SOLUTIONS: STRAIGHT LINES MORKSHEET No: 2 (clan No: 3) Onis: 1() Slope of grun line (x+1y=7)=-1 (·) Since pa 1 grun line (-): slope of pa = 3 (-re learpeor al) P'(9,5) (-1 quator y por (point stope form) J-8= 3 (21-3) => y-8=3x-9 =3 3x-y=1() Sorry equator of grun len & equator of po me get x=12 y=2 · · · (1,2) (·) lu p'(9,5) es trimage of pom p (·) O ester Mid point of PPI  $1 = \frac{3+9}{3}$ 2 = 8+5 => 2=3+9 Y= 8+b ON5=2 + (.) 91un equation of PO: 2x-y=0 (-) Equation of green line: 4x1+74=-5 (') solving their equations , neget

(·) : 
$$Q(-\frac{7}{18}, -\frac{10}{18})$$

(\*) Refund clisteral 
$$PO = \sqrt{\left(\frac{-S}{18}-1\right)^2 + \left(\frac{-10}{18}-2\right)^2}$$

$$= \sqrt{\frac{(23)^2}{(18)^2} + \frac{(46)^2}{(18)^2}}$$

$$= (23)\sqrt{1+(2)^2}$$

$$= (23)\sqrt{1+(2)^2}$$

$$= 23\sqrt{5} \text{ Units} \text{ Ans.}$$

in Patro K= 1

 $\frac{\chi}{K+1} = \frac{5K-1}{K+1}$ 

(') :- 
$$C\left(\frac{5k-1}{k+1}, \frac{7k+1}{k+1}\right)$$

(') : 
$$\frac{5k-1}{k+1} + \frac{7k+1}{k+1} = y$$

$$= 3$$
  $5k-1/+7k+1/= 4k+4$ 

thus line passes through the point (3,4)
$$\frac{3}{a} + \frac{4}{14-a} = 1$$

$$-1$$
  $(9-7)(9-6)=0$ 

$$a = 7$$
;  $a = 6$ 

$$= 3b = 7$$
;  $b = 8$ 

ON. tr

(.)91 un equation y line po

re gu n=6, y=+7



| i- pon: Q is (6,+=                | 1)                                      |
|-----------------------------------|-----------------------------------------|
| (·) Ryymod destance               | PO= V(6-2)2+(+7-3)2                     |
|                                   | - J46+16                                |
|                                   | = \square 32<br>= \square 452 unils Ans |
| On. 6 * (only ships: calculation) | alm                                     |
| AC: 4x+5y = 20                    |                                         |
| 2 B(= 32-2y=-6                    | F 4 4 7 + 54 = 20                       |
| Solvy then we get Pont C ( )      | 6 (1.1)                                 |
|                                   | 3x-2y=-6                                |
| Then slipe of CF (by 72-41)       |                                         |
| VABLCF.                           |                                         |
| Slyng AB (-ve eurigner            | a()                                     |
| Mou Stopey ACZ -y                 |                                         |
| / Slope of BE = 5 (-w-            | eurpeor as)                             |
| Find equating BE (F               | ent Slepe faim)                         |
| then som equatory 131             | = 2 equator of BC                       |
| m gue pons B ( )                  |                                         |
| Then finally equatory A!          | gent Steps Form)                        |
|                                   |                                         |



$$\frac{1}{\sqrt{449}} = \frac{1}{\sqrt{49}}$$

$$\frac{1}{\sqrt{449}} = \frac{1}{\sqrt{49}}$$

$$\frac{1}{\sqrt{49}} = \frac{1}{\sqrt{49}}$$

On. 9 \* equation of AB: 
$$571-12y-65=0$$

(1) equation of AB:  $571-12y-65=0$ 

(1) equation of BC:  $571-12y+26=0$ 

(1) Clearly then lines are parallely  $571-65=0$ 

(1) clustered blue them =  $570$  clustered blue them =  $570$  clustered blue them =  $13$ 

(1) Siding the Grant =  $1-65-26$  =  $13$ 
 $13$ 

(2) Any Grant (7) =  $19$  Grant Umity Any

Or lo 
$$\rightarrow$$
 (') equatory grun line  
 $N-\sqrt{3}y-2\sqrt{5}=0$   
(.) Slope of this line:  $m_1=-\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}}$ 

(Solution) WS=2 (1) let stipe of legund line: m2 = m ( longle blw them is 0 = 600 (1) me lenew that ten a= /m,-m2/ = 1 for 60 = 1 to -m 1 1 to m 1  $\frac{1}{\sqrt{3}} = \frac{1 - \sqrt{3} m}{\sqrt{3} + m}$  $\pm \sqrt{3} = \frac{1-\sqrt{3}m}{\sqrt{3}+m}$  $\sqrt{3} = \frac{1 - \sqrt{3} m}{\sqrt{3} + m}$ -3-53m=1-53m 3+55 m= 1-53 m of m= 1 7 -2- 253 m m= -1 efor (1) Refused line pases through (7,9) (1) Guahan of Ryund line (By point-slope form) Y-9- - (x-7) J-9= & (x-7) V3 y-953=-21+7 0= 21-7 === ] AM 7+ J37 = 7+953 ANS