#### Trabajo Práctico Especial 4

## Algoritmos Genéticos

#### Q1-2014 ITBA

## Grupo 5

Julián Gutierrez Alexis Medvedeff Javier Perez Cuñarro

## Agenda

- 1. Problema a resolver
- 2. Modelado del motor
- 3. Configuración óptima
- 4. Resultados
- 5. Conclusiones

### Problema

Encontrar los **pesos óptimos** para una red neuronal



## Conjunto de puntos samples8.txt

## ¿Qué red neuronal? Recordemos

| Arquitectura | Error cuadratico<br>medio en testeo | Porcentaje de aciertos con error menor a 10^-3 |
|--------------|-------------------------------------|------------------------------------------------|
| [20]         | 0.9456                              | 36.7647%                                       |
| [4 3]        | 0.2237                              | 39.1636%                                       |
| [10 20 30]   | 0.6844                              | 40.2934%                                       |

Arquitectura [4 3], 60% de datos de entrenamiento, tangente hiperbólica, 1000 épocas.

| Mejoras                   | Error cuadrático<br>medio, en<br>testeo | Aprendizaje en entrenamiento | Predicción en<br>testeo |
|---------------------------|-----------------------------------------|------------------------------|-------------------------|
| Ninguna                   | 0.0100                                  | 24.1636%                     | 29.6512%                |
| Momentum                  | 0.0031                                  | 46.1538%                     | 41.6667%                |
| ETA Adaptativo            | 0.0100                                  | 19.7026%                     | 20.3488%                |
| Momentum y ETA Adaptativo | 0.0113                                  | 18.5874%                     | 3.8372%                 |

Arquitectura [4 3], 60% de datos de entrenamiento, tangente hiperbólica, 1000 épocas.



## Error cuadrático medio en función del número de épocas



Histograma de diferencia valor esperado - valor calculado



Red neuronal con arquitectura [4 3]

## Red elegida

Arquitectura [4 3]
60% entrenamiento, 40% testeo
Función de act. tangente hiperbólica
Mejora momentum

1000 épocas

Error cuadrático medio: 0.0031

Aprendizaje: **46.15%** 

Predicción: 41.6667%

### Solución

## Motor de algoritmos genéticos que pueda calcular los pesos

### Modelado del motor

### Representación de individuos

Matriz con valores reales



Vector



0.3

0.9

0.7

8.0

0.6

0.3

# Fidelidad del individuo

Coherencia

Completitud

Localidad

Uniformidad

Sencillez

### Función de fitness

f2(i) = tasa\_de\_aprendizaje

\*obtenido a partir de feed forward con datos de entrenamiento + testeo

## ¿Configuración óptima? Resultados

# Tamaño de la población

[2, 50] No se aprecian los beneficios de la mutación

[100, 150] Mucho tiempo de computo, sin demasiada mejora en el error

[50, 100] Balance entre tiempo de computo y error

\*Pruebas corridas sin backpropagation con classic crossover p=0.5,elite selection, metodo de reemplazo 2, classic mutation p=0.2

### Inicialización

- 50 individuos al azar
- Entrenados por 100 épocas
- Población inicial constante

### Numero de progenitores

| Número de<br>progenitores | Error cuadratico<br>Medio en testeo | Porcentaje de aciertos |
|---------------------------|-------------------------------------|------------------------|
| 40                        | 0.9467                              | 0%                     |
| 26                        | 0.8856                              | 0%                     |
| 16                        | 0.2707                              | 3.570%                 |
| 10                        | 0.1026                              | 10.9890%               |

<sup>\*</sup>parametros: sin backpropagation 500 generaciones, classic crossover p=0.4, elite selection, método de reemplazo 2, Mutación No uniforme pMutar=0.1, pAlelo=0.15

### Probabilidad de aplicar backpropagation

| Prob. back-<br>propagation       | Número de<br>epocas | Número de<br>generaciones | Error cuadratico<br>medio en testeo | Prediccion en testeo |
|----------------------------------|---------------------|---------------------------|-------------------------------------|----------------------|
| 0                                | n/a                 | 200                       | 0.2380                              | 3.2967%              |
| 1                                | 100                 | 50                        | 0.0006                              | 66.4835% (*)         |
| 1                                | 30                  | 50                        | 0.0052                              | 34.6154% (*)         |
| 0.4                              | 30                  | 50                        | 0.0078                              | 14.8352%             |
| 0.4*<br>log(nroGener<br>acion/2) | 30                  | 100                       | 0.0059                              | 29.3103%             |

Parámetros: progenitores=10, classic crossover p=0.4, elite selection, método de reemplazo 2, Mutación No uniforme pMutar=0.1, pAlelo=0.15

(\*) El tiempo de ejecución superó las 3 horas, alrededor de 6 veces superior al tiempo de los otros casos.

### Mutación

| Método de<br>mutación | Prob. de<br>mutación | Prob. de<br>mutación<br>por alelo | Error cuadrático<br>medio en testeo | Predicción<br>en testeo |
|-----------------------|----------------------|-----------------------------------|-------------------------------------|-------------------------|
| Uniforme              | 1                    | n/a                               | 0.0071                              | 19.7802%                |
| Uniforme              | 0.5                  | n/a                               | 0.0043                              | 46.7033%                |
| No uniforme           | 0.2                  | 0.3                               | 0.0090                              | 23.0769%                |
| No uniforme           | 0.1                  | 0.15                              | 0.0060                              | 35.1648%                |

<sup>\*</sup>parámetros: backpropagation p= 0.4\*log(nroGeneracion/2),30 épocas si corresponde, 50 generaciones,classic crossover p=0.4, elite selection, método de reemplazo 2, 10 progenitores

## Probabilidad de cruza de individuos

| Probabilidad de crossover | Error cuadrático<br>medio en testeo | Predicción en<br>testeo |
|---------------------------|-------------------------------------|-------------------------|
| 1                         | 0.0020                              | 36.7816%                |
| 0.4                       | 0.0105                              | 25.2874%                |
| 0.85                      | 0.0014                              | 51.1494%                |

Parámetros: backpropagation con p= 0.4\*log(nroGeneracion/2), 30 épocas si corresponde, 50 generaciones, torneos probabilísticos, método de reemplazo 2, 10 progenitores, mutación no uniforme con pMutar=0.1 y pAlelo=0.15.

#### Métodos de cruza

| Operador genético | Fitness | Generación | Corte     |
|-------------------|---------|------------|-----------|
| Cruce clásico     | 148.39  | 29         | Contenido |
| Cruce dos puntos  | 32      | 57         | Contenido |
| Cruce uniforme    | 49      | 5          | Contenido |
| Cruce anular      | 50      | 6          | Contenido |

<sup>\*</sup>parametros = backpropagation p= 0.4\*log(nroGeneracion/2),30 épocas si corresponde,crossover p=0.85, elite selection, método de reemplazo 2, 10 progenitores. Mutación No uniforme pMutar=0.1, pAlelo=0.15

# Selección vs Reemplazo de individuos

Parámetros: progenitores=10, backpropagation con p= 0.4\*log(nroGeneracion/2), crossover uniforme con p = 0.85, 30 épocas si corresponde, mutación no uniforme con pMutar=0.1 y pAlelo=0.15.

Función de fitness f1 salvo los (\*) que usan f2.

| Criterio de selección | Criterio de reemplazo | Método | Generación | Corte            | Fitness  |
|-----------------------|-----------------------|--------|------------|------------------|----------|
| Ruleta                | Torneos p.            | 1      | 3          | Contenido        | 91.5420  |
| Ruleta                | Elite                 | 3      | 30         | Generacio<br>nes | 48.5(*)  |
| Torneos p.            | Elite                 | 1      | 3          | Contenido        | 100.3145 |
| Torneos d.            | Elite                 | 3      | 20         | Generacio<br>nes | 1040     |
| Universal             | Ruleta                | 1      | 3          | Contenido        | 97.746   |
| Torneos p.            | Torneos d.            | 3      | 20         | Generacio<br>nes | 41.43(*) |
| Elite                 | Universal             | 1      | 3          | Contenido        | 92.691   |
| Universal             | Torneos p.            | 3      | 20         | Generacio<br>nes | 31.52(*) |
| Torneos p.            | Universal             | 1      | 10         | Generacio<br>nes | 24.78(*) |
| Elite                 | Ruleta                | 3      | 20         | Contenido        | 40.23(*) |

### Red neuronal vs algoritmo genético

|                                                 | Error cuadr        | ático medio | Porcentaje         | de aciertos |
|-------------------------------------------------|--------------------|-------------|--------------------|-------------|
| Método                                          | Entrena-<br>miento | Testeo      | Entrena-<br>miento | Testeo      |
| Aprendizaje<br>supervisado                      | 0.0024             | 0.0031      | 46.1538%           | 41.6667%    |
| Algoritmos<br>genéticos<br>(mejor<br>individuo) | 0.0018             | 0.0027      | 52.4323%           | 49.5218%    |

<sup>\*</sup>Configuración de las neuronas en las capas internas [4 3], 60% de datos para entrenamiento, función de activación tangente hiperbólica, 1000 epocas.

 Gran cantidad de parámetros dificultan hallan la mejor configuración.

 Método elite puede perjudicar los resultados.
 Elitismo vs. diversidad

 Notables mejoras con backpropagation.

### Gracias