

Mathématiques et Calcul 1

Contrôle continu n°2 — 27 novembre 2017 durée: 1h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Les 4 exercices sont indépendants.

Exercice 1.

Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{x^3 - 3x^2 + 4x}{x^5 - x}$$
; 2) $\lim_{x \to 0} \frac{x^3 - 3x^2 + 4x}{x^5 - x}$;

$$2) \lim_{x \to 0} \frac{x^3 - 3x^2 + 4x}{x^5 - x}$$

$$3) \lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)};$$

4)
$$\lim_{x \to 0^+} \ln(x) \exp(-\frac{1}{x});$$

5)
$$\lim_{x\to 0} \frac{(1+3x)^{\frac{1}{3}}-1}{x}$$
;

6)
$$\lim_{x \to 0} \frac{\sin(\sqrt{1+x^2}-1)}{x}$$
.

Exercice 2.

On considère la fonction

$$f: x \longmapsto \operatorname{sh}(x) \arctan\left(\frac{1}{x^2}\right).$$

- (1) Donner le domaine de définition D_f de f. Justifier que f est continue et dérivable sur D_f .
- (2) Montrer que f est prolongeable par continuité en 0. On notera encore f la fonction prolongée.
- (3) Calculer f'(x) pour $x \neq 0$.
- (4) f est-elle dérivable en 0 ? Si oui, donner la valeur de f'(0).

Exercice 3. On considère l'application f définie pour tout $x \in]-4, +\infty[$ par

$$f(x) = \frac{1}{\ln(x+5)}.$$

- (1) Montrer que f est strictement décroissante.
- (2) Montrer que f réalise une bijection de $]-4,+\infty[$ dans \mathbb{R}_+^* , puis déterminer sa réciproque que l'on notera g.
- (3) Calculer la dérivée de g en utilisant la formule de la dérivée d'une fonction réciproque. Vérifier le résultat par le calcul direct de la dérivée de g.
- (4) Montrer que pour tout x > 0,

$$-\frac{1}{5} < -\frac{1}{(x+5)\ln^2(x+5)} < 0$$

(on rappelle pour cette question que $\exp(1) < 5$, ce qui implique que $\ln(5) > 1$).

(5) À l'aide du théorème des accroissements finis, montrer que

$$f(x) - f(y) < \frac{1}{5}(y - x)$$
 pour tous x, y tels que $y > x \ge 0$.

Exercice 4. On considère la fonction f définie pour tout $x \ge 0$ par $f(x) = \sqrt{3x+4}$, ainsi que la suite (u_n) définie par $\begin{cases} u_0 = 0, \\ u_{n+1} = \sqrt{3u_n+4}, & \forall n \in \mathbb{N}. \end{cases}$

- (1) Montrer que $\forall n \in \mathbb{N}, u_n \in [0, 4].$
- (2) Montrer que pour tout $x \in [0,4], |f'(x)| \leq \frac{3}{4}$.
- (3) En déduire que pour tout $x \in [0, 4]$,

$$|f(x) - f(4)| \le \frac{3}{4}|x - 4|,$$

puis que

$$|u_{n+1} - 4| \leqslant \frac{3}{4}|u_n - 4|$$

pour tout $n \in \mathbb{N}$.

(4) Déduire de l'inégalité précédente que pour tout $n \in \mathbb{N}$,

$$|u_n - 4| \leqslant \left(\frac{3}{4}\right)^n |u_0 - 4|,$$

puis que la suite (u_n) converge vers une limite que l'on précisera.