• GP eg. in 1D
• ih
$$\frac{2}{3!}\psi = -\frac{1}{2m}\frac{3^{2}}{3^{2}}\psi + \frac{2}{2}m\omega^{2}x^{2}\psi + \frac{8}{16}|\psi|^{2}\psi$$

• Dimensimber $\rightarrow \tilde{\ell} = \omega t$; $\tilde{x} = \frac{x}{\ell}$; $\psi = \frac{1}{\sqrt{\ell}}\tilde{\psi}$; $\ell = \sqrt{\frac{1}{2m}}\omega$
• GP eg. in 2D
• $\frac{1}{\sqrt{2}}\tilde{\psi} = -\frac{1}{2}\frac{3^{2}}{\sqrt{2}}\tilde{\psi} + \frac{1}{2}\tilde{x}^{2}\tilde{\psi} + G|\tilde{\psi}|^{2}\tilde{\psi}$ $G = \frac{\theta_{10}}{\ell\pi\omega}$
• $\frac{1}{\sqrt{2}}\frac{2}{\sqrt{2}}\psi = -\frac{1}{2m}(\frac{3^{2}}{\sqrt{2}}\psi + \frac{3^{2}}{\sqrt{2}}\psi) + \frac{1}{2}m(\omega_{x}^{2}x^{2} + \omega_{y}^{2}y^{2})\psi + \frac{1}{2}\sqrt{\frac{1}{2m}}; \quad \alpha = \frac{\omega_{y}}{\omega_{x}}$
Dimension $\Rightarrow \tilde{\ell} = \omega_{x}t$; $\tilde{x} = \frac{x}{\ell_{x}}$; $\tilde{y} = \frac{x}{\ell_{x}}$; $\psi = \frac{1}{\ell_{x}}\tilde{\psi}$; $\ell_{x} = \sqrt{\frac{1}{2m}}; \quad \alpha = \frac{\omega_{y}}{\omega_{x}}$
• $\frac{1}{\sqrt{2}}\tilde{\psi} = -\frac{1}{2}(\frac{3^{2}}{\sqrt{2}}\psi + \frac{3^{2}}{\sqrt{2}}\psi) + \frac{1}{2}(\tilde{x}^{2} + \alpha^{2}y^{2})\tilde{\psi} + G|\tilde{\psi}|^{2}\tilde{\psi}$ $G = \frac{910}{\ell_{x}^{2}\hbar\omega_{x}}$
• $\frac{1}{\sqrt{2}}\tilde{\psi} = -\frac{1}{2m}(\frac{3^{2}\psi}{\sqrt{2}}\psi + \frac{3^{2}\psi}{\sqrt{2}}\psi) + \frac{m}{2}(\omega_{x}^{2}x^{2} + \omega_{x}^{2}y^{2} + \omega_{x}^{2}y^{2})\psi + \frac{3}{2}(\omega_{x}^{2})\psi + \frac{1}{2}(\omega_{x}^{2}x^{2} + \omega_{x}^{2}y^{2})\psi + \frac{1}{2}(\omega_{x}^{2}x$

. The dineusulers eq. is hence of the form (remoning "~");

 $i\frac{\partial t}{\partial t} h = -\frac{5}{1} \Delta_5 h + \Lambda(x_0) h(x_0) + C(h(x_0))_5 h(x_0)$

The form is secured in any dimension, but $\nabla_{10}^2 = \frac{3^1}{6x^1}$; $\nabla_{20}^2 = \frac{3^2}{6x^2} + \frac{3^2}{6y^2}$; $\nabla_{30}^2 = \frac{3^2}{6x^2} + \frac{3^2}{3y^2} + \frac{3^2}{3y^2}$

. Then - HKIN = TKP2

 $\begin{aligned} & \begin{cases} P_{\text{od}} + W_{\text{od}} \\ & \psi(\vec{x}, t + \Delta t) = e^{-i H \Delta t} \psi(\vec{x}, t) \end{cases} \end{aligned} \qquad \begin{aligned} & e^{u \mu \Delta t} \psi(\vec{x}, t) & \text{in several} \\ & J_{\text{meg}} + W_{\text{od}} \\ & \psi(\vec{x}, t + \Delta t) = e^{-u \Delta t} \psi(\vec{x}, t) \end{aligned} \qquad \begin{aligned} & u = \begin{cases} -\Delta & \to \text{im} + W_{\text{od}} \\ -i & \to \text{is} \end{cases} \end{aligned}$

· Alpoitum: FFT [euhor At \(\var{x},t)]] = \(\var{x},t+At) with FFT the Found Transfork D dinensins.

· Hence: 1) U is like in 1)
2) G is a number

3) At is a number $K^2 = Kx^2 + kx^2 = in 2D$ 4) $|\vec{K}|^2$ is also a number $K^2 = kx^2 + kx^2 + kx^2 = in 3D$