CO5412: Optimización No Lineal I.

Enero-Marzo 2011

TAREA 2

- 1. Resuelva el problema mín $x^2 3x$ usando el método de sección aúrea y el método de bisección. Use como intervalo inicial [0,5,2] y como criterio de parada que $|a_k b_k| < \epsilon$ con $\epsilon = 0,2$. Compare el número de iteraciones. Puede estimar el número de iteraciones para el caso en que el intervalo inicial sea $[a_0,b_0]$ cualquiera y $\epsilon = 10^{-5}$?.
- 2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como $f(x,y) = 2x^2 + 2xy 0.5y^2 x 3y$. Sea $x_0 = (1,2)^t$ y $d = (-1,1)^t$.
 - a) Pruebe que d es una dirección de descenso para f en x_0 .
 - b) Encuentre $\alpha = \arg\min_{\alpha>0} f(x_0 + ad)$
- 3. Sea $f: \mathbb{R}^n \to \mathbb{R}$. Demuestre que si M es una matriz positivo definida, entonces $d = -M\nabla f(x)$ es una dirección de descenso para f y cualquier $x \in \mathbb{R}^n$. (Observe que en particular esto dice que $d = -\nabla f(x)$ es siempre una dirección de descenso).
- 4. Implemente en Matlab los métodos de Newton y de la secante y úselos para resolver los siguientes problemas:
 - mín f(x) con $f(x) = -\frac{x^4}{4} + \frac{x^3}{3} + x^2$ y $f(x) = \sin x \cos 2x$. Use $x_0 = 1$ y como criterio de parada que $|f'(x_k)| < \epsilon = 10^{-05}$. Compare número de iteraciones y rapidez de convergencia de los métodos. Haga pruebas adicionales partiendo de otros puntos iniciales y observe que sucede.
- 5. Sea $f: R \to R : f(\hat{x}) = 0$.
 - a) Probar que si $f'(\hat{x}) = 0$; $f''(\hat{x}) \neq 0$, entonces el método de Newton converge en forma Q-lineal a \hat{x} con $\lim_{k \uparrow \infty} \frac{|x_{k+1} \hat{x}|}{|x_k \hat{x}|} = \frac{1}{2}$. Puede generalizar este resultado ? (**Sugerencia:** usar las aproximaciones de Taylor para la función y sus derivadas).
 - b) Use el método de Newon para hallar \hat{x} , con:
 - (b.1) $f(x) = x^2 1$
 - (b.2) $f(x) = x^2 2x + 1$

Considere $x_0 = 2$ como punto inicial. Compare número de iteraciones y rapidez de convergencia de los métodos. Haga pruebas adicionales partiendo de otros puntos iniciales y observe que sucede. En particular comente por qué el método de Newton tiene ese comportamiento para la función en (b.2).