Epreuve écrite

Examen de fin d'études secondaires 2009

Section: D

Branche: Mathématiques I

Numéro d'ordre du candidat

repediage puis

- I 1) Résoudre dans \mathbb{C} l'équation $iz^3 2(2-i)z^2 2(3+4i)z + 8-4i = 0$, sachant qu'elle admet une solution imaginaire pure.
 - 2) Soient t_0 , t_1 et t_2 les solutions de l'équation sous 1) telles que $\text{Re}(t_0) = 0$ et $\text{Re}(t_1) < \text{Re}(t_2)$. Calculer $m, n \in \mathbb{R}$ tels que $m \cdot t_1 + i \cdot n \cdot t_2 = t_0$.

(15+3=18 points)

- II Soit le nombre complexe $Z = \frac{\left(\sqrt{3} i\right)^7}{16 cis \frac{4\pi}{3}}$.
 - 1) Ecrire Z sous sa forme trigonométrique, puis sous sa forme algébrique.
 - 2) Calculer les racines cubiques complexes z_0 , z_1 et z_2 de Z. Les donner sous leur forme trigonométrique, puis sous leur forme algébrique.
 - 3) Reporter les points qui ont pour affixes les racines cubiques de Z dans le plan de Gauss.
 - 4) Calculer $(z_0)^2 + (z_1)^2 + (z_2)^2$ sous sa forme algébrique et $(z_0)^2 \cdot (z_1)^2 \cdot (z_2)^2$ sous sa forme trigonométrique.

(4+4+2+2=12 points)

III Discuter, résoudre et interpréter géométriquement le système

$$(S_a): \begin{cases} (1-a)x - y - z = -(1-a) \\ -x + (1+a)z = 1 \\ -ax - 2y + 2az = 2a + 1 \end{cases}, \text{ où } a \in \mathbb{R}.$$

(17 points)

- IV Soient les points A(0,-1,1), B(-1,0,1), C(1,-1,0) et le vecteur \vec{n} (1,1,-1) dans un \vec{R} .00
 - 1) Etablir une équation cartésienne du plan π passant par le point A et de vecteur normal \vec{n} .
 - 2) Vérifier si les points B et C appartiennent au plan π .
 - 3) Ecrire les équations paramétriques de la droite d passant par le point C et orthogonale au plan π .
 - 4) Calculer l'intersection de la droite d et du plan π .
 - 5) Etablir une équation cartésienne du plan π' orthogonal au plan π et contenant la droite d et le point B.

(2+2+2+3+4=13 points)