EE25BTECH11064 - Yojit Manral

Question:

Characteristic equation of the matrix with eigenvalue λ is

$$\mathbf{A} = \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix} \tag{1}$$

(a)
$$\lambda^2 + 3\lambda + 4 = 0$$

(b)
$$\lambda^2 + 3\lambda - 2 = 0$$

(c)
$$\lambda^2 - 3\lambda = 0$$

(d)
$$\lambda^2 + 3\lambda = 0$$

Solution:

- → This problem statement can be solved via the following two methods:
 - 1) The characteristic equation can be given by

$$char(\mathbf{A}) \implies |\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{2}$$

$$\begin{vmatrix} 2 - \lambda & \sqrt{2} \\ \sqrt{2} & 1 - \lambda \end{vmatrix} = 0 \tag{3}$$

$$(\lambda - 2)(\lambda - 1) - 2 = 0 \tag{4}$$

$$\lambda^2 - 3\lambda = 0 \tag{5}$$

2) Another method to find characteristic equation for a 2×2 matrix is

$$char(\mathbf{M}_{2\times 2}) \implies \lambda^2 - trace(\mathbf{M})\lambda + det(\mathbf{M}) = 0$$
 (6)

For the given matrix A, we have

$$trace(\mathbf{A}) = 3 det(\mathbf{A}) = 0 (7)$$

From (6) and (7), we get

$$char(\mathbf{A}) \implies \lambda^2 - 3\lambda = 0 \tag{8}$$

 \longrightarrow Therefore, (c) $\lambda^2 - 3\lambda = 0$ is the correct option.