Contents

1.	Introducti	on	1
	1.1 Robot Arm Structure		
	1.2 Coordinate Systems and Frames		
	1.3 Some Common Robot Manipulators		
	1.3.1	Articulated Robots (RRR)	3
	1.3.2		
	1.3.3	SCARA Robot (RRP)	4
	1.3.4		4
	1.3.5	Cartesian Robot (PPP)	5
	1.4 Getting Started with Scilab and RTSX		
	1.4.1		
	1.4.2	Simulation by Xcos	9
	1.4.3	RTSX Installation	10
	1.5 Book S	Structure	11
	Proble	ms	12
2.	Homogen	eous Transformation	13
		on in 3-D	
	2.2 Compo	osition of Rotations	15
	2.2.1	Rotation about the Current Frame	15
	2.2.2	Rotation about the World Frame	17
	2.3 Repres	entations for General Rotation	19
	2.3.1	Euler Angles	19
	2.3.2	RPY Angles	
	2.3.3	Angle/Vector Representation	22
	-	nions	
		geneous Transformation	
	2.6 Transform Equations		
		ms	
3.		nematics	
	3.1 The De	enavit-Hartenberg Convention	
	3.1.1	The DH Frame Assignment Procedure	
	3.2 Inverse	e Kinematics	42
		ty Kinematics	
		Robot Singularities and Manipulability	
	Proble	ms	51

4. Trajector	y Generation	53
4.1 Basic	One-Dimensional Scheme	53
4.1.1	Cubic Polynomials	53
4.1.2	Quintic Polynomials	
4.1.3	Linear Segments with Parabolic Blend	57
4.2 Multi-	Dimensional Trajectories	59
4.3 Multi-	segment Trajectories Specified by Via Points	60
4.4 Interp	olation for 3D Rotation	63
	ian Trajectory	
4.6 Trajec	tory Generation Applied to a Robot	66
4.6.1	Effects from Singularity Configurations	
4.6.2	\mathcal{E}	
4.7 Summ	nary	74
Proble	ems	76
	ynamics and Control	
	ation of Robot Equations of Motion	
5.1.1	Euler-Lagrange Equation	
5.1.2		
	nic Manipulability	
5.3 Forwa	rd Dynamics	90
1	endent Joint Dynamics	
5.4.1	Robot Joint Driven by DC Motor	
5.4.2	F	
	endent Joint Control	
5.5.1		
	PID Gain Adjustment	
5.5.3	Effect from Saturation	
5.5.4	PID Tracking with Feedforward Control	
	de Control	
5.6.1	Cascade PID Control of Advanced Joint Model	
	ack Control Design	
5.7.1	State Feedback Control	
	Output Feedback Control	
5.7.3	H_{∞} Control Synthesis	122
5.7.4	Cascade H_{∞} Control Synthesis	138
5.8 Nonlin	near Multivariable Control	148
5.8.1	PD Control with Gravity Compensation	
5.8.2	Inverse Dynamics	
5.8.3	Adaptive Control	
5.9 Summ	nary	
	ems	

Robot Analysis and Control with Scilab and RTSX

176
176
176
177
178
178
183
183
184
188
193
195
197
198
199
285