

高数强化笔记

奇峰

之前

目录

第一章	函	数	极限 连续	1
	I.		函数的性态	1
		i.	有界性的判定	1
		ii.	导函数、原函数的奇偶性与周期性	1
	II.	;	极限的概念	1
	III.		重点- 函数极限的计算	2
		i.	0/0 形	2
		ii.	∞/∞ 形 \ldots	3
		iii.	$\infty - \infty$ 形	4
		iv.	0º 与 ∞º 形	4
		v.	1∞ 形	4
	IV.	•	已知极限反求参数	4
	V.	:	无穷小阶的比较	5
	VI.		重点 - 数列极限的计算	5
		i.	夹逼定理	5
		ii.	单调有界定理	5
		iii.	定积分	6
	VII	.	间断点的判定	6
第二章	i —	元	函数微分学	7
	I.			7
	II.		导数与微分的计算	7
	III.	;	极重点 - 导数应用求切线和法线	9
	IV.		导数应用求渐近线	9
	\mathbf{v} .			10
	VI.		导数应用求极值与最值]	10
	VII		导数应用求凹凸性与拐点	11
	VII	Ι.		11
	IX.		导数应用求方程的根	11

	х.	微分中值定理证明	11			
第三章	一元	函数积分学	13			
	I.	定积分的概念	13			
	II.	不定积分的计算	13			
	III.	定积分的计算	14			
	IV.	反常积分的计算	15			
	v.	反常积分敛散性的判断	15			
	VI.	变限积分函数	16			
	VII.	定积分应用求面积	16			
	VIII.	定积分应用求体积	16			
	IX.	定积分应用求弧长	17			
	X.	定积分应用求侧面积	17			
	XI.	定积分的物理应用	18			
	XII.	证明含有积分的等式或不等式	18			
第四章	: 常微	分方程 分方程	19			
	I.	一阶微分方程	19			
	i.	一阶线性微分方程	19			
	II.	二阶线性常微分方程	20			
第五章 多元函数微分学						
	I.	多元函数概念	22			
	II.	多元复合函数求偏导数与全微分	22			
	III.	多元隐函数求偏导数与全微分	22			
	IV.	变量代换化简偏微分方程	23			
	v.	求无条件极值	24			
	VI.	求条件极值(边界条件)	24			
	VII.	求闭区域最值	25			
第六章 二重积分 26						
	I.	交换积分次序	26			
	II.	二重积分的计算....................................	26			
附录	补充结	论	30			

第一章

函数 极限 连续

I. 函数的性态

i. 有界性的判定

- $\ddot{\pi} \lim_{x \to x_0} f(x) = A$, 则存在 $\delta > 0$, $\ddot{\pi} 0 < |x x_0| < \delta$ 时, f(x) 有界;
- 若 f(x) 在 [a,b] 连续,则其在 [a,b] 有界;
- 若 f(x) 在 (a,b) 连续,且 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 均存在,则其在 (a,b) 有界;
- f'(x) 在有限区间 有界 \Rightarrow f(x) 在该区间有界。

ii. 导函数、原函数的奇偶性与周期性

导函数的奇偶性与周期性

- 可导奇函数的导函数为偶函数;
- 可导偶函数的导函数为奇函数;
- 可导周期函数的导函数为周期函数;

原函数的奇偶性与周期性

- 连续奇函数的原函数均为偶函数;
- 连续偶函数的原函数仅有一个为奇函数,即 C=0 时;
- 周期函数的原函数为周期函数 $\Rightarrow \int_0^T f(t) dt = 0.$

II. 极限的概念

讨论数列最值,将其拆分为前 N 个与后无穷个,前者求最值,后者利用极限定义可知其接近极限值。

讨论同时包含 $\sin(x_n),\cos(x_n)$ 的抽象数列时,可以考虑令 $x_n=\begin{cases}\pi/2,&2i+1\\-\pi/2,&2i\end{cases}$,利用 \sin,\cos 奇偶性的不同。

III. 重点 - 函数极限的计算

i. 0/0 形

洛必达法则

若 f(x), g(x)

- $\lim f(x) = \lim g(x) = 0/\infty;$ 可以推广为 $\frac{\blacksquare}{\infty};$
- f(x), g(x) 在 x_0 某去心邻域内可导,且 $g'(x) \neq 0$; 此处注意, $\begin{cases} n \text{阶可导} & \Rightarrow \text{洛}n - 1 \text{次} + \text{导数定义} \\ n \text{阶连续导数} & \Rightarrow \text{洛}n \text{次} \end{cases}$

•
$$\frac{\lim f'(x)}{\lim g'(x)} = A(\vec{\boxtimes}\infty),$$

则
$$\frac{\lim f(x)}{\lim g(x)} = A($$
或 $\infty)$.

等价代换

当 $x \to 0$ 时,有

- $\sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x 1 \sim \ln(1+x) \sim x$;
- $e^x 1 x \sim x \ln(1+x) \sim 1 \cos x \sim \frac{x^2}{2}$;
- $(1+x)^{\alpha}-1\sim \alpha x$;
- $x \sin x \sim \arcsin x x \sim \frac{x^3}{6}$;
- $\tan x x \sim x \arctan x \sim \frac{x^3}{3}$;
- $\tan x \sin x \sim \arcsin x \arctan x \sim \frac{x^3}{2}$; 对于以上等价无穷小,有
- i. 可变量代换,如 sin□~□,tan□~□,···
- ii. $x \to 0 \text{ ff}, \ a^x 1 = e^{x \ln a} 1 \sim x \ln a, \ \log_a(1+x) = \frac{\ln(x+1)}{\ln a} \sim \frac{x}{\ln a};$

iii. 若 $x \to a$,可以令 $t = x - a \to 0$.

iv. 不能在复合函数的自变量处做等价代换,如 $x \to 0 \Rightarrow f(x) \sim f(\sin x)$.

泰勒公式

•
$$e^x = \sum_{i=0}^n \frac{x^n}{n!} + o(x^n);$$

•
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$
;

•
$$\sin x = x - \frac{x^3}{6} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$
;

•
$$\arcsin x = x + \frac{x^3}{6} + o(x^3)$$
;

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$
;

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$
;

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n);$$

•
$$\ln(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3}) + o(x^3);$$

•
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} C_{\alpha}^{k} x^{k} + o(x^{n})$$
, 其中 $C_{\alpha}^{k} = \frac{\prod_{i=0}^{k-1} (\alpha - i)}{k!}$
 m , $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + o(x^{2})$;

•
$$\frac{1}{1-x} = \sum_{i=0}^{n} x^i + o(x^n)$$
;

•
$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + o(x^{n});$$

泰勒公式求极限时,

- 分子阶数不小于分母阶数;
- 加减不抵消,"齐头并进";
- 可推广为 $\square \rightarrow 0$.

ii. ∞/∞ 形

主要方法有

- 洛必达;
- 抓大头,即每个因式保留高阶无穷大; $x \to 0 \Rightarrow \ln^{\alpha}(x) \ll x^{\beta} \ll a^{x} \ll x^{x}, 其中 \alpha, \beta > 0, a > 1.$

iii. $\infty - \infty$ 形

主要方法有

- 通分(有分式时);
- 有理化(有根号时);
- 倒代换,即令 $t=\frac{1}{x}$.

iv. 0^0 与 ∞^0 形

若
$$\lim_{x \to x_0} u(x) = 0(\infty)$$
, $\lim_{x \to x_0} v(x) = 0$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x) \ln u(x)\right)$.

v. 1[∞] 形

• 若
$$\lim_{x \to x_0} u(x) = 0$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} [1 + u(x)]^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)u(x)\right)$.

• 若
$$\lim_{x \to x_0} u(x) = 1$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)[u(x) - 1]\right)$. 事实上,有

$$\lim_{x \to 0} \left(\frac{\sum_{i=0}^{n} a_i^x}{n} \right)^{\frac{1}{x}} = \sqrt{\prod a_i}$$

IV. 已知极限反求参数

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
 存在且 $g \lim_{x \to x_0} g(x) = 0$, 则 $\lim_{x \to x_0} f(x) = 0$.

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = A \neq \mathbf{0}$$
 且 $g \lim_{x \to x_0} f(x) = 0$,则 $\lim_{x \to x_0} g(x) = 0$.

例

$$\lim_{x \to 0} \int_{t}^{x} \frac{\ln(1+t^{3})}{t} dt = 0 \Leftrightarrow b = 0.$$

证明 b=0 时原式显然成立。

$$\frac{\ln(1+t^3)}{t} > 0 (t \neq 0) \Rightarrow b \neq 0 \ \mathrm{时原式不成立}.$$

因此, b 只能为零。

V. 无穷小阶的比较

例

设函数 f(x) 在 x=0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$,则存在一组唯一的 $\lambda_i, i=1,2,3$ 使得 $h\to 0$ 时,有 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小。

一般法 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小 $\Rightarrow \sum \lambda_i f(ih) - f(0) = 0$;

对上式两边求导, 有 $\sum \lambda_i i f'(ih) = 0$;

对上式两边求导,有 $\sum \lambda_i^2 i f''(ih) = 0$;

因此,有
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,由于系数矩阵满秩,其有唯一解,因而得证。

泰勒法 将 f(h), f(2h), f(3h) 展开至二阶,代入 $\lim_{h\to 0} \frac{\sum \lambda_i f(ih) - f(0)}{h^2}$,然后和前述做法一致。

VI. 重点 - 数列极限的计算

i. 夹逼定理

左边缩,右边放,两边极限相等。

放缩时, 有不等式

- $0 < x < \pi/2$, 则 $\sin x < x < \tan x$; $\sin x < x < \pi/2 \sin x$; $2/\pi x < \sin x < x$; 利用 $f(x) = \frac{\sin x}{x}$ 的性质证明。
- $x > 0, x > \sin x; x < 0, x < \sin x;$
- $e^x > 1 + x, x \neq 0$;
- $\frac{x}{1+x} < \ln(x+1) < x, x > -1, x \neq 0.$

ii. 单调有界定理

对数列 $x_{n+1} = f(x_n)$ 求极限,方法如下。

- 适当放缩以证明有界性;
- 做差、做商或求导证明单调性;
- 若其单调,由单调有界知 $\lim x_n$ 存在;
- 令 $\lim x_n = a$, 对原式两端取极限, 有 a = f(a), 因此可以解得 a;

• 若其不单调,则设 $\lim x_n = a$,再利用夹逼定理证明前者确实成立。

iii. 定积分

$$\int_{a}^{b} f(x) dx = \lim_{d \to 0} \sum_{i=1}^{n} f(\xi_i) \frac{b-a}{n}$$

其中,
$$\xi_i \in \left[a + \frac{i-1}{n}(b-a), a + \frac{i}{n}(b-a)\right].$$

VII. 间断点的判定

设 x = a 为 f(x) 的一间断点,

- i. 若 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to a^-} f(x)$ 均存在,则称 x=a 为 f(x) 的一个第一类间断点,其还能**且必须要**分为
 - 可去间断点 $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$;
 - 跳跃间断点 $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$;
- ii. 若 $\lim_{x \to a^+} f(x)$ 与 $\lim_{x \to a^-} f(x)$ 中有至少一个不存在,则称其为第二类间断点。第二类间断点不用强制细分。

第二类间断点可以分为

- 无穷间断点 左右极限至少有一个为无穷;
- 震荡间断点 左右极限至少有一个不存在, 但不是无穷:

可能存在间断点的地方:

- 初等函数的无定义点;
- 分段函数的分段点。

第二章

一元函数微分学

I. 导数与微分的概念

一极限在已知/未知导数存在情况下的区别

己知 $f(0)=0,\lim_{h\to 0}\frac{1}{h}[f(2h)-f(h)]$ 存在不能推出 f(x) 在 x=0 处可导,因为此种推导过程中事实上是在导数存在的假设之下进行的。

但是,若已知 f(x) 在 $x=x_0$ 处可导,则 $\lim_{x\to x_0} \frac{f(x_0-mh)-f(x_0-nh)}{h}=(m-nf'(x_0))$,因为此处可导性已知,故可以利用导数的定义。

f(x) 可导与 |f(x)| 可导之间的关系

假设 $x = x_0$ 处 f(x) 连续。

- 若 $f(x_0) \neq 0$, 则 |f(x)| 在此处可导 $\Rightarrow f(x)$ 在此处可导 (由保序性);
- 若 $f(x_0) = 0$, 则 |f(x)| 在此处可导 $\Rightarrow f'(x_0) \stackrel{\exists}{=} 0$.

左右导数存在性与连续性的关系

$$f'_{+}(x_{0})$$
存在 $\Leftrightarrow f(x)$ 于此处右连续
$$f'_{-}(x_{0})$$
存在 $\Leftrightarrow f(x)$ 于此处左连续
$$decent decent d$$

一个分段函数连续、可导、有连续导数的条件

对于
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}} / x^{\alpha} \cos \frac{1}{x^{\beta}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
, $\beta > 0$, 有
$$f(x) \triangle x = x_0 \pounds \begin{cases} \cancel{\text{连续}} \Leftrightarrow \alpha > 0 \\ \cancel{\text{连续}} \Leftrightarrow \alpha > 1 \\ \cancel{\text{连续}} \Leftrightarrow \alpha > 1 + \beta \end{cases}$$

II. 导数与微分的计算

分段函数

分段函数分段求,分断点处用定义。

复合函数

复合函数使用链式法则求解,对嵌套类函数 f(f(x)),可以考虑直接找出其表达式,也可以令 f(x) = u,然后使用链式法则直接求解。

隐函数

- 直接求导 对 F(x,y) = 0 两端对 x 求导,解得 $\frac{dy}{dx}$.
- 公式法 使用隐函数求导公式 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'(x,y)}{F_y'(x,y)}$.
- 全微分 F(x,y) = 0 两端求全微分,解得 $\frac{\mathrm{d}y}{\mathrm{d}x}$

反函数

设 $x = f^{-1}(y)$ 由 y = f(x) 确定,则

- 若 f(x) 可导,且 $f'(x) \neq 0$,则 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\mathrm{d}y/\mathrm{d}x} = \frac{1}{f'(x)}$.
- 若 f(x) 二阶可导,且 $f'(x) \neq 0$,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -\frac{f''(x)}{[f'(x)]^3}$

参数方程

设
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 确定。此时, $t = t(x), y = y(t(x)).$

对于其导数,有

- 若 x(t), y(t) 均可导,且 $x'(t) \neq 0$,则 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{y'(t)}{x'(t)}$;
- 若 x(t), y(t) 均二阶可导,且 $x'(t) \neq 0$,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{y''(t)x'(t) y'(t)x''(t)}{[x'(t)]^3}$.

高阶导数

- 奇偶性 奇函数偶阶导数或偶函数求奇阶导为奇函数,此时 f(0) = 0.
- 递推公式

$$\circ [(ax+b)^{\alpha}]^{(n)} = \frac{\alpha!}{(\alpha-n)!} (ax+b)^{\alpha-n} a^n = \alpha(\alpha-1)\cdots(a-n+1)(ax+b)^{\alpha-n} a^n,$$
 特別地,
$$\left(\frac{1}{ax+b}\right)^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}};$$

$$\circ (e^{ax+b})^{(n)} = a^n e^{ax+b}, (a^x)^{(n)} = a^x \ln^n a;$$

$$\circ \left[\ln(ax+b)\right]^{(n)} = a\left(\frac{1}{ax+b}\right)^{(n-1)} = \frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n};$$

$$\circ \ [\sin(ax+b)]^{(n)} = a^n \sin(ax+b+\frac{n\pi}{2});$$

$$\circ [\cos(ax+b)]^{(n)} = a^n \cos(ax+b+\frac{n\pi}{2}).$$

• 莱布尼茨公式 - 乘积的高阶导数

若 u = u(x), v = v(x) 均 n 阶可导,则有

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}.$$

• 泰勒公式 - 一般而言,应用于 x = 0 处 求 n 阶导时,找到含有 x^n 的项,其求 n 阶导数后正好剩下常数。

III. 极重点 - 导数应用求切线和法线

直角坐标表示的曲线

对直角坐标 y = f(x) 表示的曲线,有

- 切线方程 $y y_0 = f'(x_0)(x x_0)$.
- 法线方程 $y y_0 = \frac{1}{f'(x_0)}(x x_0)$.

参数方程表示的曲线

对参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 表示的曲线, 其切线斜率为

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0} = \frac{y'(t)}{x'(t)}\Big|_{t=t_0}$$

注意 $(x,y) = (x_0,y_0)$ 时 t 的取值。

极坐标表示的曲线

对极坐标 $\rho=\rho(\theta)$ 表示的曲线,可以将其表示为 $\begin{cases} x=r(\theta)\cos\theta\\ y=r(\theta)\sin\theta \end{cases}$ 此时其就转化为参数方程。

IV. 导数应用求渐近线

水平渐近线

若 $\lim_{x\to +\infty} f(x) = b$ 或 $\lim_{x\to -\infty} f(x) = b$, 则称 y=b 是 f(x) 的一条水平渐近线。

垂直渐近线

若 $\lim_{x \to x_0^+} f(x) = \infty$ 或 $\lim_{x \to x_0^-} f(x) = \infty$, 则称 $x = x_0$ 是 f(x) 的一条垂直渐近线,也叫铅直渐近线。垂直渐近线只需要讨论分母为零的点或者函数无定义的端点。

斜渐近线

若
$$\lim_{x\to +\infty}f(x)-(kx+b)=0$$
 $(x\to -\infty)$, 则称 $y=kx+b$ 为斜渐近线。 具体而言,若

- i. $\lim_{x \to +\infty} \frac{f(x)}{x} = k;$
- ii. $\lim_{x \to +\infty} f(x) kx = b$,

则有斜渐近线 y = kx + b 。 $x \to -\infty$ 时同理。

注意,

- 即使 $\lim_{x\to\infty}\frac{y}{x}$ 存在, 斜渐近线也不一定存在;
- 一侧不会同时存在水平渐近线和斜渐近线。

求斜渐近线的简单方法

对 y=f(x), 若能凑形式使得其形如 y=ax+g(x) 使得 $\lim_{x\to\infty}g(x)=b$, 则 y=ax+b 即为对应方向的斜渐近线。

V. 导数应用求曲率

曲率为

$$k = \frac{|f''(x)|}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

曲率半径 ρ 为 k 的倒数。

若已知曲率圆,则其切点处与原方程同函数值,同导数值。

VI. 导数应用求极值与最值

极值第一充分条件

若 f(x) 在 $x = x_0$ 连续, f'(x) 在 $x = x_0$ 的左右去心邻域内异号,则 $f(x_0)$ 为极值点。

极值第二充分条件

若 f(x) 在 $x = x_0$ 处有 f'(x) = 0, 则若 f''(x) > 0, 则 $f(x_0)$ 为极小值,f''(x) < 0, 则 $f(x_0)$ 为极大值。

极值第三充分条件

若对 f(x) 和任意偶数 n 有 $\forall i < n, f^{(i)}(x) = 0, f^{(n)} \neq 0$, 则若 $f^{(n)}(x) > 0$, 则 $f(x_0)$ 为极小值,若 $f^{(n)}(x) < 0$, 则 $f(x_0)$ 为极大值。

费马引理

可导函数的每一个可导的极值点都是驻点。

m VII. 导数应用求凹凸性与拐点

注意, 拐点确实是点。

拐点第一充分条件

若 f(x) 在 $x = x_0$ 连续, f''(x) 在 $x = x_0$ 的左右去心邻域内异号,则 $f(x_0)$ 为拐点。

拐点第二充分条件

若 f(x) 在 $x = x_0$ 处有 f''(x) = 0, 则 $(x_0, f(x_0))$ 为拐点。

拐点第三充分条件

若对 f(x) 和任意奇数 n 有 $\forall i < n, f^{(i)}(x) = 0, f^{(n)} \neq 0$, 则其为拐点。

VIII. 导数应用证明不等式

其主要分为三种方法。

- 单调性
- 凹凸性

设 f(x) 可导,则其为凹函数等价于下面任一情况。

- o f'(x) 单调递增;
- 。 曲线在其切线上方, 即 $f(x) > f(x_0) + f'(x_0)(x - x_0), x \neq x_0$

o 曲线在其割线下方,即
$$f(x) < f(x_0) - \frac{f(b) - f(a)}{b - a}(x - a), x \in (a, b)$$

IX. 导数应用求方程的根

应用导数求方程的根时,以单调性结合零点定理。

X. 微分中值定理证明

含有一个点 ξ 的等式

- 若待证式中不含导数,则适用零点定理;
- 若待证式中含有导数,则应用零点定理。 构造函数时,可以

- 。 观察待证式, 如 $f'(x_0) + g'(x_0)f(x_0) = 0 \Rightarrow [e^{g(x_0)}f(x_0)]' = 0.$
- 。 强行构造原函数,即
 - * 将待证式中的 ξ 改为 x;
 - * 积分以去导数符号并令 C=0;
 - * 移项至待证式左边并构造辅助函数。

含有 η, ξ 两个点的等式

- 题设 $\xi \neq \eta$ 时,分区间 (a,c),(c,b) 并用两次拉格朗日;对于 c, 需要先在题干结论中引入 c 并将其反解。
- 未明示 $\xi \neq \eta$ 时,对待证式,若其两个变量能分离至两边,则将其分离至两边之后,使用拉格朗日或柯西将两边联系至同一个值,以证明其相等。

含有高阶导数 $(n \ge 2)$ 的等式或不等式

当 $n \ge 2$ 时就可以考虑使用泰勒,若 n > 2,必定使用泰勒。

泰勒展开时, x_0 可以取中点和端点,但更常用的还是**极值与最值**等有性质的点。

第三章

一元函数积分学

I. 定积分的概念

判定含有变限积分函数的不等式时,常可以将非变限积分函数放入积分号;此时,可以比较被积函数。

可以使用凹凸性判定含有变限积分函数的不等式。利用曲线割线与凹凸性的关系,可以很容易地比较一函数 f(x) 与 x 之间的几何上的关系,或者说 $\frac{f(x)}{x}$ 与 1 的关系。

II. 不定积分的计算

不定积分常见的计算方式如下。

• 不定积分凑微分

对
$$f(u)$$
 及其原函数 $F(u)$, 若 $u=u(x)$ 可导,则有
$$\int f(u(x))u'(x)\mathrm{d}x = \int f(u(x))\mathrm{d}u(x) = F(u(x)) + C$$

• 分部积分法

设
$$u = u(x), v = v(x)$$
 可导, 则 $\int u dv = uv - \int v du$

• 换元法

设
$$x = \varphi(t)$$
 可导,且 $\varphi'(t) \neq 0$,若 $\int f(\varphi(t))dt = F(t) + C$,则 $\int f(x)dx = \int f(\varphi(t))dt = F(t) + C = F(\varphi^{-1}(x)) + C$

• 三角代换

• 根式代换

$$\circ \quad \diamondsuit \quad \sqrt[n]{ax+b} = t;$$

$$\circ \quad \diamondsuit \quad \sqrt[n]{\frac{ax+b}{cx+d}} = t;$$

。 对同时有 $\sqrt[n]{ax+b}$ 和 $\sqrt[n]{ax+b}$ 的, 令 $\sqrt[l]{ax+b}=t$, 其中 l 为 m,n 的最小公倍数;

• 倒代换

令 $x = \frac{1}{t}$, 仅在系数 ≥ 2 时予以考虑。

• 万能代换 - 三角有理式

$$\Rightarrow t = \tan \frac{x}{2}$$
, $\mathbb{M} \ x = 2 \arctan t$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$;

• 整体代换

令复杂函数整体 = t.

III. 定积分的计算

• 定积分凑微分

对
$$f(u)$$
 及其原函数 $F(u)$, 若 $u = u(x)$ 在 $[a,b]$ 可导,则有
$$\int_a^b f(u(x))u'(x)\mathrm{d}x = \int_a^b f(u(x))\mathrm{d}u(x) = F(u(x))\big|_a^b + C$$

• 分布积分法

设
$$u = u(x), v = v(x)$$
 在 $[a,b]$ 可导,则 $\int_a^b u dv = uv - \int_a^b v du$

• 换元法

设 $x = \varphi(t)$ 在 [a, b] 连续, $x = \varphi(t)$ 在 $[\alpha, \beta]$ 上有一阶连续导数,且 $\varphi(\alpha) = a, \varphi(\beta) = b, \varphi$ 的值域 为 [a, b], 则

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

• 奇偶性

若
$$f(x)$$
 在 $[-a,a]$ 连续,则 $\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x)$ 是偶函数 $0, & f(x)$ 是奇函数

• 周期性

对周期为
$$T$$
 的连续函数 $f(x)$, 对任意常数 a , 有 $\int_{0}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$

• Wallis 公式

$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \frac{(n-1)!!}{n!!} \left(\frac{\pi}{2}\right)^{(\text{int})!(\text{n\%2})}$$

设
$$f(x)$$
 在 $[0,1]$ 连续,则 $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$.

• 区间再现公式

在分子为分母的其中一项时,常用区间再现公式。进退维谷时,也可以考虑应用区间再现公式。 $\int_{a}^{b} f(x) \mathrm{d}x \xrightarrow{t=a+b-x} \int_{a}^{b} f(a+b-t) \mathrm{d}t = \frac{1}{2} \int_{a}^{b} \left(f(x) + f(a+b-t)\right) \mathrm{d}x$

• 平移变换

令 x = t + b. 题目给出(类)周期函数条件,待求式积分上下限是周期整数倍但不重合,可以考虑平移变换。

IV. 反常积分的计算

反常积分实质上是定积分的极限, 其可能不存在。

对于瑕点在上下限区间内的,利用区间可加性拆开。如此做时,必须满足极限的四则运算法则,否则 需要考虑规避未定式的化简方法。

V. 反常积分敛散性的判断

- i. 反常积分定义
- ii. 比较判别法
 - 无穷积分,如 $\int_1^\infty f(x) dx$ 此时比较 p 积分 $\int_1^\infty \frac{1}{x^p} dx \begin{cases} p > 1, 收敛 \\ p \le 1, 发散 \end{cases}$ 对 $\lim_{x \to +\infty} \frac{f(x)}{1/x^p} = \lim_{x \to +\infty} x^p f(x) = l,$
 - 。 $0 < l < +\infty$ 时二者同阶同收敛;
 - l=0 时 p 积分收敛则原积分收敛 (大收则小收)
 - $l = +\infty$ 时 p 积分发散则原积分发散 (小发则大发)
 - 瑕积分,如 $\int_0^1 f(x) dx, x = 0$ 为瑕点

此时比较
$$p$$
 积分
$$\int_0^1 \frac{1}{x^p} dx \begin{cases} (0 <) p < 1, 收敛 \\ p \ge 1, 发散 \end{cases}$$

注意,若题目中明示原积分为瑕积分,则收敛的范围为 $0 , 因为 <math>p \le 0$ 时原积分不是瑕积分;

若题目中未明示原积分为瑕积分,则其范围为p < 1.

• 使用比较判别法时,找比较对象的方法是,被积因式无穷小则等价,无穷大则放缩。

VI. 变限积分函数

变限积分函数的性质

- 若 f(x) 在 [a,b] 可积,则 F(x) 在 [a,b] 连续。注意,变限积分函数不一定可导,如 f(x) 有跳跃间断点时。
- 变限积分函数求导

设

$$F(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(t) dt$$

且 $\varphi_1(x), \varphi_2(x)$ 可导, f(x) 连续, 则有

$$F'(x) = f(\varphi_2(x))\varphi_2'(x) - f(\varphi_1(x))\varphi_1'(x)$$

变限积分求导,被积函数不含 x.

• 若 x_0 为 f(x) 在 [a,b] 上的一个跳跃间断点,则 F(x) 在 x_0 连续,但不可导; 若 x_0 为 f(x) 在 [a,b] 上的一个可去间断点,则 F(x) 在 x_0 处可导,但 F(x) 不是 f(x) 的原函数。

VII. 定积分应用求面积

注意,面积一定是正数,至少不是负数。

• 直角坐标

$$S = \int_{a}^{b} |y| \mathrm{d}x$$

• 极坐标 $\rho = \rho(\theta)$

$$S = \int_{\theta_1}^{\theta_2} \frac{\rho^2}{2} \mathrm{d}\theta$$

• 参数方程 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$

$$S = \int_{0}^{\beta} |y(t)x'(t)| \mathrm{d}t$$

VIII. 定积分应用求体积

绕 x 轴旋转

$$V = \pi \int_{a}^{b} f(x)^{2} \mathrm{d}x$$

绕 y 轴旋转

$$V = 2\pi \int_{a}^{b} |xf(x)| \mathrm{d}x$$

平移不绕坐标轴旋转 此时可以

- i. 微元法
- ii. 二重积分(冲刺)

求面积、体积时,对单调函数,可以转而利用其反函数。

IX. 定积分应用求弧长

直角坐标

对曲线段 $y = f(x), x \in [a, b]$, 设 f(x) 有连续导数,则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{1 + f'^2(x)} dx; s = \int_a^b \sqrt{1 + f'^2(x)} dx.$$

参数方程

若曲线能表示为 $x=x(t),y=y(t),t\in [\alpha,\beta]$,且其在 (α,β) 内有连续导数,则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{y'^2(t) + x'^2(t)} dt; s = \int_0^b \sqrt{[y^2(t)]^2 + [x'(t)]^2} dt.$$

极坐标

若曲线能表示为 $\rho = \rho(\theta), \theta \in [\theta_1, \theta_2],$ 则给定平面曲线段弧长元素和弧长分别为

$$ds = \sqrt{\rho^2(\theta) + \rho'^2(\theta)} d\theta; s = \int_a^b \sqrt{\rho^2(\theta) + [\rho'(\theta)]^2} d\theta.$$

X. 定积分应用求侧面积

求侧面积的公式为

$$S = 2\pi \int_a^b \overbrace{|y(x)|}^{\text{SSHAER}} \overbrace{\sqrt{1 + (y'(x))^2}}^{\text{ds}} \text{dx 统x 轴}$$

$$S = 2\pi \int_a^b \overbrace{|x|}^{\text{SSHAER}} \overbrace{\sqrt{1 + (y'(x))^2}}^{\text{ds}} \text{dx 统y 轴}$$

在不同的坐标系下,只需要将离轴距离和 ds 替换为对应的即可。

XI. 定积分的物理应用

i. 做功

变力沿直线,即 $W = FS = \int_a^b f(s) ds$.

ii. 受力

- 液体压力 $F = \rho ghS$
- 万有引力 $F = \frac{GMm}{r^2}$, G 引力常数, M, m 质量, r 距离。

XII. 证明含有积分的等式或不等式

- 单调性;
- 凹凸性;
- 微分中值定理;
- 定积分概念和六大积分法;
- 二重积分(冲刺)。

第四章

常微分方程

I. 一阶微分方程

可分离变量

对形如 g(y)dy = f(x)dx 的,对两边求积分,得到 $\int g(y)dy = \int f(x)dx$.

一阶齐次方程

对形如 $\frac{\mathrm{d}y}{\mathrm{d}x} = f(\frac{y}{x})$ 的方程,取 $u = \frac{y}{x}$, 则有 $y = xu \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = ux + \frac{\mathrm{d}u}{\mathrm{d}x}$, 代回原式,得 $\int \frac{\mathrm{d}u}{f(u) - u} = \int \frac{\mathrm{d}x}{x}$, 积分求得 $u = \frac{y}{x}$ 后化简得到原方程的通解。

i. 一阶线性微分方程

其形如 $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$, 其中未知数及其导数次数均为 1. 其有公式

$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx}dx + C \right)$$

其中包含三个不定积分,其常数 C 已经事先提出。

括号中的不定积分事实上表示其被积函数的一个原函数。事实上,由于后面有任意常数 C, 可以将括号中内容改写为变限积分函数 $\int_b^x f(x)\mathrm{d}x + C$, 此时可以进行需要代入具体值的操作; 其中 b 可以为任意常数。

对于非常见类型的一阶微分方程,或者 x 少 y 很多的方程,考虑转化为反函数求解。

例题 对微分方程 y' + y = f(x), 其中 f(x) 是 R 上的连续周期函数,其周期为 T,则方程存在唯一的以 T 为周期的解。

证明 方程的通解是 $y=e^{-x}\left(\int e^x f(x)\mathrm{d}x+C\right)$,注意到其可以写为 $e^{-x}\left(\int_0^x e^t f(t)\mathrm{d}t+C\right)$. 那么,当且仅当 y(T-x)-y(x)=0 时,y 以 T 为周期。

$$\begin{split} y(T+x) - y(x) &= e^{-x-T} \left(\int_0^{x+T} e^t f(t) \mathrm{d}t + C \right) - e^{-x} \left(\int_0^x e^t f(t) \mathrm{d}t + C \right) \\ &= e^{-x} \left[e^{-T} \left(\int_0^T + \int_T^{x+T} \right) e^t f(t) \mathrm{d}t + \frac{C}{e^T} - C - \int_0^x e^t f(t) \mathrm{d}t \right] \\ &= e^{-x} \left[e^{-T} \left(\int_0^T + e^T \int_0^x \right) e^t f(t) \mathrm{d}t + \frac{C}{e^T} - C - \int_0^x e^t f(t) \mathrm{d}t \right] \\ &= e^{-x} \left[e^{-T} \int_0^T e^t f(t) \mathrm{d}t + \left(\frac{1}{e^T} - 1 \right) C \right] = 0 \\ &\Rightarrow C = \frac{\int_0^T e^t f(t) \mathrm{d}t}{1 - e^T} \end{split}$$

因此存在且仅存在一个 C 使得方程以 T 为周期。

II. 二阶线性常微分方程

齐次

对形如 y'' + py' + qy = 0 的方程,解特征方程 $r^2 + pr + q = 0$,得到特征根 r_1, r_2 . 根据特征根性质得到通解。具体而言,若 r_1, r_2 为

- 两互异实根 通解 $C_1e^{r_1x} + C_2e^{r_2x}$;
- 两相等实根 通解 $(C_1 + C_2 x)e^{r_x}$;
- 一组共轭复根 $\alpha \pm \beta i$ 通解 $e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$.

非齐次

对形如 y'' + py' + qy = f(x) 的方程,解特征方程得到齐次方程的通解,根据 f(x) 性质确定一特解形状,"指数照抄,次数最高"。

对方程形如 $y'' + py' + qy = P_m(x)e^{ax}$, 则有一特解形如

$$y^* = x^k Q_m(x) e^{ax}.$$

对方程形如 $y'' + py' + qy = e^{\alpha x} [P_l(x) \cos \beta x + P_n(x) \sin \beta x]$, 则有一特解形如

$$y^* = x^k e^{ax} \left[Q_m(x) \cos \beta x + R_m(x) \sin \beta x \right].$$

代入原式求待定系数。

高阶常系数线性齐次微分方程

对方程形如 $y^{(n)}+p_1y^{(n-1)}+\cdots+p_ny=0$, 解对应特征方程 $r^n+p_1r^{n-1}+\cdots+p_n=0$, 一般 $n\leq 4$. 对特征方程的根,若其

• 有 S 个互异实根,则通解包含

$$\sum_{i=1}^{S} C_i e^{r_i x}$$

• 有 S 重实根,则通解包含

$$\sum_{i=1}^{S} (C_i x^{i-1}) e^{rx}$$

- 有共轭复根 $\alpha \pm \beta i$, 则通解包含 $e^{\alpha x} (A\cos\beta x + B\sin\beta x)$
 - 变限积分函数结合微分方程时,
- 其被积函数 f(x) 无穷阶可导;
- 其有初始条件 $\int_a^a f(x) dx = 0$.

第五章

多元函数微分学

I. 多元函数概念

全微分定义

设 z = f(x,y) 在 (x_0,y_0) 处有全增量 $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0,y_0)$, 若 $\Delta z = A\Delta x + B\Delta y + o(\rho)$, $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$ 其中 A, B 不依赖于 Δx , Δy , 仅与 x_0, y_0 有关,则称 z = f(x,y) 在 (x_0,y_0) 处可微,而 $A\Delta x + B\Delta y$ 称为 z = f(x,y) 在 (x_0,y_0) 处的全微分,记为 $dz = A\Delta x + B\Delta y = Adx + Bdy$. 其中 $A = f'_x(x_0,y_0)$, $B = f'_y(x_0,y_0)$, $A\Delta x + B\Delta y$ 是全增量的线性主部。

求重极限时,考虑使用极坐标。

去极限号

对重极限,可以去极限号构造微分定义形式,如

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} \frac{f(x,y)}{\rho^2} = l < +\infty \Rightarrow f(x,y) = o(\rho) = 0 \cdot x + 0 \cdot y + o(\rho),$$

从而推出函数在该点可微。

II. 多元复合函数求偏导数与全微分

- 一阶偏导数复合结构不变;
- 二阶混合偏导数连续必相等;

III. 多元隐函数求偏导数与全微分

计算偏导数有三种方法,

- 代入:
- 求导公式:
- 全微分。

多元隐函数求导公式

设 F(x,y,z) 在点 (x_0,y_0,z_0) 一邻域内有一阶连续偏导数,且 $F(x_0,y_0,z_0)=0$, $F_z'(x_0,y_0,z_0)\neq 0$, 则 方程 F(x,y,z)=0 的某邻域内确定唯一的有一阶连续偏导数的函数

$$z = f(x, y), z_0 = f(x_0, y_0), \frac{\partial z}{\partial x} = -\frac{F'x}{F'z}, \frac{\partial z}{\partial y} = -\frac{F'y}{F'z}$$

在考虑一个方程确定的隐函数时,可以利用方程组思想。如,

- 一个方程,三个变量,确定一二元函数;考虑系数矩阵 $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$
- 两个方程,三个变量,可确定两个一元函数;考虑系数矩阵 $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

例题 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 确定的函数,

其中 f, F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{\mathrm{d}z}{\mathrm{d}x}$.

证明 题目给出两题设,关于 x, 对前者求导数, 对后者求偏导数。此时,

$$\frac{\mathrm{d}z}{\mathrm{d}x} = f(x+y) + xf'(x+y)(1 + \frac{\mathrm{d}y}{\mathrm{d}x})$$
$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\partial F}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}x} = 0$$

联立以上两式,得到 $\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{(f+xf')F_2 - xf'F_1'}{F_2' + xf'F_3'}$.

同理也可得到 $\frac{\mathrm{d}y}{\mathrm{d}x}$.

IV. 变量代换化简偏微分方程

在变量代换时,换元变量视为中间变量。

例题 设函数 u = f(x, y) 具有二阶偏导数,且其满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0.$$

确定 a,b 的值,使得等式在变换 $\xi = x + ay, \eta = x + by$ 下简化为 $\frac{\partial u^2}{\partial \xi \partial \eta} = 0$.

证明

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \\ \frac{\partial u}{\partial y} &= a \frac{\partial u}{\partial \xi} + b \frac{\partial u}{\partial \eta} \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} + 2 \frac{\partial^2 u}{\partial \xi \eta} \\ \frac{\partial^2 u}{\partial y^2} &= a^2 \frac{\partial^2 u}{\partial \xi^2} + b^2 \frac{\partial^2 u}{\partial \eta^2} + 2ab \frac{\partial^2 u}{\partial \xi \eta} \\ \frac{\partial^2 u}{\partial x \partial y} &= a \frac{\partial^2 u}{\partial \xi^2} + b \frac{\partial^2 u}{\partial \eta^2} + (a+b) \frac{\partial^2 u}{\partial \xi \eta} \end{split}$$

此时将其代入题设式,则满足

$$5a^{2} + 12a + 4 = 5b^{2} + 12b + 4 = 0$$

 $8 + 10ab + 12(a + b) = 0$

的 a,b 即为所求。

V. 求无条件极值

求无条件极值有以下几种方法。

• AC - B² 判别法

函数 z = f(x,y) 在 P_0 某邻域内有二阶连续偏导数,且 P_0 为驻点,

设
$$A = f''_{xx}(x_0, y_0), B = f''_{xy}(x_0, y_0), C = f''_{yy}(x_0, y_0),$$
则

- 。 $AC-B^2>0$ 时, P_0 是极值点,且若 A>0 ,其为极小值点,A<0 时为极大值点;
- $AC B^2 < 0$ 时其不是极值点;
- $AC B^2 = 0$ 时该判别法失效。
- 多元函数极值定义

当前者失效时,利用定义。

- 。 证明是极值 利用多元函数保号性,有保号性则根据定义直接证明完毕;
- 。 证明不是极值 取不同路径证明其没有保号性。

VI. 求条件极值(边界条件)

求条件极值,有以下几种方法。

- 拉格朗日乘数法;
- 解 $\varphi(x,y) = 0$ 得到 y = y(x), 代入 f(x,y) 将其转化为一元函数极值;
- 极坐标 当边曲线为圆或者椭圆时考虑引入极坐标;
- 均值不等式;
- 柯西不等式 (150);

拉格朗日乘数法

令 $L=f(x,y)+\lambda\varphi(x,y)$, 前者称为拉格朗日函数, λ 是拉格朗日乘数。对 L 关于 x,y,λ 都求偏导,得到

$$\begin{cases} f'_x(x,y) + \lambda \varphi'_x(x,y) = 0 \\ f'_y(x,y) + \lambda \varphi'_y(x,y) = 0 \\ \varphi(x,y) = 0 \end{cases}$$

此时消去 λ , 得到驻点。比较各处驻点处的函数值, 得到最值。注意,

- 目标函数的等价转化 对复合的目标函数, 若外函数单调, 则只需研究内函数;
- 消 λ 时,只能乘除非零因子,对可能为零的因子,需要讨论其取值;
- 边界曲线不封闭的,需要讨论其端点。
- 拉格朗日函数有多个的,考虑通过化简减少拉格朗日函数的数量。

VII. 求闭区域最值

求闭区域 D 上的连续函数 f(x,y) 的最大值与最小值时,

- 内部驻点 求 f(x,y) 在 D 内的驻点即可能的极值点;
- 边界最值(条件极值)- 求 f(x,y) 在 D 边界上的条件极值;
- 比较以上各值,最大的为最大值,最小的为最小值。

第六章

二重积分

I. 交换积分次序

对直角坐标系 x,y 的交换, 利用穿针法;

对极坐标 θ, ρ 的交换,

- 先 θ 后 ρ , 则引一条射线;
- 先 ρ 后 θ ,则可以做不同半径的圆弧,并考虑每个圆弧所照射到的角度; 也可以将 ρ , θ 理解(并暂时地符号替换)为直角坐标的 x,y,此时按照直角坐标系交换积分次序的 方式交换其次序。

II. 二重积分的计算

直角坐标化累次积分

可以将二重积分化为直角坐标下的二次积分计算。

设有界闭区域 $D=\{(x,y)|a\leq x\leq b, \varphi_1(x)\leq y\leq \varphi_2(x)\}$, 其中 $\varphi_1(x), \varphi_2(x)$ 在 [a,b] 上连续, f(x,y) 在 D 上连续,则有 $\iint\limits_D f(x,y)\mathrm{d}\sigma=\iint\limits_D f(x,y)\mathrm{d}x\mathrm{d}y=\int_a^b\mathrm{d}x\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)\mathrm{d}y$.

确定上下限时,先确定 x 的范围,然后沿 y 正方向穿针确定 y 的范围,穿入为下限,穿出为上限。在 $D = \{(x,y) | c \le y \le d, \Psi_1(y) \le x \le \Psi_2(y)\}$ 上同理。

极坐标变换

当被积函数为 $f(x^2+y^2)$ 或者 D 为圆域,考虑极坐标变换 $\begin{cases} x=\rho\cos\theta\\ y=\rho\sin\theta \end{cases}$ 使得 $\mathrm{d}x\mathrm{d}y=\rho\mathrm{d}\rho\mathrm{d}\theta$.

先确定 θ 的范围,从原点引射线确定 ρ 范围,穿入为下限,穿出为上限,此时有

$$\iint\limits_{D} f(x,y) dxdy = \int_{\alpha}^{\beta} d\theta \int_{\rho_{1}(\theta)}^{r_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$$

奇偶性

若 f(x,y) 在有界闭区域 D 上连续, 若 D 关于 x 轴对称, 则

$$\iint\limits_{D} f(x,y) d\sigma = \begin{cases} 0, & f(x,y) \forall y \text{为奇函数} \\ 2 \iint\limits_{D_{1}} f(x,y) d\sigma, & f(x,y) \forall y \text{为偶函数} \end{cases}$$

D 关于 y 轴对称, 函数关于 x 轴对称时类似。

区域对于 x 轴对称,函数看 y 轴;区域对于 y 轴对称,函数看 x 轴;

轮换对称性

若积分域 D 关于 y=x 对称,或相对于积分域两坐标轴的相对位置相同,又或者将 x,y 对调后,积分域的边界方程不变,则二重积分具有轮换对称性,即

$$\iint\limits_D f(x,y) \mathrm{d}x \mathrm{d}y = \iint\limits_D f(y,x) \mathrm{d}x \mathrm{d}y = \frac{1}{2} \iint\limits_D [f(x,y) + f(y,x)] \mathrm{d}x \mathrm{d}y$$

形心公式

若区域 D 的形心或几何中心坐标为 (\bar{x},\bar{y}) , 则

$$\iint_{D} x dx dy = \bar{x} S_{D}$$

$$\iint_{D} y dx dy = \bar{y} S_{D}$$

若 f(x,y) = ax + by + c 时,考虑使用形心公式。

例题 已知函数 f(x,y) 具有二阶连续偏导数,且 f(1,y)=f(x,1)=0, $\iint\limits_D f(x,y)\mathrm{d}x\mathrm{d}y=a,$

其中
$$D = \{(x,y)|0 \le x \le 1, 0 \le y \le 1\}$$
, 计算二重积分 $\iint\limits_D xy f_{xy}''(x,y) \mathrm{d}x \mathrm{d}y$.

方法 由题,由于 f(1,y) = f(x,1) = 0 恒定,得其导数 f'(1,y) = f'(x,1) = 0.

由于原式中二阶偏导数 x 在前,

原式 =
$$\int_0^1 x dx \int_0^y y df_x'(x, y)$$
=
$$\int_0^1 \left[y f_x'(x, y) \Big|_0^1 - \int_0^1 f_x'(x, y) dy \right] \quad (交換积分次序处理f_x')$$
=
$$-\int_0^1 dy \int_0^1 x df(x, y)$$
=
$$-\int_0^1 \left[x f(x, y) \Big|_0^1 - \int_0^1 f(x, y) dx \right] dy$$
=
$$\int_0^1 \int_0^1 f(x, y) dx dy$$
=
$$\iint_D f(x, y) dx dy = a$$

例题 包含参数方程的二重积分求解

设平面区域
$$D$$
 由
$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases} (0 \le t \le 2\pi) = x$$
 轴围成,
计算二重积分 $\iint_{D} (x + 2y) dx dy$.

方法

原式 =
$$\iint_D x dx dy + \iint_D 2y dx dy$$
=
$$\iint_D (\pi + 2y) dx dy \quad (利用了形心公式)$$
=
$$\int_0^{2\pi} dx \int_0^{y(x)} (\pi + 2y) dy \quad (此处y是哑变量, y(x)是x的函数)$$
=
$$\int_0^{2\pi} (\pi y + 2y^2) dx \quad \diamondsuit x = \sin t$$
=
$$\int_0^{2\pi} \left[\pi (1 - \cos t) + (1 - \cos t)^2 \right] (1 - \cos t) dt$$
=
$$3\pi^2 + 5\pi$$

例题 设平面区域 $D = \{(x,y)||x| < y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分 $\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x\mathrm{d}y$

方法 注意到 D 关于 y 轴对称,故有

原式 =
$$\iint_{D} \frac{y}{\sqrt{x^2 + y^2}} dy dx$$
=
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{\sin^2 \theta} \sin \theta \rho d\rho$$
=
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^5 \theta d\theta$$

例题 计算 $\iint_D \sqrt{|y-x^2|} dxdy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$.

方法 注意到 D 关于 y 轴对称,且 $y-x^2$ 在曲线 $y=x^2$ 上方大于零,下方小于零。设在第一象限的 D中,在曲线下方的部分为 D_1 ,其他的为 D_2 ,则

原式 =
$$2(\iint\limits_{D_1} \sqrt{x^2 - y} dx dy + \iint\limits_{D_2} \sqrt{y - x^2} dx dy)$$

例题 设 $J_i = \iint_{D_i} \sqrt[3]{x-y} dxdy$, 其中 $D_1 = \{(x,y)|0 \le x \le 1, 0 \le y \le 1\}$, $D_2 = \{(x,y)|0 \le x \le 1, 0 \le y \le \sqrt{x}\}, D_3 = \{(x,y)|0 \le x \le 1, x^2 \le y \le 1\},$ 比较 J_i 的大小。

方法 由轮换对称性知 $J_1 = 0$. 根据 J_i 被积函数, $D_1 - D_2$ 区域内部分的积分 < 0,因此 $J_2 > 0$,同理 $J_3 < 0$.

例题 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 求 $\iint_D \frac{x\sin(\pi\sqrt{x^2} + y^2)}{x+y} dxdy$.

方法 由于轮换对称性,利用极坐标,有

原式 =
$$\frac{1}{2} \iint_{D} \rho \sin(\pi \rho) \rho d\rho d\theta$$

= $\int_{0}^{\frac{\pi}{2}} d\theta \int_{1}^{2} \rho \sin(\pi \rho) d\rho = -\frac{3}{4}$

例题 极坐标下的二重积分转化回直角坐标

计算二重积分
$$\iint_D \rho^2 \sin \theta \sqrt{1 - \rho^2 \cos 2\theta} dr d\theta$$
, 其中 $D = \left\{ (\rho, \theta) | 0 \le \rho \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$.

方法 当题给极坐标式不好化简时,考虑将其化回直角坐标。

原式 =
$$\iint_D y\sqrt{1+y^2-x^2} dxdy$$
$$= \frac{1}{3} - \frac{\pi}{16}$$

例题 计算二重积分 $\iint_{\mathbb{R}} (x-y) dx dy$,

其中
$$D = \{(x,y)|(x-1)^2 + (y-1)^2 \le 2, y \ge x\}$$
.

法一 正常求解(利用极坐标)

原式 =
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos \theta - \sin \theta) d\theta \int_{0}^{2(\sin \theta + \cos \theta)} \rho^{2} d\rho$$
=
$$\frac{8}{3} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos \theta - \sin \theta) (\cos \theta + \sin \theta)^{3} d\theta$$
=
$$\frac{8}{3} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} (\cos \theta + \sin \theta)^{3} d(\cos \theta + \sin \theta)$$

法二 平移变换

圆心不在原点时,考虑做平移变换将其移动至原点。

令
$$u = x - 1, v = y - 1$$
, 则题设变为

$$\iint_{D} (u-v) du dv, 其中 D = \{(u,v) | u^2 + v^2 \le 2, v \ge u\}, 易得原式 = -\frac{8}{3}.$$

附录

补充结论

一类无穷阶可导的抽象函数

若 f(x) 满足

- $f(x) = \int_0^x f(x) dx + \Delta;$
- $f'(x) = f(x) + \Delta;$
- $f''(x) = f'(x) + \Delta$,

其中 Δ 无穷阶可导,则 f(x) 无穷阶可导。

幂与可导函数积的高阶导数

设 $f(x) = (x - x_0)^n g(x)$, 其中 g(x) 在 $x = x_0$ 处 n 阶可导且 $g(x_0) \neq 0$, 则

$$\forall i < n, f^{(i)}(x_0) = 0, f^{(n)} \neq 0$$

变限积分函数的初始条件

对变限积分函数 $g(x) = \int_{b}^{x} f(t) dt$, 注意到 g(b) = 0.

三类根式的积分公式

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \Rightarrow$$
$$\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C \Rightarrow$$
$$\int \sqrt{a^2 + x^2} \, \mathrm{d}x = \frac{x}{2}\sqrt{a^2 + x^2} + \frac{a^2}{2}\ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

•
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln |x + \sqrt{x^2 - a^2}| + C \Rightarrow$$

 $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C$

注意此处是减不是加。

区间再现公式的一个应用场景

当出现 $\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{1+(\tan t)^k} = \int_0^{\frac{\pi}{2}} \frac{(\cos t)^k \mathrm{d}t}{(\sin t)^k + (\cos t)^k}$ 时,常应用区间再现公式,此时原式为 $\frac{1}{2}$. 出现 $\cot t$ 时也类似。

三角函数凑微分

$$d\left[\frac{\sin\theta}{\sin\theta + \cos\theta}\right] = \frac{d\theta}{(\sin\theta + \cos\theta)^2}$$