Зміст

1	Задачі основного дня (23.10.2016)	1
	А «Гра "Вгадай число"»	1
	Б«Бінпошук у масиві–1»	3
	В «Бінпошук у масиві–2»	4
	Г«Кубічне рівняння»	6
	Д«Дипломи»	7
	Е«Дошки»	7
	Ж «Всюдихід-1»	8
	И «Всюдихід—2»	9

1 Задачі основного дня (23.10.2016)

Даний комплект задач доступний для on-line перевірки на сайті http://ejudge.ckipo.edu.ua/, змагання N = 53.

256 мегабайтів

Задача 1. «Гра "Вгадай число"»

Напишіть програму, яка гратиме у гру "Вгадай число": визначатиме загадане суперником ціле число із заданого діапазону на основі запитів до суперника.

У кожному запиті Ваша програма повинна виводити слово **try** та одне ціле число, що трактується як запитання «Загадане число . . .?». Суперник на це відповідає (гарантовано чесно) одне з трьох: або, що са́ме це число й загадане, або, що загадане число більше, або, що загадане число менше. Ваша програма повинна продовжувати (або завершити) гру, враховуючи отримані відповіді. Кількість спроб вгадування (незалежно від величини проміжку) — до 50 (п'ятдесяти), включно.

Бінарний та тернарний пошуки— день Іллі Порубльова Школа «Бобра» з програмування, Львів, 23.10.2016

При перевищенні цього ліміту, Вашій програмі присуджується технічна поразка (вона не отримує балів за відповідний тест).

Тобто, ця задача є інтерактивною: Ваша програма не отримає всіх вхідних даних на початку, а отримуватиме по мірі виконання доуточнення, котрі залежатимуть від попередніх дій Вашої програми. Тим не менш, *її перевірка теж відбувається автоматично*. Тому, у цій Вашій програмі, як і в програмах—розв'язках інших задач, теж слід ме «організовувати діалог інтуїтивно зрозумілим чином», а чітко дотримуватися формату. Тільки це не формат вхідного та вихідного файлів, а формат спілкування з програмою, котра грає роль суперника.

Вхідні дані

На початку, один раз, на вхід Вашій програмі подаються записані в один рядок через пропуск (пробіл) два цілі числа́ a,b ($-2\cdot 10^9\leqslant a\leqslant b\leqslant \leqslant 2\cdot 10^9$) — ме́жі проміжку. Це означає, що загадане ціле число гарантовано перебуває в межах $a\leqslant x\leqslant b$. На кожному наступному кроці, на вхід Вашій програмі подається рядок, що містить рівно один з трьох символів:

- = означає, що останнє виведене Вашою програмою число і є загаданим;
- + означає, що загадане число більше, ніж виведене Вашою програмою;
- - означає, що загадане число менше, ніж виведене Вашою програмою.

Результати

Поки Ваша програма «не впевнена», яке число загадане, вона повинна повторювати виведення в один рядок через пропуск (пробіл або табуляцію) сло́ва "try" (маленькими латинськими буквами, без лапок) та одного цілого числа́ — чергової спроби вгадування. Кожне числоспроба повинно бути в межах $a \le x \le b$ (див. вище). Настійливо рекомендується після кожного такого виведення робити дію flush(output) (Pascal), вона ж cout.flush() (C++), вона ж fflush(stdout) (C), вона ж sys.stdout.flush() (Python), вона ж System.out.flush() (Java). Це істотно зменшує ризик, що проміжна відповідь «застряне» десь по дорозі, не дійшовши до програми-суперника.

Коли Вашій програмі «стає абсолютно очевидно», яке число загадане, вона повинна припинити основну частину гри і вивести в один рядок через пропуск (пробіл або табуляцію) слово "answer" (маленькими латинськими буквами, без лапок) та вгадане число. Після цього слід остато́чно завершити роботу, не виводячи жодного іншого символа.

Приклад

Вхідні дані	Результати	Примітки
Вхідні дані 1 100 + - - =	try 10 try 20 try 19 try 18 try 17 answer 17	1) Програма-суперник з самого початку загадала число 17. 2) Щоб було видніше, в якому порядку відбуваються введення та виведення, у прикладі використано розділення порожніми рядками. При фактичній перевірці програма-суперник не виводитиме ніяких порожніх рядків і не чекатиме їх від Вашої програми. 3) Ваша програма не зобов'язана грати за стратегією, що наведена у цьому прикладі. Це лише приклад можливої роботи програми, що успішно
		завершує конкретно цю гру.

256 мегабайтів

Задача 2. «Бінпошук у масиві–1»

Дано два масиви. Гарантовано, що у першому з них всі елементи різні. Гарантовано, що дру́гий містить лише елементи, які є в першому (але, можливо, не всі). Відсортуйте перший з них, а потім для кожного з елементів дру́гого масиву знайдіть, під яким номером (нумерація починається з 1) він знаходиться у відсортованому (за зростанням) першому масиві.

Вхідні дані

1-й рядок містить єдине число N (1 \leqslant $N \leqslant$ 123456) — кількість елементів 1-го масиву. 2-й рядок містить N розділених пропусками (пробіла-

Бінарний та тернарний пошуки — день Іллі Порубльова Школа «Бобра» з програмування, Львів, 23.10.2016

ми) гарантовано різних чисел — елементи цього масиву. Не менш ніж 50% балів припадає на тести, де цей масив задано вже відсортованим (за зростанням), але у решті тестів це не так.

3-й рядок містить єдине число M ($1 \le M \le N$) — кількість елементів 2-го масиву. 4-й рядок містить N розділених пропусками (пробілами) гарантовано різних чисел — елементи цього масиву. Кожен з елементів 2-го масиву гарантовано зустрічається також і в 1-му.

Значення елементів обох масивів є цілими числами, що не перевищують за модулем 10^9 (мільярд).

Результати

Виведіть у один рядок через пропуски (пробіли) рівно M чисел: яким за номером у відсортованому вигляді 1-го масиву є 1-й елемент 2-го масиву, яким за номером у відсортованому вигляді 1-го масиву є 2-й елемент 2-го масиву, ..., яким за номером у відсортованому вигляді 1-го масиву є M-й елемент 2-го масиву. 2-й масив сортувати не слід, це повинні бути відповіді для того 2-го масиву, який задано у вхідних ланих.

Приклад

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
5	3 5 4
7 17 42 23 13	
3	
17 42 23	

256 мегабайтів

Задача 3. «Бінпошук у масиві–2»

Дано два масиви. Відсортуйте перший з них, а потім для кожного з елементів дру́гого масиву знайдіть, чи зустрічається він у відсортованому першому масиві, і якщо зустрічається, то в якому діапазоні індексів (нумерація починається з 1).

Вхідні дані

1-й рядок містить єдине число N ($1 \le N \le 123456$) — кількість елементів 1-го масиву. 2-й рядок містить N розділених пропусками (пробілами) чисел — елементи цього масиву. Серед елементів можуть бути однакові. Не менш ніж третина балів припадає на тести, де цей масив задано вже відсортованим за неспаданням, але у решті тестів це не так.

3-й рядок містить єдине число M ($1 \leqslant M \leqslant 123456$) — кількість елементів 2-го масиву. 4-й рядок містить M розділених пропусками (пробілами) чисел — елементи цього масиву.

Значення елементів обох масивів є цілими числами, що не перевищують за модулем 10^9 (мільярд).

Результати

Виведіть у один рядок через пропуски (пробіли) рівно M рядків чисел, кожен з яких містить або єдине число 0 (якщо відповідне число 2-го масиву не зустрічається у 1-му масиві), або два розділені пробілом числа через пропуск (пробіл): індекс першого та індекс останнього входжень відповідного числа 2-го масиву у відсортований вигляд 1-го масиву. 2-й масив сортувати не слід, відповіді повинні бути для того 2-го масиву, який задано у вхідних даних.

Приклад

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
7	4 6
17 7 17 42 7 17 7	7 7
3	0
17 42 23	

Примітка

Відповідь 4 6 означає, що число 17 зустрічається на 4-й, 5-й та 6-й позиціях відсортованого вигляду 1-го масиву. Відповідь 7 7 — що число 42 зустрічається лише на 7-й позиції. Відповідь 0 — що число 23 взагалі не зустрічається.

256 мегабайтів

Задача 4. «Кубічне рівняння»

Кубічне рівняння $ax^3+bx^2+cx+d=0$ задане чотирма своїми коефіцієнтами $a,\,b,\,c,\,d\ (a\neq 0)$. Як відомо, кубічне рівняння завжди має хоча б один дійсний корінь, а максимальна кількість різних дійсних коренів дорівнює 3. Напишіть програму, яка знайде усі дійсні корені кубічного рівняння.

Вхідні дані

В одному рядку через пропуски (пробіли) задано чотири числа a,b,c,d — коефіцієнти рівняння. Усі чотири коефіцієнти є цілими числами, що не перевищують за модулем 1000, при цьому $a \neq 0$ (решта коефіцієнтів можуть бути в тому числі й нулями).

Результати

Виведіть в один рядок через пробіли (пропуски) усі дійсні корені рівняння. Якщо рівняння має менше, ніж три, корені, дозволяється деякі з них повторити, але так, щоб:

- 1. сумарна кількість виведених чисел була не більша трьох;
- 2. кожне з виведених чисел було коренем рівняння (дозволяється абсолютна та/або відносна похибка до 10^{-6});
- 3. кожен з коренів був виведений хоча б один раз.

Приклади

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
1 -3 3 -1	1
1 -6 11 -6	1 2 3

Примітка

Правила зарахування відповідей слід сприймати буквально. Наприклад, у першому прикладі зараховуються також відповіді, де 1 виведена два чи три рази. Більш того, зараховується також відповідь з трьома «різними» коренями 1, 1.000000001 та 0.999999999. А три різні корені 1, 1.001 та 0.999 вже не зараховуються, бо похибка перевищує дозволену. А чотири «різні» корені 1, 1.0000000001, 1.0000000002 та 0.99999999 не зараховуються не через похибки, а через те, що їх чотири, а дозволено максимум три.

256 мегабайтів

Задача 5. «Дипломи»

Сергійко — дуже гарний олімпіадник. За його олімпіадну кар'єру в нього назбиралось досить багато дипломів. Тепер він випускник і хоче повісити всі дипломи на дошку, яку розмістить в своїй кімнаті. Він дуже хоче, щоб дошка була са́ме квадратною, також він знає ширину w та довжину h стандартного диплому. Допоможіть йому вибрати розмір дошки.

Вхідні дані

В першому рядку знаходиться 3 числа w, h, n — ширина, довжина та кількість дипломів $(1 \le w, h, n \le 10^9)$.

Результати

Виведіть єдине число — мінімально можливий розмір дошки, на яку можна повісити всі дипломи без накладань.

Приклади

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
2 3 10	9
3 4 4	8

256 мегабайтів

Задача 6. «Дошки»

(На жаль, на самій школі умова цієї задачі містила деякі неоднозначності, тому́ тепер вона трохи переписана.)

Степан вирішив оновити старий паркан біля дому. Для цього йому потрібно M дощок. Зараз у його сараї є N дощок однакової товщини та ширини́, але різної довжини́. Так як Степан любить засмагати влітку, він хоче, щоб паркан був якомога більшої однакової цілочисельної висоти́. Степан просить допомогти йому і знайти таку найбільшу цілочисельну висоту. Дошки можна різати (як з метою приведення до

Бінарний та тернарний пошуки — день Іллі Порубльова Школа «Бобра» з програмування, Львів, 23.10.2016

однакової довжини, так і з метою отримання з однієї дуже довгої кількох коротших), але не можна доточувати одну до о́дної.

Вхідні дані

В першому рядку знаходяться два числа N, M ($1 \le N, M \le 10000$). В кожному з наступних N рядків знаходиться по одному числу A_i — довжина i-ої дошки в сараї ($1 \le A_i \le 10^7$).

Результати

Виведіть єдине число — відповідь на задачу. Якщо Степан не може побудувати такий паркан, виведіть 0.

Приклад

stdout.txt або екран (ст. вихід)
3

Примітка

Три дошки висоти́ 3 можна отримати аж кількома різними способами: можна взяти дошки довжинами 3, 4, 7 і довші вкоротити до найкоротшої; можна взяти лише дошки довжинами 3 та 7, коротшу взяти цілою, а довшу розрізати на дві корисні по 3 і 1 у відходи. Якби в умові не було вимоги про цілочисельність відповіді, то відповіддю було б 3,5 (довжину 7 навпіл плюс ще одна 3,5 із дошки довжини́ 4); але вимога цілочисельності ϵ , тому 3.

256 мегабайтів

Задача 7. «Всюдихід–1»

Всюдихід повинен виїхати з бази, перетнути спочатку пустелю, а потім болото і прибути на пост. Перешкод на шляху немає, всюдихід може рухатись у будь-якому напрямку. Максимальна швидкість всюдихода по пустелі і по болоту можуть відрізнятися одна від одної. Відомо,

що пряма, яка з'єднує базу і пост, проходить через обидві території. Визначте шлях, по якому всюдихід якнайшвидше прибуде на пост.

Вхідні дані

1-й рядок містить максимальну швидкість всюдихода в пустелі v_1 (м/с) та максимальну швидкість всюдихода по болоту v_2 (м/с). 2-й рядок містить координати x_1 y_1 бази. 3-й рядок містить координати x_2 y_2 посту. Всередині кожного рядка числа розділені одним пропуском (пробілом). Відомо, что вісь Ox розділяє пустелю і болото (пустеля вгорі), $y_1>0$, $y_2<0$, $x_1\geqslant 0$, $x_2\geqslant 0$. Всі числа дійсні і не перевищують за модулем 10^7 .

Результати

Програма повинна вивести два дійсних числа — абсцису (x-координату) точки перетину межі територій і мінімальний час (у секундах), необхідний всюдиходу на поїздку від бази до посту. Відповідь зараховується, коли для кожного з цих двох чисел хоча б одна з похибок (абсолютна та/або відносна) не перевищує 10^{-9} .

Приклади

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
1 1	5.0 5.0
5 3	
5 -2	
3 5	15.74651029 5.997280122
20 10	
8 -9	

256 мегабайтів

Задача 8. «Всюдихід-2»

Всюдихід має проїхати від старту S до фінішу F по степу, в якому є пустельна область. Пустельна область являє собою клин у вигляді частини площині між двома променями, що виходять з початку координат, один з променів спрямований угору вздовж осі Oy, інший перебуває у 1-й координатній чверті, утворюючи з першим кут φ . Пустелею всюдихід може їхати з максимальною швидкістю v_1 , степом — з макси-

Бінарний та тернарний пошуки— день Іллі Порубльова Школа «Бобра» з програмування, Львів, 23.10.2016

мальною швидкістю v_0 (причому $v_0 \geqslant v_1$).

3а який мінімальний час всюдихід може дістатися з точки S в точку F?

Вхідні дані

В єдиному рядку файлу через пропуски (пробіли) записано 7 дійсних чисел $x_S, y_S, x_F, y_F, \varphi, v_0, v_1$, котрі позначають: координати $S(x_S, y_S)$, координати $F(x_F, y_F)$, кут при вершині клина (в радіанах), швидкості всюдихода по степу і по пустелі.

Гарантовано, що: $-1000 < x_S < 0 < x_F < 1000$; $|y_S|, |y_F| < 1000$; обидві точки S та F перебувають поза пустелею і не на її межі; відрізок SF перетинає пустелю; $\pi/180 < \varphi < \pi/4$; $v_1 \le v_0 \le 4v_1$; $0.1 \le v_1 \le 5$.

Результати

Вивести єдине дійсне число — шуканий мінімальний час. Виводити в будь-якому зі стандартних форматів для чисел з плаваючою крапкою (але крапкою, а не комою); відповідь зараховується, якщо її похибка (абсолютна або відносна, тобто хоча б одна з них) не більша 10^{-6} .

Приклад

stdin.txt або клавіатура (ст. вхід)	stdout.txt або екран (ст. вихід)
-2.0 4.0 2.5 5.0 0.3 3.5 2.0	1.6273547791