Graphs

4

- A Graph G(N, E) consists of a set of Nodes N and Edges E
- A node is on the position where an edge starts or ends or several edges meet
- Every edge is a connection between two nodes. Every edge has a start and an end node

ifp

Importance of Topology

- description of relations between elementary objects (node, edge, area)
- important for consistency checks:
 - under- / overshoots (1)
 - dead ends (2)
 - weird polygons (3)
 - closed polygons (4), ...

Universität Stuttgart

How can topdayly be stored in a capute

- Topologic spaces can be described with incidence and adjacency relations
- Incidence names the meeting of different topologic primitives
- Adjacency names the meeting of same topologic primitives

Examples

edge 1 incidences hade A
edge 3 is ordiacet
edge 1 is ordiacent 1- edge 2
to colpe 4 and 1

Incidence Matrix B(i,j) = -1 if edge i start at hade j B(i,j) = 1 if edge i start at hade j B(i,j) = 1 if edge i start at hade j							
	$B(ij) = 0$ $h_1 h_2 h_3 h_4$ $e_1 - 1 + 1 0 0 0$ $e_2 h_3$						
Universität Stuttgart	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Univers	G6 C C O D O						

	ifp			
Stuttgart				
Universität Stuttgart				

$$\begin{bmatrix}
2 & -1 & 0 & -1 & 1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 3 & -1 & -1 \\
-1 & 0 & -1 & 3 & -1
\end{bmatrix} = \underline{\mathbf{A}}$$

= <u>B</u>

Minimal Spanning Tree

- A spanning tree connects all nodes of a graph. A minimal spanning tree is that tree where the length (costs) of the spanning tree is minimal
- Example: communication net between cities. The cities are represented with nodes and the communication net with edges. We are searching for that communication net which is the cheapest.
- A minimal spanning tree has no cycles. That means that there are no redundancies.

Kruskal Algorithm

- The algorithm merge successive nodes which are connected by a minimal distance. At the beginning we have *n* sets with one node
- Now we take the shortest edge and check if the two nodes of that edge are in the same set.
 - if yes: this would lead to a cycle and the edge can be discarded
 - if no: merge the two sets which contain the beginning and end node of the edge
- With that algorithm we merge successive all edges until all nodes are connected. That means we have at the end only one set left

Structure Chart Kruskal Algorithm

sort all edges							
store every node in a separate set							
do for all edges (shortest first)							
	are beginning node and end node in different sets?						
	yes	no					
	merge sets	discard edge					

Identify the minimal spanning tree with the Kruskal algorithm:

Prim Algorithm

T = set that contains all nodes $\{n_1, n_2, ..., n_n\}$

U = set that contains one node $\{n_1\}$

Repeat n -1 times (n = number of nodes)

search for node $n \in \{T \text{ minus } U\}$ with minimum distance to U

edge from n to U is part of the Minimum Spanning Tree

add node n to set U

Identify the Minumum Spanning Tree with the Prim algorithm: