Deep Learning - CNN

Classification Retrieval

[Krizhevsky 2012]

Detection

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Segmentation

[Farabet et al., 2012]

NVIDIA Tegra X1

self-driving cars

TIVIDIA

[Toshev, Szegedy 2014]

[Mnih 2013]

Unrelated to the image

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A skateboarder does a trick on a ramp.

A dog is jumping to catch a frisbee.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A refrigerator filled with lots of food and drinks.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

A yellow school bus parked in a parking lot.

[Vinyals et al., 2015]

Redes Neuronales Convolucionales

- 1. Clasificando imágenes
- 2. Capas Densas (Fully connected)
- 3. Convoluciones
- 4. Convolutional Neural Network (CNN)
- 5. Regularización
- 6. Transfer Learning

Parte 1:

Clasificando imágenes

Clasificando imágenes

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

ImageNet Top 5 Error Rate

Clasificando imágenes

Parte 2:

Capas Densas (Fully connected)

???

Cat!

???

Cat!

[32x32x3] array of numbers 0...1 (3072 numbers total) **10** numbers, indicating class score

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0] dog cat ship (one hot encoding)

Parametric approach

image weights f(x, W)

10 numbers, indicating class scores

[10x1]

[32x32x3] array of numbers 0...1 (3072 numbers total) [3072x1]

image weights $f(\mathbf{x}, \mathbf{W})$ f(x, W) = Wx

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total) [3072x1] [10x1]

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Softmax Classifier (Multinomial Logistic Regression)

$$(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat

car 5.

frog -1.

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

unnormalized log probabilities

probabilities

¿Cómo evaluamos el resultado?

cat

dog

ship

Cross Entropy (Loss Function)

$$L = -\sum p(x) \log q(x)$$

Cross Entropy (Loss Function)

Cross Entropy (Loss Function)

$$L = -\sum p(x) \log q(x)$$

$$L = -log(0.13)$$

 $L = 0.89$

Problem: MNIST


```
model = Sequential()
model.add(Dense(200, activation='relu', input_shape=(784,)))
model.add(Dense(10, activation='softmax'))

Solo la 1era
capa necesita
input shape
```

Parte 3:

Convoluciones

1,	1,0	1,	0	0
0,0	1,1	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

П	Υ	เล	g	ρ
•		_	σ'	_

1	0	1
0	1	0
1	0	1

Kernel

4		- 10
	10 00 10 00	- 6
	V 00	- 20

Convolved Feature

original

filter (3 x 3)

identity

0	0	0
0	1	0
0	0	0

original filter (5 x 5)

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

blur

original

filter (5 x 5)

sharpen

0	0	0	0	0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

original

filter (3 x 3)

vertical edge detector

Parte 4:

Convolutional Neural Network (CNN)

Convolutional Neural Networks

32x32x3 image

32x32x3 image

5x5x3 filter

32x32x3 image

5x5x3 filter

activation map

Un segundo kernel

Si tenemos 6 filtros, el resultado tendría la forma: 28x28x6

Convolution Layer

- Kernel size = 5
- # kernels = 6
- padding = 0

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

=> 5x5 output

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

7x7 output!

Pooling layer

MAX POOLING

Single depth slice

8 3 3

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Networks

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Parte 5:

Regularización

Todas las activaciones = 0

Situación ideal

¿Cómo?

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift by Sergey loffe, Christian Szegedy 2015

Situación ideal

¿Cómo? Normalizamos las activaciones de cada capa.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift by Sergey loffe, Christian Szegedy 2015

Normalizamos las activaciones:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathrm{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

Normalizamos las activaciones:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

2. Mitigamos el efecto de la normalización:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

Es posible que la red aprenda los valores::

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

Dropout

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

Dropout: A Simple Way to Prevent Neural Networks from Overfitting by Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov 2014

Dropout

Dropout

Se puede interpretar dropout como un ensemble.

La red va a observar un conjunto distinto de características en cada batch de entrenamiento.

Y para hacer las predicciones se usan todas las características.