Name	DARSHIT BHAGTANI
UID	2021700006
Experiment No.	4

AIM:	Dynamic Programming - Longest Common Subsequence
PROBLEM STATEMENT:	Apply the concept of dynamic programming to solve the problem of finding Longest Common Subsequence
ALGORITHM/ THEORY:	 Algorithm:- Define two sequences X and Y, with lengths m and n, respectively. Create a matrix of size (m) x (n) and initialize all entries to zero. For i = 1 to m, and for j = 1 to n: If the i-th character of X is equal to the j-th character of Y, set the i,j entry in the matrix to be the value of the i-1,j-1 entry plus one. Otherwise, set the i,j entry in the matrix to be the maximum of the i-1,j and i,j-1 entries. The value of the i,j entry in the matrix represents the length of the longest common subsequence of the first i characters of X and the first j characters of Y. Trace back the matrix starting from the bottom right corner and find the longest common subsequence.
	 The four steps of dynamic programming are: Define the problem and identify subproblems. Formulate a recursive relationship between the subproblems. Create a memoization table to store solutions to each subproblem. Solve subproblems in a specific order to obtain the solution to the original problem. Some important applications of LCS include: DNA Sequencing Text Comparison Speech Recognition Image Recognition

PROGRAM:

```
#include <stdio.h>
void lcs(char str1[], char str2[])
  int i, j, m, n, table[20][20];
      table[i][0] = 0;
      table[0][i] = 0;
          if (str1[i - 1] == str2[j - 1])
              table[i][j] = table[i - 1][j - 1] + 1;
          else if (table[i - 1][j] >= table[i][j - 1])
              table[i][j] = table[i - 1][j];
              table[i][j] = table[i][j - 1];
  int index = table[m][n];
  printf("\nLength of LCS: %d\n", index);
  char lcsAlgo[index];
  lcsAlgo[index] = '\0';
      if (str1[i - 1] == str2[j - 1])
          lcsAlgo[index - 1] = str1[i - 1];
          index--;
      else if (table[i - 1][j] > table[i][j - 1])
          i--;
  printf("\nLCS: %s\n", lcsAlgo);
```

```
int main()
{
    char str1[20], str2[20];
    printf("String 1: ");
    scanf("%s", str1);
    printf("String 2: ");
    scanf("%s", str2);
    lcs(str1, str2);
}
```

RESULT:

Using Dynamic Programming,

Time complexity: O(mn)

Hirschberg's algorithm uses divide-and-conquer technique

Time complexity: O(mn log n)

Using suffix trees or suffix arrays

Time complexity: O(m + n)

where m and n are the lengths of the two input sequences

CONCLUSION:

Successfully understood the concept of dynamic programming and solved the problem of finding out the longest common subsequence for two strings.