```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    from matplotlib import cm
    import os
    %matplotlib inline
```

1. Load aggregate data

```
In [2]: df = pd.read_pickle('yellow_tripdata_2016-05.pkl')
In [3]: df.shape
Out[3]: (1860000, 3)
```

In [4]: df.head()

Out[4]:

	Count	Region	Time
0	0.0	1.0	0.0
1	0.0	2.0	0.0
2	0.0	3.0	0.0
3	0.0	4.0	0.0
4	0.0	5.0	0.0

rides sum=df.groupby('Region')['Count'].sum()

In [7]: print 'Number of cells from which there were zero rides in May 2016: ',len(rides_sum) - np.count_nonzero(rides_sum)

Number of cells from which there were zero rides in May 2016: 1283

In [13]: coords=pd.read_csv(os.path.join('C:/Users/akuritsyn/Documents/Python Scripts\ML_MIPT_6/Taxi','regions.csv'),sep=';')
coords.head()

Out[13]:

	region	west	east	south	north
0	1	-74.25559	-74.244478	40.496120	40.504508
1	2	-74.25559	-74.244478	40.504508	40.512896
2	3	-74.25559	-74.244478	40.512896	40.521285
3	4	-74.25559	-74.244478	40.521285	40.529673
4	5	-74.25559	-74.244478	40.529673	40.538061

2.-3. Static map of New York

```
In [8]: west, south, east, north = -74.26, 40.50, -73.70, 40.92
        fig = plt.figure(figsize=(14,10))
        ax = fig.add subplot(111)
        m = Basemap(projection='merc', llcrnrlat=south, urcrnrlat=north,llcrnrlon=west, urcrnrlon=east, lat ts=south, resolution='
        lon = -73.98603
        lat = 40.74853
        x1,y1 = m(lon, lat)
        plt.plot(x1, y1, 'bo', markersize=5)
        plt.text(x1, y1, ' ESB', fontsize=12);
        #m.etopo(scale=0.5, alpha=0.5)
        m.drawcoastlines(linewidth=0.5)
        #m.shadedrelief()
        m.drawcounties()
        m.drawstates()
        m.drawrivers()
        x = np.linspace(m.llcrnrx, m.urcrnrx, 51)
        y = np.linspace(m.llcrnry, m.urcrnry, 51)
        xx, yy = np.meshgrid(x, y)
        z = np.array(rides_sum).reshape(50,50).T
        m.pcolormesh(xx, yy, z, alpha=0.3, shading='Flat', cmap='RdBu_r', zorder=2)
        c:\users\akuritsyn\appdata\local\continuum\anaconda2\lib\site-packages\mpl toolkits\basemap\ init .py:3413: Matplotlib
        DeprecationWarning: The ishold function was deprecated in version 2.0.
          b = ax.ishold()
        c:\users\akuritsyn\appdata\local\continuum\anaconda2\lib\site-packages\mpl toolkits\basemap\ init .py:3422: Matplotlib
        DeprecationWarning: axes.hold is deprecated.
            See the API Changes document (http://matplotlib.org/api/api changes.html)
            for more details.
          ax.hold(b)
Out[8]: <matplotlib.collections.QuadMesh at 0xe6b5978>
```


2.-3.-2 Static map of New York #2 - Another way to visualize things

In [9]: data = pd.read_pickle('yellow_tripdata_2016-05_cleaned.pkl')

In [10]: data.head()

Out[10]:

:	VendorID	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	pickup_longitude	pickup_latitude	RatecodelD	store_and_fw
0	1	2016-05-01 00	2016-05-01 00:17:31	1	3.60	-73.985901	40.768040	1	_
1	2	2016-05-01 00	2016-05-01 00:07:31	1	1.68	-73.991577	40.744751	1	
2	2	2016-05-01 00	2016-05-01 00:07:01	6	1.09	-73.993073	40.741573	1	
3	2	2016-05-01 00	2016-05-01 00:19:47	1	4.21	-73.991943	40.684601	1	
4	2	2016-05-01 00	2016-05-01 00:06:39	1	0.56	-74.005280	40.740192	1	

5 rows × 21 columns

 \blacksquare

```
In [11]: west, south, east, north = -74.26, 40.50, -73.70, 40.92
         fig = plt.figure(figsize=(14,10))
         ax = fig.add subplot(111)
         m = Basemap(projection='merc', llcrnrlat=south, urcrnrlat=north,llcrnrlon=west, urcrnrlon=east, lat ts=south, resolution='
         lon = -73.98603
         lat = 40.74853
         x1,y1 = m(lon, lat)
         plt.plot(x1, y1, 'bo', markersize=5)
         plt.text(x1, y1, 'ESB', fontsize=12);
         #m.etopo(scale=0.5, alpha=0.5)
         m.drawcoastlines(linewidth=0.5)
         #m.shadedrelief()
         m.drawcounties()
         m.drawstates()
         m.drawrivers()
         x, y = m(data['pickup_longitude'].values, data['pickup_latitude'].values)
         m.hexbin(x,y, gridsize=1000,bins='log', cmap=cm.YlOrRd_r);
         c:\users\akuritsyn\appdata\local\continuum\anaconda2\lib\site-packages\mpl toolkits\basemap\ init .py:3459: Matplotlib
         DeprecationWarning: The ishold function was deprecated in version 2.0.
           b = ax.ishold()
         c:\users\akuritsyn\appdata\local\continuum\anaconda2\lib\site-packages\mpl toolkits\basemap\ init .py:3472: Matplotlib
         DeprecationWarning: axes.hold is deprecated.
             See the API Changes document (http://matplotlib.org/api/api changes.html)
             for more details.
```

ax.hold(b)

One can clearly see two clusters outside of Manhattan corresponding to JFK and LaGuardia airports

4.-6. Interactive map of New York

```
In [14]: locations=zip((coords.north+coords.south)/2.,(coords.west+coords.east)/2.)
```

In [15]: rides_mean=df.groupby('Region')['Count'].mean()

```
import gmaps
import gmaps.datasets
gmaps.configure(api_key="AI...") # Your Google API key

fig = gmaps.figure()
    fig.add_layer(gmaps.heatmap_layer(locations,weights=rides_mean,max_intensity=50))
    markers = gmaps.marker_layer([(40.6892, -74.0445)],info_box_content='Statue of Liberty')
    fig.add_layer(markers)
    fig
```


In [17]: print 'Number of cells with average rides per hour more than 5:', sum(rides_mean>5.)

Number of cells with average rides per hour more than 5: 102

The map does not get saved properly in html and will be saved separately as well.

In []: