ITIG FILE CORY

ADVANCES
IN SECOND
SECOND
PROSPHOPROTE
RESEARCH

Formerly
ADVANCES IN *
CYCLIC NUCLEOTIDE
AND PROTEIN®
PHOSPHORYLATION
RESEARCH

SIXTH
INTERNATIONAL
CONFERENCE
ON CYCLIC
NUCLEOTIDES,
CALCIUM AND
PROTEIN
PHOSPHORYLATION

Volume Editors

Robert Adelstein Claude Klee Martin Rodbell

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

UNCLASSIFI				0000011100				
SECURITY CLASSIFIC	ATION OF	THIS PAGE		ADA204189				
REPORT DOCUMENTATION				N PAGE				Approved No. 0704-0188
1a. REPORT SECURI	TY CLASSI	FICATION		1b. RESTRICTIVE MARKINGS				
2a. SECURITY CLAS	SIFICATION	AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT				
2b. DECLASSIFICATI	ON/DOW	NGRADING SCHEDU	Paris San					
4. PERFORMING OR	IGANIZATK	ON REPORT NUMBE	S. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR- 88-1232-164-21A					
6a. NAME OF PERF Fdn. for Ad		. in the	7a. NAME OF MONITORING ORGANIZATION AFOSR/NL					
6c. ADDRESS (City,				7b. ADDRESS (City, State, and ZIP Code)				
Natl. Inst. One Cloiste				Bldg. 4: Bolling	AFB, DC 20	332-6	448	
Bethesda, M				2722218 1227 20 20022 0770				
8a. NAME OF FUND ORGANIZATION		VSORING	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AFOSR	7		NL NL	AFOSR-86-0343				
SC. ADDRESS (City,	State, and	ZIP Code)	<u>L</u>	10. SOURCE OF FUNDING NUMBERS				
Bldg. 410 Bolling AFE	3, DC	20332-6448		PROGRAM ELEMENT NO. 61102F	PROJECT NO. 2312	TASK NO.	.1	WORK UNIT ACCESSION NO.
	nation	-	Vel 2 2\ on Cyclicnucled	tides, Calc	ium & Prote:	in Pho	sphory	lation
12. PERSONAL AUTHOR(S) Dr. Rodbell Obstracts Volume,							ne,	
13a. TYPE OF REPORT 13b. TIME COVERED FROM 1 Sep 86to 31 Aug 8			OVERED Sep 86to 31 Aug 8	4. DATE OF REPO	RT (Year, Month, 6 1988	Day) 1		COUNT 35
16. SUPPLEMENTAI	RY NOTAT	ON						
17.	COSATI CODES 18. SUBJECT			Continue on revers	e if necessary and	d identif	y by bloc	k number)
FIELD G	ROUP	SUB-GROUP	4					
			1					
The Sixth International Conference on Cyclic Nucleotides, Calcium and Protein Phosphorylation Advances in Second Messenger and Phosphorprotein Research was held in Bethesda Maryland, 2-7 September 1986. This conference and the proceedings from same focused on the role of cyclic nucleotides, calcium and protein kinases as second messengers in signal transduction systems. A book by the same title, containing 29 chapters resulting from presentations at the meeting, was published by Raven press and constitutes the main substances of the final technical report of this conference.								
20. DISTRIBUTION		LITY OF ABSTRACT	RPT. DTIC USERS		CURITY CLASSIFIC	ATION		
22a. NAME OF RES	PONSIBLE	INDIVIDUAL		225. TELEPHONE ((202) 767-5	Include Area Cod	e) 22c.	OFFICE SY	MBOL

DD Form 1473, JUN 86

SECURITY CLASSIFICATION OF THIS PAGE

Previous editions are obsolete. SECURITY CLASS 3 8 12 1 4 00 3

UNCLASSIFIED

Advances in Second Messenger and Phosphoprotein Research

formerly Advances in Cyclic Nucleotide and Protein Phosphorylation Research

Series Editors: Paul Greengard and G. Alan Robison

Paul Greengard and G. Alan Robison, Editors

ADVANCES IN CYCLIC NUCLEOTIDE AND PROTEIN PHOSPHORYLATION RESEARCH (Vol. 20)

382 pp. (1986) ISBN 0-88167-242-4 (Order Code 1698)

"This volume continues the tradition of high quality which this series has established....All the chapters can be recommended to either the expert in the field looking for an up-to-the-minute overview of the subject or the neophyte looking for guidance to a complex literature....The depth of coverage of the topics makes the purchase of this volume appear to be a wise decision."

-Journal of Medicinal Chemistry

Volume 20 of this series features in-depth analyses of the biological and chemical properties of forskolin and the mechanisms involved in calcium mobilizing agonist responses, as well as important findings on early events in the action of insulin. Reviews of current and ongoing research on cyclic AMP examine the desensitization of hormonal stimuli coupled to regulation of cAMP levels and the relationship of cyclic AMP to learning in *Drosophila*. Another highlight of the book is a study of choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase.

Dermot M. F. Cooper and Kenneth B. Seamon, Editors

DUAL REGULATION OF ADENYLATE CYCLASE (Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 19)

352 pp., 116 illustrations (1985) ISBN 0-88167-079-0 (Order Code 1526) "Recommended to anyone with an interest in adenylate cyclase." — Quarterly Review of Biology

This volume provides an in-depth review of contemporary research on adenylate cyclase and its dual regulation. Coverage encompasses all relevant aspects of dually regulated adenylate cyclase systems, from their molecular characterization to their physiological significance, and represents the full range of conceptual and technical approaches to the study of these complex systems.

The book systematically progresses from receptor biochemistry and pharmacology to purification and characterization of adenylate cyclase components, whole cell studies, and neurophysiological approaches. Regulation of cyclic AMP production in intact model cells by adenylate cyclase and phosphodiesterase is examined, as well as correlations between cyclic AMP fluctuations and changes in metabolic processes in whole cells and brain slices. Detailed attention is devoted to the relationship of neuronal firing to changes in cyclic AMP production. The contributors also suggest applications of approaches used in the study of adenylate cyclase systems to the study of analogous regulatory systems, including those involved in calcium mobilization.

RAVEN PRESS 1185 Avenue of the Americas, New York, New York 10036

ISBN 0-88167-430-3 (Order Code 1741)

free \$ 39.00

AFOGR-TR- 88-1232-UAL2/A

ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH

Volume 21A abstracts Volume.

formerly Advances in Cyclic Nucleotide and Protein Phosphorylation Research

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC) NOTICE OF TRANSMIT: AL TO DTIC This technical report has been reviewed and is approved for public release IAW AFR 190-12. Distribution is unlimited.

MATTHEW J. KERFER
Chief, Technical Information Division

Approved for public release; distribution unlimited.

Advances in Second Messenger and Phosphoprotein Research

formerly Advances in Cyclic Nucleotide and Protein Phosphorylation Research

Series Editors

Paul Greengard, New York, New York G. Alan Robison, Houston, Texas

International Advisory Board

Bruce Breckenridge, Piscataway, New Jersey R. W. Butcher, Houston, Texas Ernesto Carafoli, Zurich, Switzerland E. Costa, Washington, D.C. Raymond L. Erikson, Cambridge, Massachusetts Nelson Goldberg, Minneapolis, Minnesota Joel G. Hardman, Nashville, Tennessee Tony Hunter, San Diego, California David M. Kipnis, St. Louis, Missouri Claude B. Klee, Bethesda, Maryland Edwin G. Krebs, Seattle, Washington Thomas A. Langan, Denver, Colorado Joseph Larner, Charlottesville, Virginia Yasutomi Nishizuka, Kobe, Japan Ira H. Pastan, Bethesda, Maryland

Theodore W. Rall, Charlottesville, Virginia Martin Rodbell, Research Triangle Park, North

Charles G. Smith, Tuckahoe, New York

Sold by: Raven Press 1185 Avenue of the Americas w York, NY 10036 Volume 21A: \$39.00

DTIC **BOPY**

A-1	21				
Dist	Avail ar Specia				
Availability Codes					
Distribution/					
م _{ده}	WI	ben			
h Carolina	teation				
	unced				

sion For

GRA&I

AB

Advances in Second Messenger and Phosphoprotein Research

Volume 21A

formerly Advances in Cyclic Nucleotide and Protein Phosphorylation Research

Abstracts Volume
Sixth International Conference on
Cyclic Nucleotides, Calcium and Protein Phosphorylation
Bethesda, Maryland, September 2-7, 1986

Volume Editors

Robert S. Adelstein, M.D.

Laboratory of Molecular Cardiology National Heart, Lung, and Blood Institute National Institutes of Health Bethesda, Maryland Claude B. Klee, M.D.

Laboratory of Biochemistry National Cancer Institute National Institutes of Health Bethesda, Maryland

Martin Rodbell, Ph.D.

National Institute of Environmental Health Sciences National Institutes of Health Research Triangle Park, North Carolina

Raven Press New York

111

Raven Press, 1185 Avenue of the Americas, New York, New York 10036

© 1988 by Raven Press, Ltd. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Made in the United States of America

International Standard Book Number 0-88167-430-3

This volume contains abstracts of papers presented at the Sixth International Sconference on Cyclic Nucleotides, Calcium and Protein Phosphorylation, held September 2-7, 1986 in Bethesda, Maryland.

The material contained in this volume was submitted as previously unpublished material, except in the instances in which credit has been given to the source from which some of the illustrative material was derived.

Great care has been taken to maintain the accuracy of the information contained in this volume. However, Raven Press cannot be held responsible for errors or for any consequences arising from the use of the information contained herein.

Materials appearing in this book prepared by individuals as part of their official duties as U.S. Government employees are not covered by the above-mentioned copyright.

10 9 8 7 6 5 4 3 2 1

iV

The EGF-receptor kinase: Structure, evolution and properties of various receptor mutants, J. Schlessinger, Division of Holecular Biology, Research, Meloy Laboratories, 4 Research Court, Rockville, ND 20850

The EGF-receptor is a 170 ED membrane glycoprotein which has 3 major functional domains, a xtracellular, glycosylated EGF-binding domain, a single hydrophobic trans-membrane region and a cytoplasmic kinase domain. The extracellular domain of EGF-receptor contains 2 cysteine rich clusters which reveal internal homology and repetition of the cysteine residues. Questions concerning the mechanism of action and regulation of EGF-receptor were addressed by exploring properties and cellular effects of various EGF-receptor mutants introduced into cultured cells lines. Transient expression of intact EGF-receptor mutants introduced into cultured cells was achieved by using shuttle vector containing the SV-40 origin of replication. The same vector together with the DEFR gene were used to obtain stable cell lines expressing different amounts of EGF-receptor and its various mutants in CHO cells, which are normally devoid of EGF-receptor. A retroviral shuttle vector was used to express intact EGF-receptor and EGF-receptors mutants in NIH-3T3 cells and for obtaining retroviruses containing sequences coding for the intact receptor and its various mutants. Initially we have generated constructs with deletions in the cytoplasmic domain of the EGF-receptor including a receptor mutant which has only 8 amino acids in the cytoplasmic domain (devoid of Thr 65%). We have also introduced specific linkers into different restriction sites along the full size cDMA of EGF-receptor. Using this approach we have explored the role of various receptor domains in the regulation of receptor internalization, endocytosis and transformation.

.2 RECONSTITUTION OF THE DELIPIDATED β -ADRENERGIC RECEPTOR WITH THE DELIPIDATED G_S : REQUIREMENTS FOR SPECIFIC LIPIDS. Michael Schramm and Jorge Kirilovsky, Department of Biological Chemistry, Institute of Life Sciences, Hebrew University, 91904 Jerusalem, Israel.

Detergent solubilized preparations of the β -adrenergic receptor (R) and of the regulatory protein (G_5) were extensively delipidated of phospholipids and cholesterol. Reconstitution of an R- G_5 system was subsequently performed in presence of a mixture of natural phosphatidyl-ethanolamine, -choline and -serine or the synthetic dioleoyl derivatives of the same phospholipids. In both cases, an additional lipid was required for the agonist-dependent activation of G_5 . The requirement could be fulfilled by α -tocopherol or by oleic acid. Cholesterol and cholesteryl esters failed to support activity. Inclusion of the non-phospholipid lipid in the reconstituted system enhanced the isoproterenol-dependent activation of G_5 16-35 fold. Upon relipidation with the defined phospholipid mixture plus α -tocopherol or oleic acid, and addition of isoproterenol, the kinetics of activation of G_5 by GTPYS were similar to those found in native membranes. The rate was largely dependent on the addition of the agonist. Efficient functional reconstitution of R- G_5 was thus achieved in a totally defined lipid system. Experiments designed to study the role of the non-phospholipid lipid in the reconstitution of R- G_5 interaction, suggest that the effect of this lipid is not explained by: 1) enhancement of ligand binding to R; 2) stabilization of the system; 3) irreversible structural changes; 4) modification of vesicle permeability to GTPYS; 5) modulation of average fluidity. It is tentatively concluded that the non-phospholipid lipid is essential for function of the hormone-R complex. Further experiments suggest that such a lipid might fulfill the same role in native membranes.

.3 ANALYSIS OF cDNAs FOR THE α SUBUNIT OF Gs. Alfred G. Gilman, Janet D. Robishaw, and Michael P. Graziano. Department of Pharmacology, University of Texas Health Science Center at Dallas, Dallas, TX 75235

Most cells contain two forms of the α subunit of the G protein ($G_{\rm g}$) that stimulates adenylate cyclase; their apparent molecular weights are 45,000 and 52,000. Two cDNAs that correspond to distinct mRNAs for the α subunit of $G_{\rm g}$ have been cloned from a bovine adrenal library and sequenced. The sequences of the two cDNAs, designated pG_{\rm g}-1 and pG_{\rm g}-s, are identical except for a single stretch of 46 nucleotides in the coding region, where 4 are altered and 42 are deleted in pG_{\rm g}-s. Expression of pG_{\rm g}-s and pG_{\rm g}-1 in COS-m6 cells yields protein products with apparent molecular weights of 45,000 and 52,000, respectively, based on their mobility in SDS-polyacrylamide gels. The two cDNAs have also been expressed in E. coli, using prokaryotic expression vectors containing either tac or T7 promoters. Again, products with apparent molecular weights of 45,000 and 52,000 are detected. We conclude that pG_{m}-s and pG_{m}-1 encode the 45 kDa and 52 kDa forms of G_{m}-respectively, that the two forms differ by the alteration of two and the deletion of 14 amino acid residues (73-86 in pG_{m}-1), and that the apparent difference in molecular weight of 7000 between the two forms of $G_{\rm sg}$ is in large part due to anomalous electrophoretic behavior in SDS. There appear to be at least two mRNAs for $G_{\rm sg}$ that arise from a single gene by alternative internal RNA splicing. Analysis of the activities of the two forms of $G_{\rm sg}$, expressed separately in E. coli, is in progress.

.4 ROLES OF GTP REGULATORY PROTEINS IN RECEPTOR-MEDIATED ADENYLATE CYCLASE INHIBITION, PHOSPHOLIPASE C ACTIVATION AND CELL PROLIFERATION Michio Ui, Fumikazu Ukajima, Toshiaki Katada & Toshihiko Murayama. Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Receptor-mediated inhibition of membrane adenylate cyclase via an inhibitory GTP regulatory protein (G1 or Ni) is reversed by prior exposure of the membranes or the membrane-donor cells to islet-activating protein (IAP), pertussis toxin, since G1 is unable to couple to receptors any longer when its GTP-binding α -subunit has been ADP-ribosylated by the A-component of the toxin. Several kinds of G1 $(\alpha\beta\gamma)$ have been purified from rat and porcine brains as the specific IAP substrate, and the cDNAs of their α -subunits have been cloned. Some of them competed with the α -subunit of stimulatory Gs for the same sites on the adenylate cyclase catalyst. $\beta\gamma$ -subunits of these IAP substrates also interacted with the catalyst directly leading to inhibition of the cyclase activity. Thus, G1 inhibits adenylate cyclase by multiple mechanisms when it is dissociated into α - and $\beta\gamma$ -subunits upon coupled receptor stimulation. IAP also abolished the chemotactic peptide (fMLP) receptor-coupled activation of phospholipase C that is involved in phosphatidylinositol 4,5-bisphosphate breakdown and Ca mobilization in neutrophils. The IAP substrates purified from rat brain were coupled to fMLP receptors when they were reconstituted into IAP-treated neutrophil membranes. Moreover, DNA synthesis in 3T3 fibroblasts as initiated by competence factors in the presence of a progression factor such as insulin or epidermal growth factor was inhibited by IAP treatment of the cells. IAP was effective in this regard even when it was added to culture medium 3 h after the addition of growth factors, suggesting that an IAP substrate G-protein is also involved in slow proliferative responses of cells.

Protein phosphatase-1 (PP-1) is one of four phosphatase-1 catalytic C-subunits which dephosphorylate a variety of regulatory proteins. Several forms of PP-1 have been identified in which the C-subunit interacts with proteins which either have a regulatory function or target the phosphatase to different subcellular locations. In skeletal muscle a major proportion of the PP-1 is bound to glycogen because the C-subunit is complexed with a glycogen-binding G-subunit. The G-subunit is phosphorylated very efficiently by cyclic AMP-dependent protein kinase and the effects of phosphorylation on PP-1 activity will be described. A second form of PP-1 is found in the muscle cytosol. This form is inactive, because the C-subunit is complexed to inhibitor-2 (1-2). The primary structure of I-2 and an analysis of its in vivo phosphorylation state will be presented. A third form of PP-1 has recently been identified in skeletal muscle, and its structure and localisation will be given. In mammalian liver a significant proportion of the PP-1 is found associated with microsomes as well as glycogen. The dephosphorylation of glycogen synthase by hepatic glycogen and microsomal PP-1 is exquisitely sensitive to inhibition by phosphorylase a, 50% inhibition occurring at <10nM, over 1000-fold lower than the Km for phosphorylase a as a substrate. This, and other evidence, demonstrates that phosphorylase a is an allosteric inhibitor of hepatic PP-1. The role of this allosteric inhibition in the hormonal regulation of liver function will be discussed.

Supported by the Medical Research Council, London, British Diabetic Association and Royal Society.

.6 INOSITOL PHOSPHOLIPIDS, PROTEIN PHOSPHORYLATION, AND STIMULUS-RESPONSE COUPLING. Ushio Kikkawa and Yasutomi Nishizuka, Department of Biochemistry, Kobe University School of Medicine, Kobe 650, Japan.

Receptor-mediated hydrolysis of inositol phospholipids was recently realized to be a common mechanism for transducing various extracellular signals into the cell. At an early phase of cellular responses, inositol-1,4,5-trisphosphate mobilizes Ca²⁺, whereas diacylglycerol (DG) activates protein kinase C. These two intracellular mediators are generated from the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate, PIP₂. Using Ca²⁺-ionophore and permeable DG or tumor promoting phorbol ester (as a substitute for active DG), it has been repeatedly shown that both Ca²⁺ mobilization and protein kinase C activation are essential and often act synergistically to induce many of cellular responses such as exocytosis and release reactions. Similarly, these two singal pathways appear to be essential for long-term responses as well. However, additional receptor occupation by growth factor is necessary to induce full activation of cell proliferation. Immunocytochemical studies with monochonal antibodies suggest that this enzyme seems to be absent or in very low concentration in the nucleus; probably another step in signal translation is needed for the ultimate activation of nuclear events. The phosphorylation by protein kinase C of some proteins such as membrane receptors is apparently related to down-regulation or negative feedback control of cellular functions. In fact, protein kinase C appears to show dual actions in the positive as well as the negative phase of regulation. Results will be summarized of further studies on the structure, mode of activation, intracellular localization, and possible role of this protein kinase in stimulus-response coupling.

.7 INDUCTION OF C-FOS: A POSSIBLE NUCLEAR EVENT IN SIGNAL TRANSDUCTION. Tom Curran, James I. Morgan, Lidia Sambucetti and Robert Franza¹. Roche Institute of Molecular Biology, Nutley, NJ 07110; ¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.

A transient elevation of c-fos mRNA and protein levels is elicited by diverse extracellular stimuli. These

A transient elevation of c-fos mRNA and protein levels is elicited by diverse extracellular stimuli. These increases may be greater than 100-fold depending on the basal levels of expression in unstimulated cells. The response is triggered by a selection of polypeptide growth factors, some of which promote mitogenesis, while others promote differentiation. Agents such as phorbol esters, cAMP and calcium ionophores can also stimulate c-fos expression, although the magnitude of the effect varies with the cell line studied. In PC12 cells, induction is mediated by diverse pathways, one of which involves a calcium-dependent stimulation of calmodulin. The fos protein in stimulated cells exists as a protein complex which binds to DNA. The interaction of the fos protein with DNA supports the hypothesis that it may be involved in linking cell surface events to long-term alterations in gene expression.

.8 STRUCTURE-FUNCTION OF Ha ras: Irving Sigal¹, Jackson Gibbs¹, Mark Marshall¹, Graham Smith¹, Frances Jurnak and Edward Scolnick; Merck Sharp & Dolme Research Laboratories, West Point, Pennsyl Point, Pennsyl Point, Po

The ras protooncogene proteins have biochemical properties that are similar to those of the guanine nucleotide-binding regulatory proteins of the G protein family. Like other G proteins, ras proteins specifically bind GDP and GTP and have a low GTP-hydrolytic activity. Oncogenic forms of the ras proteins have decreased GTPase activities (Trends Biochem. Sci. 1985, 10: 350-353). To identify residues involved in nucleotide binding, GTP hydrolysis and protein-protein interactions, we have systemically varied the conserved amino acid residues of Harvey (Ha) ras. The mutant proteins have been expressed in E. coli for biochemical analysis and microinjected into NIH3T3 cells and expressed in yeast cells for assaying biological potency. This snalysis has identified residues Lysl6 and Aspl19 within the nucleotide-binding site and indicated that Lysl6 interacts with the phosphate group of GDP, and Aspl19 interacts with the purine-2-amino group (PNAS 1986, 83: 952-956). This mode of interaction is analogous to that observed for EF-Tu*GDP by x-ray crystallography. Substitutions at either position 63, 65, 66, 67, 70 or 73 dramatically reduce the affinity of Ha for the neutralizing monoclonal antibody Y13-259 but do not alter biological activity. In contrast, substitutions within the region 32-41 while not affecting the known intrinsic biochemical activities of Ha do reduce the ability of the protein to function in mammalian and yeast cells. This conserved region of the ras proteins is a possible site for protein-protein interaction and for conferring ras biological function.

THE EFFECTS OF THE IRREVERSIBLE MUSCARINIC LIGAND ACETYLETHYLCHOLINE MUSTARD ON PRE- AND POSTSYNAPTIC RESPONSES. Stephen P. Baker, Philip Posner and Edwin M. Meyer. Depts. of Pharmacology and Physiology, University of Florida, College of Medicine, Gainesville, FL 32610.

The pharmacological effects of agonists that bind irreversibly are unclear at the receptor-transduction level. We have investigated the presynaptic and postsynaptic effects of a muscarinic agonist, acetylethylcholine mustard (Aech-M), which binds irreversibly to muscarinic receptors. As measured by several radiolabeled ligands, Aech-M induced a dose-dependent (0.01-10 µM) loss of cardiac and brain muscarinic receptors that was time-dependent, blocked by atropine and attenuated by quanine nucleotides. Aech-M (10-100 µM) produced a transient decrease in spontaneous atrial beating rate whereas carbachol and ACh produced sustained decreases. After pretreatment of atria with Aech-M (10-100 µM), there was a 10- to 20-fold increase in the carbachol EC50 value for the inhibition of the atrial beating rate. In addition, there was a 40-50% loss of muscarinic receptors. Presynaptically, Aech-M induced a protracted (up to 60 min) attenuation (40-50%) of ACh release from rat cortical synaptosomes with a potency similar to that of oxouremorine. Oxotremorine inhibited Ach release for a shorter duration. The ACh release-inhibition induced by 50 µM Aech-M was only acutely blocked by 1 µM atropine, was observed after washout of free drug, and was not due to inhibition of choine-uptake or acetylation. These presynaptic effects of Aech-M on ACh release were compatible with the observed time-dependent (1050, 9 µM after 5 min at 37°) and irreversible binding characteristics of the drug in synaptosomal membranes. The data suggest that Aech-M initially acts post-synaptically as an agonist followed by a long-term antagonist effect and presynaptically as an irreversible agonist.

EVIDENCE FOR INCREASED LEVELS OF DIGITALIS LIKE FACTORS IN PLASMA OF PREGNANT RATS A. Binet, V. Querol-Ferrer, J. Baranès and P. Braquet

IHB Research Labs, 17 avenue Descartes, F-92350 Le Plessis Robinson (France)

For several years, numerous studies have demonstrated the presence of "digitalis-like" factors (D.L.F.) in mammalian blood and urine that is released by volume expansion. Recent evidence suggests that this factor is an inhibitor of Na, K-ATPase, enzyme which represents the biochemical basis of transmembrane sodium and potassium transport. This compound interacts with the ouabain binding site of the enzyme and shows a natriuretic effect by limiting tubular sodium reabsorption.

Pregnancy is known to be a volume expanded state, without increase in arterial blood pressure. In this study the presence of D.L.F. has been investigated in plasma of rat during the course of

pregnancy.

Blood samples were obtained from reorbital sinus, under ether anesthesia and collected in heparinized tubes. The deproteinized plasma (treatment by two volumes of ethanol for 4 min) were on a sephadex G25 column. Inhibitory effect of D.L.F., eluted in the post salt fraction was measured on purified Na, K-ATPase from dog kidney, using ATP- γ 32 P.During the last week of pregnancy a significant increase of D.L.F. concentration was observed (8.4 \pm 1.4 vs 4.61 \pm 0.39 nM of ouabain equivalent, p < 0.01) a simultaneous increase in K+ plasma levels appeared (+ 48 \pm 0) without any change in Na + level. Evidence for increase of endogenous Na, K-ATPase inhibitor is provided in plasma of pregnant rats.

THE MECHANISM OF ACTIVATION OF THE INSULIN RECEPTOR KINASE: ROLE OF DISULFIDE BONDS. Marianne Boni-Schnetzler and <u>Paul F. Pilch</u>, Boston University Schol of Medicine.

The insulin receptor possesses a large number of cysteine residues in the a subunit. None of these are reactive with N-ethylmaleimide in the native receptor suggesting that normally most, if not all cysteines, exist as disulfide-linkages. These bonds are known to link the receptor in its $a_2\beta_2$ tetrameric form, and are also likely to play a role in the structure of the ligand binding domain. We have performed a detailed kinetic analysis on the ability of the reducing agent, dithiothreitol (DTT) to reduce disulfides and to effect the functional properties of the receptor, namely ligand binding and kinase activity. We have correlated these functional data with the structure of the receptor as analyzed by velocity sedimentation analysis and SDS-PAGE. We find that as receptor dimers isolated from sucrose gradients retain insulin binding of slightly lower ligand affinity as compared to intact tetramers. The of dimers are as active as tetrameric receptor in basal kinase function. If autophosphorylated in the presence of insulin prior to reduction, the dimer remains as an activated kinase towards exogenous substrates. However, dimers isolated from gradients do not exhibit an insulin-dependent kinase activation. We interpret these data to indicate that the interaction of two of halves is necessar; for the ligand-dependent kinase activation that follows insulin binding. In addition, because as dimers retain insulin binding, and because insulin binding continues to decrease with time of DTT exposure after the receptor is entirely in the aß dimer form, we conclude that the class I disulfides that link two of halves are not requisite for ligand binding. Rather, maintenance of the multiple disulfides in the "cross-linking" domain of the a subunit appear critical for insulin binding.

4 PURIFICATION AND CHARACTERIZATION OF THE INSULIN-SENSITIVE "LOW Km" cAMP PHOSPHODIES-TERASE FROM RAT ADIPOSE TISSUE. E. Degerman*, P. Belfrage*, and V. C. Manganiello*. * Department of Physiological Chemistry, Lund, Sweden and *Laboratory of Cellular Metabolism, NHLBI, NIH, Bethesda, MD. 2082

Particulate, but not soluble, "low K_m" cAMP phosphodiesterase (PDE) activity of rat adipocytes was increased 50-100% during incubation (10 min) of intact cells with 1-3 nM insulin; activation was less with higher or lower concentrations of insulin. Activation was maintained during solubilization with an alkyl polyoxyethylene non-ionic detergent C₁E₁₂ and NaBr and chromatography on DEAE. Solubilized ensyme was purified to apparent homogeneity by DEAE, gel permeation, and affinity chromatography (K_m for cAMP ~ 0.4 µM; sp. act. (with 0.5 µM [3H]cAMP) ~ 5.5 µmol/min/mg). M_T of the holoenzyme (from chromatography on Sephadex G-200) was ~ 120-130,000; from polyacrylamide slab gel electrophoresis in SDS was estimated a subunit M_T of ~ 63-65,000. Activity (with 0.5 µM [3H]cAMP) was rather sensitive to inhibition by p-chloromercuribensoate (IC₅₀, ~ 1 µM) and less so by 2,2'-Dithiobis-(5-Nitropyridine)(160 µM), N-ethylmaleimide (525 µM) and iodoacetamide (750 µM). PDE activity was also rather sensitive to inhibition by cilostamide (IC₅₀, ~ 40 nM) and the "cardiotonic" drugs CI 930 (450 nM) and milrinone (630 nM) but rather insensitive to RO 20-1724 (190 µM). Based on effects of these inhibitors, the hormone-sensitive "low K_m" particulate cAMP PDE from rat adipocytes seems to be analogous to the insulin-activated particulate PDE from 3T3-L1 adipocytes and the cilostamide-sensitive soluble "low K_m" cAMP PDE from bovine liver (designated as III-C), platelets, heart, and other tissues. Purification of this PDE should facilitate studies designed to probe the mechanism(s) of activation of the enzyme by insulin and other effectors.

MOLECULAR GENETICS OF THE 62 ADRENERGIC RECEPTOR. R.A.F. Dixon 1, I.S. Sigal 1, E. Slater 2.

C. Strader 2. Marck Sharp & Dohme Research Laboratories, Virus and Cell Biology; West Point,

Pennsylvania and Biochemistry Endocrinology; Rahway, New Jersey.

Cloning of the gene for the 8-adrenergic receptor (\$AR) (Nature [1986] 321: 75) allowed the determination of the primary sequence of the receptor protein. Bydropathicity analysis of the \$AR polypeptide suggests the presence of seven transmembrane helices and supports a structure for the receptor that is similar to the structure of rhodopsin. Using rhodopsin as a model, regions of the \$AR protein have been selected which might be involved in ligand binding, in receptor-G-protein interaction or in receptor regulation. To examine the structure-function relationships of the \$AR, mutations have been introduced into the \$AR gene, and the mutated proteins expressed in mammalian cells. The mutant proteins were characterized by their ability to bind ligands and to stimulate ademylate cyclase. To further probe the structure of the \$AR, antisera have been raised against E.-coli-expressed peptides corresponding to the \$AR sequence. These sera are being used to dstermine the folding of the \$AR protein within the membrane.

ATRIAL NATRIURETIC FACTOR (ANP) STIMULATES CYCLIC GAP ACCIMULATION AND EFFILIX IN C5-28 RAT GLIONA CRIL CUltures AND THESE RESPONSES ARE ANIMONIZED BY CHICARROMAZINE. R.R. Fiscus, B.T. Robles, R.L. Dal Vecchio, S.A. Waldern and F. Murad. Dept. Physiol., Loyola Univ. Med. Ctr., Maywood, II. 60151; Dept. Med. & Fharmacol., Stanford Univ., VA Med. Ctr., Palo Alto, CA 94304. Previous studies from our laboratory have shown that ANF activates particulate (P), but not soluble (S), guanylate cyclase (CC) in rat acrta, kidney and several other tissues and that one class of ANF receptor co-purifies with RGC. Also, we have shown that the ANF analog striopeptin II (AP-II) causes releasation of precontracted rat acrta that is correlated with elevation of GSP and activation of GSP-dependent protein kinase, suggesting that these molecular events may mediate at least some of ANF's actions. Since ANF is located in rat brain and may serve as a neurotransmitter or neuromodulator, we studied its molecular actions in two neurally-derived call lines, CC-2B rat glioms and PC-12 rat pheochromocytoms, which contain high levels of PGC. In PC-12 call cultures AP-II (100 nM, 20 min) elevated CSPP 4 fold in calls and ardial by 12 fold. In CS-2B call cultures AP-II (100 nM, 20 min) elevated CSPP 4 fold in calls and 47 fold in media. All responses were enhanced by 10 min preincubation with isobutylasthylasthylasthine (250 M). Both callular and extracellular cSPP responses to AP-II in CS-2B call cultures were antagonized by 10 min preincubation with chlorpromazine, but not methylene blue, an inhibitor of SGC), at 1 and 10 uM (IC50 = 1 uM). Callular accumulation of CSPP to sodium nitropromazides (1 uM, 2 min, an activator of SGC) was antagonized by 10 min preincubation with methylene blue, but not chlorpromazine, at 1 and 10 uM. These data indicate that intracellular and/or extracellular cGPP may mediate actions of ANF in neural tissues and that chlorpromazine selectively antagonizes ANF-induced cGMP accumulation and efflux. Supported by NIH (

THE INVASIVE ADENYLATE CYCLASE OF <u>B. PERTUSSIS</u>: PROPERTIES OF CELLULAR PENETRATION.

E. Friedman*, <u>Z. Farfel**</u> and E. Hanski*, *Department of Hoxmone Research, Weizmann Institute of Science, Rehovot, and **Clinical Pharmacology Unit, Sheba Medical Center, Tel-Aviv University, Israel.

Bordetella pertussis produces a calmodulin-sensitive adenylate cyclase (AC), which is thought

Bordstella pertusais produces a calmodulin-mensitive adenylate cyclese (AC), which is thought to enter eukaryotic cells and produce high levels of cAMP. AC activity in lysates from lymphocytes exposed to a partially purified bacterial AC is insensitive to NEM, readily inactivated by acetic anhydride and relatively stable to SDS, similarly to the bacterial AC and in contrast to the intrinsic membrane-bound enzyme, thus providing a direct evidence for enzyme penetration. In human lymphocytes, a constant intracellular level of AC activity is reached within 20 min of cell incubation with the bacterial AC and maintained for at least 2 h, provided the enzyme is present in the cell medium. Upon its removal, a rapid decline $(t_1, p 15 \min)$ in AC activity is observed. This decline reflects intracellular inactivation process rather than a release of the enzyme to the medium. In turkey erythrocytes, no intracellular inactivation is observed and AC activity increases linearly even after 6 h of incubation. Subcellular fractionation of human lymphocytes and erythrocytes exposed to the bacterial AC shows that the majority (83-89%) of intracellular AC activity is associated with postnuclear (160,000 x g) pellet. AC activity in plasma membrane-enriched fraction of lymphocytes reaches a constant level after 20 min of cell exposure to the enzyme, similarly to the accumulation of the enzyme in whole cells. We suggest that the production by the invasive enzyme, as well as its intracellular inactivation occur while it is associated with plasma membrane.

REGULATION OF E. COLI ADENYLATE CYCLASE (AC) ACTIVITY BY FACTORS WITH SHARED FUNCTIONS
Prasad Reddy and Alan Peterkofsky, NIH, Bethesda, MD

In <u>Escherichia coli</u>, cAMP plays an important role in expression of genes for carbon metabolism. The major control for adjusting cellular levels of this nucleotide is via AC, which is regulated by high molecular weight (proteins involved in sugar transport and protein synthesis) and low molecular weight (sugars, inorganic orthophosphate and GTP) factors.

Regulation by low molecular weight factors can be inhibitory or stimulatory and can be demonstrated in permeable cells but not in extracts. Sugars that are transported by the phosphoenolpyruvate:glycose phosphotransferase system (PTS) inhibit AC. Inorganic orthophosphate (Pi) substantially stimulates AC activity. The effects of Pi and PTS sugars are related since inhibition by PTS sugars is not observed unless the AC activity is stimulated by Pi. GTP, which is a key regulator of eucaryotic AC, stimulates AC activity.

The regulation by the low molecular weight effectors is mediated by some protein factors. Inhibition by PTS sugars or stimulation by Pi of AC activity depends on the presence of functional PTS proteins. Furthermore, $\underline{E.\ coli}$ strains deleted for such proteins have low AC activity. The suggestion from these observations that the regulatory form of AC consists of a complex with PTS proteins has been supported by $\underline{in\ vitro}$ reconstitution experiments.

The stimulation of AC activity in permeable cells by GTP is probably mediated by a GTP-binding protein. Our search for such a mediator has led to the finding that the protein synthesis elongation factor EF-Tu specifically stimulates the AC activity of a purified preparation of the enzyme. The functional form of AC therefore appears to be a complex with a variety of high and low molecular weight regulators all of which serve other functions in the cell.

9 FROPERTIES AND REGULATION BY CALMODULIN OF A PARTIALLY PURIFIED ADENYLATE CYCLASE
SOLUBBLIZED FROM BULL SPERM MEMBRANES. Nira B. Garty and Yoram Salomon, Department
of Hormone Research, The Weizmann Institute of Science, 76100 Rehovot, Israel.

Membrane-associated adenylate cyclase (AC) was solubilized and subsequently purified from membranes prepared from frozen bull-sperm ejeculate. The aim of this purification was to obtain a calmodulin (CaM)-free AC preparation in which regulation of AC by CaM could be studied. Nearly 50-60% of the total membrane-associated AC could be solubilized by salt extraction of the sperm membranes in the absence of detergent. The soluble enzyme was rapidly inactivated at high dilutions. Subsequent purification steps were, therefore, performed in 0.5 mg/ml BSA. Purification, expressed in terms of AC/CaM ratios, increased 2000-4000-fold with a 3-10% yield, using DEAE, lectin and phenyl-Sephanose chromatography.

Enzyme activity is stimulated 2- to 5-fold by purified testicular CBM, which shifts the Km (Mg-ATF) from 8.1 to 1.8 mM. The Km for Mn-ATF is 0.53 mM. Mallitin, a bee venom peptide, strongly inhibited AC activity by 66% in the absence of added CBM and totally abolished CBM-dependent enzyme activity. Mallitin inhibition could be reversed by the addition of equinolar concentrations of CBM. AC activity was resistant to high non-physiological concentrations (10 mM) of CBCl₂. The molecular weight of this AC is estimated to be 45 Kd by gel filtration.

To the best of our knowledge, this is the first demonstration of the involvement of CaM in regulation of mammalian sperm AC, thus suggesting a physiological mechanism for the control of this enzyme.

10 EFFECTS OF ATRIAL NATRIURETIC FACTOR (ANF) ON EXOCRINE PANCREAS. S. Heisler, H. Kopelman*
J.G. Chabot and G. Morel . Unité de Biorégulation cellulaire, CHUL, Sainte-Foy, Québec, *Department
of Pediatrics, Montreal Children's Hospital, Montréal, Québec, C.N.R.S., Laboratoire d'HistologieEmbryologie, Université Lyon-Sud, Lyon, France.

We have recently identified immunoreactive ANF in pancreatic acinar cells. The current study consequently was designed to determine if the atrial peptide had any effect(s) on the function of exocrine pancreas. Two study models were used: a) isolated rat pancreatic acinar cells, and b) cannulated rabbit pancreatic duct in vivo. When acinar cells were exposed to rat_aNF (8-33), a concentration-dependent increase in comp formation was observed (EC_50 about 5 x 10 M). The peak cGMP response occurred within 2.5 min of exposure of cells to ANF. When rabbits received rat ANF (8-33) i.v. (0.01-0.25 µg/min), cGMP was secreted into pancreatic juice. ANF, alone, did not affect protein or fluid secretion from rabbit pancreas; when co-infused with secretin (0.1 CU/min), which is not an acinar cell secretagogue in rabbits, ANF did not alter the secretin-enhanced secretion of pancreatic juice. In isolated scinar cells, ANF, and by extension cGMP, did not alter a) basal or agonist (carbachol t DbcAMP, CCK-OP or forskolin)-stimulated amylase ascretion, b) [H]-leucine incorporation into trichloroacetic acid-precipitable protein, or c) [H]-thymidine incorporation into DNA. These data suggest that cGMP a) is not co-secreted with digestive enzymes into pancreatic juice, b) does not have an intraluminal effect on fluid secretion, and c) is not involved in the secretory function of acinar cells. The mechanism by which acinar cells secrete cGMP into pancreatic juice, as well as the biological significance of both intracellular (acinar), and intraluminar cGMP remain to be elucidated.

GENETIC ANALYSIS OF MUTANTS IN CALCITONIN AND VASOPRESSIN RECEPTOR FUNCTION D.A.Jans, T.J.Resink* and B.A.Hemmings; Friedrich Miescher-Institut, Basel, Switzerland; *ZLF, Kantonsspital, Basel, Switzerland.

In the porcine kidney cell line, LLC-PK1, the hormones calcitonin and vasopressin activate the cAMP-dependent protein kinase (cAMP-PK) which in turn leads to a 200-fold increase in production of urokinase-type plasminogen activator (uPA), LLC-PK1 mutant cell lines affected in hormonal responsiveness were analyzed for uPA production. cAMP-PK activation, adenylate cyclase (AC) activation and hormone binding activity. The M18 mutant was found to lack both vasopressin and calcitonin binding activity but showed normal non-receptor mediated stimulation of AC and cAMP-PK activation. The FIB6 and FIB5-N4 mutants lacked calcitonin binding activity, but showed increased vasopressin-binding activity as well as vasopressin-mediated AC and cAMP-PK activation. Somatic cell hybrids between LLC-PK₁ cells and each of the three mutants were derived. The hybrid cell lines from each fusion were found to have normal vasopressin and calcitonin binding activity and hormonal responsiveness. Somatic cell hybrids between M18 and FIB6 also showed normal activities, indicating complementation of the recessive mutations in the two mutants, whereas hybrids between FIB6 and FIB5-N4 showed no complementation of receptor activity. Therefore, two different mutations (those in M18, and FIB6/FIB5-N4) were defined which concomitantly affect metabolism of both vasopressin and calcitonin receptors. This implies the existence of common processing steps for the two receptors prior to the mature membrane form.

HOMOLOGY BETWEEN THE RUMAN AND HAMSTER β₂-ADRENERGIC RECEPTORS AND RHODOPSIN REVEALED BY MOLECULAR CLOWING. Brian K. Kobilka, Henrik G. Dohlman, Thomas Frielle, Mark A. Bolanowski, Richard A.F. Dixon, Irving Sigal, Paul Keller, Marc G. Caron, Robert J. Lefkowitz. Duke Univ. Med. Ctr., Durham, RC and Merck Sharp & Dohme Research Laboratories, West Point, PA. Agonist stimulation of the β₂-adrenergic receptor (β₂-AR) and light activation of rhodopsin lead to coupling of these receptors with GTP binding proteins which mediate transmembrane signaling. Both of these receptors are inactivated by stimulus promoted phosphorylation leading to homologous desensitization of the β₂-AR and light adaptation in the retina. To study the structural features responsible for observed similarities in function of these two receptors we cloned the gene and cDMA for the human β₂-AR. Hydrophobicity analysis of the deduced amino acid sequence for the human β₂-AR reveals 7 hydrophobic domains similar to those observed in the hamster β₂-AR and the visual pigments. These may represent membrane-apanning regions. Amino acid homology between the human and hamster β₂-ARs is 94% in the hydrophobic domains and the putative cytoplasmic loops. There is 75% homology in the extracytoplasmic region and the carboxy terminus. The overall amino acid homology between the β₂-AR and rhodopsin have a threonine and serine rich carboxy terminus which may be a substrate for specific kinases. These common structural features allow us to make tentative assignments of functional domains.

PURIFICATION AND CHARACTERIZATION OF THE RAT OVARIAN RECEPTOR FOR LUTEINIZING HORMONE:
STRUCTURAL STUDIES OF SUBUNIT INTERACTION Section Fund 1 Reprod Res Reserved NICEU NIA Retrieved MD 20822

Endo. Section, Endo. & Reprod. Res. Branch, NICHD, NIK, Bethesda, MD 20892

We have purified the luteinizing hormone (LH)/human choriogonadotrophin (hCG) receptor by sequential affinity column on wheat germ lectin-Sepharose and hCG-Sepharose. The method was designed to allow also the purification of lactogen receptor from the initial starting material. The purified LH/hCG receptor retained full binding affinity and was identified as a single protein of Mr=70,000 ± 2,400 on SDS gel electrophoresis. The technique is simple and allows rapid purification of microgram amounts of biologically active receptor suitable for further molecular characterization, microsequencing and functional reconstitution studies. Cross-linking studies performed after binding of hCG (radiolabeled in the individual subunit α or β) crosslinked or uncrosslinked to the corresponding unlabeled subunit prior to binding to the purified LH/hCG receptor indicated that the hCG α-subunit undergoes predominant interaction with the receptor molecule. The influence on the β-subunit in this interaction seems to occur mainly through its association with the α-subunit, presumably by conferring specificity to the α-subunit for its hormonal interaction with the receptor. The α-subunit, which is identical within species, has an important role in the receptor binding interaction and biological activity of glycoprotein hormones.

CALCIUM AND pH-DEPENDENT AGGREGATION OF CALMODULIN, <u>G. William Lauderdale</u> and Richard M. Hyslop, Department of Chemistry, University of Northern Colorado, Greeley, CO 80639. Calmodulin has been isolated from bovine testes by a modification of published procedures. The protein was homogeneous based on isoelectric focusing and two-dimensional electrophoresis. The purified protein has an apparent molecular weight of approximately 16,700 daltons as determined by molecular exclusion chromatography. The protein undergoes reversible self-association as a function of calcium concentration and pH of the medium. The largest polymeric form detected by molecular exclusion high pressure liquid chromatography has an apparent molecular weight of approximately 240,000. The biological activities of the polymeric forms as well as possible physiological functions will be presented.

15 EFFECT OF e-HALOACETYL AMALOGS OF FORSKOLIN ON 3H-FORSKOLIN BINDING SITES. A.L.

Laurenza and K.B. Seamon Center for Drugs and Biologics, FDA, Bethesda, MD 20892
The 7-bromoacetyl-7-desacetyl (Bracesk) and 7-chloroacetyl-7-desacetyl (Clacesk) analogs of forskolin were synthesized as alkylating agents to study forskolin binding sites. The inactive 1,9-dideoxy-7-bromoacetyl analog of forskolin (1,9-dideoxy-Bracesk) was synthesized as a control for the bromoacetyl group. Forskolin inhibited the binding of 3H-forskolin to human platelet membranes with a Ki of about 40µH while the Bracesk and Clacesk had Ki's of about 0.5 µH. The 1,9-dideoxy-Bracesk was ineffective at inhibiting 3H-forskolin binding. Bracesk and Clacesk activated adenylate cyclase in platelet membranes with an EC50 of about 10 µH. The binding of 3H-forskolin was determined in membranes from intact human platelets that had been preincubated with 10 µH Bracesk or Clacesk. The binding of 3H-forskolin to membranes from pretreated platelets was reduced 95% after treatment with Bracesk and 60% after pretreatment with Clacesk while pretreatment with 1,9-dideoxy-Bracesk did not reduce 3H-forskolin binding. The loss of binding occured within 5 minutes for Bracesk and within 15 minutes for Clacesk and was due to a decrease in the Bmax with no change in Kd. The irreversible loss of 3H-forskolin binding sites produced by Bracesk could be prevented by the inclusion of 200 µH forskolin in the pretreatment buffer. Tritiated Bracesk (3H-Bracesk) was synthesized in order to identify proteins alkylated. Proteins labelled with 3H-Bracesk were separated on a molecular size column and identified by SDS-PAGE and fluorography. The major proteins identified had molecular weights of 135,000 daltons and comignated with adenylate cyclase activity. These results suggest that the 135,000 dalton protein may be the catalytic subunit of adenylate cyclase.

EFFECTS OF ATRIOPEPTIN II AND CYCLIC CMP ON CA²⁺ LEVELS AND CA²⁺ ATPASE IN RAT AORTA AND CULTURED SMOOTH MUSCLE CELLS. Thomas M. Lincoln, Subhash Rashatwar, and Trudy L. Cornwell. Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688. Atriopeptin II (ANP) produced time—and concentration-dependent increases in rat aortic cCMP content. Associated with the increase in cCMP was a decrease in tone and phosphorylase a content which appeared to be secondary to the decrease in cytosolic Ca²⁺. Other effectors of cCMP in aortic smooth muscle produced similar changes in Ca²⁺ and Ca²⁺—dependent processes. The mechanisms by which cCMP lowered cell Ca²⁺ in response to ANP appeared to be related to the removal of Ca²⁺ from the cytoplasm as opposed to the inhibition of uptake or release of Ca²⁺. To further test this idea, we have examined the effects of cGMP-dependent protein kinase (cCPK) on Ca²⁺ATPase from cultured smooth muscle cells. Ca²⁺ATPase was stimulated up to 4-fold by 0.02 µM cCPK and 2-fold by calmodulin. The inclusion of both calmodulin and cCPK in the assay resulted in an additive stimulation of Ca²⁺ATPase activity suggesting that this enzyme may be regulated by a dual mechanism. Stimulation of Ca²⁺ATPase activity suggesting that this enzyme may be regulated by a dual mechanism. Stimulation of Ca²⁺ATPase activity suggesting that this enzyme may be regulated by a dual mechanism. Stimulation of Ca²⁺ATPase activity suggesting that this enzyme may be regulated by a dual mechanism. Stimulation of Ca²⁺ATPase by cCPK was observed at all Ca²⁺ concentrations (10⁻⁶ to 10⁻⁶ M), and kinetic analysis revealed that cCPK increased the V_{max} for ATP hydrolysis from 8 to 18.1 nmol P₁ formed/min/mg while the K_m for ATP remained unchanged by cCPK. Cyclic AMP-dependent protein kinase and protein kinase C were either ineffective or less efective than the cCPK in stimulating Ca²⁺ATPase. These results suggest a possible mechanism of action for cCMP in m

17 CHARACTERIZATION OF STRUCTURE AND ACTIVATION OF A. ADENOSINE RECEPTORS BY AGOMIST PHOTOAFFINITY LABELLING. <u>Hartin J. Lohse</u>, Karl-Norbert Klotz and Ulrich Schwebe. Pharmekologisches Institut der Universität Heidelberg, FRG.

A, adenosine receptors which mediate an inhibition of adenylate cyclame by adenosine have been photosifinity labelled with R-2-azido-M*-p-hydroxyphenyliso-propyladenosine (R-AMPIA). The label identifies a Mr-35,000 protein as the binding subunit of the A; receptor. The electrophoretic mobility of this band is altered by treatment with neuraminidase but not with other glucosidases, suggesting the presence of complex-type carbohydrate chains. Total chemical deglycosylation shows a core protein of Mr-32,000. The covalent occupation of the receptor with R-AMPIA leads to a persistent activation, seen as a persistent reduction of cAMP levels of isolated adipocytes. The analysis of this activation with a model of pharascological agonism suggests the presence of spars receptors. Spars receptors are also suggested from a comparison of direct binding and response data, indicating that the occupation of 5% of the receptors leads to a 50% reduction of cAMP levels. These data suggest that the A; receptor is activated according to the occupation theory. A large amount of spars receptors exists for the reduction of cAMP-levels in isolated adipocytes.

18 SPECIFIC BINDING SITES FOR ATRIAL NATRIURETIC PEPTIDE IN HUMAN BRAIN.

Fiona Lyall, Tony J. Balmforth and James J. Morton.
MRC Blood Pressure Unit, Western Infirmary, Glasgow, G11 6NT, Scotland.

Specific binding sites for atrial natriuretic peptide have been identified in a membrane preparation obtained from cultures of the human astrocytoma cell line G-CCM. Scatchard transformation of the binding data showed marked curvature consistent with the presence of high and low affinity binding sites. Estimation of the Kd (<250 pM) for the high affinity binding site is in the range expected of a physiological receptor. MPLC showed that there was significant breakdown of the radiolabelled ANP even at 0°C.

Meither angiotensin II arginine-8-vasopressin or bradykinin competed for the binding sites, demonstrating further the specificity of binding. Binding affinity of ANP-related peptides was ANP (human 28aa) > ANF (rat 8-33) > atriopeptin 111 (rat) > atriopeptin 11 (rat > atriopeptin 1 (rat) > ANP fragment (1-11 rat).

Our preliminary data also suggests that ANP stimulates cGMP formation in this cell line, confirming recent work which has shown that high concentrations of ANP stimulated a 100-fold increase in cGMP in primary astroglia rich brain cell cultures.

These results suggest that ANP receptors are exposed on the cell membrane of neuroglia. The implications of this finding will be discussed in terms of possible regulatory roles for glia.

19 CYCLIC AMP AND CYCLIC GMP STIMULATION IN PRIMARY CULTURES OF CEREBELLAR GRANULE CELLS.

A. Novelli and R. C. Hemneberry, Laboratory of Molecular Biology, NINCDS, National Institutes of Health, Betheada, MD 20892.

Primary cultures from the cerebellum of the 8-day old rat can be highly enriched for glutamatergic neurons (granule cells) and can serve as a useful model for studying responses to neurotransmitters. Inositol phospholipid turnover, calcium influx, and guanylate cyclase activation follow stimulation by excitatory amino acids in these neurons. We now report that the calcium ionophore A23187 stimulated cGMP synthesis in a calcium-dependent manner; furthermore, a 3-fold greater response was seen when 1 mM MgCl, was also present. Other divalent cations such as Mn⁺⁺, Co⁺⁺, Ni⁺⁺, and Cd⁺⁺ also modulated cGMP synthesis, but to varying degrees. Although glutamate and kainate strongly stimulated cGMP production, they had a negligible effect on cAMP synthesis in cultures enriched for neurons. However, kainate caused a significant increase in the intracellular content of cAMP in mixed cultures of astrocytes and neurons. In support of the hypothesis that the increase in cAMP following addition of kainate was due to kainate-induced release of adenosine, the adenosine analogue cyclohexyladenosine strongly stimulated cAMP synthesis in mixed cultures but had very little effect in cultures enriched for neurons. Veratrine, which stimulates cGMP production as strongly as kainate, did not elevate cAMP levels in these mixed cultures. These results suggest that (1) elevation of cAMP levels in response to kainate in mixed cultures is due to the release from neurons of adenosine sufficient to promote the release of adenosine.

ALPHA_-ADRENERGIC RECEPTOR - LIGAND INTERACTIONS RETAIN THEIR SENSITIVITY TO Na⁺ FOLLOW-ING PARTIAL PURIFICATION USING AFFINITY CHROMATOGRAPHY. Jodi M. Nunnari, Mary G. Repaske and Lee E. Limbird, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.

Alpha-adrenergic receptors (α_A R) inhibit adenylate cyclase and interact with ligands in a manner that is regulated by Na. Na's efficivity of α_A R - ligand interactions is retained in digitoning solubilized preparations of porcine brain: α_A R affinity for agonists is decreased 20-fold by Na with an EC₅₀ of 3mM and a cation selectivity of Na'>Li'>>K'; Na' increases α_A R affinity for antagonists two-fold with a similar potency and selectivity for monovalent cations. Interestingly, both H' and amiloride analogs also influence α_A R - ligand interactions in an allosteric manner, raising the possibility that the effects of Na' may relate to our observation that α_A R can activate Na'/H exchange in the NG108-15 neuroblastoma x glioma cell line and that α_A R - provoked platelet secretion occurs via a pathway involving Na'/H' exchange.

occurs via a pathway involving Na /H exchange. α AR purified to a specific activity of ~ 1400 pmol/mg protein using yohimbine ~ agarose chromatography retain the effects of Na on α AR ~ ligand interactions. Similarly, Na effects are retained after further purification to >6800 pmol α AR/mg protein using wheat germ agglutiniin agarose chromatography (A homogegeous α AR preparation would contain ~ 16,000 pmol/mg protein.) The data suggest that either the Na regulatory site is on the α AR binding subunit or that a distinct Na regulatory component is co-purifying with the α AR. If the latter interpretation is true, then the component can be isolated and characterized by virtue of its co-purification with porcine brain α AR.

HETEROGENEITY OF THE ALPMA RECEPTOR ASSOCIATED WITH VASCULAR SMOOTH MUSCLE: EVIDENCE FRON FUNCTIONAL AND LIGAND BINDING STUDIES. M. T. Piascik, N. M. Pedigo, K. A. King and M. Babich, Department of Pharmacology, University of Kentucky Wedical Center, Lexington, Kentucky 40536 We have examined the alpha receptor associated with rabbit aorta in functional and receptor binding studies. In isolated aortic rings, the dose-response curve for (-)metaraminol was not parallel to that of other alpha agonists and was best fit to a quadratic rather than a sigmoid function. The occupancy versus response relationship for (-)norepinephrine, (-)epinephrine and phenylephrine was hyperbolic, whereas the metaraminol occupancy versus response relationship was not. The possibility that metaraminol interacts with different functional groups on the alpha receptor than other agonists was studied in receptor binding studies. In microsomes prepared from frozen aorta, [3H]prazosin bound to a single class of sites (Kg=150.8±7.7 pM; Bmax=168±39 fmol/mg, and this site exhibited the characteristics of an alpha receptor. In microsomes prepared from frozen aorta, aorta shipped in serum on ice (Pel-Freeze Biol.) or aorta from animals killed in our laboratory, metaraminol bound to two sites or affinity states (estimates from fresh tissue: $K_{\rm H} \sim 0.52~\mu{\rm M},~K_{\rm L} \sim 25.7~\mu{\rm M};~R_{\rm H} \sim 24.12~R_{\rm L} \sim 76\%)$. Similarly, norepinephrine bound to two classes of sites in the three microsomal preparations ($K_{\rm H} \sim 0.02~\mu{\rm M},~K_{\rm L} \sim 3.67~\mu{\rm M};~R_{\rm H} \sim 50.78$, $R_{\rm L} \sim 49.2\%)$. Epinephrine bound to only one site in the three microsomal preparations. Our results from two independent lines of investigation support the idea that there are subtypes of the vascular alpha receptor. Furthermore, metaraminol and norepinephrine interact with both classes of sites while epinephrine interacts with only one of these sites.

EFFECTS OF HORMONE-INDUCED DESENSITIZATION ON THE HYDRODYNAMIC PROPERTIES OF GONADOTROPIN RECEPTORS FROM A MURINE LEYDIG TUMOR CELL LINE. R. Victor Rebois and Roy N. Bradley, Membrane Biochemistry Section, Developmental & Metabolic Neurology Branch, NINCDS, NIH, Bethesda MD 20892.

Biochemistry Section, Developmental & Metabolic Neurology Branch, NINCDS, NIB, Betheada MD 20882.

The hydrodynamic properties of gonadotropin receptors (GR) from the murine Leydig tumor cell line, MLTC-1, were studied. Sucrose density gradient sedimentation in H₂O and D₂O, and gel filtration chromatography were used to estimate the molecular weight of the detergent-solubilized hormone-receptor complex. [1251]-human chorionic gonadotropin (hCG) was bound to MLTC-1 cells and the hCG-receptor complex (hCG-GR) solubilized in Triton X-100. hCG was bound under conditions that allow (37°C) or prevent (0°C) hCG-induced refractoriness of the adenylate cyclase response (i.e. desensitization). In the absence of desensitization, "control" hCG-GR had a estimated molecular weight of 210 kDa whereas the estimated molecular weight of "desensitized" hCG-GR was 160 kDa. Deglycosylated hCG (DGhCG) is an antagonist that binds with high affinity to GR, but fails to stimulate adenylate cyclase or cause desensitization. [1251]-DGhCG was bound to MLTC-1 cells at 37°C and DGhCG-GR solubilized in Triton X-100. The estimated molecular weight of DGhCG-GR was the same as that for the "control" hCG-GR. There was no association of the regulatory component of adenylate cyclase with the soluble "control" hCG-GR. When hCG was cross-linked to GR and solubilized with sodium dodecyl-sulfate (SDS) the estimated molecular weight was similar to that determined by SDS-polyacrylamide gel electrophoresis, and only half that of the Triton X-100 solubilized "control" hCG-GR.

CALMODULIN STIMULATED PARTICULATE GUANYLATE CYCLASE IN CRAYFISH.

W. Riediger and D. Sedlmeier; Universität Bonn, Institut fürZoophysiologie, Endenicher Allee 11-13, 5300 Bonn 1, FRG.

Guanylate cyclases (E.C.4.6.1.2.) from vertebrate tissues exist in a soluble form in the cytosol and a particulate form bound to the membrane, whereas in invertebrate tissues the enzyme seems to be essentially particulate. The particulate guanylate cyclase from crayfish hepatopancreas membranes was investigated with respect to its dependence on ${\rm Ca}^{2+}$ and calmodulin. The enzyme was almost completely blocked by EGTA and full activity was regained by the addition of ${\rm Ca}^{2+}$. Calmodulin stimulated the activity about five-fold. This effect could be abolished by the calmodulin antagonist compound 48/80. These results give evidence that the particulate guanylate cyclase of crayfish hepatopancreas is a ${\rm Ca}^{2+}$ and calmodulin-dependent enzyme.

SEPARATION OF LYMPHOCYTE CYCLIC NUCLEOTIDE PHOSPHODIESTERASES BY ION EXCHANGE HIGH PRESSURE LIQUID CHROMATOGRAPHY.

Steven Robicsek, James B. Polson, Joseph J. Krzanowski, Jr., Richard F. Lockey, and Andor Szentivanyi.

Departments of Pharmacology and Therapeutics and Internal Medicine, University of South Florida College of Medicine and Section of Allergy and Immunology, James A. Haley Veterans Administration Hospital, Tampa, Florida 33612.

Experiments were carried out to develop a rapid method for the separation of different forms of cyclic nucleotide phosphodiesterase (PDE) from human peripheral blood lymphocytes using high pressure liquid chromatography (HPLC). A Waters HPLC system with a DEAE Protein Pak column packed in ice to reduce loss of enzyme activity was employed. Lymphocytes were purified on Ficoll-Hypaque, then plastic plate adherence was utilized to remove monocytes. The nonadherent cells were repeatedly washed to remove platelets. After Dounce homogenization, 0.75 to 1.0 ml volumes of supernatant extract (from 1.5 to 2 X 10⁸ cells) were injected into the HPLC system. Using a linear gradient of 0 to 1M NaCl over a period of 1 hr and a 1 ml/min flow rate, cyclic CMP hydrolyzing activity eluted about 20 mins after injection (corresponding to approximately 0.3M NaCl). Cyclic AMP hydrolyzing activity eluted in a broad peak between 22 and 30 mins (0.38 to 0.48M NaCl). The latter peak appeared to contain two or more partially resolved forms of the enzyme. This finding suggests that the multiple forms of lymphocyte cAMP-PDE that have been separated by density gradient sedimentation (Thompson et al, J. Biol. Chem. 251: 4922-4929, 1976) and isoelectric focusing (Wedner et al, J. Immunol. 123: 725-732, 1979) cannot be entirely attributed to modification of a single molecular species during the relatively long time-periods required for these separation procedures (15-18 hrs for sucrose gradients, 20 hrs for isoelectric focusing).

CHARACTERIZATION OF RABBIT RETINAL DOPAMINE SENSITIVE ADENYLATE CYCLASE WITH NEW TYPES OF D₁-AGONISTS (e.g. SKF 38393-A) OR -ANTAGONISTS (e.g. SCH 23390). M. Schorderet, School of Pharmacy, Lausanne and Department of Pharmacology, CMU, CH 1211 Geneva 4, Switzerland.

Homogenates of rabbit retina were used to study the effect of new dopamine D₁-agonists and -antagonists on the generation of cAMP in absence or presence of dopamine (DA) or of various agents acting on the N_S regulatory protein and/or on the catalytic site of adenylate cyclase (NaF, GTP, forskolin). SKF 38393-A was found to stimulate cAMP generation in a dose-dependent manner and to be more potent than DA (ED₅₀ = 0.1 µM compared to 1 µM for DA). Maximal effects were already obtained at 1 µM. However, SKF 38393-A was less efficacious than DA (respectively 160 % and 210 % stimulation over controls). The SKF-induced accumulation of cAMP was blocked by (+)-butaclamol, and not by (-)-butaclamol, although the active concentration of the antagonist was larger than that used for DA blockede, reflecting a higher affinity of SKF for D₁-receptors. On the other hand, the agonist actions of DA or SKF 38393-A were inhibited by a new D₁-receptor antagonist, SCH 23390, in a dose-dependent manner. Other studies with various drugs (including new D₂-receptors-agonists, e.g. LY 171555 or RU 24926, and classical D₂-antagonists, e.g. domperidone or sulpiride) indicate that rabbit retinal homogenates are very selective for the screening of agents acting at D₁-receptors and the study of their possible interaction(s) with other factors acting at regulatory or catalytic subunits of the enzyme. Supported by SNSF Grant No. 3.969.084.

26 SHALLOW AGONIST COMPETITION BINDING CURVES FOR B-ADRENERGIC RECEPTORS : THE ROLE OF TIGHT AGONIST BINDING.

Y. SEVERNE¹, A. IJZERMAN², V. NERME³, T. ABRAHAMSSON³, H. TIMMERMAN², G. VAUQUELIN¹, ¹Inst. of Mol. Biol., Free Univ. of Brussels (VUB), 65 Paardenstraat, B-1640 St.-Genesius-Rode, Belgium, ²Dept. of Pharmacochem., Free University, De Boelelasn 1083, 1081HV Amsterdam, Netherlands, ³Dept. of Pharmacol. and Biochem., Hässle Cardiovascular Res. Lab., S-3183 Mölndal, Sweden

The β_2 -adrenergic receptors of bovine trapezius muscle membranes demonstrate tight agonist binding resulting from the formation of R.R.Ns complexes. Preincubation of the membranes with (-)-iso-proterenol (followed by washing) causes a time- and concentration-dependent decrease in the number of (-)-(3 H)-dihydroalprenolol binding sites to a plateau value of 41.5 %. This decrease is quasi-irreversible under radioligand binding conditions but is readily reversed in the presence of CTP. The isoproterenol/(-)-(3 H)-dihydroalprenolol competition binding curves are shallow. This is usually interpreted in terms of two interconvertible affinity states of the receptor: the high affinity state reflecting the coupling of the H.R complex to Ns and the low affinity state not interacting with Ns. However, with increasing incubation time the competition curves are shifted to the left. This apparent non-equilibrium can be computer simulated by models in which tight agonist binding to part of the receptor population is included. The usual computerized interpretation of the competition binding curves do not allow the correct evaluation of agonist binding parameters in the presence of tight agonist binding.

27 SOLUBILIZATION AND RECONSTITUTION OF THE D-1 DOPAMINE RECEPTOR FROM RAT STRIATUM.

Anita Sidhu and Peter H. Fishman, Membrane Biochemistry Section, Developmental and Metabolic Neurology Branch, National Institute of Neurological and Communicative Disorders and Stroke, The National Institutes of Health, Bethesda, Maryland 20892.

The D-1 dopamine receptor was extracted from rat striatal membranes with 0.7% sodium cholate and 1.M NaCl. Pretreatment of the membranes with a D-1 specific agonist (SK & F R-38393), inclusion of crude phospholipids in the solubilization buffer, and subsequent removal of the detergent led to a maximal extraction of 48% of the receptor binding sites. The D-1 antagonist, (125 1)SCH 23982, bound to a single class of sites with a K_d of 1.8 nM and a B_{max} of 1.65 pmol/mg protein. The solubilized receptors retained the ability to discriminate between active and inactive enantiomers of agonists and antagonists selective for the D-1 receptor. Approximately 70% of the solubilized receptors were reconstituted into phospholipid vesicles. The reconstituted receptors retained the pharmacological properties typical of the D-1 dopamine receptor.

CHARACTERIZATION OF s-ADRENERGIC RECEPTORS FROM ISOPROTERENOL-DESENSITIZED TURKEY ERYTHROCYTES. J. M. Stadel, R. Rebar, S. T. Crooke. Smith Kline and French Labs., Phila., Pa. 19101 Prefacubation of turkey erythrocytes (TE) with 10-6M isoproterenol (ISO) resulted in a 50-60% decrease in agonist stimulated adenylate cyclase activity. Desensitization was accompanied by 1) decreased mobility of s-adrenergic receptor (BAR) proteins, specifically photoaffinity labeled with 1251-p-azidobenzylcarazolol (IPABC), as determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 2) a 2-3 fold increase in phosphate incorporation into BAR (Stadel et al, PMAS, 80:3137, 1983). Limited-digestion peptide maps of IPABC-labeled BAR from control and desensitized TE showed different sensitivities of the two BAR to cleavage by chymotrypsin and S. aureus protease. The altered mobility of IPABC-labeled BAR from desensitized TE was eliminated when 5M urea was included during SDS-PAGE. Using a low crosslinked polyacrylamide gel (Dreyfuss et al., Mol. Cell. Biol., 4:415, 1984) the 42,000M_p BAR protein was resolved into a doublet compared to the single 38,000M_p HAR protein of control. Appearance of the doublet was agonist dependent since incubation of TE with dibutyrylcAMP (5mM) did not promote formation of the doublet but decreased agonist stimulated adenylate cyclase activity 40-50%. Exposure of TE for 20 hr at 37°C to ³²P₁ labeis BAR. ³²P-BAR was partially purified by affinity chromatography over alprenolol-Sepharose. The 42,000M_p protein of ³²P-BAR from ISO-desensitized TE also revealed a doublet on SDS-PAGE. Limited-digest peptide maps of ³²P-BAR from ISO-desensitized TE also revealed a doublet on SDS-PAGE. Limited-digest peptide maps of ³²P-BAR from ISO-desensitized TE also revealed a doublet on SDS-PAGE. Limited-digest peptide maps of ³²P-BAR from ISO-desensitized TE using papain identified a unique peptide (2800M_p) absent in control. This unique ³²P-peptide was found only in the upper BAR protein band

ACTIVATION OF ALPHA ADRENOCEPTORS AND THE COMP RESPONSE IN MOUSE HEART. Y. Walliamoz, M. Verosky, Dept. of Anesthesiology, Col. of Physicians & Surgeons, Columbia Univ., New York, NY, 10032, U.S.A. It was previously shown that stimulation of alpha adrenoceptors increases oGMP content in the heart. In an attempt to characterize the alpha adrenoceptor associated with this effect, mice were given i.p. alpha adrenoergic agonists and antagonists with different alpha-2/alpha-1 activity ratios and were sacrificed by microwave radiation at an optimal time after treatment. Cyclic GP was measured in myocardial tissue by radioimumoassay. Oxymetazoline (OX), St-91 [(2,6-diethylphenylamine)-2-imidazoline], phenylephrine (PE) and methoxemine (ME) increased myocardial cGMP content. Their dose-response curves were parallel (slope: 801 ± 54, 858 ± 78, 857 ± 53 for OX, St-91, PE, resp.) and the order of potency corresponded to their affinity for the alpha-2 adrenoceptor; the dose of agonist required to increase cOMP by 500 fmole/mg protein (ED,) from a control value of 169 \pm 13 was 0.94 \pm 0.08, 1.19 \pm 0.11, 4.96 \pm 0.07 and > 12 μ mole/kg, resp. for OM, St-91, PE and ME. The alpha-2 advenergic antagonists polimbine and reusolscine (5 and 0.2 mg/kg, resp.) inhibited the increase in cOMP induced by equieffective doses of all four agonists by 50 to 60%. In contrast, the alpha-1 advenergic antagonists prazosin and corynanthine (1 and 2.5 mg/kg, resp.) inhibited the cOMP response to PE and ME, phenylethylamine derivatives, but did not affect that to OX and St-91, imidazoline derivatives. Furthermore, the cOMP response to St-91 was not altered by chemical sympathectomy; the slopes of the dose-response curves were 858 \pm 78 and 924 \pm 85 and the ED, were 1.19 \pm 0.11 and 1.28 \pm 0.11 pmole/kg in mice with intact advenergic nerve endings and treated with 6-hydroxydopamine, resp. The results suggest that the increase in myocardial cGMP content induced by the imidazoline derivatives may be related to activation of alpha-2 adrenoceptors distal, at least in part, to the adrenergic nerve endings while the response to the phenylethylamines may include both an alpha-1 and an alpha-2 mediated component, the latter determining the potency of the agonist.

30 EVIDENCE FOR TWO DIFFERENT STIMULATORY ADENYLATE CYCLASE COUPLING MECHANISMS IN RAT RENAL PAPILLA.

Elizabeth A. Woodcock. Monash University Department of Medicine, and Medical Research Centre, Prince Henry's Hospital, St. Kilda Road, Melbourne, 3004. Australia.

Adenylate cyclase (AC) activity in renal papillary membranes was stimulated by both vasopressin (VP) and the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA). The two stimulations interacted differently with other AC-stimulatory factors. Treatment of papillary tubules with cholera toxin increased AC activity from 4.5 ±1.5 to 110 ± 9.1 (SE, n=5) pmol/min/mg protein. Maximally effective concentrations of VP increased activity in control preparations to 10.3 ± 2.8 (an increase of 5.8 ± 1.3) and in cholera toxin treated preparations to 138.9 ± 14.5 (an increase of 28.9 ± 5.4, n=5; p<.01). Pertussis toxin increased activity to 9.1 ± 3.0. The response to VP was enhanced to 12.6 ± 3.9 (n=5; p<.01 relative to control tubules). Addition of the two toxins together produced a greater than additive stimulation of AC to 145 ± 36. Maximum increase in activity caused by VP was 48 ± 13 (n=5; p<.01). In contrast AC stimulation by NECA was additive with stimulations by the two toxins, separately and in combination. The NECA stimulation however, was enhanced in the presence of fluoride ion while the VP stimulation was additive at all concentrations.

Papillary membranes contained two different cyclase-stimulatory coupling proteins with α -subunits of MW's 46,600 \pm 450 (SE, n=6) and 41,500 \pm 480 (SE, n=6) as identified on SDS-polyacrylamide gel electrophoresis following cholera toxin labeling.

Taken together, these data suggest that two adenylate cyclase-stimulatory coupling mechanisms with different properties are operative in renal papillary membranes.

CHARACTERIZATION OF THE GLUTAMATE-INDUCED STIMULATION OF PHOSPHOINOSITIDE METABOLISM IN HIPPOCAMPAL SLICES OF THE ADULT RAT

 $\underline{P.A.}$ Baumann and P.C. Waldmeier, Research Department, Pharmaceuticals Division, $\overline{CIBA-GEIGY}$ Ltd., CH-4862 Basle, Switzerland

In hippocampal slices of the adult male rat glutamate (glu) dose-dependently increased the formation of $^3{\rm H-inositol-1-phosphate}$ (3 to 5 fold at 5 mM). This effect appeared to be specific, since it was still present when α_1 -adrenergic, cholinergic, serotoninergic and histaminergic receptors were blocked. Aspartate also increased PI-turnover to a comparable extent. With respect to the stereoselectivity, L-glu was about twice as active as D-glu. With aspartate no stereoselectivity was observed. It seems that the receptor involved in the glu-induced PI-turnover is of the quisqualate type. Of the selective exitatory amino acid agonists quisqualate and AMPA (α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid) were most effective (quisqualate beeing approx. equipotent with glu). The effects of NMDA and kainate were weaker. Ibotenate also proved to very potently induce PI-turnover (7-fold at 1 mM). The effect of carbachol was additive to those of noradrenaline and histamine suggesting that the involved receptors do not belong to the same PI-metabolic unit. On the other hand, glu-induced PI-turnover was not additive to that induced by carbachol, noradrenaline and histamine. Therefore, the glu receptors may occur linked to common PI-metabolic units in combination with other receptor types.

32 β-ADREMERGIC RECEPTOR KINASE: ROLE IN MEDIATING HORMONE INDUCED DESENSITIZATION.

J.L. Benovic, F. Mayor, Jr., R.H. Straeser, C. Staniszewski, K.L. Somers, M.G. Caron and

J. Lefkowitz. Duke Univ. Med. Ctr., Durham, NC and NIH, Bethesda, MD

The actions of many hormones and drugs which act through the adenylate cyclase system, as well as many other systems, are ultimately blunted by desensitization. Agonist-specific or homologous desensitization has been extensively characterized using the β-adrenergic receptor-coupled adenylate cyclase system. Homologous desensitization is cAMP-independent and intimately associated with phosphorylation of the β-receptor. We have identified a novel protein kinase, termed the β-adrenergic receptor kinase (βARK), which specifically phosphorylates only the agonist-occupied form of the receptor. β-agonists induce an ~ 10 fold increase in β-receptor phosphorylation which can be completely blocked by β-antagonists. Moreover, partial agonists appear to induce only a submaximal increase in receptor phosphorylation. Receptor phosphorylated by βARK has a greatly diminished ability (~ 80%) to interact with N suggesting that phosphorylation can directly uncouple receptor and N. βARK has been purified to homogeneity from bovine cerebral cortex via sequential chromatography on gel permeation, ion exchange and hydroxylapatite columns and appears to consist of a single polypeptide chain of M ~ 80,000. SARK does not phosphorylate general kinase substrates such as casein and histones; however, rhodopsin, the retinal receptor for light, serves as a good substrate for βARK in a light (agonist) dependent fashion. Furthermore, rhodopsin kinase, which is involved in regulating cGMP phosphodiesterase activation by rhodopsin in the visual transduction system, can phosphorylate the β-receptor in a totally agonist dependent fashion. Thus the mechanisms which regulate these disparate signaling systems appear to be quite similar.

PROTEIN KINASE A AND C CATALYZE PHOSPHORYLATION OF β_2 - and α_1 -ADRENERGIC RECEPTORS. <u>M. Bouvier</u>, L.M.F. Leeb-Lundberg, J.L. Benovic, M.G. Caron and R.J. Lefkowitz, Duke University Hedical Center, Durham, NC

Phosphorylation of the β_1 -adrenergic receptor (β_1 -AR) and of the α_1 -adrenergic receptor (α_1 -AR) is associated with desensitization of their respective transmission pathways. This study was therefore undertaken to explore and document the ability of protein kinase A (PKA) and C (PKC) to directly phosphorylate the purified β_2 - and α_1 -AR. Both the catalytic subunit of PKA and the PKC, purified from bovine heart and pig brain respectively, were able to phosphorylate the affinity purified hamster lung β_2 -AR (1 mol and 0.4 mol phosphorylation mixture increased the rate but not the extent of phosphorylation of the β_2 -AR by PKA but not by PKC. Phosphopeptide separation, by reverse phase HPLC, of the trypsinized receptor previously phosphorylated by either kinase revealed identical peptide map profiles suggesting similar sites of phosphorylation for the two kinases. The α_1 -AR purified from DDT, smooth muscle cells could also be phosphorylated by the two kinases (3 mol PO₂/mol PKC, 1 mol PO₂/mol PKA). In contrast with the β_2 -AR the addition of an α_1 agonist, norepinephrine (100 μ M), increased the rate but not the extent of phosphorylated by PKC drastically differed from the map obtained for the receptor phosphorylated by PKA. Therefore the β_2 -AR and the α_1 -AR are both substrates for PKA and PKC. However, agonist occupancy of the receptors facilitates their phosphorylation only by the protein kinase coupled to their own transmission pathway. "Feedback" and "cross system" phosphorylation may represent distinct and differently regulated mechanisms of receptor modulation.

ADENTIATE CYCLASE OF PERMEABILIZED REFRACTORY C6-28 CELLS REVEAL DIFFERENCES IN METEROLOGOUS DESENSITIZATION INDUCED BY ISOPROTERENOL OR DIBUTRYL CYCLIC AMP.

Sary Brooker, Department of Biochemistry, Georgetoun University Medical Center, Washington, D.C. 20007. The adenylate cyclase of permeabilized cells is stimulated more than 100 fold by isoproterenol (150) or forskolin and responds in a mammer analogous to whole cells (1.5vc.Mucleo.Protein Phos.Mes., 11,113-122,1965). C6-28 cells were grown in Idam plastic cell culture wells and cyclic AMP determined in whole cells or adenylate cyclase activity determined after incubation of permeabilized cells with 10 uN 150, 0.1 mM ATP and 1 uN GTP. In intact cells preincubated with 10 uN ISO or 1mM dibutyryl cyclic AMP for 4 hrs, the 30 min ISO rechallenge response in whole cells was 1.5% and 12% of the control response respectively. The cyclase activity from cells preincubated with ISO was 24% of control. In contrast, permeabilized cell cyclase from cells made refractory by dibutyryl cyclic AMP was 94% of control activity and thus permeabilized denylate cyclase was not refractory. The subsequent ISO rechallenge response in whole cells was greater if the protein synthesis inhibitor, cycloheximide (CH) (5 ug/ml) was included during the induction of refractoriness with ISO (12% of the control response vs 1.5% without CH). While CH did not totally prevented dibutyryl cyclic AMP induced refractoriness in whole cells. The protective effect of CH on ISO induced refractoriness causes a protein synthesis dependent stable charge in horsone stimulated adenylate cyclase associated with the cell membrane. In contrast, dibutyryl cyclic AMP induced refractoriness is lost upon permeabilization of the cells, suggesting that the refractoriness induced by dibutyryl cyclic AMP is mediated by factors which are loosely associated with the cell membrane and are lost during permeabilization of the cells, supported by NIH Grant 28940.

B lymphocyte antigen receptors (mIg) BSF1 receptors and Ia tranduce signals by distinct but interactive second messenger cascades. J.C. Cambier, K.H. Newell, L.B. Justement, Z.Z. Chen, M.J. Klemz, J.T. Ransom and L.K. Harris. Division of Immunology, National Jewish Center for Immunology, Denver, CO 80206

Quiescient B lymphocytes stimulated with antigen or surrogate anti-immunoglobulin (Ig) antibodies, or B cell stimulatory factor 1 (BSF1) undergo a rapid increase in expression of genes encoding c-fos, c-myc, and MMC class II molecules. Ligands which bind type II major histocompatibility antigens (Ia) antagonize signaling via both mIg and BSF1 receptors and also block lipopolysacchoride induced B cell mitogenesis. We report findings which indicate that B cell antigen receptors (mIg) transduce signals via activation of polyphosphoinositide hydrolysis, Ca^{**} mobilization, protein kinase C translocation to the plasma membrane, and membrane depolarization. BSF1 receptor utilize a cascade involving phosphorylation of a 44,000 Da membrane protein, possibly the BSF1 receptor, but none of the above mentioned PIP2 hydrolysis attendant events. In molecules appear to transduce signals utilizing a β adrenergic-type mechanisms involving activation of adenylate cyclase, elevation of cellular CAMP levels and translocation of protein kinase C to the nuclear fraction. The biologic effects (including PKC translocation) of mIa ligation are mimicked by elevation CAMP using db-CAMP, 8br-CAMP, forskolin, PGE₂ and Cholera toxin. Results suggest a novel mechanism by which at, and β adrenergic signal transduction cascades may interact antagonistically, which involves competition for the cellular pool of protein kinase C. Research supported by PHS grants AI 20519 and AI 21768.

RELATIONSHIP OF OPIATE RECEPTOR BINDING SITES AND OPIATE-INHIBITED ADENYLATE CYCLASE IN BRAIN MEMBRAMES. S.R. Childers, P. Nijssen and J. Harris, Dept. of Pharmacology, Univ. of Florida College of Med., Gainesville, FL 32610.

Adenylate cyclase appears to be coupled to delta opiate receptors in NG108-15 cells, but the pharmacological nature of the adenylate cyclase-linked opiate receptor in mammalian brain has yet to be established. To determine the relationship between high affinity opiate receptor binding sites and adenylate cyclase in brain, we assayed membranes after treatment with agents that block high affinity opiate agonist binding. Incubation of membranes with phospholipase A (500 ng/ml) inhibited 93-100% of the binding of [3H]-DAGO, [3H]-DSTLE and [3H]-EKC to mu, delta, and kappa sites, respectively. However, adenylate cyclase in treated membranes was still inhibited by D-Ala enk; moreover, the D-Ala enk inhibition curve was not affected by phospholipase treatment. To obtain more specific receptor blockade, membranes were incubated with irreversible opiates, then washed to remove reversibly-acting drugs; control membranes contained equal concentrations of naloxone to control for washing. Incubation with the irreversible antagonists naloxone azine and beta-FMA, and the irreversible agonist p-nitro-phenyl-oxymorphone, did not affect adenylate cyclase inhibition curves, but blocked high affinity receptor binding by 75-100%. Incubation with beta-CMA (10 µM), which blocked binding by 95-100%, shifted the adenylate cyclase dose response curve for D-Ala-enk by approximately 10-fold. These results indicate an irreversible loss in adenylate cyclase-linked receptors by beta-CMA, but not by other irreversible opiates, and suggest that opiate receptors linked to adenylate cyclase in brain do not correspond to any of the sites labeled with nN concentrations of [3H]-agonists.

Supported by grant DA-02904 from the National Institute on Drug Abuse.

37 PHOSPHORYLATION OF THE β-ADRENERGIC RECEPTOR IN LYMPHOMA CELLS IN RESPONSE TO PMA.

R.B. Clark, J. Friedman, M.W. Kunkel, N. Prashad, and J.A. Johnson. University of Texas

Graduate School of Biomedical Sciences, Laboratories of Cyclic Nucleotide Research, P.O. Box 20334,

Houston, Texas, 77225, USA.

Treatment of S49 WT lymphoma cells with phorbol 12-myristate, 13-acetate (PMA) caused a 3-5 fold increase in the K_{act} for epinephrine (epi) stimulation of adenylate cyclase (AC) with no change in β-adrenergic receptor (βR) levels or any evidence of internalization. It also resulted in a 60-80% loss of GppNHp inhibition of AC. The increased K_{act}, which resulted in considerable inhibition of epi stimulation of AC, closely resembled the increased K_{act} induced by epi treatment of cells. Low free Mg⁺⁺ (<1.0 mM) was required to observe these inhibitory effects of PMA reflecting about a 6-fold increase in the K_{act} for Mg⁺⁺ stimulation of AC. To test the hypothesis that the PMA-induced inhibition of epi stimulation of AC involved protein kinase C (PKC)-mediated phosphorylation of the βR, cyc⁻ cells were labeled with [³²P]PO and then treated with either 0.5 μM PMA or 1.0 μM epi for 5 min. Incorporation of the ³²P into the βR was determined following purification of the βR by alprenolol affinity chromatography, SDS-PAGE and autoradiography. The mobility of the purified βR on SDS-PAGE was identified by photolabeling with [¹²⁵I] iodoazidobenzylpindolol (IABP). The M_T of control and PMA-treated βR was 65 kDal. PMA caused a significant increase in the phosphorylation of the βR which exceeded that induced by epi by about 2-fold. There was no significant phosphorylation of the βR in untreated cells; thus, the PMA-induced phosphorylation could not be expressed as a fold increase over control. Our results suggested that PMA activation of PKC could result in phosphorylation and desensitization of the βR. However, analysis of the functions of the purified receptor following intact cell phosphorylation will be necessary before any firm conclusions can be drawn.

ROLE OF PERTUSSIS TOKIN (PT) SENSITIVE GTP BINDING PROTEINS IN THE REGULATION OF PETL-5 RAT THYROID CELLS. Deniels Cords and Leonard D. Kohn, LBM, WIDM, WIH, Bethesds, MD. 20892

PT-sensitive GTP binding proteins regulate cAMP dependent and independent mechanisms leading to the iodination of thyroglobulin and the formation of thyroid hormones. The inhibitory regulatory protein of the adenylate cyclase, N_T, is present in FRIL-5 cells, as shown by PT induced ADP ribosylation of a 40K protein identified as a₁ of N_T. Pretreatment of FRIL-5 cells with TSH (1 h) as well as PT (18 h) causes the disappearance of a_T. This can be demonstrated by the loss of 40K substrate available for PT induced ADP ribosylation in the membrane preparations. PT and TSH individually stimulate cAMP accumulation in FRIL-5 cells; however when PT is added to TSH stimulated cells, a small decrease of the cAMP level is observed. In contrast the PT and TSH effects are additive to forskolin and cholera toxin stimulation of adenylate cyclase. Coordinate TSH modulation of PT induced ADP ribosylation and cAMP accumulation, suggests a role for N_T in the TSH stimulation of adenylate cyclase activity. Both TSH and a₁ adrenergic agents utilize the IP₃-Ca++-arachidonic acid signal system to regulate iodide efflux in cells chronically exposed to TSH; these cells have a desensitized adenylate cyclase response to TSH but maximal iodide uptake. Pretreatment of FRIL-5 cells with 10-10 H PT for 4 h inhibits the increase in iodide efflux induced by norepinophrine (NE). Under these conditions there is no effect of PT on NE induced increase in IP₃ or cytosolic Ca++ but there is complete inhibition of arachidonic acid release. There is no effect of PT on the ability of TSH to increase any of these activities. Therefore, although both TSH and NE use the IP₃-Ca++ -arachidonic acid signal system, the coupling of a₁ adrenergic, but not TSH receptor to phospholipase A₂ is mediated by a PT sensitive GTP binding protein.

DIPHTHERIA TOXIM AMD CYCLOMEXIMIDE PREVENT CATECHOLAMINE DESENSITIZATION OF A431 CELLS.

Mariadele DeBernardi and Gary Brooker, Department of Blochemistry, Georgetoun University Medical Center, Mashington, D.C. 20007.

Our laboratory has previously shown in C6-2B rat astrocytoms cells that inhibitors of RMA and protein synthesis can reduce or prevent catecholamine refractoriness. Thus our working hypothesis is that induction of protein synthesis, after stimulation of cyclic AMP accumulation in C6-2B cells, produces an inhibitory protein which inhibits subsequent catecholamine stimulation of adenylate cyclise. Monolayer cultures of A431 cells, a human epidermoid carcinoms cell line, responded to 10 UM isoproterenol (ISO), increasing intracellular cyclic AMP up to 1000 fold above basal after 30 minutes deparding upon passage number. Basal values ranged from 9-35 pmol/mg protein. After 4 hours of ISO pretreatment the cells became desensitized to subsequent ISO treatment. Cycloheximide co-incubation with ISO during this first 4 hour incubation prevented the decline in cyclic AMP, and enhanced, more than seven fold, the accumulation of cyclic AMP after a subsequent 30 minute rechallenge with ISO. Diphtheria toxin, which inhibits protein synthesis by ADP-ribosylation of elongation factor II was found to prevent catecholamine refractoriness in A431 cells. A431 cells were intoxicated with 1 ng/ml of the toxin for 24 hours. Protein synthesis was inhibited more than 85% however the cells were still viable since they excluded the vital stain, trypen blue. These toxin treated cells still responded well to ISO yielding 9108 pmol/mg protein in 30 minutes compared to control cells which produced 11,292. After 4 hours of ISO treatment, in control cells cyclic AMP had declined to 2158, and strikingly, in diphtheria toxin treated cells, cyclic AMP was 6286 thus demonstrating the protective effect of diphtheria toxin upon catecholamine desensitization. Supported by MIH Grant No. 28940

DIFFERENTIAL COUPLING OF MUSCARINIC RECEPTORS TO HYDROLYSIS OP PHOSPHOINOSITIDES IN GUINEA-PIG CORTEX AND PAROTID GLAND. ¹Ek B, ²Keen M, Nahorski S. ¹Dept of Pharmacol and Biochem, AB RMssele, S-431 83 Mölndal, Sweden. ²Dept of Pharmacol and Med Ther, Univ of Leicester, UK. Muscarinic receptor activation induces a rapid hydrolysis of phosphoinositides in several tissues and allows examination of the relationship between agonist receptor occupancy and phosphoinositide response. In the present experiments, guinea-pig parotid gland and cerebral cortex were labeled with 3-H-myolnositol or 3-H-N-methylscopolamine and stimulated with the full agonist carbachol and the partial agonist oxotremorine in the presence of SMM of Li⁴.

3-H-myoinositol or 3-H-methylscopolamine and stimulated with the full agonist carbachol and the partial agonist oxotremorine in the presence of 5mM of Li⁺.

Carbachol showed a 10-fold lower EC50-value (3.7µM) and oxotremorine a 3-fold higher intrinsic sctivity (40%) in the parotid gland than in the cortex, suggesting possible differences in receptor coupling to the phosphoinositide response in the two tissues. This possibility was examined by incubating parotid gland and cerebral cortex slices with the alkylating agent benzylcholine mustard, 0.1µM, in order to inactivate muscarinic receptors. Reduction in specific muscarinic binding sites was accompanied in the parotid gland by a rightward shift of the carbachol dose-response curve and, at higher receptor loss, by a suppression of the maximal response. In cerebral cortex, however, only a decrease in the maximal response was seen. In both tissues, the maximal response of the partial agonist oxotremorine was suppressed without changing the position of the dose-response curves. The binding affinity of the agonists, in the presence of GTP (100µM), corresponds well with the estimated agonist potency regarding hydrolysis of phosphoinositides in the benzylcholine treated slices.

agonist potency regarding hydrolysis of phosphoinositides in the benzylcholine treated slices.

These results suggest a difference in the extent of receptor reserve in the parotid gland and cerebral cortex. This may suggest a difference in coupling of the muscarinic receptors to the phosphoinositide response in the two tissues.

Popuringric receptors mediate imositol phosphate amb prostacyclin formation in bovine addrenal medullary endothelial cells are closely juxtaposed to adrenal chromaffin cells but the nature of their interaction is for the most part unknown. Since high concentrations of products released from chromaffin cells certainly bathe the endothelial cells, we reasoned that these products may affect endothelial cells metabolism. We have found that one component secreted from chromaffin cells, attained adrenal medullary endothelial cells. Within 15 sec after the addition of 1 mm ATP, inositol trisphosphate (IP3) and inositol bisphosphate (IP2) levels peak at greater than twice control levels. Balf maximal stimulation occurs at about 30 um ATP if IP3 and IP2 are measured at 15 sec. ADP is almost as potent and efficacious as ATP but AMP and adenosine have no effect. Other nucleotides such as GTP, CTP, TTP and UTP are less effective in stimulating inositol phosphate production. ATP also more than doubles prostacyclin formation with half-maximal effects occurring at about 20 um ATP. The nucleotide specificity for prostacyclin formation is similar to that for inositol phosphate production. We hypothesize that ATP released from chromaffin cells interacts with P2-purinergic receptors on endothelial cells and stimulates the formation of prostacyclin via the generation of the second messenger IP3 and the subsequent increase in [Ca²⁺]_{in}. Prostacyclin-induced vasodilation of the adrenal medulla may enhance the distribution of chromaffin cell products to target organs.

42 GTP-INDEPENDENT STIMULATION OF RABBIT HEART ADENYLATE CYCLASE BY ISOPROTERENOL S.E. Harding and P. Harris, The Cardiothoracic Institute, 2 Beaumont Street, London, W1N 2DX, U.K. isoproterenal stimulates adenylate cyclase activity of rabbit heart sarcolemmal preparations by the same proportion (x2) whether or not GTP is added to the assay medium. This GTP-independent stimulation by isoproterenal requires the presence of physiological concentrations of ATP in the assay medium. Lowering ATP from 5 to 0.5mM almost completely abolished stimulation by 0.1 mM isopraterenal, while basal cyclase activity was unaffected. Reduction of ATP concentration from 5 to 0.5 mM decreased activation by 10 µM GppNHp from x15 to x9 but had no effect on stimulation by 200 mM KCI (x5). GTP-independent stimulation by isoproterenal was similar with ATP from equine muscle (Sigma), ATP synthesised from adenosine (Sigma), special quality ATP(BCL) or commercial ATP further purified in our laboratory. ATP does not therefore appear to be a source of contaminating GTP. No ATP regenerating system was present in the experiments because of possible GTP contamination of the reagents. From experiments where 3H-GTP was added to the initial rabbit heart homogenate, it was estimated that the sarcolemnal preparation would contribute about 0,1nM free GTP to the final assay medium. Greater than 10nM added GTP was necessary to mimmick the effect on isoproterenal stimulation of raising ATP from 0.5 to 5mM. The concentration of GDP in cardiac tissue is lower than that of GTP, and GDP is easily removed from cardiac sarcolemma by washing, it is therefore unlikely that transphosphorylation of GDP to GTP by ATP and nucleoside diphosphate kinase could produce sufficient GTP to account for the effects observed. GTP displaced GppNHp when the two were added to the sarcolemnal preparation simultaneously. ATP did not displace GppNHp under the same conditions. We conclude that the effect of ATP on isoproterenol stimulation may be mediated by a site separate from that at which GTP acts.

RAT PAROTID ADENYLATE CYCLASE CATALYST ACTIVITY DESENSITIZATION IS COUNTERACTED BY FORSKOLIN. 43 Jeffrey F. Harper, Depts Internal Medicine and Pharmscology, University of Texas Medical School, Houston, TX 77225. Desensitized adenviate cyclase (AC) reflects intact cell desensitization to isoproterenol (INE), both in its development and its counteraction by 1 LIM but not 0.1 LIM forskolin. Only 53±7% (n=12) of control activity to stimulation by INE is retained in tissue desensitized by INE prior to membrane preparation (p<0.01), 73±5% of normal response (p<.025) is retained in desensitized tissue to stimulation by 100 LM forskolin plus 30 mM MnClp. Forskolin therefore doesn't counteract desensitization in broken cells. Forskolin does counteract desensitization development when included with isoproterenol during initial intact cell incubation with the agonist. Membranes prepared after tissue incubation in which 1 μ M forskolin is included with INE during the desensitizing incubation contain fully active AC (measured as response to 100 µM forskolin with MnCl₂). Inclusion of 0.1 µM forskolin, on the other hand, does not counteract subsequent AC desensitization (p>0.1 vs. control and p<0.05 different from effect of 1 µM forskolin), in agreement with intact cell cyclic AMP accumulation studies (Harper, JCNPPR 9,401-414, 1984). AC desensitization is maintained in solubilized preparations. Parolid slices were desensitized to INE, then membranes treated with CHAPS. The solubilized AC retained its desensitization to 100 µM forskolin stimulation during this process, showing reduction to 81±8% of control (p<.025, n=18). These data show that desensitization is stable to the effects of CHAPS. MnCl2 uncouples Gg-mediated AC stimulation (by INE or GTP-Y-S), while desensitization to AC stimulation by forskolin is observed. Whatever produces desensitization is intimately associated with AC. INE produces concomitant secretion desensitization. O-Amylese secretion was measured continually on-line to determine secretion rate. With continual stimulation by 2.4 nM INE the secretion rate peaks, then declines so that within 60 min basal secretion rate prevails despite continued INE stimulation. Forskofin counteracts this secretion desensitization essentially immediately, mirroring its ability to do so for cyclic AMP desensitization. Other experiments show that secretion stimulated initially by forskolin plus INE is maintained significantly longer (140 \pm 20 min decline time to half of the peak, n=3) then with INE alone (17 \pm 2 min, n=4). Forskolin thus also delays secretion desensitization to INE. There is a close correlation between cyclic AMP and secretion desensitization not only duri een cyclic AMP and secretion desensitization not only during development but also with forskolin's ability to overcome desensitization. Supported by grants from NIH and CFF.

adipocytes isolated from PIA-infused rats is likely explained by the 10 fold greater isoproterenol-stimulated cAMP accumulation in these cells than in controls (J. Clin. Invest, in isoproterenol-stimulated cAMP accumulation in these cells than in controls (J. Clin. Invest, in press). The present studies examine the mechanism for the enhanced steady-state cAMP gacumulation in response to isoproterenol. Isoproterenol-stimulated cAMP production rate (pmol/10² cells/min) was increased in cells from PIA-infused rats: 291 ± 13 vs 77 ± 16 in controls. Isoproterenol-stimulated adenylate cyclase activity was increased 2 fold in membranes from treated cells. Also, the cAMP degredation rate was degreesed in cells from PIA-infused rats (0.18 \pm .03 min $^{-1}$) compared with controls (0.38 \pm .03 min $^{-1}$). The ability of PIA, PGE₁ and nicotinic acid to suppress isoproterenol-stimulated cAMP accumulation was examined. While these agonists each inhibited cAMP accumulation >95% in both groups, EC₅₀'s were increased 100 fold (PIA), 10 fold (PGE₁) and 3 fold (nicotinic acid) in cells from PIA-infused rats. These results indicate that prolonged exposure of adipocytes to PIA leads to greater isoproterenol-stimulated cAMP accumulation due to enhanced production and decreased metabolism of cAMP. Also, these cells are heterologously desensitized to receptor-mediated cAMP inhibition but the largest change occurred at A₁ receptors. Some of the results have analogies to adaptations to narcotics that occur in nerve cells.

45 MODULATION OF ADENYLATE CYCLASE ACTIVITY IN NCB-20 CELLS BY THE PROTEIN KINASE C ACTIVATOR, PHORBAL-12-MYRISTATE-13-ACETATE. Elizabeth B. Hollingsworth and John W. Daly, Laboratory of Bioorganic Chemistry, NIH, Bethesda, MD, 20892 The activation of protein kinase C through the addition of phorbal esters, such as phorbal-12myristate-13-acetate (PMA) modulates responsiveness of the cyclase system, in many cell types. In the neuroblastoms x Chinese hamster embryonic brain explant hybrid cell line (NCB-20) addition of PMA results in a down regulation of receptor-mediated accumulation of cyclic AMP. Down regulation by PMA occurs within 5 minutes and is still apparent at 45 minutes. This occurs in a concentration dependent manner with an EC50 for PMA of 3 x 10-8M. Accumulations of cyclic AMP that are elicited by prostaglandin 8, vasoactive intestinal peride or 2-chloroadenosine are decreased in the presence of PMA. Responses to a prostaglandin-forskolin combination are also reduced But accumulations of cyclic AMP that are elicited by forskolin in the absence of a receptor agonist are unaffected by the presence of PMA for the first 10 minutes. After 10 minutes the accumulation of cyclic AMP elicited by forskolin alone decreases steadily to a value about 50% of the maximal level attained at about 5 minutes. PMA completely prevents the decline in the forskolin response. Inhibition of cyclic AMP generation by dopamine is not diminished by PMA suggesting the receptor-input through the inhibitory (Ni) guanylnucleotide binding protein is still functional after PMA treatment. The inhibition of receptor-mediated responses by PMA may represent a protein kinase C-mediated enhancement of desensitization, although other mechanisms are possible.

ALPHA2-ADRENERGIC RECEPTORS ACTIVATE Na*/H+ EXCHANGE IN NEUROBLASTOMA X GLIOMA CELLS.

Lori L. Isom and Lee E. Limbird, Vanderbilt University, Nashville, Termessee.

Alpha2-adrenergic receptors (c2RA) are one of a population of receptors linked to the inhibition of adenylate cyclase through a GTP binding protein (G1). However, in many systems, the physiological effects elicited by a2AR cannot be explained solely by decreases in cAMP, suggesting the existence of other regulatory pathways that are activated by a2AR occupation. Recent data from our laboratory show that a2AR on the human platelet activate a phosphatidylinositol-hydrolyzing phospholipase A2 via a mechanism involving Na*/H+ exchange in order to evoke, ultimately, platelet secretion.

We have examined whether a2AR might activate Na*/H+ exchange in NIO8-15 neuroblastoma x glioma hybrid cells using the pH-sensitive probe 2,7-biscarboxyethyl-5(6)-carboxyfluorescein. When the intracellular pH (pHi) of NG108-15 cells in HOO3-free medium is reduced by the external application of acetate, the recovery of pH₁ to its resting value is blocked by the removal of extracellular Na*, by the addition of extracellular H+ and by various amiloride analogs. The recovery of pH₁ enhibits an ionic selectivity of Na* > Lif > K+, with no recovery observed in N-methyl-d-qluomine. These data indicate that the regulation of pH₁ in NG108-15 cells under these experimental conditions is due primarily to the functioning of a Na*/H+ antiporter.

Na*/H+ exchange in NG108-15 cells is accelerated by a2AR. Thus, (1)-epinephrine, but not prazosin or propranolol. The a2AR agonists norepinephrine, clonidine and UK-14304 also cause alkalinization of NG108-15 cells, whereas isoproterenol and phenylephrine do not. Furthermore, the effect of a2AR agonists to alkalinize the interior of NG108-15 cells is blocked by the manipulations utilized above to block Na*/H+ exchange. These data indicate that a2AR in NG108-15 cells activate Na*/H+ exchange, and further suggest that the acceleration of

meny cellular systems.

PHOSPHATIDYLINOSITOL HYDROLYSIS IN PERMEABILIZED EMBRYONIC CHICK HEART CELLS. <u>Linda G.</u>
<u>Jones</u> and Joan Heller Brown. Department of Medicine, U.C. San Diego, La Jolla, CA 92093
We have shown that stimulation of muscarinic receptors in dissociated embryonic chick heart cells We have shown that stimulation of muscarinic receptors in dissociated embryonic chick heart cells promotes the hydrolysis of the phosphoinositides resulting in accumulation of the breakdown products inositol tris-, bis-, and mono-phosphate (IP, IP₂, and IP₂). In order to address the question of whether a guanine nucleotide-binding protein couples receptor stimulation to PI hydrolysis in the chick heart cell, we developed a saponin-permeabilized cell preparation. The extent of permeabilization was assessed by trypan blue exclusion and the release of lactate dehydrogenase. In the permeabilized cell preparation GTPSS alone was found to increase the accumulation of IP, IP₂ and IP₃, suggesting that a polyphosphatidylinositol phospholipase C was activated. This effect was found to be specific for guanine nucleotides, as Gpp(NH)p and GTP were also effective while App(NH)p was not. The response to GTPSS occurred in a dose-dependent fashion with half-maximal stimulation obtained at 1 µM CTDYS. GTDYS was ineffective in a promoting RI hydrolycis in the intent (nonrementially and obtained the heart response to GTPTS occurred in a dose-dependent fashion with half-maximal stimulation obtained at 1 μ M GTPTS. GTPTS was ineffective in promoting PI hydrolysis in the intact (nonpermeabilized) chick heart cell except at high concentrations (30-100 μ M). While carbachol has been shown to stimulate PI hydrolysis in the intact cell, it was ineffective in promoting this response, either alone or in combination with GTPTS, in the permeabilized cell preparation. Muscarinic receptor binding studies demonstrated the same number of receptors on permeabilized as on intact cells. In addition, carbachol was found to effectively compete for ['H]NMS binding sites with the same K_ in both cell preparations, suggesting no change in receptor binding affinity in the permeabilized cell. The loss of the PI response to hormone may reflect an uncoupling of receptor stimulation to PI hydrolysis due to the saponin treatment. That GTPSS alone stimulates this response provides evidence for guanine nucleotide regulation of phosphoinositide turnover in the heart. regulation of phosphoinositide turnover in the heart.

AGONIST INDUCED PHOSPHORYLATION OF THE CARDIAC MUSCARINIC RECEPTOR. Madan M. Kwatra,

AGONIST INDUCED PHOSPHORYLATION OF THE CARDIAC MUSCARINIC RECEPTOR. Madan M. Kwatra, Arie Maan, Katharyn K. McMahon, and M. Marlene Hosey. Dept. of Biol. Chemistry & Structure, The Chicago Medical School, 3333 Green Bay Road, N. Chicago, IL 60064.

We have tested the possibility that regulation of cardiac muscarinic receptor function may involve receptor phosphorylation. Chick heart muscarinic receptors were purified from relatively small amounts of tissue to near homogeneity using a three-step chromatographic procedure that utilized the affinity chromatography procedure of Haga and Haga (J. Biol. Chem. 258, 13575-13579, 1983). The purified preparations contained a single major peptide, with migrated on NaDodSO4 gels with an apparent M of 79,000. When receptors were purified from 32P-bathed hearts, a single major phosphopeptide eluted from the affinity column and comigrated on NaDodSO4 gels with the band of stained receptor. Treatment of hearts with the agonist carbachol led to marked increases (10-12 fold) in the phosphorylation of the receptor. Liquand binding assavs performed with membranes isofold) in the phosphorylation of the receptor. Ligand binding assays performed with membranes isolated from control and carbachol-treated preparations indicated that the carbachol treatment led to decreases in the ability of the receptor to recognize agonist with high affinity. The results show that the muscarinic receptor is a phosphoprotein in cardiac tissue, and that treatment with a receptor to the control of the receptor is a phosphoprotein in cardiac tissue, and that treatment with a receptor to the control of the receptor is a phosphoprotein in cardiac tissue, and that treatment with a receptor to the control of the receptor to the receptor to the receptor to the control of the receptor to the receptor tor agonist regulates its phosphorylation in the intact cell. Phosphorylation of the receptor may be correlated with the process of receptor desensitization. (Supported by NIH grant HL 31601 and the American Heart Association.)

CYCLIC GMP AND ALPHA-2 ADRENERGIC RECEPTORS MODULATE TOTAL GLUCOSE UTILIZATION (GLU) AND INSULIN RELEASE IN PANCREATIC ISLETS OF LANGERHANS OF THE RAT. S.G. Laychock, Department of Pharmacology and Toxicology, Medical College of Virginia, Richmond, Virginia 23298.

Dynamic changes in GLU in isolated islets were determined by quantitation of the formation of 3H20 from D-[5-3H]glucose. The addition of 8-bromo (8r)-GMP (0.02-2 mM) or monobutyryl-cGMP to the islets during a linear phase of glucose utilization resulted in concentration and time-dependent increases in GLU. The effects of Br-GMP occurred within 5 min with 10 mM glucose. Stimulatory effects of Br-cGMP were observed in the presence of cycloheximide. Analogues of cAMP, cIMP, or 5'-GMP did not mimic the effects of Br-cGMP. Insulin release from islets incubated in the absence of glucose was not changed by addition of Br-cGMP (2 mM), however, glucose (10 mM)-stimulated insulin release was potentiated by Br-cGMP. Br-cGMP did not alter insulin secretion in response to glyceraldehyde or 2-ketoisocaproic acid. Islet beta cells are regulated by alpha-2 adrenergic receptors, and GLU and insulin release were inhibited in islets incubated with clonidine or epinephrine; yohimbine antagonized this effect. Br-cGMP increased GLU and insulin release in epineparine; yonimble antagonized this errect. Bracker increased GLU and insulin release in clonidine— or catecholamine—treated islets. Carbamylcholine, which stimulates cGMP production in islets, reversed the inhibition of GLU by clonidine, and 3-isobutyl-1-methylxanthine enhanced the stimulatory response to carbamylcholine. Carbamylcholine alone did not alter GLU. In conclusion, GLU in the islet is modulated by cGMP. Alterations in GLU probably mediate the effects of cGMP on insulin release. In addition, CGMP antagonizes the inhibitory effects of alpha-2 adrenergic receptor agonism on GLU and insulin release. Supported by NIH grant AM25705.

R.J. Lefkowitz. Duke Univ. Med. Ctr., Durham, N.C.

Norepinephrine (NE) acting through a -adrenergic receptors (a,AR) influence cells via inositol phospholipid hydrolysis and generation of the two second messengers inositol triaphosphate and diacylglycerol. Continuous exposure of DDT, MF-2 smooth muscle cells to NE results in a dramatic attenuation of a,AR function as measured by NE-stimulated incorporation of P, into phosphatidyl-inositol and phosphatidic acid. In addition, NE exposure reduces the number of accessible cell surface a,AR as assayed by [H]prazosin binding to intact cells at 4°C. Purification of a,AR from P-labeled cells desensitized with NE yields the phosphorylated M, 80K ligand binding peptide. The time courses of receptor phosphorylation and attenuation of receptor number and receptor function are very comparable heigh helf-maximal within 1-2 min. The turn-representation enter (PE) (Leph-Lumbers et al.) very comparable being half-maximal within 1-2 min. The tumor-promoting esters (PE) (Leeb-Lundberg et P.N.A.S. 82, 5651-5655, 1985) and the vasoactive peptide bradykinin also induce desensitization and phosphorylation of α AR. However, unlike NE neither PE nor bradykinin reduce the number of cell surface α AR. Virtually the same tryptic phosphopeptides are obtained from phosphorylated α AR derived from cells treated with NE, PE and bradykinin. The various agents induce phosphorylation on serine and threonine. These results indicate that desensitization of a, AR is paralleled by an increase in phosphorylation at specific sites in the M 80K o AR peptide. o AR agonists, in addition, promote a decrease in accessible cell surface o AR receptors. Thus, phosphorylation of receptors linked to the inositol phospholipid/Ca signal transduction pathway may represent an important mechanism of regulation of receptor responsiveness.

SYNERGISTIC ACTION OF ADENOSINE (ADO) AND fMET-LEU-PHE IN RAISING CAMP CONTENT OF HUMAN MONOCYTES. E.J. Leonard and K.R.F. Elliott, National Cancer Institute, Frederick, MD 21701. The release of superoxide by human monocytes in response to fMet-Leu-Phe was inhibited by ADO. Comparison of the potency order of ADO unalogues with published data suggested that ADO acts on the stimulatory receptor for adenylate cyclase. Since elevations of cAMP inhibit superoxide release, we determined cAMP content of ADO treated cells, and the effect of stimulation by fMet-Leu-Phe. The Table shows increases of cAMP above the basal level of 1.3 + 0.2 in 5 experiments.

	Stimulus	Increase in cAMP, pmols/106 monocytes
Α.	fMet-Leu-Phe, 1 min.	1.3 + 0.2
В.	Adenosine, 3 min.	0.4 ∓ 0.3
	Sum of A and B	1.7 + 0.4
c.	Adenosine, 3 min; fMet-Leu-Phe	~
	added after 2 min of adenosine	3.5 + 0.7
	C/(A + B)	2.2 + 0.3

Stimulation of monocytes with fMet-Leu-Phe increased cAMP. This was previously shown for neutrophils, in which the rise in cAMP was attributed to inhibition of phosphodiesterase (PDE), since adenylate cyclase did not increase. When ADO-treated monocytes were stimulated by fMet-Leu-Phe, the increase in cAMP was twice the sum of the increases induced by the 2 agents alone. These data suggest that the increase in cAMP by ADO-induced cyclase activation is limited by the activity of PDE, and that the latter can be inhibited by fMet-Leu-Phe.

A GTP-BINDING PROTEIN MEDIATES SOMATOSTATIN INHIBITION OF CALCIUM CURRENT. Deborah Lewis, Alberto Luini, and Forrest F. Weight. NIAAA, Rockville, MD 20852 and NIMH, NIH, Bethesda, MD 20892.

Somatostatin inhibits the voltage-dependent calcium current measured by the whole-cell patch-clamp technique, in the neurosecretory pituitary cell line AtT-20/D16-16. We tested the involvement of guarine nucleotide-binding proteins, G proteins, in the signal transduction mechanism between the somalostatin receptor and the voltage-gated calcium channel.

The patch-clamp method was used to record the calcium current in the whole-cell voltage-clamp mode. The extracellular solution contained: 150mM TEA-CI, 0.8mM MgCl₂, 5.4mM KCl, 10mM CaCl₂, 10mM HEPES/CsOH (pH 7.4), and 1µM tetrodotoxin with an osmolarity of 340 mosmol/kg. The intracellular patch pipette solution contained: 120mM CsCl, 11mM EGTA, 2mM TEA-CI, 2mM MgCl₂. 10mM HEPES/CsOH (pH 7.4), 4mM MgATP, 20mM creatine phosphate, and 50 U/ml creatine kinase with an osmolarity of 318 mosmot/kg. The nonhydrolyzable GTP analog, guanosine 5'-(3-O-thio)triphosphate (GTPyS), was added to the patch pipette solution at a concentration of 100µM. Some patch pipettes had an additional 100µM cAMP and 1mM IBMX. Cells were voltage clamped to a holding potential of -80mV and stepped to +10mV, the peak of the current-voltage relationship for calcium current. All recording was at morn temperature, 20-22°C. Somatostatin was applied via a macropipette lowered into the recording bath near the surface of the cell under study. The macropipette was withdrawn from the bath to terminate somatostatin application.

Pertussis toxin treatment (100ng/ml, overnight), which blocks the function of the GTP-binding proteins Gi and Go, completely abolished the action of somatostatin on calcium current. Intracellular application of 100µM GTP-6 via the patch pipette renendered irreversible the somatostatin-induced inhibition of calcium current. In addition, GTPyS alone caused a slow decline in the calcium current amplitude over 500 s. When calcium current was inhibited by GTPyS (alone or with somatostatin), there was little or no response of calcium current to subsequent application of somatostatin. The affect of somatostatin on calcium current was not altered by intracellular application of cAMP (100µM) and BMX (1mM) alone or in the presence of GTP S. The results suggest that the sometostatin receptor is coupled to a GTP-binding protein which mediates inhibition of voltage-dependent calcium channels in a cAMP-independent manner.

Mononclear leukocytes (MNL) from patients with atopic dermatitis (AD) have higher basal adenylate cyclase (AC) activity but a blurted response to a variety of hormones including beta-edrenergic agonists and prostaglandins. Phosphoinositide (PI) pathway abnormalities include increased incorporation of tritiated incoloriol into phosphoinositides in AD MNLs. The signal transduction system involving GTP-binding proteins is associated with both AC and PI pathways, and may be the site of a common defect in AD. We tested AC activity of MNL membranes with GTP and Gpp(NH)p, as non-hormonal stimulators, to probe for a defect in the AC receptor-coupling system. MNLs were isolated from peripheral blood on Hypaque/Ficoll gradients, and monocytes separated from platelets and lymphocytes by adherence. Membranes were prepared by freeze-fracture of cells, bounce homogenization, centrifugation at 45,000g and resuspension of the pellet by sonication. Membranes were assayed for AC activity by Solomon's method using 32P-labeled ATP as substrate for adenylate cyclase. Forskolin (FSK) and Mn were used as catalytic-unit activators. Basal AC activity of monocytes membranes of normals was 0.22 ± 0.09 (S.E.M.), monol cMPP/mg, protein /30min., compared to 0.60 ± 0.08 mol in AD monocytes (m=6,pc0.025). Stimulating with Gpp(NH)p 10 M caused a net increase of 2.42 ± 0.68 mol cMPP in normal membranes and 4.67 ± 0.44 mol in AD preparations, i.e., a 2-fold greater increase in AD compared to normal AC activity. FSK also caused a greater increase in AC activity in AD monocytes. The greater cMP production by AD monocytes in response to the GTP analog suggests that the defective regulation of cMPP synthesis may involve one or both G proteins, with an increased stimulatory (3s) effect and/or less inhibitory

ADENYLATE CYCLASE (AC) OF DIFFERENTIATED PREADIPOCYTES IN PRIMARY CULTURE: RELATIVE LACK OF N1 MAY DETERMINE THE DIFFERENCE FROM ADIPOCYTES OF PROSTAGLANDIN ϵ_1 (PG ϵ_1) AND CATECAG AWAYS DECEMBES

 $\underline{\text{Z.O. LU}}$, M.A. PINEYRO, J. KIRKLANO, Z.H. LI, and R.I. GREGERMAN, Gerontology Res. Ctr., NIA, NIH, F.S.K. Med. Ctr., Baltimore, MD 21224

(GI) influence on AC catalysis.

Preadipocytes derived from the stromal-vascular fraction of collagenase digested perirenal fat pads of Fisher 344 rats grow in α -MEM containing 10% FCS to confluence and accumulate lipid by 12 days. The cells show AC activity stimulated by GTP, Gpp(NH)p, NaF and forskolin, but response to isoproterenol and epinephrine is minimal (1.88 \pm .75 \times basal, n = 12, and 2.06 \pm .75 \times basal, n = 10, respectively). In contrast, GTP-dependent activation of AC by PGE1 (10-5M) is 7.55 \pm 1.11 \times basal (n = 8). This activation occurs even in the presence of 140 mM Na*, a condition which leads to PGE1 inhibition of AC in mature adipocytes. Also unlike the AC of mature adipocytes, forskolin-activated preadipocyte AC does not show a frank inhibition by GTP, and pertussis toxin treatment raises basal and enhances stimulation by GTP and PGE1. Pertussis toxin labelling of Ni with $^{32}\text{P-NAD}$ (25 μM) shows about 25% of the Ni of adipocytes. The results indicate that, unlike adipocytes, the differentiated preadipocytes have not developed a fully functional Ni pathway. A lowered ratio of Ni:Ns may also relate to failure of activation by catecholamines.

DOWN REGULATION OF INTERLEUKIN 1 (IL 1) RECEPTOR EXPRESSION BY IL 1 AND FATE OF INTERNALIZED 1251-LABELED IL 1-9 IN HUMAN LARGE GRANULAR LYMPHOCYTE CELL LINE. Koují Matsushima and Joost J. Oppenheim. Laboratory of Molecular Immunoregulation, Biological Response modifiers Program, Division of Cancer Treatment, NCI, NIH, Frederick Cancer Research Facility, Frederick, MD 21701

The regulation of interleukin l (IL 1) receptor expression on a human large granular lymphocyte cell line, YT, and fate of internalized \$125\text{I-labeled IL 1-8}\$ (\$125\text{I-IL 1-9}\$) were studied. YT cells respond exogenously added IL 1 by expressing high affinity IL 2 receptors, and do not produce IL 1. In addition, YT cells constitutively express about 7 x 10\frac{3}{1L}\$ It receptor per cell with a KD of \$\times 10^{-10}\text{N}\$. Whicher IL 2, phorbol myristic acid, nor iipopolysaccharide affected the total binding of \$\frac{125}{1-IL}\$ 1-\text{B}\$ by YT cells. In contrast, the capacity of YT cells to bind \$\frac{125}{1-IL}\$ 1-\text{B}\$ when incubated at \$37^\circ C for 3 to 16 hr with a low dose of purified IL 1-\text{R}\$ (\$\times 6\$\text{U/ml}\$) was reduced by \$\times 80\text{X}\$. The binding capability of YT cells recovered by 16 hr after removal of IL 1-\text{B}\$. Acid treatment of YT cells to remove bound \$125\text{I1-\text{B}}\$ showed that 50\text{X}\$ of the \$125\text{I-IL}\$ 1-\text{B} bound to cells could no longer be recovered after 30 min at \$37^\circ C\$ and and this increased to \$80\text{X}\$ after 3 hr at \$37^\circ C\$. Fractionation of cell extracts on Percoll gradient further showed that after receptor binding on plasma membranes, \$\frac{125}{1-IL}\$ 1-\text{B}\$ could be successively recovered from intracellular sites associated with some membranes organelles (d=1.037), with an intermediate density organelle (d=1.050), and to finally end with the lymphosomal cell fractions (d=1.05 to 1.08) at about 3 hr at 37^\circ C\$. Only \$\times 5\text{X}\$ of internalized \$\frac{125}{1-IL}\$ 1-\text{R} was released into culture media by 6 hr of incubation at 37^\circ C\$. This observation suggests that the low number of detectible receptors for IL 1 on many cell types may be attributable to persistent down-regulation by low levels of exogeneous IL 1.

UNCOUPLING OF THE MITOGENIC RESPONSE OF INSULIN AND IGF-I STIMULATION ON DIFFERENTIATED HUMAN SH-SY5Y NEUROBLASTOMA CELLS. M.E.K. Mattsson, G. Enberg, S. Gammeltoft, K. Hall and S. Påhlman, Department tof Pathology, University of Uppsala, Sweden, Department of Endocrinology, Karolinska Institute, Stockholm, Sweden, Department of Clinical Chemistry, Bispebjerg Hospital, Copenhagen, Denmark.

Insulin and insulin-like growth factor I (IGF-I) induce at physiological concentrations ornithine decarboxylase activity, H-thymidine incorporation and cell division in SH-SY5Y neuroblastoma cells. The cross-reactivity pattern in binding studies using T-labelled ligands and cross-linking experiments followed by analysis of the ligand-receptor complexes by SDS-electroforeses, have shown that the SH-SY5Y cells express insulin, IGF-I and IGF-II receptors. The molecular weights of the insulin/IGF-I receptors and the IGF-II receptor were 130 kD and 250 kD, respectively. The biologically active phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA) induces growth inhibition, morphological and functional differentiation in SH-SY5Y cells. The mitogenic response (induction of ornithine decarbo-xylase activity and H-thymidine incorporation) to insulin and IGF-I is lost in cells treated by TPA for 4 days. However, TPA-treated cells still bind insulin and IGF-I. In contrast, the IGF-II binding disappears, during TPA treatment. The insulin and IGF-I receptor-mediated mitogenic signals are apparently uncoupled at an unknown stage of the intracellular mitogenic pathwsy. In an attempt to localize the step at which TPA differentiation interferes with the mitogenic signal transduction, we have analysed whether or not early effects of insulin and IGF-I stimulation in non-treated cells still are induced after TPA-treatment. This includes receptor autophosphorylation, sctin reorganization and c-fos expression.

ENHANCEMENT OF HORMONE-STIMULATED CYCLIC AMP ACCUMULATION IN HUMAN MONONUCLEAR LEUKOCYTES BY A FACTOR IN SERUM Harvey Motulsky, Div. Pharmacology, Univ. Cal. San Diego.

57

Human mononuclear leukocytes (MNL) contain beta-adrenergic and histamine receptors coupled to a stimulation of adenylate cyclase, and are a popular model system for studying the regulation of receptors and adenylate cyclase in humans. We have found that MNL prepared at 4° accumulate fivefold more cAMP in response to isoproterenol than do MNL prepared at ambient temperature. Warming these MNL prepared at 4° did not decrease cellular ATP levels, but lowered cAMP accumulation stimulated by isoproterenol, histamine, and prostaglandin E11, but not forskolin. Similar results were obtained in cells pretreated with pertussis toxin to inactivate the inhibitory guanine nucleotide bindiing protein. The difference between the two batches of MNL could only be observed in intact cells; no difference was observed in isoproterenol-stimulated adenylate cyclase activities in membranes or in phosphodiesterase activities in homogenates. cAMP accumulation in warmed MNL was increased by preincubation with plasma. Serum (human, horse, or fetal calf) also enhanced cAMP accumulation, and this activity remained in the supernatant after heating human serum to 100° for 10 min and pelleting the protein flocculate. Preliminary data indicate that the ability of this serum extract to enhance cAMP accumulation remains after dialysis, has nearly full potency after a 1:16 dilution, and enhances cAMP accumulation in S49 lymphoma cells as well as in MNL. These data suggest that blood serum contains one or more factor(s) that elevate hormone-stimulated cAMP accumulation in intact cells.

ACTIVATION OF FAT CELL ADENYLATE CYCLASE BY PROTEIN KINASE C. S. Naghshineh, M. Noguchi, K.P. Huang, and C. Londos, NIDDK, NIH, Bethesda, MD 20892.
Highly purified protein kinase C (C-kinase) from rat brain and partially purified C-kinase from guinea pig pancreas stimulate adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurs over 100 to 1000 mU/ml of C-kinase activity, requires 1-10 µM calcium, but does not require exogenous phospholipid. C-kinase inhibitors, such as chlorpromazine, palmitoyl carnitine, and polymyxin B inhibit selectively adenylate cyclase which is activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhances or is required for C-kinase action on cyclase. Also, TPA plus calcium promote the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase is seen both in the presence and absence of exogenous GTP and in membranes from cells that have been treated with pertussis toxin, suggesting that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N_1) of the cyclase system. Similarly, treatment with cholera toxin does not alter adenylate cyclase stimulation by C-kinase. Finally, the kinase effect is seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH2p, which have been treated with glucose and hexokinase to remove residual ATP. Such data indicate that the effects of C-kinase described herein may result from associatn with, rather than phosphorylation of, adenylate cyclase.

DEXAMETHASONE AND SODIUM BUTYRATE MODULATE COMPONENTS OF THE s-ADRENERGIC RECEPTOR-ADENYLATE CYCLASE COMPLEX IN 3T3-L1 PREADIPOCYTES. M.T. Nakada, J.M. Stadel, K.S. Poksay, S.T. Crooke. Smith Kline & French Labs, Philadelphia, PA 19101.

In mouse 3T3-L1 preadipocytes, the glucocorticoid dexamethasone (dex) effects a switch in a-adrenergic receptor (sAR) subtype expression from siAR to siAR and increases total sAR number. These effects are dose and time dependent. The ability of other steroids to cause the subtype switch correlates with their glucocorticoid activity. Compounds most effective in regulating sAR are also the most potent competitors for [im]-dex binding to the 3T3-L1 glucocorticoid receptor. RMA synthesis, protein synthesis, and M-linked glycosylation appear to be required for the dex-induced sAR subtype switch and increase since these changes are not observed in the presence of inhibitors for these processes. Another gene activating agent, sodium butyrate, mimics the effects of dex in altering sAR subtype and number. Butyrate's effects are dose and time dependent. Other short chain acids are not as effective as butyrate in altering sAR. Cyclohexamide inhibits butyrate's effects on sAR, suggesting that protein synthesis is required. The combined effect of dex and butyrate in regulating sAR is greater than additive suggesting that these two compounds may be acting through different mechanisms. Butyrate, and to a lesser extent dex, promote a 2-3 fold increase in labeling of G₀ and G₁ using cholera toxin and pertussis toxin respectively. These data suggest that both butyrate and dex coordinately regulate components of the sAR-adenylate cyclase complex in 3T3-L1 preadipocytes.

The BINDING OF [3H] PORSKOLIN TO PROTEINS SOLUBILIZED FROM BOVINE BRAIN MEMBRANES.

C.A. Nelson and K.B. Seamon Center for Drugs and Biologics/FDA Betheada MD 20892
The binding of 3H-forakolin (3H-FSK) to proteins solubilized from bovine brain membranes was studied using a precipitation assay. The K_d for 3H-FSK binding to solubilized proteins was 14 nM which is similar to that reported for binding sites in membranes from rat brain and human platelets. The rank potency of forskolin analogues to compete for 3H-FSK binding sites was the same in brain membranes and solubilized preparations. Proteins were solubilized from membranes preactivated with GppNHp.

3H-FSK bound to proteins solubilized from preactivated membranes with a Bmax of 106 fmol/mg protein. Solubilized proteins from non-preactivated membranes had a Bmax of only 38 fmol/mg protein which was increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on 3H-FSK binding to proteins solubilized from preactivated membranes. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was stimulated 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min and was not stimulated by GppNHp or forskolin. Thus, the formation of the high affinity binding sites for 3H-FSK was coincident with the activation of adenylate cyclase via the guanine nucleotide binding protein.

3H-FSK binding comigrated with adenylate cyclase activity from preactivated membranes on a GF-450 molecular exclusion matrix indicating that the activated catalytic unit of adenylate cyclase and the ³H-FSK binding site have similar molecular weights and may be the same complex.

SPONTANEOUS COUPLING OF THE β-ADRENERGIC RECEPTOR TO No IN CARDIAC MEMBRANES

V. Merme, Y. Severne, T. Abrahamsson, G. Vauquelin. Department of Pharmacology and Biochemistry, HEssle Cardiovascular Research Laboratories, S-431 83 Mölndal, Sweden and Institute of Molecular Biology, Free University of Brussels, 65 Paardenstraat, B-1640, St. Genesius-Rode, Belgium

The alkylating reagent N-ethylmaleimide (NEM) does not affect the number of β -adrenergic receptors in membranes from turkey erythrocytes, S49 lymphoma cells and rat lung. However, in the presence of β -agonist, NEM provokes a decrease in the receptor number by 50 to 65%. This has been ascribed to the ability of NEM to alkylate a sulfhydryl group which becomes exposed at the surface of the adenylate cyclase stimulatory protein N., upon interacting with the agonist-occupied receptor.

the adenylate cyclase stimulatory protein N_g, upon interacting with the agonist-occupied receptor. In the present study, we show that NEM alone can cause a time and concentration dependent decrease in the β-receptor number by approximately 20% (at 0.1 mM NEM) in cardiac membranes from resempinized cat, rat and guines pig. The noradrensline concentration is less than 0.1 mM in these preparations. The NEM-mediated decrease occurs also in the absence of Mg⁺⁺ but is effectively prevented and even reversed by GTP. Our data are compatible with a model in which part of the β-adrenergic receptor population (20%) are able to undergo agonist independent coupling to N_g in cardiac membranes.

RELATIONSHIP BETWEEN β-ADRENOCEPTOR REGULATION AND β-ADRENGERGIC RESPONSIVENESS IN HEPATOCYTES. M. Refsnes, D. Sandnes and T. Christoffersen. Department of Pharmacology, University of
Oslo, P.O. Box 1057 Blindern, 0316 Oslo 3, Norway.

Mechanisms regulating the responsiveness of the adenylate cyclase (AC) to catecholamine stimulation were studied in cultured rat hepatocytes. These cells acquire a several-fold increase in the β -adrenergic responsiveness when plated as monolayer cultures. Comparison of the emergence of isoproterenol (ISO)-sensitive AC and binding of Γ^{125} iodocyanopindolol (Γ^{125} increase in the plating. The increase in Γ^{125} iodocyanopindolol (Γ^{125} increase) and transitorily slightly preceded the rise in ISO response, but the response thereafter rose steeply and transitorily (Γ^{125} increase) and increase in binding. Pertussis toxin (IAP) added at 0 h increased the ISO-sensitive AC activity measured at 7 h and 24 h, without affecting the number of Γ^{125} increased the ISO-sensitive AC activity measured at 7 h and 24 h, without affecting the number of Γ^{125} increased the AC (504 after Γ^{125} increase) after 20 h caused a rapid homologous desensitization of the AC (504 after Γ^{125} increase) and protein synthesis-independent after a brief (10 min) desensitization of the AC, which was rapid and protein synthesis-independent after a brief (10 min) desensitization, or slow and cyclohaximide-sensitive after prolonged (4 h) exposure to the agonist. In both cases an up-regulation of the Γ^{125} increase in the results suggest that, although superimposed mechanisms operate, regulation at the Γ^{125} increase in hepatocytes.

DIFFERENTIAL INHIBITION, BY METHACHOLINE (MECH) AND HISTAMINE (HIS), OF ISOPROTERENCL (ISO)-INDUCED PROTEIN KIMASE (PK) ACTIVATION AND RELAXATION OF TRACHEAL SMOOTH MUSCLE (TSM), G.A. Rinard, T.J. Torphy, and A.M. Puckett, Emory Univ., Atlanta, GA & Smith, Kline & French, Phila, PA.

Maximally effective doses of MECH and HIS contract canine TSM to the same force per cross sectional area. We used functionally equivalent contractile doses (EC₃₃, EC₆, EC₁₀) of MECH & HIS to precontract TSM prior to ISO relaxation dose-response studies. MECH was a stronger functional antagonist than HIS.

Maximal (EC₁₀₀) MECH prevented ISO relaxation and inhibited PK activation. Equivalent HIS contractions were readily relaxed by ISO and PK activation was not inhibited. Increasing doses of HIS gave ISO EC₅₀ values of 1.6 nM, 2.5 nM 5.5 nM in cervical TSM and 6.3 nM, 10 nM & 12.6 nM in thoracic TSM. Increasing doses of MECH gave ISO EC₅₀ values of 2.5 nM, 20 nM & no relaxation in cervical TSM and 25 nM, 251 nM & nO relaxation in thoracic TSM. We suggest that methacholine has an effect to inhibit beta adrenergic activation of the cyclic AMP-dependent protein kinase pathway in TSM but that histamine, even though it produces the same contractile force lacks such an effect. Thus ISO readily relaxes the complete range of HIS-induced contractions but as increasing doses of MECH increase the force of contraction, ISO is increasingly ineffective in relaxing MECH-induced contractions in canine tracheal smooth muscle.

Supported by NIH, HL-32770.

DUBL REGULATION BY CALCIUM AND GURNOSINE NUCLEOTIDES OF β -MSH RECEPTOR FUNCTION IN THE M2R MELANOMA CELL LINE. Yourse Salomon, Josepha Sole and Jeffrey E. Genst, Department of Hommone Research, The Weizmann Institute of Science, 76100 Rehovot, Israel.

Calcium has been implicated as a potential regulator of both malanotropin (α and β) and corticotropin-sensitive adenylate cyclase. We have examined the melanotropin (MSH) receptoraterylate cyclase system in the MZR mouse melanoms clone. Our results demonstrate that both β -MSH binding and subsequent activation of adenylate cyclase is dependent on concentrations of extracellular calcium in the micromolar range. This effect can be shown both in the intact cell and in a plasma membrane preparation derived thereof, using an EOTA buffer system. In contrast, stimulation of adenylate cyclase by prostagiandin B_1 , forekolin, or OTPYS is calciuminessitive. Calcium appears to increase the binding affinity of β -MSH to its receptor by a factor of 20 (from 400 to 20 nM), without affecting maximal hormone binding. Hormone-receptor complesses formed in the presence of calcium dissociate rapidly (<2 min) and reversibly upon the elimination of calcium by excess EOTA. However, above saturating concentrations of β -MSH (>200 nM) hormone binding and stimulation of adenylate cyclase becomes calcium-independent. Under physiological concentrations of hormone and calcium, binding of β -MSH is entirely calcium-dependent. While calcium promotes β -MSH binding, OTP and its stable nucleotide analogs lead to a reduction both in affinity (2-fold) and maximal binding (65%). Guenosine nucleotide effects are evident in both a time— and concentration-dependent member. However, these effects appear to be calcium-independent, suggesting that the dual control of β -MSH binding by calcium and guenosine nucleotides is mediated by two separate and independent mechanisms.

THE GUANINE MUCLEOTIDE BINDING PROTEIN N CO-PURIFIES WITH THE D DOPAMINE RECEPTOR OF AMTERIOR PITUITARY. S.E. Senogles, J.L. Benovic, N. Amlaiky, R. Vinitsky, A.M. Spiegel and M.G. Caron. Duke Univ. Med. Ctr., Durham, M.C. and NIADDK, NIH, Bethesda, MD

The D_c dopamine receptor (D_cR) of the anterior pituitary gland mediates the dopaminergic inhibition of prolactin release. Many lifes of evidence suggest this process may be mediated through both adenylate cyclase and phosphoinositide metabolism. D_cR purified by affinity chromatography on CMOS Sepharose (apiperona derivative) appears to be functionally coupled to a guanine nucleotide regulatory protein (N) as evidenced by the presence of agonist high affinity binding to the partially purified D_cR after re-insertion into phospholipid vesicles. The endogenous N protein is a substrate for pertussis toxin yielding a P-ADP ribosylated product of M_c 2,39,000 on SDS-PAGE, which co-migrates with brain N_c. Peptide maps generated using elastase of the P-ADP ribosylated endogenous N protein, N_c, N_c and transducin, revealed strong homology with brain N_c. Immunoblotting of the partially purified D_cR with RV3 (an N_c specific antibody) and CW6 (an N_c specific antibody) showed crossreactivity only with RV3. Functional interaction between the D_cR and the endogenous N_c was demonstrated by an agonist promoted 2-3 fold stimulation in GTPase activity or [3.5]GTPyS binding. Association of endogenous N_c with D_cR was increased by agonist pretreatment and decreased by guanine nucleotides. These results suggest a specific association and preferential coupling of N_c with the D_cR of pituitary. Reconstitution of agonist stimulated GTPase activity could be obtained using puffied brain N_c and partially purified resolved D_cR. These results constitute the first documentation of an endogenous association of N_c with a receptor system. Further evaluation with receptor systems and elucidate the processes determining the specificity of the association of N_c proteins with receptor systems.

DIFFERENTIAL EFFECTS OF PERTUSSIS TOXIN AND PHORBOL ESTERS ON SIGNAL TRANSDUCTION VIA THE CHEMOATTRACTANT RECEPTOR-N PROTEIN-PHOSPHOLIPASE C SYSTEM OF HUMAN NEUTROPHILS. Charles D. Smith and Ralph Snyderman, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710. Treatment of PMNs with pertussis toxin (PT) inhibits inositol trisphosphate (IP3) generation induced by the chemoattractant fMet-Leu-Phe (fMLP), indicating that its receptors activate a phospholipase C (PLC) via a PT-sensitive N protein. FMLP-induced IP3 production is also inhibited by phorbol myristate acetate (PMA). Receptor interaction with the N protein can be measured as fMLP-stimulated GTPIT353 binding to membranes. This stimulated binding is absent in membranes from PT-treated PMNs, but remains in membranes from PMA-treated cells. Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis via PLC can be activated in isolated plasma membranes at low concentrations of Ca²⁺ (LeM) with either fMLP plus GTP or GTPIS alone. Membranes from PT-treated PMNs degrade PIP2 upon exposure to GTPIS, but not fMLP plus GTP. Membranes from PMA-treated PMNs do not hydrolyze PIP2 when incubated with GTPIS, but do degrade PIP2 in the presence of 1 mM Ca²⁺. Therefore, PMA-treatment does not directly inactivate PLC. Incubation of PMNs with phorbol dibutyrate, but not an inactive ester, 4-M-phorbol didecanoate, causes a similar loss of GTPIS-activated PIP2 hydrolysis. In summary, PT appears to block the ability of occupied receptors to activate the N protein by stimulating nucleotide binding, but does prevent the activated N from stimulating PLC. In contrast, phorbol esters appear to induce a protein kinase C-catalyzed reaction which does not affect receptor-N protein interactions, but does prevent coupling of the activated N protein to PLC. Similar activation of protein kinase C by diacylglycerol produced upon receptor occupancy may provide a negative feedback signal for chemoattractant receptors.

GIP MODILATION OF THE MEMBRANE-POINT AFRIVATE CYCLASE (AC) ACTIVITY IN RAT THYPOIN TRIPE
LIAL CELLS INFECTED BY RAS GENES PAPERSING VIFUS.
A. Spins, A. Di Donato, F. Valente, G. Illiano- III Cattedra di Chimica Biologica, I Facolta' di Medicina e Chirurgia, Napoli, Italia; M.D. Berlingieri A. Fusco, M. Crieco-Centro di Emborinologia e Choologia Sperime ntale del CNR- II Facolta' di Medicina e Chirurgia, Napoli, Italia.

We are studying the influence on the membrane bound AC activity of the ras-genes expressing virus infection in a Fisher rat thyroid differentiated epithelial cell line (PC-CI3), which maintains in vitro the typical markers of thyroid differentiation. After infection by Harvey murine sarcoma virus carrying V-ras Ha, PC-CI3 cells change their morphology and became indipendent from TSH for the growth but they are not tumorigenic. We have found that the basal activity in PC-CI3 cells is very low (.46 pmoles CNMP/mln/mp protein), whereas it is 10 times higher in PC-CI3 Ha MSD cells. The stimulation of the AC catalytic subunit by Mn2* is equally efficient in control as well as in infected cells, whereas the modulation by GIP-binding protein either in the presence of Gpp (NH)p or NaF is impaired in the infected cells. We have carried out kinetic studies in the presence of increasing concentrations of Gpp (NH)p. The increasing nucleotide concentration by 100 times doesn't allow the infected cells to get a stimulation of the basal activity to an extent comparable to that one obtained in control cells. These results exclude that the less efficient Qpp (NH)p modulation in the infected cells can be due to a competition for the GIP hetween the AC G-binding protein and the virally expressed p21 protein in the entents of the cottain cells. Alternative molecular mechanisms consistent with our kinetic data will he presented.

FLUORIDE ION AS A PROBE FOR THE GUANINE-NUCLEOTIDE BINDING PROTEIN INVOLVED IN NEUTROPHIL ACTIVATION. Colette F. Strnad, Janice E. Parente, and Kenneth Wong. Departments of Pharmacology and Medicine. Holyers ty of Alberta. Edmonton. Alberta. T6G 263

and Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3.

Activation of human neutrophils with 18 mM sodium fluoride was found to be associated with phosphoinositide turnover as monitored by the accumulation of inositol 1-phosphate (IP₁), inositol 1,4-bisphosphate (IP₂), and inositol 1,4,5-trisphosphate (IP₂). Fluoride-induced phosphoinositide degradation was characterized by a 5 to 10 min lag period after which inositol phosphate levels increased and remained elevated over a 25 min time interval in lithium-treated cells. Phosphoinositide turnover was accompanied by the elevation of cytosolic calcium concentrations and the translocation of protein kinase C from the cytosolic to the membrane compartment. Unlike phosphoinositide turnover induced by the chemotactic peptide, formylmethionyl-leucyl-phenylalanine, that induced by fluoride was not inhibited by either pertussis toxin or dibutyryl cyclic ANP. Fluoride-induced phosphoinositide turnover was, however, subject to inhibition following pretreatment with the phorbol ester tumor promotor, phorbol myristate acetate. We have proposed that the mode of action of fluoride as an inflammatory stimulus involves interaction with a guanine nucleotide-binding protein which serves as an intermediary unit between cell surface receptors and the phosphoinositide-specific phosphodiesterase. The differential inhibitor effects suggest that ADP-ribosylation by pertussis toxin, as well as cyclic AMP-dependent phosphorylation reactions, do not interfere with fluoride's ability to occupy its active site or to activate the protein. Conversely, protein kinase C-dependent phosphorylation appears to render the activation site either inaccessible or insensitive to fluoride.

DESENSITIZATION OF THE SUBSTANCE P-INDUCED FORMATION OF INOSITOL TRISPHOSPHATE IN PAROTID ACINAR CELLS. H. Sugiya and J.W. Putney, Jr. Division of Cellular Pharmacology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, 23208

College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298.

Substance P (SP) is a putative neurotransmitter widely distributed in the mammalian central and peripheral nervous systems. The perotid gland is considered a target organ of SP, and the receptor is coupled to stimulation of inositol phospholipid metabolism and initiates secretion. After prolonged incubation of target cells with hormones or neurotransmitters, the cellular responses are often blunted or desensitized. We have evaluated desensitization of the SP-induced formation of inositol trisphosphate (IP3) in rat perotid scinar cells. Results were as follows: (1) Exposure of parotid cells to SP (0.1, M) which were prelabelled with [3H]inositol caused a rapid increase in IP3 from 2 sec up to 1 min, after which the level of IP3 reached a plateau. (2) Methacholine (Nec., 0.1 mM) caused a sustained increase in IP3 from 2 sec up to 5 min. (3) The response to SP and Mec applied simultaneously was not greater than the response of either agonist given alone. (4) After the level of IP3 reached a plateau in the presence of SP, addition of Mec induced a further increase in IP3 but a second addition of SP had no effect. (5) After exposure to SP for 5 min, although cells were washed and resuspended in fresh medium, desensitization of the SP-induced formation of IP3 remained; desensitization did not occur in cells pre-exposed to Mec. (6) Pollowing prolonged incubation in fresh medium, gradual resensitization occurred, and [3H]-SP binding sites. These results suggest that desensitization of the SP-induced formation of IP3 and [3H]-SP binding sites. These results suggest that desensitization of the SP-induced formation of SP receptors. (Supported by NIH Grant DE-05764).

70 PROTEIN KINASE C PREVENTS INHIBITION OF ADENYLATE CYCLASE IN NG 108-15 CELLS

B. TOCQUE - RHONE-POULENC SANTE - Cancer Research Department - 13, quai Jules Guesde

94400 VITRY SUR SEINE - FRANCE

The adenylate cyclase of NG 108-15 membranes is stimulated and inhibited, respectively, by PGE, and opiates acting via the stimulating (Ns) and inhibitory (Ni) guanine nucleotide-binding regulatory proteins.

GTP-dependent Delamid induced inhibition of basal, PGE_1 and Forskolin stimulated activities were reduced in membrane of TPA-pretreated NG 108-15.

To substantiate this observation we studied whether addition of purified protein kinase C to NG 108-15 membranes causes similar changes in regulation of adenylate cyclase activity as observed in membranes of TPA pretreated NG 108-15 cells. Hormonal inhibition of the NG 108-15 adenylate cyclase by opiate was largely impaired after incubation of NG 108-15 membranes (prepared with EDTA, EGTA buffer) with partially purified kinase C stimulated by TPA.

Bradykinin has been reported to inhibit adenylate cyclase in NG 108-15 cells in a manner which is additive to the opiate inhibition suggesting that Bradykinin was acting through a different pathway. We asked the question whether or not, kinase C would inhibit Bradykinin effect on cyclase. We found that kinase C also affects Bradykinin induced inhibition of cyclase. The results indicate that the pathway for Bradykinin inhibition of cyclase is, at some stage, a target for kinase C which might be Ni or No.

A PERTUSSIS/CHOLERATOXIN-SENSITIVE N PROTEIN MEDIATES CHEMOATTRACTANT RECEPTOR SIGNAL TRAMSDUCTION. Margrith Verghese, Ronald J. Uhing and Ralph Snyderman, Howard Hughes Med. Inst., Div. Rheum. and Immunol., Dept. Med., Duke Univ. Med. Ctr., Durham, N.C. 27710.

Affinities of chemoattractant receptors (CTX-R) on phagocytic leukocytes are regulated by GDP and GTP. These receptors are not coupled to adenylate cyclase but utilize a guantne nucleotide regulatory (N) protein to activate phospholipase C and subsequent biological responses. Since pertussis toxin (PT) ribosylates a 40-41 kD protein in leukocytes and thereby inhibits their activation by chemoattractants, it had been assumed that CTX-R are coupled to Ni. Me now report that human polymorphonuclear leukocytes (PMNs), monocytes, and the myeloid HL-60 and U937 cell lines, but not erythrocytes nor bovine brain centain a ca. 40 kD protein which is a substrate for ADP ribosylation by choleratoxin (CT). In contrast to Ns. ribosylation of the 40 kD substrate by CT is inhibited By GDP or GTP. The 40 kD CT substrate, termed Nc for chemotaxis-related N protein, comignates with the ca. 40 kD PT substrate in one-dimensional gel electrophoresis. Heptylamine-sepharose chromatography of cholate-solubilized HL-60 membranes prelabelled with CT and 32P-NAD show that a 40 kD 32P-labelled protein comignates with the major peak of GTPyS-binding activity. This peak is partially resolved from the 43 kD (Ns) protein labelled under the same conditions. A 40 kD PT substrate also coelutes with the GTPyS-binding activity suggesting that Nc is a single protein which is a substrate for PT and CT. Additionally, treatment of intact PMNs with PT or CT reduced GTP regulated high affinity binding of formylpeptide chemoattractants to membrane preparations from the cells. This further implies that CTX-R are coupled to an N protein which is a substrate for both PT and CT. We suggest that Nc regulates chemoattractant receptor signal transduction.

72 NAD INHIBITS WHILE ADDAMP AND GODING STIMULATE PHOSPHOLIPASE C IN THE CYTOSOL OF WHITE ADIPOCYTES. H.A. Wellace, R.J.H. Wojcikiewicz, D. Bojanic, L.S. Bradhem and J.N. Fain. Department of Biochemistry, University of Termessee, Memphis; Memphis, TN 38163.

Cytosol preparations from rat white adipocytes contain phospholipase C activities which can be assayed using 'H-PIP2, 'H-PIP, or 'H-PI as substrates. Two major observations have been made concerning these activities. First, 5'-adenylylimidodiphosphate (AppNHp) or 5'-guanylylimidodiphosphate (GppNHp) stimulate the hydrolysis of 'H-PIP2 with identical potency and efficacy. Second, NRD, NRDP, or adenosine 5'-diphosphoribose, but not nicotinsmide, inhibit phospholipase C. This inhibition can be overcome by high doses of GppNHp or AppNHp (0.1mM) which, in the presence of an otherwise fully inhibitory concentration of NRD (1.0mM), give complete or even supremental stimulatory effects.

Thus, the apparent quantum nucleotide specificity of phospholipase C activation in the presence or absence of hormones, as demonstrated in other studies, may need to be reassessed.

Thus, the apparent quanine nucleotide specificity of phospholipase C activation in the presence or absence of hormones, as demonstrated in other studies, may need to be reassessed. Identification of the nucleotide regulatory components of phospholipase C must take into account a lack of quanine nucleotide specificity. Finally, the inhibitory effects of NAD may provide a clue as to how the activity of cytosolic phospholipase C is tonically suppressed in the cell.

73

GTP-SENSITIVE AGONIST BINDING IN MEMBRANES CAN EXPLAIN THE RECEPTOR RESERVE IN INTACT RAT RETICULOCYTES.

Anton Wellstein and Dieter Palm, Z.Pharmakologie, J.W.Goethe-Universität, D-6000 Frankfurt 70; FRG.

Rat reticulocytes are a good tool for studying the modulation of the B-adrenoceptor mediated cAMP response (Naunyn-Schmiedeberg's Arch Pharmacol 317:294-301; 1981). We have used this model to investigate aspects of the receptor reserve. Cell's were prepared and monitored for cAMP-accumulation as described earlier (see above). B-Adrenoceptors in intact cell's as well as membranes were detected by the radioligand $^3\text{H-CGP}$ 12177 in a filtration asssay. RESULTS: Intact cells: For antagonist ligands monophasic inhibition isotherms of agonist induced cAMP-accumulation as well as radioligand binding were observed with identical Kd-values in both measurement systems. Agonists (e.g. (-)-isoprenaline = ISO) also showed monophasic concentration- effect curves of cAMP-accumulation and inhibition of radioligand binding. Their potency, however, differed by more than 1 decade in favour of cAMP-accumulation (e.g. ISO: EC50 cAMP = 58 \pm 11 nM; Kd receptor binding = 1,040 \pm 400 nM; n= 17) indicating a receptor reserve of 60-70%. Membranes: After lysis of the cells, the agonist component isotherms for the radioligand became biphasic. The GTP-sensitive high affinity component showed Kd-values not different from the EC50 of cAMP accumulation in intact cells. The portion of this component (33 \pm 5 %) is in agreement with the above receptor reserve and seems to reflect the portion of receptors participating in the transient coupling in the intact system.

74 MECHANISM OF REGULATION OF SOLUBLE GUANYLATE CYCLASE IN THE PULMONARY ARTERY BY HYDROGEN PEROXIDE. Michael S. Wolin and Theresa M. Burke, Dept. of Physiology, New York Medical College, Valhalla, NY 10595

Hydrogen peroxide generation by glucose oxidase causes up to a four-fold activation of unpurified soluble guanylate cyclase (GC) from bovine pulmonary arteries which is potentiated to over 25-fold by the addition of purified bovine catalase (CAT). Compound I (Cpd I), a species of CAT formed during the metabolism of peroxide, appears to mediate GC activation based on the following observations: 1) Only peroxides that form Cpd I activate GC. 2) Quenchers of Cpd I (alcohols and formate) block GC activation. 3) Inhibition of CAT (by aminotriazole, superoxide anion, boiling) block GC activation. 4) Other peroxide metabolizing enzymes (peroxidase, fungal catalase) do not mimic catalase. 5) Scavangers of hydroxyl radical (mannitol, DMSO, desferoxamine) do not inhibit GC activation. In the pulmonary artery, micromolar concentrations of H₂O₂ elicit increases in tissue cycle GMP levels that are closely associated with decreases in force in a time and concentration dependent manner. Since Cpd I is formed in tissues, this is a physiologically relevant mechanism of regulation of GC and an attractive pathway for sensing of O_2 tension. (Funded by USPHS HL 31069)

75 PROTEOLYTIC ACTIVATION OF MEMBRANE-BOUND PROTEIN KINASE C BY TRYPSIN-LIKE PROTEASE.

<u>Hirohei Yamamura</u>, Eikichi Hashimoto, Keiko Nizuta, Youichirou Sakanoue, Shun-ichi Nakamura, Tomoko Kobayashi and Keiko Sakai. Dept. Biochem. Fukui Medical School, Fukui 910-11 Japan

It has been well established that phosphorylation of ribosomal protein S6 is increased in response to growth-promoting stimuli. In an attempt to identify the cAMP- and ${\rm Ca^{2+}}$ -independent S6 kinase, we examined a possible role of protease-activated form of membrane-bound protein kinase C. when rat liver plasma membrane was digested with pancreatic trypsin, a cAMP- and ${\rm Ca^{2+}}$ -independent protein kinase having a molecular weight of 5 x 10^4 was produced. This enzyme phosphorylated ribosomal protein with a molecular weight of 3 x 10^4 which may correspond to S6 protein. By extraction of membrane with a buffer containing Triton X-100, proenzyme was detected and showed ${\rm Ca^{2+}}$ -phospholipid dependency in Hi histone phosphorylation. These results suggest that protease-activated form of protein kinase C is one of the candidates of S6 kinase. Protein kinase C was also activated by membrane-bound, trypsin-like protease discovered by Tanaka et al. (J. Biol. Chem. 261, 2610-2615 (1986)). Another experiment showed that proteolytic activation of protein kinase C is stimulated in the presence of salt such as NaCl. When rat liver plasma membrane was incubated in the presence of increasing concentration of NaCl, the production of activated form of protein kinase C was greatly increased. This reaction was inhibited by leupeptin and pancreatic trypsin inhibitor. These results may suggest the possibility that protein kinase C is activated by membrane-bound protease coupling with an increase in ionic strength elicited by growth factor-induced Na+ influx.

PHOSPHORYLATION OF THE CATALYTIC UNIT OF ADENYLATE CYCLASE BY CYCLIC AMP-DEPENDENT PROTEIN KINASE AND PROTEIN KINASE C. T. Yoshimasa, M. Bouvier, J.L. Benovic, N. Amlaiky, R.J. Lefkowitz and M.G. Caron. Duke Univ. Med. Ctr., Durham, NC 27710

Regulation of the responsiveness of β -adrenergic receptor-coupled adenylate cyclase (C) systems such as in some forms of desensitization to hormones or during the general sensitization observed after treatment of some cells with phorbol esters might involve covalent modification (phosphorylation) of C itself. To test this hypothesis, we examined whether C is a substrate for the cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) and investigated whether such phosphorylation regulates the function of the engyme. C was purified from bovine caudate $^{17},000$ fold to a specific activity of 1.5 umol.mg _.min _ by Lubrol PX solubilization, forskolin-Sepharose and wheat germ agglutinin-agarose chromatography. C preparations contained a single polypeptide of M _.160,000 revealed by radioiodination, SDS-PAGE and autoradiography. The M _.160,000 band correlated well with enzymatic activity on gel permeation HPLC. The pure C could be reconstituted with the purified β_2 -adrenergic receptor and the stimulatory guanine nucleotide regulatory protein (N) to form a hormone-stimulated adenylate cyclase system. PKA and PKC were able to phosphorylate C in a stoichiometric fashion (10 0.8 mol Pu₂/mol C). Ability of control and phosphorylated C to couple to N was compared. When control and phosphorylated C were reconstituted with N, the Cpp(NNI)p stimulated activity of PKA phosphorylated C was reduced by 10 2 while that of PKC phosphorylated C was enhanced by 10 2 relative to control values. These results suggest that hormone sensitive adenylate cyclase systems might be regulated both by feedback inhibition and by "cross talk" from the phosphatidylinositol pathway through cAMP-and PKC-dependent phosphorylation of C, respectively.

77 PROTEIN KINASE C HODULATES ADENYLATE CYCLASE ACTIVITY IN RAT BRAIN STRIATUM: POSSIBLE INVOLVEMENT OF G1-GUANINE NUCLEOTIDE REGULATORY PROTEIN

Madhu B. Anand-Srivastava and Ashok K. Srivastava, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, H2W 1R7, Canada

The effects of partially purified ${\rm Ca^{2}}^{+}$, phospholipid-dependent protein kinase (C-kinase) were studied on adenylate cyclase activity from rat brain striatum. C-kinase treatment of the membranes stimulated adenylate cyclase activity, the maximal stimulation between 50-80% was observed at 3.5 U/ml. The inclusion of ${\rm Ca^{2}}^{+}$ and phosphatidyl serine did not enhance the percent stimulation of adenylate cyclase by C-kinase, however, the stimulatory effect of C-kinase was inhibited by EGTA. In addition, in the presence of GTP, the stimulatory effect of C-kinase was potentiated. Furthermore, C-kinase also potentiated the stimulatory effect of N-Ethylcarboxamide adenosine (NECA), dopamine (DA) and forskolin (Fsk) on adenylate cyclase activity and attenuated the GTP and oxotremorine-mediated inhibition of enzyme activities. On the other hand, the catalytic subunit of cAMP-dependent protein kinase did not show any effect on adenylate cyclase activity. These data suggest that the stimulation of adenylate cyclase and inhibition of inhibitory influence of oxotremorine and GTP by C-kinase may be mediated through the inactivation (phosphorylation) of Gi-guanine nucleotide regulatory protein. (Supported by grants from MRC and OHF).

78 CUANINE NUCLEOTIDE REGULATION OF RECEPTOR BINDING AND 1P3 FORMATION. D.L.Aub and T.E.Cote Dept. of Pharmacology, USUHS, Bethesda, MD 20814-4799. A novel GTP binding protein has been suggested to couple those receptors which stimulate PIP2 hydrolysis to phospholipase C. In 7315c cell lysates GTPYS and Gpp(NH)p, nonhydrolyzable analogs of GTP, stimulated a time and dose dependent formation of IP3 in the absence of agonist. GTPyS was more potent and more efficacious than Gpp(NH)p in stimulating IP3 formation. GTP was able to decrease the potency but not the efficacy of GTPYS-stimulated IP3 formation, as evidenced by a rightward shift in the GTPYS concentration response curve, suggesting that a CTPase activity may be associated with guanine nucleotide regulation of PIP2 turnover. In addition, TRH stimulation of IP3 formation was enhanced by the addition of GTP. In 7315c cell membranes Me-TRH binds to a single high affinity site (Kd = 2 nM).GTPYS and Gpp(NH)p decreased specific Me-TRH binding in a concentration dependent manner with a half-maximal potency of 0.092 µM and 1 µM respectively; their potency for stimulation of IP3 formation was the same. In membranes made from cells which had been treated for 24hours with 30 ng/ml pertussis toxin, which is known to uncouple receptors from Ni. CTPYS was still able to decrease specific TRH binding (half-maximal potency for control and pertussis toxin treatment, 61 nM and 38 nM, respectively). Therefore, pertussis toxin does not interfere with the interaction between the TRH receptor and its guanine nucleotide binding protein. GTPYS appears to decrease specific Me-TRH binding by decreasing the affinity of the TRH receptor for its ligand without altering the number of binding sites (control: Kd = 2 nM, Bmax = 26 fmol/mg protein; 10-7 M GTP S: Kd = 7.3 nM, Bmax = 26 fmol/mg protein). These results indicate that a guanine nucleotide binding protein may be involved in both the regulation of TRH binding and subsequent stimulation of IP3 formation.

79 EVIDENCE FOR AN ALTERED ADENYLATE CYCLASE CATALYTIC UNIT IN A PATIENT WITH MULTIPLE HORMONE RESISTANCE. D. Barrett, A. Spiegel, M. Wax, P.B. Molinoff, R.W. Downs, Medical College of Virginia, Richmond, Virginia 23298

Deficiency of G_S is the putative lesion in pseudohypoparathyroidism Type Ia (PHP la). However, a small group of atypical patients who have PHP and resistance to multiple hormones have normal red blood cell membrane G_S . We have found that cultured skin fibroblasts from one such patient (A-PHP) generate 50-70% less cAMP in response to parathyroid hormone, isoproterenol or prostaglandin E_1 , when

compared to six normal fibroblast lines.

We now report that the skin fibroblast G_S of A-PHP has normal activity as measured by reconstitution into S49 cyc membranes. Computer-assisted analysis demonstrates that isoproterenol displacement of I^{12S} -iodopindolol binding in the absence of GTP defines a population of high affinity binding sites in 4 control and A-PHP fibroblast membranes which represent β -adrenergic receptors coupled to N_S . No significant difference is apparent between the percent of receptors in this ternary complex state for A-PHP (43:5%) vs the average of controls (53:13%).

Stimulation of A-PHP fibroblast membranes with fluoride ion (10 mM) and GTPYS (100 µM) produces only 27±5% and 33±6% of control adenylate cyclase activity respectively. Direct stimulation of catalytic unit with manganese ion (Mn-2 4 mM) is 36±6% of controls and stimulation with Mn-2 plus forskolin (100 µM) is 36±4% of controls. A defect in the catalytic unit can account for all these results and may be a mechanism in this group of patients for their resistance to multiple hormones which act through adenylate cyclase.

-

DETECTION OF HOVEL GTP-BINDING PROTEINS ON HITROCELLULOSE BLOTS OF MEMBRANE PROTEINS SEPARATED BY SDS-PAGE. R.P. Bhullar and R.J. Haslam, Dept. of Biochemistry, McMaster University, Hamilton, Ontario, Canada L&W 325.

Human and rabbit platelets were lysed by freezing and thewing and the membrane fraction isolated. Membrane protein was precipitated with trichloroscetic acid, dissolved in Leanni buffer and analysed Weaprane protein was precipitated with trionioroacetic acid, dissolved in Lammii burrer and analyse by SDS-PAGE. Resolved polypeptides were then transferred electrophoretically to nitrocellulose and the blots incubated for 30 min at 20° C with 0.5 mM [α - 32 P]GTP in buffer containing 50 mM Tris-HCl, pH 7.5, and 0.35 Tween 20 (0.2 μ Ci/ml). After washing in buffer without [32 P]GTP, the blots were dried and bound 32 P detected by autoradiography. Major labelled bands were observed corresponding to proteins of 27 kDs and 24 kDs. Additional minor bands were detected in the 23-26 kDs range. to proteins of 27 kDs and 24 kDs. Additional minor pands were detected in the 20-20 kDs range. Addition of 1 mM PMSP, 0.2 mM leupeptin and 5 mM EDTA during preparation of the membranes had no effect on the pattern of labelling observed. SDS released the 32 P from the blots, indicating non-covalent binding of [32 P]GTP. Binding of [32 P]GTP was specific in that it was prevented by simultaneous addition of 0.5 μ M GTP or GTP $_{3}$ S or by 10 μ M GDP, but was unaffected by 50 μ M ATP or 10 μ M GMP. No GTP-binding protein was detected in the platelet soluble fraction. Human and rabbit red cell ghosts contained the 27 kDa but not the 24 kDa GTP-binding protein. Analysis of rat tissues by the blotting technique desconstrated high concentrations of 27 kDa and 26 kDa GTP-binding proteins in brain, lesser amounts of 27 kDs protein in advenal and lung tissue and small amounts of 27 kDs protein in liver, kidney, spleen, heart and skeletal muscle. The results demonstrate the existence of a new family of GTP-binding proteins distributed widely in mammalian tissues. Supported by the Medical Research Council of Canada and the Beart and Stroke Foundation of Ontario.

NUCLEOFIDE ACTIVATION OF RAT BRAIN PHOSPHOLIPASE C. L.S. Bradhem, M.A. Wallace, R.J.H. Wojcikiewicz, D. Bojanic and J.N. Fain. Department of Biochemistry, University of Memphis; Hemphis, TN 38163.

Phospholipase C activity was isolated from brain membranes by cholate extraction followed by centrifugation at $100,000 \times g$ for 1 hr. The solubilized enzyme catalyzed the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP₂) and phosphatidylinositol 4-phosphate (PIP) but not phosphatidylinositol (PI) under our assay conditions. Enzymatic activity did not require the addition of divalent cations but was increased in the presence of 3 mM sodium decaycholate. Hydrolysis of PIP₂ and PIP was stimulated by 5'-guarylyl-imidodiphosphate with half maximal activation at a nucleotide concentration of approximately 10 μM. Nucleotide activation was inhibited by either 1 mM Ca^{2+} or 1 mM Mg^{2+} . These data suggest a role for nucleotides in the regulation of phospholipase C in brain membranes. Whether this regulation is mediated by a guanine nucleotide binding protein remains to be determined.

82

LOCALIZATION OF G-PROTEIN mRNAS (Τα,Τβ,Gs,Gi) IN BOVINE RETINA BY IN SITU HYBRIDIZATION HISTOCHEMISTRY: M.R. Brann, Laboratory of Cell Biology, NIMH, Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD.

In addition to photosensitive rods and cones, the retina contains a diversity of neurons which synthesize distinct na account to protocerative rock and cones, the retina contains a diversity of neurons which synthesize distinct neurotransmitters and neurotransmitters. Recent evidence indicates that the response of rock to light, and the response of receptors to neurotransmitters are mediated by a family of closely related G-proteins. We prepared synthetic 48 base oligodeoxynucleotide probes which are complementary to the published sequences of mRNAs encoding the alpha (Ta) and beta (T\(\beta\)) subunits of transducin, the G-protein of rods; the alpha subunits of Gs and Gi, the G-proteins associated with neurotransmitter control of adenylate cyclase. These probes were used for localization of mRNAs in bovine retina by in sime hybridization histochemistry as previously described (Brann and Young, FEBS Letters (1986) 200:275).

mRNAs encoding Tα and Tβ were present within rods, and there both of the mRNAs were present in the outer

nuclear layer (region of rod nuclei), both mRNAs were most abundant in the rod inner segments, and neither mRNA was present in the rod outer segments. Tot mRNA was not present in the inner layers of the retina. On the other hand, mRNAs encoding Gi and Gs were most abundant in the inner layers of the retina, and both of the mRNAs were most abundant in ganglion cells and in the inner nuclear layer. Gi mRNA was also present in the outer nuclear layer, suggesting rods express both Tc and Gi. These results illustrate the utility of in sine hybridization histochemistry in the study of the expression of mRNAs encoding G-proteins by individual neurons within the retina.

HUMAN ODNA CLONES FOR FOUR SPECIES OF Gog mRMA AND FOR Gog mRMA.

Bray, P., Carter, A., Simona, C., Guo, V. Puckett, C., Kamholtz, J., Spiegel, A., and
Nirenberg, M. NIH, Bethesda, MD.

A Agtl1 cDMA library prepared from human basal ganglia was screened with 3 oligodeoxynucleotide probes for recombinants coding for a subunits of G signal transducing proteins. Fourteen of the 575,000 recombinant clones screened formed hybrids with 2 or 3 probes. Nucleotide sequences of two clones, BG-4 and BG-21-2, are highly homologous to bovine brain α_1 cDMA (Nukada, T. et. al., FEBS Letters 197, 305, 1986). The nucleotide sequences of both strands of BG-4 α_1 cDMA were determined. The sequence begins at the 14th nucleotide residue of the bovine α_1 coding sequence and ends at 1261 in the 3' untranslated region. Nucleotide sequences of 11 clones are highly homologous to the sequence of bovine α_2 (Nukada, T. et al., FEBS Letters 195, 220, 1986; Robishaw, J. et al., Proc. Natl. Acad. Sci. USA 83, 1251, 1986). Both strands of BG-3 α_2 cDMA were sequenced completely. The first nucleotide residue corresponds to the 3th residue of the bovine α_3 coding sequence and the last, 1278, in the 3'-untranslated region. cDMA clones for 3 additional species of α_3 mRMA were obtained that differ in the region coding for amino acid residues 71-87; α_3 -1 (clones BG-1, HB-2, BG-8, and BG-21-5) code for the same amino acid residues, 71-87, that are present in bovine α_3 : α_3 -2, (BG-3) contains 3 additional bases which code for Ser⁸⁷; α_3 -3 (BG-6, BG-20) contain Asp⁷¹ in place of Glu⁷¹, lack α_3 -1 residues 72-86 and contains 3 additional bases which code for a serine following Glu⁷¹. Hybridization of cloned cDMA to total RNA followed by digestion with S₁ nuclease revealed multiple forms of α_3 RNA. We propose that the 4 species of α_3 mRNA are formed by alternative splicing of an α_5 RNA transcript.

MULTI-SITE MODULATION OF HORMONE-SENSITIVE ADENYLATE CYCLASE BY PHORBOL ESTERS/C-KINASE IN S49 LYMPHOMA CELLS. LL Brunton, LA Speizer, JR Kanter, MJ Watson and JD Bell. UCSD, La Jolla, CA 12-o-tetradecanoylphorbol-13-acetate (TPA) has at least three functionally distinct effects on hormone-sensitive adenylate cyclase (AC) in S49 lymphoma cells: 1) a 50% reduction in agonist affinity for both isoproterenol (IME) and PGE1 with no detectable reduction in β-receptor density; 2) attenuation of functional coupling of hormone receptor and transducer protein (G_S). The magnitude of this effect is agonist-specific and is exaggerated by lowering experimental temperature to 27°C, where TPA inhibits the maximum response to PGE1 by 50% and the response to INE by 25%; 3) TPA enhances GTP-dependent AC activity. This enhancement seems to involve a GTP-binding protein since TPA enhances forskolin-stimulated AC activity by 35% in the presence of guanine nucleotide but only minimally in its absence in wild type (WT) membranes. We obtain comparable results in the cycvariant which lacks the α subunit of G_S, suggesting the involvement of the inhibitory GTP-binding protein, G₁. Blockade of G₁ activity by high concentrations of Mg++ (~100 mM) or Mn++ (>300 μm) abolishes the effect of TPA to enhance AC activity in WT membranes. Kinetic studies with a nonhydrolyzable GTP analog suggest that TPA treatment reduces both the rate and extent of activation of G₁ by guanine nucleotide. Appropriate analog specificity, binding of [3H]phorbol dibutyrate (K_D = 31 nM; B_{max} = 4.3 pmol/mg protein), TPA-induced translocation of C-kinase activity from cytosol to membrane, and the phosphorylation of a discrete group of membrane proteins in response to TPA all support the effects of TPA being mediated by activation of protein kinase C. (Supported by NSF PCM 81-10116, NIH HL 17682, RCDA HL 00935 and a PMA fellowship to JD Bell)

85

· 83

WT THDRAWN

86 DESENSITIZATION IS VERY EXTENSIVE IN AN S49 MOUSE LYMPHOMA VARIANT WITH LOW PDE ACTIVITY.

R. W. Butcher, R. Barber, and T. Goka. University of Texas Graduate School of Biomedical Sciences, Laboratories of Cyclic Nucleotide Research, P.O. Box 20334, Houston, Texas 77225.

A variant of \$49 cultured lymphoma cells (Blr) deficient in cAMP dependent protein kinase activity and with low phosphodiesterase (PDE) activities has been isolated and partially characterized by Bourne et al. (J. Cell. Physiol. 85: 611-620). This low PDE activity in Blr cells made the variant an attractive one for detailed studies of intracellular cAMP netabolism. We have found that, as expected from the low phosphodiesterase activity previously reported, the cAMP turnover rate in Blr cells is relatively slow (ti. = 18-23 min at 37°C). Further, cAMP levels in unstimulated cells ranged from about 1% to 5% of cellular ATP (i.e., 20-100µM or 100-500 pmol/mg protein). These levels are many times higher than most \$49 WT cells, and they made measurements of turnover in the absence of a hormone possible. The turnover constant for cAMP in unstimulated cells rate is 0.030 ± 0.0031/min. This is not significantly different than the value measured during epinephrine stimulation, which is 0.035 ± 0.004/min. The turnover values were used to determine precise levels of adenylate cyclase activity throughout the time course of epinephrine stimulation. Desensitization was both rapid and profound, with the level of adenylate cyclase activity falling by 70% within the first 4 min of stimulation. This suggests that desensitization may be a very major factor in the attenuation of catecholamine action, at least in some cell types. Further, epinephrine induced desensitization in Blr cells is manifested by an experimentally demonstrable left shift of the EC50. Conversely, \$49 WT cells responded to desensitization such that EC50 was shifted to the right. We hypothesize that these phenomena may, at least in part, be secondary to the differences in the speed and extent of desensitization in the two cell types.

87
PSEUDOMY POPARATHY BOIDISM TYPE IA - DECREASED TRANSCRIPTION OF MULTIPLE FORMS OF G_a C:
A. Carter, C. Bardin, R. Collins, P. Bray^b, C. Simons, and A. Spiegel, Metabolic Diseases Branch,
NIDDK, and *Laboratory of Biochemical Genetics, NHLBI, NIH, Bethesda, MD

Pseudohypoparathyroidism (PHP) Type Is is a genetic disorder characterized by target organ resistance to multiple hormones acting via stimulation of cAMP. Several laboratories have demonstrated that plasma membranes from subjects with PHP Is have decreased activity of the stimulatory guanine nucleotide binding protein (G_g) associated with adenylate cyclase. Choleratoxin labeling of the α subunit of G_g is also reduced in plasma membranes from subjects with PHP Is. Using bowine and human cDNA probes for G_g we have performed Northern blot and SI analysis of total RNA extracted from fibroblasts of normal and PHP individuals. Of 5 patients studied, four show decreased steady-state levels of G_g - α mRNA. G_g - α mRNA exists in at least two forms (long and short), differing by approximately 45 bp. These are not distinguished by Northern blot hybridization but can be distinguished by SI nuclease protection assay. SI analysis indicates that both long and short forms are decreased in subjects with PHP. Moreover, there appears to be no significant change in the ratio of long to short forms in PHP compared with normal individuals. It appears likely that in some cases of PHP Type Is, the genetic lesion affects some component of the transcription of multiple forms of the G_g - α subunit.

88 The Effects of MgCl₂, By_T, and the Cyclic GMP-Dependent Phosphodiesterase on the Rhodopsin-promoted GTPase of Transducin. R. Cerione, M. Lakonishok, R. Somers, and A. Spiegel. Cornell U., Ithaca, NY 14853, NIH, Bethesda, MD 20205.

The GTPase cycle of the retinal nucleotide regulatory protein, transducin (TD), has been examined after reconstituting the pure components of the phototransduction system into lipid vesicles. Transducin, alone, has little or no GTPase activity; however, the addition of TD to lipid vesicles containing RHO results in the activation of multiple TD molecules (per molecule of RHO) and a significant GTPase (≈ 1 mol Pi released per min. per mol TD). Dose response curves for the effects of MgCl_ on the RHO-stimulated GTPase are complex and include both stimulatory and inhibitory phases. Other salts such as KCl only partially mimic the stimulatory phase, suggesting that the effects by MgCl_ reflect specific interactions between the divalent metal and TD and/or RHO. The addition of the pure By_ complex to RHO/TD vesicles can also increase the RHO-stimulated GTPase activity. This stimulation is dependent on both [MgCl_] and [By_] and appears to reflect the promotion by By_ of the RHO- α_T GDP interactions which octur at the outset of each new GTPase cycle. The inclusion of the pure cyclic GMP-dependent phosphodiesterase (PDE) in the reconstituted RHO/TD vesicle systems has no significant effect on the RHO-stimulated GTPase activity, either in the absence or presence of the substrate cyclic GMP, or its 8-bromo-analog. Overall the results obtained from these studies now suggest 1) subunit dissociation of TD must occur within the time frame of the activation-deactivation cycle of this protein and 2) the interaction of the effector enzyme (PDE) with TD has no significant effect on the rate of deactivation (GTPase) of TD.

IDENTIFICATION OF A CONSERVED DOMAIN AMONG CYCLIC NUCLEOTIDE PROSPRODIESTERASES FROM DIVERSE SPECIES. H. Charbonneau, N. Beier*, K.A. Welsh, and J.A. Beavo*. Departments of Biochemistry and *Pharmacology, University of Washington, Seattle, WA 98195. Multiple Multiple forms of cyclic nucleotide phosphodiesterase (PDE) differing in apparent molecular weight, substrate specificity, immunologic reactivity, and mode of regulation have been identified within the same tissues and in many cases the same cell. In order to understand the structural basis for the diverse catalytic and regulatory properties of these PDE isozymes, we have determined the partial amino acid sequences of two bovine isozymes, the 61 KDa calmodulin-dependent PDE and the cGMP-stimulated PDE. The partial amino acid sequence of the bovine enzymes have been examined for homologous segments and The partial amino acid sequence of the bovine enzymes have been examined for homologous segments and have been compared to the predicted amino acid sequences derived from the recently determined nucleotide sequences of the yeast PDEZ gene (P. Sass, J. Field, J. Nikawa, T. Toda, and M. Wigler, Proc. Natl. Acad. Sci. USA, manuscript submitted) and the Drosophila dunce gene (C.-N. Chen, S. Denome, and R.L. Davis, Proc. Natl. Acad. Sci. USA, manuscript submitted). These comparisons show that despite their distinct sizes, diverse phylogeny, and different regulatory properties all four enzymes display structural homology within a single domain of about 270 residues. For example, there is 41% sequence identity between the domains of the dunce gene product and the calmodulin-dependent PDE. The absence of absolute sequence identity between the two bovins enzymes shows that they are unique gene products that are not produced by alternative processing of either a single mRNA unique gene products that are not produced by alternative processing of either a single mRNA precursor or a larger polypeptide chain. These homologous domains may comprise the catalytic site in these PDEs. Limited proteolytic studies are being conducted in an attempt to isolate and sequence fragments of the bovine isozymes that retain catalytic activity.

REGULATION OF ROS COMP PDE BY REODOPS IN PROSPRORYLATION AND 48K PROTEIN, Deborah A. QΩ Fox, James L. Miller, and Burton J. Litman, Department of Biochemistry, University of Virginia, School of Medicine, Charlottesville, Va. 22908.

Rhodopsin species containing 0, 2 and ≥4 (high) phosphates per rhodopsin (P/R) were purified and reconstituted into phosphatidylcholine vesicles. These vesicle preparations were used to investigate the light-dependent activation of the rod outer segment cGMP phosphodiesterase (PDE) in the absence and presence of purified 48%d protein (48K). In the absence of 48K, a graded reduction the absence and presence of purified 48%d protein (48K). In the absence of 48K, a graded reduction in the maximum velocity (V_{max}) of light-stimulated PDE activity was observed with increasing rhodopsin phosphorylation. The inhibition of PDE V_{max} was greatest following low fractional rhodopsin bleaches and became less probounced at higher fractional rhodopsin bleaches. Following bleaches of 0.01 and 1%, the V_{max} of the PDE in the high P/R vesicles was reduced by 85% and 30% respectively, relative to the 0 P/R control vesicles. Phosphorylation alone had no significant effect on the lifetime of the active rhodopsin apecies (Rho*) ($T_{off}(I/e)$ ~ 400sec).

The effect of adding 48K to the assay mixture was investigated at several bleach levels. The molar ratios of 48K:Rho* ranged between 20:1 and 2:1. Addition of 48K did not change T_{off} for 0 P/R vesicles, however, it did produce a slight reduction in the PDE V_{max} . In contrast, T_{off} for high P/R vesicle samples was reduced by ~85% in the presence of 48K (from >400sec to ~70sec), whereas, the V_{max} was reduced by an additional 20% beyond that produced by phosphorylation in the absence of 48K (0.1% bleach). When ATP was included in the reaction mixture, there was no further effect on T_{off} or V_{max} . These results demonstrate that rhodopsin phosphorylation is a necessary requirement

Toff or V max. These results demonstrate that rhodopsin phospholylected for 48K to effect PDE V max and Toff of Rho*. Supported by NIH grant EY00548. These results demonstrate that rhodopsin phosphorylation is a necessary requirement

Cr(III) GUANINE NUCLEOTIDE COMPLEXES AS PROBES FOR GTP-BINDING IN BOVINE TRANSDUCIN. 91 Suzanne E. Frey and Yee-Kin Ho, Department of Biological Chemistry, University of Illinois at Chicago, Health Sciences Center, Chicago, Illinois 60612.

We have synthesized Cr(III)-B, γ bidentate GTP and Gpp(NH)p complexes to probe the GTP binding activities of transducin. Cr(III)-GTP at ten-fold higher concentration of Mg-GTP promoted the light-activation of the PDE. The hydrolysis of the bound GTP as monitored by the decrease of the light-activation of the PDE. The hydrolysis of the bound GTP as monitored by the decrease of the activated PDE activity indicated that both complexes were hydolyzed at the same rate. However, using $[\gamma^{-32}P]Cr(III)$ -GTP as substrate, it was shown that Cr(III)-GTP was degraded five times slower than MgGTP in the photo-activating cycle. Unlike the transducin-Mg-GTP which dissociated from the rhodopsin membrane, the transducin-Cr(III)-GTP complexes were found tightly associated with the photolyzed rhodopsin. The different Cr(III)-GTP hydrolysis rates could be explained in the following terms. In the radioactive tracer assay, the lack of free photolyzed-rhodopsin for repeated activation of transducin could lead to a slower hydrolysis of the $[^{32}P]Cr(III)$ -GTP. However, in the PDE assay the membrane bound PDE only interacts with the membrane-associated transducin-Mg·GTP or -Cr(III) GTP complexes for its activation. The measure of the decrease of the PDE activity could not sense the soluble transducin-Mg·GTP which could remain active in hydrolyzing GTP. Therefore, a similar turnover rate was observed. These results suggest that the activation of the cGMP cascade remains a membrane-associated event. Cr(III) Gpp(NH)p was found to behave similarly to Mg-Gpp(NH)p which bound tightly to transducin. The stereo-isomers of the Cr(III) Gpp(NH)p complex were separated by reverse phase HPLC. All isomers were found capable in activating the PDE. No significant stereospecificity of the Cr(III) Gpp(NH)p complexes was observed. PURIFICATION AND IMMUNOCHEMICAL CHARACTERIZATION OF THE MAJOR PERTUSSIS TOXIN SUBSTRATE OF BOYINE NEUTROPHILS: P. Gierschik*, D. Sidiropoulos*, A. Spiegel+, and K.H. Jakobs*, *Pharmakologisches Institut der Universität Heidelberg, FRG, and +Metabolic Diseases Branch, NIADDK, NIH, Bethesda, MD.

Bovine peripheral neutrophils contain high levels of a 40 kDal pertussis toxin (PT) substrate, which was found in both plasma membrane and cytosolic, but not in granular fractions upon subcellular fractionation. The 36 kDal beta subunit, common to all known PT substrates, was exclusively found in plasma membrane fractions. Both the 40 kDal protein and beta subunits were purified from plasma membranes to near homogeneity by sequential ion exchange, gel filtration, and hydrophobic chromatography. The purified 40 kDal protein was shown to interact with homologous and heterologous beta/gamma complexes, undergo ADP-ribosylation by PT and bind guanine nucleotides. The mobility of the protein on SDS polyacrylamide gels differs slightly from those of the alpha subunits of transducin ($\mathbf{G_t}$), $\mathbf{G_0}$ and $\mathbf{G_1}$, purified from bovine retinas and brain, respectively. Several polyclonal antisera against the alpha subunits of bovine $\mathbf{G_t}$ and $\mathbf{G_0}$ did not react with the 40 kDal neutrophil protein on immunoblots. CW 6, a polyclonal antiserum reactive against bovine $\mathbf{G_1}$ alpha, reacted only minimally with the 40 kDal neutrophil protein. These results suggest that the major PT substrate of bovine neutrophils is different from previously identified substrates and may represent a novel quanine nucleotide binding protein.

BOVINE PHOTORECEPTOR PHOSPHODIESTERASE NONCATALYTIC CYCLIC GMP BINDING SITES ARE ENRICHED IN A DISTANT ISOZYME. Peter G. Gillespie and Joe A. Beavo, Department of Pharmacology SJ-30, University of Washington, Seattle, Washington 98195.

It has been reported that frog rod outer segment phosphodiesterase (PDE) contains high-affinity, non-catalytic cyclic GMP (cGMP) binding sites (Yamazaki et al., J. Biol. Chem., 255:11619, 1980). We have begun to characterize the binding sites of outer segment phosphodiesterases from bovine retinas, where greater amounts of protein can be easily obtained.

Bovine photoreceptor phosphodiesterase isozymes were separated into two major peaks by anion exchange chromatography of hypotonic retinal extracts. The peak of activity eluting at lower conductivity (peak I) is the predominant form in cones, while the bulk of the PDE activity (peak II) is derived from rods (Hurwitz et al., J. Biol. Chem., 260:568, 1985). [H]cGMP binding to PDE is substantially greater in peak I than in peak II. Scatchard analysis of peak I binding indicated a single class of binding sites, with K_D = 12 nM. The maximal binding (B_{max}) was 10.1 pmoles cGMP bound per unit of PDE activity. Scatchard plots of peak II cGMP binding were curved; analysis of the data, assuming two noninteracting classes of binding sites, indicated K_D values of 16 and 234 nM. The B_{max} for peak II per unit activity was 10- to 20-fold less than for peak I. Peak I cGMP binding was stimulated by IBMX and inhibited by cGMP analogs with order of potency (Sp)cGMPS>(Rp)cGMPS>CGMP>8-Br-cGMP. Several criteres suggest that the binding site is distinct from the catalytic site. These experiments indicate significant differences in cyclic GMP binding between the forms of photoreceptor phosphodiesterase.

NEURAL REGULATION OF ADENYLATE CYCLASE IN RAT BROWN ADIPOSE TISSUE. <u>I.G. Granneman</u>. Center for Cell Biology, Sinai Hospital of Detroit, Detroit, Mi 48235.

Many tissues decrease their responsiveness after exposure to increased levels of stimulation. In contrast, we have reported that cold exposure, which increased sympathetic nerve stimulation of brown adipose tissue (BAT) in rats, increased the responsiveness of adenylate cyclase to norepinephrine and fluoride. We are examining the molecular basis of the increase in adenylate cyclase responsiveness and have found that exposing rats to 4°C for 3 days increased cholers toxin-catalyzed [3²P]-ADP ribosylation of the stimulatory regulatory protein of adenylate cyclase (Gg) in BAT membranes by 2-3 times. The increase in labelling of G corresponded to the observed increase in adenylate cyclase activity. Furthermore, surgical denervation of BAT prevented both the increased labelling of Gg and the sensitization of adenylate cyclase, indicating that both result from increased neural stimulation of the tissue. In contrast, cold exposure did not alter pertussis toxin-catalyzed ADP-ribosylation of the inhibitory regulatory protein. Additional studies demonstrated that detergent extraction normalized adenylate cyclase activity to guanylyl-5'-imidodiphospate stimulation without affecting the supersensitive response to fluoride, and that the supersensitive response to fluoride was reversed after reconstitution of detergent extracts into membranes of S49 cyc lymphoma cells. We conclude that neural activation of BAT sensitizes adenylate cyclase by altering Gg. The exact nature of this change is not certain, but it may result from the interaction of Gg with membrane components that are unique to membranes of cold-exposed rats. Supported by NIB grant AM 37006.

POSSIBLE MECHANISM FOR INTRANEURONAL REGULATION OF ADENYLATE CYCLASE: NUCLEOTIDE TRANSFER BETWEEN GTP-BINDING PROTEINS. Shinichi Hatta, Marietta M. Marcus, Yuko Hatta and Mark M. Rasenick Department of Physiology and Biophysics, University of Illinois College of Medicine. Chicago, IL

P³-azidoanilido-P¹-5'GTP (AAGTP) is an hydrolysis-resistant, photoaffinity GTP analog which is capable of supporting activation or inhibition of adenylate cyclase which is sustained subsequent to buffer washing of membranes. Under conditions where adenylate cyclase inhibition is seen, photoaffinity analysis of synaptic membranes indicates ³²P AAGTP bound to the inhibitory, 40 KDa GTP-binding protein [GNi]. If these membranes are then incubated under conditions which reverse the inhibition of adenylate cyclase, and the membranes are subsequently subjected to UV irradiation, AAGTP appears bound to the stimulatory GTP-binding protein [GNs]. The degree of AAGTP appearing on GNs is proportional to the reversal of adenylate cyclase inhibition, and the sum of AAGTP bound to GNs and GNi is constant. These results are consistent with direct transfer of nucleotide between GNi and GNs, whereas Mg++ is required for AAGTP binding to GNs and for the transfer of AAGTP between GNi and GNs, it is not required for AAGTP binding to GNs. The phenomenon of AAGTP transfer between GNi and GNs as well as the existence of a novel 32 KDa AAGTP-binding protein has been observed, thus far, only in membranes from neural crest cells. Due to the slow GTPase activity expressed by GNs and GNi, exchange of GTP between GN proteins is a possibility. We believe that the phenomenon of nucleotide transfer between GNs and GNi may represent a mechanism for the intracellular regulation of adenylate cyclase in nervous tissue.

GUANINE NUCLEOTIDE REGULATORY PROTEINS IN THE ADRENAL CORTEX

William P. Hausdorff, Greti Aguilera, and Kevin J. Catt, NICHD, NIH, Bethesda, MD 20892
We examined the effects of pertussis toxin (PT) on glomerulosa cell responses to angiotensin II
(AII) and somatostatin (SRIF), which respectively stimulate and inhibit aldosterone production by
the adrenal gland. Both hormones inhibit cAMP accumulation in isolated glomerulosa cells, and this
effect was attenuated by prior exposure to PT. The toxin also blocked the ability of SRIF to
inhibit the aldosterone response to 1 nM AII. However, PT effects on the stimulation of steroid
production by AII alone were more complex. AII elicits a biphasic steroid response in which AII
concentrations up to 10 nM caused dose-dependent increases in aldosterone release; this response
was unaffected by PT treatment. At higher hormone concentrations steroid output begins to decline,
and this response was blocked by the toxin. In studies with radiolabeled ligands, 12-T-Tyr-SRIF
binding to permeabilized cells became almost undetectable following PT pretreatment. Undet the
same conditions, 12-I-AII binding, and the inhibitory effects of guanine nucleotides thereupon,
were apparently unperturbed. We also detected a low K GTPase activity in permeabilized cells that
is specifically stimulated by AII, and this activity was found to be refractory to PT pretreatment.
Studies with [27]NAD revealed a 40-41 kDa band that was specifically ADP-ribosylated in the
Presence of the toxin; immunoblot studies indicated that this protein was not the a subunit of N.
These results are consistent with a model in which low concentrations of AII (< 10 nM) couple the
AII receptor to a PT-insensitive guanine nucleotide binding protein (N) that activates polyphosphoinositide hydrolysis and stimulates steroid production. Furthermore, SRIF or high concentracited by physiological AII concentrations.

97

N-PROTEIN-MEDIATED INHIBITORY EFFECT OF OPIATES ON VOLTAGE-DEPENDENT CALCIUM CHANNELS IN NEUROBLASTOMA X GLIOMA HYBRIDS. J.Hescheler, W.Rosenthal, W.Trautwein, and <u>G.Schultz</u>.

II. Physiologisches Institut, Universität des Saarlandes, D-6650 Homburg/Sear, F.R.G., and Institut für Phermakologie, Freie Universität Berlin, D-1000 Berlin 33, F.R.G.

für Phermakologie, Freie Universität Berlin, D-1000 Berlin 33, F.R.G.

In neuroblastoma x glioma hybrid cells (108CC15, NxG cells), opiates and ox-adrenergic agonists cause adenylate cyclase inhibition, presumably via N, the inhibitory N-protein. N, and N, another N-protein with unknown function, are substrates of B, pertussis toxin (PT) in NxG cells. Effects of opiates and ox-adrenergic agonists on voltage-dependent calcium channels were studied in differentiated NxG cells, using the whole cell clamp technique with 10.8 mM Ba as charge carrier. D-Ala D-Leu -enkephalin (DADLE) concentration-dependently reduced the calcium current (I_C). Maximal and almost complete inhibition of I_C was seen with 1 µM DADLE, whose effect was half-maximal between 10 and 100 µM. Morphine (10-100 µM) and adrenaline (10-100 µM) plus propranolol (10 µM) had smaller inhibitory effects on I_C, carbachol (10-100 µM) was without effect. The DADLE effect was repridly reversed by washing or By addition of naloxone (10 µM). Intracellular application of GTPyS (10-100 µM) through the patch electrode mimicked the DADLE effect. The effect of DADLE but not that of GTPyS was blocked by about 90% by pretreatment with PT (200 ng/ml) for several hours. The DADLE effect on I_C in PT-treated cells was restored by intracellular application of N, and N purified from porcine brain; the ca-subunit of N was more potent than N, in restoring the DADLE effect on I_C. These data indicate that PT-sensitive N-proteins, most likely N, are involved in functional Coupling of opiate receptors to voltage-dependent neuronal calcium channels.

ACTIVATION OF PHOSPHOLIPASE C IN RABBIT PLATELET MEMBRANES BY GTPYS OR BY THROMBIN AND GTP. ACTIVATION OF PHOSPHOLIPASE C IN RABBIT PLATELLY RESIDENTALES BY DIFFYS OF BY THROUGH AND UP.

J. K. Brbolich, M. Culty and R. J. Basiam. Dept. of Pathology, McManter Univ., Hamilton, Ont., Canada.

Rabbit platelets were labelled with [3H]inositol and lysed by freezing and thawing in 100 mM ECl.

25 mM Hepes (pR 7.4), 2.5 mM EGTA, 1 mM MgATP and 0.5 mM Mg²⁺free. The membrane fraction was washed twice at k⁰C in this medium minus ECl and was finally resuspended in medium with ECl. Samples were incubated for 10 min at 25°C. Addition of CaCl₂ to give 0.1 μM Ca²⁺free led to the formation of [3H]inositol monophosphate (IP) and bisphosphate (IP₂) in a ratio of about 1:5. Further addition of 10 μM GTPγS increased IP about 3-fold and IP₂ about 5-fold. Little [3H]inositol triaphosphate (IP₂) are neglective in the (IP₃) accumulated (<10% of IP₂), even when unlabelled IP₃ was added. GTP γ S was ineffective in the absence of Ca²⁺. Half-maximal effects were observed with 0.3 μ M GTP γ S. Measurement of the 3 H in Measurement of the 3H in membrane phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4.5-bisphosphate (PIP2) gave initial ratios of 9:3:1 and demonstrated a 30% increase in PIP2 in control incubations. Addition of 10 µM GTPyS prevented this increase in PIP2 and led to a 20% control incubations. Addition of 10 µH GIPys prevented only increase in FIP. GTP (1-100 µH) also increased IP2 formation but only to the level observed with 0.2 µH GTPyS. Thrombin (2 units/ml) induced only small increases in IP2 in the absence of added GTP but, in the presence of \$10 \(\mu\) M GTP increased IP and IP2 to the same extent as 10 \(\mu\)M GTP\(\sigma\). Symergism was also observed between thrombin and 0.1 \(\mu\)M GTP\(\sigma\)S. PIP was again the major source of IP2; little The effects of thrombin in the presence or absence of GTP and of GTPyS were inhibited by 400 pM GDPSS. The results indicate that a G-protein mediates the activation of phospholipase C by thrombin in the platelet and suggest that PIP is a major substrate of this ensyme.

Supported by the Medical Research Council of Canada and the Heart and Stroke Foundation of Ontario.

THE BY SUBUNITS OF TRANSDUCIN ACTIVATE AND THE Q SUBUNIT INHIBITS PHOSPHOLIPASE A.

C.L. Jelsema and J. Axelrod. NIMH, Bethesda MD 20892.

Transducin (Td), the major GTP-binding protein (G protein) of the retina, has been demonstrated Transducin (Td), the major GTP-binding protein (G protein) of the retina, has been demonstrated to couple photoexcitation of rhodopsin to activation of phospholipase A, (PLA,) in rod outer segments (ROS) of bovine retina (Jelsema, Fed. Proc. 45, 1560), as measured by liberation of arachidonate from phosphatidylcholine in in vitro assays of PLA. Loss of Td from dark-adapted ROS membranes was accompanied by loss of light-activated PLA, whereas addition of purified Td to Td-depleted ROS partially restored the light-atimulated PLA, activity. Addition of GTPyS, which mimics the light-induced dissociation of Td into subunits, also increased PLA, activation associated with the addition of exogenous Td to Td-depleted ROS. Pertussis toxin pretreatment of Td, which prevents subunit dissociation, also prevented PLA, activation by Td. These results indicate a requirement for subunit dissociation in the Td-mediated activation of PLA. To examine the role of the individual Td subunits in modulation of PLA, purified Td was obtained by GTP-extraction of purified, light-activated ROS and the grant activation by two different methods following activation of pure Td with the g and by subunits were separated by two different methods following activation of pure Td with All 1, Mg 1, and Fl. The isolated subunits were then added to either Td-depleted, dark-adapted ROS or to soluble snake venom PLA. Addition of the isolated α or βγ subunits, prepared by either method, were each found to stimulate the PLA, activity of both Td-depleted ROS and the soluble enzyme. The activation associated with the βγ subunits, however, was consistently 3 to 5 times the activation associated with the isolated a subunit. Addition of the a and By subunits together inhibited the stimulation observed with the individual subunits. This inhibition was prevented by addition of GTPYS and enhanced by pretreatment with pertussis toxin. These results suggest a stimulatory role for the 8Y subunits of Td and an inhibitory role for the a subunit in the modulation of PLA.

100 100 IMMUNOCYTOCHEMICAL DISTRIBUTION OF CAM-DEPENDENT PHOSPHODIESTERASE IN RAT BRAIN: EVIDENCE FOR SELECTIVE EXPRESSION AND TRANS-SYNAPTIC REGULATION. R. L. Kincaid*, C. D. Balaban*, M. L. Billingsley**. *NHLBI, NIH, Bethesda, MD., Depts. of *Anatomy and **Pharmacology, Pennsylvania State University, Hershey, PA.

Antibodies to bovine brain CaM-dependent cyclic nucleotide phosphodiesterase (PDE) were raised in rabbits and further purified by affinity chromatography on Protein-A Sepharose and PDE-Sepharose. These were characterized by immunoprecipitation, solid-phase assays (ELISA), Western blot and immuno-affinity chromatography analysis to be specific for the CaM-dependent form of PDE; no crossreactivity to other phosphodiesterases, CaM-binding proteins or cytosolic brain proteins was seen. Enzyme activity could be removed from brain supernatant by immunoadsorption and quantitatively recovered in the pellet. Immunolocalization in rat brain demonstrated very high concentrations of PDE in dendritic fields of cerebellar Purkinje cells, as well as pyramidal cells in cerebral cortex and hippocampus; some areas such as hypothalamus showed very little immunoreactivity. These data suggest selective expression of this enzyme in major output neurons of the central nervous system, many of which exhibit Ca and cyclic nucleotide-dependent electrophysiologic responses. Furthermore, selective pharmacologic lesions of climbing fiber input to Purkinje cells result in a virtually complete loss of immunoreactivity in the dendrites, while not affecting that in other brain regions. Immunoblot analysis of whole cerebellum after such treatment indicated a decrease of > 75% in PDE content. These findings are consistent with trans-synaptic control of PDE expression in these neurons and suggest a role for the enzyme in intraneuronal integration.

101 CHARACTERIZATION OF N-PROTEIN SUBUNITS BY TWO-DIMENSIONAL GEL ELECTROPHORESIS (2D-PAGE).
D. Koesling, M. Pallast, C. Kleuss and W. Rosenthal.

Institut für Phermekologie, Freie Universität Berlin, D-1000 Berlin 33, F.R.G.

In human neutrophil leukocytes (PMNs), pertussis toxin (PT)-sansitive N-proteins are involved in transmembranous signalling between the receptor for chemotactic peptides and various effector systems including phospholipase C (PLC). The PT-sansitivity of the PMN N-protein involved in PLC stimulation is in contrast to other tissues where PLC is apparently regulated by a PT-insensitive N-protein. We compared the PT subtrates in membranes of PMNs, human erythrocytes (R9Cs) and human platelets. Membranes were incubated with "P-NAD and PT and consequently analyzed by 2D-PAGE. Rediolabelled proteins were visualized by autoradiography. In all 3 tissues, a major PT substrate of 40 kDs and a pI value of about 5.3 was identified. Only in PMN membranes, a second major PT substrate of 40 kDs with a pI value of about 5.4 was observed. Compared to the more acidic substrate, Lubrol PX and 8y-complex overproportionally increased incorporation of radioactivity into the PMN-specific paptide. We conclude that PMN membranes contain a cell-specific PT-sensitive N-protein. — We also used 2D-PAGE for the characterization of N-protein 8-subunits. 8-Subunits were detected by immunoblotting, using an antiserum against transducin (TD), which recognized all TD subunits and cross-reacted with the 35 kDs 8-subunit of N, N, and N, N-proteins purified from porcine brain and cross-reacted with the 35 kDs 8-subunit of N, N, and N, N-proteins purified from porcine brain and cross-reacted with the 35 kDs brain and RBC membranes were tested. In preparations of purified N, or N, and in the crude extracts from both tissues, two immunoreactive paptides of 36 kDs were identified which differed in their pI values by 0.15 pH units. The occurrence of different 36 kDs 8-subunits may be explained by posttranslational modification.

PROTEIN KINASES AND PROTEIN PHOSPHATASES AS REGULATORY ENZYMES FOR CALCIUM TRANSPORT IN CARDIAC SARCOPLASMIC RETICULUM. E.G. Kranias, B.A. Davis and J. Di Salvo, Univ. of Cincinnati College of Medicine, Cincinnati, OH 45267-0575.

Calcium transport by cardiac sarcoplasmic reticulum (SR) appears to be regulated through phosphory-lation of phospholamban, a 24,000 dalton polymeric proteolipid. Phospholamban is phosphorylated by cAMP-dependent protein kinase and by an endogenous Ca^{2+} -calmodulin(CAM)-dependent protein kinase which is regulated by calcium concentrations similar to those occurring intracellularly during contraction and relaxation of the cardiac muscle. Phosphorylation of phospholamban by cAMP-dependent or by Ca^{2+} -CAM-dependent protein kinase is associated with increased rates of calcium transport, which reflects an increased affinity of the transport protein for calcium. Phosphorylation of phospholamban by cAMP-dependent and Ca^{2+} -CAM-dependent protein kinases occurs in an independent manner. The stimulatory effects of the two protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase activity. Dephosphorylation of phospholamban results in a reduction of the stimulation on calcium transport produced by the protein kinases. Rephosphorylation of phospholamban by protein kinases causes full recovery of the stimulation on calcium transport and reversal of the effects mediated by the protein phosphatase. The phospholamban protein phosphatase may be solubilized from cardiac SR membranes by Triton X-100 and subsequently purified by chromatography on Mono Q HR 5/5 and polylysine agarose columns. When subjected to sucrose density centrifugation the SR protein phosphatase appears to have a M_Y of 46,000. These findings indicate that the calcium pump in cardiac SR is under reversible regulation by protein kinase(s) and protein phosphatase(s). Such regulation may represent an important control mechanism for the myocardium. (Supported by NIH grants HL 26057, HL 2619 and HL 20196).

INSULIN-DEPENDENT PHOSPHORYLATION OF G PROTEINS IN PHOSPHOLIPID VESICLES by J. Krupinski, M. Lakonishok, J. Benovic, and R. Cerione, Cornell U., Ithaca, NY 14853, Duke U., Durham, NC 27710.

Durham, NC 2710.

We have investigated the involvement of GTP binding proteins (G proteins) in insulin action by co-reconstituting tyrosine agarose-purified, or insulin-sepharose purified, insulin receptors and G proteins into phospholipid vesicles. When pertussis toxin sensitive G proteins from bovine brain (G, and G) are used in the co-reconstitution, an insulin-stimulated phosphorylation of the α (α , and α) and γ subunits of the heterotrimeric G proteins results. Under optimal conditions this phosphorylation is equal in extent to the insulin-stimulated phosphorylation of the receptor itself. However, while most of the receptor phosphorylation occurs at a tyrosine residue, this is not the case for the phosphorylation of the G proteins, suggesting the involvement of another kinase which is present in the tyrosine agarose preparations. The insulin-promoted phosphorylation of the G proteins requires their co-insertion with insulin receptors into lipid vesicles, i.e. little or no phosphorylation occurs when these proteins are simply mixed in detergent solution. Moreover, the insulin-promoted phosphorylation appears to be specific for G, or G; other heterotrimeric GTP binding proteins such as G, or transducin are poor substitutes in the vesicles. The G proteins cause an enhancement of the insulin-stimulated autophosphorylation of the purified receptor. This enhancement is in part a reflection of an increased incorporation of the insulin receptor into lipid vesicles (induced by the G proteins). Taken together, these studies provide evidence for the interactions of GTP binding proteins with the insulin receptor in a lipid milieu.

REFECT OF PERTUSSIS TOXIN ON THE PHOSPHODIESTERATIC CLEAVAGE OF THE POLYPHOSPHOINOSITIDES BY GUANOSINE 5'-O-THIOTRIPHOSPHATE AND THROWBIN IN PERMEABILIZED HUMAN PLATELETS. Eduardo G. Lapetina. Department of Nolecular Biology, The Wellcome Research Laboratories, Burroughs Wellcome Co., Research Triangle Park, North Carolina 17709, U.S.A.

Permeabilization of human platelets with 15 to 25 $\mu g/ml$ saponin allows ADP-ribosylation by pertussis toxin of the α_1 -subunit of G_1 (N₁), a guanine nucleotide-binding regulatory protein. We have used the same assay conditions to determine phospholipase C in permeabilized platelets whose inositol phospholipids were prelabeled with [3H]inositol. Phospholipase C activity was measured by [3H]polyphosphoinositide decreases and formation of [3H]inositol bisphosphate and [3H]inositol trisphosphate. Prostacyclin, cyclic AMP or pretreatment of permeabilized platelets with pertussis toxin did not alter this effect under conditions in which the α_1 -subunit was effectively ADP-ribosylated by pertussis toxin. This information indicated that ADP-ribosylation and inactivation of G_1 -protein was not directly related to activation or inhibition of platelet phospholipase C by GTPyS. Thrombin also activated phospholipase C in permeabilized platelets and, surprisingly, this action was enhanced by enhanced by pertussis toxin pretreatment. This indicates that inactivation of G_1 -protein facilitates the action of thrombin on phospholipase C.

STIMULATION OF HUMAN PLATELETS WITH TRYPSIN, THROMBIN AND COLLAGEN INHIBIT THE PERTUSSIS TOXIN-INDUCED ADP-RIBOSYLATION OF A 41,000 DALTON PROTEIN. Eduardo G. Lapetina, Bryan Reep, and Kwen-Jen Chang. Molecular Biology Department, Burroughs Wellcome Co., Research Triangle Park, NC 27709

Permeabilization of human platelets with 15-25 µg/ml saponin allows the determination of the ADP-ribosylation of a 41,000 dalton protein by pertussis toxin. The ADP-ribosylated protein is present in the particulate fraction. ADP-ribosylation of the 41,000 dalton protein increases for 20 min; it is not affected by indomethacin, prostacyclin, and 1,2-diacylglycerols, and is inhibited by 1 mM Ca² and phorbol esters. The stimulation of platelets with TPCK-trypsin, thrombin or collagen before saponin addition precludes subsequent pertussis toxin-induced ADP-ribosylation of the 41,000 dalton protein. The effect of TPCK-trypsin and thrombin is blocked by protease inhibitors such as soybean trypsin inhibitor and leupeptin. TPCK-trypsin proteolytically cleaves the ADP-ribosylated 41000 dalton protein to an ADP-ribosylated fragment slightly smaller than 20000 dalton. The results suggest that a modification of a guarine nucleotide-binding regulatory protein is associated with the action of TPCK-trypsin, thrombin and collagen on platelet activation.

106 G PROTEINS MEDIATE MULTIPLE INHIBITORY ACTIONS OF SOMATOSTATIN IN ATT-20 CELLS. Luini. A. Azelrod, J. and Lewis, D. NIAA, Rockville, MD 20852 and NIMH, Betheada, MD 20892.

Opistes, GABA, noradrenaline, acetylcholine and somatostatin all act on receptors that inhibit neurotransmitter or hormone secretion. To study the mechanism of action of somatostatin, the use of a secretory clonal cell line (AtT-20) amenable to biochemical and electrophysiological studies, has been advantageous. AtT-20 cell secrete ACTH in response to an intracellular increase of cAMP and/or calcium. The inhibition of adenylate cyclase via a GTP binding protein (Gi) is an already known action of somatostatin. Here, we show two other separate mechanisms of somatostatin, both involving a G protein. One is the inhibition of voltage dependent calcium channels: In whole cell patch clamp experiments, somatostatin reduced the voltage-dependent calcium current. The intracellular free calcium concentrations (measured by the Quin-2 technique) were also reduced. Treatment of the cells with pertussis toxin, which ADP ribosylates the GTP binding proteins Gi and Go, thereby presumably inactivating them, abolished the action of somatostatin on both calcium current and intracellular free calcium. Intracellular application of the nonhydrolyzable guanine nucleotide analog GTPS, which irreversibly activates G proteins, changed the somatostatin effect on calcium current from a reversible to an irreversible inhibition. Intracellular GTPS alone caused a very slowly developing inhibition of calcium current. The effect of GTPS on the inhibition of calcium current by somatostatin was not altered by the intracellular application of calcium current. The effect of GTPS on the inhibition of calcium current by somatostatin was not altered by the intracellular application of calcium current by somatostatin was not altered by the intracellular mechanism is inhibition of the ACTH exacytotic machinery: Somatostatin reduced secretion caused by calcium ionophores without modifying their effect on cytosolic calcium. This action of somatostatin receptors inhibit adenylate cyclase, voltage dependent calcium channels and an as yet unknown step of the

107 Defundlogical Identification of the Major Platelet Low Km camp Phosphodiesterase: A Target FOR ANTI-THROMBOTIC AGENTS AND CAMP-DEPENDENT PHOSPHORYLATION. C.H. Macphee, S.A. Harrison, D.H. Raifsnyder, and J.A. Beavo. Department of Pharmacology, University of Washington, Seattle, WA 98195

A novel low Km cAMP phosphodiesterase (PDE) has recently been purified in our laboratory from bowing heart (Harrison et. al., Mol. Pharmacol. 29, 506-514, 1986). This enzyme has been designated as cGMP-inhibited PDE since low concentrations of cGMP inhibit (Ki=60M) cAMP hydrelysis. Western blot and enzyme activity analyses, using mouse antiserum and monoclonal antibodies, indicated that more than 90% of the total low Km cAMP PDE activity in bowing and human platelets resided in a single 110KDa peptide which was immunologically and structurally indistinguishable from the recently purified heart enzyme. This platelet PDE was found to be extremely susceptible to proteolytic activation resulting in the formation of 80KDa and 60KDa fragments. In addition, several known PDE inhibitor compounds which have been found useful in inhibiting platelet aggregation also inhibited the platelet low Km cAMP PDE with potencies very similar to their anti-thrombotic effects. Cilostamide, Ro 15-2041, milrinone, papaverine, IEMP, and theophylline inhibited the 110KDa platelet enzyme with I.C.50 values of 0.04, 0.13, 0.46,1.4, 2.6, and 110µM, respectively. Since both the heart and platelet 110KDa PDE can be phosphorylated in vitro by cAMP-dependent kinase we attempted to phosphorylate the enzyme in fresh intact human platelets prelabelled with[32p]-PO4. Specific immunoad-sorbtion of the platelet Cytosolic cAMP levels, promoted the rapid (<|Min.) and dose-dependent phosphorylation of the 110KDa PDE in intact human platelets.

PURIFICATION OF A NEW CTP-BINDING PROTEIN FROM BOVINE BRAIN. M.W. Martin, G.L. Waldo, T. Evans, J.K. Northup, and T.K. Harden. Dept. of Pharmacology, Univ. of North Carolina School of Medicine, Chapel Hill, N.C. and Dept. of Pharmacology and Experimental Therapeutics, Univ. of Calgary, Calgary, Alberta, Canada.

A protein that binds guanine nucleotides with high affinity was purified from cholate extracts of bovine brain membranes by sequential DEAE-Sephacel, Ultrogel &GA-34, heptylamine-Sepharose, and Sephadex G-150 chromatography. Photoaffinity labelling with (Y-2P)-8-azido-GTP indicated that the GTP-binding activity of the protein is associated with a 25,000 dalton peptide alpha subunit. The alpha subunit copurified with 35 and 36 kilodalton peptides that were immunologically and electrophoretically indistinquishable from the subunits of known GTP-binding proteins. The purified protein specifically bound 17.2 nmol of S-GTPYS per mg protein with high affinity (Kd = 15 nM), i.e. one mole of GTPYS was bound per mole of native protein, assuming an Mr of 67,000. The protein is not a substrate for ADP-ribosylation by either pertussis or cholera toxins. The protein purified from brain comigrated on SDS-polyacrylamide gels with the GTP-binding protein, Gp, recently purified from human placental membranes by Evans, et al. (J.Biol.Chem. 261:7052, 1986) and cross-reacted on Western blots with polyclonal antibodies raised against platelet Gp, but not with antibodies raised to brain Go. The functional activity of this protein is under investigation. Supported by USPHS Grants GM29536 and MS23019.

cDNA CLONING OF THE GTP BINDING PROTEIN, a1, AND OF A NOVEL G PROTEIN, ab. I. Michell, J.W. Winslowl, J.A. Smith², J.G. Seidman³ and E.J. Neer¹, ¹Cardiovascular Division, Brigham and Women's Hospital; ²Dept. Molecular Biology and Pathology, Massachusetts General Hospital; and Depts. of ¹Medicine, ²Pathology and ³Genetics, Harvard Medical School, Boston, Massachusetts. Signal transduction by receptors in biological membranes is modulated by a family of related GTP binding proteins (G proteins). A 41 kDa G protein, ai, is implicated in signal transduction by receptors coupled to adenylate cyclase inhibition and by receptors which modulate Ca⁺⁺ flux and phosphoinositide metabolism. We have determined the amino acid sequence of peptides isolated from the ai protein and from a related 39 kDa protein, a0, both proteins purified from bovine brain. The amino acid sequences of these peptides show homology with one another, and show 75% sequence identity with the reported sequences of the G protein transducin (at). Based upon this striking sequence homology, we used the cDNA for at to screen a bovine pituitary library, at low hybridization stringency, and we have isolated and characterized a cDNA clone which encodes ai. The deduced amino acid sequence of the ai clone demonstrates marked homology to several other GTP binding proteins. Southern blot analysis of the cloned ai cDNA suggests the presence of two genes encoding this protein, which, in turn, are distinct from those encoding other G proteins. In addition, we identified a cDNA clone for a novel, putative G protein, ah, which demonstrates marked sequence homology with other G proteins, but which represents a clearly distinct gene product. Taken together, these data suggest a new level of complexity in the organization of the G protein supergene family, with multiple G proteins of similar overall structural and mechanistic properties likely to be identified as products

MEMBRANE FLUIDITY GOVERNS THE RECONSTITUTION OF GTP SENSITIVE ADENYLATE CYCLASE ACTIVITY. Dianne L. Newton and Werner A. Klee, Laboratory of Molecular Biology, NIMH, Bethesda, MD The role of membrane fluidity in the interactions among adenylate cyclase, the GTP-binding regulatory proteins, and the opiate receptor has been studied by reconstitution of these proteins in phospholipid vesicles of varying composition. Adenylate cyclase was purified from rat brain membranes by a combination of forskolin or calmodulin-agarose and wheat germ agglutinin-agarose affinity chromatography. The GTP-binding regulatory proteins were purified from rabbit liver and bovine brain by published procedures (Sternweis et al., J. Biol. Chem. 256, 11517 (1981); Milligan and Klee, J. Biol. Chem. 260, 2057 (1985). Reconstitution into phospholipid vesicles was accomplished by dialysis. GTP insensitive stimulation of adenylate cyclase by $G_{\rm S}$ and its inhibition by $G_{\rm I}$ was observed with lipids of relatively low fluidity, such as asolectin and dipalmitoylphosphatidyl choline (DPPC). The GTP insensitive stimulation by $G_{\rm S}$ is enhanced by aluminum fluoride and is inhibited by $G_{\rm I}$ and the $\beta_{\rm Y}$ subunit of transducin. Thus, the activity of $G_{\rm S}$ in lipids of low fluidity reflects the presence of bound GDP which is not readily exchangeable with GTP under these conditions. However, GTP analogues do stimulate $G_{\rm S}$ and $G_{\rm I}$ activities when lipids of greater fluidity are used in the reconstitution. Thus, dimyristoylphosphatidyl choline (DMPC) and lecithins containing fatty acid moleties of 10 and 12 carbons in length support $G_{\rm S}$ and $G_{\rm I}$ activities which are stimulated by GTP analogues. Addition of cholesterol, which is expected to decrease the fluidity of the $C_{\rm IQ}-C_{\rm IQ}$ lecithins and increase that of DPPC, decreased GppNHp stimulated activity with the short chain lipids and did not affect activity with DPPC. Cholesterol increases the GTP independent activity of $G_{\rm S}$ when the $C_{\rm IQ}$

BINDING SITES FOR [3H]FORSKOLIN IN MEMBRANES FROM RAT HEART, LUNG, KIDNEY AND LIVER:
Their Regulation by GppNHp. K.B. Seamon and C.A. Nelson Center for Drugs and Biologics
FDA Bethesda, MD 20892

A survey of the characteristics of 3H-forskolin (3H-FSK) binding to membranes from various rat tissues

A survey of the characteristics of 3 H-forskolin (3 H-FSK) binding to membranes from various rat tissues was carried out using a filtration assay. Binding sites have been reported in membranes from rat brain and human platelets which have a K_{d} of 20 nM and are increased up to 4-fold in the presence of GppNHp. 3 H-FSK binding sites were detected in membranes from rat lung which had a Bmax of 13 fmol/mg protein which was increased to 113 fmol/mg protein in the presence of GppNHp. Similarly, binding sites for 3 H-FSK were detected in membranes from rat heart which had a Bmax of 127 fmol/mg protein which was increased to 193 fmol/mg protein in the presence of GppNHp. The binding of 3 H-FSK to rat kidney membranes could only be detected in the presence of GppNHp with a Bmax of 31 fmol/mg protein. The Kd values for 3 H-FSK binding in heart, lung, and kidney were 34 nM, 29 nM, and 15 nM, respectively which is similar to values reported for membranes from rat brain and human platelets. In contrast, liver membranes had a K_{d} value of 329 nM for 3 H-FSK binding. This low affinity binding of 3 H-FSK had a Bmax of 3600 fmol/mg protein and was not regulated by GppNHp. There was a linear correlation between adenylate cyclase activity and the number of 3 H-FSK binding sites in all tissues except for liver. It was determined by HPLC chromatography that no degradation of the 3 H-FSK ligand occurred during incubations in any of the tissues studied. Current evidence indicates that the formation of the high affinity binding site for 3 H-FSK is coincident with the activation of adenylate cyclase via the guanine nucleotide binding protein. The nature of the low affinity binding site in liver is not known.

GUANINE NUCLEOTIDES STIMULATE NADPH OXIDASE IN PLASMA MEMBRANES OF HUMAN NEUTROPHILS: EVIDENCE FOR AN INVOLVEMENT OF A GUANINE NUCLEOTIDE-BINDING PROTEIN, R. Seifert, W. Rosenthal, and G. Schultz. Pharmakologisches Institut, Freie Universität Berlin, D-1000 Berlin 33, F.R.G. The chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), binds to specific membrane receptors and stimulates superoxide formation by NADPH oxidase (NO) in intact human neutrophils. The effect of FMLP involves a pertussis toxin(PT)-sensitive guanine nucleotide-binding protein (N-protein). As phorbol 12-myristate 13-accetate (PMA), a potent activator of protein kinase C (PK-C), also stimulates ND in intact cells, it is widely believed that PK-C-catalyzed phosphorylation of NO or of a regulatory component is involved in NO stimulation. We studied NO regulation in plasma membranes purified from unstimulated human neutrophils. In the presence of neutrophil cytosol, archidoptic acid (AA, 10 - 200 µM, peak at 50 µM) caused stimulation of NO (up to 2 µmoles x mg x x min 1). Other long chain unsaturated cis- and trans-fatty acids had similar effects; saturated fatty acids and PMA did not activate NO. Addition of the stable GTP analogs, GTPyS (10 µM) and GppNHp (100 µM), or NaF (10MM), which activate N-proteins, prior to or with AA, enhanced NO activity up to 4-fold. The GTP analogs were without effect when added several minutes after AA. GDP85 inhibited the effect of GTPyS. In membranes from PT-treated neutrophils, the effects of GTPyS and GppNHp were not changed. Removal of cytosolic ATP by hexokinase and glucose suppressed the stimulatory effect of AA but not that of GTPyS. As trans-fatty acids are not known to stimulate PK-C and PK-C purified from chicken gizzard was no substitute for neutrophil cytosol, the cytosolic cofactor required for NO activation of PK-C or elevation of cytoplasmic calcium.

ADENYLATE CYCLASE-LINKED STIMULATORY ($R_{\rm B}$) AND INHIBITORY ($R_{\rm I}$) RECEPTORS AND ASSOCIATED GTP-BINDING PROTEINS REGULATE INSULIN-STIMULATED PROCESSES IN RAT ADIPOCYTES BY CAMP-INDEPENDENT MECHANISMS. IA Simpson, M Kuroda, RC Honnor, SM Cushman, & C Londos, NIH, NIDDK, Bethesda, ND 20892 Rat adipocytes contain receptors whose actions, as defined by effects on adenylate cyclase, are either stimulatory ($R_{\rm B}$) or inhibitory ($R_{\rm I}$), and regulated by their respective GTP-binding complexes, $N_{\rm B}$ or $N_{\rm I}$. In the absence of insulin ligands for $R_{\rm S}$ (eg. isoproterenol, ACTH) and $R_{\rm I}$ receptors (eg. adenosine, PGE1) control lipolysis exclusively by modulating cAMP concentration and CAMP-dependent protein kinase (A-kinase) activity. However, in the presence of insulin, ligands for $R_{\rm S}$ and $R_{\rm I}$ receptors are shown to control several processes by mechanisms unrelated to cAMP or A-kinase activity. For example, $R_{\rm B}$ ligands increase and $R_{\rm I}$ ligands decrease insulin concentrations required for initiation of insulin-mediated antilipolysis and insulin-stimulated glucose transport activity. In insulin-stimulated cells, the intrinsic activity of the glucose transporters in the plasma membrane is increased by $R_{\rm I}$ ligands and decreased by $R_{\rm S}$ ligands. In the absence of $R_{\rm S}$ or $R_{\rm I}$ ligands, treatment of cells with cholera or pertussis toxin does not change transport activity. However, treatment with cholera toxin eliminates the effects of Rs ligands, and treatment with pertussis toxin eliminates $R_{\rm I}$ effects on transport. Thus, these cAMP-independent actions of $R_{\rm S}$ and $R_{\rm I}$ ligands on the glucose transporter are mediated by the $N_{\rm S}$ and $N_{\rm I}$ proteins, respectively. Moreover, the entire receptor package, both $R_{\rm S}$ and $R_{\rm I}$, that is linked to adenylate cyclase is linked also to these cAMP-independent processes. It is concluded that adenylate cyclase is but one of a number of proteins which is regulated by a common R

114 INSULIN REGULATION OF LIPOLYSIS AND PARTICULATE LOW Km cAMP PHOSPHODIESTERASE (PDE)
ACTIVITY IN RAT ADIPOCYTES. Carolyn J. Smith and Vincent C. Manganiello. Laboratory of Cellular Metabolism, NHLBI, NIH, Bethesda, MD. 20892

Lipolysis and particulate "low K_m " cAMP PDE were studied under conditions "defined" by incubation of adipocytes with adenosine (Ado) or adenosine deaminsse (ADA) without or with M⁵-phenylisopropyl-adenosine (PIA). ADA increased both lipolysis and particulate (not soluble) PDE activity (K act \sim .02 U/ml), with maximal effects at 0.5-1 U/ml. PIA inhibited ADA-stimulated lipolysis and PDE ($K_i \sim$ 4 nM). Isoproterenol (Iso) increased lipolysis to the same extent with Ado, ADA, or ADA + PIA ($K_i \sim$ 4 nM). But sensitivity to Iso was greater with ADA (K act \sim 1 nM) than Ado or ADA + PIA (K act \sim 15 nM). Maximal lipolysis with ADA alone was 65% that with Iso. Maximal Iso increased PDE activity by \sim 100% with either Ado or ADA + PIA (K act \sim 4 nM), but only increased PDE activity by \sim 20% with ADA which itself increased PDE activity by \sim 165%. Insulin (Ins) inhibited lipolysis stimulated by Iso + Ado ($K_1 \sim$ 10 pM) and increased PDE activity \sim 165% with Ado (K act \sim 17 pM). With Ado, maximal Ins and Iso together increased PDE to a greater extent than either alone. Ins inhibited lipolysis stimulated by ADA alone, but effects of ADA and Ins on PDE were not > ADA alone. With ADA, Ins increased PDE in the presence of PIA, PGE1, and nicotinic acid, agonists which activate N1 - coupled receptors and inhibited ADA stimulation of lipolysis and PDE. With ADA plus low Iso (< 10 nM) insulin alone inhibited lipolysis; at higher Iso, > 4 nM PIA was required for insulin inhibition. These studies point out a close relationship between presumed effector-induced activation of cAMP dependent protein kinase and activation of particulate (not soluble) cAMP PDE as well as hormone sensitive lipase. In addition they suggest a possible role for Ni-activation in the regulation of particulate cAMP PDE by insulin.

115 DISTINCT PROPERTIES OF PURIFIED KIDNEY HISH AFFINITY CYCLIC AMP(cA) PHOSPHODIESTERASE (Type IV PDE) S.J. Strada, C.-C. Shen and W.J. Thompson, Dept. Pharm., U.of So. Alabama, Mobile, AL 36688. High affinity forms of cA PDE from rat heart, kidney and liver tissues were compared to a dog kidney enzyme purified to a 50-fold higher specific activity than proviously reported (Biochem.18: 5228, 1979). Type IV kidney PDE is separated from a 60 kD binding protein identified with polyclonal antisera raised against the enzyme complexed with the binding protein which appeared homogeneous by classical criteria. Purification has been improved by including Affi-gel blue chromatography between DEAE fractionation and \$200 gel filtration. The enzyme binds avidly to Affi-gel blue allowing removal of contaminants rapidly and in large quantity. The fold purification of the enzyme from kidney homogenates is 6000. The Km of the high specific activity enzyme(1.6 uN) and pharmacological specificity are the same as those previously reported. The maximum velocity of the enzyme is 8-20 umoles/min/mg in various preparations. 10% SDS gels show ca. 80% of the protein at 81 kD, with contaminate evident at 63, 47, 34 and 32 kD. DEAE-cellulose fractionation of rat tissue supernatants resolves. Type IV activities from other enzyme forms. These activities can be distinguished by c6 inhibition of cA hydrolysis and by pharmacological specificity. Heart is predominantly c8 inhibited, liver contains both c8 inhibited and non-inhibited Type IV activities, whereas kidney contains soley non-c8 inhibited activity. All c8 inhibited activities are markedly inhibited by cilostamide and milrinone whilst kidney-like forms are much more sensitive to inhibition by 89-65442. These studies indicate that an activity similar to that purified from dog kidney exists in other tissues and that Type IV enzyme activities can be distinguished on the basis of their sensitivities to inhibition by cB and by pharmacological agents. This research is supported by 8M 33538.

116 ONTOGENY OF GUANINE NUCLEOTIDE AND IONIC REGULATORY FACTORS OF OPIOID RECEPTORS.
M. Szücs, G.M. Oetting, J.W. Spain and C.J. Coscis, E.A. Doisy Department of Biochemistry, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, NO 63104.

Having established differential ontogeny for μ and δ optoid receptors in rst brain, we have examined their regulation by mono- and divalent cations and guanine nucleotides (GN) during post-natal development. These agents are known not only to modulate the receptor binding directly, but also be required for coupling of opioid receptors to the secondary measuring restem. The binding of "H-DADLE (in the presence of 10 nM DAGO) was most sensitive to divalent cations during the first week postnatal with increases over control values as high as 100% by Mn, and 70% by Mg, or Ca. In contrast, μ binding (measured with 1 nM "H-DAGO) was inhibited by cations and the effect did not change during development. GTP, Gpp(MH)p, and GDP inhibited μ by 40-60% and δ binding by 15-30%, an effect that again remained constant throughout development. Ns, substantially increased the potency of GNs in all ages. The inhibition of binding by Gpp(NH)p-Ns was increasingly reversed at both sites by the addition of Mn, with adult levels of reversal being achieved by the second week postnatal. In order to assess whether the GN binding proteins undergo a time-dependent development, membranes from 5 day old and adult rat brains were labeled with ["3*P]NAD in the presence of pertussis toxin. For meomates, an intense labeling of a doublet with molecular weights of 39-41 kDa was observed corresponding to bands labeled in adults. We conclude that: (1) divalent cations bind to a site distinct from the GN site; and (2) GN binding proteins appear early in development, but further work is required to assess whether they are functionally coupled to μ/6 opioid receptors in neonates.

CORRELATION OF VANADATE/BLUTATHIGME(V/88H) ACTIVATION AND CYCLIC SMP(c8) INHIBITION OF RABBIT LIVER PARTICULATE HIGH AFFIMITY CYCLIC AMP(cA) PHOSPHODIESTERASE (TYPE IV PDE). M.J. Thompson, B.H. Tan and S.J. Strada, Dept. Phars., U.So.Alabama, Mobile, AL 36488.

We previously reported activation of particulate Type IV PDE activity in rat adipocytes (Souness et al., JCMPPR 10:483,1985) by a complex of sodium vanadate and glutathione (V/8BH). Similarly, the meximum velocity of high affinity liver particulate activity (Km=0.7) is increased (280% above basal) by vanadyl ion complexed with glutathione (1:2). Other elements capable of the V-IV valence transition states with 88H, eg., tungsten, tantallium and niobium will stubstitute for vanadium. Mixtures of 88H and manganese, chromium or molybdenum are inactive. L-cysteine, cysteic acid, cystemine or N-acetyl-cysteine, but not cystamine, cystine, homocysteine or taurine, can substitute for 88H. These results indicate the critical role of the -8H as an electron donor in the complex activation. Particulate c8 PDE hydrolysis (Km=12 uH) is not affected by V/88H, however, the sensitivity of Type IV PDE to c8 inhibition is increased 20-fold by V/88H activation. Type IV PDE influenced by these effectors is solubilized with 0.2% Triton X-100 but not by 0.4M NaCl or hypotonic lysis. Differential centrifugation shows effector localized to light microscamal membranes. c8 inhibits both basal and V/88H activated enzyme activity to the same extent, suggesting an effect on the same enzyme activity. In addition, drug inhibition profiles of c8 inhibited and V/88H activated activity are parallel. These data suggest that V/88H complexes in vitro miscle form of high affinity in hepatic membranes, perhaps via an oxidation-reduction mechanism. Research supported by USPHS grant 8H 35358.

DEDUCED AMINO ACID SEQUENCE OF A CDNA CLONE FOR BOVINE GOO: POTENTIAL CHOLERAGEN AND PERTUSSIS TOXIN MODIFICATION SITES AND SIMILARITIES TO OTHER GUANYL NUCLEOTIDE-BINDING PROTEINS. K.P. Van Heurs*, C.W. Angus*, S.R. Price*, S.-C. Tsai*, R. Adamik*, S. Lavu*, H.-F. Kung**, J. Hoss*, and M. Vaughan*. *National Heart, Lung, and Blood Institute, NIH, Bethesda, MD; *PRI and **BRMP, National Cancer Institute, Frederick Cancer Research Facility. Frederick, MD.

Cancer Institute, Frederick Cancer Research Facility, Frederick, MD.

Guanyl nucleotide-binding proteins (GNPs) are critical in the regulation of many receptor-mediated events. G_0 is a GNP which interacts functionally with rhodopsin and muscarinic receptors, but is apparently not involved in regulation of adenylate cyclase. G_0 is similar to other GNPs in that it is a heterotrimer of α , β , and γ subunits. A cDNA clone (λGO_9 , ~ 1.7 kb in length) was isolated from a bovine retinal λ gtl0 cDNA library using oligonucleotide probes complementary to sequences found in two cDNA clones for the alpha subunit of transducin (Angus et al. (1986) Proc. Natl. Acad. Sci. USA in press). A comparison of amino acid sequence of tryptic fragments from bovine brain G_{OQ} with the deduced amino acid sequences for λGO_9 revealed complete identity, consistent with the conclusion that this clone was derived from a G_{OQ} mRNA. Analysis of nucleotide and deduced amino acid sequences of λGO_9 also revealed significant structural similarities to the α subunits of bovine G_{CQ} , G_{CQ} and G_{CQ} and the region surrounding the arginine that is the choleragen ADP-ribosylation site in G_{CQ} , and for a carboxy terminal sequence which contains the cysteine modified by pertussis toxin. The levels of G_{CQ} mRNA determined by Northern analysis were consistent with the observed tissue distribution of the G_{CQ} protein. λGO_9 exhibits characteristics indistinguishable from those observed for G_{CQ} and demonstrates substantial similarities to the alpha subunits of bovine G_{CQ} , and G_{CQ} and to rat brain G_{CQ} .

119 INSULIN STIMULATION OF ADIPOCYTE CYCLIC AMP PHOSPHODIESTERASE IS INDEPENDENT OF PERTUSSIS OR CHOLERA TOXIN SENSITIVE INTERMEDIATES. Heather W. Weber, Kirsten Day, Fu-Zon Chung and M. Michael Appleman, Molecular Biology, University of Southern California, Los Angeles, CA.

Insulin can rapidly reduce cyclic AMP levels in isolated rat adipocytes due to a glucoseindependent stimulation of the degradative enzyme cyclic AMP phosphodiesterase. Ademylate cyclase
activity is stimulated by p-adrenergic agents and inhibited by adenosine agonists. Action of these
attimulatory and inhibitory agonists is mediated by GTP-binding proteins (Mg and Mg, respectively).

It has been suggested that these or related proteins may be involved in the insulin action on the
cAMP phosphodiesterase. Using agonists and antagonists of the adenosine receptor, it can be shown
that the cAMP phosphodiesterase activation is independent of the regulatory status of the ademylate
cyclase inhibitory receptor. Pertussis toxin specifically modifies Ng, so that ademylate cyclase
activity is no longer inhibited by adenosine agonists. Using pertussis toxin-treated adipocytes,
it can be shown that insulin can still activate the phosphodiesterase. Cholera toxin modifies Ng,
so that ademylate cyclase activity is fully stimulated. Treatment of adipocytes with cholera toxin
does not alter the ability of insulin to stimulate cAMP phosphodiesterase activity. Treatment of
adipocytes with either toxin causes an increase in the cAMP phosphodiesterase activity over the
control. The ability of isoproterenol to stimulate this enzyme is inhibited by either toxin
treatment. While these results indicate that in adipocytes the stimulation of cAMP
phosphodiesterase by isoproterenol may involve the ademylate cyclase regulatory subunits, the
regulation of cAMP phosphodiesterase by insulin is independent of Ng or Ng. Supported by American
Diabetes Assoc., So. Cal. Affil., the Ray Fdn. and the USC Faculty Innovation Fund.

120 SPECIES DIFFERENCES IN VENTRICILAR LOW K, CYCLIC AMP PHOSPHODIESTERASE AND THE IN VIVO CARDIOTONIC RESPONSE TO CI-914. Ronald E. Weishaar, Dianne C. Kobylarz-Singer, Robert P. Steffen, and Dale B. Evans. Warner-Lambert/Parke-Davis Pharm. Res., Ann Arbor, MI 48105.

Multiple molecular forms of phosphodiesterase (PDE) were isolated from guinea pig (GP), hamster (H), rat (R), and rhesus monkey (RM) left ventricular muscle, and the inhibitory effects of CI-914 and other selective inhibitors on each form of PDE were evaluated. In addition, the relationship between in vitro inhibition of the low K, cyclic AMP-specific form of PDE (PDE III) by CI-914, and the in vivo cardiotonic response to CI-914 was also determined. Three molecular forms of PDE were isolated from each species. PDE I is stimulated by calmodulin/calcium and, in the GP, H, and RM, hydrolyzes both cyclic AMP and cyclic GMP (K =1.0 uM). PDE II also hydrolyzes both cyclic AMP and cyclic GMP (K =20-30 uM). In addition, the cyclic AMP and cyclic GMP (K =2.5 uM). In addition, the cyclic AMP hydrolyzes cyclic AMP (K =0.5-1.5 uM).

MRB 22,948 (a selective PDE I inhibitor), AR-L 57 (a selective PDE III inhibitor) and theophylline (a non-selective PDE inhibitor) exerted a comparable inhibitory profile on PDE I, PDE III all four species. CI-914 exerted a potent and selective inhibitory effect on CP and RM left ventricle PDE III (C_{0.0}=8.2 and 5.0 uM, respectively), but only modestly inhibited PDE III from H and R left ventricle (IC_{0.0}=180 and 110 uM, respectively). CI-914 also exerted a greater in vivo positive inotropic effect in the RM than in H and R (ED_{0.0}=30 ugn/kg, i.v. for RM, with little or no effect in the H or R). Although CI-914 potently inhibited CP left ventricular PDE III, CI-914 exerted only a modest in vivo positive inotropic effect in the RM than in H and R, but not for the CP, these differences are predictive of the in vivo cardiotonic effect of CI-914. The lack of correlation in the CP implies the link between inhibitory effect of CI-914 on left ventricular PDE III in the CP compared to the RM.

PURIFICATION OF MEMBRANE-ASSOCIATED COMP-STIMULATED CYCLIC NUCLEOTIDE PHOSPHODIESTERASE (TYPE II PDE) FROM RABBIT BRAIN. M.E. Whalin, B.J. Strada and W.J. Thompson. Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688.

Rabbit brain Type II PDE has been purified to near homogeneity. Activity of cortex homogenates measured as the hydrolysis of 5 uN [3H]-cAMP in the presence of 2 uM cBMP is greater than 75% particulate. This activity or cBMP hydrolysis at 40 uM substrate can be solubilized with Triton X-100, but not with high ionic strength buffers indicating an integral membrane nature. Cyclic BMP activation of cAMP hydrolysis is lost by detergent solubilization. However, cleavage of the enzyme from the 13,000 x g particulate fraction by TPCK-trypsin proteolysis (1:600) retains full cBMP regulation. The enzyme was purified with a 3500 fold increase in specific activity from the particulate fraction using DE 32 anion-exchange chromatography, epoxy-Sepharose-cBMP affinity chromatography and Sephacryl S200 gel filtration. Particulate Type II PDE has an apparent native size of 240 kD. 8% acrylamide gel electrophoresis under denaturing conditions shows a major protein band at 110 kD. Hinor bands of 35 and 38 kD are evident. Positive homotropic cooperative kinetic behavior of the enzyme is observed with either cAMP or cBMP as substrate. Extrapolated maximum velocities are 122 U/ag and 174 U/ag for cAMP and cBMP substrates, respectively. Substrate concentrations required to achieve half-maximal velocities are 28 uM for cAMP and 16 uM for cBMP. The Kact for cBMP stimulation of cAMP hydrolysis at 5 uM substrate is 0.4 uM and maximal stimulation (5 fold) is achieved with 2 uM cBMP. Purified Type II PDE cleaved from rabbit brain particulate fractions shows many properties similar to other Type II PDE activities purified from cytosolic heart, liver and adrena; tissues sources. This research was supported by USPHS 6M 33538.

REACTIVE SULPHYDRYL GROUPS OF THE 39 kDa GUANINE NUCLEOTIDE BINDING PROTEIN (@39) FROM BOVINE BRAIN. J.W. Winelow, J. Bradley, J.A. Smith, E. Neer, Cardiovascular Division, Brigham and Women's Hospital; Dept. Molecular Biology and Pathology, Massachusetts General Hospital; and Depts. Medicine and Pathology, Harvard Medical School, Boston, Massachusetts.

The guanine nucleotide binding proteins which mediate hormonal inhibition of adenylate cyclase as well as hormonal regulation of other membrane functions are α , β , γ heterotrimers which are structurally homologous to each other. In brain, the predominant guanine nucleotide-binding component is

a 39 kDa protein whose physiological role is as yet unknown.

We have used N-ethylmaleimide to define functionally important sulfhydryl groups on a39. Three cysteine residues in the molecule are reactive in unliganded a39. Alkylation of two of these is reduced when GTPYS is bound. We have isolated and sequenced tryptic peptides containing the three reactive cysteines. The octapeptide containing the GTPYS-insensitive cysteine is at a position equivalent to amino acids 106-113 of the transducin asubunit (Lochrie et al. (1985) Science 228:96-99). Alkylation of this cysteine blocks ADP-ribosylation of cysteine 351 by pertussis toxin. Rowever, alkylation does not prevent association of a with the 8.7 subunits nor does it inhibit GTPase activity. The two GTPYS-sensitive cysteines are at positions equivalent to 139 and 286 of the transducin asubunit. Alkylation of these residues inhibits GTPase activity. Neither of these GTPYS-sensitive cysteines are in those regions of a39 which are highly homologous to the GTP binding site of elongation factor Tu (Jurnak (1985) Science 230:32-36). However, both are present in the brain all kDa guanine nucleotide-binding protein and in the two transducins. The conservation of these cysteine residues suggests that they are important for the function of the subunits.

MULTI-SITE PHOSPHORYLATION OF THE ALPHA SUBUNIT OF TRANSDUCIN BY THE INSULIN RECEPTOR KINASE AND PROTEIN KINASE C by Y. Zick and R. Sagi-Eisenberg, Department of Chemical Immunology, The Weizmann Institute of Science, Rehovot, Israel, and M. Pines, P. Gierschick, and A. Spiegel, Section of Molecular Pathophysiology, Metabolic Diseases Branch, Bethesda, MD,

The GDP-bound a-subunit of transducin but not the GTP-gamma-S bound one undergoes phosphorylation on tyrosine residues by the insulin receptor kinase and on serine residues by protein kinase C. Holotransducin is poorly phosphorylated by the insulin receptor kinase and is not phosphorylated by protein kinase C. Neither holotransducin nor any of its subunits were phosphorylated by the cAMP-dependent protein kinase. That a given subunit of transducin undergoes multisite phosphorylation depending on the type of nucleotide bound to it or the nature of the kinase suggests that hormone-dependent phosphorylation could provide a versatile mode for regulation of G-proteins function. In particular, the findings that certain G-proteins serve as substrates for both the insulin receptor kinase and protein kinase C implicate G-proteins in playing a key role in mediating the action of insulin and ligands that act to activate protein kinase C.

124

THE EFFECTS OF THE CHARGED DIHYDROPYRIDINE PN 207-180 ON RECONSTITUTED SINGLE CHANNELS FROM PURIFIED MUSCLE TRANSVERSE TUBULES. Hubert Affolter and Roberto Coronado, Department of Physiology, Yale University, New Haven, CT 06510, and Department of Physiology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030.

The charged dihydropyridine derivative PN 207-180 (gift from Sandoz AG, Basel,

The charged dihydropyridine derivative PN 207-180 (gift from Sandoz AG, Basel, Switzerland) was used to assess the site of dihydropyridine blockade in single calcium channels reconstituted from purified t-tubules from rat sceletal muscle. Spontaneous single channel openings were induced with the agonist Bay-K8644 and recordings were made in a two chamber planar bilayer setup so that drugs could be delivered to either site of the channel. It has been previously shown by the asymetric blockade by the membrane impermeable verapamile derivative D890 (Affolter and Coronado, Biophys. J. 49:767-771, 1986) that under the chosen conditions, calcium channels are incorporated into the membrane leaving the cytoplasmic end on the cis side of the bilayer. Nanomolar additions of PN 207-180 on either side of the bilayer resulted in >10 fold decrease in probability of open channel events as well as in mean open time. The lack of sidedness of PN 207-180 blockade can be explained by the fact that the long spacer -(CH₂)₁₀ - which links the charged quaternary amine to the dihydropyridine ring allows the active dihydropyridine moiety to reach the center of the bilayer from either side. This fact supports the view that the side of dihydropyridine action resides in the center of the lipid phase. Supported by a fellowship from Swiss National Funds and by NIH grant ROI-GM-32024.

BAY K 8644 ONLY HODIFIES THE GATING OF PHOSPHORYLATED CALCIUM CHANNELS. David Armstrong

and Christian Errleben, Department of Biology, UCLA, Los Angeles, CA 90024.

Dihydropyridines, calcium ions and agents that promote cyclic AMP-dependent protein phosphorylation all modulate the same class of voltage-activated Cs channels that have a conductance near 23 pS in 90mM Ba²⁺, activate at voltages more positive than -20 mV, and do not inactivate at We have studied the modulation of those channels by BAY K 8644 (BAY K) in cell-free membrane patches from a mammalian cell line (GH3). The cytoplasmic sides of the patches were bathed in a minimal CsCl solution that contained 40 mM HEPES (pH 7.2), 5 mM EGTA (pCa 8) and 0.1 mM leupeptin, a protesse inhibitor, and were voltage clamped to -40 mV. The Ca channels in such patches quickly stop responding to membrane depolarization unless ATP-Mg and the catalytic subunit (CS) of cyclic AMP dependent protein kinase are added to the cytoplasmic side of the patch (Armstrong & Eckert, 1985, J. Gen. Physiol. 86:25a). BAY K alone (0.1 - 10 AM) did not restore Ca channel activity once it had disappeared from patches exposed to the minimal solution, but when it was applied in the presence of CS plus ATP, BAY K produced a dramatic increase in the mean lifetim of the open channel during depolarizing steps to 0 mV. However, if intact cells were exposed to BAY the open channel until deposations steps to very noncret, it substantially delayed the loss of activity in the minimal solution. Since BAY K only modulates Ca channel gating when it is applied in the presence of phosphorylating agents, we suggest that BAY K produces its effect on gating by inhibiting dephosphorylation of the channel. That would explain why successful reconstitution of these phosphorylation-dependent Ca channels in the absence of ATP has only been achieved in the presence of BAY K. (Supported by USPHS NS-8364 to Roger Eckert.)

K⁺ CHANNEL BLOCKADE ENHANCES ELECTRICALLY STIMULATED VASOPRESSIN RELEASE FROM RAT NEUROHYPOPHYSES

126

Frequency dependent facilitation of neurosecretion has been described in both mouse and rat neural lobes and in a variety of other vertebrate and invertebrate neuronal preparations. Associated with increased stimulus frequency is a prolongation of the action potential duration which has been demonstrated by potentiometric optical probes in the mouse neurohypophysis and by intracellular recording from crab sinus gland nerve terminals. Focusing on the possibility that frequency dependent modulation of K[†] channel activity could be the mechanism of spike broadening resulting in greater Ca⁺⁺ entry and, therefore, peptide release, we have examined the effect of K[†] channel blockers, tetrachylammonium (TEA) and 4-aminopyridine (4AP) on vasopressin (VP) release from rat neurointermediate lobes (NIL's) in vitro. NIL's were impaled on platinum electrodes suspended in Ringer's solution with 2 mM CaCl₂ at 37°C, and stimulated with 600 negative square wave pulses of 0.5 ms and -3V at various frequencies. While neither agent effected basal release as measured by RIA, both enhanced electrically evoked VP release. Compared with control (n=14), 4AP (100 MM, n=6) caused a 2.7 fold increase in VP release at 4 Hz, and a 1.8 fold increase at 12 Hz. TEA (10mM, n=5) increased the release 2.2 and 1.2 fold at 4 and 12 Hz respectively. TEA and 4AP together did not produce greater release than 4AP alone. These data suggest that K⁺ channel inactivation by 4AP and TEA leads to a prolonged delay in rectification of membrane potential allowing for more Ca⁺⁺ entry through voltage sensitive channels thus enhancing secretion.

ANTIBODIES TO THE SUBUNITS OF VOLTAGE-SENSITIVE CALCIUM CHANNELS.

Hemin Chin, Karl Krueger, Troy Beeler*, and Marshall Nirenberg, NIH and USUHS*,
Bethesda, MD.

Rat skeletal muscle T-tubule membranes were solubilized and voltage-sensitive calcium channel proteins were purified by a modification of the procedure reported by Curtis and Catterall (Biochemistry, 23, 2113, 1984). Three major proteins (apparent M_r -160,000, 36,000 and 30,000 on non-reducing SDS-PAGE), which cosediment with specifically bound $^3\text{H-nitrendipine}$ in sucrose density gradient centrifugation fractions, were used to immunize rabbits. Antibodies monospecific for the 160,000, 36,000, or 30,000 M_r proteins were obtained by affinity purification against immobilized essentially homogeneous preparations of each protein. A kgtll cDNA library prepared from 3 day-old rat skeletal muscle poly A^* mRNA was screened with antibodies for recombinants that synthesize the α or Y subunits of voltage-sensitive Ca^{2+} channels fused with B-galactosidase. Twenty positive plaques were detected with antibody HK-6, which recognizes the 160,000 M_r casubunit, out of 550,000 recombinants tested. HK-6 antibody was incubated with 10 immobilized fusion protein preparations. The [antibody-antigen] complexes were washed, antibody was dissociated from the antigen, eluted, and tested on Western blots of protein solubilized from rat T-tubules. Eluted antibodies from the fusion protein coded by λCCha_2 cDNA bound only to the 160,000 M_r casubunit, but not antibodies from 9 other fusion proteins. In addition, we have screened for recombinants producing fusion proteins that contain the 30,000 M_r subunit of the calcium channel with affinity purified antibody HK-2. Twenty nine of the 850,000 recombinant phage plaques screened were positive. Further work is needed to confirm the identity of the putative clones for voltage-sensitive calcium channel subunits.

ALL LA FERMINISTERS CONTRACTOR

128 CYCLIC-AMP-MEDIATED, NOREPINEPHRINE-INDUCED SODIUM ION INFLUX IN ISOLATED BROWN ADIPOCYTES. Eamonn Connolly, Department of Metabolic Research, The Wenner-Gren Institute, Biologihus F3, University of Stockholm, S-106 91, Stockholm, Sweden.

Institute, Biologihus F3, University of Stockholm, S-106 91, Stockholm, Sweden.

To examine the involvement of Na ions in adrenergic responses in brown fat, an assay to measure Na influx into isolated brown adipocytes was developed, which involved short (5-30 sec) incubations with 22Na, followed by a two-step centrifugation recovery procedure. Using this method, a clear, norepinephrine-mediated accumulation of intracellular 22Na was demonstrated, which was enhanced by the addition of ouabain (the Na/K-ATPase inhibitor), was not inhibited by aminoride (a Na/H exchange blocker) and could not be mimicked by the total removal of oxygen from the medium. This dose-dependent response to norepinephrine (EC₅₀, 250 nM) could be completely blocked by propranolol (beta-blocker), but not by prazosin (alpha,-blocker). The response was cample activator) could induce Na influx. However, the Na influx was not linked to other known camplestation could induce Na influx. However, the Na influx was not linked to other known camplestation, since neither added free fatty acid mobilization, mirochondrial uncoupling or elevated respiration, since neither added free fatty acid substrates nor FCCP could induce the Na entry. Furthermore, total respiratory inhibition with rotenone was unable to affect the norepinephrine-stimulated Na influx. Could this beta-stimulated, camplests and tissue recruitment in the chronically beta-stimulated brown fat of animals facing increased thermogenic demands?

CALCIUM SPECIFICITY OF THE Fc_c RECEPTOR ACTIVATED ION CHANNELS IN MAST-CELL MEMBRANES. Ayus Corcia, Benjamin Rivnay and Israel Pacht, Depts. of Membrane Research and Chemical Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.

A transient rise in cytosolic free Cs⁺² occurs in mast cells and besophils upon specific aggregation of their Fc_c receptors (Fc_cR) and leads to degranulation. We have shown, in model membranes, that ion channel activity can be induced by aggregating Fc_cR and that this channel activity can be attained by reconstituting, into lipid bilayers, two components isolated from membranes of rat besophilic leukemia cells (line REL-2K3). These components are the Fc_cR complex and the cromolyn binding protein (CBP). To examine these channels' cation specificity, we have studied conductance and open-time characteristics of micropipette supported bilayers exposed to solutions containing: 1) only CaCl₂ (100 mM) or 2) only NaCl (0,5 M) on both sides of the membranes (i.e. symmetric conditions) and 3) NaCl (150 mM) on both sides and a calcium gradient namely, 1.8 mM CaCl₂ in the bath and ~ 0.1 mM in the pipette interior. Under these conditions, two populations of antigen-induced channels are observed: one, accounting for ~90% of all the svents, has a small conductance (4-5 pS in symmetrical Ca; 8 pS in symmetrical Na and 3 pS in the presence of the Ca gradient), is Ca⁺⁺ specific (reversal potential 130 mV with the Ca gradient) but allows passage of Na⁺ when it is the only cation present. The second population, 5-10% of the svents, has a higher conductance (10-12 pS/25 pS/21 pS) and allows the passage of both Ca²⁺ and Na⁺ with a clear preference for the former (reversal potential 16 mV). Both types of svents have short open-times, appear mainly isolated and with relatively long periods of non-conducting state in between, and are all blocked by cromolyn. Thus antigen-induced Ca²⁺ specific channels are activated in this reconstituted system.

RESERPINES: A NEW CLASS OF COMPETITIVE LIGANDS FOR THE BATRACHOTOXIN-BINDING SITE ON SODIUM CHANNELS. C.R. Creveling, M.E. Bell, R. del la Cruz, D. Rossignol* and J.W. Daly. LBC, NIDDK, NIH, Bethesda, Maryland 20892 and Dupont Exptl. Station, Wilmington, DE 19898*.

The steroidal alkaloid, batrachotoxin (BTX), and an equipotent, benzoate analog (BTX-B) modify the properties of voltage-dependent sodium channels by binding specifically with high affinity to a single site associated with the channel. High affinity binding of [3H]BTX-B is optimally achieved in the presence of a scorpion toxin-induced shift of the channel to an open or conducting configuration. Other sodium channel specific toxins, such as veratridine, aconitine, and grayanotoxin, competitively inhibit the specific binding of [3H]BTX-B, as do a large number of local anesthetics. The inhibition by local anesthetics is, however, not simple competition for the BTX-binding site, but is due to an allosteric change in the site. The consequence of this change is a reduction in the affinity of the site for BTX-B as evidenced by a marked increase in the dissociation rate of [3H]BTX-B in the presence of local anesthetics. The dissociation rate for [3H]BTX from sodium channels in synaptoneurosomes from guinea pig cerebral cortex has a T_{1/2} = 31.2 min. measured in the presence of excess unlabeled BTX-B. Unlike the action of local anesthetics, true competitive ligands, such as veratridine or aconitine, do not increase the T_{1/2} for [3H]BTX-B beyond the rate achieved with BTX-B alone. By this criteria, reserpine is a true competitive ligand for the [3H]-BTX-B binding site (K, = 1.2 µM). A structure-activity study of a series of reserpines defines some of BTX-B, veratridine, aconitine, and reserpine suggest that these competitive ligands have certain structural features essential to binding to the [3H]BTX-B site. Analysis of favored conformations of BTX-B, veratridine, aconitine, and reserpine suggest that these competitive ligands have certain structural eleme

COMTROL OF PTH SECRETION IS MEDIATED THROUGH CALCIUM CHANNELS VIA A G-PROTEIN: L.A. Fitspatrick, M.L. Brandi, and G.D. Aurbach, Metabolic Diseases Branch, Mational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Calcium negatively regulates parathyroid hormone (PTH) secretion through mechanisms yet to be elucidated. Pertussis toxin which inactivates a guanine nucleotide regulatory protein, blocks the calcium inhibition of PTH release. We tested voltage sensitive calcium channel agonists and antagonists to evaluate the role of calcium channels in PTH secretion. Maitotoxin (calcium channel activator) inhibited PTH release with maximal effect at 5 mg/ml. Enantiomers of the dihydropyridines (-)202-791 and (+)202-791 (Sandox) were incubated with dispersed bovine parathyroid cells. PTH was assayed in the cell supernates by mid-region radioimmunoassay. Calcium channel agonist +202-791 (10-11-10-6M) caused a dose-dependent inhibition of PTH release. Similar effects were found with the agonist Bsy K 8644. Pre-treatment of cells with pertussis toxin blocked the agonist inhibition and catalyzed ADP-ribosylation of a 40 kDa protein in a time-dependent manner in parathyroid cell membranes. Calcium channel antagonists (-202-791 and to a lesser extent nifedipine and verspamil) stimulated PTH release. We conclude: 1) calcium inhibition of PTH release is blocked by pertussis toxin; 2) calcium channel agonists inhibit while calcium channel antagonists stimulate PTH release; 3) calcium channels are involved in PTH regulation; 4) a G-protein is interposed between the calcium channel and the "intracellular" effector mediating PTH release.

THE PURIFIED RECEPTOR FOR CA CHANNEL BLOCKERS (CCBR) IS A FUNCTIONAL CA CHANNEL Veit Flockerzi*, Franz Hofmann

The CCBR was purified from rabbit skeletal muscle microsomes to an app. density of 1.5 to 2nmol/mg protein. SDS-PAGE -DTT yielded 3 peptide bands of 142,56 and 30kDa, whereas +DTT bands of M 142,122,56,31,26 and 22 were obtained. This gel pattern was obtained regardless if the receptor was purified as nitrendipine plus diltiazem (DIL) or as PN2OO/110(PN) complex or + DTT. cA-kinase phosphorylated preferentially the 142kDa band (.82 mol phosphate/mol peptide) whereas the 56 kDa peptide was phosphorylated only in substoichiometric amounts. PN bound at 4°C to one site with app.K and B values of 9.3nM and 2.2nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1mM EGTA. (-)Desmethoxyverapamil (D) inhibited the binding of PN at 37°C incompletely and stimulated it at 18°C, whereas (+)D inhibited PN binding at all temperatures tested.D-cis-DIL stimulated the binding of PN only above 18°C (app. EC = 1.4uM at 37°C). The purified CCBR was incorporated into phospholipid bilayer membranes. When a potential gradient was applied across the membranes single channel openings occurred spontaneously (single channel conductance 20pS). This current was blocked by the CCB gallopamil, whereas the Ca-agonist Bayk8644 induced long channel openings. Phosphorylation of the CCBR prolonged the open channel life times. These results show: 1.The purified CCBR contains at least different sites for dihydropyridines and phenylalkylamines. 2.It can be reconstituted to a functional Ca channel, which retains the principal regulating, biochemical and pharmacological properties of membrane bound 1-type Ca channels.

Physiologisch Chemie, Universität des Saarlandes, D 6650 Homburg, Germany. *present adress: Department of Medical Chemistry, Kyoto University, Kyoto, Japan.

EFFECTS OF ION CHANNEL ANTAGONISTS AND DIVALENT CATIONS ON STIMULATION OF PHOSPHOINOSITIDE BREAKDOWN INDUCED BY AGENTS THAT INCREASE INTRACELLULAR SODIUM IN GUINEA PIG BRAIN SYNAPTONEUROSOMES. F. Gusovsky and J.W. Daly. NIDDK, National Institutes of Health, Bethesda, Maryland Agents, such as batrachotoxin (BTX), veratridine (VT), scorpion toxins and pumiliotoxin B that activate sodium channels, induce the breakdown of phosphoinositides in guinea pig brain synaptoneurosomes as assessed by accumulation of [3H]inositol phosphates in the presence of Li⁺. The responses can occur without membrane depolarization with scorpion venoms and pumiliotoxin B. Monensin, a sodium ionophore, also elicits phosphoinositide breakdown. Tetrodotoxin, a specific antagonist for sodium channels, completely blocks the response to scorpion venom and to pumiliotoxin B, but not the response to BTX or VT. The potencies of BTX and VT in causing phosphoinositide breakdown are consonant with their potencies for activation of sodium channels. Activation of voltage-dependent calcium channels does not appear to be significantly involved since nifedipine and methoxyverapamil do not significantly decrease responses to BTX and acorpion venom. Tetrodotoxin-resistant channels in some neural preparations are blocked by the divalent cation cadmium and ${\tt Cd}^{2+}$ at 200 ${\tt \mu M}$ completely blocks BTX and scorpion venom-induced phosphoinositide breakdown. At this concentration ${\tt Cd}^{2+}$ does not reduce phosphoinositide breakdown induced by monensin, carbamylthis concentration carried goes not require phosphothosistate breaknown and the property of the calcium ionophore ionomycin. However, responses to norepinephrine and histamine are significantly reduced in the presence of Cd^{2+} . Zn^{2+} at 200 μ M induces a smaller inhibition of BTX response than that caused by Cd^{2+} . Other divalent cations, Ni^{2+} and Sn^{2+} at 200 μ M do not affect the BTX response. Thus, BTX-induced phosphothositide breakdown may involve Cd^{2+} -sensitive sodium channels and activation of calcium channels has a minimal role in the response to BTX and other sodium channel agents.

The role of second messengers (inositol 1,4,5-trisphosphate and diacylglycerol) on membrane conductance was examined in voltage-clamped NG108-15 neuroblastoma x glioma hybrid cells. A brief local application of bradykinin (BK) induced an immediate outward current lasting 10-20 sec, which then gave way to a more sustained inward current. The initial outward current was a Ca-dependent K-current, which is generated indirectly through the conversion of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP3) following BK receptor activation and then by the subsequent release of Ca from intracellular stores by the IP3. The evidence for this is as follows: (1) Intracellular iontophoretic injection of Ca or of IP3 produced a very similar outward current to that evoked by BK. (2) Outward currents induced by BK, IP3 and Ca were also pharmacologically identical in that all three were very sensitive to the Ca-dependent K-current blockers, apamin and d-tubocurarine, and insensitive to the low concentration of tetraethylammonium. (3) The outward currents produced by BK and IP3 dissipated after a few minutes' perfusion with a Ca-free solution. The secondary inward current induced by BK resulted primarily from the inhibition of a voltage-dependent K-current closely resembling the M-current originally described in sympathetic ganglion cells. Application of phorbol dibutyrate produced a voltage-dependent inward current and inhibited the M-current, and thereafter occluded the inward current response to BK. The result suggests a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by BK.

BORDATELLA PERTUSSIS TOXIN-SENSITIVE GTP-BINDING PROTEINS COUPLE ALPHA-2 ADRENERGIC AND GABA-B RECEPTORS TO INHIBITION OF NEUROSECRETION IN CHICK DORSAL ROOT GANGLION NEURONS. G. G. Holz IV, R. M. Kream, and K. Dunlap, Depts. of Physiol. and Anesthesia Res., Tufts Univ. Med. Sch., Boston, MA. Norepinephrine (NE) and gamma aminobutyric acid (GABA) inhibit current flow through voltagesensitive L-type (long lasting) Ca channels in chick dorsal root ganglion (DRG) neurons. This inhibition of Ca channel function results from the activation of alpha-2 adrenergic and GABA-B receptors coupled to a cAMP-independent second messenger pathway. Whole cell patch clamp recordings from DRG cells demonstrated a role for GTP-binding proteins as signal transducers in the NE and GABA receptor-mediated inhibition of L-type Ca channels. The action of the transmitters was blocked by intracellular dialysis of DRG cells with guanosine 5'-O-(2-thiodiphosphate), or by pretreatment with Bordstells pertussis toxin (PTX, Holz et al., Nature 319: 670-672, 1986). We now demonstrate that receptors with similar pharmacological and biochemical properties mediate inhibition of neuropeptide secretion from DRG cells. NE (50 uM) and GABA (10 uM) inhibited the electrically-evoked, Cs-dependent release of substance P (SP, as measured by RIA and authenticated by HPLC) from DRG cell cultures by 46+5% and 31+5%, respectively (mean + s.e.m., n=81 cultures). The action of NE was blocked by 10 uM yohimbine but not 10 uM prezosin or 10 uM proprenolol, whereas the action of GABA was not blocked by 50 uM (+) bicuculline, but was mimiced by 10 uM (-) baclofen. Furthermore, pretreatment of cultures with 140 ng/ml PTX completely blocked the ability of NE and GABA to inhibit SP release. We conclude that PTX-sensitive GTP-binding proteins couple alpha-2 and GABA-B receptors to inhibition of L-type Ca channels and inhibition of Ca-dependent neurosecretion. Such a presynaptic mechanism of inhibition may explain, at least in part, the spinal antinociceptive actions of alpha-2 and GABA-B receptor agonists.

IN VITRO AND IN SITU PHOSPHORYLATION OF A PROTEIN ASSUCIATED WITH VOLTAGE-DEPENDENT CALCIUM CHANNELS FROM SKELETAL MUSCLE. M. Marlene Hosey, Christy Cooper, Cliff O'Callahan, Mark Borsotto, and Michele Lazdunki. Dept. of Biol. Chem. & Structure, The Chicago Medical School, 3333 Green Bay Road, N. Chicago, IL 60064 and Centre de Biochemie, Universite de Nice, Nice, France. The phosphorylation and dephosphorylation of a protein associated with the dihydropyridine-sensitive Ca*—channel was studied in vitro in transverse-tubule membranes isolated from rabbit skeletal muscle, and in situ in intact rabbit diaphragms. Exposure of T-tubule membranes in vitro to either cAMP-dependent or a Ca*/calmodulin-dependent protein kinase resulted in phosphorylation of a protein with properties similar to the major component of the skeletal muscle calcium channel. The molecular weight of the phosphorpotein was 140 KDa or 160KDa, depending on the electrophoretic conditions. The stoichiometry of the phosphorylation was calculated to be 0.4-1.0 mol phosphate/mol protein. Limited proteolytic digestion of the 140-160 kDa protein that had been phosphorylated by either or both protein kinases yielded a single phosphopetide of approximately 5,400 daltons. The Ca*-dependent phosphorated by either protein kinase. In situ experiments were performed in which calcium channels were isolated from diaphragms which had been bathed in **P-containing Krebs-Hensleit solution. A protein with properties similar to those described above and which co-purified with the calcium channel protein was phosphorylated in the intact muscle. The results suggest that the well known regulation of calcium channel activity by cAMP and Ca**-dependent processes may occur via the phosphorylation and dephosphorylation of the 140-160 kDa protein associated with the calcium channel.

L.L. Muldoon and M.L. Villereal. Univ. of Chicago, Chicago, IL 60637.

Mitogenic stimulation of quiescent human fibroblasts (HSWP and WI-38 cells) stimulates the release of inositol phosphates, mobilization of intracellular calcium and activation of Na+/H+ exchange. In HSWP cells, TPA pretreatment substantially inhibits mitogen-stimulated inositol phosphate release and Na+ influx (half-maximal effect at 1-2 nM TPA). In digitonin-permeabilized HSWP cells, maximal release of inositol phosphates (or release of ⁴⁵Cs from non-mitochondrial stores) is mitogen- and GTP-dependent. Pretreatment with TPA prior to permeabilization results in substantial reduction of the mito-gen-induced release of inositol phosphates and the subsequent release of 45Ca from non-mitochondrial stores. In WI-38 cells, TPA treatment stimulates Na+ influx, without stimulating inositol phosphate release, presumably through the activation of an endogenous protein kinase C activity. In both HSWP and WI-38 cells, down regulation of protein kinase C activity by long term pretreatment with TPA removes the normal effector function of TPA on Na influx (i.e. the inhibitory effect in HSWP cells and the stimulatory effect in WI-38 cells). Other cell types have been characterized as being responsive or unresponsive with regard to TPA's ability to directly stimulate Na+ influx. Measurement of the resting intracellular Ca activity in several cell types has determined that cells which are responders have a significantly higher intracellular Ca activity (WI-38; 137 + 17 nM) vs. that determined in non-responders (HSWP; 57 + 5 nM). These data suggest that in different cell types the activation of Na+/H+ exchange is regulated differently, even in closely related cell types, and that one aspect of this regulation may be determined by the resting Ca activity of a particular cell type. (Supported by NIH grants GM-28359 and RCDA AM-01182 (MLV) and 5T32 GM-07151 (LLM)).

138 POSSIBLE INVOLVEMENT OF PHOSPHORYLATION/DEPHOSPHORYLATION MECHANISMS IN THE REGULATION OF EPITHELIAL Na⁺ CHANNELS. <u>David S. Lester</u>, Carol Asher and Haim Garty. Dept. of Membrane Research, The Weizmann Institute of Science, Rehovot, Israel.

Recent studies indicate that epithelial Na⁺ channels are down-regulated by a Ca²⁺ -dependent proces.

[H.Garty and C.Asher (1986) J.Biol.Chem. 261:7400]. Channel mediated flux is low in membranes from Ca²⁺ (>10-5 M)- preincubated cells, and high in membranes derived from EUTA-preincubated cells. Involvement of Ca2+ - dependent protein kinases in this process was excluded on the basis of the following results: (1) Incubating cells with phorbol ester had no effect on the Ca²⁺ inhibition constant. (2) Trapping purified protein kinase C, ATP, Ca²⁺ and phorbol ester in the isolated vesicles did not mimic the inhibition induced by incubating C, ATP, Ca2+ and phorbol ester in the isolated vesicles did not mimic the inhibition induced by incubating whole cells with Ca2+ (3) The calmodulin inhibitor, triflumnaments. whole cells with Ca²⁺ (3) The calmodulin inhibitor, trifluoroperazine, had no effect on transport in the presence or absence of Ca²⁺, Preliminary data indicate that Ca²⁺ inhibition of transport may act via a phosphatase mediated pathway. Investigation of membrane-associated phosphatases indicated the presence of two Ca^{2+} -dependent phosphatases: (i) a Ca^{2+} -activated, calmodulin-independent, variadate-insensitive pNPPase, (ii) a Ca^{2+} - inhibited (IC_{50} "0.5uM), variadate-sensitive pNPPase. In addition, we observed Ca^{2+} -dependent dephosphorylation of a membranal 51 KD phosphoprotein which coresponds to the phosphoprotein reported by Lorenzo et.al. [(1975). J.Gen.Physiol. 65: 153]. This protein was tentatively identified as the regulatory subunit of cAMP -dependent protein kinase. Preincubation of whole bladders with 8Br-cAMP was shown to double the channel mediated fluxes in EGTA-activated vesicles. Conditions of preincubation (Ca²⁺ or EGTA) also affected the potency of membranes to phosphorylate histone fragment 2b, a specific cAMP-dependent protein kinase substrate. [Supported by NIH grant AM36328 and US-Israel BSF grant 84-00066].

CAMP-SENSITIVE Ca2+-DEPENDENT K+ CHANNELS IN PATCH CLAMP STUDIES OF SHEEP GONADOTROPHS.

R.P. McIntosh*, W.T. Mason, and S.K. Sikdar. AFRC Institute of Animal Physiology, Cambridge, U.K. Single K+ channels of large conductance (~100 pS) were observed in patch clamp studies on dispersed, cultured gonadotrophs from sheep pars tuberalis as described by Mason and Waring† after treatment with GnRH (160 nM) or A23187 (10 µM) (pipette solution, 125 mM K+, 5 mM Ca²⁺; bath solution, 130 mM Na+, 5 mM Ca²⁺, 5 mM K+). The open time probability of these channels in cell attached recordings was reduced in a dose dependent manner on addition of dbcAMP. This negative effect of dbcAMP declined with time. Addition of EGTA to the bath also reduced opening probability which could be restored by Ca2+. In a particular example, 10 mM dbcAMP reduced channel open probability from 0.56 to 0.33 (restored in 8 min). 15 mM EGTA reduced open probability to 0.02 (restored by Ca²⁺:EGTA in the ratio 3:1). Similar effects of cAMP (2 mM) were observed less reliably with Ca2+-dependent K+ channels in inside-out patches of gonadotroph plasma membrane (bath solution containing 120 mM K+), indicating a possible requirement for intracellular components, cAMP action on GnRH-activated K+ channels might be expected to influence intracellular Ca2+ levels. Its possible role in secretory behaviour of gonadotrophs is being investigated. Such channels are a possible point of interaction of IP3- and cAMP-mediated hormone actions. †Neuroendocrinology 43, 205 (1986). Permanent address: Wellington Clinical School, New Zealand.

ety in Airi を認め込むは<mark>はは現場を開催した。</mark>例如は自然に

THE AND THE CALCIUM CHANNEL AGONIST BAY K 8644 SINERGISTICALLY ELEVAGE INCLACTIN SECRETION PROM PERIFUSED ANTERIOR PITUITARY CELLS. <u>Jonathan A. Pachter</u>, Greg J. Law, Howard Rammussen, and Priscilla S. Dannies, Yale University School of Medicine, New Haven, CT 06510.

Rasmussen, and Priscilla S. Darmies, Yale University School of Medicine, New Bawen, CT 06510.

TRE (thyrotropin releasing hormone) stimulates prolactin secretion from anterior pituitary lactotrophs by a mechanism which is thought to involve stimulation of phosphoinositide metabolism and opening of membrane Ca²⁺ channels to cause elevation of cytoplasmic calcium levels (Rebecchi gt al., J. Biol. Chem. 258, 227). In perifusion, TRE (1µN) elicited a rapid 11.5-fold stimulation of prolactin secretion from isolated rat anterior pituitary cells which decayed to a sustained level only 2-fold above basal secretion within 6 minutes. The calcium channel agonist BAY K 8644 (1µN) also stimulated prolactin secretion (7-fold over basal) with a similar decay. When added simultaneously, TRB and BAY K 8644 were synergistic in the stimulation of prolactin secretion. When BAY K 8644 was added during the low sustained phase of TRH-mediated stimulation, its effect on prolactin secretion was approximately twice as large as its effect on previously untreated cells. In contrast to the synergism between TRB and BAY K 8644, the calcium ionophore A23187 (20 µN) stimulated no additional prolactin secretion when added simultaneously with 1 µN TRE. Purthermore, A23187 was no more efficacious when added during the low sustained increase in the sensitivity of the prolactin secretory response to transient, TRB also produces a sustained increase in the sensitivity of the prolactin secretory response to subsequent stimulation of Ca²⁺ channels. The differential effects of BAY K 8644 and A23187 suggest that TRB increases the responsiveness of Ca²⁺ channels of the responsiveness of prolactin secretion to Ca²⁺ influxes, rather than increasing cellular responsiveness to a general rise in cytoplasmic Ca²⁺ concentration.

CYCLIC AMP-MEDIATED PHOSPHORYLATION OF VOLTAGE SENSITIVE SODIUM CHANNELS IN PRIMARY CULTURES OF RAT BRAIN CELLS. S. Rossie & W.A. Catterall. Dept. of Pharmacology, University of Washington, Seattle, WA 98195. The a subunit of the rat brain voltage-sensitive Na channel is phosphorylated by cAMP-dependent protein kinase in purified preparations and in synaptosomes (Costa et al, J. Biol. Chem. 257, 7918, 1982; 259, 8210, 1984). We are studying phosphorylation of Na channels in primary culture of rat brain cells. In back-phosphorylation studies, cells were treated with drugs to increase intracellular cAMP, solubilized, and Na channels isolated by immunoprecipitation. Purified Na channels were then phosphorylated by the catalytic subunit of cAMP-dependent protein kinase with 32P-ATP to incorporate 32P into available cAMP-dependent phosphorylation sites. The amount of 32P incorporated is inversely proportional to the extent of endogenous phosphorylation. Incubation of cells with forskolin, 8-Br-cAMP, or isobutylmethylxanthine inhibited subsequent incorporation of 32P into isolated Na channels, indicating that treatment of cells with these drugs had increased endogenous phosphorylation. To examine the magnitude of basal Na channel phosphorylation and the extent of stimulation, the amount of 32P incorporated into Na channels from control and stimulated cells was compared to that from matched samples which had been dephosphorylated with calcineurin. Na channels from control cells incorporated 2-fold more 32P after dephosphorylation, indicating that cAMP-dependent phosphorylation sites on Na channels are approximately 50% phosphorylation, indicating that sites are approximately 80% phosphorylated after stimulation. When cells were metabolically labeled with 32P and stimulated with forskolin, 32P incorporation into Na channels was increased 1.5-fold, in agreement with an increase in overall phosphorylation from 50% to 80%. Thus, Na channels in rat brain cells in primary culture are phosphorylated, and the extent of phosph

VOLTAGE-GATED CALCIUM ENTRY INTO PARAMECIUM LINKED TO cGMP INCREASE.

Joachim E. Schultz, Pharmazeutisches Institut, 7400 Tübingen, West-Germany

Inward calcium currents exist in many excitable tissues and are linked to regulation of cellular processes such as cGMP production. In Paramecium, a graded calcium/potassium action potential regulates swimming behavior. The transient inwardly directed calcium signal triggers ciliary reversal, i.e. backward swimming. A guanylate cyclase in Paramecium is activated specifically by µmolar concentrations of calcium. The ED50 of 9 µM calcium is not affected by the presence of 1 mM barium. Barium ions were used to increase the excitability of the calcium channels by decreasing their rate of inactivation, thereby producing a more sustained calcium entry. 3 mM Barium evoked a rapid, large, and transient increase in cGMP in wildtype cells. Further evidence for a link between the inward calcium current and cGMP formation was obtained by studying mutants with reduced ('PAWN') or exaggerated (DANCER') calcium currents. Addition of barium to pawns did not stimulate cGMP biosynthesis as in wildtype cells. In dancer cells, addition of potassium elicited a sustained elevation of cGMP levels correlated with a large behavioral response. Potassium ions as a weak excitatory agent are almost inactive with wildtype cells. We demonstrate here for the first time an unequivocal link between an inward calcium current and an enhanced cGMP production, i.e. an electrical signal is converted and amplified to a biochemical one. The physiological role of cGMP in Paramecium is currently under investigation.

142

RECONSTITUTION OF ISOPROTERENOL STIMULATED ADENYLATE CYCLASE ACTIVITY AND MOVEL ELECTROPHYSIOLOGICAL RESPONSES IN <u>XEMOPUS</u> <u>LARVIS</u> COCYTES AFTER MICROINJECTION OF RAT ASTROCYTOMA C6-28 mRMA.

Angel <u>Anne Smith</u> and Gary Brooker, Department of Biochemistry, Georgetown University Medical Center, Washington, D.C. 20007.

We have purified with from the ret astrocytoms C6-28 cell line, which exhibits high levels of beta adrenergic receptor (BAR) mediated adenylate cyclase activity. Microinjection of this MRMA into <u>Kenopus levyls</u> occytes yielded evidence of C6-28 BAR MRMA translation and functional integration into the occyte membrane. occytes yielded evidence of C6-28 BAR mRNA translation and functional integration into the occyte membrane. Surgically removed overian occytes are encapsulated by follicle cells which exhibit BAR coupled adenylate cyclese activity. This complicated our use of such overian occytes for demonstration of new receptor synthesis following the injection of exogenous sRNA. A method was developed to completely remove the follicle cells from the overian occytes. The efficacy of the procedure was confirmed morphologically by transmission electron microscopy, blochemically because the occytes were free of BAR coupled cyclese civity and electrophysiologically because they no longer hyperpolarized in response to isoproterenol. Microinjection of mRNA purified from log phase C6 cells into occytes followed by defoliculation resulted in the reconstitution of receptor mediated adenylate cyclese activity in occyte manherene provingly depolic of such activity. Transmissions alectrical uncompletely approved a measured activity in occyte membranes previously devoid of such activity. Transmembrane electrical potentials were measured in ovarian and defolliculated occytes before and after the injection of the sRNA. While ovarian occytes were hyperpolarized by isoproterenol, defolliculated occytes were unresponsive. In defolliculated occytes which had been injected with C6-28 mRNA, a novel depolarizing response to isoproterenol was observed suggesting that in addition to incorporation of beta receptor coupled cyclase activity, the C6-28 MRNA directed the occyte to synthesize an ion channel which could be activated by isoproterenol. Supported by NIN Grant No. 28940.

MECHANISMS OF INTERACTION OF VASOPRESSIN (VP) AND CRF ON PITUITARY ADENYLATE CYCLASE.

A.B. Abou-Samra, J.P. Harwood, K.J. Catt, G. Aguilera, NICHD, NIH, Bethesda, MD 20892
The synergistic action of VP and corticotropin releasing factor (CRF) on cAMP production involves inhibition of phosphodiesterase and stimulation of adenylate cyclase (AC) by VP, an action which is mimicked by the protein kinase C (PKC) activator, PMA. To determine the mechanisms by which VP potentiates CRF action we analyzed the interactions of PMA, VP and pertussis toxin (PT) with CRF potentiates CRF action we analyzed the interactions of PMA, vr and pertuasis toxin (FI) with LRF upon cellular cAMP and adenylate cyclase (AC) activities in cultured rat anterior pituitary cells. VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased up to 9-fold the effect of 10 nM CRF on cAMP with ED₅₀ values of 1 nM VP and 1.7 nM PMA. With increasing CRF concentrations, 10 nM VP or PMA increased the maximum cAMP production without altering the ED₅₀ for CRF (1 nM). Measurement of AC in pituitary homogenates using [a-P]ATP showed a paradoxical inhibitory effect of VP but not of PMA on basal and CRF-stimulated AC activity, suggesting that the VP receptor is compled to an inhibitory guanyl nucleotide binding protein. However, in intact cells, following ['H]adenine labeling of endogenous ATP pools, measurement of AC in the presence of phosphodiesterase inhibitors showed no effect of VP and PMA alone, but a 2-fold potentiation of the effect of CRF. Similar to PMA, PT potentiated the effect of CRF on cAMP and ACTH secretion, an effect which was not additive to VP, suggesting that the potentiating mechanism involves suppression of the inhibitory influence of Ni on AC. The data suggest that VP has a dual interaction with the pituitary AC system: a direct inhibitory effect, manifested only in broken cells, mediated by a receptor-coupled guanyl nucleotide binding protein; and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by PKC phosphorylation of Ni or other components of the CRF-activated AC system.

145 ISOLATION OF A CHO CELL LINE WITH INCREASED CAMP DEPENDENT PROTEIN KINASE ACTIVITY. Abraham, John Hui and Judy Mayo. Cell Biology Department, The Upjohn Company, Kalamazoo. MI 49001.

Through the selection of revertants from a Chinese Hamster ovary (CHO) cell line with a mutation in the gene for the RI subunit of the cAMP dependent protein kinase (PK A) we have recovered a cell line with PK A activity higher than either the mutant or wildtype cell. The original dominant mutant was isolated on the basis of its resistance to the growth inhibitory effects of cAMP (Gottesman et al., 1980, Somat. Cell Genet. 6:45-61; Singh et al., J. Biol. Chem. 260:13927-13933) and has PK A type I but only very low amounts of PK F type II. Mildtype cells have both PK A type I and PK A type II activity in close to equal amounts. We have transfected DNA from this mutant into wildtype cells. One transfectant 11564 has been extensively studied and exhibits mutant into wildtype cells. One transfectant, 11564, has been extensively studied and exhibits the characteristics of the original mutant (Abraham et al., 1985, J. Biol. Chem. 260:13934-13940). Both the mutant and transfectant are super-sensitive to some anti-mitotic drugs such as vinblastine, colcemid and colchicine, as well as other drugs such as purponycin. We have used this characteristic of drug sensitivity to isolate revertants from the transfectant. Five revertants have been selected and characterized that have simultaneously regained their cAMP sensitivity along with losing their and characterized that have simultaneously regarded their Characterized that have simultaneously regarded their Characterized that having a higher level of PK A activity as compared to either the mutant, transfectant or wildtype cells. The increase in activity co-elutes with PK A type I after DEAE-Sephacel chromatography. This revertant is even more sensitive to the growth inhibitory effects of cAMP than is the wildtype, which is consistent with its having a higher level of PK A. We are currently studying the genetic basis of this revertant.

DYNORPHIN A INHIBITS B50 PROTEIN PHOSPHORYLATION AND PROTEIN KINASE C ACTIVITY. Alovo, V.J. and Walker, R.F. Dept. of Pharmacology, Medical College of Permsylvania, Philadelphia, PA 19129.

Dynorphin A (Dyn) is a potent opicid receptor agonist that is highly selective for the kappa-receptor subtype. Since some behavioral affects of Dyn are not reversed by nalcoone and removal of the N-terminal tyrosine (which is necessary for opicid receptor binding) still results in a behaviorally active peptide, Dyn may be acting by multiple mechanisms. Other neuronally active peptides such as ACTH and sometostatin have as part of their mechanisms of action, the inhibition of the phosphorylation of the brain specific, kinase C substrate, B50 protein. The present experiments were designed to investigate the possibility that Dyn inhibits B50 protein phosphorylation. First, the effects of Dyn on the endogenous phosphorylation of B50 protein in superformed places meantages. (SDD) was studied. To this mattern to be better B50 protein phosphorylation. symaptonomal plasma membrane (SRN) was studied. In this system, Dyn inhibited B50 phosphorylation with a potency approximately equal to ACTH-(1-24). This inhibition was not reversed by the specific opioid antagonist, nalowone, even at 100 uM. Furthermore, the nonopioid Dyn fragment, des-tyrosine Dynoxphin A, also inhibited B50 phosphorylation in SFM. Second, Dyn was tested for its ability to inhibit histone phosphorylation using a partially purified kinase C preparation. Dyn, like ACH-(1-24), inhibited the calcium-dependent, phospholipid-stimulated kinase C activity. These results suggest that inhibition of protein kinase C activity and inhibition of B50 phosphorylation are possible mechanisms by which Dyn exhibits its nonopioid effects.

PHOSPHORYLATION OF TYROSINE HYDROXYLASE PURIFIED FROM RAT STRIATUM BY CALCIUM, CALHOOULIN-DEPENDENT PROTEIN

KINASE II AND THE EFFECTS OF A PROFEIN ACTIVATOR.

J.L. Adkinson, N.M. Richtand, C.M. Schworer, R.T. Kuczenski, and T.R. Soderling. Howard Hughes Medical Institute,

has been investigated. The calcium and calmodulin-dependent phosphorylation was additive to the phosphorylation catalyzed by the cMP-dependent protein kinase, suggesting different sites of phosphorylation. Reverse phase high performance liquid chromatography of tryptic \$PQq-peptides derived from tyrosine hydroxylase established that these two kinases phosphorylated different primary sites. Limited tryptic digestion sequentially reduced the suburit N, from 62,000 Da to 59,000 Da and finally to 57,000 Da which resulted in the loss of the site phosphorylated by the CAM-dependent protein kinase but not the site phosphorylated by the cAMP-dependent protein kinase for a PQq-labeled tyrosine hydroxylase indicated that serine was the only residue phosphorylated by either kinase. Phosphorylation by the cAMP-dependent protein kinase directly activated tyrosine hydroxylase by decreasing the K_m for the cofactor 6-methyltetrahydroxylare. Phosphorylation of the primary site by Ca^{**}(CAM)-dependent protein kinase II had little directly activated by the CaMP-dependent protein kinase II was activated 2-fold by addition of a partially-purified activator protein. This heat-labile activator protein increased V_{max}

activated 2-fold by addition of a partially-purified activator protein. This heat-labile activator protein increased V_{max} without affecting the K_m for the cofactor. The activator protein had no effect on nonphosphorylated tyrosine hydroxylase or on tyrosine hydroxylase phosphorylated by the ONP-dependent protein kinase. The effect of phosphorylation of the activator protein on its ability to activate tyrosine hydroxylase has also been investigated.

BOTH CAMP-DEPENDENT PROTEIN KINASE ISOZYMES MEDIATE PHOSPHORYLASE ACTIVATION. S.J. Beebe, P.F. Blackmore, T.D. Chrisman, and J.D. Corbin. Howard Hughes Medical Institute, Dept.

Molecular Physiology and Biophysics, Vanderbilt Medical School, Nashville, TN 37232

The effects of cAMP analogs on phosphorylase activation in the absence and presence of insulin or EGTA were studied in intact cells. Because type I and type II isozymes of cAMP-dependent protein

kinase (PK) differ in each of the two cooperative intrasubunit cAMP binding sites, it is possible to cause a synergistic activation of one or the other PK isozyme by using isozyme-directed analog pairs. In bovine neutrophils (80-85°/o type I), rat adipocytes (> 95°/o type II) and rat hepatocytes (type I = type II), type I-directed and type II-directed analog pairs caused a synergism of phosphorylase activation in proportion to the relative ratios of the isozymes present in the cells. However, the contract of the contract ever, these typical responses could be modified. The extent of synergism in hepatocytes and neutrophils with both isozyme-directed prirs was greater when cells were preincubated with EGTA to reduce intracellular Ca²⁺. In one series of hepatocyte experiments, preincubation with 1 nM insulin, which lowers elevated cAMP levels, was required to demonstrate synergism with type II pairs, while responses to type I pairs were unaffected. When typical hepatocyte preparations were preincubated with 10 pM glucagon, so that phosphorylase was slightly activated and then returned to the basal level, synergism was observed only with type I pairs, in contrast with the usual response. These results do not reveal specific functions for the two PK isozymes, but indicate that previous hormone stimulation and intracellular Ca²⁺ levels may modify the isozyme responses for phosphorylase activation.

IMMUNOLOGICAL DIFFERENCES IN TYPE IIA AND TYPE IIB FORMS OF THE TYPE II REGULATORY SUBUNIT S.J. Beebe, Y.S. Sheorain, S. R. Cordle, L. Wolfe, and J.D. Corbin. Howard Hughes Medical Institute, Molecular Physiology and Biophysics, Vanderbilt Medical School, Nashville, TN 37232
The type II regulatory subunit (RII) of the cAMP-dependent protein kinase is known to be microheterogeneous. One nomenclature describing the forms is based on an operational classification (Robinson-Steiner, A.M., Beebe, S.J., Rannels, S.R., and Corbin, J.D. (1984) J. Biol. Chem. 259, 10595). RIIA forms shifted after autophosphoylation to higher apparent molecular weight upon SDS-PAGE but RIIB forms did not. RIIA forms were present in the hearts of ungulates (bovine and porcine) while RIIB forms were present in the hearts of rodents (rat), legomorphs (rabbits) and primates. These two diverse groups of species diverged about 70 million years ago. In order to determine if there was an immunological difference between RIIA and RIIB, several polyclonal antibodies directed against RII were purified from the serum of rabbits or guinea pigs and characterized by enzyme-linked immunosorbant assays [ELISA], immunoprecipitation and immunoblot analysis. A rabbit antibody against the bovine heart RII detected RIIA forms but did not detect RIIB forms. Guinea pig antibodies directed against either bovine heart RII or rabbit skeletal muscle RII detected both RIIA and RIIB forms. None of the antibodies detected RI or the cGMP-dependent protein kinase. These antibodies were used to quantitate RII from crude extracts of several tissues and cells in culture. These results establish an immunological basis for the classification of RIIA and RIIB forms.

150 MODULATION OF ENZYMIC ACTIVITY OF 3-HYDROXY-3-METHYLGLUTARYL COENZYME A (HMG-CoA) REDUCTASE BY MULTIPLE PROTEIN KINASES INVOLVING REVERSIBLE PHOSPHORYLATION. J.A. Stonik and H.B. Brewer, Jr., Molecular Disease Branch, NHLBI, NIH, Bethesda, MD 20892. HMG-CoA reductase is the rate limiting enzyme that regulates the synthesis of cholesterol and other polyisoprenoids. Proteolysis of the native insoluble enzyme (MW 100,000) results in a soluble active fragment (MW 53,000). We have previously demonstrated that the enzymic activity of HMG-CoA reductase is modulated in a bicyclic cascade system involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase. In addition to the reductase kinase system, we have recently identified two new systems for the short-term regulation of HMG-CoA reductase. Protein kinase C and a calmodulin-dependent kinase, purified from rat brain cytosol, were able to phosphorylate and concomitantly inactivate both native and soluble purified HMG-CoA reductase. Incubation of phosphorylated ³²P-HMG-CoA reductase with phosphatase was associated with the loss of ³²P and reactivation of inactive enzyme. Maximal phosphorylation of purified RMG-CoA reductase by two kinases involved the introduction of approximately one mol of PO₄/mol of native enzyme (MW 100,000). Ca²⁺, calmodulin-dependent kinase is able to PO₁/mol of native enzyme (MW 100,000). Ca², calmodulin-dependent kinase is able to phosphorylate two different sites in the HMG-CoA reductase molecule. The elucidation of multiple kinase systems for the modulation of HMG-CoA reductase by covalent phosphorylation provides new insights into the molecular mechanisms involved in the short-term regulation of cholesterol synthesis.

PROTEIN PHOSPHORYLATION IN PRIMARY ASTROCYTES <u>D. Benzil</u> and J.P. Bressler, NIH, Beth, MD Astrocytes are known to respond to epidermal growth factor (EGF), fibroblast growth factor (FGF), phorbol myristate acetate (PMA), and cAMP stimulators such as forskolin. This response includes a phosphorylation cascade which may then be involved in growth regulation. The objectives of this study are to determine the phorphorylation substrates of PMA, EGF, FGF, and forskolin in primary rat astrocytes and to determine if these substrate sets are unique for each factor. Primary rat astrocytes were prepared from 1-2 day old rat cerebral cortex and used 7-10 days later after shaking. Miniwell cultures were incubated with [32]Pi and then stimulated with PMA, EGF, FGF, forskolin, or solvent. The reaction was quenched with cold PBS washes and the proteins precipitated with TCA. Samples were resuspended in SDS buffer and subjected to SDS-polyacrylamide gel electrophoresis. Gels were silver stained and prepared for autoradiography. Autoradiographs were analyzed by cutting out bands followed by liquid scintillation spectroscopy. Induction of protein phosphorylation for the various factors is shown in the figure. The protein substrates identified

		MOLECULAR WEIGHT				(ĸ	Darton)	
	90	80	70	50	40	30	25	20
FACTOR								
PMA	*	*			*		*	
EGF			*		*		*	
Forskolin	*		*		*	*		
FGF			*	*			*	*

shown in the figure. The protein substrates identified in these studies may play a role in regulation of glial growth. Three of these, PMA, EGF and FGF, stimulate astrocyte growth though the former two act primarily through different kinases. The 25K protein is induced by all three of these factors but not by forskolin suggesting this protein may have a function in glial growth regulation but phosphorylation is distal to the primary effect of the receptor kinase.

The war without the second the second

A protein kinase which phosphorylates aminoacyl-tRNA synthetase protein has been purified by affinity chromatography and gel electrophoresis. The protein kinase phosphorylates 21 of 28 (Coomassie, Ag) bands obtained by purifying aminoacyl-tRNA synthetases from mouse liver by gel filtration and affinity chromatography. The individual synthetases were located on the gel by zymogram technique. Purity of bands were controlled by two dimension electrophoresis. The activities of alanyl-, arginyl-, glutamyl-, histidyl-, iso-leucyl-, leucyl-, lysyl-, methionyl-, phenyl-, alanyl-, tyrosyl-, and valyl-tRNA synthetases decreased up to 80% after phosphorylation, whereas the activities of asparaginyl-, aspartyl-, prolyl-, seryl-, and threonyl-tRNA synthetases increased.

Berg, Berit Helene

ALTERED SUBCELLULAR DISTRUBUTION OF PULMONARY PROTECUTYIC ACTIVITY FOLLOWING TREATMENT OF MICE WITH BUTYLATED HYDROXYTOLUENE, Elliott J. Blumenthal and Alvin M. Malkinson, University of Colorado, School of Pharmacy, Boulder, Colorado 80309.

The antioxidant, butylated hydroxytoluene (BHT), causes lung toxicity in mice and subsequent regenerative repair. Under certain injection regimes it can modulate lung adenoma development. BHT treatment lowers pulmonary cytosolic Ca*-activated neutral protease (calpain) activity and increases the activity of an endogenous inhibitor, calpastatin, both in a dose-dependent manner. The decrease in calpain activity cannot be entirely accounted for by the increased calpastatin activity since upon separation of these proteins by DEAE column chromatography the amount of calpain activity from BHTtreated mice remains lower than the corresponding peak from control mice. Decreased calpain activity occurs I day following BHT administration, is maximally low level at 4-7 days, and returns to normal levels by day 21. BHT also increases formation of a 37 K degradative product of cAMP-dependent protein kinase regulatory (R) subunit. This alteration is also dose- and time-dependent, exhibiting changes at a dose that does not cause any observable toxic effects. Dissociated R-subunits are more suseptible to degradation by calpain, but BHT treatment does not enhance R-subunit dissociation from suseptable to degradation by Calpann, out but the holoenzyme. Rather, there appears to be increased R-subunit proteolysis associated with the membrane fraction of BHT treated mouse lung tissue homogenates. Additionally, increased Ca*+-indepenmembrane fraction of BHT treated mouse lung tissue homogenates. Additionally, increased Ca* dent proteolytic activity was observed in the particulate fraction of lung extracts after BHT treatcalpain. We hypothesize that BHT treatment stimulates calpain translocation, and that in this process Ca⁺⁺ is no longer required for calpain activation. (Supported to the calpain activation (Supported to the calpain activation) This protease is inhibited by calpastatin, leupeptin and E-64, which are known to inhibit is no longer required for calpain activation. (Supported by USPHS grants ES02370, CA33497 and RCDA CA00939.)

MUTATIONS AFFECTING THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE S.Botterell, D.A.Jans and B.A.Hemmings, Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.

Using forskolin and isobutylmethylxanthine as selective agents, a number of mutants, resistant to the cytotoxic effects of cAMP, were isolated from the porcine kidney epithelial cell line, LLC-PK1. Two of the cAMP-resistant mutants, FIB4 and FIB6, had altered cAMP-dependent protein kinase (cAMP-PK), resulting in a 90% reduction of activity compared to wild type. The residual cAMP-PK activity was associated almost entirely with the type II holoenzyme, and showed normal affinity for cAMP, normal affinity for the substrates ATP and Kemptide, and normal in vivo regulation. Analysis of C subunit levels using a polyclonal antibody revealed that the mutants produced approximately normal amounts of immunoreactive protein. The results suggest that the low kinase activity in the mutants is due to either a mutation in the gene for the C subunit or in a gene encoding an enzyme involved in posttranslational modification of the C subunit. Somatic cell hybrids were formed between wild type and mutant cells and analyzed for complementation of the mutation. The hybrids possessed cAMP-PK activity intermediate between mutant and normal parents, associated with both type I and type II cAMP-PK. The mutation was thus expressed codominantly in the presence of the normal allele. The nature of the mutation is currently being investigated at the molecular level using cDNA clones for the porcine C subunit.

EXPRESSION AND MUTAGENESIS OF THE TYPE I REGULATORY SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASE. José Bubis, Lakshmi D. Saraswat, and Susan Taylor. Department of Chemistry, University of California, San Diego, La Jolla, CA 92093.

University of California, san Diego. La Jolla, CA 92093.

A cINA clone containing the complete coding sequence of the bovine type I regulatory subunit (RI) of cAMP dependent protein kinase has been ligated into the expression vector, pUC7. The expressed R-subunit was visualized by photolabeling with 8-N₃[³²P]cAMP following electrotransfer from SIS-polyacrylamide gels to nitrocellulose or by immunoblotting using anti-RI serum antibodies. The expressed R-subunit was functionally indistinguishable from RI purified from porcine skeletal muscle even though the expressed R-subunit represents a fusion protein that contains 10 additional amino acids at the NH₂-terminus that are provided by the lacZ gene of the vector. Maximum expression of R-subunit (20 mg/liter of culture) was seen in E. coli 222. Oligonucleotide-directed mutageneris of the R-subunit was initiated in order to better understand structural changes that are induced as a consequence of cAMP binding. The site that was targeted for mutagenesis was identified initially by photolabeling with 8-N₃cAMP which leads to nearly stoichiometric modification of Tyr 371. In order to establish whether there exists a dipole-dipole interaction between the adenine ring of cAMP bound to the cAMP-binding domain B and Tyr 371, a single base change was introduced so that the mRNA now codes for a phenylalamine instead of a tyrosine at position 371. Introduction of this change yields a stable protein with altered cAMP binding properties: 1) the apparent Kd (cAMP) was shifted from 16 nM in the wild type to 60 nM in the mutant; 2) Scatchard plots showed no cooperativity between the cAMP binding sites in the mutant, in contrast to the positive cooperativity that is observed for the wild type RI; and 3) the Hill coefficient of 1.6 for the wild type R-subunit was reduced to 0.99.

(Supported by Public Health Service Grant CM 34921).

156 INHIBITION OF THE BETA-ADRENERGIC RESPONSE AND FORSKOLIN RESPONSE BY PROTEIN KINASE C

ACTIVATORS IN C6 RAT GLIOMA CELLS J.P. Bressler and P. Tinsley, NIH, Bethesda, Maryland
In the C6 rat glioma cell line, cAMP is an important intracellular signal for the expression of differentiated properties. Glial proteins such as S-100 proteins, glial fibrous acidic protein, and to some extent, glycerol phosphate dehydrogenase (GPDH), are inducible when intracellular cAMP levels are raised. Phorbol ester (PE) tumor promoters and diacylglycerols (DG) inhibit the expression of GPDH induction. PE and DC both activate the protein kinase C and bind to the same site on the protein. PE also inhibits the beta-adrenergic response in C6 cells and this ability to attentuate cAMP levels may be responsible for inhibiting GPDH induction. Since PE may also modulate cellular functions by protein kinase C independent mechanisms, we have asked whether elevated DG levels lead to an inhi-bition in the beta-adrenergic response. We have also tried to localize the site at which the inhibiton is mediated. In C6 cells DG can be elevated 2-fold by incubating the cells with either phospholipase C or 2-bromooctanoate. Under these conditions, the bets-adrenergic mediated increase in cAMP levels was inhibited. 2-bromocctanoate and phospholipase C exhibited an ED 50 of lmM and 0.03 units/ml, respectively. The forskolin response, which is distal to the receptor, was inhibited 50% when cells were incubated with phospholipase C at 0.02 units/ml and 40% when incubated with phorbol 12,13, myristate acetate at 20 nM. The attenuated response to these agonists was not due to elevated phosphodiesterase levels. From these studies we conclude that the protein kinase C is involved in the inhibition of the bets-adrenergic response in C6 rat glioma cells. In addition, the site of inhibition is probably localized at the regulatory proteins and/or catalytic subunit of adenylate cvclase.

157 CAUDATE NUCLEUS PROTEIN PHOSPHORYLATION: ACTIONS OF NEUROTENSIN. Scott T. Cain and Charles B. Nemeroff, Departments of Psychiatry and Pharmacology, Duke University Medical Center, Durham, N. C., 27710.

The brain-gut tridecapeptide, neurotensin (NT) (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-IIe-Leu-OH) is heterogeneously distributed in the brain. NT has many of the properties of a neurotransmitter/neuromodulator such as synaptosomal localization, calcium-dependent release and specific, saturable, high affinity binding to brain membranes. However, details of the processes underlying transduction of the NT signal are sparse. Therefore, in view of its ubiquitous regulatory role in cellular function, we have initiated a series of studies designed to elucidate the role of protein phosphorylation/dephosphorylation in mediating the coupling of NT receptor binding and function.

We have reported that after phosphorylation of rat caudate nucleus synaptosomes with 500 uM ATP, NT alters the amount of phosphate incorporated into a TCA-precipitatable protein fraction (Cain and Nemeroff, N.Y. Acad. Sci., in press). We have now studied the effects of NT (1.8 uM) on calcium (0.5 uM)-stimulated phosphorylation in synaptosomal membranes alone and synaptosomal membranes reconstituted with synaptosomal cytosol. NT caused no significant change in the magnitude of calcium-stimulated phosphorylation in either fraction. In synaptosomal membranes, Ca alone stimulated phosphorylation 222% while in combination with NT, Ca' stimulation was 203% of control vs. 312% in combination with NT. Work is in progress to determine and characterize individual phosphoroteins which are responsive to NT. Supported by NIMM-39415 and NIMM-15177-09.

ROLE OF PROSTAGLANDINS IN THE INTERCELLULAR MODULATION OF PROTEIN PHOSPHORYLATION IN THE

<u>Eric Casteleijn</u>, Johan Kuiper, Theo J.C. van Berkel and Johan F. Koster, Dept. of Biochemistry I, <u>Erasmus University</u>, P.O.Box 1738, 3000 DR Rotterdam, The Netherlands.

158

In different liver cell types, the hormonal control of protein phosphorylation and its role in intercellular communication was studied. Different rat liver cell types i.e. parenchymal, Kupffer and endothelial cells were isolated (1). After 4 h incubation, media with Kupffer or endothelial cell secretory products were collected. In parenchymal cells loaded with $^{32}\text{PO}_4$, a 5 min challenge with conditioned media from Kupffer or endothelial cells resulted in a decreased phosphorylation state of a Mw 67000 phosphoprotein and an increased phosphorylation state of a Mw 45000 phosphoprotein. These changes could also be brought about by prostaglandins E_1 and E_2 , both known to be produced by nonparenchymal liver cells. Non-parenchymal cell media and prostaglandins E_1 , E_2 and D_2 also decreased the amount of ^{32}P detected in a Nw 65000 phosphoprotein, secreted by parenchymal liver cells (2). It is concluded that changes in the phosphorylation state of parenchymal cell proteins can be brought about by secretory products from Kupffer and endothelial liver cells. This raises the possibility that hormonal signals on liver parenchymal cells may be mediated second signals from Kupffer and endothelial cells, leading to the concept of cellular communication in hormonal signal transduction.

- Nagelkerke, J.F., Barto, K.P. and Van Berkel, Th.J.C. (1983) J. Biol. Chem. 258: 12221-12227.
- Le Cam, A., Magnaldo, I., Le Cam, G. and Auberger, P. (1985) J. Biol. Chem. 260: 15965-15971.

159 AUTOPHOSPHORMATION SITES AND THE Ca²⁺-INDEPENDENT ACTIVITY OF Ca²⁺ (CALMOULIN)-DEPENDENT PROTEIN KINASE II

R.J. Colbran, C.M. Schworer, and T.R. Soderling, Howard Hughes Medical Institute, Department of Molecular Biology and Stophysics, Vanderbille University, Nashville, TN 37232.

Incubation of Ca^{2*} (Calmodulin)-dependent protein kinase II purified from rabbit liver with Ca^{2*}, calmodulin (CaM), [122]ATP and magnesium acetate leads to the incorporation of phosphate into both 51kDa and 53kDa subunits of the enzyme to similar extents. The maximum incorporation observed was 3-4 moles phosphate / mole protein kinase. During this incubation the kinase is converted from its native Ca^{2+} and CaN-dependent form, to a form which exhibits as much as $70^{\circ}/o$ of the maximum activity even in the presence of excess ESTA. Several lines of evidence indicate that this Ca^{2+} -independent form is generated by autophosphorylation of the kinase (Schworer et al., 1986 J. Biol. Chem "in press").

We were interested in identifying specific autophosphorylation sites that might be responsible for this transition. The maximally phosphorylated kinase was subjected to SDS-polyacrylatide gel electrophoresis to isolate the two subunits. Following extraction of the protein from the gel, each subunit was subjected to tryptic digestion followed by reverse-phase HPLC. Four major phosphopeptides were detected in digests of the 51kDa subunit. Tryptic phosphopeptides with identical retention times were also observed in digests of the 53kDa subunit and an additional phosphopeptide was also present in these digests. Generation of the Ca²⁺-independent form of the kinase was essentially complete within 1 min, when approximately 1 mole phosphate / mole kinase was incorporated. Maximum phosphate incorporation was achieved only after an additional 15 min of incubation. Examination of the time course of appearance of P-peptides in each subunit revealed that phosphorylation of one of the peptides found in digests of both subunits was essentially complete by 1 min, a time that correlated closely with the observed charge in enzyme activity. Appearance of the other P-peptides occurred over a much longer time interval. These data suggest that this one rapidly autophosphorylated site may be very important in transition of the kinase to the Ca²⁺-independent form. (Supported in part by NIH Grant AMI 7808.)

A UNIFYING MODEL FOR THE ROLE OF RETINOIDS AND THEIR RECEPTORS AS DIRECT KINASE CONTROL FACTORS IN VISION AND CYTODIFFERENTIATION. F.O. Cope. Southern Research Institute, Birmingham, AL 35255-5305, U.S.A.

Retinoids, including retinoic acid, have been shown to have strong antitumorigenic potential in vivo, particularly when the tumor model system is dependent upon the activation protein kinase C (PK-C). We have demonstrated that the antitumorigenic potential of retinoids is closely linked to a fast-acting membrane-associated signal transduction system (like the PK-C/phosphoinositol system) and that retinoid efficacy is timeand concentration-dependent with regard to activation of the PK-C enzyme. Moreover, we have found that and concentration-dependent with regard to activation of the FR-C enzyme. Moreover, we have found that numerous holo-form retinoid-binding proteins can inactivate PK-C while the apo-forms are substrates for the kinase; 2) that retinoids can induce a translocation of PK-C in equivo; and 4) that holo-form retinoid receptors affect the affinity of PK-C for its ligands (Ca² and phosphatidylserine) and vice versa. Based on these data and others, we will present a unifying model for retinoid function in vision and cytodifferentiation which accounts for the antagonistic function of retinoids to PK-C in the cell cycle and also demonstrate that this antagonism is the basis for the retinaldehyde and retinol/PK-C/Ca dependent dark adaptation in the visual cycle. This model also suggests that the chromophore, rhodopsin, evolved not only because of Schiff base potential but also because of the ability of retinaldehyde to regulate PK-C and the concomitant translocation of PK-C with Ca⁺⁺.

Likewise, the other retinoids, retinoi and retinoic acid (the reduced and oxidized products of retinaldehyde, respectively), as well as their holo-receptors function to modulate PK-C activity as this activity is necessary or not in cell cycle and cytodifferentiation. (This research is supported by NIH Grants CA34968 and CA40894.)

161 PROPERTIES OF PROTEIN KINASE C FROM AORTA. K.R. Dell and D.L. Severson, Department of

Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta T2N 4N1.

The objective of our work is to purify the Ca²⁺- and phospholipid-dependent protein kinase (kinase C) from the media of aortas because kinase C may have a role in the proliferation of smooth muscle cells seem in atherosclerosis. Kinase C has been partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and Ultrogel AcA-34. Enzyme activity was assayed by measuring the incorporation of ³²P from [γ-³²P]ATP into lysine-rich histone or chicken gizzard vinculin, a cyto-skeletal protein that is a physiological substrate for kinase C. With vinculin as substrate, specific activities of 66-267 pmol P₁ incorporated/min/mg were obtained, an increase of 14- to 20-fold over activity in the high speed supernatant. With histone, specific activities of up to 1.57 nmol/min/mg were measured. The enzyme was both phosphatidylserine (PS)- and Ca²⁺-dependent with both substrates. The K_a for PS in the presence of Ca²⁺ was 20 μg/ml and enzyme activity increased over the concentration range of 10-6-10-4 M Ca²⁺. The addition of diolein (3.2 μg/ml) increased enzyme activity 3.4-fold at 10-7 M Ca²⁺ with histone; the diolein effect at 10-5 M Ca²⁺ was less. Using vinculin as substrate, diolein increased kinase C activity 1.5-fold at 10-7 M Ca²⁺. In conclusion, kinase C from bovine aorta phosphorylated the physiological substrate vinculin in a PS- and Ca²⁺-dependent manner. The addition of diolein further stimulated this phosphorylation. Platelet-derived growth factor (PDGF) stimulates the metabolism of phosphatidylinositol and the production of diacylglycerol. This suggests a link between kinase C activation and the stimulatory effect of PDGF on vascular smooth muscle cell proliferation. This work was supported by a grant from the Alberta Reatt Foundation.

PRIMARY SCREENING FOR EVALUATION OF POTENTIAL CALMODULIN ANTAGONIST: COMPARISON OF METHODS P.R.M. Dobson, S.F. Pong*, S.M. Demuth*, G. Burns & B.L. Brown *Norwich Eaton Pharmaceuticals, Norwich, NY and Dept. of Human Metabolism & Clinical Biochemistry, Univ. of Sheffield, Sheffield, U.K.

The ubiquitous calcium binding protein, calmodulin (CaN) regulates may calcium-medicated events. Thus, modification of the activity of CaN would have profound biological consequences. Moveover the possibility exists that specific CaN antagonists might have therapeutic potential in various disorders. Most CaN "antagonists" currently available also interact with other calcium binding proteins including protein kinase C. In an attempt to develop a simple screening test for CaN antagonists, prior to determining their specificity, we have evaluated two distinct assay systems; a ³H-CaN binding and CaN-dependent phosphodiesterase assays. The binding assay utilized rat brain synaptosomal membranes(BBA 714 84-92 1982). The CaM-dependent phosphodiestrase (PDE) was prepared from pig brain (Adv. Cyclic Nucl. Res. 10 69-92 1979). Assay of known CaN antagonists in both systems produced results which correlated significantly with those in the literature. A total of 126 compounds were screened in the binding assay and 32 inhibited binding by more than 50% (at 50 uN). Of the 32 active compounds, 24 were subjected to the CaM-dependent PDE assay. All compounds active in the binding assay were also active in the PDE assay. The PDE assay also detected several agents which inhibited basal activity (ie without CaN); the results with these agents did not correlate well between assays. We conclude that both assays are reliable and suitable tests for the screening of potential CaM antagonists. The binding assay is simpler, however, the PDE assay can identify PDE inhibitors in addition to CaM antagonists.

A SIMPLE, RAPID, AND SENSITIVE COLUMN METHOD FOR ASSAYING PROTEIN KINASE ACTIVITY John J. Egan, Min-Kun Chang, and Constantine Londos. NIDDK, NIH Bethesda, MD 20892 The measurement of cyclic AMP-dependent protein kinase (A-kinase) activity in cellular preparations often depends upon the use of time-consuming and cumbersome assay methods (filtration). Alternatively, assays in which binding of a basic heptapeptide substrate, Kemptide, to acidic paper (P-81) yield varying results dependent upon the quality of the paper. In both cases, background 32 P-ATP lies within the range of 350-1000 cpm per 106 cpm 32 P-ATP added per assay tube. Attempts to lower this background by increased washing (the latter method) results in reduced product yields. The following method reduces the labor and the background radioactivity levels in the assay of A-kinase activity. The kinase reaction is stopped with 30 % acetic acid, and this mixture is dumped directly into a column of CM Sephadex. Kemptide quantitatively binds to the resin, but the bulk of the ATP passes directly through the column. Sephadex columns are then mounted atop columns containing the anion exchange resin, AG1-X8, and eluted with 30 % acetic acid. The effluent is passed directly into vials for liquid scintillation counting. Residual ATP is retained on the anion exchange resin, but at least 95 \pm of the Kemptide is eluted. Background levels of ATP are routinely 10 cpm per 106 cpm 32 P-ATP added per assay tube. Columns are rapidly regenerated and have been re-used for more than 50 assays with no loss in Kemptide recovery nor any increase in background ra dioactivity. Typically, processing of 100 samples is completed in 30 min and requires less than 7 min operator attendance time. It is anticipated that with appropriate oligopeptide substrates other protein kinases may be assayed with this simple method.

ACTIVATION OF PROTEIN KINASE C INCREASES MULTIDRUG RESISTANCE IN HUMAN MCF-7 BREAST CANCER CELLS. R. L. Pine, J. Patel, J. Carmichael, K. H. Cowan and B. A. Chabner. National Cancer Institute and National Institute of Mental Health, Bethesda, Maryland 20052.

Multidrug resistance (MDR) in mammalian cancer cells can occur after exposure to a single drug from a natural product source such as vincristine (VCR) or adriamycin (ADR). MDR is associated with a decreased net intracellular accumulation of drug due to an increased drug efflux mechanism. Calmodulin antagonists and calcium channel blockers, such as verapamil, can reverse the resistant phenotypes, and they also are known to inhibit protein kinase C (PKC) and calmodulin-associated kinases. Thus, we investigated the relationship of these kinases to changes in drug resistance in 21 human breast and 17 human small-cell lung cancer lines. MDR was determined in the lines by clonogenic assay and by clinical history. Increased phosphorylation of a 20-kD protein was found in all of the above resistant lines and it was absent or minimal in sensitive lines by an in vitro 32P-ATP phosphorylation assay. PKC activity was increased 7-fold in some resistant MCF-7 breast cancer lines. Activation of PKC by phorbol esters in both sensitive and resistant breast cancer lines was associated with increases in the following: a) phosphorylation of the 20-kD protein, b) MDR in clonogenic assay, and c) decreased net intracellular accumulation of VCR and ADR. Verapamil decreased the phosphorylation of the 20-kD protein and drug resistance in these cells, while it increased intracellular drug accumulation of VCR and ADR. These experiments indicate that PKC activation is associated with the MDR phenotype via decreased accumulation and that verapamil may be reversing resistance by unknown mechanisms.

A COMPARATIVE ANALYSIS OF PROTEIN KINASE-C ACTIVATORS

165

Garland, L.G., Dawson, J., Bonser, R.W., Thompson, N.T., Blackwell, G.J.* & Hodson, H.F.+, Departments of Biochemistry, Mediator Pharmacology* & Medicinal Chemistry+, Wellcome Research Laboratories, Beckenham, Kent.

It is believed that synthetic diglycerides and phorbol esters stimulate cellular responses through the same "receptor" un protein kinase-C (PKC), but such responses have not been rigorously compared. We have studied superoxide (O_2^-) production by HL60 granulocytes stimulated by 1,2dihexanyl-an-glycerol (DiHex), phorbol dibutyrete (PDBu) and phorbol myristyl acetate (PMA). From full dose-response curves their negative log ED 50, values were 4.8, 7.2 and 9.4, respectively. However, the maximum response to DiHex was only 45% of that produced by PMA or PDBu. This is not due to poor cell penetration since DiHex displaced 100% of H-PDBu bound specifically by intact HL60 cells: this displacement showed enantiomeric specificity. Thus, DiHex may have been a "partial" activator of PKC, with low efficacy at the phorbol receptor. If this were so, DiHex should have competitively antagonised O_2^- production stimulated by PDBu. In such interaction experiments, DiHex blocked PDBu responses, but not competitively. Therefore, we conclude that DiHex has two properties in HL60 granulocytes, one being activation of PKC, the other being an effect which opposes cell activation degranulation activated by DiHex.

A CORRELATION BETWEEN PHORBOL DIESTER-INDUCED PROTEIN PHOSPHORYLATION AND SUPEROXIDE ANION GENERATION IN HL-60 CELLS DURING GRANULOCYTIC MATURATION. J.R. GAUT, C.M. KRAMER & R.A. CARCHMAN DEPT. OF PHARMACOLOGY & TOXICOLOGY, MEDICAL COLLEGE OF VA., V.C.U. RICHMOND, VA.23298

Phorbol diester-induced superoxide anion production was compared to phorbol diester-induced protein phosphorylation as HL-60 cells matured along the granulocytic pathway. Maturation was induced by 0,2,4, or 6 days incubation with dimethylsulfoxide (DMSO). In 0 day DMSO HL-60 cells, phorbol 12-myristate, 13-acetate (PMA) induced phosphorylation in the 100,000xg supernatant of protein pp29 (Mr=28,600) and to a lesser extent protein pp76 (Mr=76,300). With increased time of DMSO incubation, PMA-induced phosphorylation of pp212 (Mr=211,800), pp134 (Mr=134,200) and pp76, while the phosphorylation of pp29 did not change appreciably. In close agreement with this increase in protein phosphorylation was the observed intrease in phorbol diester-induced superoxide anion formation. Both responses increased markedly between days 2 % 4 of DMSO exposure. Morphological characterization of cells during DMSO induced differentiation using Wright Giemsa staining revealed that these increases in phorbol diester responses were probably attributable to the parallel rise in metamyelocytes, band and segmented neutrophils. The proportional increase in pp76 phosphorylation was strongly correlated to the increase in superoxide anion formation (r=0.99). Similarly, the structure activity relationship of six phorbol diester derivatives for protein phosphorylation was also correlated to their ability to increase superoxide anion generation. Thus, we propose that phorbol diester-induced phosphorylation of pp212, pp134, and pp76, (but not pp29) may play a role in mediating the functional response of phorbol diester-induced superoxide anion generation. (funded by NIH ESO3572)

167 EFFECT OF β-BLOCKADE ON SKELETAL MUSCLE GLYCOGENOLYSIS AND CYCLIC AMP DURING EXERCISE.

A.H. Goldfarb and J. Divetta. Exercise Science Laboratory, University of Maryland,
College Park, Maryland 20742.

Twenty-eight, male Sprague-Dawley rats (200-250 gms) were randomly assigned to either a restingsaline (RS), a resting-propranolol (RP), an exercise-saline (ES) or an exercise-propranolol (EP) group to determine the effects of Beta-receptor blockage on red fast twitch (R), white fast twitch (W), and red slow twitch (S) skeletal muscle glycogenolysis and cyclic AMP during exercise. exercise consisted of running at 20 meters/min for 30 min on a motorized rodent treadmill. Administration of propranolol (6 mg/kg) did not alter resting values for glycogen or cyclic AMP in R. W. or S skeletal muscle. The acute exercise resulted in a 40% and 42% decrease in glycogen in R and S skeletal muscle respectively, with a non-significant degradation in W muscle. Propanolol administration completely prevented the degradation of glycogen in S muscle (ES = 2.84 + .23, EP = 5.17 + .24 mg/gm wet weight) while only partially preventing the decline in glycogen in R muscle (ES = 3.93 .34, EP = 4.82 + .12 mg/gm) compared to resting values (RS = 6.53 + .38, RP = 6.19 \pm .29 mg/gm). The acute exercise significantly increased cyclic AMP in R (RS = 302.8 ± 16.3, ES = 481.6 ± 30.8 pMol/mg wet weight), W (RS = 268.3 ± 21.3, ES = 430.9 ± 25.4 pMol/mg wet weight), and S (RS = 304.8 ± 24.6, ES = 510.8 ± 33.9 pMol/mg wet weight). Beta-blockade prevented the exercise-induced increase in cyclic AMP in both W (EP = 291.4 + 29.6 pMol/mg wet weight) and S (EP = 340.0 + 21.8 pMol/mg wet weight) but only attenuated the cyclic AMP rise in R muscle (EP = 367.0 + 15.9 pMol/mg wet weight). These results suggest that Beta-receptor blockade in skeletal muscle is fiber dependent in inhibiting glycogen degradation and cyclic AMP accumulation during exercise.

THE MR 43,000 POLYPEPTIDE, ν₁, OF ACHR-ENRICHED MEMBRANES IS A PROTEIN KINASE. A.S. <u>Gordon</u>, Dept. of Neurology, Univ. of Cal. Sch. of Med., San Francisco, CA 94143.

AChR-enriched membranes have been shown to contain 3 alkali-extractable polypeptides of Mr 43,000, ν₁, ν₂, and ν₃ which can be separated by 2-dimensional electrophoresis. ν₁ is a membrane-bound polypeptide having a pI between 7.0 and 7.4 which copurifies with the AChR. Immunochemical studies show that ν₁ is exclusively a post-synaptic membrane protein. We have found that an alkaline-extractable Mr 43,000 polypeptide has an ATP binding site and that the alkaline extract has protein kinase activity. Our results suggest that ν₁ may be a protein kinase. We have used monoclonal anti-body (mcAb) to ν₁ to address this question. AChR-enriched membranes were covalently labeled with [α-3²P]ATP. When these membranes were solubilized and immunoprecipitated with anti-ν₁ mcAb, we found a covalently labeled polypeptide of Mr 43,000 on autoradiograms of SDS gels which was not present when control IgG was used. Therefore, ν₁ is an ATP binding protein.

In order to demonstrate that the ATP binding protein precipitated by the mcAb is a protein kinase, we show that protein kinase activity is also precipitated from solution by mcAb. pH ll extract is neutralized and incubated with either mcAb or control mouse IgG and Staph. Aureus is added to precipitate the immune complexes. After centrifugation, the supernatant is assayed for protein kinase activity. We find that pH ll extract incubated with anti-v₁ mcAb shows no phosphorylation activity. In contrast, protein kinase activity is observed in the pH ll extract incubated with control mouse IgG. Therefore, the mcAb must have precipitated the protein kinase and we can conclude that v₁ is a protein kinase. Since there is only one ATP binding protein present in AChR-enriched membranes, v₁ is probably the receptor kinase which phosphorylates the AChR.

Ca**. CALMOULIN-DEPENDENT PROTEIN KINASE II AND Ca**. PHOSPHOLIPID-DEPENDENT PROTEIN KINASE ACTIVITIES IN PAT
TISSUES ASSANED WITH A SYNTHETIC PEPTIDE. Y. Hashimoto and T.R. Soderling, Howard Hughes Med. Inst., and Dept. of Molecular
Physiology and Biophysics, Mashville, IN 37232.

Rat tissue levels of Ca**. calmodulin-dependent protein kinase II (protein kinase II) and Ca**. phospholipid-dependent protein kinase (protein kinase C) were selectively assayed using the synthetic peptide syntide-2 as substrate. The sequence of syntide-2 (pro-leu-ala-arg-thr-leu-ser-val-ala-gly-leu-pro-gly-lys-lys) is homologous to phosphorylation site 2 in glycogen synthase. The relative kmax/km ratios of the known Ca**-dependent protein kinases for syntide-2 were determined to be as follows: protein kinase II, 100; protein kinase C, 22; phosphorylase kinase, 2; moofin light chain kinase, 0.05. Levels of protein kinase II were highest in cerebrum (3.36 units/g tissue) and spleen (0.85 units/g) and lowest in testis (0.05 units/g) and kidney (0.04 units/g). Protein kinase II activity was localized predominantly in the 100,000g particulate fraction of cerebrum and testis; in the cytosolic fraction of heart, liver, adrenal, and kidney; and about equally distributed between the particulate and cytolic fractions in spleen and lung. On the other hand, protein kinase C was highest in cerebrum (0.56 units/g) and spleen, (0.47 units/g), and the majority of activity was present in the cytosolic fraction for all tissues measured except for cerebrum and testis in which the kinase activity was equal in both fractions. Lastly, the ratios of protein kinase II to protein kinase C were different in various rat tissues and between the particulate and cytosolic fractions. These results suggest somewhat different functions for these too Ca**-regulated, multifunctional protein kinases. (Supported in part by MIH grant AM17808.)

MOLECULAR CLONING OF THE CAMP-DEPENDENT PROTEIN KINASE FROM LLC-PK1 CELLS B.A.Hemmings, M.Schwarz, S.R.Adavani, D.A.Jans, I.Nowak, M.O.Showers and R.A.Maurer , Friedrich Miescher-Institut, P.O.Box 2543, CH-4002 Basel, Switzerland, Dept. of Physiology & Biophysics, University of Iowa, IA, USA

The cAMP-dependent protein kinase (cAMP-PK) is thought to play an integral role in the regulation of transcription of specific genes. In the porcine kidney cell line LLC-PK1, elevation of cAMP mediated by the hormone calcitonin leads to a 100-fold increase of the rate of transcription of the plasminogen activator gene. As a step towards understanding the role of the kinase in the induction process we undertook the molecular cloning of the subunits of the cAMP-PK from the LLC-PK1 cell line. Using the Agt 11 system, cDNAs were isolated for both the porcine R_I and R_{II} using a bovine R_I cDNA and antibody to bovine R_{II}, respectively. The LLC-PK1 cDNA library was also screened using a bovine cDNA for the C subunit and two distinct cDNAs were isolated for the porcine C subunit. DNA sequence analysis confirmed the existence of two mRNA species (C_Q and C_B) coding for the C subunit, most likely encoded by different genes. The two types of C subunit, with presumably somewhat different activities, provide the possibility of fine control over cellular activities. Comparison of deduced amino acid sequences of the porcine R_I, R_{II} and C_{Q/B} with the bovine sequences revealed very high homology for all subunits, indicating high conservation of structure and function in this important regulatory enzyme.

DISTRIBUTION OF PHOSPHOPROTEINS (PP) IN DIFFERENT BRAIN AREAS STUDIED BY TWO-DIMENSIONAL GEL ELECTROPHORESIS (2DE). W.E. Heydorn, J. Patel, G.J. Creed and D.M. Jacobowitz, FDA, Rockville, MD 20857 and Laboratory of Clinical Science, NIMH, Bethesda, MD 20892.

The distribution of PP was studied in 7 brain areas: caudate nucleus (CN), olfactory tubercle (OT), prefrontal cortex (PRE), hippocampus (HIP), habenula (HAB), arcuate-median eminence (ARC-ME) and ventromedial nucleus (VMN). Under basal conditions, approximately 40 phosphoproteins could be seen, with 12 being visible on silver-stained 2D gels of rat brain. Three distinct regional differences were noted. First, a 94 kDa (pI 5.6-5.8) PP was found primarily in the CN, HIP and OT. Second, a pair of high MW (95-100 kDa) PP was consistently visible only in the CN, PRE, HAB and HIP. Third, a group of proteins of MM 32-37 kDa, pI 4.9-5.4 consistently phosphorylated only in the CN and the ARC-ME. In the presence of Ca/calmodulin, the phosphorylation of 3 acidic proteins (pI < 5.0) was markedly elevated in all 7 brain areas examined. Cyclic AMP produced an increase in the phosphorylation of a number of different proteins. The 94 kDa protein showed a marked increase in phosphorylation only in the CN and OT. Cyclic AMP also stimulated the phosphorylation of a poorly focusing 83 kDa protein in the CN, OT and, to a lesser degree, in the HIP, HAB and ARC-ME. Phosphorylation of an acidic protein that appears to correspond to DARPP-32 was stimulated by cAMP in the CN, OT, HAB and ARC-ME. A group of basic proteins that appears to correspond with Protein IIIb was phosphorylated in the presence of cAMP in all 7 brain areas studied. Finally, 2 PP of MW 45-46 kDa, pI 5.5 that were not apparent under basal conditions were phosphorylated in all 7 brain areas. These results demonstrate: 1) A number of silver-stained proteins visible on 2D gels of rat brain are phosphoproteins, 2) Cyclic AMP has region-specific effects on the phosphorylation of individual proteins, and 3) These effects can easily be visualized using 2DE.

INHIBITION BY CALMODULIN ANTAGONISTS, H-7 AND H-8 OF FORMYL PEPTIDE, LEUKOTRIENE B4,
PHORBOL DIESTER AND DIACYLGLYCEROL STIMULATION OF MACROPHAGES. A. Holian, M. K.

Jordan and H. V. Nguyen. Univ. of Texas Sch. of Med., Houston, TX, USA 77030.

The proposed roles of protein kinase C (PKC) in the activation sequence of the stimulated produc-

The proposed roles of protein kinase C (PKC) in the activation sequence of the stimulated production of 02 by guinea pig alveolar macrophages was examined using trifluoperazine (IFP), fluphenazine (FLU), W-7, H-7, and H-8. All five agents inhibited 02 production stimulated by f-nle-leu-phe (FNLLP), leukotriene B4 (LTB4), phorbol-12,13-dibutyrate (PDB) and sn-1,2-dioctanoylglycerol. The order of potency was TFP > FLU > W-7 = H-7 > H-8. The inhibition by TFP and FLU could be partially reversed by the addition of lmM Ca+2 to medium with Ca+2 < 10 uM. TFP, FLU and W-7 partially enhanced 45Ca+2 efflux. W-7 enhanced 45Ca+2 efflux to a similar extent as that achieved with FNLLP. FNLLP-stimulated 45Ca+2 efflux in the presence of FLU or TFP was diminished to the same extent which FLU or TFP enhanced 45Ca+2 efflux resulting in the same total net 45Ca+2 efflux. The normally short-lived phosphatidyl inositol (PI) turnover stimulated by either FNLLP or LTB4 was not markedly affected by FLU and still terminated when measured either as changes in 32P incorporation into phosphatidic acid or as 3H-diacylglycerol production. FLU and, more markedly, W-7 enhanced the incorporation of 32Pi into the phospholipids of the PI cycle. W-7 also stimulated a weak and short-lived "burst" of 02 production. These results suggest: 1) The calmodulin antagonists (FLU, TFP and W-7) have a number of sites of action which appear to include PKC (where H-7 and H-8 inhibit) and possibly phospholipase C. 2) FNLLP and LTB4 can still stimulate those events preceeding the site of inhibition (i.e., PKC); and 3) Activation of PKC may not be involved in the termination of FNLLP and LTB4 stimulated PI turnover. This work was supported in part by HL-33953.

PROPERTIES OF THE ENDOGENOUS TRIMERIC FORM OF A-KINASE PRESENT IN RAT OVARIAN EXTRACTS. M. Hunzicker-Dunn, L. Lynch and R.C. Ekstrom, Dept. Molec. Biol, Northwestern U Med Sch, Chicago IL. Separation of A-kinase holoenzymes by DEAE-cellulose chromatography has shown that soluble extracts of immature rat overies contain 2 holoenzyme forms of the type II enzyme: a tetrameric form composed of a regulatory (R) subunit dimer and 2 catalytic (C) subunit monomers; and an apparent trimeric form (Hunzicker-Dunn et al., J Biol_Chem 260:13360,1985). The apparent trimeric A-kinase was stimulated by cAMP, contained authentic R I and exhibited a S₂₀ (6.08± 0.19, n=19) lower than that of the tetramer (7.5±0.19, n=19). The purpose of the following studies was to confirm the MW of the apparent trimeric A-kinase and to establish its subunit composition (as R₂C or RC₂). To determine its MW, autophosphorylated tetrameric and apparent trimeric holoenzymes were separated by nondenaturing PAGE. MW estimates for the tetrameric and trimeric forms of 215000 and 175000, respectively, were obtained. The 2 enzyme forms were also separated on Sephacryl S-300.MW estimates from gel filtration were 245000 and 195000, respectively, for the tetrameric and trimeric forms. To determine the subunit composition of the trimer, the extent of autophosphorylation of R¹¹ associated with sucrose gradientpurified trimeric and tetrameric A-kinase forms, in the presence of equal C activity, were compared. There was no reduction in the incorporation of label into the trimeric R compared to tetrameric R. A comparison of relative cAMP-binding to phosphotransferase (R:C) activities of the 2 enzyme forms resuited in values of 0.62±0.09 (n=23) for the tetrameric enzyme and 2.1±0.42 (n=23) for the trimeric enzyme, consistent with reduced phosphotransferase activity associated with the trimer. From these results, an RoC subunit composition can be predicted for the trimer. We conclude that rat ovaries contain a trimeric type II A-kinase with a subunit composition of R₂C. Supported by NIH HD 11356 to MHD.

174 PHOSPHORYLATION AND DEPHOSPHORYLATION IN LEISHMANIA MAJOR Charles L. Jaffe and David S. Lester Departments of Biophysics and Membrane Research Weizmann Institute of Science, Rehovot, Israel

Labelled phosphoproteins and phosphatase activity were investigated in logarithmic stage promastigates of L. major. Whole cells incubated in $[^{32}P]$ -orthophosphate revealed 13 bands. Three bands (105, 70 and 16 kd) were found in both membrane and cytosol fractions. The 16 kd band was the major phosphoprotein. Incubation of cells with calcium intensified labelling of the 70 kd protein. This calcium stimulation was also observed with three additional proteins in the membrane fraction (48, 42 and 18 kd). Incubation with the calcium ionophore A23187 drastically reduced labelling of the 16 kd protein. $[\gamma^{-32}P]$ -ATP labelling of lysed parasites identified 7 phosphoproteins; the predominant band migrated at 16 kd. The pattern of labelling was similar to that observed for membranes of $[3^2P]$ -labelled whole cells. Calcium specifically decreased labelling of two phosphoproteins (90 and 56 kd). Phorbol ester and 8-BrcAMP had no effect. pNPP-alkaline phosphatase activity was examined in whole cells, membrane and cytosol fractions. The membrane activity was externally located and had a pH optimum of 7.0-7.5. The specific activity of the cytosol fraction was at least 4-fold greater than the membrane fraction and preincubation of whole cells in calcium shifted the pH optimum of the cytosol fraction from 7.0 to 6.5. All phosphatase activity was inhibitable by calcium and vanadate. Developmental studies of these processes are under investigation.

Funding was provided by the John and Catterine T. MacArthur Foundation.

PHOSPHORYLATING SYSTEM CONTROLLING ASPARAGINASE CYCLIC ACTIVITY. S. Jerebzoff-Quintin and S. Jerebzoff, Btorhythm Lab. and UA 241 CNRS, P. Sabatier Univ., TOULOUSE, France.

Asparaginase cyclic activity in Leptosphaeria michotii has been shown to be dependent on a reversible phosphorylating process. Asparaginase has been isolated as a purified protein complex, which possessed autophosphorylating and autodephosphorylating capacities (1)(2).

A protein kinase was present in this complex, as demonstrated by time course of M_0^{2+} -dependent phosphorylation by $[\gamma^{-3}2P]$ ATP, whereas $[\alpha^{-3}2P]$ ATP was not incorporated, and identification of the phosphominoacid as threo(P); it was cAMP non dependent and active at pH from 5 to 9. A rhythm of protein kinase activity synchronous with the rhythm of asparaginase activity was observed. Autodephosphorylation of asparaginase complex was controlled by a M_0^{2+} - Zn^{2+} -dependent protein alkaline phosphatase (active at pH from 7 to 9), Mr 60 000, phosphorylable, which could hydrolyze non protein phosphoesters. In the time course of asparaginase activity cycle, Zn^{2+} addition in the presence of $[\gamma^{-3}2P]$ ATP- M_0^{2+} , stimulated dephgsphorylation of the protein complex when asparaginase activity is decreasing, whereas it stimulated M_0^{2-} incorporation when asparaginase activity is increasing. Opposite effects of protein phosphatase activation on asparaginase activity, together with the fact that protein phosphatase was phosphorylable, give strong support for an important regulatory role of this enzyme in the control of asparaginase oscillatory states.

role of this enzyme in the control of asparaginase oscillatory states.

(1) FEBS Lett., 1984, 171, 67. (2) Physiol. Plant., 1985, 64, 74.

Carl Mark State Land Land Belle Control

Kase, K. Iwahashi, Y. Matsuda, S. Nakanishi and K. Yamada Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo, Japan

K-252a(1), a novel compound isolated from the culture broth of Nocardiopsis, sp., was found to potently inhibit protein kinase C (Kase et al. J. Antibiotics, in press). inhibited cyclic nucleotide-dependent protein kinases. Apparent Ki values of K-252a for protein kinase C, and cAMP-dependent and cGMP-dependent protein kinases were 25, 7, and 20 nM, respectively. The inhibitions were not reversed by the phosphate acceptors, or the enzyme activators such as cAMP, cGMP and phospholipid. Alternatively, ATP reversed the inhibition of K-252a in competitive manners. The compound also inhibited calmodulin, but its effect (IC50; 2.9 M) was much less than that on protein kinases. K-252c, the aglicon of K-252a, and K-252b and d, which contained K-252a aglicon in their structures, were also isolated from the culture broth and inhibited the protein kinases to various degrees.

In rabbit platelet, K-252a inhibited ATP secretion induced by thrombin, platelet activating factor, and phorbol myristate acetate. These newly developed compounds should facilitate studies on the physiological roles of protein kinases.

177 THE RELATIONSHIP BETWEEN PHORBOL ESTER - STIMULATED LYSOSOMAL ENZYME RELEASE AND PROTEIN

PHOSPHORYLATION IN HUMAN MONOCYTES. Barbara A. Kelly and Richard A. Carchman, Dept. of Pharmacology and Toxicology, Medical College of Virginia, V.C.U., Richmond, Va. 23298.

PMA (Phorbol-12-myristate-13-acetate), a potent tumor promoter, stimulated the secretion of the lysosomal enzyme N-acetyl-B-D-glucosaminidase (NAGA) from human monocytes. PMA elicited a concentration-dependent (EC50=53 nM) increase in NAGA secretion over a tested range of 0.1 nM to 1 uM. This time-dependent release (22% of total enzyme at 10 uM PMA) reached a near maximal response at 60 minutes. In addition, PMA stimulated the phosphorylation of several endogenous protein substrates in broken cell preparations as well as intact cell preparations in a concentration-dependent manner over a tested range of 0.3 nM to 3 uM. Protein substrates specifically phosphorylated by PMA had apparent molecular weights of 20K, 30K, 41K, and 75K in broken cell preparations and 20K, 55K, 61K and 66K in whole cell preparations. Further studies of lysosomal enzyme release and protein phosphorylation stimulated by various diterpene derivatives releaded similar structure activity relationships (SAR) to the SAR characterized for phorbol ester-binding to human monocytes (J. Clin. Invest. 70:669-706, 1982) These findings support the hypothesis that phorbol ester-elicited events are mediated by the activation of a receptor enzyme known as calcium-dependent, phospholipid-sensitive protein kinase (PK-C); PK-C phosphorylates specific protein substrates purportedly resulting in various functional responses. Finally, the effects of opsonized zymosan to stimulate protein phosphorylation were investigated in an attempt to further identify those protein substrates key to the regulation of lysosomal enzyme re-lease. (Supported by NIH 5 T32 ESO7087 and NIH ESO3572).

FORSKOLIN ALSO INHIBITS ADENYLATE CYCLASE ACTIVITY AND CAMP PRODUCTION Agra Khanum and 178

Maria L. Dufau, NICHD, NIH, Bethesda, MD 20892
In testicular Leydig cells (LC), forskolin (F) causes stimulation of all cAMP pools (extra, intracellular & receptor-bound) and testosterone production, and potentiates gonadotropin-induced responses, when present in concentrations of 1-10 MM. In addition, when added at lower doses (100 nM) that did not affect cAMP generation, F caused an increase in sensitivity to hormonal stimulation for all cAMP pools and testosterone production. Minor increases in bound cAMP (25%) elicited by gonadotropin caused maximal testosterone production, while with comparable increases by F (10⁶), testosterone increases were only 36% of maximal. In contrast to the known stimulatory actions of F, low doses (in the pM-nM range) markedly inhibited basal and gonadotropin stimulated cAMP and testosterone production. Furthermore, F significantly decreased adenylate cyclase activation by GTP and luteinizing hormone. This inhibitory action, was prevented by preincubating the cells and membranes with pertussis toxin before addition of F. A dose-dependent reversal of F inhibition was observed over the range of 0.1-30 ng toxin. These studies have shown the diverse effects of F: first the stimulatory effects on LC cAMP pools, including potentiation of the hormonal increase in receptorbound cAMP by F; and have provided additional evidence for the functional importance of cAMP compartmentalization during hormonal stimulation of steroidogenesis. Second, we have demonstrated a novel, high-affinity inhibitory action of F upon adenylate cyclase activity and cAMP generation, an effect that seems to be mediated by the Ni unit. This finding provides a new approach for direct evaluation of the functional inhibitory influence of Ni unit in the intact LC and cell membrane and has potential general application to other systems.

181

PROTEIN KINASE ACTIVITY IN CLONED MURINE T CELL LINES. D-K Kim and F.W. Fitch. Dept. of Path., Box 332, Univ. of Chicago

We have observed that our typical cloned cytolytic T cell lines, exemplified by L3, proliferate in response to phorbol 12-myristate 13-acetate (PMA); in contrast, our typical cloned helper T cell lines, exemplified by L2, do not proliferate in response to PMA. A number of recent reports have suggested that translocation of protein kinase C (PKC) from the cytosol to the microsomal fraction (membrane) is associated with the induction of the characteristic functions of a variety of cell types. We now have obtained evidence that translocation of a Ca++, phospholipid-dependent kinase activity (PKC activity) from the cytosol to the membrane occurs after a ten minute PMA treatment both in the cloned cytolytic T cell line, L3, and in the cloned helper T cell line, L2. Thus the translocation of PKC activity itself is not necessarily associated with the induction of proliferation of T cells, because translocation of PKC activity occurs after PMA treatment in a T cell line, L2, that does not proliferate in response to PMA. The level of PKC activity found in the membrane after PMA treatment, however, differs between the two cell lines: only 15-25% of the PKC activity found in the cytosol of untreated L3 cells is translocated to the membrane of PMA-treated L3 cells; in contrast, nearly the entire PKC activity found in the cytosol of untreated L2 cells is translocated to the membrane of PMA-treated L2 cells. In both L3 and L2 cells, PKC activity in the cytosol is completely depleted after PMA treatment. Furthermore, preliminary evidence suggests that in PMA-treated L3 cells, but not in untreated L3 cells, a substantial level of the PKC activity is translocated to the nuclear fraction.

THE CATALYTIC SUBUNIT OF CAMP-DEPENDENT PROTEIN KINASES: A RETEROGENEOUS ENZYME

V. Kinzel, A. Hotz, N. Koenig, W. Pyerin and J. Reed, German Cancer Research Center,
Institute of Experimental Pathology, Im Neuenheimer Feld 280, D-6900 Heidelberg 1, FRG

Electrophoretically homogeneous preparations of catalytic subunit (C) of cAMP-dependent protein kinase (type I and II) from striated muscle of different species (rat, rabbit, cattle) can be separated by cation exchange chromatography into 2 major stable forms designated C_A and C_B (according to their elution). They may be expressed simultaneously in the tissue. Both forms differ by approx. 0.5 units in their isoelectric values. No differences between C_A and C_B were detectable by a number of criteria including (i) phosphate content, (ii) kinetic behaviour, (iii) interaction with regulatory subunit type I and II (in cooperation with F. Hofmann, Homburg, FEG), (iv) heat stable inhibitor. However, the protease specific for native C (E. Alhanaty et al., PNAS 78, 3492) cuts C_B consistently faster than C_A , a phenomenon which is enhanced in both cases by the substrate Kemptide (in cooperation with S. Shaltiel, Rehovot, Israel). Circular dichroic (CD) measurements using Blue Dextran as a sensor for the nucleotide binding site (J. Reed, V. Kinzel, Blochemistry 23, 968) exhibit a differential induced CD spectrum of C_A and C_B on binding of Kemptide thus indicating that the forms differ in the conformational response of their ATP-binding site to substrate binding. The introduction of a high resolution isoelectric focusing system revealed that C_A as well as C_B consists of 2 major isoelectric variants ($\Delta_B H \le 0.1$ units) and of 1-2 minor variants. Whether these forms are products of different genes (M.D. Uhler et al., PNAS 83, 1300) or/and posttranslational modification(s) is being determined through studies which are in progress.

CAMP-DEPENDENT PROTEIN KINASE FROM <u>DICTYOSTELIUM</u> <u>DISCOIDEUM</u>: CLONING AND CDNA SEQUENCE OF REGULATORY SUBUNIT.

Lacombe, M.L., Simon, M.N., Mutzel, R., de Gunzburg, J. and Véron, M. - Unité de Biochimie Cellulaire - 28, rue du Docteur Roux - 75724 Paris Cedex 15, France

Dictyostelium discoideum contains only one type of cAMP-dependent protein kinase (cAK) which is highly developmentally regulated. The enzyme composed of regulatory (R) and catalytic (C) subunits is organized as an inactive (RC) dimer at the difference of the R₂C₂ complex found in other organisms. Moreover, the R monomer contains only one cAMP binding site instead of the two found in mammalian R.

cDNA clones encoding the R subunit of the <u>Dictyostelium</u> cAK were isolated by immunoscreening of a cDNA library constructed in the expression vector \(\frac{1}{3}\)\text{till}. Presence of high affinity cAMP binding activity was demonstrated in extracts from bacteria lysogenized with these clones. Nucleotide sequence analysis of three overlapping clones allowed the determination of a 1149 bp cDNA sequence coding for the entire R subunit. The open reading frame codes for a protein of 327 amino acids corresponding to a molecular weight of 36,794. DNA blot analysis demonstrates that the R subunit gene exists as a single copy in the genome. The R subunit from <u>Dictyostelium</u> shares a high degree of homology with RI, RII and cGMP-dependent protein kinase from mammals. However, it is lacking the N-terminal domain required in other eukaryotes for the dimerization of R subunits. The sequence of the R from <u>Dictyostelium</u> reveals 2 cAMP binding domains, each one homologous to the catabolite gene activator protein (CAP) from <u>E.coli</u> and to the corresponding domains in the mammalian R subunits.

We have used purified protein kinase C (PKC), prepared from rat brain using DEAE chromatography, ammonium sulfate precipitation and phosphatidylserine affinity chromatography to produce a polyclonal antibody in sheep. Using Western blotting techniques, the immune sera recognizes the 82 kD PKC at concentrations less than 500 ng. In crude preparations from rat brain, and in cell extracts from CHO, GH3, C6 and S49 cells the antibody recognizes the 82 kD protein as well as several lower molecular weight proteins, presumed to be proteolytic products of PKC. The immune sera immunoprecipitates autophosphorylated and [35s]methionine-labeled PKC from intact cells, suggesting that the native protein is recognized by the antibody. This antibody should be a valuable tool in our continuing studies of the regulation of PKC.

183 AUTONOMOUS ACTIVITY OF THE MULTIFUNCTIONAL Ca²⁺/CALMODULIN DEPENDENT KINASE AFTER AUTOPHOSPHORYLATION. By Lillian L. Lou and Howard Schulman. Department of Pharmacology, Stanford University School of Medicine, Stanford. CA 94305.

ATP modulates the effect of autophosphorylation on the activity of the rat brain $\text{Ca}^{2+}(\text{calmodulin-dependent}$ protein kinase. At low, but saturating, levels of ATP (<20 μ M) autophosphorylation inhibits activity towards exogenous substrates by 75%. By contrast, at high (and more physiological) levels of ATP (500 μ M) autophosphorylation converts the kinase to a form which is autonomous of Ca^{2+} and calmodulin. Aside from serving as a phosphate donor during catalysis, ATP appears to regulate the site(s) which become autophosphorylated and thereby modulates the dual effects of autophosphorylation. Complete autonomy is generated at a threshold level of autophosphorylation which is 10-20% of maximal phosphate incorporation. Once the threshold is reached, additional autophosphorylation occurs

independent of the presence of Ca2+ and calmodulin. Despite this independence from control by Ca2+ and calmodulin, the autophosphorylation is modified in a qualitative way by the presence of these agents. Ca²⁺/calmodulin regulate the site(s) of this additional selfphosphorylation by the autonomous kinase. Furthermore, they regulate the effect of this autophosphorylation on substrate phosphorylation. In the absence of Ca²⁺/calmodulin, additional autophosphorylation (beyond threshold) inhibits kinase activity towards exogenous substrates; in the presence of Ca²⁺/calmodulin, no inhibition is seen. Extending the initial phosphate incorporation beyond the threshold, prior to removal of Ca²⁺/calmodulin, will protect the enzyme from this subsequent inhibition by autophosphorylation. ATP and Ca²⁺/calmodulin regulate the sites of autophosphorylation which may cause distinct modifications in protein conformation and thereby elicit the profound changes in the functional characteristics of the Ca²⁺/calmodulin-dependent protein kinase.

184 LOCALIZATION OF A CYCLIC GMP-STIMULATED PHOSPHODIESTERASE IN THE BOVINE ADRENAL GLAND R.T. MacFarland, B.D. Zelus, J.P. Novack and J.A. Beavo. Department of Pharmacology SJ-30, School of Medicine, University of Washington, Seattle WA 98195.

Previous kinetic and immunological studies from this laboratory have shown the cyclic GMP-stimu-lated phosphodiesterase isozyme (cGS-PDE) to be the predominant isozyme present in the bovine adrenal gland. Immunoblotting experiments now indicate that the bulk of this activity is concentrated in the outermost layer of cells of the adrenal cortex, corresponding to the capsule and zona glomerulosa regions. Fresh bovine adrenal glands were sectioned using a freezing microtome. Frozen sections (60 µm) were then extracted overnight in 1% SDS. Extracts from individual sections were separated by SDS-PAGE followed by transfer to nitrocellulose. Protein blotting using a monospecific antisera directed against the cGS-PDE indicated that most of this isozyme was localized to the outermost 1.5mm of the adrenal cortex.

These findings support the suggestion for a role of cyclic GMP in the regulation of aldosterone secretion. Elevation of cyclic GMP within the glomerulosa cells, in response to stimulation by atrial natriuretic factor for example, may thus lead to a corresponding decrease in cyclic AMP levels via increases in the activity of the cGS-PDE.

PHOSPHOTYROSINE IN PROTEINS: CHEMICAL AND IMMUNOLOGICAL IDENTIFICATION AND ISOLATION OF PHOSPHOTYROSTL PROTEINS. I. M. Martensen, Laboratory of Biochemistry, NHLBI, NIH, Bethesda, Marvland 20892.

Proteins which contain phosphotyrosine (Tyr-P) residues can be identified and purified by utilizing the chemical and immunological properties of the Tyr-P moiety. The stability of Tyr-P to basic conditions which cleave most ser/fir phosphoryl bonds enabled the analysis of cellular phosphoproteins after Na dodecyl SO₅ gel electrophoresis. Analyses were simplified using a nylon electroblot of the gel which is stable to 1 hr incubation in 1 N NaON at 65°C. Autoradiograms of nylon blots before and after base treatment were performed on ³²P-labeled phosphoproteins of normal and retrovirus (Rous, Kirsten, and Moloney) transformed fibroblasts. Conditions for normal labeling of cellular proteins were studied by protein tyrosine kinase activity measurements using poly glu4tyr. Differences in base resistant phosphoprotein patterns could be seen for each transformed cell line. Confirmation that certain base resistant phosphoproteins contained Tyr-P was achieved by immunostaining with affinity-purified sheep anti-Tyr-P antibodies (Ab). These Ab served as useful reagents to study Tyr-P proteins since they inhibit their dephosphorylation by phosphatases, and precipitate them in the presence of rabbit anti-sheep IgC Ab. Tyr-P protein was immobilized when mixed with anti-Tyr-P Ab and incubated with immobilized protein A sepharose rabbit anti-sheep IgC Ab complex. Selective elution of the Tyr-P protein was achieved with free Tyr-P.

IMMUNOGOLD ELECTRON MICROSCOPIC LOCALIZATION OF cAMP-DEPENDENT PROTEIN KINASE SUBUNITS IN SECRETORY CELLS. M.I. Mednieks, R.P. Siraganian, S. Bae, L. Schaake and A.R. Hand. National Institute of Dental Research, NIH, Bethesda, MD. Hormonally regulated protein secretion from the parotid gland is mediated by cyclic AMP. Stimulation by norepinephrine or its pharmacologic analogs involves changes in protein phosphorylation cAMP-dependent protein kinase (cAPK) and an intracellular redistribution of its subunits (Mednieks and Hand, Eur. J. Cell Biol., 28, 264, 1982). Biochemical findings indicate that cAPK subunits are present in the nucleus, cytoplasm and secretory granules of acinar cells of the parotid as well as in ductal saliva (Mednieks and Hand, Experientia, 40, 945, 1984). Immunogold electron microscopic studies were carried out to determine the localization of cyclic AMP-dependent protein kinase (cAPK) subunits in hormonally responsive protein secreting cells. Specific polyclonal antibodies to regulatory subunits of cAPK type I and type II were used to determine their distribution by gold labeling: approximately 60% were distributed over the cytoplasm, 27% in the secretory granules and 12% in the nucleus (primarily associated with heterochromatin). Similar findings were obtained using a monoclonal IgM that reacted on ELISA with R subunits in saliva, parotid extract, and with bovine heart RII. This hybridoma reagent (MAB BBI) immunoprecipitated photoaffinity labeled bovine RII, a photoaffinity labeled (40 Kdal) fragment from both cAPK I and cAPK II preparations, but not rabbit muscle RI. Immunogold localization using MAB BBI was also studied in pancreatic and seminal vesicles, since photoaffinity labeled R subunits were found in ductal secretions of both tissues. Secretory granules of the pancreas and of seminal vesicles were also labeled, in addition to the nucleus and cytoplasm. Our results indicate that cAPK R subunits are secretory proteins of several hormonally responsive cell types, their physiologic fu

187 GANGLIOSIDE INHIBITION OF CELLULAR EVENTS INDUCED BY PHORBOL ESTERS: PROTEIN KINASE C AS A POTENTIAL TARGET FOR CANGLIOSIDE MODULATION. W.D. Merritt, C. Drogula and J.M. Bailey. Dept. of Biochemistry, The George Washington University Medical Center, Washington, D.C. 20037.

We have shown that exogenous gangliosides inhibit proliferation of lymphocytes stimulated by interleukin 2 (IL-2). To assess whether a protein kinase C (PKC)-activation pathway is a site for ganglioside modulation, CT6 murine T cells were cultured with phorbol-13-myristate-12-acetate (PMA), IL-2, or both and in the presence or absence of gangliosides. PMA (1-20 nM) stimulated CT6 proliferation in IL-2-free media, but mitogenesis was 40% that induced by IL-2. Mixed brain gangliosides inhibited PMA-induced growth in a dose-dependent fashion, and the I₅₀ for IL-2 and PMA-induced growth were similar. Polysialogangliosides and ganglio series glycolipids were potent inhibitors, while other neutral glycolipids were ineffective. PMA inhibited IL-2-induced proliferation, and ganglioside and PMA inhibition of IL-2-induced growth was additive. To examine ganglioside modulation of other protein kinase C-mediated T-cell events, the influence of gangliosides on induction of the IL-2 receptor in JURKAT acute T-lymphocytic leukemia cells treated with PMA was studied. Receptor expression, measured by binding of 3H-anti-Tac antibody, was depressed in a dose-dependent manner by mixed brain gangliosides, with no effect on cell viability. To examine the potential for direct ganglioside modulation of PKC as a mechanism for these effects, the influence of gangliosides on the binding of 3H-phorbol-12,13-dibutyrate to JURKAT cells was tested. A dose and time-dependent inhibition was observed when cells were pretreated with gangliosides, whereas slight inhibition was observed if gangliosides were present only in the binding assay. These studies indicate that cellular events linked to activation of protein kinase C are particularly sensitive to the inhibitory effects of gangliosides and suggest this enzyme is a primary target for ganglioside modulation.

THE DISTRIBUTION OF THE MULTIPUNCTIONAL CALMODULIN-DEPENDENT PROTEIN KINASE IN VARIOUS TISSUES AND THE SUBSTRATE FOR THE BRAIN ENZYME.

E. Miyamoto, K. Fukunaga, B. Yamamoto, E. Tanaka and T. Iwasa.

Department of Pharmacology, Kumamoto University Medical School, Kumamoto 860, JAPAN.

We have purified a multifunctional calmodulin-dependent protein kinase (CaM-kinase) from the brain which has a high molecular weight of about 560,000 (J. Neurochem. 39, 1607-1617, 1982). In contrast to muscle myosin light chain kinase, the enzyme had the multiple substrate specificity.

We have prepared hybridoms cells that produce monoclonal antibody against CaM-kinase from rat brain. The monoclonal antibody was of the IgM class of immunoglobulins and crossreacted with a subunit of the enzyme with Mr. 49,000, but not with a subunit with Mr. 60,000. There was no crossreaction with the Ca²⁺, calmodulin-dependent phosphodiesterase, calcineurin and other calmodulin-binding proteins from the brain. The analysis of various tiasues by immunoblotting showed the presence of immunoreactive proteins with Mr. 52,000 in the spleen, stomach, pancreas, lung and adipose tissue and with Mr. 55,000 in the skeletal muscle and heart.

The endogenous substrate in the brain was examined. We found that CaM-kinase could phosphorylate myosin isolated from the brain. The phosphorylated proteins were two light chains and the heavy chain of myosin. Only the seryl residue in the light chains and heavy chain was phosphorylated. The phosphorylation of brain myosin by the enzyme led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain CaM-kinase in a similar manner to smooth muscle except for the phosphorylation of the heavy chain.

189

MONOCLONAL ANTIBODIES TO PROTEIN KINASE C

D. Mochly-Rosen and D.E. Koshland, Jr.,

"University of California, San Francisco, Department of Neurology
"University of California, Berkeley, Department of Biochemistry

The phospholipid and calcium dependent protein kinase C autophosphorylates both on the catalytic and the regulatory domains. The autophosphorylation increases the activity of the enzyme by changing the Km for its protein substrates. We have prepared monoclonal antibodies against the purified enzyme which inhibit the activity of protein kinase C. One monoclonal antibody inhibits both the intact enzyme and a catalytic fragment obtained by limited proteolysis. The activity of this catalytic fragment is independent of phospholipids and calcium and the fragment can no longer autophosphorylate. Another monoclonal antibody is an effective inhibitor of only the intact enzyme. A third antibody inhibits the autophosphorylation of the enzyme, but increases the phosphorylation activity of the enzyme towards its protein substrate. Therefore these antibodies can be used as markers for the various domains of the enzyme.

NERVE GROWTH FACTOR (NGF) OR FORSKOLIN REDUCES Ca²⁺/CALMODULIN-DEPENDENT PROTEIN KINASE III (Cam Kinase III) ACTIVITY IN CELL-FREE EXTRACTS OF PC 12 CELLS. A.C.Nairn, R.A.Nichols, & H.C. Palfrey*, Lab. of Molec. & Cell. Neurosci., Rockefeller Univ., New York, NY 10021, and *Dept. of Pharmacol. & Physiol. Sci., Univ. Chicago, Chicago, II 60637.

CaM kinase III phosphorylates a protein of Mr 100,000 (100k), a major substrate for CaM-dependent protein phosphorylation found in many mammalian tissues and cell lines (Nairn et al, PNAS 82, 7939 1985). A number of recent studies have shown that treatment of PC 12 cells with NGF or forskolin leads to a decrease in the CaM-dependent phosphorylation of 100k in cytosolic extracts. The effect of NGF on the phosphorylation of 100k was observed after 1 hour, the effect was maximal (30% of control) after 12 hours, and the effect began to reverse after 24 hours. The effect of forskolin was me e rapid, the maximal effect was greater (5-10% of control), and the effect did not reverse unless forskolin was removed. Studies in which purified 100k and catalytic levels of cell extracts were used suggest that the effects of NGF and forskolin was to reduce the activity of CaM kinase III in cell extracts. The levels of 100k was not changed by these treatments. Addition of cell extracts to partially purified CaM kinase III did not affect its activity, suggesting the absence of an inhibitor. In addition, the effect of NGF or forskolin on CaM kinase III was stable following extraction of the enzyme from PC 12 cells. These results suggest, therefore, that the effect of NGF or forskolin is to lower the total amount of CaM kinase III per se, not to alter its activity. Similar results were obtained with NG108-15 and NCB20 cells, two other neural cell lines. (Supported by AM-20595 (HCP)).

191 GONADOTROPIN RELEASING HORMONE INDUCES THE PHOSPHORYLATION OF SPECIFIC PITUITARY PROTEINS: DIRECT INVOLVEMENT OF PROTEIN KINASE C. John Nestor, Jr. and Berta Strulovici, Institutes of Bioorganic Chemistry and Biological Sciences, Syntex Research, Palo Alto, CA 94043.

The object of the present study was to demonstrate the involvement of protein kinase C (PKC) in the signal transduction of Gn-RH action by a) testing the ability of potent Gn-RH analogs to induce selective phosphorylation of protein substrates in intact rat pituitary cells, and b) quantitating the number of [3H] PDBu binding sites in the cytosol and particulate fraction of pituitary cells upon stimulation with Gn-RH agonists. Exposure of 32P-labeled rat pituitary cells to PMA (10-7M) or diC₈ (5x10-5M) or Gn-RH (10-7M) or a "superagonist"-RS 94991, followed by SDS-Page and autoradiography, induced phosphorylation of a 42-kDa, a 37-kDa, 11-kDa and 10-kDa proteins. Preincubation with potent Gn-RH antagonists (RS 29226 or RS 68439) for one hour followed by Gn-RH (10 min, 10-7M) prevented the Gn-RH effect in a dose dependent manner, while leaving the effect of PMA or diC₈ intact. "Down-regulation" of PKC or preincubation with H-7, a PKC inhibitor, prevented the effect of both groups of agents (Gn-RH or PMA), suggesting that the phosphorylation induced by either agent is mediated via PKC either directly (PMA or diC₈) or through endogenous production of diacylglycerols (Gn-RH and RS 94991). By assessing the ability of various Gn-RH analogs to promote the translocation of PKC from the cytosol to the particulate fraction of the pituitary cells, the following rank of potency was observed: RS 94991 > Gn-RH > [Gly²] LH-RH > [His²] LH-RH = control. Taken together, these data suggest a direct correlation between the extent of translocation of PKC to the particulate form, phosphorylation of cellular substrates and ultimately LH/FSH secretion.

DIRECT STIMULATION OF PROTEIN KINASE C BY ARACHIDONATE IS ASSOCIATED WITH PLATELET ACTIVATION. Masakatsu Nishikawa., *Hiroyoshi Hidaka., **Robert S. Adelstein and Shigeru Shirakawa Dept. of Internal Med.II and *Dept. of Pharmacol., Mie University School of Med. 2-174 Edobashi Tsu Mie 514 JAPAN & **NHLBI,NIH Bethesda MD 20892

Arachidonate (AA) and other unsaturated fatty acids stimulated protein kinase C in a dose-dependent manner (5-50 ug/ml), when protein C was assayed with either histone H-l or the 20,000-dalton myosin light chain. Arachidic acid and methyl arachidonate did not stimulate protein kinase C. AA also stimulated the endogenous phosphorylation of 40,000-dalton and 20,000-dalton proteins in the cytosol (100,000g supernatant) of human platelets. The addition of H-7, an inhibitor of protein kinase C. inhibited AA-induced phosphorylation of these proteins. When human platelets were activated by AA, a biphasic pattern of platelet aggregation and secretion was observed corresponding to the dose of AA and these responses were closely associated with the phosphorylation of the 40,000 and 20,000-dalton proteins. Platelet activation induced by the low levels of AA(0.1-Sug/ml) was inhibited by aspirin, whereas that induced by high levels of AA(10-Sug/ml) was not inhibited. Other unsaturated fatty acids at the same concentration also induced platelet aggregation which was not inhibited by aspirin. Arachidic acid and methyl arachidonate did not induce platelet responses. These results suggest that the mechanism of platelet activation by high levels of AA is different from that induced by low levels of AA and that the ability of AA to directly activate protein kinase C may account for the activation of platelets by high levels of AA.

EXISTENCE OF THREE ISOZYMES OF PROTEIN KINASE C WITH CLOSELY RELATED PRIMARY STRUCTURES.

Shigeo OHNO, Masaki INAGAKI*, Hiroshi KAWASAKI, Shinobu IMAJOH, Kyoko KUBO, Hisayuki YOKOKURA*, Takashi SAKOH*, Hiroyoshi HIDAKA* and Koichi SUZUKI.

Department of Molecular Biology, Tokyo Metropolitan Institute of Medical Science, Honkomagome, Bunkyo-ku, Tokyo 113 and *Department of Pharmacology, Mie University School of Medicine, Edobashi, Tsu, Mie 514, Japan

To clarify the roles of protein kinase C in the signal transduction and cell proliferation, we determined its primary structure by protein sequencing and cDNA cloning.

Protein kinase C was purified to homogeneity as reported by Inagaki et al. (J. Biol. Chem., 260, 2292, 1985). Peptides produced by digestion with lysylendopeptidase were separated and sequenced. cDNA clones were isolated from rabbit cDNA libraries with oligonucleotide probes synthesized on the basis of the peptide sequences. The isolated cDNA clones were classified into three types, each of which encodes a protein with closely related primary structures. The amino acid sequences of peptides obtained from the "purified" enzyme can be explained by assuming that the preparation is a mixture of these isozymes.

Existence of multiple protein kinase C species raises the possibility that these isozymes share different functional roles in signal transduction and cell proliferation.

DIFFERENT Ca2+ REQUIREMENT FOR THE PHOSPHORYLATION OF H1 HISTONE AND ENDOGENOUS PROTEINS 194 BY THYROID PROTEIN KINASE C.

B. Omri, M.F. Breton and M. Pavlovic-Hournac. Unité 96 INSERM - 94275 Le Kremlin-Bicêtre Cedex (F).

Thyroid protein kinase C (PKc) from cytosols of porcine and rat glands was characterized by using histone H₁ or endogenous proteins as substrates. Enzyme from both species had similar kinetic and chromatographic properties and phosphorylated the same substrates (18 KDa, 22-25 KDa and 32-36 KDa proteins). However, it was found that Ca²⁺ requirement for the activation of the PKc greatly differed, depending whether H₁ or endogenous proteins served as substrates. While for the phosphorylation of H₁ calcium was absolutely necessary; its addition was not indispensable when endogenous proteins served as substrates. In the latter case, almost the same rate of phosphorylation was obtained with and without 0.2 mM Ca²⁺ in the incubation medium. However, the one dimensional PAGE revealed, that patterns of labellad proteins were different in essays with and without calcium. In the presence of Ca²⁺ terns of labelled proteins were different in essays with and without calcium. In the presence of Ca²⁺, modifications were observed in the zone of 32-36 KDa proteins. However, calcium alone without phospholipids, did not have any effect on the phosphorylation pattern of these proteins.

When proteins, phosphorylated only when Ca²⁺ was present, were resolved by the two dimensional PAGE, at least 5 additional spots different from those labelled in the absence of calcium, were noted

in the region of 32-36 KDa; their Pi range was from 5-7.5.

In conclusion, a very low concentration of Ca²⁺, if any, was sufficient for the activation of the PKc and phosphorylation of a large number of endogenous substrates. Higher Ca²⁺ concentrations induced the phosphorylation of additional proteins. It could be that modulations of Ca²⁺ concentration play a role in the selection of protein substrates that are phosphorylated by the PKc.

RAPID ACTIVATION OF CALMODULIN-KINASE III IN MITOGEN-STIMULATED HUMAN FIBROBLASTS. 195 H.C. Palfrey, A.C. Nairn*, J. Kuchibhotla, L.L. Muldoon and M. Villereal. Dept. of Pharmacol. & Physiol. Sci., Univ. of Chicago, Chicago, IL 60637 and *Rockefeller Univ., N.Y., N.Y. 10029. We recently characterized (Nairn et al., PNAS, 82, 7939, 1985) a novel calmodulin-dependent protein kinase (CaM-PK III) in mammalian tissues that preferentially phosphorylates an abundant Mr 100,000 cytosolic protein (100K). Polyclonal antibodies have now been used to precipitate 100K from prelabelled quiescent human fibroblasts stimulated with a variety of growth factors and other agents. Human lung (WI38) or foreskin (HSWP) fibroblasts were serum-deprived for 4-36h prior to labelling for 1h in Pi-free medium with 0.2 mCi/ml 1271. Mitogens were then added for various times, cells solubilized with detergent and 100K immunoprecipitated. 32F incorporation into 100K was quantitated by SDS-PAGE and counting of gel slices. Serum (10%) led to a 5-10 fold increase in 100K labelling within 1 min but by 5 min 32P incorporation had returned to baseline. Similar effects were obtained with lys-bradykinin or vasopressin (100mM). Extracellular Ca was not required for these responses, consistent with previous findings that peptide mitogens activate the PI cycle to produce IP3 and release of Ca from intracellular stores. The time course of 100K phosphorylation induced by peptide mitogens agreed well with the transient rise in free intracellular Ca (determined by fura-2 fluorescence) caused by the same agents. The Ca and CaM antagonists TFP (50uM), TMB-8 (50uM) and W-13 (100uM) all reduced growth factor effects on 100K phosphorylation. A23187 (10uM) led to a slower increase in 100K phosphorylation that was dependent on extracellular Ca. These results show that mitogenic stimulation of quiescent fibroblasts leads to a rapid activation of CaM-PK III and phosphorylation of its major substrate. (Supported by AM-20595 (HCP and MLV) and GM-28359 (MLV).

1.96 GOLD COMPOUNDS MAY ALTER TRANSDUCTION OF INFLAMMATORY SIGNALS AT THE LEVEL OF PROTEIN KINASE C. J.E. Parente, M.D. Tyers, C.B. Harley, P. Davis and K. Wong. Gold compounds such as auranofin (AUR) and gold sodium thiomalate (GST) are used therapeutically

to treat rheumatoid arthritis however the mode of action of these drugs in the remission of disease symptoms remains unknown. Previous in vitro studies have shown that human neutrophil responses elicited by phorbol esters and chemotactic tripeptides are inhibited by AUR and less potently by GST. Since activation of protein kinase C (PKC) occurs in response to both agonists, the effects of AUR and GST on PKC were investigated. Cell-free incubations showed that AUR did not influence the activity of PKC isolated from the cytosol of resting cells. When intact neutrophils were incubated with 7.6 - 20.3 uM AUR, cytosolic PKC activity decreased in a time- and dose-dependent manner so that by 45 minutes PKC activity had dropped by 10 - 75 %. Membrane-associated PKC activity from drug treated cells was concomitantly elevated although the amount recovered could not account for that lost from the cytosol. GST (5.0 uM - 0.5 mM) displayed similar effects on PKC as AUR but to Pretreatment of neutrophils with the gold compounds decreased the phorbol estera lesser extent. induced accumulation of PKC activity in the membrane fraction to a level intermediate between that for cells stimulated with phorbol ester and either AUR or GST alone. Antiarthritic gold compounds appear to alter signal transduction at the level of PKC, possibly by increasing the affinity of the kinase for the plasma membrane without causing cellular activation.

Supported by the Alberta Heritage Foundation for Medical Research, the Canadian Arthritis Society and the Medical Research Council of Canada. Department of Medicine, University of Alberta, Edmonton,

Alberta, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.

197 MULTI-SITE PHORBOL ESTER REGULATION OF GH₃ CELL ADENTLATE CYCLASE
Lawrence A. Quilliam, Pauline R.M. Dobson and B.L. Brown, Department of Human Metabolism & Clinical
Biochemistry, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK.

We have recently demonstrated that a phorbol ester (PDBu) stimulates cyclic AMP production in GR3 pituitary tumour cells, even after pretreatment with cholera or pertussis toxins (1). We now report that this effect persists in GR3 cell membrane preparations and is enhanced by a cytosolic factor which can be translocated to the membrane by preincubation of cells with PDBu.

In addition to this stimulatory effect, PDBu attentuated VIP-stimulated cyclic AMP production in

In addition to this stimulatory effect, PDBu attentuated VIP-stimulated cyclic AMP production in intact cells (1). We now show that in addition to decreasing the maximal VIP response, PDBu causes a small right shift in the VIP dose response curve. These observations cannot be repeated in broken cell preparations and preliminary studies suggest that maximum VIP-receptor binding is not affected by PDBu.

After preincubation of cells with oxotremorine (oxo) which inhibits adenylate cyclase via R_4 receptors, PDBu caused a larger fold increase in cAMP production (4.8 \pm 0.9 fold) than in the absence of oxo (2.2 \pm 0.5 fold). Also, in contrast to the previously reported attenuation (1), PDBu was synergistic with VIP in stimulating cyclic AMP production after oxo treatment. This suggests that as well as stimulating basal and attenuating VIP stimulated adenylate cyclase in a pertussis toxin resistant fashion, PDBu can also resist inhibition of the enzyme through N_4 . C-kinase mediated phosphorylation of N_8 could explain all 3 observations, however, these effects may be regulated individually.

(1) LA Quilliam et al (1985) BBRC 129 898-903.

P.J. Robinson and W. Lovenberg. Merrell Dow Research Institute, 2f10 E. Galbraith Road, Cincinnati, OH 45215.

When intact synaptosomes from rat brain are incubated with \$\$^{32}_{P_1}\$, a protein of molecular mass \$96,000 (termed P96) becomes labeled. Upon depolarization with \$41 mM K P96 is rapidly and extensively dephosphorylated. By contrast, depolarization stimulates the phosphorylation of synapsin I by activation of calmodulin-dependent protein kinase, and of an "87kDa" synaptosomal protein by activation of protein kinase C (PKC). Dephosphorylation of P96 was fully reversible when the increased K was returned to 4.7 mM, and a total of 5 cycles of phosphorylation-dephosphorylation were achieved. Dephosphorylation of P96 was dependent on extracellular calcium, but when intracellular calcium was raised, without activating the calcium channel, dephosphorylation did not occur. Thus P96 dephosphorylation was not dependent simply on a rise in intracellular calcium, but also on the mechanism of calcium entry. The phosphorylation of P96 was regulated by cyclic nucleotides and calcium. In intact synaptosomes dibutyryl cAMP increased P96 phosphorylation. The increase was not mediated by calcium-dependent protein kinases since stimulation also occurred in the presence of fluphenazine, which inhibits these enzymes. The primary_protein kinase that phosphorylates P96 appears to be PKC. In lysed synaptosomes labeled with [Y-YP]ATP a 96,000 dalton protein was phosphorylated only in the presence of calcium and phosphatidylserine. Phosphopeptide mapping of this protein and of P96 from intact synaptosomes demonstrated that the two proteins are likely to be the same. P96 may play an important role in nerve terminal function.

M. Saitch and R. Ridgka, Dept. of Pharmacology, Mie University School of Medicine, Mie 514, Japan.

Two types of Ca dependent protein phosphorylation are established major general mechanisms by which intracellular events are controlled by external stimuli. One is catalyzed by Ca dependent protein kinase, myosin light chain kinase (MLCK). The other species of Ca dependent protein kinase is Ca detivated, phospholipid-dependent protein kinase (protein kinase C). Recently we synthesized a potent and selective inhibitor of protein kinase (protein kinase C). Recently we synthesized a potent and selective inhibitor of protein kinase C, referred to as R-7, and investigated the role of protein kinase C by using H-7 in many tissues. The phosphorylation of the regulatory light chain of myosin catalyzed by MLCK is obligatory for the stimulation of myosin ATPase in both smooth muscle and nonmuscle tissues, a prerequisite for tension development. "Calmodulin antagonists" have been used as pharmacological tools to elucidate the function of Ca development mathematical catalytic activity of the enzyme not via calmodulin. I-(5-chloronaphthalenesulfonyl)-IH-hexahydro-1,4-diazepine (ML-9), which is a newly synthesized compound, was found to exhibit the same Ki value for both Ca delmodulin dependent and independent activities of MLCK, and inhibit the other protein kinases such as protein kinase C with the Ki values of at least an order of magnitude higher than for MLCK. Kinetic analysis revealed that ML-9 was a competitive inhibitor vs. ATP and noncompetitive inhibitor vs. MLC in the catalytic reaction. These results suggest that ML-9 bind at the active center of MLCK resulting in inhibition of the catalytic activity of MLCK. Potent vaso-relaxing effect of ML-9 on rabbit vascular strips as well as saponin treated skinned vascular fibre was discussed in the relation to the in vivo inhibition of MLCK by ML-9.

MENADIONE ALTERS FUNCTIONAL RESPONSE AND PROTEIN PHOSPHORYLATION EVENTS IN RESTING AND STIMULATED HUMAN NEUTROPHILS. M. P. Shakarjian and R. A. Carchman. Department of Pharmacology and Toxicology, Medical College of Virginia/VCU, Richmond, VA 23298.

Menadione, a derivative of the natural vitamins K, has antineoplastic and antiinflammatory properties. Its profound biochemical effects upon resting and stimulated neutrophils make these cells a likely target for several of its purported therapeutic actions. We found that superoxide dismutase-inhibitable 02- production, a major contributor to leukocyte-mediated inflammation, was enhanced in resting neutrophils by menadione, as a function of cell number, time and drug concentration. Conversely, in phorbol myristate acetate (PMA) stimulated neutrophils, menadione significantly reduced the rate and magnitude of 02- generation. The release of 02- induced by formylated peptide (fmlp) and calcium ionophore were also inhibited in concentration dependent manner by menadione. As protein phosphorylation may represent a common event preceeding the functional response produced by these stimuli, the effect of menadione on this parameter was also examined. In experiments with whole cell suspensions of human neutrophils, menadione produced a low level but concentration related increase in 32p-phosphate incorporation into endogenous protein substrates with apparent molecular weights of 58K and 62K, Moreover, menadione enhanced protein phosphorylation in neutrophils stimulated by PMA, fmlp, or ionophore. These results further implicate the role of protein phosphorylation as possible loci of the interaction of menadione with the signal transduction pathways in the neutrophil. (Supported by NIEHS grant Nos. ESO3572 and T 32 ESO7087.)

201 S6 KINASE ACTIVITY OF ASTROCYTES STIMULATED BY INSULIN, IGF1, AND PHORBOL ESTER.
D. Toru-Delbauffe, M. Pierre, J.M. Gavaret, M. Pomerance, & C. Jacquemin. INSERM U.96 78, rue du GENERAL Lecterc. 94275 KREMLIN BICETRE Cedex (France).

Treatment of cultured astrocytes from two day old rat cerebral hemispheres, with insulin or IGF1 leads to a rapid activation of a cytosolic protein kinase activity which phosphorylates the ribosomal protein S6. This activation is observed as early as five minutes after insulin addition to the culture medium and it is maximal by 60 minutes. Concentration-response curve shows an activation increasing from 10^{-9} M to a maximal value at 10^{-7} M of insulin. In cytosolic extracts from cells treated with insulin, the cyclic AMP dependent protein kinase activity, protein kinase C activity and protein kinase activities tested on histones H2b or phosvitin are not modified. The S6 kinase activity promoted by insulin treatment is separated from main cytosolic protein kinases by ion exchange chromatography.

exchange chromatography.

Exposure of astrocytes to tumour promoter phorbol ester (TPA 10-7 M) also produces a rapid increase of the S6 kinase activity in the cytosolic fraction. Simultaneously protein kinase C activity disappears from the cytosol in which cyclic AMP dependent protein kinase and phosvitin

kinase activities are not affected.

These effects of insulin, IGF1 and TPA are also observed in the presence of cycloheximide. These data indicate that S6 kinase activity in astrocytes is promoted from a preexisting molecule, probably via the tyrosine kinase-insulin receptor and/or protein kinase C.

THREE DISTINCT FORMS OF TYPE 2A PROTEIN PHOSPHATASE IN HUMAN ERYTHROCYTE CYTOSOL.

Hirofumi Usui, Michinori Imazu, Kouji Maeta, Haruhisa Tsukamoto, Kazuyoshi Azuma, Masao Takeda,

Department of Biochemistry, Hiroshima University School of Medicine, Kasumi, Minami-ku, Hiroshima

734, Japan.

Three distinct forms (I, III, IV) of type 2A protein phosphatase in human erythrocytes were purified to near homogeneity, as judged by polyacrylamide gel electrophoresis (PAGE). The apparent molecular weights of I, III and IV were estimated from Stokes radii and s_{20} , w values to be 180,000, 177,000 and 104,000 respectively. From the molecular weights and intensities of the Coomassie bluestained bands which were separated by sodium dodesyl sulfate-PAGE (Laemmli), subunit structures were determined to be $\alpha_1\beta_1\delta_1$ for I, $\alpha_1\beta_1\gamma_1$ for III and $\alpha_1\beta_1$ for IV. $\alpha_1\beta_1\gamma_1$ and $\delta_1\beta_2$ for III and $\delta_1\beta_2$ for IV. $\delta_1\beta_2$ and $\delta_1\beta_2$ may be and 74kDa bands respectively. The treatment with 80% ethanol converted I, III and IV into M_T = 31,000 forms (34kDa bands) which had essentially the same physical and catalytic properties, and heparin-Sepharose column chromatography converted more than 90% of I and 20-30% of III to lower molecular weight forms which were indistinguishable from IV $(\alpha_1\beta_1)$ in physical and catalytic properties, indicating that I, III and IV have a common subunit structure of $\alpha_1\beta_1$. Specific activity (units/mg) of $\alpha_1\beta_1\delta_1$, $\alpha_1\beta_1\gamma_1$, $\alpha_1\beta_1$ and $\alpha_1\beta_1$ were 400, 5000, 1500 and 6500 respectively, with P-H2B histone as substrate, and were 50, 50, 300 and 1000 respectively, with phosphorylase $\alpha_1\beta_1$ as substrate. From these values, it was suggested that $\alpha_1\beta_1$ but inhibited the phosphorylase phosphatase activities of $\alpha_1\beta_1$. The molar ratio of I, III and IV in human erythrocyte cytosol was estimated to be 7:1:13.

203 WHAT IS THE FUNCTION OF N-DOMAIN THE STRUCTURE OF WHICH IS IDENTICAL AMONG METAZOAN CALMODULINS? Koichi Yagi Department of Chemistry, Hokkaido Universiy, Sapporo, JAPAN

Calmodulins have been isolated from various vertebrates, invertebrates, fungi and plants. The primary structures from N-terminal to glycine at 98th position are identical among the metazoan calmodulins. According to the 1 H-NMR study of calmodulin, N-domain and C-domain after separation by tryppin maintained an identical conformation as those in the mother protein, respectively. It indicates that no interaction between the two domains exists in calmodulin. Ca^{2^+} exchange rates were estimated to be about 300-500 sec 1 in the N-domain and 3-10 sec 1 in the C-domain. Ca^{2^+} binding were measured using flow-dialysis method. The two low affinity sites are located in N-domain and the two high affinity sites in C-domain. The two mol of Ca^{2^+} binding to each domain were positively cooperative, but no interaction was observed between the Ca^{2^+} binding of two domains. Therefore, the two domains behave independently. Because of their different Ca^{2^+} binding properties, the two domains are expected to take different parts in receiving Ca^{2^+} signals. Our results suggest that Ca^{2^+} first binds to the C-domain and the Ca^{2^+} -saturated C-domain anchors it to the target proteins. N-domain then quickly respond to a small change in the Ca^{2^+} concentration, working directly in the Ca^{2^+} regulation. Although it is not yet clear why the primary structures of N-domain are maintained strictly to be the same, it must be needed to fulfill the transfer of Ca^{2^+} -carrying information precisely in Metazoa. It can also be speculated that a common structure to accept N-domain is present in many target proteins.

204 IDENTIFICATION OF THE ATP.Mg-DEPENDENT PROTEIN PHOSPHATASE ACTIVATOR (F.) AS A MYELIN BASIC PROTEIN KINASE IN THE BRAIN. Shiaw-Der Yang, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.

The activating factor F of the ATP.Mg-dependent protein phosphatase F M was purified to near homogeneity from pig brain by a procedure involving chromatography on phosphocellulose, phosvitin-Sepharose 4B and Blue Sepharose CL 6B. A specific myelin basic protein (MBP) kinase was found to co-purify with F in constant ratio throughout purification. It also proved impossible to separate the two activities on non-denaturing gel electrophoresis and 5-20% sucrose density gradient ultracentrifugation. Kinetic study indicated that MBP, presumably a substrate for F, could compete with F M for F, and thereby prevent the F,-mediated activation of the F M activity. All the results taken together demonstrate that MBP kinese and F, are localized on the same protein. This, together with the data that F, by activating the ATP.Mg-dependent phosphatase, promotes the dephosphorylation of MBP phosphorylated by F, itself, suggests the evidence for a protein bearing two opposing activities involved in the regulation of brain functions. Moreover, since F, was tightly associated with the purified brain myelin membrane, the results further support the notion that F, may well be an endogenous protein kinase responsible for the cyclic phosphorylation-dephosphorylation of the central nervous system myelin.

IDENTIFICATION OF THE ATP.Mg-DEPENDENT PROTEIN PHOSPHATASE ACTIVATOR FA
AS A MYELIN BASIC PROTEIN KINASE IN THE BRAIN
Shiaw-Der Yang
Institute of Life Science, National Tsing Hua University, Hsinchu, Taiwan

Republic of China

The activating factor F, of the ATP.Mg-dependent protein phosphatase F, M was purified to near homogeneity from pig brain. A specific myelin basic protein kinase was found to co-purify with F, in constant ratio throughout purification. It also proved impossible to separate the two activities on native disc gel electrophoresis and on 5-20 sucrose gradient ultracentrifugation. Kinetic study indicated that myelin basic protein, presumably a substrate for F, could compete with F, M for F, and thereby prevent the F, mediated activation of the F, M activity. All the results taken together demonstrate that MBP kinase and F, are localized on the same protein. This, together with the data that F, by activating the F, M activity, promotes the dephosphorylation of MBP phosphorylated by F, itself, süggests evidence for a protein bear ing two opposing activities involved in the regulation of brain functions. Since F, was tightly associated with the purified intact brain myelin membrane, the results further support the notion that F, is an endogenous protein kinase responsible for the cyclic phosphorylation-dephosphorylation of the central nervous system myelin. ACKNOWLEDGEMENTS - This work was supported in part by National Science Council in

Taiwan, Republic of China.

PHOSPHORYLATION OF BRANCHED-CHAIN 2-OXOACID DEHYDROGENASE COMPLEX IN ISOLATED ADIPOCYTES by S.J. Yeaman & S.M.A. Jones (Department of Biochemistry, University of Newcastle upon Tyne, U.K.) Branched-chain 2-oxoacid dehydrogenase complex (BCOADC) is regulated by reversible phosphorylation. Phosphorylation, which causes inactivation of the complex, is catalysed by a specific kinase intrinsic to the complex. The kinase is inhibited in vitro by the 2-oxoacid substrates of the complex. We have found that the phosphorylation state of the complex in isolated rat adipocytes is also regulated by the concentration of branched-chain 2-oxoacids in the medium. Purified complex has also been demonstrated to oxidise 2-oxobutyrate and 4-methylthio-2-oxobutyrate with kinetic constants close to those for oxidation of the branched-chain 2-oxoacids. This implicates BCOADC in the catabolism of five essential amino acids, namely leucine, isoleucine, valine, threonine and methionine. Furthermore these additional substrates inhibit the kinase in the isolated adipocyte system, indicating that they may play a role in regulation of the activity of the complex.

206 ADP-RIBOSYLATION OF NON-MUSCLE ACTIN BY BOTULINUM C2 TOXIN:
K. Aktories, M. Bärmann, M. Laux, P. Presek, K.H. Reuner and B. Schering. Rudolf-Buchheim-Institut
für Pharmakologie, D-6300 Giessen, F.R.G.

Botulinum C2 toxin (BtoxC2), which causes hypotonic effects, increase in vascular permeability and gut secretion, mono-ADP-ribosylates a 43 kDa protein in various cell types including human platelets, S49 lymphoma cells, neuroblastoma x glioma hybrid cells and chick embryo cells (CEC). We identified the toxin substrate protein as actin by means of peptide mapping, immunoprecipitation and immunoblotting. Half-maximal and maximal ADP-ribosylation of platelet actin was found at 0.1 and 3 μ g/ml BtoxC2. The Km value of the ADP ribosylation reaction for NAD was about 1 μ M. The ADP-ribosylated actin bound to DNase sephanose matrix and was eluted by guanidine-HCl (3 M) or formamide (40 %). Purified platelet and liver G-actin and much less platelet and liver F-actin, but not skeletal muscle F- or G-actin were ADP-ribosylated by BtoxC2. Bhalloidin blocked the toxin induced ADP-ribosylation. Toxin-catalyzed ADP-ribosylation of purified actin decreased the viscosity of polymerized actin and prevented the formation of the typical microfilament network. BtoxC2 pretreatment of intact cells largely reduced the ADP-ribosylation of the protein substrate in lysed cell preparations. Furthermore, in 32p-loaded CEC, BtoxC2 induced the labelling of actin. Treatment of CEC with BtoxC2 caused cell roundings in a time and concentration dependent manner, which correlated with the toxin-catalyzed ADP-ribosylation of actin. The findings indicate that actin is the pathophysiological substrate of BtoxC2 and suggest a fundamental role of actin in the pathogenetical mechanism of BtoxC2. BtoxC2 appears to be an important tool to study physiological processes which involve non-muscle actin.

Supported by the Deutsche Forschungsgemeinschaft.

207 ENERGY UTILIZATION IN SIGNAL TRANSDUCTION. R. Dean Astumian and P.B. Chock, Laboratory of Biochemistry, NHLBI, NIH, Bethesda, MD 20892.

Inter- and intracellular communication require the expenditure of energy by a cell. For example, signal amplification basically means an increase in the amount of information available to, and hence reflects a decrease in the entropy of, the system. This can be accomplished only by the utilization of stored free energy such as that in ATP.

Here we analyze a number of proposed schemes for intracellular signal transduction in terms of the efficiency and effectiveness of energy usage. Criteria used were sensitivity, responsiveness, and gain. We find that cyclic cascade mechanisms present a significant advantage over simple allosteric control in a number of respects. Also, some schemes for allosteric regulation (e.g., "stamping" mechanism) are shown to contradict simple thermodynamic principles.

The key enzymes responsible for directly mediating communication between the cell and its environment (intercellular signal transduction) are transmembrane proteins. We discuss ways in which these enzymes can directly use energy contained in the membrane potential and in chemical gradients of various substances to effect transmembrane information transfer and signal amplification.

INTERRELATIONSHIPS OF CYCLIC AMP(cA) AND CALCIUM(Ca2+) IN SECRETABOBUE INDUCED STIMULATION OF ACID SECRETION IN RAT PARIETAL CELLS ENRICHED BY CENTRIFUGAL ELUTRIATION. E.B. Black, S.J. Strada and M.J. Thompson, Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688

Becretagogue stimulation of acid secretion and the possible interrelationships of Ca2+ and cA in the regulation of stimulus-secretion coupling has been studied in enriched parietal cell (PC) populations using a newly developed centrifugal elutriation procedure for rat gastric mucosal cell fractionation. The PC fraction is 60-80% pure as judged by light microscopy and FACS analysis and greater than 95% viabile as determined by trypan blue dye exclusion. Comparative studies of the rates of cA accumulation in PC using forskolin (F), isoproterenol (Iso) and histamine (H) and hydrogen ion production measured indirectly with 14C-aminopyrine accumulation (AP) show similar maximal secretory rates despite midely varient cA accumulation rates. The calmoldulin antagonists, fenoctimine (Fn) and trifluoperazine (TFP), inhibit AP induced by all three agonists. Both agents also inhibited carbachol (C) induced AP accumulation (Ki = 60 nH). Further studies utilizing the calcium sensitive, fluorescent indicators Buin 2 or fura 2 show that C increases intracellular Ca++ from 930 nH to 2295 nH with a transient duration of 1.5 to 2 min. Studies of H action with Fura 2 indicate lesser involvement of Ca2+ than those of C whereas neither F nor Iso appear to modify Ca2+ levels in rat parietal cells. These results suggests a possible interrelationship of both Ca++ and CA in H,F and Iso and C induced acid secretion. This research is supported by USPHS grant 33538.

ADENYLATE CYCLASE AS A PROBE OF THE RELATIONSHIP BETWEEN THE EFFECTS OF ETHANOL ON THE PHYSICAL AND FUNCTIONAL PROPERTIES OF THE MEMBRANE. <u>D.C. Bode</u> and P.B. Molinoff, University of Pennsylvania, Philadelphia, PA 19104

The effects of ethanol on the physical and functional properties of the plasma membrane were investigated using membranes prepared from wild-type S49 lymphoma cells. The effects of ethanol on the physical properties of the membrane were assessed by measuring the fluorescence anisotropy of diphenylhexatriene (DPH). The β-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the effects of ethanol on the functional properties of the membrane. The effects of ethanol in vitro included a decrease in fluorescence anisotropy (equivalent to an increase in membrane fluidity), an increase in adenylate cyclase activity, and a rightward shift in the dose-response curve for stimulation of adenylate cyclase activity by isoproterenol. The last of these effects was accounted for by a decrease in the affinity of the receptor for isoproterenol in the presence of ethanol. Following chronic exposure of cells to 50 mM ethanol for 4 days, adenylate cyclase activity was decreased. There were no differences, however, between membranes prepared from control and ethanol-treated cells in terms of the effects of ethanol in vitro. Anisotropy was lower in membranes prepared from ethanol-treated cells than in control membranes. There were no differences in the cholesterol:phospholipid ratio or in the fatty acid composition of the plasma membrane between control and ethanol-treated cells. There were small differences in the phospholipid composition, but these could not account for the difference in anisotropy between control and ethanol-treated cells. (Supported by USPHS AA O6215)

STIMULUS-SECRETION-SYNTHESIS COUPLING IN LACTOTROPHS AND CORTICOTROPHS OF RAT ANTERIOR PITUITARY: ROLE OF CALCIUM AND CYCLIC AMP. J.R. Dave, L.E. Eiden, D. Lozovsky, J.A. Waschek and R.L. Eskay. LCS, NIAAA, DICBR and LCB, NIMH, Bethesda, MD-20892.

Stimulus-secretion-synthesis are continuous events occurring in most secretory cells; however, the nature of coupling between these events in a number of anterior pituitary hormone secreting cells is not clear. The objective of this study was to determine the role of calcium and cyclic AMP in stimulus-mediated secretion and synthesis events of POMC-derived peptides and prolactin (PRL) in cultured rat anterior pituitary (AP) cells. Treatment of AP cells with a calcium channel blocker (D600, 10 uM) had no effect on beta-endorphin (BE) release and POMC mRNA levels. However, this treatment produced a 70% and 25% decrease in PRL release and mRNA levels, respectively. Incubation of AP cells in calcium-free media did not alter BE release, but decreased PRL release and POMC and PRL mRNA levels by approximately 50%. Treatment of AP cells with either D600 or calcium-free media partially blocked CRF- or forskolin (FN)-stimulated BE release and completely blocked FN-stimulated PRL release and PRL mRNA levels. The calcium agonist barium (1 mM) produced a two-fold increase in BE and PRL release, which was blocked by D600 and enhanced in the absence of calcium. Treatment of cells with barium had no effect on POMC mRNA levels but increased PRL mRNA levels. Our results document that i) in the absence of calcium, basal or stimulus-mediated PRL secretion and PRL mRNA levels are dramatically reduced, whereas, stimulated but not basal BE secretion is partially blocked, and ii) the effect of calcium-free media on PRL mRNA, but not on POMC mRNA levels, can be reversed by the addition of barium. These findings support previous observations and suggest that both calcium and cAMP may act as intracellular second messengers in lactotrophs, whereas of the two, only cAMP functions as an intracellular second messenger coupling stimulus-secretion-synthesis events in corticotrophs of the anterior pituitary gland.

211 CLONED COMA FOR SPECIES OF RNA THAT ARE REGULATED BY CYCLIC AMP IN NG108-15 NEUROBLASTOMA-GLIOMA HYBRID CELLS.

M. Y. Giovanni, B. Raj, B.S. Schrier, and M. Nirenberg. NIH, Bethesda, MD. Prolonged elevation of cAMP levels of NG108-15 cells shifts relatively undifferentiated cells to a differentiated state with respect to some neuronal properties and increases the ability of the cells to form synapses in vitro with muscle cells. A cDNA library, prepared from poly A* RNA obtained from differentiated NG108-15 cells treated with 1 mM dibutyryl cAMP for 5-7 days, was screened by differential colony hybridization using cDNA probes prepared from cytoplasmic poly A* RNA isolated from undifferentiated (D*) logarithmically dividing cells or from differentiated (D*) cells that had been treated with 1 mM dibutyryl cAMP for 5-7 days. Colonies with recombinant plasmids were found which hybridize to more D* 32P-DNA probe than D* 32P-DNA. These colonies comprise < 1% of the colonies screened. Some colonies also were found with more D* 32P-DNA hybridized than D* 32P-DNA. Cloned DNA in most colonies hybridized with approximately the same amounts of D* and D* 32P-DNA. Different concentrations of cytoplasmic poly A* RNA from D* or D* cells were applied to filters and hybridized with cloned 32P-cDNA probes from different recombinant plasmids. Approximately 20 clones were found with cDNA inserts that hybridize to species of poly A* RNA that increased in abundance 10-90 fold when NG108-15 cells were treated for prolonged periods with dibutyryl cAMP. These results show that some species of NG108-15 poly A* RNA increase in abundance when cells are treated with dibutyryl cAMP and that other species decrease in abundance.

212 STRUCTURE-FUNCTION ANALYSIS OF THREE CAMP-INDEPENDENT FORMS OF the CAMP RECEPTOR PROTEIN.

James G. Harman, Keith McKenney and Alan Peterkofsky. NIH, Bethesds, MD.

cAMP receptor protein (CRP)-dependent operon expression in Escherichia coli requires the CRP:CAMP form of wild-type CRP. One class of crp mutants (crp*) activates CRP-dependent promoters in strains incapable of endogenous cAMP synthesis (cya). Of fundamental interest is the difference in regulatory properties exhibited by crp* mutant strains, some of which respond to glucose-mediated repression of β-galactosidase synthesis, some of which do not. To gain a better understanding of the mechanisms of cAMP-independent promoter activation and repression we have: 1) determined through cloning and DNA sequence analysis the primary structure of three CRP* forms of CRP; 2) purified the mutant proteins; 3) characterized the effect of mutations on the secondary structure of these forms of CRP and 4) studied CRP* activated lac promoter regulation in a purified in vitro transcription system. The results of this study show that crp alleles containing mutations that substitute a) threonine for alanine at position 144, b) isoleucine for threonine at position 127 and lysine for glutamine at position 170, or c) isoleucine for threonine at position 127, lysine for glutamine at position 170 and arginine for leucine at 195 encode proteins which, in the absence of cAMP, have conformations that are similar to the wild-type CRP:cAMP complex conformation and that promote cAMP-independent activation of a CRP-dependent promoter in vitro. In addition, a CRP allele-specific inhibition of CRP* activity was observed in vitro in reaction mixtures containing spermidine that parallels crp* strain-specific sensitivity to glucose-mediated repression of β-galactosidase synthesis in vivo. This suggests that the catabolite repression observed in crp* strains that lack cAMP may be mediated through a mechanism that results in an inhibition of CRP* activity.

DIFFERENTIAL REGULATION BY CALMODULIN OF BASAL, GTP- AND DOPAMINE-STIMULATED ADENYLATE CYCLASE ACTIVITIES IN BOVINE STRIATUM. <u>Jeffrey Harrison</u>, C.K. Mickevicius and M.E. Gnegy. Dept. Pharmacology, Univ. of Michigan Med. Sch., Ann Arbor, MI 48109

We have examined the concentration requirements for calmodulin (CaM) in altering basal, GTP- and dopamine (DA)-stimulated adenylate cyclase activities in an ECTA-washed particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity 3.5-fold with sn EC $_{50}$ of 100 nM. GTP stimulated basal activity 2-fold with an EC $_{50}$ of 300 nM. In the presence of CaM, GTP was able to further activate adenylate cyclase. With increasing concentrations of CaM, however, the EC $_{50}$ for GTP was decreased 5-fold. In the presence of only 90 nM CaM, the EC $_{50}$ for GTP was maximally reduced from 300 nM to 60 nM. CaM could also increase the maximal activation of adenylate cyclase by the neurotransmitter, DA. Similarly, the concentration of CaM required to maximally increase the DA-stimulated activity was significantly less than the concentration required to maximally activate basal adenylate cyclase activity. The EC $_{50}$ for CaM in increasing the CTP sensitivity and maximal response of the adenylate cyclase to DA is 13 nM as compared to an EC $_{50}$ of 100 nM in activation of basal adenylate cyclase activity. These data support the concept of a dual regulatory role for CaM in the activation of adenylate cyclase activity. Supported by NIMH 36044.

A STANSON

Adenylate cyclase modulators regulate glucose transport in rat adipose cells by changing glucose transporter intrinsic activity H.G. Joost, T.M. Weber, S.W. Cushman, and I.A. Simpson, Experimental Diabetes, Metabolism and Nutrition Section, National Institutes of Health, Bethesda.

In isolated rat adipose cells, isoproterenol reduces insulin-stimulated glucose transport activity by 60%. Plasma membranes isolated from these cells after sequential treatment with 10 nM insulin (25 min), 0.5 uM isoproterenol plus 2.5 ug/ml adenosine deaminase (15 min), and 2 mM KCN (2 min) contain an unchanged concentration of glucose transporters (31 ± 7, mean ± 58M, vs. 31 ± 4 pmol/mg protein in controls), but transport glucose at a reduced rate (19 ± 6 vs. 48 ± 9 pmol/mg protein/sec). This finding contrasts with the effect of insulin which comprises parallel increases in plasma membrane glucose transport concentration and transport activity. Kinetic studies of isoproterenol-inhibited glucose transport reveal a 60% decrease in V (2900 ± 350 vs. 7200 ± 1000 pmol/mg protein/sec) and a small increase in K (15.1 ± 1 vs. 13.0 ± 0.5 mM). Incubation of intact cells in the presence of the adenylate cyclase inhibitor adenosine stimulates plasma membrane glucose transport activity compared to that in the absence of adenosine (44 ± 6 vs. 36 ± 6 pmol/mg protein/sec). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporte intrinsic activity.

INHIBITION OF VASCULAR TYPE IV PDE: PROBLEMS IN EVALUATING POTENCY OF INHIBITORS.

T. KARIYA and R.C. DAGE, MERRELL DOW RESEARCH INSTITUTE, CINCINNATI, OH 45215, U.S.A.

During evaluation of newly synthesized compounds for cardiotonic activity, we have noted that some compounds produced relatively greater lowering of blood pressure for a given cardiotonic effect. These compounds inhibited dog cardiac Type IV cAMP phosphodiesterase (PDE III). It was of interest to us to determine if differences in sensitivity between cardiac and vascular Type IV PDE could explain our observations. Dog heart and femoral arteries were homogenized with a Polytron and the PDEs were fractionated into Types I, II and IV PDE by DEAE-cellulose chromatography. Inhibition studies were done on Type IV PDE using an inhibitor that is specific for this isoenzyme (enoximone) and a non-specific, competitive inhibitor of PDEs (isobutylmethylxanthine, IBMX). For dog cardiac Type IV PDE, the IC50 of both enoximone and IBMX was 4 μ M at a substrate concentration of 0.5 μ M cAMP. At the same substrate concentration, the IC50 of enoximone for vascular Type IV PDE varied greatly (5 μ M - >100 μ M) from preparation to preparation, whereas inhibition by IBMX was relatively uniform (4 μ M - 7 μ M). It was shown that differences in homogenization of the samples of vascular tissue resulted in the observed variability. Prolonged homogenization with the Polytron yielded preparations of Type IV PDE that were relatively insensitive to inhibition by enoximone.

6 CYCLIC AMP ACCUMULATION IN RABBIT AGREA SMOOTH MUSCLE CELLS ALTERED IN THE PRESENCE OF HYPERLIPIDEMIC SERUM

Yukio Kishi, Fujie Numano, Keiji Nishiyama, Michiyoshi Yajima and Fujio Numano

Third Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo, Japan

We investigated the effect of hyperlipidemic serum on cAMP accumulation in cultured smooth muscle cells from the rabbit sorta. The cells were grown to confluence, then cultured for 24 h in hyperlipidemic medium (total cholesterol: 2.2 mmol/1). CAMP accumulation was enhanced in response to isoproterenol 10⁻⁶ M, as compared to control cells, and this enhancement was still detectable in the presence of IBMX 10⁻³ M, a potent inhibitor of phosphodiesterase. Application of propranolol 10^{-4} M at 5 min after ispoproterenol showed a similar time course for cAMP disappearance. The phosphodiesterase activity in the 40,000 g supernatant of the Triton X-100 solubilized homogenates of the cells in hyperlipidemic medium remained unchanged. β -receptor assays showed an increased $B_{\rm max}$ with a similar Kd, and such may contribute, at least in part, to the increased adenylate cyclase activity. An extended incubation in the presence of hyperlipidemic medium attenuated the cAMP accumulation, possibly due to excessive increases in the total cholesterol content.

The section of the se

· payongs with a re-

ROLE OF PROTEIN KINASE C (PKC) IN CELLULAR FUNCTIONS: INHIBITION BY SPHINGOID LONG-CHAIN BASES, J. D. Lambeth, E. Wilson, J. Kinkade, and A. H. Merrill, Jr.; Emory Univ. Med. Sch.; Atlanta, GA 30322. PKC has been implicated in growth and differentiation (eg. PMA-induced differentiation of HL-60 cells), secretion [eg. PMA-induced secretion of lactoferrin and vitamin B12-binding protein from neutrophils (PMN)], and PMA activation of the PMN oxidative burst. Long-chain bases (sphinganine and sphingosine) were recently found to be potent inhibitors of PKC in a micelle-reconstituted system [Hannun et al. (1986) J. Biol. Chem. in press]. We have tested long-chain bases as inhibitors of the above cellular functions and documented their utility in testing PKC-dependent vs.
-independent processes. The following effects are described: (1) Long-chain bases block PMAinitiated differentiation of HL-60 into macrophage-like cells, but do not affect retinoate-induced differentiation. (2) Long-chain bases block activation of the oxidative burst not only by PMA, but also by other agonists (discylglycerol, FMLP, A23187, arachidonate, and opsonized zymosan); inhibition occurs at the same concentration for all agonists, implying the same site of inhibition; sphinganine competition for [H]-phorbol dibutyrate binding to FMN strongly implicates PKC as the site of inhibition. (3) Neutrophil specific granule secretion appears to be regulated by PKC, while azurophilic granule secretion is not. Long-chain bases block secretion, of specific but not azurophilic-granule markers. (4) Agonist-induced phosphorylations of various PMN and HL-60 proteins are blocked by sphinganine. In addition, these inhibitors appear to be specific; agonist-induced calcium transients, calmodulin-dependent processes, and cAMP-dependent processes were not affected. Thus, long-chain bases are naturally occurring inhibitors of PK-C which may function as physiologic negative regulators of this enzyme. [Supported by NIH grants AM27373, CA22294, and GM 33369].

218 ORGANELLE SYNESIS HYPOTHESIS OF SIGNAL TRANSDUCTION A.N. Malviya, P. Anglard and A. Masmoudi

A protein phosphorylating activity, independent of calcium, has been separated from protein kinase-C (FEBS Lett. 199, 213-216, 1986). This activity has been termed as protein kinase-L and is manifested by phorbol ester (TPA) or diacylglycerol (DAG) in the presence of phospholipid. Protein kinase-L activity is reported here to be localized in the nuclei isolated from rat liver, calf thymus, and cultured chicken neurons. In all the three cell types studied protein kinase-L activity was abundantly present as contrasted from a negligible protein kinase-C activity. Protein kinase-L activity observed in rat liver nuclei seems distinct from the activity seen in nuclei isolated from calf thymus or cultured chicken neurons in its response towards TPA or DAG examined with or without phosphatidylserine. A strong prima-facie case is advanced for organelle synesis in signal transduction coupled to tumor promotion. In this hypothesis, for the trigger of signal transduction, catalytic potential of protein kinase-C, protein kinase-L, and IP3 receptor seems best manifested at the site of plasma membrane, nucleus, and endoplasmic reticulum, respectively.

UBIQUITIN-ANTIBODIES BLOCK HIGH AFFINITY CHOLINE UPTAKE AT EXTRACELLULAR SITES IN RAT

PRAIN SYMAPTOSOMES. E. M. Meyer, C. West and V. Chau, Depts. of Pharmacology, Biochemistry, Anatomy and Cell Biology, Univ. Florida School of Medicine, Gainesville, FL 32610

Sodium-dependent [³H]-choline uptake and coupled [³H]-acetylcholine synthesis were inhibited in rat cerebral cortical synaptosomes in a dose-(1-10 ug/ml) and time-dependent manner by affinity-purified antibodies directed against ubiquitin (anti-lb). Neither sodium-independent [³H]-choline purified antibodies directed against ubiquitin (anti-Ub). Neither sodium-independent [4H]-choline uptake nor [3H]-acetylcholine release was affected by up to 10 ug/ml anti-Ub, indicating that the cholinergic terminals were not depolarized by the anti-Ub. Binding of anti-Ub to the synaptosome preparation, as measured with [125]-protein A, was saturable and occurred over the same concentration range (1-10 ug/ml) at which uptake-inhibition was observed. Although preimmune IgG bound to the synaptosome preparation to a greater extent and was apparently not readily saturable, this fortuitous binding was without effect on high affinity choline uptake and conversion to acetylcholine. The results suggest that a ubiquitin-protein conjugate is closely associated, on the synaptosomal surface, with the sodium-dependent choline transport system.

*R.P. Newton, +E.E. Kingston, *N.A. Hakeem and *J.H. Beynon *Department of Biochemistry, School of Biological Sciences, and *Royal Society Research Unit, University College of Swansea, Swansea SA2 BPP, U.K.

Although the existence of phosphodiesterases capable of cyclic CMP hydrolysis is now established, controversy has existed over reports of endogenous cyclic CMP and of putative cytidylate cyclase activity. The natural occurrence of cyclic CMP, together with cyclic UMP, IMP and dTMP, has recently been unequivocally demonstrated by means of f.a.b. mass spectrometry with m.i.k.e.s. scanning. This technique, together with the use of dual labelled [1 °C] - and [2 P]-CTP and h.p.l.c., t.l.c. and R1A, has enabled the identification of the eight labelled cytidine nucleotides resulting from the activity of cyclase preparations from brain, liver and kidney. The major component was the unused substrate, CTP, but the second major was 3',5'-cyclic CMP. In addition, CMP, CDP, cytidine 2'-aspartyl-3',5'-cyclic monophosphate, cytidine 2'-glutamyl-3',5'-cyclic monophosphate, cytidine 2'-monophosphate-3',5'-cyclic monophosphate and cytidine 3',5'-cyclic pyrophosphate were identified as minor components.

The presence of these four novel cytidine cyclic phosphate compounds may well be the cause of the conflicting reports concerning cytidylate cyclase assay and cyclic CMP-RIA; their identification has enabled the development of a cytidylate cyclase assay from which they are eliminated and a subsequent investigation of the properties of this enzyme.

221 UNAMBIGUOUS ASSAY OF CYTIDINE 3',5'-CYCLIC MONOPHOSPHATE AND CYTIDYLATE CYCLASE ACTIVITY
Russell P. Newton and Nabil A. Hakeem
Department of Biochemistry, School of Biological Sciences, University College of Swansea,
Swansea SAZ 8PP, U.K.

The structures of four novel cytidine cyclic phosphates have been elucidated. These labelled compounds are produced from $[^{32}P]$ - or $[^{14}C]$ -CTP during conventional assays for cytidine cyclase and are also immunoreactive with antisera raised against cyclic CMP. Knowledge of their structures has permitted development of (a) a single column composed of two separate tiers of ion-exchanger which separates cyclic CMP from these contaminants to form the basis of an assay for cytidylate cyclase, and (b), a single column composed of three tiers of ion-exchanger which separates cyclic CMP from these four novel compounds, from other cytidine nucleotides and from cyclic AMP and cyclic GMP, and is used as a separation stage prior to radioimmunoassay.

Cytidylate cyclase activity, distinct from adenylate and guanylate cyclase activity, was found in each tissue examined, the highest activity being in liver and kidney and the major subcellular site a 25000 x g fraction containing lysosomes, mitochondria and microsomes. This activity was elevated in regenerating tissue stimulated by testosterone and calmodulin and was inhibited by UTP and ITP. Cyclic CMP was found also in each mammalian tissue examined, usually within a concentration range of 0.1 to 40 pmol/g tissue. The highest concentrations were in the uterus and kidney and the lowest in brain, testis, ovary and plasma. These concentrations decreased with age but increased with increased cellular growth rate.

NEUROPEPTIDE BIOSYNTHESIS IN CHROMAFFIN AND NEUROBLASTOMA CELLS: REGULATION BY CYCLIC AMP, PROTEIN KINASE C AND CALCIUM. Rebecca M. Pruss, Lee E. Eiden and James A. Waschek. Laboratory of Cell Biology, NIMH, Bethesda, MD, 20892.

Stimulation of nicotinic receptors on the surface of chromaffin cells causes the calcium-dependent

Stimulation of nicotinic receptors on the surface of chromaffin cells causes the calcium-dependent secretion of enkephalin peptides and vasoactive intestinal polypeptide (VIP) and is accompanied by a calcium-dependent increase in de novo biosynthesis of VIP and enkephalin, and proenkephalin mRNA. Peptide biosynthesis is also stimulated by agents which cause cell depolarization, such as elevated potassium and veratridine, and by the calcium agonist barium, indicating that calcium plays a second messenger, rather that merely a permissive role, in secretagogue stimulation of neuropeptide biosynthesis. Elevation of intracellular cyclic AMP also causes a stimulation of enkephalin and VIP synthesis in chromaffin cells, which is independent of extracellular calcium. Phorbol ester stimulates the biosynthesis of VIP, but not enkephalin, indicating a selective regulation of neuropeptide expression by two second messenger systems in chromaffin cells.

In human neuroblastoma cells in culture, synthesis of VIP and its messenger RNA is synergistically regulated by both cyclic AMP and phorbol ester. These cells do not exhibit a calcium-dependent release of VIP upon depolarization with elevated extracellular potassium, nor are they biosynthetically responsive to elevated potassium or barium.

These results indicate that the expression of the genes encoding proenkephalin A and VIP are differentially responsive to two protein kinase-stimulated pathways, and that biosynthesis is regulated by calcium influx in cells that secrete these peptides in a calcium-dependent way.

VANADATE POTENTIATES VASOPRESSIN-INDUCED INOSITOL PHOSPHATE TURNOVER.

N. Ajyar, P. Nambi, G. Gessner and S.T. Crooke, Mol. Pharm., SK&F Labs., Phila., Pa. 19101 Rat aortic smooth muscle cells (A-10) contain vasopressin receptors of V1 subtype. Incubation of Rat aortic smooth muscle cells (A-10) contain vasopressin receptors of VI subtype. Incubation these cells with vasopressin (AVP) resulted in an (a) inhibition of isoproterenol-stimulated cAMP accumulation and (b) stimulation of phosphatidylinositol turnover. In an attempt to delineate the mechanism of AVP action in these cells, we have used tumor promoting phorbol ester (activator of protein kinase C) to test its effect on AVP action. Pretreatment of the cells with active phorbol ester resulted in an inhibition of the AVP-mediated responses. Further binding studies with³H SK&F 101926, a novel vasopressin antagonist, suggested that these receptors are coupled to a guanine nucleotide binding protein and that pretreatment with phorbol ester resulted in the uncoupling of the receptor from the guanine nucleotide binding protein. Here we have used vanadate, an inhibitor of phosphatase to test its effects on AVP-mediated responses. Pretreatment of TH inositol-labeled cells with vanadate resulted in an increase of AVP-stimulated inositol di- and tris phosphates as much as twofold without significantly changing inositol monophosphate levels. Vanadate potentiated AVP response at all concentrations of hormone tested without affecting the half-maximal concentration of the hormone necessary for inositol phosphate accumulation. While in control cells, AYP-induced inositol phosphate accumulation was observed only in the presence of LiCl, in vanadate-treated cells significant increase in inositol di- and tris-phosphates was observed even in the absence of LiCl. Vanadate pretreatment had little effect on H AYP binding to intact cells or on the AYP-induced inhibition of isoproterenol-stimulated cAMP accumulation. These data suggest that vanadate may be exerting its effect by inhibiting inositol di and tris phosphatases.

LIGAND-STIMULATED PRODUCTION, METABOLISM, AND RECEPTOR BINDING OF INOSITOL TRISPHOSPHATE DURING THE STEROIDOGENIC ACTION OF ANGIOTENSIN II. Tamas Balla, Gaetan Guillemette, Albert J. Baukal and Kevin J. Catt, NICHD, NIH, Bethesda, MD 20892

Angiotensin II (AII) exerts its steroidogenic effects through calcium-mobilizing receptors that promote the generation and actions of inositol trisphosphate (ins-P₂) via phospholinase-C-catalyzed breakdown of polyphosphoinositides. In rat adrenal glomerulosa cells labeled with [H]inositol, AII caused rapid (< 3 sec) breakdown of both PIP and PIP, with concomitant formation of inositol phosphates. In addition to rapid and prominent formation of ins-P, two isomers of both ins-P, and ins-P were detected by HPLC. Ins-1,4,5-P, showed only a slight and transient rise with a peak at about 5 sec, whereas ins-1,3,4-P, increased steadily over 60 sec. Significant increases in ins-P, and ins-4-P at 2.5 sec, with no change in ins-1-P during the first 60 sec, revealed that ins-1,4,5and ins-4-P at 2.3 set, with no change in ins-1,4-P, with accumulation of ins-4-P, and that PI breakdown is not an early response to AII. The progressive formation over 20 min of ins-1,3,4-P, ins-1,4-P, and ins-4-P, all enhanced in the presence of lithium, was indicative of continued breakdown of polyphosphoinositides. Specific and high affinity (Kd \sim 1 nM) binding sites with low capacity (\sim 100 fmol/mg prot) for ins-1,4,5-P₃ were demonstrated in bovine adrenal cortex and shown to be distinct from the degradative enzyme ins-P₃-5'-phosphatase. The rapid kinetics of association and dissociation of ins-P₃ at these sites are consistent with its early and transient elevation during AII stimulation, and with its binding to receptors through which calcium is mobilized from intracellular storage pools. These results demonstrate that ins-1,4,5-P, formation and metabolism are early intermediate steps in the adrenal response to AII, and that ins-4-P production provides an index of sustained polyphosphoinositide hydrolysis during AII action in the glomerulosa cell.

225

INHIBITION OF PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C BY MANOALIDE.

C. Frank Bennett, Seymour Mong, Hsiao-Ling W. Wu and Stanley T. Crooke, Dept. of Mol. Pharm., Smith Kline and French Laboratories, Philadelphia, Pa. 19101.

Manoalide is a nonsteroidal sesterterpenoid isolated from sponge. Manoalide exhibits analgesic and anti-inflammatory activity in mouse models (Jacobs et al., Tetrahedron 41:981). Investigations on the mechanism of action for manualide revealed that it was a potent inhibitor of venom phospholipase A2 (PLA2), exhibiting IC50 values of 0.12, 0.7 and 1.9 μ M for bee, rattlesnake and cobra venom PLA2, respectively. However, intracellular PLA2's assayed in cytosolic and membrane fractions from several mammalian tissues were less sensitive to inactivation by manualide, exhibiting IC50 of 30 µM or greater. Cytosolic proteins, BSA, and poly-L-lysine protected purified bee venom PLA2 30 μ M or greater. Cytosolic proteins, BSA, and poly-L-lysine protected purified bee venom PLA2 from inactivation by manoalide, while free amino acids did not protect purified PLA2. Investigations on other intracellular targets for manoalide revealed that PI-specific phospholipase C (PLC) was more sensitive to inactivation by manoalide than PLA2(IC50= 1.5 and 30 μ M, respectively). A PI-specific PLC purified from guinea pig uterus (Mr = 64,000) also exhibited an IC50 of 1.5 μ M. Manoalide inhibited, in a concentration dependent manner, the synthesis of inositol-1-phosphate from DDT1MF-2 cells stimulated with norepinephrine (IC50 = 2.0 μ M). These results suggest that the anti-inflammatory activity of manoalide may be due, in part, to inhibition of PI-specific PLC. These results also demonstrate, for the first time, the potent inhibitory activity of manoalide on phospholipase C isolated from guinea pig uterus.

CELLS. T.J. Biden & C.B. Wollheim. Institut de Biochimie Clinique, Univ. of Geneva, Switzerland. Inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) acts as a second messenger to mobilize intracellular Ca2+ stores during the muscarinic stimulation of insulin release. It is degraded by phosphomonoesterases which sequentially remove the phosphate groups. An alternative route has been proposed whereby Ins 1,4,5-P3 is phosphorylated by a specific kinase to form inositol 1,3,4,5-tetrakisphosphate (Ins-P4) which is in turn converted to Ins 1,3,4-P3. Analysis of these metabolites by MPLC in insulin secreting RIMm5F cells prelabelled with ^3H -inositol now shows that cholinergic stimulation in Ca2+-depleted medium markedly increased the ratio of Ins 1,4,5-P3 to Ins 1,3,4-P3 + Ins-P4, relative to cells stimulated in Ca2+ containing medium. Ins 1,4,5-P3 to Ins 1,3,4-P3 + Ins-P4, relative to cells stimulated ^2H fold by raising Ca2+ from 10-7-10-5M (EC50 approx. 800nM). In contrast, 1,4,5-P3-phosphomonoesterase activity was not Ca2+-dependent. Moreover, the kinase displayed a Km for Ins 1,4,5-P3 of 1.5µM, rather than 30µM for the phosphomonoesterase. These results suggest that the rise in Ca2+ brought about by Ins 1,4,5-P3 generation would in turn enhance its catabolism via the inositol tris/tetrakisphosphate pathway. In pancreatic islets ^2H also plays a role in the generation of Ins 1,4,5-P3, which was not secondary to neurotransmitter release. This Ca2+-mediated effect played only a minor role following muscarinic stimulation of the islets, but was quantitatively important for the generation of Ins 1,4,5-P3 by the nutrient stimulus glucose.

DENTIFICATION OF A NUCLEOTIDE-SENSITIVE PHOSPHOLIPASE C IN LIVER PLASMA MEMBRANES.

D. Bojanic, M.A. Wallace, R.J.H. Wojcikiewicz, L.S. Bradham and J.N. Fain. Dept. of Biochemistry, University of Termessee, Memphis, TN 38163.

The hydrolysis of exogenous [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) to inositol phosphates by rat hepatic plasma membranes was investigated. In the absence of decaycholate (DCC), phospholipase C activity was not readily detected. DCC produced a dose dependent increase in activity up to 2mM after which the rate of hydrolysis decreased. GppNHp (100 wM) stimulated the DCC activated enzyme by 30 - 50% above basal. This stimulation was not specific for guanine nucleotides since AppNHp also stimulated the enzyme. GppNHp stimulation was only apparent with [3H]PIP2 as substrate; little or no effects were observed on [3H]Phosphatidylinositol 4-phosphate or [3H]Phosphatidylinositol hydrolysis. Phospholipase C had a pH optimum of 6.5-7.0 for both basal and GppNHp-stimulated activities. Time courses of [3H]PIP2 breakdown were linear up to 10 min of incubation and hydrolysis was temperature dependent with optimal nucleotide stimulation being observed at 37°C. The main product of [3H]PIP2 hydrolysis was identified as inositol 1,4,5-trisphosphate. No added calcium was required for activition of phospholipase C but activity was blocked by inclusion of lmM EGTA in the incubation. Magnesium partially inhibited inositol phosphate formation whereas all monovalent cations tested were stimulatory. These results provide further evidence for nucleotide regulation of phospholipase C. However, the lack of nucleotide specificity suggests that this enzyme may not be regulated solely by guanine nucleotides.

STIMULATION OF G1-- S TRANSITION OF Ca²⁺-DEPRIVED SERUM--IMULATED RAT LIVER EPITHELIAL CELLS BY INOSITOL 1,4,5-TRISPHOSPHATE AND PROTEIN KINASE C. Alton L. Boynton and Jean Zwiller. Cancer Research Center of Hawaii, 1236 Lauhala St., Honolulu, HT 95813.

Hydrolysis of phosphatidyl inositol 4,5-bisphosphate with the production of diacylglycerol (DAG)

Hydrolysis of phosphatidyl inositol 4,5-bisphosphate with the production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) appears to be a major signal transduction pathway involved in several biological responses including cell proliferation. The putative function of DAG is to stimulate protein kinase C activity and of IP3 to mobilize intracellular Ca2+ perhpas via an IP3-dependent protein kinase recently discovered in our laboratory. We have identified two extracellular Ca^{2+} -dependent stages of the G1 phase of the cell cycle of T51B rat liver epithelial cells. Both protein kinase C and IP3-dependent (via IP3 dependent protein kinase) events are required for these cell cycle transitions because both protein kinase C activators (TPA, DAG, DiCB) and the IP3-dependent protein kinase activator (IP3) must be added to serum-stimulated, Ca^{2+} -deprived T51B cells for successful GO-- G1 and G1-- S transition. An alteration of this membrane based signal transduction mechanism is indicated by the fact that neoplastic cells no longer require extracellular Ca^{2+} for Ca^{2+} -deficient medium while their non-neoplastic counterparts cannot. Supported by NIH/NCI grant no. CA39745, CA42942.

STIMULATION OF A PHOSPHOTRANSFERASE ACTIVITY BY INOSITOL 1,4,5-TRISPHOSPHATE. J. Zwiller, T. Rayson, A.L. Boynton, Cancer Research Center of Hawaii, Honolulu, HI 96813.

T. Rayson, A.L. Boynton, Cancer Research Center of Hawaii, Honolulu, HI 968I3.

The hydrolysis of phosphatidylinositol 4,5-bisphosphate by a GTP-dependent phospholipase C results in two second messengers, diacylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3). Recent results from our laboratory suggest that the function of both these second messengers is required for GO--GI and GI--S transition of serum-stimulated T51B rat liver cells. DG is known to stimulate protein kinase C activity in conjunction with Ca²⁺ and phosphatidyl-serine. IP3 has been demonstrated to stimulate the increase of intracellular free Ca²⁺ by releasing the ion from presumably the endoplasmic reticulum. We describe here an IP3-dependent phosphotransferase activity which we have putatively termed protein kinase I. Protein kinase I is extracted from T51B rat liver cells or from rat brain. Small quantities of protein kinase I are present in the 100.000xg supernatant of FGTA extracted cells Small quantities of protein kinase I are present in the 100,000xg supernatant of EGTA extracted cells and larger quantities are present in the detergent-extracted 100,000xg pellet. At present we can only speculate as to the function of protein kinase I. One obvious role may be in the mechanism of intracellular Ca²⁺ release from endoplasmic reticulum. Like other protein kinases, protein kinase I probably has numerous phosphoprotein substrates. Like several other protein kinases such as protein kinase A, C and G, protein kinase I may play a central role in such cellular responses such as neurotransmitter release, secretion, muscle contraction, differentiation and cell proliferation. The characterization, purification and function of protein kinase I are being investigated. Supported by NIH/NCI grant no. CA39745.

230

A MASS MEASUREMENT OF INOSITOL(1,4,5)TRISPHOSPHATE IN CHEMOATTRACTANT-STIMULATED RABBIT

NEUTROPHILS. Peter G. Bradford and Ronald P. Rubin, Medical College of VA. Richmond, VA 23298.

Previous studies from our laboratory using 32P-Ins(1,4,5)P3 demonstrated the presence of a specific intracellular receptor for this second messenger. In the present study, Ins(1,4,5)P3 content of fMet-Leu-Phe stimulated rabbit neutrophils was determined. Two independent assays of Ins(1,4,5)P3 mass were performed using ether-washed TCA-extracts derived from 3H-inositol-labeled, fMet-Leu-Phe-stimulated cells. Ins(1,4,5)P3 content of the extracts was assayed both by the ability of inositol phosphates in the extracts to displace ³²P-Ins(1,4,5)P3 from its intracellular receptor and to release sequestered ⁴⁵Ca²⁺ from nonmitochondrial stores of saponin-permeabilized cells. The relative proportions of ³H-Ins(1,3,4)P3, ³H-Ins(1,4,5)P3 and ³H-Ins(1,3,4,5)P4 in a series of extracts derived from cells stimulated for various times (5s - 5 min) were determined by RFIG. The relative capacity of each fraction to compete with ³²P-Ins(1,4,5)P₃ at its receptor and to release sequestered ⁴⁵Ca²⁺ from permeabililized cells coincided perfectly with the content of radioactive ³H-Ins(1,4,5)P₃ in the fraction and not with the content of either ³H-Ins(1,3,4)P₃ or ³H-Ins(1,3,4,5)P₄. Since these assays are selective for Ins(1,4,5)P₃ and are measures of mass, the amount of Ins(1,4,5)P3 formed in cells can be determined. Thus, the Ins(1,4,5)P3 content in neutrophils was found to rise from a basal value of 0.40 pmol/106 cells to a peak value of 0.40 pmol/106 cells after 10 sec stimulation and to return to baseline by 2 min. This study confirms the physiological relevance of the ³²P-Ins(1,4,5)P3 binding site and for the first time measures the mass of Ins(1,4,5)P3 formed in stimulated cells.

STUDIES ON THE INTERACTIONS BETWEEN THE CALCIUM MOBILIZATION AND CYCLIC AMP PATHWAYS IN 231 GUINEA-PIG HEPATOCYTES.

G.M. Burgess., R.K. Dooley., J.S. McKinney., E. Nanberg* and J.W. Putney, Jr. Division of Cellular Pharmacology, Medical College of Virginia, VA 23298 and *Wenner Gren Institute, Biologihus F3, University of Stockholm, S-106 91, Sweden.

The adenylate cyclase activating hormone isoproterenol (50nM) which, when given alone had no effect on 86Rb or 45Ca efflux, potentiated the effects of angiotensin (1-50nM) on 86Rb efflux and 45Ca efflux from guinea-pig hepatocytes. This effect occurred in the presence or absence of extracellular Ca²⁺, and required the simultaneous presence of both isoproterenol and angiotensin. Neither the Ca-ionophore A23187, nor 4- \$\beta\$ phorbol dibutyrate, separately or together, could substitute for angiotensin (cAMP can substitute for isoproterenol). The effects of isoproterenol were greatest with submaximal concentrations of angiotensin, while maximal concentrations of angiotensin were affected little. Isoproterenol did not substantially increase the formation of [3H]inositol trisphosphate, or alter the ratio of isomers, [3H]inositol 1,4,5-trisphosphate and [3H]inositol 1,3,4-trisphosphate, formed in response to angiotensin, suggesting that isoproterenol acts by increasing the sensitivity of the endoplasmic reticulum to the Ca²⁺-releasing action of inositol 1,4,5-trisphosphate. Isoproterenol also enhanced the phase of Ca²⁺ mobilisation involving Ca²⁺ centry which is consistent with the previously proposed functional linkage between receptor-regulated Ca²⁺ release and Ca²⁺ entry. (Supported in part by N.I.H. grant #AM-32823).

ALTERATION IN VASCULAR PHOSPHOINOSITIDE METABOLISM AND HEPATIC PHOSPHOLIPASE C COUPLED RECEPTORS IN A RAT MODEL OF SEPSIS. J. A. Carcillo*+, E. A. Suba*, R. Z. Litten+, and B. L. Roth*, *Naval Medical Research Institute, Bethesda, MD 20814-5055; +Armed Forces Radiobiological Research Institute, Bethesda, MD; and +Childrens Hospital, National Medical Center, Washington, DC.

We previously predicted that alterations in phosphoinositide (PI) metabolism and phospholipase C coupled receptors may cause the altered glucose metabolism and diminished vascular tone seen in septic shock (Chernow and Roth, Circ Shock 18:141-155, 1986). To test this hypothesis, we subjected rats to cecal ligation and puncture (CLP) or a sham operation and measured PI metabolism and receptors 18-24 hours later. The PI metabolism in rat aorta was measured as previously detailed (Roth et al., Neuropharmacol 23:1223-1225, 1984). We observed a 50-60% reduction in basal phosphoinositide metabolism (N=16; p < 0.05) as well as a 50% reduction in α_1 -adrenergic and PGF_2 α -induced PI hydrolysis in aortas from CLP rats. We also discovered 40-60% (p < 0.05) reductions in hepatic α_1 -adrenergic and [Arg^8]-vasopressin receptors. Silver-stained two-dimensional gels of liver plasma membranes disclosed no evidence of gross proteolysis. Finally, we found no changes in cardiac 8-adrenergic or dihydropyridine receptors or in brain opiatergic or serotonergic receptors. These findings suggest that hepatic and vascular PI metablism and PI-coupled receptors are selectively attenuated in sepsis and that these alterations contribute to the pathogenesis of septic shock. This work was supported by Naval Medical Research and Development Command Work Unit No. M0095.01.1032.

THE DETECTION OF CALCIUM BINDING PROTEINS IN RAT CORTEX AND IN AMMONIUM SULFATE FRACTIONS OF WHOLE RAT BRAIN. G.J. Creed, D.M. Santer, W.E. Heydorn, T. Fukuda and D.M. Jacobowitz, Laboratory of Clinical Science, NIMH, Bethesda, MD 20892 & FDA, Rockville, MD 20857.

The detection of calcium binding proteins (CBP) can give insights into the character and possible identity of particular proteins. Protein samples of rat cortex and ammonium sulfate fractions of whole rat brain were separated by two-dimensional gel electrophoresis (2DE). The proteins were then electroeluted onto nitrocellulose paper and the membranes incubated in \(^4\subseteq calcium a) and calcineurin (Cn), were identified using purified protein and specific antisera. The others have M and pI ranges of 13,500-16,000 and 4.8-5.3 respectively. These same 5 proteins were again seen in the various ammonium sulfate fractions but 4 previously undetected CBP were also seen. The M and pI ranges of these newly detected CBPs were 12,500-27,500 and 5.0-5.3 respectively. Two proteins were visualized in the 20% fraction and one each in the 80%, 100% and S-100 fractions. The protein (M, 27,500, pI 5.2) found in the 80% fraction shows an intense binding of calcium similar to the β subunit of Cn. Its intensity may indicate high binding affinity, as the other proteins show lower intensities even though they are also enriched. These results demonstrate that using 2DE, CBP are detectable. The abundant CBP, CaM and Cn, were identified by this method, and with enrichment, as in ammonium sulfate fractionation, previously undetected CBP are detectable.

ALLOSTERIC REGULATION OF INOSITOL 1,4,5-TRISPHOSPHATE-3-KINASE BY SODIUM.

A.B. Cubitt, P.R.M. Dobson and B.L. Brown. Department of Human Metabolism & Clinical Biochemistry, University of Sheffield, Sheffield, U.K.

Biochemistry, University of Sheffield, Sheffield, U.K.

The importance of inositol 1,4,5-trisphosphate Ins (1,4,5) P3 as a second messenger mediating the actions of many hormones and neurotransmitters is now established. The recent discovery (1) of a Ins (1,4,5) P3-3-kinase has, however, complicated previous ideas of the metabolism of this important molecule and lead to a search for a role of this pathway. When [3H]-Ins (1,4,5) P3 (2,M); 1 CI/MM Amersham) was added to a neuroblastoma hybrid (NCB-20) supernatant in a buffer approximating to the intracellular ionic composition (KCI 110 MM, NaCI 10 MM, MgCl₂ 200 MM, ATP 200 MM, EGTA 1 MM, HEPES 25 MM pH 7.6 at 37°C). Some Ins (1,4,5) P3 was phosphorylated to Ins (1,3,4,5) P3 (5%) (as determined by HPLC), while the bulk of Ins (1,4,5) P3 was dephosphorylated to IP2, IP1 and Ins. Raising the concentration of sodium (compensated for by potassium) increased the amounts of IP4 formed dose dependently. The effect was maximal at 50 MM Na while changing the concentration of sodium from 2 MM to 20 MM enhanced the activity of the kinase 3 fold. Previous studies (1) have demonstrated that the IP3-3-kinase may be activated by the alkalinisation induced by growth factors. It is proposed here that in vivo the kinase may also undergo allosteric activation as a consequence of the influx of sodium ions resulting from activation of the sodium-hydrogen antiport system. Estimates (2) of the resting sodium concentration suggest a value of 8 MM, whilst upon alkalinisation this may rise as high as 26 MM. This is consistent with the view that changes in sodium ion concentration may be important in regulating the activity of the IP3 kinase and raises the possibility that sodium may be important in regulating the activities of other enzymes 1. R.F. Irvine et al Nature 320,631-634 (1986) 2. M.L. Villereal J.Cell Phys.111:163-170 (1982).

235 SEPARATION OF MULTIPLE ISOMERS OF INOSITOL PHOSPHATES FORMED IN GH3 CELLS, Nicholas M. Dean and James D. Moyer, Laboratory of Biological Chemistry, DCT, DTP, NCI, Bethesda, MD 20892

High performance liquid chromatography (HPLC) separations have been developed to resolve inositol phosphates. One set of conditions separates isomers of inositol monophosphate (IP), inositol bisphosphate (IP2) and inositol trisphosphate (IP3), another IP4, IP5 and IP6. The separations were used to investigate the thyrotropin releasing hormone (TRH) stimulated production of inositol phosphates in a rat pituitary tumor (GH3) cell line. In cells labeled with [3 H]inositol and treated with lithium, radiolabeled components identified as I(1)P, I(2)P, I(4)P, I(1,4)P2, I(1,3,4)P3, I(1,4,5)P3, IP4, IP5 and IP6 are present as are multiple unidentified IP2 peaks. Low levels of glycerophosphoinositol are also found, however no glycerophosphoinositol phosphate, glycerophosphoinositol bisphosphate or inositol(1,2)cyclic.monophosphate are present. Subsequent to stimulation with TRH both I(1)P and I(4)P increase, the increase in I(4)P preceding that of I(1)P; I(1,4)P2 and an unknown IP2 increase; and both I(1,3,4)P3 and I(1,4,5)P3 increase, the increase in I(1,4,5)P3 being rapid and transient while the increase in I(1,3,4)P3 is slower and more sustained. The most rapidly appearing inositol phosphates produced subsequent to TRH stimulation are I(1,4)P2 and I(1,4,5)P3. No I(1)P is formed at early time points indicating that a phospholipase C mediated breakdown of phosphatidylinositol is not an early event in these cells.

PRODUCTION OF INOSITOL TRISPHOSPHATE ISOMERS IN HUMAN NEUTROPHILS. Susan B. Dillon, John J. Murray, and Ralph Snyderman. Howard Hughes Medical Institute, Duke Univ. Med. Ctr.,

Durham, N.C. 27710.

Stimulation of PMN chemoattractant (CMT) receptors for N-formyl peptides (f-met-leu-phe), platelet activating factor (PAF) and leukotriene B4 (LTB4) utilize a common transduction pathway that results in the rapid elevation of cytoplasmic Ca2+ levels, and in production of inositol trisphosphate (IP3). Since the 1,4,5, and 1,3,4 isomers of IP3 have disparate biological activities it is important to determine the relative amounts and kinetics of their production following PMN activation. Inositol phosphates were TCA extracted from 3H-myo-inositol labelled PMN and separated by H.P.L.C. by anion exchange. In unstimulated cells, c.p.m. in the 1,4,5 IP3 peak were low (38+14; n=8) and 1,3,4 IP3 was not detected. The initial IP3 response to 0.1 - 1.0 uM f-met-leu-phe, PAF, or LTB4 (measured at 5 seconds) consisted entirely of the 1,4,5 IP3 isomer. Peak levels of 1,4,5 IP3 were comparable for optimal doses of all 3 CMT tested, reaching between 330-590% of resting levels by 5 seconds. For each CMT, the 1,3,4 isomer first appeared at 15 seconds after stimulation, constituting 25+4% (n=5) of total IP3. By 60 seconds, 50% or more of the total IP3 consisted of the 1,3,4 isomer, however by this time the total IP3 in PAF or LTB4 stimulated cells had declined to 10-20% of maximum. Elevated IP3 levels in f-met-leu-phe stimulated cells did not subside until 5 minutes after stimulation. The proposed mechanism for formation of 1,3,4 IP3 is via a 1,3,4,5 inositol tetrakisphosphate (IP4) intermediate (Irvine et.al. Nature 320: 1986). In studies using plasma membranes prepared from 3H-myo-inositol labelled PMNs, only the 1,4,5 IP3 kinase activity may be present in cytoplasmic fractions of PMN.

CALCIUM RELEASE FROM INOSITOL 1,4,5 TRISPHOSPHATE-SENSITIVE ISLET CELL MEMBRANES CO-LOCALIZED WITH PLASMA MEMBRANE.

Marjorte Dunlop and Richard G. Larkins. University of Melbourne, Department of Medicine, Parkville.

Inositol 1,4,5 trisphosphate (IP₃), arising from hydrolysis of phosphatidylinositol 4,5 bisphosphate [PtdIns (4,5)P₂], is proposed as the link between membrane receptor activation and mobilization of Ca²⁺ from intracellular sites in hormone secreting cells. The location of IP₃-sensitive membranes was investigated in neonatal β cells. Membranes were obtained after lysis of cultured cells attached

of Ca²+ from intracellular sites in hormone secreting cells. The location of IP3-sensitive membranes was investigated in neonatal \$\beta\$ cells. Membranes were obtained after lysis of cultured cells attached to positively charged Sephadex. Scanning electron microscopy indicated a plasma membrane attachment face of 5-10µm diameter with attached membrane sheets. Enzyme markers: 5'-nucleotidase (5'NT), 4.14; glucose-6-phosphatase (G-6-Pase), 1.31; UDP-galactosyl transferase (UDP-GT), 0.21; succinate dehydrogenase (SD), 0.28µmol/h/mg protein. Following sonication vesicles (0.17 ± 0.04µm diameter) remained at the attachment face (5'NT, 5.54; G-6-Pase, 0.09µmol/h/mg protein, UDP-GT and SD undetected). The endoplasmic reticulum marker, G-6-Pase represents 5.2% of total cell activity. ATP-dependent "5Ca²+ accumulation was shown in this preparation (410 ± 24 (6) pmol/mg protein at 150nM free Ca²+) and was inhibited by vanadate (100µM). Half maximal Ca²+ release occurred with 0.5µM IP3, maximal release with 5µM IP3, t½ 12 seconds. With concurrent use of (y³²P) ATP to label phosphoinositides, Gpp(NH)p effected PtdIns(4,5)P2 hydrolysis and release of Ca²+ (half maximal Ca²+ release, 50µM, t½ 20 seconds). GTP was without effect on PtdIns(4,5)P2 hydrolysis but effected release of Ca²+ (half maximal Ca²+ release, 5µM, t½ 75 seconds) indicative of a separate release mechanism. A close association between plasma membrane and elements of the endoplasmic reticulum is indicated in this model, providing a possible mechanism for local alterations in free Ca²+ in the sub-plasma membrane region.

ACTIVATION OF CALCIUM CHANNELS IN EMDOPLASHIC RETICILIM (ER) BY GUANINE MUCLEOTIDES AND INOSITOL 1,4,5-TRISPHOSPHATE (IP3). Donald L. Gill. Shesu-Huei Chueh, and Hark W. Moel, Dept. Biological Chemistry, University of Haryland School of Hedicine, Baltimore, ND 21201. A highly sensitive and specific guanine nucleotide regulatory mechanism has been observed to directly control Ca2* efflux from ER within cultured neuronal and smooth muscle cell lines. Using saponin permeabilized cells and microsomal membrane vesicles from NIE-115 neuroblastoms cells, studies have revealed release of loaded Ca2* in response to both IP3 and guanine nucleotides. Thus, GTP activates a rapid and substantial release of Ca2* with an EC50 of 0.8 µH; in contrast, and levels of ITP, CTP, ATP, UTP, GRP, 2'3'-cGRP, 3'5'-cGRP, and guanosine are ineffective. Neither GTPyS nor GppNNp effect release, however, GTPyS (but not GppNNp) blocks the action of GTP. GDP effects full but delayed Ca2* release, but only after its conversion to GTP via nucleoside diphosphokinase activity; thus the effects of GDP are prevented by addition of ADP. In fact GDP is a potent competitive inhibitor of GTP-mediated Ca2* release with K₁=3 µH. The results suggest that a specific GTPase controls opening of a Ca2* channel in ER, activation of which is dependent on the cytosolic GTP:GDP ratio. GTP has no effects on release of Ca2* recumulated within mitochondria or plasma membrane vesicles. GTP appears to induce Ca2* release from the same specific subcompartment of ER targeted by IP3. Distinctions in the action of the two agents with respect to temperature-dependence and GDP-reversibility suggest they initially activate separate mechanisms. However, the permissive effects of PEG on both GTP and IP3-mediated Ca2* release from microsomal vesicles and the common nature of the Ca2* pool involved suggest coupling between the actions of IP3 and GTP. (Supported by NIH grant NS19304 and NSF grant DCB-8510225).

MECHANISMS OF AGONIST-STIMULATED INOSITOL(1,3,4,5)P3 FORMATION IN LIVER. C. A. Hansen, R. Johanson, and J. R. Williamson, University of Pennsylvania, Dept. of Biochemistry & Biophysics, Philadelphia, PA 19104 USA

Ins(1,4,5)P3 can either be dephosphorylated to Ins(1,4)P2 by a 5-phosphatase or phosphorylated to Ins(1,3,4,5)P4 by a soluble ATP-dependent Ins(1,4,5)P3 kinase (Irvine et al. Nature 320:631, 1986, Hansen et al. J. Biol. Chem. 261:8100, 1986). The ability of a variety of Ca^{2+} -mobilizing agonists to stimulate Ins(1,3,4.5)P4 formation was examined using $[^3H]$ -myoinositol prelabeled hepatocytes with the [3H]-inositol phosphates being analyzed by HPLC. Vasopressin (20 nM) resulted in the greatest increase in both Ins(1,3,4,5)P4 and Ins(1,4,5)P3. The relationship of Ins(1,3,4,5)P4 accumulation to that of Ins(1,4,5)P3 suggested that the IP3 kinase was saturated with Ins(1,4,5)P3. Accumulation of inositol phosphates with maximal phenylephrine (10uM) was 20% of that with VP. However, the Ins(1,3, 4,5)P4 levels were linearly related to the Ins(1,4,5)P3 levels, indicating the IP3 kinase was not saturated. EGF (100 nM) and glucagon (10 nM) both caused small but statistically significant accumulations of Ins(1,3,4,5)P4 and Ins(1,4,5)P3. There were no indications with any of these agonists for a specific stimulation of IP3 kinase relative to the other agonists. Phenylephrine, glucagon, and EGF-stimulated accumulations of all inositol phosphates were abolished by pretreatment of hepatocytes with PMA. This suggested that these agents were acting via a common mechanism, i.e. by modulation of phospholipase C activity (e.g. via a G-protein). Alternately, however, the small increases in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 with glucagon and EGF could result from inhibition of the 5'phosphatase, thus diverting basal flux through phospholipase C predominantly to Ins(1,3,4,5)P4. Current efforts are focussed on the potential modulation of 5 phosphatase activity by cAMP-dependent protein kinase and protein kinase C. Supp: NIH grant AM 15120

ATP-INDUCED CALCIUM MOBILIZATION AND INOSITOL 1,4,5-TRISPHOSPHATE FORMATION IN H-35 HEPATOMA CELLS. D.A. Horstman, K.A. Tennes and J.W. Putney, Jr., Division of Cellular Pharmacology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 22208

23298. Addition of ATP (but not epinephrine, angiotensin II, vasopressin, or platelet-activating factor) to H-35 hepatoma cells whose cellular lipids have been pre-labelled with $[{}^3H]$ inositol, causes a rapid increase in $[{}^3H]$ inositol trisphosphate. The formation of inositol trisphosphate isomers was examined. Control cells contained $[{}^3H]$ (1,4,5)IP3 but no detectable $[{}^3H]$ (1,3,4)IP3. On stimulation with ATP (300 μ -M) $[{}^3H]$ (1,4,5)IP3 levels were increased more than three-fold and a roughly equivalent amount of $[{}^3H]$ (1,3,4)IP3 was formed. In H-35 cells pre-incubated in the presence of ${}^{45}\text{Ca}^{2+}$, ATP causes a similarly rapid release of ${}^{45}\text{Ca}^{2+}$. ${}^{45}\text{Ce}^{2+}$ efflux was transient, maximal within 30 sec and back to basal levels 3 min after the initial application of ATP. The transience of this response presumably reflects the finite size of the ATP-sensitive Ca²⁺ pool. The concentration-effect relationships for inositol trisphosphate formation and Ca²⁺ efflux are similar to those reported previously for differentiated hepatocytes. These results demonstrate that at least one of the Ca²⁺-mobilizing receptors normally found on hepatocytes is functionally retained in the H-35 hepatoma cell line and thus could provide a useful model for the study of these receptor mechanisms in liver. (Supported by NIH Grant #AM-32823).

The state of the s

The second statement of the second se

PHOSPHORYLATION OF THE 47,000 DALTON PROTEIN AND PHOSPHOINOSITIDES TURNOVER ARE INVOLVED IN ABNORMAL PLATELET ACTIVATION IN SPONTANEOUSLY HYPERTENSIVE RATS. <u>Huzoor-Akbar</u> and Khursheed Amer. Program in Physiology and Pharmacology, The Ohio University, Athens, OH 45701, USA. In this study platelets from apontaneously hypertensive (SHR) and normotensive (Wistar Kyoto, WKY) rats were used to investigate the factors responsible for abnormal platelet aggregation (PA) in hypertension. Thrombin (0.04 - 0.05 U/ml) induced two- to three-fold increased PA in SHR than in WKY. Incubation of (*27)-PO, labeled platelets with thrombin for 10, 15, 30 and 60 seconds caused significantly increased phosphorylation of 47,000 Dalton protein (P47) in SHR platelets (58%, 70%, 105% and 110%) than in WKY platelets (15%, 29%, 46% and 58%). The effect of thrombin on incorporation of (32P)-PO, into platelet phosphatidic acid was examined as an index of phosphoinositides (PIns) turn-Thrombin (0.05 U/ml) caused a four-fold increase in phosphatidic acid production in SHR platelets (85%) than in WKY platelets (21%) in 15 seconds. The extent of serotonin secretion (SS) and thromboxane A_2 (TXA₂) synthesis induced by 0.04 - 0.05 U/ml of thrombin was similar in WKY and SHR platelets. Aspirin (500 uM) inhibited thrombin (0.05 U/ml) induced TXA2 synthesis by >75% but did not affect PA or SS in WKY or SMR platelets. Thrombin (0.1 - 0.3 U/ml) produced significantly larger amounts of TXA2 in SHR than in WKY platelets. However, no differences in PA or SS were seen at these higher concentrations of thrombin. In other experiments up to 1000 uM arachidonic acid or up to 20 uM U46619, a stable analog of prostaglandin H2, did not induce PA in WKY or SHR platelets. These findings lead us to suggest that increased turnover of PIns and increased phosphorylation of P47 and not the increased TXA2 synthesis is responsible for abnormal platelet activation in SHR. (Supported in part by the COHC #84-1, #86-01-A and the Ohio University College of Osteopathic Medicine.)

242 CALCIUM MODULATION OF INOSITOL 1,4,5-TRISPHOSPHATE- BUT NOT OF GTP-INDUCED CALCIUM RELEASE FROM NG108-15 MICROSOMES. Thierry JEAN and Claude B. KLEE

The mechanism of calcium release induced by inositol 1,4,5-trisphosphate IP3 or by GTP was studied in subcellular fractions of neuroblastoms x glioma (NG108-15) hybrid cells. A post-mitochondrial fraction, enriched in endoplasmic reticulum and plasma membranes was the most active in both IP3 and GTP-dependent calcium release. However, the effects of GTP and IP3 were strikingly different: i) the release of calcium induced by GTP was slow (ty=90 seconds) as compared to that produced by IP3 (ty10 seconds). ii) GTP released calcium only in the presence of polyethyleneglycol whereas the fusogene had no effect on IP3-induced calcium release. iii) The presence of GTP (or IP3) did not affect the efflux of calcium mediated by the other agent. iv) Increasing the free calcium concentration in the incubation medium stimulated the GTP-induced calcium release but inhibited the effect of IP3. IP3-induced calcium release was maximum at 10-6M free calcium and was undedectable at 2x10-7M free calcium. These results auggest that IP3 and GTP act by distinct mechanisms on different calcium stores. The physiological significance of a GTP-induced calcium release remains to be demonstrated. On the other hand, the feedback inhibition of the IP3-induced calcium release by cytoplasmic calcium constitutes an important self-regulatory mechanism and may permit the uncoupling of the IP3 and diacylycerol signals following hormonal stimulation of the membrane-bound phospholipase C.

243

TOXICITY OF LIPOSOMES CONTAINING PLANT PHOSPHATIDYLINOSITOL TO TUMOR CELLS: EFFECTS OF PHOSPHOLIPASE A2 INHIBITORS. Marti Jett and Carl R. Alving, Div. Biochem., Walter Reed Army Inst. Res., Washington, D.C. 20307-5100.

Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing ¹⁴C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A₂ (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. We tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide reduced cellular uptake of the plant PI liposomes to 70%. Inhibitors of lipoxygenase formation, such as indomethacin, did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A₂, decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. Procaine and lidocaine, also inhibitors of phospholipase A₂, reverse the toxicity of plant PI to tumor cells. These data are compatible with our hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A₂.

THE ROLE OF GTP AND INOSITOL TRISPHOSPHATE IN MEDIATING Ca2+ RELEASE FROM LIVER

THE ROLE OF GTP AND INOSITOL TRISPHOSPHATE IN MEDIATING Ca⁻⁷ RELEASE FROM LIVER MICROSOMES. S. K. Joseph, C. V. Nicchitta, and J. R. Williamson, Dept. of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6089 USA.

Inositol trisphosphate (IP3) can release Ca²⁺ from liver microsomes only when GTP and polyethylene-glycol (PEG) are present in the incubation medium [c.f. Dawson, A. P. (1985) FEBS Lett. 185: 147].

Under some conditions GTP itself can release Ca²⁺. However, the Ca²⁺ releasing effect of GTP can be selectively removed by decreasing the amount of Ca²⁺ sequestered into the microsomal vesicles without effecting the ability of the nucleatide to render the microsomal vesicles. without affecting the ability of the nucleotide to render the microsomes sensitive to IP3. The ability of GTP to release Ca²⁺ could also be inhibited by the addition of a soluble fraction prepared from a high speed centrifugation of liver homogenate. This fraction retained inhibitory activity after boiling and desalting on Sephadex-C25. Non-hydrolysable analogues (e.g. GTPYS) had no effects when added alone but did suppress the response to GTP. The binding of ³⁵S-GTPYS to microsomal membranes was unaffected by IP₃ or PEG. Similarly, GTP and PEG did not significantly affect ³²P-IP₃ binding. These studies tend to exlude models involving GTP-binding proteins analogous to those coupled to cell surface receptors. No evidence was obtained for direct CTP-dependent phosphorylation of microsomal proteins. The data suggest that IP3 can open a divalent cation channel only after the channel is first 'primed' in some unknown manner by GTP hydrolysis. In subcellular fractions this process is promoted by PEG and regulated by the intravesicular Ca²⁺ content and cytosolic factors. Supported by JDF Career Development Award (SKJ) and NIH grants AM-34804 (SKJ) and AM-15120 (JRW).

245 CHOLECYSTOKININ OCTAPEPTIDE ACTIVATES INOSITOL PHOSPHATE ACCUMULATION IN A HUMAN EMBRYONIC PITUITARY CELL LINE. William W.Y. Lo*+, Colin R. Clark+ and John Hughes+, +Parke-Davis Research Unit, Addenbrooke's Hospital Site, Hills Road, Cambridge, U.K. *Downing College, Cambridge University, Cambridge, England.

The effect of CCK-8(S) on polyphosphoinositide (PPI) turnover was investigated in a human embryonic pituitary cell line (i.e. Flow 9000). CCK-8(S) stimulated inositol phosphate accumulation in a dose- $(EC_5_0=0.79 \pm 0.12 \text{nm})$ and time-dependent manner. Time course studies showed that significant amounts of [3H]InsP3 were formed as early as 15 sec indicating that an initial CCK-8(S)-mediated breakdown of phosphatidylinositol-4,5-bisphosphate is the principal mechanism operating during receptor activation. External calcium is not required for the CCK-8(S)-PPI effect. Benzotript, a specific CCK receptor antagonist, competitively inhibited CCK-8(S)-induced [3H]InsP formation with a K₁ value of 12.75 \pm 1.55 μ M. These results suggest that stimulated PPI hydrolysis is the biochemical mechanism which CCK receptor utilizes following its activation in Flow 9000 cells. Moreover, the human embryonic pituitary cell line Flow 9000 appears to be a useful model system for the examination of CCK-mediated pituitary cell function.

William W.Y. Lo is a Commonwealth Scholar.

INHIBITION OF HISTAMINE. INDUCED Ca++ EFFLUX BY AN ANTIHYPERTENSIVE DRUG (CICLETANINE) IN CULTURED VASCULAR SMOOTH MUSCLE CELLS. 246

M. Lonchampt, M. Cabanié, A. Esanu, C. Demerlé and P. Braquet IHB Research Labs. 17 avenue Descartes, F-92350 Le Plessis Robinson (France) Histamine (Hist) -induced Ca++ efflux was studied in smooth muscle cells (S M C) cultured from guinea-pig up to 4th passage. The cells were labeled with 45 Ca++ (2 μ Ci/ml) to a stable specific activity. The effect of cicletanine (CIC) a new dihydrofuropyridine antihypertensive drug was studied on this model. During the efflux, 2 phases could be distinguished. The Ca++ efflux during the initial phases was rapid (50% in the first 2 minutes) and Hist stimulated this efflux by 80%. A H₁ agonist (2 -pyridylethylamine dihydrochloride, 10-4 M) stimulated Ca++ efflux (50% compared to Hist) whereas H2 agonist (dimaprit 10 - 4 M) had no effect. Anti H₁ drugs (mepyramine 10 - 5 M and terfenadine 10 - 5 M) blocked the Hist

Whatever the doses, (S) CIC did not modify the Ca $^+$ + efflux. In the same manner (R) CIC and Rac CIC did not change the efflux. When cells were preincubated with these products (10 $^-$ 5 M) and then stimulated by Hist (10 $^-$ 4 M), the effect of Hist was completely inhibited by S (CIC) and Rac (CIC) but not by R (CIC). these data suggest that:

1- Hist activates H₁ receptors to mediate a release of Ca++ from internal stores.

2- CIC acts as a H1 antagonist. Its enantiomers have opposite effects.

PROTEIN KINASE C STIMULATES INOSITOL TRISPHOSPHATE DEPHOSPHORYLATION. Luis M. Molina y Vedia and Eduardo G. Lapetina. Molecular Biology Department, Burroughs Wellcome Co., Research Triangle Park. MC 27709

Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. 1P3 is a second messenger that releases Ca² from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that [7H]IP3 is dephosphorylated to [7H]inositol bisphosphate (IP2) and [7H]inositol monophosphate (IP) by human platelets treated with 0.05% Triton X-100. This detergent allows IP3 to access cytosolic IP3-phosphatase and to activate the dephosphorylation of IP2 to IP by IP2-phosphatase. Pretreatment of intact platelets with phorbol dibutyrate (PDBu) and 1-oley1,2-acety1,diacy1glycerol (OAG) for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.

248 MEASUREMENT OF INTRACELLULAR Ca²⁺ IN SINGLE SMOOTH MUSCLE CELLS. J. R. Monck, E. E. Reynolds and J. R. Williamson, Univ. of Pennsylvania School of Medicine, Dept. of Biochemistry and Biophysics, Philadelphia, PA 19104 USA.

The newly developed Ca^{2+} indicator Fura2 has been employed to study hormone-induced Ca^{2+} changes in single cells using videomicroscopy and image analysis. All Smooth muscle cells, derived from rat thoracic aorta, responded to maximal concentrations of vasopressin with a single, large increase in free Ca^{2+} which decayed over 5-10 min. However, at low vasopressin concentrations (0.2, 0.5 nM) there were two distinct peaks of Ca^{2+} . The initial peak rose rapidly and had predominantly decayed before onset of the second peak which reached a maximum after 3 min and decayed more slowly. No sign of the biphasic response was seen when the Ca^{2+} transient was recorded with a population of cells in a fluorometer, using a monolayer of cells grown on ACLAR. Furthermore, the rise time for the transient in the monolayer was considerably slower than for the single cells. This suggests that the different transient observed in the cell population is due to individual cells responding asyncronously. When the response of a single cell to low concentrations of vasopressin was measured in the absence of extracellular Ca^{2+} , the second phase was abolished, but the first phase was unchanged. Extracellular Ca^{2+} the second phase was abolished, but the first phase was unchanged. Extracellular Ca^{2+} the observation that the second phase. These data indicate that the initial peak is due to mobilization of intracellular Ca^{2+} and the second phase to influx of extracellular Ca^{2+} . The observation that the second phase does not become apparent until the initial phase has largely decayed raises the interesting possibility that influx of extracellular Ca^{2+} is mediated by a Ca^{2+} and Ca^{2+} independent mechanism, perhaps through a secondary interaction of the vasopressin receptor with a guanine nucleotide binding protein as has been suggested for K^+ channels coupled to muscarinic receptors. Supp: HL-14461

INVOLVEMENT OF INOSITOL PHOSPHATES, DIGLYCERIDE AND ARACHIDONATE IN GORH ACTION ON GONADOTROPH LH SECRETION. R.O. Morgan, J.P. Chang and K.J. Catt. ERRB/NICHD, Bethesda, MD 20892.

The Gorn-induced elevation of intracellular [Ca²⁺] required for LH secretion results from the mobilization of calcium from intracellular pools as well as by external Ca²⁺ entry via voltage-sensitive calcium channels (J. Biol. Chem. 261, 9105). Certain products of phosphoinositide metabolism, viz. inositol-1,4,5-trisphosphate (IP3) and arachidonic acid, have been proposed to mediate changes in cytoplasmic calcium levels. HPLC characterization of gonadotroph phosphoinositides and inositol polyphosphates (IPs) has provided unequivocal evidence that phospholipase C-catalyzed hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to IP3 and diglyceride (DC) is a selective, primary event in Gorn action. Two novel findings were that gonadotrophs contain "higher" IPs, identified by dual-label analysis as IP4, IP5 and IP6, which increase in response to Gorn, and that inositol-4-monophosphate (I-4-P) rather than the expected I-1-P is the chief intermediate of IP catabolism in gonadotrophs.

The DG resulting from Gorn-ismulated PIP2 hydrolysis is a known activator of protein kinase C (PKC) and a source of free arachidonic acid (AA) in rat gonadotrophs. Results from pituitary cell

(PKC) and a source of free arachidonic acid (AA) in rat gonadotrophs. Results from pituitary cell column perifusion studies using AA, DG, phorbol ester, nordihydroguaiaretic acid and retinal suggest that AA (or its metabolites) may participate mainly in the early secretory response to CnRH, while PKC may regulate later events of GnRH action. The demonstrated changes in IP3 and higher IFs, and the effects of DG and AA on LH secretion substantiate the hypothesis that these intermediates represent intracellular signals in the calcium— and protein kinase-dependent secretory mechanisms of CnRH action.

CHARACTERIZATION OF A POLYETHYLENE GLYCOL STIMULATED HIGH AFFINITY MICROSOMAL GTPase.

C. V. Nicchitta, S. K. Joseph, and J. R. Williamson, University of Pennsylvania, Dept. of Biochemistry and Biophysics, Philadelphia, PA 19104 USA.

Recent studies of the Ca²⁺ transport properties of the microsomal fraction of rat liver have shown that GTP, in the presence of polyethylene glycol (PEG), will stimulate the release of sequestered Ca²⁺ (Dawson et al., 1986, Biochem. J. 234:311). In this system PEG (3%w:v) is necessary to allow Ca²⁺ release (Dawson et al., 1986, Biochem. J. 234:311). In this system PEG (3xw:) is necessary to allow Ca*Trelease in response to GTP as well as to inositol 1,4,5-trisphosphate (IP3). In order to investigate possible mechanisms responsible for the PEG requirement, the effects of PEG on microsomal GTPase activity were determined. When assayed in the presence of 0.25 µM GTP, ATP, AppNHp, and an ATP regenerating system PEG stimulated the rate of GTP hydrolysis by 40 to 70%. This effect was dependent on the PEG concentration; maximal effects were observed at 3%(w:v) PEG. GTP hydrolysis was inhibited at PEG concentrations above 5%(w:v). The stimulation by PEG of microsomal GTP hydrolysis was only observed at GTP concentrations of 0.01 to 5uM. At CTP concentrations above 5uM the rate of CTP hydrolysis was identical in the presence and absence of PEC. PEC-stimulated CTP hydrolysis was inhibited by the nonhydrolyzable CTP analogs CTPyS and GppNHp. Complete inhibition was observed with equimolar concentrations of CTPyS. GppNHp was approximately one order of magnitude less effective than GTPys. A similar sensitivity to GTP analogs was observed for the GTP-sensitive Ca²⁺ release system. Inhibition of basal GTPase activity required far greater concentrations of the GTP analogs (10⁻⁶M). Neither IP3 nor IP4 significantly altered the rate of GTP hydrolysis in the presence or absence of PEG. Our current studies are devoted to further characterization of this GTPase activity as well as its regulation by cytosolic components.

> USE OF TRITIATED MYO-INOSITOL IN STUDIES OF PHOSPHATIDYLINOSITOL METABOLISM: PACTORS AFFECTING SENSITIVITY AND THE SELECTION OF OPTIMUM CONDITIONS FOR EXPERIMENTS.

Kenneth G Oldham, Amersham International, Cardiff, Wales

251

Receptor-stimulated phospholipase C-mediated hydrolysis of PtdIns 4,5-P, results in the formation of two second messengers: diacylglycerol, which exerts its effect by activating protein kinase c; and Ins(1,4,5)P, which acts by mobilising calcium from cellular stores. Tritiated myo-inositol is increasingly being used in a highly sensitive new assay for receptor activation which is based on the ability of Li to inhibit the enzymatic dephosphorylation of Ins I-P. This inhibition prevents recycling of the inositol and results in the accumulation of [3H]inositol phosphates which can easily be separated from the neutral inositol by ion-exchange chromatography. Only very low conversions (0.1% or less) to inositol phosphates are commonplace and there is much interest in methods of increasing both the sensitivity and the amount of activity incorporated in such experiments. These attempts have often involved the use of high specific activity (H)inositol and special inositol-depleted culture media. It will be shown that in this application high sensitivity does not automatically result from the use of high specific activity labelled substrates but is best obtained by careful experimental design particularly in relation to the use of procedures aimed at minimising blanks, and to the use of high radioactive concentrations.

LPS INDUCES FORMATION OF MYOINOSITOL TRISPHOSPHATE (IP3) IN MURINE PERITOMEAL MACROPHAGES.

V. Prpic⁺, J.E. Weiel⁺, S.D. Somers³, B. Herman^{*}, and D.O. Adams^{+*}. Depts. of ⁺Pathology and
*Microbiology-Immunology, DUMC, Durham, N.C. and *Dept. of Anatomy, UNC, Chapel Hill, N.C.

LPS is a potent signal for macrophages but the mechanisms of signal transduction by which it acts are not known. Treatment of murine peritoneal macrophages with LPS (10µg/ml) produced a rapid and substantial (85%) increase in IP3 at 10 sec. The increased level peaked at 1 min and was sustained for 5 min. The increase in IP3 was dose-dependent and observable with doses of LPS as low as 1 ng/ml. Lipid A, the active moiety of LPS, mimicked the effect of LPS on IP3 generation with similar dose-dependency, but with a more transient time course. Lipid A (10µg/ml) mobilized intracellular Ca⁺⁺ in Quin 2-loaded macrophages. This effect peaked at 30-45 sec, rising from approximately 200 nM basal to approximately 400 nM stimulated level. Macrophages loaded with Fura 2 showed a larger magnitude of increase in cytosolic calcium when stimulated with Lipid A (10µg/ml) rising from 90 nM basal to 336 nM at 30 sec. Stimulation of macrophages by these agonists shows, in addition to I-1,3,4-P3, the formation of another isomer of IP3 whose phosphate position is unknown, as a degradative pathway of I-1,4,5-P3. Either LPS or Lipid A, when added to macrophages prelabeled to a high specific activity with H3³²P04, can stimulate the enhanced phosphorylation of protein species at 103, 67, 33, and 28 kD minimally detectable at 15 min. Previous observations have shown that PMA can also induce the enhanced phosphorylation of the macrophage proteins at 67, 33, and 28 kD, suggesting a role for protein kinase C in this process. Taken together, the data indicate one mechanism, by which LPS stimulates macrophages, is the breakdown of polyphosphoinositides.

The state of the s

the second of the second second second second second

MUSCARINE-STIMULATED INOSITOL TRISPHOSPHATE FORMATION AND CALCIUM MOBILIZATION IN PC12 253

MUSCARINE-STIMULATED INOSITOL TRISPHOSPHATE FORMATION AND CALCIUM MOBILIZATION IN PC12 CELLS. C.S. Rabe, *E. Delorme and F.F. Weight, NIAAA, Hockville, MD 20852 and *Dept. Pharmacol., Georgetown U., Washington, DC 20007

The neurosecretory cell line, PC12, was used to examine the effect of muscarine on inositol trisphosphate (IP₂) and intracellular Ca²⁺, [Ca²⁺], levels. IP₃ was assayed as described by Berridge et al. (Biochem J. 212:473, 1983) and [Ca²⁺], was measured using Quin 2 as described by Tsien et al. (Nature 295:68 1982). Exposure of PC12 cells to muscarine produced rapid increases in both cellular IP₃ and [Ca²⁺], Maximal increases in both phenomena were observed within 30 sec and levels remained elevated for several min. Threshold stimulation of IP₃ and [Ca²⁺], occurred between 1 and 10 uM muscarine and both events increased with concentration through 3 mM. Both the increase in IP₃ and [Ca²⁺], obtained at 300 uM muscarine were totally inhibited by atrootne (100 nM) but were unaffected carine and both events increased with concentration through 3 mM. Both the increase in IP3 and $[Ca^{2+}]_1$ obtained at 300 uM muscarine were totally inhibited by atropine (100 nM) but were unaffected by curare (10 uM). Neither the increase in IP3 or $[Ca^{2+}]_1$ was affected by nifedipine (1 uM), an inhibitor of voltage-dependent Ca^{2+} influx, suggesting that elevation of $[Ca^{2+}]_1$ was not due to Ca^{2+} influx through voltage-activated Ca^{2+} channels. In addition, elevation of extracellular K^+ to a concentration which produced a comparable increase in $[Ca^{2+}]_1$ (measured with Quin 2) as that seen with 300 uM muscarine caused a tripling of ${}^{15}Ca^{2+}$ uptake into the PC12 cells, whereas 300 uM muscarine produced no detectable increase in ${}^{15}Ca^{2+}$ uptake. These observations suggest that the increased $[Ca^{2+}]_1$ observed upon stimulation of the cells with muscarine may be due to mobilization of Ca^{2+} from an intracellular site. However, the ability of muscarine to elevate IP3 and $[Ca^{2+}]_1$, were partially dependent on the presence of extracellular Ca^{2+} . Incubation of the cells in Ca^{2+} -free medium reduced both the basal and muscarine-stimulated levels of IP3 and $[Ca^{2+}]_1$. Thus, extracellular Ca^{2+} may modulate the level of $[Ca^{2+}]_1$ and in turn modulate the ability of muscarine to elevate IP3 and $[Ca^{2+}]_1$.

TWO FORMS OF PHOSPHATIDYLINOSITOL-SPECIFIC PHOSPHOLIPASE C FROM BOVINE BRAIN: PROTEIN 254 KINASE C PHOSPHORYLATES THE 145KDa POLYPEPTIDE.

Suc Goo Rhee*, Key Seung Cho*, Kee-Young Lee*, Sung Ho Ryu* and Kuo-Ping Huang**
*Laboratory of Biochemistry, NHLBI, **Endocrinology and Reproduction Branch, NICHHD

Phosphatidylinositol-specific phospholipase C (PLC) plays a crucial role in initiating the surface receptor mediated signal transduction by generating two second messenger molecules, diacylglycerol and inositol 1.4.5-triphosphate.

We resolved two forms of bovine brain enzymes, PLC-I and PLC-II on a HPLC-DEAE column and purified PLC-II near homogeneity. Upon analysis of PLC-II on SDS-PAGE, a single band of $M_{\rm K}=145,000$ was observed. When the same sample was subjected to native gradient polyacrylamide gel, four bands, one major band of Mr=200,000 and three minor bands with Mr corresponding to different oligomeric states of the 200KDa protein, were visible. Western blot experiments using anti-PIC-II antibody indicated that PLC-I might be derived from PLC-II by proteolytic cleavage. Multiple forms of brain PLC enzymes described in literature might be therefore, attributed to the oligomerization and proteolysis of PLC-II. PLC-I and PLC-II hydrolyzed both phosphatidylinositol (PI) and phosphatidylinositol 4,5diphosphate (PIP2). Both activities were stimulated by Ca++. However, the presence of Ca++ not an absolute requirement for the hydrolysis of PIP2 while PI hydrolysis at neutral pH required

Protein kinase C phosphorylates PLC-II in a Ca++ and phospholipid dependent manner. The physiological meaning of this phosphorylation is not known yet.

255 INCREASED POST-RECEPTOR RESPONSE AS A MECHANISM FOR INCREASING ADRENBEGIC SENSITIVITY: THE EFFECT OF ESTROGEN ON ALPHA-1 MEDIATED INOSITOL TRIPHOSPHATE PRODUCTION IN UTERINE SMOOTH MUSCLE R. Kirk Riemer, Alan Goldfien, and James M. Roberts, Reproductive Endocrinology Center, University of California, San Francisco, CA 94143

Estrogen increases alpha-1 adrenergic sensitivity for rabbit uterine contraction independent of effects on alpha-1 receptor concentration. Muscarinic cholinergic sensitivity and receptor concentration is unaffected by estrogen treatment. We asked whether the post-receptor response to alpha-1 adrenergic stimulation, inositol triphosphate (1P3) production, was increased by estrogen. Since muscarinic stimulation is also coupled to IP3 production in rabbit uterus, we compared the effects of estrogen on both adrenergic and cholinergic mediated IP3 production. Tritiated myoinositol was used to label the phosphatidylinositol pool in minced uterine tissue. We found that estrogen increased maximal IP3 production in response to 100 uM norepinephrine from 138±11 to 264±19 percent of control, P<0.05 (n = 6, 11, ovariectomized control and estrogen treated, respectively). Cholinergic response to 1 mM carbachol was not changed by estrogen treatment: 195+17 to 147+11 percent of control, P>0.05 (n = 4, 9). No affect of estrogen on the uterine sensitivity for this response was observed. These results demonstrate that increased IP3 production accompanies the estrogen-induced increase in adrenergic sensitivity. Thus, enhanced post-receptor response correlates with increased sensitivity for physiologic response. The lack of a similar effect on cholinergic uterine IP3 and contractile response demonstrates that the IP3 response mediated by different receptors can be independently modified by a nuclear active hormone.

VASCULAR PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE C'S: MODULATION OF ACTIVITY BY GUANINE NUCLEOTIDES, CALCIUM AND MAGNESIUM. B. L. Roth and E. A. Suba. Naval Medical Research Institute, Bethesda, MD 20814-5055.

We previously demonstrated that rat aortic SHT_2 , α_1 -adrenergic, and $PGF_2\alpha$ receptors activate phosphoinositide (PI) hydrolysis in rat aorta. We also showed that a phospholipase C inhibitor (NCDC) and phorbol esters attenuate both receptor-stimulated PI hydrolysis and rat arotic contraction, and suggested a coupling between receptors that mediate vasoconstriction and phospholipase C. Here we characterized aortic phospholipase C activities. Homogenates and membranes were prepared in Tris-maleate buffer (pH=6.80) and incubated with exogenous $[^3H]$ -phosphatidylinositol (PL) and $[^3H]$ -phosphatidylinositol-4,5-biphosphate (PIP $_2$). Activity for both substrates was increased by CaCl $_2$ and abolished by EGTA (1 mM), although the PL-specific phospholipase C was activated to a greater extent by $_{\mu}M$ Ca++. Both activities were inhibited by mM Mg++. The PIP $_2$ -specific activity was increased by Gpp(NH)p and GIP $_1$ S, and to a lesser extent by GTP. Guanine nucleotide-stimulated activity showed an absolute requirement for Ca++. The PL-specific activity was not altered by guanine nucleotides. These results suggest that two PI-specific phospholipase Cs exist in vascular tissue. Both may be activated by Ca++ and inhibited by Mg++. Only the PIP $_2$ -specific enzyme is coupled to a guanine nucleotide regulatory protein as previously predicted (Chernow and Roth, Circ Shock 18:141-155, 1986). This work was supported by Naval Medical Research and Development Command Work Unit No. M0095.01.1032 and MR04120.05.

257 INHIBITION BY PHORBOL ESTERS OF ANTI-IMMUNOGLOBULIN INDUCED CALCIUM SIGNALLING AND B CELL ACTIVATION. TL Rothstein, DL Kolber, ER Simons and TR Baeker. Departments of Medicine, Microbiology and Biochemistry, Boston University Medical Center, Boston, MA 02118.

Phorbol esters inhibit B cell proliferation induced through interaction with surface immunoglobulin, although phorbol esters co-stimulate B cells with calcium ionophore. The inhibitory effect of phorbol dibutyrate (PDB) on B cell stimulation was evaluated using a model in which activation is induced by modest doses of anti-immunoglobulin antibody (anti-Ig) and progression to DNA synthesis is induced by cytochalasin (J Immunol 135:106; 136:813). PDB preferentially inhibited anti-Ig induced activation and did so during brief (2 hour) preincubation with anti-Ig. Activation was inhibited whether PDB was added before, or shortly after, anti-Ig. Since activation for cytochalasin responsiveness appears to be mediated by Ca++ (J Immunol 136:749), the effect of PDB on the anti-Ig induced rise in intracellular Ca++ was evaluated (using the Ca++ sensitive fluorescent dye, Indo-IAM). PDB (and other phorbol esters that activate protein kinase C) inhibited the rise in Ca++ normally associated with anti-Ig treatment; moreover, PDB reversed an established anti-Ig induced Ca++ response. These data suggest that phorbol esters inhibit B cell activation by interferring with the elevated levels of intracellular Ca++ produced by cross-linking of surface immunoglobulin by anti-Ig. This could represent a "feedback inhibition" type of response but it remains to be seen if this occurs under physiological conditions of protein kinase C activation.

258

INVOLVEMENT OF Ca2+ AND CALMODULIN IN MORPHOGENESIS OF Candida albicans

Bipasha Gupta Roy and Asis Datta, Jawaharlal Nehru University, New Delhi-110067, "DIA.

Candida albicans, an opportunistic human pathogen, exists in yeast and mycelial forms through an intermediate germ tube. Investigations carried out in our laboratory demonstrate that though N-acetylglucosamine can induce germ tube as well as N-acetylglucosamine catabolic enzymes, these are mutually exclusive events. The germ tube formation can be stopped by inhibitors of calmodulin, e.g. trifuoperazine (TFP) and compound 48/80. Furthermore, ionophore which opens up ion channels in biological membrane also inhibits the germ tube formation and this can be reversed by Ca. This result suggests the involvement of the calcium binding protein, calmodulin, in morphogenesis of Candida albicans. Further investigations into the molecular mechanisms involved in germination induced by N-acetylglucosamine revealed that there is a progressive increase in the rate of protein phosphorylation. Rowever, TFP brought back the rate almost to yeast phase level by also inhibiting the rate of protein phosphorylation. An increase in protein phosphorylation which was inhibited by TFP was also observed during germination with the other inducers. Our observations indicate that the action of calmodulin in germination is possibly exerted via calmodulin modulated protein phosphorylation.

AND THE RESERVE

IMPAIRED PHOSPHOINOSITIDE-MEDIATED SIGNALING IN HEPATOCYTES OF CONTINUOUSLY ENDOTOXEMIC RATS: PARTIAL SIMULATION OF THE EFFECT BY A PHORBOL ESTER. J.A. Spitzer and E.R. deTurco

Louisiana State Univ. Med. Ctr., New Orleans, LA.
Rats were infused i.v. with a non-lethal dose (0.1 mg/100g body wt./day) of E. coli endotoxin (ET) or saline via implanted osmotic minipumps (Fish, R.E. & Spitzer, J.A. Circ. Shock 12, 135-149, 1984). After 30h of continuous infusion hepatocytes were isolated, labelled in vitro with 32 and the status After 30h of continuous infusion hepatocytes were isolated, labelled in vitto with 32 p and the status of basal and vasopressin (VP)-stimulated phosphoinositide turnover assessed. In cells of ET-infused rats, the early response to VP stimulation (within 30 sec) in terms of phosphatidyl inositol 4,5-bisphosphate (PIP) and phosphatidyl inositol-4phosphate (PIP) breakdown was inhibited by 40% as compared to saline-infused controls. Subsequent resynthesis of PIP, and PIP was also impaired. The ability of VP to stimulate 32P incorporation into phosphatidyl inositol (PI) was markedly depressed from 160 to 1307. This endotoxemia-induced perturbation in phosphoinositide metabolism elicited by the activation of VP receptors is associated with concomitant impairment in cytosolic free [Ca glycogen phosphorylase a activation (Desciuc, I.V. and Spitzer, J.A., Am. J. Physiol. In press). Infusion i.v. of the phorbol ester TPA via the implanted pump (240 nmoles into a 360g rat over 30h) resulted in similar impairment of the VP-associated PIP, and PIP degradation and resynthesis as observed due to ET-infusion. The results support the concept that some of the pathophysiologic effects observed in endotoxemia may be brought about in part through activation of protein kinase C. (Supported by NIH grants GM32654 and GM30312).

THE INOSITOL TRIS/TETRAKIS PATHWAY IN GUINEA-PIG HEPATOCYTES. K.A. Tennes Jr., Division of Cellular Pharmacology, Medical College of Virginia, Tennes and J.W. ginia, Virginia Commonwealth University Richmond, Virginia 23298.

Commonwealth University Richmond, Virginia 23298.

Inositol(1,4,5)trisphosphate-3-kinase activity was identified in permeabilized guines-pig hepatocytes. The conversion of [3H](1,4,5)IP3 to [3H](1,3,4)IP4 occurred rapidly and was detected as early as 5 sec, whereas a significant increase in [3H](1,3,4)IP3 occurred only after a definite lag period. Incubation of permeabilized hepatocytes with [3PP](1,3,4,5)IP4 resulted in the formation of [3PP](1,3,4)IP3, no [3PP](1,4,5)IP3 was produced. The half-time of hydrolysis of [3PP](1,3,4,5)IP4 of approximately 1 min was increased to 3 min by 2,3 bisphosphoglyceric acid. Similarly, the rate of production of [3PP](1,3,4)IP3 from the [3PP]tetrakisphosphate was reduced by 2,3 bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H](1,4,5)IP3 to [3H](1,3,4,5)IP4 or [3H](1,3,4)IP3, which eliminates the possibility that the [3H](1,3,4)isomer occurs as a result of isomerization of [3H](1,4,5)IP3. The results of this study demonstrate that the origin of the (1,3,4)isomer of inositol triambosphate in isolated hepatocytes is IP4 occurs as a result of isomerization of inositol trisphosphate in isolated hepatocytes is IP4 and that (1.4.5)IP3 is rapidly converted to this tetrakisphosphate. The ability of 2,3 and that (1,4,5)IP3 is rapidly converted to this tetraskisphosphate. The ability of 2,3 bisphosphoglyceric acid, an inhibitor of 5'-phosphosonoesterase, to inhibit the breakdown of (1,3,4,5)IP4 suggests that the enzyme which removes the 5'-phosphate from (1,4,5)IP3 also acts to convert the tetrakisphosphate to (1,3,4)IP3. It is not known if the role of the (1,4,5)IP3-kinase is solely to remove (1,4,5)IP3 or whether it also produces second messengers. (Supported by NIH grant #AM-32823).

261 GTP-DEPENDENT ACTIVATION OF THE INS(1,4,5)P₃-SENSITIVE CALCIUM RELEASE SYSTEM IN PERMEABILIZED HEPATOCYTES. Andrew P. Thomas, Department of Pathology, Thomas Jefferson University, Philadelphia, Pa 19107.

Hepatocytes were permeabilized using digitorin in a medium containing Quin2 to simultaneously buffer and monitor the free Ca²⁺ concentration. After a steady-state level of Ca²⁺ uptake had been achieved in the presence of ATP, the addition of 1.5 uM Ins(1,4,5)P₃ caused a maximal release of about 30% of the sequestered Ca²⁺. The remaining Ca²⁺ could all be released by ionomycin. Pretreatment of the permeabilized cells with GTP (50 uM) for 3 min resulted in a 2-fold increase in the amount of Ca²⁺ released by Ins(1,4,5)P₃ with an equivalent decrease in the residual ionomycin. cells with GTP (50 uM) for 3 min resulted in a 2-fold increase in the amount of Ca^{2+} released by $\operatorname{Ins}(1,4,5)P_3$ with an equivalent decrease in the residual ionomycin-releasable Ca^{2+} pool. GTP alone did not cause any Ca^{2+} release and did not alter steady-state Ca^{2+} uptake. The potentiation of $\operatorname{Ins}(1,4,5)P_3$ -induced Ca^{2+} release by GTP was half-maximal at 5uM and maximal at 50uM GTP and did not involve a shift in the sensitivity to $\operatorname{Ins}(1,4,5)P_3$. Non-hydrolyzable GTP analogues such as GTP-Y-S had no effect on Ca^{2+} release by $\operatorname{Ins}(1,4,5)P_3$ but were potent in blocking the effects of GTP. Experiments using vanadate to inhibit the ATP-driven Ca^{2+} uptake pump indicated that GTP acts directly on the Ca^{2+} release system. Although GTP did not cause Ca^{2+} release in the absence of $\operatorname{Ins}(1,4,5)P_3$ under normal conditions, it was found that GTP alone could cause substantial Ca^{2+} release in permeabilized hepatocytes which had been washed to remove cytosolic and loosely associated membrane components. The data been washed to remove cytosolic and loosely associated membrane components. The data presented here demonstrate the existence of a multicomponent system capable of modulating the Ca^{2+} mobilization response to the second messenger $\operatorname{Ins}(1,4,5)\operatorname{P}_3$.

MARYSTON A. S

CALCIUM REGULATION IN BOVINE SPERMATOZOA. Srinivasan Vijayaraghavan, David Triebwasser and Dale D. Hoskins. Oregon Regional Primate Research Center, Beaverton, OR 97006. Mammalian sperm acquire the capacity for motility during their passage through the epididymis. While intracellular levels of cyclic AMP are elevated during epididymal maturation of bovine sperm, the ability of sperm to accumulate calcium declined during maturation. The present study was undertaken to examine aspects of regulation of intracellular calcium in bovine sperm. First, using the intracellular calcium indicator Quin 2 we measured cytoplasmic calcium levels in bovine caudal sperm. When sperm were loaded with Quin 2 in the absence or presence of external calcium the levels were 62.5 \pm 4.3 nM (n=25) and 188.8 \pm 18.8 nM (n=16), respectively. Also, when sperm were loaded with Quin 2 in the presence of calcium and the mitochondrial uncoupler CCCP the levels of calcium were 55.5 ± 2.6 nM (n=13). These results, along with those using 45ca2+, suggested that calcium uptake in bovine sperm occurred only at the midpiece of the cell. Secondly, we examined the effects of bovine seminal plasma (BSP) and caudal epididymal fluid (CF) on calcium (45Ca²⁺) uptake in immature caput spermatozoa. BSP is known to contain a protein, caltrin, that inhibits calcium uptake in mature caudal sperm. Immature caput sperm, however, showed a biphasic response to BSP - a stimulation at 1 min and a subsequent inhibition of calcium uptake. Preincubation with BSP or CF eliminated the biphasic response and CF by itself stimulated calcium uptake in caput sperm, suggesting the presence of a factor(s) in these fluids that affects calcium uptake in immature caput sperm. Studies on the nature of the factor(s) would be useful in confirming the hypothesis that bovine sperm possess a unique mid-piece calcium regulatory mechanism. Supported by NIH grant HD18737.

CHARACTERIZATION OF CAMP-REGULATED, CALCIUM/CALMODULIN-REGULATED AND CALCIUM PHOSPHOLIPID-REGULATED PROTEIN PHOSPHORYLATION SYSTEMS IN RAT SARCOLEMMA.

Walaas, S.I. (1,2) and R.S. Horn (1), (1) Institute of Medical Biochemistry, University of Oslo, 0317 Oslo, Norway, and (2) Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021.

Relatively little is known about the properties of protein phosphorylation systems

Relatively little is known about the properties of protein phosphorylation systems in skeletal muscle sarcolemma. We have therefore characterized possible endogenous phosphoproteins in rat skeletal muscle sarcolemma. Purified sarcolemma has been phosphorylated in vitro with either cAMP-, cGMP-, calcium/calmodulin- or calcium/phosphorlipid-dependent protein kinase, and the resulting phosphoproteins have been analyzed by various techniques. A minimum of 30 distinct phosphoproteins could be seen in these preparations, more than 20 of which could be phosphorylated by cAMP-dependent protein kinase, and 4 of which also could be phosphorylated by calcium/phospholipid-dependent protein kinase. In contrast, cGMP and calcium/calmodulin-dependent protein kinases catalyzed phosphorylation of only a few proteins. The majority of sarcolemma proteins phosphorylated by cAMP- or calcium/phospholipid-dependent protein kinase appeared to represent integral membrane proteins, being soluble in nonionic detergents. In contrast, only one 15 kilo dalton phosphoprotein behaved as a proteolipid, being soluble in acidified chloroform: methanol. This 15 kDa proteolipid may be a target for multiple receptor-regulated second messenger systems in the sarcolemma (see abstract by Walaas, O. et al., this meeting). We thank drs. K.A. Albert and A.C. Nairn, The Rockefeller University for the gift of purified protein kinases.

MULTISITE PHOSPHORYLATION OF A 15 KILODALTON SARCOLEMMA PROTEOLIPID, CATALYZED BY CAMP-DEPENDENT AND CALCIUM/PHOSPHOLIPID-DEPENDENT PROTEIN KINASE.
Walaas, O. (1,2), Horn, R.S. (1) and Walaas, S.I. (1,3), (1) Institute of Medical Biochemistry, University of Oslo, 0317 Oslo, Norway, (2) California Metabolic Research Foundation, La Jolla, California 92038, and (3) Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021.
Rat sarcolemma contains a major 15 kDa proteolipid which can be phosphorylated in

Rat sarcolemma contains a major 15 kDa proteolipid which can be phosphorylated in vitro both by cAMP- and calcium/phospholipid-dependent protein kinases (see abstract by S.I. Walaas and R.S. Horn, this meeting). The present study has characterized the phosphorylation of this proteolipid in more detail. Rat skeletal muscle sarcolemma has been phosphorylated with cAMP- and calcium/phospholipid-dependent protein kinases, aliquots have been lyophilized and extracted with acidic chloroform: methanol, and the phosphoryoteins have been analyzed with a variety of techniques. Our results show that both the sarcolemma-localized and the extracted 15 kDa phosphoprotein could be electrofocused in urea-containing gels, with an apparent pI of 5.9. Thermolytic digests showed a minimum of two phosphorylation sites in the protein, which were independently phosphorylated on serine residues by cAMP- and calcium/phospholipid-dependent protein kinases, respectively. This sarcolemma proteolipid may thus be a target for distinct protein phosphorylation systems in intact skeletal muscle.

We thank drs. R.A. Albert and A.C. Nairn, The Rockefeller University, for the gift of purified protein kinases.

GUANYL-NUCLEOTIDE INDUCED LEYDIG CELL MEMBRANE PHOSPHORYLATION A CALCIUM DEPENDENT EVENT: IMPLICATIONS FOR HORMONE ACTIVATED ADENYLATE CYCLASE Christine Winters and

Maria L. Dufau, Mol. Endo. Section, ERRB, NICHD, NIH, Bethesda, MD 20892
Rapid membrane events in the gonadotropin activated Leydig cell include GTP-induced phosphory-lation of a 44,500 Mr protein. This phosphorylation is Ca modulated, being increased at low (nM) but inhibited at high (nM) concentration of free Ca . Ademylate cyclase activity is also effected by Ca in a similar biphasic manner. At submaximal levels of GTP (10 M), LH increases membrane phosphorylation by 30% over control levels. This event is cAMP independent, and is also induced by the phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI) and is enhanced by Ca but not the addition of diacylglycerols or phorbol esters. Phosphomsinoacid analysis demonstrated an increase in P incorporation in phosphoserine. The Ca effects on ademylate cyclase activity are associated with changes in the number of enzyme units activated by the hormone with no changes in the apparent affinity, as reflected in the ED of all Co of activation and inactivation by the hormone. These results indicate that a Ca dependent kinase system exists in the purified Leydig cell membrane. The molecular weight of the substrate, the nucleotide requirement, and the similar modulation by Ca of cyclase and phosphorylation, suggest that these events could influence the hormonal dependent G subunit-mediated interactions in the plasma membrane.

266 NUCLEOTIDE-REGULATED DEGRADATION OF EXOGENOUSLY ADDED PHOSPHOINOSITIDES BY MEMBRANES
AND CYTOSOL R.J.H. Nojcikiewicz, M.A. Wallace, D. Bojanic, L.S. Bradham and
J.N. Fain, Department of Biochemistry, University of Tennessee, Memphis; Hemphis, TN 38163

J.N. Fain, Department of Ricchemistry, University of Termessee, Memphis; Memphis, TN 38163

We have examined the phospholipase C activities of membranes and cytosol from a variety of tissues using ['H]-phosphatidylinositol 4,5-bisphosphate ('H-PIP2), ['H]-phosphatidylinositol 4-phosphate ('H-PIP2) and ['H]-phosphatidylinositol ('H-PI). GH3 call membrane preparations degraded 'H-PIP2 and "H-PIP at similar rates. Degradation of 'H-PII was much less rapid. The water soluble products of these reactions were inositol 1,4,5-trisphosphate, inositol 1,4-bisphosphate and inositol 1-phosphate respectively. Hydrolymis of 'H-PIP2 but not 'H-PIP or 'H-PI was stimulated by GTP, GTP's and GpyNHD (ED50 = 5-10 M). Other nucleotides, e.g. AppNHD, also stimulated 'H-PIP2, breakdown. AppNHD and GpyNHD were equipotent and produced the same degree of maximal stimulation (160% of control). In contrast to membranes, GH3 call cytosol degraded 'H-PIP2, 'H-PIP and 'H-PI at similar rates. Again, though, only 'H-PIP2 degradation was nucleotide-sensitive. Nucleotide-stimulated 'H-PIP2 degradation was also seen in cytosol preparations from brain, adipose tissue, platelets and liver. NAD' (1mM) inhibited basal 'H-PIP2 degradation in membrane and cytosol preparations from GH3 cells and adipose tissue by 60-90%. This inhibition was reversed by either AppNHD or GppNHD (100 M). These data show that degradation of exogenously added 'H-PIP2 by a phospholipase C activity are direct or mediated by a discrete nucleotide-binding protein is currently under investigation.

SITE SELECTIVE cAMP ARALOGS IN THE REGULATION OF CELL PROLIFERATION AND TRANSPORMATION T.S. Cho-Chung¹, T. Clair¹, P. Tagliaferri¹, S. Ally¹, D. Katsaros¹ and R.K. Robins²; National Cancer Institute, Betheada, MD 20892, and 'Nucleic Acid Res.Inst., ICN Pharm. Costa Mesa, CA 92626.
Sixteen site-selective CAMP analogs were used to study the mechanism of reverse transformation of the Ra-Mu-SV transformed NIH 3T3 clone 13-3B-4 cells. Treatment with combinations of analogs allowed the study of:(1)involvement of the cAMP receptor in growth control,(2) cooperativity of Site 1 and Site 2 binding, and (3) the use of lower analog concentrations with the combinations showing synergism of action. These cAMP analogs modified at either the C-8 position (Site-1 selective) or the C-6 position (Site-2 selective) were tested. The growth inhibitory potency for the individual analogs correlated better with their known K_a for protein kinase rather than with their known lipophilicity that measures the ability of the analog to penetrate the cell membrane. Both growth inhibition and morphological changes were enhanced synergistically by C-6 and C-8 analog combinations. The synergism of both processes by N⁶ analogs when combined with 8-thio derivatives far exceeded that by N⁶ analogs in combination with 8-maino derivatives suggesting a response of type II protein kinase. Further, within a few hours after cAMP snalog treatment, the ratio of the R^{II}/R^I cAMP receptor proteine markedly increased, especially in the cell nucleus, and this increase in the R^{II}/R^I ratio was inversely related to a decrease in p21 protein expression.

It is concluded that the observed synergism of growth inhibition and phenotypic reversion is due to the binding of cAMP analogs to both intrachain sites of the cAMP receptor proteins and thus the cAMP receptor is most likely the cellular effector mediating cAMP regulation of the reverse transformation processes. CYC'IC AMP AS A CO-INDUCER OF HORMONE DEPENDENT GENE EXPRESSION Piotr Chomczynski, Elisabeth Bone and Leonard Kohn Laboratory of Biochemistry and Metabolism NIDDK, NIH, Bethesda, MD.

268

The induction of thyroglobulin (Tg) gene expression by TSH is the first example for which cyclic AMP has been implicated as the physiological mediator of the transcriptional effects of a hormone. We have shown recently, however, that cyclic AMP does not faithfully mimic the action of TSH in rat thyroid FRIL-5 cells, indicating a more complex cooperation between cyclic AMP and TSH in the activation of the Tg gene. Evidence is presented here that a similar cooperation of cyclic AMP with TSH and insulin is observed in rat thyroid explant cultures. Explants were cultured for 6 days in TSH and insulin free medium followed by a 2 day culture period in the presence of appropriate hormones and agents. The effect of cyclic AMP, TSH and insulin on Tg gene expression was determined by Northern blot analysis of Tg mRNA accumulation. A small increase of Tg mRNA accumulation was observed when cyclic AMP or cholera toxin was added alone to the culture medium. However, cyclic AMP markedly potentiated stimulation of Tg mRNA by TSH or insulin. The highest level of Tg mRNA was observed in explants exposed to both TSH and insulin. Addition of cyclic AMP to these explants did not further increase accumulation of Tg mRNA. The addition of phenylisopropyladenosine (an inhibitor of hormonal activation of adenylate cyclase) diminished TSH-insulin induced accumulation of Tg mRNA by more than 50%. A marginal effect of cyclic AMP on Tg mRNA accumulation in explants cultured without TSH and insulin demonstrates clearly that cyclic AMP is not a sole mediator of TSH action in rat thyroid explants, thus confirming our previous results with thyroid FRIL-5 cells. Presented results indicate that cyclic AMP acts as a co-inducer of Tg gene expression by enhancing the transcriptional signals of TSH and insulin.

269
KINETICS OF EPIDERNAL GROWTH FACTOR BINDING AND PROCESSING IN ISOLATED INTACT RAT HEPATO-CYTES. I.P. Gladhaug and T. Christoffersen. Department of Pharmacology, University of Oslo, P.O.Box 1057 Blindern, 0316 Oslo 3, Norway.

The kinetics of binding, internalization and degradation of epidermal growth factor (EGF) was studied in freshly isolated rat hepatocytes. After isolation the hepatocytes had a nonhomogeneous population of surface EGF receptors consisting of approximately 9,000 high affinity sites ($K_{\rm q}$ 21 pM) and 165,000 low affinity sites ($K_{\rm q}$ 0.62 nM) as determined by Scatchard analysis. Incubation at 37°C (45 min) increased the number of surface receptors per cell to about 260,000. This increase was cycloheximide-sensitive and selective for the low-affinity receptors. During 5 h incubation at 37°C the hepatocytes internalized 6-7 times more EGF molecules than the number of cell surface receptors, based on clearance measurements. The uptake was unaffected by cycloheximide. Concomitant estimation, using acid/salt elution, of surface-bound EGF and internalized EGF showed that the number of internalized EGF molecules exceeded the decrease in surface-binding 6 times. The ratio between internalized EGF and the decrease in surface binding was temperature-dependent, being reduced to a one-to-one stoichiometry at 10°C. After down-regulation (80%) induced by 5 nM unlabeled EGF the surface EGF receptors did not recover during subsequent incubation (2 h) at 37°C. However, the remaining surface receptors internalized EGF in 9-fold excess of their number. The large discrepancy between internalization capacity and cell surface binding capacity was also found in the presence of cycloheximide. The results suggest that internalized EGF receptors are partly replaced by externalization of preformed intracellular receptors during EGF uptake in isolated hepatocytes, involving recycling of a small population of EGF receptors and/or recruitment of unexposed, preexisting receptors.

TRANSFORMING GROWTH FACTOR a (TGFa) AND EPIDERMAL GROWTH FACTOR (EGF) INHIBIT PTH-RESPONSIVE ADENYLATE CYCLASE (AC) OF CLONAL OSTEOBLAST-LIKE CELLS. G.E. Gutierrez, G.R. Mundy, R. Derynck, E.L. Hewlett, and M.S. Katz. Univ. of Texas Health Science Center and Audie Murphy VA Hospital, San Antonio, TX; Genentech Inc., So. San Francisco, CA; and Univ. of Virginia, Charlottesville, VA, U3A. A number of solid tumors produce TGFa and factors which activate PTH-sensitive AC of osteoblasts. Since growth factors such as EGF influence hormone activation of AC in several systems, we evaluated the effects of TGFa and EGF on the PTH-responsive AC of clonal osteoblast-like osteosarcoma cells (UMR-106). AC of UMR-106 cells incubeted for 4\$\frac{2}{8}\text{hr}\$+TGFa or EGF was assayed in intact cells after incorporation of \text{CH} \text{-adenine by measuring production of \text{CH} \text{-tale CMP} \text{-tom CMR-106} cells incubeted for 4\$\frac{2}{8}\text{-tr} \text{-tom CMR-106} \tex

IS THE ANTIAGGREGATORY REFECT OF AD, CORRELATED WITH INHIBITION OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASES?

Hakim, D. Fiorentini, A. Falasca, M. Prosdocimi and C.A. Rossi Institute of Biochemistry, University of Bologns, Bologns and Fidia Neurobiological Research Laboratories, Abano Terme, ITALY

Cyclic AMP is clearly implicated in platelet function, since an increase in cyclic AMP levels leads to the inhibition of platelet aggregation. On the other hand, the effect of cyclic GMP remains controversial. AD (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxycarbonylmethoxy coumarin) has been shown to be a powerful inhibitor of human platelet aggregation in vitro induced by a variety of differ shown to be a powerful inhibitor of human platelet aggregation in vitro induced by a variety of differ ent stimuli (Prosdocimi et al., Naunyn-Schmiedeberg Arch. Pharmacol. (1986) 332, 305). An investigation on the inhibitory effect of AD₆ upon phosphodiesterases (PDE) from human platelets is reported. A cyclic CMP specific PDE and a cyclic AMP specific PDE have been prepared by ion-exchange chromatography of a platelet extract. Cyclic CMP PDE is selectively inhibited by AD₆ (Ri=0.2 mM); cyclic AMP PDE is quite less sensitive to AD₆ (IC₅₀>1.2 mM at 1 mM cAMP). In fact AD₆, at a concentration (0.1 mM) which strongly inhibits platelet aggregation, has no effect on cAMP levels in platelets. The effect of AD₆ has been also investigated on a calcium-calmodulin sensitive PDE partially purified from bovine brain; the drug has a poor inhibitory effect on the stimulated enzyme.

Our results suggest that the antiagoregatory effect of AD₆ is not related to cAMP PDE, while some role Our results suggest that the antiaggregatory effect of AD, is not related to cAMP PDE, while some role for cyclic GMP could be involved. Studies on the effects of AD, on cyclic GMP content in platelets are now in progress. Supported by MPI grants.

EXPRESSION OF c-fos AND c-myc mana IN GROWTH STIMULATION OF PORCINE THYROID FOLLICLE CELLS IN CULTURE: N.-E. Heldin and B. Westermark, Dept. of Pathology, University Hospital, 272 University of Uppsala, Sweden.

The proto-oncogenes c-fos and c-myc are believed to be involved in normal growth control. The growth regulation of the thyroid gland is rather complex. Thyrotropin (TSH) was until a few years ago generally accepted as the only regulator of thyroid growth. In porcine thyroid cells in culture epidermal growth factor (EGF) is the most potent mitogen, but also high concentrations of iodide stimulates the incorporation of H-thymidine. TSH is not a growth promoting agent for these cells although

expression of c-fos and c-myc mRNA in thyroid follicle cells after growth stimulation.

Addition of 10 ng/ml of BGF resulted in a transient increase in the c-fos mRNA (2.2 kb) level with a peak reached after 30 minutes. Enhanced c-myc mRNA (2.4 kb) expression was observed after 30 min., with a maximum after 2 hours and remained at a high level during the 24 h investigated.

TSH (10 mU/ml) had no stimulatory effect on the c-fos and c-myc mRNA expression.

Addition of 10 M of iodide (KI) enhanced the expression of c-myc mRNA but not c-fos mRNA. The increase was observed 6 h after stimulation, i.e. 4-5 h later than after an BGF-stimulation.

Our results show that an increased c-myc and c-fos (only with BGF) expression are early events in the prereplicative phase of porcine thyroid follicle cells, whether stimulated by a polypeptide growth factor (BGF) are a log (iodide). The growth present in the preceding the control of the present and the preceding the control of the preceding the control factor (BGF) or an ion (iodide). The growth promoting activity of iodide has previously been shown to be coupled to a decrease in adenylate cyclase activity. In view of the fact that this effect may require several metabolic steps, including iodide organification, the finding of a lag in c-myc expression in iodide-treated cells compared to cells exposed to EGF, is not unexpected.

273 RELATIONSHIP BETWEEN THE pp60^{V-SYC} PHOSPHORYLATION SITE AND THE INHIBITOR-2 BINDING SITE OF PROTEIN PHOSPHATASE 1 INVOLVED IN THE FORMATION OF THE MgATP-DEPENDENT PROTEIN PHOSPHATASE. T.S. Ingebritsen and J.M. Johansen, Department of Pharmacology, University of Colorado Medical School, Denver, CO 80262.

Protein phosphatase 1 is regulated through the phosphorylation and dephosphorylation of three heat stable inhibitor proteins, inhibitor-1, inhibitor-2 and DARPP-32. Prolonged incubation of protein phosphatase 1 with inhibitor-2 leads to the inactivation of the protein phosphatase due to a change in the conformation of the enzyme. This inactivation can be reversed by phosphorylation of inhibitor-2 on a threonine by glycogen synthase kinase 3 (6SK-3). Protein phosphatase 1 is also regulated through the direct phosphorylation of the enzyme by pp60 cr. the protein phosphatase 1 is also regulated through the direct phosphorylation of the protein phosphatase results in a loss of activity due to a decrease in affinity for substrate proteins. The pp60 cr. phosphorylation site has been localized to a small, protease-sensitive domain (Mrc4,000). Protein phosphatase 1 is not a substrate for pp60 cr. when it is complexed with inhibitor-2 to form the MgATP-dependent protein phosphatase. This result is observed both before and after activation of the protein phosphatase by GSK-3. This indicates that the presence of bound inhibitor-2 limits the access of pp60 phosphorylation site presumably via steric hinderance and suggests that the pp60 phosphorylation site is either closely associated with or is part of the inhibitor-2 binding site involved in the formation of the MgATP-dependent protein phosphatase.

TRANSFORMING GROWTH FACTOR-8 REGULATES FOLLICLE-STIMULATING HORMONE-INDUCED GRANULOSA
CELL DEVELOPMENT THROUGH CAMP-DEPENDENT AND CAMP-INDEPENDENT MECHANISMS. Michael Knecht,
Fel Feng, and Kevin Catt, ERRB/NICHD/NIH, Bethesda, ND 20892

Ovarian granulosa cells from diethylstilbestrol-implanted immature rats respond to folliclestimulating hormone (FSH) with several hundred-fold increases in steroidogenesis and polypeptide hormone receptor expression. These stimulatory effects of FSH are dependent upon the activation of adenylate cyclase and are reproduced by cAMP-inducing ligands, while removal of cAMP results in the regression of granulosa cells. Transforming growth factor-\$ (TGF-\$) had a bifunctional effect on FSH-induced cAMP production during a 72 h culture. The growth factor (16 pM) enhanced the effects of 2.5-10 ng FSH/ml by 2 to 3-fold, but suppressed responses to FSH levels over 25 ng/ml by 50%. The actions of TGF-\$\text{max}\$ were concentration-dependent over the range of 0.8 to 80 pM, with maximal effects at 16 pM of the growth factor. TGF-\$\text{alone}\$ alone had no effect upon cAMP formation or cellular growth. In contrast to its bifunctional effects on FSH action, TGF-\$\text{did not alter choleragen- or forskolin-induced cAMP production. Thus, the growth factor may modify FSH receptor content or coupling of the FSH receptoricyclase system. TGF-\$\text{alone}\$ altered the actions of exogenous cAMP, since it enhanced the effects of 8-bromo-cAMP, choleragen, and forskolin on the expression of both luteinizing hormone and EGF receptors by 2-fold. These results indicate that TGF-\$\text{modifies}\$ modifies gonadotropin-induced cAMP production and cAMP action in the developing granulosa cell and is involved in the maturation of an endocrine-responsive target cell.

275
BINDING OF 2-CHLOROADENOSINE TO BOVINE SPERMATOZOA. Ling, Xias-Yang, S. Vijayaraghavan, and D. D. Hoskins. Oregon Regional Primate Research Center, Beaverton, OR 97006.

Mammalian sperm are unique in that receptors for modulating signal transduction through binding to receptors is not known to occur. This study was undertaken to determine if receptors are involved in the mechanism by which adenosine and a number of analogs initiate motility in immotile, bovine caput epididymal sperm and stimulate motility in motile, inactive caudal sperm (Biol. Reprod. 34:468-477, 1986). More recently we have shown that addition of adenosine deaminase inhibitors and competitive substrates markedly stimulates motility in submotile caudal sperm. Specific binding of 2-chloroadenosine (2-Cl-Ad) to washed caudal sperm was determined as a function of time, temperature, and concentration. Highest specific binding (80%) occurs at 0° for 2.5 hrs, associated constants are: K_d, 10 µM and Bmax, 3.15 x 10⁻² µM/10⁸ sperm. Theophylline has no effect on binding and numerous adenosine analogs do not displace 2-Cl-Ad in a manner related to motility initiation. Nitrobenzylthioinosine (0.2 mM) completely blocks 2-Cl-Ad binding to intact sperm. These data suggest that 2-Cl-Ad may bind to an adenosine uptake site and that binding is unrelated to motility initiation. Binding to sperm plasma membranes requires the presence of protease inhibitors during membrane isolation. High specific binding (80%) to head plasma membranes has been found but activities have been low and variable. Supported by NIH grant HD18737.

276
CALMODULIN IN BLOOD AND SALIVA AND ITS ASSOCIATION WITH EPIDERMAL GROWTH FACTOR (EGF).
S. Mac Neil, R. Dawson, C. H. Barton. L. Hanford, M. McGurk, R. Metcalfe and D. S. Munro
Department of Medicine, Clinical Sciences Centre, Northern General Hospital, Sheffield S5 7AU, U.K.

We have previously reported that calmodulin activity in human serum originates from the platelet which specifically releases biochemically-identifiable calmodulin in response to thrombin stimulation (Mac Na.1 et al. Bioscience Reports, 4, 643-650). As extracellular calmodulin can stimulate cell division in cultured cells (Mac Neil et al. J. Invest. Dermatol. 83, 15-19, 1984) we are investigating a possible extracellular role for calmodulin. Levels of serum calmodulin (20 volunteers) ranged from 27 to 1220 ng/ml (\bar{x} of 297 ± 70 SEM) and plasma levels from 10 to 286 ng/ml (12 volunteers) ranged from 27 to 1220 ng/ml (\bar{x} of 297 ± 70 SEM) and plasma levels from 10 to 286 ng/ml (12 volunteers) ranged from a foliate protein) was associated with the release of other platelet products – EGF was released in all experiments where calmodulin was released and neither was released when platelet release was prevented. Investigating a possible association between calmodulin and EGF we next examined selivar and found EGF levels of 2-7 ng/ml and calmodulin activity of 0.2 to 4 $\mu g/ml$. Oral surgery elevates EGF secretion in normal individuals. Both EGF and calmodulin secretion were similarly elevated (by 100% p < 0.05 for both) 24 hr post-surgery. The correlation between the rate of EGF secretion and the rate of calmodulin secretion was r = 0.82 (based on 26 salivary samples from 7 patients). Approximately 80 moles of calmodulin were secreted per mole of EGF. The calmodulin activity in saliva is recognised by calmodulin antibody and satisfies several other criteria for authentic calmodulin. We suggest that the high levels of calmodulin secretion of an extracellular role for calmodulin.

Party and the second

Kuo-Fing Huang, NICHD, NIH, Bethesda, MD 20892

Three isozymic forms of rat brain protein kinase C had been purified to near homogeneity. These enzymes were designated type I, II, and III protein kinase C based on their elution profile from hydroxylapatite column in an order of increasing phosphate buffer concentration. All three isozymes hydroxylapatite column in an order of increasing phosphate buffer concentration. All three isozymes have the same molecular weight of 82,000, undergo sutophosphorylation in the presence of Ca⁻¹, phosphatidylserine (PS), and diolein (DG), and bind ["H]phorbol-12,13-dibutyrate (PDBu) dependent on the presence of Ca⁻¹ and PS. Three monoclonal antibodies (8/1, 10/10, and 25/3) of the IgG class had been prepared against the type II rat brain protein kinase C. All these antibodies imminoprecipitated the type II isozyme in a dose-dependent manner but did neither to type I nor type III isozyme. The immune complexes of type II isozyme and the antibodies retain all the kinase activity, which is dependent on Ca⁻¹/PS and further stimulated by DG. The concentrations of Ca⁻¹ and PS required for half-maximal kinase activity were not influenced by the presence of antibodies. The initial rate and final extent of protein kinase C autophosphorylation, however, were reduced by the addition of the antibodies. The concentration of PS required for half-maximal PDBu binding and the Kd of PDBu were unchanged in the presence of the antibodies. The total binding of PDBu in the presence of one antibody (8/1) but not the other two, was reduced by 50%. Immunoblot analysis of the trypsin-degraded protein kinase C revealed that all three monoclonal antibodies recognized the 33-38-KDa fragment, the PS/PDBu-binding domain, but not the 45-48-KDa fragment, the kinase catalytic domain, of the enzyme. These results indicate that the PS/PDBu-binding domain of the type II protein kinase C contains the major immuno-reactive determinant for all these monoclonal antibodies; however, the effects of these antibodies on the binding of PDBu are different.

DIFFERENTIAL DISTRIBUTION AND DEVELOPMENTAL EXPRESSION OF THE ISONYMIC FORMS OF PROTEIN 278 KINASE C IN RAT BRAIN. Tasuyoshi Yoshida, Freesia Huang, Hiroki Nakabayashi, and Kuo-Ping Huang, NICHD, NIH, Bathesda, ND 20892.

Polyclonal antibodies against rat brain PKC were raised in goat. These antibodies can neutralize completely the purified rat brain PKC as well as the total PKC activity in the crude brain homoge-The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues and symphoid organs were found to be highly enriched in PKC, while lung, kidney, liver, heart, and skeletal muscle contained relatively low level of this kinase. We have also characterized three isozymic forms of PKC from rat brain. Monospecific antibodies against type I, II, and III isozymes were prepared by specific absorption of polyclonal antibodies to each type of isozyme previously electrophoretically transferred to nitrocellulose membrane. Each monospecific antibody preparation recognized preferentially its own antigen by immunoblotting. These antibodies were used to type the presence of isozymic forms of PKC in the various regions of rat brain and to determine the expression of these isosymes during brain development. The type I isosyms was found to be enriched in cerebellum, the type II isosyms in cerebral cortex, thalamus, and corpus callosum, and the type III isozyme in olfactory bulb. During brain development the type I enzyme was very low in the fetus and rats within one-week of age. At least a 3-5-fold increase in the type I enzyme was observed between one-and two-week of age and remained constant thereafter up to six-week of age. Both the type II and type III enzymes were progressively increased from three day before birth up to two-week of age and remained constant thereafter up to six-week of age. These results demonstrate that the various protein kinase C isosymes are enriched in distinct regions of rat brain and the expression of these isozymes is developmentally controlled.

PROTEOLYTIC DEGRADATION OF PROTEIN KINASE C IN THE PHORBOL ESTER-INDUCED INTERLEUKIN-2 SECRETING THYMOMA CELLS. Freesia Huang, Prince Arors, Edgar Hanna, and Kuo-Ping Huang, NICHD, NIH, Bethesda, MD 20892

Phorbol 12-myristate 13-acetate (PMA) induces the Interleukin-2 (II-2) production in mouse thymoma cells of ELA, though the mechanism of action is not known. The effects of PMA on ELA protein kinsse C (PKC) were studied by using polyclonal antibodies raised against rat brain PKC. These antibodies inhibited PKC activity completely and detected an 82-KDa protein by immunoblot analysis in both crude homogenate and partially purified kinase preparation. PMA at 10ng/ml elicited a time-dependent loss of PKC (82 KDa) protein from the soluble fraction (earliest time tested was 2 min); an early rise (peak at 5 min) and subsequent loss of PKC from the particulate fraction was Consequently, PKC in the whole homogenate disappeared gradually (>50% loss in 30 min). These effects were dose-dependent and were not caused by the inactive analog, 4-a phorbol. With continuous presence of PNA, PKC remained very low. However, removal of PNA from the medium caused the reappearance of PKC after 24 hr, and the newly synthesized PKC was mainly located in the soluble fraction. These PMA effects were tested on a cloned line of EL4 (IEL4) which was known to be unresponsive to PMA-induced II-2 production. At the same concentration (lOng/ml), PMA siso induced a fast and time-dependent translocation of PKC from the soluble to the particulate fraction of IEL4. However, the degradation of membrane associated PKC was greatly retarded; up to 30 min the 82-KDs protein remained high and there was no change of PKC in the whole homogenate. These results 82-KDs protein remained high and there was no change of PKC in the whole homogenate. These results suggested that translocation and degradation of PKC were early events of the PMA-induced 11-2 production; the retardation of PKC degradation resulted in the failure of 11-2 production in IEL4.

280 CAMP REGULATES THE TRASCRIPTIONAL ACTIVITY OF N-MuLV LTR
N. Najam¹, H. Fan², and Y.S. Cho-Chung ¹; ¹Mational Cancer Institute, NIH, Bethesda, MD
20892; ²Dept. of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92717. Site 1- and Site 2- selective analogs in combination synergistically produced growth inhibition and phenotypic reversion of Ha-MuSV-transformed NIH/3T3 clone 13-3B-4 cells (P.Tagliaferri, et.al. Biochem. Biophys. Res. Commun. 130, 1193-1200, 1985). In this reverse transformation process, the increase of the ratio of the R^{II}/R^I cAMP receptor proteins, especially at the cell nucleus was found to be a primary event and this increase in the R^{II}/R^I ratio was inversely related to the suppression of p21 ras protein expression. In this work we investigated whether the cAMP analog effect on the p21 res protein suppression in 13-33-4 cells could be at the level of LTR expression. The effect of CAMP he trascriptional activities of the wild type and deleted M-MuLV LTRs was assessed by fusion of the LTR to the bacterial CAT gene followed by transient expression assays in NIH/3T3 cells.

Treatment of NIH/3T3 cells containing the wild Type LTR for 24 hr with the Site-2 analog, No-butyryl cAMP (25um)+ the Site-I analog, 8-thiosethyl-cAMP (5uM) resulted in over 80% inhibition of the CAT expression; the same inhibition was also obtained with each of these analogs or with other analogs singly but at 10-100 fold higher concentrations. A series of deletions of the tandemly repeated enhancer sequences (-194 to -150 bp) decreased the promoter activity and abolished the cAMP analog effect on the CAT expression. Deletions of the sequences below the tandem repeats between the Wha I site and CAAT box (-150 to -120), however, decreased the promoter activity only without affecting the cAMP inhibitory effect on the CAT expression.

These results suggest that cAMP in mammalian cells regulates gene expression at specific sequences.

CYCLIC AMP INCREASES THE mRNA LEVELS FOR THE REGULATORY SUBUNIT (R-II₅₁) OF TYPE II CAMPDEPENDENT PROTEIN KINASE IN RAT SERTCLI CELLS. O. Øyen^{1,2}, W. Eskild², H. Attramadal^{1,2},
I.P. Gladhaug³, F.O. Levy², G. Knutsen², J.S. Richards⁴, V. Hansson², and T. Jahnsen^{1,2}.

Institute of Pathology, Rikshospitalet, Oslo, Norway; Institute of Medical Biochemistry, University of Oslo, Norway; Institute of Pharmacology, University of Oslo, Norway; Operatment of Cell Biology, Baylor College of Medicine, Houston, Texas.

Testicular function is dependent on FSH/CAMP stimulation of Sertoli cells. All effects of cAMP are Testicular function is dependent on FSH/CAMP stimulation of Sertoli cells. All effects of cAMP ar supposed to be mediated via cAMP-dependent protein kinases. The present study was undertaken in order to investigate FSH/CAMP regulation of R-II51 in rat Sertoli cells. Total RNA was extracted from rat testes of different ages (5-100 days) and from rat Sertoli cell cultures after stimulation with FSH or dibutyryl-CAMP (db-CAMP). Messenger RNA for R-II51 was quantitated by Northern analyses using 20 µg of total RNA and a nick-translated rat R-II52 CDNA probe. Two mRNA species for R-II51 (1.8 kb and 3.2 kb) were detected in rat testes. The mRNA levels for R-II51 in rat testes increased from day 5 to day 15, showed high levels until day 25 after which it gradually decreased. Sertoli cell cultures from immature rat testes stimulated with db-cAMP (0.1-1.0 mM) and FSH (750 ng/ml) for the 3.2 kb mRNA for R-II51. No increase in R-II51 was observed when primary hepatocytes were incubated for 48hrs in the presence of 1 mM db-cAMP. These results show that FSH and cAMP in cultured Sertoli cells cause a cell-specific increase in mRNA for R-II51 and that this may represent an important self-amplifying mechanism for FSH and cAMP action on Sertoli cells.

282 INHIBITORY EFFECT OF A RAS ONCOGENE ON PLATELET-DERIVED GROWTH FACTOR (PDGF)-STIMULATED PHOSPHOINOSITIDE HYDROLYSIS IN MURINE FIBROBLASTS. Gregory Parties. Robin Hoebel, and Efraim Racker. Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853.

We have investigated the influence of a ras oncogene (Land et al. (1983) Nature 304, 596) on PDGF-stimulated phosphatidylinositol (PI) metabolism in Rat-1 and NIH 3T3 fibroblasts. Incubation of [3H]inositol-labeled Rat-1 cells with purified human PDGF (5 ng/ml) resulted in 2- to 3-fold increases in [PH]IP, levels within 90 s and, in the presence of 25 mM Li+, a 4-fold increase in the level of [PH]IP, after 30 min. In contrast, incubation of EJ-ras-transfected Rat-1 cells (R1-EJ2 line) with PDGF resulted in little or no accumulation of either [HJIP3 or [HJIP1. This lack of response was not due to an absence of PDGF receptors since the number of specific [123]]PDGF binding sites on R1-EJ2 cells was at least 80% of that on Rat-1 cells. In serum-free media the basal rates of PI turnover (i.e., the kinetics of [3H]]P₁ accumulation in the presence of Li*) in Rat-1 and R1-EJ2 cells were similar. Whereas PDGF stimulated PI turnover only in the parental Rat-1 cells, both the parental and EJ-ras-transfected cell lines were stimulated approximately 2-fold by thrombin (250 ng/ml) and 4- to 5-fold by 5% plasma-derived serum (PDS). In the presence of PDS, the rate of PI turnover in R1-EJ2 cells was similar to that in PDGF-stimulated Rat-1 cells. PDGF also induced a marked stimulation of PI metabolism in NIH 3T3 cells, but not in v-Ha-ras-transfected or Kirsten murine sarcoma virus-transformed 3T3 cell lines. On the other hand, NIH 3T3 cells that were transfected with v-arc responded to PDGF to a similar extent as the parental cells. Using NIH 373 cells transfected with an expression vector containing a glucocorticoid-sensitive mouse mammary numor virus LTR-linked v-Ha-ras gene, the induction of p21-linked with 2 µM densmethasone for 26 h was associated with a 91% reduction in PDGF-stimulated [3H]inositol incorporation into PI; denamethasone decreased the PDGF attinulation by about 40% in control 373 cells. These results suggest that a ras oncogene product, p21, may exert an inhibitory effect on the PDGF activation of phosphoinositide hydrolysis. (Supported by American Cancer Society grant PF-2683 and NIH grant CA-08964).

CYCLIC MUCLEOTIDE PHOSPHODIESTERASE GEME. Gregory Podgorski, Jakob Franke, Marie-Lise Lacombe, and <u>Richard Kessin</u>, Dept. of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, New York, 10032.

We have cloned a cyclic nucleotide phosphodiesterase gene which codes for a developmentally regulated glycoprotein secreted by <u>Dictyostelium discoideum</u>. The organism uses cANP as a chemoattractant during aggregation and the ensyme is part of the system which controls the levels of extracellular cAMP. The complete sequence of the phosphodiesterase has been determined from overlapping cDNA clones; the cDNA codes for a protein of 51,000 daltons. The genomic sequence has also been determined and except for a small 5' intron is identical to the cDNA sequence. The gene exists as a single copy in the genome and has no homology with other known cyclic nucleotide binding proteins. During the growth phase of the Dictyostelium life cycle, the mRNA of the phosphodiesterase is present at low levels as a 1.8 kb transcript. Early in the developmental phase a 2.3 kb phosphodiesterase transcript is induced. The level of mRNA is proportional to the amount of enzyme secreted. Mutants which lack phosphodiesterase activity, but which do not appear to be defective in other functions, have greatly reduced levels of transcript.

284

PROTEINS RELATED TO THE PROTO-ONCOGENE PROTEIN KINASES fes, abl, src and erb-B IN THE RAT STRIATUM AND HIPPOCAMPUS: A DEVELOPMENTAL PROFILE. R. Simantov, W.M. Cowon and H. Niman*. The Salk Institute for Biological Studies and The Research Institute of Scripps Clinic*, La Jolla, CA 22138.

It is now widely accepted that protein kinases play a pivotal role in the function of mammalian cells in general, and oncogenesis in particular. The abundance of several proto-oncogenes in the nervous system prompted us to investigate the appearance of proteins related to fes, abl, src and erb-B protein kinases during the development of two well defined brain structures, the striatum and the hippocampus. Sequence directed monoclonal antibodies recognizing a specific portion of the above mentioned proto-oncogenes were used to identify the proteins in embryonic, newborn, adult and aged rats. The immunoreactive proteins were analyzed on Western blots and visualized with 1251-protein A. It was found that proteins related to each of the four oncogenes undergo characteristic developmental changes; e.g., a clear decline was observed in the level of the 18K, 60K and 130K proteins recognized by the antibodies to fes, abl and erb-B, respectively. The antibody against fes, however, recognizes a 150K protein in the adult but not embryonic striatum. Similarly, an antibody to the src kinase detects much higher levels of a 60K protein in the adult but not embryos. In conjunction with recent findings concerning the tyrasine-protein kinase activity of the c-src in cultured striatal cells and during development (Simantov et al., Neuroscience Abstracts, 1986), these experiments indicate that several proto-oncogene related protein kinases are developmentally regulated in the brain.

285 GANGLIOSIDES AS BIMODAL REGULATORS OF CELL GROWTH by Sarah Spiegel, Section on Membrane

Biochemistry, Developmental and Metabolic Neurological Branch, NINCDS, Bethesda, MD
Gangliosides, stalic acid containing glycosphingolipids have been implicated in the regulation of cell growth, based on the dramatic changes in ganglioside composition during oncogenic transformation, cell cycle, and density-dependent growth inhibition. To directly examine potential functions for endogenous gangliosides, we have recently developed a new approach (1). The B subunit of cholera toxin (B), which binds exclusively to several molecules of gangliosides GMI on the cell surface, was used as a ganglioside-specific probe to induce cell proliferation. B stimulated DMA synthesis and cell division in quiescent, non-transformed mouse 3T3 cells (NIH, Balb/C, and Swiss) in a dose-dependent fashion. Previously, we had shown that B was mitogenic for resting lymphocytes (1). Thus, the ability of B to stimulate resting cells to divide appears to be a general phenomenon. In addition, B remarkably potentiated the effects of other mitogens, such as serum, EGF, PDGF, and insulin. This synergistic effect indicates that B regulates the biological activity of these growth factors through a different, not yet identified pathway. In distinct contrast to its effects on quiescent cells, B inhibited the growth of transformed 3T3 cells as well as rapidly dividing normal 3T3 cells. Thus, we were able to demonstrate a bimodal response to B by the same cells just by varying their state of growth. Transformed 3T3 cells have less GMI than normal 3T3 cells and it has been reported that levels of surface gangliosides increase as normal 3T3 cells reach confluency. Thus, the bimodel response to B may be related to the amount of surface GMI being occupied. Our findings suggest that endogenous gangliosides may play a role as membrane transducers of both positive and negative signals that regulate cell growth. (1) Spiegel, S et al (1985) Science 230, 1285

286

COMPARATIVE CHARACTERIZATION OF RECEPTOR AND NON-RECEPTOR ASSOCIATED PROTEIN TYROSINE KINASES. Ashok K. Srivastava, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, (Quebec), H2W 1R7, CANADA

By using poly (glu: Tyr; 4:1) as an exogenous substrate, the characteristics of insulin receptor associated protein tyrosine kinase (PTK) from rabbit skeletal muscle has been compared with a growth factor-independent, non-receptor-PTK partially purified from rat lung. The two PTK's phosphorylated poly (glu: Tyr; 4:1) very effectively with apparent Km values of 0.3 mg/ml for insulin receptor-PTK and 0.8 mg/ml for non-receptor-PTK. ATP was the preferred phosphoryl donor for both PTK's (Km = 150 µM), however, in the case of non-receptor PTK, GTP was able to partially replace ATP. ATP analogues, AMP-PNP and ATP-Y-S inhibited the activities of both enzymes. Receptor PTK showed more activity in presence of Mg² whereas non-receptor PTK required either Mg² or Mm² for activity although higher concentrations of Mg² were needed as compared to Mm². Para hydroxy-mercurobenzoate (PHMB), a SM-group blocking agent, inhibited the activities of both PTK's suggesting the requirement of SM groups for enzymatic activities. Both enzymes were inhibited by fluorosulfonylbenzoyl 5' adenosine (FSBA) and bioflavonoid quercetin. NaCl also inhibited both kinases, although, non-receptor PTK was more sensitive to inhibition by NaCl. Autophosphorylation resulted in the activation of both the kinases. These data indicate that there are only few but significant differences in the characteristics of receptor and non-receptor associated PTK's. (Supported by Medical Research Council of Canada).

287 SITE SELECTIVE CAMP ANALOGS ALTER THE CAMP RECEPTOR RATIO (R^{II}/R^I) AND PRODUCE GROWTH INHIBITION AND MORPHOLOGICAL CHANGE IN SEVERAL HUMAN BREAST AND COLON CANCER CELL LIMES.
P. Tagliaferri¹, D. Katsaroe¹, R.K. Robins², T. Clair¹ and Y.S. Cho-Chung¹; ¹ National Cancer Institute, Bethesda, MD 20892, and ²Nucleic Acids Res. Instit., ICN Pharm. Corp. Costa Mess, CA 92626.

The growth regulatory effect of site selective cAMP analogs, which have been shown to be many fold more active in protein kinase activation than previously studied derivatives, was investigated in seven breast and three colon human cancer cell lines. The regulatory subunit of the cAMP dependent protein kinase contains two intrachain binding sites, Site 1 and Site 2. cAMP analogs which bind to one of the two sites are known as Site 1-selective (C-2 and C-8 substituted analogs) and Site 2-selective (C-6 substituted analogs). Thirty five analogs, C-2, C-6, and C-8 monosubstituted, or C-2 + C-8 disubstituted, or C-4 + C-8 disubstituted, were tested for their growth regulatory effect on the breast cancer lines MCF-7, MCF-7ras, T-47D, MDA-MB-231, ZR-75-1, BT-20 and HBL 100, and the colon cancer lines LS-174T, WIDr, and MT-29. At uM concentrations most of the analogs caused appreciable growth inhibition of all ten cell lines. The greatest inhibition was observed when using analogs containing a chlorine atom at the C-8 position: 8-C1-cAMP and N6-phenyl-8-thiopCiphenyl-cAMP, at 50uM, caused 70-80X growth inhibition of all ten cell lines. The C-6 analog, N6-benzyl-cAMP, was the next most potent inhibitor, causing 50-60X growth inhibition at 50 µM. Growth inhibition was accompanied by a change in cell morphology and an increase in the cAMP receptor ratio (R^{II}/R^I), as measured by photoaffinity incorporation of [2 P]-8N₂CAMP into the cell lysates, followed by SDS-PACE and autoradiography. The site selective cAMP analogs are potent inhibitors of the growth of human cancer cells and can serve to elucidate the mechanisms of cell growth regulation.

FUNCTION OF THE CYR1 AND RAS2 GENES IN YEAST

Isao Uno, Takehiro Oshima*, Hiroshi Mitsuzawa and Tatsuo Ishikawa;Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan;*Suntory Institute for Biomedical Research, Shimamoto-cho, Osaka 618, Japan

Shimamoto-cho, Osaka 618, Japan
Regulatory roles of cAMP in yeast, <u>Saccharomyces cerevisiae</u>, have been studied by isolation of mutants requiring cAMP and their suppressors. The <u>cyrl</u> mutants possessed no detectable levels of adenylate cyclase activity and cAMP, and the growth of cells carrying the <u>cyrl</u> mutation was arrested at the GI phase of cell cycle in the absence of cAMP. On the other hand, <u>S. cerevisiae</u> contains two closely related, but distinct genes, <u>RASI</u> and <u>RAS2</u>. The <u>ras2</u> mutants produced a low level of cAMP, and growth of these mutants were suppressed by the <u>bcyl</u> mutation which suppressed the <u>cyrl</u> mutation. The relationship between the <u>cyrl</u> and <u>ras2</u> mutations of yeast in production of cAMP was studied. Cloned <u>CYRI</u> and <u>RAS2</u> genes were expressed in <u>S. cerevisiae</u> and <u>Escherichia coli</u> cells. The products of the <u>CYRI</u> and <u>RAS2</u> genes were reconstituted <u>GIP-dependent adenylate cyclase in vivo</u> and <u>in vitro</u>. To determine the catlytic domain of the <u>CYRI</u> gene product and the domain interacting with <u>RAS2</u> gene product, several kinds of truncated <u>CYRI</u> gene were made. Further certain promoters and initiation codon were connected to the truncated genes adjusted to their frame. Genetical and blochemical analyses of transformants carrying these genes revealed that the catalytic domain of the <u>CYRI</u> product was coded by the 3'-terminal 1.2 Kb of the gene, and the domain interact with the <u>RAS2</u> product was located adjacent to the catalytic domain. The results suggest that yeast GIP-dependent adenylate cyclase is composed of catalytic and regulatory proteins encoded by the <u>CYRI</u> and <u>RAS2</u> genes, respectively.

288

Abour-Samra, A.B. 144
Abraham, I. 145
Abrahamsson, T. 26, 61
Adamik, R. 118
Adams, U.J. 252
Adavani, S.R. 170
Adeistein, R.S. 192
Affolter, H. 124
Aguilera, G. 96, 144
Aiyar, N. 223
Aktories, K. 206
Ally, S. 267
Aloyo, Y.J. 146
Alving, C.R. 243
Amlaiky, N. 65, 76
Anad-Srivastava, M.B. 77
Anglard, P. 218
Angus, C.W. 118
Anwer, K. 241
Appelman, M.M. 119
Armstrong, D. 125
Arora, P. 279
Asher, C. 138
Astumian, R.D. 207
Atkinson, J.L. 147
Attramadal, H. 281
Aub, D.L. 78
Aurbach, G.D. 131
Axelrod, J. 85, 99, 106
Azuma, K. 202

Babich, M. 21
Bae, S. 186
Baeker, R.R. 257
Bailey, J.M. 187
Baker, S.P. 1
Balaban, C.D. 100
Balla, T. 224
Baimforth, T.J. 18
Baranes, J. 2
Barber, R. 86
Bardin, C. 87
Barmann, M. 206
Barrett, D. 79
Barton, C.H. 276
Baukal, A.J. 224
Baumann, P.A. 31
Beavo, J.A. 89, 93, 107, 184
Beebe, S.J. 148, 149
Beeler, T. 127
Beg, Z.H. 150
Beier, N. 89
Belfrage, P. 4
Bell, J.D. 84
Bell, J.D. 84
Bell, M.E. 130
Bennett, C.F. 225
Benovic, J.L. 32, 33, 65, 76, 103
Benzil, D. 151
Berg, B.H. 152
Berlingieri, M.T. 67
Beynon, J.H. 220

Bhullar, R.P. 80
Biden, T.J. 226
Billingsley, J.L. 100
Binet, A. 2
Black, E.B. 208
Blackmore, P.F. 148
Blackwell, G.J. 165
Blumenthal, E.J. 153
Bode, D.C. 209
Bojanic, D. 72, 81, 227, 266
Bolanowski, M.A. 12
Bondy, C. 126
Bone, E. 268
Boni-Schnetzler, M. 3
Bonser, R.W. 165
Borsotto, M. 136
Botterell, S. 154
Bouvier, M. 33, 76
Boynton, A.L. 228, 229
Bradford, P.G. 230
Bradham, L.S. 72, 81, 227, 266
Bradley, J. 122
Bradley, R.M. 22
Brandi, M.L. 131
Brann, M.R. 82
Braquet, P. 2, 246
Bray, P. 83, 87
Bressler, J.P. 151, 156
Breton, M.F. 194
Brewer, Jr., H.B. 150
Brooker, G. 34, 39, 143
Brown, B.L. 162, 197, 234
Brown, J.H. 47
Brunton, L.L. 84
Bubis, J. 155
Burch, R.M. 85
Burgess, G.M. 231
Burke, T.M. 74
Burns, G. 162
Butcher, R.M. 86

Cabanie, M. 246
Cain, S.T. 157
Cambier, J.C. 35
Carchman, R.A. 166, 177, 200
Carcillo, J.A. 232
Carmichael, J. 164
Caron, M.G. 12, 32, 33, 50, 65, 76
Carter, A. 83, 87
Casteleijn, E. 158
Catt, K.J. 96, 144, 224, 249, 274
Catterall, W.A. 141
Cerione, R. 88, 103
Chabner, B.A. 164
Chabot, J.G. 10
Chan, S.C. 53
Chang, H. 44
Chang, J.P. 249
Chang, K.-J. 105
Chang, M.-K. 163

Charbonneau, H. 89
Chau, V. 219
Chen, Z.Z. 35
Childers, S.R. 36
Chin, H. 127
Cho, K.S. 254
Cho-Chung, Y.S. 267, 280, 287
Chock, P.B. 207
Chomczynski, P. 268
Chrisman, T.D. 148
Christoffersen, T. 62, 269
Chueh, S.-H. 238
Chung, F.-Z. 119
Clair, T. 267, 287
Clark, C.R. 245
Clark, R.B. 37
Cohen, P. 5
Colbran, R.J. 159
Collins, R. 87
Connolly, E. 128
Cooper, C. 136
Cope, F. 160
Corbin, J.D. 148, 149
Corcia, A. 129
Corda, D. 38
Cordle, S.R. 149
Cornwell, T.L. 16
Coronado, R. 124
Coscia, C.J. 116
Cote, T.E. 78
Cotecchia, S. 50
Cowan, K.H. 164
Cowan, M.M. 284
Creed, G.J. 171, 233
Creveling, C.R. 130
Crooke, S.T. 28, 59, 223, 225
Cubitt, A.B. 234
Culty, M. 98
Curran, T. 7
Cushman, S.M. 113, 214

Dage, R.C. 215

Dage, R.C. 215
Daly, J.W. 45, 130, 133
Dannies, P.S. 140
Datta, A. 258
Dave, J.R. 210
Davis, B.A. 102
Davis, P. 196
Dawson, J. 165
Dawson, R. 276
Day, K. 119
Dean, N.M. 235
DeBernardi, M. 39
Degerman, F. 4
de Gunzburg, J. 181
de la Cruz, R. 130
DeLorme, E. 253
Del Vecchio, R.L. 6
Dell, K.R. 161
Demerle, C. 246
Demuth, S.M. 162

Derynck, R. 270
de Turco, E.R. 259
DiDonato, A. 67
DiSalvo, J. 102
DiVetta, J. 167
Dillon, S.B. 236
Dixon, R.A.F. 5, 12
Dobson, P.R.M. 162, 197, 234
Dohlman, H.G. 12
Dooley, R.K. 231
Downs, R.M. 79
Drogula, C. 187
Dufau, M.L. 13, 178, 265
Dunlop, M. 237

Egan, J.J. 163
Eiden, L.E. 210, 222
Ek, B. 40
Ekstrom, R.C. 173
Elliott, K.R.F. 51
Enberg, G. 56
Erxleben, C. 125
Esanu, A. 246
Eskay, R.L. 210
Eskild, W. 281
Evans, D.B. 120
Evans, T. 108

Fain, J.N. 72, 81, 227, 266
Falasca, A. 271
Fan, H. 280
Farfel, Z. 7
Feng, P. 274
Feuerstein, G. 41
Fine, R.L. 164
Fiorentini, D. 271
Fiscus, R.R. 6
Fishman, P. 27
Fitch, F.M. 179
Fitzpatrick, L. 131
Flockerzi, V. 132
Forsberg, E. 41
Fox, D.A. 90
Franke, J. 283
Franza, R. 7
Frey, S.E. 91
Friedman, E. 7
Friedman, E. 7
Friedman, J. 37
Frielle, T. 12
Fukuda, T. 233
Fukunaga, K. 188
Fusco, A. 67

Gainer, H. 126
Gammeltoft, S. 56
Garland, L.G. 165
Garty, H. 138
Garty, N.B. 9
Gaut, J.R. 166
Gavaret, J.M. 201

Gerst, J.E. 64
Gessner, G. 223
Gibbs, J. .8
Gierschik, P. 92, 123
Gill, D.L. 238
Gillespie, P.G. 93
Gilman, A.G. .3
Giovanni, M.Y. 211
Gladhaug, I.P. 269, 281
Gnegy, M.E. 213
Goka, T. 86
Goldfarb, A.H. 167
Goldfien, A. 255
Gordon, A.S. 168
Granneman, J.G. 94
Graziano, M.P. .3
Gregerman, R.I. 54
Grieco, M. 67
Guillemette, G. 224
Guo, V. 83
Gusovsky, F. 133
Gutierrez, G.E. 270

Hahnsen, T. 281
Hakeem, N.A. 220, 221
Hakim, G. 271
Hall, K. 56
Hand, A.R. 186
Hanford, L. 276
Hanifin, J.M. 53
Hanna, E. 279
Hansen, C.A. 239
Hansen, C.A. 239
Hansen, V. 281
Harden, T.K. 108
Harding, S. 42
Harley, C.B. 196
Harman, J.G. 212
Harper, J.F. 43
Harris, J. 36
Harris, L.K. 35
Harris, L.K. 35
Harris, P. 42
Harrison, J. 213
Harrison, J. 213
Harrison, J. 213
Harrison, J. 80
Harris, P. 42
Harrison, J. 80
Harris, P. 42
Harrison, J. 80
Harris, P. 169
Haslam, R.J. 80, 98
Hatta, S. 95
Hatta, Y. 95
Hausdorff, M.P. 96
Heisler, S. 10
Helden, N.-E. 272
Hemmings, B.A. 11, 154, 170
Henneberry, R.C. 19
Herman, B. 252
Hescheler, J. 97
Hewlett, E.L. 270
Heydorn, W.E. 171, 233
Hidaka, H. 192, 199
Higashida, H. 134

Ho, Y.K. 91
Hodson, H.F. 165
Hoebel, R. 282
Hoffman, B.B. 44
Hofmann, F. 132
Holian, A. 172
Hollingsworth, E.B. 45
Holz, IV, G.G. 135
Honnor, R.C. 113
Horn, R.S. 263, 264
Hortsman, D.A. 240
Hosey, M.M. 48, 136
Hoskins, D.D. 262, 275
Hotz, A. 180
Hrbolich, J.K. 98
Huang, F. 278, 279
Huang, K.-P. 254, 277, 278, 279
Huang, K.P. 58
Hughes, J. 245
Hui, J. 145
Huzoor-Akbar 241
Hyslop, R.M. 14

Ijzerman, A. 26 Illiano, G. 67 Imajoh, S. 193 Imazu, M. 202 Inagaki, M. 193 Ingebritsen, T.S. 273 Ishikawa, T. 288 Isom, L.L. 46 Iwahashi, K. 176 Iwasa, T. 188

Jacobowitz, D.M. 171, 233
Jacquemin, C. 201
Jaffe, C.L. 174
Jakobs, K.H. 92
Jamieson, Jr., G.A. 137
Jans, D.A. 11, 154, 170
Jean, T. 242
Jelsema, C.L. 99
Jerebzoff, S. 175
Jerebzoff-Quintin, S. 175
Jett, M. 243
Johansen, J.W. 273
Johanson, R. 239
Johnson, R. 239
Johnson, J.A. 37
Jones, L.G. 47
Jones, L.G. 47
Jones, S.M.A. 205
Joost, H.G. 214
Jordan, M.K. 172
Joseph, S.K. 244, 250
Jurnak, F. .8
Justement, L.B. 35

Kamholtz, J. 83 Kanter, J.R. 84 Kariya, T. 215 Kase, H. 176

Katada, T. .4 Katsaros, D. 267, 287 Katz, M.S. 270 Kawasaki, H. 193 Keen, M. 40 Keller, P. 12 Kelly, B.A. 177 Kessin, R. 283 Khanum, A. 178 Kikkawa, U. .6 Kim, D.-K. 179 Kim, D.-K. 179
Kincaid, R.L. 100
King, K.A. 21
Kingston, E.E. 220
Kinkade, J. 217
Kinzel, V. 180
Kirilovsky, J. .2
Kirkland, J. 54
Kishi, Y. 216
Klee, C. 242
Klee, W.A. 110
Klemz, M.J. 35
Kleuss, C. 101
Klotz, N. 17
Knecht, M. 274
Knutsen, G. 281
Kobayashi, T. 75
Kobilka, B.A. 12
Kobylarz-Singer, D. 220 Kobilka, B.A. 12
Kobylarz-Singer, D.C. 120
Koenig, N. 180
Koesling, D. 101
Kohn, L.D. 38, 268
Kolber, D.L. 257
Kopelman, H. 10
Koshland, Jr., D.E. 189
Koster, J.F. 158
Kramer, C.M. 166
Kranias, E.G. 102
Kream, R.M. 135 Kranias, E.G. 102
Kream, R.M. 135
Krueger, K. 127
Krupinski, J. 103
Krzanowski, Jr., J.J. 24
Kubo, K. 193
Kuchibohotla, J. 195
Kuczenski, R.T. 147
Kuiper, J. 158
Kung, H.-F. 118
Kunkel, M.M. 37
Kuroda, M. 113
Kusada, S. 13
Kwatra, M.M. 48 Lacombe, M.-L. 181, 283
Lakonishok, M. 88, 103
Lambeth, J.D. 217
Lapetina, E.G. 104, 105, 247
Larkins, R.G. 237
Lauderdale, G.W. 14
Laurenza, A.L. 15
Laux, M. 206
Lavu, S. 118 Law. G.J. 140
Laychock, S.G. 49
Lazdunski, M. 136
Leach, K.L. 182
Lee, K.-Y. 254
Leeb-Lundberg, L.M.F. 33, 50
Lefkowitz, R.J. 12, 32, 33, 50, 76
Leonard, E.J. 51
Lester, D.S. 138, 174
Levy, F.O. 281
Lewis, D. 52, 106
Li, Z.H. 54
Limbird, L.E. 20, 46
Lincoln, T.M. 16
Ling, X.-Y. 275
Litman, B.J. 90
Littent, R.Z. 232
Lloyd, R. 53
Lo, M.M.Y. 245
Lockey, R.F. 24
Lohse, M.J. 17
Lonchampt, M. 246
Londos, C. 58, 113, 163
Lou, L. 183
Lovenberg, W. 198
Lozovsky, D. 210
Lu, Z.D. 54
Luini, A. 52, 106
Lyall, F. 18
Lynch, L. 173
Maan, A. 48
MacFarland, R.T. 184
MacNeil, S. 276

Maan, A. 48
MacFarland, R.T. 184
MacNeil, S. 276
MacPhee, G.H. 107
Maeta, K. 202
Malkinson, A.M. 153
Malviya, A.N. 218
Manganiello, V.C. 4, 114
Marcus, M.M. 95
Marshall, M. .8
Martensen, T.M. 185
Martin, M.W. 108
Masmoudi, A. 218
Mason, W.T. 139
Matsuda, Y. 176
Matsushima, K. 55
Mattsson, M.E.K. 56
Maurer, R.A. 170
Mayo, J. 145
Mayor, Jr., F. 32
McGuire, C. 182
McGurk, M. 276
McIntosh, R.P. 139
McKenney, K. 212
McKinney, J.S. 231
McMahon, K.K. 48
Mednieks, M.I. 186
Merrill, Jr., A.H. 217
Merritt, W.D. 187
Metcalfe, R. 276

Meyer, E.M. 1, 219
Michel, T. 109
Mickevicius, C.D. 213
Miller, J.L. 90
Mitsuzawa, H. 288
Miyamoto, E. 188
Mizuta, K. 75
Mochly-Rosen, D. 189
Molina y Vedia, L.M. 247
Molinoff, P.B. 79, 209
Monck, J.R. 248
Mong, S. 225
Morel, G. 10
Morgan, J.I. 7
Horgan, R.O. 249
Morton, J.J. 18
Moss, J. 118
Motulsky, H. 57
Moyer, J.D. 235
Muldoon, L.L. 137, 195
Mundy, G.R. 270
Munro, D.S. 276
Murno, D.S. 276
Murad, F. 6
Murayama, T. 4
Murray, J.J. 236
Mutzel, R. 181

Naghshineh, S. 58
Nairn, A.C. 190, 195
Najam, N. 280
Nakabayashi, H. 277, 278
Nakada, M.T. 59
Nakamura, S. 75
Nakanishi, S. 176
Nakorski, S. 40
Nambi, P. 223
Nanberg, E. 231
Neer, E. 122, 109
Nelson, C.A. 60, 111
Nemeroff, C.B. 157
Nerme, V. 26, 61
Nestor, Jr., J. 191
Newell, K.M. 35
Newton, D.L. 110
Newton, R.P. 220, 221
Nguyen, H.V. 172
Nicchitta, C.V. 244, 250
Nichols, R.A. 190
Nijssen, P. 36
Niman, H. 284
Nirenberg, M. 83, 127, 211
Nishikawa, M. 192
Nishikawa, M. 192
Nishiyama, K. 216
Nishizuka, Y. .6
Noel, M.M. 238
Noguchi, M. 58
Noyack, J.P. 184
Novack, J.P. 184
Novack, J.P. 184
Novack, J. 170
Numano, F. 216

Numano, F. 216 Nunnari, J.M. 20

O'Callahan, C. 136 Oetting, G.M. 116 Ohno, S. 193 Okajima, F. .4 Oldham, K.G. 251 Omri, B. 194 Oppenheim, J. 55 Oshima, T. 288 Oyen, O. 281

Pachter, J.A. 140
Pahlman, S. 56
Palfrey, H.C. 190, 195
Pallast, M. 101
Palm, D. 73
Parente, J.E. 68, 196
Parries, G. 282
Patel, J. 164, 171
Pavlovic-Hournac, M. 194
Pecht, I. 129
Pedigo, N.M. 21
Peterkofsky, A. 8, 212
Piascik, M.T. 21
Pierre, M. 201
Pilch, P.F. 3
Pines, M. 123
Pineyro, M.A. 54
Podgorski, G. 283
Poksay, K.S. 59
Pollard, H. 41
Polson, J.B. 24
Pomerance, M. 201
Pong, S.F. 162
Posner, P. 1
Powers, E.A. 182
Prashad, N. 37
Presek, P. 206
Price, S.R. 118
Prosdocimi, M. 271
Prpic, V. 252
Pruss, R.M. 222
Puckett, A.M. 63
Puckett, C. 83
Putney, Jr., J.W. 69, 231, 240, 260
Pyerin, M. 180

Querol-Ferrer, V. 2 Quilliam, L.A. 197

Rabe, C.S. 253
Racker, E. 262
Raj, B. 211
Ransom, J.T. 35
Rasenick, M.M. 95
Rashatwar, S. 16
Rasmussen, H. 140
Rayson, T. 229
Reaven, G.M. 44

Rebar, R. 28 Rebois, R.V. 22 Reddy, P. 8 Reed, J. 180 Reep, B. 105 Refsnes, M. 62 Reifsnyder, D.H. 107 Reifsnyder, D.H. 10
Repaske, G. 20
Resink, T.J. 11
Reuner, K.H. 206
Reynolds, E.E. 248
Rhee, S.G. 254
Richards, J.S. 281
Richtand, N.M. 147
Riedinger, W. 23
Riemer, R.K. 255
Rinard, G.A. 63
Rivnay, B. 129
Roberts, J.M. 255
Robicsek, S. 24
Robins, R.K. 287
Robinson, P.J. 198
Robishaw, J.D. .3
Robles, B.T. 6 Robles, B.T. 6 Rosenthal, W. 97, 101, 112 Rossi, C.A. 271 Rossie, S. 141 Rossiegnol, D. 130 Roth, B.L. 232, 256 Rothstein, T.L. 257 Roy, B.G. 258 Rubin, R.P. 230 Russell, J. 126 Ryu, S.H. 254

Sagi-Eisenberg, R. 123 Saitoh, M. 199 Sakai, K. 75 Sakanoue, Y. 75 Sakoh, T. 193 Salomon, Y. 9, 64 Sambucetti, L. .7 Salomon, Y. 9, 64
Sambucetti, L. .7
Sandnes, D. 62
Santer, D.M. 233
Saraswat, L.D. 155
Schaake, L. 186
Schering, B. 206
Schlessinger, J. .1
Schorderet, M. 25
Schriem, H. 25
Schriem, H. 183
Schultz, G. 97, 112
Schultz, J.E. 142
Schwabe, U. 17
Schwarz, M. 170
Schworer, C.M. 147, 159
Scolnick, E. .8
Seamon, K.B. 15, 60, 111
Sedimeier, D. 23
Seidman, J.G. 109

Seifert, R. 112 Senogles, S.E. 65 Severne, Y. 26, 61 Severson, D.L. 161 Shakarjian, M.P. 200 Shen, C.-C. 115 Sheorian, V.S. 149 Shirakawa, S. 192 Shohami, E. 41 Showers, M.O. 170 S1dhu, A. 27 Sidhu, A. 27
Sidiropoulos, D. 92
Sigal, I. .8, 5, 12
Sikdar, S.K. 139
Simantov, R. 284
Simon, M.N. 181
Simons, C. 83, 87
Simons, E.R. 257
Simpson, I.A. 113, 214
Siraganian, R.P. 186 Siraganian, R.P. 186 Slater, E. 5 Smith, A.A. 143 Smith, A.A. 143 Smith, C.D. 66 Smith, C.J. 114 Smith, G. .8 Smith, J.A. 109, 122 Snyderman, R. 66, 71, 236 Soderling, T.R. 147, 159, 169 Sole, J. 64
Sole, J. 64
Somers, R.L. 32, 88
Somers, S.D. 252
Spain, J.W. 116
Speizer, L.A. 84
Spiegel, A.M. 65, 79, 83, 87, 88, 92, 123
Spiegel, S. 285
Spina. A. 67 Spina, A. 67
Spina, A. 67
Spitzer, J.A. 259
Srivastava, A.K. 77, 286
Stadel, J.M. 28, 59
Staniszewski, C. 32
Staffer P. P. 120 Staniszewski, C. 32 Steffen, R.P. 120 Stonik, J.A. 150 Strada, S.J. 115, 117, 121, 208 Strader, C. 5 Strasser, R.H. 32 Strnad, C.F. 68 Strulovici, B. 191 Suba. E.A. 222 266 Suba, E.A. 232, 256 Sugiya, H. 69 Szentivanyi, A. 24 Szucs, M. 116 Tagliaferri, P. 267, 287 Takeda, M. 202 Tan, B.H. 117

Tanaka, E. 188
Taylor, S. 155
Tennes, K.A. 240, 260
Thomas, A.P. 261
Thomas, J.M. 44
Thompson, N.T. 165

Thompson, W.J. 115, 117, 121, 208
Timmerman, H. 26
Tinsley, P. 156
Tocque, B. 70
Torphy, T.J. 63
Toru-Delbauffe, D. 201
Trautwein, W. 97
Triebwasser, D. 262
Tsai, S.-C. 118
Tsukamoto, H. 202
Tyers, M.D. 196

Uhing, R.J. 71 Ui, M. .4 Uno, I. 288 Usui, H. 202

Valente, F. 67
van Berkel, T.J.C. 130
Van Meurs, K.P. 118
Vaughan, M. 118
Vauquelin, G. 26, 61
Verghese, M. 71
Veron, M. 181
Verosky, M. 29
Vijayaraghavan, S. 262, 275
Villereal, M.L. 137, 195
Vinitsky, R. 65
Vulliemoz, Y. 29

Walaas, O. 264
Walaas, S.I. 263, 264
Waldman, S.A. 6
Waldman, S.A. 6
Waldman, S.A. 6
Waldmeier, P.C. 31
Waldo, G.L. 108
Walker, R.F. 146
Wallace, M.A. 72, 81, 227, 266
Walsh, K.A. 89
Waschek, J.A. 210, 222
Watson, M.J. 84
Wax, M. 79
Weber, H. 119
Weber, H. 119
Weber, T.M. 214
Weiel, J.E. 252
Weight, F.F. 52, 253
Weishaar, R.E. 120
Wellstein, A. 73
West. C. 219
Westermark, B. 272
Whalin, M.E. 121
Williamson, J.R. 239, 244, 248, 250
Wilson, E. 217
Winslow, J.W. 109, 122
Winters, C. 265
Wojcikiewicz, R.J.H. 72, 81, 227, 266
Wojcikiewicz, R.J.H. 72, 81, 227, 266
Wolfe, L. 149
Wolin, M.S. 74
Wollheim, C.B. 226
Wong, K. 68, 196
Woodcock, E.A. 30
Wu, H.-L.W. 225

Yagi, K. 203
Yajima, M. 216
Yamada, K. 176
Yamamoto, H. 188
Yamamura, H. 75
Yang, S.-D. 204, 204a
Yeaman, S.J. 205
Yokokura, H. 193
Yoshida, Y. 278
Yoshimasa, T. 76

Zelus, B.D. 184 Zick, Y. 123 Zwiller, J. 228, 229

Raven Press

Go beyond the Abstracts and get the in-depth details of the

Sixth International Conference on Cyclic Nucleotides, Calcium, and Protein Phosphorylation

(Advances in Second Messenger and Phosphoprotein Research, Volume 21)

Volume Editors:

Robert S. Adelstein, Claude B. Klee, and Martin Rodbell

Here is thorough coverage of the Sixth International Conference, including:

- the full text of many of the most important papers presented at the conference
- the stimulating interchange of round table discussions on vital topics of interest
- the complete source of current research in this exciting area of contemporary biology.

Add Volume 21 (the papers) to Volume 21A (the abstracts) for full coverage of this important international conference. Don't delay. Order your copy today.

1988/240 pages/53 illustrations/15 tables \$69.00 per copy in the U.S., \$86.50 elsewhere. ISBN 0-88167-407-9

Order Code 1739

Please send copies of Advances in Second Messenger and Phosphoprotein Research, Volume 21 (#1739) @ \$69.00 per copy in the U.S.; \$86.50 elsewhere. If not completely satisfied, I may return the book/s (with invoice) within 30 days for a full refund or credit.					
☐ I enclose a check make check payal \$	rs, please add \$2.00 ostage. uut notice.				
S	n USA				
(tho oval				

Raven Press

Dept. 5B, 1185 Avenue of the Americas, New York, New York 10036

A Member of the Worldwide Wolters Samsom Group