Antenas de quadro

3.1 Introdução

Além das antenas de dipolo, um outro tipo de antenas muito comum são as antenas de quadro que tomam diferentes formas como rectangular, quadrada, triangular, elipse e circular, entre outras. Devido à sua simplicidade de construção e análise a antena de malha circular é a mais popular. De modo semelhante à definição de comprimento eléctrico para o caso das antenas de dipolo, define-se para as antenas de quadro o perímetro eléctrico como o perímetro da antena em comprimentos de onda. As antenas de quadro circular com perímetros eléctricos reduzidos apresentam resistências de radiação muito baixas, frequentemente inferiores às suas resistências de perdas, o que significa que são radiadores muito pobres. Este facto inibe a sua aplicação como antena transmissora, no entanto como na recepção a eficiência da antena não é tão importante como a relação sinal-ruído, estas antenas apresentam boas características em modo de recepção.

Existem várias formas de aumentar a resistência de radiação em antenas de quadro circular, como sejam aumentar (electricamente) o seu perímetro, o número de espiras ou ainda colocar um núcleo de ferrite, cuja elevada permeabilidade magnética faz aumentar a intensidade do campo magnético e deste modo a potência irradiada e consequentemente a resistência de radiação.

3.2 Antena de quadro circular pequeno

Consideremos uma antena de quadro circular apoiada no plano x-y em z=0 e centrada na origem dos eixos cartesianos, como mostra a figura 3.1. Consideremos esta antena percorrida por uma corrente constante I_{ω} = I_0 .

Figure 5.1 Geometrical arrangement for loop antenna analysis.

Figura 3.1- Configuração geométrica para análise de antenas de quadro

O potencial vector criado pela corrente na antena é dado por

$$A(x, y, z) = \frac{\mu}{4\pi} \int I(x', y', z') \frac{e^{-jKR}}{R} dl'$$
(3.1)

Onde C é o contorno da corrente, ou seja toda a espira, R a distância de qualquer ponto da espira ao ponto de observação e dl' é um elemento infinitésimal de comprimento sobre a antena. A equação (3.1) envolve conversões entre os diferentes sistemas de coordenadas dado os diferentes tipos de simetrias existentes. A corrente apresenta simetria cilíndrica, a distância de um elemento de corrente ao ponto de observação é facilmente dado em termos de coordenadas rectangulares, mas o campo electromagnético radiado é tipicamente apresentado em coordenadas esféricas. Consideremos então a corrente na antena escrita em termos de coordenadas cartesianas, ou seja

$$I(x', y', z') = \hat{i}I_x(x', y', z') + \hat{j}I_y(x', y', z') + \hat{k}I_z(x', y', z')$$
(3.2)

cujas coordenadas cartesianas podem ser escritas a partir do sistema de conversão de coordenadas cilíndricas para coordenadas cartesianas que é dado por

$$\begin{bmatrix} I_t \\ I_y \\ I_z \end{bmatrix} = \begin{bmatrix} \cos\varphi' & -\sin\varphi' & 0 \\ \sin\varphi' & \cos\varphi' & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} I_p \\ I_z \\ I_z \end{bmatrix}$$
(3.3)

As coordenadas cartesianas da corrente são obtidas a partir da equação (3.3) e são dadas por

As coordenadas cartesianas da corrente podem agora ser convertidas para coordenadas esféricas usando a transformação

$$\hat{i} = \hat{i}_{r} \sin \theta \cos \varphi + \hat{i}_{\theta} \cos \theta \cos \varphi - \hat{i}_{\varphi} \sin \varphi$$

$$\hat{j} = \hat{i}_{r} sen \theta sen \varphi + \hat{i}_{\theta} \cos \theta \sin \varphi + \hat{i}_{\varphi} \cos \varphi$$

$$\hat{k} = \hat{i}_{r} \cos \theta - \hat{i}_{\theta} \sin \theta$$
(3.5)

Substituindo as equações (3.5) e (3.4) na equação (3.2) obtém-se

$$I = \hat{i}_{r} \left[I_{\rho} \sin \theta \cos(\varphi - \varphi') + I_{\varphi} \sin \theta \sin(\varphi - \varphi') + I_{z} \cos \theta \right]$$

$$+ \hat{i}_{\theta} \left[I_{\rho} \cos \theta \cos(\varphi - \varphi') + I_{\varphi} \cos \theta \sin(\varphi - \varphi') - I_{z} \sin \theta \right]$$

$$+ \hat{i}_{\varphi} \left[-I_{\rho} \sin(\varphi - \varphi') + I_{\varphi} \cos(\varphi - \varphi') \right]$$

$$(3.6)$$

sendo (ρ', ϕ', z') as coordenadas da corrente e (r, θ, ϕ) as coordenadas do ponto de observação. Como a corrente só tem componente segundo ϕ a equação (3.6) reduz-se a

$$I = \hat{i}_r I_\varphi \sin\theta \sin(\varphi - \varphi') + \hat{i}_\theta I_\varphi \cos\theta \sin(\varphi - \varphi') + \hat{i}_\varphi I_\varphi \cos(\varphi - \varphi')$$
(3.7)

A distância *R* entre um elemento de corrente e o ponto de observação é dada por

$$R = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$
(3.8)

Atendendo a que

$$x = r \sin \theta \cos \varphi$$

$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$x^{2} + y^{2} + z^{2} = r^{2}$$

e ainda a que

$$x' = a \cos \varphi'$$

$$y' = a \sin \varphi'$$

$$x'^{2} + y'^{2} + z'^{2} = a^{2}$$

$$z' = 0$$

a equação (3.8) pode escrever-se como

$$R = \sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi - \varphi')}$$
 (3.9)

Atendendo a que

$$dl' = ad\varphi'$$

o que pode ser facilmente verificado pela figura 3.1 (lado esquerdo). A equação (3.1) pode escrever-se então como

$$A_{\varphi} = \frac{a\mu}{4\pi} \int_{0}^{2\pi} I_{\varphi} \cos(\varphi - \varphi') \frac{e^{-jK\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi - \varphi')}}}{\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi - \varphi')}} d\varphi'$$
(3.10)

Se a corrente I ϕ é constante, então o campo irradiado pela antena não será função de ϕ , pelo que se pode escolher qualquer ângulo de observação ϕ , seja por questões de simplicidade ϕ =0.

Nestas condições a equação (3.10) pode ser escrita como

$$A_{\varphi} = \frac{a\mu d_0}{4\pi} \int_0^{2\pi} \cos(\varphi') \frac{e^{-jK\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi')}}}{\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi')}} d\varphi'$$
(3.11)

São necessárias algumas aproximações para que o integral definido na equação (3.11) possa ser calculado. Consideremos como primeira aproximação a malha muito pequena, ou seja a=0 e a expansão da função

$$f = \frac{e^{-jK\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi')}}}{\sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi')}}$$
(3.12)

em série de Maclaurin em torno de a=0, ou seja aproximamos a função f por

$$f = f(0) + \frac{\partial f}{\partial a} \Big|_{a=0} a + \frac{1}{2!} \frac{\partial^2 f}{\partial^2 a} \Big|_{a=0} a^2 + \dots + \frac{1}{(n-1)!} \frac{\partial^{n-1} f}{\partial^{n-1} a} \Big|_{a=0} a^{n-1} + \dots$$
(3.13)

Como

$$f(0) = \frac{e^{-jKr}}{r}$$
 (3.14)

e

$$f'(0) = \left(\frac{jK}{r} + \frac{1}{r^2}\right) e^{-jKr} \sin\theta \cos\varphi'$$
(3.15)

Tomando para aproximação de *f* apenas os primeiros dois termos da sua expansão temos

$$f \approx \left[\frac{1}{r} + a \left(\frac{jK}{r} + \frac{1}{r^2} \right) \sin \theta \cos \varphi' \right] e^{-jKr}$$
(3.16)

E a equação do potencial vector reduz-se a

$$A_{\varphi} \approx \frac{a\mu I_0}{4\pi} \int_0^{2\pi} \cos(\varphi') \left[\frac{1}{r} + a \left(\frac{jK}{r} + \frac{1}{r^2} \right) \sin\theta \cos\varphi' \right] e^{-jKr} d\varphi'$$
(3.17)

Verifiquemos agora a equação (3.15). Consideremos para o efeito a função *f* como

$$f(x) = \frac{e^{-jKx}}{x} \tag{3.18}$$

com x definido como

$$x = (r^2 + a^2 - 2ar\sin\theta\cos\varphi')^{\frac{1}{2}}$$
(3.19)

Derivando (3.18) em ordem a *x*, obtemos

$$\frac{\partial f}{\partial x} = \frac{-jKe^{-jKx}x - e^{-jKx}}{x^2} = e^{-jKx} \left(\frac{-jK}{x} - \frac{1}{x^2} \right)$$
 (3.20)

Derivando agora (3.19) em ordem a *a* obtemos

$$\frac{\partial x}{\partial a} = \frac{1}{2} \left(r^2 + a^2 - 2ar \sin\theta \cos\varphi' \right)^{-\frac{1}{2}} (2a - 2r \sin\theta \cos\varphi') \tag{3.21}$$

como

$$\frac{\partial f}{\partial a}\Big|_{a=0} = \frac{\partial f}{\partial x}\Big|_{a=0} \frac{\partial x}{\partial a}\Big|_{a=0}$$
(3.22)

e para a=0 temos x=r então (3.22) pode escrever-se como

$$\frac{\partial f}{\partial a}\bigg|_{a=0} = e^{-jKx} \left(\frac{-jK}{r} - \frac{1}{r^2} \right) \frac{1}{2} (r^2)^{-\frac{1}{2}} (-2r\sin\theta\cos\varphi') = e^{-jKx} \left(\frac{jK}{r} + \frac{1}{r^2} \right) \sin\theta\cos\varphi'$$

verificando-se deste modo a validade da equação (3.15).

Atendendo a que

$$\int_{0}^{2\pi} \cos \varphi d\varphi = \left[\sin \varphi\right]^{2\pi} = 0 \tag{3.23}$$

a equação (3.17) reduz-se a

$$A_{\varphi} \approx \frac{a^{2} \mu I_{0}}{4\pi} e^{-jKr} \left(\frac{jK}{r} + \frac{1}{r^{2}} \right) \sin \theta \int_{0}^{2\pi} \cos^{2}(\varphi') d\varphi'$$
(3.24)

como

$$\int_{0}^{2\pi} \cos^{2} \varphi d\varphi = \int_{0}^{2\pi} \frac{1 + \cos(2\varphi)}{2} d\varphi = \int_{0}^{2\pi} \frac{1}{2} d\varphi + \int_{0}^{2\pi} \cos(2\varphi) d\varphi = \pi + \left[\frac{\sin(2\varphi)}{2}\right]_{0}^{2\pi} = \pi$$

A equação (3.24) pode então escrever-se como

$$A_{\varphi} \approx \frac{a^2 \mu I_0}{4} e^{-jKr} \left(\frac{jK}{r} + \frac{1}{r^2} \right) \sin \theta$$
 (3.25)

As componentes do potencial vector sobre as direcções radial e segundo θ podem ser equacionadas de modo semelhante à equação (3.11) atendendo à equação (3.7), ou seja

$$A_{r} \approx \frac{a\mu I_{0}}{4\pi} \sin\theta \int_{0}^{2\pi} \sin\theta (\varphi') \left[\frac{1}{r} + a \left(\frac{jK}{r} + \frac{1}{r^{2}} \right) \sin\theta \cos\varphi' \right] e^{-jKr} d\varphi' = 0$$

$$A_{\theta} \approx \frac{a\mu I_{0}}{4\pi} \cos\theta \int_{0}^{2\pi} \sin(\varphi') \left[\frac{1}{r} + a \left(\frac{jK}{r} + \frac{1}{r^{2}} \right) \sin\theta \cos\varphi' \right] e^{-jKr} d\varphi' = 0$$

$$(3.26)$$

No entanto ambos os integrais definidos na equação 3.26 são nulos pois

$$\int_{0}^{2\pi} \sin \varphi' \cos \varphi' d\varphi' = \int_{0}^{2\pi} \frac{\sin(2\varphi')}{2} d\varphi' = 0$$
(3.27)

Sendo o potencial vector para a malha circular pequena dado por

$$A \approx \hat{i}_{\varphi} A_{\varphi} = \hat{i}_{\varphi} j \frac{Ka^2 \mu I_0 \sin \theta}{4r} \left(1 + \frac{1}{jKr} \right) e^{-jKr}$$
(3.28)

Atendendo a que $\mu H = \nabla^{\wedge} A$ e calculando o rotacional em coordenadas esféricas (equação 1.37), obtem-se o campo magnético

$$H_{r} = j \frac{Ka^{2}I_{0}\cos\theta}{2r^{2}} \left(1 + \frac{1}{jKr}\right) e^{-jKr}$$

$$H_{\theta} = -\frac{K^{2}a^{2}I_{0}\sin\theta}{4r} \left(1 + \frac{1}{jKr} - \frac{1}{(Kr)^{2}}\right) e^{-jKr}$$

$$H_{\varphi} = 0$$
(3.29)

Usando agora a equação de Maxwell $\nabla^{\wedge} H = J + \varepsilon j \psi E$ atendendo a que no espaço livre a densidade de corrente é nula obtemos o campo eléctrico

$$E_r = E_\theta = 0$$

$$E_\varphi = \eta \frac{K^2 a^2 I_0 \sin \theta}{4r} \left(1 + \frac{1}{jKr} \right) e^{-jKr}$$
(3.30)

A densidade de potência média irradiada por esta antena será

$$\vec{S} = \frac{1}{2} (\vec{E} \wedge \vec{H}^*) = \frac{1}{2} \begin{vmatrix} \hat{l}_r & \hat{l}_{\theta} & \hat{l}_{\varphi} \\ 0 & 0 & E_{\varphi} \\ H_r^* & H_{\theta}^* & 0 \end{vmatrix} = \frac{1}{2} \left(-E_{\varphi} H_{\theta}^* \hat{l}_r + E_{\theta} H_{\varphi}^* \hat{l}_{\theta} + E_{\theta} H_{\varphi}^* \hat{l}_{\theta} \right)$$
(3.31)

Como o termo assinalado com (1) é imaginário puro a densidade de potência média irradiada será

$$S_r = -\frac{1}{2} E_{\varphi} H_{\theta}^* = \eta \frac{(Ka)^4}{32} |I_0|^2 \frac{sen^2 \theta}{r^2} \left(1 + \frac{j}{K^3 r^3} \right)$$
 (3.32)

Sendo a potência média irradiada dada por

$$w = \int_{S} \mathbf{F} e[\vec{S}] \cdot \hat{n} \cdot dS_{r} = \eta \frac{(Ka)^{4}}{32} |I_{0}|^{2} \int_{0}^{2\pi\pi} \mathbf{S} sen^{3}\theta d\theta d\varphi = \eta \frac{\pi}{12} (Ka)^{4} |I_{0}|^{2}$$
(3.33)

E a resistência de radiação dada por

$$R_{r} = \frac{w}{\frac{1}{2}|I_{0}|^{2}} = \eta \frac{\pi}{6} (K^{2} a^{2})^{2} = \eta \frac{2\pi}{3} \left(\frac{KS}{\lambda}\right)^{2} = 20\pi^{2} \left(\frac{C}{\lambda}\right)^{4}$$
(3.34)

onde $S=\pi a^2$ e $C=2\pi a$ são respectivamente a área e o perímetro da malha circular que forma a antena. Se a antena é constituída por N espiras então a sua resistência de radiação vem multiplicada por N^2 .

No entanto a inserção de espiras interfere na distribuição de corrente sobre a antena tirando confiança aos métodos analíticos de análise da eficiência de radiação. Neste caso a eficiência de radiação é mais fiável se for obtida por métodos experimentais. Uma das aproximações usuais é considerar que a resistência óhmica da antena é igual à resistência de um condutor rectilíneo de comprimento igual ao perímetro da antena, o que não é válido quando se tem várias espiras, porque a distribuição de corrente não é uniforme mas depende do efeito pelicular e de proximidade. Se o espaçamento entre espiras é muito pequeno, a resistência de perdas vem mais afectada pelo efeito de proximidade do que pelo efeito pelicular.

A resistência óhmica de uma antena de quadro circular de N espiras de raio a, raio do condutor b e separação entre espiras de 2c é dado por

$$R_{ohmico} = \frac{Na}{b} R_s \left(\frac{R_p}{R_0} + 1 \right) \tag{3.35}$$

Onde a impedância superficial do condutor e a resistência do efeito pelicular (ohms/metro) são dadas respectivamente por

$$R_{s} = \sqrt{\frac{w\mu_{0}}{2\sigma}} \qquad R_{0} = \frac{NR_{s}}{2\pi b} \tag{3.36}$$

Sendo a resistência óhmica do efeito de proximidade (R_D) dada na figura 3.2

Figura 3.2- Resistência de proximidade em antenas de quadro circular

3.2.1 Campo próximo (Kr<<1)

O campo electromagnético na região próxima da antena é obtido a partir das equações (3.29) e (3.30) atendendo a que o último termo dentro dos parêntesis é predominante, ou seja é dado por

$$H_r \approx \frac{a^2 I_0 e^{-jKr}}{2r^3} \cos \theta$$

$$H_\theta \approx \frac{a^2 I_0 e^{-jKr}}{4r^3} \sin \theta$$

$$E_\varphi \approx -j \eta \frac{K a^2 I_0 e^{-jKr}}{4r^2} \sin \theta$$
(3.37)

A equação (3.37) mostra que as 2 componentes do campo magnético estão em fase mas em quadratura com o campo eléctrico, o que origina uma potência média radiada nula como acontece para o dipolo infinitesimal. Se a frequência for muito baixa a condição de campo próximo (Kr<<1) pode ser verificada a distâncias significativas da antena.

3.2.2 Campo distante (Kr>>1)

O campo electromagnético na região distante da antena é obtido a partir das equações (3.29) e (3.30) atendendo a que o primeiro termo dentro dos parêntesis é predominante. Além disso a componente radial do campo magnético é inversamente proporcional a r^2 pelo que para distâncias grandes será desprezável comparativamente à componente segundo θ que é inversamente proporcional a r. Usando estas aproximações o campo electromagnético é

$$H_{\theta} = -\frac{K^{2}a^{2}I_{0}e^{-jKr}}{4r}\sin\theta = -\frac{\pi SI_{0}e^{-jKr}}{\lambda^{2}r}\sin\theta$$

$$E_{\varphi} = \eta \frac{K^{2}a^{2}I_{0}e^{-jKr}}{4r}\sin\theta = -\eta H_{\theta}$$
(3.38)

Os campos eléctrico e magnético são perpendiculares entre si e também são perpendiculares à direcção de propagação da onda/energia. A impedância da onda é aproximadamente igual à impedância do meio

$$Z_{w} = -\frac{E_{\varphi}}{H_{\theta}} \approx \eta \tag{3.39}$$

A intensidade de radiação é calculada a partir da equação (3.38) sendo dada por

$$U = \text{Re}[S_r]r^2 = \eta \frac{(Ka)^4}{32} |I_0|^2 sen^2 \theta$$
 (3.40)

cujo valor máximo é

$$U_{\text{max}} = U \Big|_{\theta = \frac{\pi}{2}} = \eta \frac{(Ka)^4}{32} |I_0|^2$$
 (3.41)

ao que corresponde uma directividade de

$$D = 4\pi \frac{U_{\text{max}}}{w} = 1,5 \tag{3.42}$$

Antenas de quadro

Verifica-se que a directividade da malha circular infinitesimal é igual à directividade do dipolo infinitesimal.

3.3 Antena de quadro circular com corrente constante (a>>0 e r>>a)

A dificuldade em obter a solução para o integral definido na equação (3.11) obrigou a que, na secção 3.2, se restringisse a análise de antenas de malha circular ao caso específico de perímetro infinitesimal. No entanto, se as observações forem restringidas á zona distante o integral da equação (3.11) tem solução mediante as aproximações normalmente efectuadas nesta região. Além disso vamos verificar que as expressões para o campo distante da antena de quadro infinitesimal são um caso particular das obtidas para o caso presente.

Comecemos então por verificar que a equação (3.9) para um ângulo de observação φ =0 e na região distante caracterizada por r>>a se pode simplificar como

$$R = \sqrt{r^2 + a^2 - 2ar\sin\theta\cos(\varphi')} \approx \sqrt{r^2 - 2ar\sin\theta\cos\varphi'} \qquad para \quad r >> a$$
 (3.43)

A equação anterior pode ser ainda mais simplificada recorrendo à sua expansão em série binomial, ou seja

$$R \approx r \sqrt{1 - \frac{2a}{r}} \sin \theta \cos \varphi' = r - a \sin \theta \cos \varphi' = r - a \cos \psi_0 \qquad fase$$

$$R \approx r \quad amplitude \qquad (3.44)$$

Verifica-se a partir da figura 3.3 que esta aproximação é geometricamente trivial e ainda que o cosseno do ângulo formado pela direcção da corrente e do ponto de observação é dado por

$$\cos\psi_0 = \stackrel{\sqcup}{i_p}, \stackrel{\sqcup}{i_r}\big|_{\varphi=0} = \left(\stackrel{\sqcup}{i_x}\cos\varphi' + \stackrel{\sqcup}{i_y}\sin\varphi'\right). \left(\stackrel{\sqcup}{i_x}\sin\theta\cos\varphi + \stackrel{\sqcup}{i_y}\sin\theta\sin\varphi + \stackrel{\sqcup}{i_z}\cos\theta\right)\big|_{\varphi=0} = \sin\theta\cos\varphi'$$

Figura 3.3- Observação de campo distante para a antena de malha circular de raio finito

Nestas condições a equação (3.11) pode escrever-se como

$$A_{\varphi} \approx \frac{a\mu I_0 e^{-jKr}}{4\pi r} \int_0^{2\pi} \cos(\varphi') e^{jKasen\theta\cos\varphi'} d\varphi'$$
(3.45)

ou separando o integral em 2 parcelas

$$A_{\varphi} \approx \frac{a \mu I_0 e^{-jKr}}{4\pi r} \left[\int_0^{\pi} \cos(\varphi') e^{jKasen\theta\cos\varphi'} d\varphi' + \int_{\pi}^{2\pi} \cos(\varphi') e^{jKasen\theta\cos\varphi'} d\varphi' \right]$$
(3.46)

Fazendo a mudança de variável $\varphi' = \varphi'' + \pi$ obtém-se

$$A_{\varphi} \approx \frac{a\mu I_{0}e^{-jKr}}{4\pi r} \left[\int_{0}^{\pi} \cos(\varphi')e^{jKasen\theta\cos\varphi'}d\varphi' - \int_{0}^{\pi} \cos(\varphi'')e^{-jKasen\theta\cos\varphi''}d\varphi'' \right]$$
(3.47)

Os integrais na equação anterior estão relacionados com um tipo de função que existe tabelada que são as funções de Bessel do primeiro tipo. Uma função de Bessel do primeiro tipo e de ordem n é dada por

$$J_n(z) = \frac{j^{-n}}{\pi} \int_0^{\pi} \cos(n\varphi) e^{-jz\cos\varphi} d\varphi$$
 (3.48)

A expansão da função de Bessel do primeiro tipo e de ordem n é dada por

$$J_{n}(z) = \sum_{m=0}^{\infty} \frac{(-1)^{m} (z/2)^{n+2m}}{m!(m+n)!} \longrightarrow J_{n}(-z) = (-1)^{n} J_{n}(z) \longrightarrow J_{1}(-z) = -J_{1}(z)$$
(3.49)

Substituindo as equações (3.48) e (3.49) na equação (3.47) obtemos

$$A_{\varphi} \approx \frac{a\mu I_0 e^{-jKr}}{4\pi r} \left[\pi j J_1(Ka\sin\theta) - \pi j J_1(-Ka\sin\theta)\right] = j\frac{a\mu I_0 e^{-jKr}}{2r} J_1(Ka\sin\theta)$$
(3.50)

Usando agora o procedimento habitual, ou seja atendendo a que $\mu H = \nabla^{\wedge} A$, usando a equação (1.37) obtém-se o campo magnético. Usando seguidamente $\nabla^{\wedge} H = J + \varepsilon j w E$ atendendo que a densidade de corrente é nula no espaço livre e usando de novo a equação (1.37) obtém-se o campo eléctrico. As expressões do campo electromagnético são

$$E_{\varphi} \approx \frac{aw\mu I_0 e^{-jKr}}{2r} J_1(Ka\sin\theta) \qquad \qquad H_{\theta} \approx -\frac{E_{\varphi}}{\eta} = -\frac{aw\mu I_0 e^{-jKr}}{2\eta r} J_1(Ka\sin\theta)$$
(3.51)

A parte real do vector de Poynting é dada por

$$\operatorname{Re}\left[\vec{S}\right] = \frac{1}{2}\operatorname{Re}\left(\vec{E} \wedge \vec{H}^{*}\right) = \frac{1}{2}\operatorname{Re}\left(E_{\varphi}\hat{i}_{\varphi} \wedge H_{\theta}^{*}\hat{i}_{\theta}\right) = \hat{i}_{r} \frac{1}{2\eta}\left|E_{\varphi}\right|^{2} = \hat{i}_{r} \frac{(aw\mu)^{2}\left|I_{0}\right|^{2}}{8\eta r^{2}}J_{1}^{2}(Ka\sin\theta)$$
(3.52)

pelo que a intensidade de radiação na zona distante é dada por

$$U = \text{Re}\left[\vec{S}\right] r^2 = \frac{(aw\mu)^2 |I_0|^2}{8\eta} J_1^2(Ka\sin\theta)$$
 (3.53)

A figura 3.4 mostra o diagrama de radiação para $a=\lambda/10$, $\lambda/5$ e $\lambda/2$, que é similar ao diagrama de radiação do dipolo linear para $l<\lambda$. À medida que o raio da espira aumenta acima de 0,5 λ a intensidade do campo sob a direcção $\theta=0$ diminui formando um zero quando $a=0,61\lambda$ e tomando uma forma multilobular.

Figura 3.4- Diagrama de radiação da antena de malha circular de raio finito para $a=\lambda/10, \lambda/5$ e $\lambda/2$

O diagrama representado na figura 3.4 assume corrente constante, independentemente do perímetro da antena. No entanto se a>0,032λ a distribuição de corrente não é constante sobre o anel, podendo ser melhor representada pelas séries de Fourier. Embora seja comum assumir neste caso a distribuição de corrente como quase sinusoidal, esta assunção não é satisfatória especialmente junto dos pontos de alimentação da antena.

Mostra-se que a malha circular de comprimento de onda ($C\approx\lambda$) tem o máximo de radiação perpendicular ao plano da malha, ou seja para $\theta=0$. Esta característica da antena de malha circular é utilizada nos chamados agregados de Uda-Yagi, cujos elementos básicos de

radiação são malhas circulares. Esta característica faz com que a antena de malha circular de comprimento de onda seja tão fundamental como o dipolo de meio comprimento de onda.

A potência média irradiada na zona distante é

$$w = \int_{S} \mathbf{F} \mathbf{e} \left[\vec{S} \right] \cdot \hat{n} \cdot dS_r = \frac{\pi (aw\mu)^2 |I_0|^2}{4\eta} \int_{0}^{\pi} J_1^2 (Ka\sin\theta) \sin\theta d\theta$$
 (3.54)

O integral definido na equação anterior não tem solução directa, podendo no entanto ser escrito da seguinte forma

$$\int_{0}^{\pi} J_{1}^{2}(Ka\sin\theta)\sin\theta d\theta = \frac{1}{Ka} \int_{0}^{2Ka} J_{2}(x)dx$$
(3.55)

permitindo agora fazer algumas aproximações ao seu limite superior para diferentes valores do raio da malha (a).

No caso do anel grande ($a \ge \lambda/2$), o integral da equação (3.55) pode aproximar-se por

$$\frac{1}{Ka} \int_{0}^{2Ka} J_{2}(x) dx \approx \frac{1}{Ka}$$
(3.56)

e neste caso a potência irradiada obtém-se por substituição da euqação (3.56) na equação (3.54), ou seja

$$w = \frac{\pi (aw\mu)^2 |I_0|^2}{4\eta Ka}$$
 (3.57)

A intensidade máxima de radiação ocorre para $Kasin\theta = 1,84$ (ver tabelas) e é

$$U|_{\max} = \frac{(aw\mu)^2 |I_0|^2}{8\eta} J_1^2 (Ka\sin\theta)|_{Kasen\theta=1.84} = \frac{(aw\mu)^2 |I_0|^2}{8\eta} (0.584)^2$$
 (3.58)

A resistência de radiação é

$$R_{r} = \frac{w}{\frac{1}{2}|I_{0}|^{2}} = \dots = 60\pi^{2} \left(\frac{C}{\lambda}\right)$$
 (3.59)

e a directividade é

$$D = 4\pi \frac{U_{\text{max}}}{w} = 0.682 \left(\frac{C}{\lambda}\right) \tag{3.60}$$

Para um anel de comprimento intermédio caracterizado por $\lambda/6\pi \le a \le \lambda/2$ a aproximação para o integral definido na equação (3.54) é

$$\frac{1}{Ka} \int_{0}^{2Ka} J_{2}(x) dx \approx \frac{1}{Ka} \left[-2J_{1}(2Ka) + \int_{0}^{2Ka} J_{0}(y) dy \right]$$
 (3.61)

A equação (3.61 não pode ser mais simplificada, mas o integral da função de Bessel de ordem zero existe tabelado. Deste modo a potência radiada calcula-se através do resultado da equação (3.61), obtido quase exclusivamente pelo uso de tabelas. Conhecendo a potência radiada, a directividade e resistência d eradiação podem ser facilmente calculados.

Se o anel é de comprimento muito curto (a< λ /6 π) a função de Bessel de primeira ordem pode ser expandida em séries de potência pelo que

$$J_1(Ka\sin\theta) = \frac{1}{2}(Ka\sin\theta) - \frac{1}{8}(Ka\sin\theta)^3 + \dots \approx \frac{Ka\sin\theta}{2}$$
(3.62)

Para pequenos valores de Ka (Ka<1/3), a função pode ser aproximada apenas pelo primeiro termo da série. Verifique que é exatamente o que acontece para $a < \lambda/6\pi$.

Verifique agora que substituindo a equação (3.62) na equação (3.51) se obtém a equação (3.38). A figura (3.5) mostra a resistência de radiação em função do raio da malha circular para $\lambda/100 \le a \le \lambda/30$ tendo como base a aproximação da equação (3.62). Podemos verificar que os valores são extremamente baixos, menores que 1 ohm, sendo usualmente menores que a resistência de perdas dos condutores. Estes valores originam grandes perdas devidas à fraca adaptação de impedâncias entre a antena e as linhas de transmissão cuja resistência varia entre 50 e 75 ohms. Este assunto foi abordado no final da secção 2.4.3 com a introdução do chamado "teorema da máxima transferência de potência".

Figura 3.5- Resistência de radiação para uma malha circular de corrente constante tendo como base a aproximação dada na equação(3.62).

A resistência de radiação pode ser aumentada usando uma antena de várias espiras, o que aumenta também a resistência de perdas contribuindo para a ineficiência da antena. A figura 3.6 mostra a resistência de radiação e a directividade obtidas por integração numérica da equação (3.55) para 0<Ka=C/λ<20. A tracejado encontra-se a curva correspondente à aproximação tomada para anel grande e a ponteado a curva obtida na aproximação para anel pequeno.

Figura 3.6- Resistência de radiação e directividade para a malha circular de corrente constante.

3.4 Antena de quadro circular com corrente não uniforme

A assunção de corrente constante ao longo da malha circular é razoável apenas para malhas electricamente pequenas. Se o raio da malha exceder $0,04\lambda$ é preciso levar em conta as variações de corrente ao longo da circunferência da malha. Embora seja comum nestes casos assumir a distribuição de corrente como sinusoidal, esta aproximação não é satisfatória em especial na vizinhança dos pontos de alimentação da antena. Nestes casos a distribuição de currente deverá ser representada pelas suas séries de Fourier.

A figura 3.7 mostra a distribuição de corrente (amplitude e fase) como função de φ ', onde se verifica que esta só é aproximadamente uniforme para malhas electricamente muito curtas. As malhas com valores de *Ka* superiores a 0.2 (a>>0,03-0,04 λ) não podem ser consideradas pequenas.

Figura 3.7- Distribuição de corrente em antenas de malha circular electricamente pequenas.

A figura 3.8 mostra as impedâncias de entrada quando a corrente é representada pelas séries de Fourier. O diâmetro do fio condutor foi escolhido tal que Ω =8, 9, 10, 11 e 12, onde Ω é dado por

$$\Omega = 2\ln\left(\frac{2\pi a}{b}\right) \tag{3.63}$$

Figura 3.8- Inpedância de entrada em antenas de malha circular.

Verifica-se a partir da figura 3.8 que a primeira anti-ressonância é forte e ocorre quando o perímetro da malha $C\approx \lambda/2$. Verifica-se ainda que o aumento da espessura do fio condutor leva a um rápido desaparecimento das anti-rsonâncias, de tal modo que para Ω <9 existe apenas um ponto anti-ressonante.

A figura 3.9 mostra a resistência de radiação da malha circular com corrente constante e com corrente sinusoidal.

Figura 3.9- Resistência de radiação em antenas de malha circular com corrente constante e com corrente sinusoidal.

Verifica-se que quando o perímetro da malha é menor que aproximadamente 0.8λ não existem diferenças entre a resistência de radiação da malha com corrente constante e da malha com corrente sinusoidal.

3.5 Efeito da condutividade (finita) e curvatura da terra em antenas de quadro circular

A presença de um meio com perdas altera significativamente o desempenho de qualquer antena, devido à energia dissipada pelo meio sob a forma de calor. O diagrama de radiação, directividade, impedância de entrada e eficiência da antena são os parâmetros de radiação mais afectados pela presença de planos condutores curvos e com perdas. A análise para a antena de malha circular é semelhante à efectuada para os dipolos e apresentada na secção 2.5. No entanto, é necessário ter em conta que uma malha circular apoiada no plano horizontal tem polarização horizontal, enquanto o dipolo vertical tem polarização vertical. Como a malha circular horizontal é equivalente a um dipolo magnético com polarização vertical, usam-se as curvas deste último para a determinação da impedância de radiação de malhas circulares horizontais. Estas curvas são apresentadas na figura 3.10 e devem ser lidas extamente como as curvas do dipolo eléctrico vertical apresentadas na secção 2.6.1, onde também estão definidas as variáveis relevantes para a leitura dos gráficos.

Figure 5.10 Vertical magnetic dipole (VMD) (or small horizontal loop) impedance change as a function of height above a homogeneous lossy half-space. (source: R. E. Collin and F. J. Zucker (eds.), Antest na Theory Part 2, McGraw-Hill, New York, 1969)

Figura 3.10- Alteração de impedância do dipolo magnético vertical (VED) em função da altura a que se encontra de um meio homogéneo com perdas.

3.6 Antenas de quadro poligonal

As antenas de quadro poligonal mais atractivas são as quadradas, rectangulares, triangulares e losangonais. Exceptuando a antena de malha quadrada, a complexidade da estrutura das antenas poligonais dificulta a sua análise e é a causa principal pela qual estas antenas são pouco usadas e o seu estudo está pouco divulgado. O projecto de antenas deste tipo é feito tendo por base curvas de funcionamento obtidas por métodos de aproximação numérica. A boa directividade das antenas circulares faz com que sejam muito usadas em UHF, enquanto as antenas de malha quadrada e triangular, pela sua simplicidade de construção têm sido mais usadas em HF e UHF.

3.6.1 Antena de malha quadrada

A antena de quadro mais simples a seguir à antena de malha circular é a antena de malha quadrada. Para uma malha pequena, a análise desta antena é feita em cada um dos seus planos principais tendo por base a assunção de que cada lado do quadrado é constituído por

um pequeno dipolo linear de corrente constante e comprimento *l*. Consideremos a figura 3.11 onde uma malha quadrada está apoiada no plano x-y tendo por centro a origem dos eixos coordenados. O campo eléctrico criado pela antena será a soma vectorial do campo criado pelos 4 braços da antena. Repare que apenas os 2 braços assinalados na figura criam campo no plano y-z pois como sabemos do primeiro capítulo (secção 1.4, figura 1.13) o campo eléctrico deixa o fio condutor perpendicularmente à corrente. Como os 2 braços assinalados são os únicos perpendiculares ao plano y-z apenas eles criam campo eléctrico neste plano.

Figura 3.11- Observação de campo distante no plano y-z da antena de malha quadrada.

Como cada braço da antena é considerado um dipolo infinitesimal, o campo criado por cada braço na zona distante será dado pela equação (1.140), onde o ângulo entre a direcção da corrente e a direcção radial do ponto de observação é φ . Por outras palavras $sen\theta$ na equação (1.140) terá que ser substituído por $sen\varphi$. Como estamos no plano y-z então $sen\varphi=1$ e o campo criado pela antena será

$$E_{\varphi} = E_{\varphi 1} + E_{\varphi 2} = -j\eta \frac{KI_0 l}{4\pi} \left[\frac{e^{-jKr_1}}{r_1} - \frac{e^{-jKr_2}}{r_2} \right]$$
 (3.64)

Fazendo as aproximações usuais de campo distante ou seja

$$r_1 \approx r - \frac{l}{2}\sin\theta$$
 e $r_2 \approx r + \frac{l}{2}\sin\theta$ (3.65)

em termos de fase e

$$r_1 \approx r_2 \approx r$$

em termos de amplitude, a equação (3.64) reduz-se a

$$E_{\varphi} = \eta \frac{KI_0 l e^{-jKr}}{2\pi r} \sin\left(\frac{Kl}{2}\sin\theta\right)$$
 (3.66)

Se a malha é pequena (l< λ 50), então pela equação (1.113), a equação (3.66) pode ser aproximada por

$$E_{\varphi} = \eta \frac{(Kl)^2 I_0 e^{-jKr}}{4\pi r} \sin \theta = \eta \frac{\pi S I_0 e^{-jKr}}{\lambda^2 r} \sin \theta \tag{3.67}$$

onde $S=l^2$ é a área da antena. O campo magnético correspondente é dado por

$$H_{\theta} = -\frac{E_{\varphi}}{\eta} = -\frac{\pi S I_0 e^{-jKr}}{\lambda^2 r} \sin \theta \tag{3.68}$$

As equações (3.67) e (3.68) são idênticas às equações (3.38), o que significa que na zona distante os campos criados pelas malhas circular e quadrada (malhas muito pequenas) são idênticos.

3.6.2 Antena de malha triangular, rectangular e losangonal

As antenas triangulares mais comuns são constituídas por triângulos isósceles com pontos de alimentação no vértice superior ou no ponto médio da base. As antenas rectangulares mais comuns têm o seu ponto de alimentação na parte média de um dos seus lados maiores e finalmente as antenas losangonais mais comuns são alimentadas num dos seus vértices, como mostra a figura 3.12.

Figura 3.12- Configurações típicas de antenas de quadro poligonal

Devido à dificuldade de análise destas antenas, o seu projecto é feito tendo como base gráficos obtidos mediante métodos numéricos. Estes gráficos são feitos em função de características geométricas das antenas como sejam o ângulo β para as antenas triangulares e losangonais, o factor γ =W/H para as antenas rectangulares, o perímetro da antena P e ainda o raio do fio condutor a. A figura 3.13 mostra as variações da impedância de entrada como função do perímetro da antena para as 4 configurações mostradas na figura 3.12. Para as antenas triangulares e rectangular as curvas são para P/a=300 com uma curva diferente para cada β ou γ conforme o caso. O intervalo de marcação de todas as curvas está feito para P/λ de 0,2 em 0,2. As curvas respeitantes à antena losangonal são para P/a=400.

Figura 3.13- Impedância de entrada de antenas de quadro poligonal

Para o caso da antena triangular alimentada no vértice superior (figura 3.13 (a)) verifica-se que para β =60° o raio da curva apresentada é menor o que significa menores variações de impedância e por isso maior largura de banda relativa à impedância. O mesmo acontece para as antenas rectangulares caracterizadas por γ =0,5. Podemos então controlar a largura de banda da impedância por escolha adequada da forma e ponto de alimentação da antena de quadro poligonal. A antena triangular mais comum é a alimentada no vértice superior com β =60°, enquanto a antena rectangular mais comum é a de γ =0,5. Um cabo coaxial com resistência entre 50 e 70 ohms tem uma adaptação de impedância boa com uma antena triangular com β =40°. As antenas rectangulares com γ >0,5 apresentam directividades maiores mas piores características de impedância.

3.7 Antenas de quadro com núcleo de ferrite

A principal limitação das antenas de quadro quando usadas como antena emissora reside na sua baixa resistência de radiação que limita significativamente a eficiência da antena. Como antena receptora, a relação sinal-ruído é muito mais importante que a eficiência e a baixa eficiência não é considerada muito limitativa. Existem no entanto formas de aumentar a resistência de radiação, onde as mais comuns são aumentar o diâmetro da malha e

inserir dentro da malha um núcleo de ferrite que aumenta o fluxo magnético, e por isso também a intensidade do campo magnético. Se a intensidade do campo magnético aumenta então também aumenta o vector de *Poynting* e consequentemente a potência radiada. Como a potência foi aumentada e a corrente não, significa por definição que se aumentou a resistência de radiação. A resistência de radiação da malha com núcleo de ferrite é dada por

$$\frac{R_f}{R_r} = \left(\frac{\mu_e}{\mu_0}\right)^2 \tag{3.69}$$

onde R_f é a resistência de radiação da malha com núcleo de ferrite, R_r é a resistência de radiação da malha sem núcleo de ferrite, ou cujo núcleo é ar, μ_e é a permeabilidade efectiva magnética do núcleo de ferrite e μ_0 é a permeabilidade do espaço livre. Então a resistência de radiação de uma malha circular única com um núcleo (vareta) de ferrite é, atendendo à equação 3.34, dada por

$$R_f = 20\pi^2 \left(\frac{C}{\lambda}\right)^4 \left(\frac{\mu_e}{\mu_0}\right)^2 \tag{3.70}$$

ou se a antena tiver N espiras a resistência de radiação será dada por

$$R_f = 20\pi^2 \left(\frac{C}{\lambda}\right)^4 \left(\frac{\mu_e}{\mu_0}\right)^2 N^2 \tag{3.71}$$

A permeabilidade efectiva magnética do núcleo de ferrite está relacionada com a permeabilidade magnética da ferrite (material) por

$$\mu_e = \frac{\mu_f}{1 + D(\mu_f - 1)} \tag{3.72}$$

onde D é o factor de desmagnetização determinado experimentalmente para diferentes geometrias do núcleo e dado na figura 3.14. A figura 3.14 supõe o núcleo cilíndrico, exatamente como a antena e na escala horizontal entra o comprimento do núcleo a dividir pela razão (divisão) dos diâmetros da malha e do núcleo. As antenas de malha circular com uma pequena vareta de ferrite e algumas espiras são frequentemente usadas em rádios de bolso devido ao pouco espaço que ocupam. A espira é ligada em paralelo com um condensador

Antenas de quadro

formando, além da antena o circuito de sintonia. O facto da indutância ter poucas espiras faz com que apresente baixa resistência de perdas e por isso boa selectividade ou factor de qualidade Q elevado.

Figure 5.14 Demagnetization factor as a function of core length/diameter ratio. (SOURCE: E. A. Wolff, *Antenna Analysis*, Wiley, New York, 1966)

Figura 3.14- Factor de desmagnetização como função do comprimento do núcleo/razão de diâmetros.