Rank-65554 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(4) is 1431655854

General information

Number of lines	3
Number of points	21
Number of singular points	3
Number of Eckardt points	0
Number of double points	3
Number of single points	9
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$2^3, 1^9, 0^9$

Singular Points

The surface has 3 singular points:

$$\begin{array}{ll} 0: \ P_{12} = \mathbf{P}(1,1,1,0) = \mathbf{P}(1,1,1,0) \\ 1: \ P_{18} = \mathbf{P}(\omega^2,\omega,1,0) = \mathbf{P}(3,2,1,0) \end{array} \qquad \qquad 2: \ P_{21} = \mathbf{P}(\omega,\omega^2,1,0) = \mathbf{P}(2,3,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{109}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & \omega^2 & 0 \end{bmatrix}_{45} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{45} = \mathbf{Pl}(3, 0, 2, 0, 0, 1)_{118}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & \omega^2 & 0 \\ 0 & 1 & \omega & 0 \end{bmatrix}_{65} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{65} = \mathbf{Pl}(2, 0, 3, 0, 0, 1)_{124}$$

Rank of lines: (22, 45, 65)

Rank of points on Klein quadric: (109, 118, 124)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_{21} = (2, 3, 1, 0) = \ell_0 \cap \ell_1$$

 $P_{18} = (3, 2, 1, 0) = \ell_0 \cap \ell_2$

 $P_{12} = (1, 1, 1, 0) = \ell_1 \cap \ell_2$

5: $P_{10} = (3, 0, 1, 0)$ lies on line ℓ_1

6: $P_{11} = (0, 1, 1, 0)$ lies on line ℓ_0

7: $P_{15} = (0, 2, 1, 0)$ lies on line ℓ_1

8: $P_{19} = (0, 3, 1, 0)$ lies on line ℓ_2

Single Points

The surface has 9 single points:

The single points on the surface are:

$$0: P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0

 $1: P_6 = (2, 1, 0, 0)$ lies on line ℓ_1

 $2: P_7 = (3, 1, 0, 0)$ lies on line ℓ_2

 $3: P_8 = (1,0,1,0)$ lies on line ℓ_0

4: $P_9 = (2, 0, 1, 0)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 9 points not on any line:

The points on the surface but not on lines are:

$$0: P_{23} = (1,0,0,1)$$

$$1: P_{24} = (2,0,0,1)$$

$$2: P_{25} = (3,0,0,1)$$

$$3: P_{26} = (0, 1, 0, 1)$$

4:
$$P_{30} = (0, 2, 0, 1)$$

$$5: P_{34} = (0, 3, 0, 1)$$

$$6: P_{38} = (0, 0, 1, 1)$$

7:
$$P_{53} = (0, 0, 2, 1)$$

$$8: P_{69} = (0, 0, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0 \ 1 \ 2 \\ \hline 0 & 0 \ 1 \ 1 \\ 1 & 1 \ 0 \ 1 \\ 2 & 1 \ 1 \ 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{21}	P_{18}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{21}	P_{12}

Line 2 intersects

Li	ne	ℓ_0	ℓ_1
in poi	$_{ m nt}$	P_{18}	P_{12}

The surface has 21 points:

The points on the surface are:

$0: P_5 = (1, 1, 0, 0)$	$8: P_{15} = (0, 2, 1, 0)$	16: $P_{30} = (0, 2, 0, 1)$
$1: P_6 = (2, 1, 0, 0)$	$9: P_{18} = (3, 2, 1, 0)$	17: $P_{34} = (0, 3, 0, 1)$
$2: P_7 = (3, 1, 0, 0)$	$10: P_{19} = (0, 3, 1, 0)$	18: $P_{38} = (0, 0, 1, 1)$
$3: P_8 = (1,0,1,0)$	$11: P_{21} = (2, 3, 1, 0)$	19: $P_{53} = (0, 0, 2, 1)$
$4: P_9 = (2, 0, 1, 0)$	$12: P_{23} = (1,0,0,1)$	$20: P_{69} = (0,0,3,1)$
$5: P_{10} = (3, 0, 1, 0)$	13: $P_{24} = (2,0,0,1)$,
$6: P_{11} = (0, 1, 1, 0)$	$14: P_{25} = (3,0,0,1)$	
$7: P_{12} = (1, 1, 1, 0)$	15: $P_{26} = (0, 1, 0, 1)$	