	$PART - C (5 \times 12 = 60 \text{ Marks})$	ATTAL ALL		-	-			
	Answer ALL Questions							
28. a.	Write an algorithm to perform quick sort on a sorted list of elements. Analyze the algorithm for best case and worst case.	12	4	2	2			
	(OR)							
b.	Discuss the following algorithms for constructing a convex hull (i) Quick hull (ii) Merge hull	6+6	2	2	2			
20 a	Solve the equations using recursive tree method	6+6	3	1	1			
27. a.	(i) $T(n) = 3T(n/4) + Cn^2$							
	(i) $T(n) = 3T(n/4) + Cn$ (ii) $T(n) = 2T(n/2) + n$							
b.i.	Write a recursive program to calculate Fibonacci series. Find the recurrence relations for the same and solve it by substitution method.	8	5	1	1			
ii	$T_{1} = M_{1} + M_{2} + M_{3} + M_{4} + M_{4$	4	4	1	2			
11.	Using Master's theory, solve $T(n) = 8T(n/2) + n^4$.							
30. a.	0. a. Find the solution for placing 8 Queens in an 8×8 matrix using back tracking process. Provide proper algorithm and necessary justification for your findings.							
	(OR)							
b.	Design an algorithm for finding Hamiltonian cycle in a graph. Explain with suitable example.	12	5	4	4			
31 a	Write short notes on		4	5	4			
Ji, a.	(i) Traceable problems	3						
	(ii) NP-complete	3						
	(iii) Reducibility	3						
	(iv) Deterministic algorithms	3						
	(OR)							
b.	Explain in detail about randomized algorithm for 'Hiring Problem' and analyse the time complexity.	12	5	4	3			
32. a.	capacity $W = 6$.	12	4	4	3			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	(OD)							
h	(OR) Explain 0/1 knapsack problem with greedy method and dynamic	12	5	3	4			
υ.	programming method with examples.							

Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18CSC204J - DESIGN AND ANALYSIS OF ALGORITHMS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

_			
R. T	i	4 -	
1	n	тα	

- **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3	hour	S			Max. N	Mark	ks: 1	00	
		PART - A (20 × 1 =			Marks	BL	со	PO	
	33 H	Answer ALL Q at is the solution to the recurrence			1	1	1	1	
Ι.		1	1	1	1				
	` '	O (n)	• /	O (2n)					
	(C)	$O(n^2)$	(D)	O (n log n)					
2.	2. Which of the following cases does not exist in complexity theory?								
		Average case		Null case					
	` '	Worst case	, ,	Best case					
2	3371.:	.14:			1	1	1	1	
3.		ch sorting algorithm is faster?	(D)	0 (23)	•	•	•	-	
	` ′	$O(n^2)$		$O(n^3)$					
	(C)	O (n log n)	(D)	O(n+k)					
4.	4. The big O analysis of the running time for the following program is								
		A[i] = i							
	, ,	O (n-1)	, ,	$O(n^3)$					
	(C)	O (log n)	(D)	$O(n^2)$					
5.	5. The process of checking whether the given algorithm gives correct output								
٥.	for valid inputs or not is called								
		Algorithm verification	(B)	Algorithm design					
		Algorithm validation	` ′	Algorithm debugging					
	ma .		. 1	1 11 0 0 1	1	2	2	1	
6.				algorithm for finding maximum	,	2	2	1	
		minimum elements in a given arr	·	0 (2n)					
	. ,	O(n) $O(n^2)$	(B)	O(2n)					
	(C)	O (n)	(\mathcal{D})	$O\left(\frac{3n}{2}\right)$					
				(2)					
7.	The	worst case complexity of quick s	ort is		1	2	2	1	
	(A)	$O(n^3)$	(B)	$O(n^2)$					
	(C)	O (n!)	(D)	$O(n^n)$					

8.		matrix multiplication, how many sen matrix multiplication taking into (B) 1 (D) 3	1	2	2	17.	Let in a file the frequency or letters index are 16, 7, 17, 25, 20 respectively. Which of the following is the Huffman code of the letter 'E'? (A) 11 (B) 01 (C) 10 (D) 00	1	2	4	
9.	Merge sort is ideal for combining two (A) Linked list (C) Null values		1	2	2		Tower of Hanoi is not an example of design strategy. (A) Back tracking (B) Recursion (C) Stack (D) Iteration process	1		4.	
10.	min and max are identified in A1 of	min-max in an unsorted array where comparison using transitional method. comparison to find min and max. Find orst case? (B) A1 = A2 (D) A1 > A2	1	1	2	19.	Assuming $P! = NP$ which of the following is true? (i) NP -complete $= NP$ (ii) NP -complete $= P$ (iii) NP -hard $= NP$ (iv) NP -complete $= P$ (A) (i) (B) (ii) (C) (iii) (D) (iv)	1	1	5	
11.	respectively can be multiplied in set total scalar multiplications. It can be	of dimensions p×q, q×r, r×s, and s×t everal ways with different number of done as $((M1\times M2)\times (M3\times M4))$ or as 100 , $r = 20$, $s = 5$, $t = 80$. Find number (B) 44000 (D) 25000	1	2	3	20.	Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to 'S' and 'S' is polynomial time reducible to 'R'. Which one of the following statements is true? (A) R is NP-complete (B) R is NP-hard (C) Q is NP-complete (D) Q is NP-hard	1	2	5	
12.	of longest common subsequence betwood such longest common subsequence	d B = 'pqprqrp''. Let 'X' be the length ween A and B and let Y be the number es between A and B. Then X + 20Y =	1	1	3	21.	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions Solve the recurrence equation using substitution method. $T(n) = 2T(n/2) + 2 if n > 2$	Marks 4	BL 3	co 1	
	(A) 64 (C) 23	(B) 34 (D) 43					$ \begin{array}{ll} =1 & \text{if } n=2 \\ =0 & \text{if } n=0 \end{array} $				
13.	Consider the following two sequence Y = (C, A, D, B, C, B) (A) 5 (C) 4	s X = (B, C, D, C, A, B, C), (B) 3 (D) 2	1	1	3	22.	Multiply the following two matrices using Strassen's multiplication method $A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} B = \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix}$	4	3	2	
14.	Consider a sequence F_{00} defined as: $F_{00}(0) = 1, F_{00}(1) = 1, F_{00}(n) = 10 * F_{00}(n)$ Then what shall be the set of values of	$f_0(n-1)+100, F_{00}(n-2)$ for $n \ge 2$.	1	2	3	23.	Write algorithm for sum of subsets.	4	4	4	
		(B) (1, 110, 600, 1200)				24.	Compute Huffmann coding for the set of symbols shown in the below table using the given frequencies Symbol A B C D	4	3	3	
15.	monotonically increasing subsequence (A) O (log n)	(B) O (n log n)	1	1	3	25.	Frequency 16 3 4 12 Distinguish P, NP and NP complete problems.	4	4	5	
	(C) O (n)	(D) O (n^2)				26.	Solve recurrence relation using Master's theorem	4	3	2	
16.	(ii) A^* is complete and optimal	not optimal but is often efficient provided is admissible or consistent					$T(n) = \delta T\left(\frac{n}{2}\right) + 10n^2, T(0) = 0$				
	 (iii) h(n) = θ is an admissible he (A) (i) only (C) (ii) only 	curistic for the '8' puzzle (B) (i) and (ii) only (D) (ii) and (iii) only				27.	Distinguish between randomized and deterministic algorithms.	4	4	5	

Page 2 of 4 Page 3 of 4 Page 3 of 4