A nice and tricky lemma (lifting the exponent)

Santiago Cuellar, Jose Alejandro Samper

This article presents a powerful lemma which is useful in solving olympiad problems.

Lemma: Let p be an odd prime. For two different integers a and b with $a \equiv b \pmod{p}$ and a positive integer n, the exponent of p in $a^n - b^n$ is equal to the sum of the exponent of p in a - b and the exponent of p in n.

Let us introduce notation $p^a||n\iff p^a|n$ and $p^{a+1}\not|n$, where $a,p,n\in\mathbb{Z}$. It allows us to state the lemma as follows

Let p be an odd prime and let $a, b, n \in \mathbb{Z}$. Then $p^{\alpha}||a-b$ and $p^{\beta}||n$ implies $p^{\beta+\alpha}||a^n-b^n|$.

Proof: Let us prove that if $a \equiv b \pmod{p}$ and $p^{\beta} || n$ then $p^{\beta} || \frac{a^n - b^n}{a - b}$. It is clear that the lifting lemma will follow, because with the condition $p^{\alpha} || a - b$ we have $p^{\alpha+\beta} || a^n - b^n$.

Assume $n = p^{\beta}k$. We fix k and proceed by mathematical induction on β . The base case is $\beta = 0$. It follows that $p \not| n$ and we have

$$a^{k} \equiv b^{k}(\operatorname{mod} p)$$

$$a^{k}b^{n-k-1} \equiv b^{n-1}(\operatorname{mod} p)$$

$$\sum_{k=0}^{n-1} a^{k}b^{n-k-1} \equiv \sum_{k=0}^{n-1} b^{n-1}(\operatorname{mod} p)$$

$$\equiv nb^{n-1}(\operatorname{mod} p)$$

$$\not\equiv 0(\operatorname{mod} p)$$

Because $\frac{a^n - b^n}{a - b} = \sum_{i=0}^{n-1} a^{n-i-1} b^i$ we get $\frac{a^n - b^n}{a - b}$ is not multiple of p.

Assume that $p^{\beta}||\frac{a^n-b^n}{a-b}|$. We want to prove that $p||\frac{a^{np}-b^{np}}{a^n-b^n}|$. As p|a-b|, we have a=b+xp and $a^k\equiv b^k+kb^{k-1}xp(\bmod p^2)$

$$\begin{array}{lcl} \frac{a^{np}-b^{np}}{a^n-b^n} & = & \sum_{i=0}^{n-1} a^{n(p-i-1)}b^i \\ & \equiv & \sum_{i=0}^{n-1} \left(b^{n(p-i-1)} + ixpb^{n(p-i-1)-1}\right)b^i(\bmod p^2) \end{array}$$

From it is clear that $p||\frac{a^{np}-b^{np}}{a^n-b^n}$. Therefore

$$p^{\beta} \cdot p \ || \frac{a^n - b^n}{a - b} \cdot \frac{a^{np} - b^{np}}{a^n - b^n} \Leftrightarrow p^{\beta + 1} || \frac{a^{np} - b^{np}}{a - b}.$$

The lemma is proven.

A special case of the lemma, p=2.

Let $a, b, n \in \mathbb{Z}$ such that $2^{\alpha} || \frac{a^2 - b^2}{2}$ and $2^{\beta} || n$. Then

$$2^{\beta+\alpha}||a^n-b^n.$$

Proof: Again it is enough to prove that if $2|\frac{a^2-b^2}{2}$ and $2^{\beta}||n, \beta \geq 1$, then $2^{\beta-1}||\frac{a^n-b^n}{a^2-b^2}$.

Assume $n=2^{\beta}m$, where m is odd. We fix m and proceed by mathematical induction on β . The base case is $\beta=1$ or n=2m. From $2|\frac{a^2-b^2}{2}$ we get 2|a-b. Therefore

$$a \equiv b \pmod{2}$$

$$a^{2m-2i-2}b^{2i} \equiv b^{2m-2} \pmod{2}$$

$$\sum_{i=0}^{2m-2} a^{2m-2i-2}b^{2i} \equiv mb^{2m-2} \pmod{2}$$

$$\equiv 1 \pmod{2}$$

Because $\frac{a^{2m} - b^{2m}}{a^2 - b^2} = \sum_{i=0}^{2m-2} a^{2m-2i-2} b^{2i}$ we get $\frac{a^{2m} - b^{2m}}{a^2 - b^2}$ is an odd number that is equivalent to $2^0 || \frac{a^{2m} - b^{2m}}{a^2 - b^2}$.

Assume that

$$2^{\beta-1}||\frac{a^n - b^n}{a^2 - b^2}.$$

We know that a and b are odd, and n is even, thus

$$a^n \equiv 1 \pmod{4}$$

 $b^n \equiv 1 \pmod{4}$
 $a^n + b^n \equiv 2 \pmod{4}$

It follows that 2 is the greatest power of 2 that divides $a^n + b^n$ or $2||a^n + b^n|$. Multiplying this result with the induction hypothesis we obtain

$$2^{\beta}||\frac{a^n-b^n}{a^2-b^2}\cdot(a^n+b^n)=\frac{a^{2n}-b^{2n}}{a^2-b^2}\cdot(a^n+b^n).$$

The special case of the lemma is proven.

Remark: Note that if $\beta = 0$ the special case of the lemma is only true if 4|a-b.

We continue with the problems that are examples how the lemma can be applied.

Problem 1. Find the least positive integer n satisfying: $2^{2007}|17^n - 1$.

Solution: We have $2^4||\frac{17^2-1}{2}|$. Suppose $2^\alpha||n|$. The lemma tells us $2^{4+\alpha}||17^n-1|$. We want to have $\alpha+4\geq 2007\Rightarrow \alpha\geq 2003$. This means that $2^{2003}|n|$ which implies that $n\geq 2^{2003}$. Using our lemma we obtain $2^{2007}|17^{2^{2003}}-1|$. Thus the minimum value of n is 2^{2003} .

Problem 2: (Russia 1996) Let $a^n + b^n = p^k$ for positive integers a, b and k, where p is an odd prime and n > 1 is an odd integer. Prove that n must be a power of p.

Solution: We can factor $p^k = a^n + b^n = (a+b)(a^{n-1} - a^{n-2}b + ... - ab^{n-2} + b^{n-1})$, because n is odd. Therefore $a+b=p^r$ for some positive integer r less or equal to k. Since a and b are positive integers we have $r \ge 1$. Now suppose that $p^{\beta}||n$. Using our lemma we get $p^{r+\beta}||a^n - (-b)^n = a^n + b^n = p^k$.

This last result is equivalent to $p^{r+\beta}||p^k \Rightarrow \beta = k - r$.

This means that we have to take the least integer n such that $p^{\beta}||n$ in order to have $a^n + b^n = p^k$, because $a^m + b^m \ge a^n + b^n$ for m > n. The least positive integer n such that $p^{\beta}||n$ is p^{β} . Thus n must be a power of p and we are done.

Problem 3: (IMO 1990) Find all positive integers n such that $n^2|2^n + 1$.

Solution: Note that n must be odd because $2^n + 1$ is always odd. Let p_1 be the smallest prime divisor of n. We have $2^{2n} \equiv 1 \pmod{p_1}$. Now let $d = \operatorname{ord}_{p_1} 2$. Clearly $d < p_1$, d|2n and $\gcd(n,d) = 1$, because p_1 is the least prime that divides n. Knowing that we obtain d|2, which implies that d = 1 or d = 2. If d = 1 we get $p_1|1$ which is absurd. Thus d = 2 and $p_1|3 \Rightarrow p_1 = 3$.

Let us apply our lemma: 3||2-(-1) and we suppose that $3^{\beta}||n$. Therefore $3^{\beta+1}||2^n-(-1)^n|=2^n+1^n$. We want now $3^{2\beta}|3^{\beta+1}||2^n+1$. This means

that $2\beta \leq \beta + 1 \iff \beta \leq 1$. Thus 3||n| and we can write n = 3n' with $\gcd(3, n') = 1$.

Let p_2 be the smallest prime that divides n'. We have $2^{6n'} \equiv 1 \pmod{p_2}$. Letting $d_2 = \operatorname{ord}_{p_2} 2$ we get $d_2 < p_2$ and $d_2 | 6n'$. But $\gcd(d_2, n') = 1$, thus $d_2 | 6$. Clearly d_2 can't be 1 or 2 as we proved before. It follows that $d_2 = 3$ or $d_2 = 6$.

If $d_2 = 3$ we have $p_2|7 \Rightarrow p_2 = 7$. If $d_2 = 6$ we have $p_2|63 = 7 \cdot 9 \Rightarrow p_2|7$, hence $p_2 = 7$. Note that $2^3 \equiv 1 \pmod{7} \Rightarrow 2^{k+3} \equiv 2^k \pmod{7}$. Observe that $2^1 \equiv 2 \pmod{7}$ and $2^2 \equiv 4 \pmod{7}$. This means $2^k \equiv -1 \pmod{7}$ does not have solution in integers. Thus $7 \not |2^{7k} + 1 \forall k$, and p_2 does not exist.

Finally we obtain that the only prime divisor of n is 3 and $3||n \Rightarrow n = 3$. It follows that the only solutions are n = 1 and n = 3.

Problem 4: (IMO 2000) Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^n + 1$?

Solution: We will prove by induction on k that there exists n with exactly k prime divisors such that $n|2^n+1$. Before we start the induction, we observe that the divisors of n will be odd, because 2^n+1 is odd for all positive integers n.

The base case is n=2. 9 has just one prime divisor and $9|2^9+1=513$. It also happens that 19|513. Suppose that for k=t there is n_t such that $n_t|2^{n_t}+1$ and there exists p_t such that $p_t|2^{n_t}+1$, $\gcd(n_t,p_t)=1$. We will prove that there exist n_{t+1} with t+1 prime divisors such that $n_{t+1}|2^{n_{t+1}}+1$ and that there is also a prime p_{t+1} such that $p_{t+1}|2^{n_{t+1}}+1$ and $\gcd(n_{t+1},p_{t+1})=1$. We will also prove that $n_{t+1}=n_tp_t$. As $\gcd(n,p_t)=1\Rightarrow n_tp_t|2^{n_t}+1|2^{n_tp_t}+1$, thus $n_{t+1}=n_tp_t$ works. We will apply our lemma to prove that p_{t+1} exists. Let q be a prime divisor of n_t . Suppose $q^\alpha||2^{n_t}+1$ and we have $q^0||p_t$. The lemma tells us that $q^\alpha||2^{n_{t+1}}+1$. Now suppose that $p_t^\beta||2^{n_t}+1$ and we know $p_t||p_t$. The lemma tells us that $p_t^{\beta+1}||2^{n_{t+1}}+1$. This means that all we have to prove

$$p_t(2^{n_t}+1) < 2^{n_{t+1}}+1 = (2^{n_t}+1)(2^{n_t(p_t-1)}-2^{n_t(p-2)}+\dots-2^{n_t}+1).$$

This is equivalent to

$$p_t < 2^{n_t(p_t-1)} - 2^{n_t(p-2)} + \dots - 2^{n_t} + 1 = 2^{n_t(p-2)} + 2^{n_t(p-4)} + \dots + 2^{n_t} + 1.$$

We have $2^{n_t(p_t-1)} - 2^{n_t(p-2)} + \dots - 2^{n_t} + 1 > \frac{(p_t-3)}{2} 2^{n_t} + 1 > 2^8(p_t-3) + 1 > p_t$. This means that there exists a prime p_{t+1} such that $(n_{t+1}, p_{t+1}) = 1$ and $p_{t+1}|2^{n_{t+1}}$ because $p_t > 3$. The problem is solved.

Problem 5. Let $a \ge 3$ be an integer. Prove that there exists an integer n with exactly 2007 prime divisors such that $n|a^n-1$.

Solution: We use mathematical induction on the number of divisors. This problem is interesting, because we need to combine both lemmas.

For the base case we have to prove there exist a prime p such that p|a-1 (we will take 2 as the first prime if a is odd). We will prove that there is a power of p such that $a^{p^k}-1$ has another prime divisor q that is not p. If a is even we can apply the lemma directly. We have that the exponent of p in

 a^p-1 is the exponent of p in a-1 plus one. Thus we need $p=\sum_{i=0}^{p-1}a_i>p$ that is not possible. If a is odd then we have two cases, if a>3 we have that $2|a^2-1=(a-1)(a+1)$ and there is one odd divisor of a^2+1 because $\gcd(a-1,a+1)=2$. If a=3 we have that $4|3^4-1$ and 5 does also divide it.

Suppose that n_k has exactly k prime divisors such that $n_k|a^{n_k}-1$ and there exists p_k such that $p_k|a^{n_k}-1$ with $\gcd(n_k,p_k)=1$. This means that $a_kp_k|a^{n_k}-1|a^{n_kp_k}-1$. We say that $n_{k+1}=n_kp_k$. Now we have to prove that there exists a prime p_{k+1} such that $\gcd(n_{k+1},p_{k+1})=1$ and $p_{k+1}|a^{n_{k+1}}-1$. Let us use our lemma. Because we have taken 2 as the first prime (when it was possible) we have no problems with the exponent of 2, as for $k \geq 2$ the exponent of 2 does not increase (from the special case of the lemma). Now for any odd prime divisor of n_k the exponent of p in $a^{n_k}-1$ and $a^{n_{k+1}}-1$ are equal except for p_k whose exponent has increased by one. We have

$$a^{n_{k+1}} - 1 = a^{n_k p_k} - 1 = (a^{n_k} - 1)(a^{n_k(p_k-1)} + a^{n_k(p_k-2)} + \dots + a^{n_k} + 1)$$

Thus p_{k+1} does not exist whenever $p_k = (a^{n_k(p_k-1)} + a^{n_k(p_k-2)} + ... + a^{n_k} + 1)$ (because the exponent of p_k has increased just by one). But the last equation can not hold, because a > 1 and the RHS has p_k added all except one greater than 1. Thus RHS>LHS that proves the existence of p_{k+1} and we are done.

Santiago Cuellar, Jose Alejandro Samper Colegio Helvetia de Bogota, Colombia

This completes the base case.