WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 207/16, A61K 31/40, C07D 207/48, 401/12, 261/02

(11) International Publication Number:

WO 98/06694

(43) International Publication Date:

19 February 1998 (19:02.98)

(21) International Application Number:

PCT/US97/14222

A1

(22) International Filing Date:

13 August 1997 (13.08.97)

(30) Priority Data:

08/689,945 60/033,436 ·16 August 1996 (16.08.96)

US

US 23 December 1996 (23.12.96)

(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors: FEVIG, John, Matthew; 291 Church Street, Lincoln University, PA 19352 (US). QUAN, Mimi, Lifen; 113 Venus Drive, Newark, DE 19713 (US).

(74) Agent: VANCE, David, H.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

(81) Designated States: AM, AU, AZ, BR, BY, CA, CN, CZ, EE, HU, IL, JP, KG, KR, KZ, LT, LV, MD, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, UA, VN, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: AMIDINOPHENYL-PYRROLIDINES, -PYRROLINES, AND -ISOXAZOLIDINES AND DERIVATIVES THEREOF

(57) Abstract

The present application describes amidinophenyl-pyrrolidines, pyrrolines, and -isoxazolidines and derivatives thereof of formula (I), or pharmaceutically acceptable salt forms thereof, wherein one of D and D' may be C(=NH)NH2 and the other H and J1 and J2 may be O or CH2, which are useful as inhibitors of factor Xa.

$$\begin{array}{c|c}
R^{a} & J^{2} \\
 & J^{1} \\
 & D'
\end{array}$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain		I.S	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland		LT	Lithuania	SK	Slovakia
AT	Austria	FR	France		LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	٤	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	•	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia 6		MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana		MG	Madagascer	TJ	Tajikistan
BE	Belgium	GN	Guinea		MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary		ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IB	Ireland		MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel		MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland		MW	Malawi	US	United States of America
CA	Canada	IT	Italy		MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan		NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya		NL	Netherlands	YU	Yugoslavia
CII	Switzerland	KG	Kyrgyzstan		NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's		NZ	New Zealand		
CM	Cameroon		Republic of Korea		PI.	Poland		•
CN	China	KR .	Republic of Korea		PT	Portugal		
CU	Cuba	KZ	Kazakstan		RO	Romania		
cz	Czech Republic	LC	Saint Lucia		RU	Russian Federation		
DE	Germany	LI	Liechtenstein		SD	Sudan		
DK	Denmark	LK	Sri Lanka		SE	Sweden		
EK	Estonia	LR	Liberia		SG	Singapore		
1								
l								

TITLE

Amidinophenyl-Pyrrolidines, -Pyrrolines, and -Isoxazolidines and Derivatives Thereof

5

10

FIELD OF THE INVENTION

This invention relates generally to amidinophenyl pyrrolidines, -pyrrolines, and -isoxazolidines and derivatives which are inhibitors of trypsin-like serine protease enzymes, especially factor Xa, pharmaceutical compositions containing the same, and methods of using the same as anticoagulant agents for treatment and prevention of thromboembolic disorders.

15

20

25

BACKGROUND OF THE INVENTION

Himmelsbach et al in CA 2,054,850 discuss aggregation inhibiting compounds of the formula:

B-X-A-Y-E

wherein A may be a cyclic imino such as pyrrolidine and amidst the various definitions of B and X one can find amidino and arylene listed. The combination of Y-E, however, is not considered to be useful for the present invention. Thus, the compounds of Himmelsbach et al differ from those of the present invention. Moreover, inhibition of factor Xa is not discussed in Himmelsbach et al as a use for the compounds of the above formula.

In U.S. Patent No. 5,463,071, Himmelsbach et al depict cell aggregation inhibitors which are 5-membered heterocycles of the formula:

X₂ ^1 X₁ X₂ X₃ - X₄

30

35

wherein the heterocycle is other than pyrroline and pyrrolidine and groups A-B-C- and F-E-D- are attached to the ring system. A-B-C- can be a wide variety of substituents including a basic group attached to an aromatic ring. The F-E-D- group, however, would appear to be an acidic functionality which differs from the present invention.

Furthermore, use of these compounds as inhibitors of factor Xa is not discussed.

Activated factor Xa, whose major practical role is the generation of thrombin by the limited proteolysis of prothrombin, holds a central position that links the intrinsic and extrinsic activation mechanisms in the final common pathway of blood coagulation. The generation of thrombin, the final serine protease in the pathway to generate a fibrin clot, from its precursor is amplified by formation of prothrombinase complex (factor Xa, factor V, Ca^{2+} and phospholipid). Since it is calculated that one molecule of factor Xa can generate 138 molecules of thrombin (Elodi, S., Varadi, K.: Optimization of conditions for the catalytic effect of the factor IXa-factor VIII Complex: Probable role of the complex in the amplification of blood coagulation. Thromb. Res. 1979, 15, 617-629), inhibition of factor Xa may be more efficient than inactivation of thrombin in interrupting the blood coagulation system.

10

15

20

30

35

Therefore, efficacious and specific inhibitors of factor Xa are needed as potentially valuable therapeutic agents for the treatment of thromboembolic disorders. It is thus desirable to discover new factor Xa inhibitors.

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to provide novel amidino-phenylpyrrolidines and analogs thereof which are useful as factor Xa inhibitors or pharmaceutically acceptable salts or prodrugs thereof.

It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

It is another object of the present invention to provide a method for treating thromboembolic disorders comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the

compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof.

These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of formula (I):

Ι

or pharmaceutically acceptable salt or prodrug forms thereof, wherein A, B, D, Da, J, m, n, R, Ra, Rb and Z are defined below, are effective factor Xa inhibitors.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

15 [1] Thus, in a first embodiment, the present invention provides novel compounds of formula I:

$$\begin{array}{c|c}
R & J^{2} \\
\hline
N \\
\hline
D'
\end{array}$$

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

25

one of D and D' is selected from CN, $C(=NR^7)NR^8R^9$, $NHC(=NR^7)NR^8R^9$, $NR^8CH(=NR^7)$, $C(O)NR^8R^9$, and $(CH_2)_tNR^8R^9$ and the other is H;

Z is selected from CH_2 , C=0, $CH_2C(0)$, C(0)0, CONH, CH_2NH_2 , CH_2O , SO_2 , and SO_2NH ;

- J^1 and J^2 are independently selected from O and CH₂, provided that if J^1 is O, then J^2 is CH₂ and if J^2 is O, then J^1 is CH₂;
 - R is selected from CO_2R^1 , COR^1 , OR^1 , NR^2R^{2a} , $CONR^2R^{2a}$, $S(0)_pR^{1a}$, and $S(0)_pNR^2R^{2a}$;

 R^a is selected from H and C_{1-4} alkyl;

Rb is H;

- when J^1 and J^2 are CH_2 , then R^a and R^b can combine to form a bond;
 - R1 is selected from:

H.

C₁₋₄ alkyl substituted with 0-1 R^3 ,
C₃₋₆ carbocyclic residue substituted with 0-2 R^4 , and
5-6 membered heterocyclic system containing from 1-4
heteroatoms selected from the group consisting of N, O,
and S substituted with 0-2 R^4 ;

25

30

10

Rla is selected from:

 C_{1-4} alkyl substituted with 0-1 R^3 , C_{3-6} carbocyclic residue substituted with 0-2 R^4 , and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^4 ;

 R^2 and $R^{2\alpha}$ are independently selected from H, C_{1-4} alkyl, and phenyl;

35

 ${\rm R}^2$ and ${\rm R}^{2a}$ may be taken together to form a 5 or 6 membered ring substituted with 0-2 ${\rm R}^4$ which may contain from 0-1

heteroatoms selected from the group consisting of N, O, and S;

 R^{2a} may also be C_{1-4} alkoxy;

5

10

20

R³ is selected from:

phenyl substituted with 0-2 R^4 , and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^4 ;

A is selected from:

C₃₋₁₃ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4
15 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

B is selected from:

X-Y, NR^2R^{2a} , $C(=NR^2)NR^2R^{2a}$, $NR^2C(=NR^2)NR^2R^{2a}$, benzyl substituted with 0-2 R^{4a} ,

 C_{3-10} carbocyclic residue substituted with 0-2 R^{4a}, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴, provided that B is other than

25 tetrazol-5-yl;

X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-NR^2S(0)_2CR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_2NR^2$ -, $-NR^2S(0)_2NR^2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-C(0)NR^2CR^2R^{2a}$ -, $-NR^2C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)NR^2$ -, $-CR^2R^{2a}NR^2C(0)$ -, $-NR^2C(0)O$ -, $-OC(0)NR^2$ -, $-NR^2C(0)NR^2$ -, $-NR^2CR^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, $-CR^2R^{2a}O$ -, $-CCR^2R^{2a}O$ -, -

35

Y is selected from:

 C_{3-10} carbocyclic residue substituted with 0-2 R^4 , and

5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^4 , provided that Y is other than tetrazol-5-yl;

5

10

15

25

R⁵ is selected from:

 C_{3-10} carbocyclic residue substituted with 0-2 R^6 , and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and 20 S substituted with 0-2 R^6 ;

- R⁶ is selected from H, OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$, $NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, and $NR^2SO_2C_{1-4}$ alkyl;
- R⁷ is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxycarbonyl, C₆₋₁₀ aryloxy, C₆₋₁₀ aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄

 30 alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxycarbonyl;
- 35 R^8 is selected from H, C_{1-6} alkyl and $(CH_2)_n$ -phenyl;
 - R^9 is selected from H, C_{1-6} alkyl and $(CH_2)_n$ -phenyl;

n is selected from 0, 1, 2, and 3;

m is selected from 0, 1, and 2;

p is selected from 0, 1, and 2; and,

r is selected from 0, 1, and 2;

provided that if B is tetrazolyl, R4 is present.

10

In a preferred embodiment, the present invention [2] provides novel compounds of formula Ia:

15

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

Z is selected from CH_2 , C=0, C(0)0, and SO_2 .

20

- In a more preferred embodiment, the present invention provides compounds of formula Ia wherein;
- one of D and D' is C(=NR7)NH2 and the other is H; 25
 - B is selected from:

X-Y, NR^2R^{2a} ,

benzyl substituted with 0-2 R4a,

 C_{3-10} carbocyclic residue substituted with 0-2 R^{4a} , and 30 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and

S substituted with 0-2 R^4 , provided that B is other than tetrazol-5-yl;

- X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-NR^2$ -, $-NR^2CR^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, 0, $-CR^2R^{2a}$ 0-, and $-OCR^2R^{2a}$ -;
- R⁴ is selected from OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO₂, $(CH_2)_rNR^2R^{2a}, \quad (CH_2)_rC(O)R^2, \quad NR^2C(O)R^{2a}, \quad NR^2C(O)NR^2R^{2a},$ $CH(=NH)NH_2, \quad NHC(=NH)NH_2, \quad SO_2NR^2R^{2a}, \quad NR^2SO_2NR^2R^{2a}, \quad NR^2SO_2-C_{1-4} \quad alkyl, \quad S(O)_pR^{1a}, \quad and \quad CF_3;$
- R^{4a} is selected from OH, halo, C_{1-4} alkyl, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$, $NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl, $S(O)_pR^{1a}$, and CF_3 ; and,

n is selected from 0 and 1.

20

[4] In an even more preferred embodiment, the present invention provides compounds of formula II:

25

II

- or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;
- R is selected from CO_2R^1 , COR^1 , OR^1 , $CONR^2R^{2a}$, $S(O)_pR^{1a}$, and $S(O)_pNR^2R^{2a}$;
 - \mathbb{R}^1 and \mathbb{R}^{1a} are independently selected from:

C₁₋₄ alkyl substituted with 0-1 R³,

C₃₋₆ carbocyclic residue substituted with 0-2 R⁴, and

5-6 membered heterocyclic system containing from 1-4

heteroatoms selected from the group consisting of N, O,
and S substituted with 0-2 R⁴;

- X is selected from C_{1-4} alkylene, -C(0)-, $-S(0)_p$ -, $-NR^2$ -, and O; and,
- 10 m is selected from 0 and 1.

5

35

- [5] In a further preferred embodiment, the present invention provides compounds of formula II wherein;
- 15 R is selected from CO₂R¹, COR¹, OR¹, and CONR²R^{2a};
 - R^1 and R^{1a} are independently selected from: C_{1-4} alkyl substituted with 0-1 R^3 , and C_{3-6} carbocyclic residue substituted with 0-2 R^4 ; and,

 R^2 and R^{2a} may be taken together to form a 5 or 6 membered ring substituted with 0-2 R^4 .

- [6] In a still further preferred embodiment, the present invention provides compounds of formula II wherein;
 - R^a is selected from H and C_{1-4} alkyl;
- R^1 and R^{1a} are independently selected from C_{1-4} alkyl substituted with 0-1 R^3 ;
 - R^3 is phenyl substituted with 0-2 R^4 ; and,
 - Y is a C_{3-10} carbocyclic residue substituted with 0-2 R^4 .
 - [7] Specifically preferred compounds of this invention are compounds, or pharmaceutically acceptable salt forms thereof, selected from the group consisting of:

```
trans-1-(4-amidinophenyl)methyl-3-carbomethoxy-4-(3-
    amidinophenyl)pyrrolidine;
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
5
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
    (35,4R)-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
10
    (3R,4S)-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
    amidinophenyl)pyrrolidin-3-ylcarboxylic acid
15
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
    amidinophenyl)pyrrolidin-3-ylcarboxylic amide
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
20
    amidinophenyl)pyrrolidin-3-ylcarboxylic N,N-dimethylamide
     cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
     carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
25
     cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
     amidinophenyl)pyrrolidin-3-ylcarboxylic acid
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
     carboisopropoxy-4-(3-amidinophenyl)pyrrolidine;
30
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
     carbobutoxy-4-(3-amidinophenyl)pyrrolidine;
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-acetyl-
35
     4-(3-amidinophenyl)pyrrolidine;
```

```
trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carboethoxy-3-methyl-4-(3-amidinophenyl)pyrrolidine;
    trans-1-[[2-(2-cyanophenylthio)phenyl]carbonyl]-3-carbomethoxy-4-
    (3-amidinophenyl)pyrrolidine;
5
    trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-
    amidinophenyl)pyrrolidine;
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-
10
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-
    carboisopropoxy-4-(3-amidinophenyl)pyrrolidine;
15
    trans-1-[9-fluorenylmethoxycarbonyl]-3-carbomethoxy-4-(3-
    amidinophenyl)pyrrolidine;
    trans-2-benzyl-4-carbomethoxy-5-(3-amidinophenyl)isoxazolidine;
20
     trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-
    carbomethoxy-5-(3-amidinophenyl)isoxazolidine;
    trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-
    carboisopropoxy-5-(3-amidinophenyl)isoxazolidine; and,
25
     trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-
    methoxymethyl-5-(3-amidinophenyl)isoxazolidine.
30
          In another preferred embodiment, the present invention
```

provides novel compounds of formula Ib:

Ib

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

5

[9] In another more preferred embodiment, the present invention provides compounds of formula Ib wherein;

one of D and D' is $C(=NR^7)NH_2$ and the other is H;

10

15

B is selected from:

X-Y, NR^2R^{2a} ,

benzyl substituted with 0-2 R4a,

C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a}, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴, provided that B is other than tetrazol-5-yl;

- 20 X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-NR^2$ -, $-NR^2CR^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, 0, $-CR^2R^{2a}$ 0-, and $-OCR^2R^{2a}$ -;
- 25 R^4 is selected from OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$, $NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl, $S(O)_pR^{1a}$, and CF_3 ;
- 30 R^{4a} is selected from OH, halo, C_{1-4} alkyl, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$,

NHC(=NH)NH₂, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl, $S(O)_DR^{1a}$, and CF_3 ; and,

n is selected from 0 and 1.

5

[10] In another even more preferred embodiment, the present invention provides compounds of formula IIa:

10

IIa

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

R is selected from CO_2R^1 , COR^1 , OR^1 , $CONR^2R^{2a}$, $S(O)_pR^{1a}$, and $S(O)_pNR^2R^{2a}$;

R1 and R1a are independently selected from:

 C_{1-4} alkyl substituted with 0-1 R^3 ,

 C_{3-6} carbocyclic residue substituted with 0-2 R^4 , and

5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R4;

X is selected from C_{1-4} alkylene, -C(0)-, $-S(0)_p-$, $-NR^2-$, and 0; and,

m is selected from 0 and 1.

[11] In another further preferred embodiment, the present30 invention provides compounds of formula IIa wherein;

R is selected from CO_2R^1 , COR^1 , OR^1 , and $CONR^2R^{2a}$;

 ${\bf R^1}$ and ${\bf R^{1a}}$ are independently selected from:

 C_{1-4} alkyl substituted with 0-1 R^3 , and

- C_{3-6} carbocyclic residue substituted with 0-2 R⁴; and,
 - R^2 and R^{2a} may be taken together to form a 5 or 6 membered ring substituted with 0-2 R^4 .
- 10 [12] In another still further preferred embodiment, the present invention provides compounds of formula IIa wherein;
 - R^1 and R^{1a} are independently selected from C_{1-4} alkyl substituted with 0-1 R^3 ;

 R^3 is phenyl substituted with 0-2 R^4 ; and,

- Y is a C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁴.
- 20 [13] Additional specifically preferred compounds of the present invention are compounds, or pharmaceutically acceptable salt forms thereof, selected from the group consisting of:
- 25 trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine;

trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-

30 amidinophenyl)pyrrolidine;

15

cis-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine;

35 trans-1-(methylsulfonyl)-3-[[5-(2'-aminosulfonylphenyl-1yl)pyridin-2-yl]aminocarbonyl]-4-(3amidinophenyl)pyrrolidine;

trans-1-(methylsulfonyl)-3-[[5-(2'-tertbutylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4(3-amidinophenyl)pyrrolidine;

- 5 1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)- Δ^3 -pyrroline;
 - 1-(benzyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)- Δ^3 -pyrroline;

trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']biphenyl-4-yl)methylcarbonyl)-4-(3amidinophenyl)pyrrolidine.

In a second embodiment, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug form thereof.

In a third embodiment, the present invention provides a novel method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or prodrug form thereof.

DEFINITIONS

The compounds herein described may have asymmetric

centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans

geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

5

10

25

30

35

The term "substituted," as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

When any variable (e.g., R⁶) occurs more than one time
in any constituent or formula for a compound, its definition
at each occurrence is independent of its definition at every
other occurrence. Thus, for example, if a group is shown to
be substituted with 0-2 R⁶, then said group may optionally
be substituted with up to two R⁶ groups and R⁶ at each
occurrence is selected independently from the definition of
R⁶. Also, combinations of substituents and/or variables are
permissible only if such combinations result in stable
compounds.

When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

As used herein, "C₁₋₆ alkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, examples of which include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, pentyl, and hexyl; "Alkenyl" is intended to include

hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like.

"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate, and the like.

5

25

30

35

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 7-membered monocyclic or bicyclic or 7- to 13-membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl,; [3.3.0]bicyclooctane, [4.3.0]bicyclooctane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" or "heterocyclic system" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not

adjacent to one another. As used herein, the term "aromatic heterocyclic system" is intended to mean a stable 5- to 7-membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heterotams independently selected from the group consisting of N, O and S. It is preferred that the total number of S and O atoms in the aromatic heterocycle is not more than 1.

5

Examples of heterocycles include, but are not limited to, 1H-indazole, 2-pyrrolidonyl, 2H,6H-1,5,2-dithiazinyl, 10 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4Hquinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, 15 benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, β-carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1, 5, 2-dithiazinyl, dihydrofuro[2, 3-b] tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, 20 imidazolyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 25 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl., oxazolyl, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, 30 pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl,

quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl,
quinuclidinyl, carbolinyl, tetrahydrofuranyl,
tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1,2,5thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl,

PCT/US97/14222 WO 98/06694

thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, xanthenyl. Preferred heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, indolyl, benzimidazolyl, 1H-indazolyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

10

The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or 15 complication, commensurate with a reasonable benefit/risk ratio.

As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts 20 thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the 25 conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from nontoxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, 30 sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-35 acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are intended to include any covalently 15 bonded carriers which release the active parent drug according to formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of formula (I) are prepared by modifying functional groups present in the compound in such a way that the modifications 20 are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds of formula (I) wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug or compound of formula (I) is administered to a mammalian subject, cleaves to form 25 a free hydroxyl, free amino, or free sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I), and the like. Preferred prodrugs are amidine prodrugs wherein D is $C(=NR^7)NH_2$, and R^7 is selected from OH, 30 C_{1-4} alkoxy, C_{6-10} aryloxy, C_{1-4} alkoxycarbonyl, C_{6-10} aryloxycarbonyl, C_{6-10} arylmethylcarbonyl, C_{1-4} alkylcarbonyloxy C_{1-4} alkoxycarbonyl, and C_{6-10} $arylcarbonyloxy C_{1-4}$ alkoxycarbonyl. More preferred prodrugs are where R^7 is OH, methoxy, ethoxy, benzyloxycarbonyl, 35 methoxycarbonyl, and methylcarbonyloxymethoxycarbonyl.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive

isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

5 <u>SYNTHESIS</u>

35

The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of 10 synthetic organic chemistry, or by variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the 15 transformations being effected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the transformations proposed. This will sometimes require a judgment to modify the order of the synthetic 20 steps or to select one particular process scheme over another in order to obtain a desired compound of the invention. It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used 25 for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene and Wuts (Protective Groups In Organic Synthesis, Wiley and Sons, 1991). All references 30 cited herein are hereby incorporated in their entirety herein by reference.

The compounds of the present invention represented by Formula I are 1,3,4-trisubstituted and 1,3,3,4-tetrasubstituted pyrrolidines, 1,3,4-trisubstituted Δ^3 -pyrrolines, and 2,4,5-trisubstituted, 2,4,4,5-tetrasubstituted and 2,4,5,5-tetrasubstituted isoxazolidines. A convenient method for the preparation of

these heterocycles utilizes a 1,3-dipolar cycloaddition of an appropriate 1,3-dipole with an appropriate dipolarophile. To prepare the pyrrolidine nucleus, the appropriate 1,3-dipole is an azomethine ylide. To prepare the isoxazolidine nucleus the appropriate 1,3-dipole is a nitrone (for reviews of 1,3-dipolar cycloaddition chemistry of azomethine ylides and nitrones, see 1,3-Dipolar Cycloaddition Chemistry (A. Padwa, Ed.), Wiley-Interscience, New York, 1984; Tsuge and Kanemasa, in Advances in Heterocyclic Chemistry (A.

- 10 Katritzky, Ed.), 1989, 45, p. 232; Torssell, in Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis, VCh Publishers, Inc., New York, 1988; Breuer, Aurich and Nielsen, in Nitrones, Nitronates, and Nitroxides, Wiley, New York, 1989).
- Although there are several methods known in the literature for generating stabilized azomethine ylides, fewer methods are available for generating the non-stabilized azomethine ylides required for the preparation of the pyrrolidine-containing compounds of the present
- invention. However, the decomposition of an appropriately substituted tertiary amine was found to be a suitable method for the purposes of the present invention. A general scheme for the generation and reaction of non-stabilized azomethine ylides using this method is shown in Scheme 1. The
- azomethine ylide precursors 1a and 1b are either commercially available or are readily prepared by methods known to those skilled in the art. Shown at the bottom of Scheme 1 are some preferred methods beginning with the readily available secondary amines 4 (Hosomi et al Chem.
- Letters 1984, 1117; Padwa et al. J. Org. Chem. 1985, 50, 4006). Treatment of 4 with aqueous formaldehyde in the presence of either methanol or potassium cyanide at near neutral pH generates the tertiary amines 1a and 1b, respectively. Alternatively, the anion of 4 can be
- generated with a suitable base, such as *n*-butyllithium or sodium hydride, and alkylated with chloromethyl methyl ether to generate **1a**. The substituent R' can be benzyl,

substituted benzyl, alkyl, cycloalkyl, etc., but preferably is benzyl.

Scheme 1

The generation of the azomethine ylide 2 from 1a and 1b 5 is straightforward. Treatment of 1a with a number of acidic catalysts, such as trifluoroacetic acid, acetic acid. titanium tetrachloride or trifluoromethanesulfonic acid, causes its rapid decomposition to the azomethine ylide 2 (Terao et al Chem. Pharm. Bull. 1985, 33, 2762). The 10 preferred catalyst is 5-25% trifluoroacetic acid in dichloromethane solvent. Treatment of 1b with silver fluoride in the dark also generates 2 (Padwa et al. J. Org. Chem. 1985, 50, 4006). This method relies on the silylophilic nature of fluoride ion and is generally carried 15 out in acetonitrile solvent. Once generated, the nonstabilized azomethine ylide 2 reacts with olefins to produce pyrrolidines 3 by 1,3-dipolar cycloaddition. Generally the olefin needs to be activated by a suitable electron withdrawing group, such as carboxylic ester, carboxylic 20 amide, ketone, nitrile, sulfone, nitro, etc. Styrenes which are substituted with electron withdrawing groups, such as carboxylic ester, carboxylic amide, ketone, nitrile, sulfone, nitro, etc., also are able to undergo reaction with 2 to produce aryl-substituted pyrrolidines. The 1,3-dipolar 25

cycloaddition is stereospecific in that the stereochemistry of the olefin is retained and translated into the relative stereochemistry of the pyrrolidine product. Thus, transdisubstituted olefins undergo cyclization to produce pyrrolidines 3 with a trans configuration of the 3,4-substituents on the pyrrolidine ring.

In Scheme 2 is shown how the just described 1,3-dipolar cycloaddition can be applied to the synthesis of the 1,3,4trisubstituted and 1,3,3,4-tetrasubstituted pyrrolidine 10 nucleus contained in the compounds of the present invention. The required di- or trisubstituted olefins 6 are readily available from cyanobenzaldehydes 5 by reaction with stabilized Wittig reagents or with the sodium or potassium anions of phosponate reagents. The stabilized Wittig 15 reagents react with 5 to give E-disubstituted olefins 6 (Rc = hydrogen, Ra = carbomethoxy, acetyl). The phosphonate anions also give E-di- or trisubstituted olefins 6 when RC of the phosphonate is hydrogen or methyl, Ra is carbomethoxy or carboethoxy and Rd is methyl or ethyl. Modification of 20 the phosphonate also allows for the preparation of the Zdisubstituted olefins 6. Thus, treatment of bis(2,2,2trifluoroethyl) (methoxycarbonylmethyl)phosphonate (Rd = -CH₂CF₃) with potassium bis(trimethylsilyl)amide and 18crown-6 generates a potassium anion of the phosphonate that reacts with 5 to give selectively the Z-disubstituted 6 where Rc is carbomethoxy and Ra is hydrogen.

Scheme 2

The 1,3-dipolar cycloaddition of olefins 6 with Nbenzyl derivatives of 7 under TFA catalysis smoothly affords the pyrrolidines 8. The relative stereochemistry about the pyrrolidine ring is determined by the geometry of the olefin 6 as described in connection with Scheme 1. Deprotection of the N-benzyl group (Re, Rf = hydrogen) can be accomplished in several ways. Two preferred methods are catalytic hydrogenation in the presence of di-tert-butyl dicarbonate 10 followed by trifluoroacetic acid deprotection of the N-tertbutyl carbamate intermediate. This procedure affords 9 as the trifluoroacetic acid salt. Another method involves refluxing 8 in the presence of α -chloroethyl chloroformate 15 in a solvent such as 1,2-dichloroethane followed by refluxing in methanol to deprotect the α-chloroethyl carbamate intermediate (Olofson et al J. Org. Chem. 1984, 49. 2081). This methods affords 9 as the hydrochloride salt.

In Scheme 3 is shown how to prepare compounds of Formula I in which J is CO, SO₂ or CO₂ attached to the pyrrolidine nucleus. Where J in Formula I is CO, the compounds can be prepared by two preferred methods. The first is the reaction of the pyrrolidine 9 with an acid chloride in the presence of a suitable base such as

20

25

triethylamine. In cases where the required acid chloride is not commercially available, it can be prepared from the corresponding carboxylic acid by treatment with thionyl chloride or other methods known to those skilled in the art. Alternatively, the pyrrolidine 9 can be coupled to a carboxylic acid using any of a number of peptide coupling methods (mixed anhydride, HBTU, DCC, etc.) well known to those skilled in the art of organic synthesis. The product of these methods is the amide 10. To prepare the carbamate 10 compounds 11, where J in Formula I is CO2, the pyrrolidine 9 can be coupled to the appropriate chloroformate or succinimidyl carbonate in the presence of an appropriate base such as triethylamine. The compounds of Formula I where J is SO₂ can be prepared from pyrrolidine 9 by treatment with the appropriate sulfonyl chloride to afford 15 the sulfonamides 12. In cases where the sulfonyl chloride is not commercially available, it can be prepared from the corresponding sulfonic acid 13 using phosphorous pentachloride or thionyl chloride. Where the sulfonic acid

To prepare compounds where J in Formula I is CH₂, a simple alkylation of the pyrrolidine 9 with the appropriate primary alkyl bromide or chloride in the presence of a base such as triethylamine can provide the required compounds.

13 is not commercially available, it can be prepared from the corresponding bromide 14 by displacement with sodium

20

25

sulfite.

Scheme 3

To prepare pyrrolidine-containing compounds of Formula I where A-B is a biphenyl residue, the chemistry described in Scheme 4 can be used. For compounds where $-J(CH_2)_n$ - is CH2 the preferred method involves preparing the bromocontaining reagent 15 through alkylation of trimethylsilylmethylamine followed by reaction of the resulting secondary amine with aqueous formaldehyde in methanol as described previously. Other methods known to those skilled in the art can be envisioned to prepare this compound. The 1,3-dipolar cycloaddition described earlier with olefin 6 affords the pyrrolidine 16. The biphenyl residue can be constructed using the palladium-catalyzed Suzuki coupling of 16 with an appropriate arylboronic acid (Miyaura et al Syn. Comm. 1981, 11, 513). The product from the Suzuki coupling is the biphenyl compound 17. arylboronic acid can be prepared from the corresponding arylbromide by transmetallation to the aryllithium reagent

5

10

15

with *n*-butyllithium or *t*-butyllithium followed by reaction with trimethylborate and hydrolysis to the boronic acid.

Scheme 4

5

10

15

Compounds containing different $J-(CH_2)_n-$ groups such as 18, which are available following the procedures described in Scheme 3, can be transformed in an analogous fashion into the corresponding biphenyl-containing pyrrolidine compounds 19.

Scheme 5 describes methods used to elaborate the R- $(CH_2)_m$ - group of Formula I in the pyrrolidine series of compounds. Compound 20 (m = 0) is obtainable by the procedures described in earlier schemes. Compound 20 (m = 1) is a one carbon homolog which can be prepared from the appropriate 20 (m = 0) analog by homologation procedures known to those skilled in the art of organic chemistry. To prepare carboxylic amide analogs, the ester 20 is first

hydrolyzed to the carboxylic acid and then is converted to the desired amide 21 by any of a variety of procedures known to those skilled in the art, such as the mixed anhydride method, DCC-mediated coupling, etc. Alcohol derivatives are 5 available by reduction of the carboxylic acid derived from 20 by either borane tetrahydrofuran complex or by a procedure involving sodium borohydride reduction of the mixed anhydride of the carboxylic acid. The ether derivatives 23 are readily available by etherification of 10 the alcohol 22 with an alkyl halide and a suitable base such as sodium hydride. The alcohol 22 can also be transformed into the thioether derivatives by first converting the alcohol into a good leaving group, for example by converting it into its mesylate or tosylate with the appropriate sulfonyl chloride and a base such as pyridine or triethylamine. Displacement of the leaving group with a thiol in the presence of a base will then yield the thioether derivatives 24. Oxidation of 24 by any of a variety of well know oxidizing agents can then afford the corresponding sulfone derivatives 25.

20

WO 98/06694

Scheme 5

All of the pyrrolidine derivatives described in Schemes 2-5 contain an aromatic cyano group which must be converted to its amidine derivative to prepare the final compounds described by Formula I. Generally, in the course of preparing the compounds of this present invention, this conversion has been the final step in each synthetic sequence and it is shown in Scheme 6. The preferred method was first described by Pinner and Klein (Ber., 1877, 10,

1889; for a more recent review see: Decroix, J. Chem. Res., 1978, 134). By this method the nitrile 26 is dissolved in an anhydrous alcohol or a mixture of at least one equivalent of an alcohol and an anhydrous aprotic cosolvent, such as chloroform or an acetate ester of the selected alcohol (i.e., methyl acetate for methyl alcohol). Typically, this mixture is cooled to below ambient temperature and dry hydrogen chloride gas is added via a gas dispersion tube until the solvent is saturated with HCl. The mixture is then sealed and stirred at ambient 10 temperature or below to form an intermediate imidate. imidate is isolated and dissolved in an anhydrous alcohol solvent and treated with ammonia, ammonium carbonate, ammonium acetate or alcoholic ammonia solution to afford the desired amidine 27. These compounds are conveniently 15 purified by preparative reverse phase HPLC or by recrystallization to give the pyrrolidine compounds defined by Formula I.

Scheme 6

NC
$$\frac{R}{m}$$
 1) $\frac{1}{HC1}$ (g), $\frac{R}{m}$ 1) $\frac{HC1}{0-25^{\circ}}$ C $\frac{0-25^{\circ}}{2}$ C $\frac{1}{NH_3}$ (g), or $\frac{NH_3}{ROH}$ NH 27

20

25

30

In cases where A or B in compound 26 is substituted with a tert-butylsulfonamide group, the tert-butyl protecting group can be removed by refluxing in trifluoroacetic acid prior to subjecting these compounds to the Pinner sequence.

Although the Pinner sequence to produce the amidines 27 is generally the final step in the preparation of the pyrrolidine compounds of Formula I, some transformations can be carried out on the amidine derivatives themselves, as shown in Scheme 7. To prepare the carboxylic acid

derivatives of the present invention, the methyl ester 28 can be treated with an excess of lithium hydroxide in aqueous tetrahydrofuran to afford the acid 29. To prepare esters other than methyl esters, the methyl ester 28 can be treated at reflux with an excess of another alcohol, such as isopropanol or n-butanol, in the presence of a catalytic amount of a titanium (IV) tetraalkoxide, such as titanium (IV) tetraisopropoxide. This reaction produces the alternate ester 30. Due to the large excess of alcohol used, the titanium reagent does not have to match the alcohol, thus reaction of 28 with excess n-butanol in the presence of catalytic titanium (IV) tetraisopropoxide produces the n-butyl ester derivative of 30.

10

15

20

Scheme 7

The syntheses of the pyrrolidine compounds described in the preceding schemes were all described for racemic compounds, despite the presence of one or more chiral centers in all of the compounds presented. It is also possible to prepare many of the pyrrolidine compounds contained in this invention as single enantiomers in a well-defined manner by asymmetric synthesis. Presumably many of

the compounds would also be amenable to resolution methods to prepare single enantiomers. In Scheme 8 is described a method for the asymmetric synthesis of the pyrrolidine compounds of this invention. The preferred, but not the only, method for preparing single enantiomers of these 5 compounds is by employing a 1,3-dipolar cycloaddition of an azomethine ylide with an olefin derivative which contains a chiral auxiliary to induce asymmetry. Although there are many chiral auxiliaries which would presumably be capable of inducing an enantioselective 1,3-dipolar cycloaddition, 10 preferred auxiliaries are (1S)-(-)-2,10-camphorsultam and (1R)-(+)-2.10-camphorsultam, both of which are commercially available. A preferred, but not the only, method of introducing the camphorsultam auxiliary is by reaction of the aluminum reagent derived from the auxiliary 32 with an 15 ester 31 to give the amide 33. The reaction of 33 with the azomethine ylide precursor described earlier in the presence of trifluoroacetic acid results in a 1,3-dipolar cycloaddition to give a mixture of diastereomeric pyrrolidines 34 and 35 (Fevig, Bioorg. Med. Chem. Lett. 20 1996, 6, 295). The diastereomers can be separated by flash chromatography and separately elaborated to enantiomerically pure pyrrolidine compounds of Formula I. The removal of the camphorsultam chiral auxiliary can be accomplished by two preferred methods. The first involves treating the 25 cycloaddition product with lithium hydroxide in aqueous tetrahydrofuran which furnishes the carboxylic acid 36, which can be transformed into the corresponding methyl ester 37 by a variety of methods known to those skilled in the art. Additionally, the cycloaddition product can be treated 30 with methanolic magnesium methoxide to afford the corresponding methyl ester 37 directly. The enantiomerically pure methyl esters 37 can be elaborated to enantiomerically pure pyrrolidine-containing compounds of Formula I by the procedures described in Schemes 2-7. 35

Scheme 8

The isoxazolidine-containing compounds of the present invention are preferably prepared by the 1,3-dipolar cycloaddition of an appropriate nitrone with an appropriate dipolarophile, as described earlier. Although there are several methods known in the literature for the generation of nitrone intermediates, a preferred method for generating the compounds of the present invention is shown in Scheme 9. In this method the nitrone is generated from the hydroxyl amine 38 by treatment with paraformaldehyde with concurrent removal of water (Wityak et al J. Org. Chem. 1987, 52, 2179). This is conveniently accomplished by refluxing the reaction mixture (to crack the paraformaldehyde polymer) in

5

10

a solvent such as benzene in the presence of a drying agent such as crushed activated molecular sieves to remove water produced in the reaction. The nitrone 39 thus generated reacts with a variety of olefins to produce the regioisomeric isoxazolidines 40 and 41.

Scheme 9

The R' group on 38 can be hydrogen, alkyl, alkylaryl, aryl, etc. The reaction is stereospecific in that the 10 geometry of the olefin is translated into the relative stereochemistry of the cycloaddition product, as is the case for the azomethine ylide 1,3-dipolar cycloadditions discussed earlier. Thus, an E-disubstituted olefin (Rc = H, Rb, Ra = substituents) gives rise to isoxazolidines 40 and 41 15 having a trans relationship between Ra and Rb. regioselectivity of the cycloaddition is dependent on the nature and substitution pattern of the olefin. cases mixtures of 40 and 41 are produced while in other cases a certain olefin will result in a regioselective 20 reaction and give rise to only 40 or 41.

Much of the chemistry described for the pyrrolidine compounds in Schemes 2-8 can also be applied to the isoxazolidine compounds. In Scheme 10 is shown how the just described nitrone 1,3-dipolar cycloaddition can be applied to the synthesis of the 2,4,5-trisubstituted, 2,4,4,5-tetrasubstituted and 2,4,5-tetrasubstituted isoxazolidines contained in the compounds of the present invention in which A-B of Formula I is a biphenyl residue and $J(CH_2)_n$ is CH_2 . The preferred, but not the only, method for preparing compounds of this type is to prepare the appropriate 4-bromobenzylhydroxylamine 43 from the corresponding 4-

25

30

bromobenzaldehyde 42. This is readily accomplished by standard formation of the oxime by standard methods, followed by reduction of the oxime to give 43. This reduction can be accomplished with borane-pyridine complex under acidic conditions or with sodium cyanoborohydride under acidic conditions.

5

Scheme 10

Generation of the nitrone with paraformaldehyde as

10 described in Scheme 9 and reaction with the appropriate
olefinic benzonitrile 44 leads to a regioisomeric mixture of

isoxazolidines **45a** and **45b**. Suzuki coupling of **45a** and **45b** with the appropriate boronic acid, as described in Scheme 4, gives the isoxazolidines **46a** and **46b**. The amidine compounds **47a** and **47b**, corresponding to compounds described by Formula I, can be prepared by the Pinner protocol as described in Scheme 6.

To prepare isoxazolidine compounds of Formula I where $J(CH_2)_n$ is other than CH_2 $(J(CH_2)_n = (CH_2)_n$, $SO_2(CH_2)_n$, ${\rm CO}\left({\rm CH_2}\right)_n$, ${\rm CO_2}\left({\rm CH_2}\right)_n$, etc.) the methods described in Scheme 11 can be used. Generation of the nitrone 49 can be accomplished by treatment of hydroxylamine hydrochloride 48 with paraformaldehyde as described in Scheme 9. Reaction of 49 with an olefin 6 can afford the N-unsubstituted regioisomeric isoxazolidines 50a and 50b. Treatment of 50a and 50b with compounds of type 51 can be used to prepare a variety of N-substituted isoxazolidines 52a and 52b. Compounds 51 can include alkyl halides (LG = Br, Cl; J = CH_2), sulfonyl chlorides (LG = Cl; J = SO_2), carboxylic acids (LG = OH; J = CO), carboxylic acid chlorides (LG = C1; J = C0) and chloroformates (LG = C1; $J = C0_2$). reaction conditions to afford N-substituted isoxazolidines 52a and 52b can be those described in Scheme 3 for the pyrrolidine compounds or other procedures known to those skilled in the art of organic chemistry. The products 52 can be carried onto the final products described by Formula I following procedures described for the pyrrolidines in Schemes 4-8.

10

15

20

Scheme 11

HQ
$$CH_2O$$
, NaOH N^2H CH_2O , NaOH N^2H N^2H

In Scheme 12 is shown how the previously described 1,3dipolar cycloaddition can be applied to the synthesis of the 1.3.4-trisubstituted Δ^3 -pyrroline nucleus contained in 5 compounds of the present invention. The required dipolarophile for Δ^3 -pyrroline synthesis is an alkyne such These compounds can best be prepared by a variety of palladium-catalyzed aryl-alkyne coupling reactions. Two such examples are shown in Scheme 12. In one case an 10 alkynylzinc species of an appropriate substituted alkyne is generated with n-BuLi and zinc chloride. This species is then coupled to the appropriate aryl halide or aryl triflate 53 in the presence of a palladium (II) catalyst to give 15 alkyne 54. Alternatively, the aryl halide or aryl triflate 53 can be coupled to an appropriate substituted alkyne in the presence of a palladium (0) catalyst, copper iodide and an organic amine base to give 54. Other procedures to produce 54 are available and known to those skilled in the art. Reaction of 7 with alkyne 54, in which Ra is an 20 electron-withdrawing group such as a carboxylic ester, carboxylic amide, ketone, nitrile, sulfone, nitro, etc., should produce the desired Δ^3 -pyrroline 55. The N-benzyl group can readily be removed by the 1-chloroethyl

chloroformate procedure described in Scheme 1 to afford the Δ^3 -pyrroline nucleus 56.

Scheme 12

5

15

20

25

In Scheme 13 is shown how to prepare compounds of Formula I in which R is COR^d , CO_2R^d , SO_2R^d or R^d attached to the pyrrolidine or Δ^3 -pyrroline nitrogen, where R^d is alkyl, aryl or alkylaryl. Where R in Formula I is CORd, the compounds can be prepared by two preferred methods. The first is the reaction of the pyrrolidine or Δ^3 -pyrroline 57 with an acid chloride in the presence of a suitable base such as triethylamine. In cases where the required acid chloride is not commercially available, it can be prepared from the corresponding carboxylic acid by treatment with thionyl chloride or other methods known to those skilled in the art. Alternatively, the pyrrolidine or Δ^3 -pyrroline 57 can be coupled to a carboxylic acid using any of a number of peptide coupling methods (mixed anhydride, HBTU, DCC, etc.) well known to those skilled in the art of organic synthesis. The product of these methods is amide 58. To prepare carbamate compounds 59, where R in Formula I is CO2Rd, the pyrrolidine or Δ^3 -pyrroline 57 can be coupled to the

appropriate chloroformate or succinimidyl carbonate in the presence of an appropriate base such as triethylamine. compounds of Formula I where R is SO_2R^d can be prepared from pyrrolidine or Δ^3 -pyrroline 57 by treatment with the appropriate sulfonyl chloride to afford the sulfonamides 60. In cases where the sulfonyl chloride is not commercially available, it can be prepared from the corresponding sulfonic acid 62 using phosphorous pentachloride or thionyl chloride. Where the sulfonic acid 62 is not commercially available, it can be prepared from the corresponding bromide 10 61 by displacement with sodium sulfite. To prepare compounds where R in Formula I is Rd, a simple alkylation of the pyrrolidine or Δ^3 -pyrroline 57 with the appropriate primary alkyl bromide, chloride or tosylate in the presence 15 of a base such as triethylamine can provide the required compounds (Formula I, $R = R^d$).

Scheme 13

The compounds of Formula I contain a linking group Z connecting the pyrrolidine and Δ^3 -pyrroline rings to the A-B moiety. In Schemes 14-17 is shown how the various linking groups can be synthesized and incorporated into the structures of Formula Ib. It will be appreciated by those skilled in the art of organic synthesis that depending on the groups R and A-B of Formula Ib, some modification of reaction order or use of suitable protecting groups may be required to prepare the desired compounds. Many of the various linking groups can be derived from a carboxylic ester group when the azomethine ylide cyclizations of Scheme

5

10

15

2 are carried out on dipolarophiles 6 in which Ra or Rc is a carboxylic ester or when those of Scheme 3 are carried out on dipolarophiles 54 in which Ra is a carboxylic ester. For compounds of Formula Ib in which Z is an amide (-CONH-) there is a variety of methods for preparing the desired compounds (Scheme 14). One preferred method is to treat the ester 64 directly with an aluminum reagent derived from a suitable amine 65. This is accomplished by first treating the amine 65 with trimethylaluminum in a solvent such as methylene chloride or toluene and then adding the ester 64 and stirring at temperatures ranging from room temperature to 100° C. This procedure affords the amide 66 directly. Another preferred method is to hydrolyze the ester 64 to the carboxylic acid 67 under basic conditions. The acid 67 can then be coupled to a suitable amine by many methods well known to those skilled in the art. One preferred method for this transformation is to treat 67 with oxalyl chloride or thionyl chloride to form the corresponding acid chloride. This intermediate can then be treated with amine 65 to afford the amide 66. Another method is to allow the acid 67 and the amine 65 to react in the presence of a suitable peptide coupling reagent, such as BOP-Cl, HBTU, DCC or any of a variety of such agents that are well known to those skilled in the art.

25

10

15

20

Scheme 14

In Scheme 15 is shown how the ether, amine and ketone linking groups Z of Formula Ib compounds can be prepared from the carboxylic ester 64. To prepare the ether-linked compounds ($Z = -CH_2O-$), reduction of ester 64 to the corresponding primary alcohol is required. transformation is possible by a variety of techniques. preferred procedures involve the intermede carboxylic acid The acid 67 can be reduced to the alcohol 68 directly with borane tetrahydrofuran complex or by a procedure 10 involving sodium borohydride reduction of a mixed anhydride derived from carboxylic acid 67. Completion of the ether linked compounds of Formula Ib is readily accomplished from 68 by the Mitsonobu protocol with an appropriate phenol or hydroxyheterocycle 69 to give 70 (Formula Ib, A = aryl or 15 heteroaryl). To prepare the amine-linked compounds of Formula Ib $(Z = -CH_2NH-)$ alcohol 68 can be oxidized to aldehyde 71 by a number of procedures, two preferred methods of which are the Swern oxidation and oxidation with pyridinium chlorochromate (PCC). Reductive amination of 20 aldehyde 71 with an appropriate amine 65 and sodium cyanoborohydride then affords the amine linked compounds 72. The aldehyde 71 also can be used to prepare the ketonelinked compounds of Formula Ib $(Z = -COCH_2-)$. Treatment of 71 with an organometallic species of structure 73 affords 25 the alcohol 74. Compound 73 (where M = magnesium or zinc) is best prepared from the corresponding halide by treatment with metallic magnesium or zinc. These reagents readily react with aldehydes to afford alcohols. Oxidation of alcohol 74 by any of a number of procedures, such as the 30 Swern oxidation or PCC oxidation, affords the ketones 75. Alternatively, the ketones 75 can be prepared from the appropriate cinnamic or propionic acid derivatives 76. Treatment of 76 with the appropriate organomagnesium or 35 organozinc reagent 76 affords either the unsaturated ketone 77 directly (when X in 76 is Cl, N(Me)OMe) or an intermediate alcohol (when X in 76 is H) which can subsequently be oxidized to 77 by procedures described

above. Following the procedures described in Schemes 12 and 13, the unsaturated ketone 77 can be cyclized to the pyrrolidine or Δ^3 -pyrroline and subsequently converted to 32.

5

Scheme 15

In Scheme 16 is shown how compounds of Formula I containing the sulfonamide linking group ($Z = -SO_2NH-$) can

be prepared. The styrene 78 can be treated with a variety of reagents, such as sulfuryl chloride or sulfur trioxide and phosphorous pentachloride, to afford the unsaturated sulfonyl chloride 79. Treatment with an appropriate amine 65 affords the sulfonamide 80 which can subsequently be converted into the sulfonamide-linked compounds 81 following the procedures described in Schemes 12 and 13.

Scheme 16

10

15

20

25

In Scheme 17 is shown how compounds of Formula Ib containing the sulfone linking group (Z = -SO₂CH₂-) can be prepared. Treatment of readily available 82 with trimethylphosphite affords a phosphonate which, after treatment with a suitable base such as sodium hydride, reacts with the aldehyde 5 to afford the unsaturated sulfide 83. Oxidation to the corresponding sulfone 84 can be accomplished by a variety of reagents, such as KMnO₄. Alternatively, the oxidation can be carried out prior to the condensation with aldehyde 5, in which case reaction of the anion of the sulfone phosphonate with 5 would give 84 directly. Following the procedures described in Schemes 12 and 13, the sulfone 84 can be converted to the sulfone-linked compounds 85.

Scheme 17

All of the pyrrolidine and Δ^3 -pyrroline derivatives described in Schemes 14-17 contain an aromatic cyano group which must be converted to its amidine derivative to prepare the final compounds described by Formula Ib. This can be accomplished using the reduction procedures described above in Scheme 6.

5

10

15

20

25

Where the group A-B in compounds of Formula Ib is a biphenyl residue, the chemistry described in Scheme 18 can be used. The biphenyl residue can be constructed using the palladium-catalyzed Suzuki coupling of an appropriate aryl halide 86 with an appropriate arylboronic acid 87 to give the biphenyl 88 (Miyaura et. al. Syn. Comm. 1981, 11, 513). This reaction in general is tolerant of a wide variety of substituents on both of the reacting partners. Thus, the reaction can be performed on a variety of compounds 86 where R' is a suitable precursor to the Z linking group found in compounds of Formula Ib. Alternatively, the coupling can be performed on a more fully elaborated aryl halide such as 89, where the pyrrolidine, Δ^3 -pyrroline or isoxazolidine heterocycle is intact. Reaction with a suitable boronic acid 90 then would afford 91. The biphenyl compounds 88 and 91 can be carried on to the final products described by Formula Ib according to the procedures described in Schemes 14-17.

Scheme 18

5

10

15

Groups A and B are available either through commercial sources, known in the literature or readily synthesized by the adaptation of standard procedures known to practioners skilled in the art of organic synthesis. The required reactive functional groups appended to analogs of A and B are also available either through commercial sources, known in the literature or readily synthesized by the adaptation of standard procedures known to practioners skilled in the art of organic synthesis. In the tables that follow the chemistry required to effect the coupling of A to B is outlined.

Table A: Preparation of Amide, Ester, Urea, Sulfonamide and

Sulfamide linkages between A and B.

Rxn. No.	if A contains :	then the reactive substituent of Y is :	to give the following product A-X-Y:
1	A-NHR ² as a substituent	C1C(0)-Y	A-NR ² -C(O)-Y

2 a secondary NH ClC(O)-Y A-C(O)-Y as part of a	
l l i	
ring or chain	
3 A-OH as a C1C(0)-Y A-O-C(0)-Y	
substituent	
4 A-NHR ² as a $C1C(0)-CR^2R^2'-Y$ A-NR ² -C(0)-CR ²	R ² '-Y
substituent	
5 a secondary NH C1C(0)-CR ² R ² '-Y A-C(0)-CR ² R ² '-	Y
as part of a	
ring or chain	
6 A-OH as a $Clc(0)-CR^2R^2'-Y$ A-O-C(0)-CR ² R ²	'-Y
substituent	
7 A-NHR ³ as a $Clc(0)NR^2-Y$ A-NR ² -C(0)NR ² -	Y
substituent	
8 a secondary NH ClC(0)NR ² -Y A-C(0)NR ² -Y	
as part of a	
ring or chain	
9 A-OH as a $C1C(0)NR^2-Y$ A-O-C(0) NR^2-Y	
substituent	
10 $A-NHR^2$ as a $C1SO_2-Y$ $A-NR^2-SO_2-Y$	
substituent	
11 a secondary NH ClSO ₂ -Y A-SO ₂ -Y	
as part of a	
ring or chain	
12 A-NHR ² as a ClSO ₂ -CR ² R ² '-Y A-NR ² -SO ₂ -CR ² R	2'-Y
substituent	,
13 a secondary NH ClSO ₂ -CR ² R ² '-Y A-SO ₂ -CR ² R ² '-Y	•
as part of a	
ring or chain	
14 $A-NHR^2$ as a $C1SO_2-NR^2-Y$ $A-NR^2-SO_2-NR^2-Y$	Y
substituent	
15 a secondary NH ClSO ₂ -NR ² -Y A-SO ₂ -NR ² -Y	
as part of a	
ring or chain	
1 1	
16 A-C(0)Cl HO-Y as a A-C(0)-O-Y	

		I2	2 2 2 2 2 2 2 2
17	A-C(0)Cl	NHR ² -Y as a	A-C(0)-NR ² -Y
		substituent	
18	A-C(0)Cl	a secondary NH	A-C(O)-Y
		as part of a	1
1		i -	
		ring or chain	
19	$A-CR^2R^2$ C(0)Cl	HO-Y as a	A-CR ² R ² 'C (O) -O-Y
		substituent	
20	A-CR ² R ² 'C(0)Cl	NHR ² -Y as a	$A-CR^2R^2$ 'C (0) $-NR^2-Y$
		substituent	1 (1)
	2-2-21-4-1		2-21-1-1
21	A-CR ² R ² 'C (0) Cl	a secondary NH	A-CR ² R ² C (0) -Y
		as part of a	1
		ring or chain	
22	A-S02C1	NHR ² -Y as a	A-SO ₂ -NR ² -Y
İ		substituent	
23	A-S02C1	a secondary NH	A-SO2-Y
] 23	1 50202	<u> </u>	502 1
		as part of a	į l
		ring or chain	
24	A-CR ² R ² 'SO ₂ C1	NHR ² -Y as a	$A-CR^2R^2$ 'SO ₂ -NR ² -Y
		substituent	
25	A-CR ² R ² 'SO ₂ C1	a secondary NH	A-CR ² R ² 'SO ₂ -Y
		as part of a	
		ring or chain	1

The chemistry of Table A can be carried out in aprotic solvents such as a chlorocarbon, pyridine, benzene or toluene, at temperatures ranging from -20°C to the reflux point of the solvent and with or without a trialkylamine base.

Table B: Preparation of ketone linkages between A and B.

Table B: Freparation of Accoust				
		then the reactive	to give the	
Rxm.		substituent of	following product	
No.	if A contains :	Y is :	A-X-Y :	
1	A-C(0)Cl	BrMg-Y	A-C(0)-Y	
2	A-CR ² R ² 'C (0) C1	BrMg-Y	A-CR ² R ² '2C (O) -Y	
3	A-C(0)C1	BrMgCR ² R ² '-Y	A-C(0)CR ² R ² '-Y	
4	A-CR ² R ² 'C(0)Cl	BrMgCR ² R ² '-Y	A-CR ² R ² 'C(0)CR ² R ² '-	
			Y	

The coupling chemistry of Table B can be carried out by a variety of methods. The Grignard reagent required for Y is prepared from a halogen analog of Y in dry ether, dimethoxyethane or tetrahydrofuran at 0°C to the reflux point of the solvent. This Grignard reagent can be reacted directly under very controlled conditions, that is low temeprature (-20°C or lower) and with a large excess of acid chloride or with catalytic or stoichiometric copper bromide · dimethyl sulfide complex in dimethyl sulfide as a solvent or with a variant thereof. Other methods available include transforming the Grignard reagent to the cadmium reagent and coupling according to the procedure of Carson and Prout (Org. Syn. Col. Vol. 3 (1955) 601) or a coupling mediated by Fe(acac)3 according to Fiandanese et al. (Tetrahedron Lett., (1984) 4805), or a coupling mediated by manganese (II) catalysis (Cahiez and Laboue, Tetrahedron Lett., 33(31), (1992) 4437).

10

15

Table C: Preparation of ether and thioether linkages

Detween A and B				
Rxn.		then the reactive substituent of	to give the following	
No.	if A contains :	Y is :	product A-X-Y :	
1	А-ОН	Br-Y	A-0-Y	
2	A-CR ² R ² '-OH	Br-Y	A-CR ² R ² 'O-Y	
3	А-ОН	Br-CR ² R ² '-Y	A-OCR ² R ² '-Y	
4	A-SH	Br-Y	A-S-Y	
5	A-CR ² R ² '-SH	Br-Y	A-CR ² R ² 'S-Y	
6	A-SH ·	Br-CR ² R ² '-Y	A-SCR ² R ² '-Y	

The ether and thioether linkages of Table C can be

5 prepared by reacting the two components in a polar aprotic
solvent such as acetone, dimethylformamide or
dimethylsulfoxide in the presence of a base such as
potassium carbonate, sodium hydride or potassium t-butoxide
at temperature ranging from ambient temperature to the

10 reflux point of the solvent used.

Table D: Preparation of -SO- and -SO2- linkages from

thioethers of Table 3. and it is oxidized and it is oxidized with m-chloroperbenzoic acid (Satoh with Alumina (wet)/ et al., Chem. Lett. if the Oxone (Greenhalgh, (1992) 381), the Synlett, (1992) 235) Rxm. starting product is : material is : the product is : No. A-S02-Y A-S(0)-Y A-S-Y A-CR²R² 'SO₂-Y $A-CR^2R^2$ 'S(0)-Y A-CR²R²'S-Y 2 A-SO2CR²R²'-Y $A-S(0)CR^2R^2'-Y$ A-SCR²R²'-Y

The thioethers of Table C serve as a convenient starting material for the preparation of the sulfoxide and sulfone analogs of Table D. A combination of wet alumina and oxone provides a reliable reagent for the oxidation of

the thioether to the sulfoxide while m-chloroperbenzoic acid oxidation will give the sulfone.

Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments which are given for illustration fo the invention and are not intended to be limiting thereof.

EXAMPLES

10

Example 1

trans-1-benzyl-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

15 Part A. Preparation of methyl trans-3-cyanocinnamate.

To a solution of 3-cyanobenzaldehyde (10.0 g, 76 mmol) in 500 mL of methylene chloride was added methyl (triphenyl-phosphoranylidene)acetate (25.4 g, 76 mmol). The mixture was allowed to stir at room temperature for 16 h. The solvent was removed in vacuo and the residue was taken up in hexane/ethyl acetate and filtered through a large pad of silica gel. The solution was concentrated to afford 12.75 g (89%) of the cinnamate as a white solid which was sufficiently pure for further reactions.

MS (H₂O-GC/MS): 188 (M+H)+.

Part B. Preparation of N-benzyl-N- (trimethylsilylmethyl)aminomethyl methyl ether.

30

35

25

20

To a stirred mixture of methanol (1.25 mL, 31 mmol) and 37% aqueous formaldehyde (2.56 mL, 31 mmol) at 0° C was added N-benzyl-N-(trimethylsilylmethyl)amine (5.0 g, 26 mmol) dropwise over 5 minutes. The resulting mixture was stirred for 2 h. Anhydrous potassium carbonate (1.02 g, 7.4 mmol) was added and the mixture was stirred at 0° C for 30 min. The reaction mixture was diluted with water and extracted twice with ether. The combined organic extracts

were washed with brine, dried over sodium sulfate and concentrated in vacuo to afford 5.6 g (92%) of the title compound. $^{1}\text{H NMR (CDCl}_{3}): \delta 7.30-7.15 (m, 5H), 3.95 (s, 2H), 3.71 (s, 2H), 3.19 (s, 3H), 2.14 (s, 2H).$

5

Part C. Preparation of trans-1-benzyl-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of N-benzyl-N-

10 (trimethylsilylmethyl)aminomethyl methyl ether (1.64 g, 6.9 mmol) in 20 mL of methylene chloride at 0° C was added methyl trans-3-cyanocinnamate (0.99 g, 5.3 mmol) followed by trifluoroacetic acid (0.041 mL, 0.53 mmol). The mixture was allowed to warm to room temperature and was stirred for 2 h.

15 The reaction mixture was diluted with methylene chlorid.

The reaction mixture was diluted with methylene chloride, washed with saturated aqueous NaHCO3 and brine, dried over K_2CO_3 and concentrated in vacuo to afford 1.67 g (98%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 321.1 (M+H)+.

20

Part D. Preparation of trans-1-benzyl-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

A solution of trans-1-benzyl-3-carbomethoxy-4-(3-25 cyanophenyl)pyrrolidine (150 mg, 0.47 mmol) in 10 mL of anhydrous methanol and 30 mL of anhydrous chloroform was cooled to -10° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C.

- The reaction mixture was concentrated *in vacuo*. The resulting solid was dissolved in 20 mL of anhydrous methanol and ammonium carbonate (0.26 g, 2.8 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated *in vacuo* and purified
- by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) to afford 23 mg (13%) of the title compound as a white powder. MS (ESI) 169.8 (M+2H)2+.

Example 2

trans-1-(4-amidinophenyl)methyl-3-carbomethoxy-4-(3amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

Part A. Preparation of trans-1-tert-butyloxycarbonyl-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-1-benzyl-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine from Example 1, Part C (2.56 g, 8.00 mmol) in 250 mL of absolute ethanol was added 10% palladium on carbon (0.5 g) and di-tert-butyldicarbonate (1.92 g, 8.80 mmol). This mixture was allowed to stir under 1 atm of hydrogen (maintained by a balloon) for 24 h. The reaction mixture was filtered through a pad of celite and concentrated in vacuo to afford 2.6 g (98%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 331.3 (M+H)+.

20

Part B. Preparation of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt.

To a solution of trans-1-tert-butyloxycarbonyl-3carbomethoxy-4-(3-cyanophenyl)pyrrolidine in 50 mL of
methylene chloride was added 50 mL of trifluoroacetic acid.
The resulting solution was allowed to stir at room
temperature for 4 h and then was concentrated in vacuo to
afford 2.75 g (99%) of the title compound which was
sufficiently pure for further reactions. MS (ESI) 231.2
(M+H)+.

Part C. Preparation of trans-1-(4-cyanophenyl)methyl-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

35

To a solution of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt (0.52 g, 1.5 mmol) in 50 mL of acetonitrile was added 4-cyanobenzyl

bromide (0.29 g, 1.5 mmol) and sodium bicarbonate (0.32 g, 3.8 mmol). The resulting mixture was stirred at 80° C for 16 h. The mixture was allowed to cool to room temperature and the acetonitrile was removed in vacuo. The residue was diluted with ethyl acetate, washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash chromatography (elution gradient with 5:1 to 2:1 hexanes/ethyl acetate) to afford 0.113 g (22%) of the title compound. MS (ESI) 346.2 (M+H)+.

10

Part D. Preparation of trans-1-(4-amidinophenyl)methyl-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

By the procedure described in Example 1, Part D, trans1-(4-cyanophenyl)methyl-3-carbomethoxy-4-(3cyanophenyl)pyrrolidine (0.114 g, 0.33 mmol) was treated
with HCl/methanol and then with ammonium carbonate (0.32 g,
3.3 mmol) to afford after HPLC purification (C18 reverse
phase column, elution with a H₂O/CH₃CN gradient with 0.5%
TFA) 0.032 g (21%) of the title compound as a white powder.
MS (ESI) 190.8 (M+2H)2+.

Example 3

25

trans-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine.
bistrifluoroacetic acid salt.

Part A. Preparation of N-(4-bromobenzyl)-N-(trimethylsilylmethyl)amine.

To a solution of (trimethylsilyl)methylamine (10.7 mL, 80 mmol) in 500 mL of tetrahydrofuran was added 435 bromobenzyl bromide (5.0 g, 20 mmol) and sodium bicarbonate (3.4 g, 40 mmol). The resulting mixture was stirred at 65° C for 16 h. The reaction mixture was allowed to cool to room temperature and concentrated in vacuo. The residue was

PCT/US97/14222 WO 98/06694

dissolved in ethyl acetate, washed with ${\rm H}_2{\rm O}$ and brine, dried over MgSO₄ and concentrated in vacuo to afford 5.4 g (98%) of the title compound which was sufficiently pure for further reactions. ^{1}H NMR (CDCl₃): δ 7.40 (d, 2H), 7.15 (d, 2H), 3.70 (s, 2H), 1.98 (s, 2H), 1.08 (broad s, 1H), 0.0 (s, 9H).

Part B. Preparation of N-(4-bromobenzyl)-N-(trimethylsilylmethyl)aminomethyl methyl ether.

10

To a stirred mixture of methanol (1.32 mL, 32.4 mmol) and 37% aqueous formaldehyde (2.63 mL, 32.4 mmol) at 0° C was added N-(4-bromobenzyl)-N-(trimethylsilylmethyl)amine (7.35 g, 27.0 mmol) dropwise over 15 minutes. The resulting mixture was stirred for 3 h. Anhydrous potassium carbonate 15 (1.04 g, 7.56 mmol) was added and the mixture was stirred at 0° C for 1 h. The reaction mixture was diluted with water and extracted twice with ether. The combined organic extracts were washed with brine, dried over sodium sulfate and concentrated in vacuo to afford 8.52 g (99%) of the title compound. ^{1}H NMR (CDCl₃): δ 7.48 (d, 2H), 7.15 (d, 2H), 3.95 (s, 2H), 3.66 (s, 2H), 3.19 (s, 3H), 2.11 (s, 2H), 0.0 (s, 9H).

Part C. Preparation of trans-1-(4-bromobenzyl)-3-25 carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of N-(4-bromobenzyl)-N-(trimethylsilylmethyl)aminomethyl methyl ether (13.85 g, 43.8 mmol) in 300 mL of methylene chloride at 0° C was added 30 methyl trans-3-cyanocinnamate from Example 1, Part A (7.13 g, 38.1 mmol) followed by trifluoroacetic acid (0.30 mL, 3.8 mmol). The mixture was allowed to warm to room temperature and was stirred for 2 h. The reaction mixture was diluted with methylene chloride, washed with saturated aqueous 35 $NaHCO_3$ and brine, dried over K_2CO_3 , filtered through a large pad of silica gel and concentrated in vacuo to afford 13.2 g

(86%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 399.2/401.2 (M+H)+.

Part D. Preparation of trans-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-1-(4-bromobenzyl)-3carbomethoxy-4-(3-cyanophenyl)pyrrolidine (1.0 g, 2.5 mmol) in 50 mL of benzene was added 2-(tert-10 butylaminosulfonyl)phenylboronic acid (0.90 g, 3.5 mmol), tetrabutylammonium bromide (0.04 g, 0.12 mmol), sodium carbonate (0.79 g, 7.5 mmol) and 8.2 mL of H_2O . mixture was degassed with a stream of nitrogen and then 15 tetrakis(triphenylphosphine)palladium (0.14 g, 0.12 mmol) was added and the reaction mixture was stirred at 80° C for The mixture was allowed to cool to room temperature and then was diluted with ethyl acetate, washed with ${\rm H}_2{\rm O}$ and brine, dried over MgSO4 and was concentrated in vacuo. The residue was purified by flash chromatography (elution with 20 3:1 hexanes/ethyl acetate) to afford 0.65 g (49%) of the title compound. MS (ESI) 532.2 (M+H)+.

Part E. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-25 biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

A solution of trans-1-[(2'-tert-butylaminosulfonyl[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(330 cyanophenyl)pyrrolidine (0.195 g, 0.37 mmol) in 20 mL of
trifluoroacetic acid was stirred at 70° C for 1 h and then
was allowed to cool to room temperature and was concentrated
in vacuo. ¹H NMR (CDCl₃) indicated complete removal of the
tert-butyl group. The crude residue was dissolved in 8 mL
35 of anhydrous methanol and 25 mL of chloroform and was cooled
to 0° C. Anhydrous HCl gas was bubbled through the solution
for about 30 min (until solution saturated). The flask was
then sealed and allowed to stand for 16 h at 0° C. The

reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 35 mL of anhydrous methanol and ammonium carbonate (0.16 g, 1.65 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and purified by prep HPLC (C18 reverse phase column, elution with a $\rm H_{2O}/CH_{3}CN$ gradient with 0.5% TFA) to afford 112 mg (47%) of the title compound as a white powder. MS (ESI) 247.2 (M+2H)2+.

10

Example 4

(3S.4R)-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine.

15 <u>bistrifluoroacetic acid salt.</u>

Part A. Preparation of $[3aS-[1(E),3a\alpha,6\alpha,7a\beta]]$ -hexahydro-8,8-dimethyl-1-[1-oxo-3-(3-cyanophenyl)-2-propenyl]-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide.

20

25

30

To a solution of (1S)-(-)-2,10-camphorsultam (3.0 g, 13.9 mmol) in 50 mL of toluene was added trimethylaluminum (6.97 mL of a 2M solution in toluene, 13.9 mmol) dropwise. The resulting solution was stirred at room temperature for about 2 h or until gas evolution had ceased. There was then added methyl trans-3-cyanocinnamate from Example 1, Part A (2.6 g, 13.9 mmol) and the mixture was stirred at 60° C for 16 h. The reaction mixture was allowed to cool to room temperature and was quenched by the addition of saturated aqueous NH₄Cl. The reaction was diluted with ethyl acetate and the organic layer was washed with brine, dried over MgSO₄ and concentrated in vacuo. The residue was recrystallized from hexanes/ethyl acetate to afford 3.65 g (70%) of the title compound as a white solid. MS (ESI)

35 371.3 (M+H)+.

Part B. Preparation of $[3aS-[1(3S^*,4R^*),3a\alpha,6\alpha,7a\beta]]-1-[[1-(4-bromobenzyl)-4-(3-cyanophenyl)-3-$

pyrrolidinyl]carbonyl]hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide.

To a solution of $[3aS-[1(E),3a\alpha,6\alpha,7a\beta]]$ -hexahydro-8,8-5 dimethyl-1-[1-oxo-3-(3-cyanophenyl)-2-propenyl]-3H-3a,6methano-2,1-benzisothiazole-2,2-dioxide (2.0 g, 5.4 mmol) in 40 mL of methylene chloride was added N-(4-bromobenzyl)-N-(trimethylsilylmethyl)aminomethyl methyl ether from Example 3, Part B (2.1 g, 6.7 mmol) and trifluoroacetic acid (0.042 10 mL, 0.54 mmol). The resulting solution was stirred at room temperature for 2 h and then was concentrated in vacuo. residue was taken up in ethyl acetate, washed with saturated aqueous NaHCO3 and brine, dried over MgSO4 and concentrated The residue was purified by flash chromatography in vacuo. 15 (elution with 7:1 to 2:1 hexanes/ethyl acetate gradient) to afford 1.8 g (57%) of the title compound as the major diastereomer. MS (ESI) 582.2/584.2 (M+H)+. Also isolated was 0.8 g (25%) of a minor diastereomer which is presumed to be $[3aS-[1(3R*,4S*),3a\alpha,6\alpha,7a\beta]]-1-[[1-(4-bromobenzyl)-4-(3-$ 20 cyanophenyl)-3-pyrrolidinyl]carbonyl]hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide. MS (ESI) 582.2/584.2 (M+H)+.

Part C. Preparation of [3aS-[1(3S*,4R*),3aα,6α,7aβ]]-1-[[1-25 [(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)-3-pyrrolidinyl]carbonyl]hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide.

[3aS-[1(3S*,4R*),3aα,6α,7aβ]]-1-[[1-(4-bromobenzyl)-4-30 (3-cyanophenyl)-3-pyrrolidinyl)carbonyl)hexahydro-8,8-dimethyl-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide (0.58 g, 1.0 mmol) was converted into the title compound (0.40 g, 56%) following the procedure described in Example 3, Part D. MS (ESI) 715.4 (M+H)+.

35

Part D. Preparation of (3S,4R)-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic acid.

To a solution of $[3aS-[1(3S^*,4R^*),3a\alpha,6\alpha,7a\beta]]-1-[[1-$ 5 [(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)-3-pyrrolidinyl]carbonyl]hexahydro-8,8dimethyl-3H-3a,6-methano-2,1-benzisothiazole-2,2-dioxide (0.35 g, 0.49 mmol) in 10 mL of tetrahydrofuran and 5 mL of 10 H₂O was added lithium hydroxide monohydrate (62 mg, 1.47 mmol). The resulting mixture was stirred at room temperature for 16 h. The mixture was concentrated in vacuo, diluted with H2O and saturated aqueous HaHCO3 and extracted with hexane. The organic layer was discarded and the aqueous layer was acidified to about pH 6 and extracted 15 twice with ethyl acetate. The combined ethyl acetate extracts were washed with brine, dried over MgSO4 and concentrated in vacuo to afford 80 mg (32%) of the title compound. MS (ESI) 518.3 (M+H)+.

20

Part E. Preparation of (3S,4R)-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

25 (3S,4R)-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic acid (50 mg, 0.1 mmol) was converted to the title compound following the procedure in Example 3, Part E to afford after HPLC purification 25 mg (35%). The enantiomeric excess was determined to be >99% by chiral HPLC analysis.

Example 5

(3R.4S)-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)methyl]-3carbomethoxy-4-(3-amidinophenyl)pyrrolidine.
bistrifluoroacetic acid salt.

The title compound was prepared by the identical sequence of reactions described in Example 4 except that in Part A (1R)-(+)-2,10-camphorsultam was used as the chiral auxiliary. Chiral HPLC analysis of the title compound showed the enantiomeric excess to be >99%. MS (ESI) 247.3 (M+2H)2+.

Example 6

10 <u>trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-amidinophenyl)pyrrolidin-3-ylcarboxylic acid.</u>
bistrifluoroacetic acid salt.

5

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-15 amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt from Example 3, Part E (100 mg, 0.14 mmol) in 20 mL of tetrahydrofuran and 10 mL of ${\rm H_2O}$ was added lithium hydroxide monohydrate (40 mg, 0.96 mmol). The resulting mixture was allowed to stir at room temperature overnight. 20 The reaction mixture was concentrated in vacuo and the residue was purified by prep HPLC (C18 reverse phase column, elution with a H_2O/CH_3CN gradient with 0.5% TFA) to afford 25 mg (25%) of the title compound as a white powder. MS (ESI) 25 240.2 (M+2H)2+

Example 7

trans-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)methyl]-4-30 (3-amidinophenyl)pyrrolidin-3-ylcarboxylic amide.
bistrifluoroacetic acid salt.

Part A. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-

35 cyanophenyl)pyrrolidine, trifluoroacetic acid salt.

A solution of trans-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-

cyanophenyl)pyrrolidine from Example 3, Part D (1.28 g, 2.4 mmol) in 20 mL of trifluoroacetic acid was stirred at 70° C for 1 h and then was allowed to cool to room temperature and was concentrated to afford 1.0 g (88%) of the title compound. MS (ESI) 476.2 (M+H)+.

Part B. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic acid.

10

15

20

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3cyanophenyl)pyrrolidine, trifluoroacetic acid salt (0.504 g, 1.06 mmol) in 40 mL of tetrahydrofuran and 20 mL of H_2O was added lithium hydroxide monohydrate (0.13 g, 3.18 mmol). The resulting mixture was allowed to stir at room temperature for 16 h. The tetrahydrofuran was removed in vacuo and the residue was taken up in H2O and saturated aqueous NaHCO3 and washed once with hexane. The organic layer was discarded. The aqueous layer was acidified with aqueous HCl to about pH 6 and extracted twice with ethyl The ethyl acetate extracts were washed with brine, acetate. dried over MgSO₄ and concentrated in vacuo to afford 0.29 g (59%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 462.2 (M+H)+.

Part C. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic amide.

30

35

25

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic acid (0.166 g, 0.36 mmol) in 10 mL of tetrahydrofuran at -78° C was added N-methylmorpholine (0.08 mL, 0.72 mmol) and isobutyl chloroformate (0.05 mL, 0.36 mmol). The resulting solution was allowed to stir for 30 min and then there was added 2M ammonia in methanol (0.70 mL, 1.08 mmol). The reaction mixture was allowed to slowly

warm to room temperature and then was stirred for 6 h. The solvent was removed *in vacuo*. The residue was taken up in ethyl acetate, washed with saturated aqueous NaHCO₃ and brine, dried over MgSO₄ and concentrated *in vacuo* to afford 0.144 g (87%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 461.3 (M+H)+.

Part D. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-amidinophenyl)pyrrolidin-3-ylcarboxylic amide, bistrifluoroacetic acid salt.

10

A solution of trans-1-[(2'-aminosulfonyl-[1,1']biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3ylcarboxylic amide (0.143 g, 0.31 mmol) in 50 mL of 15 anhydrous methanol was cooled to 0° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. The reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 20 20 mL of anhydrous methanol and ammonium carbonate (0.15 g, 1.55 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) to afford 27 mg (18%) of the title compound as a white 25 powder. MS (ESI) 239.8 (M+2H)2+.

Example 8

- 30 <u>trans-1-[(2'-aminosulfonyl-[1,1']-biphenvl-4-yl)methyl]-4-(3-amidinophenyl)pyrrolidin-3-ylcarboxylic N.N-dimethylamide. bistrifluoroacetic acid salt.</u>
- Part A. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-35 biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3-ylcarboxylic N,N-dimethylamide.

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']biphenyl-4-yl)methyl]-4-(3-cyanophenyl)pyrrolidin-3ylcarboxylic acid from Example 7, Part B (0.11 g, 0.24 mmol) in 20 mL of tetrahydrofuran at -78° C was added Nmethylmorpholine (0.08 mL, 0.72 mmol) and isobutyl 5 chloroformate (0.03 mL, 0.24 mmol). The resulting mixture was allowed to stir for 30 min and then dimethylamine hydrochloride (0.02 g, 0.24 mmol) was added and the mixture was allowed to slowly warm to room temperature and then was stirred for 16 h. The solvent was removed in vacuo. 10 residue was taken up in ethyl acetate, washed with saturated aqueous NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo to afford 0.097 g (83%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 489.3 15 (M+H)+.

Part B. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-amidinophenyl)pyrrolidin-3-ylcarboxylic N,N-dimethylamide, bistrifluoroacetic acid salt.

Following the procedure of Example 7, Part D, trans-1[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3cyanophenyl)pyrrolidin-3-ylcarboxylic N,N-dimethylamide

(0.098 g, 0.20 mmol) was converted with HCl gas/methanol and ammonium carbonate (0.10 g, 1.0 mmol) into the title compound (22 mg, 22%) following HPLC purification. MS (ESI)

253.8 (M+2H)2+.

30 Example 9

20

35

cis-1-[(2'-aminosulfonyl-[1,1'l-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine.
bistrifluoroacetic acid salt.

Part A. Preparation of methyl cis-3-cyanocinnamate.

To a solution of bis(2.2.2trifluoroethyl) (methoxycarbonylmethyl) phosphonate (5.0 g, 15.7 mmol) and 18-crown-6 (20.7 g, 78.5 mmol) in 300 mL of tetrahydrofuran at -78° C was added potassium bis(trimethylsilyl)amide (31.4 mL of a 0.5 M solution in toluene, 15.7 mmol) dropwise. After the addition was complete 3-cyanobenzaldehyde (2.06 g, 15.7 mmol) was added and the resulting mixture was stirred for 30 minutes at -780 The reaction was quenched by the addition of saturated 10 aqueous NH4Cl and then extracted three times with ether. The combined ether extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to afford 2.86 g (97%) of the product which was sufficiently pure for further reactions. ¹H NMR (CDCl₃) δ 7.85 (s, 1H), 7.76 (d, 1H), 7.60 (d, 1H), 7.45 (t, 1H), 6.93 (d, 1H), 6.05 (d, 1H), 3.70 (s, 15 3H).

Part B. Preparation of cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

20

25

Following the procedures described in Example 3, Parts C-E, methyl cis-3-cyanocinnamate was converted into the title compound, a white powder following HPLC purification.

MS (ESI) 247.2 (M+2H)2+.

Example 10

cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3amidinophenyl)pyrrolidin-3-ylcarboxylic acid, bistrifluoroacetic acid salt.

Following the procedure described in Example 6, Part A, cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-335 carbomethoxy-4-(3-amidinophenyl)pyrrolidine,
bistrifluoroacetic acid salt (0.10 g, 0.14 mmol) was treated with lithium hydroxide monohydrate (0.04 g, 0.96 mmol) to

afford, after HPLC purification, 46 mg (46%) of the title compound as a white powder. MS (ESI) 240.2 (M+2H)2+.

Example 11

5

30

trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyll-3-carboisopropoxy-4-(3-amidinophenyl)pyrrolidine.
bistrifluoroacetic acid salt.

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt (0.50 g, 0.69 mmol) in 50 mL of isopropanol was added several drops of titanium (IV) isopropoxide. The resulting mixture was stirred at 80° C for 16 h. The reaction was allowed to cool to room temperature and the solvent was removed in vacuo. The residue was triturated with ether and then was purified by HPLC under the conditions described in Example 1 to afford 0.30 g (58%) of the title compound as a white powder. MS (ESI) 261.3 (M+2H)2+.

Example 12

trans-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)methyl]-3carbobutoxy-4-(3-amidinophenyl)pyrrolidine,
bistrifluoroacetic acid salt.

To a solution of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt (0.50 g, 0.69 mmol) in 50 mL of n-butanol was added several drops of titanium (IV) isopropoxide. The resulting mixture was stirred at 115° C for 16 h. The reaction was allowed to cool to room temperature and the solvent was removed in vacuo. The residue was triturated with ether and then was purified by HPLC under the conditions described in Example 1 to afford 0.32 g (60%) of the title compound as a white powder. MS (ESI) 268.4 (M+2H)2+.

Example 13

trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3acetyl-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic
acid salt.

Part A. Preparation of (E)-4-(3-cyanophenyl)-3-buten-2-one.

To a solution of 3-cyanobenzaldehyde (4.98 g, 38 mmol) in 250 mL of methylene chloride was added acetylmethylene triphenylphosphorane (12.1 g, 38 mmol) and the resulting mixture was allowed to stir at room temperature for 16 h. The solution was concentrated in vacuo and the residue was taken up in hexane/ethyl acetate and filtered through a large pad of silica gel. The solvents were removed in vacuo to afford 5.63 g (87%) of the title compound which was sufficiently pure for further reactions. ¹H NMR (CDCl₃) δ 7.8 (s, 1H), 7.76 (d, 1H), 7.65 (d, 1H), 7.53 (d, 1H), 7.45 (d, 1H), 6.75 (d, 1H), 2.40 (s, 3H).

Part B. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-acetyl-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

Following the procedures described in Example 3, Parts C-E, (E)-4-(3-cyanophenyl)-3-buten-2-one was converted to the title compound as a white solid following HPLC purification. MS (ES) 239.3 (M+2H)2+.

30

25

Example 14

trans-1-[(2'-aminosulfonyl-(1,1']-biphenyl-4-yl)methyl]-3carboethoxy-3-methyl-4-(3-amidinophenyl)pyrrolidine.

35 <u>bistrifluoroacetic acid salt.</u>

Part A. Preparation of ethyl $(E)-\alpha$ -methyl-3-cyanocinnamate.

To a suspension of sodium hydride (0.5 g, 21 mmol) in 50 mL of THF was added triethyl 2-phosphonopropionate (5.0 g, 21 mmol). The resulting mixture was stirred at room temperature until gas evolution ceased and the sodium hydride was consumed (about 1 h). To the resulting clear solution was added 3-cyanobenzaldehyde (2.75 g, 21 mmol) and the mixture was stirred at 60°C for 3 h. The reaction mixture was allowed to cool to room temperature and was diluted with ethyl acetate, washed with 10% aqueous HCl, saturated aqueous NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (elution with 6:1 hexanes/ethyl acetate) to afford 2.8 g (62%) of the title compound. ¹H NMR (CDCl₃): d 7.65-7.48 (m, 5H), 4.29 (q, J=7.2 Hz, 2H), 2.09 (d, J=1.5 Hz, 3H), 1.35 (t, J=7.2 Hz, 3H). MS (H₂O-GC/MS) 216 (M+H)+.

Part B. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carboethoxy-3-methyl-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

20

10

15

Following the procedures of Example 3, Parts C-E, ethyl (E)- α -methyl-3-cyanocinnamate was converted into the title compound, a white powder following HPLC purification. MS (ESI) 261.3 (M+2H)2+.

25

30

Example 15

trans-1-[[2-(2-cvanophenylthio)phenyl]carbonyl]-3carbomethoxy-4-(3-amidinophenyl)pyrrolidine. trifluoroacetic acid salt.

Part A. Preparation of trans-1-[[2-(2-cyanophenylthio)phenyl]carbonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

35

To a solution of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt from Example 2, Part B (0.50 g, 1.45 mmol) in 25 mL of

dimethylformamide was added 2-(2-cyanophenylthio)benzoic acid (0.37 g, 1.45 mmol), HBTU (0.55 g, 1.45 mmol) and diisopropylethylamine (0.56 mL, 3.19 mmol). The resulting mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with ethyl acetate and washed twice with H2O, then once with 10% aqueous HCl, saturated aqueous NaHCO3 and brine. The organics were dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (elution gradient 3:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to afford 0.41 g (60%) of the title compound. MS (ESI) 468.2 (M+H)+.

Part B. Preparation of trans-1-[[2-(2-cyanophenylthio)phenyl]carbonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Following the procedure of Example 7, Part D, trans-1-[[2-(2-cyanophenylthio)phenyl]carbonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine (0.107 g, 0.23 mmol) was converted with HCl gas/methanol and ammonium carbonate (0.22 g, 2.3 mmol) into the title compound (33 mg, 29%) following HPLC purification. MS (ESI) 485.3 (M+H)+.

25 **Example 16**

15

20

30

trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine.
bistrifluoroacetic acid salt.

Part A. Preparation of 2-(2-cyanophenylthio)benzyl alcohol.

To a solution of 2-(2-cyanophenylthio)benzoic acid (9.96 g, 39 mmol) in 300 mL of tetrahydrofuran at -15° C was added triethylamine (5.4 mL, 39 mmol) followed by isobutylchloroformate (5.1 mL, 39 mmol). The resulting mixture was stirred for 15 minutes and then was filtered into another flask and cooled to -15° C. Then there was

added sodium borohydride (2.95 g, 78 mmol) in 5 mL of H₂O. The resulting mixture was allowed to stir at -15° C for 20 minutes and then at room temperature for 1 h. The reaction was quenched with 10% aqueous HCl and the solvent was removed in vacuo. The residue was taken up in ethyl acetate, washed with brine, dried over MgSO₄, filtered through a pad of silica gel and concentrated in vacuo to afford 7.03 g (75%) of the title compound which was sufficiently pure for further reactions. MS (NH₃-DCI) 259 (M+NH₄)+.

Part B. Preparation of 2-(2-cyanophenylthio) benzyl bromide.

10

30

To a solution of 2-(2-cyanophenylthio)benzyl alcohol (2.03 g, 8.3 mmol) in 100 mL of methylene chloride at 0° C 15 was added carbon tetrabromide (3.02 g, 9.1 mmol) and triphenylphosphine (2.39 g, 9.1 mmol). The resulting mixture was allowed warm to room temperature and was stirred for 16 h. The reaction mixture was concentrated in vacuo, taken up in hexanes/ethyl acetate, washed with brine, dried 20 over MgSO₄, filtered through a pad of silica gel and concentrated. The residue was taken up in hexanes/ether and filtered through a pad of silica gel to remove residual triphenylphosphine oxide. Concentration in vacuo afforded 2.49 g (98%) of the title compound which was sufficiently 25 pure for further reactions. MS (NH3-DCI) 321/323 (M+NH4)+.

Part C. Preparation of trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt from Example 2, Part B (0.59 g, 1.7 mmol) in 50 mL of acetonitrile was added 2-(2-cyanophenylthio)benzyl bromide (0.52 g, 1.7 mmol) and sodium bicarbonate (0.43 g, 5.1 mmol). The resulting mixture was stirred at 80° C for 16 h. The reaction was allowed to cool to room temperature and was

concentrated in vacuo. The residue was taken up in ethyl acetate, washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash chromatography (elution gradient 5:1 hexanes/ethyl acetate to 2:1 hexanes/ethyl acetate) to afford 0.10 g (13%) of the title compound. MS (ESI) 454.2 (M+H)+.

Part D. Preparation of trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, bistrifluoroacetic acid salt.

Following the procedure of Example 7, Part D, trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine (0.104 g, 0.23 mmol) was converted with HCl gas/methanol and ammonium carbonate (0.10 g, 1.05 mmol) into the title compound (12 mg, 10%) following HPLC purification. MS (ESI) 236.3 (M+2H)2+.

Example 17

20

15

5

trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Part A. Preparation of trans-1-[(4-bromophenyl)sulfonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt from

Example 2, Part B (0.52 g, 1.5 mmol) in 100 mL of tetrahydrofuran at room temperature was added 4-bromobenzenesulfonyl chloride (0.38 g, 1.5 mmol) and triethylamine (0.4 mL, 3.0 mmol). The resulting mixture was allowed to stir for 16 h. The solvent was removed in vacuo and the residue was taken up in ethyl acetate, washed with saturated aqueous NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo to afford 0.56 g (84%) of the title

compound which was sufficiently pure for further reactions. MS (ESI) 449/451 (M+H)+.

Part B. Preparation of trans-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

Following the procedure described in Example 3, Part D, trans-1-[(4-bromophenyl)sulfonyl]-3-carbomethoxy-4-(310 cyanophenyl)pyrrolidine (0.40 g, 0.9 mmol) was converted into 0.20 g (38%) of the title compound following purification by flash chromatography (elution with 3:1 hexanes/ethyl acetate). MS (ESI) 582.3 (M+H)+.

Part C. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Following the procedure of Example 3, Part E, trans-1[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine (0.20 g, 0.35 mmol) was converted sequentially with trifluoroacetic acid, HCl gas/methanol and ammonium carbonate (0.168 g, 1.75 mmol) into the title compound (15 mg, 7%) following HPLC
purification. MS (ESI) 543.3 (M+H)+.

Example 18

trans-1-[(2'-aminosulfonyl-[1.1']-biphenyl-4-yl)sulfonyl]-3carboisopropoxy-4-(3-amidinophenyl)pyrrolidine.
trifluoroacetic acid salt.

Part A. Preparation of trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-carboisopropoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

35

Following the procedure described in Example 11, Part A, trans-1-{(2'-aminosulfonyl-[1,1']-biphenyl-4-

yl)sulfonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt (0.023 g, 0.035 mmol) was converted into 0.016 g (67%) of the title compound as a white powder following HPLC purification. MS (ESI) 571.3 (M+H)+.

Example 19

trans-1-(9-fluorenylmethoxycarbonyl)-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Part A. Preparation of trans-1-[9-fluorenylmethoxycarbonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

15

30

35

5

To a solution of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, trifluoroacetic acid salt (0.53 g, 1.54 mmol) from Example 2, Part B in 15 mL of acetonitrile was added 9-fluorenylmethyl succinimidyl carbonate (0.52 g, 1.54 mmol) and triethylamine (0.21 mL, 1.54 mmol). The resulting mixture was allowed to stir at room temperature for 16 h. The reaction mixture was diluted with ethyl acetate, washed with 10% aqueous HCl, saturated aqueous NaHCO3 and brine, dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (elution with 3:1 hexanes/ethyl acetate) to afford 0.55 g (79%) of the title compound. MS (ESI) 453.4 (M+H)+.

Part B. Preparation of trans-1-[9-fluorenylmethoxycarbonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Following the procedure described in Example 1, Part D, trans-1-[9-fluorenylmethoxycarbonyl]-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine (0.11 g, 0.24 mmol) was treated with HCl/methanol and then with ammonium carbonate (0.14 g, 1.5 mmol) to afford after HPLC purification (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA)

0.050 g (36%) of the title compound as a white powder. MS (ESI) 470.3 (M+H)+.

Example 20

5

15

30

trans-2-benzyl-4-carbomethoxy-5-(3amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

Part A. Preparation of trans-2-benzyl-4-carbomethoxy-5-(3-10 cyanophenyl)isoxazolidine.

To a solution of methyl trans-3-cyanocinnamate (1.2 g, 6.5 mmol) in 20 mL of benzene was added benzylhydroxylamine (0.89 g, 7.2 mmol), paraformaldehyde (0.98 g, 32.5 mmol) and crushed 4Å molecular sieves. The resulting mixture was stirred at 80° C for 16 h. The reaction mixture was allowed to cool to room temperature, was filtered through celite and diluted with ethyl acetate. The solution was washed with H₂O and brine, dried over MgSO₄, filtered through a pad of silica gel and concentrated in vacuo to afford 1.4 g (67%) of the title compound which was sufficiently pure for further reactions. MS (CH₄-CI) 323.1 (M+H)+.

Part B. Preparation of trans-2-benzyl-4-carbomethoxy-5-(3-amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

A solution of trans-2-benzyl-4-carbomethoxy-5-(3-cyanophenyl)isoxazolidine (150 mg, 0.47 mmol) in 10 mL of anhydrous methanol and 30 mL of anhydrous chloroform was cooled to 0° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. The reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 10 mL of anhydrous methanol and ammonium carbonate (0.27 g, 2.8 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and purified by prep HPLC (C18 reverse phase column, elution with a

 H_2O/CH_3CN gradient with 0.5% TFA) to afford 100 mg (47%) of the title compound as a white powder. MS (ESI) 340.2 (M+H)+.

5

Example 21

trans-2-[(2'-aminosulfonyl-[1,1'l-biphenyl-4-yl)methyl]-4-carbomethoxy-5-(3-amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

10

Part A. Preparation of 4-bromobenzaldehyde oxime.

in 200 mL of absolute ethanol and 50 mL of water was added hydroxylamine hydrochloride (4.5 g, 64.8 mmol) and sodium hydroxide (3.25 g, 81 mmol) as a solution in water. The resulting mixture was allowed to stir at room temperature for 16 h. A white solid had fallen out of solution. The mixture was concentrated in vacuo to about half its volume and the solid was collected by filtration, azeotroped with benzene and dried in vacuo to afford 9.8 g (90%) of the title compound as a white powder. ¹H NMR (DMSO-d₆) d 8.1 (s, 1H), 7.52 (app q, 4H). MS (H₂O-GC/MS) 200/202 (M+H)+.

25 Part B. Preparation of 4-bromobenzylhydroxylamine.

To a solution of 4-bromobenzaldehyde oxime (2.0 g, 10 mmol) in 20 mL of methanol at 0° C was added borane-pyridine complex (3.75 mL of an 8M in pyridine, 30 mmol) dropwise.

30 To this solution was added 10% aqueous HCl dropwise over about 10 minutes. The resulting mixture was allowed to stir at 0° C an additional 20 minutes and then it was made basic with solid Na₂CO₃. The mixture was diluted with ethyl acetate and washed with H₂O and 10% aqueous HCl. The

35 organics were discarded and the aqueous layer was made basic with Na₂CO₃ and extracted with ethyl acetate. This ethyl acetate layer was washed with brine, dried over MgSO₄ and concentrated in vacuo to afford 1.3 g (65%) of the title

compound as a white solid. ^{1}H NMR (CDCl₃) d 7.45 (d, 2H), 7.19 (d, 2H), 5.35 (broad s, 2H), 3.93 (s, 2H).

Part C. Preparation of trans-2-(4-bromobenzyl)-4-carbomethoxy-5-(3-cyanophenyl)isoxazolidine.

To a solution of methyl trans-3-cyanocinnamate from Example 1, Part A (0.57 g, 3.04 mmol) in 10 mL of benzene was added 4-bromobenzylhydroxylamine (0.74 g, 3.65 mmol), paraformaldehyde (0.46 g, 15.2 mmol) and about 1 g of crushed 4Å molecular sieves. The resulting mixture was stirred at 80° C for 16 h. The reaction mixture was allowed to cool to room temperature, and was filtered through celite and diluted with ethyl acetate. The solution was washed with H₂O and brine, dried over MgSO₄ and concentrated in vacuo. The residue was purified by flash chromatography (elution with 3:1 hexanes/ethyl acetate) to afford 0.75 g (63%) of the title compound as an oil. MS (NH₃-CI) 401/403 (M+H)+.

20

Part D. Preparation of trans-2-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-carbomethoxy-5-(3-cyanophenyl)isoxazolidine.

To a solution of trans-2-(4-bromobenzyl)-4carbomethoxy-5-(3-cyanophenyl)isoxazolidine (0.46 g, 1.15
mmol) in 20 mL of benzene was added 2-(tertbutylaminosulfonyl)phenylboronic acid (0.45 g, 1.72 mmol),
tetrabutylammonium bromide (0.04 g, 0.12 mmol), sodium
carbonate (0.36 g, 3.4 mmol) and 2 mL of H₂O. This mixture
was degassed with a stream of nitrogen and then
tetrakis(triphenylphosphine)palladium (0.14 g, 0.12 mmol)
was added and the reaction mixture was stirred at 80° C for
6 h. The mixture was allowed to cool to room temperature
and then was diluted with ethyl acetate, washed with H₂O and
brine, dried over MgSO₄ and was concentrated in vacuo. The
residue was purified by flash chromatography (elution with

2:1 hexanes/ethyl acetate) to afford 0.52 g (85%) of the title compound. MS (ESI) 534.4 (M+H)+.

Part E. Preparation of trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-carbomethoxy-5-(3-amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

A solution of trans-1-[(2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-10 cyanophenyl)isoxazolidine (0.52 g, 0.97 mmol) in 20 mL of trifluoroacetic acid was stirred at 70° C for 1 h and then was allowed to cool to room temperature and was concentrated in vacuo. 1H NMR (CDCl3) indicated complete removal of the tert-butyl group. The crude residue was dissolved in 40 mL of anhydrous methanol and was cooled to 0° C. Anhydrous HCl 15 gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. The reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 20 35 mL of anhydrous methanol and ammonium carbonate (0.56 g, 5.8 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% 25 TFA) to afford 350 mg (59%) of the title compound as a white powder. MS (ESI) 495.4 (M+H)+.

Example 22

- trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-carboisopropoxy-5-(3-amidinophenyl)isoxazolidine.
 trifluoroacetic acid salt.
- Part A. Preparation of trans-2-[(2'-aminosulfonyl-[1,1']35 biphenyl-4-yl)methyl]-4-carboisopropoxy-5-(3amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

To a solution of trans-2-[(2'-aminosulfonyl-[1,1']biphenyl-4-yl)methyl]-4-carbomethoxy-5-(3amidinophenyl)isoxazolidine, trifluoroacetic acid salt (300 mg, 0.49 mmol) in 30 mL of isopropanol was added several drops of titanium (IV) isopropoxide. The resulting mixture 5 was stirred at 80° C for 16 h. The reaction was allowed to cool to room temperature and the solvent was removed in vacuo. The residue was triturated with ether and then was purified by HPLC under the conditions described in Example 10 1, Part D to afford 0.25 g (80%) of the title compound as a white powder. MS (ESI) 523.5 (M+H)+.

Example 23

trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-15 methoxymethyl-5-(3-amidinophenyl)isoxazolidine. trifluoroacetic acid salt.

Part A. Preparation of trans-3-cyanocinnamic acid.

20

25

To a solution of methyl trans-3-cyanocinnamate (4.74 g, 25.3 mmol) in 100 mL of tetrahydrofuran and 50 mL of H_2O at room temperature was added lithium hydroxide monohydrate (2.65 g, 63.2 mmol). The resulting mixture was allowed to stir for 16 h. The tetrahydrofuran was removed in vacuo and the residue was diluted with saturated aqueous NaHCO3 and washed with hexane. The organic layer was discarded. aqueous layer was acidified and extracted with ethyl acetate. The organics were washed with brine, dried over 30 MgSO₄ and concentrated in vacuo to afford 4.35 g (99%) of the title compound. ¹H NMR (CDCl₃): δ 8.21 (s, 1H), 8.02 (d, 1H), 7.85 (d, 1H), 7.62 (t, 1H), 7.61 (d, 1H), 6.73 (d, 1H).

35 Part B. Preparation of trans-3-cyanocinnamyl alcohol.

To a solution of trans-3-cyanocinnamic acid (1.66 g, 9.6 mmol) in 100 mL of tetrahydrofuran at -15° C was added

triethylamine (1.3 mL, 9.6 mmol) and isobutylchloroformate (1.3 mL, 9.6 mmol). The mixture was stirred for 15 minutes and then was filtered into another flask and cooled to -15° C. Sodium borohydride (0.73 g, 19.2 mmol) was added in 2 mL of H₂O and the mixture was allowed to stir at -15° C for 20 minutes and then at room temperature for 1 h. The reaction was quenched with 10% aqueous HCl and the solvent was removed in vacuo. The residue was diluted with ethyl acetate, washed with brine, dried over MgSO₄ and concentrated in vacuo to afford 1.43 g (93%) of the title compound. ¹H NMR (CDCl₃): δ 7.59 (s, 1H), 7.57 (d, 1H), 7.49 (d, 1H), 7.40 (t, 1H), 6.60 (d, 1H), 6.40 (dt, 1H), 4.35 (m, 2H), 2.23 (broad s, 1H).

15 Part C. Preparation of trans-3-cyanocinnamyl alcohol methyl ether.

To a suspension of 60% sodium hydride in mineral oil (0.36 g, washed with petroleum ether before use, 9.0 mmol) 20 in 100 mL of tetrahydrofuran was added trans-3-cyanocinnamyl alcohol (1.43 g, 9.0 mmol). The resulting mixture was stirred at 60° C for 1 h and then was allowed to cool to room temperature. To the resulting homogeneous solution was added methyl iodide (0.56 mL, 9.0 mmol) and the mixture was 25 then stirred at 60° C for 16 h. The reaction was quenched with ethanol and the solvent was removed in vacuo. residue was dissolved in ethyl acetate, washed with brine, dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography (elution with 6:1 30 hexanes/ethyl acetate to afford 1.21 g (78%) of the title compound. ¹H NMR (CDCl₃): δ 7.59 (m, 2H), 7.45 (d, 1H), 7.39 (t, 1H), 6.57 (d, 1H), 6.30 (dt, 1H), 4.08 (dd, 2H), 3.38 (s, 3H).

Part D. Preparation of trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-methoxymethyl-5-(3-amidinophenyl)isoxazolidine, trifluoroacetic acid salt.

Following the procedures described in Example 21, Parts C-E, trans-3-cyanocinnamyl alcohol methyl ether was converted into the title compound which was a white powder following HPLC purification. MS (ESI) 481.3 (M+H)+.

5

Example 24 and Example 25

trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine,

trifluoroacetic acid salt (Example 24) and trans-1(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine,
trifluoroacetic acid salt. (Example 25).

15 Part A. Preparation of methyl trans-3-cyanocinnamate.

To a solution of 3-cyanobenzaldehyde (10.0 g, 76 mmol) in 500 mL of methylene chloride was added methyl (triphenyl-phosphoranylidene)acetate (25.4 g, 76 mmol). The mixture was allowed to stir at room temperature for 16 h. The solvent was removed in vacuo and the residue was taken up in hexane/ethyl acetate and filtered through a large pad of silica gel. The solution was concentrated to afford 12.75 g (89%) of the cinnamate as a white solid which was sufficiently pure for further reactions.

MS (H₂O-GC/MS): 188 (M+H)+.

Part B. Preparation of N-benzyl-N-(trimethylsilylmethyl)aminomethyl methyl ether.

30

35

To a stirred mixture of methanol (1.25 mL, 31 mmol) and 37% aqueous formaldehyde (2.56 mL, 31 mmol) at 0° C was added N-benzyl-N-(trimethylsilylmethyl)amine (5.0 g, 26 mmol) dropwise over 5 minutes. The resulting mixture was stirred for 2 h. Anhydrous potassium carbonate (1.02 g, 7.4 mmol) was added and the mixture was stirred at 0° C for 30 min. The reaction mixture was diluted with water and extracted twice with ether. The combined organic extracts

were washed with brine, dried over sodium sulfate and concentrated in vacuo to afford 5.6 g (92%) of the title compound. ^{1}H NMR (CDCl3): δ 7.30-7.15 (m, 5H), 3.95 (s, 2H), 3.71 (s, 2H), 3.19 (s, 3H), 2.14 (s, 2H).

5

Part C. Preparation of trans-1-benzyl-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of N-benzyl-N
(trimethylsilylmethyl)aminomethyl methyl ether (1.64 g, 6.9 mmol) in 20 mL of methylene chloride at 0° C was added methyl trans-3-cyanocinnamate (0.99 g, 5.3 mmol) followed by trifluoroacetic acid (0.041 mL, 0.53 mmol). The mixture was allowed to warm to room temperature and was stirred for 2 h.

The reaction mixture was diluted with methylene chloride, washed with saturated aqueous NaHCO3 and brine, dried over K2CO3 and concentrated in vacuo to afford 1.67 g (98%) of the title compound which was sufficiently pure for further reactions. MS (ESI) 321.1 (M+H)+.

20

Part D. Preparation of trans-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine, hydrochloride salt.

To a solution of trans-1-benzyl-3-carbomethoxy-4-(3cyanophenyl)pyrrolidine (40.8 g, 127 mmol) in 600 mL of 25 methylene chloride at 0° C was added 1-chloroethyl chloroformate (12.8 mL, 127 mmol) dropwise. After stirring for 15 min the ice bath was removed and the mixture was stirred at 40° C for 1 h. The reaction mixture was cooled and concentrated in vacuo. The residue was dissolved in 30 absolute methanol and stirred at 60° C for 1 h. reaction mixture was cooled and concentrated in vacuo. residue was dissolved in methylene chloride and then crashed out of solution by the addition of ether. The solid was filtered and dried in vacuo to give 23.3 g (69%) of the 35 title compound as a white solid. MS (NH3-CI) 231.3 (M+H)+.

Part E. Preparation of trans-1-(methylsulfonyl)-3-carbomethoxy-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-3-carbomethoxy-4-(3
5 cyanophenyl)pyrrolidine, hydrochloride salt (0.50 g, 1.87 mmol) in 10 mL of methylene chloride was added methanesulfonyl chloride (0.15 mL, 1.87 mmol) and triethylamine (0.52 mL, 3.74 mmol). The resulting mixture was allowed to stir at 25° C for 16 h. The reaction was diluted with ethyl acetate, washed with 10% aq HCl, saturated aq NaHCO3 and brine, dried (MgSO4), filtered through a pad of silica gel and concentrated in vacuo to afford 0.54 g (93%) of the title compound which was sufficiently pure to be used directly in subsequent reactions. MS (ESI) 309.1 (M+H)+.

Part F. Preparation of trans-1-(methylsulfonyl)-3-carboxy-4-(3-cyanophenyl)pyrrolidine.

20 To a solution of trans-1-(methylsulfonyl)-3carbomethoxy-4-(3-cyanophenyl)pyrrolidine (0.54 g, 1.75 mmol) in 10 mL of tetrahydrofuran and 5 mL of water was added lithium hydroxide monohydrate (0.15 g, 3.5 mmol). The mixture was allowed to stir at 25° C for 3 h. Added 25 saturated aq NaHCO3, extracted with 1:1 hexanes/ethyl acetate and discarded the organic layer. The aqueous layer was acidified with aq HCl and extracted with ethyl acetate. The organic layer was washed with brine, dried (MgSO₄) and concentrated in vacuo to afford 0.44 g (86%) of the title 30 compound which was sufficiently pure to be used directly in subsequent reactions. MS (ESI) 295.3 (M+H)+.

Part G. Preparation of trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-cyanophenyl)pyrrolidine.

35

To a solution of trans-1-(methylsulfonyl)-3-carboxy-4-(3-cyanophenyl)pyrrolidine (0.44 g, 1.5 mmol) in 15 mL of

acetonitrile was added thionyl chloride (1.1 mL, 15 mmol). This mixture was stirred at 80° C for 30 min and then cooled and concentrated *in vacuo*. The residue was dissolved in 10 mL of methylene chloride whereupon ([2'-tert-

- butylaminosulfonyl-[1,1']-biphenyl-4-yl)amine (0.59 g, 1.95 mmol) and triethylamine (2.1 mL, 15 mmol) were added. The reaction mixture was allowed to stir at 25° C for 16 h. The reaction was diluted with ethyl acetate, washed with 10% aq HCl, saturated aq NaHCO3 and brine, dried (MgSO4), filtered through a pad of silica gel and concentrated in vacuo to afford 0.65 g (75%) of the title compound which was sufficiently pure to be used directly in subsequent reactions. MS (ESI) 581.5 (M+H)+.
- Part H. Preparation of trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt and trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-

20 amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

25

30

A solution of trans-1-(methylsulfonyl)-3-([2'-tertbutylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3cyanophenyl)pyrrolidine (0.63 g, 1.08 mmol) in 50 mL of anhydrous methanol was cooled to 0° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. The reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 20 mL of anhydrous methanol and ammonium carbonate (0.62 g, 6.48 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and 120 mg of the residue was purified by prep HPLC (C18 reverse phase column, elution with a H_2O/CH_3CN gradient with 0.5% TFA) to afford 65 mg (54%) of trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt as a white powder following

lyophilization. MS (ESI) 542.3 (M+H)+. There was also obtained 20 mg (17%) of trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt as a white powder following lyophilization. MS (ESI) 598.4 (M+H)+.

Example 26

10 cis-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-vl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Part A. Preparation of methyl cis-3-cyanocinnamate.

15

35

To a solution of bis(2,2,2-trifluoroethyl)(methoxycarbonylmethyl)phosphonate (5.0 g, 15.7 mmol) and 18-crown-6 (20.7 g, 78.5 mmol) in 300 mL of tetrahydrofuran at -78° C was added potassium

- bis(trimethylsilyl)amide (31.4 mL of a 0.5 M solution in toluene, 15.7 mmol) dropwise. After the addition was complete 3-cyanobenzaldehyde (2.06 g, 15.7 mmol) was added and the resulting mixture was stirred for 30 minutes at -78° C. The reaction was quenched by the addition of saturated
- aqueous NH₄Cl and then extracted three times with ether.

 The combined ether extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to afford 2.86 g (97%) of the product which was sufficiently pure for further reactions. ¹H NMR (CDCl₃) δ 7.85 (s, 1H), 7.76 (d, 1H), 7.60
- 30 (d, 1H), 7.45 (t, 1H), 6.93 (d, 1H), 6.05 (d, 1H), 3.70 (s, 3H).

Part B. Preparation of cis-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Following the procedures described in Example 1, Parts C-H, methyl cis-3-cyanocinnamate was converted into the

title compound, a white powder following HPLC purification. MS (ESI) 542.4 (M+H)+.

Example 27 and Example 28

5

10

trans-1-(methylsulfonyl)-3-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt (Example 27) and trans-1-(methylsulfonyl)-3-[[5-(2'-tert-butylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt. (Example 28).

Part A. Preparation of trans-1-(methylsulfonyl)-3-[[5-(2'-tert-butylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-cyanophenyl)pyrrolidine.

To a solution of trans-1-(methylsulfonyl)-3-carboxy-4-(3-cyanophenyl)pyrrolidine from Example 1, Part F (0.31 g, 1.06 mmol) in 15 mL of acetonitrile was added thionyl 20 This mixture was stirred at chloride (1.26 mL, 10.6 mmol). 80° C for 30 min and then cooled and concentrated in vacuo. The residue was dissolved in 10 mL of methylene chloride whereupon [[5-(2'-tert-butylaminosulfonylphenyl-1yl)pyridin-2-yl]amine (0.41 g, 1.35 mmol) and triethylamine 25 (1.5 mL, 10.6 mmol) were added. The reaction mixture was allowed to stir at 25° C for 16 h. The reaction was diluted with ethyl acetate, washed with 10% aq HCl, saturated aq NaHCO3 and brine, dried (MgSO4), filtered through a pad of silica gel and concentrated in vacuo. The residue was 30 purified by flash chromatography (elution with 2:1 hexanes/ethyl acetate) to afford 0.47 g (75%) of the title

Part B. Preparation of trans-1-(methylsulfonyl)-3-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt and trans-1-(methylsulfonyl)-3-[[5-(2'-tert-

compound. MS (ESI) 582.5 (M+H)+.

butylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Following the procedures described in Example 1 and Example 2, Part H, trans-1-(methylsulfonyl)-3-[[5-(2'-tert-5 butylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-cyanophenyl)pyrrolidine was converted into the title compounds which were isolated as white powders following HPLC purification and lyophilization. trans-1-(methylsulfonyl)-3-[[5-(2'-aminosulfonylphenyl-1-yl)pyridin-10 2-y1]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt (Example 27), MS (ESI) 272.3 (M+2H)2+. trans-1-(methylsulfonyl)-3-[[5-(2'-tertbutylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4-(3-amidinophenyl)pyrrolidine, trifluoroacetic acid salt 15 (Example 28), MS (ESI) 300.3 (M+2H)2+.

Example 29

20 <u>1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)-Δ</u>3-pyrroline.

trifluoroacetic acid salt.

Part A. Preparation of ethyl 3-(3-cyanophenyl)propiolate.

25

30

35

To a solution of ethyl propiolate (5.0 g, 51 mmol) in 150 mL of tetrahydrofuran at -78° C was added n-butyllithium (20.4 mL of a 2.5 M solution in hexane, 51 mmol) dropwise. The mixture was allowed to stir for 1 h at -78° C and then zinc chloride (20.9 g, 153 mmol) was added in 150 mL of tetrahydrofuran and the resulting mixture was allowed to stir with warming to room temperature for 30 min. The mixture was cooled to 0° C whereupon 3-iodobenzonitrile (5.84 g, 25.5 mmol) and bistriphenylphosphine palladium (II) chloride (0.91 g, 1.3 mmol) were added. The resulting mixture was allowed to stir at 50° C for 16 h. After cooling to room temperature, the reaction was diluted with 150 mL of water and 150 mL of ether and then filtered

through a pad of celite. The filtrate was extracted twice with ether and the combined organics were dried (MgSO₄) and concentrated in vacuo. The residue was purified by flash chromatography (elution with 10:1 hexanes/ethyl acetate) to afford 2.23 g (44%) of the title compound as a solid. 1 H NMR (CDCl₃) δ 7.85 (s, 1H), 7.80 (d, 1H), 7.74 (d, 1H), 7.53 (t, 1H), 4.31 (q, 2H), 1.37 (t, 3H).

Part B. Preparation of 1-benzyl-3-carbethoxy-4-(3-10 cyanophenyl)- Δ^3 -pyrroline.

(trimethylsilylmethyl)aminomethyl methyl ether from Example 1, Part B (3.09 g, 12.9 mmol) in 40 mL of methylene chloride at 0° C was added ethyl 3-(3-cyanophenyl)propiolate (2.0 g, 10 mmol) followed by trifluoroacetic acid (0.06 mL, 0.75 mmol). The mixture was allowed to warm to room temperature and was stirred for 2 h. The reaction mixture was diluted with methylene chloride, washed with saturated aqueous NaHCO3 and brine, dried over K2CO3 and concentrated in vacuo. The residue was purified by flash chromatography (elution with 3:1 hexanes/ethyl acetate) to afford 1.7 g (51%) of the title compound. MS (ESI) 333.4 (M+H)+.

25 Part C. Preparation of 3-carbethoxy-4-(3-cyanophenyl)- Δ^3 -pyrroline, hydrochloride salt.

30

35

Following the procedure of Example 1, Part D, 1-benzyl-3-carbethoxy-4-(3-cyanophenyl)- Δ^3 -pyrroline (1.3 g, 3.3 mmol) was converted into 0.8 g (73%) of the title compound. MS (ESI) 243.3 (M+H)+.

Part D. Preparation of 1-(methylsulfonyl)-3-carbethoxy-4-(3-cyanophenyl)- Δ^3 -pyrroline.

Following the procedure of Example 1, Part E, 3-carbethoxy-4-(3-cyanophenyl)- Δ^3 -pyrroline, hydrochloride salt (0.35 g, 1.26 mmol) was converted into 0.35 g (87%) of

PCT/US97/14222 WO 98/06694

the title compound. MS (ESI) 323.4 (M+H)+. 1 H NMR (CDCl₃) δ 7.62 (s, 1H), 7.58 (d, 1H), 7.50 (d, 1H), 7.42 (t, 1H), 4.50 (broad s, 4H), 4.05 (q, 2H), 2.85 (s, 3H), 1.10 (t, 3H).

Part E. Preparation of 1-(methylsulfonyl)-3-carboxy-4-(3cyanophenyl) $-\Delta^3$ -pyrroline.

To a solution of 1-(methylsulfonyl)-3-carbethoxy-4-(3cyanophenyl)- Δ^3 -pyrroline (0.35 g, 1.1 mmol) in 5 mL of methanol and 5 mL of water was added potassium hydroxide (0.12 g, 2.2 mmol). This mixture was stirred at 60° C for 2 h and then cooled to room temperature, diluted with water and extracted with 1:1 hexanes/ethyl acetate. The organics were discarded and the aqueous layer was acidified with aq HCl and extracted with ethyl acetate. The organic layer was 15 washed with brine, dried (MgSO₄) and concentrated in vacuo to afford 0.20 g (63%) of the title compound which was sufficiently pure to be used directly in subsequent reactions. MS (ESI) 293.3 (M+H)+.

20

10

- Part F. Preparation of 1-(methylsulfonyl)-3-([2'-tertbutylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3cyanophenyl) $-\Delta^3$ -pyrroline.
- 25 Following the procedures described in Example 1. Part G, 1-(methylsulfonyl)-3-carboxy-4-(3-cyanophenyl)- Δ^3 pyrroline (0.2 g, 0.68 mmol) was converted into 0.1 g (26%) of the title compound. MS (ESI)
- Part G. Preparation of 1-(methylsulfonyl)-3-([2'-30 aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3amidinophenyl) $-\Delta^3$ -pyrroline, trifluoroacetic acid salt.

A solution of 1-(methylsulfonyl)-3-([2'-tertbutylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-35 cyanophenyl) $-\Delta^3$ -pyrroline (93 mg, 0.16 mmol) in 30 mL of anhydrous methanol was cooled to 0° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until

solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. The reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 10 mL of anhydrous methanol and ammonium carbonate (80 mg, 0.8 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and the residue was purified by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) to afford 25 mg (25%) of the title compound as a white powder following lyophilization. MS (ESI) 540.3 (M+H)+.

Example 30

15 $\frac{1-(\text{benzyl})-3-([2'-\text{aminosulfonyl}-[1,1']-\text{biphenyl}-4-}{\text{yl})\text{aminocarbonyl})-4-(3-\text{amidinophenyl})-\Delta^3-\text{pyrroline}}$ bistrifluoroacetic acid salt.

Part A. Preparation of 1-(benzyl)-3-([2'-tert20 butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3cyanophenyl)-Δ³-pyrroline.

To a solution of ([2'-tert-butylaminosulfonyl-[1,1']biphenyl-4-yl)amine (1.10 g, 3.6 mmol) in methylene chloride was added trimethylaluminum dropwise (6.6 mL of a 2.0 M 25 solution in toluene, 13.2 mmol). The resulting solution was stirred at 25° C for 30 min at which time gas evolution had ceased. To this solution was then added 1-benzyl-3carbethoxy-4-(3-cyanophenyl)- Δ^3 -pyrroline from Example 6, 30 Part B (1.0 g, 3.0 mmol) as a solution in methylene The resulting solution was stirred at 40° C for 4 h, at which time the reaction mixture was cooled to 0° C and quenched with saturated aq NH4Cl. The mixture was diluted with ethyl acetate, washed with brine, dried (MgSO₄) and 35 concentrated in vacuo. The residue was purified by flash chromatography (elution with 1:1 hexanes/ethyl acetate) to afford 0.8 g (45%) of the title compound. MS (ESI)

Part B. Preparation of 1-(benzyl)-3-([2'-aminosulfonyl- $\{1,1'\}$ -biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)- Δ^3 -pyrroline, bistrifluoroacetic acid salt.

A solution of 1-(benzyl)-3-([2'-tert-5 butylaminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3cyanophenyl)- Δ^3 -pyrroline (0.13 g, 0.2 mmol) in 10 mL of trifluoroacetic acid was stirred at 70° C for 30 min and then was allowed to cool to room temperature and was concentrated in vacuo. 1H NMR (CDCl3) indicated complete 10 removal of the tert-butyl group. The crude residue was dissolved in 40 mL of anhydrous methanol and was cooled to 0° C. Anhydrous HCl gas was bubbled through the solution for about 30 min (until solution saturated). The flask was then sealed and allowed to stand for 16 h at 0° C. 15 reaction mixture was concentrated in vacuo. The resulting solid was dissolved in 10 mL of anhydrous methanol and ammonium carbonate (0.10 g, 1.0 mmol) was added and the mixture was allowed to stir at room temperature for 24 h. The reaction mixture was concentrated in vacuo and purified 20 by prep HPLC (C18 reverse phase column, elution with a H₂O/CH₃CN gradient with 0.5% TFA) to afford 60 mg (45%) of the title compound as a white powder. MS (ESI) 276.8 (M+2H)2+.

25

30

Example 31

trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methylcarbonyl)-4-(3-

amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Part A. Preparation of trans-3-cyanocinnamic acid.

To a solution of methyl trans-3-cyanocinnamate from Example 1, Part A, (4.74 g, 25.3 mmol) in 100 mL of tetrahydrofuran and 50 mL of H₂O at room temperature was added lithium hydroxide monohydrate (2.65 g, 63.2 mmol). The resulting mixture was allowed to stir for 16 h. The

tetrahydrofuran was removed in vacuo and the residue was diluted with saturated aqueous NaHCO3 and washed with hexane. The organic layer was discarded. The aqueous layer was acidified and extracted with ethyl acetate. The organics were washed with brine, dried over MgSO4 and concentrated in vacuo to afford 4.35 g (99%) of the title compound. 1 H NMR (CDCl3): δ 8.21 (s, 1H), 8.02 (d, 1H), 7.85 (d, 1H), 7.62 (t, 1H), 7.61 (d, 1H), 6.73 (d, 1H).

10 Part B. Preparation of trans-3-cyanocinnamoyl chloride.

To a solution of trans-3-cyanocinnamic acid (1.25 g, 7.2 mmol) in 20 mL of benzene was added thionyl chloride (5 mL, 68 mmol). The reaction was stirred at 80° C for 2 h at which time gas evolution had ceased. The mixture was cooled and concentrated in vacuo and was used directly in Part C without purification or characterization.

Part C. Preparation of (E)-1-(3-cyanophenyl)-4-(4-20 bromophenyl)-1-buten-3-one.

15

To a suspension of activated zinc dust (0.71 g, 10.8 mmol) in 20 mL of tetrahydrofuran was added a few drops of 1,2-dibromoethane and the resulting mixture was heated to 25 60° C and stirred for 10 min. The reaction was cooled to 0° C and then there was added 4-bromobenzyl bromide (2.2 g, 8.64 mmol) in 10 mL of tetrahydrofuran. This mixture was stirred at 0° C for 2 h. This mixture was then added via cannula to a separate flask which contained lithium chloride 30 (0.73 g, 17.3 mmol) and copper cyanide (0.77 g, 8.64 mmol) in 10 mL of tetrahydrofuran at -78° C. This solution was warmed to -10° C, stirred for 5 min and then cooled back to To this mixture was then added the crude trans-3cyanocinnamoyl chloride from Part B in 10 mL of 35 tetrahydrofuran. The reaction was stirred with warming to room temperature for 4 h and then was quenched with saturated aq NH4Cl. The mixture was diluted with ethyl acetate, washed with saturated aq NaHCO3 and brine, dried

(MgSO₄) and concentrated *in vacuo*. The residue was purified by flash chromatography (elution with 6:1 hexanes/ethyl acetate) to afford 0.8 g (35%) of the title compound. MS (NH₃-CI) 343/345 (M+NH₄)+.

5

Part D. Preparation of trans-1-benzyl-3-[(4-bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine.

bromophenyl)-1-buten-3-one (0.5 g, 1.53 mmol) in 10 mL of methylene chloride was added N-benzyl-N- (trimethylsilylmethyl)aminomethyl methyl ether from Example 1, Part B, (0.47 g, 2.0 mmol) and trifluoroacetic acid (0.012 mL, 0.15 mmol). The resulting solution was stirred at 25° C for 2 h. The reaction was diluted with ethyl acetate, washed with saturated aq NaHCO3 and brine, dried (MgSO4), filtered through a pad of silica gel and concentrated in vacuo to afford 0.7 g (100%) of the title compound which was sufficiently pure to be used without purification. MS (ESI) 459.3/461.2 (M+H)+.

Part E. Preparation of trans-3-[(4-bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine, hydrochloride salt.

25

Following the procedures described in Example 1, Part D, trans-1-benzyl-3-[(4-bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine (0.7 g, 1.52 mmol) was converted into 0.5 g (82%) of the title compound which was sufficiently pure to be used without purification. MS (ESI) 369/371 (M+H)+.

Part F. Preparation of trans-1-(methylsulfonyl)-3-[(4-bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine.

35

30

Following the procedures described in Example 1, Part E, trans-3-[(4-bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine, hydrochloride salt (0.5 g, 1.23

mmol) was converted into 0.25 g (45%) of the title compound following flash chromatography purification (elution with 3:1 hexanes/ethyl acetate). 1 H NMR (CDCl₃) δ 7.48 (m, 1H), 7.35-7.25 (m, 5H), 6.8 (d, 2H), 3.7-3.6 (m, 3H), 3.50 (s, 2H), 3.42-3.30 (m, 3H), 2.81 (s, 3H).

Part G. Preparation of trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methylcarbonyl)-4-(3-cyanophenyl)pyrrolidine.

10

5

To a solution of trans-1-(methylsulfonyl)-3-[(4bromophenyl)methylcarbonyl]-4-(3-cyanophenyl)pyrrolidine (0.25 g, 0.56 mmol) in 10 mL of benzene was added 2-(tertbutylaminosulfonyl)phenylboronic acid (0.29 g, 1.12 mmol), 15 tetrabutylammonium bromide (0.04 g, 0.11 mmol) and aqueous sodium carbonate (1.12 mL of a 2.0 M aq solution, 2.24 This mixture was degassed with a stream of nitrogen and then tetrakis(triphenylphosphine)palladium (0.07 g, 0.06 mmol) was added and the reaction mixture was stirred at 80° 20 C for 6 h. The mixture was allowed to cool to room temperature and then was diluted with ethyl acetate, washed with H2O and brine, dried over MgSO4 and was concentrated in vacuo. The residue was purified by flash chromatography (elution with 1:1 hexanes/ethyl acetate) to afford 0.22 g 25 (69%) of the title compound. MS (ESI) 580.4 (M+H)+.

30

35

Following the procedures of Example 29, Part G, trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl-[1,1']-biphenyl-4-yl)methylcarbonyl)-4-(3-cyanophenyl)pyrrolidine (0.15 g, 0.26 mmol) converted into 35 mg (21%) of the title compound as a white powder. MS (ESI) 541.4 (M+H)+.

aminosulfonyl-[1,1']-biphenyl-4-yl)methylcarbonyl)-4-(3amidinophenyl)pyrrolidine, trifluoroacetic acid salt.

Preparation of trans-1-(methylsulfonyl)-3-([2'-

Following the procedures described above, the compounds listed in Tables 1a and 1b were prepared.

Table la

Ex #	Ra	R ()m	z	* * stereochemistry	J (A B	MS (M+2H) 2+
1	н	-CO ₂ Me	CH ₂	(<u>+</u>)-trans	-CH ₂ Ph	169.8
2	н	-CO ₂ Me	CH ₂	(<u>+</u>)-trans	NH ₂	190.8
3	н	-CO ₂ Me	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	247.2
4	н	-CO ₂ Me	CH ₂	(3 <i>S</i> , 4 <i>R</i>)	H ₂ NO ₂ S	247.3
5	н	-CO ₂ Me	CH ₂	(3 <i>R</i> , 4 <i>S</i>)	H ₂ NO ₂ S	247.3
6	н	-co ₂ H	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	240.2
7	н	-CONH ₂	СН2	(<u>+</u>)-trans	H ₂ NO ₂ S	239.8
8	н	-CONMe ₂	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	253.8
9	н	-CO₂Me	CH ₂	(<u>+</u>)-cis	H ₂ NO ₂ S	247.2
10	н	-CO ₂ H	CH ₂	(<u>+</u>)-cis	H ₂ NO ₂ S	240.2

. Table la (cont'd)

	Ex #	Ra	R ()m	z	* * stereochemistry	J (A B	MS (M+2H)2+
•	11	н	-CO ₂ i-Pr	СН ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	261.3
	12	н	-CO ₂ n-Bu	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	268.4
	13	н	-соме	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	239.3
	14	CH3	-CO ₂ Et	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	261.3
	15	н	-СО ₂ Ме	CH₂	(<u>+</u>)-trans	CN S S	485.3 (M+H)+
	16	н	-CO₂Me	CH ₂	(<u>+</u>)-trans	ÇN	236.3
	17	н	-CO₂Me	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	543.4 (M+H)+
	18	H	-CO ₂ i-Pr	CH ₂	(<u>+</u>)-trans	H ₂ NO ₂ S	571.3 (M+H)+
	19	н	-CO ₂ Me	CH ₂	(<u>+</u>)-trans		470.3 (M+H)+

Table la (cont'd)

_	Ex #	Ra	$R \longleftrightarrow_{m}$	z	stereochemistry	J HAB	MS (M+2H)2+
	20	н	-CO ₂ Me	0	(<u>+</u>)-tr ans	-CH ₂ Ph	340.2 (M+H)+
	21	н	-CO2Me	0	(<u>+</u>)-trans	H ₂ NO ₂ S	495.4 (M+H)+
	22	н	-CO2i-Pr	0	(<u>+</u>)-trans	H ₂ NO ₂ S	523.5 (M+H)+
	23	н	-CH ₂ OMe	0	(<u>+</u>)-trans	H ₂ NO ₂ S	481.3 (M+H)+

Table 1b

5

	Ex#	R	bond a	J'	Α'		MS(ESI) (M+H)+
	24	SO ₂ Me	(<u>+</u>)-trans	NH	СН	SO2NH2	542.3
	25	SO ₂ Me	(<u>+</u>)-trans	NH	CH	SO2NHt-Bu	598.4
10	26	SO ₂ Me	(<u>+</u>)-cis	NH	СН	SO2NH2	542.4
	27	SO ₂ Me	(<u>+</u>)-trans	NH	N	SO2NH2	272.3 (M+2H)2+
	28	SO ₂ Me	(<u>+</u>)-trans	NH	N	SO2NHt-Bu	300.3 (M+2H)2+
	29	SO2Me	double	NH	СН	SO2NH2	540.3
	30	CH ₂ Ph	double	NH	CH	SO2NH2	276.8 (M+2H)2+
15	31	SO ₂ Me	(<u>+</u>)-trans	сн2	CH	SO2NH2	541.4

Tables 2 through 18 identify additional representative compounds of this invention which can be prepared by the methods described in Schemes 1-18 and in Examples 1-31 above.

Table 2

5	Ex#	R	n	Z	R4	В
	1	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	2	-CO ₂ Me	0	CH ₂	CH ₃	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
	4	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
10	5	-CO ₂ Me	0	CH ₂	н	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	F	phenyl
	7	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
	8	-CO ₂ Me	0	CH ₂	Н	phenyl
	9	-CO ₂ Me	0	CH ₂	F	amidino
15	10	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	11	-CH ₂ OMe	0	CH ₂	H	2-methylaminosulfonyl-
			•			phenyl
	12	-CH ₂ OMe	0	CH ₂	F	2-sulfonamidophenyl
	13	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
20	14	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	15	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	Н	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	F	phenyl
	18	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
25	19	-CH ₂ OMe	0	CH ₂	H	phenyl
	20	-CH ₂ OMe	0	CH ₂	F	amidino
	21	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
	22	-CH ₂ OMe	0	CH ₂	H	amidino
	23	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
30	24	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl
	27	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	28	-SO ₂ CH ₃	0	CH ₂	H	2-CF ₃ -phenyl
35	29	-SO ₂ CH ₃	0	CH ₂	F	phenyl

	30		•		<u></u>	
		-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	Н	phenyl
	32	~SO ₂ CH ₃	0	CH ₂	F ·	amidino
_	33	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
5	34	-SO ₂ CH ₃	0	CH ₂	Н	amidino
	35	-CO ₂ Me	0	0		sulfonamidophenyl
	36	-CO ₂ Me	0	0	CH ₃ 2-	sulfonamidophenyl
	37	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	38	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
10	39	-CO ₂ Me	0	0	H	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	F	phenyl
	41	-CO ₂ Me	0	0	CH ₃	phenyl
	42	-CO ₂ Me	0	0	H	phenyl
	43	-CO ₂ Me	0	0	F	amidino
15	44	-CO ₂ Me	0	0	CH ₃	amidino
	45	-CO ₂ Me	0	0	H	amidino
	46	-CH ₂ OMe	0	0	F 2-	sulfonamidophenyl
	47	-CH ₂ OMe	0	О	CH ₃ 2-	sulfonamidophenyl
	48	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
20	49	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	50	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	51	-CH ₂ OMe	0	0	F	phenyl
	52	-CH ₂ OMe	0	0	CH ₃	phenyl
	53	-CH ₂ OMe	0	0	H	phenyl
25	54	-CH ₂ OMe	0	0	F	amidino
	55	-CH ₂ OMe	0	0	CH ₃	amidino
	56	-CH ₂ OMe	0	0	H	amidino
	57	-SO ₂ CH ₃	0	0	H 2-9	sulfonamidophenyl
	58	-SO ₂ CH ₃	0	0	F 2-	sulfonamidophenyl
30	59	-SO ₂ CH ₃	0	0	CH ₃ 2-	sulfonamidophenyl
	60	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	61	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl
	62	-SO ₂ CH ₃	0	0	H	2-CF ₃ -phenyl
	63	-SO ₂ CH ₃	0	0	Ŧ	phenyl
35	64	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	65	-SO ₂ CH ₃	0	0	Н	phenyl
	66	-SO ₂ CH ₃	0	0	F	amidino
	67	-SO ₂ CH ₃	0	0	CH ₃	amidino

	68	-SO ₂ CH ₃	0	0	Н	amidino
	69	-CO ₂ Me	1	CH ₂	Н	2-ethylaminosulfonyl-
		_		_		phenyl
	70	-CO ₂ Me	1	CH ₂	F	2-sulfonamidophenyl
5	71	-CO ₂ Me	1	CH ₂	CH ₃	2-sulfonamidophenyl
	72	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	73	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	74	-CO ₂ Me	1	CH ₂	H	2-CF ₃ -phenyl
	7 5	-CO ₂ Me	1	CH ₂	F	phenyl
10	76	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
	77	-CO ₂ Me	1	CH ₂	Н	phenyl
	78	-CO ₂ Me	1	CH ₂	F	amidino
	79	-CO ₂ Me	1	CH ₂	CH ₃	amidino
	80	-CO ₂ Me	1	CH ₂	Н	amidino
15	81	-CH ₂ OMe	1	CH ₂	H	2-sulfonamidophenyl
	82	-CH ₂ OMe	1	CH ₂	F	2-methylaminosulfonyl-
						phenyl
	83	-CH ₂ OMe	1	CH ₂	CH ₃	2-sulfonamidophenyl
	84	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
20	85	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	86	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	87	-CH ₂ OMe	1	CH ₂	F	phenyl
	88	-CH ₂ OMe	1 .	CH ₂	CH ₃	phenyl
	89	-CH ₂ OMe	1	CH ₂	H	phenyl
25	90	-CH ₂ OMe	1	CH ₂	F	amidino
	91	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	92	-CH ₂ OMe	1	CH ₂	H	amidino
	93	-SO ₂ CH ₃	1	CH ₂	H	2-sulfonamidophenyl
	94	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
30	95	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
	96	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	97	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	98	-SO ₂ CH ₃	1	CH ₂	Н	2-CF ₃ -phenyl
	99	-SO ₂ CH ₃	1	CH ₂	F	phenyl
35	101	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	102	-SO ₂ CH ₃	1	CH ₂	н	phenyl
	103	-SO ₂ CH ₃	1	CH ₂	F	amidino
	104	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino

						-
	105	-SO ₂ CH ₃	1	CH ₂	H	amidino
	106	-CO ₂ Me	1	0	H	2-sulfonamidophenyl
	107	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
	108	-CO ₂ Me	1	0	CH ₃	2-ethylaminosulfonyl-
5						phenyl
	109	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	110	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	111	-CO ₂ Me	1	0	H	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	0	F	phenyl
10	113	-CO ₂ Me	1	0	CH ₃	phenyl
	114	-CO ₂ Me	1	0	H	phenyl
	115	-CO ₂ Me	1	0	F	amidino
	116	-CO ₂ Me	1	0	CH ₃	amidino
	117	-CO ₂ Me	1	0	H	amidino
15	118	-CH ₂ OMe	1	0	Н	2-sulfonamidophenyl
	119	-CH ₂ OMe	1	0	F	2-sulfonamidophenyl
	120	-CH ₂ OMe	1	O .	CH ₃	2-sulfonamidophenyl
	121	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	122	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
20	123	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	F	phenyl
	125	-CH ₂ OMe	1	0	CH ₃	phenyl
	126	-CH ₂ OMe	1	0	Н	phenyl
	127	-CH ₂ OMe	1	0	F	amidino
25	128	-CH ₂ OMe	1	0	CH ₃	amidino
	129	-CH ₂ OMe	1	0	H	amidino
	130	-SO ₂ CH ₃	1	0	H	2-sulfonamidophenyl
	131	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	132	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
30	133	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	134	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl
	135	-SO ₂ CH ₃	1	0	Н	2-CF ₃ -phenyl
	136	-SO ₂ CH ₃	1	0	F	phenyl
	137	-SO ₂ CH ₃	1	0	CH ₃	phenyl
35	138	-SO ₂ CH ₃	1	0	Н	phenyl
	139	-SO ₂ CH ₃	1	0	F	amidino
	140	-SO ₂ CH ₃	1	0	CH ₃	amidino
	141	-SO ₂ CH ₃	1	0	H	amidino

Table 3

5	Ex#	R	n	Z	R ⁴	В.
	1	-CO ₂ Me	0	CH ₂	Н	2-sulfonamidophenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-methylaminosulfonyl-
						phenyl
10	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
	5	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	Н	2-CF ₃ -phenyl
	7.	-CO ₂ Me	0	CH ₂	F	phenyl
	8	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
15	9	-CO ₂ Me	0	CH ₂	H	phenyl
	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	0	CH ₂	H	2-sulfonamidophenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-ethylaminosulfonyl-
20						phenyl
	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	H	2-CF ₃ -phenyl
25	18	-CH ₂ OMe	0	CH ₂	F	phenyl
	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	Н	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
30	23	-CH ₂ OMe	0	CH ₂	H	amidino
	24	-SO ₂ CH ₃	0	CH ₂	Н	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl
35	28	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl

	29	-SO ₂ CH ₃	0	CH ₂	H	2-CF ₃ -phenyl
	30	-SO ₂ CH ₃	0	CH ₂	F	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	32	-SO ₂ CH ₃	0	CH ₂	Н	phenyl
5	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	Н	2-sulfonamidophenyl
	37	-CO ₂ Me	0	0	F	2-ethylaminosulfonyl-
10						phenyl
	38	-CO ₂ Me	0	0	CH ₃	2-sulfonamidophenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	41	-CO ₂ Me	0	0	Н	2-CF ₃ -phenyl
15	42	CO ₂ Me	0	0	F	phenyl
	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	Н	phenyl
	45	-CO ₂ Me	0	0	F	amidino
	46	-CO ₂ Me	0	0	CH ₃	amidino
20	47	-CO ₂ Me	0	0	H	amidino
	48	-CH ₂ OMe	0	0	H	2-sulfonamidophenyl
	49	-CH ₂ OMe	0	0	F	2-sulfonamidophenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-methylaminosulfonyl-
						phenyl
25	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	52	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	53	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	54	-CH ₂ OMe	0	0	F	phenyl
	55	-CH ₂ OMe	0	0	CH ₃	phenyl
30	56	-CH ₂ OMe	0	0	H	phenyl
	57	-CH ₂ OMe	0	0	F	amidino
	58	-CH ₂ OMe	0	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	H	amidino
	60	-SO ₂ CH ₃	0	0	H	2-sulfonamidophenyl
35	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	63	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl

	65	-SO ₂ CH ₃	0	0	Н	2-CF ₃ -phenyl
	66	-SO ₂ CH ₃	0	0	F	phenyl
	67	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	68	-SO ₂ CH ₃	0	0	H	phenyl
5	69	-SO ₂ CH ₃	0	0	F	amidino
	70	-SO ₂ CH ₃	0	0	CH ₃	amidino
	71	-SO ₂ CH ₃	0	0	Н	amidino
	72	-CO ₂ Me	1	CH ₂	H	2-sulfonamidophenyl
	73	-CO ₂ Me	1	CH ₂	F	2-methylaminosulfonyl-
10						phenyl
	74	-CO ₂ Me	1	CH ₂	CH ₃	2-sulfonamidophenyl
	75	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	76	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	77	-CO ₂ Me	1	CH ₂	Н	2-CF ₃ -phenyl
15	78	-CO ₂ Me	1	CH ₂	F	phenyl
	79	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
	80	-CO2Me	1	CH ₂	H	phenyl
	81	-CO ₂ Me	1	CH ₂	F	amidino
	82	-CO ₂ Me	1	CH ₂	CH ₃	amidino
20	83	-CO ₂ Me	1	CH ₂	H	amidino
	84	-CH ₂ OMe	1	CH ₂	H	2-sulfonamidophenyl
	85 [`]	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-methylaminosulfonyl-
						phenyl
25	87	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl
30	92	-CH ₂ OMe	1	CH ₂	Н	phenyl
	93	-CH ₂ OMe	1	CH ₂	F	amidino
	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	H	amidino
	96	-SO ₂ CH ₃	1	CH ₂	H	2-sulfonamidophenyl
35	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl

	101	-SO ₂ CH ₃	1	CH ₂	H	. 2-CF ₃ -phenyl
	102	-SO ₂ CH ₃	1	CH ₂	F	phenyl
	103	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	H	phenyl
5	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
	107	-SO ₂ CH ₃	1	CH ₂	Н	amidino
	108	-CO ₂ Me	1	0	Н	2-sulfonamidophenyl
	109	-CO ₂ Me	1	0	F	2-ethylaminosulfonyl-
10						phenyl
	110	-CO ₂ Me	1	0	CH ₃	2-sulfonamidophenyl
	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	113	-CO ₂ Me	1	Ο .	H	2-CF ₃ -phenyl
15		-CO ₂ Me	1	0	F	phenyl
	114	-CO ₂ Me	1	0	CH ₃	phenyl
	115	-CO ₂ Me	1	0	H	phenyl
	116	-CO ₂ Me	1	0	F	amidino
	117	-CO ₂ Me	1	0	CH ₃	amidino
20	118	-CO ₂ Me	1	0	H	amidino
	119	-CH ₂ OMe	1	О	H	2-sulfonamidophenyl
	120	-CH ₂ OMe	1	0	F	2-sulfonamidophenyl
	121	-CH ₂ OMe	1	0	CH ₃	2-methylaminosulfonyl-
						phenyl
25	122	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	123	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	225	-CH ₂ OMe	1	0	F	phenyl
	226	-CH ₂ OMe	1	O	CH ₃	phenyl
30	127	-CH ₂ OMe	1	0	H	phenyl
	128	-CH ₂ OMe	1	0	F	amidino
	129	-CH ₂ OMe	1	0	CH ₃	amidino
	130	-CH ₂ OMe	1	0	H	amidino
	131	-SO ₂ CH ₃	1	0	H	2-sulfonamidophenyl
35	132	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	133	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	135	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl

WO 98/00094	PC1/US97/14222

	136	-SO ₂ CH ₃	1	0	Н	2-CF ₃ -phenyl
	137	-SO ₂ CH ₃	1	0	F	phenyl
	138	-SO ₂ CH ₃	1	0	CH ₃	phenyl
	139	-SO ₂ CH ₃	1	0	Н	phenyl
5	140	-SO ₂ CH ₃	1	0	F	amidino
	141	-SO ₂ CH ₃	1	0	CH ₃	amidino
	1/12	-೯೧-೧೫-	1	0	н	amidino

Table 4

5	Ex#	R	_n_	Z	R4	В
	1	-CO ₂ Me	0	CH ₂	н	2-methylaminosulfonyl-
						phenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-sulfonamidophenyl
10	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
	5	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	H	2-CF ₃ -phenyl
	7	-CO ₂ Me	0	CH ₂	F	phenyl
	8	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
15	9	-CO ₂ Me	0	CH ₂	Н	phenyl
	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	. 0	CH ₂	н	2-sulfonamidophenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-methylaminosulfonyl-
20						phenyl
	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	Н	2-CF ₃ -phenyl
25	18	-CH ₂ OMe	0	CH ₂	F	phenyl
	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	н	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
30	23	-CH ₂ OMe	0	CH ₂	H	amidino
	24	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F .	2-CF ₃ -phenyl
35	28	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl

	29	-SO ₂ CH ₃	0	CH ₂	H	2-CF ₃ -phenyl
	30	-SO ₂ CH ₃	0	CH ₂	F	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	32	-SO ₂ CH ₃	0	CH ₂	H	phenyl
5	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	H	2-methylaminosulfonyl-
						phenyl
10	37	-CO ₂ Me	0	0	F	2-sulfonamidophenyl
	38	-CO ₂ Me	0	0	CH ₃	2-sulfonamidophenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	41	-CO ₂ Me	0	0	Н	2-CF ₃ -phenyl
15	42	-CO ₂ Me	0	0	F	phenyl
	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	Н	phenyl
	45	-CO ₂ Me	0	0	F	amidino
	46	-CO ₂ Me	0	О .	CH ₃	amidino
20	47	-CO ₂ Me	0	0	Н	amidino
	48	-CH ₂ OMe	0	0	H	2-sulfonamidophenyl
	49	-CH ₂ OMe	0	0	F	2-methylaminosulfonyl-
						phenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
25	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	52	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	53	-CH ₂ OMe	0	0	Н	2-CF ₃ -phenyl
	54	-CH ₂ OMe	0	0	F	phenyl
	55	-CH ₂ OMe	0	0	CH ₃	phenyl
30	56	-CH ₂ OMe	0	0	Н	phenyl
	57	-CH ₂ OMe	0	0	F	amidino
	58	-CH ₂ OMe	0	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	H	amidino
	60	-SO ₂ CH ₃	0	0	H	2-sulfonamidophenyl
35	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	63	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl

	65	-SO ₂ CH ₃	0	0	Н	2-CF ₃ -phenyl
	66	-SO ₂ CH ₃	0	0	F	phenyl
	67	-SO ₂ CH ₃	0	0	СН3	phenyl
	68	-SO ₂ CH ₃	0	0	H	phenyl
5	69	-SO ₂ CH ₃	0	0	F	amidino
	70	-SO ₂ CH ₃	0	0	CH ₃	amidino
	71	-SO ₂ CH ₃	0	0	Н	amidino
	72	-CO ₂ Me	1	CH ₂	Н	2-methylaminosulfonyl-
						phenyl
10	73	-CO ₂ Me	1	CH ₂	F	2-sulfonamidophenyl
	74	-CO ₂ Me	1	CH ₂	CH ₃	2-sulfonamidophenyl
	75	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	76	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	77	-CO ₂ Me	1	CH ₂	H	2-CF ₃ -phenyl
15	78	-CO ₂ Me	1	CH ₂	F	phenyl
	79	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
	80	-CO ₂ Me	1	CH ₂	н	phenyl
	81	-CO ₂ Me	1	CH ₂	F	amidino
	82	-CO ₂ Me	1	CH ₂	CH ₃	amidino
20	83	-CO ₂ Me	1	CH ₂	Н	amidino
	84	-CH ₂ OMe	1	CH ₂	Н	2-sulfonamidophenyl
	85	-CH ₂ OMe	1	CH ₂	F	2-methylaminosulfonyl-
						phenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-sulfonamidophenyl
25	87	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl
30	92	-CH ₂ OMe	1	CH ₂	н	phenyl
	93	-CH ₂ OMe	1	CH ₂	F	amidino
	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	H	amidino
	96	-SO ₂ CH ₃	1	CH ₂	н	2-sulfonamidophenyl
35	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl

	101	-SO ₂ CH ₃	1	CH ₂	Н	2-CF ₃ -phenyl
	102	-SO ₂ CH ₃	1	CH ₂	F	phenyl
	103	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	H	phenyl
5	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
	107	-SO ₂ CH ₃	1	CH ₂	H	amidino
	108	-CO ₂ Me	1	0	H	2-sulfonamidophenyl
	109	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
10	110	-CO ₂ Me	1	0	CH ₃	2-methylaminosulfonyl-
						phenyl
	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	O .	CH ₃	2-CF ₃ -phenyl
	113	-CO ₂ Me	1	0	H	2-CF ₃ -phenyl
15	114	-CO ₂ Me	1	0	F	phenyl
	115	-CO ₂ Me	1	0	CH ₃	phenyl
	116	-CO ₂ Me	1	0	H .	phenyl
	117	-CO ₂ Me	1	0	F	amidino
	118.	-CO ₂ Me	1 ,	0	CH ₃	amidino
20	119	-CO ₂ Me	1	0	H	amidino
	120	-CH ₂ OMe	1	0	H	2-methylaminosulfonyl-
						phenyl
	121	-CH ₂ OMe	1	0	F	2-sulfonamidophenyl
	122	-CH ₂ OMe	1	0	CH ₃	2-sulfonamidophenyl
25	123	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	125	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	126	-CH ₂ OMe	1	0	F	phenyl
	127	-CH ₂ OMe	1	0	CH ₃	phenyl
30	128	-CH ₂ OMe	1	0	H	phenyl
	129	-CH ₂ OMe	1	0	F	amidino
	130	-CH ₂ OMe	1	0	CH ₃	amidino
	131	-CH ₂ OMe	1	0	H	amidino
	132	-SO ₂ CH ₃	1	0	Н	2-sulfonamidophenyl
35	133	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
	135	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	136	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl

	137	-SO ₂ CH ₃	1	0	H	2-CF ₃ -phenyl	-
	138	-SO ₂ CH ₃	1	0	F	phenyl	
	139	-SO ₂ CH ₃	1	0	CH ₃	phenyl	
	140	-SO ₂ CH ₃	1	0	Н	phenyl	
5	141	-SO ₂ CH ₃	1	0	F	amidino	
	142	-SO ₂ CH ₃	1	0	CH ₃	amidino	
	143	-SO ₂ CH ₃	1	0	н	amidino	

PCT/US97/14222

WO 98/06694

Table 5

5	Ex#	R	n	2	R ⁴	В .
	1	-CO ₂ Me	0	CH ₂	H	2-sulfonamidophenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-sulfonamidophenyl
	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
10	5	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	Н	2-CF ₃ -phenyl
	· 7	-CO ₂ Me	0	CH ₂	F	phenyl
	8	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
	9	-CO ₂ Me	0	CH ₂	H	phenyl
15	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	0	CH ₂	н	2-methylaminosulfonyl-
						phenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-sulfonamidophenyl
20	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	Н	2-CF ₃ -phenyl
	18	-CH ₂ OMe	0	CH ₂	F	phenyl
25	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	Н	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
	23	-CH ₂ OMe	0	CH ₂	Н	amidino
30	24	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl
	28	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl

	29	-SO ₂ CH ₃	0	CH ₂	Н	2-CF ₃ -phenyl
	30	-SO ₂ CH ₃	0	CH ₂	F'	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	32	-SO ₂ CH ₃	0	CH ₂	Н	phenyl
5	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	Н	2-sulfonamidophenyl
	37	-CO ₂ Me	0	0	F	2-sulfonamidophenyl
10	38	-CO ₂ Me	0	0	CH ₃	2-methylaminosulfonyl-
						phenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	41	-CO ₂ Me	0	0	H	2-CF ₃ -phenyl
15	42	-CO ₂ Me	0	0	F	phenyl
	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	H	phenyl
	45	-CO ₂ Me	0	0	F	amidino
	46	-CO ₂ Me	0	0	CH ₃	amidino
20	47	-CO ₂ Me	0	0	H	amidino
	48	-CH ₂ OMe	0	0	H	2-methylaminosulfonyl-
						phenyl
	49	-CH ₂ OMe	0	0	F	2-sulfonamidophenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
25	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	52	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	53	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	54 .	-CH ₂ OMe	0	0	F	phenyl
20	55	-CH ₂ OMe	0	0	CH ₃	phenyl
30	56	-CH ₂ OMe	0	0	H	phenyl
	57	-CH ₂ OMe	0	0	F	amidino
	58	-CH ₂ OMe	0.	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	H	amidino
25	60	-SO ₂ CH ₃	0	0	Н	2-sulfonamidophenyl
35	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	63	-SO ₂ CH ₃	0	O ·	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl

	65	-SO ₂ CH ₃	0	0	Н	2-CF ₃ -phenyl
	66	-SO ₂ CH ₃	0	0	F	phenyl
	67	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	68	-SO ₂ CH ₃	0	0	H	phenyl
5	69	-SO ₂ CH ₃	0	0	F	amidino
	70	-SO ₂ CH ₃	0	0	CH ₃	amidino
	71	-SO ₂ CH ₃	0	0	H	amidino
	72	-CO ₂ Me	1	CH ₂	H	2-sulfonamidophenyl
	73	-CO ₂ Me	1	CH ₂	F	2-sulfonamidophenyl
10	74	-CO ₂ Me	1	CH ₂	CH ₃	2-methylaminosulfonyl-
						phenyl
	75	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	76	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	77	-CO ₂ Me	1	CH ₂	Н	2-CF ₃ -phenyl
15	78	-CO ₂ Me	1	CH ₂	F	phenyl
	79	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
	80	-CO ₂ Me	1	CH ₂	H	phenyl
	81	-CO ₂ Me	1	CH ₂	F	amidino
	82	-CO ₂ Me	1	CH ₂	CH ₃	amidino
20	83	-CO ₂ Me	1	CH ₂	H	amidino
	84	-CH ₂ OMe	1	CH ₂	H	2-methylaminosulfonyl-
						phenyl
	85	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-sulfonamidophenyl
25	87	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl
30	92	-CH ₂ OMe	1	CH ₂	H	phenyl
	93	-CH ₂ OMe	1	CH ₂	F	amidino
	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	H	amidino
	96	-SO ₂ CH ₃	1	CH ₂	H	2-sulfonamidophenyl
35	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl

	101	-SO ₂ CH ₃	1	CH ₂	H	2-CF ₃ -phenyl
	102	-SO ₂ CH ₃	1	CH ₂	F	phenyl
	103	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	H	phenyl
5	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
	107	-SO ₂ CH ₃	1	CH ₂	H	amidino
	108	-CO ₂ Me	1	0	H	2-sulfonamidophenyl
	109	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
10	110	-CO ₂ Me	1	0	CH ₃	2-methylaminosulfonyl-
						phenyl
	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	113	-CO ₂ Me	1	0	Н	2-CF ₃ -phenyl
15	114	-CO ₂ Me	1	0	F	phenyl
	115	-CO ₂ Me	1	0	CH ₃	phenyl
	116	-CO ₂ Me	1	0	H	phenyl
	117	-CO ₂ Me	1	0	F	amidino
	118	-CO ₂ Me	1	0	CH ₃	amidino
20	119	-CO ₂ Me	1	0	H	amidino
	120	-CH ₂ OMe	1	0	H	2-methylaminosulfonyl-
						phenyl
	121	-CH ₂ OMe	1	0	F	2-sulfonamidophenyl
	122	-CH ₂ OMe	1	0	CH ₃	2-sulfonamidophenyl
25	123	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	125	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	126	-CH ₂ OMe	1	0	F	phenyl
	127	-CH ₂ OMe	1	0	CH ₃	phenyl
30	128	-CH ₂ OMe	1	0	Н	phenyl
	129	-CH ₂ OMe	1	0	F	amidino
	130	-CH ₂ OMe	1	0	CH ₃	amidino
	131	-CH ₂ OMe	1	0	H	amidino
	132	-SO ₂ CH ₃	1	0	Н	2-sulfonamidophenyl
35	133	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
	135	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	136	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl

WO 98/06694					PCT/US97/14222
137	-SO ₂ CH ₃	1	0	H	2-CF ₃ -phenyl
138	-SO ₂ CH ₃	1	0	F	phenyl
139	-SO ₂ CH ₃	1	0	CH ₃	phenyl
140	-SO ₂ CH ₃	1	0	H	phenyl
5 141	-SO ₂ CH ₃	1	0	F	amidino
142	-SO ₂ CH ₃	1	0	CH ₃	amidino
143	-SO ₂ CH ₃	1	0	Н	amidino

Table 6

5	Ex#	R	n	Z	R4	В
	1	-CO ₂ Me	0	CH ₂	Н	2-sulfonamidophenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-sulfonamidophenyl
	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
10	5	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	Н	2-CF ₃ -phenyl
	7	-CO ₂ Me	0	CH ₂	F	phenyl
	8	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
	9	-CO ₂ Me	0	CH ₂	H	phenyl
15	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	0	CH ₂	Н	2-methylaminosulfonyl-
						phenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-sulfonamidophenyl
20	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	Н	2-CF ₃ -phenyl
	18	-CH ₂ OMe	0	CH ₂	F	phenyl
25	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	Н	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
	23	-CH ₂ OMe	0	CH ₂	, H	amidino
30	24	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl
	28	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl
35	29	-SO ₂ CH ₃	0	CH ₂	Н	2-CF ₃ -phenyl
				•		

	30	-SO ₂ CH ₃	0	CH ₂	F	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	32	-SO ₂ CH ₃	0	CH ₂	Н	phenyl
	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
5	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	H	2-sulfonamidophenyl
	37	-CO ₂ Me	0	0	F	2-methylaminosulfonyl-
						phenyl
10	38	-CO ₂ Me	0	0	CH ₃	2-sulfonamidophenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	41	-CO ₂ Me	0	0	H	2-CF ₃ -phenyl
	42	-CO ₂ Me	0	0	F	phenyl
15	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	Н	phenyl
	45	-CO ₂ Me	0	0	F	amidino
	46	-CO ₂ Me	0	0	CH ₃	amidino
	47	-CO ₂ Me	0	0	H	amidino
20	48	-CH ₂ OMe	0	0	H	2-sulfonamidophenyl
	49	-CH ₂ OMe	0	0	F	2-sulfonamidophenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	·52	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
25	53	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	54	-CH ₂ OMe	0	0	F	phenyl
	55	-CH ₂ OMe	0	0	CH ₃	phenyl
	56	-CH ₂ OMe	0	0	H	phenyl
	57	-CH ₂ OMe	0	0	F	amidino
30	58	-CH ₂ OMe	. 0	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	· H	amidino
	60	-SO ₂ CH ₃	0	0	H	2-sulfonamidophenyl
	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
35	63	-SO ₂ CH ₃	0	O .	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl
	65	-SO ₂ CH ₃	0	0	Н	2-CF ₃ -phenyl
	66	-SO ₂ CH ₃	0	0	F	phenyl

	67	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	68	-SO ₂ CH ₃	0	0	Н	phenyl
	69	-SO ₂ CH ₃	0	0	F	amidino
	70	-SO ₂ CH ₃	0	0	CH ₃	amidino
5	71	-SO ₂ CH ₃	0	0	H	amidino
ر	72	-50 ₂ Cm ₃ -CO ₂ Me	1	CH ₂	H	2-sulfonamidophenyl
	72 73	-CO ₂ Me	1	CH ₂	F	2-methylaminosulfonyl-
		-cosne	1	Cny	T	phenyl
	74	-CO-Mo	1	CH ₂	CH ₃	2-sulfonamidophenyl
10	74 75	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
10	75 76	-CO ₂ Me		CH ₂ CH ₂		2-CF ₃ -phenyl
		-CO ₂ Me	1		CH ₃	
	77	-CO ₂ Me	1	CH ₂	H	2-CF ₃ -phenyl
	78	-CO ₂ Me	1	CH ₂	F	phenyl
	79	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
15	80	-CO ₂ Me	1	CH ₂	H	phenyl
	81	-CO ₂ Me	1	CH ₂	F	amidino
	82	-CO ₂ Me	1	CH ₂	CH ₃	amidino
	83	-CO ₂ Me	1	CH ₂	Н	amidino
	84	-CH ₂ OMe	1	CH ₂	Н	2-sulfonamidophenyl
20	85	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-methylaminosulfonyl-
						phenyl
	87	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
25	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl
	92	-CH ₂ OMe	1	CH ₂	H	phenyl
	93	-CH ₂ OMe	1	CH ₂	F	amidino
30	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	Н	amidino
	96	-SO ₂ CH ₃	1	CH ₂	H	2-sulfonamidophenyl
	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
35	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	101	-SO ₂ CH ₃	1	CH ₂	Н	2-CF ₃ -phenyl
	102	-SO ₂ CH ₃	1	CH ₂	F	phenyl
				_		-

						-
	103	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	H	phenyl
	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
5	107	-SO ₂ CH ₃	1	CH ₂	H	amidino
	108	-CO ₂ Me	1	0	H	2-methylaminosulfonyl-
						phenyl
	109	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
	110	-CO ₂ Me	1	0	CH ₃	2-sulfonamidophenyl
10	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	113	-CO ₂ Me	1	0	Н	2-CF ₃ -phenyl
	114	-CO ₂ Me	1	0	F	phenyl
	115	-CO ₂ Me	. 1	0	CH ₃	phenyl
15	116	-CO ₂ Me	1	0	Н	phenyl
	117	-CO ₂ Me	1	0	F	amidino
	118	-CO ₂ Me	1	0	CH ₃	amidino
	119	-CO ₂ Me	1	0	H	amidino
	120	-CH ₂ OMe	1	0	H	2-sulfonamidophenyl
20	121	-CH ₂ OMe	1	0	F	2-methylaminosulfonyl-
						phenyl
	122	-CH ₂ OMe	1	0	CH ₃	2-sulfonamidophenyl
	123	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
25	125	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	126	-CH ₂ OMe	1	0	F	phenyl
	127	-CH ₂ OMe	1	0	CH3	phenyl
	128	-CH ₂ OMe	1	0	H	phenyl
	129	-CH ₂ OMe	1	0	F	amidino
30	130	-CH ₂ OMe	1	0	CH ₃	amidino
	131	-CH ₂ OMe	1	0	H	amidino
	132	-SO ₂ CH ₃	1	0	Н	2-sulfonamidophenyl
	133	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
35	135	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	136	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl
	137	-SO ₂ CH ₃	1	0	H	2-CF ₃ -phenyl
	138	-SO ₂ CH ₃	1	0	F	phenyl

	139	-SO ₂ CH ₃	1	0	CH ₃	phenyl
	140	-SO ₂ CH ₃	1	0	Н	phenyl
	141	-SO ₂ CH ₃	1	0	F	amidino
	142	-SO ₂ CH ₃	1	0	CH ₃	amidino
_	1.40	CO- CU-	1	^	บ	amidino

Table 7

5	Ex#	R	n	Z	R4	В
	1	-CO ₂ Me	0	CH ₂	H	2-sulfonamidophenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-methylaminosulfonyl
						phenyl
10	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
	5 .	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	H	2-CF ₃ -phenyl
	7	-CO ₂ Me	0	CH ₂	F	phenyl
	8 .	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
15	9	-CO ₂ Me	0	CH ₂	Н	phenyl
	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	0	CH ₂	Н	2-sulfonamidophenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-sulfonamidophenyl
20	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	H	2-CF ₃ -phenyl
	18	-CH ₂ OMe	0	CH ₂	F	phenyl
25	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	Н	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
	23	-CH ₂ OMe	0.	CH ₂	H	amidino
30	24	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0 .	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl
	28	-SO ₂ CH ₃	0	CH ₂	СН3	2-CF ₃ -phenyl

	29	-SO ₂ CH ₃	0	CH ₂	H	2-CF ₃ -phenyl
	30	-SO ₂ CH ₃	0	CH ₂	F	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
	32	-SO ₂ CH ₃	0	CH ₂	Н	phenyl
5	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	H	2-methylaminosulfonyl-
						phenyl
10	37	-CO ₂ Me	0	0	F	2-sulfonamidophenyl
	38	-CO ₂ Me	0	0	CH ₃	2-sulfonamidophenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	41	-CO ₂ Me	0	0	H	2-CF ₃ -phenyl
15	42	-CO ₂ Me	0	0	F	phenyl
	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	H	phenyl
	45	-CO ₂ Me	0	0	F	amidino
	46	-CO ₂ Me	0	0	CH ₃	amidino
20	47	-CO ₂ Me	0	0	H	amidino
	48	-CH ₂ OMe	0	0	H	2-sulfonamidophenyl
	49	-CH ₂ OMe	0	0	F	2-sulfonamidophenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
25	52	-CH2OMe	0	0	CH ₃	2-CF ₃ -phenyl
	53	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	54	-CH ₂ OMe	0	0	F	phenyl
	55	-CH ₂ OMe	0	0	CH ₃	phenyl
	56	-CH ₂ OMe	0	0	H	phenyl
30	57	-CH ₂ OMe	0	0	F	amidino
	58	-CH ₂ OMe	0	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	H	amidino
	60	-SO ₂ CH ₃	0	0	H	2-sulfonamidophenyl
	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
35	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	63	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH3	2-CF ₃ -phenyl
	65	-SO ₂ CH ₃	0	0	H	2-CF ₃ -phenyl

	66	-SO ₂ CH ₃	0	0	F	phenyl
	67	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	68	-SO ₂ CH ₃	0	0.	H	phenyl
	69	-SO ₂ CH ₃	0	0	F	amidino
5	70	-SO ₂ CH ₃	0	0	CH ₃	amidino
	71	-SO ₂ CH ₃	0	0	H	amidino
	72	-CO ₂ Me	1	CH ₂	H	2-sulfonamidophenyl
	73	-CO ₂ Me	1	CH ₂	F	2-methylaminosulfonyl-
						phenyl
10	74	-CO ₂ Me	1	CH ₂	CH ₃	2-sulfonamidophenyl
	75	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	76	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	77	-CO ₂ Me	1	CH ₂	Н	2-CF ₃ -phenyl
	78	-CO ₂ Me	1	CH ₂	F	phenyl
15	79	-CO ₂ Me	1	CH ₂	CH ₃	phenyl
	80	-CO ₂ Me	1	CH ₂	Н	phenyl
	81	-CO ₂ Me	1	CH ₂	F	amidino
	82	-CO ₂ Me	1	CH ₂	CH ₃	amidino
	83	-CO ₂ Me	1	CH ₂	H	amidino
20	84	-CH ₂ OMe	1	CH ₂	Н	2-sulfonamidophenyl
	85	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-methylaminosulfonyl-
						phenyl
	87	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
25	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl
	92	-CH ₂ OMe	1	CH ₂	H	phenyl
30	93	-CH ₂ OMe	1	CH ₂	F	amidino
	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	Н	amidino
	96	-SO ₂ CH ₃	1	CH ₂	Н	2-sulfonamidophenyl
	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
35	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	101	-SO ₂ CH ₃	1	CH ₂	H	2-CF ₃ -phenyl

	102	-SO ₂ CH ₃	1 ·	CH ₂	F	phenyl
	103	-SO ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	Н	phenyl
	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
5	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
	107	-SO ₂ CH ₃	1	CH ₂	Н	amidino
	108	-CO ₂ Me	1	0	Н	2-sulfonamidophenyl
	109	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
	110	-CO ₂ Me	1	0	CH ₃	2-sulfonamidophenyl
10	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	112	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
•	113	-CO ₂ Me	1	0	Н	2-CF ₃ -phenyl
	114	-CO ₂ Me	1	0	F	phenyl
	115	-CO ₂ Me	1	0	CH ₃	phenyl
15	116	-CO ₂ Me	1	0	H	phenyl
	117	-CO ₂ Me	1	0	F	amidino
	118	-CO ₂ Me	1	0	CH ₃	amidino
	119	-CO ₂ Me	1	0	H	amidino
	120	-CH ₂ OMe	1	0	Н	2-sulfonamidophenyl
20	121	-CH ₂ OMe	1	0	F	2-sulfonamidophenyl
	122	-CH ₂ OMe	1	0	CH ₃	2-sulfonamidophenyl
	123	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	125	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
25	126	-CH ₂ OMe	1	0	F	phenyl
	127	-CH ₂ OMe	1	0	CH ₃	phenyl
	128	-CH ₂ OMe	1	0	H	phenyl
	129	-CH ₂ OMe	1	0	F	amidino .
	130	-CH ₂ OMe	1	0	CH ₃	amidino
30	131	-CH ₂ OMe	1	0	H	amidino
	132	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	133	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	135	-SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl
35	136	-SO ₂ CH ₃	1	0	H	2-CF ₃ -phenyl
	137	-SO ₂ CH ₃	1	0	F	phenyl
	138	-SO ₂ CH ₃	1	0	CH ₃	phenyl
	139	-SO ₂ CH ₃	1	0	Н	phenyl

WO 98/06694	PCT/US97/14222

140	$-SO_2CH_3$	1	0	F	amidino
141	-SO ₂ CH ₃	1	0	CH ₃	amidino
142	~ c0~CH-	1	0	н	amidino

Table 8

5	Ex#	R	n	Z	R ⁴	B
	1	-CO ₂ Me	0	CH ₂	Н	2-methylaminosulfonyl-
						phenyl
	2	-CO ₂ Me	0	CH ₂	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	CH ₂	CH ₃	2-sulfonamidophenyl
10	4	-CO ₂ Me	0	CH ₂	F	2-CF ₃ -phenyl
	5	-CO ₂ Me	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	CH ₂	H	2-CF ₃ -phenyl
	7	-CO ₂ Me	0	CH ₂	F	phenyl
	8	-CO ₂ Me	0	CH ₂	CH ₃	phenyl
15	9	-CO ₂ Me	0	CH ₂	H	phenyl
	10	-CO ₂ Me	0	CH ₂	F	amidino
	11	-CO ₂ Me	0	CH ₂	CH ₃	amidino
	12	-CH ₂ OMe	0	CH ₂	H	2-sulfonamidophenyl
	13	-CH ₂ OMe	0	CH ₂	F	2-methylaminosulfonyl-
20						phenyl
	14	-CH ₂ OMe	0	CH ₂	CH ₃	2-sulfonamidophenyl
	15	-CH ₂ OMe	0	CH ₂	F	2-CF ₃ -phenyl
	16	-CH ₂ OMe	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	CH ₂	H	2-CF ₃ -phenyl
25	18	-CH ₂ OMe	0	CH ₂	F	phenyl
	19	-CH ₂ OMe	0	CH ₂	CH ₃	phenyl
	20	-CH ₂ OMe	0	CH ₂	H	phenyl
	21	-CH ₂ OMe	0	CH ₂	F	amidino
	22	-CH ₂ OMe	0	CH ₂	CH ₃	amidino
30	23	-CH ₂ OMe	0	CH ₂	H	amidino
	24	-SO ₂ CH ₃	0	CH ₂	H	2-sulfonamidophenyl
	25	-SO ₂ CH ₃	0	CH ₂	F	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	CH ₂	F	2-CF ₃ -phenyl

•	28	-SO ₂ CH ₃	0	CH ₂	CH ₃	2-CF ₃ -phenyl
	29	-SO ₂ CH ₃	0	CH ₂	H	2-CF ₃ -phenyl
	30	-SO ₂ CH ₃	0	CH ₂	F	phenyl
	31	-SO ₂ CH ₃	0	CH ₂	CH ₃	phenyl
5	32	-SO ₂ CH ₃	0	CH ₂	H	phenyl
	33	-SO ₂ CH ₃	0	CH ₂	F	amidino
	34	-SO ₂ CH ₃	0	CH ₂	CH ₃	amidino
	35	-SO ₂ CH ₃	0	CH ₂	H	amidino
	36	-CO ₂ Me	0	0	H	2-sulfonamidophenyl
10	37	-CO ₂ Me	0	0	F	2-sulfonamidophenyl
	38	-CO ₂ Me	0	0	CH ₃	2-methylaminosulfonyl-
	·					phenyl
	39	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
	40	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
15	41	-CO ₂ Me	0	0	H	2-CF ₃ -phenyl
	42	-CO ₂ Me	0	· O	F	phenyl
	43	-CO ₂ Me	0	0	CH ₃	phenyl
	44	-CO ₂ Me	0	0	H	phenyl
	45	-CO ₂ Me	0	0	F	amidino
20	46	-CO ₂ Me	0	0	CH ₃	amidino
	47	-CO ₂ Me	0	0	H	amidino
	48	-CH ₂ OMe	0	0	H	2-sulfonamidophenyl
	49	-CH ₂ OMe	0	0	F	2-sulfonamidophenyl
	50	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
25	51	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	52	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	53	-CH ₂ OMe	0	0	H	2-CF ₃ -phenyl
	54	-CH ₂ OMe	0	0	F	phenyl
	55	-CH ₂ OMe	0	0	CH ₃	phenyl
30	56	-CH ₂ OMe	0	0	H	phenyl
	57	-CH ₂ OMe	0	0	F	amidino
	58	-CH ₂ OMe	0	0	CH ₃	amidino
	59	-CH ₂ OMe	0	0	Н	amidino
	60	-SO ₂ CH ₃	0	0	н	2-sulfonamidophenyl
35	61	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	62	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	63	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	64	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl

	65	-SO ₂ CH ₃	0	0	н	2 67 1 -
	66	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
	67	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	68	-SO ₂ CH ₃	0	0	Н	phenyl
5	69	-SO ₂ CH ₃	0	0	r F	phenyl
	70	-SO ₂ CH ₃	0	0		amidino
	71	-SO ₂ CH ₃	0	0	CH ₃	amidino
	72	-CO ₂ Me	1	CH ₂	Н	amidino
	73	-CO ₂ Me	1	CH ₂	H F	2-sulfonamidophenyl
10	74	-CO ₂ Me	1	CH ₂	r CH ₃	2-sulfonamidophenyl
	75	-CO ₂ Me	1	CH ₂	_	2-sulfonamidophenyl
	76	-CO ₂ Me	1	CH ₂	F	2-CF ₃ -phenyl
	77	-CO ₂ Me	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	78	-CO ₂ Me	1	CH ₂	Н	2-CF ₃ -phenyl
15	79	-CO ₂ Me	1	CH ₂	F CW-	phenyl
	80	-CO ₂ Me	1	CH ₂	СН ₃ Н	phenyl
	81	-CO ₂ Me	1	CH ₂	r F	phenyl
	82	-CO ₂ Me	1	CH ₂		amidino
	83	-CO ₂ Me	1	CH ₂	СН ₃ Н	amidino
20	84	-CH ₂ OMe	1	CH ₂	н Н	amidino
٠	85	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	86	-CH ₂ OMe	1	CH ₂	CH ₃	2-sulfonamidophenyl
	87	-CH ₂ OMe	1	CH ₂	F	2-sulfonamidophenyl
	88	-CH ₂ OMe	1	CH ₂	CH ₃	2-CF ₃ -phenyl
25	89	-CH ₂ OMe	1	CH ₂	H	2-CF ₃ -phenyl
	90	-CH ₂ OMe	1	CH ₂	F	2-CF ₃ -phenyl
	91	-CH ₂ OMe	1	CH ₂	CH ₃	phenyl phenyl
	92	-CH ₂ OMe	1	CH ₂	Н	phenyl
	93	-CH ₂ OMe	1	CH ₂	F	amidino
30	94	-CH ₂ OMe	1	CH ₂	CH ₃	amidino
	95	-CH ₂ OMe	1	CH ₂	Н	amidino
	96	-SO ₂ CH ₃	1	CH ₂	H	2-sulfonamidophenyl
	97	-SO ₂ CH ₃	1	CH ₂	F	2-sulfonamidophenyl
	98	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-sulfonamidophenyl
35	99	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl
	100	-SO ₂ CH ₃	1	CH ₂	CH ₃	2-CF ₃ -phenyl
	101	-SO ₂ CH ₃	1	CH ₂	Н	-
	102	-SO ₂ CH ₃	1	CH ₂	F	2-CF ₃ -phenyl phenyl
				2	•	Pricitàt

	103	-50 ₂ CH ₃	1	CH ₂	CH ₃	phenyl
	104	-SO ₂ CH ₃	1	CH ₂	H	phenyl
	105	-SO ₂ CH ₃	1	CH ₂	F	amidino
•	106	-SO ₂ CH ₃	1	CH ₂	CH ₃	amidino
5	107	-SO ₂ CH ₃	1	CH ₂	Н	amidino
	108	-CO ₂ Me	1	0	H	2-sulfonamidophenyl
	109	-CO ₂ Me	1	0	F	2-sulfonamidophenyl
	110	-CO ₂ Me	1	0	CH ₃	2-sulfonamidophenyl
	111	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
10	112	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	113	-CO ₂ Me	1	0	H	2-CF ₃ -phenyl
	114	-CO ₂ Me	1	0	F	phenyl
	115	-CO ₂ Me	1	0	CH ₃	phenyl
	116	-CO ₂ Me	1	0	H	phenyl
15	117	-CO ₂ Me	1	0	F	amidino
	118	-CO ₂ Me	1	0	CH ₃	amidino
	119	-CO ₂ Me	1	0	H	amidino
	120	-CH ₂ OMe	1	0	H	2-sulfonamidophenyl
	121	· -CH ₂ OMe	1	0	F	2-sulfonamidophenyl
20	122	-CH ₂ OMe	1	0	CH ₃	2-sulfonamidophenyl
	123	-CH ₂ OMe	1	0	F	2-CF ₃ -phenyl
	124	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	125	-CH ₂ OMe	1	0	H	2-CF ₃ -phenyl
	126	-CH ₂ OMe	1	0	F	phenyl
25	127	-CH ₂ OMe	1	0	CH ₃	phenyl
	128	-CH ₂ OMe	1	0	H	phenyl
	129	-CH ₂ OMe	1	0	F	amidino
	130	-CH ₂ OMe	1	0	CH ₃	amidino
	131	-CH ₂ OMe	1	0	H	amidino
30	132	-SO ₂ CH ₃	1	0	F	2-sulfonamidophenyl
	133	-SO ₂ CH ₃	1	0	CH ₃	2-sulfonamidophenyl
	134	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	135	-SO ₂ CH ₃	1	o .	CH ₃	2-CF ₃ -phenyl
	136	-SO ₂ CH ₃	1	0	H	2-CF ₃ -phenyl
35	137	-SO ₂ CH ₃	1	0	F	phenyl
	138	-SO ₂ CH ₃	1	0	CH ₃	phenyl
	139	-SO ₂ CH ₃	1	0	Н	phenyl
	140	-SO ₂ CH ₃	1	0	F	amidino

WO 98/06694	PCT/US97/14222
•	

141	-SO ₂ CH ₃	1	0	CH ₃	amidino
142	-SO ₂ CH ₃	1	0	н	amidino

Table 9

5	Ex#	R	n	Z	R4	B
	1	-CO ₂ Me	0	0	Н	2-sulfonamidophenyl
	2	-CO ₂ Me	0	0	F	2-sulfonamidophenyl
	3	-CO ₂ Me	0	0	CH ₃	2-sulfonamidophenyl
	4	-CO ₂ Me	0	0	F	2-CF ₃ -phenyl
10	5	-CO ₂ Me	0	0	CH ₃	2-CF ₃ -phenyl
	6	-CO ₂ Me	0	0	Н	2-CF ₃ -phenyl
	7	-CO ₂ Me	0	0	F	phenyl
	8	-CO ₂ Me	0	0	CH _{3.}	phenyl
	9	-CO ₂ Me	0	0	Н	phenyl
15	10	-CO ₂ Me	0	0	F	amidino
	11	-CO ₂ Me	0	0	CH ₃	amidino
	12	-CO ₂ Me	0	0	н	amidino
	13	-CH ₂ OMe	0	0	Н	2-sulfonamidophenyl
	14	-CH ₂ OMe	0	0	F	2-methylaminosulfonyl-
20						phenyl
	15	-CH ₂ OMe	0	0	CH ₃	2-sulfonamidophenyl
	16	-CH ₂ OMe	0	0	F	2-CF ₃ -phenyl
	17	-CH ₂ OMe	0	0	CH ₃	2-CF ₃ -phenyl
	18	-CH ₂ OMe	0	0	Н	2-CF ₃ -phenyl
25	19	-CH ₂ OMe	0	0	F	phenyl
	20	-CH ₂ OMe	0	0	CH ₃	phenyl
	21	-CH ₂ OMe	0	0	н	phenyl
	22	-CH ₂ OMe	0	0	F	amidino
	23	-CH ₂ OMe	0	0	CH ₃	amidino
30	24	-CH ₂ OMe	0	0	Н	amidino
	25 .	-SO ₂ CH ₃	0	0	H	2-sulfonamidophenyl
	26	-SO ₂ CH ₃	0	0	F	2-sulfonamidophenyl
	27	-SO ₂ CH ₃	0	0	CH ₃	2-sulfonamidophenyl
	28	-SO ₂ CH ₃	0	0	F	2-CF ₃ -phenyl
35	29	-SO ₂ CH ₃	0	0	CH ₃	2-CF ₃ -phenyl

	30	-SO ₂ CH ₃	0	0	H	2-CF ₃ -phenyl
	31	-SO ₂ CH ₃	0	0	F	phenyl
	32	-SO ₂ CH ₃	0	0	CH ₃	phenyl
	33	-SO ₂ CH ₃	0	0	H	phenyl
5	34	-SO ₂ CH ₃	0	0	F	amidino
	35	-SO ₂ CH ₃	0	0	CH ₃	amidino
	36	-SO ₂ CH ₃	0	0	н	amidino
	37	-CO ₂ Me	1	0	н 2	2-methylaminosulfonyl-
						phenyl
10	38	-CO ₂ Me	1	0	F 2	2-sulfonamidophenyl
	39	-CO ₂ Me	1	0		2-sulfonamidophenyl
	40	-CO ₂ Me	1	0	F	2-CF ₃ -phenyl
	41	-CO ₂ Me	1	0	CH ₃	2-CF ₃ -phenyl
	42	-CO ₂ Me	1	0	н	2-CF ₃ -phenyl
15	43	-CO ₂ Me	1	0	F	phenyl
	44	-CO ₂ Me	1	0	CH ₃	phenyl
	45	-CO ₂ Me	1	0	Н	phenyl
	46	-CO ₂ Me	1	0	F	amidino
	47	-CO ₂ Me	1	0	CH ₃	amidino
20	48	-CO ₂ Me	1	Ο	Н	amidino
	49	-CH ₂ OMe	1	0	H 2	-sulfonamidophenyl
	50	-CH ₂ OMe	1	0	F 2	-methylaminosulfonyl-
					q	henyl
	51	-CH ₂ OMe	1	0	CH ₃ 2	-sulfonamidophenyl
25	52	-CH ₂ OMe	1	0	. F	2-CF ₃ -phenyl
	53	-CH ₂ OMe	1	0	CH ₃	2-CF ₃ -phenyl
	54	-CH ₂ OMe	1	0	н	2-CF ₃ -phenyl
	55	-CH ₂ OMe	1	0	F	phenyl
	56	-CH ₂ OMe	1	0	CH ₃	phenyl
30	57	-CH ₂ OMe	1	0	H	phenyl
	58	-CH ₂ OMe	1	0	F	amidino
	59	-CH ₂ OMe	1	0	CH ₃	amidino
	60	-CH ₂ OMe	1	0	H	amidino
	61	-SO ₂ CH ₃	1	0	Н 2	-sulfonamidophenyl
35	62	-SO ₂ CH ₃	1	0	F 2	-sulfonamidophenyl
	63	-SO ₂ CH ₃	1	0	CH ₃ 2	-sulfonamidophenyl
	64	-SO ₂ CH ₃	1	0	F	2-CF ₃ -phenyl
	6 5	~SO ₂ CH ₃	1	0	CH ₃	2-CF ₃ -phenyl

WO 98/06694	PCT/US97/14222
-------------	----------------

	66	-SO ₂ CH ₃	1	0	Н	2-CF ₃ -phenyl
	67	-SO ₂ CH ₃	1	0	F	phenyl
	68	-SO ₂ CH ₃	1	ο,	CH ₃	phenyl
	69	-SO ₂ CH ₃	1	0	Н	phenyl
5	70	-SO ₂ CH ₃	1	0	F	amidino
	71	-SO ₂ CH ₃	1	0	CH ₃	amidino
	72	-SOoCHo	1	0	н	amidino

Table 10

5					
	Ex#	R	J	Y	В
	1	SO ₂ Me	CH ₂	СН	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH ₂	СН	2-(trifluoromethyl)phenyl
10	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
15	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CC1	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
20	14	SO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	15	SO ₂ Me	0	СН	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
25	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
30	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	СН	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	СН	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
					_

	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
5	33	CO ₂ Me	CH ₂	CF .	2-(trifluoromethyl)phenyl
	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
10	38	CO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
15	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CC1	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
20	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
25	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
30	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
35	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
	64	COCH ₃	0	N	2-(aminosulfonyl)phenyl
	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl

	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl
	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CC1	2-(aminosulfonyl)phenyl
5	71	COCH ₃	0	CC1	2-(methylsulfonyl)phenyl
	72	COCH ₃	0	CC1	2-(trifluoromethyl)phenyl
	73	CH ₃	CH ₂	СН	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
10	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	77	CH ₃	CH ₂	N	
	78	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	79	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	80	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
15	81	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	82	CH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	83	CH ₃	CH ₂		2-(aminosulfonyl)phenyl
	84	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	85	CH ₃	O 0	CC1 CH	2-(trifluoromethyl)phenyl
20	86	CH ₃	0	CH	2-(aminosulfonyl)phenyl
20	87	CH ₃	0	CH	2-(methylsulfonyl)phenyl
	88	CH ₃	0	N	2-(trifluoromethyl)phenyl
	89	CH ₃	0	N	2-(aminosulfonyl)phenyl
	90	CH ₃	0		2-(methylsulfonyl)phenyl
25	91	CH ₃	0	N	2-(trifluoromethyl)phenyl
22	92	CH ₃	0	CF	2-(aminosulfonyl)phenyl
	93	CH ₃	0	CF CF	2-(methylsulfonyl)phenyl
	94	CH ₃	0		2-(trifluoromethyl)phenyl
	95		•	CCl	2-(aminosulfonyl)phenyl
30	96	CH ₃	0	CC1	2-(methylsulfonyl)phenyl
30	90 97	CH ₃	0	CC1	2-(trifluoromethyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
		CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
2.5	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
35	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl

					_
	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl
	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
5	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N	2-(methylsulfonyl)phenyl
10	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
15	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	H	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	H	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	Н	CH ₂	CH	2-(trifluoromethyl)phenyl
20	124	H	CH ₂	N	2-(aminosulfonyl)phenyl
	125	H	CH ₂	N	2-(methylsulfonyl)phenyl
	126	H	CH ₂	N	2-(trifluoromethyl)phenyl
•	127	H	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	Н	CH ₂	CF	2-(methylsulfonyl)phenyl
25	129	H	CH ₂	CF	2-(trifluoromethyl)phenyl
	130	H	CH ₂	CCl	2-(aminosulfonyl)phenyl
	131	Н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	H	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	H	0	CH	2-(aminosulfonyl)phenyl
30	134	Н	0	CH	2-(methylsulfonyl)phenyl
	135	H	0	CH	2-(trifluoromethyl)phenyl
	136	H	0	N	2-(aminosulfonyl)phenyl
	137	H	0	N	2-(methylsulfonyl)phenyl
	138	H	0	N	2-(trifluoromethyl)phenyl
35	139	Н	0	CF	2-(aminosulfonyl)phenyl
	140	H	0	CF	2-(methylsulfonyl)phenyl
	141	Н	0	CF	2-(trifluoromethyl)phenyl
	142	Н	Ο	CCl	2-(aminosulfonyl)phenyl

143	Н	0	CCl	2-(methylsulfonyl)phenyl
144	н	0	CCl	2-(trifluoromethyl)phenyl

Table 11

$$H_2N$$
 H_2N
 H_2N
 H_3N
 H_4N
 H_4N
 H_5N
5	Ex#	R	J	У	В
	1	SO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	.2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH2	СН	2-(trifluoromethyl)phenyl
	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
10	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
15	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	14	SO ₂ Me	o	CH	2-(methylsulfonyl)phenyl
20	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
25	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
30	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
35	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl

	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
5	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	38	CO ₂ Me	0	CH ·	2-(methylsulfonyl)phenyl
	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
10	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
15	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
20	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2~(aminosulfonyl)phenyl
	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
25	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	58	COCH3	CH ₂	CCl	2-(aminosulfonyl)phenyl
	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
30	60	COCH3	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
	64	COCH3	0	N	2-(aminosulfonyl)phenyl
35	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl
	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl
	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl

	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CCl	2-(aminosulfonyl)phenyl
	71	COCH ₃	0	CCl	2-(methylsulfonyl)phenyl
	72	COCH ₃	0	CCl	2-(trifluoromethyl)phenyl
5	73	CH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
10	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	79	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	82	CH ₃	CH ₂	CC1	2-(aminosulfonyl)phenyl
15	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	CH ₃	CH ₂	CC1	2-(trifluoromethyl)phenyl
	85	CH ₃	0	CH	2-(aminosulfonyl)phenyl
	86	CH ₃	0	CH	2-(methylsulfonyl)phenyl
	87	CH ₃	0	CH	2-(trifluoromethyl)phenyl
20	88	CH ₃	0	N	2-(aminosulfonyl)phenyl
	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
25	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CC1	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
	96	CH ₃	0	CC1	2-(trifluoromethyl)phenyl
	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
30	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
35	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl
	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl
	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	106	-	_		

	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CC1	2-(trifluoromethyl)phenyl
	109	CH ₂ Ph	0	СН	2-(aminosulfonyl)phenyl
	110	CH ₂ Ph	0	CH	2- (methylsulfonyl) phenyl
5	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N	2-(methylsulfonyl)phenyl
	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
10	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
15	121	Н	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	Н	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	Н	CH ₂	CH	2-(trifluoromethyl)phenyl
	124	Н	CH ₂	N	2-(aminosulfonyl)phenyl
	125	Н	CH ₂	N	2-(methylsulfonyl)phenyl
20	126	H	CH ₂	N	2-(trifluoromethyl)phenyl
	127	Н	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	H	CH ₂	CF	2-(methylsulfonyl)phenyl
	129	H	CH ₂	CF	2-(trifluoromethyl)phenyl
	130	H	CH ₂	CCl	2-(aminosulfonyl)phenyl
25	131	Н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	Н	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	Н	0	CH	2-(aminosulfonyl)phenyl
	134	Н	0	CH	2-(methylsulfonyl)phenyl
	135	H	0	CH	2-(trifluoromethyl)phenyl
30	136	H	0	N	2-(aminosulfonyl)phenyl
	137	H	0	N	2-(methylsulfonyl)phenyl
	138	H	0	N	2-(trifluoromethyl)phenyl
	139	H	0	CF	2-(aminosulfonyl)phenyl
	140	H	0	CF	2-(methylsulfonyl)phenyl
35	141	H	0	CF	2-(trifluoromethyl)phenyl
	142	Н	0	CCl	2-(aminosulfonyl)phenyl
	143	H	0	CCl	2-(methylsulfonyl)phenyl
	144	Н	0	CCl	2-(trifluoromethyl)phenyl

Table 12

					•
5	Ex#	R	J	У	В
	1	SO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3 ·	SO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
10	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
15	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	14	SO ₂ Me ,	0	CH	2-(methylsulfonyl)phenyl
20	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
25	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
30	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	СН	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl

	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
5	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	38	CO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
10	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
•	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
15	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
20	49	COCH3	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH3	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH3	CH ₂	N	2-(aminosulfonyl)phenyl
	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
25	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
30	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
35	64	COCH ₃	0	N	2-(aminosulfonyl)phenyl
•	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl
	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl

	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CCl	2-(aminosulfonyl)phenyl
	71	COCH ₃	0	CCl	2-(methylsulfonyl)phenyl
5	72	COCH ₃	0	CCl	2-(trifluoromethyl)phenyl
,	72	CH ₃	CH ₂	СН	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	7 5 75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	75 76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
10	70 77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
10	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	78 79	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
15	82	CH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	CH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	85	CH ₃	0	СН	2-(aminosulfonyl)phenyl
	86	CH ₃	0	СН	2-(methylsulfonyl)phenyl
20	87	CH ₃	0	CH	2-(trifluoromethyl)phenyl
	88	CH ₃	0	N .	2-(aminosulfonyl)phenyl
٠	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
25	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CCl	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
	96	СН3	0	CCl	2-(trifluoromethyl)phenyl
30	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
35	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl
	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethy1)phenyl

	106	CH ₂ Ph	CH ₂	CC1	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
5	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N	2-(methylsulfonyl)phenyl
	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
10	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
15	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	Н	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	Н	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	н	CH ₂	CH	2-(trifluoromethyl)phenyl
	124	H	CH ₂	N	2-(aminosulfonyl)phenyl
20	125	Н	CH ₂	N	2-(methylsulfonyl)phenyl
	126	Н	CH ₂	N	2-(trifluoromethyl)phenyl
	127	H	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	Н	CH ₂	CF	2-(methylsulfonyl)phenyl
	129	Н	CH ₂	CF	2-(trifluoromethyl)phenyl
25	130	Н	CH ₂	CCl	2-(aminosulfonyl)phenyl
	131	н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	H	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	Н	0	CH	2-(aminosulfonyl)phenyl
	134	H	0	CH	2-(methylsulfonyl)phenyl
30	135	H	0	CH	2-(trifluoromethyl)phenyl
	136	н	0	N	2-(aminosulfonyl)phenyl
	137	н	0	N	2-(methylsulfonyl)phenyl
	138	Н	0	N	2-(trifluoromethyl)phenyl
	139	н	0	CF	2-(aminosulfonyl)phenyl
35	140	H	0	CF	2-(methylsulfonyl)phenyl
	141	H	0	CF	2-(trifluoromethyl)phenyl
	142	Н	0	CCl	2-(aminosulfonyl)phenyl
	143	H	O ·	CCl	2-(methylsulfonyl)phenyl

144 H O CCl 2-(trifluoromethyl)phenyl -

Table 13

5	774	70	J	Y	В
	Ex#1	R SO ₂ Me	CH ₂	 СН	2-(aminosulfonyl)phenyl
		SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	2	-	_	CH	2-(methylsurromyl/phenyl 2-(trifluoromethyl)phenyl
	3	SO ₂ Me	CH ₂		
10	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
15	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	O .	CH	2-(aminosulfonyl)phenyl
20	14	SO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
25	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
30	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl

	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl -
	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
5	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
10	38	CO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
15	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
20	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
25	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
30	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
35	63	COCH ₃	0 .	CH	2-(trifluoromethyl)phenyl
	64	COCH ₃	0	N	2-(aminosulfonyl)phenyl
	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl

	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl
	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CC1	2-(aminosulfonyl)phenyl
5	71	COCH ₃	0	CCl	2-(methylsulfonyl)phenyl
	72	COCH ₃	0	CCl	2-(trifluoromethyl)phenyl
	73	CH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
10	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	79	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
15	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	82	CH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	CH ₃	CH ₂	CC1	2-(trifluoromethyl)phenyl
	85	CH ₃	0	CH	2-(aminosulfonyl)phenyl
20	86	CH ₃	0	CH	2-(methylsulfonyl)phenyl
	87	CH ₃	0	CH	2-(trifluoromethyl)phenyl
	88	CH ₃	0	N	2-(aminosulfonyl)phenyl
	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
25	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CCl	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
30	96	CH ₃	0	CCl	2-(trifluoromethyl)phenyl
	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
35	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl

	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl-
	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
5	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N .	2-(methylsulfonyl)phenyl
10	114	CH ₂ Ph	O .	N	2-(trifluoromethyl)phenyl
	115	CH ₂ Ph	Q	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
15	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	H	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	Н	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	H .	CH ₂	CH	2-(trifluoromethyl)phenyl
20	124	Н	CH ₂	N	2-(aminosulfonyl)phenyl
	125	H	CH ₂	N	2-(methylsulfonyl)phenyl
	126	H	CH ₂	N	2-(trifluoromethyl)phenyl
	127	Н	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	H	CH ₂	CF	2-(methylsulfonyl)phenyl
25	129	Н	CH ₂	CF	2-(trifluoromethyl)phenyl
	130	H .	CH ₂	CCl	2-(aminosulfonyl)phenyl
	131	H	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	H	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	H	0	CH	2-(aminosulfonyl)phenyl
30	134	Н	0	CH	2-(methylsulfonyl)phenyl
	135	H	0	CH	2-(trifluoromethyl)phenyl
	136	H	0	N	2-(aminosulfonyl)phenyl
•	137	H	0	N	2-(methylsulfonyl)phenyl
	138	H	0	N	2-(trifluoromethyl)phenyl
35	139	Н	0	CF	2-(aminosulfonyl)phenyl
	140	Н	0	CF	2-(methylsulfonyl)phenyl
	141	Н	0	CF	2-(trifluoromethyl)phenyl
	142	Н	0	CCl	2-(aminosulfonyl)phenyl

143	H	0	CCl	2-(methylsulfonyl)phenyl	_
144	H	0		2-(trifluoromethyl)phenyl	

Table 14

5					
	Ex#	R	J	<u> Y</u>	<u>B</u>
	1	SO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
10	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7 .	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
15	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
•	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
20	14	SO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
25	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	O	CCl	2-(methylsulfonyl)phenyl
30	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	25 [*]	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27 .	CO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl

	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
5	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
10	38	CO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
•	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
15	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	44	"CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
20	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
25	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
30	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
35	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
	64	COCH ₃	0	N	2-(aminosulfonyl)phenyl
	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl

	67	COCH ₃	O .	CF	2-(aminosulfonyl)phenyl
	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CC1	2-(aminosulfonyl)phenyl
5	71	COCH ₃	0	CC1	2-(methylsulfonyl)phenyl
	72	COCH ₃	0	CCl	2-(trifluoromethyl)phenyl
	73	CH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
10	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	79	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
15	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	82	CH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	СН3	CH ₂	CCl	2-(trifluoromethyl)phenyl
	85	CH ₃	0	CH	2-(aminosulfonyl)phenyl
20	86	CH ₃	0	CH	2-(methylsulfonyl)phenyl
	87	CH ₃	O	CH	2-(trifluoromethyl)phenyl
	88	CH ₃	0	N	2-(aminosulfonyl)phenyl
	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
25	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CCl	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
30	96	CH ₃	0	CCl	2-(trifluoromethyl)phenyl
	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
35	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl

	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl
	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
5	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N	2-(methylsulfonyl)phenyl
10	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
15	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	н	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	н	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	Н	CH ₂	CH	2-(trifluoromethyl)phenyl
20	124	Н	CH ₂	N	2-(aminosulfonyl)phenyl
	125	н	CH ₂	N	2-(methylsulfonyl)phenyl
	126	Н	CH ₂	N	2-(trifluoromethyl)phenyl
	127	Н	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	Н	CH ₂	CF	2-(methylsulfonyl)phenyl
25	129	Н	CH ₂	CF	2-(trifluoromethyl)phenyl
	130	Н	CH ₂	CCl	2-(aminosulfonyl)phenyl
	131	Н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	н	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	Н	0	CH	2-(aminosulfonyl)phenyl
30	134	Н	0	CH	2-(methylsulfonyl)phenyl
	135	H	0	CH	2-(trifluoromethyl)phenyl
	136	Н	0	N	2-(aminosulfonyl)phenyl
	137	Н	0	N	2-(methylsulfonyl)phenyl
	138	Н	0	N	2-(trifluoromethyl)phenyl
35	139	Н	0	CF	2-(aminosulfonyl)phenyl
	140	H	0	CF	2-(methylsulfonyl)phenyl
	141	Н	0	CF	2-(trifluoromethyl)phenyl
	142	H	0	CCl	2-(aminosulfonyl)phenyl

WU 98/00094				FC1/US9//14222
143	Н	0	CCl	2-(methylsulfonyl)phenyl
144	H	0	CCl	2-(trifluoromethyl)phenyl

Table 15

5	Ex#	R	J	<u> Y</u>	В
	1	SO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
10	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
15	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	14	SO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
20	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
25	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	24	SO ₂ Me	О	CCl	2-(trifluoromethyl)phenyl
30	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	CH	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl

	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
5	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
	38	CO ₂ Me	0	СН	2-(methylsulfonyl)phenyl
10	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
15	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
	48	CO ₂ Me	О .	CCl	2-(trifluoromethyl)phenyl
20	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
25	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH3	CH ₂	CF	2-(trifluoromethyl)phenyl
	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
30	59	COCH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH3	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH3	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
35	64	COCH3	0	N	2-(aminosulfonyl)phenyl
	65	COCH3	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl
	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl

	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CC1	2-(aminosulfonyl)phenyl
	71	COCH ₃	0	CCl	2-(methylsulfonyl)phenyl
5	72	COCH ₃	0	CCl	2-(trifluoromethyl)phenyl
	73	CH ₃	CH ₂	СН	2-(aminosulfonyl)phenyl
	74	CH ₃	CH ₂	СН	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	СН	2-(trifluoromethyl)phenyl
	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
10	77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	79	СН3	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
15	82	CH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	CH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	85	СН3	0	CH	2-(aminosulfonyl)phenyl
	86	CH ₃	0	СН	2-(methylsulfonyl)phenyl
20	87	CH ₃	0	CH	2-(trifluoromethyl)phenyl
	88	CH ₃	0	N	2-(aminosulfonyl)phenyl
	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
25	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CCl	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
	96	CH ₃	0	CC1	2-(trifluoromethyl)phenyl
30	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
35	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl
	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl

	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
5	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	N	2-(methylsulfonyl)phenyl
	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
10	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CCl	2-(aminosulfonyl)phenyl
	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
15	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	Н	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	H	CH ₂	CH	2-(methylsulfonyl)phenyl
	123	Н	CH ₂	CH	2-(trifluoromethyl)phenyl
	124	н	CH ₂	N	2-(aminosulfonyl)phenyl
20	125	Н	CH ₂	N	2-(methylsulfonyl)phenyl
	126	Н	CH ₂	N	2-(trifluoromethyl)phenyl
	127	Н	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	н	CH ₂	CF	2-(methylsulfonyl)phenyl
	129	н	CH ₂	CF	2-(trifluoromethyl)phenyl
25	130	.н	CH ₂	CCl	2-(aminosulfonyl)phenyl
	131	н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	Н	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	н	0	CH	2-(aminosulfonyl)phenyl
	134	H	0	CH	2-(methylsulfonyl)phenyl
30	135	Н	0	CH	2-(trifluoromethyl)phenyl
	136	Н	0	N	2-(aminosulfonyl)phenyl
	137	Н	0	N	2-(methylsulfonyl)phenyl
	138	Н	0	N	2-(trifluoromethyl)phenyl
	139	Н	0	CF	2-(aminosulfonyl)phenyl
35	140	Н	0	CF	2-(methylsulfonyl)phenyl
	141	Н	0	CF	2-(trifluoromethyl)phenyl
	142	Н	0	CCl	2-(aminosulfonyl)phenyl
	143	Н	0	CCl	2-(methylsulfonyl)phenyl

144 H O CCl 2-(trifluoromethyl)phenyl

Table 16

5				•	
5	Ex#	R	J_	Y	В
	1	SO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	3	SO₂Me	CH ₂	CH	2-(trifluoromethyl)phenyl
10	4	SO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl
	5	SO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
15	9	SO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	10	SO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CH ₂	CC1	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	13	SO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
20	14	SO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	15	SO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	16	SO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	17	SO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	18	SO ₂ Me	0	'n	2-(trifluoromethyl)phenyl
25	19	SO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	20	SO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	21	SO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	22	SO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	23	SO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
30	24	SO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	25	CO ₂ Me	CH ₂	CH	2-(aminosulfonyl)phenyl
	26	CO ₂ Me	CH ₂	CH	2-(methylsulfonyl)phenyl
	27	CO ₂ Me	CH ₂	CH ·	2-(trifluoromethyl)phenyl
	28	CO ₂ Me	CH ₂	N	2-(aminosulfonyl)phenyl

	29	CO ₂ Me	CH ₂	N	2-(methylsulfonyl)phenyl
	30	CO ₂ Me	CH ₂	N	2-(trifluoromethyl)phenyl
	31	CO ₂ Me	CH ₂	CF	2-(aminosulfonyl)phenyl
	32	CO ₂ Me	CH ₂	CF	2-(methylsulfonyl)phenyl
5	33	CO ₂ Me	CH ₂	CF	2-(trifluoromethyl)phenyl
	34	CO ₂ Me	CH ₂	CCl	2-(aminosulfonyl)phenyl
	35	CO ₂ Me	CH ₂	CCl	2-(methylsulfonyl)phenyl
	36	CO ₂ Me	CH ₂	CCl	2-(trifluoromethyl)phenyl
	37	CO ₂ Me	0	CH	2-(aminosulfonyl)phenyl
10	38	CO ₂ Me	0	CH	2-(methylsulfonyl)phenyl
	39	CO ₂ Me	0	CH	2-(trifluoromethyl)phenyl
	40	CO ₂ Me	0	N	2-(aminosulfonyl)phenyl
	41	CO ₂ Me	0	N	2-(methylsulfonyl)phenyl
	42	CO ₂ Me	0	N	2-(trifluoromethyl)phenyl
15	43	CO ₂ Me	0	CF	2-(aminosulfonyl)phenyl
	44	CO ₂ Me	0	CF	2-(methylsulfonyl)phenyl
	45	CO ₂ Me	0	CF	2-(trifluoromethyl)phenyl
	46	CO ₂ Me	0	CCl	2-(aminosulfonyl)phenyl
	47	CO ₂ Me	0	CCl	2-(methylsulfonyl)phenyl
20	48	CO ₂ Me	0	CCl	2-(trifluoromethyl)phenyl
	49	COCH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
	50	COCH ₃	CH ₂	CH	2-(methylsulfonyl)phenyl
	51	COCH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
	52	COCH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
25	53	COCH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	54	COCH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	55	COCH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	56	COCH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
	57	COCH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
30	58	COCH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	59	COCH3	CH ₂	CCl	2-(methylsulfonyl)phenyl
	60	COCH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	61	COCH ₃	0	CH	2-(aminosulfonyl)phenyl
	62	COCH ₃	0	CH	2-(methylsulfonyl)phenyl
35	63	COCH ₃	0	CH	2-(trifluoromethyl)phenyl
	64	COCH ₃	0	N	2-(aminosulfonyl)phenyl
	65	COCH ₃	0	N	2-(methylsulfonyl)phenyl
	66	COCH ₃	0	N	2-(trifluoromethyl)phenyl

	67	COCH ₃	0	CF	2-(aminosulfonyl)phenyl
	68	COCH ₃	0	CF	2-(methylsulfonyl)phenyl
	69	COCH ₃	0	CF	2-(trifluoromethyl)phenyl
	70	COCH ₃	0	CCl	2-(aminosulfonyl)phenyl
5	71	COCH ₃	0	CCl	2-(methylsulfonyl)phenyl
•	7 <u>2</u>	COCH ₃	0	ĊC1	2-(trifluoromethyl)phenyl
	73	CH ₃	CH ₂	CH	2-(aminosulfonyl)phenyl
•	74	CH ₃	CH ₂	СН	2-(methylsulfonyl)phenyl
	75	CH ₃	CH ₂	CH	2-(trifluoromethyl)phenyl
10	76	CH ₃	CH ₂	N	2-(aminosulfonyl)phenyl
	77	CH ₃	CH ₂	N	2-(methylsulfonyl)phenyl
	78	CH ₃	CH ₂	N	2-(trifluoromethyl)phenyl
	79	CH ₃	CH ₂	CF	2-(aminosulfonyl)phenyl
	80	CH ₃	CH ₂	CF	2-(methylsulfonyl)phenyl
15	81	CH ₃	CH ₂	CF	2-(trifluoromethyl)phenyl
	82	CH ₃	CH ₂	CCl	2-(aminosulfonyl)phenyl
	83	CH ₃	CH ₂	CCl	2-(methylsulfonyl)phenyl
	84	CH ₃	CH ₂	CCl	2-(trifluoromethyl)phenyl
	85	CH ₃	0	CH	2-(aminosulfonyl)phenyl
20	86	CH ₃	0	CH	2-(methylsulfonyl)phenyl
	87	CH ₃	0	CH	2-(trifluoromethyl)phenyl
	88	CH ₃	0	N	2-(aminosulfonyl)phenyl
	89	CH ₃	0	N	2-(methylsulfonyl)phenyl
	90	CH ₃	0	N	2-(trifluoromethyl)phenyl
25	91	CH ₃	0	CF	2-(aminosulfonyl)phenyl
	92	CH ₃	0	CF	2-(methylsulfonyl)phenyl
	93	CH ₃	0	CF	2-(trifluoromethyl)phenyl
	94	CH ₃	0	CCl	2-(aminosulfonyl)phenyl
	95	CH ₃	0	CCl	2-(methylsulfonyl)phenyl
30	96	CH ₃	0	CCl	2-(trifluoromethyl)phenyl
	97	CH ₂ Ph	CH ₂	CH	2-(aminosulfonyl)phenyl
	98	CH ₂ Ph	CH ₂	CH	2-(methylsulfonyl)phenyl
	99	CH ₂ Ph	CH ₂	CH	2-(trifluoromethyl)phenyl
	100	CH ₂ Ph	CH ₂	N	2-(aminosulfonyl)phenyl
35	101	CH ₂ Ph	CH ₂	N	2-(methylsulfonyl)phenyl
	102	CH ₂ Ph	CH ₂	N	2-(trifluoromethyl)phenyl
	103	CH ₂ Ph	CH ₂	CF	2-(aminosulfonyl)phenyl
	104	CH ₂ Ph	CH ₂	CF	2-(methylsulfonyl)phenyl

	105	CH ₂ Ph	CH ₂	CF	2-(trifluoromethyl)phenyl
	106	CH ₂ Ph	CH ₂	CCl	2-(aminosulfonyl)phenyl
	107	CH ₂ Ph	CH ₂	CCl	2-(methylsulfonyl)phenyl
	108	CH ₂ Ph	CH ₂	CCl	2-(trifluoromethyl)phenyl
5	109	CH ₂ Ph	0	CH	2-(aminosulfonyl)phenyl
	110	CH ₂ Ph	0	CH	2-(methylsulfonyl)phenyl
	111	CH ₂ Ph	0	CH	2-(trifluoromethyl)phenyl
	112	CH ₂ Ph	0	N	2-(aminosulfonyl)phenyl
	113	CH ₂ Ph	0	· N	2-(methylsulfonyl)phenyl
10	114	CH ₂ Ph	0	N	2-(trifluoromethyl)phenyl
	115	CH ₂ Ph	0	CF	2-(aminosulfonyl)phenyl
	116	CH ₂ Ph	0	CF	2-(methylsulfonyl)phenyl
	117	CH ₂ Ph	0	CF	2-(trifluoromethyl)phenyl
	118	CH ₂ Ph	0	CC1	2-(aminosulfonyl)phenyl
15	119	CH ₂ Ph	0	CCl	2-(methylsulfonyl)phenyl
	120	CH ₂ Ph	0	CCl	2-(trifluoromethyl)phenyl
	121	Н	CH ₂	CH	2-(aminosulfonyl)phenyl
	122	Н	CH ₂	СН	2-(methylsulfonyl)phenyl
	123	H	CH ₂	СН	2-(trifluoromethyl)phenyl
20	124	H	CH ₂	N	2-(aminosulfonyl)phenyl
	.125	H	CH ₂	N	2-(methylsulfonyl)phenyl
	126	H	CH ₂	N	2-(trifluoromethyl)phenyl
	127	H	CH ₂	CF	2-(aminosulfonyl)phenyl
	128	H	CH ₂	CF	2-(methylsulfonyl)phenyl
25	129	H	CH ₂	CF	2-(trifluoromethyl)phenyl
	130	H	CH ₂	CC1	2-(aminosulfonyl)phenyl
	131	Н	CH ₂	CCl	2-(methylsulfonyl)phenyl
	132	Н	CH ₂	CCl	2-(trifluoromethyl)phenyl
	133	H	0	CH	2-(aminosulfonyl)phenyl
30	134	H	0	CH	2-(methylsulfonyl)phenyl
	135	Н	0	CH	2-(trifluoromethyl)phenyl
	136	H	0	N	2-(aminosulfonyl)phenyl
	137	Ħ	O	N	2-(methylsulfonyl)phenyl
	138	H	0	N	2-(trifluoromethyl)phenyl
35	139	H	0	CF	2-(aminosulfonyl)phenyl
	140	Н	0	CF .	2-(methylsulfonyl)phenyl
	141	Н	0	CF	2-(trifluoromethyl)phenyl
	142	H	0	CCl	2-(aminosulfonyl)phenyl
					= •

143	Н	0	CCl 2-(methylsulfonyl)phenyl
144	н	0	CCl 2-(trifluoromethyl)phenyl

Table 17

5				
	Ex#	R	Y	В
	1	SO ₂ Me	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH	2-(trifluoromethyl)phenyl
10	4	SO ₂ Me	N	2-(aminosulfonyl)phenyl
	5	SO ₂ Me	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CF	2-(methylsulfonyl)phenyl
15	9	SO ₂ Me	CF	2-(trifluoromethyl)phenyl
	10	SO ₂ Me	CC1	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CC1	2-(trifluoromethyl)phenyl
	13	CO ₂ Me	CH	2-(aminosulfonyl)phenyl
20	14	CO ₂ Me	CH	2-(methylsulfonyl)phenyl
	15	CO ₂ Me	CH	2-(trifluoromethyl)phenyl
	16	CO ₂ Me	N	2-(aminosulfonyl)phenyl
	17	CO ₂ Me	N	2-(methylsulfonyl)phenyl
	18	CO ₂ Me	N	2-(trifluoromethyl)phenyl
25	19	CO ₂ Me	CF	2-(aminosulfonyl)phenyl
	20	CO ₂ Me	CF	2-(methylsulfonyl)phenyl
	21	CO ₂ Me	CF	2-(trifluoromethyl)phenyl
	22	CO ₂ Me	CCl	2-(aminosulfonyl)phenyl
	23	CO ₂ Me	CCl	2-(methylsulfonyl)phenyl
30	24	CO ₂ Me	CCl	2-(trifluoromethyl)phenyl
	25	COCH ₃	CH	2-(aminosulfonyl)phenyl
	26	COCH ₃	CH	2-(methylsulfonyl)phenyl
	27	COCH ₃	CH	2-(trifluoromethyl)phenyl
	28	COCH ₃	N	2-(aminosulfonyl)phenyl

	29	COCH ₃	N	2-(methylsulfonyl)phenyl
	30	COCH ₃	N	2-(trifluoromethyl)phenyl
	31	COCH ₃	CF	2-(aminosulfonyl)phenyl
	32 .	COCH ₃	CF	2-(methylsulfonyl)phenyl
5	33	COCH ₃	CF	2-(trifluoromethyl)phenyl
	34	COCH ₃	CCl	2-(aminosulfonyl)phenyl
	35	COCH ₃	CCl	2-(methylsulfonyl)phenyl
	36	COCH ₃	CC1	2-(trifluoromethyl)phenyl
	37	CH ₃	CH	2-(aminosulfonyl)phenyl
10	38	CH ₃	CH	2-(methylsulfonyl)phenyl
	39	CH ₃	CH	2-(trifluoromethyl)phenyl
	40	CH ₃	N	2-(aminosulfonyl)phenyl
	41	CH ₃	N	2-(methylsulfonyl)phenyl
	42	CH ₃	N	2-(trifluoromethyl)phenyl
15	43	CH ₃	CF	2-(aminosulfonyl)phenyl
	44	CH ₃	CF	2-(methylsulfonyl)phenyl
	45	CH ₃	CF	2-(trifluoromethyl)phenyl
	46	CH ₃	CCl	2-(aminosulfonyl)phenyl
	47	CH ₃	CCl	2-(methylsulfonyl)phenyl
20	48	CH ₃	CCl	2-(trifluoromethyl)phenyl
	49	CH ₂ Ph	CH	2-(aminosulfonyl)phenyl
	50	CH ₂ Ph	CH	2-(methylsulfonyl)phenyl
	51	CH ₂ Ph	CH	2-(trifluoromethyl)phenyl
	52	CH ₂ Ph	N	2-(aminosulfonyl)phenyl
25	53	CH ₂ Ph	N	2-(methylsulfonyl)phenyl
	54	CH ₂ Ph	N	2-(trifluoromethyl)phenyl
	55	CH ₂ Ph	CF	2-(aminosulfonyl)phenyl
	56	CH ₂ Ph	CF	2-(methylsulfonyl)phenyl
	57	CH ₂ Ph	CF	2-(trifluoromethyl)phenyl
30	58	CH ₂ Ph	CCl	2-(aminosulfonyl)phenyl
	59	CH ₂ Ph	CCl	2-(methylsulfonyl)phenyl
	60	CH ₂ Ph	CCl	2-(trifluoromethyl)phenyl
	61	Н .	CH	2-(aminosulfonyl)phenyl
	62	Н	CH	2-(methylsulfonyl)phenyl
35	63	Н	CH	2-(trifluoromethyl)phenyl
	64	Н	N	2-(aminosulfonyl)phenyl
	65	н	N	2-(methylsulfonyl)phenyl
	66	Н	N	2-(trifluoromethyl)phenyl

WO 98/06694			PCT/US97/14222
67	Н	CF	2-(aminosulfonyl)phenyl
68	H	CF	2-(methylsulfonyl)phenyl
60	บ	CE	2-/trifluoromethyllphonyl

	69	H	CF	2-(trifluoromethyl)phenyl
	70	Н	CCl	2-(aminosulfonyl)phenyl
5	· 71	Н	CCl	2-(methylsulfonyl)phenyl

72 H CCl 2-(trifluoromethyl)phenyl

Table 18

5	Ex#	R	Y	В
	1	SO ₂ Me	CH	2-(aminosulfonyl)phenyl
	2	SO ₂ Me	CH	2-(methylsulfonyl)phenyl
	3	SO ₂ Me	CH	2-(trifluoromethyl)phenyl
	4	SO ₂ Me	N	2-(aminosulfonyl)phenyl
10	5	SO ₂ Me	N	2-(methylsulfonyl)phenyl
	6	SO ₂ Me	N	2-(trifluoromethyl)phenyl
	7	SO ₂ Me	CF	2-(aminosulfonyl)phenyl
	8	SO ₂ Me	CF	2-(methylsulfonyl)phenyl
	9	SO ₂ Me	CF	2-(trifluoromethyl)phenyl
15	10	SO ₂ Me	CCl	2-(aminosulfonyl)phenyl
	11	SO ₂ Me	CCl	2-(methylsulfonyl)phenyl
	12	SO ₂ Me	CC1	2-(trifluoromethyl)phenyl
	13	CO ₂ Me	CH	2-(aminosulfonyl)phenyl
	14	CO ₂ Me	CH	2-(methylsulfonyl)phenyl
20	15	CO ₂ Me	CH	2-(trifluoromethyl)phenyl
	16	CO ₂ Me	N	2-(aminosulfonyl)phenyl
	17	CO ₂ Me	N	2-(methylsulfonyl)phenyl
	18	. CO ₂ Me	N	2-(trifluoromethyl)phenyl
	19	CO ₂ Me	CF	2-(aminosulfonyl)phenyl
25	20	CO ₂ Me	CF	2-(methylsulfonyl)phenyl
	21	CO ₂ Me	CF	2-(trifluoromethyl)phenyl
	22	CO ₂ Me	CCl	2-(aminosulfonyl)phenyl
	23	CO ₂ Me	CCl	2-(methylsulfonyl)phenyl
	24	CO ₂ Me	CCl	2-(trifluoromethyl)phenyl
30	25	COCH ₃	CH	2-(aminosulfonyl)phenyl
	26	COCH ₃	CH	2-(methylsulfonyl)phenyl
	27	COCH ₃	CH	2-(trifluoromethyl)phenyl
	28	COCH ₃	N	2-(aminosulfonyl)phenyl
	29	COCH ₃	N	2-(methylsulfonyl)phenyl

	30	COCH ₃	N	2-(trifluoromethyl)phenyl
	31	СОСН3	CF	2-(aminosulfonyl)phenyl
	32	COCH ₃	CF	2-(methylsulfonyl)phenyl
	33	COCH ₃	CF	2-(trifluoromethyl)phenyl
5	34	COCH ₃	CCl	2-(aminosulfonyl)phenyl
	35	СОСН3	CCl	2-(methylsulfonyl)phenyl
	36	COCH ₃	CCl	2-(trifluoromethyl)phenyl
	37	CH ₃	CH	2-(aminosulfonyl)phenyl
	38	CH ₃	СН	2-(methylsulfonyl)phenyl
10	39	CH ₃	СН	2-(trifluoromethyl)phenyl
	40	CH ₃	N	2-(aminosulfonyl)phenyl
	41	CH ₃	N	2-(methylsulfonyl)phenyl
	42	CH ₃	N	2-(trifluoromethyl)phenyl
	43	CH ₃	CF	2-(aminosulfonyl)phenyl
15	44	CH ₃	CF	2-(methylsulfonyl)phenyl
	45	CH ₃	CF	2-(trifluoromethyl)phenyl
	46	CH ₃	CCl	2-(aminosulfonyl)phenyl
	47	CH ₃	CCl	2-(methylsulfonyl)phenyl
	48	CH ₃	CCl	2-(trifluoromethyl)phenyl
20	49	CH ₂ Ph	CH	2-(aminosulfonyl)phenyl
	50	CH ₂ Ph	CH	2-(methylsulfonyl)phenyl
	51	CH ₂ Ph	CH	2-(trifluoromethyl)phenyl
	52	CH ₂ Ph	N	2-(aminosulfonyl)phenyl
	53	CH ₂ Ph	N	2-(methylsulfonyl)phenyl
25	54	CH ₂ Ph	N	2-(trifluoromethyl)phenyl
	55	CH ₂ Ph	CF	2-(aminosulfonyl)phenyl
	56	CH ₂ Ph	CF	2-(methylsulfonyl)phenyl
	57	CH ₂ Ph	CF	2-(trifluoromethyl)phenyl
	58	CH ₂ Ph	CCl	2-(aminosulfonyl)phenyl
30	59	CH ₂ Ph	CC1	2-(methylsulfonyl)phenyl
	60	CH ₂ Ph	CC1	2-(trifluoromethyl)phenyl
	61	H	CH	2-(aminosulfonyl)phenyl
	62	H	CH	2-(methylsulfonyl)phenyl
	63	Н	CH	2-(trifluoromethyl)phenyl
35	64	H	N	2-(aminosulfonyl)phenyl
	65	H	N	2-(methylsulfonyl)phenyl
	66	Н	N	2-(trifluoromethyl)phenyl
	67	Н	CF	2-(aminosulfonyl)phenyl

wo	98/06694			PCT/US97/14222	
	68	Н	CF	2-(methylsulfonyl)phenyl	-
	69	Н	CF	2-(trifluoromethyl)phenyl	
	70	Н	CCl	2-(aminosulfonyl)phenyl	
	71	н	ccl	2-(methylsulfonyl)phenyl	
5	72	н	CCl	2-(trifluoromethyl)phenyl	

Utility

The compounds of this invention are useful as anticoagulants for the treatment or prevention of thromboembolic disorders in mammals. The term 5 "thromboembolic disorders" as used herein includes arterial or venous cardiovascular or cerebrovascular thromboembolic disorders, including, for example, unstable angina, first or recurrent myocardial infarction, ischemic sudden death, transient ischemic attack, stroke, atherosclerosis, venous 10 thrombosis, deep vein thrombosis, thrombophlebitis, arterial embolism, coronary and cerebral arterial thrombosis, cerebral embolism, kidney embolisms, and pulmonary The anticoagulant effect of compounds of the present invention is believed to be due to inhibition of 15 factor Xa or thrombin.

The effectiveness of compounds of the present invention as inhibitors of factor Xa was determined using purified human factor Xa and synthetic substrate. The rate of factor Xa hydrolysis of chromogenic substrate S2222 (Kabi

Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention.

Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nM. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, Ki.

Factor Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. The Michaelis constant, Km, for substrate hydrolysis was determined at 25°C using the method of Lineweaver and Burk. Values of Ki were determined by allowing 0.2-0.5 nM human factor Xa (Enzyme Research Laboratories, South Bend, IN) to react with the substrate (0.20 mM-1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame

30

35

of 25-30 minutes. The following relationship was used to calculate K_i values:

$$(v_0-v_S)/v_S = I/(K_i (1 + S/K_m))$$

where:

10

15

20

25

30

35

5 v_o is the velocity of the control in the absence of inhibitor;

vs is the velocity in the presence of inhibitor;

I is the concentration of inhibitor;

Ki is the dissociation constant of the enzyme:inhibitor
 complex;

S is the concentration of substrate;

Km is the Michaelis constant.

Using the methodology described above, a number of compounds of the present invention were found to exhibit a K_i of ≤ 1 μM , thereby confirming the utility of the compounds of the present invention as effective Xa inhibitors.

The antithrombotic effect of compounds of the present invention can be demonstrated in a rabbit arterio-venous (AV) shunt thrombosis model. In this model, rabbits weighing 2-3 kg anesthetized with a mixture of xylazine (10 mg/kg i.m.) and ketamine (50 mg/kg i.m.) are used. A saline-filled AV shunt device is connected between the femoral arterial and the femoral venous cannulae. The AV shunt device consists of a piece of 6-cm tygon tubing which contains a piece of silk thread. Blood will flow from the femoral artery via the AV-shunt into the femoral vein. exposure of flowing blood to a silk thread will induce the formation of a significant thrombus. After forty minutes, the shunt is disconnected and the silk thread covered with thrombus is weighed. Test agents or vehicle will be given (i.v., i.p., s.c., or orally) prior to the opening of the AV shunt. The percentage inhibition of thrombus formation is determined for each treatment group. The ID50 values (dose which produces 50% inhibition of thrombus formation) are estimated by linear regression.

The compounds of formula (I) may also be useful as inhibitors of serine proteases, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory

action, these compounds are indicated for use in the prevention or treatment of physiological reactions, blood coagulation and inflammation, catalyzed by the aforesaid class of enzymes. Specifically, the compounds have utility as drugs for the treatment of diseases arising from elevated thrombin activity such as myocardial infarction, and as reagents used as anticoagulants in the processing of blood to plasma for diagnostic and other commercial purposes.

Some compounds of the present invention were shown to 10 be direct acting inhibitors of the serine protease thrombin by their ability to inhibit the cleavage of small molecule substrates by thrombin in a purified system. In vitro inhibition constants were determined by the method described by Kettner et al. in J. Biol. Chem. 265, 18289-18297 (1990), herein incorporated by reference. In these assays, 15 thrombin-mediated hydrolysis of the chromogenic substrate S2238 (Helena Laboratories, Beaumont, TX) was monitored spectrophotometrically. Addition of an inhibitor to the assay mixture results in decreased absorbance and is 20 indicative of thrombin inhibition. Human thrombin (Enzyme Research Laboratories, Inc., South Bend, IN) at a concentration of 0.2 nM in 0.10 M sodium phosphate buffer. pH 7.5, 0.20 M NaCl, and 0.5% PEG 6000, was incubated with various substrate concentrations ranging from 0.20 to 0.02 25 After 25 to 30 minutes of incubation, thrombin activity was assayed by monitoring the rate of increase in absorbance at 405 nm which arises owing to substrate hydrolysis. Inhibition constants were derived from reciprocal plots of the reaction velocity as a function of substrate 30 concentration using the standard method of Lineweaver and Burk. Using the methodology described above, some compounds of this invention were evaluated and found to exhibit a K; of less than 5 μ m.

The compounds of the present invention can be administered alone or in combination with one or more additional therapeutic agents. These include other anti-coagulant or coagulation inhibitory agents, anti-platelet or

35

platelet inhibitory agents, thrombin inhibitors, or thrombolytic or fibrinolytic agents.

10

15

20

25

30

35

The compounds are administered to a mammal in a therapeutically effective amount. By "therapeutically effective amount" it is meant an amount of a compound of Formula I that, when administered alone or in combination with an additional therapeutic agent to a mammal, is effective to prevent or ameliorate the thromboembolic disease condition or the progression of the disease.

By "administered in combination" or "combination therapy" it is meant that the compound of Formula I and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination each component may be administered at the same time or sequentially in any order at different points in time. Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect. Other anticoagulant agents (or coagulation inhibitory agents) that may be used in combination with the compounds of this invention include warfarin and heparin, as well as other factor Xa inhibitors such as those described in the publications identified above under Background of the Invention.

The term anti-platelet agents (or platelet inhibitory agents), as used herein, denotes agents that inhibit platelet function such as by inhibiting the aggregation, adhesion or granular secretion of platelets. Such agents include, but are not limited to, the various known non-steroidal anti-inflammatory drugs (NSAIDS) such as aspirin, ibuprofen, naproxen, sulindac, indomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, and piroxicam, including pharmaceutically acceptable salts or prodrugs thereof. Of the NSAIDS, aspirin (acetylsalicyclic acid or ASA), and piroxicam are preferred. Other suitable anti-platelet agents include ticlopidine, including pharmaceutically acceptable salts or prodrugs thereof. Ticlopidine is also a preferred compound since it is known to be gentle on the gastro-intestinal tract in use. Still

other suitable platelet inhibitory agents include IIb/IIIa antagonists, thromboxane-A2-receptor antagonists and thromboxane-A2-synthetase inhibitors, as well as pharmaceutically acceptable salts or prodrugs thereof.

5 The term thrombin inhibitors (or anti-thrombin agents), as used herein, denotes inhibitors of the serine protease thrombin. By inhibiting thrombin, various thrombin-mediated processes, such as thrombin-mediated platelet activation (that is, for example, the aggregation of platelets, and/or 10 the granular secretion of plasminogen activator inhibitor-1 and/or serotonin) and/or fibrin formation are disrupted. A number of thrombin inhibitors are known to one of skill in the art and these inhibitors are contemplated to be used in combination with the present compounds. Such inhibitors include, but are not limited to, boroarginine derivatives, 15 boropeptides, heparins, hirudin and argatroban, including pharmaceutically acceptable salts and prodrugs thereof. Boroarginine derivatives and boropeptides include N-acetyl and peptide derivatives of boronic acid, such as C-terminal 20 a-aminoboronic acid derivatives of lysine, ornithine. arginine, homoarginine and corresponding isothiouronium analogs thereof. The term hirudin, as used herein, includes suitable derivatives or analogs of hirudin, referred to herein as hirulogs, such as disulfatohirudin. Boropeptide thrombin inhibitors include compounds described in Kettner 25 et al., U.S. Patent No. 5,187,157 and European Patent Application Publication Number 293 881 A2, the disclosures of which are hereby incorporated herein by reference. suitable boroarginine derivatives and boropeptide thrombin 30 inhibitors include those disclosed in PCT Application Publication Number 92/07869 and European Patent Application Publication Number 471,651 A2, the disclosures of which are hereby incorporated herein by reference.

The term thrombolytics (or fibrinolytic) agents (or thrombolytics or fibrinolytics), as used herein, denotes agents that lyse blood clots (thrombi). Such agents include tissue plasminogen activator, anistreplase, urokinase or streptokinase, including pharmaceutically acceptable salts

35

or prodrugs thereof. The term anistreplase, as used herein, refers to anisoylated plasminogen streptokinase activator complex, as described, for example, in European Patent Application No. 028,489, the disclosure of which is hereby incorporated herein by reference herein. The term urokinase, as used herein, is intended to denote both dual and single chain urokinase, the latter also being referred to herein as prourokinase.

Administration of the compounds of Formula I of the invention in combination with such additional therapeutic agent, may afford an efficacy advantage over the compounds and agents alone, and may do so while permitting the use of lower doses of each. A lower dosage minimizes the potential of side effects, thereby providing an increased margin of safety.

10

15

20

25

30

35

The compounds of the present invention are also useful as standard or reference compounds, for example as a quality standard or control, in tests or assays involving the inhibition of factor Xa. Such compounds may be provided in a commercial kit, for example, for use in pharmaceutical research involving factor Xa. For example, a compound of the present invention could be used as a reference in an assay to compare its known activity to a compound with an unknown activity. This would ensure the experimenter that the assay was being performed properly and provide a basis for comparison, especially if the test compound was a derivative of the reference compound. When developing new assays or protocols, compounds according to the present invention could be used to test their effectiveness.

The compounds of the present invention may also be used in diagnostic assays involving factor Xa. For example, the presence of factor Xa in an unknown sample could be determined by addition of chromogenic substrate S2222 to a series of solutions containing test sample and optionally one of the compounds of the present invention. If production of pNA is observed in the solutions containing test sample, but no compound of the present invention, then one would conclude factor Xa was present.

Dosage and Formulation

The compounds of this invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

10

15

20

25

30

35

The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the thromboembolic disorder.

By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to 1000 mg/kg of body weight, preferably between about 0.01 to 100 mg/kg of body weight per day, and most preferably between about 1.0 to 20 mg/kg/day. Intravenously, the most preferred doses will range from about 1 to about 10 mg/kg/minute during a constant rate infusion. Compounds of this invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.

5

10

Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.

The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.

For instance, for oral administration in the form of a 15 tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl callulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral 20 administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring 25 agents can also be incorporated into the mixture. binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, 30 waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the 35 like.

The compounds of the present invention can also be administered in the form of liposome delivery systems, such

as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

Compounds of the present invention may also be coupled 5 with soluble polymers as targetable drug carriers. polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol, polyhydroxyethylaspartamidephenol, or polyethyleneoxide-10 polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic 15 and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.

Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 100 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

20

25

30

35

Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.

In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.

Representative useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

<u>Capsules</u>

10

15

20

25

30

35

A large number of unit capsules can be prepared by filling standard two-piece hard gelatin capsules each with 100 milligrams of powdered active ingredient, 150 milligrams of lactose, 50 milligrams of cellulose, and 6 milligrams magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestable oil such as soybean oil, cottonseed oil or olive oil may be prepared and injected by means of a positive displacement pump into gelatin to form soft gelatin capsules containing 100 milligrams of the active ingredient. The capsules should be washed and dried.

<u>Tablets</u>

Tablets may be prepared by conventional procedures so that the dosage unit is 100 milligrams of active ingredient, 0.2 milligrams of colloidal silicon dioxide, 5 milligrams of magnesium stearate, 275 milligrams of microcrystalline cellulose, 11 milligrams of starch and 98.8 milligrams of

lactose. Appropriate coatings may be applied to increase palatability or delay absorption.

Injectable

A parenteral composition suitable for administration by injection may be prepared by stirring 1.5% by weight of active ingredient in 10% by volume propylene glycol and water. The solution should be made isotonic with sodium chloride and sterilized.

Suspension

10

15

20

25

30

35

An aqueous suspension can be prepared for oral administration so that each 5 mL contain 100 mg of finely divided active ingredient, 200 mg of sodium carboxymethyl cellulose, 5 mg of sodium benzoate, 1.0 g of sorbitol solution, U.S.P., and 0.025 mL of vanillin.

Where the compounds of this invention are combined with other anticoagulant agents, for example, a daily dosage may be about 0.1 to 100 milligrams of the compound of Formula I and about 1 to 7.5 milligrams of the second anticoagulant, per kilogram of patient body weight. For a tablet dosage form, the compounds of this invention generally may be present in an amount of about 5 to 10 milligrams per dosage unit, and the second anti-coagulant in an amount of about 1 to 5 milligrams per dosage unit.

Where the compounds of Formula I are administered in combination with an anti-platelet agent, by way of general guidance, typically a daily dosage may be about 0.01 to 25 milligrams of the compound of Formula I and about 50 to 150 milligrams of the anti-platelet agent, preferably about 0.1 to 1 milligrams of the compound of Formula I and about 1 to 3 milligrams of antiplatelet agents, per kilogram of patient body weight.

Where the compounds of Formula I are adminstered in combination with thrombolytic agent, typically a daily dosage may be about 0.1 to 1 milligrams of the compound of Formula I, per kilogram of patient body weight and, in the case of the thrombolytic agents, the usual dosage of the thrombolyic agent when administered alone may be reduced by about 70-80% when administered with a compound of Formula I.

Where two or more of the foregoing second therapeutic agents are administered with the compound of Formula I, generally the amount of each component in a typical daily dosage and typical dosage form may be reduced relative to the usual dosage of the agent when administered alone, in view of the additive or synergistic effect of the therapeutic agents when administered in combination.

10

15

20

25

30

35

Particularly when provided as a single dosage unit, the potential exists for a chemical interaction between the combined active ingredients. For this reason, when the compound of Formula I and a second therapeutic agent are combined in a single dosage unit they are formulated such that although the active ingredients are combined in a single dosage unit, the physical contact between the active ingredients is minimized (that is, reduced). For example, one active ingredient may be enteric coated. By enteric coating one of the active ingredients, it is possible not only to minimize the contact between the combined active ingredients, but also, it is possible to control the release of one of these components in the gastrointestinal tract such that one of these components is not released in the stomach but rather is released in the intestines. One of the active ingredients may also be coated with a material which effects a sustained-release throughout the gastrointestinal tract and also serves to minimize physical contact between the combined active ingredients. Furthermore, the sustained-released component can be additionally enteric coated such that the release of this component occurs only in the intestine. Still another approach would involve the formulation of a combination product in which the one component is coated with a sustained and/or enteric release polymer, and the other component is also coated with a polymer such as a lowviscosity grade of hydroxypropyl methylcellulose (HPMC) or other appropriate materials as known in the art, in order to further separate the active components. The polymer coating serves to form an additional barrier to interaction with the other component.

These as well as other ways of minimizing contact between the components of combination products of the present invention, whether administered in a single dosage form or administered in separate forms but at the same time by the same manner, will be readily apparent to those skilled in the art, once armed with the present disclosure.

Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise that as specifically described herein.

10

WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTER PATENT OF UNITED STATES IS:

1. A compound of formula I:

5

or stereoisomers or pharmaceutically acceptable salts thereof, wherein;

10

- one of D and D' is selected from CN, $C(=NR^7)NR^8R^9$, $NHC(=NR^7)NR^8R^9$, $NR^8CH(=NR^7)$, $C(O)NR^8R^9$, and $(CH_2)_tNR^8R^9$ and the other is H;
- 15 Z is selected from CH_2 , C=O, $CH_2C(O)$, C(O)O, CONH, CH_2NH_2 , CH_2O , SO_2 , and SO_2NH ;
- J^1 and J^2 are independently selected from O and CH₂, provided that if J^1 is O, then J^2 is CH₂ and if J^2 is O, then J^1 is CH₂;
 - R is selected from CO_2R^1 , COR^1 , OR^1 , NR^2R^{2a} , $CONR^2R^{2a}$, $S(O)_pR^{1a}$, and $S(O)_pNR^2R^{2a}$;
- 25 Ra is selected from H and C₁₋₄ alkyl;

Rb is H;

when J^1 and J^2 are CH_2 , then R^a and R^b can combine to form a bond;

R¹ is selected from:

н.

5

 C_{1-4} alkyl substituted with 0-1 R^3 ,

 C_{3-6} carbocyclic residue substituted with 0-2 \mathbb{R}^4 , and

5-6 membered heterocyclic system containing from 1-4

heteroatoms selected from the group consisting of N, O, and S substituted with $0-2\ R^4$;

Rla is selected from:

 C_{1-4} alkyl substituted with 0-1 R^3 ,

 C_{3-6} carbocyclic residue substituted with 0-2 R⁴, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

15 R² and R^{2a} are independently selected from H, C₁₋₄ alkyl, and phenyl;

R² and R^{2a} may be taken together to form a 5 or 6 membered ring substituted with 0-2 R⁴ which may contain from 0-1 heteroatoms selected from the group consisting of N, O, and S;

 R^{2a} may also be C_{1-4} alkoxy;

25 R³ is selected from:

phenyl substituted with $0-2\ R^4$, and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with $0-2\ R^4$;

30

35

20

A is selected from:

C₃₋₁₃ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴;

B is selected from:

X-Y, NR^2R^{2a} , $C(=NR^2)NR^2R^{2a}$, $NR^2C(=NR^2)NR^2R^{2a}$,

benzyl substituted with 0-2 R^{4a},

C3-10 carbocyclic residue substituted with 0-2 R^{4a}, and

5-10 membered heterocyclic system containing from 1-4

heteroatoms selected from the group consisting of N, O, and

S substituted with 0-2 R⁴, provided that B is other than

tetrazol-5-yl;

X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-NR^2S(0)_2CR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_2NR^2$ -, $-NR^2S(0)_2NR^2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-C(0)NR^2CR^2R^{2a}$ -, $-NR^2C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)NR^2$ -, $-CR^2R^{2a}NR^2C(0)$ -, $-NR^2C(0)O$ -, $-OC(0)NR^2$ -, $-NR^2C(0)NR^2$ -, $-NR^2C^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, $-CR^2R^{2a}O$ -, $-CR^$

Y is selected from:

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁴, and 5-10 membered heterocyclic system containing from 1-4 20 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴, provided that Y is other than tetrazol-5-yl;

R⁴ is selected from OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO₂, $(CH_2)_rNR^2R^{2a}, \quad (CH_2)_rC(0)R^2, \quad NR^2C(0)R^{2a}, \quad NR^2C(0)NR^2R^{2a}, \\ CH(=NH)NH_2, \quad NHC(=NH)NH_2, \quad SO_2NR^2R^{2a}, \quad NR^2SO_2NR^2R^{2a}, \quad NR^2SO_2-C_{1-4} \quad alkyl, \quad NR^2SO_2R^5, \quad S(0)_pR^{1a}, \quad and \quad CF_3;$

R⁵ is selected from:

35

C₃₋₁₀ carbocyclic residue substituted with 0-2 R⁶, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁶;

- R⁷ is selected from H, OH, C₁₋₆ alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkoxy, C₁₋₄ alkoxycarbonyl, C₆₋₁₀ aryloxy, C₆₋₁₀ aryloxycarbonyl, C₆₋₁₀ arylmethylcarbonyl, C₁₋₄ alkylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₆₋₁₀ arylcarbonyloxy C₁₋₄ alkoxycarbonyl, C₁₋₆ alkylaminocarbonyl, phenylaminocarbonyl, and phenyl C₁₋₄ alkoxycarbonyl;
- 15 R^8 is selected from H, C_{1-6} alkyl and $(CH_2)_n$ -phenyl; R^9 is selected from H, C_{1-6} alkyl and $(CH_2)_n$ -phenyl;
 - n is selected from 0, 1, 2, and 3;

20 m is selected from 0, 1, and 2;

5

10

p is selected from 0, 1, and 2; and,

- 25 r is selected from 0, 1, and 2; provided that if B is tetrazolyl, R4 is present.
- 30 2. A compound according to Claim 1, wherein the compound is of formula Ia:

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

Z is selected from CH_2 , C=0, C(0)0, and SO_2 .

3. A compound according to Claim 2, wherein;

one of D and D' is C(=NR⁷)NH₂ and the other is H;

B is selected from:.

, 5

30

X-Y, NR^2R^{2a} ,

benzyl substituted with 0-2 R^{4a},

C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a}, and

5-10 membered heterocyclic system containing from 1-4

heteroatoms selected from the group consisting of N, O, and
S substituted with 0-2 R⁴, provided that B is other than

tetrazol-5-yl;

X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-NR^2$ -, $-NR^2CR^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, 0, $-CR^2R^{2a}$ 0-, and $-OCR^2R^{2a}$ -;

R⁴ is selected from OH, $(CH_2)_rOR^2$, halo, C_{1-4} alkyl, CN, NO_2 , $(CH_2)_rNR^2R^{2a}$, $(CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$, $NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2NR^$

5

25

n is selected from 0 and 1.

4. A compound according to Claim 3, wherein the 10 compound is of formula II:

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

R is selected from CO_2R^1 , COR^1 , OR^1 , $CONR^2R^{2a}$, $S(O)_pR^{1a}$, and $S(O)_pNR^2R^{2a}$;

20 R^1 and R^{1a} are independently selected from:

 C_{1-4} alkyl substituted with 0-1 R^3 ,

 C_{3-6} carbocyclic residue substituted with 0-2 R^4 , and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O,

and S substituted with 0-2 R4;

X is selected from C_{1-4} alkylene, -C(0)-, $-S(0)_p$ -, $-NR^2$ -, and 0; and,

30 m is selected from 0 and 1.

5. A compound according to Claim 4, wherein;

R is selected from CO_2R^1 , COR^1 , OR^1 , and $CONR^2R^{2a}$;

- 5 R^1 and R^{1a} are independently selected from: C_{1-4} alkyl substituted with 0-1 R^3 , and C_{3-6} carbocyclic residue substituted with 0-2 R^4 ; and,
- R^2 and R^{2a} may be taken together to form a 5 or 6 membered 10 ring substituted with 0-2 R^4 .
 - 6. A compound according to Claim 5, wherein ;
- 15 Ra is selected from H and C₁₋₄ alkyl;
 - R^1 and R^{1a} are independently selected from C_{1-4} alkyl substituted with 0-1 R^3 ;
- 20 R³ is phenyl substituted with 0-2 R⁴; and,
 - Y is a C_{3-10} carbocyclic residue substituted with 0-2 R^4 .
- 7. A compound according to Claim 6, wherein the compound or pharmaceutically acceptable salt form thereof is selected from the group consisting of:
- trans-1-(4-amidinophenyl)methyl-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
 - trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
- 35 (3S,4R)-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine;

```
(3R,4S)-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
    amidinophenyl)pyrrolidin-3-ylcarboxylic acid
5
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-
    amidinophenyl)pyrrolidin-3-ylcarboxylic amide
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-yl)methyl]
10
    amidinophenyl)pyrrolidin-3-ylcarboxylic N,N-dimethylamide
    cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
15
    cis-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4-(3-i)
    amidinophenyl)pyrrolidin-3-ylcarboxylic acid
    trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
    carboisopropoxy-4-(3-amidinophenyl)pyrrolidine;
20
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
     carbobutoxy-4-(3-amidinophenyl)pyrrolidine;
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-acetyl-
25
     4-(3-amidinophenyl)pyrrolidine;
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-3-
     carboethoxy-3-methyl-4-(3-amidinophenyl)pyrrolidine;
30
     trans-1-[[2-(2-cyanophenylthio)phenyl]carbonyl]-3-carbomethoxy-4-
     (3-amidinophenyl)pyrrolidine;
     trans-1-[[2-(2-cyanophenylthio)phenyl]methyl]-3-carbomethoxy-4-(3-
     amidinophenyl)pyrrolidine;
     trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3-
     carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
```

trans-1-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)sulfonyl]-3carboisopropoxy-4-(3-amidinophenyl)pyrrolidine;

- 5 trans-1-[9-fluorenylmethoxycarbonyl]-3-carbomethoxy-4-(3-amidinophenyl)pyrrolidine;
 - trans-2-benzyl-4-carbomethoxy-5-(3-amidinophenyl)isoxazolidine;
- trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4carbomethoxy-5-(3-amidinophenyl)isoxazolidine;
 - trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4carboisopropoxy-5-(3-amidinophenyl)isoxazolidine; and,
 - trans-2-[(2'-aminosulfonyl-[1,1']-biphenyl-4-yl)methyl]-4methoxymethyl-5-(3-amidinophenyl)isoxazolidine.
- 20 8. A compound according to Claim 1, wherein the compound is of formula Ib:

15

- or a stereoisomer or pharmaceutically acceptable salt form thereof.
- 9. A compound according to Claim 8, wherein;
 30
 one of D and D' is C(=NR⁷)NH₂ and the other is H;

B is selected from:

X-Y, NR^2R^{2a} ,

benzyl substituted with 0-2 R4a,

C₃₋₁₀ carbocyclic residue substituted with 0-2 R^{4a}, and 5-10 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R⁴, provided that B is other than tetrazol-5-yl;

10

15

25

- X is selected from C_{1-4} alkylene, -C(0)-, $-C(0)CR^2R^{2a}$ -, $-CR^2R^{2a}C(0)$, -C(0)O-, -OC(0)-, $-S(0)_p$ -, $-S(0)_pCR^2R^{2a}$ -, $-CR^2R^{2a}S(0)_p$ -, $-S(0)_2NR^2$ -, $-NR^2S(0)_2$ -, $-C(0)NR^2$ -, $-NR^2C(0)$ -, $-NR^2$ -, $-NR^2CR^2R^{2a}$ -, $-CR^2R^{2a}NR^2$ -, 0, $-CR^2R^{2a}O$ -, and $-OCR^2R^{2a}$ -;
- - $\begin{array}{l} R^{4a} \text{ is selected from OH, halo, C_{1-4} alkyl, NO_2, $(CH_2)_rNR^2R^{2a}$,} \\ & (CH_2)_rC(O)R^2$, $NR^2C(O)R^{2a}$, $NR^2C(O)NR^2R^{2a}$, $CH(=NH)NH_2$,} \\ & NHC(=NH)NH_2$, $SO_2NR^2R^{2a}$, $NR^2SO_2NR^2R^{2a}$, $NR^2SO_2-C_{1-4}$ alkyl,} \\ & S(O)_pR^{1a}$, and CF_3; and,} \end{array}$
 - n is selected from 0 and 1.
- 30 10. A compound according to Claim 9, wherein the compound is of formula IIa:

IIa

or a stereoisomer or pharmaceutically acceptable salt form thereof, wherein;

5

R is selected from CO_2R^1 , COR^1 , OR^1 , $CONR^2R^{2a}$, $S(O)_pR^{1a}$, and $S(O)_pNR^2R^{2a}$;

R1 and R1a are independently selected from:

10 C_{1-4} alkyl substituted with 0-1 R^3 , C_{3-6} carbocyclic residue substituted with 0-2 R^4 , and 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-2 R^4 ;

15

X is selected from C_{1-4} alkylene, -C(0)-, $-S(0)_p$ -, $-NR^2$ -, and 0; and,

m is selected from 0 and 1.

20

11. A compound according to Claim 10, wherein;

R is selected from CO_2R^1 , COR^1 , OR^1 , and $CONR^2R^{2a}$;

25

 R^1 and R^{1a} are independently selected from: $C_{1-4} \text{ alkyl substituted with } 0\text{--}1 \ R^3, \text{ and}$ $C_{3-6} \text{ carbocyclic residue substituted with } 0\text{--}2 \ R^4; \text{ and,}$

30 R^2 and R^{2a} may be taken together to form a 5 or 6 membered ring substituted with 0-2 R^4 .

12. A compound according to Claim 11, wherein;

- 5 R^1 and R^{1a} are independently selected from C_{1-4} alkyl substituted with 0-1 R^3 ;
 - R³ is phenyl substituted with 0-2 R⁴; and,
- 10 Y is a C_{3-10} carbocyclic residue substituted with 0-2 R^4 .
- 13. A compound according to Claim 12, wherein the compound or pharmaceutically acceptable salt form thereof is selected from the group consisting of:
 - trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine;
- 20 trans-1-(methylsulfonyl)-3-([2'-tert-butylaminosulfonyl[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3amidinophenyl)pyrrolidine;
- cis-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl4-yl)aminocarbonyl)-4-(3-amidinophenyl)pyrrolidine;
 - trans-1-(methylsulfonyl)-3-[[5-(2'-aminosulfonylphenyl-1y1)pyridin-2-yl]aminocarbonyl]-4-(3amidinophenyl)pyrrolidine;
- trans-1-(methylsulfonyl)-3-[[5-(2'-tertbutylaminosulfonylphenyl-1-yl)pyridin-2-yl]aminocarbonyl]-4(3-amidinophenyl)pyrrolidine;
- 35 1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)- Δ^3 -pyrroline;

1-(benzyl)-3-([2'-aminosulfonyl-[1,1']-biphenyl-4-yl)aminocarbonyl)-4-(3-amidinophenyl)- Δ^3 -pyrroline;

trans-1-(methylsulfonyl)-3-([2'-aminosulfonyl-[1,1']biphenyl-4-yl)methylcarbonyl)-4-(3amidinophenyl)pyrrolidine.

- 14. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically
 10 effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.
- 15. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 2 or a pharmaceutically acceptable salt thereof.
- 16. A pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 8 or a pharmaceutically acceptable salt thereof.
 - 17. A method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt thereof.

25

- 18. A method for treating or preventing a

 30 thromboembolic disorder, comprising: administering to a
 patient in need thereof a therapeutically effective amount
 of a compound according to Claim 2 or a pharmaceutically
 acceptable salt thereof.
- 19. A method for treating or preventing a thromboembolic disorder, comprising: administering to a patient in need thereof a therapeutically effective amount

of a compound according to Claim 8 or a pharmaceutically acceptable salt thereof.

INTE. ATIONAL SEARCH REPORT

brieffix .al Application No PCT/US 97/14222

_ ====			<u>`</u>		
IPC 6	RFICATION OF SUBJECT MATTER C07D207/16 A61K31/40 C07E	D207/48	C07D401/12	C07D261/02	
According	to International Patent Classification (IPC) or to both national o	lessification and	IPC		
	S SEARCHED				
Minimum d IPC 6	locumentation searched (classification system followed by clas C97D A61K	ssification symbo	is)		
Documents	ation searched other than minimum documentation to the exten	it that such docu	ments are included in the	e fields searched	
Electronia	data base consulted during the international search (name of d	data base and, w	rhere practical, search te	rms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		7		
Category *	Citation of document, with indication, where expropriate, of	the relevant pass	lages	Relevant to claim No.	
A	EP 0 659 743 A (HOECHST) 28 J	1-19			
A	US 5 463 071 A (HIMMELSBACH E October 1995 cited in the application see column 1-4	1-19			
A	EP 0 483 667 A (DR. KARL THOM 1992 see the whole document & CA 2 054 850 A cited in the application	IAE) 6 Mag	Y	1-19	
Furth	ner documents are listed in the continuation of box C.	י גו	Patent family members ar	re listed in annex.	
"A" docume conside "E" sarrier de filing de "L" documen which is chation "O" documen other m "P" documen later the	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	or principal distriction of the carmination of the	It later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive stap when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive stap when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international earth report		
Name and m	ating address of the ISA European Patent Office, P.B. 5518 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016		rized officer Lauro, P		

INTERNATIONAL SEARCH REPORT

information on patent family members

Interna (a) Application No PCT/US 97/14222

Patent document cited in search report			Publication date	Patent family member(s)		Publication - date	
EP 659743 A			28-06-95	NONE			
US 5	463071	Α	31-10-95	DE	4124942 A	28-01-93	
				AU	652064 B	11-08-94	
				AU	2056992 A	28-01-93	
				CA	2074685 A	28-01-93	
				ΕP	0525629 A	03-02-93	
				IL	102638 A	16-10-96	
				JP	5221999 A	31-08-93	
				MX	9204354 A	01-01-93	
				NZ	243713 A	27-06-95	
				ZA	9205573 A	24-01-94	
EP 4	83667	Α	06-05-92	DE	4035961 A	07-05-92	
				AU	650488 B	23-06-94	
				AU	8692691 A	07-05-92	
				CA	2054850 A	03-05-92	
				HU	67288 A	28-03-95	
				HU	9500156 A	28-12-95	
				IL	99926 A	18-06-96	
				JP	4264068 A	18-09-92	
				MX	9203677 A	01-07-92	
				NO	174806 B	05-04-94	
				NZ	240463 A	24-04-97	
				RU	2040519 C	25-07-95	
				US	5541343 A	30-07-96	
				US	5591769 A	07-01-97	
				ZA	9108734 A	04-05-93	