IA Responsable — Proyecto 01

Este sitio resume el proyecto de IA Responsable aplicando los principios FATE (Fairness, Accountability, Transparency, Ethics) sobre el dataset Adult Census Income (UCI). Se entrena un modelo base y una versión mitigada usando class_weight="balanced", y se evalúa el desempeño **segmentado por grupos sensibles** (sexo, edad y raza).

- Código completo: project-eda.ipynb · baseModel.ipynb Instrucciones de reproducción: ver README.md
- Dataset: 32,561 filas · 15 columnas · atributos sensibles usados para segmentar: sex , race ,
- Mejor baseline (sin balanceo) Logistic Regression: Accuracy 0.8096, F1 0.5110, ROC AUC
- **ROC AUC 0.8231.** • Efecto: la mitigación aumenta el recall/TPR de la clase positiva (FN ↓, TP ↑), mejora F1 y reduce algunas brechas de Equal Opportunity (TPR por grupo), a costa de mayor FPR y Positive Rate

• Mitigación (class_weight="balanced") — Logistic Regression: Accuracy 0.7375, F1 0.5797,

en varios subgrupos. 1) Contexto y objetivo

Los modelos de ML pueden heredar o amplificar sesgos presentes en los datos o en el diseño/uso del

sistema. Objetivo del proyecto: 1) Identificar posibles sesgos en datos y modelo,

2) Evaluar el impacto por subgrupos sensibles, 3) Aplicar una mitigación y comparar antes vs. después,

- 4) **Reflexionar** sobre riesgos, transparencia y responsabilidad.
- 2) Datos (Adult Census Income UCI)
- Tamaño: 32,561 registros, 15 columnas (6 numéricas, 9 categóricas). • Valores "?": workclass (1,836), occupation (1,843), native.country (583). Atributos sensibles: sex , race y age (agrupada en bins).
- como NaN y posterior imputación/One-Hot. Hallazgos clave del EDA
 - Distribución del target: ~24% de la clase positiva (>50K) y ~76% de la negativa (<=50K) → desbalance moderado. Workclass: predominio del sector privado (Private) frente a gobierno/cuenta propia → posible sesgo por sobrerrepresentación.

• Educación: concentración entre secundaria—universidad; menor presencia en niveles extremos.

El EDA (ver notebook) reporta distribuciones por categoría, estadísticas numéricas y manejo de "?"

controla.

- Raza: ~85% White; otras razas con bajo soporte → riesgo de alta varianza e inequidad si no se
- País (native country): mayoría Estados Unidos; múltiples categorías raras con muy pocos Edad: mayor densidad entre 20–50 años (población laboral activa); útil estratificar en bins para análisis.
- Tratamiento de datos (según EDA/Pipeline) • Reemplazo de "?" por NaN en categóricas antes de estadísticas/plots. • Imputación: mediana (numéricas) y moda (categóricas).

• Codificación: OneHotEncoder(handle_unknown="ignore") para robustez ante categorías no

vistas. Variables candidatas usadas • Numéricas: age , education_num , hours_per_week , capital_gain , capital_loss .

• Categóricas: workclass, education, marital_status, occupation, sex, race,

Proportion of workclass

- native_country.
- Gráficas (EDA) Proportion of race

Other Amer-Indian-Eskimo

Raza

ROC AUC

0.8221

0.8029

0.8231

0.8061

0.2151

0.0134

Positive Rate

0.5090

0.1293

gap_positive_rate

0.2017

Positive Rate

0.1620

0.0154

0.2817

0.4562

Positive Rate

0.1064

gap_positive_rate

0.4409

0.6561

Positive Rate

Positive Rate

0.4127

0.3016

Trabajo (workclass)

Educación

Logistic (baseline)

4) Métricas globales (Test)

Modelos evaluados

Partición

Modelo

Tree (baseline)

Tree (balanced)

Male

sex

Brechas (max-min)

Antes (Logistic — baseline)

n

3927

2407

1647

160

2407

gap_accuracy

0.2643

0.4753

personas mayores— y la tasa de positivos predicha.

5.3. Raza (race) — antes vs. después

Después (Logistic — balanced)

accuracy

0.7601

0.9393

0.7511

0.6750

accuracy

0.7041

0.8816

Modelo

Baseline

age_bin

30-49

<30

50-69

70+

age_bin

<30

Brechas (max-min)

Modelo

Baseline

Balanced

Female

5458

2683

n

gap_accuracy

0.1250

Después (Logistic — balanced)

Logistic (balanced)

 Logistic — balanced: TN=4530, FP=1651, FN=486, TP=1474 Lectura

Matrices de confusión (test) Logistic — baseline: TN=5781, FP=400, FN=1150, TP=810

Baseline: Logistic Regression, Decision Tree.

• Mitigación: mismas arquitecturas con class weight="balanced".

• Train 75% / Test 25%, stratify=y, random state=42.

La versión balanced sacrifica <i>accuracy</i> (más FP) para recuperar muchos positivos (menos FN) → sube F1 . El AUC (ranking) se mantiene ≈ igual, consistente con cambiar la penalización/umbral más que la capacidad discriminativa.								
5) Equida	ıd: evalu	uación segr	nentada	por subgi	rupos			
Se reportan métricas por grupo: accuracy, F1, TPR (recall), FPR, Positive Rate . También se muestran " brechas " (max–min entre grupos) para cada métrica: menor es mejor.								
5.1. Sexo (sex) — antes vs. después								
Antes (Logistic — baseline)								
sex	n	accuracy	F1	TPR	FPR	Positive Rate		

0.5549

0.1333

F1

0.4730

0.0748

TPR

0.1018

0.0059

FPR

gap_fpr

0.0959

FPR

0.0690

0.0110

0.1350

0.3577

FPR

0.0897

gap_fpr

0.3467

0.6420

TPR

TPR

0.7676

FPR

FPR

0.2908

Accuracy

0.8096

0.7978

0.7375

0.6593

F1

0.5110

0.4607

0.5797

0.5473

5458 0.6849 0.6130 0.8175 0.3734 Male 2683 0.8446 0.3495 0.3810 0.0984 Female

gap_f1

0.4216

0.7684

0.8934

accuracy

Balanced	0.1597	0.2635	0.4366	0.2751	0.3796			
Resumen: la mitigación eleva TPR y mejora F1 en ambos sexos (mejor Equal Opportunity), pero aumenta FPR y Positive Rate, ampliando brechas en Demographic Parity.								
5.2. Edad (age, bins) — antes vs. después								

F1

0.4875

0.1412

0.6103

0.5273

F1

gap_tpr

0.3982

TPR

0.3727

0.0902

0.5459

0.7838

TPR

0.3910

gap_tpr

0.6936

0.5036

Resumen: la mitigación sube TPR en todos los bins (recupera positivos), pero aumenta FPR —más en

0.6387 0.6387 0.6430 50-69 1647 0.8946 0.5033 0.4025 0.7625 70+ 160 0.4062 0.8649 0.7317

gap_f1

0.4691

0.3714

0.2674

7017	0.8002	0.5212	0.4253	0.0710	0.1616
725	0.8855	0.2783	0.1818	0.0173	0.0372
257	0.8093	0.5586	0.4697	0.0733	0.1751
79	0.8608	0.0000	0.0000	0.0286	0.0253
63	0.9206	0.0000	0.0000	0.0333	0.0317
	725 257 79	725 0.8855 257 0.8093 79 0.8608	725 0.8855 0.2783 257 0.8093 0.5586 79 0.8608 0.0000	725 0.8855 0.2783 0.1818 257 0.8093 0.5586 0.4697 79 0.8608 0.0000 0.0000	725 0.8855 0.2783 0.1818 0.0173 257 0.8093 0.5586 0.4697 0.0733 79 0.8608 0.0000 0.0000 0.0286

F1

0.5872

accuracy

0.7241

0.3872

Agrupar/reescalar categorías con n muy bajo para reducir varianza.

n

7017

0.1687

F1

Resum	en: mejora el TPR (oportunidad) para varios grupos, pero incrementan FPR y Positive Rate; en
grupos	con muy bajo soporte (por ejemplo, Other y Amer-Indian-Eskimo) persisten
•	ilidades.
6) Mi	tigación aplicada y alternativas
Aplicac	da: class_weight="balanced" en Logistic y Tree.
Ver	ntajas: ↑ TPR/recall de la clase positiva, ↑ F1 , ↓ brechas EO en varios casos.
• Cos	stos: ↑ FPR y ↑ Positive Rate → posibles efectos en <i>Demographic Parity</i> .
Alterna	itivas recomendadas
• Aju	uste de umbral por grupo (optimización precision-recall con restricciones de EO/EqOdds).
 Rel 	balanceo de datos (over/under-sampling) o reweighing previo.
• Pos	st-procesamiento (p. ej., <i>Equalized Odds</i>).

Versionado y trazabilidad: commits atómicos con mensajes claros; notebooks con random state

Registro de experimentos: anotar fecha, datos, hiperparámetros, métricas y figuras exportadas.

Revisión por pares: documentar decisiones (por qué este umbral/mitigación) y sus efectos.

• Riesgos y uso responsable: evitar despliegues sin monitoreo; impacto en grupos vulnerables.

Dataset: desbalance de clases; subgrupos con n muy bajo → alta varianza (inestabilidades en

Selección de criterios de equidad: justificar EO/DP según el caso de uso.

• Label/selection bias: etiquetas históricas pueden arrastrar sesgos sistémicos.

• Distribution shift: el rendimiento y la equidad pueden cambiar si cambia la población. • Umbral: pequeñas variaciones alteran TPR/FPR; conviene análisis de sensibilidad.

0.4342

0.1935

Transparencia (Transparency) • Pipeline documentado: imputación, codificación, modelo, umbral de decisión y atributos sensibles. • Métricas de equidad: definir qué se reporta (TPR/EO, FPR, Positive Rate/DP) y por qué. • Publicación: notebooks y scripts reproducibles; requirements.txt y pasos en README.

- Qué mejoró (equidad y desempeño) • ↑ TPR (Equal Opportunity) en la mayoría de subgrupos con class weight="balanced" → se reducen falsos negativos y aumenta la probabilidad de acierto para la clase positiva en grupos
- Qué no mejoró / trade-offs observados ↑ FPR y ↑ Positive Rate en varios subgrupos → puede ampliar brechas de Demographic Parity (más positivos predichos en ciertos grupos).

• Impacto desigual: mayores FPR en ciertos grupos pueden traducirse en costos o fricciones desproporcionadas. Feedback loops: decisiones del modelo pueden reforzar sesgos (p. ej., si influyen futuras

- para usuarios afectados. Recomendaciones prácticas
- Post-procesamiento de fairness (p. ej., equalized odds/EO) para controlar TPR/FPR por grupo sin reentrenar todo el pipeline. • Calibración por grupo (reliability curves/Platt/Isotónica) para alinear probabilidades y reducir sesgos de decisión. • Monitoreo continuo: dashboard de métricas por subgrupo (TPR/FPR/PositiveRate, gaps), alertas
- IA Responsable Proyecto 01

Census.

Equidad, responsabilidad, transparencia y ética aplicadas a un modelo predictivo con Adult

Antes (Logistic — baseline) accuracy race

Después (Logistic — balanced)

race

White

Balanced

Black		725	0.8566	0.4694	0.5227	0.0973	0.1490		
Asian-Pac-Islander		257	0.7043	0.5422	0.6818	0.2880	0.3891		
Amer-Indian-Eskimo		79	0.8354	0.4348	0.5556	0.1286	0.1772		
Other		63	0.8730	0.2000	0.3333	0.1000	0.1111		
Brechas (max–min)									
Modelo	gap_accuracy		gap_f1	gap_tpr	gap_f	pr ga	gap_positive_rate		
Baseline	0.	1204	0.5586	0.4697	0.056	0	0.1498		

python -m pip install -r requirements.txt 8) Responsabilidad, transparencia, ética y limitaciones

Responsabilidad (Accountability)

7) Reproducibilidad

Requisitos

Ética (Ethics)

F1/TPR).

baseline.

Gobernanza de datos: respetar licencias y privacidad; no introducir atributos sensibles en producción sin justificación. Limitaciones

9) Conclusiones y recomendaciones

- históricamente subrepresentados. ↑ F1 de la clase positiva gracias al aumento del recall, manteniendo ROC AUC similar (la capacidad de ranking no se deteriora). • En varias segmentaciones (sexo/raza), la brecha de TPR (gap EO) se estrecha respecto al
- ↓ Accuracy global por el aumento de falsos positivos (costo esperado al priorizar recall/equidad).
 • Persisten inestabilidades en grupos con **muy bajo soporte** (n pequeño), donde F1/TPR pueden fluctuar. Riesgos al desplegar en entornos reales
- etiquetas/datos). • Shift de distribución: cambios en la población degradan desempeño y equidad si no hay monitoreo. • Gobernanza y cumplimiento: se requiere trazabilidad, explicaciones y mecanismos de apelación
- Ajuste de umbral (global y/o por grupo) guiado por curvas PR/ROC, priorizando objetivos de EO o **EqOdds** según el caso de uso. • Mitigaciones de datos: reweighing, sobre/sub-muestreo estratificado y ampliación de datos en subgrupos con **n** bajo.
 - de drift y auditorías periódicas. • Proceso humano-en-el-bucle: revisión de casos límite, documentación (model card), registro de decisiones y canal de apelación.
 - IA Responsable Proyecto 01

TL;DR — Resultados clave