実験内容(実験手順)

複数窓口の待ち行列のシミュレーション m/m/s/s(窓口が埋まっていたらお客さんが帰ってしまう設定)において、より効率的にお客さんの中で帰ってしまう人の割合(ロス率)を減らしたい。

以下2つの戦略のどちらが優れているかをウェルチの t 検定を行い 分析する。

戦略 1	サーバーの処理速度を2倍にする
戦略 2	サーバーの台数を2倍にする

目的変数

ロス率(最小化)

用意する変数

お客さんの平均到着時間間隔 : 1/lam

お客さんの平均利用時間 : $1/\mu$

シミュレーションの終了時刻 : end_time

戦略1の標本数 : n

戦略2の標本数 : m

実験結果事象に対する結果

n=50, m=50, lam = 10, end_time=200 とした時の結果

	戦略 1	戦略 2
標本平均	0.28	0.21

検定統計量	t 値(自由度 97)
21.45	2.87

検定統計量が t 値を大きく超えるため、帰無仮説は棄却され、

戦略 1 と戦略 2 それぞれのロス率に**有意な差がある**ということが分かった。よって、**戦略 2 の方が優れている**。

lam を大きくして実験する。

n=50, m=50, lam = 30, end_time=200 とした時の結果

	戦略 1	戦略 2
標本平均	0.69	0.67

検定統計量	t 値(自由度 97)
8.36	2.87

先ほどの実験より差は少なかったが、検定統計量が t 値を超えるため、帰無仮説は棄却され、戦略 1 と戦略 2 それぞれのロス率に有意な差があるということが分かった。よって、戦略 2 の方が優れている。

更に lam を大きくして実験する。

n=50, m=50, lam =120, end time=200 とした時の結果

	戦略 1	戦略 2
標本平均	0.917	0.916

検定統計量	t 値(自由度 97)
2.42	2.87

検定統計量が t 値より小さかったため、帰無仮説は棄却され、戦略 1 と戦略 2 それぞれのロス率に**有意な差がない**ということが分かった。しかしこれは、お客さんの到着間隔が小さすぎて、どちらの戦略を取ってもほとんどロスしてしまうため、このような結果になったと考えられる。

結論

全ての実験で戦略 2 の方がロス率の標本平均が小さかったため、**戦** 略 2 の方が効果的と言える。