4.2 1 Use the division algorithm to find the quotient and remainder when f(x) is divided by g(x) over the field of rational numbers \mathbb{Q} .

c
$$f(x) = x^5 + 1$$
, $g(x) = x + 1$
Pf. $x^4 - x^3 + x^2 - x + 1$
 $x + 1$) x^5 $+ 1$
 $-x^5 - x^4$
 $-x^4$
 $-x^4$
 $x^4 + x^3$
 x^3
 $-x^3 - x^2$
 $-x^2$
 $x + 1$
 $-x - 1$

Therefore,

$$f(x) = g(x)(x^4 - x^3 + x^2 - x + 1) + (0)$$

$$= (x+1)(x^4 - x^3 + x^2 - x + 1) + (0) \pmod{\mathbb{Q}}$$

2 Use the division algorithm to find the quotient and remainder when f(x) is divided by g(x) over the indicated field.

c
$$f(x) = x^5 + 2x^3 + 3x^2 + x - 1$$
, $g(x) = x^2 + 5$ over \mathbb{Z}_5
Pf.

$$f(x) = x^5 + 2x^3 + 3x^2 + x - 1$$

$$\equiv x^5 + 2x^3 + 3x^2 + x + 4 \pmod{\mathbb{Z}_5}$$

$$g(x) = x^2 + 5$$

$$\equiv x^2 \pmod{\mathbb{Z}_5}$$

Therefore,

$$f(x) = g(x)(x^3 + 2x + 3) + (x + 4)$$
$$= (x^2)(x^3 + 2x + 3) + (x + 4) \pmod{\mathbb{Z}_5}$$

3 Find the greatest common divisor of f(x) and f', over \mathbb{Q} .

d
$$f(x) = x^4 + 2x^3 + 3x^2 + 2x + 1$$

 $Pf.$ Given $f(x) = x^4 + 2x^3 + 3x^2 + 2x + 1$
and $f' = 4x^3 + 6x^2 + 6x + 2$
And, $\frac{f(x)}{f'}$,

$$\frac{\frac{1}{4}x + \frac{1}{8}}{4x^3 + 6x^2 + 6x + 2} \underbrace{x^4 + 2x^3 + 3x^2 + 2x + 1}_{-x^4 - \frac{3}{2}x^3 - \frac{3}{2}x^2 - \frac{1}{2}x} \\
\underline{\frac{1}{2}x^3 + \frac{3}{2}x^2 + \frac{3}{2}x + 1}_{-\frac{1}{2}x^3 - \frac{3}{4}x^2 - \frac{3}{4}x - \frac{1}{4}} \\
\underline{\frac{3}{4}x^2 + \frac{3}{4}x + \frac{3}{4}}$$

Multiplying the remainder with a non-zero constant keeps it unchanged, and therefore,

remainder =
$$\left(\frac{3}{4}x^2 + \frac{3}{4}x + \frac{3}{4}\right)\frac{4}{3}$$

= $x^2 + x + 1$

Thus,

$$\gcd(x^4 + 2x^3 + 3x^2 + 2x + 1, 4x^3 + 6x^2 + 6x + 2)$$
$$= \gcd(4x^3 + 6x^2 + 6x + 2, x^2 + x + 1)$$

Dividing as before,

Therefore,

$$\gcd(x^4 + 2x^3 + 3x^2 + 2x + 1, 4x^3 + 6x^2 + 6x + 2) = x^2 + x + 1$$

5 Find the greatest common divisor of the given polynomials, over the given field.

$$\mathbf{c} \ x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2, \quad x^4 + 3x^2 + 3x + 6 \text{ over } \mathbb{Z}_7$$

Pf. Doing long division until remainder is 0,

Therefore, $gcd(x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2, x^4 + 3x^2 + 3x + 6) = 2 \in \mathbb{Z}_7$

- **9** Let $a \in \mathbb{R}$, and let $f(x) \in \mathbb{R}[x]$, with derivative f'(x). Show that the remainder when f(x) is divided by $(x-a)^2$ is f'(a)(x-a)+f(a).
 - **Pf.** By the division algorithm, there exists unique polynomials $q(x), r(x) \in F[x]$, such that $f(x) = q(x)(x-a)^2 + r(x)$, where $\deg(x) < 2$

Let r(x) = bx + c

Then, f(a) = 0 + r(a) = ba + c

Deriving,

$$f'(x) = (q'(x)(x-a) + 2q(x))(x-a) + b$$

So, f'(a) = b

Also,

$$c = f(a) - ba$$
$$= f(a) - f'(a)a$$

Therefore,

$$r(x) = f'(a)x + f(a) - f(a)a$$
$$= f'(a)(x - a) + f(a)$$

11 Find the irreducible factors of $x^6 - 1$ over \mathbb{R} .

Pf. Factoring $x^6 - 1$,

$$x^{6} - 1 = (x^{3})^{2} - 1^{2}$$

$$= (x^{3} - 1)(x^{3} + 1)$$

$$= (x^{3} - 1^{3})(x^{3} + 1^{3})$$

$$= (x^{3} - 1^{3})(x + 1)(x^{2} - x + 1)$$

$$= (x^{3} - 1^{3})(x + 1)(x^{2} - x + 1)$$

$$= (x - 1)(x^{2} + x + 1)(x + 1)(x^{2} - x + 1)$$

Factors of degree 1, (x-1) and (x+1) are irreducible

Also, both factors $(x^2 + x + 1)$ and $(x^2 - x + 1)$ have no roots in \mathbb{R} since their discriminant $(b^2 - 4ac)$ are less than zero.

Therefore, all factors of x^6-1 ; (x-1), (x^2+x+1) ,(x+1), and (x^2-x+1) are irreducible over \mathbb{R}

18 Compute the following products.

b
$$(a+bx)(c+dx) \equiv ???? \pmod{x^2-2}$$
 over \mathbb{Q} .

Pf. Since
$$x^2 \equiv 2 \pmod{x^2 - 2}$$

$$(a+bx)(c+dx) = ac + adx + cbx + bdx^{2}$$

$$= ac + adx + cbx + 2bd \pmod{x^{2} - 2}$$

$$= (ac + 2bd) + (ad + cb)x \pmod{x^{2} - 2}$$