B.E. COMPS - MAY 18

والاستعادة والدواؤونية والمعدد والمعادية

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai)

Find clusters using K-means, if we have several objects (4 types of medicines) and each object have two attributes or features as shown in the table below. The goal is to group these objects into K=2 group of medicine based on two features CPH & weight index)

object	Attribute 1(X) Weight	Attribute2(4) PH
Medicine A) 1	s - 1
MedicineB	2	· 1
medicine C	4	3
Medicine D	5	4

Solution

Each object sepresents one point with two attributes (X,Y) that can be sepresented as a coordinate in an attribute space as shown

 $D \in (x_1, y_1) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Euclidean Distance.

Take initial centroids: concider object A & object B as the first centroids

consider initial centroids as $C_1 = (1,1) - C_2(2,1)$

			1,1	2,1
D1 =	7	1,1	10	1
		2,1	1	[0]
		4,3	3.6	2.83
		5,4	5	6 4.24

Distance is calculated using Euclidean distance metric.

creating clusters based on distance.

Recalculating mean values

$$CI = (1,1)$$

$$c_2 = \frac{2+4+5}{3}, \frac{1+3+4}{3} = (3.66, 2.66)$$

والمراجع والتلواقيين فالمصدر والمراجع

(Approved by AICTE New Delhi & Gott. of Maharashtra, Affiliated to University of Mumbai)

creating distance matrix with newly calculated mean.

D2=		(1,1)	(3.66, 2.66)
	(1,1)	0	3.14
	(2,1)	1	2.36
((4,3)	3.61	0.47
	(514)	5	1.89

The distance matrix is calculated Using Euclidean distance Metric

New clusters as per new mean values & distance matrix.

Recalculating the cluster means

$$C_1 = \frac{1+2}{2}, \frac{1+1}{2} = (1.5, 1)$$

$$C_2 = \frac{4+5}{2}, \frac{3+4}{2} = (9.5, 4.5)$$

creating distance matrix with newly computed

neans.		CI	C2
D3 =		(1.5,1)	(3.5,4.5)
	(111)	10.5	4,30
	(211)	0.5	3.54
	(4,3)	3.20	10.71
- 1 m	(514)	4.61	0.71

$$C_1 = \{(1,1), (2,1)\}.$$

$$C_2 = \{(4,3), (5,4)\}.$$

ette We can stop here as dusters remain unchanged.