Streaming Algorithms

Meng-Tsung Tsai

05/25/2018

Shannon Entropy

Let $X \sim (\Omega, p)$ be a random variable. The *entropy* of X is defined to be

$$H(X) = E[\log_2 1/p(X)].$$

Let Y be a random variable so that

$$p(Y = 0) = 1/2$$
 and $p(Y = 1) = 1/2$,

then H(Y) = 1.

What is the semantics of entropy?

References

- "Lecture Notes of Topics in Information Theory in Computer Science," Braverman (2013)
- "Tight Bounds for Graph Problems in Insertion Streams," Sun and Woodruff (2015)

Shannon Entropy

Let X_1 , X_2 , ..., X_n be i.i.d. copies of random variable X. Let x_1 , x_2 , ..., x_n be the outcomes of X_1 , X_2 , ..., X_n .

Step 1. Alice sends a coded message $f(x_1, x_2, ..., x_n)$ to Bob.

Step 2. Bob recover the outcomes of X_1 , X_2 , ..., X_n by decoding the message and obtaining $g(f(x_1, x_2, ..., x_n))$.

Goal. The protocol ensures that for some constant $\epsilon \geq 0$

$$Pr[g(f(x_1, x_2, ..., x_n)) \neq (x_1, x_2, ..., x_n)] < \varepsilon$$
, and

make the coded message as short as possible, on average.

nH(X)+o(n) upper bounds the length of the shortest code. any $(nH(x) - \Omega(n))$ -length code has the failure rate 1-o(1).

Tail Probabilities of Binomial Distribution

If $k \le n/2$, then $\sum_{0 \le i \le k} C(n, i) \le 2^{nH(k/n)}$.

Let $X_1, X_2, ..., X_n$ be the random bit-string **uniformly sampled** from the set of n-bit string with $\leq k$ 1's.

Then $H(X_1X_2...X_n) = \log(\sum_{0 \le i \le k} C(n, i))$. (Why?)

 $H(X_1X_2...X_n) \le H(X_1) + H(X_2) + ... + H(X_n) = nH(X_1) \le nH(n/k).$

Applications

Tail Probabilities of Binomial Distribution

 $\sum_{0 \le i \le n/4} C(n, i) \le 2^{nH(1/4)}$.

$$H(1/4) = 1/4 * log 4 + 3/4 * log 4/3 \le 0.82$$

$$\Rightarrow \sum_{0 \le i \le n/4} C(n, i) \le 2^{0.82n}$$

$$\Rightarrow Pr[X \sim B(n, 1/2) \le n/4] \le 2^{\Omega(n)}$$

k-EC certificate

Input: a simple undirected graph G

Output: "Yes," if G is k-edge connected; "No," otherwise.

Goal: show that any 1-pass **deterministic** streaming algorithm that decides k-edge-connectivity requires $\Omega(kn \log n)$ bits.

Permutation

Alice is given a permutation of $\{1, 2, ..., n\}$, i.e. $\sigma(1)$, $\sigma(2)$, ..., $\sigma(n)$ and represent the permutation as the concatenation of the binary representation of $\sigma(1)\sigma(2)...\sigma(n)$. Hence, the representation of the permutation has n log n bits.

Bob is given an index k in [1, n log n].

Goal: to answer whether the k-th bit is 0 or 1.

 $R^{1-\text{way}}(\text{Perm}) = \Omega(n \log n)$. (Is Perm related to Index?)

Exercise 1

Show that any streaming algorithm that decides connectivity requires $\Omega(n \log n)$ bits.

Give an space-optimal streaming algorithm.

Exercise 3

Show that any streaming algorithm that decides cycle-freeness requires $\Omega(n \log n)$ bits.

Give an space-optimal streaming algorithm.

Exercise 2

Show that any streaming algorithm that decides bipartiteness requires $\Omega(n \log n)$ bits.

Give an space-optimal streaming algorithm.