#### FILE DE PRIORITÉ 2 / TRI PAR TAS

#### Tas binaire: swim

**swim** : placement de v dans H[1..i]

```
Entrée: tas H[1..], indice i, valeur v — placement de v dans H[1..i]

1 p \leftarrow \lfloor i/2 \rfloor

2 while p \neq 0 && H[p] > v do H[i] \leftarrow H[p]; i \leftarrow p; p \leftarrow \lfloor i/2 \rfloor

3 H[i] \leftarrow v
```

```
private static <T extends Comparable<? super T>>
    void swim(T x, int i, T[] H)
{
    int p = i/2; // arrondi automatique
    while (p>0)
    {
        T vp = H[p]; if(vp.compareTo(x)<=0) break;
        H[i]=vp; i=p; p=i>>>1; // décalage par x = div par 2^x
    }
    H[i]=x;
}
```

#### Tas binaire: sink

sink: placement de v dans H[i..n]

```
private static <T extends Comparable<? super T>>
    void sink(T v, int i, T[] H, int n)
    assert (n<H.length); // capacité H.length, cases occupées 1..n
    int c=2*i; // indice de l'enfant gauche
    while (c \le n)
        T \ vc = H[c];
        if (c < n)
            T v2 = H[c+1]; if (v2.compareTo(vc)<0) { c++; vc = v2; }
        if (vc.compareTo(x) >= 0) break;
        H[i] = vc; i=c; c= i << 1; // décalage gauche = mul par 2
    H[i] = x;
```

#### Tas binaire — efficacité

Nombre d'itérations et temps d'exécution :

| procédure                        | itérations                       | get    | set    | compare        |
|----------------------------------|----------------------------------|--------|--------|----------------|
|                                  | (au pire)                        | (=H[]) | (H[]=) |                |
| $\overline{swim(\cdot,i,\cdot)}$ | $d(i) = \lfloor \lg i \rfloor$   | d      | d+1    | $\overline{d}$ |
| $sink(\cdot,i,\cdot,n)$          | $h(i) = \lfloor \lg n/i \rfloor$ | 2h     | h+1    | 2h             |

- $\star$  deleteMin/sink :  $\sim$  2 lg n comparaisons au pire
- $\star$  insert/swim :  $\sim$  Ig n comparaisons au pire
- $\star$  findMin : O(1)

### Heapisation

Opération heapify (A) met les éléments de la vecteur A[1..n] dans l'ordre de tas.

Triviale?

heapify 
$$-$$
 top $(A)$  // tableau arbitraire  $A[1..n]$   
H1 for  $i \leftarrow 1, ..., n$  do swim $(A[i], i, A)$  // // insertion

 $\Rightarrow$  prend  $O(n \log n)$ 

Meilleure solution:

heapify(
$$A$$
) // tableau arbitraire  $A[1..n]$   
H1 for  $i \leftarrow \lfloor n/2 \rfloor, \ldots, 1$  do sink( $A[i], i, A, n$ )

 $\Rightarrow$  prend O(n)

## Heapify (cont)

Preuve du temps de calcul : si i est à la hauteur  $h = \lfloor \lg n/i \rfloor$ , alors  $\operatorname{sink}(\cdot, i, \cdot)$  fait O(h) temps. Il y a  $\leq n/2^h$  nœuds à la hauteur h. Comparaisons au total :

$$\sum_{h} \frac{n}{2^h} O(h) = O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right) = O(n).$$

«Évidemment», O(n) est optimal pour construire le tas.

#### Preuve formelle:

- Trouver le minimum des élements dans une vecteur de taille n prend n-1 comparaisons, donc un temps de  $\Omega(n)$  est nécessaire pour trouver le minimum.
- Avec n'importe quelle implantation de heapify, on peut appeler findMin après pour retrouver le minimum en O(1).
- Donc le temps de heapify doit être  $\Omega(n)$ , sinon on pourrait trouver le minimum en utilisant heapify+findMin en un temps o(n) + O(1) = o(n).

#### Tas d-aire

Tas d-aire : on utilise un arbre complet d-aire avec  $d \geq 2$ .

```
parent de l'indice i est \lceil (i-1)/d \rceil, enfants sont à d(i-1)+2..di+1 indices \lceil 0..n-1 \rceil: enfants à di+1..d(i+1), parent à \lfloor (i-1)/d \rfloor deleteMin/sink : \sim d \log_d n = \frac{d}{\lg d} \lg n insert/swim : \sim \log_d n = \frac{1}{\lg d} \lg n findMin : O(1)
```

Permet de balancer le coût de l'insertion et de la suppression si on a une bonne idée de leur fréquence (d=4 est toujours meilleur que d=2)

# Files de priorité avancées

Bcp d'autres structures inventées (nécessaires pour un merge efficace) : binomial heap, skew heap, Fibonacci heap

|             | liste triée | liste non-<br>triée | binaire     | <i>d</i> -aire         | binomial    | <b>skew</b> (amorti) | <b>Fibonacci</b> (amorti) |
|-------------|-------------|---------------------|-------------|------------------------|-------------|----------------------|---------------------------|
| deleteMin   | O(1)        | O(n)                | $O(\log n)$ | $O(d \log n / \log d)$ | $O(\log n)$ | $O(\log n)$          | $O(\log n)$               |
| insert      | O(n)        | O(1)                | $O(\log n)$ | $O(\log n/\log d)$     | $O(\log n)$ | O(1)                 | O(1)                      |
| merge       | O(n)        | O(1)                | O(n)        | O(n)                   | $O(\log n)$ | O(1)                 | O(1)                      |
| decreaseKey | O(n)        | O(1)                | $O(\log n)$ | O(log n/<br>log d)     | $O(\log n)$ | $O(\log n)$          | O(1)                      |

## Changer la priorité

changement de la priorité d'un élément — dans un tas binaire on peut le faire à l'aide de swim (si priorité baissée) ou de sink (si priorité élevée)

même technique pour supprimer un élément au milieu du tas : lancer swim ou sink à partir de la case vidée  $0 \le i < n$  et placer H[n]

graphe pondéré avec n sommets et m arêtes — algorithmes fondamentaux basés sur file de priorité contenant les sommets :

- \* algorithme de Prim trouve l'arbre couvrant minimal
- $\star$  algorithme de Dijkstra trouve les plus courts chemins d'une source (priorité de t= longueur du chemin de s à t) appellent n fois deleteMin et m fois decreaseKey
- $\Rightarrow$  s'exécutent en  $O(n \log n + m)$  temps si decreaseKey est O(1) amorti

Note : decreaseKey(e) nécessite la recherche de l'indice de l'élément e dans le tas (dictionnaire élément  $\rightarrow$  indice avec tas binaire)

### Files de priorité : comparaison

tas d-aire est très simple à implémenter — d'autres sont plus compliqués

Table 1: Programming effort

| Heap variant      | Logical lines of code (lloc) |
|-------------------|------------------------------|
| implicit simple   | 184                          |
| pairing           | 186                          |
| implicit          | 194                          |
| Fibonacci         | 282                          |
| binomial          | 317                          |
| explicit          | 319                          |
| rank-pairing      | 376                          |
| quake             | 383                          |
| violation         | 481                          |
| rank-relaxed weak | 638                          |
| strict Fibonacci  | 1009                         |

(implicit, explicit =  $tas\ d$ -aire  $sans\ ou\ avec\ decreaseKey)$ 

Larkin, Sen & Tarjan 2014, arXiv:1403.0252

# Étude empirique

#### sous-réseaux de la carte routière des USA



Larkin, Sen & Tarjan 2014

# Étude empirique



# Étude empirique

Table 3: Dijkstra – full USA road map

Heap Size  $-\max = 4200$ , average = 2489

Ratio of Operations – Insert : Deletemin : DecreaseKey = 13.98 : 13.98 : 1.00

| queue                 | time  | inst | l1_rd | l1_wr | l2_rd | 12_wr  | br    | l1_m  | l2_m  | br_m  |
|-----------------------|-------|------|-------|-------|-------|--------|-------|-------|-------|-------|
| implicit_4            | 1.00  | 1.00 | 1.00  | 1.10  | 1.35  | 1.06   | 1.00  | 1.00  | 1.00  | 1.00  |
| $implicit_8$          | 1.07  | 1.12 | 1.12  | 1.03  | 1.61  | 1.18   | 1.01  | 1.07  | 1.20  | 1.01  |
| $implicit_2$          | 1.17  | 1.10 | 1.01  | 1.27  | 1.35  | 1.00   | 1.33  | 1.05  | 1.00  | 1.33  |
| $implicit_16$         | 1.37  | 1.42 | 1.38  | 1.00  | 2.20  | 1.35   | 1.21  | 1.24  | 1.63  | 1.21  |
| pairing               | 1.68  | 1.09 | 1.12  | 2.95  | 1.71  | 28.57  | 1.39  | 1.60  | 1.75  | 1.39  |
| binomial              | 2.37  | 1.49 | 1.83  | 3.49  | 1.30  | 34.57  | 1.49  | 2.24  | 1.56  | 1.49  |
| fibonacci             | 3.15  | 2.00 | 2.09  | 5.03  | 1.73  | 79.53  | 2.91  | 2.85  | 2.67  | 2.91  |
| $rank_pairing_t2$     | 3.26  | 1.98 | 2.16  | 2.85  | 1.34  | 35.46  | 3.19  | 2.29  | 1.61  | 3.19  |
| $rank\_relaxed\_weak$ | 3.27  | 2.21 | 2.72  | 3.62  | 2.34  | 10.01  | 3.08  | 2.90  | 1.89  | 3.08  |
| $rank_pairing_t1$     | 3.29  | 1.98 | 2.16  | 2.85  | 1.33  | 35.35  | 3.19  | 2.29  | 1.60  | 3.19  |
| explicit_4            | 3.39  | 2.69 | 2.83  | 4.11  | 1.97  | 104.57 | 4.22  | 3.11  | 3.29  | 4.22  |
| $explicit_2$          | 3.84  | 3.35 | 3.39  | 4.84  | 1.00  | 74.61  | 5.01  | 3.71  | 2.05  | 5.01  |
| explicit_8            | 4.20  | 3.01 | 3.32  | 5.00  | 4.50  | 168.91 | 5.04  | 3.70  | 6.28  | 5.04  |
| violation             | 4.74  | 2.85 | 2.67  | 3.92  | 2.60  | 4.24   | 4.38  | 2.95  | 1.97  | 4.38  |
| explicit_16           | 5.94  | 3.94 | 4.56  | 6.81  | 8.02  | 276.59 | 7.13  | 5.06  | 10.76 | 7.13  |
| quake                 | 8.40  | 5.84 | 6.82  | 10.69 | 3.45  | 137.91 | 6.90  | 7.72  | 4.97  | 6.90  |
| $strict\_fibonacci$   | 12.49 | 9.47 | 12.50 | 22.07 | 6.96  | 84.51  | 11.47 | 14.83 | 6.58  | 11.47 |

time = wallclock, inst = compte d'instructions, l1/l2 : cache L1/L2, br : branching, rd : read, wr : write, m : miss

Larkin, Sen & Tarjan 2014

### Tri par sélection

```
Algo TRI-SELECTION(A[0..n-1])
S1 for i \leftarrow 0, 1, ..., n-2 do
S2 minidx \leftarrow i
S3 for j \leftarrow i+1, ..., n-1 do
S4 if A[j] < A[\text{minidx}] then minidx \leftarrow j
// (maintenant A[\text{minidx}] = \min\{A[i], ..., A[n]\})
S5 if i \neq \min minidx then échanger A[i] \leftrightarrow A[\text{minidx}]
```

#### Complexité:

- $\star$  comparaison d'éléments  $(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}$  fois;
- $\star$  échange d'éléments [ligne S5]  $\leq (n-1)$  fois

Temps de calcul : toujours  $\Theta(n^2)$  toujours

mais pas nécessairement une mauvaise idée si l'échange est beaucoup plus cher que la comparaison

## et si on se sert d'une file de priorité?

```
Algo TRI-PQ(A[0..n-1])
P1 for i \leftarrow 0, 1, ..., n-1 do PQ.insert(A[i])
P2 for i \leftarrow 0, 1, ..., n-1 do A[i] \leftarrow PQ.deleteMin()
```

- on peut utiliser heapify en P1 avec un tas binaire (d-aire)
- la boucle de P2 suggère la borne inférieure  $\Omega(\log n)$  pour le temps amorti de deleteMin dans n'mporte quel implémentation ( $\Omega(n \log n)$  temps minimal pour tri)

#### Tri par tas

```
HEAPSORT(A) // vecteur non-trié A[1..n]
H1 heapify(A)
H2 for i \leftarrow |A|, \dots 2 do
H3 échanger A[1] \leftrightarrow A[i]
H4 sink(A[1], 1, A, i - 1)
```

A[1..n] est dans l'ordre décroissant à la fin

(pour l'ordre croissant, utiliser un max-tas)

Temps  $O(n \log n)$  au pire, sans espace additionnelle!

 $\mathbf{quicksort}: \Theta(n^2)$  au pire (mais très rarement)

 $\mathbf{mergesort}: O(n \log n)$  toujours mais utilise un espace auxiliaire de taille n