Cours d'Électronique Amplificateur Opérationnel en régime linéaire

A. Arciniegas F. Boucher V. Gauthier N. Wilkie-Chancellier A. Bouzzit

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

Introduction

2 Amplificateur Opérationnel

Méthode

Rappel: contre-réaction

Nous avons vu avec le schéma bloc la configuration suivante en contre-réaction :

Rappel

Dans ce cas, la fonction de transfert est :

Rappel: contre-réaction

Nous avons vu avec le schéma bloc la configuration suivante en contre-réaction :

Rappel

Dans ce cas, la fonction de transfert est :

$$H = \frac{s}{e} = \frac{A_0}{1 + \beta A_0}$$

Que se passe-t'il maintenant si :

Que se passe-t'il maintenant si :

• β est un diviseur de tension \Rightarrow β < 1, facile à réaliser avec deux résistances

Que se passe-t'il maintenant si :

- β est un diviseur de tension \Rightarrow β < 1, facile à réaliser avec deux résistances
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Que se passe-t'il maintenant si :

- β est un diviseur de tension \Rightarrow β < 1, facile à réaliser avec deux résistances
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\lim_{A_0 \to +\infty} H =$$

Que se passe-t'il maintenant si :

- β est un diviseur de tension \Rightarrow β < 1, facile à réaliser avec deux résistances
- et A_0 est un gain énorme (peu importe sa valeur exacte), pour les calculs $A_0 \to +\infty$

Solution

$$\lim_{A_0 \to +\infty} H =$$

et
$$\frac{1}{\beta} > 1$$

nous venons de créer un schéma qui est un <u>amplificateur</u> de **gain contrôlé** $^1/_{eta}$

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil : une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A₁ énorme (quasi-infini)

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil : une entrée non-inverseuse,
- un gain à vide A₀ énorme (quasi-infini)
- une paire de fils : tension de sortie

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil : une entrée non-inverseuse.
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

on parlera d'un composant électronique : plus de flèche mais des fils,

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil: une entrée non-inverseuse,
- un gain à vide A_0 énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

- on parlera d'un composant électronique : plus de flèche mais des fils,
- restent à définir les propriétés manquantes : résistances d'entrée et sortie.

L'idée derrière l'Amplificateur opérationnel est exactement là :

On peut définir un quadripôle en tension avec :

- un fil: une entrée inverseuse,
- un fil : une entrée non-inverseuse,
- un gain à vide A₀ énorme (quasi-infini)
- une paire de fils : tension de sortie

Attention

- on parlera d'un composant électronique : plus de flèche mais des fils,
- restent à définir les propriétés manquantes : résistances d'entrée et sortie.
- TOUT CELA N'EST VALABLE QUI SI LE SCHÉMA INCLUT UNE CONTRE-RÉACTION!

AOP, symbole et broches

AOP, symbole et broches

- v₋ entrée inverseuse,
- v_+ entrée non-inverseuse,
- *v*_o sortie, référencée à la masse

AOP, symbole et broches

- v_ entrée inverseuse,
- v_+ entrée non-inverseuse,
- *v_o* sortie, référencée à la masse
- VCC et VEE les tensions d'alimentation (symétrique ou non), leur représentation n'est pas obligatoire mais en pratique :

$$VCC > v_O > VEE$$

AOP: gain

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741 (1)

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
	B . 1010	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C			20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	nA
land bing surrent	T _A = 25°C			80	500	nΑ
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/m\
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
	5	T _A = 25°C		1	5	mV	
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V	r _A = 25°C, V _S = ±20 V		±15		mV	
Input offset current	T _A = 25°C	T _A = 25°C		20	200	nA	
input onset current	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	00 HA	
	T _A = 25°C			80	500	nΑ	
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ	
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ	
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V	
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/mV	
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv	

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
lt	D = 1010	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	$T_A = 25^{\circ}C, V_S = \pm 20 \text{ V}$			±15		mV
Input offset current	T _A = 25°C	= 25°C		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	0 nA
Input bias current	T _A = 25°C			80	500	nΑ
	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _I ≥ 2	T _A = 25°C	50	200		\//\/
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

6.5 Electrical Characteristics, LM741(1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
Input offset voltage	D = 40.10	T _A = 25°C		1	5	mV
input onset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	$T_A = 25^{\circ}C, V_{\odot} = \pm 20 \text{ V}$			±15		mV
Input offset current	T _A = 25°C			20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	0 114
Input bias current	T _A = 25°C			80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/mV
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V :

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
lt	D < 40.10	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C		20 20		200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	0 114
land Manager	T _A = 25°C			80	500	nA
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		٧
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V//V/
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V :

soit
$$\varepsilon = v_+ - v_- \approx 0 \ V$$

AOP: gain

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741 (1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
lt	D = 40.10	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current	T _A = 25°C		20 20		200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	0 11/4
Input bias current	T _A = 25°C			80	500	nΑ
	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13		V
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/mV
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			v/mv

$$A_0 = 200V/mV = \frac{200}{10^{-3}} = 2 \cdot 10^5$$

Quelle conséquence en entrée ?

si l'alimentation est à 15 V :

soit
$$\varepsilon = v_+ - v_- \approx 0 \ V$$

Hypothèse 1

En pratique, si l'AOP est contre-réactionné, on pose :

$$V_{+} = V_{-}$$

AOP: résistance d'entrée

Rappel: Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

AOP: résistance d'entrée

Rappel : Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741 (1)

PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
	B - 4010	T _A = 25°C		1	5	mV
Input offset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		±15		mV
Input offset current	T _A = 25°C	T _A = 25°C		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	00
	T _A = 25°C			80	500	nA
Input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μA
Input resistance	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		V
	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V/mV
Large signal voltage gain	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

AOP: résistance d'entrée

Rappel : Dans un quadripôle en tension, la résistance d'entrée idéale est infinie.

Exemple tiré de la documentation du LM741:

6.5 Electrical Characteristics, LM741

PARAMETER	TEST C	TEST CONDITIONS		TYP	MAX	UNIT
Input offset voltage	D < 40.10	T _A = 25°C		1	5	mV
input onset voltage	R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V	T _A = 25°C, V _S = ±20 V		±15		mV
Input offset current	T _A = 25°C			20	200 nA	
	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	0 11A
Input bias current	T _A = 25°C			80	500	nA
input bias current	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$			1.5	μΑ
Input resistance	T _A = 25°C, V _S = ±20 V		0.3	2		ΜΩ
Input voltage range	$T_{AMIN} \le T_A \le T_{AMAX}$	$T_{AMIN} \le T_A \le T_{AMAX}$		±13		٧
Large signal voltage gain	V _S = ±15 V, V _O = ±10 V, R _L ≥ 2	T _A = 25°C	50	200		V//V/
	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			V/mV

Hypothèse 2

Dans un AOP, on considère la résistance d'entrée comme infinie. On pose :

$$i_{+}=i_{-}=0$$

AOP: résistance de sortie

Rappel: Dans un quadripôle en tension, la résistance de sortie idéale est nulle.

AOP: résistance de sortie

Rappel: Dans un quadripôle en tension, la résistance de sortie idéale est nulle.

Hypothèse 3

Dans un AOP, on considère la résistance de sortie comme nulle, la sortie est un générateur de tension idéal.

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert au S2).

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert au S2).

Méthode

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert au S2).

Méthode

 dans un premier temps: on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert au S2).

Méthode

- dans un premier temps: on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)
- si et uniquement si c'est le cas, on peut poser l'équation $v_+ = v_-$

Dans la plupart des cas, on cherche à calculer la sortie en fonction de l'entrée (gain ou fonction de transfert au S2).

Méthode

- dans un premier temps : on vérifie TOUJOURS que le circuit comporte une contre-réaction (lien électrique entre la sortie et l'entrée inverseuse)
- si et uniquement si c'est le cas, on peut poser l'équation $v_+ = v_-$
- en utilisant $i_+ = 0$ et $i_- = 0$ on peut généralement calculer v_+ et v_- en fonction des autres tensions du circuit.
- la suite est normalement plus évidente...

Un premier exemple

Objectif: calculer le gain du montage suivant

• y a-t'il une contre-réaction ? :

(CYU) Électronique - S1 12/1

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

•
$$i_{-} = 0$$
,

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

(CYU) Électronique - \$1

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

ullet de manière plus évidente : $v_+ = V_e$

• y a-t'il une contre-réaction ? : oui $(R_2$ et R_1), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

- de manière plus évidente : $v_+ = V_e$
- ullet or nous avons déjà écrit $v_+=v_-$, donc

$$V_e =$$

 y a-t'il une contre-réaction ? : oui (R₂ et R₁), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• $i_- = 0$, on peut donc relier v_- à V_s en utilisant un diviseur de tension :

- de manière plus évidente : $v_+ = V_e$
- ullet or nous avons déjà écrit $v_+=v_-$, donc

$$V_e =$$

$$\Rightarrow \frac{Vs}{Ve} = 1 + \frac{R_2}{R_1}$$