Sl. No.	Ques	tion	Marks	СО
		neering which deals with measurement		
	of relative positions of an object on earth's surface by measuring the horizontal			
1.	distances, elevations, directions, and ang		1	1
	(a) Surveying	(b) Geotechnical Engineering	-	
	(c) Transportation Engineering	(d) Construction Technology		
	The mixture of cement and sand with wa		_	
2.	(a) brick	(b) concrete	1	1
	(c) steel	(d) mortar		
	The mixture of cement, sand and aggrega		_	
3.	(a) mortar	(b) concrete	1	1
	(c) steel	(d) brick		
		igineering which involves assessing		
4.	slope stability, study of soil properties an avalanches.	nd the risk of landslides, rock fall and	1	1
	(a) Geotechnical Engineering	(b) Structural Engineering	1	
	(c) Transportation Engineering	(d) Construction Technology		
	The effect of a couple is unchanged if			
	(a) The couple is replaced by	(b) The couple is rotated through	1	
5.	another pair of forces, whose	any angle		2
	rotational affects are the same	any angle		_
	(c) The couple is shifted to any other	(d) All of these		
	position	` '		
	<u> </u>	ide as that of the Resultant but		
6.	opposite in direction to it, acting on sa		1	2
0.	(a) equilibrant	(b) couple	1	
	(c) point force	(d) moment		
	Which of the following is the unit of Mon		_	
7.	(a) kN	(b) kN-m	1	2
	(c) kN/m ²	(d) kN-m ²		
	Moment of a force depends on		4	
8.	(a) Moment centre only	(b) Lever arm only	1	2
	(c) Moment centre and lever arm	(d) None of the above		
	The loading generally acts upon the _	of the body.		
9.	(a) Centroid	(b) Symmetrical centre	1	3
	(c) Rotational centre	(d) Construction Technology		
	A simple support offers only r	eaction normal to the axis of the		
10	beam.			_
10.	(a) Horizontal	(b) Vertical	1	3
	(c) Inclined	(d) Moment	1	
	support develops support r			İ
11.	(a) Hinged	(b) Simple	1	3
<u> </u>	(c) Fixed	(d) Roller	1 1	
	(c) I IXEU	(u) Notici		

	Example for cantilever beam is			
12.	(a) Railway sleepers	(b) Roof slab	1	3
	(c) Bridges	(d) Chejja		
	Friction always	1 2 2		
13.	(a) opposes the motion	(b) both of these	1	4
	(c) helps the motion	(d) none of the above	1	
	Which one of these characteristics does	a smooth surface has		
14.	(a) Frictionless	(b) some times less & some time more force	1	4
	(c) more frictional force	(d) less frictional force		
	Friction force exerts in the case of			
15.	(a) Non-Contact Surface	(b)Magnetic Force	1	4
	(c) Contact Surface	(d)Non-Magnetic Force		
	The frictional resistance is developed du irregularities at the contact surfaces of t			
16.	(a) Binding	(b) Interlocking	1	4
	(c) Collision	(d) Non interlocking	1	
	The point through which the whole weig	1 ()		
17.			1	5
17.	(a) Inertial point	(b) Center of gravity	_	
	(c) Centroid	(d) None of the above		
	The point at which the total area of a pla	ane figure is assumed to be		
18.	concentrated is called	14.50	1	5
	(a) Inertial point	(b) Centre of gravity	-	
	(c) Central point	(d) Centroid		
	Where will be the center of gravity of a	uniform rod lies?	1	
19.	(a) At its center of its cross sectional area	(b) At its end	1	5
	(c) At its middle point	(d) Depends upon its material	-	
	Centroidal coordinate of the following se			
	12cm	ection is:		
		3cm		
20.			1	5
20.			_	
	() (6.2)	(1) (6,6)	-	
	(a) (6, 3)	(b) (6, 6)	-	
	(c) (6, 1.5)	(d) (1.5, 3)		

SET 2

Sl. No.	Question	Marks	СО
1.	design and construction of bridges, buildings and dams	1	1

	(a) Transportation Engineering	(b) Structural Engineering		
	(c) Geotechnical Engineering	(d) Construction Technology		
		gineering concerned with the		
	conveyance of liquids through pipes and			
2.	mechanical force or control		1	1
	(a) Water Resources Engineering	(b) Environmental Engineering		
	(c) Hydraulics	(d) Construction Technology		
	is a branch of Civil En	gineering that involves the design of		
3.	new systems and equipment that help m	nanage human water resources.	1	1
J.	(a) Construction Technology	(b) Hydraulics	1	1
	(c) Environmental Engineering	(d) Water Resources Engineering		
	The primary objective of	is to create an optimal soil moisture		
4.	regime for maximizing crop production a	1	1	1
٦.	(a) Irrigation Engineering	(b) Hydraulics	-	_
	(c) Geotechnical Engineering	(d) Environmental Engineering		
		to turn a key into a lock.		
5.	(a) couple	(b) non-coplanar force	1	2
	(c) momentum	(d) coplanar force		
	Couple is formed due to two			
	(a) unlike, perpendicular and non-	(b) like, parallel and non-collinear		
6.	collinear forces of different magnitude	forces of same magnitude	1	2
	(c) like, perpendicular and collinear	(d) unlike, parallel and non-collinear		
	forces of different magnitude	forces of same magnitude		
_	Cycle pedaling is an example of			
7.	(a) cyclic loading	(b) moment	1	2
	(c) collinear forces	(d) couple		
	A couple produces	1		
8.	(a) motion Combined translatory	(b) Rotational motion	1	2
	and rotational	(d) Having mtal maching		
	(c) Translatory motion only	(d) Horizontal motion		
	Hinge support is called as		_	
9.	(a) Ball joint	(b) Swivel joint	1	3
	(c) Pin joint	(d) Socket joint		
	For a simply supported beam, mome	nt at the support is always		
10.			1	3
10.	(a) Minimum	(b) Maximum	_	
	(c) Zero	(d) One		
	A hinged support doesn't offer resista	ance against		
11.	(a) rotation	(b) horizontal movement	1	3
	(c) vertical movement	(d) horizontal & vertical movement		
	Roller support is same as			
12.	(a) Hinged Support	(b) Simply support	1	3
	(c) Roller Support	(d) Fixed Support	_	
	The friction experienced by a body wher			
13.	(a) Dynamic Friction	(b) Sliding Friction	1	4
<u> </u>	(a) Dynamic Friction	(b) Shullig i fiction		

	(c) Static Friction (d) Rolling Friction		
	(c) Static Friction (d) Rolling Friction The Friction experienced by a body when it is moving is called		
14.	(a) Sliding Friction (b) Dynamic Friction		4
14.	i i	1	4
	, ,	yr a plane is called	+
15	The dynamic friction experienced by a body when it slides ove	-	_
15.	(a) Rolling Friction (b) Static Friction	1	4
	(c) Dynamic Friction (d) Sliding Friction	f	
1.0	The dynamic friction experienced by a body when it rolls over		
16.	(a) Sliding Friction (b) Static Friction	1	4
	(c) Rolling Friction (d) Dynamic Friction		\vdash
	Where will be the centroid of the T section lie from the base s	hown in the	
	figure?		
	3cm		
17.		1	5
	10cm		
	3cm —		
	(a) At 8.545cm (b) At 6.5 cm		
	(c) At 5 cm (d) At 9.25 cm		
	Location of centroid of the L-section shown in the figure is		
	- 2cm		
	5cm		
	6cm		
18.		1	5
	1cm		
	Acres		
	4cm —		
	(a) (2.24 cm, 3.68 cm) (b) (1.45 cm, 3.24 cm)	cm)	
ļ		,	

SET 3

Sl. No.	Ques	stion	Marks	СО
	deals with a detailed and maintenance of different types of ro	d study of planning, design, construction padways, railways, airports and		
1.	runways, harbours, bridges and tunnels.		1	1
	(a) Environmental Engineering	(b) Transportation Engineering		
	(c) Geotechnical Engineering	(d) Structural Engineering		
	provides methods a	nd facilities for waste water		
	management, water and air purification,	, waste disposal and recycling, and		
2.	other purposes pertaining to human hea	lth and benefit.	1	1
	(a) Irrigation Engineering	(b) Hydraulics		
	(c) Geotechnical Engineering	(d) Environmental Engineering		
	Which of the following is not a basic idea	alization of Engineering Mechanics?		
3.	(a) Particle	(b) Continuum	1	1
	(c) Self Weight	(d) Rigid Body		
	is an idealized body whi	ch may have finite or negligible mass		
4.	and whose size and shape can be ignore	d without sacrificing the accuracy.	1	1
	(a) Continuum	(b) Particle		

	(c) Rigid Body	(d) Point Force		
	If the arm of the couple is doubled, its m	, ,		
5.	(a) doubled	(b) remain the same	1	2
J.	(c) halved	(d) zero	1	
	Which of the following conditions chang			
	(a) Addition of another couple of same	(c) Shifting of couple to a parallel		
6.	magnitude	plane	1	2
0.	(b) Rotation of couple by some angle	(d) Shifting of couple to a new	-	-
	in its plane	position in its plane		
	Moment of Couple does not depend on	, .		
_	(a) Arm of the couple	(b) Moment centre	4	
7.	(c) Moment centre and Arm of the couple	(d) All of these	1	2
	Two couples are said to be equivalent if	their		
8.	(a) Rotation is same	(b) Magnitudes are same	1	2
	(c) Moments are equal	(d) Signs are equal		
	Hinged supports offer	and reactions.		
9.	(a) Moment, Couple	(b) Moment, Horizontal	1	3
	(c) Moment, Vertical	(d) Vertical, Horizontal		
	Which of the following are statically			
10.	(a) Cantilever, overhanging and	(b) Cantilever, overhanging and		
	simply supported beam	fixed beam	1	3
	(c) Fixed, continuous and propped	(d) Fixed, continuous and simply		
	cantilever beam	supported beam		
	In a simply supported beam, momen			
	(a) is zero, if it does not carry	(b) is zero, if the beam has		
11.	couple at the end	uniformly distributed load only	1	3
	(c) is zero, if the beam has	(d) may or may not be zero		
	concentrated loads only	(a) may or may not be zero		
		l member subjected to transverse		
	loads perpendicular to its axis.			
12.	(a) Truss	(b) Column	1	3
	(c) Strut	(d) Beam		
	The magnitude of limiting friction bears	,		
	called coefficient of friction		_	
13.	(a) Frictional Resistance	(b) Normal Reaction	1	4
	(c) Wet Friction	(d) Dry friction		
	The frictional resistance depends upon t	heof the surface		
14.	(a) Area	(b) Diameter of the specimen	1	4
	(c) Roughness	(d) Moisture Content		
	Frictional Resistance acts in a direction .			
15.	(a) Same	(b) Opposite	1	4
	(c) Parallel	(b) Non-parallel		1
16.	The frictional resistance isof		1	4
	(a) Condition	(b) Dependent	_	

	(c) Nature	(d) Independent		
	On simplification of the loading system,	the net force acts at theof the		
17.	loading body.	(la) The control order	1	5
	(a) Centroid	(b) The central axis		
	(c) The mid-point	(d) Inertial point		
	Density is best given by			
18.	(a) Addition of mass and density	(b) Product of volume and density	1	5
	(c) Ratio of mass to Volume	(d) Subtraction of mass and density		
	Which of the following laminas do not have centroid at its geometrical centre?			
19.	(a) Centre of gravity	(b) Right angled triangle	1	5
	(c) Circle	(d) None of the above		
	What is the vertical centroidal distance f	rom base of right angled triangle of		
20	base 20 cm and side 40 cm?		1	5
20.	a. 13.33 cm	a. 19.36 cm	1)
	b. 13.28 cm	d. 38.72 cm		

SET 4

Sl. No.	Ques	stion	Marks	CO
		p of infinite number of molecules		
1.	packed in such a way that, there is no	1	1	1
1.	(a) Particle	(b) Continuum	_	1
	(c) Rigid Body	(d) Point Force		
	The S.I. unit of force is		_	
2.	(a) calorie	(b) joule	1	1
	(c) kilowatt	(d) Newton		
	In order to determine the effect of a	force acting on a body, we must		
3.	know		1	1
3.	(a) All of the above	(b) Line of action of the force		1
	(c) Point of application	(d) Magnitude of the force		
	Forces are said to be concurrent when they are acting			
4.	(a) none of the these	(b) in same planes	1	1
	(c) in different planes	(d) at a point		
	An equivalent force couple system at	a given point consists of		
5.			1	2
5.	(a) Same force with a moment	(b) Only Couples	1	
	(c) Only forces	(d) Same force-couple system		
	A given force – couple system can be	replaced by a single force by		
6.	moving the force F to a distance d giv	ven by	1	,
0.	(a) F+M	(b) M/F		2
	(c) F/M	(d) 0		
	Varignon's theorem of moments stat	es that, if a number of coplanar		
	forces acting on a body are in equilib	rium, then		
7.	(a) their lines of action are at equal	(c) the algebraic sum of their	1	2
	distances	moments about any point in their		
		plane is zero		

	(b) the algebraic sum of their	(d) their algebraic sum is zero		
	moments about any point is equal			
	to the moment of their resultant			
	force about the same point			
	The translatory effect of a couple on th	e rigid body is		
8.	(a) Average	(b) Maximum	1	2
	(c) Minimum	(d) Zero		
	Continuous beams are			
	(a) Statically indeterminate	(b) Statically determinate		
9.	beams	beams	1	3
	(c) Beams with only two	(d) Framed beams		
	supports	,		
	A beam which extends beyond it s	supports can be termed as		
	A beath which externes beyond its	supports can be termed as		
10.	(a) Fixed beam	(b) Propped Cantilever beam	1	3
	(c) Over hanging beam	(d) Continuous beam		
	A cantilever is a beam whose	(a) continuous scam		
	(a) one end is fixed and the	(b) both ands are supported		
11.	other end is free	(b) both ends are supported	1	
11.	other end is free	either on rollers or hinges	1	3
	(c) both ends are fixed	(d) one end is fixed and the		
		other end is on roller		
	A beam is a structural member which is subjected to			
	(a) Horizontal load	(b) Axial tension or		
12.	(a) Horizontarioaa	compression	1	3
	(s) Twisting mamont	(d) Transverse loads and		
	(c) Twisting moment	couples		
	The angle made by the Resultant rea	ction with Normal Reaction called		
13.	(a) Angle of Repose	(b) Angle of Friction		4
	(c) Limiting Friction	(d) Cone of Repose		
	The value of coefficient of friction ra	nges from		
14.	(a) 1 to 2	(b) 0.5 to 1	1	4
	(c) 0 to 1	(d) 0 to 1.1		
	The maximum inclination of the plan	e with the horizontal on which a		
15.	body free from external forces can re	est without sliding is called	1	4
15.	(a) Angle of Friction	(b) Cone of Friction	1	4
	(c) Angle of Repose	(d) Limiting Friction		
	The resultant reaction lies on the sur	_		
16.	cone is known as the cone o	1	1	4
10.	(a) Rectangular	(b) Isosceles	-	
	(c) Triangular	(d) Circular		
	If a material has no uniform density t			
17.	position of centroid and centre of ma	1	1	5
	(a) identical	(b) not identical	-	
	(c) independent upon the density	(d) unpredictable		

	What is the vertical centroidal distance of an equilateral triangle of side			
18.	2 m?		1	5
10.	(a) 1.000 m	(b) 0.769 m	-	
	(c) 0.577 m	(d) 0.866 m		
	It is a point within an object from wh	ich the force of gravity appears to		
10	act		1	5
19.	(a) . all of these	(b) centroid		3
	(c) centre of mass	(d) centre of gravity		
	If an area has one line of symmetry t	he centroid lie		
20.	a. none of the these	b. Anywhere on the area	1	5
20.	c. Midpoint of the line of	d. Somewhere along the line	1	ر
	symmetry	symmetry		

SET 5

Sl. No.	Ques	stion	Marks	CO
	Two forces meeting at a point, but their	line of action is not in one plane, is		
	known as			
1.	(a) non-concurrent non-coplanar	(b) non-concurrent coplanar forces	1	1
	forces			
	(c) concurrent coplanar forces	(d) concurrent non-coplanar forces		
	If a number of forces are acting simultaneously at a point, it			
2.	(a) can be replaced by a single force	(b) can be replaced by a couple	1	1
۷.	(c) can be replaced by a couple and	(d) cannot be replaced	1	1
	force		1	
	The Principle of Transmissibility of Force	s states that, when a force acts upon a		
	body, its effect is			
3.	(a) maximum if it acts at the centre of	(b)different at different points on its	1	1
3.	gravity of the body	line of action		1
	(c) same at every point on its line of	(d)minimum if it acts at the centre of		
	action	gravity of the body		
	The effect of a force on a body depends	upon its		
4.	(a) magnitude	(b) all the options	1	1
	(c) position	(d) direction		
	Moment of a force about a moment cen	tre is the measure of its		
_	(a) Translatory effect only	(b) Rotational effect only	1	2
5.	(c) Both rotational and translatory	(4) A	1	2
	effect	(d) Average movement		
	Two equal and opposite forces separated by a distance will produce			
6.	(a) Rotational effect only	(b) Translatory effect only	1	2
0.	(c) Both rotational and translatory	(d) Average movement	1	2
	effect	(d) Average movement		
7.	Moment with respect to the point C in the	ne given figure is	1	2

	√ 10 N			
	10.17			
	lm			
	A lm B			
	(a) 5 N-m	(b) 0 N-m		
	(c) 19.66 N-m	(d) 18.66 N-m		
	Σ F _X for the given force system is	. <u></u>		
	10 N C			
	1m			
8.			1	2
	10 N			
	A 1m B			
	(a) 10 N-m	(c) 0 N-m		
	(b) 12 N-m	(d) 20 N-m		
	The conditions of equilibrium for a be			
9.	(a) $\Sigma Fx = 0$, $\Sigma Fy = 0$	(b) $\Sigma Fx = 0, \Sigma Fy = 0 \& \Sigma M = 0$	1	3
	(c) Σ M = 0	(d) $\Sigma Mx = 0$, $\Sigma My = 0 \& \Sigma Mz = 0$		
	For a fixed support in a plane structu			
10.	(a) 1	(b) 2	1	3
	(c) 3	(d) 4		
	For a hinged support in a plane struc		_	
11.	(a) 4	(b) 3	1	3
	(c) 1	(d) 2		
	For a roller support in a plane structu	re, total number of reactions are:		
12.	(a) 4	(b) 2	1	3
	(c) 3	(d) 1		
	Which motion has magnitude of static fr	rictional force directly proportional to		
13.	the normal reaction	(1)	1	4
	(a) Actual motion	(b) Impending motion		
	(c) Both a & b Angle of friction is angle between	(d) None of the above		
	(a) The weight of the body and the	(b) The incline and horizontal		
14.	friction here	(b) The memic and nonzontal	1	4
		(d) The normal reaction and friction		
	(c) Normal reaction and the resultant	force		
	The force of friction developed at the co	ntact surface is always		
15.	(a) Parallel to the plane and along the	(b) Parallel to the plane and along the	1	4
13.	direction of the applied force	direction of the applied force	_	_ _
	(c) All of the above	(d) Perpendicular to the plan		

1.6	The maximum inclination of the plane on which the body free from external forces can repose is called		_	
16.		Angle of friction	1	4
		None of these		
17.			1	5
18.	The coordinates of centroid in mm of the fol		1	5
	. The coordinates of centroid in mm of the fo			

SET 6

Sl. No.	Question		Marks	CO
1.	A single force which is capable of producing the same effect as that of system of forces on a body is called as		1	1
	(a) equilibrant	(b) couple	_	

	(c) resultant	(d) point force		
	The principle of transmissibility is	,		
	a) It states that the force acting on the	b) It states that the force acting on		
2.	body is a sliding vector	the body is a rolling vector	1	1
	c) It states that the force acting on the	d) It states that the force acting on		
	body is a wedging vector	the body is a unit vector		
	The simplification of the forces on the axis is done as			
	a) The forces are already simplified	b) No simplification of the forces is		
3.	and don't need simplification	possible	1	1
J.	c) A particular system of rule is	d) The forces are very tentative	_	_
	followed	quantity on terms of simplification		
		and hence no simplification possible		
	The system of the collinear and the para	Illel force are simplified as		
	-\The simplification is described	h) Cook simulification is not a soible		
	a) The simplification is done by	b) Such simplification is not possible		
	considering the rotations only c) The simplification is usually done by	d) The simplified collinger force		
4.	not considering the directions of the	d) The simplified collinear force system gives us a net force and the	1	1
	both	parallel force system gives us a		
	5001	simplified force, and then we add it		
		vectorially		
		Vectoriany		
	Σ F _Y for the given force system is			
	10 N D C			
	4			
5.	1m		1	2
	10 N		_	
	A 1m B			
	(a) 0 N-m	(b) 10 N-m		
	(c) 20 N-m	(d) -10 N-m		
	Σ F _x for the given force system is	(0) 10 14 11		
	1			
	B 10 N			
	STILL			
6.			1	2
0.	30°		_	_
	(a) 0 N	(b) 10 N		
	(c) 19.66 N	(d) 20 N		
7.	Σ F _Y for the given force system is		1	2

	B 10 N			
	30°			
	A	T	_	
	(a) 5 N	(b) 10 N	1	
	(c) 0 N	(d) 8.66 N		
8.	Moment with respect to the point B in	i the given ligure is	1	2
	(a) 0 N-m	(b) 10 N-m	1	
	(c) 19.66 N-m	(d) 20 N-m	1	
9.	A load which varies with the length	1	1	3
9.	(a) point load	(b) uniformly distributed load		3
	(c) uniformly moving load	(d) uniformly varying load	1	
	The equivalent point load for a UVL will be equal to			
10.	(a) area of the rectangle	(b) area of the triangle	1	3
	(c) maximum magnitude of UVL	(d) zero		
11.	The below figure depicts beam.		1	3
	(a) propped cantilever	(b) continuous		
	(c) fixed	(d) cantilever		
12.	The below figure depictsk	oeam.	1	3
	(a) fixed	(b) continuous		
	(c) propped cantilever	(d) cantilever		
	The force of friction depend on			
13.	(a) None of the these	(b) Area of contact	1	4
	(c) Both areas of contact and	(d) Roughness of the surfaces		
	roughness of the surfaces	ad subana a badust set tessees a 193		
	•	ed when a body just begins to slide over		
14.	the surface of another body is	(b) Polling friction	1	4
	(a) Sliding friction	(b) Rolling friction	4	
	(c) Limiting friction	(d) None of these		

	_	ace makes with the horizontal when a body		
15.	placed on it is on the verge of mov		1	4
	a) Angle of friction	(b) Angle of repose		
	(c) Angle of inclination	(d) None of these		
	Frictional force is independent o			
16.	(a) None of the these	(b) Angle of friction	1	4
10.	(c) Coefficient of friction	(d) Shape and size of surface of contact	_	
17.	The x-coordinate of centroid in mm 75 20 20 a. 84.57 mm C.0 mm	10	1	5
18.		following figure with base 9 mm and height	1	5
	a. (6 mm, 4 mm)	b. (3 mm, 8 mm)	_	
	c. (6 mm, 8 mm)	d. (3 mm, 4 mm	-	
	c. (6 mm, 8 mm) . Find the co-ordinates of the centr	d. (3 mm, 4 mm roid of the triangle formed by the following	-	
19.	c. (6 mm, 8 mm) . Find the co-ordinates of the centr sets of points (4, -1), (0, 3) and (-4,	d. (3 mm, 4 mm roid of the triangle formed by the following , - 2):	1	5
19.	c. (6 mm, 8 mm) . Find the co-ordinates of the centresets of points (4, -1), (0, 3) and (-4, a. (3,2)	d. (3 mm, 4 mm roid of the triangle formed by the following , - 2): b. (0,0)	1	5
19.	c. (6 mm, 8 mm) . Find the co-ordinates of the centresets of points (4, -1), (0, 3) and (-4, a. (3,2) c. (3,4)	d. (3 mm, 4 mm roid of the triangle formed by the following , - 2): b. (0,0) d. (-3,4)	1	5
19.	c. (6 mm, 8 mm) . Find the co-ordinates of the centresets of points (4, -1), (0, 3) and (-4, a. (3,2) c. (3,4)	d. (3 mm, 4 mm roid of the triangle formed by the following , - 2): b. (0,0)	1	5

a. unpredictabl	b. identical	
c. independent upon the density	d. not identical	

SET 7

Sl. No.	Question		Marks	СО
	The resultant force is equal to the	of all the forces.		
1.	a) Division	b) Product	1	1
	c) Subtraction	d) Sum		
	The forces of the parallel system and the	e couple can't be simplified together as		
	one is the cause and the other is the effe	ect.		
2.	a) The statement is wrong and the	b) The statement is wrong but the	1	1
۷.	reason given is also wrong	reason given is also correct		_
	c) The statement is correct and the	d) The statement is correct but the		
	reason given is also correct	reason given is also wrong		
	A force vector with magnitude R and ma	-		
3.	its component along x-axis and y-axis as	1	1	1
J.	a) R cosine (α) and R sine(α)	b) R cosine (180-α) and R sine(α)		
	c) R cosine (180- α) and R sine(180+ α)	d) R cosine (α) and R sine(180+α)		
	Dividing the X-axis component and the Y	·		
4.	making an angle with Y-axis α will give us.		1	1
7.	a) Sec α	b) Cot α	_	_
	c) Tan α	d) 1		
	If the moment of the force 10N about th	e point A is zero, then its direction is		
5.	B 10 N		1	2
	(a) horizontal	(b) along AB	1	
	(c) vertical	(d) perpendicular to AB		
	Determine the Moment at point C for th	e figure shown below.		
6.	10kN 10kN B 3m C (a) -10 kN-m	(c) -30 kN-m	1	2
	(b) 70 kN-m	(d) 0 kN-m		
7.	For any system of coplanar forces, the co	ondition of equilibrium is that the	1	2

	T					
	(a) Algebraic sum of the vertical	(b) Algebraic sum of moments of all				
	components of all the forces should be	the forces about any point should be				
	zero	zero				
	(c) All of these	(d) Algebraic sum of the horizontal				
		components of all the forces should				
		be zero				
	The conditions of equilibrium for 2D pla					
8.	(a) $\Sigma F_y = 0$	(b) $\Sigma F_X = 0$, $\Sigma F_Y = 0$ and $\Sigma M = 0$	1	2		
	(c) Σ $F_X = 0$ and Σ $F_Y = 0$	$(d) \Sigma F_X = 0$	_			
		a coplanar concurrent force system is that				
	algebraic sum of must be zero	a copiana concurrent force system is that				
9.	(a) Moment of forces	(b) Horizontal and vertical forces	1	3		
٥.	(c) Horizontal forces, vertical forces and	(d) Equilibrant	-	,		
	Moment of forces	(w) Equinorant				
	The first step of resolution is					
	(a) To break up an inclined force into	(b) To find the resultant of the force				
10.	two components	system	1	3		
	(c) To find the equilibrant	(d) To find the resultant and moment of		_		
	(* / - *	the force system				
	A rigid body is in equilibrium if the resulta					
11.	(a) Zero	(b) Positive	1	1 3		
	(c) Negative	(d) Maximum	-	`		
	For a smooth spherical surface reaction act	1 , ,				
12.	(a) Horizontal to the plane of contact	(b) Perpendicular to the plane of contact	1	1	1	1 3
12.	(c) Inclined to the plane of contact	(d) Vertical to the plane of contact	-	`		
	Compared to static friction, kinetic friction					
13.	(a) Zero	(b) Greater	1	_		
13.	c) Very large	(d) Smaller	1			
		(u) Smaller				
4.4	Coefficient of friction (µ) is given by		4	١.		
14.	(a) μ = R/F	(b) μ = F.R	1	4		
	(c) μ = F/R	(d) $\mu = F^2$				
	If ϕ = angle of friction and μ = coefficient of friction, then which equation is					
15.	valid?		1			
13.	(a) sinφ = μ	(b) tanφ = 1/μ	_	-		
	(c) tanφ = μ	(d) cosφ				
	If ϕ = angle of friction and a = angle of re	epose then which relation is correct				
16.	(a) φ = 1/a	(b) φ = a	1	4		
	$(c) \phi = \tan \alpha$	(d) $\alpha = \tan \phi$				
	Which method is used to determine cen					
17.	a. None of the these	b. Graphical method	1			
17.	c. Both a. and b.	d. Analytical method	_	'		
	The centroidal value of a triangle is always	lys the length from the base and -				
18.	the height from the apex.	1 2/2 4/2	1	į		
	a. 1/3,2/3	b. 2/3,1/3				
	c. h/3,b/3	d. b/3,h/3				
	. The centroidal value of a semicircle is a	•				
19.	of the semicircle (normal to base) or alo	ng the symmetrical axis.	1	5		
		b. 2R/3 π		1		

	c. 3R/4 π	d. 5R/3 π		
20.	What is the centroidal distance of Recta given figure?		1	5
	a. 80	b. 120		
	c. 75	d. 60		

SET 8

Sl. No.	Question		Marks	СО
	The magnitude of the resultant of the tw	vo vectors is always		
	a) Smaller than one of the vector's	b) Depends on the angle between		
1.	magnitude	them	1	1
	c) Greater than one of the vector's	d) Axis we choose to calculate the		
	magnitude	magnitude		
	If two equal vector forces are mutually p	erpendicular then the resultant force is		
2.	acting at which angle as compared to on	e of the vector?	1	1
۷.	a) 0 degree	b) 90 degree	_	1
	c) 180 degree	d) 45 degree		
	A force is completely defined when w	ve specify		
3.	a) Point of application	b) Direction	1	1
	c) All of the options	d) Magnitude		
	If a number of forces act simultaneously on a particle, it is possible			
4.	a) To replace them by a single	b) Not a replace them by a single	1	1
4.	force through C.G.	force		1
	c) To replace them by a single force	d) To replace them by a couple		
	The conditions of equilibrium for 3D are			
5.	(a) $\Sigma F_X = 0$, $\Sigma F_Y = 0$, $\Sigma F_Z = 0$ and $\Sigma M_X =$	(c) $\Sigma M_X = 0$, $\Sigma M_Y = 0$ and $\Sigma M_Z = 0$	1	2
5.	$0, \Sigma M_Y = 0, \Sigma M_Z = 0$			
	(b) $\Sigma F_X = 0$, $\Sigma F_Y = 0$ and $\Sigma F_Z = 0$	(d) $\Sigma F_X = 0$, $\Sigma F_Y = 0$ and $\Sigma M = 0$	1	
	The number of equations required for equilibrium of coplanar concurrent force			
6.	system are		1	2
	(a) 6	(b) 2		

	(c) 4	(d) 3		
	The number of equations required for e	quilibrium of coplanar non-concurrent		
7.	force system are		1	2
/.	(a) 4	(b) 2		
	(c) 3	(d) 6		
	FBD is an isolated sketch of a body show	ving		
8.	(a) all the forces and reactions acting on it	(b) the free hand sketch of the body	1	2
	(c) the diagram of the body	(d) only the reaction forces		
9.	The below figure depicts be	(b) cantilever	1	3
	(c) propped cantilever	(d) fixed	1	
10.	The below figure depicts be		1	3
11.	(a) cantilever (c) propped cantilever	(b) overhanging (d) continuous	1	3
	What is the unit of U.D.L?			
12.	(a) KN	(b) KN-m	1	3
	(c) kN-m2	(d) KN/m		
13.	Force of friction developed at contact su (a) Perpendicular to the plane (c) Opposite to the direction of motion	(b) Along to the direction of motion (d) All of the above	1	4
14.	When a body resting on a rough plane a tangential force, (a) frictional force increases indefinitely (c) There is a limit up to which frictional force can increase	(b) Frictional force is zero (d) Frictional force remains constant	1	4
15.	Frictional force acts the surface (a) Tangential to (c) Inclined to	ce in contact (b) Normal to (d) Away from	1	4

	Coulomb's laws of friction can be applied to			
16.	(a) Lubricated surfaces	(b) Fluid friction	1	4
	(c) Fluid-structure interactions	(d) Dry friction between solid bodies		
17.	What is the centroidal distance of Rectargiven figure?	ngle 2 from y axis with respect to the	1	5
	a. 75	b. 150		
	c. 60	d. 10		
18.	What is the centroidal distance of Rectar to the given figure?	ngle 2 from bottom x axis with respect	1	5
	a. 120 c. 65	b. 30 d. 40		
19.	What is the centroidal distance of Rectar to the given figure?		1	5

SET 9

Sl. No.	Ques	stion	Marks	СО
1.	The algebraic sum of the resolved parts of a number of forces in a given direction is equal to the resolved part of their resultant in the same direction. This is as per the principle of		1	1
	a) Balance of force	b) Forces		
	c) Dependence of forces	d) Resolution of forces		
	Which of the following is not the unit	of distance?		
2.	a) Angstrom	b) Milestone	1	1
	c) Micron	d) Millimetre		
	A force acting on a body may			
3.	a) All of the options	b) Retard its motion	1	1
	c) Change its motion	d) Introduce internal stresses		
	Forces are called coplaner when all of them acting on body lie in			
4.	a) Different planes	b) One point	1	1
	c) One plane	d) Perpendicular planes		

	If sum of all the forces acting on a body is	s zero, it may be concluded that the body		
8.	(a) Must be in equilibrium	(b) Cannot be in equilibrium		
	(c) May be in equilibrium provided the	(d) May be in equilibrium provided the	1	2
	forces are concurrent	forces are parallel		
	What is the vertical reaction at free			
	_ 10KN/m			
	10KIVIII			
9.	4m		1	3
	N			
	(a) 0 KN	(b) 80 KN		
	(c) 40 KN	(d) 10 KN		
	What is the vertical reaction at fixed	end in the beam shown below?		
	_ 10KN/m			
	1 TOREVIE			
40			4	
10.	4m		1	3
	1			
	(a) 20 KN	(b) 80 KN		
	(c) 40 KN	(d) 0 KN		
	What is the reaction at support B in	the beam shown below?		
	30 KN			
	1			
11.	A B		1	3
11.	1m C 2m		1	3
	(a) 15 KN	(b) 10 KN		
	(c) 20 KN	(d) 30 KN		
	What is the reaction at support A in	the beam shown below?		
	30 KN			
12.	A B		1	3
	1m 2m			
	(2) 30 KN	(b) 15 VN		
	(a) 30 KN	(b) 15 KN		
	(c) 10 KN	(d) 20 KN		
	Impending motion of the body refers to (a) Body about to move	(b) Body at rest		
13.	(c) Body moving with uniform speed	(d) Body moving with uniform	1	4
	(c) body moving with dimorni speed	acceleration		
	At the point impending motion, the static frictional force is .			
14.	(a) Maximum	(b) Zero	1	4
- **	(c) Minimum	(d) Infinite	_	
	Force is required to start motion is			
15.	(a) More than that required for	(b) Less than that required for keeping	1	4
	keeping it in motion	it in motion		
		1		

	(c) Same as the force required for	(d) Zero, while force required for		
	keeping it in motion	keeping it in motion is non-zero		
	The tangent of angle of friction is			
16.	(a) Cone of friction	(b) Co-efficient of friction	1	4
	(c) Angle of repose	(d) Limiting friction		
17.	What is the centroidal distance of Rectangle 3 from bottom X axis with respect to the given figure?		1	5
	a. 210 c. 65	b. 10 d. 110		
18.	what is the centroidal distance of Recta to the given figure?		1	5
	a. 10 c. 65.	b. 120 d. 144		
19.	.What is the centroidal distance of Rectato to the given figure?		1	5

SET 10

Sl. No.	Question		Marks	СО
	Forces are called concurrent when their lines of action meet in			
1.	a) Plane	b). Two points	1 1	1
	c). One point	d) Perpendicular planes		
	Coplanar concurrent forces are those forces which			
2.	a) Meet at one point and their lines	b) Do not meet at one point and	1	1
	of action also lie on the same plane	their lines of action do not lie on		1
		the same plane		

	c) Meet at one point, but their lines	d) Do not meet at one point, but		
	of action do not lie on the same	their lines of action lie on the same		
	plane	plane		
	What does Newton's third law state?			
	a) The body tends to be rotated if	b)The rate of change of momentum		
3.	the force is applied	is equal to the force applied	1	1
	c) The body is rest until a force is	d) For every reaction, there is an		
	applied	equal and opposite reaction		
	What is the direction of the resultant ve	ctor if two vectors having equal length		
	is placed in the Cartesian plane at the or	= -		
	heading towards positive x-axis and the			
4.	heading in the opposite direction of that		1	1
	a) It is either in the 1st quadrant or in	b) It is either in the 1st quadrant or in	_	1
	the 4th quadrant	the 3rd quadrant		
	c) It is either in the 1st quadrant or in	d) Only in the 1st quadrant		
	the 2nd quadrant			
	Equilibrant is nothing but a resultant	/b/ E 1: 2:11 / 2:1		
_	(a) Not equal in magnitude but in the	(b) Equal in magnitude but opposite in	1	_
5.	same direction (c) Equal in magnitude and in the same	direction (d) Not equal in magnitude and opposite		2
	direction	in direction		
	If two forces P and Q ($P > Q$) act on the same straight line but in opposite direction			
	their resultant is			
6.	(a) <i>P/Q</i>	(b) <i>P</i> – <i>Q</i>	1	2
	(c) $Q-P$	(d) $P+Q$		
	In a coplanar non-concurrent force system if the algebraic summation of horizontal			
	components of all the forces is zero, then the resultant is			
7.	(a) Must do the analysis for the	(b) Zero	1	2
	determination of the resultant.	· ·		
	(c) Horizontal	(d) Vertical		
	Moment of a force can be defined as the product of force and distance from the line			
8.	of action of force to the moment centre	(h) A	1	2
	(a) Maximum	(b) Any		
	(c) Least	(d) Accurate		
	What is the reaction at support A in	the beam snown below?		
	6 KN			
9.	A V B		1	3
	1m 2m			
	(a) 4 KN	(b) 2 KN		
	(c) 6 KN	(d) 12 KN		
10.	What is the reaction at support B in	` /	1	3
	vinacis the reaction at support o in the beam shown below:		_	

	6 KN			
	Ī			
	A B			
	1m C 2m			
	(a) 4 KN	o) 2 KN		
		d) 12 KN		
	What is the maximum moment for the k	'		
		ocam snown below:		
	10 KN/m			
11.	A 2m 3m B		1	3
	→			
	(a) - 30 KN-m	o) - 125 KN-m		
	(c) - 60 KN-m	d) - 105 KN-m		
	What is the vertical reaction at support	'		
	30 KN-ın			
	JO KIV-III			
	A B			
12.			1	3
	2m 3m			
	(a) 6 KN (b	o) - 6 KN		
	(c) 5 KN	d) - 5 KN		
	The angle made by the resultant of normal	reaction and frictional force with the		
	normal			
13.	reaction at the point of impending motion i	is called	1	4
	(a) Angle of inclination (b	o) Angle of repose		
		d) Normal angle		
	The unit of co-efficient of friction is			
14.		o) Newton	1	4
		d) Meter		
	The frictional force is independent of			
15.		o) The coefficient of friction	1	4
		d) The angle of friction		
	Once a body just begins to slide, it continue			
16.		o) Inertia force acts on the body	1	4
	, ,	d) The frictional force becomes less		
	What is the centroidal distance of Rectangle	e 1 from Corner Y axis with respect		
17.	to the given figure?		1	5
	to and piron rigaror			

