UNIT I- PART A

1.	A regular language over an alphabet \sum is one that cannot be obtained from the basic			
	languages using the operation			
	a) Union			
	b) Concatenation			
	c) Kleene*			
	d) All of the mentioned			
2.	The number of elements in the set for the Language L= $\{x \in (\sum r) * \text{length if } x \text{ is at most } 2\}$			
	and $\Sigma = \{0,1\}$ is			
	a) 7			
	b) 6			
	c) 8			
	d) 5			
3.	Given: $\Sigma = \{a, b\}$ L= $\{x \in \Sigma^* x \text{ is a string combination}\}$ $\Sigma 4$ represents which among the			
	following			
	a){aa, ab, ba, bb}			
	b) {aaaa, abab, ε, abaa, aabb}			
	c) {aaa, aab, aba, bbb}			
	d) {ε}			
4.	Mealy and Moore machine can be categorized as:			
	a) Inducers			
	b) Transducers			
	c) Turing Machines			
	d) Linearly Bounder Automata			
5.	A Language for which no DFA exist is a			
	a) Regular Language			
	b) Non-Regular Language			
	c) May be Regular			
	d) Cannot be said			
6.	Which of the following is not an example of finite state machine system?			
	a) Control Mechanism of an elevator			

	b) Combinational Locks
	c) Traffic Lights
	d) Digital Watches
7.	Numbers of states require to accept string ends with 10.
	a) 3
	b) 2
	c) 1
	d) 0
8.	L1= {w w does not contain the string tr }
	L2= {w w does contain the string tr}
	Given $\Sigma = \{t, r\}$, The difference of the minimum number of states required to form L1
	and L2?
	a) 0
	b) 1
	c) 2
	d) Infinite
9.	The total number of states to build the given language using DFA:
	L= {w w has exactly 2 a's and at least 2 b's}
	a) 10
	b) 11
	c) 12
	d) 13
10	. Given Language: {x it is divisible by 3}
	The total number of final states to be assumed in order to pass the number constituting
	$\{0, 1\}$ is
	a) 0
	b) 1
	c) 2
	d) 3

11. Which of the following is same as the given DFA?

- a) (0+1)*001(0+1)*
- b) 1*001(0+1)*
- c) (01)*(0+0+1)(01)*
- d) 1(0+1)*0
- 12. Which among the following cannot be accepted by a regular grammar?
 - a) L is a set of numbers divisible by 2
 - b) L is a set of binary complement
 - c) L is a set of string with odd number of 0
 - d) L is a set of 0ⁿ1ⁿ
- 13. Consider the languages $L1 = \varphi$ and $L2 = \{1\}$. Which one of the following represents

$$L*_1 \cup L*_1 L*_2$$
?

- $(A) \{ \in \}$
- (B) $\{ \in, 1 \}$
- (C) ϕ
- (D) 1*
- 14. The non- Kleene Star operation accepts the following string of finite length over set A =
 - $\{0,1\}$ | where string s contains even number of 0 and 1
 - a) 01,0011,010101
 - b) 0011,11001100
 - c) e,0011,11001100
 - d) ε,0011,11001100
- **15.** Transition function maps.
 - a) $\Sigma * Q \rightarrow \Sigma$
 - b) Q * Q -> Σ

c) $\Sigma * \Sigma -> Q$	
d) $\mathbf{Q} * \mathbf{\Sigma} \rightarrow \mathbf{Q}$	
16. $\delta^*(q,ya)$ is equivalent to .	
a) $\delta((q,y),a)$	
b) $\delta(\delta^*(q,y),a)$	
c) $\delta(q,ya)$	
d) independent from δ notation	
17. If we select a string w such that w∈L, an	nd w=xyz. Which of the following portions
cannot be an empty string?	
a) x	
b) y	
c) z	
d) xz	
18. Fill in the blank in terms of p, where p is	s the maximum string length in L.
Statement: Finite languages trivially sati	sfy the pumping lemma by having n =
a) p*1	
b) p+1	
c) p-1	
d) p	
19. Predict the analogous operation for the g	riven language:
A: $\{[p, q] \mid p \in A1, q \text{ does not belong to }$	A2}
a) A1-A2	
b) A2-A1	
c) A1.A2	
d) A1+A2	
20. e-transitions are	
a) conditional	
b) unconditional	
c) input dependent	
d) independent	

21.	RR* can be expressed in which of the forms:
	a) R +
	b) R-
	c) R+ U R-
	d) R
22.	Simplify the following regular expression:
	ε+1*(011) *(1*(011) *) *
	a) (1+011) *
	b) (1*(011) *)
	c) (1+(011) *) *
	d) (1011) *
23.	Precedence of regular expression in decreasing order is
	a) * , . , +
	b).,*,+
	c).,+,*
	d) + , a , *
24.	L and ~L are recursive enumerable then L is
	a) Regular
	b) Context free
	c) Context sensitive
	d) Recursive
25.	Which of the following statements is false?
	(A) Every NFA can be converted to an equivalent DFA
	(B) Every non-deterministic Turing machine can be converted to an equivalent
	deterministic Turing machine
	(C) Every regular language is also a context-free language
	(D) Every subset of a recursively enumerable set is recursive