

Київський національний університет імені Тараса Шевченка Фізичний факультет Кафедра молекулярної фізики

ПРОСТОРОВА СТРУКТУРА КЛАСТЕРІВ ГІДРОКСИАПАТИТУ У ГАЗОВІЙ ФАЗІ

Магістерська робота студента 2-го курсу магістратури Самцевича Артема Ігоровича Науковий керівник: асистент, к.ф.-м.н, Ніколаєнко Тимофій Юрійович

Київ 2015

Фізична основа дослідження

Рис. 1. Просторова структура гідроксиапатиту $Ca_{10}(PO)_4(OH)_2$

Масове число	Передбачувана	
(m/z)	стехіометрія та структура	
159	[Ca ₂ PO ₃] ⁺ , [CaPO ₂ ·(CaO)] ⁺	
168	[3(CaO)]+	
169	[CaOH·2(CaO)]+	
175	[Ca ₂ PO ₄] ⁺ , [CaPO ₃ ·(CaO)] ⁺	
208	[Ca ₃ ·(CaO)] ⁺	
215	[Ca ₃ PO ₄] ⁺	
231	[Ca ₃ PO ₅]+	

Табл. 1. Характеристичні позитивні іони масс-спектру [1].

Гідроксиапатит (OhAp) (рис.1) — біологічний об'єкт, що застосовується в медичних цілях, як замінник кістки або проміжним шаром між металевим протезом та кістковою тканиною людини.

Рис. 1. Масс-спектр позитивних іонів гідроксиапатиту [1].

²

Постановка задачі

<u>Метою даної роботи</u> є визначення структури та властивостей простіших кластерів іонів гідроксиапатиту.

Задачі:

- визначити можливі конформації кластерів іонів гідроксиапатиту, що відповідають єдиній бруттоформулі іону;
- визначити геометрію та властивості конформацій;
- вирахувати частку найбільш енергетичновигідних структур в газовій фазі.

Об'єкти дослідження:

Іони Ca₂PO₃⁺, Ca₂PO₄⁺, Ca₃PO₄⁺ та Ca₃PO₅⁺

Загальний алгоритм дії

Опис газової фази комплексів

Рис. 2. Структура найбільш енергетичновигідних комплексів. Зліва направо: Ca₂PO₃+, Ca₂PO₄+, Ca₃PO₄+ та Ca₃PO₅+

Табл. 2. Пара найбільш енергетичновигідних комплексів. p – ймовірність знайти іон з даною енергією в газовій фазі

	ΔG, ккал/моль	p
Ca ₂ PO ₃ ⁺	0,000	0,999994
	7,110	6.10-6
Ca ₂ PO ₄ ⁺	0,150	0,99988
	5,550	0,00012
Ca ₃ PO ₄ ⁺	0,000	1
	29,730	<10-22
Ca ₃ PO ₅ ⁺	0,010	1
	21,680	<10-16

Аналіз структури іонів

Рис. 3. Розподіли міжатомних відстаней наступних типів: Перший ряд (зліва направо): Ca-Ca, O-Ca та O-O. Другий ряд (зліва направо):.O-P та P-Ca

Задача апроксимації

$$G = a_0 + \sum_i a_i \cdot n_i$$

 n_i – кількість хімічних зв'язків в молекулі

 a_i – коефіцієнти розкладу

G – вільна енергія Гібса кожного іону

Результати апроксимації

Енергія зв'язку $a_{i,}$	Хімічний
ккал/моль	зв'язок
-3,022	Ca-Ca
-36,461	O-Ca
56,026	O-O
-36,160	O-P
43,464	O=Ca
64,703	O=O
-10,416	O=P
26,841	P-Ca

Визначення хімічних зв'язків

$$\left| \frac{\left| \overrightarrow{r_i} - \overrightarrow{r_j} \right|}{r^{e\phi}_{i} + r^{e\phi}_{j}} - 1 \right| < 0.2$$

 r_i – радіус-вектор атома, $r_i^{e\phi}$ – ефективний атомний радіус

7

Висновки

- Поєднуючи методи комбінаторного пошуку графів хімічних зв'язків молекул, прикладної квантової механіки та власноруч розробленого програмного коду було досліджені структури іонів гідроксиапатиту в газовій фазі;
- Знайдені та приведені найбільш енергетично вигідні структури та їх частка в газовій фазі;
- Отримані розподіли попарних міжатомних відстаней показують, що більшість P-O, P-Ca, O-O та Ca-O зв'язків в іонах є ковалентними, а зв'язки Ca-Ca іонні;
- Досліджені ефективні атомні заряди та знайдені найбільш ймовірні з них;
- Запропонована фізична модель, що визначає енергію комплексу за графом хімічних зв'язків в іоні.

Дякую за увагу