20/07/2021-Shift 1

1

EE24BTECH11021 - Eshan Ray

- 1) The logical equivalence of the Boolean expression $(p \land \sim q) \implies (q \lor \sim p)$ is equivalent to :
 - a) $q \implies p$
 - b) $p \implies q$
 - c) $\sim q \implies p$
 - d) $p \implies \sim q$
- 2) Let a be a positive real number such that $\int_0^a e^{x-[x]} dx = 10e 9$ where [x] is the greatest integer less than or equal to x. Then a is equal to:
 - a) $10 \log_e (1 + e)$
 - b) $10 + \log_e 2$
 - c) $10 + \log_{e} 3$
 - d) $10 + \log_e (1 + e)$
- 3) The mean of 6 numbers is 6.5 and its variance is 10.25. If 4 numbers are 2, 4, 5 and 7, then find the other two.
 - a) 10, 11
 - b) 3, 18
 - c) 8, 13
 - d) 1,20
- 4) The value of the integral $\int_{-1}^{1} \log_e \left(\sqrt{1-x} + \sqrt{1+x} \right) dx$ is equal to :
 - a) $\frac{1}{2} \log_e 2 + \frac{\pi}{4} \frac{3}{2}$
 - b) $2 \log_e 2 + \frac{\pi}{4} 1$
 - c) $\log_e 2 + \frac{\pi}{2} 1$
 - d) $2\log_e 2 + \frac{\pi}{4} \frac{1}{2}$
- 5) If the roots of the quadratic equation $x^2 + 3^{\frac{1}{4}}x + 3^{\frac{1}{2}} = 0$ are α and β , then the value of $\alpha^{96}(\alpha^{12} 1) + \beta^{96}(\beta^{12} 1)$
 - a) $50 \cdot 3^{24}$
 - b) 51 · 3²⁴
 - c) $52 \cdot 3^{24}$
 - d) 104 · 3²⁴
- 6) Let $A = \begin{pmatrix} 2 & 3 \\ a & 0 \end{pmatrix}$, $a \in R$ can be written as P + Q where P is a symmetric matrix and Q is a skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to :
 - a) 36
 - b) 24
 - c) 45
 - d) 18

7) If z and ω are two complex numbers such that $|z\omega| = 1$ and $\arg z - \arg \omega = \frac{3\pi}{2}$, then $\arg\left(\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega}\right)$ is :

(Here arg(z) denotes the principal argument of complex number z)

- a) $\frac{\pi}{4}$
- b) $-\frac{3\pi}{4}$ c) $-\frac{\pi}{4}$

- 8) In $\triangle ABC$, if AB = 5, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$ and the radius of circumcircle of triangle is 5 units, then the area (in sq. units) of $\triangle ABC$ is :
 - a) $10 + 6\sqrt{2}$
 - b) $8 + 2\sqrt{2}$
 - c) $6 + 8\sqrt{3}$
 - d) $4 + 2\sqrt{3}$
- 9) Let [x] denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $f(x) = \sqrt{\frac{|x|-2}{|x|-3}}$ is $(-\infty, a) \cup [b, c) \cup [4, \infty)$, a < b < c, then the value of a + b + cis:
 - a) 8
 - b) 1
 - c) -2
 - d) -3
- 10) Let y = y(x) be the solution of differential equation $x \tan\left(\frac{y}{x}\right) = \left(y \tan\left(\frac{y}{x}\right) x\right) dx, -1 \le x$ $x \le 1, y\left(\frac{1}{2}\right) = \frac{\pi}{6}$. Then the area of the region bounded by the curves $x = 0, x = \frac{1}{\sqrt{2}}$ and y = y(x) in the upper half plane is :
 - a) $\frac{1}{8}(\pi 1)$ b) $\frac{1}{1^2}(\pi 3)$ c) $\frac{1}{4}(\pi 2)$ d) $\frac{1}{6}(\pi 1)$
- 11) Find the coefficient of x^{256} in $(1-x)^{101}(x^2+x+1)^{100}$ is:

 - a) $\binom{100}{16}$ b) $\binom{100}{15}$ c) $-\binom{100}{16}$ d) $-\binom{100}{15}$
- 12) Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a 3×3 matrix, where $a_{ij} \begin{cases} 1 & \text{, if } i = j \\ -x & \text{, if } |i j| = 1 \\ 2x + 1 & \text{, otherwise} \end{cases}$

Let a function $f: R \to R$ be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to :

- a) $-\frac{20}{27}$
- b) $\frac{88}{27}$ c) $\frac{20}{27}$

d)
$$-\frac{88}{27}$$

- 13) Let $\overrightarrow{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j}$. If \overrightarrow{c} is a vector such that $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $(\overrightarrow{a} \times \overrightarrow{b})$ and \overrightarrow{c} is $\frac{\pi}{6}$, then the value of $|(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}|$ is :
 - a) $\frac{2}{3}$
 - b) 4
 - c) 3
 - d) $\frac{3}{2}$
- 14) The number of solutions of $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{4}$ is
 - a) 1
 - b) 2
 - c) 4
 - d) 0
- 15) Let y = y(x) be the solution of the differential equation $e^x \sqrt{1 y^2} dx + \left(\frac{y}{x}\right) dy = 0, y(1) = -1$. Then the value of $(y(3))^2$ is equal to:
 - a) $1 4e^3$
 - b) $1 4e^6$
 - c) $1 + 4e^3$
 - d) $1 + 4e^6$