ASSIGNIMENT-1 FOR Web Data Mining

Submitted to
Glopeekenshnan R
Associate Professor
Dept. of Computed Applications
SCE, kottayam

Submitted on

30/09/2021

Submitted by Ribin Sara John S5-RMCA Roll No:19 SCE, kottayam

Simulation

of Simulate the algorithm genkules (F) for the just found out frequent item sets.

TID	hist of item_IDs
Tioo	11,72,75
T200	12,14
Taoo	IZJ3
T400	11,12,14
7500	ET,IT
T600	72,73
T-700	II,13
T800	11,12,13,15
T900	71,72,73

Algorithm:

Algorithm genRules (F) // Fis the set of all for each frequent k-itemsel-fk Trequent itemsels in Fok 22 do

2 output every 1-item consequent rule of fk with confidence > minconf and

```
support <- [k-count/n // n is the total number
                                of hansactions in t
       HI < {consequents of all 1-item consequent rules
3
            derived-from fk above ];
        ap-genRules (-Tk, Hi);
4
    endfol
 Procedure ap-genRules (fk, Hm) // Hm is the set of
    if (k>m+1) AND (Hm + p) then m-item consequents
        Hm+1← candidate-gen (+m);
2
        for each hmt, in Hmt, do
3
            conf < fk. count / (fk-hm+1). count;
4
            H (conf≥minconf) then
5
                 output the rule (fk-hm+1) -> hm+1 with
6
                  confidence=conf and support = fk.count/n;
                  In 1s the total number of hansactions
7
                delete hmt from Hmti;
 8
          end-for
9
```

10 ap-genRules (fk, Hm+1);

11 endif

Generation of strong association rule

#3

Hemset	Support
[21,72,73]	2
[11,72,75]	2

Since the frequent itemsets satisfies the Apriori property ie, if an itemset has minimum support, then every non empty subset of this itemset also has minimum support.

Hence for itemsel = {II,I2,I3] with minsup = 2 have the following itemsets and support counts.

(ase1: {11,12,13]

Hemset	Sorp-count
{11}	6
{12]	7
[13]	16 1
{I1,I2]	4
{II, I3]	4
122,231	14

Following are the various association news that can be generated from this itemsel,

$$=\frac{2}{6}=\frac{1}{3}=\frac{33.33}{33.33}$$

- * Confidence of Rule 3 [{13}] \rightarrow {11,12}]

 confidence = sup count ({11,12,13})

 sup count ({13})

 = $\frac{2}{6} = \frac{33.3?}{6}$
- * Confidence of Rule 4 [{II,I2} \rightarrow {I3]]

 confidence = Sup-count({II,I2,I3]).

 Sup-count({II,I2})

* Confidence of Rule 5 [{II,I3} \rightarrow {I2]] confidence = sup-count({II,I2,I3]) sup-count({II,I3])

* Confidence of Rule 6 [{12,13} \rightarrow {11]} confidence = sup-count ({11,12,13})

sup-count ({12,13})

Since none of the generated association rules have confidence > minconfie, 70%. These nules are not Shong association rules.

Case ?:

Frequent itemsel = {II, I2, I5] with support count = 2

	1
Subsets of items	Support count
{21]	6
{12}	Jan 197
[15]	2
{11,12)	4.,-
{11,15]	4
{I2,IS}	. 2

Following wrethe various association nules that can be generated from this itemset 1 Minorals - 11/14 11-1-12

- 1. {II] →{12,15]
- 2. {12] > {II, 15]
- $3. \{15\} \rightarrow \{11,12\}$
- 4. {11,12] > {1s]

alming on the price of

and in a fair

- 6. {12, 15] → {II) {II, 12, 15] → q (since it is nullsel)
- * Confidence of Rule 1. [{II}] \rightarrow {I2, I5])

 Confidence = Sup-count ({I1, I2, I5})

 Sup-count ({II})

* Confidence of Rule 2 [{12] > {II, IS])

* Confidence of Rule 3 [{15] -> {II, I2])

$$=\frac{2}{2}=100\%$$

the gir language of the forest poles to page all and

* Confidence of Rule 4 [{]1,12]
$$\rightarrow$$
 {15])

confidence = Sup. count ({11,12,13})

sup. count ({11,12)

* Confidence of Rule $5[\{J1,J5\}] \rightarrow \{J2\}]$ confidence = Sup-count ($\{J1,J2,J3\}$)

Sup-count ($\{J1,J5\}$)

* Confidence of Rule 6 [{12,15] \rightarrow {11]}

Confidence = Sup-count ({11,12,13})

Sup-count ({12,15})

= $\frac{2}{2} = 100\%$

Minimum confidence of association nules one to? Association nules having min.conf ≥ to? are strong association nules.

Here strong association nules that can be generated from the given market basket data frequent itemsel is

{t5]->{t1,72]	with conf = 100%
{11,15}->{12}	with conf = 100%
{12,15] > {11)	conf=100%

F2

Hemset	sup-count
[SI,12]	4
{II, T3]	4
{11,15]	2
{12,13]	4
{12,14]	2 [1]
{12,15]	2

i) {I1,I2]

Subsets are [II] [IZ] and [II, IZ]

- © {11] → {12]
- 2. {[2] → {[1]
- 3 {11,121 > 9 Not possible

Confidence of Rule (311) > {12)

conf = sup-count ({II,I2])
sup-count ({II)

- [EI, SI]
 - (EIF) ← [SIF]
 - ® {13]→{12]

Conf. of Rule (7) $\{12\} - 3\{13\}$ conf = $\frac{4}{7} = \frac{57}{1}$

Confidence of Rule (8) $\{13\} \rightarrow \{12\}$ Conf = $\frac{4}{6} = \frac{66}{12}$

- V) {12,14)
 - 12]>{14]
 - 6 {14} → {12}

confidence of Rule (9 {12) > {14)

Confidence of Rule (0 174) -> [72]

- VI) {12,15]
 - ① {12] → {15].

Confidence of Rule (11)
$$\{12\} \rightarrow \{15\}$$

$$Conf = \frac{2}{4} = 28\frac{11}{11}$$

minconf ≥70%. hence, strong association rules from the core

$$\{14\} \rightarrow \{12\}$$
 conf=100%

$$\{15\} \rightarrow \{12\} \quad \text{conf} = 100\%$$

71

Hemset	Support count
[11]	G
{12]	7
[13]	G MAIN
1241	2
{15]	2

Since all these Hemsets are satisfying Aprimi properties

their subsets will also have minimum support count. But here Fi is 1-frequent itemset whose subsets one the same itemset itself which generates φ , thence the algorithm is terminated.

Strong association rules generated for this montest basket data is as follows,

$$\{14\} \rightarrow \{12\}$$
 $\{15\} \rightarrow \{12\}$
 $\{15\} \rightarrow \{11,12\}$
 $\{11,15\} \rightarrow \{12\}$
 $\{12,15\} \rightarrow \{11\}$