

Simulare județeană Proba E. d) Fizică

BAREM DE EVALUARE ȘI NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 puncte)
Subiectul I

	iootai i	
Nr.	Soluție, rezolvare	
item		
I. 1.	a	3p
2.	a	3p
3.	b	3p
4.	С	3p
5.	С	3p
TOTAL	pentru Subiectul I	15 p
	•	

Subiectul II.

II.a.	Reprezentarea corectă a forțelor ce acționează a	supra corpului aflat	3 p
	pe planul înclinat	3p	
b.	$mg\sin\varphi=\mu N$	1p	
	$N = mg \cos \varphi$	1p	
	$\mu = tg\varphi$	1p	4 p
	$\mu = \frac{\sqrt{3}}{3}$	1p	
C.	$F_{AP} = 0; N = 0$	1p	25
	$F \sin \alpha = mg$	1p	3р
	$\sin \alpha = 0.66$	1p	
d.	$F^{'}\cos\beta - \mu N = ma$	1p	
	$N = mg - F' \sin \beta$	1p	
	$a = \frac{F'}{m}(\cos\beta + \mu\sin\beta) - \mu g$	2р	En
	$a = \frac{10\sqrt{3}}{3} m/s^2$	1p	5р
TOTAL	pentru Subiectul al II-lea		15p

Probă scrisă - Fizică A. Mecanică

Barem de evaluare şi de notare

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

Subjectul III

III a.	$v_1 = 5\frac{m}{s}$	1р	1p
b.	$\Delta E_c = L_R$	2p	
	$\frac{mv_2^2}{2} - \frac{mv_1^2}{2} = L + L_{Fr}$	2p	5p
	$L_{Fr} = -75 \cdot 10^3 J$	1p	
C.	$v_m = \frac{v_1 + v_2}{2}$	2p	
	$v_m = \frac{d}{\Delta t}$	1р	5p
	$v_m = \frac{d}{\Delta t}$ $\Delta t = \frac{L}{P_m}$	1p	
	d=62.5m	1р	
d.	$P_m = F \cdot v_m$	2p	
	$F = \frac{2P_m}{v_1 + v_2}$	1p	4p
	$F = 6 \cdot 10^3 N$	1p	
TOTAL pen	tru Subiectul al III-lea		15p

Probă scrisă - Fizică Barem de evaluare și de notare Filiera teoretică – profilul real, Filiera vocaţională – profilul militar A. Mecanică

Simulare județeană Proba E. d)

Fizică

BAREM DE EVALUARE ŞI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

B. ELEMENTE DE TERMODINAMICĂ

(45 puncte)

Subjectul I

Nr. item	Soluţie, rezolvare	
I.1.	С	3р
2.	b	3р
3.	а	3p
4.	d	3p
5.	b	3p
TOTAL	pentru Subiectul I	15p

B. Subiectul II

II.a.	$N = N_1 + N_2$	1p	4p
	$N = N_1 + N_2$ $N_1 = \frac{mN_A}{\mu_1}; \mu_1 = 28g / mol$	1p	
	$N_2 = \frac{mN_A}{\mu_2}$; $\mu_2 = 44g/mol$	1p	
	$N_1 = 33,11 \cdot 10^{23} $ molecule; $N_2 = 21,07 \cdot 10^{23}$ molecule;		
	$N = 54,18 \cdot 10^{23} molecule$	1p	
b.	$\mu_{am} = \frac{m_{am}}{v_{am}}$	1p	5р
	$m_{am}=2m$	1p	
	$v_{am} = v_1 + v_2$	1p	

	$\mu_{am} = \frac{2\mu_1 \mu_2}{\mu_1 + \mu_2}$ 1p	
	$\mu_{am} = 34,22g / mol $ 1p	
C.	$ ho_{am}=rac{p\mu_{am}}{RT}$ 1p $ ho_{am}\cong 1{,}5kg/m^3$ 1p	2p
	$\rho_{am} \cong 1.5 kg/m^3$	
d.	$U = U_1 + U_2 $ 1p	4p
	$U = U_1 + U_2 $ 1p $U = \left(\frac{5}{2}v_1R + 3v_2R\right)T$ 2p	
	$U\cong 55044,50J$ 1p	
TOTAL p	entru Subiectul al II-lea	15p

B. Subiectul III

III.a.	Pentru reprezentarea corectă 3	Вр	3р
b.	Pentru:		
	$p_1 V_1 = 2 p_1 V_2 \Longrightarrow \frac{V_2}{V_1} = \frac{1}{2}$	1p	
	$L = \nu R T_1 \ln \frac{V_2}{V_1} = \nu R T_1 \ln \frac{1}{2} = -\nu R T_1 \ln 2$	1p	
	$v = -\frac{L}{RT_1 \ln 2} = 401,1 \text{mol}$	р	5p
	$\mu \nu$	Ip	
	$\mu = 4 \frac{kg}{kmol}$	1p	
C.	Pentru:		
	$ \begin{vmatrix} \frac{p_2}{T_2} = \frac{p_3}{T_3} \\ p_3 = p_1 \end{vmatrix} $		
	$p_3 = p_1$ => $T_3 = \frac{I_2}{2} = 150K$	<u>?</u> p	
	$p_2 = 2p_1$		4p

	$\Delta U_{23} = \nu C_{\nu} (T_3 - T_2) \; ; \; \Delta U_{23} \cong -752574,37J$	2p	
d.	Pentru:		
	$Q_{12} = L = -693000J$	1p	
	$Q_{23} = \Delta U_{23} = -752574,37J$	1p	3р
	$Q = Q_{12} + Q_{23} = -1445574,37J$; căldurăcedată (Q<0)	1p	
TOTAL p	entru Subiectul al III-lea		15p

Simulare județeană Proba E. d)

Fizică

BAREM DE EVALUARE ŞI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 puncte)

Subjectul I

Nr. item	Soluţie, rezolvare	Punctaj
1.	C	3р
2.	b	3p
3.	b	3р
4.	d	3р
5.	b	3р
TOTAL	PENTRU SUBIECTUL I	15 p

Subjectul II

Nr. item	Soluţie, rezolvare	Punctaj
II. a	I = P/U 1p	
	$P_1 < P_2 < P_3 \Rightarrow I_1 < I_2 < I_3$ 2p	4p
	$I_3 = P_3 / U$; $I_3 = 0.9A$	
II. b	$R_2 = U^2 / P_2 $ 1p	
	$R_2 = \rho l_2 / S $ 1p	
	$l_2 = \frac{U^2 S}{\rho P_2} $ 1p	4р
	$l_2 = 16,66m$ 1p	
II. c	$I_3 = I_1 + I_2; \frac{P_3}{U} = \frac{P_1 + P_2}{U}$ 2p	
	$U_3 = I_3 R_3 = \frac{P_3}{I_3} = U$ 1p	7p
	$U_1 = I_1 R_1 = U 1p$	/β
	$U_2 = I_2 R_2 = U 1p$	
	Schema electrică, corectă 2p	
TOTAL	PENTRU SUBIECTUL II	15 p

Subjectul III

Nr. item	Soluţie, rezolvare	Punctaj
III. a	$P_{ext} = \frac{E^2 R}{\left(R + r\right)^2} $ 2p	
	$P_{ext_{\text{max}}} = \frac{E^2}{4r} $ 2p	
	$\frac{E^2R}{(R+r)^2} = \frac{E^2}{8r}$	7p
	$R_1 = r(3 + 2\sqrt{2}); R_1 = 5.82\Omega$	
	$R_2 = r(3 - 2\sqrt{2}); R_2 = 0.17\Omega$	
III. b	E = U + Ir 2p	
	$I = \frac{E}{R+r} $ 1p	6р
	R = r/4 2p	
	$R = 0.25\Omega$ 1p	
III. c	$\eta = \frac{R}{R+r} $ 1p	2p
	$\eta = 20\%$ 1p	
TOTAL	PENTRU SUBIECTUL III	15 p

Simulare județeană Proba E. d) Fizică BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

D.OPTICĂ Subiectul I (45puncte)

Nr. item	Soluţie, rezolvare		Punctaj
l.1.	d		3р
2.	С		3р
3.	b		3р
4.	d		3р
5.	d		3р
	TOTAL pentru Subiectul I		15p
II. a.	f = 1/C	1p	
	$f_1 = f_2 = f = 0.125m; f = 12.5cm$	1p	
	$C = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	2р	6р
	$R_2 = \infty$	1р	
	$R_1 = \frac{(n-1)}{C}; R_1 = 6,25cm$	1p	
b.	$x_2 = \frac{fx_1}{x_1 + f}$; $x_2 = 57,1cm$	1р	
	$\left -x_{1} \right = d - x_{2}; \ x_{1} = -5cm$	1p	4 p
	$x_{2}' = \frac{fx_{1}'}{x_{1}' + f}; x_{2}' = -8,33cm$	1p	
	$D = d - x_2 $; $D = 53,77cm$	1р	

C.	Construcţie grafică, corectă	2p	2 p
d.	$\beta_1 = x_2 / x_1; \ \beta_1 = -3.57$	1p	
	$\beta_2 = x_2' / x_1'; \beta_2 = 1,67$	1p	3р
	$\beta_s = \beta_1 \beta_2; \ \beta_s \cong -5.96$	1p	
	TOTAL pentru Subiectul al II-lea		15p
III. a.	$i = \frac{\lambda_1 D}{2\ell}$	2р	3р
	i = 1mm	1p	
b.	$d = x_{4\min} - x_0$	1p	
	$x_{k \min} = \frac{(2k+1)\lambda_1 D}{4\ell}$	1p	
	k = 4	1p	4 p
	d = 4.5mm	1p	
	$x_0' = x_{6 \max}$	1p	
C.	$x_0' = x_0 + \frac{e(n-1)D}{2\ell}$	1p	
	$x_{6\max} = \frac{6\lambda_1 D}{2\ell}$	1р	4p
	n = 1,5	1p	
d.	$x_{k_1 \max} = x_{k_2 \max} \implies \frac{k_1 \lambda_1 D}{2\ell} = \frac{k_2 \lambda_2 D}{2\ell}$	1р	
	$\frac{k_1}{k_2} = \frac{6}{5}; \ k_1, k_2 \in \mathbb{Z}$	1р	4 p
	$d_{\min} = \frac{6\lambda_1 D}{2\ell}$	1p	
	$d_{\min} = 6mm$	1p	
	TOTAL pentru Subiectul alIII-lea		15p