ANO: 10° ANO DATA: NOV

TEMA: INTRODUÇÃO À LÓGICA BIVALENTE.

TIPO: FICHA DE TRABALHO Nº6

LR MAT EXPLICAÇÕES

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

p	q	$p \lor q$
V	V	F
V	F	V
F	V	V
F	F	F

p	q	$p \Longrightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

p	~ p
V	F
F	V

p	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Símbolo	Negação
٨	V
-	≠
A	3

Símbolo	Negação
>	≤
<	≥
€	∉

$$\sim (p \Longrightarrow q) \Longleftrightarrow \sim (p \land \sim q) \Longleftrightarrow \sim p \lor q$$

p	q	$p \wedge q$	$p \lor q$
<i>P.U.</i>	P.U.	P. U.	P . U .
P.U.	P.N.U	P. N. U.	P. U.
P. U.	Ι.	<i>I</i> .	P . U .
P.N.U.	P.N.U.	P. N. U.	P. N. U.
P.N.U	I.	I.	P. N. U.
I.	Ι.	I.	I.

Classificação das condições:

- P. U. → possível universal;
- $P.N.U. \rightarrow \text{possível não universal;}$
- *I.* → impossível.

1. Classifica as expressões seguintes como designação e proposição.

1.1)
$$x + 1$$

1.2)
$$\sqrt{2}$$

1.3)
$$3x + 1 > 4$$

1.4)
$$2 \neq 1 + 4$$

1.5)
$$4x + y < 4$$

1.7)
$$\pi + \sqrt{3}$$

1.8)
$$\pi^2 < y$$

- 2. Considera as proposições:
 - a: "10 é um número par"
 - b: "9 é um número primo"
 - c: "Nenhum número primo é par"
 - 2.1) Traduz em linguagem corrente as proposições:
 - a.) $a \wedge b$

b.) $\sim a \vee b$

c.) ~*c*

d.) $\sim b \implies c$

e.) $a \Leftrightarrow b$

- f.) $(a \land b) \Rightarrow b$
- 2.2) Indica o valor lógico de cada uma das proposições:
 - a.) $a \wedge b$

b.) \sim ($a \lor b$)

c.) $(a \lor c) \Rightarrow \sim b$

 $d.) (a \land \sim b) \Longrightarrow c$

e.) $(a \lor c) \Longrightarrow \sim b$

f.) $\sim (\sim c \implies \sim a) \land (\sim b \lor c)$

3. Considera as proposições:

$$a:(-2)^3<-2$$

$$b: 1 + 2 \times (-3) = -9$$

c: "11 é um número primo"

$$d: 3 = \sqrt{25} - \sqrt[3]{8}$$

- 3.1) Indica o valor lógico de cada uma das proposições.
- 3.2) Determina o valor lógico das proposições:

a.)
$$a \wedge b \wedge \sim c$$

b.)
$$\sim (c \Longrightarrow \sim d) \land b$$

c.)
$$a \lor b \lor \sim d$$

$$d.) (\sim c \Rightarrow d) \Leftrightarrow (d \Rightarrow \sim b)$$

e.)
$$\sim (a \wedge d)$$

f.)
$$\sim$$
 ($c \vee b$) $\vee \sim$ ($a \wedge \sim d$)

$$g.) b \Longrightarrow (a \lor d)$$

h.)
$$[a \land (b \lor \sim d)] \Longrightarrow (c \land d)$$

4. Sabendo que a proposição $\sim (p \lor q) \land \sim (\sim r)$ é verdadeira, conclui, justificando, qual é o valor lógico das proposições $p, q \in r$.

- 5. Determina o valor lógico de p, q e r, sabendo que:
 - 5.1) $p \wedge q \wedge \sim r$ é verdadeira

5.2) $\sim (p \land q) \lor r$ é falsa

5.3) $\sim p \implies (q \implies r)$ é falsa

- 5.4) $p \Rightarrow (\sim q \lor \sim r)$ é falsa
- 5.5) $\sim [\sim p \lor \sim (q \land r)]$ é verdadeira
- 6. Para cada uma das condições seguintes indica se é universal, possível não universal ou impossível em $\mathbb{N}.$

6.1)
$$x^2 = 0$$

6.2)
$$x^2 = -1$$

6.3)
$$x^2 < 4$$

6.4)
$$x^2 > -3$$

6.5)
$$x^2 = -1 \land x^2 > -3$$

6.6)
$$x^2 = -1 \lor x^2 > -3$$

6.7)
$$x^2 > -3$$

6.8)
$$x^2 \ge -3 \land x^2 > 0$$

7. Considera as condições:

$$a(x)$$
: $3x - 5 < -2$, $b(x)$: $|x| > 1$, $c(x)$: $x^2 \ge 0$, $d(x)$: $x^2 + 1 < 0$

$$c(x)$$
: $x^2 \ge 0$

$$l(x): x^2 + 1 < 0$$

- 7.1) Escreve a negação de cada uma das condições dadas.
- 7.2) Classifica cada uma das condições e suas negações em N.
- 8. Sejam $p \in q$ duas proposições tais que é falsa a proposição $p \Leftrightarrow (\sim q)$.

Indica o valor lógico das seguintes proposições.

8.1)
$$\sim (\sim p \Leftrightarrow q)$$

8.2)
$$\sim p \vee q$$

8.3)
$$p \land \sim q$$

- 9. A Inês e a Rita são amigas do Júlio. Sejam p e q as seguintes proposições:
 - p: "O Júlio e a Inês têm a mesma a idade".
 - q: "O Júlio e a Rita têm a mesma idade".

Sabe-se que é verdadeira a proposição $p \land [q \lor \sim (p \lor q)]$.

Indica, justificando, o valor lógico da proposição "A Rita e a Inês têm a mesma idade."

10. Sejam p e q proposições tais que p é falsa e q é verdadeira.

Indica o valor lógico das seguintes proposições.

10.1)
$$p \Rightarrow q$$

10.2)
$$q \Rightarrow p$$

10.3)
$$p \lor q \Rightarrow \sim p$$

11. Escreve, sob a forma de implicação entre duas proposições, cada uma das seguintes afirmações.

- 11.1) "Se o Joaquim comer a sopa, a mãe dá-lhe um doce"
- 11.2) "Serei chamado para a equipa da escola se não faltar aos treinos".
- 11.3) "Verás Braga por um canudo só se fores ao Santuário do Bom Jesus do Monte".
- 12. A Valéria lançou um dado, com as faces numeradas de 1 a 6.

Sejam p, q e r as seguintes proposições:

- p: "Saiu face com número par"
- q: "Saiu face com número primo"
- r: "Saiu face com número divisor de 8"

Indica que número saiu no lançamento do dado, sabendo que é verdadeira a proposição:

$$(p \lor q) \land \sim [(q \land r) \lor \sim r]$$

- 13. Determina o valor lógico das proposições p, q e r em cada um dos casos seguintes.
 - 13.1) Supõe que a proposição $(q \Rightarrow p \land r) \land \sim (r \Rightarrow p)$ é verdadeira.
 - 13.2) Supõe que a proposição $(p \land \sim q) \lor (p \land r) \Rightarrow r$ é falsa.
- 14. Sejam p, q e r as seguintes proposições:
 - p: "Esta tarde vou estudar Matemática"
 - q: "Esta noite vou ver televisão"
 - r: "Esta noite vou jogar no computador"
 - 14.1) Traduz, em linguagem corrente, as seguintes proposições:
 - a.) $p \Rightarrow q \wedge r$
 - b.) $p \land \sim r \implies q$
 - c.) $q \Leftrightarrow \sim r$
 - 14.2) Traduz, em linguagem simbólica, as seguintes proposições.
 - a.) "Se esta tarde estudar Matemática, então à noite vejo televisão ou jogo no computador".
 - b.) "Se esta tarde não estudar Matemática, então à noite não vejo televisão nem jogo no computador".

