Solución:

Actividad 3: Técnicas de dispersión. Direccionamiento calculado lineal

1- Un fichero COMPONENTS con *Numcomp* como clave de **direccionamiento calculado** contiene registros con los siguientes valores de Numcomp: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428, 3943, 4750, 6975, 4981, 9208.

Cargar estos registros en ficheros con direccionamiento **calculado lineal**. Empezar con un solo bloque de disco, utilizando la función hash $h_0 = K \mod 2^0$, y mostrar cómo crece el fichero y cómo cambian las funciones hash a medida que se insertan registros.

Asumir que los bloques se dividen siempre que se produce un desbordamiento, y mostrar el valor *n* en cada etapa.

Respuesta:

Inicialmente:

- el tamaño del fichero es M = 1 bloque
- el siguiente bloque a expandir es n= 0
- h₀ = K mod 2^oes la función de dispersión para asignar bucket a un nuevo registro
- h_1 = K mod 2^1 es la función de expansión para reasignar registros en el momento de la expansión

FIGURAS 1 y 2:

 h_0 (record1) = 2369 mod 2^0 = 0

 h_0 (record2) = 3760 mod 2^0 = 0

 h_0 (record3) = 4692 mod $2^0 = 0$ OVERFLOW \Rightarrow dividir el cubo señalado por n (es decir, el cubo

0) mediante $h_1(K)$ creando el cubo $1 \Rightarrow n++ \Rightarrow n=1$

 h_1 (record1) = 2369 mod 2^1 = 1

 h_1 (record2) = 3760 mod 2^1 = 0

 h_1 (record3) = 4692 mod 2^1 = 0

Como n = M \Rightarrow Se ha aplicado h_1 a todo el fichero (formado por 1 único bloque, en este caso) \Rightarrow **EXPANSIÓN COMPLETA** \Rightarrow

- o el nuevo tamaño del fichero es M = 2 bloques
- o el siguiente bloque a expandir es n= 0
- h₁ = K mod 2¹ es la función de dispersión para asignar bucket a un nuevo registro
- o h_2 = K mod 2^2 es la función de expansión para reasignar registros en el momento de la expansión

```
FIGURAS 2 v 3:
```

 h_1 (record4) = 4871 mod 2^1 = 1

 h_1 (record5) = 5659 mod 2^1 = **1** OVERFLOW \Rightarrow dividir el cubo 0 mediante h_2 (**K**) creando el cubo $2 \Rightarrow n++ \Rightarrow n=1$

 h_2 (record2) = 3760 mod 2^2 = 0

 h_2 (record3) = 4692 mod 2^2 = 0

 h_1 (record6) = 1821 mod 2^1 = **1** OVERFLOW \Rightarrow dividir el cubo 1 mediante h_2 (**K**) creando el cubo $3 \Rightarrow n++ \Rightarrow n=2$

 h_2 (record1) = 2369 mod 2^2 = 1

 h_2 (record4) = 4871 mod 2^2 = 3

 h_2 (record5) = 5659 mod 2^2 = 3

 h_2 (record6) = 1821 mod 2^2 = 1

Como n = M \Rightarrow Se ha aplicado h_2 a todo el fichero (formado por dos bloques 0 y 1) \Rightarrow **EXPANSIÓN COMPLETA** \Rightarrow

- o el nuevo tamaño del fichero es M = 4 bloques
- o el siguiente bloque a expandir es n= 0
- o h_2 = K mod 2^2 es la función de dispersión para asignar bucket a un nuevo registro
- o h_3 = K mod 2^3 es la función de expansión para reasignar registros en el momento de la expansión

FIGURAS 4 y 5:

 h_2 (record7) = 1074 mod 2^2 = 2

 h_2 (record8) = 7115 mod 2^2 = 3 OVERFLOW \Rightarrow dividir el cubo 0 mediante h_3 (K) creando el cubo 4 \Rightarrow n++ \Rightarrow n=1

 h_3 (record2) = 3760 mod 2^3 = 0

 h_3 (record3) = 4692 mod 2^3 = 4

 h_2 (record9) = 1620 mod 2^2 = 0 \Rightarrow como 0 < n=1 \Rightarrow el cubo 0 ya está desdoblado \Rightarrow debe aplicarse la función $h_3(K)$

 h_3 (record9) = 1620 mod 2^3 = 4

 h_2 (record10) = 2428 mod 2^2 = 0 \Rightarrow como 0 < n=1 \Rightarrow el cubo 0 ya está desdoblado \Rightarrow debe aplicarse la función h_3 (K)

 h_3 (record10) = 2428 mod 2^3 = **4** OVERFLOW \Rightarrow dividir el cubo 1 mediante $h_3(K)$ creando el cubo $5 \Rightarrow n++ \Rightarrow n=2$

 h_3 (record1) = 2369 mod 2^3 = 1

 h_3 (record6) = 1821 mod 2^3 = 5

FIGURAS 6 y 7:

 h_2 (record11) = 3943 mod 2^2 = 3 OVERFLOW \Rightarrow dividir el cubo 2 mediante h_3 (K) creando el cubo $6 \Rightarrow n++ \Rightarrow n=3$

 h_3 (record7) = 1074 mod 2^3 = 2

 h_2 (record12) = 4750 mod 2^2 = $2 \Rightarrow$ como $2 < n=3 \Rightarrow$ el cubo 2 ya está desdoblado \Rightarrow debe aplicarse la función $h_3(K) = K \mod 2^3$

 h_3 (record12) = 4750mod 2^3 = 6

 h_2 (record13) = 6975mod 2^2 = 3 OVERFLOW \Rightarrow dividir el cubo 3 mediante $h_3(K)$ creando el cubo $7 \Rightarrow n++ \Rightarrow n=4$

 h_3 (record4) = 4871 mod 2^3 = 7

 h_3 (record5) = 5659 mod 2^3 = 3

 h_3 (record8) = 7115 mod 2^3 = 3

 h_3 (record11) = 3943 mod 2^3 = 7

 h_3 (record13) = 6975 mod 2^3 = 7 (está en overflow, por lo que se mantiene en la lista de desbordamiento, pero **en este caso NO se hace expansión de cubos**)

Como n = M \Rightarrow Se ha aplicado h_3 a todo el fichero (formado por cuatro bloques) \Rightarrow

EXPANSIÓN COMPLETA \Rightarrow

- o el nuevo tamaño del fichero es M = 8 bloques
- o el siguiente bloque a expandir es n= 0
- o h₃ = K mod 2³ es la función de dispersión para asignar bucket a un nuevo registro
- o h_4 = K mod 2^4 es la función de expansión para reasignar registros en el momento de la expansión

FIGURA 8:

 h_3 (record14) = 4981 mod 2^3 = 5 h_3 (record15) = 9208 mod 2^3 = 0

ALTERNATIVAS A LA INSERCIÓN DE REGISTROS: FACTOR DE CARGA

Es más común establecer una política de desdoblamiento que especifica un *factor de carga del fichero* que dispara el desdoblamiento del bucket señalado por *n* (generalmente un porcentaje de carga de los buckets), en vez de realizar el desdoble cada vez que se produce una situación de overflow, como en el ejemplo anterior.

El *factor de carga l* se define como l = r/(bfr * N), donde r es el número actual de registros del fichero, bfr es el número máximo de registros que pueden encajar en un cubo, y N es el número actual de cubos del fichero. Las divisiones se pueden lanzar cuando l es mayor de un cierto umbral (p. ej, 0.9).

Por ejemplo, si el factor de bloqueo es 2 (como en el ejemplo anterior), la expansión de los bloques se lleva a cabo del siguiente modo:

```
Cuando N=1, l= r/(bfr * N) < 0.9 \Rightarrow r > 1.8 \Rightarrow desdoblar tras incluir el registro 2
Cuando N=2, l= r/(bfr * N) < 0.9 \Rightarrow r > 3.6 \Rightarrow desdoblar tras incluir el registro 4
Cuando N=3, l= r/(bfr * N) < 0.9 \Rightarrow r > 5.4 \Rightarrow desdoblar tras incluir el registro 6
```

ELIMINACIÓN DE REGISTROS

En caso de la **eliminación de registros**, es posible combinar bloques en orden inverso a como fueron creados. Las combinaciones se pueden lanzar cuando la carga cae por debajo de otro umbral (p. ej., 0.7).

REALIZACIÓN DE BÚSQUEDAS

Para analizar las ventajas de este modelo, a continuación se presenta el modo en que se realizan las búsquedas de registros.

```
Algoritmo: if \mathbf{n} = \mathbf{0} then v = h_j(K)
else {
v = h_j(K)
if \mathbf{v} < \mathbf{n} then v = h_{j+1}(K)
}
```

buscar en el cubo con valor de dispersión v (y su desbordamiento, si lo hay)

Ejemplo: Los ejemplos se basan en la situación mostrada en la Figura 7, donde existían 12 registros en el fichero. En este caso:

- n = 3
- la función de dispersión es h₂(k) = k mod 2²
- la función de expansión es $h_3(k) = k \mod 2^3$

```
Ej: búsqueda de r8 (7715)

n <> 0 \Rightarrow v = h_2(r8) = 7115 \mod 2^2 = 3

3 no es menor que n \Rightarrow buscar en el cubo 3 (y su desbordamiento, si lo hay)
```

```
Ej: búsqueda de r12 (4750)

n <> 0 \Rightarrow v = h_2 (4750) = 4750 \mod 2^2 = 2

2 es menor que n \Rightarrow v = h_3(r12) = 4750 \mod 2^3 = 6

buscar en cubo 6 (y su desbordamiento, si lo hay)
```