Estimates of other parameters, Bias

t12

Yi

2021 - 05 - 27

Load data

```
# s.rdt <- "../../scenario/scenario-t12/set-t12-c11.RData"
# dt <- "c11"

# s.rdt <- "../../scenario/scenario-t12/set-t12-c10.RData"
# dt <- "c10"

# s.rdt <- "../../scenario/scenario-t12/set-t12-c01.RData"
dt <- "c01"</pre>
```

- Scenario 1
- Scenario 2
- Scenario 3
- Scenario 4
- Scenario 5

Table 1: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	μ_1	0.000	-0.288 (-0.547, -0.003)	-0.041 (-0.243, 0.195)	-0.257 (-0.484, -0.040)	-0.111 (-0.289, 0.080)	0.016 (-0.135, 0.171)
	μ_2	1.735	0.390(1.712, 2.500)	0.198 (1.513, 2.336)	0.424 (1.786, 2.527)	$0.835\ (2.289,\ 2.833)$	-0.019 (1.442, 1.997)
	$ au_1$	1.000	-0.009 (0.814, 1.199)	-0.059 (0.783, 1.105)	-0.033 (0.791, 1.128)	-0.084 (0.761, 1.075)	-0.053 (0.825, 1.077)
	$ au_2$	2.000	-0.371 (1.338, 1.963)	-0.216 (1.440, 2.134)	-0.425 (1.311, 1.891)	-0.570 (1.220, 1.626)	-0.084 (1.707, 2.122)
	ρ	-0.300	0.142 (-0.416, 0.106)	-0.002 (-0.544, -0.037)	0.217 (-0.369, 0.148)	$0.046 \ (-0.484, -0.029)$	-0.019 (-0.465, -0.151)
	c_1	0.000	$0.601\ (0.089,\ 0.908)$				
	β	0.500	$1.325 \ (0.390, \ 2.000)$	$0.081\ (0.210,\ 2.000)$	-0.097 (0.071, 1.441)		
	α	-0.429	$0.435 \ (-0.888, \ 0.738)$	$0.086 \ (-1.118, \ 0.039)$	$0.564 \ (-0.251, \ 0.451)$		
50	μ_1	0.000	-0.239 (-0.482, -0.032)	-0.021 (-0.172, 0.130)	-0.269 (-0.431, -0.112)	-0.121 (-0.257, 0.017)	-0.006 (-0.114, 0.118)
	μ_2	1.735	$0.289\ (1.653,\ 2.389)$	$0.094\ (1.484,\ 2.183)$	$0.489\ (1.903,\ 2.495)$	$0.873\ (2.405,\ 2.794)$	$0.011\ (1.543,\ 1.946)$
	$ au_1$	1.000	$0.026\ (0.900,\ 1.147)$	$-0.026 \ (0.864, \ 1.080)$	-0.007 (0.874, 1.110)	-0.050 (0.846, 1.054)	$-0.030 \ (0.884, \ 1.056)$
	$ au_2$	2.000	$-0.244 \ (1.526, \ 2.036)$	-0.074 (1.614, 2.197)	-0.358 (1.443, 1.873)	-0.500 (1.347, 1.647)	-0.017 (1.824, 2.129)
	ρ	-0.300	0.132 (-0.345, 0.031)	0.008 (-0.469, -0.109)	0.195 (-0.289, 0.093)	$0.051 \ (-0.398, -0.093)$	-0.011 (-0.411, -0.188)
	c_1	0.000	$0.404 \ (0.039, \ 0.875)$				
	β	0.500	$0.274 \ (0.412, \ 2.000)$	$0.102\ (0.310,\ 1.279)$	$-0.136 \ (0.068, \ 0.742)$		
	α	-0.429	$0.275 \ (-0.661, \ 0.515)$	0.018 (-0.798, -0.116)	$0.558 \ (-0.157, \ 0.395)$		
200	μ_1	0.000	-0.093 (-0.242, 0.013)	-0.003 (-0.077, 0.070)	-0.251 (-0.345, -0.153)	-0.118 (-0.185, -0.051)	0.007 (-0.051, 0.059)
	μ_2	1.735	$0.117\ (1.651,\ 2.165)$	$0.028\ (1.586,\ 1.928)$	$0.529\ (2.054,\ 2.475)$	$0.863\ (2.497,\ 2.691)$	-0.002 (1.634, 1.835)
	$ au_1$	1.000	$0.002\ (0.945,\ 1.062)$	-0.011 (0.936, 1.045)	-0.001 (0.942, 1.058)	-0.027 (0.920, 1.022)	-0.007 (0.948, 1.037)
	$ au_2$	2.000	-0.104 (1.665, 2.062)	-0.024 (1.834, 2.113)	-0.398 (1.509, 1.735)	-0.484 (1.446, 1.586)	-0.010 (1.915, 2.062)
	ho	-0.300	0.069 (-0.329, -0.131)	$0.001 \ (-0.382, -0.211)$	0.162 (-0.234, -0.050)	0.054 (-0.314, -0.175)	-0.002 (-0.359, -0.245)
	c_1	0.000	$0.092\ (0.000,\ 0.596)$				
	β	0.500	$0.006 \ (0.374, \ 0.687)$	$0.009\ (0.405,\ 0.663)$	$-0.234 \ (0.056, \ 0.423)$		
	α	-0.429	0.075 (-0.528, 0.009)	$0.017 \ (-0.555, -0.309)$	$0.479 \ (-0.079, \ 0.331)$		

Table 2: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	μ_1	0.000	-0.378 (-0.655, -0.095)	-0.064 (-0.277, 0.148)	-0.319 (-0.514, -0.121)	-0.240 (-0.411, -0.050)	0.004 (-0.150, 0.163)
	μ_2	1.735	$0.470 \ (1.804, \ 2.585)$	$0.214\ (1.497,\ 2.357)$	$0.488 \ (1.852, \ 2.555)$	0.837 (2.316, 2.853)	0.005(1.425, 2.012)
	$ au_1$	1.000	-0.045 (0.791, 1.143)	-0.081 (0.762, 1.088)	-0.111 (0.740, 1.042)	-0.133 (0.722, 1.015)	-0.040 (0.839, 1.081)
	$ au_2$	2.000	-0.383 (1.381, 1.906)	-0.217 (1.467, 2.091)	-0.427 (1.341, 1.868)	-0.566 (1.259, 1.649)	-0.077 (1.712, 2.132)
	ρ	-0.600	$0.122 \ (-0.682, -0.225)$	0.004 (-0.780, -0.403)	$0.165 \ (-0.653, -0.175)$	$0.062 \ (-0.728, -0.353)$	-0.031 (-0.731, -0.486)
	c_1	0.000	$0.682\ (0.161,\ 0.933)$				
	β	0.500	$1.500 \ (0.491, \ 2.000)$	$0.089\ (0.200,\ 2.000)$	$-0.048 \ (0.071, \ 1.476)$		
	α	-0.433	$0.451 \ (-0.914, \ 0.838)$	$0.061 \ (-1.087, \ 0.038)$	$0.457 \ (-0.418, \ 0.378)$		
50	μ_1	0.000	-0.293 (-0.578, -0.080)	-0.053 (-0.216, 0.107)	-0.317 (-0.460, -0.187)	-0.245 (-0.373, -0.107)	-0.011 (-0.121, 0.112)
	μ_2	1.735	$0.375\ (1.744,\ 2.489)$	$0.131\ (1.523,\ 2.210)$	$0.494\ (1.917,\ 2.519)$	$0.863\ (2.402,\ 2.791)$	$0.001\ (1.556,\ 1.953)$
	$ au_1$	1.000	-0.014 (0.856, 1.114)	-0.040 (0.849, 1.074)	-0.088 (0.815, 1.026)	-0.099 (0.806, 1.005)	-0.023 (0.896, 1.066)
	$ au_2$	2.000	-0.323 (1.474, 1.960)	-0.130 (1.612, 2.176)	-0.395 (1.426, 1.818)	$-0.520 \ (1.342, \ 1.647)$	-0.033 (1.819, 2.110)
	ρ	-0.600	$0.128 \ (-0.619, -0.303)$	-0.002 (-0.718, -0.468)	0.171 (-0.581, -0.249)	0.065 (-0.648, -0.406)	-0.009 (-0.685, -0.535)
	c_1	0.000	$0.581\ (0.078,\ 0.905)$				
	β	0.500	$0.322\ (0.420,\ 2.000)$	$0.022\ (0.280,\ 1.083)$	-0.105 (0.099, 0.810)		
	α	-0.433	$0.288 \ (-0.714, \ 0.528)$	0.052 (-0.761, -0.108)	$0.416 \ (-0.314, \ 0.294)$		
200	μ_1	0.000	-0.123 (-0.393, 0.007)	-0.007 (-0.083, 0.078)	-0.309 (-0.386, -0.241)	-0.237 (-0.297, -0.174)	-0.000 (-0.052, 0.055)
	μ_2	1.735	$0.168\ (1.648,\ 2.382)$	$0.009\ (1.560,\ 1.925)$	$0.526\ (2.063,\ 2.468)$	$0.853\ (2.500,\ 2.680)$	-0.007 (1.631, 1.836)
	$ au_1$	1.000	-0.018 (0.925, 1.047)	-0.014 (0.935, 1.048)	$-0.069 \ (0.884, \ 0.979)$	-0.079 (0.875, 0.969)	-0.009 (0.953, 1.034)
	$ au_2$	2.000	-0.139 (1.597, 2.064)	-0.003 (1.850, 2.125)	-0.380 (1.511, 1.749)	$-0.482\ (1.453,\ 1.592)$	-0.011 (1.918, 2.060)
	ho	-0.600	0.068 (-0.608, -0.444)	$0.001 \ (-0.659, -0.539)$	$0.170 \ (-0.520, -0.339)$	$0.084 \ (-0.572, -0.461)$	-0.003 (-0.639, -0.561)
	c_1	0.000	$0.141\ (0.000,\ 0.859)$				
	β	0.500	$0.035 \ (0.375, \ 0.701)$	$0.020\ (0.410,\ 0.679)$	$-0.181 \ (0.088, \ 0.523)$		
	α	-0.433	$0.106 \ (-0.530, \ 0.250)$	$0.020 \ (-0.539, -0.303)$	$0.361 \ (-0.205, \ 0.254)$		

Table 3: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	μ_1	1.386	-0.245 (0.846, 1.391)	-0.031 (1.139, 1.562)	-0.259 (0.878, 1.331)	-0.122 (1.078, 1.446)	$0.003\ (1.237,\ 1.549)$
	μ_2	1.386	0.507 (1.459, 2.274)	$0.207 \ (1.176, \ 2.002)$	$0.573 \ (1.595, \ 2.256)$	$0.891 \ (2.009, \ 2.526)$	$0.006 \ (1.136, 1.657)$
	$ au_1$	1.000	-0.005 (0.828, 1.189)	-0.047 (0.806, 1.106)	-0.040 (0.809, 1.139)	-0.078 (0.783, 1.071)	-0.047 (0.838, 1.094)
	$ au_2$	2.000	-0.400 (1.339, 1.913)	-0.225 (1.448, 2.118)	-0.467 (1.295, 1.817)	-0.583 (1.219, 1.629)	$-0.084\ (1.721,\ 2.120)$
	ho	-0.300	0.091 (-0.474, 0.097)	-0.014 (-0.542, -0.022)	0.161 (-0.403, 0.154)	0.034 (-0.475, -0.019)	-0.012 (-0.464, -0.146)
	c_1	0.000	$0.581\ (0.046,\ 0.940)$				
	β	0.500	$0.664 \ (0.305, \ 2.000)$	$0.065 \ (0.205, \ 2.000)$	-0.198 (0.061, 1.184)		
	α	-0.111	-0.270 (-1.497, 0.211)	$0.084 \ (-0.456, \ 0.315)$	-0.204 (-1.212, 0.192)		
50	μ_1	1.386	-0.186 (0.900, 1.390)	-0.011 (1.227, 1.530)	-0.245 (0.979, 1.291)	-0.111 (1.142, 1.401)	$0.003\ (1.278,\ 1.499)$
	μ_2	1.386	$0.432 \ (1.392, \ 2.174)$	$0.101\ (1.149,\ 1.851)$	$0.563 \ (1.639, \ 2.233)$	0.878(2.067, 2.470)	-0.003 (1.182, 1.577)
	$ au_1$	1.000	$0.021\ (0.893,\ 1.174)$	-0.021 (0.867, 1.092)	-0.010 (0.872, 1.112)	-0.051 (0.846, 1.066)	$-0.023 \ (0.886, 1.068)$
	$ au_2$	2.000	-0.301 (1.461, 2.007)	$-0.091\ (1.617,\ 2.166)$	$-0.421\ (1.393,\ 1.787)$	$-0.532\ (1.317,\ 1.621)$	-0.022 (1.825, 2.115)
	ho	-0.300	0.071 (-0.411, -0.017)	-0.010 (-0.473, -0.128)	0.141 (-0.339, 0.070)	0.043 (-0.399, -0.104)	-0.009 (-0.422, -0.189)
	c_1	0.000	$0.413\ (0.000,\ 0.933)$				
	β	0.500	$0.209\ (0.303,\ 2.000)$	$0.045 \ (0.263, \ 1.357)$	$-0.238 \ (0.056, \ 0.665)$		
	α	-0.111	-0.103 (-0.816, 0.230)	$0.066 \ (-0.282, \ 0.253)$	-0.210 (-0.852, 0.226)		
200	μ_1	1.386	-0.067 (1.176, 1.415)	-0.004 (1.308, 1.461)	-0.224 (1.061, 1.240)	-0.118 (1.199, 1.333)	0.000(1.331, 1.441)
	μ_2	1.386	$0.126 \ (1.281, 1.956)$	$0.001 \ (1.222, \ 1.560)$	$0.618\ (1.824,\ 2.163)$	0.878(2.172, 2.359)	-0.003 (1.278, 1.485)
	$ au_1$	1.000	$0.008 \ (0.945, \ 1.073)$	-0.006 (0.939, 1.051)	-0.004 (0.943, 1.054)	-0.025 (0.926, 1.030)	-0.004 (0.952, 1.041)
	$ au_2$	2.000	-0.100 (1.618, 2.074)	-0.008 (1.841, 2.134)	-0.426 (1.479, 1.683)	-0.498 (1.424, 1.572)	-0.006 (1.913, 2.066)
	ho	-0.300	$0.040 \ (-0.344, -0.165)$	-0.002 (-0.374, -0.221)	$0.128 \ (-0.257, -0.070)$	0.054 (-0.312, -0.179)	-0.001 (-0.357, -0.246)
	c_1	0.000	$0.025\ (0.000,\ 0.583)$				
	β	0.500	$0.007 \ (0.360, \ 0.661)$	$0.020\ (0.403,\ 0.664)$	$-0.282 \ (0.066, \ 0.389)$		
	α	-0.111	-0.006 (-0.273, 0.060)	$0.030 \ (-0.199, \ 0.047)$	$-0.126 \ (-0.542, \ 0.228)$		

Table 4: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	μ_1	1.386	-0.320 (0.782, 1.314)	-0.087 (1.102, 1.515)	-0.324 (0.876, 1.255)	-0.252 (0.955, 1.312)	-0.006 (1.236, 1.537)
	μ_2	1.386	$0.569 \ (1.548, \ 2.397)$	$0.231\ (1.192,\ 2.047)$	0.609(1.652, 2.339)	0.894 (1.988, 2.543)	$0.008\ (1.103,\ 1.671)$
	$ au_1$	1.000	-0.061 (0.769, 1.119)	-0.075 (0.748, 1.078)	-0.123 (0.724, 1.017)	-0.133 (0.712, 0.992)	-0.043 (0.827, 1.073)
	$ au_2$	2.000	-0.397 (1.348, 1.890)	-0.218 (1.460, 2.132)	-0.484 (1.284, 1.782)	-0.578 (1.234, 1.650)	-0.064 (1.727, 2.148)
	ρ	-0.600	$0.050 \ (-0.749, -0.285)$	-0.025 (-0.785, -0.405)	0.108 (-0.699, -0.226)	$0.041 \ (-0.730, -0.358)$	-0.031 (-0.744, -0.487)
	c_1	0.000	$0.674\ (0.044,\ 0.961)$				
	β	0.500	$0.593\ (0.348,\ 2.000)$	$0.087\ (0.202,\ 2.000)$	$-0.213 \ (0.049, \ 0.952)$		
	α	-0.118	$-0.436 \ (-1.823, \ 0.212)$	0.047 (-0.504, 0.276)	-0.289 (-1.391, 0.235)		
50	μ_1	1.386	-0.229 (0.922, 1.353)	-0.036 (1.193, 1.494)	-0.299 (0.940, 1.224)	-0.232 (1.020, 1.268)	$0.009\ (1.285,\ 1.506)$
	μ_2	1.386	$0.467 \ (1.408, \ 2.227)$	$0.099\ (1.180,\ 1.862)$	$0.618\ (1.753,\ 2.237)$	$0.874\ (2.082,\ 2.441)$	-0.009 (1.184, 1.569)
	$ au_1$	1.000	-0.037 (0.845, 1.104)	-0.045 (0.843, 1.079)	-0.091 (0.805, 1.014)	-0.103 (0.800, 1.006)	-0.023 (0.886, 1.069)
	$ au_2$	2.000	-0.345 (1.427, 1.978)	$-0.121\ (1.586,\ 2.150)$	-0.466 (1.366, 1.733)	-0.540 (1.320, 1.609)	-0.037 (1.818, 2.110)
	ρ	-0.600	$0.076 \ (-0.665, -0.369)$	0.005 (-0.712, -0.457)	$0.136 \ (-0.599, -0.287)$	0.079 (-0.638, -0.394)	-0.012 (-0.691, -0.521)
	c_1	0.000	$0.446\ (0.000,\ 0.916)$				
	β	0.500	$0.174\ (0.278,\ 1.636)$	$0.012\ (0.264,\ 1.098)$	$-0.257 \ (0.044, \ 0.614)$		
	α	-0.118	-0.145 (-0.886, 0.208)	0.067 (-0.290, 0.197)	-0.211 (-0.971, 0.260)		
200	μ_1	1.386	-0.089 (1.130, 1.415)	-0.015 (1.287, 1.458)	-0.291 (1.026, 1.164)	-0.246 (1.080, 1.203)	-0.003 (1.327, 1.441)
	μ_2	1.386	0.139 (1.295, 2.066)	$0.026 \ (1.241, \ 1.595)$	0.691 (1.940, 2.225)	0.887(2.187, 2.368)	-0.004 (1.282, 1.484)
	$ au_1$	1.000	-0.018 (0.919, 1.043)	-0.010 (0.926, 1.053)	-0.068 (0.878, 0.979)	$-0.073 \ (0.874, \ 0.975)$	-0.005 (0.955, 1.040)
	$ au_2$	2.000	-0.123 (1.584, 2.067)	-0.034 (1.807, 2.125)	-0.465 (1.447, 1.630)	-0.504 (1.414, 1.572)	-0.008 (1.916, 2.072)
	ρ	-0.600	$0.038 \ (-0.633, -0.485)$	$0.001 \ (-0.657, -0.528)$	0.124 (-0.547, -0.401)	0.085 (-0.570, -0.452)	$0.000 \ (-0.645, -0.557)$
	c_1	0.000	$0.024\ (0.000,\ 0.579)$				
	β	0.500	$0.002 \ (0.323, \ 0.681)$	$0.020\ (0.394,\ 0.669)$	$-0.317 \ (0.039, \ 0.335)$		
	α	-0.118	$-0.016 \ (-0.307, \ 0.061)$	0.008 (-0.219, 0.029)	-0.045 (-0.536, 0.317)		

Table 5: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_O$	$Reitsma_{P}$
25	μ_1	2.197	-0.178 (1.771, 2.244)	-0.034 (1.978, 2.377)	-0.230 (1.753, 2.172)	-0.121 (1.900, 2.256)	0.001 (2.038, 2.339)
	μ_2	-0.405	0.366 (-0.494, 0.394)	0.129 (-0.638, 0.112)	$0.566 \; (-0.215, \; 0.525)$	0.894 (0.226, 0.780)	0.031 (-0.660, -0.101)
	$ au_1$	1.000	-0.026 (0.803, 1.141)	-0.059 (0.790, 1.094)	-0.047 (0.791, 1.112)	-0.082 (0.766, 1.066)	-0.050 (0.820, 1.073)
	$ au_2$	2.000	-0.260 (1.463, 2.075)	-0.155 (1.563, 2.154)	-0.372 (1.368, 1.929)	-0.514 (1.255, 1.702)	-0.078 (1.702, 2.139)
	ho	-0.300	$0.051 \ (-0.505, \ 0.021)$	-0.034 (-0.558, -0.081)	0.138 (-0.452, 0.101)	$0.015 \ (-0.506, -0.072)$	-0.026 (-0.476, -0.161)
	c_1	0.000	$0.231\ (0.000,\ 0.915)$				
	β	0.500	$1.500 \ (0.401, \ 2.000)$	$0.392\ (0.312,\ 2.000)$	$-0.314 \ (0.037, \ 0.947)$		
	α	1.744	-0.685 (-0.367, 4.750)	$0.942\ (1.051,\ 6.777)$	-1.476 (-0.041, 0.529)		
50	μ_1	2.197	-0.111 (1.878, 2.261)	-0.003 (2.052, 2.340)	-0.217 (1.813, 2.134)	-0.108 (1.962, 2.216)	0.000(2.092, 2.302)
	μ_2	-0.405	0.199 (-0.553, 0.281)	0.063 (-0.624, -0.079)	0.638 (-0.095, 0.510)	0.916 (0.321, 0.699)	0.011 (-0.597, -0.199)
	$ au_1$	1.000	-0.002 (0.888, 1.129)	-0.025 (0.874, 1.086)	-0.025 (0.874, 1.093)	-0.045 (0.858, 1.053)	-0.024 (0.896, 1.056)
	$ au_2$	2.000	-0.137 (1.573, 2.152)	$-0.061\ (1.704,\ 2.195)$	-0.383 (1.419, 1.890)	-0.477 (1.354, 1.694)	-0.024 (1.835, 2.120)
	ho	-0.300	$0.033 \ (-0.437, -0.068)$	-0.017 (-0.482, -0.138)	0.109 (-0.360, 0.017)	$0.025 \ (-0.426, -0.121)$	-0.008 (-0.410, -0.198)
	c_1	0.000	$0.035\ (0.000,\ 0.837)$				
	β	0.500	$0.273\ (0.400,\ 2.000)$	$0.132\ (0.387,\ 1.933)$	$-0.382 \ (0.039, \ 0.496)$		
	α	1.744	$-0.223 \ (0.127, \ 4.146)$	$0.443\ (1.247,\ 5.487)$	$-1.464 \ (0.037, \ 0.475)$		
200	μ_1	2.197	-0.029 (2.071, 2.249)	$0.002\ (2.127,\ 2.270)$	-0.176 (1.936, 2.096)	-0.114 (2.017, 2.145)	0.009(2.146, 2.256)
	μ_2	-0.405	0.045 (-0.520, -0.179)	0.011 (-0.530, -0.264)	0.756 (0.184, 0.475)	$0.905\ (0.404,\ 0.585)$	-0.011 (-0.510, -0.316)
	$ au_1$	1.000	0.009 (0.951, 1.070)	0.000(0.942, 1.056)	-0.003 (0.937, 1.050)	-0.015 (0.930, 1.038)	-0.001 (0.953, 1.044)
	$ au_2$	2.000	-0.036 (1.792, 2.100)	-0.017 (1.870, 2.108)	-0.406 (1.499, 1.701)	-0.450 (1.468, 1.631)	-0.009 (1.918, 2.075)
	ρ	-0.300	0.012 (-0.368, -0.211)	0.000 (-0.380, -0.229)	0.074 (-0.300, -0.136)	0.043 (-0.326, -0.197)	-0.003 (-0.358, -0.250)
	c_1	0.000	$0.000 \ (0.000, \ 0.040)$				
	β	0.500	$0.022\ (0.412,\ 0.700)$	$0.017 \ (0.414, \ 0.677)$	$-0.436 \ (0.038, \ 0.161)$		
	α	1.744	-0.042 (1.210, 2.344)	$0.044\ (1.380,\ 2.429)$	-1.419 (0.139, 0.431)		

Scenario 6

Table 6: Estimates of the parameters

\overline{S}	Par	True	Proposed (\hat{c}_1, \hat{c}_2)	Proposed (correct)	Proposed (wrong)	$\mathrm{Reitsma}_{O}$	$Reitsma_{P}$
25	μ_1	2.197	-0.260 (1.686, 2.192)	-0.050 (1.946, 2.360)	-0.299 (1.686, 2.106)	-0.246 (1.772, 2.144)	0.004 (2.039, 2.352)
	μ_2	-0.405	0.452 (-0.467, 0.547)	0.153 (-0.674, 0.100)	0.607 (-0.185, 0.542)	$0.903\ (0.191,\ 0.766)$	-0.014 (-0.691, -0.128)
	$ au_1$	1.000	-0.060 (0.791, 1.129)	-0.070 (0.785, 1.092)	-0.110 (0.751, 1.048)	-0.119 (0.739, 1.031)	-0.048 (0.829, 1.080)
	$ au_2$	2.000	-0.286 (1.359, 2.037)	-0.166 (1.522, 2.145)	-0.428 (1.290, 1.877)	-0.552 (1.217, 1.694)	-0.099 (1.696, 2.109)
	ρ	-0.600	$0.022 \ (-0.762, -0.333)$	-0.030 (-0.793, -0.424)	0.086 (-0.716, -0.240)	0.023 (-0.748, -0.382)	-0.023 (-0.734, -0.495)
	c_1	0.000	$0.528\ (0.000,\ 0.937)$				
	β	0.500	$1.500 \ (0.447, \ 2.000)$	$0.776 \ (0.343, \ 2.000)$	$-0.336 \ (0.024, \ 0.901)$		
	α	1.733	-1.185 (-0.688, 4.183)	$1.890 \ (1.028, \ 6.748)$	$-1.520 \ (-0.145, \ 0.502)$		
50	μ_1	2.197	-0.149 (1.817, 2.241)	-0.008 (2.030, 2.344)	-0.274 (1.772, 2.061)	-0.232 (1.844, 2.107)	$0.007\ (2.091,\ 2.316)$
	μ_2	-0.405	$0.203 \ (-0.551, \ 0.297)$	0.054 (-0.657, -0.102)	0.657 (-0.051, 0.499)	$0.899\ (0.301,\ 0.673)$	-0.012 (-0.612, -0.214)
	$ au_1$	1.000	-0.021 (0.862, 1.099)	-0.025 (0.858, 1.087)	-0.075 (0.823, 1.025)	$-0.078 \ (0.819, \ 1.017)$	-0.029 (0.883, 1.064)
	$ au_2$	2.000	-0.167 (1.544, 2.101)	-0.083 (1.688, 2.149)	-0.405 (1.399, 1.838)	$-0.491\ (1.348,\ 1.669)$	$-0.042\ (1.798,\ 2.106)$
	ρ	-0.600	$0.022 \ (-0.705, -0.415)$	-0.017 (-0.725, -0.479)	$0.111 \ (-0.637, -0.343)$	$0.044 \ (-0.671, -0.424)$	-0.015 (-0.689, -0.522)
	c_1	0.000	$0.058\ (0.000,\ 0.863)$				
	β	0.500	$0.252 \ (0.388, \ 2.000)$	$0.114 \ (0.375, \ 2.000)$	$-0.405 \ (0.025, \ 0.561)$		
	α	1.733	$-0.481 \ (-0.105, \ 3.735)$	$0.388\ (1.194,\ 5.435)$	-1.464 (-0.052, 0.459)		
200	μ_1	2.197	-0.029 (2.066, 2.242)	-0.003 (2.127, 2.265)	-0.259 (1.869, 2.002)	-0.236 (1.898, 2.022)	-0.002 (2.143, 2.249)
	μ_2	-0.405	0.029 (-0.522, -0.155)	0.002 (-0.541, -0.270)	$0.800\ (0.251,\ 0.504)$	$0.900\ (0.403,\ 0.595)$	0.008 (-0.501, -0.296)
	$ au_1$	1.000	-0.000 (0.936, 1.056)	$-0.002 \ (0.936, \ 1.052)$	-0.059 (0.890, 0.992)	-0.060 (0.889, 0.991)	$-0.006 \ (0.955, \ 1.038)$
	$ au_2$	2.000	-0.026 (1.794, 2.106)	-0.006 (1.880, 2.123)	-0.415 (1.500, 1.691)	$-0.446 \ (1.479, \ 1.636)$	-0.008 (1.918, 2.060)
	ρ	-0.600	$0.003 \ (-0.653, -0.525)$	-0.009 (-0.664, -0.545)	0.077 (-0.586, -0.454)	0.056 (-0.601, -0.480)	-0.005 (-0.646, -0.559)
	c_1	0.000	$0.000 \ (0.000, \ 0.061)$				
	β	0.500	$0.038\ (0.400,\ 0.689)$	$0.041\ (0.429,\ 0.682)$	$-0.448 \ (0.029, \ 0.121)$		
	α	1.733	$0.015\ (1.142,\ 2.350)$	$0.156\ (1.454,\ 2.424)$	$-1.377 \ (0.188, \ 0.455)$		