

Problem Statement

 Given 11 frames of videos, where simple 3D shapes interact with each other according to basic physics principles, predict semantic segmentation of 22nd frame.

Our Approach

- Divided into two separate problems: Next Frame Prediction and Semantic Segmentation Prediction.
- Next Frame Prediction:
 - Started with Simvp, scope of improvisations were less.
 - o Trained a diffusion based model to predict 22nd frame.
- **Semantic Segmentation:** U-Net

Next Frame Prediction via Conditional Diffusion

Conditioning a Diffusion Process

Forward Diffusion Process:

Reverse Diffusion Process:

Loss functional for Network optimization:

$$0 \quad L(\theta) = \mathbb{E}_{t, \mathbf{x}_0 \sim p_{\text{data}}, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \mid t) \right\|_2^2 \right]$$

 But how to condition on past frames to generate current frames?

$$L_{\mathrm{vidpred}}(\theta) = \mathbb{E}_{t, [\mathbf{p}, \mathbf{x}_0] \sim p_{\mathrm{data}}, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \Big[\big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \mid \mathbf{p}, t) \big\|^2 \Big]$$

Network Architecture

Inspired from MCVD - Voleti et.al [NeurIPS - 2022]

Next Frame Prediction via Conditional Diffusion

Experiments and Results

#	Conditional frames	Future frames	Validation Jaccard Score (22 nd frame)	Observations
11v1(baseline)	11 given input frames	22 nd frame	19.8	Loss and Jaccard score stagnated after 30 epochs on unlabeled data
11v1-AR	Sliding window of 11 frames	Next frame of the window (22 nd frame predicted auto regressively)	30.89	 Training data augmented by factor of 10x due to sliding window Inference time increased by 11x due to autoregressive prediction of 22nd frame. Model started overfitting after 40 epochs on unlabeled data, with MSE of 0.004 between target and predicted frame. 1000 subsampling steps gave best results
5V6	Alternate 5 frames(2, 4, 6, 8, 10)	Alternate 6 frames (12, 14, 16, 18, 20, 22)	13.6	Neither noise loss converged nor MSE between target and predicted frames.

U-Net for Segmentation of Predicted Frame

U-Net Architecture

- 4 Encoder Layers containing convolutions followed by max-pooling for downsampling
- 1 Bottleneck Layer
- 4 Decoder Layers containing upconvolutions for upsampling
- Skip Connections, each encoder layer is connected to its corresponding decoder layer

Epochs	Validation Jaccard	
15	0.966	
30	0.969	

Unet Diagram

Future work and improvements

- Using conditional diffusion to predict semantic segmentation frame, instead of raw video frames.
- Make sub-sampling process of diffusion process efficient.
- Train better Semantic segmentation model.

