ILOCZYN SKALARNY I WEKTOROWY

1. Iloczyn skalarny

Iloczyn skalarny wektorów $A=[a_1, a_2, ..., a_n]$ i $B=[b_1, b_2, ..., b_n] \in \mathbb{R}^n$ wyrażany jest wzorem:

$$A \circ B = \sum_{k=1}^{n} a_k * b_k$$

$$A \circ B = ab \cos \alpha$$
, gdzie

$${\bf a}=\sqrt{a_1^2+a_2^2+...+a_n^2}$$
 , ${\bf b}=\sqrt{b_1^2+b_2^2+...+b_n^2}$, ${\bf \alpha}$ jest kątem miedzy wektorami A i B

Z parzystości funkcji cosinus ($\cos \alpha = \cos (-\alpha)$) wynika, że iloczyn skalarny jest przemienny, tzn:

$$A \circ B = B \circ A = ab \cos \alpha = ba \cos \alpha$$

Przez porównanie dwóch powyższych wzorów możemy wyznaczyć wyrażenie na wartość kąta

między wektorami A i B: $\cos \alpha = \frac{a_1b_1 + a_2b_2 + ... + a_nb_n}{ab}$

Wektory A i B są prostopadłe, gdy $A \circ B = 0$

2. Iloczyn wektorowy

Iloczyn wektorowy to operacja, w wyniku której powstaje nowy wektor. Iloczyn wektorów A i B:

$$V = A \times B$$

Iloczyn wektorowy ma sens tylko w R³.

Wektor V spełnia warunki:

- 1) V jest wektorem prostopadłym do A i do B (V jest prostopadły do płaszczyzny rozpiętej na wektorach A i B)
- 2) jego długość jest równa polu równoległoboku rozpiętego na wektorach A i B, tzn. $|V| = |A| \cdot |B| \cdot \sin \alpha$, gdzie α jest kątem miedzy wektorami A i B
- 3) orientacja trójki wektorów A, B, V jest zgodna z orientacja układu współrzędnych OXYZ

Iloczyn wektorowy NIE JEST przemienny: $A \times B = -B \times A$.

Dodatkowo:
$$(k^*A) \times B = k (A \times B)$$
 $A \times (B+C) = A \times B + A \times C$ $A \times A = 0$

Wektory A i B są **równoległe**, gdy $A \times B = 0$

Składowe wektora $V = A \times B$ obliczamy następująco:

$$A \times B = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 Przykład: A=[1,2,3]^T, B=[3,2,-1]^T
$$V = A \times B = \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 3 & 2 & -1 \end{vmatrix} = \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 3 & 2 & -1 \end{vmatrix}$$

$$=i*2*(-1) + j*3*3 + k*1*2 - (k*2*3 + i*3*2 + j*1*(-1)) = -8i + 10j - 4k \implies V = \begin{bmatrix} -8\\10\\-4 \end{bmatrix}$$

3. Prosta i płaszczyzna

Równania prostej na płaszczyźnie: Ax + By + C = 0, równanie parametryczne $-x = a_1t + b1$, $y=a_2t + b2$ Równanie płaszczyzny w R^3 : Ax + By + Cz + D = 0 Równanie prostej w R³:

• prosta powstaje z przecięcia dwóch płaszczyzn, więc definiuje ją układ równań

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_2 = 0 \end{cases}$$

• równanie parametryczne: $x = a_1t + b_1$, $y=a_2t + b_2$, $z = a_3t + b_3$

Odległość punktu (x₀,y₀) od prostej o równaniu Ax + By + C = 0 = $\frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$

Odległość punktu (x₀,y₀,z₀) od płaszczyzny o równaniu Ax + By + Cz + D = 0 =
$$\frac{\left|Ax_0 + By_0 + Cz_0 + D\right|}{\sqrt{A^2 + B^2 + C^2}}$$

4. Objętość bryły

Objętość bryły rozpiętej na 3 wektorach określa się wzorem:

$$|V| = |(v_1, v_2, v_3)|$$
 $|V| = |(A \times B) \circ C|$

$$(v_1, v_2, v_3) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

5. Zastosowania w informatyce

Powyższe operacje mają największe zastosowanie w grafice wektorowej.