In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import SMOTE
from collections import Counter
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.linear_model import LogisticRegression
```

In [2]:

```
dataset=sns.load_dataset("iris")
dataset
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
		•••	•••	•••	
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

In [3]:

dataset.iloc[50]

Out[3]:

```
sepal_length 7.0
sepal_width 3.2
petal_length 4.7
petal_width 1.4
species versicolor
Name: 50, dtype: object
```

In [4]:

```
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
                  -----
    sepal_length 150 non-null
0
                                  float64
1
    sepal_width
                  150 non-null
                                  float64
                                  float64
2
    petal_length 150 non-null
 3
    petal_width
                  150 non-null
                                  float64
                                  object
4
     species
                  150 non-null
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

In [5]:

```
dataset.isnull().sum()
```

Out[5]:

```
sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64
```

In [6]:

```
l1=LabelEncoder()
dataset["species"]=l1.fit_transform(dataset["species"])
```

In [7]:

```
dataset
# here 0 is for Setosa, 1 is for Versicolor 2 is for Virginica
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2

```
In [8]:
```

```
dataset["species"].value_counts()
# so data is balanced
Out[8]:
0
     50
     50
1
     50
2
Name: species, dtype: int64
In [9]:
dataset.info()
# All information is now available in numeric
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 #
     Column
                   Non-Null Count
                                   Dtype
                   -----
 0
     sepal_length 150 non-null
                                   float64
 1
     sepal_width
                   150 non-null
                                   float64
     petal_length 150 non-null
                                   float64
 2
 3
     petal_width
                   150 non-null
                                   float64
                                   int32
 4
     species
                   150 non-null
dtypes: float64(4), int32(1)
memory usage: 5.4 KB
In [10]:
x=dataset.iloc[:,:-1].values
y=dataset.iloc[:,-1].values
In [11]:
print(x.shape)
(150, 4)
In [12]:
print(y.shape)
(150,)
In [13]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=2)
print(Counter(y_test))
Counter({0: 14, 2: 8, 1: 8})
```

In [14]:

x_train = pd.DataFrame(x_train,columns=["sepal_length","sepal_width","petal_length","petal_ x_train

Out[14]:

	sepal_length	sepal_width	petal_length	petal_width
0	6.2	2.8	4.8	1.8
1	5.1	3.3	1.7	0.5
2	5.6	2.9	3.6	1.3
3	7.7	3.8	6.7	2.2
4	5.4	3.0	4.5	1.5
115	6.6	3.0	4.4	1.4
116	5.0	3.5	1.6	0.6
117	4.6	3.6	1.0	0.2
118	6.3	2.5	4.9	1.5

In [15]:

print(x_train.shape)

(120, 4)

In [16]:

x_train.describe()

Out[16]:

	sepal_length	sepal_width	petal_length	petal_width
count	120.000000	120.00000	120.000000	120.000000
mean	5.897500	3.06000	3.861667	1.244167
std	0.813382	0.44616	1.742508	0.751894
min	4.300000	2.00000	1.000000	0.100000
25%	5.200000	2.80000	1.600000	0.400000
50%	5.800000	3.00000	4.450000	1.400000
75%	6.400000	3.40000	5.100000	1.825000
max	7.900000	4.40000	6.900000	2.500000

In [17]:

x_train.describe().round(2)

Out[17]:

	sepal_length	sepal_width	petal_length	petal_width
count	120.00	120.00	120.00	120.00
mean	5.90	3.06	3.86	1.24
std	0.81	0.45	1.74	0.75
min	4.30	2.00	1.00	0.10
25%	5.20	2.80	1.60	0.40
50%	5.80	3.00	4.45	1.40
75%	6.40	3.40	5.10	1.82
max	7.90	4.40	6.90	2.50

In [18]:

x_test x_test	= pd.DataFr	ame(x_test	,columns=["	epal_length","sepal_wid	th","petal_length","petal_wi
13	5.4	3.9	1.7	0.4	_
14	6.0	3.4	4.5	1.6	
15	6.5	2.8	4.6	1.5	
16	4.5	2.3	1.3	0.3	
17	5.7	2.9	4.2	1.3	
18	6.7	3.3	5.7	2.5	
19	5.5	2.5	4.0	1.3	
20	6.7	3.0	5.0	1.7	
21	6.4	2.9	4.3	1.3	
22	6.4	3.2	5.3	2.3	
23	5.6	2.7	4.2	1.3	
24	6.3	2.3	4.4	1.3	•

```
In [19]:
```

```
x_test.describe()
```

Out[19]:

	sepal_length	sepal_width	petal_length	petal_width
count	30.000000	30.000000	30.000000	30.000000
mean	5.626667	3.046667	3.343333	1.020000
std	0.864604	0.398907	1.824674	0.789762
min	4.400000	2.300000	1.200000	0.100000
25%	4.800000	2.825000	1.500000	0.200000
50%	5.550000	3.000000	4.100000	1.300000
75%	6.400000	3.200000	4.975000	1.675000
max	7.200000	3.900000	6.000000	2.500000

In [20]:

```
print(x_test.shape)
```

(30, 4)

In [21]:

```
# sns.pairplot(x_train,)
```

In [22]:

```
logs=LogisticRegression()
logs.fit(x_train,y_train)
logs_pred=logs.predict(x_test)
cr = classification_report(y_test,logs_pred)
cm = confusion_matrix(y_test,logs_pred)
print("Report: ",cr)
print("Matrix: ",cm)
```

```
Report:
                        precision
                                      recall f1-score
                                                          support
           0
                    1.00
                              1.00
                                         1.00
                                                     14
           1
                    1.00
                              0.88
                                         0.93
                                                      8
           2
                    0.89
                              1.00
                                         0.94
                                                      8
                                         0.97
                                                     30
    accuracy
   macro avg
                   0.96
                              0.96
                                         0.96
                                                     30
weighted avg
                   0.97
                              0.97
                                         0.97
                                                     30
Matrix:
         [[14 0 0]
 [ 0 7
         1]
 [0 0 8]]
```

Prediction with Scaled Data

In [23]:

```
scaler=StandardScaler()
x_train_sc=scaler.fit_transform(x_train)
x_test_sc=scaler.fit_transform(x_test)
```

In [24]:

```
x_train_sc = pd.DataFrame(x_train_sc,columns=["sepal_length","sepal_width","petal_length","
x_train_sc
```

Out[24]:

	sepal_length	sepal_width	petal_length	petal_width
0	0.373463	-0.585194	0.540754	0.742344
1	-0.984585	0.540179	-1.245751	-0.993873
2	-0.367290	-0.360119	-0.150796	0.074568
3	2.225348	1.665552	1.635708	1.276565
4	-0.614208	-0.135045	0.367866	0.341679
115	0.867299	-0.135045	0.310237	0.208124
116	-1.108044	0.990328	-1.303380	-0.860318
117	-1.601880	1.215403	-1.649155	-1.394539
118	0.496922	-1.260418	0.598383	0.341679
119	-0.243831	3.015999	-1.361009	-1.127429

120 rows × 4 columns

In [25]:

```
x_train_sc.describe()
```

Out[25]:

	sepal_length	sepal_width	petal_length	petal_width
count	1.200000e+02	1.200000e+02	1.200000e+02	1.200000e+02
mean	1.163190e-15	1.872576e-15	4.033810e-16	5.995204e - 16
std	1.004193e+00	1.004193e+00	1.004193e+00	1.004193e+00
min	-1.972257e+00	-2.385790e+00	-1.649155e+00	-1.528094e+00
25%	-8.611262e-01	-5.851939e-01	-1.303380e+00	-1.127429e+00
50%	-1.203725e-01	-1.350447e-01	3.390517e-01	2.081235e-01
75%	6.203812e-01	7.652535e-01	7.136413e-01	7.757331e-01
max	2.472265e+00	3.015999e+00	1.750966e+00	1.677231e+00

In [26]:

x_train_sc.describe().round(2)
Scaling changes scale of data in such way that mean & variance of data becomes 0 & 1 resp

Out[26]:

	sepal_length	sepal_width	petal_length	petal_width
count	120.00	120.00	120.00	120.00
mean	0.00	0.00	0.00	0.00
std	1.00	1.00	1.00	1.00
min	-1.97	-2.39	-1.65	-1.53
25%	-0.86	-0.59	-1.30	-1.13
50%	-0.12	-0.14	0.34	0.21
75%	0.62	0.77	0.71	0.78
max	2.47	3.02	1.75	1.68

In [27]:

x_test_sc = pd.DataFrame(x_test_sc,columns=["sepal_length","sepal_width","petal_length","pe
x test sc

18	1.262638	0.645926	1.313634	1.906018
19	-0.149007	- 1.393840	0.366034	0.360598
20	1.262638	-0.118986	0.923446	0.875738
21	0.909727	-0.373957	0.533257	0.360598
22	0.909727	0.390955	1.090669	1.648448
23	-0.031370	-0.883899	0.477516	0.360598
24	0.792090	-1.903782	0.588999	0.360598
25	-1.090104	0.390955	-0.971755	-1.056037
26	-1.090104	0.390955	-1.138978	-1.056037
27	0.556816	-0.118986	0.867705	1.004523
28	-0.619555	1.920780	-0.804531	-0.798467
20	4 050004	0 200055	4 400000	4 004500

In [28]:

```
x_test_sc.describe().round(2)
```

Out[28]:

	sepal_length	sepal_width	petal_length	petal_width
count	30.00	30.00	30.00	30.00
mean	0.00	-0.00	-0.00	-0.00
std	1.02	1.02	1.02	1.02
min	-1.44	-1.90	-1.19	-1.18
25%	-0.97	-0.57	-1.03	-1.06
50%	-0.09	-0.12	0.42	0.36
75%	0.91	0.39	0.91	0.84
max	1.85	2.18	1.48	1.91

In [29]:

```
logs1=LogisticRegression()
logs1.fit(x_train_sc,y_train)
logs1_pred=logs1.predict(x_test_sc)
cr1 = classification_report(y_test,logs1_pred)
cm1 = confusion_matrix(y_test,logs1_pred)
print("Report: ",cr1)
print("Matrix: ",cm1)
```

```
Report:
                       precision
                                     recall f1-score
                                                        support
           0
                   1.00
                             0.93
                                        0.96
                                                    14
           1
                   0.83
                                        0.71
                                                     8
                             0.62
           2
                   0.73
                             1.00
                                        0.84
                                                     8
                                        0.87
                                                    30
    accuracy
                   0.85
                             0.85
                                        0.84
                                                    30
   macro avg
weighted avg
                   0.88
                             0.87
                                        0.86
                                                    30
Matrix:
         [[13 1 0]
 [ 0 5 3]
 [0 0 8]]
```