

Predicting scalar coupling constant

Nori Kaneshige

From Kaggle competition https://www.kaggle.com/c/champs-scalar-coupling

Motivations

- Current quantum mechanics is expensive and time consuming to calculate scalar coupling constant (J coupling) calculation
- We want to gain structure insights faster and cheaper

Scalar coupling Types

Data sets from Kaggle

- dipole_moments.csv
- magnetic_shielding_tensors.csv
- mulliken_charges.csv
- potential_energy.csv
- structures.csv (3D coordinates of 130,775 small molecules)
- train.csv (85,003 small molecules)
- test.csv (45,772 small molecules)

Approach to predict scalar coupling Surrounding atoms as feature set

Approach to predict scalar coupling Surrounding atoms as feature set

Approach to predict scalar coupling Distances among atoms as feature set

Data Before Process

train.csv:

	molecule_index	atom_index_0	atom_index_1	type	scalar_coupling_constant
id					
10	2	1	0	1JHN	32.688900
11	2	1	2	2ЈНН -	-11.186600
12	2	1	3	2ЈНН -	-11.175700
13	2	2	0	1JHN	32.689098
14	2	2	3	2ЈНН -	-11.175800
15	2	3	0	1JHN	32.690498

structure.csv:

	molecule_index	atom_index	atom	x	У	z
5	2	0	N	-0.040426	1.024108	0.062564
6	2	1	H	0.017257	0.012545	-0.027377
7	2	2	H	0.915789	1.358745	-0.028758
8	2	3	H	-0.520278	1.343532	-0.775543

Data After Process

```
X_train:
[[1.
                        0.
                                              0.
                                                         1.01719
                                                                    1.6185228
  1.0171872 1.6187098 1.0172079 1.6187056 0.
                                                         0.
                                                                    0.
                        0.
                                                         0.
  0.
                                                         1.0171872 1.6185228
 [1.
                        0.
                                              0.
             1.6187056 1.0172079 1.6187098 0.
                                                         0.
                                                                    0.
  0.
                        0.
                                                         0.
                                                                    0.
  0.
                        0.
                                              0.
                                                         1.0172079 1.6187056
 [1.
  1.0171872 1.6187098 1.01719
                                   1.6185228 0.
                                                         0.
                                                                    0.
  0.
                        0.
                                   0.
                                              0.
                                                         0.
                                                                    0.
  0.
             0.
                       11
```

```
y_train:
[32.6889 32.6891 32.6905]
```

Experiment Learning Algorithms With only 1JHN coupling type

Algorithm	Mean Absolute Error (log)
KMeans	3.852
DBSCAN	4.378
Lasso	1.338
Ridge	0.506
ElasticNet	1.898
MLPRegressor	-0.795
KerasRegressor	0.323
DecisionTreeRegressor	0.022
RandomForestRegressor	-0.761
GradientBoostingRegressor	-0.795
XGBRegressor	-0.969
LGBMRegressor	-0.960

AdaBoost and Gradient Boosting

AdaBoost

Gradient Boosting

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

The most winning algorithm on Kaggle

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.

LightGBM, Light Gradient Boosting Machine

LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed and efficient with the following advantages:

- · Faster training speed and higher efficiency.
- · Lower memory usage.
- Better accuracy.
- · Support of parallel and GPU learning.
- · Capable of handling large-scale data.

#Train_Set	#CV_split	#Feature
> 4,658,000	3	23

Parameters	settings	
objective	'regression'	
metric	'mae'	
boosting_type	'gbdt'	
<u>learning_rate</u>	<u>0.2</u>	
num_leaves	128	
max_depth	<u>9</u>	
subsample_freq	1	
subsample	0.9	
reg_alpha	0.1	
reg_lambda	0.3	
colsample_bytree	1.0	
n_estimaters	1500	

Result: LightGBM

The best publicly available score on Kaggle: 0.039 (-3.24)

Coupling_Type	CV_Train_MAE	CV_Validation_MAE (log)	Target_value_Mean	Target_value_STD
1JHN	0.119	0.385 (-0.96)	47.528	10.925
1JHC	0.514	0.778 (-0.24)	94.962	18.287
2JHH	0.092	0.180 (-1.71)	-10.271	3.993
2JHN	0.056	0.147 (-1.92)	3.109	3.667
2JHC	0.233	0.308 (-1.18)	-0.276	10.550
ЗЈНН	0.113	0.176 (-1.73)	4.772	3.712
3JHC	0.275	0.340 (-1.08)	3.687	3.076
3JHN	0.042	0.113 (-2.18)	0.994	1.319

MAE: Mean absolute error STD: Standard deviation

Potential Improvement

- Tune LGB hyperparameters
- Tune number of atoms for each type (include more surrounding atoms)
- Try to add other features
- Try to add categorical features for atom types (one-hot-encoding etc)
- Try other tree libraries