STAT5204 Optimization for Data Science

Assignment 1

Due date & time: September 26, 2025 at 17:00

Instruction:

- 1. File Format: Your assignment must be submitted in PDF format. Only one PDF file should be submitted for the entire assignment.
- **2. Handwritten Solutions:** All solutions must be handwritten. Please write clearly. Each solution must include all steps leading to your final answer.
- **3. Numerical Answers:** All numerical answers must be presented in 3 significant figures.

Question 1

Points $\mathbf{x}_a = [2, 3]^{\mathsf{T}}$, $\mathbf{x}_b = [4, 0]^{\mathsf{T}}$, $\mathbf{x}_c = [4, 3]^{\mathsf{T}}$ are possible minimizers of the problem

minimize
$$2(4x_1 + 3x_2) + (x_1^2 + x_2^2 + 25)$$

subject to $x_1 \ge 0, x_2 \ge 0$.

- (a) Find the feasible directions of x_a , x_b and x_c .
- (b) For each point, check if the first-order necessary condition is satisfied.

Question 2 Consider the following optimization problem

minimize
$$2x_1^3 + 3x_2^2 + 3x_1^2x_2 - 24x_2$$

subject to $x_1 \in \mathbb{R}, x_2 \in \mathbb{R}$.

Find all points which satisfy FONC.

Question 3

An optimization algorithm has given a solution $\mathbf{x}_a = [0.6959, -1.3479]^{\mathsf{T}}$ for the problem

minimize
$$x_1^4 + x_1 x_2 + (1 + x_2)^2$$
.

- (a) Is the Hessian of the objective function positive definite?
- (b) Determine whether \boldsymbol{x}_a is a minimizer.

Question 4

The 5th-order polynomial

$$f(x) = -5x^5 + 4x^4 - 12x^3 + 11x^2 - 2x + 1$$

is known to be a unimodal function on interval [-0.5, 0.5].

- (a) Use the golden section search to locate the minimizer to within a range of 0.5.
- (b) Use the Fibonacci search to locate the minimizer to within a range of 0.5.
- (c) Perform three iterations of the secant method to find minimizer with starting points $x^{(-1)} = 0.2$ and $x^{(0)} = 0.1$.

Question 5

Consider the optimization problem

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n$, and $\mathbf{b} \in \mathbb{R}^m$.

- (a) Show that the objective function for this problem is a quadratic function (i.e., it can be expressed as $(1/2)x^{\mathsf{T}}Qx b^{\mathsf{T}}x + c$ where $Q \in \mathbb{R}^{n \times n}$ is a symmetric positive definition matrix, $b, x \in \mathbb{R}^m$, and $c \in \mathbb{R}$.), and write down the gradient and Hessian of this quadratic.
- (b) Suppose that

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Find $\mathbf{x}^{(1)}$ by performing one iteration of the method of steepest descent with a starting point $\mathbf{x}^{(0)} = [0,0]^{\mathsf{T}}$.

(c) Does $x^{(1)}$ found in part (b) satisfy FONC?