

An NSH-Enabled Architecture for Virtualized Network Function Platforms

Vinícius F. Garcia, Leonardo da C. Marcuzzo, Giovanni V. Souza, Lucas Bondan, Jéferson C. Nobre, Alberto E. Schaeffer-Filho, Carlos R. P. dos Santos, Lisandro Z. Granville, Elias P. Duarte Jr.

Summary

- Introduction
- Related Works
- Platform Architecture
- Prototype
- Evaluation
 - Experimental Setup
 - Experimental Results
 - Results Overview
- Conclusion

- Traditional Networks

- Physical appliances (middleboxes)
- Lack of life cycle operations flexibility
- High Capital and OPerational Expenditures (CAPEX and OPEX)

Network Function Virtualization (NFV)

- Network paradigm
- Decoupling network functions from its associated hardware
- Virtualization technologies (virtual machines, containers)
- Software plane flexibility

Virtualized Network Function (VNF)

- Block of the ETSI NFV architecture
- Composed by two elements:
 - Network Function (NF)
 - VNF Platform

Virtualized Network Function Platform

- Environment that supports the execution a NF
- Use many NFV enablers (e.g. operating systems, packet accelerator, programming languages)

Service Function Chain (SFC)

- Sophisticated services
- Multiple network functions connected

Network Service Header (NSH)

- SFC traffic steering protocol
- Encapsulate L3 packets
- IETF SFC architecture (classifier, forwarder, proxy)
- NSH aware and NSH unaware

CURRENT VNF PLATFORMS ARE NOT CREATED USING STANDARDIZED ARCHITECTURES

CURRENT VNF PLATFORMS ARE NOT CREATED USING STANDARDIZED ARCHITECTURES

NETWORK SERVICE HEADER IS NOT NATIVELY PROCESSED IN THE VNF PLATFORMS

Objective

INTRODUCE A COMPREHENSIVE ARCHITECTURE FOR VNF PLATFORMS THAT STRICTLY ADHERES TO ETSI REQUIREMENTS AND PROVIDES SUPPORT FOR NSH

Related Works

OpenNetVM Platform Architecture

ClickOS Platform Architecture

Related Works

- ClickOS and OpenNetVM do not have standardized platforms
 - Do not support Network Service Header
 - Monolithic implementations
 - It is not possible to expand the enablers set
 - NFLib is not supported by ClickOS
 - Click Modular Router is not supported by OpenNetVM
 - Some VNF requirements are not addressed
 - ClickOS Xen Hypervisor dependency (integration)
 - OpenNetVM containers restrictions (portability)

Architecture

Flexible architecture based on internal modules

- Minimalist OS (Unikernel or Container)
- Few main internal modules
 - vNIC Management
 - NF Execution
 - VNF management and statistics collector
 - NSH Processor (Optionally)
- Internal modules can be changed according to the scenario
 - Support for existing NFV Enablers
 - API for management of new developed modules

Architecture

Prototype

- vNIC Management
 - DPDK
 - L2 Sockets
- Network Function Execution
 - Click Modular Router
 - Python 3
- Management Agent
 - RESTful Web Services

(A) Non-NSH Architecture

Data Plane

(B) NSH Architecture

Experimental Setup

- DeMONS
 - NFV solution for DDoS Mitigation
- Non-NSH Architecture
 - Every packet is processed by all VNFs
- NSH Architecture
 - IETF Architecture
 - In-band control
 - Context Header
 - Service Index

Experimental Setup

Non-NSH DeMONS

 Non-NSH DeMONS uses an UDP Socket to retrieve the flow reputation from the Manager VNF

NSH DeMONS

- NSH DeMONS uses the NSH Context Header field to retrieve the flow reputation from the packet itself

- Expected Results

- The in-band control leads to significant differences in terms of processing time (in favor to NSH-based)
- Local access rather than remote access

Experimental Results

Reputation Retrieval Aggregated Time

Conclusion

VNF Platforms Architecture

- Native NSH processing
- Support to different NFV enablers
- Flexible and modular architecture
- Platform prototype

Future Works

- NSH investigation on current description models (e.g. TOSCA)
- Platform prototype evolution
 - Other packet processing frameworks support (e.g. VPP)
 - Packet accelerators new options (e.g. netmap)

An NSH-Enabled Architecture for Virtualized Network Function Platforms

Thanks!!

vfulber@inf.ufsm.br

Questions

Questions

Experimental Setup (Physical Machine) ->

- Intel Core i7-4790K@3.60Ghz
- 8GB RAM DDR4
- Debian 8
- KVM Hypervisor