Notes on Nonparametric Statistics

José Manuel Rodríguez Caballero

September 7, 2024

1 The Wilcoxon Rank Sum

Given two positive integers n and N, we define the Wilcoxon Rank Sum distribution $\mathbf{P}(W_n^N=k)$ via the generating function

$$\frac{\binom{N}{n}_q}{\binom{N}{n}} = \sum_{k=\frac{n(n+1)}{2}}^{\frac{n(2N-n+1)}{2}} \mathbf{P}\left(W_n^N = k\right) q^k,\tag{1}$$

where the polynomials $\binom{N}{n}_q$ are given by the product

$$\prod_{n=1}^{N} (1 - zq^n) = \sum_{n=0}^{N} (-1)^n \binom{N}{n}_q z^n.$$
 (2)

Theorem 1. For two positive integers n and N, we have

$$\mathbf{E}\left(W_{n}^{N}\right) = \frac{n(N+1)}{2},\tag{3}$$

$$\mathbf{Var}\left(W_n^N\right) = \frac{n(N-n)(N+1)}{12}.\tag{4}$$

Proof. Using the notations

$$F = \prod_{n=1}^{N} (1 - zq^n), (5)$$

$$G = \sum_{k>1} (q^k + q^{2k} + q^{3k} + \dots + q^{Nk}) \frac{z^k}{k}, \tag{6}$$

we have

$$F = e^{-G}. (7)$$

Let $\mathcal{H} = q \frac{d}{dq}$, it follows

$$\mathcal{H}F = -e^{-G}\mathcal{H}, \tag{8}$$

$$\mathcal{H}^2 F = e^{-G} \left[\left(\mathcal{H} G \right)^2 - \mathcal{H}^2 G \right]. \tag{9}$$

We compute

$$\mathcal{H}G\big|_{q=1} = \frac{N(N+1)}{2} \frac{z}{1-z},$$
 (10)

$$\mathcal{H}^2G\big|_{q=1} = \frac{N(N+1)(2N+1)}{6} \frac{z}{(1-z)^2},$$
 (11)

and

$$\mathcal{H}F\big|_{q=1} = -\frac{N(N+1)}{2}z(1-z)^{N-1},$$
 (12)

$$\mathcal{H}^2 F\big|_{q=1} = (1-z)^{N-2} \left[\left(\frac{N(N+1)}{2} \right)^2 z^2 - \frac{N(N+1)(2N+1)}{6} z \right].$$
 (13)

Considering the coefficients of both sides,

$$\frac{\mathcal{H}\binom{N}{n}_q\Big|_{q=1}}{\binom{N}{n}} = \frac{n(N+1)}{2},\tag{14}$$

$$\frac{\mathcal{H}^2\binom{N}{n}_q\Big|_{q=1}}{\binom{N}{n}} = \frac{n(N+1)(3nN+2n+N)}{12}.$$
 (15)

By definition of the expected value,

$$\frac{\mathcal{H}\binom{N}{n}_q\Big|_{q=1}}{\binom{N}{n}} = \mathbf{E}\left[W_n^N\right],\tag{16}$$

$$\frac{\mathcal{H}^2 \binom{N}{n}_q \Big|_{q=1}}{\binom{N}{n}} = \mathbf{E} \left[\left(W_n^N \right)^2 \right]. \tag{17}$$

Combining (14) and (16), we obtain (3).

By definition of the variance,

$$\mathbf{Var}\left[W_{n}^{N}\right] = \mathbf{E}\left[\left(W_{n}^{N}\right)^{2}\right] - \left(\mathbf{E}\left[W_{n}^{N}\right]\right)^{2}.$$
 (18)

Combining (14), (15), (16) and (18) we obtain (4).

Theorem 2. For two positive integers n and N, we have that W_n^N is symmetric, i.e.,

$$\mathbf{P}(W_n^N = k) = \mathbf{P}(W_n^N = n(N+1) - k),$$
 (19)

for all $\frac{n(n+1)}{2} \le k \le \frac{n(2N-n+1)}{2}$.

Proof. The function $F(q,z)=\prod_{n=1}^N{(1-zq^n)}$ is invariant under the transformation $q\mapsto q^{-1}$ and $z\mapsto zq^{N+1}$,

$$F(q^{-1}, zq^{N+1}) = F(q, z).$$
 (20)

Equating coefficients in (20), according to (2), we obtain

$$q^{n(N+1)} \binom{N}{n}_{q^{-1}} = \binom{N}{n}_q, \tag{21}$$

where $\binom{N}{n}_{q^{-1}}$ is the result of the substitution of q by q^{-1} in $\binom{N}{n}_q$. Combining (21) and (1), we conclude (19).

Theorem 3. For two positive integers n and N, consider two families of random variables $X_1, X_2, X_3, ..., X_{N-n}$ and $Y_1, Y_2, Y_3, ..., Y_n$ such that they together are a random permutation of 1, 2, 3, ..., N. For each $0 \le k \le n(N-n)$, we have

$$\mathbf{P}\left(W_n^N = \frac{n(n+1)}{2} + k\right) = \mathbf{P}\left(\#\{(i,j) : X_i < Y_j\} = k\right). \tag{22}$$

Proof. Without lost of generality, assume that $X_1 < X_2 < X_3 < ... < X_{N-n}$ and $Y_1 < Y_2 < Y_3 < ... < Y_n$. Let k be the number of (i, j) such that $X_i < Y_j$. Notice that $0 \le k \le n(N-n)$, because there are N-n values of X_i and n values of Y_j . Our goal is to compute

$$W_n^N = Y_1 + Y_2 + Y_3 + \dots + Y_n. (23)$$

For each $1 \le j \le n$, the number of i such that $X_i < Y_j$ is $(Y_j - 1) - (j - 1) = Y_j - j$. Hence,

$$\sum_{j=1}^{n} (Y_j - j) = k.$$
 (24)

It follows that

$$W_n^N = \frac{n(n+1)}{2} + k. (25)$$

Therefore, (22) holds.