

Cálculo Avanzado - Teorema de Baire

Primer cuatrimestre de 2020

Daniel Carando

Dto. de Matemática - FCEN - UBA

En esta clase veremos algunas consecuencias del Teorema de Baire.

Teorema de Baire 1

En un espacio métrico completo, la unión numerable de conjuntos cerrados con interior vacío tiene interior vacío.

Teorema de Baire 1

En un espacio métrico completo, la unión numerable de conjuntos cerrados con interior vacío tiene interior vacío.

Definición

Un conjunto $A \subset E$ se dice nunca denso si $(\overline{A})^{\circ} = \emptyset$

Teorema de Baire 1

En un espacio métrico completo, la unión numerable de conjuntos cerrados con interior vacío tiene interior vacío.

Definición

Un conjunto $A \subset E$ se dice nunca denso si $(\overline{A})^{\circ} = \emptyset$

Teorema de Baire 2

En un espacio métrico completo, la unión de numerables conjuntos nunca densos tiene interior vacío.

Teorema de Baire 1

En un espacio métrico completo, la unión numerable de conjuntos cerrados con interior vacío tiene interior vacío.

Definición

Un conjunto $A \subset E$ se dice nunca denso si $(\overline{A})^{\circ} = \emptyset$

Teorema de Baire 2

En un espacio métrico completo, la unión de numerables conjuntos nunca densos tiene interior vacío.

Definición

Un subconjunto A de un e.m. completo E se dice magro (o de primera categoría) si es una unión numerable de conjuntos nunca densos.

Un subconjunto A de un e.m. completo E se dice magro (o de primera categoría) si es una unión numerable de conjuntos nunca densos.

Un subconjunto A de un e.m. completo E se dice magro (o de primera categoría) si es una unión numerable de conjuntos nunca densos.

Ejercicio

La unión de numerables conjuntos magros es un conjunto magro.

Un subconjunto A de un e.m. completo E se dice magro (o de primera categoría) si es una unión numerable de conjuntos nunca densos.

Ejercicio

La unión de numerables conjuntos magros es un conjunto magro.

Teorema de Baire 3 (teo. 11.2.9 del apunte)

Si (E, d) es un espacio métrico completo, toda intersección numerable de conjuntos que son abiertos y densos, es densa en E.

MAGEO - 1 Chier o Placo en Ecompleto
68 dens o grande!

ACE residual o generio si A contrara un 68
derno

Un subconjunto A de un e.m. completo E se dice magro (o de primera categoría) si es una unión numerable de conjuntos nunca densos.

Ejercicio

La unión de numerables conjuntos magros es un conjunto magro.

Teorema de Baire 3 (teo. 11.2.9 del apunte)

Si (E, d) es un espacio métrico completo, toda intersección numerable de conjuntos que son abiertos y densos, es densa en E.

en E Conjecto

Ejercicio

• \mathbb{Q} es magro pero no es nunca dens ϕ . ¿Es un G_{δ} ?

 \mathbb{I} es un \textit{G}_{δ} denso. ¿Es magro?.

¿Puede un conjunto ser tanto magro como G_δ denso?

alculo Avanzado Daniel Carando DM-FCEN-UBA

Observación

Si (E, d) es un espacio métrico completo sin puntos aislados, entonces el cardinal de E mayor (estricto) que \aleph_0 .

Cálculo Avanzado

Daniel Carando

DM-FCEN-UBA

Observación

Si (E, d) es un espacio métrico completo sin puntos aislados, entonces el cardinal de E mayor (estricto) que \aleph_0 .

Ejercicio

Si (E,d) es un espacio métrico completo, y $E = \bigcup_{n \in \mathbb{N}} F_n$ con F_n cerrado para cada n. Entonces $G = \bigcup_{n \in \mathbb{N}} F_n^\circ$ es un abierto denso en E.

denso: sup. que no =>
$$\exists g \in E, \widetilde{n} > 0/$$

 $B(0, \widetilde{n}) \cap G = \emptyset$
 $\exists g(0, \widetilde{n}) \cap G = \emptyset$

Ejemplo

En C([0,1]), el conjunto de funciones que no son derivables en ningún punto \bowtie un G_δ denso.

EjemploUna base (algebraica) de C([0,1]) tiene cardinal mayor que \aleph_0 .

C(0,1) es un especio vectorial.

Tient una base.

CON966

Com Baire () cosas que verenos mas

2000 adelante) se re que la lase

es més que numerable.

Ejemplo

Una base (algebraica) de C([0,1]) tiene cardinal mayor que \aleph_0 .

Ejemplo

Sean (E,d) es un espacio métrico completo, y $f_n: E \to E'$, continuas en E, que convergen puntualmente a $f: E \to E'$. Entonces el conjunto de discontinuidades de f es un conjunto magro.

Ejemplo

Una base (algebraica) de C([0,1]) tiene cardinal mayor que \aleph_0 .

Ejemplo

Sean (E,d) es un espacio métrico completo, y $f_n: E \to E'$, continuas en E, que convergen puntualmente a $f: E \to E'$. Entonces el conjunto de discontinuidades de f es un conjunto magro.

Ejemplo

No hay ninguna función $f:\mathbb{R} \to \mathbb{R}$ que sea discontinua exactamente en \mathbb{Q} .

EJ DE LA PRACTICA