	Lecture 7: Evaluation
Def	n: Mean-Squared Error (MSE)
17	Xn iid for where O € €) ad let ô be on est. of O.
Des	ive the MSE of O estimating O as
	$MSE_{\theta}(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}]$
f Ô	is food, MSF is small, vice-versa.
l dear	
	MSE
Defi	n: Bias the bias of ô est. O is
	$\mathcal{B}_{\theta}(\hat{\theta}) = \mathbb{E}[\hat{\theta} - \theta] = \mathbb{E}[\hat{\theta}] - \theta$
If	B(ô) 70 I tend to aver-estimate (c) under-estimate
lf	B(B) = 0 ve sur gets pred. corrections.

Jar iance Recall flut $\hat{\theta} = \hat{\Theta}(X)$ so $\hat{\tau}$ is random. So ê has a variance: Var, (ê) EX, Ideally B(Ô) is small ad so is Var(Ô) 17t of 0 small var

[]
$$E[(\hat{\theta}-E\hat{\theta})^2] = Var(\hat{\theta})$$

2 $E[(\hat{\theta}-E\hat{\theta})^2] = (E[\hat{\theta}]-\theta)^2$

$$= B(\hat{\theta})^2$$

$$= B(\hat{\theta})^2$$

$$= (E[\hat{\theta}]-\theta) E[\hat{\theta}-E[\hat{\theta}])$$

$$= (E[\hat{\theta}]-\theta) (E[\hat{\theta}]-E[\hat{\theta}])$$

$$= (E[$$

Ex. Consider
$$S_{N-1}^2 = \frac{1}{N-1}\sum_{n=1}^{\infty} (X_n - \overline{X})^2$$
.

Shared that $E[S_{N-1}^2] = 6^2$

and so S_{N-1}^2 is unbiased

Consider $X_n \stackrel{iid}{\sim} N(\mu_1 6^2)$ we also showed

that $\frac{N-1}{6^2}S_{N-1}^2 \sim \chi^2(N-1)$

So $Var\left[\frac{N-1}{6^2}S_{N-1}^2\right] = 2(N-1)$

So $Var\left(S_{N-1}^2\right) = 2(N-1)$

So $Var\left(S_{N-1}^2\right) = 26^4$

Note $Var\left(S_{N-1}^2\right) = 26^4$

The MLE of
$$6^{2}$$
 in the $N(\mu, 6^{2})$ case

was
$$\hat{G}^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - x_{n})^{2} = \frac{N-1}{N} S_{N-1}^{2}$$

Let (1) St MSE.

E $(6^{2}) = E[\frac{N+1}{N} S_{N-1}^{2}] = \frac{N-1}{N} E[S^{2}] = \frac{N-1}{N} 6^{2}$

So $(6^{2}) = E[\hat{G}^{2}] - 6^{2}$

$$= \frac{N+1}{N} 6^{2} - 6^{2}$$

$$= -\frac{1}{N} 6^{2}$$

$$Var(\hat{G}^{2}) = Var(\frac{N-1}{N} S_{N-1}^{2}) = \frac{(N-1)^{2}}{N^{2}} Var(S_{N-1}^{2})$$

$$= \frac{(N-1)^{2}}{N^{2}} \frac{26^{4}}{N^{2}}$$

$$= \frac{2(N-1)^{6}}{N^{2}} \frac{4}{N^{2}}$$

MSE $(6^{2}) = B^{2} + Var = (-\frac{1}{N}6^{2}) + \frac{2(N-1)}{N^{2}} 6^{4}$

$$= \frac{64}{N^2} + \frac{2(N-1)64}{N^2}$$

$$= (2N-1)64$$

$$= (2N-1)64$$

$$= (2N-1)6 = (2N-1) \left(\frac{2}{N-1}\right) \left(\frac{2$$

MSE(cS²)

=
$$B(cS^{2})^{2} + Var(cS^{2})$$

= $(E[cS^{2}] - 6^{2})^{2} + c^{2} Var(S^{2})$

= $(cE[S^{2}] - 6^{2})^{2} + c^{2} Var(S^{2})$

= $(c6^{2} - 6^{2})^{2} + c^{2} Var(S^{2})$

= $(c6^{2} - 6^{2})^{2} + c^{2} Var(S^{2})$

= $6^{4}(c-1)^{2} + 2c^{2}6^{4}$

N-1

= $6^{4}(c-1)^{2} + 2c^{2}6^{4}$

Note to set to zero, solve.

 $\frac{\partial}{\partial c}NSE = \int_{C}^{4} 2(c-1)(1) + 4cR^{4} = 0$
 $\Rightarrow (N-1)^{2} + AcR^{2} = 0$
 $\Rightarrow (N-1$

I want to find a "best" estimator. Problem. If I am too permissive in no all aroud best option. Want to find some ux MSE(U*) < MSE(û) & possible MSE