

Universidad Nacional de Colombia

Facultad de ciencias

Departamento de matemáticas

Cadenas de Markov 2025-II

Metodos para distribución estacionaria

Estudiantes:

Jose Miguel Acuña Hernandez Andres Puertas Londoño Guillermo Murillo Tirado

Docente: Freddy Hernandez

Contenido		
Marco Teórico Método del Autovector Método de Tiempos Medios de Primer Retorno Análisis Comparativo de Complejidad Computacional Recomendaciones Algorítmicas	1 1 2 4 5	
Función de las 3 Cadenas	6	
Bloques de Código que Generan los Cambios en las Cadenas	6	
Resultados de la Comparación con las Gráficas	6	

1. Marco Teórico

1.1. Método del Autovector

1.1.1. Fundamentación Teórica

La distribución estacionaria π puede caracterizarse como el **autovector izquierdo** de la matriz P asociado al autovalor $\lambda=1$:

$$\pi P = \pi \Leftrightarrow \pi^T P^T = \pi^T \tag{1}$$

Esto equivale a resolver el problema de autovalores:

$$P^T \mathbf{v} = \mathbf{v} \tag{2}$$

donde ${\bf v}=\pi^T$ es el autovector derecho de P^T correspondiente a $\lambda=1.$ **Teorema de Perron-Frobenius:** Para una matriz estocástica irreducible P:

- El autovalor $\lambda = 1$ es simple y dominante: $|\lambda_i| \le 1$ para $i \ge 2$
- Existe un único autovector izquierdo positivo π (normalizado) asociado a $\lambda=1$
- Todos los demás autovalores satisfacen $|\lambda_i| < 1$ si P es aperiódica

1.1.2. Algoritmos de Implementación

Descomposición Espectral Directa:

El algoritmo np.linalg.eig(P.T) calcula todos los autovalores y autovectores mediante:

- 1. Reducción a forma de Hessenberg usando transformaciones de Householder
- 2. Algoritmo QR con desplazamientos para encontrar autovalores
- 3. Cálculo de autovectores por sustitución hacia atrás

Método de la Potencia:

Para encontrar el autovector dominante, se itera:

$$\pi^{(k+1)} = \frac{\pi^{(k)} P}{\|\pi^{(k)} P\|_1} \tag{3}$$

La convergencia está garantizada por:

$$\|\pi^{(k)} - \pi\|_1 \le C \left| \frac{\lambda_2}{\lambda_1} \right|^k = C|\lambda_2|^k \tag{4}$$

donde λ_2 es el segundo autovalor más grande en módulo.

1.1.3. Análisis de Complejidad Computacional

Descomposición Espectral Completa:

La complejidad temporal es $\mathcal{O}(n^3)$ con las siguientes contribuciones:

- ullet Reducción Hessenberg: $pprox rac{10n^3}{3}$ operaciones de punto flotante
- Iteraciones QR: $\approx 6n^3$ operaciones (promedio)
- Cálculo de autovectores: $\approx 3n^3$ operaciones

Total: $\approx 10n^3$ operaciones de punto flotante.

Método de la Potencia:

Cada iteración requiere:

- Multiplicación vector-matriz: $\mathcal{O}(n^2)$ operaciones
- Normalización: $\mathcal{O}(n)$ operaciones

Para k iteraciones: $\mathcal{O}(kn^2)$ donde:

$$k = \mathcal{O}\left(\frac{\log(\epsilon)}{\log(|\lambda_2|)}\right) \tag{5}$$

En el peor caso (matrices mal condicionadas): $k = \mathcal{O}(n)$, resultando en $\mathcal{O}(n^3)$. En casos típicos: $k = \mathcal{O}(\log n)$, resultando en $\mathcal{O}(n^2 \log n)$.

Complejidad Espacial:

- Descomposición espectral: $\mathcal{O}(n^2)$ (matriz completa + autovectores)
- Método de la potencia: $\mathcal{O}(n)$ (solo vectores)

1.2. Método de Tiempos Medios de Primer Retorno

1.2.1. Fundamentación Teórica

El **tiempo medio de primer retorno** al estado j se define como:

$$E[T_j] = E[\min\{n \ge 1 : X_n = j | X_0 = j\}]$$
(6)

Teorema Fundamental: Para una cadena de Markov irreducible con distribución estacionaria π :

$$\pi_j = \frac{1}{E[T_j]} \tag{7}$$

Esta relación establece que la probabilidad estacionaria es inversamente proporcional al tiempo esperado de retorno. **Derivación del Sistema Lineal:**

Sea $m_i^{(i)}$ el tiempo esperado de primer retorno al estado j comenzando desde el estado $i \neq j$. Entonces:

$$m_j^{(i)} = 1 + \sum_{k \neq j} P_{ik} m_j^{(k)} \tag{8}$$

Esto genera un sistema lineal de $(n-1) \times (n-1)$:

$$(I - P_{-j})\mathbf{m}_j = \mathbf{1} \tag{9}$$

donde P_{-j} es la matriz P con la fila y columna j eliminadas, y \mathbf{m}_j es el vector de tiempos de retorno desde todos los estados excepto j.

El tiempo medio de retorno desde j es:

$$E[T_j] = 1 + \sum_{k \neq j} P_{jk} m_j^{(k)} \tag{10}$$

1.2.2. Implementación Algorítmica

El algoritmo estándar procede como sigue:

- 1. Para cada estado j = 0, 1, ..., n 1:
- 2. Construir matriz reducida $P_{-i} \in \mathbb{R}^{(n-1)\times(n-1)}$
- 3. Resolver sistema lineal $(I P_{-i})\mathbf{m}_i = \mathbf{1}$
- 4. Calcular $E[T_j] = 1 + \mathbf{p}_{i,-j}^T \mathbf{m}_j$
- 5. Obtener $\pi_i = 1/E[T_i]$

1.2.3. Análisis Detallado de Complejidad

Implementación No Optimizada:

Paso 1 - Construcción de P_{-i} :

- Eliminar fila j: copiar $n \times (n-1)$ elementos $\Rightarrow \mathcal{O}(n^2)$
- Eliminar columna j: copiar $(n-1) \times (n-1)$ elementos $\Rightarrow \mathcal{O}(n^2)$

Paso 2 - Resolución del Sistema Lineal:

El sistema $(I - P_{-i})\mathbf{m}_i = 1$ se resuelve mediante factorización LU:

Factorización LU:

Costo =
$$\sum_{k=0}^{n-2} (n-1-k)^2 \approx \frac{(n-1)^3}{3} = \mathcal{O}(n^3)$$
 (11)

Sustitución hacia adelante (Ly = 1):

Costo =
$$\sum_{i=0}^{n-2} i = \frac{(n-1)(n-2)}{2} = \mathcal{O}(n^2)$$
 (12)

Sustitución hacia atrás $(U\mathbf{m}_j = \mathbf{y})$:

$$Costo = \mathcal{O}(n^2) \tag{13}$$

Costo total por sistema: $\mathcal{O}(n^3)$

Paso 3 - Cálculo de $E[T_j]$: Producto escalar: $\mathcal{O}(n)$

Complejidad Total: Para n estados: $n \times \mathcal{O}(n^3) = \mathcal{O}(n^4)$

Desglose de Operaciones de Punto Flotante:

- ullet Factorización LU por sistema: $pprox rac{2(n-1)^3}{3}$ flops
- Sustituciones: $\approx 2(n-1)^2$ flops
- Total por estado: $\approx \frac{2n^3}{3}$ flops
- Total algoritmo: $\approx \frac{2n^4}{3}$ flops

Propuesta de Optimización:

En lugar de resolver n sistemas separados, se puede usar la **matriz fundamental**:

$$Z = (I - P + \mathbf{1}\pi^T)^{-1} \tag{14}$$

Los tiempos de retorno se obtienen directamente:

$$E[T_j] = \frac{Z_{jj}}{\pi_j} \tag{15}$$

Esta optimización reduce la complejidad a $\mathcal{O}(n^3)$ (una sola factorización).

1.3. Análisis Comparativo de Complejidad Computacional

1.3.1. Complejidades Teóricas

Método	Complejidad Temporal	Complejidad Espacial	Estabilidad
Autovector (descomp. espectral)	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	Excelente
Autovector (método potencia)	$\mathcal{O}(kn^2)$	$\mathcal{O}(n)$	Buena
Tiempos (no optimizado)	$\mathcal{O}(n^4)$	$\mathcal{O}(n^2)$	Excelente
Tiempos (optimizado)	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	Excelente

1.3.2. Análisis de Constantes Multiplicativas

Para una matriz $n \times n$, las operaciones de punto flotante exactas son:

Método del Autovector (descomposición espectral):

lacktriangle Reducción Hessenberg: $\frac{10n^3}{3}$ flops

■ Algoritmo QR: 6n³ flops (promedio)

■ Cálculo autovectores: $3n^3$ flops

■ Total: $\approx 10n^3$ flops

Método de Tiempos (implementación estándar):

• Factorización LU por estado: $\frac{2(n-1)^3}{3}$ flops

■ Para n estados: $n \times \frac{2(n-1)^3}{3} \approx \frac{2n^4}{3}$ flops

• Total: $\approx 0.67n^4$ flops

1.3.3. Razón de Complejidades Empíricas

La razón de tiempos de ejecución para matrices de diferentes tamaños:

$$\frac{\text{Tiempo}(\text{Tiempos})}{\text{Tiempo}(\text{Autovector})} \approx \frac{0.67n^4}{10n^3} = 0.067n \tag{16}$$

Ejemplos numéricos:

• n=100: Razón $\approx 6.7 \times$

• n=500: Razón $\approx 33.5 \times$

• n=1000: Razón $\approx 67 \times$

1.3.4. Efectos de Optimizaciones de Hardware

Bibliotecas BLAS/LAPACK:

- Optimizaciones de caché y vectorización
- Paralelización automática para operaciones matriciales
- Speedup típico: $10-100\times$ vs implementación ingenua

Factores que Afectan Mediciones Empíricas:

- 1. **Tamaños pequeños**: Términos de orden inferior dominan para n < 100
- 2. Jerarquía de memoria: Matrices que caben en caché L2/L3 son significativamente más rápidas
- 3. Paralelización: BLAS puede usar múltiples threads automáticamente
- 4. Overhead del intérprete: Constante aditiva significativa para n pequeño

1.3.5. Convergencia del Método de la Potencia

La velocidad de convergencia depende del gap espectral:

$$\mathsf{Error}^{(k)} \le C \left| \frac{\lambda_2}{\lambda_1} \right|^k = C|\lambda_2|^k \tag{17}$$

Casos típicos:

- Matrices bien condicionadas: $|\lambda_2| \leq 0.9 \Rightarrow k = \mathcal{O}(\log n)$
- Matrices mal condicionadas: $|\lambda_2| \approx 1 \Rightarrow k = \mathcal{O}(n)$

1.4. Recomendaciones Algorítmicas

1.4.1. Criterios de Selección

Para matrices pequeñas $(n \le 100)$:

- Usar descomposición espectral directa
- Overhead de setup es despreciable
- Máxima precisión numérica

Para matrices medianas ($100 < n \le 1000$):

- Descomposición espectral si se requiere precisión
- Método de la potencia si la memoria es limitada
- Evitar método de tiempos no optimizado

Para matrices grandes (n > 1000):

- Considerar métodos iterativos especializados
- Explotar estructura dispersa si es aplicable
- Método de la potencia con precondicionamiento

1.4.2. Consideraciones de Estabilidad Numérica

Condicionamiento de la matriz P: El número de condición $\kappa(P)=\frac{\sigma_{\max}}{\sigma_{\min}}$ afecta la precisión:

- $\kappa(P) < 10^{12}$: Precisión de máquina alcanzable
- $\kappa(P) > 10^{12}$: Pérdida significativa de dígitos significativos

Propagación de errores:

$$\frac{\|\Delta\pi\|}{\|\pi\|} \le \kappa(P) \frac{\|\Delta P\|}{\|P\|} \tag{18}$$

El método del autovector es generalmente más robusto ante perturbaciones en P que el método de tiempos medios.

- 2. Función de las 3 Cadenas
- 3. Bloques de Código que Generan los Cambios en las Cadenas
- 4. Resultados de la Comparación con las Gráficas