NGS 基本データフォーマット

~/data/4_format

基礎生物学研究所 生物機能解析センター 尾納 隆大

概要

はじめに

- ▶ データフォーマットとは?
- ▶ フォーマットを学ぶ理由
- ▶ 効率の良い学習のポイント

NGS 基本データフォーマット

- > FASTA, FASTQ, SRA
- > BED, GFF/GTF/GFF3, WIG
- > SAM/BAM

データフォーマットとは?

データを記録するルール ルールがあれば情報を**効率良く正確に**共有できる

例:Web ページ → HTML フォーマットを使用することで

- ➤ ハード (PC / スマートフォン)
- > OS (Windows / Mac)
- > ソフト (IE / Chrome / Safari)

が違っても、どんな環境でも同じページを閲覧可能

次世代シーケンサー解析では 様々なフォーマットが使われる これらの把握が解析に必須!

フォーマットを学ぶ理由

NGS 解析の基礎知識だから

例 1)

同僚 A

あなた

研究者間のコミュニケーションや解析方法の理解に必須

: A 遺伝子の塩基配列データ見せて

:了解です。fasta で送りますね

例 2) マニュアル : このソフトは fasta から tree/phylip ファイルを生成します

あなた :系統解析をするソフトなんだな

fasta 形式が塩基配列情報を含むことを 理解していれば、やりとりがスムーズ

> 入力と出力の形式から 行った解析がわかる

研究目的にあわせた解析に必要だから

フォーマットを知ると、そこから自力で必要な情報を獲得できる これにより、独自性の高い研究が可能になる

- 例 3) 1. 巨大な fasta ファイルから配列名だけ取り出したい
 - 2. fasta 形式では、配列名の頭に常に ">" がつく
 - 3. ">" がある行だけ集めれば、配列名のリストができる! (エクセルの"並べ変え"機能でできそうだ!) (grep コマンドが使えそうだ!)

効率の良い学習のポイント

Wet 研究者がつまずく点

1: たくさん形式があって区別がつかない!

- 実態はなじみ深い生物学的情報です
- 各フォーマットが含む生物学的情報や解析で使われる場面に注目しましょう

2: 意味不明な文字がでてくる!

- \$ や # など"意味不明文字"が頻出しますが、実は重要な情報が含まれています
- 「ヒトとコンピュータ、両方に扱いやすい表記」を考えた開発者の努力の結晶です
- 使い方を理解すれば強力な武器になります。がんばって理解しましょう

以上を踏まえて、各フォーマットを見ていきましょう

NGS 基本データフォーマット

数十以上のフォーマットがあります頻出フォーマットだけを紹介します

● 配列用

FASTA, FASTQ, SRA

● アノテーション用

BED, GFF/GTF/GFF3, WIG

● マッピング(アライメント)用 <u>SAM/BAM</u>

FASTA (.fasta, .fa, .mfa)

概要	配列情報の標準フォーマット
内容	塩基配列 アミノ酸配列
例	公共 DB からの配列情報ダウンロード

○規則

">" で始まる行がタイトル行、改行後に配列 タイトル行は改行不可 配列中では改行可能

○ファイル例

>gi|31342400 Bos taurus crystallin, gamma S (CRYGS), mRNA ← タイトル行 ACTTTCAAGGCCGCCACTATGACAGCGATTGCGACTGTGCAGATTTCCACATG TACCTGAGCCGCTGCAACTCCATCAGAGTGGAAGGAGGCACCTGGGCTGTGTA

TGAAAGGCCCA

>gi|31342400 Bos taurus crystallin, gamma S (CRYGS), mRNA ACTTTCAAGGCCGCCACTATGACAGCGATTGCGACTGTGCAGATTTCCACATG

TACCTGAGCCGCTGCAACTCCATCAGAGTGGAAGGAGGCACCTGGGCTGTGTA **TGAAAGGCCCA**

FASTQ (.fastq, .fq) FASTA+Quality の意味

概要	NGS 結果データの実質的な標準形式						
内容 塩基配列、一塩基ごとの品質情報 (Quality value)							
例	マッピング、アセンブルでの入力データ形式						

○規則

1 行目: "@" の後にタイトル(配列 ID や説明)

2 行目 : 塩基配列

3 行目 : "+" の後にタイトル(省略可)

4 行目 : 配列のクオリティ

*配列とクオリティには基本的に改行を入れない

○ファイル例

@SEQ ID ← 配列 ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT ← 塩基配列 ← 配列 ID (省略)

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65 ← クオリティ

[実習 1] less コマンドで ex1.fq の中身を見て、fastq 形式を確認しよう

FASTQ のポイント

塩基配列の信頼性も示せる

Quality Value (Phred quality score)

ABI キャピラリーシーケンサーで この部分で表されていた値

QV = -10 log₁₀ p (p:間違った塩基決定である確率)

QV = 30 → p = 0.001 (エラー率 0.1% = 塩基の信頼性 99.9%)

QV = 20 → p = 0.01 (エラー率 1.0% = 塩基の信頼性 99.0%)

実際の FASTQ データをみると、数値でなく、英数字や記号が書かれている!

@SEQ ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCC TTTGTTCAACTCACAGTTT

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

英数字や記号の正体 → "ASCII 文字" を使って QV を 1 文字で表したもの

ASCII: American Standard Code for Information Interchange

コンピュータでは文字を数値で表す 通信のため文字と数値の対応関係を規定 0~127の数値に文字を割り当てる

 $A \longleftrightarrow 65 \text{ (10 } \text{ LBM)} \quad \text{Apple} \longleftrightarrow 65;112;112;108;101 \text{ (10 } \text{ LBM)}$

FASTQ → ASCII 文字を使って、QV(数値)を文字で表す

利点:10 進数表記よりもファイルサイズを減らせる (字数が半分、区切り文字も不要)

塩基: G A T T G G T G A A T T 文字が各塩基

文字: ? @ A > = ; 9 7 4 0 , の QV を表現

QV から文字への変換規則

問題点: ASCII コードでは 0 - 32 はコンピュータ用の特殊文字に割り当てられている

ASCII 文字コード表

数值	文字
0	Null 文字
1	SOH(ヘッダ開始)
2	STX(テキスト開始)
3	ETX(テキスト終了)
4	EOT(転送終了)
30	RS(レコード区切り)
31	US (ユニット区切り)
32	(スペース)
33	į.
34	п

- ・NGS では 10 30 を頻用 p = 0.001 → QV = 30
- ・妥協案として特定値を加算してから文字に変換QV (Phred) 値 + X = ASCII 値とする
- X は現在 X = 33 でほぼ統一
 - 例) QV 30 を表す場合 30 + 33 = 63 → ASCII コードで 63 に該当する 文字を当てる ("?" が該当)
- ・変換には ASCII 文字コード表と簡単な計算が必要

[実習 2] ex2.fq の QV 値を求め、すべての配列の p 値 (エラー確率) が 0.01 以下となるように 3' 側をトリミングしよう

ex2.fq

@SEQ_ID
GATTGGTGAATT
+
??@A>=;9740,

QV 值 + 33 = ASCII 值

ASC II 文字コード表

文字	10	16	文字	10 進	16	文字	10 進	16 進	文字	10 進	16 進	文字	10 進	16 进	文字	10 進	16 进	文字	10 進	16 进	文字	10 進	16 进
NUL	0		DLE	16		SP	32	20	0	48		@	64		Р	80	50	٠.	96	60	р	112	70
SOH	1		DC1	17		1	33	21	1	49		Α	65		Q	81	51	а	97	61	q	113	71
STX	2		DC2	18			34	22	2	50		В	66		R	82	52	b	98	62	r	114	72
ETX	3		DC3	19		#	35	23	3	51		С	67		S	83	53	С	99	63	s	115	73
EOT	4		DC4	20		\$	36	24	4	52		D	68		Т	84	54	d	100	64	t	116	74
ENQ	5		NAK	21		%	37	25	5	53		Е	69		U	85	55	e	101	65	u	117	75
ACK	6		SYN	22		8.	38	26	6	54		F	70		٧	86	56	f	102	66	٧	118	76
BEL	7		ETB	23		•	39	27	7	55		G	71		W	87	57	g	103	67	w	119	77
BS	8		CAN	24		(40	28	8	56		Н	72		Х	88	58	h	104	68	×	120	78
HT	9		EM	25)	41	29	9	57		I	73		Υ	89	59	i	105	69	У	121	79
LF*	10		SUB	26		*	42	2a	:	58		J	74		Z	90		j	106	6a	z	122	7a
VT	11		ESC	27		+	43	2b	;	59		K	75		[91	5b	k	107	6b	-{	123	7b
FF*	12		FS	28		,	44	2c	<	60		L	76		\¥	92		1	108	6c	1	124	7c
CR	13		GS	29		-	45	2d	=	61		М	77		1	93	5d	m	109	6d	}	125	7d
SO	14		RS	30			46	2e	>	62		N	78		^	94	5e	n	110	6e	~	126	7e
SI	15	Of	US	31	1f	/	47	2f	?	63	3f	0	79	4f	_	95	5f	0	111	6f	DEL	127	7f

- * LFはNL、FFはNPと呼ばれることもある。
- * 赤字は制御文字、SPは空白文字(スペース)、黒字と 緑字は図形文字。
- * 縁字はISO 646で割り当ての変更が認められており、例えば日本ではバックスラッシュが円記号になっている

http://e-words.jp/p/r-ascii.html

解説

@SEQ ID

GATTGGTGAATT

??@A > = ; 9740,

① p 値が 0.01 の時の QV 値を求める

$$QV = -10 \log_{10} p$$
= -10 log₁₀ 0.01
= -10 (-2)
= 20

QV < 20 部分をトリムすればよい

文字	10	16	文字	10 進	16	文字	10 進	16 30
SP	32		0	48	30	0	64	40
!	33		1	49	31	Α	65	41
-	34		2	50	32	В	66	42
	35		3	51	33	С	67	43
\$	36		4	52	34	D	68	44
%	37		5	53	35	Е	69	45
8.	38		6	54	36	F	70	46
	39		7	55	37	G	71	47
(40		8	56	38	Н	72	48
)	41		9	57	39	I	73	49
*	42		:	58	За	J	74	4a
+	43		į	59	3Ь	K	75	4b
	44		<	60		L	76	40
-	45		=	61	3d	М	77	4d
	46		>	62	3е	N	78	4e
/	47	2f	?	63	3f	0	79	4f

Т

4

0

② 各文字を ASCII 値になおし、33 を引いて QV 値にする

塩基: G A T T G G T G A A T

文字: ? @ A > = ; 9 7

ASCII値: 63;63;64;65;62;61;59;57;55 52;48;44

QV値: 30;30;31;32;29;28;26;24;22 19;15;11

QV 値 + 33 = ASCII 値 ASCII 値 - 33 = QV 値

FASTQ ファイルを見る上での注意点

1. QV 値はあくまでシーケンサーによる推定値 目安として利用

2. 古い Solexa / Illumina データでは規格が乱立!! ←重要

解析ソフト ver. (CASAVA)	~1.3	1.3~1.5	1.5~1.8	1.8~
参考使用時期	~2009	2009~2010	2010~2012	2012~
QV 値算出法	Solexa	Phred	Phred	Phred
X 値	64	64	64	33
QV range	-5~40	0~40	3~40 (2=end of read)	0~40

QV (Phred) 值 + X = ASCII 值

自分のデータがどのバージョン由来か確認し 解析ソフトの設定を補正する必要がある

FASTQ のまとめ

概要:<u>塩基配列情報と各塩基の信頼性</u>を表現する

規則: 1行目: "@"配列名

2 行目 : 塩基配列 3 行目 : "+"(配列名)

4 行目 : 配列のクオリティ

ポイント:クオリティは ASCII 文字で表現されている

QV 値 + 33 = ASCII 値

FASTQ の仲間 SRA (Sequence Read Archive)

公共 DB への登録とダウンロードに使用

バイナリ(機械語)化された生シーケンスデータ

FASTQ に変換可能

FASTA/FASTQ を扱う際に便利なツール

Segkit: https://aithub.com/shenwei356/seakit

SRA を扱う際に便利なツール

SRA toolkit https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/

NGS 基本データフォーマット

数十以上のフォーマットがあります頻出フォーマットだけを紹介します

● 配列用

FASTA, FASTQ, SRA

● アノテーション用

BED, GFF/GTF/GFF3, WIG

● マッピング(アライメント)用

SAM/BAM

BED (.bed) , GFF/GTF/GFF3 (.gff/.gtf/.gff3)

概要	ゲノム上の特徴配列を表現する(アノテーション情報)										
内容	遺伝子名 染色体上の位置 向き エクソン構造										
	公共 DB からアノテーション情報をダウンロード										
例	解析したい領域の指定 アノテーション作業										
	遺伝子構造予測ソフトの結果出力										

<4 形式の違い>

BED	ブラウザでの描画情報(色など)を記録可能
GFF	拡張性が高く様々な特徴情報を記録可能
GTF	GFF の厳格化版 一貫した規則で特徴情報を記録可能
GFF3	GTF(GFF version2)の改良版

BED (Browser Extensible Data) format

ブラウザでの描画情報(色など)を記録可能

○規則

項目数 3 - 12 タブ区切り

省略する場合は何も書かない(タブを 2 個連続させる)

染色体/	指定	領域		スコ ス ア / ト 表記 ラ		太線	太線表示 表示色 表示色 赤, 緑		ブロコン	ック(exon等) マ区切りで表記	の情報
Scaffold 名	開始 位置	終止 位置	領域名	の濃淡	ンド	開始 位置	終了位置	の強度 (0 - 255)	個数	サイズ	開始 位置
chr22	1000	5000	cloneA	960	+	1000	5000	255,0,0	2	567,488,	0,3512
chr22	2000	6000	cloneB	900	-	2000	6000	0,0,255	2	433,399,	0,3601

1-3項目は必須

4-12 項目は省略可

領域開始位置=0 とした位置

BED フォーマットを扱う際に便利なツール

bedtools: http://bedtools.readthedocs.io/en/latest/

[実習 3] ex3.bed はヒトゲノム(GRCh37)の一部を bed 形式にしたものである less コマンドで bed 形式を確認しよう

BED format ブラウザ表示例

chr22 1000 5000 itemA 960 + 1100 4700 0 2 1567,1488, 0,2512 chr22 2000 7000 itemB 200 - 2200 6950 0 4 433,100,550,1500, 0,500,2000,3500

表記の濃淡

shade									
score in range	≤ 166	167-277	278-388	389-499	500-611	612-722	723-833	834-944	≥ 945

(参考)

- https://genome.ucsc.edu/FAQ/FAQformat.html#format_1
- https://genome-asia.ucsc.edu/goldenPath/help/hgTracksHelp.html Example #3A

GFF (General Feature Format / Gene Finding Format)

拡張性が高く様々な特徴情報を記録可能 ゲノムアノテーションの標準的形式

○規則

項目数 5 - 9 タブ区切り

セミコロンで区切られたタグ-値の対

省略する場合は "-" や "." を入れる

必須

省略可

属性カラムに様々な情報を追加できる → 拡張性高

GFF format ブラウザ表示例

```
chr22 TeleGene enhancer 10000000 10001000 500 + . touch1
```

chr22 TeleGene promoter 10010000 10010100 900 + . touch1

chr22 TeleGene promoter 10020000 10025000 800 - . touch2

(参考) https://genome.ucsc.edu/FAQ/FAQformat.html#format3

GTF (General Transfer Format)

○規則 基本的に GFF と同じだが、仕様をより細かく規定

			指定	領域		スト		
染色体/					ス	÷	読	
Scaffold	予測ソフト	領域の	開始	終止		レン	7+	
名	名等	種類	位置	位置	ア	ド	枠	属性
chr22	Twinscan	CDS	380	401		+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	CDS	501	650	٠	+	2	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	CDS	700	707	•	+	2	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	start_codon	380	382	•	+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>
chr22	Twinscan	stop_codon	708	710	•	+	0	<pre>gene_id "001"; transcript_id "001.1";</pre>
		<u> </u>						▲

必須:CDS, start_codon, stop_codon

任意:5UTR, 3UTR, inter, inter CNS, intron_CNS, exon

それ以外は無効

遺伝子と転写産物の ID を表記する

[実習 4] ex4.gtf は ex3.bed と同じ領域を gtf 形式にしたものである less コマンドで gtf 形式を確認しよう

GFF3 (General Feature Format の version3)

○規則

GTF (GFF version2) の改良版 いくつかのカラムでその値の制約が厳しくなっている 項目数 9 タブ区切り

			指定	指定領域			スト		
染色体/	予測				ス		ラ	読	
Scaffold	ソフト	領域の					ン	み	
名	名等	種類	開始位置	終止位置	ア		ド	枠	属性

##gff-version 3

ctg123	•	exon	1300	1500	•	+	•	ID=exon00001
ctg123	•	exon	1050	1500	•	+	•	ID=exon00002
ctg123	•	exon	3000	3902		+	•	ID=exon00003
ctg123	•	exon	5000	5500		+	•	ID=exon00004
ctg123		exon	7000	9000		+		ID=exon00005

(参考) http://amod.ora/wiki/GFE3

注意 GFF/GTF/GFF3 と BED では座標の表現が異なる

GFF/GTF/GFF3: 開始、終了ともに 1-based (1 から始まる) 座標

BED:開始は0-based,終了は1-based 座標

具体例

黄色部分を示す時

GFF/GTF/GFF3: 開始 3. 終了 6 (長さは 6-3+1=4)

BED:開始 2,終了 6 (長さは 6-2=4)

[実習 5] ex3.bed と ex4.gtf を開き、実際に座標がずれていることを確認しよう

WIG (wiggle) format

概要	ゲノム上の量的特徴を表現するための形式					
内容	ゲノム上の座標に対する"数値"情報					
例	GC 含量、発現量などを表す					
座標	開始、終了ともに 1-based (1 から始まる)					

○規則 2 形式から選べる

1) VariableStep 柔軟な指定が可能

variableStep chrom=chr2

300601 22.5 300701 30.5 300751 28.2 位置と値の組で領域を指定するため

間隔は位置ごとに変更可能

(参考) https://genome.ucsc.edu/goldenpath/help/wiggle.html

.

2) FixedStep コンパクトな表現が可能

fixedStep chrom=chr3 start=300601 step=100
22.5

間隔は固定で、開始位置 と間隔は先頭行で指定し 、後は値のみを示してい

30.5

25.8

WIG format ブラウザ表示例

variableStep chrom=chr19 span=150 ▮ fixedStep chrom=chr19 start=49307401 step=300 span=200 1000 49304701 10.0 49304901 12.5 900 49305401 15.0 800 49305601 17.5 700 600 49305901 20.0 500 49306081 17.5 400 49306301 15.0 300 49306691 12.5 49307871 10.0 200 100

NGS 基本データフォーマット

数十以上のフォーマットがあります頻出フォーマットだけを紹介します

● 配列用

FASTA, FASTQ, SRA

● アノテーション用

BED, GFF/GTF/GFF3, WIG

● マッピング(アライメント)用 <u>SAM/BAM</u>

SAM (Sequence Algnment/Map) format

概要	マッピング(アライメント)結果を表現
内容	マッピング情報(位置, インデル, ミスマッチ)
l late	ペアフラグメントの状況, 塩基配列
例	SNP、発現量解析への入力データ形式
座標	開始、終了ともに 1-based (1 から始まる)

○ファイル例

```
@HD VN:1.5 SO:coordinate
                     ヘッダー部
                                                           マッピング結果
@SQ SN:ref LN:45
r001 163 ref 7 30 8M2I4M1D3M =
                                 37 39 TTAGATAAAGGATACTG
r002 0 ref 9 30 3S6M1P1i4M *
                                       AAAGATAAGGATAT
                                       GCCTAAGCTAA
r003 0
                                                      * SA:Z:ref,29,-,6H5M
r004 0 ref 16 30 6M14N5M * 0 0
                                       ATAGCTTCAGC
r003 2064 ref 29 17
                                                      * SA:Z:ref,9,+,5S6M
r001 83 ref 37 30
                              = 7 -39 CAGCGGCAT
                                                      * NM:i:1
```

[実習 6] ex6.sam を開き sam 形式を確認しよう

○規則

ヘッダー部

@HD VN:1.5 SO:coordinate

@SQ SN:ref LN:45

"@"で開始

@HD VN: (バージョン) SO: (ソート状況)

OSO SN: (リファレンス名) LN: (リファレンスの長

マッピング結果部分 項目間はタブで区切る

			アライメント	マッ		ペアフラグメン トの場所		メン		配	
フラグ メント 名	FLAG	リファ レンス 配列名	開始位置	ピン グ QV	CIGAR	Ref 名	開始	長さ	配列	列 Q V	オプション
r001	163	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACTG	*	
r002	0	ref	9	30	3S6M1P1i4M	*	0	0	AAAGATAAGGATAT	*	
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	2064	ref	29	17	6Н5М	*	0	0	TAGGC	*	SA:Z:ref,9,
r001	83	ref	37	30	9м	=	7	-39	CAGCGGCAT	*	NM:i:1

ポイント! "CIGAR" "FLAG"

SAM のポイント1: CIGAR

数字と文字を組み合わせアライメント状況を示す

フラ グメ ン 名	FLAG	リファ レンス 配列名	ア イン 開 位置	マッピグ QV	CIGAR	ペア ン Ref 名	フラグトの場 開始	ゲメ 長 さ	配列	配列QV	オプション
r001	163	ref	5	30	3M2D2M	=	37	39	GCAAG	44>>>	

3M2D2M

3 塩基一致、2 塩基欠失、2 塩基一致

ref : ATGCGCATTAGCCTAA

read: GCA--AG

記 号	状況						
М	一致						
I	挿入						
D	欠失						
N	イントロン(RNAvsDNAのみ)						
S	クリップ (塩基情報残す)						
Н	クリップ(塩基情報削除)						
Р	他リードが挿入されている						

SAM のポイント2:FLAG リードのマップ状況を示す数値

理解すると「マップされなかったリードだけ選ぶ」などの操作が可能になる

数値(10 進数)	意味
0	順鎖にマップされた
1	ペアリードがある
2	両方適切にマップされている
4	自分がマップされていない
8	ペア相手がマップされていない
16	逆鎖にマップされた(配列も逆鎖で表記)
32	ペア相手は逆鎖にマップされた
64	Read 1 の配列である
128	Read 2 の配列である
256	Multiple hit でトップヒットでないアライメント
512	マッピング QV が低い

複数の状況に合致する場合は数値を加算 (例) ペアリード, 両方マップされた \rightarrow 1 + 2 = 3 加算した結果が、ほかの状況と一致しないようになっている

自動で FLAG を計算してくれるサイトがある

http://broadinstitute.aithub.io/picard/explain-flags.html

SAM のまとめ

概要:各リードがマップされた場所と状態を表す

規則:ヘッダ部とアライメント部からなる タブ区切り

ポイント

CIGAR 値 → 数字と文字を組み合わせアライメント状況を示す

FLAG 値 \rightarrow リードのマップ状況を示す数値

触れなかった重要点

ペアフラグメント部分の"長さ"列 → フラグメント間距離 + 両リード長

SAM format の詳細な仕様書

http://samtools.github.io/hts-specs/SAMv1.pdf

BAM format

BAM

SAM をバイナリ(機械語)化したもの 容量が小さくなるが、人には理解できない SAM に戻すことも可能なので必要に応じて変換

<u> 座標:開始は0-based.終了は1-based</u>

BAM indexing file

BAM ファイルに対して作られる検索用ファイル 高速検索や可視化ソフトなどに必要

SAM/BAM format を扱うのに便利なツール

Samtools : http://www.htslib.org/

Picard http://broadinstitute.github.io/picard/index.html

NGS 基本データフォーマットまとめ

	FASTA		F	ASTQ		SAM		
概要	配列情報の標準	態形式	NGS 結:	果の標準	形式	マッピング結果を示す		
内容	塩基配列 アミノ酸配	列		基配列と 毎の品質 [′]	情報	マッピング情報 ペアの状況, 塩基配列		
例	公共 DB から 配列情報ダウン	I .	マッピング、アセンブル解析 での入力データ形式			マップ結果の閲覧、集計 SNP、発現量解析への入力		
特徴			QV 値は ASCII 文字で表現 SRA から変換可能			CIGAR, FLAG 値を利用 バイナリ化したのが BAM		
	BED GFF GTF GFF3			GFF3	WIG			
概要	ゲノ	ム上の特	ゲノム上の量的特徴を表現					
内容	遺伝子名 染	色体上の	ゲノム上の座標に対する "数値"情報					
例	公共 DB から 解析したい 遺伝 -		GC 含量、発現量などを表す					
特徴	ブラウザでの 描画情報を記録	拡張性高	GFF の厳格化版 GTF の 一貫した規則 改良版					