PENDING CLAIMS:

1	1. (previously amended) A process of aligning and connecting at least one
2	optical fiber to at least one optoelectronic device to facilitate the coupling of
3	light between at least one optical fiber and at least one optoelectronic device,
4	comprising the steps of:
5	positioning at least one optical element in a position relative to at least one
6	optoelectronic device in such a manner that when the device and element are in
7	a position proximate to each other, they would be in optical alignment, wherein
8	the at least one optoelectronic device is an array of vertical cavity surface
9	emitting lasers;
10	depositing a first non-opaque material on the first end of at least one optoelectronic
11	device; and
12	fixating the first end of at least one optical element proximate to the first end of at
13	least one optoelectronic device in such a manner that the first non-opaque
14	material contacts the first end of at least one optoelectronic device and the first
15	end of at least one optical element.
1	2 3. (previously canceled)
1	4. (previously amended) A process as in claim 1, wherein the vertical cavity
2	surface emitting laser is an oxide vertical cavity surface emitting laser.
1	5. (original) A process as in claim 1, wherein at least one optoelectronic device is
	a photo-detector.
2	a piloto-detector.
1	6. (original) A process according to claim 1, wherein the first non-opaque
2	material comprises an adhesive.

1.	material comprises an UV optical adhesive.
8.	(original) A process according to claim 1, wherein the first non-opaque
	material functions to provide an optical path.
9.	(original) A process according to claim 1, wherein the first non-opaque
	material functions to provide mechanical stability.
10.	(original) A process according to claim 1, wherein the first non-opaque
	material comprises a gel.
11.	(original) A process according to claim 1, wherein the at least one optical
	element is included in an array of optical elements.
12.	(original) A process according to claim 1, wherein at least one optical element
	is an optical fiber.
13.	(original) A process according to claim 1, wherein at least one optical element
	is a MT-type connector.
14.	(original) A process according to claim 1, wherein at least one optical elemen
	is a ferrule.
15.	(original) A process according to claim 14, wherein at least one optical
	element is a MT-like ferrule.
16.	(original) A process according to claim 1, wherein at least one optical elemen
	is a lenslet array.
	 8. 9. 10. 11. 12. 13. 14. 15.

1	17. (Original) A process according to claim 1, wherein at least one optical element
2	is a diffractive optical element.
1	18 102. (previously canceled).
1	103. (previously amended) A process of aligning and connecting at least one
2	optical fiber to at least one optoelectronic device to facilitate the coupling of
3	light between at least one optical fiber and at least one optoelectronic device,
4	comprising the steps of:
5	a) holding at least one optical element at the end of a first member of an alignment
6	system, and holding at least one optoelectronic device on a second member of
7	the alignment system, wherein the at least one optoelectronic device is an arra
8	of vertical cavity surface emitting lasers;
9	b) visually locating a target associated with at least one optoelectronic device;
10	c) illuminating at least one optical element with a light so that at least one optical
1	element emits optical energy onto at least one optoelectronic device;
12	d) changing the relative positions of the optical energy and target so that the optical
13	energy is visually aligned with the target; and
14	e) bringing the first end of at least one optical element proximate to a first end of at
15	least one optoelectronic device in such a manner that a gap exists between the
16	first end of at least one optoelectronic device and the first end of at least one
17	optical element.
1	104. (original) A process according to claim 103, wherein visually locating a targe
2	comprises employing human vision and a microscope.
1	105. (original) A process according to claim 103, wherein visually locating a targe
2	comprises employing machine vision.
4	COMDITION CHILDROVING MACHINE VISION.

PALOALTO 38151 (2K) -4-

1 2 3	106.	optical energy with the target comprises employing human vision and a microscope.
1	107.	(original) A process according to claim 103, wherein visually aligning the
2		optical energy with the target comprises employing machine vision.
1	108. –	109. (previously canceled).
1	110.	(original) An process as in claim 103, wherein the vertical cavity surface
2		emitting laser is an oxide vertical cavity surface emitting laser.
1	111.	(original) An process as in claim 103, wherein the optoelectronic device is a
2		photo-detector.
1	112.	(original) A process according to claim 103, wherein a side-view camera and a
2		video-image-measuring system are used to bring the first end of at least one
3		optical element proximate to the first end of at least one optoelectronic device.
1	113.	(original) A process according to claim 103, wherein laser triangulation is
2		used to bring the first end of at least one optical element proximate to the first
3		end of at least one optoelectronic device.
1	114.	(original) A process according to claim 103, wherein interference microscopy
2		is used to bring the first end of at least one optical element proximate to the
3		first end of at least one optoelectronic device.
1	115.	(original) A process according to claim 103, wherein the first member of an
2		alignment system is a high precision arm.

PALOALTO 38151 (2K) -5-

116.	(original) A process according to claim 103, wherein the second member of an
	alignment system is a high precision stage.
117.	(original) A process according to claim 103, wherein at least one optical
	element is an array of optical fibers.
118.	(original) A process according to claim 103, wherein at least one optical
	element is an array of optical fibers.
119.	(original) A process according to claim 103, wherein the optical element is an
	optical fiber.
120.	(original) A process according to claim 103, wherein the optical element is a
	MT type connector.
121.	(original) A process according to claim 103, wherein the optical element is a
	ferrule.
122.	(original) A process according to claim 103, wherein the optical element is a
	MT-like ferrule.
123.	(original) A process according to claim 103, wherein the optical element is a
	lenslet array.
124.	(original) A process according to claim 103, wherein the optical element is a
	diffractive optical element.
125	· 136. (previously canceled)
	117. 118. 119. 120. 121. 122.

PALOALTO 38151 (2K) -6-

1		(original) A process according to claim 1, wherein the positioning at least one
2		optical element in a position relative to at least one optoelectronic device
3		includes aligning 12 optical fibers relative to an optoelectronic device.
1	138.	(previously canceled)
1	139.	(previously added) A method of aligning and connecting at least one optical
2		element to at least one optoelectronic device comprising:
3	position	ning at least one optical element in a position relative to at least one
4		optoelectronic device in such a manner that when the device and element are in
5		a position proximate to each other, they would be in optical alignment, wherein
6		the at least one optoelectronic device is an array of photo-detectors;
7	deposit	ing a first non-opaque material on the first end of at least one optoelectronic
8		device; and
9	fixating	g the first end of at least one optical element proximate to the first end of at
10		least one optoelectronic device in such a manner that the first non-opaque
11		material contacts the first end of at least one optoelectronic device and the first
12		end of at least one optical element.
1	140.	(previously added) The method of claim 139, wherein the first non-opaque
2		material comprises an adhesive.
1	141.	(previously added) The method of claim 139, wherein the first non-opaque
2		material comprises an UV optical adhesive.
1	142.	(previously added) The method of claim 139, wherein the first non-opaque
2		material functions to provide an optical path.
		T T