The Impact of Electricity Price Forecasting Uncertainty on Network Tariff Performance with Flexible Residential Loads

Roman Hennig, PhD Researcher at TU Delft

Supervisors:

Prof. Dr. ir. Laurens de Vries

Dr. Simon Tindemans

With: Niels Goedegebeure, Msc student

Presentation at PMAPS, June 14 2022

Outline

- 1. Introduction to research problem: network tariffs and their objectives
- 2. Network tariff assessment framework
- 3. Results without price uncertainty
- 4. Adding uncertainty: results with probabilistic price scenario forecasts
- 5. Conclusion

Background: Changing Landscape for Electric Distribution Grids, new Challenges for DSOs

BEFORE

NOW

Problem Statement

- Network tariffs are charged to recover costs for the network and can be used to steer flexible loads
- Network Tariffs regulatory principles:
 - Cost-reflectiveness
 - Network security, in particular: congestion management, incrementalism of changes
 - Consumer facing: transparency, simplicity, predictability
 - Efficiency, making use of flexibility
 - Non-discrimination and fairness
- These are widely accepted and cited, <u>however:</u>
 - Objectives are antagonistic and
 - Difficult to measure

Tariff Assessment Framework

Fig. 1. Assessment process for network tariffs.

Network Costs Feedback Loop

Fig. 2. Feedback between network costs and tariffs.

Indicators for tariff performance assessment

Objective	Possible Indicators • Expected value and variance of expenses and revenues, based on plausible distribution of consumption patterns			
Cost recovery				
Cost Reflectiveness	 Tariff charges relative to individual contributions to short- and long-term marginal costs and fixed costs 			
Non-discrimination	Difference of tariff charges for the same load curve in different pricing locations			
	 Variations in tariff that are not explained by total consumed energy and personal peak 			
Cost-Efficiency	Network operation and infrastructure costs Other user costs: e.g., cost of charging EV at wholesale prices			
	 Congestion management: peaks relative to net- work capacity, average loading of network assets 			
Simplicity	Degree of temporal and spatial variation			
	Complexity score:			
	 Fixed or flat volumetric tariffs; 			
	vol. ToU with 2-3 time periods;			
	capacity based or vol. ToU with >3 periods;			
	mix of vol. and capacity, or near real-time.			
	Implementation burden score:			
	1. No change required;			
	Smart meters required;			
	 Near real-time communication required; 			
	4. New market platform required.			

Hennig et Al., "What is a good distribution network tariff?— Developing indicators for performance assessment", https://www.sciencedirect.com/science/article/pii/S030626 1922005554

ANTS model for tariff assessment

Fig. 5. Scheduling and evaluation phases in ANTS-model.

Hennig et Al., "What is a good distribution network tariff?—Developing indicators for performance assessment", https://www.sciencedirect.com/science/article/pii/S0306261922005554

Case study tariffs

- Fixed tariff:
 - 250 Euro per year
- Volumetric Day/Night tariff:
 - 6 ct / kWh day time, 3 ct / kWh night time
- Mixed peak capacity/volumetric ToU tariff:
 - multiple time periods for both volumetric and capacity charges
- Capacity Subscription tariff:
 - free usage up to a contracted capacity limit, penalty payment above

Case Study: cost-reflectiveness

Case study cost-correlation

Case study transformer loading

Case study summary results

Tariff	Cost-refl.	Cost-refl.	Efficiency	Simplicity
	low EV	high EV	high EV	
Fixed				++
Vol. Day-Night	++	-		+
Capacity Subscription	+	++	++	-
Mixed Capacity-ToU Vol.	+/++	+	+	

Table 4: Comparative assessment of the performance of the four tariffs relative to each other.

Adding uncertainty: price forecasting scenarios

- In the previous results, we used deterministic knowledge of wholesale prices for up to 2 days in advance for scheduling EV charging.
- In reality, prices are not known and forecasting methods have to be used.
- In a contribution to this conference, we investigated the question of how this uncertainty impacts tariff performance.

PMAPS contribution T4C 40. with Niels Goedegebeure:

<u>Generating Electricity Price Forecasting Scenarios</u>
<u>To Analyze Whether Price Uncertainty Impacts</u>
<u>Tariff Performance</u>

Fig. 3: Results of generated forecast scenarios for two days in the January 2020 data set (january 1 and 3). Forecasted prices are shown 1, 2 and 3 days in advance, together with the actual price (0, black).

Adding uncertainty: results with probabilistic scenario inputs

Max overload percentage (%)

Max overload percentage (%)

Max overload percentage (%)

Max overload percentage (%)

The perfect to the perfec

Fig. 4: Model results: average number of timesteps overloaded.

Fig. 5: Model results: maximum overload percentage.

- price uncertainty did not impact tariff performance significantly
- The difference between using perfect knowledge and probabilistic forecasts was much smaller then the difference between knowledge of prices for 1 or multiple days ahead

Conclusions

- There is a need for updating residential distribution network tariffs.
- Tariffs are expected to fulfil a range of regulatory objectives, yet it is unclear how performance for these should be assessed.
- We developed a methodology based on quantifiable indicators for this.
- We demonstrated the method with in a case study with the help of a simulation model.
- Adding price forecasting uncertainty did not significantly impact the results.
- Further uncertainties should be investigated, e.g., how do consumers react to tariff signals.
- More details on the scenario forecasting method in Niels Goedegebure's talk this afternoon at 15:30 in session T4C: <u>Generating Electricity Price Forecasting Scenarios To Analyze Whether Price</u>
 Uncertainty Impacts Tariff Performance

