

Candidate surname	ails below before entering your candidate information Other names
Pearson Edexcel International Advanced Level	Centre Number Candidate Number
Time 1 hour 20 minutes	Paper wCH16/01
Chemistry	Land American Control of the Control
International Advance UNIT 6: Practical Skills	

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

- 1 This question is about compounds containing the ammonium ion, NH₄.
 - (a) Ammonium vanadate(V), NH₄VO₃, is a white solid.
 - (i) When excess dilute sulfuric acid is added to an aqueous solution of NH_4VO_3 , the VO_3^+ ion is converted into the VO_2^+ ion.

Write the **ionic** equation for the conversion of VO_3^- to VO_2^+ on the addition of dilute sulfuric acid. State symbols are not required.

(1)

(ii) State the colour of an **acidified** solution of ammonium vanadate(V).

(1)

(iii) A student added zinc metal to an acidified solution of ammonium vanadate(V). The zinc reduced the vanadium in a series of reactions.

The student suggested that the sequence of colours observed could be explained by the presence of the vanadium species shown in the table.

Sequence of colours observed	starting	green	→	blue	—————————————————————————————————————	green	→	violet
Suggested vanadium species	VO₂ ⁺ →	V ³⁺		VO ²⁺		V ³⁺	→	V ²⁺

Explain whether or not the student is correct.

Refer to oxidation states of vanadium and account for each colour in the sequence.

(2)

*********	******	*********	•••••	 •••••	***********	••••••	 ••	 	 ••••••	 ••••••	· <i></i>		••••••	,,,,,			· · · · · · · · · · · · · · · · · · ·	
,,,,,	•			 •••••			 	 •••••	 	 		····	*******		•••••		•••••••	 •••••
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	 			 	 	 	 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•				•••••	• • • • • • • • • • • • • • • • • • • •	

changes occur.	
Suggest an explanation for these observations.	(2)
Ammonium tetrachlorocuprate(II) dihydrate, $(NH_4)_2CuCl_4\cdot 2H_2O$, is a blue-gree When ammonium tetrachlorocuprate(II) dihydrate is dissolved in water, a blue-green solution T is formed.	en solid.
(i) Suggest the formulae of two complex ions present in solution T .	(2)
(ii) State how the colour of solution T would change on the addition of exce concentrated hydrochloric acid.	:ss
concentrated hydroemone deld.	(1)
(iii) Describe what would be observed on the addition of aqueous sodium hydroxide to solution T .	
	(1)
(iv) When the mixture from (b)(iii) is warmed, a gas is evolved.	
Give a test to identify the gas stating the positive result of the test.	(2)

(C)) A white solid with a slight vinegar-like smell contains ammonium ions, NH_4^+ , and an anion represented by Y ⁻ .	
	The smell of vinegar intensifies on the addition of a few drops of concentrated sulfuric acid to an aqueous solution of NH_4Y .	
	On subsequent addition of a few drops of ethanol and heating the mixture, the smell of vinegar is replaced by a sweet and fruity smell.	
	Explain how all this information can be used to identify the anion \mathbf{Y}^- .	(3)
.,		

e a magazi alam ne lank alam n	(Total for Question 1 = 15 ma	arks)
e a moyekkirken er keskirken e	(Total for Question 1 = 15 ma	arks)
e sagle de la cale de	(Total for Question 1 = 15 ma	arks)
e odkobe v slede de v	(Total for Question 1 = 15 ma	arks)
er estado entre de e	(Total for Question 1 = 15 ma	arks)
e magazine e fazi ele e	(Total for Question 1 = 15 ma	arks)
and the second s	(Total for Question 1 = 15 ma	arks)
	(Total for Question 1 = 15 mag)	arks)
	(Total for Question 1 = 15 ma	arks)

Pre	ocedure	
Ste	ep 1 Weigh between 2.1 g and 2.3 g of hydrated copper(II) sulfate, CuSO ₄ •5H ₂ O, in boiling tube. Add 8 cm ³ of distilled water and place the boiling tube in a hot water bath. Stir the mixture until the crystals have dissolved.	n a
Ste	ep 2 Working in a fume cupboard, slowly pour 5 cm ³ of concentrated aqueous are into the boiling tube. Stir until a clear solution is obtained.	mmonia
Ste	Pp 3 Measure 12 cm ³ of ethanol into a 100 cm ³ conical flask and add the contents the boiling tube from Step 2. Stopper the flask and swirl the contents befor placing the flask in an ice bath. Allow the mixture to stand until crystals of Cu(NH ₃) ₄ SO ₄ •H ₂ O have formed.	
Ste	ep 4 Filter the crystals obtained in Step 3 under reduced pressure, using a Buchner funnel and flask.	
Ste	p 5 Pour 5 cm ³ of cold ethanol over the crystals in the funnel.	
Ste	ep 6 Using a spatula, transfer the crystals to a filter paper on a watch glass. Press second piece of filter paper on the crystals, to dry them as much as possible	
Ste	p 7 Transfer the crystals to a dry, pre-weighed sample bottle and reweigh.	
(a)	Give a reason why a measuring cylinder is more suitable than a graduated pipe for measuring the distilled water in Step 1.	ette (T)
(b)	Give the colour of the solution at the end of Step 2.	(com
(c)	Give the reason why Step 2 should be carried out in a fume cupboard.	(to)

of crystals of Cu(NH₃)₄SO₄•H₂O.	(1)
(e) Draw a labelled diagram of the apparatus used to filter the crystal reduced pressure in Step 4 .	s under
(f) (i) State the purpose of the ethanol in Step 5 .	(1)
(ii) Give a reason why the ethanol is cold.	(1)

(i)	Calculate the apparent percentage yield of $Cu(NH_3)_4SO_4 \cdot H_2O$.	
	Give your answer to an appropriate number of significant figures.	(3)
(ii)	Suggest a reason why the apparent percentage yield in this preparation is	
(11)	often greater than 100%.	(T)
		form form
•••••		······
		,

3-4-4	(Total for Question 2 = 13 ma	arks)

3 This question is about the identification of six organic compounds.

- (a) From A, B, C, D, E and F, identify the compound with
 - (i) the fewest peaks in its carbon-13 NMR spectrum.

(1)

(ii) the most peaks in its **low** resolution **proton** NMR spectrum.

(1)

(iii) three peaks with relative peak area 3:2:3 in its **low** resolution proton NMR spectrum.

(1)

(iv) one triplet and one quartet as the only peaks in its **high** resolution proton NMR spectrum.

(1)

(b) For each of the following pairs, give **one chemical** test, not including indicators, that could be used to distinguish the compounds.

Identify the reagents and give the results of each test.

(i) A and B

(2)

(2)

(ii) **C** and **D**

D

 		 	 		*************	******	 			 · · · · · · · · · · · · · · · · · · ·
 		 	 	****************	************		 ************		*************	
 ************	· · · · · · · · · · · · · · · · · · ·	 	 							
							 ,		********************************	
 ****************		 	 *******			***********	 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****************	,,,	

(c) Liquids boil at the temperature at which their vapour pressure is equal to atmospheric pressure.

The apparatus shown below was used to determine the boiling temperature of compound **A**, which is a liquid at room temperature and pressure and has a boiling temperature in the range 120 °C to 180 °C.

Procedure

- Step 1 Place a capillary tube, sealed at one end and with the open end facing down, into 0.5 cm³ of compound **A** in a micro test tube. Attach the micro test tube to a thermometer with a rubber band.
- Step 2 Clamp the micro test tube and thermometer in the mineral oil, making sure neither test tube nor thermometer bulb is in contact with the glass walls of the Thiele tube.
- Step **3** Move a small Bunsen flame back and forth along the lower part of the side-arm of the Thiele tube. An initial stream of bubbles will come from the open end of the capillary tube.
- Step 4 Continue heating until a rapid and continuous stream of bubbles comes from the capillary tube. Stop heating and record the temperature as soon as compound A is drawn up into the capillary tube.

	State what causes the initial stream of bubbles from the capillary tube in Step 3	· qua
(ii)	Suggest why the side-arm of the Thiele tube is heated, rather than point X on the diagram.	(1)
(iii)	Suggest why mineral oil, and not water, is used in the Thiele tube when determining the boiling temperature of compound A .	(max)
(iv)	Suggest why the results obtained when using this apparatus on different days may not be the same, even when no mistakes are made in carrying out the experiment.	(1)

(d) One of the compounds A, B, C, D, E or F was analysed.

To determine its empirical formula, 1.57 g of the compound was burned completely and the combustion products passed through the apparatus shown.

Solid M absorbed water and increased in mass by 1.28 g.

Solid N absorbed carbon dioxide and increased in mass by 3.14g.

(i) Identify, by name or formula, suitable substances for solids **M** and **N**.

(2)

Solid **M**

Solid N

(ii) Calculate the **empirical** formula of the compound, using the data given.

You **must** show your working.

(4)

(iii) The mass spectrum of the compound is shown.

Deduce the relative molecular mass of the compound, using the mass spectrum. (1)

(iv) Deduce the molecular formula of the compound, using your answers to (d)(ii) and (d)(iii).

(1)

(v) Determine the identity of the compound, using your answer to (d)(iv) and the fragmentation pattern of the mass spectrum.

Justify your answer.

(2)

(Total for Question 3 = 22 marks)

TOTAL FOR PAPER = 50 MARKS

Ś
7
盂
۳
<u></u>
Eleme
山
ب
ਰੱ
ψ
$\overline{}$
풌
Table
.≃
Periodic
0
\Box
ā
${\tt P}$
۵.
The
<u></u>

7 0 (8)	(18) 4,0 He helium (17) 2	0		fluorine neon 9 10	35.5 39.9		chlorine argon 17 18	_		bromine krypton 35 36	126.9 131.3		fodine xenon	1		At KII astatine radon	85 86		n reported		175		lutetium 71	[257]		lawrencium
9) (91)	0	0	oxygen flu 8	32.1		sulfur 15			selenium bro 34	127.6		tellurium fo	+-		Ę			Elements with atomic numbers 112-116 have been reported but not fully authenticated		173		ytterbium lui 70	[254] [Ē
Ŋ	(15)	14.0	z	nitrogen 7	31.0	۵	phosphorus: 15	74.9	As	arsenic 33	121.8		antimony 1	0.000	0.702	=			tomic numbers 112-116 haw but not fully authenticated		169		thulium)	[256]	ΡW	mendelevium
4	(14)	12.0	U	carbon 6	28.1		silicon 14	72.6	g	germanium 32	118.7	Sn	ë G	20.2	7: 6	2 8	82		atomic nu but not		167	Ъ	erbium 68	[253]		<u>~</u>
m	(13)	10.8	മ	boron 5	27.0	A	aluminium 13	2.69	g	gallium 31	114.8	드	indium	20,4	, F	thallium	81		nents with		165		hotmium 67	[254]	Es	californium einsteinium
							(12)	65.4	Zn	zinc 30	112.4	C	cadmium	3000	7.00.0	mercury	80				163	۵	dysprosium 66	-	ರ	californium
							(11)	63.5	3	copper 29	107.9	Ag		107.0	0.77.	Au	79	[272]	Rg roentgentum		159		terbium 65	[245]	쫎	berkeltum
							(10)	58.7	Ź	nickel 28	106.4	Pd	palladium	105 1		platinum	78	[271]	DS damstadtum	2	157		gadolinium 64	[247]		
							(6)	58.9	ვ	cobalt 27	102.9	돈	rhodium	107 2	1,72.7	iridium	11	[268]	Mt metinerium	103	152		europíum 63	[243]	Am	
	1.0 H hydrogen						(8)	55.8	T.		101.1	ß	ruthenium	100	7. €	Smitten OSmitten	9/	[277]	HS	001	150		samarium 62	[242]	Np Pu	n plutonium
							(2)	54.9		Ĕ	[98]	ည	molybdenum technetium	492 7	7.00.	rhenium		[264]	Bhritum 507		[147]		promethium 61	[237]	Q.	neptunium
		: mass	loqu	number			(9)	52.0	ხ		95.9	Wo	molybdenun	747	0.00	tungsten	74	[366]	Sg seaborgium	9	144	PZ	presecdymium neodymlum 59 60	238	<u> </u>	uranium
	Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	£	Ť	4 60	<u>5</u> F	tantalum	23	[797]		3	141	ፚ	ргазеоскуппічл 59	[231]	Pa	protactinium
		relat	atc	atomic			(4)	47.9	F	titanium 22	91.2	Zr	zirconium	470 5	C.0/-	Hafeigh		[261]	R. nutherfordium	3	140	ව	cerfum 58	232	£	thorium
					·		(3)	45.0	Sc	scandium 21	88.9		*	45	130.9	La*	22	[227]	AC* actinium	60		ies				
7	(2)	9.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	రా		87.6	Sr	strontium	אל גיני		Ga	26	[326]	Ra radium	8		Lanthanide series	• Actinide series			
₩.	$\widehat{\mathcal{E}}$	6.9	<u> </u>	lithium 3	23.0	ď	sodíum 11	39.1	×	potassium 19	85.5	8	rubidium	יצ לבר	52.3	ر وهو <u>ا</u> س	55	[223]	Fr	/ο		• Lant	*Actir			

