On Dealing with Uncertainties from Kriging
Models in Offline Data-driven Evolutionary
Multiobjective Optimization (Supplementary
Material)

Atanu Mazumdar, Tinkle Chugh, Kaisa Miettinen Manuel López-Ibáñez

October 24, 2018

List of Figures

1	Box plot of IGD for 11 runs for two objective problems. "Gen",	
	"Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach	
	2 and Approach 3 respectively.(Opt.Rand is optimal-random sampling)	4
2	Box plot of IGD for 11 runs for three objective problems. "Gen",	
	"Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach	
	2 and Approach 3 respectively.(Opt.Rand is optimal-random sampling)	4
3	Box plot of IGD for 11 runs for five objective problems. "Gen", "Appr1"	
	, "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2	
	and Approach 3 respectively.(Opt.Rand is optimal-random sampling)	5
4	Final solutions obtained of the run with the median IGD value	
	using different approaches for uniform random sampling for DTLZ2	
	Problem	5
5	Final solutions obtained of the run with the median IGD value using	
	different approaches for LHS sampling for DTLZ4 Problem	6
6	Final solutions obtained of the run with the median IGD value	
	using different approaches for uniform random sampling for DTLZ4 $$	
	Problem	6
7	Final solutions obtained of the run with the median IGD value	
	using different approaches for optimal-random sampling for DTLZ4	
	Problem	7
8	Final solutions obtained of the run with the median IGD value using	
	different approaches for LHS sampling for DTLZ5 Problem	7

9	Final solutions obtained of the run with the median IGD value	
	using different approaches for uniform random sampling for DTLZ5 $$	
	Problem	8
10	Final solutions obtained of the run with the median IGD value	
	using different approaches for optimal-random sampling for DTLZ5	
	Problem	8
11	Final solutions obtained of the run with the median IGD value using	
	different approaches for LHS sampling for DTLZ6 Problem	9
12	Final solutions obtained of the run with the median IGD value	
	using different approaches for uniform random sampling for DTLZ6	
	Problem	9
13	Final solutions obtained of the run with the median IGD value	
	using different approaches for optimal-random sampling for DTLZ6 $$	
	Problem	10
14	Final solutions obtained of the run with the median IGD value using	
	different approaches for LHS sampling for DTLZ7 Problem	10
15	Final solutions obtained of the run with the median IGD value	
	using different approaches for uniform random sampling for DTLZ7 $$	
	Problem	11
16	Final solutions obtained of the run with the median IGD value	
	using different approaches for optimal-random sampling for DTLZ7 $$	
	Problem	11
17	RMSE of the final solutions for three objective problems, LHS	
	sampling. Here f1 and f2 are the objectives and "Gen", "Appr1",	
	"Appr2" and "Appr3" are the Generic, Approach 1, Approach 2	
	and Approach 3 respectively	12
18	RMSE of the final solutions for three objective problems, Random	
	sampling. Here f1 and f2 are the objectives and "Gen", "Appr1",	
	"Appr2" and "Appr3" are the Generic, Approach 1, Approach 2	
	and Approach 3 respectively	13

19	RMSE of the final solutions for three objective problems, optimal-
	random sampling. Here f1 and f2 are the objectives and "Gen",
	"Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach
	2 and Approach 3 respectively
20	IGD variation with function evaluations for two objective problems.
	Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach
	1, Approach 2 and Approach 3 respectively
21	IGD variation with function evaluations for three objective problems.
	Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach
	1, Approach 2 and Approach 3 respectively
22	IGD variation with function evaluations for five objective problems.
	Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach
	1, Approach 2 and Approach 3 respectively

Figure 1: Box plot of IGD for 11 runs for two objective problems. "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively. (Opt.Rand is optimal-random sampling)

Figure 2: Box plot of IGD for 11 runs for three objective problems. "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively. (Opt.Rand is optimal-random sampling)

Figure 3: Box plot of IGD for 11 runs for five objective problems. "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively. (Opt.Rand is optimal-random sampling)

Figure 4: Final solutions obtained of the run with the median IGD value using different approaches for uniform random sampling for DTLZ2 Problem.

Figure 5: Final solutions obtained of the run with the median IGD value using different approaches for LHS sampling for DTLZ4 Problem.

Figure 6: Final solutions obtained of the run with the median IGD value using different approaches for uniform random sampling for DTLZ4 Problem.

Figure 7: Final solutions obtained of the run with the median IGD value using different approaches for optimal-random sampling for DTLZ4 Problem.

Figure 8: Final solutions obtained of the run with the median IGD value using different approaches for LHS sampling for DTLZ5 Problem.

Figure 9: Final solutions obtained of the run with the median IGD value using different approaches for uniform random sampling for DTLZ5 Problem.

Figure 10: Final solutions obtained of the run with the median IGD value using different approaches for optimal-random sampling for DTLZ5 Problem.

Figure 11: Final solutions obtained of the run with the median IGD value using different approaches for LHS sampling for DTLZ6 Problem.

Figure 12: Final solutions obtained of the run with the median IGD value using different approaches for uniform random sampling for DTLZ6 Problem.

Figure 13: Final solutions obtained of the run with the median IGD value using different approaches for optimal-random sampling for DTLZ6 Problem.

Figure 14: Final solutions obtained of the run with the median IGD value using different approaches for LHS sampling for DTLZ7 Problem.

Figure 15: Final solutions obtained of the run with the median IGD value using different approaches for uniform random sampling for DTLZ7 Problem.

Figure 16: Final solutions obtained of the run with the median IGD value using different approaches for optimal-random sampling for DTLZ7 Problem.

Figure 17: RMSE of the final solutions for three objective problems, LHS sampling. Here f1 and f2 are the objectives and "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.

Figure 18: RMSE of the final solutions for three objective problems, Random sampling. Here f1 and f2 are the objectives and "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.

Figure 19: RMSE of the final solutions for three objective problems, optimal-random sampling. Here f1 and f2 are the objectives and "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.

Figure 20: IGD variation with function evaluations for two objective problems. Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.

Figure 21: IGD variation with function evaluations for three objective problems. Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.

Figure 22: IGD variation with function evaluations for five objective problems. Here "Gen", "Appr1", "Appr2" and "Appr3" are the Generic, Approach 1, Approach 2 and Approach 3 respectively.