SISTEMI DI REGOLAZIONE

- · Regolatori standard
- Metodo di Ziegler Nichols

06/05/2010

Terza Universita' degli studi di Roma

G.U -FdA- 1

REGOLATORI STANDARD

$$U(s) = costante = U/s + R(s) \rightarrow P(s)$$

$$1/K$$

$$Y(s) = KU(s) + W_z(s)Z(s)$$

- Nella regolazione si vuole che $\lim_{s\to 0} s(W_z(s)\frac{1}{s}) = 0$ (o almeno un valore molto piccolo)
- Il più completo è il PID

PID(s) =
$$K_P + \frac{K_I}{s} + K_D s = \frac{K_D s^2 + K_P s + K_I}{s}$$

06/05/2010

Terza Universita' degli studi di Roma

ANALISI DELLE AZIONI

assumendo Kd=1

K_o: azione Proporzionale

$$W \!=\! \frac{K_{\scriptscriptstyle P} P(s)}{1 \!+\! K_{\scriptscriptstyle P} P(s)} \hspace{0.5cm} K_{\scriptscriptstyle P} \! \rightarrow \! \infty \hspace{0.5cm} W \! \rightarrow \! 1$$

- + Aumenta la banda passante
- + Riduce l'effetto di variazioni parametriche e disturbi
- Riduce i margini di stabilità

 $\frac{K_I}{}$: azione Integrale

$$W = \frac{\frac{K_I}{s} \cdot P(s)}{1 + \frac{K_I}{s} \cdot P(s)} = \frac{K_I P}{s + K_I P} \quad s \to 0 \cong t \to \infty \quad W(s) \to 1$$

- + Azzera l'effetto di disturbi e variazioni parametriche a valle, sull'uscita a regime
- Riduce la banda passante
- Riduce molto i margini di stabilità

06/05/2010

Terza Universita' degli studi di Roma

G.U -FdA- 3

ANALISI DELLE AZIONI

K_Ds: azione Derivativa

"Prevede l'andamento dell'errore"

- + Migliora i margini di stabilità (m_o + 90°)
- + Riduce la sovraelongazione e i transitori
- Usato da solo (MAI!), azzererebbe il guadagno per $\omega \rightarrow 0$ (\equiv anello aperto).
- Enfatizza le alte frequenze (rumori ?)
- Sollecita gli attuatorı. Non è realizzabile, approx= $\frac{K_{\ D} \, s}{1 + \, \epsilon \, s}$

In genere si usa un mix di azioni: P, PI, PD, PID

06/05/2010

Terza Universita' degli studi di Roma

PREDISPOSIZIONE DEI REGOLATORI

Premessa:

- a) Sappiamo poco del processo
- b) Abbiamo specifiche generiche
- c) Il comportamento a regime dipende da F(j ω) per $\omega \cong 0$
- d) Il comportamento al transitorio dipende da F (j ω) per $\omega \cong \omega_T$

Spesso ci basta determinare un guadagno accettabile (quindi un ω_T) e qualche informazione su $F(j\omega)$.

06/05/2010

Terza Universita' degli studi di Roma

1° METODO DI ZIEGLER - NICHOLS

- 1) $K_D = K_I = 0$;
- 2) Aumentare $K_P\,$ da 0 fino a $K_{PL}\,$ quando si hanno oscillazioni persistenti di periodo T_L . Si ha: $\omega_L = 2\pi/T_L$; $m\phi = m_G = 0$.

$$R(s) = K_P (1 + \frac{1}{\tau_I s} + \tau_D s)$$
 Utilizzare i valori che

soddisfano:

	K_P/K_P	τ_D/T_L	τ_I/T_L
Р	0.5	-	-
PD	0.5	0.2	-
ΡI	0.45	-	0.85
PID	0.6	0.125	0.5

06/05/2010

Terza Universita' degli studi di Roma

G.U -FdA- 9

2° METODO DI ZIEGLER - NICHOLS

- 1) $K_1 = K_D = 0$
- 2) K_P=K_{PO} qualsiasi
- 3) Applicare un gradino all'ingresso, registrare l'uscita

Si assume $T_1 = 4Tm$;

$$K_L = \frac{2T}{T_m \cdot K_{PROC}}$$

- •Valori più approssimati del precedente però non si innescano oscillazioni.
- •Entrambi danno solo valori di massima anche a causa della difficoltà di misura.
- •Oggi: vedi relais

06/05/2010

Terza Universita' degli studi di Roma

Impianto stabile con un polo reale e due poli compl. coniugati Portato all'oscillazione fornisce KpL=18 e TL=2 Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polo reale e due poli compl. coniugati Impianto stabile con un polic stabile con un polic stabile coniugati Impianto stabile con un polic stabile con un poli

