الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي دورة: جوان 2014

الشعبة: علوم تجريبية

وزارة التربية الوطنية

اختبار في مادة: العلوم الفيزيائية الختبار في مادة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

لدر اسة حركية التفاعل الكيميائي البطيء والتام بين الماء الأكسجيني $H_2O_2(aq)$ ومحلول يود البوتاسيوم $\left(K^+(aq)+I^-(aq)\right)$

$$H_2O_2(aq) + 2I^-(aq) + 2H_3O^+(aq) = I_2(aq) + 4H_2O(\ell)$$

مزجنا في بيشر عند اللحظة t=0 ودرجة الحرارة C مجمًا $V_1=100~mL$ من محلول الماء الأكسجيني t=0 من محلول الماء الأكسجيني تركيزه المولي $V_2=100~mL$ مع حجم $C_1=4.5\times 10^{-2}~mo\ell\cdot L^{-1}$ من محلول يود البوتاسيوم تركيزه المولي . $\left(2H_3O^+(aq)+SO_4^{2-}(aq)\right)$ ويضع قطرات من محلول حمض الكبريت المركز $C_2=6.0\times 10^{-2}~mo\ell\cdot L^{-1}$

- 1-I اكتب المعادلتين النصفيتين للأكسدة والإرجاع.
- 2) احسب كميتى المادة $n_0(H_2O_2)$ للماء الأكسجيني و $n_0(I^-)$ لشوارد اليود في المزيج الابتدائي.
 - 3) أعد كتابة جدول التقدم للتفاعل وأكمله.

معادلة التفاعل		$H_2O_2(aq) + 2I^-(aq) + 2H_3O^+(aq) = I_2(aq) + 4H_2O(\ell)$				
حالة الجملة	التقدم	$(mo\ell)$ \rightarrow	ات المادة	کمی		
الابتدائية	0		٦.		ı,	
الانتقالية	X		. ب رگ		وفرة	
النهائية	\boldsymbol{X}_f		;o′	3×10^{-3}	;0	

- استنتج المتفاعل المحد.

المجم من الحجم من الحجم من الحجم من البود $I_2(aq)$ المتشكلة في لحظات زمنية مختلفة t، نأخذ في كل مرة نفس الحجم من المزيج التفاعلي ونضع فيه (ماء + جليد) وبضع قطرات من صمغ النشاء ونعايره بمحلول لثيوكبريتات الصوديوم $\left(2Na^+(aq) + S_2O_3^{2-}(aq)\right)$ معلوم التركيز .

معالجة النتائج المتحصل عليها مكنتنا من رسم المنحنى X = f(t) الممثل لنطور تقدم النفاعل الكيميائي المدروس في المزيج الأصلى بدلالة الزمن (الشكل-1).

ب- ضع رسمًا تخطيطيًا للتجهيز التجريبي المستخدم في عملية المعايرة.

ب- احسب السرعة الحجمية للتقاعل في $t_1 = 9 \min$ و $t_0 = 0$

 $I^{-}(aq)$ عبر عن سرعة اختفاء شوارد -بدلالة السرعة الحجمية للتفاعل واحسب قيمتها t_1 في اللحظة

التمرين الثاني: (04 نقاط)

يُستعمل البلوتونيوم 239 كوقود في المحطات النووية، عندما تُقذف نواته بنيترونات تنشطر إلى نواتين ونيترونات. $^{239}_{94}Pu + ^1_0n \longrightarrow ^{102}_{42}Mo + ^{135}_{Z}Te + X ^1_0n$ ينمذج أحد التقاعلات الممكنة لانشطار $^{239}_{94}Pu$ بالمعادلة:

- Z اكتب قانوني الانحفاظ في التفاعلات النووية ثمّ عيِّن قيمة Z و X.
- Δm المكافئ. أ- احسب الطاقة المحرّرة عن انشطار نواة واحدة من البلوتونيوم 239 واستنتج النقص في الكتلة

ب- ضع مخططا طاقويا يمثل الحصيلة الطاقوية لتقاعل انشطار نواة البلويونيوم 239.

- (34h) يستهلك مفاعل نووي كل يوم
 - احسب الاستطاعة المتوسطة للمفاعل.

من البلوتونيوم 239 قدر ها g 35.

4) أ- ماذا يمثل المنحنى المقابل؟ (الشكل-2) و ما الفائدة منه؟ ب- أعد رسم المنحنى بشكل كيفي

وحدّد عليه مواضع الأنوية التالية: $^{135}_{Z}Te$ $^{102}_{42}Mo$ $^{239}_{94}Pu$

تعطى طاقة الربط لكل نكليون $\frac{E_\ell}{\Lambda}$ للأنوية السابقة:

 $^{135}_{~Z}Te:~8,3\,MeV/nucl\'eon~~$ $^{102}_{~42}Mo:~8,6\,MeV/nucl\'eon~$ $^{239}_{~94}Pu:7,5\,MeV/nucl\'eon~$ $1 MeV = 1,6.10^{-13} J : N_A = 6,02.10^{23} mol^{-1} : 1u = 931,5 MeV / c^2$

التمرين الثالث: (04 نقاط)

حققنا الدارة الكهربائية المتكونة من العناصر الكهربائية التالية:

 $R=50\Omega$ ، ناقل أومي مقاومته E ، وشيعة ذاتيتها E ومقاومتها $E=10\Omega$ ، ناقل أومي مقاومته $E=10\Omega$ وقاطعة $E=10\Omega$ ، موصولة على التسلسل (الشكل $E=10\Omega$).

t=0 غلق القاطعة K عند اللحظة

- 1) أ- أعد رسم الدارة الكهربائية وحدّد جهة التيار الكهربائي مع التّعليل. أعط عبارة شدة التيار الكهربائي I_0 في النظام الدائم.
- لمشاهدة التوتر الكهربائي بين طرفي الناقل الأومي $u_R = u_{BC}$ على شاشة راسم اهتزاز مهبطى ذي ذاكرة.
- أ- بيّن كيفية التوصيل براسم الاهتزاز المهبطي لمشاهدة تطور $u_{BC}(t)$ ، مثّله كيفيًا بدلالة الزمن وما هو المقدار الفيزيائي الذي يُماثله في التطور؟
 - ب- جد المعادلة التفاضلية لتطور شدة التيار i(t) المار في الدارة.
- ج- إنّ حل المعادلة التفاضلية السابقة هو $t(t)=0,2(1-e^{-50t})$ حيث الزمن بالثانية s) وشدة التيار بالأمبير t0. استنتج قيمة كل من t0 (ثابت الزمن) و t0.
 - $t = \tau$ المخرية المخرية المخرية في الوشيعة واحسب فيمتها في اللحظية المخرية في المخرية في المخرية المخرية المخرية في المخرية

التمرين الرابع: (04 نقاط)

نقذف في اللحظة t=0 جسماً صلباً S نعتبره نقطة \vec{V}_0 مادية كتلتها t=0 على مستو أفقي بسرعة ابتدائية t=0 من النقطة t=0 نحو النقطة t=0 حيث t=0 .

يخضع الجسم (S) أثناء حركته لقوى احتكاك تكافئ قوة معاكسة لجهة الحركة وثابتة الشدة \widetilde{f} (الشكل-4).

1) أ- مثّل القوى الخارجية المطبقة على مركز عطالة الجسم (S). - بتطبيق القانون الثانى لنيوتن بيّن أن المعادلة التفاضلية

. $\frac{dv}{dt} = -\frac{f}{m}$ المميزة للحركة تعطى بالعبارة:

mج- باعتبار النقطة A مبدأ للفواصل، اكتب المعادلتين m . m و m و m بدلالة: m و m و m . m و m بدلالة: m و m . m استنتج العلاقة النظرية m . m

2) المنحنى (الشكل - 5) يُمثِّل تغيرات v^2 بدلالة X . استنتج قيمة السرعة الابتدائية v_0 وشدة قوة الاحتكاك \vec{f} .

. $\overline{BD} = 0.5m$ حيث E حيث \overline{V}_B في النقطة E بسرعة \overline{V}_B ليسقط في الموضع E حيث E حيث E عند (E). E المستوي الأفقى E في النقطة E في المعلم (E). E ادر E ادر E طالة الجسم (E) بعد مغادرته النقطة E في المعلم (E).

y = f(x) معادلة مسار الحركة

E وسرعة الجسم (S) وسرعة الجسم DE في الموضع

يعطى $g=10m\cdot s^{-2}$ ، تهمل مقاومة الهواء ودافعة أرخميدس.

التمرين التجريبي: (04 نقاط)

في حصة الأعمال التطبيقية، طلب الأستاذ من تلامذته تحضير محاليل مائية لأحد الأحماض الصلبة HA بتراكيز مولية مختلفة وقياس pH كل محلول في درجة الحرارة $25^{\circ}C$ ، فكانت النتائج كالتالي:

$c(mo\ell/L)$	$1,0\cdot 10^{-2}$	$5,0\cdot 10^{-3}$	$1,0\cdot 10^{-3}$	$5,0\cdot 10^{-4}$	$1,0\cdot 10^{-4}$
рН	3,10	3, 28	3,65	3,83	4, 27
$\left[H_3O^+\right]_{\acute{e}q} (mol \cdot L^{-1})$					
$igl[A^-igr]_{\!$					
$[HA]_{\acute{e}q} (mol \cdot L^{-1})$					
$Log \frac{[A^-]_{_{\acute{e}q}}}{[HA]_{_{\acute{e}q}}}$					

.V وحجمه c وحجمه تركيزه المولي تجريبيا توضح فيه كيفية تحضير محلولا للحمض الصلب d

2) عرِّف الحمض HA حسب برونشتد واكتب معادلة تفاعله مع الماء.

3) أكمل الجدول السابق.

. (HA/A^-) المحلول المائي للحمض HA بدلالة الثابت pK_a للثنائية (4 pH

. واكتب معادلته
$$pH=f\left(Lograc{\left[A^{-}
ight]_{\acute{e}q}}{\left[HA
ight]_{\acute{e}q}}
ight)$$
 واكتب معادلته.

ب- حدِّد بيانيا قيمة الثابت pK_a للثنائية pK_a للثنائية pK_a ثم استتج صيغة الحمض الجدول التالي:

الثنائية	HCOOH / HCOO	$C_2H_5COOH/C_2H_5COO^-$	$C_6H_5COOH/C_6H_5COO^-$
pK_a	3,8	4,87	4,2

ج- ربِّب هذه الأحماض حسب تزايد قوتها الحمضية مع التعليل.

الموضوع الثاتي

التمرين الأول: (04 نقاط)

وضعنا في بيشر حجما $V_0=250~mL$ من مادة مطهرة تحتوي على ثنائي اليود $V_0=250~mL$ بتركيز وضعنا في بيشر حجما $C_0=2.0\cdot 10^{-2}~mo\ell\cdot L^{-1}$ كتلتها $c_0=2.0\cdot 10^{-2}~mo\ell\cdot L^{-1}$. m=0.5g

التحول الكيميائي البطيء والتام الحادث بين ثنائي اليود والزنك ينمذج بتفاعل كيميائي معادلته:

$$Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$$

متابعة التحول عن طريق قياس الناقلية النوعية σ للمزيج التفاعلي في لحظات زمنية مختلفة مكنتنا من الحصول على جدول القياسات التالي:

$t(\times 10^2 s)$	0	1	2	4	6	8	10	12	14	16
$\sigma(S \cdot m^{-1})$	0	0,18	0, 26	0,38	0,45	0,49	0,50	0,51	0,52	0,52
$x (mmo\ell)$										

- 1) اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية النوعية.
 - 2) احسب كمية المادة الابتدائية للمتفاعلين.
 - 3) أنجز جدولا لتقدم التفاعل الحادث.
 - . $_{X}$ أ- اكتب عبارة الناقلية النوعية σ للمزيج التفاعلي بدلالة التقدم σ

ب- أكمل الجدول السابق.

X = f(t) ج- ارسم المنحنى

5) أ- عرّف زمن نصف التقاعل $t_{1/2}$ ثم عيّن قيمته.

ج- فسر مجهرياً تطور السرعة الحجمية للتفاعل.

التمرين الثاني: (04 نقاط)

 $eta^-:$ المشع يحتوي على نظير السيزيوم ^{134}Cs المشع الم

- 1) عرّف ما يلي:
- النظير المشع.
- eta^- الإشعاع –
- ^{134}Cs اكتب معادلة النشاط الإشعاعي للسيزيوم (2
- A = f(t) من إحدى الموسوعات العلمية الخاصة بالبحث العلمي في الفيزياء النووية تم استخراج المنحنى A = f(t) والذي يعبّر عن تطور النشاط الإشعاعي A لمنبع مشع من السيزيوم 134 مماثل للمنبع السابق كتلته m_0 .

- t=0 في اللحظة A_0 في النشاط الإشعاعي أ- استنتج من المنحنى قيمة النشاط الإشعاعي
- . au ما هي قيمة النشاط الإشعاعي في اللحظة au= au استنتج قيمة ثابت الزمن
- ج- بيّن أن $t_{1/2} = au \cdot \ln 2$ نصف العمر لنظير السيزيوم $t_{1/2} = au \cdot \ln 2$ يعطى بالعلاقة: $t_{1/2} = au \cdot \ln 2$ واحسب قيمته.
 - د- احسب كتلة العينة m_0 ثم بيّن أن الكتلة المتفككة m'(t) من السيزيوم 134 تعطى بالعلاقة:

$$m'(t) = m_0 (1 - e^{-\lambda t})$$

m'(t) هـ مثّل كيفياً تطور الكتلة m'(t) بدلالة الزمن m'(t)

دور <i>ي</i> :	الجدول اا	يعطى الجدول المقابل والمستخرج من
		$N_{\star} = 6.02 \cdot 10^{23} mo\ell^{-1}$

العنصر	Xe	Cs	Ва	La
Z	54	55	56	57

$E \downarrow C \qquad \qquad X_2 \qquad \qquad X_2 \qquad \qquad X_2 \qquad \qquad X_2 \qquad \qquad X_3 \qquad \qquad X_4 \qquad \qquad X_4 \qquad \qquad X_5 \qquad \qquad X_6 \qquad \qquad X_6 \qquad \qquad X_7 \qquad \qquad X_8 \qquad \qquad X_$

التمرين الثالث: (04 نقاط)

تتكون الدارة الكهربائية (الشكل-2) من مولد لتوتر كهربائي ثابت E ، مكثفة سعتها C ، ناقلين أوميين مقاومتهما $R_1=1k\Omega$ و $R_2=2k\Omega$ و بادلة K توصل الدارة براسم اهتزاز مهبطي ذي مدخلين Y_1 و Y_2

ا) نضع البادلة K في الوضع 1، ماذا يمثّل المنحنيان المشاهدان Y_2 و Y_1 لراسم الاهتزاز المهبطي؟

2) يظهر على شاشة راسم الاهتزاز المهبطي المنحنيان (a) و (b) (الشكل-3).

أ- ما هو المنحنى المعطى بالمدخل Y_1 ؟ برر إجابتك.

اكتب المعادلة التفاضلية الموافقة لتطور المقدار
 الفيزيائي الذي يمثله هذا المنحني.

 au_1 ب جد قيمة ثابت الزمن au_1 للدارة.

C و E مدّد قيمة كلاً من E

t=0 احسب شدة التيار (t) اعسب شدة التيار (t) احسب شدة اللحظة $t \geq 0.6 \, s$

5) بعد نهاية شحن المكثفة نضع البادلة K في الوضع 2 في لحظة نعتبرها مبدأ الأزمنة.

أ- احسب قيمة au_2 للدارة في هذه الحالة وقارنها بقيمة au_1 ، ماذا تستتج؟

 $t= au_2$ بنعل جول في اللحق الكهربائية المحولة في الناقل الأومى R_2 بفعل جول في اللحظة -

التمرين الرابع: (04 نقاط)

في مرجع جيومركزي نعتبر حركة الأقمار الاصطناعية دائرية حول مركز الأرض التي نفرض أنها كرة متجانسة كتلتها $M_{\scriptscriptstyle T}$ ونصف قطرها R .

نقبل أن القمر الاصطناعي في مداره يخضع لقوة جذب الأرض $\vec{F}_{T/s}$ فقط.

1) أ- عرف المرجع الجيومركزي.

ب- اكتب العبارة الشعاعية للقوة $\vec{F}_{T/s}$ بدلالة G (ثابت الجذب العام)، M_s ، R ، M_T ، الاصطناعي) و h ارتفاعه عن سطح الأرض.

 \vec{a} استنتج عبارة \vec{a} شعاع تسارع حركة القمر الاصطناعي، ما طبيعة الحركة؛

2) الجدول التّالي يعطي بعض خصائص حركة قمرين اصطناعيين حول الأرض.

أ- أحد القمرين الاصطناعيين جيومستقرًا، عيّنه مع التعليل.

ب- احسب تسارع الجاذبية الأرضية (g) عند نقطة من
 مدار القمر الاصطناعي Alsat1. ماذا تستتج؟

ج- بيِّن اعتمادًا على معطيات الجدول أن القانون الثالث لكبلر مُحقَّق.

 $M_{\scriptscriptstyle T}$ د استنتج قيمة تقريبية للكتلة

 $1~jour=23h~56\,\mathrm{min}$ ، R=6380~km ، $G=6,67\times 10^{-11}~N\cdot m^2\cdot kg^{-2}$: نسار ع الجاذبية عند سطح الأرض: $g_0=9.8\,\mathrm{m}\cdot s^{-2}$

القمر الاصطناعي	Alsat1	Astra
$T(s) \times 10^3$	5,964	86,160
$h(m) \times 10^6$	0,70	35,65

التمرين التجريبي: (04 نقاط)

مزجنا عند اللحظة $m_0=38,4\,g$ من حمض كربوكسيلي مزجنا عند اللحظة $m_0=0,4\,mo\ell$ ، t=0 من حمض كربوكسيلي مزجنا عند اللحظة $C_0H_{2n+1}-COOH$

قسمنا المزيج بالتساوي على عشرة أنابيب اختبار تسد بإحكام وتوضع في حمام مائي درجة حرارته ثابتة C = 60 (الشكل-4).

- 1) اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث. - ما هي خصائص هذا التفاعل؟
- 2) قمنا بإجراء تجربة مكنتنا من قياس كمية مادة الأستر المتشكل في كل أنبوب خلال الزمن ورسم المنحنى $n_{ester} = f(t)$.

 $H_{ester} = I(t)$

- أعط البروتوكول التجريبي الموافق.
- 3) أ- علما أن ثابت التوازن لتفاعل الأسترة المدروس هو K=4 . حدّد كمية مادة الحمض في المزيج الابتدائي.
- ب- جد الصيغة المجملة للحمض الكربوكسيلي واستنتج الصيغة نصف المفصلة للأستر وأعط اسمه النظامي.

= احسب مردود التفاعل وقارنه بمردود التفاعل لمزيج ابتدائي متساوي المولات، كيف تفسر ذلك؟ = 120 min عند اللحظة = 120 min عند اللحظة المزيج التفاعلي في كل أنبوب عند اللحظة = 120 min عند اللحظة المزيج التفاعلي في كل أنبوب عند اللحظة = 120 min عند اللحظة المزيج التفاعلي في كل أنبوب عند اللحظة = 120 min عند اللحظ

 $M(O) = 16g \cdot mol^{-1}$; $M(C) = 12g \cdot mol^{-1}$; $M(H) = 1g \cdot mol^{-1}$;