保護継電工学

と表される。巡回形フィルタの伝達関数は、

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} \dots + a_N z^{-N}}{1 + b_1 z^{-1} + b_2 z^{-2} \dots + b_N z^{-N}} = \frac{\sum_{k=0}^{N} a_k z^{-k}}{1 + \sum_{k=0}^{N} b_k z^{-k}}$$
(6.7)

と表され,いずれも加算と定数乗算と遅延の基本演算の組合せである。Nをフィル タの次数と呼ぶ。一次の非巡回形と巡回形フィルタの例をプロック図で表すと第6. 9 図のようになる。

(b) 巡回形フィルタ 第6.9図 ディジタルフィルタの構成 (a)非巡回形フィルタ

ディジタル形継電器では、資算が簡単な非巡回形が使用されている。その主なも のとして,差分・加算・積分フィルタがあり,演算式,伝達関数,ゲイン・位相の 周波数特性を第61妻に示す。伝達関数は,たとえば差分フィルタの場合,演算式

第6.1表 各種ディジタルフィルタ

位相	$\frac{\pi}{2} - \frac{k\omega T}{2}$	- kwT	kwT
ザイン	$2 \left \sin \frac{k\omega T}{2} \right $	$2 \left \cos \frac{k\omega T}{2} \right $	$\sin\frac{(k+1)\omega T}{2}$ $\sin\frac{\omega T}{2}$
任達関数	1-2-4	1+2-4	$\frac{1-z^{-(k+1)}}{1-z^{-1}}$
質類	y(nT) = x(nT) - x(nT - kT)	y(nT) = x(nT) + x(nT - kT)	$y(nT) = x(nT) + x(nT - T) + \cdots + x(nT - kT)$
71118	老	故 位	4
	資、算、式 一、伝達関数 ゲイン	演 算 式 に達開数 r イン $y(nT)=x(nT)-x(nT-kT)$ $1-z^{-t}$ $2 \left \sin \frac{k\omega T}{2} \right $	演 算 式 伝達関数 ゲイン $y(nT) = x(nT) - x(nT - kT)$ $y(nT) = x(nT) + x(nT - kT)$ $1+z^{-k}$ $2 \cos \frac{k\omega T}{2}$

6.2 ディジタル形継電器の動作原理

111

y(nT) = x(nT) - x(nT - kT) を2変換して

$$Y(z) = X(z) - X(z) z^{-k}$$

(8.9)

(6.9)

..
$$H(z) = \frac{Y(z)}{X(z)} = 1 - z^{-1}$$

として得られる。周波数特性は,z=eioTと置いて

$$H(\omega) = 1 - e^{i\hbar\omega T} = 1 - (\cos k\omega T - j \sin k\omega T)$$
 (6.10)

から求めることができる。

一次差分フィルタ,一次加算フィルタ, 5 次積分フィルタのゲイン特性と位相特 性を第6.10図, 第6.11図に示す

第6.10 図 ディジタルフィルタのゲイン特性

ディジタルブィルタの位相特性 第6.11区

アナログ形低域フィルタも欠くことができないので,フィルタ効果としては,ディジ ディンタル形継電器としては、サンプリングによる折り返し誤差を避けるための タルフィルタだけでなく,この低域フィルタも考慮して検討する必要がある。 として示し亢ある。

Αħ

演算原理

ごの演算処理の方法 要求されるのは言うまでもない。このため,ディジタルプロセッサは,演算処理時 ディジタル形継電器は, サンプリング・A/D 変換されたデータから, 事故検出を には種々の方式が考えられているが,保護継電器という立場から,高速・高精度が 行うため、適切な演算処理を施してから判断する必要がある。 間が短いことが要求される。

数点の方向や事故点までのインピーダンスを判定する位相検出や絶対値比較のため の演算原理を第6.2表に示す。この表に示したものは,いずれも基本波の特長を利 静止形継電器と同様に,事故時の電流や電圧の大きさを判定するレベル検出,事 用した演算原理で,高調波に対してディジタルフィルタ効果もある。演算式は, ンプリング周波数が、系統周波数の12倍(サンプリング間隔 30°)の場合を示 ノブリングされたデータ x(nT)z-" について

 $x_0 = x(0), x_1 = x(T)z^{-1}, x_2 = x(2T)z^{-2},$

第6.2表 基本彼ペースの領算原理

は、絶対値比較式の距離継電器にも適用されている。

				1		l		-		
大 式	*	烁	每	Ħ	所要サンプリング数	整	* * * * * * * * * * * * * * * * * * *	使用目的後に移るに発え、大は出り出を出る出を受し	第位 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	的 矩 敬
123 H	4	$X = x_0 + x_{-3} + k x_0 - x_{-3} $ $(k = \sqrt{2} - 1)$	1) $ x_0 - 1$		2 (4 ・電腦)	±5.5% 4 相 全茂整流	加算フィンタ	Ö		
润 加	Ω .	$X = \sum_{n=0}^{5} x_{-n} $			6 (1 + 4 2)	±1.7% 6 相 全改整流	積分フィルタ	0		
戽	υ, ′	$X = \sum_{n=0}^{2} \left\{ x_{-n} + x_{-n-3} + k \right\}$	$\sum_{n=0}^{2} \left\{ x_{-n} + x_{-n-3} + k x_{-n} + x_{-n-3} \right\}$		ル間連続	±0.6% 12 相 全硫整流	積がフィルタ	. 0		0
114	#10	$X^2 = x_0^2 + x_{-3}^2$	2		2	-8-		Ö		
- +2	i 加	$XY \cos \theta = x_0 y_0 + x_{-3} y_{-3}$	0 y 0 + x - 3 y - 3	-	(1+1)	%	加算 7.1.7.9		0	
·	戽	$XY \sin \theta = x_0 y_{-3} - x_{-3} y_0$	03-3-x-330		E				Ö	1.

フィルタ効果はB方式より大 精度の良い B,C 方式 基本波に対しては一種の多相整流と同様の精度で直流に変換し 応答速度は 1/4 サイク ±5.5%となる。 精度を儀 性にして、k=0.5 にすれば,演算処理時間を短縮できる。B方式は,面積形とも呼 半波の面積計算に等しく, 半波のサンプリング数が6の場合, 精度は6相全 高調波に対しては積分フィルタの効果があり,嶺算処理時間も前サンプリング時の 計算結果を記憶しておけば、加算・減算各1回で済む。C方式は, A方式を過去3 **破整流のリブル分に相当し, ±1.7%となる。 応答速度は 1/2 サイクルとなるが,** サンテル分について加算したもので、精度は12相全波整流のリブル分に相当し、 そのリブル分がサンプリング位相による誤差に対応する。 きい。A,B,C方式は,いずれもレベル検出に使用できるが, 90° 間隔の2サンプルデータだけで演算するもので、 ルと速いが,精度は4相全波整流のリブル分だけあり, 0.6%と小さい。「応答速度はB方式と同じであるが, ようとするもので、 整流加算方式は,

も1/4 サイクルで速い。2入力エとツの積を腐算する場合には,2入力間の位相差 同じ原理である。基本波の積積算の結果発生する第二調波は,加算フィルタで除去 する。整流加算方式で発生するサンプリング位相による誤差は全くなく,応答速度 を θ とすると, $XY \cos \theta$ や $XY \sin \theta$ の演算ができ,これの正負判定によって位 積加算方式は、基本波の積領算を行うもので、電磁形継電器の誘導円筒形要素 相検出を行ったり、有効・無効電力の計算に利用できる。掛算の必要があるため、 演算処理時間12整流加算方式に比べて不利であるが、別用性が広い。

ソナル形積加算方式も考案されている。いずれも応答速度が第62麦のものより速 質加算方式の 90° 前のデータの代わりに使用する微分加算形方式や, 1 サンプル前 高調波に対するフィルタ効果が小さく、演算処理時間が長くかかる欠点があ のデータと現データから三角関数を用いて積加算方式と同じ出力を頃算する連続サ 6.2表以外にも,前後のサンプリングデータから徴係数を折線近似で算出し, 1.25,

紙6.2 電圧・電流の基本波ベクトルを利用し、 図の積加算方式による位相検出や整流加算方式による絶対比較によって、 距離継電器の演算方式としては,

計算方法	$Z^{2} = \frac{V^{2}}{I^{2}}$ $R = \frac{VI\cos\theta}{I^{2}}$ $X = \frac{VI\sin\theta}{I^{2}}$	$v = Ri + L \frac{di}{dt}$ $\frac{dv}{dt} = R \frac{di}{dt} + L \frac{d^{3}i}{dt}$	$\int_0^T v dt = R \int_0^T i dt + L \int_0^T di$ $\int_{-T} v dt = R \int_{-T}^0 i dt + L \int_{-T}^0 di$ $\int_{-T} v dt = R \int_{-T}^0 i dt + L \int_{-T}^0 di$	v,i について直交変換 $R = \frac{V_R I_R + V_X I_X}{I_R^2 + I_X^2}$ V_R , V_X , I_R , I_X $X = \frac{V_X I_R - V_R I_X}{I_R^2 + I_X^2}$
田	献	Α.	<u>.</u> .	₩.
通	, , , , , , , , , , , , , , , , , , ,	4 8 + \$	回 5 6 7 6 7	画

め設定したインピーダンスの内外を間接的に判定する静止形継電器と同様な方法が可能である。また,ディジタルプロセッサの計算能力を利用して,事故点までのインピーダンスを直接計算する方法があり,第6.3表に示す。

ベクトル計算法は,電圧・電流の基本波ベクトルを用いて計算するもので,積加算方式,微分加算方式,連続サンブル形積加算方式などを利用できる。

回路方程式法は, R と L を未知数にした連立方程式をつくって解くものであるが, 連立方程式のつくり方にいろいろな方法がある。原徴分方程式とこれをさらに数分または積分した方程式と連立させる方法と, サンブリング時刻の異なったデータを用いて連立させる方法とがある。第 6.3 表には, 前者の徴分形の例をAに, 後者の積分形についての例をBに示す。回路方程式法は, 応答速度が速く, 積分を利用したものは, 高調波に対するフィルタ効果が大きく計算精度が高い。

直交変換法は,フーリエ変換,ウォルシュ変換などによって,電圧・電流を直交

6.3 ディジタル形織電器のシステム設計

115

変換し,その成分を用いて R, X を算出するもので,フォルタ効果は大きいが,応 答速度が遅い。

以上のインピーダンス直接計算法は、いずれも演算処理時間が長くかかるので、インピーダンス領域判定段数の多いものや、複雑な領域判定が必要な距離継電器に適している。また、インピーダンスの数値そのものを出力する必要のあるロケータや事故記録用に有効である。

6.3 ディジタル形継電器のシステム設計

6.3.1 ディジタル形様電器のソフトウェア構成

ディジタル形継電器のソフトウェアの構成は、事故を検出するためのプログラムと, これによって始動されるタイマ・ロジックシーケンスとから成る。 前者 は, 6.2 節 の 演 算 原 理を主体に実行するもので, 数値計算主体のソフトウェアとなるが, 後者は論理演算主体のソフトウェアとなる。

事故を検出するためのソフトウェア構成の基本フローチャート(流れ図)は第6.12図のようになる。系統から A/Dの変換されたデータをデータメモリに取り込み、演算原理による継電器演算を行い、整定メモリデータを参照して動作判定をし、不動作であれば、再び新しい入力データの取込みに入る。判定が動作であれば、出力回路を駆動し、次の入力データの取込みに入る。

 (D)
 (スタート)

 (理)
 人力データ取込み

 (財)
 (対)

 (対)
 (対)

継電器演算のブロックの中は,実際のディジタル形継電

器では,多数の継電器要素の演算を行う必要があるので、 第6.12図 ディジタル各要素の演算は直列になり,全演算時間は長くなる。この 形継電器フェーチャートため,高速度を必要とするディジタル形継電器では,サンプリング周期内に全演算を終了し,次の入力データの取込みができるようにする必要があるが、動作速度に余裕がある場合は,全継電器要素をnグループに分割し,nサンプリングごとに演算する方法もある。

第6.13 図 に三相の短絡・地絡距離継電器の例を示す。 各相の演算が順次実行されるが、全相の演算時間がサンプリング周期以内に終了できない場合には、1 相分