REC'D 08 OCT 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

16. 9. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月15日

出願番号 Application Number:

特願2003-354741

[ST. 10/C]:

[JP2003-354741]

出 顯 人 Applicant(s):

ソニー株式会社

特許庁長官 Commissioner, Japan Patent Office PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 7月26日

)· "

特許願 【書類名】 0390653704 【整理番号】 平成15年10月15日 【提出日】 特許庁長官 今井 康夫 殿 【あて先】 G06F 7/00 【国際特許分類】 G06F 12/00 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 浜田 俊也 【氏名】 【発明者】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【住所又は居所】 加藤 元樹 【氏名】 【特許出願人】 000002185 【識別番号】 ソニー株式会社 【氏名又は名称】 【代理人】 100082762 【識別番号】 【弁理士】 【氏名又は名称】 杉浦 正知 03-3980-0339 【電話番号】 【選任した代理人】 100120640 【識別番号】 【弁理士】 森 幸一 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 043812 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】 【包括委任状番号】 0201252

【書類名】特許請求の範囲

【請求項1】

円盤状記録媒体に記録されたコンテンツデータを再生する再生装置において、

記録媒体から再生された第1の動画データを格納する第1の記憶手段と、

記録媒体から再生された第2の動画データを格納する第2の記憶手段と、

上記第1の記憶手段および上記第2の記憶手段の出力を所定領域単位で選択する選択手 段と

を有し、

上記選択手段の出力に基づき表示信号を生成するようにしたことを特徴とする再生装置

【請求項2】

請求項1に記載の再生装置において、

上記所定領域は、画素であることを特徴とする再生装置。

【請求項3】

請求項1に記載の再生装置において、

上記第1の記憶手段および上記第2の記憶手段は、プレーンメモリであることを特徴と する再生装置。

【請求項4】

請求項3に記載の再生装置において、

上記第1の記憶手段および上記第2の記憶手段のうち一方に、対応する上記動画データ が縮小された縮小動画データが表示位置に対応して格納され、上記選択手段は、上記縮小 動画データの上記表示位置に対応して上記選択を行うようにしたことを特徴とする再生装 置。

【請求項5】

請求項4に記載の再生装置において、

上記第1の記憶手段および上記第2の記憶手段のうち他方は、上記動画データの代わり に壁紙画像データが格納されるようにしたことを特徴とする再生装置。

【請求項6】

請求項3に記載の再生装置において、

上記選択手段の出力と上記記録媒体から再生された字幕データとを合成する第1の合成 手段と、

上記第1の合成手段の出力と上記記録媒体から再生された画像データとを合成する第2 の合成手段と

をさらに有することを特徴とする再生装置。

【請求項7】

請求項6に記載の再生装置において、

上記第1の合成手段による上記合成の度合いは、上記字幕データに応じて制御されるこ とを特徴とする再生装置。

【請求項8】

請求項6に記載の再生装置において、

上記第2の合成手段による上記合成の度合いは、上記画像データに応じて制御されるこ とを特徴とする再生装置。

【請求項9】

請求項1に記載の再生装置において、

上記第1の記憶手段および上記第2の記憶手段は、フレームメモリであって、上記選択 手段の出力がプレーンメモリに供給されるようにしたことを特徴とする再生装置。

【請求項10】

請求項9に記載の再生装置において、

上記第1の記憶手段または上記第2の記憶手段から出力された動画データを縮小した縮 小動画データを、上記選択手段により該縮小動画データの表示位置に対応して上記選択し

【請求項11】

請求項10に記載の再生装置において、

上記プレーンメモリの出力と上記記録媒体から再生された字幕データとを合成する第1 の合成手段と、

上記第1の合成手段の出力と上記記録媒体から再生された画像データとを合成する第2 の合成手段と

をさらに有することを特徴とする再生装置。

【請求項12】

請求項11に記載の再生装置において、

上記第1の合成手段による上記合成の度合いは、上記字幕データに応じて制御されるこ とを特徴とする再生装置。

【請求項13】

請求項11に記載の再生装置において、

上記第2の合成手段による上記合成の度合いは、上記画像データに応じて制御されるこ とを特徴とする再生装置。

【請求項14】

請求項11に記載の再生装置において、

上記第2の合成手段で上記第1の合成手段の出力が合成される上記画像データに対して 、上記第1の合成手段の出力を透過表示させる透明領域を上記縮小動画データの上記表示 位置に対応して設けるようにしたことを特徴とする再生装置。

【請求項15】

請求項14に記載の再生装置において、

上記画像データの上記透明領域以外の領域に壁紙画像を表示するようにしたことを特徴 とする再生装置。

【請求項16】

請求項15に記載の再生装置において、

上記第2の合成手段の出力に対して、さらに部品画像が表示され、上記壁紙画像は、上 記透明領域および上記部品画像の表示領域以外の領域に表示されるようにしたことを特徴 とする再生装置。

【請求項17】

円盤状記録媒体に記録されたコンテンツデータを再生する再生方法において、

記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、

記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、

上記第1の記憶手段および上記第2の記憶手段の出力を所定領域単位で選択する選択の ステップと

を有し、

上記選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とす る再生方法。

【請求項18】

円盤状記録媒体に記録されたコンテンツデータを再生する再生方法をコンピュータ装置 に実行させる再生プログラムにおいて、

上記再生方法は、

記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、 記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、

上記第1の記憶手段および上記第2の記憶手段の出力を所定領域単位で選択する選択の ステップと

を有し、

上記選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とす る再生プログラム。

円盤状記録媒体に記録されたコンテンツデータを再生する再生方法をコンピュータ装置 【請求項19】 に実行させる再生プログラムが記録されたコンピュータ装置が読み取り可能な記録媒体に おいて、

上記再生方法は、

記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、 記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、 上記第1の記憶手段および上記第2の記憶手段の出力を所定領域単位で選択する選択の ステップと

上記選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とす を有し、 る記録媒体。

【書類名】明細書

【発明の名称】再生装置、再生方法、再生プログラムおよび記録媒体 【技術分野】

[0001]

この発明は、ブルーレイディスク(Blu-ray Disc)といった大容量の記録媒体に記録され たプログラムに対してピクチャインピクチャを実現可能とする再生装置、再生方法、再生 プログラムおよび記録媒体に関する。

【背景技術】

[0002]

近年、記録可能で記録再生装置から取り外し可能なディスク型記録媒体の規格として、 Blu-ray Disc (ブルーレイディスク) 規格が提案されている。Blu-ra y Disc規格では、記録媒体として直径12cm、カバー層0.1mmのディスクを 用い、光学系として波長405nmの青紫色レーザ、開口数0.85の対物レンズを用い て、最大で27GB (ギガバイト) の記録容量を実現している。これにより、日本のBS ディジタルハイビジョン放送を、画質を劣化させることなく 2 時間以上記録することが可 能である。

[0003]

この記録可能光ディスクに記録するAV(Audio/Video)信号のソース(供給源)として は、従来からの、例えばアナログテレビジョン放送によるアナログ信号によるものと、例 えばBSディジタル放送をはじめとするディジタルテレビジョン放送によるディジタル信 号によるものとが想定されている。Blu-ray Disc規格では、これらの放送に よるAV信号を記録する方法を定めた規格は、既に作られている。

[0004]

一方で、現状のBlu-ray Discの派生規格として、映画や音楽などが予め記 録された、再生専用の記録媒体を開発する動きが進んでいる。映画や音楽を記録するため のディスク状記録媒体としては、既にDVD(Digital Versatile Disc)が広く普及してい るが、このBlu-ray Discの規格に基づいた再生専用光ディスクは、Bluray Discの大容量および高速な転送速度などを活かし、ハイビジョン映像を高画 質なままで2時間以上収録できる点が、既存のDVDとは大きく異なり、優位である。以 下では、Blu-ray Discの派生規格の再生専用の記録媒体をBD-ROM(Blu -ray Disc-Read Only Memory)と称し、記録可能なBlu-ray Discと区別する

[0005]

一方で、現状のBlu-ray Discの規格では、ディスクに記録されている映像 コンテンツの一覧を画面表示する方法や、その一覧表上にカーソルを表示させ、再生した い映像コンテンツをユーザに選択させるなどといったユーザインターフェイスに関する機 能が定められていない。これらの機能は、Blu-ray Discに対する記録再生を 行う記録再生装置本体によって実現されている。そのため、同一の記録媒体を再生した場 合でも、再生に用いた記録再生装置によってコンテンツ一覧画面のレイアウトが異なって しまい、ユーザインタフェースにも差が生じ、必ずしもユーザにとって使い易いものでは ない。再生専用ディスクとしては、再生機器によらず、ディスク(コンテンツ)制作者が 意図した通りのメニュー画面などが表示され、意図通りのユーザインターフェイスが実現 される必要がある。

[0006]

また、映像コンテンツの再生中に選択画面が表示され、ユーザの選択によってストーリ ーが分岐していくマルチストーリーの機能は、一般にインタラクティブ機能とも呼ばれる 。このインタラクティブ機能を実現するためには、ディスク制作者が再生順序や分岐を定 めたシナリオを作り、そのシナリオをプログラム言語、スクリプト言語等を使って記述し 、ディスクに記録しておく必要がある。再生装置側では、そのプログラムを読み込み、実 行することで、制作者の意図に従った映像コンテンツの再生や、分岐のための選択画面提

示を実現することになる。

[0007]

このように、現状のBlu-ray Disc規格(Blu-ray Disc Rewritable Format Ver1.0)では、この制作者の意図通りのユーザインターフェイスを実現するための、メニ ユー画面や分岐選択画面の構成方法、ユーザ入力に対する処理を記述する方法が定められ ていない。そのため、現状では、Blu-ray Discを用いて、制作者が意図した シナリオ通りの再生を、再生装置の製造メーカや機種に左右されることなく互換性を持た せた形で実現することが難しい。

[0008] また、映画を収録した再生専用ディスクにおいては、字幕を表示する仕組みが不可欠で ある。しかしながら、この字幕表示についても、現状のBlu-ray Disc規格で は、定められていない。

[0009]

一方、従来から、例えばDVD(Digital Versatile Disc)の規格においては、上述のよ うなインタラクティブな機能が既に実現されていた。例えば、DVDビデオにより動画を 再生中に、リモートコントロールコマンダなどを用いてメニュー画面を呼び出し、例えば メニュー画面上に配置されたボタンを選択するなどして、再生場面を変更するなどの処理 が可能であった。また、字幕を表示する仕組みも規定されていた。字幕表示については、 例えば、予め用意されている日本語字幕と英語字幕とを切り換えて表示させることができ

[0010]

DVDの場合、メニュー画面を固定的なサブピクチャデータにより構成し、メニュー画 面が呼び出された際に、動画データにこのサブピクチャデータを合成して表示する。特許 文献1に、このように動画データにサブピクチャデータを合成して記録可能なDVDに記 録する構成が記載されている。

【特許文献1】特開平10-308924号公報

上述したBD-ROMにおいても、動画、サブピクチャ(字幕)およびメニューを表示 するプレーンをそれぞれ設け、これら3枚のプレーンの画像を1枚の画像に合成して出力 することで、字幕表示およびインタラクティブな表示を実現できるようにすることが提案 されている。

[0012]

これによれば、各プレーンは、奥から、動画を表示する動画プレーン、字幕を表示する 字幕プレーン、メニュー画面やボタンなどを表示するグラフィクスプレーンの順に配置さ れる。そして、動画プレーンに対して字幕プレーンが合成され、その合成画像に対してグ ラフィクスプレーンが合成される。字幕プレーンおよびグラフィクスプレーンは、それぞ れ、合成時に不透明度を画素毎に設定することができ、不透明度が0に設定された画素は 、その画素のプレーンより奥のプレーンの対応する位置の画素が透過されて表示される。

【発明の開示】

【発明が解決しようとする課題】

[0013]

ところで、再生専用のBD-ROMにおいては、ビデオ映像中の小領域に他のビデオ映 像を表示させるような、所謂ピクチャインピクチャの機能が求められている。

[0014]ピクチャインピクチャの機能では、例えば、再生時の時系列が同一とされた複数の異な る映像からなるマルチアングルの映像において、メインのアングルを親画面に表示させな がら、第2のアングルを親画面の中の小領域である子画面に並列的に表示させるようなこ とが可能とされる。

[0015] ピクチャインピクチャを実現する場合、2本のビデオ信号を並列的に扱い、これらのビ

3/

[0016]

また、ピクチャインピクチャの場合、親画面のサイズの画像を縮小して子画面に表示させる画像を作成し、親画面と合成して表示させることが多く行われる。そのため、動画プレーンに縮小画像を供給して合成する方法を提供する必要がある。

$[0\ 0\ 1\ 7]$

さらに、縮小表示された動画データ表示の背景として、特定パターンの繰り返し画像などによる、壁紙と称される表示を可能とすることが求められている。

[0018]

したがって、この発明の目的は、BD-ROMにおいてピクチャインピクチャの機能を 実現可能な再生装置、再生方法、再生プログラムおよび記録媒体を提供することにある。

[0019]

また、この発明の別の目的は、BD-ROMにおいて動画データの背景に表示される壁紙の表示を可能とした再生装置、再生方法、再生プログラムおよび記録媒体を提供することにある。

【課題を解決するための手段】

[0020]

この発明は、上述した課題を解決するために、円盤状記録媒体に記録されたコンテンツデータを再生する再生装置において、記録媒体から再生された第1の動画データを格納する第1の記憶手段と、記録媒体から再生された第2の動画データを格納する第2の記憶手段と、第1の記憶手段および第2の記憶手段の出力を所定領域単位で選択する選択手段とを有し、選択手段の出力に基づき表示信号を生成するようにしたことを特徴とする再生装置である。

[0021]

また、この発明は、円盤状記録媒体に記録されたコンテンツデータを再生する再生方法において、記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、第1の記憶手段および第2の記憶手段の出力を所定領域単位で選択する選択のステップとを有し、選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とする再生方法である。

[0022]

また、この発明は、円盤状記録媒体に記録されたコンテンツデータを再生する再生方法をコンピュータ装置に実行させる再生プログラムにおいて、再生方法は、記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、第1の記憶手段および第2の記憶手段の出力を所定領域単位で選択する選択のステップとを有し、選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とする再生プログラムである。

[0023]

また、この発明は、円盤状記録媒体に記録されたコンテンツデータを再生する再生方法をコンピュータ装置に実行させる再生プログラムが記録されたコンピュータ装置が読み取り可能な記録媒体において、再生方法は、記録媒体から再生された第1の動画データを第1の記憶手段に格納するステップと、記録媒体から再生された第2の動画データを第2の記憶手段に格納するステップと、第1の記憶手段および第2の記憶手段の出力を所定領域単位で選択する選択のステップとを有し、選択のステップによる出力に基づき表示信号を生成するようにしたことを特徴とする記録媒体である。

[0024]

上述したように、この発明は、記録媒体から再生された第1の動画データが格納された 第1の記憶手段と、記録媒体から再生された第2の動画データが格納された第2の記憶手 段の出力とを所定領域単位で選択して表示信号を生成するようにしているため、第1の動

[0025]

この発明は、記録媒体から再生された2本の動画データをそれぞれメモリに格納し、メ モリに格納された2本の動画データを所定領域単位で選択して出力し、表示するようにし ている。そのため、2本の動画データのうち一方が縮小動画データであったときに、縮小 されていない動画データと縮小動画データとを1画面上に排他的に表示することができ、 これによりピクチャインピクチャ機能が実現できる効果がある。

[0026]

また、縮小されていない動画データの代わりに壁紙画像データを用いることで、縮小動 画データの背景に壁紙画像を表示させることができる効果がある。

[0027]

また、メモリに格納された2本の動画データの選択を所定領域単位で行っているため、 縮小動画データのサイズの変更に、表示が追随できるという効果がある。

[0028]

また、この発明の実施の第1の形態では、BD-ROMのHDムービーモードのプレー ン構成に対して第2ビデオプレーンをさらに設け、ビデオプレーンおよび第2ビデオプレ ーンの出力を、所定領域単位で選択して出力するようにしている。そのため、例えば第2 ビデオプレーンに縮小動画データを格納し、縮小動画データの表示位置に対応してビデオ プレーンおよび第2ビデオプレーンの出力を選択することで、ピクチャインピクチャ機能 が実現できる効果がある。

[0029]

またこのとき、ビデオプレーンに壁紙画像データを格納することで、縮小動画データの 背景に壁紙画像を表示させることができる効果がある。

[0030]

また、ビデオプレーンおよび第2ビデオプレーンの出力の選択を所定領域単位で行って いるため、例えば第2ビデオプレーンに格納されている縮小動画データのサイズの変更に 、表示が追随できるという効果がある。

[0031] さらに、この発明の実施の第2の形態では、BD-ROMのHDムービーモードのプレ ーン構成はそのままとし、ビデオプレーンの前に2つのフレームバッファを設け、この2 つのフレームバッファの出力を所定領域単位で選択して出力し、ビデオプレーンに供給す るようにしている。そのため、例えば、一方のフレームバッファから読み出された動画デ ータを縮小して縮小動画データとし、この縮小動画データの表示位置に対応して、縮小画 像データと他方のフレームバッファの出力とを選択することで、1枚のビデオプレーンを 用いてピクチャインピクチャを実現できる効果がある。

[0032]

また、2つのフレームバッファの出力の選択を所定領域単位で行っているため、例えば 一方のフレームバッファから読み出され縮小された縮小動画データのサイズの変更に、表 示が追随できるという効果がある。

[0033]

さらにまた、この発明の実施の第2の形態では、上述した、縮小動画データが組み込ま れた動画データが格納されるビデオプレーンの出力と字幕データが格納されるプレゼンテ ーショングラフィクスプレーンの出力とを合成し、その合成出力に対して G U I の部品な どの画像データが格納されるインタラクティブグラフィクスプレーンの出力を合成する。 ビデオプレーンおよびプレゼンテーショングラフィクスプレーンの合成結果に対してイン タラクティブグラフィクスプレーンの出力を合成する際に、インタラクティブグラフィク スプレーンにおけるビデオプレーン上の縮小画像データの表示位置に対応する領域を透明 領域とし、その他の領域に壁紙画像を表示させることで、BD-ROMのHDムービーモ ードのプレーン構成に対してプレーンを追加しなくても、縮小動画データの背景に壁紙画

[0034]

また、ビデオプレーンおよびプレゼンテーショングラフィクスプレーンの合成結果に対してインタラクティブグラフィクスプレーンの出力を合成する際に、インタラクティブグラフィクスプレーンにおけるビデオプレーン上の縮小画像データの表示位置に対応する領域を透明領域とすると共に、インタラクティブグラフィクスプレーン上にGUIの部品などの画像データを所定に配置し、透明領域および部品画像データ領域以外の領域に壁紙画像を表示させることで、BD-ROMのHDムービーモードのプレーン構成に対してプレーンを追加しなくても、恰もGUI部品画像データや縮小動画データの背景に壁紙画像が表示されているかのような表示が可能となる効果がある。

【発明を実施するための最良の形態】

[0035]

以下、この発明の実施の形態について説明する。先ず、理解を容易とするために、この発明の実施の形態の説明に先んじて、画像データを表示するための概略的な構成と、BD-ROMのHD(High Definition)ムービーモード規格として提案されている動画プレーン、字幕プレーンおよびグラフィクスプレーンの合成方法について説明する。なお、BD-ROMのHDムービーモードは、BD-ROMにおいてDVDビデオと同等のインタラクティブ機能を用意するために提案されている。

[0036]

図 1 は、画像データを表示するための典型的な構成例を概略的に示す。なお、図 1 では、説明に必要な構成だけを抜き出して示している。バス 3 0 0 に対して CPU (Central P rocessing Unit) 3 0 1 およびグラフィクス部 3 0 3 が接続される。 CPU 3 0 1 に対して、ワークメモリとして DRAM (Dynamic Random Access Memory) 3 0 2 が接続される。グラフィクス部 3 0 3 に対して VRAM (Video RAM) 3 0 4 が接続される。グラフィクス部 3 0 3 の出力がディスプレイ 3 1 0 に供給される。

[0037]

CPU301は、DRAM302をフレームバッファとして用いて、画像データに対して縮小処理など所定の処理を施す。処理された画像データは、CPU301によりDRAM302から読み出され、バス300を介してグラフィクス部303に供給される。

[0038]

グラフィクス部 3 0 3 は、ディスプレイ 3 1 0 に送る水平および垂直走査周波数を設定して表示解像度を決めると共に、CPU301からの描画命令を実行するグラフィクス制御チップを有する。グラフィクス部 3 0 3 に供給された画像データは、VRAM304 に書き込まれる。VRAM304 に書き込まれた画像データは、グラフィクス部 3 0 3 によって所定の水平および垂直走査周波数に対応して読み出され、ディジタルビデオ信号としてディスプレイ 3 1 0 に供給される。すなわち、VRAM304 がプレーンに相当し、VRAM304 の記憶内容がディスプレイ 3 1 0 の表示に直接的に反映される。

[0039]

次に、BD-ROMのHDムービーモードにおけるプレーン構成および各プレーンの合成方法について説明する。なお、以下では、背景技術で説明した動画プレーン、字幕プレーンおよびグラフィクスプレーンを、それぞれビデオプレーン、プレゼンテーショングラフィクスプレーンおよびインタラクティブグラフィクスプレーンと称する。

[0040]

図2は、ビデオプレーン10、プレゼンテーショングラフィクスプレーン11およびインタラクティブグラフィクスプレーン12の一例の構成を示す。ビデオプレーン10は、最も後ろ側(ボトム)に表示され、プレイリストで指定された画像(主に動画データ)が扱われる。プレゼンテーショングラフィクスプレーン11は、ビデオプレーン10の上に表示され、動画再生中に表示される字幕データが扱われる。インタラクティブグラフィクスプレーン12は、最も前面に表示され、GUI(Graphical User Interface)に用いられる部品、例えばメニュー画面を表示するための文字データやボタンを表すビットマップデ

[0041]

ビデオプレーン10、プレゼンテーショングラフィクスプレーン11およびインタラクティブグラフィクスプレーン12は、それぞれ独立して表示が可能とされ、例えば、図3に一例が示されるような解像度および表示可能色を有する。ビデオプレーン10は、解像度が1920画素×1080ラインで1画素当たりに換算したデータ長が16ビットであって、輝度信号Y、色差信号Cb、Crが4:2:2のシステム(以下、YCbCr(4:2:2))とされる。なお、YCbCr(4:2:2)は、各画素当たり輝度信号Yが8ビット、色差信号Cb、Crがそれぞれ8ビットで、色差信号Cb、Crが水平2画素で一つの色データを構成すると見なすカラーシステムである。

[0042]

プレゼンテーショングラフィクスプレーン11は、1920画素×1080ラインで各画素のサンプリング深さが8ビットとされ、カラーシステムは、256色のパレットを用いた8ビットカラーマップアドレスとされる。

[0043]

インタラクティブグラフィクスプレーン12は、解像度が1920画素×1080ラインで各画素のサンプリング深さが8ビットとされ、カラーシステムは、256色のパレットを用いた8ビットカラーマップアドレスとされる。

[0044]

なお、ビデオプレーン 10 は、上述以外にも、 1280 画素× 720 ライン、 720 画素× 480 ラインおよび 720 画素× 576 ラインの解像度にもなり得る。その場合には、プレゼンテーショングラフィクスプレーン 11 およびインタラクティブグラフィクスプレーン 12 は、ビデオプレーン 10 と同じ解像度とされる。

[0045]

また、上述では、プレゼンテーショングラフィクスプレーン11およびインタラクティブグラフィクスプレーン12のカラーシステムを、256色のパレットを用いた8ビットカラーマップアドレスとしたが、これはこの例に限定されない。色数については、サンプリング深さを変えてパレットの色数を増やせばよい。例えばサンプリング深さを12ビットとすれば、パレットで使用可能な色数を4096色とすることができる。また、サンプリング深さを24ビットとして、パレットを持たずに各画素が色情報を持つようにしたYCbCr (4:4:4) およびRGB (4:4:4) も、同様の仕組みで可能である。

[0046]

インタラクティブグラフィクスプレーン12およびプレゼンテーショングラフィクスプレーン11は、256段階のアルファブレンディングが可能とされており、他のプレーンとの合成の際に、不透明度を256段階で設定することが可能とされている。不透明度の設定は、画素毎に行うことができる。以下では、不透明度 α が(0 $\leq \alpha \leq 1$)の範囲で表され、不透明度 $\alpha = 0$ で完全に透明、不透明度 $\alpha = 1$ で完全に不透明であるものとする。

[0047]

プレゼンテーショングラフィクスプレーン11では、例えばPNG (Portable Network Graphics)形式の画像データが扱われる。また、インタラクティブグラフィクスプレーン12でも、PNG形式の画像データを扱うことができる。PNG形式は、1画素のサンプリング深さが1ビット~16ビットとされ、サンプリング深さが8ビットまたは16ビットの場合に、アルファチャンネル、すなわち、それぞれの画素成分の不透明度情報(アルファデータと称する)を付加することができる。サンプリング深さが8ビットの場合には、256段階で不透明度を指定することができる。このアルファチャンネルによる不透明度情報を用いてアルファブレンディングが行われる。また、256色までのパレットイメージを用いることができ、予め用意されたパレットの何番目の要素(インデックス)であるかがインデックス番号により表現される。

[0048]

図4は、上述の図2および図3に従い3つのプレーンを合成する一例の構成を示す。ビ [0049]デオプレーン10の動画データが422/444変換回路20に供給される。動画データ は、422/444変換回路20でカラーシステムがYCbCr(4:2:2)からYC b C r (4:4:4) に変換され、乗算器 2 1 に入力される。なお、422/444変換 回路20と乗算器21との間に解像度変換回路を挿入し、動画データの解像度を変換する ようにしてもよい。

[0050]

プレゼンテーショングラフィクスプレーン11の画像データがパレット22に入力され 、RGB(4:4:4)の画像データとして出力される。この画像データに対してアルフ ァブレンディングによる不透明度が指定されている場合には、指定された不透明度 α 1 ($0 \le \alpha \ 1 \le 1$) がパレット 2 2 から出力される。

[0051]

図5は、パレット22の入出力データの一例を示す。パレット22は、例えばPNG形 式のファイルに対応したパレット情報がテーブルとして格納される。パレット22は、入 力された8ビットの画素データをアドレスとして、インデックス番号が参照される。この インデックス番号に基づき、それぞれ8ビットのデータからなるRGB(4:4:4)の データが出力される。それと共に、パレット22では、不透明度を表すアルファチャンネ ルのデータが取り出される。

[0052]

図6は、パレット22に格納される一例のパレットテーブルを示す。256個のカラー インデックス値 [0 x 0 0] ~ [0 x F F] ([0 x] は 1 6 進表記であることを示す) のそれぞれに対して、各々8ビットで表現される三原色の値R、GおよびBと、不透明度 α とが割り当てられる。パレット22は、入力されたPNG形式の画像データに基づきパ レットテーブルが参照され、画像データにより指定されたインデックス値に対応する、そ れぞれ8ビットのデータからなるR、GおよびB各色のデータ(RGBデータ)と、不透 明度αとを画素毎に出力する。後述するパレット26にも、同様のパレットテーブルが格 納される。

パレット22から出力されたRGBデータは、RGB/YCbCr変換回路30に供給 され、各データ長が8ビットの輝度信号Yと色信号Cb、Crのデータに変換される(以 下、まとめてYCbCrデータと称する)。これは、以降のプレーン間合成を共通のデー タ形式で行う必要があるためで、動画データのデータ形式であるYCbCrデータに統一 している。

RGB/YCbCr変換回路30から出力されたYCbCrデータおよび不透明度デー eta lpha 1 とがそれぞれ乗算器 2 3 に入力される。なお、RGB/YCbCr変換回路 3 0 と 乗算器23との間に解像度変換回路を挿入し、YCbCrデータの解像度を変換するよう にしてもよい。乗算器23では、入力されたΥСЬС r データに不透明度データα1が乗 ぜられる。乗算結果は、加算器24の一方の入力端に入力される。なお、乗算器23では 、YCbCrデータにおける輝度信号Y、色差信号Cb、Crのそれぞれについて、不透 明度データ α 1との乗算が行われる。また、不透明度データ α 1の補数 $(1-\alpha$ 1) が乗 算器21に供給される。

乗算器21では、422/444変換回路20から入力された動画データに不透明度デ [0055]ータα1の補数(1 - α1)が乗ぜられる。乗算結果は、加算器24の他方の入力端に入

[0056]

インタラクティブグラフィクスプレーン12の画像データもプレゼンテーショングラフィクスプレーン11と同様に、パレット26によりRGB(4:4:4)のデータが出力され、RGB/YCbCr変換回路27に入力される。グラフィクスプレーン12の画像データのカラーシステムがRGB(4:4:4)である場合には、カラーシステムがYCbCr(4:4:4)に変換されてRGB/YCbCr変換回路27から出力される。RGB/YCbCr変換回路27から出力されたYCbCrデータが乗算器28に入力される。なお、RGB/YCbCr変換回路27と乗算器28との間に解像度変換回路を挿入し、YCbCrデータの解像度を変換するようにしてもよい。

[0057]

パレット 2 6 において、インデックス値に対してアルファブレンディングによる不透明度が指定されている場合には、指定された不透明度 α 2 (0 \leq α 2 \leq 1) がパレット 2 6 から出力される。不透明度データ α 2 は、乗算器 2 8 に供給される。乗算器 2 8 では、R G B / Y C b C r 変換回路 2 7 から入力された Y C b C r データに対し、輝度信号 Y、色差信号 C b、C r のそれぞれについて、不透明度データ α 2 との乗算が行われる。乗算器 2 8 による乗算結果が加算器 2 9 の一方の入力端に入力される。また、不透明度データ α 2 の補数 α 2 が乗算器 2 5 に供給される。

[0058]

乗算器 25 では、加算器 24 の加算結果に対して不透明度データ α 2 の補数($1-\alpha$ 2)が乗ぜられる。乗算器 25 の乗算結果は、加算器 29 の他方の入力端に入力され、上述した乗算器 28 による乗算結果と加算される。これにより、ビデオプレーン 10 とプレゼンテーショングラフィクスプレーン 11 との合成結果に対して、さらに、インタラクティブグラフィクスプレーン 12 が合成される。

[0059]

プレゼンテーショングラフィクスプレーン11およびインタラクティブグラフィクスプレーン12において、例えば、表示すべき画像の無い領域の不透明度 α = 0と設定することで、そのプレーンの下に表示されるプレーンを透過表示させることができ、例えばビデオプレーン10に表示されている動画データを、プレゼンテーショングラフィクスプレーン11やインタラクティブグラフィクスプレーン12の背景として表示することができる

[0060]

なお、パレット22とRGB/YCbCr変換回路30とをパレット22'として一つにまとめ、パレット22'から直接的にYCbCrデータが出力されるようにしてもよい

[0061]

この図4に示される構成は、ハードウェアおよびソフトウェアの何れでも実現可能なものである。

[0062]

以上のような構成をとることで、再生専用の規格に必要な、メニュー画面とボタンの表示を可能としている。メニュー画面上のボタンを選択することで、そのボタンに対応付けられたプレイリストを再生させるようにできる。また、再生専用規格で必要な、動画の上に字幕を重ねて表示する機能が実現される。

[0063]

上述したプレーン合成の構成は、ビデオプレーン10が1枚しかないので、ピクチャインピクチャのような、2本の動画データを並列的に扱い、2本のビデオ信号による2つの画面を合成して同時に表示することが想定されておらず、このままの構成でこれを実現することが困難である。

[0064] 次に、この発明の実施の第1および第2の形態について説明する。この発明は、上述し たBD-ROMのHDムービーモードを拡張し、より高機能なグラフィクス描画と、ユー ザとの双方向性実現とに適したフォーマットを提供することを最終的な目的とする。

[0065]

なお、BD-ROMのHDムービーモードを拡張した規格を、フルプロファイルと称す る。フルプロファイルは、更なるBD-ROMの高機能化を目指して、より複雑な双方向 性や、ネットワーク通信への対応の実現を図るものである。

フルプロファイルにおいて必要とされ、BD-ROMのHDム-ビーモードで実現され [0066] ていない機能のうち、プレーン構成に関するものは、次の3つが挙げられる。

- (1) ピクチャインピクチャ機能。
- (2) 動画データを縮小し、表示領域中の任意の位置へ表示させる。
- (3) (2) の縮小表示の際の縮小表示された動画データ以外の部分(背景)に対して壁 紙を表示させる。

[0067]

なお、「壁紙」とは、ディスプレイ上に表示されるオブジェクトの背景に、例えばディ スプレイの表示可能領域を埋め尽くすように画像を表示することを指し、比較的小さな画 像をタイル状に繰り返し表示させて構成することが多い。勿論、これに限らず、表示可能 領域に対応するサイズの画像を1枚だけ表示して壁紙とすることもできるし、単色やグラ デーションを壁紙として表示させることもできる。また、壁紙は、必ずしも表示可能領域 を埋め尽くしていなくてもよい。

[0068]

ここで、(1)の、ピクチャインピクチャについて、図7を用いて説明する。ピクチャ インピクチャは、映像を再生中に、再生映像画面内に小さな表示領域を設けるなどして、 他の映像を並列的に表示する機能である。このとき、大きく表示された一方の映像の上に 重なるように、もう一方の映像が表示されることが多い。大きく表示された映像画面を親 画面と称し、親画面中に重ねて表示される小領域の画面を子画面と称する。図7Aでは、 親画面250中に子画面251が表示されている。なお、図7中、子画面251の周囲の 白枠は、図を見易くするためのものであって、実際に表示するか否か、また枠を表示する 際にどのような枠にするかは、任意である。

[0069] 子画面251は、親画面250の上に乗っているように重ねられて表示され、子画面2 51の領域では、親画面250が見えなくなっている。このとき、子画面251に対して アルファブレンディング処理を行わなくても、ピクチャインピクチャの機能上、問題はな い。また、ピクチャインピクチャ機能では、親画面250および子画面251の表示内容 は、図7Aおよび図7Bにそれぞれ示されるように、互いに切り替えられることが求めら れる。さらに、子画面251は、位置およびサイズを変更できるようにすると、ユーザに とって利便性が高くなり、より好ましい。

[0070]

先ず、この発明の実施の第1の形態について説明する。この発明の実施の第1の形態で は、上述した(1)のピクチャインピクチャ、(2)の縮小画像表示、(3)の壁紙画像 表示を実現するために、図2を用いて説明したBD-ROMのHDムービーモードにおけ るプレーン構成に対して、さらに1枚、プレーンを追加する。以下、追加するプレーンを 、第2ビデオプレーンと称する。第2ビデオプレーンは、ビデオプレーンよりさらに奥に 配置される。すなわち、この実施の第1の形態では、プレーンは、奥から、第2ビデオプ レーン、ビデオプレーン、プレゼンテーショングラフィクスプレーン、インタラクティブ グラフィクスプレーンの順に配置される。ビデオプレーンおよび第2ビデオプレーンを用 いて親画面250および子画面251の表示を実現する。

[0071]

[0072]

上述したように、親画面250および子画面251の間では、アルファ合成が不要であ るので、親画面250および子画面251は、各画素について何れかが表示されればよい ことになる。したがって、親画面250および子画面251を表示するビデオプレーン1 0および第2ビデオプレーン50の間では、何方のプレーンを表示するかを画素単位に切 り替えることができればよい。

[0073] そこで、図8に示されるように、ビデオプレーン10と第2ビデオプレーン50の出力 を切り替えるスイッチ51を設ける。このスイッチ51は、画素単位で入力端51Aおよ び51Bを切り替えることができるように制御される。例えば、上述の図1におけるグラ フィック部303のタイミング信号により、スイッチ51の切り替えタイミングが制御さ れる。タイミング信号は、CPU301により制御することができる。CPU301がタ イミング制御を行うようにもできる。スイッチ51の出力は、422/444変換回路2 0に供給される。

ピクチャインピクチャ機能を実行する際には、子画面251を表示するための動画デー [0074]タは、予め縮小処理を施してからビデオプレーン 10または第2ビデオプレーン 50に格 納する。親画面250の内容と子画面251の内容とを入れ替える際には、ビデオプレー ン10および第2ビデオプレーン50の内容を一旦クリアして、新たな動画データを再描 画する。

なお、第2ビデオプレーン50の解像度や表示可能色数などは、ビデオプレーン10と 同一とするとよい。これに限らず、ピクチャインピクチャの機能に制限がある場合、例え ば、第2ビデオプレーン50を子画面251の表示に限定して使用するような場合、第2 ビデオプレーン50の解像度は、子画面251の解像度を満たしていれば十分である。

[0076] この発明の実施の第1の形態によれば、第2ビデオプレーン50を利用することで、壁 紙表示を実現することができる。図9は、第2ビデオプレーン50を利用して壁紙画像2 00の表示を実現した例を示す。図9の例では、動画201、ならびに、GUIの部品2 02Aおよび202Bが壁紙画像200を背景として表示される様子が示される。

壁紙画像200は、少なくとも下記の3条件を満たしている必要がある。

- (1) 各プレーンの表示に対して最も奥に表示される。
- (2) ビデオプレーン10上に表示される動画201のサイズ変更に応じて、背景を隙間 無く埋め尽くして表示される。
- (3) インタラクティブグラフィクスプレーン 1 2 に表示される G U I の部品の背景とし て表示される。

第2ビデオプレーン50を利用して壁紙画像200を表示させることで、これら3条件 を満たすことができる。

図8を用いて説明したように、ビデオプレーン10または第2ビデオプレーン50に対 してプレゼンテーショングラフィクスプレーン11が合成され、その合成画像に対してイ ンタラクティブグラフィクスプレーン12がさらに合成される。そのため、プレゼンテー ショングラフィクスプレーン11やインタラクティブグラフィクスプレーン12に対して 所定に不透明度を設定することで、図8において当該プレーンより後ろに配置されたプレ 出証特2004-3065673

[0080]

ビデオプレーン10および第2ビデオプレーン50は、スイッチ51により画素単位で 切り替えられるため、ビデオプレーン10の表示領域と第2ビデオプレーン50の表示領 域とは、排他的な関係にある。そのため、ビデオプレーン10に表示される動画201の サイズの変更に応じて、第2ビデオプレーン50上の壁紙画像200を隙間無く表示させ ることが可能である。また、これにより、ビデオプレーン10上の動画201が、第2ビ デオプレーン 5 0 に表示される壁紙画像 2 0 0 を背景として表示されているように見せる ことができる。したがって、プレーン全体として、第2ビデオプレーン50上の壁紙画像 200が最も奥に表示されているようにできる。

[0081]

なお、上述では、スイッチ 5 0 を画素単位で切り替えるようにしているが、これは、1 画素単位に限られず、2画素単位、4画素単位など、複数画素単位でスイッチ50を切り 替えるようにしてもよい。

[0082]

次に、この発明の実施の第2の形態について説明する。この実施の第2の形態では、上 述した図4の構成に対して新たにプレーンを追加することなく、ピクチャインピクチャや 背景の壁紙画像の表示を実現するものである。

[0083]

先ず、壁紙画像の表示の実現方法について説明する。なお、この実施の第2の形態では 、プレーン構成は、図2を用いて説明したBD-ROMのHDムービーモードの場合と同 様に、奥からビデオプレーン10、プレゼンテーショングラフィクスプレーン11および インタラクティブグラフィクスプレーン12の順となっており、各プレーンを合成するた めの構成は、図4と同一の構成を用いるものとする。

[0084]

図10を用いて説明する。この図10の例では、壁紙画像210を背景として、インタ ラクティブグラフィクスプレーン12上の複数のボタン画像、すなわちGUIに用いられ る部品211A、211B、211Cおよび211Dが表示されると共に、ビデオプレー ン10上の動画が領域212に、プレゼンテーショングラフィクスプレーン11上の例え ば字幕データが領域213にそれぞれ表示される。また、部品211A、211B、21 1 C および 2 1 1 D 、領域 2 1 2 、ならびに、領域 2 1 3 以外の部分には、壁紙画像 2 1 0が表示されている。

このような表示を実現する場合、最前面のインタラクティブグラフィクスプレーン12 [0085] において、領域212および213の不透明度α2を0として、インタラクティブグラフ ィクスプレーン12の奥にある2枚のプレーンが完全に見えるようにする。領域212お よび213以外の領域は、不透明度 lpha 2を例えば1として、壁紙画像210を表示すると 共に、部品211A、211B、211Cおよび211Dをそれぞれ表示する。なお、壁 紙画像210は、領域212および213、ならびに、部品211A、211B、211 Cおよび211Dを除いた領域に描画される。

[0086]

プレゼンテーショングラフィクスプレーン11では、領域212の不透明度α1を0と して、プレゼンテーショングラフィクスプレーン11の奥にあるビデオプレーン10が完 全に見えるようにする。領域212以外の領域は、不透明度 α 1 を例えば 1 とする。これ に限らず、プレゼンテーショングラフィクスプレーン11において、字幕データが表示さ れる領域213の不透明度lpha1を1とし、その他の領域の不透明度lpha1を0としてもよい

[0087]

ビデオプレーン10では、図11に一例が示されるように、領域212に収まるように動画のサイズを縮小した縮小画像データ216を作成し、且つ、縮小画像データ216を領域212の位置に表示されるように配置する。こうすることによって、図2および図4に示される構成に対して、新たなプレーンを追加することなく、壁紙画像210の表示を実現することができる。

[0088]

なお、壁紙画像210を描画する領域を求めるアルゴリズムやプログラムについては、 プログラミング言語のライブラリとして提供されている場合が多く、通常は、制作者側で 特に意識する必要は無い。

[0089]

また、この実施の第2の形態では、上述のように、壁紙画像210を描画する際には、領域212および213、ならびに、部品211A、211B、211Cおよび211D を除いた領域を求める必要があり、壁紙画像210の描画に際して、計算量の多い処理が必要とされる。そのため、特に時間の経過に伴ってインタラクティブグラフィクスプレーン12上を移動したり、変形したりするGUI部品などがある場合、計算量の増加に伴う動作速度の低下が発生する可能性があるため、このようなGUI部品を用いる場合、この点を考慮するのが好ましい。

[0090]

次に、この実施の第2の形態によるピクチャインピクチャの実現方法について説明する。図12は、1枚のビデオプレーン10を用いてピクチャインピクチャを実現するための一例の構成を概略的に示す。図12に示されるように、この実施の第2の形態では、画像出力部220とビデオプレーン10との間に2つのフレームバッファ221Aおよび221Bを設ける。

[0091]

フレームバッファ221Aの出力は、ダウンコンバータ222Aを介してスイッチ223の入力端223Aに供給される。フレームバッファ221Bの出力は、ダウンコンバータ222Bを介してスイッチ223の入力端223Bに供給される。スイッチ233は、画素単位で入力端223Aおよび223Bを切り替えることができるようにされている。スイッチ223の出力は、ビデオプレーン10に供給される。

[0092]

なお、フレームバッファ221Aおよび221Bは、ディスプレイに表示される画像と1対1に対応する画像データを保持するプレーンメモリ(例えばVRAM304)ではなく、CPUが有するメインメモリの一部や、ビデオデコーダの後段に設けられるフレームバッファである。上述の図1においては、例えばDRAM302に対応するものである。

[0093]

画像出力部220は、異なる2本のビデオストリーム(ビデオストリームA、ビデオストリームBとする)を処理可能とされており、画像データ出力部220から出力されたビデオストリームAおよびビデオストリームBは、フレームバッファ221Aおよび221Bにそれぞれ供給される。以下では、ビデオストリームAを親画面とし、ビデオストリームBをビデオストリームAの子画面230として表示させるものとする。

[0094]

フレームバッファ 2 2 1 Bから読み出された画像データは、ダウンコンバータ 2 2 2 B に供給され、サイズの変更がなされる。ダウンコンバータ 2 2 2 Bでは、例えば画素の間引き処理や補間処理を行うことにより、画像データのサイズを縮小する。ダウンコンバータ 2 2 2 Bでサイズが縮小された縮小画像データは、スイッチ 2 2 3 の入力端 2 2 3 Bに供給される。

[0095]

一方、フレームバッファ 2 2 1 A から読み出された画像データは、ダウンコンバータ 2 出証特 2 0 0 4 - 3 0 6 5 6 7 3

22Aを素通りしてスイッチ223の入力端223Aに供給される。なお、ダウンコンバータ222Aも、ダウンコンバータ222Bと同様、入力された画像データのサイズを縮小する。

[0096]

スイッチ223では、例えばビデオプレーン10に対して、表示領域の上端から順に、ライン毎に左から右へと走査しながら表示領域の下端まで、画素単位で行われる画像データの転送に連動して、入力端223Aと223Bとが所定にタイミング制御されて切り替えられる。図12の例の場合、子画面230を表示させたい位置の画素を書き込む際に、スイッチ223において入力端223Bを選択するように切り替えることで、ビデオプレーン10の一部に、フレームバッファ221Bから読み出された動画データが子画面230として描画される。

[0097]

スイッチ 2 2 3 の切り替えタイミングの例について、図1 3 を用いて説明する。なお、図1 3 では、繁雑さを避けるために、図1 3 Bに示されるように、画面(1 フレーム)の解像度を 2 0 画素×1 0 ラインと簡略化している。図1 3 Aに示されるような位置に子画面 2 3 0 が表示される例を考える。図1 3 Cは、このときのスイッチ 2 2 3 の一例の切り替えタイミングを示す。図1 3 Cにおいて、バッファA側がフレームバッファ 2 2 1 A すなわち入力端 2 2 3 A側を示し、バッファB側がフレームバッファ 2 2 1 B すなわち入力端 2 2 3 B側を示す。このように、子画面 2 3 0 が掛からないラインでは、入力端 2 2 3 A側が選択され、子画面 2 3 0 が掛からするない画素のタイミングでは入力端 2 2 3 Aが選択され、子画面 2 3 0 が掛かる画素のタイミングでは入力端 2 2 3 B側が選択される。このようにスイッチ 2 2 3 の切り替えタイミングを画素単位で制御することで、1 枚のビデオプレーン 1 0 を用いて親画面と子画面 2 3 0 とを並列的に表示させることが可能とされる。

[0098]

なお、このスイッチの切り替えタイミング制御は、上述したこの発明の実施の第1の形態における、ビデオプレーン10および第2ビデオプレーン50による子画面表示制御の際にも適用できる。

[0099]

また、ここでは子画面230の形状を長方形としたが、上述のような画素単位でのスイッチ223の切り替え制御によれば、子画面230の形状を長方形以外の任意の形状とすることができる。

[0100]

子画面230の表示内容と親画面の表示内容とを入れ替える際の処理について、概略的に説明する。この場合、フレームバッファ221Bから読み出された画像データは、ダウンコンバータ222Bを素通りしてスイッチ223の入力端223Bに供給される。一方、フレームバッファ221Aから読み出された画像データは、ダウンコンバータ222Aで縮小処理され、スイッチ223の入力端223Aに供給される。図13Dに一例が示されるように、子画面230の内容と親画面の内容とを入れ替える指示がタイミングTでなされた場合、タイミングTにおいて、スイッチ223による選択方向が入力端223Aと入力端223Bとで入れ替えられる。

[0101]

図13Dのようにスイッチ223の切り替え制御を行うと、タイミングTに対応する画素から以降で、子画面230の内容と親画面の内容とが入れ替えられる。切り替えタイミングは、これに限らず、例えば、タイミングTで子画面および親画面の入れ替え指示があった場合に、当該フレームの終端または次フレームの先頭、あるいは、フレーム終端および次フレームの先端の間まで、スイッチ223の選択タイミングの入れ替えを待つようにしてもよい。この場合には、子画面および親画面の入れ替え指示があった次のフレームから、子画面230の内容と親画面の内容とが入れ替わった表示がなされる。

[0102]

なお、上述では、子画面230の内容と親画面の内容との入れ替えを、スイッチ223の切り替え制御によって行っていたが、これはこの例に限定されない。例えば、フレームバッファ221Aおよび221Bのうち一方を子画面230専用とし、画像出力部220からの出力先をフレームバッファ221Aおよび221Bとで切り替えるようにしてもよい。この場合には、親画面と子画面との入れ替えの際に、スイッチ223の選択タイミングを入れ替える必要が無い。

[0103]

また、上述では、スイッチ223の切り替えタイミングを画素単位で制御しているが、 これは、1画素単位に限られず、2画素単位、4画素単位など、複数画素単位でスイッチ 223を切り替えるようにしてもよい。

[0104]

さらに、上述では、フレームバッファ221Aおよび221Bからビデオプレーン10に対して、ライン毎に走査して画像データを転送しているが、これはこの例に限定されない。例えば、フレームバッファ221Aおよび221Bから、所定の領域からなるブロック単位で画像データを読み出し、ビデオプレーン10に転送することも可能である。この場合、スイッチ223も、ブロック単位で切り替えタイミングが制御される。

[0105]

この発明の実施の第1の形態のように、プレーンを増やすことは、プレーン専用のメモリ (VRAM304など) およびプレーンメモリにアクセスするためのハードウェアが必要となる。そのため、プレーンを増やす方法は、CPUの処理速度は高速ではないが、ハードウェアの拡張性の点で制限が緩いシステムに適しているといえる。例えば、BD-ROMの再生専用機がこれに相当する。

[0106]

一方、CPUの処理速度が非常に高速で、さらにグラフィクスの高速描画を専用的に行うLSI(Large-Scale Integration)を搭載しているようなシステムの場合、ハードウェア (特にグラフィクス描画に関連したハードウェア)がカスタム化されている傾向が強く、ハードウェアの拡張が難しい。このようなシステムの場合、プレーンを増やすよりも、この発明の実施の第2の形態のように、GUIで用いられる各部品の位置、サイズ、合成の順序を計算した後、全てを1つのプレーンに描画する方法が適しているといえる。例えば、汎用のコンピュータ装置などでBD-ROMを再生するような場合がこれに相当する

[0107]

次に、上述の実施の第1の形態および第2の形態にそれぞれ適用可能なプレーヤデコーダ100について説明する。図14は、この発明の実施の第1の形態に適用可能なプレーヤデコーダ100の一例の構成を示す機能ブロック図である。なお、このプレーヤデコーダ100は、この発明の実施の第2の形態にも略同様の構成で適用可能である。プレーヤデコーダ100を実施の第2の形態に適用する場合の構成については、適宜、説明する。

[0108]

このプレーヤデコーダ100は、図示されないドライブ装置に装填されたディスクから 再生されたデータを解釈し、AV(Audio/Video)ストリームを出力すると共に、出力され たAVストリームに対するユーザによるインタラクティブな操作を可能とする。

[0109]

なお、プレーヤデコーダ100は、図示されないCPUにより全体の動作が制御される。例えば、プレーヤデコーダ100の各部におけるストリームやデータの流れは、CPUにより監視され、制御される。

[0110]

図示されないドライブ装置にディスクが装填されると、BD-ROMのHDムービーモードにおいては、先ず、プレイリストの再生順序を指定したファイル(例えばファイル名を「scenario.hdmv」とする)と、メニューやタイトルを構成するプレイリスト群の先頭プレイリストを指すファイル(例えばファイル名を「entrylist.data」とする)とが再生

され、このファイル「scenario.hdmv」およびファイル「entrylist.data」の記述に基づき、必要な他のファイルが読み出され、ディスクに記録されたコンテンツが再生される。

[0111]

例えば、ファイル「scenario.hdmv」およびファイル「entrylist.data」の記述に基づき、ビデオプレーン 10 や第 2 ビデオプレーン 5 0 に表示するための動画データ、プレゼンテーショングラフィクスプレーン 1 ヤインタラクティブグラフィクスプレーン 1 2 、第 2 ビデオプレーン 5 0 に表示するための画像データ、プレイリストファイルなどがディスクから読み出される。フルプロファイルにおいては、プログラムを格納したファイルが読み出され、実行される。

[0112]

以下では、ディスクから読み出されるこれらのデータのうち、動画データ、サブピクチャ (字幕データ) や音声データといった、連続的に処理する必要があるストリームをリアルタイムストリームと称する。また、シナリオファイル、プレイリストファイル、スクリプトファイルおよびプログラムファイル、ならびに、一部の動画、静止画およびサウンドデータといった、連続的な処理を要求されない非リアルタイムなデータを、ストアオブジェクトと称する。ストアオブジェクトは、メモリ上などに蓄積、展開され、必要に応じて処理される。

[0113]

プレーヤデコーダ100は、チャンネル(1)および(2)の2系統の入力チャンネルを有し、入力チャンネル(1)の入力端101に、ストアオブジェクトが入力される。入力チャンネル(2)の入力端202に、リアルタイムストリームが入力される。入力端202に、ストアオブジェクトを入力することも可能である。この実施の第1および第2の形態では、入力端202に入力されるリアルタイムストリームおよび一部のストアオブジェクトは、例えばMPEG2 TS (Moving Pictures Experts Group 2 Transport Stream)である。

[0114]

なお、入力端202に入力されるリアルタイムストリームは、MPEG2 TSに限られない。パケット単位で伝送され、ビデオデータ、オーディオデータ、静止画像データなどを多重化可能であれば、他の形式のストリームを入力するようにしてもよい。このときには、後述するPIDフィルタ110は、そのストリーム形式に適合したデマルチプレクサとして用いられ、ビデオデータ、オーディオデータ、静止画像データなどを分離する。

[0115]

また、例えば、ドライブ装置においてディスクの回転速度を2倍速などの高速回転としてディスクからの読み出し転送レートを上げ、時分割で動作させることにより、ディスクからの、チャンネル(1)および(2)の2系統の読み出しが実現可能である。

[0116]

先ず、入力チャンネル(1)の系統について説明する。入力端 101に入力されたストアオブジェクトは、スイッチ回路 102に入力される。ストアオブジェクトとしてECMA (European Computer Manufacturers Association)スクリプトやHTML (Hyper Text Markup Language)ファイル(またはXHTMLファイル)、Javaファイルなどによるプログラムコードが入力された場合、スイッチ回路 <math>102において出力端 102 Aが選択され、入力されたプログラムコードがコードバッファ 104に蓄えられる。

[0117]

一方、ストアオブジェクトとして画像データが入力された場合、スイッチ回路102において出力端102Bが選択され、入力された画像データがスイッチ回路103に入力される。入力端202に入力されたリアルタイムストリームに、プレゼンテーショングラフィクスプレーン11やインタラクティブグラフィクスプレーン12に表示するための画像データが含まれていない場合には、スイッチ回路103で入力端103Aが選択され、スイッチ回路102から入力された画像データがコンテンツバッファ105に蓄えられる。

[0118]

同様にして、入力端202に入力されたリアルタイムストリームに、プレゼンテーショングラフィクスプレーン11やインタラクティブグラフィクスプレーン12に表示するための画像データが含まれている場合には、スイッチ回路103において入力端103Bが選択され、当該画像データがコンテンツバッファ105に蓄えられる。コードバッファ104およびコンテンツバッファ105に蓄えられたストアオブジェクトは、必要に応じて読み出され、マルチメディアエンジン106に供給される。

[0119]

コンテンツバッファ105に蓄えられたストアオブジェクトのうち画像データは、スイッチ回路107および108をそれぞれ介して、グラフィクスデコーダA116およびグラフィクスデコーダB117にも供給される。

[0120]

マルチメディアエンジン106は、XMLパーサ106A、プログラム/スクリプトインタプリタ106Bおよびグラフィクスレンダラ106Cを含む。マルチメディアエンジン106は、さらに、サウンドプレーヤ106Dを有し、オーディオデータの扱いを可能としている。マルチメディアエンジン106は、独立的なハードウェアで構成してもよいし、上述した図示されないCPUの、所定のプログラムに基づく処理で実現することも可能である。

[0121]

XMLパーサ106Aは、XML (Extensible Markup Language)文書を解析する機能を有し、HTML文書やXHTML文書の解析も可能である。XMLパーサ106Aで解釈されたHTML文書やXHTML文書は、このプレーヤデコーダ100で実行可能な形式に変換される。プログラム/スクリプトインタプリタ106Bは、Java(登録商標)プログラムやECMAスクリプト等を解析し、このプレーヤデコーダ100で実行可能な形式に変換される。また、グラフィクスレンダラ106Cは、画像データを字幕プレーン11およびグラフィクスプレーン12に展開可能な形式にデコードする。

[0122]

マルチメディアエンジン106において、バッファ109をワークメモリとして、これらXMLパーサ106A、プログラム/スクリプトインタプリタ106Bおよびグラフィクスレンダラ106Cの処理が行われる。例えば、XMLパーサ106Aおよびプログラム/スクリプトインタプリタ106Bにより、バッファ109のうちコードバッファ109Aが用いられる。また、グラフィクスレンダラ106Cにより、バッファ109のうちグラフィクスバッファ109Dが用いられる。バッファ109は、上述のコードバッファ109Aおよびグラフィクスバッファ109Dの他に、文字列の表示に用いるフォントデータが格納されるフォントバッファ109B、XMLパーサ106AでHTML文書を解析した結果を階層化された木構造で保持するためのツリーバッファ109C、サウンドプレーヤ106Dで用いるオーディオデータが格納されるサウンドバッファ109Eなどが含まれる。

[0123]

マルチメディアエンジン106では、例えば、コードバッファ104に蓄えられたECMAスクリプトを読み出し、読み出されたECMAスクリプトの記述に基づき、必要に応じて、コードバッファ104からの他のECMAスクリプトやHTML文書(またはXHTML文書)の読み出し、コンテンツバッファ105からの画像データの読み出しなどを行う。コードバッファ104およびコンテンツバッファ105に格納されたデータは、当該データが不要になるまで、コードバッファ104やコンテンツバッファ105に保持しておくことができる。したがって、これらコードバッファ104やコンテンツバッファ105に格納されたデータは、必要に応じて何度でも読み出して使うことができる。

[0124]

マルチメディアエンジン106では、上述の他にも、入力された複数種類のデータのデマルチプレクス処理、JavaVM(Java仮想マシン)機能などが行われる。さらに、マルチメディアエンジン106により、ユーザからの、リモートコントロールコマンダ

やポインティングデバイスなどによる入力が受け取られ、所定に処理される。ユーザ入力は、さらに、後述するグラフィクスデコーダA116、グラフィクスデコーダB117、オーディオデコーダ118、MPEGビデオデコーダ120およびシステムデコーダ121にも供給される。

[0125]

グラフィクスレンダラ106Cで処理された画像データは、スイッチ回路130および131をそれぞれ介してグラフィクスプレーンA132およびグラフィクスプレーンB133に供給される。なお、この例では、グラフィクスプレーンA132およびグラフィクスプレーンB133に供給される画像データとして、PNG形式、ランレングス形式、JPEG形式などが挙げられるが特に規定しない。これらの各プレーン132、133に画像データが供給されるタイミングは、マルチメディアエンジン106により制御される。

[0126]

ここで、グラフィクスプレーンA 1 3 2 およびグラフィクスプレーンB 1 3 3 は、それぞれ上述したプレゼンテーショングラフィクスプレーン 1 1 およびインタラクティブグラフィクスプレーン 1 2 に対応する。ビデオプレーン 1 3 4 は、上述したビデオプレーン 1 0 に対応する。第 2 ビデオプレーン 1 6 0 は、上述した第 2 ビデオプレーン 5 0 に対応する。なお、グラフィクスプレーン A 1 3 2、グラフィクスプレーン B 1 3 3 およびビデオプレーン 1 3 4、第 2 ビデオプレーン 1 6 0 は、例えばフレームメモリであって、図 1 で説明した V R A M 3 0 4 を用いることができる。

[0127]

マルチメディアエンジン106は、さらに、後述するプレゼンテーションプロセッサ155に対して、ビデオプレーン134、第2ビデオプレーン160、グラフィクスプレーンA132およびグラフィクスプレーンB133の切り換え、アルファ合成などを指示する制御信号を供給する。同様に、マルチメディアエンジン106は、後述するプレゼンテーションプロセッサ157に対して、オーディオストリーム出力を制御するような制御信号を供給する。

[0128]

次に、入力チャンネル(2)の系統について説明する。入力端202にMPEG2 TSで入力されたリアルタイムストリームは、PIDフィルタ110に供給され、MPEG2 TSのトランスポートパケットに格納されるPID(Packet Identification)が抽出され、当該トランスポートパケットに格納されるストリームの属性が検出される。PIDフィルタ110では、このストリーム属性に基づき、入力されたリアルタイムストリームが、トランスポートパケット毎に対応する系統に振り分けられる。

[0129]

PIDに基づき、トランスポートパケットがストアオブジェクトに属する画像データが格納されているパケットであるとされれば、当該トランスポートパケットは、バッファTBn111Aに一旦溜め込まれ、所定のタイミングで読み出されて入力端103Bが選択されたスイッチ回路103に入力され、スイッチ回路103を介してコンテンツバッファ105に格納される。

[0130]

PIDフィルタ110において、PIDに基づき、トランスポートパケットが字幕データが格納されているパケットであるとされれば、当該トランスポートパケットは、バッファTBn111BおよびバッファBn112Bに一旦溜め込まれ、所定のタイミングで読み出されて入力端107Bが選択されたスイッチ回路107に入力され、スイッチ回路107を介してグラフィクスデコーダA116に供給される。

[0131]

グラフィクスデコーダA116では、供給されたトランスポートパケットのヘッダ情報を除去すると共に、当該トランスポートパケットに格納された字幕データがデコードされて字幕などを表示するための画像データとされる。この画像データは、所定のタイミングでスイッチ回路130の入力端130Bに入力され、スイッチ回路130を介してグラフ

ィクスプレーンA132に展開される。また、スイッチ回路131を介してグラフィクスプレーンB133にも展開させることが可能である。

[0132]

PIDフィルタ110において、PIDに基づき、トランスポートパケットがグラフィクスデータが格納されているパケットであるとされれば、当該トランスポートパケットは、バッファTBn111CおよびバッファBn112Cに一旦溜め込まれ、所定のタイミングで読み出されて入力端108Bが選択されたスイッチ回路108に入力され、スイッチ回路108を介してグラフィクスデコーダB117に供給される。

[0133]

[0134]

なお、グラフィクスデコーダA116とグラフィクスデコーダB117には、機能的な違いはない。つまり、モデル上、独立して動作するグラフィクスデコーダが2系統あることを表している。すなわち、字幕データとグラフィクスデータとをそれぞれ独立にデコードできることを想定している。実装においては、1系統の高速なグラフィクスデコーダを時分割で使用し、仮想的に2系統のグラフィクスデコーダが存在しているとみなす方法もある。

[0135]

PIDフィルタ110において、PIDに基づき、トランスポートパケットがオーディオデータが格納されているパケットであるとされれば、当該トランスポートパケットは、バッファTBn111DおよびバッファBn112Dに一旦溜め込まれ、所定のタイミングで読み出されてオーディオデコーダ118に供給される。このトランスポートパケットに格納されるオーディオデータは、例えばMPEGに準拠した方式で圧縮符号化されている。

[0136]

オーディオデコーダ118は、例えばリニアPCM(Pulse Code Modulation)オーディオデコーダ119も有する。オーディオデコーダ118は、入力されたトランスポートストリームのヘッダ情報を除去すると共に、当該トランスポートパケットに格納された圧縮符号化されたオーディオデータをリニアPCMオーディオデータにデコードする。

[0137]

オーディオデコーダ118から出力されたリニアPCMオーディオデータは、オーディオ用のプレゼンテーションプロセッサ157に入力され、マルチメディアエンジン106の制御に基づき所定の音響効果などが付加されて、出力端158に導出される。

[0138]

. PIDフィルタ110において、PIDに基づき、トランスポートパケットが動画データが格納されているパケットであるとされれば、当該トランスポートパケットは、バッファTBn111E、バッファMBn113およびバッファEBn114に一旦溜め込まれ、所定のタイミングで読み出されてMPEGビデオデコーダ120に供給される。このトランスポートパケットに格納される動画データは、MPEG2方式により圧縮符号化されている。

[0139]

MPEGビデオデコーダ120では、供給されたトランスポートパケットのヘッダ情報を除去すると共に、当該トランスポートパケットに格納された、MPEG2方式で圧縮符号化された動画データをベースバンドの動画データにデコードする。

[0140]

MPEGデコーダ120から出力された動画データは、スイッチ回路124の入力端124Aに入力される。スイッチ回路124において、MPEGビデオデコーダ120からの動画データとマルチメディアエンジン106から出力された動画データが選択される。所定のタイミングで選択された動画データは、スイッチ123に入力される。スイッチ123では展開先のビデオプレーンが選択され、動画データは、ビデオプレーン134あるいは第2ビデオプレーン160に展開される。

[0141]

なお、この発明の実施の第1および第2の形態では、ピクチャインピクチャ機能が実現可能とされている。ピクチャインピクチャ機能を実施するためには、2本の動画データを供給する必要がある。例えば、入力端202から2本の動画データを含むMPEG2 TSが供給され、PIDフィルタ110、バッファTBn111E、バッファMBn113およびバッファEBn114を介してMPEGビデオデコーダ120に供給される。MPEGビデオデコーダ120は、2本の動画データをデコードしてそれぞれ出力する。

[0142]

MPEGビデオデコーダ120から出力された2本の動画データは、直接的にスイッチ124に供給してもよいし、図14中に点線のブロックで示されるように、MPEGビデオデコーダ120とスイッチ124との間に、少なくとも2フレーム分の動画データを格納可能な容量を有するフレームバッファ400を設け、MPEGビデオデコーダ120から出力された2本の動画データをこのフレームバッファ400に一旦溜め込むようにしてもよい。フレームバッファ400を設けることで、2本の動画データをそれぞれ例えばフレーム単位で独立的に出力することができ、スイッチ123の負荷を軽減することができる。

[0143]

なお、2本の動画データの供給は、この例に限らず、例えば1本の動画データをリアルタイムストリームとして入力端202から供給し、もう1本の動画データをストアオブジェクトとして入力端101から供給するようにしてもよい。さらに、ピクチャインピクチャで用いられる2種類の画像は、両方共が動画データである必要はなく、一方を静止画像データとしてもよい。2本とも静止画像データとすることも考えられる。

[0144]

この発明の実施の第1の形態が適用されたプレーヤデコーダ100において、ピクチャインピクチャ機能により、ビデオプレーン134または第2ビデオプレーン160何れかの動画データを子画面として用いる場合には、子画面として用いる動画データを予め縮小して対応するビデオプレーン134または第2ビデオプレーン160に展開するとよい。縮小画像の作成は、MPEGビデオデコーダ120にその機能を持たせることで可能である。勿論、縮小画像を作成するための縮小画像作成部を、MPEGビデオデコーダ120とビデオプレーン134および第2ビデオプレーン160との間に別途、設けてもよい。

[0145]

また、この発明の実施の第2の形態にこのプレーヤデコーダ100を適用する場合には、第2ビデオプレーン160およびスイッチ回路123が省略されると共に、MPEGビデオデコーダ120と例えばスイッチ回路124との間に、図14に点線のブロックで示されるように、フレームバッファ400が設けられる。フレームバッファ400は、少なくとも2フレーム分の動画データを格納可能な容量を有する。

[0146]

上述した図12を参照しながら、この発明の実施の第2の形態における一例の処理を説明すると、フレームバッファ400内の異なる領域に、フレームバッファ221Aおよび221Bがそれぞれ形成される(ここでは、それぞれフレームメモリ領域221A、フレームメモリ領域221Bと称する)。勿論、フレームバッファ221Aおよび221Bにそれぞれ対応したフレームバッファ400Aおよび400B(図示しない)を設けてもよい。

[0147]

一方、MPEGビデオデコーダ120から出力された2本の動画データは、フレームバ ッファ400に供給され、フレームバッファ400内に形成されたフレームメモリ領域2 21 Aおよび221Bにそれぞれ格納される。

[0148]

子画面としてフレームメモリ領域221Bに格納された動画データが用いられるとする と、フレームメモリ領域221Bに格納された動画データが図示されないダウンコンバー タ222Bにより縮小処理される。この縮小処理は、例えば、フレームメモリ領域221 Bから動画データを読み出す際に、所定に画素を間引きすることによって可能である。そ して、フレームバッファ400に対して、上述したスイッチ223においてなされる切り 替え制御に基づきフレームメモリ領域221Aおよび221Bに格納された動画データの 読み出し制御が画素単位で行われ、フレームバッファ400から読み出された動画データ がビデオプレーン134に供給される。このようにすることで、プレーヤデコーダ100 において、実施の第2の形態による、1枚のビデオプレーン134を用いたピクチャイン ピクチャ機能が実現される。

[0149]

PIDフィルタ110において、PIDに基づき、トランスポートパケットがシステム 情報が格納されているパケットであるとされれば、当該トランスポートパケットは、バッ ファTBn111FおよびBsys115を介してシステムデコーダ121に供給される 。システムデコーダ121では、供給されたトランスポートパケットのヘッド情報が除去 され、格納されているシステム情報が取り出される。システム情報は、例えば図示されな いCPUに渡される。

[0150]

グラフィクスプレーンA132上の画像データは、上述のパレット22に対応するパレ ット150に供給され、256色からなるパレットに対してインデックスによる参照がな され、RGBデータが出力されると共に、不透明度データα1が抜き出される。RGBデ ータは上述のRGB/YCbCr変換回路29に対応するRGB/YCbCr変換回路1 5 1 により Y C b C r データに変換され、Y C b C r データおよび不透明度データ α 1 は 、プレゼンテーションプロセッサ155に供給される。

[0 1 5 1]

グラフィクスプレーンB133上の画像データは、上述のパレット26に対応するパレ ット152に供給され、256色からなるパレットに対してインデックスによる参照がな され、RGBデータが出力されると共に、不透明度データα2が抜き出される。RGBデ ータは上述のRGB/YCbCr変換回路27に対応するRGB/YCbCr変換回路1 5 3 により Y C b C r データに変換され、Y C b C r データおよび不透明度データ α 2 は 、プレゼンテーションプロセッサ155に供給される。

[0152]

ビデオプレーン134の出力は、アップ/ダウンコンバータ154を介してプレゼンテ ーションプロセッサ155に供給される。同様に、第2ビデオプレーン160の出力は、 アップ/ダウンコンバータ161を介してプレゼンテーションプロセッサ155に供給さ れる。

[0153]

なお、アップ/ダウンコンバータ154は、画像の解像度を変換する回路であって、例 えば高解像度のHD(High Definition)画像から通常の解像度を有するSD(Standard Def inition)画像への変換を行う。

[0154]

プレゼンテーションプロセッサ155は、図4または図8を用いて説明した、プレゼン テーショングラフィクスプレーン11 (グラフィクスプレーンA132) の画像データに よる不透明度α1と、インタラクティブグラフィクスプレーン12 (グラフィクスプレー ンB133) による不透明度 α2とを用いたアルファプレンディング処理を行う。また、 この発明の実施の第1の形態にこのプレーヤデコーダ100が適用される場合において、

ピクチャインピクチャ機能や壁紙表示機能を利用する際には、ビデオプレーン10および 第2ビデオプレーン50の出力の画素単位での切り替え処理も、プレゼンテーションプロ セッサ155で行われる。

[0155]

すなわち、プレゼンテーションプロセッサ155では、ビデオプレーン134と第2ビ デオプレーン160の画像データをスイッチ51(図示しない)で切り替えて一つの画像 データを構成し、その画像データに対し、グラフィクスプレーンA132の画像データに 設定された不透明度α1に基づき、グラフィクスプレーンΑ132の画像データが合成さ れる。さらに、ビデオプレーンとグラフィクスプレーンA132が合成された画像データ に対して、グラフィクスプレーンB133の画像データに設定された不透明度α2に基づ き、グラフィクスプレーンB133の画像データが合成される。この、グラフィクスプレ ーンB133の画像データ、グラフィクスプレーンA132の画像データ (字幕データ) 、ならびに、ビデオプレーン134、第2ビデオプレーン160の画像データが合成され た画像データが出力端156に導出される。

[0156]

なお、プレゼンテーションプロセッサ155は、画像データに対してリアルタイムでエ フェクト処理を行うこともできる。

[0157]

上述では、プレーヤデコーダ100の各部がハードウェアで構成されるように説明した が、これはこの例に限られない。例えば、プレーヤデコーダ100をソフトウェア上の処 理として実現することも可能である。この場合、プレーヤデコーダ100をコンピュータ 装置上で動作させることができる。また、プレーヤデコーダ100をハードウェアおよび ソフトウェアが混合された構成で実現することもできる。例えば、オーディオデコーダ1 18やMPEGビデオデコーダ120をハードウェアで構成し、その他をソフトウェアで 構成することが考えられる。

[0158]

プレーヤデコーダ100をソフトウェアのみ、または、ハードウェアおよびソフトウェ アの混合により構成し、コンピュータ装置で実行させるためのプログラムは、例えばCD -ROM(Compact Disc-Read Only Memory)といった記録媒体に記録されて提供される。 このCD-ROMをコンピュータ装置のCD-ROMドライブに装填し、CD-ROMに 記録されたプログラムを所定にコンピュータ装置にインストールすることで、上述の処理 をコンピュータ装置上で実行可能な状態とすることができる。なお、コンピュータ装置の 構成は、極めて周知であるため、説明は省略する。

【図面の簡単な説明】

[0159]

- 【図1】画像データを表示するための典型的な構成例を概略的に示すブロック図であ る。
- 【図2】ビデオプレーン、プレゼンテーショングラフィクスプレーンおよびインタラ クティブグラフィクスプレーンの一例の構成を示す略線図である。
- 【図3】各プレーンの解像度および表示可能色について説明するための図である。
- 【図4】3つのプレーンを合成する一例の構成を示す機能ブロック図である。
- 【図5】パレットの入出力データの一例を示す略線図である。
- 【図6】パレットに格納される一例のパレットテーブルを示す略線図である。
- 【図7】ピクチャインピクチャについて説明するための図である。
- 【図8】第2ビデオプレーン、ビデオプレーン、プレゼンテーショングラフィクスプ レーンおよびインタラクティブグラフィクスプレーンを合成するための一例の構成を 示す機能ブロック図である。
- 【図9】第2ビデオプレーンを利用して壁紙画像の表示を実現した例を示す略線図で ある。
- 【図10】この発明の実施の第2の形態による壁紙画像の表示の実現方法について説 出証特2004-3065673

明するための図である。

【図11】この発明の実施の第2の形態による壁紙画像の表示の実現方法について説明するための図である。

【図12】1枚のビデオプレーンを用いてピクチャインピクチャを実現するための一例の構成を概略的に示す機能ブロック図である。

【図13】スイッチの切り替えタイミングを説明するための図である。

【図14】この発明の実施の第1の形態に適用可能なプレーヤデコーダの一例の構成を示す機能ブロック図である。

【符号の説明】

[0160]

- 10 ビデオプレーン
- 11 プレゼンテーショングラフィクスプレーン
- 12 インタラクティブグラフィクスプレーン
- 21, 23, 25, 28 乗算器
- 24,29 加算器
- 50 第2ビデオプレーン
- 51 スイッチ
- 100 プレーヤデコーダ
- 106 マルチメディアエンジン
- 116 グラフィクスデコーダA
- 117 グラフィクスデコーダB
- 120 MPEGビデオデコーダ
- 132 グラフィクスプレーンA
- 133 グラフィクスプレーンB
- 134 ビデオプレーン
- 160 第2ビデオプレーン
- 200 壁紙画像
- 201 動画
- 202A, 202B 部品
- 210 壁紙画像
- 211A, 211B, 211C, 211D 部品
- 220 画像出力部
- 221A, 221B フレームバッファ
- 222A, 222B ダウンコンバータ
- 223 スイッチ
- 230 子画面
- 301 CPU
- 302 DRAM
- 303 グラフィクス部
- 3 0 4 V R A M

【図3】

項目	規定内容		
ピデオプレーン	1920x1080x16bit YCbCr(4:2:2),各 8bit		
プレセ・ンテーショング・ラフィクスプレーン	1920×1080×8bit 8bitカラーマップアト・レス(ハ・レット)+256段階のアルファ ブレンディング		
インタラクティブ・グ・ラフィクスプレーン	1920x1080x8bit 8bitカラーマップアト・レス(ハ・レット)+256段階のアルファ プレンディング		

【図5】

入力	入力アドレス 8bit
出力	出力データ 8bitx4、(R, G, B, α)出力

【図6】

	3原色の値			不透明度
カラーインデックス値	R	G	В	α
0x00	0	0	0	1
0x01	10	100	30	0. 5
:	:	;	i	
:	:	:	:	
0xFF	200	255	100	0. 8

【書類名】要約書 【要約】

【課題】 BD-ROMにおいて、ピクチャインピクチャ機能や壁紙表示機能を実現す る。

【解決手段】 それぞれ動画、字幕およびグラフィクスを表示するプレーン10、11 および12に対して、動画を表示する第2ビデオプレーン50を追加する。第2ビデオプ レーン50およびビデオプレーン10の出力は、スイッチ51により画素単位で選択され る。第2ビデオプレーン50に縮小動画データを格納し、スイッチ51を縮小動画データ の表示位置に対応して画素単位で切り替え制御することで、ビデオプレーン10の動画デ ータに対して第2ビデオプレーン50の縮小動画データが子画面表示される。ビデオプレ ーン10に、動画データの代わりに壁紙画像データを格納することで、恰も縮小動画デー タの背景に壁紙が表示されているかのような表示画面が得られる。

【選択図】 図 8

特願2003-354741

出願人履歴情報

識別番号

[000002185]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月30日 新規登録 東京都品川区北品川6丁目7番35号 ソニー株式会社