02 Set Theory

02 03 Set Operations

The intersection of two sets A and B, denoted $A \cap B$, is a set $\{x : x \in A \text{ and } x \in B\}$.

If $A \cap B = \emptyset$, then we say A and B are <u>disjoint</u>.

The Venn diagram for the intersection of A and B.

The intersection of two sets A and B.

Example. $\{1, 2, 3, 5, 7\} \cap \{10, 7, 8, 4, 6, 5\} = \{5, 7\}.$

Example. $\{x : x \text{ is even}\} \cap \{x : x \text{ is odd}\} = \emptyset$.

Note that $\emptyset \subseteq A \cap B \subseteq A \subseteq U$ and $\emptyset \subseteq A \cap B \subseteq B \subseteq U$.

Note also that $A \cap B = B \cap A$ and $A \cap B = A$ if $A \subseteq B$.

The union of two sets A and B, denoted $A \cup B$, is a set $\{x : x \in A \text{ or } x \in B\}.$

The Venn diagram for the union of A and B.

The union of two sets A and B.

Example.
$$\{1, 2, 3, 5, 7\} \cup \{10, 7, 8, 4, 6, 5\}$$

$$= \{1, 2, 3, 5, 7, 10, 8, 4, 6\}.$$

Example. $\{x : x \text{ is even}\} \cup \{x : x \text{ is odd}\}$

 $= \{x : x \text{ is an integer}\}.$

Note that $\emptyset \subseteq A \cap B \subseteq A \subseteq A \cup B \subseteq U$ and

 $\emptyset \subseteq A \cap B \subseteq B \subseteq A \cup B \subseteq U$.

Note also that $A \cup B = B \cup A$ and $A \cup B = B$ if $A \subseteq B$.

Let A and B be two sets. The difference of A and B, denoted A - B, is a set containing the elements of A that are not in B.

$$A - B = \{x : x \in A \text{ and } x \notin B\}.$$

The Venn diagram for the difference of A and B.

The difference of two sets A and B.

Example.
$$\{1, 2, 3, 5, 7\}$$
 - $\{10, 7, 8, 4, 6, 5\}$
= $\{1, 2, 3\}$.

Example.
$$\{x : x \text{ is even}\} - \{x : x \text{ is odd}\}\$$

= $\{x : x \text{ is even}\}.$

Note that
$$\emptyset \subseteq A - B \subseteq A \subseteq A \cup B \subseteq U$$
 and $\emptyset \subseteq B - A \subseteq B \subseteq A \cup B \subseteq U$.

Note also that $A - B = \{\} = \emptyset \text{ if } A \subseteq B.$

If A is a set and U is the universal, then the complement of the A, denoted A' or A^c, is a set of U – A. Namely,

$$\underline{A'} = \underline{A^c} = \{x : x \in U \text{ and } x \notin A\}.$$

The Venn diagram for the complement of a set Ac.

The complement of a set A

Example. Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
, $A = \{3, 5, 8\}$.
Then $A' = A^c = \{1, 2, 4, 6, 7, 9\}$.

Example. Let
$$U = \{x : x \text{ is an integer}\}, A = \{x : x \text{ is even}\}.$$

$$A' = A^c = \{x : x \text{ is odd}\}.$$

Note that
$$U' = U^c = \emptyset$$
 and $\emptyset' = \emptyset^c = U$. Note also that $A \cap A^c = \emptyset$, $A \cup A^c = U$ for any set A, and $A - B \neq B - A$, in general.

The symmetric difference of A and B, denoted $A \oplus B$, is A set of $(A - B) \cup (B - A)$.

The Venn diagram for the symmetric difference of A and B.

The symmetric difference of A and B

Example. Let
$$A = \{1, 2, 3, 5, 7\}$$
 and $B = \{10, 7, 8, 4, 6, 5\}$
Then $A \oplus B = (A - B) \cup (B - A) = \{1, 2, 3\} \cup \{10, 8, 4, 6\}$
= $\{1, 2, 3, 4, 6, 8, 10\}$.

Note that $A \oplus B = B \oplus A$. Note also that

$$(A - B) \cap (A \cap B) = \emptyset$$
, $(B - A) \cap (A \cap B) = \emptyset$,

$$(A-B)\cap (B-A)=\emptyset,$$

$$(A\oplus B)\cap (A\cap B)=((A-B)\cup (B-A))\cap (A\cap B)=\emptyset,$$
 and
$$A\cup B=(A\oplus B)\cup (A\cap B)=(A-B)\cup (B-A)\cup (A\cap B).$$