Théorie

Soit $\sum_{n\in\mathbb{N}}a_n$ une série convergente de somme S. Pour chaque $N\in\mathbb{N}$, nous pouvons écrire $S=S_N+R_N$ avec

$$S_N := \sum_{n=0}^{N} a_n, \qquad R_N := \sum_{n=N+1}^{\infty} a_n,$$

et la propriété que $S_N \to S$ (ou de façon équivalente, $R_N \to 0$) quand $N \to \infty$.

Dans les applications, on s'intéresse à la valeur numérique de S que l'on cherche à obtenir avec une précision suffisante. Concrètement, cela signifie que l'on se donne une tolérance à l'erreur $\varepsilon > 0$ et que l'on cherche à produire un nombre $\tilde{S} \in \mathbb{R}$ pour lequel

$$|S - \tilde{S}| < \varepsilon.$$

Puisque R_N tend vers 0, nous savons que $|R_N| = |S - S_N| < \varepsilon$ à partir d'un certain rang et il est donc tentant de prendre $\tilde{S} := S_N$ avec N suffisamment grand. Reste qu'en pratique il faudra également évaluer explicitement S_N et cela peut aussi entraîner des erreurs numériques.

En résumé : pour obtenir une approximation ε -proche \tilde{S} de S, on va typiquement

- 1) déterminer une valeur de N (démontrablement) suffisamment grande pour que $|S S_N| < \varepsilon_1$;
- 2) puis calculer numériquement une approximation \tilde{S} de la somme partielle S_N satisfaisant $|S_N \tilde{S}| < \varepsilon_2$; avec $\varepsilon_1 + \varepsilon_2 \leqslant \varepsilon$, de façon à pouvoir ainsi garantir que

$$|S - \tilde{S}| \le |S - S_N| + |S_N - \tilde{S}| < \varepsilon_1 + \varepsilon_2 \le \varepsilon.$$

Dans Sage, les calculs sont effectués par défaut avec des « nombres réels » représentés par des mantisses de 53 bits, donnant typiquement 1 une précision de l'ordre de

$$2^{-53} \approx 10^{-16}$$

qui sera amplement suffisante ici pour considérer que ε_2 est négligeable devant ε_1 et nous permettre de nous concentrer sur ce dernier via une majoration du reste R_N .

Exercice 1

Considérons la série $\sum_{n\in\mathbb{N}}\frac{1}{2^n}$.

- a) En utilisant le fait que $R_N=1/2^N$ (n'est-ce pas?) : quelle valeur de N doit-on prendre pour commettre, en remplaçant S par S_N , une erreur d'au plus $\varepsilon=10^{-6}$? Évaluer cette somme partielle à l'aide d'une boucle effectuant les additions répétées.
- b) Représenter graphiquement (par exemple avec list_plot) la suite des sommes partielles jusqu'au rang trouvé en a). Commentez!

Exercice 2

On peut montrer que la série alternée convergente $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{(2n)!}$ a pour somme $\cos(1)$.

a) En admettant le fait que, pour cette série, on a $|R_N| \le \frac{1}{(2N+2)!}$: combien de termes doit-on prendre dans la somme pour obtenir une approximation de $\cos(1)$ valable à $\varepsilon = 10^{-6}$ près?

^{1.} La réalité est un peu plus délicate puisque la précision obtenue dépend de l'ordre de grandeur des quantités manipulées.

b) En n'utilisant que des opérations élémentaires, obtenir une telle approximation – puis comparez avec cos(1.) pour vérifier sa validité.

Exercice 3

On considère la série harmonique alternée $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n}$.

- a) En admettant que $|R_N| \le \frac{1}{N+1}$, calculer une approximation de sa somme valable à $\varepsilon=10^{-6}$ près. Reconnaissez-vous cette valeur?
- b) D'après vous, combien de temps serait nécessaire avec cette méthode pour la calculer à une précision $\varepsilon=10^{-12}$? (%time en début de cellule permet d'afficher le temps d'exécution de celle-ci) Comparez avec la série de la question précédente.

Exercice 4

La fonction zêta de Riemann est la fonction qui associe à chaque $\alpha > 1$ la somme $\zeta(\alpha)$ de la série convergente

$$\sum_{n\in\mathbb{N}^*} \frac{1}{n^{\alpha}}.$$

a) En comparant le reste de la série à l'aire sous $y = 1/x^{\alpha}$ à partir d'une certaine abscisse, établir l'inégalité

$$\left|\zeta(\alpha) - \sum_{n=1}^{N} \frac{1}{n^{\alpha}}\right| \leqslant \frac{1}{\alpha - 1} \cdot \frac{1}{N^{\alpha - 1}}.$$

En déduire le nombre N de termes nécessaires pour obtenir une estimation de $\zeta(\alpha)$ à une précision ε donnée.

- b) Donner une estimation numérique de $\zeta(2+\frac{m}{12})$, où m est le numéro de votre mois de naissance.
- c)* Sauriez-vous conjecturer une formule pour la valeur exacte de $\zeta(2n)$, $n \in \mathbb{N}^*$?

complex_plot(zeta, (-20,20), (-20,20))