

2013—2014 学年第一学期 《线性代数》期末试卷

答案与评分标准

专业班级 _	
姓 名	
学 号	
开课系室	应用数学系
考试日期	2013年11月24日

页号	1	=	111	四	五.	总分
本页满分	30	16	16	24	14	
本页得分						
阅卷人						

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废;

一. 填空题(共5小题,每小题3分,共计15分)

1. 矩阵
$$A = \begin{bmatrix} 0 & -1 & 3 \\ 2 & -4 & 1 \\ 4 & 5 & 7 \end{bmatrix}$$
, 则 $R(A) = \underbrace{}_{}$.

- 2. 设 3 阶矩阵 A 的特征值为 1, 2, 3,则 $A^2 + E$ 的特征值为 2,5,10 .
- 3. 若四阶方阵 A 的秩等于 2,则 $R(A^*) = 0$.
- 4. 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 2x_1x_2 + 4x_2x_3$ 的矩阵为 $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$
- 5. 从 R^2 的基 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 到基 $\beta_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 的过渡矩阵为 $\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$.
- 二. 选择题(共5小题,每小题3分,共计15分)
- 1. 已知2n阶行列式D的某一列元素及其余子式都等于a,则D=(A).
 - **A.** 0:
- B. a^2 ; C. $-a^2$; D. na^2 .
- 2. 已知三阶方阵 A 和 B 满足 |A| = |B| = 2 ,则 |2AB| = (D).
 - A. 2^2 :
- B. 2^3 ; C. 2^4 ; D. 2^5 .
- 3. 已知 A 和 B 均为 5 阶方阵,且 R(A) = 4, R(B) = 5,则 R(AB) = (D).
- A. 1; B. 2; C. 3; D. 4.
- 4. 设A 是n 阶方阵,|A|=2, A^* 是A 的伴随矩阵,则行列式 $|A^*|=(C)$.
 - A. 2;

- B. 2^n ; C. 2^{n-1} ; D. 前面选项都不对.
- 5. 若向量组 α , β , γ 线性无关, α , β , δ 线性相关,则($\mathbb C$).
 - A. α 必可由 β , γ , δ 线性表示; B. β 必可由 α , γ , δ 线性表示;

 - C. δ 必可由 α , β , γ 线性表示; D. δ 必不可由 α , β , γ 线性表示.

三. 计算下列各题 (共4小题,每小题8分,共计32分)

1. 计算行列式
$$D =$$
103 100 204 199 200 395 301 300 600

解:

$$\begin{vmatrix} 3 & 100 & 4 \\ -1 & 200 & -5 \\ 1 & 300 & 0 \end{vmatrix} = 100 \begin{vmatrix} 3 & 1 & 4 \\ -1 & 2 & -5 \\ 1 & 3 & 0 \end{vmatrix}$$
$$= 100 \begin{vmatrix} 3 & -8 & 4 \\ -1 & 5 & -5 \\ 1 & 0 & 0 \end{vmatrix} = 100 \begin{vmatrix} -8 & 4 \\ 5 & -5 \end{vmatrix}$$
$$= 2000$$

LL 8 分

2. 求
$$A$$
的逆矩阵,其中矩阵 $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -2 & 0 & 0 \end{bmatrix}$.

解:

$$|A| = -2$$
 LL 2 $\%$

$$A^* = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ -2 & -4 & -3 \end{bmatrix}$$
 LL6 $\%$

$$A^{-1} = -\frac{1}{2} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 1 \\ -2 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\frac{1}{2} \\ 0 & -1 & -\frac{1}{2} \\ 1 & 2 & \frac{3}{2} \end{bmatrix}$$
LL8分

3. 验证
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 是 R^3 的基,并求

$$\alpha = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$
 在这组基下的坐标.

解:

$$\begin{pmatrix}
1 & 1 & 1 & 3 \\
1 & 0 & 0 & 4 \\
1 & -1 & 1 & 3
\end{pmatrix}
:
\begin{pmatrix}
1 & 1 & 1 & 3 \\
0 & -1 & -1 & 1 \\
0 & -2 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{pmatrix}$$

$$\alpha = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$
在这组基下的坐标为 4, 0, -1 L 8 分

LL 6分

4. 求解方程组

$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1, \\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0. \end{cases}$$

解:

$$\begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 3 & -1 & -3 & 4 & 4 \\ 1 & 5 & -9 & -8 & 0 \end{pmatrix} : \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 0 & -4 & 6 & 7 & 1 \\ 0 & 4 & -6 & -7 & -1 \end{pmatrix}$$

$$: \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 0 & -4 & 6 & 7 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} : \begin{pmatrix} 1 & 1 & -3 & -1 & 1 \\ 0 & 1 & -\frac{3}{2} & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$: \begin{pmatrix} 1 & 0 & -\frac{3}{2} & -\frac{3}{4} & \frac{5}{4} \\ 0 & 1 & -\frac{3}{2} & -\frac{7}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 = \frac{3}{2}x_3 + \frac{3}{4}x_4 + \frac{5}{4} \\ x_2 = \frac{3}{2}x_3 + \frac{7}{4}x_4 - \frac{1}{4} \end{cases}$$

即:

$$\xi_{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ 0 \end{pmatrix}, \xi_{2} = \begin{pmatrix} \frac{3}{4} \\ \frac{7}{4} \\ 0 \\ 1 \end{pmatrix}, \eta^{*} = \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{4} \\ 0 \\ 0 \end{pmatrix}$$

$$x = k_{1} \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ 1 \\ 0 \end{pmatrix} + k_{2} \begin{pmatrix} \frac{3}{4} \\ \frac{7}{4} \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{4} \\ 0 \\ 0 \end{pmatrix}, k_{1}.k_{2} \in R$$

四. 求解下列各题(共3小题,每小题8分,共计24分)

1. 设矩阵 A 满足 $A^2 - 3A - 2E = 0$, 证明 A 可逆,并求 A^{-1} . 解:

$$A(A-3E) = 2E,$$

$$A\left(\frac{A-3E}{2}\right) = E,$$

$$A^{-1} = \frac{A-3E}{2}$$

LL 6 分

LL 8 分

2. 设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1 = \alpha_1 - \alpha_2 + 2\alpha_3$, $\beta_2 = \alpha_2 - \alpha_3$, $\beta_3 = 2\alpha_1 - \alpha_2 + 3\alpha_3$,讨论向量组 $\beta_1, \beta_2, \beta_3$ 的线性相关性.

解: 设 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$, 即:

$$k_{1}(\alpha_{1} - \alpha_{2} + 2\alpha_{3}) + k_{2}(\alpha_{2} - \alpha_{3}) + k_{3}(2\alpha_{1} - \alpha_{2} + 3\alpha_{3}) = 0$$

$$k_{1}(\alpha_{1} - \alpha_{2} + 2\alpha_{3}) + k_{2}(\alpha_{2} - \alpha_{3}) + k_{3}(2\alpha_{1} - \alpha_{2} + 3\alpha_{3}) = 0$$

$$(k_{1} + 2k_{3})\alpha_{1} + (-k_{1} + k_{2} - k_{3})\alpha_{2} + (2k_{1} - k_{2} + 3k_{3})\alpha_{3} = 0$$
LL 2

因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,所以

$$\begin{cases} k_1 + 2k_3 = 0 \\ -k_1 + k_2 - k_3 = 0 \end{cases}$$
 L L 4 2 $k_1 - k_2 + 3k_3 = 0$

因为

$$\begin{vmatrix} 1 & 0 & 2 \\ -1 & 1 & -1 \\ 2 & -1 & 3 \end{vmatrix} = 0$$
 LL6分

所以上述方程组有非零解,即: β_1,β_2,β_3 线性相关。

LL 8 分

3. 证明
$$n$$
 阶行列式 $D_n = \begin{vmatrix} x & a & L & a \\ a & x & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix} = [x + (n-1)a](x-a)^{n-1}.$

解:

 $= [x + (n-1)a](x-a)^{n-1}$

$$D_{n} = \begin{vmatrix} x & a & L & a \\ a & x & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix}$$

$$= \begin{vmatrix} x + (n-1)a & x + (n-1)a & L & x + (n-1)a \\ a & x & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix}$$

$$= [x + (n-1)a] \begin{vmatrix} 1 & 1 & L & 1 \\ a & x & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix} = \begin{vmatrix} 1 & 1 & L & 1 \\ 0 & x - a & L & a \\ M & M & M \\ a & a & L & x \end{vmatrix}$$

LL 8 分

五、(14分)

求一个正交变换,将二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_2x_3$ 化为标准形.

解: 二次型的矩阵为
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 LL1分

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 2 - \lambda & 1 \\ 0 & 1 & 2 - \lambda \end{vmatrix}$$
$$= -\left(1 - \lambda\right)^{2} (\lambda - 3)$$

$$\lambda_1 = \lambda_2 = 1, \lambda_3 = 3$$
 L L 4 分

当 $\lambda_1 = \lambda_2 = 1$,代入(A - E)x = 0得:

$$A - E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} : \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $x_2 = -x_3$

基础解系为:
$$\xi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\xi_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ LL8分

当
$$\lambda_3 = 3$$
 代入 $(A-3E)x = 0$ 得:

$$A - 3E = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = 0, x_2 = x_3$$

基础解系为:
$$\xi_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 L L 10 分

 ξ_1,ξ_2,ξ_3 两两正交,下面把它们单位化,得:

$$\eta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \quad \eta_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad$$
得:

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

通过正交变换:

$$y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} x$$
,二次型化为 $f = -y_1^2 - y_2^2 + 3y_3^2$ L L 14 分