```
#
# Configuration 1
#
# Run with default parameters: a training dataset and a test dataset.
# By default, the classification method used is a SciKit Pipeline based on a Multinomial NaiveBayes classifier with TF-IDF weighting and feature selection (k=500).
#
# Both SVMs and Multinomial NaiveBayes were also tested, with slightly worse results.
```

python mini-project.py --train training.csv --test test.csv

```
fold-1: training...
fold-1: classifying...
fold-1: evaluation...
--- START OF EVALUATION ---
---- RUN 1 -----
PRECISION: 0.698717948718
ACCURACY: 0.663888888889
RECALL: 0.598901098901
F-MEASURE: 0.644970414201
----- END OF RUN 1 -----
AVERAGE PRECISION: 0.698717948718
--- END OF EVALUATION ---
```

Configuration 2

Run with a training dataset, a test dataset, and a list of confounding features the system must avoid.

python mini-project.py -train training.csv --test test.csv --exceptions exceptions.txt

```
fold-1: training...
fold-1: evaluation...
--- START OF EVALUATION ---
---- RUN 1 -----
PRECISION: 0.830508474576
ACCURACY: 0.6
RECALL: 0.269230769231
F-MEASURE: 0.406639004149
----- END OF RUN 1 -----

AVERAGE PRECISION: 0.830508474576
--- END OF EVALUATION ---
```

```
#
# Configuration 3
#
```

Run with a training dataset, a test dataset, a list of confounding features the system must avoid, and frequency pruning of features (f=10).

This configuration yields the lowest recall but also the highest accuracy. F-measure is very negatively affected, though, so the previous configuration is probably the optimal one.

python mini-project.py --train training.csv --test test.csv --exceptions exceptions.txt --prune 10

```
fold-1: training...
fold-1: classifying...
fold-1: evaluation...
--- START OF EVALUATION ---
---- RUN 1 -----
PRECISION: 0.941176470588
ACCURACY: 0.533333333333
RECALL: 0.0879120879121
F-MEASURE: 0.160804020101
----- END OF RUN 1 -----

AVERAGE PRECISION: 0.941176470588
---- END OF EVALUATION ---
```

```
#
# Configuration 4
#
```

Run with a single dataset for training and testing (10-fold cross-validation will be used to evaluate the results), and the list of confounding features the system must avoid.

Average precision in this configuration is slightly worse than using the test dataset, suggesting the test dataset may be slightly biased.

Precision also greatly varies across folds, suggesting some level of internal structure to the input collection (when using cross-validation, the dataset is randomized, which means that the observed effects should be occurring dataset-wide). Theres's probably some form of clustering that could be used to improve the data homogeneity and, hence, the classification accuracy.

python mini-project.py --train ../data/training.csv --exceptions exceptions.txt

```
fold-1: training...
fold-1: classifying...
fold-1: evaluation...
fold-2: training...
fold-2: classifying...
fold-2: evaluation...
fold-3: training...
fold-3: classifying...
fold-3: evaluation...
fold-4: training...
fold-4: classifying...
fold-4: evaluation...
fold-5: training...
fold-5: classifying...
fold-5: evaluation...
fold-6: training...
fold-6: classifying...
fold-6: evaluation...
fold-7: training...
fold-7: classifying...
fold-7: evaluation...
fold-8: training...
fold-8: classifying...
fold-8: evaluation...
fold-9: training...
fold-9: classifying...
fold-9: evaluation...
fold-10: training...
fold-10: classifying...
fold-10: evaluation...
--- START OF EVALUATION ---
        ---- RUN 1 ----
         PRECISION: 0.797101449275
         ACCURACY: 0.615384615385
         RECALL: 0.273631840796
         F-MEASURE: 0.407407407407
         ---- END OF RUN 1 ----
```

---- RUN 2 ----PRECISION: 0.8 **ACCURACY: 0.59375** RECALL: 0.234146341463 F-MEASURE: 0.362264150943 ---- END OF RUN 2 -------- RUN 3 -----PRECISION: 0.888888888889 ACCURACY: 0.579326923077 RECALL: 0.221198156682 F-MEASURE: 0.354243542435 ---- END OF RUN 3 -------- RUN 4 ----PRECISION: 0.548895899054 ACCURACY: 0.608173076923 RECALL: 0.896907216495 F-MEASURE: 0.681017612524 ---- END OF RUN 4 -------- RUN 5 ----PRECISION: 0.904761904762 ACCURACY: 0.649038461538

RECALL: 0.355140186916 F-MEASURE: 0.510067114094

---- END OF RUN 5 ----

---- RUN 6 ----PRECISION: 0.8375

ACCURACY: 0.581730769231 RECALL: 0.295154185022 F-MEASURE: 0.436482084691

---- END OF RUN 6 --

---- RUN 7 ----

PRECISION: 0.551724137931 ACCURACY: 0.612980769231 RECALL: 0.907216494845 F-MEASURE: 0.686159844055

---- END OF RUN 7 ----

---- RUN 8 -----

PRECISION: 0.84722222222 ACCURACY: 0.603365384615 RECALL: 0.283720930233 F-MEASURE: 0.425087108014

---- END OF RUN 8 --

---- RUN 9 -----

PRECISION: 0.561904761905

ACCURACY: 0.625

RECALL: 0.907692307692 F-MEASURE: 0.694117647059

---- END OF RUN 9 -----

---- RUN 10 ----

PRECISION: 0.791044776119 ACCURACY: 0.598557692308 RECALL: 0.257281553398 F-MEASURE: 0.388278388278 ----- END OF RUN 10 -----

AVERAGE PRECISION: 0.752904404016

--- END OF EVALUATION ---