

Real and Complex Analysis

Author: Wenjie Zou

Institute: ElegantIATEX Program

Date: Oct. 23, 2024

Version: 4.5

Bio: Information

Contents

Chapter 1 Prologue: The Exponential Function

1

Chapter 1 Prologue: The Exponential Function

Definition 1.1 (Exponential Function)

Exponential function is defined, for every complex number z, by the formula

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$
(1.1)

We define the number e to be $\exp(1)$, and shall usually replace $\exp(z)$ by the customary shorter expression e^z . Note that $e^0 = \exp(0) = 1$, by (1.1).

Property

- (a) The series (1.1) converges absoultely for every z and converges uniformly on every bounded subset of the complex plane. Thus \exp is a continuous function.
 - (b) For all complex numbers a and b, we have

$$\exp(a)\exp(b) = \exp(a+b). \tag{1.2}$$

Proof (a) is obvious. Next proof (b).

The absoulte convergence of (1.1) and Cauchy's theorem shows that computation

$$\exp\left(a\right)\exp\left(b\right) = \sum_{k=0}^{\infty} \frac{a^k}{k!} \sum_{m=0}^{\infty} \frac{b^m}{m!} \xrightarrow{\text{Add them in square order}} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^k b^m}{k! m!}$$

$$\frac{\text{Cauchy's theorem}(华坪大教分下册P20)}{\text{Add them up in diagonal order}} \sum_{n=0}^{\infty} \sum_{\substack{m+k=n\\m,k\in\mathbb{N}}} \frac{a^k b^m}{k! m!} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{a^k b^{n-k}}{k! \left(n-k\right)!}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \frac{n! a^k b^{n-k}}{k! (n-k)!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} C_n^k a^k b^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{(a+b)^n}{n!} = \exp(a+b).$$

Theorem 1.1 (The conclusions of exponential function)

- (a) For every complex z we have $e^z \neq 0$.
- (b) \exp is its own derivative : $\exp'(z) = \exp(z)$.
- (c) The resticton of exp to the real axis is a monotonically increasing positive function, and

$$e^x \to \infty \ as \ x \to \infty$$
, $e^x \to 0 \ as \ x \to -\infty$.

- (d)There exists a positive number π such that $e^{\frac{\pi}{2}}=i$ and such that $e^z=1$ if and only if $z/(2\pi i)$ is an integer.
- (e) exp is a periodic function, with period $2\pi i$.
- (f) The mapping $t \to e^{iz}$ maps that he real axis onto unit circle.
- (g) If w is a complex number and $w \neq 0$, then $w = e^z$ for some z.

Proof