

Базовые понятия линейной алгебры

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство вещественных m imes n матриц обозначается $\mathbb{R}^{m imes n}$. 1

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Базовые понятия линейной алгебры

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra -- Vectors, Matrices, and Least Squares - книга Стивена Бойда и Ливена Ванденбергена, которая указана в источнике. Также полезной книгой по линейной алгебре является приложение А в книге Numerical Optimization Джорджа Носедаля и Стивена Райта.

Векторы и матрицы

Мы будем считать, что все векторы являются столбцами по умолчанию. Пространство векторов длины nобозначается \mathbb{R}^n , а пространство вещественных m imes n матриц обозначается $\mathbb{R}^{m imes n}$. 1

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \quad x \in \mathbb{R}^n, x_i \in \mathbb{R}$$
 (1)

Аналогично, если $A \in \mathbb{R}^{m \times n}$ мы обозначаем транспонирование как $A^T \in \mathbb{R}^{n \times m}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} \quad A \in \mathbb{R}^{m \times n}, a_{ij} \in \mathbb{R}$$

Мы будем писать $x \geq 0$ и $x \neq 0$ для обозначения покомпонентного неравенства.

 $^{^{1}}$ Подробный вводный курс по прикладной линейной алгебре можно найти в книге Introduction to Applied Linear Algebra -- Vectors, Matrices, and Least Squares - книга Стивена Бойда и Ливена Ванденбергена, которая указана в источнике. Также полезной книгой по линейной алгебре является приложение А в книге Numerical Optimization Джорджа Носедаля и Стивена Райта.

Рис. 1: Эквивалентные представления вектора

Базовые понятия линейной алгебры

Матрица A называется симметричной, если $A=A^T.$ Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$.

бры

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех $x \neq 0: x^T A x > (<)0$. Обозначается как $A \succ (\prec)0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$.

Матрица $A\in\mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x:x^TAx\geq (\leq)0.$ Обозначается как $A\succeq (\leq)0.$ Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-).$

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

∌ ດ ៙

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению.

Матрица $A\in\mathbb{S}^n$ называется **положительно (отрицательно) определенной**, если для всех $x\neq 0: x^TAx>(<)0.$ Обозначается как $A\succ (\prec)0.$ Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--}).$

Матрица $A \in \mathbb{S}^n$ называется **положительно (отрицательно) полуопределенной**, если для всех $x: x^T A x \geq (\leq) 0$. Обозначается как $A \succeq (\leq) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$.

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли, что если матрица симметрична, то она положительно определена?

୬ n Ø

Матрица A называется симметричной, если $A=A^T$. Обозначается как $A\in\mathbb{S}^n$ (множество квадратных симметричных матриц размерности n). Заметим, что только квадратная матрица может быть симметричной по определению. Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) определенной, если для всех

 $x \neq 0: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_{++}(\mathbb{S}^n_{--})$.

Матрица $A \in \mathbb{S}^n$ называется положительно (отрицательно) полуопределенной, если для всех $x: x^T A x > (<) 0$. Обозначается как $A \succ (\prec) 0$. Множество таких матриц обозначается как $\mathbb{S}^n_+(\mathbb{S}^n_-)$.

i Question

Верно ли, что положительно определенная матрица имеет все положительные элементы?

i Question

Верно ли. что если матрица симметрична, то она положительно определена?

i Question

Верно ли, что если матрица положительно определена, то она симметрична?

Умножение матриц

Пусть A - матрица размера $m \times n$, и B - матрица размера $n \times p$, и пусть произведение AB задается как:

$$C = AB$$

тогда C - матрица размера $m \times p$, с элементом (i,j) задаваемым как:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной реализации требует $\mathcal{O}(n^3)$ арифметических операций, где n - наибольший размер матриц.

♥ C Ø

Умножение матриц

Пусть A - матрица размера m imes n, и B - матрица размера n imes p, и пусть произведение AB задается как:

$$C = AB$$

тогда C - матрица размера $m \times p$, с элементом (i,j) задаваемым как:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Эта операция в наивной реализации требует $\mathcal{O}(n^3)$ арифметических операций, где n - наибольший размер матриц.

i Question

Можно ли умножить две матрицы быстрее, чем за $\mathcal{O}(n^3)$? Как насчет $\mathcal{O}(n^2)$, $\mathcal{O}(n)$?

Пусть A - матрица размера $m \times n$, и x - вектор длины n, тогда i-й компонент произведения:

$$z = Ax$$

определяется как:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной реализации требует $\mathcal{O}(n^2)$ арифметических операций, где n - наибольший размер матриц.

•
$$C = AB$$
 $C^T = B^T A^T$

Пусть A - матрица размера $m \times n$, и x - вектор длины n, тогда i-й компонент произведения:

$$z = Ax$$

определяется как:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной реализации требует $\mathcal{O}(n^2)$ арифметических операций, где n - наибольший размер матриц.

- C = AB $C^T = B^T A^T$
- $AB \neq BA$

Пусть A - матрица размера $m \times n$, и x - вектор длины n, тогда i-й компонент произведения:

$$z = Ax$$

определяется как:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

Эта операция в наивной реализации требует $\mathcal{O}(n^2)$ арифметических операций, где n - наибольший размер матриц.

- C = AB $C^T = B^T A^T$
 - $AB \neq BA$
- $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$

Пусть A - матрица размера $m \times n$, и x - вектор длины n, тогда i-й компонент произведения:

$$z = Ax$$

определяется как:

$$z_i = \sum_{k=1}^n a_{ik} x_k$$

 Θ та операция в наивной реализации требует $\mathcal{O}(n^2)$ арифметических операций, где n - наибольший размер матриц.

- C = AB $C^T = B^T A^T$
- $AB \neq BA$
- $e^A=\sum\limits_{k=0}^{\infty}\frac{1}{k!}A^k$ $e^{A+B}\neq e^Ae^B$ (но если A и B коммутирующие матрицы, то есть AB=BA, то $e^{A+B}=e^Ae^B$)

Пусть A - матрица размера $m \times n$, и x - вектор длины n, тогда i-й компонент произведения:

$$z = Ax$$

определяется как:

$$z_i = \sum_{k=1}^{n} a_{ik} x_k$$

 Θ та операция в наивной реализации требует $\mathcal{O}(n^2)$ арифметических операций, где n - наибольший размер матриц.

- C = AB $C^T = B^T A^T$
- $AB \neq BA$
- $e^A=\sum\limits_{k=0}^{\infty}\frac{1}{k!}A^k$ $e^{A+B}\neq e^Ae^B$ (но если A и B коммутирующие матрицы, то есть AB=BA, то $e^{A+B}=e^Ae^B$)
- $\langle x, Ay \rangle = \langle A^T x, y \rangle$

Норма - это **количественная мера маленькости вектора** и обычно обозначается как $\|x\|$.

1.
$$\|\alpha x\| = |\alpha| \|x\|$$
, $\alpha \in \mathbb{R}$

Норма - это **количественная мера маленькости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)

Норма - это **количественная мера маленькости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0 то x = 0

Норма - это **количественная мера маленькости вектора** и обычно обозначается как $\|x\|$.

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0 то x = 0

Норма - это количественная мера маленькости вектора и обычно обозначается как $\|x\|$.

Норма должна удовлетворять определенным свойствам:

- 1. $\|\alpha x\| = |\alpha| \|x\|$, $\alpha \in \mathbb{R}$
- 2. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника)
- 3. Если ||x|| = 0 то x = 0

Расстояние между двумя векторами определяется как:

$$d(x,y) = \|x - y\|.$$

Наиболее широко используемой нормой является евклидова норма:

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$$

которая соответствует расстоянию в нашей повседневной жизни. Если векторы имеют комплексные элементы. мы используем их модуль. Евклидова норма, или 2-норма, является подклассом важного класса p-норм:

$$\|x\|_p = \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}.$$

p-норма вектора

Существуют два очень важных частных случая. Бесконечность норма, или норма Чебышёва, определяется как максимальный абсолютный элемент:

$$||x||_{\infty} = \max_{i} |x_i|$$

୬ ମ Ø

p-норма вектора

Существуют два очень важных частных случая. Бесконечность норма, или норма Чебышёва, определяется как максимальный абсолютный элемент:

$$\|x\|_{\infty} = \max_{i} |x_i|$$

 $L_{
m 1}$ норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора:

$$||x||_1 = \sum_i |x_i|$$

р-норма вектора

Существуют два очень важных частных случая. Бесконечность норма, или норма Чебышёва, определяется как максимальный абсолютный элемент:

$$||x||_{\infty} = \max_{i} |x_i|$$

 L_1 норма (или **манхэттенское расстояние**) определяется как сумма модулей элементов вектора:

$$||x||_1 = \sum_i |x_i|$$

 L_1 норма играет очень важную роль: она связана с методами **compressed sensing**, которые стали одной из популярных тем исследований в середине 00-х. Код для изображения ниже доступен *здесь*:. Также можно посмотреть *этот* видео.

Рис. 2: Шары в разных нормах на плоскости

 $\|\cdot\|$ называется **матричной нормой**, если она является векторной нормой на векторном пространстве n imes mматриц:

1. $\|A\| \ge 0$ и если $\|A\| = 0$, то A = O

 $\|\cdot\|$ называется **матричной нормой**, если она является векторной нормой на векторном пространстве n imes mматриц:

 $\|A\| \geq 0$ и если $\|A\| = 0$, то A = O

- $\|\cdot\|$ называется **матричной нормой**, если она является векторной нормой на векторном пространстве n imes mматриц:
 - 1. $||A|| \ge 0$ и если ||A|| = 0, то A = O
 - 2. $\|\alpha A\| = |\alpha| \|A\|$
 - 3. $||A + B|| \le ||A|| + ||B||$ (неравенство треугольника)

 $\|\cdot\|$ называется **матричной нормой**, если она является векторной нормой на векторном пространстве n imes mматриц:

- 1. $||A|| \ge 0$ и если ||A|| = 0, то A = O
- 2. $\|\alpha A\| = |\alpha| \|A\|$
- 3. ||A + B|| < ||A|| + ||B|| (неравенство треугольника)
- Дополнительно, некоторые нормы могут удовлетворять свойству субмультипликативности:

$$||AB|| \le ||A|| ||B||$$

Эти нормы называются субмультипликативными нормами.

 $\|\cdot\|$ называется **матричной нормой**, если она является векторной нормой на векторном пространстве n imes mматриц:

- 1. $||A|| \ge 0$ и если ||A|| = 0, то A = O
- 2. $\|\alpha A\| = |\alpha| \|A\|$
- 3. ||A + B|| < ||A|| + ||B|| (неравенство треугольника)
- Дополнительно, некоторые нормы могут удовлетворять свойству субмультипликативности:

$$\|AB\| \le \|A\| \|B\|$$

Эти нормы называются субмультипликативными нормами.

• Пример несубмультипликативной нормы - норма Чебышёва:

$$||A||_C = \max_{i,j} |a_{ij}|$$

Пример

і Придумайте контрпример

Покажите, что норма Чебышёва не является субмультипликативной.

Пример

Придумайте контрпример

Покажите, что норма Чебышёва не является субмультипликативной.

Рассмотрим матрицы

$$A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Для каждой из них

$$||A||_C = ||B||_C = 1.$$

Вычислим произведение:

$$AB = \begin{bmatrix} 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}.$$

Если норма была бы субмультипликативной, то должно выполняться

$$2 = ||AB||_C \le ||A||_C \cdot ||B||_C = 1 \cdot 1 = 1,$$

но 2 > 1.

Нормы матриц

В некотором смысле нет большой разницы между матрицами и векторами (можно векторизовать матрицу). таким образом вводится простейшая норма матрицы Фробениуса:

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Нормы матриц

В некотором смысле нет большой разницы между матрицами и векторами (можно векторизовать матрицу). таким образом вводится простейшая норма матрицы Фробениуса:

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}$$

Спектральная норма, $\|A\|_2$ является одной из наиболее широко используемых норм матриц (вместе с нормой Фробениуса).

$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

Её нельзя вычислить непосредственно из элементов, используя простую формулу, как норму Фробениуса. однако существуют эффективные алгоритмы для ее вычисления. Она непосредственно связана с сингулярным разложением (SVD) матрицы. Она удовлетворяет следующему свойству:

$$\|A\|_2 = \sigma_1(A) = \sqrt{\lambda_{\max}(A^TA)}$$

где $\sigma_1(A)$ является наибольшим сингулярным значением матрицы A.

Операторные нормы

• Наиболее важный класс матричных норм - это класс операторных норм. Они определяются как

$$||A||_{\alpha \to \beta} = \sup_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\beta}},$$

где $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ являются **векторными нормами**.

Операторные нормы

• Наиболее важный класс матричных норм - это класс операторных норм. Они определяются как

$$||A||_{\alpha \to \beta} = \sup_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\beta}},$$

где $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ являются **векторными нормами**.

• Легко проверить, что они субмультипликативны, если $\|\cdot\|_{lpha} = \|\cdot\|_{eta}$. Иначе они не субмультипликативны, придумайте пример.

Операторные нормы

Наиболее важный класс матричных норм - это класс операторных норм. Они определяются как

$$||A||_{\alpha \to \beta} = \sup_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\beta}},$$

где $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ являются **векторными нормами**.

- Легко проверить, что они субмультипликативны, если $\|\cdot\|_{lpha} = \|\cdot\|_{eta}$. Иначе они не субмультипликативны, придумайте пример.
- Норма Фробениуса является матричной нормой, но не является операторной нормой, т.е. нельзя найти $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ такие, чтобы они её порождали.

Операторные нормы

Наиболее важный класс матричных норм - это класс операторных норм. Они определяются как

$$||A||_{\alpha \to \beta} = \sup_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\beta}},$$

где $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ являются векторными нормами.

- Легко проверить, что они субмультипликативны, если $\|\cdot\|_{lpha} = \|\cdot\|_{eta}$. Иначе они не субмультипликативны, придумайте пример.
- Норма Фробениуса является матричной нормой, но не является операторной нормой, т.е. нельзя найти $\|\cdot\|_{\alpha}$ и $\|\cdot\|_{\beta}$ такие, чтобы они её порождали.
- Это нетривиальный факт и общий критерий матричной нормы для того, чтобы быть операторной нормой можно найти в Теореме 6 и следствии 4.

i Question

Покажите, что операторная норма $\|\cdot\|_{lpha
ightarrowlpha}$ является субмультипликативной.

i Question

Покажите, что операторная норма $\|\cdot\|_{\alpha \to \alpha}$ является субмультипликативной.

Определим операторную норму для матрицы A как

$$||A||_{\alpha \to \alpha} = \sup_{x \neq 0} \frac{||Ax||_{\alpha}}{||x||_{\alpha}}.$$

Для двух матриц A и B рассмотрим для любого $x \neq 0$:

$$\|ABx\|_{\alpha} \leq \|A\|_{\alpha \to \alpha} \|Bx\|_{\alpha} \leq \|A\|_{\alpha \to \alpha} \|B\|_{\alpha \to \alpha} \|x\|_{\alpha}.$$

Делим на $||x||_{\alpha}$ и берем супремум по $x \neq 0$:

$$||AB||_{\alpha \to \alpha} \le ||A||_{\alpha \to \alpha} ||B||_{\alpha \to \alpha}.$$

Таким образом, операторная норма с одинаковыми векторными нормами является субмультипликативной.

Матричные p-нормы

Важный частный случай операторных норм - это матричные p-нормы, которые определяются для $\|\cdot\|_{\alpha} = \|\cdot\|_{\beta} = \|\cdot\|_{p}.$

Среди всех p-норм три наиболее часто используемые нормы:

•
$$p = 1$$
, $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$.

Матричные p-нормы

Важный частный случай операторных норм - это матричные p-нормы, которые определяются для $\|\cdot\|_{\alpha} = \|\cdot\|_{\beta} = \|\cdot\|_{p}.$

Среди всех p-норм три наиболее часто используемые нормы:

- p = 1, $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$.
- p = 2, спектральная норма, обозначаемая как $||A||_2$.

Матричные р-нормы

Важный частный случай операторных норм - это матричные p-нормы, которые определяются для $\|\cdot\|_{\alpha} = \|\cdot\|_{\beta} = \|\cdot\|_{p}.$

Среди всех p-норм три наиболее часто используемые нормы:

- p = 1, $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$.
- p = 2, спектральная норма, обозначаемая как $||A||_2$.
- $p = \infty$, $||A||_{\infty} = \max_{i} \sum_{i=1}^{m} |a_{ij}|$.

Покажите, что $\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|.$

Покажите, что $||A||_1 = \max_i \sum_{i=1}^n |a_{ii}|$.

Решениеможно разбить на две части: показать, что норма не превосходит максимальной суммы модулей столбца, и построить вектор, для которого достигается это значение. Норма $\|A\|_1$ определяется как операторная норма, индуцированная векторной 1-нормой:

$$||A||_1 = \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1}.$$

При этом можно показать, что

$$||Ax||_1 = \sum_i \left| \sum_j a_{ij} x_j \right| \le \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| |x_j| = \sum_{i=1}^n |x_j| \left(\sum_{j=1}^n |a_{ij}| \right).$$

Если выбрать x так, чтобы вся масса $\|x\|_1 = 1$ приходилась на столбец с максимальной суммой модулей, получим, что супремум равен

$$\max_{j} \sum_{i=1}^{n} |a_{ij}|.$$

Покажите, что $\|A\|_{\infty} = \max_i \sum_{j=1}^m |a_{ij}|.$

Покажите, что $||A||_{\infty} = \max_{i} \sum_{i=1}^{m} |a_{ii}|$.

Аналогично, операторная норма, индуцированная ∞ -нормой, определяется как

$$||A||_{\infty} = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}}.$$

При этом легко доказать, что

$$||Ax||_{\infty} = \max_{i} \left| \sum_{j} a_{ij} x_{j} \right| \le \max_{i} \sum_{j} |a_{ij}| \, ||x||_{\infty}.$$

Отсюда следует, что

$$||A||_{\infty} = \max_{i} \sum_{i=1}^{m} |a_{ij}|.$$

Скалярное произведение

Стандартное скалярное (внутреннее) произведение между векторами x и y из \mathbb{R}^n определяется как:

$$\langle x,y\rangle = x^Ty = \sum_{i=1}^n x_iy_i = y^Tx = \langle y,x\rangle$$

Здесь x_i и y_i являются i-ми компонентами соответствующих векторов.

i Example

Докажите, что можно перемещать матрицу внутри скалярного произведения с транспонированием: $\langle x, Ay \rangle = \langle A^T x, y \rangle$ in $\langle x, yB \rangle = \langle xB^T, y \rangle$

Скалярное произведение матриц

Стандартное скалярное (внутреннее) произведение между матрицами X и Y из $\mathbb{R}^{m \times n}$ определяется как:

$$\langle X,Y\rangle = \operatorname{tr}(X^TY) = \sum_{i=1}^m \sum_{j=1}^n X_{ij} Y_{ij} = \operatorname{tr}(Y^TX) = \langle Y,X\rangle$$

i Question

Существует ли связь между нормой Фробениуса $\|\cdot\|_{F}$ и скалярным произведением между матрицами $\langle \cdot, \cdot \rangle$?

i Question

Посчитайте скалярное произведение матриц

$$\left\langle \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right\rangle$$

Матричные нормы

i Question

Упростите следующее выражение:

$$\sum_{i=1}^n \langle S^{-1}a_i, a_i \rangle,$$

где
$$S = \sum\limits_{i=1}^n a_i a_i^T, a_i \in \mathbb{R}^n, \det(S)
eq 0$$

Ортогональные матрицы

ullet Пусть U - матрица размера n imes n, и $\|Uz\|_2 = \|z\|_2$ для всех z.

- ullet Пусть U матрица размера n imes n, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_n - единичная матрица $n \times n$.

- ullet Пусть U матрица размера $n \times n$, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_n - единичная матрица n imes n.

• Квадратная матрица размера $n \times n$ называется **ортогональной**, если

$$U^TU=UU^T=I_n, \\$$

что означает, что столбцы и строки ортогональной матрицы образуют ортонормированный базис в \mathbb{R}^n .

- ullet Пусть U матрица размера n imes n, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_n - единичная матрица $n \times n$.

• Квадратная матрица размера $n \times n$ называется **ортогональной**, если

$$U^TU = UU^T = I_n, \quad$$

что означает, что столбцы и строки ортогональной матрицы образуют ортонормированный базис в \mathbb{R}^n .

Для матрицы из комплексных чисел вводится аналогичное определение унитарной матрицы:

$$U^*U=UU^*=I_n, \\$$

где U^* - эрмитово сопряжение матрицы U.

- ullet Пусть U матрица размера n imes n, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_n - единичная матрица $n \times n$.

ullet Квадратная матрица размера n imes n называется **ортогональной**, если

$$U^T U = U U^T = I_n,$$

что означает, что столбцы и строки ортогональной матрицы образуют ортонормированный базис в \mathbb{R}^n .

Для матрицы из комплексных чисел вводится аналогичное определение унитарной матрицы:

$$U^*U = UU^* = I_n$$

где U^* - эрмитово сопряжение матрицы U.

ullet Для прямоугольных матриц размера m imes n (n
eq m) только одно из равенств может выполняться

- ullet Пусть U матрица размера n imes n, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_m - единичная матрица $n \times n$.

ullet Квадратная матрица размера n imes n называется **ортогональной**, если

$$U^T U = U U^T = I_n,$$

что означает, что столбцы и строки ортогональной матрицы образуют ортонормированный базис в \mathbb{R}^n .

Для матрицы из комплексных чисел вводится аналогичное определение унитарной матрицы:

$$U^*U = UU^* = I_n$$

где U^* - эрмитово сопряжение матрицы U.

- ullet Для прямоугольных матриц размера m imes n (n
 eq m) только одно из равенств может выполняться
 - ullet $U^TU=I_n$ матрица U называется **матрицей с ортогональными столбцами** для m>n

- ullet Пусть U матрица размера $n \times n$, и $\|Uz\|_2 = \|z\|_2$ для всех z.
- Это может произойти тогда и только тогда, когда

$$U^TU=I_n,$$

где I_n - единичная матрица $n \times n$.

• Квадратная матрица размера $n \times n$ называется **ортогональной**, если

$$U^T U = U U^T = I_n,$$

что означает, что столбцы и строки ортогональной матрицы образуют ортонормированный базис в \mathbb{R}^n .

• Для матрицы из комплексных чисел вводится аналогичное определение унитарной матрицы:

$$U^*U = UU^* = I_n,$$

где U^{st} - эрмитово сопряжение матрицы U.

- ullet Для прямоугольных матриц размера $m imes n \; (n
 eq m)$ только одно из равенств может выполняться
 - ullet $U^TU=I_n$ матрица U называется **матрицей с ортогональными столбцами** для m>n

•
$$UU^T = I_m$$
 - матрица U называется матрицей с ортогональными строками для $m < n$

Ортогональные матрицы

Ортогональные матрицы

Важное свойство: произведение двух ортогональных матриц является ортогональной матрицей:

$$(UV)^TUV = V^TU^TUV = V^TV = I, \\$$

• Позже мы покажем, что существуют типы матриц (отражения Хаусхолдера и вращения Гивенса) композиция которых способна произвести любую унитарную матрицу

Ортогональные матрицы

Важное свойство: произведение двух ортогональных матриц является ортогональной матрицей:

$$(UV)^TUV = V^TU^TUV = V^TV = I,$$

- Позже мы покажем, что существуют типы матриц (отражения Хаусхолдера и вращения Гивенса) композиция которых способна произвести любую унитарную матрицу
- Эта идея является основой некоторых алгоритмов, например, QR-разложения

• Для векторной 2-нормы мы уже видели, что $\|Uz\|_2 = \|z\|_2$ для любой ортогональной U.

- ullet Для векторной 2-нормы мы уже видели, что $\|Uz\|_2 = \|z\|_2$ для любой ортогональной U.
- Можно показать, что ортогональные матрицы не изменяют матричные нормы $\|\cdot\|_2$ и $\|\cdot\|_F$, т.е. для любой квадратной A и ортогональной U.V:

$$\|UAV\|_2 = \|A\|_2 \qquad \|UAV\|_F = \|A\|_F.$$

- ullet Для векторной 2-нормы мы уже видели, что $\|Uz\|_2 = \|z\|_2$ для любой ортогональной U.
- Можно показать, что ортогональные матрицы не изменяют матричные нормы $\|\cdot\|_{2}$ и $\|\cdot\|_{F}$, т.е. для любой квадратной A и ортогональной U.V:

$$\|UAV\|_2 = \|A\|_2 \qquad \|UAV\|_F = \|A\|_F.$$

• Для $\|\cdot\|_2$ это следует из определения операторной нормы и того факта, что векторная 2-норма является ортогонально инвариантной.

- ullet Для векторной 2-нормы мы уже видели, что $\|Uz\|_2 = \|z\|_2$ для любой ортогональной U.
- Можно показать, что ортогональные матрицы не изменяют матричные нормы $\|\cdot\|_{2}$ и $\|\cdot\|_{F}$, т.е. для любой квадратной A и ортогональной U.V:

$$\|UAV\|_2 = \|A\|_2 \qquad \|UAV\|_F = \|A\|_F.$$

- ullet Для $\|\cdot\|_2$ это следует из определения операторной нормы и того факта, что векторная 2-норма является ортогонально инвариантной.
- Для $\|\cdot\|_F$ это следует из $\|A\|_F^2 = \operatorname{trace}(A^TA)$ и того факта, что $\operatorname{trace}(BC) = \operatorname{trace}(CB)$.

• Матрица вращения

- Матрица вращения
- Матрица перестановки

- Матрица вращения
- Матрица перестановки
- Матрица отражения Хаусхолдера

- Матрица вращения
- Матрица перестановки
- Матрица отражения Хаусхолдера
- Матрица вращения Гивенса

Матрица отражения Хаусхолдера

Матрица отражения Хаусхолдера - это ортогональная матрица, которая используется для отражения вектора относительно гиперплоскости. Она имеет следующий вид:

$$H \equiv H(v) = I - 2vv^T,$$

где v - вектор длины n и $v^Tv=1$.

ullet Покажите, что H - ортогональная матрица и $H^T=H.$

Матрица отражения Хаусхолдера

Матрица отражения Хаусхолдера - это ортогональная матрица, которая используется для отражения вектора относительно гиперплоскости. Она имеет следующий вид:

$$H \equiv H(v) = I - 2vv^T,$$

где v - вектор длины n и $v^Tv=1$.

- ullet Покажите, что H ортогональная матрица и $H^T=H.$
- Покажите, что H отражение:

$$Hx = x - 2(v^Tx)v$$

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H\begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1, 0, ..., 0)^T$, тогда мы хотим найти v такой, что

$$Hx = x - 2(v^Tx)v = \alpha e_1,$$

где α - неизвестная константа.

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H\begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1, 0, ..., 0)^T$, тогда мы хотим найти v такой. что

$$Hx = x - 2(v^T x)v = \alpha e_1,$$

где α - неизвестная константа.

• Так как $\|\cdot\|_2$ является унитарно инвариантной, мы получаем

$$\|x\|_2 = \|Hx\|_2 = \|\alpha e_1\|_2 = |\alpha|.$$

и
$$\alpha = \pm \|x\|_2$$

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1,0,\dots,0)^T$, тогда мы хотим найти v такой, что

$$Hx = x - 2(v^T x)v = \alpha e_1,$$

где α - неизвестная константа.

• Так как $\|\cdot\|_2$ является унитарно инвариантной, мы получаем

$$||x||_2 = ||Hx||_2 = ||\alpha e_1||_2 = |\alpha|.$$

и
$$\alpha = \pm \|x\|_2$$

• Также мы можем выразить v из $x-2(v^Tx)v=\alpha e_1$:

$$v = \frac{x - \alpha e_1}{2v^T r}$$

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H\begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1, 0, ..., 0)^T$, тогда мы • Умножая последнее выражение на x^T мы хотим найти v такой. что

• Умножая последнее выражение на
$$x^{\star}$$
 мы получаем

$$Hx = x - 2(v^T x)v = \alpha e_1,$$

или

где α - неизвестная константа.

 $||x||_2^2 - 2(v^Tx)^2 = \alpha x_1$

 $x^Tx - 2(v^Tx)x^Tv = \alpha x_1$:

• Так как $\|\cdot\|_2$ является унитарно инвариантной. мы получаем

$$\|x\|_2 = \|Hx\|_2 = \|\alpha e_1\|_2 = |\alpha|.$$

и
$$\alpha = \pm \|x\|_2$$

ullet Также мы можем выразить v из $x - 2(v^T x)v = \alpha e_1$:

$$v = \frac{x - \alpha e_1}{2v^T x}$$

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1, 0, ..., 0)^T$, тогда мы • Умножая последнее выражение на x^T мы хотим найти v такой. что

$$Hx = x - 2(v^T x)v = \alpha e_1,$$

где α - неизвестная константа.

• Так как $\|\cdot\|_2$ является унитарно инвариантной, мы получаем

$$\|x\|_2 = \|Hx\|_2 = \|\alpha e_1\|_2 = |\alpha|.$$

и
$$\alpha = \pm \|x\|_2$$

ullet Также мы можем выразить v из $x - 2(v^T x)v = \alpha e_1$:

$$v = \frac{x - \alpha e_1}{2v^T x}$$

получаем

$$x^Tx - 2(v^Tx)x^Tv = \alpha x_1;$$

или

$$\|x\|_2^2 - 2(v^Tx)^2 = \alpha x_1.$$

• Следовательно.

$$(v^Tx)^2 = \frac{\|x\|_2^2 - \alpha x_1}{2}.$$

Хорошее свойство матрицы отражения Хаусхолдера состоит в том, что она может обнулить все элементы вектора, кроме первого:

$$H\begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Доказательство. Пусть $e_1 = (1, 0, ..., 0)^T$, тогда мы • Умножая последнее выражение на x^T мы хотим найти v такой, что

$$Hx = x - 2(v^T x)v = \alpha e_1,$$

где lpha - неизвестная константа.

• Так как $\|\cdot\|_2$ является унитарно инвариантной, мы получаем

$$||x||_2 = ||Hx||_2 = ||\alpha e_1||_2 = |\alpha|.$$

и
$$\alpha = \pm \|x\|_2$$

ullet Также мы можем выразить v из $x - 2(v^T x)v = \alpha e_1$:

$$v = \frac{x - \alpha e_1}{2v^T x}$$

получаем

 $||x||_2^2 - 2(v^Tx)^2 = \alpha x_1$.

или

$$ullet$$
 Следовательно, $(v^T x)^2 = rac{\|x\|_2^2 - lpha x_1}{2}.$

• Таким образом, v существует и равно

$$v = \frac{x \mp \|x\|_2 e_1}{2v^T x} = \frac{x \mp \|x\|_2 e_1}{\pm \sqrt{2(\|x\|_2^2 \mp \|x\|_2 x_1)}}.$$

 $x^Tx - 2(v^Tx)x^Tv = \alpha x_1$:

• Используя полученное свойство мы можем сделать произвольную матрицу A нижней треугольной:

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

• Используя полученное свойство мы можем сделать произвольную матрицу A нижней треугольной:

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

ullet Затем находим $H_3 = egin{bmatrix} I_2 & & & \ \widetilde{H}_2 & & \widetilde{H}_2 \end{bmatrix}$ такую, что

$$\widetilde{H}_3 \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Используя полученное свойство мы можем сделать произвольную матрицу A нижней треугольной:

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

ullet Затем находим $H_3 = egin{bmatrix} I_2 & & \ & \widetilde{H}_2 \end{bmatrix}$ такую, что

$$\widetilde{H}_{3} \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Получаем

$$H_{3}H_{2}H_{1}A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

• Используя полученное свойство мы можем сделать произвольную матрицу A нижней треугольной:

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

ullet Затем находим $H_3 = egin{bmatrix} I_2 & & \ & \widetilde{H}_3 \end{bmatrix}$ такую, что

$$\widetilde{H}_3 \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Получаем

$$H_3 H_2 H_1 A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

• Аналогично находим ${\cal H}_4$ и получаем верхнюю треугольную матрицу.

• Используя полученное свойство мы можем сделать произвольную матрицу A нижней треугольной:

$$H_2H_1A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & \times & \times \end{bmatrix}$$

ullet Затем находим $H_3 = egin{bmatrix} I_2 & & & \ \widetilde{H}_2 & & \ \widetilde{H}_2 & & \ \end{bmatrix}$ такую, что

$$\widetilde{H}_3 \begin{bmatrix} \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \end{bmatrix}.$$

• Получаем

$$H_3 H_2 H_1 A = \begin{bmatrix} \times & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \\ 0 & 0 & 0 & \times \end{bmatrix}$$

- Аналогично находим $H_{\scriptscriptstyle A}$ и получаем верхнюю треугольную матрицу. Так как произведение ортогональных и обратная к
- ортогональной матрицы являются ортогональными матрицами, мы получаем **следствие:** (QR-разложение) Любая $A \in \mathbb{R}^{n \times m}$ может быть представлена как

$$A = QR$$

где Q - ортогональная и R - верхняя треугольная. См. постер, каковы размеры Q и R для n>m и n < m.

• Матрица вращения Гивенса (Якоби) - это ортогональная матрица, которая используется для вращения вектора в плоскости на угол α . Она имеет следующий вид:

$$G = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Легко проверить, что $G^TG = GG^T = I$, то есть матрица является ортогональной.

• Матрица вращения Гивенса (Якоби) - это ортогональная матрица, которая используется для вращения вектора в плоскости на угол α . Она имеет следующий вид:

$$G = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Легко проверить. Что $G^TG = GG^T = I$, то есть матрица является ортогональной.

ullet Для общего случая размерности n мы выбираем две координаты (i,j) и выполняем вращение вектора xтолько в этой плоскости:

$$x' = Gx$$

где изменяются только i-я и j-я координаты:

$$x_i' = x_i \cos \alpha - x_j \sin \alpha, \quad x_j' = x_i \sin \alpha + x_j \cos \alpha,$$

при этом остальные x_k остаются неизменными.

• Матрица вращения Гивенса (Якоби) - это ортогональная матрица, которая используется для вращения вектора в плоскости на угол α . Она имеет следующий вид:

$$G = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Легко проверить. Что $G^TG = GG^T = I$, то есть матрица является ортогональной.

ullet Для общего случая размерности n мы выбираем две координаты (i,j) и выполняем вращение вектора xтолько в этой плоскости:

$$x' = Gx$$

где изменяются только i-я и j-я координаты:

$$x_i' = x_i \cos \alpha - x_j \sin \alpha, \quad x_j' = x_i \sin \alpha + x_j \cos \alpha,$$

при этом остальные x_k остаются неизменными.

ullet Чтобы обнулить i-ю координату вектора, выбираем угол lpha так, что:

$$\cos\alpha = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad \sin\alpha = -\frac{x_j}{\sqrt{x_i^2 + x_j^2}}$$

 Матрица вращения Гивенса (Якоби) - это ортогональная матрица, которая используется для вращения вектора в плоскости на угол α . Она имеет следующий вид:

$$G = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

Легко проверить. Что $G^TG = GG^T = I$, то есть матрица является ортогональной.

ullet Для общего случая размерности n мы выбираем две координаты (i,j) и выполняем вращение вектора xтолько в этой плоскости: x' = Gx

где изменяются только
$$i$$
-я и j -я координаты:

$$x_i' = x_i \cos \alpha - x_j \sin \alpha, \quad x_j' = x_i \sin \alpha + x_j \cos \alpha,$$

при этом остальные x_k остаются неизменными.

ullet Чтобы обнулить i-ю координату вектора, выбираем угол lpha так, что:

$$\cos \alpha = \frac{x_i}{\sqrt{x_i^2 + x_j^2}}, \quad \sin \alpha = -\frac{x_j}{\sqrt{x_i^2 + x_j^2}}$$

• Применяя последовательно матрицы Гивенса, можно привести матрицу к верхнетреугольному виду: для этого нужно n-1 вращений, чтобы обнулить элементы под главной диагональю в каждом столбце.

QR через вращения Гивенса

Также мы можем сделать матрицу верхнетреугольной с помощью вращений Гивенса:

$$\begin{bmatrix} \times & \times & \times \\ * & \times & \times \\ * & \times & \times \end{bmatrix} \rightarrow \begin{bmatrix} * & \times & \times \\ * & \times & \times \\ 0 & \times & \times \end{bmatrix} \rightarrow \begin{bmatrix} \times & \times & \times \\ 0 & * & \times \\ 0 & * & \times \end{bmatrix} \rightarrow \begin{bmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$$

Вращения Гивенса vs. отражения Хаусхолдера

• Отражения Хаусхолдера полезны для плотных матриц (сложность приблизительно в два раза меньше, чем для Якоби) и мы должны обнулить большое количество элементов.

Вращения Гивенса vs. отражения Хаусхолдера

- Отражения Хаусхолдера полезны для плотных матриц (сложность приблизительно в два раза меньше, чем для Якоби) и мы должны обнулить большое количество элементов.
- Вращения Гивенса более подходят для разреженных матриц или параллельных вычислений, так как они действуют локально на элементах.

