First Live Lecture (Webinar): Starts in **15** minutes

Christophe Bontemps, UN SIAP

First Live Lecture (Webinar): Starts in **10** minutes

Christophe Bontemps, UN SIAP

First Live Lecture (Webinar): Starts in **5** minutes

Christophe Bontemps, UN SIAP

Statistical learning: *vs* Machine Learning

[- REMINDER -]

► Mute yourself always!

[- REMINDER -]

- Mute yourself always!
- ► The lecture is recorded

[- REMINDER -]

- Mute yourself always!
- ► The lecture is recorded
- ► Ask questions in the chat

► Introduction

- Introduction
- ► Statistical learning *vs* Machine Learning

- Introduction
- Statistical learning vs Machine Learning
- ► Q&A

- ► Introduction
- Statistical learning vs Machine Learning
- ► Q&A
- ► Next week

WHAT IS STATISTICAL LEARNING?

"Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

"Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

"Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

 \hookrightarrow Involves building statistical models

" Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

- \hookrightarrow Involves building statistical models
- \hookrightarrow Goals are estimation or prediction

" Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

- \hookrightarrow Involves building statistical models
- \hookrightarrow Goals are **estimation** or prediction

"Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

- \hookrightarrow Involves building statistical models
- \hookrightarrow Goals are estimation or **prediction**

WHAT IS STATISTICAL LEARNING?

Two main learning problems:

Two main learning problems:

▶ We observe **both** an *outcome y* and *explanatory* variables *x*s

Two main learning problems:

- ▶ We observe **both** an *outcome y* and *explanatory* variables *x*s
- → Supervised learning

Statistical learning

WHAT IS STATISTICAL LEARNING?

Two main learning problems:

Statistical learning

0000000

- ▶ We observe **both** an *outcome y* and *explanatory* variables *x*s
- → Supervised learning

Most of the examples and applications are supervised learning

WHAT IS STATISTICAL LEARNING?

Two main learning problems:

Statistical learning

- ▶ We observe **both** an *outcome y* and *explanatory* variables *x*s
- → Supervised learning
 Most of the examples and applications are supervised learning
- ightharpoonup We **do not** observe an outcome y but **only** several xs

WHAT IS STATISTICAL LEARNING?

Two main learning problems:

Statistical learning

- ▶ We observe **both** an *outcome y* and *explanatory* variables *x*s
- → Supervised learning
 Most of the examples and applications are supervised learning
- \blacktriangleright We **do not** observe an outcome *y* but **only** several *x*s
- → Unsupervised learning (or cluster analysis)

K-NN

Two main learning problems:

Statistical learning

- ▶ We observe **both** an *outcome y* and *explanatory* variables *x*s
- → Supervised learning Most of the examples and applications are supervised learning
- \triangleright We **do not** observe an outcome y but **only** several xs
- → **Unsupervised** learning (or *cluster analysis*) More complex models we'll see at the end of the course

STATISTICAL LEARNING ON AN EXAMPLE

Scatter plot of Food Share vs Log(exp)

STATISTICAL LEARNING ON AN EXAMPLE

Scatter plot of Food Share vs Log(exp)

We may be interested in the **relationship** between the two variables

Understanding = estimate $f(\cdot)$

Linear regression

UNDERSTANDING = ESTIMATE $f(\cdot)$

00000000

Linear regression

 $f(\cdot)$ is the regression line

Inference

Inference

Understand the nature of the relationship between *X* and *Y*

Inference

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

Why estimating $f(\cdot)$?

Inference

Statistical learning

00000000

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

Prediction

► Inference

Statistical learning

00000000

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

K-NN

Prediction

Predict y for any **new** x using $f(\cdot)$

WHY ESTIMATING $f(\cdot)$?

Inference

Statistical learning

00000000

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

- Prediction
 - Predict *y* for any **new** *x* using $f(\cdot)$
- In practice we must estimate $f(\cdot)$ using a model:

Inference

Statistical learning

00000000

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

- Prediction
 - Predict *y* for any **new** *x* using $f(\cdot)$
- ▶ In practice we must estimate $f(\cdot)$ using a model:

$$y = f(x) + \varepsilon$$

WHY ESTIMATING $f(\cdot)$?

Inference

Statistical learning

00000000

Understand the nature of the relationship between *X* and *Y Identify* "important" variables to understand *Y*

- Prediction
 - Predict *y* for any **new** *x* using $f(\cdot)$
- ▶ In practice we must estimate $f(\cdot)$ using a model:

$$y = f(x) + \varepsilon$$

We denote by $f(\cdot)$ the estimate of $f(\cdot)$

▶ Parametric methods

▶ Parametric methods Specify a form for $f(\cdot)$, for example linear:

▶ Parametric methods Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

HOW TO ESTIMATE $f(\cdot)$?

Statistical learning

00000000

Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

► Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

▶ The regression line, defined by β_0 and β_1 , is simply the solution of:

$$Min_{(\beta_0,\beta_1)} MSE(\beta_0,\beta_1)$$

Wrap-up

HOW TO ESTIMATE $f(\cdot)$?

00000000

Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

▶ The regression line, defined by β_0 and β_1 , is simply the solution of:

$$Min_{(\beta_0,\beta_1)} MSE(\beta_0,\beta_1)$$

The MSE it is the *cost function* minimized to determine $(\widehat{\beta}_0, \widehat{\beta}_1)$

How to estimate $f(\cdot)$: In practice

Linear regression

In red, the distance to the regression line for some observations

HOW TO ESTIMATE $f(\cdot)$: IN PRACTICE

Linear regression

The regression line is found by minimizing the sum of all distances or MSE

RESULTS: $f(\cdot)$

Statistical learning

0000000

From the result and the estimated parameters $(\widehat{\beta}_0, \widehat{\beta}_1)$, we see that there is a relation, and that it is decreasing.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.75	0.04	41.09	0
ltexp	-0.20***	0.01	-31.84	0

The quality of the adjustment may be measured by the $R^2 = 0.478$

BEYOND LINEARITY

BEYOND LINEARITY

Statistical learning

▶ A linear model may be unadapted or too simple

The fit (measured by R^2) is: $R^2 = 0.478$

Statistical learning

► A Polynomial model may be better adapted: **Quadratic** model

Do we have a better fit? $R^2 = 0.484$

K-NN

Statistical learning

▶ Polynomial may be better adapted: **Cubic** model

Do we have a better fit? $R^2 = 0.490$

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Statistical learning

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_n)$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

 \blacktriangleright How to choose the degree p?

Statistical learning

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

- \blacktriangleright How to choose the degree p?
- Collinearity of x^p and x^q for $p \neq q$?

Statistical learning

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

- \blacktriangleright How to choose the degree p?
- Collinearity of x^p and x^q for $p \neq q$?

. . .

Statistical learning

Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

- \triangleright How to choose the degree p?
- Collinearity of x^p and x^q for $p \neq q$?

. . .

→ How does that relates to the learning exercise?

▶ Other methods more flexible

- Other methods more flexible
- ► Nearest neighbors (or k-NN)

Statistical learning

- ▶ Other methods more flexible
- ► Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not β_s !

K-NN

•000

NEAREST NEIGHBORS (K-NN)

Statistical learning

- Other methods more flexible
- Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not $\beta_s!$ Similar in spirit to "moving average" estimator

- Other methods more flexible
- ► Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to "moving average" estimator

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours \ of \ x_i\}}} y$$

- Other methods more flexible
- Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to "moving average" estimator

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours \ of \ x_i\}}} y_j$$

k is the number of neighbors of x_i taken into account in the estimation.

- Other methods more flexible
- Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to "moving average" estimator

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours \ of \ x_i\}}} y_j$$

k is the number of neighbors of x_i taken into account in the estimation.

K-NN

•000

NEAREST NEIGHBORS (K-NN)

Statistical learning

- Other methods more flexible
- Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not $\beta_s!$ Similar in spirit to "moving average" estimator

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours of \ x_i\}}} y$$

k is the number of neighbors of x_i taken into account in the estimation.

The method follows a very general idea:

K-NN

•000

NEAREST NEIGHBORS (K-NN)

Statistical learning

- Other methods more flexible
- Nearest neighbors (or k-NN)
 - \hookrightarrow The goal is to estimate $f(\cdot)$ not $\beta_s!$ Similar in spirit to "moving average" estimator

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours of \ x_i\}}} y$$

k is the number of neighbors of x_i taken into account in the estimation.

The method follows a very general idea: "Observations close in the x dimension should be close in the y dimension"

K-NN regression with k= 100

K-NN regression with k= 200

K-NN regression with k= 200

For this point xi (i= 250) the distance (yi - f(xi)) is: 0.0376

K-NN regression with k= 200

For this point xi (i= 549) the distance (yi - f(xi)) is: 0.186

In pink the neighbors used for a specific x

K-NN regression with k= 200

For this point xi (i= 937) the distance (yi - f(xi)) is: 0.0797

K-NN regression with k= 200

For this point xi (i= 937) the distance (yi - f(xi)) is: 0.0797

K-NN regression with k= 5

K-NN regression with k= 400

K-NN regression with k= 249

K-NN regression with k= 5

K-NN regression with k= 5 For this point xi (i= 937) the distance (yi - f(xi)) is: 0.106

K-NN regression with k= 5
For this point xi (i= 937) the distance (yi - f(xi)) is: 0.106

Overfitting has many consequences

Overfitting has many consequences

► The estimated curve follows the **data set** too closely

Overfitting has many consequences

- ▶ The estimated curve follows the **data set** too closely
- ▶ The estimated curve follows the **errors** too closely

Overfitting has many consequences

- ▶ The estimated curve follows the **data set** too closely
- ► The estimated curve follows the **errors** too closely
- ▶ The estimated function will not provide good estimates on **new observations**

What is the goal?

► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...

What is the goal?

Statistical learning

- ► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...
 - \hookrightarrow this is the purpose of **Statistical Learning**

- ► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...
 - \hookrightarrow this is the purpose of **Statistical Learning**
- ▶ If the goal is to predict, one may focus on prediction accuracy

- ► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...
 - \hookrightarrow this is the purpose of **Statistical Learning**
- ▶ If the goal is to predict, one may focus on prediction accuracy
 - \hookrightarrow this is the purpose of **Machine Learning**

- ► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...
 - \hookrightarrow this is the purpose of **Statistical Learning**
- ▶ If the goal is to predict, one may focus on prediction accuracy
 - \hookrightarrow this is the purpose of **Machine Learning**
- lacktriangle Many statistical learning methods are relevant and useful to estimate $f(\cdot)$

- ► If the goal is to formalize a model, one may focus on testing statistical properties, significance, relationships, ...
 - \hookrightarrow this is the purpose of **Statistical Learning**
- If the goal is to predict, one may focus on prediction accuracy
 - \hookrightarrow this is the purpose of **Machine Learning**
- ▶ Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- ▶ In practice we'll use both tools to "understand the data"

The classical approach

▶ So far, we have estimated $f(\cdot)$ on the whole data set

The classical approach

▶ So far, we have estimated $f(\cdot)$ on the whole data set

The classical approach

Statistical learning

▶ So far, we have estimated $f(\cdot)$ on the whole data set

▶ We have estimated $f(\cdot)$ by $\widehat{f}(\cdot)$ and minimized some cost function

The classical approach

Statistical learning

▶ So far, we have estimated $f(\cdot)$ on the whole data set

- ▶ We have estimated $f(\cdot)$ by $\widehat{f}(\cdot)$ and minimized some cost function
- ▶ The data serve **both** for estimating $f(\cdot)$ **and** computing the prediction error

A different approach: resampling

• Our goal is evaluate the prediction accuracy of $\widehat{f}(\cdot)$ on a new, **unseen**, data set

A different approach: resampling

- Our goal is evaluate the prediction accuracy of $\hat{f}(\cdot)$ on a new, **unseen**, data set
- ▶ Since we may not have **unseen** data, we will construct one

A different approach: resampling

- ▶ Our goal is evaluate the prediction accuracy of $\hat{f}(\cdot)$ on a new, **unseen**, data set
- ▶ Since we may not have **unseen** data, we will construct one

Statistical learning

A different approach: resampling

- ▶ Our goal is evaluate the prediction accuracy of $\hat{f}(\cdot)$ on a new, **unseen**, data set
- Since we may not have unseen data, we will construct one

 \triangleright Compare y_i with the prediction based on the validation set xs

Estimating parameters using predictions accuracy

▶ When estimating $f(\cdot)$ on the whole data set, over-fitting may occur

Statistical learning

Estimating parameters using predictions accuracy

- ▶ When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

Estimating parameters using predictions accuracy

- ▶ When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

Statistical learning

Estimating parameters using predictions accuracy

- ▶ When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

▶ Prediction accuracy (using $\hat{f}(\cdot)$) is then evaluated on the validation set **only**

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

▶ The validation set is constructed from a randomly drawn observations.

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

▶ The validation set is constructed from a randomly drawn observations.

Using resampling methods to estimate the error on the prediction

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

▶ For each (training - validation) set j, one can compute the MSE_j since the true ys are known on the validation set!

Statistical learning

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- ▶ For each (*training* − *validation*) set j, one can compute the MSE_i since the true ys are known on the validation set!
- Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{j=1}^{m} MSE_j$$

Statistical learning

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- ▶ For each (*training* − *validation*) set j, one can compute the MSE_i since the true ys are known on the validation set!
- Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{j=1}^{m} MSE_j$$

 \triangleright $CV_{(m)}$ is a good estimate of the prediction error of the model

Statistical learning

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- ▶ For each (*training* − *validation*) set j, one can compute the MSE_i since the true ys are known on the validation set!
- Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{j=1}^{m} MSE_j$$

- \triangleright $CV_{(m)}$ is a good estimate of the prediction error of the model
- \triangleright $CV_{(m)}$ can serve to select and compare models

Statistical learning

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- For each (training validation) set j, one can compute the MSE_j since the true ys are known on the validation set!
- Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{j=1}^{m} MSE_j$$

- $ightharpoonup CV_{(m)}$ is a good estimate of the prediction error of the model
- \triangleright $CV_{(m)}$ can serve to select and compare models
- \hookrightarrow Example: select *k* in *k*-NN regression

Machine Learning involves several tasks, some are time consuming

Data collection (not treated here)

- ► Data collection (not treated here)
- Data organization (not treated here)

- ▶ Data collection (not treated here)
- Data organization (not treated here)
- Data cleaning (not treated here)

- ▶ Data collection (not treated here)
- Data organization (not treated here)
- Data cleaning (not treated here)
- Data visualization

- ▶ Data collection (not treated here)
- Data organization (not treated here)
- Data cleaning (not treated here)
- Data visualization
- ▶ Data analysis ← this is the core of this course

➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)

- ➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)

- ➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)
- There is a unavoidable bias-variance trade-off

- ➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)
- ► There is a unavoidable **bias-variance** trade-off
- Theory helps understanding but not in choosing the right model

- ➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)
- ► There is a unavoidable **bias-variance** trade-off
- Theory helps understanding but not in choosing the right model
- ightharpoonup The (train + validation) sets approach is central in machine learning

- ➤ To *understand* the data, we use linear, polynomial, nonparametric models (*k*-NN) or other complex methods (including those for classification)
- ► There is a unavoidable **bias-variance** trade-off
- Theory helps understanding but not in choosing the right model
- ightharpoonup The (train + validation) sets approach is central in machine learning
- → In a machine learning framework, the efficiency of the prediction will guide the choices, not the statistical properties!

Write your questions in the chat

▶ Module 2: "Classification" (Examples of classifiers, Measures of fit, *Logit* as a classifier)

- ▶ Module 2: "Classification" (Examples of classifiers, Measures of fit, *Logit* as a classifier)
- Webinar on "Classification" Thursday, same time

Statistical learning

- ▶ Module 2: "Classification" (Examples of classifiers, Measures of fit, *Logit* as a classifier)
- Webinar on "Classification" Thursday, same time
- Complete the activities before the webinar!

- ▶ Module 2: "Classification" (Examples of classifiers, Measures of fit, *Logit* as a classifier)
- Webinar on "Classification" Thursday, same time
- Complete the activities before the webinar!

Have a nice week!