Question 1. Determine whether the following sequence of functions converges pointwise on \mathbb{R} and if so, fid the limit function $f_n(x) = \frac{x}{n+x}$ for $n \in \mathbb{N}$.

Question 2. Determine whether the series of functions converges uniformly on [0,1]: $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Question 3. Show that the sequence of functions $f_n(x) = x^n$ converges pointwise to the function

$$f(x) = \begin{cases} x & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

on [0,1] but does not converge uniformly.

Question 4. Let $f_n(x) = \frac{x^n}{n^2}$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Use the Weierstrass M-Test to show that the series $\sum_{n=1}^{\infty} f_n(x) \text{ converges uniformly on } [0,1].$

Question 5. Show that the sequence of functions $f_n(x) = \frac{nx}{1 + n^2x^2}$ converges uniformly to the function f(x) = 0 on [0,1].

Question 6. Determine whether the following series of functions converges uniformly on \mathbb{R} :

$$\sum_{n=1}^{\infty} \frac{1}{n(1+nx^2)}$$

Question 7. Consider the series of functions $\sum_{n=1}^{\infty} \frac{x^n}{n!}$. Use the Weierstrass M-Test to show that the series converges uniformly on any bounded interval [-a, a].