Title: Forecasting Trends Using Predictive Models

Objective:

To forecast trends and evaluate the predictive accuracy of models using real-world-like data. This study compares Linear Regression, Logistic Regression, and ARIMA (AutoRegressive Integrated Moving Average) to understand their strengths in trend forecasting and classification.

Dataset Overview:

A synthetic monthly retail sales dataset (Jan 2022 – Dec 2023) with 24 entries was used to simulate time-dependent sales behavior. The dataset helps demonstrate practical forecasting models for business decisions.

Columns:

• Month: Categorical (converted to datetime)

• Sales: Numerical (target variable)

Sample:

Month	Sales		
Jan-2022	120		
Jun-2023	260		
Dec-2023	300		

Applied Forecasting Techniques:

1. Linear Regression

- Models the linear relationship between time (MonthIndex) and sales.
- Captures consistent upward/downward trends.

2. Logistic Regression

- Converts the regression task to classification:
 - o 1: High sales (> 200 units)
 - o 0: Low sales (≤ 200 units)
- Helps identify high-performing months.

3. ARIMA (1,1,1)

- Captures autoregressive and moving average patterns.
- Good for stationary time series with trend differencing.

Evaluation Metrics:

Metric	Description
RMSE	Root Mean Squared Error – sensitive to large errors.
MAE	Mean Absolute Error – average prediction error.
R ² Score	Measures variance explained by the model (closer to $1 =$ better fit).

Results & Performance Analysis:

Model	RMSE	MAE	R ² Score	Accuracy
Linear Regression	6.60	5.50	0.98	_
ARIMA (1,1,1)	7.91	6.43	0.98	_
Logistic Regression	_			95.83%

- Linear Regression performed well for capturing steady growth trends.
- ARIMA closely matched actual values but was slightly less accurate in short intervals.
- **Logistic Regression** effectively flagged "High-Sales" months with 95.83% classification accuracy.

Visualization Summary:

- A line graph compared actual sales with Linear and ARIMA forecasts.
- High correlation observed between predicted and actual values in both models.
- The classification chart showed precise month-wise identification of "High" vs. "Low" sales.

Insights:

- Linear Regression is excellent for trend estimation with minimal computation.
- **ARIMA** is suitable when past values significantly influence future ones.
- Logistic Regression can aid in binary forecasting, such as campaign planning or threshold-based decisions.

Tools Used:

- **Python** (Jupyter Notebook)
- Libraries: pandas, numpy, matplotlib, sklearn, statsmodels

Conclusion:

Forecasting is essential for strategic planning. This comparative study shows that:

- Linear Regression is simple yet powerful for linear trend forecasting.
- ARIMA provides temporal smoothing and precision in noisy time series.
- Logistic Regression helps classify sales outcomes effectively for actionable insights.

Future Enhancements:

- Include external variables like seasonality, holiday effects, or ad campaigns.
- Explore deep learning models like LSTM for long-term forecasting.
- Automate rolling forecasts with model retraining for dynamic data updates.