1 Differentiaalvergelijkingen

Belangrijk: maak een onderscheid tussen lineaire en niet-lineaire differentiaalvergelijking. De oplossingsmethode verschilt en het is dus belangrijk van in het begin te kijken met welk geval we te maken hebben.

1.1 Lineaire differentiaalvergelijking

Voor de algemene oplossing van Ly = f geldt altijd: $y_{algemeen} = y(x) = y_p + \sum_{i=1}^{n} c_i y_i$ waarin y_i met i = 1..n een fundamenteel stel vormt.

willekeurige coefficienten, eerste orde $y' = a(x)y + b(x)$			
(scheiding der veranderlijken)			
$y_H = Cy_1(t) = C \exp\left(\int_{x_0}^x a(t)dt\right)$	$y_P = C(x) \exp\left(\int_{x_0}^x \frac{b(t)}{y_1(t)} dt\right)$		
constante coefficienten, willekeurig orde $p(D)y = f$			
homogeen	partikulier		
\rightarrow bepaal fundamenteel stel	f zelf oplossing van een of andere $p(D)y = 0$	anders	
(zie Tabel 1.1 op pagina 19)	\rightarrow 'methode on bepaalde coefficienten'	\rightarrow 'variatie van de constante'	
	$f(x) = P_m(x)e^{\alpha x}\cos(\beta x) + Q_m(x)e^{\alpha x}\sin(\beta x)$	functie van Green $K(x,t)$	
	$f(x) = P_m(x)e^{\alpha x}\cos(\beta x) + Q_m(x)e^{\alpha x}\sin(\beta x)$ $y_P = x^l\left[()e^{\alpha x}\cos(\beta x) + ()e^{\alpha x}\sin(\beta x)\right]$	$y_P = \int_{x_0}^x K(x,t) \frac{f(t)}{a_0(t)} dt$	
Euler differentiaalvergelijking			

(veranderlijke coefficienten, willekeurige orde, speciaal geval)

1.2 Niet-Lineaire differentiaalvergelijkingen

Het beginwaardeprobleem y' = f(x, y) met $y(x_0) = y_0$ heeft een unieke oplossing.

Bernouilli differentiaalvergelijking $y' = a(x)y + b(x)y^{\alpha}$				
pas transformatie $y=z^{\beta}$ toe met $\beta=\frac{1}{1-\alpha}$				
los de nieuwe (lineaire) differentiaalvergelijkin op				
differentiaalvergelijking $Mdx + Ndy = 0$				
(I) 'scheiding van de veranderlijken'	(II) 'exacte differentiaalvergerlijking'	(III) 'integrerende factor'		
(speciaal geval)	indien $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ geldt $G(x,y) = C$	indien $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$		
integreer $Mdx + Ndy = 0$	(G is implicite voortelling oplossing)	kies factor $P(x)$		
en werk verder uit	$\rightarrow G = \int M dx + F(y) \text{ en } \frac{\partial G}{\partial y} = N$	ga naar (II)		
	$\rightarrow G = \int Ndy + F(x) \text{ en } \frac{\partial G}{\partial yx} = M$			
oplossing via parametrisatie				
mogelijke toepassingen				
stroomlijnen	orthogonale krommen	steilste-hellingspad		

Bij het opstellen van dit overzicht werd gebruik gemaakt van [1]

References

[1] Stefan Vandewalle and L Beernaert. Analyse II: Cursustekst. SVB Janssen, Leuven, 2de herz. dr. edition, 2018.