

REDES DE INFORMACIÓN

ARQUITECTURA DE WAN Y PROTOCOLOS DE SUBRED DE ACCESO

Ingeniero ALEJANDRO ECHAZÚ aechazu@comunicacionnueva.com.ar

REDES WAN

COMPOSICIÓN

ENLACES DE COMUNICACIONES
NODOS DE RED
EQUIPOS TERMINALES

ENLACES DE COMUNICACIONES

Conmutación

Fig. 2-21. a) Conmutación de circuitos. b) Conmutación de paquetes.

CUADRO COMPARATIVO COSTOS VS VOLUMEN DE DATOS

Líneas Dedicadas / Conmutadas

Figura S.8. Comparación entre la línea dedicada y la línea Switched-56 kbits/seg.

TIPOS DE CONMUTACIÓN

DE	CIR	CU.	IT	OS

DE PAQUETES (DATAGRAMAS)

DE PAQUETES
(CIRCUITOS VIRTUALES)

CONEXIÓN FÍSICA SIN CONEXIÓN LÓGICA CONEXIÓN LÓGICA (CONCEPTO) TRANSMISIÓN CONTINUA TRANSMISIÓN PAO TRANSMISIÓN PAO USO EFICIENTE PARA USO EFICIENTE PARA USO EFICIENTE PARA **VOZ, INEFICIENTE PARA** DATOS, MENOS EFICIENTE DATOS, MENOS EFICIENTE **DATOS** PARA VOZ PARA VOZ MANTIENE EL ORDEN DE NO MANTIENE EL ORDEN MANTIENE EL ORDEN DE LOS DATOS TX DE LOS DATOS TX LOS DATOS TX SE COBRA POR TIEMPO Y SE COBRA POR CANTIDAD SE COBRA POR CANTIDAD **DISTANCIA** DE PAQ Y TIEMPO. NO PESA DE PAQ Y TIEMPO. NO PESA EN GENERAL LA DISTANCIA EN GENERAL LA DISTANCIA **ENCAMINAMIENTO MÁS ENCAMINAMIENTO POR LA ENCAMINAMIENTO POR LA** RÍGIDO RUTA MENOS COSTOSA EN RUTA MENOS COSTOSA EN RETARDOS Y CANT SALTOS RETARDOS Y CANT SALTOS

TIPOS DE CONMUTACIÓN

	OTT	OT 13		_
DE		<i>•</i> יו	' ' '	. .
	IK			

DE PAQUETES (DATAGRAMAS)

DE PAQUETES (CIRCUITOS VIRTUALES)

RUTA DEDICADA	NO HAY RUTA	RUTA NO DEDICADA
MSJ NO SE ALMACENA	PAQ SE PUEDEN ALMACENAR HASTA SU ENVÍO	PAQ SE ALMACENAN HASTA SU ENVÍO
RUTA SE ESTABLECE PARA TODA LA TRANSMISIÓN	CADA PAQ TIENE SU PROPIO ENRUTAMIENTO	RUTA SE ESTABLECE PARA TODA LA TRANSMISIÓN
RETARDO DE ESTABLECIMIENTO	RETARDO DE TX DE PAQ	RETARDO DE ESTABLECIMIENTO Y DE TX DE PAQ
ANCHO DE BANDA FIJO	USO DINÁMICO DEL ANCHO DE BANDA	USO DINÁMICO DEL ANCHO DE BANDA
LA CONGESTIÓN BLOQUEA EL ESTABLECIMIENTO, NO RETARDO EN LA TRANSMISIÓN ESTABLECIDA	LA CONGESTIÓN AUMENTA EL RETARDO DE PAQ	LA CONGESTIÓN BLOQUEA EL ESTABLECIMIENTO Y AUMENTA EL RETARDO DE PAQ

TIPOS DE SERVICIOS

ORIENTADO A LA CONEXIÓN

- •E, MYLLA CONEXIÓN
- •MANTIENE EL ORDEN DEL TRÁFICO
- •SIMILAR A UN TUBO
- •COMO EL SISTEMA TELEFÓNICO

CIRCUITO VIRTUAL

SIN DECISIONES DE ENCAMINAMIENTO POR CADA BLOQUE

ESTABLECIMIENTO DE UNA RUTA EXTREMO A EXTREMO

SIN CONEXIÓN

- •ENCAMINAMIENTO INDEPENDIENTE
- •NO SIEMPRE MANTIENE EL ORDEN DEL TRÁFICO
- •SIMILAR A UNA CARTA COMÚN
- •COMO EL SISTEMA POSTAL

DATAGRAMA

MAYOR TRABAJO, PERO MÁS ROBUSTAS Y CON MEJOR CAPACIDAD DE ADAPTACIÓN

NO DETERMINACIÓN ANTICIPADA DE RUTAS

ENCAMINAMIENTO INDEPENDIENTE

RED DE CONMUTACIÓN DE CIRCUITOS

CONCEPTOS BÁSICOS

IMPLICA LA EXISTENCIA DE UN CANAL DE COMUNICACIONES DEDICADO ENTRE DOS ESTACIONES.

FASES

- •ESTABLECIMIENTO DEL CIRCUITO
- •TRANSFERENCIA DE DATOS
- •DESCONEXIÓN DEL CIRCUITO

COMPONENTES

- •ABONADOS
- •BUCLE LOCAL (LAZO DE ABONADO)
- •CENTRALES
- •LÍNEAS PRINCIPALES

TIPOS DE CONMUTACIÓN POR CIRCUITOS

POR DIVISIÓN EN EL ESPACIO

INICIALMENTE ANALÓGICOS.

RUTAS QUE SE ESTABLECEN SON FÍSICAMENTE INDEPENDIENTES ENTRE SÍ.

POR DIVISIÓN EN EL TIEMPO

SE BASA EN SISTEMAS DIGITALES Y MULTIPLEXIÓN POR DIVISIÓN DE TIEMPO (TDM).

CANALES DE MENOR VELOCIDAD SON MUESTREADOS A UNA MAYOR VELOCIDAD PARA INTEGRARSE EN UN BUS TDM.

CONMUTADOR POR DIVISIÓN EN EL ESPACIO (1 ETAPA)

CONMUTADOR POR DIVISIÓN EN EL ESPACIO (3 ETAPAS)

CONMUTADOR POR DIVISIÓN EN EL TIEMPO

UNIDAD DE CONTROL

INTERFAZ DE RED

BUS TDM

NUEVOS CONCEPTOS

Conmutación IP IP PBX IP Trunking

PROTOCOLO PPP

POINT TO POINT PROTOCOL

PROTOCOLO PARA ENMARCAR EL IP CUANDO SE ENVÍA A TRAVÉS DE UNA LÍNEA SERIAL.

DE NIVEL DE ENLACE, ENTRE DOS DISPOSITIVOS.

DERIVADO DEL HDLC.

USADO PARA FORMAR RPV.

FUNCIONES:

- •TRANSPORTE DE DATOS. ASEGURA EL ENLACE Y RECEPCIÓN ORDENADA. EMPLEA ARQ VENTANA DESLIZANTE.
- •AUTENTICACIÓN
- ·ASIGNACIÓN DINÁMICA DE DIR IP

PDU PPP

B = BANDERA

D = DIRECCIÓN. LLEVA SIEMPRE LA DIRECCIÓN ESTANDAR DE DIFUSIÓN. SON DOS ESTACIONES. *

C = CONTROL. TIPO DE TRAMA NO NUMERADA. *

P = IDENTIFICADOR DE PROTOCOLO. PUEDE ASOCIARSE A VARIOS (IP, LCP, PAP, CHAP, ETC.)

FCS = MEDIANTE CRC (16 o 32)

* CAMPOS QUE PUEDEN SER ELIMINADOS POR NEGOCIACIÓN.

LCP (PROTOCOLO DE CONTROL DE ENLACE)

PROTOCOLO PPP - FUNCIONAMIENTO

PPP State Diagram for Line Activation

PROTOCOLO PPP - FASES

- Establecimiento de conexión. Una computadora contacta con la otra y negocian los parámetros relativos al enlace usando el protocolo LCP. Este protocolo es una parte fundamental de PPP y por ello están definidos en el mismo RFC. Usando LCP se negocia el método de autenticación a utilizar, el tamaño de los datagramas, números claves para usar durante la autenticación,...
- Autenticación. No es obligatorio. Existen dos protocolos de autenticación. El más básico e inseguro es PAP, aunque no se recomienda dado que manda el nombre de usuario y la contraseña en claro. Un método más avanzado y preferido por muchos ISPs es CHAP, en el cual la contraseña se manda cifrada.
- Configuración de red. Se negocian parámetros dependientes del protocolo de red que se esté usando. PPP puede llevar muchos protocolos de red al mismo tiempo y es necesario configurar individualmente cada uno de estos protocolos. Para configurar un protocolo de red se usa el protocolo NCP correspondiente. Por ejemplo, si la red es IP, se usa el protocolo IPCP para asignar la dirección IP del cliente y sus servidores DNS.
- Transmisión. Se manda y recibe la información de red. LCP se encarga de comprobar que la línea está activa durante periodos de inactividad. Obsérvese que PPP no proporciona cifrado de datos.
- Terminación. La conexión puede ser finalizada en cualquier momento y por cualquier motivo.

COMPARACIÓN CON SLIP

SLIP (SERIAL LINE IP): PROTOCOLO DE PROCESO DE TRAMAS UTILIZADO PARA ENVIOS IPA TRAVÉS DE UNA LÍNEA SERIAL.

ENCAPSULA DATAGRAMAS IP. LÍNEAS SINCRÓNICAS. ANTIGÜO ('80).

VENTAJAS DEL PPP

- •Permite la conexión tanto mediante líneas síncronas como asíncronas.
- •Permite la asignación dinámica de direcciones IP en ambos extremos de la conexión.
- •Permite el transporte de varios protocolos de red sobre él (SLIP solamente permite IP).
- •Implementa un mecanismo de control de red NCP.
- •El protocolo PPP se puede usar también para crear RPV tanto cifradas como no cifradas, pero si se desea cifrado, se debe implementar por debajo de PPP.