IOT-BASED AIR QUALITY INDEXIMALITY INDEXIMAL

HUZAIFA SHAHBAZ[21-CE-009] SUPERVISOR:MAAM SARA TEHSIN

OUTLINES

- INTRODUCTION
- PROBLEM STATEMENT
- LITERATURE REVIEW/BACKGROUND
- PROPOSED DESIGN/METHODOLOGY
- HARDWARE/SOFTWARE TOOLS
- PROPOSED WORK PLAN
- REFERENCES

INTRODUCTION

- In an era, the integration of IOT environmental monitoring systems, particularly Air quality Index(AQI) systems, is crucial for public health and environmental protection.
- IOT technology connects sensors to measure air pollutants like PM2.5, PM10, CO and NO₂.
- Data is transferred to a central server for analysis and accessibility.
- It also plays a crucial role in shaping policies and raising awareness.
- This real-time monitoring helps mitigate poor air quality impacts, shapes policies and raise awareness about maintaining a healthy environment.
- IOT based AQI systems enable continuous monitoring of air pollutants, providing timely insights and prompt responses to deteriorating air conditions.

PROBLEM STATEMENT

- The primary issue with this project is its lengthy detection range, which
 prevents it from accurately displaying the city's air quality reading on the
 sensors.
- The project aims to identify key pollutants, analyze their impact on health and the environment and develop a robust system for continuous monitoring.
- The solution's business scope includes urban planning, public health management and industrial compliance with primary end-users being environmental agencies, local governments, industries and the public.
- Urbanization and industrialization have led to a decline in air quality, posing health risks and environmental issues. A project aims to develop an IOT-based AQI system to monitor air pollutants in real-time enabling timely interventions and informed decision-making.

LITERATURE REVIEW/BACKGROUND

STUDY	AUTHORS	YEAR	KEY FINDINGS							
Deployment of Low-Cost Sensors	Kumar et al.	2019	The study showcased the efficacy of low-cost, IoT-based sensors in monitoring scalable air quality.							
Predictive Analytics in AQI Systems	Smith and Lee	2020	The integration of machine learning for predictive analytics has been highlighted as a method to improve early warning systems.							
Real-Time Data for Public Health	Johnson et al.	2021	The use of real-time, IoT-based air quality data has significantly enhanced public health responses.							
Enhancing Environmental Awareness	Chen and Patel	2022	The article highlighted the significant role of IoT in enhancing public engagement and raising awareness about air quality issues.							

PROPOSED DESIGN/METHOGOLDY

ABSTRACT DESIGN

 The IoT-based Air Quality Index Meter uses advanced sensors to monitor air quality in real-time, transmitting data via wireless to a cloud-based platform for accurate, reliable, and user-centric monitoring.

COMPONENT LEVEL DESGIN

 The project involves designing sensor modules, microcontrollers, and communication interfaces for data acquisition, processing, transmission, and seamless transfer between sensor nodes and cloud platforms.

• SRS

 The SRS document will outline the functional and non-functional requirements of an air quality index meter, ensuring accurate pollutant measurement, real-time data transmission, user alerts, and performance metrics.

PROPOSED DESIGN/METHOGOLDY

AQImin

->4.1

•AQI=
$$(\frac{\text{Ci-Clow}}{\text{Chigh-Clow}}) * (Ihigh - Ilow) + Ilow-$$
>4.2

ATTEC Univers

PROPOSED DESIGN/METHOGOLDY

- FIGURE 1:BLOCK DIAGRAM OF IOT BASED AQI METER
- FIGURE 2:PROJECT DIAGRM OF IOT BASED AQI METER

HARDWARE TOOLS

1:ESP32/ESP8266

2:ARDUINO

3:MQ SERIES GAS SENSOR(MQ-135 OR MQ-5)

4:PM2.5 AND PM10 SENSORS

5: BATTERY PACK

6: POWER ADAPTER

7: CHARGER SETUP

8: WEATHERPROOF HOUSING

9: WiFi/BLUETOOTH MODULES

SOFTWARE TOOLS

1: ANDORID STUDIO

2: FIREBASE

3:BLYNK APP

4:MATLAB

5:PYTHON

6: ARDUINO FRAMEWORK

7:VS CODE FOR FIRMWARE CODING

8: THINGS SPEAK

9:MQTT PROTOCOLS

10: AWS IOT

11:ADAFRUIT IO

12:GITHUB

13: AUTHENTICATION MECHANISMS

14: GAFRANA

15:EXCEL

16:HTTP/HTTPS

17:SENSOR AND WIFI LIBRARIES

SECURITY

PROPOSED WORK PLAN

- 1. Identify Project Modules/Features/Tasks/Activities
- MODULE 1: Requirement Analysis and Research
- MODULE 2: System Design
- MODULE 3: Hardware Assembly and Testing
- MODULE 4: Software Development
- MODULE 5: System Integration and Testing
- MODULE 6: Deployment and Documentation
- 2. Time Needed to Implement Each Module/Feature/Task/Activity
- Module 1: Requirement Analysis and Research 2 weeks
- Module 2: System Design 3 weeks
- Module 3: Hardware Assembly and Testing 4 weeks

PROPOSED WORK PLAN(CONTINUED

- Module 4: Software Development 6 weeks
- Module 5: System Integration and Testing -4 weeks
- Module 6: Deployment and Documentation - 3 weeks
- Semester-wise Workload Plan:
- Semester 7:
- Focus on Modules 1, 2, and part of Module
 3.
- Semester 8:
- Focus on completing Module 3 and Modules 4, 5, and 6.
- 4. Gantt Chart for IoT-Based AQI Meter Project

ID	Name	2024					2025		
		Aug 2024	Sep 2024	Oct 2024	Nov 2024	Dec 2024	Jan 2025	Feb 2025	Mar 2025
1	Requirement Analysis & Research								
2	System Design								
3	Hardware Assembly & Testing	i							
4	Software Development								
5	System Integration & Testing								
6	Deployment & Documentation								

CONCLUSION

- In conclusion, the IoT-based Air Quality Index (AQI) Meter is a cost-effective solution for real-time monitoring of air quality.
- It collects, analyzes, and displays data, providing insights for proactive pollution mitigation and public health protection.
- The system integrates sensors, cloud connectivity, and data visualization tools, ensuring accurate readings and informed decision-making.
- This project could significantly contribute to environmental monitoring and improve quality of life by addressing air pollution challenges.

- 1:Dineshkumar, T., V. Suresh Babu, Pachaivannan Partheeban, and R. Puviarasi. "Air Quality Monitori\ System Based on IoT." *Journal of Physics: Conference Series* 1964, no. 6 (2021): 062081. https://doi.org/10.1088/1742-6596/1964/6/062081.
- 2: Hemalatha, M., R. Arunprasath, J. Shalini Priya, A. M. Shivashankari, K. Rajkumar, and R. Jeyashri. "An IoT Enabled Air Pollution Meter with Digital Dashboard on Smartphone." In *2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS)*, IEEE, 2023. https://doi.org/10.1109/ICCEBS58601.2023.10448896.
- 3: Yusof, Khairul Huda, M. Abdulrazaq, Fadhilah Aman, M. N. Mohammed, Amirul Asyraf, Ahmad Sukri Ahmad, and Mohamad Syahrul Zahwan Mohd Zabidi. "Design and Development of Real Time Indoor and Outdoor Air Quality Monitoring System Based on IoT Technology." In 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA 2022), Selangor, Malaysia, May 12, 2022. IEEE. https://doi.org/10.1109/CSPA55076.2022.9781937.
- 4: Yusof, K. H., Abdulrazaq, M., Aman, F., Mohammed, M. N., Asyraf, A., Sukri, A., Zabidi, M. S. M., & Alayham, A. R. (2022). Design and Development of Real Time Indoor and Outdoor Air Quality Monitoring System Based on IoT Technology. 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA 2022), 12 May 2022, Selangor, Malaysia.
- https://ieeexplore.ieee.org/document/9781937

- 5: Sharmila, A. R., J. J. Edwin, T. Sivakumaran, A. P. Prabhu, and R. T. Rajesh. 2022. "Design and Developme Real Time Indoor and Outdoor Air Quality Monitoring System Based on IoT Technology." In *Proceedings of the IEEE 18th International Colloquium on Signal Processing & Applications (CSPA 2022)*, 187-192. Batu Ferringhi, Malaysia: IEEE. https://doi.org/10.1109/CSPA53698.2022.9779578.
- 6: IoT Based Air Quality Monitoring System Using Arduino Shazia Afroze 1, Md. Istiak Hossain Paran 2, Rakibul Hasan Roki 3 1Assistant Professor, Dept. of Electrical & Electronic Engineering, Stamford University Bangladesh (SUB) 2,3Student, Dept. of Electrical & Electronic Engineering, Stamford University Bangladesh (SUB). https://www.ijfmr.com/papers/2023/2/2260.pdf
- 7: IoT Based: Air Quality Index and Traffic Volume Correlation Omar Alruwaili; Ivica Kostanic; Ali Al-Sabbagh; Hamad Almohamedh. https://ieeexplore.ieee.org/document/9298176/references#references
- 8: IoT-based_air_quality_monitoring_systems_for_smart Danny Munera Diana P. Tobon V.
- <u>Johnny Aguirre Natalia Gaviria</u>. https://www.researchgate.net/publication/350823548_loT-based_air_quality_monitoring_systems_for_smart_cities_A_systematic_mapping_study
- 9: IoT-based_AQI_Estimation_using_Image_Processing_and_Learning_Methods <u>Nitin Nilesh</u>; <u>Ishan Patwardhan</u>; <u>Jayati Narang</u>; <u>Sachin Chaudhari</u>. <u>https://ieeexplore.ieee.org/document/10152272</u>
- 10: IoT Based Air Quality Index (AQI) Monitoring with ESP8266 & Air Quality Sensor || Pollution in PPM. https://www.youtube.com/watch?v=Ub1ciur95Nk
- 11: How to Monitor Air Quality Using ESP32 | Air Quality Monitoring System | ESP32 | Blynk IOT Projects. https://www.youtube.com/watch?v=mvdpAeBVIEg

- 12: ESP32/ESP8266 https://www.espressif.com/en/products/socs/esp8266/esp32
- 13:Arduino https://www.arduino.cc

- 15:PM2.5 AND PM10 SENSOR https://www.aeroqual.com/sensors/particulate-matter-sensor-pm10_pm2-5
- 16:BATTERY PACK https://digilog.pk/products/3-7v-2400ma-li-ion-battery-pack-40mm-x-30mm-x-20mm 20mm?_pos=13&_sid=2e7bcb6e9&_ss=r
- 17:WiFi/BLUETOOTH MODULES https://www.electronicwings.com/nodemcu/hc-05-bluetooth-module-interfacing-with-nodemcu
- 18:ANDROID STUDIO

https://developer.android.com/studio?_gl=1*ae3zhz*_up*MQ..&gclid=Cj0KCQjw28W2BhC7ARIsAPerrcIja-b-IMf3oSKZuIHQbv0cpPHynzM9mqTFolAh2u5Jwl_PLXT8ekQaAjBeEALw_wcB&gclsrc=aw.ds

19:FIREBASE

https://firebase.google.com/?gad_source=1&gclid=Cj0KCQjw28W2BhC7ARIsAPerrcI94T6cSy7drbjU0zQU_a4 MeNrUMZAfQ8a8eirac0VXoSY6-GZI_fwaAqw-EALw_wcB&gclsrc=aw.ds

- 20:BLYNK APP https://blynk.io/no-code-iot-mobile-apps
- 21:MATLAB https://www.mathworks.com/products/matlab.html
- 22:PYTHON https://www.anaconda.com
- 23:ARDUNIO IDE https://www.arduino.cc/en/software/
- 24:ESPRESSIF IDF https://idf.espressif.com
- 25:THINGS SPEAK https://thingspeak.com
- 26:MQTT PROTOCOLS https://mqtt.org
- 27:AWS IOT https://aws.amazon.com/iot/
- 28:ADAFRUIT IO https://io.adafruit.com
- 29:GITHUB https://github.com
- 30:AUTHENTICATION MECHANSIMS https://www.techtarget.com/iotagenda/tip/loT-device-authentication-methods-that-increase-security
- 31:GAFRANA https://grafana.com

- 32:EXCEL https://www.microsoft.com/en-us/microsoft
- 33:HTTP/HTTPS http://encrypted%20connection%20before%20transferring%20data.
- 34:SENSOR AND WiFi LIBRARIES https://www.arduino.cc/reference/en/libraries/wifi/
- 35:GANTT CHART https://www.onlinegantt.com/#/gantt

COLLABOTORS

BIOMISA OF NUST EME COLLEGE

DR USMAN AKARM

DR SAJID GUL KHAWAJA