Ball and Beam Experiment Report

姓名: 簡伯霖

A. Experiment Result

1. Calibration

Position	-30	0	30		
Voltage	5.86	4.44	3.05		
Position = $a \times Volt + b$ $a = -21.532$ $b = 95.01$					

Angle =
$$a \times Volt + b \Rightarrow a = \frac{10}{V_0 - V_{-10}} = 51.02$$

$$b = \frac{10V_0}{V_0 - V_{-10}} = -385.51$$

2. Beam Angle Control

(1) Desired angle is 0. Please Record the Steady-error and the data in different K_{p1}

K_{p1}	1	3	4	5	7
Steady-error	0.272	0.053	0.037	0.037	0.668

(2)Data Plot

3. BALL AND BEAM EXPERIMENT - PART I

(1) Find the parameter K_p, K_d of the control ,with different damping ratio ξ and natural frequency ω_n

	K_p	K_d
$\xi = 0.707, \omega_n = 1$	0.102	0.144
$\xi = 0.707, \omega_n = 3$	0.918	0.433
$\xi = 0.5, \omega_n = 1$	0.102	0.102
$\xi = 0.5, \omega_n = 3$	0.918	0.306

$$\begin{cases} gK_d = 2\xi\omega_p \\ gK_p = \omega_p^2 \end{cases}$$

(2) Desired position is 0 cm. Set up all the parameter and plot the performance data.

4. BALL AND BEAM EXPERIMENT - PART II

(1) Find the parameter K_p, K_d, K_i of the control ,with different damping ratio ξ and natural frequency ω_n , decay rate a

ξ	ω_n	а	K_p	K_i	K_d
1	3	10	0.573979592	16	0.44005102
0.707	3	10	0.644830324	14.242	0.368413058
0.707	3	20	0.75766632	24.242	0.394996708
0.5	3	20	0.798580302	23	0.306122449

$$\begin{cases} K_i = 2\xi\omega_n + a \\ K_p = \frac{a\omega_n^2}{gK_i} \\ K_d = \frac{\omega_n^2 + 2a\xi\omega_n}{gK_i} \end{cases}$$

(2) Desired position is 0 cm. Set up all the parameter and plot the performance data.

B. Discussion

1. Why we use a Cam to drive the beam to change angle but not use motor to drive the beam to change the angle?

使用此方式可使平衡稈的角度轉動限制在一定範圍,不會因馬達轉動而導致 平衡桿損毀。

2. Explain when we were at beam angle experiment, why not we can make $e_{SS} = 0$ only with K_{p1} ?

誤差會隨著輸出的值變化,然而到達穩定後的值其實還是有微小的變化,其中的絕對值稱為穩帶誤差,而此系統是一個實際系統,因此會有各種的干擾,因此微小的變化量是永遠存在的,因此穩態誤差也不可能恆為零,若以系統的階數來觀察,答案也是相同的。

3. Explain when we were at beam angle experiment, what reason cause the different phenomena with different K_{p1} ?

由圖可以知道 K_{pl} 增加,則峰值越高,是因為增加比例控制器值時,會造成 E(S)的值變大,而經過負回授後則訊號會變小,而穩態誤差也變小了,但也由於 比例控制器增大,所以一開始的響應也會變大。

Ball And Beam Report

4. Do you think this system is a stable system? What is your reason?

這系統的穩定性可由不同的控制器造成的結果來觀察,經由調整控制器適當 的參數,則輸出的響應也會越好,反之,若參數並不適當則系統也會有不穩定的 結果。

C. Feedback

經由此實驗可以了解現性回歸的最基本的意義與用途,並應用在實務上,藉由調整比例控制器了解與穩態誤差之間的關係,PD與PID控制器實務上的應用與用途都可藉由此實驗而驗證。