thesis

September 29, 2025

The following equalities are of use, all of which can be verified through calculation and using the property $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + \frac{1}{2!}[\hat{A}, [\hat{A}, \hat{B}]] + \dots$

$$\hat{D}^*(\alpha)\hat{D}(\alpha) = 1 \tag{1}$$

$$\hat{D}^*(\alpha)\hat{a}\hat{D}(\alpha) = \hat{a} + \alpha$$

$$\hat{D}(\alpha)\hat{a}\hat{D}^*(\alpha) = \hat{a} - \alpha$$
(2)

$$\hat{S}^*(\xi)\hat{S}(\xi) = \hat{S}(-\xi)\hat{S}(\xi) = 1 \tag{3}$$

$$\hat{S}^*(\xi)\hat{a}\hat{S}(\xi) = \hat{a}\cosh r - \hat{a}^*e^{i\theta}\sinh r$$

$$\hat{S}(\xi)\hat{a}\hat{S}^*(\xi) = \hat{a}^*\cosh r - \hat{a}e^{-i\theta}\sinh r$$
(4)

Let us write $\hat{a} = A + i\lambda B$, $\lambda \in \mathbb{R}$, 1 . Let us also call $[\hat{A}, \hat{B}] = i\hat{C}$ and $\hat{A}, \hat{B} - 2\langle \hat{A} \rangle \langle \hat{B} \rangle$. Using \hat{F}, \hat{C} , we can rewrite the uncertainty relation as $(\Delta \hat{A})^2 (\Delta \hat{B})^2 = \frac{1}{4} \left(\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2 \right)^2$. Applying this formula to \hat{a} , we see

$$\Delta \hat{A}^2 = \frac{1}{2} \left(\lambda_i \langle \hat{F} \rangle + \lambda_r \langle \hat{C} \rangle \right)$$

$$\Delta \hat{B}^2 = \frac{1}{|\lambda|^2} \Delta \hat{A}^2$$

$$\lambda_i \langle \hat{C} \rangle - \lambda_r \langle \hat{F} \rangle = 0$$
(5)

Combining we see our familiar uncertainty relation

$$\Delta \hat{A}^2 \Delta \hat{B}^2 \ge \frac{1}{4} \left(\langle \hat{F} \rangle^2 + \langle \hat{C} \rangle^2 \right) \tag{6}$$

¹This can be thought of breaking \hat{a} into hermitian and anti-hermitian components. For our usual operators \hat{q}, \hat{p} , the hermitian

component is \hat{q} and the antihermitian is $\frac{\partial}{\partial x}$ 2As a sanity check, our usual operators for position and momentum \hat{q}, \hat{p} follow the commutation relation $[\hat{q}, \hat{p}] = i\hbar \implies$ $(\Delta \hat{q})^2 (\Delta \hat{p})^2 \geq \frac{\hbar^2}{4}$ following our formula.