TD2: ÉQUATIONS DE CAUCHY-RIEMANN

Exercice 1 (similitudes du plan). Soit $M \in \mathcal{M}_2(\mathbb{R})$ une matrice, notée $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, et soit f l'application linéaire de \mathbb{R}^2 dans lui-même dont M est la matrice dans la base canonique. On munit \mathbb{R}^2 du produit scalaire canonique, noté $\langle -, - \rangle$.

- 1) Écrire une équation sur a, b, c et d équivalente au fait que f envoie les vecteurs (1,0) et (0,1) sur des vecteurs orthogonaux. Même question avec (1,1) et (1,-1).
- 2) Résoudre le système de deux équations obtenu à la question (1), en fonction de a et b. On pourra multiplier la deuxième équation par c^2 et utiliser la première pour éliminer d, afin de se ramener à une équation du second degré en c^2 .
- 3) Soit M une matrice vérifiant les conditions précédentes. Montrer que pour tous $u, v \in \mathbb{R}^2$, on a $\langle f(u), f(v) \rangle = (a^2 + b^2) \langle u, v \rangle$.
- 4) Rappelons que l'angle non-orienté entre deux vecteurs non nuls $u,v\in\mathbb{R}^2$ est l'unique $\theta(u,v)\in[0,\pi]$ vérifiant $\cos(\theta(u,v))=\frac{\langle u,v\rangle}{\|u\|\|\|v\|}$. Rappeler pourquoi cet angle est bien défini.
- 5) Déterminer les M telles que f préserve les angles non-orientés.
- 6) En identifiant \mathbb{R}^2 à \mathbb{C} comme d'habitude (via $(x,y) \mapsto x+iy$), montrer que f préserve les angles non-orientés si et seulement si f est de la forme $z \mapsto \alpha z$ ou $z \mapsto \alpha \bar{z}$, pour $\alpha \in \mathbb{C}$.
- 7) L'angle orienté entre deux vecteurs $u, v \in \mathbb{R}^2$ est $\pm \theta(u, v) \in [-\pi, \pi]$, où \pm est le signe de $\det(u, v)$ (vous pouvez vérifier la cohérence de cette définition avec votre définition préférée). Parmi les applications ci-dessus, lesquelles préservent les angles orientés ?

Exercice 2. Pour chacune des fonctions de $\mathbb C$ dans $\mathbb C$ suivantes, déterminer les points de $\mathbb C$ où la fonction est $\mathbb C$ -dérivable :

- 1) $f(x+iy) = x^2 + 2x y^2 + 2i(1+x)y$, 2) $g(x+iy) = y^2\sin(x) + iy$,
- 3) $h(x+iy) = x^3y^2 + ix^2y^3$, 4) $k(x+iy) = \frac{x}{x^2+y^2} i\frac{y}{x^2+y^2}$,
- 5) $l(x+iy) = (-e^x \sin(y) + 3) + i(e^x \cos(y) 5),$

Aux points où elle existe, donner leur dérivée en fonction de z = x + iy.

Exercice 3. Soit f la fonction de \mathbb{C} dans \mathbb{C} définie par $f(x+iy) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$. Pour quelles valeurs de $a, b, c, d \in \mathbb{R}$ la fonction f est-elle holomorphe sur \mathbb{C} ?

Exercice 4. Soit u la fonction de \mathbb{R}^2 dans \mathbb{R}^2 définie par $u(x,y)=xy^2-x^3/3$.

- 1) Montrer que u est harmonique.
- 2) Trouver les fonctions v telles que $f: x+iy \mapsto u(x,y)+iv(x,y)$ soit holomorphe.
- 3) Pouvez-vous exprimer f directement en fonction de z = x + iy?
- 4) Reprendre les questions précédentes avec $u(x,y) = 2x^3 6xy^2 + x^2 y^2 y$.

Exercice 5. Les paramètres $a, b, c \in \mathbb{R}$ étant fixés, soit u la fonction de \mathbb{R}^2 dans \mathbb{R}^2 définie par $u(x,y) = ax^2 + bxy + cy^2$.

- 1) À quelles conditions sur a, b et c la fonction u est-elle harmonique?
- 2) Trouver les fonctions v telles que $f: x + iy \mapsto u(x,y) + iv(x,y)$ soit holomorphe.
- 3) Pouvez-vous exprimer f directement en fonction de z = x + iy?

Exercice 6. Soit f une fonction holomorphe sur un ouvert U de \mathbb{C} , et notons f(x+iy)=u(x,y)+iv(x,y) comme d'habitude. Supposons que $\partial_x u+\partial_y v=0$. Montrer que f' est constante.

Exercice 7. Montrer que si la partie réelle d'une fonction holomorphe sur un ouvert connexe U est constante, alors f est constante sur U.

Exercice 8. Soit f une fonction d'un ouvert U de \mathbb{C} dans \mathbb{C} . On considère f(z) comme une fonction de $(x,y) \in \mathbb{R}^2$ via z=x+iy.

1) Montrer que les équations de Cauchy-Riemann peuvent se réécrire sous la forme plus compacte:

$$\partial_x f + i \partial_y f = 0.$$

On note $\partial_{\bar{z}}f := \frac{1}{2}(\partial_x f + i\partial_y f)$ et $\partial_z f := \frac{1}{2}(\partial_x f - i\partial_y f)$.

- 2) Vérifier que $\partial_x f = \partial_z f + \partial_{\bar{z}} f$ et $i\partial_y f = \partial_{\bar{z}} f \partial_z f$, puis que $\overline{\partial_z f} = \partial_{\bar{z}} \overline{f}$ et $\overline{\partial_{\bar{z}} f} = \partial_z \overline{f}$ (où \overline{f} désigne la fonction $z \mapsto \overline{f(z)}$).
- 3) Supposons que f est \mathbb{R} -différentiable en $z_0 \in U$. Montrer que f est \mathbb{C} -dérivable en z_0 si et seulement si $(\partial_{\bar{z}} f)(z_0) = 0$, et qu'alors $f'(z_0) = (\partial_z f)(z_0)$.
- 4) Utiliser les questions précédentes pour retrouver le fait que si f est \mathbb{C} -dérivable en $z_0 \in U$, \bar{f} l'est aussi si et seulement si $f'(z_0) = 0$.
- 5) Vérifier que si g est définie (sur \overline{U}) par $g(z) = f(\overline{z})$, on a, pour tout $z_0 \in \overline{U}$, $(\partial_{\overline{z}}g)(z_0) = (\partial_z f)(\overline{z_0})$. En déduire que si f est \mathbb{C} -dérivable en z_0 , alors $z \mapsto \overline{f(\overline{z})}$ est \mathbb{C} -dérivable en $\overline{z_0}$
- 6) Montrer que si f est de classe C^2 , alors $4\partial_{\bar{z}}\partial_z f = 4\partial_z\partial_{\bar{z}}f = \partial_x^2 f + \partial_y^2 f$.

Exercice 9. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction telle que f(x+iy) soit un polynôme en x et en y. Montrer que f est holomorphe si et seulement si c'est un polynôme. On pourra écrire f en fonction de z = x + iy et de $\bar{z} = x - iy$.