Table 1. The Berea sandstone core properties

Table 1. Th	Table 1. The Berea sandstone core properties									
Core #	D, cm	L, cm	K_g , md	φ, %	Swi,%	μ ₀ , cp	Wetness			
Soltrol 220, no aging VSWW										
Ev8h8b	3.764	7.91	73.9	0.1615	22.6	3.8	VSWW			
Ev8h9a	3.739	8.057	82.9	0.1601	20.9	3.8				
Ev8h9b	3.742	7.922	76.7	0.1588	24.6	3.8	VSWW			
Ev8h10a	3.761	8.047	76.7	0.1636	22.7	3.8	VSWW			
Ev8h10b	3.764	7.83	70.1	0.1627	22.5	3.8	VSWW			
Ev8h17a	3.763	8.245	77.4	0.1734	22.59	3.8	VSWW			
Ev8h18a	3.753	7.894	95.8	0.1746	23.02	3.8	VSWW			
Minnelusa 2002 crude oil										
Ev8hla	7.864	3.786	101.5	0.1760	23.9	68.0	MXW, 10d aging			
Ev8h2b	7.538	3.765	71.7	0.1652	23.7	68.0	MXW, 10d aging			
Ev8h3a	3.764	7.963	70.1	0.1678	24.3	1.5	MXW-F (Dakota), 10d aging			
Ev8h4a	3.764	8.06	65.1	0.1636	24.3	68.0	MXW, 10d aging			
Ev8h4b	7.680	3.767	66.6	0.1628	24.6	680	MXW, 1d aging			
Ev8h5a	8.242	3.764	68.2	0.1649	24.6	68.0	MXW, no aging			
Ev8h5b	3.766	7.754	74.6	0.1664	24.4	3.8	MXW-F (S220), no aging			
Ev8h6b	7.736	3.764	67.6	0.1605	22.0	68.0	MXW, 10d aging			
Ev8h7b	3.765	7.67	72.4	0.1603	22.5	1.5	MXW-F (Dakota), no aging			
Ev8h11b	3.758	7.791	120	0.1743	22.8	1.5	MXW (Dakota), no aging			
Ev8h13a	3.758	8.105	126.2	0.1754	23.2	68.0	MXW, no aging			
Ev8h16a	8.280	3.759	114.0	0.1778	22.1	68.0	MXW, 10d aging			
Ev8h16b	3.76	7.921	117.2	0.1774	21.3	68.0	MXW, 10d aging			
Ev8h29a	3.75	8.262	133.1	0.1749	18.8	68.0	MXW, 4d aging, 45°C			
Ev7v1b	7.644	3.788	58.2	0.1748	23.3	68.0	MXW, 10d aging			
Evivid	3.777	7.581	46.2	0.1703	22.0	68.0	MXW, 10d aging			
Ev5h1c	3.787	7.634	113	0.182	23.9	68.0	MXW, 10d aging			
	5 crude oil			L) ———————					
Ev8h13b	3.758	7.835	119.3	0.1731	21.3	19.2	MXW, 10d aging			
Ev8h14a	3.759	8.076	109.6	0.1717	22.6	19.2	MXW, no aging			
Ev8h14b	3.76	7.839	106.2	0.1708	22.0	1.5	MXW-F (Dakota), no aging			
Ev8h15a	3.757	8.228	111.1	0.1778	22.2	1.5	MXW-F (Dakota), no aging			
Ev8h15b	3.759	7.974	114.4	0.1776	22.7	19.2	MXW, no aging			
Ev8h21b	3.758		87.6	0.174	22.6	33.9	MXW-F (frontier), no aging			
Big Sand Draw crude oil										
Ev8h19a	3.756	7.866	70.9	0.1698	23.1	3.8	MXW-F (S220), no aging			
Ev8h21a	3.758	7.832	84.8	0.1724	23.3	7.0	MXW, no aging			
	3.750	7.758	119.7	0.1741	23.6	7.0	MXW, no aging			
Ev8h27b	3.750	8.056	121.2	0.1794	22.3	7.0	MXW, 10d aging			
Ev8h28b		7.597	86.8	0.1705	<24.7	7.0	MXW, 2d aging			
Ev8h30a	3.748		86	0.1703	<26.3	7.0	MXW. 2d aging			
Ev8h30b	3.752	7.153	1 00	; 0.1717	, -20.3					

Table 2 The Limestone core properties

Table 2. The Limestone core properties									
Core#	D, cm	L, cm	K_g , md	φ, %	Swi,%	μ₀, cp	Wetness		
Oil recove	ery (Cotto	nwood o	il)						
1TC15a	3.724	7.477	19.1	0.2696	24.3	24.1	MXW, 10d aging		
	3.729	7.320	14.7	0.2767	18.59	24.1	MXW, 10d aging		
T2Tc11a		7.797	7.1	0.2300	22.12	24.1	MXW, 10d aging		
T2Tc21a	3.698	1.101	···	0.200					
Gas flood		(50	27	18.0	100		VSWW		
1TC8b	3.734	6.59	3.7			ļ	VSWW		
1TC20b	3.749	7.452	6.1	21.6	100	ļ	VSWW		
1TC24b	3.753	7.593	3.6	18.0	100				
3(TC18b	3.740	6.490	1.4	20.2	21.4		VSWW		
2TC4b	3.788	6.481	3.4	22.8	21.7		Tensleep/S130, 2d aging		
		7.593	3.6	18.0	27.5		BS oil (the 2 nd and 3 rd cycle), 2d aging		
1TC24b	3.753	1.373	1 3.0	10.0		J	<u></u>		

Table 3. Selected properties of crude and refined oils

Table 3. Selected properties of crude and refined ons							
Oils		ρ, g/mL @20°C	η, cP @~22°C	IFT, mN/M @20°C	Asphalt.%		
	Minnelusa 2002	0.9076	68	23.4	9.5		
Asphaltic crudes	Black Mt.	0.9219	134		8.1		
	Tensleep 95	0.8692	19.2	23.3	3.2		
,	Cottonwood	0.8874	24.1	28.9	2.3		
	Big Sand Draw	0.8496	7.0	21.5	1.6		
Mineral oils	S220	0.7869	3.8	49.5	0		
	S130 .	0.7605	1.6	~50	0		
	Pentane			~50	0		
Paraffinic crudes	Dakota	0.7741	1.5	34.2	0		
	Frontier	0.8338	21.8	33.8	0		

Table 4. Synthetic brine composition

	Table 4. S	ynthetic	Jime Co	monicolini	1.1				_
[Tuble II. D	NaCl	KCI	CaCl	MgCl ₂	NaN ₃	.,	TDS	
١	Brine	(g/L)	(g/L)	(g/L)	(g/L)	(g/L)	pН	(mg/L)	
	Consuster	28	0.935	2.379	5.365	0.1	6.6	36779	
	Sea water	1 20	1 0.755		1				_

Table 5 Interfacial tensions (Aqueous phase = SSW)

Table 5 Interfacial tensions (Aqueou Oleic phase	IFT, mN/m	Temp.,°C
S220	49.5	20.0
S220	1.7	20.0
S220+0.025%polyamine	24.3	20.0
S220+0.2%RAP	0.03	20.0
S220+0.05%RAP	0.55	20.0
S220+0.025%PA+0.05%RAP	1.0	20.0
S220+0.2%TDA-6	1.34	20.0
S220+O.1%DA-4	11.7	20.0
S220+O.1%oleic acid	29.8	20.0
Minnelusa 2002 crude oil	23.4	20.0
Dakota crude oil	34.2	20.0
Tensleep 1995 crude oil	23.3	20.0
Big SandDraw crude oil	21.5	20.0
Frontier crude oil	33.8	20.0
M'02+0.025%PA	17.7	20.0
M'02+O.05%RAP	8.6	20.0
Dakota oil+0.025%PA	7.9	20.0
Tensleep 95 +0.05%PA	10.5	20.0
BS oil +0.05%PA	10	20.0
BS oil + 0.1%PA	7.2	20.0
BS oil + 0.1%PA	4.3	75.0
Cottonwood oil +0.025% PA	12.1	20.0
	28.9	20.0

Table 6 Asphaltene precipitation

Table o Praphatel	Minnelusa	Black Mountain	Tensleep	Big Sand
	crude	crude	crude	Draw
S220 or S130	Yes	Yes	Yes	Yes
Dakota oil	Yes	Yes	Yes	Yes
Frontier oil		Yes (under microscope)	No	No

Oil well Water block Sealing bed Sealing bed Oil zone Fig.1a Sealing bed Injection of crude oil slug Crude oil slug Sealing bed Sealing bed Oil zone Fig.1b Sealing bed Injection of mineral oil slug Mineral oil slug Crude oil slug Sealing bed Sealing bed Oil zone Sealing bed

Fig. 1 Method 1 of treatment for oil reservoir case

Fig.1c

Fig. 2 The sketch of water saturation change near well bore vs. cycle numbers of treatment

Fig. 3 Method 2 of treatment for oil reservoir case

Fig. 4 Method 1 of treatment for gas or gas condensate reservoir case

Fig. 5 Method 2 of treatment for gas or gas cond ensate reservoir case

Fig. 5e

Fig. 6 Method 3 of treatment for gas or gas condensate reservoir case Gas well-Water block zone Sealing bed Gas or gas Fig.6a condensate formation Injection of alcohol slug Alcohol slug Sealing, bed Sealing.bed Gas or gas Fig.6b condensate formation Sealing bed Injection of mineral oil slug Mineral Alcohol + oil slug Crude oil slug water slug Sealing bed Séaling bed Gas or gas condensate Fig. 6c formation Sealing be Pump out the liquid used for the treatment Sealing bed Gas or gas condensate Fig. 6d formation Sealing bed

Residual water

Retained neutral/oil wetting film

Fig. 7 Water coning case

Case with hydraulic fracture wells—plane view sketch Fig. 8

Wettability alteration was induced by displacement of crude oil with mineral oil or para ffinic oil directly.

Precipitated asphaltenes to fresh crude oil resulted in increased water wetness.

Figure . The effect of re-aging on wettability alteration

1000

100 to, Dimensionless imbibition time

12. Cyclic imbibition of BS crude with re-aging

re-aging on wettability alteration

100000

The effect of alcohol flush, oil-soluble surfactant and re-aging on wettability alteration for Berea sandstones

100

The effect of wettability alteration on gas return permeability