Feuille de TD 5 : Applications Linéaires et Matrices

Exercice 1. Ecrire les matrices associées à toutes les applications linéaires qui figurent dans l'exercice 1 de la feuille TD4.

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par

$$f(x, y, z) = (x + y, y + z).$$

- 1. Déterminer la matrice associée à f dans les bases canoniques.
- 2. Donner une base de Ker(f) et de Im(f). L'application f est-elle injective ? Surjective ? Bijective ?

Exercice 3. Soit $f: \mathbb{R}^4 \mapsto \mathbb{R}^4$ l'endomorphisme de l'espace vectoriel \mathbb{R}^4 dont la matrice dans la base canonique de \mathbb{R}^4 est

$$\begin{pmatrix}
1 & -1 & 1 & 2 \\
3 & -3 & 0 & 6 \\
-5 & 5 & 2 & -10 \\
2 & -2 & 2 & 4
\end{pmatrix}$$

- 1. Déterminer le noyau et l'image de f. Donner les bases ainsi que la dimension de ces espaces.
- 2. L'application f est-elle surjective? injective? bijective?
- 3. Est-ce qu'on peut représenter \mathbb{R}^4 comme somme directe du noyau et de l'image de f.

Exercice 4. Soient E et F deux K-espaces vectoriels de dimensions finies tels que dim E=4 et dim F=3, de bases respectives $B_E=\{e_1,e_2,e_3,e_4\}$ et $B_F=\{f_1,f_2,f_3\}$. Soit $u:E\mapsto F$ l'application linéaires définie par

$$u(e_1) = f_1 + f_2 + f_3$$

$$u(e_2) = -f_1 + f_2 - f_3$$

$$u(e_3) = 2f_1 + f_2 + f_3$$

$$u(e_4) = -2f_1 - f_2$$

- 1. Donner la matrice de u dans les bases B_E et B_F .
- 2. Déterminer le noyau et l'image de u. Donner les bases ainsi que les dimensions de ces espaces.
- 3. L'application u est-elle surjective? injective? bijective?

Exercice 5. Soit $f \in L(\mathbb{R}^3)$ définie par f(x, y, z) = (2y + z, x - 4y, 3x). Trouver la matrice de f dans la base $\{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$.

Exercice 6. On note p (resp. s) la projection orthogonale (resp. la symétrie orthogonale) sur la droite D d'équation x + 2y = 0 dans \mathbb{R}^2 .

- 1. Montrer que p et s sont des applications linéaires et déterminer leur matrice dans la base canonique de \mathbb{R}^2 .
- 2. Quelle est leur matrice dans la base $\{u, v\}$ où u = (1, 2) et v = (-2, 1)?

Exercice 7. Soit $E = \mathbb{R}^3$, $\beta = (e_1, e_2, e_3)$ sa base canonique et $u \in L(E)$ qui envoie chaque e_i sur $e_1 + e_2 + e_3$.

- 1. Donner $M_{\beta}(u)$.
- 2. (a) Donner une base (v_1, v_2) de Ker(u).
 - (b) Donner une base (v_3) de Im(u).
 - (c) Montrer que $\beta' = (v_1, v_2, v_3)$ est une base de E.
- 3. Déterminer $B = M_{\beta'}(u)$.
- 4. (a) Soit $n \in \mathbb{N}$. Calculer $B_n = M_{\beta'}(u^n)$.
 - (b) En déduire l'expression de $A_n = M_{\beta}(u^n)$.
- 5. Soient $a, b \in \mathbb{R}$. Déterminer les couples $(a, b) \in \mathbb{R}^2$ tels que $aA + bI_3$ soit inversible. Exprimer alors l'inverse de la matrice $aA + bI_3$ comme combinaison linéaire de A et I_3 .

Exercice 8. Dans \mathbb{R}^3 , donner P et P^{-1} où P est la matrice de passage de la base canonique à la base $\{(0,1,1),(1,0,1),(1,1,1)\}$. Calculer la composante du vecteur (1,1,0) dans cette nouvelle base.

Exercice 9. Soit E un espace vectoriel de dimension 2 et $\mathcal{B} = (u_1, u_2)$ une base de E.

- 1. Montrer que les vecteurs $v_1 = u_1 + u_2$ et $v_2 = -u_1$ forme une base \mathcal{B}' de E.
- 2. Soit $f: E \mapsto E$ linéaire de matrice

$$\begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix}$$

dans la base \mathcal{B} . Donner la matrice A' de f dans la base \mathcal{B}' .

Exercice 10. Soit E l'ensemble des matrices réelles de la forme $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ et $u:E\to E$ l'application linéaire définie par :

$$\left(\begin{array}{cc} a & b \\ b & c \end{array}\right) \mapsto \left(\begin{array}{cc} a+c & b \\ b & a+b+c \end{array}\right).$$

- 1. Montrer que E est un espace vectoriel sur \mathbb{R} et en trouver une base B.
- 2. Montrer que $u \in L(E)$ et déterminer la matrice M de u par rapport à la base B. Calculer celle de u^2 .
- 3. Déterminer le rang de M, une base B_1 de Im(u) et une base B_2 de Ker(u).
- 4. Montrer que $B' = B_1 \cup B_2$ est une base de E. Que peut-on en déduire ?
- 5. Déterminer les matrices de passages P de B à B' et Q de B' à B. Calculer sans utiliser P et Q la matrice M' de u par rapport à B'.