CSSS 512: Lab 6

Panel Data Models with Few Time Periods

2018-5-18

Agenda

- 1. Review of Nickell bias, dynamic panel data models, and GMM
- 2. Fixed effect and random effects models
- 3. Estimating dynamic panel data models
- 4. Simulating conditional forecasts
- 5. Plotting the results

Nickell bias

Recall that we can remove fixed effects by differencing:

$$y_{it} = \phi y_{it-1} + \alpha_i + \epsilon_{it}$$

$$y_{it} - \bar{y}_i = \phi (y_{it-1} - \bar{y}_i) + (x_{it} - \bar{x}_{it})\beta + (\epsilon_{it} - \bar{\epsilon}_{it})$$

This is the "within" estimator or fixed effects model.

Alternatively, we can include dummy variables for each group.

Nickell bias

However, we introduce bias when we difference the model in this way.

$$y_{it} - \bar{y}_i = \phi(y_{it-1} - \bar{y}_i) + (x_{it} - \bar{x}_{it})\beta + (\epsilon_{it} - \bar{\epsilon}_{it})$$

This is because \bar{y}_i is computed using the past y's. This is correlated with $\bar{\epsilon}_{it}$, which is computed using the past ϵ 's

Specifically, this creates bias in the LDV. If the other regressors are correlated with the LDV, then their coefficients may also be seriously biased.

Nickell bias

The degree of bias is order 1/T, so it is big for small T.

Furthermore,

- \blacktriangleright The bias increases as β decreases
- \blacktriangleright The bias increases as ϕ increases
- Small N is not the problem. Small T is the problem

Increasing N does not mitigate the problem. Purging serial correlation in the errors or getting the specification right (including other regressors) also doesn't solve the problem.

Instrumental variables

We therefore turn to instrumental variables.

Recall that an instrumental variable must fulfill two conditions: 1) it is correlated with x (relevance); 2) it is uncorrelated with ϵ (exogeneity). It must influence y only through x.

$$y_{it} - \bar{y}_i = \phi(y_{it-1} - \bar{y}_i) + (x_{it} - \bar{x}_{it})\beta + (\epsilon_{it} - \bar{\epsilon}_{it})$$
$$\Delta y_{it} = \phi \Delta y_{it-1} + \Delta x_{it}\beta + \Delta \epsilon_{it}$$

We use lagged levels and lagged differences of Δy_{it} as instruments for the LDV. These help to predict Δy_{it} but not $\Delta \epsilon_{it}$ if the errors are iid (see lecture slides for why).

Note: This is different than instrumenting x_{it} . We are not addressing the endogeneity that may exist there. One should not be conflated with the other.

Generalized Method of Moments

Estimation is done using GMM. The usual IV approach cannot handle the number of instruments.

To give a brief overview of the intuition behind GMM, consider a linear model:

$$y_t = \mathbf{x}_t \boldsymbol{\beta} + e_t$$

Recall that the following condition holds under Gauss-Markov.

$$E[\mathbf{x}_t \epsilon_t] = 0$$

Assume there exists some combination instrumental variables z_t that implies the following:

$$E[\mathbf{z}_t \epsilon_t] = E[\mathbf{z}_t (y_t - \mathbf{x}_t \boldsymbol{\beta})] = 0$$

Intuition: GMM attempts to find the β that makes this true.

Generalized method of moments

Population moment:

$$E[\boldsymbol{z}_t(y_t - \boldsymbol{x}_t\beta)] = 0$$

Sample moments:

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{z}_{t} (y - \mathbf{x}_{t} \boldsymbol{\beta})$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{z}_{1t} (y - \mathbf{x}_{t} \boldsymbol{\beta})$$

$$\vdots$$

$$\frac{1}{n} \sum_{t=1}^{n} \mathbf{z}_{Kt} (y - \mathbf{x}_{t} \boldsymbol{\beta})$$

We therefore have

$$oldsymbol{S}_{zy}-oldsymbol{S}_{zx}oldsymbol{eta}=0$$
 where

$$\mathbf{S}_{xy} = n^{-1} \sum_{t=1}^{n} \mathbf{x}_t y_t$$
 and $\mathbf{S}_{zx} = n^{-1} \sum_{t=1}^{n} \mathbf{z}_t x_t$

We solve for

$$\hat{oldsymbol{eta}} = oldsymbol{\mathcal{S}}_{z_{\mathsf{X}}}^{-1} oldsymbol{\mathcal{S}}_{x_{\mathsf{Y}}}$$

Generalized method of moments

$$\hat{oldsymbol{eta}} = oldsymbol{\mathcal{S}}_{\mathsf{zx}}^{-1} oldsymbol{\mathcal{S}}_{\mathsf{xy}}$$

Can be solved analytically. But we can also use an iterative search.

Anderson-Hsiao estimator: uses the twice and third lagged levels as instruments.

Arellano-Bond Difference GMM: uses Δy as the outcome and all available lagged levels as instruments in each period.

Arellano-Bover/Blundell-Bond System GMM: adds the available lagged differences as instruments.

```
# Clear memory
rm(list=ls())
# Load Libraries
library(plm)
                       # Econometrics package for linear panel models
library(nlme)
                       # Estimation of mixed effects models
library(lme4)
                       # Alternative package for mixed effects models
library(tseries)
                       # For ADF unit root test
library(simcf)
                       # For panel functions and simulators
library(tile)
                       # For visualization of model inference
library(RColorBrewer) # For nice colors
library(MASS)
                    # For murnorm()
source("helperCigs.R") # For graphics functions
# Load cigarette consumption data (Jonathan Gruber, MIT)
# Variables (see codebook).
# state year cpi pop packpc income tax avaprs taxs
data <- read.csv("cigarette.csv") #Load the dataset
data[1:5.]
```

```
### state year cpi pop packpc income tax avgprs taxs
## 1 AL 1985 1.076 3973000 116.4863 46014968 32.5 102.1817 33.34834
## 2 AL 1986 1.096 3992000 117.1593 48703940 32.5 107.9892 33.40584
## 3 AL 1987 1.136 4016000 115.8367 51846312 32.5 113.5273 33.46667
## 4 AL 1988 1.183 4024000 115.2584 55698852 32.5 120.0334 33.52509
## 5 AL 1989 1.240 403000 109.2060 60044480 32.5 133.2560 33.65600
```

```
library(Ecdat)
help(Cigarette)
```

```
# Quick inflation adjustment to 1995 dollars
inflAdjust <- function(x,cpi,year,target) {
    unique(cpi[vear==target])*x/cpi
  #Multiply x with cpi in target year then divide by cpi in observed year
#Make adjustments to state personal income
data$income95 <- with(data, inflAdjust(income, cpi, year, 1995))
#Average state, federal, and average local excise taxes
data$tax95 <- with(data, inflAdjust(tax, cpi, year, 1995))
#Average price, including sales taxes
data$avgprs95 <- with(data, inflAdjust(avgprs, cpi, year, 1995))
#Average excise taxes, including sales taxes
data$taxs95 <- with(data, inflAdjust(taxs, cpi, year, 1995))
# Create per capita income (in k)
data$income95pc <- data$income95/data$pop
# Create pretax price, 1995 dollars
data$pretax95 <- data$avgprs95 - data$taxs95
data[1:5,]
```

```
state year cpi
                         pop packpc income tax
                                                     avgprs
                                                                taxs
## 1
       AI. 1985 1.076 3973000 116.4863 46014968 32.5 102.1817 33.34834
## 2
       AL 1986 1.096 3992000 117.1593 48703940 32.5 107.9892 33.40584
## 3
      AL 1987 1.136 4016000 115.8367 51846312 32.5 113.5273 33.46067
## 4
       AL 1988 1 183 4024000 115 2584 55698852 32 5 120 0334 33 52509
## 5
       AL 1989 1 240 4030000 109 2060 60044480 32 5 133 2560 33 65600
    income95 tax95 avgprs95 taxs95 income95pc pretax95
## 1 65173615 46.03160 144.7257 47.23314 16.40413 97.49257
## 2 67723361 45.19161 150.1601 46.45118 16.96477 103.70893
## 3 69554378 43.60035 152.3025 44.88914 17.31932 107.41336
## 4 71754049 41.86813 154.6331 43.18869 17.83152 111.44437
## 5 73796599 39.94355 163.7759 41.36431
                                         18 31181 122 41162
```

attach(data)

```
setwd("~/desktop/plots")
statelist <- unique(state)
# Look at the consumption time series for each state
for (i in 1:length(statelist)) {#Create a for loop from 1 to the number of states (48)
    currstate <- statelist[i] #Make note of the state by number in the loop</pre>
    filename <- paste("tsPacksPCState",currstate,".pdf",sep="")
    #Create the file name of the plot
    pdf(filename,width=6,height=3,25)#Generate the PDF file
    plot(packpc[state==currstate],type="l",ylab="Packs Per Capita",
         #Generate the plot of packpc for the state by its number
    xlab="Year", main = paste("State", currstate) )
    dev.off() #Turn off the PDF device
# Look at the ACF of consumption for each state
for (i in 1:length(statelist)) {#Create a for loop from 1 to the number of states (48)
    currstate <- statelist[i] #Make note of the state by its number in the loop
    filename <- paste("acfPacksPCState",currstate,".pdf",sep="")
    #Create the file name of the plot
    pdf(filename, width=6, height=3.25) #Generate the PDF file
    acf(packpc[state==currstate]) #Generate the ACF plot of packpc for the state by its number
    dev.off() #Turn off the PDF device
# Look at the PACF of consumption for each state
for (i in 1:length(statelist)) {
    currstate <- statelist[i]
    filename <- paste("acfPacksPCState",currstate,".pdf",sep="")
    pdf(filename,width=6,height=3,25)
    pacf(packpc[state==currstate])
    #Generate the PACF plot of packpc for the state by its number
    dev.off()
```

```
# Check for a unit root in each country
PPtest.pvalues <- rep(0,length(statelist))
#Create empty vectors for PP test p-values
adftest.pvalues <- rep(0.length(statelist))
#Create empty vectors for adf test p-values
for (i in 1:length(statelist)) {#Create a for loop from 1 to the number of states
    currstate <- statelist[i] #Make note of the state by its number in the loop
    # Check PP unit root test, omitting errors due to short series
    curPP <- try(PP.test(packpc[state==currstate])$p.value)</pre>
    #Find the v-value of the PP test for the state
    if (any(class(curPP)=="try-error")) curPP <- NA
    #Make note if there is an error in the PP test, if so, fill with an NA
    PPtest.pvalues[i] <- curPP
    #Store the p-value of the PP test in the PP test vector
    curadf <- try(adf.test(packpc[state==currstate])$p.value)</pre>
    #Do the same with the adf test results
    if (any(class(curadf)=="try-error")) curadf <- NA
    adftest.pvalues[i] <- curadf
```

hist(PPtest.pvalues)

Plot a histogram of the p-values

Histogram of PPtest.pvalues

hist(adftest.pvalues)

Plot a histogram of the p-values

Histogram of adftest.pvalues


```
# Alternative model specifications
model1 <- packpc - income95pc + avgprs95
model2 <- packpc - income95pc + pretax95 + taxs95
model3 <- log(packpc) - log(income95pc) + log(avgprs95)

# Simple linear models
lm.res1 <- lm(model1, data)
lm.res2 <- lm(model2, data)
lm.res3 <- lm(model3, data)
summary(lm.res1)</pre>
```

```
##
## Call:
## lm(formula = model1, data = data)
##
## Residuals:
     Min 1Q Median 3Q
                                   Max
## -50.675 -10.238 -0.840 8.998 63.772
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 199.52434 6.56981 30.370 < 2e-16 ***
## income95pc 1.09830 0.26496 4.145 3.96e-05 ***
## avgprs95 -0.66467 0.03656 -18.182 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18 on 525 degrees of freedom
## Multiple R-squared: 0.3966, Adjusted R-squared: 0.3943
## F-statistic: 172.5 on 2 and 525 DF, p-value: < 2.2e-16
```

summary(lm.res2)

```
##
## Call:
## lm(formula = model2, data = data)
##
## Residuals:
      Min 1Q Median
                           3Q
                                   Max
## -49.882 -9.468 -0.588 8.744 66.532
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 191.71631 7.13804 26.858 < 2e-16 ***
## income95pc 1.15300 0.26415 4.365 1.53e-05 ***
## pretax95 -0.54863 0.05616 -9.768 < 2e-16 ***
## taxs95 -0.80264 0.06256 -12.831 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.89 on 524 degrees of freedom
## Multiple R-squared: 0.4049, Adjusted R-squared: 0.4015
## F-statistic: 118.9 on 3 and 524 DF, p-value: < 2.2e-16
```

```
summary(lm.res3)
```

```
##
## Call:
## lm(formula = model3, data = data)
##
## Residuals:
       Min
                10 Median
                                  30
                                         Max
## -0.67369 -0.09012 0.00698 0.09820 0.41951
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                9.68686
                             0.28810 33.623 < 2e-16 ***
## (Intercept)
## log(income95pc) 0.24371 0.05367
                                     4.541 6.96e-06 ***
## log(avgprs95) -1.12181
                             0.06037 -18.582 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1696 on 525 degrees of freedom
## Multiple R-squared: 0.4036, Adjusted R-squared: 0.4013
## F-statistic: 177.6 on 2 and 525 DF, p-value: < 2.2e-16
```

"within" option tells plm to do fixed effects

and year fixed effects set effect effect="twoway"

```
# Check for time invariant variables:
pvar(data)

## no time variation: state
## no individual variation: year cpi
```

plm.res1 <- plm(packpc - income95pc + pretax95 + taxs95, data = data, model="within", effect="twoway")

Note that if you want to add year fixed effects then set effect="time" and for both state

```
summary(plm.res1)
```

```
## Twoways effects Within Model
##
## Call:
## plm(formula = packpc ~ income95pc + pretax95 + taxs95, data = data,
      effect = "twoway", model = "within")
##
## Balanced Panel: n=48. T=11. N=528
##
## Residuals :
## Min. 1st Qu. Median 3rd Qu.
                                        Max
## -16.5000 -1.9400 0.0468 2.1800 18.1000
##
## Coefficients :
##
             Estimate Std. Error t-value Pr(>|t|)
## income95pc 0.969966 0.410602 2.3623 0.0185709 *
## pretax95 -0.188551 0.051420 -3.6669 0.0002738 ***
## taxs95 -0.481852 0.033595 -14.3429 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 13258
## Residual Sum of Squares: 8257.1
## R-Squared:
              0.3772
## Adi. R-Squared: 0.29718
## F-statistic: 94.2779 on 3 and 467 DF, p-value: < 2.22e-16
```

```
# Some tests for serial correlation of errors (needed because we have a linear regression # with lags of the dependent variable on the RHS # the standard LM test (note we could specify order) pbgtest(plm.resi)
```

```
##
## Breusch-Godfrey/Wooldridge test for serial correlation in panel
## models
##
## data: packpc - income95pc + pretax95 + taxs95
## chisq = 129.6, df = 11, p-value < 2.2e-16
## alternative hypothesis: serial correlation in idiosyncratic errors</pre>
```

```
## Robust var-cov matrix alternatives for fixed effects models
robust <- "None" # Choose var-cov estimator here
if (robust=="None") vc <- vcov(plm.res1)</pre>
if (robust=="Arellano") vc <- vcovHC(plm.res1)
# Arellano (1987) heteroskedastic and serial correlation robust VC
if (robust == "BeckKatz") vc <- vcovBK(plm.res1) # Beck and Katz (1995) panel corrected VC
if (robust=="DriscollKraay") vc <- vcovSCC(plm.res1) # Driscoll and Kraay panel corrected VC
# Extract model results
pe.res1 <- coef(plm.res1) # Point estimates of parameters
vc.res1 <- vc # Var-cov matrix of point estimates
se.res1 <- sqrt(diag(vc.res1))# std erros of point estimates
tstat.res1 <- abs(pe.res1/se.res1)# t-statistics
df.res1 <- rep(plm.res1$df.residual, length(tstat.res1)) # residual degrees of freedom
pval.res1 <- 2*pt(tstat.res1, df.res1, lower.tail=FALSE) # p-values
fe.res1 <- fixef(plm.res1) # the (removed) fixed effects by group
resid.res1 <- resid(plm.res1)# Residuals
```

Random effects model

Random effects model

Random effects model

summary(lme.res1)

```
## Linear mixed-effects model fit by REML
  Data: NULL
##
         ATC:
                BIC
                       logLik
    3253.21 3283.04 -1619.605
##
## Random effects:
  Formula: ~1 | state
         (Intercept) Residual
## StdDev: 0.01127294 20.92621
##
## Correlation Structure: AR(1)
## Formula: ~vear | state
## Parameter estimate(s):
##
        Phi
## 0.9764735
## Fixed effects: packpc ~ income95pc + pretax95 + taxs95
                  Value Std.Error DF t-value p-value
##
## (Intercept) 173.08136 8.574965 477 20.184499 0.0000
## income95pc -1.05746 0.387602 477 -2.728198 0.0066
## pretax95 -0.14537 0.024800 477 -5.861684 0.0000
## taxs95
              -0.46630 0.040769 477 -11.437827 0.0000
## Correlation:
##
             (Intr) incm95 prtx95
## income95pc -0.856
## pretax95 -0.099 -0.223
## taxs95 -0.160 -0.097 -0.035
##
## Standardized Within-Group Residuals:
          Min
##
                       01
                                  Med
                                                          Max
## -2.79963472 -0.57137010 -0.08122771 0.45749547 3.97887775
## Number of Observations: 528
```

```
# Panel based diagnostics available in the plm library
# (This package recently expanded to contain many many panel data tests
# for serial correlation, fixed effects, and unit roots)
# First, create a plm data frame (special data frame that "knows" the
# unit variable and time variable
pdata <- pdata.frame(data, index=c("state", "year"))</pre>
pdata[1:3.]
##
         state year cpi pop packpc income tax
## AI.-1985 AI. 1985 1.076 3973000 116.4863 46014968 32.5 102.1817 33.34834
## AL-1986 AL 1986 1.096 3992000 117.1593 48703940 32.5 107.9892 33.40584
## AL-1987 AL 1987 1.136 4016000 115.8367 51846312 32.5 113.5273 33.46067
         income95 tax95 avgprs95 taxs95 income95pc pretax95
## AL-1985 65173615 46.03160 144.7257 47.23314 16.40413 97.49257
## AL-1986 67723361 45.19161 150.1601 46.45118 16.96477 103.70893
## AL-1987 69554378 43,60035 152,3025 44,88914 17,31932 107,41336
# Do an panel unit root test on the undifferenced cigarette data:
# there are many options: see ?purtest
# Note: for some reason this isn't working
#purtest(packpc~1, data=pdata, test="ips")
```

```
# Estimate Arellano-Bond GMM for fixed effects with lagged DV
# pamm needs formulas in a specific format:
# 1. in the first part of the RHS, include lags of DV and covariates, as shown
# 2. in the second part, include the panel data instruments (99 here means use
# up to the 99th lag of the difference as an instrument)
# 3. in an optional (not shown) third part of the RHS, include any other instruments
# note that pamm formulas construct lag() properly for panel data,
# though lag() usually doesn't
pgmmformula.1a <- packpc ~ lag(packpc, 1) + income95pc + avgprs95 | lag(packpc, 2:99)
# We'll run GMM with only unit fixed effects.
# but we could include period fixed effects as well by setting effect to "two-way"
# (often a good practice in short T panels)
pgmm.res1a <- pgmm(pgmmformula.1a.
                   data = pdata.
                   effect = "individual",
                   # should consider two-way for small T
                   transformation = "d")
# should do ld if T=3, d for difference GNN and ld for system GMM
```

```
summary(pgmm.res1a)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1a, data = pdata, effect = "individual",
      transformation = "d")
##
##
## Balanced Panel: n=48, T=11, N=528
##
## Number of Observations Used: 432
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                  Max.
## -25.4300 -2.5080 0.1463 0.1238 2.7380 25.6000
##
## Coefficients
##
                 Estimate Std. Error z-value Pr(>|z|)
## lag(packpc, 1) 0.638987 0.055342 11.5462 < 2.2e-16 ***
## income95pc -0.475568 0.486760 -0.9770 0.3286
## avgprs95 -0.180791 0.027799 -6.5035 7.848e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 47.99763 (p.value=0.31401)
## Autocorrelation test (1): normal = -3.948861 (p.value=7.8524e-05)
## Autocorrelation test (2): normal = -0.5688819 (p.value=0.56944)
## Wald test for coefficients: chisq(3) = 2496.07 (p.value=< 2.22e-16)
```

```
# Poor Sargan test, Good AR(2) test
summary(pgmm.res1b)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1b, data = pdata, effect = "individual".
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                 Max.
## -25.6900 -2.5360 0.1483 0.1217 2.6740 25.5800
##
## Coefficients
                  Estimate Std. Error z-value Pr(>|z|)
##
## lag(packpc, 1) 0.650350 0.055545 11.7086 < 2.2e-16 ***
## income95pc -0.325994 0.497744 -0.6549
                                                0.5125
## avgprs95 -0.181297 0.027242 -6.6550 2.834e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(29) = 42.46279 (p.value=0.050998)
## Autocorrelation test (1): normal = -3.907354 (p.value=9.3312e-05)
## Autocorrelation test (2): normal = -0.5460146 (p.value=0.58506)
## Wald test for coefficients: chisq(3) = 2503.149 (p.value=< 2.22e-16)
```

```
# Poor Sargan test, Good AR(2) test
summary(pgmm.res1c)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1c, data = pdata, effect = "individual".
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                 Max.
## -25.9200 -2.4790 0.1232 0.1159 2.7110 25.6000
##
## Coefficients
                  Estimate Std. Error z-value Pr(>|z|)
##
## lag(packpc, 1) 0.660475 0.052854 12.4963 < 2.2e-16 ***
## income95pc -0.258571 0.456052 -0.5670
                                               0.5707
## avgprs95 -0.175368 0.026891 -6.5215 6.96e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(16) = 40.04482 (p.value=0.00076694)
## Autocorrelation test (1): normal = -3.831746 (p.value=0.00012724)
## Autocorrelation test (2): normal = -0.4941905 (p.value=0.62117)
## Wald test for coefficients: chisq(3) = 2405.391 (p.value=< 2.22e-16)
```

```
# Poor Sargan test, Good AR(2) test
summary(pgmm.res1d)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1d, data = pdata, effect = "individual".
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                  Max.
## -26.8300 -2.6300 0.2236 0.1076 2.6800 25.6300
##
## Coefficients
                  Estimate Std. Error z-value Pr(>|z|)
##
## lag(packpc, 1) 0.700990 0.051462 13.6216 < 2.2e-16 ***
## income95pc 0.112174 0.447504 0.2507
                                                0.8021
## avgprs95 -0.164193 0.027435 -5.9848 2.167e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(8) = 27.75947 (p.value=0.00052221)
## Autocorrelation test (1): normal = -3.658942 (p.value=0.00025326)
## Autocorrelation test (2): normal = -0.3566186 (p.value=0.72138)
## Wald test for coefficients: chisq(3) = 2723.818 (p.value=< 2.22e-16)
```

```
# Good Sargan test, Good AR(2) test
summary(pgmm.res1e)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1a, data = pdata, effect = "individual",
      transformation = "ld")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 912
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                 Max.
## -35.0200 -2.5250 0.1318 0.2344 2.8280 29.0100
##
## Coefficients
                  Estimate Std. Error z-value Pr(>|z|)
##
## lag(packpc, 1) 0.9372190 0.0149757 62.5826 <2e-16 ***
## income95pc 0.2033459 0.1245084 1.6332 0.1024
## avgprs95 -0.0021312 0.0098748 -0.2158 0.8291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(55) = 47.79775 (p.value=0.74372)
## Autocorrelation test (1): normal = -3.451448 (p.value=0.00055759)
## Autocorrelation test (2): normal = 0.5944316 (p.value=0.55222)
## Wald test for coefficients: chisq(3) = 109661.9 (p.value=< 2.22e-16)
```

```
# Poor Sargan test, Good AR(2) test
summary(pgmm.res1f)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.1d, data = pdata, effect = "individual".
      transformation = "ld")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 912
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                  Max.
## -35.0100 -2.7770 0.1193 0.2195 2.8830 28.6200
##
## Coefficients
                    Estimate Std. Error z-value Pr(>|z|)
##
## lag(packpc, 1) 0.91605377 0.01475300 62.0927 < 2e-16 ***
## income95pc 0.29563062 0.14667917 2.0155 0.04385 *
## avgprs95 -0.00075664 0.01219834 -0.0620 0.95054
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(19) = 41.05134 (p.value=0.0023757)
## Autocorrelation test (1): normal = -3.490677 (p.value=0.0004818)
## Autocorrelation test (2): normal = 0.6062896 (p.value=0.54432)
## Wald test for coefficients: chisq(3) = 138138.9 (p.value=< 2.22e-16)
```

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way summary(pgmm.res1g)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.1a, data = pdata, effect = "twoways",
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
     Min. 1st Qu. Median Mean 3rd Qu.
                                            Max.
## -18.940 -1.890 -0.259 0.000 1.824 20.430
##
## Coefficients
##
                  Estimate Std. Error z-value Pr(>|z|)
## lag(packpc, 1) 0.252415 0.117744 2.1438 0.03205 *
## income95pc 1.062384 0.674055 1.5761 0.11500
## avgprs95 -0.285703 0.060572 -4.7168 2.396e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 45.92782 (p.value=0.39225)
## Autocorrelation test (1): normal = -3.571843 (p.value=0.00035448)
## Autocorrelation test (2): normal = 0.02846648 (p.value=0.97729)
## Wald test for coefficients: chisq(3) = 35.6544 (p.value=8.8603e-08)
## Wald test for time dummies: chisq(9) = 70.99219 (p.value=9.7258e-12)
```

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way summary(pgmm.res1h)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.1a, data = pdata, effect = "twoways",
      transformation = "ld")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 912
##
## Residuals
##
       Min.
            1st Qu.
                        Median
                                    Mean 3rd Qu.
                                                        Max.
## -31.82000 -2.37500 -0.03745 0.00000 2.18300 27.94000
##
## Coefficients
##
                  Estimate Std. Error z-value Pr(>|z|)
## lag(packpc, 1) 0.912506 0.035086 26.0074 < 2.2e-16 ***
## income95pc -0.016144 0.110832 -0.1457 0.884186
## avgprs95 -0.101336 0.032190 -3.1481 0.001644 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(55) = 45.80834 (p.value=0.80677)
## Autocorrelation test (1): normal = -3.133862 (p.value=0.0017252)
## Autocorrelation test (2): normal = 0.7322591 (p.value=0.46401)
## Wald test for coefficients: chisq(3) = 2942.747 (p.value=< 2.22e-16)
## Wald test for time dummies: chisq(9) = 87.03407 (p.value=6.3969e-15)
```

```
# Aside: Note that the year fixed effects estimates show a downward trend in smoking,
# but with large CIs
yrs <- coef(pgmm.res1g)[4:12]</pre>
                                                #Extract the year fixed effects from model 1q
vrs.se <- sqrt(diag(vcovHC(pgmm.res1g)))[4:12] #Extract the standard errors of the year fe
vrsTrace <- scatter(x=1987:1995.</pre>
                                               #X nalnes
                                               #Y nalnes
                    y=yrs,
                    vlower=yrs-2*yrs.se,
                                            #Upper bound of CI
                                            #Lower bound of CI
                    yupper=yrs+2*yrs.se,
                    fit=list(method="wls", weights=1/vrs.se^2).
                    pch=1, size=.8,
                    plot=1
tile(yrsTrace,
     width = list(null=5).
                           # widen plot area for visibility
     output = list(file="yearEffectsModel1g", width=5.5),
     limits = c(1986.5, 1995.5, -22.8),
     yaxis=list(major=FALSE),
     xaxistitle = list(labels="Year").
     yaxistitle = list(labels="Estimated year effects (95% CI)"),
     height=list(plot="golden")
```

```
####
# Now consider last two models with alternative specifications
pgmmformula.2a <- packpc - lag(packpc, 1) + income95pc + pretax95 +
    taxs95 | lag(packpc, 2:99)

pgmmformula.3a <- log(packpc) - lag(log(packpc), 1) + log(income95pc) +
    log(avgprs95) | lag(log(packpc), 2:99)

pgmmformula.4a <- log(packpc) - lag(log(packpc), 1) + log(income95pc) +
    log(pretax95) + log(taxs95) | lag(log(packpc), 2:99)</pre>
```

Model 2: Unique tax effects

Model 2: Unique tax effects

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way
summary(pgmm.res2g)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.2a, data = pdata, effect = "twoways",
      transformation = "d")
##
##
## Balanced Panel: n=48, T=11, N=528
##
## Number of Observations Used: 432
##
## Residuals
      Min. 1st Qu. Median Mean 3rd Qu.
                                                 Max
## -18.2600 -1.9650 -0.1188 0.0000 1.7690 20.1100
##
## Coefficients
##
                 Estimate Std. Error z-value Pr(>|z|)
## lag(packpc, 1) 0.267324 0.119980 2.2281 0.02588 *
                0.780413 0.692055 1.1277 0.25946
## income95pc
## pretax95 -0.027143 0.065641 -0.4135 0.67923
## taxs95
               -0.407912 0.062596 -6.5166 7.192e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 46.51024 (p.value=0.36939)
## Autocorrelation test (1): normal = -3.467009 (p.value=0.00052628)
## Autocorrelation test (2): normal = 0.444432 (p.value=0.65673)
## Wald test for coefficients: chisq(4) = 63.13155 (p.value=6.3668e-13)
## Wald test for time dummies: chisq(9) = 100.6487 (p.value=< 2.22e-16)
```

Model 2: Unique tax effects

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way
summary(pgmm.res2h)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.2a, data = pdata, effect = "twoways",
      transformation = "ld")
##
##
## Balanced Panel: n=48, T=11, N=528
##
## Number of Observations Used: 912
##
## Residuals
       Min. 1st Qu. Median
                                    Mean 3rd Qu.
                                                       Max
## -31.81000 -2.33200 -0.06877 0.00000 2.15400 28.00000
##
## Coefficients
##
                 Estimate Std. Error z-value Pr(>|z|)
## lag(packpc, 1) 0.920875 0.032453 28.3758 < 2.2e-16 ***
## income95pc -0.032675 0.104547 -0.3125 0.754629
## pretax95 -0.073863 0.034405 -2.1469 0.031803 *
## taxs95
               -0.104354 0.036213 -2.8817 0.003956 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(56) = 48 (p.value=0.76774)
## Autocorrelation test (1): normal = -3.108691 (p.value=0.0018792)
## Autocorrelation test (2): normal = 0.7719112 (p.value=0.44017)
## Wald test for coefficients: chisq(4) = 3309.815 (p.value=< 2.22e-16)
## Wald test for time dummies: chisq(9) = 81.95308 (p.value=6.6084e-14)
```

```
# Try difference GMM with only unit fixed effects
pgmm.res3a <- pgmm(pgmmformula.3a,
                  data = pdata,
                  effect = "individual", # should consider two-way for small T
                  transformation = "d") # should do ld if T=3
# Try system GMM with all lags
pgmm.res3e <- pgmm(pgmmformula.3a,
                 data = pdata,
                 effect = "individual", # should consider two-way for small T
                 transformation = "ld") # should do ld if T=3
# Tru difference GMM with two way effects
pgmm.res3g <- pgmm(pgmmformula.3a,
                  data = pdata,
                  effect = "twoways", # should consider two-way for small T
                  transformation = "d") # should do ld if T=3
# Try system GMM with two way effects
pgmm.res3h <- pgmm(pgmmformula.3a,
                  data = pdata,
                  effect = "twoways", # should consider two-way for small T
                  transformation = "ld") # should do ld if T=3
```

```
# Good Sargan test, Good AR(2) test
summary(pgmm.res3a)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.3a, data = pdata, effect = "individual".
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
       Min.
            1st Qu. Median Mean 3rd Qu.
                                                       Max.
## -0.263000 -0.024090 0.002736 0.001092 0.027680 0.216400
##
## Coefficients
##
                       Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.674051 0.061660 10.9317 < 2.2e-16 ***
## log(income95pc) -0.066044 0.111880 -0.5903
                                                      0.555
## log(avgprs95) -0.305656 0.043073 -7.0963 1.281e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 46.02872 (p.value=0.38824)
## Autocorrelation test (1): normal = -4.050332 (p.value=5.1145e-05)
## Autocorrelation test (2): normal = 0.05678179 (p.value=0.95472)
## Wald test for coefficients: chisq(3) = 2140.806 (p.value=< 2.22e-16)
```

```
# Good Sargan test, Good AR(2) test
summary(pgmm.res3e)
```

```
## Oneway (individual) effect One step model
##
## Call:
## pgmm(formula = pgmmformula.3a, data = pdata, effect = "individual".
      transformation = "ld")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 912
##
## Residuals
       Min. 1st Qu. Median Mean 3rd Qu.
                                                       Max.
## -0.366800 -0.022700 0.002000 0.001797 0.025150 0.278300
##
## Coefficients
##
                       Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.9860119 0.0094198 104.6742 <2e-16 ***
## log(income95pc) -0.0057655 0.0154370 -0.3735 0.7088
## log(avgprs95) 0.0110743 0.0077600 1.4271 0.1535
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(55) = 47.59902 (p.value=0.75038)
## Autocorrelation test (1): normal = -3.352045 (p.value=0.00080217)
## Autocorrelation test (2): normal = 0.982078 (p.value=0.32606)
## Wald test for coefficients: chisq(3) = 4737094 (p.value=< 2.22e-16)
```

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way summary(pgmm.res3g)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.3a, data = pdata, effect = "twoways",
      transformation = "d")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 432
##
## Residuals
            1st Qu. Median
##
       Min.
                                    Mean 3rd Qu.
                                                       Max.
## -0.181000 -0.019490 -0.001678 0.000000 0.017810 0.204300
##
## Coefficients
##
                      Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.33315 0.14500 2.2976 0.02158 *
## log(income95pc) 0.18131 0.18166 0.9981 0.31825
## log(avgprs95) -0.62271 0.11127 -5.5965 2.188e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 43.30027 (p.value=0.5015)
## Autocorrelation test (1): normal = -3.620058 (p.value=0.00029454)
## Autocorrelation test (2): normal = 0.5219654 (p.value=0.60169)
## Wald test for coefficients: chisq(3) = 45.27325 (p.value=8.0946e-10)
## Wald test for time dummies: chisq(9) = 71.0946 (p.value=9.2856e-12)
```

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way summary(pgmm.res3h)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.3a, data = pdata, effect = "twoways",
      transformation = "ld")
##
## Balanced Panel: n=48. T=11. N=528
##
## Number of Observations Used: 912
##
## Residuals
##
         Min.
               1st Qu.
                            Median
                                         Mean
                                                 3rd Qu.
                                                              Max.
## -0.3422000 -0.0233100 0.0006081 0.0000000 0.0224300 0.2716000
##
## Coefficients
##
                        Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.9454089 0.0286753 32.9694 < 2.2e-16 ***
## log(income95pc) -0.0072777 0.0214627 -0.3391 0.734544
## log(avgprs95)
                   -0.1650673 0.0494761 -3.3363 0.000849 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(55) = 44.19932 (p.value=0.85117)
## Autocorrelation test (1): normal = -3.066312 (p.value=0.0021672)
## Autocorrelation test (2): normal = 1.1093 (p.value=0.2673)
## Wald test for coefficients: chisq(3) = 4820.892 (p.value=< 2.22e-16)
## Wald test for time dummies: chisq(9) = 90.44993 (p.value=1.3225e-15)
```

Model 4: Elasticity specification, components of price

Model 4: Elasticity specification, components of price

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way
summary(pgmm.res4g)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.4a, data = pdata, effect = "twoways",
      transformation = "d")
##
##
## Balanced Panel: n=48, T=11, N=528
##
## Number of Observations Used: 432
##
## Residuals
##
       Min
             1st Qu.
                       Median
                                    Mean 3rd Qu.
                                                       Max
## -0.159800 -0.019740 -0.001557 0.000000 0.018140 0.198300
##
## Coefficients
##
                       Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.309885 0.135805 2.2818
                                                    0.0225 *
## log(income95pc)
                    0.160518 0.195323 0.8218
                                                    0.4112
## log(pretax95) -0.086999 0.078535 -1.1078
                                                     0.2680
## log(taxs95)
                    -0.287494 0.045624 -6.3013 2.951e-10 ***
## ---
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(44) = 44.84174 (p.value=0.43636)
## Autocorrelation test (1): normal = -3.654349 (p.value=0.00025784)
## Autocorrelation test (2): normal = 1.083759 (p.value=0.27847)
## Wald test for coefficients: chisq(4) = 70.23767 (p.value=2.0222e-14)
## Wald test for time dummies: chisq(9) = 70.48873 (p.value=1.2211e-11)
```

Model 4: Elasticity specification, components of price

```
# Good Sargan test, Good AR(2) test, Wald supports 2-way summary(pgmm.res4h)
```

```
## Twoways effects One step model
##
## Call:
## pgmm(formula = pgmmformula.4a, data = pdata, effect = "twoways",
      transformation = "ld")
##
##
## Balanced Panel: n=48, T=11, N=528
##
## Number of Observations Used: 912
##
## Residuals
##
       Min.
             1st Qu. Median
                                    Mean 3rd Qu.
                                                        Max
## -0.356300 -0.022980 0.000891 0.000000 0.022530 0.272700
##
## Coefficients
##
                       Estimate Std. Error z-value Pr(>|z|)
## lag(log(packpc), 1) 0.953854 0.025812 36.9544 < 2.2e-16 ***
## log(income95pc) -0.013174 0.019295 -0.6828 0.494750
## log(pretax95) -0.107924 0.040645 -2.6553 0.007925 **
## log(taxs95)
                     -0.042752 0.014618 -2.9246 0.003450 **
## ---
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sargan Test: chisq(56) = 46.48103 (p.value=0.81385)
## Autocorrelation test (1): normal = -3.05496 (p.value=0.0022509)
## Autocorrelation test (2): normal = 1.104899 (p.value=0.2692)
## Wald test for coefficients: chisq(4) = 5525 (p.value=< 2.22e-16)
## Wald test for time dummies: chisq(9) = 77.97589 (p.value=4.0745e-13)
```

```
# Forecast for 3 years from 1996 to 1998
periods.out <- 3
sims <- 1000
# How big a change in price to simulate?
# How about "double" the average tax in the most recent year?
summary(pdata$taxs95[pdata$year==1995])
   Min. 1st Qu. Median Mean 3rd Qu.
   34.44 48.75 59.84 61.87 74.78 112.60
# The average (and median) tax is about 60 cents/pack
sd(pdata$taxs95[pdata$year==1995])
## [1] 18.47741
```

```
# A 60 cent increase would also be about 3 sd's.
# and raise the tax to a bit more than the max observed
# Other possibilities:
# (2) A 10 cent increase
# (3) Raise every state to the max observed for any state in 1995 (112.60 cents)
# Construct the year dummies
vearfe <- makeFEdummies(pdata$vear)</pre>
                                              # Construct the dummies for each year
yearfe <- yearfe[,3:ncol(yearfe)]</pre>
                                              # Why drop first 2 col's?
yearlist <- unique(pdata$year)</pre>
                                              # List all the years
yearlist <- yearlist[3:length(yearlist)]</pre>
                                              # List the years less the first two
colnames(vearfe) <- paste0("v".vearlist)</pre>
                                              # Create names for the year dummies
# Construct formulas -- without year dummies (1a)
formula.1a <- packpc ~ income95pc + avgprs95 -1
                                                          #with Income and Price as covariates
# Construct formulas -- without year dummies but with intercept (1e)
formula.1e <- packpc ~ income95pc + avgprs95
```

```
# Construct formulas -- with year dummies (1g)
formula <- "packpc - income95pc + avgprs95 -1"
datayearfe <- chind(pdata, yearfe)
datayearfe[1:5,]
#Initial formula with no intercept
#Combine pdata variables with the year dummies
```

```
state year
                 cpi
                               packpc
                                                      avgprs
                                        income tax
                                                                 taxs
## 1
       AL 1985 1.076 3973000 116.4863 46014968 32.5 102.1817 33.34834
## 2
       AL 1986 1.096 3992000 117.1593 48703940 32.5 107.9892 33.40584
       AL 1987 1.136 4016000 115.8367 51846312 32.5 113.5273 33.46067
## 3
## 4
       AL 1988 1 183 4024000 115 2584 55698852 32 5 120 0334 33 52509
## 5
       AL 1989 1 240 4030000 109 2060 60044480 32 5 133 2560 33 65600
                tax95 avgprs95 taxs95 income95pc pretax95 v1987 v1988
    income95
## 1 65173615 46 03160 144 7257 47 23314
                                          16 40413 97 49257
## 2 67723361 45.19161 150.1601 46.45118
                                          16.96477 103.70893
## 3 69554378 43.60035 152.3025 44.88914 17.31932 107.41336
                                          17.83152 111.44437
## 4 71754049 41.86813 154.6331 43.18869
## 5 73796599 39.94355 163.7759 41.36431
                                          18.31181 122.41162
    v1989 v1990 v1991 v1992 v1993 v1994 v1995
## 1
## 2
## 3
## 4
## 5
```

```
yearfenames <- NULL
for (i in 1:ncol(vearfe)) {
 formula <- pasteO(formula,"+ y",yearlist[i]," ")</pre>
                                                              #Add the year dummies to the initial formula
 yearfenames <- c(yearfenames,paste0("y",yearlist[i]))</pre>
                                                              #Make a vector of names for the years
names(datayearfe) <- c(names(data), yearfenames)</pre>
formula.1g <- as.formula(formula)</pre>
formula.1g
## packpc ~ income95pc + avgprs95 - 1 + y1987 + y1988 + y1989 +
##
       v1990 + v1991 + v1992 + v1993 + v1994 + v1995
# Construct formulas -- with year dummies and intercept (1h)
formula <- "packpc ~ income95pc + avgprs95"
                                                      #Initial formula without the year dummies
datayearfe <- cbind(pdata, yearfe)
                                                      #Combine pdata variables with the year dummies
yearfenames <- NULL
for (i in 1:ncol(vearfe)) {
 formula <- paste0(formula, "+ y", yearlist[i], " ") #Add the year dummies to the initial formula
 yearfenames <- c(yearfenames, paste0("y", yearlist[i])) #Make a vector of names for the years
names(datayearfe) <- c(names(data), yearfenames)</pre>
formula.1h <- as.formula(formula)
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$year==1995])
```

```
# Recall model 1a: packpc - lag(packpc, 1) + income95pc + augprs95 | lag(packpc, 2:99)

# Difference GMM with state fixed effects

# Simulate parameters
simparam.1a <- myrnorm(sims, coefficients(pgmm.res1a), vcovHC(pgmm.res1a))

#Sample parameters from an myrnorm
simphis.1a <- simparam.1a[,1]
#Extract the simulated phis
simbetas.1a <- simparam.1a[,2:ncol(simparam.1a)]
#Extract the simulated betas
simphis.1a[1:2]

## [1] 0.7430387 0.6139031
```

```
## income95pc avgprs95
## [1,] 0.4654720 -0.162981
## [2,] -0.1816226 -0.213313
```

simbetas.1a[1:2,]

```
# Make matrix of hypothetical x's:

# Assume an average state raised taxes 60 cents starting 1996

#

# Make matrix of hypothetical x's: covariates

xhyp.la <- cfMake(formula.la,datayearfe, periods.out)

#With mean packpc, income, and price for the forecast period

# pgmm uses covariates in differenced form

# so we want most of them to be 0 (no change)

# exceptions:

# (1) changes in covariates of interest

# (2) time dummies aren't differenced

xhyp.la$x <- xhyp.la$xr <- xhyp.la$x

xhyp.la$x <- xhyp.la$xre <- 0*xhyp.la$x

xhyp.la$x <- xifchange(xhyp.la, "avgprs95", x=60, scen=1)

# We can "ignore" the state fixed effects for now and add them later

# because model is total linear
```

```
# Create baseline scenario
xbase.ia <- xhyp.la
xbase.ia $x <- xbase.ia$xpre

# We need a lag of the price per pack
lagY.ia <- NULL # Hypothetical previous change in Y for simulation
for (i in 1:length(pgmm.resia$model))  #For 1 to 48
lagY.ia <- c(lagY.ia, as.data.frame(pgmm.resia$model[[i]])["1995",]$packpc)

#Hypothetical change in packpc for each state in 1995
lagY.ia <- mean(lagY.ia, na.rm=TRUE)  #Find the mean of these hypothetical previous changes

# Hypothetical initial level of Y for simulation
initialY <- mean(opata$packpc[pdata$vear==1995], na.rm=TRUE)  #The mean of packpc in 1995
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev1a <- ldvsimev(xhvp.1a.
                                         # The matrix of hypothetical x's
                                          # The matrix of simulated betas
                    simbetas.1a,
                                      # Desired confidence interval
                    ci=0.95,
                    constant=NA.
                                      # NA indicates no constant!
                                               # estimated AR parameters; length must match lagY
                    phi=simphis.1a,
                    lagY=lagY.1a,
                                         # lags of y, most recent last
                    transform="diff". # "log" to undo log transformation.
                                        # "diff" to under first differencing
                                        # "difflog" to do both
                    initialY=initialY
                                        # for differenced models, the lag of the level of y
```

```
# Simulate expected values of Y given no change in covariates
sim.base1a <- ldvsimev(xbase.1a,
                                            # The matrix of hypothetical x's
                      simbetas.1a.
                                           # The matrix of simulated betas
                      ci=0.95.
                                      # Desired confidence interval
                      constant=NA,
                                         # NA indicates no constant!
                                                # estimated AR parameters; length must match lagY
                      phi=simphis.1a,
                      lagY=lagY.1a,
                                            # lags of y, most recent last
                      transform="diff",
                                         # "log" to undo log transformation,
                                        # "diff" to under first differencing
                                        # "diffloa" to do both
                      initialY=initialY # for differenced models, the lag of the level of v
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd1a <- ldvsimfd(xhyp.1a,
                                       # The matrix of hypothetical x's
                    simbetas.1a, # The matrix of simulated betas
                    ci=0.95.
                                       # Desired confidence interval
                    constant=NA,
                                       # Column containing the constant
                                       # set to NA for no constant
                    phi=simphis.1a.
                                       # estimated AR parameters; length must match lagY
                                      # lags of y, most recent last
                    lagY=lagY.1a,
                    transform="diff", # Model is differenced
                    #initialY=initialY # Redundant in this case (fd of linear differenced Y)
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit

# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$year==1995])

# Lost revenues from reduced consumption, dollars pc
revLost.la <- lapply(sim.fdla, function(x) mean(pdata$taxs95[pdata$year==1995]) *x/100)

#Multiply change in consumption by mean tax revenues in 1995 and divide by 100 (for dollars)
revLost.la
```

```
## $pe
##
              [,1]
## [1,] -6.706813
## [2.] -10.947633
## [3,] -13.649433
##
## $lower
##
              [.1]
## [1,] -8.675635
## [2.] -13.496855
## [3,] -16,307834
##
## $upper
##
              [.1]
## [1,] -4.831279
## [2,] -8.289263
## [3.] -10.746197
##
## $se
##
            [,1]
## [1,] 1,000767
## [2,] 1.367815
## [3 ] 4 4006E0
```

```
# Added revenue from higher taxes on remaining consumption, dollars pc
# Sensitive to (implicit) consumption trend assumptions
revGain.1a <- lapply(sim.ev1a, function(x) 60*x/100)
#Multiply expected consumption by 60 cents and divide by 100 (for dollars)
revGain.1a
```

```
## $pe
##
            [,1]
## [1,] 51.79036
## [2,] 47.99791
## [3.] 45.58529
##
## $lower
            Γ.17
## [1.] 49.79180
## [2,] 45.42490
## [3.] 42.86519
##
## $upper
            [,1]
##
## [1.] 53.67310
## [2,] 50.70876
## [3,] 48.56287
##
## $se
##
            [,1]
## [1.] 1.004484
## [2,] 1,393356
## [3,] 1.527121
```

```
## $pe
            Γ.17
##
## [1.] 45.08355
## [2,] 37.05028
## [3.] 31.93586
##
## $lower
            Γ.17
##
## [1.] 41.11616
## [2,] 31.92805
## [3,] 26.55736
##
## $upper
            [,1]
## [1.] 48.84182
## [2,] 42.41950
## [3,] 37.81667
```

```
# Total change in state revenue, in millions of dollars
revNetState.la <- lapply(revNet.la, function(x) avgpop1995*x/1000000)
#Multiply state population by net change pc and divide by one million
revNetState.la</pre>
```

```
## $pe
            Γ.17
## [1.] 244.6441
## [2,] 201.0519
## [3,] 173.2987
##
## $lower
            [,1]
## [1.] 223.1153
## [2,] 173.2563
## [3,] 144.1125
##
## $upper
            [,1]
##
## [1,] 265.0383
## [2,] 230.1878
## [3,] 205.2107
```

```
# Recall model 1e: packpc ~ lag(packpc, 1) + income95pc + augprs95 | lag(packpc, 2:99)
# System GMM with state fixed effects
# Simulate parameters
simparam.1e <- mvrnorm(sims, coefficients(pgmm.res1e), vcovHC(pgmm.res1e))
#Sample model parameters
simphis.1e <- simparam.1e[,1]
#Extract the phis
simbetas.1e <- simparam.1e[,2:ncol(simparam.1e)]
#Extract the betas
# Sustem GMM does NOT difference the covariates
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Make matrix of hypothetical x's: covariates
xhyp.1e <- cfMake(formula.1a, datayearfe, periods.out)</pre>
#With mean packpc, income, and price for the forecast period
# system pamm uses covariates in *level* form
# -> back to our usual use of simcf; note apply to all 3 periods!
xhyp.1e <- cfChange(xhyp.1e, "avgprs95", x=60 + mean(pdata$avgprs95), scen=1:3)
#Add 60 cents to the ava price per pack
```

```
# State fixed effects are not removed from the covariates,
# but from the instruments (so we can ignore them here)

# Create baseline scenario
xbase.1e <- xbyp.1e
xbase.1e$x <- xbase.1e$xpre

# We need a lag of the price per pack, now in levels
# But the code above to extract it from the pgmm object won't work!
lagY.1e <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE) #average packpc in 1995

# Hypothetical initial level of Y for simulation
initialY <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE) #average packpc in 1995
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev1e <- ldvsimev(xhyp.1e,
                                        # The matrix of hypothetical x's
                    simbetas.1e.
                                          # The matrix of simulated betas
                    ci=0.95.
                                  # Desired confidence interval
                                      # NA indicates no constant!
                    constant=NA,
                    phi=simphis.1e,
                                               # estimated AR parameters; length must match lagY
                    lagY=lagY.1e,
                                          # lags of y, most recent last
                    transform="none",
                                      # NOTE: System GMM is not differenced!
                    initialY=initialY
```

```
# Simulate expected values of Y given no change in covariates
sim.basele <- ldvsimev(xbase.le,
simbetas.le,
ci=0.95,
constant=NA,
phi=simphis.le,
lagY=lagY.le,
transform="none"

# NOTE: System GMM is not differenced!

# Nother covariates
# The matrix of hypothetical x's
# The matrix of simulated betas
# The matrix of simulated in the simulated betas
# Nother confidence interval
# Nother confidence
# Nother co
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd1e <- ldvsimfd(xhyp.1e,
                                        # The matrix of hypothetical x's
                    simbetas.1e,
                                       # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=NA.
                                        # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.1e,
                    lagY=lagY.1e,
                                        # lags of y, most recent last
                    transform="none"
                                        # NOTE: Sustem GMM is not differenced!
```

```
# Simulate relative risks in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.rr1e <- ldvsimrr(xhyp.1e,
                                        # The matrix of hypothetical x's
                    simbetas.1e,
                                       # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=NA.
                                        # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.1e,
                    lagY=lagY.1e,
                                        # lags of y, most recent last
                    transform="none"
                                        # NOTE: Sustem GMM is not differenced!
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$vear==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.1e <- lapply(sim.fd1e, function(x) mean(pdata$taxs95[pdata$vear==1995])*x/100)
#Multiply change in consumption by mean tax revenues in 1995 and divide by 100 (for dollars)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Sensitive to (implicit) consumption trend assumptions
revGain.1e <- lapply(sim.ev1e, function(x) 60*x/100)
#Multiply expected consumption by 60 cents and divide by 100 (for dollars)
# Net change in revenue, dollars pc
revNet.1e <- list(pe=revLost.1e$pe + revGain.1e$pe,
                  #Lost revenues from reduced consumption plus added revenues from higher taxes
                  lower=revLost.1e$lower + revGain.1e$lower.
                                                                #Lower hound
                  upper=revLost.1e$upper + revGain.1e$upper)
                                                               #Upper bound
# Total change in state revenue, in millions of dollars
revNetState.1e <- lapply(revNet.1e, function(x) avgpop1995*x/1000000)
#Multiply state population by net change pc and divide by one million
```

```
# Recall model 1q: packpc ~ lag(packpc, 1) + income95pc + avgprs95 | lag(packpc, 2:99)
# Difference GMM with state and year fixed effects
# Simulate parameters
simparam.1g <- mvrnorm(sims, coefficients(pgmm.res1g), vcovHC(pgmm.res1g))
                                                                                 #Sample parameters
simphis.1g <- simparam.1g[,1]
                                                                                 #Extract the phis
simbetas.1g <- simparam.1g[,2:ncol(simparam.1g)]
                                                                                 #Extract the betas
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Issues -- we need to somehow include the state and year FEs:
          Let's set the state to be an "average" state in 1995,
            and year to be like the last year (1995)
# Make matrix of hypothetical x's: covariates
xhyp.1g <- cfMake(formula.1g, datayearfe, periods.out)</pre>
                                                           #Including the year fixed effects
# pamm uses covariates in differenced form
# so we want most of them to be 0 (no change)
# exceptions:
# (1) changes in covariates of interest
# (2) differenced time dummies require special care
xhyp.1g$x <- xhyp.1g$xpre <- 0*xhyp.1g$x
xhvp.1g <- cfChange(xhvp.1g, "avgprs95", x=60, scen=1)
                                                            #Assume tax is raised 60 cents in 1996
```

```
# We can "ignore" the state fixed effects for now and add them later
# because model is total linear
# Create baseline scenario
xbase.1g <- xhyp.1g
xbase.1g$x <- xbase.1g$xpre
xbase.1g
```

```
## $x
     packpc income95pc avgprs95 y1987 y1988 y1989 y1990 y1991 y1992 y1993
## 1
                              0
                                    0
## 2
                     0
## 3
                              0
                                    0
## v1994 v1995
## 1
         0
## 2
## 3
               0
##
## $xpre
     packpc income95pc avgprs95 v1987 v1988 v1989 v1990 v1991 v1992 v1993
## 1
## 2
## 3
                                    Ω
                                                                         0
                              Λ
## y1994 y1995
## 1
## 2
               0
## 3
##
## $model
## packpc ~ income95pc + avgprs95 - 1 + y1987 + y1988 + y1989 +
       v1990 + v1991 + v1992 + v1993 + v1994 + v1995
##
##
## attr(,"class")
## [1] "list"
                        "counterfactual"
```

xhyp.1g

```
## $x
    packpc income95pc avgprs95 y1987 y1988 y1989 y1990 y1991 y1992 y1993
## 1
                             60
## v1994 v1995
## 1
## 3
##
## $xpre
    packpc income95pc avgprs95 y1987 y1988 y1989 y1990 y1991 y1992 y1993
## 1
## 2
## 3
## y1994 y1995
## 1
## 3
##
## $model
## packpc ~ income95pc + avgprs95 - 1 + y1987 + y1988 + y1989 +
      y1990 + y1991 + y1992 + y1993 + y1994 + y1995
## attr(,"class")
## [1] "list"
                        "counterfactual"
```

```
# We need a lag of the price per pack
lagY.1g <- NULL # Hypothetical previous change in Y for simulation
pgmm.res1g$model[1]
## $AT.
          packpc lag(packpc, 1) income95pc avgprs95
##
## 1987 -1.3226623
                    0.6730347 0.354547306 2.142378 1 0 0 0
## 1988 -0.5782090
                   -1.3226623 0.512205963 2.330570 -1 1 0 0 0 0
## 1989 -6.0524902
                   -0.5782090 0.480287962 9.142863 0 -1 1 0 0 0
## 1990 2.5389175
                   -6.0524902 0.148464583 3.489286 0 0 -1 1 0 0
## 1991 -4.7301254
                   2.5389175 0.042664143 13.691496 0 0 0 -1 1 0 0
## 1992 -0.1118164
                 -4.7301254 0.465548804 10.345649 0
## 1993 -1.9451370
                   -0.1118164 0.006317597 -17.561808 0 0
## 1994 -1 5314713
                   -1 9451370 0 419305971 -13 036122 0 0
## 1995 -2.3408889
                   -1.5314713 0.288875052 -2.333091 0 0 0 0 0 0
##
## 1987 0.0
## 1988 0.0
## 1989 0 0
## 1990 0 0
## 1991 0.0
## 1992 0 0
## 1993 0 0
## 1994 1 0
## 1995 -1 1
```

#Set the initial mean value of pack in 1995 across states

```
for (i in 1:length(pgmm.res1g$model))
   lagY.1g <- c(lagY.1g, as.data.frame(pgmm.res1g$model[[i]])["1995",]$packpc)
#Store change in packpc 1995 for each state
lagY.1g <- mean(lagY.1g, na.rm=TRUE)
#Find the mean for all packpc changes in 1995
# Hypothetical initial level of Y for simulation
pdata$packpc[pdata$year==1995]
    AL-1995
              AR-1995
                       AZ-1995
                                 CA-1995 CO-1995
                                                    CT-1995
                                                             DE-1995
##
## 101.08543 111.04297 71.95417
                                56.85931 82.58292 79.47219 124.46660
##
    FI.-1995
            GA-1995 TA-1995
                                TD-1995 TL-1995
                                                    TN-1995
                                                              KS-1995
## 93.07455 97.47462 92.40160 74.84978 83.26508 134.25835 88.75344
   KY-1995 LA-1995 MA-1995 MD-1995 ME-1995
                                                    MT-1995 MN-1995
##
## 172.64778 105.17613 76.62064 77.47355 102.46978 81.38825 82.94530
    MO-1995 MS-1995 MT-1995 NC-1995 ND-1995
                                                    NE-1995
                                                             NH-1995
## 122,45028 105,58245 87,15957 121,53806 79,80697 87,27071 156,33675
##
   NJ-1995 NM-1995 NV-1995
                                 NY-1995 DH-1995
                                                    ΩK-1995
                                                             OR-1995
## 80.37137 64.66887 93.52612 70.81732 111.38010 108.68011 92.15575
   PA-1995 RT-1995
                       SC-1995 SD-1995
                                          TN-1995
                                                    TX-1995
                                                             UT-1995
## 95.64309 92.59980 108.08275 97.21923 122.32005 73.07931
                                                            49.27220
   VA-1995
            VT-1995
                       WA-1995
                               WI-1995
                                          WV-1995
                                                    WY-1995
## 105.38687 122.33475 65.53092 92.46635 115.56883 112.23814
initialY <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE)</pre>
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev1g <- ldvsimev(xhvp.1g.
                                         # The matrix of hypothetical x's
                                          # The matrix of simulated betas
                    simbetas.1g,
                                      # Desired confidence interval
                    ci=0.95,
                    constant=NA.
                                      # NA indicates no constant!
                                               # estimated AR parameters; length must match lagY
                    phi=simphis.1g,
                    lagY=lagY.1g,
                                         # lags of y, most recent last
                    transform="diff", # "log" to undo log transformation,
                                        # "diff" to under first differencing
                                        # "difflog" to do both
                    initialY=initialY
                                        # for differenced models, the lag of the level of y
```

```
# Simulate expected values of Y given no change in covariates
sim.base1g <- ldvsimev(xbase.1g,
                                           # The matrix of hypothetical x's
                      simbetas.1g,
                                         # The matrix of simulated betas
                      ci=0.95.
                                 # Desired confidence interval
                      constant=NA,
                                        # NA indicates no constant!
                                                # estimated AR parameters; length must match lagY
                      phi=simphis.1g,
                      lagY=lagY.1g,
                                            # lags of y, most recent last
                      transform="diff",
                                         # "log" to undo log transformation,
                                       # "diff" to under first differencing
                                       # "diffloa" to do both
                      initialY=initialY # for differenced models, the lag of the level of v
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd1g <- ldvsimfd(xhyp.1g,
                                       # The matrix of hypothetical x's
                    simbetas.1g, # The matrix of simulated betas
                    ci=0.95.
                                    # Desired confidence interval
                    constant=NA,
                                       # Column containing the constant
                                       # set to NA for no constant
                    phi=simphis.1g,
                                       # estimated AR parameters; length must match lagY
                    lagY=lagY.1g, # lags of y, most recent last
                    transform="diff", # Model is differenced
                    #initialY=initialY # Redundant in this case (fd of linear differenced Y)
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$year==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.1g <- lapply(sim.fd1g, function(x) mean(pdata$taxs95[pdata$vear==1995])*x/100)
#Multiply change in consumption by mean tax revenues in 1995 and divide by 100 (for dollars)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Note this is sensitive to assumptions about consumption trends embodied by year effects
revGain.1g <- lapply(sim.ev1g, function(x) 60*x/100)
#Multiply expected consumption by 60 cents and divide by 100 (for dollars)
# Net change in revenue, dollars pc
revNet.1g <- list(pe=revLost.1g$pe + revGain.1g$pe,
                  #Lost revenues from reduced consumption plus added revenues from higher taxes
                  lower=revLost.1g$lower + revGain.1g$lower, #Lower bound
                  upper=revLost.1g$upper + revGain.1g$upper) #Upper bound
# Total change in state revenue, in millions of dollars
revNetState.1g <- lapply(revNet.1g, function(x) avgpop1995*x/1000000)
#Multiply state population by net change pc and divide by one million
```

```
# Recall model 1h: packpc ~ lag(packpc, 1) + income95pc + avgprs95 | lag(packpc, 2:99)
# System GMM with state and year fixed effects

# Simulate parameters
simparam.1h <- mvrnorm(sims, coefficients(pgmm.res1h), vcovHC(pgmm.res1h))
#Sample parameters
simphis.1h <- simparam.1h[,1]
#Eatract the phis
simbetas.1h <- simparam.1h[,2:ncol(simparam.1h)]
#Eatract the betas

# System GMM does NOT difference the covariates
# -> with 2-way effects, the model has a constant,
# which pgmm() puts in an odd place
simbetas.1h <- cbind(simbetas.1h[,3], simbetas.1h[,-3])
# Move the constant to the front of the matria!</pre>
```

```
# Make matrix of hypothetical x's:

# Assume an average state raised taxes 60 cents starting 1996

# Issues -- we need to somehow include the state and year FEs:

# Let's set the state to be an "average" state in 1995,

# and year to be like the last year (1995)

# Make matrix of hypothetical x's: covariates

xhyp.1h <- cfMake(formula.1h, datayearfe, periods.out)

#Create hypothetical matrix with covariates at their mean

# system pgmm uses covariates in *level* form

# -> back to our usual use of simof; note apply to all 3 periods!

xhyp.1h <- cfChange(xhyp.1h, "avgprs95", x=60 + mean(pdata$avgprs95), scen=1:3)

#Assume tam raises price by 60 cents
```

```
# The current trend seems to start in 1993; we will average over the
# the last three years of year effects:
xhyp.1h <- cfChange(xhyp.1h, "y1987", x=0, xpre=0, scen=1:3)
xhyp.1h <- cfChange(xhyp.1h, "y1988", x=0, xpre=0, scen=1:3)
xhyp.1h <- cfChange(xhyp.1h, "y1989", x=0, xpre=0, scen=1:3)</pre>
xhyp.1h <- cfChange(xhyp.1h, "y1990", x=0, xpre=0, scen=1:3)
xhyp.1h <- cfChange(xhyp.1h, "y1991", x=0, xpre=0, scen=1:3)</pre>
xhyp.1h <- cfChange(xhyp.1h, "y1992", x=0, xpre=0, scen=1:3)</pre>
xhyp.1h <- cfChange(xhyp.1h, "y1993", x=1/3, xpre=1/3, scen=1:3)
#Start the trend in 1993 averaged over last three years
xhyp.1h <- cfChange(xhyp.1h, "y1994", x=1/3, xpre=1/3, scen=1:3)
xhvp.1h <- cfChange(xhvp.1h, "v1995", x=1/3, xpre=1/3, scen=1:3)
# State fixed effects are not removed from the covariates,
# but from the instruments (so we can ignore them here)
# Create baseline scenario
xbase.1h <- xhvp.1h
xbase.1h$x <- xbase.1h$xpre
# We need a lag of the price per pack, now in levels
# But the code above to extract it from the pgmm object won't work!
lagY.1h <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE)
#Find the mean of packpc in 1995 across all states
# Hypothetical initial level of Y for simulation
initialY <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE)
#Find the mean of packpc in 1995 across all states
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev1h <- ldvsimev(xhyp.1h,
                                          # The matrix of hypothetical x's
                     simbetas.1h.
                                            # The matrix of simulated betas
                     ci=0.95.
                                       # Desired confidence interval
                     constant=1,
                                        # NOTE: System GMM has a constant!
                                         # You will need to note the column of the constant in simbetas
                     phi=simphis.1h,
                                                # estimated AR parameters; length must match lagY
                     lagY=lagY.1h,
                                            # lags of y, most recent last
                     transform="none"
                                        # NOTE: System GMM is not differenced!
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd1h <- ldvsimfd(xhyp.1h,
                                      # The matrix of hypothetical x's
                    simbetas.1h,
                                     # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=1.
                                       # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.1h,
                    lagY=lagY.1h,
                                        # lags of u. most recent last
                    transform="none"
                                       # NOTE: Sustem GMM is not differenced!
```

```
# Simulate relative risks in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.rr1h <- ldvsimrr(xhvp.1h.
                                      # The matrix of hypothetical x's
                    simbetas.1h,
                                     # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=1.
                                       # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.1h,
                    lagY=lagY.1h,
                                        # lags of u. most recent last
                    transform="none"
                                       # NOTE: Sustem GMM is not differenced!
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$vear==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.1h <- lapply(sim.fd1h, function(x) mean(pdata$taxs95[pdata$year==1995])*x/100)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Note this is sensitive to assumptions about consumption trends embodied by year effects
revGain.1h <- lapply(sim.ev1h, function(x) 60*x/100)
# Net change in revenue, dollars pc
revNet.1h <- list(pe=revLost.1h$pe + revGain.1h$pe.
                  lower=revLost.1h$lower + revGain.1h$lower.
                  upper=revLost.1h$upper + revGain.1h$upper)
# Total change in state revenue, in millions of dollars
revNetState.1h <- lapply(revNet.1h, function(x) avgpop1995*x/1000000)
```

```
# Recall model 3a: log(packpc) ~ lag(log(packpc), 1) + log(income95pc)
# + log(augprs95) | lag(log(packpc), 2:99)
# log-log Difference GMM with state fixed effects
# Simulate parameters
simparam.3a <- mvrnorm(sims, coefficients(pgmm.res3a), vcovHC(pgmm.res3a))</pre>
simphis.3a <- simparam.3a[.1]
simbetas.3a <- simparam.3a[,2:ncol(simparam.3a)]
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Make matrix of hypothetical x's: covariates
xhyp.3a <- cfMake(formula.1a, datayearfe, periods.out)</pre>
# pqmm uses covariates in differenced form
# so we want most of them to be 0 (no change)
# exceptions:
# (1) changes in covariates of interest
# (2) time dummies aren't differenced
xhyp.3a$x <- xhyp.3a$xpre <- 0*xhyp.3a$x
# Need log version of differenced key covariate (doubling tax in avg state)
meanPrice95 <- mean(pdata$avgprs95[pdata$year==1995], na.rm=TRUE)
#Find the mean of avaprs95 across all states
meanTaxs95 <- mean(pdata$taxs95[pdata$year==1995], na.rm=TRUE)
#Find the mean of taxs95 across all states
xhyp.3a <- cfChange(xhyp.3a, "avgprs95",
                    #Change augprs95 to log difference in mean price
                    x=log(meanPrice95+meanTaxs95) - log(meanPrice95),
                    scen=1)
```

```
# We can "ignore" the state fixed effects for now and add them later
# because model is total linear
# Create baseline scenario
xbase.3a <- xhvp.3a
xbase.3a$x <- xbase.3a$xpre
# We need a lag of the price per pack
lagY.3a <- NULL # Hypothetical previous change in Y for simulation
for (i in 1:length(pgmm.res3a$model))
    lagY.3a <- c(lagY.3a, as.data.frame(pgmm.res3a$model[[i]])["1995".1])
#Find the change in packpc across all states
lagY.3a <- mean(lagY.3a, na.rm=TRUE)
#Compute the mean
# Hypothetical initial level of Y for simulation
initialY <- mean(pdata$packpc[pdata$vear==1995], na.rm=TRUE)
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev3a <- ldvsimev(xhyp.3a,
                                         # The matrix of hypothetical x's
                     simbetas.3a,
                                            # The matrix of simulated betas
                                      # Desired confidence interval
                     ci=0.95,
                     constant=NA, # NA indicates no constant!
                     phi=simphis.3a,
                                                # estimated AR parameters: length must match lagY
                     lagY=lagY.3a,
                                       # lags of y, most recent last
                     transform="difflog", # "log" to undo log transformation,
                                         # "diff" to under first differencing
                                         # "diffloa" to do both
                                         # for differenced models, the lag of the level of y
                     initialY=initialY
```

```
# Simulate expected values of Y given no change in covariates
sim.base3a <- ldvsimev(xbase.3a, # The matrix of hypothetical x's
simbetas.3a, # The matrix of simulated betas
ci=0.95, # Desired confidence interval
constant=NA, # NA indicates no constant!
phi=simphis.3a, # estimated AR parameters; length must match lagY
lagY=lagY.3a, # lags of y, most recent last
transform="difflog", # "log" to undo log transformation,
# "diff" to under first differencing
# "difflog" to do both
initialY=initialY

# for differenced models, the lag of the level of y
```

```
# Recall model 3e: log(packpc) ~ lag(log(packpc), 1) + log(income95pc)
\# + log(avaprs95) / lag(log(packpc), 2:99)
# log-log System GMM with state fixed effects
# Because system GMM is in levels, it is convenient to
# handle logging through the formula combined with simcf
formula.3e <- log(packpc) ~ log(income95pc) + log(avgprs95) -1
# Simulate parameters
simparam.3e <- mvrnorm(sims, coefficients(pgmm.res3e), vcovHC(pgmm.res3e))</pre>
simphis.3e <- simparam.3e[,1]
simbetas.3e <- simparam.3e[,2:ncol(simparam.3e)]
# System GMM does NOT difference the covariates
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Make matrix of hypothetical x's: covariates
xhyp.3e <- cfMake(formula.3e, datayearfe, periods.out) #See log transformation in formula.3e
# system pamm uses covariates in *level* form
# -> back to our usual use of simcf; note apply to all 3 periods!
xhyp.3e <- cfChange(xhyp.3e, "avgprs95", x=60 + mean(pdata$avgprs95), scen=1:3)</pre>
```

```
# State fixed effects are not removed from the covariates,
# but from the instruments (so we can ignore them here)

# Create baseline scenario
xbase.3e <- xhyp.3e
xbase.3e$x <- xbase.3e$xpre

# We need a lag of the price per pack, now in logged levels
# But the code above to extract it from the pgmm object won't work!
# Getting this right is crucial
lagY.3e <- log(mean(pdata$packpc[pdata$year==1995], na.rm=TRUE))

# Hypothetical initial level of Y for simulation
# Still in linear levels
initialY <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE)
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev3e <- ldvsimev(xhyp.3e,
                                # The matrix of hypothetical x's
                   simbetas.3e,
                                         # The matrix of simulated betas
                                # Desired confidence interval
                   ci=0.95.
                   constant=NA,
                                    # NA indicates no constant!
                                             # estimated AR parameters; length must match lagY
                   phi=simphis.3e,
                   lagY=lagY.3e,
                                         # lags of y, most recent last
                   transform="log"
                                    # NOTE: System GMM is not differenced!
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd3e <- ldvsimfd(xhyp.3e,
                                        # The matrix of hypothetical x's
                    simbetas.3e,
                                       # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=NA.
                                         # Column containing the constant
                                         # set to NA for no constant
                                         # estimated AR parameters; length must match lagY
                    phi=simphis.3e,
                    lagY=lagY.3e,
                                         # lags of y, most recent last
                    transform="log"
                                         # NOTE: Sustem GMM is not differenced!
```

```
# Simulate relative risks in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.rr3e <- ldvsimrr(xhyp.3e,
                                        # The matrix of hypothetical x's
                    simbetas.3e,
                                       # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=NA.
                                         # Column containing the constant
                                         # set to NA for no constant
                                         # estimated AR parameters; length must match lagY
                    phi=simphis.3e,
                    lagY=lagY.3e,
                                         # lags of y, most recent last
                    transform="log"
                                         # NOTE: Sustem GMM is not differenced!
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$vear==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.3e <- lapply(sim.fd3e, function(x) mean(pdata$taxs95[pdata$year==1995])*x/100)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Sensitive to (implicit) consumption trend assumptions
revGain.3e <- lapply(sim.ev3e, function(x) 60*x/100)
# Net change in revenue, dollars pc
revNet.3e <- list(pe=revLost.3e$pe + revGain.3e$pe.
                  lower=revLost.3e$lower + revGain.3e$lower.
                  upper=revLost.3e$upper + revGain.3e$upper)
# Total change in state revenue, in millions of dollars
revNetState.3e <- lapply(revNet.3e, function(x) avgpop1995*x/1000000)
```

```
# Recall model 3q: log(packpc) ~ lag(log(packpc), 1) + log(income95pc)
#+ log(avgprs95) | lag(log(packpc), 2:99)
# log log Difference GMM with state and year fixed effects
simparam.3g <- mvrnorm(sims, coefficients(pgmm.res3g), vcovHC(pgmm.res3g))</pre>
simphis.3g <- simparam.3g[,1]
simbetas.3g <- simparam.3g[,2:ncol(simparam.3g)]</pre>
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Issues -- we need to somehow include the state and year FEs:
            Let's set the state to be an "average" state in 1995.
            and year to be like the last year (1995)
# Make matrix of hypothetical x's: covariates
# Still use the 1q formula (no logs) -- we will handle logging manually
# to get the differences of logs right
xhyp.3g <- cfMake(formula.1g, datayearfe, periods.out)</pre>
```

```
# We can "ignore" the state fixed effects for now and add them later
# because model is total linear

# Create baseline scenario
xbase.3g <- xbpp.3g
xbase.3g $x <- xbase.3g $xpre

# We need a lag of the price per pack
lagY.3g <- NULL # Hypothetical previous change in Y for simulation
for (i in 1:length(pgmm.res3g $model))
lagY.3g <- c(lagY.3g, as.data.frame(pgmm.res3g $model[[i]])["1995",1])
lagY.3g <- mean(lagY.3g, na.rm=TRUE)

initialY <- mean(pdata $packpc[pdata $year==1995], na.rm=TRUE)

# Hypothetical initial level of Y for simulation
```

```
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev3g <- ldvsimev(xhvp.3g.
                                         # The matrix of hypothetical x's
                                          # The matrix of simulated betas
                    simbetas.3g,
                                      # Desired confidence interval
                    ci=0.95,
                    constant=NA.
                                      # NA indicates no constant!
                                               # estimated AR parameters; length must match lagY
                    phi=simphis.3g,
                    lagY=lagY.3g,
                                         # lags of y, most recent last
                    transform="difflog", # "log" to undo log transformation,
                                        # "diff" to under first differencing
                                        # "difflog" to do both
                    initialY=initialY
                                        # for differenced models, the lag of the level of y
```

```
# Simulate expected values of Y given no change in covariates
sim.base3g <- ldvsimev(xbase.3g,
                                        # The matrix of hypothetical x's
                     simbetas.3g,
                                   # The matrix of simulated betas
                              # Desired confidence interval
                     ci=0.95.
                     constant=NA, # NA indicates no constant!
                                              # estimated AR parameters; length must match lagY
                     phi=simphis.3g,
                     lagY=lagY.3g,
                                       # lags of y, most recent last
                     transform="difflog", # "log" to undo log transformation,
                                     # "diff" to under first differencing
                                     # "diffloa" to do both
                     initialY=initialY # for differenced models, the lag of the level of v
```

```
# Below is a rough attempt: it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$year==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.3g <- lapply(sim.fd1g, function(x) mean(pdata$taxs95[pdata$vear==1995])*x/100)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Note this is sensitive to assumptions about consumption trends embodied by year effects
revGain.3g <- lapply(sim.ev1g, function(x) 60*x/100)
# Net change in revenue, dollars pc
revNet.3g <- list(pe=revLost.3g$pe + revGain.3g$pe.
                  lower=revLost.3g$lower + revGain.3g$lower,
                  upper=revLost.3g$upper + revGain.3g$upper)
# Total change in state revenue, in millions of dollars
revNetState.3g <- lapply(revNet.3g, function(x) avgpop1995*x/1000000)
```

```
# Recall model 3h: log(packpc) ~ lag(log(packpc), 1) + log(income95pc)
\# + \log(avqprs95) \mid lag(log(packpc), 2:99)
# log log System GMM with state and year fixed effects
# Because system GMM is in levels, it is convenient to
# handle logging through the formula combined with simcf
formula <- "log(packpc) ~ log(income95pc) + log(avgprs95)"
datayearfe <- cbind(pdata, yearfe)
vearfenames <- NULL
                                                              #Create an empty vector of the year names
for (i in 1:ncol(vearfe)) {
 formula <- pasteO(formula,"+ y", yearlist[i]," ")</pre>
                                                              #Add year names to formula
 yearfenames <- c(yearfenames,paste0("y",yearlist[i]))</pre>
names(datayearfe) <- c(names(data), yearfenames)</pre>
                                                              #Add year names to datayearfe
formula.3h <- as.formula(formula)
# Simulate parameters
simparam.3h <- mvrnorm(sims, coefficients(pgmm.res3h), vcovHC(pgmm.res3h))
simphis.3h <- simparam.3h[,1]
simbetas.3h <- simparam.3h[,2:ncol(simparam.3h)]
# Sustem GMM does NOT difference the covariates
# -> the model has a constant, which pqmm() puts in an odd place
# Move the constant to the front of the matrix!
simbetas.3h <- cbind(simbetas.3h[.3], simbetas.3h[.-3])
```

```
# Make matrix of hypothetical x's:
# Assume an average state raised taxes 60 cents starting 1996
# Issues -- we need to somehow include the state and year FEs:
           Let's set the state to be an "average" state in 1995.
            and year to be like the last year (1995)
# Make matrix of hypothetical x's: covariates
xhvp.3h <- cfMake(formula.3h, datayearfe, periods.out)
# system pamm uses covariates in *level* form
# -> back to our usual use of simcf; let simcf handle logging here
xhyp.3h <- cfChange(xhyp.3h, "avgprs95", x=60 + mean(pdata$avgprs95), scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1987", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1988", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1989", x=0, xpre=0, scen=1:3)
xhvp.3h <- cfChange(xhvp.3h, "v1990", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1991", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1992", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1993", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1994", x=0, xpre=0, scen=1:3)
xhyp.3h <- cfChange(xhyp.3h, "y1995", x=1, xpre=1, scen=1:3)
# State fixed effects are not removed from the covariates,
# but from the instruments (so we can ignore them here)
```

```
# Create baseline scenario
xbase.3h <- xhyp.3h
xbase.3h$x <- xbase.3h$xpre
# We need a lag of the price per pack, now in logged levels
# But the code above to extract it from the pamm object won't work!
# Getting this right is crucial
lagY.3h <- log(mean(pdata$packpc[pdata$year==1995], na.rm=TRUE))
# Hypothetical initial level of Y for simulation
# Still in linear levels
initialY <- mean(pdata$packpc[pdata$vear==1995], na.rm=TRUE)
# Simulate expected values of Y (on original level scale)
# out to periods.out given hypothetical future values of X,
# initial lags of the change in Y, and an initial level of Y
sim.ev3h <- ldvsimev(xhyp.3h,
                                   # The matrix of hypothetical x's
                    simbetas.3h,
                                           # The matrix of simulated betas
                                      # Desired confidence interval
                    ci=0.95,
                    constant=1,
                                       # NOTE: System GMM with two-way effects has a constant!
                                        # You will need to note the column of the constant in simbetas
                    phi=simphis.3h,
                                               # estimated AR parameters; length must match lagY
                    lagY=lagY.3h,
                                           # lags of y, most recent last
                    transform="log"
                                       # NOTE: Sustem GMM is not differenced!
```

```
# Simulate expected values of Y given no change in covariates
sim.base3h <- ldvsimev(xbase.3h.
                                              # The matrix of hypothetical x's
                      simbetas.3h.
                                              # The matrix of simulated betas
                                          # Desired confidence interval
                      ci=0.95,
                      constant=1.
                                          # NOTE: Sustem GMM with two-way effects has a constant!
                                        # You will need to note the column of the constant in simbetas
                      phi=simphis.3h,
                                                  # estimated AR parameters; length must match lagY
                      lagY=lagY.3h,
                                              # lags of y, most recent last
                      transform="log"
                                         # NOTE: System GMM is not differenced!
```

```
# Simulate first differences in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.fd3h <- ldvsimfd(xhyp.3h,
                                      # The matrix of hypothetical x's
                    simbetas.3h,
                                      # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=1.
                                       # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.3h,
                    lagY=lagY.3h,
                                        # lags of y, most recent last
                    transform="log"
                                      # NOTE: System GMM is not differenced!
```

```
# Simulate relative risks in y
# out to periods.out given hypothetical future values of x, xpre,
# and initial lags of the change in y
sim.rr3h <- ldvsimrr(xhyp.3h,
                                      # The matrix of hypothetical x's
                    simbetas.3h,
                                      # The matrix of simulated betas
                    ci=0.95,
                                       # Desired confidence interval
                    constant=1.
                                       # Column containing the constant
                                        # set to NA for no constant
                                        # estimated AR parameters; length must match lagY
                    phi=simphis.3h,
                    lagY=lagY.3h,
                                        # lags of y, most recent last
                    transform="log"
                                      # NOTE: Sustem GMM is not differenced!
```

```
# Compute revenue effects
# Below is a rough attempt; it would be better to directly simulate these quantities
# It would also be better to wrap this in a function, to avoid typos in copy.paste.edit
# Population in 1995 in average state
avgpop1995 <- mean(pdata$pop[pdata$year==1995])
# Lost revenues from reduced consumption, dollars pc
revLost.3h <- lapply(sim.fd3h, function(x) mean(pdata$taxs95[pdata$year==1995])*x/100)
# Added revenue from higher taxes on remaining consumption, dollars pc
# Note this is sensitive to assumptions about consumption trends embodied by year effects
revGain.3h <- lapply(sim.ev3h, function(x) 60*x/100)
# Net change in revenue, dollars pc
revNet.3h <- list(pe=revLost.3h$pe + revGain.3h$pe,
                  lower=revLost.3h$lower + revGain.3h$lower.
                  upper=revLost.3h$upper + revGain.3h$upper)
# Total change in state revenue, in millions of dollars
revNetState.3h <- lapply(revNet.3h, function(x) avgpop1995*x/1000000)
# Make plots of expected values, first differences, and percent changes
# using custom tile code in helperCigs.R
# Hypothetical initial level of Y for simulation
initialY <- mean(pdata$packpc[pdata$year==1995], na.rm=TRUE)
```