Linear Algebra II Recitation 2

Yasuyuki Kachi & Shunji Moriya

1. Find the eigenvalues. Find the eigenvectors associated with each of the eigenvalues.

$$(1) \begin{bmatrix} 3 & 2 \\ -9 & -6 \end{bmatrix} \qquad (2) \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix} \qquad (3) \begin{bmatrix} a & 1 \\ 3 & a \end{bmatrix}$$

2. For $A = \begin{bmatrix} 4 & -2 \\ 3 & -3 \end{bmatrix}$, and $B = \begin{bmatrix} 6 & 5 \\ 8 & 3 \end{bmatrix}$, calculate

- (1) $\det A$, (2) $\det B$, (3) $(\det A)(\det B)$ based on (1-2),
- (4) AB, and (5) det(AB) based on (4).

3. For $A = \begin{bmatrix} 101 & 100 \\ 100 & 99 \end{bmatrix}$, and $B = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}$, calculate the followings.

- (1) $\det A$ (2) $\det B$ (3) $\det(A^2)$ (4) $\det(A^2B)$ (5) $\det(A^3B^2A^4)$
- 4. For $k=1,2,3,\ldots$, find each of the following powers. (Guess a general form and prove that your expectation is true by mathematical induction.)
 - $(1) \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}^k \qquad (2) \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}^k \qquad (3) \begin{bmatrix} 2 & a \\ 0 & 2 \end{bmatrix}^k$
- 5. *Let n be an integer with $n \geq 2$ and $A = [a_{ij}]$ an $n \times n$ matrix (so the (i,j)-entry of A is a_{ij} for any pair $i,j=1,\ldots,n$). Assume that A has the property that for any $n \times n$ matrix B, the equation AB = BA holds. Prove that there is a scalar s such that A = sI. Here, I is the $n \times n$ identity matrix.

(Hint: The idea of a proof is similar to the case of 2×2 matrices, while it is more difficult to write down the proof clearly.)

^{*}Problem no.5 is excluded from the problems for submission.

Recitation 2, Answer

1. (1) Eigenvalues: $\lambda = 0, -3$.

Eigenvectors associated with $\lambda=0$: $\begin{bmatrix} 2k\\ -3k \end{bmatrix}$ $(k\neq 0).$

Eigenvectors associated with $\lambda = -3$: $\begin{bmatrix} k \\ -3k \end{bmatrix}$ $(k \neq 0)$.

(2) Eigenvalues: $\lambda = 1, 6$.

Eigenvectors associated with $\lambda=1$: $\begin{bmatrix} 4k\\-k \end{bmatrix}$ $(k\neq 0).$

Eigenvectors associated with $\lambda = 6$: $\begin{bmatrix} k \\ k \end{bmatrix}$ $(k \neq 0)$.

(3) Eigenvalues: $\lambda = a \pm \sqrt{3}$.

Eigenvectors associated with $\lambda = a + \sqrt{3}$: $\begin{bmatrix} k \\ \sqrt{3}k \end{bmatrix}$ $(k \neq 0)$.

Eigenvectors associated with $\lambda = a - \sqrt{3}$: $\begin{bmatrix} k \\ -\sqrt{3}k \end{bmatrix}$ $(k \neq 0)$.

- $2. \ (1) \quad -6 \qquad (2) \quad -22 \qquad (3) \quad 132$
 - $\begin{pmatrix}
 4
 \end{pmatrix}
 \begin{bmatrix}
 8 & 14 \\
 -6 & 6
 \end{bmatrix}$ (5) 132
- 3. (1) -1
- (3) 1

- (4) 2
- (5) -4

- (4) 2 (5) -44. (1) $\begin{bmatrix} 2^k & 0 \\ 0 & 5^k \end{bmatrix}$ (2) $\begin{bmatrix} 1 & ka \\ 0 & 1 \end{bmatrix}$ (3) $\begin{bmatrix} 2^k & k2^{k-1}a \\ 0 & 2^k \end{bmatrix}$
- 5. Omitted.