

Procon

Instructions for Installing, Servicing and
Using Procon 15, 25, 45 and 75 Boilers

RVR.ie
Ireland's Online Heating Suppliers

TABLE OF CONTENTS

1.0	General Notes	3
2.0	Product Description	4
2.0	Product Description (cont'd)	5
3.0	Technical Data & Dimensions	6
4.0	Delivery Consignment / Unpacking The Boiler	8
5.0	Boiler Location	8
6.0	Installation Clearances	8
7.0	Wall Mounting	9
8.0	Gas Connection	9
9.0	Water Connection	10
10.0	Condensate Waste Connection	10
11.0	Flue	11
11.1	Conventional Flue	11
11.2	Modular Conventional Flue	11
11.3	Room Sealed Flue	12
11.4	Installation of a Horizontal Wall Terminal	12
11.7	Flue Components	13
12.0	Calculating the Flue Pressure Loss	14
13.0	Flue Terminal Positions	15
14.0	Ventilation Requirements	16
15.0	Hydraulic System Design	16
15.1	Low Water Pressure Protection	17
15.2	Water Treatment, System Cleaning (BS 7592: 1992)	17
15.3	Care With The Use of Solder Flux	17
15.4	Inclusion of Strainers	17
15.5	Pressure (Safety) Relief Valve	17
15.5	Filling the System	18
15.6	Expansion Vessel	18
16.0	Electrical Connections	18
16.1	Internal Wiring Diagrams	20
16.2	Low Voltage Cables	21
16.3	Outside Air Sensor QAC34	21
17.0	Optional Extra Control Options	21
17.1	QAA73 Room Unit Interface	21
17.2	AGU2.500 Clip-In Module Extra Heating Zone	21
17.3	AGU2.511 Clip-In Module BMS Interface	22
17.4	OCI420 Clip-In Module LPB Communication	22
17.5	RVA47 Cascade Controller (Grey) & Housing	22
17.6	RVA46 Zone Controller (Black)	23
17.7	RVA63 Zone Controller (Grey) & Housing	23
18.0	System Configurations	23
18.1	System Type 1	24
18.2	System Type 2	26
18.3	System Type 3	28
18.4	System Type 4	30
18.5	System Type 5	32
18.6	System Type 6	34
18.7	System Type 7	34
18.8	System Type 8	38
18.9	System Type 9	40
18.10	System Type 10	42
19.0	Commissioning	44
19.1	Pre-commissioning Checks	44
19.2	LPG Conversion Procedure	44
20.0	Control Panel	45
20.1	Boiler LMU64 Controller	45
20.3	Level One Parameters Review and Alteration	47
20.4	LMU64 Controller, Fault Indication	48
20.5	Reviewing LMU64 Operating Information	49
20.6	Reviewing LMU64 Operating Error Codes	49
20.7	LMU64 Operating Error Codes	50
20.8	Boiler Operating Sequence Numeric Indication	51
21.0	First Firing / Burner Commissioning	51
21.1	Setting the Boiler to Work	52
22.0	Servicing	52
22.2	Routine Cleaning & Maintenance	53
23.0	Full Parameters List	54
24.0	Exploded Views & Short Parts List	61
24.1	Procon 15, 25 & 45	61
24.2	Procon 75	64

1.0 GENERAL NOTES

These instructions are intended to assist the installer, commissioning and maintenance technicians and the user with the application and use of the Procon 15, 25, 45 & 75 gas fired condensing boilers.

Please read this manual fully before commencing the installation of the appliance. The Procon boilers must be installed by competent persons as defined by local, national and European regulations.

This manual must be handed to the appliance user following completion of the installation. The appliance must not be left to operate with the outer casing removed.

Conformity Statement

Procon 15, 25, 45 & 75 boilers are manufactured to the highest standards of quality, performance and safety, in accordance with EC standards and carry the CE mark.

Installation Requirements

All gas appliances must be installed by a competent and qualified person, in accordance with relevant clauses of applicable standards and recommendations. These include but may not be limited to the following:

- I.S. 813 Domestic Gas Installations
- I.S. 820 Non-Domestic Gas Installations
- All relevant Building Regulations.
- Local Water Bye Laws
- IEE Wiring Regulations
- Health & Safety legislation

Failure to install this appliance correctly could lead to prosecution. It is in your own interest and that of safety to ensure that the law is complied with.

Manufacturer's instructions must **NOT** be taken in anyway as over-riding statutory obligations.

2.0 PRODUCT DESCRIPTION

The Procon 15, 25, 45 & 75 wall mounted gas fired condensing boilers are state of the art appliances, which include a comprehensive range of features.

The appliance must only be used on a sealed and pressurized system. System design must take into account that the boiler operates on a 20°C Δt.

Wall mounted with compact dimensions

At 750 mm High, 381 mm Deep, and 510 mm Wide for the Procon 15, 25 & 45 boilers, and 750 mm Wide for the Procon 75 boiler, these provide maximum heat output from minimum dimensions without compromising serviceability.

Fully modulating heat output

The output of the boiler is fully variable, sliding between (approx.) 24% to 100%, which automatically and instantly adjusts to match the needs of the system. The percentage of power at any given time can be dictated by either outside air temperature, flow temperature, return temperature, stored domestic hot water temperature, room temperature, or a combination of the aforementioned.

Fully condensing stainless steel heat exchanger

The Procon 15, 25, 45 & 75 boilers are designed with extended heat exchanger surface area and is fabricated from corrosion resistant long-life 316L stainless steel. The unique Spiranox heat exchanger will return operating efficiencies up to 96.4 % gross (107 % net) at 30°C return temperature.

Extremely low harmful emissions

The Procon 15, 25, 45 & 75 boiler utilizes 100% pre-mix gas/air fed at positive pressure to the metal fibre sheathed radiant burner. The combustion system incorporates pre-mixed fuel/air control, returning ultra low emissions to satisfy the most stringent emission regulations in the world currently.

That is: < 31mg/kWh NOx (22 ppm DAF) and < 54mg/kWh CO (50 ppm DAF). The fully modulating nature of the appliance also reduces emissions by avoiding repeated start/stops and the associated increase in emissions, which occurs with burner ON/OFF cycling.

Accurate variable burner output control

The pre-mix burner fan has a direct current drive motor with pulse relay counting. This system allows precise control over fan speed / combustion air volumes. Coupled with a gas valve system set to provide proportionately measured volumes of fuel to air, this allows extremely accurate and instant variable burner output control to be achieved.

Natural Gas or LPG

Appliances can be supplied for use with Natural Gas (G20) or Liquefied Petroleum Gas (G31). Conversion Kits are available from RVR Limited.

2.0 PRODUCT DESCRIPTION (CONT'D)

Comprehensive microprocessor control

The Procon 15, 25, 45 & 75 boiler control panel includes a user friendly microprocessor control centre which manages the entire function of the appliance and encompasses:

- 1) Management of the essential safety functions of burner ignition and flame monitoring.
- 2) Water high temperature and flue gas high temperature safety cut out.
- 3) Modulation of the burner output in conjunction with operating temperature control.
- 4) Large LCD display screen with clear graphical notations which continuously display operation or fault status.
- 5) In built weather compensation to provide direct-on-boiler VT flow temperature (if required).
- 6) Remote stored hot water temperature control.
- 7) In built 2 stage boiler frost protection program.
- 8) In built pump exercise program to avoid standstill seizure.
- 9) Range rate adjustment which allows the power to be set to accurately match the maximum needs of the system, with the facility to set different firing rates for heating and hot water generation.
- 10) Facility to connect optional matched control components which allow the boiler to control:
 - A hot water priority system using a 3 port valve or primary charging pump, and hot water sensor attached to a stored hot water cylinder.
 - An additional heating circuit pump and 3-port VT valve (if required).
 - A multi functional room temperature controller with separate heating and hot water time controls, night setback, frost protection, and remote interrogation of the boilers' set-points and function modes.

Room Sealed Option

Utilizing a concentric flue system 125/80 mm Ø (Air duct / Flue duct), the Procon 15, 25, 45 & 75 can be installed to take combustion air directly from outside the building. Horizontal and Vertical terminals sets are available. Inherent safety is achieved by the negative pressure within the boiler case, which in the event of incorrect sealing of the boiler case would result in safe inward air leakage only.

Alternatively the Procon 15, 25, 45 & 75 may be installed as a conventional flue, exhaust only, using an 80 mm Ø OD Polypropylene flue gas tube and fittings to exhaust the appliance to a suitable flue terminal location, either vertical or horizontal.

Extended flue pipe lengths

The excess pressure from the combustion system at maximum output is in the order of 400 Pa. This allows for the Procon 15, 25, 45 & 75 to be flued over considerable distances providing a great deal of flexibility in positioning the boiler.

Designed for ease of maintenance

The Procon 15, 25, 45 & 75 has been engineered for ease of maintenance, even the most major of service operations being able to be completed easily and quickly without the need for specialist tools.

Guarantee

The warranties available on the Procon 15, 25, 45 & 75 range of boilers is as follows;

Supply Only

Parts Only Warranty, against manufacturing or material defects for a period of 12 months from the date for delivery.

Supply and Commissioned (By an RVR Engineer)

Parts and Labour Warranty, against manufacturing or material defects for a period of up to 15 months from the date for delivery. In addition to the above warranties, the Primary Heat Exchanger carriers a five year guarantee against manufacturing or material defect.

3.0 TECHNICAL DATA & DIMENSIONS

		15H	25H	45H	75H	
Nominal Heat Input Net	Min/Max	kW	4.0/15.0	6.5/25.0	12.0/45.0	16.0/70.0
Nominal Heat Input Gross	Min/Max	kW	4.4/16.6	7.2/27.7	13.3/49.9	17.7/77.7
Carbon Emissions	G ₂₀	kg/kW.h	0.061	0.061	0.061	0.060
100% of Max Output	G ₃₁	kg/kW.h	0.078	0.078	0.078	0.077
Carbon Emissions	G ₂₀	kg/kW.h	0.055	0.055	0.055	0.055
30% of Max Output	G ₃₁	kg/kW.h	0.070	0.070	0.070	0.070
Nominal Heat Output (50°C/30°C)	Min/Max	kW	4.3/15.8	7.0/26.0	12.9/47.0	17.0/74.6
Design Flow Rate (50°C/30°C)		l/s	0.188	0.309	0.560	0.888
Heat Exchanger Resistance (50°C/30°C)		mH ₂ O	N/A	N/A	N/A	4.7
Nominal Heat Output (80°C/60°C)	Min/Max	kW	3.9/14.6	6.3/24.2	11.7/43.5	15.0/67.8
Design Flow Rate (80°C/60°C)		l/s	0.174	0.286	0.519	0.807
Heat Exchanger Resistance (80°C/60°C)		mH ₂ O	N/A	N/A	N/A	3.9
Residual Head from In-Built Pump		mH ₂ O	3.7	1.3	1.00	N/A
Maximum Input Gas Rate	G ₂₀	m ³ /h	1.55	2.65	4.65	6.91
Maximum Input Gas Rate	G ₃₁	m ³ /h	0.57	1.08	1.72	2.60
Gas Inlet Pressure	Min/Max	mbar	18.0/50.0	18.0/50.0	18.0/50.0	18.0/50.0
Maximum Flue Gas Volume (Hot)		m ³ /h	21.36	40.81	64.08	96.84
Available Fan Pressure		Pa	400	400	400	400
Maximum Water Pressure (Hot)		bar	3.00	3.00	3.00	3.00
Minimum Water Pressure (Cold)		bar	0.8	0.8	0.8	0.8
Maximum Flow Temperature		°C	90	90	90	90
Power Supply (230V / 50 Hz)		A	5	5	5	5
Max Power Consumption		W	122	129	145	145
Water Content		l	5.2	5.2	5.2	8.2
Weight (Dry)		kg	43.0	43.0	43.0	70.0
Connections						
HTG Primary Flow	(A)		22 mm	22 mm	22 mm	1 1/4"BSP
HTG Primary Return	(B)		22 mm	22 mm	22 mm	1 1/4"BSP
Gas	(C)		22 mm	22 mm	22 mm	3/4"BSP
Condensate Outlet	(D)	Plastic	3/4"BSP	3/4"BSP	3/4"BSP	3/4"BSP
Condensate Trap Cleaning Point	(E)		3/4"BSP	3/4"BSP	3/4"BSP	3/4"BSP
Electrical Cable Glands	(F)		8 × 10 mm			
DHW Primary Return (Optional Extra)	(G)		22 mm	22 mm	22 mm	N/A
DHW Primary Flow (Optional Extra)	(H)		22 mm	22 mm	22 mm	N/A

Fig 3.0a – Underside View 15, 25 & 45 Only

Fig 3.0a – Underside View 15, 25 & 45 Only

3.0 TECHNICAL DATA & DIMENSIONS (CONT'D)

All dimensions are in Millimeters

4.0 DELIVERY CONSIGNMENT / UNPACKING THE BOILER

The boiler is delivered as a consignment of a palleted carton containing the boiler and associated fittings, plus any other optional ancillary flue or control components in separate cartons.

The boiler carton contains:

- Assembled boiler.
- Wall mounting bracket and associated fixings.
- Fittings bag including, condensate waste outlet, outside air sensor (QAC34).

To unpack the boiler, the palleted carton should be laid on the floor. Carefully cut the nylon bands and lift the fibreboard protective panel. Open the carton top and lift out wall hanging bracket and fittings bag. Remove packing material and lift away bottomless carton. With 2 people, carefully lift the boiler from palleted carton by holding the rear chassis only.

To remove the casing from the boiler, turn the two casing screws, on the blue casing strip above the control panel, through 90°. This will release the casing latches. Pull casing slightly to the front and lift upwards to disengage the casing from the top securing lip. The casing can then be removed.

5.0 BOILER LOCATION

The Procon 15, 25, 45 & 75 boiler is not suitable for installation external to a building. The position chosen for the boiler must be a structurally sound wall capable of supporting the weight of the boiler and any ancillaries.

The position should allow for access to a nearby foul water drain suitable to accept condensate water, an alternative is to install a condensate sump receptacle and condense disposal pump which should remove the condense water to a remote foul water drain suitable to accept condensate water.

The position of the boiler on the wall must be truly plumb vertical to ensure correct operation of the internal gravity flow condense system. The position for the boiler must satisfy the requirements of BS 6644: 2005 or BS 6798: 1987 as appropriate.

6.0 INSTALLATION CLEARANCES

For ease of installation, commissioning, servicing and maintenance the following clearances should be observed.

NOTE: These distances are MINIMUM and MUST NOT be reduced. Clearance Dimensions relate to ALL models. Dimensions in {} relate to model 75 only.

7.0 WALL MOUNTING

The Procon 15, 25, 45 & 75 boiler is mounted to the wall via a wall-mounting bracket, which interlocks to a rail mounted on the rear of the boiler.

The wall-mounting bracket should be securely fixed to the wall using suitable fixings for the wall construction and boiler weight. The wall-mounting bracket positioning detail is shown in fig 7.1 for Model 15, 25 & 45; and fig 7.2 for model 75 only.

The boiler should be carefully lifted by two people and offered up to the wall so that the rail on the rear of the boiler is just above the mounting bracket. Gently lower the boiler to engage the bracket onto the rail.

Important Notice

When viewed from the side, the North/South axis of the boilers must be vertical. The appliance must not incline out from the top. If necessary, adjust the position of the boiler at the bottom.

Fig 7.0a – Models 15, 25 & 45 Illustrated

Fig 7.0b – Model 75 Illustrated

8.0 GAS CONNECTION

The gas connection is located at the base of the appliance in the centre, see fig 8.1 for Models 15, 25 & 45; see fig 8.2 for model 75.

The pipe size used to supply the appliance must not be smaller than the gas connection size. The connection to the appliance MUST include an isolation valve and a suitable method of disconnection, installed between the isolation valve and the appliance.

The gas pipe used to supply the appliance must be installed in accordance with BS 7591: 1988, IGE/UP/2, and IGE/UP/10 as applicable, and MUST NOT allow a dynamic pressure drop of greater than 1mbar from the meter to the appliance with all gas appliances operational.

The nominal inlet working pressure measured at the appliance should be 20.0 mbar for Natural Gas (G20), or 37 mbar for Liquefied Petroleum Gas (G31). The installer should provide a pressure test point adjacent to the gas inlet connection between the isolation valve and the appliance.

Fig 8.0a – Models 15, 25 & 45 Illustrated

Fig 8.0b – Model 75 Illustrated

9.0 WATER CONNECTION

The Procon 15, 25, 45 & 75 boilers MUST only be installed on a sealed, pressurized heating system. The maximum working pressure of the boiler is 3 bar.

A safety valve set at 3.0 bar MUST be installed into the heating flow pipe adjacent to the appliance and before any isolation valves. It is recommended that the final working pressure (hot) of the system should not exceed 2.5 bar.

The system that the boiler is installed onto will require an expansion vessel. The Procon 15 and 25 models include an integral 10-litre expansion vessel.

Please contact RVR Sales Department for advice on the sizing of an expansion vessel suitable for the systems requirements.

The flow and return connections should include isolation valves, a drain facility, and a suitable method of disconnection between the isolation valves and the appliance.

The flow and return connections on the 75 model are 1¼"BSP M (parallel), therefore it is recommended that a fitting with a tapered thread, such as a Tapered Union or Tapered Socket, be utilized for the connection onto the boiler.

Fig 9.0a – Models 15, 25 & 45 Illustrated

Fig 9.0b – Models 75 Illustrated

10.0 CONDENSATE WASTE CONNECTION

The condensate waste connection is located at the bottom of the appliance, see figs 10.0a & 10.0b.

The condense siphon cleaning point is factory fitted with a heavy black plastic cap which MUST NOT BE REMOVED apart from during routine maintenance when the siphon is cleaned and must be in place whenever the appliance is in operation.

WARNING: operating the appliance with the cap removed will result in products of combustion being discharged from the cleaning point.

The condensate waste connection is a ¾"BSP Male threaded stub fabricated from plastic. The installer must connect to the stub, a condensate waste pipe fabricated from plastic tube & fittings (¾" or 22 mm Ø overflow pipe is considered suitable). **Copper Tube is not acceptable.**

The condense waste pipe must fall continuously from the appliance to a nearby foul water drain suitable for accepting condense waste. If any part of the condensate waste pipe is to be run external to the building or is at risk of freezing, then the pipe must be suitably insulated to protect against freezing.

If a suitable drain for accepting condense waste is not available nearby and below the boiler, (e.g. boiler installed in a basement), then a suitable condense sump receptacle with a discharge pump should be installed below the boiler to remove the condense waste to a suitable remote foul water drain. Available as an optional extra, Contact RVR Sales Department for more information.

When making the connection to the condensate waste pipe, do not use adhesives, it is recommended to lightly apply a suitable jointing tape (PTFE or similar) and use only light pressure to connect the fittings to the appliance to avoid damage to the condensate waste outlet assembly. It is recommended that a suitable method of disconnection be fitted, and cleaning points be fitted at regular intervals.

Fig 10.0a – Models 15, 25 & 45 Illustrated

Fig 10.0b – Models 75 Illustrated

11.0 FLUE

The flue outlet and combustion air inlet connections to the appliance are located on the top of the appliance; see fig 11.1. These connections are arranged concentrically with a Female 80 mm Ø flue gas connection centrally within a Male 125 mm Ø air connection.

There are two options for flueing the Procon boiler:

- 1) Room Sealed, using either concentric 80/125 mm Ø flue components, or separate 80 mm Ø flue components; where the air for combustion is taken from outside of the building. When using a room sealed flue, ventilation to the boiler/s location may not be required, see section 14.0 for further guidance.
- 2) Conventionally, using 80 mm Ø flue components for the combustion gases only and air for combustion being taken from the room or compartment that the appliance is installed. The ventilation to the room or compartment that the boiler/s are installed MUST be ventilated in accordance with the requirements of IS 813, IS820, BS5440 or BS6644 as appropriate, see section 14.0 for further guidance.

11.1 CONVENTIONAL FLUE

The Procon 15, 25, 45 & 75 boilers have an excess pressure combustion system, which coupled with very low flue gas temperatures, allows the appliance to be flued over considerable distances.

As standard the Procon 15, 25, 45 & 75 boiler is supplied with a concentric flue outlet on the top of the boiler and utilizes an 80 mm Ø PPS polypropylene flue gas pipe within a 125 mm Ø painted metal combustion air pipe, see fig 11.1.

To flue the boiler conventionally, i.e. exhaust only, only the inner 80mm Ø PPS socket is used.

The gap between the 80 mm Ø PPS socket and the 125 mm Ø painted metal combustion air pipe is left open to allow the air for combustion to enter the boiler from the room in which the boiler is installed.

Any sections of the flue system that are to be installed horizontally MUST have at least a 3° fall to the boiler to allow any condensate which may form in the flue system to drain back into the boiler.

The flue system must be gas and water tight, and must be adequately supported over its entire length. Supports at 1 metre intervals are essential.

Care should be taken when selecting a position with a low level discharge, or discharges' adjacent to windows, doors, etc, as the flue terminal will plume heavily and the white water vapour discharged may cause a visual nuisance.

The PPS flue components have push together spigot and socket joints, and have soft EPDM O-rings located in the socket components. To aid assembly and assure that the joints have been fully pushed home, the sealing EPDM O-rings and male ends of the tubes and fittings should be lightly lubricated with silicone grease.

A range of 80 mm Ø PPS flue components are available from RVR Boilers Ltd; and is listed on page 15.

Fig 11.1 – Models 15, 25 & 45 Illustrated

11.2 MODULAR CONVENTIONAL FLUE

The Procon 15, 25, 45 & 75 boilers can be connected onto common conventional flue, in a modular arrangement; however, due to the excess pressure combustion system, consideration must be given to ensure that the excess pressure of a firing appliance/s is not applied to any non-firing appliance/s.

Therefore, to ensure that the excess pressures are catered for, the common flue system MUST be designed so that under partial load, the resistance of the common riser MUST always be of a lesser resistance than that of any boiler flue branch connecting to the common riser, furthermore, the use of swept or shoed tee MUST be utilized.

The flue components used shall be pressure tight, and suitable for a pressure in excess of 400 Pascal's.

They shall also be of a suitable material for use with condensing boilers, such as PPS Plastic, or 316L Stainless Steel, etc.

Fig 11.2

11.3 ROOM SEALED FLUE

The Procon 15, 25, 45 & 75 boilers have an excess pressure combustion system, which coupled with very low flue gas temperatures, allows the appliance to be flued over considerable distances.

The Procon 15, 25, 45 & 75 boilers are fitted with a concentric flue outlet on the top of the boiler and uses a female 80 mm Ø PPS polypropylene flue gas pipe within a male 125 mm Ø painted metal combustion air pipe, see fig 11.1. To connect to the standard concentric flue components supplied by RVR a flue adaptor is required.

The flue system must be installed to have at least a 3° fall to the boiler to allow any condensate which may form in the flue system to drain back to the boiler.

The flue system must be gas and water tight, and must be adequately supported over its entire length. Supports at 1-metre intervals are essential.

Care should be taken when selecting a position with a low level discharge, or discharges' adjacent to windows, doors, etc, as the flue terminal will plume heavily and the white water vapour discharged may cause a visual nuisance.

The concentric flue components have push together spigot and socket joints. Both the inner PPS flue gas tube, and the outer combustion air tube have soft EPDM O-rings located in the socket components.

To aid assembly and assure that the joints have been fully pushed home, the sealing EPDM O-rings and male ends of the tubes and fittings should be lightly lubricated with silicone grease. A range of concentric flue components are available from RVR Ltd; and is listed on page 15.

Fig 11.3 – Models 15, 25 & 45 Illustrated

11.4 INSTALLATION OF A HORIZONTAL WALL TERMINAL

Rear Outlet Assembly Method

The following procedure applies to rear flue terminal position.

- 1) With the boiler mounted in position, see section 7.0, draw a horizontal line on the wall 210 mm (15, 25 & 45 models) above the top of the boiler. See fig 11.4a.
- 2) Mark the center of the flue spigot on the wall, remove the boiler from its hanging bracket and carefully position to one side. Draw a vertical line from the center mark of the flue spigot to intersect the horizontal line. See fig 11.4a.
- 3) At the intersection of the horizontal and vertical lines, cut a 130 mm Ø hole with a core drill. See fig 11.4a.
- 4) Measure the wall thickness 'W' in millimeters, add 155 mm (15, 25 & 45 models), or 200 mm (75 Model) to achieve total length 'TL' of flue pipe required.
- 5) Mark the Horizontal Wall Terminal a distance of 'TL' from the outer edge of the Air Pipe. Both tubes should be cut flush and square with each other, and any burrs removed. See fig 11.4b.
- 6) Re-position the boiler onto the hanging bracket, as detailed in section 7.0.
- 7) Fit the Flue Adaptor to the top of the boiler and lubricate the two seals with silicone grease.
- 8) Lubricate the male ends of the concentric bend and the flue adapter with silicone grease; locate the flue adapter onto the flue outlet connection on top of the boiler, and gently push home. Locate the bend on top of the flue adapter, and gently push home.
- 9) Locate the wall bezel plate onto the wall terminal assembly and position the terminal through the previously prepared hole from outside the building.
- 10) Locate the bezel plate onto the wall terminal for the inside face of the wall. Lubricate the male ends of the concentric bend with silicone grease.
- 11) Locate concentric tubes into bend and gently push fully home. Ensure that the plain section of the external part of the air inlet tube is located uppermost. See fig 11.4c.
- 12) Fix internal and external wall bezel plates with fixings provided. See fig 11.4c.

Fig 11.4a

Fig 11.4b

Fig 11.4c

11.4 INSTALLATION OF A HORIZONTAL WALL TERMINAL (CONT'D)

Side Outlet Assembly Method

The following procedure applies to horizontal, side flue terminal position.

- 1) With the boiler mounted in position, see section 7.0, draw a horizontal line along the wall 210 mm above the top of the boiler. This line should rise at approximately 3° from the horizontal toward the terminal position to allow any condensate to drain through the boiler. See fig 11.4d.
- 2) On the adjacent sidewall, draw a vertical line 130 mm (15, 25 & 45 models), or 176 mm (75 model) from the wall that the boiler is mounted on. Continue the horizontal line previously marked on the sidewall. See fig 11.4d
- 3) At the intersection of the horizontal and vertical lines, cut a 130 mm Ø hole with a core drill. See fig 11.4d.
- 4) Measure the wall thickness 'W' in millimeters and the distance between the side of the boiler and the adjacent sidewall (L1).

For the 15, 25 & 45 models, add 275 mm to the sum of Length 'L1 + W', to achieve total length 'TL' of flue pipe required.

For the 75 model, if flueing to the LEFT, add 122 mm to the sum of Length 'L1 + W', to achieve total length 'TL' of flue pipe required; If flueing to the RIGHT, add 678 mm to the sum of Length 'L1 + W', to achieve total length 'TL' of flue pipe required.

If 'TL' is greater than 845 mm , then additional flue extensions will be required.

- 5) Mark the Horizontal Wall Terminal, and flue extensions if required, a distance of 'TL' from the outer edge of the Air Pipe. Both tubes should be cut flush and square with each other, and any burrs removed. See fig 11.4e.
- 6) Re-position the boiler onto the hanging bracket, as detailed in section 7.0.
- 7) Fit the Flue Adaptor to the top of the boiler and lubricate the two seals with silicone grease.
- 8) Lubricate the male ends of the concentric bend and the flue adapter with silicone grease, locate the flue adapter onto the flue outlet connection on top of the boiler, and gently push home. Locate the bend on top of the flue adapter, and gently push home.
- 9) Locate the wall bezel plate onto the wall terminal assembly and position the terminal through the previously prepared hole from outside the building.
- 10) Locate the bezel plate onto the wall terminal for the inside face of the wall.
- 11) Lubricate the male ends of the concentric bend with silicone grease. Locate concentric tubes into bend and gently push fully home. Ensure that the plain section of the external part of the air inlet tube is located uppermost. See fig 11.4f.
- 12) Fix external wall bezel plate with fixings provided (fig 11.4f).

Fig 11.4d

Fig 11.4e

Fig 11.4f

12.0 CALCULATING THE FLUE PRESSURE LOSS

The excess pressure available from the boiler fan for overcoming the frictional resistance of the flue system is 400 Pa. The adjacent table lists the resistances of the flue components, which will assist the designer in calculating the resistance of the total flue system.

As with all vertical flue systems, thermal up-draught is generated in the vertical sections of a flue, the graph below (fig 12.1) shows the Thermal Up-draught generated, in Pa's, which can then be deducted from the total flue resistance.

If the resistance of the total flue system exceeds 400 Pa's, this will result in a reduction of the boiler output. The graph below (fig 12.2) shows the available maximum boiler output in relation to flue resistance.

	15H	25H	45H	75H
Concentric Flue Components				
Standard Wall Terminal	4.0	5.0	8.0	16.0
Vertical Discharge Wall Terminal	4.0	5.0	8.0	16.0
Vertical Terminal	4.0	5.0	8.0	16.0
1000 mm Flue Extension	2.5	4.0	6.0	12.0
500 mm Flue Extension	1.25	2.0	3.0	6.0
93° Bend	2.5	4.0	6.0	12.0
45° Bend	1.25	2.0	3.0	6.0
80 mm Ø PPS Flue Components				
Concentric to Twin Pipe Adapter	1.5	3.0	5.0	10.0
Exhaust Pipe Terminal	1.0	2.5	4.0	8.0
Air Pipe Terminal	2.0	4.0	7.0	15.0
1000 mm Flue Extension	1.5	3.0	5.0	9.0
500 mm Flue Extension	0.75	1.5	2.25	4.5
93° Bend	1.5	3.0	5.0	9.0
45° Bend	0.75	1.5	2.25	4.5

Thermal Up-draught Graph

Fig 12.0a – Thermal Up-draught when flue gas temperature 80°C and outside temperature -5°C.
A = Flue insulated or within the building.
B = Flue un-insulated and exterior to the building.

Boiler Output / Flue Resistance Graph

Fig 12.0b – Effect of the flue system resistance on the boiler output.

13.0 FLUE TERMINAL POSITIONS

The flue terminal of the Procon 15, 25, 45 & 75 boilers' will plume water vapour, heavily and care must be taken when selecting the terminal position to ensure that a "nuisance situation" is not created.

Where the flue terminal discharges within 2 metres of ground or any upper part of the building where people have general access, i.e. balcony level, etc., a terminal guard MUST be fitted to prevent the terminal from being touched.

Fig 13.0 – Minimum Clearances

Minimum Distance

All Dimensions are in millimeters, See Fig 13.0

Dimension	Description	Minimum Distance	Dimension	Description	Minimum Distance
A	Directly below an opening, air brick, window, etc.	300	J	From an opening, door, window, etc., in a car port	1200
B	Below gutters, soil pipes, drain pipes, etc.	75	K	Vertically from a terminal on the same wall.	1500
C	Below eaves	200	L	Horizontally from a terminal on the same wall.	300
D	Below balconies, car port roof, etc.	200	M	Above an opening, window, etc.	500
E	Vertically from soil pipes, drain pipes, etc.	150	N	Horizontally to an opening, window, etc.	300
F	From internal or external corners.	300	P	Above a level roof (base of terminal).	500
G	Above ground, intersecting roof, balcony level, etc.	300	Q	Q From adjacent wall (edge of terminal).	500
H	From a surface facing the terminal.	2000	R	From adjacent opening window.	1000
I	From a terminal facing the terminal.	2000	S	From any other flue terminal.	600

Note: Dimensions highlighted in **BOLD** are not recommended locations.

14.0 VENTILATION REQUIREMENTS

The room or space in which the Procon 15, 25, 45 & 75 boiler is installed may need to be ventilated in accordance with BS 5440: Part 2:2000, or BS 6644: 2005, as appropriate.

The table below details the ventilation required for individual Procon 15, 25, 45 & 75 boiler installations ONLY.

Conventional	15H	25H	45H	75H
Room Installation. Natural Ventilation direct to outside.	40cm ²	110cm ²	190cm ²	140cm ² High, 280cm ² Low Level
Room Installation. Natural ventilation from adjacent room, which is directly ventilated to outside.	40cm ²	110cm ²	190cm ²	N/A
Compartment Installation. Natural Ventilation direct to outside.	75cm ² High, 150cm ² Low Level	145cm ² High, 290cm ² Low Level	225cm ² High, 450cm ² Low Level	350cm ² High, 700cm ² Low Level
Compartment Installation. Natural ventilation from adjacent room, which is directly ventilated to outside.	150cm ² High, 300cm ² Low Level	290cm ² High, 580cm ² Low Level	450cm ² High, 900cm ² Low Level	N/A
Room	15H	25H	45H	75H
Room Installation. (Consideration shall be given to provide general ventilation for cooling purposes).	NIL	NIL	NIL	140cm ² High & Low Level
Compartment Installation, room sealed flue. Natural ventilation direct to outside.	75cm ² High & Low Level	145cm ² High & Low Level	225cm ² High & Low Level	350cm ² High & Low Level
Compartment Installation. Natural ventilation from adjacent room. Adjacent room similarly ventilated direct to outside	150cm ² High & Low Level	290cm ² High & Low Level	450cm ² High & Low Level	700cm ² High & Low Level

Important Notice

The Ventilation Requirements detailed above are for guidance purposes and are relevant for single appliance installations ONLY.

For further information on different ventilation options/requirements, for single or multiple boiler installations, please refer to BS 5440: Part 2:2000 and BS 6644: 2005, as appropriate.

***1 – Consideration shall be given for the Summer Usage of the boiler, and the appropriate ventilational allowance applied, as detailed in BS 6644: 2005.**

15.0 HYDRAULIC SYSTEM DESIGN

The Procon 15, 25, 45 & 75 boiler can be operated to serve a heating load as either;

- Constant Temperature, the option of adjusting the desired set-point temperature between 20 °C and 85 °C.
- Direct-On-Boiler weather compensated flow temperature.
- Hot Water Production, on a priority basis.

The Procon 15, 25, 45 & 75 boilers are designed to operate with a 20°C ΔT, the heating & hot water loads shall be designed around a 20°C ΔT, operating the boiler on a reduced ΔT will result in a reduced boiler output.

Where the system index circuit/s have a greater hydraulic resistance than that of the residual head pressure available from the internal boiler pump {16, 31, 47}, or chosen boiler pump {75}, then a low loss header must be used, with the boilers pump delivering the water to the low loss header.

Where multiple boilers are to be installed, a low loss header must be used, with the boiler primary pumps delivering the water to the low loss header. Non-return valves MUST be fitted to each boiler to prevent short-circuiting. See 18.8 System Type 8.

Where the system has multiple pumped circuits that are proposed to operating at the same time, then sub headers, both flow and return, should be used with non-return valve being installed directly after each pump to prevent re-circulation. See Fig 15.0

Fig 15.0

15.1 LOW WATER PRESSURE PROTECTION.

A low water pressure switch has been incorporated into the boiler and therefore an external unit is not required. The activation setting of the switch is 0.5 bar, with a 0.3 bar differential; therefore the system pressure must be in excess of 0.8 bar for the switch to activate and allow the appliance to function.

15.2 WATER TREATMENT AND SYSTEM CLEANING

The entire primary system MUST be thoroughly cleaned and flushed to remove debris, flux residues, etc. before opening the boiler isolation valves & admitting water to the boiler.

Particular care must be taken where the Procon boiler is being retro-fitted into an old/existing system, as system silt or magnetite can be very damaging to the new boiler.

Following cleaning and flushing the system MUST be dosed with a good quality water treatment to prevent corrosion and the formation of scale. A suitable corrosion inhibitor known as INIBAL is available from RVR Limited.

FAILURE TO OBSERVE THESE REQUIREMENTS WILL RENDER THE WARRANTY ON THE APPLIANCE VOID.

Cleaning, flushing and water treatment must be carried out in accordance with the requirements of BS 7593:1992, prior to commissioning the boiler.

Repeated draining and refilling of the system, without replenishment of water treatment, must be avoided, as this is very damaging to the boiler. The boiler must not operate without the system water being correctly and adequately treated, and maintained, with an appropriate level of corrosion inhibitor.

15.3 CARE WITH THE USE OF SOLDER FLUX

The Procon 15, 25, 45 & 75 boiler has a heat exchanger fabricated from 316L Stainless Steel. It is most important that the compatibility of any flux is checked with the supplier before use, and that any flux manufacturers recommendations are strictly followed with regards to use in conjunction with Stainless Steel.

15.4 INCLUSION OF STRAINERS

The return pipework MUST include some method of filtering or straining. The filter or strainer must be fitted with isolation valves to allow easy cleaning with the minimum amount of water loss and water replenishment.

15.5 PRESSURE (SAFETY) RELIEF VALVE

In accordance with BS 5440: 2000 and BS 6644: 2005, as applicable, the installer shall install as suitably sized Pressure (Safety) Relief Valve.

The location of this valve is important with respect to the applied pressure of the boiler circulation pump, it is therefore recommended to locate the Pressure (Safety) Relief Valve on the flow pipe immediately adjacent to the boiler; furthermore, there must not be any means of isolation between the boiler and the Pressure (Safety) Relief Valve.

15.5 FILLING THE SYSTEM

The Initial filling of a sealed heating system, and subsequent refilling, must be by a method that has been approved by the local authority and complies with building regulations.

In general Water Regulation Advisory Scheme (WRAS) recommendations will be acceptable in Ireland.

Domestic (In-House)	Fluid Category 3 (C-3)
Non Domestic (Other than In-House)	Fluid Category 4 (C-4)

For Category 3 systems, the approved method of filling must comprise of the following components in the arrangement shown;

- Control Valve incorporating a Double Check Valve on the Mains Cold Water pipework.
- Temporary Connecting Hose, which must be disconnected after use.
- Control Valve, on the heating system.

Fig 15.5a

For Category 4 systems, the approved method of filling must comprise of the following components in the arrangement shown;

- Control Valve.
- Strainer.
- Verifiable Backflow Device with Reduced Pressure Zone (RPZ Valve)
- Incorporating a 'Type BA' Air Gap.
- Tundish.
- Control Valve.

Fig 15.5b

Further more, in accordance with BS 6644: 2005 system with an input greater than 70kW (nett), an automatic water replenishment unit shall be installed to automatically replenish any lost or evaporated water.

Please refer to BS 6644: 2005 for allowable water replenishment methods for use with sealed/pressurized heating systems.

Please contact RVR Limited for more information.

15.6 EXPANSION VESSEL

In accordance with BS 5440: 2000, BS 6644: 2005, WRAS Regulations, and Local Authority Water Regulations, as applicable, the installer shall install a suitably sized, and approved, Expansion Vessel to ensure that the water capacity of the system has ample expansion capacity.

The location of the expansion vessel shall only be isolatable from the system via a Lockable Type Service Valved, which shall be locked in the OPEN position, to prevent accidental isolation.

Furthermore, a drain facility should be provided adjacent to the expansion vessel to aide the routine maintenance, overhaul, of the vessels Air Pressure setting.

The Procon 15 & 25 boilers only, are supplied with an internal 10-litre expansion vessel. This vessel is suitable for a system with a maximum capacity of 100 litres. This is based upon a Cold Fill Pressure of 1.0bar, and a Final Working Pressure (HOT) of 2.5bar.

For information on a comprehensive range of expansion vessels that comply with current British Standards and WRAS Regulations, please contact RVR Boiler Sales.

16.0 ELECTRICAL CONNECTIONS.

In accordance with BS 5440: 2000, BS 6644: 2005, WRAS Regulations, and Local Authority Water Regulations, as applicable, the installer shall install a suitably sized, and approved, Expansion Vessel to ensure that the water capacity of the system has ample expansion capacity.

The location of the expansion vessel shall only be isolatable from the system via a Lockable Type Service Valve which shall be locked in the OPEN position, to prevent accidental isolation.

Furthermore, a drain facility should be provided adjacent to the expansion vessel to aid the routine maintenance, overhaul, of the vessel's Air Pressure setting.

The Procon 15 & 25 boilers ONLY, are supplied with an internal 10-litre expansion vessel. This vessel is suitable for a system with a maximum capacity of 100 litres. This is based upon a Cold Fill Pressure of 1.0bar, and a Final Working Pressure (HOT) of 2.5bar.

For information on a comprehensive range of expansion vessels that comply with current Standards and WRAS Regulations, please contact RVR Limited.

Fig 16.0a – Connection Details for Models 15, 25 & 45
*1 – Parameter Change Required.

Fig 16.0b – Connection Details for Model 75
*1 – Parameter Change Required.

16.1 INTERNAL WIRING DIAGRAMS

Fig 16.1a – Internal Wiring Diagram for Models 15, 25 & 45

Fig 16.1b – Internal Wiring Diagram for Model 75

16.2 LOW VOLTAGE CABLES

All low voltage cables should be of a suitable screened type for 24-volt data transfer.

The Outside Air Sensor (QAC34), and optional QAA73 unit and Hot Water Sensor (QAZ36), all require Low Voltage Cables.

The adjacent table gives guidance on the size of cable required for the length of cable required.

All low voltage cables should be kept away from mains voltage cables as much as possible as electrical interference from Mains Voltage cables will adversely affect the operation of the boiler and its controls. The screening of the cables must be earthed.

Cable Details	
Length (mtrs)	Cable (\varnothing mm ²)
Up to 35	0.25
35 to 70	0.5
70 to 140	1.0

16.3 OUTSIDE AIR SENSOR QAC34

If weather compensated flow temperatures are required (recommended for best seasonal efficiency and comfort), then the Outside Air Sensor must be installed and electrically connected to the boiler.

The Outside Air Sensor MUST be installed on an exterior wall which is North facing, away from any artificial heat influences such as ventilation discharges, lights, etc, and MUST not be installed in direct sunlight.

The Outside Air Sensor complete with 5 mm \varnothing wall fixing and screw is supplied with the boiler. See Fig 16.3.

Fig 16.3

17.0 OPTIONAL EXTRA CONTROL OPTIONS

17.1 QAA73 ROOM UNIT INTERFACE (OpenTherm)

The QAA73 Room Unit Interface (available as an optional extra) not only provides room temperature control for day set-point, night-time set-point and frost protection, but also includes individual day programming for heating and hot water control, and also displays the boiler error message, if set to the OpenTherm Plus mode.

With the use of an AGU2.500 Clip-In Module, and additional Heating Circuit can also be time controlled, see Item 17.2.

For further information concerning installation and programming, please refer to the separate QAA73 Installation and Maintenance Manual.

Fig 17.1

17.2 AGU2.500 CLIP-IN MODULE EXTRA HEATING ZONE (Part No - 96.38000-7003)

With the use of an AGU2.500A109 Clip-In Module, a second heating zone can be activated.

When used in conjunction with a QAA73 Room Unit, this second heating zone can operate under the same temperature dictates as heating zone 1, or separately under time control only.

When a QAA73 Room Unit is NOT being used, the RU connections (X10-01) MUST be linked so the time clock for the second heating zone time clock can be accessible via the boiler fascia.

If a mixing value is required to acco mm odate lower operating temperatures from that of Heating Zone 1, then a QAD36 flow sensor will be required, available as an optional extra. Please refer to instructions supplied with the Clip-In Module for programming instructions (Ref.-LAGU2).

Fig 17.2

17.3 AGU2.511 CLIP-IN MODULE BMS INTERFACE (Part No - 96.38000-7005)

With the use of an AGU2.511 Clip-In Module, the boiler controller can communicate with a BMS System.

This Clip-In Module has three 240V (50Hz) programmable outputs that can be configured to respond to the operational status of the boiler, for remote monitoring, such as, Healthy, Run and Lock-Out.

This Clip-In Module can also accept a 0-10V dc or 020mAmp input signal for Set-point Temperature, or Percentage Output control.

Please refer to instructions supplied with the Clip-In Module for programming instructions (Ref.-LAGU).

Fig 17.3

17.4 OCI420 CLIP-IN MODULE LPB COMMUNICATION (Part No - 96.38000-7004)

With the use of an OCI420 Clip-In Module, the Optional Extra Controls detailed from 17.5 onwards can also be utilized.

One Clip-In Module is required per boiler in a Multiple Boiler arrangement.

Please refer to instructions supplied with the Clip-In Module for programming instructions (Ref.-LOCI).

Fig 17.4

17.5 RVA47 CASCADE CONTROLLER (GREY) & HOUSING

The RVA47 Cascade Controller (Grey) is a comprehensive unit that can be wall or control panel mounted, and can control up to twelve Procon 15, 25, 45 & 75 boilers. The RVA47 is supplied with 2 No QAD21 System Sensors (flow & return) and a QAC32 outside air sensor. Each Procon boiler MUST be fitted with an OCI420 Communication Clip-In Module, see item 17.4.

In addition to boiler control, the RVA47 can provide the drive signal for a heating circuit pump and can provide control for stored domestic hot water, with the RVA47 providing the drive signal for a hot water primary circuit pump.

External control input to the RVA47 can be by either, a VoltFree contact (e.g. time clock), 0-10v analogue input, a QAA70, QAA50 or QAA10 Modulating Room Unit.

Heating flow temperatures are weather compensated variable (QAC32 supplied), if constant temperature is required, a 620Ω resistor needs to be installed in place of the outside air sensor.

If more than twelve boilers need to be controlled, then additional RVA47 Cascade Controllers can be connected to the first unit in a 'Master/Slave' arrangement. Each subsequent 'Slave' RVA47 can control up to twelve boilers each.

Standard features include Pump Overrun, Boiler Load Rotation, Frost Protection, and Pump Exercise program. Please refer to instructions supplied with the RVA47 for programming instructions (Ref.-LRVA47QR/LRVA47S).

Fig 17.5

17.6 RVA46 ZONE CONTROLLER (BLACK)

The RVA46 Zone Controller (Black) is a match controller for the RVA47 (Grey), and is located in the Left-Hand position of the RVA47 Housing.

The RVA46 can provide the drive signals for the Zone Circulation pump and Mixing Valve (Supplied by Others).

If a mixing value is required to accommodate lower operating temperatures from that of the other Zones, then a QAD21 flow sensor will be required, available as an optional extra.

External control input to the RVA46 can be a QAA70, QAA50 or QAA10 Modulating Room Unit.

Please refer to instructions supplied with the RVA46 for programming instructions (Ref.-LRVA46QG/LRVA46S)..

Fig 17.6

17.7 RVA63 ZONE CONTROLLER (GREY) & HOUSING

The RVA63 Controller (Grey) is a comprehensive controller that can be wall or control panel mounted. The Procon boiler MUST be fitted with an OCL420 Communication Clip-In Module, see item 17.4.

The RVA63 can provide the drive signals for two heating primary pumps and mixing valves (if required) and can provide control for stored domestic hot water, with the RVA63 providing the drive signal for a hot water primary circuit pump.

If a mixing value/s is required to accommodate lower operating temperatures from that of the other Zones, then a QAD21 or 26 flow sensor will be required per zone, available as an optional extra.

External control inputs to the RVA63 can be by either, Volt Free Enable contact (e.g. time clock), or QAA70, QAA50, QAA10 Modulating Room Units. An external control input is required per zone. The RVA63 can also be linked to an RVA47 for Multiple boiler installations.

Please refer to instructions supplied with the RVA46 for programming instructions (Ref.-LRVA46QG/LRVA46S).

Fig 17.7

18.0 SYSTEM CONFIGURATIONS.

The Procon 15, 25, 45 & 75 boilers can be connected to a number of different types of heating and hot water systems. Depending upon how the boiler is to be utilized will depend upon how the boiler is wired and configured in the boilers parameters.

The following System Types show standard Hydraulic layouts, wiring diagrams, and the necessary parameter changes. If the system you have installed is not shown in one of these standard layout, we would recommend that you consult with RVR Boilers Technical Department for further advice.

If the System Type to be installed requires parameters to be changed, these will need to be undertaken during the commissioning of the boiler.

To access the 'Engineer Level', press and hold the **▲▼ PROG** buttons simultaneously, for approximately 3 second, until **H90** appears on the screen. Use the **▲** and **▼** PROG buttons to access the required parameter number, and use the **+** and **-** buttons to alter/adjust the required parameter value. On completion of satisfactory adjustment/s to a/any parameter, the **INFO** button must be pressed to store the amendments and to return to the normal operating display.

A full list of Parameter and Default Values in listed in Section 23.0

Please Note;

When changing Parameter No 552 (System Hydraulics') the pump connections K1 and K2 for the internal pump and the external Heating Circuit may vary.

On the Procon 15, 25 & 45 boilers the internal pump wiring may need to be re-located from the factory position, as detailed on the System Type Wiring Diagrams.

Procon 15 & 25 – K1 (Terminals 16 & 17) to position K2 (Terminals 13 & 14),

Procon 45 – K2 (Terminals 13 & 14) to position K1 (Terminals 16 & 17),

18.1 SYSTEM TYPE 1.

Typical single Procon 15, 25, 45 & 75 boiler installation serving heating only.

Please note:

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump may not be required. The hydraulic resistance of the Index Circuit MUST NOT exceed the amount of the Residual Head pressure available, please refer to the Technical Data detailed in Section 3.0
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.1a – Hydraulic Layout

Fig 18.1b – Wiring Diagram for Models 15, 25 & 45

18.1 SYSTEM TYPE 1 (CONT'D)

Fig 18.1c – Wiring Diagram for Model 75

Potential Parameter Changes Applicable to System Type 1.

Line ID	Description	Default Setting	New Setting for This System
H554 -b3	Weather Compensation / Constant Temperature {0 = Constant Temp, 1 = Variable Temp}	1	As Required

18.2 SYSTEM TYPE 2.

Typical single Procon 15, 25 & 45 boiler installation serving heating and domestic hot water (priority) via a 3 Port Valve.

Please note:

- The Procon15, 25 & 45 models include an internal pump and therefore an external systempump may not be required. The hydraulic resistance of the Index Circuit MUST NOT exceed the amount of the Residual Head pressure available, please refer to the Technical Data detailed in Section 3.0
- This configuration is not recommended for the Procon 75, please consider System Type 3.

Fig 18.2a – Hydraulic Layout

Fig 18.2b – Wiring Diagram for Models 15, 25 & 45

18.2 SYSTEM TYPE 2 (CONT'D)

Fig 18.2c – Wiring Diagram for Model 75 (Not Recommended, please consider System Type 3)

Potential Parameter Changes Applicable to System Type 2.

Line ID	Description	Default Setting	New Setting for This System
H554-b3	Weather Compensation / Constant Temperature {0 = Constant Temp, 1 = Variable Temp}	1	As Required
H558-b2	Weather Compensation / Constant Temperature	0	As Required

18.3 SYSTEM TYPE 3

Typical single Procon 15, 25, 45 & 75 boiler installation serving a heating and domestic hot water (priority) with individual charging pumps, using a low velocity mixing header.

Please note:

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.3a – Hydraulic Layout

Fig 18.3b – Wiring Diagram for Models 15, 25 & 45

18.3 SYSTEM TYPE 3 (CONT'D)

Fig 18.3c – Wiring Diagram for Model 75

Essential Parameter Changes Applicable to System Type 4.

Line ID	Description	Default Setting	New Setting for This System
H587-b6	HWS Charging Pump (Standing Operation) {16, 31} {0 = OFF, 1 = ON}	0	1

Potential Parameter Changes Applicable to System Type 3.

Line ID	Description	Default Setting	New Setting for This System
H554-b3	Weather Compensation / Constant Temperature {0 = Constant Temp, 1 = Variable Temp}	1	As Required
H558-b2	HWS Production Control {0 = Sensor (QAZ36), 1 = Volt Free Enable}	0	As Required

18.4 SYSTEM TYPE 4.

Typical single Procon 15, 25, 45 & 75 boiler installation serving two heating zones and domestic hot water (priority) with individual charging pumps, using a low velocity mixing header. AGU2.500 Clip-In Module required.

Please note:

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.4a – Hydraulic Layout

Fig 18.4b – Wiring Diagram for Models 15, 25 & 45

Notes

- *1 Only fit one type of Room Temperature Control.
- *2 Parameter Change may be required.
- *3 Heating Zone 1
- *4 Heating Zone 2, via AGU2.500 Clip-In Module.

18.4 SYSTEM TYPE 4 (CONT'D)

Fig 18.4c – Wiring Diagram for Model 75

Essential Parameter Changes Applicable to System Type 4.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30
H554-b5	Heating Zone 2 Flow Sensor Present {0 = NO, 1 = YES}	1	0
H587-b6	HWS Charging Pump (Standing Operation) {16, 31} {0 = NO, 1 = YES}	0	1

Potential Parameter Changes Applicable to System Type 4.

Line ID	Description	Default Setting	New Setting for This System
H554-b3	Weather Compensation / Constant Temperature {0 = Constant Temp, 1 = Variable Temp}	1	As Required
H558-b2	HWS Production Control {0 = Sensor (QAZ36), 1 = Volt Free Enable}	0	As Required

18.5 SYSTEM TYPE 5

Typical single Procon 15, 25, 45 & 75 boiler installation utilizing an AGU2.500 Clip-In Module serving two heating zones, one with a mixing valve, and domestic hot water (priority) with individual charging pumps, using a low velocity mixing header. AGU2.500 Clip-In Module and QAD36 flow sensor required.

Please note;

- The Procon15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.5a – Hydraulic Layout

Fig 18.5b – Wiring Diagram for Models 15, 25 & 45

Notes

- *1 Only fit one type of Room Temperature Control.
- *2 Parameter Change may be required.
- *3 Heating Zone 1
- *4 Heating Zone 2, via AGU2.500 Clip-In Module.

18.5 SYSTEM TYPE 5 (CONT'D)

Fig 18.5c – Wiring Diagram for Model 75

Essential Parameter Changes Applicable to System Type 5.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30
H554-b5	Heating Zone 2 Flow Sensor Present {0 = NO, 1 = YES}	1	0
H587-b6	HWS Charging Pump (Standing Operation) {16, 31} {0 = OFF, 1 = ON}	0	1

Potential Parameter Changes Applicable to System Type 5.

Line ID	Description	Default Setting	New Setting for This System
H506	Minimum flow setpoint temperature Heating Zone 2 ($20\text{ }^{\circ}\text{C} \leq \text{TvSmin} \leq \text{TvSmax}$)	25	As Required
H507	Maximum flow setpoint temperature Heating Zone 2 ($\text{TvSmin} \leq \text{TvSmax} \leq 90\text{ }^{\circ}\text{C}$)	90	As Required
H554-b3	Heating Zone 2 Flow Sensor Present {0 = NO, 1 = YES}	1	As Required
H587-b2	HWS Charging Pump (Standing Operation) {16, 31} {0 = NO, 1 = YES}	0	As Required

18.6 SYSTEM TYPE 6.

Typical single Procon 15, 25, 45 & 75 boiler installation utilizing an RVA63 Controller serving two heating zones each with a mixing valve, and domestic hot water (priority) with individual charging pumps, using a low velocity mixing header. RVA63 Controller & Housing, 2 No QAD21/26 flow sensors, and an OCl420 Communication Clip-In Module required.

Please note;

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.6a – Hydraulic Layout

Fig 18.6b – Wiring Diagram for Models 15, 25 & 45

18.6 SYSTEM TYPE 6 (CONT'D)

Fig 18.6c – Wiring Diagram for Model 75

Essential Boiler Parameter Changes Applicable to System Type 6.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30

Fig 18.6d – Wiring Diagram for RVA63

Essential RVA63 Parameter Changes Applicable to System Type 6.

Line ID	Description	Default Setting	New Setting for This System
P29	Summer/Winter Cut-Off	18	30
P80	Type of Heat Source	2	0
P140	Control Device Address	0	1
P141	Control Device Segment	0	1
P148	Clock Autonomy	3	2

Potential RVA63 Parameter Changes Applicable to System Type 6.

Line ID	Description	Default Setting	New Setting for This System
P125	HWS Production Control {0 = Sensor (QAZ36), 1 = Volt Free Stat}	0	1

18.7 SYSTEM TYPE 7.

Typical single Procon 15, 25, 45 & 75 boiler installation utilizing an AGU2.500 Clip-In Module and an RVA63 Controller serving four heating zones, three of which having mixing valves, and domestic hot water (priority) with individual charging pumps, using a low velocity mixing header. RVA63 Controller & Housing, 2 No QAD21/26 flow sensors, an AGU2.500 Clip-In Module, a QAD36 flow sensor, and an OCl420 Communication Clip-In Module required.

Please note;

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.7a – Hydraulic Layout

Fig 18.7b – Wiring Diagram for Models 15, 25 & 45

Notes

- *1 Only fit one type of Room Temperature Control.
- *2 Parameter Change may be required.
- *3 Heating Zone 1
- *4 Heating Zone 2, via AGU2.500 Clip-In Module.

18.7 SYSTEM TYPE 7 (CONT'D)

Fig 18.7c – Wiring Diagram for Model 75

Essential Boiler Parameter Changes Applicable to System Type 8.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30

Fig 18.7d – Wiring Diagram for RVA63

Essential RVA63 Parameter Changes Applicable to System Type 6.

Line ID	Description	Default Setting	New Setting for This System
P29	Summer/Winter Cut-Off	18	30
P80	Type of Heat Source	2	0
P125	HWS Protection Control {0 = Sensor (QAZ36), 1 = Volt Free Stat}	0	1
P140	Control Device Address	0	1
P141	Control Device Segment	0	1
P148	Clock Autotomy	3	2

Potential RVA63 Parameter Changes Applicable to System Type 6.

Line ID	Description	Default Setting	New Setting for This System
P125	HWS Production Control {0 = Sensor (QAZ36), 1 = Volt Free Stat}	0	1

18.8 SYSTEM TYPE 8

Typical multiple Procon 15, 25, 45 & 75 boiler installation utilizing an RVA47 Cascade Manager serving a heating and domestic hot water with individual charging pumps, using a low velocity mixing header. RVA47 Controller & Housing (complete with 2 No QAD21/26 sensors), and OCI420 Communication Clip-In Modules (1 per boiler) required.

Please note;

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The wiring of the internal pump on the Procon 45 MUST be relocated from K2 (Terminals 13 & 14) to K1 (Terminals 16 & 17)
- The boiler pump on the Procon 75 must be wired to K1 (Terminals X02-02)

Fig 18.8a – Hydraulic Layout

Fig 18.8b – Wiring Diagram for Models 15, 25 & 45

Fig 18.8c – Wiring Diagram for Model 75

Essential Boiler Parameter Changes Applicable to System Type 8.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30
H552	Hydraulic System Configuration	66 {47 & 75} 67 {15 & 25}	80
H605	Boiler Numbering In Cascade {2 = Boiler No1, 3 = Boiler No2, 4 = Boiler No3,... 13 = Boiler No12}	1	2 – 13

18.8 SYSTEM TYPE 8 (CONT'D)

Fig 18.8d – Wiring Diagram for RVA47

Essential RVA47 Parameter Changes Applicable to System Type 8.

Line ID	Description	Default Setting	New Setting for This System
P16	Summer / Winter Cut-Off	18	20

Potential RVA47 Parameter Changes Applicable to System Type 8.

Line ID	Description	Default Setting	New Setting for This System
P125	HWS Production Control {0 = Sensor (QAZ36), 1 = Volt Free Stat}	0	1

18.9 SYSTEM TYPE 9

Typical multiple Procon 15, 25, 45 & 75 boiler installation utilizing an RVA47 Cascade Manager and a RVA63 Controller, two heating zones, one of which having mixing valves, and domestic hot water with individual charging pumps, using a low velocity mixing header. RVA63 Controller & Housing, an RVA47 Controller & Housing, 3 No QAD21/26 flow sensors, and OCI420 Communication Clip-In Modules (1 per boiler) required.

Please note;

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The wiring of the internal pump on the Procon 45 MUST be relocated from K2 (Terminals 13 & 14) to K1 (Terminals 16 & 17)
- The boiler pump on the Procon 75 must be wired to K1 (Terminals X02-02)

Fig 18.9a – Hydraulic Layout

Fig 18.9b – Wiring Diagram for Models 15, 25 & 45

Fig 18.9c – Wiring Diagram for Model 75

Essential Boiler Parameter Changes Applicable to System Type 9.

Line ID	Description	Default Setting	New Setting for This System
H516	Summer/Winter Changer Over	18	30
H552	Hydraulic System Configuration	66 {47 & 75} 67 {15 & 25}	80
H605	Boiler Numbering In Cascade {2 = Boiler No1, 3 = Boiler No2, 4 = Boiler No3,... 13 = Boiler No12}	1	2 – 13

18.9 SYSTEM TYPE 9 (CONT'D)

18.10 SYSTEM TYPE 10

Typical single Procon 15, 25, 45 & 75 boiler installation serving domestic hot water and heating systems using a low velocity mixing header, single primary pump and two number 2 Port Valves with conventional controllers. Typical 'S' Plan system.

Please note;

- The Procon 15, 25 & 45 models include an internal pump and therefore an external boiler pump is not required.
- The boiler pump on the Procon 75 must be wired to K2 (Terminals X02-03)

Fig 18.10a – Hydraulic Layout

Fig 18.10b – Wiring Diagram for Models 15, 25 & 45

18.10 SYSTEM TYPE 10 (CONT'D)

Fig 18.10c – Wiring Diagram for Model 75

Essential Parameter Changes Applicable to System Type 10.

Line ID	Description	Default Setting	New Setting for This System
H554-b3	Weather Compensation / Constant Temperature {0 = Constant Temp, 1 = Variable Temp}	1	0

19.0 COMMISSIONING

The Procon MUST be commissioned by a competent engineer who will need, in addition to standard hand tools, a U-Tube or Digital manometer and a combustion analyser.

Before attempting to set the Procon to work, the following check list must be worked through. See Section 19.1

19.1 PRE-COMMISSIONING CHECKS

- Ensure the entire system has been thoroughly cleansed and flushed, any strainers have been cleaned and that the appropriate water treatment has been added to the system to prevent corrosion, scale formation, etc. **Failure to comply with this will render all appliance warranty's VOID!**
- Ensure the entire system and boiler has been properly flooded and vented of air, and the cold fill pressure at the boiler is at minimum 1.0 bar. Manual air vents are provided on the top of the primary heat exchanger to ensure that the heat exchanger is fully flooded.
- Check that the boiler pump is free to rotate by removing the vent screw in the end of the pump motor and check that the impeller shaft rotates freely when turned with an appropriate sized screwdriver. Replace vent screw. **Please note**, it is advisable to place a rag/cloth directly below the pump, as a small amount of water will be released from the pump when the vent cap is removed, this is normal.
- Ensure the appliance installed is the correct configuration for the type of gas fuel available on the site. As standard the boilers are supplied suitable for Natural Gas. If the boiler is required to operate on LPG gas fuel see section 19.2.
- Ensure the entire gas supply pipework has been purged, and there is the availability of a working inlet pressure of nominal 20 mbar (Natural Gas), of 37 mbar (LPG).
- Check that the flue installation has been properly connected and tested.
- Check that the condense waste pipework (Plastic or Stainless Steel – Copper tube is not acceptable) has been connected to the boiler and that the siphon cleaning point cap is in place.
- Where the appliance is taking air for combustion from the room/enclosure in which it is installed, ensure that an adequate provision of ventilation has been provided.
- Ensure that there is an adequate heat load available.
- Ensure that all electrical connections have been made correctly, tested, and that the polarity is correct.

19.2 LPG CONVERSION PROCEDURE

The Procon boiler is supplied as standard suitable for Natural Gas (G20) fuel, the boiler can be converted to operate on Liquefied Petroleum Gas (G31 – Propane).

A conversion kit is available from RVR Boilers, Part Number as listed below, and only the parts supplied in this conversion kits are to be used.

The following procedure details the works required to convert a Procon boiler to LPG fuel gas.

The LPG injector must be installed into the outlet of the gas valve in place of the existing Natural Gas injector.

Utilizing a flue gas analyser the gas valve must be adjusted to give the following emissions.

High Fire 10.5% CO₂.

Low Fire 11.0% CO₂.

See Section 21.0, for instructions on how to adjust the gas valve..

Fig 19.2 – Procon 75 Illustrated Only

	15H	25H	45H	75H
LPG Injector Size (mm)	3.5 mm Ø	6 mm Ø	7 mm Ø	10 mm Ø
Natural Gas Injector Size (mm)	4 mm Ø	10 mm Ø	12 mm Ø	15 mm Ø

Procon

20.0 CONTROL PANEL

The control panel for the Procon boilers includes a double pole ON/OFF switch and comprehensive information display screen and adjustment buttons.

On the Left Hand side of the boiler front is a system water pressure gauge,

The Boilers' LMU64 controller has various levels of control options and adjustments are made via the units display screen.

Standard Features Include.

- General Operation Information.
- Boiler Status - Flow temperature, etc.
- Operating Mode - Standby, Auto, HWS only, etc.
- Commissioning Mode - Low fire, High fire.
- Boiler Lockout Reset.
- Operating Parameter Review - Comfort levels.
- Operating Parameter Adjustment - Comfort levels.
- Operating Parameter Review - Combustion, Modulation, Pumping, etc.
- Engineers' Level (via password) - Operating Parameter adjustment.

Fig 20.0

20.1 BOILER LMU64 CONTROLLER

The Procon 15, 25, 45 & 75 boiler utilizes the Siemens' LMU64 boiler controller; this controller has undergone a number of software updates.

To ensure you are using the correct reference document, the software number must be retrieved from the controller. The software numbers are indicated on the display of the controller for 3 seconds immediately after the power has been turned ON.

The large figures indicate the LMU64 Controller version (i.e. 3.00), whereas the smaller figure indicates the AGU Display Panel version (i.e. 2.01)

This manual refers to the Version 3.00 ONLY. Instructions for the version 2.07 and 2.08 are available from RVR Boilers Literature Department.

The controller display is multifunctional, and controls both the safety functions of the boiler, as well as the daily operating functions, such as Heating and Hot Water time control.

The controller can also be connected to a matched room temperature controller, the QAA73, which offers more control functions. Please refer to instructions supplied with the QAA73 for programming instructions.

Fig 20.1

20.2 CONTROLLER DISPLAY

The Boiler controller has various levels of access, this section relates to understanding the controller fascia, display symbols and buttons.

Fig 20.2

The following table lists the controller buttons with a description of the buttons use.

Button	No of Presses	Description	Options / Range	Recommended Setting
	1-4	Mode of Operation. 'Automatic', 'Constant', 'Night Set-Back', 'OFF, frost control'. (Cursor under symbol dictates mode selected).		Automatic (Cursor under Clock Symbol)
	1	Actual Boiler Flow temperature	Review Only	Review Only
	2	Actual Stored Hot Water	Review Only	Review Only
	3	Not Used	Not Used	Not Used
	4	Boiler Operation Function Number	Review Only	Review Only
	5	Actual Outside Air Temperature	Review Only	Review Only
	6	Fault Code Indication.	E-oo... E-999	Review Only
		For access of the control programs, Day, Time, etc.	Various, See Program Listings, on next page	
	1	Full System Reset following a Fault, or Customer Induced fault E153	N/A	N/A
	1	Maximum Heating Temperature, or Assumed Room Temperature {If Outside Air Sensor (QAC34) has been installed}	20 - 85 °C or 10 - 30 °C	80°C or 20°C
	1	Stored Hot Water Target Temperature. {If HWS Sensor (QAZ21) has been installed}	20 - 60°C	55°C
	1	Hot Water Selection On/Off. {Only available if HWS Sensor (QAZ21) connected, or Volt Free Stat is in Demand position}		On (Cursor under symbol under TAP Symbol)

20.3 LEVEL ONE PARAMETERS REVIEW AND ALTERNATION

A limited number of (Customer) parameter levels are available via the control panel, these parameters are as listed in table below, and can be accessed by using the ▲ & ▼ Program Buttons.

Button	Line ID Number	Description	Options / Range	Recommended Default
▲	P 1	Current Time of Day	00:00 – 24:00	Actual Time.
▲	P 2	Day Number Selection {1 = Mon, 2 = Tues, 3 = Wed... 7 = Sun}	1-7	Actual Day
▲	P 5	Night Set-Back Temperature {with QAC34 fitted}, or Boiler Minimum Temperature {Outside Air Sensor (QAC34) Dependant}	4...35°C 20 – 85°C	20°C 16°C
▲	P 10	Time Switch Day Selection – Heating Zone 1 {1 = Mon, 2 = Tues, 3 = Wed... 7 = Sun}	1-7	—
▲	P 11	Time Switch Heating Zone 1 First ON	00:00 – 24:00	06:00
▲	P 12	Time Switch Heating Zone 1 First OFF	00:00 – 24:00	22:00
▲	P 13	Time Switch Heating Zone 1 Second ON	00:00 – 24:00	—
▲	P 14	Time Switch Heating Zone 1 Second OFF	00:00 – 24:00	—
▲	P 15	Time Switch Heating Zone 1 Third ON	00:00 – 24:00	—
▲	P 16	Time Switch Heating Zone 1 Third OFF	00:00 – 24:00	—
▲	P 20	Time Switch Day Selection – Heating Zone 2 {1 = Mon, 2 = Tues, 3 = Wed... 7 = Sun}	1-7	—
▲	P 21	Time Switch Heating Zone 2 First ON	00:00 – 24:00	06:00
▲	P 22	Time Switch Heating Zone 2 First OFF	00:00 – 24:00	22:00
▲	P 23	Time Switch Heating Zone 2 Second ON	00:00 – 24:00	—
▲	P 24	Time Switch Heating Zone 2 Second OFF	00:00 – 24:00	—
▲	P 25	Time Switch Heating Zone 2 Third ON	00:00 – 24:00	—
▲	P 26	Time Switch Heating Zone 2 Third OFF	00:00 – 24:00	—
▲	P 30	Time Switch Day Selection – Hot Water {1 = Mon, 2 = Tues, 3 = Wed... 7 = Sun}	1 – 7	—
▲	P 31	Time Switch Hot Water First ON	00:00 – 24:00	06:00
▲	P 32	Time Switch Hot Water First OFF	00:00 – 24:00	22:00
▲	P 33	Time Switch Hot Water Second ON	00:00 – 24:00	—
▲	P 34	Time Switch Hot Water Second OFF	00:00 – 24:00	—
▲	P 35	Time Switch Hot Water Zone 1 Third ON	00:00 – 24:00	—
▲	P 36	Time Switch Hot Water Zone 1 Third OFF	00:00 – 24:00	—
▲	P 45	Time Switch – Reset to Default {1 = Press + & - buttons for 3 Seconds}	0 – 10	0
▲	P 516	Summer / Winter Change Over Temperature	8...30°C	20
▲	P 727	Detailed Diagnostic Code	—	As Displayed

20.4 LMU64 CONTROLLER, FAULT INDICATION

If the boiler fails to operate correctly the unit will 'Lockout' and require manual intervention to reset the controller. On the LCD display will appear in the bottom 'Left-Hand' corner, and a LARGE ERROR code will be displayed.

If more than one error has occurred, these can be displayed by pressing the 'INFO' button. These error messages can be referenced against the table below. To reset the boiler, simply press the 'RESET' button.

Please Note;

- Prior to pressing the RESET Button, please make a note of this number as it will assist a member of the Technical Services Department within the RVR Group to diagnose the fault, and if required, advise on a remedial action required.
- Pressing the RESET Button when a LARGE ERROR code IS NOT displayed will induce an E153 fault.

Fault Code	See Notes	Description	Fault Code	See Notes	Description
E-0		No Error Detected	E-124	*1	Boiler Temperature Currently Too High
E-10	*1	Outside Air Sensor Fault / Not Detected	E-130	*1	Flue Gas Temperature Currently Too High
E-20	*1	Flow Water Sensor Fault / Not Detected	E-131		Fault with Burner
E-28	*1	Flue Gas Sensor Fault /Not Detected	E-132	*1	External Safety Interlock Activated (X1003 is currently Open Circuit)
E-40	*1	Return Water Sensor Fault / Not Detected	E-133	*1 *2	No Flame Detected After Last Ignition Attempt
E-46	*1	System Return Water Sensor Fault / Not Detected	E-134	*1 *2	Flame Extinguished During Operation
E-50	*1 *3	HWS Sensor Short Circuit 1 {Check parameter if Volt Free Enable is being used}	E-135		Air Supply Error (Not Used)
E-52	*1	HWS Sensor Short Circuit 2 (Not Used)	E-140	*1	LPB Address Not Recognized {When Using OCL420 Clip & an RVA Controller}
E-58	*1	HWS Volt Free Enable Fault Not Detected	E-142	*1	LPB Missing Partner {When Using OCL420 Clip & an RVA Controller}
E-60	*1	Faulty Room Sensor (QAA73)	E-145	*1	Wrong Device Connected to PPS {When Using OCL420 Clip & an RVA Controller}
E-61	*1	Incorrect Room Unit Fitted	E-146	*1	Unrecognized Plant Configuration {When Using OCL420 Clip & an RVA Controller}
E-62	*1	Incorrect Room Unit Fitted	E-147	*1	Burner Modules Not Connected {When Using OCL420 Clip & an RVA Controller}
E-77		Water Pressure Sensor Not Detected (Not Used)	E-148	*1	LPB Interface Not Configured {When Using OCL420 Clip & an RVA Controller}
E-78		Water Pressure Sensor Defective (Not Used)	E-150		Non-Specific Boiler Fault
E-81	*1	LPB Short Circuit {When Using OCL420 Clip & an RVA Controller}	E-151		LMU64 Malfunction, Excessive Power Loading via Pump Connections. LPB Address Conflict
E-82	*1	LPB Adress Conflict {When Using OCL420 Clip & an RVA Controller}	E-152		LMU64 Parameter Programming Error
E-86	*1	Short Circuit in PPS Connection {When Using OCL420 Clip & an RVA Controller}	E-153		RESET Button Pressed When Boiler IS NOT in a fault condition.
E-91		EEPROM Error. Internal LUM Fault	E-154	*1 *2	LMU64 Operating Error Detected. Refer to Section 20.5
E-92		Hardware Malfunction (Potential PCB Overload)	E-160	*2	Fan Not Reaching Set Point.
E-100	*1 *3	Conflict between Time/Day Master Controller (Boiler/QAA73/RVA47... etc.)	E-161		Combustion Fan Speed Too High
E-105		Annual Service / Inspection Overdue {Unit has operated for more than 12 months}	E-162		Air Pressure Switch Fault (Not Used)
E-110		Boiler Water Temperature Overheat / Internal Fuse Blown, X03-03 Wiring Error	E-164		Flow Switch / Pressure Switch Open (Not Used)
E-111	*1	Boiler Temperature Currently Too High	E-166		Air Pressure switch Fault (Not Used)
E-113	*1	Flue Gas Temperature Currently Too High	E-180		Boiler Operating in Chimney Mode (100% Output).
E-117		High System Water Pressure Sensor (Not Used)	E-181		Boiler Operating in Commissioning Mode (0 – 100%)
E-118		Low System Water Pressure Sensor (Not Used)	E-183		Boiler Controller / QAA73 Room Unit in Parameter Setting Mode.
E-119	*1	System Water Pressure Switch Activated (Low System Pressure)	bu		Communication Error between LMU64 & Display Module. Check ribbon cable.

NOTES:

*1 SMALL Error Codes will automatically reset when the fault has been corrected.

*2 If a fault re-occurs repeatedly, then the Error Code will convert to a LARGE Error Code requiring a Manual Reset.

*3 Refer to Parameter Changes, as detailed in Section 18, System Configurations.

20.4 LMU64 CONTROLLER, FAULT INDICATION (CONT'D)

If the optional QAA73 Room Unit, RVA47 Cascade Controller, or RVA63 Zone Controller has been connected to the boiler, and a fault occurs, the or ER will appear on the display of the respective Unit as well as the boiler.

The Error message can be reviewed at the QAA73 Room Unit, RVA47 Cascade Controller, or RVA63 Zone Controller, by opening the hinged flap and pressing the 'DOWN' Program button twice. ID Line 50 will be displayed on the 'Left-Hand' side, with the error message on the 'Right-Hand' side of the display.

To clear the error message the 'RESET' button on the boiler must be pressed, the error message CAN NOT be cleared at the Room Unit, or RVA controller.

Sequence Number	Description
3	Fan operating at pre-purge rate
4	Ignition spark generation
5	Gas valve activation
6	Flame stabilization and rectification
10	Burner released to modulate

20.5 REVIEWING LMU64 OPERATING INFORMATION

To aid the End User and/or the Installation/Commissioning Engineer, the operating information of the boilers' LMU64 controller can be access and reviewed as follows;

Press the INFO button, then Press & Hold the **▲** & **▼** buttons until **bo** appears (approximately 3 seconds).

Use the **+** & **-** buttons to review the **b** references, use the **▲** or **▼** buttons to change from **b**, to **c** & **d** references.

Press the MODE button at any time to return to the normal display.

The table below details the references and their meanings;

Ref	Description	Ref	Description	Ref	Description
bo	Current Fault Code	co	No Function	do	No Function
b1	Actual Return Temp (°C)	c1	Actual Rectification Current (μ Amps)	d1	Theoretical Value for Flow Temp (°C)
b2	Actual HWS Temp (°C)	c2	Actual Fan Speed {XX x 100 = Actual Revs/Min}	d2	Actual Target Value for Flow Temp (°C)
b3	Actual Flue Gas Temp (°C)	c3	Actual PWM Drive Signal to Fan (%)	d3	Room Temp Target Value (°C)
b4	Actual Outside Air Temp (°C)	c4	Actual Boiler Output % Relative to Maximum rate	d4	HWS Temp Target Value (°C)
b5	Averaged Outside Air Temp (°C)	c5	Actual PWM Output to Modulation Boiler Pump (Not Used)	d5	Maximum Modulation Depth of Boiler (%)
b6	Attenuated Outside Air Temp (°C)	c6	No Function	d6	Maximum Fan Speed / Power Output of Boiler
b7	Actual Flow Temp of Mixed Circuit, when AGU2.5 Clip Used (°C)	c7	No Function	d7	No Function
b8	No Function	c8	No Function	d8	No Function
b9	No Function	c9	No Function	d9	No Function

20.6 REVIEWING LMU64 OPERATING ERROR CODES

As an extension of the Standard ERROR Codes, the LMU64 also records Operating ERROR Codes, which can be accessed by at Service / Commissioning Engineer.

To access the Operating ERROR Codes, 'Press & Hold' the **▲** & **▼** Buttons, for approximately 3 seconds. H 90 will appear, then use the **▲** or **▼** Buttons to reference the Parameter Line ID Number detailed below.

Line ID Number	Description	Comments
H700	1st Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as shown in Parameter H702 has occurred
H701	1st Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred
H702	1st Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6
H703	2nd Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as shown in Parameter H705 has occurred
H704	2nd Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred.

20.6 REVIEWING LMU64 OPERATING ERROR CODES (CONT'D)

Line ID Number	Description	Comments
H705	2nd Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6.
H706	3rd Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as shown in Parameter H708 has occurred
H707	3rd Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred
H708	3rd Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6
H709	4th Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as shown in Parameter H711 has occurred
H710	4th Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred
H711	4th Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6
H712	5th Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as shown in Parameter H714 has occurred
H713	5th Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred
H714	5th Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6.
H715	Current Historical Fault – Number of Occurrences	The number of times that this Operating Error Code as H715 shown in Parameter H717 has occurred
H716	Current Historical Fault – Operating Phase	The position during the operating sequence that the Operation Error occurred
H717	Current Historical Fault – Operating Error Code	Actual Operating Code. Refer to Section 20.6
H728	1st Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H702, See Page 50 for list of Fault Indications
H729	2nd Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H705, See Page 50 for list of Fault Indications
H730	3rd Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H708, See Page 50 for list of Fault Indications
H731	4th Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H711, See Page 50 for list of Fault Indications
H732	5th Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H714, See Page 50 for list of Fault Indications
H732	Current Historical Fault – ALBATROS Error Code	The LMU64 display Error Code, relevant to Parameter H717, See Page 50 for list of Fault Indications

20.7 LMU64 OPERATING ERROR CODES

Fault Code	Description	Fault Code	Description	Fault Code	
87	Combustion Fan Operating Beneath Minimum Setting	102	Flame Signal Not Detected Following Last Ignition Attempt	403	System Hydraulic Error. Return Temperature > Flow Temperature
90	Combustion Fan Not Reaching Pre-Purge Speed	170	RESET Button is Being Continually Depressed	404	System Hydraulic Error. Return Temperature > Flow Temperature
96	Flame Rectification Signal Detected When Burner OFF	259	RESET Button Has Been Pressed When NO Error Has Been Displayed	406	Boiler Flow Temperature Rising to Above Maximum Limit Temperature When Burner is ON
97	Flame Rectification Signal Detection When Burner OFF	282	Combustion Fan Not Reaching Correct Speed	422	Boiler Flow Temperature Rising to Above Maximum Limit Temperature When Burner is OFF
98	Flame Signal Lost During Operation	400	System Hydraulic Error. Return Temperature > Flow Temperature	433	System Hydraulic Error, ΔT Between Flow & Return Too High
99	Flame Signal Lost During Operation	401	System Hydraulic Error. Return Temperature > Flow Temperature	434	System Hydraulic Error, ΔT Between Flow & Return Too High
100	Flame Signal Lost During Operation	402	System Hydraulic Error. Return Temperature > Flow Temperature	435	System Hydraulic Error, ΔT Between Flow & Return Too High

Please consult with RVR Technical Department for assistance if fault code displayed is not listed above.

20.8 BOILER OPERATING SEQUENCE NUMERIC INDICATION

By pressing the 'INFO' button three times, the Boiler Sequence Description Operating Sequence can be witnessed, indicated by Large Number numeric notation on the display.

Having reviewed the Operating Sequence, press the 'MODE' button once to return to the standard screen.

The controller will also automatically return to the standard screen after approximately 10 seconds.

The adjacent table details the numeric notation of the ignition sequence.

21.0 FIRST FIRING / BURNER COMMISSIONING

The following procedure MUST be followed to ensure that damage does not occur to the boiler on the initial firing.

- Ensure that the gas supply has been purged, and if so turn the gas isolation valve to the OPEN position.
- Ensure that the electrical supply has been tested, and if so, turn ON.
- Check that all pumps, both internal boiler pump and external pumps, are correctly bleed of air, and that their impellors are free to turn.
- Switch the boiler ON/OFF switch to the ON position. The boiler controller will then run through the preliminary safety checks. Check and record the LMU and Display software versions, as previously detailed.
- Once the safety checks have been proven, the controller will then return to the STANDBY setting. Set the controller to the COMMISSIONING HIGH mode, by pressing the 'RADIATOR' and 'TAP' buttons together for a minimum of ten seconds.

Arrows will appear next to the 'SPANNER' and 'ENGINEER' symbols on the 'Right-Hand' side of the LCD display.

If an arrow appears next to the 'ENGINNER' symbol ONLY, then the boiler will be at 100% output Only. Repress the 'RADIATOR' and 'TAP' buttons, holding for a longer period of time until the arrows appear next to the 'SPANNER' and 'ENGINNER' symbols.

- With the arrows adjacent to the 'SPANNER' and 'ENGINEER' symbols, the boiler will operate under the dictates of the '+' and '-' buttons, and the ▲ and ▼ buttons. The Output of the boiler will be displayed on the LCD display as a percentage of the modulation output. (i.e. 100% = Max Burner Output, 0% = Min Burner Output).

- The burner will now operate at the indicated output on the LCD display, until the boiler temperature reaches 90°C, at which point the burner will turn off. To monitor the boiler flow temperature during the burner commissioning, press the 'INFO' button once. Press the 'MODE' button once, to return to the Commissioning Output screen. Pressing the 'MODE' button once, to exit from the Commissioning mode.

- Due to the Design of the Gas Valve, the HIGH FIRE setting should be made first, as this will have a marked effect on the LOW FIRE setting. A 2.5 mm Allen key will be required to undertake the necessary adjustments.

- Remove the Flue Gas Sampling Test Point Cap and insert a flue gas analyzer into the Test Point. The stop on the analyzer probe should be set to a depth of 20-25 mm. See fig 21.0a.

- If the burner is not already at 100% Output, use the '+' or ▲ buttons to increase the burner output to 100%, take a sample and note the CO₂ level.

- Using the '-' or ▼ buttons to decrease the burner output to 0%, take a sample and note the CO₂ level.

- Check the CO₂ levels recorded against those listed in the adjacent table. If the CO₂ levels are not as listed, adjustments to the gas valve 'High Fire' and/or 'Low Fire' will be required. See fig 21.0b for adjustment locations.

- To adjust the HIGH FIRE setting, use the '+' or ▲ buttons to set the controller to 100% burner output. After the burner has stabilized, adjustments can be made to 'High Fire' adjuster on the gas valve (clockwise to decrease, anti-clockwise to increase the CO₂). After each adjustment, let the burner stabilize for a minute, then check the levels again. See Fig 21.0b. Continue until the CO₂ levels are as listed in the adjacent table.

Flue Gas CO ₂ % Settings		
Gas Type	Nat Gas (G ₂₀)	LPG (G ₃₁)
Max Output	8.5	10.5
Min Output	9	11.0

Fig 21.0a – Streamline 75 Illustrated Only

21.0 FIRST FIRING / BURNER COMMISSIONING (CONT'D)

- n) To adjust the LOW FIRE rate, use the '-' or ▼ buttons to set the controller to 0% burner output. After the burner has stabilized, adjustments can be made to 'Low Fire' adjuster on the gas valve (clockwise to increase, anti-clockwise to decrease the CO₂). After each adjustment, let the burner stabilize for a minute, then check levels again. See Fig 21.0b. Continue until the CO₂ levels are as listed in the table above.
- o) **ALWAYS re-check both HIGH and LOW fire settings after any adjustments. Adjustment to the HIGH fire setting may affect the LOW fire setting, and visa-versa.**
- p) When the HIGH and LOW fire CO₂ levels are as listed in the table above, remove the flue gas analyzer and replace the Flue Sample Test Point Cap.
- q) Upon completion of the burner commissioning and combustion adjustments, the integrity of the flue system must be checked (if balanced flue). Operate the boilers in Commissioning Mode, HIGH FIRE, as previously detailed. Fit the outer casing of the appliance whilst it is operating at HIGH FIRE, and monitor the operation. If the flame extinguishes within 5 minutes of operation at HIGH FIRE, and the boiler tries to re-ignite, then the flue system must be checked for leakage / re-circulation of combustion products from the inner 80 mm Ø Exhaust Pipe to the outer 125 mm Ø Air Pipe.

Fig 21.0b

Important Notice.

On completion of the above procedure it is imperative that the Flue Gas Test PointCap is re-fitted, and that the controller is not left in the Commissioning Mode. Press the MODE button to ensure that the appliance IS NOT left in the Commissioning Mode.

21.1 SETTING THE BOILER TO WORK

On completion of the commissioning detailed in sections 19.0 through to 21.0 inclusive, the boiler controller must be returned to either the 'STAND-BY' or 'AUTOMATIC' mode.

THE CONTROLLER MUST NOT BE LEFT IN THE COMMISSIONING SETTING.

Fit the boiler case ensuring that the case properly engages onto the rear chassis, and that any cables have not been trapped between the case and the chassis. Secure the casing with the two ¼ turn latches.

WARNING

THIS APPLIANCE MUST NOT BE LEFT TO OPERATE WITH THE OUTER CASING REMOVED.

22.0 SERVICING

As with all Gas Appliances, we would highly recommended that a competent heating engineer services the Procon 15, 25, 45 & 75 boilers, at least every 12 months. This is assuming a normal daily usage of 8–10 hours.

If however the boiler is to be operated 24 hours a day, 7 days, we would recommend services every 6 months

The Procon 15, 25, 45 & 75 boilers will display an E105 SMALL Error Code when 12 months has lapsed, indicating that the appliance requires a Routine Service Inspection. This code will also be displayed on the QAA73 and remote RVA controllers, if fitted.

If the Installer/Commissioning Engineer is unable to undertake the Routine Service Inspection, as detailed Section 22.1, please contact RVR Technical Service Department, who will be able to arrange the Routine Service Inspection to be undertaken.

22.1 ROUTINE SERVICE INSPECTION

Before commencing any service/maintenance work, the following tasks must be undertaken.

- a) Ask the end user about any problems with the operation of the boiler unit and note their comments.
- b) Check the water pressure of the installation.
- h) Utilizing the instructions in Section 20.5, review the LMU Operating Error Codes, and note the recorded codes onto the Service Report.
- c) Remove the boiler casing and visually inspect all pipe and water joints for signs of leakage.
- d) Inspect the top of the casing and the top of the heat exchanger for signs of water ingress from the outer 125 mm Ø Air Pipe.
- e) Run the unit in Commissioning Mode HIGH FIRE; with the use of a flue gas analyzer record the CO₂ level. See section 21.0.
- f) Run the unit in Commissioning Mode LOW FIRE; with the use of a flue gas analyzer record the CO₂ level. See section 21.0.
- g) Listen to the sound of the combustion fan.
- h) Utilizing the instructions in Section 20.5, review the LMU Operating Error Codes, and note the recorded codes onto the Service Report.
- i) Undertake a System Water Analysis to check the concentration level of the Water Treatment, and note the level onto the Service Report.
- j) Check the flue route including the terminal position for conformity with prevailing regulations, and trim back any foliage that may be around the terminal.
- k) Check the plant room/compartment ventilation system for conformity with prevailing.
- l) Check the Pressure (Safety) Relief Valve size, rating and orientation, for conformity with prevailing regulations.

The results of the Inspections undertaken above must be acted upon, and all discrepancies should be recorded on the Service Report and brought to the Client / End User's attention.

Undertake any maintenance, and if necessary any preventative maintenance, that's required.

22.2 ROUTINE CLEANING & MAINTENANCE

As part of the Routine Service Inspection, certain areas of the boiler need to be checked and cleaned as necessary.

- a) Turn the boiler OFF at the ON/OFF switch and electrically isolate the boiler by removing the plug or fuse from the boiler supply.
- b) Turn off the gas at the boiler Isolation tap, fitted by the installer, adjacent to the appliance.
- c) Remove all Electrical connections from the Fan Assemble, One cable on the Procon 15, 25 & 45 models, two cables on the Procon 75 model.
- d) Disconnect the Earth Lead, HT Cap and Lead from the Ignition Electrode.
- e) Procon 75 ONLY, Undo the long Hexagon Bar at the top of the Heat Exchanger and gently rotate the heat exchanger forward, pivots to the left, See Fig 22.2a.
- f) Disassemble the burner by removing the six M6 nuts around the burner door, using a 10 mm Spanner. Pull the burner forward and remove from the heat exchanger. Gently put to one side.
- g) Once access has been gained to the combustion chamber and front section of the heat exchanger, visually inspect the heat exchanger coils, See Fig 22.2b.
It is usually only necessary to clean the front section of the heat exchanger. If server deposits are found, the rear section of the heat exchanger should also be checked and cleaned, which will necessitate the removal of the heat exchanger from the boiler.
If any coils appear to be significantly dis-coloured, then a blockage of either scale, magnetite, or general system debris has occurred which will have allowed excessive overheating to have occurred within the coil.

Fig 22.2a

Fig 22.2b

- If dis-colouration has occurred, then specialist de-scaling of the heat exchanger will be required, however, stress cracking may have occurred, and the heat exchanger may become porous following the de-scale works.
- h) If the heat exchanger has not suffered from dis-colouration, as 'Item g' above, then a Standard Service can be undertaken. Using a natural bristled brush ONLY, remove the worst of the mineral/debris buildup. With the use of the dissolved Procon Combustion Chamber Cleaning Granules, spray the solution onto the heat exchanger surface and leave for approximately 5 minutes. This will help to remove any stubborn mineral deposits. Finally brush the heat exchanger whilst rinsing thoroughly with copious amounts of fresh water. *Procon Combustion Chamber Cleaning Granules* are available from RVR Boilers Spares department. **A STEEL OR PVC BRUSH MUST NOT BE USED TO CLEAN THE HEAT EXCHANGER.**

22.2 ROUTINE CLEANING & MAINTENANCE (CONT'D)

- i) Following the cleaning of the Heat Exchanger, the condensate siphon must be flushed to ensure that all mineral deposits/debris that has been washed from the heat exchanger surface is correctly removed. Open the siphon cleaning point cap at the base of the boiler, with a suitable receptacle directly below to collect the siphon contents. Safely dispose of the contents of the siphon. Replace the receptacle below the cleaning point and pour 2 litres of clean tap water into the heat exchanger, which will drain through the cleaning point. Refit the cleaning point cap and pour half a litre of clean tap water into the heat exchanger to ensure the siphon is re-flooded. Check the cleaning point cap for leaks.
- j) Visually check the burner surface for signs of damage and debris build-up. Remove any debris buildup with compressed air. If excessive debris build up is identified, the burn lance should be removed and the inner metal surface should be washed and cleaned. **A BRUSH, OF ANY KIND, MUST NOT BE USED TO CLEAN THE BURNER SURFACE.** If damage has occurred to the burner surface, the burner MUST be replaced.
- k) Check the combustion fan blades for debris build-up. Remove any debris with a soft bristle brush or preferably compressed air. **DO NOT TOUCH, OR SPIN, THE FAN BLADES WITH YOUR FINGERS AS THIS COULD AFFECT THE BALANCING OF THE FAN BLADES.**
- l) Re-fit the Burner, in the reverse order of dismantling, Item F above, ensure that all electrical connections are correctly and securely connected.
- m) Inspect all water joints. Any joints found to be leaking MUST be replaced. It is also advisable when replacing water joints to also change any adjacent joints at the same time.
- n) Inspect all gas joints with a suitable leak detection method. Any joints found to be leaking MUST be replaced. It is also advisable when replacing gas joints to also change any adjacent joints at the same time.
- o) With the use of a suitable Flue Gas Analyser, check and adjust the combustion settings, as detailed in Section 21.0, First Firing / Burner Commissioning
- p) Inspect the general condition of the flue system, including the termination, repair as necessary or advise on any remedial action as required.
- q) Following the satisfactory completion of the above service procedure, the internal Routine Service Control needs to be reset. Gain Access to the Second Level Parameters, as detailed in Section 23.0, and selection Parameter Line H630 – Bit 6. using the + button, adjust the value from 0 to 1 and press the INFO button to reset the Service Interval counter.

After undertaking any service work always re-check the operation of the boiler, see section 17.0 Commissioning, for further advice.

23.0 FULL PARAMETERS LIST

The following Pages detail the parameters of the boiler and the Standard Factory settings, please note, the installer/commissioning engineer may have changed some of these settings to suit the system installed, please refer to System Configurations, Section 17.

There are two levels of access available, as follows. If you cannot access a particular parameter line, please consult with RVR Boilers Technical Department for further assistance.

- | | |
|-------------------------|---|
| Level ONE
(Customer) | <ul style="list-style-type: none"> – Use the ▲ & ▼ Program Buttons to access the desired parameter line. |
| Level TWO | <ul style="list-style-type: none"> – Press & Hold the ▲ & ▼ Program Buttons until H90 appears (Approx 3 (Installer) seconds). Use the ▲ & ▼ Program Buttons to access the desired parameter line.
<i>{If - - - - appears, Press the MODE button to exit this level and return to the standard operating display}</i> |

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H90	Reduced Temperature for DHW	8... 60	10	10	10	10
H91	DHW Production Control (0=Time control 1=Constant)	0... 1	0	0	0	0
H93	DHW Production Control 0=Non Eco 1=Eco	0... 1	0	0	0	0
H94	DHW Secondary Pump Control (0= As H91. 1= As HWS Time Switch) (K2, X2:03, H615:6)	0... 1	0	0	0	0
H501	Minimum room setpoint (10 °C<=TrSmin<=TrSmax)	10... 30 °C	10	10	10	10
H502	Maximum room setpoint (TrSmin<=TrSmax<=30 °C)	10... 30 °C	30	30	30	30
H 503	Minimum boiler setpoint temperature (20 °C≤TkSmin≤TkSmax)	20... 90 °C	20	20	20	20
H504	Maximum boiler setpoint temperature (TkSmin ≤ TkSmax ≤ 90 °C)	20... 90 °C	90	90	90	90

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H505	Boiler setpoint at design outside temperature	20... 90 °C	85	85	85	85
H506	Minimum flow setpoint temperature ($20^{\circ}\text{C} \leq \text{TvSmin} \leq \text{TvSmax}$)	20... 90 °C	25	25	25	25
H507	Maximum flow setpoint temperature ($\text{TvSmin} \leq \text{TvSmax} \leq 90^{\circ}\text{C}$)	20... 90 °C	90	90	90	90
H508	Minimum DHW setpoint temperature ($10^{\circ}\text{C} \leq \text{TbwSmin} \leq \text{TbwSmax}$)	10... 80 °C	10	10	10	10
H509	Maximum DHW setpoint temperature ($\text{TbwSmin} \leq \text{TbwSmax} \leq 80^{\circ}\text{C}$)	10... 80 °C	60	60	60	60
H510	Flow temperature setpoint boost with DHW heating	0... 30 °C	16	16	16	16
H511	Boiler frost protection switch-on temperature ($5^{\circ}\text{C} \leq \text{TkSfr ostEin} < \text{TkSfrostAus}$)	5... 50 °C	5	5	5	5
H512	Boiler frost protection switch-off temperature ($\text{TkSfrostEi n} < \text{TkSfrostAus} \leq 50^{\circ}\text{C}$)	5... 50 °C	20	20	20	20
H513	Switch-off temperature for pump overrun (after DHW heating)	20... 90 °C	80	80	80	80
H514	Boiler temperature setpoint boost with mixing circuit	0... 30 °C	1	1	1	1
H515	Maximum limitation of boiler temperature (TL function 1)	0... 100 °C	95	95	95	95
H516	Summer / winter changeover temperature ($30^{\circ}\text{C}; \text{S} / \text{W}$ changeover deactivated)	8... 30 °C	18	18	18	18
H517	Maximum control differential; when exceeded, minimum pause time will be aborted	0... 90 K	30	30	30	30
H518	Maximum temperature gradient of boiler setpoint ramp in heating mode (0: no setpoint ramp)	0... 255 K/min	0	0	0	0
H519	Design outside temperature (for sizing the heating plant)	-50... 20 °C	-1	-1	-1	-1
H520	Reduction of room setpoint when using time switch ($d\text{TrAbsen}=0$: acting on heat demand)	0... 10 K	10	10	10	10
H521	Delta flow / return temperature at TiAussenNorm , $2.5 \leq \dots \leq d\text{TkTrMax}$	2.5... 20 K	20	20	20	20
H522	Maximum $d\text{T}$ of boiler flow and return for $d\text{T}$ supervision	2.5... 35 K	30	30	30	30
H523	Switch-on differential of burner in heating mode	0.5... 32 K	3	3	3	3
H524	Minimum switch-off differential of burner in heating mode	0.5... 32 K	3	3	3	3
H525	Maximum switch-off differential of burner in heating mode	0.5... 32 K	10	10	10	10
H526	Switch-on differential of burner in DHW heating mode (sensor 1)	0.5... 32 K	5	3	3	5
H527	Minimum switch-off differential of burner in DHW heating mode (sensor 1)	-32... 32 K	0	0	0	0
H528	Maximum switch-off differential of burner in DHW heating mode (sensor 1)	-32... 32 K	0	0	0	0
H529	Switch-on differential of burner in DHW heating mode (sensor 2)	0.5... 32 K	3	3	3	3
H528	Maximum switch-off differential of burner in DHW heating mode (sensor 1)	-32... 32 K	0	10	10	0
H529	Switch-on differential of burner in DHW heating mode (sensor 2)	0.5... 32 K	3	3	3	3
H530	Minimum switch-off differential of burner in DHW heating mode (sensor 2)	-32... 32 K	0	0	0	0
H531	Maximum switch-off differential of burner in DHW heating mode (sensor 2)	-32... 32 K	3	3	3	3
H532	Heating curve slope heating circuit 1	1... 40	32	32	32	32
H533	Heating curve slope heating circuit 2	1... 40	32	32	32	32
H534	Room setpoint readjustment heating circuit 1	-31... 31 K	0	0	0	0
H535	Room setpoint readjustment heating circuit 2	-31... 31 K	0	0	0	0
H536	Maximum speed at maximum output in heating mode (maximum speed limitation)	0... 9950 rpm	5000	5000	7000	7000
H537	Pump speed at heating plant's design point	1... 50	24	24	24	24
H538	Minimum pump speed permitted for the heating plant	10... 100 %	40	40	40	40
H539	Minimum pump speed for full charging of stratification storage tank	10... 100 %	40	40	40	40
H540	Number of speeds of modulating pump (supplier specification)	2... 50	24	24	24	24

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H541	Maximum degree of modulation in heating mode (LmodTL ≤ PhzMax ≤ LmodVL)	0... 100 %	65	65	100	100
H542	Minimum boiler output in kW (lower calorific value)	0... 9999 kW	6	6	12	12
H543	Maximum boiler output in kW (lower calorific value)	0... 9999 kW	25	25	75	75
H544	Overrun time of pumps, max. 210 min (setting 255: continuous operation of Q1)	0... 255 min	10	10	10	10
H545	Minimum burner pause time (heat demand-dependent switching hysteresis)	0... 3600 s	300	300	300	300
H546	Minimum burner running time (heat demand-dependent switching hysteresis)	0... 255 s	0	0	0	0
H547	Controller delay after burner is started up	0... 255 s	0	0	0	0
H548	Minimum degree of modulation of modulating pump (supplier specification)	0... 70 %	5	5	5	5
H549	Maximum degree of modulation of modulating pump (supplier specification)	10... 100 %	90	90	90	90
H550	Sampling factor of dT control (as a factor for TabtastK)	0... 50	10	10	10	10
H551	Constant for quick setback without room influence	0... 20	2	2	2	2
H552	Hydraulic system adjustment	0... 255	67	67	66	66
H553	Configuration of heating circuits	0... 255	21	21	21	21
H554	Setting flags: status code open-circuit sensor for ANx channel suppressed / not suppressed	0... 255	b0=1 b1=0 b2=1 b3=1 b4=0 b5=1 b6=0 b7=0	b0=1 b1=0 b2=1 b3=1 b4=0 b5=1 b6=0 b7=0	b0=1 b1=0 b2=1 b3=1 b4=0 b5=1 b6=0 b7=0	b0=1 b1=0 b2=1 b3=1 b4=0 b5=1 b6=0 b7=0
H555	Setting flags	0... 255	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0
H556	Instantaneous DHW heater setting flags	0... 255	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0
H557	AD converter configuration and heat demand	0... 255	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0
H558	Setting flags	0... 255	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=1 b7=0
H559	Setting flags	0... 255	b0=1 b1=1 b2=1 b3=0 b4=0 b5=1 b6=0 b7=0	b0=1 b1=1 b2=1 b3=0 b4=0 b5=1 b6=0 b7=0	b0=1 b1=1 b2=1 b3=0 b4=0 b5=1 b6=0 b7=0	b0=1 b1=1 b2=1 b3=0 b4=0 b5=1 b6=0 b7=0

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H560	Setting flags	0... 255	b0=0 b1=0 b2=0 b3=0 b4=0 b5=1 b6=1 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=1 b6=1 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=1 b6=1 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=1 b6=1 b7=0
H561	Setting flags	0... 255	b0=0 b1=0 b2=0 b3=1 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=1 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=1 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=1 b4=0 b5=0 b6=0 b7=0
H562	Minimum boiler water pressure	0... 25.5 bar	0.5	0.5	0.5	0.5
H563	Maximum boiler water pressure	0... 25.5 bar	3	3	3	3
H564	Max head of modulating pump (supplier specification)	0.5... 25.5 m	5.9	5.9	5.9	5.9
H565	Min head of modulating pump (supplier specification)	0... 25.5 m	0.6	0.6	0.6	0.6
H566	Proportional coefficient of DHW controller	0... 9.9375	0.25	1	1	0.25
H567	Derivative action time of DHW controller	0... 9.9375 s	2	0.25	0.25	2
H568	Integral action time of DHW controller	0... 4000 s	100	14	14	100
H569	Proportional coefficient of heating circuit controller	0... 9.9375	0.5	0.5	0.5	0.5
H570	Derivative action time of heating circuit controller	0... 9.9375 s	1	1	1	1
H571	Integral action time of heating circuit 1 controller	0... 4000 s	100	100	100	100
H574	Integral action time of heating circuit 2 controller	10... 873 s	90	90	90	90
H575	Proportional coefficient of dT control	0... 9.9375	0.5	0.5	0.5	0.5
H576	Derivative action time of dT control	0... 9.9375 s	0	0	0	0
H577	Integral action time of dT control	0... 4000 s	50	50	50	50
H578	Sampling time of temperature control loop in heating mode and with storage tank charging	1... 4 s	1	1	1	1
H579	Sampling time of temperature control loop with instantaneous DHW heater	1... 4 s	1	1	1	1
H580	Setpoint readjustment in Comfort mode and setpoint of 40 °C	-20... 20 K	0	0	0	0
H581	Setpoint readjustment in Comfort mode and setpoint of 60 °C	-20... 20 K	0	0	0	0
H582	Setpoint readjustment with outlet temperature control and setpoint of 40 °C	-20... 20 K	0	0	0	0
H583	Setpoint readjustment with outlet temperature control and setpoint of 60 °C	-20... 20 K	0	0	0	0
H584	Time for kick function of pump / diverting valve outputs	0... 51 s	5	5	5	5
H585	Maximum overrun time when TL / LT cuts out	0... 10 min	5	5	5	5
H586	Filter time constant of actual values of flow / return temperature of dT control	0... 100 %	94	94	94	94
H587	Setting flags for instantaneous DHW heater	0... 255	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0
H588	Period of time until switch-off differential is reduced to SdHzAusMin	0... 210 min	10	10	10	10
H589	Period of time until switch-off differential is reduced to SdBwAusMin	0... 210 min	3	3	3	3
H590	Locking time of dynamic switch-off differential after a change of heating<->DHW	0... 51 s	0	0	0	0

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H592	Triggering threshold for boiler shutdown at high flue gas temperatures	0... 125 °C	110	110	110	110
H593	Triggering threshold for output reduction at high flue gas temperatures (limitation)	0... 125 °C	110	110	110	110
H594	Water pressure above which boiler and pump will be shut down	0... 25.5 bar	0.5	0.5	0.5	0.5
H595	Switching differential of water pressure	0... 25.5 bar	0.3	0.3	0.3	0.3
H596	Running time of actuator in heating circuit 2 (TimeOpening / TimeClosing)	30... 873 s	150	150	150	150
H597	P-band of heating circuit 2 controller	1... 100 K	24	24	24	24
H598	Output during controller delay time (LmodTL ≤ LmodRgVerz ≤ LmodVL)	0... 100 %	19	19	19	19
H599	Response threshold for detection of end of DHW consumption with instantaneous DHW heater	-2... 1,984375 K/s	0.2	0.2	0.2	0.2
H600	Response threshold for detection of DHW consumption with instantaneous DHW heater in Comfort mode	-2... 1,984375 K/s	-0.2	-0.2	-0.2	-0.2
H601	Response threshold for detection of DHW consumption with instantaneous DHW heater in heating mode	-2... 1,984375 K/s	-0.3	-0.3	-0.3	-0.3
H602	Time for instantaneous DHW heater Comfort function after consumption (when there is no demand for heat) (o = deactivated; 1440 = continuously)	0... 1440 min	0	0	0	0
H603	Time for instantaneous DHW heater Comfort function after consumption (when there is demand for heat) (o = deactivated; 30 = 30 min)	0... 30 min	0	0	0	0
H604	Setting flags for time synchronization and power supply on LPB	0... 255	b0=1 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0	b0=1 b1=0 b2=0 b3=0 b4=1 b5=0 b6=0 b7=0
H605	LPB device number of LMU	0... 16	1	1	1	1
H606	LPB segment number of LMU	0... 14	0	0	0	0
H607	Setpoint for readiness temperature	10... 60 °C	40	40	40	40
H608	Setting value QAA73: modulation air at ignition load	0... 100 %	25	25	25	25
H609	Setting value QAA73: modulation air at low-fire; lower limit modulating range	0... 100 %	14	14	14	14
H610	Setting value QAA73: modulation air at high-fire; upper limit modulation range	0... 100 %	65	65	100	100
H611	Setting value QAA73: speed required at ignition load	0... 9950 rpm	2600	2600	2600	2600
H612	Setting value QAA73: speed required at low-fire	0... 9950 rpm	1500	1500	1200	1200
H613	Setting value QAA73: speed required at high-fire	0... 9950 rpm	5500	5500	7000	7000
H614	Progr input LMU basis	0... 255	3	3	3	3
H615	Function progra mm able output K2 LMU	0... 255	0	0	0	0
H616	Minimum pressure differential to be reached after pump was switched on	0... 5 bar	0	0	0	0
H617	Maximum pressure differential that can occur when pump is switched on	0... 5 bar	5	5	5	5
H618	Progr input on clip-in function module	0... 255	0	0	0	0
H619	Function output1 clip-in function module	0... 255	0	0	0	0
H620	Function output2 clip-in function module	0... 255	0	0	0	0
H621	Function output3 clip-in function module	0... 255	0	0	0	0
H622	Maximum value of heat demand with external predefined temperature setpoint (5 °C <= TAnfoExtMax <= 130 °C)	5... 130 °C	85	85	85	85
H623	Threshold of analog signal from which the external demand for output will be accepted (percentage of maximum value of analog signal)	5... 95 %	5	5	5	5

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H624	Output-related start on controller release in instantaneous DHW heating mode ($LmodTL \leq LmodRgStartDLH \leq LmodVL$)	0...100 %	20	20	20	20
H625	Set limit for the number of operating hours (interval) since last service visit	0...9998 hrs	0	0	0	0
H626	Set limit for the number of startups (interval) since last service visit	0...9995	0	0	0	0
H627	Set limit for the number of months (interval) since last service visit	0...255 months	12	12	12	12
H628	Set limit of fan speed for service visit	0...9950 1/min	0	0	0	0
H629	Enduser can acknowledge a pending maintenance alarm via this parameter	0...1	0	0	0	0
H630	Setting flags of maintenance alarms	0...255	b0=1 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0
H631	Time for pump overrun in instantaneous DHW heater Comfort function with burner off (0 = pump off with burner off; 255 = pump always on)	0...255 min	255	255	255	255
H633	Selected period of time for repetition of maintenance alarm after acknowledgement	0...255 days	30	30	30	30
H634	Operating hours (interval) since last service visit	0...10000 hrs	0	0	0	0
H635	Startups (interval) since last service visit	0...10000	0	0	0	0
H636	Months (interval) since last service visit	0...255 months	0	0	0	0
H637	Duration of pump shutdown when diverting valve changes from space heating to DHW heating	0...10 s	0	0	0	0
H638	Delay of pump shutdown when diverting valve changes from space heating to DHW heating	0...10 s	0	0	0	0
H639	Limitation of temperature boost by dT control	0...100 %	100	100	100	100
H640	Setting value QAA73: prepurge time	0...51 s	2	2	2	2
H641	Setting value QAA73: postpurge time	0...51 s	20	20	20	20
H642	Modulation air during full charging of stratification storage tank (charging control)	0...100 %	65	65	100	100
H643	Set speed during full charging of stratification storage tank (charging control)	0...9950 rpm	5500	5500	7000	7000
H644	Charging temperature setpoint boost for recharging the stratification storage tank when controlling to charging temperature	0...30 °C	0	0	0	0
H645	Maximum fan speed on standstill	0...12750 rpm	200	200	200	200
H646	Modulation air when burner control is not operating	0...100 %	0	0	0	0
H647	Ionization current maintenance alarm (0 = did not occur, 1 = did occur)	0...255	0	0	0	0
H648	Duration of «Controller delay» after startup when cycling in instantaneous DHW outlet operation: output delivered now is that prior to shutdown	0...50 s	0	0	0	0
H700	1st Historical Fault – Number of Occurrences.					
H701	1st Historical Fault – Operating Phase.					
H702	1st Historical Fault – Operating Error Code					
H703	2nd Historical Fault – Number of Occurrences.					
H704	2nd Historical Fault – Operating Phase.					
H705	2nd Historical Fault – Operating Error Code					
H706	3rd Historical Fault – Number of Occurrences.					
H707	3rd Historical Fault – Operating Phase.					
H708	3rd Historical Fault – Operating Error Code					
H709	4th Historical Fault – Number of Occurrences.					
H710	4th Historical Fault – Operating Phase.					

Display or QAA73	Function / Description	Range	Default Values			
			15	25	45	75
H711	4th Historical Fault – Operating Error Code					
H712	5th Historical Fault – Number of Occurrences.					
H713	5th Historical Fault – Operating Phase.					
H714	5th Historical Fault – Operating Error Code					
H715	Current Historical Fault – Number of Occurrences					
H716	Current Historical Fault – Operating Phase.					
H717	Current Historical Fault – Operating Error Code					
H718	Hours run burner	0...131070 hrs	o	o	o	o
H719	Hours run heating mode	0...131070 hrs	o	o	o	o
H720	Hours run DHW heating	0...131070 hrs	o	o	o	o
H721	Hours run zone	0...131070 hrs	o	o	o	o
H722	Start counter	0...327675	o	o	o	o
H723	Mean boiler output	–				
H724	Selection of summer / winter operating modes	0...255	b0=1 b1=1 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0	b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0
H725	SW version of LMU for presentation on the OT parameter setting level	–				
H726	Maintenance code contains enumeration value of maintenance alarm (precise cause)	0...255	o	o	o	o
H728	1st Historical Fault – ALBATROS Error Code					
H729	2nd Historical Fault – ALBATROS Error Code					
H730	3rd Historical Fault – ALBATROS Error Code					
H731	4th Historical Fault – ALBATROS Error Code					
H732	5th Historical Fault – ALBATROS Error Code					
H732	Current Historical Fault – ALBATROS Error Code					
H755	Measured value of ionization current	–				

24.0 EXPLODED VIEWS & SHORT PARTS LIST

The following diagrams show the internal components for the Procon 15, 25, 45 & 75 Boilers, with a short parts list of the internal components.

Before ordering any replacement parts, we would recommend that you consult with RVR boilers Spares Department to confirm that the parts numbers listed are still current.

24.1 PROCON 15, 25 & 45

Fig 24.1a

Item №	Description	Part Number
8	Flue Collector	SGB401
9	80 mm Flue Seal	SGB600
12	Flue Gas Sensor	SGB807
13	Heat Exchanger Flue Seal	SGB729
	LMU64 Controller {15}	SGB414
15	LMU64 Controller {25}	SGB414
	LMU64 Controller {45}	SGB801

Item №	Description	Part Number
22	Condensate Syphon	SGB402
92	Display Module	SGB800
96	ON/OFF Switch	SGB400
97	Transformer	SGB403
98	Pressure Gauge	SGB404

24.1 PROCON 15, 25 & 45 (CONT'D)

Fig 24.1b

Item №	Description	Part Number	Item №	Description	Part Number
34	Water Pressure Switch	SGB405	59	Flow/Return Sensor	SGB805
	Heat Exchanger {15}	SGB415		Pump {15}	SGB416
57	Heat Exchanger {25}	SGB415	68	Pump {25}	SGB416
	Heat Exchanger {45}	SGB406		Pump {45}	SGB408
58	Air bleed Valve	SGB407			

24.1 PROCON 15, 25 & 45 (CONT'D)

Fig 24.1C

Item Nº	Description	Part Number
39	Gas Valve	SGB409
	Gas Injector {15} (Nat Gas)	SBA011
40	Gas Injector {25} (Nat Gas)	SBA012
	Gas Injector {45} (Nat Gas)	SBA013
72	Ignition Electrode	SGB412

Item Nº	Description	Part Number
	Fan {15}	SGB723
83	Fan {25}	SGB723
	Fan {45}	SGB411
85	Fan Outlet Gasket	SGB413

24.2 PROCON 75

Fig 24.2a

Item Nº	Description	Part Number
28	Pressure Gauge	SGB817
29	Condensate Siphon	SGB402
31	ON/OFF Switch	SGB400

Item Nº	Description	Part Number
50	Display Module	SGB800
66	Flue Gas Sensor	SGB807
69	LMU64 Controller	SGB801

24.2 PROCON 75 (CONT'D)

Fig 24.2b

Item Nº	Description	Part Number
1	Heat Exchanger	SGB809
15	Gas Valve	SGB806

Item Nº	Description	Part Number
72	Gas Injector (Nat Gas)	SBA014

24.2 PROCON 75 (CONT'D)

Fig 24.2c

Item Nº	Description	Part Number
1	Heat Exchanger	SGB809
22	Ignition Electrode	SGB804
25	Fan (75)	SGB803

Item Nº	Description	Part Number
66	Flow / Return Sensor	SGB805
81	Air Bleed Valve	SGB407

RVR Limited, Kenmare, Co. Kerry, Ireland

Telephone: +353 64 41344 • Fax: +353 64 89520

www.RVR.ie

This publication is issued subject to alteration or withdrawal without notice. The illustrations and specifications are not binding in detail. All offers and sales are subject to the Company's current terms and conditions of sale which are available on www.rvr.ie

RVR.ie
Ireland's Online Heating Suppliers