МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладнаяматематика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа
по курсу
«Фундаментальная информатика»
І семестр
Задание 3
«Вещественный тип. Приближенные вычисления. Табулирование
функций»

Группа	М8О-109Б-22
Студент	Концебалов О.С.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора.

Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью ε * 10^k , где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k - экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 7:

Ряд Тэйлора:

$$3x + 8x^2 + ... + n \cdot (n+2)x^n$$

Функция:

$$\frac{x(3-x)}{(1-x)^3}$$

Значения а и b: 0.0 и 0.5

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum\nolimits_{n = 0}^k {\frac{{{f^{(n)}}(a)}}{{n!}}(x - a)^n} = f(a) + f^{(1)}(a)(x - a) + \frac{{f^{(2)}}(a)}{{2!}}(x - a)^2 + \ldots + \frac{{f^{(k)}}(a)}{{k!}}(x - a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float $-1.19 * 10^{-7}$, double $-2.20 * 10^{-16}$, long double $-1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать, просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной	
N	uint64_t	То самое число N, на которое нужно разбить отрезок	
LDBL_EPSILON	Long double	То самое машинное эпсилон 1.0842e-19	
step	Long double	Разница между текущим и предыдущем значениями переменной	
X	Long double	Переменная, для которой производятся вычисления	
sum	Long double	Значение ряда Тейлора для функции	
function(long double x)	Long double	Значение функции	
iter	int	Счетчик числа итераций	

Исходный код программы:

```
include <stdio.h>
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – числоразбиений отрезка на равные части.

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное с помощью формулы Тейлора, A_2 — значение, вычисленное с помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены с точностью K знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

5

Вывод:

Тест №2

Ввод:

10

Вывод:

N = 10	
Machine epsilon is equals to: 1.0842e-19	
Table of values of Taylor series and standard function	
x sum of Taylor series f(x) function value number of iterations	
0.050 0.17203674004956990812 0.1720367400495699082 1	
0.100 0.39780521262002743483 0.3978052126200274349 2	
0.150 0.69611235497659271318 0.6961123549765927132 3	
0.200 1.09374999999999998 1.093749999999999999999 4	
[0.250]1.62962962962962959]1.6296296296296296] 5 [
0.300 2.36151603498542274080 2.3615160349854227408 6	
0.350 3.37733272644515248131 3.3773327264451524813	
0.400 4.81481481481481555 4.8148148148148160 8	
0.450 6.89706987227648384876 6.8970698722764838488 9	
0.500 10.000000000000000347 10.000000000000000043 10	1

Тест №3

Ввод:

20

Вывод:

N = 20			
Machine epsilon is equals to: 1.0842e-19			
Table of values of Taylor series and standard function			
x sum of Taylor series f(x) function value number of i	terations		
[0.025]0.08024410391274296600[0.0802441039127429660] 1	. [
0.050 0.17203674004956990812 0.1720367400495699082 2	: [
[0.075]0.27718002882356425091[0.2771800288235642509] 3	i I		
[0.100]0.39780521262002743483[0.3978052126200274349] 4	i		
0.125 0.53644314868804664719 0.5364431486880466472 5	1		
0.150 0.69611235497659271318 0.6961123549765927132 6	·		
[0.175]0.88042964076021927274]0.8804296407602192728] 7	' 1		
[0.200]1.093749999999999998]1.0937500000000000003]	; I		
0.225 1.34134470141989191382 1.3413447014198919139 9	' 1		
[0.250]1.62962962962962962981]1.6296296296296296298]	.Θ	L	
[0.275]1.96646028947476321329]1.9664602894747632133]	.1	L	
[0.300]2.36151603498542274145]2.3615160349854227414]	.2	L	
[0.325]2.82680485698318345817]2.8268048569831834586]	.3	L	
[0.350]3.37733272644515248131[3.3773327264451524813]	.4	L	
[0.375]4.0320000000000000240]4.032000000000000015]	.5	L	
0.400 4.81481481481481481642 4.8148148148148169 1	.6	L	
[0.425]5.75655461494205638456]5.7565546149420563846]	.7	L	
[0.450]6.89706987227648385050]6.8970698722764838488]	.8	L	
[0.475]8.28852175790951301373[8.2885217579095130163]	.9	L	
[0.500]10.000000000000000347]10.000000000000000043]	20		

Тест №4

Ввод:

25

Вывод:

N = 25 Machine epsilon is equals to: 1.0842e-19		
Table of values of Taylor series and standard function		
x sum of Taylor series f(x) function value number of	iterations	Ī
0.020 0.06332395515473994678 0.0633239551547399468	1	1
0.040 0.13382523148148148147 0.1338252314814814815	2	1
0.060 0.21238068636044036481 0.2123806863604403649	3	1
0.080 0.29999178104709460014 0.2999917810470946001	4	1
0.100 0.39780521262002743475 0.3978052126200274349	5	1
0.120 0.50713749060856498874 0.5071374906085649887	6	1
0.140 0.62950432037430666484 0.6295043203743066647	7	1
0.160 0.76665586869668502309 0.7666558686966850230	8	1
0.180 0.92061925973215710713 0.9206192597321571071	9	1
0.200 1.093749999999999957 1.093749999999999998	10	1
0.220 1.28879448406075624992 1.2887944840607562498	11	1
0.240 1.50896632162122758367 1.5089663216212275837	12	1
0.260 1.75803999763093992390 1.7580399976309399243	13	1
0.280 2.04046639231824416985 2.0404663923182441698	14	1
0.300 2.36151603498542274036 2.3615160349854227399	15	1
0.320 2.72745776511296560076 2.7274577651129656014	16	1
0.340 3.14578289784901355178 3.1457828978490135522	17	1
0.360 3.6254882812499999957 3.6254882812500000002	18	-1
0.380 4.17743613843106978596 4.1774361384310697860	19	-1
0.400 4.81481481481481555 4.8148148148148148160	20	-1
0.420 5.55373324039526016080 5.5537332403952601608	21	-1
0.440 6.41399416909620991500 6.4139941690962099154	22	I
0.460 7.42010872326373012485 7.4201087232637301249	23	I
0.480 8.60263996358670915421 8.6026399635867091542	24	I
0.500 10.000000000000000347 10.000000000000000043	25	- 1

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

1. Машинный ноль – URL: https://ru.wikipedia.org/wiki/Машинный_ноль

2. Ряд Тейлора — URL: https://ru.wikipedia.org/wiki/Ряд Тейлора