Simulation Description

Jaime E. Forero-Romero Departamento de Física, Universidad de los Andes Cra. 1 No. 18A-10, Edificio Ip, Bogotá, Colombia

August 2, 2013

1 Simulations

We used a large N-body simulation dubbed Multidark to extract statistics of halo parameters on cosmological scales. The data we use for this paper is publicly available through a database interface first presented by Riebe et al. [2011]. Here we summarize the main characteristics of the Multidark volume. More details can be found in Prada et al. [2012].

The simulation was run using an Adaptive-Mesh Refinement (AMR) code called ART. Details about the technical aspects and comparisons with other N-body codes are given in Klypin et al. [2009]. The simulations follows the nonlinear evolution of a dark matter density field sampled with 2048³ particles in a volume of $1000h^{-1}{\rm Mpc}$. The physical resolution of the simulation is almost constant in time $\sim 7h^{-1}{\rm kpc}$ between redshifts z=0-8. The cosmological parameters in the simulation are $\Omega_m=0.27,~\Omega_\Lambda=0.73,~n_s=0.95,~h=0.70$ and $\sigma_8=0.82$ for the matter density, dark energy density, slope of the matter fluctuations, the Hubble constant at z=0 in units of $100{\rm km~s^{-1}~Mpc^{-1}}$ and the normalization of the power spectrum, respectively. These cosmological parameters are consistent with the results from WMAP5 and WMAP7 [Komatsu et al., 2009, Jarosik et al., 2011]. With these characteristics the mass per simulation particle is $m_p=8.63\times 10^9h^{-1}{\rm M}_{\odot}$, which means that group-like halos of masses $\sim 10^{13}h^{-1}{\rm M}_{\odot}$ are sampled with at least 1100 particles.

Dark matter halos are identified using a Bound-Density-Maxima algorithm (BDM). The code starts by finding the density maxima at the particles' positions in the simulation volume. For each maxima it finds the radius R_{200} of a sphere containing a mass overdensity given by

$$M_{200} = \frac{4\pi}{3} \Delta \rho_{\rm cr}(z) R_{200}^3 \tag{1}$$

where $\rho_{\rm cr}$ is the critical density of the Universe and $\Delta=200$ is the desired overdensity. This procedure allows for the detection of both halos and sub-halos. In our analysis we kept only the halos.

1.1 Concentration Estimates

The estimation for the concentration values is done using an analytical property of the NFW profile (see Sect.??) that relates the circular velocity at the virial radius:

$$V_{200} = \left(\frac{GM_{200}}{R_{200}}\right)^{1/2},\tag{2}$$

with the maximum circular velocity

$$V_{\text{max}}^2 = \max \left[\frac{GM(< r)}{r} \right]. \tag{3}$$

The $V_{\rm max}/V_{200}$ velocity ratio is used to determine the halo concentration, c (the ratio between R_{200} and the scale radii of the NFW profile), using the following relation [Klypin et al., 2011]:

$$\frac{V_{\text{max}}}{V_{200}} = \left(\frac{0.216c}{c}\right)^{1/2} \tag{4}$$

where f(c) is

$$f(x) = \ln(1+c) - \frac{c}{(1+c)}. (5)$$

For each BDM overdensity the $V_{\rm max}/V_{200}$ ratio in order to find the concentration c by solving numerically the previous two equations. This method provides a robust estimate of the concentration compared to a radial fitting to the NFW profile, which is strongly dependent on the radial range used for the fit [Klypin et al., 2011, Meneghetti and Rasia, 2013]. Comparison of these two methods to using halos where the NFW functional fit yield a small systematic offset of (5-15)%, with the concentration derived by the velocity ratio method being higher [Prada et al., 2012].

References

- N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson, M. Limon, S. S. Meyer, M. R. Nolta, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. ApJS, 192:14, Feb. 2011. doi: 10.1088/0067-0049/192/2/14.
- A. Klypin, O. Valenzuela, P. Colín, and T. Quinn. Dynamics of barred galaxies: effects of disc height. MNRAS, 398:1027–1040, Sept. 2009. doi: 10.1111/j.1365-2966.2009.15187.x.
- A. A. Klypin, S. Trujillo-Gomez, and J. Primack. Dark Matter Halos in the Standard Cosmological Model: Results from the Bolshoi Simulation. ApJ, 740:102, Oct. 2011. doi: 10.1088/0004-637X/740/2/102.

- E. Komatsu, J. Dunkley, M. R. Nolta, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, S. S. Meyer, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. ApJS, 180:330–376, Feb. 2009. doi: 10.1088/0067-0049/180/2/330.
- M. Meneghetti and E. Rasia. Reconciling extremely different concentration-mass relations. *ArXiv e-prints*, Mar. 2013.
- F. Prada, A. A. Klypin, A. J. Cuesta, J. E. Betancort-Rijo, and J. Primack. Halo concentrations in the standard Λ cold dark matter cosmology. *MNRAS*, 423:3018–3030, July 2012. doi: 10.1111/j.1365-2966.2012.21007.x.
- K. Riebe, A. M. Partl, H. Enke, J. Forero-Romero, S. Gottloeber, A. Klypin, G. Lemson, F. Prada, J. R. Primack, M. Steinmetz, and V. Turchaninov. The MultiDark Database: Release of the Bolshoi and MultiDark Cosmological Simulations. ArXiv e-prints, Aug. 2011.