1/3

15 G 26 A 01 Durée: 4 heures

OFFICE DU BACCALAUREAT

Séries: S2-S2A-S4-S5 - Coef. 5

Téléfax (221) 825.24.58 - Tél.: 824.95.92 - 824.65.81

Epreuve du 1^{er} group

MATHEMATIQUES

Les calculatrices électroniques non imprimantes avec entrée unique par clavier sont autorisées . Les calculatrices permettent d'afficher des formulaires ou des tracés de courbe sont interdits. Leur utilisation sera considérée comme une fraude. Cf. Circulaire n° 5990/OB/DIR. du 12 08 1998).

EXERCICE 1 (03,5 points)

Le 1), 2) et 3) de cet exercice sont faits chacun de quatre affirmations. Dire pour chacune de ces affirmations si elle et vraie ou fausse.

1) L'évènement contraire de « A sachant B » est :

(0,5 pt)

a) A sachant B

b) A sachant B

c) A sachant B

- d) $\overline{A} \cap B$.
- 2) Soient E et F deux événements indépendants d'un même espace probabilisé, on a : (0,5 pt)
 - a) p(E/F) = 0

b) $p(E \cup F) = p(E) \times p(\overline{F}) + p(F)$

c) $p(E \cap F) = 0$

- d) p(E/F) = 1.
- 3) Une variable aléatoire X suit une loi binomiale de paramètres n et p où n = 4 et $p \in [0, 1]$
 - a) si p = $\frac{1}{2}$ alors p(X = 2) = 2p(X = 1),
 - b) si p = $\frac{1}{4}$ alors p(X = 3) > $\frac{1}{4}$
 - c) si p = $\frac{1}{2}$ alors p(X > 1) = 1,
 - d) si p (x = 1) = 8 p (X = 0) alors p = $\frac{2}{3}$

(0,75 pt)

4) Le plan (P) est rapporté au repère orthonormé direct (O, \vec{u}, \vec{v}) .

A et B sont deux points du plan (P) d'affixes respectives z_A et z_B.

Considérons M et M' deux points du plan (P) distincts de A et B.

Notons z et z' les affixes respectives de M et M'.

Interpréter géométriquement les résultats ci-dessous :

a) $|z - z_A| = 1$.

- (0,25 pt)

- c) $|z'| = |z_A z_B|$.
- (0,5 point)
- b) $|z z_A| = |z z_B|$. (0,5 pt) d) $\arg \left(\frac{z z_A}{z z_B}\right) = \arg \left(\frac{z' z_A}{z' z_B}\right) [\pi]$. (0,5 pt)

EXERCICE 2

(05 points)

- 1) Soit p (z) = $z^3 + 3z^2 3z 5 20i$, $z \in \mathbb{C}$.
 - a) Démontrer que 2 + i est une racine de p(z).

(0,25 pt)

b) En déduire les solutions de l'équation p(z) = 0 dans C.

(01 pt)

- 2) Dans le plan (P) rapporté au repère orthonormé direct (O, \vec{u}, \vec{v}) d'unité 1 cm, on considère les points A, B et C d'affixes respectives 2 + i, -1 – 2i et -4 + i.

(0,75 pt)

- a) Placer les points A, B et C puis calculer les distances AB et BC. b) Démontrer que arg $\left(\frac{z_{\mathbb{C}}-z_{\mathbb{B}}}{z_{\mathbb{A}}-z_{\mathbb{B}}}\right)=\left(\overrightarrow{BA},\overrightarrow{BC}\right)[2\pi]$.
- (0,25 pt)

c) En déduire une mesure en radian de l'angle (BA, BC).

(0,25 pt)

d) Déduire de tout ce qui précède la nature du triangle ABC.

- (0,25 pt)
- 3) Soit r la rotation qui laisse invariant le point B et qui transforme A en C.
 - a) Montrer que l'application f associée à r est définie par : f(z) = iz - 3 - i.

(0,5 pt)

b) Préciser les éléments géométriques caractéristiques de r.

(0,25 pt)

- 4) Soit T : M(z) \mapsto M' (z') telle que z' = $i\alpha^2$ z + α , $\alpha \in \mathbb{C}$.
 - a) Déterminer les valeurs de α pour lesquelles T est une homothétie de rapport 2.

(0,5 pt)

2/3

15 G 26 A 01 Séries : S2-S2A-S4-S5

Epreuve du 1^{er} groupe

- b) Déterminer les éléments géométriques caractéristiques de T pour le nombre complexe α vérifiant $|\alpha| = \sqrt{2}$ et $\arg \alpha = -\frac{\pi}{4}$. (0,25 pt)
- 5) On considère la transformation g = roT. On suppose dans ce qui suit que $\alpha = 1 i$.
 - a) Montrer que l'application h associée à g est définie par : h(z) = 2iz 2. (0,25 pt)
 - b) Donner les éléments géométriques caractéristiques de g.

(0,5 pt)

EXERCICE 3

(02,5 points)

Au Sénégal une entreprise veut vérifier l'efficacité de son service de publicité. Elle a relevé chaque mois durant une période de 6 mois les sommes X consacrées à la publicité et le chiffre d'affaire constaté Y (X et Y sont en milliards de FCFA).

On donne le tableau ci-dessous :

Rang du mois	1	2	3	4	5	6
X	1,2	0,5	1	1	1,5	1,8
Υ	19	49	100	125	148	181

Les résultats seront donnés au centième près.

Le détail des calculs n'est pas indispensable. On précisera les formules utilisées.

1) Calculer le coefficient de corrélation linéaire de X et Y.

(01 pt)

2) a) Déterminer l'équation de la droite de régression de Y en X.

(01 pt)

b) Déterminer la somme qu'il faut investir en publicité si l'on désire avoir un chiffre d'affaire de 300 milliards si cette tendance se poursuit. (0,5 pt)

EXERCICE 4

(09 points)

A) 1) En utilisant une intégration par parties, calculer pour tout réel α :

$$I(\alpha) = \int_0^{\alpha} e^t(t+2) dt$$
.

(0,5 pt)

En déduire I(x).

(0,25 pt)

2) Soit k une fonction dérivable sur IR. Considérons la fonction h telle que $h(x) = k(x) e^{-x}$, $\forall x \in IR$.

On se propose de déterminer la fonction h de façon à ce qu'elle vérifie les conditions suivantes, \forall x \in IR :

$$\begin{cases} h'(x) + h(x) = x + 2 \\ h(0) = 2. \end{cases}$$

a) Vérifier que k'(x) = $(x + 2) e^x$.

(0,5 pt)

b) En déduire k puis h.

(0,25 + 0,25 pt)

B) I) 1) Etudier les variations sur IR de la fonction g définie par :

$$g(x) = x + 1 + e^{-x}$$
.

(01,5 pt)

2) En déduire que g(x) est strictement positif.

(0.25 pt)

II) Soit la fonction f définie sur IR par :

 $f(x) = \ln (x + 1 + e^{-x}).$

(\mathscr{G}) sa courbe représentative dans le plan rapporté à un repère orthonormé ($(0, \vec{i}, \vec{j})$).

- 1) Etudier les variations de f puis dresser son tableau de variations. (02,5 pts)
- 2) Pour tout x strictement positif, on note M, le point de la courbe de la fonction logarithme népérien d'abscisse x et N le point de () de même abscisse.

a) Démontrer que $0 < \overline{MN} < \ln \left(\frac{x+2}{x} \right)$

(0,25 pt)

b) Quelle est la limite de \overline{MN} quand x tend vers $+\infty$.

(0,25 pt)

15 G 26 A 01 Séries : S2-S2A-S4-S5

Epreuve du 1^{er} groupe

3) a) Démontrer que :

 $f(x) = -x + \ln(xe^x + e^x + 1), \forall x \in IR.$

(0,5 pt)

- b) En déduire que ($\mbox{\ensuremath{\ensuremath{\mathcal{G}}}}$) admet une asymptote oblique ($\mbox{\ensuremath{\Delta}}$) au voisinage de - $\mbox{\ensuremath{\infty}}$ et déterminer la position de ($\mbox{\ensuremath{\ensuremath{\mathcal{G}}}}$) par rapport à ($\mbox{\ensuremath{\Delta}}$) pour x<-1. (0,25 + 0,25 pt)

(01,5 pt)