Package 'pros'

	December 3, 2018		
Title Per	nalized Regression on Steroids		
Version 0.1 Author Austin David Brown <brow5079@umn.edu> Maintainer Austin David Brown <brow5079@umn.edu> Description This is a project for STAT8053 at the University of Minnesota.</brow5079@umn.edu></brow5079@umn.edu>			
		Depends	R (>= 3.5.1)
		License	Licensed under the Apache-2 (https://www.apache.org/licenses/LICENSE-2.0) license.
		Encoding	g UTF-8
LazyDat	a true		
Roxygen	Note 6.1.1		
-	cv.pros		
Index	5		
cv.pr	os Cross-validation		

Description

The K-fold cross-validation function.

Usage

```
cv.pros(X, y, K_fold = 5, alpha = c(1, 0, 0, 0, 0, 0),
  lambdas = seq(10^{(-7)}, 1, 0.1), algorithm = "proximal_gradient_cd",
  max_iter = 10000, tolerance = 10^{(-7)}
```

2 predict.cv_pros

Arguments

X the matrix of the data

y the vector of response values

alpha the convex combination of length 7 corresponding to the penalties:

• 11 penalty

• 12 penalty

• 14 penalty

• 16 penalty

• 18 penalty

• 110 penalty

lambdas A vector of dual penalization values to be evaluated

algorithm the optimization algorithm

• proximal_gradient_cd

• subgradient_cd

max_iter maximum iterations. This also tunes the step size.

tolerance tolerance

Value

A class cv_pros

Examples

```
cv = cv.pros(X_train, y_train)
pred = predict(cv, X_test)
```

predict.cv_pros

Cross-validation Prediction

Description

The cross-validation prediction function.

Usage

```
## S3 method for class 'cv_pros'
predict(cv_pros0bj, X_new)
```

Arguments

cv_pros0bj an object of class cv_pros X_new the matrix of the data to predict

Value

A vector of prediction values.

predict.pros 3

Examples

```
cv = cv.pros(X_train, y_train)
pred = predict(cv, X_test)
```

predict.pros

Pros Prediction

Description

The prediction function.

Usage

```
## S3 method for class 'pros'
predict(prosObj, X)
```

Arguments

pros0bj an object of class pros

X the matrix of the data to predict

Value

A vector of prediction values.

Examples

```
fit = pros(X_train, y_train, lambda = .1)
pred = predict(fit, X_test)
```

pros

Pros

Description

The fit function for a specific lambda value.

Usage

```
pros(X, y, alpha = c(1, 0, 0, 0, 0, 0, 0), lambda,
    algorithm = "proximal_gradient_cd", max_iter = 10000,
    tolerance = 10^(-7))
```

4 pros

Arguments

X the matrix of the data

y the vector of response values

alpha the convex combination of length 7 corresponding to the penalties:

• 11 penalty

• 12 penalty

• 14 penalty

• 16 penalty

• 18 penalty

• 110 penalty

lambda the dual penalization value algorithm the optimization algorithm

• proximal_gradient_cd

• subgradient_cd

max_iter maximum iterations. This also tunes the step size.

tolerance tolerance

Value

A class pros

Examples

```
fit = pros(X_train, y_train, lambda = .1)
pred = predict(fit, X_test)
```

Index

```
cv.pros, 1
predict.cv_pros, 2
predict.pros, 3
pros, 3
```