In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df = pd.read_csv("../../CSV/salary.csv",index_col=0)
```

In [6]:

df.head()

Out[6]:

	age	Workclass	fnlwgt	education	education- marital- num status		occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	F€
4										•

In [7]:

```
df.describe(include="all")
```

Out[7]:

	age	Workclass	fnlwgt	education	education- num	marital- status	occupation	re
count	1032.000000	1032	1.032000e+03	1032	1032.000000	1032	1032	
unique	NaN	6	NaN	16	NaN	7	14	
top	NaN	Private	NaN	HS-grad	NaN	Married- civ- spouse	Prof- specialty	
freq	NaN	766	NaN	338	NaN	472	143	
mean	37.954457	NaN	1.918318e+05	NaN	10.221899	NaN	NaN	
std	12.825353	NaN	1.074243e+05	NaN	2.501636	NaN	NaN	
min	17.000000	NaN	2.117400e+04	NaN	1.000000	NaN	NaN	
25%	28.000000	NaN	1.155792e+05	NaN	9.000000	NaN	NaN	
50%	37.000000	NaN	1.807065e+05	NaN	10.000000	NaN	NaN	
75%	46.000000	NaN	2.461932e+05	NaN	13.000000	NaN	NaN	
max	90.000000	NaN	1.033222e+06	NaN	16.000000	NaN	NaN	

In [8]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1032 entries, 0 to 1119
Data columns (total 15 columns):
                  1032 non-null int64
age
Workclass
                  1032 non-null object
                  1032 non-null int64
fnlwgt
education
                  1032 non-null object
                  1032 non-null int64
education-num
                  1032 non-null object
marital-status
                  1032 non-null object
occupation
                  1032 non-null object
relationship
                  1032 non-null object
race
                  1032 non-null object
sex
capital-gain
                  1032 non-null int64
capital-loss
                  1032 non-null int64
hours-per-week
                  1032 non-null int64
native-country
                  1032 non-null object
Income
                  1032 non-null int64
dtypes: int64(7), object(8)
memory usage: 129.0+ KB
```

```
In [9]:
```

```
df.isnull().sum()
Out[9]:
                   0
age
Workclass
                   0
fnlwgt
                   0
education
                   0
education-num
                   0
marital-status
                   0
occupation
                   0
relationship
                   0
                   0
race
                   0
sex
capital-gain
                   0
capital-loss
                   0
hours-per-week
                   0
native-country
                   0
Income
                   0
dtype: int64
In [13]:
df["Income"].value_counts()
Out[13]:
     778
0
1
     254
Name: Income, dtype: int64
In [9]:
cat_df = df.select_dtypes("object")
num_df = df.select_dtypes("int64")
In [11]:
from sklearn.preprocessing import LabelEncoder
In [13]:
for col in cat_df:
    le = LabelEncoder()
    cat_df[col] = le.fit_transform(cat_df[col])
```

In [15]:

cat_df.head()

Out[15]:

	Workclass	education	marital-status	occupation	relationship	race	sex	native-country
0	5	9	4	0	1	4	1	28
1	4	9	2	3	0	4	1	28
2	2	11	0	5	1	4	1	28
3	2	1	2	5	0	2	1	28
4	2	9	2	9	5	2	0	4

In [22]:

df = pd.concat([cat_df,num_df],axis=1)

In [23]:

df.head()

Out[23]:

	Workclass	education	marital- status	occupation	relationship	race	sex	native- country	age	fnlwgt	€
0	5	9	4	0	1	4	1	28	39	77516	
1	4	9	2	3	0	4	1	28	50	83311	
2	2	11	0	5	1	4	1	28	38	215646	
3	2	1	2	5	0	2	1	28	53	234721	
4	2	9	2	9	5	2	0	4	28	338409	
4											•

Some visualization

In [24]:

cat_col = ("Workclass,education,marital-status,occupation,relationship,race,sex,native-coun

```
In [25]:
```

```
cat_col
```

```
Out[25]:
```

```
['Workclass',
  'education',
  'marital-status',
  'occupation',
  'relationship',
  'race',
  'sex',
  'native-country']
```

In [26]:

In [27]:

num_col = ("age,fnlwgt,education-num,capital-gain,capital-loss,hours-per-week").split(",")

In [28]:

Train Test Split

```
In [29]:
```

```
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
```

In [33]:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,confusion_matrix
```

In [34]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
```

In [35]:

```
log = LogisticRegression()
log.fit(X_train,y_train)
```

Out[35]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=None, solver='warn', tol=0.0001, verbose=0, warm start=False)
```

```
In [36]:
log.score(X_test,y_test)
Out[36]:
0.8064516129032258
In [39]:
y_pred = log.predict(X_test)
y_pred
Out[39]:
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
    0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
    0, 0], dtype=int64)
In [40]:
log.predict_proba(X_test)
Out[40]:
array([[0.78289909, 0.21710091],
    [0.85198354, 0.14801646],
    [0.4454658, 0.5545342],
    [0.75771233, 0.24228767],
    [0.83252627, 0.16747373],
    [0.89213857, 0.10786143],
    [0.80077115, 0.19922885],
    [0.78079358, 0.21920642],
    [0.70564887, 0.29435113],
    [0.76828643, 0.23171357],
    [0.82301475, 0.17698525],
    [0.47687899, 0.52312101],
    [0.79644364, 0.20355636],
    [0.80810884, 0.19189116],
    [0.76485285, 0.23514715],
    [0.81625166, 0.18374834],
    [0.91743654, 0.08256346],
    [0.76957656. 0.23042344].
```

Evaluation metrics

In [41]:

```
print(classification_report(y_test,y_pred))
              precision
                           recall f1-score
                                               support
           0
                   0.81
                             0.98
                                        0.89
                                                   238
           1
                   0.77
                             0.24
                                        0.36
                                                    72
                                        0.81
                                                   310
    accuracy
                   0.79
                             0.61
                                        0.62
                                                   310
  macro avg
weighted avg
                   0.80
                             0.81
                                        0.76
                                                   310
In [42]:
tn, fp, fn, tp = confusion_matrix(y_test,y_pred).ravel()
In [43]:
print(tp,fp,"\n",fn,tn)
17 5
55 233
In [44]:
print("Accuracy:",(tp+tn)/(tp+tn+fp+fn))
Accuracy: 0.8064516129032258
```

In []: