Handbook of Environmental Engineering Calculations

Second Edition

- New material on fuel cell technologies and air toxic risk assessment
- · Calculations presented with fully illustrated steps
- · Contains both SI and U.S. Customary units
- · Calculations cover all aspects of environmental engineering

C. C. Lee • Shun Dar Lin

HANDBOOK OF ENVIRONMENTAL ENGINEERING CALCULATIONS

ABOUT THE EDITORS

DR. C. C. LEE is the Fuel Cell Research Program Manager at the National Risk Management Research Laboratory of the U.S. Environmental Protection Agency in Cincinnati, Ohio.* He has more than 30 years of experience in conducting various engineering and research projects which often involve multimedia environmental issues ranging from air and water pollution control to solid waste disposal. He has been recognized as a worldwide expert in the thermal treatment of medical and hazardous wastes, witness his leading discussions on medical waste disposal technologies at a meeting conducted by the Congressional Office of Technology Assessment. He initiated and served as the Chairman of the First and Second International Congresses on Toxic Combustion Byproducts (ICTCB) in 1989 and 1991, respectively. The ICTCB has been holding its meetings every two years since its creation in 1989. Also, at the initiation of the U.S. State Department, he served as head of the U.S. delegation to the Conference on National Focal Points for Low- and Non-Waste Technology (it was sponsored by the United Nations and held in Geneva, Switzerland on August 28-30, 1978). He has been invited to lecture on various issues regarding solid waste disposal in numerous national and international conferences, and he has authored 18 books and has published more than 175 papers and reports in various environmental areas. Until recently, he was an adjunct professor with the University of Cincinnati in Ohio and was an assistant professor at the North Carolina State University before joining EPA in 1974. He received a B.S. from the National Taiwan University in 1964, and a MS and PhD from the North Carolina State University in 1968 and 1972, respectively.

SHUN DAR LIN is Emeritus faculty, State Water Survey Division of University of Illinois. He received his PhD in Sanitary Engineering from Syracuse University. Dr. Lin holds an MS in Sanitary Engineering from University of Cincinnati and a BS in Civil Engineering from National Taiwan University. Dr. Lin has taught and conducted research since 1960 at the Institute of Public Health of National Taiwan University and is a registered professional engineer in Illinois. He has published nearly 100 articles and reports on water and wastewater engineering. In 1986, Dr. Lin received the Water Quality Division Best Paper Award for "Giardia lamblia" and Water Supply" from the American Water Works Association. Dr. Lin has over 40 years of experience in teaching, research, field and laboratory work, and practical engineering experience. Dr. Lin is a life member of the American Society of Civil Engineers, the American Water Works Association, and the Water Environment Federation.

HANDBOOK OF ENVIRONMENTAL ENGINEERING CALCULATIONS

C. C. Lee Editor in Chief

Shun Dar Lin Associate Editor

Second Edition

The McGraw·Hill Companies

Copyright © 2007, 2000 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

ISBN: 978-0-07-151112-4

MHID: 0-07-151112-1

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-147583-9,

MHID: 0-07-147583-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. ("McGraw-Hill") from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. ("McGrawHill") and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill's prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED "AS IS." McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

CONTENTS

Contribu	tors	хi	
Preface	xiii		

Part 1 Calculations of Water Quality Assessment and Control

Chapter 1.1. Basic Science and Fundamentals

1.3

- 1. Conversion Factors / 1.3
- 2. Prefixes for SI Units / 1.8
- 3. Mathematics / 1.8
- 4. Basic Chemistry and Physics / 1.31
- 5. Statistics / 1.50

References / 1.69

Chapter 1.2. Streams and Rivers

1.71

- 1. General / 1.72
- 2. Point Source Dilution / 1.72
- 3. Discharge Measurement / 1.72
- 4. Time of Travel / 1.73
- 5. Dissolved Oxygen and Water Temperature / 1.74
- 6. Biochemical Oxygen Demand Analysis / 1.78
- 7. Streeter-Phelps Oxygen SAG Formula / 1.80
- 8. BOD Models and K_1 Computation / 1.81
- 9. Determination of Reaeration Rate Constant K_2 / 1.102
- 10. Sediment Oxygen Demand / 1.108
- 11. Organic Sludge Deposits / 1.110
- 12. Photosynthesis and Respiration / 1.111
- 13. Natural Self-Purification in Streams / 1.112
- 14. SOD of DO Usage / 1.131
- 15. Apportionment of Stream Users / 1.131
- 16. Velz Reaeration Curve (A Pragmatic Approach) / 1.137
- 17. Stream DO Model (A Pragmatic Approach) / 1.141
- 18. Biological Factors / 1.153

References / 1.162

Chapter 1.3. Lakes and Reservoirs

1.165

- 1. Lakes and Impoundment Impairments / 1.165
- 2. Lake Morphometry / 1.166
- 3. Water Quality Models / 1.169
- 4. Evaporation / 1.170
- 5. The Clean Lakes Program / 1.175

References / 1.203

Chapter 1.4. Groundwater	1.207
 Definition / 1.207 Hydrogeologic Parameters / 1.211 Steady Flows in Aquifers / 1.220 Anisotropic Aquifers / 1.221 Unsteady (Nonequilibrium) Flows / 1.222 Groundwater Contamination / 1.233 Setback Zones / 1.236 References / 1.241 	
Chapter 1.5. Fundamental and Treatment Plant Hydraulics	1.243
 Definitions and Fluid Properties / 1.243 Water Flow in Pipes / 1.250 Pumps / 1.275 Water Flow in Open Channels / 1.281 Flow Measurements / 1.297 References / 1.310 	
Chapter 1.6. Public Water Supply	1.313
1. Sources and Quantity of Water / 1.314 2. Population Estimates / 1.316 3. Water Requirements / 1.320 4. Regulation for Water Quality / 1.324 5. Water Treatment Processes / 1.332 6. Aeration and Air Stripping / 1.333 7. Solubility Equilibrium / 1.355 8. Coagulation / 1.357 9. Flocculation / 1.363 10. Sedimentation / 1.363 11. Filtration / 1.373 12. Water Softening / 1.382 13. Ion Exchange / 1.388 14. Iron and Manganese Removal / 1.402 15. Activated Carbon Adsorption / 1.406 16. Membrane Processes / 1.409 17. Residual from Water Plant / 1.414 18. Disinfection / 1.418 19. Water Fluoridation / 1.439 References / 1.445	
Chapter 1.7. Wastewater Engineering	1.449
 What Is Wastewater? / 1.450 Characteristics of Wastewater / 1.450 Sewer Systems / 1.457 Quantity of Wastewater / 1.459 Urban Stormwater Management / 1.462 Design of Storm Drainage Systems / 1.464 Precipitation and Runoff / 1.464 Stormwater Quality / 1.468 Sewer Hydraulics / 1.473 Sewer Appurtenances / 1.473 	

 13. Wastewater Treatment Systems / 1.482 14. Screening Devices / 1.487 15. Comminutors / 1.490 	
16. Grit Chamber / 1.491	
17. Flow Equalization / 1.492	
18. Sedimentation / 1.495	
19. Primary Sedimentation Tanks / 1.507	
20. Biological (Secondary) Treatment Systems / 1.515	
21. Activated-Sludge Process / 1.517	
22. Trickling Filter / 1.574	
23. Rotating Biological Contactor / 1.586	
24. Dual Biological Treatment / 1.598	
25. Stabilization Ponds / 1.598	
26. Secondary Clarifier / 1.605	
27. Effluent Disinfection / 1.611	
28. Advanced Wastewater Treatment / 1.61929. Sludge (Residuals) Treatment and Disposal / 1.652	
References / 1.703	
Ketelences / 1.703	
Appendix A. Illinois Environmental Protection Agency's	
Macroinvertebrate Tolerance List	1.71
Appendix B. Well Function for Confined Aquifers	1.717
Appendix C. Solubility Product Constants for Solution	
at or near Room Temperature	1.723
Appendix D. Freundlich Adsorption Isotherm Constants	
for Toxic Organic Compounds	1.727
Part 2 Solid Waste Calculations	
Part 2 Solid Waste Calculations	
	2.3
Part 2 Solid Waste Calculations Chapter 2.1. Thermodynamics Used in Environmental Engineering	2.3
	2.3
Chapter 2.1. Thermodynamics Used in Environmental Engineering	2.3
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4	2.3
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4	2.3
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137	2.3
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4	2.3 2.14
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148 2. Basic Combustion Principles / 2.148	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148 2. Basic Combustion Principles / 2.148 3. Basic Mass and Energy Balance Calculation / 2.199	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148 2. Basic Combustion Principles / 2.148 3. Basic Mass and Energy Balance Calculation / 2.199 4. Basic Incinerator Design / 2.220	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148 2. Basic Combustion Principles / 2.148 3. Basic Mass and Energy Balance Calculation / 2.199 4. Basic Incinerator Design / 2.220 5. System Calculations / 2.239	
Chapter 2.1. Thermodynamics Used in Environmental Engineering 1. Introduction / 2.4 2. Thermodynamic Terms and Calculations / 2.4 References / 2.137 Chapter 2.2. Basic Combustion and Incineration 1. Introduction / 2.148 2. Basic Combustion Principles / 2.148 3. Basic Mass and Energy Balance Calculation / 2.199 4. Basic Incinerator Design / 2.220	

11. Pumping Stations / 1.477

Chapter 2.3. Practical Design of Waste Incineration	2.317
 Introduction / 2.317 Combustion Process Calculations / 2.317 Waste Combustion Systems / 2.333 Control of Emissions from Combustion / 2.351 Controlled and Uncontrolled Emission Factors / 2.373 Conversions and Corrections / 2.378 References / 2.384 	
Chapter 2.4. Calculations for Permitting and Compliance	2.387
 Introduction / 2.387 Calculations of Emissions from the Stack / 2.388 Regulatory Emission Standards and Guidelines / 2.394 Calculations to Confirm Compliance with Standards / 2.400 Environmental Impact of Stack Emissions / 2.414 Environmental Risk Assessment / 2.430 References / 2.437 	
Chapter 2.5. Calculational Procedures for Ash Stabilization and Solidification	2.439
Section 2.5.1. Calculational Procedures for Ash Stabilization / 2.441 1. Overview of Processing and Stabilizing Fly Ash / 2.441 2. Calculations of Processing and Stabilizing Fly Ash / 2.445 References / 2.449 Appendix A. Material Safety Data Sheet / 2.450 Appendix B. Material Safety Data Sheet. Fly Ash / 2.453 Appendix C. Material Safety Data Sheet. Mixtures / 2.455 Appendix D. Material Safety Data Sheet. CFBC Ash / 2.458 Appendix E. Medical Waste Incinerator. Bottom Ash / 2.461 Appendix F. Medical Waste Incinerator. Fly Ash / 2.462	
Section 2.5.2. Catalytic Extraction Processing: Calculating Procedures for Assessing Low Grade Material Processing Potential / 2.463 3. Overview of Fundamental Catalytic Extraction Processing / 2.463 4. Engineering Calculations of Catalytic Extraction Processing / 2.471 References / 2.488	
Chapter 2.6. Incineration Technologies and Facility Requirements	2.491
1. Introduction / 1.491 2. Incineration Technology / 1.492 3. Incineration Technology Summary / 1.537 4. Resource Recovery System / 1.537 5. Facility Design Feature / 1.550 6. Summary of Incineration System / 1.570 References / 1.572	
Part 3 Air Pollution Control Calculations	
Chapter 3.1. Air Emission Control	3.3

1. Introduction / 3.3

2. Air Pollution Definition / 3.4

CONTENTS	ix
3	.143
3	.223
	4.1

Chapter 3.2.	Particulate	Emission	Control

Pollution Emission Calculation / 3.9
 Gaseous Emission Control Techniques / 3.23
 Management of Incineration Residue / 3.125
 Accessory Equipment for Air Pollution Control / 3.127

7. Monitoring Equipment / 3.139 8. Recording Keeping / 3.140

1. Introduction / 3.143

References / 3.140

- 2. Basics of Particulate Emission Control / 3.143
- 3. Factors Affecting the Selection of Particulate Control Equipment / 3.166
- 4. Particulate Emission Control Equipment / 3.168
- 5. Particulate Concentration Calculation / 3.216
- 6. Particulate Emission Control Cost / 3.218

References / 3.221

Chapter 3.3. Wet and Dry Scrubbers for Emission Control

- 1. Introduction / 3.223
- 2. Wet Absorption for Particulate Emission Control / 3.225
- 3. Wet Absorption for Gaseous Emission Control / 3.241
- 4. Wet Scrubbers for Particulate and Gaseous Emission Control / 3.242
- 5. Dry Absorption for Gaseous Emission Control / 3.286
- 6. Accessory Equipment for Scrubber / 3.292

References / 3.297

Part 4

Chapter 4.1. Air Toxic Risk Assessment

- 1. General / 4.4
- 2. Emissions and Site Characterization / 4.4
- 3. Air Dispersion Modelling for Air Toxics / 4.13
- 4. Exposure Scenarios / 4.23
- 5. Estimation of Media Concentrations / 4.28
- 6. Quantifying Exposure / 4.83
- 7. Human Health Risk and Hazard Calculations / 4.91
- 8. Air Toxics Chemical and Physical Properties / 4.98
- 9. Human Health Benchmarks / 4.108
- 10. Terminology and Variable in Human Health Risk Assessment / 4.110

References / 4.111

Part 5

Chapter 5.1. Fundamentals of Fuel Cell Technologies

5.3

- 1. Introduction / 5.3
- 2. Fuel Cell Descriptions / 5.4
- 3. Calculations of Carnot Efficiency and Fuel Cell Efficiency / 5.11

References / 5.14

CONTRIBUTORS

J. C. S. Chang U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (CHAP. 3.1)

Floyd Hasselriis Consulting Engineer, Forest Hills, New York (CHAPS. 2.2, 2.3, 2.4)

Thomas C. Ho Department of Chemical Engineering, Lamar University, Beaumont, Texas (CHAP. 2.2)

G. L. Huffman U.S. Environmental Protection Agency, Cincinnati, Ohio (CHAPS. 2.1, 2.2, 2.6, 3.1, 3.2, 3.3, 5.1)

Carl F. Isonhart Mixer Systems, Inc., Pewaukee, Wisconsin (CHAP. 2.5)

C. C. Lee U.S. Environmental Protection Agency, Cincinnati, Ohio (EDITOR IN CHIEF; CHAPS. 2.1, 2.2, 2.6, 3.1, 3.2, 3.3, 5.1)

Shun Dar Lin Illinois State Water Survey, Peoria, Illinois (ASSOCIATE EDITOR; CHAPS. 1.1 TO 1.7)

Christopher J. Nagel Quantum Catalytics, Fall River, Massachusetts (CHAP. 2.5)

Jesse L. Thé Lakes Environmental Software and University of Waterloo, Canada (CHAP. 4.1)

David A. Weeks. Risk Management & Engineering Ltd., Garland, Texas (CHAP. 4.1)

PREFACE

Because environmental problems are uncovered almost daily, this second edition has been created to meet the challenge of solving them. Environmental engineering encompasses many areas. It ranges from solid waste disposal, wastewater treatment, air pollution control, to life analysis. Although there are many publications relative to the descriptions of concepts and methodologies in the environmental control area, the actual calculations relative to the field seldom appear in these publications. In addition to the scarcity of environmental calculations thousands of environmental regulations from federal, state, and local regulators impact environmental engineering design every day. Just keeping abreast of such regulations is an enormous task for engineers. The main objective of this book is, therefore, to provide step-by-step, practical calculational procedures on various environmental subjects. More importantly, this book integrates the regulatory requirements into environmental designs so the result can make these designs more acceptable to regulators. The major subjects covered in the second edition include:

- 1. Calculations of water quality assessment and control
- 2. Solid waste treatment calculations
- 3. Air pollution control calculations
- 4. Air toxic risk assessment
- 5. Fuel cell technologies

A majority of the calculational examples provided in this book were developed by the authors themselves and the materials were excerpted from previous USEPA publications. Since its creation in 1970, the USEPA has published many environmental regulations and engineering reports. Many very interesting calculational examples were scattered throughout these publications. The huge volume of EPA regulations and reports makes a search for example calculations extremely difficult and time consuming. To help resolve this difficulty, many of these examples were collected and edited in a format for readers to easily understand. The citing of references for each example calculation is provided herein. This is to expeditiously assist users in locating additional information, if needed.

This book is intended to be a reference tool for those who are involved in the protection of air, water, and land resources. It is believed that the book will make many environmental jobs much easier. Lastly, the editor wishes to express his deep appreciation to the contributing authors who have spent so many of their days and nights to make this book possible.

C. C. LEE

HANDBOOK OF ENVIRONMENTAL ENGINEERING CALCULATIONS

CALCULATIONS OF WATER QUALITY ASSESSMENT AND CONTROL

Part 1 of this book is written for use by the following readers: students taking coursework relating to public water supply, waste-water engineering or stream sanitation, practicing environmental (sanitary) engineers; regulatory officers responsible for the review and approval of engineering project proposals; operators, engineers, and managers of water and/or wastewater treatment plants; and any other professionals, such as chemists and biologists, who have gained some knowledge of water/wastewater issues. This work will benefit all operators and managers of public water supply and of wastewater treatment plants, environmental design engineers, military environmental engineers, undergraduate and graduate students, regulatory officers, local public works engineers, lake managers, and environmentalists.

The chapters in Part 1 present the basic principles and concepts relating to water/wastewater engineering and provide illustrative examples of the subject. To the extent possible, examples rely on practical field data. Each of the calculations provided herein are solved step-by-step in a streamlined manner that is intended to facilitate understanding. Calculations (step-by-step solutions) range from calculations commonly used by operators to more complicated calculations required for research or design.

Advances and improvements in many fields are driven by competition or the need for increased profits. It may be fair to say, however, that advances and improvements in environmental engineering are driven instead by regulation. The US Environmental Protection Agency (EPA) sets up maximum contaminant levels, which research and project designs must reach as a goal. The step-by-step solution examples provided in this book are informed by the integration of rules and regulations on every aspect of waters and wastewaters. The author has performed an extensive survey of literature on surface and groundwaters encountered in environmental engineering and compiled them in the following chapters. Rules and regulations are described as simply as possible, and practical examples are given.

The following chapters include calculations for basic science, surface waters ground water, drinking water treatment, and wastewater engineering. Chapter 1.1 covers conversion factors between the two measurement systems, the United States (US) customary system and the System International (SI), basic mathematics for water and wastewater plant operators, fundamental chemistry and physics, and basic statistics for environmental engineers.

Chapter 1.2 comprises calculations for river and stream waters. Stream sanitation had been studied for nearly 100 years. By the mid-twentieth century, theoretical and empirical models for assessing waste assimilating capacity of streams were well developed. Dissolved oxygen and biochemical oxygen demand in streams and rivers have been comprehensively illustrated in this chapter. Apportionment of stream users and pragmatic approaches for stream dissolved oxygen models are also covered. From the 1950s through the 1980s, researchers focused extensively on wastewater treatment. In 1970s, rotating biological contactors also became a hot subject. Design criteria and examples for all of these are included. Some treatment and management technologies are no longer suitable in the United States. However, they are still of some use in developing countries.

Chapter 1.3 is a compilation of adopted methods and documented research. In the early 1980s, the USEPA published Guidelines for Diagnostic and Feasibility Study of Public Owned Lakes (Clean Lakes Program, or CLP). This was intended to be used as a guideline for lake management. CLP and its calculation (evaluation) methods are present in this chapter. Hydrological, nutrient, and sediment budgets are presented for reservoir and lake waters. Techniques for classification of lake water quality, assessment of the lake trophic state index, and of lake use support are presented.

Calculations for groundwater are given in Chapter 1.4. They include groundwater hydrology, flow in aquifers, pumping and its influence zone, setback zone, and soil remediation. Well setback zone is regulated by the state EPA. Determinations of setback zones are also included in the book. Well function for confined aquifers is presented in Appendix B.

Hydraulics for environmental engineering is included in Chapter 1.5. This chapter covers fluid (water) properties and definitions; hydrostatics; fundamental concepts of water flow in pipes, weirs, orifices, and in open channel; and of flow measurements. Pipe networks for water supply distribution systems and hydraulics for water and wastewater treatment plants are included.

Chapters 1.6 and 1.7 cover each unit process for drinking water and wastewater treatments, respectively. The USEPA developed design criteria and guidelines for almost all unit processes. These two chapters depict the integration of regulations (or standards) into water and wastewater design procedure. Water fluoridation and the CT values are incorporated in Chapter 1.6. Biosolids are discussed in detail in Chapter 1.7. These two chapters are the heart Part 1, providing the theoretical considerations of unit processes, traditional (or empirical) design concepts, and integrated regulatory requirements.

Most calculations provided herein use U.S. Customary units. Readers who use the International System (SI) may apply the conversion factors listed in Chapter 1.1. Answers are also generally given in SI for most of problems solved using U.S. units.

The current edition corrects certain computational, typographical, and grammatical errors found in the previous edition. Drinking water quality standards, wastewater effluent standards, and several new examples have also been added. The author also wishes to acknowledge Meiling Lin, Heather Lin, Robert Greenlee, Luke Lin, Kevin Lin, Jau-hwan Tzeng, and Lucy Lin for their assistance. Any reader suggestions and comments will be greatly appreciated.

Shun Dar Lin

CHAPTER 1.1

BASIC SCIENCE AND FUNDAMENTALS

Shun Dar Lin

- **CONVERSION FACTORS 1.3**
- PREFIXES FOR SI UNITS 1.8
- **MATHEMATICS 1.8**
 - Logarithms 1.9 3.1
 - Basic Math 1.10
 - Threshold Odor Measurement 1.13 Simple Ratio 1.14
 - 3.5 Percentage 1.15
 - Significant Figures 1.19 3.6
 - Transformation of Units 1.21 3.8 Geometrical Formulas 1.26

 - BASIC CHEMISTRY AND PHYSICS 1.31 4.1 Density and Specific
 - Gravity 1.31 Chemical Solutions 1.33
 - pH 1.37 4.3
 - Mixing Solutions 1.40
 - **Chemical Reactions and** Dosages 1.42

- 4.6 Pumpage and Flow Rate 1.44
- 5 STATISTICS 1.50
 - Measure of Central Value 1.50 5.1
 - The Arithmetic Mean 1.50 5.2
 - 5.3 The Medium 1.50 5.4 The Mode 1.50
 - 5.5 Moving Average 1.51
 - The Geometric Mean 1.51 5.6
 - 5.7 The Variance 1.52
 - The Standard Deviation 1.53 5.8 5.9
 - The Geometric Standard Deviation 1.54 The Student's t Test 1.54
 - 5.10
 - Multiple Range Tests 1.56 5.11 5.12 Regression Analysis 1.59
 - Calculation of Data Quality 5.13 Indicators 1.65

REFERENCES 1.69

CONVERSION FACTORS

The units most commonly used by water and wastewater professionals in the United States are based on the complicated U.S. Customary System of Units. However, laboratory work is usually based on the metric system due to the convenient relationship between milliliters (mL), cubic centimeters (cm³), and grams (g). The International System of Units (SI) is used in all other countries. Factors for converting U.S. units to the SI are given below (Table 1.1) to four significant figures.

EXAMPLE 1: Find degrees in Celsius of water at 68°F.

Solution:

$$^{\circ}$$
C = ($^{\circ}$ F - 32) × $\frac{5}{9}$ = (68 - 32) × $\frac{5}{9}$ = 20

TABLE 1.1 Factors for Conversions

U.S. Customary units	Multiply by	SI or U.S. Customary units
Length		
inches (in)	2.540	centimeters (cm)
	0.0254	meters (m)
feet (ft)	0.3048	m
	12	in
yard (yd)	0.9144	m
	3	ft
miles	1.609	kilometers (km)
	1760	yd
	5280	ft
Area		
square inch (sq in, in ²)	6.452	square centimeters (cm ²)
square feet (sq ft, ft ²)	0.0929	m^2
	144	in^2
acre (a)	4047	square meters (m ²)
	0.4047	hectare (ha)
	43,560	ft^2
	0.001562	square miles
square miles (mi ²)	2.590	km ²
• • • • • • • • • • • • • • • • • • • •	640	acres
Volume		
cubic feet (ft ³)	28.32	liters (L)
	0.02832	m ³
	7.48	US gallons (gal)
	6.23	Imperial gallons
	1728	cubic inches (in ³)
cubic yard (yd³)	0.7646	m ³
gallon (gal)	3.785	L
garion (gar)	0.003785	m^3
	4	quarts (qt)
	8	pints (pt)
	128	fluid ounces (fl oz)
	0.1337	ft ³
million gallons (Mgal)	3785	m ³
quart (qt)	32	floz
quart (qt)	946	milliliters (mL)
	0.946	L
acre · feet (ac · ft)	1.233×10^{-3}	cubic hectometers (hm³)
uere reet (ue re)	1233	m ³
Woight		
Weight pound (lb, #)	453.6	grams (gm or g)
pound (10, #)	0.4536	kilograms (kg)
	7000	grains (gr)
	16	ounces (oz)
grain	0.0648	
grain ton (short)	2000	g lb
ton (short)	0.9072	tonnes (metric tons)
ton (long)	0.9072 2240	
ton (long)		lb
gallons of water (US)	8.34 10	lb lb
Imperial gallon	10	10

TABLE 1.1 Factors for Conversions (*contd.*)

U.S. Customary units	Multiply by	SI or U.S. Customary units
Unit weight		
ft ³ of water	62.4	lb
	7.48	gallon
pound per cubic foot (lb/ft ³)	157.09	newton per cubic meter (N/m³)
	16.02	kg force per square meter (kgf/m²)
	0.016	grams per cubic centimeter (g/cm ³)
Concentration		
parts per million (ppm)	1	mg/L
	8.34	lb/Mgal
grain per gallon (gr/gal)	17.4	mg/L
	142.9	lb/Mgal
Time		
day	24	hours (h)
•	1440	minutes (min)
	86,400	seconds (s)
hour	60	min
minute	60	S
Slope		
feet per mile	0.1894	meter per kilometer
Velocity		
feet per second (ft/sec)	720	inches per minute
•	0.3048	meter per second (m/s)
	30.48	cm/s
	0.6818	miles per hour (mph)
inches per minute	0.043	cm/s
miles per hour (mi/h)	0.4470	m/s
	26.82	m/min
	1.609	km/h
knot	0.5144	m/s
	1.852	km/h
Flowrate		
cubic feet per second (ft ³ /s, cfs)	0.646	million gallons daily (MGD)
	448.8	gallons per minutes (gpm)
	28.32	liter per second (L/s)
	0.02832	m ³ /s
million gallons daily (MGD)	3.785	m³/d (CMD)
	0.04381	m³/s
	157.7	m³/h
	694	gallons per minute
	1.547	cubic feet per second (ft ³ /s)
gallons per minute (gpm)	3.785	liters per minute (L/min)
	0.06308	liters per second (L/s)
	0.0000631	m³/s
	0.227	m³/h
	8.021	cubic feet per hour (ft³/h)
	0.002228	cubic feet per second (cfs, ft ³ /s)
gallons per day	3.785	liters (or kilograms) per day
MGD per acre · ft	0.4302	gpm per cubic yard
acre · feet per day	0.01427	m ³ /s
Application (loading) rate		

TABLE 1.1 Factors for Conversions (*contd.*)

U.S. Customary units	Multiply by	SI or U.S. Customary units
pounds per 1000 square foot per day (lb/1000 ft ² · d)	0.00488	kilograms per square meter per day (kg/m² · d)
pounds per cubic foot (lb/ft ³)	16.017	kilograms per cubic meter (kg/m³)
pounds per 1000 cubic foot	0.016	kilograms per cubic meter per day
per day (lb/1000 ft 3 · d)		$(kg/m^3 \cdot d)$
pounds per foot per hour (lb/ft · h)	1.4882	kilograms per meter per hour (kg/m · h)
pounds per horse power per hour (lb/hp · h)	0.608	kilograms per kilowatts per hour (kg/kW · h)
pounds per acre per day (lb/acre · d)	1.121	kilograms per hectare per day (kg/ha · d)
gallons per acre (gal/acre)	0.00935	m³/ha
million gallons per acre (Mgal/acre)	0.93526	m^3/m^2
million gallons per acre · ft (Mgal/acre · ft)	0.43	gpm/yd ³
gallons per square foot per day $(\text{gal/ ft}^2 \cdot \text{d})$	0.04074	cubic meter per square meter per day $(m^3/m^2 \cdot d)$
,	0.04356	Mgal/acre · d
gallons per minute per square foot (gpm/ ft²)	58.674	$m^3/m^2 \cdot d$
square root of gpm per square foot (gal/min) ^{0.5} /ft ²	2.7	$(L/s)^{0.5}/ m^2$
gallons per day per foot (gal/d · ft)	0.01242	$m^3/d \cdot m$
square foot per cubic foot (ft²/ ft³)	3.28	m^2/m^3
cubic foot per gallon (ft³/gal)	7.48	m^3/m^3
cubic foot per pound (ft³/lb)	0.06243	m³/kg
	62.43	L/kg
cubic foot per 1000 cubic foot per minute (ft³/1000 ft³ · min)	1	L/ m ³ · min
Force		
pounds	0.4536	kilograms force (kgf)
pounds	453.6	grams(g)
	4.448	newtons (N)
D		,
Pressure	2.309	feet head of water
pounds per square inch (lb/in², psi)	2.036	inches head of mercury
	51.71	mmHg
	6895	newtons per square meter (N/m ²) = pascal (Pa)
	0.0703	kgf/cm ²
	703.1	kgf/m ²
	0.0690	bars
pounds per square foot (lb/ft²)	4.882	kgf/m ²
r per square root (10/11)	47.88	N/m ² (Pa)
pounds per cubic inch	0.01602	gmf/cm ³
pounds per eutre men	16.017	gmf/L
tons per square inch	1.5479	kg/mm ²
millibars (mb)	100	N/m ²
inches of mercury	345.34	kg/m ²
	0.0345	kg/cm ²
	0.0334	bar
	0.491	psi (lb/in²)

TABLE 1.1 Factors for Conversions (*contd.*)

U.S. Customary units	Multiply by	SI or U.S. Customary units
inches of water	248.84	pascals (Pa)
atmosphere	101,325	Pa
	1013	millibars (1 mb = 100 Pa)
	14.696	psi (lb/in²)
	29.92	inches of mercury
	33.90	feet of water
pascal (SI)	1.0	N/m ²
	1.0×10^{-5}	bar
	1.0200×10^{-5}	kg/m ²
	9.8692×10^{-6}	atmospheres (atm)
	1.40504×10^{-4}	psi (lb/in²)
	4.0148×10^{-3}	in, head of water
	7.5001×10^{-4}	cm head of mercury
Mass and density		
slug	14.594	kg
e	32.174	lb (mass)
pound	0.4536	kg
slug per foot ³	515.4	kg/m ³
density (γ) of water	62.4	lb/ft ³ at 50°F
	980.2	N/m³ at 10°C
specific wt (ρ) of water	1.94	slugs/ft ³
specific we (p) of water	1000	kg/m ³
	1	kg/L
	1	gram per milliliter (g/mL)
Viscosity		
pound-second per foot ³ or slug	47.88	newton second per square
per foot second	.,,,,,	meter (Ns/m²)
square feet per second (ft²/s)	0.0929	m²/s
Work		
British thermal units (Btu)	1.0551	kilo joules (kj)
Bittish thermal times (Btu)	778	ft lb
	0.293	watt-h
	1	heat required to change 1 lb of water
	1	by 1°F
hp-h	2545	Btu
1	0.746	kW-h
kW-h	3413	Btu
	1.34	hp-h
Power		
horsepower (hp)	550	ft lb per sec
(1)	746	watt
	2545	Btu per h
kilowatts (kW)	3413	Btu per h
Btu per hour	0.293	watt
Por	12.96	ft lb per min
	0.00039	hp
Temperature		-
degree Fahrenheit (°F)	$(^{\circ}F - 32) \times (5/9)$	degree Celsius (°C)
6	, , ,	=
(°C)	$(^{\circ}C) \times (9/5) + 32$	(°F)