ANN

- · רשתות עצביות משמשות במערכות רבות של למידה חישובית.
 - סווג לא ליניארי.
 - נתבונן בדוגמא הבאה:

אפשר להשתמש ברגרסיה לוגיסטית,באמצעות פולינום עם מספיק איברים כמו:

$$h_{\theta}(x) = g\left(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_3 x_2^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1 x_2^2 + \theta_6 x_1^2 x_2^2 + \theta_7 x_1^2 x_2^3 + \theta_8 x_1^3 x_2^2\right)$$

פתרון כזה יוצר את משטח ההפרדה (--).

• מתאים לוקטור תכונות דו-מימדי.

- בבעיות למידה רבות מספר רב של תכונות הפתרון הקודם לא מתאים.
 - לדוגמא •
- בבעיית הבתים עליה דיברנו, נניח שזוהי בעיית סווג וצריך לסווג את הבתים כבעלי פוטנציאל גבוה או נמוך למכירה –
 - תכונות רבות –
 - ,גודל הבית
 - מספר חדרי השינה,
 - מספר מפלסים,
 - שטח הגינה,
 - גיל הבית,
 - מקומות חנייה וכו'.

6/12/2018

בבעיית גילוי ה- spam – (או באופן כללי בבעיית זיהוי טקסט) וקטור התכונות עשוי להכיל מילון של 10000-50000 מלים.

AARDVARK

AARDWOLF AARON

ABACK ABACUS

ABAFT ABALONE

ABANDON

ABANDONED

ABANDONMENT

ABANDONS ABASE

ABASED

ABASEMENT ABASH

ABASHED ABATE

ABATED

ABATEMENT

ABATES ABATTOIR

ABATTOIRS ABBE

ABBESS ABBEY

ABBEYS ABBOT

ABBOTS

ABBREVIATE

ABBREVIATED

ABBREVIATES

ABBREVIATING

ABBREVIATION

ABBREVIATIONS

ABDICATE

ABDICATED

4^{···}

- עבור 100 תכונות –
 אם ננסה לכלול את כל התכונות הקוודרטיות בלבד –
 כלומר:
- $x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_{100}, \dots, x_1^2, x_2 x_3, \dots x_{100}^2$ $\approx o(n^2), \approx n^2/2 = 5000 \text{ features}$

אפשר לכלול רק תת-קבוצה של התכונות המוצעות, לדוגמא:

$$x_1^2, x_2^2, \dots, x_{100}^2$$

- התאמת משטחי הפרדה כמו אליפסות, אך לא משטחים יותר
 מורכבים הדרושים לביצוע מוצלח של הסווג.
- n=100 תכונות מקוריות מספר התכונות עשוי לעלות על 150,000.

$$\approx o(n^3)$$
 , $\approx 170,000$ features

• יותר מדי תכונות: 1. התאמת יתר 2. חישוביות

6/12/2018

?האם יש דרך מוצלחת יותר לבנות מסווג לא ליניארי

ייצוג המודלים ברשתות עצביות

תיאור של נוירון בודד: מבנה של נוירון אופייני.

- ניתן להבחין במרכיבים הבאים:
- Dendrites ערוצי כניסה" מנוירונים אחרים 1. דנדריטים:
 - 2. גוף התא: המרכיב ה"חישובי" Soma
- 3. אקסונים וחיבורים סינפטיים: ערוצי היציאה לנוירונים אחרים (Axons)

מודל של תא עצב (נוירון) בודד

bias unit $x_0 = 1$

מודל של נוירון – מימוש פשטני:

output
$$\Rightarrow h_{\theta}(x) \qquad x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$$
extation

(dendrites)

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}\left(x\right) = \frac{1}{1 + e^{-\theta^{T}x}}$$

9

מודל של תא עצב (נוירון) בודד

bias unit $x_0 = 1$

(dendrites)

למעשה זוהי יחידה לוגיסטית •

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

פונקציית האקטיבציה היא פונקציה סיגמואידית

$$g\left(z\right) = \frac{1}{1 + e^{-z}}$$

• הפרמטרים נקראים לעתים משקלות.

רשת עצבית

שכבה 1 Input layer שכבה 2 Hidden layer שכבה 3 Output layer

רשת עצבית

צבור הרשת הנ"ל נשתמש בסימונים הבאים:

 $a_i^{(j)}$ – j -האקטיבציה של הנוירון ה-i בשכבה ה-i בשכביה של המיפוי) - מטריצת משקלות (או פרמטרים השולטים על המיפוי)

(j+1 -מהשכבה ה- j לשכבה ה- (j+1

לדוגמא: האקטיבציה של הנוירון הראשון בשכבה השניה

 $a_1^{(2)}$ – (hidden layer -ה)

רשת עצבית סימון המשקלות (weigts)

j -ם בשכבה בשכבה ו בשכבה ה- $\theta_{ki}^{(j)}:j+1$ בשכבה בשכבה ה- k

 $a_i^{(j)}$

6/12/2018

רשת עצבית

: נציג את החישובים שמתבצעים ברשת

$$a_{1}^{(2)} = g \left(\theta_{10}^{(1)} x_{0} + \theta_{11}^{(1)} x_{1} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3} \right)$$

$$a_{2}^{(2)} = g \left(\theta_{20}^{(1)} x_{0} + \theta_{21}^{(1)} x_{1} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3} \right)$$

$$a_{3}^{(2)} = g \left(\theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{1} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3} \right)$$

14

שכבת היציאה (מכילה במקרה זה נוירון אחד):

$$h_{\theta}(x) = a_1^{(3)} = g\left(\theta_{10}^{(2)}a_0^{(2)} + \theta_{11}^{(2)}a_1^{(2)} + \theta_{12}^{(2)}a_2^{(2)} + \theta_{13}^{(2)}a_3^{(2)}\right)$$

הרשת מכילה 3 יחידות כניסה ו-3 יחידות חבויות ולכן:

$$\Theta^{(1)} \in R^{3x4}$$

רשת עצבית

באופן כללי, אם לרשת Sj יחידות בשכבה ה- jו- j_{j+1} יחידות Sj יחידות בשכבה j+1 אז מטריצת המשקלות תהיה מטריצה עם: j+1 מימדים.

$$a_1^{(2)} = g \left(\theta_{10}^{(1)} x_0 + \theta_{11}^{(1)} x_1 + \theta_{12}^{(1)} x_2 + \theta_{13}^{(1)} x_3 \right)$$

$$a_2^{(2)} = g \left(\theta_{20}^{(1)} x_0 + \theta_{21}^{(1)} x_1 + \theta_{22}^{(1)} x_2 + \theta_{23}^{(1)} x_3 \right)$$

$$a_3^{(2)} = g \left(\theta_{30}^{(1)} x_0 + \theta_{31}^{(1)} x_1 + \theta_{32}^{(1)} x_2 + \theta_{33}^{(1)} x_3 \right)$$

: נסמן

$$z_{1}^{(2)} = \theta_{10}^{(1)} x_{0} + \theta_{11}^{(1)} x_{1} + \theta_{12}^{(1)} x_{2} + \theta_{13}^{(1)} x_{3}$$

$$z_{2}^{(2)} = \theta_{20}^{(1)} x_{0} + \theta_{21}^{(1)} x_{1} + \theta_{22}^{(1)} x_{2} + \theta_{23}^{(1)} x_{3}$$
17
$$z_{3}^{(2)} = \theta_{30}^{(1)} x_{0} + \theta_{31}^{(1)} x_{1} + \theta_{32}^{(1)} x_{2} + \theta_{33}^{(1)} x_{3}$$

: כאשר

$$a_2^{(2)} = g(z_2^{(2)})$$

$$a_3^{(2)} = g\left(z_3^{(2)}\right)$$

$$Z_i^{(j)}$$

i -הוא קלט לנוירון ה z_i הוא מה- כל אחד מה- j, ובמקרה זה לשכבה בשכבה ה- j

:נגדיר באופן מטריצי

$$x = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad z^{(2)} = \begin{pmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{pmatrix}$$

$$z^{(2)} = \Theta^{(1)} x = \begin{pmatrix} \theta_{10}^{(1)} & \theta_{11}^{(1)} & \theta_{12}^{(1)} & \theta_{13}^{(1)} \\ \theta_{20}^{(1)} & \theta_{21}^{(1)} & \theta_{22}^{(1)} & \theta_{23}^{(1)} \\ \theta_{30}^{(1)} & \theta_{31}^{(1)} & \theta_{32}^{(1)} & \theta_{33}^{(1)} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$a_2^{(2)} = g\left(z_2^2\right) \in \mathbb{R}^3$$

 $\mathbf{x} = \mathbf{a}^{(1)}$ מטעמי עקביות אפשר לסמן את שכבת הכניסה $\mathbf{a}^{(1)}$, כלומר ולכן: $z^{(2)} = \Theta^{(1)} a^{(1)}$

$$a_0^{(2)} = 1$$
 : את החבויה את מכבה החבויה

$$a_0^{(2)}=1$$
 : את החבויה את $a_0^{(2)}=1$ $z^{(3)}=\Theta^{(2)}a^{(2)}$ $z^{(3)}=\Theta^{(2)}a^{(2)}$ $z^{(2)}=\begin{pmatrix}a_0^{(2)}\\a_1^{(2)}\\a_2^{(2)}\\a_3^{(2)}\end{pmatrix}$: רשר $a^{(2)}=\begin{pmatrix}a_0^{(2)}\\a_1^{(2)}\\a_2^{(2)}\\a_3^{(2)}\end{pmatrix}$

20 6/12/2018

$$h_{ heta}\left(x
ight)=a_{1}^{(3)}=g\left(z^{(3)}
ight)$$
 : נהיציאה של הרשת היא אם כן
$$z^{(3)}=\Theta^{(2)}a^{(2)}$$
 : כאשר

Forward Propagation

ה- Forward Propagation עוזר להבין מה הרשת מבצעת, ואיך היא מאפשרת ליצור היפותיזות לא ליניאריות

נתבונן בחלק השמאלי של הרשת בלבד

מה שהרשת מבצעת כאן זהה לרגרסיה לוגיסטית:

$$h_{\theta}(x) = a_{1}^{(3)} = g(z^{(3)}) = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

תצורות רשת נוספות

אפשר לבנות רשת בתצורות שונות:

שכבות חבויות Hidden layers

תצורות רשת נוספות

Feedforward Networks רשתות אלה נקראות

דוגמא לעבודת הרשת על קלט לא ליניארי

כיצד רשת עצבית עובדת על קלט מורכב לא ליניארי , וכיצד רשת יכולה ללמוד היפותיזות לא ליניאריות מורכבות?

זוהי דוגמא פשוטה של ה- data משמאל

אלגוריתם הלימוד להתאמת פרמטרים

נדבר עתה על פונקציית המחיר.

נסמן את הרשת הבאה:

שכבה 1 Input layer Hidden layer

שכבה 2

שכבה 3 Hidden layer

שכבה 4 Output layer

26 6/12/2018

אלגוריתם הלימוד להתאמת פרמטרים

נניח שנתונות דוגמאות האימון הבאות:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ...(x^{(m)}, y^{(m)})\}$$

L=4 סה"כ השכבות ברשת. במקרה הזה - L - סה"כ השכבות ברשת. במקרה הזה l - מספר היחידות (ללא ה- Bias) בשכבה ה- s_l - מספר היחידות (ללא ה- $s_1=3, \quad s_2=5, \quad s_4=s_L=1$

במקרה של סווג בינארי דרושה יחידת פלט אחת, והתיוג $y=0 \ or \ y=1$

$$h_{\Theta}(x) \in R$$
$$S_L = 1$$

Multiclass classification סווג רב מחלקתי

מחלקות k=4 -סווג ל- k=4 מחלקות לדוגמא אוג ל- k=4

$$y \in R^{k}, \quad y = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

לדוגמא – מצב מזג האוויר: שמשי, מעונן, גשום, <mark>מושלג</mark> (סה"כ צריך k יחידות פלט)

$$h_{\Theta}(x) \in R^4$$
$$S_L = 4$$

פונקציית המחיר עבור רשת עצבית

פונקציית המחיר עבור הרגרסיה הלוגיסטית:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^m y^{(i)} \log((h_{\theta}(x^{(i)})) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)})) + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$$
 איבר הרגולריזציה (ללא θ_0)

עבור רשת עצבית נבצע הכללה של פונקציית המחיר.

פונקציית המחיר עבור רשת עצבית

עבור רשת עצבית נבצע הכללה של פונקציית המחיר:

$$\begin{split} h_{\Theta}(x) &\in R^K \quad (h_{\Theta}(x))_i = i^{th} \; output \\ J(\theta) &= -\frac{1}{m} \Biggl(\sum_{i=1}^m \sum_{k=1}^K y_k^{(i)} \log((h_{\theta}(x^{(i)}))_k + (1-y_k^{(i)}) \log(1-h_{\theta}(x^{(i)})_k) \Biggr) \\ &+ \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^n (\Theta_{ji}^{\;\;l})^2 \\ \text{עבור כל הדוגמאות} \end{split}$$

בהמשך נבצע אופטימיזציה עבור פונקציית המחיר הנייל

Backpropagation -אלגוריתם ה

 $\min_{\Theta} J(\Theta)$:נדבר על אלגוריתם למיזעור פונקציית המחיר

 $J(\Theta)$ כדי למזער את פונקציית המחיר נצטרך לחשב את:

$$\frac{\partial}{\partial \Theta_{ii}^{l}}J(\Theta), \quad \Theta_{ij}^{l} \in R$$

 Θ_{ij}^{l} איך נחשב את הנגזרת החלקית לפי