Homework 2 Solutions

10. Not one-to-one by either horizontal line test, or by an example of a repeating y value, like y = 4 when either x = 1 or x = 3.

12. Not one-to-one by either the horizontal line test. Consider x = 2 and x = -2, both points give y = 4.

- 22. a) Satisfies the horizontal line test.
 - b) Range is (-3,3), Domain is (-2,2)

c)
$$x = -2$$
.

27.

$$y^{2} = 10 - 3x$$

$$\Rightarrow \frac{10 - y^{2}}{3} = x$$

$$\Rightarrow \frac{10 - x^{2}}{3} = f^{-1}(x)$$

38. a)

Assume
$$x_1 \neq x_2 \Rightarrow x_1 - 1 \neq x_2 - 1$$

$$\Rightarrow \frac{1}{x_1 - 1} \neq \frac{1}{x_2 - 1}$$

$$\Rightarrow f(x_1) \neq f(x_2) \text{ so the function is } x_1 = x_2 + x_3 = x_3 + x_4 = x_3 + x_4 = x_$$

 \Rightarrow f(x₁) \neq f(x₂), so the function is one-to-one

b) First find when $2 = \frac{1}{x-1}$, which is when x = 3/2 so $f^{-1}(2) = 3/2$.

Then find f' by using either the chain or product rule. $f'(x) = \frac{-1}{(x-1)^2}$ and f'(3/2) = -4.

By a theorem in 7.1 then $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$. So $(f^{-1})'(2) = \frac{1}{f'(3/2)} = -\frac{1}{4}$.

c)
$$y = \frac{1}{x-1} \Rightarrow (x-1)y = 1 \Rightarrow x = \frac{1+y}{y} \text{ so } f^{-1} = g = \frac{1+x}{x}$$

d) $g'(x) = -\frac{1}{x^2}$ so $g'(2) = -\frac{1}{4}$ which matches the result in (b).

40) To use the formula $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$ first find when $2 = x^5 - x^3 + 2x$. This gives that

$$f^{-1}(2) = 1$$
. And $f'(x) = 5x^4 - 3x^2 + 2$, with $f'(1) = 4$. So $g'(a) = \frac{1}{f'(1)} = \frac{1}{4}$

43. Since $g = f^{-1}$ then $g'(5) = \frac{1}{f'(g(5))} = \frac{1}{f'(4)} = \frac{1}{2/3} = 3/2$

7.2* 19, 34, 37, 44, 55, 56, 59, 61, 66

19.
$$g'(x) = \frac{a+x}{a-x} \left(\frac{(a+x)(-1)-(a-x)(1)}{(a+x)^2} \right) = \frac{-2a}{(a-x)(a+x)}$$

- 34. Domain: x > 0 and $\ln x \neq -1 \Rightarrow x \neq \frac{1}{e}$ so the domain is $(0, 1/e) \cup (1/e, \infty)$. $f' = -(1 + \ln x)^{-2} (1/x) = \frac{-1}{x(1 + \ln x)^2}.$
- 37. $f' = \frac{(\ln x)(1) x(1/x)}{(\ln x)^2} = \frac{\ln x 1}{(\ln x)^2}$ and $f'(e) = \frac{1 1}{1^2} = 0$
- 44. $\frac{1}{xy}(xy'+y) = y\cos x + y'\sin x$ $\Rightarrow y' + \frac{1}{x}y = y^2\cos x + yy'\sin x$ $\Rightarrow y' = \frac{y^2\cos x y/x}{1 y\sin x}$
- 55. $\ln y = \ln(2x+1)^5 + \ln(x^4-3)^6$ $\Rightarrow \ln y = 5\ln(2x+1) + 6\ln(x^4-3)$ $\Rightarrow \frac{1}{y}y' = \frac{5}{2x+1}(2) + \frac{6}{x^4-3}(4x^3)$ $\Rightarrow y' = (2x+1)^5(x^4-3)^6 \left(\frac{10}{2x+1} + \frac{24x^3}{x^4-3}\right)$
- 56. $\ln y = \ln(x^3 + 1)^4 + \ln \sin^2 x \ln x^{1/3}$ $\Rightarrow \frac{1}{y}y' = \frac{4}{x^3 + 1}(3x^2) + \frac{2}{\sin x}(\cos x) - \frac{1}{3x}$ $\Rightarrow y' = \left(\frac{(x^3 + 1)^4(\sin^2 x)}{\sqrt[3]{x}}\right) \left(\frac{12x^2}{x^3 + 1} + 2\cot x - \frac{1}{3x}\right)$
- 59. $3 \ln 4 3 \ln 2 = 3 \ln 2$
- 61. Let u = 8 3t then the evaluated integral is $\frac{-1}{3}(\ln 2 \ln 5) = \frac{1}{3}(\ln 5 \ln 2) = \frac{\ln(5/2)}{3}$
- 66. Let $u = 2 + \sin x$ then $du = \cos x dx$ so plugging in for dx gives you:

Homework 2 Solutions pg. 3

$$\int \frac{\cos x}{u} \frac{1}{\cos x} du = \int \frac{1}{u} du = \ln |u| + C = \ln |2 + \sin x| + C$$

7.3* 3,7,10,20,35,41,59,69,73,76

3. a.
$$\sqrt{2}$$
 b. $2^3 = 8$
7. $\ln(\ln x) = 1 \Rightarrow e^1 = \ln x \Rightarrow x = e^e$
10. $e^{2-\ln x} = 2x + 1$
 $\Rightarrow e^2 e^{\ln x^{-1}} = 2x + 1$
 $\Rightarrow e^2 / x = 2x + 1 \Rightarrow 0 = 2x^2 + x - e^2$ using the quadratic formula gives
$$x = \frac{-1 \pm \sqrt{1 - 4(2)(-e^2)}}{2(2)} = \frac{-1 \pm \sqrt{1 + 8e^2}}{4}$$

20. The graph was moved up by 1 unit and stretched vertically by a factor of 2.

35. f'(u) =
$$e^{1/u}$$
 (-u⁻²) = $\frac{-e^{1/u}}{u^2}$

41.
$$y' = e^{e^x} e^x = e^{e^x + x}$$

$$59. f'(x) = 1 - e^x = 0$$
 when $e^x = 1$, so when $x = 0$ and $f(x) = 0 - 1 = -1$.

69.
$$u = -3x \Rightarrow dx = -1/3du$$
 so $-\frac{1}{3} \int_{5}^{0} e^{u} du = -\frac{1}{3} (e^{-15} - e^{0}) = \frac{1}{3} - e^{-15}$

73. Rewrite the integral as $\int \frac{e^x}{e^x} + \frac{1}{e^x} dx$. Then the integral becomes:

$$\int 1 + e^{-x} dx = x - e^{-x} + C$$

76. Let $u = e^x$ then $dx = \frac{1}{e^x} du$. Plugging this into the integral gives the new integral equation:

$$\int e^{x} \sin(u) \frac{1}{e^{x}} du = \int (\sin u) du = -\cos u + C = -\cos(e^{x}) + C$$