Exercice nº 1

On considère le SD défini par:

2(M-1) (Mm+ Mm) - 2(24+1)M+30=0 et u=3 et u=5.

1) Expersion de un en fortrade n.

La 5D est défini par une relation linéaire son 3 termes corrécutifs mais les coefficients me sont pas constants. Nons sommes donc dans le cas de l'exercice 5 du TD2 et en cherche un lien simple entre deux termes consécritifs pour amorcer une récurrence.

16=3, M=5

n=0 => 2x(-1)(u2+u1)-2u6+30=0

2 uz = 30 - 2 uo = 2 u1 = 30 - 6 - 10 = 14 => 12 = 7

us est imposé par l'évorcé : us = 9

Enfin, pour M=2: 2 (4+43)-2x54, +30=0=) 44= 10x7-30-2x9 = M

On obtient donc: 45=3; 4=5; 4=7; 4=9; 4=11

supposons que (un) nEIN soit arithmétique de raison 2:

44EN m=24+3 (P)

La propriété (P) est vraie aux rangs 0 à 4.

Supposons-la vraie jusqu'an rang-p: $\forall k \leq p$ $u_k = 2k+3$

Jan définition, pour k=p1: 2 (k-1) (uk1 + uk1)-2 (2k+1) uk+30=0.

soit: 2(p-2)(m+ up)-2(2p-2+1)m-+30=0

d'ai: 2(p-2)(up.+2p+3)-2(2p-1)(2p-2+3)+30=0

 $2(p-2)u_{p+1} = -2(p-2)(2p+3) + 2(2p-1)(2p+1) - 30$ $= -2(2p^2 + 3p - 4p-6) - 30 + 2(4p^2 - 1)$

= 8p-2-30-4p+2p+12=4p+2p-20 polysone

à factorises: $\Delta = 4+18\times20 = 364 = 18^2 = 2$ $p_1 = \frac{-2+18}{8} = 2$ et $p_2 = -\frac{7}{2}$

donc: 2(1-2) apr = 4(1-2)(1+32) = 2(1-2)(2p+5).

(P) est vraic jusqu'au rong 4 donc on s'intérenc aux rongs saivants: [++2 => up+= 2p+5 = 2(p+1)+3 donc (P) vraic au rang p+1. 2) Nature du SD

Il est arithmétique de raison 2, soit en= 4+2, duc divergent.

Remarque:

La relation qui définit le 5D a me particulairé: ses coefficients dépendent de n mais leur somme est constante, ce qui vent dire qu'il existe une suite constante qui vérifie la relation.

En effet: 3cetr/4.61N n=c => 2(n-1)(c+c)-2(2n+1)c+30=0.

soit: 4nc-4c-4nc-2c+30=0 (=) -6c+30=0 (=) c=5.

On part alors étudier la suite (v.) telle que: 4.EIN v= c-5

et a trouve: $2(n-1)(v_{n+1}+v_{n+1})-2(2n+1)v_n=0$ (apès un calcul pénible) ce qui n'est par très intéressant puisque le cours ne permet pas de traiter ce cas directement. Il fant revenir à la méthode exploratione: calcul des premiers termes, poser une hypothère et la démortrer par récurrerce.

on considère le SD défini par un= flux) et f(x)= h(x+1) et 0< us.

1) bonvergerce

si ce 50 converge vous l'récl abris l'est un point fixe donc est solution de : l= ln(l+1)

Out solution évidente.

Par ailleurs, on remerque que $f'(x) = \frac{1}{1+x} < 1$ pour $x \in]_{0,+\infty}[$ or h(x+1) est strictement croinsonte et $0 < y_0$ donc l'ensemble des valeurs prises par le SD (orbite $\theta(y_0)$) est virclus dans $J_{0,+\infty}[$ Le SD est donc défini par une fourtion à désirée bornée par 1 strictement en valeur absolue, donc il converge.

2) Limite

Le SD converge et admet un point fixe unique mul duc limu =0.

Exercice 3

Doit le SD Défini par une = 3 mm - 8 mm + 5 mm + 1 (R)

4: donné pour -1< i < 4

1) bonvergence

Supposono que ce SD converge: $\exists l \in \mathbb{R} / \lim_{n \to \infty} u_n = l$ de même $\forall k \in \mathbb{N}$ $\lim_{n \to k} u_{n+k} = l$ donc, en faisont tendre n vers l'infini dans (\mathbb{R}) : l = 3l - 8l + 5l + l + 1Noit: 0 = 1 contradiction qui fait tember l'hypothère: ce SD divèrge.

2) Limite: sans objet prinque le SD diverge.

on considère le SD défini par $u_{m_1} = \frac{u_{m_1} - 12}{2u_{m_1} - 9}$ et us donné hors valeurs interdites. (VI)

Remarque: les valeurs interdites sont en nombre infini dénombrable; ce sont toutes les valeurs de us conduisant à un un= 3/2.

1) Convergence

on pose: E = { (Mm) mean / mm = \frac{u_1 - 12}{2u_1 - 9}; u_0 hour VI }.

Supposons qu'il existe une suite constante dans É notée $(C_n)_{n \in IN}$: $\forall n \in IN$ $C_n = C$ et $C = \frac{C-12}{2C-9}$ C = (2C-9) = C-12

et donc: $2c^2-9(=c-12)=> 2c^2-10c+12=0 (=> c^2-5c+6=0)$ On remarque que 2+3=5 et 2x3=6 donc $c^2-5c+6=(c-2)(c-3)$ Il existe donc deux suites constantes dans \tilde{E} .

distinguous donc deux cas:

" INEN/ 4 = 3

On bles m=0 et u=3: (u,) new est constante.

On bien $n \neq 0$ et $u_n = 3 = \frac{u_{n-1} - 12}{2u_n - 9} = 0$ $6u_{n-1} - 27 = u_{n-1} - 12$

d'an: 54= 15 00 4=3.

(un) new est constante.

Conclusion: la seule suite de E qui admet au moins un terme égal à 3 est constante, elle converge a fortion.

* the IN un \$3. On construit on = m-2 pour but n.

Sa suite: $v_{r+1} = \frac{u_{n+1}-2}{u_{n+1}-3}$

Or: $u_{m+1} = \frac{u_m - 12}{2u_m - 9} - 2 = \frac{u_m - 12 - 2(2u_n - 9)}{2u_m - 9} = \frac{-3u_m + 6}{2u_m - 9}$

de même: $u_{m+1} = \frac{u_m - 12}{2u_m - 9} = \frac{u_m - 12 - 3(2u_n - 9)}{2u_m - 9} = \frac{-5u_n + 15}{2u_n - 9}$

d'ai : $V_{M+1} = \frac{M_{M+1}-2}{M_{M+1}-3} = \frac{-3u_m+6}{-5u_m+15} = \frac{-3(M_m-2)}{-5(M_m-3)} = \frac{3}{5}V_m$

(Un) nexu est donc géométrique de raison 3 < 1 donc tend vers o.

Le cours nous permet alors d'affirmer que (en) converge.

Or $v_{m} = \frac{u_{m}-2}{u_{m}-3} = 0$ $(u_{m}-3)$ $v_{m} = u_{m}-2 = 0$ $u_{m}(v_{m}-1) = 3v_{m}-2$

Supposons qu'il ceinte n tel que : $v_n = 1$ (a) $\frac{u_n-2}{u_n-3} = 1$ (contradiction donc : $v_n \neq 1$ four tout n et donc :

or (vn) est glométrique de raison 3/5 donc:

$$M_{M} = \frac{3v_{o}(\frac{3}{5})^{\frac{1}{2}} - 2}{v_{o}(\frac{3}{5})^{\frac{1}{2}} - 1} = \frac{3(\frac{3}{5})^{\frac{1}{2}} \frac{u_{o}-2}{u_{o}-3} - 2}{\frac{u_{o}-2}{u_{o}-3} (\frac{3}{5})^{\frac{1}{2}} - 1}$$

distinguous deux cas:

· u,=3 alors (u,) es est constante: lim u=3

. $m_s \neq 3$ alors $m_s = \frac{3(m_s - 2)(\frac{3}{5})^{\frac{n}{2}} - 2(m_s - 3)}{(m_s - 2)(\frac{3}{5})^{\frac{n}{2}} - (m_s - 3)}$

d'ai: lim un = 2.

Exercise 5

on considére le SD défini par une flus et f(x)=x2-72+7 et y doné.

1) Orbite 2- periodique

Supposous qu'il existe une orbite 2- périodique $O_2 = \{x_1, x_2\}$: $\forall x \in \{x_1, x_2\}$ $fof(x) = x \neq f(x)$

donc x annule fof(n)-x et n'annule pas f(n)-x f(n) est de degré 2, f(n)-x aumi et fof(n)-x est de degré 4.

Remarque liminaire: si x est un point fixe alors f(x')=x''donc en composant par f: fof(x'')=f(x'')=x''donc x'' arnule fof(x)-x de degré 4

or x'' annule f(x)-x de degré 2

toutes les solutions de f(x)-x=0 annulest fof(x)-x

On pout donc mettre f(x)-x = x2-8x+7 dons l'expression de fof(x)-x:

 $\begin{aligned}
& + \widehat{fof}(n) - x = (x^2 - 7x + 7)^2 - 7(x^2 - 7x + 7) + 7 - x \\
& = (x^2 - 8x + 7 + x)^2 - 7(x^2 - 7x + 7 + x) + \gamma - x \\
& = (x^2 - 8x + 7)^2 + x^2 + 2x(x^2 - 8x + 7) - \gamma(x^2 - 7x + 7) - 7x + \gamma - x \\
& = (x^2 - 8x + 7)(x^2 - 8x + 7 + 2x - 7) + x^2 - 8x + 7 \\
& = (x^2 - 8x + 7)(x^2 - 6x + A)
\end{aligned}$

 $x \in O_2 \Rightarrow \int f(x) \neq x \Rightarrow x^2 - 8x + 7 \neq 0$ = $\int x^2 - 6x + 1 = 0$. $\int f(x) = x \Rightarrow (x^2 - 8x + 7)(x^2 - 6x + 1) = 0$

 $\Delta = 36 - 4 = 32 = (4\sqrt{2})^2 = 3$ $2 = \frac{6 + 4\sqrt{2}}{2} = 3 + 2\sqrt{2} \text{ et } x_2 = 3 - 2\sqrt{2}$

2) Stabilité.

 $f(x) = x^{2} - 7x + 7 \implies f'(x) = 2x - 7$ $f(x) = x^{2} - 7x + 7 \implies f'(x) = 2x - 7$ $f(x) = |f'(x_{1}) f'(x_{2})| = |(2(3 + 2\sqrt{2}) - 7)(2(3 - 2\sqrt{2}) - 7)|$ $= |f'(x_{1}) f'(x_{2})| = |(2(3 + 2\sqrt{2}) - 7)(2(3 - 2\sqrt{2}) - 7)|$ $= |f'(x_{1}) f'(x_{2})| = |(2(3 + 2\sqrt{2}) - 7)(2(3 - 2\sqrt{2}) - 7)|$ $= |f'(x_{1}) f'(x_{2})| = |(2(3 + 2\sqrt{2}) - 7)(2(3 - 2\sqrt{2}) - 7)|$ $= |f'(x_{1}) f'(x_{2})| = |(2(3 + 2\sqrt{2}) - 7)(2(3 - 2\sqrt{2}) - 7)|$

= 31 > 1

b'orbite 0, est donc instable.

(1) en facteur

3) Points d'entrée de l'orbite.

a) Outscident de
$$x_1 = 3+2\sqrt{2}$$
 (on doit retrouver x_2)

Jl est tel que: $f(x) = x_1$ (=> $x^2-7x+7=3+2\sqrt{2}$

=> $x^2-7x+4-2\sqrt{2}=0$.

$$\Delta = 49 - 4(4 - 2\sqrt{z}) = 49 - 16 + 8\sqrt{z} = 33 + 8\sqrt{z}$$
or $8\sqrt{z} = 2 \times 4\sqrt{z}$ et $(4\sqrt{z})^2 = 32$ donc: $\Delta = (1 + 4\sqrt{z})^2$
il wint: $\chi_3 = \frac{7 + 1 + 4\sqrt{z}}{2} = 4 + 2\sqrt{z}$

$$\chi_4 = \frac{7 + 1 - 4\sqrt{z}}{2} = 3 - 2\sqrt{z} = \chi_2$$

b) articident de
$$x_1 = 3-2\sqrt{2}$$
 (an doit hetrouver x_1)

Hest tel que: $f(x) = x_2$ (a) $x^2 - 7x + 7 = 3 - 2\sqrt{2}$

(b) $x^2 - 7x + 4 + 2\sqrt{2} = 0$

$$\Delta = 49 - 4(4+2\sqrt{2}) = 49 - 16 - 8\sqrt{2} = 33 - 8\sqrt{2} = 32 + 1 - 2 \times 4\sqrt{2}$$
$$= (4\sqrt{2})^{2} + 1 - 2 \times 4\sqrt{2} = (1 - 4\sqrt{2})^{2}$$

il viest:
$$x_5 = \frac{7+1-4\sqrt{2}}{2} = \frac{8-4\sqrt{2}}{2} = 4-2\sqrt{2}$$

$$x_6 = \frac{7+4\sqrt{2}-1}{2} = 3+2\sqrt{2} = x_1$$

Enclusion: deux valeurs déstincte de x, et x2 conduisent en empos à b'orbite 2-périodique Oz, 4+2√2 et 4-2√2.

- 4) Représentation graphique de f: 6f.
 - a) $f(x) = x^2 7x + 7$ f est une fortion polynomiale, elle est donc définie, continue et dérivable sur 17.
 - b) f'(x) = 2x-7 La dérivée s'annule pour $x = \frac{7}{2} = \frac{3}{15}$ et $f(\frac{7}{2}) = (\frac{7}{2})^2 7\frac{7}{2} + 7 = \frac{49-49x^2+28}{4} = -\frac{49+28}{4} = -\frac{21}{4} = -5,25$
 - c) bes points fixes de f, abscines et ordonnées des points d'interrection de by avec la premieu binectrice à annulert xi-8x+7. 1 est racine évidente (somme des coefficients rulle), la reconce est donc 7.

- d) f(x) est un polynôme du second degré, by est donc une parabole dont la concavité est tournée vers le hant (coef de x^2 positif). by est donc symétrique par rapport à l'axe $x = \frac{7}{2}$. Il suffit donc de l'étudier sur $[\frac{7}{2}, +\infty]$ et de compléter par symétrie.
- e) Zablean de variation

6)	000											
	×	7/2	7		+∞			ادر	zmétr	ie.		
	f '	-0-	+				8	×	×		f(z)	-
	7	-14	7	A	+00		1,5 3,5 2,5	0	5 6		- 3 7 1	PF)
				7(4) 1							Ef	Δ
Ork	rite:			9							,	
2/2	2×1/	1=2,8		2			1					
3+2√3 3-2√	2 x 0,2			7						3	•) ? F
		-		0		2 3			6	7	8	9 2
				-1 -2 -3 -4 -4 -5				1	/			