Tutorial: Access Distributed NASA Earth Science Data from OPeNDAP Services using Matlab

Author: ORNL DAAC
Date: April 10, 2018

Contact for ORNL DAAC: uso@daac.ornl.gov

Keywords: OPeNDAP, THREDDS, Matlab, temperature

Overview

In this tutorial, we will explore how to use ORNL DAAC data from THREDDS Data Server through OPeNDAP protocol using Matlab. THREDDS is a web server that provides direct access to scientific data sets and OPeNDAP is a protocol that allows access to remote data without having to download the data. This example uses temporal subset of mean temperature in global 30-year monthly climatology dataset. The mean monthly temperature data is read and its attributes, dimensions and size are retrieved. A subset of mean temperature data in June is created and plotted.

Source Data

Spatial subsets of 30-year(1961-1990) mean monthly surface climate over global land areas, excluding Antarctica. In this example, monthly mean temperature climatology data is obtained from this ORNL DAAC's THREDDS server. Get its OPeNDAP Data URL (https://thredds.daac.ornl.gov/thredds/dodsC/ornldaac/542/climate6190_TMP.nc4) from the OPeNDAP Dataset Access Form.

Prerequisites:

Matlab R2012a or later

Procedure:

1. Retrieve data file and all metadata

```
% Define data access URL
url='https://thredds.daac.ornl.gov/thredds/dodsC/ornldaac/542/climate6190_TMP.nc4';
% Retrieve all the metadata including the groups, dimensions, variable definitions and all attributes in the NetCDF file
ncdisp(url);
```

```
Source:
           https://thredds.daac.ornl.gov/thredds/dodsC/ornldaac/542/climate6190_TMP.nc4
Format:
           classic
Global Attributes:
          Conventions = 'CF-1.0'
                      = 'version 1.0, created on 11/05/2007-10:50'
           institution = 'Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC)'
                      = 'A dataset of mean monthly surface climate over global land areas, excluding Antarctica. Interpolated from station data to
                      = 'CRU05 0.5 Degree 1961-1990 Mean Monthly Climatology (New et al.): Mean Temperature'
           references = 'New, M., M. Hulme, and P.D. Jones. 2000. Global 30-Year Mean Monthly Climatology, 1961-1990 (New et al.). ORNL DAAC, Oak
Dimensions:
           lat = 360
           lon = 720
           nv
           time = 12
Variables:
    lat
           Size:
                       360x1
           Dimensions: lat
           Datatype:
                      double
           Attributes:
                                     = 'lat bnds
                      bounds
```

```
standard_name = 'latitude'
                 long_name = 'latitude'
                              = 'degrees_north'
                 units
climatology_bounds
      Size:
                 2x12
      Dimensions: nv,time
      Datatype: int16
lat_bnds
                 2x360
      Dimensions: nv,lat
      Datatype: double
      Attributes:
                 units = 'degrees_north'
lon_bnds
                 2x720
      Size:
      Dimensions: nv,lon
      Datatype: double
      Attributes:
                 units = 'degrees_east'
time
      Size:
                 12x1
      Dimensions: time
      Datatype: int32
      Attributes:
                 climatology = 'climatology_bounds'
                 long_name = 'month'
                              = 'months since 1960-01'
                 units
                 valid_range = [1 12]
                 standard_name = 'time'
                 _ChunkSizes = 12
lon
                 720x1
      Size:
      Dimensions: lon
      Datatype: double
      Attributes:
                 bounds
                              = 'lon_bnds'
                 long_name = 'longitude'
                  standard_name = 'longitude'
                 units
                            = 'degrees_east'
                 valid_range = [-180 180]
                 ChunkSizes = 720
TMP
                 720x360x12
      Dimensions: lon.lat.time
      Datatype: int16
      Attributes:
                 FillValue = -9999
                 cell_methods = 'time: mean within months time: mean over years'
                 long_name = 'Mean Temperature'
                             = 'degreeC'
                 units
                 valid_range = [0 1000]
                 _ChunkSizes = [6 180 360]
```

2. Read data and information from TMP variable

3. Subset TMP variable along time dimension

-9999

```
% Read and display data from time variable
timeData = ncread(url, 'time');
timeData
```

```
0
1
2
3
4
5
6
7
8
9
```

```
% TMP variable is three-dimensional 720(longitude)x360(latitude)x12(time), We set the start index of time as 6 to subset the data in June
start = [1 1 6];
% Set count of latitude and longitude as Inf to reads data until the end of these two dimensions.
count = [Inf Inf 1];
% Subset mean temperature data in June
subsetdata = ncread(url, 'TMP', start, count);
```

4. Plot your data

```
% create Y vector
Y = ncread(url,'lat');
% create X vector
X = ncread(url,'lon');
% convert data matrix in [Y x X]
C=transpose(subsetdata);
% Draws a pseudo color plot of mean temperature
pcolor(X, Y, C);
colormap(jet);
shading flat;
colorbar;
title('Global 30-Year Mean Monthly Climatology (1961-1990), Mean Temperature in June');
```

