

CHEMISTRY Chapter 20

TEORÍA ÁCIDO-BASE

Ácidos y Bases

 Están presentes en la naturaleza y los usamos en nuestra vida cotidiana sin que a veces nos demos cuenta, como por ejemplo el jabón (base), o el jugo de limón (ácido)

CARACTERÍSTICAS GENERALES:

Ácidos

- La palabra ácido (del latín acidus) significa "agrio" y tiene una relación con su sabor característico
- Son corrosivos generalmente
- Reaccionan vigorosamente con los metales activos, liberándose hidrógeno gaseoso.
- Descomponen a los carbonatos y bicarbonatos, liberándose CO_{2(g)}.
- Conducen la electricidad en solución acuosa
- Neutralizan las bases para formar sales y agua.
- Provocan cambio en la coloración de las sustancias denominadas indicadores.

Ejemplos de ácidos

- Acido cítrico = limón
- Acido ascórbico= naranja
- Acido acetilsali cílico = medicamente
- Acido hialuronico = cremas
- Acido acético = vinagre
- Acido sulfúrico= batería de autos
- Acido carbónico= bebidas con gas
- Acido clorhídrico = para limpiar o desinfectante

Bases

- La palabra base (del griego basis) significa fundamento del compuesto salino, o sea, es la base para la formación de una sal. También llamada álcali (del árabe álcali) que significa ceniza que es de donde se obtenía.
- Poseen sabor amargo.
- Al tacto son de consistencia jabonosa.
- Neutralizan a los ácidos.
- Conducen la electricidad en solución acuosa (son electrolitos).
- Provocan que los indicadores colorimétricos ácido-base adopten una coloración diferente que el provocado por los ácidos.

Ejemplos bases

- Amoniaco = limpia vidrios
- Hidróxido de potasio= pilas alcalinas
- Hidróxido de sodio= cloro
- Bicarbonato de sodio

Ejemplos

INDICADORES COLORIMÉTRICOS

Son sustancias generalmente de origen orgánico, que tienen la propiedad de adoptar una coloración frente a un ácido y diferente coloración frente a una base.

Indicador	Intervalo de viraje	Color más ácido	Color más básico
Fenolftaleina	8.3 – 10	Incoloro	Rosa fuerte
Naranja de metilo	3.2 – 4.4	Rojo	Amarillo
Papel tornasol	4.7 – 8.2	Rosa	tornasol
Azul de bromotimol	6.0 – 7.8	Amarillo	Azul

TEORÍA DE ARRHENIUS

Identifica a un ácido y una base en soluciones acuosas.

Ácido:

Es aquella sustancia que posee átomos de hidrógeno y que en solución acuosa se disocia en iones H.

$$H_2SO_{4(I)} \xrightarrow{H_2O} 2H^+_{(ac)} + SO_4^{(-2)}_{(ac)}$$
 $HCI_{(g)} \xrightarrow{H_2O} H^+_{(ac)} + CI^{(-)}_{(ac)}$
 $CH_3COOH_{(I)} \xrightarrow{H_2O} H^+_{(ac)} + CH_3COO^{(-)}_{(ac)}$
 $H_2CO_{3(g)} \xrightarrow{H_2O} 2H^+_{(ac)} + CO_3^{(-2)}_{(ac)}$

Base:

Es aquella sustancia que posee grupos oxidrilos y que en solución acuosa se disocia en iones OH.

NaOH_(s)
$$\xrightarrow{\text{H,o}}$$
 Na⁽⁺⁾_(ac) + OH⁽⁻⁾_(ac)

CaOH₂ (s) $\xrightarrow{\text{H,o}}$ Ca⁽⁺²⁾_(ac) + 2OH⁽⁻⁾_(ac)

Al(OH)_{3(s)} $\xrightarrow{\text{H,o}}$ Al⁽⁺³⁾_(ac) + 3OH⁽⁻⁾_(ac)

TEORÍA DE BRONSTED-LOWRY

Ayudaron a entender por que un ácido o base fuerte desplazan a otro ácido o base débil de sus compuestos, contemplando a las reacciones ácido-base como una competencia por los protones, pero considere que el protón al cuál nos referimos será representado por H.

Ácido: Se define como cualquier sustancia que tenga la capacidad de perder, o "donar un **protón**" o hidrogenión [H+].

Base: Es una sustancia capaz a ganar o "aceptar un protón" o hidrogenión [H+]

La reacción ácido-base es aquella en la que el ácido transfiere un protón a una base.

Par conjugado
$$HCl_{(g)} + H_2O_{(l)} \xrightarrow{\cdot} Cl_{(aq)}^{-} + H_3O^{+}_{(aq)}$$
Par conjugado

TEORÍA DE LEWIS

Es una teoría que se basa en la estructura electrónica. Esta teoría involucra la formación de un enlace covalente.

<u>Ácido</u>

Es aquella sustancia que puede aceptar un par de electrones.

Base:

Sustancia que pueden donar un par de electrones.

Orbital p puro vacío Hibridación sp²

Enlace covalente coordinado

1. Mencione tres ejemplos de ácido de Arrhenius

- ÁCIDO CLORHIDRICO HCI
- ÁCIDO SULFÚRICO H₂SO₄
- ÁCIDO NÍTRICO HNO₃

2. Mencione tres ejemplos de base de Arrhenius

- HIDRÓXIDO DE SODIO NaOH
 HIDRÓXIDO DE CALCIO Ca(OH)₂
- HIDRÓXIDO DE POTASIO KOH

3. Al agregar unas gotas de fenolftaleína a una solución, esta torna de color rosado, es una sustancia

Rpta: BÁSICA

4. Según la teoría de Lewis, el NH₃ es una sustancia

Rpta: BÁSICA

Estructura de Lewis

5. Para la siguiente reacción: C₆H₅OH + NH₃ ≒ NH₄⁺ + C₆H₅O⁻ indique cuáles son los ácidos.

$$C_6H_5OH + NH_3 \leftrightarrows NH_4^+ + C_6H_5O^-$$

Ácido
Base
Solution Acido
Conjugad
O
Acido
Conju

CHEMISTRY

6. Para la siguiente reacción: $HCN + NH_3 \leftrightarrows NH_4^{\dagger} + CN^{\dagger}$ indique el ácido conjugado.

7. ¿Qué color toma el anaranjado de metilo al contacto de una base?

A) Rojo B) Azul C) Amarillo

D) Negro

E) Incoloro

Amarillo

8. El químico estadounidense Lewis dio una definición acerca del comportamiento de los ácidos y de las bases. Según esta teoría, una base sería una especie que puede donar un par de electrones, y un ácido la que los puede aceptar.

El ácido debe tener su octeto de electrones incompleto y la base debe tener algún par de electrones libres.

En los siguientes gráficos, señale cuál es el ácido y cuál es la base y explique el por qué.

El ácido es el BF₃ porque El boro puede aceptar un par de electrones para completar su octeto.