Előszó

A zene az érzelem matematikája, a matematika az értelem zenéje Sylvester J.J.

Az Erdélyi Magyar Matematikaverseny az 1990-1991-es tanévben indult Brassóból, évi többfordulós vándorversenyként, és ma ünnepli a 18-adik születésnapját. Az EMMV évek alatt strukturálódott, intézményesedett, elérve a Tanügyminisztérium hivatalos elismerését is. Így a versenyző diákok által kiérdemelt oklevelek bármely egyetem felvételi pontrendszerébe beleszámítanak. Ezt eddig csak a Babeş-Bolyai Tudományegyetem Matematika és Informatika Karán alkalmazták. Az EMMV a felkészítés és a matematika körök többletét vállaló tanárok számára is hivatalos pontokat jelent.

Az EMMV fő vonulatát számos hozzáépült verseny gazdagítja, így a Wildt József-, a Székely Mikó-, a Márton Áron-, a Bolyai János-, a Radó Ferenc-, a Neumann János-, a Benkő József versenyek. Ezeket különböző városok, a lehetőségekhez mérten szervezik. Évekig a Székely Mikó verseny fixpontként működött, így az EMMV a Nemzetközi Magyar Matematikaverseny erdélyi válogató versenyévé vált. Az EMMV hazai és nemzetközi szerepe indokolttá tette a két írásbeli próba bevezetését.

A matematika mindamellett, hogy önismereti elmélyülést ad, hozzájárul az Univerzum törvényeinek a megismeréséhez. Ami fent, az lent, ami kint, az bent koordináta-rendszerében, szabad akaratának csillagpályáján évente több mint kétszáz diák méri össze tudását e versenyen. Az EMMV egyben kommunikációs fórum a diákoknak, és a tanároknak a vándorgyűlés szerepét is betölti.

Köszönet a Tamási Áron Gimnázium vezetőségének, tanári karának, Székelyudvarhelynek, a támogatóknak, a szülőknek, hogy az idén is egy rangos rendezvényen vehettünk részt.

IX. osztály

- **1.** Határozd meg a p prímszámot, ha tudjuk, hogy $p^4 6$ is prímszám! András Szilárd, Kolozsvár
- **2.** Milyen alapú számrendszerben lehet igaz a $33^2=2013$ egyenlőség? Lehet-e 2008 négyzetszám valamilyen alapú számrendszerben?

Kovács Béla, Szatmárnémeti

3. Hányféleképpen lehet lefedni egy 4×12 -es táblát 1×4 -es téglalapokkal?

Csapó Hajnalka, Csíkszereda

4. Az ABCDE önmagát nem metsző töröttvonal minden csúcsa illeszkedik egy adott körre. Az ABC, BCD és CDE szögek mind 45° -osak. Bizonyítsd be, hogy $AB^2 + CD^2 = BC^2 + DE^2$!

5. Az ABCD trapéz AB nagyalapján felveszünk egy tetszőleges M pontot, melyen át meghúzzuk a BD-vel, illetve AC-vel párhuzamos ME és MF egyeneseket ($E \in (AD)$, $F \in (BC)$). Az EF egyenes AC-t és BD-t G-ben illetve H-ban metszi. Legyen O a trapéz átlóinak metszéspontja és $OM \cap CD = \left\{R\right\}$. Bizonyítsd be, hogy MFRE paralelogramma és az OM felezi a G-ben szakaszt!

Olosz Ferenc, Szatmárnémeti

- **6. a)** Igazold, hogy $\left|x-a\right|+\left|x-b\right|\geq\left|a-b\right|$, bármely a, b és x valós számok esetén!
 - **b)** Oldd meg a $\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\ldots+\left|x-2n\right|=n^2$ egyenletet a valós számok halmazában, ahol $n\in\mathbb{N}^*$!

Dávid Géza, Székelyudvarhely

X. osztály

1. Oldd meg az $x^4 + y^4 = 2008^z + 3$ egyenletet az egész számok halmazában!

Farkas Csaba, Kolozsvár

2. Hányféleképpen lehet kitölteni egy $n \times n$ -es táblázatot egész számokkal úgy, hogy az elemek szorzata minden sorban és minden oszlopban +6 vagy -6 legyen?

3. Egy háromszög minden oldalát n egyenlő részre osztjuk, és a megfelelő osztópontokat összekötjük (lásd a mellékelt ábrát). Az így keletkezett tábla egyik mezejére egy bábút helyezünk és lépésnek tekintjük, ha a bábút áthelyezzük valamelyik oldalszomszédos háromszögre. Legfeljebb hány lépést tehet meg a bábú, ha minden mezőre csak egyszer léphet, és a bábú kezdeti helyzetét megválaszthatjuk?

Csapó Hajnalka, András Szilárd

4. Az ABC háromszögben AB^2 , BC^2 és CA^2 számtani haladványt alkotnak (ebben a sorrendben). Igazold, hogy a háromszög G súlypontjának a BC oldalra vonatkoztatott szimmetrikusa rajta van a háromszög köré írt körön!

Bencze Mihály, Brassó

5. Az ABC háromszögben AB=6, AC=7, BC=8, G a háromszög súlypontja és I a háromszögbe beírt kör középpontja. Számítsd ki a BIG háromszög területét!

Olosz Ferenc, Szatmárnémeti

6. Igazold, hogy ha $n\in\mathbb{N}^*$ és $x_{_k}>0,\,y_{_k}>0,\,k\in\left\{1,2,...,n\right\}$ valós számok, akkor

$$\sum_{k=1}^{n} \frac{x_{k}^{3}}{y_{k}^{2}} \ge \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{3}}{\left(\sum_{k=1}^{n} y_{k}\right)^{2}} !$$

Bencze Mihály, Brassó

XI. és XII. osztály

- **1.** Legyen $E=a\cdot 11^{2n-1}+b\cdot 7^{2k-1}-5$, ahol a,b,n,k nullától különböző természetes számok. Bizonyítsd be, hogy E akkor és csak akkor osztható 24-gyel bármely $n,k\in\mathbb{N}^*$ esetén, ha 7a+11b-1 osztható 24-gyel! Olosz Ferenc, Szatmárnémeti
- **2.** Az $A_1A_2...A_{2008}$ sokszög kerülete 2839. Igazold, hogy létezik olyan 1-nél kisebb területű háromszög, amelynek a csúcsai a sokszög egymásutáni csúcsai!

Bencze Mihály, Brassó

3. Egy táblára felírjuk az első 2008 pozitív természetes szám inverzét. Egy lépésben letörölünk kettőt, a-t és b-t, és helyettük felírjuk az a+b+ab számot. Az eljárást addig ismételjük, amíg a táblán egy szám marad. Lehet-e ez a 2008?

Dávid Géza, Székelyudvarhely

4. Határozd meg azoknak az M pontoknak a mértani helyét, amelyekre az MA, MB és MC szakaszokkal derékszögű háromszög szerkeszthető, ha ABC egyenlő oldalú háromszög!

5. Az
$$ABCD$$
 négyszögben $m\left(\widehat{BAD}\right)=130^\circ$, $m\left(\widehat{ADC}\right)=70^\circ$,
$$m\left(\widehat{DCB}\right)=80^\circ \text{ és } \left[AB\right]\equiv \left[BC\right].$$
 Számítsd ki a \widehat{BDA} mértékét!

András Szilárd, Kolozsvár

6. Igazold, hogy minden n természetes szám előállítható $n=a^2-b^2-c^2+d^2$ alakban, ahol $a,b,c,d\in\mathbb{N}^*$ páronként különbözők. Dávid Géza, András Szilárd

IX. osztály

1. Oldd meg az

$$\left[x\right] - \left[\frac{x}{2008}\right] = 2008$$

egyenletet a valós számok halmazán, ahol $\begin{bmatrix} a \end{bmatrix}$ az $a \in \mathbb{R}$ egész részét jelöli. Kacsó Ferenc, Marosvásárhely

2. Tekintsük az $A = \left\{1, 2, 3, ..., n^2\right\}$ halmazt, ahol $n \in \mathbb{N}^* \setminus \{1\}$.

Jelöljük S_n -nel azoknak az A-ból kiválasztható háromtagú szigorúan növekvő mértani haladványoknak a számát, amelyeknek az állandó hányadosa is egész. Igazold, hogy

$$\frac{n^2 - 4n + 6}{2} < S_n < n^2.$$

Dávid Géza, Székelyudvarhely

- **3.** Legyen ABCD egy trapéz, amelyben $AB \parallel CD$, AB = a, CD = b, O az átlók metszéspontja, E és F a trapéz alapjainak felezőpontja. Bizonyítsd be, hogy
 - **a)** ha M egy tetszőleges pont, akkor

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO} + \frac{a-b}{a+b} \Big(\overrightarrow{CA} + \overrightarrow{DB} \Big);$$

b) ha az M pont esetén $\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{0}$, akkor M, E és F kollineáris pontok.

Kacsó Ferenc, Marosvásárhely

4. ABC olyan háromszög, amelyben az O, I, H pontok is háromszöget alkotnak (O a háromszög köré írt kör középpontja, I a beírt kör középpontja, H a magasságpont). Legyen G és G_1 az ABC illetve OIH háromszög súlypontja. Igazold, hogy $OI = 3 \cdot GG_1$.

Olosz Ferenc, Szatmárnémeti

X. osztály

1. Oldd meg a

$$2^{\left[\log_2 x\right]} = x^2 - x$$

egyenletet, ahol $\left[a\right]$ az $a\in\mathbb{R}$ egész részét jelöli.

Kacsó Ferenc, Marosvásárhely

$$\begin{aligned} \textbf{2.} \text{ Igazold, hogy ha } 1 < a_{_{k}} \leq x_{_{k}} \leq b_{_{k}}, \ k \in \left\{1, 2, \dots, n\right\}, \text{ akkor} \\ \log_{_{x_{_{1}}}}((a_{_{2}} + b_{_{2}})x_{_{2}} - a_{_{2}}b_{_{2}}) + \log_{_{x_{_{2}}}}((a_{_{3}} + b_{_{3}})x_{_{3}} - a_{_{3}}b_{_{3}}) + \dots \\ \dots + \log_{_{x_{_{-}}}}((a_{_{1}} + b_{_{1}})x_{_{1}} - a_{_{1}}b_{_{1}}) \geq 2n \end{aligned}$$

Bencze Mihály, Brassó

3. Bizonyítsd be, hogy ha $z\in\mathbb{C}\setminus\{i\}$, $\left|z\right|=1$ és $\mathrm{Im}\left(z\right)>0$, akkor

$$\left(\frac{\left|z+1\right|+\left|z-1\right|}{\left|z+i\right|}\right)^{2}+\left(\frac{\left|z+1\right|-\left|z-1\right|}{\left|z-i\right|}\right)^{2}=4.$$

Bencze Mihály, Brassó

4. Egy konvex hatszög oldalaira kívül szabályos háromszögeket szerkesztünk. Tudva, hogy a háromszögek harmadik, kívül eső csúcsai egy szabályos hatszöget alkotnak, igazold, hogy az eredeti hatszög szembenfekvő oldalai párhuzamosak és egyenlőek! Szabályos-e az eredeti hatszög?

Dávid Géza, Székelyudvarhely

XI. osztály

1. A $P \in \mathbb{R}[X]$ polinom rendelkezik azzal a tulajdonsággal, hogy

$$P(n) = \sum_{k=1}^{n} (k^5 - 5k^3 + 4k),$$

minden $n \in \mathbb{N}^*$ esetén.

- a) Igazold, hogy P(n) osztható 120-szal minden $n \in \mathbb{N}^*$ esetén!
- **b)** Számítsd ki P(-3) értékét!

Mikó Ágnes, Sepsiszentgyörgy

2. Igazold, hogy ha az $A,B\in M_n\left(\mathbb{C}\right)$ mátrixokra $AB+BA=O_n$, ahol O_n az n-ed rendű zérusmárix, akkor

$$\left(\det\left(A+B\right)\right)^{2} + \left(\det\left(A-B\right)\right)^{2} = 2\det\left(A^{2} + B^{2}\right).$$

Bencze Mihály, Brassó

- **3.** Az $A=\left(a_{ij}\right)\in M_k(\mathbb{R})$ mátrixban $a_{ij}=i-j$, bármely $i,j\in\left\{1,2,\ldots,k\right\}$ esetén. A mátrix elemeiből tetszőlegesen kiválasztunk k olyan számot, amelyek különböző sorokban és oszlopokban vannak. Jelöljük azokat $\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_k$ -val. Számítsd ki:
 - **a)** a $\det(A)$ értékét;
 - **b)** a $\lim_{n \to \infty} \left[\sum_{i=1}^k \alpha_i \cdot \sqrt{n^2 + \alpha_i \cdot n} \right]$ határértéket.

Longáver Lajos, Nagybánya

4. Az $\left(a_{_{n}}\right)_{_{n\geq 1}}$ sorozat tagjaira $a_{_{1}}=\frac{1}{2},\ a_{_{2}}=2$ és $a_{_{n+1}}={}_{n+1}\overline{\left(\frac{a_{_{n}}^{2n}}{a_{_{n-1}}^{n-1}},\right)}$

 $\forall n \geq 2$. Igazold, hogy a sorozat konvergens, és számítsd ki a határértékét. Kacsó Ferenc, Marosvásárhely

XII. osztály

1. Az $f,g:[a,b] \to [a,b]$ folytonos függvényekre $f\circ g=g\circ f$. Igazold, hogy létezik olyan $x_0\in [a,b]$, amelyre $f(x_0)=g(x_0)$.

Farkas Csaba, Kolozsvár

2. Adjál példát öt elemű, kommutatív monoidra tudva azt, hogy a szorzótábla belsejében a monoid elemei rendre 1-szer, 3-szor, 4-szer illetve 14-szer szerepelnek!

Szöllősy György, Máramarossziget

- **3.** Hány megoldása van a $2x^2 + 8xy y^2 = 1$ egyenletnek
 - a) az egész számok halmazában?
 - b) a racionális számok halmazában?

Kovács Béla, Szatmárnémeti

4. Az $(x_n)_{n>0}$ valós számsorozat teljesíti az

$$x_{n+1} = \frac{\left(2n-1\right)x_n - \left(2n+1\right)}{\left(2n+1\right)x_n - \left(2n+3\right)}, \ n \ge 0$$

rekurziót és $x_0 = -1$.

a) Határozd meg a sorozat általános tagjának képletét!

b) Számítsd ki a
$$\lim_{n \to \infty} \prod_{k=1}^n \left(1 + \frac{k}{2} \left(1 - x_n\right)\right)$$
 határértéket.

András Szilárd, Kolozsvár

IX. osztály

1. Ha p osztható 5-tel, akkor csak a p=5 eset lehetséges és ez jó is, mert $5^4-6=619$ prímszám. Ha p nem osztható 5-tel, akkor p=5M+k, ahol $k\in\{\pm 1,\pm 2\}$, és így p^2 -nek az 5-tel való osztási maradéka 1 vagy 4, tehát p^4 -nek az 5-tel való osztási maradéka 1. Ez alapján p^4-6 osztható 5-tel és mivel a 11 nem teljes negyedik hatvány, ebben az esetben p^4-6 nem lehet prímszám. Tehát az egyetlen megoldás p=5.

2. Ha x a számrendszer alapszáma, akkor az csak 3-nál nagyobb természetes szám lehet, és az adott egyenlőség alapján:

$$(3x+3)^{2} = 2x^{3} + x + 3 \Leftrightarrow 2x^{3} - 9x^{2} - 17x - 6 = 0 \Leftrightarrow (x+1)(2x+1)(x-6) = 0.$$

Ebből következik, hogy az egyetlen megfelelő megoldás a 6, tehát 6-os alapú számrendszerben igaz az adott egyenlőség.

Vizsgáljuk 2008-at valamilyen x alapú számrendszerben. A $2x^3+8=y^2$ egyenletet kell megoldani a természetes számok halmazában, és a megoldás, ha van, akkor 9-nél nagyobb kell legyen. A felírt egyenlet bal oldala páros, ezért a jobb oldal is páros kell legyen, tehát y=2p, $p\in\mathbb{N}$. Így $x^3+4=2p^2$, tehát x is páros. Az x=2q, $q\in\mathbb{N}$ jelöléssel $4q^3+2=p^2$, tehát p is páros. Így p=2r, ahol $r\in\mathbb{N}$, tehát $2q^3+1=2r^2$. Mivel a jobb oldal páros és a bal oldal páratlan, az egyenletnek nincs megoldása.

Megjegyzés. A $33\cdot 33$ szorzat utolsó számjegye (tetszőleges számrendszerben) a $3\cdot 3$ szorzat utolsó számjegyéből adódik. Ez csak akkor lehet 3-as, ha a számrendszer alapja 6. Ellenőrizhető, hogy $33_{(6)}\cdot 33_{(6)}=2013_{(6)}$.

MEGOLDÁSOK 1. FORDULÓ

3. A lefedés "jobb széle" az alábbi ábrák valamelyike lehet

Ha a_n -nel jelöljük a $4\times n$ -es tábla lefedéseinek számát, akkor $a_n=a_{n-1}+a_{n-4}\,,\;a_1=1\,,\;a_2=1\,,\;a_3=1\text{ és }a_4=2\,.$ Tehát $a_{12}=a_{11}+a_8=a_{10}+2a_7+a_4=a_9+3a_6+4=$ $=a_8+4a_5+7=a_7+5a_4+11=$ $=a_c+22=a_c+23=a_4+24=26\,.$

4. A feltételek alapján (a mellékelt ábra jelöléseit használva) $AB \parallel CD$ és $BC \parallel DE$, valamint az \overrightarrow{AC} , \overrightarrow{BD} és \overrightarrow{CE} körívek mértéke 90° . Így $AD \perp BC$ és $BE \perp CD$. Ha az AMB, BMD, DMC és CMA háromszögekben felírjuk Pitagorász tételét, akkor kapjuk, hogy

$$AB^{2} + CD^{2} = (AM^{2} + BM^{2}) + (MC^{2} + MD^{2}) =$$

= $(AM^{2} + MC^{2}) + (BM^{2} + MD^{2}) = AC^{2} + DB^{2}.$

Hasonló módon kapjuk, hogy

$$BC^2 + DE^2 = EC^2 + DB^2 = AC^2 + DB^2.$$

5. Legyen $OM \cap EF = \{P\}$, $ME \cap AC = \{J\}$ és $MF \cap BD = \{K\}$.

 $OMB_{\Delta} \sim ORD_{\Delta}$, tehát $\frac{OM}{OR} = \frac{OB}{OD}$ és a sugársor párhuzamosokkal való

metszési tételéből következik, hogy $\frac{OB}{OD} = \frac{JM}{JE}$. Így $\frac{OM}{OR} = \frac{JM}{JE}$, tehát $ER \parallel JO \parallel MF$ vagyis $ER \parallel MF$.

Ehhez hasonlóan bizonyítjuk, hogy $RF \parallel OK \parallel EM$, tehát MFRE paralelogramma.

A hasonlóság alaptétele, a Thalész tétele és annak fordított tétele segítségével írhatjuk, hogy

$$EGJ_{\Delta} \sim HGO_{\Delta} \Rightarrow \frac{EG}{HG} = \frac{GJ}{GO}$$
 (1)

$$HFK_{\Delta} \sim HGO_{\Delta} \Rightarrow \frac{HF}{HG} = \frac{HK}{HO}$$
 (2)

$$\frac{EJ}{JM} = \frac{DO}{OB} = \frac{CO}{OA} = \frac{FK}{KM} \Rightarrow JK \parallel EF \ \Rightarrow \ OKJ_{\Delta} \text{-ben}$$

$$GH \parallel JK \Rightarrow \frac{GJ}{GO} = \frac{HK}{HO}$$
 (3).

(1), (2), (3) –ból következik $\frac{EG}{HG} = \frac{HF}{HG}$, ahonnan kapjuk, hogy EG = HF.

Az MFRE paralelogramma átlóinak metszéspontja P, tehát EP=PF és mivel EG=HF, ezért

$$GP = EP - EG = PF - HF = PH$$
,

vagyis P a (GH) felezőpontja.

MEGOLDÁSOK 1. FORDULÓ

Megjegyzés. Vázoljuk az EG = HF egy másik bizonyítását is. Az ADB és ABC háromszögekben az átlókkal húzott párhuzamosokra alkalmazzuk Thalész tételét:

$$\frac{EA}{ED} = \frac{MA}{MB}; \qquad \frac{FC}{FB} = \frac{MA}{MB} \implies \frac{EA}{ED} = \frac{FC}{FB}.$$

hogy EG = HF.

Felvesszük az $U\in \left(BC\right)$ pontot úgy, hogy UB=FC és innen következik, hogy

$$\frac{UB}{UC} = \frac{FC}{FB} = \frac{EA}{ED} = \frac{p}{q}.$$

Legyen S, T az EU metszéspontja AC illetve BD-vel és legyen

$$\begin{split} T_1 \in \left(BD\right) & \text{ igy, hogy } \frac{T_1B}{T_1D} = \frac{p}{q} \text{, ekkor Thalész fordított tételéből} \\ \text{következik } ET_1 \parallel AB \text{, } T_1U \parallel CD \text{ és mivel } AB \parallel CD \text{ következik, hogy } \\ E, T_1, U \text{ egy egyenesen helyezkednek el és így } T_1 = T \text{ és } EU \parallel AB \text{.} \\ \text{Mivel } EU \parallel AB \text{, a hasonlóság alaptétele értelmében: } \\ \frac{ES}{DC} = \frac{EA}{AD} = \frac{UB}{BC} = \frac{TU}{DC} \text{ és így } ES = TU \text{. Az } EFU \text{ háromszögben alkalmazzuk Menelaosz tételét előbb a } B \text{, } T \text{, } H \text{ majd a } C \text{, } G \text{, } S \\ \text{szelőkre és mivel az } UB = FC \text{ és } ES = TU \text{, következik, hogy} \end{split}$$

 $\frac{BU}{BE} = \frac{CF}{CU}$ és $\frac{TE}{TU} = \frac{SU}{SE}$. Így $\frac{HF}{HE} = \frac{GE}{CE}$, ahonnan következik,

6. a) $\left|x-a\right|+\left|x-b\right|=\left|x-a\right|+\left|b-x\right|\geq\left|(x-a)+(b-x)\right|=\left|a-b\right|$ Egyenlőség akkor és csakis akkor van, ha (x-a) és (b-x) azonos előjelűek, vagyis ha az x az a és a b közt van.

b) A
$$\left|x-a\right|+\left|x-b\right|\geq\left|b-a\right|$$
 egyenlőtlenséget használjuk az $(a,b)\in\{(1,2n),(2,2n-1),...(n,n+1)\}$

számpárokra, majd az egyenlőtlenségek megfelelő oldalait összeadjuk. A bal oldalon az egyenletben szereplő összeg jelenik meg, a jobb oldalon pedig $1+3+5+\ldots+(2n-1)=n^2$. Mivel a felhasznált egyenlőtlenségben pontosan akkor van egyenlőség, ha x az a és a b közt van, a

$$|x-1| + |x-2| + |x-3| + \dots + |x-(2n-1)| + |x-2n| \ge n^2$$

egyenlőtlenségben egyenlőség csakis akkor állhat fenn, ha $x \in [n, n+1]$.

X. osztály

- **1.** Egy egész szám negyedik hatványának 8-cal való osztási maradéka 0 vagy 1, tehát a bal oldal 8-cal való osztási maradéka 0, 1 vagy 2. Ha z < 0, akkor a bal oldal egész szám, a jobb oldal pedig nem, tehát ebben az esetben az egyenletnek nincs megoldása. Ha z = 0, akkor a baloldal 4, tehát nem lehet egyenlő egy olyan számmal amelynek a 8-cal való osztási maradéka 0, 1 vagy 2. Ha z > 0, akkor a $(2008^z + 3)$ -nak a 8-cal való osztási maradéka 3, következésképpen nem lehet egyenlő a jobb oldallal. Tehát az egyenlőség nem teljesülhet, ha $x,y,z \in \mathbb{Z}$.
- **2.** Készítsünk három táblázatot. Egyet, amelyben az elemek szorzata minden sorban és minden oszlopban +1 vagy -1. Ilyen táblázat csak úgy készíthető, ha minden eleme +1 vagy -1, ami azt jelenti, hogy minden mezőt kétféleképpen lehet kitölteni. Mivel n^2 mező van, ezért ilyen táblázat 2^{n^2} darab készíthető. A második táblázat legyen olyan, amelynek minden sorában és minden oszlopában az elemek szorzata 2.

MEGOLDÁSOK 1. FORDULÓ

Ilyen táblázat csak úgy készíthető, ha minden sorban és oszlopban van egy 2-es és a többi elem 1-es. Az első sorban a 2-es elhelyezésére van n lehetőség, a másodikban(n-1) és így tovább az utolsóban 1, tehát ilyen táblázat $n\cdot (n-1)\cdot (n-2)\cdot \ldots \cdot 2\cdot 1=n!$ darab készíthető. A harmadik táblázat ugyanolyan mint a második, csak a 2-es helyett 3-sal. Ilyen is n! darab készíthető. A három fajta táblázatból bárhogyan is helyezzünk egymásra egyet-egyet az egymásra eső mezők elemeit összeszorozva, egy olyan táblázatot kapunk, amelyben az elemek szorzata minden sorban és minden oszlopban +6 vagy -6. Ugyanakkor ha egy $n\times n$ -es táblázat minden sorában és minden oszlopában az elemek szorzata +6 vagy -6, akkor ehhez a táblázathoz egyértelműen hozzárendelhető az előbbi három típusú táblázat, tehát a kért táblázat $2^{n^2}\cdot n! \cdot n! = 2^{n^2}\cdot \left(n!\right)^2$ -féleképpen tölthető ki.

3. Színezzük ki a háromszögeket két színnel (fehér és fekete) úgy, hogy bármely két oldalszomszédos háromszögnek legyen különböző színe. Minden lépésben fehérről feketére vagy feketéről fehérre léphetünk, tehát az érintett fekete és fehér mezők számának különbsége -1, 0 vagy 1. Másrészt a táblán az egyikből pontosan n darabbal van több, tehát legalább n-1 mező kimarad a lépéssorozatból. A mellékelt ábrán látható kígyószerű lépéssorozat alapján láthatjuk, hogy elérhető az, amikor csak n-1 mező marad ki, így tehát a leghosszabb lépéssorozat hossza

$$H = \frac{n(n+1)}{2} + \frac{(n-1)n}{2} - (n-1) - 1 = n^2 - n.$$

Természetesen más útvonalak is léteznek, de mindegyiknél az egyik csúcsban kell kezdeni és valamelyik másikban befejezni a lépéssorozatot.

4. Legyen AB=c, BC=a, CA=b így c < a < b és $2a^2=b^2+c^2$. A háromszög G súlypontjának a BC oldalra vonatkoztatott szimmetrikusa akkor és csakis akkor van a háromszög köré írt körön, ha $m\left(\widehat{BGC}\right)=180^\circ-m(\widehat{A})$.

A $BGC \triangle$ -ből az oldalfelezők hosszára vonatkozó képlet, a koszinusztétel és a feltétel alapján $\cos(\widehat{BGC}) = -\frac{a^2}{2bc}$. Másrészt a koszinusztételből az ABC háromszögben azt kapjuk, hogy $\cos(\widehat{A}) = \frac{a^2}{2bc}$, tehát $m\left(\widehat{BGC}\right) = 180^\circ - m(\widehat{A})$.

5. Az ABC háromszögben

$$\overrightarrow{IG} = \overrightarrow{AG} - \overrightarrow{AI} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{3} - \frac{7\overrightarrow{AB} + 6\overrightarrow{AC}}{8 + 7 + 6} = \frac{\overrightarrow{AC}}{21}.$$

MEGOLDÁSOK 1. FORDULÓ

Ez azt jelenti, hogy $IG \parallel AC$ és $IG = \frac{AC}{21} = \frac{7}{21} = \frac{1}{3}$. Legyen BD az ABC háromszög magassága ($D \in AC$) és legyen $BD \cap IG = \left\{E\right\}$, így BE a BIG háromszög magassága. F-el jelöljük az (AC) felezőpontját. A Heron képlettel kiszámítjuk az ABC háromszög területét: $T = \frac{21\sqrt{15}}{4} = \frac{AC \cdot BD}{2}$, ahonnan $BD = \frac{3\sqrt{15}}{2}$. Mivel $IG \parallel AC$, következik $\frac{BE}{BD} = \frac{BG}{BF} = \frac{2}{3}$, ahonnan $BE = \sqrt{15}$. Tehát $T_{BIG_{\Delta}} = \frac{IG \cdot BE}{2} = \frac{\sqrt{15}}{6}$.

Megjegyzés. A feladat általánosítható.

Ha a szokásos jelöléseket használjuk és $b=\frac{a+c}{2}$ (c < b < a olyan számtani haladvány, amelyben az állandó különbség $0 < r < \frac{b}{2}$, hogy a háromszög oldalai között fennálljon az egyenlőtlenség) , akkor $\overrightarrow{IG} = \frac{b-c}{3b}\overrightarrow{AC}$ vagyis az IG párhuzamos az AC-vel és az előzőekhez hasonlóan kiszámíthatjuk a BIG háromszög területét az a, b, c függvényében: $T_{BIG_{\Delta}} = \frac{2\left(b-c\right)T_{ABC_{\Delta}}}{9b}$.

6. Ha n=1, akkor $\frac{x_1^3}{y_1^2} \ge \frac{x_1^3}{y_1^2}$, ami igaz.

 $\text{Ha } n=2 \text{ , akkor a kijelent\'es a k\"ovetkez\~o} \text{ alak\'u} \ \frac{x_1^3}{y_1^2} + \frac{x_2^3}{y_2^2} \geq \frac{(x_1 + x_2)^3}{(y_1 + y_2)^2} \text{ ,}$

ami átírható a következő alakba $(y_1+y_2)^2\left(\frac{x_1^3}{y_1^2}+\frac{x_2^3}{y_2^2}\right)\geq (x_1+x_2)^3$. Ezt

az egyenlőtlenséget a következőképpen igazolhatjuk:

$$\begin{split} (y_1+y_2)^2 \left(\frac{x_1^3}{y_1^2} + \frac{x_2^3}{y_2^2}\right) &= \\ &= x_1^3 + \left(\frac{x_2^3 y_1^2}{y_2^2} + \frac{x_1^3 y_2}{y_1} + \frac{x_1^3 y_2}{y_1}\right) + \left(\frac{x_1^3 y_2^2}{y_1^2} + \frac{x_2^3 y_1}{y_2} + \frac{x_2^3 y_1}{y_2}\right) + x_2^3 \geq \\ &\geq x_1^3 + 3 \cdot \sqrt[3]{\frac{x_2^3 y_1^2}{y_2^2} \cdot \frac{x_1^3 y_2}{y_1} \cdot \frac{x_1^3 y_2}{y_1}} + 3 \cdot \sqrt[3]{\frac{x_1^3 y_2^2}{y_1^2} \cdot \frac{x_2^3 y_1}{y_2} \cdot \frac{x_2^3 y_1}{y_2}} + x_2^3 = \left(x_1 + x_2\right)^3 \end{split}$$

Ezt felhasználva, feltételezzük, hogy az egyenlőtlenség igaz n-re és igazoljuk $\left(n+1\right)$ -re.

$$\sum_{k=1}^{n+1} \frac{x_k^3}{y_k^2} = \sum_{k=1}^{n} \frac{x_k^3}{y_k^2} + \frac{x_{n+1}^3}{y_{n+1}^2} \ge \frac{\left(\sum_{k=1}^{n} x_k\right)^3}{\left(\sum_{k=1}^{n} y_k\right)^2} + \frac{x_{n+1}^3}{y_{n+1}^2} \ge \frac{\left(\sum_{k=1}^{n+1} x_k\right)^3}{\left(\sum_{k=1}^{n+1} y_k\right)^2}.$$

MEGOLDÁSOK 1. FORDULÓ

XI. és XII. osztály

1. E pontosan akkor osztható 24-gyel, ha 77E is osztható 24-gyel.

$$77 \cdot E = 7 \cdot a \cdot 11^{2n} + 11 \cdot b \cdot 7^{2k} - 385 =$$

$$= 7 \cdot a \cdot 121^{n} + 11 \cdot b \cdot 49^{k} - 385 =$$

$$= 7 \cdot a \cdot \left(5 \cdot 24 + 1\right)^{n} + 11 \cdot b \cdot \left(2 \cdot 24 + 1\right)^{k} - 385$$

Az $(5 \cdot 24 + 1)^n$ kifejtésében (Newton-féle binomképlet) az utolsó tag kivételével minden tag osztható 24-gyel, tehát

$$(5 \cdot 24 + 1)^n = 24 \cdot k_1 + 1.$$

Hasonlóan $\left(2\cdot 24+1\right)^k=24\cdot k_2+1$, ahol $k_1,k_2\in\mathbb{N}^*$. Ezek alapján írhatjuk:

$$\begin{split} 77 \cdot E &= 7 \cdot a \cdot \left(24 \cdot k_{_{\! 1}} + 1\right) + 11 \cdot b \cdot \left(24 \cdot k_{_{\! 2}} + 1\right) - (16 \cdot 24 + 1) = \\ &= \left(7 \cdot a \cdot k_{_{\! 1}} + 11 \cdot b \cdot k_{_{\! 2}} - 16\right) \cdot 24 + (7 \cdot a + 11 \cdot b - 1), \end{split}$$

ahol $\left(7\cdot a\cdot k_1+11\cdot b\cdot k_2-16\right)\in\mathbb{N}^*$ és $\left(7\cdot a+11\cdot b-1\right)\in\mathbb{N}^*$. Tehát 77E (és így E is) akkor és csak akkor osztható 24-gyel, ha 7a+11b-1 osztható 24-gyel.

2. Az $A_k A_{k+1}$ szakasz hosszát jelölje a_k , $k \in \{1,2,...,2008\}$ ($a_{2008} = \left|A_{2008} A_1\right|$). Feltételezzük, hogy a kívánt tulajdonságú háromszög

$$\text{nem létezik. Így } \frac{a_{_{\!k}}+a_{_{\!k+1}}}{2} \geq \sqrt{a_{_{\!k}}a_{_{\!k+1}}} \geq \sqrt{a_{_{\!k}}a_{_{\!k+1}}} \sin(A_{_{\!k}}A_{_{\!k+1}}A_{_{\!k+2}}) \geq \sqrt{2} \ .$$

Ez alapján írhatjuk, hogy $2839 = K = \sum_{k=1}^{2008} \frac{a_k + a_{k+1}}{2} \ge 2008\sqrt{2}$.

Másrészt $\sqrt{2}=1,4142...>1,414>\frac{2839}{2008}$, tehát ellentmondáshoz jutunk. Így létezik a kért tulajdonságú háromszög.

3. Mivel (a+b+ab)+1=(a+1)(b+1), ha a táblára írt számokhoz egyet hozzáadunk és az így kapott számokat összeszorozzuk, a szorzat értéke invariáns. Ez a szorzat kezdetben

$$\left(1+\frac{1}{1}\right)\cdot\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\ldots\cdot\left(1+\frac{1}{2008}\right) = \frac{2}{1}\cdot\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot\ldots\cdot\frac{2009}{2008} = 2009\,,$$

tehát akármilyen sorrendben cseréljük a számokat, a végén mindig 2009-1=2008 marad.

4. Ha az ABC háromszög oldalhossza 2a, akkor a BC-t Ox tengelynek választva és a felezőpontját origónak, írhatjuk, hogy

$$MA^2 = x^2 + \left(y - a\sqrt{3}\right)^2$$

$$MB^2 = \left(x + a\right)^2 + y^2 \text{ és } MC^2 = \left(x - a\right)^2 + y^2.$$

MEGOLDÁSOK 1. FORDULÓ

Így az $MA^2=MB^2+MC^2$ egyenlőség ekvivalens az $x^2+\left(y+a\sqrt{3}\right)^2=4a^2$ összefüggéssel. Ez viszont a D középpontú DB sugarú kör egyenlete, ahol D az A-nak a BC-re vonatkozó szimmetrikusa. Hasonló módon az $MB^2=MA^2+MC^2$ és $MC^2=MB^2+MA^2$ egyenlőségekből további két kört kapunk, amelyeknek középpontja a B-nek illetve C-nek a szembenfekvő oldalra vonatkozó szimmetrikusa és sugara 2a, tehát a mértani hely a három kör egyesítése.

5. Vegyük fel a DC oldalon az M pontot úgy $m\left(\widehat{MBC}\right) = 20^\circ$. Mivel $m\left(\widehat{DCB}\right) = 80^\circ$, az MBC háromszög egyenlő szárú, tehát $\begin{bmatrix} BM \end{bmatrix} \equiv \begin{bmatrix} BC \end{bmatrix}$. Az ABM háromszögben $\begin{bmatrix} AB \end{bmatrix} \equiv \begin{bmatrix} BM \end{bmatrix}$ és $m\left(\widehat{MBA}\right) = 60^\circ$, tehát ez a háromszög egyenlő oldalú. De így $m\left(\widehat{MAD}\right) = 70^\circ$, tehát az ADM háromszög is egyenlő szárú. Így $\begin{bmatrix} AM \end{bmatrix} \equiv \begin{bmatrix} MD \end{bmatrix}$, tehát $\begin{bmatrix} MD \end{bmatrix} \equiv \begin{bmatrix} BM \end{bmatrix}$. De $m\left(\widehat{AMD}\right) = 180^\circ - 80^\circ = 100^\circ$ és ez alapján $m\left(\widehat{MDB}\right) = 40^\circ$, tehát $m\left(\widehat{BDA}\right) = 70^\circ - 40^\circ = 30^\circ$.

6. A sajátos esetek vizsgálata során eljuthatunk a következő azonosságokhoz:

$$(n+4)^{2} + (n+5)^{2} - (n+2)^{2} - (n+6)^{2} = 2n+1,$$

$$(n+8)^{2} + (n+4)^{2} - (n+9)^{2} - (n+1)^{2} = 4n-2,$$

tehát a páratlan számok és a 4n-2 alakú számok előállíthatók a kívánt alakban. Másrészt, ha m előállítható, akkor 4m is előállítható (mert mind a négy számot szorozzuk 2-vel), tehát így az $1=1^2+5^2-3^2-4^2$ felírás és a fenti két azonosság alapján tetszőleges, 0-tól különböző, 4-gyel osztható szám is előállítható a kért alakban. A $0=1^2+8^2-5^2-6^2$ előállítás mutatja, hogy n=0 esetén is létezik a kért előállítás, ezért a bizonyítás teljes.

Megjegyzés. Az $(n+4)^2 + (n+1)^2 - n^2 - (n+3)^2 = 4n+8$ azonosság alapján is belátható a 4 többszöröseire vonatkozó rész.

MEGOLDÁSOK 2. FORDULÓ

IX. osztály

1. Ha $\left[\frac{x}{2008}\right] = k \in \mathbb{Z}$, akkor $2008k \le x < 2008\left(k+1\right)$. Másrészt az $\left[x\right] = k + 2008$ egyenlőségből $k + 2008 \le x < k + 2009$, tehát $x \in \left[2008k, 2008\left(k+1\right)\right) \cap \left[k + 2008, k + 2009\right)$.

Ez a metszet üres, ha

$$2008(k+1) \le k + 2008, k \in \mathbb{Z} \Leftrightarrow k \le 0, k \in \mathbb{Z}$$

vagy ha

$$k + 2009 \le 2008k, k \in \mathbb{Z} \Leftrightarrow k \ge 2, k \in \mathbb{Z}$$
.

Ez azt jelenti, hogy csak a k=1 eset lehetséges, és ebben az esetben $x\in \left[2008,4016\right)\cap \left[2009,2010\right)$.

Tehát a megoldás $x \in [2009, 2010]$.

2. A feltételek alapján az állandó hányados a $\{2,3,4,...,n\}$ halmazban kell legyen. Olyan mértani haladvány, amelynek a hányadosa 2-vel egyenlő $\left[\frac{n^2}{2^2}\right]$ választható ki, olyan amelynek a hányadosa 3-mal

egyenlő
$$\left[\frac{n^2}{3^2}\right]$$
 és így tovább. Tehát $S_n = \left[\frac{n^2}{2^2}\right] + \left[\frac{n^2}{3^2}\right] + \ldots + \left[\frac{n^2}{n^2}\right]$ és így

azt kell igazolni, hogy

$$\frac{n^2 - 4n + 6}{2} < \left[\frac{n^2}{2^2}\right] + \left[\frac{n^2}{3^2}\right] + \dots + \left[\frac{n^2}{n^2}\right] < n^2.$$

Felhasználva az egészrész értelmezését, azt kapjuk, hogy

$$S_{n} = \left[\frac{n^{2}}{2^{2}}\right] + \left[\frac{n^{2}}{3^{2}}\right] + \dots + \left[\frac{n^{2}}{n^{2}}\right] > \frac{n^{2}}{2^{2}} + \frac{n^{2}}{3^{2}} + \dots + 1 - n + 2 = 0$$

$$= -n + 3 + n^{2} \left(\frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots + \frac{1}{(n-1)^{2}} \right) \ge$$

$$\ge -n + 3 + n^{2} \left(\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{(n-1) \cdot n} \right) = \frac{n^{2} - 4n + 6}{2}.$$

Hasonlóan kapjuk, hogy

$$\begin{split} S_n &= \left[\frac{n^2}{2^2}\right] + \left[\frac{n^2}{3^2}\right] + \ldots + \left[\frac{n^2}{n^2}\right] < \frac{n^2}{2^2} + \frac{n^2}{3^2} + \ldots + \frac{n^2}{n^2} = \\ &= n^2 \left(\frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}\right) < \\ &= n^2 \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \ldots + \frac{1}{(n-1) \cdot n}\right) < n^2 \,. \end{split}$$

3. a)
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} =$$

$$= \overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{MO} + \overrightarrow{OB} + \overrightarrow{MO} + \overrightarrow{OC} + \overrightarrow{MO} + \overrightarrow{OD} =$$

$$= 4\overrightarrow{MO} + \left(\overrightarrow{OA} + \overrightarrow{OC}\right) + \left(\overrightarrow{OB} + \overrightarrow{OD}\right)$$
(1)

Az AOB és COD háromszögek hasonlósága alapján

$$\frac{OA}{OC} = \frac{a}{b} \Rightarrow \frac{OA}{OA + OC} = \frac{a}{a + b},$$

$$\frac{OA + OC}{OC} = \frac{a + b}{b} \Rightarrow OA = \frac{a}{a + b} CA, OC = \frac{b}{a + b} CA.$$

Hasonlóképpen
$$OB = \frac{a}{a+b}DB$$
, $OD = \frac{b}{a+b}DB$, tehát
$$\overrightarrow{OA} + \overrightarrow{OC} = \frac{a-b}{a+b}\overrightarrow{CA} \text{ \'es}$$

$$\overrightarrow{OB} + \overrightarrow{OD} = \frac{a-b}{a+b}\overrightarrow{DB} \text{ (2)}$$

(1)-ből és (2)-ből következik a bizonyítandó összefüggés.

MEGOLDÁSOK 2. FORDULÓ

b) Az (1) összefüggés alapján

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO} + \left(\overrightarrow{OA} + \overrightarrow{OB}\right) + \left(\overrightarrow{OC} + \overrightarrow{OD}\right), \text{ ahol}$$

$$\overrightarrow{OA} + \overrightarrow{OB} = 2\overrightarrow{OE}, \overrightarrow{OC} + \overrightarrow{OD} = 2\overrightarrow{OF}, \text{ tehát}$$

$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 2\left(\overrightarrow{OE} + \overrightarrow{OF}\right) + 4\overrightarrow{MO},$$

ezért ha $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = \overrightarrow{0}$, akkor innen következik, hogy $\overrightarrow{OM} = \frac{\overrightarrow{OE} + \overrightarrow{OF}}{2}.$

Másrészt az O, E, F pontok kollineárisak, ezért következik, hogy M, E, F is kollineáris pontok, éspedig M = G az EF felezőpontja (a trapéz súlypontja).

4. Felírjuk az *OIH* háromszög súlypontjának helyzetvektorát:

$$\overrightarrow{OG_1} = \frac{\overrightarrow{OO} + \overrightarrow{OH} + \overrightarrow{OI}}{3} = \frac{\overrightarrow{OH} + \overrightarrow{OI}}{3}$$

és felhasználjuk az Euler-egyenesen érvényes $\overrightarrow{OH}=3\cdot\overrightarrow{OG}$ összefüggést. Így az

$$\overrightarrow{OG_1} = \frac{3 \cdot \overrightarrow{OG} + \overrightarrow{OI}}{3} = \overrightarrow{OG} + \frac{\overrightarrow{OI}}{3}$$

Egyenlőséghez jutunk, ahonnan $\overrightarrow{OG_1} - \overrightarrow{OG} = \frac{\overrightarrow{OI}}{3}$, tehát $\overrightarrow{GG_1} = \frac{\overrightarrow{OI}}{3}$, amiből következik, hogy $OI = 3 \cdot GG_1$ és $OI \parallel GG_1$.

X. osztály

1. A logaritmus létezéséhez szükséges az x>0 egyenlőtlenség, és a bal oldal pozitivitása miatt a megoldások teljesítik az $x^2-x>0$ egyenlőtlenséget is. Így x>1. Ha $\left[\log_2 x\right]=k$, akkor $k\in\mathbb{Z}$ és $k\geq 0$ valamint

$$k \le \log_2 x < k + 1 \Leftrightarrow 2^k \le x < 2^{k+1}$$
. (1)

Az $x^2-x-2^k=0$ egyenlet gyökei közül csak a pozitív gyök felel meg, tehát $x=\frac{1+\sqrt{1+2^{k+2}}}{2}$ és ez a gyök teljesíti az (1) összefüggést. A

$$2^k \le \frac{1 + \sqrt{1 + 2^{k+2}}}{2} < 2^{k+1}$$

egyenlőtlenségrendszer megoldásából és a $k\in\mathbb{Z}$, $k\geq 0$ feltételekből azt kapjuk, hogy k=0 vagy k=1. Így az eredeti egyenlet megoldásai

$$x_1 = \frac{1+\sqrt{5}}{2}$$
 és $x_2 = 2$.

 $\begin{aligned} \textbf{2. Ha} \ \ x_{_k} &\in \left[a_{_k}, b_{_k}\right] \text{, akkor } \left(a_{_k} + b_{_k}\right) x_{_k} - a_{_k} b_{_k} \geq x_{_k}^2 \text{, ahonnan azt kapjuk,} \\ &\text{hogy } \sum_{\textit{ciklikus}} \log_{x_{_1}} \left(\left(a_{_k} + b_{_k}\right) x_{_k} - a_{_k} b_{_k}\right) \geq \sum_{\textit{ciklikus}} \log_{x_{_1}} \left(x_{_2}^2\right) \geq \\ &\geq 2 \sum_{\textit{ciklikus}} \log_{x_{_1}} x_{_2} \geq 2 n \sqrt[n]{\prod_{\textit{ciklikus}} \log_{x_{_1}} x_{_2}} = 2n \;. \end{aligned}$

3. Legyen z = x + iy, ahol $x^2 + y^2 = 1$ és y > 0.

Számolással igazolható, hogy $\frac{\left|z+1\right|+\left|z-1\right|}{\left|z+i\right|}=\sqrt{2}$ és

$$\frac{\left|z+1\right|-\left|z-1\right|}{\left|z-i\right|} = \sqrt{2}$$
, tehát a bizonyítandó egyenlőség igaz (2+2=4).

MEGOLDÁSOK 2. FORDULÓ

4. Helyezzük a hatszöget a komplex számsíkra. Legyenek a csúcsok affixumai az a,b,c,d,e,f komplex számok (trigonometrikus irányban a

csúcsok ABCDEF). Legyen $\varepsilon = \frac{1}{2} + i\frac{\sqrt{3}}{2}$. Az ε -nal való szorzás egy pozitív irányú 60° -os forgatást jelent. A hatszög AB oldalára írt háromszög csúcsa legyen $A_{\rm l}$, a BC oldalára írt hatszög csúcsa $B_{\rm l}$ és Ekkor azt kapjuk, hogy $a_1 = b + \varepsilon(a - b)$, tovább. így $b_{\mbox{\tiny I}}=c+\varepsilon(b-c)\,,\ c_{\mbox{\tiny I}}=d+\varepsilon(c-d)\,$ stb. Ha az $A_{\!\!\!I}B_{\!\!\!I}C_{\!\!\!I}D_{\!\!\!I}E_{\!\!\!I}F_{\!\!\!I}\,$ hatszög szabályos és a középpontját választjuk origónak, akkor A_1 -et az origó körül $\,60^\circ$ -kal elforgatva $\,B_{\!_1}$ -et kapunk és így tovább. Tehát $\,b_{\!_1}=\varepsilon a_{\!_1}$, $c_1 = \varepsilon b_1$ és így tovább. Innen kapjuk, hogy $c - \varepsilon c = \varepsilon^2 (a - b)$ és $d - \varepsilon d = \varepsilon^2 (b - c)$. Az ε -t kiküszöbölve azt d-b=2(c-b)ez pedig azt jelenti, hogy $AD\,$ és $\,BC\,$ párhuzamosak és BC az AD fele. Ugyanígy felírva a többi csúcsokra is az összefüggéseket, azt kapjuk, hogy a külső hatszög szabályosságának szükséges és elégséges feltétele az, hogy az eredeti hatszög szemben fekvő oldalai egyenlők és párhuzamosak legyenek, ami nem azt jelenti, hogy a hatszög szabályos kell legyen.

XI. osztály

1. a) Könnyen ellenőrizhető, hogy

$$k^{5} - 5k^{3} + 4k = (k-2)(k-1)k(k+1)(k+2),$$

azaz öt egymás utáni egész szám szorzata, amely osztható 5! = 120-szal (a számok közt van egy, amely osztható 5-tel, legalább egy, amely osztható 3-mal és két páros szám, amelyek közül az egyik 4-gyel is osztható, tehát a számok szorzata osztható $2 \cdot 4 \cdot 3 \cdot 5 = 120$ -szal, vagy

egyszerűen
$$C_{k+2}^5 = \frac{(k+2)(k+1)k(k-1)(k-2)}{120} \in \mathbb{N}$$
).

b) A
$$P(n) = \sum_{k=1}^{n} (k-2)(k-1)k(k+1)(k+2)$$
, minden $n \in \mathbb{N}^{*}$ esetén,

feltételből következik, hogy P(1)=P(2)=0 , $P(3)=5\,!=120$,

$$P(4) = 5! + 6! = 7 \cdot 5! = \frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{6},$$

$$P(5) = \frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{6} + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = \frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{6}.$$

Úgy tűnik, hogy érvényes a

$$P(n) = \frac{1}{6} (n-2)(n-1)n(n+1)(n+2)(n+3)$$

összefüggés ($n \in \{1,2,3,4,5\}$ esetén biztosan igaz). Ezt a matematikai indukció módszerével igazoljuk.

$$P(n+1) = P(n) + (n-1)n(n+1)(n+2)(n+3) =$$

$$= \frac{1}{6}(n-1)n(n+1)(n+2)(n+3)(n+4),$$

tehát a matematikai indukció elve alapján

$$P(n)=\frac{1}{6}\big(n-2\big)\big(n-1\big)n\big(n+1\big)\big(n+2\big)\big(n+3\big), \text{ bármely } n\in\mathbb{N}^* \text{ esetén.}$$

Ez az egyetlen polinom, amely teljesíti az adott feltételt, mert ha lenne még egy Q polinom is, akkor a két polinom helyettesítési értéke

MEGOLDÁSOK 2. FORDULÓ

végtelen sok pontban (minden természetes számra) azonos lenne, és így a két polinom is azonos volna. A polinom képlete szerint

$$P(-3) = \frac{1}{6}(-5)(-4)(-3)(-2)(-1) \cdot 0 = 0.$$

Megjegyzések. i. Ha

$$P(n) = \sum_{k=1}^{n} (k-p)(k-p+1)...k(k+1)(k+2)...(k+p), \forall n \in \mathbb{N}^{*},$$

akkor

$$P(n) = \frac{1}{2(p+1)}(n-p)(n-p+1)...(n-1)n(n+1)....(n+p)(n+p+1),$$
 ahol $p \in \mathbb{N}^*$.

ii. Írhatjuk, hogy $\frac{1}{120}P(n)=\sum_{k=1}^n C_{k+2}^5=\sum_{k=1}^n \left(C_{k+3}^6-C_{k+2}^6\right)=C_{n+3}^6,$ tehát

$$P(n) = 120 \cdot C_{n+3}^6 = \frac{\left(n+3\right)\left(n+2\right)\left(n+1\right)n\left(n-1\right)\left(n-2\right)}{6}.$$

Ez alapján következik, hogy

$$P(x) = \frac{\left(x+3\right)\left(x+2\right)\left(x+1\right)x\left(x-1\right)\left(x-2\right)}{6}, \ \forall \ x \in \mathbb{R}.$$

2. Az $AB + BA = O_n$ egyenlőség alapján

$$(A+B)^2 = A^2 + AB + BA + B^2 = A^2 + B^2$$
, és
 $(A-B)^2 = A^2 - AB - BA + B^2 = A^2 + B^2$,

ahonnan $\left(\det\!\left(A+B\right)\right)^2 = \det\!\left(A^2+B^2\right)$ és $\left(\det\!\left(A-B\right)\right)^2 = \det\!\left(A^2+B^2\right)$, tehát

$$\left(\det\left(A+B\right)\right)^{2}+\left(\det\left(A-B\right)\right)^{2}=2\det\left(A^{2}+B^{2}\right).$$

3. a) A feltételek alapján

$$A = \begin{pmatrix} 0 & -1 & -2 & -3 & \dots & -k+1 \\ 1 & 0 & -1 & -2 & \dots & -k+2 \\ 2 & 1 & 0 & 1 & \dots & -k+3 \\ 3 & 2 & 1 & 0 & \dots & -k+4 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ k-1 & k-2 & k-3 & k-4 & \dots & 0 \end{pmatrix}.$$

A mátrix második sorát kivonva a harmadikból, majd az elsőt kivonva a másodikból (vagy általában akármelyik sort kivonva a rákövetkezőből) olyan sorokat kapunk, amelyeknek minden eleme 1-gyel egyenlő. Így a mátrix determinánsa nulla minden $k \geq 3$ természetes szám esetében. k=1 esetén a determináns 0 és k=2 esetén 1.

b) A kiválasztott számok összege nulla:

$$\begin{split} \sum_{i=1}^k \alpha_i &= a_{1j_1} + a_{2j_2} + \ldots + a_{kj_k} = 1 - j_1 + 2 - j_2 + \ldots + k - j_k = \\ &= (1 + 2 + \ldots + k) - (1 + 2 + \ldots + k) = 0 \,. \end{split}$$

A határérték kiszámításához a következő lépések vezetnek:

$$\begin{split} \lim_{n \to \infty} & \left(\sum_{i=1}^k \alpha_i \cdot \sqrt{n^2 + \alpha_i \cdot n} \right) = \lim_{n \to \infty} \left(\sum_{i=1}^k \alpha_i \cdot \sqrt{n^2 + \alpha_i \cdot n} - n \cdot 0 \right) = \\ & = \lim_{n \to \infty} \left(\sum_{i=1}^k \alpha_i \cdot \sqrt{n^2 + \alpha_i \cdot n} - n \cdot \sum_{i=1}^k \alpha_i \right) = \\ & \lim_{n \to \infty} \left[\sum_{i=1}^k \left(\alpha_i \cdot \left(\sqrt{n^2 + \alpha_i \cdot n} - n \right) \right) \right] = \\ & = \lim_{n \to \infty} \sum_{i=1}^k \alpha_i \cdot \frac{n^2 + \alpha_i \cdot n - n^2}{\sqrt{n^2 + \alpha_i \cdot n} + n} = \frac{\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_k^2}{2} \,. \end{split}$$

MEGOLDÁSOK 2. FORDULÓ

4. Az $\left(a_n\right)_{n\geq 1}$ sorozat általános tagja felírható az $a_n=2^{b_n}$ alakban, ahol $b_1=-1,\,b_2=1\,$ és $2nb_n=\left(n-1\right)b_{n-1}+\left(n+1\right)b_{n+1}.$ Az így értelmezett $\left(b_n\right)_{n\geq 1}$ sorozatra

$$b_{n+1} - b_n = \frac{n-1}{n+1} (b_n - b_{n-1}),$$

ahonnan $b_{n+1}-b_n=\frac{4}{n\left(n+1\right)},$ vagy $b_n=\frac{3n-4}{n}.$ Az utóbbi össze-

függés alapján azonnal következik, hogy a $\left(b_n\right)_{n\geq 1}$ sorozat konvergens és határértéke 3, ami azt mutatja, hogy az $\left(a_n\right)_{n\geq 1}$ sorozat is konvergens és határértéke 8.

Megjegyzés. A rekurzió logaritmálása után látható, hogy az $x_n = n \cdot \ln \left(a_n \right)$ sorozat számtani haladvány.

XII. osztály

1. Feltételezzük, hogy $f(x) \neq g(x)$, $\forall \, x \in [a,b]$. Mivel f és g folytonosak, az f-g függvény is az, és ráadásul előjeltartó (feltételezhetjük, hogy (f-g)(x)>0, $\forall \, x \in [a,b]$). Ha $m=\min_{x\in [a,b]}f(x)-g(x)$, akkor írhatjuk, hogy f(x)>g(x)+m, $\forall \, x \in [a,b]$. Ha x helyett f(x)-et helyettesítünk, akkor azt kapjuk, hogy

$$f(f(x)) > g(f(x)) + m, \ \forall x \in [a, b].$$

De g(f(x))=f(g(x)) és az f(x)>g(x)+m egyenlőtlenségbe x helyett g(x)-et helyettesítve kapjuk, hogy f(g(x))>g(g(x))+m, tehát

$$f(f(x)) > g(g(x)) + 2m, \ \forall \ x \in [a,b].$$

A matematikai indukció módszerével igazolhatjuk, hogy

$$\underbrace{f(f...f}_{n}(x)) > \underbrace{g(g...g}_{n}(x)) + n \cdot m , \ \forall \ x \in [a,b].$$

De létezik olyan $n \in \mathbb{N}^*$, amelyre $n \cdot m > b - a$ és így az előbbi egyenlőtlenség nem lehetséges, mert $\underbrace{f(f...f}_n(x)) \in [a,b]$ és $\underbrace{g(g...g}_n(x)) \in [a,b]$.

A kapott ellentmondásból következik a feladat állítása.

2. Jelöljük e-vel a semleges elemet. Miután kitöltjük a művelettábla első sorát és első oszlopát (ezek tartoznak a semleges elemhez) láthatható, hogy biztosan e lesz az 1-szer szereplő elem (minden más elem legalább kétszer fordul elő). A két darab 3-szor előforduló elemet jelöljük a-val és b-vel, a másik kettőt c-vel és d-vel. Az a és a b még egyszer kell szerepeljen a főátlón, a c és d közül az egyik kétszer a táblázatban és az összes többi helyen a másik elem. Kevés kísérletezéssel rájöhetünk, hogy a következő művelettábla megfelel:

	e	a	b	c	d
e	e	a	b	c	d
a	a	a	d	d	d
b	b	d	b	c	d
c	c	d	c	d	d
d	d	d	d	d	d

Ebben a táblázatban az $\{x,y,z\} \cap \{e,c,d\} \neq \varnothing$ esetén az x(yz) = (xy)z egyenlőség teljesül, ellenkező esetben alig egy pár esetet kell megvizsgálni annak belátásához, hogy az x(yz) = (xy)z egyenlőség tetszőleges x,y,z esetén igaz legyen.

MEGOLDÁSOK 2. FORDULÓ

Az előbbi művelettábla egy olyan monoidhoz tartozik, amely izomorf az $M = \left\{\hat{1}, \hat{4}, \hat{6}, \hat{9}, \hat{0}\right\} \subset \mathbb{Z}_{12} \quad \text{halmazon} \quad \text{a szorzás által meghatározott}$ monoiddal (és ebben az asszociativitást nem kell ellenőrizni).

- **3. a)** Az egyenletet $2(x+2y)^2-(3y)^2=1$ alakba írhatjuk. Mivel egy teljes négyzetnek a 3-mal való osztási maradéka 0 vagy 1, az egyenletnek az egész számok halmazában nem lehet megoldása.
- **b)** Az x+2y=u és 3y=v jelölésekkel az $2u^2-v^2=1$ egyenlethez jutunk, amelynek már végtelen sok megoldása van az egész számok halmazán, hisz

$$\left(\sqrt{2}-1\right)^n\left(\sqrt{2}+1\right)^n=1$$

és Newton binomiális tétele alapján létezik olyan $a_n,b_n\in\mathbb{N}$, amelyre

$$\left(\sqrt{2}+1\right)^{n} = \sqrt{2}a_{n} + b_{n}, \\ \left(\sqrt{2}-1\right)^{n} = \sqrt{2}a_{n} - b_{n}. \\ \text{fgy } u = a_{n} \\ \text{ és } v = b_{n}$$

esetén $2u^2-v^2=1$. Ugyanakkor $y=\frac{b_n}{3}$ és $x=a_n-\frac{2b_n}{3}$, tehát ha $a_n,b_n\in\mathbb{N}$, akkor $x,y\in\mathbb{Q}$ és így az egyenletnek végtelen sok

racionális megoldása van.

Megjegyzés. A feladat gyakorlatilag a $2\left(x+2y\right)^2-\left(3y\right)^2=1$ egyenletű hiperbola racionális koordinátájú pontjaira vonatkozik. Az előbbi megoldás nem adja meg az összes lehetséges megoldás alakját. Ha a megoldások alakjára vagyunk kíváncsiak, akkor a következő geometriai eljárást érdemes választani. Választunk egy tetszőleges racionális koordinátájú pontot a hiperboláról (például u=v=1) és tekintjük azokat a racionális iránytényezőjű egyeneseket amelyek ezen a ponton áthaladnak. Csak az ilyen egyenesek tartalmazhatják a racionális koordinátájú pontokat. Ha az egyenes irányvektora v=(a,b), $a,b\in\mathbb{Z}$, akkor az egyenlete

$$\frac{u-1}{a} = \frac{v-1}{b} = \lambda .$$

Innen $u=1+\lambda a$ és $v=1+\lambda b$, tehát visszahelyettesítve az egyenletbe kapjuk, hogy

$$\lambda = \frac{2(b-2a)}{2a^2 - b^2}.$$

Ebből következik, hogy $u=-\frac{2a^2+b^2-2ab}{2a^2-b^2}$ és $v=\frac{2a^2+b^2-4ab}{2a^2-b^2}$

és így az eredeti egyenlet összes megoldásának parametrikus alakját az $x=u-\frac{2v}{2},\ y=\frac{v}{2} \text{ egyenlőségekből kapjuk. Pontosabban}$

$$u = \frac{1}{3} \frac{-10a^2 - 5b^2 + 14ab}{2a^2 - b^2}$$
 és $v = \frac{1}{3} \frac{2a^2 + b^2 - 4ab}{2a^2 - b^2}$,

ahol $a, b \in \mathbb{Z}$.

4. a) Kiszámítjuk a sorozat első néhány tagját. Így a következő eredményekhez jutunk: $x_1=0$, $x_2=\frac{3}{5}$, $x_3=\frac{4}{5}$, $x_4=\frac{15}{17}$, $x_5=\frac{12}{13}$, $x_6=\frac{35}{37}$. A páros indexű tagokban a számláló és a nevező különbsége 2 és köztük az index négyzete van, tehát ezekre a tagokra az $x_n=\frac{n^2-1}{n^2+1}$ összefüggés teljesül. Látható, hogy ez igaz a páratlan indexű tagokra is (csak a 2-vel való egyszerűsítés miatt nehezebben vehető észre). Matematikai indukcióval igazoljuk, hogy $x_n=\frac{n^2-1}{n^2+1}$, $\forall\, n\geq 0$.

MEGOLDÁSOK 2. FORDULÓ

b) Az előbbiek alapján
$$\lim_{n\to\infty}\prod_{k=1}^n\left[1+\frac{k}{2}\left(1-x_n\right)\right]=\lim_{n\to\infty}\prod_{k=1}^n\left[1+\frac{k}{n^2+1}\right].$$

Másrészt

$$\lim_{x\to 0}\frac{\ln\left(1+x\right)}{x}=1\,,\ \ \text{tehát bármely}\quad \varepsilon>0\quad \text{esetén létezik}\quad \delta>0\quad \text{úgy},$$

$$\text{hogy } 1-\varepsilon < \frac{\ln \left(1+x\right)}{x} < 1+\varepsilon \text{ , ha } -\delta < x < \delta \text{ . Ugyanakkor létezik}$$

olyan
$$n(\varepsilon) \in \mathbb{N}$$
, amelyre $0 < \frac{k}{n^2 + 1} \le \frac{n}{n^2 + 1} < \delta$, bármely

$$k \in \{1,2,3...,n\} \ \text{ eset\'en. \'igy } 1-\varepsilon < \frac{\displaystyle\sum_{k=1}^n \ln \left(1+\frac{k}{n^2+1}\right)}{\displaystyle\sum_{k=1}^n \frac{k}{n^2+1}} < 1+\varepsilon \text{ , teh\'at}$$

$$\lim_{n\to\infty}\frac{\ln P_n}{\sum\limits_{k=1}^n\frac{k}{n^2+1}}=1\,.\quad \text{M\'{a}s\'{r\'{e}szt}}\quad \lim_{n\to\infty}\sum\limits_{k=1}^n\frac{k}{n^2+1}=\lim_{n\to\infty}\frac{n(n+1)}{2\left(n^2+1\right)}=\frac{1}{2}\,,$$

tehát
$$\lim_{n \to \infty} \ln P_{\scriptscriptstyle n} = \frac{1}{2}$$
 és így a keresett határérték \sqrt{e} .

9. osztály

Aczél Andrea	Székely Mikó Kollégium	Sepsiszentgyörgy
Balázs Norbert Mihály	Arany János Főgimnázium	Nagyszalonta
Barna Ádám Tibor	Arany János Főgimnázium	Nagyszalonta
Bartalis Szilárd	Salamon Ernő Gimnázium	Gyergyószentmiklós
Bartos Júlia	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Benedek Annabella	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bokor Ábel	Székely Mikó Kollégium	Sepsiszentgyörgy
Bondici László	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Borsos Gergő	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Borsos Zalán	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bunta Bálint	Baczkamadarasi Kis Gergely Református Kollégium	Székelyudvarhely
Csiszér Ágnes	Márton Áron Gimnázium	Csíkszereda
Dávid Erika	Tamási Áron Gimnázium	Székelyudvarhely
Demeter Török Bálint	Orbán Balázs Gimnázium	Székelykeresztúr
Fazekas Norbert	Mihai Eminescu Főgimnázium	Nagyvárad
Fehér Áron	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Fodor Ferenc	Székely Mikó Kollégium	Sepsiszentgyörgy
Forró Timea	Nagy Mózes Líceum	Kézdivásárhely
Grecu Marius Iustin	Márton Áron Gimnázium	Csíkszereda
Héjja Rudolf	Székely Mikó Kollégium	Sepsiszentgyörgy
Hevele Balázs	Orbán Balázs Gimnázium	Székelykeresztúr
Hodgyai László	Márton Áron Gimnázium	Csíkszereda
Huszár Gellért	Salamon Ernő Gimnázium	Gyergyószentmiklós
Illyés Attila	Márton Áron Gimnázium	Csíkszereda
Jakab Péter Kinga	Székely Mikó Kollégium	Sepsiszentgyörgy
Kelemen Réka	Márton Áron Gimnázium	Csíkszereda
Kerekes József	Báthory István Líceum	Kolozsvár
Kovács Zoltán	Benedek Elek Tanítóképző	Székelyudvarhely
Kulik Árpád	Németh László Elméleti Liceum	Nagybánya

A RÉSZT VEVŐ DIÁKOK NÉVSORA

Lőrinczi Ábel	Mikes Kelemen Főgimnázium	Sepsiszentgyörgy
Mátyás Ádám	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Miklós Melinda	Nagy Mózes Líceum	Kézdivásárhely
Milich Andrea	Csiki Gergely Líceum	Arad
Nagy Zoltán	Tamási Áron Gimnázium	Székelyudvarhely
Neubauer Helga	Tamási Áron Gimnázium	Székelyudvarhely
Oláh Bernadett	Ady Endre Elméleti Líceum	Nagyvárad
Orbán M. Szabolcs	Székely Mikó Kollégium	Sepsiszentgyörgy
Pasztor Timea	Tamási Áron Gimnázium	Székelyudvarhely
Rab Sarolta Enikő	Székely Mikó Kollégium	Sepsiszentgyörgy
Sándor Péter	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Sentes Zsombor	Nagy Mózes Líceum	Kézdivásárhely
Spir Anita	Csiki Gergely Líceum	Arad
Suciu Renáta	Ady Endre Elméleti Líceum	Nagyvárad
Szabó Enikő	Baróti Szabó Dávid	Barót
Szabó Lilla	Iskolacsoport Mikes Kelemen Főgimnázium	Sepsiszentgyörgy
Takács Petra	Báthory István Líceum	Kolozsvár
	•	
Tempfli Arnold	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Tikosi Kinga	Tamási Áron Gimnázium	Székelyudvarhely
Vajda Szabolcs	Báthory István Líceum	Kolozsvár
Várady Csongor	Németh László Elméleti Liceum	Nagybánya
Várhelyi Melinda	Báthory István Líceum	Kolozsvár
Vass Balázs	Tamási Áron Gimnázium	Székelyudvarhely
Zalányi Rezső	Németh László Elméleti Liceum	Nagybánya
Zsögön Csilla	Nagy Mózes Líceum	Kézdivásárhely

10. osztály

	•	
Bedő Anita	Márton Áron Gimnázium	Csíkszereda
Bele Mihály	Csiki Gergely Líceum	Arad
Bence Boglárka	Tamási Áron Gimnázium	Székelyudvarhely
Benedek Elek Zalán	Székely Mikó Kollégium	Sepsiszentgyörgy
Bodó Emőke	Márton Áron Gimnázium	Csíkszereda
Bodor Kinga	Tamási Áron Gimnázium	Székelyudvarhely
Bodor Zoltán	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Boros Zoltán	Csiki Gergely Líceum	Arad
Bratescu Andrei	Brassai Sámuel Líceum	Kolozsvár
Brudasca Renáta	Báthory István Líceum	Kolozsvár
Buslig Szabolcs	Márton Áron Gimnázium	Csíkszereda
Domokos Ilka	Áprily Lajos Líceum	Brassó
Farkas Ágnes	Orbán Balázs Gimnázium	Székelykeresztúr
Fülöp Annamária	Márton Áron Gimnázium	Csíkszereda
Gencsi Márta	Tamási Áron Gimnázium	Székelyudvarhely
Gurza László	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Hadnagy Kinga	Csiki Gergely Líceum	Arad
Hevele istván	Orbán Balázs Gimnázium	Székelykeresztúr
Ilyés Beatrix	Tamási Áron Gimnázium	Székelyudvarhely
Jakab Lilla	Octavin Goga Főgimnázium	Margita
János Csongor	Márton Áron Gimnázium	Csíkszereda
Kakucs Szende	Baróti Szabó Dávid Iskolacsopor	rt Barót
Kállai Brigitta	Silvania Fógimnázium	Zilah
Kassay Farkas Ákos	Unitárius Kollégium	Kolozsvár
Kecseti Hunor	Salamon Ernő Gimnázium	Gyergyószentmiklós
Király Amália	Silvania Fógimnázium	Zilah
Kolumbán József	Báthory István Líceum	Kolozsvár
Konnert Raimund	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kovács Enikő	Áprily Lajos Líceum	Brassó

A RÉSZT VEVŐ DIÁKOK NÉVSORA

Kovács-Krausz Zoltán	Báthory István Líceum	Kolozsvár
Kővári Szabolcs	Petőfi Sándor Elméleti Líceum	Székelyhíd
Lieb Helga	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Lőrincz Timea	Áprily Lajos Líceum	Brassó
Madár István	Tamási Áron Gimnázium	Székelyudvarhely
Mandici Szilárd	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Módis László	Németh László Elméleti Liceum	Nagybánya
Nagy Orsolya	Petru Maior Líceum	Szászrégen
Nagy Sándor	Apáczai Csere János Líceum	Kolozsvár
Nagy Zsolt István	Apáczai Csere János Líceum	Kolozsvár
Nemes Kinga	Bartók Béla Elméleti Líceum	Temesvár
Pál Levente	Tamási Áron Gimnázium	Székelyudvarhely
Péterfi Zsuzsánna	Silvania Főgimnázium	Zilah
Polcz Péter	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Sasu Róbert	Székely Mikó Kollégium	Sepsiszentgyörgy
Sebestyén Balázs	Báthory István Líceum	Kolozsvár
Simon Erika	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Sipos Lehel	Székely Mikó Kollégium	Sepsiszentgyörgy
Sütő Szabolcs	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szabó Ágnes	Nagy Mózes Líceum	Kézdivásárhely
Szakács Csilla	Baczkamadarasi Kis Gergely Református Kollégium	Székelyudvarhely
Szallós-Kis Orsolya	Benedek Elek Tanítóképző	Székelyudvarhely
Székely Noémi	Petru Maior Líceum	Szászrégen
Szőke Árpád Ferenc	Octavin Goga Főgimnázium	Margita
Szőke Katalin	Márton Áron Gimnázium	Csíkszereda
Tana Hunor	Áprily Lajos Líceum	Brassó
Török Tamás	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Zongor Rebeka	Tamási Áron Gimnázium	Székelyudvarhely

11. osztály

Ábrahám Timea	Ady Endre Elméleti Líceum	Nagyvárad
Akácsos Tibor	Baróti Szabó Dávid Iskolacsopor	tBarót
Bajnóczi Tamás	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bánházi Botond László	Octavin Goga Főgimnázium	Margita
Biró Emese	Tamási Áron Gimnázium	Székelyudvarhely
Biró Zsolt	Tamási Áron Gimnázium	Székelyudvarhely
Borbáth Áron	Áprily Lajos Líceum	Brassó
Borbáth Tamás	Áprily Lajos Líceum	Brassó
Csutak Katalin	Márton Áron Gimnázium	Csíkszereda
Ecsedi Roland Károly	Octavin Goga Főgimnázium	Margita
Gurzó András	Salamon Ernő Gimnázium	Gyergyószentmiklós
Debreceni Ilona	Mihai Eminescu Főgimnázium	Nagyvárad
Hodgyai Zoltán	Márton Áron Gimnázium	Csíkszereda
Illyés Ágota	Márton Áron Gimnázium	Csíkszereda
Károly Réka	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Keresztély Enikő	Tamási Áron Gimnázium	Székelyudvarhely
Kilyén Attila Őrs	Székely Mikó Kollégium	Sepsiszentgyörgy
Kinczel Lajos Roland	Petru Maior Líceum	Szászrégen
Kisfaludi Bak Zsombor	Székely Mikó Kollégium	Sepsiszentgyörgy
Kiss Botond	Brassai Sámuel Líceum	Kolozsvár
Kiss Kálmán	Tamási Áron Gimnázium	Székelyudvarhely
Kolcsár Kálmán Imre	Salamon Ernő Gimnázium	Gyergyószentmiklós
Koncz Tamás	Orbán Balázs Gimnázium	Székelykeresztúr
Kovács Zsolt Péter	Salamon Ernő Gimnázium	Gyergyószentmiklós
Kulcsár Johanna	Ady Endre Elméleti Líceum	Nagyvárad
Laczkó Timea- Magdolna	Tamási Áron Gimnázium	Székelyudvarhely
László Alma	Silvania Főgimnázium	Zilah
Lázár Enikő	Tamási Áron Gimnázium	Székelyudvarhely

A RÉSZT VEVŐ DIÁKOK NÉVSORA

Lestyán Erika	Nagy Mózes Líceum	Kézdivásárhely
Maksay Dorottya	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Matanie Ábel	Csiki Gergely Líceum	Arad
Mátyás Helga	Orbán Balázs Gimnázium	Székelykeresztúr
Melega Rolf	Leövey Klára Elméleti Liceum	Máramarossziget
Mihály Kinga	Tamási Áron Gimnázium	Székelyudvarhely
Nagy Levente	Mihai Eminescu Főgimnázium	Nagyvárad
Nagy Tímea	Márton Áron Gimnázium	Csíkszereda
Padrah István	Leövey Klára Elméleti Liceum	Máramarossziget
Papp Ingrid	Ady Endre Elméleti Líceum	Nagyvárad
Portik Bakai Ervin	Tamási Áron Gimnázium	Székelyudvarhely
Portik Dániel	Petru Maior Líceum	Szászrégen
Rangyák Eszter	Márton Áron Gimnázium	Csíkszereda
Simon Levente	Székely Mikó Kollégium	Sepsiszentgyörgy
Sükösd Hunor	Márton Áron Gimnázium	Csíkszereda
Szabó Péter	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szász Zsigmond	Áprily Lajos Líceum	Brassó
Szatmári Barna	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Székely Timea	Áprily Lajos Líceum	Brassó
Szerző Péter	Székely Mikó Kollégium	Sepsiszentgyörgy
Tóth Miklós	Bartók Béla Elméleti Líceum	Temesvár
Tóth Orsolya	Ady Endre Elméleti Líceum	Nagyvárad
Visky Mária	Báthory István Líceum	Kolozsvár
Wekerle Tibor	János Zsigmond Unitárius Kollégium	Kolozsvár

12. osztály

	•	
Baló István	Baróti Szabó Dávid Iskolacsoport	Barót
Barta Róbert	Csiki Gergely Líceum	Arad
Bene Zoltán	Nagy Mózes Líceum	Kézdivásárhely
Berecki Beáta	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bíró Csongor	Salamon Ernő Gimnázium	Gyergyószentmiklós
Biró Lehel József	Orbán Balázs Gimnázium	Székelykeresztúr
Bokor Kálmán	Nagy Mózes Líceum	Kézdivásárhely
Dávid Tamás	Tamási Áron Gimnázium	Székelyudvarhely
Dobribán Edgár	Báthory István Líceum	Kolozsvár
Dorner Boglárka	Márton Áron Gimnázium	Csíkszereda
Fecske Nándor	Márton Áron Gimnázium	Csíkszereda
Ferencz Endre	Kölcsey Ferenc Főgimnáziumn	Szatmárnémeti
Kalló-Jankucz Anna	Báthory István Líceum	Kolozsvár
Kántor Lajos	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Keresztúri Mónika	Ady Endre Elméleti Líceum	Nagyvárad
Kertész Lóránd Tamás	Székely Mikó Kollégium	Sepsiszentgyörgy
Kisfaludi Bak Zoltán	Székely Mikó Kollégium	Sepsiszentgyörgy
Nagy Katalin	Tamási Áron Gimnázium	Székelyudvarhely
Ördög Dorottya	Bartók Béla Elméleti Líceum	Temesvár
Réti Zenkő Zsuzsanna	Székely Mikó Kollégium	Sepsiszentgyörgy
Rill Robert Adrian	Székely Mikó Kollégium	Sepsiszentgyörgy
Sándor Bulcsú	Orbán Balázs Gimnázium	Székelykeresztúr
Sándor Izabella	Tamási Áron Gimnázium	Székelyudvarhely
Szenkovits Ágnes Enikő	Székely Mikó Kollégium	Sepsiszentgyörgy
Szenkovits Annamária	Báthory István Líceum	Kolozsvár
Szőke Andrea	Csiki Gergely Líceum	Arad
Tankó István	Tamási Áron Gimnázium	Székelyudvarhely
Terkál Róbert	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Tófalvi Lehel	Székely Mikó Kollégium	Sepsiszentgyörgy
Tóth Helga	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Zsombori Attila	Tamási Áron Gimnázium	Székelyudvarhely

A részt vevő tanárok névsora

András Ibolya

Balázs Vilmos

Tamási Áron Gimnázium

Biró Judit

Székely Mikó Kollégium

Bíró Zoltán

Csurulya Edit

Deák Imre

Tamási Áron Gimnázium

Tamási Áron Gimnázium

Tamási Áron Gimnázium

Tamási Áron Gimnázium

Egyed Géza Nagy Mózes
Gáspár Mária Nagy Mózes

Hatházi Annamária Báthory István Elméleti Líceum Horváth Éva Bolyai Farkas Elméleti Líceum Kacsó Ferenc Bolyai Farkas Elméleti Líceum

Kinczel Lajos Petru Maior Líceum Kiss Gyula Silvania Főgimnázium

Kovács BélaKölcsey Ferenc FőgimnáziumnKovács LajosTamási Áron GimnáziumKulcsár IlonaOrbán Balázs Gimnázium

Mátéfi IstvánBolyai Farkas Elméleti LíceumMészár JuliannaArany János FőgimnáziumMikó ÁgnesMikes Kelemen Főgimnázium

Nagy Zoltán Ady Endre Líceum

Nemes András

Bartók Béla Elméleti Líceum

Oláh-Ilkei Árpád

Baróti Szabó Dávid Iskolacsoport

Kölcsey Ferenc Főgimnáziumn

Páll Olga Márton Áron Gimnázium
Péter András Csiki Gergely Líceum
Péterfi Margit Tamási Áron Gimnázium
Sebestyén József Orbán Balázs Gimnázium
Szász Pál Octavian Goga Főgimnazium

43

Szilágyi Ferenc Salamon Ernő Gimnázium
Takács Attila Leövey Klára Elméleti Líceum

Tamási Csaba Márton Áron Gimnázium

Vandra Mária Áprily Lajos Líceum

Ványi Emese Kölcsey Ferenc Főgimnáziumn Zákány Mónika Németh László Elméleti Líceum

Meghívottak

Matekovics Mihály, a tanügyi és kutatási tárca nemzeti kisebbségek oktatásáért felelős vezérigazgatója

Bunta Levente, *Hargita Megyei Tanács elnöke* Szász Jenő, *Székelyudvarhely polgármestere*

Bondor István, Hargita megyei főtanfelügyelő

Hodgyai László, matematika szakos tanfelügyelő, Hargita Megye

Dáné Károly, igazgató, Editura Didactică și Pedagogică

DÍJAZOTTAK IX. OSZTÁLY

Díjazottak IX. osztály Bolyai Farkas Elméleti Líceum 1. Borsos Zalán 99 I. díj 2. Bondici László Kölcsey Ferenc Főgimnáziumn I. díj 72 Tamási Áron Gimnázium 3. Tikosi Kinga 69 I. díj 4. Benedek Annabella Bolyai Farkas Elméleti Líceum II. díj 66 Tamási Áron Gimnázium 5. Vass Balázs 62 II. díj 6. Lőrinczi Ábel Mikes Kelemen Főgimnázium III. díi 56 7. Fehér Áron Bolyai Farkas Elméleti Líceum 55 III. díj 8. László Alma Silvania Főgimnázium 51 Dicséret 9. Vajda Szabolcs Báthory István Líceum 51 Dicséret 10. Takács Petra Mikes Kelemen Főgimnázium 50 Dicséret 11. Csiszér Ágnes Márton Áron Gimnázium 49 Dicséret Tamási Áron Gimnázium 12. Nagy Zoltán 47 Dicséret Mihai Eminescu Főgimnázium 13. Fazekas Norbert Dicséret 45 14. Rab Sarolta Enikő Székely Mikó Kollégium 45 Dicséret Báthory István Líceum 45 15. Várhelyi Melinda Dicséret 16. Pasztor Timea Tamási Áron Gimnázium 43 Dicséret Bolyai Farkas Elméleti Líceum 17. Bartos Júlia 42 Dicséret Csiki Gergely Líceum 18. Spir Anita 42 Dicséret 19. Illyés Attila Márton Áron Gimnázium 39 Dicséret 20. Hevele Balázs Márton Áron Gimnázium 38 Dicséret Salamon Ernő Gimnázium 21. Huszár Gellért 38 Dicséret 22. Kerekes József Báthory István Líceum Dicséret 38 23. Bartalis Szilárd Salamon Ernő Gimnázium 36 Dicséret 24. Grecu Marius Iustin Orbán Balázs Gimnázium 36 Dicséret 25. Sentes Zsombor Nagy Mózes Líceum 36 Dicséret 26. Zsögön Csilla Nagy Mózes Líceum Dicséret 36 27. Tempfli Arnold Kölcsey Ferenc Főgimnáziumn 35 Dicséret 28. Szabó Enikő Baróti Szabó Dávid Iskolacsoport 34 Dicséret

Megjegyzés. A vonal fölötti díjazottak képviselik Erdélyt a XVII. Nemzetközi Magyar Matematika Versenyen, 2008. március 5-9 között Kassán. X. OSZTÁLY DÍJAZOTTAK

X. osztály

1. Módis László	Németh László Elméleti Liceum	50	I. díj
2. Farkas Ágnes	Orbán Balázs Gimnázium	46,5	I. díj
3. Gencsi Márta	Tamási Áron Gimnázium	36	II. díj
4. Kovács-Krausz	Báthory István Líceum	35	II. díj
Zoltán			
5. Sipos Lehel	Székely Mikó Kollégium	33,5	II. díj
6. Hevele István	Orbán Balázs Gimnázium	31	III. díj
7. Simon Erika	Kölcsey Ferenc Főgimnáziumn	31	III. díj
8. Boros Zoltán	Csiki Gergely Líceum	30	Dicséret
9. Buslig Szabolcs	Márton Áron Gimnázium	30	Dicséret
10. Szabó Ágnes	Nagy Mózes Líceum	30	Dicséret
11. Kolumbán József	Báthory István Líceum	29	Dicséret
12. Sebestyén Balázs	Báthory István Líceum	29	Dicséret
13. Bedő Anita	Márton Áron Gimnázium	28	Dicséret
14. Gurza László	Bolyai Farkas Elméleti Líceum	26	Dicséret
15. Sasu Róbert	Székely Mikó Kollégium	26	Dicséret
16. Bodor Zoltán	Kölcsey Ferenc Főgimnáziumn	25	Dicséret
17.Pál Levente	Tamási Áron Gimnázium	25	Dicséret
18. Brudasca Renáta	Báthory István Líceum	24,5	Dicséret
19. Péterfi Zsuzsánna	Silvania Főgimnázium	24	Dicséret
20. Polcz Péter	Kölcsey Ferenc Főgimnáziumn	24	Dicséret
21.Jakab Lilla	Octavin Goga Főgimnázium	23,5	Dicséret
22. Mandici Szilárd	Kölcsey Ferenc Főgimnáziumn	23	Dicséret
23. Kállai Brigitta	Silvania Fógimnázium	22,5	Dicséret
24. Szallós-Kis Orsolya	Benedek Elek Tanítóképző	22	Dicséret

DÍJAZOTTAK XI. OSZTÁLY

XI. osztály

1. Szerző Péter	Székely Mikó Kollégium	67	I. díj
2. Lestyán Erika	Nagy Mózes Líceum	55,5	II. díj
3. Illyés Ágota	Márton Áron Gimnázium	51,5	II. díj
4. Kisfaludi Bak	Székely Mikó Kollégium	50	II. díj
Zsombor	,		
5. Biró Emese	Tamási Áron Gimnázium	47	III. díj
Bajnóczi Tamás	Bolyai Farkas Elméleti Líceum	45,5	III. díj
7. Károly Réka	Bolyai Farkas Elméleti Líceum	45,5	III. díj
8. Rangyák Eszter	Márton Áron Gimnázium	44	Dicséret
9. Szabó Péter	Bolyai Farkas Elméleti Líceum	44	Dicséret
Robert			
10. Szatmári Barna	Bolyai Farkas Elméleti Líceum	43,5	Dicséret
11.Bánházi Botond	Octavin Goga Főgimnázium	43	Dicséret
László			
12. Simon Levente	Székely Mikó Kollégium	42,5	Dicséret
13. Keresztély Enikő	Tamási Áron Gimnázium	42	Dicséret
14. Kovács Zsolt	Salamon Ernő Gimnázium	42	Dicséret
Péter "			
•	Székely Mikó Kollégium	40	Dicséret
16. Nagy Tímea	Márton Áron Gimnázium	40	Dicséret
17. Visky Mária	Báthory István Líceum	40	Dicséret
18.Biró Zsolt	Tamási Áron Gimnázium	39,5	Dicséret
19. Hodgyai Zoltán	Márton Áron Gimnázium	38	Dicséret
20. Maksay Dorottya	Kölcsey Ferenc Főgimnáziumn	34,5	Dicséret
21. Matanie Ábel	Csiki Gergely Líceum	34,5	Dicséret
22. Szasz Zsigmond	Áprily Lajos Líceum	34,5	Dicséret
23. Ecsedi Roland Károly	Octavin Goga Főgimnázium	33,5	Dicséret
24. Koncz Tamás	Orbán Balázs Gimnázium	33,5	Dicséret
25.Borbath Aron	Áprily Lajos Líceum	33	Dicséret
26. Mátyás Helga	Orbán Balázs Gimnázium	31	Dicséret

XII. OSZTÁLY DÍJAZOTTAK

XII. osztály

1. Ferencz Endre	Kölcsey Ferenc Főgimnáziumn	66	I. díj
2. Kántor Lajos	Bolyai Farkas Elméleti Líceum	49,5	II. díj
3. Terkál Róbert	Bolyai Farkas Elméleti Líceum	46	II. díj
4. Bíró Csongor	Salamon Ernő Gimnázium	43	III. díj
5. Kisfaludi Bak Zoltán	Székely Mikó Kollégium	43	III. díj
6. Sándor Bulcsú	Orbán Balázs Gimnázium	39,5	Dicséret
7. Tankó István		38	Dicséret
8. Biró Lehel József	Orbán Balázs Gimnázium	35	Dicséret
9. Dávid Tamás	Tamási Áron Gimnázium	34,5	Dicséret
10. Rill Robert Adrian	Székely Mikó Kollégium	33	Dicséret
11.Baló István	Baróti Szabó Dávid Iskolacsoport	32	Dicséret
12. Kertész Lóránd Tamás	Székely Mikó Kollégium	31	Dicséret
13. Réti Zenkő Zsuzsanna	Székely Mikó Kollégium	30,5	Dicséret
14. Nagy Katalin	Tamási Áron Gimnázium	29	Dicséret
15. Sándor Izabella	Tamási Áron Gimnázium	28,5	Dicséret
16. Fecske Nándor	Márton Áron Gimnázium	28	Dicséret
17. Keresztúri Mónika	Ady Endre Elméleti Líceum	27	Dicséret
18. Szenkovits Ágnes	Székely Mikó Kollégium	26	Dicséret

Figyelmükbe ajánljuk:

- 1. Erdélyi magyar matematikai fórum: http://www.netmatek.extra.hu
- 2. Matematika tesztverseny: http://www.mikmatek.extra.hu
- 3. Matematika-Informatika tudományos diákkonferencia, Nagysza lonta, email: meszarjulianna@yahoo.com (jelentkezés április 15-ig)
- 4. Sapientia-ECN 2008 Matematika csapatverseny, email: abege@ms.sapientia.ro (jelentkezés február 29-ig)