Proof HW

Parker Whaley

March 8, 2016

$1 \quad 2.1.13$

Theorem. For all $a \neq 0, (a^{-1})^{-1} = a$. Proof

Consider a non-zero number, lets call it a. Note that by the definition of multiplicative inverse $a^{-1} \cdot a = 1$. Note $a^{-1} \cdot a = 1 \Rightarrow (a^{-1})^{-1} \cdot a^{-1} \cdot a = (a^{-1})^{-1}$. Noting that $(a^{-1})^{-1} \cdot a^{-1} = 1$ by the definition of multiplicative inverse we see that $(a^{-1})^{-1} \cdot a^{-1} \cdot a = (a^{-1})^{-1} \Rightarrow a = (a^{-1})^{-1}$. Since we have concluded that $a = (a^{-1})^{-1}$ for a arbitrary non-zero a we conclude that the theorem holds for all non-zero numbers. \Box

2 2.1.15

Note that $1 \cdot 1 = 1$. Also note that $1^{-1} \cdot 1 = 1$ by the definition of multiplicative inverse. We conclude that one is a value for the multiplicative inverse of one, and as shown in class there is only one multiplicative inverse for a number thus $1^{-1} = 1$.

3 2.1.16

Theorem. For all $a \in \mathbb{R}, (-1) \cdot a = -a$.

Proof.

Select a arbitrary element of \mathbb{R} lets call it a. First note that by the definition of additive inverse 1+(-1)=0. Note $1+(-1)=0 \Rightarrow a(1+(-1))=a\cdot 0 \Rightarrow a+(-1)\cdot a=0 \Rightarrow (-a)+a+(-1)\cdot a=(-a)+0 \Rightarrow (-1)\cdot a=(-a)$. Since we have shown that the premise holds for an arbitrary element of \mathbb{R} it must hold for all elements of \mathbb{R} .

1