Solutions for Class 11 Maths Chapter 8

Exercise 8.1 Page No: 166

Expand each of the expressions in Exercises 1 to 5.

1.
$$(1 - 2x)^5$$

Solution:

From binomial theorem expansion we can write as

$$(1 - 2x)^5$$
= ${}^5C_0 (1)^5 - {}^5C_1 (1)^4 (2x) + {}^5C_2 (1)^3 (2x)^2 - {}^5C_3 (1)^2 (2x)^3 + {}^5C_4 (1)^1 (2x)^4 - {}^5C_5 (2x)^5$
= $1 - 5 (2x) + 10 (4x)^2 - 10 (8x^3) + 5 (16 x^4) - (32 x^5)$
= $1 - 10x + 40x^2 - 80x^3 - 32x^5$

2.
$$\left(\frac{2}{x} - \frac{x}{2}\right)^5$$

Solution:

From binomial theorem, given equation can be expanded as

$$\begin{split} &\left(\frac{2}{x} - \frac{x}{2}\right)^{5} = ^{5}C_{0}\left(\frac{2}{x}\right)^{3} - ^{5}C_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{x}{2}\right) + ^{5}C_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{x}{2}\right)^{2} \\ &- ^{3}C_{3}\left(\frac{2}{x}\right)^{2}\left(\frac{x}{2}\right)^{3} + ^{3}C_{4}\left(\frac{2}{x}\right)\left(\frac{x}{2}\right)^{4} - ^{3}C_{5}\left(\frac{x}{2}\right)^{5} \\ &= \frac{32}{x^{5}} - 5\left(\frac{16}{x^{4}}\right)\left(\frac{x}{2}\right) + 10\left(\frac{8}{x^{3}}\right)\left(\frac{x^{2}}{4}\right) - 10\left(\frac{4}{x^{2}}\right) + 5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right) - \frac{x^{5}}{32} \\ &= \frac{32}{x^{5}} - \frac{40}{x^{3}} + \frac{20}{x} - 5x + \frac{5}{8}x^{3} - \frac{x^{3}}{32} \end{split}$$

3.
$$(2x - 3)^6$$

Solution:

From binomial theorem, given equation can be expanded as

$$\begin{aligned} &(2x-3)^6 = ^6\mathrm{C}_0(2x)^6 - ^6\mathrm{C}_1(2x)^5(3) + ^6\mathrm{C}_1(2x)^4(3)^2 - ^4\mathrm{C}_3(2x)^3(3)^3 \\ &= 64x^6 - 6\left(32x^5\right)(3) + 15\left(16x^4\right)(9) - 20\left(8x^3\right)(27) \\ &+ 15\left(4x^2\right)(81) - 6(2x)(243) + 729 \\ &= 64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729 \\ &4.\left(\frac{x}{3} + \frac{1}{x}\right)^5 \end{aligned}$$

Solution:

From binomial theorem, given equation can be expanded as

$$\left(\frac{x}{3} + \frac{1}{x}\right)^{5} = {}^{5}C_{0}\left(\frac{x}{3}\right)^{5} + {}^{3}C_{1}\left(\frac{x}{3}\right)^{4}\left(\frac{1}{x}\right) + {}^{3}C_{2}\left(\frac{x}{3}\right)^{3}\left(\frac{1}{x}\right)^{2}
= \frac{x^{5}}{243} + 5\left(\frac{x^{4}}{81}\right)\left(\frac{1}{x}\right) + 10\left(\frac{x^{3}}{27}\right)\left(\frac{1}{x^{2}}\right) + 10\left(\frac{x^{2}}{9}\right)\left(\frac{1}{x^{3}}\right) + 5\left(\frac{x}{3}\right)\left(\frac{1}{x^{4}}\right) + \frac{1}{x^{5}}
= \frac{x^{5}}{243} + \frac{5x^{3}}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^{3}} + \frac{1}{x^{3}}
5. \left(x + \frac{1}{x}\right)^{6}$$

Solution:

From binomial theorem, given equation can be expanded as

$$\begin{split} &\left(\mathbf{x} + \frac{1}{\mathbf{x}}\right)^{6} = ^{6} \mathbf{C}_{0}(\mathbf{x})^{6} + ^{6} \mathbf{C}_{1}(\mathbf{x})' \left(\frac{1}{\mathbf{x}}\right) + ^{6} \mathbf{C}_{2}(\mathbf{x})^{4} \left(\frac{1}{\mathbf{x}}\right)^{2} \\ &+ ^{6} \mathbf{C}_{3}(\mathbf{x})^{3} \left(\frac{1}{\mathbf{x}}\right)^{3} + ^{6} \mathbf{C}_{4}(\mathbf{x})^{2} \left(\frac{1}{\mathbf{x}}\right)^{4} + ^{6} \mathbf{C}_{3}(\mathbf{x}) \left(\frac{1}{\mathbf{x}}\right)^{5} + ^{6} \mathbf{C}_{6} \left(\frac{1}{\mathbf{x}}\right)^{6} \\ &= \mathbf{x}^{4} + 6(\mathbf{x})^{3} \left(\frac{1}{\mathbf{x}}\right) + 15(\mathbf{x})^{4} \left(\frac{1}{\mathbf{x}^{2}}\right) + 20(\mathbf{x})^{3} \left(\frac{1}{\mathbf{x}^{3}}\right) + 15(\mathbf{x})^{2} \left(\frac{1}{\mathbf{x}^{4}}\right) + 6(\mathbf{x}) \left(\frac{1}{\mathbf{x}^{5}}\right) + \frac{1}{\mathbf{x}^{6}} \\ &= \mathbf{x}^{6} + 6\mathbf{x}^{4} + 15\mathbf{x}^{2} + 20 + \frac{15}{\mathbf{x}^{2}} + \frac{6}{\mathbf{x}^{4}} + \frac{1}{\mathbf{x}^{6}} \end{split}$$

6. $(96)^3$

Solution:

Given (96)3

96 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.

The given question can be written as 96 = 100 - 4

$$(96)^3 = (100 - 4)^3$$

=
$${}^{3}C_{0} (100)^{3} - {}^{3}C_{1} (100)^{2} (4) - {}^{3}C_{2} (100) (4)^{2} - {}^{3}C_{3} (4)^{3}$$

=
$$(100)^3 - 3(100)^2(4) + 3(100)(4)^2 - (4)^3$$

$$= 1000000 - 120000 + 4800 - 64$$

= 884736

7. (102)⁵

Solution:

Given (102)5

102 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.

The given question can be written as 102 = 100 + 2 $(102)^5 = (100 + 2)^5$

```
= {}^{5}C_{0} (100)^{5} + {}^{5}C_{1} (100)^{4} (2) 
+ {}^{5}C_{2} (100)^{3} (2)^{2} + {}^{5}C_{3} (100)^{2} (2)^{3} + {}^{5}C_{4} (100)(2)^{4} + {}^{5}C_{5} (2)^{5} 
= (100)^{5} + 5 (100)^{4} (2) + 10 (100)^{3} (2)^{2} + 5 (100) (2)^{3} + 5 (100) (2)^{4} + (2)^{5} 
= 1000000000 + 1000000000 + 400000000 + 80000 + 80000 + 32 
= 11040808032
```

8. (101)4

Solution:

Given (101)4

101 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.

The given question can be written as 101 = 100 + 1

$$(101)^4 = (100 + 1)^4$$

$$= {}^{4}C_{0} (100)^{4} + {}^{4}C_{1} (100)^{3} (1) + {}^{4}C_{2} (100)^{2} (1)^{2} + {}^{4}C_{3} (100) (1)^{2} + {}^{4}C_{4} (1)^{4}$$

$$= (100)^4 + 4 (100)^3 + 6 (100)^2 + 4 (100) + (1)^4$$

$$= 1000000000 + 4000000 + 600000 + 4000 + 1$$

= 1040604001

9. (99)5

Solution:

Given (99)5

99 can be written as the sum or difference of two numbers then binomial theorem can be applied.

The given question can be written as 99 = 100 - 1

$$(99)^{5} = (100 - 1)^{5}$$

$$= {}^{5}C_{0} (100)^{5} - {}^{5}C_{1} (100)^{4} (1) + {}^{5}C_{2} (100)^{3} (1)^{2} - {}^{5}C_{3} (100)^{2} (1)^{3} + {}^{5}C_{4} (100)(1)^{4} - {}^{5}C_{5} (1)^{5}$$

$$= (100)^{5} - 5 (100)^{4} + 10 (100)^{3} - 10 (100)^{2} + 5 (100) - 1$$

$$= 1000000000 - 5000000000 + 10000000 - 100000 + 500 - 1$$

$$= 9509900499$$

10. Using Binomial Theorem, indicate which number is larger (1.1)¹⁰⁰⁰⁰ or 1000.

Solution:

By splitting the given 1.1 and then applying binomial theorem, the first few terms of $(1.1)^{10000}$ can be obtained as

$$(1.1)^{10000} = (1 + 0.1)^{10000}$$

= $(1 + 0.1)^{10000}$ C₁ (1.1) + other positive terms
= 1 + 10000 × 1.1 + other positive terms

= 1 + 11000 + other positive terms

> 1000

$$(1.1)^{10000} > 1000$$

11. Find $(a + b)^4 - (a - b)^4$. Hence, evaluate

$$\left(\sqrt{3}+\sqrt{2}\right)^4-\left(\sqrt{3}-\sqrt{2}\right)^4.$$

Solution:

Using binomial theorem the expression $(a + b)^4$ and $(a - b)^4$, can be expanded

$$(a + b)^4 = {}^4C_0 a^4 + {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 + {}^4C_3 a b^3 + {}^4C_4 b^4$$

$$(a - b)^4 = {}^4C_0 a^4 - {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 - {}^4C_3 a b^3 + {}^4C_4 b^4$$

Now $(a + b)^4 - (a - b)^4 = {}^4C_0 \ a^4 + {}^4C_1 \ a^3 \ b + {}^4C_2 \ a^2 \ b^2 + {}^4C_3 \ a \ b^3 + {}^4C_4 \ b^4 - [{}^4C_0 \ a^4 - {}^4C_1 \ a^3 \ b + {}^4C_2 \ a^2 \ b^2 - {}^4C_3 \ a \ b^3 + {}^4C_4 \ b^4]$

$$= 2 ({}^{4}C_{1} a^{3} b + {}^{4}C_{3} a b^{3})$$

$$= 2 (4a^3 b + 4ab^3)$$

$$= 8ab (a^2 + b^2)$$

Now by substituting $a = \sqrt{3}$ and $b = \sqrt{2}$ we get

$$(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4 = 8 (\sqrt{3}) (\sqrt{2}) \{(\sqrt{3})^2 + (\sqrt{2})^2\}$$

$$= 8 (\sqrt{6}) (3 + 2)$$

$$= 40 \sqrt{6}$$

12. Find $(x + 1)^6 + (x - 1)^6$. Hence or otherwise evaluate

$$(\sqrt{2}+1)^6 + (\sqrt{2}-1)^6$$

Solution:

Using binomial theorem the expressions, $(x + 1)^6$ and $(x - 1)^6$ can be expressed as

$$(x + 1)^6 = {}^6C_0 x^6 + {}^6C_1 x^5 + {}^6C_2 x^4 + {}^6C_3 x^3 + {}^6C_4 x^2 + {}^6C_5 x + {}^6C_6$$

$$(x-1)^6 = {}^6C_0 x^6 - {}^6C_1 x^5 + {}^6C_2 x^4 - {}^6C_3 x^3 + {}^6C_4 x^2 - {}^6C_5 x + {}^6C_6$$

Now,
$$(x + 1)^6 - (x - 1)^6 = {}^6C_0 x^6 + {}^6C_1 x^5 + {}^6C_2 x^4 + {}^6C_3 x^3 + {}^6C_4 x^2 + {}^6C_5 x + {}^6C_6 - [{}^6C_0 x^6 - {}^6C_1 x^5 + {}^6C_2 x^4 - {}^6C_3 x^3 + {}^6C_4 x^2 - {}^6C_5 x + {}^6C_6]$$

$$= 2 \left[{}^{6}C_{0} X^{6} + {}^{6}C_{2} X^{4} + {}^{6}C_{4} X^{2} + {}^{6}C_{6} \right]$$

$$= 2 [x^6 + 15x^4 + 15x^2 + 1]$$

Now by substituting $x = \sqrt{2}$ we get

$$(\sqrt{2} + 1)^6 - (\sqrt{2} - 1)^6 = 2[(\sqrt{2})^6 + 15(\sqrt{2})^4 + 15(\sqrt{2})^2 + 1]$$

$$= 2 (8 + 15 \times 4 + 15 \times 2 + 1)$$

$$= 2 (8 + 60 + 30 + 1)$$
$$= 2 (99)$$

= 198

13. Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.

Solution:

In order to show that $9^{n+1} - 8n - 9$ is divisible by 64, it has to be show that $9^{n+1} - 8n - 9 = 64$ k, where k is some natural number

Using binomial theorem,

$$(1 + a)^m = {}^mC_0 + {}^mC_1 a + {}^mC_2 a^2 + \dots + {}^mC_m a^m$$

For a = 8 and m = n + 1 we get

$$(1 + 8)^{n+1} = {}^{n+1}C_0 + {}^{n+1}C_1 (8) + {}^{n+1}C_2 (8)^2 + \dots + {}^{n+1}C_{n+1} (8)^{n+1}$$

$$9^{n+1} = 1 + (n+1) \cdot 8 + 8^2 \left[{^{n+1}C_2 + {^{n+1}C_3}\left(8 \right) + \dots + {^{n+1}C_{n+1}}\left(8 \right)^{n-1}} \right]$$

$$9^{n+1} = 9 + 8n + 64 \left[{^{n+1}C_2 + {^{n+1}C_3}\left(8 \right) + \dots + {^{n+1}C_{n+1}}\left(8 \right)^{n-1}} \right]$$

$$9^{n+1} - 8n - 9 = 64 \text{ k}$$

Where $k = [^{n+1}C_2 + ^{n+1}C_3 (8) + + ^{n+1}C_{n+1} (8)^{n-1}]$ is a natural number

Thus, $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is positive integer.

Hence the proof

14. Prove that

$$\sum_{r=0}^{n} 3^{r} {}^{n} C_{r} = 4^{n}$$

Solution:

By Binomial Theorem

$$\sum_{r=0}^{n} {n \choose r} a^{n-r} b^r = (a+b)^n$$

On right side we need 4^n so we will put the values as, Putting b = 3 & a = 1 in the above equation, we get

$$\sum_{r=0}^{n} {n \choose r} (1)^{n-r} (3)^{r} = (1+3)^{n}$$

$$\sum_{r=0}^{n} {n \choose r} (1)(3)^{r} = (4)^{n}$$

$$\sum_{r=0}^{n} {n \choose r} (3)^{r} = (4)^{n}$$

Hence Proved.

Exercise 8.2 Page No: 171

Find the coefficient of

1. x^5 in $(x + 3)^8$

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1}

Here x^5 is the T_{r+1} term so a=x, b=3 and n=8

$$T_{r+1} = {}^{8}C_{r} x^{8-r} 3^{r}.....(i)$$

For finding out x⁵

We have to equate $x^5 = x^{8-r}$

$$\Rightarrow$$
 r= 3

Putting value of r in (i) we get

$$T_{3+1} = {}^{8}C_{3} x^{8-3} 3^{3}$$

$$T_4 = \frac{8!}{3! \, 5!} \times x^5 \times 27$$

$$= 1512 x^5$$

Hence the coefficient of $x^5 = 1512$

2.
$$a^5b^7$$
 in $(a - 2b)^{12}$.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1}

Here a = a, b = -2b & n = 12

Substituting the values, we get

$$T_{r+1} = {}^{12}C_r a^{12-r} (-2b)^r(i)$$

To find a5

We equate a12-r =a5

$$r = 7$$

Putting r = 7 in (i)

$$T_8 = {}^{12}C_7 a^5 (-2b)^7$$

$$T_8 = \frac{12!}{7!5!} \times a^5 \times (-2)^7 b^7$$

$$= -101376 a^5 b^7$$

Hence the coefficient of a⁵b⁷= -101376

Write the general term in the expansion of

3.
$$(x^2 - y)^6$$

Solution:

The general term T_{r+1} in the binomial expansion is given by

$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}......(i)$$

Here
$$a = x^2$$
, $n = 6$ and $b = -y$

Putting values in (i)

$$T_{r+1} = {}^{6}C_{r} x^{2(6-r)} (-1)^{r} y^{r}$$

$$= \frac{6!}{r!(6-r)!} \times x^{12-2r} \times (-1)^r \times y^r$$

$$= -1^{r} \frac{6!}{r! (6-r)!} \times x^{12-2r} \times y^{r}$$

$$= -1^{r} {}^{6}C_{r} . x^{12-2r} . y^{r}$$

4.
$$(x^2 - y x)^{12}$$
, $x \neq 0$.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1}

Here
$$n = 12$$
, $a = x^2$ and $b = -y x$

Substituting the values we get

$$T_{n+1} = {}^{12}C_r \times X^{2(12-r)} (-1)^r y^r X^r$$

$$= \frac{12!}{r!(12-r)!} \times X^{24-2r} - 1^r y^r X^r$$

$$=$$
 $-1^{r} \frac{12!}{r!(12-r)!} x^{24-r} y^{r}$

$$= -1^{r} {}^{12}C_r . X^{24-2r} . Y^r$$

5. Find the 4th term in the expansion of $(x - 2y)^{12}$.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1}

Here
$$a = x$$
, $n = 12$, $r = 3$ and $b = -2y$

By substituting the values we get

$$T_4 = {}^{12}C_3 \times {}^{9} (-2y)^3$$

$$= \frac{12!}{3!9!} \times x^9 \times -8 \times y^3$$

$$= -\frac{12 \times 11 \times 10 \times 8}{3 \times 2 \times 1} \times x^9 y^3$$

$$= -1760 \times {}^{9} y^3$$

6. Find the 13th term in the expansion of

$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}, x \neq 0$$

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ and a^{n-r} br

Here a=9x,
$$b = -\frac{1}{3\sqrt{x}}$$
 n =18 and r = 12

Putting values

$$T_{13} = \frac{18!}{12! \, 6!} \, 9x^{18-12} \left(-\frac{1}{3\sqrt{x}} \right)^{12}$$

$$= \frac{(18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!)}{12! \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \times 3^{12} \times x^{6} \times \frac{1}{x^{6}} \times \frac{1}{3^{12}}$$

Find the middle terms in the expansions of

$$7. \left(3 - \frac{x^3}{6}\right)^7$$

Solution:

Here n = 7 so there would be two middle terms given by

$$\left(\frac{n+1}{2}^{th}\right)$$
 term = 4 th and $\left(\frac{n+1}{2}+1\right)$ th term = 5th

We have

$$a = 3$$
, $n = 7$ and $b = -\frac{x^3}{6}$

The term will be

$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

$$T_{4} = \frac{7!}{3!} 3^{4} \left(-\frac{x^{3}}{6} \right)^{3}$$
$$= -\frac{7 \times 6 \times 5 \times 4}{3 \times 2 \times 1} \times 3^{4} \times \frac{x^{9}}{2^{3} 3^{3}}$$

$$=-\frac{105}{8}x^9$$

For T_5 term, r = 4

The term T_{r+1} in the binomial expansion is given by

$$T_{r+1} = {}^{n}C_{r} a^{n-r} b^{r}$$

$$T_5 = \frac{7!}{4! \ 3!} \ 3^3 \left(-\frac{x^3}{6}\right)^4$$

$$= \frac{7 \times 6 \times 5 \times 4!}{4! \, 3!} \times \frac{3^3}{2^4 \, 3^4} \times x^3 = \frac{35 \, x^{12}}{48}$$

8.
$$\left(\frac{x}{3} + 9y\right)^{10}$$

Solution:

Here n is even so the middle term will be given by $(\frac{n+1}{2})^{th}$ term = 6^{th} term

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-r} b^{r}

Now
$$a = \frac{x}{3}$$
, $b = 9y$, $n = 10$ and $r = 5$

Substituting the values

$$T_6 = \frac{10!}{5! \, 5!} \times \left(\frac{x}{3}\right)^5 \times (9y)^5$$

$$T_6 = \frac{10!}{5! \, 5!} \times \left(\frac{x}{3}\right)^5 \times (9y)^5$$

$$= \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5! \times 5 \times 4 \times 3 \times 2 \times 1} \times \frac{x^5}{3^5} \times 3^{10} \times y^5$$

$$= 61236 x^5 y^5$$

9. In the expansion of $(1 + a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

Solution:

We know that the general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^n C_r \ a^{n-r} \ b^r$

Here n= m+n, a = 1 and b= a

Substituting the values in the general form

$$T_{r+1} = {}^{m+n}C_r 1^{m+n-r} a^r$$

$$= ^{m+n} C_r a^r$$
....(i)

Now we have that the general term for the expression is,

$$T_{r+1} = {}^{m+n}C_r a^r$$

Now, For coefficient of a^m

$$T_{m+1} = {}^{m+n}C_m a^m$$

Hence, for coefficient of a^m , value of r = m

So, the coefficient is m+n C m

Similarly, Coefficient of an is m+n C n

$$^{m+n} C_m = \frac{\underline{(m+n)!}}{m!n!}$$
And also,
$$^{m+n} C_{n} = \frac{\underline{(m+n)!}}{m!n!}$$

(m+n)!

The coefficient of a^m and aⁿ are same that is m!n!

10. The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1 : 3 : 5. Find n and r.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1} b^{r}

Here the binomial is $(1+x)^n$ with a=1, b=x and n=n

The (r+1)th term is given by

$$T_{(r+1)} = {}^{n}C_{r} 1^{n-r} x^{r}$$

$$T_{(r+1)} = {}^{n}C_{r} x^{r}$$

The coefficient of (r+1)th term is ⁿC_r

The rth term is given by (r-1)th term

$$T_{(r+1-1)} = {}^{n}C_{r-1} x^{r-1}$$

$$T_r = {}^nC_{r\text{-}1} \ x^{r\text{-}1}$$

∴ the coefficient of rth term is ⁿC_{r-1}

For (r-1)th term we will take (r-2)th term

$$T_{r-2+1} = {}^{n}C_{r-2} x^{r-2}$$

$$T_{r-1} = {}^{n}C_{r-2} x^{r-2}$$

 \therefore the coefficient of (r-1)th term is ${}^{n}C_{r-2}$

Given that the coefficient of (r-1)th, rth and r+1th term are in ratio 1:3:5 Therefore,

$$\frac{\text{the coefficient of } r - 1^{\text{th}} \text{ term}}{\text{coefficient of } r^{\text{th}} \text{ term}} = \frac{1}{3}$$

$$n_{\underset{r-1}{\overset{c}{\underset{r-2}{\overset{c}{\underset{r-1}{\cdots}}}}}}=\frac{1}{3}$$

$$\Rightarrow \frac{\frac{n!}{(r-2)!(n-r+2)!}}{\frac{n!}{(r-1)!(n-r+1)!}} = \frac{1}{3}$$

On rearranging we get

$$\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!} = \frac{1}{3}$$

By multiplying

$$\Rightarrow \frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)!} = \frac{1}{3}$$

$$\Rightarrow \frac{(r-1)(n-r+1)!}{(n-r+2)(n-r+1)!} = \frac{1}{3}$$

On simplifying we get

$$\Rightarrow \frac{(r-1)}{(n-r+2)} = \frac{1}{3}$$

$$\Rightarrow$$
 3r - 3 = n - r + 2

$$\Rightarrow \frac{(r-1)}{(n-r+2)} = \frac{1}{3}$$

$$\Rightarrow$$
 3r - 3 = n - r + 2

Also

 $\frac{\text{the coefficient of } r^{\text{th}} \text{ term}}{\text{coefficient of } r + 1^{\text{th}} \text{ term}} = \frac{3}{5}$

$$\Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}} = \frac{3}{5}$$

On rearranging we get

$$\underset{(\mathbf{r}-\mathbf{1})!(\mathbf{n}-\mathbf{r}+\mathbf{1})!}{\overset{\mathbf{n}!}{\longmapsto}} \times \frac{\mathbf{r}!(\mathbf{n}-\mathbf{r})!}{\mathbf{n}!} = \frac{3}{5}$$

By multiplying

$$\Rightarrow \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)!} = \frac{3}{5}$$

$$\Rightarrow \frac{\mathbf{r}(\mathbf{n}-\mathbf{r})!}{(\mathbf{n}-\mathbf{r}+\mathbf{1})!} = \frac{3}{5}$$

$$\Rightarrow \frac{r(n-r)!}{(n-r+1)(n-r)!} = \frac{3}{5}$$

On simplifying we get

$$\Rightarrow \frac{\mathrm{r}}{(\mathrm{n-r+1})} = \frac{3}{5}$$

Also

Also

 $\frac{\text{the coefficient of } r^{\text{th}} \text{ term}}{\text{coefficient of } r + 1^{\text{th}} \text{ term}} = \frac{3}{5}$

$$\Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}} = \frac{3}{5}$$

On rearranging we get

$$\Rightarrow \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!} = \frac{3}{5}$$

By multiplying

$$\Rightarrow$$
 5r = 3n - 3r + 3

$$\Rightarrow 8r - 3n - 3 = 0......$$

We have 1 and 2 as

$$n - 4r \pm 5 = 0.....1$$

$$8r - 3n - 3 = 0.....$$

Multiplying equation 1 by number 2

Adding equation 2 and 3

$$2n - 8r + 10 = 0$$

$$-3n - 8r - 3 = 0$$

$$\Rightarrow$$
 -n = -7

$$n = 7$$
 and $r = 3$

11. Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1} b^{r}

The general term for binomial $(1+x)^{2n}$ is

$$T_{r+1} = {}^{2n}C_r X^r \dots 1$$

To find the coefficient of xⁿ

$$r = n$$

$$T_{n+1} = {}^{2n}C_n x^n$$

The coefficient of $x^n = {}^{2n}C_n$

The general term for binomial (1+x)²ⁿ⁻¹ is

$$T_{r+1} = {}^{2n-1}C_r x^r$$

To find the coefficient of xⁿ

Putting n = r

$$T_{r+1} = {}^{2n-1}C_r x^n$$

The coefficient of $x^n = {}^{2n-1}C_n$

We have to prove

Coefficient of x^n in $(1+x)^{2n} = 2$ coefficient of x^n in $(1+x)^{2n-1}$

Consider LHS = ${}^{2n}C_n$

$$=\frac{2n!}{n!(2n-n)!}$$

$$=\frac{2n!}{n!(n)!}$$

Again consider RHS = $2 \times {}^{2n-1}C_n$

$$= 2 \times \frac{(2n-1)!}{n!(2n-1-n)!}$$

$$=2 \times \frac{(2n-1)!}{n!(n-1)!}$$

Now multiplying and dividing by n we get

$$=2 \times \frac{(2n-1)!}{n!(n-1)!} \times \frac{n}{n}$$

$$= \frac{2n(2n-1)!}{n! \, n(n-1)!}$$

$$= \frac{2n!}{n! \, n!}$$

From above equations LHS = RHS

Hence the proof.

Hence the proof.

12. Find a positive value of m for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.

Solution:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1} = {}^{n}C_{r}$ a^{n-1} b^{r}

Here a = 1, b = x and n = m

Putting the value

$$T_{r+1} = {}^{m}C_{r} 1^{m-r} x^{r}$$

$$= {}^{m}C_{r} x^{r}$$

We need coefficient of x²

∴ putting
$$r = 2$$

$$T_{2+1} = {}^{m}C_2 x^2$$

The coefficient of $x^2 = {}^{m}C_2$

Given that coefficient of $x^2 = {}^mC_2 = 6$

$$\Rightarrow \frac{m!}{2!(m-2)!} = 6$$

$$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times 1 \times (m-2)!} = 6$$

$$\Rightarrow$$
 m (m - 1) = 12

$$\Rightarrow$$
 m²- m - 12 =0

$$\Rightarrow$$
 m²- 4m + 3m - 12 =0

$$\Rightarrow$$
 m (m - 4) + 3 (m - 4) = 0

$$\Rightarrow (m+3) (m-4) = 0$$

$$\Rightarrow$$
 m = $-3, 4$

We need positive value of m so m = 4

Miscellaneous Exercise Page No: 175

1. Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Solution:

We know that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by

$$T_{r+1} = {}^{n}C_{r} a^{n-t} b^{r}$$

The first three terms of the expansion are given as 729, 7290 and 30375 respectively. Then we have,

$$T_1 = {}^{n}C_0 \ a^{n-0} \ b^0 = a^n = 729..... \ 1$$

$$T_2 = {}^{n}C_1 a^{n-1} b^1 = na^{n-1} b = 7290.... 2$$

$$T_3 = {}^{n}C_2 \ a^{n-2} \ b^2 = n \ (n - 1)/2 \ a^{n-2} \ b^2 = 30375.....3$$

Dividing 2 by 1 we get

$$na^{n-1}ba^n = \frac{7290}{729}$$

Dividing 3 by 2 we get

$$n(n-1)a^{n-2}b^{2}2na^{n-1}b = \frac{30375}{7290}$$

$$\Rightarrow (n-1)b2a = \frac{30375}{7290}$$

$$\Rightarrow (n-1)ba = \frac{30375 \times 2}{7290} = \frac{25}{3}$$

$$\Rightarrow nba - \frac{b}{a} = \frac{25}{3}$$

$$\Rightarrow 10 - ba = \frac{25}{3}$$

$$\Rightarrow ba = 10 - \frac{25}{3} = \frac{5}{3}$$
.......5

From 4 and 5 we have

$$n. 5/3 = 10$$

$$n = 6$$

Substituting n = 6 in 1 we get

$$a^6 = 729$$

$$a = 3$$

From 5 we have, b/3 = 5/3

$$b = 5$$

Thus
$$a = 3$$
, $b = 5$ and $n = 76$

2. Find a if the coefficients of x^2 and x^3 in the expansion of $(3 + a x)^9$ are equal.

Solution:

We know that general term of expansion (a + b)ⁿ is

$$T_{\mathbf{r+1}} = \left(\frac{\mathbf{n}}{\mathbf{r}}\right) a^{\mathbf{n} - \mathbf{r}} b^{\mathbf{r}}$$

For (3+ax)9

Putting a = 3, b = a x & n = 9

General term of (3+ax)9 is

$$T_{r+1} = \left(\frac{9}{r}\right) 3^{n-r} (ax)^r$$

$$T_{r+1} = \left(\frac{9}{r}\right) 3^{n-r} a^r x^r$$

Since we need to find the coefficients of x2 and x3, therefore

For r = 2

$$T_{2+1} = \left(\frac{9}{2}\right) 3^{n-2} a^2 x^2$$

Thus, the coefficient of $x^2 = \frac{9}{2} 3^{n-2} a^2$

For r = 3

$$T_{3+1} = \left(\frac{9}{3}\right) 3^{n-3} a^3 x^3$$

Thus, the coefficient of $x^3 = \frac{\left(\frac{9}{3}\right)3^{n-3}a^3}{9}$

Given that coefficient of x^2 = Coefficient of x^3

$$\Rightarrow \left(\frac{9}{2}\right)3^{n-2}a^2 = \left(\frac{9}{3}\right)3^{n-3}a^3$$

$$\Rightarrow \frac{9!}{2! (9-2)!} \times 3^{n-2} a^2 = \frac{9!}{3! (9-3)!} \times 3^{n-3} a^3$$

$$\Rightarrow \frac{3^{n-2} a^2}{3^{n-3} a^3} = \frac{2! (9-2)!}{3! (9-3)!}$$

$$\Rightarrow \frac{3^{(n-2)-(n-3)}}{a} = \frac{2! 7!}{3! 6!}$$

$$\Rightarrow \frac{3}{a} = \frac{7}{3}$$
∴ a = 9/7

Hence, a = 9/7

3. Find the coefficient of x^5 in the product $(1 + 2x)^6 (1 - x)^7$ using binomial theorem.

Solution:

$$(1 + 2x)^6 = {}^6C_0 + {}^6C_1 (2x)$$

$$+ {}^6C_2 (2x)^2 + {}^6C_3 (2x)^3 + {}^6C_4 (2x)^4 + {}^6C_5 (2x)^5 + {}^6C_6 (2x)^6$$

$$= 1 + 6 (2x) + 15 (2x)^2 + 20 (2x)^3 + 15 (2x)^4 + 6 (2x)^5 + (2x)^6$$

$$= 1 + 12 x + 60x^2 + 160 x^3 + 240 x^4 + 192 x^5 + 64x^6$$

$$(1 - x)^7 = {}^7C_0 - {}^7C_1 (x) + {}^7C_2 (x)^2 - {}^7C_3 (x)^3 + {}^7C_4 (x)^4 - {}^7C_5 (x)^5 + {}^7C_6 (x)^6 - {}^7C_7 (x)^7$$

$$= 1 - 7x + 21x^2 - 35x^3 + 35x^4 - 21x^5 + 7x^6 - x^7$$

$$(1 + 2x)^6 (1 - x)^7 = (1 + 12 x + 60x^2 + 160 x^3 + 240 x^4 + 192 x^5 + 64x^6) (1 - 7x + 21x^2 - 35x^3 + 35x^4 - 21x^5 + 7x^6 - x^7)$$

$$192 - 21 = 171$$

Thus, the coefficient of x^5 in the expression $(1+2x)^6(1-x)^7$ is 171.

4. If a and b are distinct integers, prove that a - b is a factor of $a^n - b^n$, whenever n is a positive integer. [Hint write $a^n = (a - b + b)^n$ and expand]

Solution:

In order to prove that (a - b) is a factor of $(a^n - b^n)$, it has to be proved that

 $a^n - b^n = k (a - b)$ where k is some natural number.

a can be written as a = a - b + b

$$a^{n} = (a - b + b)^{n} = [(a - b) + b]^{n}$$

$$= {}^{n}C_{0} (a - b)^{n} + {}^{n}C_{1} (a - b)^{n-1} b + \dots + {}^{n}C_{n} b^{n}$$

$$a^{n} - b^{n} = (a - b) [(a - b)^{n-1} + {}^{n}C_{1} (a - b)^{n-1} b + \dots + {}^{n}C_{n} b^{n}]$$

$$a^{n} - b^{n} = (a - b) k$$

Where $k = [(a - b)^{n-1} + {}^{n}C_{1} (a - b)^{n-1} b + \dots + {}^{n}C_{n} b^{n}]$ is a natural number This shows that (a - b) is a factor of $(a^{n} - b^{n})$, where n is positive integer.

5. Evaluate

$$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$$

Solution:

Using binomial theorem the expression $(a + b)^6$ and $(a - b)^6$, can be expanded

$$(a + b)^6 = {}^6C_0 \ a^6 + {}^6C_1 \ a^5 \ b + {}^6C_2 \ a^4 \ b^2 + {}^6C_3 \ a^3 \ b^3 + {}^6C_4 \ a^2 \ b^4 + {}^6C_5 \ a^5 + {}^6C_6 \ b^6$$

$$(a - b)^6 = {}^6C_0 \ a^6 - {}^6C_1 \ a^5 \ b + {}^6C_2 \ a^4 \ b^2 - {}^6C_3 \ a^3 \ b^3 + {}^6C_4 \ a^2 \ b^4 - {}^6C_5 \ a^5 + {}^6C_6 \ b^6$$

Now
$$(a + b)^6 - (a - b)^6 = {}^6C_0 a^6 + {}^6C_1 a^5 b$$

$$+ {}^{6}C_{2} a^{4} b^{2} + {}^{6}C_{3} a^{3} b^{3} + {}^{6}C_{4} a^{2} b^{4} + {}^{6}C_{5} a b^{5} + {}^{6}C_{6} b^{6} - [{}^{6}C_{0} a^{6} - {}^{6}C_{1} a^{5} b^{6} + {}^$$

$$+ {}^{6}C_{2} a^{4} b^{2} - {}^{6}C_{3} a^{3} b^{3} + {}^{6}C_{4} a^{2} b^{4} - {}^{6}C_{5} a b^{5} + {}^{6}C_{6} b^{6}$$

Now by substituting $a = \sqrt{3}$ and $b = \sqrt{2}$ we get

$$(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6 = 2 [6 (\sqrt{3})^5 (\sqrt{2}) + 20 (\sqrt{3})^3 (\sqrt{2})^3 + 6 (\sqrt{3}) (\sqrt{2})^5]$$

$$= 2 [54(\sqrt{6}) + 120 (\sqrt{6}) + 24 \sqrt{6}]$$

$$= 2 (\sqrt{6}) (198)$$

$$= 396 \sqrt{6}$$

6. Find the value of

$$\left(a^2 + \sqrt{a^2 - 1}\right)^4 + \left(a^2 - \sqrt{a^2 - 1}\right)^4$$

Solution:

Firstly the expression $(x + y)^4 + (x - y)^4$ is simplified by using binomial theorem

$$(x+y)^4 = {}^4C_0x^4 + {}^4C_1x^3y + {}^4C_2x^2y^2 + {}^+C_3xy^3 + {}^4C_4y^4$$

$$= x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

$$(x - y)^4 = {}^4 C_0 x^4 - {}^4 C_1 x^3 y + {}^4 C_2 x^2 y^2 - {}^4 C_3 x y^3 + {}^4 C_4 y^4$$

$$= x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$$

$$\therefore (x+y)^4 + (x-y)^4 = 2(x^4 + 6x^2y^2 + y^4)$$

Putting $x = a^2$ and $y = \sqrt{a^2 - 1}$, we obtain

$$\begin{aligned} &\left(a^2 + \sqrt{a^2 - 1}\right)^4 + \left(a^2 - \sqrt{a^2 - 1}\right)^4 \\ &= 2\left[\left(a^2\right)^4 + 6\left(a^2\right)^2\left(\sqrt{a^2 - 1}\right)^2 + \left(\sqrt{a^2 - 1}\right)^4\right] \\ &= 2\left[a^8 + 6a^4\left(a^2 - 1\right) + \left(a^2 - 1\right)^2\right] \\ &= 2\left[a^8 + 6a^6 - 6a^4 + a^4 - 2a^2 + 1\right] \\ &= 2\left[a^8 + 6a^6 - 5a^4 - 2a^2 + 1\right] \\ &= 2a^8 + 12a^6 - 10a^4 - 4a^2 + 2\end{aligned}$$

7. Find an approximation of (0.99)⁵ using the first three terms of its expansion.

Solution:

0.99 can be written as

$$0.99 = 1 - 0.01$$

Now by applying binomial theorem we get

$$(0.99)^5 = (1 - 0.01)^5$$

=
$${}^{5}C_{0}(1)^{5} - {}^{5}C_{1}(1)^{4}(0.01) + {}^{5}C_{2}(1)^{3}(0.01)^{2}$$

$$= 1 - 5 (0.01) + 10 (0.01)^2$$

$$= 1 - 0.05 + 0.001$$

$$= 0.951$$

8. Find n, if the ratio of the fifth term from the beginning to the fifth

term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}$: 1 Solution:

In the expansion $(a + b)^n$, if n is even then the middle term is $(n/2 + 1)^{th}$ term

$${}^{n}C_{4}(\sqrt[4]{2})^{n-1}\left(\frac{1}{\sqrt[4]{3}}\right)^{4} = {}^{n}C_{4}\frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3} = {}^{n}C_{4}\frac{(\sqrt[4]{2})^{n}}{2} \cdot \frac{1}{3} = \frac{n!}{6\cdot 4!(n-4)!}(\sqrt[4]{2})^{n}$$
$${}^{n}C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4} = {}^{n}C_{n-1} \cdot 2 \cdot \frac{(\sqrt[4]{3})^{4}}{(\sqrt[4]{3})^{n}} = {}^{n}C_{n-1} \cdot 2 \cdot \frac{3}{(\sqrt[4]{3})^{n}} = \frac{6n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}$$

$$\frac{n!}{6 \cdot 4!(n-4)!} (\sqrt[4]{2})^n : \frac{6n!}{(n-4)!!4!} \cdot \frac{1}{(\sqrt[4]{3})^n} = \sqrt{6} : 1$$

$$\Rightarrow \frac{(\sqrt[4]{2})^n}{6} : \frac{6}{(\sqrt[4]{3})^n} = \sqrt{6} : 1$$

$$\Rightarrow \frac{(\sqrt[4]{2})^n}{6} \times \frac{(\sqrt[4]{3})^n}{6} = \sqrt{6}$$

$$\Rightarrow (\sqrt[4]{6})^n = 36\sqrt{6}$$

$$\Rightarrow 6^{\frac{n}{4}} = 6^{\frac{5}{2}}$$

$$\Rightarrow \frac{n}{4} = \frac{5}{2}$$

$$\Rightarrow n = 4 \times \frac{5}{2} = 10$$

Thus the value of n = 10

9. Expand using Binomial Theorem

$$\left(1 + \frac{x}{2} - \frac{2}{x}\right)^4, x \neq 0$$

Solution:

Using binomial theorem the given expression can be expanded as

$$\begin{split} & \left[\left(1 + \frac{x}{2} \right) - \frac{2}{x} \right]^4 \\ &= {}^4C_0 \left(1 + \frac{x}{2} \right)^4 - {}^4C_1 \left(1 + \frac{x}{2} \right)^3 \left(\frac{2}{x} \right) + {}^4C_2 \left(1 + \frac{x}{2} \right)^2 \left(\frac{2}{x} \right)^2 - {}^4C_3 \left(1 + \frac{x}{2} \right) \left(\frac{2}{x} \right)^3 + {}^4C_4 \left(\frac{2}{x} \right)^4 \\ &= \left(1 + \frac{x}{2} \right)^4 - 4 \left(1 + \frac{x}{2} \right)^3 \left(\frac{2}{x} \right) + 6 \left(1 + x + \frac{x^2}{4} \right) \left(\frac{4}{x^2} \right) - 4 \left(1 + \frac{x}{2} \right) \left(\frac{8}{x^3} \right) + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{24}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} - \frac{16}{x^2} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \right) \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \right) \\ &= \left(1 + \frac{x}{x} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{x} \right)^3 + \frac{24}{x} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \right) \\ &= \left(1 + \frac{x}{x} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{x} \right) + \frac{24}{x} + \frac{24}{x$$

Again by using binomial theorem to expand the above terms we get

$$\begin{split} \left(1 + \frac{x}{2}\right)^4 &= {}^4C_0 \left(1\right)^4 + {}^4C_1 \left(1\right)^3 \left(\frac{x}{2}\right) + {}^4C_2 \left(1\right)^2 \left(\frac{x}{2}\right)^2 + {}^4C_3 \left(1\right)^1 \left(\frac{x}{2}\right)^3 + {}^4C_4 \left(\frac{x}{2}\right)^4 \\ &= 1 + 4 \times \frac{x}{2} + 6 \times \frac{x^2}{4} + 4 \times \frac{x^3}{8} + \frac{x^4}{16} \\ &= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} \qquad ...(2) \\ \left(1 + \frac{x}{2}\right)^3 &= {}^3C_0 \left(1\right)^3 + {}^3C_1 \left(1\right)^2 \left(\frac{x}{2}\right) + {}^3C_2 \left(1\right) \left(\frac{x}{2}\right)^2 + {}^3C_3 \left(\frac{x}{2}\right)^3 \\ &= 1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8} \qquad ...(3) \end{split}$$

From equation 1, 2 and 3 we get

$$\begin{split} & \left[\left(1 + \frac{x}{2} \right) - \frac{2}{x} \right]^4 \\ &= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} \left(1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8} \right) + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= 1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} - 12 - 6x - x^2 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} - 5 \end{split}$$

10. Find the expansion of $(3x^2 - 2ax + 3a^2)^3$ using binomial theorem. Solution:

We know that
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Putting $a = 3x^2 & b = -a (2x-3a)$, we get $[3x^2 + (-a (2x-3a))]^3 = (3x^2)^3 + 3(3x^2)^2(-a (2x-3a)) + 3(3x^2) (-a (2x-3a))^2 + (-a (2x-3a))^3 = 27x^6 - 27ax^4 (2x-3a) + 9a^2x^2 (2x-3a)^2 - a^3(2x-3a)^3 = 27x^6 - 54ax^5 + 81a^2x^4 + 9a^2x^2 (4x^2-12ax+9a^2) - a^3[(2x)^3 - (3a)^3 - 3(2x)^2(3a) + 3(2x)(3a)^2] = 27x^6 - 54ax^5 + 81a^2x^4 + 36a^2x^4 - 108a^3x^3 + 81a^4x^2 - 8a^3x^3 + 27a^6 + 36a^4x^2 - 54a^5x = 27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6$
Thus, $(3x^2 - 2ax + 3a^2)^3 = 27x^6 - 54ax^5 + 117a^2x^4 - 116a^3x^3 + 117a^4x^2 - 54a^5x + 27a^6$