

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Dinámica colectiva

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221527TS	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno contará con un análisis y comprensión de las propiedades cualitativas o de forma de los sistemas dinámicos discretos inducidos a algunos hiperespacios, con énfasis en la comparación entre dinámica individual y dinámica colectiva. Además, aprenderá a desarrollar de manera integral, mediante ejemplos particulares, las nociones estudiadas.

TEMAS Y SUBTEMAS

1. Hiperespacios

- 1.1. El hiperespacio 2^x.
- 1.2. Topología de Vietoris.
- 1.3. Métrica de Hausdorff.
- 1.4. Equivalencia entre la topología de Vietoris y la topología inducida por la métrica de Hausdorff.
- 1.5. Algunos subespacios de 2^x.
- 1.6. Ejemplos y modelos geométricos de hiperespacios.

2. Propiedades en hiperespacios

- 2.1. Compacidad.
- 2.2. Conexidad.
- 2.3. Arco-conexidad.
- 2.4. Densidad.
- 2.5. Completitud.

3. Funciones inducidas

- 3.1. Definiciones.
- 3.2. Propiedades de funciones inducidas sobre vietóricos.
- 3.3. Propiedades básicas: Continuidad, inyectividad, sobreyectividad y homeomorfismos.
- 3.4. Iteración de funciones inducidas.

4. Dinámica colectiva

- 4.1. Sistemas dinámicos inducidos.
- 4.2. Dinámica individual y dinámica colectiva.
- 4.3. Órbitas, puntos fijos y puntos periódicos en hiperespacios.
- 4.4. Relación entre dinámica individual y dinámica colectiva.
- 4.5. Densidad de conjuntos en hiperespacios: conjunto de puntos periódicos, órbitas y conjunto omega límite.

5. Funciones dinámicas inducidas

- 5.1. Sistemas transitivos, mezclantes, exactos.
- 5.2. Sistemas minimales, sensitivos y caóticos.
- 5.3. Funciones inducidas de la tienda y de la tienda con pata alargada.
- 5.4. Funciones inducidas de la rotación irracional y de la sumadora.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, quien expondrá la totalidad de los temas. Los estudiantes acudirán a asesorías extra clase para analizar y discutir las tareas y ejercicios a realizar relacionados con los temas vistos en clase.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Las participaciones en clase, asistencias a las sesiones y el cumplimiento de tareas y proyectos también forma parte de la evaluación final de los estudiantes.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO) Básica:

- 1. Hyperspaces: Fundamentals and Recent Advances, A. Illanes y S. B. Nadler, Jr., Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, New York, Basel, 1999.
- 2. An Introduction to Chaotic Dynamical Systems, R. L. Devaney, Second Edition, Westview Press, 2003.

DIVISION DE ESTUDIOS

3. Introduction to Dynamical Systems, M. Brin y G. Stuck, Cambridge University Press, 2003.

Consulta:

- Sistemas Dinámicos Discretos, J. E. King Dávalos y H. Méndez-Lango, Serie: Temas de Matemáticas, Facultad de Ciencias, UNAM, 2014.
- 2. Dynamical Systems An Introduction, L. Barreira y C. Valls, Spriger, 2013.
- 3. Topics on Continua, S. Macías, Second Edition, Springer, 2018.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Matemáticas o Doctorado en Matemáticas Aplicadas.

Vo.Bo DE POSGRADO

DR. JOSÉ ANIBAL ARIAS AGUILAR

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR AGADÉMIGO A