INDEX

Absolute summability, 51, 108	elliptic, 463-65	Bilateral z-transform, 95
for suddenly-applied	equiripple, 492-93	Bilinear transformation, 450-54,
exponential, 51-52	Attenuation, and group delay,	517
Accumulator, 19, 31, 34	effects of, 343-45	Butterworth approximation,
difference equation	Autocorrelation, 65–66	458-60
representation of, 34–35	Autocorrelation invariance, 526	of a Butterworth filter, 454-57
as time-invariant system, 20	Autocorrelation sequence:	Chebyshev approximation,
Adaptive signal processing, 4	of <i>h</i> [<i>n</i>], 67–68	460–63
Additivity property, 18	spectrum analysis of random	design examples, 454-65
Aliasing, 144–45	signals using estimates of,	elliptic approximation, 463-65
prefiltering to avoid, 185-87	743–48	and warping, 453–54
in reconstruction of	Autocovariance sequence, 65–66	Binary number system, 371–74
undersampled sinusoidal	Autoregressive (AR) linear	Bit-reversed order, 642–43
signal, 148–49	random process, 771	Blackman window, 468fn, 469
sampling/reconstruction of	Autoregressive moving-average	Block convolution, 585–87
sinusoidal signal, 147	(ARMA) linear random	overlap-add method of, 723
Aliasing distortion, 144–45	process, 771	using time-dependent Fourier
All-pass decomposition, 280–82	Auxiliary conditions, and	transform, 722–23
All-pass systems, 274–79	linearity/time	Block floating point, 668
defined, 274	invariance/causality of a	Block diagram representation of
first-and second-order, 275	system, 39	linear constant-coefficient
uses of, 278	Averaging of periodograms,	difference equations,
Alternation theorem, 489–91	737–38	341–48
Amplitude spectrum, 49	computation using the DFT,	Block processing, 693
Analog channel vocoder, 5	739	Bounded-input bounded-output
Analog signals, 8	5	(BIBO), 21
digital processing of, 185–201	Backward difference, 21, 32,	Butterflies, 676
analog-to-digital (A/D)	33–34	Butterworth approximation,
conversion, 187–93	Bandlimited differentiator, ideal,	458–60
analysis of quantization	159	Butterworth filter:
errors, 193–97	Bandlimited signal,	bilinear transformation of,
prefiltering to avoid aliasing,	reconstruction of, from its	454–57
185–87	samples, 150–53	impulse invariance with,
Analog-to-digital (A/D)	Bandpass filters, FIR equiripple	446–49
conversion, 187–93	approximation of, 507–10	Canania form implementation
oversampled:	Bandpass sampling, 799–801	Canonic form implementation,
with direct quantization, 201–5	Bandpass signals, representation of, 796–99	346, 347 Cascade connection, 29
with noise shaping, 206–10	Bandstop filters, frequency	Cascade form structures:
sample-and-hold system,	response of, 44	coefficient quantization effects,
188–90	Bartlett windows, 468–71, 744,	379–82, 386–90
Analytic signal, 776	750–54	FIR systems, 390, 412
Antialiasing filter, 186	Basic sequences/sequence	IIR systems, 356–59, 379–82,
Aperiodic discrete-time	operations, 11–16	403–10
sinusoids, 15	combining, 13–16	Cauchy integral theorem, 776
Approximation:	exponential sequences, 13–14	Cauchy principal values, 781–82
Butterworth, 458–60	unit sample sequence, 11	Cauchy-Riemann conditions, 776
Chebyshev, 460–63	unit sample sequence, 11 unit step sequence, 11–13	Causal all-pass systems, 274–78
Chebyshev, 400-03	unit step sequence, 11-15	Causai aii-pass systems, 2/4-70

Causal generalized linear-phase	Commutative property of	conversion, 187–93
systems, 297–311	convolution, 29	analysis of quantization
type I FIR linear-phase	Compensation for zero-order	errors, 193–97
systems, 298	hold, 506–7	digital-to-analog (D/A)
type II FIR linear-phase	Complex-conjugate pole pair,	conversion, 197-201
systems, 298	direct form	prefiltering to avoid aliasing
type III FIR linear-phase	implementation of, 382–84	185–87
systems, 298	Complex cepstrum, 138, 788–89	discrete-time processing of,
type IV FIR linear-phase	Complex exponential sequences,	153–63
systems, 298–99	14–15, 40	changing sampling rate
Causality, 21	Complex sequences:	using, 167–78
•		impulse invariance, 160–63
and auxiliary conditions, 39	defined, 789	linear time-invariant
and region of convergence	Hilbert transform relations for,	
(ROC), 110–11	789–801	discrete-time systems,
Causal sequences, 31, 129, 777–82	Compressor, 20–21, 167–68	154–60
defined, 778	Computationally realizable	frequency-domain
exponential sequence, 779–80	systems, 242	representation of, 142–49
finite-length sequence, 779	Conjugate-antisymmetric	multirate signal processing,
sufficiency of Fourier	sequence, 55-56	179–84
transform for, 777–82	Conjugate-symmetric sequence,	interchange of filtering and
exponential sequence,	55–56	downsam-
779–80	Conjugation property,	pling/upsampling,
finite-length sequence, 779	z-transform, 123	179–80
Characteristic of floating point	Continuous phase, 343	polyphase decompositions,
number, 412	Continuous-to-discrete-time	180–82
Charge-coupled devices (CCDs),	(C/D) conversion, 141–49	polyphase implementation
2	Continuous-time complex	of decimation filters,
Charge transport devices	exponentials and	182–83
(CTDs), 2	sinusoids, compared to	polyphase implementation
Chebyshev approximation,	discrete-time complex	of interpolation filters,
460–63	exponentials and	183–84
Chirp transform algorithm	sinusoids, 14	Nyquist frequency/Nyquist
(CTA), 656–61	Continuous-time IIR filter	rate, 146-47
parameters, 661	design, 442–43	periodic sampling, 140-42
Circular convolution:	Continuous-time processing, of	sampling of, 140–239
with delayed impulse	discrete-time signals,	sampling rate change by
sequence, 572–73	163–67	noninteger factor, 176–78
and discrete Fourier transform,	Continuous-time signals, 8	sampling rate increase by
571–75	aliasing, 144–45	integer factor, 172–76
	in reconstruction of	sampling rate reduction by
N-point circular convolution,		integer factor, 167–72
571	undersampled sinusoidal	unit impulse function, 142–43
of two rectangular pulses,	signal, 148–49	_
573–75	sampling/reconstruction of	Convergence:
Circular shift of a sequence,	sinusoidal signal, 147	Fourier transform, 50–53
discrete Fourier	bandlimited signal	z-transform, 96, 105–11
transform, 564–67	reconstruction, from its	Convolution property,
Coefficient quantization, 377–39	samples, 150–53	z-transform, 124–26
of an optimum FIR filter,	continuous-time processing of	Convolution of sequences, 22–28
386–90	discrete-time signals,	124–25
in FIR systems, 384–86	163–67	block, 585–88, 721–22
in IIR systems, 377–82	moving-average system with	circular, 571–75
maintaining linear phase,	noninteger delay, 165–67	linear, 576–88
390–91	noninteger delay, 164–65	periodic, 548-50
poles of quantized	digital processing of analog	Convolution sum:
second-order sections,	signals, 185–201	analytic evaluation of, 26-28
382–84	analog-to-digital (A/D)	computation of, 25-26

index 861

defined, 23	Differentiation property,	Discrete Fourier transform
Convolution-sum expression,	z-transform, 122–23	(DFT), 541–692
23–25	Differentiators, 516	autocorrelation sequence,
Convolution theorem, 60–61	Kaiser window design of,	spectrum analysis of
Fourier transform, 60–61	482–85	random signals using
z-transform, 124–25	Digital filters, 439	estimates of, 743–48
CORDIC rotator algorithm, 677,	Digital processing of analog	chirp transform algorithm
684	signals, 185–201	(CTA), 656–61
Correlation, computing using	analog-to-digital (A/D)	parameters, 661
DFT, 746–48	conversion, 187–93	computation of, 629–52
Coupled form, for second-order	analysis of quantization errors,	decimation-in-frequency
system, 384	193–97	algorithms, 646–52
Coupled form oscillator, 425		decimation-in-time
Critically sampled filter bank, 770	digital-to-analog (D/A)	algorithms, 635–46
Cross-correlation, 69–70	conversion, 197–201	Goertzel algorithm, 633–35
Closs-correlation, 69-70	prefiltering to avoid aliasing,	
DD (1-35-1) 054	185–87	correlation, computing using
DB (decibels), 254	Digital signal processing, 9	DFT, 746–48
DCT-1, 590–93	early use of digital computers	defined, 541
relationship between DFT	in, 5–6	DFT analysis of sinusoidal
and, 593-94	Digital signals, 8	signals, 697–714
See also Discrete cosine	Digital-to-analog (D/A)	oversampling/linear
transform (DCT)	conversion, 185, 197-201	interpolation for
DCT-2, 590–93	oversampling and noise	frequency estimation,
energy compaction property	shaping in, 210–13	713–14
of, 595–98	Dirac delta function, 142–43	spectral sampling, 703–14
relationship between DFT	Direct form I implementation, of	with 32-point Kaiser window
and, 594–95	an LTI system, 346–48	and zero-padding, 711–12
See also Discrete cosine	Direct form II implementation,	using a Kaiser window,
transform (DCT)	of an LTI system, 347–48	708–10
Dead bands, 416	Discrete cosine transform	windowing, 698-703
Decimation, 172		discrete cosine transform
Decimation filters, polyphase	(DCT), 589–99	(DCT), 589–99
implementation of, 182–83	applications of, 598–99	applications of, 598–99
Decimation-in-frequency	DCT-1, 590–93	DCT-1 and DCT-2, 590-93
algorithms, 646–52	relationship between DFT	definitions of, 589–90
alternate forms, 650–52	and, 593–94	energy compaction property
in-place computation, 650	DCT-2, 590–93	of DCT-2, 595–98
Decimation-in-time algorithms,	energy compaction property	multiplication of, 599
635–46	of, 595–98	relationship between DFT
alternate forms, 643–46	relationship between DFT	and DCT-1, 593–94
in-place computations, 640–43	and, 594–95	relationship between DFT
Decimator, 172	definitions of, 589-90	and DCT-2, 594–95
	multiplication of, 599	discrete Fourier series (DFS),
Decomposition:	Discrete Fourier series (DFS):	, , ,
all-pass, 280–82	duality in, 544–45	543–46
of a linear-phase system,	of a periodic impulse train, 544	duality in, 544–45
308–11	of a periodic regular pulse	of a periodic impulse
Delay distortion, 242–43	train, 545–46	training, 544
Deterministic autocorrelation		of a periodic regular pulse
sequence, 67–68	properties of, 546–51	train, 545–46
DFS, See Discrete Fourier series	duality property, 547	properties of, 546–51
(DFS)	linearity property, 546	fast Fourier transform (FFT)
DFT, See Discrete Fourier	periodic convolution, 548–51	algorithms, 629–92
transform (DFT)	shift of a sequence, 546-47	algorithms for more general
Difference equations, recursive	symmetry properties, 547	values of N , 655
computation of, 37-38	representation of periodic	coefficients, 654-55
Differentiation in frequency, 60	sequences, 543-46	indexing, 652–54

finite register length, effects of,	defined, 714	complex exponential
661–68	effect of the window in,	sequence, 14
Fourier analysis of signals	717–18	exponential sequences,
using, 693–97	of a linear chirp signal,	13–14
relationship between DFT	715–17	sinusoidal sequences, 13
values, 697	sampling in time/frequency,	unit sample sequence, 11
as Fourier representation of	718–22	unit step sequence, 11–13
finite-duration sequences,	Winograd Fourier transform	defined, 8
559–64	algorithm (WFTA),	discrete-time systems, 16-22
implementation of, using	655–56	graphic depiction of, 10
convolution, 655–61	Discrete Hilbert transforms,	sampling frequency, 10
implementing linear	775–810	sampling period, 10
time-invariant systems	analytic signal, 776, 789	as sequences of numbers, 9–16
using, 582–88	bandpass sampling, 799–801	signal-processing systems,
linear convolution, 576–88	bandpass signals,	classification of, 8–9
circular convolution as	representation of, 796–99	Discrete-time sinusoids,
linear convolution with	Cauchy principal values,	periodic/aperiodic, 15
aliasing, 577–82	781–82	Discrete-time specifications, 443
of two finite-length	causal sequences:	Discrete-time systems, 16–22
sequences, 277	defined, 778	causality, 21
periodic sequences,	exponential sequence,	coefficient quantization,
representation of, 542-46	779–80	377–39
of periodic signals, 551–55	finite-length sequence, 779	of an optimum FIR filter,
periodogram, 730-42	sufficiency of the Fourier	386–90
averaging of, 737–39	transform for, 777-82	in FIR systems, 384–86
defined, 732	Hilbert transformers, 791	in IIR systems, 377–82
explicit computation of, 732	design of, 792-95	maintaining linear phase,
modified, 732	Kaiser window design of,	390–91
periodogram analysis, 731,	793–95	poles of quantized
739–42	Hilbert transform relations,	second-order sections,
power spectrum, 731–32, 734	775–801	382–84
properties of, 733–37	for complex sequences,	defined mathematically, 16–17
power spectrum estimation:	789–801	discrete-time random signals,
computing using DFT,	magnitude, relationships	65–70
746-48	between phase and,	autocorrela-
example based on estimation	788–89	tion/autocovariance
of autocorrelation	Poisson's formulas, 776	sequence, 65–66
sequence, 748–54	Discrete-time differentiators,	deterministic
properties of, 564–76	482–85	autocorrelation sequence,
circular convolution, 571–75	Discrete-time filter, determining	67–68
circular shift of a sequence,	specifications for, 440–42	power density spectrum, 68
564–67	Discrete-time Fourier transform	random process, 65
duality property, 567–68	(DTFT), 48fn	white noise, 69
linearity property, 564	Discrete-time impulse, 11	finite-precision numerical
symmetry properties, 568–70	Discrete-time random signals,	effects, 370–77
sampling the Fourier	65–70	numerical representations,
transform, 555–59	Discrete-time signal processing, 2	371–74
time-dependent Fourier	continuous signals, 2	quantization in
analysis of nonstationary	future of, 7	implementing systems,
signals, 723–30	history of, 6–7	374–77
radar signals, 728–30	Discrete-time signals, 8–93	FIR systems, basic network
speech signals, 720–28	basic sequences/sequence	structures for, 366–70
time-dependent Fourier transform, 714–22	operations, 11–16	cascade form, 367–68 direct form, 367
block convolution using,	combining basic sequences,	linear-phase FIR system
722–23	13–16	structures, 368–70
, 22 23	13-10	311 uctures, 500-70

fixed-point realizations of IIR representation of the structures for, 340-438 digital filters, zero-input moving-average system, symmetric properties of limit cycles in, 413-18 35 - 36Fourier transform, 55-58 Fourier transform theorems. recursive computation of conjugate-antisymmetric 58-65 difference equations, sequence, 55-56 convolution theorem, 60-61 37-38 conjugate-symmetric differentiation in frequency, signal flow graph sequence, 55-56 even function, 55 representation of, 348-53 frequency shifting, 59 linear systems, 18 even sequence, 55 linearity of Fourier accumulator system, 19 illustration of, 57-58 transform, 59 nonlinear system, 19 odd function, 55 modulation or windowing odd sequence, 55 linear time-invariant systems, theorem, 61-62 22-28, 154-60 time-invariant systems, 20-21 Parseval's theorem, 60 convolution sum, 23-28 accumulator as, 20 time reversal, 60 eigenfunctions for, 40-45 compressor system, 20-21 transposed forms, 363-66 time shifting, 59 properties of, 28-34 frequency-domain for a basic second-order memoryless systems, 18 moving average, 17-18 representation of, 40-48 section, 364-65 for first-order system with eigenfunctions for linear and processing of time-invariant systems, continuous-time signals, no zeros, 363-64 truncation, limit cycles due to, 40-45, 61 153 frequency response of the representation of sequences by 414-16 ideal delay system, 41 Discrete-to-continuous-time Fourier transforms, 48-54 frequency response of the absolute summability for (D/C) conversion, 152-53 moving-average system, suddenly-applied Distortion compensation, 282–83 Doppler frequency, 729-30 44-45 exponential, 51-52 ideal frequency-selective Downsampling, 168-72 Fourier transform of filters, 43-44 interchange of filtering and, complex exponential 179 - 80sinusoidal response of linear sequences, 54 time-invariant systems, Fourier transform of a Duality property: 42-43 constant, 53 discrete Fourier series (DFS), suddenly-applied complex inverse Fourier transform, 48 544-45, 547 discrete Fourier transform exponential inputs, 46-48 square-summability for the ideal delay system, 17 (DFT), 567-68 ideal lowpass filter, 52-53 IIR systems, basic structures round-off, limit cycles due to, 414-16 for, 354-63 Eigenfunctions, 40 cascade form, 356-59 round-off noise, 391-413 Eigenvalues, 40-41 direct forms, 354-56 analysis of cascade IIR See also Frequency response parallel form, 359-61 structure, 403-10 Elliptic approximation, 463–65, instability, 21-22 analysis of direct-form FIR 828-29 testing for, 22 systems, 410-12 Elliptic continuous-time filters, limit cycles: analysis of direct-form IIR 463-65, 828-29 structures, 391-99 avoiding, 417-18 Energy density spectrum, 60 due to overflow, 416-17 first-order system, 396-97 Equiripple approximations, due to round-off, 414-16 floating-point realizations of 492-93 due to truncation, 414-16 discrete-time systems, Even function, 55 in first-order system, 414-16 412-13 Even sequence, 55 linear constant-coefficient interaction between scaling Expander, 172 and, 402-3 difference equations, Exponential multiplication, 34-40 scaling in fixed-point 121-22 block diagram implementations of IIR Exponential sequences, 13-14, representation of, 341-48 systems, 399-403 779-80 difference equation second-order system, 397 left-sided, 99-100 representation of the sinusoidal response of, 42-43 right-sided, 98 accumulator, 34-35 stability, 21-22 sum of, 100-101 difference equation testing for, 22 Extraripple case, 493

Fast Fourier transform (FFT)	incorporation of generalized	optimum approximations of,
algorithms, 2–3, 6, 576,	linear phase, 469–73	486–502
629–92	Kaiser window method,	alternation theorem, 489-91
algorithms for more general	474–78	characteristics of optimum
values of N , 655	linear-phase lowpass filter	FIR filters, 501-2
coefficients, 654–55	example, 472–73	equiripple approximations,
decimation-in-frequency	properties of commonly	492
algorithms, 646–52	used windows, 468–69	extraripple case, 493
decimation-in-time FFT	rectangular window, 468	optimal type II lowpass
algorithms, 635–46	Filtering, interchange of down-	filters, 497–98
indexing, 652–54	sampling/upsampling and,	optimal type I lowpass
Feedback, in IIR systems, 361-63	179–80	filters, 491–97
FFT, See Fast Fourier transforms	Filters:	First backward difference, 88, 524
Filter design, 439–540	antialiasing, 186	First-order all-pass systems, 275
bilinear transformation,	continuous-time IIR, 442–43	FIR linear-phase systems:
450–65	finite impulse response (FIR),	examples of, 300-305
discrete-time filter,	442	locations of zeros for, 306–8
determining specifications	frequency-selective, 439-540	relation of minimum-phase
for, 440–42	generalized linear-phase, 316	systems to, 308–11
discrete-time IIR filter design,	ideal frequency-selective,	type III linear-phase system,
from a continuous-time	43–44, 241–42	302
filters, 442–65	linear-phase, 316	type II linear-phase system, 302
FIR discrete-time filter design,	optimal type II lowpass, 497–98	type I linear-phase system,
510–11	optimal type I lowpass, 491–97	300–302
FIR equiripple approximation	sharp-cutoff antialiasing filters,	type IV linear-phase system,
examples, 503–10	186–87	302–5
bandpass filter, 507–10	transversal, 367	FIR systems:
compensation for zero-order	Finite-duration sequences, 105, 571	basic network structures for, 366–70
hold, 506–7 lowpass filter, 503–6	Fourier representation of,	cascade form, 367–68
IIR discrete-time filter design,	559–64	direct form, 367
510–11	See also Discrete Fourier	linear-phase FIR system
impulse invariance, 443–49	transform (DFT)	structures, 368–70
impulse invariance with a	Finite impulse response (FIR)	coefficient quantization in,
Butterworth filter, 446–49	filters, 442	384–86
optimum approximations of	Finite-length sequences, 103–4,	compensation of, 283–87
FIR filters, 486–502	117, 779	Fixed-point realizations of IIR
alternation theorem, 489–91	periodic sequence, 783–87	digital filters, zero-input
characteristics of optimum	and power expansion, 117	limit cycles in, 413–18
FIR filters, 501-2	sufficiency theorems for,	Floating-point realizations of
equiripple approximations,	782–87	discrete-time systems,
492	Finite-precision numerical	412–13
extraripple case, 493	effects, 37077	Flow graph, determination of
optimal type II lowpass	numerical representations,	system function from,
filters, 497–98	371–74	352–53
optimal type I lowpass	quantization in implementing	Flow graph
filters, 491–97	systems, 374–77	reversal/transposition, 363
Parks-McClellan algorithm,	Finite register length, effects of,	Forward difference, 21, 31, 33
498–501, 510	661–68	Fourier transform, 63
techniques, 439–540	FIR equiripple approximation	of complex exponential
windowing, 465–78	examples, 503–10	sequences, 54
Bartlett window, 468–71	bandpass filter, 507–10	of a constant, 53
Blackman window, 468fn,	compensation for zero-order	linearity of, 59
469	hold, 506–7	magnitude of, 49
Hamming window, 468–71	lowpass filter, 503–6	of a periodic impulse train, 552
Hanning window, 468–71	FIR filters:	of periodic signals, 551–55

relationship between	Kaiser window method design	feedback in, 361–63
Fourier series coefficients	of, 479–82	Image processing, application of
and, 554–55	Hilbert transformers, 791	multidimensional digital
phase of, 49	design of, 792–95	processing to, 4
sampling, 555–59	Kaiser window design of, 793–95	Impulse, 11
Frequency:	See also Discrete Hilbert	Impulse invariance, 160–63, 517
differentiation in, 60	transforms	applied to continuous-time systems with rational
Doppler, 729–30	Hilbert transform relations,	system functions, 162–63
Nyquist, 146–47 sampling, 10, 140–41	775–76	with a Butterworth filter,
Frequency-domain	for complex sequences,	446–49
representation:	789–801	discrete-time lowpass filter
of discrete-time	See also Discrete Hilbert	obtained by, 162
signals/systems, 40–48	transforms	filter design by, 443-49
of sampling, 142–49	Homogeneous difference	Impulse response:
Frequency response, 40–41	equation, 36	determining from frequency
determining impulse response	Homogeneous solution, 36	response, 64
from, 64		for a difference equation,
of the ideal delay system, 41	Ideal 90-degree phase shifter,	determining, 64–65
of the moving-average	790–91	Impulse responses, 31–32
system, 44-45	Ideal continuous-time	Impulse train modulation, 142
Frequency-response	bandlimited	Infinite-duration impulse
compensation, 282-87	differentiator,	response (IIR) systems, 32
Frequency response for rational	discrete-time	Infinite impulse response (IIR)
system functions, 253-70	implementation of, 158–59 Ideal continuous-time lowpass	filters, 442
multiple poles or zeros, 265–70	filtering, using	Infinite sum, expressing closed form, 97–98
second-order FIR system,	discrete-time lowpass	Initial-rest conditions, 38
268	filter, 155–57	Initial-value theorem, 126
second-order IIR system,	Ideal continuous-to-discrete	Innermost nonzero pole, 105
265–67	(C/D) converter, 141, 154,	Inspection method for inverse
third-order IIR system, 268–70	185	z-transform, 111–12
single zero or pole, 258–265	ldeal delay system, 17, 31	Instability, 21–22
Frequency-selective filters,	frequency response of, 41	testing for, 22
439–540	Ideal discrete-to-continuous	Interpolation, 173
See also Filter design	(D/C) converter, 152–153,	frequency-domain illustration
Frequency shifting, 59	185	of, 174
Fricative sounds, 724	Ideal frequency-selective filters,	linear, 175–76
,	43–44, 241–42	by filtering, 175
Gain in dB, 254	Ideal highpass filters:	impulse response for, 175
Gain of the system, 241	frequency response of, 44, 242 impulse response of, 242	Interpolator, 173
Generalized linear phase, 295–97	Ideal lowpass filters, 43	Inverse by partial fractions, 115–16
linear systems with, 291-311	frequency response of, 43, 241	Inverse DFT algorithm, 676
Generalized linear-phase filters,	impulse response of, 242	Inverse Fourier transform, 48, 63
316	with linear phase, 242–43	Inverse of non-rational
Gibbs phenomenon, 468	Ideal reconstruction filter, 150-51	z-transform, 122-23
Goertzel algorithm, 629, 633–35	Ideal signal reconstruction	Inverse systems:
Group delay:	system, 150-51	defined, 33–34
and attenuation, effects of,	IIR systems:	system functions for, 248-50
243–45	basic structures for, 354-63	Inverse transform, by a power
defined, 243	cascade form, 356–59	series expansion, 117
Hamming windows 400 St	direct forms, 354–56	Inverse z-transform, 111–18
Hamming window, 468–71	parallel form, 359–61	inspection method, 111–12
Hanning window, 468–71	coefficient quantization in,	inverse by partial fractions,
High-pass filters, 44	377–82	115–16

partial fraction expansion, system functions for systems Linear-phase FIR system 112-16 characterized by, 245-53 structures, 368-70 second-order z-transform. Linear convolution, 576-88 Linear predictive coding (LPC), 4 113-14 using discrete Fourier Linear quantizers, 191 transform (DFT), 576-88 Linear system, 78-79 Linear systems, 18 Linearity: Kaiser window, 474-82 accumulator system, 19 and auxiliary conditions, 39 DFT analysis of sinusoidal nonlinear system, 19 signals using, 708-10 of Fourier transform, 59 Linear time-invariant Kaiser window design, of Hilbert Linearity property: discrete-time systems, transformers, 793-95 discrete Fourier series (DFS), 22-28, 154-60 Kaiser window method, 474-78 546 all-pass systems, 274-79 examples of FIR filter design discrete Fourier transform causal all-pass systems, (DFT), 564 bv. 478-85 274-78 discrete-time differentiators, z-transform, 119 defined, 274 482-85 Linear noise models, 391–412 first- and second-order highpass filter, 479-82 cascade form IIR systems, all-pass systems, 275 and lowpass filter design, 403-410 uses of, 278 476-78 direct form FIR systems, convolution sum, 23-28 relationship to other windows, 410-12 analytic evaluation of, 26-28 478 direct form IIR systems, computation of, 25-26 391-403 defined, 23 parallel form IIR sytmes, 410 Leakage, 701 direct form II implementation Left-sided exponential sequence, Linear phase, 291-311 of, 347-48 99-100 causal generalized linear-phase direct form I implementation systems, 297-311 Left-sided sequence, 105 of, 346-47 type I FIR linear-phase power series expansion for, 118 eigenfunctions for, 40-45 L'Hopital's rule, 151 systems, 298 frequency response of, 241-45 type II FIR linear-phase Limit cycles: ideal frequency-selective systems, 298 avoiding, 417-18 filter, 241-42 type III FIR linear-phase due to overflow, 416-17 phase distortion and delay, systems, 298 due to round-off, 414-16 242 - 45type IV FIR linear-phase due to truncation, 414-16 frequency response for rational systems, 298-99 in first-order system, 414-16 system functions, 253-70 decomposition of a Linear chirp signal, multiple poles and zeros, time-dependent Fourier linear-phase system, 265-70 308-11 transform of, 715-17 single zero or pole, 258–65 FIR linear-phase systems: Linear constant-coefficient generalized linear phase, linear examples of, 300-305 difference equations, systems with, 291-311 locations of zeros for, 306-8 34-40 ideal continuous-time block diagram representation relation of minimum-phase bandlimited of, 341-48 systems to, 308-11 differentiator. impulse response for rational type III linear-phase system, discrete-time system functions, 250-53 implementation of, 158-59 first-order IIR system, type II linear-phase system, ideal continuous-time lowpass 251-52 302 filtering, using simple FIR system, 252–53 type I linear-phase system, discrete-time lowpass inverse systems, 248-50 300-302 filter, 155-57 for first-order system, 249-50 type IV linear-phase system, minimum-phase systems, with zero in the ROC, 250 302 - 5280-91 generalized linear phase, region of convergence (ROC), frequency-response determining, 247-48 295-97 compensation, 282–87 second-order system, 246-47 ideal lowpass filter with, minimum-phase and all-pass 293-95 signal flow graph decomposition, 280-82 representation of, 348-53 systems with, 292-95 properties of, 287-91 stability and causality, 247-48 Linear-phase filters, 316 properties of, 28-34

carcade connection 20	minimum anaray dalay	Nyayist sampling theorem 146
cascade connection, 29 constraints of linearity/time	minimum energy-delay property, 288–91	Nyquist sampling theorem, 146
invariance, 30-31	minimum group-delay	Odd function, 55
finite-duration impulse	property, 288	Odd sequence, 55
response (FIR) systems,	minimum phase-lag	Offset binary coding scheme, 191
32–33	property, 287–88	One's complement, 371
impulse responses, 31–32	relation of FIR linear-phase	One-sided z-transform, 95
infinite-duration impulse	systems to, 308-11	Optimal type II lowpass filters,
response (IIR) systems, 32	Modified periodogram, 732	497–98
parallel connection, 30	Modulation theorem, 61-62	Optimal type I lowpass filters,
relationship between	Moving average, 17–18, 31	491–97
magnitude and phase, 270–74	Moving-average (MA) linear random process, 771	Optimum approximations of FIR filters, 486–502
transform analysis of, 240-339	Moving-average system:	alternation theorem, 489–91
Log magnitude, 254	difference equation	and polynomials, 290–91
Long division, power series	representation of, 35-36	characteristics of optimum FIR
expansion by, 118	with noninteger delay, 165-67	filters, 501–2
•	Multidimensional signal	equiripple approximations, 492
Magnitude:	processing, 3-4	extraripple case, 493
Fourier transform, 49	Multiplication by an exponential	optimal type II lowpass filters,
relationships between phase	sequence, 121-22	497–98
and, 788–89	Multirate signal processing,	optimal type I lowpass filters,
Magnitude distortions, 241	179–84	491–97
Magnitude response, 241	interchange of filtering and downsam-	Parks-McClellan algorithm,
Magnitude spectrum, 49	pling/upsampling,	498–501
Magnitude-squared function, 254, 258, 457	179–80	Outermost finite pole, 105 Overflow oscillations, in
Mantissa, 412	polyphase decompositions,	second-order system,
Matlab, 3	180–82	416–17
Maximum entropy methods	polyphase implementation of	Overlap-add method, 586–87, 680
(MEM spectral analysis),	decimation filters, 182–83	Overlap-save method, 587, 680
4	polyphase implementation of	Oversampled A/D conversion:
Maximum-phase sequence, 335	interpolation filters,	with direct quantization, 201-5
Memoryless systems, 18	183–84	with noise shaping, 206-10
MEM spectral analysis, 4	Multistage noise shaping	Oversampled D/A conversion,
Microelectronics, 6–7	(MASH), 210	and noise shaping, 210-13
Microprocessors:		-
and discrete-time signals, 7	Narrowband time-dependent	Parallel connection, 30
rapid evolution of, 2	Fourier analysis, 725	Parallel form structures:
Minimax criteriod, 489	Nonanticipative system, 21	coefficient quantization effects,
Minimum energy-delay property,	Noncausal window, 716	382
minimum-phase systems,	Noncomputable network, 363	IIR systems, 359–61
288–91	Noninteger delay, 164–65	Roundoff noise effects, 410
Minimum group-delay property,	moving-average system with,	Parks-McClellan algorithm, 487,
minimum-phase systems,	165–67	498–501, 506, 510
288	Nonlinear system, 19	Parseval's relation:
Minimum phase-lag property,	Non-rational z-transform,	discrete Fourier transform, 621
minimum-phase systems,	inverse of, 122–23	Fourier transform, 60
287–88	Nonstationary signals:	Parseval's theorem, 60, 400
Minimum-phase systems, 250, 280–91	time-dependent Fourier	Partial fractions, inverse by,
	analysis of, 723–30 radar signals, 728–30	115–16 Periodic
frequency-response compensation, 282–87	speech signals, 720–28	
minimum-phase and all-pass	N-point circular convolution, 571	conjugate-antisymmetric components, 570
decomposition, 280–82	Nyquist frequency, 146–47	Periodic conjugate-symmetric
properties of, 287–91	Nyquist rate, 146–47, 153	components, 570
F-0P-11120 01, 207 71	- 9 quite rate, 210 47, 200	components, 570

Periodic convolution: defined, 548	Prefiltering, to avoid aliasing, 185–87	Sampled-data Delta-Sigma modulator, 206
discrete Fourier series (DFS),	Product of two sequences, 11	Sampling:
548–51	Troduct of two sequences, 11	bandpass, 799–801
Periodic discrete-time sinusoids,	Quantization errors, 372	downsampling, 168–72, 179–80
15	analysis of, 193–97	Fourier transform, 555–59
Periodic impulse train, 143	for sinusoidal signal, 194–95	frequency-domain
Periodic sampling, 140–42	Quantization levels, 191–94	representation of, 142–49
Periodic sequences,	coding of, 191	periodic, 140–42
representation of, 542–46	Quantization noise:	spectral, 703–14
Periodic signals, Fourier	example of, 195	in time/frequency, 718–22
transform of, 551–55	power density spectrum of,	upsampling, 172–76, 179–80
Periodogram, 730–42	207–9	Sampling the Fourier transform,
averaging of, 737–39		555–59
defined, 732	Radar signals:	Sampling frequency, 10, 140-41
explicit computation of, 732	clutter, 729	Sampling period, 10, 140-42
modified, 732	Doppler frequency, 729–30	Sampling rate change by
periodogram analysis, 731,	time-dependent Fourier	noninteger factor, 176-78
739–42	analysis of, 728–30	Sampling rate compressor,
example of, 739–42	Random process, 65	167–68
power spectrum, 731–32, 734	Random signals, 65–70, 811–23	Sampling rate expander, 172
properties of, 733–37	spectrum analysis of, 730-54	Sampling rate increase by integer
Periodogram analysis, 731,	Rational system functions:	factor, 172-76
739–42	frequency response for, 250-70	Sampling rate reduction by
Phase:	multiple poles and zeros,	integer factor, 167-72
Fourier transform, 49	265–70	Second-order all-pass systems,
relationships between	single zero or pole, 258–65	275
magnitude and, 788–89	impulse response for, 250-53	Second-order z-transform,
Phase distortion and delay,	first-order IIR system,	113–14
242–45	251–52	Sequence operations, 11–16
Phase response, 241	simple FIR system, 252-53	Sequences:
Phase shift, 241	Reconstruction of sinusoidal	autocorrelation, of h[n], 67-68
Phase spectrum, 49	signal, 147	autocovariance, 65-66
Plosive sounds, 724	undersampled, aliasing in,	causal, 31, 129, 777-82
Poisson's formulas, 776	148–49	circular shift of, 564-67
Poles of X(z), 298	Rectangular window, 471	complex, 789–801
	Recursive computation of	complex exponential, 14
Polyphase decompositions, 180–82	difference equations,	conjugate-antisymmetric,
Polyphase implementation:	37–38	55–56
of decimation filters, 182–83	Recursive representation, 35	conjugate-symmetric, 55–56
of interpolation filters, 183–84	Region of convergence (ROC),	delayed impulse sequence,
Power density spectrum, 68	96, 105–11	572–73
of quantization noise, 207-9	and causality, 110–11	deterministic autocorrelation,
Power series expansion, 116–18	properties of, for z-transform,	67–68
by long division, 118	105–11	even, 55
finite-length sequence, 117	and stability, 110–11	exponential, 13–14, 779–80
inverse transform by, 117	Region of convergence (ROC), 96–97	finite-duration, 105, 571
for a left-sided sequence, 118	Right-sided exponential	finite-length, 103–4, 779
Power spectrum, 731–32, 734	sequence, 98	left-sided, 99–100, 105, 118
estimation:	Right-sided sequence, 105, 108	maximum-phase, 335
computing using DFT,	Rotations, 684	odd, 55
746–48	Round-off, limit cycles due to,	periodic, 542–46 representation of, by Fourier
example based on estimation	414–16	transforms, 48–54
of autocorrelation		right-sided, 98, 105, 108
sequence, 748–54	Sample-and-hold circuits, 188–89	shifted exponential, 120–21
		vaponemini, 120 21

sinusoidal, 13	Spectral sampling:	Suddenly-applied complex
two-sided, 108–10	effect of, 703-14	exponential inputs, 46-48
unit sample, 11	illustration of, 703–6	Suddenly-applied exponential,
unit step, 11–13	with frequencies matching	absolute summability for,
Sharp-cutoff antialiasing filters,	DFT frequencies, 706–8	51–52
186–87	Spectrum:	Sufficiency theorems for
Shifted exponential sequence,	amplitude, 49	finite-length sequences,
120–21	energy density, 60	782–88
Shift of sequences, 59	magnitude, 49	Summability:
circular, 564–67	phase, 49	absolute, 51, 108
periodic, 546–47	power, 731–32, 734	for suddenly-applied
Shifting:	power density, 68, 207–9	exponential, 51–52
frequency, 59	Speech signals:	square-, 52–53
time, 59, 120–21	time-dependent Fourier	Superposition, principal of, 22–24
Shift of a sequence, discrete	analysis of, 720–28	Surface acoustic wave (SAW), 2
Fourier series (DFS), 546–47	narrowband spectrogram, 728	Switched-capacitor technologies, 2
Short-time Fourier transform,	wideband spectrogram,	Symmetry properties:
See Time-dependent	725–28	discrete Fourier series (DFS),
Fourier transform	Split-radix FFT (SRFFT), 683	547
Time-dependent Fourier	Square-summability, for the ideal	discrete Fourier transform,
transform, 714–22	lowpass filter, 52–53	568–70
Signal:	SRFFT, 683	discrete-time Fourier
defined, 8	Stability, 21–22, 30–31, 247–48	transform (DTFT), 55–58
independent variable in	and region of convergence,	Synthesis formula, 48
mathematical	110–11	System function, 241
representation of, 8	testing for, 22	Systems, 374–77
Signal expression processing, 3	Stationary, use of term, 66	T - 111 "
Signal interpretation, 2–3	Stationary random signals,	Tapped delay line structure, 367
Signal modeling, 4 Signal processing, defined, 1–2	Fourier analysis of, 730–42	Telecommunications, and
Signal processing, defined, 1–2	Steady-state response, 46	discrete-time signal
microprocessors,	Stochastic signals, See Random signals	processing, 7
processing capability of, 1	Structures for discrete-time	Time-dependent Fourier analysis
Signal-processing systems,	systems, 340–418	of nonstationary signals, 723–30
classification of, 8–9	block diagram representation	radar signals, 728–30
Sign bit, 371	of linear	speech signals, 720–28
Sign and magnitude, 371	constant-coefficient	Time-dependent Fourier
Sink nodes, 349	difference equations,	transform, 693, 714–22
Sinusoidal response, of linear	341–48	block convolution using,
time-invariant systems,	cascade form, See Cascade	722–23
42–43	form structures	defined, 714
Sinusoidal sequences, 13	direct form, See Direct form	effect of the window in, 717-18
Sinusoidal signals, DFT analysis	structures	of a linear chirp signal, 715–17
of, 697–714	finite precision numerical	sampling in time/frequency,
oversampling/linear	effects, See Quantization	718–22
interpolation for	FIR systems, 366–70	Time invariance, and auxiliary
frequency estimation,	IIR systems, 354–63	conditions, 39
713–14	parallel form, See Parallel form	Time-invariant systems, 20-21, 77
spectral sampling, 703–14	structures	accumulator as, 20
with 32-point Kaiser window	signal flow graph	compressor system, 20-21
and zero-padding, 711–12	representation of linear	Time-reversal property,
using a Kaiser window, 708–10	constant-coefficient	z-transform, 123–24
windowing, 698–703	difference equations,	Time reversal theorem, 60
Source nodes, 349	348–53	Time-shifting property:
Spectral analysis, 4, 6	transposed forms, 363-66	discrete Fourier series, 546

discrete Fourier transform. interchange of filtering and, evaluating a convolution using, 179-80 564-67 Fourier transform, 59 finite-duration sequence, 105 z-transform, 120-21 finite-length sequence, 103-4 Video coding, 3 shifted exponential infinite sum, expressing closed Vocal tract, 724 form, 97-98 sequence, 120-21 Vocoder simulations, 5 Time-shifting theorem, 59 inverse z-transform, 111-18 Voiced sounds, 724 Transient response, 46-47 inspection method, 111-12 Von Hann, Julius, 468fn partial fraction expansion, Transposed forms, 363-66 for a basic second-order 112-16 Warping, and bilinear section, 364-65 left-sided sequence, 99-100, transformation, 453-54 for first-order system with no 105 "Whitening" procedure, zeros, 363-64 power series expansion, 116-18 333 Transversal filter structure, 367 by long division, 118 White noise, 69 finite-length sequence, 117 Trapezoidal approximation, 525 Wideband spectrogram, 725 Truncation, limit cycles due to, inverse transform by, 117 Windowing, 465-78, 693 414-16 "Twicing," 528 for a left-sided sequence, 118 Bartlett window, 468-71 Two-dimensional signal region of convergence Blackman window, 468fn, 469 processing techniques, 3-4 properties for, 105-11 effect of, 698-703 Two's complement, 371 region of convergence (ROC), on Fourier analysis of Two-sided exponential sequence, 96-97 sinusoidal signals, 698-701 102 right-sided sequence, 98, 105 Hamming window, 468-71 Two-sided sequences, 108-10 sum of two exponential Hanning window, 468–71 Type I FIR linear-phase systems, sequences, 100-101 incorporation of generalized transform properties, 119-26 linear phase, 469-73 Type II FIR linear-phase systems, conjugation property, 123 Kaiser window, 474-78 298 convolution property, linear-phase lowpass filter Type III FIR linear-phase 124-26 example, 472-73 systems, 298 differentiation property, rectangular window, 468 Type IV FIR linear-phase 122 - 23Windowing theorem, 61-62 systems, 298-99 exponential multiplication, Winograd Fourier transform 121 - 22algorithm (WFTA), Undersampled sinusoidal signal, initial-value theorem, 126 655-56 reconstruction of, 148-49 inverse of non-rational Uniform convergence, of z-transform, 122-23 Zero-input limit cycles, defined, linearity property, 119 z-transform, 97 376, 413 Unilateral z-transform, 95 time-reversal property, Zero-order hold, compensation Unit circle, 95-96 123-24 for, 506-7 Unit impulse function, 142-43 time-shifting property, Zero padding, 583 sifting property of, 143 120 - 21Zeros of X(z), 98 Unit sample sequence, 11 two-sided sequence, 102, 105 z-plane, 96 Unit step sequence, 11-13 uniform convergence of, 97 Unweighted approximation z-transform, 94-139 unit circle, 95-96 error, 503 common pairs, 104 z-transform operator Z, 95 Upsampling, 172-76 defined, 95 z-transform pairs, 104