Exercise 1. Answer each of the following questions, and explain your reasoning. (a) Can a Turing Machine ever write the blank symbol \square on its tape? **Solution:** (b) Can the tape alphabet Γ be the same as the input alphabet? **Solution:** (c) Can a Turing Machine's head ever stay in the same location for two steps back to back? **Solution:** (d) Can a Turing Machine contain just a single state? **Solution:**

Exercise 2. Show that the set of decidable languages is closed under:

Exercise 2. Show that the set of decidable languages is closed under.	
(a)	union
	Solution:
(b)	intersection
	Solution:
(c)	complement
	Solution:

Exercise 3. Consider the following TM M that decides the language $L = \{0^{2^n} | n \ge 0\}$

M = "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, ACCEPT.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, REJECT.
- 4. Return the head to the left-land end of the tape.
- 5. Go to stage 1."

We can describe this machine formally as:

$$Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$$

$$\Sigma = \{0\}$$

$$\Gamma = \{0, x, \square\}$$

with start state q_1 , accepting state q_{accept} and rejecting state q_{reject} . We describe δ with the following diagram (Sipser, p. 144):

Give the sequence of configurations that M enters when started on each of the following strings:

(a) 0

...continued on next page.

Solution:

(b) 00

Solution:

(c) 000

Solution:

(d) 000000

Solution:

Exercise 4. Show that the following language is decidable:

 $\{\langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is infinite}\}$

Hint: consider what you know about DFAs and their languages...

Solution:

Exercise 5 OPTIONAL. A Turing machine with STAY PUT instead of LEFT is similar to an ordinary Turing machine, but the transition function has the form:

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{R,S\}$$

At each point the machine can move its head right or let it stay in the same position on the tape. Show that this Turing machine variant is **not equivalent** to the usual version. What class of languages do these machines recognize?

Solution:

References