Билеты для экзамена по *Тепломассообмену*

Преподаватель:

Сапожников Сергей Захарович

Автор конспекта:

Дмитриев Артем Константинович artem020503@gmail.com

СОДЕРЖАНИЕ

1.	теплопередача, ее виды. природа теплопроводности газов, жидкостеи и
	твердых сред. Поле температуры. Изотермические поверхности и изотермы.
	Градиент температуры. Тепловой поток и его плотность
2.	Гипотеза Био. Интегральный закон Фурье. Теплопроводность сред и материалов. Дифференциальное уравнение теплопроводности (Фурье). Температуропроводность среды. Краевые условия. Граничные условия
	1-4 рода, их физический смысл и формулировка. Краевая задача
	теплопроводности.
3.	Канонические тела. Стационарная теплопроводность неограниченной пластины при граничных условиях 1 и 3 рода. Составная пластина.
	Коэффициент теплопередачи. Термические сопротивления
4.	Теплопроводность цилиндрической стенки при граничных условиях 1 и
	3 рода. Линейный коэффициент теплопередачи.Составная цилиндрическая
	стенка. Задача о критическом диаметре цилиндрической стенки
5.	Теплопроводность шаровой стенки при граничных условиях 1 и 3 рода.
	Составная шаровая стенка. Коэффициент теплопередачи для шаровой
	стенки
6.	Оребрение, его эффективность. Коэффициент эффективности ребра. Расчёт
	ребра прямоугольного сечения. Возможный порядок расчёта оребрения 9
7.	Нестационарная теплопроводность. Неограниченная пластина при
	симметричных граничных условиях 3 рода. Форма решения,
	характеристические уравнения и их корни. Безразмерные соотношения,
	расчёт по таблицам и графикам
8.	Нагрев и охлаждение тел конечных размеров. Мультипликативные
	формулы

9.	неравномерности распределения температуры. Теоремы Кондратьева, их
	использование. 12
10.	Методы конечных разностей. Метод Шмидта. Метод элементарных балансов
	(Ваничева). Устойчивость решения. Явные и неявные схемы
11.	Конвективный теплообмен. Основные понятия. Свободная и вынужденная конвекция. Закон конвективного теплообмена Ньютона, коэффициент
	теплоотдачи. Закон вязкого трения Ньютона, динамическая и
	кинематическая вязкость жидкости. Режимы движения жидкости.
	Динамический и тепловой пограничный слой
12.	Краевая задача конвективного теплообмена. Используемые
	фундаментальные и эмпирические законы. Уравнения теплообмена,
	энергии, движения и сплошности. Краевые условия
13.	Подобие физических явлений. Необходимые условия подобия. Теоремы
	подобия. Достаточные условия подобия. Метод размерностей. Основные
	критерии подобия, их физический смысл. Выбор характерных параметров:
	размера, температуры, скорости. Графическая обработка опытных данных 16
14.	Конвективный теплообмен в однофазной среде. Теплообмен при
	вынужденном движении жидкости вдоль неограниченной пластины.
	Ламинарный и турбулентный режимы. Связь коэффициентов теплоотдачи
	и трения. Аналогия Рейнольдса. Переходный режим движения. Поправка
	Михеева. Уравнения подобия для теплообмена на пластине для капельных жидкостей и для газов
15.	Теплообмен при вынужденной конвекции в трубах и каналах.
	Профили скорости. Автомодельность. Начальный участок и участок
	стабилизированного течения. Ламинарный и турбулентный режимы.
	Теплообмен в турбулентном пограничном слое. Турбулентная
	теплопроводность. Интеграл Лайона. Уравнения подобия
16.	Теплообмен при поперечном обтекании труб и трубных пучков. Дорожка
	фон Кармана. Изменение коэффициента теплоотдачи по окружности трубы.
	Обтекание под углом, отличным от прямого. Трубные пучки, их параметры.
	Уравнения подобия для теплообмена в пучках
17.	Теплообмен при свободной конвекции. Физическая природа. Теплообмен
	на вертикальных поверхностях. Тепловой пограничный слой. Уравнения
	подобия для теплообмена. Режимы течения, их изменения по координате 21

18.	Теплообмен при свободной конвекции на горизонтальных поверхностях	
	(пластин, труб, проволок). Уравнения подобия. Теплообмен в щелях и	
	зазорах.	. 22
19.	Теплообмен при кипении. Физическая природа. Режимы и кризисы кипения.	
	Кривая Нукиямы. Параметры паровых пузырьков: отрывной диаметр,	
	частота отрыва, число центров парообразования.	. 23
20.	Теплоотдача при пузырьковом кипении. Числа подобия. Основные	
	уравнения подобия. Первая критическая плотность теплового потока:	
	физический смысл и расчёт.	24
21.	Теплообмен при конденсации. Физическая природа. Угол смачивания и	
	виды конденсации. Конденсация на вертикальной поверхности. Модель	
	Нуссельта. Поправочные коэффициенты.	25
22.	Конденсация на горизонтальных трубах. Конденсация на пучках труб.	
	Конденсация внутри труб. Режимы течения двухфазных потоков. Капельная	
	конденсация.	26
23.	Термосифоны и тепловые трубы.	
	Теплообменники. Классификация, виды расчёта. Уравнения теплового	
	баланса и теплопередачи. Водяные эквиваленты. Т – F – диаграммы. Средний	
	температурный напор. Поправка Нуссельта. Коэффициент теплопередачи	28
25.	Эффективность теплообменников. Идеальный теплообменник. ϵ – NTU –	
	диаграмма и NTU-метод расчёта.	29
26.	Гидравлический расчёт теплообменников. Потери давления. Мощность,	
	расходуемая на перемещение теплоносителей	30
27.	Теплообмен излучением. Физическая природа и особенности. Законы	
	Кирхгофа и Стефана – Больцмана. Поглощательная, отражательная и	
	пропускательная способность тел и сред. Абсолютно чёрное тело. Степень	
	черноты.	31
28.	Теплообмен излучением в прозрачной среде. Теплообмен между	
	параллельными серыми пластинами. Радиационные экраны. Инфракрасное	
	излучение газов.	32
29.	Система «тело в оболочке». Угловые коэффициенты. Способы определения.	
	Метод нитей.	. 33

Теплопередача, её виды. Природа теплопроводности газов, жидкостей и твердых сред. Поле температуры. Изотермические поверхности и изотермы. Градиент температуры. Тепловой поток и его плотность.

Гипотеза Био. Интегральный закон Фурье. Теплопроводность сред и материалов. Дифференциальное уравнение теплопроводности (Фурье). Температуропроводность среды. Краевые условия. Граничные условия 1-4 рода, их физический смысл и формулировка. Краевая задача теплопроводности.

Канонические тела. Стационарная теплопроводность неограниченной пластины при граничных условиях 1 и 3 рода. Составная пластина. Коэффициент теплопередачи. Термические сопротивления.

Теплопроводность цилиндрической стенки при граничных условиях 1 и 3 рода. Линейный коэффициент теплопередачи. Составная цилиндрическая стенка. Задача о критическом диаметре цилиндрической стенки.

Теплопроводность шаровой стенки при граничных условиях 1 и 3 рода. Составная шаровая стенка. Коэффициент теплопередачи для шаровой стенки.

Оребрение, его эффективность. Коэффициент эффективности ребра. Расчёт ребра прямоугольного сечения. Возможный порядок расчёта оребрения.

Нестационарная теплопроводность. Неограниченная пластина при симметричных граничных условиях 3 рода. Форма решения, характеристические уравнения и их корни. Безразмерные соотношения, расчёт по таблицам и графикам.

Нагрев и охлаждение тел конечных размеров. Мультипликативные формулы.

Регулярный тепловой режим. Темп охлаждения тела. Коэффициент неравномерности распределения температуры. Теоремы Кондратьева, их использование.

Методы конечных разностей. Метод Шмидта. Метод элементарных балансов (Ваничева). Устойчивость решения. Явные и неявные схемы.

Конвективный теплообмен. Основные понятия. Свободная и вынужденная конвекция. Закон конвективного теплообмена Ньютона, коэффициент теплоотдачи. Закон вязкого трения Ньютона, динамическая и кинематическая вязкость жидкости. Режимы движения жидкости. Динамический и тепловой пограничный слой.

Краевая задача конвективного теплообмена. Используемые фундаментальные и эмпирические законы. Уравнения теплообмена, энергии, движения и сплошности. Краевые условия.

Подобие физических явлений. Необходимые условия подобия. Теоремы подобия. Достаточные условия подобия. Метод размерностей. Основные критерии подобия, их физический смысл. Выбор характерных параметров: размера, температуры, скорости. Графическая обработка опытных данных.

Конвективный теплообмен в однофазной среде. Теплообмен при вынужденном движении жидкости вдоль неограниченной пластины. Ламинарный и турбулентный режимы. Связь коэффициентов теплоотдачи и трения. Аналогия Рейнольдса. Переходный режим движения. Поправка Михеева. Уравнения подобия для теплообмена на пластине для капельных жидкостей и для газов.

evolvendis, ut ego et Triarius te hortatore facimus, consumeret, in quibus hoc primum est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum.

Теплообмен при вынужденной конвекции в трубах и каналах. Профили скорости. Автомодельность. Начальный участок и участок стабилизированного течения. Ламинарный и турбулентный режимы. Теплообмен в турбулентном пограничном слое. Турбулентная теплопроводность. Интеграл Лайона. Уравнения подобия.

Теплообмен при поперечном обтекании труб и трубных пучков. Дорожка фон Кармана. Изменение коэффициента теплоотдачи по окружности трубы. Обтекание под углом, отличным от прямого. Трубные пучки, их параметры. Уравнения подобия для теплообмена в пучках.

Теплообмен при свободной конвекции. Физическая природа. Теплообмен на вертикальных поверхностях. Тепловой пограничный слой. Уравнения подобия для теплообмена. Режимы течения, их изменения по координате.

Теплообмен при свободной конвекции на горизонтальных поверхностях (пластин, труб, проволок). Уравнения подобия. Теплообмен в щелях и зазорах.

Теплообмен при кипении. Физическая природа. Режимы и кризисы кипения. Кривая Нукиямы. Параметры паровых пузырьков: отрывной диаметр, частота отрыва, число центров парообразования.

Теплоотдача при пузырьковом кипении. Числа подобия. Основные уравнения подобия. Первая критическая плотность теплового потока: физический смысл и расчёт.

Теплообмен при конденсации. Физическая природа. Угол смачивания и виды конденсации. Конденсация на вертикальной поверхности. Модель Нуссельта. Поправочные коэффициенты.

Конденсация на горизонтальных трубах. Конденсация на пучках труб. Конденсация внутри труб. Режимы течения двухфазных потоков. Капельная конденсация.

Термосифоны и тепловые трубы.

Теплообменники. Классификация, виды расчёта. Уравнения теплового баланса и теплопередачи. Водяные эквиваленты. Т – F – диаграммы. Средний температурный напор. Поправка Нуссельта. Коэффициент теплопередачи.

Эффективность теплообменников. Идеальный теплообменник. є – NTU – диаграмма и NTU-метод расчёта.

Гидравлический расчёт теплообменников. Потери давления. Мощность, расходуемая на перемещение теплоносителей

Теплообмен излучением. Физическая природа и особенности. Законы Кирхгофа и Стефана — Больцмана. Поглощательная, отражательная и пропускательная способность тел и сред. Абсолютно чёрное тело. Степень черноты.

Теплообмен излучением в прозрачной среде. Теплообмен между параллельными серыми пластинами. Радиационные экраны. Инфракрасное излучение газов.

Система «тело в оболочке». Угловые коэффициенты. Способы определения. Метод нитей.