

Last Class

Quick Recap

- 1 Homework Questions Solution
- 2 Nested Lists
- 3 String Methods
- 4 Tuples
- 5 Sets and Examples

Topics to be

- 1) Homework Questions Solution COVered
- 2 Set Methods and Operations
- 3 Dictionaries
- 4 Functions, Recursion
- 5 Examples

Homework Question

CO	un	ıt=	=	
~	۳.		-	

$$y=(5,7,(9,3,1,(6,2),4),8)$$

$$i=x[3][2][1]$$
 $x=4$

for a in range(i):

for b in range(j):

count=count+a+b

print(count)

FP: 2MA

	0	1	2		3		4
X	I	3	5	7 9	2 4	6	8
	0	1			2		3
y	হ	7	9	3 1	6 2	14	8

	b=0		b=2	16-365 4+0+3=7	J [0] b=4	1 6=5
Qu = 0	Count = 1+0+0	1+0+1=2	2+0+2=4	440+3=7	7+0+4=11	11+5=16
asl	16+1=17	17+2=19	19+1+2=22	22+4=26	2645=31	31+6=37
9:2	37+2=39	39+3=42	42+4=46	46+5=51	51+6=57	5777-64
0:3		1			82+7=89	89+8=97

Set Methods

Method	Shortcut	Description
add()		Adds an element to the set
clear()		Removes all the elements from the set
copy()		Returns a copy of the set
difference()	***	Returns a set containing the difference between two or more sets
difference_update()	-=	Removes the items in this set that are also included in another, specified set
discard()		Remove the specified item
intersection()	<u>&</u>	Returns a set, that is the intersection of two other sets
intersection_update()	&= -	Removes the items in this set that are not present in other, specified set(s)
isdisjoint()		Returns whether two sets have a intersection or not

Set Methods

Method	Shortcut	Description
issubset()	<=	Returns whether another set contains this set or not
	<	Returns whether all items in this set is present in other, specified set(s)
issuperset()	>=	Returns whether this set contains another set or not
	>	Returns whether all items in other, specified set(s) is present in this set
pop()		Removes an element from the set
remove()		Removes the specified element
symmetric_difference()	^	Returns a set with the symmetric differences of two sets
symmetric_difference_update()	^=	Inserts the symmetric differences from this set and another
union()	L	Return a set containing the union of sets
update()	<u> </u> =	Update the set with the union of this set and others

$$S1 = \{1, 3, 5, 3, 7, 1, 5\} \Rightarrow S1 = \{1, 3, 5, 7\}$$

$$S2 = \{3, 4, 5, 6, 7\}$$

$$S4 = S1 \cdot union(S3) \# S4 = \{1, 3, 4, 5, 6, 7\}$$

$$S5 = S2 \# S3 \# S5 = \{3, 4, 5\}$$

$$S = \{1, 2, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 2, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for } S$$

$$S = \{1, 3, 4, 5\} \text{ for }$$

Dictionaries

- Ordered Collection
- Mutable [values can be mutable]
- dictionaries Support duplicates [duplicate Values not keys]
- Dictionaries are Collection of { Key: Value } Pairs.
- Cân be created as:

 Object = & 'key': Value, 'keya': Value2 ----}

 Ex: d = & 'a': 1, b': 2, c': 3}

Empty Dictionary:

object = { } \frac{1}{2} \frac{1}{2

Dictionaries

Access Elements of dictionary

Dictionaries

Method	Description
clear()	Removes all the elements from the dictionary
copy()	Returns a copy of the dictionary
fromkeys()	Returns a dictionary with the specified keys and value
get()	Returns the value of the specified key
items()	Returns a list containing a tuple for each key value pair
keys()	Returns a list containing the dictionary's keys
pop()	Removes the element with the specified key
popitem()	Removes the last inserted key-value pair
setdefault()	Returns the value of the specified key. If the key does not exist: insert the key, with the specified value
update()	Updates the dictionary with the specified key-value pairs
values()	Returns a list of all the values in the dictionary

Nested Dictionaries

```
Student = { 'Name : { fname : abc', !name! : xyz }

'Marks': { 'I year! : 70, 'I year! : 90 }

'Occupation': { Mother! : Home maker!, 'Father! : BUSINESS! }

Declared of 12 Co. 12 do. 12 do.
```


A Single Statement (or) multiple Statements, that Performs specific Task (or) SubTask is Function

Called function.

Method Object $\times (1) \Rightarrow \times \text{ is method}$ Ns $\chi(\text{object}) \Rightarrow \times \text{ is function}$ function	- method is defined Inside class - At a time through one object only, method is accessed. - function is defined outside class - function an have as many as heeded objects as arge	
Janaron	Just and with	meny.

Advantages: 1) Modularity 2) Reusability

3) Readoubility of Code

Definition Syntax:

def Name (asgument(1)):

def add(x,y):

3=x+y Print(\$)

(2) Ansmetet 2 Envoke Call function: Name (arguments)

add (4,5) # @

Functions, Recursion

Recursion: The Process of Calling as function by "itself.

- Fox recursive calls, to be finite, Base condition need to be Encluded in Junction Code.

- Base Case Base Condition: The Point at which, Recursive Calling will Stop.

Syntax: Lef fun (argument (s)):

Base Gondition:
Statement(s)

fun (argument)

fun (argument)

Action (i): $\lambda = 7$ The first (i) $\lambda = 7$ Ausplay (i) $\lambda = 7$ Ausplay (i) $\lambda = 7$ λ

学 7531

Functions, Recursion

Bage Cage

Seturn i+1

seturn 2+f(1-2)

Print (f(7))

0|p: 16

f(7) 2-7

7<=0 False

detum 7+f(5)

749-16

f(3) 2=5

SC=O False

setum 5+f(3)

5+4=9

3<=0 False

8eturn 3+f(i)

f(3) 2=3

7f(1) 1=1

1<=0 False

return 1+f(-1) 0

7f(-1) \$=-1

-1<=0 Toue
yetun (-1,+1)

```
def fun(x):
   if x < 0:
      seturn
    elif x <= 3:
       Print (x-1, end= ( ))
       fcm(x-2)
    else:
        fun(x-1)
         Print (x-2, end=1)
 fun(5)
```


The Return Value of f(7) is $\frac{22}{3}$

def f(x):

if x<1:

return X+X

elif x <= 2:

beturn (x-1)+f(x-1)

elif x<=5:

deturn (x+3)+f(x-3)

else:

 $\delta etun x + f(x-1)$

f(7) x=7

(0+0)

= 7+6+8+1+0+0

- २३

Summary

- Set methods
- Dictionaries
- Nested dict
 - functions
 - Remision*
 - Examples

