

Recycling robot example (from Sutton, page 42) References:

• Gym documentation: https://gym.openai.com/

```
In [0]:
```

```
import numpy as np
from gym.envs.toy_text import discrete
import random
import matplotlib.pyplot as plt
```

Gym provides an environment to compare reinforcement learning algorithms. We provide the code and it provides the game and visualizations.

Consider the robot model described in Barto and Sutton Example 3.2

```
In [0]:
```

```
states = ["high", "low"]
actions = ["wait", "search", "recharge"]
P = \{ \}
P[0] = \{\}
P[1] = {}
alpha = 1
beta = 1
r wait = 0.5
r_search = 2.0
# We define a discrete environment with the corresponding transitions
def generar_ambiente(alpha=alpha, beta=beta, r_wait=r_wait, r_search=r_wait):
    P[0][0] = [(1.0, 0, r_wait, False)]
    P[0][1] = [(alpha, 0, r_search, False),
               (1-alpha, 1, r_search, False)]
    P[0][2] = [(1,0,0,False)]
    P[1][0] = [(1.0, 1, r wait, False)]
    P[1][1] = [(beta, 1, r_search, False),
               (1-beta, 0, -3.0, False)]
    P[1][2] = [(1.0, 0, 0.0, False)]
    env = discrete.DiscreteEnv(2, 3, P, [0.0, 1.0])
    return (env)
env = generar ambiente()
```

Implement the random strategy for 20 steps

Define a random action and see what reward it produces

```
In [0]:
```

```
def random_action(states, actions):
   return np.random.randint(0,len(actions))
```

```
In [0]:
```

```
def train(env,epoch,prefix=''):
```

```
reward_niscory = [[] ror _ in range(epoch)]
   for e in range(1,epoch+1):
        # At each epoch, we restart to a fresh game and get the initial state
       state = env.reset()
        # This assumes that the games will terminate
       game over = False
       idx = 0
       while idx <20 and not game over:</pre>
            # The agent performs an action
            action = random_action(states, actions)
            # Apply an action to the environment, get the next state, the reward
            # and if the games end
            state, reward, game over, info = env.step(action)
            reward history[e-1].append(reward)
            idx += 1
       print("Epoch {:03d}/{:03d} | Global_reward {:.4f}".format(e, epoch,
sum(reward history[e-1])))
   return reward history
```

In [5]:

```
reward_history = train(env,10)

Epoch 001/010 | Global_reward 7.5000
Epoch 002/010 | Global_reward 7.0000
Epoch 003/010 | Global_reward 6.0000
Epoch 004/010 | Global_reward 8.0000
Epoch 005/010 | Global_reward 4.5000
Epoch 006/010 | Global_reward 5.0000
Epoch 007/010 | Global_reward 4.5000
Epoch 007/010 | Global_reward 4.5000
Epoch 008/010 | Global_reward 7.0000
Epoch 009/010 | Global_reward 6.0000
Epoch 009/010 | Global_reward 8.0000
```

Plot the global reward

```
In [6]:
```

```
fg, ax = plt.subplots(2, 5, figsize=(18,6))
for idx, hist in enumerate(reward_history):
    ax[idx//5][idx%5].plot(range(len(hist)), hist)
    ax[idx//5][idx%5].set_title('Run #{}'.format(idx))
plt.show()

print('-'*125)

fg, ax = plt.subplots(2, 5, figsize=(18,6))
for idx, hist in enumerate(reward_history):
    cumulative_hist = [sum(hist[:k+1]) for k in range(len(hist))]
    ax[idx//5][idx%5].plot(range(len(hist)), cumulative_hist)
    ax[idx//5][idx%5].set_title('Run #{} - Cumulative Reward'.format(idx))
plt.show()
```


Compute theoretically the optimal value function for each state

It appears that:

- when at state 0,
 - action 0 -> stay at 0 and reward=0.5
 - action 1 -> stay at 0 and reward=0.5
 - action 2 -> stay at 0 and reward=0
- when at state 1.
 - action 0 -> stay at 1 and reward=0.5
 - action 1 -> stay at 1 and reward=0.5
 - action 2 -> move to 0 and reward=0

We have the following equation systems:

 $\gamma = 10, 1)$, the $\pi = 2$ case must be excluded.

Solving the system yields, for each case:

```
\ \begin{align*} \text{ Case 1: } \quad \pi(0|0) = 1 ; \quad \pi(0|1) = 1 :\\ & V^{*}(0) = \frac{r_{wait}}{1 - \gamma} \ & V^{*}(1) = \frac{r_{wait}}{1 - \gamma} \
```

```
\begin{align*} $\ \prooteman{10} = 1 ; \quad \pi^*(0|1) = 1 : \\ \prooteman{10} = 1 : \\ \prootem
```

```
\begin{align*} \text{$ \operatorname{case 3:} \quad \pi^* \leq 3:} \quad \pi^* (1-\beta)^* (1-\beta
```

```
\label{thm:control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_control_c
```

Implement Value Iteration

Evaluate the optimal value function given a full description of the environment dynamics

```
In [0]:
```

```
def evaluate value func(env, theta, discount factor, max itr=10 000):
    Args:
        env: OpenAI env. env.P represents the transition probabilities of the environment.
            env.P[s][a] is a list of transition tuples (prob, next state, reward, done).
            env.nS is a number of states in the environment.
            env.nA is a number of actions in the environment.
        theta: We stop evaluation once our value function change is less than theta for all
states.
        discount factor: Gamma discount factor.
       max itr: Maximum number of iterations in the fixed-point equation resolution
       Vector of length env.nS representing the value function.
    n states = env.nS
    n actions = env.nA
    Vn = np.zeros((n states,))
    Vnp1 = np.inf * np.ones((n_states,))
    itr = 0
    converged = False
    while not converged and itr < max itr:
        for state in range(n_states):
            best = -np.inf
            for action in range (n actions):
                transitions = env.P[state][action]
                for prob, next state, reward, in transitions:
                   value += prob*(reward + discount factor * Vn[next state])
                if value > best:
                   best = value
            Vnp1[state] = best
        converged = np.absolute(Vn - Vnp1).max() < theta</pre>
        Vn = Vnp1
       itr += 1
    return Vnp1
```

```
In [19]:
```

```
env = generar_ambiente()
value_func = evaluate_value_func(env, theta=0.001, discount_factor=0.9)
print("Found V = ", value_func)

Found V = [0.95 0.95]

In [20]:

policy = []
for state in range(env.ns):
    possible_rewards = []
    best_reward = 0
    for action in range(env.ns):
```

```
future = env.P[state] [action]
  rewards = [future[idx][0]*future[idx][2] for idx in range(len(future))]
  future_rewards = [future[idx][0]*V[future[idx][1]] for idx in range(len(future))]
  action_reward = sum(rewards) + discount_factor*sum(future_rewards)

if action_reward > best_reward:
  best_reward = action_reward
  best_action = action

policy.append(best_action)
print('Best_associated policy : {}'.format(policy))
Best associated policy : [0, 0]
```

Implement policy iteration

Then an policy optimisation function,

```
Evaluate a policy given an environment and a full description of the environment's dynamics.
```

```
Args:
    policy: [S, A] shaped matrix representing the policy.
    env: OpenAI env. env.P represents the transition probabilities of the environment.
        env.P[s][a] is a list of transition tuples (prob, next_state, reward, done).
        env.nS is a number of states in the environment.
        env.nA is a number of actions in the environment.
        theta: We stop evaluation once our value function change is less than theta for all states.
        discount_factor: Gamma discount factor.

Returns:
        Vector of length env.nS representing the value function.
```

Despues una funcion de optimisacion de la politica:

```
Policy Improvement Algorithm. Iteratively evaluates and improves a policy until an optimal policy is found.

Args:
    env: The OpenAI envrionment.
    policy_eval_fn: Policy Evaluation function that takes 3 arguments:
        policy, env, discount_factor.
    discount_factor: gamma discount factor.

Returns:
    A tuple (policy, V).
    policy is the optimal policy, a matrix of shape [S, A] where each state s contains a valid probability distribution over actions.
    V is the value function for the optimal policy.
```

In [0]:

```
def evaluate_policy(policy, env, theta, discount_factor, max_itr=10_000):
    """

Args:
    policy: [S, A] shaped matrix representing the policy.
    env: OpenAI env. env.P represents the transition probabilities of the environment.
        env.P[s][a] is a list of transition tuples (prob, next_state, reward, done).
        env.nS is a number of states in the environment.
        env.nA is a number of actions in the environment.
        theta: We stop evaluation once our value function change is less than theta for all states.
        discount_factor: Gamma discount factor.
        max_itr: Maximum number of iterations

Returns:
    Vector of length env.nS representing the value function.
```

```
vector or rengen envine representing one varue randeren.
    .....
    n states = env.nS
    n actions = env.nA
    Vn = np.zeros((n states,))
    Vnp1 = np.inf * np.ones((n states,))
    itr = 0
    converged = False
    while not converged and itr < max itr:</pre>
        for state in range(n states):
            policy value = 0
            for action in range (n actions):
                transitions = env.P[state][action]
                for prob, next_state, reward, \_ in transitions:
                    policy value += policy[state][action] * prob * (reward + discount factor * Vn[n]
xt_state])
            Vnp1[state] = policy value
        converged = np.absolute(Vn - Vnp1).max() < theta</pre>
        Vn = Vnp1
        itr += 1
    return Vnp1
```

In [0]:

```
from scipy.special import softmax
def policy_improvement(env, start_policy, policy_eval_fn=evaluate_policy, theta=.01, discount_facto
r=0.99,
                       hard thresholding=False, max itr=1000):
    Policy Improvement Algorithm. Iteratively evaluates and improves a policy
   until an optimal policy is found.
   Aras:
       env: The OpenAI envrionment.
        start policy: matrix of shape [S, A] representing a valid policy
       policy eval fn: Policy Evaluation function that takes 3 arguments:
           policy, env, discount factor.
       discount_factor: gamma discount factor.
       hard_thresholding: boolean, set to True to enforce deterministic policies.
       max itr: Maximum number of iterations
   Returns:
       A tuple (policy, V).
       policy is the optimal policy, a matrix of shape [S,\ A] where each state s
        contains a valid probability distribution over actions.
        V is the value function for the optimal policy.
   n states = env.nS
   n actions = env.nA
   env.reset()
   pn = start policy
   Vn = policy eval fn(pn, env, theta, discount factor)
   itr = 0
   converged = False
   while not converged and itr < max itr:</pre>
       rewards = []
       for state in range(n states):
            rewards.append([])
            for action in range(n actions):
               rewards[state].append(0)
                transitions = env.P[state][action]
                for prob, next_state, reward, _ in transitions:
                    rewards[state][action] += prob* (reward + discount factor * Vn[next state])
        if not hard_thresholding:
           pnp1 = softmax(np.array(rewards), axis=1)
        else:
            pnp1 = np.zeros(pn.shape)
            best action = np.argmax(np.array(rewards), axis=1)
            for state in range (n states).
```

```
TOT scace In range (n_scaces) .
            pnp1[state, best_action[state]] = 1.0
   Vnp1 = policy_eval_fn(pnp1, env, theta, discount_factor)
    converged = np.absolute(Vn - Vnp1).max() < theta</pre>
    Vn = Vnp1
    pn = pnp1
   itr += 1
return (pn, Vn)
```

```
In [23]:
max iter = 100
theta = 1e-4
discount factor = 0.99
policy = np.array([[1., 0., 0.],
                   [1., 0., 0.]])
env = generar ambiente()
value func = evaluate policy(policy, env, theta=theta, discount factor=discount factor, max itr=max
iter)
print("Start policy:")
print("{}".format(policy))
print("Value function = ", value func)
print()
new_policy, new_value_func = policy_improvement(env, policy, theta=theta, discount_factor=discount_
factor, max_itr=max_iter)
print("Improved policy (softmax):")
print("{}".format(new_policy))
print("Value function = ", new value func)
new_policy, new_value_func = policy_improvement(env, policy, theta=theta, discount_factor=discount_
factor, max itr=max iter,
                                                hard thresholding = True)
print("Improved policy (hard thresholding):")
print("{}".format(new policy))
print("Value function = ", new value func)
Start policy:
[[1. 0. 0.]
 [1. 0. 0.]]
Value function = [0.995 \ 0.995]
Improved policy (softmax):
[[0.38365173 0.38365173 0.23269654]
 [0.39191142 0.39191142 0.21617717]]
Value function = [0.76346695 \ 0.85942232]
Improved policy (hard thresholding):
[[1. 0. 0.]
 [1. 0. 0.]]
Value function = [0.995 \ 0.995]
```

Using the 3 algorithms do the following experiments

```
In [0]:
exp1 = generar ambiente(alpha=0.9, beta=0.9, r search=3, r wait=2)
exp2 = generar ambiente(alpha=0.8, beta=0.5, r search=3, r wait=2)
exp3 = generar ambiente(alpha=0.5, beta=0.5, r search=3, r wait=2)
exp4 = generar_ambiente(alpha=0.9, beta=0.6, r_search=1, r_wait=0.9)
exp5 = generar_ambiente(alpha=0.9, beta=0.6, r_search=1, r_wait=0.5)
```

Compare the different strategies with the random one

```
max iter = 100
theta = 1e-6
discount factor = 0.99
random policy = np.array([[1/3, 1/3, 1/3],
                          [1/3, 1/3, 1/3]])
for i, exp in enumerate([exp1, exp2, exp3, exp4, exp5]):
   print("-"*20)
    print("[Experience # {}]".format(i+1))
   optimal value func = evaluate value func(exp, theta=theta, discount factor=discount factor, max
itr=max iter)
   random value func = evaluate policy(random policy, exp, theta=theta, discount factor=discount f
actor, max itr=max iter)
    print("- Optimal value func:")
    for n s, name in enumerate(states):
       print("
                 start = {}: \t{}".format(name.upper(), optimal_value_func[n_s]))
    print()
    print("- Value func for random policy:")
    for n s, name in enumerate(states):
       print("
                 start = {}: \tag{}".format(name.upper(), random_value_func[n_s]))
    print()
    improved_policy, improved_value_func = policy_improvement(exp, random_policy,
                                                              theta=theta.
discount factor=discount factor,
                                                              max itr=max iter)
   print("- Improved policy (softmax):")
   print(improved policy)
   print()
    print("- Value func for this policy:")
    for n s, name in enumerate(states):
                 start = {}: \t{}".format(name.upper(), improved value func[n s]))
       print("
    print()
    improved policy, improved value func = policy improvement(exp, random policy,
                                                              theta=theta,
discount factor=discount factor,
                                                             max itr=max iter,
                                                             hard_thresholding=True)
   print("- Improved policy (hard thresholding):")
    print(improved policy)
   print()
    print("- Value func for this policy:")
    for n s, name in enumerate(states):
       print("
                  start = {}: \t{}".format(name.upper(), improved value func[n s]))
    print()
4
_____
[Experience # 1]
- Optimal value func:
   start = HIGH: 1.9405
   start = LOW: 1.921094999999998
- Value func for random policy:
   start = HIGH: 0.9774
   start = LOW: 0.4006254666666665
- Improved policy (softmax):
[[0.31492907 0.4940568 0.19101413]
[0.41613765 0.16898396 0.41487839]]
- Value func for this policy:
   start = HIGH: 1.269878303121338
   start = LOW: 0.7678893223865249
- Improved policy (hard thresholding):
```

[[0. 1. 0.]

```
[1. 0. 0.]]
- Value func for this policy:
   start = HIGH: 1.9405
   start = LOW: 0.995
[Experience # 2]
- Optimal value func:
   start = HIGH: 1.9405
   start = LOW: 1.921094999999998
- Value func for random policy:
   start = HIGH: 0.9774
   start = LOW: 0.40062546666666665
- Improved policy (softmax):
[[0.31492907 0.4940568 0.19101413]
 [0.41613765 0.16898396 0.41487839]]
- Value func for this policy:
   start = HIGH: 1.269878303121338
   start = LOW: 0.7678893223865249
- Improved policy (hard thresholding):
[[0. 1. 0.]
 [1. 0. 0.]]
- Value func for this policy:
   start = HIGH: 1.9405
   start = LOW: 0.995
[Experience # 3]
- Optimal value func:
   start = HIGH: 1.9405
   start = LOW: 1.9210949999999998
- Value func for random policy:
   start = HIGH: 0.9774
   start = LOW: 0.4006254666666665
- Improved policy (softmax):
[[0.31492907 0.4940568 0.19101413]
 [0.41613765 0.16898396 0.41487839]]
- Value func for this policy:
   start = HIGH: 1.269878303121338
   start = LOW: 0.7678893223865249
- Improved policy (hard thresholding):
[[0. 1. 0.]
[1. 0. 0.]]
- Value func for this policy:
   start = HIGH: 1.9405
   start = LOW: 0.995
______
[Experience # 4]
- Optimal value func:
   start = HIGH: 1.9405
   start = LOW: 1.921094999999998
- Value func for random policy:
   start = HIGH: 0.9774
   start = LOW: 0.40062546666666665
- Improved policy (softmax):
[[0.31492907 0.4940568 0.19101413]
 [0.41613765 0.16898396 0.41487839]]
- Value func for this policy:
   start = HIGH: 1.269878303121338
   start = LOW: 0.7678893223865249
```

- Improved policy (hard thresholding):

```
[1. 0. 0.]
- Value func for this policy:
   start = HIGH: 1.9405
    start = LOW: 0.995
[Experience # 5]
- Optimal value func:
   start = HIGH: 1.9405
    start = LOW: 1.921094999999998
- Value func for random policy:
   start = HIGH: 0.9774
    start = LOW: 0.4006254666666665
- Improved policy (softmax):
[[0.31492907 0.4940568 0.19101413]
 [0.41613765 0.16898396 0.41487839]]
- Value func for this policy:
   start = HIGH: 1.269878303121338
start = LOW: 0.7678893223865249
- Improved policy (hard thresholding):
[[0. 1. 0.]
 [1. 0. 0.]]
- Value func for this policy:
   start = HIGH: 1.9405
    start = LOW: 0.995
In [0]:
```