

				Sub	ject	Cod	le: F	CE	402
Roll No:									

Printed Page: 1 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)			
Q1(a) Define stress and strain						
Q1(b)	Q1(b) State Hook's law					
Q1(c)	Q1(c) Define point of contraflexure or point of inflexion.					
Q1(d)	Explain S	hear force and bending Moment		2		
Q1(e)	What is section modulus (Z)? What is the value of Bending moment in terms of					
	section modulus?					
Q1(f)	Define Torsional Rigidity					
Q1(g)	What are the different methods of finding slope and deflection of cantilever					
Q1(h)	What do you understand by the term "Buckling" of columns					
Q1(i)	Write the relation between hoop stress and longitudinal stress for thin cylinder					
Q1(j)	What is the difference between thin and thick cylinder					

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	
Q2(a)	(2(a) Explain the stress-strain diagram for a ductile material under tension. A load of 5KN		ension. A load of 5KN	1
	is to be raised with the help of a steel wire. Find the diameter of steel wire, if the			
	maximum	n stress is not to exceed 100 MN/m ²		
Q2(b)	Derive the	e relation between shear force, bending moment and	loading	2
Q2(c)	A simply	supported rectangular beam with symmetrical section	n 200mm in depth has	3
	moment c	of inertia of 2.26 x 10 ⁻⁵ m ⁴ about its neutral axis. Dete	ermine the longest	
	span over	which the beam would carry a uniformly distributed	load of 4KN/m run	
	such that	the stress due to bending does not exceed 125 MN/m	2	
Q2(d)	A hollow	cylindrical column, with both ends hinged, is 6 m los	ng, and has an outer	4
	diameter (of 120 mm and an inner diameter of 80 mm. Calculat	te the crippling load	
	by Euler's	s and Rankine's formulae. $E = 80,000 \text{ N/mm}^2$ and σ_c	$= 550 \text{ N/mm}^2$. The	
	Rankine c	constant = 1/1600		
Q2(e)	Derive the	e expression for hoop stress and longitudinal stress in	case of thin cylinder	5

Printed Page: 2 of 2
Subject Code: KCE402
Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 INTRODUCTION TO SOLID MECHANICS

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	Derive the Torsional equation $T/J = \pi/R = G\theta/L$. Write the assumption made in			
	deriving the torsional formulas?			
Q5(b)	The cross section of a beam is a T section of overall depth 140 mm, width of flange			3
	200mm, tl	nickness of flange 40mm and thickness of web 20mm	n.Draw the shear stress	
	distributio	n diagram if it carries a shear force of 60 kN.		

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)		
Q6(a)	Derive the differential equation for the elastic curve. A cantilever beam is subjected		ver beam is subjected	4	
	to a concentrated load W at the free end, it is required to determine the maximum				
	deflection of the beam				
Q6(b)	Derive Euler critical buckling load for columns with both the ends hinged. A steel rod				
	5 m long and of 40 mm diameter is used as a column, with on end fixed and the other				
	free. Dete	rmine the crippling load by Euler's formula. Take E	as 200 GPa		

SECTION-C Attempt ANY O		Attempt ANY ONE following Question	Marks (1 X10=10)		
Q7(7(a) Write down the assumption in Lame's theory and also derive Lame's equation for				
	circumfer	circumferential stress and radial stress for thick cylinder			
Q7(b) A compos	A composite spring has two close coiled helical springs connected in series, each			
	spring has	spring has 12 coils at a mean diameter of 25 mm. Find the diameter of the wire in one			
	of the spri	of the springs if the diameter of the wire in the other spring is 2.5 mm and stiffness of			
	the compo	site spring is 700 N/m. Estimate the greatest load th	at can be carried by the		
	composite	spring for a maximum shearing stress of 180MPa.	Γake G= 80 GPa		