LArSoft light signal simulation

Alejandro Sánchez Castillo asanchezcastillo@ugr.es

UNIVERSIDAD DEGRANADA

Reminder:

```
TrigReport ----- Event summary ------
TrigReport Events total = 1 passed = 0 failed = 1
TrigReport ----- Modules in End-path -----
TrigReport
                        Success
                                     Error Name
TrigReport
                                         0 out1
TimeReport ----- Time summary [sec] -----
TimeReport CPU = 3.707860 Real = 4.063928
MemReport ----- Memory summary [base-10 MB] -----
MemReport VmPeak = 2337.51 VmHWM = 1274.04
%MSG-s ArtException: PostEndJob 17-Nov-2022 06:25:50 CST ModuleEndJob
---- EventProcessorFailure BEGIN
  EventProcessor: an exception occurred during current event processing
  ---- ScheduleExecutionFailure BEGIN
    Path: ProcessingStopped.
    ---- OtherArt BEGIN
        sim::ParticleList::insert - ERROR - track ID=1 is already in the list
        The above exception was thrown while processing module larg4Main/largeant run: 1 subRun: 0 event: 1
    ---- OtherArt END
    Exception going through path simulate
  ---- ScheduleExecutionFailure END
 --- EventProcessorFailure END
---- FatalRootError BEGIN
  Fatal Root Error: TTree::SetEntries
  Tree branches have different numbers of entries, eg sim::AuxDetSimChannels_genericcrt_G4. has 0 entries while Ev
entAuxiliary has 1 entries.
  ROOT severity: 2000
 --- FatalRootError END
Art has completed and will exit with status 1
```

- We need to be able to run full light simulations in LArSoft.
- After the migration to the new LArG4 there was a bug preventing us from doing it.

Update:

c 1	std::vector <sim::auxdethit></sim::auxdethit>	2
o i		?
.	std::vector <sim::simenergydeposit></sim::simenergydeposit>	?
.	std::vector <art::rngsnapshot></art::rngsnapshot>	8
. 1	std::vector <artg4tk::photonhit></artg4tk::photonhit>	.16977
. 1	std::vector <sim::simenergydeposit></sim::simenergydeposit>	?
. 1	std::vector <sim::simphotonslite></sim::simphotonslite>	312
. 1	art::TriggerResults	1
. 1	std::vector <sim::mcshower></sim::mcshower>	0
. 1	std::vector <sim::simenergydeposit></sim::simenergydeposit>	1822
. 1	std::vector <simb::mcparticle></simb::mcparticle>	159304
. 1	std::vector <sim::simenergydeposit></sim::simenergydeposit>	?
. 1	std::vector <sim::simenergydeposit></sim::simenergydeposit>	?
. 1	std::vector <sim::simenergydeposit></sim::simenergydeposit>	?
. 1	std::vector <sim::opdetbacktrackerrecord></sim::opdetbacktrackerrecord>	152
. 1	std::vector <sim::simchannel></sim::simchannel>	17
. 1	std::vector <sim::opdetbacktrackerrecord></sim::opdetbacktrackerrecord>	126
. 1	std::vector <sim::mctrack></sim::mctrack>	2
ri	std::vector <artg4tk::photonhit></artg4tk::photonhit>	.11131
.	std::map <int,std::set<int> ></int,std::set<int>	8

- We managed to find a provisional solution to run the first full simulations with the new LArG4.
- We can now generate, propagate and detect optical photons.

 PhotonHit is the object containing the true information of the detected photons which was previously empty and is full now.

LArSoft light simulation: Cherenkov light.

50

- 40

- 20

-10

 Simulate only Cherenkov light of an electron (0.3 GeV) and a muon (0.03 GeV).

> High granularity, as we store the position where the photon hits the detector.

We can differentiate PMTs and XArapucas.

LArSoft light simulation: scintillation light.

- Simulate only scintillation light of a low energy electron (0.03 GeV).
- Isotropic emission as expected.

Next task:

Public Member Functions

	SimPhotonsLite ()=default Default constructor (do not use! it's for ROOT only). More
	SimPhotonsLite (int chan) Constructor: associated to optical detector channel chan, and empty. More
SimPhotonsLite &	<pre>operator+= (const SimPhotonsLite &rhs) Add all photons from rhs to this ones, at their original time. More</pre>
SimPhotonsLite	operator+ (const SimPhotonsLite &rhs) const
bool	<pre>operator== (const SimPhotonsLite &other) const Returns whether other is on the same channel (OpChannel) as this. More</pre>

Public Attributes

int	OpChannel Optical detector channel associated to this data. More
std::map< int, int >	DetectedPhotons Number of photons detected at each given time: time tick -> photons. More

- LArSoft does not use true hit information to digitize the signal of the optical channels.
- We need another object: SimPhotonsLite.
- This object contains the number of detected photons per time tick for each optical channel.
- Need a new module to translate from PhotonHits to SimPhotonsLite.

New hiccup:

- The current geometry makes copies of a generic PMT/XArapuca geometry without differentiating their IDs.
- We need their IDs to translate from PhotonHits to SimPhotonsLite.
- We have to change the geometry file and define one by one each PMT/XArapuca.

New hiccup:

```
<volume name="volPMT6">
       <materialref ref="LAr"/>
       <solidref ref="PMTVolume"/>
       <auxiliary auxtype="SensDet" auxvalue="SimEnergyDeposit"/>
       <auxiliary auxtype="StepLimit" auxvalue="0.01" unit="mm"/>
       <auxiliary auxtype="Effeld" auxvalue="0."/>
       <physvol>
                <volumeref ref="vol PMT Back"/>
               <position name= "pos_PMT_Back " unit="mm" x="0" y="0" z="-51"/>
       </physvol>
       <physvol copynumber="6">
                <volumeref ref="volOpDetSensitive"/>
                <position name= "pos_PMT_Underside " unit="mm" x="0" y="0" z="-48.5"/>
       </physvol>
        <physvol>
                <volumeref ref="vol PMT in"/>
               <position name= "pos PMT Underside " unit="mm" x="0" y="0" z="-48.5"/>
        </physvol>
<volume name="volPMT7">
        <materialret ret="LAr"/>
       <solidref ref="PMTVolume"/>
       <auxiliary auxtype="SensDet" auxvalue="SimEnergyDeposit"/>
       <auxiliary auxtype="StepLimit" auxvalue="0.01" unit="mm"/>
       <auxiliary auxtype="Efield" auxvalue="0."/>
       <physvol>
                <volumeref ref="vol PMT Back"/>
                <position name= "pos PMT Back " unit="mm" x="0" y="0" z="-51"/>
        <physvol copynumber="7"</pre>
                 volumerer rer- volOpDetSensitive"/>
                <position name= "pos PMT Underside " unit="mm" x="0" y="0" z="-48.5"/>
       </physvol>
        <physvol>
                <volumeref ref="vol_PMT in"/>
                <position name= "pos PMT Underside " unit="mm" x="0" y="0" z="-48.5"/>
        </physvol>
```

- New geometry file containing 312 independent optical channels with their corresponding IDs.
- We are ready to implement the new module that translates from PhotonHits to SimPhotonsLite.

New module:

```
void sim::HitLiteConverter::produce(art::Event& e)
  unsigned int nOpChannels = 312;
  std::unique_ptr<std::vector<sim::SimPhotonsLite>> photLiteCol{new std::vector<sim::SimPhotonsLite>{}};
  auto& photonLiteCollection(*photLiteCol);
  photonLiteCollection.resize(nOpChannels);
  for (unsigned int i = 0; i < n0pChannels; ++i) {</pre>
     photonLiteCollection[i].OpChannel = i:
       std::cout<< "Optical Channel" <<photonLiteCollection[i].OpChannel << std::endl:</pre>
  // Implementation of required member function here.
  typedef std::vector<art::Handle<artg4tk::PhotonHitCollection>> HandleVector;
   auto allSims = e.getMany<artg4tk::PhotonHitCollection>();
   std::cout << "Im fine 4" << std::endl;
 for (HandleVector::const_iterator i = allSims.begin(); i != allSims.end(); ++i) {
   const artg4tk::PhotonHitCollection& sims(**i);
   for (artg4tk::PhotonHitCollection::const iterator j = sims.begin(); j != sims.end(); ++j) {
     const artg4tk::PhotonHit& hit = *j;
     auto time = static cast<int>(hit.GetTime());
     auto channel = static cast<unsigned int>(hit.GetID());
     ++photonLiteCollection[channel].DetectedPhotons[time]:
```

- New module: HitLiteConverter
- Reads PhotonHit information, creates SimPhotonsLite object and inserts it into the root file.

Module output:

 As expected the IDs distribution is identical (overlapped) for PhotonHits and SimPhotonsLite.

Module output:

- Time distributions are not overlapping because both objects have different sensitivity.
- SimPhotonsLite contains photons per time tick (1 TTick = 2ns).

Next tasks:

- Some minor things to deal with:
 - Find the best way to accommodate full simulations within the LArSoft workflow. We do not want to allow full and fast simulations to run at the same time.
 - Geometry changes require some tedious changes in the configuration fhicl and produce a lengthy terminal output.
- Contact Fermilab's expert to find a definite solution to the LArG4 issue.
- Check exhaustively the full simulation along with the new module:
 - Compare the result of the full simulations with the fast simulation and make sure it makes sense.