定义(等价关系)如果集合A上的关系R是自反、对称、传递的,则称R为A上的等价关系。

定义(等价类) 设 R 是集合A上的等价关系。对于每个 $x \in A$, A中与 x 有关系R的元素的集合 称为 x关于R的等价类,简称 为 x 的等价类,记作 $[x]_R$,

即: $[x]_R = \{ y \mid y \in A \land x R y \}$,

显然, $[x]_R \subseteq A$

定理 设 R 是非空集合A上的等价关系,则有:

- (1) 对于每个 $x \in A$, $x \in [x]_R$, 即 $[x]_R$ 是A的非空子集。
- $(2)[x]_R = [y]_R$ 当且仅当 x R y。
- (3) 若 $x, y \in A$ 且 $x \overline{R} y$, 则 $[x]_R \cap [y]_R = \emptyset$ 。
- $(4) \cup_{\mathbf{x} \in \mathbf{A}} [\mathbf{x}]_{\mathbf{R}} = \mathbf{A}.$

定义(划分). 设A为任意集合且C⊆P(A)。如果C满足:

- (1) 若S ∈ C, 则S $\neq \phi$;
- (2) \cup C=A;
- (3) 若 S_1 , $S_2 \in P(A)$, 且 $S_1 \cap S_2 \neq \emptyset$, 则 $S_1 = S_2$ 。 则称C为A的一个划分。

定理. 若R为集合A上的等价关系,则 $\mathbb{C}_{\mathbb{R}} = \{[x]_{\mathbb{R}} \mid x \in A\}$ 为A的一个划分。

定义. 设R为集合A上的等价关系。称集合{ $[x]_R | x \in A$ }为A关于R的商集,并记为A/R,并称n(A/R)为R的秩。

定理. 设C为集合A的一个划分。若令 $\mathbf{R}_{\mathbf{C}} = \{ \langle \mathbf{x}, \mathbf{y} \rangle | \text{存在S} \in \mathbf{C}, \text{使x}, \mathbf{y} \in \mathbf{S} \},$

则 R_C 为A上的等价关系,且A/ R_C =C。

例:设R是N上的"模6同余"关系,即:

 $R = \{ \langle x, y \rangle | x \in N \land y \in N \land 6 | (x - y) \}$, 求各元素的等价类和商集。

解: 等价类是:

$$[0]_{R} = \{ 0, 6, 12, 18, ..., \} = \{ x \mid x = 6n, n \in \mathbb{N} \}$$

$$[1]_{R} = \{ 1, 7, 13, 19, ..., \} = \{ x \mid x = 6n + 1, n \in \mathbb{N} \}$$
...

[5]
$$_{R} = \{ 5, 11, 17, 23, ..., \} = \{ x \mid x = 6n + 5, n \in \mathbb{N} \}$$

$$N/R = \{ [0]_R, [1]_R, [2]_R, [3]_R, [4]_R, [5]_R \}$$

例: UA, IA 分别是A上的全域关系和恒等关系,则

$$A/U_A = \{A\}$$

$$A/I_A = \{\{x\} \mid x \in A\}$$

例: A= {a, b, c, d, e}, 划分C = { {a, b}, {c}, {d,e} }, 求划分C确定的 A 上的等价关系 R。

解: $R = \{ \langle a, b \rangle, \langle b, a \rangle, \langle d, e \rangle, \langle e, d \rangle \} \cup I_A$

- 例. 设R₁, R₂都是集合A上的等价关系。试判断下列A上的二元关系是不是A上的等价关系,并给出理由。
- (1) $A^2 R_1$; (2) $R_1 R_2$; (3) R_1^2 ; (4) $r(R_1 R_2)$;
- (5) $R_{20}R_1$; (6) $R_1 \cup R_2$; (7) $t(R_1 \cup R_2)$; (8) $t(R_1 \cap R_2)$.
- 解: (2) 不是: R_1-R_2 不是自反的。
- (4) 不一定: $r(R_1-R_2)$ 不一定是传递的:
- 反例: A={1, 2, 3, 4},
- R1= {<1, 1>, <2,2>, <3,3>, <4,4>, <1, 2>, <2, 1>, <1, 3>, <3, 1>, <3, 2>, <2, 3>},
- $R2 = \{<1, 1>, <2,2>, <3,3>, <4,4>, <1,3>, <3,1>\}$
- $R1-R2=\{<1, 2>, <2, 1>, <3, 2>, <2, 3>\}$
- r(R₁-R₂)={<1, 1>, <2,2>, <3,3>, <4,4>, <1, 2>, <2, 1>, <3, 2>, <2, 3>} 不是传递的。

- 例. 设R₁, R₂都是集合A上的等价关系。试判断下列A上的二元关系是不是A上的等价关系,并给出理由。
- (1) $A^2 R_1$; (2) $R_1 R_2$; (3) R_1^2 ; (4) $r(R_1 R_2)$;
- (5) $R_{20}R_1$; (6) $R_1 \cup R_2$; (7) $t(R_1 \cup R_2)$; (8) $t(R_1 \cap R_2)$.

解: (6) 不一定: $R_1 \cup R_2$ 不一定是传递的。

反例: A={1, 2, 3, 4},

 $R_1 = \{<1, 1>, <2,2>, <1, 2>, <2, 1\},$

 $\mathbf{R}_2 = \{ <2, 2>, <3, 3>, <2, 3>, <3, 2> \}$

 $R_1 \cup R_2 = \{<1, 1>, <2, 2>, <3, 3>, <1, 2>, <2, 1>, <3, 2>, <2, 3>\}$

因为 $<1,3> \notin R_1 \cup R_2$, $R_1 \cup R_2$ 不是传递的。

(8) 是。

例:设 C_1 和 C_2 都是集合A的划分。试判断下列集类是不是A的划分,为什么?

- (1) $C_1 \cup C_2$;
- (2) $C_1 C_2$.

解: (1) 不是。

反例: $A=\{1,2,3,4\}, C_1=\{\{1,2\},\{3,4\}\}, C_2=\{\{1,3\},\{2,4\}\}, C_1=\{\{1,2\},\{3,4\}\}, C_2=\{\{1,3\},\{2,4\}\}, C_1=\{\{1,2\},\{3,4\}\}, C_2=\{\{1,3\},\{2,4\}\}, C_2=\{\{1,3\},\{3,4\}\}, C_2=\{\{1,3\},\{3\},\{3\}\}, C_2=\{\{1,3\},\{3\},\{3\}\}, C_2=\{\{1,3\},\{3\},\{3\}\}, C_2=\{\{1,3\},\{3\}\}, C_2=\{\{1,3\},\{3\},\{3\}\}, C_2=\{\{1,3\},\{3\}\}, C_$

4}}, $C_1 \cup C_2 = \{\{1, 2\}, \{3, 4\}, \{1, 3\}, \{2, 4\}\}\}$.

因为 $\{3,4\} \cap \{1,3\} \neq \emptyset$,因此 $C_1 \cup C_2$ 不是A的划分。

(3) 不是。

反例: $A=\{1,2,3,4\}, C_1=\{\{1,2\},\{3,4\}\}, C_2=\{\{1,2\},\{3,4\}\}, C_3=\{\{1,2\},\{3,4\}\}, C_4=\{\{1,2\},\{3,4\}\}, C_4=\{\{1,2\},\{$

{3}, {4}}, C₁-C₂={ {3,4}} 不是A的划分。

例:设 $A \cap B$ 都是非空集, $\{A_1, A_2, ..., A_n\}$ 为A的划分。试证明 $\{A_1 \cap B, A_2 \cap B, ..., A_n \cap B\}$ 并不总是集合 $A \cap B$ 的划分。

例:设A为恰含n个元素的非空有限集,则有多少个不同的A上的等价关系?其中秩为2的又有多少?

解: 设集合 $A=\{a_1,...,a_n\}$,则A上的等价关系数目即为集合A上的划分个数。

设s(n, k) 表示包含n个元素的集合A划分成k个子集的划分个数,则A的划分个数为 $\sum_{k=1}^{n} s(n, k)$ 。

(s(n,k)被称为第二类Stirling数,可证明:

 $s(n, k)=k \cdot s(n-1, k)+s(n-1, k-1), n \ge k \ge 1$

把n个元素划分成k个子集,有两种情形:

- 1. a_n 构成一个子集,剩下的k-1个子集由 $A-\{a_n\}$ 划分生成,共有S(n-1,k-1)个划分;
- 2. a_n 不单独构成一个子集,即A- $\{a_n\}$ 被划分成k个子集,然后再挑选一个子集,把an放入,共有k·S(n-1,k)个划分。

因此 $s(n, k)=k\cdot s(n-1, k)+s(n-1, k-1)$ 。

显然, p(n, 1)=1, n≥1。(请补充证明后面部分)

例:若R为集合A上的等价关系,则称n(A/R)为R的秩。如果 $i,j\in I_+$ 且集合A上的等价关系 R_1 与 R_2 的秩分别为n和m,则 $R_1\cap R_2$ 也为A上的等价关系且

 $\max\{ n, m \} \le n(A/(R_1 \cap R_2)) \le n \cdot m \circ$

证明: (1) 易证R₁ ∩ R₂ 也A上的等价关系 (补充证明)。

(2) 设 $n(A/R_1)=n$, $n(A/R_2)=m$, $n(A/R_1\cap R_2)=p$, 且

 $C_1,...,C_n$ 是 R_1 对应的划分,

 D_1, \ldots, D_m 是 R_2 对应的划分,

 $E_1, ..., E_p$ 是 $R_1 \cap R_2$ 对应的划分,

则有 $C_i \neq C_j$, $D_i \neq D_j$, $E_i \neq E_j$, $i \neq j$ 。

可证明:位于 \mathbf{R}_1 (\mathbf{R}_2)对应的划分中任意两个不同的子集 \mathbf{C}_i , \mathbf{C}_j (\mathbf{D}_i , \mathbf{D}_j)中的元素也一定位于 $\mathbf{R}_1 \cap \mathbf{R}_2$ 对应的划分的两个不同的子集; 因此,有 $\max\{\mathbf{n},\mathbf{m}\} \leq \mathbf{n}(\mathbf{A}/(\mathbf{R}_1 \cap \mathbf{R}_2))$ 。

第六章 关系

重点掌握:

关系的定义

全域关系、恒等关系

关系的表示: 关系图, 关系矩阵

关系的性质: 自反, 反自反, 对称, 反对称, 传递

关系运算: 集合运算, R·S, R⁻¹, r(R), s(R), t(R)

序关系:偏序(半序),严格偏序(拟序),全序,良序

等价关系 与 划分的关系