$$\begin{split} \|\mathbf{w}(\mathsf{t})\|_{F} &= \| \phi(\mathbf{w}_{\mathsf{t}}) \|_{F} \leq \| \phi \| \cdot \| \mathbf{w}_{\mathsf{t}} \|_{E} = \| \phi \| \cdot \int_{-1}^{0} \| \mathbf{w}_{\mathsf{t}}(s) \|_{F} \, \mathrm{d}s \\ &= \| \phi \| \cdot \int_{-1}^{0} \| \mathbf{w}(\mathsf{t} + s) \|_{F} \mathrm{d}s = \| \phi \| \cdot \int_{\mathsf{t} - 1}^{\mathsf{t}} \| \mathbf{w}(s) \|_{F} \, \mathrm{d}s \\ &\leq \| \phi \| \cdot \int_{-1}^{\mathsf{t}} \| \mathbf{w}(s) \|_{F} \mathrm{d}s = \| \phi \| \cdot \int_{0}^{\mathsf{t}} \| \mathbf{w}(s) \|_{F} \mathrm{d}s \quad \text{for } \mathsf{t} \geq 0 \, . \end{split}$$

By Gronwall's lemma $\|w(t)\|_{F} = 0$, thus w(t) = 0.

Now we turn to the aspect of positivity in (RE). We assume $\, F \,$ to be a Banach lattice and let $\, E \,$ inherit the canonical ordering from $\, F \,$ making it a Banach lattice. Additionally, let $\, \Phi \,$ be positive.

The first observation is that A generates a positive semigroup. Indeed, it follows from equation (3.2) that $R(\lambda,A) = R(1,S_{\lambda})R(\lambda,A_{O})$ for $\lambda > \| \Phi \|$. Since S_{λ} is a positive operator we have $R(1,S_{\lambda}) \geq 0$. The semigroup $(T_{O}(t))_{t \geq 0}$ generated by A_{O} is positive (use (3.1)), hence $R(\lambda,A_{O}) \geq 0$. It follows that $R(\lambda,A) \geq 0$ which is equivalent to the positivity of $(T(t))_{t \geq 0}$ (see C-II, Prop. 4.1).

<u>Proposition</u> 3.3. If $\phi \in L(E,F)$ is a positive operator, then the solution semigroup $(T(t))_{t\geq 0}$ corresponding to (RE) is positive.

For the following considerations concerning spectral poperties of the semigroup (T(t)) $_{t\geq 0}$ we always suppose Φ to be positive. Furthermore we define operators $\Phi_{\lambda}\in L(F)$, $\lambda\in\mathbb{R}$, by

(3.6)
$$\Phi_{\lambda} x := \Phi(\epsilon_{\lambda} \otimes x)$$
, $x \in F$.

Evidently, each ϕ_{λ} is a positive operator on F and $\lambda \leq \mu$ implies $\phi_{\lambda} \geq \phi_{\mu}$. From this relation it follows that the spectral bound $s(\phi_{\lambda})$ which coincides with the spectral radius $r(\phi_{\lambda})$ is a decreasing function in λ .

Furthermore, we shall need the following properties.

<u>Lemma</u> 3.4. The map h: $\mathbb{R} \to \mathbb{R}_+$: $\lambda \to s(\Phi_{\lambda})$ is continuous from the left. If Φ_{λ} is compact for all $\lambda \in \mathbb{R}$, then h is continuous.

<u>Proof.</u> As indicated above, h is decreasing. Hence continuity from the left follows from the upper semicontinuity of the spectrum (see [Kato (1976), Chap.IV,Thm.3.1]).

Now take $\lambda \in \mathbb{R}$ with $s(\phi_{\lambda}) > 0$ (if $s(\phi_{\lambda}) = r(\phi_{\lambda}) = 0$, then continuity in λ is trivial by the continuity from the left and the monotonicity). Since ϕ_{λ} is positive and bounded we know that