

Applied Linear Algebra for Data Science

1

Informationsteknologi

First...

Any comments on this?

traming	nam_	heart_	disease

(male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	te
	\smile	39	4	0	0	0	0	0	0	Г
	0	46	2	0	0	0	0	0	0	
	1	48	1	1	20	0	0	0	0	
	0	61	3	1	30	0	0	1	0	
	0	46	3	1	23	0	0	0	0	
	0	43	2	0	0	0	0	1	0	
	0	63	1	0	0	0	0	0	0	

Apparently there exist only male and non-males (=0) in the world

Institutionen för informationsteknologi | www.it.uu.se

UPPSALA

Informationsteknologi

General things

- No need to form C explicitly $(C = \frac{1}{n-1}A^TA)$ and therefore relation between SVD of data A and eigenvalues/vectors of C
- ...but A must be centered first!
- ...and remove NaN's
- Principal components = AV or $U\Sigma$
- Note...

"In both exercises below, use linear algebra built-in functions in Python in your code, such as built-in functions for SVD. Do not use higher-level libraries for PCA"

Institutionen för informationsteknologi | www.it.uu.se

4

Q1a)

Almost all variance in the first two directions – reduce dimension to 2

Institutionen för informationsteknologi | www.it.uu.se

UPPSALA UNIVERSITET

Informationsteknologi

Q1b)

- Variables = columns (movies) => work with $C = \frac{1}{n-1}A^TA$ and n = 5 (number of samples)
- First principal component (= Av_1 or σ_1u_1):

-3.9465 4.5370 -1.7661 -3.7083 4.8838

Look for "orthogonal" groups

- The principle components show where we have the largest variance in the samples (explains 91.96% of the variance)
- Largest variance between Ali, Elsa, Johan on one side and Beatrix, Chandra on the other

Institutionen för informationsteknologi | www.it.uu.se

6

Informationsteknologi

Q2

Dominating principal components:

• First 3 components explain ~92% of variance – can reduce dimension to 3

10

Informationsteknologi

Q2

First eigenvector v_1

$$v_1 = \begin{pmatrix} 0.0571 \\ -0.01002 \\ \textbf{0.98541} \\ 0.14371 \\ 0.06253 \\ 0.01324 \\ 0.02938 \end{pmatrix} \begin{array}{l} \text{Age} \\ \text{CigsPerDay} \\ \text{totChol} \\ \text{sysBP} \\ \text{diaBP} \\ \text{BMI} \\ \text{Heartrate} \\ \end{pmatrix}$$

Institutionen för informationsteknologi | www.it.uu.se