5 Несмещенные оценки

1. Предположим, что наш набор данных является реализацией случайной выборки X_1, X_2, \dots, X_n из равномерного распределения на интервале $[-\theta, \theta]$, где θ неизвестно. Составьте модель, проведите 1000 экспериментов для проверки следующих гипотез.

а. [# 10] Оценка

$$t = \frac{3}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$$

является несмещенной оценкой для θ^2 .

Если оценка является несмещённой, оцените параметр a при котором

$$P(|E[\theta^2] - E[t]| < a) \le 0.95.$$

Если нет, укажите, имеет ли это положительное или отрицательное смещение.

b. [# 10] Является ли \sqrt{t} несмещенной оценкой для θ ?

Если нет, укажите, имеет ли это положительное или отрицательное смещение.

- **2.** Предположим, что случайные величины $X_1, X_2, ..., X_n$ имеют одинаковое математическое ожидание μ . Составьте модель, проведите 1000 экспериментов для проверки следующих гипотез.
- а. [# 10] Оценка

$$s = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$$

является несмещенной оценкой для μ? Если нет, укажите, имеет ли это положительное или отрицательное смещение.

b. [# 10] При каких условиях для констант a_1, a_2, \dots, a_n оценка

$$t = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

является несмещенной оценкой для μ ?

В качестве модельного распределения выберите нормальное распределение. При решении задачи в общем виде ставятся дополнительные баллы.

3. [# **15**] Случайные величины $X_1, X_2, ..., X_n$ имеют одинаковое математическое ожидание μ . Исследуйте для каких констант α и b значение

$$t = a(X_1 + X_2 + \dots + X_n) + b$$

является несмещенной оценкой для *µ*?

4. [# **30**] Предположим, что набор данных в таблице «количество циклов до наступления беременности»

Циклы	1	2	3	4	5	6	7	8	9	10	11	12
Кол-во	29	16	17	4	3	9	4	5	1	1	1	3

смоделирован как реализация случайной выборки $X_1, X_2, ..., X_n$ из распределения Geo(p), где 0 неизвестно. Руководствуясь законом больших чисел, естественной оценкой для <math>p является

$$t = \frac{1}{\overline{X}_n}.$$

- а. Проверьте, что t является смещенной оценкой для p, и выясните, имеет ли она положительное или отрицательное смещение.
- b. В упражнении 3.3 мы обсуждали оценку вероятности того, что женщина забеременеет в течение трех или менее циклов. Одной из возможных оценок этой вероятности является относительная частота женщин, забеременевших в течение трех циклов

$$s = \frac{\text{кол} - \text{во } X_i \le 3}{n}.$$

Покажите, что *s* является несмещенной оценкой этой вероятности.