Project 1 – FIN654

Bill Foote

January 17, 2017

Problem and Questions

What is the impact of terms and conditions of commercial loans on loan rates? xxxx

Data Preparation

```
Data is from FRED .
```

...Data dictionary...

```
xx xx xxx
```

some more words to talk about preparation

```
x.data <- read.csv("data/commloans.csv")
head(x.data, n = 5)</pre>
```

```
date prepaypenalty maturity rate size volume
## 1
      4/1/2003
                         16.5
                                    124 3.77
                                              449
                                                    11406
## 2
     7/1/2003
                         18.1
                                     70 3.09
                                              356
                                                    14586
## 3 10/1/2003
                                              532
                         44.9
                                     48 2.83
                                                    21022
     1/1/2004
## 4
                         30.4
                                     87 3.06
                                              602
                                                    21472
## 5
     4/1/2004
                         23.5
                                     68 2.97
                                              600
                                                    22359
```

```
tail(x.data, n = 5)
```

```
##
           date prepaypenalty maturity rate size volume
## 50 7/1/2015
                                     76 2.30 1405
                                                    30586
                          16.9
## 51 10/1/2015
                          11.7
                                     77 2.31 1534
                                                    36840
## 52
      1/1/2016
                          13.6
                                     66 2.43 1317
                                                    36316
## 53
       4/1/2016
                          20.6
                                     93 2.63 1227
                                                    24803
## 54
      7/1/2016
                          14.5
                                     66 2.41 1460
                                                    40682
```

summary(x.data)

```
##
          date
                   prepaypenalty
                                       maturity
                                                           rate
    1/1/2004: 1
                          : 8.80
                                                              :2.240
##
                   Min.
                                    Min.
                                           : 40.00
                                                      Min.
##
   1/1/2005: 1
                   1st Qu.:16.95
                                    1st Qu.: 68.25
                                                      1st Qu.:2.482
   1/1/2006: 1
                   Median :20.70
                                    Median : 89.00
                                                      Median :2.825
    1/1/2007: 1
                          :23.06
                                           : 95.28
##
                   Mean
                                    Mean
                                                      Mean
                                                              :3.652
    1/1/2008: 1
                   3rd Qu.:29.93
##
                                    3rd Qu.:112.25
                                                      3rd Qu.:4.197
##
    1/1/2009: 1
                   Max.
                          :51.90
                                    Max.
                                           :396.00
                                                      Max.
                                                              :7.410
##
    (Other) :48
##
         size
                          volume
##
    Min.
           : 356.0
                      Min.
                              :11406
##
    1st Qu.: 639.5
                      1st Qu.:15451
   Median: 824.5
##
                      Median :18670
##
    Mean
           : 881.7
                      Mean
                              :20824
##
   3rd Qu.:1017.8
                      3rd Qu.:24258
    Max.
           :1715.0
                      Max.
                              :40682
```

##

Short discussion about data. Note anomalies.

Data Analysis

Data Exploration

```
...lead in description ...
require(ggplot2)

## Loading required package: ggplot2
require(reshape2)

## Loading required package: reshape2

## Use melt() from reshape2 to build data frame with data as id and values of variables
x.melted <- melt(x.data[, c(1:4)], id = "date")
ggplot(data = x.melted, aes(x = date, y = value)) +
    geom_point() + facet_wrap(~variable, scales = "free_x")</pre>
```


commentary on the plots.

Relational Analysis

```
\dots lead in \dots
```

```
require(psych)

## Loading required package: psych

##

## Attaching package: 'psych'

## The following objects are masked from 'package:ggplot2':

##

## %+%, alpha

pairs.panels(x.data)
```


Note any observations here.

Let's regress rate on the rest of the variables in x.data. To do this we form a matrix of independent variables (predictor or explanatory variables) in the matrix X and a separate vector y for the dependent (response) variable rate. We recall that the 1 vector will produce a constant intercept in the regression model.

```
y <- as.vector(x.data[,"rate"])
X <- as.matrix(cbind(1, x.data[,c("prepaypenalty", "maturity", "size", "volume")]))
head(y)
## [1] 3.77 3.09 2.83 3.06 2.97 3.36
head(X)</pre>
```

```
##
       1 prepaypenalty maturity size volume
## [1,] 1
                  16.5
                            124 449
                                      11406
## [2,] 1
                  18.1
                             70 356 14586
## [3,] 1
                  44.9
                             48 532 21022
## [4,] 1
                  30.4
                             87
                                602
                                      21472
## [5,] 1
                  23.5
                             68 600 22359
## [6,] 1
                  20.0
                             80
                                 593 23780
```

- Explain the code used to form y and X.
- Calculate the $\hat{\beta}$ coefficients and interpret their meaning.

```
XTX.inverse <- solve(t(X) %*% X)
(beta.hat <- XTX.inverse %*% t(X) %*% y )</pre>
```

```
## [,1]
## 1 7.771438e+00
## prepaypenalty -6.968996e-02
## maturity 6.399952e-03
## size -2.041351e-03
## volume -6.347851e-05
```

• Calculate actual and predicted rates and plot using this code.

```
# Insert comment here
require(reshape2)
require(ggplot2)
actual <- y
predicted <- X%*%beta.hat</pre>
residual <- actual - predicted
results <- data.frame(actual = actual, predicted = predicted, residual = residual)
# Insert comment here
min_xy <- min(min(results$actual), min(results$predicted))</pre>
max_xy <- max(max(results$actual), max(results$predicted))</pre>
# Insert comment here
plot.melt <- melt(results, id.vars = "predicted")</pre>
# Insert comment here
plot.data <- rbind(plot.melt, data.frame(predicted = c(min_xy, max_xy), variable = c("actual", "actual"</pre>
# Insert comment here
p <- ggplot(plot.data, aes(x = predicted, y = value)) + geom_point(size = 2.5) + theme_bw()</pre>
p <- p + facet_wrap(~variable, scales = "free")</pre>
```


- Insert explanatory comments into the code chunk to document the work flow for this plot.
- Interpret the graphs of actual and residual versus predicted values of rate.
- Calculate the standard error of the residuals. Interpret its meaning.

```
e <- y - X %*% beta.hat
(e.sse <- t(e) %*% e)

## [1,1]
## [1,] 88.62341
(n <- dim(X)[1])

## [1] 54
(k <- nrow(beta.hat))

## [1] 5
(e.se <- (e.sse / (n - k))^0.5)

## [1,1] 1.344857
... note any analytical insights</pre>
```

Observations and Recommendations

What we observe especially insights.

Any recommendations for management in setting terms and conditions of loans.

Sources

Google, CRAN for ggplot2, reshape2, FRED, discussions with whomever. Other sources.