Equivalenza tra ASF, RG e RE

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata" a.a. 2020-2021

Giorgio Gambosi

1 Grammatiche regolari

ASF e grammatiche di tipo 3

Per ogni grammatica regolare $\mathcal{G} = \langle V_T, V_N, P, S \rangle$, esiste un ASFND $\mathcal{A}_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$ che riconosce il linguaggio che essa genera.

Viceversa, per ogni ASFND A_N esiste una grammatica regolare che genera il linguaggio che esso riconosce.

ASF e grammatiche di tipo 3

Sia $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ una grammatica di tipo 3, con al più la sola ε -produzione $S \longrightarrow \varepsilon$.

Definiamo una procedura che partire da \mathcal{G} produca un ASFND $\mathcal{A}_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$ equivalente (che accetta tutte e sole stringhe prodotte da \mathcal{G}).

Da
$${\mathcal G}$$
 a ${\mathcal A}_N$

$$\begin{split} \Sigma &= V_T \\ Q &= \{q_I \mid I \in V_N\} \cup \{q_F\} \\ q_0 &= q_S \\ F &= \begin{cases} \{q_0, q_F\} & \text{se } S \longrightarrow \varepsilon \in P \\ \{q_F\} & \text{altrimenti} \end{cases} \end{split}$$

Per ogni coppia $a \in V_T$ e $B \in V_N$,

$$\delta_N(q_B,a) \; = \begin{cases} \{q_C \mid B \longrightarrow aC \in P\} \cup \{q_F\} & \text{ se } B \longrightarrow a \in P \\ \{q_C \mid B \longrightarrow aC \in P\} & \text{ altrimenti.} \end{cases}$$

L'automa è, in generale, non deterministico.

Da \mathcal{G} a \mathcal{A}_N . Equivalenza di \mathcal{G} e \mathcal{A}_N

Per dimostrare l'equivalenza tra \mathcal{G} e \mathcal{A}_N , dobbiamo mostrare che per ogni $x \in \Sigma^*$ si ha che

$$S \overset{*}{\underset{G}{\Longrightarrow}} x$$
 se e solo se $\overline{\delta}_N(q_S,x) \cap F \neq \emptyset$

Questo è chiaramente vero se $x=\varepsilon$, in quanto $\overline{\delta}_N(q_0,\varepsilon)=q_0\in F$, se e solo se $S\longrightarrow \varepsilon\in P$, per costruzione. Nel caso $x\in \Sigma^+$ mostriamo, per induzione sulla lunghezza di x, la proprietà più generale

$$S \stackrel{*}{\Longrightarrow} xZ$$
 se e solo se $q_Z \in \overline{\delta}_N(q_S, x)$

Da $\mathcal G$ a $\mathcal A_N$. Equivalenza di $\mathcal G$ e $\mathcal A_N$

Iniziamo da

$$S \stackrel{*}{\Longrightarrow} xZ$$
 implica $q_Z \in \overline{\delta}_N(q_S, x)$

Passo base: |x|=1, per cui x=a, con $a\in \Sigma$. Allora abbiamo che $S\Longrightarrow aZ$ se e solo se $S\longrightarrow aZ\in P$ e quindi se e solo se, per costruzione dell'automa, $q_Z\in \delta_N(q_S,a)$.

Da \mathcal{G} a \mathcal{A}_N . Equivalenza di \mathcal{G} e \mathcal{A}_N

Passo induttivo: $\mid x \mid > 1$, per cui x = ya, con $\mid y \mid = n \ge 1$ e $a \in \Sigma$.

Per l'ipotesi induttiva il risultato si assume valido per y, quindi

$$S \Longrightarrow yZ$$
 se e solo se $q_Z \in \overline{\delta}_N(q_S, y)$

Osserviamo che $S \stackrel{*}{\Longrightarrow} xZ'$ se e solo se esiste $Z \in V_N$ tale che $S \stackrel{*}{\Longrightarrow} yZ \Longrightarrow yaZ' = xZ'$. Ne deriva che

- $q_Z \in \overline{\delta}_N(q_S, y)$ per induzione
- $Z \longrightarrow aZ' \in P$, e quindi $q_{Z'} \in \delta_N(a,Z)$ per costruzione

Quindi, $q_{Z'} \in \overline{\delta}_N(q_S, ya) = \overline{\delta}_N(q_S, x)$

Da \mathcal{G} a \mathcal{A}_N . Equivalenza di \mathcal{G} e \mathcal{A}_N

Abbiamo verificato che $S \stackrel{*}{\Longrightarrow} xZ$ se e solo se $q_Z \in \overline{\delta}_N(q_S,x)$.

Osserviamo ora che $S \stackrel{*}{\Longrightarrow} x$ se e solo se esistono $Z \in V_N$, $y \in \Sigma^*$ e $Z \longrightarrow a \in P$ tali che x = ya e $S \stackrel{*}{\Longrightarrow} yZ \stackrel{*}{\Longrightarrow} ya = x$.

Da quanto visto sopra, ciò è vero se e solo se $q_Z \in \overline{\delta}_N(q_S,y)$ e $q_F \in \delta_N(q_Z,a)$, e quindi se e solo se $q_F \in \overline{\delta}_N(q_S,ya) = \overline{\delta}_N(q_S,x)$.

In conclusione, per ogni linguaggio regolare (generato da una grammatica di tipo 3) esiste un ASFND che lo accetta (e quindi anche un ASFD che lo decide).

ASF e grammatiche di tipo 3

Sia $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$ un ASFD.

Definiamo una procedura che partire da \mathcal{A} produca una grammatica di tipo 3 $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ equivalente (che genera tutte e sole stringhe accettate da \mathcal{A}).

Da \mathcal{A} a \mathcal{G}

Se $q_0 \notin F$:

 $V_T = \Sigma$

 $V_N = \{A_i \mid \text{ per ogni } q_i \in Q\}$

 $S = A_0$

per ogni regola di transizione $\delta(q_i,a)=q_j$ esiste $A_i\longrightarrow aA_j\in P$, e se $q_j\in F$ esiste anche $A_i\longrightarrow a\in P$ Da $\mathcal A$ a $\mathcal G$

Se $q_0 \in F$:

 $V_T = \Sigma$

 $\stackrel{\textstyle \cdot}{V_N} = \{A_i \mid \ \mathsf{per} \ \mathsf{ogni} \ q_i \in Q\} \cup \{A_0'\}$

 $S - \Lambda'$

per ogni regola di transizione $\delta(q_i,a)=q_j$ esiste $A_i\longrightarrow aA_j\in P$, e se $q_j\in F$ esiste anche $A_i\longrightarrow a\in P$ (tutte le precedenti). Inoltre, per ogni $\delta(q_0,a)=q_j$ esiste $A_0'\longrightarrow aA_j\in P$, e se $q_j\in F$ esiste anche $A_0'\longrightarrow a\in P$ (A_0' ha tutte le produzioni di A_0), infine, esiste $A_0'\longrightarrow \varepsilon\in P$.

Da \mathcal{A} a \mathcal{G} . Equivalenza di \mathcal{G} e \mathcal{A}

Come prima, per dimostrare l'equivalenza tra \mathcal{G} e \mathcal{A}_N , dobbiamo mostrare che per ogni $x \in \Sigma^*$ si ha che

$$\overline{\delta}(q_0,x) \in F$$
 se e solo se $S \stackrel{*}{\underset{G}{\Longrightarrow}} x$

Questo è chiaramente vero se $x=\varepsilon$, in quanto in tal caso necessariamente $q_0\in F$ e, per costruzione, l'assioma di \mathcal{G} è A_0' e $A_0'\to\varepsilon\in P$.

Nel caso $x \in \Sigma^+$ mostriamo, per induzione sulla lunghezza di x, entrambe le proprietà

 $A_i \stackrel{*}{\Longrightarrow} xA_j$ se e solo se $\overline{\delta}(q_i,x) = q_j$ $A_i \stackrel{*}{\Longrightarrow} x$ se e solo se $\overline{\delta}(q_i,x) \in F$

Da \mathcal{A} a \mathcal{G} . Equivalenza di \mathcal{G} e \mathcal{A}

Passo base: |x|=1, ad esempio x=a. Abbiamo allora che

Per costruzione, $A_i \longrightarrow aA_j \in P$ (e quindi $A_i \Longrightarrow aA_j$) se e solo se $\delta(q_i, a) = q_j$ (e quindi $\overline{\delta}(q_i, a) = q_j$)

e inoltre che, per costruzione,

 $A_i \longrightarrow a \in P$ (e quindi $A_i \Longrightarrow a$) se e solo se $q_i \in F$

Da \mathcal{A} a \mathcal{G} . Equivalenza di \mathcal{G} e \mathcal{A}

Passo induttivo: |x| = n > 1.

Sia x=ya, con |y|=n-1: per l'ipotesi induttiva, la proprietà è valida per y, e quindi

$$A_i \stackrel{*}{\Longrightarrow} yA_k$$
 se e solo se $\overline{\delta}(q_i, y) = q_k$

Supponiamo $A_i \stackrel{*}{\Longrightarrow} xA_j = yaA_j$: ciò è possibile se e solo se esiste A_k tale che $A_i \stackrel{*}{\Longrightarrow} yA_k$ e $A_k \longrightarrow aA_j \in P$

Da \mathcal{A} a \mathcal{G} . Equivalenza di \mathcal{G} e \mathcal{A}

Per l'ipotesi induttiva, $A_i \stackrel{*}{\Longrightarrow} yA_k$ se e solo se $\overline{\delta}(q_i,y) = q_k$.

Per costruzione, $A_k \longrightarrow aA_j \in P$ se e solo se $\delta(q_k, a) = q_j$.

Ne conseque che

$$A_i \Longrightarrow yA_k \Longrightarrow yaA_j = xA_j$$

se e solo se

$$q_j = \delta(q_k, a) = \delta(\overline{\delta}(q_i, y), a) = \overline{\delta}(q_i, ya) = \overline{\delta}(q_i, x)$$

Esempio

Il linguaggio rappresentato da $a(a+ba)^*a$ è generato dalla grammatica

$$S \longrightarrow aB$$

$$B \longrightarrow aB \mid bS \mid a.$$

ed è riconosciuto dall'ASFND

Esempio

A partire dall'ASFND è possibile derivare un ASFD equivalente

Esempio

E da questo una grammatica di tipo 3 equivalente a quella iniziale, dove $S=A_0$

$$\begin{array}{ccc} A_0 & \longrightarrow & aA_1 \\ A_1 & \longrightarrow & bA_0 \mid aA_2 \mid a \\ A_2 & \longrightarrow & aA_2 \mid bA_0 \mid a \end{array}$$

Per costruzione, questa grammatica ha, per ogni coppia $X \in V_N$ e $c \in V_T$, al più un $Y \in V_N$ tale che $X \longrightarrow cY \in P$.

Esercizio

Si consideri la grammatica regolare avente le seguenti produzioni:

$$\begin{array}{ccc} S & \longrightarrow & 0A \mid 1B \mid 0S \\ A & \longrightarrow & aB \mid bA \mid a \\ B & \longrightarrow & bA \mid aB \mid b. \end{array}$$

Si derivino un ASFND e un ASFD che riconoscono il linguaggio generato da tale grammatica. A partire dall'automa deterministico, derivare poi una grammatica di tipo 3 equivalente.

2 Espressioni regolari

Espressioni regolari

Teorema 1. Tutti i linguaggi definiti da espressioni regolari sono regolari.

Espressioni regolari e grammatiche di tipo 3

Teorema 2. Data una grammatica \mathcal{G} di tipo 3, esiste una espressione regolare r tale che $L(\mathcal{G}) = \mathcal{L}(r)$, che descrive cioè il linguaggio generato da \mathcal{G} .

Espressioni regolari e grammatiche di tipo 3

Consideriamo una grammatica $\mathcal G$ di tipo 3 ed il linguaggio L da essa generato, che per semplicità assumiamo non contenga la stringa vuota ε .

Se così non fosse, applichiamo le considerazioni seguenti al linguaggio $L-\{\varepsilon\}$, anch'esso regolare: una volta derivata un'espressione regolare r che lo definisce, l'espressione regolare che definisce L sarà chiaramente $r+\varepsilon$.

Espressioni regolari e grammatiche di tipo 3

Alla grammatica \mathcal{G} possiamo far corrispondere un sistema di equazioni su espressioni regolari.

Estensione del linguaggio delle espressioni regolari con variabili A, \ldots, Z , associando una variabile ad ogni non terminale in \mathcal{G} .

Tali variabili potranno assumere valori nell'insieme delle espressioni regolari.

Espressioni regolari e grammatiche di tipo 3

Raggruppamento di tutte le produzioni che presentano a sinistra lo stesso non terminale. Per ogni produzione del tipo

$$A \longrightarrow a_1B_1 \mid a_2B_2 \mid \ldots \mid a_nB_n \mid b_1 \mid \ldots \mid b_m$$

equazione del tipo

$$A = a_1 B_1 + a_2 B_2 + \ldots + a_n B_n + b_1 + \ldots + b_m.$$

Espressioni regolari e grammatiche di tipo 3

Da una grammatica regolare si ottiene un sistema di equazioni lineari destre, in cui ogni monomio contiene una variabile a destra di simboli terminali.

Espressioni regolari e grammatiche di tipo 3

Risoluzione del sistema di equazioni su espressioni regolari estese:

individuazione dei valori (espressioni regolari normali, prive delle variabili che definiscono a loro volta espressioni regolari) che, una volta sostituiti alle variabili, soddisfano il sistema di equazioni.

Espressioni regolari e grammatiche di tipo 3

$$\begin{array}{ccc} A & \longrightarrow & aA \mid bB \\ B & \longrightarrow & bB \mid c \end{array}$$

corrisponde al sistema di equazioni

$$\left\{ \begin{array}{lcl} A & = & aA + bB \\ B & = & bB + c. \end{array} \right.$$

Espressioni regolari e grammatiche di tipo 3

Per risolvere il sistema è possibile utilizzare, le trasformazioni algebriche applicabili sulle operazioni di unione e concatenazione (distributività, fattorizzazione, ecc.), oltre alle seguenti due regole.

Espressioni regolari e grammatiche di tipo 3

Sostituzione di una variabile con un'espressione regolare estesa.

Con riferimento all'esempio precedente abbiamo

$$\left\{ \begin{array}{lcl} A & = & aA+b(bB+c) = aA+bbB+bc \\ B & = & bB+c. \end{array} \right.$$

Espressioni regolari e grammatiche di tipo 3

Eliminazione della ricursione.

L'equazione B = bB + c si risolve in $B = b^*c$. Infatti, sostituendo a destra e sinistra abbiamo

$$b^*c = b(b^*c) + c = b^+c + c = (b^+ + \varepsilon)c = b^*c.$$

Più in generale abbiamo che un'equazione del tipo

$$A = \alpha_1 A + \alpha_2 A + \ldots + \alpha_n A + \beta_1 + \beta_2 + \ldots + \beta_m$$

si risolve in

$$A = (\alpha_1 + \alpha_2 + \ldots + \alpha_n)^* (\beta_1 + \beta_2 + \ldots + \beta_m),$$

dove $\alpha_1, \ldots, \alpha_n$, β_1 , ..., β_m sono espressioni regolari estese.

Espressioni regolari e grammatiche di tipo 3

Grammatica regolare

$$\begin{array}{cccc} A_0' & \longrightarrow & \varepsilon \mid aA_1 \mid a \\ A_0 & \longrightarrow & aA_1 \mid a \\ A_1 & \longrightarrow & bA_3 \mid bA_2 \\ A_2 & \longrightarrow & aA_2 \mid bA_0 \mid b \\ A_3 & \longrightarrow & bA_3 \mid aA_2. \end{array}$$

da cui si ottiene il seguente sistema lineare.
$$\left\{ \begin{array}{ll} A_0'&=&\varepsilon+aA_1+a\\ A_0&=&aA_1+a\\ A_1&=&bA_3+bA_2\\ A_2&=&aA_2+bA_0+b\\ A_3&=&bA_3+aA_2 \end{array} \right.$$

Da cui si ottiene:

```
Espressioni regolari e grammatiche di tipo 3
A_0' = \varepsilon + aA_1 + a
A_0 = aA_1 + a
A_{1} = bA_{3} + bA_{2}
A_{2} = aA_{2} + bA_{0} + b
A_{3} = b^{*}aA_{2}
 per eliminazione della ricursione su A_3
     A_0' = \varepsilon + aA_1 + a
    A_0 = aA_1 + a

A_1 = bA_3 + bA_2

A_2 = a^*(bA_0 + b)
  A_3 = b^*aA_2
 per eliminazione della ricursione su A_2.
 Espressioni regolari e grammatiche di tipo 3
A_0' = \varepsilon + aA_1 + a
A_0 = aA_1 + a
A_1 = bA_3 + bA_2

A_2 = a^*(bA_0 + b)

A_3 = b^*aa^*(bA_0 + b)
 per sostituzione di A_2 nell'equazione relativa ad A_3
    A_0' = \varepsilon + aA_1 + a
  \begin{cases}
A_0 &= aA_1 + a \\
A_1 &= b(b^*aa^*(bA_0 + b)) + b(a^*(bA_0 + b)) \\
A_2 &= a^*(bA_0 + b) \\
A_3 &= b^*aa^*(bA_0 + b)
\end{cases}
 per sostituzione di A_2 e A_3 nell'equazione relativa ad A_1.
 Espressioni regolari e grammatiche di tipo 3
A'_0 = \varepsilon + aA_1 + a
A_0 = aA_1 + a
A_1 = b(b^*aa^* + a^*)(bA_0 + b)
A_2 = a^*(bA_0 + b)
A_3 = b^*aa^*(bA_0 + b)
 per fattorizzazione nell'equazione relativa ad A_1.
     A_0' = \varepsilon + aA_1 + a
  \begin{cases} A_0 &= a(b(b^*aa^* + a^*)(bA_0 + b)) + a \\ A_1 &= b(b^*aa^* + a^*)(bA_0 + b) \\ A_2 &= a^*(bA_0 + b) \\ A_3 &= b^*aa^*(bA_0 + b) \end{cases}
 per sostituzione di A_1 nell'equazione relativa ad A_0
 Espressioni regolari e grammatiche di tipo 3
A_0' = \varepsilon + aA_1 + a
A_0 = ab(b^*aa^* + a^*)bA_0 + ab(b^*aa^* + a^*)b + a
A_1 = b(b^*aa^* + a^*)(bA_0 + b)
A_2 = a^*(bA_0 + b)

A_3 = b^*aa^*(bA_0 + b)
 per fattorizzazione nell'equazione relativa ad A_0
     A_0' = \varepsilon + aA_1 + a
     A_0 = (ab(b^*aa^* + a^*)b)^*(ab(b^*aa^* + a^*)b + a)
     A_1 = b(b^*aa^* + a^*)(bA_0 + b)
     A_2 = a^*(bA_0 + b)
    A_3 = b^*aa^*(bA_0 + b)
 per eliminazione della ricursione su A_0.
```

```
Espressioni regolari e grammatiche di tipo 3
A'_0 = a(b(b^*aa^* + a^*)(bA_0 + b)) + a + \varepsilon
A_0 = (ab(b^*aa^* + a^*)b)^*(ab(b^*aa^* + a^*)b + a)
A_1 = b(b^*aa^* + a^*)(bA_0 + b)
A_2 = a^*(bA_0 + b)
A_3 = b^*aa^*(bA_0 + b)
per sostituzione di A_1 nell'equazione relativa ad A'_0
Espressioni regolari e grammatiche di tipo 3
A_0' = ab(b^*aa^* + a^*)(b((ab(b^*aa^* + a^*)b)^*(ab(b^*aa^* + a^*)b + a))
          +b) + a + \varepsilon
A_0 = (ab(b^*aa^* + a^*)b)^*(ab(b^*aa^* + a^*)b + a)
A_1 = b(b^*aa^* + a^*)(bA_0 + b)
A_2 = a^*(bA_0 + b)
A_3 = b^*aa^*(bA_0 + b)
per sostituzione di A_0 nell'equazione relativa ad A'_0
Espressioni regolari e grammatiche di tipo 3
A_0' = ((ab(b^*a^* + \varepsilon)a^*b)^* + \varepsilon)(ab(b^*a + \varepsilon)a^*b + a) + \varepsilon
A_0 = (ab(b^*aa^* + a^*)b)^*(ab(b^*aa^* + a^*)b + a)
```

 $A_3 = b^*aa^*(bA_0 + b)$ per fattorizzazione nell'equazione relativa ad A_0' Espressioni regolari e grammatiche di tipo 3

$$\begin{array}{ccc} S & \longrightarrow & aS \mid bA \mid \varepsilon \\ A & \longrightarrow & aA \mid bS \mid \varepsilon \end{array}$$

 $A_2 = a^*(bA_0 + b)$

 $A_1 = b(b^*aa^* + a^*)(bA_0 + b)$

Espressioni regolari e grammatiche di tipo 3 Eliminazione della produzione $A \longrightarrow \varepsilon$:

$$\begin{array}{ccc} S & \longrightarrow & aS \mid bA \mid \varepsilon \mid b \\ A & \longrightarrow & aA \mid bS \mid a. \end{array}$$

Espressioni regolari e grammatiche di tipo 3

$$S = aS + bA + b + \varepsilon$$
$$A = aA + bS + a$$

Espressioni regolari e grammatiche di tipo 3

$$S = aS + bA + b + \varepsilon$$

$$A = a^*(bS + a)$$

Espressioni regolari e grammatiche di tipo 3

$$S = aS + ba^*(bS + a) + b + \varepsilon$$

$$A = a^*(bS + a)$$

Espressioni regolari e grammatiche di tipo 3

$$S = (a + ba^*b)S + ba^*a + b + \varepsilon$$

$$A = a^*(bS + a)$$

Espressioni regolari e grammatiche di tipo 3

$$S = (a + ba^*b)^*(ba^*a + b + \varepsilon)$$

$$A = a^*(bS + a)$$

Esercizio

Si consideri la sequente grammatica:

$$A \longrightarrow aB \mid bC \mid a$$

$$B \longrightarrow aA \mid bD \mid b$$

$$C \longrightarrow ab \mid aD \mid a$$

$$D \longrightarrow aC \mid bB \mid b$$

che genera le stringhe contenenti un numero dispari di a o un numero dispari di b.

Si costruisca l'espressione regolare corrispondente.

Espressioni regolari e ASF

Dato un ASFD \mathcal{A} , esiste una espressione regolare r tale che $L(\mathcal{A}) = \mathcal{L}(r)$, che descrive cioè il linguaggio riconosciuto da \mathcal{A} .

Espressioni regolari e ASF

Sia $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$ un ASFD e sia L il linguaggio da esso riconosciuto. Assumiamo $F = \{q_F\}$.

Sia
$$n=|Q|$$
 e sia $\langle q_0,\ldots,q_{n-1}\rangle$ un qualunque ordinamento degli stati tale che $q_{n-1}=q_F$.

Espressioni regolari e ASF

Definiamo ora come

$$R_{ij}^k \qquad 0 \le i, j \le n-1; k \ge \max(i,j)$$

l'insieme delle stringhe tali da portare \mathcal{A} da q_i a q_j senza transitare per nessuno stato q_h con $h \geq k$. Abbiamo cioè che $x = a_1, \ldots, a_m \in R_{ij}^k$ se e solo se:

1.
$$\overline{\delta}(q_i, x) = q_i$$
;

2. se
$$\overline{\delta}(q_i, a_1 \dots a_l) = q_{i_l}$$
 allora $i_l < k$, per $1 \le l \le m-1$.

Espressioni regolari e ASF

Per k = 1 si ha:

$$R^1_{ij} = \left\{ \begin{array}{cc} \bigcup \{a\} & \text{tali che } \delta(q_i,a) = q_j, \text{ se ne esiste almeno uno;} \\ \emptyset & \text{altrimenti.} \end{array} \right.$$

Espressioni regolari e ASF

Per k > 1, se $x \in R_{ij}^{k+1}$ è una stringa che conduce da q_i a q_j senza transitare per nessuno stato q_h con $h \ge k+1$, possono verificarsi due casi:

- 1. x conduce da q_i a q_j senza transitare per q_k , dal che deriva che $x \in R^k_{ij}$.
- 2. x conduce da q_i a q_j transitando per q_k

Espressioni regolari e ASF

Nel secondo caso la sequenza degli stati attraversati può essere divisa in varie sottosequenze:

- 1. una prima sequenza, da q_i a q_k senza transitare per nessuno stato q_h con h > k, la corrispondente sottostringa di x appartiene quindi a R_{ik}^k ;
- 2. $r \ge 0$ sequenze, ognuna delle quali inizia e termina in q_k senza transitare per nessuno stato q_h con $h \ge k$, le corrispondenti sottostringhe di x appartengono quindi ciascuna a R_{kk}^k ;
- 3. una sequenza finale, da q_k a q_j senza transitare per nessuno stato q_h con $h \ge k$, la corrispondente sottostringa di x appartiene quindi a R_{kj}^k .

8

In conseguenza, ne deriva la relazione

$$R_{ij}^{k+1} = R_{ij}^k \cup R_{ik}^k \circ (R_{kk}^k)^* \circ R_{kj}^k$$

Espressioni regolari e ASF

Dalle osservazioni precedenti deriva che è possibile costruire tutti gli insiemi R_{ij}^k a partire da k=1 e derivando poi man mano i successivi.

Osserviamo anche che $L=R^n_{0(n-1)}$

Espressioni regolari e ASF

Ogni insieme di stringhe R_{ij}^k può essere descritto per mezzo di una opportuna espressione regolare r_{ij}^k , infatti abbiamo che, per k=1,

$$r^1_{ij} = \left\{ \begin{array}{cc} a_{i_1} + \ldots + a_{i_l} & \text{dove } \delta(q_i, a_{i_k}) = q_j, k = 1, \ldots, l; \\ \varepsilon & \text{se } l = 0. \end{array} \right.$$

Espressioni regolari e ASF

Per k>1, abbiamo che, dalla relazione tra R_{ij}^{k+1} , R_{ik}^k , R_{kk}^k e R_{kj}^k , deriva che

$$r_{ij}^{k+1} = r_{ij}^k + r_{ik}^k (r_{kk}^k)^* r_{kj}^k$$

Quindi, il linguaggio L sarà descritto dall'espressione regolare

$$r_{0(n-1)}^{n}$$

Espressioni regolari e ASF

Espressioni regolari e ASF

Assumiamo l'ordinamento $q_1=q_0, q_2=q_1, q_3=q_3, q_4=q_2$ tra gli stati. Allora:

$$\begin{split} r^0_{00} &= \emptyset; \ r^0_{01} = a; \ r^0_{02} = b; \ r^0_{03} = \emptyset; \\ r^0_{10} &= b; \ r^0_{11} = \emptyset; \ r^0_{12} = \emptyset; \ r^0_{13} = a; \\ r^0_{20} &= \emptyset; \ r^0_{21} = \emptyset; \ r^0_{22} = a + b; \ r^0_{23} = \emptyset; \\ r^0_{30} &= b; \ r^0_{31} = \emptyset; \ r^0_{32} = \emptyset; \ r^0_{33} = a; \end{split}$$

Espressioni regolari e ASF

$$\begin{split} r^1_{00} &= r^0_{00}(r^0_{00})^* r^0_{00} = \emptyset(\emptyset)^*\emptyset = \emptyset \\ r^1_{01} &= r^0_{00}(r^0_{00})^* r^0_{01} = \emptyset(\emptyset)^*a = a \\ r^1_{02} &= r^0_{00}(r^0_{00})^* r^0_{02} = \emptyset(\emptyset)^*b = b \\ r^1_{03} &= r^0_{00}(r^0_{00})^* r^0_{03} = \emptyset(\emptyset)^*\emptyset = \emptyset \\ r^1_{10} &= r^0_{10}(r^0_{00})^* r^0_{00} = b(\emptyset)^*\emptyset = b \\ r^1_{11} &= r^0_{10}(r^0_{00})^* r^0_{01} = b(\emptyset)^*a = ba \\ r^1_{12} &= r^0_{10}(r^0_{00})^* r^0_{02} = b(\emptyset)^*b = bb \\ r^1_{13} &= r^0_{10}(r^0_{00})^* r^0_{03} = b(\emptyset)^*\emptyset = b \\ & \dots \end{split}$$

Espressioni regolari e ASF

$$\begin{split} r^1_{00} &= \emptyset; \ r^1_{01} = a; \ r^1_{02} = b; \ r^1_{03} = \emptyset; \\ r^1_{10} &= b; \ r^1_{11} = ba; \ r^1_{12} = bb; \ r^1_{13} = b; \\ r^1_{20} &= \emptyset; \ r^1_{21} = \emptyset; \ r^1_{22} = a + b; \ r^1_{23} = \emptyset; \\ r^1_{30} &= b; \ r^1_{31} = ba; \ r^1_{32} = bb; \ r^1_{33} = a; \end{split}$$

Espressioni regolari e ASF

$$\begin{split} r_{00}^2 &= a(ba)^*b; \ r_{01}^2 = a + a(ba)^*ba; \ r_{02}^2 = b + a(ba)^*bb; \ r_{03}^2 = a(ba)^*a; \\ r_{10}^2 &= b + ba(ba)^*b; \ r_{11}^2 = ba + ba(ba)^*ba; \ r_{12}^2 = bb + ba(ba)^*bb; r_{13}^2 = a + ba(ba)^*a; \\ r_{20}^2 &= \emptyset; \ r_{21}^2 = \emptyset; \ r_{22}^2 = a + b; \ r_{23}^2 = \emptyset; \\ r_{30}^2 &= b + ba(ba)^*b; \ r_{31}^2 = ba + ba(ba)^*ba; \ r_{32}^2 = bb + ba(ba)^*bb; \ r_{33}^2 = a + ba(ba)^*a; \\ \text{Il linguaggio accettato dall'automa sarà descritto dall'espressione regolare} \end{split}$$

State elimination

 r_{03}^{4}

Procedura iterativa di eliminazione degli stati su un automa non deterministico *generalizzato* equivalente, in cui:

- 1. la funzione di transizione è definita su $Q \times E$, dove E è l'insieme delle espressioni regolari su Σ , per cui gli archi sono etichettati con e.r.
- 2. lo stato iniziale non ha archi entranti, per cui $\exists q \in Q, e \in E : q_0 \in \delta_N(q, e)$
- 3. esiste un solo stato finale q_F senza archi uscenti, per cui $\not\exists e \in E : \delta_N(q_F,e) \neq \emptyset$

State elimination

Dato un qualunque automa A non deterministico, un automa *generalizzato* A' equivalente può essere immediatamente ottenuto:

- 1. mantenendo gli stati di \mathcal{A}
- 2. introducendo, per ogni arco del grafo di transizione di A etichettato con l'insieme a_1, \ldots, a_k , un arco nel grafo di transizione di A' etichettato $a_1 + \ldots + a_k$
- 3. se lo stato iniziale q_0 di $\mathcal A$ ha archi entranti, introducendo in $\mathcal A'$ un nuovo stato iniziale $\overline q_0$ senza archi entranti, e la ε -transizione $\delta'_N(\overline q_0,\varepsilon)=\{q_0\}$
- 4. se esistono più stati finali in F, o se il solo stato finale ha archi uscenti, introducendo un ulteriore stato q_F , ponendo $F'=q_F$ e introducendo la ε -transizione $\delta'_N(q,\varepsilon)=\{q_F\}$ per ogni $q\in F$

State elimination

- Dato un automa nondeterministico (con ε -transizioni) $\mathcal A$ con insieme di stati Q, e dato uno stato q non iniziale né finale, è possibile ottenere un automa generalizzato equivalente $\mathcal A'$ con stati $Q-\{q\}$ effettuando una opportuna operazione di *eliminazione dello* stato
- L'eliminazione dello stato viene effettuata considerando tutti i possibili cammini di lunghezza 3 passanti per q (sequenze q_i, q, q_j per le quali esistono archi da q_i a q e da q a q_j)

- Per ogni cammino, le etichette degli archi interessati vengono modificate come mostrato di seguito
- Al termine, rimangono lo stato iniziale e quello finale, collegati da un arco, la cui etichetta fornisce l'espressione regolare cercata

State elimination

Da

а

State elimination

Le espressioni regolari risultanti possono comunque essere complesse

$$\overline{r}_{ii} = r_{ij}(r_{jj} + r_{jk}r_{kk}^*r_{kj})^*r_{ji} + r_{ij}(r_{jj} + r_{jk}r_{kk}^*r_{kj})^*r_{jk}r_{kk}^*r_{ki} + r_{ik}(r_{kj}r_{jj}^*r_{jk} + r_{kk})^*r_{kj}r_{jj}^*r_{ji} + r_{ik}r_{ki}$$

$$\overline{r}_{kk} = r_{kj}(r_{jj} + r_{kj}r_{ii}^*r_{ij})^*r_{jk} + r_{kj}(r_{jj} + r_{ji}r_{ii}^*r_{ij})^*r_{ji}r_{ii}^*r_{ik} + r_{ki}(r_{ij}r_{jj}^*r_{ji} + r_{ii})^*r_{ij}r_{jk}^*$$

$$\overline{r}_{ik} = r_{ik} + r_{ij}r_{jj}^*r_{jk}$$

$$\overline{r}_{ki} = r_{ki} + r_{kj}r_{jj}^*r_{jk}$$

In effetti, se esistono n cammini $q_iq_jq_h$ ($h=k_1,\ldots,k_n$), allora si ha che

$$\bar{r}_{ik} = r_{ik_1} + r_{ij}r_{ji}^*r_{jk_1} + r_{ik_2} + r_{ij}r_{ji}^*r_{jk_2} + \ldots + r_{ik_n} + r_{ij}r_{ji}^*r_{jk_n}$$

lo stesso, evidentemente, vale per \overline{r}_{ki}