Úlohy z numerické matematiky

Metoda půlení intervalu

1. Metodou půlení intervalu určete s tolerancí 10^{-5} řešení rovnice $x^3-7x^2+14x-6=0$ na intervalu:

a) $\langle 0; 1 \rangle$ b) $\langle 1; 3, 2 \rangle$ c) $\langle 3, 2; 4 \rangle$

2. Metodou půlení intervalu určete s tolerancí 10^{-4} řešení rovnice $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ na intervalu:

a) $\langle -2; -1 \rangle$ b) $\langle 0; 2 \rangle$ c) $\langle 2; 3 \rangle$ d) $\langle -1; 0 \rangle$

3. Načrtněte grafy funkcí y=x a $y=2\sin x$. Použijte metodou půlení intervalu s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=2\sin x$.

4. Načrtněte grafy funkcí y=x a $y=\tan x$. Použijte metodou půlení intervalu s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=\tan x$.

Metoda sečen

1. Metodou sečen určete s tolerancí 10^{-5} řešení rovnice $x^3 - 7x^2 + 14x - 6 = 0$, jsou-li dány výchozí hodnoty:

a) $p_0 = 0, p_1 = 1$ b) $p_0 = 1, p_1 = 3,2$ c) $p_0 = 3,2, p_1 = 4$

2. Metodou sečen určete s tolerancí 10^{-3} řešení rovnice $x^4-2x^3-4x^2+4x+4=0$, jsou-li dány výchozí hodnoty:

a) $p_0 = -2, p_1 = -1$ b) $p_0 = 0, p_1 = 2$ c) $p_0 = 2, p_1 = 3$ d) $p_0 = -1, p_1 = 0$

3. Načrtněte grafy funkcí y=x a $y=2\sin x$. Použijte metodou sečen s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=2\sin x$.

4. Načrtněte grafy funkcí y=x a $y=\tan x$. Použijte metodou sečen s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=\tan x$.

Metoda regula falsi

1. Metodou regula falsi určete s tolerancí 10^{-5} řešení rovnice $x^3 - 7x^2 + 14x - 6 = 0$ na intervalu:

a) $\langle 0; 1 \rangle$ b) $\langle 1; 3, 2 \rangle$ c) $\langle 3, 2; 4 \rangle$

2. Metodou regula falsi určete s tolerancí 10^{-4} řešení rovnice $x^4-2x^3-4x^2+4x+4=0$ na intervalu:

a) $\langle -2; -1 \rangle$ b) $\langle 0; 2 \rangle$ c) $\langle 2; 3 \rangle$ d) $\langle -1; 0 \rangle$

3. Načrtněte grafy funkcí y=x a $y=2\sin x$. Použijte metodou regula falsi s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=2\sin x$.

4. Načrtněte grafy funkcí y=x a $y=\tan x$. Použijte metodou regula falsi s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=\tan x$.

Newtonova metoda

1. Newtonovou metodou určete s tolerancí 10^{-5} řešení rovnice $x^3-7x^2+14x-6=0$, je-li dána výchozí hodnota:

a) $p_0 = 0$ b) $p_0 = 1$ c) $p_0 = 3.2$ d) $p_0 = 4$

2. Newtonovou metodou určete s tolerancí 10^{-3} řešení rovnice $x^4-2x^3-4x^2+4x+4=0$, je-li dána výchozí hodnota:

a) $p_0 = -2$ b) $p_0 = -1$ c) $p_0 = 0$ d) $p_0 = 1$ e) $p_0 = 2$

3. Načrtněte grafy funkcí y=x a $y=2\sin x$. Použijte Newtonovu metodu s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=2\sin x$.

4. Načrtněte grafy funkcí y=x a $y=\tan x$. Použijte Newtonovu metodu s tolerancí 10^{-5} k nalezení nejmenší kladné hodnoty x, pro kterou $y=\tan x$.

Lagrangeovy polynomy

1. Pro danou funkci f(x) jsou dány uzlové body $x_0 = 0, x_1 = 0.6$ a $x_2 = 0.9$. Použijte Lagrangeovy interpolační polynomy (i) stupně nejvýše 1 (ii) stupně nejvýše 2, pro aproximaci dané funkce na intervalu $\langle -0.9; 1.5 \rangle$. Sestrojte graf dané funkce i příslušného interpolačního polynomu do jedné soustavy souřadnic.

a) $f(x) = \cos x$

b) $f(x) = \sqrt{1+x}$

c) $f(x) = \log_2(x+1)$

 $d) f(x) = \tan x$

- **2.** Použijte Aitken-Nevilleovu metodu k aproximaci hodnoty $\sqrt{3}$ pomocí Lagrangeova polynomu funkce $f(x) = 3^x$ s uzlovými body $x_0 = -2, x_1 = -1, x_2 = -0, x_3 = 1$ a $x_4 = 2$.
- **3.** Použijte Aitken-Nevilleovu metodu k aproximaci hodnoty $\sqrt{3}$ pomocí Lagrangeova polynomu funkce $f(x)=\sqrt{x}$ s uzlovými body $x_0=0, x_1=1, x_2=2, x_3=4$ a $x_4=5$. Porovnejte přesnost aproximace s předchozí úlohou.

Numerická kvadratura

1. Použijte (i) obdélníkové pravidlo (ii) lichoběžníkové pravidlo (iii) Simpsonovo pravidlo pro výpočet přibližné hodnoty následujících integrálů:

a) $\int_{0.5}^{1} x^4 dx$

b) $\int_{-\pi/2}^{\pi/2} \cos x dx$

c) $\int_{1}^{1.5} x^2 \log x dx$

d) $\int_0^{\pi/4} x \sin x dx$

2. Použijte (i) složené obdélníkové pravidlo (ii) složené lichoběžníkové pravidlo (iii) složené Simpsonovo pravidlo pro výpočet přibližné hodnoty následujících integrálů z předchozí úlohy. Volte n=10 (počet podintervalů intervalu, přes který integrujeme).

Přibližné řešení soustav rovnic

1. Řešte (i) Jacobiovou metodou (ii) Gauss-Seidlovou metodou následující soustavy rovnic s tolerancí 10^{-5} :

$$3x - y + z = 1$$
$$3x + 6y + 2z = 0$$

$$3x + 3y + 7z = 4$$

b)
$$10x - y = 9$$
$$-x + 10y - 2z = 7$$

$$-2y + 10z = 6$$

2. Metodou SOR řešte soustavy rovnic z předchozí úlohy s tolerancí 10^{-5} . Volte nejprve $\lambda=1,1,$ poté vyzkoušejte i $\lambda=1,2.$