scverse cookiecutter template

Follow along: scverse.org/ cookiecutter-scversepresentation

Having impact with software

- Aim of many academics: Publish papers and get citations
- High quality software helps a lot with both
- Being part of the scverse ecosystem ensures that you meet a set of minimum requirements for maximal impact
- Goal of this workshop is to provide you a path to developing high quality software

scverse ecosystem

- Set of packages built around the scverse core packages
- Featured on our website:
 scverse ecosystem

Ecosystem packages maintained by scverse community

Many popular packages rely on scverse functionality. For instance, they take advantage of established data format standards such as AnnData and MuData, or are designed to be integrated into the workflow of analysis frameworks. Here, we list ecosystem packages following development best practices (continuous testing, documented, available through standard distribution tools).

This listing is a work in progress. See screen:screen

Search through 59 packages	
Package	Description
CellOracle	A computational tool that integrates single-cell transcriptome and epigenome profiles to infer gene regulatory networks (GRNs), critical regulators of cell identity.
CellRank	CellRank is a toolkit to uncover cellular dynamics based on Markov state modeling of single-cell data. It contains two main modules - kernels compute cell-cell transition probabilities and estimators generate hypothesis based on these.
Cell_BLAST	Cell BLAST is a cell querying tool for single-cell transcriptomics data.

scverse ecosystem requirements

- Name, description, ...
- OSI-approved license
- Versioned releases that can be installed from a standard registry (PyPI, Conda, ...)
- Automated tests (executed via continuous integration)
- API and use-case documentation
- Uses scverse datastructures where appropriate

How to get into the scverse ecosystem

- Instructions to add your package are on the scverse ecosystem repository
- Either submit existing package
- Easier alternative: scverse cookiecutter template

scverse cookiecutter template

- Project template for scverse packages
- Provides a best practice structure
- Many features such as continuous integration, documentation setup, [...]
- Ensures that you automatically tick all scverse ecosystem requirements

Steps

- 1. Set up global environment to create project
- 2. Create project using scverse cookiecutter template
- 3. Set up project specific development environment
- 4. Develop your package
- 5. Submit to scverse ecosystem

Step 1: Global environment

- Install using a package manager or installer:
 - o code, hatch, & git
 - o uv or pipx
- Install using a package manager, pipx, or uv:
 - o cruft & pre-commit
 - \$ pipx install cruft pre-commit # or
 - \$ uv tool install cruft pre-commit

Step 2: Creating the project

\$ cruft create https://github.com/scverse/cookiecutter-scverse
project_name (project-name): myproj
[...]
\$ code myproj

Step 3: Environment management

Hatch envs basic usage:

```
$ hatch run [env:]command [...args] # e.g. `... docs:build -T`
$ hatch test [...args]
$ hatch env remove <name> # or `hatch env prune` for all
$ hatch find hatch-test
~/.local/share/hatch/env/virtual/myproj/FsejNibV/hatch-test.py3.12
[...]
```

Tell VS Code:

running tests

```
$ hatch test --help
[...]
Options:
  -r, --randomize
  -p, --parallel
  -c, --cover
  -a, --all
  -py, --python=X.Y
  -i, --include=VAR=VAL
  -x, --exclude=VAR=VAL
  -s, --show
...otherwise same as `pytest`
```


building docs

\$ hatch run docs:build
\$ hatch run docs:open
\$ hatch run docs:clean

See pyproject.toml:

```
[tools.hatch.envs.docs]
scripts.build = "..."
...
```


formatting and linting

VS Code:

```
{
   "[python]": {
      "editor.formatOnSave": true,
      "editor.defaultFormatter": "charliermarsh.ruff",
      "editor.codeActionsOnSave": { ... },
   }, ...
}
```

CLI: pre-commit (or hatch run pre-commit)

```
$ pre-commit install # `git commit` hook
$ pre-commit run --all-files
```

existing project

- Simple project
 - 1. Instantiate template
 - 2. Replace src/* directory with your package
 - 3. Edit [project] table in pyproject.toml
- Complex project
 - 1. Step by step PRs: formatter, ...
 - 2. We can help!

follow along

Step 4: committing code

- Use PRs, don't push to main
- Set up pre-commit.ci, codecov.io on github.com/<you>/<yourpackage>/settings/installation

ReadTheDocs

Set up readthedocs.org and its PR previews:

This page was created from a pull request (#1616).

Step 5: Submit to scverse ecosystem

- Instructions: scverse ecosystem repository
- Submit a pull request

Thank you