MO 7:

FUNKCIE

Funkcia

- funkcia je každá množina usporiadaných dvojíc $[x,y] \in M$, pre ktoré platí: ku každému $x \in M$ existuje práve jedno $y \in R$ tak, že platí $[x,y] \in f$; y = f(x)
- môže byť daná:
 - predpisom (y=2x+4)
 - tabul'kou (usporiadané dvojice) (f ={[1,2],[2,4],[3,6]})
 - grafom
 - šípkový diagram

Definičný obor:

- množinu M budeme nazývať definičným oborom D(f) funkcie f(x)
- množina všetkých $x \in R$, ku ktorým existuje aspoň jedno $y \in R$; y = f(x)

Obor hodnôt:

• oborom hodnôt označujeme množinu H(f), čo je množina všetkých $y \in R$, ku ktorým existuje aspoň jedno také $x \in R$, že platí y = f(x).

Graf:

 graf funkcie f je množina všetkých bodov so súradnicami[x,y] v karteziánskej sústave, kde x∈D(f) a y ∈ H(f).

Vlastnosti:

- párnosť:
 - párna
 - ak $\forall x \in D(f) \exists (-x) \in D(f)$: f(-x) = f(x)
 - graf je súmerný podľa osi y
 - napr. $y=x^2$
 - nepárna
 - $\forall x \in D(f) \exists (-x) \in D(f): f(-x) = -f(x)$
 - graf je súmerný podľa počiatku súradnicovej sústavy
 - napr. $y=x^3$

- ani párna, ani nepárna
 - neexistuje $(-x) \in D(f)$
 - $y = \sqrt{x}$

MO 7: FUNKCIE

• monotónnosť

rastúca

• rastúca na množine M, ak pre každé dve $x_1,x_2 \in D(f)$: $x_1 < x_2$ a $f(x_1) < f(x_2)$

klesajúca

klesajúca na množine M, ak pre každé dve $x_1,x_2 \in D(f)$: $x_1 < x_2$ a $f(x_1) > f(x_2)$

<u>nerastúca</u>

nerastúca na množine M, ak pre každé dve $x_1, x_2 \in D(f)$:

$$x_1 < x_2 \ a \ f(x_1) \ge f(x_2)$$

neklesajúca

neklesajúca na množine M, ak pre každé dve $x_1,x_2 \in D(f)$: $x_1 < x_2$ a $f(x_1) \le f(x_2)$

konštantná

• konštantná na množine M, ak pre každé dve $x_1, x_2 \in D(f)$:

$$x_1 < x_2 \Rightarrow f(x_1) = f(x_2)$$

• konštantná funkcia má ľubovolnú periódu – je periodická

• Ak funkcia LEN rastie alebo LEN klesá – je rýdzo monotónna.

• prostá funkcia:

- funkcia je prostá ak pre každé dve $x_1, x_2 \in D(f)$: $x_1 \neq x_2$ tak $f(x_1) \neq f(x_2)$
- napr. $y = x^3$
- existuje inverzná funkcia

• ohraničenosť:

- \underline{zhora} : $\exists h \in \mathbb{R}, \forall x \in D(f): f(x) \leq h$
- \underline{zdola} : $\exists d \in \mathbb{R}, \forall x \in D(f): f(x) \ge d$
- funkcia je ohraničená, ak je súčasne ohraničená zhora aj zdola $d \le f(x) \le h$
 - napr. $y = \sin x \ (h = 1, d = -1)$
- najmenšie horné ohraničenieje suprémum
- lokálne extrémy: nech funkcia f je definovaná v okolí bodu a:
 - maximum:
 - maximum v bode a má funkcia,
 ak existuje také okolie O bodu a; ∀ x∈O: f(x) ≤ f(a)
 - minimum:
 - minimum v bode a má funkcia, ak existuje také okolie O bodu a; $\forall x \in O: f(x) \ge f(a)$

MO 7: FUNKCIE

• inverzná funkcia:

- nech f je prostá funkcia na D(f) a nech pre všetky x, y platí: $[x,y] \in f \Leftrightarrow [y,x] \in f^{-1}$
- k danej funkcii f existuje inverzná funkcia práve vtedy, keď f je prostá na D(f)
- ak je f rastúca (klesajúca), tak aj f ⁻¹ je rastúca (klesajúca)
- graf inverznej funkcie f^{-1} je súmerný s grafom f podľa priamky y = x
- $D(f) = H(f^{-1})$ $D(f^{-1}) = H(f)$
- napr. $y=a^x$ a $y=log_ax$

• periodickost':

- funkcia je periodická, ak existuje p>0 tak, že:
 - 1.) $\forall x \in \mathbb{R}; \forall x \in \mathbb{D}(f) \Rightarrow [(x+p) \in \mathbb{D}(f)] \land [(x-p) \in \mathbb{D}(f)]$
 - 2.) $x \in D(f)$; f(x + p) = f(x)
- napr. y= sin x