Numerical Analysis

Iydon

2018年9月6日

目录

目录

1	Pre	face		3
2	Mathematical Preliminaries and Error Analysis			4
	2.1	Round-off Errors and Computer Arithmetic		
		2.1.1	Binary machine numbers	4
		2.1.2	Decimal machine numbers	4
		2.1.3	Machine Operators	6
		2.1.4	Nested method(秦九韶算法)	6
		2.1.5	Convergence (收敛性)	7
3	Roc	ot-findi	ing problem	8

1 Preface

1 Preface

2 Mathematical Preliminaries and Error Analysis

Round-off Errors and Computer Arithmetic

2.1.1 Binary machine numbers

定义 2.1 舍入误差 舍入误差形成原因:进行有限位的运算(finite digits arithmetic)

其中, IEEE:754-2008 规定二进制机器数 (Binary machine numbers) 中浮点数 (floating-point) 存储规范如下:

$$(-1)^{S}2^{c-1023}(1+f)$$

S: 0/1 signpart c: 11 digits exponential part. f: 52 digits mantissa part

由于实数的稠密性,可知找不到比某一个数大的最小的数或小的最大的 数,但是在计算机中可以找到,所以计算机不能表示所有的数。

2.1.2 Decimal machine numbers

 $\pm 0.d_1d_2\cdots d_n\times 10^n$ 其中 $1\leq d_1\leq 9$, $0\leq d_i\leq 9$, $\forall i\geq 2$ 。如果记真 实的数为 y, 其浮点数表示为 fl(y)。

当存在 $y = 0.d_1d_2\cdots d_kd_{k+1}\cdots \times 10^n$, 其浮点数表示有如下两种方式:

- 1. Chopping: chop off digits, say $d_{k+1}d_{k+2}\cdots$.
- 2. Rounding: $y + 5^{n-(k+1)}$, then chopping.

5

例 2.1

 $\pi = 3.14159265 \cdots$,取 5 位。

- Chopping: $fl(y) = 0.31415 \times 10^{1}$.
- Rounding: $fl(y) = 0.31416 \times 10^{1}$.

定义 2.2 Suppose p^* is an approximation of p.

$$\begin{cases} absolute\,error &= |p^{\star} - p| \\ relative\,error &= \frac{|p^{\star} - p|}{p} \end{cases}$$

定义 2.3 有效数字 (Significant digits) p^* is said to approximate p with t significant digits. If t is the largest nonnegative integer, s.t.

$$\frac{|p - p^{\star}|}{p} \le 5 \times 10^{-t}$$

Chopping floating:

$$y = 0.d_1 \cdots d_k d_{k+1} \cdots \times 10^n$$
$$fl(y) = 0.d_1 \cdots d_k \times 10^n$$

Chopping: (其有效位数至少为 k-1)

$$\frac{|fl(y) - y|}{|y|} = \frac{0.0 \cdots 0d_{k+1} \cdots \times 10^n}{0.d_1 \cdots d_k d_{k+1} \cdots \times 10^n} \le 10^{1-k}$$

Rounding: (其有效位数至少为 k)

$$\frac{|fl(y) - y|}{|y|} \le \frac{0.0 \cdots 1d_{k+1} \cdots \times 10^n}{0.d_1 \cdots d_k d_{k+1} \cdots \times 10^n} \le 10^{-k}$$

2.1.3 Machine Operators

记计算机的加减乘除为 ⊕ ⊖ ⊗⊘, 于是有

$$x \oplus y = fl(fl(x) \oplus fl(y))$$

Four cases to avoid:

- 1. 两个十分接近的数(two nearly equal)。
- 2. 分子远大于分母 (numerator » denominator)。
- 3. 避免大数吃掉小数。

2.1.4 Nested method (秦九韶算法)

```
\begin{array}{c} \textbf{input} \ : a_0, a_1, \cdots, a_n(given); \, x \\ \textbf{output:} \ P_n(x) \\ \\ \textbf{1} \ S_n \leftarrow a_n; \\ \textbf{2} \ \textbf{for} \ k \leftarrow n-2 \ \textbf{to} \ 0 \ \textbf{do} \\ \textbf{3} \ \big| \ S_k \leftarrow x S_{k+1} + a_k; \\ \textbf{4} \ \textbf{end} \\ \textbf{5} \ P_n(x) \leftarrow S_0; \end{array}
```

```
def nested(poly:list=[1], x:float=0.0)->float:
    """

Horner nested polynomial calculation.

Args:
    poly: List, store the coefficient of the polynomial.
    x: Float, specify the variable in the polynomial.

Returns:
    Float, result.

Raises:
```

2.1.5 Convergence (收敛性)

Stable: small change in initial data and the error is small. 若 E_0 为初始值误差, E_n 为 n 步的误差,

- $E_n \approx C$ (不依赖 n), 称之为线性。
- $E_n \approx C^n E_0$ 则可由 C 的取值判断是否稳定。

定义 2.4 Rates of Convergence 当 $n \to \infty$, $\alpha_n \to \alpha$, $\beta_n \to 0$, 其中 $|\alpha_n - \alpha| \le k |\beta_n|$ (与 n 的取值无关),则称 α_n 是以 β_n 的速度收敛到 α 的。

$$\alpha_n = \alpha + o(\beta_n).$$

3 Root-finding problem

定理 3.1 Intermediate Value Theorem $f \in [a,b]$, $\forall k \in f([a,b])$, $\exists c \in [a,b]$, s.t. f(c) = k。

```
def Bisection(fun, a:float, b:float, max_step:int=128, ...
       eps:float=1e-6)->float:
       mid_last = a
       if fun(a)*fun(b) < 0:
           for i in range(0, max_step):
               mid = (a+b) / 2
               if abs(mid-mid_last)<eps or abs(fun(mid))<eps:</pre>
                    print("Step: %d\nZero: %fc"%(i, mid))
                    return mid
               else:
10
                    if fun(mid)*fun(a)<0:</pre>
                        b = mid
12
                    else:
13
                        a = mid
14
               mid_last = mid
15
           print('Bisection cannot be convergent within...
16
                   the pre-set steps.')
```

定理 3.2 $f \in C[a,b](continuous)$,根据如上算法, P_i 为 mid 的序列。 如果 $\exists \ root \ P \in [a,b]$,则有 $|P_n-P| \leq \frac{b-a}{x^n}$ 。

【证明】
$$|b_n-a_n|=\frac{b-a}{2^{n-1}},$$

$$|P_n-P|\leq \frac{1}{2}(b_n-a_n)=\frac{b-a}{2^n}$$
 于是 $P_n=P+o(2_{-n})\circ$

定义 3.1 Fixed-point Iteration 对 g(P), 如果 $\forall x \in [a,b]$, 如果 $\exists P$ s.t. g(P)=P, 则称 P 为不动点(fixed point)。 如果 $g(x) \in C[a,b]$ 并且 $g([a,b]) \subset [a,b]$, there exists at least one $p \in [a,b]$, s.t. g(p)=p。

定理 3.3 不动点迭代根的存在唯一性定理 $g(x) \in C[a,b]$, $g([a,b]) \subset [a,b]$ 。 $\forall x \in [a,b]$,都有 $g'(x) \le \kappa < 1$ 。

【证明】

存在性:

$$\begin{cases} h(a) = g(a) - a \ge 0 \\ h(b) = g(b) - b \le 0 \end{cases}$$

于是有 $h(a)h(b) \leq 0$, 则 $\exists p$, s.t. h(p)=0。

唯一性:

假设存在两个根 P_1 , P_2 , 使得 $P_1 = g(P_1)$, $P_2 = g(P_2)$, 但是 $P_1 \neq P_2$ 。

$$|g(P_1) - g(P_2)| = |g'(\xi)| |P_1 - P_2||, \quad \xi \in [P_1, P_2].$$

 $\leq \kappa |P_1 - P_2|, contradiction.$

定理 3.4 不动点收敛的充分条件 $g \in C[a,b]$, $g([a,b]) \subset [a,b]$, g'(x) 存在,并且 $|g'(x)| \le \kappa < 1$ 。 $\forall P_0 \in [a,b]$,定义序列 $P_i = g(P_{i-1})$, $i = 1,2,\cdots$,则 $\lim_{n \to \infty} P_n = P$ (P 为不动点)。

【证明】

$$|P_n - P_n| = |g(P_{n-1} - g(P))|$$

$$= |g'(\xi_{n-1})| |P_{n-1} - P|$$

$$\leq \kappa |P_{n-1} - P|$$

$$\leq \dots \leq \dots$$

$$\leq \kappa^n |P_0 - P| \to 0.$$

其中,寻找不动点的代码如下:

```
def fixed_point(fun, start:float=0, max_step:int=128, ...
    eps:float=1e-6)->float:
    new_val = fun(start)
    for i in range(0, max_step):
        old_val = new_val
        new_val = fun(old_val)
    if -eps<old_val-new_val<eps:
        print(i)
    return new_val</pre>
```