Course No	Title of the	Course	Pre-Requisite	
	course	Structure		No of Hours
BTBID08	Machine	3L-0T-2P	Data Structures,	
	Learning		Programming,	

COURSE OUTCOMES (CO)

- 1. To understand the characteristics of data-driven machine learning approach for solving problems
- **2.** To develop and refine different ML models for specific applications, implement and evaluate them and finally apply them for the given task.
- 3. To conduct team projects and/or exploratory work in different domains, with emphasis on ethical means of acquiring and processing data

certical means of deglaring and processing data	
UNIT I - Introduction:	
Definition of learning systems, Importance of Data in ML, Workflow of ML,	_
Types of learning models - supervised, unsupervised and reinforcement	3
learning models, Regression and Classification tasks, Challenges in ML:	
Avoiding over-learning, Applications of ML	
UNIT II: Regression and Classification models:-	
Regression - Linear Regression – introduction, types of LR, and model	
assumptions, Linear Regression gradient descent learning, Model	4
Estimation, Performance metrics - R-Square and adjusted R-Square, L1 and	
L2 Regularization.	
Classification - Logistic Regression – log-odds, odds ratio, Logit function,	
Performance metrics for classification - Cross-entropy, Confusion matrix –	3
Recall, Precision, Accuracy, F1 measure, specificity, ROC-AUC curves.	
UNIT III - Supervised, Unsupervised and Ensemble learning models:	
Supervised - Decision trees - Entropy, Information gain, ID3 algorithm for	
DTs, Regularization – pruning and stopping DT growth methods, Gini Index	6
for CART algorithms,	
Unsupervised: K-means clustering, Principal Component Analysis	3
Ensemble Learning – Bias and variance error. Bagging, Random Forest,	
Adaboost	3
UNIT IV – Bayesian Classification – A Generative Model and Support Vector	
Machines – A Discriminative Model	4
Generative and Discriminative ML models - comparison	
Generative - Bayesian Classification, Naïve-Bayes Classifier, Bayesian	
Networks.	
Discriminative – Support Vector Machines	3
Curse of dimensionality, complexity analysis	3
UNIT V - Neural Learning and advanced architectures:	
Neural Learning - Artificial Neural Network versus Biological Neural	
networks - Perceptron, Multi-Layer Feed Forward Neural Network, Back	4
Propagation.	
Deep Neural Networks – Convolutional Neural Networks, RNN, LSTM, recent	3
advances	1
PRACTICALS, PROJECT / PRESENTATIONS	
Make a project Statement in any domain and collect its dataset	
,	3
Forest	
 Implement Linear regression in Python Implement Linear Regression using Library functions Implement Decision Tree and Ensemble using Bagging and Random 	3

5.	Implement Bayesian classification ML model and apply on a given dataset	
ь.	Work in pairs to prepare presentations of exploratory work on	
	specific topics such as KNN, Q-Learning, PCM, HMM, CRF, LSA.	
SUGGE	STED READINGS	
Books:		
1.	Richard Duda, Peter Hart and David Stork, Pattern Classification,	
	2nd ed. John Wiley & Sons, 2001.	
2.	Tom Mitchell, Machine Learning. McGraw-Hill, 1997.	
Websit	es for Tutorials:	
1.	Datasciencemastery.com	
2.	Towardsdatascience.com	
3.	Analyticsvidya.com	
Tests		
1.	Short Test 1: Units 1 and 2 – Viva	
2.	Long Test 1: Units 1,2,3 – Long Viva	8
3.	Practical Demos 1	
4.	Short Test 2: Unit 4 – Viva	
5.	Practical demos-2	
6.	Short test 3: Unit 5 – Viva	
7.	Long Test 2: All Units 1-5	