Recap on transactions

MARKET BASKET ANALYSIS IN R

Christopher BruffaertsStatistician

Important points in market basket analysis

Market basket analysis

Focus on the **what**, not on the **how much**; *i.e.* what do customers have in their baskets?

Main metrics

- Support
- Confidence
- Lift

A word of caution

The set of extracted rules can be very large!

Do not inspect or display all rules in that case

- always use a subset of rules or use the

functions *head* or *tail*!

Groceries dataset

Let's go back to the Grocery store

Dataset from arules package

```
# Loading the arules package
library(arules)

# Loading the Groceries dataset
```

summary(Groceries)

data(Groceries)

Summary of Groceries

```
transactions as itemMatrix in sparse format with
 9835 rows (elements/itemsets/transactions) and
 169 columns (items) and a density of 0.02609146
most frequent items:
                                     rolls/buns
      whole milk other vegetables
                                                           soda
                                                                         yogurt
                                           1809
                                                                           1372
           2513
                           1903
                                                           1715
         (Other)
          34055
element (itemset/transaction) length distribution:
sizes
                                           10
                                                11
                                                    12
                                                          13
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46 29
                                       27
                    22
                             24
                                  26
                         23
           9 11
                             1 1
  Min. 1st Qu. Median
                         Mean 3rd Qu.
  1.000 2.000 3.000
                        4.409 6.000 32.000
includes extended item information - examples:
      labels level2
                              level1
1 frankfurter sausage meat and sausage
      sausage sausage meat and sausage
3 liver loaf sausage meat and sausage
```


Density of Groceries

Plotting a sample of 200 transactions
image(sample(Groceries, 200))

¹ The density of the item matrix is of 2.6%.

Most and least popular items

Most popular items

Least popular items

```
par(mar=c(2,10,2,2), mfrow=c(1,1))
barplot(sort(table(unlist(LIST(Groceries))))[1:10],
    horiz = TRUE, las = 1, col='orange')
```


Cross tables by index

Contingency tables

```
# Contingency table
tbl = crossTable(Groceries)
tbl[1:4,1:4]
```

	frankfurter	sausage	liver	loaf	ham	
frankfurter	580	99		7	25	
sausage	99	924		10	49	
liver loaf	7	10		50	3	
ham	25	49		3	256	

Sorted contingency table

```
# Sorted contingency table
tbl = crossTable(Groceries, sort = TRUE)
tbl[1:4,1:4]
```

```
whole milk other vegetables rolls/buns s
whole milk
                       2513
                                          736
                                                     557
other vegetables
                        736
                                                     419
                                         1903
rolls/buns
                        557
                                          419
                                                    1809
soda
                        394
                                          322
                                                     377
```

Cross tables by item names

Contingency tables

```
# Counts
tbl['whole milk','flour']
[1] 83
```

```
# Chi-square test
crossTable(Groceries, measure='chi')['whole milk', 'flour']
```

```
[1] 0.003595389
```

Contingency tables with other metrics

```
crossTable(Groceries, measure='lift',sort=T)[1:4,1:4]
```

```
whole milkothervegetablesrolls/bunssodawhole milkNA1.51363411.2050321.571735other vegetables1.5136341NA1.1970470.9703476rolls/buns1.20503181.1970465NA1.1951242soda0.89911240.97034761.195124NA
```

MovieLens dataset

MovieLens: Web-based recommender system that recommends movies for its users to watch.

Let's watch movies!

MARKET BASKET ANALYSIS IN R

Mining association rules

MARKET BASKET ANALYSIS IN R

Christopher Bruffaerts
Statistician

Frequent itemsets with the apriori

Extracting frequent itemsets of min size 2

Sorting and inspecting frequent itemsets

```
inspect(head(sort(itemsets_freq2, by="support")))
```

```
itemssupportcount[1] {other vegetables, whole milk}0.07483477 736[2] {whole milk, rolls/buns}0.05663447 557[3] {whole milk, yogurt}0.05602440 551[4] {root vegetables, whole milk}0.04890696 481[5] {root vegetables, other vegetables}0.04738180 466[6] {other vegetables, yogurt}0.04341637 427
```

Rules with the apriori

```
inspect(head(sort(rules, by="confidence")))
```

```
support confidence lift
  lhs
                                        rhs
                                                                                count
[1] {rice, sugar}
                                      => {whole milk}
                                                         0.001220132 1
                                                                            3.913649 12
[2] {canned fish,hygiene articles}
                                                         0.001118454 1
                                      => {whole milk}
                                                                            3.913649 11
[3] {root vegetables,butter,rice} => {whole milk}
                                                         0.001016777 1
                                                                            3.913649 10
[4] {root vegetables, whipped/sour cream, flour} => {whole milk}
                                                        0.001728521 1
                                                                            3.913649 17
[5] {butter, soft cheese, domestic eggs} => {whole milk}
                                                         0.001016777 1
                                                                            3.913649 10
[6] {citrus fruit,root vegetables,soft cheese} => {other vegetables} 0.001016777 1
                                                                            5.168156 10
```


Choose parameters arules

Looping over different confidence values

```
# Set of confidence levels
confidenceLevels = seq(from=0.1, to=0.9, by =0.1)
# Create empty vector
rules_sup0005 = NULL
# Apriori algorithm with a support level of 0.5%
for (i in 1:length(confidenceLevels)) {
  rules_sup0005[i] =
    length(apriori(Groceries,
                   parameter=list(supp=0.005,
                                  conf=confidenceLevels[
                                  target="rules")))
```

```
library(ggplot2)
# Number of rules found with a support level of 0.5%
qplot(confidenceLevels, rules_sup0005,
        geom=c("point", "line"),xlab="Confidence level",
        ylab="Number of rules found") +
    theme_bw()
```


Subsetting rules

```
# Subsetting rules
inspect(subset(rules, subset =
    items %in% c("soft cheese","whole milk") &
    confidence > .95))
```

```
lhs
                                                                                    confidence lift
                                                           rhs
                                                                           support
   {rice, sugar}
                                                        => {whole milk}
[1]
                                                                           0.001220132 1
                                                                                               3.9136
   {canned fish, hygiene articles}
                                                        => {whole milk}
                                                                           0.001118454 1
                                                                                               3.9136
                                                        => {whole milk}
   {root vegetables,butter,rice}
                                                                           0.001016777 1
                                                                                               3.9136
```

Flexibility of subsetting

```
inspect(subset(rules, subset=items %ain% c("soft cheese","whole milk") & confidence >.95))
```

```
inspect(subset(rules, subset=rhs %in% "whole milk" & lift >3 & confidence >0.95))
```

Let's mine the movie dataset!

MARKET BASKET ANALYSIS IN R

Visualizing transactions and rules

MARKET BASKET ANALYSIS IN R

Christopher BruffaertsStatistician

Interactive inspection

Rule extraction

```
# Datatable inspection
inspectDT(rules)
```

HTML table

Show	Show 10 • entries					
	LHS \$	RHS \$	support ϕ	confidence 🖣	lift 	count 🏺
	All	All	All	All	All	All
[1]	{honey}	{whole milk}	0.001	0.733	2.870	11.000
[2]	{tidbits}	{rolls/buns}	0.001	0.522	2.837	12.000
[3]	{cocoa drinks}	{whole milk}	0.001	0.591	2.313	13.000
[4]	{pudding powder}	{whole milk}	0.001	0.565	2.212	13.000
[5]	{cooking chocolate}	{whole milk}	0.001	0.520	2.035	13.000
[6]	{cereals}	{whole milk}	0.004	0.643	2.516	36.000
[7]	{jam}	{whole milk}	0.003	0.547	2.141	29.000
[8]	{specialty cheese}	{other vegetables}	0.004	0.500	2.584	42.000
[9]	{rice}	{other vegetables}	0.004	0.520	2.687	39.000
[10]	{rice}	{whole milk}	0.005	0.613	2.400	46.000

Interactive scatterplots

Plot from arulesViz

```
# Plot rules as scatterplot
plot(rules, method = "scatterplot",
    engine = "html")
```

Other types of plots using method:

- two-key plot
- grouped
- matrix

Scatterplots and others

Interactive graphs

The engine and the method

```
# Plot rules as graph
plot(rules, method = "graph",
    engine = "html")
```

Select by id -

Interactive subgraphs

Sorting extracted rules

```
# Top 10 rules with highest confidence
top10_rules_Groceries =
   head(sort(rules,by = "confidence"), 10)
inspect(top10_rules_Groceries)
```

```
# Plot the top 10 rules
plot(top10_rules_Groceries,
    method = "graph", engine = "html")
```


RuleExploring Groceries

rules = apriori(Groceries, parameter=list(supp=0.001, conf=0.8))
ruleExplorer(rules)

Data Table Scatter Matri	ix Grouped Gra	aph			
Show 25 ▼ entries				Search:	
LHS .	RHS .	support		lift	
{liquor,red/blush wine}	{bottled beer}	0.001931876	0.9047619	11.235269	19
{curd,cereals}	{whole milk}	0.001016777	0.9090909	3.557863	10
{yogurt,cereals}	{whole milk}	0.001728521	0.8095238	3.168192	17
{butter,jam}	{whole milk}	0.001016777	0.8333333	3.261374	10
{soups,bottled beer}	{whole milk}	0.001118454	0.9166667	3.587512	11
{napkins,house keeping products}	{whole milk}	0.001321810	0.8125000	3.179840	13
{whipped/sour cream,house keeping products}	{whole milk}	0.001220132	0.9230769	3.612599	12
{pastry,sweet spreads}	{whole milk}	0.001016777	0.9090909	3.557863	10
{turkey,curd}	{other vegetables}	0.001220132	0.8000000	4.134524	12
{rice,sugar}	{whole milk}	0.001220132	1.0000000	3.913649	12

Let's visualize some movie rules!

MARKET BASKET ANALYSIS IN R

Making the most of market basket analysis

MARKET BASKET ANALYSIS IN R

Christopher Bruffaerts
Statistician

Market basket in practice

Understanding customers/users

- Understand which items are purchased in combination
- Extract sets of rules
- Infer on the relationship between items

The extra mile to MBA

- Add customer/user information
- Segment (cluster) customers according to their preferences

Recommendations to customers/users

- Offline world: placing items strategically in the shop such that items often purchased together are close to each other.
- Online world: expose related items on the same page, just a click-away.

What influenced yogurt?

Yogurt as a consequent

```
confidence lift
   lhs
                                                                rhs
                                                                         support
                                                                                                          count
[1] {root vegetables, butter, cream cheese }
                                                             => {yogurt} 0.001016777 0.9090909 6.516698 10
[2] {tropical fruit, whole milk, butter, sliced cheese}
                                                             => {yoqurt} 0.001016777 0.9090909 6.516698 10
   {other vegetables,curd,whipped/sour cream,cream cheese } => {yogurt} 0.001016777 0.9090909 6.516698 10
                                                             => {yogurt} 0.001016777 0.9090909 6.516698 10
[4] {tropical fruit, other vegetables, butter, white bread}
                                                             => {yoqurt} 0.001220132 0.8571429 6.144315 12
[5] {sausage,pip fruit,sliced cheese}
[6] {tropical fruit, whole milk, butter, curd}
                                                             => {yoqurt} 0.001220132 0.8571429 6.144315 12
```


What did yogurt influence?

Yogurt as an antecedent

```
# Summary of rules
summary(yogurt_rules_lhs)
```

```
set of 0 rules
```

Let's find out recommendations for movies!

MARKET BASKET ANALYSIS IN R

Use your market basket skills!

MARKET BASKET ANALYSIS IN R

Christopher Bruffaerts
Statistician

Recap of market basket analysis

- Chapter 1: Introduction to market basket analysis
- Chapter 2: Metrics and techniques in market basket analysis
- Chapter 3: Visualization in market basket analysis
- Chapter 4: Case study: Movie recommendations @ movieLens

Other points to consider with MBA

Not in the scope of this course

- Time dimension, e.g. when transactions were done, when a user watched a movie
- Qualitative assessment of transactions, e.g. movie ratings

Be careful when using the apriori() function

- Use sorting options, head and tail
- Do not print blindly rules
- Work with smaller subsets of rules

Congratulations!

MARKET BASKET ANALYSIS IN R

