Definition 0.1 (naive Menge). Eine Menge M ist eine Zusammenfassung von verschiedenen Objekten, welche dann Elemente genannt werden, zu einem Objekt.

Bezeichnung 0.2 (Quantoren, Mengenschreibweise, Relationen). Einige häufig verwendete Symbole

- (...) := (...) definiert das, was links steht, durch das, was rechts steht.
- ∀ bedeutet "für alle".
- ∃ bedeutet "es existiert".
- Wenn M eine Menge ist, bezeichnet |M| die Anzahl der Elemente in M (Kardinalität). Für die leere Menge ist $|\varnothing| = 0$.
- Eine Menge M heißt n-elementig, falls $|M| = n \ (n \ge 0)$.
- Allgemein notieren wir Mengen bspw. durch

$$\{21,35\} = \{x \in \mathbb{N} \mid 5 \le x \le 40,7 \mid x,x \in \{7,14,28\}\}.$$

- { } sind Mengenklammern.
 - | steht oft für "mit der Eigenschaft". In unserem Beispiel heißt das "alle $x \in \mathbb{N}$ mit der Eigenschaft, dass . . . "
 - , steht oft für "und", eine logische Verknüpfung der Bedingungen bzw. Eigenschaften.
 - € steht für "ist Element von". Hingegen ist ∉ "ist kein Element von".
- = steht für "gleich", d. h. links und rechts steht das gleiche und können gegenseitig ausgetauscht werden. Analog ist ≠ "ungleich".
- \leq , <, \geq , > sind "kleiner gleich", "(echt) kleiner", "größer gleich", "(echt) größer".

Definition 0.3 (Teilmenge). Seien A und B Mengen. Dann ist

- A eine Teilmenge von B, falls $x \in B$ für alle $x \in A$, geschrieben $A \subseteq B$, und
- A eine echte Teilmenge von B, falls $A \subseteq B$, aber $A \neq B$, geschrieben $A \subset B$.

Definition 0.4 (Mengenoperatoren). Für Mengen A und B seien

- $A \cap B := \{x \mid x \in A, x \in B\}$ der Durchschnitt von A und B,
- $A \cup B := \{x \mid x \in A \text{ oder } x \in B\}$ die Vereinigung von A und B,
- $A \setminus B := \{x \mid x \in A, x \notin B\}$ die Mengendifferenz von A und B,
- $\mathcal{P}(A) := \{U \mid U \subseteq A\}$ die Potenzmenge von A.

Definition 0.5 (Indexmenge). Sei I eine Indexmenge, d. h. für jedes $i \in I$ ist A_i eine Menge. Dann sind

$$\bigcap_{i \in I} A_i \coloneqq \{x \mid x \in A_i \text{ für alle } i \in I\} \qquad \text{und} \qquad \bigcup_{i \in I} A_i \coloneqq \{x \mid \text{es gibt ein } i \in I \text{ mit } x \in A_i\}$$

der Durchschnitt bzw. Vereinigung der Mengen A_i über die Indexmenge I.

Definition 0.6 (Paar). Ein *Paar* (oder 2-Tupel) besteht aus der Angabe eines ersten Elements a und eines zweiten Elements b. Wir schreiben (a, b).

Definition 0.7 (Kartesisches Produkt, Tupel). Das *Kartesische Produkt* zweier Mengen A und B ist $A \times B := \{(a,b) \mid a \in A, b \in B\}$.

Für Mengen A_1, A_2, \ldots, A_n ist das KARTESISCHE Produkt

$$A_1 \times \cdots \times A_n := \{(a_1, \dots, a_n) \mid a_i \in A_i \text{ für } 1 \le i \le n\},\$$

dessen Elemente n-Tupel genannt werden.

Sei A eine Menge und n > 1. Dann ist

$$A^n := \underbrace{A \times \dots \times A}_{n \text{ mal}}$$

das n-fache Kartesische Produkt von A.

Bezeichnung 0.8. Die *n*-Tupel (a_1, a_2, \ldots, a_n) schreiben wir oft auch senkrecht auf:

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Definition 0.9 (Implikation, Äquivalenz). Seien A, B und C Aussagen. Dann bedeuten

- $A \implies B$ "A impliziert B", "aus A folgt B",
- $A \iff B$ "A genau dann, wenn B", "A und B sind äquivalent", d. h. $A \implies B$ und $B \implies A$,
- $\neg A$, "nicht A".

Satz 0.10 (Syllogismus, Kontraposition).

- Aus $A \implies B$ und $B \implies C$ folgt $A \implies C$ (Syllogismus).
- Es gilt $A \implies B$ genau dann, wenn $\neg B \implies \neg A$ (Kontraposition).

Definition 0.11 (Abbildung). Seien X und Y Mengen. Eine Abbildung f von X nach Y ist eine Vorschrift, durch die jedem $x \in X$ genau ein $f(x) \in Y$ zugeordnet wird.¹

Bezeichnung 0.12. Wir schreiben $f: X \to Y, x \mapsto f(x)$. Dabei verwenden wir \to zwischen Mengen und \mapsto zwischen Elementen.

Definition 0.13 (Menge aller Abbildungen). Seien X und Y Mengen. Dann ist Abb(X,Y) die Menge aller Abbildungen von X nach Y.

Definition 0.14 (Identität). Sei X eine Menge. Als *Identität* von X bezeichnen wir die Abbildung id $_X : X \to X$, $x \mapsto x$. Es gilt also id $_X(x) = x$ für alle $x \in X$.

Definition 0.15 (Komposition von Abbildungen). Seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Dann ist

$$g \circ f \colon X \to Z, \quad x \mapsto g(f(x))$$

die Komposition (Hintereinanderschaltung, Verkettung) von f und g, gelesen "g verknüpft mit f", "g komponiert mit f", "g nach f" oder "g Kringel f".

Bezeichnung 0.16. Wir schreiben auch manchmal gf für $g \circ f$.

Definition 0.17 (injektiv, surjektiv, bijektiv). Sei $f: X \to Y$ eine Abbildung. Dann ist

- f text, falls für alle $x_1 \neq x_2$ in X gilt: $f(x_1) \neq f(x_2)$,
- f surjektiv, falls für jedes $y \in Y$ ein $x \in X$ existiert, sodass f(x) = y ist, und
- f bijektiv, falls f injektiv und surjektiv ist. Dann nennen wir f eine Bijektion.

Definition 0.18 (Umkehrabbildung). Sei $f: X \to Y$ eine bijektive Abbildung. Dann ist die *Umkehrabbildung* $f^{-1}: Y \to X$ definiert durch $f^{-1}(f(x)): x$ für alle $x \in X$ bzw. $f(x) \in Y$. Es gilt dann $f^{-1} \circ f = \mathrm{id}_X$ und $f \circ f^{-1} = \mathrm{id}_Y$.

Definition 0.19. Seien M und I Mengen. Dann sei

$$M^I := Abb(I, M)$$

die Menge aller Abbildungen $I \to M$.

 $^{^1}$ Die Menge X bezeichnen wir als Definitionsmenge und Y als Zielmenge. Die Elemente aus X heißen Urbilder oder Argumente, die Elemente aus Y heißen Zielelemente. Die tatsächlich angenommen Werte nennen wir Bilder oder schlicht Werte, und deren Menge auch Bild oder Bildmenge.

Definition 0.20 (Bild, Urbild einer Menge). Sei $f: X \to Y$ eine Abbildung. Und seien $A \subseteq X$ und $B \subseteq Y$ Teilmengen. Wir bezeichnen

$$f(A) \coloneqq \{f(x) \mid x \in A\}$$
 und $f^{-1}(B) \coloneqq \{x \mid f(x) \in B\}$

als Bild von A unter f bzw. Urbild von B unter f. Dahingegen ist f(X) das Bild von f. Es gilt stets $f^{-1}(Y) = X$.

Definition 0.21 (Graph). Der *Graph* einer Abbildung $f: X \to Y$ ist

$$\Gamma(f) := \{(x, f(x)) \mid x \in X\} \subseteq X \times Y.$$

Bezeichnung 0.22. Neben diesen Axiomen führen wir noch einige Konventionen ein.

- Um Klammern zu sparen, gilt *Punktrechnung vor Strichrechnung*. Damit können wir z. B. das Distributivgesetz ?? umschreiben als $a \cdot c + b \cdot c$, ohne dass Verwirrung entsteht.
- Wir definieren a b := a + (-b) und $ab := a \cdot b$ für $a, b \in K$. Somit können wir Plusklammern und Malpunkte weglassen, wenn der Sinn dabei nicht verfälscht wird (z. B. nicht $1 \cdot 2 \neq 12$).
- Für $a, b \in K$ mit $b \neq 0$ sei

$$\frac{a}{b} \coloneqq a/b \coloneqq a \cdot b^{-1}.$$

Bezeichnung 0.23. Wir definieren kurz $K^{\times} := K \setminus \{0\}.$

Lemma 0.24 (Linksdistributivität). Es gilt a(b+c) = ac + ac für alle $a, b, c \in K$.

Lemma 0.25 (Eindeutigkeit der Null). Es gibt nur ein Nullelement in einem Körper.

Lemma 0.26. Für alle $a \in K$ gilt 0a = 0.

Bezeichnung 0.27. Sei K ein Körper. Für $a \in K$ und $0 \neq m \in \mathbb{N}$ definieren wir

$$m \cdot a := \underbrace{a + a + \dots + a}_{m \text{ mal}}.$$

Definition 0.28 (Charakteristik). Wir definieren char(K) als die *Charakteristik* von K als

$$\operatorname{char}(K) \coloneqq \begin{cases} 0 & \text{falls } m \cdot 1_K \neq 0_K \text{ für alle } m \in \mathbb{N} \setminus \{0\}, \\ \min\{m \in \mathbb{N} \setminus \{0\} \mid m \cdot 1_K = 0_K\} & \text{sonst.} \end{cases}$$

Lemma 0.29. Sei K ein Körper mit char(K) = p > 0. Dann ist p eine Primzahl.

Definition 0.30 (kommutativer Ring). Ein Ring R heißt kommutativ, falls zusätzlich $a \cdot b = b \cdot a$ für alle $a, b \in \mathbb{R}$ gilt.

Bezeichnung 0.31 (Nullring). Wir nennen $R = \{0_R\}$ den trivialen² Nullring.

Lemma 0.32. Seien $a, m \in \mathbb{N}$ mit $m \geq 1$. Dann existieren eindeutig bestimmte Elemente $r, q \in \mathbb{N}$ mit $0 \leq r < m$, sodass a = qm + r gilt. Setze $r_m(a) \coloneqq r$.

Definition 0.33 (\mathbb{Z} modulo m). Sei $m \in \mathbb{N}$ mit $m \geq 2$. Dann sei $\mathbb{Z}_m := \{0, 1, \ldots, m-1\}$. Für $a, b \in \mathbb{Z}_m$ definieren wir noch Abbildungen + und · durch $a + b := r_m(a +_{\mathbb{Z}} b)$ und $a \cdot b := r_m(a \cdot_{\mathbb{Z}} b)$. (Die Operationen in den $r_m(\ldots)$ kommen aus \mathbb{Z} .)

Lemma 0.34. $(\mathbb{Z}_m, +, \cdot)$ ist ein kommutativer Ring.³

Lemma 0.35. $(\mathbb{Z}_m, +, \cdot)$ ist genau dann ein Körper, wenn m eine Primzahl ist.

Bezeichnung 0.36 (endlicher Körper). Für Primzahlen p schreiben wir auch $\mathbb{F}_p := \mathbb{Z}_p$.

Bezeichnung 0.37. Um die Notation zu vereinfachen, legen wir $v_1 - v_2 := v_1 + (-v_2)$, $av := a \cdot v$ für alle $v_1, v_2, v \in V$ und $a \in K$ sowie *Punkt- vor Strichrechnung* fest.

 $^{^2 \}text{Als } \textit{triviale} \text{ Objekte werden oft offensichtliche oder sehr einfache Objekte sowie uninteressante Randfälle bezeichnet.}$

³Ein sog. Restklassenring modulo m.

Bezeichnung 0.38 (Vektor, Skalar, Nullvektor). Die Elemente von V nennen wir V nennen von K nennen wir S V nennen von V nennen

Bezeichnung 0.39 (Nullvektorraum). Sei $V := \{0\}$ über K der (triviale) Nullvektorraum (oft auch einfach nur V = 0). Addition und Skalarmultiplikation können nur auf genau eine Weise definiert werden:

$$\begin{array}{ll} +\colon V\times V\to V, & 0+0\mapsto 0 \\ \cdot\colon V\times V\to V, & 0\cdot 0\mapsto 0 \end{array}$$

Definition 0.40 (Standardvektorraum). Sei K ein Körper. Für $n \ge 1$ sei $V := K^n$ das n-fache kartesische Produkt von K. Die Elemente aus K^n schreiben wir oft als Spalten

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

mit $a_1, \ldots, a_n \in K$. Wir definieren komponentenweise

$$+: V \times V \to V \quad \text{durch} \quad \left(\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right) \mapsto \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

und

$$\cdot \colon K \times V \to V \quad \text{durch} \quad \left(a, \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \right) \mapsto \begin{pmatrix} ab_1 \\ \vdots \\ ab_n \end{pmatrix}.$$

Dann ist $(V, +, \cdot)$ ein K-Vektorraum, der sog. Standardvektorraum. Wir legen $K^0 := 0$ aus K fest. Dabei stammt die komponentenweise Addition und Multiplikation aus K.

Definition 0.41 (Funktionenraum). Sei K ein Körper und sei $I \neq \emptyset$ eine Menge. Wir setzen $V := K^I := \text{Abb}(I, K)$ und definieren

$$+: V \times V \to V, \quad (f,g) \mapsto f + g \quad \text{und} \quad : K \times V \to V, \quad (a,f) \mapsto af,$$

punktweise durch

$$(f+g)(x) \coloneqq f(x) + g(x)$$
 und $(af)(x) \coloneqq a(f(x))$

für alle $f, g \in V$, $a \in K$, und $x \in I$.

Dann ist $(V, +, \cdot)$ ein K-Vektorraum, der sog. (lineare) Funktionenraum. Wir definieren $K^{\varnothing} = 0$ als Nullabbildung.

Definition 0.42. Sei K ein Körper und sei $I \neq \emptyset$ eine Menge. Dann ist

$$K^{(I)} := \{ f \in K^I \mid f(x) \neq 0 \text{ für nur endlich viele } x \in I \}$$

ein K-Vektorraum, wobei wir Addition und Skalarmultiplikation von K^I benutzen. Wir definieren $K^{(\emptyset)} = 0$ als Nullabbildung.

Definition 0.43 (Teilkörper). Sei $(L, +, \cdot)$ ein Körper und sei K eine Teilmenge von L, sodass die Eigenschaften

- 1. $0, 1 \in K$ (neutrale Elemente);
- 2. $a + b \in K$ für alle $a, b \in K$ (Abgeschlossenheit unter Addition);
- 3. $a \cdot b \in K$ für alle $a, b \in K$ (Abgeschlossenheit unter Multiplikation);
- 4. $-a \in K$ für alle $a \in K$ (additive Inverse) und
- 5. $a^{-1} \in K$ für alle $a \in K^{\times}$ (multiplikative Inverse)

erfüllt sind. Durch Einschränkung erhalten wir die Abbildungen

$$+: K \times K \to K$$
 und $: K \times K \to K$.

(Das ist aufgrund der Abgeschlossenheit von + und \cdot garantiert, s. Punkte 2 und 3.) Wir können leicht überprüfen, dass K einen Körper bildet, und nennen K einen Teilkörper von L.

Definition 0.44 (externe direkte Summe). Seien V und W zwei K-Vektorräume. Dann ist die $V \times W$ wieder ein K-Vektorraum, wobei Addition und Skalarmultiplikation komponentenweise definiert sind durch

$$(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2)$$
 und $a(v, w) := (av, aw)$

für alle $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$ und $a \in K$. Der K-Vektorraum $V \times W$ nennen wir die (externe) direkte Summe von V und W und schreiben $V \oplus W$.

Definition 0.45. Sei V ein K-Vektorraum. Eine Teilmenge U von V heißt Unterraum von V, falls gilt:

- 1. $U \neq \emptyset$;
- 2. $u_1 + u_2 \in U$ für alle $u_1, u_2 \in U$ (Abgeschlossenheit bzgl. Addition) und
- 3. $au \in U$ für alle $a \in K$ und $u \in U$ (Abgeschlossenheit bzgl. Skalarmultiplikation).

Lemma 0.46. Sei U ein Unterraum von V. Durch Einschränkung der Addition und Skalarmultiplikation von V erhalten wir Abbildungen $+: U \times U \to U$ und $\cdot: K \times U \to U$ (was aufgrund Punkte 2 und 3 möglich ist). Dann ist U zusammen mit beiden Einschränkungen wieder ein K-Vektorraum.

Definition 0.47 (Gerade). Ist $v \neq 0$, so nennen wir

$$U_v := Kv := \{av \mid a \in K\}$$

die durch v verlaufende Gerade.

Definition 0.48 (Durchschnitt, Summe). Seien U_1 und U_2 Unterräume von V. Dann ist $U_1 \cap U_2$ der *Durchschnitt* von U_1 und U_2 sowie

$$U_1 + U_2 := \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$$

die Summe von U_1 und U_2 .

Lemma 0.49. $U_1 \cap U_2$ und $U_1 + U_2$ sind Unterräume von V.

Definition 0.50 (interne direkte Summe). Seien U_1 und U_2 Unterräume von V. Ist $U_1 \cap U_2 = 0$, so nennen wir

$$U_1 \oplus U_2 \coloneqq U_1 + U_2$$

die (interne) direkte Summe von U_1 und U_2 .

Definition 0.51 (Summe, interne direkte Summe von Familien). Sei I eine Indexmenge, und für jedes $i \in I$ sei U_i ein Unterraum von V (kurz $(U_i)_{i \in I}$ eine Familie von Unterräumen von V). Die Summe

$$\sum_{i \in I} U_i$$

der Unterräume U_i ist die Menge aller Vektoren $v \in V$, für die es eine endliche Teilmenge $J \subseteq I$ gibt, sodass

$$v = \sum_{j \in J} u_j$$
 mit $u_j \in U_j$ für alle $j \in J$.

Ist

$$U_j \cap \left(\sum_{i \in I \setminus j} U_i\right) = 0 \qquad \text{für alle } j \in I,$$

so nennen wir die Summe (interne) direkte Summe und schreiben

$$\bigoplus_{i\in I} U_i := \sum_{i\in I} U_i.$$

Lemma 0.52. $\bigcup_{i \in I} U_i$ und $\sum_{i \in I} U_i$ sind Unterräume von V.

Definition 0.53 (lineare Abbildung). Seien V und W zwei K-Vektorräume. Eine Abbildung $f: V \to W$ heißt linear (oder K-linear), falls folgende Bedingungen gelten:

- 1. $f(v_1 + v_2) = f(v_1) + f(v_2)$ für alle $v_1, v_2 \in V$; und
- 2. f(av) = af(v) für alle $v \in V$ und $a \in K$.

Definition 0.54 (Homomorphismus, Endomorphismus). Ist $f: V \to W$ linear, so nennen wir f einen Homomorphismus. Ist zudem V = W, so nennen wir f einen Endomorphismus (also $f: V \to V$).

Weiterhin definieren wir

$$\operatorname{Hom}(V, W) := \{ f \in \operatorname{Abb}(V, W) \mid f \text{ ist ein Homomorphismus} \}$$

und

$$\operatorname{End}(V) := \operatorname{Hom}(V, V).$$

Definition 0.55 (Monomorphismus, Epimorphismus, Isomorphismus). Sei $f: V \to W$ ein Homomorphismus.

- f ist ein Monomorphismus, falls f injektiv ist.
- f ist ein Epimorphismus, falls f surjektiv ist.
- f ist ein Isomorphismus, falls f bijektiv ist.

Definition 0.56 (isomorph). Zwei K Vektorräume V und W heißen isomorph, falls ein Isomorphismus $f \colon V \to W$ existiert. Wir schreiben dann $V \cong W$.

Lemma 0.57. Seien V und W zwei K-Vektorräume. Eine Abbildung $f:V\to w$ ist genau dann linear, wenn

$$f(a_1v_1 + a_2v_2) = a_1f(v_1) + a_2f(v_2)$$

für alle $a_1, a_2 \in K$ und $v_1, v_2 \in V$ gilt.

Definition 0.58 (Nullabbildung). Seien V und W zwei K-Vektorräume. Die Nullabbildung

$$f \colon V \to W, \quad v \mapsto 0 \quad \text{für alle } v \in V$$

ist ein Homomorphismus. Wir schreiben f = 0.

Definition 0.59 (Identität). Sei V ein K-Vektorraum. Die *Identität*

$$f: V \to V$$
, $v \mapsto v$ für alle $v \in V$

ist ein Homomorphismus. Wir schreiben $f = id_V$.

Lemma 0.60. Sei $f: V \to W$ ein Homomorphismus. Dann gilt f(0) = 0.

Lemma 0.61. Sei $f: V \to W$ ein Isomorphismus. Dann ist die Umkehrabbildung $f^{-1}: W \to V$ wieder ein Isomorphismus.

Lemma 0.62. Seien $f: U \to V$ und $g: V \to W$ Homomorphismen. Dann ist die Komposition $g \circ f: U \to W$ auch ein Homomorphismus.

Lemma 0.63. Für alle $f, g \in \text{Hom}(V, W)$ und $a \in K$ definieren wir Abbildungen (Addition und Skalarmultiplikation eines Funktionenraums)

$$f+g\colon V\to W,\quad v\mapsto f(v)+g(v)\qquad und\qquad af\colon V\to W,\quad v\mapsto a(f(v)).$$

Dann ist $(\text{Hom}(V, W), +, \cdot)$ ein K-Vektorraum

Lemma 0.64. Sei $f: V \to W$ ein Homomorphismus.

1. Existive ein Homomorphismus $q: W \to V$ mit $q \circ f = \mathrm{id}_V$, so ist f ein Monomorphismus.

2. Existive ein Homomorphismus $g: W \to V$ mit $f \circ g = id_W$, so ist f ein Epimorphismus.

Definition 0.65 (Restklasse modulo U). Sei V ein K-Vektorraum und sei U ein Unterraum von V sowie $v \in V$. Dann ist die Restklasse von v modulo <math>U definiert als die Menge

$$v + U := \{v + u \mid u \in U\}.$$

Das entspricht dem Unterraum U, aber verschoben um v.⁴

Definition 0.66 (affine Gerade). Für alle $v, w \in V$ sei

$$L_{v,w} := \{u_{v,w}(a) := av + (1-a)w \mid a \in K\}.$$

Falls $v \neq w$, nennen wir $L_{v,w}$ die durch v und w verlaufende affine Gerade. Falls v = w ist $L_{v,w} = \{v\}$.

Lemma 0.67. Seien $v, w \in V$. Es gilt für alle affinen Geraden

$$L_{v,w} = w + U_{v-w}.$$

Definition 0.68 (Kern, Bild). Sei $f: V \to W$ ein Homomorphismus. Dann ist

$$\operatorname{Kern}(f) := \{ v \in V \mid f(v) = 0 \} \subseteq V$$

der Kern von f, und

$$Bild(f) := \{ f(v) \mid v \in V \} \subseteq W$$

das Bild von f.

Lemma 0.69. Sei $f: V \to W$ ein Homomorphismus. Dann gelten:

- 1. Kern(f) ist ein Unterraum von V.
- 2. Bild(f) ist ein Unterraum von W.
- 3. $\operatorname{Kern}(f) = 0$ genau dann, wenn f ein Monomorphismus ist.
- 4. Bild(f) = W genau dann, wenn f ein Epimorphismus ist.

Lemma 0.70. Sei $f: V \to W$ ein Homomorphismus und sei $b \in Bild(f)$. Dann ist $f^{-1}(b)$ genau dann ein Unterraum von V, wenn b = 0.

Lemma 0.71. Sei $f: V \to W$ ein Homomorphismus und seien $b \in Bild(f)$ und $v \in f^{-1}(b)$. Dann gilt

$$f^{-1}(b) = v + f^{-1}(0) = v + \text{Kern}(f).$$

Definition 0.72 (Matrix (informell)). Seien $m, n \ge 1$ natürliche Zahlen. Eine $(m \times n)$ -Matrix (mit Einträgen in K) ist eine Anordnung von Elementen $a_{ij} \in K$ mit $1 \le i \le m$ und $1 \le j \le n$ in Form eines Rechtecks/einer Tabelle

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Bezeichnung 0.73 (Menge der Matrizen, Zeile, Spalte, Eintrag). Mit $K^{m,n}$ bezeichnen wir die Menge aller $(m \times n)$ -Matrizen. Die m-Tupel

$$\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

nennen wir die j-te Spalte von A, und die n-Tupel

$$(a_{i1},a_{i2},\ldots,a_{in})$$

nennen wir die *i-te Zeile* von A. Für alle $1 \le i \le m$ und $1 \le j \le n$ nennen wir $A_{ij} := a_{ij}$ den ij-ten Eintrag von A.

⁴Die Namensgebung entstammt der Zahlentheorie. Ähnlich sind alle $w \in U$ in der Restklasse v + U enthalten, und v ist ein Repräsentant dieser Äquivalenzklasse (definiert durch $v \sim w :\iff (v - w) \in U$).

Definition 0.74 (Matrix (formal)). Für $s \ge 1$ sei $I_s := \{1, 2, \dots, s\}$. Wir setzen

$$K^{m,n} := K^{I_m \times I_n} = \text{Abb}(I_m \times I_n, K).$$

Die Elemente von $K^{m,n}$ nennen wir $(m \times n)$ -Matrizen (mit Einträgen in K). Eine Matrix A ist also die Abbildung⁵

$$A: I_m \times I_n \to K, \quad (i,j) \mapsto a_{ij}.$$

Bezeichnung 0.75. Statt

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in K^{m,n}$$

schreiben wir auch

$$A = (a_{ij}) \in K^{m,n}.$$

Definition 0.76 (Nullmatrix). Sei $A = (a_{ij}) \in K^{m,n}$ eine Matrix mit $a_{ij} = 0$ für alle i, j. Wir schreiben dann $A = 0_{m,n} = 0$ und nennen sie die *Nullmatrix* in $K^{m,n}$.

Für m=0 oder n=0 beschreibt $K^{m,n}:=K^{I_m\times I_n}=K^\varnothing$ mit $I_0:=\varnothing$ die Menge der Matrizen, die keine Zeilen oder Spalten haben. In dem Fall enthält $K^{m,n}$ genau ein Element, die *leere Matrix* oder auch *Nullmatrix*, die wir wieder mit 0 oder $0_{m,n}$ bezeichnen.

Bezeichnung 0.77. Für $m, n \ge 0$ definieren wir

$$M_{m,n}(K) := K^{m,n}$$
 und $M_n(K) := K^{n,n}$

für rechteckige bzw. quadratische Matrizen.

Definition 0.78 (Addition). Seien $m, n \ge 1$. Seien $A = (a_{ij})$ und $B = (b_{ij})$ Matrizen in $K^{m,n}$. Die Summe von A und B ist

$$A + B := (a_{ij} + b_{ij}) = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

und die Abbildung

$$+: K^{m,n} \times K^{m,n} \to K^{m,n}, \quad (A,B) \mapsto A+B$$

heißt Addition von Matrizen.

Definition 0.79 (Skalarmultiplikation). Seien $m, n \ge 1$. Seien $a \in K$ und $A = (a_{ij}) \in K^{m,n}$. Die Skalarmultiplikation von a und B ist

$$a \cdot A := aA := (aa_{ij}) = \begin{pmatrix} aa_{11} & aa_{12} & \cdots & aa_{1n} \\ aa_{21} & aa_{22} & \cdots & aa_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ aa_{m1} & aa_{m2} & \cdots & aa_{mn} \end{pmatrix}$$

und die Abbildung

$$: K \times K^{m,n} \to K^{m,n}, \quad (a,A) \mapsto aA$$

heißt Skalarmultiplikation für Matrizen.

Lemma 0.80. $(K^{m,n}, +, \cdot)$ ist ein K-Vektorraum.

⁵Die Definition erinnert an die Schreibweise von Familien, $A = (a_{ij})_{(i,j) \in I_m \times I_n}$.

Definition 0.81 (Produkt). Seien $m, n, p \ge 1$ und seien $A = (a_{ij}) \in K^{m,n}$ und $B = (b_{jk}) \in K^{n,p}$ Matrizen. Das Produkt von A und B ist

$$A \cdot B \coloneqq AB \coloneqq (c_{ik}) \in K^{m,p}$$
 mit $c_{ik} \coloneqq \sum_{j=1}^{n} a_{ij} b_{jk}$

und die Abbildung

$$: K^{m,n} \times K^{n,p} \to K^{m,p}, \quad (A,B) \mapsto AB$$

heißt Multiplikation von Matrizen.

Lemma 0.82 (Assoziativität). Seien $A = (a_{ij}) \in K^{m,n}$, $B = (b_{jk}) \in K^{n,p}$ und $C = (c_{kl}) \in K^{p,q}$. Dann gilt

$$A(BC) = (AB)C.$$

Lemma 0.83 (Linksdistributivität). Für alle $A=(a_{ij})\in K^{m,n},\ B=(b_{jk})$ und $C=(c_{jk})$ in $K^{n,p}$ gilt

$$A(B+C) = AB + AC$$
.

Lemma 0.84 (Rechtsdistributitvität). Für alle $A = (a_{ij}), B = (b_{ij})$ in $K^{m,n}$ und $C = (c_{jk}) \in K^{n,p}$ gilt

$$(A+B)C = AC + BC.$$

Definition 0.85 (Einheitsmatrix). Für $n \ge 1$ sei

$$E_n := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix} \in K^{n,n}$$

die Einheitsmatrix in $K^{n,n}$, also

$$E_n := (a_{ij}) \in K^{n,n}$$
 mit $a_{ij} = \begin{cases} 1 & \text{falls } i = j, \\ 0 & \text{sonst.} \end{cases}$

Für n=0 sei $E_0=0_n$.

Lemma 0.86 (Einselement). Für alle $A \in K^{m,n}$ gilt

$$E_m A = A = A E_n.$$

Lemma 0.87. Für alle $a \in K$, $A \in K^{m,n}$ und $B \in K^{n,p}$ gilt

$$a(AB) = (aA)B = A(aB).$$

Lemma 0.88 (Ring der quadratischen Matrizen). $(M_n(K), +, \cdot)$ ist ein Ring.

Bezeichnung 0.89. Wir schreiben auch ar := a * r und $rs := r \cdot s$.

Lemma 0.90 (Algebra der quadratischen Matrizen). $M_n(K)$ ist eine K-Algebra, wobei + die Addition von Matrizen, · die Multiplikation von Matrizen und * die Skalarmultiplikation von Matrizen ist.

Definition 0.91 (Matrixabbildung). Sei $A = (a_{ij}) \in K^{m,n}$ eine Matrix. Wir definieren eine Abbildung, die wir ebenfalls mit A bezeichnen, durch

$$A \colon K^n \to K^m, \quad v \mapsto A(v) \coloneqq A \cdot v,$$

wobei $A \cdot v$ das Produkt der $(m \times n)$ -Matrix A mit der $(n \times 1)$ -Matrix v ist. (Hier haben wir $K^n = K^{n,1}$ identifiziert.) Die Abbildung $A \colon K^n \to K^m$ heißt $Matrixabbildung.^6$

⁶Auch bekannt als *Matrix-Vektor-Produkt*.

Lemma 0.92. Die Matrixabbildung $A: K^n \to K^m$ ist K-linear.

Satz 0.93. Seien $A \in K^{m,n}$ und $B \in K^{n,p}$ sowie $A: K^n \to K^m$ bzw. $B: K^p \to K^n$ die entsprechenden Matrixabbildungen. Dann gilt

$$A \cdot B = A \circ B$$
.

wobei $A \cdot B$ das Matrixprodukt und $A \circ B$ die Komposition von Abbildungen ist.

Definition 0.94 (Standardbasisvektor). Sei $n \ge 1$. Für alle $1 \le i \le n$ sei

$$e_i^{(n)} := e_i := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in K^n \quad \text{mit } a_j := \begin{cases} 1 & \text{falls } i = j, \\ 0 & \text{sonst,} \end{cases}$$

der i-te Standardbasisvektor oder auch i-te Einheitsvektor von K^n .

Lemma 0.95. Für jedes $v \in K^n$ gibt es eindeutig bestimmte $a_1, \ldots, a_n \in K$ mit $v = \sum_{i=1}^n a_i e_i$.

Definition 0.96 (Standardbasis). Wir nennen $\{e_1, e_2, \dots, e_n\} \subseteq K^n$ die *Standardbasis* von K^n .

Lemma 0.97. Seien $f, g \in \text{Hom}(K^n, K^m)$. Dann gilt f = g genau dann, wenn $f(e_i) = g(e_i)$ für alle $1 \le i \le n$.

Satz 0.98. Für $m, n \ge 0$ gilt

$$K^{m,n} \cong \operatorname{Hom}(K^n, K^m).$$

Korollar 0.99. Alle Abbildungen in $Hom(K^n, K^m)$ sind Matrixabbildungen.

 $F\ddot{u}r\ m=0\ oder\ n=0\ gilt\ \mathrm{Hom}(K^m,K^n)=\{0\},\ wobei\ 0\colon K^n\to K^m\ die\ Nullabbildung\ ist.$

Definition 0.100 (Elementarmatrix Typ (I)). Für $1 \le i, j \le m$ mit $i \ne j$ und $a \in K$ definieren wir eine quadratische Matrix

$$T_{ij}^{(m)}(a) := T_{ij}(a) = (t_{pq}) \in K^{m,m}$$
 durch $t_{pq} := \begin{cases} 1 & \text{falls } p = q, \\ a & \text{falls } (p,q) = (i,j), \\ 0 & \text{sonst.} \end{cases}$

Wir nennen diese Art von Matrizen Elementarmatrizen vom Typ (I).

Definition 0.101 (Elementar matrix Typ (II)). Für $1 \le i \le m$ und $b \in K^{\times}$ definieren wir eine quadratische Matrix

$$D_i^{(m)}(b) \coloneqq D_i(b) = (d_{pq}) \in K^{m,m} \qquad \text{durch} \qquad d_{pq} \coloneqq \begin{cases} 1 & \text{falls } p = q \neq i, \\ b & \text{falls } p = q = 1, \\ 0 & \text{sonst.} \end{cases}$$

Wir nennen diese Art von Matrizen Elementarmatrizen vom Typ (II).

Definition 0.102 (Elementar matrix Typ (III)). Für $1 \le i \ne j \le m$ definieren wir eine quadratische Matrix

$$E_{ij}^{(m)} := E_{ij} = (e_{pq}) \in K^{m,m} \quad \text{durch} \quad e_{pq} := \begin{cases} 1 & \text{falls } i \neq p = q \neq j, \\ 1 & \text{falls } (p,q) = (i,j), \\ 1 & \text{falls } (p,q) = (j,1), \\ 0 & \text{sonst.} \end{cases}$$

Wir nennen diese Art von Matrizen Elementarmatrizen vom Typ (III).

 $\textbf{Lemma 0.103.} \ \textit{Die Matrixabbildungen} \ T_{ij}^{(m)}(a), \ D_{i}^{(m)}(b) \ \textit{und} \ E_{ij}^{(m)} \ \textit{mit} \ a \in K \ \textit{und} \ b \in K^{\times} \ \textit{sind Isomorphismen}.$

Lemma 0.104 (Zeilenoperationen). Seien $A \in K^{m,n}$, $a \in K$ und $b \in K^{\times}$. Dann bilden die Elementarmatrizen die sog. Zeilenoperationen vom Typ (I), (II) oder (III) oder elementare Zeilenumformungen, wenn sie von links multipliziert werden.

1. $T_{ij}^{(m)}(a) \cdot A$ entsteht aus A, wenn wir zur i-ten Zeile von A das a-fache der j-ten Zeile von A addieren.

- 2. $D_i^{(m)}(b) \cdot A$ entsteht aus A, wenn wir die i-te Zeile von A mit b multiplizieren.
- 3. $E_{ij}^{(m)} \cdot A$ entsteht aus A, wenn wir die i-te und j-te Zeile von A vertauschen.

Lemma 0.105. Die Zeilenoperationen vom Typ (III) können wir durch Verknüpfung von Zeilenoperationen vom Typ (I) und Typ (II) erhalten.

Definition 0.106 (Spaltenoperationen). Sei $A \in K^{n,m}$. Dann sind

$$A \cdot T_{ij}^{(m)}(a), \qquad A \cdot D_j^{(m)}(b) \qquad \text{und} \qquad A \cdot E_{ij}^{(m)}$$

die elementaren Spaltenoperationen vom Typ (I), (II) bzw. (III).

Definition 0.107 (reduzierte Zeilenstufenform). Eine Matrix $B = (b_{ij}) \in K^{m,n}$ ist in reduzierter Zeilenstufenform, falls folgendes gilt:

- 1. B = 0. Oder:
- 2. Es existieren ein Zeilenindex $1 \le r \le \min(m, n)$ und Spaltenindizes $1 \le j_1 < j_2 < \cdots < j_r \le n$, sodass folgende Bedingungen erfüllt sind:
 - (a) Für alle Zeilen $1 \le k \le r$ gilt $b_{kj} = 0$ für alle $j < j_k$. (In Worten: Für die ersten r Zeilen sind die ersten $j_k 1$ Einträge der k ten Zeile alles null.)
 - (b) Für alle Zeilen $1 \le k \le r$ gilt

$$b_{ij_k} = \begin{cases} 1 & \text{falls } i = k, \\ 0 & \text{sonst.} \end{cases}$$

(In Worten: Für die ersten r Zeilen ist der Eintrag in der j_k ten Spalte Eins, und alle anderen Einträge der j_k -ten Spalte sind null. Die Spalten sind also "Standardbasisvektoren" e_k .)⁷

(c) Für alle Zeilen $r+1 \le k \le m$ gilt $b_{kj}=0$ für alle $1 \le j \le n$. (In Worten: Die restlichen m-r Zeilen sind alles Nullen, also ein großer Nullblock.)

Bezeichnung 0.108 (Zeilenstufenindizes). Wir nennen die Menge der Indizes

$$\mathcal{I}(B) := \begin{cases} \{j_1, \dots, j_r\} & \text{falls } B \neq 0, \\ \emptyset & \text{sonst.} \end{cases}$$

Zeilenstufenindizes. Zudem definieren wir das Komplement

$$\mathcal{K}(B) := \{1, \dots, n\} \setminus \mathcal{I}(B).$$

Satz 0.109. Sei $A = (a_{ij}) \in K^{m,n}$. Dann gibt es Elementarmatrizen T_1, \ldots, T_t , sodass $B := T_t \cdots T_2 T_1 A$ in reduzierter Zeilenstufenform ist.

Definition 0.110. Entsteht die Matrix B durch Anwendung von elementaren Zeilenoperationen aus A, so nennen wir B eine reduzierte Zeilenstufenform von A.

Definition 0.111 (Basisvektoren des Kerns). Sei $B = (b_{ij}) \in K^{m,n}$ in reduzierter Zeilenstufenform. Für $\mathcal{I}(B) = \{j_1 < \cdots < j_r\}$ und $j \in \mathcal{K}(B)$ definieren wir

$$L_j^B := \begin{pmatrix} \ell_{1j} \\ \vdots \\ \ell_{nj} \end{pmatrix} \in K^n \quad \text{durch} \quad \ell_{kj} := \begin{cases} 1 & \text{falls } k = j, \\ -b_{sj} & \text{falls } k = j_s \text{ mit } j_s \in \mathcal{I}(B) \text{ und } j_s < j, \\ 0 & \text{sonst.} \end{cases}$$

Satz 0.112 (Basis des Kerns). Sei $B \in K^{m,n}$ in reduzierter Zeilenstufenform.

⁷Sind die Einträge b_{ij_k} nicht normiert und sind in derselben Spalte über dem Eintrag nicht alles Nullen, so bezeichnet man diese Form als (nicht reduzierte) Zeilenstufenform

1. Es gilt

$$\operatorname{Kern}(B) = \left\{ \sum_{j \in \mathcal{K}(B)} a_j L_j^B \, \middle| \, a_j \in K \right\}.$$

Falls $K(B) = \emptyset$, ist Kern(B) = 0.

2. Aus

$$\sum_{j \in \mathcal{K}(B)} a_j L_j^B = \sum_{j \in \mathcal{K}(B)} b_j L_j^B \qquad \textit{mit } a_j, b_j \in K$$

folgt $a_j = b_j$ für alle $j \in \mathcal{K}(B)$.

(In fortgeschrittener Sprache: Die Menge $\{L_j^B \mid j \in \mathcal{K}(B)\}\$ ist eine Basis von $\mathrm{Kern}(B)$.)

Lemma 0.113. Seien $A \in K^{m,n}$ eine Matrix und $T \in K^{m,m}$ eine Elementarmatrix. Dann gilt

$$Kern(A) = Kern(TA).$$

Korollar 0.114 (Bestimmung des Kerns). Sei $A \in K^{m,n}$ und sei B eine reduzierte Zeilenstufenform von A. Dann gilt

$$Kern(A) = Kern(B).$$

Das bedeutet, dass der $Gau\beta$ -Algorithmus ein explizites Verfahren zur Konstruktion einer Basis von Kern(A) liefert.

Satz 0.115. Sei $A \in K^{m,n}$ und sei B eine reduzierte Zeilenstufenform von A. Sei zudem $\mathcal{K}(B) = \{1, \ldots, n\} \setminus \mathcal{I}(B) = \{i_1 < \cdots < i_{n-r}\}$. Dann ist die Abbildung

$$f: K^{n-r} \to \operatorname{Kern}(A), \qquad \sum_{k=1}^{n-r} a_k e_k \mapsto \sum_{k=1}^{n-r} a_k L_{i_k}^B$$

ein Isomorphismus von Vektorräumen.⁸

Lemma 0.116. Sei $A \in K^{m,n}$ und sei $\{e_1, \ldots, e_n\}$ die Standardbasis von K^n . Dann gilt

$$Bild(A) = \left\{ \sum_{j=1}^{n} a_j A(e_j) \mid a_j \in K \right\}.$$

Definition 0.117 (reduzierte Spaltenstufenform). Eine Matrix $B \in K^{m,n}$ ist in reduzierter Spaltenstufenform, falls die transponierte Matrix B^T in reduzierter Zeilenstufenform ist.

Satz 0.118. Sei $B \in K^{m,n}$ in reduzierter Spaltenstufenform und sei $r = |\mathcal{I}(B^T)|$.

1. Es gilt

$$Bild(B) = \left\{ \sum_{j=1}^{r} a_j B(e_j) \mid a_j \in K \right\}.$$

Falls B = 0 die leere Matrix ist, ist Bild(B) = 0.

2. Aus

$$\sum_{j=1}^{r} a_{j} B(e_{j}) = \sum_{j=1}^{r} b_{j} B(e_{j}) \quad mit \ a_{j}, b_{j} \in K$$

folgt $a_j = b_j$ für alle $1 \le j \le r$.

(In fortgeschrittener Sprache: Die Menge $\{B(e_j) \mid 1 \leq j \leq r\}$ ist eine Basis von Bild(B).)

Lemma 0.119. Seien $A \in K^{m,n}$ eine Matrix und $T \in K^{n,n}$ eine Elementarmatrix. Dann gilt

$$Bild(A) = Bild(AT).$$

⁸Das folgt schon daraus, dass die lineare Hülle der beiden Basen dieselbe Dimension besitzen.

Korollar 0.120 (Bestimmmung des Bildes). Sei $A \in K^{m,n}$ und sei B eine reduzierte Spaltenstufenform von A. Dann gilt

$$Bild(A) = Bild(B).$$

Das bedeutet, dass der $Gau\beta$ -Algorithmus ein explizites Verfahren zur Konstruktion einer Basis von Bild(A) liefert.

Definition 0.121 (invertierbar). Sei R ein Ring. Ein Element $r \in R$ ist

- 1. linksinvertierbar, falls es ein $s \in R$ gibt mit sr = 1,
- 2. rechtsinvertierbar, falls es ein $t \in R$ gibt mit rt = 1, und
- 3. invertierbar, falls r sowohl rechts- als auch linksinvertierbar ist.

Lemma 0.122. Sei R ein Ring und sei $r \in R$ invertierbar. Dann gelten:

- 1. Es gibt ein eindeutiges Element $r^{-1} \in R$ mit $rr^{-1} = r^{-1}r = 1$.
- 2. Falls rs = 1 gilt für ein $s \in R$, so gilt $s = r^{-1}$.
- 3. Falls rs = 1 gilt für ein $s \in R$, so gilt $s = r^{-1}$.
- 4. r^{-1} ist invertierbar mit $(r^{-1})^{-1} = r$.

Bezeichnung 0.123 (Inverse). Wir nennen r^{-1} das *Inverse* von r. (Umgekehrt ist auch r das Inverse von r^{-1} .)

Satz 0.124. Sei $A \in K^{m,n}$. Dann sind folgende Aussagen äquivalent:

- 1. A ist ein Isomorphismus.
- 2. m = n und es gibt Elementarmatrizen $T_1, \ldots, T_t \in K^m$ mit $T_t \cdots T_1 A = E_n$.
- 3. m = n und es gibt Elementarmatrizen $T_1, \ldots, T_t \in K^n$ mit $AT_1 \ldots T_t = E_m$.
- 4. m = n und A ist invertierbar.
- 5. m = n und E_n ist die reduzierter Zeilenstufenform von A.

Korollar 0.125. Sei K ein Körper. Für $m, n \geq 0$ gilt

$$K^m \cong K^n \iff m = n.$$

Korollar 0.126 (Praktische Berechnung inverser Matrizen). Sei $A \in M_n(K)$ invertierbar. Der Gauß-Algorithmus liefert Elementarmatrizen T_1, \ldots, T_t mit $T_t \cdots T_1 A = E_n$. Dann gilt

$$A^{-1} = T_t \cdot T_1$$
 und $A = T_1^{-1} \cdot T_t^{-1}$.

Definition 0.127 (allgemeine lineare Gruppe). Für $n \ge 1$ sei

$$\operatorname{GL}_n(K) := \{ A \in M_n(K) \mid A \text{ ist invertierbar} \}$$

die allgemeine lineare Gruppe vom Grad n über einem Körper K.

Korollar 0.128. Jedes $A \in GL_n(K)$ ist ein Produkt von Elementarmatrizen vom Typ (I) und (II).

Korollar 0.129. Für alle $A \in GL_n(K)$ gilt $A^{-1} \in GL_n(K)$ und $(A^{-1})^{-1} = A$.

Satz 0.130. Für $A \in M_n(K)$ sind äquivalent:

- 1. A ist ein Isomorphismus.
- 2. A ist ein Monomorphismus.
- 3. A ist ein Epimorphismus.

Bezeichnung 0.131. Seien $A = (a_{ij}) \in K^{m,n}$ und $B = (b_{ij}) \in K^{m,l}$ Matrizen. Wir definieren

$$[A|B] := \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_{11} & \cdots & b_{1l} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} & b_{m1} & \cdots & b_{ml} \end{pmatrix} \in K^{m,n+l},$$

wobei dessen linker $(m \times n)$ -Block A und dessen rechter $(m \times l)$ -Block B ist.

Proposition 0.132. Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K^{2,2}$. Dann ist A invertierbar genau dann, wenn $ad - bc \neq 0$ gilt. In diesem Fall ist

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in K^{2,2}.$$

Definition 0.133 (Transponierte). Sei

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in K^{m,n}.$$

Die $Transponierte A^T$ von A ist definiert durch

$$A^{T} := (a_{ji}) = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nm} \end{pmatrix} \in K^{n,m}.$$

Der Eintrag a_{ij} in der *i*-ten Zeile und *j*-ten Spalte von A wird also zum Eintrag der *j*-ten Zeile und *i*-ten Spalte von A^T .

Lemma 0.134. Für alle $A \in K^{l,m}$ und $B \in K^{m,n}$ gilt

$$(AB)^T = B^T A^T.$$

Lemma 0.135. Sei $A \in K^{m,n}$ eine Matrix und sei A^T die Transponierte von A. Dan gelten:

- 1. A ist genau dann ein Monomorphismus, wenn A^T ein Epimorphismus ist.
- 2. A ist genau dann ein Epimorphismus, wenn A^T ein Monomorphismus ist.
- 3. A ist genau dann ein Isomorphismus, wenn A^T ein Isomorphismus ist.

Definition 0.136 (lineares Gleichungssystem, Variable, Koeffizient). Ein lineares Gleichungssystem besteht aus m Gleichungen der Form

$$a_{11}X_{1} + a_{12}X_{2} + \dots + a_{1n}X_{n} = b_{1}$$

$$a_{21}X_{1} + a_{22}X_{2} + \dots + a_{2n}X_{n} = b_{2}$$

$$\vdots \quad \vdots \quad \vdots \qquad \vdots$$

$$a_{m1}X_{1} + a_{m2}X_{2} + \dots + a_{mn}X_{n} = b_{m}$$

$$(0.137)$$

wobei X_1, \ldots, X_n Variablen oder Unbekannte und die a_{ij} Koeffizienten genannt werden.

Definition 0.138 (Matrixschreibweise, Koeffizientenmatrix). Mittels der Matrixmultiplikation können wir (0.137) kürzer schreiben:

$$Ax = b$$
.

wobei

$$A \coloneqq \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in K^{m,n}$$

⁹Das ist die *Determinante*, die wir später noch behandeln werden

die Koeffizientenmatrix von (0.137) und

$$x \coloneqq \begin{pmatrix} X_1 \\ \vdots \\ X_m \end{pmatrix} \in K^m \quad \text{und} \quad b \coloneqq \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in K^m$$

ist.

Definition 0.139 (Lösung, Lösungsmenge). Ein Vektor

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in K^n$$

ist eine $L\ddot{o}sung$ von (0.137), falls

$$a_{11}v_1 + a_{12}v_2 + \ldots + a_{1n}v_n = b_1$$

$$a_{21}v_1 + a_{22}v_2 + \ldots + a_{2n}v_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}v_1 + a_{m2}v_2 + \ldots + a_{mn}v_n = b_m$$

gilt. Die Lösungsmenge des linearen Gleichungssystems (0.137) definieren wir als

$$\mathcal{L}(A,b) \coloneqq \{v \in K^n \mid v \text{ ist eine L\"osunge von } (0.137)\}.$$

Definition 0.140 ((in-)homogen, erweiterte Koeffizientenmatrix). Das lineare Gleichungssystem Ax = b heißt homogen, falls b = 0, und andernfalls inhomogen.

Die Matrix

$$[A|b] := \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} \in K^{m,n+1}$$

ist die erweiterte Koeffizientenmatrix von (0.137).

Lemma 0.141. Sei Ax = b ein lineares Gleichungssystem mit $A \in K^{m,n}$ und $b \in K^m$. Dann gilt

$$\mathcal{L}(A, b) = \{ v \in K^n \mid A(v) = b \} = A^{-1}(b).$$

Bezeichnung 0.142 (Lösbarkeit). Ein Gleichungssystem Ax = b ist

- $l\ddot{o}sbar$, falls $\mathcal{L}(A,b) \neq \emptyset$,
- eindeutig lösbar, falls $|\mathcal{L}(A,b)| = 1$, und
- $unl\ddot{o}sbar$, falls $\mathcal{L}(A,b)=\varnothing$.

Lemma 0.143. Sei $T \in K^{m,m}$ eine Elementarmatrix und sei $[A|b] \in K^{m,n+1}$ die erweiterte Koeffizientenmatrix. Sei

$$[A'|b'] := \begin{pmatrix} a'_{11} & \cdots & a'_{1n} & b'_{1} \\ \vdots & \ddots & \vdots & \vdots \\ a'_{m1} & \cdots & a'_{mn} & b'_{m} \end{pmatrix} := T \cdot [A|b].$$

Dann gilt

$$\mathcal{L}(A',b') = \mathcal{L}(A,b).$$

Satz 0.144 (Lösung eines linearen Gleichungssystems). Sei Ax = b ein lineares Gleichungssystem mit A in reduzierter Zeilenstufenform und $\mathcal{I}(A) = \{j_1 < \cdots < j_r\}$. Dann gelten:

1. Falls $b_k \neq 0$ für ein $r+1 \leq k \leq m$ gilt, so ist Ax = b unlösbar, d. h. $\mathcal{L}(A,b) = \varnothing$.

2. Angenommen es gilt $0 = b_{r+1} = \cdots = b_m$. Wir definieren

$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in K^n \qquad durch \qquad v_k \coloneqq \begin{cases} b_s & falls \ k = j_s \ f\ddot{u}r \ ein \ 1 \le s \le r, \\ 0 & sonst. \end{cases}$$

Dann gilt

$$\mathcal{L}(A, b) = v + \mathcal{L}(A, 0) = v + \text{Kern}(A).$$

Korollar 0.145 (Lösbarkeit). Sei $A \in K^{m,n}$ in reduzierter Zeilenstufenform mit $|\mathcal{I}(A)| = r$, und sei $b \in K^m$. Dann ist das lineare Gleichungssystem Ax = b genau dann lösbar, wenn $0 = b_{r+1} = \cdots = b_m$ gilt.

Korollar 0.146 (eindeutige Lösbarkeit). Sei $A \in K^{m,n}$ in reduzierter Zeilenstufenform mit $|\mathcal{I}(A)| = r$, und sei $b \in K^m$. Dann ist das lineare Gleichungssystem Ax = b genau dann eindeutig lösbar, wenn $0 = b_{r+1} = \cdots = b_m$ und $\mathrm{Kern}(A) = 0$ gilt.

Definition 0.147 (Linearkombination). Sei V ein K-Vektorraum. Seien $v_1, \ldots, v_m \in V$. Dann ist $v \in V$ eine Linearkombination von v_1, \ldots, v_m , falls es $a_1, \ldots, a_m \in K$ gibt mit

$$v = a_1 v_1 + \dots + a_m v_m.$$

Definition 0.148 (lineare Hülle). Sei M eine Teilmenge (nicht unbedingt Unterraum) von V mit $M \neq \emptyset$. Dann ist $v \in V$ eine $Linearkombination von <math>Vektoren \ aus \ M$, falls es endlich viele $v_1, \ldots, v_m \in M$ gibt, sodass v eine $Linearkombination von <math>v_1, \ldots, v_m$ ist. Die $lineare \ H\"ulle$ von M ist

 $Lin(M) := \{v \in V \mid v \text{ ist eine Linearkombination von Vektoren aus } M\}.$

Für $M = \emptyset$ definieren wir dessen lineare Hülle Lin(\emptyset) := $\{0\}$.

Bezeichnung 0.149. Für $M \subseteq V$ und $f \in K^{(M)}$ sei

$$\sum_{u \in M} f(u)u \coloneqq \sum_{w \in f^{-1}(K^{\times})} f(u)u.$$

Lemma 0.150. Sei $M \subseteq V$ und $v \in V$. Dann ist $v \in \text{Lin}(M)$ genau dann, wenn es ein $f \in K^{(M)}$ gibt mit $v = \sum_{u \in M} f(u)u$. Falls $M = \emptyset$ setzen wir $\sum_{u \in M} f(u)u \coloneqq 0$.