Molecular Design and Synthesis

- > Links to Session 1: Light/Matter
- > History of Making Things
- > Structure and Reactivity 101
- > Design Process/Matter Lifecycle
- > Polymeric Metal Complexes

> Design Process/Matter Lifecycle

- Target molecule
- Synthetic strategy
- Chemicals
- Laboratory notebook
- Reaction setup
- Isolation
- Purification
- Then where?

> Design Process/Matter Lifecycle

- Target molecule
- Synthetic strategy
- Chemicals
- Laboratory notebook
- Reaction setup
- Isolation
- Purification
- Then where?

Traditional Synthesis

Combinatorial Synthesis

Target molecule

Isolation: From marine sponges, Minale et al, University of Naples. 2.5 kg of sponge furnished 3.5 mg of the natural product.

Activity: Callipeltoside A inhibit in vitro proliferation of cancer cells; HIV infected cell protection.

Previous Total Synthesis: Paterson, Evans, and Trost. Fragment Synthesis: Hoye, Olivo

From: Patrick Eidem, Marshall group, UVA Chemistry Department

•Strategy: Retrosynthetic analysis

From: Patrick Eidem, Marshall group, UVA Chemistry Department

PivO

Chemicals: Selection

• Chemicals: Selection

200	Tetrabromobisphenol A, see page 1102	33,039-6, 4,4'-Isopropylidenebit	s(2,6-dibromophenol)	TOTAL S	55
41,122-1	2,2°,6,6°-Tetrabromobispheno	ol A dialityl ether, 99% [25327-	99-3]	250g 1kg	34.50 97.80
12747-6	IODITANT	ol A ethoxylate (1 EO/phenol)	ib 136-138-	100g 500g	26.00 86.50
The same of	FW 425.72 mp 189-193° Beil 6. Safety 2,3232B R&S 1(1),1295A	00-500 ppm monomethyl ether hyd 88-47-1] (tetrabromopyrocatech 786 FT-NMR 1(2),288C FT-IR 1(1 RTECS# UX2430000 IRRITANT	ioi) C ₆ Br ₄ -1.2-(OH) ₂ .),1103C	5g 25g	20.70 68.60
1000000	a 4 5 6-Tetrabromo-o-cresol,	98% [576-55-6] CH ₃ C ₆ Br ₄ OH FI Index 13,9260 FT-NMR 1(2) 2930	N 423.75	100g 500g	34.30 111.40
3	3,3 ,5 -Tetrabromo-ri-cres	colsulfonephthalein, see Brom	ocresol Green		
0	^ !	Qi	0		
10-C-CHy	N N + CHCI + XH ₂ O		сн _а сон,)-OH	
0-0-04	O OH2-E-OH	Ol- Holic		O POCH	2-{\rightarrow}
	40,040-8	33,562-2	44	741-2	
	Q _{CH,CCH}	0.	HLOCHL		
18	()-CH ₂ O-()+-F		0H20	cci ₃	

Chemicals: ordering

Chemicals: organics

Chemicals: Inorganics

Chemicals: Solvents

solvent cabinet

solvent stills

solvent columns

•Workspace: Bench

•Workspace: Fume hood

•Workspace: Glovebox

Laboratory notebook

Reaction setup

Isolation

Rotary evaporator

Separatory funnel

Purification

•Characterization: ¹H NMR spectroscopy

Characterization: UV/Vis spectroscopy

Iron Tris(bpy) PLA

Characterization: thermal methods

thermal analysis: decomposition, melting/glass transition temperature (also: elemental analysis)

•Synthetic Scheme: C₃-C₉ Fragment

PMB0

-78 °C to -50 °C, 30 h,

74%

From: Patrick Eidem, Marshall group, UVA Chemistry Department

ŌTBS

-78 °C, 3 h, 100%

Reaction optimization: selectivity

Metal	Р	Ligand	Yield	R : S
Li	TBDPS	None	63	1:1
MgBr	TBDPS	None	63	3:1
ZnBr	TBDPS	None	68	4:1
ZnBr	TBDPS	(1R, 2S) NME	73	13:1

From: Patrick Eidem, Marshall group, UVA Chemistry Department

-Then where? In the literature

*Graphic from American Chemical Society Website

-Then where? on the shelf

-Then where? chemical waste

-Then where? fumes

-Then where? Practical uses

- drug testing
- property screening
- many other applications

•New Approach: Combinatorial synthesis

•New Approach: Combinatorial synthesis

•Manual vs robots: costs involved

•1st Combinatorial chemical library

High throughput screening

Combinatorial synthesis laboratory

Robot and multi-well trays

