Towards Low-Cost and Efficient Malaria Detection

Waqas Sultani¹, Wajahat Nawaz¹, Syed Javed¹, M. Sohail Danish¹, Asma Saadia², Mohsen Ali¹

Problem Statement

- Microscopic investigations are costly and time consuming Automatic diagnosis is hampered by lack of sufficient datasets

High Cost vs Low Cost Microscope

LCM is 70% cheaper than HCM, However, experts are reluctant to annotate dataset ! on LCM because it

- Smaller FOV
- Blurrier View
- Less Precise Knobs

Relation b/w Microscope lenses

- One FOV of 400x covers around 17 FOVs of 1000x
- Scan a slide 17 times faster with 400x lens

Key contributions

- 1. Collected the first large-scale multi-microscope multimagnification malarial image dataset from the thinblood smear slides
- 2. Designed an annotation transfer mechanism to transfer annotations across images
- 3. Computed the baseline results of several object detectors and domain adaptation methods on our dataset
- Introduced a partially supervised domain adaptation mechanism

Partially Supervised Domain Adaptation

- Every HCM image has a corresponding LCM image.
- Domain shift between HCM and LCM
- The Annotation Transfer is quite good in the location transfer however, the annotations (bounding box) still needs human verification.
- Hence, to overcome this limitation we developed Partially Supervised Domain Adaptation.

$$\mathcal{L}_r(x_i^f, x_i^l) = max(0, avg(S_{x_i^f}) - avg(S_{x_i^l}) - \beta)$$
 (1)

$$\mathcal{L}_t = \max(0, ||f_i^p - f_i^a||_2^2 - ||f_i^a - f_i^n||_2^2 + \alpha)$$
 (2)

(a) Setting up microscope and

Y-coordinate

Annotation Transfer

Since LCM has smaller FOV than HCM, there are fewer number of cell in an image captured by LCM than its corresponding HCM image, nevertheless, they are centered at same region of slide.

Different Object Detectors' Results in (mAp)

Training Magnification	FCOS		RetinaNet		YOLO		Faster R-CNN					
	Test Magnification											
	1000x	400x	100x	1000x	400x	100x	1000x	400x	100x	1000x	400x	100x
1000x	36.8	13.5	0.0	43.1	29.7	0.0	62.8	36.7	0.0	66.8	31.3	0.0
400x	31.4	29.1	1.9	32.9	34.0	1.8	55.2	56.6	4.5	56.9	61.1	1.4
100x	9.4	14.8	8.9	10.2	15.4	16.3	10.5	3.9	20.1	25.4	31.9	31.5

DA Results in (mAP)

Methods	Source = HCM, Target = LCM			
	$1000x \rightarrow 1000x$	$400x \rightarrow 400x$		
Xu et al. [44]	15.5	21.6		
Saito et al. [37]	24.8	21.4		
Chen et al. [9]	17.6	21.5		
Source only	17.1	26.7		
Fine Tuning on fake-LQM	33.3	31.8		
Ranking loss	35.7	32.4		
Triplet loss	37.2	32.2		
Ranking+Triplet loss	37.5	33.8		

Qualitative Result

(c) Moving patch into 400x view (d) Finding 1000x patch in 400x

(g) Images captured with all (e) Moving the patch in (h) Patches extracted (f) The patch in 1000x view three lenses 1000x view field

Data Collection Process

Comparison with Existing Datasets

(b) Finding 1000x patch in 100x

Malaria Dataset	Across Microscopes	Multi- Magnification	Malarial Cells Annotaated	Bounding Box Annotations	No. of Images
BBBC041 [1]	×	×	2,452	✓	1,364
Malaria655 [38]	×	×	557	*	655
MPIDB [25]	*	*	840	*	229
IML [5]	×	×	529	✓	345
Our Dataset	✓	✓	20,331	✓	7,542

Project Page

Conclusion

- ✓ We have attempted making malaria detection low- cost and efficient.
- ✓ We have collected a large-scale multi-magnification, multi-microscope malaria dataset
- ✓ We benchmark different popular object detectors and domain adaptation methods on our dataset.
- ✓ We have introduced Partially Supervised Domain Adaptation strategy.
- ✓ We believe that this dataset will pave the way for future research in developing. algorithms that can work with low-cost microscopes.

Acknowledgements

The project is partially supported by an unrestricted gift award from Facebook, USA.