

Introdução à Inteligência Artificial

2018/2019

Época de Recurso Duração 2h

Nome $(\textit{Legivel})$:	Number:
Assinatura:	

Pergunta	Pontos	Resultado
1	20	
2	20	
3	20	
4	20	
5	20	
	100	

Considere um agente que vive num mundo 2D como apresentado na figura, em que as células brancas estão livres e as negras representam obstáculos. O agente encontra-se na posição **S** e o objectivo é chegar ao ponto **T**, usando vários métodos de procura. A cada passo o agente pode mover-se uma célula para Norte, Este, Sul e Oeste. A **ordem de expansão** dos nós é igual à ordem pela qual os movimentos foram descritos. Cada movimente tem um custo unitário. Os métodos heurísticos usam a distância de Manhattan (distância no eixo do x mais distância no eixo do y) como heurística.

Indique o caminho encontrado usando os seguintes algoritmos:

- Procura Sôfrega
- Trepa Colinas
- A*

Figura 1: Espaço de procura

Algoritmo	Caminho
Procura Sôfrega	
Trepa Colinas	
A*	

Pergunta 2 20 pontos

Considerando a árvore dada pela figura que se segue, onde os valores associados às folhas correspondem ao resultado da função de avaliação, e admitindo que o primeiro a jogar é o Max.

a) Aplique o algoritmo Min-Max para determinar o valor dos nós intermédios.

Resposta:

b) Indique quais os ramos que seriam cortados, caso adoptasse o mecanismo de corte Alfa-Beta.

Resposta:			

Considere a distribuição de dados (pontos) da figura, um de épsilon equivalente ao raio da circunferência, um número mínimo de pontos =3. Aplique o algoritmo DBSCAN a partir do ponto inicial $\mathbf A$ de forma a identificar aos pontos alcançáveis (reachable) e centrais (core) do cluster bem como os "outliers".

Ponto	Tipo	Ponto	Tipo
A		В	
С		D	
E		F	
G		Н	
I		J	

Considere a Rede Neuronal Artificial apresentada na figura que se segue:

Considere ainda o seguinte exemplo de treino onde i_1 e i_2 representam os valores de entrada e o_1 , o_2 representam os valores de saída desejados.

Admitindo que os valores dos pesos de cada ligação são $w_1, w_2, ..., w_8$, que a função de activação é linear (i.e. f(x)=x), e que a taxa de aprendizagem é 0.1.

a) Qual o valor de o_1 e o_2 associados ao exemplo de treino apresentado?

, •	 -	-	
Resposta:			
_			

b) Aplicando o algoritmo de retropropagação, indique para cada um dos seguintes pesos se este aumenta, diminui ou se mantém: w_5 , w_6 , w_4 , w_2 .

begannes	Ревов ве	cooc adminimos,	ammin	ou be man	ω_{5}	$\omega_0, \omega_4, \omega_2.$	
Resposta	a:						

Os jogos do tipo "tower defense" consistem em defender uma fortaleza que vai sendo atacada por unidades que se movem ao longo de um caminho (ver figura). Para o efeito o jogador dispõe de vários tipos de "torres" que pode colocar no mapa. Cada tipo de torre tem um custo. O jogador inicia o jogo com uma quantidade limitada de recursos. A medida que o jogo vai passando e vai matando adversários, ganha recursos adicionais que lhe permitem comprar e posicionar mais torres.

Figura 2: À esquerda o jogo numa fase inicial; À direita numa etapa mais avançada.

Imagine que pretende optimizar a sua performance num nível de um jogo deste tipo através do uso de um algoritmo evolucionário. Como no jogo original, tal implica decidir ao **longo do tempo e à medida que vai obtendo recursos** que unidades comprar e onde as posicionar. Por simplicidade assuma que: tem acesso a um simulador que se encarrega da mecânica do jogo e que devolve a pontuação obtida; o mapa está dividido em células e que tem uma dimensão de X colunas e Y linhas; o nível é determinista (aparecem sempre os mesmos adversários, pela mesma ordem, nos mesmos instantes, etc); há apenas 4 tipos de unidades; após posicionada uma unidade não pode ser vendida nem substituída.

Como resolveria o problema utilizando uma abordagem evolucionaria?

Resposta:	