ECE 550DKFundamentals of Computer Systems and Engineering

Fall 2023

From Transistors to Gates

Xin Li & Dawei Liu

Duke Kunshan University

Slides are derived from work by Andrew Hilton, Tyler Bletsch and Rabih Younes (Duke)

Last time....

(Almost) every class will start with the same question:

- Who can remind us what we talked about last time? (besides course policies)
- Abstraction
 - Interface vs Implementation

Power (Vcc) and Ground (Gnd)

Vcc

Gnd -

- Two supply rails:
 - Power (aka Vcc, sometimes called Vdd), e.g., +1.0 V
 - Logically, 1
 - Ground (Gnd, or Vss), e.g., 0 V
 - Logically, 0
 - Use Vcc/Gnd because that's what Quartus uses

3

Wires

Vcc

Gnd

• A wire (or other conductor) causes current to flow

Short circuit

Gnd

- Short circuit: direct connection from power to ground
 - Very high current
 - · Generates a lot of heat
 - Destroys your chip
 - Very bad!

5

Switching

A A

- Suppose instead we had some sort of switch
 - Here, top connection conducts, connecting A to Vcc
 - The bottom half resists insulating A from Gnd

Switching

- If we switch our connection...
 - Current flows as A changes voltage levels
 - Connection to power is closed, so no short circuit

7

Transistors: Electrically controlled switches

- Two types:
 - NMOS (left: no circle):
 - Conducts when gate is 1, resists when gate is 0
 - PMOS (right: circle):
 - Conducts when gate is 0, resists when gate is 1

- CMOS (most common, all we care about):
 - · Put PMOS and NMOS in complementary fashion
 - Either PMOS conducts or NMOS conducts, but not both
- Form a logic gate
 - Input (s): connected to gates of transistors
 - Output: connected to drains

CMOS = "Complementary Metal Oxide Semiconductor"

9

CMOS: Complementary MOS

- Let's see how this works.
 - Suppose Input = 1 (circuitry to control input, not shown)
 - PMOS transistor resists
 - No connection between Output and Vcc
 - NMOS transistor conducts
 - Connection between Output and Gnd
 - Output is 0

- Now suppose Input changes to 0
 - PMOS transistor conducts
 - Connection between Output and Vcc
 - NMOS transistor conducts
 - No Connection between Output and Gnd
 - Output is 1

11

Switching delays

- Note: this doesn't happen instantly
 - There is some delay as these change
 - · Factors that affect the delay
 - Voltage
 - Higher voltage = faster switching, but more power/energy
 - Resistance
 - Lower resistance = faster switching
 - Capacitance
 - Lower capacitance = faster switching
 - Calculating delay = hard, so we let our tools do it

- · Slightly more accurate with respect to time
 - Input starts to swing from 1 to 0 (not instant)

13

CMOS: Complementary MOS

- · Slightly more accurate with respect to time
 - Input starts to swing from 1 to 0 (not instant)
 - Change propagates along wires (also takes time)

- Slightly more accurate with respect to time
 - Input starts to swing from 1 to 0 (not instant)
 - Change propagates along wires (also takes time)
 - Transistors start to switch (partially conductive)

15

CMOS: Complementary MOS

- · Slightly more accurate with respect to time
 - Input starts to swing from 1 to 0 (not instant)
 - Change propagates along wires (also takes time)
 - Transistors start to switch (partially conductive)
 - Inputs reach 0 (sometime)
 - Transistors fully open/closed
 - · Output may take time to transition

- Slightly more accurate with respect to time
 - Input starts to swing from 1 to 0 (not instant)
 - Change propagates along wires (also takes time)
 - Transistors start to switch (partially conductive)
 - Inputs reach 0 (sometime)
 - · Transistors fully open/closed
 - Output may take time to transition

17

Our first logic gate: The inverter

- This circuit is a logic gate: inverter or "NOT gate"
 - Gives logical negation of its input
 - Input = 0, Output = 1
 - Input = 1, Output = 0
 - Typically, just draw the gate, instead of the transistors:

Our first logic gate: The inverter

- (Small) Example of abstraction
 - Interface: "do logical negation"
 - Implementation: how to hook up the transistors

19

Let's build a more interesting gate

- Next, let us build a 2-input NOR gate
 - Here is a **truth table** for NOR
 - Shows output values for all possible inputs
 - Output =1 when A and B = 0
 - Connect PMOS in series
 - (Not A) and (Not B)
 - Output = 0 when A or B = 1
 - Connect NMOS in parallel
 - Not (A or B)

Note: two formulas are logically equivalent (DeMorgan's Laws)

- PMOS formula has NOTs on inputs
- NMOS formula has NOT on output

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

The NOR gate

- NOR Gate
 - PMOS in series (both A and B must be 0 to get 1)
 - NMOS in parallel (either A or B at 1 results in 0)
- Side note: real chips have several layers to route wires
 - 3D drawing is hard, just label inputs

21

The NOR gate

- NOR Gate
 - Same gate, just changed B's value to 1
 - Now output = 0
 - PMOS connected to B resists, blocking connection to Vcc
 - NMOS connected to B conducts, forming connection go Gnd

The NOR gate

- NOR Gate
 - Same gate, now change A to 1
 - Output stays at 0
 - Two connections to Gnd, but that's fine

23

Let's build a more interesting gate

- I'll let you all try a 2-input NAND gate
 - Here is a **truth table** for NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

The NAND Gate

- The NAND Gate
 - PMOS in parallel (either at 0 results in a 1)
 - NMOS in series (both at 1 results in 0)

25

Boolean Gates

• Actually a bunch of standard logic gates:

How to keep them all straight?

Guide to Remembering your Gates

- This one looks like it just points its input where to go
 - It just produces its input as its output
 - Called a buffer

• A circle always means negate (invert)

27

Guide to Remembering your Gates

Circle means NOT

Next Time...

- Next time, we'll delve into Combinatorial Logic
 - Putting gates together to do useful things

29