Enumerating finite models of Hilbert's incidence axioms

Nikolina Miholjčić

Faculty of Sciences, University of Novi Sad, Serbia

Joint work with K. Ago and B. Bašić

15th Nordic Combinatorial Conference June 17 2025, Reykjavik, Iceland

• Primitive terms: point, line, plane.

- Primitive terms: point, line, plane.
- Primitive relation: incidence.

- Primitive terms: point, line, plane.
- Primitive relation: incidence.
- Axioms of incidence (denoted by A):
- I_1 : For every two points A, B, there exists a line a that contains both A and B.
- l_2 : For every two points A, B, there exists at most one line that contains both A and B.
- I₃: There exist at least two points on a line. There exist at least three points that do not lie on a single line.
- I_4 : For any three non-collinear points A, B, C, there exists a plane α that contains all three. Every plane contains at least one point.
- I₅: For any three non-collinear points A, B, C, there exists at most one plane that contains them.
- I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .
- I_7 : If two planes α , β share a point A, then they share at least one more point B.
- 18: There exist at least four points that do not lie in the same plane.

Finite models of \mathcal{A}

• We are interested in **finite models** (P, L, PI) of A.

- We are interested in **finite models** (P, L, PI) of A.
- **Open problem**: Given a natural number n, how many non-isomorphic finite models of \mathcal{A} exists with exactly n points?

- We are interested in **finite models** (P, L, PI) of A.
- **Open problem**: Given a natural number n, how many non-isomorphic finite models of \mathcal{A} exists with exactly n points?
- The smallest finite model of A:

- We are interested in **finite models** (P, L, PI) of A.
- **Open problem**: Given a natural number n, how many non-isomorphic finite models of \mathcal{A} exists with exactly n points?
- ullet The smallest finite model of ${\cal A}$:

K. Ago & B. Bašić & M. Maksimović & M. Šobot, On finite models of Hilbert's incidence geometry, *Discrete Math.* **347** (2024), Article No. 114159

• The *Tetrahedron-model* is obtained by starting from the 4-point model and then adding some more points on a pair of two disjoint lines.

• The *Tetrahedron-model* is obtained by starting from the 4-point model and then adding some more points on a pair of two disjoint lines.

Theorem

Let n be an integer, $n \geqslant 4$. Let i be an integer, $2 \leqslant i \leqslant \lfloor \frac{n}{2} \rfloor$. Let: $P = \{1, 2, \dots, n\},$ $L = \{\{1, 2, \dots, i\}, \{i+1, i+2, \dots, n\}\} \cup \{\{x, y\} : 1 \leqslant x \leqslant i, i+1 \leqslant y \leqslant n\},$ $\text{PI} = \{\{1, 2, \dots, i, x\} : i+1 \leqslant x \leqslant n\} \cup \{\{i+1, i+2, \dots, n, y\} : 1 \leqslant y \leqslant i\}.$ Then (P, L, PI) is a model of \mathcal{A} .

• The *Tetrahedron-model* is obtained by starting from the 4-point model and then adding some more points on a pair of two disjoint lines.

Theorem

```
Let n be an integer, n \geqslant 4. Let i be an integer, 2 \leqslant i \leqslant \lfloor \frac{n}{2} \rfloor. Let: P = \{1, 2, \dots, n\}, L = \{\{1, 2, \dots, i\}, \{i+1, i+2, \dots, n\}\} \cup \{\{x, y\} : 1 \leqslant x \leqslant i, \ i+1 \leqslant y \leqslant n\}, \text{PI} = \{\{1, 2, \dots, i, x\} : i+1 \leqslant x \leqslant n\} \cup \{\{i+1, i+2, \dots, n, y\} : 1 \leqslant y \leqslant i\}.
```

Then (P, L, PI) is a model of A.

Proposition

There are $\lfloor \frac{n-2}{2} \rfloor$ nonisomorphic tetrahedron-models of A.

• The *Tetrahedron-model* is obtained by starting from the 4-point model and then adding some more points on a pair of two disjoint lines.

Theorem

Let n be an integer, $n \geqslant 4$. Let i be an integer, $2 \leqslant i \leqslant \lfloor \frac{n}{2} \rfloor$. Let: $P = \{1, 2, \dots, n\},$ $L = \{\{1, 2, \dots, i\}, \{i+1, i+2, \dots, n\}\} \cup \{\{x, y\} : 1 \leqslant x \leqslant i, \ i+1 \leqslant y \leqslant n\},$ $\text{PI} = \{\{1, 2, \dots, i, x\} : i+1 \leqslant x \leqslant n\} \cup \{\{i+1, i+2, \dots, n, y\} : 1 \leqslant y \leqslant i\}.$

Then (P, L, PI) is a model of A.

Proposition

There are $\lfloor \frac{n-2}{2} \rfloor$ nonisomorphic tetrahedron-models of \mathcal{A} .

PG(n, q): the (n + 1)-dimensional vector space over the field of order q, where
points are interpreted as 1-dimensional subspaces, and lines as 2-dimensional
subspaces.

- PG(n, q): the (n + 1)-dimensional vector space over the field of order q, where points are interpreted as 1-dimensional subspaces, and lines as 2-dimensional subspaces.
- For $n \ge 3$, these are exactly all projective spaces.

- PG(n,q): the (n+1)-dimensional vector space over the field of order q, where points are interpreted as 1-dimensional subspaces, and lines as 2-dimensional subspaces.
- For $n \ge 3$, these are exactly all projective spaces.
- For n = 2, PG(2, q) are examples of projective planes (though there exist projective planes that are not of this type).

- PG(n, q): the (n + 1)-dimensional vector space over the field of order q, where points are interpreted as 1-dimensional subspaces, and lines as 2-dimensional subspaces.
- For $n \ge 3$, these are exactly all projective spaces.
- For n = 2, PG(2, q) are examples of projective planes (though there exist projective planes that are not of this type).

Theorem

Let F^4 be a 4-dimensional vector space over some finite field F of order q. Let P be the set of 1-dimensional subspaces of F^4 , let L be the set of 2-dimensional subspaces, and let PI be the set of 3-dimensional subspaces. Then (P, L, PI) is a model of A.

- PG(n, q): the (n + 1)-dimensional vector space over the field of order q, where points are interpreted as 1-dimensional subspaces, and lines as 2-dimensional subspaces.
- For $n \ge 3$, these are exactly all projective spaces.
- For n = 2, PG(2, q) are examples of projective planes (though there exist projective planes that are not of this type).

Theorem

Let F^4 be a 4-dimensional vector space over some finite field F of order q. Let P be the set of 1-dimensional subspaces of F^4 , let L be the set of 2-dimensional subspaces, and let PI be the set of 3-dimensional subspaces. Then (P, L, PI) is a model of \mathcal{A} .

Proposition

Up to isomorphism, there is one n-element projective-space-model of $\mathcal A$ for each number n of the form q^3+q^2+q+1 , where q is a prime power.

Theorem

Let P' and L' be the set of points and the set of lines of some projective plane. Let:

$$P = P' \cup \{X\}, \text{ where } X \notin P';$$

 $L = L' \cup \{\{Y, X\} : Y \in P'\};$
 $PI = \{P'\} \cup \{I \cup \{X\} : I \in L'\}.$

Then (P, L, PI) is a model of A.

Theorem

Let P' and L' be the set of points and the set of lines of some projective plane. Let:

$$P = P' \cup \{X\}, \text{ where } X \notin P';$$

 $L = L' \cup \{\{Y, X\} : Y \in P'\};$
 $PI = \{P'\} \cup \{I \cup \{X\} : I \in L'\}.$

Then (P, L, PI) is a model of A.

Proposition

For each n of the form q^2+q+2 , where q is a number such that there exists a projective plane of order q, there are as many n-element projective-plane-models of $\mathcal A$ as there are nonisomorphic projective planes with n-1 points.

The projective-plane-model with 14 points:

The projective-plane-model with 14 points:

 A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set \mathcal{A} .

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set A.
- Consequently, counting finite models of ${\mathcal A}$ reduces to counting matroids that satisfy additional structural conditions.

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set A.
- Consequently, counting finite models of A reduces to counting matroids that satisfy additional structural conditions.
- The method heavily relies on existing databases of matroids with specified properties, which are currently available only for $n \le 12$.

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set \mathcal{A} .
- Consequently, counting finite models of ${\mathcal A}$ reduces to counting matroids that satisfy additional structural conditions.
- The method heavily relies on existing databases of matroids with specified properties, which are currently available only for $n \le 12$.
- Beyond n = 12, the number of matroids becomes too large for exhaustive methods to remain tractable.

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set \mathcal{A} .
- Consequently, counting finite models of $\mathcal A$ reduces to counting matroids that satisfy additional structural conditions.
- The method heavily relies on existing databases of matroids with specified properties, which are currently available only for $n \le 12$.
- Beyond n = 12, the number of matroids becomes too large for exhaustive methods to remain tractable.

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, $n = 1, 2, \dots, 12$, is given in the following table:

F,,, 8													
	n	1	2	3	4	5	6	7	8	9	10	11	12
	HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set \mathcal{A} .
- Consequently, counting finite models of ${\mathcal A}$ reduces to counting matroids that satisfy additional structural conditions.
- The method heavily relies on existing databases of matroids with specified properties, which are currently available only for $n \le 12$.
- Beyond n = 12, the number of matroids becomes too large for exhaustive methods to remain tractable.

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, $n = 1, 2, \dots, 12$, is given in the following table:

•	, ,	,	,	,	_					_				
	n	1	2	3	4	5	6	7	8	9	10	11	12	١
	HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6	l

• This summarizes the current state of knowledge on the topic.

- A matroid is an abstract combinatorial structure designed to capture the essence of independence across different mathematical settings.
- In short, a neat duality has been established between matroids satisfying certain properties and finite models of subsets of the axiom set A.
- Consequently, counting finite models of A reduces to counting matroids that satisfy additional structural conditions.
- The method heavily relies on existing databases of matroids with specified properties, which are currently available only for $n \leq 12$.
- Beyond n = 12, the number of matroids becomes too large for exhaustive methods to remain tractable.

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, $n = 1, 2, \dots, 12$, is given in the following table:

•		,			_					_				
	n	1	2	3	4	5	6	7	8	9	10	11	12	١
	HilbInc(n)	0	0	0	1	1	2	2	5	3	4	4	6	I

- · This summarizes the current state of knowledge on the topic.
- Can this boundary be pushed further to count such models for larger n?

 Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.

9 / 17

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.
- This reformulates the model-counting problem as a propositional satisfiability task.

9 / 17

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.
- This reformulates the model-counting problem as a propositional satisfiability task.
- The **SAT** (*Boolean satisfiability*) **problem** asks whether variables in a propositional formula can be assigned values so that the formula is true.

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.
- This reformulates the model-counting problem as a propositional satisfiability task.
- The SAT (Boolean satisfiability) problem asks whether variables in a propositional formula can be assigned values so that the formula is true.
- SAT was the first problem proven to be *NP-complete*.

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.
- This reformulates the model-counting problem as a propositional satisfiability task.
- The SAT (Boolean satisfiability) problem asks whether variables in a propositional formula can be assigned values so that the formula is true.
- SAT was the first problem proven to be *NP-complete*.
- Despite theoretical hardness, modern SAT solvers efficiently handle large instances in practice.

- Motivated by the need for a computational approach, we designed a new axiomatic system which is logically equivalent to Hilbert's incidence axioms but formulated to support algorithmic model counting.
- The new system consists of a set of quantified formulas.
- We prove a one-to-one correspondence between:
 - finite models of the incidence axioms, and
 - satisfying truth assignments of these formulas.
- This reformulates the model-counting problem as a propositional satisfiability task.
- The SAT (Boolean satisfiability) problem asks whether variables in a propositional formula can be assigned values so that the formula is true.
- SAT was the first problem proven to be NP-complete.
- Despite theoretical hardness, modern SAT solvers efficiently handle large instances in practice.
- Leveraging such tools, we adapted a state-of-the-art SAT solver to our specific setting and used it to compute the exact number of non-isomorphic finite models of \mathcal{A} for all $n \leq 18$.

A new axiomatic system

A new axiomatic system

We introduce a new system, \mathcal{B} , defined by the six axioms which are as follows:

A new axiomatic system

We introduce a new system, \mathcal{B} , defined by the six axioms which are as follows:

$$B_{1}: (\exists a, b, c) \neg \operatorname{col}(\{a, b, c\})$$

$$B_{2}: (\forall a, b, c, d) (\operatorname{col}(\{a, b, c\}) \land \operatorname{col}(\{a, b, d\}) \Rightarrow \operatorname{col}(\{a, c, d\}))$$

$$B_{3}: (\forall a, b, c, d, e) (\operatorname{cop}(\{a, b, c, d\}) \land \operatorname{cop}(\{a, b, c, e\}) \land \\ \neg \operatorname{col}(\{a, b, c\}) \Rightarrow \operatorname{cop}(\{a, b, d, e\}))$$

$$B_{4}: (\forall a, b, c, d) (\operatorname{col}(\{a, b, c\}) \land \neg \operatorname{col}(\{a, b, d\}) \Rightarrow \operatorname{cop}(\{a, b, c, d\}))$$

$$B_{5}: (\forall a, b, c, d, e) (\neg \operatorname{col}(\{a, b, c\}) \land \neg \operatorname{col}(\{a, d, e\}) \Rightarrow \\ \operatorname{cop}(\{a, b, c, d\}) \lor \operatorname{cop}(\{a, b, c, e\}) \lor \operatorname{cop}(\{a, d, e, b\}) \lor \\ \operatorname{cop}(\{a, d, e, f\}) \lor (\exists f) (\operatorname{cop}(\{a, b, c, f\}) \land \operatorname{cop}(\{a, d, e, f\})))$$

$$B_6$$
: $(\exists a, b, c, d) \neg cop(\{a, b, c, d\})$

Theorem

Let Mod, Mod=(P, L, Pl), be a finite model of A. We define two relations, col and cop, on 3-element and 4-element subsets of a given point set P, respectively, as follows:

- For every subset $S \subseteq P$ such that |S| = 3, col(S) if and only if the points in S are collinear;
- For every subset $K \subseteq P$ such that |K| = 4, cop(K) if and only if the points in K are coplanar.

Then the formulas from \mathcal{B} will be satisfied.

Theorem

Let Mod, Mod=(P, L, Pl), be a finite model of A. We define two relations, col and cop, on 3-element and 4-element subsets of a given point set P, respectively, as follows:

- For every subset $S \subseteq P$ such that |S| = 3, col(S) if and only if the points in S are collinear;
- For every subset $K \subseteq P$ such that |K| = 4, cop(K) if and only if the points in K are coplanar.

Then the formulas from B will be satisfied.

$$B_1$$
: $(\exists a, b, c) \neg \operatorname{col}(\{a, b, c\})$

Theorem

Let Mod, Mod = (P, L, Pl), be a finite model of A. We define two relations, col and cop, on 3-element and 4-element subsets of a given point set P, respectively, as follows:

- For every subset $S \subseteq P$ such that |S| = 3, col(S) if and only if the points in S are collinear;
- For every subset $K \subseteq P$ such that |K| = 4, cop(K) if and only if the points in K are coplanar.

Then the formulas from B will be satisfied.

 B_1 : $(\exists a, b, c) \neg \operatorname{col}(\{a, b, c\})$ follows directly from

 I_3 : There exist at least three points that do not lie on a single line.

Theorem

Let Mod, Mod=(P, L, Pl), be a finite model of A. We define two relations, col and cop, on 3-element and 4-element subsets of a given point set P, respectively, as follows:

- For every subset S ⊆ P such that |S| = 3, col(S) if and only if the points in S are collinear;
- For every subset $K \subseteq P$ such that |K| = 4, cop(K) if and only if the points in K are coplanar.

Then the formulas from B will be satisfied.

- B_1 : $(\exists a, b, c) \neg \operatorname{col}(\{a, b, c\})$ follows directly from
 - I_3 : There exist at least three points that do not lie on a single line.
- $B_5: \ \, (\forall a,b,c,d,e) \, \big(\neg \operatorname{col}(\{a,b,c\}) \land \neg \operatorname{col}(\{a,d,e\}) \Rightarrow \\ \quad \operatorname{cop}(\{a,b,c,d\}) \lor \operatorname{cop}(\{a,b,c,e\}) \lor \operatorname{cop}(\{a,d,e,b\}) \lor \\ \quad \operatorname{cop}(\{a,d,e,f\}) \lor (\exists f) \, \big(\operatorname{cop}(\{a,b,c,f\}) \land \operatorname{cop}(\{a,d,e,f\}) \big) \big)$

Theorem

Let Mod, Mod=(P, L, Pl), be a finite model of A. We define two relations, col and cop, on 3-element and 4-element subsets of a given point set P, respectively, as follows:

- For every subset S ⊆ P such that |S| = 3, col(S) if and only if the points in S are collinear;
- For every subset $K \subseteq P$ such that |K| = 4, cop(K) if and only if the points in K are coplanar.

Then the formulas from B will be satisfied.

- B_1 : $(\exists a, b, c) \neg \operatorname{col}(\{a, b, c\})$ follows directly from
 - I_3 : There exist at least three points that do not lie on a single line.

$$B_5: \ (\forall a, b, c, d, e) \ (\neg \operatorname{col}(\{a, b, c\}) \land \neg \operatorname{col}(\{a, d, e\}) \Rightarrow \\ \operatorname{cop}(\{a, b, c, d\}) \lor \operatorname{cop}(\{a, b, c, e\}) \lor \operatorname{cop}(\{a, d, e, b\}) \lor \\ \operatorname{cop}(\{a, d, e, f\}) \lor (\exists f) \ (\operatorname{cop}(\{a, b, c, f\}) \land \operatorname{cop}(\{a, d, e, f\})))$$

follows from

- I_4 : For any three non-collinear points A, B, C, there exists a plane lpha that contains all three.
- I_7 : If two planes α , β share a point A, then they share at least one more point B.

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- $\bullet \ \ \textit{Planes} \ (\mathrm{Pl}) \ \textit{as the max. el. of the set} \ \{ D \subseteq P \ | \ \forall K \subseteq D, \ |K| = 4 \Rightarrow \mathrm{cop}(K) \} \,,$

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- Planes (Pl) as the max. el. of the set $\{D \subseteq P \mid \forall K \subseteq D, |K| = 4 \Rightarrow \operatorname{cop}(K)\}$, then the structure $\operatorname{Mod}_{\mathcal{B}} = (P, L, \operatorname{Pl})$ is a model of the axiom set \mathcal{A} .

 I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- $\bullet \ \ \textit{Planes} \ (\mathrm{Pl}) \ \textit{as the max}. \ \textit{el. of the set} \ \{ D \subseteq P \ | \ \forall K \subseteq D, \ |K| = 4 \Rightarrow \mathrm{cop}(K) \} \,,$

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

 I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .

Claim. Every plane in $\mathrm{Mod}_\mathcal{B}$ contains three non-collinear points.

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- $\bullet \ \ \textit{Planes} \ (\mathrm{Pl}) \ \textit{as the max}. \ \textit{el. of the set} \ \{ D \subseteq P \ | \ \forall K \subseteq D, \ |K| = 4 \Rightarrow \mathrm{cop}(K) \} \,,$

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

 l_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α . Claim. Every plane in $\text{Mod}_{\mathcal{B}}$ contains three non-collinear points.

Verification of I₆:

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- $\bullet \ \ \textit{Planes} \ (\mathrm{Pl}) \ \textit{as the max}. \ \textit{el. of the set} \ \{ D \subseteq P \ | \ \forall K \subseteq D, \ |K| = 4 \Rightarrow \mathrm{cop}(K) \} \,,$

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

 I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .

Claim. Every plane in $\mathrm{Mod}_{\mathcal{B}}$ contains three non-collinear points.

*Verification of I*₆: Assume $\{A, B\} \subseteq p \cap \alpha$.

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- $\bullet \ \ \textit{Planes} \ (\mathrm{Pl}) \ \textit{as the max}. \ \textit{el. of the set} \ \{ D \subseteq P \ | \ \forall K \subseteq D, \ |K| = 4 \Rightarrow \mathrm{cop}(K) \} \,,$

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

 I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .

Claim. Every plane in $\operatorname{Mod}_{\mathcal{B}}$ contains three non-collinear points.

*Verification of I*₆: Assume $\{A, B\} \subseteq p \cap \alpha$.

•
$$p = \{A, B\} \subseteq \alpha \checkmark$$

Theorem

Suppose there exists a valuation that satisfies the formulas in \mathcal{B} . Using this valuation, we determine which subsets of the point set $P = \{1, 2, \ldots, n\}$ satisfy the relations col and cop , where col is a relation defined on 3-element subsets of P, and cop is defined on 4-element subsets of P, respectively. If we define:

- Lines (L) as the max. el. of the set $\{D \subseteq P \mid \forall S \subseteq D, |S| = 3 \Rightarrow \operatorname{col}(S)\}$,
- Planes (Pl) as the max. el. of the set $\{D \subseteq P \mid \forall K \subseteq D, |K| = 4 \Rightarrow \operatorname{cop}(K)\}$,

then the structure $Mod_{\mathcal{B}} = (P, L, Pl)$ is a model of the axiom set A.

 I_6 : If two points A, B of a line p lie in a plane α , then every point on p lies in α .

Claim. Every plane in $\mathrm{Mod}_{\mathcal{B}}$ contains three non-collinear points.

*Verification of I*₆: Assume $\{A, B\} \subseteq p \cap \alpha$.

- $p = \{A, B\} \subseteq \alpha \checkmark$
- Suppose, for contradiction, that there exists $C \in p \setminus \{A, B\}$ such that $C \notin \alpha$. From the claim, there exists $D \in \alpha$ such that $D \notin p$. By axiom B_4 , we have:

$$\operatorname{col}(\{A,B,C\}) \land \neg \operatorname{col}(\{A,B,D\}) \Rightarrow \operatorname{cop}(\{A,B,C,D\}).$$

Thus, the points A, B, C, and D lie in some plane. Since A, B, and D are not collinear, it follows from axiom I_5 that this plane must be exactly α . But then $C \in \alpha$, which contradicts the assumption.

Theorem

- (a) Let Mod be a model of \mathcal{A} . Define the relations col and cop as in the construction, and suppose all formulas in \mathcal{B} are satisfied. Then, defining lines and planes as presented, we obtain $\operatorname{Mod} = \operatorname{Mod}_{\mathcal{B}}$.
- (b) Conversely, starting from a valuation that satisfies all formulas in \mathcal{B} , define points, lines, and planes accordingly to obtain a model of \mathcal{A} . Then, defining relations col and cop as presented, we recover the original valuation.

• Thanks to the equivalence between systems \mathcal{A} and \mathcal{B} , instead of counting finite models of \mathcal{A} , it suffices to count how many satisfying valuations exist for the formulas in \mathcal{B} .

- Thanks to the equivalence between systems \mathcal{A} and \mathcal{B} , instead of counting finite models of \mathcal{A} , it suffices to count how many satisfying valuations exist for the formulas in \mathcal{B} .
- Although modern SAT solvers can return the total number of satisfying assignments (model counters), this feature is computationally expensive.

- Thanks to the equivalence between systems \mathcal{A} and \mathcal{B} , instead of counting finite models of \mathcal{A} , it suffices to count how many satisfying valuations exist for the formulas in \mathcal{B} .
- Although modern SAT solvers can return the total number of satisfying assignments (model counters), this feature is computationally expensive.
- Instead, we used a standard SAT solver that returns:
 - whether the set of formulas is satisfiable,
 - and one satisfying valuation if it exists.

- Thanks to the equivalence between systems \mathcal{A} and \mathcal{B} , instead of counting finite models of \mathcal{A} , it suffices to count how many satisfying valuations exist for the formulas in \mathcal{B} .
- Although modern SAT solvers can return the total number of satisfying assignments (model counters), this feature is computationally expensive.
- Instead, we used a standard SAT solver that returns:
 - · whether the set of formulas is satisfiable,
 - and one satisfying valuation if it exists.
- · We iteratively search for all models as follows:
 - 1 Run the solver to obtain a satisfying assignment.
 - **2** Extract the model corresponding to this assignment.
 - **3** Add a formula that excludes this specific model (or its isomorphism class).
 - Repeat until the formula set becomes unsatisfiable.

- Thanks to the equivalence between systems \mathcal{A} and \mathcal{B} , instead of counting finite models of \mathcal{A} , it suffices to count how many satisfying valuations exist for the formulas in \mathcal{B} .
- Although modern SAT solvers can return the total number of satisfying assignments (model counters), this feature is computationally expensive.
- Instead, we used a standard SAT solver that returns:
 - · whether the set of formulas is satisfiable,
 - and one satisfying valuation if it exists.
- · We iteratively search for all models as follows:
 - **1** Run the solver to obtain a satisfying assignment.
 - **2** Extract the model corresponding to this assignment.
 - 3 Add a formula that excludes this specific model (or its isomorphism class).
 - Repeat until the formula set becomes unsatisfiable.
- In this way, we systematically enumerate all distinct valuations satisfying \mathcal{B} , which correspond to models of \mathcal{A} .

Excluding specific models

Excluding specific models

 To eliminate known models and search for genuinely new configurations, we identify a distinguishing property and add its negation as an additional constraint in the SAT input.

Excluding specific models

- To eliminate known models and search for genuinely new configurations, we identify a distinguishing property and add its negation as an additional constraint in the SAT input.
- To avoid redundant enumeration of isomorphic models, we fix the longest line to have exactly k collinear points (for $3 \le k \le n-3$). Specifically:
 - the first k points are required to be collinear;
 - no k+1 points are collinear.

Excluding specific models

- To eliminate known models and search for genuinely new configurations, we identify a distinguishing property and add its negation as an additional constraint in the SAT input.
- To avoid redundant enumeration of isomorphic models, we fix the longest line to have exactly k collinear points (for $3 \le k \le n-3$). Specifically:
 - the first k points are required to be collinear;
 - no k+1 points are collinear.
- For example, to exclude the **Tetrahedron-model**, characterized by all points lying on two disjoint lines, we additionally require that:
 - the remaining points (from k + 1 to n) do not lie on a common line.

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

All these models are tetrahedron-models, with exactly four exceptions:

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

All these models are tetrahedron-models, with exactly four exceptions:

• a projective-plane-model for n = 14,

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

All these models are tetrahedron-models, with exactly four exceptions:

- a projective-plane-model for n = 14,
- a projective-space-model for n = 15,

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

All these models are tetrahedron-models, with exactly four exceptions:

- a projective-plane-model for n = 14,
- a projective-space-model for n = 15,
- two new models that do not fall into any of the previously defined classes: one for n = 14 and one for n = 18.

Theorem

The exact number of nonisomorphic finite models of the first group of Hilbert's axiomatic system with n points, for $13 \le n \le 18$, is given in the following table:

n	13	14	15	16	17	18
HilbInc(n)	5	8	7	7	7	9

All these models are tetrahedron-models, with exactly four exceptions:

- a projective-plane-model for n = 14,
- a projective-space-model for n = 15,
- two new models that do not fall into any of the previously defined classes: one for n = 14 and one for n = 18.

Ongoing research aims to establish whether these new models can exist and constitute representatives of new classes.

Limitations of the SAT-based approach

Limitations of the SAT-based approach

• Current SAT-based method becomes infeasible beyond n = 18 due to extreme memory requirements (e.g., > 100GB input for n = 18).

Limitations of the SAT-based approach

- Current SAT-based method becomes infeasible beyond n = 18 due to extreme memory requirements (e.g., > 100GB input for n = 18).
- SAT instance for n = 19 estimated to require > 300GB, exceeding current hardware limits.