LARSON—MATH 511—CLASSROOM WORKSHEET 21 Gram-Schmidt and Random Matrix Multiplication Experiments

Sage/CoCalc

- 1. (a) Start the Chrome browser.
 - (b) Go to http://cocalc.com
 - (c) Login (likely using your VCU email address).
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then "Sage Worksheet", then call it c21.
- 2. Open your CoCalc project Handouts folder, click on "random_matrix_multiplication.sage". We'll need code from this file. We will run the code here step-by-step in your c21 worksheet.

(Original) Gram-Schmidt

Idea: Given linearly independent vectors \hat{a}_1 , \hat{a}_2 ,..., \hat{a}_n , let $\hat{q}_1 = \frac{1}{\|\hat{a}_1\|}\hat{a}_1$, and at each step i (i = 2, ... i = n):

- Let \hat{a}'_i be \hat{a}_i minus the projection of \hat{a}_i on each of the previously found $\hat{q}_1, \ldots, \hat{q}_{i-1}$.
- Let $\hat{q}_i = \frac{1}{||\hat{a}_i'||} \hat{a}_i'$.

We'll see that this mathematically correct idea can produce incorrect results. How can we test if the produced "orthogonal" matrix Q is indeed orthogonal? What other tests or measurements can we think up?

Improved Gram-Schmidt

Idea: Given linearly independent vectors $\hat{a}_1, \hat{a}_2, \dots, \hat{a}_n$, let $\hat{q}_j = \frac{1}{\|\hat{a}_j\|} \hat{a}_j$, where $\|\hat{a}_i\|$ is a maximum, and at each step i (i = 2, ... i = n):

- For remaining (not-yet-processed) \hat{a}_i 's, let new \hat{a}_i be current \hat{a}_i minus the projection of \hat{a}_i on \hat{q}_{i-1} .
- Find the largest-norm remaining \hat{a}_i .
- Let $\hat{q}_i = \frac{1}{||\hat{a}_i'||} \hat{a}_i'$.

We'll see that this mathematically correct idea will produce better results than the original. How can we test if the produced "orthogonal" matrix Q is indeed orthogonal? What other tests or measurements can we think up?

Randomized Matrix Multiplication

Idea: To get a matrix that approximates the product AB, we can take a selection of s columns of A, dot them with the corresponding column of B and add them up.

We'll take a weighted selection, favoring index choices where the products of the A-column and corresponding B-row are largest.

Strang proved that with **any** probability distribution, a selected of s columns of A will produce a matrix whose *expected value* is the correct product AB.

He also proved that, if you take the probability distribution created by assigning products of vector-lengths to the possible selections, you will produce a matrix where the *variance* is minimized.

Outer-Product Expansion

Why is it true that, for an $m \times n$ matrix A with columns $\hat{a}_1, \ldots, \hat{a}_n$, and $n \times t$ matrix B, with rows $\hat{b}_1^T, \ldots, \hat{b}_n^T$, that:

$$AB = \hat{a}_1 \hat{b}_1^T + \hat{a}_2 \hat{b}_2^T + \ldots + \hat{a}_n \hat{b}_n^T.$$

Confirm with an example and *explain*.

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If CoCalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- 2. Send me an email with an informative header like "Math 511—c21 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!