Serial No.: 09/980,345 Group Art Unit: 1723

Remarks

Entry of this Amendment is respectfully requested.

Claims

Claims 1-10 have been amended to better conform with United States practice. No new matter is added.

Support

Support for the amendments to the claims is apparent. No new matter is added.

FEE DEFICIENCY

If an extension of time is deemed required for consideration of this paper, please consider this paper to comprise a petition for such an extension of time; The Commissioner is hereby authorized to charge the fee for any such extension to Deposit Account No. 04-0480.

and/or

If any additional fee is required for consideration of this paper, please charge Account No. 04-0480.

Respectfully submitted,

Thomas S. Deibert

Registration No. 40,984

Attorney for Applicant

DECHERT PRICE & RHOADS

Princeton Pike Corporate Center

PO Box 5218

Princeton, New Jersey 08543-5218

Fax: (609) 620-3259

Attn: Thomas S. Deibert, Esq.

(609) 620-3231

Serial No.: 09/980,345 Group Art Unit: 1723

Version with Markings to Show Changes Made

- 1. (Once Amended) A Device for fractionating a mixture [mixtures] into [their] its various components [(A, B)], [of the type] wherein the device comprises [comprising] separation elements [(5)] mounted in series and in a closed loop, presenting alternating points of injection $[(I_S, I_D, I_{A+B})]$ and points of drawing-off $[(S_E, S_R)]$ along the series of the separation elements, in which the closed loop is formed by four successive areas [(I, II, III, IV)] each constituted by at least one separation element [(5)], this device comprising at least one point of injection $[(I_S)]$ of solvent [(S)] and one point of injection $[(I_D)]$ of diluent [(D)] located between two respective areas, a point of injection $[(I_{A+B})]$ of mixture, at least one point of drawing-off $[(S_R)]$ of raffinate located upstream of the point of injection of mixture, in the direction of circulation of the solvent [(S)], characterized in that:
 - the solvent [(S)] is a supercritical pressurized fluid,
- each of the separation elements is constituted by a membrane phase separation element [(5)],
- it comprises means for injecting the solvent [(S)] at a pressure greater than its critical pressure, and for maintaining the pressure in said loop at a value above critical pressure,
- it comprises means for injecting the diluent [(D)] and for maintaining the pressure thereof at a value similar to that of the solvent [(S)] in each of the areas [(I, II, III, IV)].
- 2. (Once Amended) The Device according to Claim 1, characterized in that the separation elements are constituted by a cylindrical envelope containing a bundle of hollow, permeable fibers [(6)], disposed along the longitudinal acis of the envelope and fluid inlet and outlet means, so that one of the fluids circulates inside the fibers [(6)] and the other outside them.
- 3. (Once Amended) The Device according to Claim 2, characterized in that the fibers [(6)] are constituted by polypropylene.
- 4. (Once Amended) The Device according to [any one of the preceding Claims] Claim 1, characterized in that the respective pressures in each of the areas [(I, II, III, IV)] are

Serial No.: 09/980,345 Group Art Unit: 1723

such that the solvent power of the solvent [(S)] in each area is maintained constant and is different from one area to another.

- 5. (Once Amended) The Device according to claim 4, characterized in that the solvent power of the solvent [(S)] decreases in the direction of its flow.
- 6. (Once Amended) The Device according to [Claims 4 or 5] Claim 4, characterized in that the enthalpy is maintained constant in all the areas [(I, II, III, IV)].
- 7. (Once Amended) The Device according to [one of claims 4 to 6] Claim 4, characterized in that it comprises a pumping system in order to increase the pressure of the diluent [(D)] between each area [(I, II, III, IV)], in the direction of flow thereof, and a system for balancing the pressures of the diluent [(D)] and of the solvent [(S)] in each of these areas.
- 8. (Once Amended) The Device according to Claim 7, characterized in that volumetric pumps [(P1, P2, P3, P4)] are used for circulating the diluent [(D)] at controlled flowrates in each of the respective areas [(I, II, III, IV)].
- 9. (Once Amended) The Device according to [one of Claims 7 or 8] Claim 7, characterized in that the pressure balancing system is constituted by a balancing recipient [recipients (R1, R2, R3, R4) respectively] associated with each area [(I, II, III, IV)] and which balancing recipients are connected to each of the streams of diluent [(D)] and of solvent [(S)] respectively entering and leaving each downstream area, in the direction of circulation of the solvent [(S)].
- (Once Amended) The Device according to Claim 9, characterized in that the interface between the diluent [(D)] and the solvent [(S)] is maintained stable by means of a system for measuring the respective levels [(N1, N2, N3, N4)] of the balancing recipients [(R1, R2, R3, R4)] acting on the flowrate regulation of the corresponding pump [(P1, P2, P3, P4)].