Digital Communications Transmission over bandlimited channels

Dott.ssa Ernestina Cianca a.a. 2020-2021

DIGITAL COMMUNICATION SYSTEM Topics to be covered

- Bandlimited channels and Intersymbol Interference
- Signal design for bandilimited channels

DIGITAL COMMUNICATION SYSTEM Transmission over a bandlimited channel

 Modeled as a linear filter with frequency response limited to certain frequency range

Transmission over a bandlimited channel

- ☐ The filtering effect of the bandlimitedchannel will cause a **spreading** of individual data symbols passing through
- □ For consecutive symbols, this spreading causes part of the symbol energy to overlap with neighbouring symbols, causing intersymbol interference (ISI)

Baseband Pulse Transmission

Intersymbol Interference

Example: wireless channel

Multipath phenomena

Due to multipath, if one pulse is transmitted, the received signal is a train of pulses which corresponds to the direct component (if present) and the replicas of the pulse reflected by single scatterers or by cluster of scatterers.

Note: cluster of scatterers are reflectors that produce replicas of the signal with delays that are similar and hence, they are not resolvible.

The two multipath components with $\tau 1$ and $\tau 2$ are resolvable if the difference between the delays is significantly higher than the inverse of the RX bandwidth.

Not resolvable components sum incoerently and give rise to multipath fading.

Baseband Pulse Transmission

Intersymbol Interference

Example: wireless channel

Multipath phenomena

Time variant impulse response of a multipath wireless channel

Transmission over a bandlimited channel

Transmission over a bandlimited channel

Pulse shape at the receiver filter output

$$p(t) = h_T(t) * h_c(t) * h_R(t)$$

Overall frequency response

$$P(f) = H_T(f)H_C(f)H_R(f)$$

Receiving filter output

$$v(t) = \sum_{k=-\infty}^{\infty} A_k p(t - kT) + n_o(t)$$

$$n_o(t) = n(t) * h_R(t)$$

• Sample the rx filter output v(t)at $t_m = mT$ (to detect A_m)

$$v(t_m) = \sum_{k=-\infty}^{\infty} A_k p(mT - kT) + n_o(t_m)$$

$$= A_m p(0) + \sum_{k\neq m}^{\infty} A_k p[(m-k)T] + n_o(t_m)$$
Gaussian noise intersymbol interference (ISI)

DIGITAL COMUNICATION SYSTEM ISI EYE DIAGRAM

Figure 9.5 Eye patterns. (a) Examples of eye patterns for binary and quaternary PAM and (b) the effect of ISI on eye opening.

DIGITAL COMUNICATION SYSTEM ISI Minimization

Nyquist problem (condition for a digital transmission without ISI)

Let us assume that there is no noise

$$v_m = v(mT) = \sum_i A_i p(mT - iT) + n(mT)$$

$$p(t) = h_T(t) * h_c(t) * h_R(t)$$

$$v_m = A_m p(0) + \sum_{i \neq m} A_i p((m-i)T)$$
 ISI

To have $v_m = A_m$

$$p(nT) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$
 Echos made to be zero at sampling points

Baseband Pulse Transmission

Nyquist Condition for Zero ISI

A necessary and sufficient condition for p(t) to satisfy:

$$p(nT) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Is that the Fourier Transform of p(t) must satisfy:

$$\sum_{k=-\infty}^{\infty} P \Big(f + \frac{k}{T} \Big) = \text{constant}$$

Proof in the following

Baseband Pulse Transmission

Nyquist Condition for Zero ISI

$$p(t) = \int P(f)e^{j2\pi ft}df \qquad \qquad p(nT) = \int P(f)e^{j2\pi fnT}df$$

$$p(nT) = \sum_{m=-\infty}^{\infty} \int_{(2m-1)/2T}^{(2m+1)/2T} P(f)e^{j2\pi nT}df =$$

$$= \sum_{m=-\infty}^{\infty} \int_{-1/2T}^{1/2T} P(v + \frac{m}{T})e^{j2\pi nT}df \qquad \text{Change of variable }$$

$$= \int_{-1/2T}^{1/2T} \left[\sum_{m=-\infty}^{\infty} P(v + \frac{m}{T}) \right]e^{j2\pi nT}dv$$

$$= \int_{-1/2T}^{1/2T} Z(v)e^{j2\pi nT}dv$$

Baseband Pulse Transmission

Nyquist Condition for Zero ISI

$$Z(f) = \sum_{m=-\infty}^{\infty} P(f + \frac{m}{T})$$

Which is periodic with period 1/T so it can be expanded in terms of its Fourier series coefficients as

$$Z(f) = \sum_{n=-\infty}^{\infty} z_n e^{j2\pi nfT}$$

$$z_n = T \int_{-1/2T}^{1/2T} Z(f) e^{-j2\pi nfT} df$$

$$z_n = Tp(-nT)$$

$$z_n = \begin{cases} T & \text{if } n = 0 \\ 0 & \text{if } n \neq 0 \end{cases}$$

Baseband Pulse Transmission

Nyquist problem: IDEAL SOLUTION

Nyquist's first method for eliminating ISI is to use

$$B_0 = \frac{1}{2T} = \frac{R_s}{2} = \text{Nyquist bandwdith},$$

The minimum transmission bandwidth for zero ISI. A channel with bandwidth B_0 can support a max. transmission rate of $2B_0$ symbols/sec

Baseband Pulse Transmission

Nyquist problem: IDEAL SOLUTION

- Challenges of designing such p(t)or P(f)
 - P(f) is physically unrealizable due to the abrupt transitions at $\pm \mathsf{B}_0$
 - p(t) decays slowly for large t, resulting in little margin of error in sampling times in the receiver.
 - This demands accurate sample point timing a major challenge in modem / data receiver design.
 - Inaccuracy in symbol timing is referred to as timing jitter.

DIGITAL COMUNICATION SYSTEM Baseband Pulse Transmission

Nyquist problem: PRACTICAL SOLUTIONS RAISED COSINE SPECTRUM

 P(f) is made up of 3 parts: passband, stopband, and transition band. The transition band is shaped like a cosine wave.

$$P(f) = \begin{cases} 1 & 0 \le |f| < f_1 \\ \frac{1}{2} \left\{ 1 + \cos \left[\frac{\pi(|f| - f_1)}{2B_0 - 2f_1} \right] \right\} & f_1 \le |f| < 2B_0 - f_1 \\ 0 & |f| \ge 2B_0 - f_1 \end{cases}$$

Baseband Pulse Transmission

Nyquist problem: PRACTICAL SOLUTIONS RAISED COSINE SPECTRUM

Roll-off factor

$$\alpha = 1 - \frac{f_1}{B_0}$$

- The sharpness of the filter is controlled by lpha .
- Required bandwidth $B = B_0(1 + \alpha)$

DIGITAL COMUNICATION SYSTEM Baseband Pulse Transmission

Nyquist problem: PRACTICAL SOLUTIONS RAISED COSINE SPECTRUM

- Benefits of small a
 - Higher bandwidth efficiency
- Benefits of large a
 - simpler filter with fewer stages hence easier to implement
 - less sensitive to symbol timing accuracy

