Introduction

The following report details the creation of the linear optimization model used to calculate the optimal combination of ingredients in the animal feed and its subsequent adjustments.

1.1 The Linear Model

- I set of available ingredients
- N set of nutrients
- R_p p sets of available ingredient combinations with rules with $p \in \{1, 2, 3, 4, 5, 6, 7\}$

Parameters

- c_i cost of ingredient $i \in I$
- v_{ii} amount of nutrient $j \in N$ per kilogram of ingredient $i \in I$
- $b_{_{i}}^{\stackrel{.}{lb}}$, $b_{_{i}}^{ub}$ lower and upper bound on each ingredient $i\in I$
- d_i^{lb} , d_i^{ub} lower and upper bound on each nutrient $j \in N$
- r_p upper bound for ingredient combination $p \in \{1, 2, 3, 4, 5, 6, 7\}$

Variables

- x_i : fraction of the feed mix that consists of ingredient $i \in I$

Model's Constraints

$$d_j^{lb} \leq \sum_{i \in I} v_{ij} x_i \leq d_j^{ub} \quad \forall j \in N \rightarrow \text{constraint for nutrient bounds}$$

$$b_{j}^{lb} \leq x_{i} \leq b_{j}^{ub}$$
 $\forall i \in I \rightarrow \text{constraint for ingredient bounds}$

$$\sum_{i \in I} x_i = 1$$
 -> all proportion must sum up to 1

 $x_i \ge 0$ -> all proportions must not be negative

$$\sum_{l \in \mathcal{C}_n} x_{pl} \leq r_p \ \forall \ p \in \{1, 2, 3, 4, 5, 6, 7\} \text{ --> all ingredients with rules must obey rules}$$

Model's Objective

 $\min \sum_{i \in I} c_i x_i$ - minimizing the sum of costs of each ingredient in its proportion

1.2 Binary variable

- I set of available ingredients
- N set of nutrients
- R_p j sets of available ingredient combinations with rules with $p \in \{1, 2, 3, 4, 5, 6, 7\}$

Parameters

- c_i cost of ingredient $i \in I$
- v_{ij} amount of nutrient $j \in N$ per kilogram of ingredient $i \in I$
- b_i^{lb} , b_i^{ub} lower and upper bound on each ingredient $i \in I$
- d_{j}^{lb} , d_{j}^{ub} lower and upper bound on each nutrient $j \in N$

- r_p - upper bound for ingredient combinations $p \in \{1, 2, 3, 4, 5, 6, 7\}$

Variables

- x_i : fraction of the feed mix that consists of ingredient $i \in I$
- y_i a binary variable.
 - $y_i = 1$ if ingredient i is selected;
 - $y_i = 0$ if the ingredient i is not selected.

Model's Constraints

$$\begin{aligned} d_j^{lb} &\leq & \sum_{i \in I} v_{ij} x_i \leq d_j^{ub} & \forall j \in N \\ b_j^{lb} &\leq & x_i \leq b_j^{ub} & \forall i \in I \\ & \sum_{i \in I} x_i = 1 \\ x_i &\geq 0 \\ & \sum_{l \in C_p} x_{pl} \leq r_p \ \forall \ p \in \{1, 2, 3, 4, 5, 6, 7\} \\ y_i &\in \{0, 1\} & \forall i \in I -> \ y \ \text{is a binary variable} \\ x_i &\leq y_i & \forall i \in I -> \ x \ \text{not equal to 0 only if corresponding y = 1} \end{aligned}$$

Model's Objective

 $\min \; \sum\limits_{i \in I} \mathbf{y}_{i}$ - minimizing the number of ingredients

1.3 Minimum cost for the minimum number of ingredients

- I set of available ingredients
- N set of nutrients
- R_p j sets of available ingredient combinations with rules with $p \in \{1, 2, 3, 4, 5, 6, 7\}$

Parameters

- c_i cost of ingredient $i \in I$
- v_{ij} amount of nutrient $j \in N$ per kilogram of ingredient $i \in I$
- b_i^{lb} , b_i^{ub} lower and upper bound on each ingredient $i \in I$
- d_{j}^{lb} , d_{j}^{ub} lower and upper bound on each nutrient $j \in N$
- r_n upper bound for ingredient combinations $p \in \{1, 2, 3, 4, 5, 6, 7\}$
- a number of ingredients needed

Variables

- x_i : fraction of the feed mix that consists of ingredient $i \in I$
- y_i a binary variable.
 - $y_i = 1$ if ingredient i is selected;
 - $y_i = 0$ if the ingredient i is not selected.

Model's Constraints

$$\begin{aligned} d_j^{lb} &\leq & \sum_{i \in I} v_{ij} x_i &\leq d_j^{ub} & \forall j \in N \\ b_i^{lb} &\leq & x_i &\leq b_j^{ub} & \forall i \in I \end{aligned}$$

$$\begin{split} &\sum_{i \in I} x_i = 1 \\ &x_i \geq 0 \\ &\sum_{l \in C_p} x_{pl} \leq r_p \ \forall \ p \in \{1, 2, 3, 4, 5, 6, 7\} \\ &y_i \in \{0, 1\} \\ &x_i \leq y_i \end{split} \qquad \forall \ i \in I \end{split}$$

 $\sum\limits_{i \in I} y_i = \, a$ -> number of all elements must be equal to a

Model's Objective

$$min \sum_{i \in I} c_i x_i$$

Resulting variables

					2 Var Declarations					avallable_ingredients_var : Size=26, index=av			
1 Var Declarations				available_ingredier	nts_var	:	Size=26, In	ndex=a	Key :	Lower	: Value :		
available_ingre					Key	: Lowe	r:	: Value	:	barley :	0	: 0.0 :	
Key		Lower			barley	:	0 :	: (0.0:	blood :	0	: 0.0:	
	ley :		:	0.0	blood	:	0 :	. (0.0:	boneash :	0	: 0.028172935 :	
	ood :		:	0.0	boneash		0 :	0.026624	492 :	casfine :	0	: 0.0:	
bonea			:	0.0	casfine		0 :		0.0:	caswhole :	0		
casf:) :	0.0	caswhole		0 :		0.0 :	cotton :	0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
caswho			:	0.18676756	cotton		0 :		0.0 :	dicaph :	0		
	ton :) :	0.05	dicaph		0 :		0.0 :				
	aph :			.00052158349	dicaph dl			0.0012161		dl:		: 0.00063225114 :	
	dl:			.00073393208						fish :			
	ish:		:	0.014126323	fish		0 :		0.0:	fishlq:	0		
	hlq:		:	0.055750927	fishlq		0 :		0.0:	gnseeds :	0	: 0.0 :	
gnsee) :) :		gnseeds		0 :		0.0:	ltryp :	0	: 0.0:	
	ryp : ine :			0.0 : 0.0015550651 :	ltryp		0 :		0.0:	lysine :	0	: 0.0:	
	ize :) :	0.2	lysine	:	0 :	: (0.0:	maize :	0	: 0.71727804 :	
maizebranhi) :	0.25	maize	:	0 :	0.661967	751:	maizebranhighq:	0		
maizebranio) :	0.0	maizebranhighq	:	0 :	: (0.0:	maizebranlowg :	0		
	eal :		· ·	0.05	maizebranlowg	:	0 :	: (0.0:	mbmeal:	0		
	alt :			0.0021850656	mbmeal		0 :		0.0:				
	lls :) :	0.0	salt		0 :		003 :	salt :	0		
sovbean			:	0.068359545	shells		0 :		0.0:	shells :	0		
soybeanme			:	0.0	soybeanexp		0 :		0.0:	soybeanexp :	0		
	ars :) :	0.0	soybeanmeal		0 :			soybeanmeal :	0		
sunflo			:	0.12	sugars		0 :		0.0:	sugars :	0	: 0.0 :	
sunflowerse			:	0.0	sunflower		0 :		0.0 :	sunflower:	0	: 0.0:	
tapbi			:	0.0			-			sunflowerseeds :	0	: 0.0:	
wheatbr			:	0.0	sunflowerseeds		0:		0.0:	tapbran :	0	: 0.0:	
wincucoi dii			05 05	100000	tapbran		0 :		0.0:	wheatbran :	0		
					wheatbran	:	0 :	: (0.0:	evistance of product			

From left to right. Figure 1. The resulting variable values to solve the model 1.1. Figure 2. The resulting variable values required to solve the model 1.2. Figure 3. The resulting variable values required to solve the model 1.3.

Figure 4.
Graph showing the relationship between the number of ingredients used and the total cost of the feed mix.

Our team suggests choosing 7 as a number of ingredients to be used in a mix. Rationale - the cost of the feed mix does not decrease much after 7 ingredients have been used.

Solutions for 1.1. to 1.3.: 0.2697643896412; 5; 0.341822823725.