

2320030162@klh.edu.in >

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Operating System Fundamentals (course)

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 0 ()

Week 4: Assignment 4

The due date for submitting this assignment has passed.

Due on 2024-08-21, 23:59 IST.

Assignment submitted on 2024-08-18, 15:26 IST

1) What is the purpose of a context switch in an operating system?

- (A) Allocate memory to a new process
- (B) Deallocate the memory from a process
- (C) Save and restore the state of a process to allow multitasking
- (D) Terminate a process
- (E) Initialize a new process in the ready queue

Week 1 ()

Week 2 ()

Week 3 ()

Week 4 ()

- Contd.) (unit? unit=41&lesson=42)
- Lecture 17 : Processes (Contd.) (unit? unit=41&lesson=43)
- Contd.) (unit? unit=41&lesson=44)
- Lecture 19 : Threads (unit? unit=41&lesson=45)
- Lecture 20 : Threads (Contd.) (unit? unit=41&lesson=46)
- Lecture Materials (unit? unit=41&lesson=47)
- Feedback for week 4 (unit? unit=41&lesson=48)
- Quiz: Week 4 : Assignment 4 (assessment? name=178)

Yes, the answer is correct.

Score: 1

Accepted Answers:

- (C) Save and restore the state of a process to allow multitasking
- 2) Which of the following system call is used to replace the current process image with a new process image.

1 point

- (A) fork()
- (B) execl()
- (C) exit()
- (D) wait()
- (E) sleep()

Yes, the answer is correct.

Score: 1

Accepted Answers:

- (B) execl()
- 3) What is the outcome of the following program?

```
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
  if (execlp("ls", "ls", "-l", NULL) == -1)
{
    perror("execlp");
    exit(EXIT_FAILURE);
}
  printf("This line should not be reached\n");
  return 0;
}
```

- (A) The outcome is exactly same as the outcome of Is -I command
- (B) The outcome is exactly same as the outcome of Is command

Assignment 4 Solution
(unit?
unit=41&lesson=120)

Week 5 ()

Week 6 ()

Download Videos ()

Text Transcripts ()

Books ()

Problem Solving
Session - July 2024
()

```
(C) The outcome is exactly same as the outcome of Is -a command
(D) The outcome is exactly same as the outcome of Is -h command
(E) The outcome is exactly same as the outcome of Is -t command
Yes, the answer is correct.
Score: 1
Accepted Answers:
(A) The outcome is exactly same as the outcome of Is -I command
4) How many processes will be created by the following program?
#include <unistd.h>
#include <stdio.h>
```

```
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
int main()
{
  int n;
  for(i=1;i<=n; i=i*2)
{
    fork();
}
  return 0;
}</pre>
```

- (A) n
- (B) n²
- (C) log₂n
- (D) nlog₂n
- (E) √n

No, the answer is incorrect.

Score: 0

Accepted Answers:

(A) n

5) Choose the invalid option.

1 point

	(A) The OS executes exit() system call when the process completes its execution successfully	
	(B) The OS executes exit() system call when the user explicitly requests the termination of the process	
	(C) The OS executes exit() system call when the parent process decides to terminate a child process	
	(D) The OS executes exit() system call when the process decided to enter into waiting state	
	(E) The OS executes exit() system call when the process encounters an unrecoverable error or exception	
	Yes, the answer is correct. Score: 1	
	Accepted Answers:	
	(D) The OS executes exit() system call when the process decided to enter into waiting state	
(6) Choose the invalid option. The wait() system call	1 point
	(A) makes the parent process wait until all of its child processes have terminated	
	(B) returns the process identity of the terminated child process	
	(C) allows the parent process to retrieve the exit status of the terminated child process	
	(D) is used by a child process to wait for its parent process to terminate	
	(E) The wait() system call is used to prevent the creation of zombie processes	
	Yes, the answer is correct. Score: 1	
	Accepted Answers:	
	(D) is used by a child process to wait for its parent process to terminate	
-	7) Choose the incorrect option. The pipe() system call	1 point
	(A) is used to create a unidirectional communication channel between processes	
	(B) returns two file descriptors, one for reading and one for writing	
	(C) can be used for inter-process communication between unrelated processes	
	(D) allows data to flow from the read end to the write end of the pipe	
	(E) is typically used for communication between a parent process and its child process	
	No, the answer is incorrect. Score: 0	
	Feedback:	

Accepted Answers: (D) allows data to flow from the read end to the write end of the pipe	
8) Which of the following is not directely supported by thread?	1 point
(A) degree of multiprogramming	
(B) system throughput	
(C) multiprocessor arctitecture	
O(D) easy resource sharing	
(E) lower context context switching	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
(A) degree of multiprogramming	
9) A multiprocessor system	1 point
(A) supports parallel execution of instructions through multithreading	
(B) allows multiple processes to execute asynchronously	
(C) is suitable for executing strictly sequential processing tasks efficiently	
(D) allows multiple processes run independently	
(E) allows interprocess communication among independent processes	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
(C) is suitable for executing strictly sequential processing tasks efficiently	
10) Which of the following system calls is not related to the shared memory interprocess communication?	1 point
(A) shmget()	
(B) shmat()	
C) shmdt()	
O(D) shmctl()	
(E) shmext()	

Yes, the answer is correct. Score: 1

Accepted Answers:

(E) shmext()

2320030162@klh.edu.in >

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Operating System Fundamentals (course)

If already registered, click to check your payment status

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 0 ()

Week 5: Assignment 5

The due date for submitting this assignment has passed.

Due on 2024-08-28, 23:59 IST.

Assignment submitted on 2024-08-25, 23:02 IST

- 1) Assume we are running an application on a system with four processing cores. This application has both serial *1 point* (nonparallel) and parallel components. Also, assume that 60% of this application are executed in parallel and 40% of the application is executed in serial. Based on the Amdahl's Law, this application gets a speedup (approx.) of
 - (A) 1.30 times
 - (B) 1.42 times
 - (C) 1.25 time
 - (D) 1.81 times

Week 1 ()	(E) 1.20 times	
Week 2 ()	Yes, the answer is correct. Score: 1	
Week Z ()	Accepted Answers:	
Week 3 ()	(D) 1.81 times	
Week 4 ()	2) The many-to-one multithreading model supports	1 poin
	(A) Many user-level threads only	
Week 5 ()	(B) Many kernel-level threads only	
C Lecture 21 : Threads	(C) One user-level thread and many kernel-level threads	
(Contd.) (unit?	(D) Many user-level threads and one kernel-level thread	
unit=49&lesson=50)	(E) Many user-level threads and many kernel-level threads	
Contd.) (unit?	Yes, the answer is correct. Score: 1	
unit=49&lesson=51)	Accepted Answers:	
Lecture 23 : Threads,Scheduling (unit?unit=49&lesson=52)	(D) Many user-level threads and one kernel-level thread3) Which is of the following multithreading model is unsuitable for multicore systems?	1 poin
	(A) Manuaka ana	
Lecture 24 : Scheduling (unit?	(A) Many-to-one	
unit=49&lesson=53)	(B) One-to-one	
O Locture 25 : Cabaduling	(C) Many-to-Many	
Lecture 25 : Scheduling (Contd.) (unit?	(D) One-to-Many	
unit=49&lesson=54)	(E) Many-to-Partial	
Lecture Materials (unit? unit=49&lesson=55)	Yes, the answer is correct. Score: 1	
,	Accepted Answers:	
Feedback for week 5 (unit?	(A) Many-to-one	
unit=49&lesson=56)	4) Which of the multithreading model blocks the entire process if a thread, which is a part of the process, makes a blocking	յ 1 poin
Quiz: Week 5 :	system call?	
Assignment 5	(A) Many-to-Many	

(assessment?	(B) Many-to-one
name=181)	C) Many-to-Partial
 Assignment 5 Solution 	(D) One-to-Many
(unit? unit=49&lesson=121)	(E) One-to-one
Week 6 ()	Yes, the answer is correct. Score: 1
	Accepted Answers:
Download Videos ()	(B) Many-to-one
Text Transcripts ()	5) Which of the following operating systems does not support the Many-to-Many multithreading
	(A) Solaris
Books ()	(B) HP-UX
Problem Solving	(C) Tru64 UNIX
Session - July 2024	O (D) IRIX
0	(E) Windows 11
	Yes, the answer is correct. Score: 1
	Accepted Answers:
	(E) Windows 11
	6) Which system calls allow the calling thread to wait for another thread to terminate?

model? 1 point 1 point (A) pthread_create (B) pthread_exit (C) pthread_join (D) pthread_detach (E) pthread_wait Yes, the answer is correct. Score: 1 Accepted Answers: (C) pthread_join

7) Which of the following statements about non-preemptive scheduling is NOT true?	1 point
(A) Once a process starts executing, it runs to completion before another process can begin.	
(B) It is simpler to implement compared to preemptive scheduling.	
(C) It can lead to longer waiting times for processes with short burst times.	
(D) It allows the operating system to preempt a running process to give CPU time to a higher-priority process.	
(E) It is commonly used in batch-processing systems.	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
(D) It allows the operating system to preempt a running process to give CPU time to a higher-priority process.	
8) Which of the following is not the task of the dispatcher?	1 point
(A) A Dispatcher saves the context (state) of the currently running process.	
(B) A Dispatcher restores the context of the next process to run.	
(C) A Dispatcher helps to switch the CPU mode between user mode and kernel mode.	
(D) A Dispatcher manages the main memory for process scheduling.	
(E) A dispatcher provides the control of the CPU to that process that gets selected by the short term-scheduler.	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
(D) A Dispatcher manages the main memory for process scheduling.	
9) Choose the correct option for FCFS scheduling algorithm.	1 point
(A) It ensures the shortest average waiting time.	
(B) It is suffered from the convoy effect.	
(C) It is a preemptive scheduling algorithm.	
O(D) It guarantees maximum throughput.	
(E) It uses a priority queue to manage processes	
Yes, the answer is correct.	

Score: 1	
Accepted Answers:	
(B) It is suffered from the convoy effect.	
10) Which of the following is not a criterion used to evaluate CPU scheduling algorithms?	1 point
(A) Throughput	
(B) Response time	
(C) Memory usage	
O(D) Turnaround time	
(E) Waiting time	
Yes, the answer is correct. Score: 1	
Accepted Answers:	
(C) Memory usage	

Assessment submitted. X

2320030162@klh.edu.in >

(https://swayam.gov.in)

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Operating System Fundamentals (course)

If already registered, click to check your payment status

Thank you for taking the Week 6: Assignment 6.

Course outline

About NPTEL ()

How does an NPTEL online course work?

Week 0 ()

Week 1 ()

Week 2 ()

Week 6 : Assignment 6

Your last recorded submission was on 2024-08-29, 18:16 JST

1) Assume that the following processes are scheduled using the Shortest-Job-First process scheduling policy. Determine 1 point the average waiting time.

Process	Arrival time	Burst time
P ₁	1	3

Due date: 2024-09-04, 23:59 IST.

٩ss	essi	Wes	k _i 3h	(Anitte	ed.
つつこ	ってろろに	IICHE	้อนบ	NA IILU	Eu.

		,	
٦	,		

Week 4 ()

Week 5 ()

Week 6 ()

- Contd.) (unit? unit=57&lesson=58)
- Lecture 27 : Scheduling (Contd.) (unit? unit=57&lesson=59)
- Contd.) (unit? unit=57&lesson=60)
- Lecture 29 : Process Synchronization (unit? unit=57&lesson=61)
- Lecture 30 : Process Synchronization (Contd.) (unit? unit=57&lesson=62)
- Lecture Materials (unit? unit=57&lesson=63)
- Feedback for week 6 (unit? unit=57&lesson=64)
- Quiz: Week 6 : Assignment 6

P ₂	0	2
P ₃	3	2
P ₄	2	4

- (A) 3.5
- O(B) 2.5
- O(C) 1.5
- O(D) 4.5
- O(E) 0.5

2) Choose the correct statement about "Exponential Averaging" when predicting the next CPU burst length in SJF scheduling.

1 point

- (A) Exponential Averaging gives equal weight to all past CPU bursts.
- (B) Exponential Averaging discards all previous history when predicting the next burst length.
- (C) Exponential Averaging gives more weight to the recent CPU bursts while still considering the entire history.
- (D) Exponential Averaging is only applicable to non-preemptive scheduling algorithms.
- (E) Exponential Averaging requires a fixed-size queue to store past burst lengths.

3) The following processes are scheduled using the Robin process scheduling policy with a time quantum of 3ms. Determine the average waiting time.

Process	Arrival time	Burst time
P ₁	0	6

	(assessment? essm வர் உழுற itted.
X	Download Videos ()
	Text Transcripts ()
	Books ()
	Problem Solving
	Session - July 2024
	0

P ₁	1	2
P ₃	3	8
P ₄	5	3
P ₅	2	4

(A) 5.6 (B) 8.6

O(C) 7.6

O(D) 4.5

O(E) 6.6

4) Assume the following processes are scheduled using the Priority Scheduling process scheduling algorithm. Determine *1 point* the average waiting time. Assume a lower value in priority means higher priority.

Process	Priority	Burst time	Arrival time
P ₁	2	2	0
P ₁	1	3	0
P ₃	3	5	0
P ₄	5	7	0

Assessment submitted.		P ₅	4		4		0	
	 (A) 6.4 (B) 5.0 (C) 6.8 (D) 5.8 (E) 5.2 							
	5) Which of the following process scheduling algorithms does not suffer from the starvation problem? 1 point							
	○ (B) Pr ○ (C) SI ● (D) Fi	nortest Job First (SJI riority Scheduling nortest Remaining T rst-Come First-Serve ultilevel Queue Sche	ime First (SRTF	·)				
	6) The "Pr	ogress" condition in	the context of t	he Critical Se	ection Problem ref	fers		1 point
	(A) If no process is in the critical section and some processes wish to enter it, the selection of the next process must not be indefinitely postponed.							
	○ (B) O	nly one process can	be in the critica	I section at a	time.			
	○ (C) N	o process should wa	ait forever to ent	er the critica l	section.			
	O(D) If a process is in the critical section, no other process can enter until it has finished.							
	○ (E) Pr	ocesses must be all	lowed to enter th	ne critical sed	ction based on the	eir priority.		
	7) The "ra	ce condition" in the	context of the cr	itical section	problem			1 point
	(A) occurs when multiple processes enter their critical sections simultaneously, leading to unpredictable results.							
	O (B) happens when a process is forced to wait indefinitely before entering its critical section.							
	○ (C) ar	ises when the OS fa	ails to schedule	processes fa	irly.			
	○ (D) re	fers to the situation	where two or me	ore processe	s compete for CP	U.		

Х

Assessment submitted.

- (E) is a condition where a process preempts another process in the middle of its critical section.
- 8) The solution to the critical section problem ensures which of the following(s)?

1 point

1 point

- (A) Mutual exclusion
- O(B) Progress
- O(C) Bounded waiting
- O(D) Mutual Exclusion and Progress
- (E) Mutual exclusion, Progress, and Bounded waiting
- 9) Consider the producer-consumer problem with a bounded buffer. The processes share a variable "count". The initial value of the count is 5, and the maximum size of the buffer is 10.

Producer process	Consumer process
<pre>while (true) { /* produce an item in next produced */ while (count == BUFFER_SIZE); /* do nothing */ buffer[in] = next_produced; in = (in + 1) % BUFFER_SIZE; count = count +1; }</pre>	<pre>while (true) { while (count == 0); /* do nothing */ next_consumed = buffer[out]; out = (out + 1) % BUFFER_SIZE; count = count - 1; /* consume the item in the next consumed */ }</pre>

The statement count = count + 1 is implemented as

SP0: register1 = count

SP1: register1 = register1 + 1

Assessment submitted.	SP2: count = register1					
X	The statement count = count = 1 is implemented as					
	The statement count = count - 1 is implemented as					
	SC0: register2 = count					
	SC1: register2 = register2 - 1					
	SC2: count = register2					
	Assume that the CPU schedules the producer-consumer problem as follows: SP0, SC0, SP1, SC1, SP2, and SC2. What is the					
	final value of the count?					
	O(A)6					
	(B) 4					
	O(C) 5					
	O(D) 3					
	○ (E) 2					
	10) To solve the critical section problem, the general structure of a process Pi includes	nt				
	O (A) entry section					
	O(B) exit section					
	○ (C) critical section					
	O (D) remainder section					
	(E) All of the above					
	You may submit any number of times before the due date. The final submission will be considered for grading. Submit Answers					