Analysis Ia Report

Alifian Mahardhika Maulana

June 4, 2018

Problem 1. Let M = (S, d) be a metric space.

Let $G \subseteq S$. Then, G is open in $M \iff$ it is a union of open balls.

Proof. (\Rightarrow) Let G be open set in M. Let $x \in G$.

by definition of open set:

$$\exists \delta_x \in \mathbb{R}^n : B_{\delta_x}(x,d) \subseteq G$$

where $B_{\delta_x}(x, d)$ is the open δ_x -ball of x in M.

$$\therefore G = \bigcap_{x \in G} B_{\delta_x}(x, d)$$

 (\Leftarrow) Let G be an union of open balls in M.

Let the outer of the open balls be the elements of an indexing set I.

Then G can be written:

$$G = \bigcap_{x \in I} B_{\delta_x}(x, d)$$

where $\delta_x \in \mathbb{R}^n$ is the radius of open ball-of x.

Let $y \in G$. By definition of union:

$$\exists x \in I : y \in B_{\delta_x}(x, d)$$

because an open ball is neighborhood of all points inside, we can say that $B_{\delta_x}(x,d)$ is neighborhood of y, by set: $B_{\delta_x}(x,d) \subseteq G$, from theory of superset of neighborhood in Metric Space, it follows that G is a neighborhood of y.

Since y is arbitrary, it follows that G is a neighborhood of its point. Hence, by definition:

 $\therefore G$ is open in M

Problem 2. Let C([0,1]) be the set of all continuous functions $f:[0,1] \to \mathbb{R}$, for $f,g \in C([0,1])$. Show that $(C([0,1]), d_1)$ is not complete.

Proof. Suppose that:

$$d_1(f,g) := \int_0^1 |f(x) - g(x)| dx, \ f,g \in C[0,1]$$

Let's consider a sequence $\{f_n\}_{n\geq 3}$:

$$f_n(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2} - \frac{1}{n}, \\ n\left(x + \frac{1}{n} - \frac{1}{2}\right), & \frac{1}{2} - \frac{1}{n} \le x < \frac{1}{2}, \\ 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

It shows that the sequence (f_n) converges to discontinuous function f(x) := 0 for $0 \le x < \frac{1}{2}$ and f(x) := 1 for $\frac{1}{2} \le x \le 1$. Hence, $f \notin C[0,1]$;

$$\therefore$$
 there is no $g \in C[0,1]$ s.t. $d_1(f_n,g) \to 0$