# **QUESTION BANK**

### **UNIT I**

#### ANSWER THE FOLLOWING

- 1) A = {  $m \in z | m = 6r + 12$  for some integer r } & B = {  $m \in z | m = 3s$  for some integer s }. Prove that  $A \subseteq B$ .
- 2) Given S = {a, b, c}, T = {b, c, d}, W = {a, d}. Find  $S \times T \times W$
- 3) Let U =  $\{1, 2, ....., 9\}$  be the universal set. E =  $\{2, 4, 6, 8\}$ , F =  $\{1, 5, 9\}$  Find 1)  $E \oplus F$  2)  $E^C$  3)  $F^C$  4) F E
- 4) Let  $S = \{a, b, c, d, e, f, g\}$ . Determine which of the following are partitions of S:
  - (a)  $P1 = [{a, c, e}, {b}, {d, g}]$
- (b)  $P2 = [{a, e, g}, {c, d}, {b, e, f}],$
- (c)  $P3 = [{a, b, e, g}, {c}, {d, f}],$
- (d)  $P4 = [{a, b, c, d, e, f, g}].$
- 5) Let R and S be the following relations on B =  $\{a, b, c, d\}$ R =  $\{(a, a), (a, c), (c, b), (c, d), (d, b)\}$  and S =  $\{(b, a), (c, c), (c, d), (d, a)\}$ Find the following composition relations: (a) R  $\circ$  S (b) S  $\circ$  R.
- 6) Let A = {1, 2, 3}, B = {a, b, c} & C = {x, y, z}. Consider the following relations R & S from A to B & From B to C resp.

R = {(1, b), (2, a), (2, c)} and S = {(a, y), (b, x), (c, y), (c, z)}  
Find the matrices 
$$M_R$$
,  $M_S$  &  $M_R$ .  $M_S$ 

- 7) Prove  $7^n 2^n$  is divisible by 5, for all  $n \in N$ .
- 8) Let P be the proposition that the sum of the first n odd numbers is  $n^2$ ; that is, P (n):  $1 + 3 + 5 + \cdots + (2n 1) = n^2$ .
- 9) Consider the following five relations on the set  $A = \{1, 2, 3\}$ :  $R = \{(1, 1), (1, 2), (1, 3), (3, 3)\}$   $S = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3)\}$   $A \times A =$  universal relation,  $T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$ ,  $\emptyset =$  Empty Relation Determine whether or not each of the above relations on A is transitive.

# **UNIT II**

#### ANSWER THE FOLLOWING

- 1) Evaluate: (a)  $log_2$  8 (b)  $log_2$  64 (c)  $log_{10}$  100 (d)  $log_{10}$  0.001 (e)  $log_{10}$  0.01.
- 2) There are 35 lottery tickets numbered from 1 to 35. One of them is drawn at random

What is the probability that the number on it is multiple of 5 or 7.

- 3) If the chances of A winning a race is  $\frac{1}{6}$  & the chance of B winning it is  $\frac{1}{8}$ . What is the chance that neither should win? Atleast one will win?
- 4) The probability that John hits a target is  $p = \frac{1}{4}$ . He fires n = 6 times. Find the probability that he hits the target: (a) exactly two times (b) more than four times.
- 5) A box contains 2 white, 3 red & 4 green balls of identical size, we draw 3 balls Find the probability that a) all are green b) atmost one is green.
- 6) A box contains 36 tickets numbered 1 to 36. One ticket is drawn at random. Find the probability that the number on the ticket is either divisible by 3 or is a perfect square.
- 7) A family has six children. Find the probability p that there are: (a) three boys and three girls; (b) fewer boys than girls. Assume that the probability of any particular child being a boy is  $\frac{1}{2}$ .
- 8)Consider the permutation  $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 1 & 3 & 4 \end{pmatrix} &$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

in  $S_6$ . Find (a) composition  $\sigma \circ \tau$ ; (b)  $\sigma^{-1}$ .

9) Let the functions g: B  $\rightarrow$  C be defined by . Determine if each function is: (a) onto, (b) one-to-one, (c) invertible.



- 10) If X = number on the uppermost face of a cubic die. Find E(X) & V(X).
- 11) Find :- a) 25 (mod 7) b) -35 (mod 11) c) -3 (mod 8) d) 29 (mod 6)
  - e) 25 (mod 7)

#### **UNIT III**

### **ANSWER THE FOLLOWING**

- 1) Each student in Liberal Arts at some college has a mathematics requirement A & a science requirement B. A poll of 140 students shows that: 60 completed A, 45 completed B, 20 completed both A and B.
  - find the number of students who have completed At least one of A and B.
- 2) Construct the tree diagram that gives the permutations of {a, b, c}
- 3) Explain Arithemetic Progression & Give an example.
- 4) Consider the second-order homogeneous recurrence relation  $a_n$  =  $a_{n-1}$ +  $2a_{n-2}$  with initial conditions  $a_0$  = 2,  $a_1$  = 7
  - (a) Find the next three terms of the sequence. (b) Find the general solution
- 5) A 5 digit number is to be formed using the digits from 0 to 9. How many such number can be formed, if
  - a) The digits are distinct b) Repetition of digits is allowed.
- 6) construct the pascal's triangle for n = 5.
- 7) A history class contains 8 male students and 6 female students. Find the number n of ways that the class can select: (a) 1 class representative (b) 2 class representatives, 1 male and 1 female (c) 1 president and 1 vice president
- 8) Find the number m of positive integers not exceeding 1000 which are not divisible by 3, 7, or 11.
- 9) Consider the following homogeneous recurrence relation:  $a_n = 6a_{n-1} 9a_{n-2}$  with initial conditions  $a_1 = 3$ ,  $a_2 = 27$
- (a) Find the next three terms of the sequence. (b) Find the general solution 10) From 5 professors & 7 students a committee of 4 is to be formed. In how many
  - ways this can be done if the committee contains at most 2 professors.
- 11) Suppose a set has 7 elements. find the number m of ordered partitions of S into three cells, say [A1, A2, A3], so they contain 2, 3, and 2 elements resp
- 12) Explain Geometric Progression & Give an example.
- 13) Find the no. of words that can be formed when the letters of the words a) COMMITTEE b) INDIFFERENCE.

# **UNIT IV**

# **ANSWER THE FOLLOWING**

1) Consider the graph G. find the a) set V (G) of vertices of G and the set E(G) of edges of G (b) Find the degree of each vertex.



2) Check Whether the following graphs are isomorphic.



3) Find all spanning trees of the graph G.



4) Consider the graph G. Find: (a) all simple paths from A to F (b) all trails from A to F



5) Apply the nearest-neighbour algorithm to the complete weighted graph G, beginning at: (a) vertex A (b) vertex D.



6) Find the adjacency matrix A = [  $a_{ij}$  ] of each graph G.





7) Use the Welch-Powell algorithm to paint graph. Find the chromatic number n of the graph



- 8) Draw two 3-regular graphs with eight vertices
- 9) Find the number of trees with seven vertices.

### **UNIT V**

# **ANSWER THE FOLLOWING**

- 1) Find the final tree T if the following numbers are inserted into an empty binary search tree T: 50, 33, 44, 22, 77, 35, 60, 40
- 2) Suppose the pre order traversals of a binary tree T yield the following sequences of nodes: Pre order: G, B, Q, A, C, K, F, P, D, E, R, H Draw the diagram of T.
- 3) Beginning at vertex A and using a BFS (breadth-first search) algorithm, find the order

the vertices are processed for the graph G.



- 4) Construct a tree with prufer code: (6, 5, 6, 5, 1)
- 5) consider the sequences of characters with the frequencies of each character is as

follows. E = 10, I = 30, O = 5, P = 15, S = 20, T = 15, V = 5. Find the Huffman coding tree.

- 6) Let A = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} be ordered by the relation "x divides y." Draw Hasse Diagram.
- 7) Consider the binary tree T. (a) Traverse T using the pre order algorithm.
  - (b) Traverse T using the in order algorithm.

