

Funções escalares de várias variáveis

Extremos absolutos em compactos. Multiplicadores de Lagrange

Objetivos:

- Teorema de Weierstrass; cálculo de máximos/mínimos absolutos em compactos
- Multiplicadores de Lagrange

Teorema (de Weierstrass): Se $f:D\subset\mathbb{R}^2\to\mathbb{R}$ é contínua num conjunto compacto $K\subset D$, então f tem um valor máximo absoluto e também um valor mínimo absoluto em K.

Método para encontrar extremantes absolutos em um conjunto compacto

- 1. Achar os pontos críticos no interior de K, Int(K), e achar os valores de f nestes pontos críticos.
- 2. Achar os valores máximos e mínimos de f fronteira de K, Fr(K).
- 3. Compare os valores obtidos no item 1) e 2). O maior deles será o valor máximo absoluto e o menor deles será o valor mínimo absoluto.

O conjunto fronteira de K pode ser um ponto, uma curva ou união de pontos e curvas. Portanto, um caminho natural para calcular os máximos e mínimos na fronteira é estudar a imagem da parametrização do conjunto.

Exemplo: Encontre os extremos absolutos da função $f(x,y)=2x^2+3y^2$ na região $K=\{(x,y)\in\mathbb{R}^2; -1\leqslant x\leqslant 1, 0\leqslant y\leqslant 1\}$.

Figure 1: O conjunto $K = \{(x, y) \in \mathbb{R}^2; -1 \le x \le 1, 0 \le y \le 1\}$

Observe que o conjunto fonteira de K é o retângulo de vértices (-1,0), (1,0), (1,1) e (-1,1). Já o interior de K é a parte interna do retângulo, isto é, $Int(K) = \{(x,y) \in \mathbb{R}^2; -1 < x < 1, 0 < y < 1\}$.

Como $K\subset Dom(f)=\mathbb{R}^2$ é um conjunto compacto e f(x,y) é uma função contínua em K, então o Teorema de Weierstrass nos garante a existência de máximo e mínimo em K.

1. Calculemos o pontos críticos no interior de K.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Rightarrow \begin{cases} 4x = 0\\ 6y = 0 \end{cases}$$

Donde, x=y=0. Como $(0,0)\notin Int(K)$, não temos pontos críticos no interior do compacto.

2. Calculemos o máximos e mínimos na fronteira de K.

Observe que a fronteira de K é a união dos segmentos $C_1:\alpha_1(t)=(t,0), t\in [-1,1];$ $C_2:\alpha_2(t)=(1,t), t\in [0,1],$ $C_3:\alpha_3(t)=(t,1), t\in [-1,1]$ e $C_4:\alpha_2(t)=(-1,t), t\in [0,1].$ Estudemos cada segmento por separado:

- (a) Seja $g_1(t)=f(\alpha_1(t))=f(t,0)=2t^2,\ t\in[-1,1].$ Donde $g_1'(t)=4t=0\iff t=0.$ Como 0 é um ponto interior do intervalo [-1,1], os valores máximos e mínimos absolutos de f no segmento C_1 serão atingidos no instante $t=-1,\ t=0$ ou t=1. Temos, $g_1(-1)=f(-1,0)=2$, $g_1(1)=f(1,0)=2$ e $g_1(0)=f(0,0)=0$.
- (b) Seja $g_2(t)=f(\alpha_2(t))=f(1,t)=2+3t^2,\ t\in[0,1].$ Donde $g_2'(t)=6t=0\iff t=0.$ Como 0 é um extremo do intervalo [0,1], temos que os valores máximos e mínimos absolutos de f no segmento C_2 serão atingidos no instante t=0 ou t=1. Temos, $g_2(0)=f(1,0)=2$ e $g_2(1)=f(1,1)=5.$
- (c) Seja $g_3(t)=f(\alpha_3(t))=f(t,1)=2t^2+3,\ t\in[-1,1].$ Donde $g_3'(t)=4t=0\iff t=0.$ Como 0 é um ponto interior do intervalo [-1,1], temos que os valores máximos e mínimos absolutos de f no segmento C_3 serão atingidos no instante $t=-1,\ t=0$ ou t=1. Temos, $g_3(-1)=f(-1,1)=5,\ g_3(0)=f(0,1)=3$ e $g_3(1)=f(1,1)=5.$
- 3. Resumindo:

Comparando todos os valores da tabela, temos que o valor máximo absoluto em K é 5, atingido nos pontos (1,1) e (-1,1). Já o valor mínimo absoluto em K é 0, atingido no ponto (0,0).

Observe que todos os valores são atingidos na fronteira de K, pois f não possui pontos críticos no interior de K.

Na figura a seguir o compacto $K \subset Dom(f)$ está desenhado de cor roxo no plano z=0, Já a imagem do retângulo e seu interior, $f(K) \subset G_f$, está desenhado de cor amarelo. Observe como os pontos mais altos em f(K) são A=(1,1,5) e B=(-1,1,5); e o ponto mais baixo de f(K) é C=(0,0,0).

Figure 2: Extremantes absolutos em compactos

Quando a fronteira do compacto é uma curva suave, existe um outro método para calcular os extremantes do item 2 do método para encontrar extremantes absolutos em um conjunto compacto. Esse novo método é devido a Lagrange.

Máximos e mínimos condicionados com uma restrição: Sejam $f,g:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, D aberto. Queremos extremar f(x,y) sujeito à condição g(x,y)=0.

Seja C: g(x,y)=0 a curva de nível k=0 de g verificando $C\subset D$.

Figure 3: Curva de nível g(x,y) = 0

Sejam C_{k_1} , C_{k_2} , C_{k_3} , C_{k_4} , \ldots curvas de nível de f com $k_1 < k_2 < k_3 < k_4 < \ldots$

Figure 4: Interpretação geométrica do método dos Multiplicadores de Lagrange

Dizemos que (x_0,y_0) é máximo local (respectivamente, mínimo local) de f sujeito à condição C:g(x,y)=0 se existir uma bola aberta B de centro (x_0,y_0) , tal que $f(x_0,y_0)\geqslant f(x,y)$ (respectivamente, $f(x_0,y_0)\leqslant f(x,y)$), $\forall (x,y)\in B\cap C$.

Teorema 1: Se f,g são de classe C^1 em D e

- (a) $\nabla g(x,y) \neq (0,0)$ em C
- (b) (x_0,y_0) é um extremante local de f sujeito à condição g(x,y)=0 Então,

$$\nabla f(x_0, y_0) \| \nabla g(x_0, y_0).$$

Equivalentemente, existe $\lambda \in \mathbb{R}$ (dito multiplicador de Lagrange), tal que

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

Observação:

(I) Para encontrar os candidatos (x_0, y_0) a extremantes locais de f(x, y) sujeito à condição g(x, y) = 0, devemos resolver o seguinte sistema

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases} \quad \text{ou} \quad \begin{cases} \frac{\partial f}{\partial x}(x,y) = \lambda \frac{\partial g}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) = \lambda \frac{\partial g}{\partial y}(x,y) \\ g(x,y) = 0 \end{cases}$$

para algum $\lambda \in \mathbb{R}$, sempre que $\nabla g(x,y) \neq \vec{0}$ na curva de nível. Depois devemos fazer uma análise dos dados para achar os extremantes globais.

- (II) Se a curva C: g(x,y)=0 não for compacta (por exemplo 5x+4y-3=0), o Teorema de Weierstrass não se aplica. Portanto não está garantida a existência de extremantes globais na curva C.
- (III) Sejam $f,g:D\subset\mathbb{R}^3\longrightarrow\mathbb{R}$, D aberto, funções de classe C^1 de três variáveis. Então o conjunto $C:\ g(x,y,z)=0$ é uma superfície de nível. Para encontrar os candidatos (x_0,y_0,z_0) a extremantes de f(x,y,z) sujeito à condição g(x,y,z)=0, devemos resolver o sistema:

$$\begin{cases} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) \\ g(x,y,z) = 0 \end{cases} \quad \text{ou} \quad \begin{cases} \frac{\partial f}{\partial x}(x,y,z) = \lambda \frac{\partial g}{\partial x}(x,y,z) \\ \frac{\partial f}{\partial y}(x,y,z) = \lambda \frac{\partial g}{\partial y}(x,y,z) \\ \frac{\partial f}{\partial z}(x,y,z) = \lambda \frac{\partial g}{\partial y}(x,y,z) \\ g(x,y,z) = 0 \end{cases}$$

para algum $\lambda \in \mathbb{R}$, sempre que $\nabla g(x,y,z) \neq \vec{0}$ na superfície de nível.

Exemplo: Determine o máximo absoluto de $f(x,y)=x^2-y^2$, sujeito à condição $\overline{3x^2+2y^2}=1$.

Note que f e $g(x,y)=3x^2+2y^2-1$ são de classe C^1 e $\nabla g(x,y)=(6x,4y)\neq (0,0)$ para todo $3x^2+2y^2=1$. O método dos multiplicadores de Lagrange nos diz que o candidato a máximo absoluto condicionado deve verificar as equações

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases}$$

ou

$$\begin{cases} (2x, -2y) = \lambda (6x, 4y) \\ 3x^2 + 2y^2 - 1 = 0 \end{cases} \Rightarrow \begin{cases} 2x = 6\lambda x & (1) \\ -2y = 4\lambda y & (2) \\ 3x^2 + 2y^2 - 1 = 0 & (3) \end{cases}$$

De (1) temos que x=0 ou $\lambda=\frac{1}{3}.$ Substituindo x=0 em (3) obtemos $y=\pm\frac{1}{\sqrt{2}}.$ Portanto os pontos $(0,-\frac{1}{\sqrt{2}})$ e $(0,\frac{1}{\sqrt{2}})$ são candidatos a máximo.

Portanto os pontos $(0,-\frac{1}{\sqrt{2}})$ e $(0,\frac{1}{\sqrt{2}})$ são candidatos a máximo. Substituindo $\lambda=\frac{1}{3}$ em (2) obtemos $-2y=\frac{4}{3}y$, donde y=0. Substituindo y=0 em (3), temos que $x=\pm\frac{1}{\sqrt{3}}$. Portanto os pontos $(-\frac{1}{\sqrt{3}},0)$ e $(\frac{1}{\sqrt{3}},0)$ também são candidatos a máximo.

Vamos calcular os valores de f nesses pontos:

Comparando os valores da tabela, temos que o valor máximo de f na curva $C:3x^2+2y^2-1=0$ é 1/3, atingido nos pontos $(\pm\frac{1}{\sqrt{3}},0).$

Figure 5: Extremantes de $f(x,y)=x^2-y^2$ condicionado a $3x^2+2y^2=1$

Máximos e mínimos condicionados com duas restrições: Sejam $f,g,h:D\subset\mathbb{R}^3\longrightarrow\mathbb{R}$, D aberto. Queremos extremar f(x,y,z) sujeito às condições g(x,y,z)=0 e h(x,y,z)=0.

Sejam $S_1:g(x,y,z)=0$, uma superfície de nível de g, e $S_2:h(x,y,z)=0$, uma superfície de nível de h. E seja $C=S_1\cap S_2$ a curva interseção das duas superfícies.

Se f,g,h são de classe C^1 em D aberto de \mathbb{R}^3 com $\nabla g(x,y,z) \neq \vec{O}$ em S_1 e $\nabla h(x,y,z) \neq \vec{O}$ em S_2 . Temos que

$$\nabla g(x_0, y_0, z_0) \perp S_1 \text{ em } (x_0, y_0, z_0) \text{ e}$$

$$\nabla h(x_0, y_0, z_0) \perp S_2 \text{ em } (x_0, y_0, z_0).$$

Figure 6: Multiplicadores de Lagrange com duas restrições

Se (x_0,y_0,z_0) é um extremante local de f(x,y,z) sujeito a g(x,y,z)=0 e h(x,y,z)=0, então

- (a) $\nabla f(x_0,y_0,z_0)$ está no plano determinado por $\nabla g(x_0,y_0,z_0)$ e $\nabla h(x_0,y_0,z_0)$. Isto é, $\nabla f(x_0,y_0,z_0)=\lambda \nabla g(x_0,y_0,z_0))+\mu \nabla h(x_0,y_0,z_0)$, para alguns $\lambda,\mu\in\mathbb{R}$.
- (b) $g(x_0, y_0, z_0) = 0$
- (c) $h(x_0, y_0, z_0) = 0$

Portanto, para encontrar os candidatos a extremantes locais de f(x,y,z) sujeito às condições g(x,y,z)=0 e h(x,y,z)=0, devemos resolver o seguinte sistema:

$$\begin{cases} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) + \mu \nabla h(x,y,z) \\ g(x,y,z) = 0 \\ h(x,y,z) = 0 \end{cases}$$

Exemplo: Encontre os pontos de máximo e mínimo de f(x,y,z)=x+y+z, sujeito às restrições $x^2+y^2=2$ e x+z=1.

Devemos resolver o seguinte sistema

$$\begin{cases} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) + \mu \nabla h(x,y,z) \\ g(x,y,z) = 0 \\ h(x,y,z) = 0 \end{cases}$$

onde $g(x, y, z) = x^2 + y^2 - 2$ e h(x, y, z) = x + z - 1. Temos

$$\begin{cases}
1 = 2\lambda x + \mu & (1) \\
1 = 2\lambda y & (2) \\
1 = \mu & (3) \\
x^2 + y^2 = 2 & (4) \\
x + z = 1 & (5)
\end{cases}$$

De (1) e (3), temos $2\lambda x = 0$, donde $\lambda = 0$ ou x = 0. Se $\lambda = 0$ então de (2) temos 1=0, o que é absurdo. Logo, x=0. De (4) e (5) termos $y=\pm\sqrt{2}, z=1$. Assim, $(0,\sqrt{2},1)$ e $(0,-\sqrt{2},1)$ são candidatos a extremantes. Como f é contínua e a curva $C: \left\{ \begin{array}{l} x^2+y^2=2 \\ x+z=1 \end{array} \right. \ \, \text{\'e um conjunto compacto, ent\~ao pelo teorema de Weierstrass temos} \right.$ máximo e mínimo absolutos. Como $f(0,\sqrt{2},1)=\sqrt{2}+1>f(0,-\sqrt{2},1)=-\sqrt{2}+1$, então f tem máximo $1+\sqrt{2}$ em $(0,\sqrt{2},1)$ e mínimo de $1-\sqrt{2}$ em $(0,-\sqrt{2},1)$.

Exemplos

1. Uma placa metálica tem a forma de um disco $D = \{(x,y); x^2 + y^2 \leq 1\}$. Ela é aquecida de modo que a temperatura num ponto (x,y) é dada por T(x,y)= $3x^2 + 2y^2 + \frac{y^3}{9}$. Encontre a maior e a menor temperatura na placa.

Solução

Como D é um conjunto compacto e T(x,y) é uma função contínua em D, então o Teorema de Weierstrass nos garante a existência de máximo e mínimo em D.

Figure 7: $\tilde{D:x^2+y^2}\leqslant 1$

Figure 8: Figure 9: $Int(D): x^2 + y^2 < 1$ Figure 9: $Fr(D): x^2 + y^2 = 1$

Em Int(D), no interior de D, temos $\frac{\partial T}{\partial x}(x,y) = 6x$, $\frac{\partial T}{\partial y}(x,y) = 4y + \frac{y^2}{3}$.

Os pontos críticos em Int(D) são encontrados resolvendo o sistema:

$$\begin{cases} \frac{\partial T}{\partial x}(x,y) = 0 \\ \frac{\partial T}{\partial y}(x,y) = 0 \end{cases} \Rightarrow \begin{cases} 6x = 0 \\ 4y + \frac{y^2}{3} = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y\left(4 + \frac{y}{3}\right) = 0 \Rightarrow y = 0 \quad \text{ou} \quad y = -12 \end{cases}$$

Portanto, (0,0),(0,-12) são as soluções. Como $(0,-12)\notin D$, então (0,0) é o único ponto crítico de T em Int(D). Temos T(0,0)=0.

Na fronteira de D (Fr(D)) é a circunferência de centro (0,0) e raio 1. Uma parametrização da curva seria $\begin{cases} x = \cos t \\ y = \sin t \end{cases}$, $0 \le t \le 2\pi$.

Logo, a temperatura em Fr(D) é dada por

$$T(t) = T(\cos t, \sin t) = 3\cos^3 t + 2\sin^2 t + \frac{\sin^3 t}{3}, \quad 0 \le t \le 2\pi.$$

 $\begin{array}{ll} \operatorname{Em}\]0,2\pi[:\ T'(t)=0\ \Leftrightarrow 6\cos t(-\sec t)+4\sec t\cos t+\frac{3\sec^2 t}{3}\cos t=0\ \Leftrightarrow \\ -2\sec t\cos t+\sec^2 t\cos t=0\ \Leftrightarrow \sec t\cos t(-2+\sec t)=0\Longrightarrow \sec t\cos t=0 \\ 0 \quad \operatorname{ou}\ \ \underbrace{\frac{\sec t=2}{\operatorname{absurdo!}}} \Rightarrow \sec t\cos t=0 \ \ \overset{0\ <\ t\ <\ 2\pi}{\Longrightarrow} \ \ t=\frac{\pi}{2}, \quad t=\frac{3\pi}{2}, \quad t=\pi. \end{array}$

Temos

$$T\left(\frac{\pi}{2}\right) = T(0,1) = 2 + \frac{1}{\frac{1}{9}} = \frac{19}{9}, T(\pi) = T(-1,0) = 3, T\left(\frac{3\pi}{2}\right) = T(0,-1) = \frac{17}{9}$$

Na fronteira de $[0,2\pi]$: 0 e 2π

Temos T(0) = T(1,0) = 3, $T(2\pi) = T(1,0) = 3$.

Comparando todos os valores encontrados, temos

$$0 = T(0,0) < 3 = T(1,0) = T(-1,0).$$

Assim, a temperatura mínima é 0 e ocorre em (0,0) e a temperatura máxima é 3, ocorrendo em (1,0) e (-1,0).

2. Encontre o máximo e o mínimo da função $f(x,y)=x^2+3xy-3x$ definida em $D=\{(x,y)\in\mathbb{R}^2;x\geqslant 0,y\geqslant 0,x+y\leqslant 1\}.$

Solução

Como a função f é contínua no compacto D, então pelo teorema de Weierstrass existem máximo e mínimo em D.

D D

Figure 10: $D: x \ge 0, y \ge 0, x + y \le 1$

Figure 11: D: x, y > 0, x + y < 1

Figure 12: $D: 0 \le x \le 1 \land y \stackrel{\frown}{\mathsf{Page}} 0$ $0 \le y \le 1 \land x = 0$, $0 \le x \le 1 \land y = 1 - x$

No interior de D, os pontos críticos são encontrados resolvendo o sistema

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \Longrightarrow \begin{cases} 2x + 3y - 3 = 0\\ 3x = 0 \end{cases} \tag{1}$$

$$(2) \Rightarrow x = 0 \Rightarrow 3y - 3 = 0 \Rightarrow y = 1 \Rightarrow (0, 1).$$

Como $(0,1) \notin Int(D)$, então não existem pontos críticos de f no interior de D. Portanto, os extremantes absolutos estão na fronteira de D.

Temos $Fr(D) = C_1 \cup C_2 \cup C_3$, onde

$$C_1: x = 0, \quad 0 \le y \le 1; \quad C_2: y = 0, 0 \le x \le 1; \quad C_3: y = 1 - x, 0 \le x \le 1.$$

Em
$$C_1:g_1(x)=f(x,y)=f(0,y)=0$$
, $0\leqslant y\leqslant 1$. Função constante.

Em $C_2:g_2(x)=f(x,y)=f(x,0)=x^2-3x$, $0\leqslant x\leqslant 1$. O gráfico da função é uma parábola com valor máximo f(0,0)=0 e mínimo f(1,0)=-2.

Em $C_3: g_3(x) = f(x,y) = f(x,1-x) = x^2 + 3x(1-x) - 3x = x^2 + 3x - 3x^2 - 3x = -2x^2$, $0 \le x \le 1$. O gráfico da função é uma parábola com valor máximo f(0,1) = 0 e mínimo f(1,0) = -2.

Portanto, o valor máximo de f em Fr(D) é 0 e ocorre em todos os pontos da curva C_1 . Já o valor mínimo é -2 e é atingido no ponto (1,0).

3. Determine o máximo de f(x,y)=x+y, sujeito à condição $x^2+y^2=1$.

Solução

Seja $g(x,y)=x^2+y^2-1$. Queremos maximizar f(x,y)=x+y sujeito a g(x,y)=0.

Tanto f quanto g são funções de classe C^1 , então para aplicar Multiplicadores de Lagrange devemos resolver o sistema

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases}$$

ou

$$\begin{cases} (1,1) = \lambda(2x,2y) \\ x^2 + y^2 = 1 \end{cases} \Rightarrow \begin{cases} 1 = 2\lambda x & 1) \\ 1 = 2\lambda y & (2) \\ x^2 + y^2 = 1 & (3) \end{cases}$$

$$(1), (2) \underset{4\neq 0}{\overset{x\neq 0}{\Rightarrow}} \lambda = \frac{1}{2x}, \lambda = \frac{1}{2y} \Rightarrow 2x = 2y \Rightarrow x = y \Rightarrow 2x^2 = 1.$$

Portanto,
$$x=\pm\frac{\sqrt{2}}{2}, x=y$$
. Daí, $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ e $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ são os candidatos a extremantes locais.

Como f(x,y)=x+y é contínua e $C:x^2+y^2=1$ é um conjunto compacto, então pelo teorema de Weiererstrass f assume máximo absoluto e também mínimo absoluto em C. Aliás,

$$f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \sqrt{2} > f\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = -\sqrt{2},$$

então o ponto de máximo é $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ e o valor máximo é $\sqrt{2}$.

4. Encontre os pontos da elipse $x^2+xy+y^2=3$ mais próximos e mais afastados da origem.

Solução

A distância de (x,y) à origem é dada por $d(x,y)=\sqrt{x^2+y^2}$. Então, devemos minimizar $f(x,y)=d^2(x,y)=x^2+y^2$ sujeito a g(x,y)=0, onde $g(x,y)=x^2+xy+y^2-3$.

Tanto f quanto g são funções de classe C^1 , então para aplicar Multiplicadores de Lagrange devemos resolver o sistema

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases} \quad \text{ou} \quad \begin{cases} 2x = \lambda(2x+y) \\ 2y = \lambda(x+2y) \\ x^2 + xy + y^2 = 3 \end{cases} \quad (2)$$

$$(1),(2) \Rightarrow \begin{cases} (2-2\lambda)x - \lambda y = 0\\ -\lambda x + (2-2\lambda)y = 0 \end{cases}$$
 (4)

Como (0,0) não satisfaz (3), então o sistema (4) admite solução não trivial. Logo, o determinante dos coeficientes deve ser nulo. Isto $\acute{\rm e}$:

$$\begin{vmatrix} 2 - 2\lambda & -\lambda \\ -\lambda & 2 - 2\lambda \end{vmatrix} = 0 \Rightarrow (2 - 2\lambda)^2 - \lambda^2 = 0$$

$$\Rightarrow (2-2\lambda-\lambda)(2-2\lambda+\lambda)=0 \Rightarrow (2-3\lambda)(2-\lambda)=0 \Rightarrow \lambda=\frac{2}{3} \text{ ou } \lambda=2$$

Se $\lambda=\frac{2}{3}$, então $\left(2-\frac{4}{3}\right)x-\frac{2}{3}y=0 \Rightarrow \frac{2}{3}x-\frac{2}{3}y=0$. Portanto, y=x e substituindo em (3), temos que $3x^2=3$. Logo $x=\pm 1$ e y=x. Donde, (1,1) e (-1,-1) são candidatos a extremantes.

Se $\lambda=2$, então $(2-4)\,x-2y=0 \Rightarrow -2x-2y=0$. Portanto, y=-x e substituindo em (3), temos que $x^2=3$. Logo $x=\pm\sqrt{3}$ e y=-x. Donde, $(\sqrt{3},-\sqrt{3})$ e $(-\sqrt{3},\sqrt{3})$ também são candidatos a extremantes.

Como $C: x^2+xy+y^2=3$ é um conjunto compacto e f é contínua, então f assume máximo absoluto e também mínimo absoluto em C.

Temos

$$f(1,1) = f(-1,-1) = 2 < f(\sqrt{3}, -\sqrt{3}) = f(-\sqrt{3}, \sqrt{3}) = 6,$$

então os pontos mais próximos da origem são (1,1) e (-1,-1); e os pontos mais afastados da origem são $(\sqrt{3},-\sqrt{3})$ e $(-\sqrt{3},\sqrt{3})$.

5. Determine o ponto da esfera $x^2+y^2+z^2=12$, cuja soma das coordenadas seja máxima.

Solução

Queremos maximizar f(x,y,x)=x+y+z sujeito a g(x,y,z)=0, onde $g(x,y,z)=x^2+y^2+z^2-12$.

Tanto f quanto g são funções de classe C^1 , então para aplicar Multiplicadores de Lagrange devemos resolver o sistema

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 0 \end{cases} \iff \begin{cases} 1 = 2\lambda x & 1) \\ 1 = 2\lambda y & (2) \\ 1 = 2\lambda z & (3) \\ x^2 + y^2 + z^2 = 12 & (4) \end{cases}$$

Como $x,y,z\neq 0$, de (1),(2),(3) temos que $\lambda=\frac{1}{2x}=\frac{1}{2y}=\frac{1}{2z}$. Donde x=y=z. Substituindo em (4), $3x^2=12\Rightarrow x^2=4$. Daí $x=\pm 2$, x=y=z. Portanto, os pontos (2,2,2) e (-2,-2,-2) são candidatos a extremantes.

Como a esfera $x^2+y^2+z^2=12$ é um conjunto compacto e f é contínua, pelo teorema de Weierstrass tem-se que f admite máximo absoluto em mínimo absoluto na esfera. Como f(2,2,2)=6>f(-2,-2,-2)=-6, então (2,2,2) é o ponto da esfera cuja soma das coordenadas é a máxima possível.

Exercícios

- 1. Encontre os valores extremos absolutos de $f(x,y)=4xy-x^2-y^2-6x$ na região $D=\{(x,y)\in\mathbb{R}^2; 0\leqslant x\leqslant 2, 0\leqslant y\leqslant 3x\}$.
- 2. Determine os pontos de máximo e mínimo absolutos da função $f(x,y)=e^{-x^2-y^2}$ (x^2+2y^2) em D: $x^2+y^2\leq 9$.
- 3. Encontre os extremantes absolutos de $f(x,y) = x^2 + y^2 2x 2y + 4$ no disco $D: \{(x,y); x^2 + y^2 \le 9\}.$
- 4. A temperatura em qualquer ponto (x,y) do plano é dada por $T(x,y)=x^2-x+2y^2$. Qual a temperature máxima e minima num disco fechado de raio 1 centrado na origem?
- 5. Estude os máximos e mínimos absolutos da função

(a)
$$f(x,y) = x^2 - 2xy + y^2$$
, restrita a $x^2 + y^2 = 1$

- (b) $f(x,y) = x^2 2y^2$, restrita a $x^2 + y^2 2x = 0$
- 6. Determine o ponto do elipsoide $x^2+4y^2+z^2=1$ que maximiza a soma x+2y+z.
- 7. Em que pontos da elipse de equação $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a reta tangente forma com os eixos coordenados um triângulo de área mínima?
- 8. Seja $f(x,y) = 3x^2 + 2\sqrt{2}xy + 4y^2$.
 - (a) Determine os extremantes locais de f em \mathbb{R}^2 .
 - (b) A temperatura em uma chapa $D=\{(x,y); x^2+y^2\leq 9\}$ é dada por $f(x,y)=3x^2+2\sqrt{2}xy+4y^2$. Determine o máximo e mínimo valor da temperatura (se existirem) em D.

Respostas

- 1. Máximo absoluto é 0, em (0,0) e o mínimo absoluto é -16 em (2,0)
- 2. Máximo absoluto é $18e^{-9}$ em (0,3) e (0,-3); mínimo absoluto 0 em (0,0).
- 3. Máximo absoluto é $13+6\sqrt{2}$ em $\left(-\frac{3\sqrt{2}}{2},-\frac{3\sqrt{2}}{2}\right)$; mínimo absoluto é 2 em (1,1).
- 4. Temperatura máxima é $\frac{9}{4}$ em $\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$ e temperatura mínima é $-\frac{1}{4}$ em $\left(\frac{1}{2},0\right)$.
- 5. (a) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ponto de minimo; $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ pontos de máximo
 - (b) (2,0) ponto de máximo; $\left(\frac{2}{3},\frac{2\sqrt{2}}{3}\right)$ e $\left(\frac{2}{3},-\frac{2\sqrt{2}}{3}\right)$ pontos de mínimo.
- 6. $\left(\frac{1}{\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

7.
$$\left(\frac{a\sqrt{2}}{2}, \frac{b\sqrt{2}}{2}\right), \left(\frac{a\sqrt{2}}{2}, -\frac{b\sqrt{2}}{2}\right), \left(-\frac{a\sqrt{2}}{2}, b\frac{\sqrt{2}}{2}\right), \left(-\frac{a\sqrt{2}}{2}, -\frac{b\sqrt{2}}{2}\right)$$

- 8. (a) (0,0) é ponto de mínimo local
 - (b)

