

Test report No. Page **Issued date** FCC ID

: 1 of 32 : January 19, 2018 : 2ABXRMB3002WB

: 11740660H-A-R1

RADIO TEST REPORT

Test Report No.: 11740660H-A-R1

Applicant Braveridge Co., Ltd.

Type of Equipment MaBeee

Model No. **MB-3002WB**

FCC ID 2ABXRMB3002WB

Test regulation FCC Part 15 Subpart C: 2018

Test Result Complied

This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- This report is a revised version of 11740660H-A. 11740660H-A is replaced with this report...

Date of test:

July 20 and September 12, 2017

Representative test engineer:

> Takafumi Noguchi Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada Leader

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 2 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

REVISION HISTORY

Original Test Report No.: 11740660H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11740660H-A	October 11, 2017	-	-
1	11740660H-A-R1	January 19, 2018	P.1, P.5	Cover page and Section 3.1 Update of FCC Version
1	11740660H-A-R1	January 19, 2018	P.4	Section 2.2 Radio specification Correction of Modulation from GPSK to GFSK.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date

FCC ID

: 11740660H-A-R1 : 3 of 31

: January 19, 2018 : 2ABXRMB3002WB

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5:** Radiated Spurious Emission ______9 **SECTION 6:** APPENDIX 1: Test data _______12 APPENDIX 2: APPENDIX 3: Photographs of test setup......30

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 4 of 31

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

SECTION 1: Customer information

Company Name : Braveridge Co., Ltd.

Address : 3-27-2, Susenji, Nishi-ku, Fukuoka-shi, Fukuoka 819-0373, Japan

Telephone Number : +81-92-834-5789 Facsimile Number : +81-92-807-7718 Contact Person : Yasunari Kohashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : MaBeee Model No. : MB-3002WB

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 0.7 V to 1.6 V

Receipt Date of Sample : July 19, 2017 (for Antenna Terminal Conducted test)

August 2, 2017 (for Radiated emission test)

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: MB-3002WB (referred to as the EUT in this report) is a MaBeee.

Clock frequencies in system(s): 32 MHz

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Modulation : GFSK
Power Supply (radio part input) : DC 3.0 V

Antenna type : Ceramic chip antenna

Antenna Gain : 0.9 dBi

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1 Page : 5 of 31

Page : 5 of 31 Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on January 2, 2018 and effective February 1, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	ANSI C63.10-2013 6. Standard test methods	Section 15.207	N/A *1)	N/A	-
6dB Bandwidth	KDB 558074 D01 DTS Meas Guidance v04	Section 15.247(a)(2)		Complied	Conducted
	KDB 558074 D01 DTS Meas Guidance v04	Section 15.247(b)(3)	See data.	Complied	Conducted
Power Dencity	KDB 558074 D01 DTS Meas Guidance v04	Section 15.247(e)		Complied	Conducted
	KDB 558074 D01 DTS Meas Guidance v04	Section15.247(d)	14.4 dB 2483.500 MHz, AV, Vert.	Complied	Conducted (below 30 MHz)/ Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The EUT provides stable voltage (DC 3.0 V) constantly to the wireless transmitter regardless of input voltage. Instead of a new battery, DC power supply was used for the test.

That does not affect the test result, therefore the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision on January 2, 2018, does not affect the test specification applied to the EUT.

^{*} Also the EUT complies with FCC Part 15 Subpart B.

^{*1)} This test was not performed since the EUT is a Battery operated device.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v04 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 11740660H-A-R1

Page : 6 of 31

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Is EMC Lab.

Antenna terminal test	Uncertainty (+/-)
RF output power	1.2 dB
Antenna terminal conducted emission / Power density / Burst power	3.1 dB
Adjacent channel power / Channel power	-
Below 3 GHz	1.8 dB
3 GHz to 6 GHz	2.7 dB

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.8 dB
10 m	3.6 dB

	Radiated emission (Below 1 GHz)					
Polarity	(3 m*) ((+/-)	(10 m*) (+/-)			
1 Glarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -		
		1000 MHz	200 MHz	1000 MHz		
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB		
Vertical	5.2 dB	6.3 dB	5.0 dB	5.0 dB		

Radiated emission (Above 1 GHz)						
(3 m*) (+/-) $(1 m*) (+/-)$ $(10 m*) (+/-)$						
1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	1 GHz -		
6 GHz	18 GHz	26.5 GHz	40 GHz	18 GHz		
5.2 dB	5.5 dB	5.5 dB	5.4 dB	5.5 dB		

^{*}Measurement distance

Radiated emission test

The data listed in this test report has enough margin, more than the site margin.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1 Page : 7 of 31

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	_
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \text{ m} \times 2.0 \text{m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1 Page : 8 of 31

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

SECTION 4: Operation of E.U.T. during testing

4.1 **Operating Mode(s)**

Mode	Remarks*			
Bluetooth Low Energy (BT LE)	Maximum Packet Size, PRBS9			
*The worst condition was determined based on the test result of Maximum Peak Output Power (Low				
Channel)				

*Power of the EUT was set by the software as follows;

Power settings: 0 dBm Software: nRFgoStudio

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
6dB Bandwidth	Tx BT LE	2402 MHz
Maximum Peak Output Power		2440 MHz
Power Density		2480 MHz
99% Occupied Bandwidth		
Spurious Emission (Radiated / Conducted)		

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	MaBeee	MB-3002WB	00001 for RE*	Braveridge	EUT
			00002 for AT*		
В	Jig Board	-	-	Braveridge	_

List of cables used

List O.	Elist of cubics used						
No.	Name	Length (m)	Shield		Remarks		
			Cable	Connector			
1	DC Cable	2.0	Unshielded	Unshielded	-		
2	DC & Signal Cable	0.1	Unshielded	Unshielded	-		

^{*}RE: Radiated emission, AT: Antenna Terminal Conducted test

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1 Page : 9 of 31

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "KDB 558074 D01 DTS Meas Guidance v04".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 10 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

20 dBc was applied to the frequency over the limit of FCC 15.209 and outside the restricted band of FCC15.205.

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			If duty cycle was less than	
			98%, a duty factor was	
			added to the results.	
Test Distance	3 m	4.5 m *2) (1 GH	Iz - 10 GHz),	4.5 m *2) (1 GHz - 10 GHz),
		1 m *3) (10 GHz	z - 26.5 GHz)	1 m *3) (10 GHz - 26.5 GHz)

^{*1)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v04".

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $20 \times \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

: 11740660H-A-R1 Test report No. Page : 11 of 31 : January 19, 2018 **Issued date** FCC ID : 2ABXRMB3002WB

Test Procedure

The tests were made with below setting connected to the antenna port.

SECTION 6: Antenna Terminal Conducted Tests

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v04". *4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

Test report No. : 11740660H-A-R1
Page : 12 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

APPENDIX 1: Test data

6dB Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

Frequency	6dB Bandwidth	Limit
[MHz]	[MHz]	[kHz]
2402	0.733	> 500
2440	0.727	> 500
2480	0.738	> 500

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 13 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

6dB Bandwidth

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 14 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Maximum Peak Output Power

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dBm]	[mW]	[dB]
2402	-9.19	0.20	10.00	1.01	1.26	30.00	1000	28.99
2440	-9.37	0.20	10.00	0.83	1.21	30.00	1000	29.17
2480	-9.72	0.20	10.00	0.48	1.12	30.00	1000	29.52

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

 Test report No.
 : 11740660H-A-R1

 Page
 : 15 of 31

 Issued date
 : January 19, 2018

 FCC ID
 : 2ABXRMB3002WB

Average Output Power (Reference data for RF Exposure)

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]	
2402	-11.23	0.20	10.00	-1.03	0.79	0.86	-0.17	0.96	
2440	-11.40	0.20	10.00	-1.20	0.76	0.86	-0.34	0.92	
2480	-11.79	0.20	10.00	-1.59	0.69	0.86	-0.73	0.85	

Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11740660H-A-R1
Page : 16 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Burst rate confirmation

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 17 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017
Temperature / Humidity 24 deg. C / 65 % RH
Engineer Takumi Shimada

Mode Tx BT LE 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	32.000	QP	22.5	16.8	7.1	32.2	-	14.2	40.0	25.8	Floor noise
Hori	96.000	QP	22.2	9.2	8.1	32.2	-	7.3	43.5	36.2	Floor noise
Hori	160.000	QP	21.9	15.5	8.8	32.1	-	14.1	43.5	29.4	Floor noise
Hori	256.000	QP	21.8	15.3	9.7	32.0	-	14.8	46.0	31.2	Floor noise
Hori	320.000	QP	22.4	15.0	10.2	32.0	-	15.6	46.0	30.4	Floor noise
Hori	640.000	QP	21.6	19.8	12.1	32.1	-	21.4	46.0	24.6	Floor noise
Hori	2386.710	PK	49.1	27.7	6.8	32.4	-	51.2	73.9	22.7	
Hori	2390.000	PK	45.4	27.7	6.8	32.4	-	47.5	73.9	26.4	
Hori	4804.000	PK	40.6	31.6	8.0	31.4	-	48.8	73.9	25.1	Floor noise
Hori	7206.000	PK	42.8	36.0	8.9	32.1	-	55.6	73.9	18.3	Floor noise
Hori	9608.000	PK	42.3	38.5	9.6	32.9	-	57.5	73.9	16.4	Floor noise
Hori	2386.710	AV	34.1	27.7	6.8	32.4	0.9	37.1	53.9	16.8	
Hori	2390.000	AV	33.7	27.7	6.8	32.4	0.9	36.7	53.9	17.2	*1)
Hori	4804.000	AV	32.5	31.6	8.0	31.4	-	40.7	53.9	13.2	Floor noise
Hori	7206.000	AV	34.4	36.0	8.9	32.1	-	47.2	53.9	6.7	Floor noise
Hori	9608.000	AV	32.5	38.5	9.6	32.9	-	47.7	53.9	6.2	Floor noise
Vert	32.000	QP	22.5	16.8	7.1	32.2	-	14.2	40.0	25.8	Floor noise
Vert	96.000	QP	22.6	9.2	8.1	32.2	-	7.7	43.5	35.8	Floor noise
Vert	160.000	QP	22.0	15.5	8.8	32.1	-	14.2	43.5	29.3	Floor noise
Vert	256.000	QP	21.8	15.3	9.7	32.0	-	14.8	46.0	31.2	Floor noise
Vert	320.000	QP	22.7	15.0	10.2	32.0	-	15.9	46.0	30.1	Floor noise
Vert	640.000	QP	21.0	19.8	12.1	32.1	-	20.8	46.0	25.2	Floor noise
Vert	2386.710	PK	48.5	27.7	6.8	32.4	-	50.6	73.9	23.3	
Vert	2390.000	PK	40.5	27.7	6.8	32.4	-	42.6	73.9	31.3	
Vert	4804.000	PK	40.3	31.6	8.0	31.4	-	48.5	73.9	25.4	Floor noise
Vert	7206.000	PK	41.9	36.0	8.9	32.1	-	54.7	73.9	19.2	Floor noise
Vert	9608.000	PK	41.4	38.5	9.6	32.9	-	56.6	73.9	17.3	Floor noise
Vert	2386.710	AV	33.4	27.7	6.8	32.4	0.9	36.4	53.9	17.5	
Vert	2390.000	AV	32.3	27.7	6.8	32.4	0.9	35.3	53.9	18.6	*1)
Vert	4804.000	AV	31.3	31.6	8.0	31.4	-	39.5	53.9	14.4	Floor noise
Vert	7206.000	AV	32.9	36.0	8.9	32.1	-	45.7	53.9	8.2	Floor noise
Vert	9608.000	AV	32.5	38.5	9.6	32.9	-	47.7	53.9	6.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2402.000	PK	84.9	27.7	6.9	32.4	87.1	-	-	Carrier
Hori	2400.000	PK	34.9	27.7	6.9	32.4	37.1	67.1	30.0	
Vert	2402.000	PK	81.7	27.7	6.9	32.4	83.9	-	-	Carrier
Vert	2400.000	PK	32.9	27.7	6.9	32.4	35.1	63.9	28.8	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11740660H-A-R1
Page : 18 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017

Temperature / Humidity 24 deg. C / 65 % RH

Engineer Takumi Shimada

Mode Tx BT LE 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 19 of 31
Issued date : January 19, 2018

Issued date : January 19, 2018 FCC ID : 2ABXRMB3002WB

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017
Temperature / Humidity 24 deg. C / 65 % RH
Engineer Takumi Shimada

Mode Tx BT LE 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	32.000	QP	22.2	16.8	7.1	32.2	-	13.9	40.0	26.1	Floor noise
Hori	96.000	QP	22.2	9.2	8.1	32.2	-	7.3	43.5	36.2	Floor noise
Hori	160.000	QP	22.1	15.5	8.8	32.1	-	14.3	43.5	29.2	Floor noise
Hori	256.000	QP	21.7	15.3	9.7	32.0	-	14.7	46.0	31.3	Floor noise
Hori	320.000	QP	22.5	15.0	10.2	32.0	-	15.7	46.0	30.3	Floor noise
Hori	640.000	QP	21.6	19.8	12.1	32.1	-	21.4	46.0	24.6	Floor noise
Hori	4880.000	PK	40.7	31.9	8.0	31.4	-	49.2	73.9	24.7	Floor noise
Hori	7320.000	PK	41.3	36.2	8.9	32.2	-	54.2	73.9	19.7	Floor noise
Hori	9760.000	PK	41.4	38.7	9.7	33.0	-	56.8	73.9	17.1	Floor noise
Hori	4880.000	AV	31.8	31.9	8.0	31.4	-	40.3	53.9	13.6	Floor noise
Hori	7320.000	AV	32.3	36.2	8.9	32.2	-	45.2	53.9	8.7	Floor noise
Hori	9760.000	AV	32.3	38.7	9.7	33.0	-	47.7	53.9	6.2	Floor noise
Vert	32.000	QP	23.1	16.8	7.1	32.2	-	14.8	40.0	25.2	Floor noise
Vert	96.000	QP	22.5	9.2	8.1	32.2	-	7.6	43.5	35.9	Floor noise
Vert	160.000	QP	22.1	15.5	8.8	32.1	-	14.3	43.5	29.2	Floor noise
Vert	256.000	QP	21.8	15.3	9.7	32.0	-	14.8	46.0	31.2	Floor noise
Vert	320.000	QP	22.2	15.0	10.2	32.0	-	15.4	46.0	30.6	Floor noise
Vert	640.000	QP	21.6	19.8	12.1	32.1	-	21.4	46.0	24.6	Floor noise
Vert	4880.000	PK	41.4	31.9	8.0	31.4	-	49.9	73.9	24.0	Floor noise
Vert	7320.000	PK	41.1	36.2	8.9	32.2	-	54.0	73.9	19.9	Floor noise
Vert	9760.000	PK	41.3	38.7	9.7	33.0	-	56.7	73.9	17.2	Floor noise
Vert	4880.000	AV	32.0	31.9	8.0	31.4	-	40.5	53.9	13.4	Floor noise
Vert	7320.000	AV	32.3	36.2	8.9	32.2	-	45.2	53.9	8.7	Floor noise
Vert	9760.000	AV	32.3	38.7	9.7	33.0	-	47.7	53.9	6.2	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Distance factor: 1 GHz - 10 GHz 20log (4.5 m / 3.0 m) = 3.53 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11740660H-A-R1
Page : 20 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017
Temperature / Humidity 24 deg. C / 65 % RH
Engineer Takumi Shimada

Mode Tx BT LE 2480 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	32.000	QP	22.5	16.8	7.1	32.2	-	14.2	40.0	25.8	Floor noise
Hori	96.000	QP	22.2	9.2	8.1	32.2	-	7.3	43.5	36.2	Floor noise
Hori	160.000	QP	21.9	15.5	8.8	32.1	-	14.1	43.5	29.4	Floor noise
Hori	256.000	QP	21.8	15.3	9.7	32.0	-	14.8	46.0	31.2	Floor noise
Hori	320.000	QP	22.4	15.0	10.2	32.0	-	15.6	46.0	30.4	Floor noise
Hori	640.000	QP	21.7	19.8	12.1	32.1	-	21.5	46.0	24.5	Floor noise
Hori	2483.500	PK	45.5	27.8	6.9	32.4	-	47.8	73.9	26.1	
Hori	4960.000	PK	41.6	32.1	8.1	31.3	-	50.5	73.9	23.4	Floor noise
Hori	7440.000	PK	43.0	36.4	8.9	32.2	-	56.1	73.9	17.8	Floor noise
Hori	9920.000	PK	42.4	38.9	9.7	33.1	-	57.9	73.9	16.0	Floor noise
Hori	2483.500	AV	31.4	27.8	6.9	32.4	0.9	34.6	53.9	19.3	*1)
Hori	4960.000	AV	30.1	32.1	8.1	31.3	-	39.0	53.9	14.9	Floor noise
Hori	7440.000	AV	32.3	36.4	8.9	32.2	-	45.4	53.9	8.5	Floor noise
Hori	9920.000	AV	31.3	38.9	9.7	33.1	-	46.8	53.9	7.1	Floor noise
Vert	32.000	QP	22.5	16.8	7.1	32.2	-	14.2	40.0	25.8	Floor noise
Vert	96.000	QP	22.6	9.2	8.1	32.2	-	7.7	43.5	35.8	Floor noise
Vert	160.000	QP	22.0	15.5	8.8	32.1	-	14.2	43.5	29.3	Floor noise
Vert	256.000	QP	21.8	15.3	9.7	32.0	-	14.8	46.0	31.2	Floor noise
Vert	320.000	QP	22.1	15.0	10.2	32.0	-	15.3	46.0	30.7	Floor noise
Vert	640.000	QP	21.6	19.8	12.1	32.1	-	21.4	46.0	24.6	Floor noise
Vert	2483.500	PK	47.2	27.8	6.9	32.4	-	49.5	73.9	24.4	
Vert	4960.000	PK	41.0	32.1	8.1	31.3	-	49.9	73.9	24.0	Floor noise
Vert	7440.000	PK	43.6	36.4	8.9	32.2	-	56.7	73.9	17.2	Floor noise
Vert	9920.000	PK	41.6	38.9	9.7	33.1	-	57.1	73.9	16.8	Floor noise
Vert	2483.500	AV	36.3	27.8	6.9	32.4	0.9	39.5	53.9	14.4	*1)
Vert	4960.000	AV	30.2	32.1	8.1	31.3	-	39.1	53.9	14.8	Floor noise
Vert	7440.000	AV	32.2	36.4	8.9	32.2	-	45.3	53.9	8.6	Floor noise
Vert	9920.000	AV	30.7	38.9	9.7	33.1	-	46.2	53.9	7.7	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.53 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*1) Not Out of Band emission(Leakage Power)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 21 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017

Temperature / Humidity 24 deg. C / 65 % RH

Engineer Takumi Shimada

Mode Tx BT LE 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 22 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11740660H

Date September 12, 2017
Temperature / Humidity Engineer 24 deg. C / 65 % RH
Takumi Shimada

Mode Tx BT LE 2402 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 23 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE 2402 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
L	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	17.46	-96.6	0.20	9.8	2.0	1	-84.6	300	6.0	-23.4	42.7	66.1	
Ī	225.00	-87.7	0.20	9.8	2.0	1	-75.7	300	6.0	-14.4	20.5	34.9	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than $2.0~\mathrm{dBi}$.

Test report No. : 11740660H-A-R1
Page : 24 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE 2440 MHz

Ī	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Ī	12.06	-96.1	0.20	9.8	2.0	1	-84.0	300	6.0	-22.8	45.9	68.7	
Ī	225.00	-87.7	0.20	9.8	2.0	1	-75.7	300	6.0	-14.4	20.5	34.9	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading\ [dBm] + Cable\ loss\ [dB] + Attenuator\ Loss\ [dB] + Antenna\ gain\ [dBi] + 10\ *\ log\ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than $2.0~\mathrm{dBi}$.

Test report No. : 11740660H-A-R1
Page : 25 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Conducted Spurious Emission

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE 2480 MHz

ſ	Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	E	Limit	Margin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Ī	10.06	-95.1	0.20	9.8	2.0	1	-83.1	300	6.0	-21.8	47.5	69.3	
Ī	200.00	-88.6	0.20	9.8	2.0	1	-76.5	300	6.0	-15.3	21.5	36.8	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \log \left(Distance \left[m \right] \right) + Ground \ bounce \left[dB \right] + 104.8 \left[dBuV/m \right]$

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

 $^{*2.0~\}mathrm{dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than $2.0~\mathrm{dBi}$.

Test report No. : 11740660H-A-R1
Page : 26 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Power Density

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin	
		Loss	Loss				
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]	
2402.00	-21.65	0.20	10.00	-11.45	8.00	19.45	
2440.00	-21.38	0.20	10.00	-11.18	8.00	19.18	
2480.00	-20.78	0.20	10.00	-10.58	8.00	18.58	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. : 11740660H-A-R1
Page : 27 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

Power Density

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11740660H-A-R1
Page : 28 of 31
Issued date : January 19, 2018
FCC ID : 2ABXRMB3002WB

99%Occupied Bandwidth

Test place Ise EMC Lab. No.11 Measurement Room

Report No. 11740660H
Date July 19, 2017
Temperature / Humidity 23 deg. C / 69 % RH
Engineer Takafumi Noguchi
Mode Tx BT LE

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11740660H-A-R1

 Page
 : 29 of 31

 Issued date
 : January 19, 2018

 FCC ID
 : 2ABXRMB3002WB

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03 Semi Anechoic Chamber(NSA)		TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2016/10/20 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2017/01/20 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2017/08/22 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2017/05/22 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2017/05/29 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2017/03/21 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2017/05/14 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2017/01/19 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2016/09/21 * 12
MHF-06	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	RE	2017/05/30 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2017/08/22 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2016/10/15 * 12
MLA-22	Logperiodic Antenna (200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	RE	2017/01/26 * 12
MCC-51	Coaxial cable	UL Japan	_	-	RE	2017/07/12 * 12
MAT-98	Attenuator	KEYSIGHT	8491A	MY52462349	RE	2016/12/05 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2017/03/27 * 12
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	AT	2016/11/10 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2016/11/28 * 12
MPM-12	Power Meter	Anritsu	ML2495A	0825002	AT	2017/06/20 * 12
MPSE-17	Power sensor	Anritsu	MA2411B	0738285	AT	2017/06/20 * 12
MOS-19	Thermo-Hygrometer	Custom	CTH-201	0001	AT	2016/12/13 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN