

Advanced methods & concepts for very high intensity beams

P. A. P. NGHIEM
N. CHAUVIN, M. COMUNIAN, C. OLIVER
W. SIMEONI Jr., M. VALETTE, D. URIOT

What is HIGH intensity?

Only in the sense of comparison:

Beam A intensity is higher than Beam B intensity Only makes sense if

<u>higher</u> intensity → <u>higher</u> issues to face

Issues to be analyzed are twofold:

$$\frac{\text{High power}}{n_q} P = \frac{I_{av}E}{n_q}$$

- even tiny losses are harmful

$$K = \frac{q I_p}{2\pi \varepsilon_0 m (\beta \gamma c)^3} \frac{\text{Strong}}{\text{space charge}}$$

- strong nonlinear repulsive forces

Combination of the two issues → particularly critical situation

Beam analysis (1)

Classically: assimilation to high power

This graph is highly reductive:

Only last section, no upstream sections

- Challenges are not comparable at very different energies
- Challenging last section doesn't mean challenging upstream sections

No space charge

- need of strong focusing
- non-linearities
- emittance growth
- halo creation
- sudden losses

Beam analysis (2)

Advanced analysis:

Beam power & Space charge along the accelerator (average & peak intensity, start & final energy)

Beam power issues
 Only last section: B, A, C
 For a given section: A, B, C

Space charge issues
 Only first section: C, A, B
 For a given section: A, C, B

Direct comparison between accelerators for a same acceleration component

- ⇒ challenging or not
- ⇒ adjust section start/end could help
- ⇒ see effects of combination of high power & space charge

Beam analysis (3)

Examples of accelerators achieved or under construction or planned

Advanced

Classically

Nucl. Instru. Meth. Phys. Res. A 654, 63-71, 2011

November, 2014

5

1. New idea for: Beam analysis

2. New protocol for: Beam loss prediction

3. New method for: Beam optimization

4. New strategy for: Beam measurement

5. New concept for: Beam characterization

- 1. New idea for: Beam analysis
- 2. New protocol for: Beam loss prediction
- 3. New method for: Beam optimization
- 4. New strategy for: Beam measurement
- 5. New concept for: Beam characterization

7

Beam loss prediction (1)

High power → even a tiny part of the beam, when lost, can take away a significant power

- Accidental loss → brutal heat deposition → damage equipment
- Permanent loss → activate materials → harmful radiations for personnel
 → cryogenic systems must be able to cool down
 Hands-on maintenance requirement: Losses << 1W/m
 MW beam → well less than 1 particle lost over 10⁶ is tolerated !!
 → microlosses
 - High intensity → High power on almost the whole accelerator
 - → Carreful and exhaustive prediction of losses all along the accelerator is needed

November, 2014

8

Beam loss prediction (2)

Double issue:

- Define exhaustively all the loss situations in the accelerator lifetime
- Define the protocols to simulate and estimate them

Loss situations and protocols:

- A. <u>Ideal machine</u>: nominal theoretical conditions, without any error
- B. Starting from scratch: errors as tolerances, not corrected, tunable param.±10%
- C. Commissioning, tuning, exploration: same as above but errors corrected
- D. Routine operation: errors corrected, tunable param. nominal
- E. <u>Sudden failure</u>: individual or combination of sudden trips of tunable param. from 100% up to 110%, or down to 0%.

→ CATALOGUE of LOSSES:

affects all the subsystems: hot points, beam stop system velocity, limitations for control system, maximum beam power for operation, dynamic range of diagnostics, etc.

Beam loss prediction (3)

Example: CATALOGUE of LOSSES for the IFMIF Prototype accelerator

Talk of N. Chauvin et al. Thursday morning

Beam loss power probabilities when starting from scratch for a full power beam

Laser Part. Beams (2014), 32, 461-469

Beam loss power in case of sudden failure of the second LEBT solenoid

10

- 1. New idea for: Beam analysis
- 2. New protocol for: Beam loss prediction
- 3. New method for: Beam optimization
- 4. New strategy for: Beam measurement
- 5. New concept for: Beam characterization

November, 2014

11

Beam Optimization (1)

What are the parameters to be optimized?

Classically:

Global parameter: rms Emittance Minimize emittance growth Emittance matching Halo may be indirectly minimized

Emittance: figure of merit

But: MW beam→ microlosses 10⁻⁶ of the beam must be avoided

→ very external part

→ halo

Advanced:

Extension of the outermost particles Minimize directly the halo Halo matching Maximize margin between beam border and pipe wall

Halo: figure of merit

Results: comfortable margin between beam external border and beam pipe wall

IFMIF

BEAM DYNAMICS

Beam Optimization (2)

Example: IFMIF SRF Linac

(Laser Part. Beams 32, 10-118, 2014) (Talk of N. Chauvin et al. Tuesday morning)

13

IFMIF

BEAM DYNAMICS

Beam Optimization (3)

Example: IFMIF SRF Linac

Classically: Emitt. matching RMS normalised Emittance (mm.mrad)
0 0 0
7 99 $- \varepsilon_{V}$ norm $- \varepsilon_{Z}$ norm z(m) radius (mm) 15 10-2 10⁻⁵ 0 18 20 10 12 14 16 z (m)

(Laser Part. Beams 32, 10-118, 2014) (Talk of N. Chauvin et al. Tuesday morning)

Beam Optimization (4)

Issue: The beam must be optimised to an accuracy of 10-6
But simulations are not reliable to that accuracy
accelerator components are not reproducible to that accuracy

→ Frequent in-situ fine tuning are mandatory

STRATEGY: SELF-RULE

Perform only Beam Dynamics optimizations that could be reproduced in-situ on the real machine with the appropriate Beam Diagnostics in sufficient quantities

In other words:

Each BDyn tuning procedure MUST have its in-situ Avatar on the machine

Beam Optimization (5)

Examples of beam matching ...

... to the RFQ

Optimization

Not to fulfill theor. Twiss param. But to maximize RFQ transmission

Diagnostic

Current measurements at RFQ entrance and exit

... to the SRF Linac

Optimization

Not to minimize RMS envelope, emittance But to minimize micro-losses

Diagnostic

Micro-loss measurements the closest to solenoid vacuum chamber

Enough independent diagnostics: at least the same number as that of available tuneable parameters

Rev. Sci. Instru. 83, 02B320, 2012

Proc. of PAC. Vancouver, BC, Canada, 2009

- 1. New idea for: Beam analysis
- 2. New protocol for: Beam loss prediction
- 3. New method for: Beam optimization
- 4. New strategy for: Beam measurement
- 5. New concept for: Beam characterization

BEAM DYNAMICS

P.A.P. Nghiem

Beam Measurement (1)

Beam Measurement (2)

Classically: A lot of measurements, no need of sorting, classification

Advanced: clearly distinguish between

ESSENTIAL measurements

- for commissioning & tuning & operating the accelerator
- in order to meet required specifications of current and losses
- direct impact on the achievement of accelerator specifications
- available for everyday beam tuning at full power, non interceptive
- beam position, beam phase, current, losses, micro-losses

CHARACTERIZATION measurements

- for beam commissioning or beam study or beam dynamics understanding
- could be measurements during beam commissioning only, if lack of room
- could be interceptive devices for low duty cycle, if pb of power deposition
- transverse profile, emittance, halo, energy spread,
- mean energy, bunch length

Beam Measurement (3)

Measurement: with Bdiag Correction: with corrector

<u>Characterization:</u> Knowledge, Understanding, Surveillance

Definition of the complete beam diagnostic system

Beam Measurement (4)

Example of Microloss "correction" for IFMIF

Proc. of DIPAC11, Hamburg, Germany, 2011 Talk of N. Chauvin et al. Tuesday

Best µLM: CVD diamond

Best correction: least residual µlosses

- \Rightarrow Ideally as many μ LM as foc. elements upstream (one-to-one correspondence)
- ⇒ Located at foc.elements where loss probability is the highest, and the closest to the beam to allow locating losses

Performances: resolution 1/10 of maximum allowed losses

21 November, 2014

- 1. New idea for: Beam analysis
- 2. New protocol for: Beam loss prediction
- 3. New method for: Beam optimization
- 4. New strategy for: Beam measurement
- 5. New concept for: Beam characterization

Beam Characterization (1)

Classically

10⁶ particles in 6D phase space

- → 6 10⁶ parameters
- → huge
- → numerical simulations

Concentration ellipse

Emittance \mathcal{E} Twiss parameters $\alpha, \beta(,\gamma)$ \rightarrow 3 global parameters

Beam Optimization (3)

Example: IFMIF SRF Linac

(Laser Part. Beams 32, 10-118, 2014)

IFMIF

BEAM DYNAMICS

Beam Characterization (2)

Beam Characterization (4)

Classically: beam characterised by its second moments

$$\varepsilon = \sqrt{\langle q_i^2 \rangle \langle p_i^2 \rangle - \langle q_i p_i \rangle^2} \qquad \alpha = -\langle q_i p_i \rangle / \varepsilon \qquad \beta = \langle q_i^2 \rangle / \varepsilon$$

rms values of the particle coordinates and the beam 'envelope': $\sqrt{\langle q_i^2 \rangle} = \sqrt{\beta \varepsilon}$

But: not enough for very high intensity beam

Advanced:

- Characterise the beam by its core and halo separately
- Replace beam 'envelope' by the core-halo limit

What is the core? What is the halo?

Beam Characterization (5)

Advanced: Core-Halo limit based on the beam internal dynamics

Appl. Phys. Lett. 104, 074109, 2014

Core: uniform, sc force strictly linear

Halo: tenuous, sc force nonlinear

P.A.P. Nghiem

→ core-halo limit: very steep (infinite)

variation of the slope

General case:

Continuously varying density

Core-Halo limit: steepest variation of
the slope → max of 2nd derivative

→ Core & Halo are submitted to two
different space charge force regimes

Beam Characterization (6)

Example: Beam along the IFMIF prototype accelerator

BEAM DYNAMICS

Beam Characterization (8)

Example: Beam along the IFMIF Prototype accelerator

Beam Characterization (9)

Example: Beam along the IFMIF SRF Linac

Mitigate loss risks: Minimize total size, PHS, PHP

Beam Characterization (10)

Under study:

Generalization to nD phase space

Core-halo limit: maximum of Laplacian of density (∆n)

- → Define Emittance and Twiss parameters for core and halo separately
- → Study mechanisms of core growth, halo growth, core-halo interaction, exchange of particles, etc.

Summary

Catalogue of Losses, Halo matching, online Avatar of BD optimization, Essential and Characterization diagnostics, Core-Halo limit, PHS, PHP

For the five purposes of:

Beam analysis, beam loss prediction, beam optimization beam diagnostic and beam characterization

Laser Part. Beams 2014, in press