Hand in set 4, FYS3140 spring 2024

Use the methods presented in the lectures.

Problem 1 (Residues).

Calculate the residue of the following functions:

a)

$$f(z) = \frac{z+2}{z-2}$$
 at $z_0 = 2$,

b)

$$f(z) = \frac{z+3}{z^3 - 4z^2 - 3z + 18}$$
 at $z_0 = -2$ and $z_1 = 3$,

c)

$$f(z) = \sin\left(\frac{1}{z}\right)$$
 at $z_0 = 0$.

Problem 2 (Why b_1 ?).

In this problem we aim to get some intuition about why we define the residue as we do and why the methods of calculating the residue actually works. Let

$$C = \{ z \in \mathbb{C} : |z| = 1 \},$$

and recall from a previous hand in set that for integers n we have that

$$\oint_C z^n dz = \begin{cases} 0, & \text{if } n \neq -1, \\ 2\pi i, & \text{if } n = -1. \end{cases}$$

a) Use this fact to show that if f(z) is analytic inside and on C except for at the point zero that

$$\oint_C f(z)dz = 2\pi i b_1$$

by writing f in its Laurent series expansion around $z_0 = 0$.

The main idea now becomes to find clever ways to extract the coefficient b_1 from f without necessarily computing the entire Laurent series of f. If we assume that f has a simple pole at zero, so it has the form

$$f(z) = \frac{b_1}{z} + \sum_{n=0}^{\infty} a_n z^n$$

on some annulus containing C, we can manipulate this equality to recover the simple pole rule as follows:

$$f(z) = \frac{b_1}{z} + \sum_{n=0}^{\infty} a_n z^n,$$

$$zf(z) = b_1 + z \sum_{n=0}^{\infty} a_n z^n,$$

$$\lim_{z \to 0} (zf(z)) = \lim_{z \to 0} \left(b_1 + z \sum_{n=0}^{\infty} a_n z^n \right),$$

$$\lim_{z \to 0} (zf(z)) = b_1 + \lim_{z \to 0} \left(z \sum_{n=0}^{\infty} a_n z^n \right),$$

$$\lim_{z \to 0} (zf(z)) = b_1.$$

b) Assume now that f has a pole of order m at zero. By doing a similar manipulation, prove the multiple-pole rule.

Problem 3 (Residue theorem).

Consider the closed contour

$$C = \{z \in \mathbb{C} : |z| = 5\}$$

for the contour integral

$$\oint_C f(z)dz.$$

Evaluate this integral using the residue theorem for the following integrand functions:

a)

$$f(z) = \frac{z+5}{z^2 - z - 6},$$

b)

$$f(z) = \frac{1}{z^3 - 4z^2 - 3z + 18},$$

c)

$$f(z) = \frac{\sin(z)}{(z-\pi)^4},$$

$$f(z) = e^{1/z}.$$