# $12n_{0051} \ (K12n_{0051})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle -1.54023 \times 10^{25} u^{21} - 4.36397 \times 10^{25} u^{20} + \dots + 2.35281 \times 10^{27} b - 1.19412 \times 10^{26}, \\ &\quad 4.19615 \times 10^{28} u^{21} + 1.33730 \times 10^{29} u^{20} + \dots + 1.37404 \times 10^{30} a + 5.83977 \times 10^{30}, \\ &\quad u^{22} + 3u^{21} + \dots - 160u + 73 \rangle \\ I_2^u &= \langle b, \ 6u^3 a - 4u^2 a - 3u^3 + 4a^2 + 14au - 2u^2 - 6a - 7u - 7, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle \\ I_3^u &= \langle -a^4 u + a^3 u + a^3 - 2a^2 + 4au + 4b - 4a - 4u, \ a^5 + a^4 u - a^4 - 2a^3 u - 4a^2 u - 4a^2 + 4a - 4u + 4, \ u^2 + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 40 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -1.54 \times 10^{25} u^{21} - 4.36 \times 10^{25} u^{20} + \dots + 2.35 \times 10^{27} b - 1.19 \times 10^{26}, \ 4.20 \times 10^{28} u^{21} + 1.34 \times 10^{29} u^{20} + \dots + 1.37 \times 10^{30} a + 5.84 \times 10^{30}, \ u^{22} + 3u^{21} + \dots - 160u + 73 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0305388u^{21} - 0.0973265u^{20} + \dots - 6.20155u - 4.25007 \\ 0.00654633u^{21} + 0.0185480u^{20} + \dots + 4.03131u + 0.0507530 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0269488u^{21} - 0.0862650u^{20} + \dots - 5.94433u - 3.75869 \\ 0.00399982u^{21} + 0.0101440u^{20} + \dots + 3.98951u - 0.419348 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0111557u^{21} - 0.0331545u^{20} + \dots - 11.4392u + 1.82405 \\ 0.00209278u^{21} + 0.00628667u^{20} + \dots + 2.38388u - 0.320958 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0325563u^{21} - 0.0995247u^{20} + \dots + 12.3684u - 1.68756 \\ 0.00662300u^{21} + 0.0176756u^{20} + \dots + 5.55048u - 0.614116 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.00503747u^{21} + 0.0176554u^{20} + \dots + 0.745076u + 3.13839 \\ -0.000640784u^{21} - 0.00237253u^{20} + \dots - 0.108742u - 0.457982 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0016342u^{21} - 0.0404516u^{20} + \dots + 5.25864u - 5.57795 \\ 0.000768008u^{21} + 0.00322339u^{20} + \dots + 0.588075u + 0.675650 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00471751u^{21} - 0.0164802u^{20} + \dots + 0.689358u - 2.34200 \\ 0.000443931u^{21} + 0.00178731u^{20} + \dots + 0.0810747u + 0.491670 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $0.0299967u^{21} + 0.106465u^{20} + \cdots 19.9627u + 12.9465$

### (iv) u-Polynomials at the component

| Crossings          | u-Polynomials at each crossing              |
|--------------------|---------------------------------------------|
| $c_1$              | $u^{22} + 19u^{21} + \dots + 79u + 16$      |
| $c_2, c_5$         | $u^{22} + 7u^{21} + \dots + 35u + 4$        |
| $c_3$              | $u^{22} - 16u^{21} + \dots + 25000u + 3104$ |
| $c_4, c_8$         | $u^{22} - u^{21} + \dots + 1536u + 2048$    |
| $c_6, c_9, c_{10}$ | $u^{22} + 3u^{21} + \dots - 160u + 73$      |
| $c_7, c_{11}$      | $u^{22} + 3u^{21} + \dots + 182u + 73$      |
| $c_{12}$           | $u^{22} + 7u^{21} + \dots - 67032u + 5329$  |

### (v) Riley Polynomials at the component

| Crossings          | Riley Polynomials at each crossing                   |
|--------------------|------------------------------------------------------|
| $c_1$              | $y^{22} - 25y^{21} + \dots + 179903y + 256$          |
| $c_2, c_5$         | $y^{22} + 19y^{21} + \dots + 79y + 16$               |
| $c_3$              | $y^{22} - 78y^{21} + \dots + 78714048y + 9634816$    |
| $c_4, c_8$         | $y^{22} + 91y^{21} + \dots + 30670848y + 4194304$    |
| $c_6, c_9, c_{10}$ | $y^{22} + 45y^{21} + \dots + 149016y + 5329$         |
| $c_7,c_{11}$       | $y^{22} - 7y^{21} + \dots + 67032y + 5329$           |
| $c_{12}$           | $y^{22} + 85y^{21} + \dots + 2794246372y + 28398241$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.166885 + 0.855784I  |                                       |                     |
| a = 0.884204 - 0.564449I  | -1.86083 + 1.88410I                   | -4.29628 - 4.39442I |
| b = -0.685307 - 0.431142I |                                       |                     |
| u = 0.166885 - 0.855784I  |                                       |                     |
| a = 0.884204 + 0.564449I  | -1.86083 - 1.88410I                   | -4.29628 + 4.39442I |
| b = -0.685307 + 0.431142I |                                       |                     |
| u = 1.245170 + 0.161308I  |                                       |                     |
| a = -0.584895 + 0.469137I | -3.01876 + 2.75600I                   | 1.05384 - 1.99167I  |
| b = 0.88430 - 1.76284I    |                                       |                     |
| u = 1.245170 - 0.161308I  |                                       |                     |
| a = -0.584895 - 0.469137I | -3.01876 - 2.75600I                   | 1.05384 + 1.99167I  |
| b = 0.88430 + 1.76284I    |                                       |                     |
| u = 0.065911 + 1.393150I  |                                       |                     |
| a = -0.167886 + 0.219714I | -7.41484 + 5.99413I                   | -4.98068 - 7.65331I |
| b = 0.208154 + 0.992360I  |                                       |                     |
| u = 0.065911 - 1.393150I  |                                       |                     |
| a = -0.167886 - 0.219714I | -7.41484 - 5.99413I                   | -4.98068 + 7.65331I |
| b = 0.208154 - 0.992360I  |                                       |                     |
| u = -0.147428 + 0.530014I |                                       |                     |
| a = 2.56324 - 1.19415I    | 0.18307 - 2.82080I                    | 2.85537 - 1.68871I  |
| b = -0.391902 - 0.411319I |                                       |                     |
| u = -0.147428 - 0.530014I |                                       |                     |
| a = 2.56324 + 1.19415I    | 0.18307 + 2.82080I                    | 2.85537 + 1.68871I  |
| b = -0.391902 + 0.411319I |                                       |                     |
| u = 0.309359 + 0.401971I  |                                       |                     |
| a = -0.508079 - 0.818004I | 0.445026 + 1.231770I                  | 4.87220 - 5.67709I  |
| b = 0.193284 + 0.440196I  |                                       |                     |
| u = 0.309359 - 0.401971I  |                                       |                     |
| a = -0.508079 + 0.818004I | 0.445026 - 1.231770I                  | 4.87220 + 5.67709I  |
| b = 0.193284 - 0.440196I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.14190 + 1.59059I   |                                       |                    |
| a = -0.104582 - 0.310705I | -5.61868 + 1.54212I                   | 1.66178 - 2.03716I |
| b = -0.841835 - 0.832729I |                                       |                    |
| u = -0.14190 - 1.59059I   |                                       |                    |
| a = -0.104582 + 0.310705I | -5.61868 - 1.54212I                   | 1.66178 + 2.03716I |
| b = -0.841835 + 0.832729I |                                       |                    |
| u = -0.009993 + 0.350116I |                                       |                    |
| a = -3.01267 - 0.71642I   | 0.96093 + 1.37462I                    | 8.72525 - 4.65494I |
| b = 0.469397 + 0.461238I  |                                       |                    |
| u = -0.009993 - 0.350116I |                                       |                    |
| a = -3.01267 + 0.71642I   | 0.96093 - 1.37462I                    | 8.72525 + 4.65494I |
| b = 0.469397 - 0.461238I  |                                       |                    |
| u = -0.69231 + 1.86047I   |                                       |                    |
| a = -0.585229 - 1.015730I | 15.9166 - 13.0727I                    | 0.81219 + 5.19676I |
| b = 1.41273 - 1.99234I    |                                       |                    |
| u = -0.69231 - 1.86047I   |                                       |                    |
| a = -0.585229 + 1.015730I | 15.9166 + 13.0727I                    | 0.81219 - 5.19676I |
| b = 1.41273 + 1.99234I    |                                       |                    |
| u = -0.61577 + 2.17742I   |                                       |                    |
| a = 0.394124 + 0.984688I  | 19.2619 - 5.9056I                     | 2.16347 + 1.69823I |
| b = -1.03067 + 2.69186I   |                                       |                    |
| u = -0.61577 - 2.17742I   |                                       |                    |
| a = 0.394124 - 0.984688I  | 19.2619 + 5.9056I                     | 2.16347 - 1.69823I |
| b = -1.03067 - 2.69186I   |                                       |                    |
| u = -1.57086 + 2.18266I   |                                       |                    |
| a = 0.515590 + 0.201211I  | -13.72130 - 3.06559I                  | 0                  |
| b = 1.02473 + 4.03132I    |                                       |                    |
| u = -1.57086 - 2.18266I   |                                       |                    |
| a = 0.515590 - 0.201211I  | -13.72130 + 3.06559I                  | 0                  |
| b = 1.02473 - 4.03132I    |                                       |                    |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -0.10906 + 2.96605I   |                                       |            |
| a = -0.102719 - 0.793534I | 12.96110 + 1.49730I                   | 0          |
| b = -0.74289 - 4.42273I   |                                       |            |
| u = -0.10906 - 2.96605I   |                                       |            |
| a = -0.102719 + 0.793534I | 12.96110 - 1.49730I                   | 0          |
| b = -0.74289 + 4.42273I   |                                       |            |

II. 
$$I_2^u = \langle b, 6u^3a - 3u^3 + \dots - 6a - 7, u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3}a - 2u^{2}a + 2au \\ u^{3}a - 2u^{2}a + au \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3}a - 2u^{2}a + \frac{3}{2}u^{3} + 2au - u^{2} + \frac{7}{2}u - \frac{3}{2} \\ u^{3}a - 2u^{2}a + au \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $\frac{9}{2}u^3a 5u^2a \frac{19}{4}u^3 + \frac{21}{2}au + \frac{7}{2}u^2 \frac{7}{2}a \frac{55}{4}u + \frac{17}{4}u^2$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing  |
|-----------------------|---------------------------------|
| $c_1, c_3, c_5$       | $(u^2 - u + 1)^4$               |
| $c_2$                 | $(u^2+u+1)^4$                   |
| $c_4, c_8$            | $u^8$                           |
| <i>C</i> <sub>6</sub> | $(u^4 + u^3 + 3u^2 + 2u + 1)^2$ |
|                       | $(u^4 + u^3 + u^2 + 1)^2$       |
| $c_9, c_{10}, c_{12}$ | $(u^4 - u^3 + 3u^2 - 2u + 1)^2$ |
| $c_{11}$              | $(u^4 - u^3 + u^2 + 1)^2$       |

# (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing |
|-----------------------------|------------------------------------|
| $c_1, c_2, c_3$ $c_5$       | $(y^2 + y + 1)^4$                  |
| $c_4, c_8$                  | $y^8$                              |
| $c_6, c_9, c_{10}$ $c_{12}$ | $(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$   |
| $c_{7}, c_{11}$             | $(y^4 + y^3 + 3y^2 + 2y + 1)^2$    |

### (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.395123 + 0.506844I  |                                       |                      |
| a = -1.13839 - 1.09665I   | 0.21101 + 3.44499I                    | 3.71851 - 10.46973I  |
| b = 0                     |                                       |                      |
| u = 0.395123 + 0.506844I  |                                       |                      |
| a = 1.51892 - 0.43755I    | 0.211005 - 0.614778I                  | 1.372162 - 0.328352I |
| b = 0                     |                                       |                      |
| u = 0.395123 - 0.506844I  |                                       |                      |
| a = -1.13839 + 1.09665I   | 0.21101 - 3.44499I                    | 3.71851 + 10.46973I  |
| b = 0                     |                                       |                      |
| u = 0.395123 - 0.506844I  |                                       |                      |
| a = 1.51892 + 0.43755I    | 0.211005 + 0.614778I                  | 1.372162 + 0.328352I |
| b = 0                     |                                       |                      |
| u = 0.10488 + 1.55249I    |                                       |                      |
| a = -0.435815 + 0.100890I | -6.79074 + 5.19385I                   | 0.529613 - 1.243149I |
| b = 0                     |                                       |                      |
| u = 0.10488 + 1.55249I    |                                       |                      |
| a = 0.305281 + 0.326982I  | -6.79074 + 1.13408I                   | -4.49529 - 1.20873I  |
| b = 0                     |                                       |                      |
| u = 0.10488 - 1.55249I    |                                       |                      |
| a = -0.435815 - 0.100890I | -6.79074 - 5.19385I                   | 0.529613 + 1.243149I |
| b = 0                     |                                       |                      |
| u = 0.10488 - 1.55249I    |                                       |                      |
| a = 0.305281 - 0.326982I  | -6.79074 - 1.13408I                   | -4.49529 + 1.20873I  |
| b = 0                     |                                       |                      |

III.  $I_3^u = \langle -a^4u + a^3u + \dots - 2a^2 - 4a, \ a^4u - 2a^3u + \dots + 4a + 4, \ u^2 + 1 \rangle$ 

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{4}a^{4}u - \frac{1}{4}a^{3}u + \dots + \frac{1}{2}a^{2} + a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{4}a^{4}u + \frac{1}{4}a^{3}u + \dots + \frac{1}{4}a^{3} - \frac{1}{2}a^{2} \\ \frac{1}{4}a^{4}u - \frac{1}{4}a^{3}u + \dots + \frac{1}{2}a^{2} + a \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}a^{3}u + a^{2}u + \dots + \frac{1}{2}a - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}a^{3}u - \frac{1}{2}a^{2}u + \dots - \frac{1}{4}a^{3} + 1 \\ -\frac{1}{2}a^{4}u + \frac{3}{4}a^{3}u + \dots - 2a^{2} - a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -\frac{1}{4}a^{4}u + \frac{1}{2}a^{3}u + \dots - \frac{1}{2}a + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}a^{4}u + \frac{1}{4}a^{3}u + \dots - 2a^{2} - \frac{1}{2}a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}a^{4}u + \frac{1}{2}a^{3}u + \dots + 2a^{2} + \frac{1}{2}a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -\frac{1}{4}a^{4}u + \frac{1}{2}a^{3}u + \dots - a^{2} - \frac{1}{2}a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $a^4 + 2a^3u 2a^3 6a^2u + 8$

### (iv) u-Polynomials at the component

| Crossings                        | u-Polynomials at each crossing          |
|----------------------------------|-----------------------------------------|
| $c_1$                            | $(u^5 - 3u^4 + 4u^3 - u^2 - u + 1)^2$   |
| $c_2$                            | $(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$    |
| <i>c</i> <sub>3</sub>            | $(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$    |
| $c_4, c_8$                       | $u^{10} + 5u^8 + 8u^6 + 3u^4 - u^2 + 1$ |
| <i>C</i> <sub>5</sub>            | $(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$    |
| $c_6, c_7, c_9$ $c_{10}, c_{11}$ | $(u^2+1)^5$                             |
| $c_{12}$                         | $(u-1)^{10}$                            |

### (v) Riley Polynomials at the component

| Crossings                        | Riley Polynomials at each crossing     |
|----------------------------------|----------------------------------------|
| $c_1$                            | $(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$ |
| $c_{2}, c_{5}$                   | $(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$  |
| $c_3$                            | $(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ |
| $c_4, c_8$                       | $(y^5 + 5y^4 + 8y^3 + 3y^2 - y + 1)^2$ |
| $c_6, c_7, c_9$ $c_{10}, c_{11}$ | $(y+1)^{10}$                           |
| $c_{12}$                         | $(y-1)^{10}$                           |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.000000I             |                                       |                     |
| a = -0.794743 + 0.582062I | -5.87256 - 4.40083I                   | -0.74431 + 3.49859I |
| b = 0.21917 + 1.41878I    |                                       |                     |
| u = 1.000000I             |                                       |                     |
| a = -0.582062 + 0.794743I | -5.87256 + 4.40083I                   | -0.74431 - 3.49859I |
| b = -0.21917 + 1.41878I   |                                       |                     |
| u = 1.000000I             |                                       |                     |
| a = 0.821196 - 0.821196I  | -2.40108                              | 2.51886 + 0.I       |
| b = -1.217740I            |                                       |                     |
| u = 1.000000I             |                                       |                     |
| a = 2.15793 + 0.60232I    | -0.32910 + 1.53058I                   | 3.48489 - 4.43065I  |
| b = -0.549911 - 0.309916I |                                       |                     |
| u = 1.000000I             |                                       |                     |
| a = -0.60232 - 2.15793I   | -0.32910 - 1.53058I                   | 3.48489 + 4.43065I  |
| b = 0.549911 - 0.309916I  |                                       |                     |
| u = -1.000000I            |                                       |                     |
| a = -0.582062 - 0.794743I | -5.87256 + 4.40083I                   | -0.74431 - 3.49859I |
| b = -0.21917 - 1.41878I   |                                       |                     |
| u = -1.000000I            |                                       |                     |
| a = -0.794743 - 0.582062I | -5.87256 - 4.40083I                   | -0.74431 + 3.49859I |
| b = 0.21917 - 1.41878I    |                                       |                     |
| u = -1.000000I            |                                       |                     |
| a = 0.821196 + 0.821196I  | -2.40108                              | 2.51886 + 0.I       |
| b = 1.217740I             |                                       |                     |
| u = -1.000000I            |                                       |                     |
| a = 2.15793 - 0.60232I    | -0.32910 - 1.53058I                   | 3.48489 + 4.43065I  |
| b = -0.549911 + 0.309916I |                                       |                     |
| u = -1.000000I            |                                       |                     |
| a = -0.60232 + 2.15793I   | -0.32910 + 1.53058I                   | 3.48489 - 4.43065I  |
| b = 0.549911 + 0.309916I  |                                       |                     |

IV. u-Polynomials

| Crossings       | u-Polynomials at each crossing                                                                                        |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| $c_1$           | $(u^{2} - u + 1)^{4}(u^{5} - 3u^{4} + 4u^{3} - u^{2} - u + 1)^{2}$ $\cdot (u^{22} + 19u^{21} + \dots + 79u + 16)$     |
| $c_2$           | $((u^{2} + u + 1)^{4})(u^{5} - u^{4} + \dots + u - 1)^{2}(u^{22} + 7u^{21} + \dots + 35u + 4)$                        |
| $c_3$           | $(u^{2} - u + 1)^{4}(u^{5} + u^{4} - 2u^{3} - u^{2} + u - 1)^{2}$ $\cdot (u^{22} - 16u^{21} + \dots + 25000u + 3104)$ |
| $c_4, c_8$      | $u^{8}(u^{10} + 5u^{8} + \dots - u^{2} + 1)(u^{22} - u^{21} + \dots + 1536u + 2048)$                                  |
| <i>C</i> 5      | $((u^{2}-u+1)^{4})(u^{5}+u^{4}+\cdots+u+1)^{2}(u^{22}+7u^{21}+\cdots+35u+4)$                                          |
| $c_6$           | $((u^{2}+1)^{5})(u^{4}+u^{3}+3u^{2}+2u+1)^{2}(u^{22}+3u^{21}+\cdots-160u+73)$                                         |
| $c_7$           | $((u^{2}+1)^{5})(u^{4}+u^{3}+u^{2}+1)^{2}(u^{22}+3u^{21}+\cdots+182u+73)$                                             |
| $c_{9}, c_{10}$ | $((u^{2}+1)^{5})(u^{4}-u^{3}+3u^{2}-2u+1)^{2}(u^{22}+3u^{21}+\cdots-160u+73)$                                         |
| $c_{11}$        | $((u^{2}+1)^{5})(u^{4}-u^{3}+u^{2}+1)^{2}(u^{22}+3u^{21}+\cdots+182u+73)$                                             |
| $c_{12}$        | $(u-1)^{10}(u^4 - u^3 + 3u^2 - 2u + 1)^2$ $\cdot (u^{22} + 7u^{21} + \dots - 67032u + 5329)$                          |

### V. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $c_1$              | $(y^{2} + y + 1)^{4}(y^{5} - y^{4} + 8y^{3} - 3y^{2} + 3y - 1)^{2}$ $\cdot (y^{22} - 25y^{21} + \dots + 179903y + 256)$       |
| $c_2, c_5$         | $(y^{2} + y + 1)^{4}(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{2}$ $\cdot (y^{22} + 19y^{21} + \dots + 79y + 16)$             |
| $c_3$              | $(y^{2} + y + 1)^{4}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)^{2}$ $\cdot (y^{22} - 78y^{21} + \dots + 78714048y + 9634816)$ |
| $c_4, c_8$         | $y^{8}(y^{5} + 5y^{4} + 8y^{3} + 3y^{2} - y + 1)^{2}$ $\cdot (y^{22} + 91y^{21} + \dots + 30670848y + 4194304)$               |
| $c_6, c_9, c_{10}$ | $(y+1)^{10}(y^4+5y^3+7y^2+2y+1)^2$ $\cdot (y^{22}+45y^{21}+\dots+149016y+5329)$                                               |
| $c_7, c_{11}$      | $(y+1)^{10}(y^4+y^3+3y^2+2y+1)^2$ $\cdot (y^{22}-7y^{21}+\dots+67032y+5329)$                                                  |
| $c_{12}$           | $(y-1)^{10}(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$ $\cdot (y^{22} + 85y^{21} + \dots + 2794246372y + 28398241)$                       |