DEFINITION	Тнеогем
Differentiable at x	Mean Value Theorem
Proof	DEFINITION
Mean Value Theorem	Lipschitz Condition
Theorem	Example
Ratio Mean Value Theorem	A function satisfying the lipschitz condition
Example	DEFINITION
Discontinuity of the second kind	r-th order differenitable at x .
DEFINITION	Тнеогем
Darboux continuous	Continuity of the derivative of a differentiable function

A continuous function $f:[a,b]\to\mathbb{R}$ which is differentiable on (a,b) has the mean value property: there exists a $\theta\in(a,b)$ such that $f(b)-f(a)=f'(\theta)(b-a).$	The function $f:(a,b)\to\mathbb{R}$ is differentiable at x iff $\lim_{t\to x}\frac{f(t)-f(x)}{t-x}=L$ exists.
$f:M\to N$ satisfies the lipschitz condition if and only if there exists a K such that $d(fx,fy)\le Kd(x,y)$	Take $f(x) - \frac{f(b) - f(a)}{b - a}(x - a) = g(x)$. Then $g(x)$ attains a maximum or a minimum on $[a, b]$ by its continuity. At either the min or max, $\theta \in (a, b)$. Then $g'(\theta) = 0$. Therefore $f'(\theta) = S$. Draw the secant line!
$f(x) = Kx.$ $ f(x)' \le K$	Let $f,g:[a,b]\to\mathbb{R}$ be continuous functions. Then there exists a $\theta\in(a,b)$ such that $\frac{f'(\theta)}{g'(\theta)}=\frac{\Delta f}{\Delta g}$
The function f is r -th order differentiable at x if and only if it is differentiable up to r and $f^{(r-1)}$ is continuous.	$f(x) = x^2 \sin\left(\frac{1}{x}\right), f(0) = 0$
If f is differentiable on (a, b) then its derivative is Darboux continuous.	A function which posesses the intermediate value property.

DEFINITION	DEFINITION
Smooth function	Analytic function
Example	
Nonanalytic Smooth Function	

$f:(a,b)\to\mathbb{R}$ is analytic if for each $x\in(a,b)$ there is a power series $\sum a_rh^r$ and a $\delta>0$ such that if $ h <\delta$ then $f(x+h)=\sum_{r=0}^\infty a_rh^r$	A function $f:(a,b)\to\mathbb{R}$ is smooth if and only if it is infinitely differentiable.