Prelude

My REU mentor recently bought me the book *Banach Algebra Techniques in Operator Theory*, so I'm going to be reading through it here. Astute readers may already know that I am also reading through the book *Quantum Theory for Mathematicians*, and may be wondering if this is going to crowd out that book. The answer is yes — but I don't really care that much. If I come out of the summer knowing more things than I knew entering, then I will have succeeded.

Banach Spaces

Let X be a compact Hausdorff space, and let C(X) denote the set of continuous functions $f: X \to \mathbb{C}$. For $f_1, f_2 \in C(X)$ and $\lambda \in \mathbb{C}$, we define

- (1) $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- (2) $(\lambda f_1)(x) = \lambda f_1(x)$
- (3) $(f_1f_2)(x) = f_1(x)f_2(x)$

With these operations, C(X) is a commutative algebra with identity over the field \mathbb{C} .

For each $f \in C(X)$, f is bounded (since X is compact and f is continuous); thus, $\sup |f| < \infty$. We call this the norm of f, and denote it

$$||f||_{\infty} = \sup \{|f(x)| \mid x \in X\}.$$

Proposition (Properties of the Norm on C(X)).

- (1) Positive Definiteness: $||f||_{\infty} = 0 \Leftrightarrow f = 0$
- (2) Absolute Homogeneity: $\|\lambda f\|_{\infty} = |\lambda| \|f\|_{\infty}$
- (3) Subadditivity (Triangle Inequality): $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$
- (4) Submultiplicativity: $\|fg\|_{\infty} \le \|f\|_{\infty} \|g\|_{\infty}$

We define a metric ρ on C(X) by $\rho(f,g) = ||f-g||_{\infty}$.

Proposition (Properties of the Induced Metric on C(X)).

- (1) $\rho(f,g) = 0 \Leftrightarrow f = g$
- (2) $\rho(f, g) = \rho(g, f)$
- (3) $\rho(f, h) \le \rho(f, g) + \rho(g, h)$

ⁱA vector space with multiplication.

Proposition (Completeness of C(X)). If X is a compact Hausdorff space, then C(X) is a complete metric space.

Proof. Let $\{f_n\}_{n=1}^{\infty}$ be Cauchy. Then,

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty}$$

= $\rho(f_n, f_m)$

for each $x \in X$. Thus, $\{f_n(x)\}_{n=1}^{\infty}$ is Cauchy for each $x \in X$. We define $f(x) = \lim_{n \to \infty} f_n(x)$. We will need to show that this implies $\lim_{n \to \infty} \|f_n - f\|_{\infty} = 0$.

Let $\varepsilon > 0$; choose N such that $n, m \ge N$ implies $\|f_n - f_m\|_{\infty} < \varepsilon$. For $x_0 \in X$, there exists a neighborhood U such that $|f_N(x_0) - f_N(x)| < \varepsilon$ for $x \in U$. Thus,

$$|f(x_0) - f(x)| = |f_n(x_0) - f_N(x_0) + f_N(x_0) - f_N(x) + f_N(x) - f_n(x)|$$

$$\leq |f_n(x_0) - f_N(x_0)| + |f_N(x_0) - f_N(x)| + |f_N(x) - f_n(x)|$$

$$\leq 3\varepsilon.$$

Thus, f is continuous. Additionally, for $n \ge N$ and $x \in X$, we have

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)|$$

$$\leq \lim_{m \to \infty} ||f_n - f_m||_{\infty}$$

$$\leq \varepsilon.$$

Thus, $\lim_{n\to\infty} \|f_n - f\|_{\infty} = 0$, meaning C(X) is complete.

Definition (Banach Space). A Banach space is a vector space over \mathbb{C} with a norm $\|\cdot\|$ is complete with respect to the induced metric.

Proposition (Properties of the Banach Space Operations). Let \mathcal{X} be a Banach space. The functions

- $a: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{X}; \ a(f,g) = f + g,$
- $s: \mathbb{C} \times \mathcal{X} \to \mathcal{X}; \ s(\lambda, f) = \lambda f,$
- $n: \mathcal{X} \to \mathbb{R}^+$; n(f) = ||f||

are continuous.

Definition (Directed Sets and Nets). Let A be a partially ordered set with ordering \leq . We say A is directed if for each $\alpha, \beta \in A$, there exists a γ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

A net is a map $\alpha \mapsto \lambda_{\alpha}$, where $\alpha \in A$ for some directed set A.

[&]quot;This is by the continuity of $\{f_n\}_n$.

Definition (Convergence of Nets). Let $\{\lambda_{\alpha}\}$ be a net in X. We say the net converges to $\lambda \in X$ if for every neighborhood U of λ , there exists α_U such that for $\alpha \geq \alpha_U$, every λ_{α} is contained in U.ⁱⁱⁱ

Definition (Cauchy Nets in Banach Spaces). A net $\{f_{\alpha}\}_{\alpha}$ in a Banach space \mathcal{X} is said to be a Cauchy net if for every $\varepsilon > 0$, there exists α_0 in A such that $\alpha_1, \alpha_2 \geq \alpha_0$ implies $\|f_{\alpha_1} - f_{\alpha_2}\| < \varepsilon$.

Proposition (Convergence of Cauchy Nets in Banach Spaces). *In a Banach space, every Cauchy net is convergent.*

Proof. Let $\{f_{\alpha}\}_{\alpha}$ be a Cauchy net in \mathcal{X} . Choose α_1 such that $\alpha \geq \alpha_1$ implies $\|f_{\alpha} - f_{\alpha_1}\| < 1$.

We iterate this process by choosing $\alpha_{n+1} \geq \alpha_n$ such that $\alpha \geq \alpha_{n+1}$ implies $\|f_{\alpha} - f_{\alpha_{n+1}}\| < \frac{1}{n+1}$.

The sequence $\{f_{\alpha_n}\}_{n=1}^{\infty}$ is Cauchy, and since \mathcal{X} is complete, there exists $f \in \mathcal{X}$ such that $\lim_{n\to\infty} f_{\alpha_n} = f$.

We must now prove that $\lim_{\alpha \in A} f_{\alpha} = f$. Let $\varepsilon > 0$. Choose n such that $\frac{1}{n} < \frac{\varepsilon}{2}$, and $\|f_{\alpha_n} - f_{\alpha}\| < \frac{\varepsilon}{2}$. Then, for $\alpha \ge \alpha_n$, we have

$$||f_{\alpha} - f|| \le ||f_{\alpha} - f_{\alpha_n}|| + ||f_{\alpha_n} - f||$$

$$< \frac{1}{n} + \frac{\varepsilon}{2}$$

$$< \varepsilon.$$

Definition (Convergence of Infinite Series). Let $\{f_{\alpha}\}_{\alpha}$ be a set of vectors in \mathcal{X} . Let $\mathcal{F} = \{F \subseteq A \mid F \text{ finite}\}.$

Define the ordering $F_1 \leq F_2 \Leftrightarrow F_1 \subseteq F_2$. iv For each F, define

$$g_F = \sum_{\alpha \in F} f_{\alpha}.$$

If $\{g_F\}_{F\in\mathcal{F}}$ converges to some $g\in\mathcal{X}$, then

$$\sum_{\alpha \in A} f_{\alpha}$$

converges, and we write

$$g = \sum_{\alpha \in A} f_{\alpha}$$
.

 $^{^{\}mathrm{iii}}$ The net convergence generalizes sequence convergence in a metric space to the case where X does not have a metric.

ivthe inclusion ordering

Proposition (Absolute Convergence of Series in Banach Space). Let $\{f_{\alpha}\}_{\alpha}$ be a set of vectors in the Banach space \mathcal{X} . Suppose $\sum_{\alpha \in A} \|f_{\alpha}\|$ converges in \mathbb{R} . Then, $\sum_{\alpha \in A} f_{\alpha}$ converges in \mathcal{X} .

Proof. All we need show is $\{g_F\}_{F\in\mathcal{F}}$ is Cauchy. Since $\sum_{\alpha\in A}\|f_\alpha\|$ converges, there exists $F_0\in\mathcal{F}$ such that $F\geq F_0$ implies

$$\sum_{\alpha\in F}\|f_{\alpha}\|-\sum_{\alpha\in F_{0}}\|f_{\alpha}\|<\varepsilon.$$

Thus, for F_1 , $F_2 \ge F_0$, we have

$$||g_{F_1} - g_{F_2}|| = \left\| \sum_{\alpha \in F_1} f_{\alpha} - \sum_{\alpha \in F_2} f_{\alpha} \right\|$$

$$= \left\| \sum_{\alpha \in F_1 \setminus F_2} f_{\alpha} - \sum_{\alpha \in F_2 \setminus F_1} \right\|$$

$$\leq \sum_{\alpha \in F_1 \setminus F_2} ||f_{\alpha}|| + \sum_{\alpha \in F_2 \setminus F_1} ||f_{\alpha}||$$

$$\leq \sum_{\alpha \in F_1 \cup F_2} ||f_{\alpha}|| - \sum_{\alpha \in F_0} ||f_{\alpha}||$$

$$< \varepsilon$$

Thus, $\{g_F\}_{F\in\mathcal{F}}$ is Cauchy, and thus the series is convergent.

Theorem (Absolute Convergence Criterion for Banach Spaces). Let \mathcal{X} be a normed vector space. Then, \mathcal{X} is a Banach space if and only if for every sequence $\{f_n\}_{n=1}^{\infty}$ of vectors in \mathcal{X} ,

$$\sum_{n=1}^{\infty} \|f_n\| < \infty \Rightarrow \sum_{n=1}^{\infty} f_n \text{ convergent.}$$

Proof. The forward direction follows from the previous proposition.

Let $\{g_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a normed vector space where

$$\sum_{n=1}^{\infty} \|f_n\| < \infty \Rightarrow \sum_{n=1}^{\infty} f_n \text{ convergent.}$$

We select a subsequence $\{g_{n_k}\}_{k=1}^{\infty}$ as follows. Choose n_1 such that $i, j \ge n_1$ implies $||g_i - g_j|| < 1$; recursively, we select n_{N+1} such that $||g_{N+1} - g_N|| < 2^{-N}$. Then,

$$\sum_{k=1}^{\infty} \|g_{k+1} - g_k\| < \infty.$$

Set $f_k = g_{n_k} - g_{n_{k-1}}$ for k > 1, with $f_1 = g_{n_1}$. Then,

$$\sum_{k=1}^{\infty} \|f_k\| < \infty,$$

meaning $\sum_{k=1}^{\infty} f_k$ converges. Thus, $\{g_{n_k}\}_{k=1}^{\infty}$ converges, meaning $\{g_n\}_{n=1}^{\infty}$ converges in \mathcal{X} .

Definition (Bounded Linear Functional). Let \mathcal{X} be a Banach space. A function $\varphi: \mathcal{X} \to \mathbb{C}$ is known as a bounded linear functional if

- (1) $\varphi(\lambda_1 f_1 + \lambda_2 f_2) = \lambda_1 \varphi(f_1) + \lambda_2 \varphi(f_2)$ for each $\lambda_1, \lambda_2 \in \mathbb{C}$ and $f_1, f_2 \in \mathcal{X}$.
- (2) There exists M such that $|\varphi(f)| \leq M ||f||$ for each $f \in \mathcal{X}$.

Proposition (Equivalent Criteria for Bounded Linear Functionals). Let φ be a linear functional on \mathcal{X} . Then, the following conditions are equivalent:

- (1) φ is bounded;
- (2) φ is continuous;
- (3) φ is continuous at 0.

Proof. (1) \Rightarrow (2): If $\{f_{\alpha}\}_{{\alpha}\in A}$ is a net in ${\mathcal X}$ converging to f, then $\lim_{{\alpha}\in A}\|f_{\alpha}-f\|=0$. Thus,

$$\lim_{\alpha \in A} |\varphi(f_{\alpha}) - \varphi(f)| = \lim_{\alpha \in A} |\varphi(f_{\alpha} - f)|$$

$$\leq \lim_{\alpha \in F} M ||f_{\alpha} - f||$$

$$= 0$$

- $(2) \Rightarrow (3)$: Trivial.
- (3) \Rightarrow (1): If φ is continuous at 0, then there exists $\delta > 0$ such that $||f|| < \delta \Rightarrow |\varphi(f)| < 1$. Thus, for any $g \in X$ nonzero, we have

$$\left| \varphi \left(g \right) \right| = rac{2 \left\| g \right\|}{\delta} \left| \varphi \left(rac{\delta}{2 \left\| g \right\|} g \right) \right|$$
 $< rac{2}{\delta} \left\| g \right\|,$

meaning φ is bounded.

Definition (Dual Space). Let \mathcal{X}^* be the set of bounded linear functionals on \mathcal{X} . For each $\varphi \in \mathcal{X}^*$, define

$$\|\varphi\| = \sup_{\|f\|=1} |\varphi(f)|.$$

We say \mathcal{X}^* is the dual space of \mathcal{X} .

Proposition (Completeness of the Dual Space). For \mathcal{X} a Banach space, \mathcal{X}^* is a Banach space.

Proof. Both positive definiteness and absolute homogeneity are apparent from the definition of the norm. We will now show the triangle inequality as follows. Let $\varphi_1, \varphi_2 \in \mathcal{X}^*$. Then,

$$\begin{split} \|\varphi_{1} + \varphi_{2}\| &= \sup_{\|f\|=1} |\varphi_{1}(f) + \varphi_{2}(f)| \\ &\leq \sup_{\|f\|=1} |\varphi_{1}(f)| + \sup_{\|f\|=1} |\varphi_{2}(f)| \\ &= \|\varphi_{1}\| + \|\varphi_{2}\| \, . \end{split}$$

We must now show completeness. Let $\{\varphi_n\}_n$ be a sequence in \mathcal{X}^* . Then, for every $f \in \mathcal{X}$, it is the case that

$$|\varphi_n(f) - \varphi_m(f)| \le ||\varphi_n - \varphi_m|| ||f||$$
,

meaning $\{\varphi_n(f)\}_n$ is Cauchy for each f. Define $\varphi(f) = \lim_{n \to \infty} \varphi_n(f)$. It is clear that $\varphi(f)$ is linear, and for N such that $n, m \ge N \Rightarrow \|\varphi_n - \varphi_m\| < 1$,

$$\begin{aligned} |\varphi(f)| &\leq |\varphi(f) - \varphi_N(f)| + |\varphi_N(f)| \\ &\leq \lim_{n \to \infty} |\varphi_n(f) - \varphi_N(f)| + |\varphi_N(f)| \\ &\leq \left(\lim_{n \to \infty} \|\varphi_n - \varphi_N\| + \|\varphi_N\|\right) \|f\| \\ &\leq \left(1 + \|\varphi_N\|\right) \|f\|, \end{aligned}$$

so φ is bounded. Thus, we must show that $\lim_{n\to\infty}\|\varphi_n-\varphi\|=0$. Let $\varepsilon>0$. Set N such that $n,m\geq N\Rightarrow \|\varphi_n-\varphi_m\|<\varepsilon$. Then, for $f\in\mathcal{X}$,

$$|\varphi(f) - \varphi_n(f)| \le |\varphi(f) - \varphi_m(f)| + |\varphi_m(f) - \varphi_n(f)|$$

$$\le |(\varphi - \varphi_m)(f)| + \varepsilon ||f||.$$

Since $\lim_{m\to\infty}\left|\left(\varphi-\varphi_m\right)(f)\right|=0$, we have $\|\varphi-\varphi_m\|<\varepsilon$.

Proposition (Banach Spaces and their Duals).

- (1) The space ℓ^{∞} consists of the set of bounded sequences. For $f \in \ell^{\infty}$, the norm on f is computed as $\|f\|_{\infty} = \sup_{n} |f(n)|$.
- (2) The subspace $c_0 \subseteq \ell^{\infty}$ consists of all sequences that vanish at ∞ . The norm on c_0 is inherited from the norm on ℓ_{∞} .
- (3) The space ℓ^1 consists of the set of all absolutely summable sequences. For $f \in \ell^1$, the norm on f is computed as $||f|| = \sum_{n=1}^{\infty} |f(n)|$.

We claim that these are all Banach spaces.

We also claim that $c_0^* = \ell^1$, and $\left(\ell^1\right)^* = \ell^{\infty}$.

Proof of Banach Space.

 ℓ^{∞} :

Proof of Normed Vector Space: Let $a, b \in \ell^{\infty}$, and $\lambda \in \mathbb{C}$. Then,

$$\sup_{n}|a(n)|=0$$

if and only if a is the zero sequence. Additionally, we have that

$$\|\lambda a\|_{\infty} = \sup_{n} |\lambda a(n)|$$

$$= |\lambda| \sup_{n} |a(n)|$$

$$= |\lambda| \|a\|_{\infty},$$

meaning $\|\cdot\|_{\infty}$ is absolutely homogeneous. Finally,

$$||a + b||_{\infty} = \sup_{n} |a(n) + b(n)|$$

 $\leq \sup_{n} |a(n)| + \sup_{n} |b(n)|$
 $= ||a||_{\infty} + ||b||_{\infty}.$

Proof of Completeness: Let $\{a_n\}_{n=1}^{\infty}$ be a Cauchy sequence of elements of ℓ^{∞} . Let $\varepsilon > 0$, and let N be such that $\|a_n - a_m\|_{\infty} < \varepsilon$ for $n, m \ge N$. Then, for each k,

$$|a_n(k) - a_m(k)| = |(a_n - a_m)(k)|$$

$$\leq ||a_n - a_m||$$

$$< \varepsilon,$$

meaning that $a_n(k)$ is Cauchy in \mathbb{C} for each k.

Set $a(k) = \lim_{n \to \infty} a_n(k)$. We must now show that $\lim_{n \to \infty} \|a - a_n\| = 0$. Let $\varepsilon > 0$, and set N such that for $n, m \ge N$, $\|a_m - a_n\| < \varepsilon$. Then,

$$|a(k) - a_n(k)| \le |a(k) - a_m(k)| + |a_m(k) - a_n(k)|$$

 $\le |a(k) - a_m(k)| + ||a_m - a_n||$
 $< |a(k) - a_m(k)| + \varepsilon.$

Since $\lim_{m\to\infty} |a(k) - a_m(k)| = 0$, we have $||a - a_n|| < \varepsilon$.

^vThe reason we had to go about it like this was that we defined the sequence *a* pointwise; however, we need to show convergence *in norm*, not only pointwise.