

JCO7 Rec'd PCT/PTO 19 FEB 2002

US DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE ATTORNEY'S DOCKET NUMBER KATO=21 TRANMITTAL LETTER TO THE UNITED STATES U.S. APPLICATION NO. (If known, see 37 CFR 15) **DESIGNATED/ELECTED OFFICE (DO/EO/US)** 10/049957 **CONCERNING A FILING UNDER 35 U.S.C. 371** INTERNATIONAL FILING DATE PRIORITY CLAIMED INTERNATIONAL APPLICATION NO. 19 August 1999 21 August 2000 PCT/JP00/05590 TITLE OF INVENTION CHONDROGENESIS PROMOTERS APPLICANT(S) FOR DO/EO/US Yukio KATO et al. Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information. 1. [X] This is a FIRST submission of items concerning a filing under 35 U S C 371 This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C 371. This is an express request to begin national examination procedures (35 U S C. 371(f)) at any time rather than delay 3. [X] examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). 4. [X] The US has been elected in a Demand by the expiration of 19 months from the priority date (PCT Article 31). A copy of the International Application as filed (35 U.S C 371(c)(2)) 5. [X] a. | | is attached hereto (required only if not transmitted by the International Bureau) b [X] has been communicated by the International Bureau. c. [] is not required, as the application was filed in the United States Receiving Office (RO/US) 6. [X] An English language translation of the International Application as filed (35 U S C. 371(c)(2)) 7. [X] Amendments to the claims of the International Application under PCT Article 19 (35 U S C 371(c)(3)) a [] are transmitted herewith (required only if not transmitted by the International Bureau). b [] have been communicated by the International Bureau. c [] have not been made; however, the time limit for making such amendments has NOT expired. d [X] have not been made and will not be made. 8. [] An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)) 9. [X] An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)) 10. [] An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U S C 371(c)(5)). Items 11, to 16, below concern document(s) or information included: 11. [] An Information Disclosure Statement under 37 CFR 1.97 and 1.98 12. [] An Assignment document for recording A separate cover sheet in compliance with 37 CFR 3 28 and 3.31 is included. 13. [] A FIRST preliminary amendment. [] A SECOND or SUBSEQUENT preliminary amendment. 14. [] A substitute specification 15. [] A change of power of attorney and/or address letter 16. [X] Other items or information [X] Courtesy copy of the first page of the International Publication (WO 01/13951) Courtesy copy of the International Preliminary Examination Report (In Japanese). [X] Formal drawings, 6 sheets, Figures 1-7 [X] Courtesy Copy of the International Search Report [X] The application is (or will be) assigned to CHUGAI SEIYAKU KABUSHIKI KAISHA, whose address is 5-1, Ukima 5-chome,

Kita-ku, Tokyo 115-8543, Japan

JC13 Rec'd PCT/PTO 1 9 FEB 2002

	· ·				
U.S. APPLICATION NO (If known, see 37 CFR 1) International	Application No		Attorney's Docket No	
	10/049957 PCT/JP00/05590		KATO=21		
10/0477	4 4				
17. [xx] The following fees are submitted				CALCULATIONS	PTO USE ONLY
BASIC NATIONAL FEE (37 CFR 1.4					
Neither international preliminary exam					
nor international search fee (37 CFR 1 445(a)(2)) paid to USPTO					
and International Search Report not prepared by the EPO or JPO					<u> </u>
International preliminary examination		j			
USPTO but International Search Report prepared by the EPO or JPO \$890.00					
International preliminary examination fee (37 CFR 1 482) not paid to USPTO but					
international search fee (37 CFR 1.44	5(a)(2)) paid to US	SPTO	\$740.00		
			1		
International preliminary examination fee paid to USPTO (37 CFR 1 482)					
but all claims did not satisfy provision	ns of PCT Article 3		\$710.00		
		- (
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)					
and all claims satisfied provisions of					
			OXINE	¢ 900.00	
ENTER APPI	ROPRIATE BA	ASIC FEE AM	UUNT =	\$ 890.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than [] 20 [] 30				\$	
months from the earliest claimed priority date (37 CFR 1.492(e)).					
Claims as Originally Presented	Number Filed	Number Extra	Rate		
Total Claims	24 - 20	04	X \$18 00	\$ 72.00	
Independent Claims	6 - 3	03	X \$84 00	\$ 252.00	
			+\$280.00	\$ 280.00	
Whitiple Dependent Claims (if application)				\$1,494.00	
TOTAL OF ABOVE CALCULATIONS =				\$1,494.00	
Claims After Post Filing Prel Amend	Number Filed	Number Extra	Rate		
Total Claims	- 20		X \$18.00	\$	
Independent Claims	- 3		X \$84 00	\$	
TOTAL OF ABOVE CALCULATIONS =				\$1,494.00	
Reduction of ½ for filing by small entity, if applicable. Applicant claims small entity				\$	
	.y, ii applicable. A	ippricant claims sin	an cherry	Ι Ψ	
status. See 37 CFR 1.27		CIID	rotal -	\$1,494.00	
SUBTOTAL =					
Processing fee of \$130.00 for furnishing the English translation later than [] 20 [] 30				\$	
months from the earliest claimed priority date (37 CFR 1 492(f)).				#1 404 00	
TOTAL NATIONAL FEE =				\$1,494 00	
Fee for recording the enclosed assignment (37 CFR 1 21(h)) The assignment must be				\$	
accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40.00 per property +					
TOTAL FEES ENCLOSED =				\$1,494.00	
				Amount to be:	,\$
				refunded	
4				charged	\$
a. A check in the amount of \$	tocc	over the above fees	is enclosed	<u> </u>	,
a. A check in the amount of 5	TO 2038) authoriz	ying payment in the	amount of \$ 1	1 494 00 is attached	
b. [X] Credit Card Payment Form (PTO-2038), authorizing payment in the amount of \$ 1,494 00, is attached. c. [] Please charge my Deposit Account No. 02-4035 in the amount of \$ to cover the above fees.					
A duplicate copy of this shee	t is enclosed	in the amount of Φ_{-}		_ 00 00 00 00 000	
d. [XX] The Commissioner is hereby	is chiclosed	rae any additional fe	es which may	v be required or credit a	ny overpayment
to Deposit Account No. 02-4	035 A duplicate c	ony of this sheet is	enclosed	, o o 104aa oo, oo oo oo	~ `\
-				/ .	
NOTE: Where an appropriate time	e limit under 37 <i>C</i>	FR 1.494 or 1.495	has not been	met, a petition to revive	e (37 CFR 1. 137(a) for
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.					
(b)) must be med and granted to restore the application to pending status.					
SEND ALL CORRESPONDENCE TO.				11/	Juna >
SEIAD MEE SOMMEST CHARLEST CO.				SIGNATURE	1
RROWDV AND NEIMADE	Sheridan Neimar	·k			
BROWDY AND NEIMARK, P.L.L.C.				NAME	
624 NINTH STREET, N.W., SUITE 300					
WASHINGTON, D.C. 20001				20,520	IMPED
TEL: (202) 628-5197				REGISTRATION N	NINREK
FAX: (202) 737-3528					
Date of this submission: February 1	9, 2002				

6/pr/s

SPECIFICATION

CHONDROGENESIS STIMULATOR

TECHNICAL FIELD

This invention relates to a novel chondrogenesis stimulator. More specifically, the invention relates to a chondrogenesis stimulator containing a membrane-bound transferrin-like protein (hereunder sometimes referred to as MTf).

PRIOR ART

5

25

The cartilage tissue of animals is composed of 10 chondrocytes and matrix. The cartilage tissue accounts for the greater part of the skeleton at the prenatal stage and it is postnatally replaced with bone tissue due to endochondral ossification. When endochondral ossification starts, chondrocytes change from the resting to 15 proliferating phase and the proliferating chondrocytes are then differentiated into hypertrophic chondrocytes [Reference;, "Hone no kagaku (Science of Bone)", ed. by Tsuda et al., pp. 11-29, Tokyo Ishiyaku Shuppan, 1982]. Thus, it has been well known that chondrocytes are 20 essential cells for the formation of bone tissue, particularly at the growth stage. However, the differentiation of chondrocytes and the endochondral ossification remain unknown in many aspects.

The cell membrane of chondrocytes has characteristic glycoproteins and their membrane proteins might contribute to the unique features of chondrocytes that distinguish them from the cells of other connective tissues (as

exemplified by spherical cell morphology, massive secretion of cartilage matrix, survival and proliferation in soft Based on this hypothesis, Yan et al. (Yan et al.; J. Biol. Chem., vol. 265, pp. 10125-10131, 1990) and Kato et al. (Kato et al., Journal of the Society of Bone Metabolism of Japan, vol. 10, No. 2, pp. 187-192, 1992) investigated the effects of various lectins on the differentiation and proliferation of chondrocytes and, among other things, they have shown that concanavalin A (hereunder sometimes referred to as Con A) which is Jack bean lectin and which has affinity for $\alpha\text{-D-mannose}$ residue and $\alpha\text{-D-glucose}$ residue is a potent stimulator of chondrogenic differentiation, with the increase in proteoglycan synthesis being one of the criteria for the Con A activity. Chondrocytes treated with Con A change their shape from the immature flat morphology to the differentiated spherical form, inducing the production of proteoglycan and type II collagen which are markers of chondrogenic differentiation, the expression of alkaline phosphatase, etc., and even the calcification. 20 lectins do not exert such differentiation inducing action.

5

10

15

25

In an attempt to search for a receptor mediating the action of Con A, Kawamoto et al. (Kawamoto et al., Eur. J. Biochem. vol. 256, pp. 503-509, 1998) paid particular attention to a protein of 76 kDa (p76) which was one of the about 20 kinds of Con A-binding proteins on chondrocytes and which would be expressed at lower levels in retinoic acid treated chondrocytes (upon treatment with retinoic

acid, chondrocytes are dedifferentiated to lose reactivity with Con A). After purifying p76 from the plasma membrane fraction of rabbit chondrocytes by Con A affinity column chromatography, the N-terminal amino acid sequence was determined and the gene was cloned. In view of the determined amino acid sequence and the nucleic acid sequence of its cDNA, p76 showed 86% amino acid identity with melanotransferrin (p97) and was considered its counterpart; p97 is known as a tumor-associated antigen expressed at high levels in human tumors such as melanoma. The physiological functions of p97 are yet to be known and its expression has been reported to be high in only tumor cells, with very low detectability in normal tissue.

5

10

15

20

25

In view of its ability to bind with Con A, p76 is presumably involved in the differentiation of chondrocytes or in the development of their function; however, nothing has been confirmed about the effects this protein would actually impose on chondrocytes or their precursors.

An object, therefore, of the present invention is to identify a substance that will be involved in the differentiation of chondrocytes and provide a novel chondrogenesis stimulator using the substance. The present invention will lead to the invention of a substance that can control the function of chondrocytes and which eventually enables promoted osteogenesis. The substance can potentially lead to the treatment, prevention and diagnosis of new types of diseases associated with the cartilage and bone metabolisms.

ICC49957 DE1905

DISCLOSURE OF THE INVENTION

5

15

In order to attain the stated object, the present inventors made intensive studies and found that differentiation to cartilage could be markedly induced by overexpressing a membrane-bound transferrin-like protein (MTf) gene in mouse cell line ATDC5 which retained the ability to differentiate to chondrocytes but which would hardly differentiate in the absence of stimulation.

Thus, the present invention provides a chondrogenesis

10 stimulator containing a membrane-bound transferrin-like

protein (MTf).

The MTf is preferably rabbit p76 protein, human p97 protein, mouse MTf protein, as well as a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA that encodes p76 protein or p97 protein or mouse MTf, and human p97 protein is particularly preferred.

The MTf is most preferably selected from the 20 following:

- a protein having the amino acid sequence of SEQ ID NO:
 2;
- 2) a protein having the amino acid sequence of SEQ ID NO:4;
- 3) a protein having the amino acid sequence of SEQ ID NO: 15; and
 - 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under

stringent conditions, with a DNA encoding the protein of SEO ID NO: 2, 4 or 15.

The present invention also provides said chondrogenesis stimulator in which the MTf lacks the GPI anchor region.

5

20

The chondrogenesis stimulator of the invention becomes more effective when used in combination with an MTf activating agent and/or insulin.

The chondrogenesis stimulator of the inventioin is

useful with the following diseases: OA (osteoarthritis);

RA (rheumatoid arthritis); injury of articular cartilage
due to trauma; maintenance of chondrocyte phenotype in
autologous transplantation of chondrocytes; reconstruction
of cartilage in the ear, trachea or nose; osteochondritis

dissecans; regeneration of intervetebral disk or meniscus;
fractured bone; and osteogenesis from cartilage.

The invention further provides an agent for gene therapy to promote chondrogenesis which contains as an active ingredient an expression vector incorporating a DNA coding for any one of the following proteins:

- 1) a protein having the amino acid sequence of SEQ ID NO: 2:
- 2) a protein having the amino acid sequence of SEQ ID NO:4;
- 3) a protein having the amino acid sequence of SEQ ID NO:
 15; 4) a protein demonstrating the MTf activity that has an
 amino acid sequence encoded by DNA which hybridizes, under
 stringent conditions, with a DNA encoding the protein of

SEQ ID NO: 2, 4 or 15; and

15

5) a protein which is the same as protein 1), 2), 3) or 4), except that it lacks the GPI anchor region.

The present invention further provides a chondrogenic differentiation suppressing agent containing an MTf antagonist.

The MTf antagonist is preferably an anti-MTf antibody or an oligonucleotide or an oligonucleotide analog that are hybridizable with a nucleic acid encoding MTf.

The present invention further provides a method for screening an MTf activating agent which comprises the steps of:

- 1) preparing a cell line in which MTf is overexpressed, wherein said cell line retains the ability to differentiate to chondrocytes but hardly differentiate without stimulation;
- 2) adding candidate substances to the cell line prepared in step 1) and culturing it for a specified period of time; and
- 3) examining the cell line for induced chondrogenic differentiation and selecting an MTf activating agent from the candidate substances.

The present invention also provides an MTf activating agent as obtained by the method described above.

25 The present invention also provides a chondrogenesis stimulator containing an MTf activating agent as obtained by the method described above.

The present invention further provides MTf which

lacks the GPI anchor region.

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 shows a scheme of the procedure of preparing an MTf overexpressing ATDC5 variant cells;
- Fig. 2 shows the expression of the MTf gene in the variant of ATDC5 cells as analyzed by Northern blotting (photographs of electrophoresis);
 - Fig. 3 shows the expression of the MTf protein in the variant of ATDC5 cells as analyzed by Western blotting (photographs of electrophoresis);
 - Fig. 4 is a set of photographs showing that MTf overexpressing cell lines (Full-1 and Full-5) demonstrate the morphology of differentiated chondrocytes in comparison with control cells (pC-1), all of which are cultured for 29 days in the absence of insulin (biological morphology is shown);
 - Fig. 5 is a set of photographs showing that MTf overexpressing cell lines (Full-1 and Full-5) demonstrate the morphology of differentiated chondrocytes in comparison with control cells (pC-1), all of which are cultured for 29 days in the presence of insulin (biological morphology is shown);
 - Fig. 6 is a set of photographs showing the effects of the addition of the conditioned medium of rabbit chondrocytes on the induction of chondrogenic differentiation (biological morphology is shown); and
 - Fig. 7 shows the result of RT-PCR Southern blotting which demonstrates the overexpression of antisense MTf RNA

and the suppression of aggrecan synthesis in the presence and absence of insulin.

BEST MODE FOR CARRYING OUT THE INVENTION

5

10

15

20

25

The term "membrane-bound transferrin-like protein (MTf)" as used in the invention means a protein on the cell membrane of chondrocytes that binds to Con A and which has iron-binding sites as transferrin does. Preferably, the term means a protein having the ability to mediate the induction of chondrogenic differentiation by Con A.

The term MTf has conventionally been used as the abbreviation for melanotransferrin (p97) known as a tumor antigen expressed at high levels in melanoma and other tumors. As it turned out, however, p97 is also expressed at high levels in tissues other than cancer, particularly in cartilage. Since p97 is by no means specific to cancer tissue, the present inventors redefined the term MTf as meaning "membrane-bound transferrin-like protein".

The term "MTf activity" as used herein means an activity that induces undifferentiated cells to differentiate to cartilage and which promotes chondrocytes to develop their function.

Examples of MTf include but are not limited to rabbit p76 protein, p97 protein which is a human protein homologous to rabbit p76 protein, mouse MTf protein, as well as proteins having MTf activity that contain alterations such as deletion, substitution or addition of one or more of the amino acids of these proteins, and proteins having MTf activity amino acid sequences encoded

by DNA which hybridizes with DNA encoding p76 protein or p97 protein or mouse MTf protein under stringent conditions [a typical method is descried in Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, 1989 and consists, for example, of hybridization at 68°C in a solution containing 6 x SSC, 0.5% SDS, 10 mM EDTA, 5 x Denhardt's solution and 10 mg/ml of denatured salmon sperm DNA].

5

10

15

20

25

Rabbit p76 protein is homologous to human p97 protein and sometimes called rabbit p97 (Kawamoto et al., Eur. J. Biochem. vol. 256, pp. 503-509, 1998). The nucleotide and amino acid sequences of rabbit p76 protein are identified by SEQ ID NO: 1 and SEQ ID NO: 2, respectively. nucleotide and amino acid sequences of human p97 protein are also known (Rose, T.M. et al., Pro NAS 83, 1261-1265, 1986). The nucleotide and amino acid sequences of human p97 protein are identified by SEQ ID NO: 3 and SEQ ID NO: 4, respectively. Mouse MTf protein is described in Biochim. Biophys. Acta, 1447:258-264, 1999 and its nucleotide and amino sequences are identified by SEQ ID NO: 14 and SEQ ID NO: 15, respectively. The homology between the MTf proteins over animal species are high and the amino acid identity is 83% between mouse and human, 82% between mouse and rabbit, and 86% between human and rabbit.

p76/p97 proteins are GPI anchored proteins which have glycolipid GPI (glycosylphosphatidylinositol) bound to the carboxyl group in C-terminal amino acid so that they are bound to membranes using GPI as an anchor (for p76, see Ryo

Oda, Journal of Dentistry, Hiroshima University, vol. 29, No. 1, pp. 40-57, 1997; for p97, see Alemany, R. et al., J. Cell Science, 104, 1155-1162, 1993). As will be shown later in the Examples, it was verified that not only full-length MTf but also GPI anchor lacking MTf or soluble 5 MTf have a chondrogenic differentiation inducing activity when they were expressed in non-MTf-expressing cells. Therefore, such soluble MTf, preferably the GPI anchor lacking MTf, can also be used as a chondrogenesis regulating agent. The GPI anchor lacking MTf as used 10 herein means a soluble MTf which lacks all or part of the GPI anchor moiety; in the case of rabbit MTf, it may be exemplified by MTf in which the 28 residues at C-terminal necessary for GPI anchor binding are deleted and in the case of human MTf and mouse MTf, it may be exemplified by 15 MTf in which the 30 residues at C-terminal necessary for GPI anchor binding are deleted.

The MTf to be used in the invention may be of a native or recombinant form and either form can be obtained by methods known in the art. The respective types of MTf are illustrated below.

Native form

20

25

MTf can be prepared by the method described in JP 7-82297A using chondrocytes. Briefly, cartilage tissues of various animals can be used as chondrocyte source; for example, a rabbit costal growth plate cartilage as the source is treated with protease and collagenase in accordance with the method of Kato et al. (Kato et al.; J.

Cell Biol., vol. 100, pp. 477-485, 1985) to obtain chondrocytes. The isolated chondrocytes can be incubated in a medium containing fetal calf serum (FCS) on a culture dish at 37° C in an atmosphere of 5% CO₂ and 95% air. cultured chondrocytes are recovered, homogenized with a homogenizer and subjected to sedimentation equilibrium centrifugation by 17%/40% sucrose equilibrium density gradient to separate membrane proteins. The obtained membrane protein fraction is directly subjected on a concanavalin A affinity column; alternatively, in order to remove membrane proteins that bind to lectins other than concanavalin A, the membrane protein fraction is first subjected on an affinity column of wheat germ lectin which is a typical lectin and then subjected on a concanavalin A affinity column. By these and other techniques, more of 15 the concanavalin A binding protein fraction can be separated. The specificity of the obtained concanavalin A bound protein fractions for chondrocytes can be evaluated by comparing these fractions through SDS-polyacrylamide gel electrophoresis (SDS-PAGE). After identifying the desired 20 chondrocyte specific glycoproteins, bands of interest are excised from the gel, extracted and purified by electroelution or other suitable techniques. The resulting glycoproteins can be analyzed for the sugar chains after excising by endoglicosidase. 25

Recombinant form

5

10

Recombinant MTf can be prepared by the methods described in the Examples of the invention or modifications thereof; by these methods, plasmids incorporating the MTf gene are transfected to host cells for expressing the MTf protein.

However, these are not the only methods that can be used and various methods of transformation and various host cells that are known in the art can also be used. For example, a gene encoding MTf may be inserted into a suitable vector to transform prokaryotic or eukaryotic host cells.

10 Further, suitable stimulators or sequences that are involved gene expression may be introduced into the vectors to enable gene expression in the transformed host cells.

If desired, a gene of interest may be linked to genes encoding other polypeptides to express it as a fused

15 protein so that it can be purified with greater ease or expressed at higher level. The desired protein can also be excised by applying suitable treatments in the purification step.

It is generally held that eukaryotic genes show polymorphism as is known for the human interferon gene.

The polymorphism may cause substitution by one or more amino acids or it may cause changes in base sequences with no change occurring in amino acids.

20

Even polypeptides having deletion or addition of one

25 or more amino acids within the amino acid sequence of SEQ

ID NO: 2, 4 or 15 or having substitution of one or more

amino acids may have a cell cycle regulating activity. For
example, it is already known that a polypeptide having

substitution of cysteine for serine in the human interleukin 2 (IL-2) which is derived from nucleotide alterations has exerted an IL-2 activity (Wang et al., Science 224:1431, 1984). These techniques for preparing modified genes encoding MTf protein are known to the skilled artisan.

5

10

15

20

25

In many cases of expression in eukaryotic cells, sugar chains may be added to the protein and the addition of sugar chains can be regulated by substituting one or more amino acids of the protein and even in this case, the chondrogenic differentiation inducing activity may be exhibited. Therefore, genes encoding such polypeptides obtained by using artificial modifications of the gene encoding MTf gene can all be used in the invention, as long as such polypeptides have the chondrogenic differentiation inducing activity.

Expression vectors that can be used include replication origins, selection markers, promoters, RNA splicing sites, polyadenylation signals and so on.

Prokaryotic organisms that can be used as host cells in the expressing system include, for example, Escherichia coli and Bacillus subtilis. Eukaryotic microorganisms that can be used as host cells include, for example, yeasts and myxomycetes. If desired, insect cells such as Sf9 may be used as host cells. Host cells derived from animal cells include, for example, COS cells and CHO cells.

Transformants thus obtained by transforming with the gene encoding MTf protein are cultured to produce proteins.

The proteins can be recovered from the transformants or from the cultured medium and be purified. Not only the proteins which are obtained with genes containing nucleotide sequences encoding the amino acid sequences of SEQ ID NO: 2, 4 and 15 but also proteins which are obtained using genes containing altered nucleotide sequences encoding the amino acid sequences having substitution, deletion or addition of one or more amino acids within the amino acid sequences of SEQ ID NO: 2, 4 and 15, or proteins which are obtained using nucleotide sequences that hybridize those altered nucleotide sequences can be used as the chondrogenesis promoter of the invention as long as they have the biological function of MTf protein, namely, the chondrogenic differentiation inducing activity.

5

10

15

20

25

Conventional methods for separating and purifying proteins can be employed to separate and purify the MTf protein. For example, various techniques of chromatography, ultrafiltration, salting-out, dialysis, etc. can appropriately be selected and used in combination.

To use the chondrogenesis stimulator of the invention, the MTf described above may be administered in the form of a protein or it may be used an agent for gene therapy.

Insulin or an insulin-like growth factor has
conventionally been known as a chondrocyte differentiating
substance. It is interesting to note that the
chondrogenesis stimulator of the invention induces
chondrogenic differentiation even in the absence of

insulin. However, it was found that the effect of the chondrogenesis stimulator is further enhanced in the presence of insulin. Therefore, the desired cartilage repairing action could be further enhanced by using MTf in combination with MTf activating agents such as insulin and an insulin-like growth factor.

5

10

When the superntant of a chondrocyte culture was added, marked differentiation of chondrocytes was observed in MTf overexpressing cell lines, suggesting that an MTf activating agent may exist in the conditioned medium of a chondrocyte culture. Therefore, the desired cartilage repairing action could be further potentiated by using MTf in combination with an MTf activating agent.

The MTf activating agent may be obtained by the following methods:

- purifying from the conditioned medium of a chondrocyte culture system;
- 2) cloning the cDNA for protein binding to an MTf from a chondrocyte cDNA library; and
- 20 3) cloning the cDNA of protein binding to an MTf by the yeast two-hybrid method.

To screen various candidate substances for an MTf activating agent, a method including the following steps can be used:

25 1) preparing a cell line in which MTf is overexpressed, wherein said cell line retains the ability to differentiate to chondrocytes but hardly differentiate without stimulation;

- adding candidate substances to the cell line prepared in step 1) and culturing it for a specified period of time;
 and
- 3) examining the cell line for induced chondrogenic
 5 differentiation and selecting an MTf activating agent from the candidate substances

Thus obtained MTf activating agent can be used as a chondrogenesis stimulator on its own.

It should also be mentioned that chondrogenic

differentiation was induced when the soluble MTf,

preferably an MTf lacking the GPI anchor region, was

expressed in non-MTf-expressing cells. Therefore, the

soluble MTf, preferably an MTf lacking the GPI anchor

region, can be used as the chondrogenesis regulator.

The chondrogenesis stimulator of the invention can be applied to the following diseases:

- 1) OA (osteoarthritis);
- 2) RA (rheumatoid arthritis);
- 3) injury of articular cartilage due to trauma;
- 4) maintenance of chondrocyte phenotypes in autologous chondrocyte transplantation;
 - 5) reconstruction of cartilage in the ear, trachea or nose;
 - 6) osteochondritis dissecans;
 - regeneration of intervetebral disk or meniscus;
- 25 8) bone fracture;
 - 9) osteogenesis from cartilage.

The chondrogenesis stimulator of the invention is generally useful as an agent for gene therapy having the

MTf protein or an MTf mutant (variant) introduced in it.

The agent for gene therapy of the invention contains as an active ingredient an expression vector incorporating a DNA coding for any one of the following proteins:

- 5 1) a protein having the amino acid sequence of SEQ ID NO: 2;
 - 2) a protein having the amino acid sequence of SEQ ID NO:4;
- 3) a protein having the amino acid sequence of SEQ ID NO:
 10 15; 4) a protein demonstrating the MTf activity that has an
 amino acid sequence encoded by DNA which hybridizes, under
 stringent conditions, with a DNA encoding the protein of
 SEQ ID NO: 2, 4 or 15; and
- 5) a protein which is the same as protein 1), 2), 3) or 4), 15 except that it lacks the GPI anchor region.

DNAs encoding MTf variants can be easily prepared by the skilled artisan using known techniques such as site-directed mutagenesis and PCR [Molecular Cloning: A Laboratory Manual, 2nd ed., Chapter 15, Cold Spring Harbor Laboratory Press (1989), and PCR - A Practical Approach, IRL Press, 200-210 (1991)].

20

In the present invention, an MTf- or MTf variant expression vector is provided as a DNA to be introduced into cells. These expression vectors can be prepared by linking DNA encoding an MTf- or MTf variant to an expression vector such as pSG5 (Stratagene). In the next step, the prepared DNA mixture is introduced into cells. Exemplary cells may include bone marrow interstitial cells,

fibroblasts, periosteal cells, perichondral cells, synovial cells and dedifferentiated chondrocytes. DNA can be introduced into cells by the calcium phosphate method [Idenshi donyu to hatsugen kaisekiho (Gene Introduction and Methods of Expression and Analysis), ed. by Takashi Yokota and Kenichi Arai, Yodosha, 1994]. Hence, by using the introduced DNA as a medicinal active ingredient, one can prepare an agent for gene therapy which has the chondrogenesis promoting action. It is thought that, upon administering such agent for gene therapy, MTf or its variant would be expressed at high levels in cells, promoting the action of inducing chondrogenic differentiation in the cells. Therefore, the MTf containing agent of the invention for gene therapy can be used as a therapeutic or preventive of the various diseases listed above.

5

10

15

20

25

The agent of the invention for gene therapy can be introduced into cells by either a virus vector based method of gene introduction or a non-viral method of gene introduction [Nikkei Science, April 1994, pp. 20-45, Jikken igaku zokan (Extra Issue of Experimental Medicine), 12(15)(1994), and Jikken igaku bessatsu (Supplement to Experimental Medicine), "Idenshi chiryo no kiso gijutsu (Basic Technology in Gene Therapy)", Yodosha (1996)].

In an example of the viral vector based method of gene introduction, DNA encoding an MTf or a variant MTf is inserted into DNA or RNA viruses such as retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia

virus, poxvirus, poliovirus and Sindbis virus. Non-viral methods of gene introduction include direct intramuscular administration of an expression plasmid (DNA vaccination), liposome method, lipofectin method, microinjection, calcium phosphate method, and electroporation.

In order to ensure that the agent for gene therapy of the invention acts as a practical medicine, two methods may be used, that is, an in vivo method where DNA is directly introduced into the body and an ex vivo method where a certain kind of cells are taken out of a human and DNA is introduced into the cell, which is then put back into the body [Nikkei Science, April 1994, pp. 20-45, Gekkan yakuji (Monthly Yakuji), 36(1), 23-48 (1994), and Jikken igaku zokan (Extra Issue of Experimental Medicine),

15 12(15)(1994)]. The in vivo method is more preferred.

5

10

When administering the agent for gene therapy by the in vivo method, the route of administration should depend on the disease, its severity and other factors. Exemplary methods of administration include intra-articular

20 injection, direct application to a missing part of articular cartilage, implantation (with putty, polylactic acid, etc.) and intra-articular sustained-release agent.

Intravenous injection is also possible. For administration by the in vivo method, injections are generally used, with conventional carriers being added as required. Liposomes or membrane fused liposomes may be formulated as suspensions, frozen vesicles, centrifugally concentrated frozen vesicles.

In the case of the GPI anchor free soluble protein (GPI anchor lacking MTf) or the aforementioned MTf activating agent, the above-listed administrating methods may of course be used but the protein per se can be administered by various other methods. Differentiation could also be induced by adding those proteins directly to cartilage precursor cells.

5

10

15

20

25

The dose of the chondrogenesis stimulator of the invention is determined specifically by a doctor considering various factors such as the type of the disease to be treated, its severity, the age and body weight of the patient. The GPI anchor free soluble protein (GPI anchor lacking MTf) or the aforementioned MTf activating agent may be administered typically at a dose ranging 1 ng - 1000 mg/day, preferably 1 μ g - 100 mg/day.

The present invention further provides a chondrogenic differentiation suppressing agent containing an MTf antagonist. MTf antagonists include an anti-MTf antibody, antisense DNA based on the nucleotide sequence of MTf, etc.

Antisense DNA is an oligonucleotide or an oligonucletide analog that are capable of hybridizing with an MTf coding nucleic acid.

Antisense DNA has a nucleotide sequence complementary to mRNA and forms a base pair with mRNA, thereby blocking the flow of genetic information to suppress the synthesis of MTf as the final product. The antisense DNA that can be used in the invention is an oligonucleotide capable of specifically hybridizing with a base sequence encoding the

amino acid sequence identified by SEQ ID NO: 2, 4 or 15.

5

10

15

20

25

The term "oligonucleotide" as used herein means oligonucleotides generated from naturally occurring bases and sugar portions bound by intrinsic phosphodiester bonds, as well as analogs thereof. Therefore, the first group encompassed by this term comprises naturally occurring species or synthetic species that are generated from naturally occurring subunits or homologs thereof. The term "subunit" means a base-sugar combination which links to adjacent subunit by phosphodiester bond or other bond. The second group of oligonucleotides are their analogs that function similar to oligonucleotides but which are composed of residues having non-naturally-occurring moieties. These include oligonucleotides having chemical modifications applied to phosphate groups, sugar portions and 3'- and 5'ends in order to provide increased stability. Examples are oligophosphorothioate and oligomethylphosphonate in which one of the oxygen atoms in the phosphodiester group between nucleotides is substituted by sulfur and -CH3, respectively. Phosphodiester bonds may be replaced by other structures which are non-ionic and achiral. Additional oligonucleotide analogs that can be used are

The oligonucleotides to be used in the invention have preferably 5 - 40 subunits in length, more preferably 8 - 30 subunits, most preferably 12 - 30 subunits.

pyrimidine in non-naturally-occurring form.

species containing modified base forms, that is, purine and

In the present invention, the target portion of mRNA

with which oligonucleotides hybridize is preferably a transcription initiation site, a translation initiation site, an intron/exon junction site or a 5'-cap site; considering the secondary structure of mRNA, a site having no steric hindrance should be selected.

5

10

15

20

25

In the present invention, peptide nucleic acids (see, for example, Bioconjugate Chem., Vol. 5, No. 1, 1994) may be used in place of oligonucleotides.

In a particularly preferred embodiment of the invention, oligonucleotides or peptide nucleic acids that hybridize with a nucleotide sequence encoding the amino acid sequence identified by SEQ ID NO: 2 and which can inhibit MTf expression is employed.

In the present invention, oligonucleotides can be produced by synthesis methods known in the art, for example, the solid-phase synthesis method using a synthesizer as manufactured by Applied Biosystems. Similar methods can be used to produce oligonucleotide analogs such as phosphorothicate and alkylated derivatives [Akira Murakami et al., "Kinosei antisense DNA no gosei (Chemical Synthesis of Functional Antisense DNA)", Organic Synthesis Chemistry, 48(3):180-193, 1990].

The MTf antagonist that can be used in the invention is not limited to oligonucleotides of the above-defined antisense DNA providing length. To the extent that production of intrinsic MTf can be suppressed, a longer antisense, preferably an antisense of 500 - 600 nucleotides in length, may be inserted into a genome to be used for

suppressing chondrogenic differentiation (see Example 3).

The anti-MTf antibody to be used in the invention is one that recognizes a peptide having at least five consecutive amino acids in the amino acid sequence identified by SEQ ID NO: 2, 4 or 15; this can be produced using a conventional procedure [see, for example, Shinseikagaku jikken koza 1 (New Course in Biochemical Experiments 1), Protein I, pp. 389-397, 1992], which comprises immunizing an animal with an antigenic peptide having at least five consecutive amino acids in the amino acid sequence of SEQ ID NO: 2, 4 or 15, isolating the antibody produced in the animal body, and purifying the isolated antibody. The antibody may include a polyclonal and a monoclonal antibody and methods of preparing these antibodies are also known to the skilled artisan.

The following examples are provided to further illustrate the present invention but are in no way to be taken as limiting the invention. Various alterations and modifications can be made by the skilled artisan and are included within the scope of the invention.

Examples

5

10

15

20

Materials and Methods of Experiment

Rabbit chondrocyte culture

Chondrocytes were isolated from rabbit costal

25 cartilage using, with necessary modifications, the method of Kato et al. (Kato et al.: J. Cell Biol., vol. 100, pp. 477-485, 1985). Specifically, the resting cartilage of ribs in 4-week old male Japanese albino rabbits (Hiroshima

Laboratory Animals) was separated, shredded with a surgical knife and incubated in a Dulbecco's modified Eagle's medium (DMEM, Flow Laboratories) containing 8 mg/mL of actinase E (Kaken Seiyaku) and 5% fetal calf serum for 1 hour and in DMEM containing 0.15% collagenase (Worthington Biochemical) 5 for 3 hours. Cells passing through a 120- μm nyron filter were recovered, seeded in plastic culture dishes (Corning) and grown in an alpha-modified Eagle's medium ($\alpha\text{-MEM}$, Sanko Junyaku) containing 10% fetal calf serum (Mitsubishi Kasei), 50 μ g/mL of ascorbic acid, 50 U/mL of G potassium, 10 $60~\mu g/mL$ of kanamycin (all being from Meiji Seika) and 250 $\mu g/mL$ of amphotericin B (ICN Biochemical) (medium A) or in a serum-free DMEM (medium B) at 37°C in the atmosphere of 5% CO₂ gas.

15 Mouse chondrogenic cell line ATDC5 culture

20

25

ATDC5 was purchased from Riken Cell Bank (Tsukuba, Japan). The cells were cultured in a 1:1 mixture of Ham F-12 medium (Flow Laboratories) and a Dulbecco's modified Eagle's medium (DMEM, Flow Laboratories) containing 5% fetal calf serum (FCS, Mitsubishi Kasei), 10 μ g/mL of human transferrin (Boehringer Mannheim) and 0.3 nmol/mL of sodium selenite (Wako Junyaku) (maintenance medium) at 37°C in the atmosphere of 5% CO₂ gas. To induce cartilage differentitation, ATDC5 cells were cultured in a medium (differentiation medium) prepared by adding 10 μ g/mL of bovine insulin (Sigma) to the maintenance medium.

Three days after reaching confluence, the rabbit

chondrocytes were treated by the guanidine thiocyanate method to extract total RNA. On the basis of the nucleotide sequence of human MTf (Rose, T.M. et al., Pro NAS, 83, 1261-1265, 1986), a primer pair of 5'-GGCTGGAACGTGCCCGTGGGCTA-3' (forward) (SEQ ID NO: 5) and 5'-5 GTCCTGGGCCTTGTCCAGCAGTC-3' (reverse) (SEQ ID NO: 6) was designed and 1.5 kb MTf cDNA fragments were amplified from the total RNA (1 μ g) by a reverse transcription polymerase chain reaction (RT-PCR) method. The obtained cDNA fragments were cloned into the SmaI site of pBluescript II 10 SK vectors (Stratagene) and their nucleotide sequence was determined using Sequenase 7-deaza-dGTP DNA sequencing kit To obtain a full-length cDNA, rapid amplification (USB). of cDNA end (RACE) was performed using Marathon cDNA amplification kit (Clontech). Specifically, Marathon cDNA 15 adapters were ligated to the both ends of the doublestranded total cDNA of rabbit chondrocytes and RACE was performed using adapter primers described above and specific primers (5'-AGAGGGACTCCGAGTATCTGGTCTC-3' (forward) (SEQ ID NO: 7) and 5'-GTCCGGCCCGACACCAACATCTTC-3' (reverse) 20 (SEQ ID NO: 8) designed from the MTf nucleotide sequence. The amplified cDNA samples were separated in a 4.5% acrylamide gel and the principal cDNA bands were extracted from the gel and the bands were cloned into pBluescript II SK vectors. With the clones used as templates, the 25 nucleotide sequence of full length MTf was determined using Sequenase 7-deaza-dGTP DNA sequencing kit and ABI autosequencer (ABI).

Creating MTf overexpressing ATDC5 variant cells

5

10

15

20

25

Rabbit MTf cDNA (Kawamoto T. et al., EJB, 1988) of either full length or a truncated form which had the 28 residues from C-terminal necessary for GPI anchor binding deleted was inserted into pcDNA3.1/Zeo(+) plasmid expression vector (containing a cytomegalovirus very early promoter/enhancer; Invitrogen, San Diego, CA). Specifically, an EcoRI-NotI fragment including the full length was excised from a vector and inserted at the EcoRI-NotI site of pcDNA3.1/Zeo(+). To create a variant which lacks the GPI anchor binding site, a fragment was prepared having a stop codon inserted 28 amino acids upstream of the C-terminal and after confirming its sequence, the fragment was inserted at the EcoRI-NotI site of pcDNA3.1/Zeo(+).

In these ways, there were prepared a plasmid having a full length MTf cDNA (MTf Full) as an insert and a plasmid having GPI anchor-lacking MTf cDNA (MTf(-)GPI) as an insert; the two plasmids (pMTf Full and pMTf(-)GPI) were each transfected to ATDC5 cells (Riken, Tsukuba, Japan) using SuperFect Transfection Reagent (QIAGEN). By selection with Zeocin (Invitrogen), stable transformants were prepared.

Specifically, 2 x 10^5 ATDC5 cells were seeded in 10^{-1} cm culture dishes. On the next day, 2 μg each of the plasmid DNAs to be introduced (pMTf Full and pMTf(-)GPI) and about 40 μL of SuperFect Transfection Reagent in solution were individually dissolved in a serum-free medium and stored until use, when they were rapidly mixed together

and added to ATDC5 cells washed with a serum-free medium. After incubation at 37° C for 1 hour in the atmosphere of 5% CO_2 gas, a serum-supplemented medium was added and cultivation was conducted for an additional day. A control group was prepared by transfecting only the vector.

One day after the transfection, selection was started in a serum-supplemented medium containing 50 $\mu g/mL$ of Zeocin and cell culture was continued for 2 weeks with medium change effected on every third day. As a result, there were obtained ATDC5 variant cell lines that would assure stable expression of MTf Full and MTf(-)GPI and these variant cell lines were subcultured in a serum-supplemented medium containing 50 $\mu g/mL$ of Zeocin.

10

15

20

25

A scheme of the procedure of creating MTf overexpressing ATDC5 variant cells is shown in Fig. 1.

Expression of rabbit MTf gene in ATDC5 variant cell lines

Expression of rabbit MTf gene in ATDC5 variant cell lines was confirmed by Northern blotting. Specifically, total RNA was prepared from the ATDC5 variant cell lines by the guanidine thiocyanate method; 10 µg of the total RNA was electrophoresed on a 1% agarose gel containing 2.2 mol/L of formaldehyde and transferred onto Hybond-N membrane (Amersham). The membrane was hybridized with a ³²P labeled 2.2 kb rabbit MTf cDNA probe at 42°C for 16 hours. After washing the membrane, a BioMax X-ray film (Kodak) was exposed to the membrane at -80°C to detect signals. The result is shown in Fig. 2.

In the MTf Full cell line, it was found that the

rabbit MTf gene have been expressed strongly in clone Nos. 1, 4 and 5.

In the MTf(-)GPI cell line, it was found that the rabbit MTf gene have been expressed strongly in clone Nos. 3, 3N, 8, 9 and 10. In the Examples, (-)GPI-3 was used. Expression of rabbit MTf protein in ATDC5 variant cell lines

5

20

Expression of rabbit MTf protein in ATDC5 variant cell lines was confirmed by Western blotting.

10 Specifically, membrane fraction protein was prepared from the ATDC5 variant cell lines, subjected to SDS-PAGE at 10 μg/lane, and transferred to a polyvinylidene difluoride membrane (Milipore). After the transfer, the membrane was blocked with 4% skimmed milk and reacted with anti-MTf serum [1:500 dilution; Eur. J. Biochem, 256, 503-509 (1988)] at 4°C for 14 hours, then reacted with 125 sheep anti-mouse IgG(Fab')2 fragment (Amersham) at room temperature for 2 hours. The membrane was washed and a BioMax X-ray film was exposed to the membrane at -80°C for

In the MTf Full cell line, it was found that the rabbit MTf protein have been expressed strongly in clone Nos. 1 and 5. These clones were named MTf overexpressing cell lines (Full-1 and Full-5).

25 Example 1: Chondrogenic differentiation in MTf overexpressing cell lines

analysis. The result is shown in Fig. 3.

The MTf overexpressed cell lines (4.0 x 10^4 cells) were seeded in 6-multiwell plates and cultured in a

maintenance medium at $37^{\circ}C$ in a 5% CO_{2} gas phase.

5

10

15

20

25

The MTf overexpressing cell lines to be investigated were Full-1 and Full-5 which were found to have expressed both the MTf gene and protein. The MTf(-)GPI cell line to be investigated was GPI-3 which was found to have expressed the MTf gene.

As control cells, ATDC5 cells and pC-1 (vector alone) were prepared in the same manner as described above and their morphological features were examined under a microscope. Cell morphology was examined with an Olympus phase-contrast microscope. Two microscopic fields were taken for each culture system and at least 200 cells were counted to calculate the proportion of round cells.

In the absence of insulin, the control cells (pC-1) did not differentiate to chondrocytes; on the other hand, the MTf overexpressing cell lines (Full-1 and Full-5) and the MTf(-)GPI cell line [(-)GPI-3] started to differentiate within 20 days and 29 days after seeding, almost all regions of the cells had differentiated to chondrocytes (Fig. 4).

The similar test was conducted in the presence of insulin (10 $\mu g/mL$) (insulin was added at day 0). The result was the same as in the absence of insulin (Fig. 5), except that, in the presence of insulin, further differentiation was induced in the MTf overexpressing cell lines, namely, more cells "rounded" like chondrocytes than in the absence of insulin.

The above results show the effectiveness of MTf in

inducing chondrogenic differentiation, which was exhibited even in the absence of insulin.

Example 2: Effect of Adding the Conditioned Medium of Rabbit Chondrocyte Culture

seeded in 10-cm culture dishes and cultured in medium A (10 mL) at 37°C in the atmosphere of 5% CO₂ gas. Two days after confluence, medium A was replaced by serum-free medium B (5 mL). After 24 hours of cell culture, the conditioned medium (CM) was recovered and subjected to an experiment. After the recovery, CM was supplemented with fetal calf serum at a concentration of 5%.

MTf overexpressing cell line (Full-5) and the control cell line (pC-1) were seeded at 8.0×10^4 cells in 6-multiwell plates and cultured in a maintenance medium at 37°C in the atmosphere of 5% CO₂ gas. Three days after confluence (day 7), the previously recovered CM was added to give a concentration of 60% in the overall liquid culture; at the same time, $10~\mu\text{g/mL}$ of bovine insulin was added. Cultivation was continued for additional 4% hours at 37°C in a 5% CO₂ gas phase.

15

20

25

Forty-eight hours after the addition of CM, almost all cells of the MTf overexpressing cell line to which CM was added [Full-5(+)CM] differentiated to chondrocytes which synthesized active substrate and which resembled paving stones. The cells of the MTf expressing cell line to which no CM was added [Full-5(-)CM] had almost the same morphology as the control cell lines in which only a vector

was expressed [pC-2(+)CM and (-)CM]. The cell lines in which only a vector was expressed had no visible induced differentiation to chondrocytes due to the addition of CM (Fig. 6).

These results show the presence of an MTf activating agent in CM.

Example 3: Chondrogenic differentiation due to Overexpression of Antisense MTf RNA

ATDC5 variant cell lines (A-01, A-05, A-08, A-09, A10 11, A-12, A-23 and A-24) in which mouse antisense MTf RNA
was overexpressed were prepared by the similar method used
in preparing the ATDC5 variant cell lines in which MTf was
forcibly expressed. The mouse antisense MTf RNA was
prepared as follows: cDNA fragments of mouse MTf were
15 amplified by PCR (using primers 5'-

GGTGTGTTGAGGGGCGTGGACTCT-3' (SEQ ID NO: 9) and 5'TCACCAACGGCTTTGAGCACATCAC-3' (SEQ ID NO: 10), inserted into
pGEM-T Easy Vector (Promega), excised with ApaI-NotI and
inserted into pcDNA3.1/Zeo(+) at ApaI-NotI site (i.e.,

inserted in reverse direction). The sequence of the inserted portion is identified by SEQ ID NO: 11.

A control group was also prepared by transfecting only the vector (pC-1).

The expression of mouse MTf antisense was examined by

Northern blotting using the above-mentioned ApaI-NotI

fragment as a probe.

A criterion for the suppression of chondrogenic differentiation was the suppression of synthesis of a

cartilage proteoglycan, aggrecan, and a test was conducted by RT-PCR Southern blotting both in the presence of insulin (added in an amount of 10 $\mu g/mL$ after day 4) and in its Specifically, total RNA was extracted from the absence. cells of each clone by the guanidine thiocyanate method; single-stranded cDNA was synthesized from the extracted total RNA (1 μg) using SUPERSCRIPT pre-amplification system kit (Life Technologies); using the cDNA as a template, PCR was performed on the aggrecan gene with a pair of primers 5'-TGCTACTTCATCGACCC-3' (forward) (SEQ ID NO: 12) and 5'-AAAGACCTCCCCTCCATCT-3' (reverse) (SEQ ID NO: 13); the PCR reaction mixture was electrophoresed on a 1% agarose gel and transferred onto Hybond-N membrane (Amersham). membrane was hybridized with a 32P labeled antisense MTf probe and mouse aggrecan cDNA probe at 42°C for 16 hours. The membrane was washed with 0.2 x SSC whih contains 0.5% SDA and a BioMax X-ray film (Kodak) was exposed to the membrane at -80°C to detect signals.

5

10

15

expressed most strongly in variant cell line A-12 (lane 6), followed by A-11 (lane 5) in strength. Correspondingly, expression of the aggrecan gene was suppressed most effectively in variant cell line A-12 (lane 6), followed by A-11 (lane 5) in effectiveness. While expression of the aggrecan gene was suppressed in the absence of insulin, it was more effectively suppressed in the presence of insulin.

CLAIMS

- 1. A cartridge formation stimulator containing a membrane-bound transferrin-like protein (MTf).
- 2. The chondrogenesis stimulator according to claim 1, wherein MTf is selected from the group consisting of rabbit p76 protein, human p97 protein, and a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA coding for p76 protein or p97 protein.
- 3. The chondrogenesis stimulator according to claim 1, wherein the MTf is selected from the following:
- a protein having the amino acid sequence of SEQ ID NO:
 2;
- 2) a protein having the amino acid sequence of SEQ ID NO:4;
- 3) a protein having the amino acid sequence of SEQ ID NO: 15; and
- 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA encoding the protein of SEQ ID NO: 2, 4 or 15.
- 4. The chondrogenesis stimulator according to claim 2, wherein the MTf is human p97 protein.
- 5. A chondrogenesis stimulator containing soluble MTf.
- 6. The chondrogenesis stimulator according to claim 5, wherein the soluble MTf lacks the GPI anchor region.
- 7. An agent for gene therapy to promote chondrogenesis which contains as an active ingredient an expression vector

incorporating a DNA encoding any one of the following proteins:

- a protein having the amino acid sequence of SEQ ID NO:
 2:
- 2) a protein having the amino acid sequence of SEQ ID NO:4;
- 3) a protein having the amino acid sequence of SEQ ID NO: 15; 4) a protein demonstrating the MTf activity that has an amino acid sequence encoded by DNA which hybridizes, under stringent conditions, with a DNA coding for the protein of SEQ ID NO: 2, 4 or 15; and
- 5) a protein which is the same as protein 1), 2), 3) or 4), except that it lacks the GPI anchor region.
- 8. The chondrogenesis stimulator according to claim 1 which is used in combination with an MTf activating agent.
- 9. The chondrogenesis stimulator according to claim 1 which is used in combination with insulin or an insulinlike growth factor.
- 10. The chondrogenesis stimulator according to any one of claims 1 9 for treating at least one bone disease selected from the following diseases in which chondrogenic differentiation is involved: OA (osteoarthritis); RA (rheumatoid arthritis); injury of articular cartilage due to trauma; maintenance of chondrocyte phenotypes in autologous chondrocyte transplantation; reconstruction of cartilage in the ear, trachea or nose; osteochondritis dissecans; regeneration of intervetebral disk or meniscus; bone fracture; and osteogenesis from cartilage.

- 11. A chondrogenic differentiation suppressing agent containing an MTf antagonist.
- 12. The chondrogenic differentiation suppressing agent according to claim 11, wherein the MTf antagonist is an anti-MTf antibody or an oligonucleotide or an oligonucleotide analog that are hybridizable with a nucleic acid encoding MTf.
- 13. A method for screening an MTf activating agent which comprises the steps of:
- 1) preparing a cell line in which MTf is overexpressed, wherein said cell line retains the ability to differentiate to chondrocytes but hardly differentiate without stimulation;
- 2) adding candidate substances to the cell line prepared in step 1) and culturing it for a specified period of time; and
- 3) examining the cell line for induced chondrogenic differentiation and selecting an MTf activating agent from the candidate substances.
- 14. An MTf activating agent obtained by the method according to claim 13.
- 15. A chondrogenesis stimulator containing an MTf activating agent obtained by the method according to claim
 13.
- 16. MTf which lacks the GPI anchor region.

ABSTRACT

There are provided a chondrogenesis stimulator containing MTf, a chondrogenic differentiation suppressing agent containing an MTf antagonist, a screening method for obtaining an MTf activating agent, an MTf activating agent obtained by the screening method, a chondrogenesis stimulator containing an MTf activating agent as obtained by the screening method, and MTf which lacks the GPI anchor region.

5

Fig. 1

Construction of expression vector (pc-DNA 3.1 (+) plasmid

rabbit MTf cDNA

GPI anchor region

MTf Full

MTf (-) GPI

 $\downarrow \downarrow$

Stable transfection

1

Checking for the expression of MTf mRNA by Northern blotting Checking for the expression of MTf protein by Western blotting

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Antisense

MTf mRNA

day 23 (-) insulin

Aggrecan

day 17 (+) insulin

Aggrecan

1 = A-01

2 = A-05

3 = A-08

4 = A-09

5 = A-11

6 = A-12

7 = A-238 = A-24

9 = pC-1

10049457 107049957 1004 PCT/PTO 05 JUL 2002

SEQUENCE LISTING

	KATO, Yukio FUJIMOTO, Katsumi	
<120>	CHONDROGENESIS PROMOTERS	
<130>	KATO=21	
<140> <141>	10/049,957 2002-02-19	
<150> <151>	PCT/JS00/05590 2000-08-21	
<150> <151>	JP 232966/1999 1999-08-19	
<160>	15	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>	1 2388 DNA Oryctolagus cuniculus	
<400>	1 gctc actegttege acteggaete agacecagte egaceceetg gaetgegeea	60
		120
	geeg aagegegee aegeggaeee eeerggeeee groots groots groots	180
	eggg geggegeace gegaeegage eegageagua gaagegegeg	240
	coog ogaagoogge obooagoogg obooggegegegegegegegegegegegegegegegegeg	
	gege congectates goggeoutog aggregation in the same of	300
	acga ggegggaag gaacaeggee egaageeegs gg-ggg-g	360
	tagge the control of	420
tcaaca	ccct gagaggcgtg aagtcctgcc acacgggcat caaccgcacg gtgggctgga	480
acgtgc	ctgt gggctacctg gtggacagcg gccgcctctc agtgatgggc tgtgacgtgc	540
tcaaag	cggt cagcgagtac ttcgggggca gctgcgtccc tggggcagga gagaccagat	600
actcgg	agtc cctctgtcgc ctctgccggg gcgacacctc cggggagggg gtgtgtgaca	660
agagcc	ccct ggagcggtac tacgactaca gcggggcctt ccggtgcctg gcagaaggcg	720
cagggg	acgt ggcctttgtg aagcacagca cggtgctgga gaacacggat gggagaacac	780
tgccct	cctg gggccacatg ctgatgtcac gggactttga gctgctgtgc cgggacggca	840
accaaa	ccag cotcaccoag togcagcact occaectoge coopgtoce occeaegeeg	900

tggtggtccg	ggccgacacc	gacgcaggcc	tcatcttccg	gcttctcaat	gagggccagc	960
ggctgttcag	ccacgagggc	agcagcttcc	agatgttcag	ctcggaggcc	tacggccaga	1020
agaacctgct	gttcaaagac	tccacgctgg	agctggtgcc	catcgccaca	cagacctacg	1080
aggeetgget	gggccccgag	tacctgcacg	ccatgaaggg	tctgctctgt	gaccccaacc	1140
ggctgcccc	atacctgcgc	tggtgcgtgc	tgtccacccc	cgagatccag	aagtgtggag	1200
acatggccgt	ggccttcagc	cggcagaggc	tcaagccgga	gatccagtgt	gtctcggcgg	1260
agtcccccca	gcactgcatg	gagcagatcc	aggctgggca	catcgatgct	gtgaccctga	1320
acggggagga	cattcacaca	gcggggaaga	cttatgggct	gatcccggct	gccggggagc	1380
tgtatgccgc	ggacgacagg	agtaactcgt	acttcgtggt	ggccgtggtg	aagcgagaca	1440
gcgcctacgc	cttcaccgtg	gacgagctgc	gcgggaagcg	ctcctgccac	cccggcttcg	1500
gcagcccggc	cggctgggac	gteeeggtgg	gcgccctcat	ccactggggc	⁻ tacatccggc	1560
ccaggaactg	cgacgtcctc	acagcggtgg	gtcagttctt	caacgccagc	tgtgtgccgg	1620
tgaacaaccc	caagaagtac	ccetectege	tgtgcgcact	ctgcgtgggt	gacgagcagg	1680
gccgcaacaa	gtgcactggc	aacagccagg	agcggtacta	tggcgacagt	ggcgccttca	1740
ggtgcctggt	ggagggtgca	ggggacgtgg	ccttcgtcaa	gcacacgacc	atctttgaca	1800
acacaaatgg	ccacaatccc	gagccgtggg	ctgcccatct	gaggagccag	gactacgagc	1860
tgctgtgccc	caacggcgcg	cgagctgagg	cgcaccagtt	tgccgcctgc	aacctggccc	1920
agattccgtc	ccacgccgtc	atggtgcggc	ccgacaccaa	catcttcacc	gtttacggac	1980
tgctggacaa	ggcccaggac	ctgtttggag	acgaccacaa	caagaacggg	ttcaagatgt	2040
tcgactcctc	cagctaccac	ggccgagacc	tgctcttcaa	ggacgccacg	gtgcgcgctg	2100
tgcctgtggg	cgagaggacc	acctaccagg	actggctggg	gccggactac	gtggcggctc	2160
tggaagggat	gcagtcacag	cggtgctcag	gggcagccgt	cggcgcccc	ggggcctcgc	2220
tgctgccgct	gctgcccctg	gctgcgggcc	tcctgctgtc	ttcgctctga	gagcagcccc	2280
gggcagcctc	ggccccggca	ggggagcctg	cgcggaagct	tcctgaacga	gcccgcgccc	2340
tggctggatg	tggttacctc	ggcgagccgc	ggggccgcgc	ttcccccg		2388

<210> 2 <211> 736 <212> PRT <213> Oryctolagus cuniculus

<400> 2

.

- Gln Gln Lys Cys Glu Asp Met Ser Gln Ala Phe Arg Glu Ala Gly Leu 35 40 45
- Gln Pro Ala Leu Leu Cys Val Gln Gly Thr Ser Ala Asp His Cys Val 50 55 60
- Gln Leu Ile Ala Ala His Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly 65 70 75 80
- Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly 85 90 95
- Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val
 100 105 110
- Val Lys Arg Ser Ser Asn Val Thr Ile Asn Thr Leu Arg Gly Val Lys 115 120 125
- Gly Tyr Leu Val Asp Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val 145 150 155
- Leu Lys Ala Val Ser Glu Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala 165 170 175
- Gly Glu Thr Arg Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp 180 185 190
- Thr Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr 195 200 205
- Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val 210 215 220
- Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Arg Thr 225 230 235 240
- Leu Pro Ser Trp Gly His Met Leu Met Ser Arg Asp Phe Glu Leu Leu 245 250 255
- Cys Arg Asp Gly Ser Arg Ala Ser Val Thr Glu Trp Gln His Cys His 260 265 270
- Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp 275 280 285
- Ala Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser 290 295 300
- His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln

305					310					315					320
Lys	Asn	Leu	Leu	Phe 325	Lys	Asp	Ser	Thr	Leu 330	Glu	Leu	Val	Pro	Ile 335	Ala
Thr	Gln	Thr	Tyr 340	Glu	Ala	Trp	Leu	Gly 345	Pro	Glu	Tyr	Leu	His 350	Ala	Met
Lys	Gly	Leu 355	Leu	Cys	Asp	Pro	Asn 360	Arg	Leu	Pro	Pro	Tyr 365	Leu	Arg	Trp
Суз	Val 370	Leu	Ser	Thr	Pro	Glų 375	Ile	Gln	Lys	Cys	Gly 380	Asp	Met	Ala	Val
Ala 385	Phe	Ser	Arg	Gln	Arg 390	Leu	Lys	Pro	Glu	Ile 395	Gln	Cys	Val	Ser	Ala 400
Glu	Ser	Pro	Gln	His 405	Cys	Met	Glu	Gln	Ile 410	Gln	Ala	Gly	His	Ile 415	Asp
Ala	Val	Thr	Leu 420	Asn	Gly	Glu	Asp	Ile 425	His	Thr	Ala	Gly	Lys 430	Thr	Tyr
Gly	Leu	Ile 435	Pro	Ala	Ala	Gly	Glu 440	Leu	Tyr	Ala	Ala	Asp 445	Asp	Arg	Ser
Asn	Ser 450	Tyr	Phe	Val	Val	Ala 455	Val	Val	Lys	Arg	Asp 460	Ser	Ala	Tyr	Ala
Phe 465	Thr	Val	Asp	Glu	Leu 470	Arg	Gly	Lys	Arg	Ser 475	Суѕ	His	Pro	Gly	Phe 480
Gly	Ser	Pro	Ala	Gly 485	Trp	Asp	Val	Pro	Val 490	Gly	Ala	Leu	Ile	His 495	Trp
Gly	Tyr	Ile	Arg 500	Pro	Arg	Asn	Cys	Asp 505	Val	Leu	Thr	Ala	Val 510	Gly	Gln
Phe	Phe	Asn 515	Ala	Ser	Cys	Val	Pro 520	Val	Asn	Asn	Pro	Lys 525	Lys	Tyr	Pro
Ser	Ser 530	Leu	Cys	Ala	Leu	Cys 535	Val	Gly	Asp	Glu	Gln 540	Gly	Arg	Asn	Lys
Cys 545	Thr	Gly	Asn	Ser	Gln 550	Glu	Arg	Tyr	Tyr	Gly 555	Asp	Ser ,	Gly	Ala	Phe 560
Arg	Cys	Leu	Val	Glu 565	Gly	Ala	Gly	Asp	Val 570	Ala	Phe	Val	Lys	His 575	Thr
Thr	Ile	Phe	Asp 580	Asn	Thr	Asn	Gly	His 585	Asn	Pro	Glu	Pro	Trp 590	Ala	Ala
His	Leu	Arg 595	Ser	Gln	Asp	Tyr	Glu 600	Leu	Leu	Cys	Pro	Asn 605	Gly	Ala	Arg
Ala	Glu 610	Ala	His	Gln	Phe	Ala 615	Ala	Cys	Asn	Leu	Ala 620	Gln	Ile	Pro	Ser

His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly 625 630 635 640

Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn 645 650 655

Gly Phe Lys Met Phe Asp Ser Ser Ser Tyr His Gly Arg Asp Leu Leu 660 665 670

Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Gly Glu Arg Thr Thr $675 \hspace{1.5cm} 680 \hspace{1.5cm} 685$

Tyr Gln Asp Trp Leu Gly Pro Asp Tyr Val Ala Ala Leu Glu Gly Met 690 695 700

Gln Ser Gln Arg Cys Ser Gly Ala Ala Val Gly Ala Pro Gly Ala Ser 705 710 715 720

Leu Leu Pro Leu Pro Leu Ala Ala Gly Leu Leu Ser Ser Leu
725 730 735

<210> 3

<211> 2368

<212> DNA

<213> Homo sapiens

<400> 3 geggaettee teggaeeegg acceageeee ageeeggeee eageeageee egaeggegee 60 atgeggggte egagegggge tetgtggetg eteetggete tgegeacegt geteggagge 120 atggaggtgc ggtggtgcgc cacctcggac ccagagcagc acaagtgcgg caacatgagc 180 gaggeettee gggaageggg catecageee teecteetet gegteegggg caceteegee 240 300 gaccactgcg tecageteat egeggeeeag gaggetgaeg ceateactet ggatggagga 360 qccatctatq aqqcqqqaaa qgagcacggc ctgaagccgg tggtgggcga agtgtacgat caagaggteg gtaceteeta ttacgeegtg getgtggtea ggaggagete eeatgtgace 420 attqacaccc tqaaaqqcqt qaaqtcctqc cacacqqqca tcaatcqcac agtqqgctqq 480 aacqtqcccq tqqqctacct ggtggagagc ggccgcctct cggtgatggg ctgcgatgta 540 600 ctcaaagctg tcagcgacta ttttgggggc agctgcgtcc cgggggcagg agagaccagt 660 tactctgagt ccctctgtcg cctctgcagg ggtgacagct ctggggaagg ggtgtgtgac 720 aagagcccc tggagagata ctacgactac agcggggcct tccggtgcct ggcggaaggg 780 qcaqqqqacq tqgcttttqt gaaqcacagc acqqtactqq agaacacqqa tqggaagacq cttccctcct ggggccaggc cctgctgtca caggacttcg agctgctgtg ccgggatggt 840 900 ageogggeeg atgteacega gtggaggeag tgceatetgg ecegggtgee tgeteacgee

gtggtggtcc	gggccgacac	agatgggggc	ctcatcttcc	ggctgctcaa	cgaaggccag	960
cgtctgttca	gccacgaggg	cagcagcttc	cagatgttca	gctctgaggc	ctatggccag	1020
aaggatctac	tcttcaaaga	ctctacctcg	gagcttgtgc	ccatcgccac	acagacctat	1080
gaggcgtggc	tgggccatga	gtacctgcac	gccatgaagg	gtctgctctg	tgaccccaac	1140
cggctgcccc	cctacctgcg	ctggtgtgtg	ctctccactc	ccgagatcca	gaagtgtgga	1200
gacatggccg	tggccttccg	ccggcagcgc	ctcaagccag	agatccagtg	cgtgtcagcc	1260
aagtcccccc	aacactgcat	ggagcggatc	caggctgagc	aggtcgacgc	tgtgacccta	1320
agtggcgagg	acatttacac	ggcggggaag	aagtacggcc	tggttcccgc	agccggcgag	1380
cactatgccc	cggaagacag	cagcaactcg	tactacgtgg	tggccgtggt	gagacgggac	1440
agctcccacg	ccttcacctt	ggatgagctt	cggggcaagc	getectgeca	cgccggtttc	1500
ggcagccctg	caggctggga	tgtccccgtg	ggtgccctta	ttcagagagg	cttcatccgg	1560
cccaaggact	gtgacgtcct	cacagcagtg	agcgagttct	tcaatgccag	ctgcgtgccc	1620
gtgaacaacc	ccaagaacta	cccctcctcg	ctgtgtgcac	tgtgcgtggg	ggacgagcag	1680
ggccgcaaca	agtgtgtggg	caacagccag	gagcggtatt	acggctaccg	cggcgccttc	1740
aggtgcctgg	tggagaatgc	gggtgacgtt	gccttcgtca	ggcacacaac	cgtctttgac	1800
aacacaaacg	gccacaattc	cgagccctgg	gctgctgagc	tcaggtcaga	ggactatgaa	1860
ctgctgtgcc	ccaacggggc	ccgagccgag	gtgtcccagt	ttgcagcctg	caacctggca	1920
cagataccac	cccacgccgt	gatggtccgg	cccgacacca	acatcttcac	cgtgtatgga	1980
ctgctggaca	aggcccagga	cctgtttgga	gacgaccaca	ataagaacgg	gttcaaaatg	2040
ttcgactcct	ccaactatca	tggccaagac	ctgcttttca	aggatgccac	cgtccgggcg	2100
gtgcctgtcg	gagagaaaac	cacctaccgc	ggctggctgg	ggctggacta	cgtggcggcg	2160
ctggaaggga	tgtcgtctca	gcagtgctcg	ggcgcagcgg	ccccggcgcc	cggggcgccc	2220
ctgctcccgc	tgctgctgcc	cgccctcgcc	geeegeetge	tecegeeege	cctctgagcc	2280
eggeegeeee	gccccagagc	teegatgeee	gcccggggag	tttccgcggc	ggcctctcgc	2340
gctgcggaat	ccagaaggaa	gctcgcga				2368

<210> 4

<211> 738 <212> PRT <213> Homo sapiens

<400> 4

Met Arg Gly Pro Ser Gly Ala Leu Trp Leu Leu Leu Ala Leu Arg Thr Val Leu Gly Gly Met Glu Val Arg Trp Cys Ala Thr Ser Asp Pro Glu Gln His Lys Cys Gly Asn Met Ser Glu Ala Phe Arg Glu Ala Gly Ile Gln Pro Ser Leu Leu Cys Val Arg Gly Thr Ser Ala Asp His Cys Val Gln Leu Ile Ala Ala Gln Glu Ala Asp Ala Ile Thr Leu Asp Gly Gly Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly Glu Val Tyr Asp Gln Glu Val Gly Thr Ser Tyr Tyr Ala Val Ala Val Val Arg Arg Ser Ser His Val Thr Ile Asp Thr Leu Lys Gly Val Lys 120 Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val 135 Gly Tyr Leu Val Glu Ser Gly Arg Leu Ser Val Met Gly Cys Asp Val 155 150 Leu Lys Ala Val Ser Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Ala Gly Glu Thr Ser Tyr Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp Ser Ser Gly Glu Gly Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Lys Thr Leu Pro Ser Trp Gly Gln Ala Leu Leu Ser Gln Asp Phe Glu Leu Leu Cys Arg Asp Gly Ser Arg Ala Asp Val Thr Glu Trp Arg Gln Cys His Leu Ala Arg Val Pro Ala His Ala Val Val Val Arg Ala Asp Thr Asp 280 Gly Gly Leu Ile Phe Arg Leu Leu Asn Glu Gly Gln Arg Leu Phe Ser 295 290

310 315 Lys Asp Leu Leu Phe Lys Asp Ser Thr Ser Glu Leu Val Pro Ile Ala 325 Thr Gln Thr Tyr Glu Ala Trp Leu Gly His Glu Tyr Leu His Ala Met Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro Pro Tyr Leu Arg Trp Cys Val Leu Ser Thr Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val 375 Ala Phe Arg Arg Gln Arg Leu Lys Pro Glu Ile Gln Cys Val Ser Ala Lys Ser Pro Gln His Cys Met Glu Arg Ile Gln Ala Glu Gln Val Asp 410 Ala Val Thr Leu Ser Gly Glu Asp Ile Tyr Thr Ala Gly Lys Lys Tyr 425 Gly Leu Val Pro Ala Ala Gly Glu His Tyr Ala Pro Glu Asp Ser Ser 440 Asn Ser Tyr Tyr Val Val Ala Val Val Arg Arg Asp Ser Ser His Ala 455 Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Ala Gly Phe Gly Ser Pro Ala Gly Trp Asp Val Pro Val Gly Ala Leu Ile Gln Arg Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Glu Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro Ser Ser Leu Cys Ala Leu Cys Val Gly Asp Glu Gln Gly Arg Asn Lys Cys Val Gly Asn Ser Gln Glu Arg Tyr Tyr Gly Tyr Arg Gly Ala Phe Arg Cys Leu Val Glu Asn Ala Gly Asp Val Ala Phe Val Arg His Thr 570 Thr Val Phe Asp Asn Thr Asn Gly His Asn Ser Glu Pro Trp Ala Ala 585 Glu Leu Arg Ser Glu Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg 595 Ala Glu Val Ser Gln Phe Ala Ala Cys Asn Leu Ala Gln Ile Pro Pro

His Glu Gly Ser Ser Phe Gln Met Phe Ser Ser Glu Ala Tyr Gly Gln

		610					615					620						
	His 625	Ala	Val	Met	Val	Arg 630	Pro	Asp	Thr	Asn	Ile 635	Phe	Thr	Val	Tyr	Gly 640		
	Leu	Leu	Asp	Lys	Ala 645	Gln	Asp	Leu	Phe	Gly 650	Asp	Asp	His	Asn	Lys 655	Asn		
•	Gly	Phe	Lys	Met 660	Phe	Asp	Ser	Ser	Asn 665	Tyr	His	Gly	Gln	Asp 670	Leu	Leu		
	Phe	Lys	Asp 675	Ala	Thr	Val	Arg	Ala 680	Val	Pro	Val	Gly	Glu 685	Lys	Thr	Thr		
•	Tyr	Arg 690	Gly	Trp	Leu	Gly	Leu 695	Asp	Tyr	Val	Ala	Ala 700	Leu	Glu	Gly	Met		
	Ser 705	Ser	Gln	Gln	Суѕ	Ser 710	Gly	Ala	Ala	Ala	Pro 715	Ala	Pro	Gly	Ala	Pro 720		
	Leu	Leu	Pro	Leu	Leu 725	Leu	Pro	Ala	Leu	Ala 730	Ala	Arg	Leu	Leu	Pro 735	Pro		
Ala Leu																		
<pre><210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> synthetic</pre>																		
	<400 ggc		5 acg	tgcc	cgtg	gg c	ta											23
	<210 <210 <210 <210	1> 2>	6 23 DNA Arti	fici	al S	eque	nce											
	<22 <22		synt	heti	С													
	<40 gtc	-	6 gcc	ttgt	ccag	ca g	tc											23
	<21 <21 <21 <21 <22	1> 2> 3>				eque	nce											
	<22	3>	synt	heti	C													

<400> 7 agagggactc cgagtatctg gtctc	25
<210> 8 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic	
<400> 8 gtccggcccg acaccaacat cttc	24
<210> 9 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic	
<400> 9 ggtgtgttga ggggcgtgga ctct	24
<210> 10 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic	
<400> 10 tcaccaacgg ctttgagcac atcac	25
<210> 11 <211> 614 <212> DNA <213> Mus sp.	
<400> 11 tcaccaacgg ctttgagcac atcacagccc atcactgaca gatggccgct ctctacgagg	60
taaccgacag gcacgttcca gcccacagtc cggttaatgc ctgtgtggca ggacttgacg	120
cccttcaggg tgttgatggt aacattggaa ttcctcctga ccacagccac ggcataatag	180
gaagteecaa tgtettggte atagaettee eccaecaetg getteaggee gtgeteette	240
cctgcctcat agatggcccc tccatccagg gtgatggcat ctgctttttg ttccttgatg	300
and	360

getecetgga aggeeteget catgtetttg caettetget getetgegte tgagatggta	420
caccactgca cctccatcac acagacgaca gtgcgcaggg acaggagtag ccaaaaagtc	480
acgctcagga gcctcatggc aacgttgggt tggctggggt gctggegggt ctgtcctggc	540
tteetettee etggtetete tggeetteae tatttaageg eagecegggg agagteeaeg	600
ccctcaaca cacc	614
<210> 12 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> synthetic	
<400> 12 tgctacttca tcgaccc	17
<210> 13 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> synthetic	
<400> 13 aaagacctcc cctccatct	19
<210> 14 <211> 4158 <212> DNA <213> Mus sp.	
<400> 14 ggtgtgttga ggggcgtgga ctctccccgg gctgcgctta aatagtgaag gccagagaga	60
ccagggaaga ggaagccagg acagacccgc cagcacccca gccaacccaa cgttgccatg	120
aggeteetga gegtgaettt ttggetaete etgteeetge geaetgtegt etgtgtgatg	180
gaggtgcagt ggtgtaccat ctcagacgca gagcagcaga agtgcaaaga catgagcgag	240
geettecagg gagetggeat tegteettee ettetetgeg tecagggeaa eteegetgae	300
cactgtgtcc agctcatcaa ggaacaaaaa gcagatgcca tcaccctgga tggagggcc	360
atctatgagg cagggaagga gcacggcctg aagccagtgg tgggggaagt ctatgaccaa	420
gacattggga cttcctatta tgccgtggct gtggtcagga ggaattccaa tgttaccatc	480

aacaccctga	agggcgtcaa	gtcctgccac	acaggcatta	accggactgt	gggctggaac	540
gtgcctgtcg	gttacctcgt	agagagcggc	catctgtcag	tgatgggctg	tgatgtgctc	600
aaagccgttg	gtgattattt	tggaggcagc	tgtgtccctg	gaacaggaga	aaccagccat	660
tccgagtccc	tctgtcgcct	ctgccgtggc	gactcttctg	ggcacaatgt	gtgtgacaag	720
agtcccctag	agagatacta	cgactacagt	ggagccttcc	ggtgcctggc	ggaaggagcc	780
ggtgacgtgg	ccttcgtgaa	gcacagcaca	gtgctggaaa	atactgatgg	aaacaccctg	840
ccttcctggg	gcaagtccct	gatgtcagag	gacttccagc	tactatgcag	ggatggcagc	900
cgagccgaca	tcactgagtg	gagacgttgc	cacctggcca	aggtgcctgc	tcatgctgtg	960
gtggtcaggg	gtgacatgga	tggcggtctc	atattccaac	tgctcaacga	aggccagctt	1020
ctgttcagcc	acgaagacag	cagcttccag	atgttcagct	ccaaagccta	cagccagaag	1080
aacttgctgt	tcaaagactc	caccttggag	cttgtgccca	ttgccacaca	gaactacgag	1140
gcctggctgg	gccaggaata	cctgcaggcc	atgaaggggc	tectetgtga	tcccaaccgg	1200
ctgccccact	acctgcgctg	gtgtgtgctg	tcagcgcccg	agatccagaa	gtgtggagat	1260
atggctgtgg	ccttcagccg	ccagaatctc	aagccggaaa	ttcagtgtgt	gtcggccgag	1320
teceetgage	actgcatgga	gcagatccag	gctgggcaca	ctgacgctgt	gactctgagg	1380
ggcgaggaca	tttacagggc	aggaaaggtg	tacggcctgg	ttccggcggc	cggggagctg	1440
tatgctgagg	aggacaggag	caattcctac	tttgtggtgg	ctgtggcaag	aagggacagc	1500
tectactect	tcaccctgga	cgagcttcgc	ggcaagcgtt	cctgccaccc	ctacttgggc	1560
agcccagcgg	gctgggaggt	gcccatcggc	tccctcatcc	agcggggctt	catccggccc	1620
aaggactgtg	atgtcctcac	agcggtgagc	cagttcttca	atgccagctg	cgtgcctgtc	1680
aacaacccta	agaactaccc	ttccgcacta	tgtgcgctct	gcgtgggaga	cgagaagggc	1740
cgcaacaaat	gtgtggggag	cagccaggag	agatactacg	gctacagcgg	ggccttcagg	1800
tgccttgtgc	g agcatgcagg	ggacgtggct	ttcgtcaagc	acacgactgt	ctttgagaac	1860
acaaatggto	: acaatcctga	gccttgggct	tctcacctca	ggtggcaaga	ctatgaacta	1920
ctgtgcccca	atggggcacg	ggctgaggta	gaccagttcc	: aagcttgcaa	. cctggcacaa	1980
atgccatccc	c acgctgtcat	ggtccgtcca	gacaccaaca	tcttcactgt	gtatggactt	2040
ctggacaag	g cccaggacct	gtttggagac	gaccataaca	agaacggttt	: ccaaatgttt	2100
gactcctcca	a aatatcacag	, ccaagacctg	cttttcaaag	, atgctacagt	ccgagcggtg	2160
ccagtccggg	g agaaaaccac	: atacctggac	: tggctgggtc	ctgactatgt	ggttgcgctg	2220

gaggggatgt	tgtctcagca	gtgctccggt	gcaggggccg	cggtgcagcg	agtccccctg	2280
ctggccctgc	tcctgctgac	cctggctgca	ggcctccttc	ctcgcgttct	ctgaagaccg	2340
ctgcttcagg	ccacgcccag	agcagggaaa	gctacagagc	tcaaccggaa	gaaaccagga	2400
catcagctaa	ccctgcagga	gagcgcgggg	cgggatgagg	agaggcaagg	tgagaactca	2460
cacacacaca	caagcctccg	aggtgcgatt	ctaacccaaa	gagaaatttc	tagaatcagg	2520
atgattgtta	aggccaagtc	ttcccacttg	ctggagccct	caatacctga	ggcgactggc	2580
gagtagccca	gtcactcctc	ccacaccggt	ggcgccagca	gcgaacctgt	gcctcccacc	2640
tggagcctcc	tggctggctg	gggtggttaa	adadadada	gggagagtga	agatgctggt	2700
tgccatggca	accgtggagc	agcttccagc	ctctgtaccg	gccacctggt	gagatgccaa	2760
ggaaggagca	caccaccaac	ctagggaacc	tgtgcgacac	actaccaccc	agcagcccct	2820
gctctcgctg	ccccaccgct	ctctcctatg	ggcacttgtc	caccaaggcc	acaccgtcgg	2880
aggggcaagg	ctgctgagca	catcagcctt	ctgatgtgac	accaaccaag	gageccagec	2940
ctctggacag	caagattttg	ctagactggg	atgggaggaa	ggccagagct	gtactgtggg	3000
gatgaagtcc	tccaaaaccc	tcagaggaag	gaagtgcccc	caccttccca	ttaagaatgt	3060
tagtgtgtga	gaaacttgat	gcagggtgga	aactatcctg	tttaacggct	cccgtggcaa	3120
gcaggacttg	cgctgtctgc	gctgcctgga	cctcactgca	caatgaaact	gttgccgaga	3180
ttctattgtt	tgctctcctg	gtctcagtct	caacattagt	tttctccctg	ccttcatata	3240
ccccttccca	catcaccacg	caagcacgca	cgcgcacacg	cacacgcaca	caccttatcc	3300
gtgtgaacat	atctgaacat	atctgcttgt	ctgaagaagt	aggagctaac	ccaaaataac	3360
ttcctgtcat	gagctgggcc	ttgggatata	ccacgagcca	ggggattggg	gagagccctg	3420
tcttcccttc	accetgeace	tgttgggcag	ttgcatcttt	cgagaggatc	cctggttctc	3480
tcgaactgtg	agagccaagg	cctaggctgc	cattttgcca	ttgttctctc	gagaaccaga	3540
aaaagttttc	caaagctacc	agctcttacc	ccagatcttg	ttcccttaaa	aaaaagtaat	3600
aaataaaaag	gagaagaaac	aggagcaaac	agccatcgto	: agcacactgg	aagcagcgtg	3660
ggccgggagc	: tatttgtgtc	: ttggtctgtg	tggggggcct	cagatcccaa	tgacaggcca	3720
ggttcccagt	ggetegeece	: cacctgtggg	cgacgacggg	, acagatcctt	tccatggctc	3780
accagtagag	, aaggteetgg	cagtgtccca	gccagagtca	cacaatcctg	g aggaaaatcg	3840
gtcaccatgo	, tgcttgggag	agcaagcccc	: tcctcctccc	agtacacago	catccattct	3900
tctctgagct	ggggacttca	. cagtgagaag	tgtactctgt	gtgggcgact	gtgctgccca	3960

aagtgtgatg tetgtgeegt gtgeetttea ggtgtgaett tgaagagegt tgtgtaaatg														
acgtctgatt gccatgggcc actgctgtgt ttgtgctaaa gaaagacatt ggtttctttt														
taaaataaag ccatatatcc ctgcatacgc agaggcttgg atcctggtgg aaaaaaaaaa														
aaaaaaaaaa aaaaaaaa														
<210> 15 <211> 738 <212> PRT <213> Mus sp. <400> 15														
Met Arg Leu Leu Ser Val Thr Phe Trp Leu Leu Leu Ser Leu Arg Thr 1 5 10 15														
Val Val Cys Val Met Glu Val Gln Trp Cys Thr Ile Ser Asp Ala Glu 20 25 30														
Gln Gln Lys Cys Lys Asp Met Ser Glu Ala Phe Gln Gly Ala Gly Ile 35 40 45														
Arg Pro Ser Leu Leu Cys Val Gln Gly Asn Ser Ala Asp His Cys Val 50 55 60														
Gln Leu Ile Lys Glu Gln Lys Ala Asp Ala Ile Thr Leu Asp Gly Gly 65 70 75 80														
Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly 85 90 95														
Glu Val Tyr Asp Gln Asp Ile Gly Thr Ser Tyr Tyr Ala Val Ala Val 100 105 110														
Val Arg Arg Asn Ser Asn Val Thr Ile Asn Thr Leu Lys Gly Val Lys 115 120 125														
Ser Cys His Thr Gly Ile Asn Arg Thr Val Gly Trp Asn Val Pro Val 130 135 140														
Gly Tyr Leu Val Glu Ser Gly His Leu Ser Val Met Gly Cys Asp Val 145 150 155 160														
Leu Lys Ala Val Gly Asp Tyr Phe Gly Gly Ser Cys Val Pro Gly Thr 165 170 175														
Gly Glu Thr Ser His Ser Glu Ser Leu Cys Arg Leu Cys Arg Gly Asp 180 185 190														
Ser Ser Gly His Asn Val Cys Asp Lys Ser Pro Leu Glu Arg Tyr Tyr 195 200 205														
Asp Tyr Ser Gly Ala Phe Arg Cys Leu Ala Glu Gly Ala Gly Asp Val 210 . 215 220														

Ala Phe Val Lys His Ser Thr Val Leu Glu Asn Thr Asp Gly Asn Thr 230 Leu Pro Ser Trp Gly Lys Ser Leu Met Ser Glu Asp Phe Gln Leu Leu 250 245 Cys Arg Asp Gly Ser Arg Ala Asp Ile Thr Glu Trp Arg Arg Cys His Leu Ala Lys Val Pro Ala His Ala Val Val Arg Gly Asp Met Asp 280 Gly Gly Leu Ile Phe Gln Leu Leu Asn Glu Gly Gln Leu Leu Phe Ser 295 His Glu Asp Ser Ser Phe Gln Met Phe Ser Ser Lys Ala Tyr Ser Gln 315 310 Lys Asn Leu Leu Phe Lys Asp Ser Thr Leu Glu Leu Val Pro Ile Ala 330 Thr Gln Asn Tyr Glu Ala Trp Leu Gly Gln Glu Tyr Leu Gln Ala Met 345 Lys Gly Leu Leu Cys Asp Pro Asn Arg Leu Pro His Tyr Leu Arg Trp 360 Cys Val Leu Ser Ala Pro Glu Ile Gln Lys Cys Gly Asp Met Ala Val 375 Ala Phe Ser Arg Gln Asn Leu Lys Pro Glu Ile Gln Cys Val Ser Ala Glu Ser Pro Glu His Cys Met Glu Gln Ile Gln Ala Gly His Thr Asp 410 Ala Val Thr Leu Arg Gly Glu Asp Ile Tyr Arg Ala Gly Lys Val Tyr Gly Leu Val Pro Ala Ala Gly Glu Leu Tyr Ala Glu Glu Asp Arg Ser Asn Ser Tyr Phe Val Val Ala Val Ala Arg Arg Asp Ser Ser Tyr Ser Phe Thr Leu Asp Glu Leu Arg Gly Lys Arg Ser Cys His Pro Tyr Leu 470 475 Gly Ser Pro Ala Gly Trp Glu Val Pro Ile Gly Ser Leu Ile Gln Arg 490 485 Gly Phe Ile Arg Pro Lys Asp Cys Asp Val Leu Thr Ala Val Ser Gln 505 500 Phe Phe Asn Ala Ser Cys Val Pro Val Asn Asn Pro Lys Asn Tyr Pro 525 520 515

· · · · ·

Ser Ala Leu Cys Ala Leu Cys Val Gly Asp Glu Lys Gly Arg Asn Lys Cys Val Gly Ser Ser Gln Glu Arg Tyr Tyr Gly Tyr Ser Gly Ala Phe Arg Cys Leu Val Glu His Ala Gly Asp Val Ala Phe Val Lys His Thr 570 Thr Val Phe Glu Asn Thr Asn Gly His Asn Pro Glu Pro Trp Ala Ser 585 580 His Leu Arg Trp Gln Asp Tyr Glu Leu Leu Cys Pro Asn Gly Ala Arg Ala Glu Val Asp Gln Phe Gln Ala Cys Asn Leu Ala Gln Met Pro Ser His Ala Val Met Val Arg Pro Asp Thr Asn Ile Phe Thr Val Tyr Gly 630 635 Leu Leu Asp Lys Ala Gln Asp Leu Phe Gly Asp Asp His Asn Lys Asn Gly Phe Gln Met Phe Asp Ser Ser Lys Tyr His Ser Gln Asp Leu Leu 665 Phe Lys Asp Ala Thr Val Arg Ala Val Pro Val Arg Glu Lys Thr Thr 680 Tyr Leu Asp Trp Leu Gly Pro Asp Tyr Val Val Ala Leu Glu Gly Met Leu Ser Gln Gln Cys Ser Gly Ala Gly Ala Ala Val Gln Arg Val Pro Leu Leu Ala Leu Leu Leu Thr Leu Ala Ala Gly Leu Leu Pro Arg

Val Leu

JC13 Rec'd PCT/PTO 1 9 FEB 2002

Sequence Listing

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

	(120) CHONDROGENESIS SIIMOLATOR	
5	<130> YCT-501	
	<160> 15	
	<210> 1	
	<211> 2388	
10	<212> cDNA	
	<213> Rabbit	
	<400> 1	
	gccgccgctc actcgttcgc actcggactc agacccagtc cgaccccctg gactgcgcca	60
	tgcggtgccg aagcgcggct atgtggatct tcctggccct gcgcaccgca ctcggcagcg	120
15	tggaggtgcg gtggtgcacc gcgtccgagc ccgagcagca gaagtgcgag gacatgagcc	180
	aggccttccg cgaagccggc ctccagcccg ccctgctgtg cgtgcagggc acctcggccg	240
	accactgcgt ccagctcatc gcggcccacg aggccgacgc catcactctg gacggaggag	300
	ccatttacga ggcggggaag gaacacggcc tgaagcccgt ggtgggcgaa gtgtatgacc	360
	aagaggtggg cacctcctac tacgctgtgg ccgtggtcaa gaggagctcc aacgtgacca	420
20	tcaacaccct gagaggcgtg aagtcctgcc acacgggcat caaccgcacg gtgggctgga	480
	acgtgcctgt gggctacctg gtggacagcg gccgcctctc agtgatgggc tgtgacgtgc	540
	tcaaagcggt cagcgagtac ttcgggggca gctgcgtccc tggggcagga gagaccagat	600
	actoggagto cototgtogo ototgooggg gogacacoto oggggagggg gtgtgtgaca	660
	agagcccct ggagcggtac tacgactaca gcggggcctt ccggtgcctg gcagaaggcg	720
25	caggggacgt ggcctttgtg aagcacagca cggtgctgga gaacacggat gggagaacac	780
	tgccctcctg gggccacatg ctgatgtcac gggactttga gctgctgtgc cgggacggca	840
	gccgggccag cgtcaccgag tggcagcact gccacctggc ccgggtgccc gcccacgccg	900
	tggtggtccg ggccgacacc gacgcaggcc tcatcttccg gcttctcaat gagggccagc	960
	ggctgttcag ccacgagggc agcagcttcc agatgttcag ctcggaggcc tacggccaga	1020

agaacctgct gttcaaagac tccacgctgg agctggtgcc catcgccaca cagacctacg 1080 aggcctggct gggccccgag tacctgcacg ccatgaaggg tctgctctgt gaccccaacc 1140 ggctgccccc atacctgcgc tggtgcgtgc tgtccacccc cgagatccag aagtgtggag 1200 acatqqccqt ggccttcagc cggcagaggc tcaagccgga gatccagtgt gtctcggcgg 1260 5 agtececca geactgeatg gageagatee aggetgggea categatget gtgaceetga 1320 acggggagga cattcacaca gcggggaaga cttatgggct gatcccggct gccggggagc 1380 tgtatgccgc ggacgacagg agtaactcgt acttcgtggt ggccgtggtg aagcgagaca 1440 gcgcctacgc cttcaccgtg gacgagctgc gcgggaagcg ctcctgccac cccggcttcg 1500 gcagcccggc cggctgggac gtcccggtgg gcgccctcat ccactggggc tacatccggc 1560 ccaggaactg cgacgtcctc acagcggtgg gtcagttctt caacgccagc tgtgtgccgg 1620 10 tgaacaaccc caagaagtac ccctcctcgc tgtgcgcact ctgcgtgggt gacgagcagg 1680 gccgcaacaa gtgcactggc aacagccagg agcggtacta tggcgacagt ggcgccttca 1740 ggtgcctggt ggagggtgca ggggacgtgg ccttcgtcaa gcacacgacc atctttgaca 1800 acacaaatgg ccacaatccc gagccgtggg ctgcccatct gaggagccag gactacgagc 1860 tgctgtgccc caacggcgcg cgagctgagg cgcaccagtt tgccgcctgc aacctggccc 1920 15 agattccgtc ccacgccgtc atggtgcggc ccgacaccaa catcttcacc gtttacggac 1980 tgctggacaa ggcccaggac ctgtttggag acgaccacaa caagaacggg ttcaagatgt 2040 tcgactcctc cagctaccac ggccgagacc tgctcttcaa ggacgccacg gtgcgcgctg 2100 tgcctgtggg cgagaggacc acctaccagg actggctggg gccggactac gtggcggctc 2160 20 tggaagggat gcagtcacag cggtgctcag gggcagccgt cggcgccccc ggggcctcgc 2220 tgctgccgct gctgcccctg gctgcgggcc tcctgctgtc ttcgctctga gagcagcccc 2280 gggcagcctc ggccccggca ggggagcctg cgcggaagct tcctgaacga gcccgcgccc 2340 2388 tggctggatg tggttacctc ggcgagccgc ggggccgcgc ttcccccg

25 <210> 2

<211> 736

<212> PRT

<213> Rabbit

<400> 2

	Met	Arg	Cys	Arg	Ser	Ala	Ala	Met	Trp	Ile	Phe	Leu	Ala	Leu	Arg	Thr
	1				5					10					15	
	Ala	Leu	Gly	Ser	Val	Glu	Val	Arg	Trp	Cys	Thr	Ala	Ser	Glu	Pro	Glu
				20					25					30		
5	Gln	Gln	Lys	Cys	Glu	Asp	Met	Ser	Gln	Ala	Phe	Arg	Glu	Ala	Gly	Leu
			35					40					45			
	Gln	Pro	Ala	Leu	Leu	Cys	Val	Gln	Gly	Thr	Ser	Ala	Asp	His	Cys	Val
		50					55					60				
	Gln	Leu	Ile	Ala	Ala	His	Glu	Ala	Asp	Ala	Ile	Thr	Leu	Asp	Gly	Gly
10	65					70					75					80
	Ala	Ile	Tyr	Glu	Ala	Gly	Lys	Glu	His	Gly	Leu	Lys	Pro	Val	Val	Gly
					85					90					95	
	Glu	Val	Tyr	Asp	Gln	Glu	Val	Gly	Thr	Ser	Tyr	Tyr	Ala	Val	Ala	Val
v				100					105					110		
15	Val	Lys	Arg	Ser	Ser	Asn	Val	Thr	Ile	Asn	Thr	Leu	Arg	Gly	Val	Lys
			115					120				•	125			
	Ser	Суѕ	His	Thr	Gly	Ile	Asn	Arg	Thr	Val	Gly	Trp	Asn	Va1	Pro	Val
		130					135	i				140				
	Gly	Tyr	Leu	Val	Asp	Ser	Gly	Arg	Leu	Ser	Val	Met	Gly	Cys	Asp	Val
20	145	•				150)				155	5				160
	Leu	Lys	Ala	Val	Ser	Glu	Tyr	Phe	Gly	Gly	Ser	Cys	Val	Pro	Gly	Ala
					165	;				170)				175	5
	Gly	Glu	Thr	Arg	Туг	Ser	Glu	Ser	Leu	Суз	Arg	Leu	Cys	Arg	Gly	Asp
				180)				185	5				190)	
25	Thr	Ser	Gly	glu	Gl	v Val	Cys	Asp	Lys	s Sei	Pro	Leu	Glu	Arg	туг	Tyr
			195	5				200)				205	5		
	Asp	туг	Sei	Gly	Ala	a Phe	e Arg	ј Суз	Lev	ı Ala	a Glu	ı Gly	Ala	Gl3	Ası	y Val
		210	0				21	5				220)			
	3 T -	, Dh	\ \T-1	1 T 777	, pi	. Car	r ምክ፣	- Val	T.e.	1 Gl:	ı Ası	ነ ምክተ	Ast	Gly	Aro	7 Thr

	225					230					235					240
	Leu	Pro	Ser	Trp	Gly	His	Met	Leu	Met	Ser	Arg	Asp	Phe	Glu	Leu	Leu
					245					250					255	
	Cys	Arg	Asp	Gly	Ser	Arg	Ala	Ser	Val	Thr	Glu	Trp	Gln	His	Суз	His
5				260					265					270		
	Leu	Ala	Arg	Val	Pro	Ala	His	Ala	Val	Val	Val	Arg	Ala	Asp	Thr	Asp
			275					280					285			
	Ala	Gly	Leu	Ile	Phe	Arg	Leu	Leu	Asn	Glu	Gly	Gln	Arg	Leu	Phe	Ser
		290					295					300				
10	His	Glu	Gly	Ser	Ser	Phe	Gln	Met	Phe	Ser	Ser	Glu	Ala	Tyr	Gly	Gln
	305					310					315					320
	Lys	Asn	Leu	Leu	Phe	Lys	Asp	Ser	Thr	Leu	Glu	Leu	Val	Pro	Ile	Ala
					325					330					335	
	Thr	Gln	Thr	Tyr	Glu	Ala	Trp	Leu	Gly	Pro	Glu	Tyr	Leu	His	Ala	Met
15				340					345	i				350		
	Lys	Gly	Leu	Leu	Суѕ	Asp	Pro	Asn	Arg	Leu	Pro	Pro	Tyr	Leu	Arg	Trp
			355	i				360					365	;		
	Cys	Val	Leu	Ser	Thr	Pro	Glu	Ile	Gln	Lys	Cys	Gly	Asp	Met	Ala	Val
		370)				375	5				380)			
20	Ala	Phe	Ser	Arg	Gln	Arg	Leu	Lys	Pro	Glu	Ile	Gln	Cys	Val	Ser	Ala
	385	5				390)				39!	5				400
	Glu	Ser	Pro	Gln	His	Суз	Met	Glu	Gln	ıle	Gln	Ala	Gly	His	Ile	Asp
					405	,				410)				415	5
	Ala	val	Thr	Leu	Asn	Gly	g Glu	ı Asp	Ile	His	Thr	Ala	ı Gly	Lys	Thr	Туг
25				420)				425	5				430)	
	Gly	Leu	1 Ile	e Pro	Ala	a Alá	a Gly	g Glu	ı Leı	туз	Ala	a Ala	a Asp) Asp	Arg	ser
			43	5				440)				44	5		
	Asr	ı Sei	туз	r Phe	val	L Vai	l Ala	a Val	L Vai	L Lys	Arg	g Asp	Ser	Ala	Туг	Ala
		45	^				15	5				46	0			

	Phe	Thr	Val	Asp	Glu	Leu	Arg	Gly	Lys	Arg	Ser	Cys	His	Pro	Gly	Phe
	465					470					475					480
	Gly	Ser	Pro	Ala	Gly	Trp	Asp	Val	Pro	Val	Gly	Ala	Leu	Ile	His	Trp
					485					490					495	
5	Gly	Tyr	Ile	Arg	Pro	Arg	Asn	Cys	Asp	Val	Leu	Thr	Ala	Val	Gly	Gln
				500					505					510		
	Phe	Phe	Asn	Ala	Ser	Cys	Val	Pro	Val	Asn	Asn	Pro	Lys	Lys	Tyr	Pro
			515					520					525			
	Ser	Ser	Leu	Cys	Ala	Leu	Cys	Val	Gly	Asp	Glu	Gln	Gly	Arg	Asn	Lys
10		530					535					540				
	Cys	Thr	Gly	Asn	Ser	Gln	Glu	Arg	Tyr	Tyr	Gly	Asp	Ser	Gly	Ala	Phe
	545					550					555					560
	Arg	Cys	Leu	Val	Glu	Gly	Ala	Gly	Asp	Val	Ala	Phe	Val	Lys	His	Thr
-					565					570					575	
1,5	Thr	Ile	Phe	Asp	Asn	Thr	Asn	Gly	His	Asn	Pro	Glu	Pro	Trp	Ala	Ala
				580					585					590		
	His	Leu	Arg	Ser	Gln	Asp	Tyr	Glu	Leu	Leu	Cys	Pro	Asn	Gly	Ala	Arg
			595					600					605	5		
	Ala	Glu	Ala	His	Gln	Phe	Ala	Ala	Cys	Asn	Leu	Ala	Gln	Ile	Pro	Ser
20		610					615	,				620)			
	His	Ala	Val	Met	Val	Arg	Pro	Asp	Thr	Asn	Ile	Phe	Thr	Val	Tyr	Gly
	625	;				630)				635	5				640
	Leu	Leu	Asp	Lys	Ala	Gln	Asp	Leu	Phe	Gly	Asp	Asp	His	Asn	Lys	Asn
					645	5				650)				655	5
25	Gly	Phe	Lys	Met	Phe	a Asp	Ser	Ser	Ser	Туг	His	Gly	Arg	Asp	Leu	Leu
				660)				665	5				670)	
	Phe	Lys	Asp	Ala	Thi	val	Arg	, Ala	\Val	Pro	val	. Gly	Glu	ı Arg	Thr	Thr
			675	5				680)				68	5		
	Ф	- G1-	λαν	, m~r	ı T.e.	1 G1s	, Pro	Δer	יעד נ	· Val	L Ala	a Ala	ı Leı	ı Glu	ı Gly	Met

690 695 700

Gln Ser Gln Arg Cys Ser Gly Ala Ala Val Gly Ala Pro Gly Ala Ser
705 710 715 720

Leu Leu Pro Leu Pro Leu Ala Ala Gly Leu Leu Ser Ser Leu
725 730 735

<210> 3

5

15

20

25

<211> 2341

<212> cDNA

10 <213> Human

<400> 3

geggaettee teggaeeegg acceageee ageeeggeee cageeageee egaeggegee 60 atgeggggte egageggge tetgtggetg eteetggete tgegeaeegt geteggagge 120 atggaggtgc ggtggtgcgc cacctcggac ccagagcagc acaagtgcgg caacatgagc 180 gaggeettee gggaageggg catecageee teetteetet gegteegggg caeeteegee 240 300 gaccactgcg tccagctcat cgcggcccag gaggctgacg ccatcactct ggatggagga gccatctatg aggcgggaaa ggagcacggc ctgaagccgg tggtgggcga agtgtacgat 360 caagaggtcg gtacctccta ttacgccgtg gctgtggtca ggaggagctc ccatgtgacc 420 attgacaccc tgaaaggcgt gaagtcctgc cacacgggca tcaatcgcac agtgggctgg 480 aacgtgcccg tgggctacct ggtggagagc ggccgcctct cggtgatggg ctgcgatgta 540 ctcaaagctg tcagcgacta ttttgggggc agctgcgtcc cggggggcagg agagaccagt 600 tactctgagt ccctctgtcg cctctgcagg ggtgacagct ctggggaagg ggtgtgtgac aagagccccc tggagagata ctacgactac agcggggcct tccggtgcct ggcggaaggg 720 gcaggggacg tggcttttgt gaagcacagc acggtactgg agaacacgga tgggaagacg 780 cttccctcct ggggccaggc cctgctgtca caggacttcg agctgctgtg ccgggatggt 840 agccgggccg atgtcaccga gtggaggcag tgccatctgg cccgggtgcc tgctcacgcc 900 gtggtggtcc gggccgacac agatgggggc ctcatcttcc ggctgctcaa cgaaggccag cgtctgttca gccacgaggg cagcagcttc cagatgttca gctctgaggc ctatggccag 1020 aaggatetae tetteaaaga etetaeeteg gagettgtge eeategeeae acagaeetat 1080

gaggcgtggc tgggccatga gtacctgcac gccatgaagg gtctgctctg tgaccccaac 1140 cggctgcccc cctacctgcg ctggtgtgt ctctccactc ccgagatcca gaagtgtgga 1200 gacatggccg tggccttccg ccggcagcgc ctcaagccag agatccagtg cgtgtcagcc 1260 aagtcccccc aacactgcat ggagcggatc caggctgagc aggtcgacgc tgtgacccta 1320 agtggcgagg acatttacac ggcggggaag aagtacggcc tggttcccgc agccggcgag 1380 5 cactatgccc cggaagacag cagcaactcg tactacgtgg tggccgtggt gagacgggac 1440 agctcccacg ccttcacctt ggatgagctt cggggcaagc gctcctgcca cgccggtttc 1500 ggcagccctg caggctggga tgtccccgtg ggtgccctta ttcagagagg cttcatccgg 1560 cccaaggact gtgacgtcct cacagcagtg agcgagttct tcaatgccag ctgcgtgccc 1620 gtgaacaacc ccaagaacta cccctcctcg ctgtgtgcac tgtgcgtggg ggacgagcag 1680 10 ggccgcaaca agtgtgtggg caacagccag gagcggtatt acggctaccg cggcgccttc 1740 aggtgcctgg tggagaatgc gggtgacgtt gccttcgtca ggcacacaac cgtctttgac 1800 aacacaaacg gccacaattc cgagccctgg gctgctgagc tcaggtcaga ggactatgaa 1860 ctgctgtgcc ccaacggggc ccgagccgag gtgtcccagt ttgcagcctg caacctggca 1920 cagataccac cccacgccgt gatggtccgg cccgacacca acatcttcac cgtgtatgga 1980 15 ctgctggaca aggcccagga cctgtttgga gacgaccaca ataagaacgg gttcaaaatg 2040 ttcgactcct ccaactatca tggccaagac ctgcttttca aggatgccac cgtccgggcg 2100 gtgcctgtcg gagagaaaac cacctaccgc ggctggctgg ggctggacta cgtggcggcg 2160 ctggaaggga tgtcgtctca gcagtgctcg ggcgcagcgg ccccggcgcc cggggcgccc 2220 20 eggeegeece geeceagage teegatgeec geeeggggag ttteegegge ggeetetege 2340 · 2368 gctgcggaat ccagaaggaa gctcgcga

<210> 4

25 <211> 738

<212> PRT

<213> Human

<400> 4

Met Arg Gly Pro Ser Gly Ala Leu Trp Leu Leu Leu Ala Leu Arg Thr

	1				5					10					15	
	Val	Leu	Gly	Gly	Met	Glu	Val	Arg	Trp	Cys	Ala	Thr	Ser	Asp	Pro	Glu
				20					25					30		
	Gln	His	Lys	Cys	Gly	Asn	Met	Ser	Glu	Ala	Phe	Arg	Glu	Ala	Gly	Ile
5			35					40					45			
	Gln	Pro	Ser	Leu	Leu	Cys	Val	Arg	Gly	Thr	Ser	Ala	Asp	His	Cys	Val
		50					55					60				
	Gln	Leu	Ile	Ala	Ala	Gln	Glu	Ala	Asp	Ala	Ile	Thr	Leu	Asp	Gly	Gly
	65					70					75					80
10	Ala	Ile	Tyr	Glu	Ala	Gly	Lys	Glu	His	Gly	Leu	Lys	Pro	Val	Val	Gly
					85					90					95	
	Glu	Val	Tyr	Asp	Gln	Glu	Val	Gly	Thr	Ser	Tyr	Tyr	Ala	Val	Ala	Val
				100		•			105					110		
	Val	Arg	Arg	Ser	Ser	His	Val	Thr	Ile	Asp	Thr	Leu	Lys	Gly	Val	Lys
15			115					120					125			
	Ser	Cys	His	Thr	Gly	Ile	Asn	Arg	Thr	Val	Gly	Trp	Asn	Val	Pro	Val
		130					135					140				
	Gly	Tyr	Leu	Val	Glu	Ser	Gly	Arg	Leu	Ser	Val	Met	Gly	Cys	Asp	Val
	145	,				150	1				155	5				160
20	Leu	Lys	Ala	Val	Ser	Asp	Tyr	Phe	Gly	Gly	Ser	Cys	Val	Pro	Gly	Ala
					165					170)				175	;
	Gly	Glu	Thr	Ser	Tyr	Ser	Glu	Ser	Leu	Cys	Arg	Leu	Cys	Arg	Gly	Asp
				180)				185	5				190)	
	Ser	Ser	Gly	Glu	Gly	Val	Суѕ	Asp	Lys	Ser	Pro	Leu	Glu	Arg	Tyr	Tyr
25			195	;				200)				205	5		
	Asp	Tyr	Ser	Gly	Ala	Phe	Arg	Суѕ	Leu	ı Ala	. Glu	Gly	Ala	Gly	Asp	Val
		210)				215	5				220)			
	Ala	n Phe	val	Lys	His	Ser	Thr	· Val	Let	ı Glu	ı Asn	Thr	. Asr	Gl3	Lys	Thr
	225	5				230)				23	5				240

	Leu	Pro	Ser	Trp	Gly	Gln	Ala	Leu	Leu	Ser	Gln	Asp	Phe	Glu	Leu	Leu
					245					250					255	
	Cys	Arg	Asp	Gly	Ser	Arg	Ala	Asp	Val	Thr	Glu	Trp	Arg	Gln	Суз	His
				260					265					270		
5	Leu	Ala	Arg	Val	Pro	Ala	His	Ala	Val	Val	Val	Arg	Ala	Asp	Thr	Asp
			275					280					285			
	Gly	Gly	Leu	Ile	Phe	Arg	Leu	Leu	Asn	Glu	Gly	Gln	Arg	Leu	Phe	Ser
		290					295					300				
	His	Glu	Gly	Ser	Ser	Phe	Gln	Met	Phe	Ser	Ser	Glu	Ala	Tyr	Gly	Gln
10	305					310					315					320
	Lys	Asp	Leu	Leu	Phe	Lys	Asp	Ser	Thr	Ser	Glu	Leu	Val	Pro	Ile	Ala
					325					330					335	
	Thr	Gln	Thr	Tyr	Glu	Ala	Trp	Leu	Gly	His	Glu	Tyr	Leu	His	Ala	Met
				340					345					350		
15	Lys	Gly	Leu	Leu	Cys	Asp	Pro	Asn	Arg	Leu	Pro	Pro	Tyr	Leu	Arg	Trp
			355					360					365	1		
	Cys	Val	Leu	Ser	Thr	Pro	Glu	Ile	Gln	Lys	Cys	Gly	Asp	Met	Ala	Val
		370					375					380				
	Ala	Phe	Arg	Arg	Gln	Arg	Leu	Lys	Pro	Glu	Ile	Gln	Cys	Val	Ser	Ala
20	385					390					395					400
	Lys	Ser	Pro	Gln	His	Суз	Met	Glu	Arg	Ile	Gln	Ala	Glu	Gln	Val	Asp
					405					410					415	
	Ala	Val	Thr	Leu	Ser	Gly	Glu	Asp	Ile	туг	Thr	Ala	Gly			Туг
				420					425					430		
25	Gly	Leu	Val	Pro	Ala	ı Ala	Gly	Glu	His	Туг	Ala	Pro			Ser	Ser
			435					440					445			
	Asn	Ser	Туг	Туг	Va]	l Val			. Val	. Arg	y Arg			Ser	His	: Ala
		450					455					460				en •
	Dha	, mh~	LO	1 Act	C1:	ı T.e.	1 Arc	r Gla	7 T.379	: Arc	r Ser	CVS	: His	: Ala	l Gl3	7 Phe

	465					470					475					480
		Ser	Pro	Ala	Glv	Trp	Asp	Val	Pro	Val	Gly	Ala	Leu	Ile	Gln	Arg
	4				485	-	_			490					495	
	Glv	Phe	Ile	Arg	Pro	Lys	Asp	Cys	Asp	Val	Leu	Thr	Ala	Val	Ser	Glu
5	1			500		•	-	-	505					510		
_	Phe	Phe	Asn		Ser	Cys	Val	Pro	Val	Asn	Asn	Pro	Lys	Asn	Tyr	Pro
			515			-		520					525			
	Ser	Ser		Cys	Ala	Leu	Cys	Val	Gly	Asp	Glu	Gln	Gly	Arg	Asn	Lys
		530		_			535					.540				
10	Cys	Val	Gly	Asn	Ser	Gln	Glu	Arg	Tyr	Tyr	Gly	Туг	Arg	Gly	Ala	Phe
	- 545					550					555					560
	Arg	Суз	Leu	Val	Glu	Asn	Ala	Gly	Asp	Val	Ala	Phe	Val	Arg	His	Thr
					565					570					575	
	Thr	Val	Phe	Asp	Asn	Thr	Asn	Gly	His	Asn	Ser	Glu	Pro	Trp	Ala	Ala
15				580					585	;				590		
	Glu	Leu	Arg	Ser	Glu	Asp	Tyr	Glu	Leu	Leu	Cys	Pro	Asn	Gly	Ala	Arg
			595					600					605	,		
	Ala	Glu	Val	Ser	Gln	Phe	Ala	Ala	Cys	Asn	Leu	Ala	Gln	Ile	Pro	Pro
		610					615	;				620)			
20	His	Ala	Val	Met	Val	Arg	Pro	Asp	Thr	Asn	Ile	Phe	Thr	Val	Tyr	Gly
	625	;				630)				635	5				640
	Leu	Leu	Asp	Lys	Ala	Gln	Asp	Leu	Phe	Gly	Asp	Asp	His	Asn	Lys	Asn
					645					650)				655	5
	Gly	Phe	Lys	Met	Phe	Asp	Ser	Ser	Asr	туг	His	Gly	Gln	Asp	Leu	Leu
25				660	ı				66	5				670)	
	Phe	Lys	Asp	Ala	Thr	. Val	Arg	, Ala	Va]	L Pro	val	. Gly	g Glu	Lys	Thr	Thr
			675	5				680)				68	5 .		
	Tyr	Arg	ı Gly	Trp	Let	ı Gly	Leu	ı Asp	ту	r Val	L Alá	a Ala	ı Lev	ı Glu	Gly	Met
		690)				695	5				70	0			

725 730

735

5 Ala Leu

<210> 5

<211> 23

<212> DNA

10 <213> Artificial Sequence

<400> 5

ggctggaacg tgcccgtggg cta

<210> 6

15 <211> 23

<212> DNA

<213> Artificial Sequence

<400> 6

gtcctgggcc ttgtccagca gtc

20

<210> 7

<211> 25

<212> DNA

<213> Artificial Sequence

25 <400> 7

agagggactc cgagtatctg gtctc

<210> 8

` <211> 24

<212> DNA <213> Artificial Sequence <400> 8 gtccggcccg acaccaacat cttc 5 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence 10 <400> 9 ggtgtgttga ggggcgtgga ctct <210> 10 ⟨211⟩ 25 15 <212> DNA <213> Artificial Sequence <400> 10 tcaccaacgg ctttgagcac atcac 20 <210> 11 <211> 614 <212> RNA <213> Mouse <400> 11 tcaccaacgg ctttgagcac atcacagccc atcactgaca gatggccgct ctctacgagg 25 taaccgacag gcacgttcca gcccacagtc cggttaatgc ctgtgtggca ggacttgacg 120 cccttcaggg tgttgatggt aacattggaa ttcctcctga ccacagccac ggcataatag 180 gaagtcccaa tgtcttggtc atagacttcc cccaccactg gcttcaggcc gtgctccttc 240

cctgcctcat agatggcccc tccatccagg gtgatggcat ctgctttttg ttccttgatg 300

<210> 12

<211> 17

10 <212> DNA

5

<213> Artificial Sequence

<400> 12

tgctacttca tcgaccc

15 <210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<400> 13

20 aaagacctcc cctccatct

<210> 14

<211> 4158

<212> cDNA

25 <213> Mouse

<400> 14

ggtgtgttga ggggcgtgga ctctccccgg gctgcgctta aatagtgaag gccagagaa 60 ccagggaaga ggaagccagg acagacccgc cagcacccca gccaacccaa cgttgccatg 120 aggctcctga gcgtgacttt ttggctactc ctgtccctgc gcactgtcgt ctgtgtgatg 180

gaggtgcagt ggtgtaccat ctcagacgca gagcagcaga agtgcaaaga catgagcgag 240 gccttccagg gagctggcat tcgtccttcc cttctctgcg tccagggcaa ctccgctgac 300 cactgtgtcc agctcatcaa ggaacaaaaa gcagatgcca tcaccctgga tggagggcc 360 atctatgagg cagggaagga gcacggcctg aagccagtgg tgggggaagt ctatgaccaa 420 480 gacattggga cttcctatta tgccgtggct gtggtcagga ggaattccaa tgttaccatc 5 aacaccctga agggcgtcaa gtcctgccac acaggcatta accggactgt gggctggaac 540 gtgcctgtcg gttacctcgt agagagcggc catctgtcag tgatgggctg tgatgtgctc 600 aaagccgttg gtgattattt tggaggcagc tgtgtccctg gaacaggaga aaccagccat 660 720 tccgagtccc tctgtcgcct ctgccgtggc gactcttctg ggcacaatgt gtgtgacaag agtococtag agagatacta cgactacagt ggagcottoc ggtgcctggc ggaaggagco 780 10 ggtgacgtgg ccttcgtgaa gcacagcaca gtgctggaaa atactgatgg aaacaccctg 840 ccttcctggg gcaagtccct gatgtcagag gacttccagc tactatgcag ggatggcagc 900 cgagccgaca tcactgagtg gagacgttgc cacctggcca aggtgcctgc tcatgctgtg gtggtcaggg gtgacatgga tggcggtctc atattccaac tgctcaacga aggccagctt 1020 ctgttcagcc acgaagacag cagcttccag atgttcagct ccaaagccta cagccagaag 1080 15 aacttgctgt tcaaagactc caccttggag cttgtgccca ttgccacaca gaactacgag 1140 gcctggctgg gccaggaata cctgcaggcc atgaaggggc tcctctgtga tcccaaccgg 1200 ctgccccact acctgcgctg gtgtgtgctg tcagcgcccg agatccagaa gtgtggagat 1260 atggctgtgg ccttcagccg ccagaatctc aagccggaaa ttcagtgtgt gtcggccgag 1320 tcccctgagc actgcatgga gcagatccag gctgggcaca ctgacgctgt gactctgagg 1380 20 ggcgaggaca tttacagggc aggaaaggtg tacggcctgg ttccggcggc cggggagctg 1440 tatgctgagg aggacaggag caattcctac tttgtggtgg ctgtggcaag aagggacagc 1500 tectaetect teaccetgga egagettege ggeaagegtt eetgeeacee etaettggge 1560 agcccagcgg gctgggaggt gcccatcggc tccctcatcc agcggggctt catccggccc 1620 aaggactgtg atgtcctcac agcggtgagc cagttcttca atgccagctg cgtgcctgtc 1680 25 aacaacccta agaactaccc ttccgcacta tgtgcgctct gcgtgggaga cgagaagggc 1740 cgcaacaaat gtgtggggag cagccaggag agatactacg gctacagcgg ggccttcagg 1800 tgccttgtgg agcatgcagg ggacgtggct ttcgtcaagc acacgactgt ctttgagaac 1860 acaaatggtc acaatcctga gccttgggct tctcacctca ggtggcaaga ctatgaacta 1920

ctgtgcccca atggggcacg ggctgaggta gaccagttcc aagcttgcaa cctggcacaa 1980 atgccatccc acgctgtcat ggtccgtcca gacaccaaca tcttcactgt gtatggactt 2040 ctggacaagg cccaggacct gtttggagac gaccataaca agaacggttt ccaaatgttt 2100 gactcctcca aatatcacag ccaagacctg cttttcaaag atgctacagt ccgagcggtg 2160 ccagtccggg agaaaaccac atacctggac tggctgggtc ctgactatgt ggttgcgctg 2220 5 gaggggatgt tgtctcagca gtgctccggt gcaggggccg cggtgcagcg agtccccctg 2280 ctggccctgc tcctgctgac cctggctgca ggcctccttc ctcgcgttct ctgaagaccg 2340 ctgcttcagg ccacgcccag agcagggaaa gctacagagc tcaaccggaa gaaaccagga 2400 catcagctaa ccctgcagga gagcgcgggg cgggatgagg agaggcaagg tgagaactca 2460 cacacacaca caagcctccg aggtgcgatt ctaacccaaa gagaaatttc tagaatcagg 2520 10 atgattgtta aggccaagtc ttcccacttg ctggagccct caatacctga ggcgactggc 2580 gagtagccca gtcactcctc ccacaccggt ggcgccagca gcgaacctgt gcctcccacc 2640 tgccatggca accgtggagc agcttccagc ctctgtaccg gccacctggt gagatgccaa 2760 ggaaggagca caccaccaac ctagggaacc tgtgcgacac actaccaccc agcagcccct 2820 15 gctctcgctg ccccaccgct ctctcctatg ggcacttgtc caccaaggcc acaccgtcgg 2880 aggggcaagg ctgctgagca catcagcctt ctgatgtgac accaaccaag gagcccagcc 2940 ctctggacag caagattttg ctagactggg atgggaggaa ggccagagct gtactgtggg 3000 gatgaagtcc tccaaaaccc tcagaggaag gaagtgcccc caccttccca ttaagaatgt 3060 tagtgtgtga gaaacttgat gcagggtgga aactatcctg tttaacggct cccgtggcaa 3120 20 gcaggacttg cgctgtctgc gctgcctgga cctcactgca caatgaaact gttgccgaga 3180 ttctattgtt tgctctcctg gtctcagtct caacattagt tttctccctg ccttcatata 3240 ccccttccca catcaccacg caagcacgca cgcgcacacg cacacgcaca caccttatcc 3300 gtgtgaacat atctgaacat atctgcttgt ctgaagaagt aggagctaac ccaaaataac 3360 ttcctgtcat gagctgggcc ttgggatata ccacgagcca ggggattggg gagagccctg 3420 25 tettecette accetgeace tgttgggcag ttgcatettt cgagaggate cetggttete 3480 tcgaactgtg agagccaagg cctaggctgc cattttgcca ttgttctctc gagaaccaga 3540 aaaagttttc caaagctacc agctcttacc ccagatcttg ttcccttaaa aaaaagtaat 3600 aaataaaaag gagaagaaac aggagcaaac agccatcgtc agcacactgg aagcagcgtg 3660 ggccgggagc tatttgtgtc ttggtctgt tggggggcct cagatcccaa tgacaggcca 3720 ggttcccagt ggctcgccc cacctgtggg cgacgacggg acagatcctt tccatggctc 3780 accagtagag aaggtcctgg cagtgtccca gccagagtca cacaatcctg aggaaaatcg 3840 gtcaccatgg tgcttgggag agcaagcccc tcctcctcc agtacacagc catccattct 3900 tctctgagct ggggacttca cagtgagaag tgtactctgt gtgggggact gtgctgccca 3960 aagtgtgatg tctgtgccgt gtgcctttca ggtgtgactt tgaagagcgt tgtgtaaatg 4020 acgtctgatt gccatgggcc actgctgtgt ttgtgctaaa gaaagacatt ggtttcttt 4080 taaaataaag ccataatacc ctgcatacgc agaggcttgg atcctggtgg aaaaaaaaa 4140 aaaaaaaaa aaaaaaaa aaaaaaaa 4158

10

5

<210> 15

<211> 737

<212> PRT

<213> Mouse

15 <400> 15

Met Arg Leu Leu Ser Val Thr Phe Trp Leu Leu Leu Ser Leu Arg Thr

1 5 10 15

Val Val Cys Val Met Glu Val Gln Trp Cys Thr Ile Ser Asp Ala Glu
20 25 30

20 Gln Gln Lys Cys Lys Asp Met Ser Glu Ala Phe Gln Gly Ala Gly Ile 35 40 45

Arg Pro Ser Leu Leu Cys Val Gln Gly Asn Ser Ala Asp His Cys Val
50 55 60

Gln Leu Ile Lys Glu Gln Lys Ala Asp Ala Ile Thr Leu Asp Gly Gly

70

75

80

Ala Ile Tyr Glu Ala Gly Lys Glu His Gly Leu Lys Pro Val Val Gly
85 90 95

Glu Val Tyr Asp Gln Asp Ile Gly Thr Ser Tyr Tyr Ala Val Ala Val
100 105 110

	Val	Arg	Arg	Asn	Ser	Asn	Val	Thr	Ile	Asn	Thr	Leu	Lys	Gly	Val	Lys
			115					120					125			
	Ser	Cys	His	Thr	Gly	Ile	Asn	Arg	Thr	Val	Gly	Trp	Asn	Val	Pro	Val
		130					135					140				
5	Gly	Tyr	Leu	Val	Glu	Ser	Gly	His	Leu	Ser	Val	Met	Gly	Cys	Asp	Val
	145					150					155					160
	Leu	Lys	Ala	Val	Gly	Asp	Tyr	Phe	Gly	Gly	Ser	Cys	Val	Pro	Gly	Thr
					165					170					175	
	Gly	Glu	Thr	Ser	His	Ser	Glu	Ser	Leu	Cys	Arg	Leu	Cys	Arg	Gly	Asp
10				180			•		185					190		
	Ser	Ser	Gly	His	Asn	Val	Cys	Asp	Lys	Ser	Pro	Leu	Glu	Arg	Tyr	Tyr
			195					200					205			
	Asp	Tyr	Ser	Gly	Ala	Phe	Arg	Cys	Leu	Ala	Glu	Gly	Ala	Gly	Asp	Val
		210					215					220				
15	Ala	Phe	Val	Lys	His	Ser	Thr	Val	Leu	Glu	Asn	Thr	Asp	Gly	Asn	Thr
	225					230					235	i				240
	Leu	Pro	Ser	Trp	Gly	Lys	Ser	Leu	Met	Ser	Glu	Asp	Phe	Gln	Leu	Leu
					245					250	1				255	
	Cys	Arg	Asp	Gly	Ser	Arg	Ala	Asp	Ile	Thr	Glu	Trp	Arg	Arg	Cys	His
20				260					265					270)	
	Leu	Ala	Lys	Val	Pro	Ala	His	Ala	Val	Val	Val	Arg	Gly	Asp	Met	Asp
			275	;				280)				285	5		
	Gly	Gly	Leu	Ile	Phe	Gln	Leu	Leu	Asn	Glu	Gly	Gln	Leu	Leu	Phe	Ser
		290)				295	5				300)			
25	His	Glu	Asp	Ser	Ser	Phe	Gln	Met	Phe	Ser	Ser	Lys	Ala	Туг	Ser	Gln
	305	5				310)				31	5				320
	Lys	Asn	Let	ı Leu	Phe	Lys	Asp	Ser	Thr	Leu	ı Glu	Leu	val	Pro	Ile	Ala
					325	;				330)				335	5
	Thr	Glr	λgr	n Tvr	Glu	ı Ala	Trr	Len	Glv	Glr	ı Glu	ı Tvr	Lev	ı Glr	Ala	Met

				340					345					350		
	Lys	Gly	Leu	Leu	Cys	Asp	Pro	Asn	Arg	Leu	Pro	His	Tyr	Leu	Arg	Trp
			355					360					365			
	Cys	Val	Leu	Ser	Ala	Pro	Glu	Ile	Gln	Lys	Cys	Gly	Asp	Met	Ala	Val
5		370					375					380				
	Ala	Phe	Ser	Arg	Gln	Asn	Leu	Lys	Pro	Glu	Ile	Gln	Cys	Val	Ser	Ala
	385					390					395					400
	Glu	Ser	Pro	Glu	His	Cys	Met	Glu	Gln	Ile	Gln	Ala	Gly	His	Thr	Asp
					405					410					415	
10	Ala	Val	Thr	Leu	Arg	Gly	Glu	Asp	Ile	Tyr	Arg	Ala	Gly	Lys	Val	Tyr
				420					425					430		
	Gly	Leu	Val	Pro	Ala	Ala	Gly	Glu	Leu	Tyr	Ala	Glu	Glu	Asp	Arg	Ser
	•		435					440					445			
	Asn	Ser	Tyr	Phe	Val	Val	Ala	Val	Ala	Arg	Arg	Asp	Ser	Ser	Tyr	Ser
15		450					455					460				
	Phe	Thr	Leu	Asp	Glu	Leu	Arg	Gly	Lys	Arg	Ser	Cys	His	Pro	Tyr	Leu
	465					470					475	;				480
	Gly	Ser	Pro	Ala	Gly	Trp	Glu	Val	Pro	Ile	Gly	Ser	Leu	Ile	Gln	Arg
					485					490					495	
20	Gly	Phe	Ile	Arg	Pro	Lys	Asp	Суѕ	Asp	Val	Leu	Thr	Ala	Val	Ser	Gln
				500					505	•				510)	
	Phe	Phe	Asn	Ala	Ser	Cys	Val	Pro	Val	Asn	Asn	Pro	Lys	Asn	Tyr	Pro
			515	;				520)				525	5		
	Ser	Ala	Leu	C y s	Ala	Leu	Суз	Val	Gly	Asp	Glu	Lys	Gly	Arg	Asn	Lys
25		530	•				535	5		·		540)		•	
	Cys	Val	Gly	Ser	Ser	Gln	Glu	Arg	Туг	Tyr	Gly	Туг	Ser	Gly	Ala	Phe
	545	5				550)				55	5				560
	Arg	г Суз	Leu	ı Val	Glu	His	Ala	Gly	Asp	Val	Ala	Phe	Val	Lys	His	Thr
					565					570)				575	5

															F	
	Thr	Val	Phe	Glu	Asn	Thr	Asn	Gly	His	Asn	Pro	Glu	Pro	Trp	Ala	Ser'
				580					585					590	E. Cor	1
	His	Leu	Arg	Trp	Gln	Asp	Tyr	Glu	Leu	Leu	Cys	Pro	Asn	Gly	Ala	Arg
			595					600	•				605			
5	Ala	Glu	Val	Asp	Gln	Phe	Gln	Ala	Cys	Asn	Leu	Ala	Gln	Met	Pro	Ser
		610					615					620				
	His	Ala	Val	Met	Val	Arg	Pro	Asp	Thr	Asn	Ile	Phe	Thr	Val	Tyr	Gly
	625					630					635					640
	Leu	Leu	Asp	Lys	Ala	Gln	Asp	Leu	Phe	Gly	Asp	Asp	His	Asn	Lys	Asn
10					645					650					655	
	Gly	Phe	Gln	Met	Phe	Asp	Ser	Ser	Lys	Tyr	His	Ser	Gln	Asp	Leu	Leu
				660					665					670		
	Phe	Lys	Asp	Ala	Thr	Val	Arg	Ala	Val	Pro	Val	Arg	Glu	Lys	Thr	Thr
			675					680					685			
15	Tyr	Leu	Asp	Trp	Leu	Gly	Pro	Asp	Tyr	Val	Val	Ala	Leu	Glu	Gly	Met
		690					695					700				
	Leu	Ser	Gln	Gln	Cys	Ser	Gly	Ala	Gly	Ala	Ala	Val	Gln	Arg	Val	Pro
	705					710					715	,				720
	Leu	Leu	Ala	Leu	Leu	Leu	Leu	Thr	Leu	Ala	Ala	Gly	Leu	Leu	Pro	Arg
20					725					730					735	
-	Val	Leu														

Atty. Docket:

Page 1 of 2 Pages .[[X] Original [] S	Supplemental	Atty. Docket:
Combined D	Declaration for Pa		and Power of Attorney
As a below-named inventor, I he My residence, post office addressing and for the same is listed.	ereby declare that: ss and citizenship are as sta sted below) or an original, fi	ted below next to my name; irst and joint inventor (if plu	and that I believe I am the original, first and sole trail names are listed below) of the subject matter
which is claimed and for which CHONDROGE		{ · · · · · · · · · · · · · · · · · · ·	
the specification of which (chec	ck one) ed hereto;		
[] was filed	I in the United States under	r 35 U.S.C. §111 on	, as
[X] was/will	on,PCT/JP00/05599filed oplication received U.S. Ap	35 U.S.C. §371 by entry into d Aug. 21, 2000, ent	
and was amended on	le dates of amendments under	PCT Art 19 and 34 if PCT)	_ (if applicable).
•	•		
referred to above; and I acknow material to patentability as defin	vledge the duty to disclose to ned in 37 C.F.R. §1.56. benefits under 35 U.S.C. ation(s) designating a count	o the Patent and Trademark §§ 119 and 365 of any pri	uding the claims, as amended by any amendment Office (PTO) all information known by me to be for foreign application(s) for patent or inventor's below with the "Yes" box checked and have also non which priority is claimed:
identified below any such appli 232966/1999	Japan	19/8/1995	<i>7</i> - ∑ ∑ ∐
(Number)	(Country)	(Day Month Y	ear Filed) YES NO
(Number)	(Country)	(Day Month Y	
the U.S. listed below, or under	§119(e) of any prior U.S. pr not disclosed in such U.S. of to disclose to the PTO all in	rovisional applications listed or PCT application in the ma aformation as defined in 37 C	lication(s) or prior PCT application(s) designating below, and, insofar as the subject matter of each of anner provided by the first paragraph of 35 U.S C C.F.R. §1.56(a) which occurred between the filing
(Application No)	(Day M	Ionth Year Filed)	(Status: patented, pending, abandoned)
(Application No.)	(Day M	fonth Year Filed)	(Status: patented, pending, abandoned)
(Application No.)	(Day M	Ionth Year Filed)	(Status: patented, pending, abandoned)
As a named inventor, I hereby Patent and Trademark Office	connected therewith:		te this application and to transact all business in the
	All of the practioners a	associated with Customer	Number 001444
Direct all correspondence to the	BRC	Customer Number 60144- DWDY AND NEIMARK, Ninth Street, N.W.	P.L.L.C.
	Was	Chington, D.C. 20001-5303 (c) 628-5197	·
The undersigned hereby au	thorizes the U.S. Attorno	eys or Agents appointed	herein to accept and follow instructions from

YUASA AND HARA as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorneys or Agents and the undersigned. In the event of a change of the persons from whom

instructions may be taken, the U.S. Attorneys or Agents appointed herein will be so notified by the undersigned.

The latest the

Page 2 of 2 Pages Title: CHONDR	OGENESIS STIMULATOR		Atty. Docket:
U.S. Application filed		, Serial No.	
PCT Application filed	August 21, 2000	, Serial No.PCT/JP00/05590	

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

or the approach of any patern source and com-	ી			
FULL NAME OF FIRST INVENTOR	INVENTOR'S SIGNATURE Bukio Kato		DATE	'n
Yukio KATO	Sukio Rato		Feb.1.	2002
RESIDENT CO X		CITIZENSHIP		
Hiroshima, Japan 97 X		Japanes		
POST OFFICE ADDRESS 3-6-9-501, Ushitawas Hiroshima 732-0062 Japan	seda, Higashi-ku, Hir	oshima-shi	,	
FULL NAME OF SECOND JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
Katsumi FUJIMOTO	Batsumi Jujima	to .	Feb.1,	2002
RESIDENT	,	CITIZENSHIP		
Hiroshima, Japan 👾 🛚		Japanes	e	
	Minami-ku, Hiroshima	-shi,		
FULL NAME OF THIRD JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
RESIDENT		CITIZENSHIP		
POST OFFICE ADDRESS				
FULL NAME OF FOURTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
RESIDENT		CITIZENSHIP		
POST OFFICE ADDRESS				
FULL NAME OF FIFTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
RESIDENT	<u> </u>	CITIZENSHIP	<u> </u>	
POST OFFICE ADDRESS	·, · · · · · · · · · · · · · · · · · ·		·	-
FULL NAME OF SIXTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
RESIDENT		CITIZENSHIP	<u> </u>	
POST OFFICE ADDRESS				
FULL NAME OF SEVENTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE	
RESIDENT		CITIZENSHIP	,	
POST OFFICE ADDRESS				

ALL INVENTORS MUST REVIEW APPLICATION AND DECLARATION BEFORE SIGNING. ALL ALTERATIONS MUST BE INITIALED AND DATED BY ALL INVENTORS PRIOR TO EXECUTION. NO ALTERATIONS CAN BE MADE AFTER THE DECLARATION IS SIGNED. ALL PAGES OF DECLARATION MUST BE SEEN BY ALL INVENTORS.

2

0 1N

JC13 Rec'd PCT/PTO 1 9 FEB 2002

"Inventor One Given Name:: Yukio

Family Name:: KATO

Postal Address Line One:: 3-6-9-501, Ushitawaseda, Higashi-ku

Postal Address Line Two:: Hiroshima-shi

City:: Hiroshima Country:: Japan

Postal or Zip Code:: 732-0062 Citizenship Country:: Japan

Inventor Two Given Name:: Katsumi

Family Name:: FUJIMOTO

Postal Address Line One:: 1-3-11-202, Asahi, Minami-ku

Postal Address Line Two:: Hiroshima-shi

City:: Hiroshima Country:: Japan

Postal or Zip Code:: 734-0036 Citizenship Country:: Japan

CORRESPONDENCE INFORMATION

Correspondence Customer Number:: 001444

Fax One:: 202-737-3528

Electronic Mail One:: Mail@BrowdyNeimark.com

APPLICATION INFORMATION

Title Line One:: CHONDROGENESIS STIMULATOR

Total Drawing Sheets:: 6
Formal Drawings?:: Yes
Docket Number:: KATO=2

Secrecy Order in Parent Appl.?:: No

REPRESENTATIVE INFORMATION

Representative Customer Number:: 1444

CONTINUITY INFORMATION

This application is a:: 371 OF

> Application One:: PCT/JP00/05590

Filing Date:: 08-21-2000

PRIOR FOREIGN APPLICATIONS

Foreign Application One:: 232966/1999

Filing Date:: 08-19-1999

Country:: Japan

Priority Claimed:: Yes

Source:: PrintEFS Version 1.0.1