3.222
^T 2	1.664	0.238	3.222
ယ္	1.732	0.297	3.502

Booster Alone

X = 4.386" From nose

Figure 16. Moment Transfer Diagram for Bl Booster Alone

MOMENT TRANSFER DIAGRAM B₂ and B₂S Boosters Alone

3.664	0.037	1.483	ယ ံ
3.222	0.058	1.420	^T 2
3.222	0.058	1.420	-
C	B	Α	TANK
	DIMENSION	DIA	<u>.</u>

Booste
Alone

= 4.091" From nose

0

MOMENT TRANSFER DIAGRAM B₃ Booster Alone

Figure 18.

Moment Transfer Diagram for B3 Booster Alone

104

MOMENT TRANSFER DIAGRAM
B₄ Booster Alone

_				٠
	1.505	0.04/	1.//4	تد
	3		7 77%	₹ ,
	1.502	0.047	1.709	
		0.0		
	7 500	0 047	7 700	7
	C	따	Α	TANK
		DIMENSION		
•				

Booster Alone

X = 3.152" From nose

Figure 19. Moment Transfer Diagram for B4 Booster Alone

Notes:

- All dimensions are in inches
- Model values are shown in parentheses.

Figure 21. Orbiter Body, B₁

.. Figure 22. Wing and Elevon, W_1

ELEVON DEFLECTIONS

RUDDER TYPICAL

NOTES: I. DIMENSIONS ARE IN INCHES 2. Cr IS RUDDER LOCAL CHORD.
3. MODEL VALUES SHOWN IN PROSERTIES.

Note: Additional rudder flare angle of ± 17.5° was tested at 11 = .6, .9, 1.2 for lateral-directional data

Elevon Deflections and Rudder Flare Figure 23.

NOTES: I. ALL DIMENSIONS ARE IN INCHES. 2. MODEL VALUES ARE SHOWN IN PARENTHESIS. X 1265 - 288 (1.727) -8 15 X1553 -65.9-- 43.8 109.7-183 (1008) 270 (1.620) 40.5

Figure 24. Vertical Fin and Rudder, V1

VO - LARGER AREA CENTERLINE VERTICAL TAIL AND RUDDER

$$S_V = 2.514 \text{ in}^2$$
 $C_R = 1.728 \text{ in}$
 $C_T = 0.542 \text{ in}$
 $C_T = 0.310$
 $C_T = 0.310$
 $C_T = 0.310$

Note: All dimensions are model scale in inches.

Figure 25. Vertical Fin and Rudder, V_2

MCDONNELL DOUGLAS CORPORATION

ACPS ENGINE POD ~ PI

NOTES:
I.ALL DIMENSIONS ARE IN
INCHES.
2. MODEL VALUES ARE SHOWN
IN PARENTHESIS.

OMS ENEINE FOD ~ MI

AX	R
0	0
25.0	15.0
<i>58.</i> 3	23.7
75.0	28.0
100.0	29.5
133.0	29.2
245.0	24.0

Figure 26. ACPS Engine Pod, Pl and OMS Engine Pod, Ml

All dimensions are model scale, in inches.

Figure 28. Centerline HO Tank, T2

Figure 29. Centerline HO Tank, T3

TANK VENTRAL FIN, F1

All dimensions are model scale, in inches

Figure 31. Centerline Ventral Fin, Fl

8.85° Ref

1.916 dia.

Figure 32. Boosters, B_1 and B_5

↑ 2.194 →

Figure 33. Booster, B₁S₁

Figure 34. Booster, B₁S₂

Figure 35. (Continued)

Figure 36. Booster, B_1D_6

Figure 37. Booster, BlD7

Figure 38. Boosters, B2, B28 & B6

125

Figure 39. Booster, B3

Figure 40. Booster, B4

KINGTINE BY TISHE COALES FULL

TRM OIZOTA

0.6% SCALE MODEL

Figure 42. Booster, B7A1

FORM 25-9P (P-V. 5-69)

Figure

¥3.

Plume

Contours

for

Pressure

Fed

Boosters

PREPARED BY:	MCDONNELL DOUGLAS ASTRONAUTICS	COMPANY	PAGE:
CATE:		_DIVISION	MODEL:
TPTLE:			REPORT NO :

η 6 7 8 9 76 . sano. DR PRES E FED 2 α 130

KE TAGENTATED LA 3251

FORM 25-BF

PREPARED BY:	MCDONNELL DOUGLAS ASTRONAUTICS COMPA	NY PAGE:
CHECKED BY:	DIVISIO	N MODEL:
DATE:	UNISIO	MODEL:
TITLE:		REPORT NO.:

PLUME 2 n ? 131 ::::

Figure 44. Plume Contours for 156 Inch Solid Rocket Motors

KOR ALBANENE® LA 3251

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY PREPARED BY . CHECKED BY

Figure

... 0 w -8

720011.

Figure 46. Sketch of Plume for Booster B_7

MI.5 PLUME-By BOOSTER

PUNE-BY BOOSTER

Figure 47. Tunnel Installation for the OBT Configuration-Pitch Series (Orbiter, Tank and Booster Independently Supported)

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Boosters and Orbiter fixed to centerline tank.

Figure 48. Tunnel Installation for the OBT Configuration-Pitch Series (Booster and Orbiter Fixed to Centerline Tank)

135

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Boosters fixed to centerline tank.

Figure 49. Tunnel Installation for the OBT Configuration-Pitch Series (Booster Fixed to Centerline Tank)

Figure 50. Tunnel Installation for the OBT Configuration-Pitch Series (Right Booster Fixed to Centerline Tank, Left Booster Independently Supported)

137

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Figure 51. Tunnel Installation for the OBT Configuration-Pitch Series (Left and Right Booster Independently Supported)

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Figure 52. Tunnel Installation for the OBT Configuration With 6° Sideslip Angle-Pitch Series (Boosters Fixed to Centerline Tank)

Figure 53. Tunnel Installation for the OBT Configuration With $^{
m O}$ Angle of Attack-Yaw Series (Boosters Fixed to Centerline Tank)

Figure 54. Tunnel Installation for the OBT Configuration With $6^{\rm O}$ Angle of Attack-Yaw Series (Boosters Fixed to the Centerline Tank)

Figure 55. Tunnel Installation for the Orbiter Alone Configuration

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Figure 56. Tunnel Installation for the Tank Alone Configuration

TUNNEL INSTALLATION FOR THE OBT CONFIGURATION PITCH SERIES

Figure 57. Tunnel Installation for the Booster Alone Configuration

DATA FIGURES

Tabulations of the plotted data and corresponding source data are available from SADSAC Operations.

MACH .56

PAGE

1.07

PAGE

MACH 2.20

PAGE

J

6

MACH 4.47

.56

PAGE

.89

PAGE

1.07

PAGE

1.51

PAGE

MACH 2.20

PAGE

4.47

PAGE

.56

PAGE

MACH 1.07

PAGE

MACH 2.20

PAGE

MACH 4.47

PAGE 18

.56 MACH

19

PAGE

MACH 1.07

PAGE

1.51 MACH

MACH 2.20

PAGE

MACH 4.47

PAGE

MACH .56

PAGE

MACH 1.07

PAGE

1.51

PAGE

MACH 2.20

PAGE

4.47

PAGE

.56

PAGE

MACH

1.07

PAGE

MACH 2.20

PAGE

MACH .56

PAGE

PAGE

MACH .89

MACH 1

1.07

PAGE

MACH

1.51

PAGE

MACH 2.20

PAGE

MACH 4.47

PAGE

MACH .56

PAGE

.89 MACH

MACH 1.07

PAGE

1.51

C 3

MACH .56

PAGE

MACH .89

MACH 1.07

PAGE

PAGE

52

MACH 1.51

MACH 2.20

PAGE

MACH

.56

PAGE

PAGE

56

MACH .

.89

MACH ' 1.07

MACH

1.51

MACH 2.20

PAGE

MACH 4.47

MACH .56

PAGE |61

MACH 1.07

PAGE

MACH 2.20

PAGE

MACH 4.47

PAGE

MACH

PAGE

MACH .89

PAGE

2.20

PAGE

MACH 4.47

PAGE

.56

PAGE

MACH 1.07

PAGE

PAGE

MACH 1.51

i

PAGE

MACH 4.47

PAGE

PAGE

MACH 1.07

PAGE

PAGE : 83

.89

MACH 1.07

PAGE

PAGE

.56

PAGE

MACH 1.07

PAGE

PAGE

2.20 MACH

PAGE

PAGE

2.20

MACH 1.08

PAGE

PAGE

.89

PAGE

-

масн .89

PAGE

PAGE 105

ij

MACH 1.08

MACH 1.08

PAGE

.89

PAGE

.89

MACH

MACH 1.08

MACH 2.20

MACH .89

. 89

.89

PAGE

MACH 1.08

.89

1.08

PAGE

2.20

MACH

PAGE

.89

PAGE

1 02

PAGE

2.20

.89

MACH 1.08

MACH 2.20

PAGE

141

.89

MACH 1.08

2.20

C. 4

MACH 1.08

2.20

1.08

.89

1.08

MACH 2.20

MACH 1.08

PAGE 155 '

2.20

MACH

.89

PAGE

157

MACH 2.20

PAGE

159

PAGE

.89

MACH

MACH 1.08

1.08

2.20

PAGE

165

2.20

MACH .89

MACH 2.20

.56

PAGE

172

.89

MACH 1.08

:

2.20

PAGE

175

4.47

2.20

PAGE

.89

PAGE

PAGE

MACH 1.08

4.47

.89

1.08

4.47

PAGE

PAGE

ţ

PAGE

PAGE

PAGE

2.20

MACH

PAGE

PAGE 222

MACH

PAGE

LIFT COEFFICIENT SQUARED. CLSOR

DATA SET SYMBOL CONFIGURATION DESCRIPTION	BETA	REFE	RENCE INFORMATION	ч
(CD76D1) Q DATA NOT AVAILABLE FOR ALL CONDITIONS (CD76D2) A DATA NOT AVAILABLE FOR ALL CONDITIONS (CD76D3) A DATA NOT AVAILABLE FOR ALL CONDITIONS (CD76D4) HDAC S-222 TANK ALONE T4	0.000 0.000 0.000 0.000	SREF LREF BREF XMRP YMRP	3155.3040 SQ.F 609.5004 IN. 882.0004 IN. 557.0004 IN. 0.0000 IN.	
		ZMRP Scale	200.0004 IN. 0.0060	

MACH

7.

.58

.90

LIFT COEFFICIENT SQUARED. CLSQR

DATA SET SYMBOL CONFIGURATION DESCRIPTION	BETA	REFERENCE INFORMATION
(CD7601) DATA NOT AVAILABLE FOR ALL CONDITION (CD7603) DATA NOT AVAILABLE FOR ALL CONDITION (CD7604) DATA NOT AVAILABLE FOR ALL CONDITION (CD7604) DATA NOT AVAILABLE FOR ALL CONDITION MDAC S-222 TANK ALONE T4	4s 0.000	SREF 3155.3040 SQ.FT. LREF 609.5004 IN. EREF 882.0004 IN. XMRP 557.0004 IN. YMRP 0.0000 IN. ZMRP 200.0004 IN. SCALE 0.0060

MACH 1.51

MACH 4.47

MACH .90

MACH 1.10

MACH

1.51

MACH .90

MACH 1.51

4.47

261

MACH

MACH

265

MACH 4.47

COEFFICIENT.

FORCE

MACH 4.47

.89

MACH

MACH 4.47

PAGE : 277

279

MACH 1.08

MACH 4.47

PAGE '281

MACH

MACH 1.08

PAGE

283

MACH

MACH

MACH 1.08

DATA SET SYMBOL	CONFIGURATION DESCRIPTION		BETA	REFE	RENCE INFORMATION
(CD7802) A MC (CD7803) A MC (CD7804) MC	DAC S-222 BOOSTER ALONE (NOM.	CG) B2 CG) B2S CG) B3	0.000 0.000 0.000 0.000 0.000	SREF LREF BREF XMRP YMRP ZMRP SCALE	3155.3040 SQ.FT. 609.5004 IN. 882.0004 IN. 731.0004 IN. 0.0000 IN. 0.0000 IN.

MACH .89

·					
DATA SET SYMBOL CONFIGURATION DESCRIPTION	ON	BETA	REF	FERENCE INFORMATION	
(CD7801) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10M. CG) B1	0.000	SREF	3155,3040 SQ.FT.	
(CD7802) ADAC S-222 BOOSTER ALONE (10M. CG) B2	0. 000	LREF	609.5004 IN.	
(CD7803) . MDAC S-222 BOOSTER ALONE (10M. CG) 82S	0.000	BREF	882.0004 IN.	
(CD7804) MDAC S-222 BOOSTER ALONE (0.000	XMRP	731.0004 IN.	
(CD7805) T MDAC S-222 BOOSTER ALONE (10M. CG) B4	0.000	YMRP	0.0000 IN.	
			ZMRP	0.0000 IN.	
•			SCALE	0.0060	

MACH

1.08

MACH

4.47

MACH 4.47

MACH 1.08

MACH 2.20

PAGE 301

MACH 4.47

1.08 MACH

MACH 2.20

MACH 4.47

PAGE

305

MACH 1.08

4.47 MACH

COEFFICIENT.

FORCE

PAGE

309

MACH 1.08

CAF

COEFFICIENT.

FORCE

FOREBODY AXIAL

1.08 MACH

MACH 4.47

MACH

.89

PAGE 318'

MACH 1.08

MACH 2.20

PAGE : 328

(CD78A1) (CD78A2) (CD78A3) (CD78A4) (CD78A5)	CHOCH	MDAC S-22: MDAC S-22: MDAC S-22: MDAC S-22: MDAC S-22:	BOOSTER BOOSTER BOOSTER	ALONE ALONE ALONE	(T1-CG) (T1-CG) (T1-CG)	81 82 82s 83 64	•	0.000 0.000 0.000 0.000	SREF LREF BREF XMRP YMRP - ZMRP SCALE	3155.3040 609.5004 882.0004 557.0004 277.3004 200.0004 0.0060	SQ.FT. IN. IN. IN. IN.

330

MACH

.89

MACH 1.08

C. 6

MACH 2.20

4.47

MACH 1.08

MACH 1.08

PAGE 355.

MACH

.89

MACH 2.20

4.47 MACH

MACH

.89

REFERENCE INFORMATION
SREF 3155.3040 SQ.FT. LREF 609.5004 IN. BREF 882.0004 IN. XMRP 557.0004 IN. YMRP - 288.7004 IN. ZMRP 200.0004 IN. SCALE 0.0060

1.08 MACH

3155,3040 609,5004 882,0004 557,0004 288,7004 200,0004 SREF LREF BREF XMRP YMRP ZMRP SCALE SQ.FT. IN. IN. IN. IN. MDAC S-222 BOOSTER ALONE (T3-CG)
MDAC S-222 BOOSTER ALONE (T3-CG)
MDAC S-222 BOOSTER ALONE (T3-CG)
MDAC S-222 BOOSTER ALONE (T3-CG)
MDAC S-222 BOOSTER ALONE (T3-CG) 0.000 0.000 0.000 0.000 82 82\$ 83 84

PAGE : 372

1.08 MACH

MACH 1.08

MACH 1.08

MACH .89

MACH 1.08

MACH 2.20

MACH 1.08

1.08 MACH

MACH! 1.08

CAF

COEFFICIENT.

FORCE

FOREBODY AXIAL

PAGE

419

.89

PAGE . 425

MACH 1.08

1.08

MACH 2.20

C.7

MACH 1.08

4.47

MACH 1.08

MACH 4.47

MACH 1.08

MACH 4.47

MACH .65

MACH

1.51

MACH 2.50

MACH

4.47

MACH 1.51

MACH 2.50

MACH 4.47

MACH .98

1.09

MACH 2.50

MACH 1.51

MACH .95

498

.98 MACH

MACH 1.09

MACH 4.47

MACH .98

MACH 1.09

MACH

MAÇH 4.4

MACH .65

MACH .98

MACH 1.09

MACH . 2.50

MACH 4.47

MACH .65

MĄCH

.98

PAGE

519

MACH - 1.51

MACH

MACH 4.47

BETA FLAPS 0.000 75.000 0.000 75.000 0.000 45.000 REFERENCE INFORMATION
SREF 3155.3040 SQ.FT.
LREF 609.9004 IN.
XMRP 731.0004 IN.
XMRP 731.0000 IN.
ZMRP 0.0000 IN.
SCALE 0.0060 SCALE

MACH .94

1.51 MACH

PAGE 527

SCALE

MACH 4.47

MACH .65

BETA FLAPS 0.000 75.000 0.000 75.000 0.000 45.000

REFERENCE INFORMATION
SREF 3155.3040 SQ.FT.
LREF 609.5004 IN.
SMRP 6862.0004 IN.
XMRP 751.0004 IN.
YMRP 0.0000 IN.
ZMRP 0.0000 IN.
SCALE 0.0060 SCALE

MACH

.94

MACH 1.10

MDAC S-222 BOOSTER ALONE (NOM, CG) B1D2
DATA NOT AVAILABLE FOR ALL CONDITIONS
DATA NOT AVAILABLE FOR ALL CONDITIONS

0.000 75.000 75.000 45.000

3155.3040 609.5004 882.0004 SQ.FT. IN. IŅ. XMRP YMRP ZMRP SCALE 731.0004 0.0000 0.0000 0.0000 IN. IN. IN. SCALE

MACH

1.51

MACH 2.50

MACH 4.47

MACH

.65

MDAC S-222 BOOSTER ALONE (NOM. CG) B1D2
DATA NOT AVAILABLE FOR ALL CONDITIONS
MDAC S-222 BOOSTER ALONE (NOM. CG) B1D2 (CD7808)

75.000 75.000 45.000 0.000

LREF BREF XMRP YMRP IN.
IN.
IN.
IN.
SCALE 882.0004 731.0004 0.0000 ZMRP SCALE 0.0060

MACH

FOREBODY AXIAL FORCE COEFFICIENT, CAF

.94

PAGE

537

MACH 1.10

MACH 1.51

2.50

MACH 4.47

.94

MACH 1.10

MACH 1.51

MACH 4.47

.65

MACH .94

MACH 1.51

4.47

MACH

PAGE

553

MACH .94

1

MACH

1.10

1.51

IN.
IN.
IN.
IN.
SCALE 882.0004 731.0004 0.0000 SCALE

PAGE

557

MACH 4.47

.65

. 94

1.51 MACH

SQ.FT. IN. IN. IN. 882.0004 731.0004 0.0000 BREF YMRP ZMRP

IN. SCALE 0.0060 SCALE

PAGE

563

2.50

MACH 4.47

MACH .94

1.10

MDAC S-222 BOOSTER ALONE (NOM. CG) B1D2 DATA NOT AVAILABLE FOR ALL CONDITIONS DATA NOT AVAILABLE FOR ALL CONDITIONS 0.000 0.000 0.000 (CD7808)ⁱ (CD7809)

75.000 75.000 45.000

SQ.FT.
IN.
IN.
IN.
IN.
IN.
SCALE SREF 3155.3040 609.5004 EREF BREF XMRP YMRP ZMRP SCALE 882.0004 731.0004 0.0000 0.0060

1.51 MACH

MACH 4.47

1.10

PAGE

579

MACH

1.09

MACH 2.50

PAGE '589

MACH

.65

PAGE 599

i

MACH 2.50

610

1.09

MACH

MACH 1.51

2.50

MACH

MACH 4.47

.65

MACH

MACH 1.51

1.51 MACH

PAGE

629

C. 9

MACH 4.47

MACH .94

٠,

MACH

2.50

MACH 4.47

MACH .94

MACH 1.09

MACH 1.51

MACH 2.50

ì

MACH 4.47