

EXAME DE MÉTODOS NUMÉRICOS

Cursos de Engenharia: CIVIL

29 de Junho de 2004 Duração: 3 horas

APRESENTE TODOS OS CÁLCULOS QUE TIVER DE EFECTUAR

1. O volume v de um líquido num tanque esférico de raio r está relacionado com a profundidade h do líquido da seguinte forma:

$$v = \frac{\pi h^2 (3r - h)}{3}.$$

- a) Calcule, utilizando um método que não recorre ao cálculo de derivadas, a profundidade h, num tanque de raio r=1 para um volume de 0.5. Utilize para aproximação inicial o intervalo [0.25, 0.5] e considere $\varepsilon_1 = \varepsilon_2 = 10^{-2}$ ou no máximo 3 iterações.
- b) Repita os cálculos, nas mesmas condições da alínea anterior, mas utilizando para aproximação inicial o intervalo [2.5, 3]. Comente os resultados e analise a viabilidade da solução encontrada.
- 2. Que tipo de métodos poderia usar na resolução de um sistema de equações lineares? Comente relativamente às características de cada um e sua aplicabilidade.
- 3. A figura representa um reservatório com 2.1 metros de altura. Considere que, no início, o reservatório está cheio de água. Num certo instante abre-se a válvula e o reservatório começa a ser esvaziado.

A altura (em metros) de água do reservatório, t horas depois de este ter começado a ser esvaziado, é dada por h(t), de acordo com a tabela

Instante, t_i	0	1	4	7	8	10	14
Altura de água, $h(t_i)$	2.1	2.0	1.8	1.5	1.4	1.1	0

- a) Use um polinómio interpolador de grau 2 para estimar a altura de água no reservatório ao fim de 5 horas.
- b) Suponha que a altura de água pode ser estimada pelo modelo

$$M(t; c_1, c_2) = ln(c_1 - c_2 t).$$

Determine c_1 e c_2 usando o método Gauss-Newton, tomando apenas os três pontos da tabela que se encontram igualmente distanciados e use quatro casas

1

decimais nos cálculos. Para aproximação inicial considere o ponto $(c_1, c_2)^{(1)} = (8, 0.5)$. Faça apenas uma iteração.

Qual o valor da altura de água que o modelo calculado fornece, para t=5 horas?

4. A equação de Schrodinger da mecânica quântica pode ser escrita como uma equação diferencial de segunda ordem

$$\frac{d^2\psi(x)}{dx^2} + \left[n(x) - \beta_n\right]\psi(x) = 0$$

com as condições de fronteira $\psi(-1) = 0$ e $\psi(+1) = -0.5$. Considerando $n(x) = n_0 = 100$, $\beta_n = 95$, estime os valores de $\psi(-0.6)$, $\psi(-0.2)$, $\psi(+0.2)$, $\psi(+0.6)$.

5. A velocidade vertical (ms^{-1}) de um foguetão é dada por

$$v(t) = \begin{cases} 10t^2, & 0 \le t \le 10\\ 1000 - 5t, & 10 < t \le 20\\ 45t + 2(t - 20)^2, & 20 < t \le 30 \end{cases}$$

a) Calcule a distância percorrida ao fim de 30s com base nos seguintes pontos:

b) Calcule uma estimativa do erro de truncatura cometido no cálculo da distância. Comente o valor obtido.

FIM