绝密★启用前

2023年10月高等教育自学考试全国统一命题考试

高等数学(工本)

(课程代码 00023)

注意事项:

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。

第一部分 选择题

- 一、单项选择题:本大题共10小题,每小题3分,共30分。在每小题列出的备选项中只有一 项是最符合题目要求的,请将其选出。
- 1. 在空间直角坐标系中,点(1,1,0) 在
 - A. Oxy 平面上
- B. Oxz 平面上
- C. Oyz 平面上
- D. z 轴上

- 2. 极限 $\lim_{x\to 0} x \sin \frac{1}{xy}$
- C. 等于3
- D. 不存在

- 3. 微分方程 $\frac{dy}{dx} = \frac{x}{y} + \frac{y}{x}$ 是
 - A. 可分离变量的微分方程
- B. 齐次方程
- C. 一阶线性齐次微分方程
- D. 一阶线性非齐次微分方程
- 4. 下列无穷级数中,收敛的无穷级数是
 - A. $\sum_{n=1}^{\infty} \frac{2n-2}{3n+1}$

B. $\sum_{n=1}^{\infty} (-1)^{n-1}$

C. $\sum_{n=1}^{\infty} \frac{3^{n-1}}{2^{n+1}}$

D. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

高等数学(工本)试题第1页(共3页)

- 5. 设积分区域 $D:x^2+y^2 \leq 4$,则二重积分 $\int_{\mathbb{R}} (2-x-y) \, \mathrm{d}x \mathrm{d}y =$
 - A. 0
- B. 4π
- $C.8\pi$
- D. 16π

- 6. 设向量 $\alpha = \{2.1, -9\}$. $\beta = \{1.0.1\}$.则 $\alpha \cdot \beta =$
 - A. -9 B. -7 C.1

D. 2

- 7. 设函数 $f(x,y) = \frac{4xy}{x^2 y^2}$,则 $f(1, \frac{y}{x}) = \frac{4xy}{x^2 y^2}$
- A. $\frac{4y}{x^2 y^2}$ B. $\frac{4y}{y^2 x^2}$ C. $\frac{4xy}{x^2 y^2}$ D. $\frac{4xy}{y^2 x^2}$

- 8. 设积分区域 Ω : | x | \leq 1, | y | \leq 1, | z | \leq 1, 则三重积分 \iiint 2 dx dy dz =
 - A. 2
- B. 4

- D. 16
- 9. 设函数f(x) 是周期为 2π 的周期函数, f(x) 的傅里叶级数为 $\frac{3}{4} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 3}{n^2} \cos nx$, 则 f(x) 的傅里叶系数 $b_1 =$

- 10. 微分方程 $y'' + (x^2 + 1)y' + y = 2$ 的一个特解 $y^* =$

- $D. x^2$

第二部分 非选择题

- 二、计算题:本大题共10小题,每小题6分,共60分。
- 11. 求平面 $\Pi: 2x + y z = 3$ 和直线 $L: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{-1}$ 的交点坐标.
- 12. 已知常数 k > 0,且原点到平面 x + ky 2z = 9 的距离为 3,求常数 k 的值.
- 13. 设函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$,求全微分 du.
- 14. 设方程 $e^{-xy} 3z + e^z = 0$ 确定函数 z = z(x,y) ,求 $\frac{\partial z}{\partial x}$.

高等数学(工本)试题第2页(共3页)

- 15. 设函数 $f(x,y) = e^x \cos y$, 求梯度 $\operatorname{grad} f(0, \frac{\pi}{4})$.
- 16. 计算二重积分 $\iint_D (2x-y) dxdy$,其中积分区域 D 是由 x+y=2, y=x 及 x 轴所围区域.
- 17. 计算对弧长的曲线积分 $\oint_L (x^2 + y^2) ds$, 其中 L 是圆周 $x^2 + y^2 = 4$.
- 18. 计算对坐标的曲线积分 $\int_{L} e^{x+y} dy$, 其中 L 是从点 (0,0) 到点 (1,1) 的直线段.
- 19. 将函数 $f(x) = \ln(1 + x)$ 展开为 x 的幂级数.
- 20. 求微分方程 y'' + 5y' + 6y = 0 的通解.
- 三、综合题:本大题共2小题,每小题5分,共10分。
- 21. 判断无穷级数 $\sum_{n=1}^{\infty} \left(\frac{n}{3n+1} \right)^n$ 的敛散性.
- 22. 计算曲面积分 $\iint_{\Sigma} x dx dy$, 其中 \sum_{i} 是平面 x + y + z = 3 被三个坐标面所截得部分, 取上侧.