Hoc kỳ/ Năm hoc 2020 - 2021 ÔN TẬP Ngày thi 2021 TRƯỜNG ĐH BÁCH KHOA Môn học Đai số tuyến tính - ĐHQG-HCM CA Mã môn học MT1007 KHOA KHUD Thời lượng 100 phút | Mã đề | 002

Ghi chú: - Không được sử dụng: tài liệu, laptop. - Nộp lại để thi cùng với bài làm.

Câu 1. Cho $\lambda_1 = 2$ là một trị riêng của ma trận A tương ứng với vecto riêng $X_0 = (1, 2, -1)^T$. Tính $A^5 X_0$.

- **A.** $(32; 64; -32)^T$.
- **B.** $(5; 10; -5)^T$.
- **C.** $(2; 4; -2)^T$.
- **D.** $(1:2:-1)^T$.

Câu 2. Các phép biến đổi nào sau đây trong không gian với hệ trục Oxyz KHÔNG là ánh xa tuyến tính?

- **A.** Phép đối xứng qua mặt phẳng (P) qua gốc O.
- **B.** Phép tịnh tiến theo vécto $\vec{a} \neq 0$.
- **C.** Phép quay quanh trục Oz một góc α .
- **D.** Phép chiếu vuông góc lên đường thẳng (d) qua gốc O.

Câu 3. Cho một quốc gia có ba ngành kinh tế: 1, 2 và 3 với ma trận hệ số đầu vào là $A = \begin{pmatrix} 0.4 & 0.2 & 0.4 \\ 0.2 & 0.3 & 0.1 \\ 0.3 & 0.5 & 0.2 \end{pmatrix}$

và ma trận cầu cuối $b = \begin{pmatrix} 50 \\ 80 \\ 60 \end{pmatrix}$. (Giả sử giá trị hàng hóa được tính bằng USD). Tính đầu ra của ngành 2.

- **A.** 324.305...
- **C.** 455.836. .
- **D.** 502.083...

Câu 4. Trong \mathbb{R}_2 cho tích vô hướng $\forall x = (x_1; x_2), y = (y_1; y_2), (x, y) = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 5x_2y_2$. Tính tích vô hướng của u = (1; 1) và v = (2; -1).

A. 0.

B. −1.

C. 2.

D. 1.

Câu 5. Trong $\mathbb{P}_1[x]$ cho tích vô hướng $\forall p(x), q(x) \in P_1[x], (p,q) = \int_0^1 p(x)q(x)dx$. Tìm độ dài của vécto f(x) = 3x.

A. 1.

B. 3.

C. $\sqrt{2}$.

Câu 6. Trong mặt phẳng với hệ trục toạ độ Oxy, cho ánh xa tuyến tính f là phép quay quanh gốc O một góc $\pi/3$. Tìm dim(Kerf).

A. 1.

B. 0.

D. 3.

Câu 7. Cho ma trận $A = \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$. Tìm tất cả các trị riêng của A.

- **A.** (2; 1).

- **D.** (3; 6).

Câu 8. Trong không gian $P_1[x]$, cho không gian con $F = \langle x-1, -2x+2 \rangle$ và tích vô hướng $(p(x), q(x)) = \langle x-1, -2x+2 \rangle$ $\int_{0}^{\cdot} p(x).q(x)dx$. Tìm các giá trị thực m để $p(x) = -2x + \frac{m^{2}}{3}$ thuộc F^{\perp} .

- **A.** Không tồn tại m.
- **B.** Đáp án khác.
- **C.** $m = \pm \sqrt{2}$.
- **D.** $m = \pm \sqrt{6}$.

Câu 9. Hàm nào sau đây là tích vô hướng trong \mathbb{R}^2 ?

- **A.** $(x, y) = 2x_1y_1 + x_1y_2 x_2y_1 + 3x_2y_2$.
- **B.** $(x, y) = x_1y_1 2x_1y_2 2x_2y_1 + 6x_2y_2$.
- **C.** $(x, y) = x_1y_1 x_1y_2 x_2y_1 + x_2y_2$.
- **D.** $(x, y) = 3x_1y_1 + 4x_2y_2 x_1y_2$.

Câu 10. Cho ánh xa tuyến tính $f: \mathbb{R}_3 \to \mathbb{R}_3$, biết ker f = <(-1, 2, 3) > và <math>f(1, 1, 0) = (3, 3, 0), f(2, 0, 1) =(-4; 0; -2). Tìm tất cả các giá trị riêng của f.

- **A.** $\{0; 3; -2\}.$
- **B.** {1; 3; -2}.
- **C.** {0}.

D. $\{3; -2\}$.

Câu 11. Trong \mathbb{R}^2 , cho dạng toàn phương $f(x) = 4x^2 - 6x_1x_2 + mx^2$. Tìm m để f(x) xác định dương. **A.** $m > \frac{4}{9}$. **B.** $m \ge \frac{4}{9}$. **C.** $m > \frac{9}{4}$. **D.** $m < \frac{9}{4}$.

Câu 40. Trong không gian \mathbb{R}_2 với tích vô hướng chính tắc. Tập nào trong các tập sau là trực chuẩn

A. $\{(1;1),(1;-1)\}$.

B. $\{(1/\sqrt{2}; -1/\sqrt{2}), (1; 0))\}.$

C. $\{(1/\sqrt{2}; -1/\sqrt{2}), (1/\sqrt{2}; 1/\sqrt{2})\}.$

D. $\{(1/\sqrt{2}; -1/\sqrt{2}), (0; 0)\}.$

PHẦN TỰ LUẬN

Câu 1. Giải hệ phương trình $\begin{cases} x_1'(t) = 4x_1 - 3x_2 + t^2 + t \\ x_2'(t) = 2x_1 - x_2 + e^{3t} \end{cases}$ bằng phương pháp chéo hoá.

Câu 2. Trong không gian \mathbb{R}^3 , $x = (x_1, x_2, x_3)$, $y = (y_1, y_2, y_3)$ với tích vô hướng $\langle x, y \rangle = 4x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_3 + 2x_3y_2 + 2x_2y_2 + 4x_3y_3$. Tìm một cơ sở trực giao của không gian con $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 - 2x_2 + x_3 = 0.\}$

Câu 3. Trong không gian \mathbb{R}^3 cho hai không gian con V = <(1, 2, 1), (2, 3, -1) > và <math>W = <(1, 0, m), (n, 5, 1) >.

- a. Tîm m, n để $V \equiv W$;
- b. Cho x = (1, 2, 3), tìm $Pr_V(x)$.

----- HÉT-----