



# Self-Calibrating Neural Radiance Fields

Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Animashree Anandkumar, Minsu Cho, Jaesik Park

발표자 : 김민정

### Contents

- Introduction
  - Camera Calibration.. Why?
  - Related Work
  - Problem Definition
- Method
  - Differentiable Camera Model
  - Geometric/Photometric Consistency Loss
  - Curriculum Learning
- Experiment & Result
- Conclusion
- Reference

## Introduction

### Camera Calibration.. Why?



#### **Camera Calibration Tool**



### Related Work | Self-Calibration Algorithms

**Pros** calibrates camera parameters without an external calibration object (e.g., a checkerboard pattern)

Use only a sparse set of image correspondences

Cons

=> Not enough interest points -> diverging results with extreme sensitivity to noise

Do not improve the 3D geometry of the objects



그림 : [6] Ha, Hyowon, et al. "High-quality depth from uncalibrated small motion clip." *Proceedings of the IEEE conference on computer vision and pattern Recognition*. 2016.

### Related Work | NeRF

**Pros** Synthesize novel views by learning volumetric scene function with multi-layer perceptron

**Cons** Assumes known camera poses, intrinsics

Example

$$\hat{\mathbf{C}}(\mathbf{r}) \approx \sum_{i}^{N} \left( \prod_{j=1}^{i-1} \alpha(\mathbf{r}(t_j), \Delta_j) \right) (1 - \alpha(t_i, \Delta_i)) \mathbf{c}(\mathbf{r}(t_i), \mathbf{v})$$



### **Problem Definition**

**Goal**: Remove the necessity of precomputed camera information



Jointly optimizes camera parameters & NeRF parameters

# Method

### Method

- Differentiable Camera Model
  - Pinhole Camera model
  - fourth order radial distortion
  - Generic non-linear camera distortion
  - Computational graph of ray direction & origin
- Loss
- Curriculum Learning

### Differentiable Camera Model | Pinhole Camera Model

$$P'_{3\times 1} = M_{3\times 4} P_w = K_{3\times 3} \begin{bmatrix} R & T \end{bmatrix}_{3\times 4} P_{w4\times 1}$$

#### **Camera Intrinsic**

• 
$$K = \begin{bmatrix} f_x + \Delta f_x & 0 & c_x + \Delta c_x \\ 0 & f_y + \Delta f_y & c_y + \Delta c_y \\ 0 & 0 & 1 \end{bmatrix} = K_0 + \Delta K \in \mathbb{R}^{3 \times 3}$$

#### **Initial Values**

fx, fy = W/2, H/2cx, cy = W/2, H/2R = It=0

Camera Extrinsic

• 
$$\mathbf{t} = \mathbf{t}_0 + \Delta \mathbf{t}$$

• 
$$R = f(\mathbf{a}_0 + \Delta \mathbf{a})$$

$$\cdot f \left( \begin{bmatrix} | & | \\ \mathbf{a}_1 & \mathbf{a}_2 \\ | & | \end{bmatrix} \right) = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \\ | & | & | \end{bmatrix}_{3x3}$$

#### Gram-Schmidt-like process



### Differentiable Camera Model | 4th order radial distortion

#### **Radial Distortion**

1 Barrel (negative)

Concave lens가 일반적으로 barrel distortion가짐



2) Pincushion(Positive)

Convex lens가 일반적으로 pincushion distortion가짐



(3) Mustache (Complex)



#### Modeling



Figure 1: Illustration of barrel distortion model

$$\begin{bmatrix} \mathbf{x}_{n\_d} \\ \mathbf{y}_{n\_d} \end{bmatrix} = (1 + \mathbf{k}_1 \mathbf{y}_u^2) + \mathbf{k}_2 \mathbf{r}_u^4 + \mathbf{k}_3 \mathbf{r}_u^6) \begin{bmatrix} \mathbf{x}_{n\_u} \\ \mathbf{y}_{n\_u} \end{bmatrix} \qquad \text{In general}$$

$$\begin{bmatrix} \mathbf{x}_{n_{-}u} \\ \mathbf{y}_{n_{-}u} \end{bmatrix} = (\mathbf{1} + \mathbf{k}_{1} \mathbf{r}_{d}^{2}) + \mathbf{k}_{2} \mathbf{r}_{d}^{4} + \mathbf{k}_{3} \mathbf{r}_{d}^{6}) \begin{bmatrix} \mathbf{x}_{n_{-}d} \\ \mathbf{y}_{n_{-}d} \end{bmatrix} \qquad \text{Makes Sense}$$
Find
$$\mathbf{k} = (k_{1} + z_{k_{1}}, k_{2} + z_{k_{2}})$$

### Differentiable Camera Model | Pinhole + Radial Distortion

• Pixel Coordinate  $(p_x, p_y) \rightarrow$  Distorted Normalized coordinate  $(n_x, n_y)$ 

What We Want To Find

• 
$$(n_x)n_y = \left(\frac{p_x + c_x}{f_x}, \frac{p_y - c_y}{f_y}\right), r = \sqrt{n_x^2 + n_y^2}$$

ETU THE. NAM 48

- Distorted Normalized Coordinate  $(n_x, n_y) \rightarrow$  Undistorted Normalized Coordinate  $(n_x', n_y')$ 
  - $(n'_{x}, n'_{y}) = (n_{x}(1 + k_{1}r^{2} + k_{2}r^{4}), n_{y}(1 + k_{1}r^{2} + k_{2}r^{4}))$   $= K^{-1}[p_{x}(1 + k_{1}r^{2} + k_{2}r^{4}), p_{y}(1 + k_{1}r^{2} + k_{2}r^{4}), 1]^{T}$
- Undistorted Normalized Coordinate  $(n'_x, n'_y) \rightarrow$  Undistorted Normalized Coordinate in the World  $(n_x^w, n_y^w)$ 
  - $(n_x^{w'}, n_y^{w'}) = \mathbb{R} \cdot [n_x, n_y, 1]^T + t$
- Ray direction & ray origin

• 
$$r_d = N(R \cdot [n'_x, n'_y, 1]^T)$$
,  $r_o = 0$ 

Sampled Point

$$\bullet | (r_o) + t * r_d)$$

**NeRF INPUT!** 

We can pass the gradients to the residuals!



### Differentiable Camera Model | Generic non-linear camera distortion

[2020 CVPR] Why having 10,000 parameters in your camera model is better than twelve



[18] Schops, Thomas, et al. "Why having 10,000 parameters in your camera model is better than twelve." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

https://www.youtube.com/watch?v=r9IZZZiWIFE

### Differentiable Camera Model | Generic non-linear camera distortion



### Differentiable Camera Model | Computation Graph of Ray Direction & Origin



Figure 2. Computation graph of  $\mathbf{r}_o$ ,  $\mathbf{r}_d$  from camera parameters and camera parameter noise.

### Loss | Geometric & Photometric Consistency

#### What We Want To Minimize



Figure 3. An illustration of the proposed Projected Ray Distance (PRD). PRD measures the length of the projection of the shorted line segment between two rays.

$$\mathcal{L} = \sum_{\mathbf{p} \in \mathcal{I}} ||C(\mathbf{p}) - \hat{C}(\mathbf{r}(\mathbf{p}))||_2^2$$

Photometric Consistency Loss

•  $p_A$ ,  $p_B$ : matching points

• the ray  $r_A$  and  $r_B$  should intersect at the 3D point

논문과 다름. 자체 수정

we can measure the deviation by computing the shortest distance between rays

$$\mathbb{Q}_{\overline{d}} = \frac{\mathbb{\mathbf{r}}_{o,B} + t_B \mathbf{r}_{d,B} - \mathbf{r}_{o,A}) \times \mathbf{r}_{A,d}|}{\|\mathbf{r}_{A,d}\|}$$

• If we solve for  $\frac{dd^2}{dt_B}|_{\hat{t}_B} = 0$ , we get

$$\hat{t}_B = \frac{(\mathbf{r}_{A,o} - \mathbf{r}_{B,o}) \times \mathbf{r}_{A,d} \cdot (\mathbf{r}_{A,d} \times \mathbf{r}_{B,d})}{(\mathbf{r}_{A,d} \times \mathbf{r}_{B,d})^2}$$



• 
$$x_B = x_B(\hat{t}_B), x_A = x_A(\hat{t}_A)$$

$$d_{\pi} = \frac{\|\pi_A(\mathbf{x}_B) - \mathbf{p}_A\| + \|\pi_B(\mathbf{x}_A) - \mathbf{p}_B\|}{2}$$

**Geometric Consistency Loss** 

When  $R_A \mathbf{x}_B[z] > 0$ ,  $R_B \mathbf{x}_A[z] > 0$ 

### Curriculum Learning

**Algorithm 1** Joint Optimization of Color Consistency Loss and Ray Distance Loss using Curriculum Learning

```
Initialize NeRF parameter \Theta
Initialize camera parameter z_K, z_{R|t}, z_{ray\_o}, z_{ray\_d}, z_k
Learnable Parameters S = \{\Theta\}
for iter=1,2,... do
     S' = get_params(iter)
                                                        \mathbf{r}_d, \mathbf{r}_o \leftarrow \text{camera model}(K, \mathbf{z})
                                                                                   Sec. 4
     \mathcal{L} \leftarrow \text{volumetric rendering}(\mathbf{r}_d, \mathbf{r}_o, \Theta)
                                                                                    Eq. 1
      if iter % n == 0 and iter >= n_{prd} then
            I' \leftarrow \operatorname{random}(R_I, t_I, \mathcal{I})
            \mathcal{C} \leftarrow \text{Correspondence}(I, I')
            \mathcal{L}_{prd} \leftarrow \text{Projected Ray Distance}(\mathcal{C})
                                                                               Sec. 5.1
            \mathcal{L} \leftarrow \mathcal{L} + \lambda \mathcal{L}_{prd}
     end if
     for s \in \mathcal{S}' do
            \mathbf{s} \leftarrow \mathbf{s} + \nabla_{\mathbf{s}} \mathcal{L}
     end for
end for
```



(a) Calibrating extrinsic camera parameters





- → Initial ray
- Calibrated ray



(b) Calibrating intrinsic camera parameters



(c) Calibrating non-linear distortion parameters

# Experiment

### Experiment | Dataset

- LLFF
  - 8 scenes
  - Estimate camera parameters using COLMAP
- Tanks and Temples
  - 4 scenes
  - Estimate camera parameters using COLMAP
- Author collected data
  - 6 scenes
  - fish-eye camera
  - Estimate camera parameters using COLMAP

### Experiment | SCNeRF vs NeRF

#### **LLFF** dataset



#### Exp. On Train set

Table 1. Comparison of NeRF and our model when no calibrated camera information is given. "nan" denotes the case when no inlier matches are acquired due to the wrong camera information.

| Scene    | Model | $PSNR(\uparrow) / SSIM(\uparrow) / LPIPS(\downarrow) / PRD(\downarrow)$ |
|----------|-------|-------------------------------------------------------------------------|
| Flower   | NeRF  | 13.8 / 0.302 / 0.716 / nan                                              |
|          | ours  | 33.2 / 0.945 / 0.060 / 0.911                                            |
| Fortress | NeRF  | 16.3 / 0.524 / 0.445 / nan                                              |
|          | ours  | 35.7 / 0.945 / 0.069 / 0.833                                            |
| Leaves   | NeRF  | 13.01 / 0.180 / 0.687 / nan                                             |
|          | ours  | 25.75 / 0.878 / 0.146 / 0.885                                           |
| Trex     | NeRF  | 15.70 / 0.409 / 0.575 / nan                                             |
|          | ours  | 31.75 / 0.954 / 0.104 / 1.002                                           |

### Experiment | SCNeRF vs NeRF with COLMAP

#### **LLFF** dataset



Table 2. Comparison of NeRF and our model when the camera parameters are initialized with COLMAP [16] in LLFF [12] dataset.

| Scene    | Model | $PSNR(\uparrow) / SSIM(\uparrow) / LPIPS(\downarrow) / PRD(\downarrow)$ |
|----------|-------|-------------------------------------------------------------------------|
| Flower   | NeRF  | 32.2 / 0.937 / 0.067 / 2.440                                            |
|          | ours  | 33.3 / 0.946 / 0.058 / 0.895                                            |
| Fortress | NeRF  | 35.3 / 0.947 / 0.056 / 2.475                                            |
|          | ours  | 36.6 / 0.960 / 0.049 / 0.724                                            |
| Leaves   | NeRF  | 25.3 / 0.874 / 0.149 / 2.709                                            |
|          | ours  | 25.9 / 0.886 / 0.136 / 0.854                                            |
| Trex     | NeRF  | 31.4 / 0.955 / 0.099 / 2.368                                            |
|          | ours  | 32.0 / 0.959 / 0.095 / 0.953                                            |

### Experiment | SCNeRF vs NeRF++

#### Tanks and Temples



#### Exp. On Train set

Table 3. Rendering qualities of NeRF++ and our model in tanks and temples [8] dataset.

| Scene      | Model  | $PSNR(\uparrow) / SSIM(\uparrow) / LPIPS(\downarrow) / PRD(\downarrow)$ |
|------------|--------|-------------------------------------------------------------------------|
| M60        | NeRF++ | 25.62 / 0.772 / 0.395 / 1.335                                           |
| MOO        | ours   | 26.99 / 0.805 / 0.359 / 1.326                                           |
| Playground | NeRF++ | 25.14 / 0.681 / 0.434 / 1.302                                           |
| Flayground | ours   | 26.17 / 0.715 / 0.396 / 1.299                                           |
| Train      | NeRF++ | 21.80 / 0.619 / 0.479 / 1.261                                           |
| Hain       | ours   | 22.71 / 0.651 / 0.450 / 1.255                                           |
| Truck      | NeRF++ | 24.13 / 0.730 / 0.392 / 1.248                                           |
| Truck      | ours   | 25.22 / 0.763 / 0.352 / 1.240                                           |

### Experiment | SCNeRF vs NeRF++ with COLMAP (Fish-eye Lens)

- Conventional feature matching algorithms fail → skip the projected ray distance loss
- Since the NeRF++ camera model does not incorporate the radial distortion, it's modified to incorporate the fish-eye distortion in ray computation.

#### Images captured using a fish-eye camera



globe



cube

Table 4. Rendering qualities of scenes captured on fish-eye cameras. "RD" denotes the modified implementation to reflect radial distortions.

| Scene | Model      | $PSNR(\uparrow) / SSIM(\uparrow) / LPIPS(\downarrow)$ |
|-------|------------|-------------------------------------------------------|
| Globe | NeRF++[RD] | 21.97 / 0.572 / 0.659                                 |
|       | ours       | 23.76 / 0.598 / 0.633                                 |
| Cube  | NeRF++[RD] | 21.30 / 0.574 / 0.643                                 |
|       | ours       | 23.17 / 0.605 / 0.616                                 |

### Experiment | Ablation Study

- The performance for each phase in curriculum learning.
- 200K iterations for each phase.
- extending model is more potential in rendering clearer images
- for some scenes, adopting projected ray distance increases the overall projected ray distance.

Table 5. Ablation studies about components of our model. "IE", "OD", and "PRD" denote learnable intrinsic and extrinsic parameters, learnable non-linear distortion, and projected ray distance loss, respectively.

| Scene    |                 | $PSNR(\uparrow) / SSIM(\uparrow) / LPIPS(\downarrow) / PRD(\downarrow)$ |
|----------|-----------------|-------------------------------------------------------------------------|
| Fortress | NeRF            | 30.5 / 0.866 / 0.096 / 0.856                                            |
|          | + IE            | 35.3 / 0.948 / 0.058 / 0.729                                            |
|          | + IE + OD       | 36.4 / 0.957 / 0.051 / <b>0.724</b>                                     |
|          | + IE + OD + PRD | 36.6 / 0.96 / 0.049 / 0.724                                             |
| Room     | NeRF            | 31.5 / 0.950 / 0.096 / 0.883                                            |
|          | + IE            | 38.3 / 0.978 / 0.070 / 0.806                                            |
|          | + IE + OD       | 39.4 / 0.980 / 0.065 / 0.805                                            |
|          | + IE + OD + PRD | 39.7 / 0.981 / 0.063 / 0.805                                            |



Figure 8. Visualization of rendered images for each configurations shown in Table 5. The green, blue, yellow, and purple box are the error map of NeRF, NeRF + IE, NeRF + IE + OD, and NeRF + IE + OD + PRD, respectively.

# Conclusion

### Take Home Message | Main

- SCNeRF proposed a self-calibration algorithm that learns geometry and camera parameters jointly end-to-end.
- SCNeRF learns geometry and camera parameters from scratch w/o poses
- SCNeRF Improves both NeRF and NeRF++ to be more robust with given camera poses.
- The camera model of SCNeRF consists of a pinhole model, radial distortion, and non-linear distortion
- SCNeRF proposed projected ray distance to improve accuracy

### Take Home Message | Sub

- Initialization matters
- Curriculum learning is required to exploit learned geometry for PRD
- PRD loss is proposed but not appropriate for fisheye images
- PRD loss is not always successful
  - For some scenes, adopting projected ray distance increases the overall projected ray distance

#### References

- Project Page: https://postech-cvlab.github.io/SCNeRF/
- Code: <a href="https://github.com/POSTECHCVLab/SCNeRF">https://github.com/POSTECHCVLab/SCNeRF</a>
- Paper: <a href="https://arxiv.org/abs/2108.13826">https://arxiv.org/abs/2108.13826</a>
- Video: https://www.youtube.com/watch?v=wsjx6geduvk
- Generic Camera Model:
  - https://arxiv.org/abs/1912.02908#:~:text=Why%20Having%2010%2C000%20Parameters%20in%20Your%20Camera%20Mod el%20is%20Better%20Than%20Twelve,-
  - Thomas%20Sch%C3%B6ps%2C%20Viktor&text=Camera%20calibration%20is%20an%20essential,to%20complex%20real%20lens%20distortion.
- What is Camera Calibration: https://www.mathworks.com/help/vision/ug/camera-calibration.html#mw\_901dad02-dbeb-4418-a316-6631bda4b844
- Camera Calibration Toolbox for Matlab : <a href="http://robots.stanford.edu/cs223b04/JeanYvesCalib/">http://robots.stanford.edu/cs223b04/JeanYvesCalib/</a>
- Camera Model: https://cvgl.stanford.edu/teaching/cs231a\_winter1415/lecture/lecture2\_camera\_models\_note.pdf
- Point-Line Distance--3-Dimensional: https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html