Triple and Quadruple Encryption: Bridging the Gaps

Bart Mennink and Bart Preneel KU Leuven (Belgium)

Dagstuhl — January 6, 2014

1977

1977 DES
$$\kappa = 56$$
 $n = 64$
1978 Triple-DES $\kappa = 168$ $n = 64$

1977	DES	$\kappa = 56$	n = 64
1978	Triple-DES	$\kappa = 168$	n = 64
1984	DESX	$\kappa = 184$	n = 64

1977	DES	$\kappa = 56$	n = 64
1978	Triple-DES	$\kappa = 168$	n = 64
1984	DESX	$\kappa = 184$	n = 64
1991	IDEA	$\kappa = 128$	n = 64
2001	AES	$\kappa > 128$	n = 128

Introduction: Triple-DES

- Double-DES: only marginal security increase
- Triple-DES
 - $\bullet \ \ E \circ D \circ E \ \text{versus} \ E \circ E \circ E$
 - $k_1 = k_3$ versus $k_1 \neq k_3$

Introduction: Cascade Encryption

- κ, n arbitrary
- $r' := \lceil r/2 \rceil$

Introduction: Cascade Encryption

- κ, n arbitrary
- $r' := \lceil r/2 \rceil$
- Ideal cipher model
- ullet Information-theoretic distinguisher has access to E

rounds	security attack		tight
r = 1, 2	κ κ [DH77]		✓
r = 3, 4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06}, \mathrm{GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	Х
$r \ge 5$	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	Х

• [Lee13]: $\kappa + \min\{\kappa,n\} - \frac{16}{r}(\frac{n}{2}+2)$ security if $r \geq 16$

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
r = 3, 4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06,GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	Х
$r \ge 5$	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	Х

- [Lee13]: $\kappa + \min\{\kappa,n\} \frac{16}{r}(\frac{n}{2}+2)$ security if $r \geq 16$
- \bullet For r=3,4: bounds non-tight for $\kappa \leq n$

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
r = 3, 4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06,GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	X
$r \ge 5$	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	X

- [Lee13]: $\kappa + \min\{\kappa,n\} \frac{16}{r}(\frac{n}{2}+2)$ security if $r \geq 16$
- For r=3,4: bounds non-tight for $\kappa \leq n$

Triple-DES: $2^{84} \le 2^{88}$

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
r = 3, 4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06}, \mathrm{GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	Х
$r \ge 5$	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	Х

- [Lee13]: $\kappa + \min\{\kappa,n\} \frac{16}{r}(\frac{n}{2}+2)$ security if $r \geq 16$
- For r=3,4: bounds non-tight for $\kappa \leq n$

Triple-DES: $2^{84} \le 2^{88}$

Main goal: tight security for triple encryption

• [Gaž13]: attack in $2^{\kappa + \frac{r'-1}{r'}n}$ queries

- [Gaž13]: attack in $2^{\kappa + \frac{r'-1}{r'}n}$ queries
- $\kappa = 0$:

• Distinguishable from random in constant #queries

• [Gaž13]: attack in $2^{\kappa + \frac{r'-1}{r'}n}$ queries

Result 1: attack in $2^{r'\kappa}$ queries

• [Gaž13]: attack in $2^{\kappa + \frac{r'-1}{r'}n}$ queries

Result 1: attack in $2^{r'\kappa}$ queries

- Attack idea:
 - Formalization of meet-in-the-middle attack
 - [DDKS12]: attack in $2^{(r-\sqrt{2r})\kappa}$ in incomparable model

• [Gaž13]: attack in $2^{\kappa + \frac{r'-1}{r'}n}$ queries

Result 1: attack in $2^{r'\kappa}$ queries

- Attack idea:
 - Formalization of meet-in-the-middle attack
 - [DDKS12]: attack in $2^{(r-\sqrt{2r})\kappa}$ in incomparable model

Corollary: attack in $2^{\kappa + \frac{r'-1}{r'}\min\{r'\kappa,n\}}$ queries

New State of the Art

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
r = 3, 4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06,GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	Х
7 - 3, 4		$\kappa + \min\{\kappa, n/2\}$	Х
r > 5	$\kappa + \min\left\{\frac{(r'-1)}{r'}\kappa, n/2\right\}$ [GM 09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	Х
. = 0		$\kappa + rac{r'-1}{r'}\min\{r'\kappa,n\}$	Х

New State of the Art

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
r = 3.4	$\kappa + \min\{\kappa/2, n/2\} \ [\mathrm{BR06,GM09}]$	$\kappa + n/2$ [Luc98,Gaž13]	Х
r = 3, 4		$\kappa + \min\{\kappa, n/2\}$	Х
r > 5	$\kappa + \min\left\{ rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM 09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	Х
$7 \geq 5$		$\kappa + rac{r'-1}{r'}\min\{r'\kappa,n\}$	Х

Triple-DES: $2^{84} \le 2^{88}$

Main goal: tight security for triple encryption

Tightening Security Bounds

- ullet [BR06,GM09]: security up to $2^{\kappa+\min\{\kappa/2,n/2\}}$ queries
- Attack in $2^{\kappa+\min\{\kappa,n/2\}}$ queries (previous slide)

Tightening Security Bounds

- ullet [BR06,GM09]: security up to $2^{\kappa+\min\{\kappa/2,n/2\}}$ queries
- Attack in $2^{\kappa+\min\{\kappa,n/2\}}$ queries (previous slide)

Result 2: tight security up to $2^{\kappa+\min\{\kappa,n/2\}}$ queries

Tightening Security Bounds

- [BR06,GM09]: security up to $2^{\kappa+\min\{\kappa/2,n/2\}}$ queries
- Attack in $2^{\kappa+\min\{\kappa,n/2\}}$ queries (previous slide)

Result 2: tight security up to $2^{\kappa+\min\{\kappa,n/2\}}$ queries

- Proof idea:
 - Gap due to rather isolated lemma of [BR06,GM09]
 - Improvement of lemma leads to tight security

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
m - 2 1	$\kappa + \min\{\kappa/2, n/2\}$ [BR06,GM09]	$\kappa + n/2$ [Luc98,Gaž13]	Х
r = 3, 4	$\kappa + \min\{\kappa, n/2\}$	$\kappa + \min\{\kappa, n/2\}$	\checkmark
r > 5	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	×
7 = 0	${\kappa + \min\{\kappa, n/2\}}$	$\kappa + rac{r'-1}{r'}\min\{r'\kappa,n\}$	X

rounds	security	attack	tight
r = 1, 2	κ	κ [DH77]	✓
m - 2 1	$\kappa + \min\{\kappa/2, n/2\}$ [BR06,GM09]	$\kappa + n/2$ [Luc98,Gaž13]	Х
r = 3, 4	$\kappa + \min\{\kappa, n/2\}$	$\kappa + \min\{\kappa, n/2\}$	\checkmark
r > 5	$\kappa + \min\left\{rac{(r'-1)}{r'}\kappa, n/2 ight\}$ [GM09]	$\kappa + rac{r'-1}{r'}n$ [Gaž13]	×
7 = 0	${\kappa + \min\{\kappa, n/2\}}$	$\kappa + rac{r'-1}{r'}\min\{r'\kappa,n\}$	X

- Tight security for $r \geq 5$ (non-trivial)?
- [Lee13]: asymptotic $\kappa + \min\{\kappa, n\}$ security

- Comparison with different model
- Consider cascaded DES

- Comparison with different model
- Consider cascaded DES

		attack	a	ttack
rounds	security		time	memory
r=2	2^{56}	2^{56}		
r=3	2^{88}	2^{88}		
r=4	2^{88}	2^{88}		

- Comparison with different model
- Consider cascaded DES

		a tta ck		
rounds	security	attack	time	memory
r=2	2^{56}	2^{56}	2^{57}	2^{56}
r=3	2^{88}	2^{88}	2^{112}	2^{56}
r=4	2^{88}	288	2^{121}	2^{56}

- Comparison with different model
- Consider cascaded DES

rounds	security	attack	attack	
			time	memory
r=2	2^{56}	2^{56}	2^{57}	2^{56}
r=3	2^{88}	2^{88}	2^{112}	2^{56}
r=4	2^{88}	2^{88}	2^{121}	2^{56}

Thank you for your attention!