08 November 2024

ReduceLearningRate

A custom callback class that reduces the learning rate based on the lack of improvement in a specified metric. This class allows users to adjust the learning rate during training when improvements in performance metrics have plateaued, helping to achieve more efficient training and avoiding overfitting.

- monitor : str
 - o Metric to monitor for improvement. Available choices are: 'accuracy', 'val_accuracy', 'loss', and 'val_loss'.
- · factor: float
 - Factor by which the learning rate will be reduced. The new learning rate is computed as: new_lr = lr * factor.
- - o Number of epochs with no improvement before reducing the learning rate.
- · verbose:int
 - Verbosity mode (0 or 1). Set to 1 to display a message when the learning rate is reduced.
- min_delta : float
 - o Minimum change in the monitored metric to qualify as an improvement.
- cooldown:int
 - o Number of epochs to wait after reducing the learning rate before resuming normal operation.
- - o Minimum learning rate limit after which it will not be reduced further.

Example Usage

```
# Create an instance with specific parameters
reduce lr_callback = ReduceLearningRate(monitor='val loss', factor=0.5, patience=5,
```

_init__(self, monitor='val_accuracy', factor=0.1, patience=10, verbose=0, min_delta=1e-4, cooldown=0, min_lr=0)

The constructor for initializing ReduceLearningRate with specified parameters.

Parameters:

- · monitor : str, optional
 - o Metric to monitor. Default is 'val accuracy'.
- · factor : float, optional
 - o Multiplicative factor for learning rate reduction. Default is 0.1.
- · patience : int, optional
 - o Number of epochs with no improvement after which the learning rate will be reduced. Default is 10.
- verbose : int. optional
 - o Verbosity level, set to 1 to print updates. Default is 0.
- min_delta : float, optional
 - Minimum change to qualify as an improvement. Default is 1e-4.
- cooldown: int. optional
 - o Number of epochs to wait after reducing learning rate. Default is 0.
- · min_lr: float, optional
 - Minimum learning rate allowed. Default is 0.

$check (self, metrics_values, number_of_epoch, pre_value, time_step, current_learning_rate, cooldown_timestep)$

Evaluates whether to reduce the learning rate based on the monitored metric.

- Parameters:
 - o metrics values : dict
 - Dictionary containing the metric values with monitored metric as a key.
 - o number_of_epoch:int
 - Current epoch number in training.

 - pre_value : float
 Value of the monitored metric from the previous epoch.
 - $\circ \quad time_step:int$
 - · Counter for epochs with no metric improvement.
 - o current_learning_rate : float
 - Current learning rate.
 - o cooldown timestep:int
 - Counter for cooldown period after last reduction.
- Returns:
 - tuple
 - A tuple containing:
 - $\hfill\Box$ int : Reduction flag (1 if learning rate was reduced, otherwise 0).
 - □ float : Updated learning rate.
 - ☐ float: Last monitored metric value that did not improve.
 - □ int : Updated time step for epochs without improvement.
 - □ int : Updated cooldown time step.

Example Workflow

Suppose the model is trained for 100 epochs, with ReduceLearningRate configured as:

```
ReduceLearningRate(monitor='val_loss', factor=0.5, patience=3, cooldown=2, min_lr=1e-5)
```

- 1. Initial Epochs (0-3):
 - o Monitors val_loss. If improvement, resets the time step. Otherwise, increments time step.
- 2. Epoch 4:
 - o If no improvement since the 1st epoch, time step reaches patience of 3. Reduces learning rate by factor (0.5) and initiates cooldown (2 epochs).

3. Cooldown Period:

 $\circ \quad \text{Checks val_loss but skips any learning rate change until cooldown is complete}.$

4. Post-Cooldown:

 $\circ \;\;$ If no improvement within cooldown, repeats reduction and cooldown.

This setup optimizes learning by dynamically reducing the learning rate, enhancing model performance, and avoiding overfitting through controlled metric tracking.