INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI

DEPARTMENT OF MECHANICAL ENGINEERING

ME 543 (CFD)

Homework Assignment 2

LID DRIVEN SQUARE CAVITY PROBLEM

PROGRAM: M.TECH AP

SUBMITTED BY: SUVIDYA MANE

ROLL NO.: 204103007

SUBJECT INSTRUCTOR: PROF. ANOOP K. DAS

TABLE OF CONTENTS

A) C codes for given problem	3
B) Comparision of data with Ghia's data	6
C) Plot of the u-velocity and v-velocity along the centre line	7
D) Contours of streamlines	8
E) Velocity vectors	10
F) Conclusions	10

A) C code for given problem

```
#include<stdio.h>
#include<math.h>
int main()
{
                                                      FILE *fp,*U,*V;
                                                      fp=fopen("stream.txt","w");
                                                      U=fopen("uv_velocity.txt","w");
        double
SUM, s, error, wold [129] [129], siold [129] [129], wnew [129] [129], sinew [129] [129], u [129] [129], v [129] [129], sinew [129] [129], v [129], v
qrdelx,sqrdely,delx=0.0078125,dely=0.0078125,x;
                                                      int i,j,k,count=0;
                                                      sqrdelx=delx*delx;
                                                      sqrdely=sqrdelx;
                                                      for(j=0;j<129;j++)
                                                                      for(i=0;i<129;i++)
                                                                      {
                                                                                                          siold[i][j]=0;
                                                                                                          wold[i][j]=0;
                                                                      }
                                                      for(i=1;i<128;i++)
                                                      wold[i][128]=0-(2*128);
                                                      for(j=0;j<129;j++)
                                                      {
                                                                      for(i=0;i<129;i++)
                                                                      {
                                                                                                          sinew[i][j]=siold[i][j];
                                                                                                          wnew[i][j]=wold[i][j];
                                                                      }
                                                      }
                                                      //update si
do
//start:
count++;
```

```
for(k=0;k<10;k++)
for(j=1;j<128;j++)
                                            for(i=1;i<128;i++)
                                                        sinew[i][j]=(sinew[i+1][j]+sinew[i-1][j]+sinew[i][j+1]+sinew[i][j-1]
1]+(sqrdelx*wnew[i][j]))/4.0;
                                            }
}
                                            //update boundary condition
                                            for(j=1;j<128;j++)
                                                         wnew[0][j]=(0-(2*sinew[1][j]))/sqrdelx;
                                                         wnew[128][j]=(0-(2*sinew[127][j]))/sqrdelx;
                                            for(i=1;i<128;i++)
                                                         wnew[i][0]=(0-(2*sinew[i][1]))/sqrdely;
                                                         wnew[i][128]=(0-(2*(sinew[i][127]+dely)))/sqrdely;
                                            //update vorticity
for(k=0;k<2;k++)
for(j=1;j<128;j++)
                                            for(i=1;i<128;i++)
                    wnew[i][j] = (wnew[i+1][j] + wnew[i-1][j] + wnew[i][j+1] + wnew[i][j-1] - (100.0*(wnew[i+1][j] - wnew[i-1][j] + wnew[i-1][j] - wnew[i-1][j] + wnew[i-1][j] - wnew[i-1][j] + wnew[i-1][j] - wnew[i-1][j]
1][j]*(sinew[i][j+1]-sinew[i][j-1]))+(100.0*(wnew[i][j+1]-wnew[i][j-1])*(sinew[i+1][j]-sinew[i-1][j])))/4.0;
                                            }
}
SUM=0;
s=0;
                                            for(j=0;j<129;j++)
                                                         for(i=0;i<129;i++)
                                                         {
                                                                                      SUM=SUM+fabs(wnew[i][j]-wold[i][j]);
```

```
s=s+fabs(wnew[i][j]);
                 }
             }
             error=SUM/s;
             printf("error=%lf\n",error);
                 for(j=0;j<129;j++)
             {
                 for(i=0;i<129;i++)
                         siold[i][j]=sinew[i][j];
                         wold[i][j]=wnew[i][j];
                 }
             }
}
             while(error>0.000001);
             for(j=0;j<129;j++)
             {
                 for(i=0;i<129;i++)
                 fprintf(fp, "%d\t%d\t%lf\n", i+1, j+1, sinew[i][j]);
             for(j=1;j<128;j++)
                 for(i=1;i<128;i++)
                 u[i][j]=(sinew[i][j+1]-sinew[i][j-1])/(2*dely);
                 v[i][j]=(0-1)*(sinew[i+1][j]-sinew[i-1][j])/(2*delx);
                 }
             for(j=0;j<129;j++)
                 for(i=0;i<129;i++)
                 fprintf(U, "%d\t%d\t%lf\t%lf\n", i+1, j+1, u[i][j], v[i][j]);
 //counting no. of iterations
 printf("\n%d",count);
 fclose(fp);
             return 0;
}
```

B) Comparision of data with Ghia's data

u-velocity along the vertical line through					
the geometric centre of the cavity					
i	j	My data	Ghia's data		
65	129	1.00000	1.00000		
65	126	0.756820	0.75837		
65	125	0.682551	0.68439		
65	124	0.615529	0.61756		
65	123	0.556777	0.55892		
65	110	0.288433	0.29093		
65	95	0.160382	0.16256		
65	80	0.019755	0.02135		
65	65	-0.116052	-0.11477		
65	59	-0.172379	-0.17119		
65	37	-0.324515	-0.32726		
65	23	-0.237518	-0.24299		
65	14	-0.141689	-0.14612		
65	10	-0.099967	-0.10338		
65	9	-0.089550	-0.09266		
65	8	-0.079070	-0.08186		
65	1	0.000000	0.00000		

- 12		

v-velocity along the horizontal line through					
the geometric centre of the cavity					
i	j	My data	Ghia's data		
129	65	0.00000	0.00000		
125	65	-0.122390	-0.12146		
124	65	-0.157657	-0.15663		
123	65	-0.193594	-0.19254		
122	65	-0.229472	-0.22847		
117	65	-0.382543	-0.23827		
111	65	-0.447675	-0.44993		
104	65	-0.382538	-0.38598		
65	65	0.052614	0.05186		
31	65	0.298871	0.30174		
30	65	0.299111	0.30203		
21	65	0.278312	0.28124		
13	65	0.227009	0.22965		
11	65	0.206652	0.20920		
10	65	0.194654	0.19713		
9	65	0.181208	0.18360		
1	65	0.00000	0.00000		

Table 2

C) Plot of the u-velocity and v-velocity along the centre line

Figure 1

Figure 2

D) Contours of streamlines

Figure 3

Figure 4

Figure 5

E) Velocity vectors

Figure 6

F) Conclusions

- 1. While comparing the obtained results for the u and v velocities through geometric centres, referring to Tables (1 and 2) and Figures (1 and 2) in can be conclude that the obtained results approximately math with Ghia's data.
- 2. The contour of constant stream function is shown in Figures (3, 4 and 5) taking various ranges and level to observe details at every grid point which are comparable to Ghia's plots.
- 3. Velocity at different grid points is plotted in Figure 6, where arrow heads show the direction and length of arrow shows the magnitude of velocity.