I. Banachovy a Hilbertovy prostory

1. Základní vlastnosti

Definice 1. Nechť X je vektorový prostor nad \mathbb{K} . Funkci $\|\cdot\|: X \to [0, \infty)$ nazýváme *normou* na X, pokud

- (i) ||x|| = 0 právě tehdy, když x = 0,
- (ii) $||x + y|| \le ||x|| + ||y||$ pro všechna $x, y \in X$,
- (iii) $\|\alpha x\| = |\alpha| \cdot \|x\|$ pro všechna $x \in X$ a $\alpha \in \mathbb{K}$.

Dvojici $(X,\|\cdot\|)$ nazýváme normovaným lineárním prostorem.

Tvrzení 2. Necht' $(X, \|\cdot\|)$ je normovaný lineární prostor nad \mathbb{K} .

- (a) Funkce $\rho(x, y) = ||x y|| pro x, y \in X$ je translačně invariantní metrika na X.
- (b) Norma je 1-lipschitzovská (a tedy spojitá) funkce na X.
- (c) $Zobrazeni +: X \times X \to X \ a \cdot: \mathbb{K} \times X \to X \ jsou \ spojitá.$
 - Uzavřenou kouli o středu $x \in X$ a poloměru r > 0 budeme značit $B_X(x, r)$, tj. $B_X(x, r) = \{y \in X; ||x y|| \le r\}$.
 - Otevřenou kouli o středu $x \in X$ a poloměru r > 0 budeme značit $U_X(x,r)$, tj. $U_X(x,r) = \{y \in X; \|x y\| < r\}$.
 - Množina $B_X = B_X(0, 1)$ se nazývá jednotková koule v X.
 - Množina $U_X = U_X(0, 1)$ se nazývá otevřená jednotková koule v X.
 - Množina $S_X = \{x \in X; ||x|| = 1\}$ se nazývá jednotková sféra.

Definice 3. Banachův prostor je normovaný lineární prostor, který je úplný v metrice dané normou.

Tvrzení 4. Nechť X je normovaný lineární prostor a Y jeho podprostor.

- (a) Je-li Y Banachův, pak Y je uzavřený v X.
- (b) Je-li X Banachův, pak Y je Banachův, právě když Y je uzavřený v X.

Definice 5. Nechť P je metrický prostor a ρ , σ jsou metriky na P. Řekneme, že metriky ρ a σ jsou *ekvivalentní*, pokud $x_n \stackrel{\rho}{\to} x$, právě když $x_n \stackrel{\sigma}{\to} x$ pro $\{x_n\} \subset P$, $x \in P$. Řekneme, že metriky ρ a σ jsou *skoro stejné*, pokud existují A, B > 0 taková, že $A\sigma(x,y) \leq \rho(x,y) \leq B\sigma(x,y)$ pro všechna $x,y \in P$.

Tvrzení 6. Nechť X je vektorový prostor, $\|\cdot\|_1$, $\|\cdot\|_2$ jsou normy na X a ρ_1 , ρ_2 jsou příslušné metriky. Pak ρ_1 a ρ_2 jsou skoro stejné, právě když jsou ekvivalentní.

Definice 7 (ekvivalentní normy). Nechť X je vektorový prostor a $\|\cdot\|_1$, $\|\cdot\|_2$ jsou normy na X. Řekneme, že normy $\|\cdot\|_1$ a $\|\cdot\|_2$ jsou *ekvivalentní*, pokud existují A, B > 0 takové, že pro každé $x \in X$ platí $A\|x\|_2 \le \|x\|_1 \le B\|x\|_2$.

Věta 8. Na konečněrozměrném vektorovém prostoru jsou všechny normy ekvivalentní.

Lemma 9. Nechť X je vektorový prostor, $\|\cdot\|_1$ a $\|\cdot\|_2$ jsou normy na X, $B_1 = B_{(X,\|\cdot\|_1)}$, $B_2 = B_{(X,\|\cdot\|_2)}$ a a,b > 0. Pak $a\|x\|_2 \le \|x\|_1 \le b\|x\|_2$ pro každé $x \in X$, právě když a $B_1 \subset B_2 \subset bB_1$. Speciálně, $\|\cdot\|_1 = \|\cdot\|_2$ právě tehdy, když $B_1 = B_2$.

Tvrzení 10. Nechť X je vektorový prostor, $\|\cdot\|_1$ a $\|\cdot\|_2$ jsou normy na X a $B_1 = B_{(X,\|\cdot\|_1)}$, $B_2 = B_{(X,\|\cdot\|_2)}$. Následující tvrzení jsou ekvivalentní:

- (i) Normy $\|\cdot\|_1$ a $\|\cdot\|_2$ jsou ekvivalentní.
- (ii) Existují a, b > 0 taková, že $aB_1 \subset B_2 \subset bB_1$.
- (iii) Zobrazení Id: $(X, \|\cdot\|_1) \to (X, \|\cdot\|_2)$ je homeomorfismus.
- (iv) Otevřené množiny v $(X, \|\cdot\|_1)$ splývají s otevřenými množinami v $(X, \|\cdot\|_2)$.

Definice 11. Nechť X je vektorový prostor. Řekneme, že množina $M \subset X$ je *konvexní*, pokud pro každé $x, y \in M$ a $\lambda \in [0, 1]$ platí, že $\lambda x + (1 - \lambda)y \in M$.

Nechť $x_1, \ldots, x_n \in X$. Řekneme, že $x \in X$ je konvexní kombinací vektorů x_1, \ldots, x_n s koeficienty $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, jestliže $x = \sum_{i=1}^n \lambda_i x_i$ a platí, že $\lambda_1, \ldots, \lambda_n \geq 0$ a $\sum_{i=1}^n \lambda_i = 1$.

Fakt 12. Koule v normovaném lineárním prostoru jsou konvexní množiny.

Definice 13. Nechť X je vektorový prostor a $M \subset X$. *Konvexním obalem M* nazveme množinu conv $M = \bigcap \{C \supset M; C \subset X \text{ je konvexní}\}.$

Tvrzení 14. Nechť X je vektorový prostor a $M \subset X$. Pak

$$\operatorname{conv} M = \left\{ \sum_{i=1}^{n} \lambda_i x_i; \ x_1, \dots, x_n \in M, \lambda_1, \dots, \lambda_n \ge 0, \sum_{i=1}^{n} \lambda_i = 1, n \in \mathbb{N} \right\}.$$

Definice 15. Nechť X je vektorový prostor. Řekneme, že množina $M \subset X$ je symetrická, pokud -M = M.

Fakt 16. Nechť M je symetrická konvexní podmnožina normovaného lineárního prostoru X, která obsahuje U(x,r), resp. B(x,r) pro nějaké $x \in X$. Pak $U(0,r) \subset M$, resp. $B(0,r) \subset M$.

Definice 17. Nechť X je normovaný lineární prostor a $M \subset X$. Pak definujeme *uzavřený lineární obal* M jako $\overline{\text{span}} M = \bigcap \{Y \supset M; Y \text{ uzavřený podprostor } X\}$ a *uzavřený konvexní obal* M jako $\overline{\text{conv}} M = \bigcap \{C \supset M; C \subset X \text{ je uzavřená konvexní}\}$.

Fakt 18. Nechť X je normovaný lineární prostor, Y je podprostor X a $C \subset X$ je konvexní. Pak \overline{Y} je podprostor X a \overline{C} je konvexní množina.

Tvrzení 19. Nechť X je normovaný lineární prostor a $M \subset X$. Pak $\overline{\text{span}} M = \overline{\text{span}} M$ a $\overline{\text{conv}} M = \overline{\text{conv}} M$.

Věta 20. Nechť X je normovaný lineární prostor, $Y \subset X$ uzavřený podprostor a $Z \subset X$ konečněrozměrný podprostor. Pak $\operatorname{span}(Y \cup Z)$ je uzavřený.

Důsledek 21. Nechť X je normovaný lineární prostor. Každý konečněrozměrný podprostor X je uzavřený v X.

Věta 22.

- (a) Prostor c_0 je separabilní.
- (b) Prostor ℓ_{∞} je neseparabilní.
- (c) Je-li K kompaktní metrický prostor, je prostor C(K) separabilní.
- (d) Nechť $\Omega \subset \mathbb{R}^n$ je lebesgueovsky měřitelná a $1 \leq p < \infty$. Pak prostor $L_p(\Omega, \lambda)$ je separabilní.

2. Řady v normovaných lineárních prostorech

Definice 23. Nechť $\{x_n\} \subset X$. Řekneme, že řada $\sum_{n=1}^{\infty} x_n$ konverguje k $x \in X$, pokud $x = \lim_{N \to \infty} \sum_{n=1}^{N} x_n$. Řada $\sum_{n=1}^{\infty} x_n$ je konvergentní, pokud existuje $x \in X$ tak, že $x = \sum_{n=1}^{\infty} x_n$. Řada je absolutně konvergentní, pokud $\sum_{n=1}^{\infty} \|x_n\| < +\infty$.

Fakt 24. Nechť X je normovaný lineární prostor a $\sum_{n=1}^{\infty} x_n$ je konvergentní řada v X. Pak

$$\left\| \sum_{n=1}^{\infty} x_n \right\| \leq \sum_{n=1}^{\infty} \|x_n\|.$$

Věta 25 (Test úplnosti). *Necht' X je normovaný lineární prostor. Pak X je Banachův, právě když každá absolutně konvergentní řada je konvergentní.*

Definice 26. Nechť X je normovaný lineární prostor, Γ je množina a $\{x_\gamma\}_{\gamma\in\Gamma}$ je kolekce prvků prostoru X. Symbol $\sum_{\gamma\in\Gamma}x_\gamma$ nazveme *zobecněnou řadou*. Dále $\mathcal{F}(\Gamma)$ značí systém všech konečných podmnožin Γ . Řekneme, že zobecněná řada $\sum_{\gamma\in\Gamma}x_\gamma$ konverguje (též konverguje bezpodmínečně) k $x\in X$ pokud platí

$$\forall \varepsilon > 0 \quad \exists F \in \mathcal{F}(\Gamma) \quad \forall F' \in \mathcal{F}(\Gamma), F' \supset F : \left\| x - \sum_{\gamma \in F'} x_{\gamma} \right\| < \varepsilon.$$

Existuje-li takové $x \in X$, říkáme, že je zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma}$ (bezpodmínečně) konvergentní a x nazýváme jejím součtem. Konverguje-li zobecněná řada reálných čísel $\sum_{\gamma \in \Gamma} \|x_{\gamma}\|$, pak se zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma}$ nazývá absolutně konvergentní. Pro $\Gamma = \emptyset$ klademe $\sum_{\gamma \in \Gamma} x_{\gamma} = 0$.

Definice 27. Řekneme, že zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma}$ v normovaném lineárním prostoru splňuje *Bolzanovu-Cauchyovu podmínku*, pokud

$$\forall \varepsilon > 0 \quad \exists F \in \mathcal{F}(\Gamma) \quad \forall F' \in \mathcal{F}(\Gamma), F' \cap F = \emptyset \colon \left\| \sum_{\gamma \in F'} x_{\gamma} \right\| < \varepsilon.$$

Věta 28. Nechť $\sum_{\gamma \in \Gamma} x_{\gamma}$ je konvergentní zobecněná řada v normovaném lineárním prostoru X. Pak platí:

- (a) Její součet je určen jednoznačně.
- (b) Splňuje Bolzanovu-Cauchyovu podmínku.
- (c) Je-li $\sum_{\gamma \in \Gamma} x_{\gamma} = x$, pak $\sum_{\gamma \in \Gamma} x_{\pi(\gamma)} = x$ pro každou permutaci (tj. bijekci) $\pi : \Gamma \to \Gamma$.
- (d) $(\|x_{\gamma}\|)_{\gamma \in \Gamma} \in c_0(\Gamma)$.

Tvrzení 29. Necht' $\sum_{\gamma \in \Gamma} a_{\gamma}$ je zobecněná řada nezáporných čísel. Pak tato řada konverguje, právě když

$$\sup \left\{ \sum_{\gamma \in F} a_{\gamma}; \ F \in \mathcal{F}(\Gamma) \right\} < +\infty.$$

Potom platí

$$\sum_{\gamma \in \Gamma} a_{\gamma} = \sup \left\{ \sum_{\gamma \in F} a_{\gamma}; \ F \in \mathcal{F}(\Gamma) \right\}.$$

Věta 30. Nechť X je Banachův prostor.

- (a) Zobecněná řada v X je konvergentní právě tehdy, když splňuje Bolzanovu-Cauchyovu podmínku.
- (b) Každá absolutně konvergentní zobecněná řada v X je konvergentní.
- (c) Je-li zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma} \vee X$ konvergentní a $\Lambda \subset \Gamma$, pak je i zobecněná řada $\sum_{\gamma \in \Lambda} x_{\gamma}$ konvergentní.

Tvrzení 31.

- (a) Nechť zobecněná řada $\sum_{n\in\mathbb{N}} x_n v$ normovaném lineárním prostoru X konverguje k $x\in X$. Pak i řada $\sum_{n=1}^{\infty} x_n$ konverguje k x.
- (b) Nechť řada $\sum_{n=1}^{\infty} x_n$ v normovaném lineárním prostoru X konverguje k $x \in X$ a nechť zobecněná řada $\sum_{n \in \mathbb{N}} x_n$ splňuje Bolzanovu-Cauchyovu podmínku. Pak $\sum_{n \in \mathbb{N}} x_n$ konverguje k x.
- (c) Nechť $\{a_n\}$ je posloupnost nezáporných čísel. Pak zobecněná řada $\sum_{n\in\mathbb{N}} a_n$ konverguje, právě když konverguje řada $\sum_{n=1}^{\infty} a_n$ (a obě pak mají stejný součet).

Důsledek 32. Nechť X je normovaný lineární prostor a $\{x_n\} \subset X$. Pak zobecněná řada $\sum_{n \in \mathbb{N}} x_n$ je absolutně konvergentní, právě když řada $\sum_{n=1}^{\infty} x_n$ je absolutně konvergentní.

Definice 33. Nechť $\{x_n\}$ je posloupnost v normovaném lineárním prostoru X a $x \in X$. Řekneme, že $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně (k x), pokud konverguje zobecněná řada $\sum_{n \in \mathbb{N}} x_n$ (k x).

Věta 34. Nechť $\{x_n\}$ je posloupnost v normovaném lineárním prostoru X. Pak následující tvrzení jsou ekvivalentní:

- (i) $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně.
- (ii) $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$ ke stejnému součtu.
- (iii) $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$.

Věta 35. Každá absolutně konvergentní řada v Banachově prostoru je bezpodmínečně konvergentní. Každá řada v \mathbb{R} je absolutně konvergentní, právě když je bezpodmínečně konvergentní.

3. Lineární operátory a funkcionály

Připomeňme si, že zobrazení $T: X \to Y$ mezi vektorovými prostory X, Y nad \mathbb{K} se nazývá *lineární*, pokud T(x + y) = T(x) + T(y) a $T(\alpha x) = \alpha T(x)$ pro všechna $x, y \in X$ a $\alpha \in \mathbb{K}$.

Fakt 36. Nechť X, Y jsou vektorové prostory, $T: X \to Y$ je lineární zobrazení a $M \subset X$. Pak T(-M) = -T(M) a T(conv M) = conv T(M). Speciálně, je-li M symetrická, pak T(M) je symetrická, a je-li M konvexní, pak T(M) je konvexní.

Tvrzení 37. Nechť X, Y jsou normované lineární prostory a T: $X \to Y$ je lineární zobrazení. Pak následující tvrzení jsou ekvivalentní:

- (i) T je spojité.
- (ii) T je spojité v jednom bodě.

- (iii) T je spojité v 0.
- (iv) Existuje $C \ge 0$ tak, že $||T(x)|| \le C ||x||$ pro každé $x \in X$.
- (v) T je lipschitzovské.
- (vi) T je stejnoměrně spojité.
- (vii) T(A) je omezená pro každou omezenou $A \subset X$.
- (viii) $T(B_X)$ je omezená.
- (ix) $T(U(0,\delta))$ je omezená pro nějaké $\delta > 0$.

Prostor $\mathcal{L}(X,Y)$ s normou

$$||T|| = \sup_{x \in B_X} ||T(x)||.$$

je normovaný lineární prostor.

Lemma 38. Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X,Y)$.

- (a) $||T(x)|| \le ||T|| ||x|| \text{ pro každ\'e } x \in X.$
- (b) $||T|| = \sup_{x \in S_X} ||T(x)|| = \sup_{x \in X \setminus \{0\}} \frac{||T(x)||}{||x||} = \sup_{x \in U_X} ||T(x)||.$
- (c) $||T|| = \inf\{C \ge 0; ||T(x)|| \le C ||x|| \text{ pro každé } x \in X\}.$

Fakt 39. Nechť X, Y jsou normované lineární prostory a $\{T_n\} \subset \mathcal{L}(X,Y)$ je posloupnost operátorů konvergujících k $T \in \mathcal{L}(X,Y)$ v prostoru $\mathcal{L}(X,Y)$. Pak $\{T_n\}$ konverguje k T bodově, tj. pro každé $x \in X$ platí $T_n(x) \to T(x)$ v prostoru Y.

Fakt 40. Necht' X, Y, Z jsou normované lineární prostory, $S \in \mathcal{L}(X, Y)$ a $T \in \mathcal{L}(Y, Z)$. Pak $||T \circ S|| \le ||T|| ||S||$.

Věta 41. Nechť X je normovaný lineární prostor a Y je Banachův prostor. Pak $\mathcal{L}(X,Y)$ je Banachův prostor.

Definice 42. Nechť X je normovaný lineární prostor nad \mathbb{K} . Prostor $\mathcal{L}(X,\mathbb{K})$ značíme X^* a nazýváme jej *duálním prostorem* k prostoru X.

Věta 43. Je-li X normovaný lineární prostor, je prostor X* úplný.

Lemma 44. Nechť X je normovaný lineární prostor a $f \in X^*$. Pak pro každé $x \in X$ platí $|f(x)| = ||f|| \operatorname{dist}(x, \operatorname{Ker} f)$.

Definice 45. Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X, Y)$. Říkáme, že T je

- izomorfismus X na Y (nebo jen izomorfismus), pokud T je bijekce X na Y a inverzní operátor T^{-1} je spojitý;
- izomorfismus X do Y (nebo jen *izomorfismus do*), pokud T je izomorfismus X na Rng T;
- izometrie X na Y (nebo jen izometrie), pokud T je na a ||T(x) T(y)|| = ||x y|| pro všechna $x, y \in X$;
- izometrie X do Y (nebo jen izometrie do), pokud ||T(x) T(y)|| = ||x y|| pro všechna $x, y \in X$.

Říkáme, že prostory X a Y jsou

- izomorfni, pokud existuje lineárni izomorfismus X na Y;
- *izometrické*, pokud existuje lineární izometrie X na Y.

Říkáme, že prostor X je

- *izomorfně vnořen* do Y, pokud existuje lineární izomorfismus X do Y;
- *izometricky vnořen* do Y, pokud existuje lineární izometrie X do Y.

Poznámka 46. Uvědomme si, že lineární zobrazení $T: X \to Y$ je izometrie do, právě když ||T(z)|| = ||z|| pro každé $z \in X$.

Tvrzení 47. *Necht' X, Y jsou normované lineární prostory.*

- (a) $T \in \mathcal{L}(X,Y)$ je izomorfismus do právě tehdy, když existují konstanty $C_1, C_2 > 0$ takové, že $C_1 ||x|| \le ||T(x)|| \le C_2 ||x||$ pro každé $x \in X$.
- (b) Je-li X izomorfní s Y a X je Banachův, je i Y Banachův.
- (c) Je-li X Banachův a $T \in \mathcal{L}(X,Y)$ je izomorfismus do, pak Rng T je uzavřený v Y.

Fakt 48. Nechť X, Y, Z jsou normované lineární prostory a $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$.

- (a) Jsou-li S, T izomorfismy do, pak $S \circ T$ je izomorfismus do.
- (b) Jsou-li S, T izometrie do, pak $S \circ T$ je izometrie do.

Věta 49. Nechť X, \widehat{X} a Y jsou normované lineární prostory, X je hustý v \widehat{X} a Y je úplný. Nechť dále $T \in \mathcal{L}(X,Y)$. Pak existuje právě jeden operátor $\widehat{T} \in \mathcal{L}(\widehat{X},Y)$ rozšiřující T, tj. $\widehat{T} \upharpoonright_X = T$. Navíc platí $\|\widehat{T}\| = \|T\|$.

4. Konečněrozměrné prostory

Lemma 50 (o skoro kolmici, Frigyes Riesz (1918)). *Necht' X je normovaný lineární prostor. Je-li Y vlastní uzavřený podprostor X, pak pro každé* $\varepsilon > 0$ *existuje* $x \in S_X$ *takové, že* dist $(x, Y) > 1 - \varepsilon$.

Věta 51. Nechť X je normovaný lineární prostor nad K. Pak následující tvrzení jsou ekvivalentní:

- (i) dim $X < \infty$.
- (ii) Existuje $n \in \mathbb{N}$ takové, že X je izomorfní s $(\mathbb{K}^n, \|\cdot\|_2)$.
- (iii) B_X je kompaktní.
- (iv) Každé lineární zobrazení z X do nějakého normovaného lineárního prostoru je spojité.
- (v) Každá lineární forma na X je spojitá.
- (vi) Každé dvě normy na X jsou ekvivalentní.

5. Operace s normovanými lineárními prostory, projekce a doplňky

Jsou-li $(X, \|\cdot\|_X)$ a $(Y, \|\cdot\|_Y)$ normované lineární prostory nad \mathbb{K} a $1 \le p \le \infty$, pak funkce $(x, y) \mapsto \|(x, y)\|_p$, kde

$$\|(x,y)\|_{p} = \begin{cases} \left(\|x\|_{X}^{p} + \|y\|_{Y}^{p}\right)^{\frac{1}{p}} & \text{pro } p < \infty, \\ \max\{\|x\|_{X}, \|y\|_{Y}\} & \text{pro } p = \infty, \end{cases}$$
(1)

je norma na vektorovém prostoru $X \times Y$.

Definice 52. Nechť $(X, \|\cdot\|_X)$ a $(Y, \|\cdot\|_Y)$ jsou normované lineární prostory a $1 \le p \le \infty$. Pak prostorem $X \oplus_p Y$ rozumíme normovaný lineární prostor $(X \times Y, \|\cdot\|_p)$, kde norma $\|\cdot\|_p$ je daná vzorcem (1).

Nechť X je vektorový prostor nad \mathbb{K} a Y je jeho podprostor. Definujme relaci ekvivalence \sim na X jako

$$x \sim y \Leftrightarrow x - y \in Y$$
.

Pro $x \in X$ pak definujeme \hat{x} jako třídu ekvivalence obsahující x, tedy

$$\widehat{x} = \{ y \in X; \ y \sim x \} = \{ y \in X; \ y - x \in Y \} = x + Y.$$

Na množině

$$X/Y = {\widehat{x}; x \in X}$$

definujeme operace $\widehat{x} + \widehat{y} = \widehat{x + y}$ a $\alpha \widehat{x} = \widehat{\alpha x}$ pro $\widehat{x}, \widehat{y} \in X/Y$ a $\alpha \in \mathbb{K}$.

Definice 53. Nechť X je vektorový prostor a Y je jeho podprostor. Pak vektorový prostor X/Y nazýváme *faktorprostorem* prostoru X podle Y nebo též *kvocientem* X podle Y. Dále definujeme tzv. *kanonické kvocientové zobrazení* $q: X \to X/Y$ předpisem $q(x) = \widehat{x}$.

Nechť X je normovaný lineární prostor a Y jeho uzavřený podprostor. Pak $(X/Y, \|\cdot\|_{X/Y})$ je normovaný lineární prostor s normou

$$\|\widehat{x}\|_{X/Y} = \inf_{y \in \widehat{x}} \|y\| = \inf_{y \in Y} \|x + y\| = \inf_{y \in Y} \|x - y\| =$$
$$= \operatorname{dist}(x + Y, 0) = \operatorname{dist}(x, Y),$$

Tato norma se nazývá kanonická kvocientová norma.

Tvrzení 54. Nechť X je normovaný lineární prostor a Y jeho uzavřený podprostor. Pak kanonické kvocientové zobrazení $q: X \to X/Y$ je spojitý lineární operátor, který je na a splňuje $q(U_X) = U_{X/Y}$. Je-li Y vlastní, pak ||q|| = 1.

Věta 55. Nechť X je Banachův prostor a Y jeho uzavřený podprostor. Pak X/Y je též Banachův prostor.

Definice 56. Nechť X je vektorový prostor a A, B jsou jeho podprostory. Říkáme, že X je direktním (též algebraickým) součtem A a B (značíme $X = A \oplus B$) pokud $A \cap B = \{0\}$ a $X = A + B = \operatorname{span}(A \cup B)$. Je-li A podprostor X, pak každý podprostor $B \subset X$ splňující $A \oplus B = X$ se nazývá algebraický doplněk $A \vee X$.

Definice 57. Nechť X je vektorový prostor. Lineární zobrazení $P: X \to X$ se nazývá (lineární) projekce, pokud $P^2 = P \circ P = P$.

Fakt 58. *Necht' X je vektorový prostor.*

- (a) Je-li $P: X \to X$ lineární projekce, pak $P \upharpoonright_{\operatorname{Rng} P} = Id_{\operatorname{Rng} P}$.
- (b) Je-li Y podprostor X a $P: X \to Y$ lineární zobrazení splňující $P \upharpoonright_Y = Id_Y$, pak P je projekce X na Y.

Tvrzení 59. Nechť X je vektorový prostor. Jsou-li P_A , P_B projekce příslušné rozkladu $X = A \oplus B$, pak $P_A + P_B = Id_X$, Rng $P_A = A$, Ker $P_A = B$, Rng $P_B = B$ a Ker $P_B = A$. Na druhou stranu, je-li P lineární projekce v X, pak $X = A \oplus B$, kde A = Rng P, B = Ker P a $P = P_A$.

Věta 60. Nechť X je vektorový prostor a Y jeho podprostor.

- (a) Prostor Y má algebraický doplněk v X.
- (b) Je-li A algebraický doplněk Y v X, je A algebraicky izomorfní s X/Y; speciálně $\dim(A) = \dim(X/Y)$.

Definice 61. Je-li X vektorový prostor a Y jeho podprostor, pak *kodimenzí* Y (značíme codim Y) rozumíme dimenzi libovolného algebraického doplňku Y (což je rovno dimenzi X/Y).

Definice 62. Je-li X normovaný lineární prostor a $X = A \oplus B$, pak říkáme, že X je topologickým součtem A a B, pokud jsou příslušné projekce P_A a P_B spojité. Tento fakt značíme $X = A \oplus_t B$. Je-li A podprostor X, pak každý podprostor $B \subset X$ splňující $A \oplus_t B = X$ se nazývá topologický doplněk $A \vee X$. Má-li A topologický doplněk, pak říkáme, že je komplementovaný $(\vee X)$.

Věta 63. Nechť X je normovaný lineární prostor a $Y, Z \subset X$ jeho podprostory.

- (a) Je-li $X = Y \oplus_t Z$, jsou Y a Z uzavřené.
- (b) Je-li X Banachův a $X = Y \oplus Z$, kde Y a Z jsou uzavřené, je $X = Y \oplus_t Z$.

Věta 64. Nechť X je normovaný lineární prostor a Y, Z jsou jeho podprostory splňující $X = Y \oplus Z$. Pak $X = Y \oplus_t Z$, právě když zobrazení $T: X \to Y \oplus_1 Z$, $T(x) = (P_Y(x), P_Z(x))$ je izomorfismus.

6. Hilbertovy prostory

Definice 65. *Skalárním součinem* na vektorovém prostoru X nad \mathbb{K} rozumíme funkci $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ s následujícími vlastnostmi:

- (i) funkce $x \mapsto \langle x, y \rangle$ je lineární pro každé $y \in X$,
- (ii) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ pro každé $x, y \in X$,
- (iii) $\langle x, x \rangle \ge 0$ pro každé $x \in X$,
- (iv) $\langle x, x \rangle = 0$ právě tehdy, když x = 0.

Dvojici $(X, \langle \cdot, \cdot \rangle)$ nazýváme *prostor se skalárním součinem*.

Tvrzení 66 (Cauchyova-Schwarzova nerovnost). Nechť X je prostor se skalárním součinem. Pak

- (i) $|\langle x, y \rangle| \leq \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$ pro každé $x, y \in X$.
- (ii) Funkce $||x|| = \sqrt{\langle x, x \rangle}$ pro $x \in X$ je norma na X.

Definice 67. Prostor se skalárním součinem $(X, \langle \cdot, \cdot \rangle)$ se nazývá *Hilbertův prostor*, pokud je úplný v metrice indukované skalárním součinem, tj. pokud $(X, \|\cdot\|)$ je Banachův prostor, kde $\|x\| = \sqrt{\langle x, x \rangle}$.

Tvrzení 68. Nechť $(X, \langle \cdot, \cdot \rangle)$ je prostor se skalárním součinem nad \mathbb{K} . Pak funkce $\langle \cdot, \cdot \rangle$: $X \times X \to \mathbb{K}$ je lipschitzovská na omezených množinách (a tedy spojitá).

Fakt 69. Necht' X je prostor se skalárním součinem a $x, y \in X$. Pak

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle.$$

Tvrzení 70 (rovnoběžníkové pravidlo). Nechť X je prostor se skalárním součinem. Pak pro všechna $x, y \in X$ platí

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Tvrzení 71 (polarizační vzorec). Nechť X je prostor se skalárním součinem. Pak pro všechna $x, y \in X$ platí

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

v reálném případě, resp.

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$

v komplexním případě.

Důsledek 72. Nechť X, Y jsou prostory se skalárním součinem a T: $X \to Y$ je lineární izometrie do. Pak T zachovává skalární součin, tj. $\langle T(x), T(y) \rangle = \langle x, y \rangle$ pro každé $x, y \in X$.

Věta 73. Nechť X, Y jsou prostory se skalárním součinem nad \mathbb{K} . Pak na prostoru $X \oplus_2 Y$ existuje skalární součin, který rozšiřuje skalární součiny na X a Y, a který indukuje normu $\|\cdot\|_2$. Speciálně, jsou-li X, Y Hilbertovy prostory, pak $X \oplus_2 Y$ je Hilbertův prostor.

Definice 74. Nechť X je prostor se skalárním součinem. Prvky $x,y \in X$ se nazývají ortogonální (na sebe kolmé), pokud $\langle x,y \rangle = 0$. Tento fakt značíme též $x \perp y$. Prvek x je ortogonální (kolmý) k množině $A \subset X$, pokud je ortogonální ke každému jejímu prvku, což značíme $x \perp A$. Množiny $A, B \subset X$ jsou ortogonální, pokud $x \perp y$ pro každé $x \in A$, $y \in B$, což značíme $A \perp B$. Množina $A^{\perp} = \{x \in X; x \perp A\}$ se nazývá ortogonální doplněk A.

Fakt 75 (Pythagorova věta, asi 500 p.n.l.). *Nechť X je prostor se skalárním součinem a x*, $y \in X$. *Je-li x* $\perp y$, pak

$$||x \pm y||^2 = ||x||^2 + ||y||^2.$$

Obecněji, jsou-li $x_1, \ldots, x_n \in X$ navzájem ortogonální, pak

$$||x_1 + \ldots + x_n||^2 = ||x_1||^2 + \cdots + ||x_n||^2.$$

Lemma 76. Ortogonální doplněk množiny v prostoru se skalárním součinem je uzavřený podprostor.

Lemma 77. Nechť X je prostor se skalárním součinem. Jsou-li $x, z \in X$ takové, že $\langle x, y \rangle = \langle z, y \rangle$ pro každé $y \in X$, pak x = z.

Věta 78 (Frigyes Riesz, 1934). *Nechť C je uzavřená neprázdná konvexní množina v Hilbertově prostoru H. Pak pro každé* $x \in H$ existuje právě jedno $y \in C$ tak, že ||x - y|| = dist(x, C).

Lemma 79 (F. Riesz, 1934). Necht' X je prostor se skalárním součinem, Y je jeho podprostor a $x \in X$. Pak $y \in Y$ splňuje ||x - y|| = dist(x, Y) právě tehdy, když $x - y \in Y^{\perp}$.

Věta 80 (F. Riesz, 1934). Nechť Y je uzavřený podprostor Hilbertova prostoru H. Pak $H = Y \oplus_t Y^{\perp}$ a projekce $P_Y : H \to Y$ příslušná rozkladu $H = Y \oplus Y^{\perp}$ má následující vlastnosti:

- (i) $||P_Y(x) x|| = \operatorname{dist}(x, Y) \le ||x|| \operatorname{pro každ\'e} x \in H$,
- (ii) $||P_Y(x)|| \le ||x||$ pro každé $x \in H$.

Věta 81. Nechť X je prostor se skalárním součinem a $\{x_n\}_{n=1}^{\infty} \subset X$ je posloupnost navzájem ortogonálních prvků. Pak řada $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně, právě když konverguje.

Definice 82. Je-li X prostor se skalárním součinem a $A \subset X$, řekneme, že množina A je

- ortonormální, pokud $A \subset S_X$ a $x \perp y$ pro všechna $x, y \in A, x \neq y$;
- maximální ortonormální, pokud A je ortonormální a neexistuje ortonormální množina obsahující A různá od A;
- ortonormální báze, pokud $A = \{e_{\gamma}; \ \gamma \in \Gamma\}$ je ortonormální množina a každé $x \in X$ lze vyjádřit jako $x = \sum_{\gamma \in \Gamma} x_{\gamma} e_{\gamma}$ pro nějaké skaláry x_{γ} .

Fakt 83. Je-li A ortonormální množina v prostoru se skalárním součinem, pak $||x - y|| = \sqrt{2}$ pro každé dva prvky $x, y \in A$, $x \neq y$.

Věta 84. Každý prostor se skalárním součinem obsahuje maximální ortonormální systém.

Lemma 85. Nechť $\{e_{\gamma}; \ \gamma \in \Gamma\}$ je ortonormální soustava v prostoru se skalárním součinem a $x = \sum_{\gamma \in \Gamma} x_{\gamma} e_{\gamma}$, kde x_{γ} jsou skaláry. Pak $x_{\gamma} = \langle x, e_{\gamma} \rangle$ pro každé $\gamma \in \Gamma$.

Fakt 86. Nechť $\{e_i\}_{i\in F}$ je konečná ortonormální množina v prostoru se skalárním součinem. Pak $\|\sum_{i\in F} a_i e_i\|^2 = \sum_{i\in F} |a_i|^2$ pro libovolné skaláry a_i , $i\in F$.

Důsledek 87. Každá ortonormální množina v prostoru se skalárním součinem je lineárně nezávislá.

Lemma 88. Nechť X je prostor se skalárním součinem a $\{e_i\}_{i\in F}$ je konečná ortonormální množina v X. Označme $Y=\text{span}\{e_i;i\in F\}$. Pak pro každé $x\in X$ je $x-\sum_{i\in F}\langle x,e_i\rangle e_i\in Y^\perp$.

Věta 89 (Besselova nerovnost). *Je-li* $\{e_{\gamma}\}_{{\gamma}\in{\Gamma}}$ ortonormální soustava v prostoru X se skalárním součinem, platí $\sum_{{\gamma}\in{\Gamma}} |\langle x,e_{\gamma}\rangle|^2 \le \|x\|^2$ pro každé $x\in X$.

Věta 90. Nechť X je prostor se skalárním součinem a $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ je ortonormální systém v X. Uvažujme následující tvrzení:

- (i) $||x||^2 = \sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2$ pro každé $x \in X$ (tzv. Parsevalova rovnost).
- (ii) $x = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma} \text{ pro každ\'e } x \in X.$
- (iii) $\{e_{\gamma}\}$ je ortonormální báze.
- (iv) $X = \overline{\operatorname{span}}\{e_{\gamma}; \ \gamma \in \Gamma\}.$
- (v) $\{e_{\gamma}\}$ je maximální ortonormální systém.

 $Pak(i) \Leftrightarrow (ii) \Leftrightarrow (iv) \Rightarrow (v)$. Je-li X Hilbertův, pak jsou všechna tvrzení ekvivalentní.

Důsledek 91. Každý Hilbertův prostor má ortonormální bázi.

Věta 92 (Ernst Sigismund Fischer (1907), Frigyes Riesz (1907)). *Je-li* $\{e_{\gamma}\}_{\gamma \in \Gamma}$ ortonormální báze Hilbertova prostoru H, je zobrazení $T: H \to \ell_2(\Gamma)$, $T(x) = \{\langle x, e_{\gamma} \rangle\}_{\gamma \in \Gamma}$ izometrie H a $\ell_2(\Gamma)$. Tedy každý Hilbertův prostor je izometrický prostoru $\ell_2(\Gamma)$ pro vhodnou množinu Γ .

Tvrzení 93. Nechť X je prostor se skalárním součinem. Je-li dim $X=n\in\mathbb{N}$, pak každá ortonormální báze má n prvků. Je-li dim $X=\infty$ a X je separabilní, pak každá ortonormální báze je nekonečná spočetná.

Věta 94 (Heinrich Löwig (1934), F. Riesz (1934)). Nechť H je Hilbertův prostor. Pro každé $y \in H$ označme $f_y \in H^*$ funkcionál definovaný jako $f_y(x) = \langle x, y \rangle$ pro $x \in H$. Pak zobrazení $I: H \to H^*$, $I(y) = f_y$ je sdruženě lineární izometrie H na H^* .

Lemma 95. Nechť X je vektorový prostor, f je lineární forma na X a $x \in X \setminus \text{Ker } f$. Pak $X = \text{Ker } f \oplus \text{span}\{x\}$. Tedy codim Ker f = 1.

II. Hahnova-Banachova věta a dualita

1. Hahnova-Banachova věta

Tvrzení 96. Nechť X je komplexní vektorový prostor. Pak funkce $f: X \to \mathbb{C}$ je (komplexní) lineární forma, právě když $\operatorname{Re} f$ je reálně-lineární forma na $X_{\mathbb{R}}$ a platí $\operatorname{Im} f(x) = -\operatorname{Re} f(ix)$ pro každé $x \in X$.

Definice 97. Nechť X je vektorový prostor nad \mathbb{K} . Funkce $p: X \to \mathbb{R}$ se nazývá sublineární funkcionál, pokud platí

- $p(x + y) \le p(x) + p(y)$ pro každé $x, y \in X$,
- p(tx) = tp(x) pro každé $x \in X$ a $t \in [0, +\infty)$.

Funkce $p: X \to [0, +\infty)$ se nazývá pseudonorma, pokud platí

- $p(x + y) \le p(x) + p(y)$ pro každé $x, y \in X$,
- $p(\alpha x) = |\alpha| p(x)$ pro každé $x \in X$ a $\alpha \in \mathbb{K}$.

Věta 98 (Hans Hahn (1927), Stefan Banach (1929)). Nechť X je vektorový prostor a Y je podprostor X.

- (a) Je-li X reálný, p je sublineární funkcionál na X a f je lineární forma na Y splňující $f(x) \leq p(x)$ pro každé $x \in Y$, pak existuje lineární forma F na X taková, že $F \upharpoonright_Y = f$ a $F(x) \leq p(x)$ pro každé $x \in X$.
- (b) Je-li p pseudonorma na X a f je lineární forma na Y splňující $|f(x)| \le p(x)$ pro každé $x \in Y$, pak existuje lineární forma F na X taková, že $F \upharpoonright_Y = f$ a $|F(x)| \le p(x)$ pro každé $x \in X$.

Věta 99 (Hahnova-Banachova). Nechť X je normovaný lineární prostor, Y je podprostor X a $f \in Y^*$. Pak existuje $F \in X^*$ takové, že $F \upharpoonright_Y = f$ a ||F|| = ||f||.

Důsledek 100. Nechť X je netriviální normovaný lineární prostor. Pro každé $x \in X$ existuje $f \in S_{X^*}$ takové, že f(x) = ||x||. Odtud plyne, že jsou-li $x, y \in X$ různé body, pak existuje $f \in X^*$ takový, že $f(x) \neq f(y)$ (říkáme, že X^* odděluje body X).

Důsledek 101 (Duální vyjádření normy). *Je-li X normovaný lineární prostor a* $x \in X$, $pak ||x|| = \max_{f \in B_{Y^*}} |f(x)|$.

Věta 102 (Oddělování bodu a podprostoru). *Nechť X je normovaný lineární prostor, Y je uzavřený podprostor X a x* \notin *Y. Pak existuje* $f \in S_{X^*}$ *tak, že* $f \upharpoonright_Y = 0$ *a* $f(x) = \operatorname{dist}(x, Y) > 0$.

Věta 103. Nechť X je normovaný lineární prostor.

- (a) Každý konečněrozměrný podprostor X je komplementovaný.
- (b) Každý uzavřený podprostor X konečné kodimenze je komplementovaný.

Definice 104. Je-li X normovaný lineární prostor a $A \subset X$, pak definujeme tzv. *anihilátor* množiny A jako

$$A^{\perp} = \{ f \in X^*; \ f(x) = 0 \text{ pro každé } x \in A \}.$$

Pro množinu $B\subset X^*$ pak definujeme tzv. *zpětný anihilátor* jako

$$B_{\perp} = \{x \in X; f(x) = 0 \text{ pro každé } f \in B\}.$$

Lemma 105. Nechť X je normovaný lineární prostor a $A \subset X$, $B \subset X^*$. Pak

- (a) A^{\perp} je uzavřený podprostor X^* ,
- (b) B_{\perp} je uzavřený podprostor X,
- $(c) (A^{\perp})_{\perp} = \overline{\operatorname{span}} A,$
- $(d) (B_{\perp})^{\perp} \supset \overline{\operatorname{span}} B.$

2. Reprezentace duálů

Tvrzení 106. Nechť X a Y jsou izometrické normované lineární prostory. Pak i prostory X* a Y* jsou izometrické.

Definice 107. Nechť $p \in \mathbb{R}$, $p \ge 1$, nebo $p = \infty$. Číslo $q \in \mathbb{R}$, $q \ge 1$, nebo $q = \infty$ nazýváme *sdruženým exponentem* k p, pokud platí $\frac{1}{p} + \frac{1}{q} = 1$, přičemž používáme konvenci, že $\frac{1}{\infty} = 0$.

Věta 108 (Reprezentace duálů ke klasickým prostorům).

(a) Prostor c_0^* je lineárně izometrický s prostorem ℓ_1 pomocí zobrazení $I:\ell_1\to c_0^*$, $I(y)=f_y$, kde

$$f_{y}(x) = \sum_{i=1}^{\infty} x_{i} y_{i}.$$

(b) Je-li $1 \leq p < \infty$ a q je sdružený exponent k p, pak prostor ℓ_p^* je lineárně izometrický s prostorem ℓ_q pomocí zobrazení $I: \ell_q \to \ell_p^*, I(y) = f_y, kde$

$$f_{y}(x) = \sum_{i=1}^{\infty} x_{i} y_{i}.$$

(c) Je-li $(\Omega, \mathcal{S}, \mu)$ libovolný prostor s mírou, $1 a q je sdružený exponent k p, pak prostor <math>L_p(\mu)^*$ je lineárně izometrický s prostorem $L_q(\mu)$ pomocí zobrazení $I: L_q(\mu) \to L_p(\mu)^*$, $I(g) = \varphi_g$, kde

$$\varphi_g(f) = \int_{\Omega} fg \, \mathrm{d}\mu.$$

(d) Je-li $(\Omega, \mathcal{S}, \mu)$ prostor se σ -konečnou mírou, pak prostor $L_1(\mu)^*$ je lineárně izometrický s prostorem $L_{\infty}(\mu)$ pomocí zobrazení $I: L_{\infty}(\mu) \to L_1(\mu)^*$, $I(g) = \varphi_g$, kde

$$\varphi_{g}(f) = \int_{\Omega} fg \, \mathrm{d}\mu.$$

Věta 109. Nechť X, Y jsou normované lineární prostory a $1 \le p \le \infty$. Nechť q je sdružený exponent k p. Pak zobrazení $I: X^* \oplus_q Y^* \to (X \oplus_p Y)^*$ dané předpisem

$$I(f,g)(x,y) = f(x) + g(y)$$

je lineární izometrie $X^* \oplus_q Y^*$ na $(X \oplus_p Y)^*$.

Definice 110. Nechť K je kompaktní prostor. Řekneme, že lineární funkcionál Λ na C(K) je nezáporný, jestliže $\Lambda(f) \geq 0$ pro každou nezápornou funkci $f \in C(K)$.

Fakt 111. Nechť K je kompaktní prostor a Λ je nezáporný lineární funkcionál na C(K). Pak Λ je monotónní, tj. $\Lambda(f) \leq \Lambda(g)$ kdykoli $f,g \in C(K)$ jsou reálné funkce splňující $f \leq g$. Dále Λ je automaticky spojitý a pro reálnou $f \in C(K)$ platí $|\Lambda(f)| \leq \Lambda(|f|)$. Tedy v reálném případě platí $|\Lambda(f)| = \Lambda(1)$.

Věta 112 (O reprezentaci nezáporných lineárních funkcionálů na C(K)). Nechť K je kompaktní prostor a Λ je nezáporný lineární funkcionál na C(K). Pak existuje jednoznačně určená regulární borelovská nezáporná míra μ na K splňující $\Lambda(f) = \int_K f \, \mathrm{d}\mu$ pro každé $f \in C(K)$.

Věta 113 (Rieszova věta o reprezentaci $C(K)^*$). *Je-li K kompaktní prostor, pak prostor* $C(K)^*$ *je lineárně izometrický s prosto*rem M(K) všech regulárních borelovských komplexních (resp. znaménkových) měr na K pomocí zobrazení $I: M(K) \to C(K)^*$, $I(\mu) = \varphi_{\mu}$, kde

$$\varphi_{\mu}(f) = \int_{K} f \, \mathrm{d}\mu.$$

Věta 114. Nechť X je normovaný lineární prostor a Y je jeho podprostor.

(a) Necht' Y je uzavřený. Zobrazení $I: Y^{\perp} \to (X/Y)^*$ dané předpisem

$$I(f)(\widehat{x}) = f(x)$$

je lineární izometrie Y^{\perp} na $(X/Y)^*$.

(b) Zobrazení $I: X^*/Y^{\perp} \to Y^*$ dané předpisem

$$I(\widehat{f}) = f \upharpoonright_{Y}$$

je lineární izometrie X^*/Y^{\perp} na Y^* .

Tedy $(X/Y)^*$ lze identifikovat s Y^{\perp} a Y^* lze identifikovat s X^*/Y^{\perp} .

3. Druhý duál a reflexivita

Definice 115. Nechť X je normovaný lineární prostor. Symbolem X^{**} značíme $(X^*)^*$, tj. duál k prostoru X^* . Tento prostor nazýváme $druhým\ duálem$.

Je-li $x \in X$, pak definujeme tzv. evaluační funkcionál $\varepsilon_x \in X^{**}$ předpisem $\varepsilon_x(f) = f(x)$ pro každé $f \in X^*$.

Definice 116. Nechť X je normovaný lineární prostor. Zobrazení $\varepsilon: X \to X^{**}$ dané předpisem $\varepsilon(x) = \varepsilon_x$ se nazývá *kanonické vnoření* X *do* X^{**} .

Tvrzení 117. Nechť X je normovaný lineární prostor. Pak kanonické vnoření $\varepsilon: X \to X^{**}$ je lineární izometrie do. Je-li tedy X navíc Banachův, pak $\varepsilon(X)$ je uzavřený podprostor X^{**}

Tvrzení 118. Nechť X je normovaný lineární prostor. Pak dim $X^* = \dim X$, a to i v případě, že dim $X = \infty$.

Věta 119. Pro každý normovaný lineární prostor X existuje jeho zúplnění, tj. Banachův prostor takový, že X je jeho hustý podprostor. Pro každý prostor se skalárním součinem X existuje jeho zúplnění, tj. Hilbertův prostor takový, že X je jeho hustý podprostor. Tato rozšíření jsou určena jednoznačně až na izometrii, tj. jsou-li X_1 , X_2 dvě zúplnění X, pak existuje lineární izometrie X_1 na X_2 , která je na X identitou.

Definice 120. Banachův prostor X se nazývá *reflexivní*, pokud $X^{**} = \varepsilon(X)$.

Věta 121. Každý Hilbertův prostor je reflexivní.

Věta 122. Necht' X, Y jsou Banachovy prostory.

- (a) Je-li X izomorfní s reflexivním prostorem, pak je i X reflexivní.
- (b) Uzavřený podprostor reflexivního prostoru je reflexivní.
- (c) Prostor X je reflexivní právě tehdy, když jeho duál X^* je reflexivní.
- (d) Jsou-li X, Y reflexivní, je prostor $X \oplus_p Y$ reflexivní pro libovolné $1 \le p \le \infty$.
- (e) Je-li X reflexivní a Y jeho uzavřený podprostor, pak je X/Y reflexivní.

Příklady 123.

- (a) Každý konečněrozměrný prostor je reflexivní.
- (b) Prostor $L_p(\mu)$ je reflexivní pro libovolnou míru μ a 1 .
- (c) Prostory $c_0, \ell_1, \ell_\infty, L_1([0,1]), L_\infty([0,1])$ a C([0,1]) nejsou reflexivní.
- (d) Existuje Banachův prostor J (tzv. Jamesův prostor), který není reflexivní, i když je izometrický s J^{**} .

III. Úplnost v Banachových prostorech

Věta 124 (Princip stejnoměrné omezenosti). *Nechť X je Banachův prostor, Y je normovaný lineární prostor a* $A \subset \mathcal{L}(X,Y)$. *Pak následující tvrzení jsou ekvivalentní:*

- (i) $\sup\{||T||; T \in A\} < +\infty$.
- (ii) Pro každé $x \in X$ je $\sup\{||T(x)||; T \in A\} < +\infty$.

Důsledek 125. Nechť X je Banachův prostor, Y je normovaný lineární prostor a $\{T_n\}$ je posloupnost v $\mathcal{L}(X,Y)$ taková, že pro každé $x \in X$ existuje $T(x) = \lim_{n \to \infty} T_n(x)$. Pak $T \in \mathcal{L}(X,Y)$ a $||T|| \le \liminf ||T_n||$.

Definice 126. Zobrazení $f: X \to Y$ mezi metrickými prostory X, Y se nazývá *otevřené*, pokud f(G) je otevřená množina v Y pro každou otevřenou množinu $G \subset X$.

Věta 127 (O otevřeném zobrazení, Juliusz Paweł Schauder, 1930). *Nechť X, Y jsou Banachovy prostory a T* $\in \mathcal{L}(X,Y)$ *je na. Pak T je otevřené zobrazení.*

Lemma 128 (J. P. Schauder, 1930). *Necht' X je Banachův prostor, Y je normovaný lineární prostor a T* $\in \mathcal{L}(X,Y)$. *Jestliže* r,s>0 *jsou taková, že* $U(0,s)\subset \overline{T(U(0,r))}$, *pak dokonce* $U(0,s)\subset T(U(0,r))$.

Důsledek 129 (S. Banach, 1929). Nechť X, Y jsou Banachovy prostory a $T \in \mathcal{L}(X, Y)$. Pak T je izomorfismus X na Y, právě když T je prostý a na.

Důsledek 130. Necht' X, Y jsou Banachovy prostory a $T \in \mathcal{L}(X,Y)$ je na. Pak platí:

- (a) Existuje c > 0 takové, že pro každé $y \in Y$ existuje $x \in T^{-1}(y)$ splňující $||x|| \le c||y||$.
- (b) Zobrazení $\widehat{T}: X/\operatorname{Ker} T \to Y$ dané předpisem $\widehat{T}(\widehat{x}) = T(x)$ je lineární izomorfismus na. Tedy prostor Y je izomorfní s $X/\operatorname{Ker} T$.

Definice 131. Je-li $f: X \to Y$ zobrazení množiny X do množiny Y, pak množinu

$$\operatorname{graf} f = \{(x, y) \in X \times Y; \ y = f(x)\}\$$

nazýváme grafem zobrazení f. Říkáme, že zobrazení $f: X \to Y$, kde X, Y jsou metrické prostory, má uzavřený graf, pokud množina graf f je uzavřená v $X \times Y$.

Věta 132 (O uzavřeném grafu, S. Banach, 1932). Nechť X, Y jsou Banachovy prostory a $T: X \to Y$ je lineární zobrazení. Pak T je spojité, právě když má uzavřený graf.

IV. Lineární operátory

1. Duální operátory

Definice 133. Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X, Y)$. Operátor $T^*: Y^* \to X^*$ definovaný předpisem

$$T^* f(x) = f(Tx)$$

pro $f \in Y^*$ a $x \in X$ se nazývá duální (nebo též adjungovaný) operátor k T. (Ve Větě 134 dokážeme, že T^* je dobře definovaný.) Operátor $(T^*)^*$ (tj. operátor duální k T^*) značíme T^{**} .

Věta 134. Nechť X, Y, Z jsou normované lineární prostory.

- (a) Je-li $T \in \mathcal{L}(X,Y)$, je $T^*f \in X^*$ pro každé $f \in Y^*$. Dále $T^* \in \mathcal{L}(Y^*,X^*)$ a $||T^*|| = ||T||$.
- (b) Zobrazení $T \mapsto T^*$ je lineární izometrie z $\mathcal{L}(X,Y)$ do $\mathcal{L}(Y^*,X^*)$.
- (c) Necht' $T \in \mathcal{L}(X,Y)$ a $S \in \mathcal{L}(Y,Z)$. Pak $(S \circ T)^* = T^* \circ S^*$. Dále $Id_Y^* = Id_{X^*}$.

Věta 135. *Jsou-li X, Y normované lineární prostory a T* $\in \mathcal{L}(X,Y)$, pak platí

- (a) $\operatorname{Ker} T^* = (\operatorname{Rng} T)^{\perp}$,
- (b) $\operatorname{Ker} T = (\operatorname{Rng} T^*)_{\perp}$,
- (c) $\overline{\text{Rng }T} = (\text{Ker }T^*)_{\perp}$,
- (d) $\overline{\operatorname{Rng} T^*} \subset (\operatorname{Ker} T)^{\perp}$.

(e) Jsou-li navíc X, Y Banachovy a Rng T je uzavřený, pak Rng $T^* = (\text{Ker } T)^{\perp}$.

Tvrzení 136 (J. P. Schauder, 1930). Nechť X, Y jsou normované lineární prostory, $\varepsilon_X : X \to X^{**}$ a $\varepsilon_Y : Y \to Y^{**}$ jsou kanonická vnoření do druhých duálů a $T \in \mathcal{L}(X,Y)$. Pak

$$T^{**} \circ \varepsilon_X = \varepsilon_Y \circ T.$$

Tedy $T^{**}(\varepsilon_X(X)) \subset \varepsilon_Y(Y)$ a označíme-li $\varepsilon: Y \to \varepsilon_Y(Y)$, $\varepsilon = \varepsilon_Y$, a $S: \varepsilon_X(X) \to \varepsilon_Y(Y)$, $S = T^{**} \upharpoonright_{\varepsilon_X(X)}$, pak $T = \varepsilon^{-1} \circ S \circ \varepsilon_X$.

Věta 137. Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X, Y)$.

- (a) T^* je prostý, právě když Rng T je hustý v Y.
- (b) Je-li T izomorfismus na, pak T^* je izomorfismus na a platí $(T^*)^{-1} = (T^{-1})^*$.
- (c) Je-li T izometrie na, pak T^* je izometrie na.

Jsou-li X, Y úplné, pak v (b) a (c) platí i opačné implikace.

2. Kompaktní operátory

Definice 138. Nechť X,Y jsou normované lineární prostory a $T:X\to Y$ je lineární zobrazení. Pak T se nazývá *kompaktní operátor*, pokud pro každou omezenou $A\subset X$ je množina T(A) relativně kompaktní v Y. Množinu všech kompaktních lineárních operátorů z X do Y značíme $\mathcal{K}(X,Y)$.

Lineární operátor T se nazývá konečněrozměrný, pokud Rng T má konečnou dimenzi. V dalším budeme pracovat takřka výhradně se spojitými konečněrozměrnými operátory, označíme proto množinu všech konečněrozměrných spojitých lineárních operátorů z X do Y jako $\mathcal{F}(X,Y)$.

Tvrzení 139. Nechť X, Y jsou normované lineární prostory. Každý kompaktní lineární operátor z X do Y je automaticky spojitý. Dále, je-li $T: X \to Y$ lineární, pak následující tvrzení jsou ekvivalentní:

- (i) T je kompaktní.
- (ii) $T(B_X)$ je relativně kompaktní.
- (iii) Je-li $\{x_n\}$ omezená posloupnost v X, pak posloupnost $\{T(x_n)\}$ má konvergentní podposloupnost.

Tvrzení 140. Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{K}(X,Y)$.

- (a) Je-li Z normovaný lineární prostor a Y je podprostor Z, pak $T \in \mathcal{K}(X, Z)$.
- (b) Je-li Z uzavřený podprostor Y a Rng $T \subset Z$, pak $T \in \mathcal{K}(X, Z)$.

Věta 141. Nechť X, Y jsou normované lineární prostory.

- (a) Operátor $T \in \mathcal{L}(X,Y)$ je konečněrozměrný právě tehdy, když existují $f_1, \ldots, f_n \in X^*$ a $y_1, \ldots, y_n \in Y$ takové, že $T(x) = \sum_{i=1}^n f_i(x) y_i$ pro každé $x \in X$.
- (b) $\mathcal{K}(X,Y)$ je podprostor $\mathcal{L}(X,Y)$ a $\mathcal{F}(X,Y)$ je podprostor $\mathcal{K}(X,Y)$.
- (c) Pokud je Y Banachův prostor, pak K(X,Y) je uzavřený podprostor L(X,Y).
- (d) Složíme-li kompaktní lineární operátor se spojitým lineárním operátorem zleva či zprava, dostaneme opět kompaktní operá-
- (e) Pokud X a Y jsou úplné, $T \in \mathcal{K}(X,Y)$ a Rng T je uzavřený, pak $T \in \mathcal{F}(X,Y)$.

Věta 142 (J. P. Schauder, 1930). Nechť X je normovaný lineární prostor, Y je Banachův prostor a $T \in \mathcal{L}(X,Y)$. Pak T^* je kompaktní, právě když T je kompaktní.

3. Spektrální teorie (zejména) kompaktních operátorů

Tvrzení 143. Nechť X je Banachův prostor a $T \in \mathcal{L}(X)$. Pak T je invertibilní, právě když T je bijekce.

Definice 144. Nechť X je normovaný lineární prostor nad \mathbb{K} a $T \in \mathcal{L}(X)$. Číslo $\lambda \in \mathbb{K}$ nazýváme *vlastním číslem* operátoru T, pokud $\mathrm{Ker}(\lambda I - T) \neq \{0\}$, tj. pokud $T(x) = \lambda x$ pro nějaké $x \in X$, $x \neq 0$. Prostor $\mathrm{Ker}(\lambda I - T)$ pak nazýváme *vlastním prostorem* příslušným číslu λ . Nenulové prvky vlastního prostoru příslušného číslu λ se nazývají *vlastní vektory* příslušné číslu λ . Množina všech vlastních čísel operátoru T se nazývá *bodové spektrum* operátoru T a značí se $\sigma_{\mathrm{p}}(T)$.

Spektrum operátoru T je množina všech čísel $\lambda \in \mathbb{K}$, pro která operátor $\lambda I - T$ není invertibilní. Spektrum operátoru T značíme $\sigma(T)$.

Věta 145. Nechť X je Banachův prostor nad \mathbb{K} a $T \in \mathcal{L}(X)$. Pak $\sigma(T)$ je kompaktní podmnožina \mathbb{K} splňující $\sigma(T) \subset B_{\mathbb{K}}(0, \|T\|)$. Je-li X komplexní, pak $\sigma(T)$ je neprázdné.

Lemma 146. Nechť X je normovaný lineární prostor a $T \in \mathcal{L}(X)$ je invertibilní. Pak $\lambda \in \sigma(T)$, právě když $\frac{1}{\lambda} \in \sigma(T^{-1})$.

Tvrzení 147. Nechť X je Banachův prostor a $T \in \mathcal{L}(X)$ je izomorfismus na. Pak $\sigma(T) \subset \{\lambda \in \mathbb{C}; \ \frac{1}{\|T^{-1}\|} \leq |\lambda| \leq \|T\| \}$.

Věta 148. Nechť X je Banachův prostor a $T \in \mathcal{L}(X)$. Pak $\sigma(T^*) = \sigma(T)$.

Tvrzení 149. Nechť X je normovaný lineární prostor. Jestliže $T \in \mathcal{K}(X)$ $a \dim X = \infty$, pak $0 \in \sigma(T)$. Jestliže $T \in \mathcal{F}(X)$ $a \dim X > \dim \operatorname{Rng} T$, pak $0 \in \sigma_{\mathbb{D}}(T)$.

Věta 150. Nechť X je normovaný lineární prostor nad \mathbb{K} , $T \in \mathcal{K}(X)$ a $\lambda \in \mathbb{K} \setminus \{0\}$. Pak dim $\operatorname{Ker}(\lambda I - T) < \infty$. Je-li X Banachův, pak $\operatorname{Rng}(\lambda I - T)$ je uzavřený.

Věta 151 (Fredholmova alternativa). *Nechť X je Banachův prostor nad* \mathbb{K} , $T \in \mathcal{K}(X)$ $a \lambda \in \mathbb{K} \setminus \{0\}$. *Pak operátor* $\lambda I - T$ *je na, právě když je prostý*.

Důsledek 152. Nechť X je Banachův prostor a $T \in \mathcal{K}(X)$. Pak $\sigma(T) \subset \{0\} \cup \sigma_p(T)$.

Lemma 153. Nechť X je normovaný lineární prostor a $T \in \mathcal{L}(X)$. Jsou-li $\lambda_1, \ldots, \lambda_n$ různá vlastní čísla operátoru T a $x_1, \ldots, x_n \in X$ vlastní vektory příslušné číslům $\lambda_1, \ldots, \lambda_n$, pak jsou tyto vektory lineárně nezávislé.

Věta 154. Nechť X je normovaný lineární prostor nad \mathbb{K} a $T \in \mathcal{K}(X)$. Pak pro každé r > 0 je množina $\sigma(T) \cap \{\lambda \in \mathbb{K}; |\lambda| > r\}$ konečná.

Důsledek 155. Nechť X je nekonečněrozměrný Banachův prostor a $T \in \mathcal{K}(X)$. Potom $\sigma(T) = \{0\} \cup \{\lambda_n\}$, kde $\{\lambda_n\}$ je posloupnost, která je buď konečná, nebo nekonečná a konvergující k 0, a je tvořena nenulovými vlastními čísly operátoru T, přičemž každé z nich má konečněrozměrný vlastní podprostor.

Věta 156 (Druhá Fredholmova věta). *Nechť X je Banachův prostor nad* \mathbb{K} , $T \in \mathcal{K}(X)$ $a \lambda \in \mathbb{K} \setminus \{0\}$. *Pak*

$$\operatorname{Rng}(\lambda I_X - T) = \left(\operatorname{Ker}(\lambda I_{X^*} - T^*)\right)_{\perp},$$

$$\operatorname{Rng}(\lambda I_{X^*} - T^*) = \left(\operatorname{Ker}(\lambda I_X - T)\right)^{\perp}.$$

Věta 157 (Třetí Fredholmova věta). *Necht' X je Banachův prostor,* $T \in \mathcal{K}(X)$ $a \lambda \in \mathbb{C} \setminus \{0\}$. *Pak*

 $\dim \operatorname{Ker}(\lambda I_X - T) = \operatorname{codim} \operatorname{Rng}(\lambda I_X - T) = \dim \operatorname{Ker}(\lambda I_{X^*} - T^*) = \operatorname{codim} \operatorname{Rng}(\lambda I_{X^*} - T^*) < \infty.$

V. Konvoluce funkcí a Fourierova transformace

1. Konvoluce funkcí

Definice 158. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g:\mathbb{R}^d\to\mathbb{K}$. Konvoluce funkce f s funkcí g je funkce f*g definovaná jako

$$(f * g)(x) = \int_{\mathbb{R}^d} f(y)g(x - y) \,\mathrm{d}\mu(y)$$

pro taková $x \in \mathbb{R}^d$, pro která integrál konverguje.

Věta 159. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f, g, h \colon \mathbb{R}^d \to \mathbb{K}$.

- $(a) \ \ Operace*je \ komutativn\'i \ v \ n\'asleduj\'i\'c\'im \ smyslu: funkce \ f*g \ a \ g*f \ maj\'i \ stejn\'y \ defini\'c\'n\'i \ obor \ a \ jsou \ si \ na \ n\'em \ rovny.$
- (b) Operace * je distributivní vzhledem ke sčítání v následujícím smyslu: platí f * (g + h) = f * g + f * h a (f + g) * h = f * h + g * h na definičních oborech pravých stran.

(c) Necht' $1 \le p, q, r \le \infty$ splňují $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge 2$. Je-li $f \in L_p(\mu)$, $g \in L_q(\mu)$ a $h \in L_r(\mu)$, pak (f * g) * h = f * (g * h) μ -s. ν . na \mathbb{R}^d .

Lemma 160. Nechť $f: \mathbb{R}^d \to \mathbb{K}$ je lebesgueovsky měřitelná.

- (a) Pro každé $x \in \mathbb{R}^d$ je funkce $y \mapsto f(x y)$ lebesgueovsky měřitelná na \mathbb{R}^d .
- (b) Funkce $(x, y) \mapsto f(y)$ a $(x, y) \mapsto f(x y)$ jsou lebesgueovsky měřitelné na $(\mathbb{R}^d)^2$.

Lemma 161. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g \in L_1(\mu)$. Položíme-li F(x,y) = f(y)g(x-y) pro $x,y \in \mathbb{R}^d$, pak $F \in L_1(\mu \times \mu)$ a $\|F\|_1 = \|f\|_1 \|g\|_1$.

Definice 162. Nechť $f: \mathbb{R}^d \to \mathbb{K}$ a $y \in \mathbb{R}^d$. Pak definujeme posun funkce f do bodu y jako funkci $\tau_y f: \mathbb{R}^d \to \mathbb{K}$ danou předpisem $\tau_y f(x) = f(x-y)$ pro $x \in \mathbb{R}^d$.

Věta 163. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f \in L_p(\mu)$, $1 \le p < \infty$. Pak zobrazení $\tau \colon \mathbb{R}^d \to L_p(\mu)$ dané předpisem $\tau(x) = \tau_x f$ je stejnoměrně spojité.

Věta 164. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g:\mathbb{R}^d\to\mathbb{K}$.

- (a) Je-li $f \in L_p(\mu)$ a $g \in L_q(\mu)$, kde $1 \le p, q \le \infty$ jsou sdružené exponenty, pak funkce f * g je definována v každém bodě \mathbb{R}^n , je stejnoměrně spojitá a omezená a platí $||f * g||_{\infty} \le ||f||_p ||g||_q$.
- (b) Je-li $f \in L_1^{loc}(\mu)$ a jestliže $g \in L_\infty(\mu)$ má kompaktní nosič, pak funkce f * g je definována v každém bodě \mathbb{R}^d , je spojitá a platí supp $f * g \subset \text{supp } f + \text{supp } g$.
- (c) Isou-li f, g měřitelné, $D \subset \mathbb{R}^d$ měřitelná a f * g je definována alespoň na D, pak f * g je měřitelná na D.
- (d) Jsou-li $f, g \in L_1(\mu)$, pak f * g je definována μ -s. v. na \mathbb{R}^d , $f * g \in L_1(\mu)$ a platí $||f * g||_1 \le ||f||_1 ||g||_1$.
- (e) Necht' $1 \leq p, q \leq \infty$ splňují $\frac{1}{p} + \frac{1}{q} \geq 1$. Je-li $f \in L_p(\mu)$ a $g \in L_q(\mu)$, pak f * g je definovaná μ -s. v. na \mathbb{R}^d , $f * g \in L_r(\mu)$ a platí $\|f * g\|_r \leq \|f\|_p \|g\|_q$, kde $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} 1$.

Definice 165. Nechť $d \in \mathbb{N}$. Pak $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$ nazýváme *multiindexem* délky d. *Řádem multiindexu* α nazýváme číslo $\sum_{i=1}^d \alpha_i$ a značíme jej $|\alpha|$.

Je-li α multiindex délky d, pak symbolem D^{α} označíme parciální derivaci řádu $|\alpha|$ danou multiindexem α , tj.

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}$$

(symboly ∂x_i^0 ve vyjádření výše vynecháváme). Speciálně, pro $\alpha=0=(0,\dots,0)$ a $f:\mathbb{R}^d\to\mathbb{K}$ je $D^0f=f$. Symbol D^α se též nazývá diferenciální operátor.

Definice 166. Necht' $A \subset \mathbb{R}^d$. Množina

$$\mathcal{D}(A,\mathbb{K}) = \{ \varphi \in C^{\infty}(\mathbb{R}^d,\mathbb{K}); \text{ supp } \varphi \text{ je kompaktní podmnožina } A \}$$

se nazývá prostor testovacích funkcí na A.

Věta 167. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g:\mathbb{R}^d\to\mathbb{K}$. Je-li $f\in L_1^{\mathrm{loc}}(\mu)$ a $g\in\mathcal{D}(\mathbb{R}^d)$, pak $f*g\in C^\infty(\mathbb{R}^d)$ a $D^\alpha(f*g)=f*D^\alpha g$ pro každý multiindex α délky d.

Definice 168. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d . Funkci $g: \mathbb{R}^d \to \mathbb{R}$ budeme nazývat *regularizačním jádrem* (vzhledem k μ), pokud g je nezáporná, $g \in L_1(\mu)$ a $\|g\|_1 = 1$.

Věta 169. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d , g je regularizační jádro na \mathbb{R}^d a $f: \mathbb{R}^d \to \mathbb{K}$. Položme $g_n(x) = n^d g(nx)$ pro $x \in \mathbb{R}^d$ a $n \in \mathbb{N}$.

- (a) Pokud je f stejnoměrně spojitá a omezená na \mathbb{R}^d , potom $f * g_n \to f$ stejnoměrně na \mathbb{R}^d .
- (b) Pokud $f \in L_p(\mu)$ a $1 \le p < \infty$, potom $f * g_n \xrightarrow{L_p} f$.

Důsledek 170. Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d , $\Omega \subset \mathbb{R}^d$ je otevřená a $1 \leq p < \infty$. Pak množina $\mathcal{D}(\Omega)$ je hustá v prostoru $L_p(\Omega, \mu)$ (ve smyslu restrikce na Ω).

2. Fourierova transformace

Pro $d \in \mathbb{N}$ položme $\mu_d = \frac{1}{(2\pi)^{d/2}} \lambda_d$, kde λ_d je Lebesgueova míra na \mathbb{R}^d .

Definice 171. Nechť $f \in L_1(\mu_d)$. Pak *Fourierovou transformací funkce* f rozumíme funkci $\widehat{f} : \mathbb{R}^d \to \mathbb{K}$ definovanou jako

$$\widehat{f}(t) = \int_{\mathbb{R}^d} f(x)e^{-i\langle t, x \rangle} d\mu_d(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x)e^{-i\langle t, x \rangle} d\lambda_d(x)$$

pro $t \in \mathbb{R}^d$.

Definice 172. Prostorem $C_b(\mathbb{R}^d) = C_b(\mathbb{R}^d, \mathbb{K})$ rozumíme normovaný lineární prostor všech omezených spojitých funkcí na \mathbb{R}^d s normou $||f||_{\infty} = \sup_{x \in \mathbb{R}^d} |f(x)|$.

Definice 173. Prostorem $C_0(\mathbb{R}^d) = C_0(\mathbb{R}^d, \mathbb{K})$ rozumíme prostor spojitých funkcí f na \mathbb{R}^d takových, že pro každé $\varepsilon > 0$ je množina $\{x \in \mathbb{R}^d : |f(x)| \ge \varepsilon\}$ omezená. Na $C_0(\mathbb{R}^d)$ uvažujeme normu $\|f\|_{\infty} = \sup_{x \in \mathbb{R}^d} |f(x)|$.

Je-li $f: \mathbb{R}^d \to \mathbb{K}$, pak řekneme, že $\lim_{\|x\| \to +\infty} f(x) = 0$, jestliže pro každé $\varepsilon > 0$ existuje R > 0 takové, že $|f(x)| < \varepsilon$ kdykoli $x \in \mathbb{R}^d$, $\|x\| > R$.

Lemma 174 (Georg Friedrich Bernhard Riemann (1853), H. Lebesgue (1903)). *Necht'* $f \in L_1(\mu_d)$. *Pak* $\lim_{\|t\| \to +\infty} \int_{\mathbb{R}^d} f(x)e^{-i\langle t, x \rangle} d\mu_d(x)$ 0.

Věta 175. Nechť $f, g \in L_1(\mu_d)$ a $j \in \{1, ..., d\}$. Fourierova transformace má následující vlastnosti:

- (a) $\widehat{f} \in C_0(\mathbb{R}^d)$ a $\|\widehat{f}\|_{\infty} \leq \|f\|_1$. Fourierova transformace je tedy spojité lineární zobrazení z prostoru $L_1(\mathbb{R}^d)$ do prostoru $C_0(\mathbb{R}^d)$.
- (b) Necht' $y \in \mathbb{R}^d$. Pak $\widehat{\tau_y f}(t) = e^{-i\langle y, t \rangle} \widehat{f}(t)$ pro každé $t \in \mathbb{R}^d$ a naopak pro funkci $h(x) = e^{i\langle y, x \rangle} f(x)$ platí $\widehat{h} = \tau_y \widehat{f}$.
- (c) Je-li c > 0 a $h(x) = f(\frac{x}{c})$, pak $\widehat{h}(t) = c^d \widehat{f}(ct)$ pro každé $t \in \mathbb{R}^d$.
- (d) Je-li $h(x) = \overline{f(-x)}$, pak $\widehat{h} = \overline{\widehat{f}}$.
- (e) Jestliže $\frac{\partial f}{\partial x_j}$ existuje všude na \mathbb{R}^d a jestliže $\frac{\partial f}{\partial x_j} \in L_1(\mu_d)$, pak $\widehat{\frac{\partial f}{\partial x_j}}(t) = it_j \widehat{f}(t)$ pro každé $t \in \mathbb{R}^d$.
- (f) Jestliže pro funkci $h(x) = -ix_j f(x)$ platí $h \in L_1(\mu_d)$, pak $\frac{\partial \widehat{f}}{\partial x_j}(t) = \widehat{h}(t)$ pro každé $t \in \mathbb{R}^d$.
- (g) $\widehat{f * g} = \widehat{f}\widehat{g}$.
- (h) $\int_{\mathbb{R}^d} \widehat{f} g \, \mathrm{d}\mu_d = \int_{\mathbb{R}^d} f \widehat{g} \, \mathrm{d}\mu_d$.

Lemma 176. Nechť $a \in \mathbb{R}$ $a f \in L_1([a, +\infty))$. Předpokládejme dále, že f je absolutně spojitá na každém intervalu [a, b], b > a, nebo že f' existuje vlastní na celém $[a, +\infty)$. Je-li $f' \in L_1([a, +\infty))$, pak $\lim_{x \to +\infty} f(x) = 0$.

Lemma 177. Nechť $f,g:\mathbb{R}\to\mathbb{C}$, f,g mají (vlastní) derivaci v každém bodě \mathbb{R} a platí $f,f'\in L_1(\mathbb{R})$, g je omezená a g' je spojitá a omezená. Pak $\int_{\mathbb{R}} f'g \, \mathrm{d}\lambda = -\int_{\mathbb{R}} fg' \, \mathrm{d}\lambda$.

Lemma 178. Necht' $f \in L_1(\mathbb{R}^d, \lambda)$, $g \colon \mathbb{R}^d \to \mathbb{K}$ je omezená a $j \in \{1, \dots, d\}$. Jestliže $\frac{\partial f}{\partial x_j}$ a $\frac{\partial g}{\partial x_j}$ existují všude na \mathbb{R}^d a jestliže $\frac{\partial f}{\partial x_j} \in L_1(\mathbb{R}^d)$ a $\frac{\partial g}{\partial x_j} \in C_b(\mathbb{R}^d)$, pak $\int_{\mathbb{R}^d} \frac{\partial f}{\partial x_j} g \, d\lambda = -\int_{\mathbb{R}^d} f \, \frac{\partial g}{\partial x_j} \, d\lambda$.

Příklad 179. Definujme funkci $g: \mathbb{R}^d \to \mathbb{R}$ předpisem $g(x) = e^{-\sum_{j=1}^d |x_j|}$. Pak $g \in L_1(\mu_d)$,

$$\widehat{g}(t) = \left(\frac{2}{\pi}\right)^{\frac{d}{2}} \prod_{j=1}^{d} \frac{1}{1+t_j^2},$$

funkce \widehat{g} je nezáporná a $\int_{\mathbb{R}^d} \widehat{g} \, d\mu_d = 1$.

Lemma 180. Necht' $f, g \in L_1(\mu_d)$. Položme $g_n(x) = n^d \widehat{g}(-nx)$ a $h_n(x) = g(\frac{x}{n})$ pro $x \in \mathbb{R}^d$ a $n \in \mathbb{N}$. Pak $f * g_n(x) = \int_{\mathbb{R}^d} \widehat{f}(t) e^{i\langle t, x \rangle} h_n(t) d\mu_d(t)$ pro každé $x \in \mathbb{R}^d$ a $n \in \mathbb{N}$.

Věta 181 (o inverzi). Nechť $f \in L_1(\mu_d)$. Je-li $\widehat{f} \in L_1(\mu_d)$, pak pro s. v. $x \in \mathbb{R}^d$ platí

$$f(x) = \int_{\mathbb{R}^d} \widehat{f}(t)e^{i\langle x,t\rangle} \, \mathrm{d}\mu_d(t) = \widehat{\widehat{f}}(-x).$$

Je-li navíc f spojitá, pak vzorec platí pro všechna x $\in \mathbb{R}^d$.

Důsledek 182. Fourierova transformace je prosté zobrazení.

Důsledek 183. Jsou-li $f, g \in L_1(\mu_d)$ takové, že $\widehat{f}, \widehat{g}, fg, \widehat{fg} \in L_1(\mu_d)$, pak $\widehat{fg} = \widehat{f} * \widehat{g}$.

Věta 184 (Michel Plancherel, 1910). Existuje právě jedna lineární izometrie $F: L_2(\mu_d) \to L_2(\mu_d)$ na taková, že $F(f) = \widehat{f}$ pro každou $f \in L_2(\mu_d) \cap L_1(\mu_d)$.

VI. Teorie distribucí

Lemma 185. Necht' $\Omega \subset \mathbb{R}^d$ je otevřená.

- (a) Nechť μ je borelovská komplexní (resp. znaménková) míra na Ω . Jestliže $\int_{\Omega} \varphi \, d\mu = 0$ pro každou nezápornou $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, pak $\mu = 0$.
- (b) Necht' $f \in L_1^{loc}(\Omega, \lambda)$. Jestliže $\int_{\Omega} f \varphi \, d\lambda = 0$ pro každou nezápornou $\varphi \in \mathcal{D}(\Omega, \mathbb{R})$, pak f = 0 s. v. na Ω .
- (c) Nechť μ je borelovská komplexní (resp. znaménková) míra na Ω a $f \in L_1^{\mathrm{loc}}(\Omega,\lambda)$. Jestliže $\int_{\Omega} \varphi \, \mathrm{d}\mu = \int_{\Omega} f \varphi \, \mathrm{d}\lambda$ pro každou nezápornou $\varphi \in \mathcal{D}(\Omega,\mathbb{R})$, pak $f \in L_1(\Omega,\lambda)$ a $\mu(A) = \int_A f \, \mathrm{d}\lambda$ pro každou borelovskou $A \subset \Omega$.

Lemma 186. Nechť $A,U\subset\mathbb{R}^d$ jsou takové, že $\mathrm{dist}(A,\mathbb{R}^d\setminus U)>0$. Pak existuje $\varphi\in C^\infty(\mathbb{R}^d)$ taková, že $0\leq\varphi\leq 1$, $\mathrm{supp}\,\varphi\subset U$ a $\varphi=1$ na A.

Důsledek 187. Necht' $K \subset \mathbb{R}^d$ je kompaktní a $G \subset \mathbb{R}^d$ je otevřená, $G \supset K$. Pak existují $U \subset G$ otevřená, $U \supset K$ a $\varphi \in \mathcal{D}(G)$ taková, že $0 \le \varphi \le 1$ a $\varphi = 1$ na U.

1. Slabé derivace

Tvrzení 188. Nechť $(a,b) \subset \mathbb{R}$ a $f \in C^1((a,b))$. Pak

$$\int_{a}^{b} f' \varphi \, \mathrm{d}\lambda = -\int_{a}^{b} f \varphi' \, \mathrm{d}\lambda$$

pro každou $\varphi \in \mathcal{D}((a,b))$.

Definice 189. Nechť $(a,b) \subset \mathbb{R}$ a $f \in L_1^{\mathrm{loc}}((a,b))$. Řekneme, že funkce $g \in L_1^{\mathrm{loc}}((a,b))$ je slabou derivací funkce f, jestliže

$$\int_{a}^{b} g\varphi \, \mathrm{d}\lambda = -\int_{a}^{b} f\varphi' \, \mathrm{d}\lambda$$

pro každou $\varphi \in \mathcal{D}((a,b))$. Řekneme, že borelovská komplexní *míra* μ na (a,b) je *slabou derivací* funkce f, jestliže

$$\int_{a}^{b} \varphi \, \mathrm{d}\mu = -\int_{a}^{b} f \varphi' \, \mathrm{d}\lambda$$

pro každou $\varphi \in \mathcal{D}((a,b))$.

Věta 190. Slabá derivace funkce $f \in L_1^{loc}((a,b))$ je určena jednoznačně. Přesněji, jsou-li $g_1, g_2 \in L_1^{loc}((a,b))$ slabou derivací f, pak $g_1 = g_2$ skoro všude. Jsou-li borelovské komplexní míry μ_1, μ_2 na (a,b) slabou derivací f, pak $\mu_1 = \mu_2$. Jsou-li $g \in L_1^{loc}((a,b))$ a borelovská komplexní míra μ na (a,b) slabou derivací f, pak $g \in L_1((a,b))$ a $\mu(A) = \int_A g \, d\lambda$ pro každou borelovskou $A \subset (a,b)$.

Tvrzení 191. Nechť $(a,b) \subset \mathbb{R}$ a $f \in L_1^{loc}((a,b))$. Pak f má nulovou slabou derivaci, právě když je s. v. konstantní (tj. existuje $c \in \mathbb{K}$ taková, že f = c s. v. na (a,b)).

Věta 192. Nechť $(a,b) \subset \mathbb{R}$ $a f \in L_1^{loc}((a,b))$.

- (a) Je-li f absolutně spojitá na [a,b], pak má vlastní derivaci s. v., $f' \in L_1((a,b))$ a f' je slabou derivací f. Obráceně, má-li f slabou derivaci $g \in L_1((a,b))$, pak existuje funkce f_0 absolutně spojitá na [a,b] taková, že $f=f_0$ s. v. Potom je $g=f_0'$ s. v.
 - Obecněji, f má slabou derivaci v $L_1^{loc}((a,b))$, právě když existuje funkce f_0 lokálně absolutně spojitá na (a,b) taková, že $f = f_0$ s. v.
- (b) Funkce f má slabou derivaci rovnou borelovské komplexní míře μ na (a,b), právě když existuje funkce f_0 konečné variace na [a,b] taková, že $f=f_0$ s. v. V tom případě pro každý podinterval $(c,d) \subset (a,b)$ platí $\mu((c,d))=[f_0]_c^d$.

2. Prostor testovacích funkcí a distribuce

Definice 193. Pro $N \in \mathbb{N}_0$ a $\varphi \in \mathcal{D}(\mathbb{R}^d)$ položme

$$\|\varphi\|_N = \max_{|\alpha| < N} \|D^{\alpha}\varphi\|_{\infty}.$$

Pro $\varphi, \psi \in \mathcal{D}(\mathbb{R}^d)$ pak definujeme

$$\rho(\varphi, \psi) = \sum_{N=0}^{\infty} \frac{1}{2^N} \min\{\|\varphi - \psi\|_N, 1\}.$$

Věta 194. Funkce ρ je translačně invariantní metrika na $\mathfrak{D}(\mathbb{R}^d)$. Tato metrika má následující vlastnosti:

- (a) Necht' $\{\varphi_n\}$ je posloupnost v $\mathfrak{D}(\mathbb{R}^d)$ a $\varphi \in \mathfrak{D}(\mathbb{R}^d)$. Následující tvrzení jsou ekvivalentní:
 - (i) $\varphi_n \to \varphi$ v metrice ρ .
 - (ii) $\|\varphi_n \varphi\|_N \to 0$ pro každé $N \in \mathbb{N}_0$.
 - (iii) Pro každý multiindex α délky d platí, že $D^{\alpha}\varphi_n \to D^{\alpha}\varphi$ stejnoměrně na \mathbb{R}^d .
- (b) Vektorové operace na $\mathfrak{D}(\mathbb{R}^d)$ (sčítání a násobení skalárem) jsou v ρ spojité.
- (c) Je-li α multiindex délky d, pak zobrazení $\varphi \mapsto D^{\alpha}\varphi$ je spojité jakožto zobrazení $z\left(\mathfrak{D}(\mathbb{R}^d), \rho\right)$ do $(\mathfrak{D}(\mathbb{R}^d), \rho)$.
- (d) Pro každou kompaktní $K \subset \mathbb{R}^d$ je $(\mathfrak{D}(K), \rho)$ úplný metrický prostor.

Definice 195. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená. Řekneme, že funkcionál $\Phi \colon \mathcal{D}(\Omega) \to \mathbb{K}$ je spojitý, pokud pro každou kompaktní $K \subset \Omega$ je restrikce $\Phi \upharpoonright_{(\mathcal{D}(K),\rho)}$ spojitá. Spojité lineární funkcionály na $\mathcal{D}(\Omega)$ se nazývají distribuce na Ω . Množinu všech distribucí na Ω značíme $\mathcal{D}(\Omega)^*$.

Věta 196. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a $\Lambda \colon \mathcal{D}(\Omega) \to \mathbb{K}$ je lineární. Pak následující tvrzení jsou ekvivalentní.

- (i) $\Lambda \in \mathcal{D}(\Omega)^*$.
- (ii) Λ je spojitý v 0, tj. pro každou $K \subset \Omega$ kompaktní a pro každou posloupnost $\{\varphi_n\} \subset (\mathfrak{D}(K), \rho)$ konvergující k 0 platí $\Lambda(\varphi_n) \to 0$.
- (iii) Pro každou kompaktní $K \subset \Omega$ existují $N \in \mathbb{N}_0$ a $C \geq 0$ taková, že $|\Lambda(\varphi)| \leq C \|\varphi\|_N$ pro každou $\varphi \in \mathcal{D}(K)$.

Definice 197. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a $\Lambda \in \mathcal{D}(\Omega)^*$. Pokud existuje $N \in \mathbb{N}_0$ takové, že pro každou kompaktní $K \subset \Omega$ existuje $C \geq 0$ takové, že $|\Lambda(\varphi)| \leq C \|\varphi\|_N$ pro libovolnou $\varphi \in \mathcal{D}(K)$, potom nejmenší N s touto vlastností nazveme *řádem distribuce* Λ . Pokud takové N neexistuje, pak řád Λ definujeme jako nekonečno.

3. Operace s distribucemi

Lemma 198. Nechť $k \in \mathbb{N}$, $f \in C^k(\mathbb{R}^d)$ má všechny derivace až do řádu k omezené a nechť $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq k$. Pak

$$\int_{\mathbb{R}^d} D^{\alpha} f \varphi \, d\lambda = (-1)^{|\alpha|} \int_{\mathbb{R}^d} f D^{\alpha} \varphi \, d\lambda$$

pro každou $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Definice 199. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a $\Lambda \in \mathcal{D}(\Omega)^*$. Pro multiindex α délky d definujeme *derivaci* D^{α} *distribuce* Λ jako funkcionál na $\mathcal{D}(\Omega)$ daný předpisem

$$(D^{\alpha}\Lambda)(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi).$$

Pro funkci $f \in C^{\infty}(\Omega)$ definujeme součin funkce f a distribuce Λ jako funkcionál na $\mathcal{D}(\Omega)$ daný předpisem

$$(f\Lambda)(\varphi) = \Lambda(f\varphi).$$

Tvrzení 200. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená, $\Lambda \in \mathcal{D}(\Omega)^*$, $\alpha \in \mathbb{N}_0^d$ a $f \in C^{\infty}(\Omega)$. Pak platí:

- (a) $D^{\alpha} \Lambda \in \mathcal{D}(\Omega)^*$.
- (b) $f\Lambda \in \mathcal{D}(\Omega)^*$.
- (c) Je-li $g \in L_1^{loc}(\Omega)$, pak $f\Lambda_g = \Lambda_{fg}$.
- (d) Je-li $g \in C^{|\alpha|}(\Omega)$, pak $D^{\alpha} \Lambda_g = \Lambda_{D^{\alpha}g}$.

- (e) Je-li d = 1, $\Omega = (a, b)$ $a g \in L_1^{loc}((a, b))$, pak
 - $\Lambda'_g = \Lambda_h$, kde $h \in L_1^{loc}((a,b))$, právě když h je slabou derivací g;
 - $\Lambda'_{g} = \Lambda_{\mu}$, kde μ je borelovská komplexní míra na (a,b), právě když μ je slabou derivací g.

Fakt 201. Nechť $\alpha \in \mathbb{N}_0^d$. Pak existují konstanty $c_{\beta,\gamma}^{\alpha} \in \mathbb{N}$, $\beta, \gamma \in \mathbb{N}_0^d$, $|\beta| + |\gamma| \le |\alpha|$ takové, že pro každou otevřenou $\Omega \subset \mathbb{R}^d$ a každé $f,g \in C^{|\alpha|}(\Omega)$ platí

$$D^{\alpha}(fg) = \sum_{\substack{\beta, \gamma \in \mathbb{N}_0^d \\ |\beta| + |\gamma| = |\alpha|}} c_{\beta, \gamma}^{\alpha} D^{\beta} f D^{\gamma} g.$$

Definice 202. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená. Řekneme, že posloupnost distribucí $\{\Lambda_n\} \subset \mathcal{D}(\Omega)^*$ konverguje k distribuci $\Lambda \in \mathcal{D}(\Omega)^*$, pokud konverguje bodově, tj. pokud $\Lambda_n(\varphi) \to \Lambda(\varphi)$ pro každou $\varphi \in \mathcal{D}(\Omega)$.

Tvrzení 203. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená. Pak platí:

- (a) Jestliže posloupnost $\{\Lambda_n\} \subset \mathcal{D}(\Omega)^*$ konverguje $k \Lambda \in \mathcal{D}(\Omega)^*$, pak
 - $D^{\alpha} \Lambda_n \to D^{\alpha} \Lambda$ pro každý multiindex $\alpha \in \mathbb{N}_0^d$,
 - $f\Lambda_n \to f\Lambda$ pro každou funkci $f \in C^{\infty}(\Omega)$.
- (b) Jsou-li f_n , $f \in L_1^{loc}(\Omega)$ a jestliže pro každou kompaktní $K \subset \Omega$ platí $\int_K |f_n f| d\lambda \to 0$, pak $\Lambda_{f_n} \to \Lambda_f$.
- (c) Je-li $K \subset \Omega$ kompaktní a $\varphi_n \to \varphi$ v $(\mathfrak{D}(K), \rho)$, pak $\Lambda_{\varphi_n} \to \Lambda_{\varphi}$.
- (d) Je-li $1 \leq p \leq \infty$ a $f_n \to f$ v $L_p(\Omega)$, pak $\Lambda_{f_n} \to \Lambda_f$.

Věta 204. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a $\{\Lambda_n\}$ je posloupnost v $\mathcal{D}(\Omega)^*$ taková, že pro každé $\varphi \in \mathcal{D}(\Omega)$ existuje $\Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi)$. Pak $\Lambda \in \mathcal{D}(\Omega)^*$.

Definice 205. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a Λ je distribuce na Ω . Řekneme, že otevřená množina $G \subset \Omega$ je *nulová* pro Λ , jestliže $\Lambda(\varphi) = 0$ pro každou $\varphi \in \mathcal{D}(G)$.

Věta 206. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a Λ je distribuce na Ω . Množina $G = \bigcup \{H \subset \Omega; H \text{ je nulová pro } \Lambda\}$ je nulová pro Λ a je to největší nulová množina pro Λ , tj. je-li $H \subset \Omega$ nulová pro Λ , pak $H \subset G$.

Definice 207. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a Λ je distribuce na Ω . *Nosič distribuce* Λ definujeme jako supp $\Lambda = \Omega \setminus G$, kde G je největší nulová množina pro Λ .

Věta 208. Nechť $\Omega \subset \mathbb{R}^d$ je otevřená a Λ je distribuce na Ω .

- (a) Je-li $f \in C(\Omega)$, pak supp $\Lambda_f = \text{supp } f$.
- (b) Je-li μ borelovská komplexní míra na Ω , pak supp $\Lambda_{\mu}=\operatorname{supp}\mu$.
- (c) Pokud je supp Λ kompaktní, pak existují $N \in \mathbb{N}_0$ a $C \geq 0$ taková, že $|\Lambda(\varphi)| \leq C \|\varphi\|_N$ pro každou $\varphi \in \mathcal{D}(\Omega)$. Speciálně, Λ je konečného řádu.
- (d) supp $\Lambda = \{z\}$, právě když $\Lambda = \sum_{|\alpha| \leq N} c_{\alpha} D^{\alpha} \Lambda_{\delta_{z}}$ pro nějaké $N \in \mathbb{N}_{0}$ a konstanty c_{α} , $\alpha \in \mathbb{N}_{0}^{d}$, $|\alpha| \leq N$ ne všechny nulové.

Seznam vět ke zkoušce

- Tvrzení, která není třeba znát: 111, 157, 176, 177, 178, 192, 205-208
- Tvrzení, která není třeba znát s důkazem: 22, 71, 108, 109, 112, 113, 122(c,d,e), 123, 159(c), 164(e), 167, 175(e), 180, 185(c), 191, 201