Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	9
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм метода create_a класса classname	10
3.2 Алгоритм метода print класса classname	10
3.3 Алгоритм функции main	11
3.4 Алгоритм функции function	12
3.5 Алгоритм метода fill_a класса classname	12
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	14
5 КОД ПРОГРАММЫ	17
5.1 Файл classname.cpp	17
5.2 Файл classname.h	18
5.3 Файл main.cpp	19
6 ТЕСТИРОВАНИЕ	20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, вначале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. Вначале работы выдает сообщение;
- Конструктор копии, обеспечивает создание копии объекта в новой области памяти. Вначале работы выдает сообщение;
- Метод деструктор, который в начале работы выдает сообщение;
- Метод который создает целочисленный массив в закрытой области, согласно ранее заданной размерности.
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение;
- Метод последовательного вывода содержимого элементов массива,

которые разделены тремя пробелами.

Разработать функцию func, которая имеет один целочисленный параметр, содержащий размерность массива. В функции должен быть реализован алгоритм:

- 1. Создание локального объекта с использованием параметризированного конструктора.
- 2. Возврат созданного локального объекта.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание первого объекта.
- 5. Присвоение первому объекту результата работы функции func с аргументом, содержащим значение размерности массива.
- 6. Для первого объекта вызов метода создания массива.
- 7. Для первого объекта вызов метода ввода данных массива.
- 8. Для первого объекта вызов метода 2.
- 9. Инициализация второго объекта первым объектом.
- 10. Вызов метода 1 для второго объекта.
- 11. Вывод содержимого массива первого объекта.
- 12. Вывод суммы элементов массива первого объекта.
- 13. Вывод содержимого массива второго объекта.
- 14. Вывод суммы элементов массива второго объекта.

1.1 Описание входных данных

Первая строка:

```
«Целое число»
Вторая строка:
«Целое число» «Целое число» . . .
Пример:
```

4 3 5 1 2

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копии в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Метод последовательного вывода содержимого элементов массива, с новой строки выдает:

«Целое число» «Целое число» «Целое число» . . .

Пример вывода:

4
Default constructor
Constructor set
Destructor
Copy constructor
15 5 2 2
24
20 5 4 2
31
Destructor
Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса classname предназначен для демонстрация применения конструктора копирования;
- объект obj_2 класса classname предназначен для демонстрация применения конструктора копирования;
- функция function для возврата локально созданного объекта;
- функция assert для сообщения об ошибке;
- cin/cout объекты стандартного потока ввода/вывода;
- if..else условный оператор;
- for оператор цикла со счётчиком.

Класс classname:

- функционал:
 - о метод create_a создание массива заданного размера;
 - о метод print вывод массива;
 - о метод fill_а ввод массива.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм метода create_a класса classname

Функционал: создание массива заданного размера.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 1.

Таблица 1 – Алгоритм метода create_a класса classname

No	Предикат	Действия					No				
											перехода
1		полю	a	текущего	объекта	присвоить	массив	размера	поля	len_a	Ø
		текущ	его	о объекта							

3.2 Алгоритм метода print класса classname

Функционал: вывод массива.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 2.

Таблица 2 – Алгоритм метода print класса classname

No	Предикат	Действия	No
			перехода
1		инициализация переменной n типа int полем len_a	2
		текущего объекта	

N₂	Предикат	Действия	No
			перехода
2		вывод элемента а[0] текущего объекта	3
3		инициализация переменной і типа int значением 1	4
4	i < n	вывод элемента a[i] текущего объекта	5
			Ø
5		++i	4

3.3 Алгоритм функции main

Функционал: основная функция программы.

Параметры: нет.

Возвращаемое значение: int - код ошибки.

Алгоритм функции представлен в таблице 3.

Таблица 3 – Алгоритм функции таіп

N₂	Предикат	Действия		
			перехода	
1		объявление п типа int	2	
2		ввод значения n	3	
3	!(n > 2 && n % 2 == 0)	вывод "{n}?"	15	
		вывод значения п	4	
4		создание объекта obj класса classname	5	
5		присвоение объекту obj результата вызова функции function с параметром n	6	
6		вызов метода create_a объекта obj	7	
7		вызов метода fill_a объекта obj	8	
8		вызов метода half_product объекта obj	9	
9		инициализация объекта obj_2 класса classname объектом obj	10	
10		вызов метода half_sum объекта obj_2	11	
11		вызов метода print объекта obj	12	

No	Предикат	Действия	No
			перехода
12		вывод результата вызова метода sum_a объекта obj	13
13		вызов метода print объекта obj_2	14
14		вывод результата вызова метода sum_a объекта	15
		obj_2	
15		возврат значения 0	Ø

3.4 Алгоритм функции function

Функционал: возврат локально созданного объекта.

Параметры: int n.

Возвращаемое значение: classname - локально созданный объект.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции function

N₂	Предикат		Действия				No		
									перехода
1		создание	объекта	obj_local	класса	classname	С	парметром	2
		конструкт	opa n						
2		возврат об	ъекта obj_	local					Ø

3.5 Алгоритм метода fill_a класса classname

Функционал: ввод массива.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода fill_а класса classname

N₂	Предикат	Действия	No
			перехода
1		инициализация переменных типа int: n полем len_a	2

N₂	Предикат	Действия	No
			перехода
		текущего объекта, і значением 0; объявление	
		переменной х типа int	
2	i < n	ввод значения х	3
			Ø
3		элементу a[i] текущего объекта присовить	4
		значение х	
4		++i	2

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-3.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл classname.cpp

Листинг 1 – classname.cpp

```
#include "classname.h"
#include <iostream>
#include <cassert>
classname::classname(){
  std::cout << "\nDefault constructor";</pre>
};
classname::classname(int n){
  assert(n>2 && n%2==0);
  this->len_a = n;
  std::cout << "\nConstructor set";</pre>
};
classname::classname(const classname & obj){
  len_a = obj.len_a;
  a = obj.a;
  std::cout<<"\nCopy constructor";</pre>
};
classname::~classname(){
  std::cout << "\nDestructor";</pre>
};
void classname::create_a(){
  this->a.assign(this->len_a, 0);
void classname::fill_a(){
  int n = this -> len_a, x;
  for(int i=0;i<n;++i){</pre>
     std::cin>>x;
     this->a[i] = x;
  }
};
int classname::sum_a(){
```

```
int n = this -> len_a, summa = 0;
  for(int i=0;i<n;++i)</pre>
     summa+=this->a[i];
  return summa;
};
int classname::half_sum(){
  int n = this->len_a;
  for(int i=0; i < n - 1; i+=2)
     this->a[i] = this->a[i] + this->a[i+1];
  return this->sum_a();
};
int classname::half_product(){
  int n = this -> len_a;
  for(int i=0; i < n - 1; i+=2)
     this->a[i] = this->a[i] * this->a[i+1];
  return this->sum_a();
};
void classname::print(){
  int n = this->len_a;
  std::cout<<'\n';
  std::cout<<this->a[0];
  for (int i = 1; i < n; ++i)
     std::cout <<" " << this->a[i];
};
```

5.2 Файл classname.h

Листинг 2 – classname.h

```
#ifndef ___CLASSNAME___H
#define ___CLASSNAME___H
#include <vector>
class classname{
  std::vector<int>a;
  int len_a;
public:
  classname();
  classname(int n);
  classname(const classname & obj);
  ~classname();
  void create_a();
  void fill_a();
  int sum_a();
  int half_sum();
  int half_product();
  void print();
```

```
};
#endif
```

5.3 Файл main.cpp

Листинг 3 - main.cpp

```
//#include <stdlib.h>
//#include <stdio.h>
#include <iostream>
#include "classname.h"
classname function(int n){
  classname obj_local(n);
  return obj_local;
}
int32_t main()
  int n; std::cin>>n;
  if(!(n>2 && n%2==0)){
     std::cout<<n<<'?';
     return 0;
  }
  std::cout << n;
  classname obj;
  obj = function(n);
  obj.create_a();
  obj.fill_a();
  obj.half_product();
  classname obj_2 = obj;
  obj_2.half_sum();
  obj.print();
  std::cout<<'\n'<<obj.sum_a();
  obj_2.print();
  std::cout<<'\n'<<obj_2.sum_a();
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 3 5 1 2	4 Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor	Default constructor Constructor set Destructor Copy constructor 15 5 2 2 24 20 5 4 2 31 Destructor Destructor
2	2?	2?
7	7?	7?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).