The Build Felowship

BUILDFELLOWSHIP.COM

Openavenues

Weekly Updates

- Please provide a quick update on either:
 - Something you did/saw this week that you thought was interesting
 - What you're looking forward to about this week's workshop

(Reminder - please have your cameras on if possible)

The Build Fellowship

Workshop 4 Featurization & Baseline Modeling

Recap

Sessions Overview

- Workshop 1 Project Introduction & Setup
- Workshop 2 Genomic Data (A2 Assignment)
- Workshop 3 Data Analysis & Visualization (A3 Assignment)
- Workshop 4 Featurization & Baseline Modeling (A4 Assignment)
- Workshop 5 Model Training Approaches (Final Assignment Set)
- Workshop 6 Model Tuning
- Workshop 7 Performance Evaluation (Final Assignment Code/Testing Due)
- Workshop 8 Results Presentation & Wrap up (Final Presentation Due)

Exploratory Data Analysis

What did we achieve last week?

- 1. Took a look through our datasets, finding key information
- 2. Processed our targets (AMR) into clean binary S vs R
- 3. Identified a few suspicious E coli genomes
- 4. Reviewed gene presence/absence across samples
- Started reviewing the nucleotide sequences and identified some mutations

Assignment (Optional):

6. Identified highly correlated genes

The Data Science Process

CGTATAACTGA

GGAACAGCGGT

What is Featurization?

AACGTATAACTGATCGGAACAGCGGTA

Tightly coupled with model building

- CGTATAACTGA
- + GGAACAGCGGT

How do we go from raw data to predictions?

= CGTATAACTGAGGAACAGCGGT

- Different ML models expect different data types
 - Tabular (Matrix)
 - Sequences
 - Images
 - Graphs
- Data formats & shapes need to be **consistent**
- We can't expect to pass raw data directly into our model
- Usually need to Encode our data into a numeric format

Model Options

What model types can we use?

What sort of models can we leverage?

- Linear models (Tabular)
- Tree based models (Tabular)
- Neural networks (Tabular + Sequence)

Tabular

- Resistance genes
- Kmers

Sequence

Gene sequences (mutations)

Linear Model

What model types can we use?

What sort of models can we leverage?

- Linear models (Tabular)
- Tree based models (Tabular)
- Neural networks (Tabular + Sequence)

Tabular

- Resistance genes
- Kmers

Sequence

Gene sequences (mutations)

ML Model Structure

Tree Based Models

What model types can we use?

What sort of models can we leverage?

- Linear models (Tabular)
- Tree based models (Tabular)
- Neural networks (Tabular + Sequence)

Tabular

- Resistance genes
- Kmers

Sequence

Gene sequences (mutations)

Sequence Based Model

QUIZ TIME!?

How can we featurize DNA sequences?

- a) Convert sequences to tabular counts
- b) Don't bother, just take it as is
- c) Stitch all the sequences together into a single length
- d) Consult experts to take only the important information

Feature Options

Gene Presence Absence

- Simplest and most approachable feature
- Minimal processing required
- Saw an example of this last week

Tabular approach

- Standardize the data into a fixed shape
- Need to have a consistent size per sample

Binary

 Outcomes will be present vs absent for every possible gene

Input Data - Gene Alignment

•		J			
genome_id	contig	res_gene	match_start	match_end	match_qual
562.11346	FLKS01000064	gb U00096.3 - 3324062- 3324911 ARO:3003386 Ecol	96835	97684	849M
562.11346	FLKS01000044	gb AP009048.1 + 3760295- 3762710 ARO:3003303 Ec	61096	63511	2415M
562.11346	FLKS01000070	gb BA000007.3 + 4990267- 4994296 ARO:3003288 Ec	22038	26067	4029M
562.11346	FLKS01000068	gb U00096.3 - 2336792- 2339420 ARO:3003294 Ecol	755765	758393	2628M
562.11346	FLKS01000064	gb AP009048.1 - 3172159- 3174052 ARO:3003316 Ec	241841	243734	1893M
		query_str			ref_gene_str
ATGAAACTCTTT	GCCCAGGGTACTTCA	CTGGACCTTAGCCATCCTC ATGAAACT	CTTTGCCCAGGGTA	ACTTCACTGGACC	TTAGCCATCCTC

rei_gene_sti	quer y_str
${\tt ATGAAACTCTTTGCCCAGGGTACTTCACTGGACCTTAGCCATCCTC}$	${\tt ATGAAACTCTTTGCCCAGGGTACTTCACTGGACCTTAGCCATCCTC}$
${\tt ATGTCGAATTCTTATGACTCCTCCAGTATCAAAGTCCTGAAAGGGC}$	${\tt ATGTCGAATTCTTATGACTCCTCCAGTATCAAAGTCCTGAAAGGGC}$
${\tt TTACTCGTCTTCCAGTTCGATGTTGATACCCAGCGAACGAA$	${\tt TTACTCGTCTTCCAGTTCGATGTTGATACCCAGCGAACGAA$
${\tt TTATTCTTCTGGtTCGTCGTCAACaTCCACTTCCGGAGCGATT}$	${\tt TTATTCTTCTTGGCTCGTCGTCAACGTCCACTTCCGGAGCGATT}$
ATGACGCAAACTTATAACGCTGATGCCATTGAGGTACTCACCGGGC	ATGACGCAAACTTATAACGCTGATGCCATTGAGGTACTCACCGGGC

Gene Presence Absence

Format

- Reshape to a clean binary matrix
- Predicting AMR from genes directly
- Loss of a lot of information (sequences, counts)

Correlations

- Genes can be very similar
- Some genes can appear in all samples

Clustering

- Naive subsetting (throw away genes)
- Clustering can be used to group genes hierarchically

Presence/Absence Feature Matrix

	Gene A	Gene B	Gene C	Gene D		
Sample A	1	1	1	0		
Sample B	0	1	0	1		
Sample C	1	0	1	0		
Sample D	0	1	0	0		
Sample E	1	0	1	1		
<u>†</u>						

· · · · · ·

Identical Presence Absence

Gene Presence Absence

Why might Gene presence absence not always work?

- Weak correlations
- Genes can be always present (mutations matter)
- Losing information

Query vs Ref Gene String

- Raw data has both query & reference
- Query = CARD sequencing
- Reference = Sample genomes
- Lower case = difference in nucleotides

Can we capture these sequence differences?

Kmers is one of the most common approaches for featurizing genomic data

Core concepts:

- 1. K = Fixed length representation (parameter)
- 2. Wish to capture the nucleotide information
- 3. Convert from arbitrary sequences to a fixed shape representation

High K = huge feature space, high chance of uniqueness

Low K = small feature space, high chance of repetition within genomes

K is a parameter

2-mers: AA AC AT AG CA CC CT CG

TA TC TT TG GA GC GT GG

16 unique combinations

5-mers: AAAAA AAAAC AAAAT AAAAG

AAACA AAACC AAACT AAACC

1,024 unique combinations

10-mers AAAAAAAAA AAAAAAAAG
AAAAAAAAAAC AAAAAAAAAT

1,048,576 unique combinations

How to generate Kmers?

- Want unique occurrences of each kmer
- High K's = millions/billions of sequences
- Sliding window approach
- Scan the whole sequence one step at a time
- Keep track of counts

Using 5-mers:

Slide a window of size K across the genome

How to generate Kmers?

- Want unique occurrences of each kmer
- High K's = millions/billions of sequences
- Sliding window approach
- Scan the whole sequence one step at a time
- Keep track of counts

Using 5-mers:

CGTAT = 1

Count each occurrence

How to generate Kmers?

- Want unique occurrences of each kmer
- High K's = millions/billions of sequences
- Sliding window approach
- Scan the whole sequence one step at a time
- Keep track of counts

Using 5-mers:

CGTAT = 1

Count each occurrence

TATAA = 1

How to generate Kmers?

- Want unique occurrences of each kmer
- High K's = millions/billions of sequences
- Sliding window approach
- Scan the whole sequence one step at a time
- Keep track of counts

Using 5-mers:

CGTAT = 1

Count each occurrence

 $\mathbf{GTATA} = 1$

TATAA = 1

ATAAC = 1

Kmer Count Matrix

	CGTAT	GTATA	TATAA	ATAAC
Sample A	10	1	34	0
Sample B	0	3	30	0
Sample C	3	1	54	0
Sample D	8	2	21	0
Sample E	0	1	24	1

Using 5-mers:

CGTATAACTGAGGAACAGCGGTTAAC

CGTAT = 1

Count each occurrence

TATAA = 1

GTATA = 1

ATAAC = 1

. . .

. . .

Sequences

- Sequences are the most raw format of data
- Most difficult to work with
- Convolutional/Recurrent Neural Networks
- Few proven working examples in literature

Challenges:

- Data size (full sequences are millions of characters)
- Complexity vs Training data

Working with Sequence models is an **optional extension**

- Computationally complex
- Possible option for final project
- See paper for reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC87 22762/

Sample A

GeneA: GTATCTGAGGAAC

GeneB: GAGGAGATTCGCT

GeneC: TGAAACGTATGCC

Sample B

GeneA: GTATCTGAGGAAC

GeneC: TGAAACGTATGCC

GeneD: GAGGAGATTCGCT

Sequences

Simple sequence featurization scheme:

- Randomly concatenate genes
- Find all genes and stack together
- Require a consistent length
- Truncate or Pad ends
- One hot encode to numeric

Sample A

GeneA: GTATC

GeneB: GAGGA

GeneC: TGAA

 \downarrow

GTATC-GAGGA-TGAA

Sample B

GeneA: GTATC

GeneC: TGAAA

GeneD: TATGCA

GTATC-TGAAA-TATGCA

Sequences

Simple sequence featurization scheme:

- Randomly concatenate genes
- Find all genes and stack together
- Require a consistent length
- Truncate or Pad ends
- One hot encode to numeric

Sample A

GTATCGAGGATGAA

3414231331431100

Sample B

GTATCTGAAATATGCA

3414243111414321

Baseline Models

What is a Baseline Model?

- In any ML task: set ourselves a target to beat
- Understand how well we're performing
- Performance statistics out of context can be misleading
- Is 80% accuracy good? What about 20% accuracy?
- If we have two targets? If we have 50 targets?
- Baselines should be **interpretable**

Common Baselines

- Completely Random
 - Nonsense worst case model
 - Useful to flag if data processing has failed
 - E.g. accidentally mixed up targets
- Predict the majority class
 - True "baseline"
 - Simplest way to get maximum performance
- KNN (K-nearest neighbor)
 - Doesn't require training
 - Directly learn based on neighbors
 - Simple and interpretable

Examples: KNN Regression & Classification

Workshop 4 Featurization & **Baseline Modeling**

References

[1]: https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py

[2]: https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py

