

Some Psychometric Equations

Rasch Technical Training 2

Carolina Fellinghauer : fellinghauerc@who.int

Rasch Analysis

The probability of a response is a function of the ability of a respondent and of the difficulty of an item.

Guttman Pattern

Different Rasch Models

Rasch Model for dichotomous responses (Rasch 1960).

The probability of a person j with an ability θ to respond correctely (Xij = 1) to the item i, having difficulty β is formalized:

$$P(X_{ij}=1| heta_j)=rac{exp(heta_j-eta_i)}{1+exp(heta_j-eta_i)}$$

Logit Function

Logit Function

Logit Function

Ex. Probability to respond per ability level when the item difficulty = 0

Rasch Equations

Rasch Model for dichotomous responses (Rasch 1960)

Example: The probability that a person with an ability of 5 responds correctly to an item with difficulty 6?

$$P(X_{ij} = 1) = \frac{e^{5-6}}{1 + e^{5-6}} = \frac{e^{-1}}{1 + e^{-1}} = 0.27$$

What is the probability that the person gives a wrong response, i.e. $P(X_{ij} = 0 | \theta_i)$?

What is the probability that the person gives a wrong response, i.e. $P(X_{ij} = 0 | \theta_i)$?

```
# a) The probability of not responding correctly is
theta <- 5
beta <- 6

1 - exp(theta - beta)/(1 + exp(theta - beta))</pre>
```

```
## [1] 0.7310586
```

```
# or simply 1 - 0.27
```

What happens if the person ability equals the item difficulty, i.e. $\theta_i = \beta_i$?

What happens if the person ability equals the item difficulty, i.e. $\theta_i = \beta_i$?

```
# b) When ability equals the item difficulty
theta <- 6
beta <- 6

1 - exp(theta - beta)/(1 + exp(theta - beta))</pre>
```

```
## [1] 0.5
```

Family of Rasch and IRT Models¹

¹ A simplified view

Family of Rasch and IRT Models

Score Sufficiency

Rasch perspective: The raw score has all the information about the «ability» of the respondent. = **Score Sufficiency**

IRT perspective: The pattern of responses has all the information about the «ability» of the respondent.

Rasch vs. IRT Equations

Rasch Equation

$$P(X_{ij}=1| heta_j)=rac{exp(heta_j-eta_i)}{1+exp(heta_j-eta_i)}$$

2-Parameter Logistic

$$P(X_{ij}=1| heta_j)=rac{exp[a_i(heta_j-eta_i)]}{1+exp[a_i(heta_j-eta_i)]}$$

Rasch vs. IRT Equations

Rasch Equation

$$P(X_{ij}=1| heta_j)=rac{exp(heta_j-eta_i)}{1+exp(heta_j-eta_i)}$$

2-Parameter Logistic

$$P(X_{ij}=1| heta_j)=rac{exp[a_i(heta_j-eta_i)]}{1+exp[a_i(heta_j-eta_i)]}$$

Probabilistic Models of Measurement

Free parameter in the various models

Rasch Models: item difficulty

- **1-Parameter Logistic (1-PL):** item difficulty (very similar to the Rasch model)
- 2-Parameter Logistic (2-PL): item difficulty, item discrimination
- **3 Parameter Logistic (3-PL):** item difficulty, item discrimination, guessing parameter
- 4 Parameter Logistic (4-PL): item difficulty, item discrimination, guessing parameter, 'slipping parameter'.

Further IRT-models

3-Parameter Logistic

Adjustment for guessing

$$P(X_{ij} = 1 | \theta_j) = g_i + (1 - g_i) \frac{exp[a_i(\theta_j - \beta_i)]}{1 + exp[a_i(\theta_j - \beta_i)]}$$

4-Parameter Logistic

Adjustment for carelessness

$$P(X_{ij}=1| heta_j)=g_i+ oxed{exp[a_i(heta_j-eta_i)]}{1+exp[a_i(heta_j-eta_i)]}$$

Let's go to R-Studio

Open the R-Script TT2_Rscript.r that you can find Github.

Exercise

Create a random sample of polytomous data with item discrimination constraint, for N = 500 persons and 15 items with 4 response categories, with difficulties ranging from -6 to 6 and with the spread of the latent variable set to 2.5 using sim.poly.npl.

Test which Rasch model fits the data better.

Please use set.seed (2020) for the random sampling and make sure that the results are invariant.