Discrete Mathematics for Computing

Chapter 1.1: Logic and Proofs

What are Propositions?

- Basic building blocks of logic
- Declarative sentence either true or false, but not both

Propositions: Recap

Examples

What time is it?

Not a declarative sentence, hence not a proposition.

Propositions: Recap

Examples

$$x + 1 = 2$$

Neither true or false, not a proposition

Propositional Logic

- Propositional Variables represent propositions
- Conventional Letters p, q, r, s, ...

Propositional Logic

Truth value of a proposition

'T' - true

'F' - false

Truth table – inputs and outputs

Negation

р	¬p
Т	F
F	Т

p	q	p ^ q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• Example:

```
"Today is Friday."

"It is raining today."
```

"Today is Friday and it is raining today."

When is this proposition true? When is this proposition false?

Example:

"Today is Friday and it is raining today."

True: Rainy Fridays

False: Any day not a Friday, On Fridays when it

does not rain.

Practical Use:

```
In a programming environment, AND represented by ("&&").

int a = 7;

int b = 10;

if (a > 4 && b < 20) {

...

}
```

- Binary operator Takes two operands
- represented by symbol v
- propositions p, q

- false when both p and q are false
- true otherwise

p	q	p ^v q

p	q	p ^v q
Т	Т	
Т	F	
F	Т	
F	F	

p	q	p ^v q
Т	Τ	Т
Т	F	Т
F	Т	Т
F	F	F

Example:

```
"Today is Friday."
```

" It is raining today."

Example:

"Today is Friday or it is raining today."

When is this proposition true?

When is this proposition false?

Example:

"Today is Friday or it is raining today."

True: Any day that is either a Friday or a rainy day (including rainy Fridays)

False: Days that are not Fridays when it also does not rain

Practical Use:

In Java programming, OR represented by ("||").

```
int a = 10;
int b = 40;
if ( a == 7 || b > a ) {
   ...
}
```

- Binary operator Takes two operands
- represented by symbol
- propositions p, qp ⊕ q -> "p exclusive or q"
- true when exactly one of p and q is true
- false otherwise

p	q	$p \oplus q$

p	q	$p \oplus q$
Т	Τ	
Т	F	
F	Т	
F	F	

p	q	$p \oplus q$
Т	Τ	F
Т	F	Т
F	Т	Т
F	F	F

Practical Use:

- propositions p, q
 Conditional Statement
 p → q "if p, then q"
- q is true on the condition that p holds
- False: p is true, q is false
- True otherwise
- p is "hypothesis", q is "conclusion"

p	q	$p \rightarrow q$
Т	Τ	Т
Т	F	F
F	Τ	Т
F	F	Т

Example:

"I am elected."

"I will lower taxes."

Example:

"If I am elected, then I will lower taxes."

True: If the politician is not elected, then there is no expectation that this person will lower taxes.

False: If the politician is elected, but does not lower taxes. This person has broken his pledge.

- propositions p, q
 Biconditional Statement denoted by ↔
 p ↔ q "p if and only if q"
- True
 p and q have the same truth values
 p → q is true and q → p is true
- False: otherwise

p	q	$p \leftrightarrow q$

p	q	$p \leftrightarrow q$
Т	Т	
Т	F	
F	Т	
F	F	

p	q	$p \leftrightarrow q$
Т	Τ	Т
Т	F	F
F	Т	F
F	F	T

Example:

"You can take the flight."

" You buy a ticket."

Example:

"You can take the flight if and only if you buy a ticket."

True: If you buy a ticket and can take a flight
If you cannot buy a ticket and cannot take a flight
False: If you do not buy a ticket, but you can take
the flight

If you buy a ticket and cannot take the flight

Converse, Contrapositive, Inverse

Given Conditional Statement p → q

- Converse : proposition q → p
- Contrapositive : proposition ¬q → ¬p
- Inverse : proposition ¬p → ¬q
- A conditional statement consists of two parts: a hypothesis in the "if" clause and a conclusion in the "then" clause.

Converse

To form the converse of the conditional statement, interchange the hypothesis and the conclusion.

Statement: If a person is 18 years old, then he is a legal adult.

Converse: If a person is a legal adult, then he is 18 years old.

Converse

How to Form the Truth Table?

p	q	$p \rightarrow q$
T	T	Т
Т	F	F
F	T	T
F	F	T

	p	q	¬р	¬q	$\neg p \rightarrow \neg q$	$q \rightarrow p$
•	Т	Т	F	F	Т	Т
	Т	F	F	T	Т	Т
	F	T	Т	F	F	F
	F	F	T	T	Т	Т

Inverse

To form the inverse of the conditional statement, take the negation of both the hypothesis and the conclusion.

Statement: If a person is 18 years old, then he is a legal adult.

Inverse: If a person is not 18 years old, then he is not a legal adult.

Inverse

How to Form the Truth Table?

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

р	q	¬р	¬q	$\neg p \rightarrow \neg q$
Т	Т	F	F	Т
Т	F	F	Τ	Т
F	T	T	F	F
F	F	Т	Т	T

Contrapositive

To form the contrapositive of the conditional statement, interchange the hypothesis and the conclusion of the inverse statement.

Statement: If a person is 18 years old, then he is a legal adult.

Contrapositive: If a person is not a legal adult, then he is not 18 years old.

Contrapositive

How to Form the Truth Table?

p	q	$p \rightarrow q$
Т	T	Т
Т	F	F
F	Τ	Т
F	F	Т

p	q	q	р	$\neg q \rightarrow \neg p$
T	Т	F	F	T
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	Т	Т	Т

Converse, Inverse, Contrapositive

Statement: If it snows tonight, then I will stay at home.

Converse: If I stay home, then it will snow tonight.

Contrapositive: If I do not stay at home, then it will not snow tonight.

Inverse: If it does not snow tonight, then I will not stay home.

- Important logical connectives
 Conjunctions, Disjunctions, Conditional
 Statements, Biconditional Statements,
- Compound Propositions connectives, propositional variables

Negations

■ Example: $(p \lor \neg q) \longleftrightarrow (p \land q)$

■ Example: $(p \lor \neg q) \longleftrightarrow (p \land q)$

TRUTH TABLE

p	q	$\neg q$	p ^v ¬q	p ^ q	$(p \lor \neg q) \longleftrightarrow (p \land q)$
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F

Precedence of Logical Operators

Operator	Precedence
7	1
^	2
V	3
→	4
\leftrightarrow	5

- Find the truth table for $(p \oplus q) \vee (p \oplus \neg q)$
- Find the truth table for $(p \oplus q) \land (p \oplus \neg q)$

p	9	p ⊕ q	p ⊕ ¬q	$(p \oplus q) \vee (p \oplus \neg q)$	(p ⊕ q)^ (p ⊕ ¬q)

p	q	$p \oplus q$	p ⊕ ¬q	(p ⊕ q) v (p ⊕ ¬q)	(p ⊕ q)^ (p ⊕ ¬q)
Т	Т				
Т	F				
F	Т				
F	F				

p	q	$p \oplus q$	p ⊕ ¬q	(p ⊕ q) v (p ⊕ ¬q)	(p ⊕ q)^ (p ⊕ ¬q)
Т	Т	F			
Т	F	Т			
F	Т	Т			
F	F	F			

p	q	$p \oplus q$	p ⊕ ¬q	(p ⊕ q) v (p ⊕ ¬q)	(p ⊕ q)^ (p ⊕ ¬q)
Т	Т	F	Т		
Т	F	Т	F		
F	Т	Т	F		
F	F	F	Т		

p	q	p ⊕ q	p ⊕ ¬q	(p ⊕ q) v (p ⊕ ¬q)	(p ⊕ q)^ (p ⊕ ¬q)
Т	Т	F	Т	T	
Т	F	Т	F	T	
F	Т	Т	F	T	
F	F	F	Т	T	

p	q	$p \oplus q$	p ⊕ ¬q	(p ⊕ q) v (p ⊕ ¬q)	$(p \oplus q)^{\wedge} (p \oplus \neg q)$
Т	Т	F	Т	Т	F
Т	F	Т	F	Т	F
F	Т	Т	F	Т	F
F	F	F	T	Т	F

р	q	r	p v q	(p ^v q) ^v r	(p ^v q) ^ r

p	q	r	p v q	(p ' q) ' r	(p ^v q) ^ r
T	T	Т			
Т	Η	F			
Т	F	Т			
Т	F	F			
F	Τ	Т			
F	Τ	F			
F	F	Т			
F	F	F			

p	q	r	p v q	(p ' q) ' r	(p ^v q) ^ r
Т	Τ	Τ	Т		
Т	Η	F	T		
Т	F	۲	T		
Т	F	F	Т		
F	Т	Т	Т		
F	Т	F	Т		
F	F	Т	F		
F	F	F	F		

p	q	r	p v q	(p ' q) ' r	(p ^v q) ^ r
Т	Τ	Τ	Т	Т	
Т	Τ	F	T	Т	
Т	F	⊢	T	Т	
Т	F	F	Т	Т	
F	Т	Τ	Т	Т	
F	Τ	F	Т	Т	
F	F	Т	F	Т	
F	F	F	F	F	

p	q	r	p v q	(p ' q) ' r	(p ^v q) ^ r
Т	Т	Т	Т	Т	Т
Τ	7	F	Т	Т	F
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F
F	F	Т	F	Т	F
F	F	F	F	F	F

What is a bit?

Symbol with two possible values, 0 (zero) and 1(one)

Binary Digit

Can be used to represent a truth value

Truth Value	Bit
Т	1
F	0

Computer Bit Operations – Logical Connectives

Notation

OR

AND

XOR

X	у	<i>x</i>	x ^ y	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Find the bitwise OR, bitwise AND and bitwise XOR of the pair of bit strings

```
00 0111 0001
```

10 0100 1000

10 0111 1001 bitwise OR

Find the bitwise OR, bitwise AND and bitwise XOR of the pair of bit strings

00 0111 0001

10 0100 1000

00 0100 0000

bitwise AND

Find the bitwise OR, bitwise AND and bitwise XOR of the pair of bit strings

```
00 0111 0001
```

10 0100 1000

10 0011 1001 bitwise XOR

Evaluate this expression

```
1 1000 ^ (0 1011 <sup>v</sup> 1 1011)
```

- = 1 1000 ^ 1 1011
- = 1 1000

