Optimización

Formulario \cdot Primavera 2021

1. Optimización estática

1.1. Análisis convexo

Definición 1.1 (Conjunto convexo). Sea $X \subseteq \mathbb{R}^n$, decimos que X es convexo si, para cualesquiera $x, y \in X$ y para toda $\lambda \in (0, 1)$, se cumple:

$$\lambda x + (1 - \lambda)y \in X$$
.

Equivalentemente, decimos que X es **convexo** si, para todas $a \in \partial X$ y $b \in X$, existe ℓ tal que $\langle b - a, \ell \rangle \leq 0$; donde ∂X es la frontera de X $y \langle \cdot, \cdot \rangle$ denota el producto punto.

Conjunto convexo

Conjunto no convexo

Proposición 1.1

Sean A y B dos subconjuntos convexos de \mathbb{R}^n , entonces:

- (i) $A \cap B$ es convexo.
- (II) $A + B = \{a + b : a \in A, b \in B\}$ es convexo.
- (III) Para todo $k \in \mathbb{R}$, $kA = \{ka : a \in A\}$ es convexo.

Definición 1.2 (Función convexa). Sea $X \subseteq R^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una función convexa si, para toda $x_1 \neq x_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente convexa.

Definición 1.3 (Función cóncava). Sea $X \subseteq R^n$ un conjunto convexo, $f: X \to \mathbb{R}$ es una función cóncava si, para toda $x_1 \neq x_2 \in X$ y toda $\lambda \in (0,1)$, se tiene:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \ge \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

Si la desigualdad es estricta, se dice que la función es estrictamente cóncava.

Proposición 1.2

Sean $X\subseteq\mathbb{R}^n$ un conjunto convexo, $f:X\to\mathbb{R}$ y $g:X\to\mathbb{R}$ dos funciones cóncavas, y $\alpha\in\mathbb{R}$, entonces:

- (I) f es cóncava si $\alpha > 0$.
- (II) f es convexa si $\alpha < 0$.
- (III) f+g es cóncava.

Proposición 1.3

Sean $X\subseteq\mathbb{R}^n$ un conjunto convexo, $g:X\to\mathbb{R}$ una función cóncava, y $h:Y\to\mathbb{R}$ una función cóncava y creciente tal que $g(X)\subseteq Y\subseteq\mathbb{R}$; entonces, $h\circ g$ es cóncava.

Definición 1.4 (Vector gradiente). Sea $f \in C^1(X)$, el vector gradiente de f está dado por:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

Definición 1.5 (Matriz hessiana). Sea $f \in C^2(X)$, se define la matriz hessiana de f como $H_f(x)$, donde:

$$H_f(\mathbf{x})_{i,j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}.$$

Definición 1.6 (Serie de Taylor).

$$T(\mathbf{x}) = \sum_{|\alpha| \ge 0} \frac{(\mathbf{x} - \mathbf{a})^{\alpha}}{\alpha!} (\partial^{\alpha} f) (\mathbf{a}).$$

Teorema 1.1: de Taylor

Sea $f: \mathbb{R}^n \to \mathbb{R}$ tal que $f \in \mathcal{C}^k(\mathbf{a})$. Entonces, existe $h_\alpha: \mathbb{R}^n \to \mathbb{R}$ tal que:

$$f(\mathbf{x}) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(\mathbf{a})}{\alpha!} (\mathbf{x} - \mathbf{a})^{\alpha} + \sum_{|\alpha| = k} h_{\alpha}(\mathbf{x}) (\mathbf{x} - \mathbf{a})^{\alpha},$$

У

$$\lim_{\mathbf{x}\to\mathbf{a}} h_{\alpha}(\mathbf{x}) = 0.$$

Definición 1.7 (Matriz simétrica). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es simétrica si y solo si:

$$A = A^T$$
.

Definición 1.8 (Matriz diagonalizable). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es diagonalizable si y solo si existe una matriz $P \in \mathcal{M}_{n \times n}$ invertible tal que $P^{-1}AP$ es diagonal.

Definición 1.9 (Matriz ortogonalmente diagonalizable). Decimos que una matriz $A \in \mathcal{M}_{n \times n}$ es ortogonalmente diagonalizable si y solo si existe una matriz $T \in \mathcal{M}_{n \times n}$ invertible tal que $T^{-1}AT$ es diagonal y $T^{-1} = T^T$.

Teorema 1.2

Si $A \in \mathcal{M}_{n \times n}$ es simétrica, sus valores propios son reales.

Teorema 1.3

Una matriz simétrica A de tamaño $n \times n$ puede determinar la forma cuadrática q_A de n variables como sigue:

$$q_A(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \mathbf{x}^T A \mathbf{x}.$$

Corolario 1.1: Clasificación de formas cuadráticas

La matriz asociada a la forma cuadrática q_A es:

- (i) definida positiva si $q_A(x) > 0$, $\forall x \neq 0$.
- (II) definida negativa si $a_A(x) < 0$, $\forall x \neq 0$.
- (III) semidefinida positiva si $q_A(x) > 0$, $\forall x \neq 0$.
- (iv) semidefinida negativa si $q_A(x) < 0, \forall x \neq 0$.
- (v) indefinida si $q_A(x)$ toma tanto valores positivos como negativos.

Definición 1.10 (Menores principales). Sea A una matriz simétrica, los menores principales de esta matriz son los determinantes de todas las submatrices superiores izquierdas, es decir:

$$|A_1| = |(a_{11})|,$$

$$|A_2| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$$

$$|A_3| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \dots$$

Teorema 1.4: Criterio de menores principales

Sea A una matriz simétrica asociada a la forma cuadrática $q_A(\mathbf{x})$, entonces:

- (t) q_A es definida positiva si y solo si los menores principales de A son todos positivos.
- (II) q_A es definida negativa si y solo si los menores principales de A alternan signos de la forma:

$$|A_1| < 0, |A_2| > 0, |A_3| < 0, \dots$$

(III) q_A es indefinida si $|A| \neq 0$, pero no se cumplen (I) ni (II).

Teorema 1.5: Criterio de valores propios

Sea A uns matriz simétrica asociada a la forma cuadrática $q_A(\mathbf{x})$, entonces:

- q_A es definida positiva si y solo si todos los valores propios de A son positivos.
- (II) q_A es definida negativa si y solo si todos los valores propios de A son negativos.
- (III) q_A es semidefinida positiva si y solo si todos los valores propios de A son no negativos.
- (IV) q_A es semidefinida negativa si y solo si todos los valores propios de A son no positivos.
- (v) q_A es indefinida si y solo si la matriz A tiene valores propios positivos y negativos.

Teorema 1.6: Criterio del primer orden

Sea $X\subseteq \mathbb{R}^n$ un conjunto convexo y $f:X\to \mathbb{R}$ tal que $f\in \mathcal{C}^1(X)$, entonces:

(i) f es convexa si y solo si, $\forall x, y \in X$, se tiene:

$$f(y) \ge f(x) + \nabla f(x)(y - x).$$

(II) f es cóncava si y solo si, $\forall x, y \in X$, se tiene:

$$f(y) \le f(x) + \nabla f(x)(y - x).$$

Teorema 1.7: Criterio de segundo orden

Sea $X\subseteq \mathbb{R}^n$ un conjunto convexo y $f:X\to \mathbb{R}$ tal que $f\in \mathcal{C}^2(X)$, entonces:

- f es convexa en X si y solo si la forma cuadrática asociada a la matriz hessiana es semidefinida positiva.
- f es estrictamente convexa en X si y solo si la forma cuadrática asociada a la matriz hessiana es definida positiva.
- (III) f es cóncava en X si y solo si la forma cuadrática asociada a la matriz hessiana es semidefinida negativa.
- (IV) f es estrictamente cóncava en X si y solo si la forma cuadrática asociada a la matriz hessiana es definida negativa.

Definición 1.11. Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo $y f: X \to \mathbb{R}$, definimos:

· la **gráfica** de f como

$$G_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) = r\}.$$

· el epígrafo de f como

$$E_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) \le r\}.$$

· el hipógrafo de f como

$$H_f = \{(\mathbf{x}, r) \in X \times \mathbb{R} : f(\mathbf{x}) \ge r\}.$$

Teorema 1.8

Sea $X \subseteq \mathbb{R}^n$ un conjunto convexo,

- (1) una función $f:X\to\mathbb{R}$ es convexa si y solo si E_f es un conjunto convexo de \mathbb{R}^{n+1} .
- (II) una función $f:X\to\mathbb{R}$ es cóncava si y solo si H_f es un conjunto convexo de $\mathbb{R}^{n+1}.$

Definición 1.12. Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo y $f: X \to \mathbb{R}$, definimos:

 $\cdot \ el \ {\it contorno} \ de \ f \ en \ k \ como$

$$C_f(k) = \{ x \in X : f(x) = k \}.$$

· el contorno superior de f en k como

$$CS_f(k) = \{ \mathbf{x} \in X : f(\mathbf{x}) \ge k \}.$$

· el contorno inferior de f en k como

$$CI_f(k) = \{ \mathbf{x} \in X : f(\mathbf{x}) \le k \}.$$

Teorema 1.9

- (1) Si $f:X\to\mathbb{R}$ es cóncava en $A,CS_f(k)$ es convexo para toda k en la imagen de f .
- (II) Si $f:X\to\mathbb{R}$ es convexa en A, $CI_f(k)$ es convexo para toda k en la imagen de f.

Teorema 1.10

Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo y $f: X \to \mathbb{R}$, entonces:

- (1) f es cuasicóncava en A si $CS_f(k)$ es convexo para toda k en la imagen de f.
- (II) f es cuasiconvexa en A si $CI_f(k)$ es convexo para toda k en la imagen de f.

Teorema 1.11

Sean $X \subseteq \mathbb{R}^n$ un conjunto convexo y $f: X \to \mathbb{R}$, entonces:

- (i) f es cuasicóncava si f es cóncava.
- (II) f es cuasiconvexa si f es convexa.

Teorema 1.12

Cualquier transformación monótona creciente de una función cuasiconvexa es cuasiconvexa. Asimismo, cualquier transformación monótona creciente de una función cuasicóncava es cuasicóncava.

Teorema 1.13: Minkowski

Sean A y B dos conjuntos de \mathbb{R}^n tales que $A\cap B=\varnothing$; entonces, existe un hiperplano que los separa.

Nota: este resultado es la base para desarrollar la *Teoría de Dualidad* en programación lineal.

Teorema 1.14: Punto fijo de Brouwer

Sean $A\subset\mathbb{R}^n$ un conjunto compacto y convexo, y $f:A\to A$ una función continua; entonces, f tiene un punto fijo.

i.e.,
$$\exists x \in A \text{ tal que } f(x) = x.$$

Nota: este resultado permite mostrar la existencia de equilibrios competitivos en una economía de intercambio.

Teorema 1.15

Sean $A \subseteq \mathbb{R}^n$ un conjunto convexo, $f: A \to \mathbb{R}$ una función cóncava y \mathbf{x}_0 un punto interior de A entonces, existe un vector $\bar{p} \in \mathbb{R}^n$ tal que:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \le \bar{p}(\mathbf{x} - \mathbf{x}_0), \quad \forall \mathbf{x} \in A.$$

Por definición, llamaremos a dicho vector \bar{p} súpergradiente. Asimismo, sea f una función convexa, existe un vector $\bar{q} \in \mathbb{R}^n$ tal que:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \ge \bar{q} (\mathbf{x} - \mathbf{x}_0), \quad \forall \mathbf{x} \in A.$$

Por definición, llamaremos a dicho vector \bar{q} subgradiente.

1.2. Optimización estática

Definición 1.13 (Máximo global). Sea $X \subseteq \mathbb{R}^n$ un conjunto, decimos que $x_0 \in X$ es un máximo global de la función $f: X \to \mathbb{R}$ si, para toda $x \in X$, $f(x_0) \ge f(x)$. Si dicha desigualdad es estricta, se le conoce como máximo global estricto.

Definición 1.14 (Mínimo global). Sea $X \subseteq \mathbb{R}^n$ un conjunto, decimos que $x_0 \in X$ es un mínimo global de la función $f: X \to \mathbb{R}$ si, para toda $x \in X$, $f(x_0) \le f(x)$. Si dicha desigualdad es estricta, se le conoce como mínimo global estricto.

Definición 1.15 (Máximo local). Sean (X, d_X) un espacio métrico y $f: X \to \mathbb{R}$ una función. Decimos que $x_0 \in X$ es un máximo local de la función f si existe $\varepsilon > 0$ tal que, para toda $x \in X$, $d_X(x, x_0) < \varepsilon y$ $f(x_0) \ge f(x)$. Si dicha desigualdad es estricta, se le conoce como máximo local estricto.

Definición 1.16 (Mínimo local). Sean (X, d_X) un espacio métrico y $f: X \to \mathbb{R}$ una función. Decimos que $x_0 \in X$ es un mínimo local de la función f si existe $\varepsilon > 0$ tal que, para toda $x \in X$, $d_X(x, x_0) < \varepsilon$ y $f(x_0) \le f(x)$. Si dicha desigualdad es estricta, se le conoce como mínimo local estricto.

Teorema 1.16: Condiciones necesarias de primer orden

Si f(x) es derivable en x_0 y f alcanza un extremo local en x_0 , entonces, todas sus derivadas parciales se anulan en x_0 .

Definición 1.17 (Punto crítico). Dados un conjunto $A \subseteq \mathbb{R}^n$ y una función $f: A \to \mathbb{R}$, decimos que \mathbf{x}_0 es un **punto crítico** de f si sus derivadas parciales se anulan en \mathbf{x}_0 , o bien, alguna de ellas no existe en \mathbf{x}_0 .

$$\exists \mathbf{x}_0 \text{ tal que } \nabla f(\mathbf{x}_0) = 0.$$

Definición 1.18 (Punto de silla). Un punto crítico x_0 es un **punto de** silla si existen direcciones por las que la función crece y otras por las que la función decrece a partir del punto x_0 .

Teorema 1.17: Condiciones suficientes de segundo orden

Sea x_0 un punto crítico de una función diferenciable f, entonces:

- (1) f alcanza un máximo local si, en x_0 , la forma cuadrática asociada a la matriz hessiana H_f es definida negativa.
- (II) f alcanza un mínimo local si, en x_0 , la forma cuadrática asociada a la matriz hessiana H_f es definida positiva.
- (III) x_0 es un punto de silla si la forma cuadrática asociada a la matriz hessiana H_f es indefinida.

1.3. Optimización restringida

^	0.4		
2.	Cálcu	lo de	variaciones

3.	Teoría	de	control	óptimo

Carlos Lezama	Optimización · Formulario	Página 6

4. Elementos de programación dinámica