Metody Obliczeniowe

Równania różniczkowe zwyczajne

1. Metoda Eulera.

Ogólny algorytm obliczania:

- określenie warunku początkowego $y(x_0) = y_0$ (dane w poleceniu)
- określenie długości kroku h (dane w poleceniu)
- określenie przedziału x (dane w poleceniu), czyli określenie ilości iteracji
- wyznaczenie kolejnych wartości x: $x_i = x_0 + i * h$
- wyznaczenie kolejnych wartości f(x,y)
- wyznaczenie kolejnych wartości $\Delta y_i = h * f(x, y)$
- wyznaczenie kolejnych wartości $y_{i+1} = y_i + \Delta y_i$

Przykład 1:

Stosując metodę Eulera (Rungego-Kutty I rzędu) wyznacz rozwiązanie równania różniczkowego:

$$y'(x) = 2xy(x)$$

z warunkiem początkowym y(0)=1 w przedziałe $x\in[0,1]$ dla h=0.2.

Rozwiązanie:

i	x	У	f(x,y)	$\Delta y = h * f(x, y)$
0	0	1	0	0
1	0.2	1	0.4	0.08
2	0.4	1.08	0.864	0.1728
3	0.6	1.2528	1.50336	0.300672
4	0.8	1.553472	2.4855552	0.49711104
5	1	2.05058304		

Przykład 2:

Stosując metodę Eulera (Rungego-Kutty I rzędu) wyznacz rozwiązanie równania różniczkowego:

$$y'(x) = x^2 y(x) + x$$

z warunkiem początkowym y(2)=4w przedziałe $x\in[2,\!10]$ dla h=2.

Rozwiązanie:

i	X	y	f(x,y)	$\Delta y = h * f(x,y)$
0	2	4	18	36
1	4	40	644	1288
2	6	1328	47814	95628
3	8	96956	6205192	12410384
4	10	12507340		

2. Metoda Rungego-Kutty rzędu IV.

Ogólny algorytm obliczania:

- określenie warunku początkowego $y(x_0) = y_0$ (dane w poleceniu)
- określenie długości kroku h (dane w poleceniu)
- określenie przedziału x (dane w poleceniu), czyli określenie ilości iteracji
- wyznaczenie kolejnych wartości x: $x_i = x_0 + i * h$
- wyznaczenie kolejnych wartości x (wewnętrznego): $x_{li_{(1)}} = x_0, x_{li_{(2,3)}} = x_0 + 0.5h, x_{li_{(4)}} = x_0 + h$
- wyznaczenie kolejnych wartości y (wewnętrznego): $y_{ii_{(1)}}=y_0, y_{ii_{(2)}}=y_0+0.5k_1,$ $y_{ii_{(3)}}=y_0+0.5k_2, y_{ii_{(4)}}=y_0+k_3$
- wyznaczenie kolejnych wartości k: k = h * f(x, y)
- wyznaczenie kolejnych wartości $\Delta y_i = k \; (dla \; k_1 \; oraz \; k_4) = 2k \; (dla \; k_2 \; oraz \; k_3)$
- wyznaczenie kolejnych wartości $y_{i+1}=y_i+\Delta y_i,\ gdzie:\Delta y_i=\frac{1}{6}(k_1+2k_2+2k_3+k_4)$

Przykład 1:

Stosując metodę Rungego-Kutty IV rzędu wyznacz rozwiązanie równania różniczkowego:

$$y'(x) = 2xy(x)$$

z warunkiem początkowym y(0) = 1 w przedziałe $x \in [0,0.6]$ dla h = 0.2.

Rozwiązanie:

i	x	У	k = h * f(x, y)	Δy
0	0	1	0	0
	0.1	1	0.04	0.08
	0.1	1.02	0.0408	0.0816
	0.2	1.0408	0.083264	0.083264
				$\Delta y_0 = \frac{1}{6}(0 + 0.08 + 0.0816 + 0.083264) = 0.0408$
1	0.2	1.0408	0.083264	0.083264
	0.3	1.082432	0.129892	0.259784
	0.3	1.105746	0.132689	0.265378
	0.4	1.173489	0.187758	0.187758
				$\Delta y_1 = 0.132697$
2	0.4	1.173489	0.187758	0.187758
	0.5	1.267368	0.253474	0.506948
	0.5	1.300226	0.260045	0.52009
	0.6	1.433534	0.34404816	0.34404816
				$\Delta y_1 = 0.25980736$
3	0.6	1.43329636		

Przykład 2:

Stosując metodę Rungego-Kutty IV rzędu) wyznacz rozwiązanie równania różniczkowego:

$$y'(x) = x^2 y(x)$$

z warunkiem początkowym y(2)=4 w przedziałe $x\in[2,6]$ dla h=2.

Rozwiązanie:

i	x	У	k = h * f(x, y)	Δy
0	2	4	32	32
	3	20	360	720
	3	184	3312	6624
	4	3316	106112	106112
				$\Delta y_0 = 18914$
1	4	18918	605376	605376
	5	321606	16080300	32160600
	5	8059068	402953400	805906800
	6	402972318	29014006896	29014006896
			·	$\Delta y_1 = 4975446612$
2	6	4975465530		

Opracowano dn. 16.12.2017

Bartlomiej Osak, Tomasz Odzimek