STUDI KASUS PRAKTIKUM STATISTIKA REGRESI BAGIAN 4 – REGRESI VARIABEL *DUMMY*

Disusun oleh:

Chelsea Ayu Adhigiadany 21083010028 Statistika Regresi – B

Dosen Pengampu:

Trimono Pujiarto, S.Si, M.Si.

PROGRAM STUDI SAINS DATA FAKULTAS ILMU KOMPUTER UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR

Daftar Isi

BAB 1.	PENDAHULUAN	3
1.1.	Tujuan Praktikum	3
1.1	1.1. Tujuan Instruksional Umum (TIU)	3
1.1	1.2. Tujuan Instruksional Khusus (TIK)	3
1.2.	Permasalahan	3
BAB 2.	. TINJAUAN PUSTAKA	
2.1.	Regresi Variabel Dummy	Z
2.2.	Uji Kelayakan Model	
BAB 3.	•	
BAB 4.	. KESIMPULAN	11
DAFTA	AR PUSTAKA	
	PIRAN	
	Langkah-langkah analisis	
	Output Analisis pada SPSS	
	Curput I manage passe of the	

BAB 1. PENDAHULUAN

1.1.Tujuan Praktikum

1.1.1. Tujuan Instruksional Umum (TIU)

Setelah mengikuti seluruh kegiatan praktikum ini, mahasiswa diharapkan dapat melakukan pengolahan, analisis dan membuat model regresi dari data atau informasi hasil pengamatan serta dapat melakukan prediksi berdasarkan model yang dibangun dan dianalisis dengan menggunakan paket program SPSS for Windows.

1.1.2. Tujuan Instruksional Khusus (TIK)

Setelah mengikuti praktikum ini mahasiswa diharakan mampu mengestimasi koefisien regresi linier serta menganalisis berbagai nilai statistik yang berkaitan dengan koefisien regresi linear yang diperoleh dari hasil pengolahan data pengamatan dengan menggunakanpaket program SPSS for Windows.

1.2.Permasalahan

Suatu penelitian dilakukan untuk mengetahui pengaruh pendapatan tahunan (X) dan jenis kelamin (*Dummy*) terhadap jumlah tabungan tahunan (Y), penelitian dilakukan dengan memanfaatkan data sa. Data yang digunakan terdiri dari 26 sampel yang terdiri dari 14 laki- laki dan 12 perempuan dan dicatat untuk tahun 2021. Data tersebut terlampir pada tabel di bawah ini:

No	Tabungan (Y)	Pendapatan (X)	Jenis Kelamin (D)	No	Tabungan (Y)	Pendapatan (X)	Jenis Kelamin (D)
1	61	727.1	Perempuan	14	167	2522.4	Laki – Laki
2	68.6	790.2	Perempuan	15	235.7	2810	Laki – Laki
3	63.6	855.3	Perempuan	16	206.2	3002	Laki – Laki
4	89.6	965	Perempuan	17	196.5	3187.6	Laki – Laki
5	97.6	1054.2	Perempuan	18	168.4	3363.1	Laki – Laki
6	104.4	1159.2	Perempuan	19	189.1	3640.8	Laki – Laki
7	96.4	1273	Perempuan	20	187.8	3894.5	Laki – Laki
8	92.5	1401.4	Perempuan	21	208.7	4166.8	Laki – Laki
9	112.6	1580.1	Perempuan	22	246.4	4343.7	Laki – Laki
10	130.1	1769.5	Perempuan	23	272.6	4613.7	Laki – Laki
11	161.8	1973.3	Perempuan	24	214.4	4790.2	Laki – Laki
12	199.1	2200.2	Perempuan	25	189.4	5021.7	Laki – Laki
13	205.5	2347.3	Laki – Laki	26	249.3	5320.8	Laki – Laki

Berdasarkan data tersebut, tentukanlah model regresi variable dummy lengkap beserta uji hipotesis dan uji asumsinya. Lakukan analisis yang mendalam terhadap hasil yang diperoleh.

BAB 2. TINJAUAN PUSTAKA

2.1.Regresi Variabel Dummy

Dalam regresi, variabel dependent pada dasarnya tidak hanya dapat dipengaruhi oleh variabel independent kuantitatif, tetapi juga dimungkinkan oleh variabel kualitatif.. Lalu bagaimana cara memasukkan variabel independent kualitatif tersebut (yang tidak berbentuk angka) ke dalam model regresi? Variabel kualitatif tersebut harus dikuantitatifkan atributnya (cirinya). Untuk mengkuantitatifkan atribut variabel kualitatif, dibentuk variabel dummy dgn nilai 1 dan 0. Jadi, inilah yang dimaksud dengan variabel dummy tersebut. Nilai 1 menunjukkan adanya, sedangkan nilai 0 menunjukkan tidak adanya ciri kualitas tersebut. Misalnya variabel jenis kelamin. Jika nilai 1 digunakan untuk laki-laki maka nilai 0 menunjukkan bukan laki-laki (perempuan), atau sebaliknya. (Kategori yang diberi nilai 0 disebut kategori dasar, dalam artian bahwa perbandingan dibuat atas kategori tersebut.)

2.2.Uji Kelayakan Model

Uji kelayakan model dilakukan untuk mengidentifikasi model regresi yang terbentuk layak atau tidak untuk menjelaskan pengaruh variabel bebas terhadap variabel terikat. Uji kelayakan model dilakukan melalui uji hipotesis. Secara khusus, uji hipotesis dapat membantu kita untuk menguji signifikansi koefisien regresi yang di dapat. Pengambilan keputusan hipotesis dilakukan dengan membandingkan t statisktik terhadap t tabel atau nilai probabilitas terhadap taraf signifikansi yang ditetapkan. Uji kelayakan model terdiri dari dua yaitu, uji F (uji kecocokan model) dan uji-t (signifikansi parameter).

2.2.1. Uji kecocokan model (uji F)

Pada model regresi berganda, uji ini digunakan untuk menguji koefisien (slope) regresi secara bersamaan dan memastikan bahwa model yang dipilih layak atau tidak untuk mengintepretasikan pengaruh variabel bebas terhadap variabel terikat. Uji ini sangat penting karena jika tidak lolus uji F maka hasil uji t tidak relevan. Menurut Gujarati (2003), ketentuan pengambilan keputusan adalah sebagai berikut:

- Jika nilai F hitung > F tabel atau nilai prob. F-statistik < taraf signifikansi, maka H0 ditolak, hal ini berarti bahwa variabel bebas secara bersama-sama mempengaruhi variabel terikat.
- Jika nilai F hitung < F tabel atau nilai prob. F-statistik > taraf signifikansi, maka H0 diterima, dengan kata lain variabel bebas secara simultan tidak mempengaruhi variabel terikat.

2.2.2. Uji signifikamsi parameter (uji T)

Uji t adalah uji yang digunakan untuk menguji koefisien model regresi secara individu. Menurut Mansyur (2017), pengambilan keputusan uji t dilakukan jika:

• Uji dua arah

Jika nilai thitung > ttabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak, atau dengan kata lain variabel bebas berpengaruh di dalam model terhadap variabel terikat.

Jika nilai thitung < ttabel atau nilai prob. t-statistik > taraf signifikansi, maka H0 diterima, atau dengan kata lain variabel bebas tidak berpengaruh di dalam model

terhadap variabel terikat.

• Uji satu arah sisi kanan (positif)

Jika nilai thitung > ttabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak atau dengan kata lain, variabel bebas berpengaruh positif terhadap variabel terikat. Jika nilai thitung < ttabel atau nilai prob. t-statistik > taraf signifikansi, maka H0 diterima atau dengan kata lain, variabel bebas tidak berpengaruh positif terhadap variabel terikat.

• Uji satu arah sisi kiri (negatif)

Jika nilai t hitung < -t tabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak (variabel bebas berpengaruh negatif terhadap variabel terikat).

Jika nilai t hitung < -t tabel atau nilai prob. t-statistik < taraf signifikansi, maka H0 ditolak (variabel bebas berpengaruh negatif terhadap variabel terikat).

2.2.3. Koefisien determinasi

Nilai koefisien determinasi mencerminkan seberapa besar variasi dari variabel terikat Y dapat diterangkan oleh variabel bebas X (Nachrowi dan Hardius, 2006:20). Sebuah model dikatakan baik jika nilai R2 mendekati satu dan sebaliknya jika nilai R2 mendekati 0 maka model kurang baik (Um dan Ica, 2016).

2.2.4. Uji asumsi

1. Normalitas

Uji normalitas digunakan dalam model regresi untuk menguji apakah nilai residual yang dihasilkan terdistribusi secara normal atau tidak. Model regresi yang baik adalah model regresi yang memiliki nilai residual yang terdistribusi secara normal.

2. Linieritas

Uji linearitas bertujuan untuk mengetahui apakah dua variabel mempunyai hubungan yang linear atau tidak secara signifikan. Uji ini biasanya digunakan sebagai prasyarat dalam analisis korelasi atau regresi linear.

3. Homoskedastisitas

Uji ini digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik heteroskedastisitas yaitu adanya ketidaksamaan varian dari residual untuk semua pengamatan pada model regresi. Prasyarat yang harus terpenuhi dalam model regresi adalah tidak adanya gejala heteroskedastisitas.

4. Non autokorelasi

Uji autokorelasi digunakan untuk mengetahui ada atau tidaknya penyimpangan asumsi klasik autokorelasi yaitu korelasi yang terjadi antara residual pada satu pengamatan dengan pengamatan lain pada model regresi. Prasyarat yang harus terpenuhi adalah tidak adanya autokorelasi dalam model regresi.

Metode pengujian yang sering digunakan adalah dengan uji Durbin-Watson (uji D-W) dengan ketentuan sebagai berikut :

- Jika d lebih kecil dari dL maka hipotesis nol ditolak, yang berarti terdapat autokorelasi positif.
- Jika d terletak antara dL dan dU maka tidak menghasilkan kesimpulan yang pasti.

- Jika d terletak antara dU dan (4-dU), maka hipotesis nol diterima, yang berarti tidak ada autokorelasi.
- Jika d terletak antara (4-dU) dan (4-dL) maka tidak menghasilkan kesimpulan yang pasti.
- Jika d lebih besar dari (4-dL) maka hipotesis nol ditolak, yang berarti terdapat autokorelasi negatif.

Nilai dU dan dL dapat diperoleh dari tabel statistik Durbin Watson yang bergantung banyaknya observasi dan banyaknya variabel yang menjelaskan.

5. Non multikolineritas

Menurut Sagar, Gupta, dan Kashyap (2021), uji multikolinearitas bertujuan untuk menguji apakah model regresi ditemukan adanya korelasi antar variabel bebas (independen). Model regresi yang baik seharusnya tidak terjadi korelasi antara variabel independen. Ada atau tidaknya multikolinearitas dapat dilihat dari koefisienmasing masing variabel bebas jika koefisien korelasi di antara masing masing variabel bebas lebih dari 0,8 maka terjadi multikolinearitas dan sebaliknya, jika koefisien korelasi antara masing masing variabel bebas kurang dari 0,8 maka tidak terjadi multikolinearitas. Selaian itu untuk mengetahui apakah Asumsi Non-Multikolinieritas terpenuhi atau tidak dengan meilihat Nilai VIF, apabila nilai VIF <10 maka dapat disimpulkan Asumsi non multikolinearitas terpenuhi dan apabila nilai VIF > 10 maka asumsi non multikoliniearitas tidak terpenuhi.

BAB 3. ANALISIS DAN PEMBAHASAN

3.1 Model regresi

			Co	efficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	109.539	31.074		3.525	.002		
	pendapatan	.026	.008	.615	3.340	.003	.267	3.752
	jenis kelamin	-37.833	22.905	304	-1.652	.112	.267	3.752
_								

a. Dependent Variable: tabungan

Berdasarkan tabel di atas, dapat diketahui bahwa:

$$\beta_0 = 109,539$$

$$\beta_1 = 0.026$$

$$\beta_2 = -37,833$$

Maka dapat disimpulkan bahwa persamaan regresinya adalah $Y = 109,539 + 0,026X_1 - 37,833D + \varepsilon$

3.2 Uji hipotesis

Pada uji hipotesis dilakukan 2 macam uji yaitu untuk menguji kecocokan model dan juga menguji pengaruh variabel.

3.2.1. Uji f (uji kecocokan model)

a. Menentukan hipotesis

$$H_0$$
: $\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$ (model regresi tidak sesuai)

$$H_1: \beta_1 \neq 0$$
; 1, 2, 3 (model regresi sesuai)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	79087.086	2	39543.543	43.762	.000b
	Residual	20783.000	23	903.609		
	Total	99870.087	25			

a. Dependent Variable: tabungan

Berdasarkan tabel anova dapat diketahui bahwa F = 43,762 dengan Sig = 0,000

d. Daerah kritis

Tolak H_0 jika nilai Sig < α

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.000 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti model regresi sesuai

3.2.2. Uji t (uji signifikansi)

a. Menentukan hipotesis

$$H_0$$
: $\beta_i = 0$ (variabel *X* tidak berpengaruh terhadap variabel *Y*)

$$H_1: \beta_i \neq 0$$
 (variabel *X* berpengaruh terhadap variabel *Y*)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

b. Predictors: (Constant), jenis kelamin, pendapatan

	Coefficients ^a								
Unstandardized Coeffici		d Coefficients	Standardized Coefficients			Collinearity	Statistics		
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF	
1	(Constant)	109.539	31.074		3.525	.002			
	pendapatan	.026	.008	.615	3.340	.003	.267	3.752	
	jenis kelamin	-37.833	22.905	304	-1.652	.112	.267	3.752	

a. Dependent Variable: tabungan

Berdasarkan tabel coefficient, diketahui bahwa

 $t_{hitung}\beta_1 = 3,340$ dengan Sig = 0,003

 $t_{hitung}\beta_2 = -1,652 \text{ dengan Sig} = 0,112$

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.003 < 0.05)$

Terima H_0 karena nilai $Sig < \alpha \ (0.112 > 0.05)$ (diasumsikan signifikam berpengaruh terhadap model)

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti variabel X berpengaruh terhadap variabel Y

3.3 Koefisien determinasi

Model Summary^b

	_		Adjusted R	Std. Error of	Durbin-
Model	R	R Square	Square	the Estimate	Watson
1	.890ª	.792	.774	30.0601	1.046

a. Predictors: (Constant), jenis kelamin, pendapatan

Dari tabel summary diperoleh nilai $R^2 = 0.792 = 79.2\%$, artinya sebesar 79.2% variabel Y dipengaruhi oleh variabel pendapatan dan jenis kelamin, sisanya sebesar 20.8% Y dipengaruhi oleh faktor lain.

3.4 Uji asumsi

3.4.1. Normalitas

a. Secara visual

Pada Normal Q-Q Plot of Unstandardized Residual dapat dilihat bahwa plot-plot mengikuti garis lurus, sehingga dapat disimpulkan bahwa residual berdistribusi normal. Maka asumsi normalitas terpenuhi secara visual

b. Secara formal

Menentukan hipotesis

b. Dependent Variable: tabungan

 H_0 : residual berdistribusi normal

 H_1 : residual tidak berdistribusi normal

• Taraf signifikansi : $\alpha = 5\% = 0.05$

Uji statistik

Tests of Normality

		Kolm	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.		
Unstandardi	zed Residual	.156	26	.101	.956	26	.323		

a. Lilliefors Significance Correction

Nilai Sig untuk Kolmogorov smirnov adalah 0,101

• Daerah kritis Tolak H_0 jika nilai Sig $< \alpha$

Keputusan

 H_0 diterima karena nilai $Sig > \alpha \ (0.200 < 0.05)$

Kesimpulan

 H_0 diterima karena nilai $Sig > \alpha$, yang berarti residual berdistribusi normal

3.4.2. Linieritas antara variabel dependen dengan independen

Berdasarkan grafik zresid by zpred scatterplot dapat dilihat bahwa sebaran data acak atau tidak membentuk pola tertentu maka dapat disimpulkan bahwa uji linieritas terpenuhi.

3.4.3. Homoskedastisitas residual

Berdasarkan grafik sresid by zpred scatterplot dapat dilihat bahwa asumsi Heteroskedastisitas terpenuhi jika residual menyebar secara acak dan tidak membentuk pola. Sehingga dapat disimpulkan bahwa asumsi homogenitas residual terpenuhi.

3.4.4. Non autokorelasi residual

a. Hipotesis

 H_0 : tidak ada autokorelasi

 H_1 : ada autokorelasi

b. Taraf signifikansi : $\alpha = 5\% = 0.05$

c. Uji statistik

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	.890ª	.792	.774	30.0601	1.046

a. Predictors: (Constant), jenis kelamin, pendapatan

Berdasarkan tabel Model Summary dapat diketahui : DW = 1,046Dari tabel Durbin Watson $\alpha = 5\%$ dengan n = 26 dan k = 2 dapat diketahui :

26 1.3022 1.4614 1.2236 1.5528

dL = 1,2236

dU = 1,5528

d. Daerah krisis

0 < DW < dL : Menolak H0, mengalami autokorelasi positif

dL < DW < dU : Ragu-ragu

dU < DW < 4-dU: Menerima H0, tidak ada autokorelasi

4-dU < DW < 4-dL: Ragu-ragu

4-dL < DW < 4 : Menolak H0, mengalami autokorelasi negatif

e. Keputusan

 H_0 diterima karena dU (1,5528) < DW (1,046) < 4-dU (4-1,2236=2,7764)

f. Kesimpulan

 H_0 diterima karena dU < DW < 4-dU, tidak ada autokorelasi

3.4.5. Non multikolinieritas

Asumsi ini akan dicek melalui nilai VIF. Berdasarkan tabel coefficient, diektahui bahwa nilai VIF adalah 3,752 < 10. Jadi, kesimpulan yang diperoleh adalah tidak terdapat multikolinieritas pada variabel bebas yang membangun model regresi.

			Co	efficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	109.539	31.074		3.525	.002		
	pendapatan	.026	.008	.615	3.340	.003	.267	3.752
	jenis kelamin	-37.833	22.905	304	-1.652	.112	.267	3.752

a. Dependent Variable: tabungan

b. Dependent Variable: tabungan

BAB 4. KESIMPULAN

Dari permasalahan yang terdapat pada bab 2, ditemukan hasil dari model regresi, uji hipotesis, uji asumsi, koefisien korelasi, dan juga model akhir dari sebuah tabel tersebut dengan bantuan SPSS dalam perhitungan adalah sebagai berikut :

- 1 Model regresi : $Y = 109,539 + 0,026X_1 37,833D + \varepsilon$
- 2 Dilakukan 2 uji pada tahapan uji hipotesis yaitu uji f dan uji t dengan hasil menolak H_0 karena nilai $Sig < \alpha$, yang berarti model regresi sesuai dan variabel X berpengaruh terhadap variabel Y
- 3 Pada uji asumsi dilakukan 5 uji yaitu normalitas, linieritas, homoskedastisitas, non autokorelasi, dan juga nonmultikolinieritas dengan hasil H_0 diterima karena nilai $Sig > \alpha$, yang berarti residual berdistribusi normal untuk uji normalitas, sebaran data yang acak menunjukkan bahwa uji linieritas dan homoskedastisitas terpenuhi. Pada uji non autokorelasi diperoleh hasil H_0 diterima karena dU < DW < 4-dU, tidak ada autokorelasi, sedangkan pada uji nonmultikolinieritas diperoleh tidak terdapat multikolinieritas pada variabel bebas yang membangun model regresi.
- 4 Koefisien determinasi diperoleh nilai $R^2 = 0.792 = 79.2\%$, artinya sebesar 79,2% variabel Y dipengaruhi oleh variabel pendapatan dan jenis kelamin, sisanya sebesar 20,8% Y dipengaruhi oleh faktor lain.

DAFTAR PUSTAKA

- Anekawati, A. (2013). FAKTOR-FAKTOR YANG MEMPENGARUHI JUMLAH PENDAFTAR SMA/MA DI KABUPATEN SUMENEP MENGGUNAKAN ANALISIS REGRESI VARIABEL DUMMY. *LENSA (Lentera Sains): Jurnal Pendidikan IPA*, *3*(1), 1-15.
- Arya, D., Rochmawati, L., & Sonhaji, I. (2020). Koefisien Korelasi (R) Dan Koefisien Determinasi (R2). *Jurnal Penelitian*, 5(4), 289-296.
- Junaidi, J. (2015). Regresi dengan Variabel Dummy.
- Meiryani. "MEMAHAMI ASUMSI KLASIK DALAM PENELITIAN ILMIAH", https://accounting.binus.ac.id/2021/08/06/memahami-uji-asumsi-klasik-dalam-penelitian-ilmiah/, diakses pada 20 Februari 2022 pukul 12.00
- Sukestiyarno, Y. L., & Agoestanto, A. (2017). Batasan prasyarat uji normalitas dan uji homogenitas pada model regresi linear. *Unnes Journal of Mathematics*, 6(2), 168-177.
- Tupen, S. N., & Budiantara, I. N. (2011, May). Uji Hipotesis dalam Regresi Nonparametrik Spline. In *Prosiding Seminar Nasional Statistika Universitas Diponegoro 2011* (pp. 184-199). Program Studi Statistika FMIPA Undip.
- Widhiarso, W., UGM, F. P., & Dipublikasikan, M. T. (2010). Prosedur Analisis Regresi dengan Variabel Dummy. *Yogyakarta: UGM*.

LAMPIRAN

- 1. Langkah-langkah analisis
 - a. Buat file data. Sebelum memasukan data pada Data View, definisikan terlebih dahulu variabel respon Y dan variabel X pada Variabel View

b. Isikan data yang tersedia pada sel-sel yang sesuai pada Data View.

c. Klik tombol Analyze – Regresion – Linear pada menu utama SPSS pada Data View

d. Isilah kotak Dependent dengan variabel Y (tabungan) dan kotak Independent dengan variabel X (pendapatan) dan variabel D (jenis kelamin)

e. Klik statistics, sesuaikan dengan settingan di bawah

f. Klik plot, sesuaikan dengan setting berikut, tekan next untuk beralih ke scatter selanjutnya

g. Klik save

h. Klik continue kemudian klik ok ketika tampilan output sudah muncul, tambahkan lagi analyze - nonparameteric test - explore

i. Masukkan unstandardized residual dan klik ok

j. Tambahkan lagi output dengan analyze – descriptive statistics – explore

k. Masukkan unstrandarized residual kedala dependen list, tekan plots dna sesuaikan seperti dibawah

l. Sesuaikan dengan setting berikut dan klik continue, maka pada bagian output akan muncul output tambahan

2. Output Analisis pada SPSS

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA COLLIN TOL /CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT Y_028

/METHOD=ENTER X_028 D_028
/SCATTERPLOT=(*SRESID ,*ZPRED) (*ZRESID ,*ZPRED)
/RESIDUALS DURBIN NORMPROB(ZRESID)

/SAVE PRED RESID.

Regression

[DataSetl] D:\statreg\dummy.sav

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	jenis kelamin, pendapatan ^b		Enter

- a. Dependent Variable: tabungan
- b. All requested variables entered.

	model Sullinary									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson					
1	.890ª	.792	.774	30,0601	1.046					

- a. Predictors: (Constant), jenis kelamin, pendapatan
- b. Dependent Variable: tabungan

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	90.951	250.370	162.088	56.2449	26
Std. Predicted Value	-1.265	1.570	.000	1.000	26
Standard Error of Predicted Value	8.079	14.568	10.064	1.757	26
Adjusted Predicted Value	94.545	253.888	161.791	56.7465	26
Residual	-53.0531	69.1595	.0000	28.8326	26
Std. Residual	-1.765	2.301	.000	.959	26
Stud. Residual	-1.946	2.478	.005	1.031	26
Deleted Residual	-64.4882	80.2431	.2976	33.3080	26
Stud. Deleted Residual	-2.082	2.831	.021	1.087	26
Mahal. Distance	.844	4.910	1.923	1.083	26
Cook's Distance	.000	.328	.053	.086	26
Centered Leverage Value	.034	.196	.077	.043	26

a. Dependent Variable: tabungan

ANOVA^a

Mode	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	79087.086	2	39543.543	43.762	.000b
	Residual	20783.000	23	903.609		
	Total	99870.087	25			

- a. Dependent Variable: tabungan
- b. Predictors: (Constant), jenis kelamin, pendapatan

Coefficientsa

		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	109.539	31.074		3.525	.002		
	pendapatan	.026	.008	.615	3.340	.003	.267	3.752
	jenis kelamin	-37.833	22.905	304	-1.652	.112	.267	3.752

a. Dependent Variable: tabungan

Collinearity Diagnostics

			Condition	V	ariance Proporti	ons
Model	Dimension	Eigenvalue	Index	(Constant)	pendapatan	jenis kelamin
1	1	2.265	1.000	.01	.01	.02
	2	.715	1.780	.00	.03	.13
	3	020	10.567	99	96	86

a. Dependent Variable: tabungan

Normal P-P Plot of Regression Standardized Residual

NPar Tests

One-Sample Kolmogorov-Smirnov Test

		Unstandardiz ed Residual
N		26
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	28.83262050
Most Extreme Differences	Absolute	.156
	Positive	.156
	Negative	105
Test Statistic		.156
Asymp. Sig. (2-tailed)		.101°

- a. Test distribution is Normal.
- b. Calculated from data.
- c. Lilliefors Significance Correction.

	l	Cases							
	Valid		Missing		Total				
	N	Percent	N	Percent	N	Percent			
Unstandardized Residual	26	100.0%	0	0.0%	26	100.0%			

			Statistic	Std. Error
Unstandardized Residual	Mean	.0000000	5.65454210	
	95% Confidence Interval	Lower Bound	-11.6457475	
	for Mean	Upper Bound	11.6457475	
	5% Trimmed Mean	9580748		
	Median	-4.8278516		
	Variance	831.320		
	Std. Deviation	28.83262050		
	Minimum	-53.05314		
	Maximum	69.15948		
	Range		122.21262	
	Interquartile Range	40.82563		
	Skewness	.658	.456	
	Kurtosis	.148	.887	

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Unstandardized Residual	.156	26	.101	.956	26	.323

1	Cases						
	Valid		Missing		Total		
	N	Percent	N	Percent	N	Percent	
Unstandardized Residual	35	97.2%	1	2.8%	36	100.0%	

			Statistic	Std. Error
Unstandardized Residual	Mean		.0000000	.80839929
	95% Confidence Interval	Lower Bound	-1.6428650	
	for Mean	Upper Bound	1.6428650	
	5% Trimmed Mean	0330309		
	Median	.5491383		
	Variance	22.873		
	Std. Deviation	4.78255467		
	Minimum	-8.66646		
	Maximum	10.25045		
	Range	18.91691		
	Interquartile Range	5.90753		
	Skewness	Skewness		
	Kurtosis	473	.778	

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Unstandardized Residual	.075	35	.200	.980	35	.755	

- *. This is a lower bound of the true significance.
 a. Lilliefors Significance Correction

