

Transformations and Multivariate Random Variables

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Repetition:
 - One Random Variable
 - Two Random Variables
- Data sampling for test and simulation
- Transformation of random variables
- Sum of two random variables
- Central limit theorem (CLT)

One Stochastic Variable - Discrete

Probability mass function (pmf):

$$f_X(x) = \begin{cases} Pr(X = x_i) & for X = x_i \\ 0 & otherwise \end{cases}$$

$$0 \le f_X(x) \le 1$$

$$\sum_{i=1}^n f_X(x_i) = \sum_{i=1}^n Pr(X = x_i) = 1$$

• Cumulative distribution function (cdf): $F_X(x) = P r(X \le x) = \sum_{i=1}^{N_X} f_X(x_i)$

$$F_X(x)$$

1

1/2

1/6

0

1 2 3 4 5 6

$$0 \le F_X(x) \le 1$$

$$\lim_{x\to-\infty}F_X(x)=0$$

$$\lim_{x\to\infty}F_X(x)=1$$

One Stochastic Variable – Continuous

• Probability density function (pdf):
$$Pr(a \le X \le b) = \int_a^b f_X(x) \ dx$$

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

• Cumulative distribution function (cdf): $F_X(x) = \int_{-\infty}^x f_X(u) \ du = Pr(X \le x)$

$$0 \le F_X(x) \le 1$$

$$\lim_{x\to-\infty}F_X(x)=0$$

$$\lim_{x\to\infty}F_X(x)=1$$

Expectations

- Mean value: $E[X] = \overline{X} = \mu_X = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$ $(\sum_{i=1}^n x_i f_X(x_i))$
- Variance: $Var(X) = \sigma_X^2 = \int_{-\infty}^{\infty} (x \bar{x})^2 \cdot f_X(x) dx = E[X^2] E[X]^2$

• Standard deviation: $\sigma_X = \sqrt{Var(X)}$

- A function: $E[g(X)] = \overline{g(X)} = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$ $(\sum_{i=1}^{n} g(x_i) f_X(x_i))$ $Var(g(X)) = \int_{-\infty}^{\infty} (g(x) - \overline{g(x)})^2 \cdot f_X(x) dx = E[g(X)^2] - E[g(X)]^2$
- Linear function: $E[aX + b] = a \cdot E[X] + b$ $Var[aX + b] = a^2(E[X^2] - E[X]^2) = a^2 \cdot Var(X)$

Two Random Variables X, Y

Joint (Simultaneous) pdf:
$$f_{X,Y}(x,y) \ge 0$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

$$Pr((a \le X \le b) \cap (c \le Y \le d)) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy$$

Marginals:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dy$$
 $f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$

Cumulative Distribution Function cdf:

Bayes Rule, Conditional PDF and Independence

Bayes rule:

The joint/simultaneous pmf/pdf for two stochastic variables:

$$f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$

Conditional pdf:

• For a two dimensional pmf/pdf $f_{X,Y}(x,y)$, we can find the conditional pdf with Bayes rule:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Independence:

X and Y are independent if and only if:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
 or $f_{X|Y}(x|y) = f_X(x)$ for all x and y

Correlation and Covariance

Correlation tells of the (biased) coupling between variables

• Correlation:
$$corr(X,Y) = E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) dx dy$$

Covariance is without bias from the mean

• Covariance:
$$cov(X,Y) = E[(X - \overline{X})(Y - \overline{Y})] = E[XY] - E[X] \cdot E[Y]$$

Correlation Coefficient is the normalized Covariance

• Correlation coefficient:
$$\rho = E\left[\frac{X - \overline{X}}{\sigma_X} \cdot \frac{Y - \overline{Y}}{\sigma_Y}\right] = \frac{E[XY] - E[X]E[Y]}{\sigma_X \cdot \sigma_Y}$$
 $-1 \le \rho \le 1$

If X and Y are independent:

$$E[XY] = E[X] \cdot E[Y]$$
 and $cov(X,Y) = \rho = 0$

Very important!

i.i.d.: Independent and Identically distributed

 We define that for series of random variables that is taken from the <u>same distribution</u> (identically distributed), and are sampled <u>independent</u> of each other, that they are i.i.d.

i.i.d. = Independent and Identically distributed

 i.i.d. is a very important characteristic in stochastic variable processing and statistics

Uniform Distribution

- u(a,b) (Matlab: rand)
- Mean value: $\mu = \frac{a+b}{2}$
- Variance: $\sigma^2 = \frac{1}{12}(b-a)^2$

• pdf:
$$f_X(x) = \begin{cases} \frac{1}{b-a} & for \ a \le x \le b \\ 0 & otherwise \end{cases}$$

Gaussian Distribution = Normal Distribution

- $\mathcal{N}(\mu,\sigma^2)$
- Mean value: μ
- Variance: σ^2

No closed expression for the cdf erf = error-function: $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$

Gaussian Distribution = Normal Distribution

- Beregninger med normalfordelinger: Tabelopslag og Matlab:
- $X \sim \mathcal{N}(\mu, \sigma^2) \rightarrow Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$ (Standard Normal Distribution)
- $F_X(x) = Pr(X \le x) = Pr\left(Z \le \frac{x-\mu}{\sigma}\right) = F_Z(z) = \Phi(z)$ hvor $z = \frac{x-\mu}{\sigma}$

Tabel 1 ("Statistik og Sandsynlighedsregning")

- $\Phi(z) = Pr(Z \le z)$
- $\Phi(-z) = 1 \Phi(z) = Pr(Z \ge z) = Pr(Z \le -z)$

Symmetry of Gaussian distribution

- Matlab:
 - $Pr(X \le x) = F_X(x) = normcdf(x, \mu, \sigma)$
 - $Pr(Z \le z) = F_Z(z) = normcdf(z, 0, 1) = normcdf(z)$

Obs: Standard deviation

Bivariate (2D) Normal Distribution

Two dimensional Gaussian $f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{z}{2(1-\rho^2)}\right)$

Bivariate Normal Distribution

Symmetric PDF:

$$\rho = 0$$

X and Y independent

Asymmetric PDF:

$$\rho = 0.8$$

X and Y dependent

Symmetric Case

Bivariate Normal Distribution

Symmetric PDF:

$$\rho = 0$$

X and Y independent

Because of the independence, we should have

$$f(x|y) = f_X(x)$$

$$f(y|x) = f_Y(y)$$

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

Symmetric Case

Bivariate Normal Distribution

The graphs $(f_{X|Y}(x|y=0), f_{X,Y}(x,y=0))$ and $f_X(x)$ has the same shape (proportional)

The graphs $f_{Y|X}(y|x=0.64)$, $f_{X,Y}(x=0.64,y)$ and $f_{Y}(y)$ has the same shape (proportional)

Asymmetric Case

Bivariate Normal Distribution

Asymmetric PDF:

$$\rho = 0.8$$

X and Y dependent

Because of the dependence, we should have

$$f(x|y) \neq f_X(x)$$

$$f(y|x) \neq f_Y(y)$$

$$f(x,y) \neq f_X(x) \cdot f_Y(y)$$

Bivariate Normal Distribution

The graphs $(f_{X|Y}(x|y=0), f_{X,Y}(x,y=0))$ and $f_X(x)$ do not have the same shapes.

The graphs $(f_{Y|X}(y|x=0.64), f_{X,Y}(x=0.64,y))$ and $f_{Y}(y)$ do not have the same shapes. 18

The Conditional pdf's

Bivariate Normal Distribution

$$f(x|y=0) = \frac{f(x,y=0)}{f_Y(y=0)}$$

Area under the curve =

$$\int_{-\infty}^{\infty} f(x = 0.64, y) dx = f_X(x = 0.64)$$

$$f(y|x = 0.64) = \frac{f(x = 0.64, y)}{f_X(x = 0.64)}$$

Bivariate Normal Distribution

Sampling From Any Distribution

For test or simulation you need testdata ("measurements") randomly sampled from a given distribution:

- Find the cdf of the distribution: $F_X(x)$
- Find the inverse of the cdf: $y = F_X(x) \Rightarrow x = F_X^{-1}(y)$
- Draw a ramdom sample: $y \sim \mathcal{U}[0; 1]$
- Insert into the inverse cdf: $x = F_X^{-1}(y)$
- The samples X = x is distributed according to: $F_X(x)$

Example – Flight Simulator

- In a flight simulator, the altitude of the plane is simulated to be Rayleigh distributed.
- For a given initial height, draw a Rayleigh distributed sample.

Flight Simulator Example

- Rayleigh pdf: $f_X(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}$ for $x \ge 0$
- Rayleigh cdf: $F_X(x) = \int_0^x \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} dx = 1 e^{-\frac{x^2}{2\sigma^2}}$
- Invers of cdf: $y = 1 e^{-\frac{x^2}{2\sigma^2}} \Rightarrow x = \sqrt{-2\sigma^2 \ln(1-y)}$
- Draw $y \sim \mathcal{U}[0; 1]$ and insert into $x = \sqrt{-2\sigma^2 \ln(1-y)}$
- x is Rayleigh distributed

Flight Simulator Example

Assignment

- Choose an exponential pdf: $f_X(x) = \lambda e^{-\lambda \cdot x}$
- Make a Matlab program that samples from that distribution

Transformation of Variable X to Y

- Given:
 - Pdf: $f_X(x)$
 - Function/Transformation: Y = g(X)
 - Limits: $a \le X \le b$
- Find new pdf: $f_Y(y)$:
 - 1. Inverse: $x = g^{-1}(y)$
 - 2. Differentiate: $\frac{dg^{-1}(y)}{dy} = \frac{dx(y)}{dy} = \frac{1}{\frac{dg(x)}{dx}}$
 - 3. Limits: Find $g(a) = a_Y \le Y \le b_Y = g(b)$ based on $a \le X \le b$
 - 4. New pdf: $f_Y(y) = \sum \left| \frac{dx(y)}{dy} \right| f_X(g^{-1}(y)) = \sum \frac{f_X(x)}{\left| \frac{dy}{dx} \right|}$

Example with Transformation of Random Variable

- We have a random sample x.
- The Noise is known to be Gaussian distributed.
- · The signal of the noise is amplified.
- What is the pdf of the amplified noise?

Given:

- function: $Y = 2 \times$

– pdf: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sim \mathcal{N}(\mu,\sigma^2)$

- Support: $x \in \mathbf{R}$

Steps:

1. Inverse: $x = \frac{1}{2}y$

2. Differentiate: $\frac{d}{dy}\frac{1}{2}y = \frac{1}{2}$

3. Support: $y \in \mathbf{R}$

4. New pdf: $f_Y(y) = \frac{1}{2} f_X(\frac{1}{2}y)$.

• Then: $f_Y(y)=rac{1}{2}rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(rac{y}{2}-\mu)^2}{2\sigma^2}}$ $\sim \mathcal{N}(2\mu, 4\sigma^2)$

Distribution of the Sum of Two Random Variables

- Two random variables X and Y have density functions $f_X(x)$ and $f_Y(y)$.
- If we define a new random variable Z=X+Y, and Z have density function $f_Z(z)$.

 Convolution of Two functions
- Then $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$

Expectation of the Sum of Two Random Variables

- For a random variables Z = X + Y.
- X, Y can be both dependent and independent.
- The expectation of Z is:

$$E[Z] = E[X] + E[Y]$$

Proof:

$$E[X + Y] = \int_{x} \int_{y} (x + y) f_{X,Y}(x, y) dx dy$$

$$= \int_{x} \int_{y} x f_{X,Y}(x, y) dx dy + \int_{x} \int_{y} y f_{X,Y}(x, y) dx dy$$

$$= \int_{x} x \int_{y} f_{X,Y}(x, y) dy dx + \int_{y} y \int_{x} f_{X,Y}(x, y) dx dy$$

$$= \int_{x} x f_{X}(x) dx + \int_{y} y f_{Y}(y) dy$$

$$= E[X] + E[Y]$$

Variance of the Sum of Two Random Variables

- We have Z = X + Y.
- For independent random variables X, Y, the variance of Z is:

$$var(Z) = var(X) + var(Y).$$

• For correlated random variables X, Y, the variance of Z is:

$$var(Z) = var(X) + var(Y) + 2cov(X, Y).$$

where: cov(X,Y) = E[XY] - E[X]E[Y]

Proof: Similar to the proof of the expectation value

Precision of Resistors in Series

- In a analog filter a resister of size $2.5K\Omega$ is needed.
- We use two 5% resisters of $2.4K\Omega$ and 100Ω respectively.
- What is the resulting uncertainty of the resister?
- X and Y are independent random variables with pdfs: $f_X(x)$ and $f_Y(y)$
- What is the pdf of a random variable Z, where Z = X + Y

Precision of Resistors in Series

- We assume that the resistance of the resisters are uniformly distributed.
- $R_1 \sim \mathcal{U}[2280; 2520]$
- $R_2 \sim \mathcal{U}[95; 105]$
- The resisters are in series: $R_3 = R_1 + R_2$.
- We have: $f_{R_3}(r_3) = \int_{-\infty}^{\infty} f_X(\rho) f_Y(r_3 \rho) d\rho$
- · We can find that:

R3 is still a 5% resistor – but no longer uniform distributed!

Expected Value of the Resistor

- We assume that R_1 and R_2 are independent
- For a uniform distibution: $E[R_1] = \frac{1}{2}(2520 + 2280) = 2400\Omega$
- For a uniform distribution: $E[R_2] = \frac{1}{2}(105 + 95) = 100\Omega$
- For the sum $R_3 = R_1 + R_2$ we have:

$$E[R_3] = E[R_1] + E[R_2] = 2400\Omega + 100\Omega = 2500\Omega$$

Variance of the Resistor

- We assume that R_1 and R_2 are independent
- For a uniform distibution: $var(R_1) = \frac{1}{12}(2520 2280)^2 = 4800$
- For a uniform distribution: $var(R_2) = \frac{1}{12}(105 95)^2 = 8,333$
- For the sum $R_3 = R_1 + R_2$ we have:

$$var(R_3) = var(R_1) + var(R_2) = 4808 \rightarrow \sigma_3 = 69\Omega$$

• For one uniform distributed 5%-resistor $R_0 = 2500 \sim \mathcal{U}[2375; 2625]$:

$$var(R_0) = \frac{1}{12}(2625 - 2375)^2 = 5208 \rightarrow \sigma_0 = 72\Omega$$

• So:
$$var(R_3) = var(R_1) + var(R_2) < var(R_0)$$
 $(\sigma_3 < \sigma_0)$

Two Random Variables

Two random variables: X and Y

- Simultaneous pdf: $f_{X,Y}(x,y)$
- Marginal pdf: $f_X(x)$ and $f_Y(y)$
- Conditional pdf: $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$
- Simultaneous cdf: $F_{X,Y}(x,y)$
- Correlation: corr(X,Y) = E[XY]
- Covariance: cov(X,Y) = E[XY] E[X]E[Y]
- Correlation coefficient: $\rho = \frac{E[XY] E[X]E[Y]}{\sigma_X \cdot \sigma_Y}$
- Sum: Z = X + Y
- Expectation: E[Z] = E[X] + E[Y]
- Variance: Var[Z] = Var[X] + Var[Y] if independent
 - Var[Z] = Var[X] + Var[Y] + 2cov(X, Y) if <u>dependent</u>

Central Limit Theorem

- Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with mean μ and variance σ^2
- Let \overline{X} be the random variable (average):

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Then in the limit: $n \to \infty$ we have that: $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

i.e. in the limit \bar{X} will be normally distributed with

mean =
$$\mu$$
 and variance = $\frac{\sigma^2}{n}$.

Central Limit Theorem

- Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with mean μ and variance σ^2
- Let X be the random variable:

$$X = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma^2}} = \frac{\sum_{i=1}^{n} \frac{1}{n} X_i - \mu}{\sqrt{\sigma^2/n}} = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}}$$

• Then in the limit: $n \to \infty$ we have that: $X \sim \mathcal{N}(0,1)$ i.e. in the limit X will be normally distributed with mean = 0 and variance = 1 (standard normal distributed).

Sum of Random Variables

The random variables are i.i.d and taken from the same distribution.

Arbitrary distribution

Sum of Random Variables

 The random variables are i.i.d and taken from the same uniform distribution.

Uniform distribution

Words and Concepts to Know

Central Limit Theorem

Convolution

Transformation of stochastic variables

Rayleigh Distribution

Randomly Sampled Data

Bivariate Normal Distribution