Corrigé de la PC3 : Résolution analytique d'équations hyperboliques non linéaires en 1D

15 avril 2019

EXERCICE 1 (PROBLÈME DE RIEMANN À 3 ÉTATS POUR L'ÉQUATION DE BÜRGERS) On considère le problème suivant :

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0, & x \in \mathbb{R}, \ t > 0, \\ u(x, 0) = u^0(x). \end{cases}$$
 (1)

On choisit comme condition initiale

$$u^{0}(x) = \begin{cases} u_{1}, & \text{si } x \leq 0, \\ u_{2}, & \text{si } 0 < x \leq 1, \\ u_{3}, & \text{si } x > 1. \end{cases}$$

Question 1. A quelle condition a-t-on une solution continue à t > 0?

Corrigé de la question 1. Pour une condition initiale croissante, ie $u_1 \le u_2 \le u_3$ on peut appliquer la méthode des caractéristiques et il existe une unique solution C^0 .

Question 2. Calculer la solution pour $u_1 = 0$, $u_2 = 1$ et $u_3 = 0$. Tracer les caractéristiques dans le plan (x,t) et la solution à différents temps. Montrer que l'amplitude et la vitesse du choc tendent vers 0 quand $t \longrightarrow +\infty$.

Corrigé de la question 2. La condition initiale vérifie $u_1 = 0$, $u_2 = 1$ et $u_3 = 0$, elle n'est pas croissante. Il y a trois zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone (1) pour $\xi \leq 0$, zone (2) pour $0 < \xi \leq 1$ et zone (3) pour $\xi > 1$,

$$\begin{cases} x_{\xi}(t) = \xi, & \text{si } \xi < 0, & \text{soit } x_{\xi}(t) \leq 0 & \text{zone (1)}, \\ x_{\xi}(t) = \xi + t, & \text{si } 0 < \xi < 1, & \text{soit } t < x_{\xi}(t) \leq t + 1 & \text{zone (2)}, \\ x_{\xi}(t) = \xi, & \text{si } \xi > 1, & \text{soit } x_{\xi}(t) > 1 & \text{zone (3)}. \end{cases}$$

Les caractéristiques des zones (2) et (3) se croisent pour $t > t^* = 0$, il y a naissance d'un choc. L'équation de la ligne de choc est $\sigma(t) = t/2 + 1$. Il existe une zone, notée (1-2), entre les zones (1) et (2) et qui n'est pas couverte par les caractéristiques. On introduit donc les caractéristiques d'équation x/t = c pour $0 < c \le 1$ pour la zone (1-2).

La droite de discontinuité d'équation $\sigma(t)=t/2+1$ intercepte la zone (1-2) pour $t\geq t^{**}$, où t^{**} est donné par

$$\frac{1}{2}t^{**} + 1 = t^{**},$$

i.e. $t^{**}=2$. La ligne de choc entre les zones (1-2) et (3) démarrant au point $(x^{**}=2,t^{**}=2)$ est construite par RH

$$\sigma'(t)[u] = [f(u)] \Longrightarrow$$

$$\sigma'(t)\left(0 - \frac{\sigma(t)}{t}\right) = \frac{1}{2}\left(0^2 - \frac{\sigma(t)^2}{t^2}\right) \Longrightarrow$$

$$\sigma'(t) = \frac{1}{2}\frac{\sigma(t)}{t} \Longrightarrow$$

$$\sigma(t) = \sqrt{2t}.$$

Pour $t>t^{**}$, il y a trois zones : (1),(1-2) et (3) ; la zone (2) a disparu. Les caractéristiques sont données figure 1.

FIGURE 1 – Droites caractéristiques et lignes de choc

La solution est (cf. figure 2):

— pour
$$t < t^{**} = 2$$
,

$$u(x,t) = \begin{cases} 0, & \text{si } x \le 0, \\ \frac{x}{t}, & \text{si } 0 < x < t, \\ 1, & \text{si } t \le x < t/2 + 1, \\ 0, & \text{si } x > t/2 + 1. \end{cases}$$

Il y a une ligne de choc entre les zones (2) et (3). L'amplitude du choc vaut $\Delta u = -1$ et le choc se déplace à la vitesse 1/2.

— pour
$$t > t^{**} = 2$$

$$u(x,t) = \begin{cases} 0, & \text{si } x \le 0, \\ \frac{x}{t}, & \text{si } 0 < x < \sqrt{2t}, \\ 0, & \text{si } x > \sqrt{2t}. \end{cases}$$

Il y a une ligne de choc entre les zones (1-2) et (3). L'amplitude du choc vaut $\Delta u = -\sqrt{\frac{2}{t}} \text{ et le choc se déplace à la vitesse } \sqrt{\frac{1}{2t}}.$

FIGURE 2 – Solution pour différents temps

Par conséquent, pour *t* tendant vers l'infini, l'amplitude et la vitesse du choc tendent vers 0.

Question 3. Calculer la solution pour $u_1 = 2$, $u_2 = 1$, $u_3 = 0$, et tracer les caractéristiques dans le plan (x, t) et la solution à différents temps.

Corrigé de la question 3. La condition initiale vérifie $u_1=2,\,u_2=1,\,u_3=0,$ elle est décroissante. Il y a trois zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone (1) pour $\xi \leq 0$, zone (2) pour $0 < \xi \leq 1$ et zone (3) pour $\xi > 1$,

$$\begin{cases} x_{\xi}(t) = \xi + 2t, & \text{si} \quad \xi \leq 0, & \text{soit} \quad x_{\xi}(t) \leq 2t & \text{zone (1)}, \\ x_{\xi}(t) = \xi + t, & \text{si} \quad 0 < \xi \leq 1, & \text{soit} \quad t < x_{\xi}(t) \leq t + 1 & \text{zone (2)}, \\ x_{\xi}(t) = \xi, & \text{si} \quad \xi > 1, & \text{soit} \quad x_{\xi}(t) > 1 & \text{zone (3)}. \end{cases}$$

Les caractéristiques des zones (1) et (2) se croisent pour $t>t^*=0$, il y a naissance d'un choc. L'équation de la ligne de choc entre les zones (1) et (2) est $\sigma(t)=3t/2$. Les caractéristiques des zones (2) et (3) se croisent pour $t>t^*=0$, il y a naissance d'un choc. L'équation de la ligne de choc est $\sigma(t)=t/2+1$.

Comme le choc entre les zones (1) et (2) se déplace plus vite que celui entre les zones (2) et (3), les deux lignes de choc vont se croiser pour $t=t^{**}$ avec $3t^{**}/2=t^{**}/2+1$, soit $t^{**}=1$ et $x^{**}=3/2$. Pour $t>t^{**}$, il n'y a plus que 2 zones : zone (1) et zone (3). La ligne de choc séparant les zones (1) et (3) commence au point $(x^{**}=3/2,t^{**}=1)$ et a pour équation $\sigma(t)=t+1/2$. Les caractéristiques sont données figure 3.

La solution est (cf. figure 4):

FIGURE 3 – Droites caractéristiques et lignes de choc

— pour $t < t^{**} = 1$,

$$u(x,t) = \begin{cases} 2, & \text{si } x < 3t/2, \\ 1, & \text{si } 3t/2 < x < t/2 + 1, \\ 0, & \text{si } x > t/2 + 1. \end{cases}$$

— pour $t > t^{**} = 1$

$$u(x,t) = \begin{cases} 2, & \text{si } x < t + 1/2, \\ 0, & \text{si } x > t + 1/2. \end{cases}$$

FIGURE 4 – Solution pour différents temps

EXERCICE 2 (PROBLÈMES DE RIEMANN POUR UNE NOUVELLE ÉQUATION NON LINÉAIRE) On considère le problème suivant :

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^4}{4} \right) = 0, & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = u^0(x). \end{cases}$$
 (2)

Question 1. Écrire l'équation de la caractéristique dans le plan (x,t) qui passe par le point ξ à t=0.

Corrigé de la question 1. Soit $x_{\xi}(t)$ l'équation de la caractéristique qui passe par le point ξ à t=0. Par définition

$$\frac{d}{dt}u(x_{\xi}(t),t)=0$$

soit

$$x'_{\xi}(t) = (u(x_{\xi}(t), t))^{3} = (u^{0}(\xi))^{3}$$

La caractéristique qui passe par le point ξ à t=0 a donc pour équation

$$x_{\xi}(t) = (u^{0}(\xi))^{3} t + \xi.$$

Question 2. On choisit comme condition initiale

$$u^{0}(x) = \begin{cases} u_{g}, & si \quad x < a, \\ u_{d}, & si \quad x > a. \end{cases}$$

Question 2 (a). On se place dans le cas où $u_g > u_d$. Construire, à l'aide de la méthode des caractéristiques, la solution faible entropique.

Dans le cas particulier où $u_g = 0$, $u_d = -2$ et a = 0 donner et tracer les caractéristiques dans le plan (x, t) et la solution aux temps t = 0 et t = 1.

Corrigé de la question 2 (a). Il y a 2 zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone (1) pour $\xi < a$ et zone (2) pour $\xi > a$.

Dans le cas où $u_g>u_d$, on a $u_g^3>u_d^3$. Les caractéristiques des zones (1) et (2) se croisent pour t>0. La solution faible entropique est un choc car $u_g^3>u_d^3$:

$$u(x,t) = \begin{cases} u_g, & si \quad x < \sigma(t), \\ u_d, & si \quad x > \sigma(t). \end{cases}$$

où $\sigma(t)$ est l'équation de la ligne de choc caractérisée par

$$\begin{cases}
\sigma'(t) = \frac{u_g^4/4 - u_d^4/4}{u_g - u_d} \\
\sigma(0) = a
\end{cases}$$

soit

$$\sigma(t) = \frac{1}{4}(u_g^2 + u_d^2)(u_g + u_d)t + a.$$

Dans le cas particulier où $u_g = 0$, $u_d = -2$ et a = 0, $\sigma(t) = -2t$ et

$$u(x,t) = \begin{cases} 0, & si \ x < -2t, \\ -2, & si \ x > -2t. \end{cases}$$

Question 2 (b). On se place dans le cas où $u_g < u_d$. Construire, à l'aide de la méthode des caractéristiques, la solution faible entropique.

Dans le cas particulier où $u_g = -2$, $u_d = -1$ et a = 1 donner et tracer les caractéristiques dans le plan (x, t) et la solution aux temps t = 0 et t = 1.

Corrigé de la question 2 (b). Il y a 2 zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone (1) pour $\xi < a$ et zone (2) pour $\xi > a$.

Dans le cas où $u_g < u_d$, il existe une zone, notée (1-2), entre les zones (1) et (2) et qui n'est pas couverte par les caractéristiques. On introduit donc les caractéristiques d'équation x = ct + a pour $u_g^3 < c < u_d^3$ pour la zone (1-2).

On va construire une onde de détente c'est à dire une fonction C^0 , C^1 pm pour t>0 qui satisfait l'équation 2

$$u(x,t) = \begin{cases} u_g, & si \quad x < u_g^3 t + a, \\ v(\frac{x-a}{t}), & si \quad u_g^3 t + a < x < u_d^3 t + a \\ u_d, & si \quad x > u_d^3 t + a. \end{cases}$$

où v((x-a)/t) est une solution auto semblable et doit satisfaire l'équation 2. Comme

$$\frac{\partial}{\partial t}v(\frac{x-a}{t}) + \left(v(\frac{x-a}{t})\right)^3 \frac{\partial}{\partial x}v(\frac{x-a}{t}) = \frac{1}{t}v'(\frac{x-a}{t})\left(-\frac{x-a}{t} + \left(v(\frac{x-a}{t})\right)^3\right),$$

on a nécessairement

$$v(\frac{x-a}{t}) = \left(\frac{x-a}{t}\right)^{1/3}$$

La solution faible

$$u(x,t) = \begin{cases} u_g, & si \quad x < u_g^3 t + a, \\ \left(\frac{x-a}{t}\right)^{1/3}, & \text{si} \quad u_g^3 t + a < x < u_d^3 t + a \\ u_d, & si \quad x > u_d^3 t + a. \end{cases}$$

est entropique car c'est une solution C^1 par morceaux et C^0 .

Dans le cas particulier où $u_g = -2$, $u_d = -1$ et a = 1 on obtient donc

$$u(x,t) = \begin{cases} -2, & si \quad x < -8t + 1, \\ \left(\frac{x-1}{t}\right)^{1/3}, & si \quad -8t + 1 < x < -t + 1, \\ -1, & si \quad x > -t + 1. \end{cases}$$

Question 3. On choisit comme condition initiale

$$u_0(x) = \begin{cases} 0, & \text{si } x \le 0, \\ -2, & \text{si } 0 < x \le 1, \\ -1, & \text{si } x > 1. \end{cases}$$

Calculer à l'aide de la méthode des caractéristiques, la solution faible entropique, donner l'équation des caractéristiques dans le plan (x,t) et tracer leur allure.

Corrigé de la question 3. Aux premiers instants, la solution est une simple combinaison des deux solutions obtenues aux questions précédentes. On a

$$u(x,t) = \begin{cases} 0, & \text{si } x \le -2t, \\ -2, & \text{si } -2t \le x \le -8t + 1 \\ \left(\frac{x-1}{t}\right)^{1/3}, & \text{si } -8t+1 < x \le -t+1, \\ -1, & \text{si } x > -t+1. \end{cases}$$

pour $t < t^*$ temps où la caractéristique d'équation -2t rencontre celle d'équation -8t+1. A cet instant donné par

$$-8t^* + 1 = -2t^* \Rightarrow t^* = \frac{1}{6},$$

et correspondant à $x^* = -1/3$, le choc intervient directement entre la solution $u_g = 0$ et la solution de type détente où $u_d < 0$. L'équation de la ligne de choc est alors donnée par

$$\sigma'_*(t) = \frac{1}{4} \left(\frac{\sigma_*(t) - 1}{t} \right)$$

soit

$$\sigma(t) = at^{1/4} + 1$$

où la constante a est donnée par

$$x^* = a(t^*)^{1/4} + 1$$
, avec $x^* = -\frac{1}{3}$ et $t^* = \frac{1}{6}$.

L'équation de la ligne de choc est donc

$$\sigma_*(t) = -\frac{4}{3}(6t)^{1/4} + 1$$

On obtient donc comme solution

$$u(x,t) = \begin{cases} 0, & \text{si } x \le \sigma_*(t), \\ \left(\frac{x-1}{t}\right)^{1/3}, & \text{si } \sigma_*(t) < x \le -t+1, \\ -1, & \text{si } x > -t+1. \end{cases}$$

pour $t^* \le t < t^{**}$ temps où le choc d'équation $\sigma_*(t)$ rencontre la caractéristique d'équation -t+1. Cet instant se caractérise alors par

$$-\frac{4}{3}(6t^{**})^{1/4} + 1 = -t^{**} + 1,$$

c'est à dire

$$t^{**} = \left(\frac{4}{3}\right)^{4/3} 6^{1/3},$$

et

$$x^{**} = -t^{**} + 1$$

Pour $t > t^{**}$, un choc intervient entre la solution $u_g = 0$ et la solution $u_d = -1$. Cette fois, le choc a pour équation

$$\sigma_{**}(t) = -\frac{1}{4}t + b,$$

où

$$b = x^{**} + \frac{1}{4}t^{**} = -\frac{3}{4}t^{**} + 1$$

La solution devient alors pour $t > t^{**}$,

$$u(x,t) = \begin{cases} 0, & \text{si } x \le \sigma_{**}(t), \\ -1, & \text{si } x > \sigma_{**}(t) \end{cases}$$

EXERCICE 3 (LIGNE DE CHOC COURBE)

On considère encore le problème suivant :

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0, & x \in \mathbb{R}, \ t > 0, \\ u(x,0) = u^0(x). \end{cases}$$
 (3)

mais on choisit cette fois ci comme condition initiale

$$u^{0}(x) = \begin{cases} -1/2, & \text{si } x \le -1/2, \\ x, & \text{si } -1/2 < x \le 1, \\ -1/2, & \text{si } x > 1. \end{cases}$$
 (4)

Question. Calculer la solution exacte du problème avec cette condition initiale.

Corrigé de la question. Les droites caractéristiques $(x_{\xi}(t), t)$ sont des droites de pente :

$$x_{\xi}'(t) = u_0(\xi)$$

D'où

$$x_{\xi}(t) = u_0(\xi)t + \xi$$

Il y a trois zones à distinguer pour les caractéristiques suivant la valeur de ξ : zone (1) pour $\xi \le -1/2$, zone (2) pour $-1/2 < \xi \le 1$ et zone (3) pour $\xi > 1$,

$$\begin{cases} x_{\xi}(t) = \xi - t/2, & \text{si} \quad \xi \le -1/2, & \text{soit} \quad x_{\xi}(t) \le -(1+t)/2 & \text{zone (1)}, \\ x_{\xi}(t) = \xi + \xi t, & \text{si} \quad -1/2 < \xi \le 1, & \text{soit} \quad (-1-t)/2 < x_{\xi}(t) \le t+1 & \text{zone (2)}, \\ x_{\xi}(t) = \xi - t/2, & \text{si} \quad \xi > 1, & \text{soit} \quad x_{\xi}(t) > 1 - t/2 & \text{zone (3)}. \end{cases}$$

Les caractéristiques des zones (2) et (3) se croisent pour $t>t^*=0$, il y a naissance d'un choc. L'équation de la ligne de choc entre les zones (2) et (3) $(\sigma(t),t)$ vérifie la relation de Rankine-Hugoniot

$$\sigma'(t) = \frac{u_g + u_d}{2} = \frac{\sigma(t)}{2(1+t)} - \frac{1}{4}$$

Les solutions de l'équation homogène sont de la forme $A\sqrt{1+t}$. On utilise la technique de la variation de la constante, en cherchant σ sous la forme

$$\sigma(t) = A(t)\sqrt{1+t}$$

On obtient alors l'équation différentielle suivante pour A

$$A'(t) = -\frac{1}{4\sqrt{1+t}}$$

D'où

$$A(t) = B - \frac{1}{2}\sqrt{1+t}$$

On en déduit que

$$\sigma(t) = B\sqrt{1+t} - \frac{1+t}{2}$$

Or $\sigma(0) = 1$, ce qui donne

$$\sigma(t) = \frac{3\sqrt{1+t} - (1+t)}{2}$$

La solution vaut alors

$$u(x,t) = \begin{cases} -1/2, & \text{si } x < -(1+t)/2, \\ \frac{x}{1+t}, & \text{si } -(1+t)/2 < x < \sigma(t), \\ -1/2, & \text{si } x > \sigma(t). \end{cases}$$