任课教师:

专业:

年级:

学号:

姓名:

成绩:

草稿区

一、(15分) 设
$$\mathbb{R}$$
 上的集合列 $\{A_n\}_{n=1}^{\infty}$ 如下: $A_{2m+1} = [0, 2 - \frac{1}{2m+1}], A_{2m} = [0, 1 + \frac{1}{2m}]$ ($m = 1, 2, \cdots$). 求 $\liminf_{n \to \infty} A_n$, $\lim_{n \to \infty} \sup_{n \to \infty} A_n$.

二、(15分)证明:由直线上互不相交的开区间作为集合 A的元素,则 A是至多可数的.

得分

三、(20分) 设 $0 < m^*(E) < \infty$. 证明: 对任意的 $\alpha \in (0,1)$, 存在开区间 I 使得 $m^*(E \cap I) > \alpha |I|$.

得 分

四、(20分) 构造闭区间 [a,b] 上的可测函数 f,使得对于 [a,b] 上的任意连续函数 φ ,都有 $m([f \neq \varphi]) > 0$.

草稿区

得分

五、(10分) 设 $E \subset \mathbb{R}$ 且 $m(E) < +\infty$, $\{f_n\}_{n=1}^{\infty}$ 是 E 上的一列可测函数. 如果 $\lim_{n \to \infty} f_n(x) = +\infty$ 在 E 上几乎处处成立. 证明: 对任意的 $\delta > 0$, 存在可测集 $e \subset E$ 满足 $m(e) < \delta$, 使得 $\{f_n\}_{n=1}^{\infty}$ 在 $E \setminus e$ 上一致趋向于 $+\infty$.

得分 六、(10分) 计算 $\int_{E} e^{-[x]} dm$, 其中 $E = [0, +\infty)$, [x] 表示 x 的整数部分.

草稿区

七、(10分)设 f, f_n $(n = 1, 2, \cdots)$ 是可测集 E 上的可测函数, $\lim_{n \to \infty} f_n(x) = f(x)$ 且有 $\lim_{n \to \infty} \int_E |f_n| dm = \int_E |f| dm.$ 证明: 对 E 中的任意可测子集 e, 均有

$$\lim_{n \to \infty} \int_{e} |f_n| dm = \int_{e} |f| dm.$$

草稿区