Introduction to 'Omics & RNA-Sequencing

Lauren Vanderlinden BIOS 6660 Spring 2019

Levels of Biological Organization

Levels of organization

© Encyclopædia Britannica, Inc.

source: Encyclopedia Britannica

Cellular Level

- Working unit of every living organism
- Made up of organelles
- Each has a specific function

source: ScienceTrends.com

Central Dogma of Microbiology

- Within each cell, this process is taking place
- Seems like a pretty simple linear progression
- 3 classes of information

source: rbpaonline.com

 Goal is to understand the behavior of cells, tissues, organs, and the whole organism at the molecular level

 High throughput data relating to a biology "ome"

- Genome
- Transcriptome
- Proteome
- Metabolome
- Epigenome
- Not as straight forward

Cellular Composition

- Proteins make up the majority of chemical structure
- Various assays for each type of chemical structure

source: natureEducation

Goal: Personalized & Precision Medicine

- Tailor medical treatment
 - Gleevec to treat chronic myeloid leukemia (CML) in presence of a fusion gene (BCR-ABL)
- Disease prevention
 - Those with BRCA mutations can elect for mastectomy

Source: Merino et al, 2018

Nucleotides

- 3 distinctive subunit
- 1. 5-carbon sugar
 - DNA: deoxyribose
 - RNA: ribose

Source: phschool

- 2. Nitrogenous base
- 3. Phosphate group

Lecture 11: 26 Feb 2019 BIOS 6660 Spring 2019 8

Bases and Base-Pairing

Source: Khan academy

- Hydrogen bonding
- Purine with pyrimidine
 - A-T
 - G-C

DNA vs RNA

- Commonality: both consist of nucleotides
- <u>D</u>eoxyribo<u>N</u>ucleic <u>A</u>cid (DNA)
 - Double stranded using base pairing
- RiboNucleic Acid (RNA)
 - Single-stranded
 - Uracil (U) instead of Thymine (T)

Source: wikipedia

Chromosomes

- The packing of DNA
- DNA tightly wound around proteins called histones
- Store lots of data in small area
- Multiple chromosomes/organism
 - E. coli only has 1

Source: US National Library of Medicine

Genomes Across Species

Species	# Chromosomes	# Nucleotides (Mb)	# Genes
E. coli	1	4,600,000	4,377
Fruit fly	4	180,000,000	17,000
Yeast	16	13,000,000	5,770
Rat	21	2,750,000,000	20,000
Mouse	20	2,800,000,000	23,000
Human	23	3,300,000,000	21,000

RNA (Transcriptomics)

- Messenger RNA (mRNA)
- Transfer RNA (tRNA)
- Ribsomal RNA (rRNA)
- Long Non-Coding RNA (IncRNA)
 - Circular RNA (circRNA)
- Small RNA (<200 nt)
 - microRNA (miRNA)
 - Piwi-interacting RNA (piRNA)
 - small interfering RNA (siRNA)
 - small nucleolar RNA (snoRNAs)
 - tRNA-derived small RNA (tsRNA)
 - small rDNA-derived RNA (srRNA)
 - small nuclear RNA (U-RNA)

More regulatory functions & not clearly defined or known

Messenger RNA (mRNA)

- Protein Coding
- Most commonly interrogated type of RNA
- Structure:
 - 5' cap
 - 5' untranslated region (UTR)
 - Coding sequence (CDS)
 - 3' untranslated region (UTR)
 - Poly-A tail

Alternative Splicing and Isoforms

- Contributes to protein complexity
 - estimated 35-60% of human genes alternatively spliced
- ~15% disease-causing mutations cause errors in alternative splicing regulation
- Can alters protein structure & function
- Can changes ratios of protein isoforms

source: wikipedia

Ribosomal RNA (rRNA) & Transfer RNA (tRNA)

- rRNA is the most abundant type of RNA in cell (90-95% in human)
- 2 predominant rRNAs in human:
 - 18S (small component, blue)
 - 28S (large component, red)
- Removing rRNA can be difficult

 tRNA is the physical link between mRNA and protein

It transfers an amino acid to the

ribosome

source: wiley

Long non-coding RNA (IncRNA)

- Regulates transcription & translation process
- Many different mechanism
 - Inhibition
 - Promotion
 - Modifications
- Used to be considered "junk" DNA
- For example, circRNA is a class of IncRNA
 - Back-splicing to create a loop & can recruit miRNAs (another way to regulate mRNA translation)

source: Figure 1 Wang et. al, 2011

Micro RNA (miRNA)

- Regulates translation
- Thought to inhibit translation:
 - Inhibits binding capabilities of translational elements
 - Promotes degradation of targeted mRNA
- However, functionality is not as straight forward compared to other known RNA types
 - Wasn't recognized as it's own class of RNA till early 2000s.

source: Figure 1 Meydan et. al, 2016

Major RNA expression technologies

Technology	High Throughput	Quantitativeness	Single Cell Information	Ease of Use
Northern blot (1977)		++		+
RT-qPCR (1990)	+	++++		+++
Microarrays (1995)	++	+++		++
RNA-Seq (2008)	+++	+++		
scRNA-Seq (2014)	+++	+	++++	

Northern Blot

RT-qPCR

source: wikipedia source: wikipedia

Limited to very small list of RNA

• membrane blot or primers

Microarray

First genome-wide application

- Individual probes are 20-25 bp long
- Probeset is group of probes that probe same region which are summarized together
- Target specific areas of genes
 - Exons
 - 3' end of gene
- Drawback: need to know sequence of RNA when designing the microarray

source: affymetrix

Sequencing Technology

- DNA or RNA
- Want the raw sequences
- This is a game changer as you don't need to know sequence

AGATAACTGGGCCCCTGCGCTCAGGAGGCCTTCACCCTCTGCTCTGGGTAAAGGTAGTAGA

Fragment Reads

source: clarkesworld

RNA Sequencing Workflow

Step 1: Design Experiment

- Study Design:
 - Differential expression between case vs control
 - Longitudinal study of gene expression over time
- Do you just want mRNA?
- What about small RNA?
- Are you interested in isoform information?
- Are you interested in cell type proportions?
- How important is quantitation to you to get the most bang for your buck?

source: RNAseqlopedia

RNA-Seq: RNA Prep

- Stabilize RNA:
 - RNA degrades immediately once tissue is harvested
 - Flash freezing IS NOT ENOUGH
 - RNAstable[®] (Biomatrica)
 - RNAlater® (Qiagen)
- Isolate and purify RNA
 - Part of this step is a size filter
 - 200 bp filter
 - Many times <200 bp section is thrown out
 - NOT ideal for small RNA

 Assessing quality and quantity of RNA

Agarose gels and/or Bioanalyzer Intact Degraded

Quantitate RNA is by measuring the absorbance at 260 nm

2302m 2502m 2502m

Library Prep Part 1

- Select/Clean RNA
 - polyA selection
 - rRNA depletion
- Fragment RNA
 - Optional to fragment here, most protocols do
- Convert RNA to DNA
 - Reverse transcriptase from retroviruses can synthesize DNA from RNA
- Or Fragment cDNA
- Repair ends add A overhang
 - In figure A would be where the C's are

Source: Addison Wesley Longman, Inc

Library Prep Part 2

- Perform PCR
- Attach adapters
 - Illumina: clusters are attached to the flow cell
 - 454, IonTorrent and SOLiD: platforms are clustered on beads using emulsion PCR
- 2 types of sequence elements required:
 - Terminal platform-dependent sequences required for clonal amplification
 - Sequences for priming sequencing reaction
- Additional optional element are multiplexing (barcode) or 2nd priming site (paired-end sequencing)
- More PCR

Library Prep Overview

Total RNA

source: RNAseqlopedia

Illumina Sequencing Part 1

Source: www.eurofinsgenomics.co.in

Flow cell is coated with single stranded oligos that correspond to the adapters

Source: bioopticsworld

Multiplexing

- Make sure you have a balanced design
- Each lane looks like:

- Has 2 columns
- Each column up to 50 tiles
- Talk to lab and set up design

Source: Auer & Doerge 2010

Illumina Sequencing Part 2

Source: www.eurofinsgenomics.co.in

- Cycles of extension and imaging
- Incorporates a single florescent nucleotide
 - each base has a unique color for each base
- Each base call has a quality score corresponding with it
 - Longer you go along, the quality diminishes

Lecture 11: 26 Feb 2019 BIOS 6660 Spring 2019 30

Single-End vs Paired-End Reads

- Single only sequencing from only 1 end of the read
- Paired end sequences both ends

Lecture 11: 26 Feb 2019 BIOS 6660 Spring 2019 31

Single-End vs Paired-End Pro's and Con's

- Paired-end can detect quality alignments as it can detect splice junctions, genomic rearrangements, repetitive sequencing elements, gene fusions
- Single-end is more affordable and easier to process
- When it comes to quantitation and differential expression, do not gain substantially more in paired-end reads

Source: genetics.org

Overview of The 454 Sequencing System

1) Prepare Adapter Ligated ssDNA Library (A-[insert]-B)

2) EmPCR: Clonal Amplification on 28 μ beads followed by enrichment

3) Load beads and enzymes in PicoTiter Plate $^{\text{TM}}$

4) Perform sequencing-by-synthesis on the 454 Sequencer

CSB2008 August 2008

UCSC Sequencing Center

Single-cell Sequencing: 10x Genomics

- Separating out cells prior to sequencing
- Adding on specific barcode to each cDNA to tell which cell it came from
- Pro: single cell level
- In practice I've only seen analyses where they determine different proportions of cell types (or clusters) between groups.

Source: 10x Genomics

Tag-Seq

- Also known as: 3'Tag-RNA-Seq, Digital RNA-seq, Quant-Seq
- Only generates only a single library molecule per transcript, complementary to 3' sequence
- Low cost and low noise for gene expression profiling
 - 1/10 cost of traditional RNA-seq
- NOT good for isoform analysis or identifying splice junctions

Example data viewed in UCSC genome browser

Isoform-Seq

- Also known as: Iso-Seq, single molecular real time (SMRT)-seq
- PacBio
- This gives you full length transcript information
- Biased toward shorter transcripts as your enzyme needs to stay and keep looping around
- Fantastic if you are interested in isoform information
- Very expensive

Read Depth/Coverage

- Coverage = # Bases Generated / Total Genome
- Reads are not distributed evenly across a transcript (or genome)
- Differential expression: 25-30M reads/sample
- Rare transcript, splice variants, de novo transcriptome: 100-200M reads/sample

Lecture 11: 26 Feb 2019 BIOS 6660 Spring 2019 37

Main Questions to Ask

What type of RNA do you want to look at?

Source: RNA-Seq Blog

What sequencing technology most benefits you and your hypothesis?

- Do you want isoform information?
 - Potentially reconstruct a transcriptome?
 - Want to look at gene fusions?
 - Is there a well annotated transcriptome for your species?
- Do you need individual cell information?
- Do you need high sample sizes for modeling?
 - Longitudinal models
 - Data-driven network analysis (WGCNA)

References

Merino J, Florez JC, (2018) *Precision medicine in diabetes: an opportunity for clinical translation*. Ann. N.Y. Acad. Sci. 1411:140–152.

García-Sevillano MÁ, García-Barrera T, Gómez-Ariza JL. (2015) *Environmental metabolomics: Biological markers for metal toxicity*. Electrophoresis. 2015 Sep;36(18):2348-2365.

Meydan C, Shenhar-Tsarfaty S, Soreq H. (2016) *MicroRNA Regulators of Anxiety and Metabolic Disorders*. Trends Mol Med. 2016 Sep;22(9):798-812.

Wang, KC and Chang HY. (2011) *Molecular Mechanisms of Long Noncoding RNAs*. Mol Cell. 2011 Sep 16;43(6):904-14.

Yeh, Hsin-Sung and Zhang, Wei and Yong, Jeongsik. (2017) Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies. BMB Rep. 50(4): 201–207.

Auer & Doerge (2010) Statistical Design and Analysis of RNA Sequencing Data. 185:405-416.