

TEST REPORT

FCC ID: 2AB3E-IPA19C IC: 10541A-IPA19C

Applicant : ION AUDIO,LLC

Address : 200 Scenic View Drive, Cumberland, RI 02864, U.S.A

Equipment Under Test (EUT):

Name : Party Power

Model : iPA19C

Trademark : N/A

Standards: FCC PART 15, SUBPART C: 2014 (Section 15.247)

RSS-247 ISSUE 1 MAY 2015; RSS-GEN ISSUE 4 NOV 2014

ANSI C63.4:2014; ANSI C63.10:2013

Report No : T1850893 06

Date of Test: July 23- August 05, 2015

Date of Issue: August 06, 2015

Test Result : PASS

In the configuration tested, the EUT complied with the standards specified above Authorized Signature

(Mark Zhu)

Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Alpha Product Testing Co., Ltd. Or test done by Shenzhen Alpha Product Testing Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Alpha Product Testing Co., Ltd. Approvals in writing.

Contents

	neral Information	_
1.1.	Description of Device (EUT)	5
1.2.	Accessories of device (EUT)	6
1.3.	Test Lab information	6
	·	
2.1.	Summary of test result	7
2.2.	Assistant equipment used for test	7
2.3.	Block Diagram	8
	1000 111000	
	1 1	
	1	
	• • •	
,		
	-	
	-	
	1.1. 1.2. 1.3. Sun 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. Ma 3.1. 3.2. 3.3. 3.4. Ba 4.1. 4.2. 4.3. Ca 5.1. 5.2. 5.3. Nu 6.1. 6.2. 6.3. Pw 7.1. 7.2. 7.3. Ra 8.1. 8.2. 8.3. 8.4. Ba 9.1. 9.2. 9.3.	1.1. Description of Device (EUT) 1.2. Accessories of device (EUT) 1.3. Test Lab information Summary of test 2.1. Summary of test result 2.2. Assistant equipment used for test. 2.3. Block Diagram 2.4. Test mode 2.5. Test Conditions 2.6. Measurement Uncertainty (95% confidence levels, k=2) 2.7. Test Equipment Maximum Peak Output power 3.1. Limit 3.2. Test Procedure 3.3. Test Setup 3.4. Test Result Bandwidth 4.1. Limit 4.2. Test Procedure 4.3. Test Result Carrier Frequency Separation 5.1. Limit 5.2. Test Procedure 5.3. Test Result Number Of Hopping Channel 6.1. Limit 6.2. Test Procedure 6.3. Test Result Dwell Time 7.1. Test limit 7.2. Test Procedure 7.3. Test Results Radiated emissions 8.1. Limit 8.2. Block Diagram of Test setup 8.3. Test Procedure 8.4. Test Procedure 8.5. Test Procedure 8.5. Test Procedure

10. Power Line Conducted Emissions	66
10.1. Block Diagram of Test Setup	66
10.2. Limit	66
10.3. Test Procedure	66
10.4. Test Result	67
11. Antenna Requirements	71
11.1. Limit	71
11.2. Result	71
12. Test setup photo	72
12.1. Photos of Radiated emission	72
12.2. Photos of Conducted Emission test	73
13. Photos of EUT	74

TEST REPORT VERIFICATION

Applicant : ION AUDIO,LLC

Manufacturer : ION AUDIO,LLC

EUT Description : Party Power

Date of issue....:

(A) Model No. : iPA19C (B) Trademark : N/A

(C) Ratings Supply : AC 120V/60Hz (D)Test Voltage : AC 120V/60Hz

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C 2014, ANSI C63.4-2014

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Eric Huang Test Engineer	Frie mung
Approved by (name + signature):	Simple Guan Project Manager	Septe C-

August 06, 2015

1. General Information

1.1. Description of Device (EUT)

EUT : Party Power

Model No. : iPA19C

Trade mark : N/A

Power supply : AC 120V/60Hz or DC 6V from battery

Radio Technology : BT 4.1

Operation frequency: 2402-2480MHz

Modulation : GFSK, π /4 DQPSK,8-DPSK

Antenna Type : Integrated Antenna, max gain 0dBi.

Adapter : N/A

Applicant : ION AUDIO,LLC

Address : 200 Scenic View Drive, Cumberland, RI 02864, U.S.A

manufacture : ION AUDIO, LLC

Address : 200 Scenic View Drive, Cumberland, RI 02864, U.S.A.

1.2. Accessories of device (EUT)

Description : N/A
Manufacturer : N/A
Model No. : N/A

1.3. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road, Bao'an, Shenzhen, China

August 11, 2014 File on Federal Communication Commission

Registration Number: 203110

July 18, 2014 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results			
	FCC Part 15: 15.247(b)(1)				
Maximum Peak Output Power	ANSI C63.4 :2014&RSS-247 5.4(2) &	PASS			
	ANSI C63.10 :2013				
	FCC Part 15: 15.215				
Bandwidth	ANSI C63.4 :2014&RSS-247 5.1(2) &	PASS			
	ANSI C63.10 :2013				
	FCC Part 15: 15.247(a)(1)				
Carrier Frequency Separation	ANSI C63.4 :2014&	PASS			
	RSS-247 5.1(2) & ANSI C63.10 :2013				
	FCC Part 15: 15.247(a)(1)(iii)				
Number Of Hopping Channel	ANSI C63.4 :2014&RSS-247 5.1(4) &	PASS			
	ANSI C63.10 :2013				
	FCC Part 15: 15.247(a)(1)(iii)				
Dwell Time	ANSI C63.4 :2014&RSS-247 5.1(4) &	PASS			
	ANSI C63.10 :2013				
	FCC Part 15: 15.209				
Radiated Emission	FCC Part 15: 15.247(d)	PASS			
Radiated Emission	ANSI C63.4 :2014&RSS-247 Section	PASS			
	5.5& ANSI C63.10 :2013				
	FCC Part 15: 15.247(d)				
Band Edge Compliance	ANSI C63.4 :2014&RSS-247 Section	PASS			
	5.5& ANSI C63.10 :2013				
	FCC Part 15: 15.207				
Power Line Conducted	ANSI C63.4 :2014&IC RSS Gen,	PASS			
Emissions	Section 7.2.4& ANSI C63.10 :2013				
	FCC Part 15: 15.203 &IC RSS Gen,				
Antenna requirement	Section 7.1.4	PASS			
Note: Test with the test softwar					
Airoha.AB1500_FamilyLabTestTool_20150109_1.4.11.0.exe					

2.2. Assistant equipment used for test

Description	:	Notebook		
Manufacturer	:	ACER		
Model No.	:	ZQT		
Remark: FCC DOC approved				

2.3. Block Diagram

1, For radiated emissions test: EUT was placed on a turn table, which is 0.8 meter high above ground. EUT was be set into BT test mode by Airoha.AB1500 FamilyLabTestTool 20150109 1.4.11.0.exe software before test.

2, For Power Line Conducted Emissions Test: EUT was connected to notebook by 1.5m USB line

2.4. Test mode

The test software "Airoha.AB1500_FamilyLab TestTool_20150109_1.4.11.0.exe" was used to control EUT work in Continuous TX mode, and select test channel, wireless mode.

Tested mode, channel, and data rate information					
Mode Channel Frequency					
(MHz)					
	Low:CH1	2402			
GFSK	Middle: CH40	2441			
	High: CH79	2480			

Tested mode, channel, and data rate information					
Mode Channel Frequency					
(MHz)					
	Low :CH1	2402			
π /4 DQPSK	Middle: CH40	2441			
	High: CH79	2480			

Tested mode, channel, and data rate information					
Mode Channel Frequency					
(MHz)					
	Low :CH1	2402			
8- DPSK	Middle: CH40	2441			
	High: CH79	2480			

2.5. Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m	2.13 dB	Polarize: V
chamber (below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.54dB	Polarize: V
chamber (30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	2.08dB	Polarize: H
chamber (1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.7. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Cal. Due day	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2016.01.19	1 Year
Spectrum analyzer	Agilent	E4407B	MY49510055	2016.01.19	1Year
Receiver	R&S	ESCI	101165	2016.01.19	1 Year
Bilog Antenna	SCHWARZBECK	VULB 9168	9168-438	2017.01.21	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D(1201)	2017.01.21	2Year
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170 D(1432)	2017.01.21	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2016.01.19	1 Year
Cable	Resenberger	SUCOFLEX 104	MY6562/4	2016.01.19	1 Year
Cable	Resenberger	SUCOFLEX 104	309972/4	2016.01.19	1 Year
Cable	Resenberger	SUCOFLEX 104	329112/4	2016.01.19	1 Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.01.19	1Year
L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	101043	2016.01.19	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	2016.01.19	1Year
Power sensor	Anritsu	ML2491A	32516	2016.01.19	1Year
Pre-amplifier	SCHWARZBECK	BBV9743	9743-019	2016.01.19	1Year
Pre-amplifier	Quietek	AP-180C	CHM-0602012	2016.01.19	1 Year

3. Maximum Peak Output power

3.1. Limit

Please refer RSS-247 & section15.247.

3.2. Test Procedure

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

3.3. Test Setup

3.4. Test Result

EUT: Party Power M/N: iPA19C						
Test date: 2015	5-08-04	Test site: RF site	Tested by: Peter			
Mode	Freq (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)	Margin (dB)	
	2402	0.52	1.127	21	20.480	
GFSK	2441	0.38	1.091	21	20.620	
	2480	0.47	1.114	21	20.530	
	2402	-0.31	0.931	21	21.310	
π /4 DQPSK,	2441	-0.18	0.959	21	21.180	
	2480	-0.38	0.916	21	21.380	
	2402	-2.24	0.597	21	23.240	
8- DPSK	2441	-2.14	0.611	21	23.140	
	2480	-2.08	0.619	21	23.080	
Conclusion: PASS						

4. Bandwidth

4.1. Limit

Please refer RSS-247 & section 15.247.

4.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3. Test Result

EUT: Party Po	wer N	I/N: iPA19C		
Test date: 2015	5-08-04	Test site: RF site	Tested by: Pet	er
Mode	Freq (MHz)	20dB Bandwidth (KHz)	Limit	Conclusion
	2402	850.0	-	PASS
GFSK	2441	861.1	-	PASS
	2480	866.1	-	PASS
	2402	1242	-	PASS
π /4 DQPSK	2441	1238	-	PASS
	2480	1244	-	PASS
	2402	1218	-	PASS
8- DPSK	2441	1217	-	PASS
	2480	1216	-	PASS

Orginal Test data

GFSK:

π /4 DQPSK

8- DPSK

5. Carrier Frequency Separation

5.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

5.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The carrier frequency was measured by spectrum analyzer with 30kHz RBW and 100kHz VBW.

5.3. Test Result

EUT: Party Pow	EUT: Party Power M/N: iPA19C										
Test date: 2015-	08-04	Test site: RF site	Tested by:	Peter							
Mode/Channel	Channel separation (KHz)	20dB Bandwidth (KHz)	Limit (KHz) 2/3 20dB bandwidth	Conclusion							
GFSK	1002	866	577	PASS							
π /4 DQPSK	1011	1244	829	PASS							
8- DPSK	1008	1218	812	PASS							

Orginal test data for channel separation

GFSK

π /4 DQPSK

8- DPSK

6. Number Of Hopping Channel

6.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels

6.2. Test Procedure

The transmitter output was coupled to a spectrum analyzer via a antenna. The number of hopping channel was measured by spectrum analyzer with 300kHz RBW and 1MHz VBW.

6.3. Test Result

EUT: Party Power N	Л/N: iPA19C				
Test date: 2015-08-04	Test site: RF site	Tested by	Tested by: Peter		
Mode	Number of hopping channel	Limit	Conclusion		
GFSK	79	>15	PASS		
π /4 DQPSK	79	>15	PASS		
8- DPSK	79	>15	PASS		

Original test data for hopping channel number GFSK

π /4 DQPSK

8- DPSK

7. Dwell Time

7.1. Test limit

Please refer RSS-247 & section15.247.

7.2. Test Procedure

- 7.2.1. Place the EUT on the table and set it in transmitting mode.
- 7.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3. Set center frequency of spectrum analyzer = operating frequency.
- 7.2.4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 7.2.5. Repeat above procedures until all frequency measured were complete.

7.3. Test Results

PASS.

Detailed information please see the following page.

EUT: Party Pov	wer M/N: iPA	.19C						
Test date: 2015	-08-04	Test site: RF	Test site: RF site Tested by: Peter					
Mode Data Packet		Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion		
	DH1	2441	0.419	0.268	< 0.4	PASS		
GFSK	DH3	2441	1.676	0.358	< 0.4	PASS		
	DH5	2441	2.920	0.374	< 0.4	PASS		
	DH1	2441	0.430	0.275	< 0.4	PASS		
π /4 DQPSK	DH3	2441	1.680	0.358	< 0.4	PASS		
	DH5	2441	2.928	0.375	< 0.4	PASS		
0 DDCV	DH1	2441	0.430	0.275	< 0.4	PASS		
8- DPSK	DH3	2441	1.680	0.358	< 0.4	PASS		
	DH5	2441	2.932	0.375	< 0.4	PASS		

Note: 1 A period time = 0.4 (s) * 79 = 31.6(s)

² DH1 time slot = Pulse Duration * (1600/(1*79)) * A period time

DH3 time slot = Pulse Duration * (1600/(3*79)) * A period time

DH5 time slot = Pulse Duration * (1600/(5*79)) * A period time

GFSK

DH1:

DH3:

DH5

π /4 DQPSK DH1

DH3

DH5

8- DPSK:

8. Radiated emissions

8.1. Limit

All the emissions appearing within RSS-GEN restricted frequency bands shall not exceed the limits shown in RSS-GEN, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with RSS-GEN limits.

RSS-GEN Restricted frequency band

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

RSS-GEN Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT		
MHz	Meters	$\mu V/m$	dB(μV)/m	
0.009-0.490	300	2400/F(KHz)	/	
0.490-1.705	30	24000/F(KHz)	/	
1.705-30	30	30	29.5	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	74.0 dB(µV)/m (Peak)		
Above 1000	3	$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$		

8.2. Block Diagram of Test setup

8.2.1 In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

8.2.2 In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP.

8.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz testing, and 150cm for above 1GHz testing.
- (2) Setup EUT and simulator as shown in section 1.4 and 6.1
- (3) Test antenna was located 3m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
- (a) Change work frequency or channel of device if practicable.
- (b) Change modulation type of device if practicable.
- (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) Spectrum frequency from 9KHz to 25GHz (tenth harmonic of fundamental frequency) was investigated
- (5) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2014 on Radiated Emission test.
- (6) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW is set at 1MHz, VBW is set at 10Hz for Average measure. Peak detector is for both.

8.4. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

From 30MHz to 1000MHz: Conclusion: PASS With Guanjing conventor:

TI CALL			13						
Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	43.20	40.61	13.79	31.87	0.09	22.62	40.00	-17.38	Peak
2	62.21	42.34	12.36	31.74	0.19	23.15	40.00	-16.85	Peak
3	152.13	52.10	14.16	31.18	0.41	35.49	43,50	-8.01	Peak
4	238.31	46.97	11.40	30.77	0.54	28.14	46.00	-17.86	Peak
5	393.47	43.40	14.64	30.41	0.62	28.25	46.00	-17.75	Peak
6	747.48	36.06	20.22	29.19	1.08	28.17	46.00	-17.83	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Condition : FCC PART 15 B 3m POL: VERTICAL

EUI :

Model No : IPA19C Test Mode :

Test Mode : Power : AC 120V/60Hz

Test Engineer :

Remark : BT MODE Temp : 24.2°C Hum : 54%

The Country									
Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	73.62	55.48	10.21	31.65	0.24	34.28	40.00	-5.72	Peak
2	106.01	45.34	10.74	31.35	0.40	25.13	43.50	-18.37	Peak
3	147.40	52.29	13.90	31.20	0.37	35.36	43.50	-8.14	Peak
4	187.75	47.42	10.71	30.99	0.55	27.69	43.50	-15.81	Peak
5	385.28	36.64	14.48	30.42	0.81	21.51	46.00	-24.49	Peak
6	724.26	35.66	19.97	29.25	1.54	27.92	46.00	-18.08	Peak

Remark: Level = Read Level + Antenna Factor - Freamp Factor + Cable Loss

3m Condition : FCC PART 15 B POL: HORIZONTAL EUT

Model No : IPA19C

Test Mode

: : AC 120V/60Hz Power

Test Engineer :

Remark : BT MODE : 24.2°C Hum

an where			-						
Item	Freq	Read Level	Antenna Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	40.56	41.38	14.07	31.89	0.18	23.74	40.00	-16.26	Peak
2	71.83	48.17	10.51	31.69	0.19	27.18	40.00	-12.82	Peak
3	148.96	51.33	14.03	31.19	0.35	34.52	43.50	-8.98	Peak
4	332.52	46.45	13.55	30.52	0.79	30.27	46.00	-15.73	Peak
5	614.21	35.74	18.58	29.40	1.16	26.08	46.00	-19.92	Peak
6	842.13	36.34	20.98	29.13	1.69	29.88	46.00	-16.12	Peak

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Remark: Level = Read Level + Antenna Factor - Preamp Factor + Cable Loss

Note: Tests are also performed with Lishi and Leiou rechargeable batteries, and only worst data listed in this report.

		1GF	Iz—25GI	Hz Radi	ated en	nissison Te	st result				
EUT	: Party P	ower	M	/N: iPA	.19C						
Pow	Power: AC 120V/60Hz										
Test	Test date: 2015-08-04 Test site: 3m Chamber Tested by: Peter										
Test	Test mode: GFSK Tx CH1 2402MHz										
Ante	enna pola	rity: Vertica	al								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
1	4804	41.76	33.95	10.18	34.26	51.63	74	22.37	PK		
2	4804	32.38	33.95	10.18	34.26	42.25	54	11.75	AV		
3	7206	/									
4	9608	/									
5	12010	/									
Ante	enna Pola	rity: Horizo	ntal								
1	4804	42.65	33.95	10.18	34.26	52.52	74	21.48	PK		
2	4804	31.59	33.95	10.18	34.26	41.46	54	12.54	AV		
3	7206	/									
4	9608	/									
5	12010	/									

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GHz—25GHz Radiated emissison Test result										
EUT:	Party Po	wer	M/N	: iPA19	C						
Power	Power: AC 120V/60Hz										
Test c	Test date: 2015-08-04 Test site: 3m Chamber Tested by: Peter										
Test r	node: GF	SK Tx CH ²	40 2441M	Hz							
Anten	ına polari	ty: Vertical									
	Eroa	Read	Antenna	Cable	Amp	Result	Limit	Margin			
No Freq (MHz)	-	Level	Factor	loss(d	Factor	r (dBuV/m)	(dBuV/	(dB)	Remark		
	(141112)	(dBuV/m)	(dB/m)	B)	(dB)		m)	(GD)			
1	4882	42.41	33.93	10.2	34.29	52.25	74	21.75	PK		
2	4882	32.21	33.93	10.2	34.29	42.05	54	11.95	AV		
3	7323	/									
4	9764	/									
5	12205	/									
Anten	na Polari	ty: Horizon	tal								
1	4882	42.24	33.93	10.2	34.29	52.08	74	21.92	PK		
2	4882	31.79	33.93	10.2	34.29	41.63	54	12.37	AV		
3	7323	/									
4	9764	/									

5 Note:

12205

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

	1GHz—25GHz Radiated emissison Test result										
EU.	Γ: Party F	Power	M/N:	iPA19	С						
Pow	Power: AC 120V/60Hz										
Tes	Test date: 2015-08-04 Test site: 3m Chamber Tested by: Peter										
Tes	t mode: C	GFSK Tx CI	H79 2480	MHz							
Ant	enna pola	arity: Vertic	al								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark		
1	4960	42.69	33.98	10.22	34.25	52.64	74	21.36	PK		
2	4960	31.91	33.98	10.22	34.25	41.86	54	12.14	AV		
3	7440	/									
4	9920	/									
5	12400	/									
Ant	enna Pola	arity: Horizo	ontal								
1	4960	42.72	33.98	10.22	34.25	52.67	74	21.33	PK		
2	4960	32.14	33.98	10.22	34.25	42.09	54	11.91	AV		
3	7440	/									
4	9920	/									
5	12400	/									

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result

1GHZ—25GHZ Radiated emissison Test result										
EUT: Party Power M/N: iPA19C										
Pow	er: AC 12	20V/60Hz								
Test date: 2015-08-04 Test site: 3m Chamber Tested by: Peter										
Test mode: π /4 DQPSK Tx CH1 2402MHz										
Antenna polarity: Vertical										
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
1	4804	42.26	33.95	10.18	34.26	52.13	74	21.87	PK	
2	4804	31.75	33.95	10.18	34.26	41.62	54	12.38	AV	
3	7206	/								
4	9608	/								
5	12010	/								
Ante	enna Pola	rity: Horizo	ntal		•					
1	4804	42.28	33.95	10.18	34.26	52.15	74	21.85	PK	
2	4804	32.03	33.95	10.18	34.26	41.9	54	12.1	AV	
3	7206	/								
4	9608	/								
5	12010	/								
1										

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

1GHz—25GHz Radiated emissison Test result

Report No.: T1850893 06

TGHZ—23GHZ Radiated emissison Test result										
EUT: Party Power M/N: iPA19C										
Powe	r: AC 120)V/60Hz								
Test date: 2015-08-04 Test site: 3m Chamber Tested by: Peter										
Test r	node: π	/4 DQPSK	Tx CH40	2441M	IHz					
Antenna polarity: Vertical										
No	Freq (MHz)	Read Level	Antenna Factor	loss(d		Result (dBuV/m)	Limit (dBuV/	Margin (dB)	Remark	
		(dBuV/m)	` ′	B)	(dB)		m)			
1	4882	42.38	33.93	10.2	34.29	52.22	74	21.78	PK	
2	4882	31.96	33.93	10.2	34.29	41.8	54	12.2	AV	
3	7323	/								
4	9764	/								
5	12205	/								
Anten	na Polari	ty: Horizon	ıtal							
1	4882	42.38	33.93	10.2	34.29	52.22	74	21.78	PK	
2	4882	31.75	33.93	10.2	34.29	41.59	54	12.41	AV	
3	7323	/								
4	9764	/								
5	12205	/								
Note:										

- 1, Measuring frequency from 1GHz to 25GHz
- 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=10Hz, Sweep time=Auto, Detector: PK
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.