ACKNOWLEDGEMENT

We are greatly indebted to our mini-project guide Mr. R. G. Bisen for his able guidance throughout this work. It has been an altogether different experience to work with him and we would like to thank him for his help, suggestions and numerous discussions.

We gladly take this opportunity to thank Dr Mrs. Rajurkar A. M. (Head of Computer Science & Engineering, MGM's College of Engineering, Nanded).

We are heartly thankful to Dr. Mrs. Lathkar G. S. (Director, MGM's College of Engineering, Nanded) for providing facility during progress of mini-project; also for her kindly help, guidance and inspiration.

Last but not least we are also thankful to allthose who help directly or indirectly to develop this project and complete it successfully.

With Deep Reverence,

Sai Pravin Nilapwar [75] Rohan Nagnath Wadnawar [69] [TYCSE-A]

ABSTRACT

In Accurate prediction of stock prices plays an increasingly prominent role in the stock market where returns and risks fluctuate wildly, and both financial institutions and regulatory authorities have paid sufficient attention to it. As a method of asset allocation, stocks have always been favored by investors because of their high returns. The research on stock price prediction has never stopped. In the early days, many economists tried to predict stock prices. Later, with the in-depth research of mathematical theory and the vigorous development of computer technology, people have found that the establishment of mathematical models can be very good, such as time series model, because its model is relatively simple and the forecasting effect is better.

Time series model is applied in a period of time The scope gradually expanded. However, due to the non-linearity of stock data, some machine learning methods, such as support vector machines. Later, with the development of deep learning, some such as LSTM they can not only process non-linear data, but also retain memory for the sequence and retain useful information, which is positive. It is required for stock data forecasting. This article introduces the theoretical knowledge of time series model and LSTM neural network, and select real stocks in the stock market, perform modeling analysis and predict stock prices, and then use the root mean square error to compare the prediction results of several models.

Since the time series model cannot make good use of the non-linear part of the stock data, can't perform long-term memory, and LSTM neural network makes better use of non-linear data and has better use of sequence data. Useful information in the long-term memory, which makes the root mean square error of the prediction result, the LSTM neural network needs smaller than the time series model, indicating that LSTM neural network is a better stock price forecasting method.

TABLE OF CONTENTS

Chapter			Title	Page	
No.				No.	
	ACKNOWLEDGEMENT				
	ABSTRACT				
	CONTENT	Ш			
	TABLE OF FIGURE				
1	INTRODUCTION				
	1.1	MOTIV	ATION FOR WORK	1	
	1.2	PROBL	EM STATEMENT	2	
2	PERSPECTIVE				
	2.1		ING METHODS STOCK MARKET PREDICTION USING	3	
		2.1.1	STOCK MARKET PREDICTION USING MACHINE LEARNING	3	
		212	FORECASTING THE STOCK MARKET USING		
		2.1.2	ARTIFICIAL INTELLIGENCE TECHNIQUES	4	
		2.1.3	THE STOCK MARKET AND INVESTMENT	4	
	2.2	DEEP I	LEARNING	4 4	
3	DAT	LACET .	AND IMPLEMENTATION	6	
3	DATASET AND IMPLEMENTATION 3.1 DATASET DETAILS				
	3.2		& TECHNOLOGIES	6	
	3.2	3.2.1	PYTHON	6	
		3.2.1	NUMPY	7	
			PANDAS	7	
		3.2.3		7	
		3.2.4	M1ATPLOTLIB	8	
		3.2.5	SCIKIT LEARN	8	
		3.2.6	TENSORFLOW	8	
		3.2.7	KERAS	9	
		3.2.8	COMPILER OPTION		

		3.2.9	JUPITER NOTEBOOK	9	
		3.2.10	STREAMLIT	9	
4	MET	HODOL	LOGY	10	
	4.1	PROPO	SED SYSTEMS	10	
	4.2	LSTM A	ARCHITECTURE	11	
	4.3	SYSTEM	M ARCHITECTURE	12	
5	SOF	ΓWARE	AND HARDWARE REQUIREMENTS	10	
	5.1	HARDV	VARE REQUIREMENTS	14	
	5.2	SOFTW	ARE REQUIREMENTS	14	
	5.3	FUNCT	IONAL REQUIREMENTS	14	
	5.4	NON-FU	UNCTIONAL REQUIREMENTS	15	
6	SCREENSHOTS				
	CON	CLUSIC	ON	20	
	REFI	ERENCI	ES	21	

LIST OF FIGURES

Fig No	Fig Name				
4.1	LSTM ARCHITECTURE	No 12			
4.2	PRE-PROCESSING OF DATA	13			
6.1	OVERALL VIEW	16			
6.2	CLOSING PRICE VS TIME CHART	16			
6.3	CLOSING PRICE VS TIME CHART FOR 100MA	17			
6.4	CLOSING PRICE VS TIME CHART FOR 100MA AND 200MA	17			
6.5	PREDICTED PRICE VS ORIGINAL PRICE	18			
6.6	ABOUT US	18			
6.7	CONTACT US	19			