ЛАБОРАТОРНАЯ РАБОТА 123

РЕЗОНАНС ТОКОВ В ПАРАЛЛЕЛЬНОМ КОНТУРЕ

Цель работы: исследование резонанса токов в параллельном колебательном контуре с изменяемой емкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

Оборудование: генератор сигналов, источник тока, осциллограф, вольтметры.

ТЕОРИЯ

Схема установки, на которой будем проводить исследование резонанса в электрическом контуре, изображена на Рис. 1. На осциллограф подается напряжение генератора \tilde{E} и напряжение на контуре \tilde{U} . Параллельно контуру включен источник тока на операционном усилителе. Ток затвора полевого транзистора мал, и можно считать

$$\tilde{I} = \frac{\tilde{E}}{R_1} = I_0 \cos(\omega t + \varphi_0), \ I_0 = \frac{E_0}{R_1}$$

Активное сопротивление конденсатора

$$R_{\rm S} = \frac{1}{\omega C} \tan \delta$$
, $\tan \delta < 10^{-3}$

Тогда суммарное сопротивление

$$R_{\Sigma} = R_{\rm L} + R + R_{\rm S}$$

Учитывая, что резонансная частота $\omega_0=\frac{1}{\sqrt{LC}}$, волновое сопротивление $\rho=\sqrt{\frac{L}{c}}$, а добротность $Q=\frac{\rho}{R_\Sigma}=\omega_0\frac{L}{R_\Sigma}=\frac{1}{\omega_0CR_\Sigma}$, можно записать

$$\widetilde{I_C} = \widetilde{I} \frac{Z_L}{Z_L + Z_C} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i\frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)}$$

$$\widetilde{I_C} = \widetilde{I} \frac{Z_C}{Z_L + Z_C} = -iQI_0 \frac{\omega_0}{\omega} \frac{1 + i \tan \delta}{1 + iQ\left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)}$$

$$\widetilde{U} = \widetilde{I} \frac{Z_C Z_L}{Z_L + Z_C} = Q \rho I_0 \frac{\left(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}\right) (1 + i \tan \delta)}{1 + i Q \left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)}$$

В случае когда $|\Delta\omega| \ll \omega_0$ следует $\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0} = \frac{2\Delta\omega}{\omega_0}$.

Тогда, упростив предыдущие выражения, получим

$$\widetilde{I_C} = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_C = \frac{\pi}{2} - \frac{R_L + R}{\rho} - \tan^{-1}(\tau \Delta \omega)$$

$$\widetilde{I_L} = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_L = -\frac{\pi}{2} + \delta - \tan^{-1}(\tau \Delta \omega)$$

$$\widetilde{U} = Q\rho I_0 \frac{e^{i\varphi_U}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \qquad \varphi_U = -\frac{\omega_0}{\omega} \frac{R_L + R}{\rho} + \delta - \tan^{-1}(\tau \Delta \omega)$$

Где $au=rac{2L}{R_{\Sigma}}$ – время релаксации. Наконец, когда $\Delta\omega=0$ уравнения принимают вид:

$$I_C(\omega_0) = QI_0, \qquad \varphi_C = \frac{\pi}{2} - \frac{R_L + R}{\rho}$$

$$I_L(\omega_0) = QI_0, \qquad \varphi_L = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0, \qquad \varphi_U = -\frac{R_L + R}{\rho} + \delta$$

Отсюда следует, что при резонансной частоте $Z_{\mathrm{pes}} = \frac{\mathit{U}(\omega_0)}{\mathit{I}_0} = \mathit{Q} \rho$

ХОД РАБОТЫ

Проверим правильность сборки установки и настроим ее. Запишем параметры установки: $R=3.50~{\rm Om},$ $R_1=1008~{\rm Om}.$

РЕЗОНАНС В КОНТУРАХ С РАЗЛИЧНОЙ ЕМКОСТЬЮ КОНДЕНСАТОРА

Установим напряжение генератора E=300 мВ. Измерим и запишем в таблицу резонансные частоты и соответствующие им напряжения для контуров с семью различными емкостями. Также будем фиксировать изменение напряжения с генератора.

C _n , nF	F _{0n} , kHz	U, V	E, V	L, μH	ρ, Ohm	Z _{res} , Ohm	Q	R _Σ , Ohm	R _{Smax} , Ohm	R _L , Ohm
25.1	32.27	0.435	0.2970	969.1	196.5	1476.4	7.51	26.15	0.196	22.46
33.2	28.07	0.360	0.2969	968.3	170.8	1222.2	7.16	23.86	0.171	20.19
47.3	23.53	0.276	0.2969	967.2	143.0	937.0	6.55	21.82	0.143	18.18
57.4	21.37	0.235	0.2968	966.3	129.7	798.1	6.15	21.09	0.130	17.46
67.5	19.69	0.203	0.2967	967.9	119.7	689.7	5.76	20.79	0.120	17.17
82.7	17.77	0.169	0.2966	970.0	108.3	574.3	5.30	20.42	0.108	16.81
101.6	16.05	0.140	0.2965	967.8	97.6	476.0	4.88	20.01	0.098	16.42
	Average									18.4
	Mean-square error									0.8
		Rand	dom error	1.2						2.0

Последовательно вычислим все недостающие параметры: L, ρ , $Z_{\rm pes}$, Q, R_{Σ} , $R_{\rm Smax}$, $R_{\rm L}$, и тоже запишем их в таблицу. Для параметров катушки также вычислим среднее значение и ошибки.

Установим напряжение генератора E=100 мВ, и проделаем аналогичные измерения и вычисления.

C _n , nF	F _{0n} , kHz	U, V	E, V	L, μH	ρ, Ohm	Z _{res} , Ohm	Q	R_{Σ} , Ohm	R _{Smax} , Ohm	R _L , Ohm
25.1	32.29	0.120	0.1000	967.9	196.4	1209.6	6.16	31.88	0.196	28.18
33.2	28.07	0.096	0.1000	968.3	170.8	967.7	5.67	30.14	0.171	26.47
47.3	23.55	0.071	0.1000	965.6	142.9	715.7	5.01	28.52	0.143	24.88
57.4	21.37	0.058	0.1000	966.3	129.7	584.6	4.51	28.80	0.130	25.17
67.5	19.7	0.049	0.1000	967.0	119.7	493.9	4.13	29.00	0.120	25.38
82.7	17.77	0.039	0.1000	970.0	108.3	393.1	3.63	29.84	0.108	26.23
101.6	16.02	0.028	0.1000	971.5	97.8	282.2	2.89	33.88	0.098	30.28
Average			968.0						26.7	
Mean-square error				0.8						0.7
		Rand	dom error	2.0						1.9

Главным образом изменилась добротность, что непосредственно связано с увеличением активного сопротивления катушки. По первой таблице построим график зависимости активного сопротивления катушки от частоты.

АМПЛИТУДНО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ

Для контуров с номерами 1 и 4 снимем в районе резонанса амплитудно-частотные характеристики и изобразим их на одном графике.

Построим эти же характеристики в безразмерных координатах и определим добротности.

ФАЗОВО-ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ

Для тех же контуров снимем и изобразим на графике фазово-частотные характеристики, а также найдем добротности.

<i>f</i> , кГц	Δφ/π				D	l		£ l.		.					
Для n=1		2.	Dependence of phase on frequency												
30.01	1.63			C n=	4										
30.27	1.63		'	• C _n , n=										U	
30.56	1.63	2.	6 L	C _n , n=	4									×	
30.84	1.71	۷.	<u> </u>												
31.07	1.71									•	•	×			
31.41	1.80	2.	,												
31.74	1.87	۷.	*							×	×				
31.98	1.93								. *×						
32.22	2.00	μ/c						*	^						
32.45	2.07	<i>⊾/φ</i> ∇ 2.	2					^							
32.69	2.21	-													
33.00	2.31						× ·								
33.27	2.34		2				•								
33.58	2.46					.×*									
33.90	2.50														
34.18	2.50	1.	8		×										
				××	•										
Для				× .											
19.68	1.63	1.	6												
20.12	1.68		0.92 (0.94 0.	96 0	.98	1			.04	1.06	1.08	3 1.	1	1.12
20.31	1.74							f, k	Hz						
20.45	1.74														
20.81	1.82														
21.08	1.91														
21.31	2.05														
21.67	2.20														
21.88	2.27														
22.09	2.32														
22.32	2.36														
22.62	2.36														
22.90	2.48														
23.56	2.65														