AutoML: Beyond AutoML

Racing for Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

State-of-the-art Algorithm Configuration

SMAC: Sequential Model-based Algorithm Configuration [Hutter et al. 2011]

- Bayesian Optimization +
- aggressive racing +
- adaptive capping (for optimizing runtime)

Algorithm 1 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial}$ design based on $\pmb{\lambda}_0$;

// $\mathcal{D}_{ exttt{Hist}} = (oldsymbol{\lambda}, i, c(i, oldsymbol{\lambda}))_i$

while b remains do

Algorithm 2 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space Λ , Initial configuration λ_0 , performance metric c. Configuration budget b

// $\mathcal{D}_{\text{Hist}} = (\boldsymbol{\lambda}, i, c(i, \boldsymbol{\lambda}))_i$ run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} \mathsf{ design} \mathsf{ based} \mathsf{ on } \lambda_0$:

while b remains do

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\text{Hist}}$:

Algorithm 3 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

run history $\mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial}$ design based on λ_0 ; // $\mathcal{D}_{\mathsf{Hist}} = (\lambda, i, c(i, \lambda))_i$ while b remains do

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\text{Hist}};$

 $\mathbf{\Lambda}_{challengers} \leftarrow$ select configurations based on \hat{c} ;

Algorithm 4 SMAC

Input: instance set \mathcal{I} , Algorithm \mathcal{A} with configuration space $\mathbf{\Lambda}$, Initial configuration λ_0 , performance metric c, Configuration budget b

```
run history \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} design based on \lambda_0; // \mathcal{D}_{\mathsf{Hist}} = (\lambda, i, c(i, \lambda))_i while b remains do
```

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\mathsf{Hist}};$

 $\mathbf{\Lambda}_{challengers} \leftarrow$ select configurations based on \hat{c} ;

 $\hat{oldsymbol{\lambda}}, \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{intensify}(oldsymbol{\Lambda}_{challengers}, \hat{oldsymbol{\lambda}});$ // racing and capping

Algorithm 5 SMAC

Input: instance set \mathcal{I} . Algorithm \mathcal{A} with configuration space Λ . Initial configuration λ_0 . performance metric c. Configuration budget b

// $\mathcal{D}_{\text{Hist}} = (\boldsymbol{\lambda}, i, c(i, \boldsymbol{\lambda}))_i$

```
run history \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{initial} \mathsf{ design} \mathsf{ based} \mathsf{ on } \lambda_0:
while b remains do
```

 $\hat{c} \leftarrow \text{train empirical performance model based on run history } \mathcal{D}_{\mathsf{Hist}};$

 $\Lambda_{challengers} \leftarrow$ select configurations based on \hat{c} ;

 $\hat{\lambda}, \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathsf{intensify}(\Lambda_{challengers}, \hat{\lambda});$ // racing and capping

return $\hat{\lambda}$

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - ▶ Compare λ' and λ based on N instances

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - ▶ Compare λ' and λ based on N instances
 - ▶ How does this relate to cross-validation?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - How does this relate to cross-validation?
- ullet Problem: How to set N? Problems of large N? Small N?

- Basic(N) uses a pretty basic comparison: $better_N(\lambda', \lambda)$:
 - Compare λ' and λ based on N instances
 - ▶ How does this relate to cross-validation?
- Problem: How to set N? Problems of large N? Small N?
 - ▶ Problem of large *N*: evaluations are slow
 - ightharpoonup Problem of small N: overfitting to a small set of instances
 - \longrightarrow Tradeoff: Choose N of moderate size

Question: Which N instances should we use?

- $oldsymbol{0}\ N$ different instances for each configuration
- $oldsymbol{Q}$ The same set of N instances for the entire run

Question: Which N instances should we use?

- $oldsymbol{0}\ N$ different instances for each configuration
- $oldsymbol{0}$ The same set of N instances for the entire run

Answer: the same N instances, so that we compare apples with apples (but: using the same instances can also yield overtuning)

Question: Which N instances should we use?

- $oldsymbol{0}$ N different instances for each configuration
- $oldsymbol{0}$ The same set of N instances for the entire run

Answer: the same N instances, so that we compare apples with apples (but: using the same instances can also yield overtuning)

If we sampled different instances for each configuration:

- Some configurations would randomly get easier instances
- Those configurations would look better than they really are

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ .

Question: For randomized algorithms, how should we set the seeds?

- Sample a new seed for each algorithm run
- Fix the seeds together with the instances

Answer: just like for instances, fix them to compare apples to apples

In summary, for each run of Basic(N): pick N (instance, seed) pairs and use them for evaluating each λ . (Different Basic(N) runs can use different instances and seeds.)

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

The concept of overtuning

Very related to overfitting in machine learning

- Performance improves on the training set
- Performance does not improve on the test set, and may even degrade

More pronounced for heterogeneous benchmark sets

- But it even happens for very homogeneous sets
- Indeed, one can even overfit on a single instance, to the seeds used for training

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

Overtuning Visualized

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=100: average runlengths across 100 runs with different seeds
- Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{\lambda}$ here based on 1000 new seeds

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to N=1, N=10, and N=100?

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to ${\cal N}=1$, ${\cal N}=10$, and ${\cal N}=100$?

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

- Example: minimizing SLS solver runlengths for a single SAT instance
- Training cost, e.g., with N=?: average runlengths across N runs with different seeds
- ullet Test cost of $\hat{oldsymbol{\lambda}}$ here based on 1000 new seeds

Which of these results corresponds to N=1, N=10, and N=100?

- N=1: blue, N=10: red, N=100 dashed black
- N=1: dashed black, N=10: red, N=100 blue

Correct Answer: 1

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far.

 $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

Intuition: get the best of both worlds

- Perform more runs for good configurations
 - to avoid overtuning
- Quickly reject poor configurations
 - to make progress more quickly

Definition: $N(\lambda)$ and $c_N(\lambda)$

 $N(\lambda)$ denotes the number of runs executed for λ so far. $\hat{c}_N(\lambda)$ denotes the cost estimate of λ based on N runs.

In the beginning: $N(\lambda) = 0$ for every configuration λ

Definition: domination

$${m \lambda}^{(1)}$$
 dominates ${m \lambda}^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\pmb{\lambda}^{(1)}$ and its cost is at least as low.

Definition: domination

$$\pmb{\lambda}^{(1)}$$
 dominates $\pmb{\lambda}^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\lambda^{(1)}$ and its cost is at least as low.

$better(\pmb{\lambda}', \hat{\pmb{\lambda}})$ in a nutshell

ullet $\hat{\lambda}$ is the current configuration to beat (incumbent)

Definition: domination

$$\lambda^{(1)}$$
 dominates $\lambda^{(2)}$ if

- ullet $N(oldsymbol{\lambda}^{(1)}) \geq N(oldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\pmb{\lambda}^{(1)}$ and its cost is at least as low.

$better(\lambda', \hat{\lambda})$ in a nutshell

- $oldsymbol{\hat{\lambda}}$ is the current configuration to beat (incumbent)
- ullet Perform runs of $oldsymbol{\lambda}'$ until either
 - $\hat{\lambda}$ dominates $\lambda' \leadsto$ reject λ' , or
 - lacksquare λ' dominates $\hat{oldsymbol{\lambda}} \leadsto$ change current incumbent $(\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}')$

Definition: domination

$$\lambda^{(1)}$$
 dominates $\lambda^{(2)}$ if

- \bullet $N(\boldsymbol{\lambda}^{(1)}) \geq N(\boldsymbol{\lambda}^{(2)})$ and
- $\bullet \ \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(1)}) \leq \hat{c}_{N(\boldsymbol{\lambda}^{(2)})}(\boldsymbol{\lambda}^{(2)}).$

I.e.: we have at least as many runs for $\lambda^{(1)}$ and its cost is at least as low.

$better(\lambda', \hat{\lambda})$ in a nutshell

- $oldsymbol{\hat{\lambda}}$ is the current configuration to beat (incumbent)
- Perform runs of λ' until either
 - $\hat{\lambda}$ dominates $\lambda' \rightsquigarrow \text{reject } \lambda'$, or
 - lacksquare λ' dominates $\hat{oldsymbol{\lambda}} \leadsto$ change current incumbent $(\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}')$
- Over time: perform extra runs of $\hat{\lambda}$ to gain more confidence in it

Toy Example

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$			

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2		

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\pmb{\lambda}')=6>\hat{c}_2(\pmb{\hat{\lambda}})=2.5$	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3		

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- We'll look at challengers λ' and λ''

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{oldsymbol{\lambda}}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3	1	

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)})$
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(oldsymbol{\lambda}')=6>\hat{c}_2(oldsymbol{\hat{\lambda}})=2.5$	
$oldsymbol{\lambda}''$	3	1	5

- ullet Let $\hat{oldsymbol{\lambda}}$ be the incumbent (evaluated on $i^{(1)}, i^{(2)}, i^{(3)}$)
- ullet We'll look at challengers $oldsymbol{\lambda}'$ and $oldsymbol{\lambda}''$

	$i^{(1)}$	$i^{(2)}$	$i^{(3)}$
$\hat{\lambda}$	3	2	10
$oldsymbol{\lambda}'$	2	10	
		$ ightarrow$ reject, since $\hat{c}_2(\pmb{\lambda'})=6>\hat{c}_2(\pmb{\hat{\lambda}})=2.5$	
λ''	3	1	5

- ullet new incumbent: $\hat{oldsymbol{\lambda}} \leftarrow oldsymbol{\lambda}''$
- ullet Perform an additional run for new $\hat{oldsymbol{\lambda}}$ to increase confidence over time

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

Racing achieves the best of both worlds

Aggressive racing (aka FocusedILS): Fast progress and no overtuning

Input : candidate configurations Λ_{new} , cutoff κ_{max} , previously evaluated runs $\mathcal{D}_{\mathsf{Hist}}$, budget T, incumbent $\hat{\lambda}$ while Λ_{new} not empty do

 $\pmb{\lambda}^{(t)} \leftarrow \mathsf{getNext}(\pmb{\Lambda}_{new});$

Input : candidate configurations Λ_{new} , cutoff κ_{max} , previously evaluated runs $\mathcal{D}_{\mathsf{Hist}}$, budget T, incumbent $\hat{\lambda}$ while Λ_{new} not empty do

```
\begin{split} \pmb{\lambda}^{(t)} &\leftarrow \mathsf{getNext}(\pmb{\Lambda}_{new});\\ i, s &\leftarrow \mathsf{instance} \text{ and seed drawn uniformly at random};\\ c &\leftarrow \mathsf{EvaluateRun}(\pmb{\hat{\lambda}}, i, s, \kappa_{max});\\ \mathcal{D}_{\mathsf{Hist}} &\leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\pmb{\hat{\lambda}}, i, s, c); \end{split}
```

```
Input : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\mathsf{Hist}}, budget T, incumbent \hat{\lambda} while \Lambda_{new} not empty do  \begin{vmatrix} \lambda^{(t)} \leftarrow \mathsf{getNext}(\Lambda_{new}); \\ i,s \leftarrow \mathsf{instance} \text{ and seed drawn uniformly at random}; \\ c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda},i,s,\kappa_{max}); \\ \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\hat{\lambda},i,s,c); \\ \text{while } true \ \mathbf{do} \\ \begin{vmatrix} \mathcal{I}^{+}, \mathbf{s}^{+} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\hat{\lambda},\mathcal{D}_{\mathsf{Hist}}); \\ \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\lambda^{(t)}, \mathcal{D}_{\mathsf{Hist}}); \\ i^{(t)}, s^{(t)} \leftarrow \mathsf{drawn uniformly at random from } \mathcal{I}^{+} \setminus \mathcal{I}^{(t)} \ \text{and } \mathbf{s}^{+} \setminus \mathbf{s}^{(t)}; \end{aligned}
```

```
: candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\text{Hist}}, budget T, incumbent \hat{\lambda}
Input
while \Lambda_{new} not empty do
          \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
             i, s \leftarrow instance and seed drawn uniformly at random:
             c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
             \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
             while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                       \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Hict}}):
                       i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                       c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max});
                       \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
```

```
Input
                     : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{Hist}, budget T, incumbent \lambda
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow \text{instance} and seed drawn uniformly at random:
            c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hist}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\hat{\boldsymbol{\lambda}}, i, s, c):
            while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                      \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadyEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Hist}});
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                       c_i \leftarrow \text{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max});
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hist}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)});
                       if average cost of \hat{\lambda}^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
```

```
Input
                     : candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{Hist}, budget T, incumbent \lambda
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow instance and seed drawn uniformly at random;
            c \leftarrow \mathsf{EvaluateRun}(\hat{\lambda}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
            while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                      \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Higt}}):
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                      c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max}):
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
                      if average cost of \lambda^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
                   else if average cost of \lambda^{(t)} < average cost of \hat{\lambda} and \mathcal{I}^+ = \mathcal{I}^{(t)} and \mathbf{s}^{(t)} = \mathbf{s}^+ then
                          \hat{\boldsymbol{\lambda}} \leftarrow \boldsymbol{\lambda}^{(t)}:
```

```
: candidate configurations \Lambda_{new}, cutoff \kappa_{max}, previously evaluated runs \mathcal{D}_{\mathsf{Hist}}, budget T, incumbent \hat{\lambda}
Input
while \Lambda_{new} not empty do
         \boldsymbol{\lambda}^{(t)} \leftarrow \text{getNext}(\boldsymbol{\Lambda}_{new}):
            i, s \leftarrow \text{instance} and seed drawn uniformly at random:
            c \leftarrow \mathsf{EvaluateRun}(\hat{\boldsymbol{\lambda}}, i, s, \kappa_{max}):
            \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\hat{\lambda}, i, s, c):
            while true do
                   \mathcal{I}^+, \mathbf{s}^+ \leftarrow \text{getAlreadyEvaluatedOn}(\hat{\lambda}, \mathcal{D}_{Hiet}):
                      \mathcal{I}^{(t)}, \mathbf{s}^{(t)} \leftarrow \mathsf{getAlreadvEvaluatedOn}(\boldsymbol{\lambda}^{(t)}, \mathcal{D}_{\mathsf{Higt}}):
                      i^{(t)}, s^{(t)} \leftarrow \text{drawn uniformly at random from } \mathcal{I}^+ \setminus \mathcal{I}^{(t)} \text{ and } \mathbf{s}^+ \setminus \mathbf{s}^{(t)}:
                      c_i \leftarrow \mathsf{EvaluateRun}(\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, \kappa_{max}):
                      \mathcal{D}_{\mathsf{Hiet}} \leftarrow \mathcal{D}_{\mathsf{Hiet}} \cup (\boldsymbol{\lambda}^{(t)}, i^{(t)}, s^{(t)}, c^{(t)}):
                      if average cost of \hat{\lambda}^{(t)} > average cost of \hat{\lambda} across \mathcal{I}^{(t)} and \mathbf{s}^{(t)} then
                             break:
                   else if average cost of \lambda^{(t)} < average cost of \hat{\lambda} and \mathcal{I}^+ = \mathcal{I}^{(t)} and \mathbf{s}^{(t)} = \mathbf{s}^+ then
                           \hat{\boldsymbol{\lambda}} \leftarrow \boldsymbol{\lambda}^{(t)}:
         if time spent exceeds T or \Lambda_{new} is empty then
                   return \hat{\lambda}. \mathcal{D}_{Hiet}
```