Projeto-Internet das Coisas

- Erika Maschio Dos Santos maschioerikal@gmail.com
- Giovana Bernardes da Silva bgiovana622@gmail.com

Cardiotech-Leitor de Frequência Cardíaca

A CardioTech visa não apenas criar um produto inovador, mas também impactar positivamente a vida das pessoas ao oferecer uma solução acessível e confiável para o monitoramento da saúde cardiovascular.

Nosso leitor não se limita a simplesmente registrar a frequência cardíaca; ele representa um avanço na integração entre tecnologia e praticidade do uso diário.

Utilizando a robustez do Arduino Uno e uma tecnologia de sensoriamento, nosso dispositivo proporcionará aos usuários a capacidade de monitorar sua saúde cardiovascular de forma contínua e precisa. Isso não só permite que eles estejam conscientes de seu estado de saúde em tempo real, mas também facilita a detecção precoce de possíveis irregularidades no ritmo cardíaco, proporcionando uma janela de oportunidade para intervenções preventivas.

Ao oferecer um dispositivo portátil, versátil e de fácil uso, a CardioTech está comprometida não apenas com a qualidade do produto, mas também com o bem-estar e a segurança dos seus usuários. Estamos determinados a estabelecer novos padrões de excelência no mercado de dispositivos de saúde pessoal, tornando o monitoramento da frequência cardíaca uma parte integrante e acessível da rotina diária de cuidados com a saúde.

Benefícios do Produto:

01

Precisão e Confiabilidade:

Nosso leitor oferecerá resultados precisos para que os usuários possam confiar nas informações obtidas.

02

Portabilidade e Versatilidade:

Design compacto e leve que facilita o transporte e permite o monitoramento conveniente em qualquer lugar.

03

Promoção da Saúde Pessoal:

Ao facilitar o monitoramento regular da frequência cardíaca, o produto incentivará hábitos saudáveis e permitirá que os usuários tomem medidas preventivas para manter sua saúde cardiovascular.

Materiais utilizados:

Arduino Uno, tela OLED 128×32, sensor MAX30102, campainha, tinkercad

Concorrentes:

Empresas de tecnologia: Apple, Samsung e Garmin

Startups especializadas em saúde e bem-estar: Fitbit, Withings, Whoop, entre outras.

Empresas de dispositivos médicos: Medtronic, Philips e Abbott.

Respostas da pesquisa

Link do formulário: https://forms.gle/E73UzTV8N7Rx7kgY7

Nome	Qual é o seu interesse em leitores de frequência cardíaca?	Quais funcionalidades você considera mais importantes ?	Você estaria disposto a investir em um leitor de frequência cardíaca ?
Daniela Maschio	Muito interessado	Precisão nas medições	Sim
Isabela Maschio	Interessado	Análise de dados em tempo real	Sim
Vilma Madrid	Muito interessado	Precisão nas medições	Sim
Celso Maschio	Interessado	Precisão nas medições	Sim
Israel Vieira	Interessado	Precisão nas medições	Talvez
Alessandro Lima	Muito interessado	Precisão nas medições	Sim
Maiara Monteiro	Interessado	Precisão nas medições	Talvez
Andrey Mottola	Interessado	Precisão nas medições	Sim
Grasi Vieira	Interessado	Análise de dados em tempo real	Não
Luan Ramos	Pouco interessado	Facilidade de uso	Talvez
Celo Duarte	Interessado	Conectividade com aplicativos móveis	Talvez
Vivian Da Silva	Pouco interessado	Análise de dados em tempo real	Não
Lorenzo Camaciel	Interessado	Análise de dados em tempo real	Não
Mateus	Pouco interessado	Análise de dados em tempo real	Sim
Vitor Gabriel	Pouco interessado	Facilidade de uso	Sim
Francisco Lopes	Interessado	Precisão nas medições	Sim
Eduardo Pinto	Pouco interessado	Análise de dados em tempo real	Talvez
Rebeca Bueno	Muito interessado	Análise de dados em tempo real	Sim
Biel Reupert	Interessado	Precisão nas medições	Talvez
Guilherme Vaz	Interessado	Precisão nas medições	Talvez
Adam Kisa	Interessado	Facilidade de uso	Talvez
Nicolas heberle	Muito interessado	Portabilidade	Sim
Camile Schicht	Pouco interessado	Conectividade com aplicativos móveis	Não
Henrique mds	Não interessado	Análise de dados em tempo real	Não
Nathalia Flores	Pouco interessado	Precisão nas medições	Sim
Weslleys Lemos	Não interessado	Precisão nas medições	Não

· Erika Maschio Dos Santos maschioerika1@gmail.com

· Giovana Bernardes da Silva bgiovana622@gmail.com

O nosso projeto consiste na criação de um protótipo de um sensor de batimentos cardíacos, onde serão utilizadas ferramentas como o Arduino Uno, uma placa de ensaio, um sensor ultrassônico, um sensor PIR, um micro servo, um led, dois Lcd's 16x2, um gerador de funções e um osciloscópio.

O aparelho tem como objetivo proporcionar aos usuários a possibilidade de monitorar sua saúde cardiovascular de forma simples e precisa, tornando o monitoramento da frequência cardíaca acessível de forma descomplicada e objetiva.

2/7

Arduino Uno

Placa de ensaio

3/7

Led

Sensor ultrassônico

4/7

Sensor PIR

Micro servo

5/7

Lcd 16x2

Gerador de funções

Osciloscópio

7 / 7

Circuito pronto

Projeto Internet das coisas

Giovana Bernardes da Silva - bgiovana622@gmail.com

Erika Maschio Dos Santos - maschioerika1@gmail.com

Código do projeto:

O sistema consiste em analisar os dados da frequências cardíacas de um pessoa em um certo intervalo de tempo.

E, após isso, retornar o status dos batimentos medidos que serão divididos em quatro status;

Status: Normal (de 1hz a 1.2 hz)

Quando a media dos batimentos cardíacos esta normal.

Status: Bom (entre 1.2hz a 1.5hz)

Quando a media dos batimentos cardíacas esta boa.

Status: Alerta (entre 1.5 hz e 2.2 hz)

Quando a media dos batimentos cardíacos esta alta.

Status: Perigo (2.2 hz ou mais)

Quando a media dos batimentos cardíacos esta muito alta

Componentes:

1 Servo motor;

1 Sensor PIR;

1 Osciloscópio;

1 Sensor ultrassônico;

```
1 Gerador de funções;
  2 Lcds 16x2;
  1 Led Vermelho;
*/
#include <LiquidCrystal.h>
#include <Servo.h>
#define trig 5
#define echo 4
LiquidCrystal lcd1(6,7,10,11,12,13);
LiquidCrystal lcd2(8,9,10,11,12,13);
Servo motor;
// Recebera a leitura do gerador de funções;
int leitura;
// Variável usada para controle do servo motor
```

```
int pos = 0;
  Variáveis time e dist serão responsáveis por armazenar, respectivamente,
  o tempo que a onda sonora emitida pelo sensor demorou para chegar à
  pessoa até o sensor, e a distância que este esta do sensor.
  Onde a dist é a metade da distância percorrida pela onda, que será
  calculada usando a fórmula => delta X = v*delta T, onde v é a velocidade
  do som no ar, à temperatura ambiente, v ~ 340,29 m/s;
*/
int time, dist;
// Acumula a diferença entre os tempos (em milisegundos) do ligar e apagar do led, para
checagem da frequências media dos batimentos cardíacos
float mediaDif, ciclosCounter;
// Variáveis responsáveis por armazenar, respectivamente, o tempo (em milisengundos)
do acender do led, do apagar, e para o calculo da diferença entre esses tempos
float timeStart, timeEnd, timeDif;
// Variável responsável por indicar se pessoa foi detectada pelo sensor pir para ativar o
sistema
bool presenca = false;
// Variáveis responsáveis por indicar o inicio e fim de leitura do gerador de funções
bool startLeitura, leituraCompleta;
```

```
// Variáveis responsáveis por setar a aparição da dica correta no lcd uma única vez após
a leitura ser completada
bool dica_1, dica_2, dica_3, dica_4, ciclo;
// Variáveis que representa, respectivamente, o limite de contagem dos ciclos e o
contador de ciclos
const byte counterLimit = 50;
byte counter;
void setup()
 // Inicializa os displays
 Serial.begin(9600);
 lcd1.begin(16,2);
 lcd2.begin(16,2);
 // Inicializa as variáveis globais
 varsStart();
 // Inicializa os pinos para os leds e os componente do sistema
 pinMode(2, OUTPUT); // Servo motor
 // Pinos para os leds
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
```

```
pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(12, OUTPUT);
 pinMode(13, OUTPUT);
 pinMode(A3, OUTPUT); // Pino para o led vermelho
 pinMode(A2, INPUT); // Pino para gerador de funções
 pinMode(trig, OUTPUT); // Sensor ultrassônico
 pinMode(echo, INPUT); // Sensor ultrassônico
 // Inicializa o servo motor
 motor.attach(2);
 motor.write(0);
 // Pino de interrupção para o sensor pir
 pinMode(3, INPUT);
 attachInterrupt(digitalPinToInterrupt(3), acionar, RISING);
}
void loop()
{
 if (presenca) // O sistema será ativado assim que for detectado alguma movimento pelo
sensor pir
 {
  lcd1.display();
```

```
lcd2.display();
 proxySensor();
 servoMotor();
 statusCheck();
 /*
  Se a distancia do dedo da pessoa ao sensor for menor
  que 0.18 m e a leitura não estiver completa, a função
  freqCardica será chamada.
 */
 if (dist <= 180 && !leituraCompleta)
   freqCardiaca();
}
else
 analogWrite(A3, 0);
 lcd1.noDisplay();
 lcd2.noDisplay();
}
Função freqCardiaca(): será executada sempre que a leitura
```

não estiver completa, e o contador não chegar a seu limite

máximo devido anteriormente (50 ciclos).

A lógica implementada na função segue a seguinte ideia: se o dado lido pelo gerador de funções estiver entre]-400, 400[o led vermelho será aceso, caso contraio, será desligado.

Apos acionar o led, será armazenado o instante em que ele foi aceso, e, após desligar, será armazenado o tempo que foi desligado.

Se a diferença entre os tempos for muito pequena, significa que o led acendeu e apagou rápida, seguindo a lógica dada pela formula f = 1/T. Logo, terá uma frequências alta.

E, se caso a diferença entre os tempos for alta, a frequências será baixa. Para uma melhor estimativa dos dados da frequências cardíaca, será feito um calculo onde o tempo total dos batimentos no ciclo definido no projeto (50 ciclos no loop do arduino) será dado pelo período medio. Logo a frequências calculada será a frequências media dos batimentos cardíacos nos 50 ciclos definidos no código.

```
*/
void freqCardiaca()
{
  if (counter != counterLimit)
  {
```

```
leitura = analogRead(A2);
if (leitura > 400 || leitura < -400)
{
  delay(20);
  analogWrite(A3, 255);
  delay(20);
  timeStart = millis();
}
else
{
  delay(20);
  analogWrite (A3, 0);\\
  delay(20);
  timeEnd = millis();
  ciclo = true;
}
delay(130);
if (ciclo)
 timeDif = timeEnd - timeStart; \\
```

```
if (timeDif < 0)
      timeDif = -timeDif;
   if (timeDif < 1000)
   {
      mediaDif += timeDif;
      ciclosCounter++;
    }
   ciclo = false;
  }
  counter++;
 }
 else
  leituraCompleta = true;
  analogWrite(A3, 0);
  mediaDif /= ciclosCounter;
 }
void proxySensor()
```

{

```
// Emite um pulso sonoro de 40 kHz
 digitalWrite(trig, 1);
 delayMicroseconds(10);
 digitalWrite(trig, 0);
 // Retorna a duração do pulso em microsegundos
 time = pulseIn(echo, 1);
 /*
  v \sim 340,29 \text{ m/s} = 34029 \text{ cm/s} = 34029*10^{-6} \text{ cm/us}
  v \sim 0.034029 \text{ cm/us}
  como a distancia até o dedo da pessoa é a metade
  da distância percorrido pelo som, então d = dx/2 = v*dt/2
  d = dt*0.034029/2 \Rightarrow d = dt*0.0170145;
 */
 dist = time*0.0170145;
 delay(10);
}
void servoMotor()
{
 if (dist <= 180 && pos <= 0) servoOpen();
```

```
if (dist > 180 \&\& pos >= 90) servoClose();
}
void servoOpen()
{
 for (pos = 0; pos \le 90; pos += 3)
    motor.write(pos), delay(20);
}
void servoClose()
{
  for (pos = 90; pos >= 0; pos -= 3)
    motor.write(pos), delay(20);
}
void varsStart()
{
 analogWrite(A3, 0);
 leituraCompleta = false;
 startLeitura = false;
 dica_1 = dica_2 = dica_3 = dica_4 = ciclo = false;
 mediaDif = ciclosCounter = timeStart = timeEnd = timeDif = 0;
 counter = 0;
 lcd1.clear();
```

```
lcd2.clear();
}
void statusCheck()
{
 if (dist > 180 && leituraCompleta)
   varsStart();
 else if (dist > 180)
   exibirMsg(7);
 else if (dist <= 180 && counter < counterLimit &&!startLeitura)
   exibirMsg(6);
 else if (dist <= 180 && counter >= counterLimit && leituraCompleta)
   exibirMsg(8);
}
int exibirDica()
{
 int dica;
 if (mediaDif < 330 && mediaDif > 280) //Normal (1 hz à 1.2 hz)
   dica = 1;
```

```
else if (mediaDif <= 280 && mediaDif > 255) //Bom (1.2 hz à 1.5 hz)
   dica = 2;
 else if (mediaDif \leq 255 \&\& mediaDif > 206) //Alerta (1.5 hz à 2.2 hz)
   dica = 3;
 else if (mediaDif <= 206) //Perigo (2.2 hz ou mais)
   dica = 4;
 exibirMsg(dica);
 return dica;
}
void printLcd1Status()
{
 lcd1.setCursor(0,1);
switch (exibirDica())
 {
  case 1:
   lcd1.print("Status: Normal");
  break;
  case 2:
   lcd1.print("Status: Bom");
```

```
break;
  case 3:
   lcd1.print("Status: Alerta!");
  break;
  default:
   lcd1.print("Status: Perigo!");
  break;
 }
}
// Função responsável por exibir as mensagens nos leds;
void exibirMsg(int index)
{
 switch (index)
  case 1:
   dica1();
  break;
  case 2:
   dica2();
  break;
  case 3:
   dica3();
  break;
```

```
case 4:
   dica4();
  break;
  case 5:
   msgDados();
  break;
  case 6:
   msgAnalise();
  break;
  case 7:
   msgAproximar();
  break;
  default:
   msgReaproximar();
  break;
 }
}
void msgDados()
{
if ((dica_1 == dica_2) && (dica_3 == dica_4))
 {
  lcd2.clear();
  lcd1.clear();
  lcd2.setCursor(0,0);
```

```
lcd2.print("Dados analisados");
  delay(1500);
  lcd2.clear();
 }
 lcd1.clear();
 lcd1.setCursor(0,0);
 lcd1.print("Analisado!");
 printLcd1Status();
}
void msgAnalise()
{
 startLeitura = true;
 analogWrite(A3, 0);
 lcd2.clear();
 lcd1.clear();
 lcd1.setCursor(0,0);
 lcd1.print("Analisando...");
 lcd2.setCursor(0,0);
 lcd2.print("Aguarde...");
 delay(1000);
 lcd2.clear();
 lcd2.setCursor(0,1);
```

```
lcd2.print("Coletando dados!");
 delay(1000);
lcd2.clear();
}
void msgAproximar()
{
lcd2.clear();
lcd2.setCursor(0,0);
lcd2.print("Ola! ");
 delay(1000);
 lcd2.clear();
lcd2.setCursor(0,0);
lcd2.print("Aproxime seu dedo do sensor!");
 delay(1000);
 for (int i = 0; i < 12; i++)
    lcd2.scrollDisplayLeft(), delay(106);
 delay(200);
 lcd2.clear();
}
void msgReaproximar()
{
 startLeitura = false;
```

```
msgDados();
 lcd2.clear();
 lcd2.setCursor(0,1);
 lcd2.print("Para uma nova leitura, reaproxime");
 delay(500);
 for (int i = 0; i < 17; i++)
    lcd2.scrollDisplayLeft(), delay(106);
 delay(500);
 lcd2.clear();
 lcd2.setCursor(0,1);
 lcd2.print("o dedo do sensor");
 delay(1000);
 lcd2.clear();
}
// Dicas;
void dica1()
 if (dica_1 == false)
 {
  dica_1 = true;
  lcd2.clear();
  lcd2.setCursor(0,0);
```

```
lcd2.print("Status: Normal!");
  delay(1000);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Para manter esse status, mantenha uma");
  delay(500);
  for (int i = 0; i < 21; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(800);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Alimentacao Saudavel!");
  delay(300);
  for (int i = 0; i < 6; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(1500);
 }
void dica2()
 if (dica_2 == false)
  dica_2 = true;
  lcd2.clear();
```

```
lcd2.setCursor(0,0);
  lcd2.print("Status: Bom!");
  delay(1000);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Para melhorar o status,");
  delay(700);
  for (int i = 0; i < 7; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(800);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Adote uma Alimentacao Saudavel!");
  delay(200);
  for (int i = 0; i < 14; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(1500);
 }
void dica3()
if (dica_3 == false)
 {
  dica_3 = true;
```

{

```
lcd2.clear();
  lcd2.setCursor(0,0);
  lcd2.print("Status: Alerta!");
  delay(1000);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Pode ser nervosismo ou algo grave.");
  delay(500);
  for (int i = 0; i < 19; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(800);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Recomenedamos que procure um medico!");
  delay(200);
  for (int i = 0; i < 20; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(1000);
 }
void dica4()
 if (dica_4 == false)
 {
```

```
dica_4 = true;
  lcd2.clear();
  lcd2.setCursor(0,0);
  lcd2.print("Status: Ruim!");
  delay(1000);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("Nada bom, recomendamos");
  delay(500);
  for (int i = 0; i < 6; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(500);
  lcd2.clear();
  lcd2.setCursor(0,1);
  lcd2.print("que procure um medico!");
  delay(300);
  for (int i = 0; i < 6; i++)
     lcd2.scrollDisplayLeft(), delay(106);
  delay(1500);
 }
// Se a função for chamada, resetara todas as variáveis e desligara o sistema
void acionar() {
 presenca = !presenca;
```

```
varsStart();
lcd1.noDisplay();
lcd2.noDisplay();
if (pos >= 90) servoClose();
}
```