date thursday, february 8, 2024

Applications of Sylow Theorems

Iwo main applications:

Tor some n, can classify all groups with IGI=n

@ For some n, we can show that all groups with IGI=n are not simple <=> G must have a nontrivial subgroup

eq of \oplus (last class) If |G|=pq with p<q and $q\neq 1 \mod p$, then $G\simeq \mathbb{Z}_{pq}$.

eq If IGI = 15 = 3.5 => G = Z15 tor ②, rely on the fact:

So n5=1

Theorem: Suppose pllG1. Then G has a unique Sylow p-subgroup iff the Sylow p-subgroup is normal in G.

eg. Show that if IGI=20, then G is not simple.

20=2°.5

n5=number of Sylow 5-subgroups satisfies n5=1 mod 5 and n5 | 20 <=> {1,2,4,5,10,20}

eg. Show that any group G with $1G1=56=2^3$. 7 is not simple. By 3^{nd} Sylow theorem,

n7=number of Sylow 7-subgroups satisfies n7 € [1,8,15,22,29,36,43,50]

nze {1,2,4,7,8,14,28,56\$

Show n7=1 or 8.

If $n_7=1$, happy ①, only 1 Sylow 7-subgroup. What happens if $n_7=8$?

Let P.P., P. be these 8 Sylow 7-subgroups.

Note IP:1=7 for all i and IP:0P:1=1 (Since IP:0P:1|IP:1, the number is 1 or 7. But can't be 7 since this would imply PinPi=Pi).

So $ G' =1$ or $ G' $ So $G \simeq \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7$? Groups So supports So supports.	=17. If G' =1 = Z ₂₅₅ via the se G' =17. Co	L, then Go Fundamen unt numbe	g'≃G is albe tal Theorem er of Sylow	lian. of Finite Abelian 3-subgroups and
Divisors 0 1 3 5 17 3.5 3.17 5.17 3.5.17	1 0 2 2 0 0	mod 5 1 3 0 2 0 1 0	So number of 3-subgroups and number 5-subgroups	s = 1 or 85 of Sylow
Can't have both a Sylow 3-group an The 85 Sylow 5-The 51 Sylow 5-But those are 3 If only one Sylow But by Theorem, If only one Sylow By same theorem, Thus, must have I	subgroup cons subgroup cons 74+1 distinct 3-subgroup (implies %2=2 5-subgroup F %22317 so	sists of 2 sists of 4 elements. [Q, then G Z _{5.17} . So G P, then Pr G'SP=>1	1×85+1=170 ×51+1=204 But G =255 I is normal '⊆Q.So G' = normal and .7= G' P =5	:1/ Q =3 =><=