- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B

- ullet Пусть B некоторое множество булевых функций
- \star $\langle B
 angle -$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle B \rangle \rangle = \langle B \rangle$ (идемпотентность)

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle -$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle \overrightarrow{B} \rangle \rangle = \langle \overrightarrow{B} \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle B \rangle \rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1)

- ullet Пусть B некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle\langle B \rangle\rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \lor, \land, + \in T_0; \quad 1, \bar{}, \sim, \downarrow \notin T_0; \quad 1, \lor, \land, \sim \in T_1; \quad 0, \bar{}, +, ' \notin T_1$

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle \langle B \rangle \rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система \Leftrightarrow $\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \lor, \land, + \in T_0$; $1, \bar{}, \sim, \downarrow \notin T_0$; $1, \lor, \land, \sim \in T_1$; $0, \bar{}, +, ' \notin T_1$

Лемма

 T_0 и T_1 — замкнутые классы.

- ullet Пусть B некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle\langle B \rangle\rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \lor, \land, + \in T_0$; $1, \bar{}, \sim, \downarrow \notin T_0$; $1, \lor, \land, \sim \in T_1$; $0, \bar{}, +, ' \notin T_1$

Лемма

 T_0 и T_1 — замкнутые классы.

Доказательство: рассмотрим формулу над T_0 , построим по ней схему

- если любому элементу схемы подать 0 на все входы, то на выходе у него будет 0
- подадим 0 на все входы схемы
- ⇒ на выходе схемы будет 0
- ⇒ функция, задаваемая схемой, принадлежит Т₀

- ullet Пусть B- некоторое множество булевых функций
- \star $\langle B
 angle$ множество функций, которые можно записать формулами над B
- \star $\langle \cdot \rangle$ оператор замыкания:
 - $B \subseteq \langle B \rangle$ (экстенсивность)
 - $A \subseteq B \Rightarrow \langle A \rangle \subseteq \langle B \rangle$ (монотонность)
 - $\langle\langle B \rangle\rangle = \langle B \rangle$ (идемпотентность)
- ullet В называется замкнутым классом (булевых функций), если $B=\langle B
 angle$
- \star B- полная система $\Leftrightarrow\langle B
 angle$ содержит все булевы функции
- ullet Б.ф. f сохраняет 0, если $f(ec{0})=0$, и сохраняет 1, если $f(ec{1})=1$
 - множество всех б.ф., сохраняющих 0 (сохраняющих 1) обозначается T_0 (T_1) примеры: $0, \vee, \wedge, + \in T_0$; $1, \bar{}, \sim, \downarrow \notin T_0$; $1, \vee, \wedge, \sim \in T_1$; $0, \bar{}, +, ' \notin T_1$

Лемма

 T_0 и T_1 — замкнутые классы.

Доказательство: рассмотрим формулу над T_0 , построим по ней схему

- если любому элементу схемы подать 0 на все входы, то на выходе у него будет 0
- подадим 0 на все входы схемы
- ⇒ на выходе схемы будет 0
- \Rightarrow функция, задаваемая схемой, принадлежит T_0
- для T_1 доказательство аналогично

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается L

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается **L** примеры: $0, \bar{}, +, \sim \in L; \quad \wedge, \vee, \to, \downarrow \notin L$

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается **L** примеры: $0, \bar{}, +, \sim \in L; \quad \wedge, \vee, \to, \downarrow \notin L$

Лемма

L — замкнутый класс.

- ullet Функция $f(x_1,\ldots,x_k)$ линейна, если ее полином Жегалкина линейный
 - ullet т.е. $f(x_1,\ldots,x_k)=a_0+a_1x_1+a_2x_2+\cdots a_kx_k$ для некоторых $a_0,\ldots,a_k\in\{0,1\}$
 - \star f обладает свойствами самой обычной линейной функции из курса алгебры
 - множество всех линейных б.ф. обозначается **L** примеры: $0, \bar{\ }, +, \sim \in L; \quad \land, \lor, \to, \downarrow \notin L$

Лемма

L — замкнутый класс.

Доказательство: рассмотрим формулу над L, построим по ней схему

- каждый элемент схемы вычисляет линейную функцию своих входов
- линейная функция от линейных функций переменных является линейной функцией этих переменных
- ⇒ вся схема вычисляет линейную функцию

Самодвойственные функции

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar x_1,\ldots,ar x_k)=\overline{f(x_1,\ldots,x_k)}$
 - ullet на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S**

Самодвойственные функции

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar x_1,\ldots,ar x_k)=\overline{f(x_1,\ldots,x_k)}$
 - ullet на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S** примеры: $\bar{\ }, x+y+z, T_2(x,y,z) \in {\bf S}; \ 0, \vee, \to, \downarrow \notin {\bf S}$

Самодвойственные функции

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar{x}_1,\ldots,ar{x}_k)=\overline{f(x_1,\ldots,x_k)}$
 - ullet на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S** примеры: $\vec{\ }, x+y+z, T_2(x,y,z) \in \mathbf{S}; \ 0, \lor, \to, \downarrow \notin \mathbf{S}$

Лемма

S — замкнутый класс.

Самодвойственные функции,

- ullet Функция $f(x_1,\ldots,x_k)$ самодвойственна, если $f(ar x_1,\ldots,ar x_k)=\overline{f(x_1,\ldots,x_k)}$
 - на противоположных наборах аргументов f принимает разные значения
 - множество всех самодвойственных б.ф. обозначается **S** примеры: $\bar{\ \ }, x+y+z, T_2(x,y,z) \in \mathbf{S}; \quad 0, \lor, \to, \downarrow \notin \mathbf{S}$

Лемма

S — замкнутый класс.

Доказательство: рассмотрим формулу над **S**, построим по ней схему

- подадим на входы произвольный битовый вектор
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на всех входах
- докажем, что бит на выходе каждого элемента поменялся индукцией по максимальной длине n пути от входа до элемента
- \bullet база индукции: n = 1
- входы элемента являются входами схемы, элемент задает функцию из S
- ⇒ выходной бит изменился, так как поменялись все входы
 - шаг индукции:
 - входами элемента являются либо входы схемы (поменялись по условию), либо выходы элементов с меньшей длиной пути (поменялись по предположению индукции)
- ⇒ выход элемента, задающего самодвойственную функцию, поменялся
- ⇒ в частности, поменялся выходной бит всей схемы
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет самодвойственную функцию

- Введем на битовых векторах равной длины покомпонентный порядок:

 - $(x_1,\ldots,x_k)\leqslant (y_1,\ldots,y_k)\Leftrightarrow x_1\leqslant y_1,\ldots,x_k\leqslant y_k$ диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $(x_1,\ldots,x_k) \leqslant (y_1,\ldots,y_k) \Leftrightarrow x_1 \leqslant y_1,\ldots,x_k \leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается М

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $(x_1, \ldots, x_k) \leqslant (y_1, \ldots, y_k) \Leftrightarrow x_1 \leqslant y_1, \ldots, x_k \leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается **М** примеры: $0, \vee, \wedge, T_i \in \mathbf{M}; +, \bar{}, \to, ' \notin \mathbf{M}$

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $(x_1, \ldots, x_k) \leqslant (y_1, \ldots, y_k) \Leftrightarrow x_1 \leqslant y_1, \ldots, x_k \leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается ${\bf M}$ примеры: $0, \vee, \wedge, T_i \in {\bf M}; +, \bar{}, \to, ' \notin {\bf M}$

Лемма

M — замкнутый класс.

- Введем на битовых векторах равной длины покомпонентный порядок:
 - $(x_1,\ldots,x_k) \leqslant (y_1,\ldots,y_k) \Leftrightarrow x_1 \leqslant y_1,\ldots,x_k \leqslant y_k$
 - ullet диаграмма Хассе ЧУМа $(\{0,1\}^k,\leqslant)-k$ -мерный куб
- ullet Функция $f(ec{x})$ монотонна, если $f(ec{x}) \leqslant f(ec{y})$ для любых $ec{x} \leqslant ec{y}$
 - если значения каких-то аргументов f увеличить (подняться вверх по кубу), то значение f не уменьшится
 - множество всех монотонных б.ф. обозначается **М** примеры: $0, \vee, \wedge, T_i \in \mathbf{M}; +, \bar{}, \to, ' \notin \mathbf{M}$

Лемма

М — замкнутый класс.

Доказательство: рассмотрим формулу над М, построим по ней схему

- ullet подадим на входы произвольный битовый вектор, не равный $ec{1}$
- \star на выходе каждого элемента схемы будет некоторый бит
- поменяем биты на некоторых входах с 0 на 1
- \star докажем, что ни у какого элемента выходной бит не поменялся с 1 на 0 индукцией по максимальной длине n пути от входа до элемента
- ! восстановите детали по аналогии с предыдущей леммой
- ⇒ выходной бит всей схемы не уменьшился
- ⇒ так как рассуждение верно для любого вектора на входе схемы, схема вычисляет монотонную функцию