(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-59263

(43)公開日 平成9年(1997)3月4日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	F I	技術表示箇所
C 0 7 D 251/24			C 0 7 D 251/24	
B01J 27/125			B 0 1 J 27/125	x
// CO7B 61/00	300		C 0 7 B 61/00	300

審査請求 未請求 請求項の数8 FD (全 8 頁)

(22)出顧日 平成7	₩ (100E) Q ₩ 11 □		旭電化工業株式会社
(22)出顧日 平成7	· 左 /100C\ O 目 11 日		
	'年(1995) 8月11日		東京都荒川区東尾久7丁目2番35号
		(72)発明者	木村 破治
			埼玉県浦和市白幡 5 丁目 2 番13号 旭電化
			工業株式会社内
		(72)発明者	南部 洋子
			埼玉県浦和市白幡5丁目2番13号 旭電化
			工業株式会社内
		(5.4) (5.77)	
		(74)代理人	弁理士 三浦 良和

(54) 【発明の名称】 2-(2', 4'-ジヒドロキシフェニル)-4,6-ジアリール-s-トリアジン誘導体の製造方法

(57)【要約】

【課題】 少ない工程数で高収率に2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリール-s-ト リアジン誘導体を製造する方法を提供する。

【解決手段】 塩化シアヌルと特定のフェノール化合物 (I)を反応させて、フェニルオキシジクロローsートリアジンとする工程Iと、得られた化合物と特定のフェ

ニル化合物をルイス酸触媒で反応させて2-フェニルオキシ-4,6-ジアリールーs-トリアジンとする工程IIと、得られた化合物と特定のフェノール化合物(V)をルイス酸触媒で反応させる下記2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリールーs-トリアジン誘導体(VI)の製造方法。【化1】

(スパー R)、R。およびR。は各々独立に水業原子、ハロゲン原子、快業原子鉄1~10 のアルキル基。アルコキン基金たはアルコキシカルボニル基を表し、 R。は水業原子、炭素原子鉄1~10のアルキル基、アルケニル基を表し、 R。およびR。は各々数にか未販売子、炭素原子数1~10のアルキル基、アルケニル基、アルウェル基、アルウェル基、アルウェル基、アルウェル基、アルウェル基、アルウェル基、アルロキン基を表す。

【特許請求の範囲】

【請求項1】 (a)塩化シアヌルと下記一般式(I)で表されるフェノール化合物を反応させ、下記一般式(II)で表されるフェニルオキシジクロローsートリアジンとする工程Iと、

(b) 一般式(II) の化合物と下記一般式(III) で表されるフェニル化合物をルイス酸触媒で反応させ、下記一般式(IV)で表される2-フェニルオキシー4.6-ジアリール-s-トリアジンとする工程II

(c) 一般式(IV)の化合物と下記一般式(V)で表されるフェノール化合物をルイス酸触媒で反応させ、下記一般式(VI)で表されるトリアジン誘導体とする工程IIIからなる2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリール-s-トリアジン誘導体の製造方法。

【化1】

$$HO - R_2$$

(1)

(式中、R₁およびR₂は各々独立に水素原子、炭素原子数1~10のアルキル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表す。)

【化2】

$$\begin{array}{c|c}
C1 & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R_1 & \\
R_2
\end{array}$$
(11)

(式中、 R_1 および R_2 は各々独立に水素原子、炭素原子数 $1\sim 10$ のアルキル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表す。)

【化3】

$$R_s \longrightarrow R_s$$
 ([11])

(式中、R₃、R₄およびR₅は各々独立に水素原子、ハロゲン原子、炭素原子数 1~10のアルキル基、アルコキシ基またはアルコキシカルボニル基を表す。)

【化4】

$$\begin{array}{c|c}
R_1 \\
R_2 \\
\hline
R_4 \\
R_5
\end{array}$$

$$\begin{array}{c|c}
R_1 \\
R_3 \\
R_4 \\
R_5
\end{array}$$

$$\begin{array}{c|c}
R_1 \\
R_3 \\
R_4 \\
R_5
\end{array}$$

(式中、 R_1 および R_2 は各々独立に水素原子、炭素原子数 $1\sim10$ のアルキル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表し、 R_5 、 R_4 および R_5 は各々独立に水素原子、ハロゲン原子、炭素原子数 $1\sim10$ のアルキル基、アルコキシ基またはアルコキシカルボニル基を表す。)

【化5】

(式中、 R_6 は水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基を表し、 R_7 および R_6 は各々独立に水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基、アルコキシ基、ヒドロキシ基を表す。)

【化6】

$$\begin{array}{c|c}
 & ORe \\
\hline
R_7 & OH \\
\hline
R_8 & OH \\
\hline
R_9 & R_9 \\
\hline
R_4 & R_6 \\
\hline
R_5 & R_6
\end{array}$$
(V1)

(式中、 R_3 、 R_4 および R_5 は各々独立に水素原子、ハロゲン原子、炭素原子数 $1\sim10$ のアルキル基、アルコキシ基またはアルコキシカルボニル基を表し、 R_6 は水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基を表し、 R_7 および R_6 は各々独立に水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基、アルケニル基、アルカニル基、アルコキシ基、ヒドロキシ基を表す。)

【請求項2】 工程 I において、化合物 (I) を塩化シアヌルの0.8~1.2倍モル用いることを特徴とする請求項1記載の2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリール-s-トリアジン誘導体の製造方法。

【請求項3】 工程IIにおいて、化合物(III)を 化合物(II)の1.8~20倍モル用いることを特徴 とする請求項1記載の2-(2', 4'-ジヒドロキシフェニル) -4, 6-ジアリール-s-トリアジン誘導体の製造方法。

【請求項4】 工程IIIにおいて、化合物(V)を化合物(IV)の0.8~1.2倍モル用いることを特徴とする請求項1記載の2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリール-s-トリアジン誘導

体の製造方法。

【請求項5】 工程Ⅰをルイス酸触媒を用いて、50℃ 以下で行うことを特徴とする請求項1記載の2- $(2', 4' - \forall E F D + \forall D + \exists D + \exists$ リールーsートリアジン誘導体の製造方法。

【請求項6】 工程IIを化合物(II)の0.2~ 1. 2倍モルのルイス酸触媒を用いて、80~120℃ で行うことを特徴とする請求項1記載の2-(2), 4'-ジヒドロキシフェニル)-4,6-ジアリールー s-トリアジン誘導体の製造方法。

【請求項7】 工程IIIを化合物(IV)の0.5~ 1. 2倍モルのルイス酸触媒を用いて、80~120℃ で行うことを特徴とする請求項1記載の2-(2', 4'-ジヒドロキシフェニル)-4.6-ジアリールー sートリアジン誘導体の製造方法。

【請求項8】 工程 I 、工程 I I 、工程 I I I を連続的 にワンポットで行うことを特徴とする請求項1記載の2 -(2', 4'-5')アリールーsートリアジン誘導体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、2-(2',4' ージヒドロキシフェニル) -4,6-ジアリール-s-トリアジン誘導体の製造方法に関し、詳しくは、モノフ ェノキシトリアジン誘導体を経由して少ない工程数で高 収率に2-(2', 4'-ジヒドロキシフェニル)-4,6-ジアリールーs-トリアジン誘導体を製造する 方法に関する。

[0002]

【従来の技術及び問題点】2-(2',4'-ジヒドロ キシフェニル) -4,6-ジアリール-s-トリアジン 誘導体は紫外線吸収物質または紫外線吸収物質を製造す る際の出発物質として重要である。

【0003】この2-(2',4'-ジヒドロキシフェ

ニル) -4,6-ジアリール-s-トリアジン誘導体の 製造方法としては、特公昭42-15700号公報に は、ジアリールクロロトリアジンとm-レゾルシノール を三塩化アルミニウム触媒で反応することが提案されて いる。また、ここで用いられるジアリールクロロトリア ジンは、英国特許884802号において、塩化シアヌ ルとアリール化合物から合成することが提案されてい る。しかし、塩化シアヌルとアリール化合物の反応の選 択性が低いため、前記の反応ではモノ体やトリ体を副生 するために低収率であり、実用的ではなかった。 【0004】また、特開平5-70443号公報にはべ

ンズアミジンハロゲン化水素酸塩から2-ヒドロキシー 4,6-ジアリールトリアジンを経由して製造する方法 が提案されているが、収率については改善されるものの 工程が煩雑で実用化には満足のいくものではなかった。 [0005]

【課題を解決するための手段】本発明者等は、上記の現 状に鑑み鋭意検討を重ねた結果、(a)塩化シアヌルと 下記一般式(I)で表されるフェノール化合物を反応さ せ、下記一般式(II)で表されるフェニルオキシジク ロローsートリアジンとする工程Iと、(b)一般式 (II)の化合物と下記一般式(III)で表されるフ ェニル化合物をルイス酸触媒で反応させ、下記一般式 (IV)で表される2-フェニルオキシ-4,6-ジア リールーsートリアジンとする工程IIと、(c)一般 式(IV)の化合物と下記一般式(V)で表されるフェ ノール化合物をルイス酸触媒で反応させ、下記一般式 (VI)で表されるトリアジン誘導体とする工程III から、2-(2',4'-ジヒドロキシフェニル)-4,6-ジアリールーs-トリアジン誘導体が容易に高 収率で得られることを見出し、本発明に到達した。以 下、上記要旨をもってなる本発明について詳述する。 [0006]

【化7】

(I)

(式中、R1およびR2は各々独立に水素原子、炭素原子数1~10のアル キル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表す。)

[0007]

【化8】

$$\begin{array}{c|c}
CI \\
N \\
O \\
\end{array}$$

$$\begin{array}{c|c}
R_1 \\
R_2
\end{array}$$
(11)

(式中、R1およびR2は各々独立に水素原子、炭素原子数1~10のアル キル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表す。) 【化9】

[0008]

$$R_s$$
 R_s
(111)

(式中、R3、R4およびR5は各々独立に水素原子、ハロゲン原子、炭素原子数 1~10のアルキル基、アルコキシ基またはアルコキシカルボニル基を表す。)

[0009]

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \end{array} \tag{1V}$$

(式中、R1およびR2は各々独立に水素原子、炭素原子数1~10のアル キル基、アルコキシ基、アルケニル基、ハロゲン原子、ニトロ基を表し、R₃、 R4およびR5は各々独立に水素原子、ハロゲン原子、炭素原子数1~10の アルキル基、アルコキシ基またはアルコキシカルボニル基を表す。)

[0010]

(式中、R6は水素原子、炭素原子数1~10のアルキル基、アルケニル基を 表し、R7およびR8は各々独立に水素原子、炭素原子数1~10のアルキル基、 アルケニル基、アルコキシ基、ヒドロキシ基を表す。)

[0011]

【化12】

$$R_{3}$$
 R_{4}
 R_{8}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{8}
 R_{1}
 R_{2}
 R_{3}

(式中、 R_3 、 R_4 および R_5 は各々独立に水素原子、ハロゲン原子、炭素原子数 $1\sim10$ のアルキル基、アルコキシ基またはアルコキシカルボニル基を表し、 R_6 は水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基を表し、 R_7 および R_5 は各々独立に水素原子、炭素原子数 $1\sim10$ のアルキル基、アルケニル基、アルケニル基、アルコキシ基、ヒドロキシ基を表す。)

【0012】前記各式中、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 、 R_7 および R_8 で表される炭素数 $1\sim10$ のアルキル基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルがあげられ、アルコキシ基、アルコキシカルボニル基としては前記アルキル基に対応する基があげられる。【0013】 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 、 R_7 および R_8 で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子があげられる。

【0014】工程 I においては、化合物 (I) /塩化シアヌルのモル比が $0.8\sim1.2$ であることが好ましく、 $0.9\sim1.1$ であることがより好ましい。この範囲を外れると目的物の生成率が低下して収率が低下するほか、精製が困難になる。

【0015】また、反応の触媒は用いても用いなくてもよく、触媒としては、塩基性触媒でもルイス酸でもよい。ルイス酸触媒を用いると反応時間が短縮され、後の工程と共にワンポットで化合物 (VI)を製造できるので、ルイス酸触媒を用いることが好ましい。反応温度は50℃以下が好ましい。50℃より高いと反応の選択性が低下してジ体が生成し、収率が低下するほか、精製が困難になる。

【0016】工程IIにおいては、化合物(III)/ 化合物(II)のモル比が1.8~20であることが好ましく、2.2~15であることがより好ましい。1. 8以下では収率が低く、20以上用いると反応時間が長くなる。

【0017】反応温度は、80~120℃が好ましく、90~120℃がより好ましい。80℃以下では反応がほとんど進行せず、120℃以上では副生物が増大して収率が低くなる。

【0018】また、反応触媒としては、ルイス酸が用いられ、通常は無水三塩化アルミニウムが用いられ、化合

物 (III) の0.2~1.2倍モル用いることが好ま しい。これ以下では生成率が低下し、これ以上用いても 反応時間はほとんど短縮されず経済的に不利になる。

【0019】工程 I I I においては、化合物 (V) /化合物 (IV) のモル比が $0.8\sim1.2$ とすることが好ましく、 $0.9\sim1.1$ とすることがより好ましい。0.8以下では収率が低く、1.2以上用いても収率は改善されず経済的に不利になる。

【0020】反応温度は、80~120℃が好ましく、90~120℃がより好ましい。80℃以下では反応がほとんど進行せず、120℃以上では副生物が増大して収率が低くなる。

【0021】また、反応触媒としては、ルイス酸が用いられ、通常は無水三塩化アルミニウムが用いられ、化合物(IV)の0.5~1.2倍モル用いることが好ましい。これ以下では生成率が低下し、これ以上用いても反応時間はほとんど短縮されず経済的に不利になる。

【0022】本発明の製造方法においては、各工程の終了毎に精製工程を取り入れてもよいが、反応工程を連結してワンポットで連続して反応させて化合物(VI)を製造することが、効率的であるため好ましい。また、原料の仕込み方法としては、連続して反応を行う場合には、塩化シアヌル、化合物(I)、化合物(III)およびルイス酸触媒を一括して仕込み、低温で工程Iを行ない、そのまま昇温して工程IIを行なってもよく、工程Iの原料と溶媒のみで工程Iを行なった後、工程IIの原料を仕込んで昇温して工程IIを行ってもよい。このようにして化合物(IV)を合成した後、化合物

(V)と必要に応じてルイス酸触媒を追加添加して工程 IIIを行ない、化合物 (VI)を製造する。

【0023】本発明によって得られる上記一般式(VI)で表される化合物としては、例えば、下記の化合物No.1~No.6等の化合物が挙げられる。

[0024] 【化13】 HO .CH3 化合物No. 1 -CH₃ CH: [0025] [0026] 【化15】 【化14】 化合物No.2 НО 化合物No.3 [0027] 【化16】 HO H₃C 化合物No. 4 [0028] 【化17】 C.H.70 CH3 化合物No.5 [0029] 【化18】

化合物No. 6

[0030]

【発明の実施の形態】本発明の方法による前記一般式 (VI)で表される化合物の具体的な合成の実施例を以下に示す。

【0031】(実施例1:化合物No.1の合成)塩化シアヌル55.3g(0.3モル)、p-クロロフェノール36.0g(0.28モル)、m-キシレン350g(3.3モル)に5~10℃で三塩化アルミニウム37.3g(0.28モル)を加え、35℃で3時間撹拌した。ガスクロマトグラフィー分析により、反応液中のmーキシレンおよび塩化シアヌルを除く成分の面積強度において99%の強度を示す2-(4'-クロロフェノキシ)-4,6-ジクロロトリアジンの生成を確認した。

【0032】前記反応液に三塩化アルミニウム18.7g(0.14モル)を追加し、105℃で4時間反応させた。ガスクロマトグラフィー分析により反応液中のmーキシレンを除く成分の面積強度において94%の強度を示す2-(4'-クロロフェノキシ)-4,6-ビス(2''.4''-ジメチルフェニル)トリアジンの生成を確認した。

【0033】この反応液を40℃まで冷却してレゾルシノール37.0g(0.34モル)、三塩化アルミニウム37.3g(0.28モル)を加え、90℃で5時間反応させた。3N塩酸水溶液および氷を加えて攪拌後、

水蒸気蒸留によりp-クロロフェノールおよび過剰のm ーキシレンを除去した。沈澱をろ取して乾燥し、ヘキサ ンで洗浄し、さらにキシレンより再結晶して融点229 ℃の淡黄色粉末87.3g(収率78.5%)を得た。 【0034】(比較例1:英国特許884802号およ び特開昭42-15700号公報に基づく化合物No. 1の合成)塩化シアヌル55.3g(0.3モル)、m キシレン127.2g(1.2モル)、三塩化アルミ ニウム48g(0.36モル)を室温で60時間反応さ せた。ガスクロマトグラフィーにより反応液中のmーキ シレンを除く成分の面積強度において、モノー体/ジー 体/トリー体の比は20/54/26であった。この反 応液にレゾルシノール37.4g(0.34モル)、三 塩化アルミニウム40g(0.3モル)を加え、110 ℃で5時間反応した。冷却して3N水溶液、氷を加えて 処理した。水蒸気蒸留により過剰のレゾルシノールとm ーキシレンを除去して、沈澱をろ取して乾燥し、さらに キシレンより再結晶して融点229℃の淡黄色粉末3 4.7g(収率31.2%)を得た。

[0035]

【発明の効果】上記実施例と比較例の結果から、本発明 の特定の製造方法を用いた場合には、従来知られていた 方法に比較して、著しく高い収率で、しかも、ワンポッ トで目的物が得られることが明らかである。

MicroPatent Report

Report Summary:

Report Created: 2002/01/23 - 16:10 GMT Name of Session/Report:							
Table of Contents							
1. JP09059263A C07D ASAHI DENKA KOGYO KK PRODUCTION OF 2-(2',4'							

JP09059263A

MicroPatent Report

PRODUCTION OF 2-(2',4'-DIHYDROXYPHENYL)-4,6-DIARYL-S-TRIAZINE DERIVATIVE

[71] Applicant: ASAHI DENKA KOGYO

KK

[72] Inventors: KIMURA RIYOUJI;;

NANBU YOKO

[21] Application No.: JP07227075

[22] Filed: 19950811

[43] Published: 19970304

Retrieve Complete Document

[57] Abstract:

PROBLEM TO BE SOLVED: To obtain the subject compound useful as an ultraviolet absorbing substance or a synthetic raw material for ultraviolet absorbing substances in high yield using reduced processes through a monophenoxytriazine derivative.

SOLUTION: (A) Cyanuric chloride is reacted with (B) a phenol compound of formula I (R₁ and R₂ are independently H, a 1- 10C alkyl, an alkoxyl, etc.) to provide (C) phenyloxydichloro-S-triazine of formula II. Then, the component C is reacted with (D) a phenyl compound of formula III (R₃ to R₅ are independently H, a halogen, a 1-10C alkyl, an alkoxy or alkoxycarbonyl) in the presence of a Lewis acid catalyst to provide (E) 2-phenyloxy-4,6-diaryl-S-triazine of formula IV. Further, the component E is reacted with (F) a phenyl compound of formula V (R⁶ is H, a 1-10C alkyl, an alkenyl; R₇ and R₈ are independently H, a 1-10C alkyl, hydroxyl, etc.) in the presence of a Lewis acid catalyst to provide (G) the objective triazine derivative of formula VI.

[51] Int'l Class: C07D25124 B01J027125 C07B06100

