Lecture notes: Trajectory tracking control for robot manipulators

Jie Fu

Department of Electrical and Computer Engineering Robotics Engineering Program Worcester Polytechnic Institute

RBE502, 2018

Outline

This lecture note is based on

- Chapter 8 in M. Spong Robot modeling and control.
- Chapter 5: Position Control and Trajectory Tracking of Murray et.
 al. A Mathematical Introduction to Robotic Manipulation

Inverse dynamics control

Consider the dynamic model

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau.$$

Question: How to design trajectory tracking control?

Recall: Trajectory tracking control for

$$\dot{x} = Ax + Bu$$

 Consider use it for nonlinear trajectory tracking control: What is the linear system now?

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q) = \tau.$$

Let
$$\underline{z} = M(q) \hat{a}_q + C(q, \dot{q}) \dot{q} + N(q)$$
.

Since the inertia matrix is invertible, the system dynamical model reduces to

educes to
$$M(q)\ddot{q} + C(q,\dot{q}) \dot{q} + \chi(q) = M(q) Qq + C(q\dot{q})\dot{q} + \chi(q)$$
 $M(q)$ invertible $= M(q) \dot{q} = M(q) qq$
 $M^{-1}(q)$ exists

Inverse dynamic control

Given

$$\ddot{q} = a_q$$

decoupled joint dynamics.

Write into the state space form:

Inverse dynamic control

Let $q^d(t)$ be the desired trajectory (cont. differentiable at least twice) the control input a_a should be

The control input
$$a_{0}$$
 should be
$$M(q^{d}) \stackrel{?}{Q}^{d} + C(q^{d}, q^{d}) \stackrel{?}{Q}^{d} + N(q^{d}) = \tau^{d}$$

$$\times^{d} \stackrel{!}{(\times^{1})} \times^{d} = q^{d}$$

$$\times^{d} = \stackrel{?}{Q}^{d}$$

$$a_{q} = -\begin{bmatrix} K_{1} & K_{2} \end{bmatrix} \begin{bmatrix} X_{1} - X_{1} \\ X_{2} - X_{2} \end{bmatrix} + a_{q}$$

$$= -\begin{bmatrix} K_{p} & K_{p} \end{bmatrix} \begin{bmatrix} q - q d \\ \dot{q} - \dot{q} d \end{bmatrix} + a_{q}$$

$$a_{q} = -K_{p} (q - q d) - K_{p} (\dot{q} - \dot{q} d) + a_{q}$$

$$position \qquad position \qquad posi$$

$$T = M aq + C() \hat{g} + N(0)$$

Inverse dynamic control

- Outer: input q^d , \dot{q}^d , q, \dot{q} , output a_q
- Inner: input q, \dot{q}, a_q , and output u (or τ).

Flat output:
$$Z \rightarrow X, \dot{X}, \dot{u}$$

 $\varrho \rightarrow \varrho, \dot{\varrho}, \dot{q} = \dot{\varrho}$

Computed Torque control: idea

Inverse dynamic control is also known as computed torque control, as it can be written as:

Since q and \dot{q} are measured, we modify the input(torques) to be

$$\tau = M(q)\ddot{q}_d + C(q,\dot{q})\dot{q} + N(q,\dot{q})$$

And thus if our model is accurate.

$$M(q)\ddot{q}_d + C(q,\dot{q})\dot{q} + N(q,\dot{q}) = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q,\dot{q})$$

i.e.

$$\ddot{q} = \ddot{q}_d$$

Again, with accurate initial state and model, $q(t) = q_d(t)$ for all time t > 0.

Computed Torque control

With inaccurate initial state and models, the **mismatch** between our current state q and the desired state q_d is

$$e = q - q_d$$

The control objective is to achieve asymptotical stability: $\lim_{t\to\infty} e(t) = 0.$

$$\dot{e} = \dot{q} - \dot{q} d
\dot{e} = \ddot{q} - \ddot{q} d
\ddot{e} = \ddot{q} - \ddot{q} d \qquad \ddot{e} = \ddot{q} - \ddot{q} d \qquad \ddot{e} - \ddot{q} d \qquad \ddot{e} = \ddot{q} - \ddot{q} d \ddot{q} \ddot{e} - \ddot{q} \ddot{q} \ddot{e} \ddot$$

 $\frac{\dot{e} = V}{V = -Kpe - Kpe}$ $T = M(e)(-Kpe - Kpe) + M\ddot{e}^{d} + C(e,i)\dot{e} + N(e)$ Teedback

Teed forward term.

using 0=V

Computed Torque control

With inaccurate initial state and models, the **mismatch** between our current state q and the desired state q_d is

$$e = q - q_d$$

The control objective is to achieve asymptotical stability: $\lim_{t\to\infty} e(t) = 0.$

• What is the dynamics of the error state?

$$\dot{e} = \dot{q} - \dot{q}_d$$
 $\ddot{e} = \ddot{q} - \ddot{q}_d$

• What is the relation between input torques and the error states? Since by the dynamic model,

$$M(q)\ddot{q} = \tau - C(q,\dot{q})\dot{q} - N(q,\dot{q})$$

we have
$$M(q)\ddot{e} = \tau - C(q,\dot{q})\dot{q} - N(q,\dot{q}) - M(q)\ddot{q}_d$$
.

Computed Torque control via feedback linearization

$$M(q)\ddot{e} = \tau - C(q,\dot{q})\dot{q} - N(q,\dot{q}) - M(q)\ddot{q}_d$$
.
Consider the input $v = M(q)^{-1}(\tau - C(q,\dot{q})\dot{q} - N(q,\dot{q}) - M(q)\ddot{q}_d)$.
Let $x_1 = e$ and $x_2 = \dot{e}$, reduce to a linear system

Overview

Inverse dynamic control is also known as computed torque control, as it can be written as:

Computed Torque Control.

• Inverse dynamic control:

$$\tau = M(q)a_q + C(q,\dot{q})\dot{q} + N(q,\dot{q})$$

$$\dot{q} = a_q$$

$$a_q = -K_P e - K_D \dot{e} + a_q^d$$

$$\tau = M(q)(-K_P e - K_D \dot{e}) + M(q) a_q^d + \alpha \dot{q} + N(q)$$

Feedforward compensation

and $a_a^d = \ddot{q}^d$

and

Exponential tracking with PD control

 Less demanding PD with gravity compensation realizes asymptotic stability for a setpoint control.

$$\tau = N(q, \dot{q}) - K_D \dot{e} - K_P e.$$

Exponential tracking with PD control

 Less demanding PD with gravity compensation realizes asymptotic stability for a setpoint control.

$$\tau = N(q, \dot{q}) - K_D \dot{e} - K_P e.$$

Whileas computed Torque control

$$\tau = \underbrace{M(q)(-K_Pe - K_D\dot{e})}_{\text{Feedback control}} + \underbrace{C(q,\dot{q})\dot{q} + N(q,\dot{q}) + M(q)\ddot{q}_d}_{\text{Feedforward compensation}}$$

realizes exponential trajectory tracking.

Exponential tracking with PD control

 Less demanding PD with gravity compensation realizes asymptotic stability for a setpoint control.

$$\tau = N(q, \dot{q}) - K_D \dot{e} - K_P e.$$

Whileas computed Torque control

$$\tau = \underbrace{M(q)(-K_Pe - K_D\dot{e})}_{\text{Feedback control}} + \underbrace{C(q,\dot{q})\dot{q} + N(q,) + M(q)\ddot{q}_d}_{\text{Feedforward compensation}}$$

realizes exponential trajectory tracking.

Remove M(8) > (- Kpe - Koe) + Cc >9 + N(2) + M(2) 2d

Augmented PD control law

$$\tau = \underbrace{\left(-K_{P}e - K_{D}\dot{e} + N(q, \cancel{q})\right)}_{\text{PD control w gravity compensation}} + \underbrace{M(q)\ddot{q}_{d} + C(q, \dot{q})\dot{q}_{d}}_{\text{Partial feedforward}}$$

Realizes **exponential** trajectory tracking (when $q_d = 0$, setpoint stabilization).

Proof

The error dynamics with the control input:

$$\tau = \underbrace{(-K_{P}e - K_{D}\dot{e} + N(q, \dot{q}))}_{\text{PD control w gravity compensation}} + \underbrace{M(q)\ddot{q}_{d} + C(q, \dot{q})\dot{q}_{d}}_{\text{Partial feedforward}}$$

$$M\ddot{q} + C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q}_{d}$$

$$+ C\dot{q} + N(q) = \tau$$

Exponential stability of augmented PD

Proof: Hint:

$$V = \frac{1}{2}\dot{e}^{T}M(q)\dot{e} + \frac{1}{2}e^{T}K_{P}e + \varepsilon e^{T}M(q)\dot{e}.$$

$$Set point tracking.$$

$$V is hypopunov candidate
$$V = \frac{1}{2}\dot{e}^{T}M(q)\dot{e} + \frac{1}{2}e^{T}K_{P}e + \varepsilon e^{T}M(q)\dot{e}.$$

$$V = \frac{1}{2}\dot{e}^{T}M(q)\dot{e} + \frac{1}{2}e^{T}M(q)\dot{e}.$$

$$V = \frac{1}{2}\dot{e}^{T}M(q)\dot{e} + \frac{1}{2}e^{T}M(q)\dot{e}.$$$$

$$\hat{j}$$
 dea: $\hat{\xi}$ is ubitrarily small $\|M(\hat{q})\| < \lambda$

To show that:
$$V \ge 0$$
 by a choise of ε and using the upper bound

[M(1

Workspace control

Suppose given a path $x_d(t) \in SE(3)$: desirable end-effector configuration as a function of time.

To apply joint space control (centralized or decentralized)

① Solve $q_d(t)$ from $x_d(t)$ using inverse kinematics.

Design joint space controller.

Workspace control

Suppose given a path $x_d(t) \in SE(3)$: desirable end-effector configuration as a function of time.

To apply joint space control (centralized or decentralized)

- Solve $q_d(t)$ from $x_d(t)$ using inverse kinematics.
 - time consuming.
 - hard to reason about the trajectory of end-effector with the trajectory of q — may cause undesirable behavior.
- Design joint space controller.

Workspace control

Suppose given a path $x_d(t) \in SE(3)$: desirable end-effector configuration as a function of time.

To apply joint space control (centralized or decentralized)

- Solve $q_d(t)$ from $x_d(t)$ using inverse kinematics.
 - time consuming.
 - hard to reason about the trajectory of end-effector with the trajectory of q — may cause undesirable behavior.
- ② Design joint space controller.

To overcome these.

Direct workspace control.

Recap

Forward kinematics: A smooth and invertible mapping f from the joint variables to the workspace variables

$$x = f(q)$$

The Jacobian

$$\dot{x} = J(q)\dot{q}, \quad J(q) = \frac{\partial f}{\partial q}$$

Recap

Forward kinematics: A smooth and invertible mapping f from the joint variables to the workspace variables

$$x = f(q)$$

The Jacobian

$$\dot{x} = J(q)\dot{q}, \quad J(q) = \frac{\partial f}{\partial q}$$

Given f is smooth and invertible.

$$\dot{q} = J^{-1}\dot{x}, \quad \ddot{q} = J^{-1}\ddot{x} + \frac{d}{dt}(J^{-1})\dot{x}.$$

The dynamic of robot in the joint space

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + N(q,\dot{q}) = \tau$$

Taskspace control

Suppose given a path $X_d(t) \in \mathbb{R}^6$: desirable end-effector configuration as a function of time using any minimal representation of SO(3). To apply joint space control (centralized or decentralized)

- Solve $q^d(t)$ from $X^d(t)$ using inverse kinematics.
 - time consuming.
 - hard to reason about the trajectory of end-effector with the trajectory of q — may cause undesirable behavior.
- ② Design joint space controller.

To overcome these, Direct task space control.

From joint space to task space

State variables in

Joint space: q

• Work space: X.

X is a function of q, we have

$$\dot{X} = J(q)\dot{q}$$

where J(q) is the **analytical** Jacobian. Using inverse dynamics

control:

Summary

- Show Lyapunov stability of decentralized PD control for plannar manipulators.
- PD+Gravity compensation for set-point tracking.
- Inverse dynamics control for trajectory tracking.
- Inverse dynamics control in task space.

Cons:

- Inverse dynamics requires exact knowledge of model dynamics.
- PERFORMANCE is NOT GUARANTEED when
 - parameter becomes uncertain.
 - robot picking up an unknown load.

Next: Robust and adaptive control.

