16 位数码管驱动及键盘控制芯片 CH456

手册 版本: 1 http://wch.cn

1、概述

CH456 是 16 位数码管显示驱动和键盘扫描控制芯片。CH456 内置时钟振荡电路,可以动态驱动最多 16 只数码管或者 128 只 LED 发光管;同时还可以进行 64 键的键盘扫描;CH456 通过 2 线串行接口与单片机等交换数据。

2、特点

- 内置显示电流驱动级,段电流不小于 25mA,字电流不小于 150mA。
- 动态显示扫描控制,直接驱动 16 只数码管或者 128 只发光管 LED。
- 内部限流,通过占空比设定提供多级亮度控制。
- 内置 64 键键盘控制器,基于 8×8 矩阵键盘扫描。
- 兼用的低电平有效的键盘中断,提供按键释放标志位,可供查询按键按下与释放。
- 部分未用到的显示驱动引脚 X12~X15 可以作为 GPO 通用输出引脚。
- 高速 2 线串行接口,时钟速度从 0 到 2MHz,兼容两线 1²C 总线,节约引脚。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 支持 3V、3. 3V、5V 电源电压。
- 支持低功耗睡眠,节约电能,可以被按键唤醒或者被命令操作唤醒。
- 提供 DIP20、SOP20、DIP16 和 SOP16 四种无铅封装形式, 兼容 RoHS。

3、封装

封装形式	宽度		引脚	间距	封装说明	订货型号
DIP20	7. 62mm	300mil	2. 54mm	100mil	标准 20 脚双列直插	CH456K
S0P20	7. 62mm	300mil	1. 27mm	50mil	标准的宽 20 脚贴片	CH456H
DIP16	7. 62mm	300mil	2. 54mm	100mil	标准 16 脚双列直插	CH456M
S0P16	3. 90mm	150mil	1. 27mm	50mil	标准的 16 脚贴片	CH456G

CH456K/H 支持 16 只数码管或 128 只 LED 及 64 键, CH456M/G 支持 12 只数码管或 96 只 LED 及 32 键

4、引脚

20 脚封装 的引脚号	16 脚封装 的引脚号	引脚名称	类型	引脚说明
12	14	VCC	电源	正电源,持续电流不小于 150mA
5	7	GND	电源	公共接地,持续电流不小于 150mA
10~11, 13~18	12~13, 15~16, 1~4	X0~X7 (K10~K17)	三态输出 及 键扫输入	数码管的段驱动,高电平有效, 数码管的字驱动,低电平有效, 键盘扫描输入,高电平有效,内置下拉电阻
9~7	11~9	X8∼X10 (K00∼K02)	三态输出 及 键扫输出	数码管的段驱动,高电平有效, 数码管的字驱动,低电平有效, 键盘扫描输出,高电平有效
6	8	X11 (K03) (INT#)	三态输出 及 键扫输出	数码管的段驱动,高电平有效, 数码管的字驱动,低电平有效, 键盘扫描输出,高电平有效, 可以被设置为键盘中断输出,低电平有效
2, 1, 20	无	X12~X14 (K04~K06)	三态输出 及 键扫输出	数码管的字驱动,低电平有效, 键盘扫描输出,高电平有效, 可以被设置为 GPO 通用输出
19	无	X15 (K07) (INT#)	三态输出 及 键扫输出	数码管的字驱动,低电平有效, 键盘扫描输出,高电平有效, 可以被设置为键盘中断输出,低电平有效
4	6	SDA	开漏输出 及输入	2 线串行接口的数据输入和输出, 内置上拉电阻
3	5	SCL	输入	2 线串行接口的时钟输入

5、功能说明

5.1. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

5.2. 显示驱动

CH456 对数码管和发光管采用动态扫描驱动, X0 至 X15 分别连接 16 只数码管的阴极。当其中一个引脚吸入电流时,其它引脚则不吸入电流。数码管的段 G~段 A 以及数码管的小数点分别对应 CH456 的 8 个动态转换的段驱动引脚。CH456 内部具有电流驱动级,可以直接驱动 0.5 英寸至 1 英寸的共阴数码管, CH456 也可以连接 8×16 矩阵的发光二级管 LED 阵列或者 128 只独立发光管。

CH456 内部具有 16 个 8 位的数据寄存器,用于保存 16 个字数据,分别对应于 CH456 所驱动的 16 保数码管或者 16 组每组 8 只的发光二极管。数据寄存器中字数据的位 7~位 0 分别对应 8 个数码管的小数点和段 G~段 A,对于发光二极管阵列,则每个字数据的数据位唯一地对应一个发光二级管。

当数据位为 1 时,对应的数码管的段或者发光管就会点亮;当数据位为 0 时,则对应的数码管的段或者发光管就会熄灭。例如,第三个数据寄存器的位 0 为 1,所以对应的第三个数码管的段 A 点亮。

下图是数码管的段名称。

F	A	В	57	56	55	54	53	52	S1	SØ A
٠,	G	•	DP	G	F	Ε	D	С	В	A
Ε	D	C D	P	SEG	7-8	EGE	与	数品	与管	

下表是当前字驱动引脚与当前段驱动引脚之间的动态对应关系。

当前字引脚	XO	X1	X2	Х3	Х4	Х5	Х6	Х7	Х8	Х9	X10	X11	X12	X13	X14	X15
段引脚 S0/A	Х4	Х4	Х4	Х4	XO	XO	XO	XO	XO	XO	X0	X0	XO	XO	X0	XO
段引脚 S1/B	Х5	Х5	Х5	Х5	X1	X1	X1	X1	X1	X1	X1	X1	X1	X1	X1	X1
段引脚 S2/C	Х6	Х6	Х6	Х6	X2	X2	X2	X2	Х2	X2	X2	X2	X2	X2	X2	X2
段引脚 S3/D	Х7	Х7	Х7	Х7	Х3	Х3	Х3	Х3	Х3	Х3	Х3	Х3	Х3	Х3	Х3	Х3
段引脚 S4/E	Х8	Х4	Х4	Х4	Х4	Х4	Х4	Х4	Х4							
段引脚 S5/F	Х9	Х5	Х5	Х5	Х5	Х5	Х5	Х5	Х5							
段引脚 S6/G	X10	Х6	Х6	Х6	Х6	Х6	Х6	Х6	Х6							
段引脚 S7/DP	X11	Х7	Х7	Х7	Х7	Х7	Х7	Х7	Х7							

5.3. 键盘扫描

CH456 的键盘扫描功能支持 8×8 矩阵的 64 键键盘。在键盘扫描期间, K07~K00 引脚(即 X15~X8)用于列扫描输出, KI7~KI0 引脚(即 X7~X0)都带有内部下拉电阻,用于行扫描输入。

CH456 定期在显示驱动扫描过程中插入键盘扫描。在键盘扫描期间,K07~K00 引脚按照 K00 至 K07 的顺序依次输出高电压,其余引脚输出低电压; K17~K10 引脚的输出被禁止,当没有键被按下时, K17~K10 都被下拉为低电压;当有键被按下时,例如连接 K03 与 K14 的键被按下,则当 K03 输出高电压时 K14 检测到高电压。经过抗干扰处理后,如果 CH456 确认检测到有效的按键,则记录下该按键代码,并通过 INT#引脚(即 X15 或者 X11 在使能中断输出之后)产生低电平有效的键盘中断,此时单片机可以通过串行接口读取按键代码;在没有检测到新的有效按键之前,CH456 不再产生任何键盘中断。CH456 不支持组合键,同一时刻,不能有两个或者更多的键被按下。

CH456 所提供的按键代码为 7 位,位 2~位 0 是列扫描码,位 5~位 3 是行扫描码,位 6 是状态码(键按下为 1,键释放为 0)。例如,连接 K03 与 KI4 的键被按下,则按键代码是 1100011B 或者 63H,键被释放后,按键代码通常是 0100011B 或者 23H(也可能是其它值,但是肯定小于 40H),其中,对应 K03 的列扫描码为 011B,对应 KI4 的行扫描码为 100B。单片机可以在任何时候读取按键代码,但一般在 CH456 检测到有效按键而产生键盘中断时读取按键代码,此时按键代码的位 6 总是 1,另外,如果需要了解按键何时释放,单片机可以通过查询方式定期读取按键代码,直到按键代码的位 6 为 0。

下表是在 KI7~KI0 与 K07~K00 之间 8×8 矩阵的按键编址。由于按键代码是 7 位,键按下时位 6 总是 1,所以当键按下时,CH456 所提供的实际按键代码是表中的按键编址加上 40H,也就是说,此时的按键代码应该在 40H 到 7FH 之间。

编址	K07/X15	K06/X14	K05/X13	K04/X12	K03/X11	K02/X10	K01/X9	K00/X8
K10/X0	07H	06H	05H	04H	03H	02H	01H	00H
KI1/X1	0FH	0EH	ODH	OCH	OBH	OAH	09H	08H
K12/X2	17H	16H	15H	14H	13H	12H	11H	10H
K13/X3	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
K14/X4	27H	26H	25H	24H	23H	22H	21H	20H
K15/X5	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
K16/X6	37H	36H	35H	34H	33H	32H	31H	30H
K17/X7	3FH	3EH	3DH	3CH	3BH	ЗАН	39H	38H

5.4. 串行接口

CH456 具有硬件实现的 2 线串行接口,包含 2 个主要信号线:串行数据时钟输入线 SCL、串行数据输入和输出线 SDA。其中,SCL 是输入信号线;SDA 是带上拉电阻的准双向信号线,默认是高电平。除此之外,X15 或 X11 引脚在使能中断输出之后可以作为 INT#引脚,输出键盘中断,默认是高电平。

SDA 用于串行数据输入和输出,高电平表示位数据 1, 低电平表示位数据 0, 串行数据输入的顺序是高位在前, 低位在后。

SCL 用于提供串行时钟, CH456 在其上升沿从 SDA 输入数据, 在其下降沿从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH456 只在检测到启动信号后才接收并分析命令。所以在单片机 I/O 引脚资源紧张时,可以在保持 SDA 引脚状态不变的情况下,将 SCL 引脚与其它接口电路共用;如果能够确保 SDA 引脚的变化仅在 SCL 引脚为低电平期间发生,那么 SCL 引脚和 SDA 引脚都可以与其它接口电路共用。

INT#用于键盘中断输出,默认是高电平。当 CH456 检测到有效按键时,INT#输出低电平有效的键盘中断;单片机被中断后,对 CH456 执行读操作, CH456 将 INT#恢复为高电平,并从 SDA 输出按键代码,单片机从 SDA 获得一个字节的数据,其中低 7 位是按键代码。

单片机与 CH456 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节1为01001000B,即48H;字节2为00000001B,即01H。

6、操作命令

CH456 的操作命令分为 3 组。各命令的启动信号、停止信号、应答 1 和应答 2 都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。字节 1 的位 6 是 2 线串行接口的地址识别位,默认为 1,厂商也可提供定制的地址识别位默认为 0 的 CH456 芯片,便于两只 CH456 并联操作。

6.1. 设置系统参数命令

该命令的字节 1 为 01001000B,即 48H;字节 2 为[SLEEP][INTENS][X INT]0[KEYB][DISP]B。

该命令用于设定 CH456 的系统级参数:显示驱动使能 DISP、键盘扫描使能 KEYB、X15 中断输出 使能 X_INT、显示驱动亮度控制 INTENS、低功耗睡眠控制 SLEEP。

当 DISP 位为 1 时允许显示输出,当 DISP 位为 0 时关闭显示驱动。

当 KEYB 位为 1 时启用键盘扫描, 当 KEYB 位为 0 时关闭键盘扫描。

当 X_{\perp} INT 位为 1 时,最多只支持 15 只数码管,X15 引脚或者 X11 引脚作为 INT#引脚用于键盘中断输出;当 X_{\perp} INT 位为 0 时,最多支持 16 只数码管,X15 和 X11 与 X_{\perp} X0~X10 等类似作为显示驱动。

INTENS 用于控制显示驱动的亮度,包含 3 位数据,有 8 种组合:数据 001B~111B 分别设置显示驱动占空比为 1/8~7/8,数据 000B 设置显示驱动占空比为 8/8,对应最高亮度。

SLEEP 用于使 CH456 进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH456 可以被下述两种事件中的任何一种唤醒,第一种事件是检测到由 K03~K00 扫描输出的按键,有效按键代码是 40H~43H、48H~4BH、50H~53H、58H~5BH、60H~63H、68H~6BH、70H~73H、78H~7BH;

第二种事件是接收到单片机发出的下一个操作命令。当 CH456 被唤醒后, SLEEP 位会自动清 0。睡眠和唤醒操作本身不会影响 CH456 的其它工作状态。如果 KEYB 位为 1 则唤醒后产生按键中断,如果 KEYB 位为 0 则不支持第一种事件唤醒, 所以唤醒后也不产生按键中断。

该命令不影响内部数据缓冲区中的数据。

如果 X_INT=0 (默认),那么没有键盘中断输出引脚 INT#,禁止 GPO 通用输出引脚,X12~X15 作为显示驱动和键盘扫描输出引脚,CH456 支持最多 16 只数码管。

如果 X INT=1	那么 CH45	6 将提供键盘中断输出引脚 INT#,	且休配置参老下去。
XH / (/ / INI	게 그 이 그	3 有几人只姓曲!到棚山 几种 叫…	一大件癿且多为一次。

参数	状态	附加条件参数	配置功能					
X15_bit[0]	=0		X15 作为键盘中断输出引脚 INT#(适用于 20 脚封装)					
X15 bit[0] =1			X11 作为键盘中断输出引脚 INT#(适用于 16 脚封装)					
X15_bit[0]	-1		(会影响 X0~X7 引脚上数码管的显示,只支持 7 段)					
X15_bit[1]	=0		禁止 GPO 引脚,X12~X14 与 X10 类似功能					
X15_bit[1]	=1	X15_bit[0]=0	X12~X14作为 GPO 通用输出引脚,对应 X15_bit[4~6]					
X15_bit[1]	=1	X15_bit[0]=1	X12~X15 作为 GPO 通用输出引脚,对应 X15_bit[4~7]					
X15_bit[2]	=0		全部显示驱动,支持最多 15 只数码管(X0~X14 引脚)					
X15_bit[2]	=1		减半显示驱动,支持最多8只数码管(X0~X7引脚)					

上表中 X15_bit 是指 X15 引脚对应的数据寄存器中的 8 位数据,该数据是通过加载字数据命令7EH 写入 CH456 芯片中的,默认值为 00H, X15_bit[0]是指其位 0 的值,以此类推。

当 $X12\sim X15$ 作为 GPO 通用输出引脚时,可以通过修改 $X15_bit[4]\sim X15_bit[7]$ 的值来设置各 GPO 引脚的输出电平。例如 $X15_bit[5]=0$ 时,X13 输出低电平, $X15_bit[5]=1$ 时,X13 输出高电平。

减半显示驱动会将单只数码管的显示驱动扫描占空比从 1/16 提高到 1/8, 从而提高显示亮度。

6.2. 加载字数据命令

该命令的字节 1 为 011 [DIG_ADDR] 0B, 即 60H、62H、64H、66H、68H、6AH、6CH、6EH、70H、72H、74H、76H、78H、7AH、7CH、7EH; 字节 2 为 [DIG_DATA] B, 即 00H 到 0FFH 之间的值。

加载字数据命令用于将字数据 DIG_DATA 写入 DIG_ADDR 指定地址的数据寄存器中。DIG_ADDR 通过 4 位数据指定数据寄存器的地址,数据 0000B~1111B 分别指定地址 0~15,对应于 X0~X15 引脚驱动的 16 只数码管。DIG_DATA 是 8 位的字数据。例如,命令数据 01100000B、01111001B 表示将字数据 79H 写入第 1 个数据寄存器,使 X0 引脚驱动的数码管将显示 E。

6.3. 读取按键代码命令

该命令的输出字节 1 为 01001101B, 即 4DH(或者为 01001111B, 即 4FH); 输入字节 2 的低 7 位 为按键代码。

读取按键代码命令用于获得 CH456 最近检测到的有效按键的按键代码。该命令属于读操作,是具有数据返回的命令,单片机必须先释放 SDA 引脚(三态输出禁止或者上拉到高电平),然后 CH456 从 SDA 引脚输出按键代码,按键代码的有效数据是位 6~位 0,其中位 6 是状态码,位 5~位 0 是扫描码和按键编址。

7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	°C
TS	储存时的环境温度	-55	125	°C
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
IMdrv	单个显示驱动引脚的连续驱动电流	0	100	mA
lMall	所有显示驱动引脚的连续驱动电流的总和	0	150	mA

7.2. 电气参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	3. 0	5	5. 3	٧
ICC	电源电流		80	150	mA
I CCs	静态电流(SDA 为高电平,KEYB=0)		0. 05	0. 5	mA
VIL	SCL 和 SDA 引脚低电平输入电压	-0. 5		0.8	٧
VIH	SCL 和 SDA 引脚高电平输入电压	VCC/2		VCC+0. 5	٧
V0Lx	显示驱动引脚低电平输出电压(-100mA)			0. 7	٧
V0Hx	显示驱动引脚高电平输出电压(20mA)	4. 5			٧
IUP	SDA 引脚的输入上拉电流	200	400	800	uA
VR	上电复位的默认电压门限	2. 1	2. 4	2. 7	٧

7.3. 内部时序参数 (测试条件: TA=25°C, VCC=5V)

(注:本表时序参数都是内置时钟周期的倍数,内置时钟的频率随着电源电压的降低而降低)

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电检测产生的复位时间	8	15	30	mS
TDP	显示扫描周期	4	8	14	mS
TKS	按键响应时间(两次键盘扫描)	20	50		mS

7.4. 接口时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

(注:本表计量单位以纳秒即10°秒为主,未注明最大值则理论值可以无穷大)

名称	参数说明	最小值	典型值	最大值	单位
TSSTA	SDA 下降沿启动信号的建立时间	100			nS
THSTA	SDA 下降沿启动信号的保持时间	100			nS
TSST0	SDA 上升沿停止信号的建立时间	100			nS
THST0	SDA 上升沿停止信号的保持时间	100			nS
TCLOW	SCL 时钟信号的低电平宽度	100			nS
TCHIG	SCL 时钟信号的高电平宽度	100			nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
Rate	平均数据传输速率	0		2M	bps

8、应用

8.1. 应用电路

CH456 可以动态驱动 16 只共阴数码管,通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接。 电容 C2 和 C1 布置于 CH456 的电源引脚附近,用于电源退耦,减少驱动大电流产生的干扰。

8.2. 抗干扰

由于 CH456 驱动数码管或者 LED 的电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH456 的稳定性,建议使用较粗的电源线和地线,并靠近 CH456 在正负电源之间并联电源退耦电容。

对于强干扰的应用环境,单片机可以每隔数秒定期对 CH456 进行刷新,包括重新加载各个数码管的数据寄存器,以及重新开启显示。

另外,如果由标准 MCS-51 单片机的 I/0 引脚对 CH456 进行较远距离的驱动,通常要加强 MCS-51 单片机的 I/0 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形。上拉电阻的阻值可以是 $1K\Omega$ 到 $10K\Omega$,近距离无需上拉电阻。

8.3. 单片机接口程序

CH456 芯片的接口程序与 CH453 及 CH423 芯片基本兼容,可以直接使用 CH453 或者 CH423 芯片的子程序和例子程序,网站上提供了部分单片机的 C 语言和 ASM 汇编接口程序。