Dauphine | PSL

L2 MIDO 2023-2024

Algèbre linéaire 3. Contrôle continu du 10 octobre 2023 (durée 1h).

NOM: MAJUSCULE

PRÉNOM : LISIBLE

N°TD: ○

(lisiblement, en majuscules)

Toutes les réponses sont à faire sur la copie d'énoncés.

Il y a largement la place de répondre dans les cases, soyez efficaces (utilisez le brouillon) et n'utilisez la dernière page blanche qu'en cas d'extrême nécessité.

SUIVRE LES CONSIGNES

On note Φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ donnée par $\Phi(P)(X) = P(X+1) + P(X-1)$.

Montrer que Φ est un endomorphisme de $\mathbb{R}[X]$ et que les sous-espaces vectoriels F_{pair} et F_{impair} constitués des polynômes pairs / impairs sont des sous-espaces stables par Φ .

Linearité: S: PERCKI, QERCKI, 2, MER

Stabilité: Si Pest pair, alors \$\P(P)(-X) = P(-X+1) + P(X-1)

Donc $\overline{\Phi}(F_{perior}) \subset F_{perior}$ = $P(x-1) + P(x+1) = \overline{\Phi}(P)(x)$.

De même si Pimpair \$\P(P)(-x) = P(-x+1) + P(-x-1) = -P(x-1) - P(x+1) = \P(P)(x).

Denc \$\P(Fimpair) \CFimpair.

Calculer $\Phi(1)$ et $\Phi(X^2)$, puis $\Phi(X)$ et $\Phi(X^3)$.

\$ (1) = 1 + 1

 $\Phi(x^2) = (X + \Lambda)^2 + (X - \Lambda)^2$ $= 2X^2 + 2$ $\overline{\Phi}(x) = x + 1 + x - 1 = 2x$

 $\Phi(x^3) = (x+1)^3 + (x-1)^3 \\
= 2x^3 + 6x.$

En déduire que $\Phi|_{\mathbb{R}_3[X]}$ est un endomorphisme et donner sa matrice dans la base $(1, X^2, X, X^3)$.

On a $\Phi(\Lambda)$, $\Phi(x^2)$, $\Phi(x)$ et $\Phi(x^3)$ qui sont des polynômes de $\mathbb{R}_2[X]$. Par linéarité , on a donc

D(R, (x)) C R, [x]

Matrice dams la base $(1, X^2 \times X^3)$ D(1) $\Phi(X^2)$ $\Phi(x)$ $\Phi(x^3)$ $\begin{pmatrix} 2 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{array}{c} 1 \\ \chi^2 \\ \chi^3 \\ \chi^3 \\ \chi^3 \\ \chi^4 \\ \chi^5 \\ \chi^6 \\ \chi$

Cet endomorphisme de $\mathbb{R}_3[X]$ est-il diagonalisable? NON. S'il l'était, comme il a (une sevle valeur propre (2), il serait semblable à $2 \operatorname{id}_{\mathbb{R}_3}[X]$ donc égal à $2 \operatorname{id}_{\mathbb{R}_3}[X]$, ce qui n'est pers le cas.

à en effet: matrice triangulaire supérieure (valeurs propres sou la diagonale)

Soient
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$, et $w = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Calculer le polynôme caractéristique de A et déterminer ses sous-espaces propres.

$$\mathcal{N}_{A}(A) = \begin{vmatrix} A - A & A & A \\ A - A & A & A \end{vmatrix}$$

$$\begin{vmatrix} A - A & A & A & A & A & A & A \\ A - A & A & A & A & A & A \\ A - A & A & A & A \end{vmatrix} = \begin{vmatrix} A - A & A & A \\ A - A & A & A \\ A - A & A & A \end{vmatrix} = \begin{vmatrix} A - A & A & A \\ A - A & A & A \\ A - A & A & A \end{vmatrix} = \begin{vmatrix} A - A & A & A \\ A - A & A & A \end{vmatrix} = \begin{vmatrix} A - A & A & A \\ A - A & A & A \end{vmatrix} = \begin{vmatrix} A - A & A & A \\ A - A & A & A \end{vmatrix}$$

$$\begin{vmatrix} A - A & A$$

Soit
$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
. Quel est son polynôme caractéristique χ_A ?

On reconnaît une motrice compagnon. $\mathcal{K}_A(X) = X^4 - X^3 + 4X^2 + 2X + 1$

Donner les valeurs de $\chi_A(-1)$, $\chi_A(0)$ et $\chi_A(1)$, ainsi que les limites de $\chi_A(x)$ lorsque $x \to \pm \infty$.

$$\chi_A(-1) = 1 + 1 - 4 - 2 + 1 = -3 < 0$$

 $\chi_A(0) = 1 > 0$ D'autre part $\chi_A(x) \rightarrow +\infty$
 $\chi_A(1) = 1 - 1 + 4 + 2 + 1 = -1 < 0$ loreque $x \rightarrow \pm \infty$.

La matrice A est-elle diagonalisable dans R?
Par le Timevième des valeurs intermédiaires XA change 4 fois de signe donc admet 4 vacines réelles distinctes. Il est donc soindé à vacines simples dans R. Donc A est diagonalisable.

Si
$$A \in M_n(\mathbb{R})$$
 et $B = \begin{pmatrix} 0 & \beta \\ \gamma & \delta \end{pmatrix} \in M_B(\mathbb{R})$, on définit la matrice par bloes $B_{(A)} = \begin{pmatrix} \alpha A & \beta A \\ \gamma A & \delta A \end{pmatrix} \in M_{2n}(\mathbb{R})$.

Montrer que si $A_1A \subset M_n(\mathbb{R})$ et $B_1B \in M_2(\mathbb{R})$, alors $B_{(A)} \times B_{(A)} = (BB)_{[AA]}$.

Si $B = \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \\ \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A & \beta A \end{pmatrix} \times \begin{pmatrix} \alpha A$