Chapter 2.4 Problems

Ryan Heslin

November 13, 2021

1.

$$v_4 = 3v_1 - v_2 + 4v_3$$

2.

4.

3.

In case 1, $v_1=0v_2$. In the seond, $v_2=\frac{b}{a}v_1$. In the third, $v_3=\frac{c-be/d}{a}v_1+e/dv_2$

4.

Evident form the fact 0/c=0 for nonzero c and $0\pm 0=0$.

5.

6.

The matrix has RREF

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

7.

The matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

reduces to the identity.

9.	
a.	
The biggest possible dimension of a set of vectors in \mathbb{R}^3 is 3.	
b.	
Scalars of each other.	
C.	
0v = 0 for all vectors v . ### 10. Kernel basis	
Reffiel basis	
$\begin{bmatrix} -2 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	
$\begin{bmatrix} -2 & 3 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
L J	
11.	
a.	
Line.	
b.	
Plane	
с.	
Plane	
d.	
Not a subspace.	
12.	
$Ax = b$, $x^T A = c$, false; the zero vector is always in the row space.	
13.	
All 2, as it turns out.	

15.

16.

They do.

17.

The same way: a row of zeroes.

18.

19.

n, span, greater than or equal

20.

a.

 $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

b.

 $\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$

c.

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\mathbf{d}.$

For the kernel,

$$\begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For the column, $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, or a similar basis of opposite-sign pairs. FOr the row space, the columns of the transpose themselves or any scalars of them.

22.

a.

Might not.

b.

Are not.

c.

Might not.

$\mathbf{d}.$

Might not.

23.

Then rank is n, and at most m and at least 1 if they span R^m . If they are a basis, there are m linearly independent vectors.

24.

25.

26.

Both true, from the definitions of orthogonal complements.

27.

For both the kernel is.

$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

28.

a.

False, if m > n and rank is n

1	
h	
v	٠

False, consider $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

c.

True.

\mathbf{d} .

False, some vectors may be redundant.

29.

At least one is nonzero.

30.

31.

Say W has dimension 1 and none of the vectors are a multiple of it.

32.

3, 0, 16.

33.

 \mathbf{W}^{\perp} has dimension 2, which is less than the dimension of \mathbf{V} . Therefor the dimension of vectors in the second subspace but not the first is at least 1.

34.

Assume $W^{\perp} \in V$. That is not a basis for V, leaving at least a one-dimensional subspace in V not in the kernel and therefore in W. and exactly k vectors spanning ensures no redundancy.

35.

a.

False; it has zero or one solutions

b.

True.

6 in each case.

37.

The first has dimension n the latter 2 n(n-1)/2

38.

a.

All constant functions

b.

$$f(x) = 3x + c \#\#\# c.$$

39.

40.

41.

Respectively constants, linear functions, quadratics.

42.

$$1-x, 1-x^2$$

43.

Solving for the vector in $\mathbb{R}^{3\times3}$

```
 \begin{split} & \text{I} <- \text{list}(\text{list}(1,\ 0,\ 0),\ \text{list}(\text{c}(0,\ 1,\ 0)),\ \text{list}(\text{c}(0,\ 0,\ 1))) \\ & \text{perms} <- \text{sapply}(\text{list}(\text{c}(1,\ 3,\ 2),\ \text{c}(2,\ 1,\ 3),\ \text{c}(3,\ 2,\ 1),\ \text{c}(2,\ 3,\ 1),\ \text{c}(3,\ 1,\ 2)),\ \text{\ensuremath{\backslash}}(x) \ \text{unlist}(\text{I}[x])) \\ & \text{solve}(\text{t}(\text{perms})\ \%*\%\ \text{t}(\text{perms})\ \%*\%\ \text{unlist}(\text{I}) \\ \end{aligned}
```

```
[,1]
[1,] 1
[2,] 1
[3,] 1
[4,] -1
[5,] -1
```

45.

If the expanded matrix is invertible, then b is not a linear combination of the preceding columns, meaning no solution exists. But if the expanded matrix is singular, then b is such a linear combination, making the equation solvable.