Лабораторна робота № 2

Тема: ПРОВЕДЕННЯ ДВОФАКТОРНОГО ЕКСПЕРИМЕНТУ 3 ВИКОРИСТАННЯМ ЛІНІЙНОГО РІВНЯННЯ РЕГРЕСІЇ

Мета: провести двофакторний експеримент, перевірити однорідність дисперсії за критерієм Романовського, отримати коефіцієнти рівняння регресії, провести натуралізацію рівняння регресії.

Введемо такі позначення:

N – кількість точок плану (рядків матриці планування)

k – кількість факторів(кількість \mathbf{x})

m – кількість дослідів у за однієї і тієї ж комбінації факторів (test)

 $\overline{x_s}$ - нормовані значення факторів ($s = \overline{1, k}$)

Завдання на лабораторну роботу

- 1. Записати лінійне рівняння регресії.
- 2. Обрати тип двофакторного експерименту і скласти матрицю планування для нього з використанням додаткового нульового фактору (x_0 =1).
- 3. Провести експеримент в усіх точках повного факторного простору (знайти значення функції відгуку у). Значення функції відгуку задати випадковим чином у відповідності до варіанту у діапазоні уміп ÷ умах

$$y_{max} = (30 - N_{Bapiahty})*10,$$

 $y_{min} = (20 - N_{Bapiahty})*10.$

Варіанти обираються по номеру в списку в журналі викладача.

Таблиця 1.

№ _{варіанта}	2	Κ ₁		\mathbf{x}_2
	min	max	min	max
101	-10	50	20	60
102	20	70	-20	40
103	-20	30	30	80
104	15	45	-25	10
105	-30	20	15	50
106	10	40	25	45
107	-5	15	-15	35
108	-30	0	-35	10
109	-20	15	10	60
110	-25	-5	-30	45
111	10	60	-70	-10
112	-40	20	-35	15

113	-15	30	5	40
114	-25	75	25	65
115	10	50	-20	60
116	-10	50	-20	60
117	20	70	25	65
118	-20	30	5	40
119	15	45	-35	15
120	-30	20	-70	-10
121	10	40	-30	45
122	-5	15	10	60
123	-30	0	-25	10
124	-20	15	-15	35
125	-25	-5	25	45
126	10	60	15	50
127	-40	20	-25	10
128	-15	30	30	80
129	-25	75	-20	40
130	10	50	20	60
131	-45	10	5	35
132	0	30	-10	40
133	5	25	-20	15
134	10	45	-20	25
135	-10	30	-5	20
201	-10	50	-20	40
202	20	70	30	80
203	-20	30	-25	10
204	15	45	15	50
205	-30	20	25	45
206	10	40	-15	35
207	-5	15	-35	10
208	-30	0	10	60
209	-20	15	-30	45
210	-25	-5	-70	-10
211	10	60	-35	15
212	-40	20	5	40
213	-15	30	25	65
214	-25	75	-20	60
215	10	50	-20	60
216	-10	50	25	65
217	20	70	5	40
218	-20	30	-35	15
219	15	45	-70	-10

220	-30	20	-30	45
221	10	40	10	60
222	-5	15	-25	10
223	-30	0	-23	35
224	-20	15	25	45
225				
226	-25	-5	15	50
227	10	60	-25	10
	-40	20	30	80
228	-15	30	-20	40
229	-25	75	20	60
230	10	50	-15	45
231	-35	10	-25	20
232	-10	55	0	30
233	5	25	-10	35
234	15	40	-15	20
235	-5	30	0	30
301	-10	50	20	60
302	20	70	-15	45
303	-20	30	-20	40
304	15	45	30	80
305	-30	20	-25	10
306	10	40	15	50
307	-5	15	25	45
308	-30	0	-15	35
309	-20	15	-35	10
310	-25	-5	10	60
311	10	60	-30	45
312	-40	20	-70	-10
313	-15	30	-35	15
314	-25	75	5	40
315	10	50	25	65
316	-10	50	-20	60
317	-10	50	20	60
318	20	70	-15	45
319	-20	30	20	60
320	15	45	-15	45
321	-30	20	-20	40
322	10	40	30	80
323	-5	15	-25	10
324	-30	0	15	50
325	-20	15	25	45
326	-25	-5	-15	35

327	10	60	-35	10
328	-40	20	10	60
329	-15	30	-30	45
330	-25	75	-70	-10
331	-10	30	-15	40
332	-5	20	10	50
333	-30	10	-50	-10
334	5	25	20	50
335	-10	30	5	25

- 4. Перевірити однорідності дисперсії за критерієм Романовського
- 5. Знайти коефіцієнти нормованих рівнянь регресії і виконати перевірку (підставити значення нормованих факторів і коефіцієнтів у рівняння).
- 6. Провести натуралізацію рівняння регресії й виконати перевірку натуралізованого рівняння.
- 7. Написати комп'ютерну програму, яка все це виконує.

Порядок виконання роботи

- 1. Записати лінійне рівняння регресії для нормованих значень x_i . $\hat{y} = b_0 + b_1 \bar{x}_1 + b_2 \bar{x}_2$
- 2. Для знаходження коефіцієнтів у лінійному рівнянні регресії застосовують повний факторний експеримент (ПФЕ). Якщо в багатофакторному експерименті використані всі можливі комбінації рівнів факторів, то такий експеримент називається повним факторним експериментом. Але, оскільки коефіцієнтів рівняння регресії всього 3 (b₀, b₁, b₂), то достатньо проведення 3 експериментів (3 рядки в матриці планування)
- 3. Складемо матрицю планування для повного і заповнимо таблицю нормованими значеннями $\overline{x_1}$ і $\overline{x_2}$.

	$\overline{x_1}$	$\overline{x_2}$	y _{i1}	y _{i2}	y ik	Yim
1	-1	-1				
2	-1	+1				
3	+1	-1				
4	+1	+1				

Оскільки коефіцієнтів рівняння регресії всього 3 (b_0 , b_1 , b_2), то достатньо обрати будь-які три рядки, наприклад:

	$\overline{\mathbf{x}_1}$	$\overline{\mathbf{x}_2}$	y _{i1}	y _{i2}	y ik	y _{im}
1	-1	-1				
2	-1	+1				
3	+1	-1				

Графічна інтерпретація матриці планування:

4. Провести експеримент в усіх точках плану.

$$y_{\text{max}} = (30 - N_{\text{варіанту}})*10 = (30-0)*10 = 300;$$

$$y_{\text{min}} = (20 - N_{\text{варіанту}})*10 = (20-0)*10 = 200.$$

(Для прикладу взято номер варіанту 0, що не існує)

- 5. Перевірити однорідність дисперсії за критерієм Романовського. Якщо дисперсії однорідні, то провести розрахунок коефіцієнтів рівняння регресії. Якщо дисперсії неоднорідні, то необхідно збільшити m кількість дослідів y за однієї і тієї ж комбінації факторів (test) (m=m+1), провести нові досліди і перевірити критерій знову.
- 6. Обчислити нормовані коефіцієнти рівняння регресії b_0 , b_1 , b_2 Рівняння регресії має вигляд:

$$\hat{y} = b_0 + b_1 \bar{x}_1 + b_2 \bar{x}_2$$

Для перевірки нормованих коефіцієнтів рівняння регресії (b₀, b₁, b₂) необхідно підставити нормовані значення факторів для кожного досліду і обчислити експериментальні значення функції відгуку \hat{y}_j ($j=\overline{1,N}$), де N- кількість комбінацій (рядків матриці планування).

Порівняти кожне експериментальне значення функції відгуку \hat{y}_j із середнім значенням функції відгуку у рядку.

$$\overline{y}_{j} = \frac{1}{m} \sum_{g=1}^{m} y_{jg} \ (j = \overline{1, N}, g = \overline{1, m});$$

де N- кількість комбінацій (рядків матриці планування), m- кількість дослідів у за однієї і тієї ж комбінації факторів (test).

Якщо рівність виконується:

 $\hat{y}_j = \overline{y}_j$ ($j = \overline{1, N}$), то значення коефіцієнтів рівняння регресії знайдені вірно.

7. Провести натуралізацію коефіцієнтів рівняння регресії і отримати нові коефіцієнти a₀, a₁, a₂. Рівняння регресії матиме вигляд:

$$\hat{y} = a_0 + a_1 x_1 + a_2 x_2$$

Для перевірки натуралізованих коефіцієнтів рівняння регресії (a_0 , a_1 , a_2 .), необхідно підставити натуральні значення факторів: хітах замість +1, та хітіл замість -1, для кожної точки плану і обчислити експериментальні значення функції відгуку \hat{y}_j ($j=\overline{1,N}$), де N — кількість комбінацій (рядків матриці планування).

Порівняти кожне експериментальне значення функції відгуку із середнім значенням функції відгуку у рядку.

$$\overline{y}_{j} = \frac{1}{m} \sum_{g=1}^{m} y_{jg} (j = \overline{1, N}, g = \overline{1, m});$$

Якщо рівність $\hat{y}_j = \overline{y}_j$ ($j = \overline{1, N}$) виконується, то значення коефіцієнтів натуралізованого рівняння регресії знайдені вірно.

Зміст звіту

- 1) Результати підготовки (нормована матриця планування);
- 2) Результати виконання роботи (пп. 11,12,13).

Контрольні запитання

- 1) Що таке регресійні поліноми і де вони застосовуються?
- 2) Визначення однорідності дисперсії.
- 3) Що називається повним факторним експериментом?

Теоретичні відомості

В теорії планування експерименту найважливішою частиною ε оцінка результатів вимірів. При цьому використовують апроксимуючі поліноми, за допомогою яких ми можемо описати нашу функцію. В ТПЕ ці поліноми отримали спеціальну назву - регресійні поліноми, а їх знаходження та аналіз - регресійний аналіз. Найчастіше в якості базисної функції використовується ряд Тейлора, який має скінченну кількість членів.

$$F(x) = F(a) + \frac{x-a}{1!}F'(a) + \frac{(x-a)^2}{2!}F''(a) + ... + \frac{(x-a)^N}{N!}F^{(N)}(a)$$

Але при використанні апроксимуючого полінома Тейлора в його початковому вигляді виникає ряд проблем, пов'язаних із знаходженням похідних, оскільки нам невідома функція, а відомий лише ряд її значень. Тому ми замінюємо поліном Тейлора аналогічним йому рівнянням регресії:

$$\hat{y} = b_0 + \sum_{i=1}^k b_i x_i + \sum_{i,j=1}^k b_{i,j} x_i x_j + \sum_{i=1}^k b_{i,i} x_i^2 + \sum_{i,j,n=1}^k b_{i,j,k} x_i x_j x_n + \dots$$

де k –кількість факторів (кількість x)

Мета даної роботи – дослідити лінійну регресійну модель

$$\dot{y} = b_0 + \sum_{i=1}^k b_i x_i$$

Мають місце наступні припущення:

- 1) Результати вимірів вихідної величини y в N експериментах ε реалізація нормально розподіленої величини.
- 2) Дисперсії реалізації в усіх точках факторного простору повинні бути однаковими, оскільки дисперсія не повинна залежати від абсолютного значення величини.
- 3) Вхідні змінні (фактори) це незалежні величини, які вимірюються з нескінченно малою похибкою відносно похибки вихідної величини.

Будь який багатофакторний експеримент ϵ результатом варіювання усіх факторів.

Властивості ортогонального факторного експерименту

Матриця планування має ряд властивостей, теоретичні аспекти яких представлені нижче:

N – кіль кість комбінацій значень факторів (рядків матриці планування) k– кількість факторів (кількість х)

1) Симетричність плану відносно центру експерименту:

$$\sum_{j=1}^{N} \overline{x}_{s,j} = 0 \ (s = \overline{1,k});$$

тобто сума нормованих значень рівнів будь-якого фактора (стовпця) дорівнює 0.

2) Нормування плану:

$$\sum_{i=1}^{N} \bar{x}^{2}_{s,j} = N \ (s = \overline{1,k});$$

тобто сума квадратів нормованих значень рівнів будь-якого фактора дорівнює N.

3) Ортогональність плану:

$$\sum_{i=1}^{N} \overline{\mathbf{x}_{s,j}} \cdot \overline{\mathbf{x}_{u,j}} = 0 \ (s, u = \overline{1, k}; s \neq u);$$

тобто сума попарних добутків нормованих значень рівнів будь-яких 2 факторів (крім s=u) дорівнює 0.

Перевірка однорідності дисперсій за критерієм Романовського

В результаті виконання експериментів заповнюється матриця планування експерименту. Для кожної комбінації факторів проводиться m дослідів, тобто отримуються y_{jg} – експериментальні значення відгуку для кожного g-го досліду j-го експерименту ($j = \overline{1, N}$, $g = \overline{1, m}$).

Середнє значення функції відгуку обчислюється за формулою: $\overline{y}_j = \frac{1}{m} \sum_{g=1}^m y_{jg} \ (\ j = \overline{1,N} \ , \ g = \overline{1,m} \).$

Дисперсія — це сума квадратів відхилень величин y_{jg} від середнього значення y_{j} . Дисперсія обчислюється для кожного рядка за формулою:

$$\sigma^{2}\{y_{j}\} = \frac{1}{m} \sum_{g=1}^{m} (y_{jg} - \overline{y_{j}})^{2}, (j = \overline{1, M}), g = \overline{1, m}), \overline{y}_{j} = \frac{1}{m} \sum_{g=1}^{m} y_{jg}$$

Якщо y_{jg} – нормально розподілена величина, і кількості дослідів m є достатньою, то дисперсії розподілів y_{jg} для кожної комбінації повинні бути **рівними**.

Тобто, для будь-яких
$$i$$
 та j ($i = \overline{1, N}$; $j = \overline{1, N}$): $\sigma^2\{y_i\} = \sigma^2\{y_i\}$;

Груба похибка (промах) – це похибка результату окремого виміру, що входить в ряд вимірів, котра для даних умов різко відрізняється від інших результатів цього ряду. Причинами появи грубих похибок ϵ різкі зміни умов вимірювання і помилки, допущені оператором. Наявність грубих похибок говорить про неоднорідності дисперсії.

Одним з критеріїв виявлення грубих похибок ϵ **критерій Романовського**. Критерій Романовського перевіряється за наступним алгоритмом:

- 1. Для кожної комбінації знайти $\sigma^2\{y_j\}$ дисперсію експериментальних значень вихідної змінної для j-ї комбінації ($j = \overline{1, N}$).
 - 2. Обчислити основне відхилення:

$$\sigma_{\theta} = \sqrt{\frac{2(2m-2)}{m(m-4)}}$$

3. Для кожної пари комбінацій u, v ($u = \overline{1,N}$; $v = \overline{1,N}$) обчислити:

$$F_{uv} = \begin{cases} \frac{\sigma^2\{y_u\}}{\sigma^2\{y_v\}}, \text{якщо } \sigma^2\{y_u\} \ge \sigma^2\{y_v\} \\ \frac{\sigma^2\{y_v\}}{\sigma^2\{y_u\}}, \text{якщо } \sigma^2\{y_u\} < \sigma^2\{y_v\} \end{cases}$$

де дисперсії по рядках
$$\sigma^2\{y_j\} = \frac{1}{m} \sum_{g=1}^m (y_{jg} - \overline{y_j})^2$$
, $j = \overline{1,N} g = \overline{1,m}$,

де
$$\overline{y}_{j} = \frac{1}{m} \sum_{g=1}^{m} y_{jg}$$

$$\theta_{uv} = \frac{m-2}{m} F_{uv}$$

$$R_{uv} = \frac{|\theta_{uv}-1|}{\sigma_{\theta}}$$
 — експериментальне значення критерію Романовського

- 4. Обирають так названу «довірчу ймовірність» p ймовірність, з якою вимагається підтвердити гіпотезу про однорідність дисперсій. У відповідності до p і кількості дослідів m обирають з таблиці критичне значення критерію $R_{\kappa p}$.
- 5. Кожне R_{uv} (експериментальне значення критерію Романовського) порівнюється з R_{KF} (значення критерію Романовського за різних довірчих ймовірностей p) і якщо для усіх $u = \overline{1,N}$; $v = \overline{1,N}$ кожне $R_{uv} < R_{KF}$, то гіпотеза про однорідність дисперсій підтверджується з ймовірністю p.

В цьому випадку можна обчислювати коефіцієнти рівняння регресії.

Якщо хоча б для одної пари u, v має місце $R_{uv} > R_{kp}$, то гіпотеза про однорідність дисперсій не підтверджується. В цьому випадку розбіжність між дисперсіями експериментальних значень u-їі v-ї комбінацій ε значною. Необхідно збільшити кількість дослідів m=m+1, провести нові досліди і заново перевірити критерій.

Значення критерію Романовського за різних довірчих ймовірностей p кількостях дослідів m

Довірча ймовірність р		Значення $R_{\kappa p}$ за кількості дослідів m					
	2	6	8	10	12	15	20
0.99	1.73	2.16	2.43	2.62	2.75	2.9	3.08
0.98	1.72	2.13	2.37	2.54	2.66	2.8	2.96
0.95	1.71	2.10	2.27	2.41	2.52	2.64	2.78
0.90	1.69	2.00	2.17	2.29	2.39	2.49	2.62

Визначення нормованих коефіцієнтів рівняння регресії

Після проведення m дослідів в усіх точках факторного простору ми повинні знайти коефіцієнти рівняння регресії. Це можна зробити методом найменших квадратів. Згідно цього методу рішення знаходиться як мінімум суми квадратів відхилень теоретичних значень від експериментальних y_i .

$$E = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 \rightarrow min$$

де:

$$\hat{y} = \phi(x_1, \dots x_k, b_0, b_1, \dots b_k)$$

N – кількість точок планування експерименту (рядків матриці планування)

k – кількість факторів.

Коефіцієнти b_0 , b_1 , ... b_k можна знайти виходячи з того, що у точці мінімуму E часткові похідні по b_0 , b_1 , ... b_k мають дорівнювати нулю. Запишемо це для k=2:

$$\begin{cases} \frac{\partial \mathbf{E}}{\partial \mathbf{b}_0} = 0 \\ \frac{\partial \mathbf{E}}{\partial \mathbf{b}_1} = 0 \\ \frac{\partial \mathbf{E}}{\partial \mathbf{b}_2} = 0 \end{cases}$$

або, враховуючи, що похідна суми ε сумою похідних та, диференціюючи квадрат, різниць запишемо таку систему рівнянь:

$$\begin{cases} \sum_{i=1}^{N} (\phi_i - y_i) * \frac{\partial \phi_i}{\partial b_0} = 0 \\ \sum_{i=1}^{N} (\phi_i - y_i) * \frac{\partial \phi_i}{\partial b_1} = 0 \\ \sum_{i=1}^{N} (\phi_i - y_i) * \frac{\partial \phi_i}{\partial b_2} = 0 \end{cases}$$

Знаходимо часткові похідні по b_0 , b_1 , b_2

$$\frac{\partial \varphi_i}{\partial b_0} = 1 \qquad \frac{\partial \varphi_i}{\partial b_1} = x_{1i} \qquad \frac{\partial \varphi_i}{\partial b_2} = x_{2i}$$

Запишемо рівняння у повній формі:

$$\begin{cases} \sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} - y_i) * 1 = 0 \\ \sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} - y_i) * x_{1i} = 0 \\ \sum_{i=1}^{N} (b_0 + b_1 x_{1i} + b_2 x_{2i} - y_i) * x_{1i} = 0 \end{cases} \Leftrightarrow \begin{cases} (\sum_{i=1}^{N} 1) b_0 + (\sum_{i=1}^{N} x_{1i}) b_1 + (\sum_{i=1}^{N} x_{2i}) b_2 = \sum_{i=1}^{N} y_i \\ (\sum_{i=1}^{N} x_{1i}) b_0 + (\sum_{i=1}^{N} x_{1i}^2) b_1 + (\sum_{i=1}^{N} x_{2i} x_{1i}) b_2 = \sum_{i=1}^{N} x_{1i} y_i \\ (\sum_{i=1}^{N} x_{2i}) b_0 + (\sum_{i=1}^{N} x_{1i} x_{2i}) b_1 + (\sum_{i=1}^{N} x_{2i}^2) b_2 = \sum_{i=1}^{N} x_{2i} y_i \end{cases}$$

 $\sum_{i=1}^{n} 1 = N$ Поділимо кожне рівняння на N

$$\begin{cases} b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i})b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i})b_2 = \frac{1}{N} \sum_{i=1}^{N} y_i \\ (\frac{1}{N} \sum_{i=1}^{N} x_{1i})b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i}^2)b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i} x_{1i})b_2 = \frac{1}{N} \sum_{i=1}^{N} x_{1i} y_i \\ (\frac{1}{N} \sum_{i=1}^{N} x_{2i})b_0 + (\frac{1}{N} \sum_{i=1}^{N} x_{1i} x_{2i})b_1 + (\frac{1}{N} \sum_{i=1}^{N} x_{2i}^2)b_2 = \frac{1}{N} \sum_{i=1}^{N} x_{2i} y_i \end{cases}$$

Введемо позначення:

$$\begin{split} &\frac{1}{N}\sum_{i=1}^{N}x_{1i}=m_{x1}\ \frac{1}{N}\sum_{i=1}^{N}x_{2i}=m_{x2}\\ &\frac{1}{N}\sum_{i=1}^{N}x_{1i}^{2}=a_{1};\ \frac{1}{N}\sum_{i=1}^{N}x_{1i}x_{2i}=a_{2};\frac{1}{N}\sum_{i=1}^{N}x_{2i}^{2}=a_{3}\\ &\frac{1}{N}\sum_{i=1}^{N}x_{1i}y_{i}=a_{11}\ \frac{1}{N}\sum_{i=1}^{N}x_{2i}y_{i}=a_{22}\\ &\frac{1}{N}\sum_{i=1}^{N}y_{i}=m_{y} \end{split}$$

Ми отримали систему лінійних рівнянь з коефіцієнтами регресії в якості невідомих. Скористаймося методом Крамера для її вирішення:

$$\begin{cases} b_0 + m_{x1}b_1 + m_{x2}b_2 = m_y \\ m_{x1}b_0 + a_1b_1 + a_2b_2 = a_{11} \\ m_{x2}b_0 + a_2b_1 + a_3b_2 = a_{22} \end{cases}$$

$$b_0 = \frac{\begin{vmatrix} m_y & m_{x1} & m_{x2} \\ a_{11} & a_1 & a_2 \\ a_{22} & a_2 & a_3 \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_{11} & a_2 \\ m_{x2} & a_{22} & a_3 \end{vmatrix}} \qquad b_1 = \frac{\begin{vmatrix} 1 & m_y & m_{x2} \\ m_{x1} & a_{11} & a_2 \\ m_{x2} & a_{22} & a_3 \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_{11} & a_2 \\ m_{x1} & a_1 & a_2 \\ m_{x2} & a_2 & a_3 \end{vmatrix}} \qquad b_2 = \frac{\begin{vmatrix} 1 & m_{x1} & m_y \\ m_{x1} & a_1 & a_{11} \\ m_{x2} & a_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_1 & a_2 \\ m_{x2} & a_2 & a_3 \end{vmatrix}}$$

Натуралізація плану

За необхідності, нормалізоване рівняння регресії приводять до натурального вигляду (приводять до вихідних змінних - струм, напруга, температура і т.д.).

Натуралізація - операція обернена нормалізації (тобто перерахунок значень факторів так, що $-1 \rightarrow \min$, $+1 \rightarrow \max$).

Для цього в нормалізованому рівнянні регресії виконують заміну значень факторів на натуральні, а також обчислюють натуралізовані коефіцієнти рівняння регресії $y=a_0+a_1x_1+a_2x_2$.

1. Нехай фактори x_1 і x_2 змінюються в таких межах:

$$x_{1min} < x_1 < x_{1max} x_{2min} < x_2 < x_{2max}$$

$$\Delta x_1 = |x_{1\text{max}} - x_{1\text{min}}|/2$$

$$\Delta x_2 = |x_{2max} - x_{2min}|/2$$

$$x_{10} = (x_{1max} + x_{1min})/2$$

$$x_{20} = (x_{2max} + x_{2min})/2$$

Запишемо ці значення у вигляді таблиці:

Фактор	X _{imin}	X _{imax}	X _{i0}	Δx_i
\mathbf{x}_1	x_{1min}	x_{1max}	$(x_{1\text{max}} + x_{1\text{min}})/2$	$ x_{1max} - x_{1min} /2$
X ₂	X _{2min}	X _{2max}	$(x_{2max} + x_{2min})/2$	$ x_{2max} - x_{2min} / 2$

Приклад: k=2 (кількість факторів), лінійна модель.

Рівняння регресії:

Нормоване

$$\hat{y} = b_0 + b_1 \overline{x}_1 + b_2 \overline{x}_2$$

Натуралізовані коефіцієнти обчислюються так:

$$a_0 = b_0 - b_1 * \frac{\mathbf{x}_{10}}{\Delta \mathbf{x}_1} - b_2 * \frac{\mathbf{x}_{20}}{\Delta \mathbf{x}_2}$$
:

$$a_1 = \frac{b_1}{\Delta x_1};$$

$$a_2 = \frac{b_2}{\Delta x_2};$$

Приклад виконання роботи

1. Запишемо лінійне рівняння регресії:

$$\hat{y} = b_0 + b_1 \bar{x}_1 + b_2 \bar{x}_2$$

2. Нормована матриця планування експерименту

Для знаходження 3-х коефіцієнтів рівняння регресії достатньо N=3 експериментів. Для прикладу візьмемо x1min=-25, x1max=75, x2min=5, x2max=40.

X1	X2	Y1	Y2	Yi	Ym
-1.0	-1.0				
+1.0	-1.0				
-1.0	+1.0				

3. Для прикладу взяті y_{min}=9; y_{max}=20.

Заповнимо матрицю планування для т=5

Значення факторів нормовані.

X1	X2	Y1	Y2	Y3	Y4	Y5
-1.0	-1.0	9.0	10.0	11.0	15.0	9.0
+1.0	-1.0	15.0	14.0	10.0	12.0	14.0
-1.0	+1.0	20.0	18.0	12.0	10.0	16.0

4. Перевіримо однорідність дисперсії за критерієм Романовського:

1) Знайдемо середнє значення функції відгуку в рядку:

$$\overline{y}_1 = (y_{11} + y_{12} + y_{13} + y_{14} + y_{15})/5 = (9 + 10 + 11 + 15 + 9)/5 = 10.8$$

$$\overline{y}_2 = (y_{21} + y_{22} + y_{23} + y_{24} + y_{25})/5 = (15 + 14 + 10 + 12 + 14)/5 = 13.0$$

$$\overline{y}_3 = (y_{31} + y_{32} + y_{33} + y_{34} + y_{35})/5 = (20 + 18 + 12 + 10 + 16)/5 = 15.2$$

2) Знайдемо дисперсії по рядках:

$$\sigma^{2} \{y_{1}\} = \frac{1}{5} ((y_{11} - \overline{y_{1}})^{2} + (y_{12} - \overline{y_{1}})^{2} + (y_{13} - \overline{y_{1}})^{2} + (y_{14} - \overline{y_{1}})^{2} + (y_{15} - \overline{y_{1}})^{2}) =$$

$$= \frac{1}{5} ((9 - 10.8)^{2} + (10 - 10.8)^{2} + (11 - 10.8)^{2} + (15 - 10.8)^{2} + (9 - 10.8)^{2}) = 0.53$$

$$\sigma^{2} \{y_{2}\} = \frac{1}{5} ((y_{21} - \overline{y_{2}})^{2} + (y_{22} - \overline{y_{2}})^{2} + (y_{23} - \overline{y_{2}})^{2} + (y_{24} - \overline{y_{2}})^{2} + (y_{25} - \overline{y_{2}})^{2}) =$$

$$= \frac{1}{5} ((15 - 13)^{2} + (14 - 13)^{2} + (10 - 13)^{2} + (12 - 13)^{2} + (14 - 13)^{2}) = 0.53$$

$$\sigma^{2} \{y_{3}\} = \frac{1}{5} ((y_{31} - \overline{y_{3}})^{2} + (y_{32} - \overline{y_{3}})^{2} + (y_{33} - \overline{y_{3}})^{2} + (y_{34} - \overline{y_{3}})^{2} + (y_{35} - \overline{y_{3}})^{2}) =$$

$$= \frac{1}{5} ((20 - 15.2)^{2} + (18 - 15.2)^{2} + (12 - 15.2)^{2} + (10 - 15.2)^{2} + (16 - 15.2)^{2}) = 1.24$$

3) Обчислимо основне відхилення:

$$\sigma_{\theta} = \sqrt{\frac{2(2m-2)}{m(m-4)}} = \sqrt{\frac{2(2*5-2)}{5(5-4)}} = 1.79$$

4) Обчислимо F_{uv}:

$$F_{uv1=}\sigma^{2} \{y_{1}\} / \sigma^{2} \{y_{2}\} = 0.53/0.53 = 1$$

$$F_{uv2=}\sigma^{2} \{y_{3}\} / \sigma^{2} \{y_{1}\} = 1.24/0.53 = 2.4$$

$$F_{uv3=}\sigma^{2} \{y_{3}\} / \sigma^{2} \{y_{2}\} = 1.24/0.53 = 2.4$$

- 5) $\theta_{uv1} = (m-2/m)* F_{uv1} = 3/5*1=0.6$ $\theta_{uv2} = (m-2/m)* F_{uv2} = 3/5*2.4 = 1.44$ $\theta_{uv3} = (m-2/m)* F_{uv3} = 3/5*2.4 = 1.44$
- 6) $R_{uv1} = |\theta_{uv1} 1|/\sigma_{\theta} = |0.6 1|/1.79 = 0.22$ $R_{uv2} = |\theta_{uv2} - 1|/\sigma_{\theta} = |1.44 - 1|/1.79 = 0.25$ $R_{uv3} = |\theta_{uv3} - 1|/\sigma_{\theta} = |1.44 - 1|/1.79 = 0.25$
- 7) Оскільки т=5 (в таблиці немає даних для такого значення), візьмемо значення $R_{\rm kp} = 2$ для m=6 і довірчою ймовірністю p=0.9

$$R_{uv1} = 0.22 < R_{\kappa p} = 2$$

$$R_{uv2} = 0.25 < R_{KP} = 2$$

$$R_{uv3} = 0.25 < R_{kp} = 2$$

Отже, дисперсія однорідна.

5. Розрахунок нормованих коефіцієнтів рівняння регресії.

$$mx1 = (X11+X12+X13)/3 = (-1+1+(-1))/3 = -0.33$$

 $mx2 = (X21+X22+X23)/3 = (-1+(-1)+1)/3 = -0.33$

$$my = (y_1 + y_2 + y_3)/3 = (10.8 + 13 + 15.2)/3 = 13$$

$$a1 = (X11^2 + X12^2 + X13^2)/3 = (1+1+1)/3 = 1.0$$

$$a3 = (X21^2 + X22^2 + X23^2)/3 = (1+1+1)/3 = 1.0$$

a11 =
$$(X11*\overline{y}_1 + X12*\overline{y}_2 + X13*\overline{y}_3)/3 = (-1*10.8+1*13.0-1*15.2)/3 = -4.33$$

$$a22 = (X21*\overline{y}_1 + X22*\overline{y}_2 + X23*\overline{y}_3)/3 = (-1*10.8-1*13.0+1*15.2)/3 = -2.86$$

$$b_0 = \begin{vmatrix} m_y & m_{x1} & m_{x2} \\ a_{11} & a_1 & a_2 \\ a_{22} & a_2 & a_3 \end{vmatrix}$$

$$\frac{1}{m_{x1}} \frac{m_{x1}}{m_{x2}}$$

$$\frac{m_{x1}}{m_{x2}} \frac{a_1}{a_2} \frac{a_2}{a_3}$$

$$b_0 = \frac{\begin{vmatrix} m_y & m_{x1} & m_{x2} \\ a_{11} & a_1 & a_2 \\ a_{22} & a_2 & a_3 \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_{11} & a_2 \\ m_{x2} & a_{22} & a_3 \end{vmatrix}} \qquad b_1 = \frac{\begin{vmatrix} 1 & m_y & m_{x2} \\ m_{x1} & a_{11} & a_2 \\ m_{x2} & a_{22} & a_3 \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_1 & a_2 \\ m_{x1} & a_1 & a_2 \\ m_{x2} & a_2 & a_3 \end{vmatrix}} \qquad b_2 = \frac{\begin{vmatrix} 1 & m_{x1} & m_y \\ m_{x1} & a_1 & a_{11} \\ m_{x2} & a_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_1 & a_2 \\ m_{x2} & a_2 & a_3 \end{vmatrix}}$$

$$b_2 = \frac{\begin{vmatrix} 1 & m_{x1} & m_y \\ m_{x1} & a_1 & a_{11} \\ m_{x2} & a_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} 1 & m_{x1} & m_{x2} \\ m_{x1} & a_1 & a_2 \\ m_{x2} & a_2 & a_3 \end{vmatrix}}$$

$$b_0 = \frac{\begin{vmatrix} 13 & -0.33 & -0.33 \\ -4.3 & -0.33 & 1 \\ -2.87 & 1 & -0.33 & -0.33 \\ \hline 1 & -0.33 & -0.33 & 1 \\ -0.33 & 1 & -0.33 & -0.33 \\ -0.33 & -0.33 & 1 & -0.33 \\ -0.33 & -0.33 & 1 & -0.33 \\ \hline -0.33 & -0.33 & 1 & -0.33 \\ -0.33 & -0.33 & 1 & -0.33 \\ \hline -0.33 & -0.33 & 1 & -0.33 \\ -0.33 & -0.33 & 1 & -0.33 \\ \hline -0.33 & -0.33 & 1 & -0.33 \\$$

Отже, нормоване рівняння регресії

$$y = 14.1 + 1.1*x1 + 2.2*x2$$

Зробимо перевірку:

14.1-1.1-2.2=10.8

14.1+1.1-2.2=13.0

14.1-1.1+2.2=15.2

Результат збігається з середніми значеннями \bar{y}_{i} .

6. Проведемо натуралізацію коефіцієнтів:

$$\Delta x_1 = |x_{1\text{max}} - x_{1\text{min}}|/2 = (75 - (-25))/2 = 50$$

$$\Delta x_2 = |x_{2max} - x_{2min}|/2 = (40-5)/2 = 17.5$$

$$x_{10} = (x_{1\text{max}} + x_{1\text{min}})/2 = (75-25)/2 = 25$$

$$x_{20} = (x_{2max} + x_{2min})/2 = (40+5)/2 = 22.5$$

$$a_0 = b_0 - b_1 * \frac{\mathbf{x}_{10}}{\Delta \mathbf{x}_1} - b_2 * \frac{\mathbf{x}_{20}}{\Delta \mathbf{x}_2} = 14.1 - 1.1 * 25/50 - 2.2 * 22.5/17.5 = 10.72;$$

$$a_1 = \frac{b_1}{\Delta x_1} = 1.1/50 = 0.02;$$

$$a_2 = \frac{b_2}{\Delta x_2} = 2.2/17.5 = 0.125;$$

Запишемо натуралізоване рівняння регресії:

$$y = a_0 + a_1 x_1 + a_2 x_2 = 10.72 + 0.02 * x 1 + 0.125 * x 2$$

Зробимо перевірку по рядках:

10.72+0.02*(-25)+0.125*5=10.8

10.72+0.02*(75)+0.125*5=13.0

10.72+0.02*(-25)+0.125*40=15.2

Отже, коефіцієнти натуралізованого рівняння регресії вірні.