

AITEL EXAMINATIONS BUREAU LIMITED

UGANDA CERTIFICATE OF LOWER CURRICULUM EDUCATION END OF YEAR 2023

Instructions

SENIOR TWO PHYSICS TIME: 2 hours

- Attempt all the questions.
- Where necessary, assume
 - ✓ Acceleration due to gravity, $g = 10 \text{ms}^{-2}$
- 1. Figure 1.1 shows solar cells used to generate electrical energy.

Figure 1.1

(a) State the main form of energy transferred from the Sun to the solar of	
the generation of electrical energy. (0	1mark)
(1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
(b) Consider the generation of electrical energy by a large number of solar transfer in Pinner 1.1	ar cells,
as shown in Figure. 1.1 .	
(i) State one environmental advantage and one environmental disadv	antage.
advantage	
(0	1 mark)
disadvantage	
	• • • • • •
(0	1 mark)
(ii) State and explain whether this source of electrical energy is renev	wable
or non-renewable. (02	marks)

2 Figure 2.1 below shows three horizontal forces acting on a car as it moves along a straight road. The horizontal forces act along the same straight line.

Figure 2.1

(a) (i) Calculate the size of the res	ultant horizontal force on the car and state (04 marks)
	size of resultant force = N
di	rection of resultant force
(ii) The driver presses the brak	ke pedal and the car slows down.
As the car slows down, the	kinetic energy of the car decreases by 100 kJ.
Describe and explain what	happens to this 100 kJ of energy. (02 marks)
	plied to the brake pedal by the driver's foot.
Figure 2.2	brake pedal

Calculate the moment of the force about the pivot. Include the unit.(03ks)

3 (a) **Figure. 3.1** shows a ray of light incident on a plane mirror at point X.

- (i) Determine the value of the angle of reflection for the ray of light at point X. (02 marks)
- (ii) On **Figure 3.1**:
 - draw the **normal** at point X and label the normal with the letter **N**.
 - draw the ray **reflected** from point X and name it as R. **(02 marks)**
- (b) A ray of light is reflected by two parallel mirrors M_1 and M_2 as shown in **figure 3.2.**

(i) Find he angle of incidence at mirror M₁. (02 marks)
(ii) Find the angle of reflection at mirror M₂. (02 marks)
(iii) State one optical device which uses the arrangement in figure 3.2. (01 mark)

(a) The figure below shows the cross – section of a wheel and axle machine of radius 6.5cm and 1.5cm respectively used to lift a load.

Calculate the efficiency of the machine.	•
(b) A student wanted to put boxes of salt a inclined plane.	

If the total weight of the boxes of salt is 40.0N and the student uses a puling force of 27.0N along the plane, determine;

(i) the Mechanical advantage of the plane.	(02 marks
(ii) the velocity ratio of the plane.	(02 marks)
	••••••

	(iii) t	he efficiency of the incline	ed plane.	(04 marks)
	•••••		•••••	•••••
	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••
5	as sh	_	l to drive a hollow steel pos nammer is lifted by an elec	•
			rope from motor to lift hammer	
		metal hammer ground	hollow steel post	Figure 5.1
			baseplate	
	(i)	State the law of conserva	ation of energy.	(01 mark)
	(ii)	starting from the initial dropped.	rsions that take place as the potential energy of the har	nmer before it is (03 marks)
				•••••
	. ,	e metal hammer has a mared of 8.0 m/s.	ass of 1500 kg and it hits t	he baseplate with a
			of the hammer as it hits the	(04 marks)
• • • •				
	(ii) S	ate the initial potential	energy of the hammer.	(01 mark)

(iii)	Calculate the height above the baseplate from which the hammer is		
	dropped. (Take g as 10 ms ⁻²).	(04 marks)	
	, ,	·	
• • • • • • • • • • • • • • • • • • • •		•••••	

6. (a) A 50 cm rule is balanced at its mid-point. A force of 8.0 N acts at a distance of 10 cm from one end of the rule. **Figure 6.1** shows the arrangement.

(i)Calculate the moment of the 8.0 N force about the pivot. Give the unit.

(04 marks)

- (ii) Another force acts at a point 10 cm from the pivot and to the right of the pivot. It makes the rule balance. On **Figure 6.1**, draw an arrow to show the position and direction of this force. (01 mark)
- (b) **Figure. 6.2** shows the handle used to open and close a cupboard door on the aeroplane.

Figure 6.2

A force of 60 N acts at a distance of 20 cm from the pivot of the handle.

Calculate the moment of the 60 N force about the pivot. (04 mark)

7. Figure. 7.1 shows a fork-lift truck lifting a box.

The electric motor that drives the lifting mechanism is powered by batteries. (a) State the **form of the energy** stored in the batteries. (01 mark) (b) The lifting mechanism raises a box of mass 32 kg through a vertical distance of 2.5 m in 5.4 s. (i) Calculate the gravitational potential energy gained by the box. gravitational potential energy =(03 mark) (ii) The **power developed** on lifting the box through the vertical distance (iii) The efficiency of the lifting mechanism is 65%. Calculate the **input power** to the lifting mechanism. (04 marks) **input power =**

8. Figure 8.1 shows a pulley system. Effort =150N Figure 8.1 Load = 400N (a) What is the velocity ratio of the system? (01 mark) (b) Calculate the efficiency of the system. (05 marks) (c) On **figure 8.1**, show the direction of the force on the string. **(01 mark)** (d) State any **three** uses of pulleys. (03 marks)

THE END

.....