Περιεχόμενα

- 1. Βασική ιδέα της αντίστροφης συνάρτησης
- 2. Συναρτήσεις ένα προς ένα (1-1)
- 3. Ορισμός αντίστροφης συνάρτησης
- 4. Υπολογισμός αντίστροφης συνάρτησης
- 5. Γραφική παράσταση αντίστροφης συνάρτησης

Η αντίστροφη μιας συνάρτησης f είναι μια άλλη συνάρτηση f^{-1} τέτοια ώστε $f^{-1}(f(x)) = x$

Η f^{-1} "ακυρώνει" την επίδραση της f

Η αντίστροφη μιας συνάρτησης f είναι μια άλλη συνάρτηση f^{-1} τέτοια ώστε $f^{-1}(f(x)) = x$

Μπορούμε να θεωρήσουμε την αντίστροφη συνάρτηση με τον ακόλουθο τρόπο:

$$f^{-1}(x) = \begin{cases} o \ \alpha \rho i \theta \mu \acute{o} \varsigma \ \pi o \upsilon \ \pi \rho \epsilon \pi \epsilon i \\ \nu \alpha \ \epsilon i \sigma \alpha \gamma o \upsilon \mu \epsilon \ \sigma \tau \eta \nu \ f \ \gamma i \alpha \ \nu \alpha \\ \lambda \alpha \beta o \upsilon \mu \epsilon \ \tau o \ x \end{cases}$$

 Αλλά αυτή η διαδικασία δεν εφαρμόζεται στην διπλανή συνάρτηση

- Αλλά αυτή η διαδικασία δεν εφαρμόζεται στην διπλανή συνάρτηση
- Ποιο x είναι η σωστή έξοδος για την είσοδο f(x);

- Αλλά αυτή η διαδικασία δεν εφαρμόζεται στην διπλανή συνάρτηση
- Ποιο x είναι η σωστή έξοδος για την είσοδο f(x);
- Προϋπόθεση: Μια συνάρτηση f θα έχει αντίστροφο όταν καμία οριζόντια γραμμή δεν συναντά τη γραφική παράσταση της σε περισσότερα από ένα σημεία.

Ορισμός: Μια συνάρτηση $f: A \rightarrow \mathbb{R}$ είναι ένα προς ένα (1-1) όταν για οποιαδήποτε $x_1, x_2 \in A$ ισχύει η συνεπαγωγή:

Av
$$x_1 \neq x_2$$
 τότε $f(x_1) \neq f(x_2)$

Ορισμός: Μια συνάρτηση $f: A \rightarrow \mathbb{R}$ είναι ένα προς ένα (1-1) όταν για οποιαδήποτε $x_1, x_2 \in A$ ισχύει η συνεπαγωγή:

Av
$$x_1 \neq x_2$$
 τότε $f(x_1) \neq f(x_2)$

• Για να είναι μια συνάρτηση 1-1 θα πρέπει κάθε <u>οριζόντια ευθεία</u> να τέμνει τη γραφική παράσταση της f το πολύ σε ένα σημείο (έλεγχος οριζόντιας γραμμής)

Έλεγχος οριζόντιας ευθείας

Κάθε οριζόντια ευθεία τέμνει το γράφημα μιας 1-1 συνάρτησης μόνο μία φορά Είναι 1-1 συνάρτηση: κάθε τιμή της *y* στο σύνολο τιμών αντιστοιχεί ακριβώς σε μια τιμή της *x*.

Δεν είναι 1-1 συνάρτηση: ορισμένες τιμές της y αντιστοιχούν σε περισσότερες από μία τιμές του x.

Συνέπεια του ορισμού

Μια συνάρτηση $f: A \to \mathbb{R}$ είναι **ένα προς ένα (1-1)** αν και μόνο αν για οποιαδήποτε $x_1, x_2 \in A$ ισχύει η συνεπαγωγή:

$$Av f(x_1) = f(x_2)$$
 τότε $x_1 = x_2$

• Η συνάρτηση f(x) = ax + b είναι 1-1

• Η συνάρτηση f(x) = k δεν είναι 1-1

3. Αντίστροφες Συναρτήσεις

Ορισμός: Αν μια συνάρτηση $f: A \to \mathbb{R}$ είναι 1-1 τότε ορίζεται η αντίστροφη συνάρτηση της f και συμβολίζεται με f^{-1} .

Για την f^{-1} ισχύει ότι:

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

3. Αντίστροφες Συναρτήσεις

- Το πεδίο ορισμού της f είναι σύνολο τιμών της f^{-1} .
- Το σύνολο τιμών της f είναι πεδίο ορισμού της f^{-1}

Το x είναι στο πεδίο ορισμού της f και το $x = f^{-1}(y)$ είναι στο σύνολο τιμών της f^{-1} .

Το y είναι στο πεδίο ορισμού της f^{-1} και το y = f(x) είναι στο σύνολο τιμών της f.

3. Υπολογισμός Αντίστροφης Συνάρτησης

Βήματα εύρεσης της αντίστροφης συνάρτησης μιας 1-1 συνάρτησης f

- 1. Αντικατάσταση f(x) με y
- 2. Επίλυση για το x
- 3. Εναλλαγή των μεταβλητών x και y
- 4. Αντικατάσταση του y με $f^{-1}(x)$

$$f(x) = x^{3} + 1$$

$$y = x^{3} + 1$$

$$x^{3} = y - 1 \leftrightarrow x = \sqrt[3]{y - 1}$$

$$\leftrightarrow y = \sqrt[3]{x - 1}$$

$$f^{-1}(x) = \sqrt[3]{x - 1}$$

Έλεγχος

$$f^{-1}(f(x)) = \sqrt[3]{f(x) - 1}$$

$$= \sqrt[3]{x^3 + 1 - 1}$$

$$= \sqrt[3]{x^3}$$

$$= x$$

4. Περιορίζοντας το πεδίο ορισμού

Παράδειγμα (συνέχεια)

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

$$y = f(x) = x = f^{-1}(y)$$

$$y = f^{-1}(x)$$

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

- Το γράφημα της f αποτελείται από όλα τα σημεία (x, f(x))
- Το γράφημα της f^{-1} αποτελείται από όλα τα σημεία (f(x), x)

Συμπέρασμα:

Οι γραφικές παραστάσεις μιας συνάρτησης και της αντίστροφής της είναι συμμετρικές ως προς την ευθεία y = x

Εξήγηση:

Για οποιοδήποτε σημείο (a,b) στη γραφική παράσταση της f "αντανακλάται" στην ευθεία y=x στο σημείο (b,a) το οποίο βρίσκεται στη γραφική παράσταση της f^{-1} .

Δίνεται η συνάρτηση f του σχήματος.

- Βρείτε τις τιμές $f^{-1}(-4), f^{-1}(-3), f^{-1}(-2), f^{-1}(0), f^{-1}(2), f^{-1}(3), f^{-1}(4)$
- Σχεδιάστε την f^{-1}

Δίνεται η συνάρτηση f του σχήματος.

- Βρείτε τις τιμές $f^{-1}(-4), f^{-1}(-3), f^{-1}(-2), f^{-1}(0), f^{-1}(2), f^{-1}(3), f^{-1}(4)$
- Σχεδιάστε την f^{-1}

$$f^{-1}(-4) = -4$$

$$f^{-1}(-3) = -2$$

$$f^{-1}(-2) = -1$$

$$f^{-1}(0) = 0$$

Λύση:

• Έχουμε

$$f(-4) = -4 \text{ $\alpha \rho \alpha f^{-1}(-4) = -4$,}$$

$$f(-2) = -3 \text{ $\alpha \rho \alpha f^{-1}(-3) = -2$,}$$

$$f(-1) = -2 \text{ $\alpha \rho \alpha f^{-1}(-2) = -1$,}$$

$$f(0) = 0 \text{ $\alpha \rho \alpha f^{-1}(0) = 0$,}$$

$$f(1) = 2 \text{ $\alpha \rho \alpha f^{-1}(2) = 1$,}$$

$$f(2) = 3 \text{ $\alpha \rho \alpha f^{-1}(3) = 2$,}$$

$$f(4) = 4 \text{ $\alpha \rho \alpha f^{-1}(4) = 4$}$$

Λύση:

• Έχουμε

$$f(-4) = -4 \text{ $\alpha \rho \alpha f^{-1}(-4) = -4$,}$$

$$f(-2) = -3 \text{ $\alpha \rho \alpha f^{-1}(-3) = -2$,}$$

$$f(-1) = -2 \text{ $\alpha \rho \alpha f^{-1}(-2) = -1$,}$$

$$f(0) = 0 \text{ $\alpha \rho \alpha f^{-1}(0) = 0$,}$$

$$f(1) = 2 \text{ $\alpha \rho \alpha f^{-1}(2) = 1$,}$$

$$f(2) = 3 \text{ $\alpha \rho \alpha f^{-1}(3) = 2$,}$$

$$f(4) = 4 \text{ $\alpha \rho \alpha f^{-1}(4) = 4$}$$

Εξετάστε αν η συνάρτηση $g(x) = \frac{x}{x-1}$ είναι 1-1. Αν είναι, βρείτε την αντίστροφή της. Τι παρατηρείτε;

Ας βρούμε το γράφημα της $g(x) = \frac{x}{x-1}$

Σημειώστε ότι

$$g(x) = \frac{x}{x-1} = \frac{x-1+1}{x-1} = \frac{x-1}{x-1} + \frac{1}{x-1}$$

$$g(x) = 1 + \frac{1}{x - 1}$$

$$g(x) = \frac{1}{x-1} + 1$$

Άρα

$$g(x) = \frac{1}{x-1} + 1$$

οπότε το γράφημα της g προέρχεται από οριζόντια μετατόπιση της $y=\frac{1}{x}$ κατά 1 μονάδα δεξιά και μετά κατακόρυφη μετατόπιση κατά 1 μονάδα επάνω

Αφού καμιά οριζόντια ευθεία δε τέμνει το γράφημα της g σε παραπάνω από 1 σημείο, η g είναι 1-1.

Ας υπολογίσουμε την αντίστροφη της $g(x) = \frac{x}{x-1}$ Έχουμε

$$y = \frac{x}{x-1} \to y(x-1) = x$$

$$\to yx - y = x$$

$$yx - x = y$$

$$x(y-1) = y$$

$$x = \frac{y}{y-1}, y \neq 1$$

Εναλλαγή

$$g^{-1}(x) = \frac{x}{x-1}$$

Δηλαδή η αντίστροφη της g είναι η ίδια η g. Αυτό φαίνεται και από το γράφημα της g, αν προσπαθήσουμε να βρούμε το συμμετρικό της ως προς την ευθεία y=x προκύπτει το ίδιο γράφημα

Αυτό είναι μια σύμπτωση ΔΕΝ ΙΣΧΥΕΙ πάντα