$\underset{\text{Michael Spivak}}{\text{C\'ALCULO INFINITESIMAL}}$

Resolución de problemas por FODE

Índice general

1

Funciones

Definición 1.1 El conjunto de los números a los cuales se aplica una función recibe el nombre de **dominio** de la función.

Definición 1.2 Si f g son dos funciones cualesquiera, podemos definir una nueva función f+g denominada **suma** de f+g mediante la ecuación:

$$(f+g)(x) = f(x) + g(x)$$

 $Para\ el\ conjunto\ de\ todos\ los\ x\ que\ están\ a\ la\ vez\ en\ el\ dominio\ de\ f\ y\ en\ el\ dominio\ de\ g,\ es\ decir:$

 $dominio \ (f+g) = dominio \ f \ \cap \ dominio \ g$

Definición 1.3 El dominio de $f \cdot g$ es dominio $f \cap$ dominio g

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Definición 1.4 Se expresa por dominio $f \cap$ dominio $g \cap \{x : g(x) \neq 0\}$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Definición 1.5 (Función constante)

$$(c \cdot g)(x) = c \cdot g(x)$$

TEOREMA 1.1
$$(f + g) + h = f + (g + h)$$

Demostración.- La demostración es característica de casi todas las demostraciones que prueban que dos funciones son iguales: se debe hacer ver que las dos funciones tienen el mismo dominio y el mismo valor para cualquier número del dominio. Obsérvese que al interpretar la definición de cada lado se obtiene:

$$[(f+g)+h](x) = (f+g)(x) + h(x)$$

$$= [f(x)+g(x)] + h(x)$$

$$y$$

$$[f+(g+h)](x) = f(x) + (g+h)(x)$$

$$= f(x) + [g(x) + h(x)]$$

Es esta demostración no se ha mencionado la igualdad de los dos dominios porque esta igualdad parece obvia desde el momento en que empezamos a escribir estas ecuaciones: el dominio de (f+g)+h y el de f+(g+h) es evidentemente dominio $f\cap$ dominio $g\cap$ dominio h. Nosotros escribimos, naturalmente f+g+h por (f+g)+h=f+(g+h)

TEOREMA 1.2 Es igual fácil demostrar que $(f \cdot g) \cdot g = f \cdot (g \cdot h)$ y ésta función se designa por $f \cdot g \cdot h$. Las ecuaciones f + g = g + f y $f \cdot g = g \cdot f$ no deben presentar ninguna dificultad.

Definición 1.6 (Composición de función)

$$(f \circ g)(x) = f(g(x))$$

El dominio de $f \circ g$ es $\{x : x \text{ está en el dominio de } g \mid y \mid g(x) \text{ está en el dominio de } f\}$

$$D_{f \circ g} = \{ x \mid x \in D_g \land g(x) \in D_f \}$$

Propiedad 1.1 $(f \circ g) \circ h = f \circ (g \circ h)$ La demostración es una trivalidad.

Definición 1.7 Una función es una colección de pares de números con la siguiente propiedad: Si (a,b) y (a,c) pertenecen ambos a la colección, entonces b=c; en otras palabras, la colección no debe contener dos pares distintos con el mismo primer elemento.

Definición 1.8 Si f es una función, el **dominio** de f es el conjunto de todos los a para los que existe algún b tal que (a,b) está en f. Si a está en el dominio de f, se sigue de la definición de función que existe, en efecto, un número b único tal que (a,b) está en f. Este b único se designa por f(a).

1.1. Problemas

1. Sea f(x) = 1/(1+x). Interpretar lo siguiente:

(i)
$$f(f(x))$$
 (¿Para que x tiene sentido?)

Respuesta.- Sea $f\left(\frac{1}{1+x}\right)$ entonces $\frac{1}{1+\frac{1}{1+x}}$, por lo tanto $\frac{1-x}{x+2}$ de donde llegamos a la conclusión de que x se cumple para todo número real de 1 y -2

(ii)
$$f\left(\frac{1}{x}\right)$$

Respuesta. $\frac{1}{1+\frac{1}{x}} = \frac{1}{\frac{x+1}{x}} = \frac{x}{x+1}$ por lo tanto se cumple para todo $x \neq -1, 0$

(iii)
$$f(cx)$$

Respuesta.- $\frac{1}{1+cx}$ donde se cumple para todo $x \neq -1$ si $c \neq 0$

(iv)
$$f(x+y)$$

Respuesta.- $\frac{1}{1+x+y}$ donde se cumple para todo $x+y \neq -1$

(v)
$$f(x) + f(y)$$

Respuesta. $\frac{1}{1+x} + \frac{1}{1+y} = \frac{x+y+2}{(1+x)(1+y)}$ siempre y cuando $x \neq -1$ y $y \neq -1$

(vi) ¿Para que números
$$c$$
 existe un número x tal que $f(cx) = f(x)$?

Respuesta.- Para todo c ya que $f(c \cdot 0) = f(0)$

(vii) ¿Para que números c se cumple que f(cx) = f(x) para dos números distintos x?

Respuesta.- Solamente c=1 ya que f(x)=f(cx) implica que x=cx, y esto debe cumplirse por lo menos para un $x\geq 1$

2. Sea
$$g(x) = x^2$$
 y sea

$$h(x) = \begin{cases} 0, & x \ racional \\ 1, & x \ irracional \end{cases}$$

(i) ¿Para cuáles
$$y$$
 es $h(y) \le y$?

Respuesta-. Se cumple para $y \geq 0$ si y es racional, o para todo $y \geq 1$

(ii) ¿Para cuáles
$$y$$
 es $h(y) \le g(y)$?

Respuesta-. Para $-1 \le y \le 1$ siempre que y sea racional y para todo y tal que $|y| \le 1$

(iii) ¿Qué es g(h(z)) - h(z)?

Respuesta-.

$$g(h(z)) = \begin{cases} 0, & z^2 \ racional \\ 1, & z^2 \ irracional \end{cases}$$

Por lo tanto el resultado es 0

(iv) ¿Para cuáles w es $g(w) \leq w$?

Respuesta-. Para todo w tal que $0 \le w \le 1$

(v) ¿Para cuáles ϵ es $g(g(\epsilon)) = g(\epsilon)$?

Respuesta-. Para -1,0,1

 ${f 3.}$ Encontrar el dominio de las funciones definidas por las siguientes fórmulas:

(i)
$$f(x) = \sqrt{1 - x^2}$$

Respuesta.- Por la propiedad de raíz cuadrada, se tiene $1-x^2 \geq 0$ entonces $x^2 \leq 1$ por lo tanto el dominio son todos los x tal que $|x| \leq 1$

(ii)
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

Respuesta.- Se observa claramente que el dominio es $-1 \leq x \leq 1$

(iii)
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2}$$

Respuesta.- Operando un poco tenemos

$$f(x) = \frac{2x - 3}{(x - 1)(x - 2)},$$

sabemos que el denominador no puede ser 0 por lo tanto el $D_f = \{x \mid x \neq 1, x \neq 2\}$

(iv)
$$f(x) = \sqrt{1-x^2} + \sqrt{x^2-1}$$

Respuesta.- Claramente notamos que el dominio de f son -1 y 1 ya que si se toma otros números daría un número imaginario.

(v)
$$f(x) = \sqrt{1-x} + \sqrt{x-2}$$

Respuesta. - Notamos que no se cumple para ningún x ya que si $0 \le x \le 1$ entonces no se cumple para $\sqrt{x-2}$ y si $x \ge 2$ no se cumple para $\sqrt{1-x}$

- **4.** Sean $S(x) = x^2$, $P(x) = 2^x$ y s(x) = senx. Determinar los siguientes valores. En cada caso la solución debe ser un número.
 - (i) $(S \circ P)(y)$

Respuesta.- Por definición se tiene que $(S \circ P)(y) = S(P(y))$ entonces $S(2^y) = 2^{2y}$ siempre y cuando $D_{S \circ P} = \{y/y \in D_P \land P(y) \in D_S\}$

(ii) $(S \circ s)(y)$

Respuesta.- Por definición tenemos que $(S \circ s)(y) = S(s(y))$ entonces $S(\operatorname{sen} y) = \operatorname{sen}^2 y$ siempre y cuando $D_{S \circ s} = \{y/y \in D_s \land S(y) \in D_S\}$

(iii) $(S \circ P \circ s)(t) + (s \circ P)(t)$

Respuesta.- $(S \circ P \circ s)(t) + (s \circ P)(t) = S((P \circ s)(t)) + s(P(t)) = S(P(s(t))) + s(P(t)) = S(P(t)) + s(P(t)) = S(P(t)) + s(P(t)) + s(P(t)) = S(P(t)) + s(P(t)) + s(P(t)) + s(P(t)) = S(P(t)) + s(P(t)) +$

(iv) $s(t^3)$

Respuesta.- $s(t^3) = \operatorname{sen} t^3$

- ${f 5.}$ Expresar cada una de las siguientes funciones en términos de S,P,s usando solamente $+,\cdot,\circ$
 - (i) $f(x) = 2^{\sin x}$

Respuesta.- Claramente vemos que $P \circ s$

(ii) $f(x) = \sin 2^x$

Respuesta.- $s \circ P$

(iii) $f(x) = \sin x^2$

Respuesta.- $s \circ S$

(iv) $f(x) = \operatorname{sen} x$

Respuesta.- $S \circ s$

(v) $f(t) = 2^{2t}$

Respuesta.- $P \circ P$

(vi) $f(u) = \text{sen}(2^u + 2^{u^2})$

Respuesta.- $s \circ (P + P \circ S)$

(vii) $f(y) = \text{sen}(\text{sen}(2^{2^{2^{\text{sen } y}}}))$

Respuesta.- $s \circ s \circ s \circ P \circ P \circ P \circ s$

(viii) $f(a) = 2^{\sin^2 a} + \sin(a^2) + 2^{\sin(a^2 + \sin a)}$

Respuesta.- $P \circ S \circ s + s \circ S + P \circ s \circ (S + s)$

6. (a) Si $x_1, ..., x_n$ son números distintos, encontrar una función polinómica f_i de grado n-1 que tome el valor 1 en x_i y 0 en x_j para $j \neq i$. Indicación: El producto de todos los $(x-x_j)$ para $j \neq i$ es 0 en x_j si $j \neq i$. Este producto es designado generalmente por

$$\prod_{j=1_{i\neq i}}^{n} (x-x_j)$$

donde el símbolo \prod (pi mayúscula) desempeña para productos el mismo papel que \sum para sumas.

Respuesta.- Una forma de pensar sobre esta pregunta es considerar una solución fija n y elegir un conjunto de distintas $x_1, x_2, ..., x_n$. Por ejemplo supongamos que elegimos n=3 $x_1=1$, $x_2=2$, $x_3=3$. Entonces supongamos que queremos encontrar un polinomio $f_i(x_1)=f_1(1)=1$, pero $f_1(x_2)=f_1(2)=f_1(3)=0$. Es decir, F_1 es un cuadrático que tiene ceros en x=2 y x=3, pero es igual a 1 en x=1. Naturalmente, esto sugiere mirar un polinomio de la forma

$$a(x-2)(x-3)$$
,

para que la igualdad sea igual a 1 por alguna constante a. Pero, ¿Qué es esta constante? Bueno, si nos conectamos con x=1, debemos tener

$$f_1(1) = 1 = a(x-2)(x-3) = 2a,$$

por lo tanto a=1/2 y la solución deseada es

$$f_1(x) = \frac{1}{2}(x-2)(x-3).$$

Del mismo modo, si tratamos de encontrar un polinomio $f_2(x)$ tal que $f_2(2) = 1$ con raíces en x = 1,3 tendríamos que resolver la ecuación 1 = a(2-1)(2-3), lo que da a = -1 por lo tanto $f_2(x) = -(x-1)(x-3)$

Ahora veamos el caso general. El polinomio $f_i(x)$ satisface $f_i(x_i)$ y $f_i(x_j) = 0$ para todo $j \neq i$, entonces debe tomar la forma

$$f_i(x) = a \prod_{j \neq i} (x - x_j)$$

Para alguna constante a. Para encontrar esta constante, aplicamos $x=x_1$:

$$f_i(x_i) = 1 = a \prod_{j \neq i} (x_i - x_j),$$

por lo tanto:

$$a = \frac{1}{\prod_{j \neq i} (x_i - x_j)}$$

Así queda

$$f_i(x) = \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

(b) Encontrar ahora una función polinómica de grado n-1 tal que $f(x_1)=a_1$, donde $a_1,...,a_n$ son números dados. (Utilícense las Funciones f_1 de la parte (a).) La fórmula que se obtenga es la llamada Fórmula de interpolación de Lagrange

Respuesta.- Sea

$$f(x) = \sum_{i=1} a_i f_i(x)$$

entonces

$$f(x) = \sum_{j=1} a_i \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

7. (a) Demostrar que para cualquier función polinómica f y cualquier número a existe función polinómica g y un número b tales que f(x) = (x-a)g(x) + b para todo x. (La idea es esencialmente dividir f(x) por (x-a) mediante la división larga hasta encontrar un resto constante.)

Demostración.- Si el grado de f es 1, entonces f es de la forma

$$f(x) = cx + d = cx + d + ac - ac = c(x - a) + (d + ac)$$

de tal modo que g(x) = c y b = d + ac. Por inducción supongamos que el resultado es válido para polinomios de grado $\leq k$. Si f tiene grado k + 1, entonces f tiene la forma

$$f(x) = a_{k+1}x^{k+1} + \dots + a_1x + a_0$$

luego para grados $\leq k$ se tiene

$$f(x) - a_{k+1}x^{k+1} = (x - a)g(x) + b$$

así

$$f(x) = (x - a) [g(x) + a_{k+1}(x - a)^k] + b$$

(b) Demostrar que si f(a) = 0, entonces f(x) = (x - a)g(x) para alguna función polinómica g. (La reciproca es evidente)

Demostración.- Por la parte (a), podemos poner que f(x) = (x-a)g(x) + b, entonces

$$0 = f(a) = (a - a)g(a) + b = b$$

de modo que f(x) = (x - a)g(x)

(c) Demostrar que si f es una función polinómica de grado n, entonces f tiene a lo sumo n raíces, es decir, existen a lo sumo n números a tales que f(a) = 0

Demostración.- Supóngase que f tiene n raíces $a_1, ..., a_n$. Entonces según la parte (b) podemos poner $f(x)(x-a)g_1(x)$ donde el grado de $g_1(x)$ es n-1. Pero

$$0 = f(a_2) = (a_2 - a_1)g_1(a_2)$$

de modo que $g_1(a_2) = 0$, ya que $a_2 \neq a_1$. Podemos pues escribir

$$f(x)(x-a_2)g_2(x),$$

donde el grado de g_2 es n-2. Prosiguiendo de esta manera, obtenemos que

$$f(x) = (x - a_1)(x - a_2) \cdot \dots \cdot (x - a_n)c$$

para algún número $c \neq 0$. Está claro que $f(a) \neq 0$ si $a \neq a_1, ..., a_n$. Así pues, f puede tener a lo sumo n raíces.

(d) Demostrar que para todo n existe una función polinómica de grado n con raíces. Si n es par, encontrar una función polinómica de grado n sin raíces, y si n es impar, encontrar una con una sola raíz

Demostración.- Si $f(x) = (x-1)(x-2) \cdot ... \cdot (x-n)$, entonces f tiene n raíces. Si n es par, entonces $f(x) = x^n + 1$ no tiene raíces. Si n es impar, entonces $f(x) = x^n$ tiene una raíz única, que es 0.

8. ¿Para qué números a, b, c y d la función

$$f(x) = \frac{ax + d}{cx + b}$$

satisface f(f(x)) = x para todo x?

Respuesta.- Si

$$x = f(f(x)) = \frac{a\left(\frac{ax+b}{cx+d}\right) + b}{c\left(\frac{ax+b}{cx+d}\right) + d}$$

para todo x, entonces

$$x = \frac{a^2x + ab + bcx + bd}{acx + bc + cdx + d^2}$$

y por lo tanto

$$(ac + cd) x^{2} + (d^{2} - a^{2}) x - ab - bd = 0$$

para todo x, de modo que

$$\begin{array}{rcl} ac + cd & = & 0 \\ ab + bd & = & 0 \\ d^2 - a^2 & = & 0 \end{array}$$

Se sigue que a=d ó a=-d. Una posibilidad es a=d=0, en cuyo caso $f(x)=\frac{b}{cx}$ que satisface f(f(x))=x para todo $x\neq 0$. Si $a=d\neq 0$, entonces b=c=0 con lo que f(x)=x. La tercera posibilidad es a+d=0, de modo que $f(x)=\frac{ax+b}{cx-a}$, la cual satisface f(f(x))=x para todo $x\neq\frac{a}{c}$ la cual satisface f(f(x))=x para todo $x\neq\frac{a}{c}$. Estrictamente hablando, podemos añadir la condición $f(x) \neq \frac{a}{c}$ para $x \neq \frac{a}{c}$, lo que significa que

$$\frac{ax+b}{cx-a} \neq \frac{a}{c}$$
, ó $a^2 + bc \neq 0$.

9. (a) Si A es un conjunto cualquiera de números reales, defínase una función C_A como sigue:

$$C_A(x) = \begin{cases} 1, & si \ge st \land en A \\ 0, & si \ge no \ est \land en A \end{cases}$$

Encuéntrese expresiones para $C_{A\cap B}$, $C_{A\cup B}$ y $C_{\mathbb{R}-A}$, en términos de C_A y C_B .

Respuesta.- Según la definición de teoría de conjunto tenemos,

$$\begin{array}{rcl} C_{A\cap B} & = & C_A\cdot C_B \\ C_{A\cup B} & = & C_A+C_B-C_A\cdot C_B \\ C_{\mathbb{R}-A} & = & 1-C_A \end{array}$$

(b) Supóngase que f es una función tal que f(x) = 0 o 1 para todo x. Demostrar que existe un conjunto $A \text{ tal que } f = C_A$

Demostración.- Sea $A = \{x \in \mathbb{R} : f(x) = 1\}$, entonces $f = C_A$.

(c) Demostrar que $f = f^2$ si y sólo si $f = C_A$ para algún conjunto A

Demostración.- Sea $f = f^2$, entonces para cada real x, $f(x) = f[f(x)]^2$, así f(x) = 0ó f(x) = 1,

luego por la parte b), $f = C_A$ para algún A. Por otro lado sea $f = C_A$ para algún A. Entonces si $x \in A$, $f(x) = 1 = 1^2 = f(x)^2$, mientras si $x \notin A$, $f(x) = 0 = 0^2 = f(x)^2$, así en cualquier caso $f(x) = [f(x)]^2$ y $f = f^2$

10. (a) Para qué funciones f existe una función g tal que $f = g^2$?

Respuesta.- Debido a que algún número elevado al cuadrado siempre será no negativo podemos afirmar que las funciones f satisfacen a todo x tal que $f(x) \geq 0$

(b) ¿Para qué función f existe una función g tal que f = 1/g?

Respuesta.- Dado a que un número divido entre cero es indeterminado se ve claramente que satisfacen a todo x tal que $f(x) \neq 0$

(c) ¿Para qué funciones b y c podemos encontrar una función x tal que

$$(x(t))^2 + b(t)x(t) + c(t) = 0$$

para todos los números t?

Respuesta.- Por teorema se observa que para las funciones b-y-c que satisfacen $(b(t))^2-4c(t)\geq 0$ para todo t

(d) ¿Qué condiciones deben satisfacer las funciones a y b si ha de existir una función x tal que

$$a(t)x(t) + b(t) = 0$$

para todos los números t? ¿Cuántas funciones x de éstas existirán?

Respuesta.- Es facil notar que b(t) tiene que ser igual a 0 siempre que a(t) = 0. Si $a(t) \neq 0$ para todo t, entonces existe una función única con esta condición, que es x(t) = a(t)/b(t). Si a(t) = 0 para algún t, entonces puede elegirse arbitrariamente x(t), de modo que existen infinitas funciones que satisfacen la condición.

11. (a) Supóngase que H es una función e y un número tal que H(H(y)) = y. ¿Cuál es el valor de

$$H(H(H...(H(y))))$$
?

Respuesta.- Si aplicamos la hipótesis, tendremos que aplicar 78 veces la función, luego 76 y así, hasta llegar a 2, donde la función sera H(H(y)), y una vez más por hipótesis tenemos como resultado y.

(b) La misma pregunta sustituyendo 80 por 81

Respuesta.- Sea H(H(y)) la 78ava vez de la función, entonces la 81ava vez será H(H(H(y))), por lo tanto queda como resultado H(y).

(c) La misma pregunta si H(H(y)) = H(y)

Respuesta.- Análogamente a la parte a) si la 80ava vez es y entonces por hipótesis nos queda H(y).

(d) Encuéntrese una función H tal que H(H(x))=H(x) para todos los números x y tal que H(1)=36, $H(2)=\frac{\pi}{3},\ H(13)=47,\ H(36)36,\ H(\pi/3)\frac{\pi}{3},\ H(47)=47$

Respuesta.- Dar a H(l), H(2), H(13), H(36), $H(\pi/3)$, y H(47) los valores especificados y hágase H(x)=0 para $x\neq 1,2,13,36,\pi/3,47$. Al ser, en particular, H(0)=0, la condición H(H(x))=H(x) se cumple para todo x.

- (e) Encontrar una función H tal que H(H(x))=H(x) para todo x y tal que H(1)=7, H(17)=18Respuesta.- Hágase H(1)=7, H(7)=7, H(17)=18, H(18)=18, y H(x)=0 para $x\neq l,7,17,18$.
- **12.** Una función f es par si f(x) = f(-x), e impar si f(x) = -f(-x). Por ejemplo, f es par si $f(x) = x^2$ ó f(x) = |x| ó $f(x) = \cos x$, mientras que f es impar si f(x) = x ó $f(x) = \sin x$.
 - (a) Determinar si f + g es par, impar o no necesariamente ninguna de las dos cosas, en los cuatro casos obtenidos al tomar f par o impar y g par o impar. (Las soluciones pueden ser convenientemente dispuestas en una tabla 2×2)

Respuesta.- Sea $f(x) = x^2$ y g(x) = |x| entonces $f(-x) + g(-x) = (-x)^2 + |-x| = x^2 + |x| = f(x) + g(x)$ por lo tanto par y par es par.

Sea f(x) = x y g(x) = x entonces -f(-x) + (-g(-x)) = -(-x) + [-x(-x)] = x + x = f(x) + g(x), por lo tanto impar e impar es impar.

Los otros dos últimos se prueba fácilmente y se llega a la conclusión de que ni uno ni lo otro.

	Par	Par
Par	Par	Ninguno
Par	Ninguno	Par

(b) Hágase lo mismo para $f \cdot g$

Respuesta.- Sea $f(x) = x^2$ y g(x) = |x|, entonces $f(-x) \cdot g(-x) = x^2 \cdot |x| = f(x) \cdot g(x)$, por lo tanto se cumple para par y par.

Sea f(x) = x y g(x) = x, entonces $-f(-x) \cdot -g(-x) = -(-x) \cdot -(-x) = x \cdot x = f(x) \cdot g(x)$, por lo tanto impar impar da impar

Sea $f(x) = x^2$ y g(x) = x, podemos crear otra función llamada h que contiene a $x^2 \cdot x$ por lo tanto $h(x) = x^3 = -(-x)^2$ y así demostramos que par e impar es impar.

De igual forma al anterior se puede probar que impar y par es impar.

	Par	Par
Par	Par	Impar
Par	Impar	Par

(c) Hágase lo mismo para $f \circ g$

Respuesta.- Sea f(x) = x y g(x) = x, luego $h(x) = (f \circ g)(x)$ entonces h(x) = x luego -f(-x) = x, por lo tanto impar e impar da impar.

De similar manera se puede encontrar para los demás problemas y queda:

	Par	Par
Par	Par	Par
Par	Par	Impar

(d) Demostrar que para toda función par f puede escribirse f(x) = g(|x|), para una infinidad de funciones g.

Demostración.- Sea g(x) = f(x) sabemos que f es par si f(x) = f(-x), de donde g(x) = f(-x), luego por definición de valor absoluto se tiene g(|x|) = f(|-x|), y por lo tanto f(x) = g(|x|)

13. (a) Demostrar que para toda función f con dominio \mathbf{R} puede ser puesta en la forma f = E + O, con E par y O impar.

Demostración.- Por la parte (b) y resolviendo en E(x) y O(x) se tiene

$$E(x)\frac{f(x) + f(-x)}{2}$$
, $O(x)\frac{f(x) - f(-x)}{2}$

(b) Demuéstrese que esta manera de expresar f es única. (Si se intenta resolver primero la parte (b) despejando E y O, se encontrará probablemente la solución a la parte (a))

Demostración.- Si f = E + O, siendo E par y O impar, entonces

$$f(x) = E(x) + O(x)$$

$$f(-x) = E(x) - O(x)$$

14. Si f es una función cualquiera, definir una nueva función |f| mediante |f|(x) = |f(x)|. Si f y g son funciones, definir dos nuevas funciones, max(f,g) y min(f,g) mediante

$$max(f,g)(x) = max(f(x),g(x)),$$

$$min(f,g)(x) = min(f(x),g(x))$$

Encontrar una expresión para $\max(f,g)$ y $\min(f,g)$ en términos de ||.

Respuesta.- Por problema 1,13 se tiene que

$$max(f,g) = \frac{f+g+|f-g|}{2};$$

$$min(f,g) = \frac{f + g - |f - g|}{2}$$

15. (a) Demostrar que f = max(f,0) + min(f,0). Esta manera particular de escribir f es bastante usada; las funciones max(f,0) y min(f,0) se llaman respectivamente parte positiva y parte negativa de f

Demostración.- Esta proposición mostrará que se puede dividir una función en sus partes no negativas y no positivas. Es decir para todo los elementos x de algún dominio, es cierto que el valor de la función f en un punto x es igual a la suma dada, que consiste en la parte no negativa de max(f(x), 0) y la parte no positiva de f, min(f(x), 0).

Para probarlo, lo dividiremos en dos casos. Sabemos que ó $f(x) \ge 0$ ó $f(x) \le 0$. Si $f(x) \ge 0$ entonces

max(f(x),0) = f(x) y min(f(x),0) = 0 por lo que nuestra ecuación se reduce a f(x) = f(x) + 0. Por otro lado si $f(x) \le 0$, entonces max(f(x),0) = 0 y min(f(x),0) = f(x), por lo que nuestra ecuación se reduce a f(x) = 0 + f(x).

En cualquier caso, nuestro lado derecho se reduce a f(x) y sabemos que al menos uno de estos dos casos es verdadero; por lo tanto concluimos que $\forall x, f(x) = max(f(x), 0) + min(f(x), 0)$ ó f = max(f, 0) + min(f, 0)

(b) Una función f se dice que es no negativa si $f(x) \ge 0$ para todo x. Demostrar que para cualquier función f puede ponerse f = g - h de infinitas maneras con g y h no negativas. (La manera corriente es g = max(f,0) y h = -min(f,0). Cualquier número puede ciertamente expresarse de infinitas maneras como diferencia de dos números no negativos.)

Demostración.- Comenzamos con la observación de que, para cualquier número real no negativo r, hay infinitos números reales no negativos s,t tales que

$$r = s - t$$

De hecho, para cada $n \in \mathbb{N}$, tomamos $s_n = 2r + n$ y $t_n = r + n$. Entonces, dado que $r \ge 0$, tanto s_n como t_n son no negativos. Además,

$$s_n = t_n = 2r + n - r - n = r$$

Ahora, para cada número real x, tenemos que $f(x) \ge 0$. Por lo tanto, a partir de la observación anterior, vemos que hay infinitos números reales no negativos s_x y t_x tales que

$$f(x) = s_x - t_x$$

para cada $x \in \mathbb{R}$. Así que definimos funciones no negativas g y h como sigue

$$g(x) = s_x \ y \ h(x) = t_x$$

. Entonces hemos demostrado que hay infinitas opciones de tales funciones. Además, tenemos que

$$f(x) = g(x) - h(x)$$

. Por lo tanto, hemos demostrado que hay infinitas funciones no negativas g y h tales que

$$f = g - h$$

- **16.** Supongase que f satisface f(x+y) = f(x) + f(y) para todo x e y.
 - (a) Demostrar que $f(x_1, +... + x_n) = f(x_1) + ... + f(x_n)$

Demostración.- El resultado se cumple para n=1, $f(x_1)=f(x_1)$. Luego si $f(x_1+...+x_n)=f(x_1)+...+f(x_n)$ para todo $x_1,...,x_n$, entonces

$$\begin{array}{lcl} f(x_1+\ldots+x_{n+1}) & = & f([x_1+\ldots+x_n]+x_{n+1}) \\ & = & f(x_1+\ldots+x_n)+f(x_{n+1}) \\ & = & f(x_1)+\ldots+f(n)+f(x_{n+1}) \end{array} \text{ por hipótesis}$$

(b) Demostrar que existe algún número c tal que f(x) = cx para todos los números racionales x (en este punto no intentamos decir nada acerca de f(x) cuando x es irracional). Indicación: Piénsese primero en cómo debe ser c. Demostrar luego que f(x) = cx, primero cuando x es un entero, después cuando

x es el reciproco de un entero, y finalmente para todo racional x.

Demostración.- Sea c = f(1). Luego para cualquier número natural n y el inciso (a),

$$f(n) = f(1 + \dots + 1) = f(1) + \dots + f(1) = n \cdot f(1) = cn$$
 (1)

Al ser

$$f(x) + f(0) = f(x+0) = f(x),$$

entonces f(0) = 0. Ahora, puesto que

$$f(x) + f(-x) = f(x + (-x)) = f(0) = 0,$$

resulta que f(-x) = -f(x). En particular, para cualquier número natural n y por (1),

$$f(-n) = -f(n) = -cn = c \cdot (-n)$$

Además

$$f\left(\frac{1}{n}\right)+\ldots+f\left(\frac{1}{n}\right)=f\left(\frac{1}{n}+\ldots+\frac{1}{n}\right)=f\left(\frac{n}{n}\right)=f(1)=c$$

de modo que,

$$f\left(\frac{1}{n}\right) = c \cdot \frac{1}{n},$$

y en consecuencia

$$f\left(\frac{1}{-n}\right) = f\left(-\frac{1}{n}\right) = -f\left(\frac{1}{n}\right) = -c \cdot \frac{1}{n} = c\left(\frac{1}{n}\right)$$

Por último, cualquier número racional puede escribirse en la forma m/n, siendo m un número natural y n un entero;

$$f\left(\frac{m}{n}\right) = f\left(\frac{1}{n} + \dots + \frac{1}{n}\right) = f\left(\frac{1}{n}\right) + \dots + f\left(\frac{1}{n}\right) = mc \cdot \frac{1}{n} = c \cdot \frac{m}{n}$$

- **17.** Si f(x) = 0 para todo x, entonces f satisface f(x + y) = f(x) + f(y) para todo x e y también $f(x \cdot y) = f(x) \cdot f(y)$ para todo x e y. Supóngase ahora que f satisface estas dos propiedades, pero que f(x) no es siempre 0. Demostrar que
 - (a) Demostrar que f(1) = 1

Demostración.- Al ser $f(a) = f(a \cdot 1) = f(a) \cdot f(1)$ y $f(a) \neq 0$ para algún a, resulta ser f(1) = 1

(b) Demostrar que f(x) = x si x es racional

Demostración.- Por el problema 16, $f(x) = f(1) \cdot x = x$ para todo número racional x.

(c) Demostrar que f(x) > 0 si x > 0. (Esta parte es artificiosa, pero habiendo puesto atención a las observaciones filosóficas que van con los problemas de los dos últimos capítulos, se sabrá lo que hacer.)

Demostración.- Si c > 0 entonces $c = d^2$ para algún d, de modo que $f(c) = f(d^2) = (f(d))^2 \ge 0$. Por otro lado, no podemos tener f(c) = 0, ya que esto implicaría que

$$f(a) = f\left(c \cdot \frac{a}{c}\right) = f(c) \cdot f\left(\frac{a}{c}\right) = 0$$
 para todo a

(d) Demostrar que f(x) > f(y) si x > y

Demostración.- Si x > y, entonces x - y > 0, luego por la parte (c) tenemos que f(x) - f(y) > 0.

(e) Demostrar que f(x) = x para todo x. Indicación: Hágase uso del hecho de que entre dos números calesquiera existe un número racional

Demostración.- Sea f(x) > x para algún x. Elíjase un número racional r con x < r < f(x). Entonces, según las partes (b) y (d),

$$f(x) < f(r) = r < f(x),$$

lo cual constituye una contradicción. Análogamente, es imposible que f(x) < x ya que si f(x) < r < x entonces

$$f(x) < r = f(r) < f(x).$$

18. ¿Qué condiciones precisas deben satisfacer f, g, h y k para que f(x)g(y) = h(x)k(y) para todo $x \in y$?

Respuesta.- Se satisface la ecuación si f=0 ó g=0 y h=0 ó k=0. De no ocurrir esto, existirá algún x con $f(x) \neq 0$ y algún y con $g(y) \neq 0$, entonces $0 \neq ff(x)g(y) = h(x)k(y)$, de modo que también se tendrá $h(x) \neq 0$ y $k(y) \neq 0$. Haciendo $\alpha = h(x)/f(x)$, tenemos también $h(x' = \alpha f(x')$ para todo x' para todo x'. Tenemos pues. que $g=\alpha k$ y $h=\alpha f$ para cierto número $\alpha=0$.

- 19. (a) Demostrar que no existen funciones f y g con alguna de las propiedades siguientes:
 - (i) f(x) + g(y) = xy para todo $x \in y$.

Demostración.- Si $f(x) + g(y) = xy \ \forall x, y$ entonces para y = 0 tenemos $f(x) + g(0) = 0 \ \forall x$., de donde f(x) = -g(0), e implica que f es una función constante. Luego

$$xy = f(x) + g(y) = -g(0) + g(y) \forall y$$

porque f(x) es constante para cualquier x. Por otro lado sabemos que g(0) es una constante y g(y) no depende de x, sin embargo su diferencia está dada por g(y) - g(0) = xy. Y finalmente sea x = 0 entonces $g(y) = g(0) \ \forall y$, por lo tanto se concluye que

$$xy = f(x) + g(x) = -g(0) + g(0) = 0 \ \forall x, y$$

ya que si tomamos x = y = 1 implica que 1 = 0 donde llegamos a un absurdo.

(ii) $f(x) \cdot g(y) = x + y$ para todo $x \in y$.

Demostración.- Sea y=0, obtenemos f(x)=x/g(0). De la misma forma si x=0, entonces g(y)=y/f(0). Por lo tanto

$$f(x) \cdot g(y) = x + y \Longrightarrow \frac{x}{g(0)} \cdot \frac{y}{f(0)} = x + y \qquad \forall x, \ e \ \forall y$$

Supongamos que y=0, entonces $\frac{x}{g(0)}\cdot\frac{0}{f(0)}=x\quad\forall x\Longrightarrow 0=x\quad\forall x,$ lo cual es absurdo.

(b) Hallar funciones f y g tales que f(x+y) = g(xy) para todo x e y.

Respuesta.- Sean f y g la misma función constante. Argumentos similares a los utilizados en la parte (a) muestran que estas son las únicas opciones posibles.

20. (a) Hallar una función f que no sea constante y tal que $|f(y) - f(x)| \le |y - x|$.

Respuesta.- Podemos ver que la función f(x) = x satisface la condición $|f(y) - f(x)| \le |y - x|$

(b) Supóngase que $f(y)-f(x) \le (y-x)^2$ para todo x e y. (¿ Por qué esto implica $|f(y)-f(x)| \le (y-x)^2$?) Demostrar que f es una constante. Indicación: Divídase el intervalo [x,y] en n partes iguales.

Demostración.- Supongamos, que puede probar que la siguiente desigualdad es cierta para todos $x, y \in \mathbb{R}$, y $n \in \mathbb{N}$:

$$|f(y) - f(x)| \le \frac{(y-x)^2}{n}$$

Ahora mantengamos los valores de x e y constantes. Podemos suponer $x \neq y$ (porque si x = y entonces f(x) = f(y) y así terminaríamos la demostración). Entonces, en el lado derecho, el numerador $(y-x)^2$ es distinto de 0, y mayor a cero. Por lo tanto, podemos dividir por $(y-x)^2$, de donde:

$$\frac{|f(y) - f(x)|}{(y - x)^2} \le \frac{1}{n}$$

En el lado izquierdo tenemos un número no negativo que es constante (ya que x e y se mantienen constantes, el numerador no es negativo y el denominador es positivo). Este número es menor que cada fracción $\frac{1}{n}$ para todos los números naturales $n \ge 1$. Esto implica que el lado izquierdo es igual a cero:

$$\frac{|f(y) - f(x)|}{(y - x)^2} = 0$$

una vez mas multiplicamos por $(y-x)^2$ entonces

$$|f(y) - f(x)| = 0,$$

de donde

$$|f(y) - f(x)| = 0 \Longrightarrow f(y) = f(x)$$

Dado que esto es cierto para todos los valores x, y terminamos la demostración.

- 21. Demostrar o dar un contraejemplo de las siguientes proposiciones:
 - (a) $f \circ (g+h) = f \circ g + f \circ h$.

Demostración. - Esto es falso en general ya que si designamos a g y h la función identidad y f sea x^2 entonces

$$[f \circ (g+h)](x) = f(g+h)(x) = f[g(x) + h(x)] = f(x+x) = f(2x) = 4x^2.$$

luego por la parte derecha de la ecuación se tendra:

$$[(f \circ g) + (f \circ h)](x) = (f \circ g)(x) + (f \circ h)(x) = f[g(x)] + f[h(x)] = f(x) + g(x) = x^{2} + x$$

De donde $4x^2 \neq x^2 + x$

(b)
$$(g+h) \circ f = g \circ f + h \circ f$$
.

Demostración.- Por definición de composición de función tenemos

$$[(g+h) \circ f](x) = (g+h)[f(x)]$$

$$= g[f(x)] + h[f(x)]$$

$$= (g \circ f)(x) + (h \circ f)(x)$$

$$= [(g \circ f) + (h \circ f)](x)$$

Así
$$(g+h) \circ f = (g \circ f) + (h \circ f)$$

(c)
$$\frac{1}{f \circ g} = \frac{1}{f} \circ g$$
.

Demostración.- Por definición se tiene,

$$\left(\frac{1}{f \circ g}\right)(x) = \frac{1}{(f \circ g)(x)}$$

$$= \frac{1}{f [g(x)]}$$

$$= \left(\frac{1}{f}\right)[g(x)]$$

$$= \left(\frac{1}{f} \circ g\right)(x)$$

Así,
$$1/(f \circ g) = (1/f) \circ g$$

(d)
$$\frac{1}{f \circ g} = f \circ \left(\frac{1}{g}\right)$$
.

Demostración.- Esto es falso ya que si consideramos f(x) = x + 1 y $g(x) = x^2$, entonces

$$\left(\frac{1}{f \circ g}\right)(x) = \frac{1}{(f \circ g)(x)} = \frac{1}{f\left[g(x)\right]} = \frac{1}{f(x^2)} = \frac{1}{x^2 + 1}$$

y por otro lado

$$\left[f \circ \left(\frac{1}{g}\right)\right](x) = f\left[\left(\frac{1}{g}\right)(x)\right] = f\left(\frac{1}{g(x)}\right) = f\left(\frac{1}{x^2}\right) = \frac{1}{x^2} + 1$$

de donde $\frac{1}{x^2 + 1} \neq \frac{1}{x^2} + 1$

22. (a) Supóngase que
$$g = h \circ f$$
. Demostrar que si $f(x) = f(y)$, entonces $g(x) = g(y)$.

Demostración.- $g(x) = h\left(f(x)\right) = h\left(f(y)\right) = g(y)$ esto por definición e hipótesis.

(b) Recíprocamente, supóngase que f y g son dos funciones tales que g(x) = g(y) siempre que f(x) = f(y). Demostrar que $g = h \circ f$ para alguna función h. Indicación: Inténtese definir h(z) cuando z es de la forma z = f(x) (Éstos son los únicos z que importan) y aplicar la hipótesis para demostrar

que la definicón es consistente.

Demostración.- Si z = f(x), defínase h(z) = g(x). Esta definición tiene sentido, ya que si z = f(x'), entonces g(x) = g(x') según la parte (a). Tenemos entonces, para todo x del dominio de f, g(x) = h(f(x)).

- **23.** Supóngase que $f \circ g = I$ donde I(x) = x. demostrar que
 - (a) Si $x \neq y$, entonces $g(x) \neq g(y)$

Demostración.- Supongamos que $x \neq y$ y g(x) = g(y) esto implica que x = I(x) = f(g(x)) = f(g(y)) = y. Donde vemos una contradicción.

(b) Todo número b puede escribirse b = f(a) para algún número a.

Demostración.- Por hipótesis b = f(q(b)) donde basta con poner a = q(b).

24. (a) Supóngase que g es una función con la propiedad de ser $g(x) \neq g(y)$ si $x \neq y$. Demuéstrese que existe una función f tal que $f \circ g = I$

Demostración.- Es equivalente enunciar que si x=y, entonces g(x)=g(y). en consecuencia del problema 22b.

(b) Supóngase que f es una función tal que todo número b puede escribirse en la forma b=f(a) para algún número a. Demostrar que existe una función g tal que $f \circ g = I$

Demostración.- Para cada x, elíjase un número a tal que x=f(a). Llámese a este número g(x). Entonces f(g(x))=x=I(x) para todo x.

25. Hallar una función f tal que $g \circ f = I$ para alguna función g, pero tal que no exista ninguna función h con $f \circ h = I$

Respuesta.- Basta hallar una función f tal que $f(x) \neq f(y)$ si $x \neq y$, pero tal que no todo número sea de la forma f(x), pues entonces según el problema 24(a) existirá una función g con $g \circ f = I$, y según el problema 23(b) no existiría ninguna función g con $f \circ g = I$. Una función que reúne estas condiciones es:

$$f(x) = \begin{cases} x, & x \le 0 \\ x+1, & x > 0 \end{cases}$$

ningún número de los comprendidos entre 0 y 1 es de la forma f(x).

26. Supóngase $f \circ g = I$ y $h \circ f = I$. Demostrar que g = h. Indicación: Aplíquese el hecho de que la composición es asociativa.

Demostración.- Sea $h \circ f \circ g$ entonces $h \circ (f \circ g) = h \circ I = h$, como también $h \circ f \circ g = (h \circ f) \circ g = I \circ g = g$.