Differential Equations

Samuel Lindskog

May 28, 2025

First-Order Differential Equations

Helpful terms and theorems

Definition 1.1 (Order). The order of a differential equation is the order of the highest dericatice appearing in the equation.

Definition 1.2 (Normal form). The normal form of a first-order equation is a function f which relates a function x = x(t) with its first derivative.

$$x' = f(t, x)$$
.

A function x = x(t) is a solution of this equation on the time interval I: a < t < b if it is differentiabe on I and, when substituted into the equation, it satisfies the equation identically for every $t \in I$, i.e.

$$x'(t) = f(t, x(t))$$
, for every $t \in I$.

In other words to check if a function is a solution, substitute the function in question into the differential equation and check that it reduces to an identity.

Definition 1.3 (Initial value problem). Subjecting a differential equation involving x(t) and its derivatives to a condition $x(t_0) = x_0$ is called an initial value problem. The interval of existence of an IVP is the largest time interval where the solution is valid.¹

Definition 1.4 (General solution). The infinite set of solutions of a first-order equation is called the general solution of the equation.

Definition 1.5 (Nullclines and isoclines). The sets of points (t, x) where the slope field is zero are called nullclines², i.e. where

$$x' = f(t, x) = 0.$$

The set of points t, x where f(t,x) = k for some constant k are called isoclines. When we say set of points, we mean the non-empty pre image $\{k\}$.

Theorem 1.1 (Fundamental theorem of calculus).

$$\frac{d}{dt} \int_{a}^{t} g(s)ds = g(t)$$

¹ A solution to an IVP is called a particular solution.

² These constant solutions f(t, x) = k for some constant k are called equilibrium solutions.

Theorem 1.2 (Existence and uniqueness). Assume the function f(t,x)and its partial derivative $f_x(t, x)$ are continuous in a rectangle a < t <b, c < x < d. Then, for any value t_0 in a < t < b and x_0 in c < x < d, the initial value problem

$$x' = f(t, x)$$
$$x(t_0) = x_0$$

has a unique solution valid on some open interval $a < \alpha < t < \beta < b$ containing t_0 .

Definition 1.6 (Integral curve). After simplifying a differential equation so that it is in terms of x and t, we obtain a one-parameter family of curves $\phi(t, x) = C$ in the t, x plane, consisting of the pre-images of $\phi(t, x)$ under {C}. These so-called integral curves define implicit solutions of the equation. Explicit solutions are the curves for particular values of C.

Seperable equations

Definition 1.7 (Seperable equation). A differential equation of the form

$$\frac{dx}{dt} = f(x)g(t)$$

is called a seperable equation. We can obtain *x* through the following procedure:

$$\frac{dx}{dt} = f(x)g(t)$$

$$\int \frac{1}{f(x)} \frac{dx}{dt} dt = \int g(t)dt$$

$$\int \frac{1}{f(x)} dx = \int g(t)dt + C$$

The final form of the seperable equation is made possible by the chain rule, and a helpful step forward towards finding the solution is

$$e^{\int g(t)dt} = f(x) + c.$$

Equations where x' is related to a non-identity function of x can not utilize the quick natural log method in equation 1.

Definition 1.8 (Homogeneous equation). A first-order linear differential equation is called homogeneous³ if it is of the form

$$x' + p(t)x = 0.$$

The solution is

$$x = Ce^{-\int p(t)dt}. (1)$$

³ A homogenous equation is seperable.

Definition 1.9 (Autonomous equation). An autonomous differential equation is a differential equation with no explicit time dependence, i.e.

$$\frac{dx}{dt} = f(x).$$

As described above, constant solutions to an autonomous equation are called steady-state or equilibrium solutions.

Definition 1.10 (Stable and unstable equilibrium). For stable equilibrium solutions, solutions with values of *x* close to the phase-line converge to the phase line. For unstable equilibrium solutions are not stable.⁴ The roots of f(x) = 0 are the equilibrium solutions.

Theorem 1.3. Let x^* be an isolated critical point, or equilibrium, for the autonomous equation

$$\frac{dx}{dt} = f(x).$$

If $f'(x^*) < 0$, then x^* is stable. If $f'(x^*) > 0$, then x^* is unstable. If $f'(x^*) = 0$ then higher derivatives must be analysed to find information about stability.

Remark. As a recap, both homogenous and autonomous equations are seperable, but seperable equations are not necessarily either of these. Their forms are

1.
$$x' + f(x)g(t) = 0$$
 (seperable)

2.
$$x' + p(t)x = 0$$
 (homogenous)

3.
$$x' + f(x) = 0$$
 (autonomous)

It should also be noted that seperable equations are not necessarily linear.

Remark. A technique for solving seperable IVP's is to unilize definite integrals during the integration step. This involves taking the definite integral of f(x) starting at x_0 , and the definite integral of g(t) starting at t_0 , i.e.

$$\int_{x_0}^{x} \frac{1}{f(y)} dy = \int_{t_0}^{t} g(s) ds.$$

This works by adjusting the constant of integration of both sides so that they are equal under the initial condition $x(t_0) = x_0$.

Non-seperable equations

Definition 1.11 (Linear equation). A differential equation of the form

$$x' + p(t)x = q(t) \tag{2}$$

is called a first-order linear equation⁵. If a first-order equation can not be put into this form, the equation is called nonlinear.

⁴ If solutions near the phase line converge or diverge depending on how they approach, the solution is semistable. If all perturbations converge to the phase line, the solution is globally stable.

⁵ This is also called the normal form of a first-order linear equation.

Definition 1.12 (Forcing term). The term q(t) in equation 2 is called the forcing term, or source term.

Definition 1.13 (Integrating factor). A function $\mu(t)$ exists such that

$$\mu(t)(x' + p(t)x) = (\mu(t)x)'.$$

The function $\mu(t)$ is called an integrating factor and is given by

$$\mu(t) = e^{\int p(t)dt}$$

This can be used to solve linear equations by multiplying both sides by the integrating factor.

Theorem 1.4 (Structure). Consider the normal form of a first order linear equation

$$x' + p(t)x = q(t).$$

The general solution x(t) is the sum of the general solution to the homogeneous equation plus any solution to the nonhomogeneous equation. i.e.

$$x(t) = x_h(t) + x_p(t),$$

where

$$x_h(t) = Ce^{-P(t)}, \quad x_p(t) = e^{-P(t)} \int q(t)e^{P(t)}dt.$$

Therefore, the solution consists of two parts, the transient (homogenous) solution $x_h(t)$ and the steady-state (particular) solution $x_p(t)$.

Definition 1.14 (Bifurcation). Bifurcation is said to occur when there is a significant change in the character of the equilibrium solutions, as the bifurcation parameter h changes. Such a parameter could be the harvesting rate of a fish population in an environment with a set carrying capacity. Bifurcation diagrams plot the equilibium solutions x^* on the *y*-axis vs the bifurcation parameter *h* on the *x*-axis.

Second-order linear equations

Definition 1.15 (Linear equation). The normal form of a second-order linear differential equation is

$$ax'' + bx' + cx = f(t).$$

In some equations b is the damping coefficient, and c the spring constant.

Homogeneous equations

Definition 1.16 (Homogeneous linear equation with constant coefficients).

$$ax'' + bx' + cx = 0. (3)$$

Definition 1.17 (Hooke's law). Let *x* be displacement from equilibrium and k be the spring constant. Then

$$F_s = -kx$$

Definition 1.18 (Spring-mass equation). The spring-mass equation relates the acceleration of a mass on a spring with the force applied by the spring given by Hooke's law:

$$mx'' = -kx$$
.

For initial conditions $x(0) = x_0$ and x'(0) = 0 we find x(t) is

$$x(t) = x_0 \cos \sqrt{k/m}t$$
.

Definition 1.19 (Damped Oscillator). If there is friction as the mass moves, the frictional force is a function of the velocity x' and the damping coefficient γ

$$F_d = -\gamma x'$$
.

Therefore the equation of motion is

$$mx'' = -\gamma x' - kx$$
.

Remark. The damped spring-mass equation has the form⁶

$$ax'' + bx' + cx = 0.$$

For such an equation, there are always exactly two independent solutions $x_1(t)$ and $x_2(t)$, and so the general solution $\phi(t)$ is of the form

$$\phi(t) = c_1 x_1(t) + c_2 x_2(t).$$

Definition 1.20 (Characteristic equation). To solve equation 3, first note that $x(t) = e^{\lambda t}$ for some constant λ . Substituting $e^{\lambda t}$, we can solve for λ with the characteristic equation⁷

$$a\lambda^2 + b\lambda + c = 0.$$

The values of λ can be real or complex. If $b^2 - 4ac > 0$, then there are two real unequal eigenvalues, and hence there are two indpendent solutions, so the general solution is

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}.$$

⁶ An equation of this form is called a homogenous linear equation with constant coefficients.

⁷ The roots of this equation are called eigenvalues.

In this case, if $|\lambda_1| = |\lambda_2|$, then the general solution is

$$x(t) = c_1 e^{\alpha t} + c_2 e^{-\alpha t}$$

Which is exponential. If $|\lambda_1| = a$, this equation can be written in terms of hyperbolic functions cosh and sinh as

$$x(t) = c_1 \cosh at + c_2 \sinh at$$

If $b^2 - 4ac = 0$ then the general solution is

$$x(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$$
.

If $b^2 - 4ac < 0$ then the eigenvalues are complex.

Definition 1.21 (Euler's formula).

$$e^{i\beta t} = \cos\beta t + i\sin\beta t.$$

Theorem 1.5. If x(t) = g(t) + ih(t) is a complex-valued solution of differential equation ??, then its real and imaginary parts $x_1(t) = g(t)$ and $x_2(t) = h(t)$ are real-valued solutions.

Remark. As a consequence of theorem 1.5, if $\lambda_1 = \alpha + i\beta$, then the general solution to equation ?? is

$$x(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t.$$

If α < 0, these solutions represent decaying oscillations, and if α > 0 then these solutions represent growing oscillations. If $\alpha = 0$ then the solutions are purely oscillatory with frequency β and period $2\pi/\beta$.

Definition 1.22 (Phase-amplitude form). The general solution

$$x(t) = c_1 \cos \beta t + c_2 \sin \beta t$$

can be written as

$$A\cos(\beta t - \rho)$$
.

The constants A and ρ are related to c_1 and c_2 by

$$A = \sqrt{c_1^2 + c_2^2}, \qquad \rho = \arctan \frac{c_2}{c_1}.$$

A is the amplitude and ρ is the phase. If $c_1 < 0$, then we add π to ρ .

Definition 1.23 (Damping). Suppose the motion of a mass-spring system is governed by the equation

$$mx'' + \gamma x' + kx = 0, \qquad m, \gamma, k > 0.$$

If $\gamma^2 - 4mk > 0$, the eigenvalues are real, distinct, negative, and the sytem is overdamped. If $\gamma^2 = 4mk$, the eigenvalues are real, equal, and negative, and the system is critically damped. If $\gamma^2 - 4mk < 0$, the eigenvalues are complex, have negative real part, and the system is underdamped.⁸

Definition 1.24 (Envelope). An envelope of a planar family of curves is a curve that is tangent to each member of the family at some point

⁸ If the system is not underdamped, we say it decays without oscillations. If it is underdamped, we say it oscillates with

Nonhomogeneous equations

Definition 1.25 (Nonhomogeneous equation). A nonhomogeneous equation is of the form

$$ax'' + bx' + cx = f(t).$$

The term f(t) is called the forcing term.

Theorem 1.6 (Structure theorem). The general solution of the nonhomogeneous equation 1.25 is given by the sum of the general solution to the homogeneous equation 3 and any specific solution to the nonhomogeneous equation. In other words

$$x(t) = c_1 x_1(t) + c_2 x_1(t) + x_p(t).$$

Definition 1.26 (Undetermined coefficients). Guess the form of $x_p(t)$ from the form of the source term f(t). Some guesses include

Form of source function $f(t)$	Trial form of particular solution $x_p(t)$
α	A
$lpha^{eta t}$	$Ae^{\beta t}$
polynomial of degree n	$A_n t^n + A_{n-1} t^{n-1} + \ldots + A_1 t + A_0$ $A\sin \omega t + B\cos \omega t$ $e^{rt} (A\sin \omega t + B\cos \omega t)$
$\alpha \sin \omega t$; $\alpha \cos \omega t$	$A\sin\omega t + B\cos\omega t$
$\alpha e^{rt} \sin \omega t$; $\alpha e^{rt} \cos \omega t$	$e^{rt}(A\sin\omega t + B\cos\omega t)$

If a term in the initial guess for a particular solution x_p is not linearly independent from the homogeneous solution, then modify the guess by multiplying by the smallest power of *t* that eliminates linear dependence.

Definition 1.27 (Beats). A system exhibits the phenomenon of beats when a high frequency is modulated by a low frequency. This occurs when the frequency of the homogeneous equation is different then that of the forcing function. In undamped systems

$$x'' + \omega_0 t = A\cos(\omega t)$$

Beats occur when $\omega_0^2 \neq \omega$. Otherwise resonance occurs.

Laplace transforms

Definition 1.28 (Laplace transform). Let x = x(t) be a function defined on the interval $0 \le t \le \infty$. The Laplace transform of x(t) is the function X(s) defined by

$$X(s) = \int_0^\infty x(t)e^{-st}dt,$$

Provided the improper integral exists, meaning

$$\lim_{b\to\infty} \int_0^b x(t)e^{-st}dt \text{ exists.}$$

Often, the Laplace transform is repersented in function notation,

$$\mathcal{L}[x(t)](s) = X(s) \text{ or } \mathcal{L}[x] = X(s).$$

In this context, t, x are called time domain variables, and s, X are called transform domain variables.

Theorem 1.7. The Laplace transform is a linear operation.

Remark. There are two conditions that guarantee existence of a Laplace transform for a function. first, we require that f(t) not grow too fast, i.e. if M > 0 and r are constants then

$$|f(t)| \leq Me^{rt}$$

for all $t > t_0$. Second, we require that f(t) be piecewise continuous on $0 \le t < \infty$. This means that on any bounded subinterval of $0 \le t < \infty$ k we assume that f(t) has at most a finite number of simple discontinuities, and any point of discontinuity f(t) has finite left and right limits.

Definition 1.29 (Heaviside function). We define the Heaviside function H(t) by

$$H(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

Its translation by a units to the right is H(t-a), or

$$H(t-a) = \begin{cases} 0, & t < a \\ 1, & t \ge a \end{cases}$$

A useful identity is

$$H(t-a) = \mathcal{L}^{-1}(\frac{1}{s}e^{-as}).$$

Definition 1.30 (Shift property). The Laplace transform of a function times an exponential, $f(t)e^{at}$ is given by

$$\mathcal{L}[f(t)e^{at}] = F(s-a).$$

Definition 1.31 (Switching property). The Laplace transform of a function f(t) that switches on at t = a is given by

$$\mathcal{L}^{-1}[e^{-as}F(s)] = H(t-a)f(t-a).$$

Linear systems

Remark. Consider the second order autonomous⁹, homogenous equa-

9 not time dependent

$$mx'' + \gamma x' + kx = 0. (4)$$

This can be re-written in terms of x and y = x':

$$my' = -kx - \gamma y \Rightarrow \begin{cases} x' = y \\ y' = -\frac{k}{m}x - \frac{\gamma}{m}y \end{cases}$$

In fact, we can always reduce a second order linear equation of form 4 be defining y = x' to the form

$$x' = ax + by$$
$$y' = cx + dy.$$

Systems of linear equations of this form¹⁰ can be can be expressed with matrix multiplication as

$$\mathbf{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}, \quad \mathbf{x}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$$
$$\mathbf{x}' = A\mathbf{x}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Due to the nature of this system of differential equation x' and y'must be comprised of a combination of their antiderivatives x and *y*. The only function which satisfies this requirement is $\alpha \exp(\lambda t)$. Therefore $\mathbf{x}(t) = (\alpha \exp(\lambda t), \beta \exp(\lambda t))^T$. It follows that \mathbf{x}' is linearly dependent with **x**. Thus solutions for **x** are of the form $v \exp(\lambda t)$, where v is an eigenvector of A and λ its corresponding eigenvalue. *Remark.* To find the eigenvalues for a 2×2 matrix, find the roots of the following equation:

$$\lambda^2 - (a+d)\lambda + (ad - cb) = 0.$$

In other words,

$$\lambda^2 - \operatorname{tr}(A) + \det(A) = 0.$$

Eigenvectors and values determine the nature of possible solution.

Nonlinear systems

Remark. The phase diagram of a nonlinear system of equations x' = f(x, y) and y' = g(x, y) can be approximated by finding its equilibrium points, and then approximating the behavior near these equilibrium points using taylor series of each partial derivative.

$$\begin{pmatrix} (x - x_0)' \\ (y - y_0)' \end{pmatrix} = \begin{pmatrix} f'(x_0) & f'(y_0) \\ g'(x_0) & g'(y_0) \end{pmatrix} \begin{pmatrix} (x - x_0) \\ (y - y_0) \end{pmatrix}$$

10 y does not need to be the derivative of

Definition 1.32 (Conservative force). Obviously, energy is conserved in any closed physical system. For our purposes, we shall consider the system in question to be a mass m with position x, velocity x'. If a force F = F(x) is applied to the mass, the potential energy V of the system can be expressed as a function of the amount of force applied over a distance, V(x). Because potential energy is usually a function of the distance over which a force is applied, if F = F(x, x'), this is typically interpreted¹¹ as a second force on the object which increases/decreases the kinetic energy of the mass. Therefore the force is not conservative. Mathematically, such a second force could be the friction on the mass as it moves, or negative friction. The relationship between newtons second law, and the total energy of a system with a conservative force is derived below:

$$F(x) = mx''$$

$$x' = y, \quad y' = \frac{1}{m}F(x)$$

$$F(x) = my'$$

$$F(x) \cdot y = my' \cdot y$$

$$F(x)dx = mydy$$

$$\int F(x)dx + C = \int mydy = \frac{m}{2}y^2$$

$$\frac{m}{2}y^2 + V(x) = E$$

¹¹ Alternatively, F(x, x') could just be a more complicated forcing function.