Computerphysik WS 2012/2013

Prof. Dr. Roland Netz, FU Berlin

Übungsblatt 10: Partielle Differentialgleichungen

Suliman Adam, Klaus Rinne 4. Januar 2014

Allgemeine Hinweise

Abgabetermin für die Lösungen ist

• Sonntag, 12.01.2014, 24:00 Uhr.

10.1 Teilchendiffusion

Die Diffusionsgleichung für eine Teilchenkonzentration c(x,t) in 1D lautet:

$$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2},\tag{1}$$

wobei D die Diffusionskonstante ist.

Durch Reskalierung von Zeit und Ort kann aus Gleichung 1 eine dimensionslose Wellengleichung erhalten werden:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \tag{2}$$

Wir wollen die Diffusion auf einem Intervall [-1/2; 1/2] untersuchen. An den Intervallgrenzen seien reflektierende Wände angebracht, d.h. der Fluss $\frac{\partial}{\partial t}u(x=\pm 1/2,t)$ an den Grenzen ist null für alle Zeiten.

Für die Anfangsverteilung gilt:

$$u(x, t = 0) = \frac{U}{2} \exp(-|x|U),$$
 (3)

wobei der Parameter U die Peak-Amplitude bestimmt.

Gleichung 2 lässt sich für diese Anfangs- und Randbedingungen durch einen Separationsansatz lösen:

$$u(x,t) = \sum_{n=0}^{\infty} f_n(x) g_n(t)$$
 (4)

wobei die Ortsabhängigkeit durch Sinus und Cosinus mit den Koeffizienten A_n und B_n beschrieben wird:

$$f_n(x) = A_n \sin(2\pi nx) + B_n \cos(2\pi nx) \tag{5}$$

10.1.1 (4 Punkte)

Berechnen Sie analytisch die Koeffizienten A_n und B_n sowie die Funktionen $g_n(t)$ in Abhängigkeit der Peak-Amplitude U, indem Sie diese an die Rand- bzw. Anfangsbedingungen anpassen.

Hinweis: Verwenden Sie die Orthogonalität des Integrals

$$\int_{-1/2}^{1/2} \cos(\frac{m\pi}{L}x) \cos(\frac{n\pi}{L}x) dx = \delta_{mn} \begin{cases} 1/2 & m \neq 0 \\ 1 & m = 0. \end{cases}$$
 (6)

Plotten Sie u(x,t) für $t \in [0;0,01;0,02;0,03;0,04;0,05]$ für U = 10.

10.1.2 (3 Punkte)

Im Allgemeinen ist die Lösung von partiellen Differentialgleichungen wie (2) nur für einfache vorgegebene Startbedingungen möglich. Zur numerischen Lösung werden wir daher Gleichung (2) mit der expliziten Euler-Methode diskretisieren:

$$\frac{u_i(t_n + \delta t) - u_i(t_n)}{\delta t} = \frac{u_{i-1}(t_n) - 2u_i(t_n) + u_{i+1}(t_n)}{(\delta x)^2}.$$
 (7)

Durch Umsortieren und mit der Notation $u_i(t_n) = u_i^n$ erhält man schließlich

$$u_i^{n+1} = u_i^n + \frac{\delta t}{(\delta x)^2} \left(u_{i-1}^n - 2u_i^n + u_{i+1}^n \right).$$
 (8)

Implementieren Sie den Algorithmus (8), um die diskretisierte Lösung von (2) unter Berücksichtigung der Randbedingung und der Anfangsbedingung zu finden. Plotten Sie Ihre Ergebnisse wie in 10.1.1. Wählen Sie δx und δt geeignet.

10.1.3 (1 Punkte)

Das Schema (8) ist nicht immer konvergent. Verändern Sie den Parameter $r = \delta t/(\delta x)^2$. Geben Sie die notwendige Bedingung für die Konvergenz dieses Verfahrens an.

10.1.4 (3 Punkte)

Die Gleichung (7) lässt sich auch implizit diskretisieren:

$$\frac{u_i^n - u_i^{n-1}}{\delta t} = \frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{(\delta x)^2}.$$
 (9)

Man erhält also ein System von N Gleichungen,

$$-\frac{1}{(\delta x)^2}u_{i-1}^n + \left(\frac{1}{\delta t} + \frac{2}{(\delta x)^2}\right)u_i^n - \frac{1}{(\delta x)^2}u_{i+1}^n = \frac{1}{\delta t}u_i^{n-1}.$$
 (10)

Implementieren Sie eine Lösung des Problemes (2) durch Lösen des linearen Gleichungssystems (10). Beachten Sie auch hier entsprechend die Randbedingungen. Plotten Sie Ihre Ergebnisse wie in 10.1.1.

10.1.5 (1 Punkt)

Variieren Sie auch hier die Schrittweiten δx und δt . Welche Aussage können Sie über die Stabilität von (10) treffen?

10.1.6 (1 Punkt)

Vergleichen Sie den numerischen Aufwand der Vorwärtszeitschritt- und Rückwärtszzeitschritt-Methoden und erläutern Sie die Unterschiede.

10.1.7 (3 Punkte)

Eine Verbesserung der Genauigkeit lässt sich bewerkstelligen, indem man die rechte Seite von Gleichung (9) zwischen den Zeitpunkten t_n und $t_n - 1$ mittelt (Crank-Nicolson-Schema):

$$\frac{u_i^n - u_i^{n-1}}{\delta t} = \frac{1}{2} \left(\frac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{(\delta x)^2} + \frac{u_{i-1}^{n-1} - 2u_i^{n-1} + u_{i+1}^{n-1}}{(\delta x)^2} \right). \tag{11}$$

Man erhält also das lineare Gleichungssystem

$$-\frac{1}{2(\delta x)^2}u_{i-1}^n + \left(\frac{1}{\delta t} + \frac{1}{(\delta x)^2}\right)u_i^n - \frac{1}{(2\delta x)^2}u_{i+1}^n = \frac{1}{2(\delta x)^2}u_{i-1}^{n-1} + \left(\frac{1}{\delta t} - \frac{1}{(\delta x)^2}\right)u_i^{n-1} + \frac{1}{(2\delta x)^2}u_{i+1}^{n-1}. \quad (12)$$

Implementieren Sie eine Lösung des Problems (2) mittels des Crank-Nicolson-Verfahrens.

Wählen Sie die beiden Kombinationen $[\delta x = 0,01; \delta t = 10^{-5}]$ und $[\delta x = 0,01; \delta t = 0,01]$. Plotten Sie Ihre Ergebnisse wie in 10.1.1. für die beiden Kombinationen. Erläutern Sie Ihre Beobachtungen.

10.1.8 (4 Punkte)

Verwenden Sie anstelle von Problem (2) folgende Gleichung:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \beta u \exp(-|x - 0, 5|\kappa), \tag{13}$$

mit $\beta = 5000$ und $\kappa = 10$. Implementieren Sie die Lösung des Problems (13) für eines der Differenzenverfahren. Verwenden Sie die gleichen Rand- und Anfangsbedingungen wie beim Problem (2). Plotten Sie Ihre Ergebnisse wie in 10.1.1. Plotten Sie außerdem die mittelere Konzentration $\int c(x,t) dx$ und die mittelere Position $\int x c(x,t) dx$ als Funktion der Zeit bis zu t=0,2.