## Apunte Único: Álgebra Lineal Computacional - Práctica 1

# Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 28/03/25 @ 23:35

### Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

| 1.        | 4.        | <b>7.</b> | <b>10.</b> | <b>13.</b> | <b>16.</b> | 19.        |
|-----------|-----------|-----------|------------|------------|------------|------------|
| <b>2.</b> | <b>5.</b> | 8.        | 11.        | <b>14.</b> | <b>17.</b> | <b>20.</b> |
| <b>3.</b> | <b>6.</b> | 9.        | <b>12.</b> | <b>15.</b> | 18.        | <b>21.</b> |

• Ejercicios de Parciales



Esta Guía 1 que tenés se actualizó por última vez: 28/03/25 @ 23:35

Escaneá el QR para bajarte (quizás) una versión más nueva:



El resto de las guías repo en github para descargar las guías con los últimos updates.



Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.</a>



#### Notas teóricas:

Espacios Vectoriales: Palabras guías

En un conjunto  $A \neq \emptyset$ 

- \* Operación: (a\*b) = c. Es una función  $*: A \times A \rightarrow A$ 
  - i) \* es asociativa si  $(a*b)*c = a*(b*c) \forall a,b,c \in A$ .
  - ii) \* tiene elemento neutro e si  $e * a = a * e = a \ \forall a \in A$ .
  - iii) si \* tiene elemento neutro e todo elemento tiene inverso para \* si  $\forall a \in A \ a*a'=a'*a=e.$
  - iv) \* es conmutativa si  $a * b = b * a \ \forall a, b \in A$ .
- \* Grupo: (A,\*) es un grupo si se satisfacen i), ii)y iii). Si además se satisface iv) se tiene un grupo abeliano o conmutativo.
- \* Anillo:  $(A, +, \cdot)$ . Para ser anillo se debe cumplir:
  - i) (A, +) es un grupo abeliano o conmutativo.
  - ii) · es una operación asociativa y tiene elemento neutro.
  - iii) Vale distribuir:  $\left\{ \begin{array}{l} a\cdot (b+c) = a\cdot b + a\cdot c \\ (b+c)\cdot a = b\cdot a + c\cdot a \end{array} \right.$

Si además de cumplir eso,  $\cdot$  es conmutativa  $(A, +, \cdot)$  es un anillo conmutativo.

- \* Cuerpo  $(K, +, \cdot)$ : Un conjunto  $K, + y \cdot$  operaciones de K, es un cuerpo si  $(K, +, \cdot)$  es un anillo conmutativo y todo elemento no nulo de K tiene inverso.
  - i) (A, +) es un grupo abeliano o conmutativo,
  - ii)  $(K \{0\}, \cdot)$  es un grupo abeliano, y
  - iii) vale la propiedad distributiva de · con respecto a +.
- \*  $Acción :: es una función :: A \times B \to B$ .
- \*  $K-espacio\ vectorial$ : Sea  $(K,+,\cdot)$  un cuerpo. Sea V un conjunto no vacío, sea + una operación en V y sea  $\cdot$  una acción de K en V. Se dice que  $(V,+,\cdot)$  es un  $K-espacio\ vectorial$  si se cumplen las siguiente condiciones:
  - i) (V, +) es un grupo abeliano.
  - ii) La acción  $: K \times V \to V$  satisface:
    - a)  $a \cdot (v + w) = a \cdot v + a \cdot w \ \forall a \in K; \ \forall v, w \in V.$
    - b)  $(a+b) \cdot v = a \cdot v + b \cdot v$
    - c)  $1 \cdot v = v \ \forall v \in V$ .
    - d)  $(a \cdot b) \cdot v = a \cdot (b \cdot v) \ \forall a, b \in K; \ \forall v \in V.$

Los elementos de V son vectores y los elementos de K se llaman escalares. La acción  $\cdot$  se llama producto por escalares.

 $\triangle$ Dejo de escribir a "·" en rojo, porque no hay problema cuando el punto "·" actúa sobre un elemento de K y uno de V o entre 2 de K.

- \* Subespacios: Subconjunto de un K- espacio vectorial. Sea V un K- espacio vectoria y sea  $S\subseteq V$ . Entonces S es un subespacio de V si y solo si valen las siguientes condiciones:
  - i)  $0 \in S$
  - ii)  $v, w \in S \implies v + w \in S$
  - iii)  $\lambda \in K, v \in S \implies \lambda \cdot v \in S$ .

#### \* Combinación lineal:

Sea V un K-espacio vectorial, y sea  $G = \{v_1, \ldots, v_r\} \subseteq V$ . Una combinación lineal de G es un elemento  $v \in V$  tal que  $v = \sum_{i=1}^r \alpha_i \cdot v_i$  con  $\alpha_i \in K$  para cada  $1 \leq i \leq r$ .

\* Independencia lineal: Sea V un K-espacio vectorial y sea  $\{v_{\alpha}\}_{{\alpha}\in I}$  una familia de vectores de V. Se dice que  $\{v_{\alpha}\}_{{\alpha}\in I}$  es linealmente independiente (l.i.) si

$$\sum_{\alpha \in I} a_{\alpha} \cdot v_{\alpha} = 0 \implies a_{\alpha} = 0 \ \forall \alpha \in I$$

- \* Bases y dimensión:
  - Escritura única: Sea V un K-e.v. y  $A = \{v_1, \ldots, v_n\}$  un conjunto l.i. Entonces cualquier  $w \in \langle v_1, \ldots, v_n \rangle$  si puede escribirse de una manera única como combineta de A.
  - Definición base: Sea V un K-e.v. .  $A = \{v_1, \dots, v_n\}$  un conjunto. Se dice que es una base de V si:
    - -A genera todo V.
    - $-\langle v_1,\ldots,v_n\rangle$  son l.i.
  - Dimensión: Sea V un K-e.v. .  $B = \{v_1, \ldots, v_n\}$  una base de V. Entonces cualquier otra base B' de V tiene la misma cantidad de elementos. Esta cantidad es la dimensión de V.
- \* Espacio columna: Si  $A = (A_1 \mid \cdots \mid A_n)$ . El espacio columna de A es  $col(A) = \langle A_1, \ldots, A_n \rangle$
- \* Espacio fila: Si  $A = \begin{pmatrix} A_1 \\ \vdots \\ A_m \end{pmatrix}$ . El espacio fila de A es  $fil(A) = \langle A_1, \dots, A_m \rangle$
- \* Matrices:
  - Definición de matriz:

$$A \in K^{m \times n} = \left\{ \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \middle| a_{ij} \in K \ \forall 1 \le i \le n, 1 \le j \le m \right\}.$$

• Iqualdad de matrices:

Dos matrices de la misma dimensión A y A' serán iguales:

$$A = A' \iff a_{ij} = a'_{ij}$$
 para cada  $1 \le i \le n, 1 \le j \le m$ 

• Operaciones de matrices:

Suma A + A', producto de un escalar por una matriz  $\alpha A$  y producto entre 2 matrices  $A \cdot B$ .

$$(a + a')_{ij} = a_{ij} + a'_{ij} (1 \le i \le m, 1 \le j \le n)$$
  

$$(\alpha a)_{ij} = \alpha a_{ij} (1 \le i \le m, 1 \le j \le n)$$
  

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} (1 \le i \le n, 1 \le j \le r).$$

- Inversa de una matriz:  $A \in K^{n \times n}$  es inversible si  $\exists B \in K^{n \times n}$ .
- € Cálculo de determinantes:
  - $\blacktriangle$  Dada  $A = (a_{ij}) \in K^{n \times n}$  matriz cuadrada, definimos el determinante como

$$det(A) = \begin{cases} a_{11} & n = 1\\ \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij}) & n > 1 \end{cases}$$

donde  $M_{ij}$  es la matriz de  $(n-1) \times (n-1)$  que resulta de eliminar la fila i y la columna j.

**a** Si 
$$A \in \mathbb{R}^{2 \times 2} / \to \det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

**▲** Si  $A \in \mathbb{R}^{n \times n} (n \ge 2)$ , un ejemplo con n = 3:

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \cdot (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot (-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

▲ Y si pinta desarrollar por otra columna o fila:

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12} \cdot (-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22} \cdot (-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{32} \cdot (-1)^{3+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

•• Clasificación de un sistema a partir de su determinante:

A Dado un sistema de ecuaciones:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2, \\ \vdots &= \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

▲ Se lo puede llevar a forma matricial así:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \vdots \\ \mathbf{x_n} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

▲ En notación compacta:

$$A \cdot \mathbf{x} = \mathbf{b} \xrightarrow{\text{sist. homogéneo}} A \cdot \mathbf{x} = 0$$

▲ Dado un sistema:

$$A \cdot \mathbf{x} = \mathbf{b}$$

$$A \begin{cases} \text{si} & |A| \neq 0 \xrightarrow{\text{seguro}} \boxed{\text{S.C.D.}} \rightarrow \boxed{\text{UNA SOLA SOLUCIÓN}} \rightarrow \boxed{\text{A ES INVERSIBLE}} \\ \text{si} & |A| = 0 \xrightarrow{\text{dos}} \begin{cases} \text{si} & A \cdot \mathbf{x} = 0 \xrightarrow{\text{entonces}} \boxed{\text{S.C.I.}} \\ \text{si} & A \cdot \mathbf{x} = \mathbf{b} \xrightarrow{\text{denso dependiendo}} \end{cases} \begin{cases} \boxed{\text{S.C.I.}} \\ \text{o} \\ \boxed{\text{S.I.}} \end{cases}$$

#### NO ME GUSTA ESTO ACÁ. Pensar donde verga poner esto del labo

- Seccion a parte? No sé si va a haber coherencia entre número de guías y temas del labo
- PDF a parte? ... No sé si va a valer la pena
- escucho ideas:...

#### Notas del labo

Escribir 0.25 en base 10:

Base 10 es obviamente nuestra base favorita:

$$\begin{cases} 0.25 \cdot 10 &= 2 + 0.5 \\ 0.5 \cdot 10 &= 5 + 0 \\ 0 \cdot 10 &= 0 + 0 \end{cases} \rightarrow (0.25)_{10} = (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 0 \cdot 10^{-3} + 0)_{10} = 0.25$$

Escribir 0.25 en base 2:

$$\begin{cases} 0.25 \cdot 2 &= 0 + 0.5 \\ 0.5 \cdot 2 &= 1 + 0 \\ 0 \cdot 2 &= 0 + 0 \end{cases} \rightarrow (0.25)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0)_2 = 0.01$$

Escribir 0.3 en base 2:

$$\begin{cases} 0.3 \cdot 2 &= 0 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.4 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ \vdots &= \vdots$$

Para escribir al 0.3 en base 2 voy a necesitar infinitos números en la mantisa, la máquina no puede y ahí aparecen los errores de redondeo o truncamiento.

#### Errores:

Tengo que un número de máquina, número posta que la máquina representa, con la notación mantisa, exponente:

En base 
$$10 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 10^{exp}$$
 con  $0 \le a_i \le 9(a_1 \ne 0)$   
En base  $2 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 2^{exp}$  con  $0 \le a_i \le 1(a_1 \ne 0)$ 

Por ejemplo si  $m=3 \implies x=0, a_1a_2a_3 \cdot 2^{exp}$ . Para cada valor de exp voy a tener un total de  $1 \cdot 2 \cdot 2 = 4$  posibles

valores de máquina. La separación entre 2 valores  $x_1$  y  $x_2$  consecutivos es de  $2^m$ , por eso para órdenes grandes la separación entre un número y otro es mayor.

Si el número real, real que quiero es x = 0.3, la máquina no puede representarlo de forma exacta. Puedo acotar el error en forma absoluta como:

$$|x - x^*| \le \frac{1}{2} \frac{1}{2^m} \cdot 2^{exp}$$

Y en forma relativa como:

$$\frac{|x-x^*|}{|x|} \le 5 \cdot 2^{-m}$$

#### Ejercicios de la guía:

**Ejercicio 1.** Resolver los siguientes sistemas de ecuaciones lineales no homogéneos y los sistemas homogéneos asosciados en  $\mathbb{R}$  o en  $\mathbb{C}$ . Si la solución única, puede verificarse el resultado en Python utilizando el comando np.lianlg.solve.

(a) 
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= -2\\ 3x_1 - 2x_2 + x_3 + 5x_4 &= 3\\ x_1 - x_2 + x_3 + 2x_4 &= 2 \end{cases}$$

(c) 
$$\begin{cases} ix_1 - (1+i)x_2 &= -1\\ x_1 - 2x_2 + x_3 &= 0\\ x_1 + 2ix_2 - x_3 &= 2i \end{cases}$$

(b) 
$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 + x_5 &= 1\\ x_1 - 3x_2 + x_3 + x_4 + x_5 &= 0\\ 3x_1 - 5x_2 + 3x_3 + 3x_5 &= 0 \end{cases}$$

(d) 
$$\begin{cases} 2x_1 + (-1+i)x_2 + x_4 = 2\\ -x_1 + 3x_2 - 3ix_3 + 5x_4 = 1 \end{cases}$$

(a) Sistema con más incógnitas que ecuaciones, así que lo de la solución única, bien gracias. En forma matricial para hacer la gracia de triangular y coso:

$$\begin{pmatrix} 1 & 1 & -2 & 1 & | & -2 \\ 3 & -2 & 1 & 5 & | & 3 \\ 1 & -1 & 1 & 2 & | & 2 \end{pmatrix} \qquad F_2 - 3F_1 \to F_2 \qquad \begin{pmatrix} 1 & 1 & -2 & 1 & | & -2 \\ 0 & -5 & 5 & 2 & | & 9 \\ 0 & -2 & 3 & 1 & | & 4 \end{pmatrix}$$
$$-\frac{1}{5} \cdot F_2 \to F_2 \qquad \begin{pmatrix} 1 & 1 & -2 & 1 & | & -2 \\ 0 & -5 & 5 & 2 & | & 9 \\ 0 & -2 & 3 & 1 & | & 4 \end{pmatrix}$$
$$F_3 + 2F_2 \to F_3 \qquad \begin{pmatrix} 1 & 1 & -2 & 1 & | & -2 \\ 0 & 1 & -\frac{7}{5} & -\frac{2}{5} & | & -\frac{9}{5} \\ 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

Cosa de lo más espantosa. Empiezo a escribir las ecuaciones:

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= -2 & \stackrel{\bigstar^2 \ y \ \bigstar^1}{\Longrightarrow} & x_1 = -2x_4 + 1 \\ x_2 - \frac{7}{5}x_3 - \frac{2}{5}x_4 &= -\frac{9}{5} & \stackrel{\bigstar^1}{\Longrightarrow} & x_2 \stackrel{\bigstar^2}{=} -x_4 + 1 \\ \frac{1}{5}x_3 + \frac{1}{5}x_4 &= \frac{2}{5} & \Leftrightarrow & x_3 \stackrel{\bigstar^1}{=} -x_4 + 2 \end{cases}$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3, x_4)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2x_4 + 1 \\ -x_4 + 1 \\ -x_4 + 2 \\ -x_4 \end{pmatrix} = x_4 \cdot \begin{pmatrix} -2 \\ -1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}$$

Resolución del sistema homogéneo asociado:

$$\begin{pmatrix}
1 & 1 & -2 & 1 & 0 \\
3 & -2 & 1 & 5 & 0 \\
1 & -1 & 1 & 2 & 0
\end{pmatrix}
\xrightarrow{\text{como arriba}}
\begin{pmatrix}
1 & 1 & -2 & 1 & 0 \\
0 & 1 & -\frac{7}{5} & -\frac{2}{5} & 0 \\
0 & 0 & \frac{1}{5} & \frac{1}{5} & 0
\end{pmatrix}$$

paso a sistema de ecuaciones:

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 &= 0 & \stackrel{\bigstar^2 y \bigstar^1}{\Longleftrightarrow} & x_1 = -x_3 + 2x_3 + x_3 = 2x_3 \\ x_2 - \frac{7}{5}x_3 - \frac{2}{5}x_4 &= 0 & \stackrel{\bigstar^1}{\Longleftrightarrow} & x_2 = \frac{7}{5}x_3 - \frac{2}{5}x_3 \stackrel{\bigstar^2}{=} x_3 \\ \frac{1}{5}x_3 + \frac{1}{5}x_4 &= 0 & \Leftrightarrow & x_4 \stackrel{\bigstar^1}{=} -x_3 \end{cases}$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3, x_4)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2x_3 \\ x_3 \\ x_3 \\ -x_3 \end{pmatrix} = x_3 \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$

(b) Como el item anterior, más incógnitas que ecuaciones, asi que no tiene solución única.

$$\begin{pmatrix} 1 & 1 & 1 & -2 & 1 & 1 \\ 1 & -3 & 1 & 1 & 1 & 0 \\ 3 & -5 & 3 & 0 & 3 & 0 \end{pmatrix} \qquad F_2 - F_1 \to F_2 \\ F_3 - 3F_1 \to F_3 \qquad \begin{pmatrix} 1 & 1 & 1 & -2 & 1 & 1 \\ 0 & -4 & 0 & 3 & 0 & -1 \\ 0 & -8 & 0 & 6 & 0 & -3 \end{pmatrix}$$
$$F_3 - 2F_2 \to F_3 \qquad \begin{pmatrix} 1 & 1 & 1 & -2 & 1 & 1 \\ 0 & -4 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Como en la ultima ecuación quedó que 0 = -1, no existe solución. ABS! Resolución del sistema homogéneo asociado:

$$\begin{pmatrix}
1 & 1 & 1 & -2 & 1 & 0 \\
1 & -3 & 1 & 1 & 1 & 0 \\
3 & -5 & 3 & 0 & 3 & 0
\end{pmatrix}
\xrightarrow{\text{como arriba}}
\begin{pmatrix}
1 & 1 & 1 & -2 & 1 & 1 \\
0 & -4 & 0 & 3 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Quedando el siguiente sistema de ecuaciones:

$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 &= 0 \iff x_1 = \frac{5}{3}x_2 - x_3 - x_5 \\ -4x_2 + 3x_4 &= 0 \iff x_4 \triangleq \frac{1}{3}x_2 \end{cases}$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3, x_4)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} \frac{5}{3}x_2 - x_3 - x_5 \\ x_2 \\ x_3 \\ \frac{4}{3}x_2 \\ x_5 \end{pmatrix} = x_2 \cdot \begin{pmatrix} \frac{5}{3} \\ 1 \\ 0 \\ \frac{4}{3} \\ 0 \end{pmatrix} + x_3 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_5 \cdot \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

(c) Hermosos y molestos números complejos. Acá probablemente se use mucho lo de × y ÷ por el conjugado mucho para sacar números con parte imaginaria del denominador, quiero decir:

$$rac{1}{z} \cdot rac{\overline{z}}{\overline{z}} = rac{\overline{z}}{|z|^2} \quad \stackrel{ ext{z = a + ib}}{\Longrightarrow} \quad rac{1}{z} = rac{a - ib}{a^2 + b^2}$$

$$\begin{cases} ix_1 - (1+i)x_2 &= -1\\ x_1 - 2x_2 + x_3 &= 0\\ x_1 + 2ix_2 - x_3 &= 2i \end{cases}$$

Escrito en forma matricial:

$$\begin{pmatrix} i & -1-i & 0 & | & -1 \\ 1 & -2 & 1 & | & 0 \\ 1 & 2i & -1 & | & 2i \end{pmatrix} \qquad \stackrel{1}{i}F_{1} \to F_{1} \qquad \begin{pmatrix} 1 & -1+i & 0 & | & i \\ 1 & -2 & 1 & | & 0 \\ 1 & 2i & -1 & | & 2i \end{pmatrix}$$

$$F_{2} \to F_{1} \qquad \begin{pmatrix} 1 & -1+i & 0 & | & i \\ 0 & -1-i & 1 & | & -i \\ 0 & 1+i & -1 & | & i \end{pmatrix}$$

$$F_{2} + F_{3} \to F_{3} \qquad \begin{pmatrix} 1 & -1+i & 0 & | & i \\ 0 & -1-i & 1 & | & -i \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Tuqui. Paso a sistema y resuelvo:

$$\begin{cases} x_1 + (-1+i)x_2 &= i \to x_1 = i + (1-i)x_2 \\ -(1+i)x_2 + x_3 &= -i \to x_3 = -i + (1+i)x_2 \end{cases}$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} i + (1-i) \cdot x_2 \\ x_2 \\ -i + (1+i)x_2 \end{pmatrix} = x_2 \cdot \begin{pmatrix} 1-i \\ 1 \\ 1+i \end{pmatrix} + \begin{pmatrix} i \\ 0 \\ -i \end{pmatrix}$$

Resolución del sistema homogéneo asociado:

$$\begin{pmatrix} i & -1 - i & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 2i & -1 & 0 \end{pmatrix} \xrightarrow{\text{como arriba}} \begin{pmatrix} 1 & -1 + i & 0 & 0 \\ 0 & -1 - i & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Paso a sistema y resuelvo:

$$\begin{cases} x_1 + (-1+i)x_2 = 0 \to x_1 = (1-i)x_2 \\ -(1+i)x_2 + x_3 = 0 \to x_3 = (1+i)x_2 \end{cases}$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} (1-i) \cdot x_2 \\ x_2 \\ (1+i)x_2 \end{pmatrix} = x_2 \cdot \begin{pmatrix} 1-i \\ 1 \\ 1+i \end{pmatrix}$$

(d) Hay más incógnitas que ecuaciones, no va a tener solución unica.

$$\left(\begin{array}{cc|cc|c} 2 & -1+i & 0 & 1 & 2 \\ -1 & 3 & -3i & 5 & 1 \end{array}\right) \quad 2F_2+F_1 \to F_2 \quad \left(\begin{array}{cc|c} 2 & -1+i & 0 & 1 & 2 \\ 0 & 5+i & -6i & 11 & 4 \end{array}\right)$$

Paso a sistema y resuelvo:

$$\begin{cases} 2x_1 + (-1+i)x_2 + x_4 &= 2 \to x_4 \stackrel{\text{t}}{=} 2 - 2x_1 - (-1+i)x_2 \\ (5+i)x_2 - 6ix_3 + 11x_4 &= 4 \end{cases}$$

utilizo el resultado de  $x_4$  en la otra ecuación:

$$6ix_3 = (5+i)x_2 + 11x_4 - 4 \stackrel{\rightleftharpoons}{=} (5+i)x_2 + 11(2-2x_1 + (1-i)x_2) - 4 =$$

$$= (5+i)x_2 + 22 - 22x_1 + (11-11i)x_2 - 4 = (16-10i)x_2 - 22x_1 + 18$$

$$x_3 = \frac{(16 - 10i)x_2 - 22x_1 + 18}{6i} = \frac{(8 - 5i)x_2 - 11x_1 + 9}{3i} \cdot \frac{-3i}{-3i}$$
$$x_3 = -\frac{(-15 - 24i)x_2 + 33ix_1 - 27i}{9} = \frac{-5 - 8i}{3}x_2 + \frac{11i}{3}x_1 - 3i$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3, x_4)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \frac{-5-8i}{3}x_2 + \frac{11i}{3}x_1 - 3i \\ 2 - 2x_1 - (-1+i)x_2 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{11i}{3} \\ -2 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{-5-8i}{3} \\ 1-i \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -3i \\ 2 \end{pmatrix}$$

Resolución del sistema homogéneo asociado:

$$\left( \begin{array}{ccc|c} 2 & -1+i & 0 & 1 & 0 \\ -1 & 3 & -3i & 5 & 0 \end{array} \right) \xrightarrow{\text{como arriba}} \left( \begin{array}{ccc|c} 2 & -1+i & 0 & 1 & 0 \\ 0 & 5+i & -6i & 11 & 0 \end{array} \right)$$

Paso a sistema y resuelvo:

$$\begin{cases} 2x_1 + (-1+i)x_2 + x_4 &= 0 \to x_4 \stackrel{\bullet}{=} -2x_1 - (-1+i)x_2 \\ (5+i)x_2 - 6ix_3 + 11x_4 &= 0 \end{cases}$$

utilizo el resultado de  $x_4$  en la otra ecuación:

$$6ix_3 = (5+i)x_2 + 11x_4 \stackrel{\text{def}}{=} (5+i)x_2 + 11(-2x_1 + (1-i)x_2) =$$

$$= (5+i)x_2 - 22x_1 + (11-11i)x_2 = (16-10i)x_2 - 22x_1$$

$$x_3 = \frac{(16 - 10i)x_2 - 22x_1}{6i} = \frac{(8 - 5i)x_2 - 11x_1}{3i} \cdot \frac{-3i}{-3i}$$
$$x_3 = -\frac{(-15 - 24i)x_2 + 33ix_1}{9} = \frac{-5 - 8i}{3}x_2 + \frac{11i}{3}x_1$$

Yo estaba buscando algo de la pinta  $x^T = (x_1, x_2, x_3, x_4)$ :

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \frac{-5-8i}{3}x_2 + \frac{11i}{3}x_1 \\ -2x_1 - (-1+i)x_2 \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{11i}{3} \\ -2 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{-5-8i}{3} \\ 1-i \end{pmatrix}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

👸 Tomás A. 🞧

#### Ejercicio 2.

(a) Determinar los valores  $k \in \mathbb{R}$  para que el siguiente sistema tenga solución única, infinitas soluciones, o no tenga solución:

$$\begin{cases} x_1 + kx_2 - x_3 &= 1\\ -x_1 + x_2 + k^2x_3 &= -1\\ x_1 + kx_2 + (k-2)x_3 &= 2 \end{cases}$$

- (b) Considerar el sistema homogéneo asociado y dar los valores de k para los cuales admite solución no trivial. Para esos k, resolverlo.
- (a) No tengo ganas de triangular. Ejercicios con letras y matrices cuadradas, calculo determinante de la matriz de coeficiente:

$$\begin{vmatrix} 1 & k & -1 \\ -1 & 1 & k^2 \\ 1 & k & k - 2 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & k^2 \\ k & k - 2 \end{vmatrix} + (-1) \cdot (-1)^3 \begin{vmatrix} k & -1 \\ k & k - 2 \end{vmatrix} + (1) \cdot (-1)^4 \begin{vmatrix} k & -1 \\ 1 & k^2 \end{vmatrix}$$
$$= k^2 - 1 = 0 \Leftrightarrow k = 1 \quad \text{o} \quad k = -1$$

Por lo tanto sé que para que el sistema no tenga solución única debe ocurrir que:

$$k=1$$
 o  $k=-1$ 

Ahora hay que probar a mano con cada valor de k para ver en cada caso si el sistema queda indeterminado o incompatible

Si k = 1:

$$\begin{pmatrix}
1 & 1 & -1 & | & 1 \\
-1 & 1 & 1^2 & | & -1 \\
1 & 1 & 1 & -2 & | & 2
\end{pmatrix}
F_2 + F_1 \to F_2
F_3 - F_1 \to F_3
\begin{pmatrix}
1 & 1 & -1 & | & 1 \\
0 & 2 & 0 & | & 0 \\
\hline
0 & 0 & 0 & | & 1
\end{pmatrix}$$

No hay solución con k=1

Si k = -1:

$$\begin{pmatrix} 1 & -1 & -1 & | & 1 \\ -1 & 1 & (-1)^2 & | & -1 \\ 1 & -1 & -1 - 2 & | & 2 \end{pmatrix} \quad F_2 + F_1 \to F_2 \quad \begin{pmatrix} 1 & -1 & -1 & | & 1 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -2 & | & 1 \end{pmatrix}$$

Habrá infinitas soluciones con k = -1

(b) El sistema homogéneo asociado en el caso k = -1:

$$\begin{cases} x_1 + -1x_2 - x_3 &= 0 \\ -x_1 + x_2 + (-1)^2 x_3 &= 0 \\ x_1 + -1x_2 + (-1 - 2)x_3 &= 0 \end{cases}$$

Utilizando la triangulación de antes (★¹) el sistema quedaría así:

$$\left\{\begin{array}{ccc} x_1 - x_2 - x_3 & = & 0 \\ -2x_3 & = & 0 \end{array} \Leftrightarrow x = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} x_1 \\ x_1 \\ 0 \end{array}\right) = x_1 \cdot \left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right)$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

🎖 Tomás A. 😱

#### Ejercicio 3. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IATEXo una pull request al o.

**Ejercicio 4.** Encontrar los coeficientes de la parábola  $y = ax^2 + bx + c$  que pasa por los puntos (1,1),(2,2) y (3,0). Verificar el resultado obtenido usando Python  $\clubsuit$ . Graficar los puntos y la parábola aprovechando el siguiente código:

```
import numpy as np
import matplotlib.pyplot as plt # librería para graficar.

# ...
# Acá , crear la matriz y resolver el sistema para calcularl a , b y c.
# ...

xx = np.array([1, 2, 3])
yy = np.array([1, 2, 0])

x = np.linspace(0, 4, 100) # general00 puntos equiespaciados entre 0 y 4.
f = lambda t: a * t**2 + b * t + c # esto genera una función f de t.
plt.plot(xx, yy, "*")
plt.plot(x, f(x))
plt.show()
```

Hay que armar la matriz para luego resolverla:

$$\begin{cases} y(1) = a \cdot 1^2 + b \cdot 1 + c = 1 \\ y(2) = a \cdot 2^2 + b \cdot 2 + c = 2 \\ y(3) = a \cdot 3^2 + b \cdot 3 + c = 0 \end{cases}$$

El sistema a resolver en forma matricial:

$$\begin{pmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Ampliamos la matriz de coeficientes:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 2 & 1 & 2 \\ 9 & 3 & 1 & 0 \end{pmatrix} \iff \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} & 1 \\ 0 & 0 & 1 & -3 \end{pmatrix} \implies \begin{cases} a = -\frac{3}{2} \\ b = \frac{11}{2} \\ c = -3 \end{cases}$$

La parábola queda:

$$y = -\frac{3}{2}x^2 + \frac{11}{2}x - 3$$

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np
import matplotlib.pyplot as plt

# Matriz del ejercicio

A = [[1, 1, 1], [4, 2, 1], [9, 3, 1]]
b = [1, 2, 0]

# Resuelvo el sistema A x = b, y lo devuelvo en
# las variables con los nombres adecuados
a, b, c = np.linalg.solve(A, b)

xx = np.array([1, 2, 3])
yy = np.array([1, 2, 0])

x = np.linspace(0, 4, 100) # general00 puntos equiespaciados entre 0 y 4.

f = lambda t: a * t**2 + b * t + c

plt.plot(xx, yy, "*")
plt.plot(x, f(x))
plt.show()
```

```
Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte: Y naD GarRaz ♥
```

Ejercicio 5. Encontrar un sistema de generadores para los siguientes espacios vectoriales:

(a) 
$$\{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0; \ x - y = 0\}$$

(b) 
$$\{\mathbf{A} \in \mathbb{C}^{3\times 3} : \mathbf{A} = -\mathbf{A}^t\}$$

(c) 
$$\{\mathbf{A} \in \mathbb{R}^{3\times3} : tr(\mathbf{A}) = 0\}$$

(d) 
$$\{x \in \mathbb{C}^4 : x_1 + x_2 - ix_4 = 0; ix_1 + (1+i)x_2 - x_3 = 0\}$$

- (a) (1, 1, 2)
- (b) Describo a  $\mathbf{A}$  y a  $-\mathbf{A}^t$  como :

$$\mathbf{A} = \{a_{ij} \in \mathbb{C} : 1 \le i, j \le 3\}$$
 y  $-\mathbf{A}^t = \{-a_{ji} \in \mathbb{C} : 1 \le i, j \le 3\}$ 

O escrito en idioma humano:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{12} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad \mathbf{y} \quad \mathbf{A}^T = \begin{pmatrix} -a_{11} & -a_{21} & -a_{31} \\ -a_{12} & -a_{22} & -a_{32} \\ -a_{13} & -a_{23} & -a_{33} \end{pmatrix}$$

Entonces los elementos de la diagonal no se mueven, solo cambian de signo, mientas que los elementos fuera de la diagonal tienen esa reflexión respecto a la diagonal:

$$a_{ij} \stackrel{?}{=} -a_{ji} \Leftrightarrow a_{ij} = \begin{cases} 0 & \text{si} \quad i = j \\ -a_{ji} & \text{si} \quad i \neq j \end{cases}$$

Estoy buscando algo de la pinta:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{12} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & -a_{21} & -a_{31} \\ a_{21} & 0 & -a_{32} \\ a_{31} & a_{32} & 0 \end{pmatrix} = a_{21} \cdot \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + a_{31} \cdot \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + a_{32} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

El conjunto de generadores buscado:

$$\left\langle \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right); \left(\begin{array}{ccc} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right); \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right) \right\rangle$$

(C) ②... hay que hacerlo! 🙃

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en LATEX $\rightarrow$  una pull request al  $\bigcirc$ 

(d) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🞧

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX  $\rightarrow$  una pull request al  $\bigcirc$ 

**Ejercicio 7.** Hallar un sistema de generadores para  $S \cap T$  y para S + T como subespacios de V, y determinar si la suma es directa en cada uno de los siguientes casos:

(a) 
$$V = \mathbb{R}^3$$
,  $S = \{(x, y, z) : 3x - 2y + z = 0\}$  y  $T = \{(x, y, z) : x + z = 0\}$ .

(b) 
$$V = \mathbb{R}^3$$
,  $S = \{(x, y, z) : 3x - 2y + z = 0, x - y = 0\}$  y  $T = \langle (1, 1, 0), (5, 7, 3) \rangle$ .

(c) 
$$V = \mathbb{R}^3$$
,  $S = \langle (1, 1, 3), (1, 3, 5), (6, 12, 24) \rangle$  y  $T = \langle (1, 1, 0), (3, 2, 1) \rangle$ .

(d) 
$$V = \mathbb{R}^{3\times3}$$
,  $S = \{(x_{ij})/x_{ij} = x_{ji} \ \forall i,j\}$  y  $T = \{(x_{ij})/x_{11} + x_{12} + x_{13} = 0\}$ .

(e) 
$$V = \mathbb{C}^3$$
,  $S = \langle (i, 1, 33 - i), (4, 1 - i, 0) \rangle$  y  $T = \{ (x \in \mathbb{C}^3) : (1 - i)x_1 - 4x_2 + x_3 = 0 \}$ .

(a) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ③

(b) ... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IAT $_{\rm E}$ X $\rightarrow$  una pull request al  $\bigcirc$ 

(C) S... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ .

(d) S es un subespacios describiendo matrices sim'etricas, es decir que  $A=A^T$  y T el subespacio con matrices de traza 0, es decir,  $\sum t_{ii} = 0$ . Escrito esto un poco más en extensión:

$$S = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{12} & s_{22} & s_{23} \\ s_{13} & s_{23} & s_{33} \end{pmatrix} \quad \text{y} \quad T = \begin{pmatrix} -(t_{22} + t_{33}) & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ t_{31} & t_{32} & t_{33} \end{pmatrix} \implies S \cap T = \begin{pmatrix} -(x_{22} + x_{33}) & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{pmatrix}$$

En la última matriz tengo algo que cumple ambas condiciones de las descripciones por comprensión de los subespacios S y T. El sistema de generadores buscado para la intersección:

$$S \cap T = \left\langle \left( \begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right); \, \left( \begin{array}{rrr} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right); \, \left( \begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right); \, \left( \begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right); \, \left( \begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right) \right\rangle$$

La suma de estos subespacios tiene pinta de ser todo  $\mathbb{R}^{3\times3}$  a ver que onda la dimensión:

$$\dim(S+T) = \dim(S) + \dim(T) - \dim(S \cap T) = 6 + 8 - 5 = 9$$

Tuqui.

(e) ... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram  $\overline{f 2}$ , o mejor aún si querés subirlo en IATEXo una pull request al f Q

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

**Ejercicio 8.** Determinar todos los  $k \in \mathbb{R}$  para los cuales:

(a) 
$$\langle (-2,1,6), (3,0,-8) \rangle = \langle (1,k,2k), (-1,-1,k^2-2), (1,1,k) \rangle$$
.

(b) 
$$S \cap T = \langle (0,1,1) \rangle$$
 siendo  $S = \{x \in \mathbb{R} : x_1 + x_2 - x_3 = 0\}$  y  $T = \langle (1,k,2), (-1,2,k) \rangle$ .

(a) Lo primero que quiero hacer es que los generadores sean linealmente independientes y porque me gusta determinantes ©:

$$\begin{vmatrix} 1 & k & 2k \\ -1 & -1 & k^2 - 2 \\ 1 & 1 & k \end{vmatrix} F_2 + F_3 \to F_3 \begin{vmatrix} 1 & k & 2k \\ -1 & -1 & k^2 - 2 \\ 0 & 0 & k^2 + k - 2 \end{vmatrix} = (-1)^6 \cdot (k^2 + k - 2) \cdot \begin{vmatrix} 1 & k \\ -1 & -1 \end{vmatrix} = (k^2 + k - 2) \cdot (-1 + k) = 0$$

$$\Leftrightarrow k \in \{-2, 1\}$$

Así me saco el tema de las k de encima, pero bueh todavía no se termina:

$$\langle (-2,1,6), (3,0,-8) \rangle \stackrel{?}{=} \left\{ \begin{array}{ll} \langle (1,-2,-4), (-1,-1,2), (1,1,-2) \rangle = \langle (1,-2,-4), (1,1,-2) \rangle & \text{si} \quad k=-2 \\ \langle (1,1,2), (-1,-1,-1), (1,1,1) \rangle = \langle (1,1,2), (1,1,1) \rangle & \text{si} \quad k=1 \end{array} \right.$$

Para que los los subespacios sean iguales, por ejemplo podría ver si se intersectan en todos sus elementos. Voy a buscar la expresión por comprensión de  $\langle (-2,1,6),(3,0,-8)\rangle$ :

$$\begin{pmatrix} -2 & 3 & | & x_1 \\ 1 & 0 & | & x_2 \\ 6 & -8 & | & x_3 \end{pmatrix} F_1 \leftrightarrow F_2 \begin{pmatrix} 1 & 0 & | & x_2 \\ -2 & 3 & | & x_1 \\ 6 & -8 & | & x_3 \end{pmatrix} F_2 + 2F_1 \to F_2 \begin{pmatrix} 1 & 0 & | & x_2 \\ 0 & 3 & | & x_1 + 2x_2 \\ 0 & -8 & | & x_3 - 6x_2 \end{pmatrix}$$

$$\frac{1}{3}F_2 \to F_2 \begin{pmatrix} 1 & 0 & | & x_2 \\ 0 & 1 & | & \frac{1}{3}x_1 + \frac{2}{3}x_2 \\ 0 & -8 & | & x_3 - 6x_2 \end{pmatrix}$$

$$F_3 + 8F_2 \to F_3 \begin{pmatrix} 1 & 0 & | & x_2 \\ 0 & 1 & | & \frac{1}{3}x_1 + \frac{2}{3}x_2 \\ 0 & 0 & | & \frac{1}{3}x_1 + \frac{2}{3}x_2 \\ 0 & 0 & | & \frac{8}{3}x_1 - \frac{2}{3}x_2 + x_3 \end{pmatrix}$$

Dado que ese sistema no puede dar un absurdo, porque el subespacio claramente no es  $\varnothing$  se debe cumplir:

$$\langle (-2,1,6), (3,0,-8) \rangle = \{ x \in \mathbb{R}^3 : 8x_1 - 2x_2 + 3x_3 = 0 \} \star^1$$

Encontrar la intersección ahora es fácil:

Caso con k = -2:

$$(a+b, -2a+b, -4a-2b) \xrightarrow{\text{meto en}} 8(a+b) - 2(-2a+b) + 3(-4a-2b) = 0 \ \forall a \neq b \in \mathbb{K}$$

Los subespacios son iguales con k = -2

Caso con k = 1:

$$(a+b, a+b, 2a+b) \xrightarrow{\text{meto en}} 8(a+b) - 2(a+b) + 3(2a+b) = 0 \Leftrightarrow b = -\frac{4}{3}a$$

Los subespacios tienen intersección pero no son iguales

Concluímos que el único valor de k para el cual los subespacios son iguales es:

$$k = -2$$

(b) ②... hay que hacerlo! 🙃

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IAT $_{E}X \rightarrow$  una  $pull\ request$  al  $\bigcirc$ .

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

**Ejercicio 9.** Sean S y T subespacios de un K-espacio vectorial V. Probar que  $S \cup T$  es un subespacio de V si y solo si  $S \subseteq T$  o  $T \subseteq S$ .

Hay que probar que:

$$S \cup T$$
 es subespacio  $\Leftrightarrow S \subseteq T \vee T \subseteq S$ 

#### CONSULTAR, no me cierra el enunciado

**Ejercicio 10.** Decidir si los siguientes conjuntos son linealmente independientes sobre K. Cuando no lo sean, escribir a uno de ellos como combinación lineal de los otros.

(a) 
$$\{(1,4,-1,3),(2,1,-3,1),(0,2,1,-5)\}\in\mathbb{R}^4$$
, para  $K=\mathbb{R}$ .

(b) 
$$\{(1-i,i), (2,-1+i)\} \in \mathbb{C}^2$$
, para  $K = \mathbb{C}$ .

Acá las definiciones de combinación lineal y coso (\(\leftarrow\) click)

(a)

Los vectores son linealmente independientes.

(b) Ahora los coeficientes  $\alpha$  y  $\beta \in \mathbb{C}$ 

$$\alpha \cdot (1 - i, i) + \beta \cdot (2, -1 + i) = 0$$

$$\begin{pmatrix} 1 - i & 2 \\ i & -1 + i \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\frac{1}{1 - i} \cdot F_1 \to F_1 \quad \begin{pmatrix} 1 & 1 + i & 0 \\ i & -1 + i & 0 \end{pmatrix} \quad F_2 - i \cdot F_1 \to F_2 \quad \begin{pmatrix} 1 & 1 + i & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{cases} \alpha = (1 + i)\beta \end{cases}$$

Y estos bichos no serían linealmente independientes.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

#### Ejercicio 11. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT<sub>E</sub>X→ una pull request al ③.

**Ejercicio 12.** Sean  $v_1, \ldots, v_k \in \mathbb{R}^n$ . Probar que  $\{v_1, \ldots, v_k\}$  es linealmente independiente sobre  $\mathbb{R}$  si y solo si  $\{v_1, \ldots, v_k\}$  es linealmente independiente sobre  $\mathbb{C}$ .

Es un si solo si así que sale doble implicación:

(⇐) Para este lado sale un poco más fácil, por eso arranco por acá.

Sé que por independencia lineal:

$$\sum_{i=1}^{k} z_i \cdot v_i = 0 \quad \text{con } z_i \in \mathbb{C} \quad \text{y} \quad z_i = 0 \text{ para } 1 \le i \le k$$

Quiero probar que:

$$\sum_{i=1}^{k} r_i \cdot v_i = 0 \quad \text{con } r_i \in \mathbb{R} \quad \text{y} \quad r_i = 0 \text{ para } 1 \le i \le k$$

Es inmediato ver que en este caso a pesar de que los coeficientes  $z_i$ , valen todos 0, es decir que particularmente son reales también! Puedo tomar  $r_i = z_i$  y listo, tengo la combinación lineal igualada a cero y todos los coeficientes son reales y nulos.

 $(\Rightarrow)$  Este es un poco más picante, porque no es *obvio* que deba ocurrir ¿O no lo es para mí?: Sé que por independencia lineal:

$$\sum_{i=1}^{k} r_i \cdot v_i = 0 \quad \text{con } r_i \in \mathbb{R} \quad \text{y} \quad r_i = 0 \text{ para } 1 \le i \le k$$

Quiero probar que:

$$\sum_{i=1}^{k} z_i \cdot v_i = 0 \triangleq^1 \quad \text{con } z_i \in \mathbb{C} \quad \text{y} \quad z_i = 0 \text{ para } 1 \leq i \leq k$$

Laburo un poco  $\bigstar^1$ :

$$\sum_{i=1}^{k} z_i \cdot v_i = z_1 \cdot v_1 + \dots + z_k \cdot v_k = 0$$

$$\stackrel{!!}{\underset{z_j = a_j + ib_j}{\longleftarrow}}$$

$$(a_1 + ib_1) \cdot v_1 + \dots + (a_k + ib_k) \cdot v_k = 0$$

$$\stackrel{!!}{\underset{v_j \in \mathbb{R}^n}{\longleftarrow}}$$

$$\underbrace{(a_1 \cdot v_1 + \dots + a_k \cdot v_k)}_{\stackrel{*}{\longrightarrow}} + i\underbrace{(b_1 \cdot v_1 + \dots + b_k \cdot v_k)}_{\stackrel{*}{\longrightarrow}} = 0$$

Tuqui. Las combinetas en  $\star^2$  y  $\star^3$  cumplen nuestra hipótesis, porque los  $a_i$  y los  $b_i \in \mathbb{R}$ , es decir que son ambas nulas.

Nota que puede ser de interés:

Mirá que ese último !! es porque los  $v_i \in \mathbb{R}$ , porque si tuvieses por ejemplo:

$$\{(i,1),(1,-i)\}$$

Esos  $v_j \in \text{si laburás con } K = \mathbb{R} \text{ son MEGA linealmente independientes, peecero si } K = \mathbb{C}$ :

$$i \cdot (i,1) + 1 \cdot (1,-i) = 0$$

todo lo contrario. Solo se llega a las expresiones  $\star^2$  y  $\star^3$  gracias a que  $v_i \in \mathbb{R}^n$ .

Fin de Nota que puede ser de interés:

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:

8 naD GarRaz •

#### Ejercicio 13. Sean $m, n y r \in \mathbb{N}$ .

- (a) Probar que si  $A \in K^{m \times n}$  satisface que  $Ax = 0 \ \forall x \in K^n$ , entonces A = 0. Deducir que si  $A, B \in K^{m \times n}$  satisface que  $Ax = Bx \ \forall x \in K^n$ , entonces A = B.
- (b) Probar que si  $A \in K^{m \times n}$ ,  $B \in K^{n \times r}$  con  $B = (b_{ij})$  y, para  $1 \le j \le r$ ,  $B_j = \begin{pmatrix} b_{ij} \\ \vdots \\ b_{nj} \end{pmatrix}$  es la columna j-ésima de B, entonces  $AB = (AB_1 | \cdots | AB_r)$  (es decir,  $AB_j$  es la columna j-ésima de AB).
- (a) Tengo  $A \in K^{n \times n}$  entonces Ax:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \cdot \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \dots + x_n \cdot \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = 0$$

Probando particularmente con la base canónica de  $K^n$   $x \in K^n$  con  $x \in B$ , donde

$$B = \{(1, 0, \dots, 0); (0, 1, \dots, 0); \dots; (0, \dots, 1)\}$$

muestro así que las columnas de A son siempre nulas.

(b) Usando lo que hice en el anterior:

$$Ax = Bx \iff (A - B)x = 0 \iff Cx = 0$$

Dado que  $Cx = 0 \ \forall x \in K^n$  se muestra que A = B.

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:
8 naD GarRaz •

- Hab Callad ()

#### Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ 

**Ejercicio 15.** Dadas las bases de  $\mathbb{R}^3$ ,  $B = \{(1,1,0); (0,1,1); (1,0,1)\}$  y  $B' = \{(-1,1,1); (2,0,1); (1,-1,3)\}$ 

- (a) Calcular  $[(1,1,0)]_B$  y  $[(1,1,0)]'_B$ .
- (b) Calcular la matiz de cambio de base C(B, B').
- (c) Comprobar que  $C(B, B')[(1, 1, 0)]_B = [(1, 1, 0)]_{B'}$ .
- (a) Para calcular las coordenadas en una base B:

$$(1,1,0) = a(1,1,0) + b(0,1,1) + c(1,0,1) \iff \begin{cases} a = 1 \\ b = 0 \\ c = 0 \end{cases} \implies [(1,1,0)]_B = (1,0,0)$$

En la base B' voy a tener que hacer más cuentas:

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np

# Matriz del ejercicio
A = np.array([[-1,2,1],[1,0,-1],[1,1,3]])
b = [1, 1, 0]

# Resuelvo el sistema A x = b, y lo devuelvo en
# las variables con los nombres adecuados
a, b, c = np.linalg.solve(A, b)

print(f"a = {a}\nb = {b}\nc = {c}")
```

(b) Quiero la matriz que tiene por columnas a las coordenas de los generadores de B en la base B':

$$C(B,B') = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \xrightarrow{\text{donde}} \begin{cases} (1,1,0) &= a_1(-1,1,1) + b_1(2,0,1) + c_1(1,-1,3) \\ (0,1,1) &= a_2(-1,1,1) + b_2(2,0,1) + c_2(1,-1,3) \\ (1,0,1) &= a_3(-1,1,1) + b_3(2,0,1) + c_3(1,-1,3) \end{cases}$$

$$\begin{pmatrix} -1 & 2 & 1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 1 & 1 & 0 \\ 1 & 1 & 3 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{\bullet} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & \frac{7}{8} & \frac{1}{8} \\ 0 & 1 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix} \Leftrightarrow \begin{cases} (a_1,b_1,c_1) &= (\frac{1}{2},1,-\frac{1}{2}) \\ (a_2,b_2,c_2) &= (\frac{7}{8},\frac{1}{2},-\frac{1}{8}) \\ (a_3,b_3,c_3) &= (\frac{1}{8},\frac{1}{2},\frac{1}{8}) \end{cases}$$

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np

# Matriz del ejercicio
A = np.array([[-1,2,1],[1,0,-1],[1,1,3]])
b = [1, 1, 0]

a1, b1, c1 = np.linalg.solve(A, b)
print(f"a1 = {a1}\nb1 = {b1}\nc1 = {c1}\n")

b = [0, 1, 1]
a2, b2, c2 = np.linalg.solve(A, b)
print(f"a2 = {a2}\nb2 = {b2}\nc2 = {c2}\n")

b = [1, 0, 1]
a3, b3, c3 = np.linalg.solve(A, b)
print(f"a3 = {a3}\nb3 = {b3}\nc3 = {c3}\n")
```

Finalmente la matriz C(B, B'):

$$C(B, B') = \begin{pmatrix} \frac{1}{2} & \frac{7}{8} & \frac{1}{8} \\ 1 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

(c) Lo que hay que hacer es:

$$C(B, B') \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}$$

Tuqui. Da eso.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

**Ejercicio 16.** Sean  $A, A' \in K^{m \times n}; B \in K^{n \times r}; D, D' \in K^{n \times n}; \alpha \in K$ . Probar:

(a) 
$$(A + A')^t = A^t + (A')^t$$

(e) 
$$tr(D + D') = tr(D) + tr(D')$$

(b) 
$$(\alpha A)^t = \alpha A^t$$

(f) 
$$tr(\alpha D) = \alpha tr(D)$$

(c) 
$$(AB)^t = B^t A^t$$

$$(1) \ iii (\alpha D) = \alpha iii (D)$$

(d)  $AA^t$  v  $A^tA$  son matrices simétricas.

(g) 
$$tr(DD') = tr(D'D)$$

Voy a usar operaciones de matrices (← click):

(a) Si tengo una suma de matrices A + A' para cada elemento será:

$$(A+A')_{ij} = (a+a')_{ij} \xleftarrow{\operatorname{transpongo}} (a+a')_{ji} \overset{\operatorname{def}}{\underset{+}{=}} a_{ji} + a'_{ji} \overset{\operatorname{def}}{\underset{-}{=}} (A^t + (A')^t)_{ij} \quad \text{para cada } 1 \leq i \leq m, 1 \leq j \leq n$$

(b) Tengo ahora un producto de un escalar por una matriz:

$$(\alpha \cdot A)_{ij} \stackrel{\text{def}}{=} \alpha a_{ij} \stackrel{\text{transpongo}}{\rightleftharpoons} \alpha a_{ji} \stackrel{\text{def}}{=} (\alpha A)_{ji} = \alpha A^t$$
 para cada  $1 \le i \le m, 1 \le j \le n$ 

(c) Tengo ahora un producto matricial AB:

$$(AB)_{ij} \stackrel{\text{def}}{=} \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + \dots + a_{in} b_{nj} \bigstar^{1}$$
 para cada  $1 \le i \le m, 1 \le j \le r$ 

Por otro lado, y te voy pidiendo perdón por esos índices:

$$(B^t)_{fg} \stackrel{\text{def}}{=} b_{gf} \quad \text{y} \quad (A^t)_{g'h} \stackrel{\text{def}}{=} a_{hg'} \quad \text{donde} \begin{cases} 1 \leq g, \ g' \leq n \\ 1 \leq f \leq r \\ 1 \leq h \leq m \end{cases}$$
$$(B^t A^t)_{fh} \stackrel{\text{def}}{=} \sum_{k=1}^n b_{fk} a_{kh} = b_{f1} a_{1h} + \dots + b_{fn} a_{nh} \quad \text{para cada } 1 \leq f \leq r, 1 \leq h \leq m$$

Ese último resultado con f = j y h = i queda:

$$(B^t A^t)_{ji} \stackrel{\text{def}}{=} \sum_{k=1}^n b_{jk} a_{ki} = \underbrace{b_{j1} a_{1i} + \dots + b_{jn} a_{ni}}_{=} = (AB)_{ij} \stackrel{!}{=} ((AB)_{ji})^t$$

Y como los índices son mudos  $\Theta$ :

$$(AB)^t = B^t A^t$$

 $\mathcal{E}$ Puede ser que haya dado mil vueltas más de las necesarias? Sí  $\Theta$ . ¡Bienvenida será tu resolución más elegante!

(d) ... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX  $\rightarrow$  una pull request al  $\bigcirc$ .

(e) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en LATEX→ una pull request al ③.

(f) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 3, o mejor aún si querés subirlo en IATEX→ una pull request al \$\infty\$.

(g) ... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ .

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

#### Ejercicio 17. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IAT $_{ ext{EX}} \rightarrow$  una pull request al  $\bigcirc$ 

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram o, o mejor aún si querés subirlo en IAT<sub>F</sub>Xo una pull request al o

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX  $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en IATEX $\rightarrow$  una pull request al  $\bigcirc$ .

Ejercicio 21. O... hay que hacerlo! 😚

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IAT<sub>E</sub>X→ una pull request al ③.



**♦1. ⊚**... hay que hacerlo! **⊕** 

Si querés mandá la solución  $\rightarrow$  al grupo de Telegram  $\bigcirc$ , o mejor aún si querés subirlo en  $\LaTeX$  una pull request al  $\bigcirc$ .