অনুশীলনী - ১৪.২

ত্রিভুজের সদৃশতার শর্ত: উপরের আলোচনা থেকে আমরা ত্রিভুজের সদৃশতার কতিপয় শর্ত নির্ধারণ করতে পারি। শর্তগুলো নিমুরূপ:

শর্ত-১ (বাহু-বাহু-বাহু)

যদি একটি ত্রিভুজের তিন বাহু অপর একটি ত্রিভুজের তিন বাহুর সমানুপাতিক হয়, তবে ত্রিভুজ দুইটি সদৃশ।

শৰ্ত-২ (বাহু-কোণ-বাহু)

যদি দুইটি ত্রিভুজের একটির দুই বাহু যথাক্রমে অপরটির দুই বাহুর সমানুপাতিক হয় এবং বাহু দুইটির অন্তর্ভুক্ত কোণ দুইটি পরস্পর সমান হয়, তবে ত্রিভুজ দুইটি সদৃশ।

শৰ্ত-৩ (কোণ-কোণ)

যদি দুইটি ত্রিভুজের একটির দুইটি কোণ যথাক্রমে অপরটির দুইটি কোণের সমান হয়, তবে ত্রিভুজ দুইটি সদৃশ।

শৰ্ত-৪ (অতিভুজ-বাহু)

যদি দুইটি সমকোণী ত্রিভুজের একটির অতিভুজ ও একটি বাহু যথাক্রমে অপরটির অতিভুজ ও অনুরূপ বাহুর সমানুপাতিক হয়, তবে ত্রিভুজ দুইটি সদৃশ।

সদৃশকোণী ত্রিভুজের সূত্র:

 ΔABC ও ΔDEF ত্রিভুজত্রয়দ্বয়ের ক্ষেত্রে লক্ষ করি।

В ——— С Е ———— Г		
শর্ত	ফলাফল	মন্তব্য
$\angle A = \angle D, \angle B = \angle E $ $ \angle C = $	$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$ অর্থাৎ অনুরূপ বাহুগুলো	দুইটি ত্রিভুজ সদৃশকোণী হলে তাদের
$ ot\!$	DE^-DF^-EF অথাৎ অনুরূপ বাছওলো	অনুরূপ বাহুগুলো সমানুপাতিক হবে।
হলে।	সমানুপাতিক হবে।	
$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$ অর্থাৎ অনুরূপ	$\angle A = \angle D$, $\angle B = \angle E$ $\mathcal{L} \subset \mathcal{L} \subset \mathcal{L}$	দুইটি ত্রিভুজের বাহুগুলো সমানুপাতিক হলে
$DE = \frac{1}{DF} = \frac{1}{EF}$ অর্থাৎ অনুরূপ	অর্থাৎ অনুরূপ কোণগুলো সমান হবে।	অনুরূপ বাহুর বিপরীত কোণগুলো পরস্পর
বাহুগুলো সমানুপাতিক হলে।		সমান হয়।
$\angle A = \angle D$ এবং $\frac{AB}{DE} = \frac{AC}{DF}$ অর্থাৎ	ΔABC ও ΔDEF সদৃশ অর্থাৎ ত্রিভুজদ্বয়	দুইটি ত্রিভুজের একটির এক কোণ অপরটির
	সদৃশ হবে।	এক কোণের সমান এবং সমান কোণ সংলগ্ন
একটি কোণ ও কোণ সংলগ্ন বাহুদ্বয়	,	বাহুগুলো সমানুপাতিক হলে ত্রিভুজ দুইটি
সমানুপাতিক হলে।		সদৃশ হবে।
ΔABC ও ΔDEF সদৃশ হলে অর্থাৎ	$\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$ অর্থাৎ	দুইটি সদৃশ ত্রিভুজক্ষেত্রে ক্ষেত্রফলদ্বয়ের
দুইটি সদৃশ ত্রিভুজক্ষেত্রের 🌣	$\Delta DEF = DE^2 = DF^2 = EF^2$ will	অনুপাত এদের যেকোনো দুই অনুরূপ বাহুর
	ত্রিভূজদ্বয়ের ক্ষেত্রফলের অনুপাত ও অনুরূপ	উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলদ্বয়ের
	বাহুদ্বয়ের ওপর বর্গক্ষেত্রের ক্ষেত্রফলের অনুপাত	অনুপাতের সমান।
	সমান।	

অনুশীলনীর সমাধান

 ΔABC -এ BC এর সমান্তরাল DE রেখা AB ও AC কে যথাক্রমে D ও E বিন্দুতে ছেদ করলে-

- i. ΔABC ও ΔADE পরস্পর সদৃশ।
- ii. $\frac{AD}{RD} = \frac{CE}{AE}$
- iii. $\frac{\Delta ABC}{\Delta ADE} = \frac{BC^2}{DE^2}$

নিচের কোনটি সঠিক?

(ক) i ও ii (খ) i ও iii (গ) ii ও iii (ঘ) i, ii ও iii

ব্যাখ্যা: বর্ণনানুসারে ΔABC দেখানো হলো

 ΔABC ও ΔADE এর মধ্যে

 $\angle A$ সাধারণ কোণ

এবং $\angle ABC = \angle ADE$

[∵ DE || BC এবং ADB ছেদক হওয়ায় এরা অনুরূপ কোণ]

- $\therefore \Delta ABC$ ও ΔADE পরস্পর সদৃশ
- ∴ [(i) নং সঠিক]
- (ii) নং সঠিক নয় কারণ, দুইটি সদৃশকোণী ত্রিভুজের অনুরূপ বাহুগুলোর অনুপাত সমান।
- $\therefore \frac{AD}{BD} = \frac{AE}{CE} \ \ [\because \Delta ABC$ ও ΔADE সদৃশ]
- (iii) নং সঠিক কারণ, দুইটি সদৃশ ত্রিভুজক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাত তাদের যেকোনো দুই অনুরূপ বাহুর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলদ্বয়ের অনুপাতের সমান।
- $\therefore \Delta ABC$ ও ΔADE সদৃশ ত্রিভুজে, $\frac{\Delta ABC}{\Delta ADE} = \frac{BC^2}{DE^2}$

পাশের চিত্রের তথ্যানুসারে ২
 ও ৩ নং প্রশ্নের উত্তর দাও:

 $igap \Delta ABC$ এর উচ্চতা ও ভূমির অনুপাত কত?

 $(\overline{\Phi})\frac{1}{2}$

 $(\sqrt[4]{\frac{4}{5}})$

 $(\mathfrak{N})\frac{2}{5}$

 $(\mathfrak{A})\frac{5}{4}$

উত্তর: (গ

ব্যাখ্যা: ΔABC -এ ভূমি BC এবং বিপরীত শীর্ষ A হতে ভূমি BC এর উপর অঙ্কিত লম্ব AD হলো ত্রিভূজটির উচ্চতা \therefore $\dfrac{\ddot{\text{B}} \text{BD} \text{O}}{\ddot{\text{E}} \text{E}} = \dfrac{4}{10} = \dfrac{2}{5}$

ত ∆ABD এর ক্ষেত্রফল কত বর্গ একক?

(季) 6

(খ) 20

(গ) 40

(ঘ) 50

উত্তর: (ক)

ব্যাখ্যা: $\triangle ABD$ এ $BD = \sqrt{5^2 - 4^2} = 3$

 $oxed{8}$ $oldsymbol{\Delta}ABC$ এ $PQ \parallel BC$ হলে নিচের কোনটি সঠিক?

 $(\overline{\Phi}) AP : PB = AQ : QC$

 $(\forall) AB : PQ = AC : PQ$

(গ) AB : AC = PQ : BC

 $(\triangledown) PQ : BC = \overrightarrow{BP} : BQ$

β P Q C

উত্তর: (ক)

ব্যাখ্যা: ত্রিভুজের যেকোনো বাহুর সমান্তরাল সরলরেখা ঐ ত্রিভুজের অপর বাহুদ্বরকে বা তাদের বর্ধিতাংশদ্বয়কে সমান অনুপাতে বিভক্ত করে।

🏿 প্রমাণ কর যে, দুইটি ত্রিভুজের প্রত্যেকটি যদি তৃতীয় একটি ত্রিভুজের সদৃশ হয়, তবে তারা পরস্পর সদৃশ।

সমাধানঃ

 $\sum_{E}^{D} F$

সাধারণ নির্বচনঃ প্রমাণ করতে হবে যে, দুইটি ত্রিভুজের প্রত্যেকটি যদি অপর তৃতীয় একটি ত্রিভুজের সদৃশ হয়, তবে তারা পরস্পর সদৃশ।

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ ও $\triangle DEF$ প্রত্যেকেই $\triangle XYZ$ এর সদৃশ। প্রমাণ করতে হবে যে, $\triangle ABC$ ও $\triangle DEF$ পরস্পর সদৃশ।

প্রমাণ

ধাপ ১. ΔABC ও ΔXYZ পরস্পর সদৃশ।

 $\therefore \angle A = \angle X, \angle B = \angle Y$ এবং $\angle C = \angle Z$

[∵ সদৃশকোণী ত্রিভুজের অনুরূপ কোণগুলো পরস্পর সমান]

ধাপ ২. আবার, ΔDEF ও ΔXYZ পরস্পর সদৃশ।

 $\therefore \angle D = \angle X, \angle E = \angle Y$ এবং $\angle F = \angle Z$

ধাপ ৩. $\angle A = \angle D$, $\angle B = \angle E$ এবং $\angle C = \angle F$ [ধাপ-১ ও ধাপ-২ হতে]

∴ $\triangle ABC$ ও $\triangle DEF$ পরস্পর সদৃশ। (প্রমাণিত)

🕓 প্রমাণ কর যে, দুইটি সমকোণী ত্রিভুজের একটির একটি সৃক্ষকোণ অপরটি একটি সৃক্ষকোণের সমান হলে, ত্রিভুজ দুইটি সদৃশ হবে।

সমাধানঃ

সাধারণ নির্বচন: প্রমাণ করতে হবে যে, দুইটি সমকোণী ত্রিভুজের একটির একটি সূক্ষকোণ অপরটি একটি সূক্ষকোণের সমান হলে, ত্রিভুজ দুইটি সদৃশ হবে। বিশেষ নির্বচনঃ মনে করি, ABC ও DEF দুইটি সমকোণী ত্রিভুজের $\angle ACB$ = $\angle DFE$ । প্রমাণ করতে হবে যে, $\triangle ABC$ ও $\triangle DEF$ পরস্পর সদৃশ।

প্রমাণ: ধাপ ১. ΔABC ও ΔDEF -এ,

 $\angle ABC = \angle DEF$ [প্রত্যেকে একসমকোণ]

 $\angle ACB = \angle DFE$ [কল্পনা]

 $\therefore \angle BAC = \angle EDF$ [অবশিষ্ট কোণ]

∴ ∆ABC ও ∆DEF সদৃশ (প্রমাণিত)

◄ বি.দ্র: একটি ত্রিভুজের দুইটি কোণ অপর একটি ত্রিভুজের দুইটি কোণের সমান হলে স্বাভাবিকভাবেই ত্রিভুজন্বয়ের তিনটি কোণেই সমান হয়। প্রাণ কর যে, সমকোণী ত্রিভুজের সমকৌণিক শীর্ষ থেকে অতিভুজের উপর লম্ব আঁকলে যে দুইটি সমকোণী ত্রিভুজ উৎপন্ন হয়, তারা পরস্পর সদৃশ এবং প্রত্যেকে মূল ত্রিভুজের সদৃশ।

সমাধান:

সাধারণ নির্বচন: প্রমাণ করতে হবে যে, সমকোণী ত্রিভুজের সমকৌণিক শীর্ষ থেকে অতিভুজের উপর লম্ব আঁকলে যে দুইটি সমকোণী ত্রিভুজ উৎপন্ন হয়, তারা পরস্পর সদৃশ এবং প্রত্যেকে মূল ত্রিভুজের সদৃশ।

বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের $\angle B$ সমকোণ। সমকৌণিক শীর্ষ B থেকে, অতিভুজ AC এর উপর লম্ব হলো BD। প্রমাণ করতে হবে যে, ΔABD , ΔBDC ও ΔABC পরস্পর সৃদশ।

প্রমাণ:

ধাপ ১. ΔABC ও ΔABD -এ

∠ABC = ∠ADB = এক সমকোণ।

 $\angle BAD = \angle BAC$ [সাধারণ কোণ]

∴ ∠ACB = ∠ABD [অবশিষ্ট কোণ]

 $\therefore \Delta ABC$ ও ΔABD সদৃশকোণী ও সদৃশ।

ধাপ ২. আবার, ΔABC ও ΔBDC -এ

 $\angle ABC = \angle BDC =$ এক সমকোণ [প্রত্যেকে এক সমকোণ]

677

 $\angle BCA = \angle BCD$ [সাধারণ কোণ]

এবং অবশিষ্ট $\angle BAC = \angle DBC$

∴ ΔABC ও ΔBDC সদৃশকোণী ও সদৃশ।

ধাপ ৩. $\therefore \Delta ABD, \Delta BDC$ ও ΔABC -পরস্পার সদৃশ। [ধাপ-১ ও ধাপ-২ থেকে] (প্রমাণিত)

 $lue{b}$ পাশের চিত্রে, $oldsymbol{\angle}B=oldsymbol{\angle}D$ এবং CD=4AB । প্রমাণ কর যে, BD=5BL ।

সমাধানঃ

বিশেষ নির্বচনঃ চিত্রানুসারে $\angle B = \angle D$, CD = 4AB। প্রমাণ করতে হবে যে, BD = 5BL।

প্রমাণ:

ধাপ ১. ΔABL ও ΔCDL -এ

 $\angle ABL = \angle CDL$ [দেওয়া আছে]

 $\angle ALB = \angle CLD$ [বিপ্রতীপ কোণ]

 $\therefore \angle BAL = \angle LCD$

 $\therefore \Delta ABL$ ও ΔCDL সদৃশকোণী এবং সদৃশ

ধাপ ২. :
$$\frac{CD}{AB} = \frac{DL}{BL}$$

বা,
$$\frac{CD}{AB}+1=\frac{DL}{BL}+1$$
 [উভয়পক্ষে 1 যোগ করে]

$$\overline{AB} = \frac{DL + BL}{BL}$$

বা,
$$\frac{4AB + AB}{AB} = \frac{BD}{BL}$$
 [দেওয়া আছে, $CD = 4AB$]

বা,
$$\frac{5AB}{AB} = \frac{BD}{BL}$$

বা,
$$5 = \frac{BD}{BL}$$

$$\therefore BD = 5BL$$
 (প্রমাণিত)

ি ABCD সামন্তরিকের A শীর্ষ দিয়ে অঙ্কিত একটি রেখাংশ BC বাহুকে M বিন্দুতে এবং DC বাহুর বর্ধিতাংশকে N বিন্দুতে ছেদ করে। প্রমাণ কর যে, $BM \times DN$ একটি ধ্রুবক।

সমাধানঃ

বিশেষ নির্বচনঃ মনে করি, ABCD সামান্তরিকের A শীর্ষ থেকে একটি রেখাংশ BC বাহুকে M বিন্দুতে এবং DC এর বর্ধিতাংশকে N বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, $BM \times DN =$ ধ্রুবক।

প্রমাণঃ

ধাপ ১. $\triangle ABM$ ও $\triangle ADN$ -এ,

∠BAM = ∠AND [একান্তর কোণ]

∠ABM = ∠ADN [সামান্তরিকের বিপরীত কোণ]

∴ ∠AMB = ∠DAN [অবশিষ্ট কোণ]

 $\therefore \Delta ABM$ ও ΔADN সদৃশকোণী এবং সদৃশ

ধাপ ২. $\therefore \frac{BM}{AD} = \frac{AB}{DN} \left[\cdot \cdot \cdot \right]$ সদৃশকোণী ত্রিভূজের অনুরূপ বাহুগুলো সমানুপাতিক]

বা, BM.DN = AB.AD

কিন্তু AB ও AD সামান্তরিকের দুইটি সন্নিহিত বাহু বিধায় এদের গুণফল ধ্রুবক।

∴ BM.DN = ধ্রুবক। (প্রমাণিত)

 $oxed{oldsymbol{eta}}$ পাশের চিত্রে $BD \perp AC$ এবং $DQ = BQ = 2AQ = rac{1}{2}~QC.$ প্রমাণ কর যে, $DA \perp DC$

<u>সমাধান</u>:

বিশেষ নির্বচনঃ চিত্রে দেওয়া আছে $BD \perp AC$ এবং DQ = BQ = 2AQ $= \frac{1}{2} \ QC$ । প্রমাণ করতে হবে যে, $DA \perp \ DC$ ।

প্রমাণঃ

ধাপ ১. ABQ ও ADQ সমকোণী ত্রিভুজদ্বয়ে, BQ = DQ এবং AQ সাধারণ বাহু

 $\therefore \Delta ABQ \cong \Delta ADQ$ [অতিভুজ-বাহু উপপাদ্য]

 $\therefore AB = AD$

 $\therefore \angle ABQ = \angle ADQ$

ধাপ ২. আবার, $B\widetilde{Q} = 2AQ$

বা,
$$\frac{AQ}{BO} = \frac{1}{2}$$

ধাপ ৩. এবং $DQ = \frac{1}{2}QC$

বা,
$$\frac{DQ}{OC} = \frac{1}{2}$$

ধাপ ৪. $\frac{AQ}{BO} = \frac{DQ}{OC} = \frac{1}{2}$ [ধাপ-২ ও ধাপ-৩ হতে]

$$\therefore \frac{AQ}{DQ} = \frac{BQ}{QC}$$
 এবং $\angle AQB = \angle DQC$

 $\therefore \Delta ABQ$ ও ΔDQC সদৃশ

$$\therefore \angle BAQ = \angle QDC$$

ধাপ ৫. আবার, $\angle ADC = \angle ADQ + \angle QDC$

বা, $\angle ADC = \angle ABQ + \angle BAQ$ [ধাপ-১ ও ধাপ-৪ হতে]

किस $\angle ABQ + \angle BAQ = 90^{\circ}$ [∴ $BD \perp AC$; $\angle AQB = 90^{\circ}$]

 $\therefore \angle ADC = 90^{\circ}$

∴ DA ⊥ DC (প্রমাণিত)

সমাধান (দ্বিতীয় পদ্ধতি)

বিশেষ নির্বচনঃ প্রদত্ত চিত্রে, $DB \perp AC$ এবং $DQ = BQ = 2AQ = \frac{1}{2}\,QC$ ।

প্রমাণ করতে হবে যে, $\mathit{DA} \perp \mathit{DC}$

প্রমাণঃ

ধাপ ১. যেহেতু
$$DQ=BQ=2AQ=\frac{1}{2}\,QC$$
 সুতরাং $QC=2DQ=2BQ=4AQ$ আবার, $AC=AQ+QC$
$$=AQ+4AQ\ [\because QC=4AQ]$$

$$=5AQ$$

ধাপ ২. এখন, ADQ সমকোণী ত্রিভুজে, $[\because BD \perp AC]$

$$AD^2 = AQ^2 + DQ^2$$
 [পিথাগোরাসের উপপাদ্য অনুসারে]
$$= AQ^2 + (2AQ)^2 \quad [\because DQ = 2AQ]$$

$$= AQ^2 + 4AQ^2 \quad [ধাপ-১ হতে]$$

$$= 5AQ^2 \dots \dots \dots (i)$$

ধাপ ৩. CDQ সমকোণী ত্রিভুজে

$$CD^{2} = QC^{2} + DQ^{2}$$

$$= (4AQ)^{2} + (2AQ)^{2}$$

$$= 16AQ^{2} + 4AQ^{2}$$

$$= 20AQ^{2} \dots \dots \dots \dots (ii)$$

 $=20AQ^2$ (ii) ধাপ ৪. .: $AD^2+CD^2=5AQ^2+20AQ^2$ [(i) ও (ii) নং যোগ করে] $=25AQ^2$ $=(5AQ)^2$ $=AC^2$ [ধাপ-১ হতে]

 $\therefore AD^2 + CD^2 = AC^2$ অর্থাৎ $\triangle ABC$ সমকোণী

 $\therefore DA \perp DC$ (প্রমাণিত)

ΔABC ও ΔDEF এর $\angle A=\angle D$ । প্রমাণ কর যে, ΔABC : $\Delta DEF=AB.AC$: DE.DF

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ ও $\triangle DEF$ -এ $\angle A=\angle D$ । প্রমাণ করতে হবে যে, $\triangle ABC$: $\triangle DEF=AB.AC$: DE.DF।

অঙ্কনঃ $CP \perp AB$ এবং $FQ \perp DE$ আঁকি।

প্রমাণঃ

ধাপ ১. ΔCAP ও ΔFDQ -এ,

 $\angle A = \angle D$ [দেওয়া আছে]

$$\therefore \angle ACP = \angle DFQ$$
 [অবশিষ্ট কোণ]

$$\therefore \Delta ACP$$
 ও ΔDFQ সদৃশকোণী এবং সদৃশ

$$\therefore \frac{AC}{DF} = \frac{CP}{FQ} \left[\because$$
 সদৃশকোণী ত্রিভুজের অনুরূপ বাহুগুলো সমানুপাতিক $brace$

ধাপ ২. আবার,
$$\frac{\Delta ABC}{\Delta DEF} = \frac{\frac{1}{2}AB.CP}{\frac{1}{2}DE.FQ}$$

বা,
$$\frac{\Delta$$
ক্ষেত্র ABC $= \frac{AB.AC}{DE.DF}$ [ধাপ-১ হতে $\frac{CP}{FQ} = \frac{AC}{DF}$ বসিয়ে]

 $\therefore \Delta ABC : DEF = AB.AC : DE.DF$ (প্রমাণিত)

- ΔABC এর $\angle A$ এর সমদ্বিখণ্ডক AD,BC কে D বিন্দুতে ছেদ করেছে। DA এর সমান্তরাল CE রেখাংশ বর্ধিত BA বাহুকে E বিন্দুতে ছেদ করেছে।
 - ক. তথ্য অনুসারে চিত্রটি অঙ্কন কর*া* খ. প্রমাণ কর যে, BD:DC=BA:AC
 - গ. BC এর সমান্তরাল কোনো রেখাংশ AB ও AC কে যথাক্রমে P ও O বিন্দুতে ছেদ করলে, প্রমাণ কর যে, BD:DC=BP:CO

সমাধানঃ

তথ্য অনুসারে চিত্রটি অঙ্কন করা হলো:

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ -এর $\angle A$ -এর সমদ্বিখণ্ডক AD, BC বাহুকে D বিন্দুতে ছেদু করেছে। C বিন্দু দিয়ে অন্ধিত DA এর সমান্তরাল রেখাংশ $\widetilde{C}E$, বর্ধিত BA বাহুকে \widetilde{E} বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, BD:DC=BA:AC। প্রমাণ:

ধাপ ১. যেহেতু $DA \parallel CE$ [অঙ্কনুসারে]

∴ ∠AEC = ∠BAD এবং [অনুরূপ কোণ] $\angle ACE = \angle CAD$ [একান্তর কোণ]

ধাপ ২. কিন্তু $\angle BAD = \angle CAD$ [$\therefore \angle A$ এর সমদ্বিখণ্ডক AD]

 \therefore $\angle AEC = \angle ACE$ $\therefore AC = AE$

∴ $\frac{BD}{DC} = \frac{BA}{AE}$ [∴ ত্রিভুজের যেকোনো বাহুর সমান্তরাল
 সরলরেখা অপর দুই বাহুকে সমান অনুপাতে বিভক্ত করে]

$$\therefore \frac{BD}{DC} = \frac{BA}{AC}$$
 [ধাপ-২ হতে]
 $\therefore BD : DC = BA : AC$

9

অঙ্কন: BC-এর সমান্তরাল PQ রেখাংশ AB ও AC কে যথাক্রমে P ও Qবিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, BD:DC=BP:CQ।

ধাপ ১. ΔABC -এর ngle A-এর সমদ্বিখণ্ডক AD।

 $\frac{BD}{DC} = \frac{AB}{AC} \left[\because$ ত্রিভুজের যেকোনো কোণের অন্তর্গিখণ্ডক বিপরীত বাহুকে উক্ত কোণ সংলগ্ন বাহুদ্বরের অনুপাতে অন্তর্গিভক্ত করে]

ধাপ ২. আবার, ΔABC -এ $PQ \parallel BC$

 $\frac{AP}{BP} = \frac{AQ}{CQ}$ [: ত্রিভুজের যেকোনো বাহুর সমান্তরাল সরলরেখা অপর দুই বাহুকে সমান অনুপাতে বিভক্ত করে]

না স্বাল্যেশ। অপন পুর বাহুকে বা
$$\frac{AP}{BP} + 1 = \frac{AQ}{CQ} + 1$$
 বা, $\frac{AP + BP}{BP} = \frac{AQ + CQ}{CQ}$ বা, $\frac{AB}{AC} = \frac{BP}{CQ}$ বা, $\frac{BD}{DC} = \frac{BP}{CQ}$ [ধাপ-১ হতে] $\therefore BD: DC = BP: CQ$

বা,
$$\frac{BD}{DC} = \frac{BP}{CO}$$
 [ধাপ-১ হতে]

$$\therefore BD: D\widetilde{C} = BP: CQ$$

 $oxed{oldsymbol{eta}}$ চিত্ৰে ABC এবং DEF দুইটি সদৃশ ত্ৰিভুজ।

ক. ত্রিভুজ দুইটির অনুরূপ বাহু ও অনুরূপ কোণগুলোর নাম লিখ

খ. প্রমাণ কর যে,
$$\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$$

গ. যদি BC=3 সে.মি., EF=8 সে.মি., $\angle B=60^\circ, \frac{BC}{AB}=\frac{3}{2}$ এবং $\triangle ABC$ এর ক্ষেত্রফল 3 বর্গ সে.মি. হয়, তবে $\triangle DEF$ অঙ্কন কর এবং এর ক্ষেত্রফল নির্ণয় কর।

সমাধান:

ক $\triangle ABC$ ও $\triangle DEF$ এর ক্ষেত্রে: AB এর অনুরূপ বাহু DE; AC এর $\triangle ABC$ ও $\triangle BC$ এর অনুরূপ বাহু EF এবং অনুরূপ কোণের ক্ষেত্রে: $\angle A$ এর অনুরূপ কোণ $\angle D;$ $\angle B$ এর অনুরূপ কোণ $\angle E$; $\angle C$ এর অনুরূপ কোণ $\angle F$

বিশেষ নির্বচনঃ মনে করি, $\triangle ABC$ ও $\triangle DEF$ সদৃশ।

প্রমাণ করতে হবে যে, $\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$

ধাপ ১. ΔABC ও ΔDEF সদৃশ হওয়ায়,

$$\frac{AB}{DE} = \frac{AC}{DE} = \frac{BC}{EE} \dots \dots \dots (i)$$

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} \dots \dots (i)$$

$$[\because সদৃশকোণী ত্রিভূজের অনুরূপ বাহুগুলোর অনুপাত সমান]$$

$$\therefore \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2} \dots \dots (ii) [বর্গ করে]$$

ধাপ ২. আবার, ΔABM ও ΔDEN সমকোণী ত্রিভুজদ্বয় $\angle ABM = \angle DEN$ [প্রত্যেকে এক সমকোণ]

এবং $\angle AMB = \angle DNE \, [\because \Delta ABC ও \Delta DEF সদৃশ]$

∴ ∆ABM ও ∆DEN সদৃশকোণী, তাই সদৃশ।

 $\therefore rac{AM}{DN} = rac{AB}{DE} \left[\cdot \cdot \cdot$ সদৃশকোণী গ্রিভুজের অনুরূপ বাহুগুলোর অনুপাত সমানbrace

$$\therefore \frac{AM}{DN} = \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$
 [(i) নং হতে]

ধাপ ৩. $AM \perp BC$ এবং $DN \perp EF$ হওয়ায়

$$\triangle ABC = \frac{1}{2} BC.AM$$
 এবং $\triangle DEF = \frac{1}{2} EF.DN$

$$\frac{\Delta ABC}{\Delta DEF} = \frac{\frac{1}{2}BC. AM}{\frac{1}{2}EF. DN} = \frac{BC}{EF} \times \frac{AM}{DN}$$
 [ধাপ-২ হতে]

$$\therefore \frac{\Delta ABC}{\Delta DEF} = \frac{BC}{EF} \times \frac{AM}{DN} = \frac{BC}{EF} \times \frac{BC}{EF} = \frac{BC^2}{EF^2}$$
 [(ii) নং হতে]

$$\therefore \frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2} = \frac{BC^2}{EF^2}$$
 (প্রমাণিত)

দেওয়া আছে,
$$\frac{BC}{AB}=\frac{3}{2}$$
 বা, $\frac{3}{AB}=\frac{3}{2}$ [$\because BC=3$ সে.মি.] $\therefore AB=2$ সে.মি.

 ΔABC ও ΔDEF সদৃশ হওয়ায়,

$$\frac{AB}{BC} = \frac{DE}{EF}$$
 বা, $DE = \frac{AB \times EF}{BC}$ বা, $DE = \frac{2 \times 8}{3}$ সে.মি.

$$\therefore DE = \frac{16}{3}$$
 সে.মি.

মনে করি, $a = DE = \frac{16}{3}$ সে.মি. b = EF = 8 সে.মি. এবং যেহেতু

 $\angle B=60^\circ$ সুতরাং $\angle E=\angle x=60^\circ$ । গ্রিভুজটি আঁকতে হবে।

অঙ্কন: (১) যেকোনো রশ্মি EG থেকে EF=b কেটে নেই।

- (২) EF এর E বিন্দুতে $\angle FEH = \angle x$ আঁকি।
- (৩) EH থেকে ED=a কেটে নিই। D,F যোগ করি।

তাহলে, ΔDEF -ই উদ্দিষ্টি ত্রিভুজ।

আবার, 'খ' থেকে পাই,

$$\frac{\Delta ABC}{\Delta DEF} = \frac{AB^2}{DE^2} = \left(\frac{2}{\frac{16}{3}}\right)^2 = \left(2 \times \frac{3}{16}\right)^2 = \left(\frac{3}{8}\right)^2 = \frac{9}{64}$$

বা,
$$\frac{3 \text{ বর্গ সে.মি.}}{\Delta DEF} = \frac{9}{64}$$

বা,
$$\Delta DEF = \frac{64 \times 3}{9}$$
 বর্গ সে.মি. $= \frac{64}{3}$ বর্গ সে.মি. $= 21.33$ বর্গ সে.মি.

পাঠ্যবইয়ের কাজের সমাধান

কাজ

>পাঠ্যবই পৃষ্ঠা-২৭৬

১। বিকল্প পদ্ধতিতে কোনো রেখাংশকে নির্দিষ্ট অনুপাতে অন্তর্বিভক্ত কর।

সমাধান:

বিশেষ নির্বচনঃ মনে করি, AB একটি নির্দিষ্ট রেখাংশ । AB কে অন্তঃস্থভাবে m:n অনুপাতে বিভক্ত করতে হবে ।

অন্ধনের বিবরণ: AB রেখাংশের A বিন্দু দিয়ে যেকোনো কোণে একটি রিশ্মি AX আঁকি । AX থেকে m এর সমান করে AE কাঁটি ।

আবার, B বিন্দুতে $\angle BAX$ কোণের সমান করে $\angle ABY$ কোণ অঙ্কন করি। B থেকে BD=n কাঁটি।

E,D যোগ করি। যা AB রেখাকে P বিন্দুতে ছেদ করে। তাহলে P বিন্দুতে AB রেখা m:n অনুপাতে বিভক্ত হয়েছে।

প্রমাণ: ΔAEP ও ΔBDP -এ

 $\angle APE = \angle BPD$ [বিপ্রতীপ কোণ]

 $\angle PAE = \angle PBD$ [অঙ্কন অনুসারে]

 $\angle AEP = \angle BDP$ [অবশিষ্ট কোণ]

- ∴ ত্রিভুজদ্বয় সদৃশকোণী এবং সদৃশ। যেহেতু দুইটি সদৃশ কোণী ত্রিভুজের অনুরূপ বাহুগুলোর অনুপাত সমান।
- $\therefore AP : BP = AE : BD = m : n$
- ∴ AB রেখা P বিন্দুতে m : n অনুপাতে অন্তর্বিভক্ত হয়েছে।

কাজ

পাঠ্যবই পৃষ্ঠা-২৭৭

একটি নির্দিষ্ট ত্রিভুজের সদৃশ একটি ত্রিভুজ অঙ্কন কর যার বাহগুলো মূল ত্রিভুজের বাহগুলোর $\frac{3}{5}$ গুণ।

সমাধানঃ

মনে করি, ΔABC এক নির্দিষ্ট ত্রিভুজ। যার বাহুগুলোর দৈর্ঘ্য যথাক্রমে AB=10 একক; BC=15 একক এবং CA=20 একক।

এখন ΔABC এর সদৃশ DEF ত্রিভুজ অঙ্কন করি। যার বাহুগুলোর দৈর্ঘ্য যথাক্রমে DE=6 একক; EF=9 একক এবং DF=12 একক।

সদৃশ ΔABC ও ΔDEF তুলনা করে পাই,

$$AB$$
 এর $rac{3}{5}$ গুণ $=10 imesrac{3}{5}$ $=6$ একক যা AB এর অনুরূপ বাহু DE এর দৈর্ঘ্য

$$BC$$
 এর $\frac{3}{5}$ গুণ = $15 imes \frac{3}{5}$ = 9 একক যা BC এর অনুরূপ বাহু EF এর দৈর্ঘ্য

$$AC$$
 এর $rac{3}{5}$ গুণ = $20 imesrac{3}{5}$ = 12 একক যা AC এর অনুরূপ বাহু DF এর দৈর্ঘ্য

অতএব ABC নির্দিষ্ট ত্রিভুজের সদৃশ একটি ত্রিভুজ DEF অঙ্কন করা হলো

যার বাহুগুলো মূল ত্রিভুজের (ΔABC) বাহুগুলোর $\frac{3}{5}$ গুণ।