評卷參考

本文件供閱卷員參考而設,並不應被視為標準答案。考生及沒有參與評卷工作的教師在詮釋文件內容時應小心謹慎。

化學科 卷一

甲部

題號	答案	題號	答案
第一部分		第二部分	
1.	B (42%)	25.	C (84%)
2.	D (68%)	26.	B (65%)
3.	C (82%)	27.	D (79%)
4.	A (65%)	28.	B (76%)
5.	B (64%)	29.	C (40%)
6.	B (71%)	30.	B (73%)
7.	D (54%)	31.	D (65%)
8.	D (93%)	32.	A (44%)
9.	A (79%)	33.	D (29%)
10.	A (71%)	34.	A (61%)
11.	D (80%)	35.	A (39%)
12.	B (74%)	36.	A (86%)
13.	C (82%)		
14.	C (74%)		
15.	D (54%)		
16.	C (86%)		
17.	B (85%)		
18.	A (59%)		
19.	C (68%)		
20.	A (59%)		
21.	C (50%)		
22.	A (53%)		
23.	C (62%)		
24.	D (62%)		

註: 括號內數字為答對百分率。

乙部

第一部分

分數 1. (a) 2, 8, 18, 7 1 (b) 1 (c) (i) $K_2SO_3(s) + 2HCl(aq) \rightarrow 2KCl(aq) + H_2O(l) + SO_2(g) /$ 2 $K_2SO_3(s) + 2H^+(aq) \rightarrow 2K^+(aq) + H_2O(l) + SO_2(g)$ (ii) 紅棕色變為無色。 1 $Br_2 + SO_2 + 2H_2O \rightarrow 2Br^- + SO_4^{2-} + 4H^+$

(iii) Y與Z在最外層具有相同的電子數目,因此它們具有相似的化學性質。

2. (a) 這是因為對於坐標圖中最後的三點,所加入的 $M(NO_3)_n/M^{n+}$ 是過量的。 1

或 $Y_2 + SO_2 + 2H_2O \rightarrow 2Y^- + SO_4^{2-} + 4H^+$

M(NO₃)_n(aq) 的體積 = 18 cm³ 1

(ii) $(18/1000) \times 0.5 = 0.009 \text{ mol}$ 1

(c) Cl⁻的摩爾數:(50/1000) x 0.36 = 0.018 mol 金屬離子對氯離子的比 = 0.009:0.018=1:2, 這金屬氯化物的實驗式是 MCl_2 。 M. 會是鉛,因為在實驗式中, Pb 對 Cl 的比是 1:2,而 Ag 對 Cl 的比是 1:1。 1

1

- (b) (i) B-N 會是配位共價鍵。
 - NH;的氦原子的孤電子對給予 BH;的硼原子生成配位共價鍵。
 - (ii) 在它們各自的分子之間,兩者皆是范德華力。
 - 由於 H₃NBH₃ 是極性,而乙烷不是,所以在 H₃NBH₃ 分子間的范德華 力較在乙烷分子間的強。

或

建位

1

2

l

1

3

- 4. (a) 增加蛋殼的表面面積,以增加反應速率。
 - (b) 溶解在蛋殼內的有機物質。
 - (c) 令樣本中的碳酸鈣與 HCl(aq) 的反應加快。/確保反應完成。
 - (d) 酚酞
 - (e) 在樣本中 CaCO3 的摩爾數
 - $= (0.200 \times 25.00 0.102 \times 16.85) \times 10^{-3} \times \%$
 - $= 1.64 \times 10^{-3}$

樣本中 CaCO3 的質量百分率

- $= 1.64 \times 10^{-3} \times 100.1 \div 0.204 \times 100 \%$
- = 80.5 %

5.	(a)	羧基	/-COOH基團	分數
	(b)	(i)	任何兩個:HO ₂ CCH ₂ CH ₂ CO ₂ H / HO ₂ CCH(CH ₃)CO ₂ H / HO ₂ CCH ₂ COOCH ₃	1
		(ii)	• 在標準條件下,酸溶液和鹼溶液/鹽基反應生成 1 摩爾的水時的焓	2
			• 如反應式所示,該反應生成兩摩爾的水,因此 y/2 代表該反應的標準中和焓變。	1
		(iii)		1
		()	 與 -57.3 kJ mol⁻¹ 相比時不那麼負。 與 HCl(aq) 相比, W 是一弱酸,故需用能量把羧基中的氫電離。 	1
6.	(a)	•	提供水介質產生流動離子。 鎂在電化序 / ECS 中的位置較銅為高,釋出電子,經伏特計負極流向正 極,產生正讀數。	1
	(b)	(i)	$Mg(s) \to Mg^{2+}(aq) + 2e^{-}$	1
		(ii)	$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	1
	(c)	指釒	十位置高過 0 及低於 圖(1) 的讀數。	1
	(d)	(i)	$Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$	1
		(ii)	置換	1
7.	(a)	•	把一塊濕潤的紅色石蕊試紙放近錐形瓶瓶口。 氨氣溶於水得出 OH ⁻ 離子,令紅色石蕊試紙轉藍。	1
	(b)) 鹼是一水溶性物質,與酸反應只會生成鹽和水。		1
	(c)	(i)	$Ba(s) + 9H_2(g) + 5O_2(g) \rightarrow Ba(OH)_2 \cdot 8H_2O(s)$ $\Delta H_2^p = -3345 \text{ kJ mol}^{-1}$	1
		(ii)	$\Delta H^{0} = (-859) + 10 \times (-286) + 2 \times (-46) - (-3345) - 2 \times (-314)$ = +162 kJ mol ⁻¹	2
		(iii)) 由於該反應是吸熱的・所以混合物的溫度會下降。	1

· 化学知識 (母點 1分,最多可得 5分) • 把原油以精煉/分餾法分離成重油或燃料油等。	建位
• 裂解以取得包括乙烯的一些細小分子混合物。	5
• $C_7H_{16} \rightarrow CH_2 = CH_2 + C_5H_{12}$	
• 分餾上述混合物以取得乙烯。	
 乙烯與溴進行加成反應得出 1,2-二溴乙烷。 CH=CH+Rr-> PrCH-CH-Pr 	
• CH ₂ =CH ₂ + Br ₂ → BrCH ₂ CH ₂ Br 傳意分數	
	1
第二部分	
9. (a) $K_c = [N_2O_4(g)]_{eqm} / [NO_2(g)]_{eqm}^2$	
$[NO_2(g)]_{eqm} = 0.0323 \text{ mol dm}^{-3}$ $\mathbf{a} = [No_2(g)]_{eqm} = 0.001 + (0.04 - 0.0323) / 2 = 0.00137$	3
$\mathbf{a} = [N_2O_4(g)]_{eqm} = 0.001 + (0.04 - 0.0323) / 2 = 0.00485 \text{ mol dm}^{-3}$ $K_c = 0.00485 / (0.0323)^2 = 4.649 \text{ mol}^{-1}\text{dm}^3$	
(b) · 當增加溫度,有較多的 NO ₂ 生成,平衡位置會向左移/向反應物一方移動。	
增加溫度會使平衡位置向吸熱的一方移動,因此正向反應是放熱的。	1
18加温及自及干锅位量问吸热的一万多勤,因此止问反應是放熱的。	1
10. (a) (i) $H_2C=CH-CH_2-Cl + NaOH \rightarrow H_2C=CH-CH_2-OH + NaCl /$	
$H_2C=CH-CH_2-CI+OH^- \rightarrow H_2C=CH-CH_2-OH+CI^-$	1
(ii) 取代反應	1
(b) (i) O	,
$H_2C = CH - CH_2 - O - C - CH_3$	1
(ii) \ \ /	2
♦ \	
$\lambda x \longrightarrow \langle \rangle$	
加熱	
물짓보다 어려워보다 다. 요요하를 제시관하다는 뭐래	504
(c) Ḥ CH₂OH	1

分數 11. (a) Z 1 (b) 1 (c) $U: HOCH_2C(CH_3)_2CH(OH)CO_2^-Na^+/$ 1 HOCH₂C(CH₃)₂CH(OH)CO₂Na / HO $\boldsymbol{V}: H_2NCH_2CH_2CO_2^-Na^+/$ 1 H₂NCH₂CH₂CO₂Na / (d) (i) Na₂CO₃(aq) 1 (ii) 1 當 Na₂CO₃(aq) 加進 X 時,會釋出無色氣體;但 W 、 Y 和 Z 則否。 只有X帶有羧基,但W、Y和Z不帶。 1 12. • 銛 / Co2+ 離子作為催化劑:因當加入 Co2+ 離子,氣泡 (CO2) 的生成速率增加了/ 1 反應速率增加了, 及因反應完畢時,粉紅色的 Co²⁺ 離子便再生/保持化學性質上不變/沒有消 1 帶顏色的離子/生成帶顏色的化合物: Co2+(aq) 是粉紅色的/生成的鈷(III) 化合 1 物是綠色的。 可變氧化態: 鈷具有鈷(II) 及鈷(III) 的化合物/能以 Co2+或 Co3+存在。 1

w	_			
				分數
1.	(a)	(i)	膜電解池沒有產生有毒的汞,但有毒的汞可從流汞電解池洩漏出來。膜電解池所需能量較流汞電解池的少。	1
		(ii)	鐵/氧化鐵(III)	1
		(iii)	分子數目	2
			T1 T1 動能	2
	(b)	(i)	(1) 反應 (I) 不會把溶劑排放到環境,但反應 (II) 會。/ 反應 (I) 的副產物乙醇的毒性較反應 (II) 的副產物甲醇的為低。	1
			(2) 反應(II)比反應(I)需要較低溫度/的原子經濟較高。	1
		(ii)	$3.00 \div 136 = 0.022 \text{ mol}$ $2.23 \div 101 = 0.022 \text{ mol}$ $(3.89 \div 205) \div 0.022 \times 100\%$ = 86%	2
		(iii)	(1) 因為增加壓強可令平衡位置向右移。	1
			(2) • 較高溫度會令反應具較快的速率。但是正向反應是放熱的,提升 溫度卻令平衡位置向左移。 • 較高壓強會令平衡位置向右移,但卻需要額外的成本。	1
	(c)	(i)	吸光度與 $I_2(aq)$ 的濃度成正比,因為 $I_2(aq)$ 是棕色的而其他物種則是無色。	1
		(ii)	• 吸光度隨時間直線下跌,故速率與 $[l_2(aq)]$ 無關。 • 對應 $l_2(aq)$ 的反應級數 = w = 0	1 1
		(iii)	第 2 次: 曲線的斜率 = $-0.7 \div 8 = -0.0875$ 第 1 次: 曲線的斜率 = $-0.7 \div 16 = -0.04375$ (-0.0875) ÷ (-0.04375) = $(2.0 / 1.0)^x$ 對應丙酮的反應級數 = $x = 1$	2
		(iv)	$dm^3 mol^{-1} s^{-1}$	1
		(v)	## \	2

反應坐標

- 2. (a) (i) (1) 面心立方/立方緊密裝填
 - $8 \times \frac{1}{8} + 4 \times \frac{1}{2} = 3$ Mn: $2 \times \frac{1}{2} = 1$
 - (ii) (!) 粒子尺寸介於 1-100 nm 的物料
 - (2) 抗菌/殺菌/消毒
 - (b) (i) · 鐵離子與離域電子間的金屬鍵是無方向性。
 - 在施加外力時,鐵離子會移動並形成新的金屬鍵,金屬的形狀會改變但
 - (ii) (1) 硬度
 - (2) 碳原子的尺寸與鐵原子的尺寸並不相同,故碳和鐵原子間不容易互相滑 動,令合金變得較硬。
 - (iii) (1) 有很多苯環。
 - 有很多 N、 O和 H 原子生形成極性鍵,在鏈間形成很多強的分子 間氫鍵。
 - (2) 水解
 - (c) (i) (每點1分, 最多可得2分)
 - 結構中含有苯環。 2
 - 結構中含有極性 C≡N 基團。
 - 結構中含有長碳鏈。
 - (ii) (1) 1 ÒН 或
 - (2) 擠壓成型/砑光
 - 1 (iii) (1) 1
 - (2) 從各單體生成聚合物 C 涉及消去細小的分子。
 - (3) 高原子經濟
 - 生成無毒的副產物

1

1

建位

1

1

1

1

1

3.	(a) (i)	• 把固體樣本放進試管內加熱,並把一張無水/乾的氯化鈷試紙置於管口 1 如 果 無 水 / 乾 饮 5 % %	1
		则 好。 如 果 無 水 / 乾 的 条 / · · · · · · · · · · · · · · · · · ·	
		● 如果無水/ 亁的氯化鈷試紙由藍色轉為粉紅色,該固體便是 1 Na ₂ CO ₃ • 10H ₂ O(s) • 對 Na ₂ CO ₃ (s) 而言,氯化鈷試紙不轉色。	
	(ii)	藍色變為無色。	
	(iii)	把己醛與托倫斯試劑微熱,	
		有銀鏡生成。但己-1-烯沒有。	
	(b) (i)		
		2	
		溶劑	
	(ii)	$R_f = 45 / (130 - 10 - 20) = 0.45$	
	(iii)	阿士匹靈和咖啡因 1	
		1	
	(14)	(1) 阿士匹靈的 IR 光譜,於 2500 cm ⁻¹ 至 3300 cm ⁻¹ 間顯示對應羧酸 O-H 基團 1 的強吸收峰,但咖啡因的不會。	
		(2) m/z = 43 對應 CH₃CO+離子。 由於阿士兀爾和群長於西共比大為 (2001)	
		由於阿士匹靈和醋氨酚兩者皆有這個碎片,單靠這項資料並不能確定 該樣本究竟是這三個化合物中的哪一個。	
	(c) (i)		1
		$C_{12}C_{7}$ (aq) + 14H (aq) + 6e ⁻ $\rightarrow 2C_{7}$ (aq) + 7H ₂ C(1)	1 1
		(2) 駕駛員B攝取較多乙醇,因為他的呼氣會令位置c的硅膠轉色,但駕駛員A則否。	1
		(3) 把相同量的呼氣呼進管內。	1
	(ii)	乙醇的摩爾數=0.025×4.38×10 ⁻³ ×3=0.0003285 mol 乙醇的質量=0.0003285×46	4
		= 0.01511 g = 15.11 mg 在 100 cm³ 血清樣本中乙醇的質量 = 15.11 mg + 10 × 100	
		= 151.1 mg 質量為 151.1 mg,它已超出了 55 mg。該名駕駛者有違法。	
		Programme and the control of the con	