Домашнее задание №2

Описать вычислительный узел

Наименование и краткая характеристика СРU:

- Модель процессора (Model name): Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
- Архитектура (Architecture): x86 64
- Число логических процессоров (CPU(s)): 80.

CPU(s) = Core(s) per socket \times Socket(s) \times Thread(s) per core

- Число потоков (Thread(s) per core): 2
- Количество физических ядер в одном сокете (Core(s) per socket): 20
- Число сокетов (Socket(s)): 2
- Тактовая частота (СРИ МНz):
 - *Максимальная частота (CPU тах MHz)*: 3900.0000 MHz
 - \circ Минимальная частота (CPU min MHz): $1000.0000~\mathrm{MHz}$
- NUMA: Система поддерживает NUMA

Наименование сервера: ProLiant XL270d Gen10

- *NUMA node(s)* : 2
 - node 0 size : 385636 MB node 1 size : 387008 MB
- Операционная система: Ubuntu 22.04.5 LTS

Задание 1

Умножение матрицы на вектор с параллельной инициализацией массивов

		Количество потоков														
	1		2		4		7		8		16		20		40	
M=N	T(1)	S(1)	T(2)	S(2)	T(4)	S(4)	T(7)	S(7)	T(8)	S(8)	T(16)	S(16)	T(20)	S(20)	T(40)	S(40)
20000 (~3GiB)	1,2697	1	0,9073	1,3994	0,3573	3,5536	0,1966	6,4583	0,1964	6,4649	0,1113	11,408	0,0993	12,787	0,0686	18,509
40000 (~12GiB)	5,0632	1	2,7016	1,8741	1,8435	2,7465	0,786	6,4417	0,6931	7,3052	0,3937	12,861	0,3347	15,128	0,157	32,250

Ускорение в зависимости от количества потоков

Ускорение увеличивается с количеством потоков, параллельная обработка эффективно сокращает время вычислений.

Для обоих наборов данных (малого и большого размера) ускорение увеличивается с увеличением числа потоков. Ускорение не является линейным, что указывает на наличие накладных расходов, связанных с параллельным выполнением.

Для большего размера массива ускорение выше, чем для меньшего, особенно при большом количестве потоков.

Задание 2

Параллельная версия программы численного интегрирования

		Количество потоков														
	1		2		4		7		8		16		20		40	0
nsteps	T(1)	S(1)	T(2)	S(2)	T(4)	S(4)	T(7)	S(7)	T(8)	S(8)	T(16)	S(16)	T(20)	S(20)	T(40)	S(40)
40 000 000	0,6392	1	0,3212	1,9900	0,1784	3,5829	0,1048	6,0992	0,0917	6,9706	0,0467	13,687	0,0374	17,091	0,0216	29,592

Ускорение в зависимости от количества потоков (nsteps = 40 000 000)

Ускорение значительно увеличивается с ростом числа потоков. Например, при использовании 40 потоков ускорение достигает почти 30, что свидетельствует о значительном улучшении производительности по сравнению с однопоточным выполнением.

Система эффективно масштабируется с увеличением числа потоков, что позволяет лучше распределять вычислительные задачи и уменьшать время выполнения.

Задание 3
Параллельная реализация решения системы линейных алгебраических уравнений с помощью OpenMP

	Количество потоков																	
M=N=4000	1		2		4		7		8		16		20		40		8	80
0	T(1)	S(1)	T(2)	S(2)	T(4)	S(4)	T(7)	S(7)	T(8)	S(8)	T(16)	S(16)	T(20)	S(20)	T(40)	S(40)	T(80)	S(80)
	173,54		199,76	0,868	117,96	1,4712	114,26	1,5187	98,660	1,759	64,833	2,6768	59,180	2,9325	38,471	4,511		4,494
static	91	1	85	75108	25	22634	79	91367	8	04818	3	51248	1	58411	8	07305	38,617	11140
	169,36		142,52	1,1883	102,87	1,646	110,13	1,5377	100,16	1,690	64,209	2,6377	57,656	2,9375	38,415	4,408	38,902	4,353
auto	84	1	23	64207	67	3242	87	73734	74	85351	4	50859	7	31978	9	80989	6	65246
	189,76		151,50	1,2524	151,22	1,254	118,75	1,5979	98,414	1,9282	63,270	2,9992	57,667	3,290	38,119	4,9781	38,760	4,895
guided	31	1	91	86484	78	81624	27	6872	6	00694	8	2081	8	62492	1	63178	5	78566
	168,59		128,92	1,3077	120,30	1,401	112,14	1,503	97,456	1,7299		2,5726	57,697	2,9220	38,382	4,392	38,882	4,335
dynamic	31	1	15	19038	48	38299	19	39079	4	33591	65,533	44317	2	32612	3	46997	5	96348
#pragma																		
omp	175,04		154,27		•	2,9993	·		34,653		14,180					18,24		10.100
parallel	63	1	55	63594	4	50598	5	06526	6	31646	2	44169	6	44935	9,5968	00696	9.9500	12.189

Вариант 1: Отдельные параллельные секции для каждого цикла (#pragma omp parallel for)

В этом варианте наблюдается значительное ускорение при увеличении числа потоков. Например, при использовании 80 потоков ускорение достигает примерно 4.5 раза по сравнению с однопоточным выполнением.

Различные стратегии распределения нагрузки (static, auto, guided, dynamic) показывают схожие результаты, но static и dynamic демонстрируют немного лучшие показатели ускорения.

Вариант 2: Одна параллельная секция для всего алгоритма (#pragma omp parallel)

Ускорение также наблюдается, но оно менее значительное по сравнению с первым вариантом. При использовании 80 потоков ускорение составляет около 12.2 раза. Этот вариант может быть менее эффективным из-за возможных накладных расходов на создание и управление одной большой параллельной секцией.

Первый вариант (#pragma omp parallel for) оказывается более целесообразным для данной задачи, так как он обеспечивает лучшее ускорение и более эффективное использование ресурсов.

static, auto, guided, dynamic и parallel

