

MAE 253 – Experimental Aerodynamics I Lab 3 – Airfoil Aerodynamics (Lift)

Shreyas Narsipur NCSU February 20th, 2018

Outline

- Lab 2 Solutions
- Lab 3 Objective
- ➤ Lab 3 Theory
- Lab 3 Expectations

Lab 1 - Solutions

TF (average) = 1.2512 % turbulence (average) = 0.2998

Lab 3 - Objective

- Basic understanding of the multi-port pressure measurement system.
- Insight into basic automation techniques in experimental aerodynamics research.
- > Study the lift characteristics of the airfoil.

Lab 3 - Theory

- ➤ Lift is the perpendicular (to oncoming flow direction) component of the force exerted on a body due to the fluid flow.
- > The lift coefficient is a number that aerodynamicists use to model all of the complex dependencies of shape, inclination, and some flow conditions on lift.

$$C_l = \frac{L}{\frac{1}{2}\rho_{\infty}V_{\infty}^2 c}$$

- C₁ coefficient of lift
- L lift force
- ρ density of fluid
- V_{∞} freestream velocity
- c airfoil chord

Lab 3 - Theory

> The pressure coefficient is a parameter for studying low-speed flow of compressible fluids such as air.

$$C_p = \frac{p - p_{\infty,static}}{\frac{1}{2}\rho_{\infty}V_{\infty}^2}$$

- p static pressure at point of measurement
- p_{∞} freestream static pressure
- The Scanivalve system directly provides gauge pressure.
- Area under the C_p curve gives us the lift coefficient.

$$- C_l = \frac{1}{c} \int_0^c (C_{p,lower} - C_{p,upper}) dx$$

 In MATLAB, the trapz() function gives you the area under a curve.

Lab 3 – Expectations

Data acquired:

- Static pressure data at different angles of attack and Reynolds numbers.
- 10 readings per angle of attack.
- > Co-plot the C_p distributions at all angles of attack for a given Reynolds number.
- \triangleright Plot the C_I vs. α curve for the airfoil with error bars and compare the data to XFOIL predictions.

Constants:

- airfoil chord, c = 0.3048m
- density, $\rho_{air} = 1.185 \text{ kg/m}^3$
- dynamic viscosity, μ_{air} = 1.846x10⁻⁵ Pa s
- TF = 1.2512

