Labs **Optimization for Machine Learning**Spring 2020

EPFL

School of Computer and Communication Sciences

Martin Jaggi & Nicolas Flammarion
github.com/epfml/OptML_course

Problem Set 10, due May 15, 2020 (Duality)

Prove the following property from the lecture slides: If f is closed and convex, then for any x, y,

$$\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{y})$$

 $\Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{x}^\top \mathbf{y}$

Hint: if function $f(\mathbf{x})$ is of the following form: $f(\mathbf{x}) = \max_{\alpha \in \mathcal{A}} f_{\alpha}(\mathbf{x})$, then its subgradient is given by

$$\partial f(\mathbf{x}) = \mathbf{Co} \left[\bigcup \left\{ \partial f_{\alpha}(\mathbf{x}) | f_{\alpha}(\mathbf{x}) = f(\mathbf{x}) \right\} \right],$$

where \mathbf{Co} is taking a convex hull of the set.