3D Geometric Transformation

3D Translation

Repositioning an object along a straight line path from one coordinate location to another

$$(x,y,z) \longrightarrow (x',y',z')$$

To translate a 3D position, we add translation distances t_x , t_y and t, to the original coordinates (x, y, z) to obtain the new coordinate position (x', y', z')

2

$$x'=x+t_x$$
, $y'=y+t_y$, $z'=z+t_z$

Matrix form (4×4)

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$P' = T(t_x, t_y, t_z) P$$
Compiled by: dines because

3D Rotation about the coordinate axes

• z-axis

 The 2D z-axis rotation equations are extended to 3D.

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$z' = z$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$P' = R_z(\theta)P$$

Note

Transformation equations for rotations about the other two coordinate axes can be obtained with a cyclic permutation of the coordinates parameters x, y, and z in above equations. that is, we use the replacements

$$x \rightarrow y \rightarrow z \rightarrow x$$

• x-axis

$$y' = y \cos \theta - z \sin \theta$$

$$z' = y \sin \theta + z \cos \theta$$

$$x' = x$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$P' = R_{x}(\theta)P$$

y-axis

$$z' = z \sin \theta - x \cos \theta$$

$$x' = z \sin \theta + x \cos \theta$$

$$y' = y$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$P' = R_{y}(\theta)P$$

Rotation about axis parallel to co-

ordinate axis

Steps

- ☐ Translate the object so as to coincide rotation axis to parallel co-ordinate axis
- ☐ Perform the rotation about the axis
- ☐ Translate back the object so as to move rotation axis to original position

 $P' = T^{-1} \cdot R_{x}(\theta)$. T. P

Composite Transformation Matrix is

Figure: Sequence of transformation for rotating an object about an axis that is parallel to the axis Compiled by: dinesh ghemosu

 $R(\theta)=T^{-1}$. $R_{x}(\theta)$. T

General 3D Rotation

When an object is to be rotated about an axis that is not parallel to one of the coordinates axes, we acquire required rotation in five steps:

- 1. Translate the object so that the rotation axis passes through the coordinate origin.
- 2. Rotate the origin so that the axis of rotation coincides with one of the coordinate axis.
- 3. Perform the specified rotation about that coordinate axis.
- 4. Apply inverse rotations to bring the rotation axis back to its original orientation.
- 5. Apply the inverse translation to bring the rotation back to its original position.

Compiled by: dinesh ghemosu

3D scaling

Scaling about the origin

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Fixed Point Scaling

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & (1-s_x)x_f \\ 0 & s_y & 0 & (1-s_y)y_f \\ 0 & 0 & s_z & (1-s_z)z_f \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$S(x_f, y_f, z_f, s_x, s_y, s_z) = T(x_f, y_f, z_f).S(s_x, s_y, s_z).T(-x_f, -y_f, -z_f)$$

3D Scaling about the origin

$$x' = xs_{x}$$

$$y' = ys_{y}$$

$$z' = zs_{z}$$

$$\mathbf{P'} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{S} \cdot \mathbf{P}$$

3D fixed point Scaling

- Translate the fixed point to the origin
- Scale the object relative to the coordinate origin
- Translate the fixed point back to its original position.

$$z$$
 x_f, y_f, z_f

$$\mathbf{T} \cdot \mathbf{S} \cdot \mathbf{T}^{-1} = \begin{bmatrix} S_x & 0 & 0 & (1 - S_x) x_f \\ 0 & S_y & 0 & (1 - S_y) y_f \\ 0 & 0 & S_z & (1 - S_z) z_f \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & (1-s_x)x_f \\ 0 & s_y & 0 & (1-s_y)y_f \\ 0 & 0 & s_z & (1-s_z)z_f \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$S(x_f, y_f, z_f, s_x, s_y, s_z) = T(x_f, y_f, z_f).S(s_x, s_y, s_z).T(-x_f, -y_f, -z_f)$$

3D Reflection

- Performed relative to a reflection axis or reflection plane
- Axis reflection → equivalent to 180 degree rotation about the axis in 3-D space
- Plane reflection → equivalent to 180 degree rotation in 4-D space
 - 4-D space ?? → not visualized in Euclidian space
- Reflection about a plane converts right handed co-ordinate system to left handed co-ordinate system and vice versa
- Reflection in xy plane

Matrix Representation relative to xy plane is:

$$RF_z = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure: Conversion of coordinate specification from right-handed to a left handed system can be carried

Compiled by: dinesh ghemogut with reflection transformation

3D Shears

- Can be used to modify the object shapes.
- Also used in 3D viewing for obtaining general projection transformation.
- Z-axis shear

$$x' = x + a.z$$

 $y' = y + b.z$
 $z' = z$

$$SH_z = \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$