Teorema 1.21. Determinante de matrices triangulares y diagonales.

Si $\bf A$ es una matriz $n \times n$ triangular (triangular superior, triangular inferior o diagonal) entonces su determinante es el producto de los elementos de su diagonal principal, es decir

$$\det(\mathbf{A}) = a_{11}a_{22}\cdots a_{nn}$$

Teorema 1.22. Regla de Cramer.

Si $\mathbf{A}\mathbf{x} = \mathbf{b}$ es un sistema de n ecuaciones con n incógnitas y aparte, $\det(\mathbf{A}) \neq 0$, entonces el sistema de ecuaciones lineales homogéneo tiene solución única. Esta solución es

$$x_1 = \frac{\det(\mathbf{A}_1)}{\det(\mathbf{A})}, \quad x_2 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})}, \cdots, x_n = \frac{\det(\mathbf{A}_n)}{\det(\mathbf{A})}$$

donde ${\bf A}_j$ es la matriz que se obtiene al sustituir lo elementos de la j-ésima columna de ${\bf A}$ por los elementos de la matriz

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Teorema 1.23. Una propiedad importante.

Si **A** es una matriz cuadrada, entonces $\det(\mathbf{A}) = \det(\mathbf{A}^T)$.

Teorema 1.24. Operaciones en los renglones de los determinantes.

Sea **A** una matriz cuadrada $n \times n$.

- Si B es una matriz que se obtiene a partir de A al multiplicar por un escalar k un renglón (o una columna) de A entonces det(B) = k det(A).
- ② Si B es una matriz que se obtiene a partir de A al intercambiar dos renglones (o columnas) de A entonces $\det(B) = -\det(A)$.
- **③** Si **B** es una matriz que se obtiene a partir de **A** al sumar el múltiplo de un renglón a otro renglón (o el múltiplo de una columna a otra columna) de **A** entonces $\det(\mathbf{B}) = \det(\mathbf{A})$.

Teorema 1.25. Operaciones en los renglones de los determinantes (parte elemental).

Sea **E** una matriz cuadrada $n \times n$.

- Si **E** es una matriz que se obtiene a partir de \mathbf{I}_n al multiplicar por un escalar k un renglón de \mathbf{I}_n entonces $\det(\mathbf{E}) = k$.
- ② Si E es una matriz que se obtiene a partir de \mathbf{I}_n al intercambiar dos renglones de \mathbf{I}_n entonces $\det(\mathbf{E}) = -1$.
- Si E es una matriz que se obtiene a partir de I_n al sumar el múltiplo de un renglón a otro renglón de I_n entonces det(E) = 1.

Teorema 1.26. Renglones o columnas proporcionales.

Si **A** es una matriz que tiene dos renglones o dos columnas proporcionales, entonces $\det(\mathbf{A})=0$.

Teorema 1.27. Primera manifestación de la n-linealidad.

Sean A, B y C tres matrices cuadradas del mismo tamaño que difieren en un solo renglón, digamos el r-ésimo y sean tales que el r-ésimo renglón de C sea igual a la suma de los r-ésimos renglones de A y B. Entonces

$$\det(\mathbf{C}) = \det(\mathbf{A}) + \det(\mathbf{B})$$

Teorema 1.28. Un pequeño paso a la vez.

Si **B** es una matriz $n \times n$ y **E** es una matriz elemental $n \times n$, entonces

$$\det(\textbf{EB}) = \det(\textbf{E})\det(\textbf{B})$$

Teorema 1.29. Una propiedad sorprendente.

Si A y B son matrices cuadradas del mismo tamaño, entonces

$$\det(\boldsymbol{A}\boldsymbol{B}) = \det(\boldsymbol{A})\det(\boldsymbol{B})$$

Teorema 1.39. Un criterio muy importante.

Sea $\mathbf{S} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$ un conjunto de vectores en \mathbb{R}^n . Si r > n entonces \mathbf{S} es linealmente dependiente.

Teorema 1.30. Teorema importante (segunda remasterización).

Si $\bf A$ es una matriz cuadrada $n \times n$, entonces las siguientes proposiciones son equivalentes, es decir, todas son verdaderas o todas son falsas.

- A es invertible.
- $\ensuremath{\mathfrak{D}}$ El sistema de ecuaciones lineales homogéneo $\ensuremath{\mathbf{A}} \mathbf{x} = \mathbf{0}$ sólo tiene la solución trivial.
- La forma escalonada reducida de A es In.
- 4 puede expresarse como un producto de matrices elementales.
- **3** $\mathbf{A}\mathbf{x} = \mathbf{b}$ es consistente para toda matriz $\mathbf{b} n \times 1$.
- **6** $\mathbf{A}\mathbf{x} = \mathbf{b}$ tiene exactamente una solución para cada matriz \mathbf{b} $n \times 1$.
- $\mathbf{O} \det(\mathbf{A}) \neq 0$

Teorema 1.31. Lo más hermoso.

Si A es una matriz cuadrada e invertible, entonces

$$\det(\boldsymbol{\mathsf{A}}^{-1}) = \frac{1}{\det(\boldsymbol{\mathsf{A}})}$$

teorema 1.32. Propiedades de los vectores.

Sea V un espacio vectorial, \mathbf{u} un elemento de V y k un escalar, entonces se cumple

- 0u = 0
- **2** k**0** = **0**
- **3** $(-1)\mathbf{u} = -\mathbf{u}$
- 3 Si $k\mathbf{u} = \mathbf{0}$, entonces k = 0 o $\mathbf{u} = \mathbf{0}$.

Teorema 1.33. Prueba de subespacios.

Sea V un espacio vectorial y sea W un subconjunto de V. Entonces W es un subespacio de V si y sólo si cumple con las siguentes condiciones

- ① Si $\mathbf{u} \in W$ y $\mathbf{v} \in W$ entonces $\mathbf{u} + \mathbf{v} \in W$.
- ② Si $\mathbf{u} \in W$ y $k \in F$ entonces $k\mathbf{u} \in W$.

Teorema 1.34. Un tipo de subespacio interesante.

Si $\mathbf{A}\mathbf{x}=\mathbf{0}$ es un sistema de m ecuaciones con n incógnitas, entonces el conjunto de los vectores solución es un subespacio de \mathbb{R}^n .

Teorema 1.35. De las combinaciones lineales.

Si $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r$ son vectores en un espacio vectorial V, entonces

- El conjunto W de todas las combinaciones lineales de v₁, v₂, · · · , v_r es un subespacio de V.
- **②** W es el subespacio menor de V que contiene a $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r$ en el sentido de que cualquier otro subespacio de V que contiene a $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r$ debe contener a W.

Teorema 1.36. Igualdad entre espacios vectoriales.

Si $\mathbf{S}=\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_r\}$ y $\mathbf{S}'=\{\mathbf{w}_1,\mathbf{w}_2,\cdots,\mathbf{w}_k\}$, son dos conjuntos de vectores en un espacio vectorial V, entonces

$$\mathfrak{L}(\textbf{S})=\mathfrak{L}(\textbf{S}')$$

si y sólo si todo vector de ${\bf S}$ se puede expresar como una combinación lineal de los vectores de ${\bf S}'$ y todo vector de ${\bf S}'$ se puede expresar como una combinación lineal de los vectores de ${\bf S}$.

Teorema 1.37. De conjuntos I.i. o I.d.

Un conjunto S con dos o más vectores es

- Linealmente dependiente si y sólo si por lo menos uno de los vectores de S se puede expresar como combinación lineal de los demás vectores de S
- Linealmente independiente si y sólo si, ningún vector de S se puede expresar como una combinación lineal de los demás vectores de S.

Teorema 1.38. Otro criterio de dependencia o independencia lineal.

- Un conjunto finito de vectores que contiene la vector cero es linealmente dependiente.
- Un conjunto formado por exactamente dos vectores es linealmente independiente si y sólo si ninguno de los vectores es múltiplo escalar del otro vector.

Teorema 1.40. Criterio de dependencia o independencia lineal para el espacio vectorial de las funciones.

Si las funciones $\mathbf{f}_1,\mathbf{f}_2,\cdots,\mathbf{f}_n$ tienen (n-1) derivadas continuas en el intervalo $(-\infty,\infty)$ y el **wronskiano** de estas funciones no es idénticamente cero en todo el intervalo $(-\infty,\infty)$, entonces estas funciones forman un conjunto linealmente independiente de vectores en $C^{(n-1)}(-\infty,\infty)$.

Teorema 2.1 Unicidad de la representación de la base.

Si $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ es una base para un espacio vectorial V, entonces cualquier vector \mathbf{v} se puede expresar en forma única como

$$\mathbf{V} = c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2 + \dots + c_n \mathbf{V}_n$$

Teorema 2.2. Criterio poderoso para ser base.

Sea V un espacio vectorial de dimensión finita y sea $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ cualquier base de V.

- Si un conjunto tiene más de n vectores entonces, es linealmente dependiente.
- $\ensuremath{ \ \, \odot \ }$ Si un conjunto tiene menos de n vectores, entonces no genera a $_V$

Teorema 2.3. Unicidad de la dimensión.

Todas las bases para un espacio vectorial de dimensión finita tienen el mismo número de vectores.

Teorema 2.4. Teorema más/menos.

Sea ${\it S}$ un conjunto de vectores en un espacio vectorial ${\it V}$ de dimensión finita.

- Si S es un conjunto linealmente independiente y si \mathbf{v} es un vector en V que no pertenece al espacio generado (S), entonces el conjunto $S \cup \{\mathbf{v}\}$ que resulta de incluir a \mathbf{v} en S continúa siendo linealmente independiente.
- Si v es un vector en S que se puede expresar como una combinación lineal de los demás vectores en S, y si S – {v} es el conjunto que se obtiene al quitar el vector v de S, entonces S y S – {v} generan el mismo espacio, es decir,

espacio generado(S) = espacio generado($S - \{v\}$)

Teorema 2.5. Un teorema práctico

Si V es un espacio vectorial de dimensión finita n y si S es un conjunto con exactamente n vectores, entonces S es una base para V si S es linealmente independiente o S genera a V.

Teorema 2.6. Construcción de una base.

Sea ${\it S}$ un conjunto de vectores en un espacio vectorial ${\it V}$ de dimensión finita.

- Si S genera a V pero no es una base para V, entonces S se puede reducir a una base para V quitendo de S los vectores adecuados.
- Si S es un conjunto linealmente independiente que aún no es una base para V, entonces S se puede agrandar hasta constituir una base para V insertando en S los vectores adecuados.

Teorema 2.7. De las dimensiones de espacios y subespacios

Si W es un subespacio de un espacio vectorial V de dimensión finita , entonces $\dim(W) \leq \dim(V)$; además, si $\dim(W) = \dim(V)$, entonces W = V.

Teorema 2.9. Un teorema con dos personalidades.

Un sistema de ecuaciones lineales $\mathbf{A}\mathbf{x} = \mathbf{b}$ es consistente si y sólo si \mathbf{b} está en el espacio columna de \mathbf{A} .

Teorema 2.10. Un teorema que trasciende.

Si \mathbf{x}_0 denota cualquier solución individual de un sistema de ecuaciones no homogéneo consistente $\mathbf{A}\mathbf{x} = \mathbf{b}$ y si $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}$ forman una base para el espacio nulo de \mathbf{A} (es decir, para el espacio solución del sistema homogéneo $\mathbf{A}\mathbf{x} = \mathbf{0}$), entonces toda solución de $\mathbf{A}\mathbf{x} = \mathbf{b}$ se puede expresar de la forma

$$\mathbf{X} = \mathbf{X}_0 + c_1 \mathbf{V}_1 + c_2 \mathbf{V}_2 + \dots + c_k \mathbf{V}_k$$

y, recíprocamente, para todas las elecciones de los escalares c_1,c_2,\cdots,c_k , el vector **x** en esta fórmula es una solución de $\mathbf{A}\mathbf{x}=\mathbf{b}$.

Teorema 2.11. Del espacio nulo de una matriz.

Las operaciones elementales en los renglones no cambian el espacio nulo de una matriz.

Teorema 2.12. Del espacio renglón de una matriz.

Las operaciones elementales en los renglones no cambian el espacio renglón de una matriz.

Teorema 2.30. Unas importantes fórmulas.

Sea ${\it W}$ un subespacio de dimensión finita en un espacio ${\it V}$ con producto interno.

① Si $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ es una base ortonormal para W y \mathbf{u} es cualquier vector en V, entonces

$$\text{proy}_{W} \mathbf{u} = \langle \mathbf{u}, \mathbf{v}_{1} > \mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} > \mathbf{v}_{2} + \dots + \langle \mathbf{u}, \mathbf{v}_{r} > \mathbf{v}_{r}$$
 (19)

Si {v₁, v₂, · · · , v_r} es una base ortogonal para W y u es cualquier vector en V, entonces

$$proy_{W}\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_{r} \rangle}{\|\mathbf{v}_{r}\|^{2}} \mathbf{v}_{r} \quad (20)$$

forman una base para el espacio renglón de ${f R}$, y los vectores columna con los 1 principales de los vectores renglón forman una base para el espacio columna de ${f R}$.

Teorema 4.1. Un teorema práctico.

Sea $T: V \longrightarrow W$ una función de V a W. Así, T es lineal sí y sólo sí

$$T(0) = 0$$

leorema 2.16 Para las transpuestas.

Si **A** es cualquier matriz, entonces $rango(\mathbf{A}) = rango(\mathbf{A}^T)$.

Teorema 2.17. Teorema de la dimesión para matrices.

Si A es una matriz con n columnas, entonces

$$rango(\mathbf{A}) + nulidad(\mathbf{A}) = n \tag{12}$$

Teorema 2.18. Un teorema práctico.

- Si **A** es una matriz $m \times n$, entonces:
- a rango(A) =
 - número de variables principales que hay en la solución de $\mathbf{A}\mathbf{x}=\mathbf{0}$.
- nulidad(A) =
 - número de parámetros que hay en la solución general de $\mathbf{A}\mathbf{x}=\mathbf{0}$.

Teorema 2.19. Propiedades del producto interior.

Si ${\bf u}$, ${\bf v}$ y ${\bf w}$ son vectores en un espacio vectorial real con producto interior y si α es cualquier escalar, entonces

- $\mathbf{0} < \mathbf{0}, \mathbf{v} > = 0$
- 2 < u, v + w > = < u, v > + < u, w >
- $\mathbf{0} < \mathbf{u}, \alpha \mathbf{v} > = \alpha < \mathbf{u}, \mathbf{v} >$
- $\{ \mathbf{0} < \mathbf{u}, \mathbf{v} \mathbf{w} > = < \mathbf{u}, \mathbf{v} > < \mathbf{u}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{v} > < \mathbf{v}, \mathbf{w} > = < \mathbf{v}, \mathbf{v} > < \mathbf{v},$

Teorema 2.20. Desigualdad de Cauchy-Schwarz

Si \boldsymbol{u} y \boldsymbol{v} son vectores en un espacio vectorial real con producto interior, entonces

$$|<\mathbf{u},\mathbf{v}>| \le \|\mathbf{u}\| \|\mathbf{v}\|$$
 (15)

Teorema 2.21. Propiedades de la longitud.

Si ${\bf u}$ y ${\bf v}$ son vectores en un espacio vectorial V con producto interior y si k es cualquier escalar, entonces

- $\|\mathbf{u}\| \ge 0$
- $||\mathbf{u}|| = 0 \text{ si y sólo si } \mathbf{u} = \mathbf{0}$
- $||k\mathbf{u}|| = |k| ||\mathbf{u}||$

Teorema 2.22. Propiedades de la distancia.

Si \mathbf{u} , \mathbf{v} y \mathbf{w} son vectores en un espacio V con producto interior y si k es cualquier escalar, entonces

- 2 $d(\mathbf{u}, \mathbf{v}) = 0$ si y sólo si $\mathbf{u} = \mathbf{v}$
- $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
- $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$ (designal dad del triángulo)

Teorema 2.23. Propiedades de los complementos ortogonales

Si ${\cal W}$ es un subespacio de un espacio ${\cal V}$ con producto interno de diemensión finita, entonces

- $\mathbf{0}$ W^{\perp} es un subespacio de V.
- lacktriangle El único vector común a W y W^{\perp} es el vector $oldsymbol{0}$.
- **3** El complemento ortogonal de W^{\perp} es W, es decir, $(W^{\perp})^{\perp} = W$.