Grafos

BFS 0/1

Prof. Edson Alves

Faculdade UnB Gama

* Especialização do algoritmo de Dijkstra

* Especialização do algoritmo de Dijkstra

 \star Aplicável em grafos cujos pesos das arestas são iguais ou a 0 ou a x

* Especialização do algoritmo de Dijkstra

 \star Aplicável em grafos cujos pesos das arestas são iguais ou a 0 ou a x

 \star 0 nome do algoritmo provém do caso x=1

- * Especialização do algoritmo de Dijkstra
- \star Aplicável em grafos cujos pesos das arestas são iguais ou a 0 ou a x
- \star 0 nome do algoritmo provém do caso x=1
- \star Complexidade: O(V+E)

 \star O algoritmo de Dijkstra usa uma fila de prioridades para identificar o vértice u mais próximo de s ainda não processado

 \star O algoritmo de Dijkstra usa uma fila de prioridades para identificar o vértice u mais próximo de s ainda não processado

 \star Com a restrição dos pesos w_i ao conjunto $\{0,1\}$, o relaxamento terá apenas duas opções

- \star O algoritmo de Dijkstra usa uma fila de prioridades para identificar o vértice u mais próximo de s ainda não processado
- \star Com a restrição dos pesos w_i ao conjunto $\{0,1\}$, o relaxamento terá apenas duas opções
- \star Se (u,v) tem peso w e $\mathrm{dist}(s,v) > \mathrm{dist}(s,u) + w$, então após o relaxamento ou $\mathrm{dist}(s,v) = \mathrm{dist}(s,u)$ ou $\mathrm{dist}(s,v) = \mathrm{dist}(s,u) + 1$

- \star O algoritmo de Dijkstra usa uma fila de prioridades para identificar o vértice u mais próximo de s ainda não processado
- \star Com a restrição dos pesos w_i ao conjunto $\{0,1\}$, o relaxamento terá apenas duas opções
- \star Se (u,v) tem peso w e $\mathrm{dist}(s,v) > \mathrm{dist}(s,u) + w$, então após o relaxamento ou $\mathrm{dist}(s,v) = \mathrm{dist}(s,u)$ ou $\mathrm{dist}(s,v) = \mathrm{dist}(s,u) + 1$
 - \star Deste modo, a fila de prioridades pode ser substituída por uma fila simples

Entrada: um grafo G(V,E) cujos pesos $w_i \in \{0,x\}$ e um vértice $s \in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

Entrada: um grafo G(V,E) cujos pesos $w_i\in\{0,x\}$ e um vértice $s\in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

1. Faça d[s]=0, $d[u]=\infty$ se $u\neq s$ e seja $Q=\{s\}$ a fila

Entrada: um grafo G(V,E) cujos pesos $w_i \in \{0,x\}$ e um vértice $s \in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se $u\neq s$ e seja $Q=\{s\}$ a fila
- 2. Enquanto $Q \neq \emptyset$:
 - (a) Seja u o primeiro elemento de Q
 - (b) Se (u,v) torna d[v]=d[u], insira v na primeira posição de Q
 - (c) Se (u,v) torna d[v]=d[u]+1, insira v na última posição de Q
 - (d) Remova u de Q

Entrada: um grafo G(V,E) cujos pesos $w_i\in\{0,x\}$ e um vértice $s\in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se $u \neq s$ e seja $Q=\{s\}$ a fila
- 2. Enquanto $Q \neq \emptyset$:
 - (a) Seja u o primeiro elemento de Q
 - (b) Se (u,v) torna d[v]=d[u], insira v na primeira posição de Q
 - (c) Se (u,v) torna d[v]=d[u]+1, insira v na última posição de Q
 - (d) Remova u de Q
- 3. Retorne d

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	8	∞	8	∞	∞	∞

 $Q = \{ \ \mathbf{A} \ \}$

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	∞	∞	∞	∞	∞	∞

 $Q = \{ \ \}$

	Α	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	∞	∞	∞	∞	∞

 $Q=\{\;\mathbf{B}\;\}$

	A	В	С	D	E	F	G	
$dist(u, \mathbf{A})$	0	0	∞	1	∞	∞	∞	

 $Q=\{\;\mathbf{B,D}\;\}$

	A	В	С	D	E	F	G	
$dist(u, \mathbf{A})$	0	0	∞	1	∞	1	∞	

 $Q=\{\;\mathbf{B},\,\mathbf{D},\,\mathbf{F}\;\}$

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	∞	1	∞	1	0

 $Q = \{ \text{ G, B, D, F} \}$

	Α	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	∞	1	∞	1	0

 $Q=\{\;\mathbf{B},\,\mathbf{D},\,\mathbf{F}\;\}$

	Α	В	С	D	E	F	G	
$dist(u, \mathbf{A})$	0	0	∞	1	∞	1	0	

 $Q=\{\;\mathbf{B},\,\mathbf{D},\,\mathbf{F}\;\}$

	Α	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	∞	1	∞	1	0

 $Q=\{\;\mathbf{D},\,\mathbf{F}\;\}$

	Α	В	C	D	E	F	G
$\operatorname{dist}(u,\mathbf{A})$	0	0	0	1	∞	1	0

 $Q=\{\;\textbf{C, D, F}\;\}$

	Α	В	C	D	E	F	G
$\operatorname{dist}(u,\mathbf{A})$	0	0	0	1	∞	1	0

 $Q=\{\;\textbf{C, D, F}\;\}$

	Α	В	C	D	E	F	G
$\operatorname{dist}(u,\mathbf{A})$	0	0	0	1	∞	1	0

 $Q=\{\;\mathbf{D},\,\mathbf{F}\;\}$

	Α	В	C	D	E	F	G
$\operatorname{dist}(u,\mathbf{A})$	0	0	0	0	∞	1	0

 $Q=\{\;\textbf{D, F}\;\}$

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	0	0	∞	1	0

 $Q = \{ \mathbf{F} \}$

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	0	0	∞	1	0

	A	В	С	D	E	F	G	
$dist(u, \mathbf{A})$	0	0	0	0	2	1	0	

 $Q = \{ \mathbf{F} \}$

	Α	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	0	0	2	1	0

	Α	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	0	0	2	1	0

	A	В	С	D	E	F	G
$dist(u, \mathbf{A})$	0	0	0	0	2	1	0

```
vector<int> bfs_01(int s, int N) {
vector<int> dist(N + 1, oo);
dist[s] = 0;
deque<int> q;
q.emplace_back(s);
while (not q.empty()) {
    auto u = q.front();
    q.pop_front();
    for (auto [v, w] : adj[u])
        if (dist[v] > dist[u] + w) {
            dist[v] = dist[u] + w;
            w == 0 ? q.emplace_front(v) : q.emplace_back(v);
return dist:
```

Problemas sugeridos

- 1. AtCoder Beginner Contest 176 Problem D: Wizard in Maze
- 2. Codeforces Round #516 (Div. 1) Problem B: Labyrinth
- 3. OJ 11573 Ocean Currents
- 4. SPOJ KATHTHI KATHTHI

Referências

- 1. Codeforces, 0-1 BFS [Tutorial]. himanshujaju's blog, acesso em 19/07/2021.
- 2. CP-Algorithms, 0-1 BFS. Acesso em 19/07/2021.
- 3. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 4. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 5. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.