

Kapitel 21 - Epidemien

Aus "Networks, Crowds and Markets: Reasoning about a highly connected World" Gliederung

- Epidemien, epidemische Krankheiten
- Krankheiten und Netzwerke, die sie übertragen
- Branching Processes
- SIR Modell
- SIS Modell
- Synchronisation
- Flüchtige Kontakte und die Gefahr der Nebenläufigkeit
- Genealogie, genetische Vererbung, Mitochondrial Eve

Epidemien, epidemische Krankheiten

→ Definitionen

3

- Epidemie (epidemische Krankheit)
 - zeitliche und örtliche Häufung einer Krankheit innerhalb einer menschlichen Population
 - Zunahme der Inzidenz (Anzahl neuer Erkrankungsfälle) in einem bestimmten Zeitraum

Endemie

- andauernd gehäuftes Auftreten einer Krankheit in einem begrenzten Bereich
- Inzidenz in diesem Gebiet bleibt (mehr oder weniger) gleich, ist aber im Verhältnis zu anderen Gebieten erhöht

Pandemie

Länder- / Kontinentübergreifend

Epidemien, epidemische Krankheiten

→ Formen und Verbreitungsmuster

- Explosivepidemie
 - Schlagartiger Anstieg der Erkrankungszahlen (meist ebenso schneller Abstieg)
 - z.B. Cholera, Typhus
- Tardivepidemie
 - Langsam aber stetig ansteigende Erkrankungszahlen
 - z.B. Pest, Grippe
- Verschiedene Verbreitungsmuster
 - Plötzliche Verbreitungsschübe
 - Zyklische wellenförmige Zu- und Abnahme der Verbreitung

Krankheiten und Netzwerke, die sie übertragen

→ Kontaktnetzwerke

- Verbreitungsmuster von Epidemien bestimmt durch
 - Eigenschaften des Erregers
 - Ansteckungsgefahr, Länge der ansteckenden Periode, Schwere der Infektion
 - Soziales Netzwerk innerhalb der betroffenen Population
 - Bestimmt, wie sich die Krankheit von Person zu Person übertragen kann

Krankheiten und Netzwerke, die sie übertragen

→ Kontaktnetzwerke

- Kontaktnetzwerk
 - Ein Knoten für jede Person
 - Kante zwischen zwei Knoten: die Personen haben solchen Kontakt, dass die Übertragung der Krankheit möglich ist
 - Übertragbar auf Tiere, Pflanzen, Computer
 - Erreger und Netzwerk sind verflochten
 - Gleiche Population, unterschiedlich übertragene Krankheit → unterschiedliche Netzwerke

Krankheiten und Netzwerke, die sie übertragen

→ Diffusion von Ideen und Verhalten

- Verbindungen
 - Verbreiten sich von Person zu Person durch soziale Netzwerke
 - Ähnliche strukturelle Mechanismen → "soziale Ansteckung"
- Unterschiede
 - Biologische ↔ soziale Ansteckung
 - Art der Ansteckung
 - Sozial: Menschen entscheiden, ob sie Ideen annehmen
 - Entscheidungsprozessen
 - Biologisch: keine Entscheidung, Prozesse komplizierter und nicht beobachtbar
 - zufällige Prozesse
 - Krankheiten werden mit einer bestimmten Wahrscheinlichkeit übertragen
 - → neue Klasse von Modellen

→ Definition

- Einfachstes Ansteckungsmodell
 - Eine mit einer neuen Krankheit infizierte Person kommt in eine Population
 - 1. Welle: Die Person überträgt die Krankheit auf alle Personen, die sie trifft (k) mit einer Wahrscheinlichkeit p
 - Basierend auf der zufälligen Übertragung der Krankheit, werden manche der k Leute infiziert, manche nicht
 - 2. Welle: alle Personen der 1. Welle treffen je k verschiedene Leute \rightarrow k * k = k^2 Leute, die mit Wahrscheinlichkeit p infiziert werden
 - Alle weiteren Wellen entstehen genauso → Baum

→ Beispiel

9

Kontaktnetzwerk für einen Branching Prozess

→ Beispiel

- Hohe Ansteckungswahrscheinlichkeit → Infektion verbreitet sich weit
 - Aggressive Epidemie, hoch ansteckende Krankheit

→ Beispiel

- Niedrige Ansteckungswahrscheinlichkeit → Infektion kann schnell aussterben
 - Milde Epidemie, nicht sehr ansteckende Krankheit

\rightarrow Basic Reproductive Number (R₀)

- \mathbf{R}_0 : Erwartete Anzahl neuer Infektionen, hervorgerufen von einem Individuum
 - Hier: $R_0 = p*k$
 - → Jeder trifft k Leute und infiziert sie mit einer Wahrscheinlichkeit p
 - Zwei Fälle
 - R₀ < 1: Krankheit wird nach einer endlichen Anzahl von Wellen aussterben (mit Wahrscheinlichkeit 1)
 - R₀ > 1: mit Wahrscheinlichkeit > 0 wird Krankheit nicht aussterben (mindestens eine neue Infektion pro Welle)
 - Kritischer Bereich um $R_0 = 1$
 - Kleine Änderungen von p oder k → große Auswirkungen auf Verlauf der Epidemie

→ Definition

- Drei Zustände, in denen ein Knoten sein kann
 - Susceptible (S): bevor der Knoten infiziert ist, ist er anfällig, von seinen Nachbarn infiziert zu werden
 - Infectious (I): der Knoten ist infiziert und kann andere anfällige Knoten infizieren
 - Removed (R): der Knoten ist nicht mehr infiziert/ansteckend und wird deshalb aus der Betrachtung genommen
- Gerichteter Graph
- Zwei Größen zur Netzwerkkontrolle
 - Ansteckungswahrscheinlichkeit p
 - Länge der Infektion t_I

SIR Modell

→ Definition

- Zunächst sind einige Knoten im Zustand I, die restlichen im Zustand S
- Jeder Knoten v, der in den Zustand I gerät, ist infiziert für eine fixe Anzahl an Schritten t_i
- Während jeder dieser t₁ Schritte kann v mit Wahrscheinlichkeit p seine Nachbarn im Zustand S anstecken
- Nach t_I Schritten ist v nicht mehr infiziert oder anfällig, er ist inaktiv in Zustand R

→ Beispiel

- $t_{I} = 1$
- dick umrandete rote Knoten = Zustand I (infectious)
- dünn umrandete rote Knoten = Zustand R (removed)

→ Beispiel

SIS Modell

→ Definition

- Ähnlich SIR Modell
- Unterschiede:
 - Zustand R fällt weg
 - Nur noch zwei Zustände, in denen ein Knoten sein kann
 - Susceptible (S): wenn der Knoten nicht infiziert ist, ist er anfällig,
 von seinen Nachbarn infiziert zu werden
 - Infectious (I): der Knoten ist infiziert und kann andere anfällige Knoten infizieren
- Gerichteter Graph
- Zwei Größen zur Netzwerkkontrolle
 - Ansteckungswahrscheinlichkeit p
 - Länge der Infektion t_i

→ Definition

- Zunächst sind einige Knoten im Zustand I, die restlichen im Zustand S
- Jeder Knoten v, der in den Zustand I gerät, ist infiziert für eine fixe Anzahl an Schritten t_i
- Während jeder dieser t₁ Schritte kann v mit Wahrscheinlichkeit p seine Nachbarn im Zustand S anstecken
- Nach t_I Schritten ist v nicht mehr infiziert, er ist wieder in
 Zustand S

→ Beispiel

- $t_{I} = 1$
- rote Knoten = Zustand I (infectious)

→ Darstellung im SIR Modell

- Zeit-erweitertes SIR-Modell
 - Kopie der Knoten für jeden Zeitschritt
 - Für jede Kante von v nach w im Originalgraph:
 - Kante von Knoten v zur Zeit t zu Knoten w zur Zeit t+1

→ Darstellung im SIR Modell

SIS-Modell im zeit-erweiterten SIR-Modell

- Epidemien "synchronisieren" sich in einer Population
 - Können starke Schwingungen/Zyklen in der Anzahl der infizierten Individuen erzeugen
 - Z.B. Masern, Syphilis
- SIRS Modell → Kombination von SIR & SIS
 - Zustand R (removed) nur temporär, danach wieder Zustand S (susceptible)
 - Neue Kontrollgröße t_R zusätzlich zu t_I und p

Synchronisation

→ Small-World-Properties

- Temporäre Immunität → Schwingungen in lokalen Teilen des Netzwerks
 - Teile des Netzwerks nach und nach immun, dann wieder infiziert
 - Damit Schwingungen entstehen: Infizierungen koordinieren
 - Netzwerk mit vielen weitreichenden Verbindungen (weak-ties)
 - Parameter c Anteil der weak-ties

Synchronisation

→ Small-World-Properties

 c bestimmt Verhalten der Epidemie (in Bezug auf Synchronisation)

- In der Realität können sich Verbindungen ändern
 - "flüchtige Kontakte"
 - dauern nicht den ganzen Ablauf der Epidemie an, sondern für bestimmte Zeiträume
 - Krankheiten, deren epidemischer Prozess Jahre dauert
 - Z.B. HIV/Aids
- Timing der Verbindungen kann Verbreitung der Epidemie beeinflussen

→ Flüchtige Kontakte

- Ungerichteter Graph
 - Infektion kann in einer Beziehung in beide Richtungen weitergegeben werden
- Zeitfenster für jede Kante

- Zeitfenster der Kontakte überlappen
 - Alle Verbindungen im Netzwerk über den ganzen Ablauf der Epidemie vorhanden
 - Sinnvoll bei Epidemien, die sich relativ schnell verbreiten

Genealogie, genetische Vererbung, Mitochondrial Eve

- Epidemien: Zufällige Ausbreitung in Netzwerken
 - Anwendbar auf genetische Vererbung
 - Graphen: Eltern mit Kindern verbinden
 - Fundamentale erbliche Prozesse nachvollziehen

Mitochondrial Eve

- Jüngste Frau, von der alle heute lebenden Frauen abstammen
- "Wenn jeder seine mütterliche Linie zurückverfolgt, bis sich alle Linien in einem Punkt treffen"
- Männliches Pendant: Y-Chromosomal Adam
- Linien der anderen Frauen zu M.E.'s Zeit ausgestorben

Wright-Fisher-Modell

- Anwendbar auf
 - Spezies, in denen Organismen nur aus einem Organismus hervorgehen
 - "single-parent inheritance" nur eine Linie betrachten
 - Soziale Vererbung

Genealogie, genetische Vererbung, Mitochondrial Eve

Wright-Fischer-Modell mit mehreren Generationen

Genealogie, genetische Vererbung, Mitochondrial Eve

Mitochondrial Eve / Y-Chromosomal Adam

... noch Fragen?

Vielen Dank für Ihre Aufmerksamkeit!

→ Basic Reproductive Number

- Erinnerung: R₀: Erwartete Anzahl neuer Infektionen, hervorgerufen von einem Individuum
- Split in zwei Fälle hier nicht möglich:
 - $t_I = 1$
 - p = 2/3
 - R₀ = 2/3 * 2 = 4/3 > 1
 - Wahrscheinlichkeit (1/3)⁴ = 1/81, dass kein Knoten die Infektion weitergibt → Krankheit wird aussterben

→ Erweiterungen

- Ansteckungswahrscheinlichkeiten p_{v,w}
 - Für jedes Knotenpaar v und w
- Infektionslänge zufällig
 - Jeder Knoten hat Wahrscheinlichkeit q, wieder gesund zu werden
- Percolation
 - Im Voraus entscheiden, welche Kanten die Infektion übertragen würden

