Assignment 3 Restricted Boltzmann Machines on MNIST

Tarasco Pier Paolo

ID: 619622

Code: https://github.com/Pier297/ISPR/tree/main/Midterm%202

Code

```
h \sim P(h_i = 1|v)
function [W, bias_v, bias_h] = mini_batch(X, v, h, W, bias v, bias h, eps, k)
    delta W = zeros(size(v, 1), size(h, 1));
                                                                                                       P(v_i=1|h)
    delta bias v = zeros(size(v, 1), 1);
    delta bias h = zeros(size(h, 1), 1);
   % For each data point of the mini-batch, apply CD training
    for i = 1:size(X, 1)
       v 0 = X(i, :)';
                                                                                                      P(h_i = 1|v)
       h = logistic(v 0' * W + bias h')' > rand(size(h, 1), 1);
       % k step gibbs sampling
       h k = h 0;
       for s = 1:k
                                                                                                      h \sim P(h_i = 1|v)
           v k = logistic(W * h k + bias v);
            p j = logistic(v k' * W + bias h')';
            h k = p j > rand(size(h, 1), 1);
        end
       h k = p j;
       % When computing the gradient use p j instead of h j,
       % this reduces the sampling noise -> leads to faster training
       % -- [Hinton, A Practical Guide to Training Restricted Boltzmann Machines]
        delta W = delta W + (v \ 0 * h \ 0') - (v \ k * h \ k');
        delta bias v = delta bias v + (v \cdot 0 - v \cdot k);
        delta bias h = delta bias h + (h 0 - h k);
    end
    % Update W
    W = W + (eps / size(X, 1)) * delta W;
    % Update biases
   bias v = bias v + (eps / size(X, 1)) * delta_bias_v;
    bias h = bias h + (eps / size(X, 1)) * delta bias h;
end
```

Results

100 features of the RBM

n_hidden_units = 100; k = 1; BATCH_SIZE = 20; eps = 0.1; MAX_EPOCHS_RBM = 20;

Softmax Layer

# EPOCHS	TR accuracy	TS accuracy	Time [s]
10	0.921	0.919	240
20	0.923	0.919	450

Logistic Regression (with 'fitcnet')

# Hidden Layers	Structure Hidden Layer	TR acc.	TS acc.	Time [s]
0	-	0.811	0.814	35
1	[10]	0.932	0.929	36
1	[100]	1	0.963	36
2	[100, 50]	1	0.964	50
2	[100, 75]	1	0.966	54

Results: fitcnet(enc_X_train, Y_train, "LayerSizes", [100 75]);

Accuracy = 1

Accuracy = 0.966

What if we didn't use the RBM representation? TR acc. = 1 TS acc. = 0.975

• 1% performance tradeoff versus 90% compression rate

Reconstruction

Denoising

Completion

Dreaming

-600

- We can achieve almost the same performance with a 90% compression rate!
- We learn the probability distribution P(v, h)