Коллоквиум ТФКП.

1.

Теорема (о первообразной). Если функция f(z) дифференцируема в односвязной области D, то функция $F(z) = \int\limits_{z_0}^z f(\zeta) d\zeta$ является первообразной в области D для функции f(z).

lacktriangle Возможность построения однозначной функции F(z) вытекает из следствия 1 интегральной теоремы Коши. Необходимо доказать, что $\forall z \in D \ F'(z) = f(z)$. Возьмем точки $z, z + \Delta z \in D$. Тогда

$$F'(z) = \lim_{\Delta z \to 0} \frac{\Delta F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta - \int\limits_{z_0}^{z} f(\zeta) d\zeta}{\Delta z} =$$

$$= [\text{из независимости от формы пути}] = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z}.$$

$$F'(z) - f(z) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - f(z) \right) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - \frac{f(z)}{\Delta z} \int_{z}^{z + \Delta z} d\zeta \right) = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta = \left[\frac{1}{|\Delta z|} \cdot \middle| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \middle| \leqslant \left[\frac{1}{|\Delta z|} \cdot \middle| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \middle| \right]$$

функция дифференцируема, следовательно, непрерывна в точке z, то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall \zeta : |\zeta - z| \leqslant \delta(\varepsilon) \Rightarrow |f(\zeta) - f(z)| \leqslant \varepsilon \Big] \leqslant \frac{1}{\Delta z} \varepsilon \cdot |\Delta z| = \varepsilon \Big] = 0.$$

 \boxtimes

2.

Теорема (о почленном дифференцировании степенного ряда). Если комплексный степенной ряд $\sum\limits_{n=0}^{\infty}c_nz^n$ имеет радиус сходимости R>0, то функция $f(z)=\sum\limits_{n=0}^{\infty}c_nz^n$ является бесконечно дифференцируемой в круге |z|< R и m-ая производная имеет вид

$$f^{(m)}(z) = \sum_{n=m}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-m+1) \cdot z^{n-m}, \ |z| < R, \forall m \in \mathbb{N}.$$

lacktriangle Рассмотрим ряд $S(z) = \sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}$. Из формулы Коши-Адамара следует, что радиус сходимости этого ряда равен

$$R_1 = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{n \cdot |c_n|}} = R.$$

Следовательно, ряд, сходящийся в функции, S(z) имеет тот же радиус схожимости, что и ряд, сходящийся к f(z).

Возьмем окружность радиуса $\rho < R$. Тогда в круге $\overline{B}(0,\rho)$ ряд $\sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}$ сходится равномерно по лемме Абеля. Возьмем произвольную точку z и кривую γ , которая лежит в круге радиуса ρ и соединяет точку z с началом координат.

Тогда интеграл $\int_{\gamma} z^{n-1} dz$ не зависит от кривой интегрирования, так как функ ция z^{n-1} дифференцируема на всей плоскости. Следовательно,

$$\int_{\gamma} z^{n-1} dz = \int_{0}^{z} \zeta^{n-1} d\zeta = \frac{z^{n}}{n}.$$

Ряд $\sum\limits_{n=1}^{\infty} c_n \cdot nz^{n-1}$ сходится равномерно на кривой γ . Тогда по теореме о почленном интегрировании

$$\int_{\gamma} \sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1} dz = \sum_{n=1}^{\infty} c_n \cdot n \cdot \frac{z^n}{n} = \sum_{n=1}^{\infty} c_n z^n = f(z) - c_0.$$

Причем интеграл слева не зависит от кривой интегрирования, следовательно

$$\int_{0}^{z} S(\zeta)d\zeta = f(z) - c_0. \tag{1}$$

Используя доказательство теоремы о первообразной, можно доказать, что $\int\limits_0^z S(\zeta) d\zeta$ — первообразная для функции S(z).

Из равенства (1) получаем, что функция f(z) является первообразной для функции S(z). Значит f'(z) = S(z). Отсюда функция f(z) является дифференцируемой в круге $B(0, \rho)$. А так как ρ можно вызять сколь угодно близким к R, то функция f(z) дифференцируема в круге B(0, R). Тогда

$$f'(z) = \sum_{n=1}^{\infty} c_n \cdot n \cdot z^{n-1}.$$

Повторяя аналогичные рассуждения к функции f'(z), можно показать, что через (m-1) шагов получим

$$f^{(m)}(z) = \sum_{n=m}^{\infty} c_n \cdot n \cdot (n-1) \dots (n-m+1) \cdot z^{n-m}.$$

3.

Теорема (критерий регулярности функции в области). Функция f(z) регулярна в области $D \iff \phi$ ункция f(z) дифференцируема в области D.

- ♦ ⇒) Если функция регулярна в области, то она разложима в степенной ряд в этой области. А сумма комплексного степенного ряда функция дифференцируема по теореме о почленном дифференцировании степенного ряда.
- \Leftarrow) Возьмем в области D окружность $C(z_0, \rho)$ таким образом, чтобы она целиком лежала в области D. И возьмем произвольную точку z.

Функция f(z) дифференцируема в области D, значит дифференцируема и в окружности $C(z_0, \rho)$. По интегральной формуле Коши.

$$f(z) = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Разложим в степенной ряд функцию $\frac{1}{\zeta - z}$ по степеням $z - z_0$:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 + z_0 - z} = \frac{1}{(\zeta - z_0)(1 - \frac{z - z_0}{\zeta - z_0})} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n},$$

Причем $\frac{|z-z_0|}{|\zeta-z_0|} < 1$. И пусть $\zeta \in C(z_0, \rho)$. Следовательно, ряд $\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\zeta-z_0)^n}$ сходится равномерно на окружности $C(z_0, \rho)$ по признаку Вейрштрасса.

Таким образом, ряд

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

также сходится равномерно на окружности $C(z_0, \rho)$.

Проинтегрируем последнее равенство по окружности $C(z_0, \rho)$ и домножим обе части уравнения на $\frac{1}{2\pi i}$. Тогда

$$\frac{1}{2\pi i} \int_{C(z_0,\rho)} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \left(\int_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{C(z_0, 0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Таким образом,

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad c_n = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad \forall z \in B(z_0, \rho).$$

 \boxtimes

4.

Теорема (о представлении регулярной в кольце функции рядом Лорана). Если функция f(z) регулярна в кольце $0 \le r < |z - z_0| < R$, то эта функция является суммой ряда Лорана, то есть

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,$$

с коэффициентами

$$c_n = \frac{1}{2\pi i} \int_{C(z_0,\rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad r < \rho < R.$$

• Обозначим через K кольцо $r < |z - z_0| < R$. Рассмотрим кривые Γ и γ , лежащие в кольце K. Возьмем произвольную точку $z \in K$, лежащую между кривыми Γ и γ .

По следствию 1 из интегральной формулы Коши

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z_0} d\zeta - \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z_0} d\zeta.$$

Рассмотрим интеграл по Г. По критерию регулярности

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Отсюда

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Рассмотрим интеграл по γ . Разложим в степенной ряд функцию $-\frac{1}{\zeta-z}$ по степеням $z-z_0$:

$$-\frac{1}{\zeta - z} = -\frac{1}{\zeta - z_0 + z_0 - z} = \frac{1}{(z - z_0) - (\zeta - z_0)} = \frac{1}{(z - z_0)(1 - \frac{\zeta - z_0}{z - z_0})} =$$

$$= \sum_{n=0}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^{n+1}} = [n + 1 = -k] = \sum_{k=-1}^{-\infty} \frac{(z - z_0)^k}{(\zeta - z_0)^{k+1}}.$$

Полученный ряд сходится равномерно на окружности γ (это следует из леммы Абеля). Тогда ряд

$$-\frac{f(\zeta)}{\zeta - z} = \sum_{k=-1}^{-\infty} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \cdot (z - z_0)^k$$

также сходится равномерно на окружности γ . А так как γ — это компакт и функция $f(\zeta)$ непрерывна на этом компакте, то функция $f(\zeta)$ ограничена. Почленно проинтегрируем этот ряд:

$$-\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \sum_{n = -1}^{-\infty} \left(\int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) \cdot (z - z_0)^n = \sum_{n = -1}^{-\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \cdot d\zeta.$$

Таким образом, ряд Лорана имеет вид

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n + \sum_{n=-1}^{-\infty} \left(\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) \cdot (z - z_0)^n.$$

Возьмем окружность радиуса ρ . Обе кривые γ и Γ можно деформировать в эту окружность. Следовательно, вместо γ и Γ можно взять окружность радиуса ρ .

Тогда ряд Лорана можно записать в виде

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n,$$

с коэффициентами

$$c_n = \frac{1}{2\pi i} \int_{C(z_0, \rho)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

5.

Теорема (об устранимой особой точке). Точка $z_0 - y$ странимая особая точка \iff главная часть разложения функции в ряд Лорана тождественно равна нулю.

 \spadesuit \Rightarrow) Рассмотрим функцию f(z) такую, что z_0 для нее — устранимая особая точка. Докажем, что главная часть в разложении в ряд Лорана отсутствует. Берем ряд Лорана

$$f(z) = \dots + c_{-n}(z - z_0)^{-n} + \dots + c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

Точка z_0 — устранимая особая точка, следовательно, $\exists \lim_{z \to z_0} f(z) = A \in \mathbb{C} \Rightarrow функция <math>f(z)$ ограничена, то есть $\exists M : |f(z)| \leq M$ в круге $0 < |z - z_0| < \rho_1$. Воспользуемся неравенством для коэффициентов ряда Лорана:

$$|c_n| \leqslant \frac{M}{R_0^n}, \ M = \max_{z \in C(z_0, \rho)} |f(z)|,$$

где $0 < R_0 < \rho_1$. Тогда $|c_{-n}| \leq MR_0^n$, но R_0 может быть сколь угодно близким к 0. Тогда, если $R_0 \to 0$, то $MR_0^n \to 0$, следовательно, $c_{-n} = 0$, то есть все коэффициенты главной части ряда Лорана равны нулю, значит, главная часть равна нулю.

 \Leftarrow) Пусть главная часть разложения в ряд Лорана функции f(z) отсутствует, то есть в круге $0<|z-z_0|<\rho$

$$f(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots$$

Берем функцию

$$g(z) = c_0 + c_1(z - z_0) + \ldots + c_n(z - z_0)^n + \ldots$$

Тогда f(z) = g(z) в кольце $0 < |z - z_0| < \rho$. И функция g(z) определена и непрерывна в круге $|z - z_0| < \rho$ (в то время как f(z) может быть и не определена). Следовательно,

$$g(z_0) = A = \lim_{z \to z_0} g(z) = \lim_{z \to z_0} f(z).$$

 \boxtimes

 \boxtimes