Quiz 2: (50p max; 60p total = 10p each + 10p free) Please write your answers in English and submit via Blackboard

- 1. Prove that $1^2 2^2 + 3^2 \cdots + (-1)^{n-1} n^2 = (-1)^{n-1} n(n+1)/2$ for $n \in \mathbb{Z}^+$.
- 2. Solve the recurrence relation $T(n) = 8T(n / 2) n^2$ by iterating it, where n is a power of 2 and T(1) = 1.
- 3. Use a combinatorial proof to show the identity holds:

$$\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}, \text{ where } 0 \le r \le k \le n.$$

- 4. Find all solutions of the recurrence relation $a_n = 4a_{n-1} 4a_{n-2} + n$.
- 5. How many onto functions from a set with 5 elements to a set with 3 elements? (It is OK to write your answer with binomial coefficients. No need to calculate the exact number.)

Solutions

- Q1. This is easy to prove by induction.
- O Q2. Iterating the recurrence yields $T(n) = 8^{\log_2 n} T(1) (n-1)n^2$. Note that $8^{\log_2 n} = n^3$ and T(1) = 1, we have $T(n) = n^2$.
- Q3. To perform a combinatorial proof, we need to construct a combinatorial problem and count the result in two ways. Let us choose k players out of n people and split them into two groups, with r players in group 1 and k - r players in group 2.
 - . It is easy to see there are $\binom{n}{k}\binom{k}{r}$ ways to form these two groups.
 - On the other hand, one can also get these groups by first choosing the r players for group 1 and then choosing k-r players from the remaining n-r people for group 2, which yields $\binom{n}{r}\binom{n-r}{k-r}$ ways.

Solutions

o Q4.

- First, it is natural to guess a solution to the recurrence relation is of the form $a_n = p(n) = cn + d$. By plugging it into the recurrence relation, we can solve c, d and get p(n) = n + 4.
- Then, solve the associated homogeneous recurrence relation $a_n = 4a_{n-1} 4a_{n-2}$. Its characteristic equation is $r^2 = 4r 4$, which has only one root 2 with multiplicity 2. So, all solutions of $a_n = 4a_{n-1} 4a_{n-2}$ are of the form $h(n) = a_1 2^n + a_2 n 2^n$.
- Together, all solutions of the original recurrence relation are of the form $a_n = h(n) + p(n) = a_1 2^n + a_2 n 2^n + n + 4$.
- Q5. Please refer to page 39 of slides 07. The answer is

$$3^5 - {3 \choose 1} \cdot 2^5 + {3 \choose 2} \cdot 1^5$$
 * no need to calculate the final answer

