Algorithm Review:

Time Complexity and Dynamic Programming

March 15, 2018

Materials adapted from "Algorithms" 4th Edition by Robert Sedgewick and Kevin Wayne, Princeton University and HackerEarth Dynamic Programming Tutorial

Table of Content

Analysis of Algorithms

2 Dynamic Programming

Analysis of Algorithms

How long will my program take?

Example: ThreeSum

Three Sum Problem

counts the number of triples in an array that sum to 0.

Example: ThreeSum

> 3 elements

Three Sum Problem

counts the number of triples in an array that sum to 0.

Example: ThreeSum

The frequency of executions contain the followings:

- 2 for the first two statements
- number of times that if statement get executed
- number of times that cnt+=1 statement get executed

Three Sum Running Time

The if statement in ThreeSum

The if statement is executed precisely:

$$N(N-1)(N-2)/6$$

times. Through expansion, we obtain: $= N^3/6 - N^2/2 + N/3$

$$N^3/6 - N^2/2 + N/3$$

The if statement in ThreeSum

The if statement is executed precisely: $\binom{n}{3} = 3 \times 2 \times 1$

$$N(N-1)(N-2)/6$$

times. Through expansion, we obtain:

$$N^3/6 - N^2/2 + N/3$$

Typically, the terms after the leading term are relatively small for large $\it N$. For example, when $\it N=1000$,

$$-N^2/2 + N/3 = 499,667$$
$$N^3/6 \approx 166,666,667$$

Leading-term Approximation

Leading-term approximation

Tilde Notation (\sim) allows to work with approximations, where we throw away low-order terms that complicate formulas and represent a negligible contribution to values of interest.

Definition

We write $\sim f(N)$ to represent any function that, when divided by f(N), approaches 1 as N grows, and we write $g(N) \sim f(N)$ to indicate that g(N)/f(N) approaches 1 as N grows.

$$\lim_{N\to\infty}\frac{g(N)}{f(N)}=1$$

Tilde Notation (\sim) allows to work with approximations, where we throw away low-order terms that complicate formulas and represent a negligible contribution to values of interest.

Definition

We write $\sim f(N)$ to represent any function that, when divided by f(N), approaches 1 as N grows, and we write $g(N) \sim f(N)$ to indicate that g(N)/f(N) approaches 1 as N grows.

March 15, 2018

Order of growth

Most often, we work with tilde approximations of the form $g(N) \sim af(N)$ where $f(N) = N^b(\log N)^c$ with a, b, and c constants and refer to f(N) as the order of growth of g(N)

Order of growth

Most often, we work with tilde approximations of the form $g(N) \sim af(N)$ where $f(N) = N^b(\log N)^c$ with a, b, and c constants and refer to f(N) as the order of growth of g(N)

function	tilde approximation	order of growth
$N^3/6 - N^2/2 + N/3$	$\sim N^3/6$	N^3
$N^2/2 - N/2$	$\sim N^2/2$	N^2
$\lg \mathit{N} + 1$	\sim lg N	lg N
3	~ 3	1

Order of growth

	de	escription	function
		constant	1
	lo	garithmic	log N
		linear	Ν
	lin	nearithmic	$N \log N$
	c	quadratic	N^2
	1	cubic	N^3
n ot efficient	ex	ponential	2 ^N

Table: Commonly encountered order-of-growth functions

Order of growth: Standard Plot

Order of growth: Log-log Plot

Big-O notation (O)

We say that f(N) = O(g(N)) if there exist constants c and N_0 such that |f(N)| < cg(N) for all $N > N_0$.

$$f(N) = N^3/6 - N^2/2 + N/3$$

$$g(N) = N^3$$

$$f(N) = O(g(N))$$
where bound

Big-O notation (O)

We say that f(N) = O(g(N)) if there exist constants c and N_0 such that |f(N)| < cg(N) for all $N > N_0$.

Big-O notation (O)

We say that f(N) = O(g(N)) if there exist constants c and N_0 such that |f(N)| < cg(N) for all $N > N_0$.

Big-Omega notation (Ω)

We say that $f(N) = \Omega(g(N))$ if there exist constants c and N_0 such that |f(N)| > cg(N) for all $N > N_0$.

lover bound

Big-O notation (O)

We say that f(N) = O(g(N)) if there exist constants c and N_0 such that |f(N)| < cg(N) for all $N > N_0$.

Big-Omega notation (Ω)

We say that $f(N) = \Omega(g(N))$ if there exist constants c and N_0 such that |f(N)| > cg(N) for all $N > N_0$.

Big-Theta notation (Θ)

We say that $f(N) = \Theta(g(N))$ if f(N) is O(g(N)) and $\Omega(g(N))$.

Graphical Examples

	Notation	Provides	Example	Shorthand for	Used to
-	Big Theta	asymptotic	$\Theta(N^2)$	$\frac{1}{2}N^2$, $10N^2$,	classify
		order of growth		$5N^2 + 22N \log N$	algorithm
	Big O	$\Theta(\mathit{N}^2)$ and smaller	$O(N^2)$	$10N^2$, $100N$,	develop
				$22N \log N + 3N$	upper bound
	Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1}{2}N^2, N^5,$	develop
Dig Oil	Dig Officga	offiega $\Theta(N)$ and larger		$N^3 + 22N \log N$	lower bound

Table of Content

Analysis of Algorithms

2 Dynamic Programming

 \bullet writes down "1 + 1 + 1 + 1 + 1 + 1 + 1 + 1"

Algorithm Review: March 15, 2018

 $^{^{1}} https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-year-old/answer/Jonathan-Paulson$

- \bullet writes down "1 + 1 + 1 + 1 + 1 + 1 + 1 + 1"
- equals to?

Algorithm Review: March 15, 2018

¹https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-yearold/answer/Jonathan-Paulson

- equals to? 8

Algorithm Review: March 15, 2018

 $^{^{1}} https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-year-old/answer/Jonathan-Paulson\\$

- \bullet writes down "1 + 1 + 1 + 1 + 1 + 1 + 1 + 1"
- equals to? 8
- writes down another "1+" on the left

Algorithm Review: March 15, 2018

 $^{^{1}} https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-year-old/answer/Jonathan-Paulson$

- \bullet writes down "1 + 1 + 1 + 1 + 1 + 1 + 1 + 1"
- equals to? 8
- writes down another "1+" on the left
- the answer is 9

Algorithm Review:

¹https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-yearold/answer/Jonathan-Paulson

- \bullet writes down "1+1+1+1+1+1+1"
- 2 equals to? 8
- writes down another "1+" on the left
- the answer is 9

Dynamic Programming (DP) is just a fancy way to say 'remembering stuff to save time later'

Algorithm Review: March 15, 2018

 $^{^1} https://www.quora.com/How-should-I-explain-dynamic-programming-to-a-4-year-old/answer/Jonathan-Paulson$

Dynamic Programming

- avoid repeated work by remembering partial results
- trade space for time
- break a problem down into subproblems.

$$f(n) = \begin{cases} 1 & n = 0, 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

The first few numbers: $1, 1, 2, 3, 5, 8, 13, 21 \cdots$ and so on.

$$f(z-1) + f(z-2) = f(1) + f(0)$$

= $|+| = 2$
 $f(z-1) + f(3-1) = f(2) + f(1)$
= $2+| = 3$

$$f(n) = \begin{cases} 1 & n = 0, 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

The first few numbers: $1, 1, 2, 3, 5, 8, 13, 21 \cdots$ and so on.

```
def fib(n):
    if n < 2:
        return 1
    return fib(n - 1) + fib(n - 2)

query=[100, 20, 1000, 40, 5]
for i in range(len(query)):
    print(fib(query[i]))</pre>
```

$$f(n) = \begin{cases} 1 & n = 0, 1 \\ f(n-1) + f(n-2) & n \ge 2 \end{cases}$$

The first few numbers: $1, 1, 2, 3, 5, 8, 13, 21 \cdots$ and so on.

```
def fib(n):
    if n < 2:
        return 1
    return fib(n - 1) + fib(n - 2)

query=[100, 20, 1000, 40, 5]
for i in range(len(query)):
    print(fib(query[i]))</pre>
```

Recursion! $O(2^n)$

$$f[n] = \begin{cases} 1 & n = 0, 1\\ f[n-1] + f[n-2] & n \ge 2 \end{cases}$$

Dynamic Programming

```
def build_fib(N):
  fib = [None for n in range(N)]
  fib[0] = 1
  fib[1] = 1
  for n in range (2, \mathbb{N}) \longrightarrow \mathbb{N} fib[n] = fib[n - 1] + fib[n - 2]
  return fib
fib = build_fib(1001)
query=[100, 20, 1000, 40, 5]
for i in range(len(query)):
  print(fib[query[i]])
                                                       vs 0(2")
```

Requires O(N) space and running time of O(N).

Dynamic Programming

```
def build_fib(N):
  fib = [None for n in range(N)]
  fib[0] = 1
  fib[1] = 1
  for n in range(2, N):
    fib[n] = fib[n - 1] + fib[n - 2]
  return fib
fib = build_fib(1001)
query=[100, 20, 1000, 40, 5]
for i in range(len(query)):
  print(fib[query[i]])
```

Requires O(N) space and running time of O(N). Bottom Up approach

Steps for Solving DP Problems

- Define optimal subproblems
 - E.g., f[n]
- Write down the recurrence that relates optimal subproblems. Compute the value of the optimal solution in bottom-up fashion.
 - E.g., f[n] = f[n-1] + f[n-2]
- Recognize and solve the base cases
 - E.g., f[0] = f[1] = 1

Example: Longest Common Subsequence Problem²

- given two strings x and y, find the longest common subsequence (LCS) and print its length
- Example:
 - x: ABCBDAB
 - y: BDCABC
 - BCAB is the longest subsequence found in both sequences, so the answer is 4

Algorithm Review: March 15, 2018

²https://web.stanford.edu/class/cs97si/04-dynamic-programming.pdf

Example: Longest Common Subsequence Problem

- Define optimal subproblems
 - dp[i][j] be the length of the LCS of $x_{1...i}$ and $y_{1...j}$
- Write down the recurrence that relates optimal subproblems.
 Compute the value of the optimal solution in bottom-up fashion.

$$dp[i][j] = \begin{cases} dp[i-1][j-1] + 1 & x_i = y_j \\ \max(dp[i-1][j], dp[i][j-1]) & x_i \neq y_j \end{cases}$$

- Recognize and solve the base cases
 - $dp[i][0] = 0, \forall i$
 - $dp[0][j] = 0, \forall j$