## K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS AC CIRCUITS

#### Numerical 1:

A series RLC circuit containing an inductance of 0.4H, a resistance of  $10\Omega$ , and a capacitor of  $20\mu F$  are connected across a 220V, 60Hz supply. Find,

- a. current drawn by the circuit,
- b.  $V_R$ ,  $V_L$  and  $V_C$
- c. Power Factor
- d. Draw the Voltage Phasor Diagram

#### **SOLUTION:**



Figure 1: Series RLC Circuit

$$X_{L} = 2\pi \times f \times L_{1}$$

$$= 2\pi \times 60 \times 0.4$$

$$= 150.78\Omega$$

$$X_{C} = \frac{1}{2\pi \times f \times C_{1}}$$

$$= \frac{1}{2\pi \times 60 \times 20 \times 10^{-6}}$$

$$= 132.63\Omega$$

$$Z = \sqrt{R_{1}^{2} + (X_{L} - X_{C})^{2}} = 20.7225\Omega$$

$$I = \frac{V_{1}}{Z}$$

$$= \frac{220}{20.7225}$$

$$= 10.6164A$$

$$V_{R_{1}} = I \times R_{1} = 106.164V$$

$$V_{L_{1}} = I \times X_{L} = 1600.7518V$$

$$V_{C_{1}} = I \times X_{C} = 1408.053132V$$
Power Factor =  $\cos \phi = \frac{R_{1}}{Z} = \frac{10}{20.7225} = 0.48256$ 

$$\therefore \phi = \cos^{-1}(0.48256) = 61.14679166^{\circ}$$

The given circuit is simulated in LTSpice and the results obtained are as follows:

For  $V_{C_1}$ :



Figure 2: Circuit Schematic and Simulated Results to find  $V_C$ 

For  $V_{L_1}$ :



Figure 3: Circuit Schematic and Simulated Results to find  $V_L$ 

For  $V_{R_1}$ :



Figure 4: Circuit Schematic and Simulated Results to find  $V_R$ 

# Phasor Diagram:



Figure 5: Phasor Diagram for the given circuit

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $V_{R_1}$  | 106.164V           | 106.085Va        |
| $V_{L_1}$  | 1600.7518V         | 1599.72V         |
| $V_{C_1}$  | 1408.053132V       | 1406.99V         |
| I          | 10.6164A           | 10.6085A         |

Table 1: Numerical 1

## Numerical 2:

In given RL circuit  $R_1 = 10\Omega$  and  $L_1 = 0.4$ H, then find,

a. the current through the circuit.

b. Power Factor,

if a 60Hz A.C. voltage  $V_1 = 120 \ \angle 60^\circ$  is applied across the circuit.

## **SOLUTION:**



Figure 6: Series RL Circuit

$$X_{L} = 2\pi \times f \times L_{1}$$

$$= 2\pi \times 60 \times 0.4$$

$$= 150.7964\Omega$$

$$Z = \sqrt{R_{1}^{2} + X_{L}^{2}}$$

$$= 151.1276565\Omega$$

$$I = \frac{V_{1}}{Z}$$

$$= \frac{120}{151.1276565}$$

$$= 0.794A$$

$$\phi = \tan^{-1}\left(\frac{X_{L}}{R_{1}}\right)$$

$$= 56.44982741^{\circ}$$

Power Factor =  $\cos \phi = 0.552664$ 

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 7: Circuit Schematic and Simulated Results

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| I          | 0.794A             | 0.79403A         |

Table 2: Numerical 2

## Numerical 3:

A voltage  $V_1 = 200 \sin 314t$  is applied to a circuit consisting of a  $10\Omega$  resistor and a  $120\mu F$  capacitor in series. Determine,

- a. an expression for the value of the current flowing at any instant.
- b.  $V_{R_1}$  and  $V_{C_1}$
- c. Power Factor

#### **SOLUTION:**



Figure 8: Series RC Circuit

$$V_1 = 200 \sin 314t$$
  
Comparing with,  $V_1 = V_0 \sin \omega t$   
 $\omega = 314$   
 $2\pi \times f = 314$   
 $\therefore f = 50$ Hz  
 $V_{RMS} = \frac{V_0}{\sqrt{2}} = 141.421V$   
 $I_{RMS} = \frac{V_{RMS}}{R} = 1.414V$   
 $X_{C_1} = \frac{1}{314 \times 12 \times 10^{-6}}$   
 $= 25.53928\Omega$   
 $Z = \sqrt{R_1^2 + X_{C_1}^2}$   
 $= 28.3605\Omega$   
 $I = \frac{V_{RMS}}{Z}$   
 $= 4.986546454A$   
 $\phi = \tan^{-1}\left(\frac{X_{C_1}}{R_1}\right)$   
 $= 1.21rad$ 

Thus, the equation for instantaneous current is,

$$I = 4.98 \sin(314t + 1.21)$$

Now,

$$V_{R_1} = I \times R_1$$
  
= 49.86546454V

$$V_{C_1} = I \times X_{C_1}$$
  
= 132.3393526V

Power Factor = 
$$\frac{R_1}{Z}$$
  
=  $\frac{10}{28.3605}$   
=  $0.3526$ 

### SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:

For  $V_{C_1}$ :



Figure 9: Circuit Schematic and Simulated Results to find  $V_C$ 

# For $V_{R_1}$ :



Figure 10: Circuit Schematic and Simulated Results to find  $V_R$ 

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $V_{R_1}$  | 49.8654V           | 49.8872V         |
| $V_{C_1}$  | 132.339V           | 132.33V          |

Table 3: Numerical 3

#### Numerical 4:

A circuit consists of a resistance of  $55\Omega$ , an inductance of 74mH and a capacitor of  $90\mu\text{F}$  are connected in parallel across a 110V, 50Hz supply. Calculate,

- a. Individual currents drawn by each element,
- b. Total current drawn by the supply,
- c. Overall power factor of the circuit
- d. Phasor Diagram

#### **SOLUTION:**



Figure 11: Parallel RLC Circuit

$$\begin{split} X_{L_1} &= 2\pi \times f \times \mathcal{L}_1 = 2\pi \times 50 \times 0.074 = 23.24778\Omega \\ X_{C_1} &= \frac{1}{2\pi \times f \times C_1} = \frac{1}{2\pi \times 50 \times 90 \times 10^{-6}} = 35.36776\Omega \\ Z &= \frac{1}{\sqrt{\left(\frac{1}{R_1}\right)^2 + \left(\frac{1}{X_{C_1}} - \frac{1}{X_{L_1}}\right)^2}} = 42.72328\Omega \\ \text{Current through resistor, } I_{R_1} &= \frac{V_1}{R_1} = \frac{110}{55} = 2A \\ \text{Current through inductor, } I_{L_1} &= \frac{V_1}{X_{L_1}} = \frac{110}{23.24778} = 4.73163459A \\ \text{Current through capacitor, } I_{C_1} &= \frac{V_1}{X_{C_1}} = \frac{110}{35.36776} = 3.110177A \\ \text{Total current, } I_S &= \sqrt{I_{R_1}^2 + (I_{L_1} - I_{C_1})^2} = 2.574708666A \\ \text{Conductance, } G &= \frac{1}{R_1} = \frac{1}{55} \end{split}$$

 $\therefore \cos \theta = \frac{G}{Y} = \frac{42.72328}{55}$  $\theta = \cos^{-1}(0.776787) = 39.03267^{\circ}$ 

Admittance, Y =  $\frac{1}{Z} = \frac{1}{42.72328}$ 

This is the angle between supply current and voltage.

Power Factor = 
$$\cos \phi = \frac{Z}{R_1} = \frac{42.72328}{55} = 0.776787$$
  
 $\therefore \phi = \cos^{-1}(0.776787) = 39.03267^{\circ}$ 

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 12: Circuit Schematic and Simulated Results

## Phasor Diagram:



Figure 13: Phasor Diagram for the given circuit

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| $I_S$      | 2.54708666A        | 2.57487A         |
| $I_{L_1}$  | 4.73163459A        | 4.73163A         |
| $I_{C_1}$  | 3.110177A          | 3.11018A         |
| $I_{R_1}$  | 2A                 | 2A               |

Table 4: Numerical 4

## Numerical 5:

Find I,  $I_1$ ,  $I_2$  and V(all branches) in the given figure 4, if,  $R_1=10\Omega$ ,  $L_1=\mathrm{j}10\Omega$ ,  $R_2=15\Omega$ ,  $L_2=\mathrm{j}25\Omega$ ,  $R_3=9\Omega$ ,  $C_1=-\mathrm{j}10\Omega$ , V = 100V, frequency, f = 50Hz.



Figure 14: Circuit Diagram

## **SOLUTION:**

Consider the following circuit,



Figure 15: Modified Circuit Diagram

$$L_1 = j10\Omega$$

$$X_{L_1} = 10\Omega$$

$$\therefore 2\pi \times f \times L_1 = 10$$

$$L_1 = 0.031847H$$

$$L_2 = j25\Omega$$

$$X_{L_2} = 25\Omega$$

$$\therefore 2\pi \times f \times L_2 = 25$$

$$L_2 = 0.079577H$$

$$C_1 = -\mathrm{j}10\Omega$$

$$X_C = 10\Omega$$

$$\therefore \frac{1}{2}\pi \times f \times C = 10$$

$$\therefore C = 3.1831 \text{mF}$$

Now,

$$Z_1 = 20 + j10 = 22.36068\Omega \angle 26.565^{\circ}$$

$$Z_2 = 15 + j25 = 29.15476\Omega \angle 59.036^{\circ}$$

$$Z_3 = 9 - \text{j}10 = 13.453624\Omega \angle -48.0127^{\circ}$$

$$\therefore \mathbf{Z} = Z_1 + \frac{Z_2 \times Z_3}{Z_2 + Z_3}$$

$$\therefore Z = 20 + j10 + \frac{(15 + j25) \times (9 - j10)}{(15 + j25) + (9 - j10)}$$

$$Z = 32.941 + i5.03715092 = 33.3239\Omega \angle 8.694^{\circ}$$

$$\therefore Z = 32.941 + j5.03715092 = 33.3239\Omega \angle 8.694^{\circ}$$

$$I = \frac{V}{Z} = \frac{100\angle 0^{\circ}}{33.3239\angle 8.694^{\circ}} = 3.00085A \angle -8.7^{\circ}$$

$$V_{AB} = I \times Z_1 = 3.00085 \times 22.36068 = 67.1010V$$

$$\therefore Z_1 = Z_{AB}$$

Now,  

$$y_2 = \frac{1}{Z_2} = \frac{1}{29.15476 \angle 59.036^{\circ}} = 0.0343 \angle -59.036^{\circ}$$

$$y_3 = \frac{1}{Z_3} = \frac{1}{13.453624\angle -48.0127^{\circ}} = 0.07433\angle 48.0127^{\circ}$$

$$y_{BC} = y_2 + y_3 = 0.07214 \angle 20.99^{\circ}$$

$$Z_{BC} = \frac{1}{y_{BC}} = 13.862\Omega \angle -20.99^{\circ}$$

$$V_{BC} = I \times Z_{BC} = 3.00085 \times 13.862 = 41.5977V$$

$$\therefore I_1 = \frac{V_{BC}}{Z_2} = \frac{41.5977}{29.15476} = 1.4268A$$

And, 
$$I_2 = \frac{V_{BC}}{Z_3} = \frac{41.5977}{13.453624} = 3.091932A$$

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 16: Circuit Schematic and Simulated Results

For  $V_{AB}$ ,



Figure 17: Circuit Schematic and Simulated Results for calculating  $V_{AB}$ 

| Parameters | Theoretical Values | Simulated Values |
|------------|--------------------|------------------|
| Í          | 3.00085A           | 3.00086A         |
| $I_1$      | 1.4268A            | 1.42645A         |
| $I_2$      | 3.091932A          | 3.09124A         |
| $V_{AB}$   | 67.1010V           | 67.1039V         |
| $V_{BC}$   | 41.5977V           | 41.5884V         |

Table 5: Numerical 5

## Numerical 6:

A 60 Hz sinusoidal voltage  $V_1 = 141 \sin \omega t$  is applied to a series R-L circuit. The values of the resistance and the inductance are 3.3 and 0.0116 H respectively Determine the following:

- a. Calculate the peak voltage across resistor and inductor and also find the peak value of source current in LTSpice.
- b. Plot input source voltage  $V_1$  (t) Vs input source current  $I_1$  (t) in LTSpice.
- c. Measure the phase delay/difference between  $V_1$  (t) Vs  $I_1$  (t) in time and degrees
- d. Plot input source voltage  $V_1$  (t) Vs voltage across resistor  $V_{R_1}$  (t) in LTSpice.
- e. Measure the phase delay/difference between  $V_1$  (t) Vs  $V_{R_1}$  (t) in time and degrees
- f. Plot input source voltage  $V_1$  (t) Vs voltage across inductor  $V_{L_1}$  (t) in LTSpice.
- g. Measure the phase delay/difference between  $V_1$  (t) Vs  $V_{L_1}$  (t) in time and degrees
- h. Calculate the power factor of the circuit.

#### **SOLUTION:**



Figure 18: Series RL Circuit

$$X_{L_1} = 2\pi \times f \times L_1 = 2\pi \times 60 \times 0.0116 = 4.373\Omega$$

$$Z = \sqrt{R_1^2 + X_{L_1}^2} = 5.4784\Omega$$

$$I_1 = \frac{V_1}{Z} = \frac{141}{5.4784} = 25.737A$$

$$V_{R_1} = R_1 \times I_1 = 84.93V$$

$$V_{L_1} = X_{L_1} \times I_1 = 112.5479V$$

Phase delay between 
$$V_1$$
 and  $V_{R_1}$ ,  $\phi = \tan^{-1} \left( \frac{V_{L_1}}{V_{R_1}} \right) = 52.961^{\circ}$ 

Phase delay between 
$$V_1$$
 and  $V_{L_1}$ ,  $\theta = \tan^{-1}\left(\frac{V_{R_1}}{V_{L_1}}\right) = 37.03864^{\circ}$ 

Phase delay between 
$$V_1$$
 and  $I_1$ ,  $\angle = \tan^{-1} \left( \frac{\phi}{\theta} \right) = 55.032717^{\circ}$ 

Power Factor =  $\cos \phi = 0.602365$ 

#### SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 19: Circuit Schematic and Simulated Results

## Waveforms:

Input source voltage  $V_1$  Vs input source current  $I_1$   $V_1 = V_a$  and  $I_1 = I_{R1}$ 



Figure 20: Simulated Waveform for  $V_1$  Vs  $I_1$ 

Input source voltage  $V_1$  Vs voltage across inductor  $V_{L_1}$   $V_1 = V_a$  and  $V_{L_1} = V_b$ 



Figure 21: Simulated Waveform for  $V_1$  Vs  $V_{L_1}$ 

Input source voltage  $V_1$  Vs voltage across resistor  $V_{R_1}$   $V_1 = V_a$  and  $V_{R_1} = V_{a,b}$ 



Figure 22: Simulated Waveform for  $V_1$  Vs  $V_{R_1}$ 

| Parameters                                         | Theoretical Values | Simulated Values |
|----------------------------------------------------|--------------------|------------------|
| $I_1$                                              | 25.737A            | 25.759A          |
| $V_{R_1}$                                          | 84.93V             | 84.85V           |
| $V_{L_1}$                                          | 112.5479V          | 112.653V         |
| Phase delay between $V_1$ and $V_{R_1}$ , $\phi$   | 52.961°            | 50.9332°         |
| Phase delay between $V_1$ and $V_{L_1}$ , $\theta$ | $37.03864^{\circ}$ | 38.098°          |
| Phase delay between $V_1$ and $I_1$ , $\angle$     | 55.032717°         | 55.1676°         |

Table 6: Numerical 6

#### Numerical 7:

A pure resistance of  $33\Omega$  is in series with a pure capacitance of  $56\mu F$ .

The series combination is connected across 120V, 50 Hz supply.

Determine the following:

- a. Calculate the peak voltage across resistor and capacitor and also find the peak value of source current in LTSpice.
- b. Plot input source voltage  $V_1$  (t) Vs input source current  $I_1$  (t) in LTSpice.
- c. Measure the phase delay/difference between  $V_1$  (t) Vs  $I_1$  (t) in time and degrees.
- d. Plot input source voltage  $V_1$  (t) Vs voltage across resistor  $V_{R_1}$  (t) in LTSpice.
- e. Measure the phase delay/difference between  $V_1$  (t) Vs  $V_{R_1}$  (t) in time and degrees.
- f. Plot input source voltage  $V_1$  (t) Vs voltage across capacitor  $V_{C_1}$  (t) in LTSpice.
- g. Measure the phase delay/difference between  $V_1$  (t) Vs  $V_{C_1}$  (t) in time and degrees.
- h. Calculate the power factor of the circuit.

#### **SOLUTION:**



Figure 23: Series RC Circuit

$$X_C = 2\pi \times f \times C_1 = 56.841\Omega$$
 $Z = \sqrt{R_1^2 + X_C^2} = 65.726\Omega$ 
 $V_{max} = 120\sqrt{2}$ 
 $I_{max} = \frac{V_{max}}{Z} = 2.582A$ 
 $V_{R_m} = R_1 \times I_{max} = 85.2066V$ 
 $V_{C_m} = X_C \times I_{max} = 146.763462V$ 
Power Factor  $= \cos \phi = \frac{R_1}{Z} = 0.502084$ 

 $\therefore$  Phase angle between  $V_1$  and  $V_{R_1}$ ,  $\phi = 59.862^{\circ}$ 

Phase angle between 
$$V_1$$
 and  $V_{C_1}$ ,  $\theta = \tan^{-1}\left(\frac{V_{C_1}}{V_{R_1}}\right) = 30..1382^{\circ}$ 

Phase angle between 
$$V_1$$
 and  $I_1, \angle = \tan^{-1} \left( \frac{\phi}{\theta} \right) = 63.27651^{\circ}$ 

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 24: Circuit Schematic and Simulated Results

### Waveforms:

Input source voltage  $V_1$  Vs input source current  $I_1$   $V_1 = V_1$  and  $I_1 = I_{R1}$ 



Figure 25: Simulated Waveform for  $V_1$  Vs  $I_1$ 

Input source voltage  $V_1$  Vs voltage across inductor  $V_{C_1}$   $V_1 = V_1$  and  $V_{C_1} = V_2$ 



Figure 26: Simulated Waveform for  $V_1$  Vs  $V_{C_1}$ 

Input source voltage  $V_1$  Vs voltage across resistor  $V_{R_1}$   $V_1 = V_1 \ V_{R_1} = V_{1,2}$ 



Figure 27: Simulated Waveform for  $V_1$  Vs  $V_{R_1}$ 

| Parameters                                         | Theoretical Values | Simulated Values |
|----------------------------------------------------|--------------------|------------------|
| $I_{S_m}$                                          | 2.576A             | 2.582A           |
| $V_{R_m}$                                          | 85.07366V          | 85.2066V         |
| $V_{C_m}$                                          | 146.3024V          | 146.76346V       |
| Phase angle between $V_1$ and $V_{R_1}$ , $\phi$   | 75.82257°          | 59.862°          |
| Phase angle between $V_1$ and $V_{C_1}$ , $\theta$ | $36.9775^{\circ}$  | 30.1382°         |
| Phase angle between $V_1$ and $I_1$ , $\angle$     | $70.6289^{\circ}$  | 63.27651°        |

Table 7: Numerical 7

#### Numerical 8:

A series resonance network consisting of a resistor of  $27\Omega$ , a capacitor of  $2.5\mu F$  and an inductor of 27mH is connected across a sinusoidal supply voltage which has a constant output of AC 9 volts at all frequencies. Calculate, the resonant frequency, the current at resonance, the voltage across the inductor and capacitor at resonance, the quality factor and the bandwidth of the circuit. Plot the resonance curve, the current at resonance, the voltage across the inductor and capacitor at resonance in LTSpice.

### **SOLUTION:**



Figure 28: Series Resonance Circuit

$$f_R = \frac{1}{2\pi \times \sqrt{L_1 \times C_1}} = 612.5876616Hz$$

$$I_m = \frac{V}{R_1} = 333mA$$

$$X_L = 2\pi \times f \times L_1 = 103.923\Omega$$
We know that,  $V_L = V_C$ 

$$\therefore V_L = I \times X_L = 34.606V$$
Quality Factor,  $Q = \frac{X_L}{R_1} = 3.849$ 
Bandwidth =  $\frac{f_R}{Q} = 159.155Hz$ 

#### SIMULATED RESULTS:

The given circuit is simulated in LTSpice and the results obtained are as follows:



Figure 29: Circuit Schematic and Simulated Results

# ${\bf Wave forms:}$



Figure 30: Current at Resonance



Figure 31: Resonant Frequency

In the waveform below,  $V_L = V_{a,b}$  and  $V_C = V_{in,a}$ 



Figure 32:  $V_L$  and  $V_C$  at Resonance

| Parameters  | Theoretical Values | Simulated Values |
|-------------|--------------------|------------------|
| I           | 0.47135A           | 0.46598A         |
| $f_R$       | 612.58766Hz        | 612.2525Hz       |
| $V_L = V_C$ | 48.94V             | 48.39V           |

Table 8: Numerical 8