Statystyka stosowana - raport 2 "Testowanie hipotez statystycznych"

Przedmiot i prowadzący: Statystyka stosowana, wtorki 17.05-18.35 (T00-16e), Dr inż. Aleksandra Grzesiek

Aleksandra Hodera (268733) — Aleksandra Polak (268786)

Spis treści

1	Naj	Najważniejsze pojęcia, definicje i wzory				
	1.1	Hipoteza zerowa i alternatywna				
	1.2	Statystyka testowa				
		1.2.1 Testy dla wartości średniej - przypadek znanej wariancji				
		1.2.2 Testy dla wariancji				
	1.3	Poziom ufności/istotności				
	1.4	Obszary i punkty krytyczne				
		1.4.1 Testy dla wartości średniej - przypadek znanej wariancji				
		1.4.2 Testy dla wariancji				
	1.5	p-wartość				
	1.0	1.5.1 Testy dla wartości średniej - przypadek znanej wariancji				
		1.5.2 Testy dla wariancji				
	1.6	Błąd I rodzaju				
	1.7	Moc testu, błąd II rodzaju				
	1.1	Moc testu, biąd ii rodzaju				
2	Za	danie 1				
	2.1	Opis zadania				
	2.1	2.1.1 Wartość statystyki Z				
	2.2	Interpretacja graficzna obszarów i punktów krytycznych				
	2.2	2.2.1 $\alpha = 0.05$				
		$2.2.1 \alpha = 0.03 \dots \dots \dots \dots \dots \dots \dots \dots \dots $				
	0.0	$2.2.3 \alpha = 0.01 \dots 8$				
	2.3	p-wartości				
	2.4	Podsumowanie, wnioski				
3	Za	danie 2				
0	3.1	Opis zadania				
	0.1	3.1.1 Wartość statystyki χ^2				
	3.2	Interpretacja graficzna obszarów i punktów krytycznych				
	0.2	3.2.1 $\alpha = 0.05$				
		$3.2.1 \alpha = 0.03 \dots \dots$				
	2.2	3.2.3 $\alpha = 0.01$				
	3.3	p-wartości				
	3.4	Podsumowanie, wnioski				
4	Zad	lanie 3				
-	4.1	Opis zadania				
	4.2	Bład I rodzaju				
	4.2	4.2.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania				
		1)				
		4.2.2 Testy dla wariancji (hipotezy z zadania 2)				
	4.9	,				
	4.3	Błąd II rodzaju				
		4.3.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania				
		1)				
		4.3.2 Testy dla wariancji (hipotezy z zadania 2)				
	4.4	Moc testu				
		4.4.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania				
		1)				
		4.4.2 Testy dla wariancji (hipotezy z zadania 2)				
	4.5	Podsumowanie, wnioski				

1 Najważniejsze pojęcia, definicje i wzory

Poniżej zostały przedstawione wszystkie wzory i definicje użyte w raporcie. Mają one zastosowanie dla testowania hipotez statystycznych w rodzinie rozkładów normalnych.

1.1 Hipoteza zerowa i alternatywna

Hipotezą zerową, ozn. H_0 nazywamy tą hipotezę, której prawdziwość będziemy sprawdzać. Badamy czy istnieją podstawy, aby ją odrzucić, a w jej miejsce przyjąć **hipotezę alternatywną**, ozn. H_1 . Hipoteza zerowa to hipoteza prosta, ponieważ wyznacza ona jednoznacznie rozkład prawdopodobieństwa. Natomiast hipoteza alternatywna - złożona, czyli taka, której zbiór rozkładów zawiera więcej niż jeden rozkład prawdopodobieństwa.

1.2 Statystyka testowa

Jest to zmienna losowa, którą dobieramy zależnie od estymowanej charakterystyki. Jej wartość obliczamy na podstawie danych z próby.

1.2.1 Testy dla wartości średniej - przypadek znanej wariancji

W tym przypadku, zamiast statystyki $\overline{X} \sim \mathcal{N}(\theta_0, \frac{\sigma}{\sqrt{n}})$ będziemy używać jej standaryzowanej wersji:

$$Z = \frac{\overline{X} - \theta_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1),$$

gdzie:

- \overline{X} średnia z próby, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,
- n wielkość próby,
- θ_0 średnia pod warunkiem zachodzenia hipotezy zerowej,
- σ znane odchylenie standardowe.

1.2.2 Testy dla wariancji

W przypadku testowania wariancji wykorzystujemy statystykę:

$$\chi^2 = \frac{(n-1) * S^2}{\sigma_0^2},$$

gdzie:

- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ wariancja w próbie, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,
- n wielkość próby,
- σ_0 odchylenie standardowe pod warunkiem zachodzenia hipotezy zerowej.

Przy prawdziwości hipotezy zerowej H_0 statystyka ta ma rozkład χ^2 z n-1 stopniami swobody.

1.3 Poziom ufności/istotności

Jest to przyjęte odgórnie, dopuszczalne ryzyko odrzucenia prawdziwej hipotezy zerowej. Poziom ten oznaczamy jako α .

1.4 Obszary i punkty krytyczne

Obszarem krytycznym, *ozn.* C nazywamy zbiór wartości statystyki testowej prowadzący do odrzucenia hipotezy zerowej. Natomiast przez C' będziemy oznaczać zbiór przyjęć hipotezy zerowej. **Punkty krytyczne** to wartości brzegowe C, graniczące z C'.

1.4.1 Testy dla wartości średniej - przypadek znanej wariancji

W tym przypadku zbiory krytyczne testu na poziomie istotności α mają, w zależności od hipotezy alternatywnej, postać:

1. dla $H_1: \theta \neq \theta_0$,

$$C = \{x : x \le -z_{1-\frac{\alpha}{2}} \quad \lor \quad x \ge z_{1-\frac{\alpha}{2}} \}$$

2. dla $H_1: \theta > \theta_0$,

$$C = \{x : x \ge z_{1-\alpha}\}$$

3. dla $H_1: \theta < \theta_0$.

$$C = \{x : x \le -z_{1-\alpha}\}$$

gdzie $z_{1-\frac{\alpha}{2}}$ i $z_{1-\alpha}$ są odpowiednio kwantylami rzędu $1-\frac{\alpha}{2}$ i $1-\alpha$ standardowego rozkładu normalnego.

1.4.2 Testy dla wariancji

Natomiast w przypadku testów dla wariancji zbiory krytyczne, w zależności od hipotezy alternatywnej, mają postać:

1. dla $H_1: \sigma^2 \neq \sigma_0^2$,

$$C = \{x^2 : x^2 \le \chi^2_{\frac{\alpha}{2}, n-1} \quad \lor \quad x^2 \ge \chi^2_{1-\frac{\alpha}{2}, n-1}\}$$

2. dla $H_1: \sigma^2 > \sigma_0^2$,

$$C = \{x^2 : x^2 \ge \chi^2_{1-\alpha, n-1}\}$$

3. dla $H_1: \sigma^2 < \sigma_0^2$.

$$C = \{x^2 : x^2 \le \chi^2_{\alpha, n-1}\}$$

gdzie $\chi^2_{\frac{\alpha}{2},n-1}$, $\chi^2_{1-\frac{\alpha}{2},n-1}$, $\chi^2_{\alpha,n-1}$ i $\chi^2_{1-\alpha,n-1}$ są odpowiednio kwantylami rzędu $\frac{\alpha}{2}$, $1-\frac{\alpha}{2}$, α i $1-\alpha$ rozkładu χ^2 z n-1 stopniami swobody.

1.5 p-wartość

Jest to najmniejszy poziom istotności α , przy którym zaobserwowana wartość statystyki testowej prowadzi do odrzucenia hipotezy zerowej. Jej postać jest zależna od hipotezy alternatywnej.

1.5.1 Testy dla wartości średniej - przypadek znanej wariancji

1. dla $H_0: \theta = \theta_0, H_1: \theta \neq \theta_0,$

$$p - warto\acute{s}\acute{c} = 2P_{H_0}(Z \ge |z|) = 2(1 - P_{H_0}(Z < |z|)) = 2(1 - \Phi(|z|))$$

2. dla $H_0: \theta = \theta_0, H_1: \theta > \theta_0,$

$$p - warto\acute{s}\acute{c} = P_{H_0}(Z \ge z) = (1 - P_{H_0}(Z < z)) = 1 - \Phi(z)$$

3. dla $H_0: \theta = \theta_0, H_1: \theta < \theta_0$.

$$p-warto\acute{s}\acute{c}=P_{H_0}(Z\leq z)=\Phi(z)$$

gdzie $\Phi(z)$ to dystrybuanta standardowego rozkładu normalnego.

1.5.2 Testy dla wariancji

1. dla
$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2,$$

$$p - wartość = 2P_{H_0}(\chi^2 \geq |x^2|) = 2(1 - P_{H_0}(\chi^2 < |x^2|)) = 2(1 - F_{\chi^2}(|x^2|))$$

2. dla
$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 > \sigma_0^2,$$

$$p - wartość = P_{H_0}(\chi^2 \ge x^2) = (1 - P_{H_0}(\chi^2 < x^2)) = 1 - F_{\chi^2}(x^2)$$

3. dla
$$H_0: \sigma^2=\sigma_0^2, H_1: \sigma^2<\sigma_0^2.$$

$$p-warto\acute{s}\acute{c}=P_{H_0}(\chi^2\leq x^2)=F_{\chi^2}(x^2)$$

gdzie $F_{\chi^2}(x^2)$ to dystrybuanta rozkładu χ^2 z n-1 stopniami swobody.

1.6 Błąd I rodzaju

Błędem I rodzaju nazywamy błąd polegający na odrzuceniu hipotezy zerowej, gdy ta jest prawdziwa. Natomiast prawdopodobieństwo α popełnienia tego błędu, w przypadku, gdy hipoteza zerowa jest hipotezą prostą, to **poziom istotności testu** (1.3).

1.7 Moc testu, błąd II rodzaju

Moc testu to prawdopodobieństwo odrzucenia fałszywej hipotezy zerowej i przyjęcia prawdziwej hipotezy alternatywnej. Błąd II rodzaju określamy jako 1 - moc testu.

2 Zadanie 1

2.1 Opis zadania

W poniższym zadaniu zostały wykorzystane dane dostępne na stronie: http://prac.im.pwr.edu.pl/~wyloman/ss_2022_2023/lista8_zad1.txt. Pochodzą one z próby pobranej z populacji generalnej o rozkładzie $N(\mu, 0.2)$.

Na poziomie istotności $\alpha \in \{0.05, 0.1, 0.01\}$ przetestowaliśmy hipotezę zerową $H_0: \mu = 1.5$ przeciwko trzem hipotezom alternatywnym:

- $-\mu \neq 1.5$,
- $-\mu > 1.5,$
- $-\mu < 1.5$.

Dla każdej z nich obliczyliśmy oraz narysowaliśmy obszary i punkty krytyczne, a także wyznaczyliśmy p-wartości.

2.1.1 Wartość statystyki Z

Zanim przeszliśmy do testowania hipotez obliczyliśmy numerycznie statystykę testową. W tym celu skorzystaliśmy ze wzoru 1.2.1:

$$Z = \frac{\overline{X} - \theta_0}{\frac{\sigma}{\sqrt{n}}} = -7.041$$

2.2 Interpretacja graficzna obszarów i punktów krytycznych

Na poniższych wykresach zostały zaznaczone obszary i punkty krytyczne obliczone ze wzorów 1.4.1

2.2.1 $\alpha = 0.05$

2.2.2 $\alpha = 0.1$

Rys. 4

Dodatkowo w poniższej tabeli zostały przedstawione punkty krytyczne w zależności od poziomu istotności α i hipotezy alternatywnej. Zostały one także zaznaczone niebieskimi liniami na powyższych wykresach.

Poziom istotności α	Hipoteza alternatywna H_1	Punkty krytyczne (≈)
$\alpha = 0.05$	$\mu \neq 1.5$	± 1.960
$\alpha = 0.05$	$\mu > 1.5$	1.645
$\alpha = 0.05$	$\mu < 1.5$	-1.645
$\alpha = 0.1$	$\mu \neq 1.5$	± 1.645
$\alpha = 0.1$	$\mu > 1.5$	1.282
$\alpha = 0.1$	$\mu < 1.5$	-1.282
$\alpha = 0.01$	$\mu \neq 1.5$	± 2.576
$\alpha = 0.01$	$\mu > 1.5$	2.326
$\alpha = 0.01$	$\mu < 1.5$	-2.326

 $Tabela\ 1$

2.3 p-wartości

Wszystkie p-wartości zostały obliczone na podstawie wzorów zaprezentowanych w podpunkcie 1.5.1

Hipoteza alternatywna H_1	Przybliżona $p - wartość$
$\mu \neq 1.5$	$1.902 * 10^{-12}$
$\mu > 1.5$	0.(9)
$\mu < 1.5$	$9.512 * 10^{-13}$

Tabela 2

2.4 Podsumowanie, wnioski

Jak możemy zauważyć na wykresach 1-9 oraz w tabeli 1, zwiększając poziom istotności α zwiększamy obszary krytyczne C, a punkty krytyczne przesuwają się bliżej 0. Ponadto wiemy, że gdy nasza statystyka testowa znajdzie się w obszarze krytycznym to mamy podstawę, żeby odrzucić hipotezę zerową. Oba te stwierdzenia prowadzą do wniosku, że czym większa α tym większe prawdopodobieństwo odrzucenia hipotezy zerowej i przyjęcia w jej miejsce hipotezy alternatywnej. Fakt przyjęcia, bądź odrzucenia hipotezy zerowej zależy także od tego, jaką założymy hipotezę alternatywną. W naszym przypadku, dla każdej wartości α , dla $H_1: \mu > 1.5$ nie mamy podstaw do odrzucenia hipotezy zerowej, ponieważ statystyka testowa znajduje się poza obszarem krytycznym. Natomiast dla $H_1: \mu \neq 1.5$ i $\mu < 1.5$ hipoteza zerowa zostanie odrzucona.

Analizując p-wartości, widoczne w tabeli 2, widzimy, że dla H_1 : $\mu > 1.5$ jest ona bliska 1, natomiast dla H_1 : $\mu \neq 1.5$ i $\mu < 1.5$ jest ona bardzo mała, bliska 0. Czyli widzimy, że dla H_1 : $\mu > 1.5$ poprawnie zaakceptowaliśmy hipotezę zerową dla każdej wartości parametru α , natomiast dla H_1 : $\mu \neq 1.5$ i $\mu < 1.5$, dla każdego α poprawnie odrzuciliśmy H_0 . Fakt ten prowadzi do analogicznych wniosków, co w przypadku analizy obszarów i punktów krytycznych.

3 Zadanie 2

3.1 Opis zadania

W poniższym zadaniu zostały wykorzystane dane umieszczone na stronie http://prac.im.pwr.edu.pl/~wyloman/ss_2022_2023/lista8_zad2.txt. Pochodzą one z próby pobranej z populacji generalnej o rozkładzie $N(0.2, \sigma^2)$.

Na poziomie istotności $\alpha \in \{0.05, 0.1, 0.01\}$, przetestowaliśmy hipotezę zerową $H_0: \sigma^2 = 1.5$ przeciwko trzem hipotezom alternatywnym:

- $-\sigma^2 \neq 1.5$,
- $-\sigma^2 > 1.5$,
- $-\sigma^2 < 1.5.$

Dla każdej z nich obliczyliśmy oraz narysowaliśmy obszary i punkty krytyczne, a także wyznaczyliśmy p-wartości.

3.1.1 Wartość statystyki χ^2

Zanim przeszliśmy do testowania hipotez obliczyliśmy numerycznie statystykę testową. W tym celu skorzystaliśmy ze wzoru 1.2.2:

$$\chi^2 = \frac{(n-1) * S^2}{\sigma_0^2} = 1111$$

3.2 Interpretacja graficzna obszarów i punktów krytycznych

Na poniższych wykresach zostały zaznaczone obszary i punkty krytyczne obliczone ze wzorów 142

3.2.1 $\alpha = 0.05$

3.2.2 $\alpha = 0.1$

3.2.3 $\alpha = 0.01$

Rys. 16 Obszary krytyczne dla α = 0.01 (przypadek H_1 : σ^2 > 1.5) Obszary krytyczne dla α = 0.01 (przypadek H_1 : σ^2 < 1.5) 0.008 0.008 0.006 0.006 € 0.004 € 0.004 1106 898 0.002 0.002 0.000 0.000 850 1000 1150 1050 1100 800 1050 1100 800 850 950 1000 Rys. 17 Rys. 18

Dodatkowo, w poniższej tabeli zostały przedstawione punkty krytyczne w zależności od poziomu istotności α i hipotezy alternatywnej. Zostały one także zaznaczone niebieskimi liniami na powyższych wykresach.

Poziom istotności α	Hipoteza alternatywna H_1	Punkty krytyczne (≈)
$\alpha = 0.05$	$\sigma^2 \neq 1.5$	913, 1088
$\alpha = 0.05$	$\sigma^2 > 1.5$	1074
$\alpha = 0.05$	$\sigma^2 < 1.5$	927
$\alpha = 0.1$	$\sigma^2 \neq 1.5$	927, 1074
$\alpha = 0.1$	$\sigma^2 > 1.5$	1057
$\alpha = 0.1$	$\sigma^2 < 1.5$	942
$\alpha = 0.01$	$\sigma^2 \neq 1.5$	888, 1118
$\alpha = 0.01$	$\sigma^2 > 1.5$	1106
$\alpha = 0.01$	$\sigma^2 < 1.5$	898

 $Tabela\ \mathcal{3}$

3.3 p-wartości

Wszystkie p-wartości zostały obliczone na podstawie wzorów zaprezentowanych w podpunkcie 1.5.2.

Hipoteza alternatywna H_1	Przybliżona $p - wartość$
$\sigma^2 \neq 1.5$	0.0150
$\sigma^2 > 1.5$	0.0075
$\sigma^2 < 1.5$	0.9925

Tabela 4

3.4 Podsumowanie, wnioski

Jak możemy zauważyć na wykresach 10-18 oraz w tabeli 3, zwiększając poziom istotności α zwiększamy obszary krytyczne C, a punkty krytyczne przesuwają się bliżej 0. Ponadto wiemy, że gdy nasza statystyka testowa znajdzie się w obszarze krytycznym to mamy podstawę, żeby odrzucić hipotezę zerową. Oba te stwierdzenia prowadzą do wniosku, że czym większa α tym większe prawdopodobieństwo odrzucenia hipotezy zerowej i przyjęcia w jej miejsce hipotezy alternatywnej (tak samo jak w zadaniu 1).

Fakt przyjęcia, bądź odrzucenia hipotezy zerowej zależy także od tego, jaką założymy hipotezę alternatywną. W naszym przypadku, dla każdej wartości α , dla $H_1:\sigma^2<1.5$ nie mamy podstaw do odrzucenia hipotezy zerowej, ponieważ statystyka testowa znajduje się poza obszarem krytycznym. Podobnie jest w przypadku $\alpha=0.01$, dla $H_1:\sigma^2\neq1.5$, tutaj jednak wartość statystyki χ^2 jest bardzo bliska punktowi krytycznemu. Natomiast dla $H_1:\sigma^2\neq1.5$ (dla $\alpha\neq0.01$) i $\sigma^2<1.5$ (dla każdego α) hipoteza zerowa zostanie odrzucona.

Analizując p-wartości, widoczne w tabeli 4, widzimy, że dla H_1 : $\sigma^2 < 1.5$ jest ona bliska 1, natomiast dla H_1 : $\sigma^2 \neq 1.5$ i $\sigma^2 > 1.5$ wartość ta jest znacznie mniejsza. Możemy także zauważyć, że dla H_1 : $\sigma^2 \neq 1.5$ wartość ta jest minimalnie większa od 0.01, co zgadza się z obserwacją, że dla $\alpha = 0.01$ hipoteza zerowa została zaakceptowana. W przypadku H_1 : $\sigma^2 > 1.5$, p-wartość jest bliska 0, co potwierdza, że poprawnie odrzuciliśmy hipotezę zerową. Fakt ten prowadzi do analogicznych wniosków, co w przypadku analizy obszarów i punktów krytycznych.

4 Zadanie 3

4.1 Opis zadania

W tym zadaniu obliczyliśmy oraz zaprezentowaliśmy na wykresach błędy I i II rodzaju oraz sprawdziliśmy moce testów dla hipotez przedstawionych w zadaniach 1, 2.

4.2 Błąd I rodzaju

Błędy te zostały przedstawione na box-plotach, na których dodatkowo zaznaczyliśmy wartość poziomu ufności α .

4.2.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania 1).

4.2.2 Testy dla wariancji (hipotezy z zadania 2).

4.3 Błąd II rodzaju

W tym punkcie zajęliśmy się błędami II rodzaju. Zostały one przedstawione na wykresach dla $\alpha=0.05$, w zależności od wartości parametrów: μ (testy dla wartości średniej - przypadek znanej wariancji) i σ^2 (testy dla wariancji). Dla każdego przypadku sporządziliśmy po 2 wykresy, różnią się one wielkością kroków (pierwszy z nich został sporządzony dla około 1000 wartości, drugi dla około 100).

4.3.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania 1).

Rys. 27

Rys. 28

Zależnośc błedu drugiego rodzaju do wartości μ , przypadek $H_1: \mu < 1.5$

Rys. 29

Rys. 30

4.3.2 Testy dla wariancji (hipotezy z zadania 2).

Rys. 33

Rys. 34

4.4 Moc testu

Obliczyliśmy także moc testu. Została ona przedstawiona na wykresach w sposób analogiczny do błędów II rodzaju.

4.4.1 Testy dla wartości średniej - przypadek znanej wariancji (hipotezy z zadania 1).

Rys. 39

Rys. 40

Rys. 41

Rys. 42

4.4.2 Testy dla wariancji (hipotezy z zadania 2).

4.5 Podsumowanie, wnioski

• Błąd I rodzaju.

Na wszystkich box-plotach (rysunki 19-24) możemy zauważyć, że wartości błędów I rodzaju są skupione w okolicy wartości α . Mediana również jest bliska poszczególnym wartościom α . Pozwala nam to wnioskować, że prawidłowo wyliczyliśmy wartości tego błędu dla odpowiednich poziomów istotności testów.

• Błąd II rodzaju.

Na podstawie wykresów 25-30 (testy dla wartości średniej) i 31-36 (testy dla wariancji) możemy zauważyć, że jak zbliżamy się do hipotezy zerowej mającej odpowiednio postać: $H_0: \mu=1.5$ (rys. 25-30) lub $H_0: \sigma^2=1.5$ (rys. 31-36) to prawdopodobieństwo popełnienia błędu II rodzaju się zwiększa, natomiast gdy się oddalamy - zmniejsza się.

• Moc testu.

W przypadku wykresów zależności mocy testów (rysunki 37-42 (testy dla wartości średniej) i 43-48 (testy dla wariancji)) widzimy zachowanie odmienne do tego obserwowanego w przypadku błędów II rodzaju: gdy zbliżamy się do hipotezy zerowej to moc testu się zmniejsza, natomiast gdy się oddalamy - zwiększa się. Analogia ta jest zgodna ze wzorem przedstawionym w punkcie 1.7.

Źródła:

- https://www.statystyka.az.pl/centrum-statystyki.php
- Jacek Koronacki, Jan Mielniczuk "Statystyka dla studentów kierunków technicznych i przyrodniczych", WNT, Warszawa, 2018
- Mieczysław Sobczyk "Statystyka", PWN, 2016
- Wykłady dr hab. inż. Krzysztofa Burneckiego oraz laboratoria dr inż. Aleksandry Grzesiek z przedmiotu "Statystyka stosowana".