2019/2020 SEMESTER ONE MID-SEMESTER TEST

SAS Code: MST

Diploma in Aerospace Electronics (DASE) 2nd Year FT Diploma in Engineering with Business (DEB) 3rd Year FT Diploma in Electrical & Electronic Engineering (DEEE) 2nd Year FT Diploma in Engineering Systems (DES) 2nd Year FT Diploma in Energy Systems and Management (DESM) 2nd Year FT

CIRCUIT THEORY & ANALYSIS

Time Allowed: 1.5 Hours

Instructions to Candidates

- 1. The Singapore Polytechnic examination rules are to be complied with.
- 2. This paper consists of **TWO** sections:

Section A - 10 Multiple Choice Questions, 3 marks each.

Section B - 4 Short Questions

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Section B on a new page.
- 5. This paper consists of 8 pages, inclusive of the formulae sheet.

SECTION A: MULTIPLE CHOICE QUESTIONS (3 marks each)

- 1. Please **tick** your answers in the **MCQ box** behind the front cover of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. For the circuit shown in Figure A1, which one of the following is the correct matrix formed by inspection using Mesh Current Analysis method.

(a)
$$\begin{bmatrix} 12 & -6 \\ -6 & 11 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} -12 \\ 24 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 12 & -6 \\ -6 & 11 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 12 \\ -24 \end{bmatrix}$$

$$(c) \quad \begin{bmatrix} 12 & 6 \\ 6 & 11 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} -12 \\ 24 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 12 & 6 \\ 6 & 11 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 12 \\ -24 \end{bmatrix}$$

Figure A1

- 2. For the circuit shown in Figure A1, determine the expression for the voltage across the 6Ω resistor.
 - (a) 6 I₁
 - $\text{(b)}\quad 6\ I_2$
 - (c) $6(I_1-I_2)$
 - (d) $6(I_1 + I_2)$
- 3. If the 12 V supply is shorted for the circuit shown in Figure A1, determine the supply current.
 - (a) 2.18 A
 - (b) 3 A
 - (c) 4.8 A
 - (d) 6.86 A

4. Determine the Norton equivalent current source I_N across terminals A and B for the circuit given in Figure A4.

- (c) 2 A
- (d) 5 A

- 5. The value of the Norton equivalent resistance R_N across terminals A and B for the circuit given in Figure A4 is
 - (a) 2Ω
 - (b) 2.5Ω
 - (c) 5Ω
 - (d) 10Ω
- 6. For the same circuit in Figure A4, if the $10\ V$ supply is shorted, determine the new value of the Norton equivalent current source I_N across terminals A and B.
 - (a) 0.4 A
 - (b) 0.6 A
 - (c) -0.8 A
 - (d) -1.2 A

- 7. A 6 V AC source supplies a series RLC resonant circuit having a 0.22 μ F capacitor and a coil whose resistance and inductance are 30 Ω and 10 mH respectively. Determine the frequency at resonance.
 - (a) 0.107 Hz
 - (b) 0.107 kHz
 - (c) 3.39 Hz
 - (d) 3.39 kHz
- 8. For the same circuit in question 7, calculate the current flowing through the circuit at half-power frequencies.
 - (a) 0.141 A
 - (b) 0.2 A
 - (c) 0.707 A
 - (d) 1.414 A
- A pure parallel RLC circuit has a resonant frequency of 10 kHz and a bandwidth of
 2.5 kHz. If the current through the capacitor is 2 mA at resonance, determine the total supply current.
 - (a) 0.25 mA
 - (b) 0.5 mA
 - (c) 2 mA
 - (d) 8 mA
- 10. Which one of the following statements is true in a parallel RLC resonant circuit?
 - (a) When the resistance R decreases, the resonant frequency and bandwidth remain constant.
 - (b) When the resistance R decreases, the resonant frequency remains constant and bandwidth decreases.
 - (c) When the resistance R decreases, the resonant frequency remains constant and bandwidth increases.
 - (d) When the resistance R decreases, the resonant frequency decreases and bandwidth increases.

SECTION B: 4 QUESTIONS

- B1. (a) Using the source conversion method, simplify the circuit shown in Figure B1 to its equivalent current source across terminals A and B. (12 marks)
 - (b) If a load R_L of 5 Ω is connected across terminals A and B, determine the current flowing through it. (3 marks)

- B2. For the circuit shown in Figure B2,
 - (a) convert the star-connected resistors as shown in the dotted box into an equivalent delta-connection, and hence (9 marks)
 - (b) calculate the total resistance between terminals X and Y. (6 marks)

Figure B2

- By inspection, write the nodal voltage equations for V_1 , V_2 and V_3 in matrix form B3. (a) for the network shown in Figure B3. (15 marks)
 - (a) If the values of V_1 , V_2 and V_3 are found to be 9.18 V, -7.59 V and -6.31 V respectively, determine the:
 - (i) current in the 4 Ω resistor, and (2 marks)
 - (ii) power in the 10Ω resistor. (3 marks)

Figure B3

- B4. Apply Thevenin's Theorem to find the Thevenin equivalent circuit parameters (a) V_{TH} and R_{TH} between terminals A and B for the circuit shown in Figure B4. (Include circuit diagrams for finding V_{TH} and $R_{\text{TH}})$ (16 marks)
 - (b) Draw the Thevenin equivalent circuit obtained above and hence calculate the voltage across the load R_L. (4 marks)

End of Paper

<u>Formulae</u>

	T
Resistors in series	$R_T = R_1 + R_2 + R_3 + \dots$
Resistors in parallel	$R_{T} = R_{1} + R_{2} + R_{3} + \dots$ $\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots$
Resistors in parallel (for 2 resistors)	$R_{\mathrm{T}} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$
Voltage Divider Rule	$V_{X} = \frac{R_{X}}{R_{T}} V_{S}$
Current Divider Rule (for 2 resistors)	$I_1 = \frac{R_2}{R_1 + R_2} I_T$
Source Conversion	$E = I_S R_S I_S = \frac{E}{R_S}$
Mesh Current Analysis	[Z] [I] = [V]
Nodal Voltage Analysis	[Y] [V] = [I]
Delta to Star Conversion	$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$
	$Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$
	$Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$
Star to Delta Conversion	$Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$
	$Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$
	$Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$
Inductive Reactance	$X_L = 2\pi f L$
Capacitive Reactance	$X_{C} = \frac{1}{2 \pi f C}$

Series RLC Resonant Circuit	Z = R $I = V/R$
	$f_{o} = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{X_L}{R} = \frac{X_C}{R}$
	$=\frac{V_L}{V}=\frac{V_C}{V}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$
Parallel RLC Resonant Circuit	Z = R $I = V/R$
	$f_o = \frac{1}{2\pi\sqrt{LC}}$
	$Q_0 = \frac{R}{X_L} = \frac{R}{X_C}$ $= \frac{I_L}{I} = \frac{I_C}{I}$
	Bandwidth (BW) = $\frac{f_o}{Q_o} = f_2 - f_1$
	$f_1 = f_o - \frac{BW}{2} \qquad f_2 = f_o + \frac{BW}{2}$

	A	
	1	A
	2	С
	3	В
	4	В
	5	С
	6	D
	7	D
	8	A
	9	B A
	10	С
В	1 (a)	4.53 A 1.38 Ω B

$$B1(b) I_{RL} = 0.98 A$$

B2(a)
$$R_1 = 24.17 \Omega$$
;

B2(a)
$$R_1 = 24.17 \Omega$$
; $R_2 = 87 \Omega$; $R_3 = 29 \Omega$

B2(b)
$$R_T = 12.82 \Omega$$

$$\mathrm{B3(a)} \quad \begin{bmatrix} \frac{1}{4} + \frac{1}{5} + \frac{1}{10} & -\frac{1}{5} & -\frac{1}{10} \\ -\frac{1}{5} & \frac{1}{2} + \frac{1}{5} + \frac{1}{8} & -\frac{1}{2} \\ -\frac{1}{10} & -\frac{1}{2} & \frac{1}{2} + \frac{1}{3} + \frac{1}{10} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} \frac{24}{4} \\ 0 \\ -6 \end{bmatrix}$$

B3(b)
$$I_{4\Omega} = 3.71 \text{ A}$$
; $P_{10\Omega} = 23.99 \text{ W}$

B4

$$V_{RL} = 13.92 \text{ V}$$