Класи складності за пам'яттю

Андрій Фесенко

Означення

Означення

Просторовою складністю обчислень багатострічкової ДМТ M з вхідним словом $x \in \{0,1\}^*$, на якому вона зупиняється, називають кількість різних комірок, які зчитують зчитувальні пристрої на всіх робочих стрічках ДМТ M під час роботи з вхідним словом x. Просторовою складністю обчислень багатострічкової НДМТ M на вхідному слові $x \in \{0,1\}^*$, на якому вона зупиняється для будь-якої гілки розгалуження чи будь-якої підказки, називають максимальну кількість різних комірок, які зчитують зчитувальні пристрої на всіх робочих стрічках НДМТ M під час роботи з вхідним словом x.

• комірки можна використовувати повторно;

Означення

- комірки можна використовувати повторно;
- не враховуються комірки вхідної стрічки;

Означення

- комірки можна використовувати повторно;
- не враховуються комірки вхідної стрічки;
- використані = зчитані комірки;

Означення

- комірки можна використовувати повторно;
- не враховуються комірки вхідної стрічки;
- використані = зчитані комірки;
- іноді вихідна стрічка не враховується з рухом тільки праворуч.

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(s(n))}$.

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

Доведення.

ullet кількість внутрішніх станів — $\mathcal{O}(1)$

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

- ullet кількість внутрішніх станів $\mathcal{O}(1)$
- \bullet вміст вхідної стрічки 2^n

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

- ullet кількість внутрішніх станів $\mathcal{O}(1)$
- \bullet вміст вхідної стрічки 2^n
- позиція на вхідній стрічці n

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

- ullet кількість внутрішніх станів $\mathcal{O}(1)$
- \bullet вміст вхідної стрічки 2^n
- позиція на вхідній стрічці n
- ullet вміст робочих стрічок $-(\mathcal{O}(1))^{s(n)}$

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

- ullet кількість внутрішніх станів $\mathcal{O}(1)$
- \bullet вміст вхідної стрічки 2^n
- позиція на вхідній стрічці n
- ullet вміст робочих стрічок $-(\mathcal{O}(1))^{s(n)}$
- ullet позиції на робочих стрічках $(s(n))^{\mathcal{O}(1)}$

$$\Rightarrow n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$$

Твердження

Якщо (H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$, $s:\mathbb{N}\to\mathbb{N}$, то кількість різних конфігурацій (H)ДМТ M з вхідним словом довжини n дорівнює $n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$.

Доведення.

- ullet кількість внутрішніх станів $\mathcal{O}(1)$
- ullet вміст вхідної стрічки 2^n
- позиція на вхідній стрічці п
- ullet вміст робочих стрічок $-(\mathcal{O}(1))^{s(n)}$
- ullet позиції на робочих стрічках $-(s(n))^{\mathcal{O}(1)}$

$$\Rightarrow n2^n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$$

Наслідок

(H)ДМТ M використовує пам'ять $\mathcal{O}(s(n))$ — зупиняється

Класи складності DSPACE та NSPACE

Означення

Для довільної функції $s:\mathbb{N}\to\mathbb{N}$ класом складності DSPACE(s(n)) (або SPACE(s(n))) є множина мов $\{L_1\subseteq\{0,1\}^*\mid$ існує ДМТ M, яка розв'язує мову L_1 , використовуючи пам'ять $O(s(n))\}$. Для довільної функції $s:\mathbb{N}\to\mathbb{N}$ класом складності NSPACE(s(n)) є множина мов $\{L_1\subseteq\{0,1\}^*\mid$ існує НДМТ M, яка розв'язує мову L_1 , використовуючи пам'ять $O(s(n))\}$.

Класи складності DSPACE та NSPACE

Твердження

Нехай $s:\mathbb{N}\to\mathbb{N}$ є довільною конструктивною за пам'яттю функцією. Тоді

 $DTIME(s(n)) \subseteq DSPACE(s(n)) \subseteq NSPACE(s(n)) \subseteq DTIME(2^{O(S(n))}).$

Доведення.

 $DTIME(s(n))\subseteq DSPACE(s(n))$ — кількість тактів завжди є меншою $DSPACE(s(n))\subseteq NSPACE(s(n))$ — детермінована машина завжди є частковим випадком недетермінованої $NSPACE(s(n))\subseteq DTIME(2^{\mathcal{O}(S(n))})$ — перебір підказки та обмеження конфігурацій

Класи складності за пам'яттю

Означення

```
PSPACE = \bigcup DSPACE(n^k)
NPSPACE = \bigcup NSPACE(n^k)
EXPSPACE = \bigcup DSPACE(2^{n^k})
NEXPSPACE = \bigcup NSPACE(2^{n^k})
L = DSPACE(\log n)
L^2 = DSPACE((\log n)^2)
NL = NSPACE(\log n)
REG = SPACE(\mathcal{O}(1)) = NSPACE(\mathcal{O}(1))
POLYLOGSPACE = \bigcup DSPACE(\log n^k)
                       k \in \mathbb{N}, k > 1
DLBA = \bigcup DSPACE(kn)
          k \in \mathbb{N}, k > 1
LBA = \bigcup NSPACE(kn)
        k \in \mathbb{N}, k \ge 1
```

Класи складності за пам'яттю

Наслідок

 $REG \subseteq L \subseteq L^2 \subseteq POLYLOGSPACE \subseteq DLBA \subseteq LBA.$ $L \subseteq NL \subseteq P \subseteq PSPACE \subseteq NPSPACE \subseteq EXP \subseteq EXPSPACE \subseteq NEXPSPACE$

Мова РАТН

Означення

Мову $PATH \subseteq \{0,1\}^*$ визначають як $PATH = \{(G,s,t) \mid$ існує шлях з вершини s у вершину t орієнтованого графу $G\}$.

Мова РАТН

Твердження

 $PATH \in L^2$.

Доведення.

- *PATH LIM* = $\{(G, s, t, k) \mid \text{ існує шлях довжини не більше } k$ з вершини s у вершину t орієнтованого графу $G\}$
- $(G, s, t) \in PATH \Leftrightarrow (G, s, t, n 1) \in PATH LIM$
- $(G, s, t, 0) \in PATH LIM \Leftrightarrow s = t$
- $(G, s, t, 1) \in PATH \ LIM \Leftrightarrow s = t \ abo \ (s, t) \in E$
- $(G, s, t, k) \in PATH\ LIM \Leftrightarrow$ існує така вершина u графу G, що $(G, s, u, \left\lfloor \frac{k}{2} \right\rfloor) \in PATH\ LIM$ і $(G, u, t, \left\lceil \frac{k}{2} \right\rceil) \in PATH\ LIM$
- перебрати всі вершини чи не є вони серединою (рекурсивний пошук в глибину)
- \bullet глибина рекурсії $\mathcal{O}(\log n)$
- ullet збереження локальних параметрів $\mathcal{O}(\log n)$ комірок пам'яті.

8

Walter J. Savitch "Relationships between nondeterministic and deterministic tape complexities— Journal of Computer and System Sciences, 4 (2): 177–192, 1970

Теорема Севіча

Для довільної конструктивної за пам'яттю функції $s: \mathbb{N} \to \mathbb{N}$, $s(n) \geq \log n$, $NSPACE(s(n)) \subseteq DSPACE\left((s(n))^2\right)$.

9

Walter J. Savitch "Relationships between nondeterministic and deterministic tape complexities— Journal of Computer and System Sciences, 4 (2): 177–192, 1970

Теорема Севіча

Для довільної конструктивної за пам'яттю функції $s: \mathbb{N} \to \mathbb{N}$, $s(n) \ge \log n$, $NSPACE(s(n)) \subseteq DSPACE\left((s(n))^2\right)$.

Доведення.

 $orall x \in \{0,1\}^*$, |x|=n, і НДМТ M граф конфігурацій містить $n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$ вершин

Walter J. Savitch "Relationships between nondeterministic and deterministic tape complexities— Journal of Computer and System Sciences, 4 (2): 177–192, 1970

Теорема Севіча

Для довільної конструктивної за пам'яттю функції $s: \mathbb{N} \to \mathbb{N}$, $s(n) \geq \log n$, $NSPACE(s(n)) \subseteq DSPACE((s(n))^2)$.

Доведення.

 $\forall x \in \{0,1\}^*, \ |x|=n, \ \mathrm{i} \ \mathrm{HДМТ} \ \mathit{M}$ граф конфігурацій містить $n(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$ вершин для такого графу PATH розв'язується ДМТ з $\mathcal{O}((s(n))^2)$ пам'яті

9

Walter J. Savitch "Relationships between nondeterministic and deterministic tape complexities— Journal of Computer and System Sciences, 4 (2): 177–192, 1970

Теорема Севіча

Для довільної конструктивної за пам'яттю функції $s: \mathbb{N} \to \mathbb{N}$, $s(n) \geq \log n$, $NSPACE(s(n)) \subseteq DSPACE((s(n))^2)$.

Доведення.

 $\forall x \in \{0,1\}^*, \ |x|=n, \ \text{i} \ \mathsf{HДМТ} \ \mathit{M} \ \mathsf{граф} \ \mathsf{конфігурацій} \ \mathsf{містить} \ \mathit{n}(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))} \ \mathsf{вершин}$ для такого графу PATH розв'язується $\mathit{ДМТ} \ \mathsf{3} \ \mathcal{O}((s(n))^2)$ пам'яті одна початкова конфігурація і не більше $\mathit{n}(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$ заключних з q_{acc}

9

Walter J. Savitch "Relationships between nondeterministic and deterministic tape complexities— Journal of Computer and System Sciences, 4 (2): 177–192, 1970

Теорема Севіча

Для довільної конструктивної за пам'яттю функції $s: \mathbb{N} \to \mathbb{N}$, $s(n) \geq \log n$, $NSPACE(s(n)) \subseteq DSPACE((s(n))^2)$.

Доведення.

 $\forall x \in \{0,1\}^*, \ |x| = n, \ \text{i} \ \mathsf{HДМТ} \ \mathit{M} \ \mathsf{граф} \ \mathsf{конфігурацій} \ \mathsf{містить} \ \mathit{n}(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))} \ \mathsf{вершин}$ для такого графу PATH розв'язується $\mathit{ДМТ} \ \mathsf{3} \ \mathcal{O}((s(n))^2)$ пам'яті одна початкова конфігурація і не більше $\mathit{n}(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$ заключних з $\mathit{q}_{\mathit{acc}}$ перебираємо всі $\mathit{n}(s(n))^{\mathcal{O}(1)}2^{\mathcal{O}(s(n))}$ екземплярів задачі PATH

Теорема Севіча (наслідки)

Наслідок

- PSPACE = NPSPACE.
- \bullet NP \subseteq PSPACE.

Клас складності *PSPACE*

Клас складності PSPACE є замкненим відносно операцій

- об'єднання мов
- конкатенації мов
- доповнення мови
- замикання Кліні

Клас складності PSPACE є замкненим відносно поліноміального зведення

 $L_1 \leq_p L_2, \ L_2 \in \textit{PSPACE} \Rightarrow L_1 \in \textit{PSPACE}$

 $SPACETM = \{(M, x, 1^n) \mid ДМТ \ M$ приймає слово x, використовуючи n комірок пам'яті $\}$

 $SPACETM = \{(M, x, 1^n) \mid ДМТ \ M$ приймає слово x, використовуючи n комірок пам'яті $\}$

Твердження

SPACETM є PSPACE-повною мовою

 $SPACETM = \{(M,x,1^n) \mid \text{ДМТ } M \text{ приймає слово } x, \text{ використовуючи } n \text{ комірок пам'яті } \}$

Твердження

SPACETM є PSPACE-повною мовою

Булева формула з кванторами

$$Q_1x_1 \dots Q_nx_n \ \varphi(x_1, \dots, x_n), \ Q_i \in \{\forall, \exists\}.$$

 $SPACETM = \{(M, x, 1^n) \mid ДМТ \ M$ приймає слово x, використовуючи n комірок пам'яті $\}$

Твердження

 $SPACETM \in PSPACE$ -повною мовою

Булева формула з кванторами

$$Q_1x_1\ldots Q_nx_n \ \varphi(x_1,\ldots,x_n), \ Q_i\in\{\forall,\exists\}.$$

Приклади

- SAT

 $SPACETM = \{(M, x, 1^n) \mid ДМТ \ M \ приймає слово x, використовуючи n комірок пам'яті <math>\}$

Твердження

 $SPACETM \in PSPACE$ -повною мовою

Булева формула з кванторами

 $Q_1x_1\ldots Q_nx_n \ \varphi(x_1,\ldots,x_n), \ Q_i\in\{\forall,\exists\}.$

Приклади

- SAT

Мова TQBF — всі істинні булеві формули з кванторами

Твердження

 $TQBF \in PSPACE$ -повною мовою

Твердження

 $TQBF \in PSPACE$ -повною мовою

QBF гра є PSPACE-повною мовою

Твердження

 $TQBF \in PSPACE$ -повною мовою

QBF гра є PSPACE-повною мовою

сертифікат в NP= виграшна стратегія в грі для 2 гравців з повною інформацією (шахи, го, навколишнє середовище і тд.)

Клас складності NL

Клас складності NL є замкненим відносно операцій

- об'єднання мов
- перетину мов
- конкатенації мов
- замикання Кліні

Клас складності NL

Клас складності NL є замкненим відносно операцій

- об'єднання мов
- перетину мов
- конкатенації мов
- замикання Кліні

Поліноміальне зведення не має сенсу використовувати — $\mathit{NL} \subseteq \mathit{P}$, L vs NL

Означення

Довільну функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають поліноміально обмеженою, якщо існує така константа $c\in\mathbb{N}$, що для довільного значення $x\in\{0,1\}^*$ виконується нерівність $|f(x)|<|x|^c$. Довільну поліноміально обмежену функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають (неявно) обчислюваною з використанням логарифмічно обмеженої пам'яті, якщо мови $L_{f,b}=\{(x,i)\mid f(x)_i=1\}$ і $L_{f,l}=\{(x,i)\mid i\leq |f(x)|\}$ належать класу складності L.

Означення

Довільну функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають поліноміально обмеженою, якщо існує така константа $c\in\mathbb{N}$, що для довільного значення $x\in\{0,1\}^*$ виконується нерівність $|f(x)|<|x|^c$. Довільну поліноміально обмежену функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають (неявно) обчислюваною з використанням логарифмічно обмеженої пам'яті, якщо мови $L_{f,b}=\{(x,i)\mid f(x)_i=1\}$ і $L_{f,l}=\{(x,i)\mid i\leq |f(x)|\}$ належать класу складності L.

Неформально

ДМТ з $\mathcal{O}(\log n)$ пам'яттю обчислює будь-який біт результату

Означення

Довільну функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають поліноміально обмеженою, якщо існує така константа $c\in\mathbb{N}$, що для довільного значення $x\in\{0,1\}^*$ виконується нерівність $|f(x)|<|x|^c$. Довільну поліноміально обмежену функцію $f:\{0,1\}^* \to \{0,1\}^*$ називають (неявно) обчислюваною з використанням логарифмічно обмеженої пам'яті, якщо мови $L_{f,b}=\{(x,i)\mid f(x)_i=1\}$ і $L_{f,l}=\{(x,i)\mid i\leq |f(x)|\}$ належать класу складності L.

Неформально

ДМТ з $\mathcal{O}(\log n)$ пам'яттю обчислює будь-який біт результату

Твердження

Множина обчислюваних з використанням логарифмічно обмеженої пам'яті функцій є замкненою відносно операції композиції функцій. Зведенням з використанням логарифмічно обмеженої пам'яті

Означення

Зведенням з використанням логарифмічно обмеженої пам'яті (logspace reduction) називають зведення функціонального типу відносно множини обчислюваних з використанням логарифмічно обмеженої пам'яті функцій. $L_1 \leq_I L_2 \ \forall x \in \{0,1\}^* \ x \in L_1 \Leftrightarrow f(x) \in L_2.$

Зведенням з використанням логарифмічно обмеженої пам'яті

Означення

Зведенням з використанням логарифмічно обмеженої пам'яті (logspace reduction) називають зведення функціонального типу відносно множини обчислюваних з використанням логарифмічно обмеженої пам'яті функцій. $L_1 \leq_l L_2 \ \forall x \in \{0,1\}^* \ x \in L_1 \Leftrightarrow f(x) \in L_2.$

- ullet класи L, NL, P, NP, PSPACE EXPTIME ullet замкненими відносно зведення \leq_I
- ② довільна нетривіальна мова з класу L є повною відносно зведення \leq_I

Мови PATH та 2-SAT належать класу складності NL.

Доведення.

Для мови PATH НДМТ може недетерміновано вгадувати наступну вершину суміжну з поточною вершиною у шляху,обмежуючи довжину шляху кількістю вершин у графі або, якщо досягли вершину t.

Необхідно зберігати лише довжину поточного шляху та поточну вершину, куди вже дійшли. $\mathcal{O}(\log n)$

Мови *PATH* та 2-*SAT* належать класу складності *NL*.

Доведення.

Для мови PATH НДМТ може недетерміновано вгадувати наступну вершину суміжну з поточною вершиною у шляху,обмежуючи довжину шляху кількістю вершин у графі або, якщо досягли вершину t.

Необхідно зберігати лише довжину поточного шляху та поточну вершину, куди вже дійшли. $\mathcal{O}(\log n)$

 $PATH \in NL$ повною відносно зведення \leq_I

Означення

Мова L_1 належить класу складності NL, якщо існує ДМТ M з додатковою стрічкою, яка є доступною тільки для одноразового зчитування, і поліном $p:\mathbb{N}\to\mathbb{N}$ такі, що для довільного слова $x\in\{0,1\}^*$ виконується співвідношення $x\in L_1\Leftrightarrow \exists u\in\{0,1\}^{p(|x|)}$ таке, що M(x,u)=1, при цьому, при обчисленні M(x,u), слово x записується на вхідній стрічці, яка є доступною тільки для зчитування; слово u записується на додатковій стрічці, яка є доступною тільки для одноразового зчитування, а ДМТ M використовує при обчисленні не більше $\mathcal{O}(\log|x|)$ комірок робочих стрічок для всіх слів x.

Означення

Мова L_1 належить класу складності NL, якщо існує ДМТ M з додатковою стрічкою, яка є доступною тільки для одноразового зчитування, і поліном $p:\mathbb{N}\to\mathbb{N}$ такі, що для довільного слова $x \in \{0,1\}^*$ виконується співвідношення $x \in L_1 \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$ таке, що M(x, u) = 1, при цьому, при обчисленні M(x, u), слово xзаписується на вхідній стрічці, яка є доступною тільки для зчитування; слово u записується на додатковій стрічці, яка є доступною тільки для одноразового зчитування, а ДМТ Mвикористовує при обчисленні не більше $\mathcal{O}(\log |x|)$ комірок робочих стрічок для всіх слів x.

ullet \Rightarrow сертифікатом ϵ послідовність вибору

Означення

Мова L_1 належить класу складності NL, якщо існує ДМТ M з додатковою стрічкою, яка є доступною тільки для одноразового зчитування, і поліном $p:\mathbb{N}\to\mathbb{N}$ такі, що для довільного слова $x\in\{0,1\}^*$ виконується співвідношення $x\in L_1\Leftrightarrow \exists u\in\{0,1\}^{p(|x|)}$ таке, що M(x,u)=1, при цьому, при обчисленні M(x,u), слово x записується на вхідній стрічці, яка є доступною тільки для зчитування; слово u записується на додатковій стрічці, яка є доступною тільки для одноразового зчитування, а ДМТ M використовує при обчисленні не більше $\mathcal{O}(\log|x|)$ комірок робочих стрічок для всіх слів x.

- ullet \Rightarrow сертифікатом ϵ послідовність вибору
- \leftarrow сертифікат обирає функцію переходів

Означення

Мова L_1 належить класу складності NL, якщо існує ДМТ M з додатковою стрічкою, яка є доступною тільки для одноразового зчитування, і поліном $p:\mathbb{N} \to \mathbb{N}$ такі, що для довільного слова $x \in \{0,1\}^*$ виконується співвідношення $x \in L_1 \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$ таке, що M(x, u) = 1, при цьому, при обчисленні M(x, u), слово xзаписується на вхідній стрічці, яка є доступною тільки для зчитування; слово u записується на додатковій стрічці, яка є доступною тільки для одноразового зчитування, а ДМТ Mвикористовує при обчисленні не більше $\mathcal{O}(\log |x|)$ комірок робочих стрічок для всіх слів x.

- ullet \Rightarrow сертифікатом ϵ послідовність вибору
- \leftarrow сертифікат обирає функцію переходів
- без одноразового зчитування буде сертифікат для класу NP

```
для PATH і (G=(V,E),s,t) сертифікатом є послідовність вершин v_1,\ldots,v_n\in V,\ n<|V|, така, що v_1=s,\ v_n=t і (v_i,v_{i+1})\in E,\ i\in\{1,\ldots,n-1\} розмір сертифікату n\log n
```

```
для РАТН і (G=(V,E),s,t) сертифікатом є послідовність вершин v_1,\ldots,v_n\in V,\ n<|V|, така, що v_1=s,\ v_n=t і (v_i,v_{i+1})\in E,\ i\in\{1,\ldots,n-1\} розмір сертифікату n\log n
```

Теорема Іммермана-Селепченьї, (Іmmerman-Szlepcsenyi), 1987

 $\overline{PATH} \in NL$

Доведення.

• C_i — множина вершин графу G, досяжних з вершини s не більш ніж за i ребер

- C_i множина вершин графу G, досяжних з вершини s не більш ніж за i ребер
- ullet $\forall i \in \{1,..,n\}$ і $\forall v \in V$ існує сертифікат, що $v \in C_i$: $u = v_0, v_1, \ldots, v_k$, де $v_0 = s$, $(v_i, v_{i+1}) \in E$, $v_k = v$, $k \leq i$

- C_i множина вершин графу G, досяжних з вершини s не більш ніж за i ребер
- $\forall i \in \{1,..,n\}$ і $\forall v \in V$ існує сертифікат, що $v \in C_i$: $u = v_0, v_1, \ldots, v_k$, де $v_0 = s$, $(v_i, v_{i+1}) \in E$, $v_k = v$, $k \le i$
- дві додаткові процедури:
 - ullet перевірити, що вершина v не належить множині C_i за значенням $|C_i|$

- C_i множина вершин графу G, досяжних з вершини s не більш ніж за i ребер
- ullet $\forall i \in \{1,..,n\}$ і $\forall v \in V$ існує сертифікат, що $v \in C_i$: $u = v_0, v_1, \ldots, v_k$, де $v_0 = s$, $(v_i, v_{i+1}) \in E$, $v_k = v$, $k \leq i$
- дві додаткові процедури:
 - ullet перевірити, що вершина v не належить множині C_i за значенням $|C_i|$
 - ullet перевірити, що $|C_i|=c$ за значенням $|C_{i-1}|$

- C_i множина вершин графу G, досяжних з вершини s не більш ніж за i ребер
- $\forall i \in \{1,..,n\}$ і $\forall v \in V$ існує сертифікат, що $v \in C_i$: $u = v_0, v_1, \ldots, v_k$, де $v_0 = s$, $(v_i, v_{i+1}) \in E$, $v_k = v$, $k \leq i$
- дві додаткові процедури:
 - ullet перевірити, що вершина v не належить множині C_i за значенням $|C_i|$
 - ullet перевірити, що $|C_i|=c$ за значенням $|C_{i-1}|$
- $C_0 = \{s\}$, C_n всі досяжні вершини

Доведення.

- C_i множина вершин графу G, досяжних з вершини s не більш ніж за i ребер
- $\forall i \in \{1,..,n\}$ і $\forall v \in V$ існує сертифікат, що $v \in C_i$: $u = v_0, v_1, \ldots, v_k$, де $v_0 = s$, $(v_i, v_{i+1}) \in E$, $v_k = v$, $k \le i$
- дві додаткові процедури:
 - ullet перевірити, що вершина v не належить множині C_i за значенням $|C_i|$
 - ullet перевірити, що $|C_i|=c$ за значенням $|C_{i-1}|$
- $C_0 = \{s\}$, C_n всі досяжні вершини
- ullet \Rightarrow друга процедура до C_n , а потім перша відносно $|C_n|$ і t

20

Доведення.

1) вершина v не належить множині C_i за значенням $|C_i|$ Сертифікат — сертифікати всіх вершин з множини C_i , впорядковані за зростанням

Перевірка:

- коректність кожного сертифікату
- зростання нумерації
- немає сертифіката для вершини v
- ullet загальна кількість сертифікатів дорівнює $|C_i|$

Доведення.

1) вершина v не належить множині C_i за значенням $|C_i|$ Сертифікат — сертифікати всіх вершин з множини C_i , впорядковані за зростанням

Перевірка:

- коректність кожного сертифікату
- зростання нумерації
- немає сертифіката для вершини v
- ullet загальна кількість сертифікатів дорівнює $|C_i|$

Розмір сертифікату — $n^2 \log n$

Перевірка —
$$\mathcal{O}(\log n)$$

Доведення.

1) вершина v не належить множині C_i за значенням $|C_i|$ Сертифікат — сертифікати всіх вершин з множини C_i , впорядковані за зростанням

Перевірка:

- коректність кожного сертифікату
- зростання нумерації
- немає сертифіката для вершини v
- ullet загальна кількість сертифікатів дорівнює $|C_i|$

Розмір сертифікату — $n^2 \log n$ Перевірка — $\mathcal{O}(\log n)$ вершина v не належить множині C_i за значенням $|C_{i-1}|$

Доведення.

1) вершина v не належить множині C_i за значенням $|C_i|$ Сертифікат — сертифікати всіх вершин з множини C_i , впорядковані за зростанням

Перевірка:

- коректність кожного сертифікату
- зростання нумерації
- ullet немає сертифіката для вершини v
- ullet загальна кількість сертифікатів дорівнює $|C_i|$

Розмір сертифікату — $n^2 \log n$ Перевірка — $\mathcal{O}(\log n)$ вершина v не належить множині C_i за значенням $|C_{i-1}|$ 2) $|C_i|=c$ за значенням $|C_{i-1}|$ — відповідні сертифікати для кожної вершини в порядку зростання

Наслідок

- ullet $\forall s: \mathbb{N} o \mathbb{N}, \ s(n) \geq \log n, \ \mathit{NSPACE}(s(n)) = \mathit{coNSPACE}(s(n))$ (метод доповнення)
- NL = coNL

Діаграма класів складності

Відкриті питання

- \bigcirc $NL \subseteq P$, але чи NL = P?
- \bigcirc $L \subseteq NL$, але чи L = NL?
- \bigcirc NL \subsetneq PSPACE, але чи P = PSPACE?