Problema 1

En la progresión aritmética:

- (a) ¿Cuántos términos se deberán sumar para obtener suma 2496?
- (b) Calcule el término a_{200} y la suma S_{200}

Problema 2

En una progresión geométrica (con razón positiva) se sabe que:

$$\begin{cases} a_1 + a_2 = \frac{16}{3} \\ a_3 = \frac{4}{9} \end{cases}$$

Calcule a_5 y S_5 mediante la correspondiente fórmula.

Problema 3

Resolver en $[0, 2\pi)$ la siguiente ecuación trigonométrica:

$$sen(2x) = \sqrt{2} \cdot cos(x)$$

Problems 1:
$$a_1=5$$
 $J=2$
 $S_n = \frac{n(a_1+a_n)}{2}$ pero $a_n = a_n$

Resurptozondo: $S_n = \frac{n(a_1+a_1+(n-1)d)}{2}$
 $S_n = \frac{n(2a_1+(n-1)d)}{2}$
 $S_n = \frac{n(2a_1+(n-1)d)}{2}$
 $a_1 = \frac{n(2a_1+(n-1)d)}{2}$
 $a_2 = \frac{n(2a_1+(n-1)d)}{2}$
 $a_3 = \frac{n(2a_1+(n-1)d)}{2}$
 $a_4 =$

(b)
$$a_{200} = 5 + 199.2 = 403$$

 $S_{200} = \frac{200(5 + 403)}{2} = 40800$

Problema 3:

$$sen(2x) = \sqrt{2} \cdot cos(x)$$

$$2 \cdot sen(x) \cdot cos(x) = \sqrt{2} \cdot cos(x)$$

$$2 \cdot sen(x) \cdot cos(x) - \sqrt{2} \cdot cos(x) = 0$$

$$(2 \cdot sen(x) - \sqrt{2}) \cdot cos(x) = 0$$

Trabajando el primer factor:

$$2 \cdot \operatorname{sen}(x) - \sqrt{2} = 0$$
$$\operatorname{sen}(x) = \frac{\sqrt{2}}{2}$$

observando la circunferencia unitaria obtenemos las 2 primeras soluciones:

$$x_1 = \frac{\pi}{4} \text{ y } x_2 = \frac{3\pi}{4}$$

Trabajando el segundo factor:

$$cos(x) = 0$$

nos entrega 2 soluciones más:

$$x_3 = \frac{\pi}{2} \text{ y } x_4 = \frac{3\pi}{2}$$

En resumen, la ecuación tiene 4 soluciones en $[0, 2\pi)$:

$$x_1 = \frac{\pi}{4}$$

$$x_2 = \frac{3\pi}{4}$$

$$x_3 = \frac{\pi}{2}$$

$$x_4 = \frac{3\pi}{2}$$