Model Assessment with K-Fold Cross Validation

Harry Snart, SAS Institute October 2024

This document shows how K-Fold Cross Validation can be used to assess model goodness of fit with few holdout samples. We start by loading the HMEQ dataset which has a binary target of BAD. After performing a brief exploratory analysis we then perform oversampling on the event class and then partition the dataset into Train, Test and Validate. We then train a logistic regression model with stepwise selection and perform k-fold sampling on the holdout dataset to score each of the partitions in order to generate a distribution of model assessment scores.

Load Dataset

Here we load the dataset using PROC IMPORT then print via PROC PRINT

BAD	LOAN	MORTDUE	VALUE	REASON	JOB	YOJ	DEROG	DELINQ	CLAGE	NINQ	CLNO	DEBTINC
1	1100	25860	39025	HomeImp	Other	10.5	0	0	94.36666667	1	9	
1	1300	70053	68400	HomeImp	Other	7	0	2	121.83333333	0	14	
1	1500	13500	16700	HomeImp	Other	4	0	0	149.46666667	1	10	
1	1500											
0	1700	97800	112000	HomeImp	Office	3	0	0	93.33333333	0	14	

Exploratory Data Analysis

Here we perform an exploratory data analysis including variable correlation with PROC CORR, variable summary analysis with PROC CARDINALITY and visual analysis with PROC SGPLOT

Bad	Number of Observations
0	4771
1	1189

Variable name	Type of the raw values	Number of levels	Number of observations	Number of missing values	Mean	Standard deviation
LOAN	N	20	1189	0	16922.119428	11418.455152
MORTDUE	N	20	1189	106	69460.452973	47588.194467
VALUE	N	20	1189	105	98172.846227	74339.822506
REASON	С	2	1189	48		
JOB	С	6	1189	23		
YOJ	N	20	1189	65	8.0278024911	7.1007348316
DEROG	N	11	1189	87	0.7078039927	1.468380909
DELINQ	N	14	1189	72	1.2291853178	1.9029614156
CLAGE	N	20	1189	78	150.19018341	84.952286255
NINQ	N	16	1189	75	1.7827648115	2.2469764219
CLNO	N	20	1189	53	21.211267606	11.81298083
DEBTINC	N	20	1189	786	39.387644892	17.723586299

Variable Correlation Variables such as Loan amount appear to have an explanatory power for Bad.

Levels of character variable: Reason

Levels of character variable: Job

Perform oversampling of event class

Here we oversample the event class, 1, given that the exploratory analysis shows there is a class imbalance we do this using PROC PARTITION

Levels of character variable: Job

The PARTITION Procedure

(Oversampling Frequency				
Index	BAD	Number of Obs	Number of Samples		
0	0	4771	1070		
1	1	1189	1070		

Output CAS Tables					
CAS Library	Name	Number of Rows	Number of Columns		
CASUSER(sukhsn)	SAMPLES	2140	14		

Oversampled Group

The PARTITION Procedure

Stratified Sampling Frequency						
Index	BAD	Number of Obs	Sample Size 1	Sample Size 2		
0	0	1070	535	268		
1	1	1070	535	268		

Output CAS Tables					
CAS Library	Name	Number of Rows	Number of Columns		
CASUSER(sukhsn)	HMEQ_PART	2140	15		

Check number of observations by partition

Create Logistic Regression Model

Here we perform stepwise Logistic Regression using the Train and Test partitions using PROC LOGSELECT. The procedure prints summary statistics for both partitions.

We also save the scoring code to a SAS file that we can then use to score the kfold partitions later.

The LOGSELECT Procedure

Model Information				
Data Source	TRAIN_TEST			
Response Variable	BAD			
Distribution	Binary			
Link Function	Logit			
Optimization Technique	Newton-Raphson with Ridging			
Predicted Response	P_BAD			
Predicted Response Level	I_BAD			

Number of Observations					
Description Total Training Testing					
Number of Observations Read	1606	1070	536		
Number of Observations Used	723	478	245		

The LOGSELECT Procedure

	Response Profile					
Ordered Value	BAD	Total Frequency	Training	Testing		
1	0	516	344	172		
2	1	207	134	73		

Probability modeled is BAD = 1.

Class Level Information				
Class	Levels	Values		
REASON	2	DebtCon HomeImp		
JOB	6	Mgr Office Other ProfEx Sales Self		

Selection Information				
Selection Method	Stepwise			
Select Criterion	SBC			
Choose Criterion	SBC			
Stop Criterion	SBC			
Effect Hierarchy Enforced	None			
Stop Horizon	3			

Selection Details

Convergence criterion (GCONV=1E-8) satisfied.

Selection Summary				
Step	Effect Entered	Effect Removed	Number Effects In	SBC
0	Intercept		1	573.3349
1	DELINQ		2	527.4582
2	DEBTINC		3	517.9136
3	NINQ		4	508.6410
4	CLAGE		5	506.6004
5	DEROG		6	503.4530
6		NINQ	5	502.0618*
* Optimal Value Of Criterion				

Stepwise selection stopped because adding or removing an effect does not improve the SBC criterion.

The model at step 6 is selected where SBC is 502.0618.

Selected Effects: Intercept DEROG DELINQ CLAGE DEBTINC

The LOGSELECT Procedure

Selected Model

Dimensions		
Columns in Design	5	
Number of Effects	5	
Max Effect Columns	1	
Rank of Design	5	
Parameters in Optimization	5	

Testing Global Null Hypothesis: BETA=0				
Test	DF	Chi-Square	Pr > ChiSq	
Likelihood Ratio	4	95.9033	<.0001	

Fit Statistics				
Description	Training	Testing		
-2 Log Likelihood	471.26203	238.86143		
AIC (smaller is better)	481.26203	248.86143		
AICC (smaller is better)	481.38914	249.11248		
SBC (smaller is better)	502.11008	266.36772		
Average Square Error	0.15653	0.15320		
-2 Log L (Intercept-only)	567.16533	298.47134		
R-Square	0.18179	0.21597		
Max-rescaled R-Square	0.26167	0.30666		
McFadden's R-Square	0.16909	0.19972		
Misclassification Rate	0.21339	0.19184		
Difference of Means	0.21381	0.23889		

The LOGSELECT Procedure

Selected Model

Parameter Estimates					
Parameter	DF	Estimate	Standard Error	Chi-Square	Pr > ChiSq
Intercept	1	-2.904953	0.642747	20.4267	<.0001
DEROG	1	0.601847	0.191464	9.8810	0.0017
DELINQ	1	0.587723	0.118384	24.6467	<.0001
CLAGE	1	-0.005247	0.001638	10.2570	0.0014
DEBTINC	1	0.067695	0.016116	17.6431	<.0001

Task Timing			
Task	Seconds	Percent	
Setup and Parsing	0.00	7.15%	
Levelization	0.00	1.56%	
Model Initialization	0.00	0.70%	
SSCP Computation	0.00	3.93%	
Model Selection	0.05	84.22%	
Producing Score Code	0.00	1.56%	
Display	0.00	0.69%	
Cleanup	0.00	0.00%	
Total	0.06	100.00%	

Visualise Model Fit on Test Dataset

Here we score the Test dataset using DataStep scorecode and visualise the ROC, Lift & Response charts.

Cumulative Lift Chart (Target = BAD, Event = 1)

Cumulative Response Rate (Target = BAD, Event = 1)

Perform K-Fold Cross Validation

Here we define a macro, kFoldCV, which uses the CAS Sampling Actionset to perform k-fold partitioning stratified by BAD. We then score each dataset and append the results to a single table

Cumulative Response Rate (Target = BAD, Event = 1)

including paritition identifier. Finally, we use PROC ASSESS which runs model assessment by Kfold partition.

Visualise Estimated Fit Statistics by Kfold

Here we retain only values for the 0.5 cutoff from the ROC and visualise the estimated distributions for KS, Accuracy, F1, AUC, Gini and Misclassification rate from our k-fold partitions.

