EE502 - Linear Systems Theory II

Spring 2032

Lecture 8

Lecturer: Assoc. Prof. M. Mert Ankarali

8.1 Internal (Lyapunov) Stability

In internal stability, we are interested in un-driven (zero-input response) part of the dynamical system and solely focus on state evolution dynamics, i.e. autonomous part of the dynamical system. CT and DT non-linear autonomous systems can simply be expressed by

$$\dot{x} = F(x,t)$$

$$x[k+1] = F(x[k]], k)$$

For non-linear systems, in order to define and analyze the stability of a dynamical system, we need to define equilibrium points (or nominal solutions), since we will technically analyze the stability around such points. An equilibrium point for CT and DT non-linear systems are defined as

$$x_e \in \mathbb{R}^n$$

$$CT: 0 = F(x_e, t) \ \forall t > t_0$$

$$DT: x_e = F(x_e, k) \ \forall k > k_0$$

Obviously if a dynamical system at time t_0 (or k_0) starts from an equilibrium point, $x(t_0) = x_e$ (or $x[k_o] = x_e$), it will remain on the equilibrium point $\forall t \geq t_0$ (or $\forall k \geq k_0$). A non-linear system can have a single equilibrium point, $x_e \in \mathcal{E}$, $\operatorname{card}(\mathcal{E}) = 1$, have multiple finite number of equilibria, $x_e \in \mathcal{E}$, $\operatorname{card}(\mathcal{E}) = n_e < \infty$, or infinite number of equilibrium points, $x_e \in \mathcal{E}$, $\operatorname{card}(\mathcal{E}) = \infty$.

Ex 8.1 Show that for an LTI dynamical system, set of equilibrium points define a vector space. Then characterize this vector space.

Definition: Without loss of generality, let's assume that the equilibrium point that is point of interest is located at the origin $x_e = 0$.

1. The system is called stable in the sense of Lyapunov (s.i.s.L) around $x_e = 0$ if it satisfies

$$\forall \epsilon > 0, \ \exists \delta_L(\epsilon) \ s.t. \ if \ ||x(t_0)|| < \delta_L \ \rightarrow ||x(t)|| < \epsilon \ \forall t \ge t_0$$

2. The system is called asymptotically stable around around $x_e = 0$ if it is stable in the sense of Lyapunov (s.i.s.L) around $x_e = 0$ and locally attractive, i.e.

$$\exists \delta_a \ s.t. \ if \ ||x(t_0)|| < \delta_a \ \rightarrow \lim_{t \to \infty} ||x(t)|| = 0$$

3. The system is called exponentially stable around around $x_e = 0$ if it is asymptotically stable around $x_e = 0$ and satisfies

$$\exists \delta_e > 0, \ \alpha > 0, \ \sigma > 0 \ s.t. \ if \ ||x(t_0)|| < \delta_e \ \rightarrow ||x(t)|| \leq \alpha ||x(t_0)|| e^{-\sigma t} \ \forall t \geq t_0$$

8-2 Lecture 8

Remark: If above stability conditions are satisfied $\forall t_0 \in \mathbb{R}$, then we call the system around the equilibrium uniformly s.i.s.L, uniformly asymptotically stable, and uniformly exponentially stable respectively. The difference between uniform and non-uniform stability is (slightly) important for only time-varying non-linear systems. Thus we will not use uniform stability definition in this course.

Remark: Note that as you can see the internal stability definitions, s.i.s.L, asymptotic stability, and exponentially stability, are all local stability definitions defined in the neighborhood of x_e . If a stability definition holds for all initial conditions, i.e. $x(t_0) \in \mathbb{R}^n$, then use the terms globally s.i.s.L, globally asymptotically stable, and globally exponentially stable.