DFA Operations

Complement, Product, Union,
Intersection, Difference, Equivalence
and Minimization of DFAs

Wednesday, September 28, 2011 Reading: Sipser pp. 45-46, Stoughton 3.11 - 3.12

CS235 Languages and Automata

Department of Computer Science Wellesley College

Some DFAs

Here are some simple DFAs we will use as examples in today's lecture. What languages do they accept?

DFA Operations 13-2

Complement of DFAs

If DFA accepts language L, then L is accepted by DFA, a version of DFA in which the accepting and non-accepting states have been swapped.

DFA Operations 13-3

DFA Complement in Forlan - val dfa1 = DFA.input "begin_and_end_with_a.dfa";

- DFA.complement; val it = fn : dfa * sym set -> dfa

- val dfa1_comp = DFA.complement (dfa1, SymSet.fromString "a,b"); val dfa1_comp = - : dfa

- SymSet.toString (DFA.states dfa1_comp);
val it = "W, X, Y, <dead>" : string

- SymSet.toString (DFA.acceptingStates dfa1_comp); val it = "W, Y, <dead>" : string

- DFA.output ("dfa_begin_and_end_with_a_comp.dfa", dfa_comp);

val it = () : unit

val dfa1 = - : dfa

Product of DFAs

We can run two DFAs in parallel on the same input via the product construction, as long as they share the same alphabet.

Suppose DFA₁ = $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and DFA₂ = $(Q_2, \Sigma, \delta_2, s_2, F_2)$ We define $DFA_1 \times DFA_2$ as follows:

States: $Q_{1\times 2} = Q_1 \times Q_2$

Alphabet: Σ

Transitions:

$$\delta_{1x2} \in \mathsf{Q}_{1x2} \ \mathsf{x} \ \Sigma \to \mathsf{Q}_{1x2}$$

$$\delta_{1\times2}$$
 (((q_1,q_2), σ))
= (δ_1 ((q_1,σ)), δ_2 ((q_2,σ))

Start State: $s_{1\times 2} = (s_1, s_2)$

Final States: Definition depends on how we use product

DFA Operations 13-5

Sample Products

DFA Operations 13-6

Practice

Intersection of DFAs

We can intersect DFA₁ and DFA₂ (written DFA₁ \cap DFA₂) by defining the accepting states of DFA1 x DFA2 as those state pairs in which both states are final states of their DFAs.

Union of DFAs

We can union DFA₁ and DFA₂ (written DFA₁ \cup DFA₂) by defining the accepting states of DFA₁ \times DFA₂ as those state pairs in which **either** state is a final state of its DFA.

DFA Operations 13-9

Difference of DFAs

The difference of two DFAs (written DFA₁ – DFA₂) can be defined in terms of complement and intersection:

$$DFA_1 - DFA_2 = DFA_1 \cap DFA_2$$

So we can take the difference of DFA_1 and by defining the final states of DFA_1 – DFA_2 as those state pairs in which the first state is final in DFA_1 and the is second state is not final in DFA_2 .

DFA Operations 13-10

What is a Closure Property?

A set S is closed under an n-ary operation f iff $x_1,..., x_n \in S$ implies $f(x_1,..., x_n) \in S$

Examples:

- Bool is closed under negation, conjunction, disjunction.
- · Nat is closed under + and * but not and /.
- Int is closed under +, *, and -, but not /.
- Rat is closed under +, *, -, and / (except division by 0).

Some Closure Properties of Regular Languages

Recall that a language is regular iff there is a DFA that accepts it.

Based on the previous DFA constructions, we know the following closure properties of regular languages.

Suppose L_1 and L_2 are regular languages. Then:

- L1 and L2 are regular;
- $L_1 \cup L_2$ is regular;
- $L_1 \cap L_2$ is regular;
- $L_1 L_2$ and $L_2 L_1$ are regular.

Are Any of the Following DFAs Equivalent?

DFA Operations 13-13

DFA Operations 13-15

DFA₅ and DFA₆ are Not Equivalent

Look at their product!

DFA₅ and DFA₇ Are Equivalent

Look at their product!

DFA Equivalence Algorithm

To determine if DFA_1 and DFA_2 are equivalent, construct $DFA_1 \times DFA_2$ and examine all state pairs containing at least one accepting state from DFA_1 or DFA_2 :

- If in all such pairs, both components are accepting, DFA_1 and DFA_2 are equivalent --- i.e., they accept the same language.
- If in all such pairs, the first component is accepting but in some the second is not, the language of DFA₁ is a superset of the language of DFA₂ and it is easy to find a string accepted by DFA₁ and not by DFA₂
- If in all such pairs, the second component is accepting but in some the first is not, the language of DFA₁ is a **subset** of the language of DFA₂, and it is easy to find a string accepted by DFA₂ and not by DFA₁
- If none of the above cases holds, the languages of DFA₁ and DFA₂ are unrelated, and it is easy to find a string accepted by one and not the other

DFA Operations 13-16

Products in Forlan

```
val inter: dfa * dfa -> dfa

val minus: dfa * dfa -> dfa

datatype relationship

= Equal | Incomp of str * str | ProperSub of str | ProperSup of str

val relation: dfa * dfa -> relationship

val relationship: dfa * dfa -> unit

val subset: dfa * dfa -> bool

val equivalent: dfa * dfa -> bool
```

Note that a union operator is missing. It really should be there! We'll see later how it can be defined.

DFA Operations 13-17

Forlan Products: Example 1 - val bwa = DFA.input "begin_with_a.dfa"; val bwa = - : dfa - val ewa = DFA.input "end_with_a.dfa"; val ewa = - : dfa - val baewa = DFA.inter(bwa,ewa); val baewa = - : dfa - DFA.output("baewa.dfa", baewa); val it = () : unit DFA Operations 13-18

Forlan Products: Example 1 (Continued)

Minimal DFAs

- A DFA is minimal if it has the smallest number of states of any DFA accepting its language.
- Is DFA5 minimal?
- Is DFA7 minimal?

DFA Operations 13-21

State Merging

- A DFA is not minimal iff two states can be merged to form a single state without changing the meaning of the DFA.
- Final states and non-final states can never be merged.
- Can merge two states iff for each symbol they transition to mergeable states.
- · Which states in DFA7 can be merged?

DFA Operations 13-22

State Merging in DFA7

DFA Operations 13-23

Problem: States Can't Always be Merged Iteratively

Key to solution: rather than iterating to find *mergeable* state pairs, iterate to find all state pairs that are provably *unmergeable*. Then any remaining state pair is mergeable.

This is an example of a **greatest fixed point iteration**, in which items are assumed related unless proven otherwise.

DFA Minimization Algorithm: Step 1

List all pairs of states than **must not** be merged = pairs of one final
and one non-final state.

Other pairs **might** be mergeable; they are considered mergeable until proven otherwise.

It's a good idea to keep track of state pairs in half of a table*:

- U_s Unmergeable by string s
- ? MightBeMergeable

DFA Operations 13-25

DFA Minimization Algorithm: Step 2

Change from MightBeMergeable to Unmergeable any pair (A,B) such that there is a transition to a (C,D) in Unmergeable:

Repeat this step until no more state pairs can be changed.

DFA Operations 13-26

DFA Minimization Algorithm: Step 3

When no more pairs can be changed from MightBeMergeable to Unmergeable, merge the pairs remaining in MightBeMergeable.

DFA Minimization: More Practice

Both examples happen to converge after 1 iteration of step 2, but in general can take 0 to (|Q|-1) iterations.

^{*} Lyn adapted this table representation from Katie Sullivan (Olin) and the subscripted Unmergeability from Anna Loparev (Wellesley)

DFA Minimization: One more example

DFA Operations 13-29

Minimization in Forlan

