Frequency Division Multiplexing using Coherent and Envelope Detector

PREPARED BY:

1706136 SAMIN ZAWAD

1706162 SUDIPTA SAHA

1706170 ARPANSUR

1706171 A.K.M. MOINUDDIN SIDDIQUE

1706182 FAHIM SHAHRIAR

SUBMITTED TO:

SUBMITTED ON:

COURSE:

Introduction

This project implements AM DSB-WC in proteus.

- There are multiple users at the input.
- Each user's message is modulated with different carrier frequency.
- The modulated signals were sent signal through same transmission channel.
- At receiver side, the signals were demodulated for each user.
- Coherent and non-coherent detection is shown
- Controller is kept so that user can control the modulation index at which he wants to transmit the signal.
- User is able to properly demodulate signal at receiver side even if he uses overmodulation.

FDM Theory

Fdm theory

Proteus Circuit

Band Pass Filter

Band Pass Filter

INPUT MESSAGE SIGNALS

User Guide

Demodulation Selector Message 1

Demodulation Selector Message 2

Amplitude Modulator: Class C Amplifier

Tank Circuit Parameters

$$fr = \frac{1}{2\pi\sqrt{LC}}$$

Carrier Frequency, $f_c = Resonant Frequency, f_r$

Theoretical Efficiency: 90%
Power Consumption: Very Low

Amplitude Modulation FFT and Outputs

 $F_c=10kHz$ Sidebands: $(F_c - F_m)$ at 9kHz $(F_c + F_m)$ at 11kHz

UNDERMODULATED (m = 0.3)

FULLY MODULATED (m = 1.0)

OVERMODULATED (m = 1.22)

Signal Channel Simulation Using Adder

ADDER OUTPUT FOR 2 MODULATED INPUT SIGNALS

FFT SHOWS 2 x DSB-WC at 10kHz and 20kHz

Filters Used in Project

NARROW BANDPASS FILTER WITH f_r= 10kHz

$$B = \frac{0.1591}{RC} = \frac{fr}{Q}, \qquad Rr = \frac{R}{2Q^2 - 1}$$

Quality Factor, Q = 10 Bandwidth, B = 1kHz

Filters Used in Project

Two -40dB/decade Low Pass Butterworth Filters (Cascaded) $f_c = 1.5 \text{ kHz}$

$$fc = \frac{0.707}{2\pi RC}$$

Cutoff Frequency (fc) = 1.5kHz

Envelope Detector Details

The Envelope Detector's output shows a distorted waveform containing high frequency components which will later be filtered by the Low Pass Filter and amplified by a 2-stage op-amp.

RC is the Inverse of Geometric Mean of fc and fm.

$$RC = \frac{1}{\sqrt{fc.fm}}$$

Diode Detector Message 1

Product Detector Details

$$Output(W) = \frac{(X1 - X2)(Y1 - Y2)}{10} + Z$$

DC Block Capacitor and 2 Stage Amplifier

To keep op-amp gain linear, two op amps were used

$$A_{CL} = -\frac{R_f}{R_i}$$

Message 1 Outputs

Msg 1 Input & Envelope Detector Output (m=0.3)

Msg 1 Input & Coherent Detector Output (m=1.22)

Message 2 Outputs

Msg 2 Input & Envelope Detector Output (m=0.3)

Msg 2 Input & Coherent Detector Output (m=1.22)

FFT Analysis: Envelope vs Coherent Detector

Envelope Detector Showing Low Amplitude
Distortion at 2kHz frequency

Coherent Detector Showing No Distortion

Smart Circuit Design: Automatic Demodulation Scheme Selector

Full Wave Rectifier and Voltage Comparator : Message 1

Automatic Coherent / Envelope Selector

Limitations:

- Reconstructed Signal is phase shifted from the original due to capacitors, diodes and other components.
- Op-Amp Slew Rate Problem: Due to high frequency of modulated signal, the output moves slower than input signal causing distorted output.
- 2 Due to op-amp limitations, the carrier frequency cannot be very high.

Conclusion:

3

- Frequency Division Multiplexing is performed in a 2 user scenario
- Message signal is recoverable regardless of modulation index value
- Smart circuit has been designed that can take decision automatically based on modulation index

Project Contributions

Topics	ID
Amplitude Modulator Circuit Design	1706162, 1706170, 1706136
Envelope (Non-Coherent) Detector	1706162, 1706171, 1706182
Product (Coherent) Detector	1706136, 1706182
Bandpass and Lowpass Filter Design	1706170, 1706171
Smart Circuit Idea and Implementation	All

THANK YOU!