$$\int_{x_0}^{x_0} y \, dx = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$

Simpson's 1 rule

$$\int_{x_0}^{x_0} y \, dx = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + y_b + \dots + y_{n-2}) \right]$$

Simpson's 3 rule

$$\int_{x_0}^{x_n} y \, dx = \frac{3h}{8} \left[(y_0 + y_n) + 3(y_1 + y_2 + y_4) + 2(y_3 + y_6 + y_9 + \cdots) \right]$$

1	vote	order	$\frac{\text{Error}}{-(b-a)\frac{1}{b^2}y''(\overline{x})}$
	tragezoidal rule	h ²	EF 12
		b ⁴	$E = -\frac{(b-a)}{180} h^4 y^{V}(\bar{z})$
2.	simpson's \frac{1}{3} rule	15	$E = \frac{24400}{60} \frac{3}{5} h^5 y^{10}(\overline{x})$
3.	simpsons 3 rule	July 1	F = 80

Evaluate J logex dx by wing (i) Trapezoidal rule

(ii) Simpson's \frac{1}{3} rule \(L \) (iii) s'impson's \(\frac{3}{6} \) rule given that

	0				1. 1	1. 2	5.0	5.2	
Ī	x .	4	4.2	4-4	4.6	1	1409	1.649	
	logex.	1.386	1.435	1.482	1.526	1.567			-

solution:

Here
$$h = 0.2$$

 $y_0 = 1.386$ $y_1 = 1.435$ $y_2 = 1.482$ $y_3 = 1.526$
 $y_4 = 1.569$ $y_5 = 1.609$ $y_6 = 1.649$

(i) Trapezoidal rule.

$$\int_{9}^{5.2} \log_{e} x \, dx = \frac{h}{2} \left[(y_{6} + y_{6}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5}) \right]$$

$$= \frac{(0.2)}{2} \left[(1.386 + 1.649) + 2(1.435 + 1.432 + 1.526 + 1.649) + 2(1.435 + 1.432 + 1.669) \right]$$

$$= (0.5) (18.277)$$

$$= 1.8277$$

(ii) Simpson's 1 rule.

$$\int_{4}^{5.2} \log_{2}x \, dx = \frac{b}{3} \left[(y_{0} + y_{k}) + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) \right]$$

$$= \frac{0.2}{3} \left[(1.386 + 1.649) + 4(1.435 + 1.526 + 1.609) + 2(1.482 + 1.569) \right]$$

= 1.8278

$$\int_{0}^{5.2} \log_{e} x \, dx = \frac{3h}{8} \left[(y_{0} + y_{b}) + 3(y_{1} + y_{2} + y_{4} + y_{5}) + 2y_{3} \right]$$

$$= \frac{3(0.2)}{8} \left[(1.386 + 1.649) + 3(1.435 + 1.482 + 1.569) + 2(1.526) \right]$$

$$\int_{0}^{5.2} \log_{e} x \, dx = 1.8279$$

Evaluate
$$\int \sin x \, dx$$
 by dividing the interval into $\sin x \, dx$ by dividing the interval into $\sin x \, dx$ by $\sin x \, dx$ \sin

Solution!
$$h = \frac{b-a}{n} = \frac{\pi}{8} = \frac{\pi}{8}$$

2	0	Fla	74	34	5/2	577	8 BY	75	<u></u>
sinx	0	0.3827	0.7071 92	0.9239	1 44	0.9239	0-707) Y6	0.3827 Y ₄	y

$$\frac{ap \cdot 2 \circ idal \ rule}{\int \sin x \, dx} = \frac{h}{2} \left[(0+0) + 2 \left(0.3827 + 0.7071 + 0.9239 + 1 + 0.9239 + 1 + 0.7071 + 0.3827 \right) \right]$$

$$=\frac{1}{2}\left[10.0548\right]$$

$$\int_{0}^{\pi} \sin x \, dx = \frac{3h}{6} \left(y_{0} + y_{0} \right) + \left(y_{1} + y_{3} + y_{5} + y_{7} \right) + 2 \left(y_{2} + y_{4} + y_{6} \right)$$

$$= \frac{3(\pi)}{6} \left((0+0) + 4 \left(0.3827 + 0.9239 + 0.9239 + 0.7071 \right) \right)$$

$$= 2 \times \left(0.707 + 1 + 0.7071 \right)$$

$$= \frac{3\pi}{24} \left[10.4528 + 2 \left(2.4142 \right) \right]$$

$$\int_{0}^{\pi} \sin x \, dx = 2.0003$$

3) Find J dx by using simpson's \frac{1}{3} and \frac{3}{8} rule. Hence
obtain the approximate value of \tau is each case
Solution:

we divide the raye (0,1) into sin equal parts.

$$h = \frac{b-a}{n} = \frac{1-0}{b} = \frac{1}{b}$$

			2	3	4	5	1
7	1	0.9730	0.9	0.8	0.6923	0.5902	0.5 Ya
19= HAL	9	91	1 72	<u> </u>	34	13	12.1

By Simpsons
$$\frac{1}{3}$$
 rule.
$$\int \frac{d^{2}}{1+n^{2}} = \frac{h}{3} \left[(y_{0}+y_{4}) + 4(y_{1}+y_{3}+y_{5}) + 2(y_{2}+y_{4}) \right]$$

$$= \frac{1}{3} \left[(1+0.5) + 4(0.9730 + 0.940.5902) + 2(0.940.6923) \right]$$

$$= 0.7854.$$

$$\int_{0}^{\infty} \frac{dx}{1+x^{2}} = \frac{3h}{8} \left[(y_{0}+y_{6}) + 3(y_{1}+y_{2}+y_{4}+y_{6}) + 2(y_{3}) \right]$$

$$= \frac{3(\frac{1}{6})}{8} \left[(1+0.5) + 3(0.9730 + 0.8 + 0.6923) + 0.5902 + 2(0.8) \right]$$

$$+ 0.5902 + 2(0.8)$$

$$= \frac{1}{16} \left[1.5 + 3(3.1555) + 1.6 \right]$$

from (1) & (2), we have

$$\frac{\pi}{4} = 0.7854$$
 $\frac{\pi}{4} = 3.1416$

4) Evaluate $\int_{0}^{1-2} e^{x^2} dx$ using (i) Simpson's $\frac{1}{3}$ rule, (ii) Simpson's $\frac{3}{8}$ rule

taking h=0.2

solution! Let
$$y = e^{x^2}$$
 | $a = 0.2$

7L 4-e	0 0.2	0.4	0.6	0.5273	0.3679 0	23-69	
y=e			.60		5 May 1		

(i) By simpson
$$\frac{1}{3}$$
 rule

$$\int_{0}^{1\cdot 2} e^{-x^{2}} dx = \frac{h}{3} \left[(y_{0} + y_{4}) + 4(y_{1} + y_{3} + y_{5}) + 2(y_{2} + y_{4}) \right]$$

$$= \frac{0\cdot 2}{3} \left[(1 - 2ab + 0 \cdot 23b + 4) + 4(0 \cdot 9b + 0 \cdot 6977 + 0 \cdot 3679) + 2(0 \cdot 8521 + 0 \cdot 5273) \right]$$

$$= 0.80b + 1$$

$$= \frac{3h}{8} \left[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3 \right]$$

$$= \frac{3(0.2)}{8} \left[(1 + 0.2369) + 3(0.9606 + 0.652) + 0.5273 \right]$$

$$+ 0.3679) + 2(0.6977)$$

$$= 0.8067$$

Mana Wards

1. Evaluate I vosa de by using simpson's rule of integration with 7 ordinates. (7=6+1).

Set Hint. I take
$$n=6$$
. $h=\frac{7}{6}=\frac{97}{12}$

$$\int_{0}^{\infty} \sqrt{\cos a \cdot da} = 1.1873. \left(\frac{1}{5} \cos a \cdot \frac{1}{3} \cos a \cdot \frac{1$$

2. Evaluate Je d'in de correct to redecimal places, living simpson 25 rule.

Ans = 3.1051.

3. Evaluate J sinn dn, by dividing the range is to six equal parts using simpsons rule.

Hint:
$$n = 6$$
 $h = \frac{\pi - 0}{6} = \frac{\pi}{5}$.

By simpson's if rule $\int_{-\infty}^{\pi} \frac{\sin \pi}{2} d\pi = 1.8520$.

4. Evaluate $\int e^{x} dx$, by Simpson's rule, given that $e^{1} = 2.72$, $e^{2} = 7.39$, $e^{3} = 20.09$, $e^{4} = 54.60$ and compare It with the actual value.

1y simpsoin
$$\frac{1}{3}$$
 rule

 $\int_{0}^{4} e^{n} dn = 53.6733$.

Actual value $\int_{0}^{4} e^{n} dn = \int_{0}^{4} e^{n} \int_{0}^{4} = \int_{0}^{4} e^{4} - e^{6} \int_{0}^{4} e^{4} dn = \int_{0}^{4} e^{4} dn = \int_{0}^{4} e^{4} - e^{6} \int_{0}^{4} e^{4} dn = \int_{0}^{4} e^{4}$