

# Business Analytics Convex Optimization in Machine Learning

Prof. Bichler

**Decision Sciences & Systems** 

Department of Informatics

Technical University of Munich



#### Course Content

- Introduction
- Regression Analysis
- Regression Diagnostics
- Logistic and Poisson Regression
- Naive Bayes and Bayesian Networks
- Decision Tree Classifiers
- Data Preparation and Causal Inference
- Model Selection and Learning Theory
- Ensemble Methods and Clustering
- High-Dimensional Problems
- Association Rules and Recommenders
- Neural Networks
- Convex Optimization in Machine Learning





# Convex Optimization in Machine Learning

Many machine learning problems can be cast as minimizing a loss function:

- the OLS estimator for the linear regression (already invented by Gauss!)
- the use of regularization in lasso and the ridge regression
- the ML estimator of a logistic regression
- backpropagation in neural networks
- etc.

=> **Convex optimization** plays a crucial role, because it is often easier to "convexify" a problem (make it convex optimization friendly), rather than to use non-convex optimization.

In this class, we **revisit** material from different classes in our course through the lense of convex optimization. This should aid your understanding of previous classes and how machine learning as a combination of statistics and optimization.



#### Differentiable Convex Functions

#### Definition of convexity via the gradient

A differentiable function *f* is convex, iff dom *f* is convex and

$$f(y) - f(x) \ge \nabla f(x)^{T} (y - x) \ \forall x, y \in dom \ f$$

$$\equiv f(x) - f(y) \le \nabla f(x)^{T} (x - y) \ \forall x, y \in dom \ f$$

$$f(y)$$





The affine function is a tangent of f at (x, f(x)).

#### **Definition via the Hessian matrix:**

A twice differentiable function f is convex, iff dom f is convex and the Hessian matrix is positive semidefinite:  $\nabla^2 f(x) \ge 0 \ \forall x \in dom \ f$ 



# Linear Regression

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1^{x_{11}} x_{12} \dots x_{1p} \\ 1^{x_{21}} x_{22} \dots x_{2p} \\ \vdots & \vdots & \vdots \\ 1^{x_{n1}} x_{n2} \dots x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

| у              | X                  | β                 | <b>+</b> ε |
|----------------|--------------------|-------------------|------------|
|                |                    |                   |            |
| $(n \times 1)$ | $(n \times (p+1))$ | $((p+1)\times 1)$ | (n × 1)    |
|                |                    |                   |            |



#### **OLS Estimation**

Sample-based counter part to population regression model:

$$y = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$
$$y = \mathbf{X}\hat{\boldsymbol{\beta}} + e$$

 OLS requires choosing values of the estimated coefficients, such that Residual Sum of Squares (RSS) is as small as possible for the sample

$$RSS = e^T e = (y - \mathbf{X}\hat{\beta})^T (y - \mathbf{X}\hat{\beta})$$

• Need to differentiate with respect to the unknown coefficients



# **Least Squares Estimation**

**X** is 
$$n \times (p + 1)$$
,  $y$  is the vector of outputs  $RSS(\beta) = (y - \mathbf{X}\beta)^T (y - \mathbf{X}\beta)$ 

If X is full rank, then  $X^TX$  is positive definite

$$RSS = (y^T y - 2\beta^T \mathbf{X}^T y + \beta^T \mathbf{X}^T \mathbf{X}\beta)$$

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^T y + 2\mathbf{X}^T \mathbf{X}\beta = 0 \quad \text{First-order condition}$$

$$\beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

$$\hat{y} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

"Hat" or projection matrix H



# Quadratic Optimization in Least Squares Estimation

- Least square estimates in  $\mathbb{R}^n$
- We minimize the squared distance between observed and estimated values: RSS( $\beta$ )=|| $y - X\beta$ ||<sup>2</sup>, s.t. residual vector  $y - \hat{y}$  is orthogonal to this subspace X.
- We found an analytical solution:  $\hat{y} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Ty$

#### **Definition (Projection):**

The set  $X \subset \mathbb{R}^n$  is non-empty, closed and convex. For a fixed  $y \in \mathbb{R}^n$  we search a point  $\hat{y} \in X$ , with the smallest distance to y (wrt. the Euclidean norm), i.e. we solve the minimization problem

$$P_X(y) = \min_{\hat{y} \in X} ||y - \hat{y}||^2$$





# Recap: Taylor Polynomials for Approximation

Taylor polynomials are approximations of a function f at a point x.

Univarate: 
$$P(x) = f(x^{(0)}) + f'(x^{(0)})(x - x^{(0)}) + \frac{f''(x^{(0)})}{2!}(x - x^{(0)})^2 + \cdots$$

Multivariate: 
$$P(x) = f(x^{(0)}) + \nabla f(x^{(0)})^T (x - x^{(0)}) + \frac{1}{2!} (x - x^{(0)})^T H_f(x^{(0)}) (x - x^{(0)}) + \cdots$$

The partial sum formed by the first k+1 terms of a Taylor series is a polynomial of degree k that is called the kth Taylor polynomial of the function.

The approximation becomes generally better as k increases.





#### **Gradient Descent**

Unconstrained minimization:  $\min f(x)$ ,  $s.t.x \in X$ 



Derivation via first-order Taylor approximation (i.e., a linear function)

$$f(x) \approx f(x^{(0)}) + \langle \nabla f(x^{(0)}), x - x^{(0)} \rangle$$

This way, we would follow the gradient very long.

The approximation is only close in the vicinity of  $x^{(0)}$ .

Therefore, we add a penalty term using the following formula starting with k=0.

$$x^{(k+1)} = \operatorname{argmin}_{x} f(x^{(k)}) + \langle \nabla f(x^{(k)}), x - x^{(k)} \rangle + \frac{1}{2\alpha} \|x - x^{(k)}\|^{2}$$

The first-order condition wrt. x is:

$$0 + \nabla f(x^{(k)}) + \frac{1}{\alpha} (x - x^{(k)}) = 0$$
$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$$



### **OLS Estimation via Gradient Descent**

Instead of the analytical solution, we can use gradient descent to minimize the sum of squared residuals.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

We use the mean squared error as the loss function

$$L(\beta) = \frac{1}{n} \sum_{i} e_i^2 = \frac{1}{n} \sum_{i} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

Partial derivatives of the loss function wrt.  $\hat{\beta}_1$  and  $\hat{\beta}_0$  using the chain rule:

$$\frac{\partial L}{\partial \hat{\beta}_1} = \frac{1}{n} \sum_{i} 2(y_i - \hat{\theta}_0 - \hat{\beta}_1 x_i)(-x_i) = \frac{-2}{n} \sum_{i} x_i (y_i - \hat{y}_i)$$
$$\frac{\partial L}{\partial \hat{\beta}_0} = \frac{-2}{n} \sum_{i} (y_i - \hat{y}_i)$$



#### **OLS Estimation via Gradient Descent**

#### Pseudo code:

```
Start with \hat{\beta}_0 = \hat{\beta}_1 = 0
Repeat until the objective of the loss function is very small \hat{\beta}_1 := \hat{\beta}_1 - \alpha \frac{\partial L}{\partial \hat{\beta}_1}; \quad \hat{\beta}_0 := \hat{\beta}_0 - \alpha \frac{\partial L}{\partial \hat{\beta}_0}
```

#### Python code snippet:



# **Progress of Gradient Descent**



Note that there is no need to compute the minimum via gradient descent for the linear regression, because we have a closed-form solution (see slide 7).



What does Taylor approximation have to do with gradient descent?





#### Second Order Methods

- At a high level, gradient descent uses the first order Taylor expansion to approximate the function locally.
- This doesn't take into account the curvature of the function, i.e., how quickly the gradient is changing. Consequently, gradient descent can dramatically overshoot the optimum with a fixed step size.
- Instead of using only the first derivatives, second order methods use the first three terms of the multivariate Taylor series expansion

$$f(x) \approx f(x^{(0)}) + \nabla f(x^{(0)})^T (x - x^{(0)}) + \frac{1}{2!} (x - x^{(0)})^T H_f(x^{(0)}) (x - x^{(0)})$$

$$\nabla^2 f(\hat{x}) = H_f(\hat{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} (\hat{x}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} (\hat{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} (\hat{x}) & \dots & \frac{\partial^2 f}{\partial x_n^2} (\hat{x}) \end{bmatrix}$$



#### Second Order Methods

Instead of using only the first derivatives, second order methods use the first three terms of the multivariate Taylor series expansion

#### **Newton's method**

$$f(x^{(0)} + \Delta x) \approx P(x) = f(x^{(0)}) + f'(x^{(0)}) \Delta x + \frac{1}{2} f''(x^{(0)}) (\Delta x)^{2}$$

$$\frac{d}{dx} P(x) = f'(x^{(0)}) + f''(x^{(0)}) \Delta x = 0$$

$$\Delta x = -\frac{f'(x^{(0)})}{f''(x^{(0)})}$$

- Univariate update rule:  $x^{(k+1)} = x^{(k)} \frac{f'(x^{(k)})}{f''(x^{(k)})}$
- Multivariate update rule:  $x^{(k+1)} = x^{(k)} (H_f(x^{(k)}))^{-1} \nabla f(x^{(k)})$

Compare Newton's method to gradient descent:  $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$ 



# Minimal Example of Newton's Method

$$\min f(x_1, x_2) = 3 + (x_1 - 1.5x_2)^2 + (x_2 - 2)^2$$

Start point:  $x^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 

Newton step:  $\Delta x = -[H(x^{(0)})]^{-1} \nabla f(x^{(0)})$ 

Gradient

$$\nabla f(x^{(0)}) = \begin{pmatrix} -1\\ -0.5 \end{pmatrix}$$

Inverse Hessian matrix

$$H(x^{(0)}) = \begin{bmatrix} 2 & -3 \\ -3 & 6.5 \end{bmatrix}$$
$$H^{-1}(x^{(0)}) = \begin{bmatrix} 1.625 & 0.75 \\ 0.75 & 0.5 \end{bmatrix}$$

Newton step:

$$\Delta x = -\begin{bmatrix} 1.625 & 0.75 \\ 0.75 & 0.5 \end{bmatrix} \begin{pmatrix} -1 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

**Next iteration:** 

$$x^{(1)} = x^{(0)} + \Delta x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

repeat until convergence



Newton's method is a *root-finding algorithm*, i.e., it seeks a solution to the equation g(x) = 0

Newton's method for optimization can be seen as a way to find the zeros of the first derivative.

- Approximate:  $f'(x) \approx f'(x_t) + f''(x_t)(x x_t)$
- Update:  $x_{t+1} = x_t f'(x_t)/f''(x_t)$

This is equivalent to minimizing the second order approximation!























Common causes of error in Newton's method







#### Multivariate Newton's Method

Update rule: 
$$x^{(k+1)} = x^{(k)} - (H_f(x^{(k)}))^{-1} \nabla f(x^{(k)})$$

- Inverses do not always exist, if the inverse doesn't exist, then there may be no solution or infinitely many solutions.
- Computing the Hessian matrix is computationally expensive.
- Computing the inverse can be expensive: requires  $O(n^3)$  operations for an  $n \times n$  matrix.
- Overall, Newton's method requires more operations and more memory than gradient descent at each iteration. However, it converge in a lesser number of iterations.
- For multivariate functions, the inverse Hessian may not be available or infeasible to compute, so can be approximated using a variety of Quasi-Newton methods
  - Davidon-Fletcher-Powell (DFP) method
  - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
  - Limited-memory BFGS (L-BFGS) method





$$f(x_1, x_2) = 0.1x_1^4 + (x_1 - 2)^2 - (x_1 - 2)(x_2 - 2) + 0.5(x_2 - 2)^2$$



### **Gradient Descent**



 $f(x_1, x_2) = 0.1x_1^4 + (x_1 - 2)^2 - (x_1 - 2)(x_2 - 2) + 0.5(x_2 - 2)^2$ with diminishing step size rule



Where do the update steps of gradient descent and Newton's method differ?





#### Gauss-Markov Theorem

The Gauss-Markov theorem states that in a linear regression model in which the errors

- have expectation zero and
- are uncorrelated and
- have equal variances,

the best linear unbiased estimator (BLUE) of the coefficients is given by the ordinary least squares (OLS) estimator.

- "Unbiased" means  $E(\hat{\beta}_j) = \beta_j$
- "Best" means giving the <u>lowest variance</u> of the estimate as compared to other linear unbiased estimators.
  - Restriction to unbiased (linear) estimation is not always the best
     (will be discussed in the context of the ridge regression later)



### **Bias-Variance Tradeoff**





# Regularization

Objective function:

$$J(\beta) = L(\beta) + \Omega(\beta)$$

- $L(\beta)$  is training loss: how well model fit on training data.
- $\Omega(\beta)$  is regularization, measures complexity of model.
- Lower training loss result in more predictive model.
- Lower regularization result in simpler (more biased) model.

Regularization methods introduce bias into the regression solution that can reduce variance considerably relative to the ordinary least squares (OLS) solution.



# Ridge Regression

Ridge coefficient minimize a penalized RSS. The parameter  $\lambda$ >0 penalizes  $\beta_i$  proportional to its size  $\beta_i^2$ .

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \{ \sum_{i} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \}$$
Or
$$Minimize \{ \sum_{i} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \}$$

$$subject \text{ to } \sum_{i=1}^{p} \beta_j^2 \le s$$

This is a biased estimator that for some value of  $\lambda$ >0 may have smaller mean squared error than the least squares estimator.



# Ridge Regression (cont.)

- As λ increases, the standardized ridge regression coefficients shrink to zero.
- Thus, when λ is extremely large, then all of the ridge coefficient estimates are basically zero; this corresponds to the *null model* that contains no predictors.

It is best to apply ridge regression after standardizing the predictors





# Ridge Regression

- In general, the ridge regression estimates will be more biased than the OLS ones but have lower variance.
- Ridge regression will work best in situations where the OLS estimates have high variance.
- The regularizer is convex such that we still have a convex loss function!





How did lasso differ from the ridge regression?





# Logistic Regression

The logistic function is an example of a sigmoid function often used in feed-forward neural networks as activation function.

$$\Pr[Y_i = 1|X] = p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \sigma(\beta_0 + \beta_1 X_{1i})$$

• 
$$Pr(Y_i = 1) \rightarrow 0$$
 as  $\beta_0 + \beta_1 X_{1i} \rightarrow -\infty$ 

• 
$$Pr(Y_i = 1) \rightarrow 1 \text{ as } \beta_0 + \beta_1 X_{1i} \rightarrow \infty$$

Likelihood function models a sequence of Bernoulli trials

$$L = \prod_{i=1} p^{y_i} (1-p)^{1-y_i} = \prod_{i=1} \sigma(\beta_0 + \beta_1 X_{1i})^{y_i} * [1 - \sigma(\beta_0 + \beta_1 X_{1i})]^{1-y_i}$$



### The Likelihood Function for the Logit Model

Use  $L = \prod_{i=1} p^{y_i} (1-p)^{1-y_i}$  and take the log to get the log likelihood

$$LL = \ln(L) = \sum_{i=1}^{\infty} y_i \ln p_i + (1 - y_i) \ln(1 - p_i)$$

We look for the vector  $\beta$  that maximizes LL (or minimizes -LL)

$$\beta = \operatorname{argmax}_{\beta} LL(\beta) = \operatorname{argmax}_{\beta} \left[ \sum_{i=1}^{j} y_i \ln \sigma(\beta_0 + \beta_1 X_{1i}) + (1 - y_i) \ln(1 - \sigma(\beta_0 + \beta_1 X_{1i})) \right]$$

The LL function is twice differentiable and concave!

- For the OLS estimator, we set the FOC=0 and get an analytical solution.
- For the logistic regression, this does not get us a closed-form solution due to the nonlinearity of the logistic sogmoid function.
- We can use a numerical algorithm to find the maximum: gradient ascent!



### The Negative LL Function is Convex

Is the negative *LL* function convex?

$$\sigma(\beta_0 + \beta_1 X_{1i}) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1)}} = \frac{1}{1 + e^{-z}} = \sigma(z)$$
$$-LL(\beta) = \sum_{i=1}^{\infty} -y_i \ln \sigma(z) - (1 - y_i) \ln(1 - \sigma(z))$$

It is known that

- a convex function of an affine function is convex (i.e.,  $\sigma(\beta_0 + \beta_1 X_1)$ ).
- the sum of convex functions is convex (i.e.,  $\sum_{i=1}^{\infty} -y_i \ln \sigma(z) (1-y_i) \ln (1-\sigma(z))$ )

Let's define 
$$f_1(z) = -\ln(\sigma(z))$$
 and  $f_2(z) = -\ln(1 - \sigma(z))$  and  $f(z) = y_i f_1(z) + (1 - y_i) f_2(z)$ 

The key argument is to show that  $f_1(z)$  and  $f_2(z)$  are convex (next slide).



# The Negative LL Function is Convex

#### 1. $f_1(z)$ is convex:

$$f_1(z) = -\ln\left(\frac{1}{1 + \exp(-z)}\right) = \ln(1 + \exp(-z))$$

The derivative is monotonically increasing

$$\frac{d}{dz}f_1(z) = -\frac{\exp(-z)}{1 + \exp(-z)} = -1 + \frac{1}{1 + \exp(-z)} = -1 + \sigma(z)$$



#### 2. $f_2(z)$ is convex:

$$f_2(z) = -\ln\left(\frac{\exp(-z)}{1 + \exp(-z)}\right) = \ln(1 + \exp(-z)) + z = f_1(z) + z$$

The derivative of  $f_2(z)$  is also monotonically increasing

$$\frac{\mathrm{d}}{\mathrm{d}z}f_2(z) = \frac{\mathrm{d}}{\mathrm{d}z}f_1(z) + 1$$



#### Gradient for the LL Function

$$\beta = \operatorname{argmax}_{\beta} LL(\beta) = \operatorname{argmax}_{\beta} \left[ \sum_{i=1}^{n} y_i \ln \sigma(\mathbf{X}\beta) + (1 - y_i) \ln(1 - \sigma(\mathbf{X}\beta)) \right]$$

$$LL(\beta) = y \ln p + (1 - y) \ln(1 - p)$$
 for one sample  $p = \sigma(z), z = \mathbf{X}\beta$  short hands  $\frac{\partial LL(\beta)}{\partial \beta_j} = \frac{\partial LL(\beta)}{\partial p} * \frac{\partial p}{\partial z} * \frac{\partial z}{\partial \beta_j}$  chain rule

$$\frac{\partial p}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \frac{\partial}{\partial z} \frac{\exp(z)}{1 + \exp(z)} = \frac{\exp(z)(1 + \exp(z)) - \exp(2z)}{(1 + \exp(z))^2} = \frac{\exp(z)}{1 + \exp(z)} - \left(\frac{\exp(z)}{1 + \exp(z)}\right)^2 = \sigma(z) - \left(\sigma(z)\right)^2 = \sigma(z)(1 - \sigma(z))$$

$$\equiv \frac{\partial p}{\partial z} = \sigma(z)[1 - \sigma(z)]$$



#### Gradient for the LL Function

$$\beta = \operatorname{argmax}_{\beta} LL(\beta) = \operatorname{argmax}_{\beta} \left[ \sum_{i=1}^{j} y_i \ln \sigma(\mathbf{X}\beta) + (1 - y_i) \ln(1 - \sigma(\mathbf{X}\beta)) \right]$$

We can use the chain rule:

$$LL(\beta) = y \ln p + (1 - y) \ln(1 - p)$$

$$\frac{\partial LL(\beta)}{\partial p} = \frac{y}{p} - \frac{1 - y}{1 - p}$$

$$p = \sigma(z)$$

$$\frac{\partial p}{\partial z} = \sigma(z)[1 - \sigma(z)]$$

$$z = \mathbf{X}\beta$$

$$\frac{\partial z}{\partial \beta_i} = x_j$$

$$\frac{\partial LL(\beta)}{\partial \beta_{j}} = \frac{\partial LL(\beta)}{\partial p} * \frac{\partial p}{\partial z} * \frac{\partial z}{\partial \beta_{j}} = \begin{bmatrix} \frac{y}{p} - \frac{1-y}{1-p} \end{bmatrix} \sigma(z) [1-\sigma(z)] x_{j} = \\ \begin{bmatrix} \frac{y}{p} - \frac{1-y}{1-p} \end{bmatrix} p[1-p] x_{j} = \\ [y(1-p) - p(1-y)] x_{j} = \\ [y-p] x_{j} = \\ [y-\sigma(\mathbf{X}\beta)] x_{j} = \text{sgradient} \end{bmatrix}$$



#### Gradient Ascent for the Likelihood Function

We want to choose parameters ( $\beta$ ) that maximize the likelihood, and we know the partial derivative of the log likeliood (LL) with respect to each parameter.

The LL function is convex, but no closed-form solution exists for the derivative. So, we can use gradient ascent to maximize the log likelihood.

Repeat many times: For each training example  $(x_i, y_i)$  do: For each parameter  $0 \le j \le p$  do:  $\beta_j^{new} = \beta_j^{old} + \alpha * \frac{\partial LL(\beta^{old})}{\partial \beta_j^{old}}$   $= \beta_j^{old} + \alpha * \sum_i [y_i - \sigma(\beta^T x_i)] x_{ij}$   $= \beta_j^{old} + \alpha * \sum_i \left[ y_i - \frac{\exp(\beta^T x_i)}{1 + \exp(\beta^T x_i)} \right] x_{ij}$ 

Parameter  $\beta_0$  is added for an additional feature  $x_0$  that always takes the value 1.



## Logistic Regression and Neural Networks

- Logistic regression does assume a linear relationship between the input variables with the output.
- Logistic regression is useful if we are working with a dataset where the classes are more or less "linearly separable."
- We can think of logistic regression as a one layer neural network.





# 1-Layer Neural Network with Sigmoid Activation

Initialize with random weights Present a training pattern Feed it through to get output

1

#### Training data set

|           |     |       | 1                               |
|-----------|-----|-------|---------------------------------|
| Fields    |     | class | $1.4 \mathcal{H}_1$ $1\theta_0$ |
| 1.4 2.7   | 1.9 | 0]    |                                 |
| 3.8 3.4 3 | 3.2 | 0     | $f(\vec{x}, \theta)$ 0.8        |
| 6.4 2.8   | 1.7 | 1     |                                 |
| 4.1 0.1 ( | 0.2 | 0     | 1.9 $^{\prime\prime}	heta_D$    |
| etc       |     |       |                                 |



### **Error Backpropagation**

In backpropagation, we do gradient descent on the whole network.

Once we stack logistic activation functions in a multi-layer neural network, the loss function is not convex anymore!





#### Neural Networks and Gradient Descent

Minimizing the **empirical risk function**  $R(\theta)$ , which is modeling **expected loss** (as we don't know the true distribution of data). This means, the empirical risk  $R(\theta)$  is the average loss over the training data.

$$R(\theta) = \frac{1}{N} \sum_n L(y_n, g(\theta, x_n)) = \frac{1}{2N} \sum_n (y_n - g(\theta^T x_n))^2$$
 derivative of  $f(z)^2 \Rightarrow 2f(z)f'(z)$  (chain rule)

$$\nabla_{\theta} R = \frac{1}{2N} \sum_{n} 2(y_n - g(\theta^T x_n))(-1)g'(\theta^T x_n) x_n = 0$$
$$g(z) = (1 + exp(-z))^{-1}$$

Again, there is no "closed-form" solution. We used gradient descent to backpropagate the error of training examples.



#### Neural Networks as a Non-Linear Classifier





### Universal Approximation Theorem

A feed-forward neural network with a single hidden layer and continuous non-linear activation function can approximate any continuous function with arbitrary precision.\*

- Neural Network
- One hidden layer
  Non-linear activation function

Approximate any function with any precision

Deep Neural Networks ><sub>in practice</sub> Wide Neural Networks

<sup>\*</sup>Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal Approximators. Neural Networks. 2. pp. 359–366.



## Deep Learning

- Usually having two or more hidden layers counts as deep.
- Typically trained on GPUs.
- Seen as an end-to-end framework (no feature extraction steps necessary).



Source: Najm, Ansaf, Hassen (2019)



## Machine Learning = Optimization over Data

Empirical risk minimization: Fitting the parameters of the model ("training") = optimization



$$R(\theta) = rac{1}{N} \sum_n L(y_n, g(\theta, x_n)) + R(x_n)$$
  $N = \# \text{ examples}$   $y_n = \text{ labels}$   $\theta \in \mathbb{R}^d = \text{ features}$   $R(x_n) = \text{ regularization}$ 

Global optimization is NP-hard, convex optimization is not!



#### **Course Content**

- Introduction
- Regression Analysis
- Regression Diagnostics
- Logistic and Poisson Regression
- Naive Bayes and Bayesian Networks
- Decision Tree Classifiers
- Data Preparation and Causal Inference
- Model Selection and Learning Theory
- Ensemble Methods and Clustering
- High-Dimensional Problems
- Association Rules and Recommenders
- Neural Networks
- Convex Optimization in Machine Learning

