Background of Navier-Stokes Equations, Projection Method and Finite Volume Method

Li Ruixiang liruixiang@zju.edu.cn

Contents

1	Phs	ical Background	2
2	Gepup		4
	2.1	Projection Method	4
		2.1.1 Helmholtz Decomposition Theorem	4
		2.1.2 Leray-Helmholtz Projection Operator	4
	2.2	Gepup for INSE	5
3	Fini	ite Volume Method	7
	3.1	Cell Average and Face Average	7
	3.2	Discretization of Differential Operators	8
	3.3	Ghost Cell	10
	3.4	Time Integration	10

1 Phsical Background

Navier-Stokes 方程是流体力学中的动量守恒方程,简单的说,单位时间内控制体内动量的变化量等于流入/流出控制体的流体引起的动量变化量加上外力引起的动量变化量,我们依次考虑各个部分的动量变化,并使用以下记号:V 表示控制体,S 表示控制体的表面, 法向量 \mathbf{n} 指向外侧.

控制体内动量的变化量

考虑体积微元 dV, 其动量为 $\rho dV \boldsymbol{u}$, 其中 ρ 为流体密度, \boldsymbol{u} 为流体速度, 则单位时间控制体内内量的变化量为 $\int_{V} \frac{\partial}{\partial t} \rho \boldsymbol{u} dV$.

流人/流出控制体的流体的动量变化量

单位时间内流入/流出控制体的流体的动量变化量为 $-\int_S \rho \boldsymbol{u}(\boldsymbol{u} \cdot \mathbf{n}) \mathrm{d}S$, 其中 \mathbf{n} 为控制体表面的法向量, 负号是因为法向量向外.

利用 Divergence Theorem, 我们可以将面积分转化为体积分,即

$$(\int_{S} \rho \boldsymbol{u}(\boldsymbol{u} \cdot \mathbf{n}) dS)_{d} = \int_{S} \rho u_{d}(\boldsymbol{u} \cdot \mathbf{n}) dS$$

$$= \int_{S} \rho(u_{d}\boldsymbol{u} \cdot \mathbf{n}) dS$$

$$= \int_{V} \nabla \cdot (\rho u_{d}\boldsymbol{u}) dV$$

$$= \int_{V} (\rho u_{d} \nabla \cdot \boldsymbol{u} + \rho(\boldsymbol{u} \cdot \nabla) u_{d}) dV$$

$$\int_{S} \rho \boldsymbol{u}(\boldsymbol{u} \cdot \mathbf{n}) dS = \int_{V} \rho \boldsymbol{u} \cdot \nabla \boldsymbol{u} dV$$

$$(1)$$

外力引起的动量变化量

外力包括重力, 粘性力和压力. 其中重力为体积力, 粘性力和压力为表面力. 我们依次考虑各个部分:

Body Force

重力场中,单位质量流体受到的重力为 \mathbf{g} ,则控制体内流体受到的重力为 $\int_V \rho \mathbf{g} \mathrm{d}V$.

Surface Force

τ 为应力张量.

$$\tau = \begin{pmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{pmatrix}$$

Figure 1: 应力张量示意图, 作用在控制体的表面

则对应的动量变化量为 $\int_S \tau \cdot \mathbf{n} dS$. 利用散度定理转化为体积分, 即 $\int_S \tau \cdot \mathbf{n} dS = \int_V \nabla \cdot \tau dV$. 由 Stokes Hypothesis, 我们有 $\tau = -(p + \frac{2}{3}\nabla \cdot \boldsymbol{u})I + \nu(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)$, 其中 p 为压力, ν 为粘性系数.

对于不可压流体满足: $\nabla \cdot \boldsymbol{u} = 0$. 这是因为流入控制体内的流体等于流出控制体内的流体 $\int_S \boldsymbol{u} \cdot \mathbf{n} dS = \int_V \nabla \cdot \boldsymbol{u} dV = 0$

$$\int_{V} \nabla \cdot \tau dV = \int_{V} (-\nabla p + \nu (\nabla^{2} \boldsymbol{u} + \nabla (\nabla \cdot \boldsymbol{u}))) dV$$

其中 RHS 的最后两项推导利用 Einstein 求和约定, $\tau_{ij} = \delta_{ij}(-p) + \nu(\frac{\partial v_i}{\partial x^j} + \frac{\partial v_j}{\partial x^i})$.

$$\nabla \cdot \tau = \frac{\partial}{\partial x^{i}} \tau_{ji} = \frac{\partial}{\partial x^{i}} \tau_{ij}$$

$$= \frac{\partial}{\partial x^{i}} \delta_{ij} p + \frac{\partial}{\partial x^{i}} \nu \left(\frac{\partial u_{i}}{\partial x^{j}} + \frac{\partial u_{j}}{\partial x^{i}} \right)$$

$$= -\frac{\partial}{\partial x^{j}} p + \nu \left(\frac{\partial^{2} u_{i}}{\partial x^{j} \partial x^{i}} + \frac{\partial^{2} u_{j}}{\partial x^{i} \partial x^{i}} \right)$$

$$= -\nabla p + \nu \left(\nabla \left(\nabla \cdot \boldsymbol{u} \right) + \nabla^{2} \boldsymbol{u} \right)$$

最终我们得到了不可压缩流体的 Navier-Stokes 方程:

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \rho \mathbf{g} - \nabla p + \nu \nabla^2 \boldsymbol{u}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

2 Gepup

2.1 Projection Method

$$\frac{\partial \mathbf{u}}{\partial t} = -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g} - \nabla p + \nu \nabla^2 \mathbf{u}, \text{ in } \Omega \times (0, +\infty)$$

$$\nabla \cdot \mathbf{u} = 0, \text{ in } \Omega \times (0, +\infty)$$
(2)

现在考虑在空间区域 $\Omega \subset \mathbb{R}^D$ 内的 Navier-Stokes 方程(2)中, 由于不可压条件是个限制条件, 我们使用投影法将速度分解为无源场和一个梯度场, 从而避免这个限制条件.

2.1.1 Helmholtz Decomposition Theorem

Helmholtz Decomposition Theorem 告诉我们, 有界区域 $\Omega \subset \mathbb{R}$ 上的任意充分光滑向量场 v^* 可以唯一地分解为无源场和无旋场的和, 即 $v^* = v + \nabla \phi$, 其中 $\nabla \cdot v = 0$, 而 ϕ 为标量场. 可以通过求解 Poisson 方程得到

$$\Delta \phi = \nabla \cdot v^* \quad \text{in } \Omega$$

$$n \cdot \nabla \phi = \nabla \cdot (v^* - v) \quad \text{on } \partial \Omega$$
(3)

2.1.2 Leray-Helmholtz Projection Operator

我们定义 Leray-Helmholtz Projection Operator 为

$$\mathscr{P}v^* = v = v^* - \nabla\phi. \tag{4}$$

当它作用于某个标量的梯度场时, 我们有

$$\mathscr{P}\nabla\phi = 0\tag{5}$$

此外,对于无滑移边界条件, \mathscr{P} 与 Δ 算子不可交换, 定义 Laplace-Leray 交换子:

$$[\Delta, \mathscr{P}] = \Delta \mathscr{P} - \mathscr{P} \Delta$$

它满足:

$$[\Delta, \mathscr{P}] = (I - \mathscr{P})\mathcal{B}$$

其中 $\mathcal{B} = [\nabla, \nabla \cdot] = \Delta - \nabla \nabla \cdot$. 即当 Laplace-Leray 交换子作用与一个向量场 \boldsymbol{u} 时, 由于 $\mathcal{B}\boldsymbol{u}$ 仍然为向量场, 所以我们会得到一个标量的梯度场, 如果这个 \boldsymbol{u} 就是流速场, 我们记 Stokes 压强:

$$\nabla p_s = [\Delta, \mathscr{P}] \boldsymbol{u} \tag{6}$$

将投影算子作用于 Navier-Stokes 方程, 我们得到:

$$\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} = \mathcal{P}(-\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g}) - \mathcal{P}(\nabla p) + \nu \mathcal{P}(\Delta \boldsymbol{u})$$
 (7)

现在依次考虑各个部分:

- $\mathcal{P}u = u$, according to incompressible condition.
- $\mathscr{P}(-\boldsymbol{u}\cdot\nabla\boldsymbol{u}+\mathbf{g})=-\boldsymbol{u}\cdot\nabla\boldsymbol{u}+\mathbf{g}-\nabla p_c$, accroding to (4).
- $\mathscr{P}(\nabla p) = 0$, accroding to(5).
- $\mathscr{P}(\Delta \boldsymbol{u}) = -[\Delta, \mathscr{P}]\boldsymbol{u} + \Delta(\mathscr{P}\boldsymbol{u}) = -\nabla p_s + \Delta(\mathscr{P}\boldsymbol{u})$, accroding to(6).

最终我们得到了 Leray-Helmholtz 投影下的 Navier-Stokes 方程:

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g} - \nabla p + \nu \Delta \boldsymbol{u} \tag{8}$$

其中,

$$\nabla p = \nabla p_c + \nu \nabla p_s \tag{9}$$

然而在离散情况下, 投影算子难以满足 罗 的所有性质.

2.2 Gepup for INSE

定义广义高阶投影算子:

$$\mathcal{P}v^* = v = v^* - \nabla\psi \tag{10}$$

其中 $\nabla \cdot v$ 不一定为 0. 满足:

$$\Delta \mathcal{P} = \mathcal{B} + \nabla \nabla \cdot \mathcal{P}$$

$$\mathcal{P} \Delta = \mathcal{P} \mathcal{B} + \mathcal{P} \nabla \nabla \cdot$$
(11)

Laplace 算子和广义高阶投影算子的交换子为:

$$[\Delta, \mathcal{P}] = \Delta \mathcal{P} - \mathcal{P}\Delta = (I - \mathcal{P})\mathcal{B} + [\nabla \nabla \cdot, \mathcal{P}] \tag{12}$$

将广义投影算子作用于 Navier-Stokes 方程, 我们得到:

$$\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} = \mathcal{P}(-\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g}) + \mathcal{P}(-\nabla p) + \nu \mathcal{P} \Delta(\boldsymbol{u})$$
(13)

现在依次考虑 RHS 的三个部分:

- $\mathcal{P}(-\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g}) = -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g} \nabla q_c$, accroding to (10).
- $\mathcal{P}(-\nabla p) = 0$, the same to Leray-Helmholtz projection operator \mathscr{P}

• Accreding to (12)

$$\nu \mathcal{P} \Delta(\boldsymbol{u}) = -\nu [\Delta, \mathcal{P}] \boldsymbol{u} + \Delta \mathcal{P} \boldsymbol{u}$$

$$= \nu (-(I - \mathcal{P}) \mathcal{B} \boldsymbol{u} - \nabla \nabla \cdot (\mathcal{P} \boldsymbol{u}) + \mathcal{P} (\nabla \nabla \cdot \boldsymbol{u}) + \Delta (\mathcal{P} \boldsymbol{u}))$$
(14)

where $(I - \mathcal{P})\mathcal{B}\boldsymbol{u}, \mathcal{P}(\nabla\nabla \cdot \boldsymbol{u})$ are gradient fields according to (10).

最终我们得到了广义投影法的 Navier-Stokes 方程:

$$\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} = -\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g} - \nabla q + \nu \Delta (\mathcal{P} \boldsymbol{u}) - \nu \nabla \nabla \cdot (\mathcal{P} \boldsymbol{u})$$
(15)

其中,

$$\nabla q = -\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g} + \nu \Delta (\mathcal{P} \boldsymbol{u}) - \nu \nabla \nabla \cdot (\mathcal{P} \boldsymbol{u})$$

$$= -\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g} + \nu \mathcal{B} \boldsymbol{u}$$

$$= -\frac{\partial \mathcal{P} \boldsymbol{u}}{\partial t} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g} + \nu \Delta \boldsymbol{u} - \nu \nabla \nabla \cdot \boldsymbol{u}$$

$$= a^* - \mathcal{P} a - \nu \nabla \nabla \cdot \boldsymbol{u}$$
(16)

第二个等号利用了(11), $a^* = -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g} + \nu \Delta \mathbf{u}$, $a = \frac{\partial P \mathbf{u}}{\partial t}$ 标量 q 可以通过求解 Poisson 方程得到

$$\Delta q = \nabla \cdot \mathcal{P}(-\boldsymbol{u} \cdot \nabla \boldsymbol{u} + \mathbf{g}) - \nabla \cdot \mathcal{P}a \quad \text{in } \Omega$$

$$n \cdot \nabla q = n \cdot (a^* - \nu \nabla \nabla \cdot \boldsymbol{u}) - n \cdot \mathcal{P}a \quad \text{on } \partial \Omega$$
(17)

考虑无滑移边界条件,则对流项 $u \cdot \nabla u$ 在边界上为 0. 定义投影流速 $w = \mathcal{P}u$, 假设其散度满足:

$$\nabla\nabla \cdot \boldsymbol{w} = 0$$

$$\frac{\partial \nabla \cdot \boldsymbol{w}}{\partial t} = 0$$
(18)

最终得到 INSE 的 Gepup 表述:

$$\frac{\partial \boldsymbol{w}}{\partial t} = \boldsymbol{g} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla q + \nu \Delta \boldsymbol{w} \quad \text{in } \Omega, \tag{19}$$

$$\mathbf{w} = \mathbf{0} \quad \text{on } \partial \Omega,$$
 (20)

$$\mathbf{u} = \mathscr{P}\mathbf{w} \quad \text{in } \Omega,$$
 (21)

$$\mathbf{u} = 0 \quad \text{on } \partial\Omega,$$
 (22)

$$\Delta q = \nabla \cdot (\boldsymbol{g} - \boldsymbol{u} \cdot \nabla \boldsymbol{u}) \quad \text{in } \Omega, \tag{23}$$

$$\boldsymbol{n} \cdot \nabla q = \boldsymbol{n} \cdot (\boldsymbol{g} + \nu \Delta \boldsymbol{u} - \nu \nabla \nabla \cdot \boldsymbol{u}) \quad \text{on } \partial \Omega,$$
 (24)

其中(21)成立是因为 $\nabla \cdot \boldsymbol{u} = 0$, 并且 \boldsymbol{w} 与 \boldsymbol{u} 只相差一个梯度场.

3 Finite Volume Method

有限体积法是一种数值解偏微分方程的方法, 它将求解区域划分为有限个体积单元, 在每个体积单元上求解方程. 有限体积法的基本思想是将偏微分方程在体积单元上积分, 并利用散度定理体积分转化为面积分, 从而得到离散的方程. 以 C_i 和 $\mathcal{F}_{i+\frac{1}{2}e^d}$ 分别表示体积单元和面单元, 以 Gradient 算子 Laplacian 算子为例, 我们有:

$$\frac{1}{h^{D}} \int_{\mathcal{C}_{i}} \nabla \phi dV = \frac{1}{h^{D}} \int_{\partial \mathcal{C}_{i}} \phi \mathbf{n} dS$$

$$\frac{1}{h^{D}} \left(\int_{\mathcal{C}_{i}} \nabla \phi dV \right)_{d} = \frac{1}{h^{D}} \left(\int_{\mathcal{F}_{i+\frac{1}{2}e^{d}}} \phi dS - \int_{\mathcal{F}_{i-\frac{1}{2}e^{d}}} \phi dS \right)$$

$$\frac{1}{h^{D}} \int_{\mathcal{C}_{i}} \nabla \cdot \nabla \phi dV = \frac{1}{h^{D}} \int_{\partial \mathcal{C}_{i}} \nabla \phi \cdot \mathbf{n} dS$$

$$= \frac{1}{h^{D}} \sum_{d=1}^{D} \int_{\mathcal{F}_{i\pm\frac{1}{2}e^{d}}} \nabla \phi \cdot \mathbf{n} dS$$
(25)

3.1 Cell Average and Face Average

我们需要将体平均和面平均联系起来, 为此对于标量 ϕ , 定义变上限积分函数:

$$\Phi^d(\mathbf{x}) := \int_{\xi}^{x_d} \phi(x_1, \dots, x_{d-1}, \eta, x_{d+1}, \dots, x_D) \, \mathrm{d}\eta,$$

不失一般性考虑沿着第一分量方向 x₁ 的积分可以表示为:

$$\varphi_j := \Phi^1 \left(x_{O,1} + jh, x_2, \dots, x_D \right);$$

$$\delta_i \left(x_2, \dots, x_D \right) := \varphi_{i_1+1} - \varphi_{i_1}.$$

 δ_i 表示从第 i_1 个 Cell 沿着 x_1 的积分值, 只需在 $\mathcal{F}_{i+\frac{1}{2}e^d}$ 内对 $(x_2,...,x_D)$ 积分就得到了 ϕ 整个控制体上的积分,而 ϕ 在 $\mathcal{F}_{i+\frac{1}{2}e^d}$ 的面积分只需要评估 $\phi|_{\mathcal{F}_{i+\frac{1}{2}e^d}}$ 的值即可. 至此, 只需要将 φ_i 在 $\mathcal{F}_{i+\frac{1}{2}e^d}$ 处展开, 即在 $x=x_{O,1}+(i_1+1)h$ 处展开即可. 为了至少有四 阶精度, 我们需要至少考虑到 $\varphi_{i_1-1}, \varphi_{i_1}, \varphi_{i_1+1}, \varphi_{i_1+2}, \varphi_{i_1+3}$, 即控制体 $\mathcal{C}_{i_1-1}, \mathcal{C}_{i_1}, \mathcal{C}_{i_1+1}, \mathcal{C}_{i_1+2}$. 下面直接给出结果

$$\begin{bmatrix} \phi \\ h \frac{\partial \phi}{\partial x_1} \\ h^2 \frac{\partial^2 \phi}{\partial x_1^2} \\ h^3 \frac{\partial^3 \phi}{\partial x_1^3} \end{bmatrix}_{x_1 = \bar{x}} = \frac{1}{h} \mathbf{T}^{(4)} \begin{bmatrix} \delta_{\mathbf{i} + \mathbf{e}^1} \\ \delta_{\mathbf{i}} \\ \delta_{\mathbf{i} + 2\mathbf{e}^1} \\ \delta_{\mathbf{i} - \mathbf{e}^1} \end{bmatrix} + O(h^4),$$

其中,

$$\mathbf{T}^{(4)} = \begin{bmatrix} \frac{7}{12} & \frac{7}{12} & -\frac{1}{12} & -\frac{1}{12} \\ \frac{5}{4} & -\frac{5}{4} & -\frac{1}{12} & \frac{1}{12} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -3 & 3 & 1 & -1 \end{bmatrix}.$$

五阶插值矩阵为:

$$\mathbf{T}^{(5)} = \begin{bmatrix} \frac{47}{60} & \frac{9}{20} & -\frac{13}{60} & -\frac{1}{20} & \frac{1}{30} \\ \frac{5}{4} & -\frac{5}{4} & -\frac{1}{12} & \frac{1}{12} & 0 \\ -2 & \frac{1}{2} & \frac{3}{2} & \frac{1}{4} & -\frac{1}{4} \\ -3 & 3 & 1 & -1 & 0 \\ 6 & -4 & -4 & 1 & 1 \end{bmatrix},$$

3.2 Discretization of Differential Operators

利用以上的结果,

$$\mathbf{G}_{d}\langle\phi\rangle_{\mathbf{i}} = \frac{1}{12h}(-\langle\phi\rangle_{\mathbf{i}+2\mathbf{e}^{d}} + 8\langle\phi\rangle_{\mathbf{i}+\mathbf{e}^{d}} - 8\langle\phi\rangle_{\mathbf{i}-\mathbf{e}^{d}} + \langle\phi\rangle_{\mathbf{i}-2\mathbf{e}^{d}})$$
(26)

$$\mathbf{D}\langle\phi\rangle_{\mathbf{i}} = \frac{1}{12h} \sum_{d} (-\langle\phi\rangle_{\mathbf{i}+2\mathbf{e}^d} + 8\langle\phi\rangle_{\mathbf{i}+\mathbf{e}^d} - 8\langle\phi\rangle_{\mathbf{i}-\mathbf{e}^d} + \langle\phi\rangle_{\mathbf{i}-2\mathbf{e}^d})$$
(27)

$$\mathbf{L}\langle\phi\rangle_{\mathbf{i}} = \frac{1}{12h^2} \sum_{d} (-\langle\phi\rangle_{\mathbf{i}+\mathbf{e}^d} + 16\langle\phi\rangle_{\mathbf{i}+\mathbf{e}^d} - 30\langle\phi\rangle_{\mathbf{i}} + 16\langle\phi\rangle_{\mathbf{i}-\mathbf{e}^d} - \langle\phi\rangle_{\mathbf{i}-2\mathbf{e}^d})$$
(28)

对于对流项,recall(1)

$$\frac{1}{h^{D}} \int_{\mathcal{C}_{i}} \boldsymbol{u} \cdot \nabla \boldsymbol{u} dV = \frac{1}{h^{D}} \int_{\partial \mathcal{C}_{i}} \boldsymbol{u} \cdot \boldsymbol{u} \mathbf{n} dS$$

$$= \frac{1}{h^{D}} \sum_{d=1}^{D} \left(\int_{\mathcal{F}_{i+\frac{1}{2}e^{d}}} u_{d} \boldsymbol{u} dS - \int_{\mathcal{F}_{i-\frac{1}{2}e^{d}}} u_{d} \boldsymbol{u} dS \right) \tag{29}$$

即我们需要处理两个标量 ϕ , ψ 的乘积的面积分, 对于体平均和面平均, 有如下的积分公式:

$$\langle \phi \rangle_{\mathbf{i}} = \phi_{\mathbf{i}} + \frac{h^2}{24} \sum_{d=1}^{\mathbf{D}} \frac{\partial^2 \phi(\mathbf{x})}{\partial x_d^2} \bigg|_{\mathbf{i}} + O(h^4),$$
 (30)

$$\langle \phi \rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} = \phi_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} + \frac{h^2}{24} \sum_{d' \neq d} \frac{\partial^2 \phi(\mathbf{x})}{\partial x_{d'}^2} \bigg|_{\mathbf{i} + \frac{1}{2}\mathbf{e}^d} + O(h^4). \tag{31}$$

现在, 对于标量 ϕ, ψ 在面 $\mathcal{F}_{i+\frac{1}{2}e^d}$ 的中心 x_c 处展开, $\boldsymbol{\eta} = \mathbf{x} - \mathbf{x_c}$,

$$\phi(\mathbf{x}) = \sum_{|\mathbf{j}| \le 3} \frac{1}{\mathbf{j}!} (\mathbf{x} - \mathbf{x}_c)^{\mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c) + O(h^4)$$
$$= \sum_{|\mathbf{j}| \le 3} \frac{1}{\mathbf{j}!} \boldsymbol{\eta}^{\mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c) + O(h^4),$$

对于两者的乘积, 丢弃高阶项,

$$\phi(\mathbf{x})\psi(\mathbf{x}) = \left(\sum_{j,\mathbf{i}\leq 3} \frac{1}{\mathbf{i}!} \boldsymbol{\eta}^{\mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c)\right) \left(\sum_{|\mathbf{k}|\leq 3} \frac{1}{\mathbf{k}!} \boldsymbol{\eta}^{\mathbf{k}} \psi^{(\mathbf{k})}(\mathbf{x}_c)\right) + O(h^4)$$
$$= \sum_{\mathbf{k},\mathbf{k}|\leq 3} \frac{1}{\mathbf{k}!} \boldsymbol{\eta}^{\mathbf{k}} \sum_{\mathbf{j},\mathbf{j}\leq \mathbf{k}} {\mathbf{k} \choose \mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c) \psi^{(\mathbf{k}-\mathbf{j})}(\mathbf{x}_c) + O(h^4),$$

面平均为:

$$\frac{1}{h^{D-1}} \int_{\mathcal{F}_{i+\frac{1}{2}e^d}} \phi \psi dS = \frac{1}{h^{D-1}} \int_{\mathcal{F}_{i+\frac{1}{2}e^d}} \sum_{\mathbf{k},\mathbf{k}|\leq 3} \frac{1}{\mathbf{k}!} \boldsymbol{\eta}^{\mathbf{k}} \sum_{\mathbf{j},\mathbf{j}\leq \mathbf{k}} {\mathbf{k} \choose \mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c) \psi^{(\mathbf{k}-\mathbf{j})}(\mathbf{x}_c) dS + O(h^4)$$

$$= \sum_{\mathbf{k},\mathbf{k}|\leq 3} \frac{1}{\mathbf{k}!} \left(\frac{1}{h^{D-1}} \int_{\mathcal{F}_{i+\frac{1}{2}e^d}} \boldsymbol{\eta}^{\mathbf{k}} dS \right) \sum_{\mathbf{j},\mathbf{j}\leq \mathbf{k}} {\mathbf{k} \choose \mathbf{j}} \phi^{(\mathbf{j})}(\mathbf{x}_c) \psi^{(\mathbf{k}-\mathbf{j})}(\mathbf{x}_c) + O(h^4)$$

对于 $\int_{\mathcal{F}_{i+\frac{1}{2}e^d}} \boldsymbol{\eta}^{\boldsymbol{k}} dS$, 由于其为固定 x_d 分量的超平面, 积分区域和积分的函数 $\boldsymbol{\eta} = \mathbf{x} - \mathbf{x_c}$ 均关于 $\mathbf{x_c}$ 对称并且 $\boldsymbol{\eta}_d = 0$, 所以只有 \boldsymbol{k} 的每个分量全部为偶数并且 $k_d = 0$ 时, 积分值不为 0, 即 $\boldsymbol{k} = \boldsymbol{j} = 0$; $\boldsymbol{k} = 2\boldsymbol{e}^{d'}$, $\boldsymbol{j} = \boldsymbol{0}$, $\boldsymbol{e}^{d'}$. 从而:

$$\frac{1}{h^{D-1}} \int_{\mathcal{F}} \phi \psi \, d\mathbf{x} = \phi \psi + \frac{h^2}{24} \sum_{d' \neq d} \left(\phi^{\left(2\mathbf{e}^{d'}\right)} \psi + \psi^{\left(2\mathbf{e}^{d'}\right)} \phi \right) + \frac{h^2}{12} \sum_{d' \neq d} \left(\phi^{\left(\mathbf{e}^{d'}\right)} \psi^{\left(\mathbf{e}^{d'}\right)} \right) + O(h^4)$$

$$= \left(\phi + \frac{h^2}{24} \sum_{d' \neq d} \phi^{\left(2\mathbf{e}^{d'}\right)} \right) \left(\psi + \frac{h^2}{24} \sum_{d' \neq d} \psi^{\left(2\mathbf{e}^{d'}\right)} \right) + \frac{h^2}{12} \left(\phi^{\left(\mathbf{e}^{d'}\right)} \psi^{\left(\mathbf{e}^{d'}\right)} \right) + O(h^4)$$

$$= \langle \phi \rangle_{1 + \frac{1}{2}\mathbf{e}^d} \langle \psi \rangle_{1 + \frac{1}{2}\mathbf{e}^d} + \frac{h^2}{12} \left(\phi^{\left(\mathbf{e}^{d'}\right)} \psi^{\left(\mathbf{e}^{d'}\right)} \right) + O(h^4)$$

对于 $\left(\phi^{\left(\mathbf{e}^{d'}\right)}\psi^{\left(\mathbf{e}^{d'}\right)}\right)$ 只需要对两项进行二阶近似即可, 只需要将 $\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}\pm\mathbf{e}^{d'}$ 的值在 $x\mathbf{x_c}$ 处展开即可.

$$\begin{aligned} \mathbf{G}_{d'}^{\perp} \phi \big|_{\mathbf{i} + \frac{1}{2} \mathbf{e}^{d}} &= \frac{1}{2h} \left(\langle \phi \rangle_{\mathbf{i} + \frac{1}{2} \mathbf{e}^{d} + \mathbf{e}^{d'}} - \langle \phi \rangle_{\mathbf{i} + \frac{1}{2} \mathbf{e}^{d} - \mathbf{e}^{d'}} \right) \\ &= \frac{\partial \phi}{\partial x_{d'}} \bigg|_{\mathbf{i} + \frac{1}{2} \mathbf{e}^{d}} + O(h^{2}) \,, \end{aligned}$$

最终,得到了对流项的离散形式:

$$\mathbf{D}\langle\mathbf{u}\mathbf{u}\rangle_{\mathbf{i}} = \frac{1}{h} \sum_{d} \left(\mathbf{F}\langle u_{d}, \mathbf{u} \rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}} - \mathbf{F}\langle u_{d}, \mathbf{u} \rangle_{\mathbf{i} - \frac{1}{2}\mathbf{e}^{d}} \right)$$

$$\mathbf{F}\langle u_{d}, \mathbf{u} \rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}} = \langle \phi \rangle_{1 + \frac{1}{2}\mathbf{e}^{d}} \langle \psi \rangle_{1 + \frac{1}{2}\mathbf{e}^{d}} + \frac{h^{2}}{12} \sum_{d' \neq d} \left(\mathbf{G}_{d'}^{\perp} \phi \big|_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}} \right) \left(\mathbf{G}_{d'}^{\perp} \psi \big|_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}} \right)$$

$$(32)$$

Note: 尽管在 $\mathbf{F}\langle u_d, \mathbf{u} \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}$ 只有四阶精度, 但是 $\mathbf{F}\langle u_d, \mathbf{u} \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d}$ 和 $\mathbf{F}\langle u_d, \mathbf{u} \rangle_{\mathbf{i}-\frac{1}{2}\mathbf{e}^d}$ 四次项系数之差为 O(h), 故最终离散对流项的精度为四阶.

3.3 Ghost Cell

按照3.1中的处理方法,假设 C_{i_1} 是位于边界上的 Cell,考虑 $\varphi_{i_1-1}, \varphi_{i_1}, \varphi_{i_1+1}, \varphi_{i_1+2}$,即控制体 $C_{i_1-2}, C_{i_1-1}, C_{i_1}, C_{i_1+1}$,而边界面 $\mathcal{F}_{i_1+\frac{1}{2}e^d}$ 的面积分由边界条件直接计算,最终得到 GhostCell 的外插公式.

Dirichlet 边界条件:

$$\langle \phi \rangle_{\mathbf{i}+\mathbf{e}^d} = \frac{1}{3} \left(-13 \langle \phi \rangle_{\mathbf{i}} + 5 \langle \phi \rangle_{\mathbf{i}-\mathbf{e}^d} - \langle \phi \rangle_{\mathbf{i}-2\mathbf{e}^d} \right) + 4 \langle g \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} + O(h^4);$$

$$\langle \phi \rangle_{\mathbf{i}+2\mathbf{e}^d} = \frac{1}{3} \left(-70 \langle \phi \rangle_{\mathbf{i}} + 32 \langle \phi \rangle_{\mathbf{i}-\mathbf{e}^d} - 7 \langle \phi \rangle_{\mathbf{i}-2\mathbf{e}^d} \right) + 16 \langle g \rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^d} + O(h^4).$$
(33)

Neumann 边界条件:

$$\langle \psi \rangle_{\mathbf{i}+\mathbf{e}^{d}} = \frac{1}{10} \left(5 \langle \psi \rangle_{\mathbf{i}} + 9 \langle \psi \rangle_{\mathbf{i}-\mathbf{e}^{d}} - 5 \langle \psi \rangle_{\mathbf{i}-2\mathbf{e}^{d}} + \langle \psi \rangle_{\mathbf{i}-3\mathbf{e}^{d}} \right) + \frac{6}{5} h \left\langle \frac{\partial \psi}{\partial n} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} + O(h^{5}),$$

$$\langle \psi \rangle_{\mathbf{i}+\mathbf{e}^{d}} = \frac{1}{10} \left(-75 \langle \psi \rangle_{\mathbf{i}} + 145 \langle \psi \rangle_{\mathbf{i}-\mathbf{e}^{d}} - 75 \langle \psi \rangle_{\mathbf{i}-2\mathbf{e}^{d}} + 15 \langle \psi \rangle_{\mathbf{i}-3\mathbf{e}^{d}} \right) + 6h \left\langle \frac{\partial \psi}{\partial n} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}^{d}} + O(h^{5}),$$

$$(34)$$

3.4 Time Integration

空间半离散后,得到以下的 ODE:

$$\frac{\mathrm{d}\langle \boldsymbol{w}\rangle}{\mathrm{d}t} = \langle \boldsymbol{g}\rangle - \boldsymbol{D}\langle \boldsymbol{u}\boldsymbol{u}\rangle - \boldsymbol{G}\langle q\rangle + \nu \boldsymbol{L}\langle \boldsymbol{w}\rangle, \tag{35}$$

$$L\langle q\rangle = D(\langle g\rangle - D\langle uu\rangle), \tag{36}$$

$$\langle \boldsymbol{u} \rangle = \boldsymbol{P} \langle \boldsymbol{w} \rangle, \tag{37}$$

其中, $P = I - GL^{-1}D$ 为离散投影算子. $\nu L\langle w \rangle$ 是关于 $\langle w \rangle$ 的线性算子可以隐式处理,例如采用如下的半隐半显格式 (ERK-ESDIRK) 就得到 GEPUP-IMEX 算法: 定义:

$$m{X}^{[\mathrm{E}]} := \langle m{g}
angle - m{D} \langle m{u} m{u}
angle - m{G} \langle m{g}
angle; \quad m{X}^{[\mathrm{I}]} :=
u m{L} \langle m{w}
angle,$$

$$\langle \boldsymbol{w} \rangle^{(1)} = \langle \boldsymbol{w} \rangle^n, \tag{38}$$

$$\begin{cases}
for \ s = 2, 3, \dots, n_s, \\
(\mathbf{I} - \Delta t \, \nu \, \gamma \, L) \, \langle \mathbf{w} \rangle^{(s)} \\
= \langle \mathbf{w} \rangle^n + \Delta t \sum_{j=1}^{s-1} a_{s,j}^{[E]} \mathbf{X}^{[E]} \left(\langle \mathbf{u} \rangle^{(j)}, t^{(j)} \right) \\
+ \Delta t \, \nu \sum_{j=1}^{s-1} a_{s,j}^{[E]} \mathbf{L} \, \langle \mathbf{w} \rangle^{(j)}, \\
\langle \mathbf{u} \rangle^{(s)} = \mathbf{P} \, \langle \mathbf{w} \rangle^{(s)}, \\
\langle \mathbf{u} \rangle^{(s)} = \mathbf{P} \, \langle \mathbf{w} \rangle^{(s)}, \\
\langle \mathbf{w} \rangle^* = \langle \mathbf{w} \rangle^{(n_s)} + \Delta t \sum_{j=1}^{n_s} \left(b_j - a_{n_s,j}^{[E]} \right) \\
\times \mathbf{X}^{[E]} \left(\langle \mathbf{u} \rangle^{(j)}, t^{(j)} \right), \\
\langle \mathbf{u} \rangle^{n+1} = \mathbf{P} \, \langle \mathbf{w} \rangle^*, \\
\langle \mathbf{w} \rangle^{n+1} = \langle \mathbf{u} \rangle^{n+1},
\end{cases} \tag{40}$$

$$\begin{cases}
\langle \boldsymbol{w} \rangle^* = \langle \boldsymbol{w} \rangle^{(n_s)} + \Delta t \sum_{j=1}^{n_s} \left(b_j - a_{n_s,j}^{[E]} \right) \\
\times \boldsymbol{X}^{[E]} \left(\langle \boldsymbol{u} \rangle^{(j)}, t^{(j)} \right), \\
\langle \boldsymbol{u} \rangle^{n+1} = \boldsymbol{P} \langle \boldsymbol{w} \rangle^*, \\
\langle \boldsymbol{w} \rangle^{n+1} = \langle \boldsymbol{u} \rangle^{n+1},
\end{cases} (40)$$

初始时刻, 投影流速被设置为和流速相等. 在每个 stage, 已知之前阶段的流速 $\langle u \rangle$, 需要:

- 1. 求解 Possion 方程(36)得到压力 $\langle q \rangle$;
- 2. 根据(39)在时间上推进投影流速 $\langle \boldsymbol{w} \rangle$;
- 3. 通过方程(37)计算新的流速 $\langle \boldsymbol{u} \rangle$;