<u>Project Report: Determination of Heat of</u> <u>Combustion Using a Bomb Calorimeter</u>

Course: Heat transfer

Instructor: Dr. Sourav Sarkar Department of

Mechanical Engineering Jadavpur University

Students: 1) Ratul Chakraborty Department of

Mechanical Engineering Jadavpur University

Students: 2) Shaswata Ghosh Department of

Mechanical Engineering NIT Durgapur

INDEX

1. Aim / Objective

o To determine the heat of combustion of a given substance using a bomb calorimeter.

2. Theory / Background

- Principles of calorimetry
- Description and working of a bomb calorimeter
- Energy conservation laws
- Importance of heat of combustion
- Related equations

3. Apparatus and Materials

- o Bomb calorimeter
- Oxygen cylinder
- Sample substance (Desal)
- o Water
- o Thermometer or temperature sensor
- Ignition system
- Calorimeter bucket

4. Procedure

- Preparation of sample
- Setup of calorimeter
- o Ignition and combustion
- Measurement of temperature rise
- Calculation steps

5. Observations and Data

- Mass of sample
- o Initial and final temperature
- Calibration data
- Heat capacity of calorimeter

6. Calculations

- o Heat released by combustion
- Correction factors
- o Final heat of combustion (in kJ/mol or kJ/g)
- Comparison with theoretical values

7. Results

- Heat of combustion
- Percentage error

8. Conclusion

- Summary of outcomes
- Key takeaways
- Applications of bomb calorimetry

9. Precautions

- Safety measures
- o Handling of high-pressure oxygen
- Calibration accuracy

Title:

Determination of Calorific Value of a Fuel Using Bomb Calorimeter

Objective:

To determine the **gross calorific value (GCV)** of a given fuel sample using a **bomb** calorimeter and understand the energy content available in the fuel.

Theory:

A **Bomb Calorimeter** is a device used to measure the heat of combustion of a substance. When a known mass of fuel is burned in an oxygen-rich environment inside the bomb, the heat released is absorbed by the surrounding water and calorimeter parts. The temperature change in water is used to calculate the energy content.

Calorific Value is defined as:

"The amount of heat produced by the complete combustion of a unit mass of fuel."

Formula Used:

Heat released (Q)=(W+w)× Δ T

Where:

- W = Mass of water (g)
- w = Water equivalent of calorimeter (g)
- ΔT = Rise in temperature (°C)

Calorific Value (CV)=
$$\frac{(W+w)\Delta T}{m}$$

Where:

m = Mass of fuel burnt (g)

Apparatus Required:

· Bomb calorimeter setup

- Fuel sample (e.g., benzoic acid, kerosene, or coal)
- Oxygen cylinder
- Thermometer or temperature sensor
- Water
- Fuse wire
- Weighing balance

Equipment	Description
Arduino Uno	Microcontroller board for processing signals
MAX6675 Module	Thermocouple amplifier with digital output
K-Type Thermocouple	For measuring temperature up to 1100℃
USB Cable	For Arduino connection
Laptop with Arduino IDE	For coding and serial monitoring
Stopwatch	For manual time tracking
Bomb Calorimeter setup	For combustion energy measurement
Transient Heat Block or Rod	For transient heat conduction experiment

```
diff

K-Type Thermocouple → MAX6675 Amplifier → Arduino Uno

MAX6675 to Arduino:
    VCC → 5V
    GND → GND
    SCK → Pin 13
    CS → Pin 10
    SO → Pin 12
```

```
#include <max6675.h>
     // Define pins for MAX6675
     int thermoSO = 8;
     int thermoCS = 9;
     int thermoCLK = 10;
     MAX6675 thermocouple(thermoCLK, thermoCS, thermoSO);
     void setup() {
10
       Serial.begin(9600);
11
       delay(500); // Allow sensor to settle
12
13
14
       // PLX-DAQ header (optional but helps)
       Serial.println("CLEARDATA");
15
       Serial.println("LABEL,Time,Temp_C,Temp_F");
16
17
18
     void loop() {
19
       float tempC = thermocouple.readCelsius();
20
       float tempF = thermocouple.readFahrenheit();
21
22
23
       // Send data to PLX-DAQ: TIME is built-in
24
       Serial.print(tempC);
                                  // CH1 = Temp C
       Serial.print(",");
25
       Serial.println(tempF); // CH2 = Temp F
27
       delay(1000); // every 1 sec
28
```

Experimental Procedure:

- 1. Weigh a known quantity of the fuel sample (~1g) and place it in the crucible inside the bomb.
- 2. Attach the fuse wire and add a few drops of water inside the bomb to absorb acid gases.
- 3. Fill the bomb with pure oxygen to about 20–30 pound.
- 4. Place the bomb in the calorimeter filled with a known quantity of water.
- 5. Note the initial temperature of water.
- 6. Ignite the fuel using an ignition circuit.
- 7. Stir continuously and record the final temperature after combustion stabilizes.
- 8. Calculate the temperature rise and apply the calorific value formula.

Observation Table:

S. No	Parameter	Value
1	Mass of fuel (m)	1.00 g
2	Mass of water (W)	2000 g
3	Water equivalent of calorimeter (w)	500 g
4	Initial Temperature (T ₁)	41.5 c
5	Final Temperature (T ₂)	52.75 c
6	Temperature Rise (ΔT)	11.25 c

Calculations:

Given:

- W=2000g
- ΔT=11.25 °C
- m=1.00m = 1.00m=1.00 g
- gcv= 22973 kj/kg

Result:

The calorific value of the given fuel was found to be:

22793 kJ/kg

Graph:

A simple **Temperature vs Time** graph can be plotted.

Y-Axis: Temperature (°C)

X-Axis: Time (minutes)

The temperature rises sharply during combustion and then levels off.

Conclusion:

- The bomb calorimeter efficiently measured the gross calorific value of the fuel.
- The obtained calorific value (36.61 kJ/g) indicates that the fuel has **high energy content**, suitable for industrial or domestic use.
- The experiment emphasizes the importance of precise measurements and insulated conditions to minimize heat loss.

Precautions:

- Ensure the bomb is sealed properly before filling with oxygen.
- Handle oxygen cylinder with care.

- Stir water continuously for even heat distribution.
- Use accurate weighing balance and calibrated thermometer.