			Esame	di Ricerca O	perati	va del	17/02/1	14		
	(Cognome)			(Nome	e)		(Co	rso di laurea	a)
Esercizio	1. Co	mpletare la	a seguente tabel	la considerand	lo il pro	blema d	di progra	mmazione line	eare:	
				$\begin{cases} \max 8 \\ -2 x_1 \\ -x_1 - \\ -x_1 + \\ 4 x_1 + \\ 3 x_1 - \\ 2 x_1 + \end{cases}$	$\begin{array}{l} 3 \ x_1 - 9 \\ + \ x_2 \le 4 \\ 3 \ x_2 \le 4 \\ - \ x_2 \le 3 \\ - \ x_2 \le 4 \\ - \ 2 \ x_2 \le 4 \end{array}$	x ₂ 8 9				
	Base	Soluzion	ne di base					Ammissibile (si/no)	Degenere (si/no)	
								(81/110)	(81/110)	
	$\{1, 2\}$	x =								
	$\{5, 6\}$	y =								
Esercizio	2. Eff	ettuare du	e iterazioni dell'	algoritmo del	simples	so prim	ale per i	l problema del	l'esercizio 1.	
		Base	x		y		Indice uscente		pporti	Indicentrar
		(0, 1)					discorre			
1° iteraz	zione	{3,4}	<u> </u>							
2° iteraz	zione									
La seguen	ite tabe	ella riporta	coduce tre tipi d le quantità (in li ciascuna mate	Kg) di ciascu	na mat	eria pri	ma richie	esta per produ		
•		(0)			M1	M2	M3			
				P1	0.3	0.7	0.4			
				P2 P3	0.4	0.2	0.3			
			quar	ntità massima	3000	1800	4000			
Nella tab	ella sor	no riportate	e le ore necessar		1	1		ta e le quantita	à minime da	produrre:
		F			P1	P2	P3	100000		F
			ore	e lavorative	1	0.8	0.5			
			-	zo di vendita	26	20	14			
			quar	ntità minime	1100	2000	1200			
	orazione	e della pias	mensile in mode strella P1 non de							
modello:										
				COMANDI	DI MA	TLAB				
C=										

b=

beq=

ub=

A=

Aeq=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,4)$ $(3,4)$				
(4,6)(5,6)	(1,2)	x =		
(1,2) (2,4) (3,4)				
(4,6)(5,6)	(2,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	
Archi di U	(2,6)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 14 \ x_1 + 5 \ x_2 \\ 17 \ x_1 + 13 \ x_2 \ge 41 \\ 8 \ x_1 + 19 \ x_2 \ge 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	54	6	57	21
2		13	58	55
3			14	29
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo: $v_S(P) =$

c) Applicare il metodo del Branch and Bound, utilizzando il 4-albero di costo minimo come rilassamento di ogni

sottoproblema ed istanziando, nell'ordine, le variabili x_{12} , x_{13} , x_{14} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 + x_2^2 - 1 \le 0, \quad x_1^2 + x_2^2 - 16 \le 0}.$$

Soluzioni de	el sistema Ll	KT	Mass		Minimo		Sella
x	λ	μ	globale	locale	globale	locale	

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1^2 - 4 \ x_2^2 - 5 \ x_1 - 8 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-5,3) , (2,1) , (1,-4) e (-4,-4). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{8}{3},\frac{7}{3}\right)$					

SOLUZIONI

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 8 \ x_1 - 9 \ x_2 \\ -2 \ x_1 + x_2 \le 8 \\ -x_1 - x_2 \le 4 \\ -x_1 + 3 \ x_2 \le 9 \\ 4 \ x_1 + x_2 \le 3 \\ 3 \ x_1 - x_2 \le 4 \\ 2 \ x_1 + 2 \ x_2 \le 13 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-4, 0)	SI	NO
{5, 6}	$y = \left(0, \ 0, \ 0, \ 0, \ \frac{17}{4}, \ -\frac{19}{8}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	${3, 4}$	(0, 3)	$\left(0,\ 0,\ -\frac{44}{13},\ \frac{15}{13},\ 0,\ 0\right)$	3	$\frac{91}{3}$, 13	5
2° iterazione	{4, 5}		$\left(0,\ 0,\ 0,\ -\frac{19}{7},\ \frac{44}{7},\ 0\right)$	4	7	2

Esercizio 3.

variabili decisionali: x_i = numero di piastrelle di tipo i prodotte, con i = 1, 2, 3.

 $\text{modello:} \left\{ \begin{array}{l} \max \ 26 \ x_1 + 20 \ x_2 + 14 \ x_3 \\ 0.3 \ x_1 + 0.4 \ x_2 + 0.3 \ x_3 \leq 3000 \\ 0.7 \ x_1 + 0.2 \ x_2 + 0.1 \ x_3 \leq 1800 \\ 0.4 \ x_1 + 0.3 \ x_2 + 0.2 \ x_3 \leq 4000 \\ x_1 \leq 0.3 \ (x_1 + 0.8 \ x_2 + 0.5 \ x_3) \\ x_1 \geq 1100 \\ x_2 \geq 2000 \\ x_3 \geq 1200 \end{array} \right.$

COMANDI DI MATLAB

c=-[24;20;12]

A=[0.3 0.4 0.3;0.7 0.2 0.1;0.4 0.3 0.2; 0.65 -0.28 -0.175] b=[3000;1800;4000;0]

Aeq=[] beq=[]

lb=[1100; 2000; 1200] ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,3) $(2,4)$ $(3,4)$				
(4,6) (5,6)	(1,2)	x = (9, -5, 0, 15, 0, 1, 0, 0, 13, -3)	NO	NO
(1,2) (2,4) (3,4)				
(4,6)(5,6)	(2,3)	$\pi = (0, 7, 8, 11, 8, 15)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (3,4) (3,5) (3,6)	(1,3) (2,6) (3,4) (3,5) (3,6)
Archi di U	(2,6)	
x	(4, 0, 0, 0, 10, 3, 3, 0, 0, 0)	(0, 4, 0, 0, 6, 3, 3, 4, 0, 0)
π	(0, 7, 8, 11, 11, 12)	(0, 2, 8, 11, 11, 12)
Arco entrante	(2,6)	(2,4)
ϑ^+,ϑ^-	4, 4	8,3
Arco uscente	(1,2)	(3,4)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		7	7	4	1	6	3
nodo 2	17	1	17	1	17	1	17	1	17	1	17	1	17	1
nodo 3	10	1	10	1	10	1	10	1	10	1	10	1	10	1
nodo 4	$+\infty$	-1	$+\infty$	-1	35	2	28	5	28	5	28	5	28	5
nodo 5	$+\infty$	-1	25	3	20	2	20	2	20	2	20	2	20	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	35	7	34	4	34	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	26	5	26	5	26	5	26	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	4,	6	6	3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	5	(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0)	5
1 - 3 - 5 - 7	6	(5, 6, 0, 5, 0, 6, 0, 0, 11, 0, 0)	11
1 - 2 - 4 - 6 - 5 - 7	1	(6, 6, 1, 5, 0, 6, 1, 0, 12, 1, 0)	12

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min & 14 \ x_1 + 5 \ x_2 \\ 17 \ x_1 + 13 \ x_2 \ge 41 \\ 8 \ x_1 + 19 \ x_2 \ge 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{41}{13}\right)$$
 $v_I(P) = 16$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,4)$$
 $v_S(P) = 20$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $8 x_1 + 6 x_2 \ge 19$ $r = 4$ $10 x_1 + 7 x_2 \ge 23$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	54	6	57	21
2		13	58	55
3			14	29
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,3)(1,5)(2,3)(3,4)(4,5)$$
 $v_I(P)=76$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 3.

ciclo:
$$3 - 1 - 5 - 4 - 2$$
 $v_S(P) = 120$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{12} , x_{13} , x_{14} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1 + x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : -x_1^2 + x_2^2 - 1 \le 0, \quad x_1^2 + x_2^2 - 16 \le 0\}.$$

Soluzioni del sisten	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(-2\sqrt{2},\ -2\sqrt{2}\right)$	$\left(0, \frac{\sqrt{2}}{8}\right)$		NO	NO	SI	SI	NO
$\left(-\frac{\sqrt{2}\sqrt{15}}{2},\ -\frac{\sqrt{2}\sqrt{17}}{2}\right)$	$cerchio \cap iperbole$		NO	NO	NO	NO	SI
$\left(\frac{\sqrt{2}\sqrt{15}}{2}, -\frac{\sqrt{2}\sqrt{17}}{2}\right)$	$cerchio \cap iperbole$		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{2}\sqrt{15}}{2},\ \frac{\sqrt{2}\sqrt{17}}{2}\right)$	$cerchio \cap iperbole$		NO	NO	NO	NO	SI
$\left(\frac{\sqrt{2}\sqrt{15}}{2},\ \frac{\sqrt{2}\sqrt{17}}{2}\right)$	$cerchio \cap iperbole$		NO	NO	NO	NO	SI
$\left(2\sqrt{2},\ 2\sqrt{2}\right)$	$\left(0,-\frac{\sqrt{2}}{8}\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1^2 - 4 \ x_2^2 - 5 \ x_1 - 8 \ x_2 \\ x \in P \end{cases}$$

 ${\rm dove}\;P\;\grave{\rm e}\;{\rm il}\;{\rm poliedro}\;{\rm di}\;{\rm vertici}\;(-5,3)\;,\;(2,1)\;,\;(1,-4)\;{\rm e}\;(-4,-4).\;{\rm Fare}\;{\rm una}\;{\rm iterazione}\;{\rm del}\;{\rm metodo}\;{\rm di}\;{\rm Frank-Wolfe}.$

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{8}{3}, \frac{7}{3}\right)$	$\frac{49}{3}x_1 - \frac{80}{3}x_2$	(-5, 3)	$\left(-\frac{7}{3}, \frac{2}{3}\right)$	1	(-5, 3)