

Power Bl

Objetivos

- Obter dados externos de diversas fontes;
- Tratar os dados;
- Modelar Dados;
- Utilizar DAX;
- Construir relatórios de análise;
- Publicar.

Programas

- Conceitos de Business Intelligence (BI)
- Ambiente e conhecimento do Software e interface.
- Usar o Power BI com as melhores Práticas de BI
- Conceitos sobre visualização de dados
- Fontes e origem dos dados
- Obter e transformar dados
- Modelação de dados
- Linguagem DAX
- Tipos de visualizações e personalizações possíveis
- Criação de Dashboards interativos
- Publicação, partilha e visualização de Dashboards

Power BI

É um conjunto de ferramentas de análise de negócios para analisar dados e partilhar ideias. Permite monitorizar o negócio e obter respostas rapidamente com painéis avançados disponíveis em cada dispositivo.

– tem a capacidade de criar análises rápidas com base numa Folha do Excel ou numa base de dados local

As partes do Power BI

Power BI Desktop

Power BI Mobile

Serviço do Power BI

- ■Power BI Service:
 - Serviço suporte a:
 - ■Colaboração
 - ■Partilha
 - ■Distribuição corporativa
 - Criação de painéis (Dashboards)
 - •Funcionalidades adicionais, como, alertas.

O fluxo de trabalho no Power BI

- Um fluxo de trabalho comum no Power BI começa no **Power BI Desktop**, em que um relatório é criado.
- Esse relatório é publicado no **serviço** do Power BI, e depois é partilhado, para que os utilizadores dos aplicativos do **Power BI Mobile** possam ver as informações.

Passos:

- 1. Inserir dados no Power BI Desktop e criar um relatório.
- 2. Publicar no serviço do Power BI, no qual cria novas visualizações ou dashboards
- 3. Partilhar os dashboards com outros colaboradores.
- Mostrar e interagir com relatórios e dashboards partilhados nos aplicativos Power BI para Telemóveis.

BUSINESS INTELLIGENCE

- Ferramentas de Apoio à Decisão, visa a gestão de performance e oportunidades de negócios.
- Consiste num conjunto de processos e metodologias, implementadas por meio de ferramentas de software, para obter informação e conhecimento útil para a tomada de decisão.

On Line serviço, consumo self

service como serviço

App para Telemóvel

Consumo de

Desenvolvimento, transformações, modelagem de dados e publicação para o serviço

Porta que instala no servidor e que atualiza os relatórios

Licenças Power Bl

Gratuito – Power BI gratuito

Conta PRO

- Power BI pro \$9,90/ mês por utilizador
- Permite a partilha entre utilizadores
- 8 Atualizações diárias
- Partilha do desktop para a nuvem através de um gateway
- DataCenter da Microsoft
- As bases de dados não devem ter mais de 10 GB

Conta Premium PerUser \$20 – Modelo dados 100 GB

Conta Premium por capacidade \$4 995

- Tem um hardware/servidor dedicado a essa conta/Empresa
- Capacidade privada dos relatórios
- 48 atualizações diárias
- As bases de dados não devem ter mais de 50 GB até 400 GB (Modelo de dados)
- Armazenamento máximo 100TB

<u>Comparação de Preços e</u> <u>Produtos | Microsoft Power BI</u>

Planos

Funcionalidade ³	Power BI Pro	Power BI Premium Por utilizador	Power BI Premium Por capacidade
Colaboração e análise			
Acesso às aplicações móveis	•	•	•
Publicação de relatórios para partilhar e colaborar	•	•	
Relatórios paginados (RDL)		•	•
Consumo de conteúdos sem uma licença por utilizador			•
Relatórios on-premises com o Power BI Report Server			•

Produtos Versões

- Desktop Desenvolvimento, transformações, modelagem de dados e publicação para o Serviço.
- Online (serviço) Consumir como Cliente Self Service, criar dashboards e partilhar
- Para telemóveis (App) Consumo de dashboards, relatórios em telemóveis
- Embedded (incorporado) colocar num web site da empresa Consumo de relatórios em páginas externas
- Servidor de Relatório armazenamento de dados e processamento on premises.

Projeto BI

Editor de Consultas (ETL- <u>Extract Transform e Load</u>)

Obter, Transformar e Carregar dados

Modelo de Dados

- Tabelas
- Tipo de dados
- Relacionamentos
- Hierarquias

Cálculos / Métricas - DAX

Visualização (Relatório)

Publicar Relatórios

Obter dados

Fonte: Microsoft

ETL - EXTRACT TRANSFORM LOAD

Tipos de Ligação / conexão

Identificar as fontes

- Local onde se encontra (obter dados)
- Credenciais (Acessos)
- Existem conectores especializados em dados de ficheiros web, Base de dados, serviços online.
- Se não possuir um conector específico use o OBDC (Open Database Conectivity)

Adicionar dados ao seu relatório

Uma vez carregados, os seus dados aparecerão no painel Campos.

Obter dados de outra origem →

Editor do PowerQuery

- Permite criar consultas bases de dados provenientes de Access, Excel, .txt, SQL, e outros.
 - Fontes de importação.
 - Pequenos arranjos a fontes não conformes:
 - Remoção de linhas ou colunas.
 - Tratamento de segmentos de texto.
 - Remoção automática de duplicados.
 - Preenchimento automático de células em branco.
 - Criação de colunas calculadas e colunas condicionais.
 - Passagem de dados para o Excel ou para o Modelo de Dados.

Janela Power Query

- 1. Friso do Editor de Consultas.
- 2. O painel Navegador
- 3. O Menu de contexto
- 4. Grelha de pré-visualização
- 5. Painel de definições da consulta, que inclui a cada passo da consulta.

MODELO

- Modelagem de dados :
 - Verificar os formatos dos dados
 - Definir Relacionamento entre tabelas
 - Criar colunas calculadas e medidas
 - Utiliza Linguagem DAX

RELATÓRIO

- Inserir os visuais
 - Formatar os visuais

DADOS (POWER QUERY)

Verificar os dados e as várias fontes

- Ligar às fontes de dados
- Transformar, acrescentar, intercalar, formatar, transformar texto e datas
- Utiliza Linguagem M
- Criar colunas personalizadas / condicionais

Relatórios

- Um relatório do Power BI é uma ou mais páginas de visualizações (gráficos como gráficos de linhas, gráficos circulares, treemaps, entre outros). As visualizações chamam-se também *visuais*.
- Os relatórios podem ser criados do zero no Power BI, podem ser importados com dashboards que os seus colegas partilham consigo ou podem ser criados quando se liga a conjuntos de dados do Excel, do Power BI Desktop, das bases de dados, das aplicações SaaS e das aplicações.
- E quando se liga a uma aplicação SaaS, o Power BI importa um relatório previamente criado.

Visualização de dados

- O Power BI possui recursos de formatação para incrementar nos seus relatórios descrevendo-os melhor com títulos, formas e imagens.
- Os títulos podem ser formatados com tipos de letra, tamanhos e cores diferentes.
- É muito comum inserir o logotipo da empresa num relatório, dê sempre preferência por imagens de boa qualidade e com fundo transparente (na extensão. png)

Segmentação de dados

- O Visual data aplica-se sobre o ano por exemplo.
- A segmentação de dados é um recurso de visualização para filtrar outros visuais de acordo com colunas específicas.
- Existem diversas configurações conforme o tipo da coluna inserida, como listagem de valores, entre dois números, a partir de uma data específica e até mesmo datas relativas.
- Também pode ser utilizado de várias formas, como listagem, horizontalmente como botões ou com um slider.

Filtros de Visual

Filtros da página e Relatório

- Página todos os visuais presentes na página serão filtrados
- Relatório - filtra todas as páginas que tem o nosso ficheiro
- Visual
 - Todos os outros filtros ficam a funcionar

A reter...

- Além dos segmentadores de dados, é possível determinar filtros estáticos em visuais, páginas e relatórios.
- Esses filtros não são tão acessíveis para quem consome dados, portanto, utilize-os quando for necessário mostrar apenas uma parte dos dados.

 O Filtro de visual, filtra apenas o visual selecionado. O filtro de página, filtrará todos os visuais da pagina atual. O filtro de relatório, filtrará todas as páginas e visuais.

Uso de mapas

- Georeferenciação
- Além de gráficos, é possível aplicar medidas e colunas para analisar a sua distribuição em visuais de mapas.
- Eles podem ser configurados por categoria, em bolhas, ressaltando com cores mais saturadas as áreas com maior valor.
- É possível ir ao detalhamento de país, estado, cidade e até mesmo a rua de realização do dado da média.

Circular e treemap

- •Os gráficos circulares, rosca e Treemap são indicados para mostrar a representatividade de categorias de valores.
- •Não utilize mais de 6 categorias num gráfico desse tipo, já que a leitura poderá ficar prejudicada.
- •Gráficos circulares devem seu usados cuidado, já que não mostram a representação dos dados da forma mais comparativa possível. Caso precise comparar valores, prefira o gráfico de colunas.

Gráficos de colunas e linhas

- Existem 3 formas de mostrar valores em barras, colunas e linhas.
 - Colunas, empilhadas, 100% empilhados
 - 100% Empilhado mostram composição entre 2 séries
- Gráficos de barras e colunas são ideais para mostrar comparações entre categorias.
- Composição empilhados
- Comparação colunas
- Gráfico colunas agrupadas e linhas
- Para mostrar apenas a representatividade entre séries, utilize o gráfico de 100% empilhadas, para mostrar os valores e compará-los, utilize o visual agrupados.

Tabelas e matrizes

Tabelas e matrizes são indicadas para mostrar valores de medidas e dimensões.

Matriz – combina linhas e colunas. São parecidas com as tabelas dinâmicas no Excel.

Tabelas – posicionam todos os campos em "colunas" no visual comparando-o linha a linha

Interação entre visuais

Quando clica num dos filtros ou num elemento ele filtra.

Pode alterar essa situação Formato /Editar alterações

- Filtrar//realce/alterações
- •Os visuais, por padrão, filtram outros visuais conforme o campo seleciona.
- •Existem 2 tipos de iteração: filtro e realce.
- •O Filtro mostrará apenas a seleção realizada.
- •O realce continuará mostrando o total do visual e só realçará o campo selecionado.
- •É possível determinar que visuais não tenham interação uns com os outros selecionando "Nenhum" na interação.

DRILL DOWN, DRILL UP E EXPANDIR

- Os visuais podem possuir diversos níveis de dados inserindo mais de um campo em seu eixo ou linha.
- Drill Down é uma ação de detalhar uma visual atual num nível maior.
- Drill Up é a ação de voltar a um nível menor de detalhe
- Expandir é mostrar tanto o nível menos granulado dos dados, quanto o mais granulado (detalhado) juntos.

Ordenar colunas

- As colunas são ordenadas normalmente no Power BI de acordo com o seu tipo de dados.
- É possível ordenar colunas por outras para utilizar uma ordem diferente, por exemplo, com índices ou números estabelecidos.
- Uma das classificações mais utilizadas é o nome do mês por extenso a partir da coluna do mês em número.

Exemplo prático 1

- 1. Clique em experimente um conjunto de dados novo. (Try a sample dataset)
- 2. Carregar dados de Exemplo (Load sample Dats)
- 3. Selecione table financials.
- 4. Fechar e aplicar. (Load)
- 5. Atribua o nome ao separador Medidas Implícitas.
- 6. Crie os seguintes visuais:

Temas no Power Bl

- Esquemas de cores específicas
- Importar temas .json
- Galeria de temas: https://community.powerbi.com/t5/Themes-Gallery/bd-p/ThemesGallery

Especificação sobre temas: https://docs.microsoft.com/pt-br/power-bi/desktop-report-themes

Medidas Vs Colunas

Semelhança entre colunas e medidas:

- Cálculos que pode adicionar ao modelo de dados.
- Definidas através de uma fórmula DAX.
- Mencionadas em fórmulas DAX ao colocar os respetivos nomes entre parênteses retos.

As colunas calculadas diferem das medidas

Finalidade:

- as colunas calculadas expandem uma tabela com uma nova coluna,
- as medidas definem como resumir os dados do modelo.

Avaliação:

- as colunas calculadas são avaliadas através do contexto de linha no momento da atualização de dados,
- as medidas são avaliadas através do contexto de filtro no momento da consulta. O contexto do filtro é introduzido num módulo posterior; é um tema importante para entender e dominar para que possa obter resumos complexos.

Armazenamento:

- as colunas calculadas (em tabelas do modo de armazenamento Importar) armazenam um valor para cada linha na tabela.
- Uma medida, por seu lado, nunca armazena valores no modelo.

Utilização visual:

- as colunas calculadas (tal como qualquer coluna) podem ser utilizadas para filtrar, agrupar ou resumir (como uma medida implícita),
- as medidas são concebidas para resumir.

DAX (Data Analysis Expressions)

- É uma linguagem de expressão de fórmulas utilizada no Analysis Services, no Power BI e no Power Pivot no Excel.
- As fórmulas DAX incluem funções, operadores e valores para realizar cálculos e consultas avançados em dados em tabelas e colunas relacionadas, em modelos de dados tabulares.

Cálculos

 As fórmulas DAX são utilizadas em medidas, colunas calculadas, tabelas calculadas e segurança ao nível da linha.

Medidas

- As medidas são fórmulas de cálculo dinâmicas nas quais os resultados mudam dependendo do contexto.
- As medidas são utilizadas em relatórios que suportam a combinação e filtragem de dados de modelo com recurso a múltiplos atributos, tais como a um relatório do Power BI ou a uma tabela dinâmica ou a um gráfico dinâmico do Excel.
- As medidas são criadas com recurso à barra de fórmulas DAX no Model Designer.

Medidas Simples - Agregação

•As agregações são uma forma resumir ou agrupar dados.

Função	Sintaxe			
SUM	NomeMedida=SUM(Tabela[Column])	Vendas=SUM(financials[Sales])		
AVERAGE	NomeMedida=AVERAGE(Tabela[Column])	Média Vendas = AVERAGE(financials[Sales])		
MAX	NomeMedida=MAX(Tabela[Column])	Máximo Vendas = MAX(financials[Sales])		
MIN	NomeMedida=MIN(Tabela[Column])	Mínimo Vendas = Min(financials[Sales])		
COUNT	NomeMedida=COUNT(Tabela[Column])	nº Vendas = COUNT(financials[Sales])		
COUNTROWS	NomeMedida=COUNTROWS (Tabela)	nº linhas tabelas = COUNTROWS(financials)		
DISTINCTCOUNT	NomeMedida=DISTINCTCOUNT (Tabela[Column])	nº produtos distintos = DISTINCTCOUNT(financials[Product])		

Exemplo prático 2

- Clique com o botão direito do rato no nome da página e duplique.
- Substitua os visuais pelas medidas explicítas.

Exemplo prático 2 (cont.)

Numa nova página insira uma tabela:

Amarilla Carretera Montana	19.611.694,38 2.643.607,50 3.203.708,13	- 614.545,63 -95.152,50 -222,711,88	-3,13% -3,60%	527.437,50	196,116,94	38.362,50	100
Carretera	3.203.708,13	•	-3.60%			30.302,30	100
		-222 711 99	3,00,0	527.437,50	220.300,63	65.137,50	12
Montana	0.644040.75	222.111,00	-6,95%	514.524,38	213.580,54	40.837,50	15
11101110	2.614.843,75	-31.096,25	-1,19%	430.706,25	217.903,65	43.125,00	12
Paseo	5.267.860,00	-81.740,00	-1,55%	408.386,25	202.610,00	81.095,00	26
Velo	3.581.237,50	-84.762,50	-2,37%	352.625,00	170.535,12	43.125,00	21
VTT	2.300.437,50	-99.082,50	-4,31%	334.302,50	164.316,96	38.362,50	14
☐ Government	52.504.260,67	11.388.173,17	21,69%	1.159.200,00	175.014,20	1.655,08	300
Amarilla	9.942.899,11	2.208.301,61	22,21%	1.017.338,00	236.735,69	7.247,10	42
Carretera	6.080.944,08	1.398.994,08	23,01%	978.236,00	168.915,11	1.685,60	36
Montana	5.548.936,02	1.126.201,02	20,30%	728.595,00	132.117,52	1.763,86	42
Paseo	14.882.230,70	3.057.290,70	20,54%	1.159.200,00	169.116,26	1.655,08	88
Velo	7.813.422,05	1.756.732,05	22,48%	1.017.338,00	169.857,00	2.508,66	46
VTT	8.235.828,71	1.840.653,71	22,35%	986.811,00	179.039,75	1.685,60	46
☐ Midmarket	2.381.883,08	660.103,08	27,71%	53.594,10	23.818,83	3.139,20	100
Amarilla	248.685,45	63.605,45	25,58%	42.713,33	20.723,79	4.766,85	12
Carretera	337.305,00	94.105,00	27,90%	40.100,40	28.108,75	6.762,00	12
Montana	290.239,05	83.879,05	28,90%	37.050,00	24.186,59	8.936,40	12
Paseo	907.729,35	258.739,35	28,50%	53.594,10	25.214,70	3.139,20	36
Velo	264.498,38	68.653,38	25,96%	52.167,38	18.892,74	3.344,25	14
VTT	333.425,85	91.120,85	27,33%	51.143,40	23.816,13	6.273,00	14
⊕ Small Business	42.427.918,50	4.143.168,50	9,77%	1.038.082,50	424.279,19	62.916,00	100
Total 1	18.726.350,26	16.893.702,26	14,23%	1.159.200,00	169.609,07	1.655,08	700

A Reter...

- Funções agregadoras são essenciais para resumir valores em colunas e possibilitar a sua publicação em visuais.
- Para realizar uma média aritmética no Power BI, utilize a função AVERAGE.
- Uma medida é influenciada pelo contexto de filtro aplicado internamente no visual e externamente por outros visuais.
- Para encontrar o maior ou menor valo de uma coluna, utilize as funções MAX e MIN, respetivamente.

Obter Dados ETL

Ligar às diferentes fontes de dados

Transforma os dados para atender à estrutura desejada

Intercalar/Merge Acrescentar / Append

Inserir novas colunas Gerir os dados

Em Power BI, clique em **Obter Dados** selecione o tipo de conector

Exercício – Importação Ficheiro CSV

Clientes CSV

- Obter Dados / Texto CSV/ Abrir
 - Identificou 6 colunas, com o delimitador
 - Editar / Transformar
 - Remover a primeira linha
 - Promover cabeçalho
 - Remover a palavra "CL"
 - Remover a coluna REP
 - Criar a localidade com cidade /região e País

Clientes.csv

Origem do Ficheiro 65001: Unicode (UTF-8)			Delimitador Ponto e vírgula ▼		Deteção do Tipo de Dados Baseado nas primeiras 200 linha:	
, ,					•	
Column1	Column2	Column3	Column4	Column5	Column6	
Lista de Clientes						
Cod. CL	Rep	Nome Cliente	País	Região	Cidade	
CL O458	5042	Cliente 1	França	Ilha de França	Paris	
CL O469	5042	Cliente 2	França	Provença-Alpes-Costa Azul	Marselha	
CL 0477	5042	Cliente 3	França	Ródano - Alpes	Lyon	
CL 0448	5042	Cliente 4	França	Sul - Pirenéus	Toulouse	
CL 0457	5042	Cliente 5	França	Provença - Alpes - Costa Azul	Nice	
CL 0471	5042	Cliente 6	França	País do Loire	Nantes	
CL 0484	5042	Cliente 7	França	Alsácia	Estrasburgo	
CL 0495	5042	Cliente 8	França	Languedoque-Rossilhão	Montpellier	
CL 0473	5042	Cliente 9	França	Nova Aquitânia	Bordéus	
CL O480	5042	Cliente 10	França	Nord-Pas-de-Calais	Lille	
CL 0454	5042	Cliente 11	França	Bretanha	Rennes	
CL 0492	5042	Cliente 12	França	Champanha-Ardenas	Reims	
CL 0481	5042	Cliente 13	França	Haute-Normandie	Le Havre	
CL 0455	5042	Cliente 14	França	Rhône-Alpes	Saint-Étienne	
CL 0467	5042	Cliente 15	França	Provence-Alpes-Côte d'Azur	Toulon	
CL 0486	5042	Cliente 16	França	Rhône-Alpes	Grenoble	
CL O483	5042	Cliente 17	França	Pays de la Loire	Angers	
CL O449	5044	Cliente 18	França	Bourgogne	Dijon	

Exercício - Transformar clientes - ficheiro CSV

Remover os espaços em branco Transformar/Recortar

Remover coluna. Clique com o Botão Direito do rato, na coluna Rep

Clique com o Botão Direito do rato, na coluna Cod. CL, selecione substituir – altere o nome Cod.

Substituir valores "Cl " por branco

OU Substituir valores Cliente -Transformar/extrair/texto depois do delimitador e digite espaço

- O Editor de Consultas é um complemento gratuito criado pela Microsoft para o Excel 2010/3, e posteriormente também incluído no Power BI.
- É uma ferramenta intuitiva que permite manipular, transformar, consolidar, enriquecer, intercalar e fazer muito mais com seus dados.
- Atua como uma ferramenta ETL, extraindo dados de quase qualquer fonte de dados, transformando esses dados de alguma forma e, em seguida, carregando-os em algum lugar -no nosso caso, seja o Excel ou o Power BI.
- Deve utilizar Medidas Explicitas pois, podem ser utilizadas noutras medidas.
- Deve evitar colunas calculadas.

- Execuções no Power Query geram etapas de transformação
- É possível verificar a etapa clicando nela no painel ao lado direito da janela do Power Query
- Tenha atenção ao realizar um tratamento de dados quando uma etapa intermédia está selecionada, pois a alteração será inserida na posição seleção
- É possível alterar uma etapa clicando nela e realizando a nova alteração

Exercício – Importação Ficheiro CSV

Metas.CSV

Origem de Dados / CSV/procurar o ficheiro

- Selecionar Meta
- Identificar data e colunas com a categoria
- Editar / Transformar
- Atenção que o tipo de dados está errado, apagar o passo
- Selecione todas as colunas das categorias/botão direito do rato alterar tipo / utilizar região
- Selecionar a coluna data /(Unpivot) Anular a dinamização de outras colunas.
- Dar o nome de Cod. Familia e Meta às colunas.

 Alterar a localidade do dado para transformar o seu tipo em valores decimais e de data corretamente

• Transformar outras colunas em linhas

Exercício – Importação Ficheiro EXCEL

- Importar Preços Unitarios.xlsx
- Origem de Dados / Excel/procurar o ficheiro
 - Selecionar preços de artigos (Formato de tabelas)
 - Identificar que tem folhas de cálculo e intervalos nomeados.
 - Intercalar / (Merge) consultas
 - Criar uma tabela produto com o código do produto, custo unitário e preço unitário
 - Separador Home Page/ Combinar /intercalar(Merge)
 Consultas como nova
 - Clique na coluna a relacionar da 1º tabela/ selecione a 2º Tabela, selecione a coluna a relacionar e escolha o tipo de associação: Interna
 - Clique na coluna Preço Unitário nas duas setas e expanda, trazendo apenas o Preço Unitário
 - Arredondar o Preço Unitário para 2 casas decimais

Intercalar

Selecione tabelas e colunas correspondentes para criar uma tabela intercalada.

✓ A seleção corresponde 355 de 449 linhas da primeira tabela e 355 de 383...

STA MARTINS 47

- Duas tabelas podem ser intercaladas em apenas uma
- É necessário existir uma coluna em comum, para poder relacioná-las
- Existem 6 tipos de junção de tabelas que que poderão considerar ou não os campos de ambas as tabela, de acordo com a lógica dos conjuntos

• Será criado uma coluna com a informação "Table", que pode ser expandido e permite juntar uma ou mais colunas da outra tabela.

Exercício – Importação Ficheiro de uma pasta

- Pasta Vendas
- Origem de Dados / Tudo/pasta/procurar a pasta
 - Selecionar vendas
 - Mostra o conteúdo da pasta, ficheiros e datas de criação e de acesso, clique em Transformar ou Editar
 - Selecione a coluna content, com o botão direito do rato e remova as outras
 - Clique em adicionar / coluna personalizada e crie a seguinte função.
 =Excel.Workbook([Content])
 - Remover a coluna Content, e Expanda o conteúdo
 - Filtrar KIND = table
 - Aplique um filtro não contém ~
 - Selecionar a coluna Data e remover as outras
 - Expandir
 - Atribua o nome de Vendas

- Caso tenha mais de um ficheiro com a mesma estrutura, pode utilizar a ligação pasta para importar todos juntos
- Pode usar ficheiros do Excel, ou de outros formatos CSV, XML. Combine-os com a função Intercalar/Merge.
- Pode intercalar na própria tabela ou como nova.
- A função =Excel.Workbook([Content]) é capaz de aceder a um ficheiro binário e mostrar todo o conteúdo.
- Imagine que acrescentávamos um ficheiro de texto na pasta
- Se abrir a consulta pode ver no passo origem que tem um erro
- Deveríamos selecionar a extensão, mudar tudo para minúsculas, depois fazíamos um filtro com apenas xls
- Se um ficheiro estiver aberto vai colocar como ~temporário
- Remover na coluna nome, ficheiros que não começam com ~ (ficheiros temporários)

Tipos de dados

- A definição do tipo de dado é muito importante para determinar o que está armazenado numa coluna.
- A sua configuração influencia diretamente em relacionamentos, muitas vezes um erro de cálculo tem como causa um tipo de dado que não foi configurado corretamente.

Formatação condicional

- Permite criar nova coluna baseada em várias condições.
- O recurso Coluna condicional aceita o estabelecimento de lógicas de acordo com os valores de uma coluna e retorna um valor específico se a lógica for verdadeira, senão retorna um outro valor.

Add Conditional Column

Add a conditional column that is computed from the other columns or values. New column name Nome da coluna Canal Distribuição Column Name Operator Value (i) Output (i) ABC - 1 Inserir condições On line Canal equals Then ABC - 2 123 -Loja Canal Else If eguals ABC - 3 ABC 123 Canal Revenda equals Else If Add Clause Else (i) Caso não exista o que pretendemos escrever Desconhecido

AUGUSTA MARTINS

Cancel

Importar - Ficheiros TXT

Importar os ficheiros texto, Família e subfamília

Introduzir tes * Dados origem de Dados origem

solvido_augusta - Editor do Power Query

Adicionar Colunas

Importar os ficheiros texto SubFamília

Subfamilia.txt

- Ficheiros de texto podem ser importados para o Power BI, que serão reconhecidos
- Os cabeçalhos devem ser promovidos
- Os tipos de dados devem ser declarados

Gerir Consultas

- Concluindo as opções do ETL,
- Fechar e carregar para o Power BI
- 2 tabelas que foram transformadas (Intercaladas devem ficar invisíveis)
- Editar Consultas

- Botão direito do rato em cima da tabela e tirar o visto do ativar carga
- Podemos criar pastas, botão direito do rato, novo grupo: tab_auxiliares
- Selecione as duas tabelas, botão direito do rato mover para tab_auxiliares
- Digite informação adicional sobre as tabelas.
 Botão direito do rato em cima da tabela /
 Propriedades da consulta

- A organização em projetos de BI é essencial e existem algumas técnicas que, apesar de não serem pré-requisito, são muito úteis para a sua organização.
- Tabelas auxiliares que não serão diretamente usadas no relatório podem permanecer apenas no Power Query ao desmarcar a sua carga.
- Podem ser criados grupos para guardar as tabelas que não são usadas no relatório.

Ligar à WEB

Podemos ligar-nos com dados públicos da Internet

Obter dados/Web (inserir a URL)

https://pt.wikipedia.org/wiki/Lista de distritos portugueses orde nados por %C3%A1rea

Selecione a table e clique em Editar/transformar

- Retire o total do filtro
- Renomear a tabela para distritos
- Fechar e carregar
- Mova-a para a pasta tabelas auxiliares e desative o carregamento da tabela

- •É possível importar informações da WEB conectando-se a websites pelo conector do Power BI
- •Procure objetos table para importar informações organizadas. Caso um objeto de table não esteja presente, o que é possível, talvez seja mais difícil extrair essas informações.
- •Ao clicar em atualizar, o site será consultado novamente e as informações serão atualizadas.

Modelo de dados

- Conjunto de tabelas ligadas por relações entre colunas que têm o objetivo de responder a questões de negócio.
- •O poder do Power BI, está na possibilidade de trabalhar com várias tabelas e relações entre elas.

Base de dados Dimensional

- •Tabelas Dimensão
- Tabelas Facto

Modelagem de dados

Tabelas Facto

- Medidas sobre o negócio
- Valores que posso agregar
- Dados quantificáveis
- Pode conter milhões de linhas
- Ex: quantidade de vendas, valor das vendas

Tabelas Dimensão

- Pontos de vista dos quais os fatos podem ser analisados
- Fatores de agrupamento ou perspetivas
- Tendem a ser menores que as factos
- Cada registo é identificado de forma única através de ID
- Ex: Produto, Cliente, Fornecedor, Pessoas etc...

Dimensões X Factos

Uma dimensão deve representar uma entidade que possui determinadas propriedades.

- Cliente: CodCliente, Nome, Morada etc...
- Produto: CodProduto, DescricaoProduto, Categoria, Cor, Tamanho

Essas dimensões interagem entre si e geram um evento, que é armazenado na tabela factos:

• Um PRODUTO é vendido numa determinada DATA, a um dado CLIENTE, com determinada quantidade

Quando construir um modelo tente deixá-lo no esquema de estrela StarSchema, é o esquema mais eficiente em termos de desempenho.

Isso significa ter uma ou mais tabelas fatos com dimensões ligadas a elas.

As tabelas factos nunca estão relacionadas entre si!

UGUSTA MARTINS 6.

Dimensões X Factos

	DIMENSÃO	FACTO
Tipo de Informação	Define entidades de negócios Exemplo: clientes, produtos, fornecedores, pessoas, datas, contas	Armazena observações/eventos registos históricos Exemplo: Vendas, stocks, entradas e saídas, produção
Estrutura	Possui uma chave única (identificador da dimensão) Colunas descritivas	Chaves das dimensões que se repetem ao longo das linhas Colunas numéricas
Quantidade de dados	Geralmente possuem poucas linhas	Pode conter milhões de registos
Objetivo	Filtrar os valores numéricos das fatos Agrupar as informações	Realizar agregações dos valores (Soma, média, contagem, percentagem)

MODELAGEM MULTI-DIMENSIONAL (STAR SCHEMA X SNOW FLAKE)

Star Schema é o modelo mais utilizado na modelagem dimensional para dar suporte à tomada de decisão e melhorar a performance de sistemas voltados para consulta.

SnowFlake também é projetado para suportar tomada de decisão, mas economizando espaço em disco. Para o Star Schema, o Snowflake é apenas mais um tipo de dimensão

Introdução de relacionamento

Pode mostrar uma relação utilizando uma linha que liga as duas tabelas. Quando parar sobre a linha, os dois campos correspondentes em que a relação é construída serão delineados. O exemplo a seguir mostra que o campo **Cod.CL** da tabela Cliente liga-se com o campo **Cod.CL** da abela Vendas.

Introdução de relacionamento

- Os indicadores ao longo da linha ajudam a compreender *a cardinalidade*, *a direção do filtro transversal*, e se a relação é *ativa* (linha sólida) ou *inativa* (linha pontilhada).
- Criar estas relações é rápido e simples, com muitos métodos diferentes que têm diferentes níveis de detalhe ou simplicidade.
- A forma mais simples de criar uma relação é ir à vista do Data Model ou Diagrama e depois arrastar um campo de uma tabela para um campo em outra tabela. Os dados modelo interpretarão a relação entre os dois campos, e se for razoavelmente aparente, a relação será mostrada.
- Outra abordagem mais detalhada para criar relações é através da janela Gerir Relações.
 Pode aceder a esta janela em Power Bl no separador 'Base' enquanto estiver na vista Modelo.
- A visão inicial quando seleciona um destes botões é um resumo de todas as relações nos dados modelo.

Cardinalidade

Um para muitos

• Numa relação de um para muitos, um valor único numa tabela será encontrado muitas vezes na outra tabela. Esta relação é mais usada dentro de modelos de dados. Um exemplo seria uma tabela de produtos que está ligado a uma tabela de vendas que tem vários registos para cada produto.

Um para um

• Numa relação um-para-um, um valor terá uma entrada única em ambas as tabelas. As relações um-para-um são incomuns, e um autor geralmente fundirá relações um-para-um numa única tabela para utilização num modelo de dados.

Muitos para muitos

• Numa relação de muitos a muitos, um valor único que é retirado da coluna correspondente terá múltiplas entradas em ambas as tabelas. Muitas relações a muitas requerem uma consideração cuidadosa e técnicas avançadas para uma gestão adequada. Ao começar com Power BI, deve evitar muitas para muitas relações, porque podem ocasionalmente produzir resultados errados.

Direção de filtro cruzado

• A definição **do filtro Cruzado** diz aos dados modelo como os filtros se propagam entre duas tabelas. Na vista **modelo**, as setas no meio da linha representam a direção do filtro transversal.

Ativo e inativo

- Periodicamente, é melhor configurar relações múltiplas entre tabelas (por exemplo, data de encomenda e data da fatura a partir de uma tabela de vendas e do campo Data a partir de uma tabela de calendário).
- Só é permitida uma relação ativa entre duas tabelas de cada vez, mas pode estabelecer relações inativas para utilização em medidas mais avançadas de análise de dados (DAX).

Continuando o exercício -Relacionar a tabela vendas com a tabela produtos

Gerir

Relações Relações

- Automaticamente o Power BI identifica alguns tipos de relacionamentos.
- Clique em gerir relações
- Selecione todas e clique em eliminar
- Elimine todas as relações
- Arraste o cod Item da tabelas produtos para a tabela de vendas, cod item.
- Cria uma relação de um para muitos, propaga-se de produtos para vendas.
- Existe a função RELATED que pode ser utilizada em colunas calculadas para trazer valores de outra tabela (relacionada)

Gerir relações

Fechar

Tipos de cálculos DAX (Data Analysis Expressions)

- Funções de cálculo dentro do PowerBI
- Existem três tipos de cálculos na linguagem DAX, no separador Modelagem
 - Nova Coluna (colunas calculadas) a coluna fica visível na nossa tabela
 - A coluna calculada é sempre calculada linha a linha da tabela
 - Nova Medida visíveis nos relatórios
 - só é calculada para as células que são utilizadas no PivotTable ou pivotChart
 - Nova Tabela esta é criada diretamente aqui com DAX, não existe no Power Query.
- Realizar cálculos com medidas é, na maioria das vezes, a melhor escolha, já que o cálculo é realizado apenas quando utilizado.
- Colunas calculadas e tabelas calculadas materializam os valores. Podem ser úteis em diversas situações, mas se possível, evitar.

Colunas calculadas

Colunas calculadas são novos campos que são adicionados às tabelas nos dados modelo utilizando o DAX. Pode utilizar estas colunas para medidas implícitas ou explícitas ou como campos de filtro adicionais.

Vendas – Quantidade

Produto – Preço Unitário

Meta – Valores

Separador Modelação / Nova Coluna

Preço Unitário = RELATED(dProdutos[Preço Unitário])

Valor =fVendas[Preço Unitário]*fVendas[Quantidade]

Visualizar

Canais de distribuição por Quantidades vendidas

Formatar

Nota: Sem relações entre as tabelas os valores aparecem todos iguais ou se aparecer em branco é porque o tipo de dados não está igual

Total	1.405.762.895,06
Portugal	1.405.762.895,06
Itália	1.405.762.895,06
França	1.405.762.895,06
Espanha	1.405.762.895,06
Alemanha	1.405.762.895,06
País	Total

Estabelecer a relação entre clientes e vendas

Com relações entre as tabelas

 País
 Total

 Alemanha
 319.916.639,24

 Espanha
 333.496.100,17

 França
 364.721.269,98

 Itália
 117.476.576,72

 Portugal
 270.152.308,95

 Total
 1.405.762.895,06

Chave Primária e Estrangeira

- Chave primárias são colunas com vários valores únicos que são usados como identificadores das outras colunas.
- Chaves estrangeiras são colunas com valores de chaves primárias que pertencem
 à outra tabela e são utilizadas para relacioná-las.
- Um cenário comum é ter tabelas "dimensão" com chaves primárias e tabelas "facto" com chaves estrangeiras dessa dimensão.

Estabelecimento de relações

- Relação de um para muitos (1:N) (1:*)
- Verifique se os campos dos clientes estão com o mesmo tipo de dados
- Edite a tabela de produto e crie uma nova coluna coluna a partir de exemplos.
- extraindo os 4 primeiros carateres do meio: CA10; (digite 2 linhas) ou Extrair intervalo.
- Atribua-lhe o nome Cod Subfamilia
- as setas indicam a direção de propagação, logo se utilizar a categoria consigo segmentar nas vendas (Descrição da categoria e vendas)
- Crie uma tabela de ponte entre a tabela de vendas pedido e Meta (tabela calendário)

Extrair Intervalo de Texto

Introduza o índice do primeiro caráter e o número de carateres a manter. Índice de Início

Criar Tabela Calendário no PowerQuery

Tabela de dimensão para relacionar vendas e tabelas

Consulta em branco / Nova Consulta / consulta Nula

- Digite a primeira data
- o Incremente o nº de datas que queremos
- Duração quanto queremos que incremente

Calendário

Criar uma consulta em branco

Invocar uma função: = List. Dates (clicar no) $\frac{f_x}{f_x}$

Clique em para tabela e altere os nomes

Mude o nome da coluna para data e formate, analisando o exemplo do diapositivo seguinte.

Adicionar as colunas na dCalendario

Adicionar campos no calendário

Clique na coluna data:

- Inserir coluna /Data/Ano/Ano
- Inserir coluna /Data/ Mês / Mês
- Inserir coluna /Data/ Mês / Nome Mês
- Inserir coluna /Data/ Trimestre / Trimestre, clique em Transformar / adicionar prefixo "T"
- Inserir coluna /Data/ Dia / Dia
- Inserir coluna /Data/ Dia / Nome Dia
- Selecione o ano e o mês / Transformar /intercalar colunas separar por -
- Estabelecer as relações

A Reter...

- É muito importante ter uma tabela com o calendário completo num modelo se possui datas em mais de uma tabela.
- Uma tabela pode ser rapidamente criada no Power Query com a função na Linguagem M invocando a função List.Dates
- No calendário pode adicionar colunas de mês por extenso, dia da semana, trimestre, etc.
- Pode selecionar 2 ou mais colunas e combinar intercalar/merge numa só.

Estabelecimento de relações

Arraste os campos que são comuns das tabelas de dados para a coluna de factos.

- A cardinalidade dos relacionamentos define graus de relação entre tabelas.
- Pode ter:
- 1:1 (Um para um) duas colunas com valores distintos foram relacionados
- 1:N (Um para muitos) uma coluna com valores únicos foi relacionada com outra que tem valores repetidos
- N:N (muitos para muitos) duas colunas com valores repetidos foram relacionadas.

A reter...

- Relacionamentos devem ser estabelecidos para analisar valores de tabelas diferentes.
- Chaves primárias e estrangeiras devem ser relacionadas em tabelas "facto" e "dimensão".
- A propagação do relacionamento, normalmente, possui apenas uma direção. É muito importante compreender esse comportamento.
- Colunas das tabelas de dimensão devem ser utilizadas em visuais ao invés das colunas semelhantes em tabelas "fato".
- O tipo de cardinalidade mais comum é 1:N (Um para muitos)

Medidas Implicitas vs Explicitas

- As **medidas implícitas** utilizam uma coluna a partir de uma tabela de dados (por exemplo, Valor de Venda) arrastando o campo para um visual em Power BI.
- Estas medidas são úteis quando se começa pela primeira vez em Power BI e permitem calcular Sum, Count, Average, Min, Max e DistinctCount.
- Quando um campo estiver na secção valores, selecione a lista de dropdown para determinar qual o cálculo de resumo que pretende executar no campo.
- Este tipo de medidas funcionam para quadros básicos e resumos, mas são limitadas em comparação com **medidas explícitas**.
- Não permitem ser utilizadas em outras medidas.

Medidas Implícitas vs Explícitas

Medidas Implícitas:

- Mais fáceis de usar é só arrastar.
- Desvantagem não podem ser utilizadas em outras funções.
- Gastam mais recursos.

Medidas Explicitas, são criadas com funções DAX.

- Resultam no mesmo valor das medidas implicitas
- Vantagem podem ser utilizadas noutros cálculos, gráficos ... e
- Gastam menos recursos.

UGUSTA MARTINS 8:

Exemplo de Medidas Implícitas

- Escolha a visualização tabela e selecione o campo/coluna valor da tabela vendas
- Formate no pincel, no separador grelha, o tamanho do texto para 12pt
- Cabeçalho da coluna tipo de letra arial tamanho 12.
- Arraste novamente valor, clique na seta no campo e calcule a média do valor .
- São **implícitas**, são apenas agregadas a este visual, não podem voltar a ser utilizadas em outras medidas ou gráficos. Teremos que voltar a fazer os mesmo passos e formatar

Total	1.012.896.840,63	36.292,84	100,00%
Revenda	174.413.388,92	37.419,74	17,22%
On line	507.588.169,40	36.443,72	50,11%
Loja	330.895.282,31	35.503,79	32,67%
Canal Distribuição	valor	Average of valor	%GT valor

Exemplo de Medidas Explicitas

- No separador Modelação clique em nova Medida
 - Total =SUM(Vendas[Valor]);
 - As 2 medidas apresentam o mesmo cálculo, no entanto a medida total, pode ser utilizada noutras medidas, está sempre formatada, e já está calculada.
 - Se editar a consulta pode verificar que ele não acrescentou nenhuma coluna.

Média de Valor = AVERAGE (Vendas [Valor]);

Funções de contagem

- •Total da quantidade
 - Total Qtde = sum(fVendas[Quantidade])
- Contar quantos pedidos foram realizados
 - Count Faz a contagem através de uma coluna preenchidas por números.

```
Nº Enc. Count = count(fVendas[Nº Encomenda])
```

•Countrows – conta todas as linhas da tabela, se estiver em preenchidas.

```
Nº Enc. Countrows = COUNTROWS(fVendas)
```

Year	Total Qtde	N° Enc. Count	Nº Enc. Countrows	N° Enc. distinctcount
2014	47676	5630	5630	5630
2015	65432	4381	4381	4381
2016	109196	5343	5343	5343
2017	106990	4828	4828	4828
2018	159448	4830	4830	4830
2019	168931	2888	2888	2888
2020	95240	6065	6065	3942
2021	181058	6616	6616	6607
2022	2543	94	94	40
Total	936514	40675	40675	38442

- •DISTICTCOUNT conta o número de valores distintos de uma coluna.
 - Calcular as vendas distintas de clientes. deve ser na tabela factos.
 - Quantos clientes temos dentro de vendas em cada ano.

```
Nº Enc. distinctcount = DISTINCTCOUNT(fVendas[Nº Encomenda])
```

A reter....

- Para contar números de uma coluna, utilize a função Count.
- Para contar quantas linhas tem uma tabela, utilize a função COUNTROWS.
- Para contar valores distintos de uma coluna, ou seja, desconsiderando repetições, utilize a função DISTINCTCOUNT.

UGUSTA MARTINS 8!

Continuar as Medidas explicitas

- Calcular o Total da Meta
 - TotalMeta = SUM(fMeta[Meta])
- Calcular o % Vendas
 - Total por Meta = DIVIDE([Total],[TotalMeta],0)

ou

• Também pode utilizar a "/", para dividir a diferença é que esta não trata o erro e a DIVIDE trata.

```
Total/Meta = [Total]/[TotalMeta]
```

A reter...

- Para calcular o percentual entre duas medidas, pode ser utilizada a função DIVIDE.
- Ela possui argumentos obrigatórios: o Numerador e o Denominador.
- Pode ser utilizado um terceiro argumento para tratar o erro.
- Uma das vantagens de criar medidas explicitas é poder reutilizá-las em outras medidas.

Tipos de Formatos de dados

- Selecione a Medida, clique no separador modelação
- Selecione o formato
- Altere as casas decimais
- Apenas estamos a formatar a visualização

- A reter...
- No Power Query, a configuração do tipo de dados é muito importante para corretamente realizar cálculos
- O Formato de tipo de dados no relatório é indicado para mudar a forma como os dados são visualizados
- Se alguma medida apresentar erros, confirme se o tipo de dados está correto.

Organização de Medidas

- Criar uma tabela exclusiva para armazenar as medidas
- Separador Home / Inserir Dados (enter Data)
- No nome introduza o Nome da tabela e carregar

• A coluna 1 pode ser oculta ou depois de construir uma medida pode eliminar.

Mover as medidas para _Medidas

- Selecione a medida
- Clique em modelagem
- Tabela _Medidas

 Depois de fechar e voltar a abrir o modelo o ícone das medidas muda para calculadora.

A reter....

• Um projeto organizado é essencial para simplificar o seu trabalho

Medidas são universais e não estão ligadas a uma tabela específica

Uma "tabela" de medidas pode ser criada para organizá-las num mesmo lugar

Exemplo prático com funções de agregação

- Crie um gráfico de colunas com a média por descrição de subfamília, formate com legendas
- Altere o contexto, retire a descrição de subfamília e mude para ano.
- Crie uma segmentação de dados por país
- Crie uma tabela com o ano e a média, máximo e mínimo

Funções Iterantes

Funções responsáveis por eliminar colunas calculadas. Grande parte das funções têm um X no fim. A FILTER entre outras também é iterante.

As medidas calculam diretamente a coluna e adaptam-na de acordo com o contexto

- Trabalha no contexto Filter Context (fazem cálculos verticais)
- Economizam mais espaço e processamento

As colunas calculadas são feitas linha a linha – utilizam o filtros de **Row Context**

UGUSTA MARTINS 9:

Funções Iterantes

Calcular a soma das vendas:

Devolve a soma de uma expressão para cada linha da tabela cada.

```
TotalVendas1 = SUMX(Vendas; Vendas[Preço Unitário]*Vendas[Quantidade])
```

```
TotalVendas =
```

SUMX(fVendas, fVendas[Quantidade]*RELATED(dProdutos[Preço Unitário]))

Year	TotalVendas1	Total Vendas
2014	71.625.878,37	71.625.878,37
2015	100.943.055,58	100.943.055,58
2016	169.699.052,28	169.699.052,28
2017	158.805.401,44	158.805.401,44
2018	249.514.560,98	249.514.560,98
2019	261.339.578,24	261.339.578,24
2020	129.645.187,08	129.645.187,08
2021	260.275.569,97	260.275.569,97
2022	3.914.611,12	3.914.611,12
Total	1.405.762.895,06	1.405.762.895,06

A Reter....

- As medidas agregam toda a coluna, sem distinção de linhas.
- Colunas calculadas conseguem realizar cálculos no contexto da linha e podem ser agregadas depois com medidas.
- É possível transformar o comportamento de uma medida para realizar cálculos no contexto de linha ao utilizar funções iterantes.
- Aprendeu a utilizar a SUMX e que funções iterantes terão no seu primeiro argumento, uma tabela que será considerada no contexto linha.

Função CALCULATE

Avalia uma expressão em um contexto de filtro modificado.

CALCULATE(<expression>[, <filter1> [, <filter2> [, ...]]])

Parâmetros

Termo	Definição
expressão	Expressão a ser avaliada.
filter1, filter2,	(Opcional) Expressões boolianas ou expressões de tabela que definem filtros ou funções de modificador de filtro.

A expressão usada como o primeiro parâmetro é essencialmente a mesma que uma medida.

Os filtros podem ser:

- Expressões de filtro booliano
- Expressões de filtro de tabela
- Funções de modificação de filtro

Quando há vários filtros, eles podem ser avaliados usando o operador lógico AND (&&), o que significa que todas as condições devem ser verdadeiras ou pelo operador lógico OR (||), o que significa que qualquer condição pode ser verdadeira.

Função CALCULATE

- Quando tem uma medida pode ser filtrada por funções que estão dentro do seu campo e também por outros visuais ou filtros da página.
- Função CALCULATE Avalia uma expressão num contexto modificado por filtros.
 - Faz uma alteração do contexto do filtro atual.
 - Qual foi a variação das quantidades comparando com 2014.
- Precisamos de alterar o contexto de filtro
 - Total Qtde = sum(fVendas[Quantidade])
 - Qtde 2014 = CALCULATE([Total Qtde],dCalendario[Year]=2014)
- Ignora o contexto dos anos (o atual) e passa só a fazer o que está no filtro atual, que é

ano =2014.

- Variação Qtde 2014 = DIVIDE([Total Qtde],[Qtde 2014],0)-1
- Var2014 = divide([total qtde],(CALCULATE([Total Qtde],dCalendario[Year]=2014)))-1

A reter...

A função CALCULATE é uma das mais importantes no Power BI.

 A sua principal função é alterar o contexto de filtro de uma medida para realizar o seu cálculo de acordo com o seu argumento de filtro.

 Com a comparação de medidas só pode ser realizada no mesmo contexto de filtro, é necessário alterar o contexto natural para realizar cálculos "na mesma linha" em visuais.

Funções de modificador de filtro

Função	Finalidade
REMOVEFILTERS	Remover todos os filtros ou os filtros de uma ou mais colunas de uma tabela ou de todas as colunas de uma tabela.
ALL ¹ , ALLEXCEPT, ALLNOBLANKROW	Remover filtros de uma ou mais colunas ou de todas as colunas de uma tabela.
KEEPFILTERS	Adicionar filtro sem remover filtros existentes nas mesmas colunas.
USERELATIONSHIP	Envolver uma relação inativa entre as colunas relacionadas, caso em que a relação ativa se tornará inativa automaticamente.
CROSSFILTER	Modificar a direção do filtro (de ambos para único ou de um para ambos) ou desativar uma relação.

¹ A função ALL e suas variantes se comportam como modificadores de filtro e como funções que retornam objetos de tabela. Se houver suporte para a função REMOVEFILTERS na sua ferramenta, será melhor usá-la para remover filtros.

Medidas explicitas

Pagamento	Total	MédiaVendas	%GT Total
30 dias	324.250.898,23	33.719,94	34,29%
30/60 dias	323.906.378,68	36.178,53	34,26%
30/60/90 dias	190.929.787,48	34.544,92	20,19%
à vista	106.393.469,38	34.465,00	11,25%
Total	945.480.533,77	34.782,05	100,00%

Total	945.480.533,77	67,26%	100,00%	629786	32140	32140
Revenda	235.465.300,31	16,75%	24,90%	159531	8143	8143
On line	710.015.233,46	50,51%	75,10%	470255	23997	23997
Canal Distribuição	Total	%Total ALL	%Total ALLSELECTED	Total Qtde	Qtde 2014	KEEPFILTERS qtde 2014

Medidas explicitas para substituir as anteriores implícitas

```
Total = SUM(fVendas[valor])
MédiaVendas = AVERAGE(fVendas[valor])
VendasTotais ALL = CALCULATE([Total],all(fVendas))
% = DIVIDE([Total], fVendas[VendasTotais ALL], BLANK())
VendasTotais REMOVEFILTERS =
CALCULATE([Total], REMOVEFILTERS(fVendas))
VendasTotais ALLSELECTED =
CALCULATE([Total],ALLSELECTED(fVendas))
%Total ALL = DIVIDE([Total],
CALCULATE([Total],all(fVendas)),BLANK())
%Total ALLSELECTED = DIVIDE([Total],
CALCULATE([Total],ALLSELECTED(fVendas)),BLANK())
%Total REMOVEFILTERS = DIVIDE([Total],
CALCULATE([Total], REMOVEFILTERS(fVendas)), BLANK())
KEEPFILTERS Canal = CALCULATE([Total Qtde], KEEPFILTERS(fVendas[Canal
Distribuição]="Revenda"))
```

Função ALL (% do Total)

ALL e ALLSELECTED

ALL retorna os valores de uma tabela

- Ignora o filtro que estiver naquele momento no contexto (ex. linha)
- interfere no visual e influência de segmentação de dados (quando aplica a segmentação o valor não altera)
- Se alterar a troca de canal de distribuição para país continua a funcionar (porque na ALL está todas as linhas da tabela de vendas).
- Os filtros externos não influenciam.

País	Total	%Total ALL	%Total ALLSELECTED	Total Qtde	Qtde 2014	KEEPFILTERS qtde 2014
Alemanha	217.747.782,75	15,49%	23,03%	126382	5985	5985
Espanha	221.497.451,32	15,76%	23,43%	172053	9349	9349
França	248.850.918,63	17,70%	26,32%	167855	9899	9899
Itália	77.391.480,85	5,51%	8,19%	50855	1449	1449
Portugal	179.992.900,22	12,80%	19,04%	112641	5458	5458
Total	945.480.533,77	67,26%	100,00%	629786	32140	32140

ALLSELECTED

Se necessitar que o filtro externo altere deve usar esta função.

- Mantem os filtros externos segmentação.
- %Total ALLSELECTED = DIVIDE([Total],
 CALCULATE([Total],ALLSELECTED(fVendas)),BLANK())

A reter...

• Ao utilizar a função ALL com a CALCULATE, todo o contexto de filtro será ignorado de acordo com a tabela informada na ALL.

 Uma expressão será avaliada considerando toda a tabela na ALL, resultando em medidas totalizadoras "fixas" dependendo do contexto de filtro.

Função SAMEPERIODLASTYEAR – comparação com o mesmo período do ano anterior

- Funções de tempo para comparar com o presente ou com o futuro.
- Pretende calcular como foi a evolução (saber a performance de 2014 em relação a 2015) de 2015 em relação a 2014
- Calcular a % de crescimento
 - o SPLY = CALCULATE([TotalVendas], SAMEPERIODLASTYEAR(dCalendario[Data]))

Calcular a diferença do percentual entre os 2 anos

- DIVIDE
- Vendas X SPLY = DIVIDE([TotalVendas],[SPLY],0)

A reter...

 Juntamente com a alteração do contexto de filtro com a função CALCULATE, a função SAMEPERIODLASTYEAR retorna o valor específico do período anterior do contexto atual.

 Não é possível buscar outros tipos de períodos, ou seja, apenas o ano anterior será retornado, mas a dimensão será respeitada, por exemplo, se o dia 01/01/2020 estiver na linha visual, a função retornará 01/01/2019. Se o mês de Janeiro /2020 inteiro estiver na linha, a função retornará janeiro / 2019.

• É importante ter uma tabela calendário para o correto funcionamento de funções temporais no DAX

Função DATEADD – comparar com o mês anterior

Permite calcular o período que queremos, neste mês, no próximo trimestre ou no próximo ano.

- Move o conjunto determinado de datas de acordo com um intervalo especificado)
- DATEADD(date;nºintervalo;intervalo)
- o DATEADD Y-1 = CALCULATE([TotalVendas], DATEADD(dCalendario[Data],-1,YEAR))

Calcular se o valor que aparece em fevereiro foi maior ou menor que o do mês anterior.

- o DATEADD M-1 = CALCULATE([TotalVendas], DATEADD(dCalendario[Data],-1,MONTH))
- % Mês atual X Mês anterior
- vendas X DATEADD M-1 =
 - DIVIDE([TotalVendas],[DATEADD M-1],0)

Year	TotalVendas	SPLY	Dif vendas	Vendas X SPLY	DATEADD Y-1	DATEADD M-1	Vendas X DATEADD Y-1
□ 2014	71.625.878,37		71.625.878,37	0,00%		67.623.933,73	105,92%
Jan	6.690.746,01		6.690.746,01	0,00%			0,00%
Feb	6.048.337,84		6.048.337,84	0,00%		6.690.746,01	90,40%
Mar	11.054.862,71		11.054.862,71	0,00%		6.048.337,84	182,78%
Apr	5.455.903,43		5.455.903,43	0,00%		11.054.862,71	49,35%
May	4.615.526,12		4.615.526,12	0,00%		5.455.903,43	84,60%
Jun	3.517.669,78		3.517.669,78	0,00%		4.615.526,12	76,21%
Jul	5.175.700,75		5.175.700,75	0,00%		3.517.669,78	147,13%
Aug	3.489.595,03		3.489.595,03	0,00%		5.175.700,75	67,42%
Sep	8.555.472,56		8.555.472,56	0,00%		3.489.595,03	245,17%
Oct	7.567.024,90		7.567.024,90	0,00%		8.555.472,56	88,45%
Nov	5.453.094,60		5.453.094,60	0,00%		7.567.024,90	72,06%
Dec	4.001.944,64		4.001.944,64	0,00%		5.453.094,60	73,39%
□ 2015	100.943.055,58	71.625.878,37	29.317.177,21	140,93%	71.625.878,37	98.997.465,08	101,97%
Jan	7.797.182,54	6.690.746,01	1.106.436,53	116,54%	6.690.746,01	4.001.944,64	194,83%
Feb	9.100.949,57	6.048.337,84	3.052.611,73	150,47%	6.048.337,84	7.797.182,54	116,72%
Mar	13.879.867,28	11.054.862,71	2.825.004,57	125,55%	11.054.862,71	9.100.949,57	152,51%
Apr	9.372.446,15	5.455.903,43	3.916.542,72	171,79%	5.455.903,43	13.879.867,28	67,53%

A reter...

• A função DATEADD adiciona mais flexibilidade na comparação de períodos.

 Com ela, é possível determinar a comparação com o dia, mês, trimestre e ano anterior ou posterior ao contexto de filtro atual.

 Além disso é possível determinar se a comparação será com o período anterior ou em outro intervalo, como 2, 4 ou 5 anos atrás, por exemplo.

Função TotalYTD – Cálculo do acumulado até ao final do ano

```
acumulado = TOTALYTD([TotalVendas],dCalendario[Data])
acumulado calculate = CALCULATE([TotalVendas], DATESYTD(dCalendario[Data]))
Comparação de períodos acumulados das vendas
```

			_	\uparrow \downarrow	/ ↓ ↓ ↓ 【	Ы
Year	Total Vendas	TotalMeta	Vendas X Meta	acumulado	acumulado calculate	
□ 2014	71.625.878,37	34.948.988,13	204,94%	71.625.878,37	71.625.878,37	
Jan	6.690.746,01	7.941.293,57	84,25%	6.690.746,01	6.690.746,01	
Feb	6.048.337,84	444.561,57	1360,52%	12.739.083,85	12.739.083,85	
Mar	11.054.862,71	350.334,90	3155,51%	23.793.946,56	23.793.946,56	
Apr	5.455.903,43	219.819,57	2481,99%	29.249.849,99	29.249.849,99	
May	4.615.526,12	698.201,57	661,06%	33.865.376,11	33.865.376,11	
Jun	3.517.669,78	214.716,90	1638,28%	37.383.045,89	37.383.045,89	
Jul	5.175.700,75	557.302,90	928,71%	42.558.746,64	42.558.746,64	
Aug	3.489.595,03	363.077,57	961,12%	46.048.341,67	46.048.341,67	
Sep	8.555.472,56	8.023.458,90	106,63%	54.603.814,23	54.603.814,23	
Oct	7.567.024,90	7.854.716,90	96,34%	62.170.839,13	62.170.839,13	
Nov	5.453.094,60	401.302,90	1358,85%	67.623.933,73	67.623.933,73	
Dec	4.001.944,64	7.880.200,90	50,78%	71.625.878,37	71.625.878,37	
□ 2015	100.943.055,58	61.481.905,26	164,18%	100.943.055,58	100.943.055,58	

A reter...

 A Função TOTALYTD acumula valores de uma expressão até o fim do ano de acordo com o contexto de filtro do visual.

• É possível determinar qual será o final do ano no seu argumento opcional "Year_End_Date", informando por exemplo "06/30" para determinar que o final do ano será no mês de junho.

Publicar um relatório

Publicar um relatório

- •Depois de desenvolvido o projeto de Power BI, o passo seguinte á partilhar na WEB.
- •O Power BI Serviço disponibiliza diversas opções de partilha
 - O Publicar na WEB
 - Publicação privada

•A diferença das contas gratuitas e PRO no Power BI será notado no Power BI Serviço, já que algumas opções estarão disponíveis apenas para contas PRO.

Publicação do Relatório

Guarde o Relatório/HomePage/Publicar

Selecione a minha área de trabalho

Clique no link e abra.

AUGUSTA MARTINS 12:

Publicação do Relatório

- •Sempre que publica é criado em:
 - Relatórios
 - Conjunto de dados
 - armazena os seus dados.
 - pode criar novos visuais.
 - não pode criar medidas e relações
 - Pode consumir o que já está pronto e que veio do PowerBI Desktop.
 - Pode guardar este relatório como um novo.
 - Dashboards/Painéis rápido acesso a relatórios mais complexos.

A reter...

- O Power BI Serviço possui uma estrutura que deve ser compreendida para tirar o máximo proveito das suas capacidades.
- Todo o relatório criado no Power BI Desktop e publicado criará um conjunto de dados e um relatório
- Os Dashboards podem ser criados a partir dos relatórios.
- Ao eliminar um conjunto de dados, o relatório e dashboard também serão eliminados.

Relatório vs Dashboard

- Um dashboard do Power BI é composto por mosaicos que, juntos, contam uma história.
- Está limitado a uma página,
- Deve conter apenas os elementos mais importantes da história.
- Não pode editar o dashboard, mas existem várias formas de utilizar os dados para monitorizar o negócio e tomar decisões apoiadas por dados.

Fonte: Microsoft

Publicar na WEB

- Uma das formas de partilhar relatórios é publicando na Web.
- Relatórios publicados na web não terão controlo de acesso.
- Cuidado com os relatórios que são publicados, já que qualquer pessoa pode aceder a esse link.
- É gerado um iframe que pode incorporar numa página web.

Partilha Privada

- Clicar no partilhar
- Deve partilhar com utilizadores que tenham conta PRO
- Clicar no Partilhar

Pode voltar a clicar no partilhar e clicar no separador Acessos

Workspaces

Os espaços de trabalho (workspaces) são locais para colaborar com os colegas e criar coleções de dashboards, relatórios, conjuntos de dados e relatórios paginados.

Papéis nos novos espaços de trabalho em Power BI - Power BI | Microsoft Docs

A reter....

- A forma mais adequada para partilhar relatórios empresariais é utilizando a partilha privada entre contas PRO.
- É possível restringir o acesso a relatórios apenas por determinadas pessoas e ainda impedir que ela publique o relatório com outros.
- Para revogar o acesso, basta parar de partilhar que ela não terá mais acesso.

Exportar para o PowerPoint

No Power BI Serviço é possível Exportar um relatório para o PowerPoint.

- Relatório / Ficheiro/Exportar para o PowerPoint
- Será criada uma capa com informações do último dia e hora de atualização e quando foi efetuado o download

Também pode Imprimir

O Power BI tem opções de mostrar relatórios diretamente no Power BI Serviço num ecrã, ideal para apresentações.

Exportar o projeto PBXI

- Todo o projeto publicado no Power BI Serviço é inteiramente armazenado na nuvem.
- Isso significa que ele pode ser totalmente exportado e resgatado, caso perca o ficheiro original.
- No Relatório clique em Ficheiro / transferir o relatório
- A pessoa com quem partilhamos, não tem na área dele a hipótese de transferir o ficheiro.

Obter dados Power BI Serviço

Abra o Power Bl no Browser

Selecione obter dados Selecione ficheiro local

Bibliografia

Consulte as fontes oficiais da Microsoft para se atualizar e desenvolver o conhecimento obtido:

Referência de funções DAX: https://msdn.microsoft.com/pt-br/library/ee634396.aspx

Referência de funções M: https://msdn.microsoft.com/en-us/query-bi/m/power-query-m-reference

Blog do Power BI: https://powerbi.microsoft.com/pt-br/blog/

Fórum do Power BI em Inglês: https://community.powerbi.com/