Prova di esame dei corsi di Fondamenti di Informatica e Informatica Teorica

04 luglio 2019

Nota Bene: Non saranno corretti compiti scritti con una grafia poco leggibile.

Problema 1. Si ricordi come possono essere codificate le macchine di Turing mediante numeri interi. Sia $f: \mathbb{N} \to \mathbb{N}$ la funzione così definita:

$$f(i) = \left\{ \begin{array}{ll} 0 & \text{se } i \ \ \text{è la codifica di una macchina di Turing} \\ 1 & \text{se } i \ \text{non e la codifica di alcuna macchina di Turing.} \end{array} \right.$$

Dopo aver definito il concetto di calcolabilità di una funzione, discutere la calcolabilità di f(n) dimostrando le proprie affermazioni.

Problema 2. Partendo dalla definizione di completezza, dimostrare che il complemento di un linguaggio **NP**-completo è co**NP**-completo

Problema 3. Si consideri il seguente problema decisionale: dato un grafo (non orientato) G = (V, E) ed un intero k, decidere se G ha un vertex cover di al più k nodi e contiene un insieme indipendente di almeno k nodi.

Dopo aver formalizzato il suddetto problema mediante la tripla $\langle I, S, \pi \rangle$, si risponda alle seguenti domande (nell'ordine che si ritiene opportuno), motivando in tutti i casi la propria risposta.

- a) Il problema è in **P**?
- b) Il problema è in **NP**?
- c) Il problema è in co**NP**?