Quantization in Federated Learning

Tao Shen

Zhejiang University

November 23, 2019

FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization

Federated Learning

Communication bottleneck

Communication-efficient? Large number of parameters

Model Compress

Small model

better generalization, faster prediction, smaller memory footprint

Quantization

Weight Quantization

32-bit \rightarrow fewer bits

FedPAQ

Periodic Update
Partial participation
Weight quantization
!!! how?

Quantizer

Quantizer in FedPAQ

Example 1 (Low-precision quantizer [Alistarh et al., 2017]). For any variable $\mathbf{x} = [x_1, \cdots, x_p]^{\top}$, the low precision quantizer $Q^{LP} : \mathbb{R}^p \to \mathbb{R}^p$ is defined as below

$$Q^{LP}(\mathbf{x}) = [Q_1^{LP}(\mathbf{x}), \cdots, Q_p^{LP}(\mathbf{x})]^\top, \quad \text{and} \quad Q_i^{LP}(\mathbf{x}) = ||\mathbf{x}|| \cdot \operatorname{sign}(\mathbf{x}_i) \cdot \xi_i(\mathbf{x}, \mathbf{s}), \tag{5}$$

where $\xi_i(\mathbf{x}, s)$ is a random variable defined as

$$\xi_{i}(\mathbf{x},s) = \begin{cases} \frac{l}{s} & w.p. \ 1 - \left(\frac{|x_{i}|}{|\mathbf{x}|}s - l\right), \\ \frac{l+1}{s} & w.p. \ \frac{|x_{i}|}{|\mathbf{x}|}s - l. \end{cases}$$
(6)

In above, the tuning parameter s corresponds to the number of quantization levels and $l \in [0, s)$ is an integer such that $|x_i|/||\mathbf{x}|| \in [l/s, (l+1)/s)$.

Theoretical guarantee

FedPAQ

Algorithm 1 FedPAQ

```
Require: number of periods K, period length \tau, stepsize \eta_{k,t}
  1: for k = 0, 1, \dots, K-1 do
            parameter server picks r nodes uniformly at random denoted by S_k \subseteq [n]
 2:
            parameter server sends \mathbf{x}_k to all the nodes in \mathcal{S}_k
 3:
 4:
            for node i \in \mathcal{S}_k do
                 \mathbf{x}_{k,0}^{(i)} \leftarrow \mathbf{x}_k
 5:
                 for t = 0, 1, \dots, \tau - 1 do
 6:
 7:
                       randomly pick a data point \xi \in \mathcal{D}^i and
                       compute the stochastic gradient \nabla f_i(\mathbf{x}) = \nabla \ell(\mathbf{x}, \xi)
 8:
                       \mathbf{x}_{k,t+1}^{(i)} \leftarrow \mathbf{x}_{k,t}^{(i)} - \eta_{k,t} \widetilde{\nabla} f_i \left(\mathbf{x}_{k,t}^{(i)}\right)
 9:
                 end for
10:
                 send Q\left(\mathbf{x}_{k,\tau}^{(i)} - \mathbf{x}_{k}\right) to the parameter server
11:
12:
            end for
            parameter server updates \mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \frac{1}{r} \sum_{i \in S_k} Q\left(\mathbf{x}_{k,\tau}^{(i)} - \mathbf{x}_k\right)
13:
14: end for
```

FedPAQ

(a) varying the quantization level s

(c) varying the period length τ

(b) varying the number of active nodes r

(d) comparing FedPAQ, FedAvg, and QSGD

Loss-aware Binarization of Deep Networks

Loss-aware

explicitly consider the loss during quantization

Binarization

$$\{+1,-1\}$$

Loss-aware Binarization

$$\begin{aligned} & \min_{\hat{\mathbf{w}}} & & \ell(\hat{\mathbf{w}}) \\ & \text{s.t.} & & \hat{\mathbf{w}}_{l} = \alpha_{l} \mathbf{b}_{l}, \alpha_{l} > 0, \mathbf{b}_{l} \in \{\pm 1\}^{n_{l}}, l = 1, \dots, L \end{aligned}$$

proximal Newton algorithm

$$\ell\left(\hat{\mathbf{w}}^{t-1}\right) + \nabla\ell\left(\hat{\mathbf{w}}^{t-1}\right)^{\top}\left(\hat{\mathbf{w}}^{t} - \hat{\mathbf{w}}^{t-1}\right) + \frac{1}{2}\left(\hat{\mathbf{w}}^{t} - \hat{\mathbf{w}}^{t-1}\right)^{\top}\mathbf{H}^{t-1}\left(\hat{\mathbf{w}}^{t} - \hat{\mathbf{w}}^{t-1}\right)$$

Approximate diagonal Hessian

$$\begin{array}{ll} \min_{\hat{\mathbf{w}}^t} & \nabla \ell \left(\hat{\mathbf{w}}^{t-1} \right)^\top \left(\hat{\mathbf{w}}^t - \hat{\mathbf{w}}^{t-1} \right) + \frac{1}{2} \left(\hat{\mathbf{w}}^t - \hat{\mathbf{w}}^{t-1} \right)^\top \mathbf{D}^{t-1} \left(\hat{\mathbf{w}}^t - \hat{\mathbf{w}}^{t-1} \right) \\ \text{s.t.} & \hat{\mathbf{w}}_I^t = \alpha_I^t \mathbf{b}_I^t, \alpha_I^t > 0, \mathbf{b}_I^t \in \{\pm 1\}^{n_I}, \quad I = 1, \dots, L \end{array}$$

Closed-form optimal solution

Proposition 3.1 Let $\mathbf{d}_l^{t-1} \equiv diag(\mathbf{D}_l^{t-1})$, and

$$\mathbf{w}_{l}^{t} \equiv \hat{\mathbf{w}}_{l}^{t-1} - \nabla_{l} \ell(\hat{\mathbf{w}}^{t-1}) \oslash \mathbf{d}_{l}^{t-1}. \tag{7}$$

The optimal solution of (6) can be obtained in closed-form as

$$\alpha_l^t = \frac{\|\mathbf{d}_l^{t-1} \odot \mathbf{w}_l^t\|_1}{\|\mathbf{d}_l^{t-1}\|_1}, \quad \mathbf{b}_l^t = sign(\mathbf{w}_l^t). \tag{8}$$

loss-aware quantized weights can be easily computed

Algorithm 1 Loss-Aware Binarization (LAB) for training a feedforward neural network.

Input: Minibatch $\{(\mathbf{x}_0^t, \mathbf{y}^t)\}$, current full-precision weights $\{\mathbf{w}_l^t\}$, first moment $\{\mathbf{w}_l^{t-1}\}$, second moment $\{\mathbf{v}_l^{t-1}\}$, and learning rate n^t .

```
moment \{\mathbf{v}_{l}^{t-1}\}\, and learning rate \eta^{t}.
  1: Forward Propagation
  2: for l=1 to L do
        \alpha_l^t = \frac{\|\mathbf{d}_l^{t-1} \odot \mathbf{w}_l^t\|_1}{\|\mathbf{d}^{t-1}\|};
  4: \mathbf{b}_{l}^{t} = \operatorname{sign}(\mathbf{w}_{l}^{t});
  5: rescale the layer-l input: \tilde{\mathbf{x}}_{l-1}^t = \alpha_l^t \mathbf{x}_{l-1}^t;
  6: compute \mathbf{z}_{i}^{t} with input \tilde{\mathbf{x}}_{i-1}^{t} and binary weight \mathbf{b}_{i}^{t};
              apply batch-normalization and nonlinear activation to \mathbf{z}_i^t to obtain \mathbf{x}_i^t:
  8: end for
  9: compute the loss \ell using \mathbf{x}_{I}^{t} and \mathbf{y}^{t};
10: Backward Propagation

 initialize output layer's activation's gradient <sup>∂ℓ</sup>/<sub>2x<sup>±</sup></sub>;

12: for l = L to 2 do
              compute \frac{\partial \ell}{\partial \mathbf{x}^t} using \frac{\partial \ell}{\partial \mathbf{x}^t}, \alpha_l^t and \mathbf{b}_l^t;
14: end for
15: Update parameters using Adam
16: for l = 1 to L do
              compute gradients \nabla_l \ell(\hat{\mathbf{w}}^t) using \frac{\partial \ell}{\partial \mathbf{x}^t} and \mathbf{x}_{l-1}^t;
            update first moment \mathbf{m}_l^t = \beta_1 \mathbf{m}_l^{t-1} + (1-\beta_1) \nabla_l \ell(\hat{\mathbf{w}}^t); update second moment \mathbf{v}_l^t = \beta_2 \mathbf{v}_l^{t-1} + (1-\beta_2) (\nabla_l \ell(\hat{\mathbf{w}}^t) \odot \nabla_l \ell(\hat{\mathbf{w}}^t)); compute unbiased first moment \hat{\mathbf{m}}_l^t = \mathbf{m}_l^t / (1-\beta_1^t); compute unbiased second moment \hat{\mathbf{v}}_l^t = \mathbf{v}_l^t / (1-\beta_2^t);
19:
20:
21:
              compute current curvature matrix \mathbf{d}_{l}^{t}=\frac{1}{n^{t}}\left(\epsilon\mathbf{1}+\sqrt{\hat{\mathbf{v}}_{l}^{t}}\right);
              update full-precision weights \mathbf{w}_{l}^{t+1} = \mathbf{w}_{l}^{t} - \hat{\mathbf{m}}_{l}^{t} \oslash \mathbf{d}_{l}^{t};
              update learning rate \eta^{t+1} = \text{UpdateRule}(n^t, t+1);
25: end for
```

Table 1: Test error rates (%) for feedforward neural network models.

1010 17 1000 01101 10000 (70) 101 1000101 7000101 7000101 7000101							
		MNIST	CIFAR-10	SVHN			
(no binarization)	full-precision	1.190	11.900	2.277			
(binarize weights)	BinaryConnect	1.280	9.860	2.450			
	BWN	1.310	10.510	2.535			
	LAB	1.180	10.500	2.354			
(binarize weights and activations)	BNN	1.470	12.870	3.500			
	XNOR	1.530	12.620	3.435			
	LAB2	1.380	12.280	3.362			

Analysis of Quantized Models

Gradient Quantization?

quantize gradients to m bits

Weight or Gradient?

Weight or Gradient?

- 1. full-precision gradients and quantized weights (li et al., 2017, de et al., 2018);
- 2. full-precision weights and quantized gradients (alistarh et al., 2017, wen et al., 2017, bernstein et al., 2018);

Both Weight & Gradient

Awosome!

PRELIMINARIES

Loss-aware Weight Quantization

$$\begin{aligned} &\min_{\hat{\mathbf{w}}} & & \|\mathbf{w}_{t+1} - \hat{\mathbf{w}}\|_{\mathsf{Diag}\left(\sqrt{\gamma_t}\right)}^2 \\ &\text{s.t.} & & \hat{\mathbf{w}} = \alpha \mathbf{b}, \alpha > 0, \mathbf{b} \in \left(\mathcal{S}_w\right)^d \end{aligned}$$

Stochastic Gradient Quantization

Example 1 (Low-precision quantizer [Alistarh et al., 2017]). For any variable $\mathbf{x} = [x_1, \cdots, x_p]^\top$, the low precision quantizer $Q^{LP} : \mathbb{R}^p \to \mathbb{R}^p$ is defined as below

$$Q^{LP}(\mathbf{x}) = [Q_1^{LP}(\mathbf{x}), \cdots, Q_p^{LP}(\mathbf{x})]^{\top}, \quad and \quad Q_i^{LP}(\mathbf{x}) = ||\mathbf{x}|| \cdot \operatorname{sign}(\mathbf{x}_i) \cdot \xi_i(\mathbf{x}, \mathbf{s}), \tag{5}$$

where $\xi_i(\mathbf{x}, s)$ is a random variable defined as

$$\xi_i(\mathbf{x}, s) = \begin{cases} \frac{l}{s} & w.p. \ 1 - \left(\frac{|x_i|}{|\mathbf{x}|}s - l\right), \\ \frac{l+1}{s} & w.p. \ \frac{|x_i|}{|\mathbf{x}|}s - l. \end{cases}$$
(6)

In above, the tuning parameter s corresponds to the number of quantization levels and $l \in [0, s)$ is an integer such that $|x_i|/||\mathbf{x}|| \in [l/s, (l+1)/s)$.

Weight Quantization with full-precision gradients

Update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \operatorname{Diag}(\sqrt{\hat{\mathbf{v}}_t})^{-1} \hat{\mathbf{g}}_t$$

Speed

$$O(1/\sqrt{T})$$

Error

$$LD\sqrt{D^2+\frac{d\alpha^2\Delta_w^2}{4}}$$

Weight Quantization with quantized gradients

Update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \operatorname{Diag}(\sqrt{\tilde{\mathbf{v}}_t})^{-1} \tilde{\mathbf{g}}_t$$

Speed

slow down by a factor

$$\sqrt{\frac{1+\sqrt{2d-1}}{2}}\Delta_g+1$$

Error

No change

Problems

- 1. deep networks typically have a large d;
- 2. distributed learning prefers a large Δ_g

Weight Quantization with clipped quantized gradients

Update

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \operatorname{Diag}(\sqrt{\mathbf{v}_t})^{-1} \mathbf{\check{g}}_t$$

Speed

slow down by a factor

$$\sqrt{(2/\pi)^{\frac{1}{2}}c\Delta_g+1}$$

Error

introduce extra error

$$\sqrt{d}D\sigma(2/\pi)^{\frac{1}{4}}\sqrt{F(c)}$$

Weight Quantization with clipped quantized gradients

Speed & Error

slow down by a factor

$$\sqrt{(2/\pi)^{\frac{1}{2}}c\Delta_g+1}$$

introduce extra error

$$\sqrt{d}D\sigma(2/\pi)^{\frac{1}{4}}\sqrt{F(c)}$$

A larger c leads to

smaller F(c), and thus smaller error slower convergence

Test

weight	FP	LAB	LAQ2	LAQ3	LAQ4
FP	83.74	80.37	82.11	83.14	83.35
SQ2 (no clipping)	81.40	78.67	80.27	81.27	81.38
SQ2 (clip, $c = 3$)	82.99	80.25	81.59	83.14	83.40
SQ3 (no clipping)	83.24	80.18	81.63	82.75	83.17
SQ3 (clip, $c = 3$)	83.89	80.13	81.77	82.97	83.43
SQ4 (no clipping)	83.64	80.44	81.88	83.13	83.47
SQ4 (clip, $c = 3$)	83.80	79.27	81.42	82.77	83.43

Main Findings

- An error related to the weight quantization resolution Δ_w and dimension d.
- Slow convergence by a factor related to gradient quantization resolution Δ_g and d.
- Gradient clipping renders the speed degradation mentioned above dimension-free.
- Distributed training of weight-quantized networks is much faster, while comparable accuracy with the use of full-precision gradients is maintained.

 ${\bf Communication\text{-}Efficient\ Distributed\ Blockwise\ Momentum\ SGD}$ with ${\bf Error\text{-}Feedback}$

Gradient Quantization

Distributed Machine Learning Parameter Server **Heavy Communication** Worker Data Shard

two-way compression

same convergence rates as full-precision distributed SGD

Error-feedback

Error-feedback

Algorithm 1 SGD with Error-Feedback (EF-SGD) [11]

- 1: **Input:** stepsize η ; compressor $C(\cdot)$.
- 2: Initialize: $x_0 \in \mathbb{R}^d$; $e_0 = 0 \in \mathbb{R}^d$
- 3: **for** $t = 0, \dots, T 1$ **do**
- 4: $p_t = \eta g_t + e_t$ {stochastic gradient $g_t = \nabla f(x_t, \xi_t)$ }
- 5: $\Delta_t = \mathcal{C}(p_t)$ {compressed value output}
- $6: \quad x_{t+1} = x_t \Delta_t$
- 7: $e_{t+1} = p_t \Delta_t$
- 8: end for

Error-feedback

The End