

MYC-Y6ULX 产品数据手册

版本 V1.5

版本记录

版本号	说明	时间
V1.0	初始版本	2017.09.14
V1.1	修改产品型号,增加章节6.2和章节8	2018.03.09
V1.2	更新图 8-1 和图 8-2	2018.04.19
V1.3	更新图 8-1 和图 8-2 有关启动位配置说明	2018.05.18
V1.4	● 增加 USB 下载模式说明	2018.10.15
	● 修改 PCB 尺寸	
	● 最小系统电路上增加电源监控芯片	
V1.5	更新表 1-1、表 1-3	2019.4.26

目 录

目 录	3
第1章 概述	5
第 2 章 硬件参数	9
2.1 CPU 特性	9
2.2 板载硬件资源	12
2.3 扩展接口资源	13
第3章 接口说明	14
3.1 扩展接口	14
3.2 管脚描述表	14
第4章 硬件设计	15
4.1 电源方案	15
4.2 时钟资源	16
4.3 DDR3L SDRAM	16
4.4 eMMC 存储	17
4.5 NAND Flash	18
4.6 以太网	19
第 5 章 电气参数	20
5.1 工作温度	20
5.2 GPIO 直流特性	20
5.3 电源直流特性	21
第 6 章 机械参数	22
6.1 机械尺寸	22
6.2 推荐 PCB 封装	23
第7章 配套评估套件	24
第8章 原理图设计说明	25
8.1 启动说明	25
8.2 最小系统设计	26
8.3 注意事项	28
附录一 联系方式	错误! 未定义书签。

附录二 售后服务与技术支持.......错误! 未定义书签。

第1章 概述

MYC-Y6ULX 系列核心板是米尔电子推出的基于 NXP 公司 i.MX 6UL/6ULL 系列处理器的嵌入式板卡。i.MX6UL 是一个高功效、高性价比的应用处理器系列,采用单个 ARM Cortex-A7 内核,运行速度高达 696MHz。i.MX 6ULL 在 i.MX 6UL 的基础上精简了安全加密部分,但主频最高可达 900MHz,更具性价比。i.MX 6UL/6ULL 系列的处理器提供多种存储器接口,其中包括 16 位 LPDDR2、DDR3、DDR3L、NAND Flash、NOR Flash、eMMC、Quad SPI 和各种其他接口,用于连接外围设备。

MYC-Y6ULX 提供 Linux 4.1.15 操作系统的驱动支持。随同核心板,提供包括用户手册、底板 PDF 原理图、外设驱动、BSP 源码包、开发工具等相关资料。为开发者提供了稳定的设计参考和完善的软件开发环境,能够有效帮助开发者提高开发效率、缩短开发周期、优化设计质量、加快产品研发和上市时间。

图 1-1 MYC-Y6ULX 核心板

MYC-Y6ULX 板上处理器的封装为 MAPBGA 289,可以兼容 i.MX 6UL 的 G0、G1、G2、G3 子系列和 i.MX6ULL 的 Y0、Y1、Y2 子系列的多款型号。不同型号的处理器在资源上存在一定的差异,标准版提供以下五种配置可供用户选用:

产品型号	MYC-Y6ULY2-256N256D-50-C	MYC-Y6ULY2-4E512D-50-C	MYC-Y6ULG2-256N256D-50-I
主芯片	MCIMX6Y2DVM05AA	MCIMX6Y2DVM05AA	MCIMX6G2CVM05AB
工作温度	0℃ - +70℃	0℃ - +70℃	-40℃ - +85℃
内存	256MB DDR	512MB DDR	256MB DDR
存储器	256MB NandFlash	4GB EMMC	256MB NandFlash
产品型号	MYC-Y6ULY2-256N256D-50-I	MYC-Y6ULY2-4E512D-50-I	
主芯片	MCIMX6Y2CVM05AB	MCIMX6Y2CVM05AB	
工作温度	-40℃ - +85℃	-40°C - +85°C	
内存	256MB DDR	512MB DDR	
存储器	256MB NandFlash	4GB EMMC	

表 1-1 MYC-Y6ULX 订购信息

针对批量应用,米尔提供主芯片及内存等选配和定制服务。

以下是这几款系列芯片之间的主要差异:

Feature	MCIMX6G0	MCIMX6G1	MCIMX6G2	MCIMX6G3	
Speed	528 MHz	528 MHz, 700 MHz	528 MHz, 700 MHz	528 MHz	
Cooks	22 KB 22 KB B	32 KB-I, 32 KB-D	32 KB-I, 32 KB-D	32 KB-I, 32 KB-D	
Cache	32 KB-I, 32 KB-D	128 KB L2	128 KB L2	128 KB L2	
OCRAM	128 KB	128 KB	128 KB	128 KB	
DRAM	16-bit LP-DDR2,	16-bit LP-DDR2,	16-bit LP-DDR2,	16-bit LP-DDR2,	
DRAW	DDR3/DDR3L	DDR3/DDR4L	DDR3/DDR5L	DDR3/DDR6L	
eFuse	512-bit	1024-bit	1536-bit	2048-bit	
NAND	.,	.,	.,		
(BCH40)	Yes	Yes	Yes	Yes	
EBI	Yes	Yes	Yes	Yes	
Ethernet	10/100-Mbit/s x 1	10/100-Mbit/s x 1	10/100-Mbit/s x 2	10/100-Mbit/s x 2	
USB	OTG, HS/FS x 1	OTG, HS/FS x 2	OTG, HS/FS x 2	OTG, HS/FS x 2	

CAN	0	1	2	2
				TRNG, Crypto Engine (AES
		TRNG, Crypto	TRNG, Crypto	with DPA/TDES/SHA/RSA),
Sacreity	Basic	Engine	Engine	Secure Boot, tamper
Security	Dasic	(AES/TDES/SHA),	(AES/TDES/SHA),	monitor,
		Secure Boot	Secure Boot	PCI4.0 pre-certification,
				OTF DRAM encryption
Graphic	None	None	PxP	PxP
CSI	None	None	24-bit Parallel CSI	24-bit Parallel CSI
LCD	None	None	24-bit Parallel LCD	24-bit Parallel LCD
Quad SPI	1	1	1	1
SDIO	2	2	2	2
UART	4	8	8	8
I2C	2	4	4	4
SPI	2	4	4	4
I2S/SAI	1	3	3	3
S/PDIF	1	1	1	1
Timer/PWM	Timer x 2, PWM x	Timer x 4, PWM x 8	Timer x 4, PWM x 8	Timer x 4, PWM x 8
12-bit ADC	1 x 10-ch.	1 x 10-ch.	2 x 10-ch.	2 x 10-ch.

表 1-2 i.MX6UL 处理器资源对比

Feature	MCIMX6Y0	MCIMX6Y1	MCIMX6Y2	
Core	Core ARM® Cortex-A7		ARM® Cortex-A7	
Speed 528 MHz		528 MHz	528/800/900 MHz	
Cache	22 KB 22 KB D	32 KB-I, 32 KB-D	32 KB-I, 32 KB-D	
Cacne	32 KB-I, 32 KB-D	128 KB L2	128 KB L2	
OCRAM 128 KB		128 KB	128 KB	

DDAM	16-bit LP-DDR2,	16-bit LP-DDR2,	16-bit LP-DDR2,	
DRAM	DDR3/DDR3L	DDR3/DDR4L	DDR3/DDR5L	
eFuse	256-bit	256-bit	256-bit	
NAND (BCH40)	Yes	Yes	Yes	
EBI	Yes	Yes	Yes	
Ethernet	10/100-Mbit/s x 1	10/100-Mbit/s x 1	10/100-Mbit/s x 2	
USB	OTG, HS/FS x 1	OTG, HS/FS x 2	OTG, HS/FS x 2	
CAN	0	1	2	
Graphic	None	None	PxP	
CSI	None	None	16-bit Parallel CSI	
LCD	None	None	24-bit Parallel LCD	
Quad SPI	1	1	1	
SDIO	2	2	2	
UART	4	8	8	
I2C	2	4	4	
SPI	2	4	4	
I2S/SAI	1	3	3	
ESAI	1	1	1	
S/PDIF	1	1	1	
Timer/PWM	Timer x 2, PWM x 4	Timer x 4, PWM x 8	Timer x 4, PWM x 8	
12-bit ADC	1 x 10-ch.	1 x 10-ch.	2 x 10-ch.	
Security	None	AES-128, HAB	AES-128, HAB	
Temperature	-40°C to 105°C (Tj)	-40°C to 105°C (Tj)	-40°C to 105°C (Tj)	

表 1-3 i.MX6ULL 处理器资源对比

第2章 硬件参数

2.1 CPU 特性

2.1.1 i.MX6ULL 系列处理器

i.MX6ULL 系列是基于高性能、超低功率 ARM Cortex-A7 核心 处理器,处理器运行速度高达 900 MHz,包含 128 KB L2 高速缓存和 16 位 DDR3 / LPDDR2 支持。其内部集成了电源管理、安全单元和丰富的互联接口,为物联网应用提供了一种安全、低功耗、高性能的解决方案。

i.MX6ULL 结构图如下:

图 2-1 i.MX6ULL 功能结构图

主要的特性有:

- ARM® Cortex®-A7 内核,运行频率 900 MHz, 128 KB L2 缓存
- 并行 LCD 显示,分辨率高达 WXGA (1366x768)

- 8/10/16/24 位并行摄像头传感器接口
- 电泳显示屏控制器支持直接驱动 E-Ink EPD 面板,分辨率高达 2048x1536,工作频率 106 Hz
- 16 位 LP-DDR2, DDR3/DDR3L
- 8/16 位并行 NOR FLASH / PSRAM
- 双通道 Quad-SPI NOR FLASH
- 8 位原始 NAND FLASH 与 40 位 ECC
- 两个 MMC 4.5/SD 3.0/SDIO 端口
- 两个 USB 2.0 OTG, HS/FS, 器件或主机。
- 音频接口包括 3 个 I2S/SAI, S/PDIF Tx/Rx
- 两个 10/100 以太网,支持 IEEE 1588 协议
- 两个 12 位 ADC, 高达 10 个输入通道, 以及电阻式触摸控制器(4 线/5 线)
- 部分 PMU 集成
- 安全模块: TRNG,加密引擎(带 DPA 的 AES, TDES/SHA/RSA),安全启动
- 封装: 14x14 289 MAPBGA 0.8mm 间距、9x9 272 MAPBGA 0.5 mm 间距

2.1.2 i.MX6UL 系列处理器

i.MX6UL 系列是基于高性能、超低功率 ARM Cortex-A7 核心的处理器,处理器运行速度高达 696 MHz,包含 128 KB L2 高速缓存和 16 位 DDR3 / LPDDR2 支持。其内部集成了电源管理,简化了上电时序设计。同时,还集成了安全单元和丰富的互联接口,适用于新一代的消费电子、工业控制及汽车应用。

i.MX6UL 处理器结构图如下:

Optional

图 2-2 i.MX6UL 功能结构图

主要的特性有:

- ARM® Cortex®-A7,运行频率高达 696 MHz, 128 KB L2 缓存
- 并行 LCD 显示,分辨率高达 WXGA (1366x768)
- 8/10/16/24 位并行摄像头传感器接口
- 16 位 LP-DDR2, DDR3/DDR3L
- 8/16 位并行 NOR FLASH / PSRAM
- 双通道 Quad-SPI NOR FLASH
- 8 位原始 NAND FLASH 与 40 位 ECC
- 两个 MMC 4.5/SD 3.0/SDIO 端口
- 两个 USB 2.0 OTG, HS/FS, 器件或主机。
- 音频接口包括 3 个 I2S/SAI, S/PDIF Tx/Rx
- 两个 10/100 以太网,支持 IEEE 1588 协议
- 两个 12 位 ADC, 高达 10 个输入通道, 以及电阻式触摸控制器(4 线/5 线)
- 部分 PMU 集成
- 安全模块: TRNG,加密引擎(带 DPA 的 AES, TDES/ SHA/ RSA),防篡改监控,安全引导,SIMV2/ EVMSIM X 2, OTF DRAM

- 加密, PCI4.0 预认证
- 封装: 14x14 289 MAPBGA 0.8mm 间距、9x9 272 MAPBGA 0.5 mm 间距

2.2 板载硬件资源

MYC-Y6ULX 核心板采用高密度高速电路板设计,并同时兼容 i.MX 6UL 和 i.MX 6ULL 系列处理器,在大小为 37x39mm 的板卡上集成了处理器、DDR、NAND Flash、eMMC、电源管理等电路。核心板与底板连接采用 1mm 间距的邮票孔焊盘相连,抗震动能力好,稳定可靠,同时具有更高的性价比。结构如图 2-3 所示:

图 2-3 板载资源配置

功能	参数	配置
CPU	标配 MCIMX6G2CVM05AB, MCIMX6Y2DVM05AA	可选
DDR3	标配 256MB/512MB,最高可达 1GB	可选
NAND Flash	标配 256MB, 512MB/1GB 容量可选	可选
eMMC	标配 4G,容量可选	可选
Ethernet	10/100M PHY	标配
Expand IO Connector	GPIO x 97	标配

表 2-1 板载资源

2.3 扩展接口资源

MYC-Y6ULX 核心板预留 140 个引脚的外扩接口,其包含了丰富的外设资源,具体请查看下表:

项目	参数	
网口	2 路百兆网	
GPIO	多达 97 路 GPIO	
串口	可扩展8路串口	
I2C	可扩展 4 路 I2C 总线	
CAN	可扩展 2 路 CAN 总线	
SPI	可扩展 4 路 SPI	
ADC	8 路 ADC	
PWM	8路PWM	
125	3 路 12S	
Camera	一路并行摄像头接口	
JTAG	JTAG 调试口	
LCD	一路 24 Bit LCD 接口	

表 2-2 扩展口资源列表

注: 此表部分功能有复用,上表只列出每种外设最大可配置的数量,详情请参考芯片数据手册。

第3章 接口说明

3.1 扩展接口

MYC-Y6ULX 核心板和底板采用连接 1.0mm 间距的邮票孔工艺焊盘相连,底板封装设计请参考 MYB-Y6ULX,扩展接口管脚标号顺序,如图 3-1 所示:

图 3-1 管脚标号图

3.2 管脚描述表

MYC-Y6ULX 核心板管脚描述请参考附赠资料<MYC-Y6ULX 管脚描述表>

第4章 硬件设计

4.1 电源方案

i.MX6UL 和 i.MX6ULL 处理器内置电源管理单元,大大简化了芯片供电电源设计。根据处理器的数据手册,将芯片电源划分的划分为 5 个电源域,具体划分如下:

Item	Voltage	Power Rail
1	3.3V	VDD_HIGH_IN,NVCC_xxx,VDDA_ADC_3P3
2	1.2V	VDD_SOC_IN
3	1.35V	NVCC_DRAM
4	3.0V	VDD_SNVS_IN
5	5V	USB_OTGx_VBUS

表 4-1 CPU 电源分配表

考虑到分立器件更容易采购和更低的价格,MYC-Y6ULX 并没有采用集成的 PMU 供电方式,而是根据 I.MX6ULL 处理器的上电时序要求,设计了分立电源解决方案。外部只需要提供单路 3.3V 电源就可以工作,对于需要使用 CPU RTC 和 USB 功能的用户,还需要提供RTC 电源和 USB VBUS 电源。电源结构如下图所示:

图 4-1 MYC-Y6ULX 电源拓扑

4.2 时钟资源

MYC-Y6ULX 根据应用需要,包含了两个时钟源:

- 24Mhz CPU 主时钟(Y1)
- 32.768Khz CPU RTC 时钟(Y2)

图 4-2 时钟资源

4.3 DDR3L SDRAM

MYC-Y6ULX 在主芯片 MMDC 总线上连接了一颗内存芯片。总线最高工作时钟频率为 400MHz,总线宽度为 16bit,最大容量能支持到 1G Byte。不同配置对应的芯片型号为:

MYC-Y6ULG2-256N256D-50-I

型号: MT41K128M16JT-125 IT:K 品牌:镁光

MYC-Y6ULY2-256N256D-50-C

型号: K4B2G1646F-BYK0 品牌:三星

➤ MYC-Y6ULY2-4E512D-50-C

型号: MT41K256M16TW-107:P 品牌:镁光

> MYC-Y6ULY2-256N256D-50-I

型号: MT41K128M16JT-125 IT:K 品牌:镁光

➤ MYC-Y6ULY2-4E512D-50-I

型号: MT41K256M16TW-107 IT:P 品牌:镁光

第 16 页 共 31 页

图 4-3 DDR3 SDRAM

4.4 eMMC 存储

eMMC 是一种标准化接口的嵌入式 Flash 芯片方案,他简化了接口设计,并解决了因 Flash 厂家间标准不同而产生的驱动兼容性问题。MYC-Y6ULX 板上 eMMC 连接到的是处 理器的 MMC2 控制器,8 位 MMC 数据线宽度。eMMC 管脚和 NAND Flash 功能复用,默认没有焊接 eMMC 芯片。eMMC 版本的核心板默认搭载容量大小为 4GB,具体型号为 MTFC4GACAJCN-1M WT。

图 4-4 eMMC 存储

4.5 NAND Flash

MYC-Y6ULX 上集成了一片 NAND Flash 存储器,连接到了 I.MX6ULL 的 GPMI 控制器,可用作系统启动引导,保存引导信息。eMMC 管脚和 NAND Flash 功能复用。默认焊接容量大小为 256MB,商业级焊接型号为镁光公司的 MT29F2G08ABAEAWP:E,工业级焊接型号为镁光公司的 MT29F2G08ABAEAWP-IT:E。

图 4-5 NAND Flash

4.6 以太网

MYC-Y6ULX 核心板搭载了一路 10/100M 的以太网 PHY, 芯片使用的是 Microchip 的 LAN8720A, 通过 RMII 方式连接到了处理器的 ETH1 控制器上。具体连接方式如下图:

图 4-6 以太网

第5章 电气参数

5.1 工作温度

<i>た</i> フ チトゥ	₹ ₩r	规格				2월 8명
名称	参数	最小	典型	最大	单位	说明
商业级	工作环境温度	0		+70	$^{\circ}$	
工业级	工作环境温度	-40		+85	$^{\circ}$ C	

表 5-1 工作温度

5.2 GPIO 直流特性

<i>₹₩</i>	拉 里	规格				2K nn
参数 	标号	最小	典型	最大	单位	说明
高电平输入电压	Vін	2.3		3.3	V	
低电平输入电压	VIL	0		0.99	V	
高电平输出电压	Vон	3.15			V	
低电平输出电压	Vol			0.15	V	

表 5-2 GPIO 直流特性

5.3 电源直流特性

参数	标号	规格				2월 6日
		最小	典型	最大	单位	说明
3.3V 系统电压	+3.3V	3.0	3.3	3.6	V	主电源输入
3.3V 系统电流	lv3.0		0.25		Α	主电源电流
RTC 电压	VDD_BAT	2.4		3.6	V	RTC 电源输入
RTC 电流	IVDD_BAT		220		uA	RTC 典型工作 电流

表 5-3 电源直流特性

第6章 机械参数

6.1 机械尺寸

- ◆ 尺寸: 37 x 39 x3 mm(带屏蔽罩)
- ◆ PCB 规格: 8 层板设计,沉金工艺,独立的完整接地层,无铅化工艺
- ◆ 接口类型: MYC-Y6ULX机械尺寸如图6-1所示:

图 6-1 MYC-Y6ULX 尺寸图

注: 需要更详细尺寸信息请查阅 MYC-Y6ULX CAD 机械文件

6.2 推荐 PCB 封装

图 6-2 MYC-Y6ULX 推荐 PCB 封装

第7章 配套评估套件

MYD-Y6ULX 是与 MYC-Y6ULX 核心板配套的使用的评估套件, 采用 12V 直流供电, 搭载了 LCD、摄像头、USB、以太网、WIFI、4G 模块、音频、TF 卡、RS485、RS232 CAN、RTC、IO 扩展等功能,并提供 Linux 4.1.15 操作系统的驱动支持。随同开发板,提供包括用户手册、底板 PDF 原理图、外设驱动、BSP 源码包、开发工具等相关资料。为开发者提供了稳定的设计参考和完善的软件开发环境,能够有效帮助开发者提高开发效率、缩短开发周期、优化设计质量、加快产品研发和上市时间。

图 7-1 MYD-Y6ULX 开发板

更多详细资料请参考网页链接: http://www.myir-tech.com

第8章 原理图设计说明

8.1 启动说明

i.MX6UL和i.MX6ULL处理器启动时会首先执行芯片内部固化的Boot ROM。Boot ROM会根据BOOT_MODE寄存器、eFUSEs、启动相关的GPIO等状态来决定下一步执行动作。

BOOT_MODE 寄存器的值是在系统上电复位管脚的上升沿采样 CPU 的BOOT_MODE0 和BOOT_MODE1 两个管脚得到。此寄存器决定的是 CPU 的启动模式,具体对应如下:

BOOT_MODE[1:0]	Boot Type	
00	Boot From Fuses	
01	Serial Downloader	
10	Internal Boot	
11	Reserved	

Table 8-1. Boot MODE Pin Settings

表 8-1 处理器启动模式配置

- Boot From Fuses 模式: 从内部 Fuses 读取启动信息, NXP 建议量产时用此方式 出货
- Serial Downloader 模式:支持从 USB_OTG1 口下载程序到 Flash。需要注意的是此模式下,UART1 和 UART2 的优先级高于 USB_OTG 口,如果在 Serial Downloader 模块下,这两个串口检查到了数据将不会进入到 USB 烧写模式,电脑无法检测到设备,Mfgtools 也无法使用。
- Internal Boot 模式: 从 GPIO 读取启动配置位, NXP 推荐用于开发模式。但在此模式下,不用写 Fuse (一次性编程,不可擦除),修改启动模式方便,很多用户直接用于量产。

在核心板内部已经对 BOOT_MODE0 和 BOOT_MODE1 管脚通过 10K 电阻上拉,当需要把这两个管脚设置为低电平时, 用 1K 电阻下拉至地。

通常在开发状态下将 CPU 设置为 internal Boot 模式,在此模式下 CPU 在上电复位时

会读取处理器 LCD_DATA0-DATA23 管脚的电平状态来决定启动的设备。在 MYC-Y6ULX 核 心板内部已经对 LCD_DATA0-DATA23 做了相应的处理,底板设计时只需对两个管脚做相 应的处理。

eMMC 版本核心板启动位配置:

设 备 启动位	eMMC(SDIO2)启动	SDIO1 启动
LCD_DATA5	悬空	下拉 1K
LCD_DATA11	悬空	下拉 1K

表 8-2 EMMC 核心板启动配置

NAND Flash 版本核心板启动位配置:

设备启动位	NAND Flash	SDIO1 启动
LCD_DATA6 下拉 1K		悬空
LCD_DATA7 悬空		下拉 1K

表 8-3 NAND Flash 核心板启动配置

8.2 最小系统设计

MYC-Y6ULX 核心板的最小系统结构相对比较简单,不需要外部晶振,核心板复位也在内部做了相应的处理,外部只需要提供 3.3V 电源(推荐按大于 500mA 设计)并正确设置启动位就可以正常工作,具体请查看图 8-1 和图 8-2.

图 8-1 NAND Flash 版本最小系统

图 8-2 eMMC 版本最小系统

8.3 注意事项

- LCD_DATA0-DATA23 是启动配置管脚,在核心板内部已经做了相应的处理。不建议 在这些管脚上做上下拉处理或者直接将这些管脚作为输入使用,以免影响核心板启动。
- 设计电源时必须保证 CPU 主电源比外设电源先上电,避免外设电源先上电。
- CPU 支持 SD 卡启动,设计时建议预留 SD 卡接口。通过 SD 启动的程序,去更新 NAND Flash 或者 eMMC 程序,可以做到脱机烧写。此方式是比较推荐的批量烧写方法。
- VDD_BAT 是系统的 LP 电源域,内部已经连到了 3.3V,如果不需要使用相关的功能,可以悬空

附录一: 免责声明

本产品手册(以下简称"手册")发布时,会尽可能的完全与正确。内容若有变动,恕 不另行通知。本手册例子中所用公司、人名和数据若非特别声明,均属虚构。

未得到深圳市米尔电子有限公司(简称"米尔电子")明确的书面许可,不得为任何目的、以任何形式或手段(电子的或机械的)复制或传播手册的任何部分。

深圳市米尔电子有限公司 版权所有

附录二: 联系我们

MYiR 深圳市米尔电子有限公司

销售邮箱: <u>sales.cn@myirtech.com</u> 公司网址: <u>www.myir-tech.com</u>

深圳总部

联系电话: 0755-25622735 / 18926526796

公司地址:深圳市龙岗区坂田街道发达路云里智能园 2 栋 6 楼 604 室

上海办事处

联系电话: 021-60317628 / 15901764611

办公地址:上海市普陀区中江路 106 号北岸长风 I 座 1402

北京办事处

联系电话: 010-84675491 / 13269791724

办公地址:北京市昌平区东小口镇中滩村润枫欣尚 1号楼 505室

武汉研发中心

联系电话: 027-59621648

办公地址: 武汉市东湖高新区金融港一路7号光谷智慧园15栋01号楼3楼

联系技术支持

通过技术支持邮件,客户可以更加方便通过截图,附着代码等方式详细准确的描述技术问题,以便于我公司技术支持人员提供准确的技术协助信息。在邮件中,请客户附着详细的联系方式、产品内容、购买时间和方式等,以便我公司技术人员快速响应。

- 技术支持邮箱: support.cn@myirtech.com
- 邮件回复时间: 12 小时内(工作日)
- 技术支持电话:

NXP/ATMEL 产品线: 0755-22316235 TI/Xilinx 产品线: 027-59621648 充电桩产品线: 0755-22919239

附录三: 技术支持说明

MYIR 的理念是"我们的成功源于客户的成功"。

为了协助客户更加快速高效地使用我公司产品,MYIR 通过各地办事处提供完善周到的 技术支持服务,客户可以通过如下指引获取相应技术信息和技术支持服务:

1. 产品开发资料:

MYIR 的所有开发板都提供配套资料光盘,资料光盘内容一般涉及如下内容:

- 产品使用手册
- 产品原理图(PDF 格式)
- 完整的例程代码、BSP包
- 板载主要芯片技术手册
- 相应开发工具链(GNU 工具或 MDK 等第三方工具评估板)

2. 技术支持范围

MYIR 对所销售的产品提供 6 个月的免费技术支持服务,技术支持服务范围:

- 所购买产品的软硬件资源,硬件保修
- 协助客户正确地使用和调试光盘类容中提供的例程代码
- 客户对于产品文档,操作、嵌入式软硬件平台使用的问题

由于嵌入式开发的特殊性,以下情况不在我们的免费技术支持服务范围,将根据情况酌情处理:

- 用户自行开发中遇到的软硬件问题,对硬件的修改和造成损坏
- 用户自行裁减编译运行嵌入式操作系统遇到的问题
- 用户自己在平台中自行开发、修改的程序
- 修改光盘的软件代码遇到的问题

如欲了解米尔电子更多产品,请参阅米尔电子网站,致电或电邮我们,感谢您对我公司产品的关注!