(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11) 特許出願公開番号

特開平6-150880

(43)公開日 平成6年(1994)5月31日

(51)Int.Cl.⁵

識別配号 庁内整理番号

FΙ

技術表示箇所

H 0 1 J 61/067

L 7135--5E

審査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号

特願平4-300163

(22)出願日 平成 4年(1992)11月10日

(71)出願人 000005832

松下電工株式会社

大阪府門真市大字門真1048番地

(72)発明者 佐近 茂俊

大阪府門真市大字門真1048番地松下電工株

式会社内

(72)発明者 竹川 禎信

大阪府門真市大学門真1048番地松下電工株

式会社内

(72)発明者 山田 修司

人阪府門真市大字門真1048番地松下電工株

式会社内

(74)代理人 弁理士 松本 武彦

(54)【発明の名称】 放電ランプ用電極

(57)【要約】

【目的】 従来品に比べて、寿命の長い放電ランプ用電 極を提供する。

【構成】 エミッタ1を保持したフィラメント2が高融 点絶縁物3に密着して巻き付いている。

【請求項1】 エミッタを保持したフィラメントが高融 点絶縁物に密着して巻き付いた構造を有する放電ランプ

1

【請求項2】 フィラメントの材料が、タングステン、 モリブデン、タンタル、ニッケル、鉄およびこれらの高 融点金属の少なくとも1種をベースとする高融点合金か らなる群の中から選ばれたものである請求項1記載の放 電ランプ用電極。

【請求項3】 高融点絶縁物が、アルミナ、シリカ、チ 10 タニア、カルシア、マグネシア、イットリア、トリア、 ジルコニア、ボロンナイトライド、シリコンナイトライ ド、シリコンカーバイドおよびこれらのうちの2種以上 の材料の複合物からなる群の中から選ばれたものである 請求項1または2記載の放電ランプ用電極。

【請求項4】 高融点絶縁物の形状が、管状、棒状また はこれらの形状の材料の側面に螺旋状の溝が彫られた形 状である請求項1から3までのいずれかに記載の放電ラ

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、螢光ランプ等の放電 ランプに使用される電極に関する。

[0002]

【従来の技術】従来、螢光ランプ等の放電ランプに使用 される電極(熱電子放射陰極)としては、タングステン 等の高融点金属からなるフィラメントにエミッタ (熱電 子放射物質)を保持させた電極が一般的である。このよ うな電極は、アルカリ土類金属 (Ba、Sr、Ca等) のをフィラメントに塗布した後、活性化処理(真空中ま たはA r等の不活性ガス雰囲気中でフィラメントを通電 加熱することにより、フィラメント表面の炭酸塩スラリ 一から溶剤を飛ばすとともに上記炭酸塩を酸化物に変え る処理)を行うことにより製造されている。このような 活性化処理によりフィラメント表面に生成するアルカリ 上類金属の酸化物がフィラメント表面の仕事関数を下げ てエミッタ (熱電子放射物質) の役目をするとされてい [0003]

【発明が解決しようとする課題】ところが、上述した従 来の放電ランプ用電極は、エミッタが消失することによ り寿命となることが知られており、長寿命化することが 望まれている。そこで、この発明は、従来品に比べて、 寿命の長い放電ランプ用電極を提供することを課題とす

[0004]

【課題を解決するための手段】前記課題を解決するた め、発明者らは、種々検討を重ねた結果、以下のことを

極である熱電子放射陰極のエミッタ消失の原因として は、大きくは2つの原因がある。すなわち、Φ放電時に 発生するイオンが陰極へ衝突 (スパッタリング) するこ とによりエミッタが欠落(飛散)するためと、②エミッ 夕が蒸発するためである。従来、放電ランプ用電極は熱 陰極であり、放電時、1000℃以上の高温で使用され る。その際、輝点(直径1㎜程度の点状の高温部(13 00℃以上))が生じる。この輝点部分では、熱電子放 射が集中するため、局所的に加熱されてエミッタが著し く蒸発するとともに、スパッタリングも激しくなり、そ の結果、エミッタの消失および電極の黒化が引き起こさ れる。このように、上記輝点部分におけるエミッタの消 失速度が電極の寿命を決定している。そこで、電極の寿 命を延ばすためには、熱電子放射の集中による局所的加 熱部分をなくし、より大面積の熱電子放射面を有するよ うにすればよいことに着想し、エミッタを保持したフィ ラメントを高融点絶縁物に密着して巻き付けるようにし たところ、上記絶縁物が熱伝導体となってフィラメント の温度分布が均等化し、これにより、温度に依存する熱 20 電子放射量分布が均等化されて、放電加熱が均等化する とともに熱電子放射面積が大きくなる。その結果、エミ ッタの消失速度が抑えられて、電極の寿命が長くなると いうこどである。

【0005】したがって、この発明にかかる放電ランプ 用電極は、エミッタを保持したフィラメントが高融点絶 緑物に密着して巻き付いた構造を有するものである。こ の発明で用いられるフィラメントの材料としては、特に 限定はされないが、たとえば、タングステン、モリブデ の炭酸塩を有機溶剤中に分散させてスラリー状にしたも 30 の少なくとも1種をベースとする高融点合金などが挙げ

【0006】この発明で用いられる高融点絶縁物の具体 例としては、特に限定はされないが、たとえば、アルミ ナ、シリカ、チタニア、カルシア、マグネシア、イット リア、トリア、ジルコニア等の酸化物;ボロンナイトラ イド、シリコンナイトライド等の窒化物;シリコンカー バイド等の炭化物等が挙げられる。高融点絶縁物は、上 記のうちの2種以上の材料の複合物でもよい。

【0007】高融点絶縁物の物理的性質については、特 40 に限定されるわけではないが、たとえば、融点1000 ℃以上、熱伝導率1.0W/(m・K)以上、線膨張係 数5.0×105 /で以上、室温における熱容量30~ $100\,\mathrm{J} imes (\mathrm{mol}\cdot\mathrm{K})$ のものが好ましい。高融点絶 緑物の化学的性質については、フィラメント材料として 前に例示した高融点金属および高融点合金と1000℃ 以上の温度で化学反応しないことが好ましい。このよう な物理的および化学的性質を有する高融点絶縁物として は、特に限定はされないが、たとえば、高融点絶縁物の 実験で確認して、この発明を完成した。放電ランプ用電 50 【0008】高融点絶縁物の形状については、フィラメ

ントを密着して巻き付けることのできるものであれば、 特に限定はされないが、たとえば、管状、棒状等が挙げ られる。管状、棒状等の形状の高融点絶縁物の側面に は、必要に応じて、螺旋状の溝が彫られていてもよい。 この溝の部分にフィラメントを密着して巻き付けること により、高融点絶縁物がフィラメントから脱落しにくく なる利点がある。

【0009】この発明で用いられるエミッタ(熱電子放 射物質)としては、特に限定はされないが、たとえば、 アルカリ土類金属 (Ba、Sr、Caなど)の、炭酸塩 10 2.0㎜、内径1.5㎜、長さ20㎜)に密着して巻き および酸化物などが挙げられる。エミッタをフィラメン トに保持させる方法としては、特に限定はされないが、 たとえば、前述した従来の放電ランプ用電極の場合と同 様の方法を採用することができる。具体的には、たとえ ば、アルカリ土類金属(Ba、Sr、Ca等)の炭酸塩 を有機溶剤中に分散させてスラリー状にしたものをフィ ラメントに塗布した後、活性化処理(真空中またはAr 等の不活性ガス雰囲気中でフィラメントを通電加熱する ことにより、フィラメント表面の炭酸塩スラリーから溶 剤を飛ばすとともに上記炭酸塩を酸化物に変える処理) を行う方法等が挙げられる。このような活性化処理によ りフィラメント表面に生成するアルカリ土類金属の酸化 物がフィラメント表面の仕事関数を下げてエミッタ(熱 電子放射物質)の役目をする。上記の活性化処理の条件 としては、特に限定はされないが、たとえば、真空中ま たは不活性ガス雰囲気中で800~1300℃で、でき る限り短時間に加熱を行うことが好ましい。

[0010]

【作用】この発明では、エミッタを保持したフィラメン トを高融点絶縁物に密着して巻き付けるようにしてい る。すると、放電時、フィラメントから発生する熱が高 融点絶縁物に伝導してフィラメントの温度分布が均等化 され、温度に依存する熱電子放射量分布が均等化され る。これにより放電加熱が均等化して温度分布にフィー ドバックされる。そのため、絶縁物への巻き付けを行わ ずにエミッタ保持フィラメントのみを電極基体とする従 来の電極に比べて、放電がより大きい面積にわたって起 こることによりイオン衝撃が分散されてエミッタの欠落 (飛散)が抑制されるとともに、放電面の温度が下がる ミッタの消失速度が減少するので、電極の寿命が長くな る。

[0011]

【実施例】次に、この発明の実施態様を説明する。図1 は、この発明にかかる放電ランプ用電極の一実施態様を 表す。図にみるように、この放電ランプ用電極は、エミ ッタ1を保持したタングステンフィラメント2が管状の シリカからなる高融点絶縁物3に密着して巻き付いた構 浩を有する。

【0012】次に、この発明の具体的な実施例と比較例 50

1 を示すが、この発明は下記実施例およびすでに述べた実 施態様に限定されない。

- 実施例 --

および線径20μmのタングステン線をダブルコイルの フィラメントにした。このダブルコイルの一次巻きは外 径1.0㎜、ピッチ0.4㎜、巻数120であり、二次 巻きは外径4.0㎜、ピッチ1.2㎜、巻数5であっ

【0013】このフィラメントを管状のシリカ(外径 付けた後、フィラメントにトリプルカーボネート(Ba CO3、CaCO3 およびSrCO3) のスラリーを塗 布して陰極とした。これと平板状陽極(20×10× (). 1 ■■のタングステン板)とでダイオード(極間距離 15㎜)を形成させ、通常の活性化処理(放電基体であ るフィラメントを真空中で通電加熱することにより、フ ィラメント表面のエミッタ内の有機溶媒を飛ばすととも にエミッタを炭酸塩から酸化物に変える処理)を行った 後、Arガス (1.5Torr) を封入することにより、放 20 電ランプ (管径70 m) を得た。

【0014】-比較例

実施例において、フィラメントを管状のシリカに巻き付 けることは行わないで、エミッタを保持したフィラメン トのみで陰極を構成したこと以外は実施例と同様の操作 を行って、従来型の放電ランプを得た。上記の実施例お よび比較例で得られた放電ランプについて、以下に示す ような点灯試験を行った。ランプに電圧を印加する前 に、放電しやすい状態を作るために予め陰極を2.00 Aで通電加熱 (予熱) してフィラメント温度を800℃ 30 以上(数十Vの印加で放電可能な温度)にした。ランプ を10分間連続点灯し2分間消灯するという操作を5回 繰り返した。その際、放電が充分に安定したと考えられ る消灯直前に、ランプ電圧、ランプ電流、輝点温度、輝 点の状態を調べた。これらは、上記の予熱をランプ点灯 時も引き続き行う場合とランプ点灯時は子熱を行わない 場合について調べた。それらの結果を、1回目の点灯時 のものと5回目の点灯時(1回目の点灯から1時間後) のものについて表1に示した。なお、予熱をランプ点灯 時も引き続き行う場合は、通常、輝点はできにくく、点 ことによりエミッタの蒸発量が減少する。その結果、エー40 灯時に予熱を行わない場合に比べて、フィラメント温度 はより均一であると考えられる。輝点温度については、 はっきり確認されない場合は未測定とした。また、実施 例のランプの5回目の点灯時(予熱なし)には、輝点が 確認されなかったが、比較例との違いを示すために、表 1中、実施例の輝点温度の欄(5回目の点灯時、予熱な し)には、輝点温度の代わりにフィラメントの表面温度 の測定値を角括弧で囲んで示した。

【0015】

【表1】

					実施例				比較例			
			熱の無	りあ	あり		なし		あり		なし	
	回目の	(雷	ランプ 電圧 (V)		1 2	1 2.3 5		9.	9.5 6		11.40	
	の点灯時	ランプ 電流 (A)			2.01		1	2.00		1.99		
		輝点 温度 (C)		未測定		1100		未被	未测定		1210	
L		輝点 状態	Ø	輝点なし		帯状		準点なし		点状	1	
		予熱の 有無		あり		なし		あり	Ť	なし	1	
5回目の		ランプ 電圧 (V)		1 1.4 7		12.551		9.3 7		1.108		
の点灯時	1	ランフ 記流 (A)	1	2.01		2.01		2.00		1.9 9		
	輝点 温度 温度 (T)		Ä	未測定		(980)		測定	1 3	350		
	輝点の 状態		輝	点なし	なし輝点		なし輝点		—— 点	状		

【0016】表1にみるように、実施例で得られた放電 ランプは、比較例で得られた放電ランプに比べて、点灯 時に予熱を行わない場合でも、電極の輝点面積が大き く、輝点温度が低いものであることが確認された。 [0017]

【発明の効果】この発明にかかる放電ランプ用電極は、 従来品に比べて、エミッタの消失速度が遅いため、放電 40 3 高融点絶縁物 ランプの寿命を長くすることができる。

*【図面の簡単な説明】

【図1】この発明にかかる放電ランプ用電極の一実施態 様を表す斜視図である。

【符号の説明】

- 1 エミッタ

【図1】

