Intra-Domain Routing: OSPF

Richard T. B. Ma

School of Computing
National University of Singapore

CS 3103: Compute Networks and Protocols

Recall: Limitation of RIP

- □ RIP uses an "infinity" of 16
 - cannot handle network with more than 15 hops
- no concept of network delays and link costs
 - * routing decisions are based on hop counts
 - path with lowest hop count to the destination is always preferred even if the longer path has a better aggregate link bandwidth and less delays

Link State Routing

- distance vector approach: router knows only cost to each destination
 - hides information, causing problems
- if each node has the entire topology, it can use Dijkstra's algorithm to build forwarding table
- □ link state approach: router knows entire network topology
 - computes shortest path by itself
 - independent computation of routes

OSPF (Open Shortest Path First)

- "open": publicly available
- uses link state algorithm
 - Link State Advertisement (LSA) dissemination
 - topology map at each node
 - route computation using Dijkstra's algorithm
- each LSA carries link state info of one entry
- □ LSAs flooded throughout the entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP)
- complicated protocol, RFC 2328 (244 pages)

Advanced features of OSPF

- □ hierarchical OSPF: divide an AS into areas
 - an area is a collection of networks, host and routers contained within an AS
 - all networks inside an area must be connected
- variety of link cost
 - OSPF protocol assign a metric to each route
 - the metric can be based on a type of service
 - · E.g. delay, throughput, etc.
- multiple same-cost paths allowed
- security and multicast support

Autonomy System

Hierarchical OSPF

Hierarchical OSPF

- two-level hierarchy: local areas and backbone
 - local LSAs flooded only in its own area
 - internal routers only know the shortest path to the area border router for subnets in other areas
- □ area border routers (ABR):
 - "summarize" distances to subnets in own area, advertise to other ABRs
- □ backbone routers:
 - run OSPF routing limited to backbone
- □ boundary routers:
 - connect to other AS's

From an Internal Router's View

From an Internal Router's View

- internal routers within an OSPF area
 - maintain the same topology, e.g., an identical link-state database;
 - have no knowledge of network topology outside the area;
 - know only of routers to destinations provided by Area Border Routers (ABRs) and AS Boundary Routers (ASBRs).

OSPF Area Characteristics

- stops LSA flooding at the area boundary
- □ limits the amount of link-state info exchanged, size of routing table, and the amount of processing carried out by routers
- localizes impact of a topology change locally (within an area)
- requires the two-level hierarchical design

OSPF Common Header

□ All OSPF packets have the same 24-byte common header:

Version	Type Message length			
Router Identification				
Area Identification				
Checksum Authentication type				
Authentication (64 bits)				

Router ID could be any IP address of the router; however, when it changes, OSPF needs to restart.

OSPF Packets

OSPF's five types of packets & functions:

Map real networks to Dijkstra

- □ in Dijkstra's algorithm, links are simple abstractions of router connections
- □ in OSPF, different types of links are used to capture various real network scenarios
- □ link info forms the link state database

Point-to-Point Link

- Connects routers directly
 - . i.e. no other host or router in between

	From			
То		R1	R2	N1
	R1			X
	R2			Х
	N1	X	Х	

or

		From	
То		R1	R2
	R1		X
	R2	X	
	I1		X
	I2	X	

Transient Link

- network with several routers attached to it
- packets enter and leave through any router
 - * E.g., different LAN technologies
- link info to subnet N1

			Fr	om		
То		R1	R2	R3	R4	N1
	R1					X
	R2					X
	R3					X
	R4					X
	N1	X	X	X	X	

Designated Router (DR)

- but subnet cannot speak for itself
- \square for a broadcast domain with N routers, its LSA message complexity could be $O(N^2)$
- solution: designated router (DR) and backup (BDR) are elected (via Hello protocol) to represent the subnet and broadcast subnet info

Stub Link

- network connected to only one router
- packets enter and leave through the same router
- □ R1 becomes the DR for N1

	From		
То		R1	N1
	R1		X
	N1	X	

Virtual Link

- backbone routers must be fully connected
- connectivity can be established/maintained through the configuration of virtual links
- e.g., when the link between two routers is broken, the administration may create a virtual link using a longer path (higher cost)

OSPF Packets

OSPF's five types of packets & functions:

Hello Packet

- ☐ Hello interval: # of seconds between Hello packets
- Router dead interval: # of seconds before declaring a silent router down (typically 40 secs)
- Priority: used to elect DR and BDR

Hello Packet

- □ sent typically every 10 seconds on all router interfaces using a multicast address 224.0.0.5
 - multicast address 224.0.0.6 is used for Designated Router (DR) and Backup Designated Router (BDR) for LSAs (will discuss later)
- used to establish and maintain neighbor relationships, e.g., test reachability
- on broadcast subnets, also used to elect the DR and BDR

OSPF Packets

OSPF's five types of packets & functions:

Exchange of LSA

- who: each entity in an area (e.g., a router, a subnet, ABR) distributes local info in LSAs
- when: sent only under the circumstances:
 - * a router discovers a new neighbor
 - * a link to a neighbor goes down
 - cost of a link changes
 - * basic refresh packets are sent every 30 mins
- how: distributed by reliable flooding
 - * sequenced, time-stamped, and explicitly ACKed

LSA Packet General Format

Link state age	Options	Link state type		
Link state ID				
Advertising router				
Link state sequence number				
Link state checksum Length				

LSA Packet General Format

- □ LS age: # of seconds since the LSA was originated
- Advertising router: Router ID of the router that originates the LSA
- □ LS seq #: used to detect old or duplicate LSAs
- □ LS ID: describe LSA based on the five LS types

Link state age	Options	<u>Link state type</u>		
<u>Link state ID</u>				
Advertising router				
Link state sequence number				
Link state checksum Length				

Router Link LSA (LS Type 1)

- originated by: all routers
- flooded throughout: a single area only
 - LSA: describes the collected states of the router's interfaces to an area
 - LS ID: originator's Router ID

Routing information
Direction of the LSA

Router Link LSA Packet Format

	OSPF common header 24 bytes Type: 4						
				Number	of LSAs		
				LSA gener 20 bytes L			
	0	V	′ E B	0	Number of router links		
↑ ₽]				Link	ID		
1 Repeated		Link Data					
ated	Li	nk tγ	nk type # of TOS Metric for TOS 0				
↓ 1		TOS Reserved			Metric		
		Link type Link ID			Link ID		
Repea	ted	1	Po	int-to-point link	Neighbor Router ID		
		2	Link	Link to transit network Interface address of D			
		3	Linl	< to stub network	IP network number		
		4		Virtual link	Neighbor Router ID		

Network Link LSA (LS Type 2)

- originated by: designated router
- flooded throughout: a single area only
 - * LSA: list of routers connected to the network
 - * LS ID: IP address of the designated router

The use of designated routers

physical topology:

logical topology:

- □ If R5 receives a LSA from other OSPF links, it conveys the LSA to DR and BDR using 224.0.0.6
- □ DR & BDR send network link LSA using 224.0.0.5

Summary Link LSA (LS Type 3 & 4)

- originated by: area border routers
- flooded throughout: LSA's associated area
- □ LSA: describes a route to a destination outside the area, yet still inside the AS
- □ type 3: routes to networks
 - * LS ID: address of the subnet (in another area)
- type 4: routes to AS boundary routers
 - * LS ID: IP address of the AS boundary router

Summary Link to Network LSA (LS Type 3) WAN Area Border Backbone Router Summary Link to Router LAN LAN LAN Area 1 Area 3 Routing information Area 2 Direction of the LSA

Summary Link to AS boundary router LSA (LS Type 4)

External Link LSA (LS Type 5)

- originated by: AS boundary router
- flooded throughout: the entire AS
 - * LSA: the cost to each network outside the AS
 - * LS ID: address of external network

OSPF Packets

OSPF's five types of packets & functions:

Database Description Message

- obtained at initialization from "adjacency"
 - neighbor router of point-to-point or virtual link
 - designated router of a subnet
- describe the link-state database
- multiple packets may be used

Link State Request Packet

- from database description packets, routers might find LSA missing or outdated
- used to get specific LSA information
- answered with a link state update packet

	OSPF common header 24 bytes Type: 3
Rep	Link state type
Repeated	Link state ID
ted	Advertising router

Link State Acknowledgment Packet

- OSPF uses IP directly, without reliability
- reliable flooding of LSAs is achieved by sequence numbers and LSA ACKs
- routers must acknowledge the receipt of every link state update packet

OSPF common header 24 bytes Type: 5
LSA general header 20 bytes

OSPF Packets

OSPF's five types of packets & functions:

Hello (LS Type 1) Database description (Type 2) Link state request (LS Type 3) Link state update (LSType 4) Link state acknowledgment

(LS Type 5)

point-to-Router Link LSA point link transient Network Link LSA link stub link Summary Link to virtual Network LSA link Summary Link to AS Boundary Router LSA External Link LSA