Příklady na následujících třech stránkách vyřešte a řešení i postupy napište do připravených mezer. SPRÁVNÉ ŘEŠENÍ BEZ UVEDENÉHO POSTUPU SE NEUZNÁVÁ.

- 1. Hledáme vzdálenost bodu (2,1) od množiny $\{(x,y) \in \mathbb{R}^2 \mid x^2 = y\}$.
 - a) (2b) Formulujte jako minimalizaci funkce jedné proměnné bez omezení.

b) (2b) Napište iteraci Newtonovy metody na minimalizaci této funkce.

- 2. Máme funkci f(x,y) = 4x + y a množinu $X = \{(x,y) \in \mathbb{R}^2 \mid xy = 1, \ 0 \le x \le 1\}.$
 - a) (2b) Nakreslete obrázek, na kterém budou souřadnicové osy, množina X a vrstevnice funkce f výšky 0.

b) (3b) Najděte všechny extrémy (globální i lokální) funkce f na množině X.

3. (3b) Najděte Jacobiho matici zobrazení $f: \mathbb{R}^{m+n} \to \mathbb{R}$ daného vzorcem $f(\mathbf{x}, \mathbf{y}) = \log(\|\mathbf{x}\|_2 + \mathbf{y}^T \mathbf{A} \mathbf{y})$, kde $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$ a log značí přirozený logaritmus. Jaké bude mít Jacobiho matice rozměry?

- 4. Je dána funkce $f(x,y)=x^2+2a(xy+y^2)-4x-8y+1$, kde $a\in\mathbb{R}$ je daný parametr.
 - a) (2b) Pro která a je funkce f konvexní? Odpověď odůvodněte.

b) (2b) Pro která a je funkce f konkávní? Odpověď odůvodněte.

- 5. Najděte řešení soustavy rovnic $\mathbf{A}\mathbf{x} = \mathbf{b}$, které má nejmenší Mahalanobisovu normu $\|\mathbf{x}\|_{\mathsf{C}} = \sqrt{\mathbf{x}^T \mathbf{C}^{-1} \mathbf{x}}$. Matice \mathbf{A} s lineárně nezávislými řádky, vektor \mathbf{b} a symetrická positivně definitní matice \mathbf{C} jsou dány.
 - a) (1b) Formulujte tuto optimalizační úlohu.

b) (3b) Odvoďte vzorec pro optimální řešení úlohy.

6. Máme lineární program, ve kterém **maximalizujeme** funkci 5x + 6y + 8z za podmínek

$$5x + 3y + 5z \le 10$$
, $3x + 5y + 5z \le 8$, $x, y, z \ge 0$.

a) (2b) Napište duální úlohu.

b) (1b) Napište podmínky komplementarity.

c) (3b) Je (x,y,z)=(1,0,1) optimální řešení primární úlohy? Odpověď dokažte.

- 7. Hledáme největší (hyper)kouli (určenou středem $\mathbf{c} \in \mathbb{R}^n$ a poloměrem $r \in \mathbb{R}$), která se vejde do konvexního mnohostěnu $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} \}$, kde $\mathbf{b} = (b_1, \dots, b_m) \in \mathbb{R}^m$ je daný vektor a $\mathbf{A} \in \mathbb{R}^{m \times n}$ je daná matice s řádky $\mathbf{a}_1^T, \dots, \mathbf{a}_m^T$. Předpokládáme, že žádný z vektorů $\mathbf{a}_1, \dots, \mathbf{a}_m$ není nulový a $X \neq \emptyset$.
 - a) (3b) Formulujte jako lineární program. Napište jasně, co jsou jeho proměnné.

b) (1b) Napište tento lineární program pro $X = \{ \mathbf{x} \in \mathbb{R}^2 \mid -3x_1 - 4x_2 \ge -5, \ x_1 \ge 0, \ x_2 \ge 0 \}.$

Příjmení:	Jméno:
-----------	--------

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela zaplňte modrou barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY!
(Za správnou odpověď jsou 2 body, za chybnou odpověď mínus půl bodu, za chybějící odpověď 0 bodů.)

004

	1	2	3	4	5
a					
b					
с					
d					
е					

- 1. Nechť \mathbf{x}^* je lokální extrém diferencovatelné funkce $f: \mathbb{R}^n \to \mathbb{R}$ na množině $\{\mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) = a\}$, kde $g: \mathbb{R}^n \to \mathbb{R}$ je diferencovatelná a $a \in \mathbb{R}$. Pak platí:
 - (a) Vektory $\nabla f(\mathbf{x}^*)$ a $\nabla g(\mathbf{x}^*)$ jsou vždy ortogonální.
 - (b) Vektor $\nabla g(\mathbf{x}^*)$ je vždy nenulový, ale $\nabla f(\mathbf{x}^*)$ může být někdy nulový.
 - (c) Jestliže je $\nabla g(\mathbf{x}^*)$ nenulový, pak $\nabla f(\mathbf{x}^*) = \alpha \nabla g(\mathbf{x}^*)$ pro nějaké $\alpha \in \mathbb{R}$.
 - (d) Vektory $\nabla f(\mathbf{x}^*)$ a $\nabla g(\mathbf{x}^*)$ jsou vždy nenulové a rovnoběžné.
 - (e) žádná z uvedených možností
- 2. Jsou dány $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{y} \in \mathbb{R}^m$. Chceme najít minimum funkce $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2$ jako $\mathbf{x}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$. Bohužel zjistíme, že matice $\mathbf{A}^T \mathbf{A}$ je singulární. Co to znamená?
 - (a) Úloha má optimální řešení, ale nelze jej najít vyřešením normální rovnice $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{y}$ (je nutno použít např. SVD).
 - (b) Úloha nemá optimální řešení.
 - (c) Úloha má nekonečný počet optimálních řešení.
 - (d) Úloha je nepřípustná.
 - (e) žádná z uvedených možností
- 3. Množina $\{(x,y,z) \in \mathbb{R}^3 \mid x+y-xz-yz=1, (z+1)^2 \le 0\}$ je
 - (a) konvexní, ale není to lineární podprostor
 - (b) lineární podprostor
 - (c) prázdná
 - (d) konkávní
 - (e) žádná z uvedených možností
- 4. Nechť $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$ je kvadratická funkce $n \ge 2$ proměnných, kde **A** je symetrická nenulová matice. Pak platí:
 - (a) Jestliže f je konvexní, pak f nabývá na \mathbb{R}^n minima a \mathbf{A} je positivně semidefinitní.
 - (b) Jestliže f je na \mathbb{R}^n shora i zdola neomezená, pak **A** je indefinitní.
 - (c) f nabývá na \mathbb{R}^n minima právě tehdy, když f je konvexní.
 - (d) Jestliže f je konvexní a lze ji doplnit na čtverec, pak f nabývá na \mathbb{R}^n minima.
 - (e) žádná z uvedených možností
- 5. Hledáme extrémy funkce $f(\mathbf{x}) = \sum_{i=1}^{n} c_i x_i^2$ za podmínky $\sum_{i=1}^{n} x_i^2 = 1$. I když tato úloha jde vyřešit elementární úvahou, použijeme metodu Lagrangeových multiplikátorů. Který výrok o stacionárních bodech Lagrangeovy funkce je pravdivý?
 - (a) Stacionárních bodů je vždy n.
 - (b) Stacionární body jsou dva, jeden pro globální minimum a druhý pro globální minimum.
 - (c) Jestliže čísla c_1, \ldots, c_n jsou navzájem různá, stacionárních bodů je 2n.
 - (d) Jestliže čísla c_1, \ldots, c_n jsou navzájem různá, stacionárních bodů je n.
 - (e) žádná z uvedených možností