WHAT IS CLAIMED IS:

1	1. A substrate processing chamber comprising:		
2	a chamber body;		
3	a chamber top disposed on the chamber body; and		
4	a transformer-coupled plasma generator plate within the substrate		
5	processing chamber having a plurality of transformer cores within the transformer-		
6	coupled plasma generator plate and a plurality of through holes forming conduits from		
7	a first side of the transformer-coupled plasma generator plate to a second side of the		
8	transformer-coupled plasma generator plate, a first conduit passing through a first		
9	transformer core.		
1	2. The substrate processing chamber of claim 1 further comprising		
2	a second conduit not passing through a transformer core.		
ĺ	3. The substrate processing chamber of claim 1 wherein the plasma		
2	generator plate is flat.		
1	4. The substrate processing chamber of claim 1 further comprising		
2	a second transformer core within the transformer-coupled plasma generating plate, a		
3	first primary coil being disposed to electro-magnetically couple to the first transformer		
Ą	core and a second primary coil being disposed to electro-magnetically couple to the		
5	second transformer core, wherein the first primary coil and the second primary coil are		
6	connected to each other in series.		
)	5. The substrate processing chamber of claim 1 wherein the toroidal		
2	transformer core comprises ferrite material.		
1	6. The substrate processing chamber of claim 1 wherein the		
2	transformer-coupled plasma generator plate includes a dielectric spacer between the		
3	first side and the second side, and a remainder of an outer surface of the generator plate		
4	comprises an electrical conductor.		
1	7. The substrate processing chamber of claim 6 wherein the		
2	dielectric spacer is disposed within a conduit through the transformer-coupled generate		
3	nlate		

•	5. The substrate processing chamber of claim 1 further comprising		
2	an alternating-current power supply configured to operate at a frequency of about		
3	1 KHz-2 MHz.		
1	9. A substrate processing chamber comprising:		
2	a chamber body;		
. 3	a chamber top disposed on the chamber body;		
4	an alternating-current power supply; and		
5	a transformer-coupled plasma generator plate having a plurality of		
6	through holes forming conduits from a first side of the transformer-coupled plasma		
7	generator plate within the substrate processing chamber to a second side of the		
8	transformer-coupled plasma generator plate within the substrate processing chamber, a		
9	first portion of the conduits passing through centers of a plurality of toroidal		
10	transformer cores within the generator plate and a second portion of the conduits not		
11	passing through centers of transformer cores, the generator having a first surface		
12	comprising metal, a second surface comprising metal, and a plurality of dielectric		
13	spacers disposed between the first surface and the second surface in each of the first		
14	portion of the conduits.		
1	10. A plasma generator plate comprising:		
2	a first side;		
3	a second side;		
4	a first conduit passing from the first side to the second side through a		
5	first transformer core within the plasma generator plate;		
6	a second conduit passing from the first side to the second side through		
7	second transformer core.		
1	11. The plasma generator plate of claim 10 further comprising a first		
2	dielectric spacer in a first secondary current path around the first transformer core.		
1	12. A method of processing a substrate in a plasma processing		
2	system, the method comprising:		
3	providing a substrate to a substrate holder in a processing chamber of the		
4	plasma processing system;		

)	•	HOWI	ng a prasma precursor into a mutit-core transformer-coupled
6	plasma genera	ator;	
7	generating a plasma from the plasma precursor with the multi-core		
8	transformer coupled plasma generator; and		
9		proce	ssing the substrate.
1		13.	The method of claim 12 wherein the multi-core transformer-
2	coupled plasn	na gene	erator is within the processing chamber.
1		14.	The method of claim 13 wherein the multi-core transformer-
2	coupled plasn	na gene	erator is a generator plate comprising a plurality of transformer
3	cores within t	he gene	erator plate and a plurality of through-holes forming conduits from
4	a first side of the generator plate to a second side of the generator plate.		
1		15.	The method of claim 12 wherein plasma formed by the multi-
2	core transformer-coupled plasma generator is coupled to the processing chamber		
3	through a conduit.		
1		16.	The method of claim 15 wherein the multi-core transformer-
2	coupled plasn	na gene	erator has a first conduit passing through a first transformer core
3	and through a	secono	d transformer core.
1		17.	The method of claim 15 wherein the multi-core transformer-
2	coupled plasma generator has a first conduit passing through a first transformer core		
3	and a second	condui	t passing through a second transformer core.
1		18.	A plasma processing system comprising:
2		a first	substrate support structure configured to hold a first substrate in a
.3	processing ch	amber;	
4		a seco	ond substrate support structure configured to hold a second
5	substrate in the processing chamber; and		
6		a tran	sformer-coupled plasma generator within the processing chamber
7	disposed between the first substrate support structure and the second substrate support		
8	structure.		

I	19. The plasma processing system of claim 18 wherein the		
2	transformer-coupled plasma generator includes a toroidal transformer core.		
1	20. The plasma processing system of claim 18 wherein the plasma		
2	generator comprises a plasma generating plate having a plurality of transformer cores		
3	within the plasma generating plate and a plurality of through holes forming conduits		
4	from a first side of the plate to a second side of the plate.		
1	21. A method of simultaneously processing substrates in a plasma		
2 .	processing system, the method comprising:		
3	providing a first wafer and a second wafer to a processing chamber;		
4	flowing plasma precursor into the chamber;		
5	generating a plasma with a transformer-coupled plasma generator		
6	disposed between the first wafer and the second wafer; and		
7	simultaneously processing the first wafer and the second wafer.		
1	22. A plasma generator comprising:		
2	an inlet in fluid communication with;		
3	a first conduit passing through		
4	a first toroidal transformer core and through		
5	a second toroidal transformer core;		
6	a second conduit completing a plasma current circuit, in cooperation		
7	with the first conduit, around the first toroidal transformer core and around the second		
8	toroidal transformer core; and		
9	an outlet in fluid communication with the first conduit.		
1	23. A plasma generator comprising:		
2	an inlet in fluid communication with		
3	a first conduit passing through a first transformer core and with		
4	a second conduit passing through a second transformer core;		
5	a third conduit in fluid communication with the first conduit to complete		
6	a first plasma current circuit around the first transformer and in fluid communication		
7	with the second conduit to complete a second plasma current circuit around the second		
8	transformer; and		

9	an outlet in fluid communication with at least the first conduit and the			
10	second conduit.			
1	24. A substrate processing system comprising:			
2	a process chamber with a chamber inlet;			
3	a chamber exhaust; and			
4	a transformer-coupled plasma generator having a first core,			
5	a first conduit passing through the first core,			
6	a second core,			
7	a second conduit passing through the second core, and			
8	a third conduit in fluid communication with the first conduit and			
9	the second conduit to complete a plasma current circuit path through the process			
10	chamber.			
1.	25. The substrate processing system of claim 24 wherein the third			
2	conduit is a center conduit completing a first plasma current circuit path around the first			
3	core through the process chamber and the first conduit and completing a second plasma			
4	current circuit path around the second core through the process chamber and the second			
5	conduit.			
ĺ	26. The substrate processing system of claim 24 wherein the first			
2	conduit and the second conduit comprise metal and further comprising a dielectric			
3	spacer in the plasma current circuit path.			
1	27. The substrate processing system of claim 24 further comprising:			
2	a fourth conduit passing through			
3	a third core; and			
4	a fifth conduit passing through			
5	a fourth core.			
1	28. The substrate processing system of claim 24 further comprising:			
2	a first primary coil disposed to couple electro-magnetic energy to the			
3	first core;			
4	a second primary coil disposed to couple electro-magnetic energy to the			
5	second core;			

O	a third primary con disposed to couple electro-magnetic energy to the			
7	third core;			
8	a fourth primary coil disposed to couple electro-magnetic energy to the			
9	fourth core, wherein the first primary coil, the second primary coil, the third primary			
10	coil, and the forth primary coil are coupled to an AC power supply.			
1	29. The substrate processing system of claim 28 wherein the first			
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil			
3	are connected in series with the AC power supply.			
1	30. The substrate processing system of claim 28 wherein the first			
2	primary coil, the second primary coil, the third primary coil, and the fourth primary coil			
3	are connected in parallel to the AC power supply.			
1	31. A plasma generator comprising:			
2	an inlet configured to receive a plasma precursor, the inlet in fluid			
3	communication with a first plasma current path and with a second plasma current path;			
4	a first conduit passing through			
5	a first transformer core;			
6	a second conduit passing through			
7	a second transformer core, wherein the first conduit is essentially co-			
8	linear with the second conduit.			
1	32. A plasma generator comprising:			
2	an outer shell surrounding a first inner shell housing a first toroidal			
3	transformer core; and			
4	a second inner shell housing a second toroidal transformer core, wherein			
5	the first toroidal transformer core and the second toroidal transformer core are dispose			
6	along a common center axis.			
1	33. The plasma generator of claim 32 wherein the first inner shell is			
2	supported within the outer shell by a web allowing circulation of secondary plasma			
3	current around the first inner shell within the outer shell.			

1	34	The plasma generator of claim 33 wherein the web contains an	
2	electrical lead connected to a primary coil disposed to couple electro-magnetic energy		
3	to the first toroidal transformer core.		
1	35	The plasma generator of claim 32 wherein the first inner shell	
2	includes a shaped	ottom portion to provide a circular cross-section to the inner shell.	
1	36	The plasma generator of claim 32 further comprising:	
2	an	nlet; and	
3	an	utlet, both the inlet and the outlet lying along the common center	
4	axis.		
1	37	An ion implantation system comprising:	
2	an.	on source having a toroidal plasma generator, and	
3	, an	on source aperture aligned essentially along a center line of the	
4	toroidal plasma generator.		
1	38	The ion implantation system of claim 37 further comprising a	
2	first extraction ele	trode disposed to accelerate ions from the ion source toward a	
3	second extraction	lectrode.	
1.	39	The ion implantation system of claim 37 wherein the toroidal	
2	plasma generator includes a first core and a second core, the first core and the second		
3.	.core being aligne	essentially along a center line of the toroidal plasma generator.	
1	40	A method of providing ions to an ion implantation system, the	
2	method comprising	;	
3	pro	riding an ion precursor to a transformer-coupled toroidal plasma	
4	generator in an io	source;	
5	ion	zing at least a portion of the ion precursor into ions, the ions having	
6	a greater density at a center of the transformer-coupled toroidal plasma generator and		
7	extending along a line through the center of the transformer-coupled toroidal plasma		
8	generator; and		
9	eie	ting a portion of the ions out of the ion source.	

1	41. A plasma torch head comprising.		
2	an outer nozzle;		
3	an inner nozzle, the inner nozzle including a conduit passing through the		
4	inner nozzle from an inlet side toward an outlet,		
5	a toroidal transformer core surrounding the conduit; and		
6	a bypass providing a return path for a secondary plasma current circuit		
7	around the toroidal transformer core.		
1	42. The plasma torch head of claim 41 wherein the inner nozzle		
2	comprises metal and further including a dielectric spacer in the inner nozzle to prever		
3	an electric path through the inner nozzle around the toroidal transformer core.		
1	43. The plasma torch head of claim 41 wherein a first gas is flown		
2	through the conduit and a second gas if flown through the bypass, the first gas being		
3	different from the second gas.		
1	44. The plasma torch head of claim 43 wherein the first gas is		
2	oxygen and the second gas is either propane or hydrogen.		
1	45. The plasma torch head of claim 41 further comprising a primar		
2	coil disposed to couple electro-magnetic energy to the toroidal transformer core		
3	wherein the primary coil and the toroidal transformer core are enclosed within the im-		
4	nozzle.		
4	46. A method of cutting material using a plasma torch, the method		
1			
2	comprising:		
3	flowing a plasma precursor in a conduit through a center of a toroidal		
4	transformer core of a plasma generator in an inner nozzle of a plasma torch; forming plasma from the plasma precursor;		
5			
6	completing a plasma current secondary circuit around the toroidal		
7 8	transformer core through a bypass; and transporting plasma out an outlet of the plasma torch.		
O	maniphorous hypping one an earth of me himming tora		
1	47. The method of claim 46 further comprising flowing carrier ga		
2	through the bypass.		

1		48.	The method of claim 46 wherein the forming plasma step	
2	includes prov	riding a	primary voltage to a primary coil coupling electro-magnetic	
3	energy to the	energy to the toroidal transformer core, the primary voltage being an alternating-curren		
4	voltage less t	han abo	out 115 Volts.	
1		49.	An ion source for an ion milling apparatus, the ion source	
2	comprising:			
3		a tran	sformer-coupled toroidal plasma generator (having a primary coil	
4	disposed to c	ouple e	lectro-magnetic energy to a toroidal core, the transformer-coupled	
5	toroidal plasma generator disposed to provide plasma along a center line of the			
6	transformer-coupled toroidal plasma generator toward an accelerator plate.			
1		50.	The ion source of claim 1 wherein the transformer-coupled	
2	toroidal plasr	na gene	erator further includes a second toroidal core.	
1		51.	A method for providing ions to an ion milling apparatus, the	
2	method comp	orising:		
3		provi	ding an ion precursor to a transformer-coupled toroidal plasma	
4	generator;			
5	,	ioniz	ing at least a portion of the ion precursor to form ions, the ions	
6	being concen	trated a	along a center axis of the transformer-coupled toroidal plasma	
7	generator; an	d		
8	mente, service aperation	ejecti	on a portion of the ions toward an accelerator plate.	
1		52.	The method of claim 51 wherein the ion precursor forms reactive	
2	ions.			