Observations for Maximization of *f***-divergences:**

Optimization Perspective

Sihui Wang

1. Calculations of the gradients of the matrix functions:

1) Calculation of $\frac{\partial \log |A\Sigma A^T|}{\partial A}$:

What we want is
$$\frac{\partial \log |A\Sigma A^{T}|}{\partial A}$$
. Since $\frac{\partial \log |A\Sigma A^{T}|}{\partial A} = \frac{\partial \log |A\Sigma A^{T}|}{\partial |A\Sigma A^{T}|} \cdot \frac{\partial |A\Sigma A^{T}|}{\partial A} = \frac{1}{|A\Sigma A^{T}|} \frac{\partial |A\Sigma A^{T}|}{\partial A}$, the core

task is to compute $\frac{\partial |A\Sigma A^{T}|}{\partial A}$.

So, let's find out what impact a small perturbation on the element at *i*-th row, *j*-th column of A will have on $|A\Sigma A^T|$.

We have:

$$(A + tE_{ij})\Sigma(A + tE_{ij})^{T} = A\Sigma A^{T} + tA\Sigma E_{ij}^{T} + tE_{ij}\Sigma A^{T} + t^{2}E_{ij}\Sigma E_{ij}^{T}$$

$$= A\Sigma A^{T} + t(0 \quad col_{j}(A\Sigma) \quad 0) + t\begin{pmatrix} 0 \\ row_{j}(\Sigma A^{T}) \end{pmatrix} + t^{2}E_{ij}\Sigma E_{ij}^{T}$$

$$= th column$$

$$Assume \quad A\Sigma = \begin{pmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{r1} & \cdots & y_{rn} \end{pmatrix}, \text{ also notice that } \Sigma \text{ is symmetric, so } row_{j}(\Sigma A^{T}) = th$$

$$\begin{bmatrix} col_{j}(A\Sigma) \end{bmatrix}^{T}$$
, and we have:
$$(A + tE_{ij})\Sigma(A + tE_{ij})^{T} = A\Sigma A^{T} + t \begin{pmatrix} 0 & \cdots & y_{1j} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ y_{1j} & \cdots & 2y_{jj} & \cdots & y_{rj} \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & y_{ri} & \cdots & 0 \end{pmatrix} + O(t^{2})$$
i-th row

Suppose $|(A + tE_{ij})\Sigma(A + tE_{ij})^T| = C_0 + C_1t + O(t^2)$. Now we want to decide C_0 and C_1 .

Recalling the formula for calculation of determinants:

$$|D| = \sum (-1)^{\tau(i_1 i_2 i_3 \dots i_n)} d_{1i_1} d_{2i_2} d_{3i_3} \dots d_{ni_n}$$

So, each time we choose the i_k -th element in the k-th row of $D(1 \le k \le n)$ and make sure that $i_1, ..., i_n$ are mutually different. We multiply these factors together with a coefficient +1 or -1 to get one term in |D|. Taking the sum of all those terms, we get the determinant of D.

So, C_0 is the sum of those terms in $(A + tE_{ij})\Sigma(A + tE_{ij})^T$ that are free from t. It can be deduced that in fact $C_0 = |A\Sigma A^T|$.

Then let us find out what C_1 is. For example, if we choose y_{1i} at the 1-st row, i-th column

of $(A + tE_{ij})\Sigma(A + tE_{ij})^T$, then, to make a term of order t, all the remaining factors should be outside 1-st row or i-th column, and they should be free from t. It can be deduced that the sum of all those terms is Z_{1i} . Here, $Z = A\Sigma A^T$ and Z_{ij} is the algebraic cofactor of Z.

So, we find out that in C_1t there is a term $y_{1j}Z_{1i}$ as one of the components. Following the same deduction, and taking the fact that Z is symmetric into consideration, eventually we have:

$$C_1 t = 2 \operatorname{row}_i(Z^{*T}) \operatorname{col}_j(A\Sigma) t$$

Where
$$Z^* = \begin{pmatrix} Z_{11} & \cdots & Z_{r1} \\ \vdots & \ddots & \vdots \\ Z_{1r} & \cdots & Z_{rr} \end{pmatrix}$$
 is the adjugate matrix of Z .

To compute the derivate of 1-st order, we can disregard the $O(t^2)$ terms in $|(A + tE_{ij})\Sigma(A + tE_{ij})^T|$. Hence we have:

$$\frac{\partial \left| A \Sigma A^{T} \right|}{\partial a_{ij}} = \lim_{t \to 0} \frac{\left| \left(A + t E_{ij} \right) \Sigma \left(A + t E_{ij} \right)^{T} \right| - \left| A \Sigma A^{T} \right|}{t} = \lim_{t \to 0} \frac{C_{1} t + O(t^{2})}{t} = C_{1}$$
$$= 2 row_{i} (Z^{*T}) col_{i} (A \Sigma)$$

So we have:

$$\frac{\partial \left| \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}} \right|}{\partial A} = 2 Z^{*T} A \mathbf{\Sigma}$$

As $Z^{-1} = \frac{1}{|Z|}Z^*$, we have:

$$\frac{\partial \left| \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}} \right|}{\partial A} = 2 |Z| Z^{-T} A \mathbf{\Sigma}$$

Since $Z = A\Sigma A^T$ is symmetric, we have $Z^{-1} = Z^{-T}$ and:

$$\frac{\partial \left| \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}} \right|}{\partial A} = 2 \left| \mathbf{A} \mathbf{\Sigma} \mathbf{A}^{\mathrm{T}} \right| (A \mathbf{\Sigma} A^{\mathrm{T}})^{-1} A \mathbf{\Sigma}$$

So finally we have:

$$\frac{\partial \log |\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}|}{\partial \mathsf{A}} = \frac{\partial \log |\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}|}{\partial |\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}|} \cdot \frac{\partial \left|\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}\right|}{\partial \mathsf{A}} = \frac{1}{|\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}|} \frac{\partial \left|\mathsf{A}\Sigma\mathsf{A}^{\mathrm{T}}\right|}{\partial \mathsf{A}} = 2(\mathsf{A}\Sigma\mathsf{A}^{\mathsf{T}})^{-1} \mathsf{A}\Sigma$$

2) Calculation of $\frac{\partial \text{tr}[(A\Sigma_1A^T)^{-1}(A\Sigma_2A^T)]}{\partial A}$:

We can follow similar ideas to calculate $\operatorname{tr}[\left((A+tE_{ij})\Sigma_1(A+tE_{ij})^T\right)^{-1}(A+tE_{ij})\Sigma_2(A+tE_{ij})^T]$.

$$\left((A + tE_{ij}) \Sigma_1 (A + tE_{ij})^T \right)^{-1} = \left[A \Sigma_1 A^T + t \left(A \Sigma_1 E_{ij}^T + E_{ij} \Sigma_1 A^T \right) + O(t^2) \right]^{-1}$$

According to theorems in functional analysis, if *T* is invertible and $||\Delta T||$ is sufficiently small, then $S = T + \Delta T$ is also invertible:

$$S^{-1} = \sum_{k=0}^{\infty} (-1)^k T^{-1} (T^{-1} \Delta T)^k$$

So, if t is sufficiently small, then $(A + tE_{ij})\Sigma_1(A + tE_{ij})^T$ is invertible. In our case, T =

 $A\Sigma_1 A^T$ and $\Delta T = t(A\Sigma_1 E_{ij}^T + E_{ij}\Sigma_1 A^T) + O(t^2)$, hence we have:

$$\left(\left(A + t E_{ij} \right) \Sigma_1 \left(A + t E_{ij} \right)^T \right)^{-1} = (A \Sigma_1 A^T)^{-1} - t (A \Sigma_1 A^T)^{-2} \left(A \Sigma_1 E_{ij}^T + E_{ij} \Sigma_1 A^T \right) + O(t^2)$$

$$(A + tE_{ij})\Sigma_2(A + tE_{ij})^T = A\Sigma_2A^T + t(A\Sigma_2E_{ij}^T + E_{ij}\Sigma_2A^T) + O(t^2)$$

So we have:

$$\operatorname{tr}\left[\left(\left(A+tE_{ij}\right)\Sigma_{1}\left(A+tE_{ij}\right)^{T}\right)^{-1}\left(A+tE_{ij}\right)\Sigma_{2}\left(A+tE_{ij}\right)^{T}\right]$$

$$=tr\left[\left(A\Sigma_{1}A^{T}\right)^{-1}A\Sigma_{2}A^{T}\right]+t\cdot tr\left[\left(A\Sigma_{1}A^{T}\right)^{-1}A\Sigma_{2}E_{ij}^{T}\right]+t$$

$$\cdot tr\left[\left(A\Sigma_{1}A^{T}\right)^{-1}E_{ij}\Sigma_{2}A^{T}\right]-t\cdot tr\left[\left(A\Sigma_{1}A^{T}\right)^{-2}\left(A\Sigma_{1}E_{ij}^{T}+E_{ij}\Sigma_{1}A^{T}\right)A\Sigma_{2}A^{T}\right]$$

$$+O(t^{2})$$

As:

$$\frac{\partial \text{tr}[\left(A\Sigma_{1}A^{T}\right)^{-1}(A\Sigma_{2}A^{T})]}{\partial a_{ij}} = \lim_{t \to 0} \frac{\text{tr}\left[\left(\left(A + tE_{ij}\right)\Sigma_{1}\left(A + tE_{ij}\right)^{T}\right)^{-1}\left(A + tE_{ij}\right)\Sigma_{2}\left(A + tE_{ij}\right)^{T}\right] - \text{tr}\left[\left(A\Sigma_{1}A^{T}\right)^{-1}(A\Sigma_{2}A^{T})\right]}{t},$$

we can disregard all the terms in $O(t^2)$, so we have:

$$\frac{\partial \text{tr}[(A\Sigma_{1}A^{T})^{-1}(A\Sigma_{2}A^{T})]}{\partial a_{ij}} = tr[(A\Sigma_{1}A^{T})^{-1}A\Sigma_{2}E_{ij}^{T}] + tr[(A\Sigma_{1}A^{T})^{-1}E_{ij}\Sigma_{2}A^{T}] - tr[(A\Sigma_{1}A^{T})^{-2}(A\Sigma_{1}E_{ij}^{T} + E_{ij}\Sigma_{1}A^{T})A\Sigma_{2}A^{T}]$$

First, we compute $tr[(A\Sigma_1 A^T)^{-1} A\Sigma_2 E_{ij}^T]$.

Notice that

$$(A\Sigma_1 A^T)^{-1} A\Sigma_2 E_{ij}^T = (A\Sigma_1 A^T)^{-1} (0 \quad col_j^{\dagger} (A\Sigma_2) \quad 0)$$

So $\text{tr}[(A\Sigma_1A^T)^{-1}A\Sigma_2E_{ij}^T]$ is in fact the element at *i*-th row and *i*-th column of $(A\Sigma_1A^T)^{-1}A\Sigma_2E_{ij}^T$, which is:

$$\mathrm{tr}\big[(A\Sigma_1A^T)^{-1}A\Sigma_2E_{ij}^T\big] = row_i(A\Sigma_1A^T)^{-1}\cdot col_j(A\Sigma_2)$$

Similarly, we can obtain:

$$(A\Sigma_1 A^T)^{-1} E_{ij} \Sigma_2 A^T = (A\Sigma_1 A^T)^{-1} \begin{pmatrix} 0 \\ row_j (\Sigma_2 A^T) \end{pmatrix} \leftarrow \text{i-th row}$$

Since tr(AB) = tr(BA), we have:

$$\operatorname{tr}\left[(A\Sigma_1A^T)^{-1}\begin{pmatrix}0\\row_j(\Sigma_2A^T)\end{pmatrix}\right] = \operatorname{tr}\left[\begin{pmatrix}0\\row_j(\Sigma_2A^T)\\0\end{pmatrix}(A\Sigma_1A^T)^{-1}\right]$$

 $tr[\begin{pmatrix} 0 \\ row_j(\Sigma_2A^T) \end{pmatrix} (A\Sigma_1A^T)^{-1}]$ is in fact the element at *i*-th row and *i*-th column of

$$\begin{pmatrix} 0 \\ row_j(\Sigma_2 A^T) \\ 0 \end{pmatrix} (A\Sigma_1 A^T)^{-1}$$
. So we have:

$$tr\big[(A\Sigma_1A^T)^{-1}E_{ij}\Sigma_2A^T\big]=row_j(\Sigma_2A^T)col_i(A\Sigma_1A^T)^{-1}$$

So, $tr[(A\Sigma_1A^T)^{-1}E_{ij}\Sigma_2A^T]$ is the element at *j*-th row and *i*-th column of $\Sigma_2A^T(A\Sigma_1A^T)^{-1}$, which is the element at *i*-th row and *j*-th column of $[(A\Sigma_1A^T)^{-1}]^T(\Sigma_2A^T)^T$. So:

$$tr\big[(A\Sigma_1A^T)^{-1}E_{ij}\Sigma_2A^T\big] = row_i(A\Sigma_1A^T)^{-1} \cdot col_j(A\Sigma_2)$$

For $tr[(A\Sigma_1A^T)^{-2}(A\Sigma_1E_{ij}^T + E_{ij}\Sigma_1A^T)A\Sigma_2A^T]$, we break it into two terms, $tr[(A\Sigma_1A^T)^{-2}A\Sigma_1E_{ij}^TA\Sigma_2A^T]$ and $tr[(A\Sigma_1A^T)^{-2}E_{ij}\Sigma_1A^TA\Sigma_2A^T]$.

For the first part, $\operatorname{tr}[(A\Sigma_1A^T)^{-2}A\Sigma_1E_{ij}^TA\Sigma_2A^T]$, according to $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ we have $\operatorname{tr}[(A\Sigma_1A^T)^{-2}A\Sigma_1E_{ij}^TA\Sigma_2A^T] = \operatorname{tr}[A\Sigma_2A^T(A\Sigma_1A^T)^{-2}A\Sigma_1E_{ij}^T]$.

Recalling that in the computation of $\operatorname{tr}[(A\Sigma_1A^T)^{-1}A\Sigma_2E_{ij}^T] = row_i(A\Sigma_1A^T)^{-1} \cdot col_j(A\Sigma_2)$, we have learned how to compute arbitrary expressions of $\operatorname{tr}[(\cdot)A\Sigma_2E_{ij}^T]$. So here we have:

 $\operatorname{tr} \left[(A \Sigma_1 A^T)^{-2} A \Sigma_1 E_{ij}^T A \Sigma_2 A^T \right] = \operatorname{tr} \left[A \Sigma_2 A^T (A \Sigma_1 A^T)^{-2} A \Sigma_1 E_{ij}^T \right] = \operatorname{row}_i A \Sigma_2 A^T (A \Sigma_1 A^T)^{-2} \cdot \operatorname{col}_j A \Sigma_1 A^T (A \Sigma_1 A^T)^{$

For the second part, $\operatorname{tr}[(A\Sigma_1A^T)^{-2}E_{ij}\Sigma_1A^TA\Sigma_2A^T]$, according to $\operatorname{tr}(AB)=\operatorname{tr}(BA)$ we have $\operatorname{tr}[(A\Sigma_1A^T)^{-2}E_{ij}\Sigma_1A^TA\Sigma_2A^T]=\operatorname{tr}[A\Sigma_2A^T(A\Sigma_1A^T)^{-2}E_{ij}\Sigma_1A^T]$.

Recalling that in the computation of $tr[(A\Sigma_1A^T)^{-1}E_{ij}\Sigma_2A^T] = row_i[(A\Sigma_1A^T)^{-1}]^T \cdot col_j(\Sigma_2A^T)^T$, we have learned how to compute arbitrary expressions of $tr[(\cdot)E_{ij}\Sigma_2A^T]$. So here we have:

$$\operatorname{tr}\left[(A\Sigma_{1}A^{T})^{-2}E_{ij}\Sigma_{1}A^{T}A\Sigma_{2}A^{T}\right] = \operatorname{tr}\left[A\Sigma_{2}A^{T}(A\Sigma_{1}A^{T})^{-2}E_{ij}\Sigma_{1}A^{T}\right]$$
$$= row_{i}(A\Sigma_{1}A^{T})^{-2}A\Sigma_{2}A^{T}col_{i}A\Sigma_{1}$$

Hence, we have completed the calculation of all components of $\frac{\partial \text{tr}[(A\Sigma_1A^T)^{-1}(A\Sigma_2A^T)]}{\partial a_{ij}}$. Notice that each component can be expressed in the form of $\text{row}_i(\cdot) \cdot col_j(\cdot)$, so we can obtain the following:

$$\frac{\partial \text{tr}[(A\Sigma_1 A^T)^{-1}(A\Sigma_2 A^T)]}{\partial A} \\
= 2(A\Sigma_1 A^T)^{-1} A\Sigma_2 - (A\Sigma_2 A^T)(A\Sigma_1 A^T)^{-2} A\Sigma_1 - (A\Sigma_1 A^T)^{-2}(A\Sigma_2 A^T)A\Sigma_1$$

The formulas given above are adequate for our discussions. However, for convenience we can give more formulas:

$$\frac{\partial log|A\Sigma A^{T}|}{\partial A} = 2(A\Sigma A^{T})^{-1}A\Sigma$$

$$\frac{\partial log|AA^{T}|}{\partial A} = 2(AA^{T})^{-1}A$$

$$\frac{\partial log|A|}{\partial A} = A^{-T}$$

$$\frac{\partial log|AB|}{\partial A} = (AB)^{-T}B^{T}$$

$$\frac{\partial log|AB|}{\partial B} = A^{T}(AB)^{-T}$$

$$\frac{\partial tr(A)}{\partial A} = I_{n}$$

$$\frac{\partial tr(A^{-1})}{\partial A} = (A^{-2})^{T}$$

$$\frac{\partial tr(A\Sigma A^{T})}{\partial A} = 2A\Sigma$$

$$\frac{\partial tr[(A\Sigma A^{T})^{-1}]}{\partial A} = -2(A\Sigma A^{T})^{-2}A\Sigma$$

$$\frac{\partial tr[(A\Sigma A^T)^{-1}(AA^T)]}{\partial A} = 2(A\Sigma A^T)^{-1}A - AA^T(A\Sigma A^T)^{-2}A\Sigma - (A\Sigma A^T)^{-2}AA^TA\Sigma$$

$$\frac{\partial log|A\Sigma A^T + AA^T|}{\partial A} = 2(A\Sigma A^T + AA^T)^{-1}A(\Sigma + I_n)$$

$$\frac{\partial log|A\Sigma_1 A^T + A\Sigma_2 A^T|}{\partial A} = 2(A(\Sigma_1 + \Sigma_2)A^T)^{-1}A(\Sigma_1 + \Sigma_2)$$

$$\frac{\partial tr[(A\Sigma_1 A^T)^{-1}(A\Sigma_2 A^T)]}{\partial A} = 2(A\Sigma_1 A^T)^{-1}A\Sigma_2 - A\Sigma_2 A^T(A\Sigma_1 A^T)^{-2}A\Sigma_1 - (A\Sigma_1 A^T)^{-2}A\Sigma_2 A^TA\Sigma_1$$

2. Formulation of the optimization problem:

According to the formulas given above, we can calculate the gradients for KL-divergence, symmetric KL-divergence and Hellinger distance.

1) KL-divergence:

$$\nabla_{A}KL = \frac{1}{2} \left[\frac{\partial \log|A\Sigma A^{T}|}{\partial A} - \frac{\partial \log|AA^{T}|}{\partial A} + \frac{\partial tr[(A\Sigma A^{T})^{-1}(AA^{T})]}{\partial A} \right]$$

$$= (A\Sigma A^{T})^{-1}A\Sigma - (AA^{T})^{-1}A + (A\Sigma A^{T})^{-1}A - \frac{1}{2}AA^{T}(A\Sigma A^{T})^{-2}A\Sigma$$

$$- \frac{1}{2}(A\Sigma A^{T})^{-2}AA^{T}A\Sigma$$

In our problem, we should find the global maxima where $\nabla_A KL = 0$. According to previous discussions, KL-divergence is invariant under invertible linear transformations of rank r, so for any global optimal solution A, we can always find another global optimal solution \tilde{A} satisfying the constraint $\tilde{A}\tilde{A}^T = I_r$, and $\tilde{A} = RA$, $R \in \mathbb{R}^{r \times r}$ is invertible. So, without loss of generality, we can constrain ourselves to the points where $\nabla_A KL = 0$ and $AA^T = I_r$.

In the above equation, we let $AA^T = I_r$ and obtain:

$$\nabla_{\Delta}KL = (A\Sigma A^{T})^{-1}A\Sigma - A + (A\Sigma A^{T})^{-1}A - (A\Sigma A^{T})^{-2}A\Sigma$$

Note that we should calculate the gradient first and then impose the constraint of $AA^T = I_r$. If we do it in reverse order, we will get a wrong answer.

From the above equation, we can deduce that $\nabla_A KL = 0$ is equivalent to:

$$[I_r - (A\Sigma A^T)^{-1}][(A\Sigma A^T)^{-1}A\Sigma - A] = 0$$

If $I_r - (A\Sigma A^T)^{-1} = 0$, then $D_{KL} = 0$. This is the global minima. So we need $(A\Sigma A^T)^{-1}A\Sigma - A = 0$ to obtain the maxima.

2) Symmetric KL-divergence:

$$D_{\text{Sym}} = \frac{1}{2} tr[(A\Sigma A^{T})^{-1}(AA^{T})] + \frac{1}{2} tr[(AA^{T})^{-1}(A\Sigma A^{T})] - r$$

So:

$$\nabla_{\mathbf{A}} Sym = (A \Sigma A^{T})^{-1} A - \frac{1}{2} A A^{T} (A \Sigma A^{T})^{-2} A \Sigma - \frac{1}{2} (A \Sigma A^{T})^{-2} A A^{T} A \Sigma + (A A^{T})^{-1} A \Sigma$$
$$- \frac{1}{2} A \Sigma A^{T} (A A^{T})^{-2} A - \frac{1}{2} (A A^{T})^{-2} A \Sigma A^{T} A$$

Let $AA^T = I_r$, we have:

$$\nabla_{\mathbf{A}} Sym = (\mathbf{A} \Sigma \mathbf{A}^T)^{-1} \mathbf{A} - (\mathbf{A} \Sigma \mathbf{A}^T)^{-2} \mathbf{A} \Sigma + \mathbf{A} \Sigma - \mathbf{A} \Sigma \mathbf{A}^T \mathbf{A}$$

So $\nabla_A Sym = 0$ is equivalent to:

$$[I_r - (A\Sigma A^T)^{-2}][(A\Sigma A^T)A - A\Sigma] = 0$$

Suppose $I_r - (A\Sigma A^T)^{-2} = 0$. Assume $(A\Sigma A^T)^{-1}$'s eigenvalues are $\lambda_1, \dots, \lambda_r$, then

 $(A\Sigma A^T)^{-2}$'s eigenvalues are $\lambda_1^2, \dots, \lambda_r^2$. Since $I_r - (A\Sigma A^T)^{-2} = 0$, we have $\lambda_1^2 = \dots = \lambda_r^2 = 1$.

If Σ is positive definite and A is of rank r, then $A\Sigma A^T$ is also positive definite. So $\lambda_1, ..., \lambda_r > 0$, which means that $\lambda_1 = \cdots = \lambda_r = 1$. Hence we have $A\Sigma A^T = I_r$ and $D_{Sym} = 0$. So in our problems $I_r - (A\Sigma A^T)^{-2}$ corresponds to the global minima. We need $(A\Sigma A^T)A - A\Sigma = A\Sigma (A^TA - I_n) = 0$ to obtain the maxima.

Note that $(A\Sigma A^T)^{-1}A\Sigma - A = 0$ is equivalent to $(A\Sigma A^T)A - A\Sigma = 0$, so basically KL-divergence and symmetric KL-divergence will simultaneously reach the maxima.

3) Hellinger distance:

From previous discussions, we have learned that maximizing Hellinger distance is equivalent to maximizing the following:

$$\frac{|A\Sigma A^T + AA^T|^2}{|A\Sigma A^T||AA^T|}$$

Which is equivalent to maximizing the following:

$$2\log|A\Sigma A^T + AA^T| - \log|A\Sigma A^T| - \log|AA^T|$$

According to the formulas given in section 1, we can calculate the gradient of the above expression. And we can deduce that $\nabla_A H = 0$ is equivalent to:

$$2(A\Sigma A^{T} + I_{r})^{-1}A(\Sigma + I_{n}) - (A\Sigma A^{T})^{-1}A\Sigma - A = 0$$

As each objective function has different gradient, we cannot analyze them in a generic way. In the following section, we will discuss the condition when $\nabla_A KL = 0$. As we have mentioned above, $\nabla_A Sym = 0$ is equivalent to $\nabla_A KL = 0$ so we don't have to have an additional discussion for symmetric KL-divergence.

3. The uniqueness of the linear subspace for KL-divergence and symmetric KL-divergence:

We can verify that $\nabla_A KL = 0$ when $A \in \mathbb{R}^{r \times n}$'s row vectors are constructed as r eigenvectors of Σ . According to the linear invariance, we can deduce that $\nabla_A KL = 0$ as long as $A \in \mathbb{R}^{r \times n}$'s row vectors span a linear subspace that is identical to the linear subspace that is spanned by some r eigenvectors of Σ . However, it is not obvious whether or not $\nabla_A KL \neq 0$ when A's r linear independent row vectors cannot be expressed as linear combinations of certain r eigenvectors of Σ . Now we prove that it is true: except for the global minimal point, the following conditions are equivalent:

- 1) $\nabla_{\mathsf{A}}KL = 0$;
- 2) $A \in \mathbb{R}^{r \times n}$'s row vectors span a linear subspace that is identical to the linear subspace that is spanned by some r eigenvectors of Σ .

This implies that, except for the global minimal point, all the points satisfying $\nabla_A KL = 0$ can be divided into $\binom{n}{r}$ equivalence classes, each corresponds to a linear subspace spanned by certain r eigenvectors of Σ . In these $\binom{n}{r}$ equivalence classes, we can always identify at least one equivalence class where D_{KL} reaches the maxima.

To prove this, first we have to answer the question: what does it mean by "A's r linear independent row vectors cannot be expressed as linear combinations of certain r eigenvectors of Σ "?

We can explain this by an example. Suppose $v_1, ..., v_n$ are Σ 's eigenvectors which form an orthonormal basis of \mathbb{R}^n . If $A = \begin{pmatrix} v_1 + v_3 \\ v_2 + v_3 \end{pmatrix}$, then we can say that A's row vectors cannot be linear expressed by any 2 eigenvectors of Σ .

Roughly speaking, if $A \in \mathbb{R}^{r \times n}$'s row vectors "use" more than r symbols among v_1, \dots, v_n , then we say that A's row vectors cannot be linear expressed by any r eigenvectors of Σ .

Moreover, we observe that $\nabla_A KL$ is invariant under orthogonal transformations. So, if A's row vectors "use" more than r symbols among v_1, \dots, v_n , then up to an orthogonal transformation, we can express A by:

$$A = \begin{pmatrix} v_1' \\ \vdots \\ v_{r-1}' \\ \sum_{i=r}^n \mu_i v_i' \end{pmatrix}$$

Where $\sum_{i=r}^{n} \mu_i^2 = 1$, and there are more than one non-zero elements among μ_i^2 .

Hence, to prove our statement is to prove the following:

 $(A\Sigma A^T)A - A\Sigma \neq 0$, $AA^T = I_r$ if and only if up to an orthogonal transformation, A =

$$\begin{pmatrix} v_1' \\ \vdots \\ v_{r-1}' \\ \sum_{i=r}^n \mu_i v_i' \end{pmatrix}, \ \sum_{i=r}^n \mu_i^2 = 1 \ \text{ and there are more than one non-zero elements among } \ \mu_i^2.$$

We just need to verify that $A\Sigma A^T A \neq A\Sigma$. Suppose by eigenvalue decomposition we have

$$\Sigma = (v_1 \quad \cdots \quad v_n) \begin{pmatrix} \lambda_1 \\ & \ddots \\ & \lambda_n \end{pmatrix} \begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix}, \text{ then:}$$

$$A\Sigma = \begin{pmatrix} \lambda_1 v_1' \\ \vdots \\ \lambda_{r-1} v_{r-1}' \\ \sum_{i=r}^n \lambda_i \mu_i v_i' \end{pmatrix}$$

$$A\Sigma A^T = \begin{pmatrix} \lambda_1 \\ & \ddots \\ & \lambda_{r-1} \\ & & \sum_{i=r}^n \lambda_i \mu_i^2 \end{pmatrix}$$

$$A\Sigma A^T A = \begin{pmatrix} \lambda_1 v_1' \\ \vdots \\ \lambda_{r-1} v_{r-1}' \\ \vdots \\ \lambda_{r-1} v_{r-1}' \\ \sum_{i=r}^n \lambda_i \mu_i^2 \cdot \sum_{i=r}^n \mu_i v_i' \end{pmatrix}$$

Suppose there is only one element, say, μ_r , that is non-zero among $\mu_i(r \leq i \leq n)$. Then by $\sum_{i=r}^n \mu_i^2 = 1$ we can deduce that $\mu_r^2 = 1$ and $\mu_i^2 = 0$ for any $i \neq r, r \leq i \leq n$. Then $\sum_{i=r}^n \lambda_i \mu_i v_i' = \sum_{i=r}^n \lambda_i \mu_i^2 \cdot \sum_{j=r}^n \mu_j v_j' = \lambda_r \mu_r v_r'$. In this case, we have $A\Sigma = A\Sigma A^T A$, that is, $\nabla_A KL = 0$.

However, if there are more than one non-zero elements among $\mu_i (r \leq i \leq n)$, then without loss of generality we denote them by $\mu_r, \ldots, \mu_{r+k} (k \geq 1)$. We can also assume that the corresponding eigenvalues, $\lambda_r, \ldots, \lambda_{r+k}$, satisfy $\lambda_r > \cdots > \lambda_{r+k}$. Then we argue that we must have $\lambda_r = \sum_{i=r}^n \lambda_i \mu_i^2$ if we want $A\Sigma = A\Sigma A^T A$. However, as there are more than one non-zero elements

in μ_i^2 and $\lambda_r > \cdots > \lambda_{r+k}$, we have $\sum_{i=r}^n \lambda_i \mu_i^2 < \lambda_r$, so $A\Sigma \neq A\Sigma A^T A$ when there are more than one non-zero elements among $\mu_i (r \leq i \leq n)$.

Hence, we find the necessary and sufficient condition for $\nabla_A KL = 0$:

If $\Sigma \in \mathbb{R}^{n \times n}$ has *n* different eigenvalues, then $\nabla_A KL = 0$ if and only if either of the following conditions is met:

- 1) A is the global minimal point satisfying $A\Sigma A^T = I_r$;
- 2) $A \in \mathbb{R}^{r \times n}$'s row vectors are constructed as r eigenvectors of Σ ;
- 3) $A \in \mathbb{R}^{r \times n}$'s row vectors are linear independent, and can be expressed as linear combinations of certain r eigenvectors of Σ .

Previously, we construct A by heuristic methods. Now we proved that previously we have identified all the possible optimal solutions. To conclude, despite that A has infinite number of choices, the choice of eigenvalues and the choice of the linear subspace in which A's row vectors serve as a basis, are quite unique. If all of Σ 's eigenvalues are different, and the evaluation function

doesn't get the same value at two different eigenvalues of Σ (for example, $\lambda=2$ and $\lambda=\frac{1}{2}$ are

considered the same by the evaluation function $\lambda + \frac{1}{\lambda}$), then the choice of Σ 's eigenvalues, and the choice of the corresponding linear subspace that is able to maximize f-divergences, are unique. If we consider $A\Sigma A^T$ as a compression, then under mild assumptions this compression is unique.

4. A simplified, generic proof for uniqueness:

In the last section we have proved that the optimal solution for KL-divergence is, in some sense, unique. Our proof seems to depend on the particular form of D_{KL} and $\nabla_A KL$. Since each f-divergence has a different objective function, it seems that we should prove the uniqueness of optimal solution on a case-by-case basis. This is, however, not true. I realized that, we can prove the uniqueness in all cases (KL-divergence, symmetric KL-divergence, Hellinger distance, etc.) using a generic method.

The method is generalized from the proof in the last section.

Assume Σ has *n* different eigenvalues, $\lambda_1 > \cdots > \lambda_n$. Suppose by eigenvalue decomposition

$$\Sigma = (v_1 \quad \cdots \quad v_n) \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} v_1' \\ \vdots \\ v_n' \end{pmatrix}, \ v_1, \dots, v_n \ \text{ is an orthonormal basis of } \mathbb{R}^n.$$

Now we suppose that the semi-orthogonal matrix A's r row vectors are not linear combinations of certain r eigenvectors of Σ .

Suppose A's row vectors "use" all the n symbols, $v_1, ..., v_n$ then up to an orthogonal transformation we have:

$$A = \begin{pmatrix} v_1' \\ \vdots \\ v_{r-1}' \\ \sum_{i=r}^n \mu_i v_i' \end{pmatrix}$$

Where $\sum_{i=r}^{n} \mu_i^2 = 1$. Note that in the previous section we have obtained the following:

$$A\Sigma A^T = egin{pmatrix} \lambda_1 & & & & & & \\ & \ddots & & & & & \\ & & & \lambda_{r-1} & & & \\ & & & & \sum_{i=r}^n \lambda_i \mu_i^2 \end{pmatrix}$$

Assume $A\Sigma A^T$'s eigenvalues are $\gamma_1 > \cdots > \gamma_r$. As A uses all the n symbols, we have $\mu_i \neq \infty$ $0(r \le i \le n)$ and $\lambda_r > \sum_{i=r}^n \lambda_i \mu_i^2 > \lambda_n$. Hence we have:

$$\lambda_n < \gamma_r < \lambda_r$$

Similarly, up to an orthogonal transformation we can rewrite A as:

$$A = \begin{pmatrix} v'_1 \\ \vdots \\ v'_{r-2} \\ \sum_{i=r-1}^{n-1} \mu_i v'_i \\ v'_r \end{pmatrix}$$

And we have:

By the same deduction, we have:

$$\lambda_{n-1} < \gamma_{r-1} < \lambda_{r-1}$$

Repeat this argument for r times, we have:

$$\lambda_{n-r+i} < \gamma_i < \lambda_i (1 \le i \le r)$$

when A "uses" all the *n* symbols in $v_1, ..., v_n$.

So what if A "uses" n-k > r symbols in $v_1, ..., v_n$? In that case, we simply assume that A uses $v_{j_1}, ..., v_{j_{n-k}}$. Without loss of generality we assume the corresponding eigenvalues satisfy $\lambda_{j_1} > \dots > \lambda_{j_{n-k}}$, then by the same deduction, we have:

$$\lambda_{j_{n-k-r+i}} < \gamma_i < \lambda_{j_i} (1 \le i \le r)$$

 $\lambda_{j_{n-k-r+i}} < \gamma_i < \lambda_{j_i} (1 \leq i \leq r)$ Because $\lambda_{j_1} > \dots > \lambda_{j_{n-k}}$ are n-k items that are selected from $\lambda_1 > \dots > \lambda_n$, we have:

$$\lambda_{i+k} \le \lambda_{i} \le \lambda_i (1 \le i \le n-k)$$

So we have:

$$\lambda_{n-r+i} \le \lambda_{j_{n-k-r+i}} < \gamma_i < \lambda_{j_i} \le \lambda_i (1 \le i \le r)$$

Hence we proved that, if A's r row vectors are not linear combinations of certain r eigenvectors of Σ , then we have:

$$\lambda_{n-r+i} < \gamma_i < \lambda_i (1 \le i \le r)$$

If A's r row vectors are linear combinations of certain r eigenvectors of Σ , say, $\lambda_{i_1} > \cdots > \lambda_{i_r}$, then we have:

$$\gamma_i = \lambda_{i_i} (1 \le i \le r)$$

To conclude, based on this method we can confirm that the optimal choice of A is, in some sense, unique. In fact, we used a different method to prove Cauchy's Interlacing theorem, and we proved that in Cauchy's Interlacing theorem, the equalities hold if and only if A's r row vectors are linear combinations of certain r eigenvectors of Σ .