Team #14

Team members: Jack, Luke, Peter, Nicolas, Matthew, Mayank

Device/Project Name: SWARM Tech

Need Statement & Design Criteria

Current Needs Statement

Lola's Bees is a beekeeping nonprofit organization that wants to increase their effectiveness and accessibility tracking humidity, temperature and weight of their hives by receiving data remotely and organized based off specific ranges while clients are notified if unstable thresholds have occurred. This is because bee vitals collections procedures are expensive and time consuming, which requires the beekeeper to be on-site and does not yield accurate results.

Constraints and Objectives

			Normalized	Cstr.#	Constraint Description	How to Verify
Obj#	Objective Description	How to Measure	Weighting*		Need to measure weight, temperature,	Client can receive the three variables off-site in
	,		0.089152626	1	and humidity of the beehive remotely	a timely fashion
ا ہا	Record and measure humidity in beehive	With working	0.000102020		Leave the hive fully intact/safe for	No visible effect on bees and current bee
1	remotely	humidity sensor		2	bees/minimal disruption	habits are not restricted
	Send the acquired data to a mobile device	With working	0.041114761	3	collect data from multiple hives	The device can be reproducible, or a singular device can collect data from more than 1 hive
2	арр	server/aws		4	Spend less than \$50 per hive	project costs equal to or less then price goal
	Organize information gained from sensor on		0.21881954		Be able to store information to	There is a memory card/storage device on site
i l	website organized by hive, time, and data type		0.2 100 1004	5	download on site	collecting all data
3	(interactive view)	With web application			Needs to be able communicate/notify if	The website and/or app should have a
	,	With web application	0.055500101	6	something is wrong	notification feature to alert client
	Track temperature of cluster specifically/Track	Month automost and brand	0.055526121		Can safely monitor the colony without	All electronics are covered, and materials left
	location of bees in the hive relative to	With automated heat			being affected by wildlife/natural	open should be able to with stand variables,
4	temperature at top/bottom	tracking sensor		7	conditions	will be verified by prior testing and monitored when implemented
	sort information on an excel sheet, ranked by	With completed,	0.098159726		Conditions	Device should be able to run for a long period
E 1						of time without needing maintenance (2
5	date and data type	working excel sheet				weeks-month), battery life will be tested prior
	Send information via SMS messages to a	With working SMS	0.228709689	8	Long lasting battery life	and monitored when in use
6	server that will update the website	messages				This constraint will be considered when
	'		0.470000077			making each aspect, ensuring it is made from
	Can be replicated by other beekeepers/work	By using less	0.178022677		Product should have a long-life span, 2	quality material and online services are
7	with varying beehive designs	invasive maneuvers		9	- 5 years	sustainable for the client, to be verified the client can monitor once implemented
			0.090494861			Product should have easy attachment points;
	On-site data gathering take less than 5	By usinga remote	3.000-0-001		Product should be easy to remove and	this will be taken into consideration during
8	minutes	system		10	apply when needed	production and verified during testing

Overall Device Design

Component	Beehive	Arduino	Website					
Function	The temperature and humidity sensor sits at top of hive while 4 weight sensors are at the bottom supporting the hive	The Arduino records data 4 times a day that is then sent to the server using SMS messaging	The website organizes data and makes it accessible to the client					
Connection between component s	The Sensors are all connected to insolated wires that connect to the Arduino	The Arduino uno holds 8 beehives worth of sensors.	Website is available on mobile phones or laptops					

Figure 2: Circuit diagram showing sensor connections for 2 beehives, missing GSM shield for communication with server, power sources, and SD-card reader

Subsystem Designs – Circuitry/Arduino

• Function:

- To achieve required cost goal each Arduino will be utilized over multiple hives
- Figure 2 shows connections required for 2 hives for:
 - temperature/humidity sensors BMP180's
 - weighing system including HX711 communication chips and load cells
- Temperature/humidity sensors connected through the I2C bus on the Arduino allowing multiple sensors and requiring two pull-up resistors (values dependent on number of components linked to Arduino) on the SCL and SDA lines
- Requires more ideation for the inclusion of sufficient power source, SD-card reader, and communication with server.

• Goals:

- Complete initial physical wiring prototype by the end of week 19
- Connection capacity of at least 5 hives per Arduino

• Testing:

 Figure 2 will be converted into physical circuitry utilizing preowned and purchased materials, then tested through code manipulation

Subsystem Designs – Weight Sensors & Base Plate

• Function:

- The base plate inner width is the same as the beehives so it can fit a beehive and balance it over its 4 load cells
- Each base plate has 4 load cells having a combined capacity of 200 kg or 441 lbs
- The load cells are connected to the Arduino via the HX711 chip, the Arduino will then send the information via SMS to the server

Goals:

- Complete initial physical wiring prototype by the end of week 19
- Test possible creep of load cells by week 20

• Testing:

 Once Figure 2 is converted into physical circuitry, then Figure 3 will be tested through weighing various objects at similar weights to the beehives

Figure 3: Prototype of base plate with load cells in place

Subsystem Designs – Server (backend)

Figure 4: Flow diagram of server communication between Arduino and website

Subsystem Designs – Website Flow Diagram

Figure 5: Flow/structure diagram for website front and back end

Subsystem Designs – Website (Frontend)

Lola's Bee's Hive Measurements

Hive 1 **Hive 1 measurements for February 15, 2022! Change Time Range** From: To: Humidity **Temperature** Weight Hive Temperature (Celcius) vs. Time Humidity (%RH) vs. Time Hive Weight (lbs) vs. Time 4:00 8:00 12:00 16:00 Time Time

Figure 6: Screenshot of Current Website Prototype

Bill of Materials

Item	Link	Price	# hives Supported per purchase
Arduino Uno	<u>Link</u>	\$42	5-8
Wireless transmitter	<u>Link</u>	\$24.09	5+
Weight sensors	<u>Link</u>	\$13	1
Temperature/ humidity sensor	<u>Link</u>	\$10.26	5
Batteries	<u>Link</u>	\$7	4
Arduino Housing	<u>Link</u>	\$20	1 Arduino (5-8 hives)
Insulation (foam)	<u>Link</u>	\$12.50	20+
tinfoil	<u>Link</u>	\$5	20+
1-10 thousand ohms Resistors	TBD	TBD	5
SD-card reader	<u>Link</u>	\$12	10
SD card	<u>Link</u>	\$12.49	20+
Wires (generic)	<u>Link</u>	\$11	20+
TOTAL PRICE		252.35	5

Tools & other resources:

- Soldering iron & filament
- Screws & screwdrivers
- Glue/zip-ties

Item	Initial price	Monthly costs	Link
SIM card	\$20	\$5 (with 1st month free)	<u>Link</u>

Current estimated cost per hive (total costs/minimum estimated hives)

<u>= \$50.5</u>

Expanded Pricing

# hives	Total price	Price per hive
1	\$189.34	\$189.34
5	\$252.35	\$50.5
10	\$449.18	\$44.92
20	\$886.86	\$44.34

Plan Schedule

						2022														
ID Taxonomy Description			ription Predecessors Resou								ruary		March				April			
L						Week 1/12	Week 2/13	Week 3/14	Week 4/15	Week 5/16	Week 6/17	Week 7/18	Week 8/19	Week 9/20	Week 10/21	Veek 11/2	Veek 12/2	Veek 13/2	Veek 14/7	2 Veek 15/2
L	1	1.A	Project Plan	-	All															
			Identifying	1																
L	2	1.B	components		all															
L	3	1.C	Materials lists	2	all															
			Onshape Model	3																
L	4	1.D	of design		TBD															
Г			Write Code for	4																
L	5	2.A	арр		TBD															
	6	1.E	Buy parts	2,3,4	TBD															
			Full onshape	4,7																
	7	1.F	model		TBD															
Г			stabalizers for	5,6																
	8	2.B	sensors		TBD															
Г			Hookup sensors	5,6																
1	9	2.C	to arduino		TBD															
Г	10	2.D	Test Devices	7	TBD															
Г	11	2.E	Set up server	4,8	TBD															
Г			Hookup sim	4,9																
1	12	2.F	card to arduino																	
Г			and set up	٨																
1	13	3.Z	design																	
	15	U.E.	acaign										<u> </u>	<u> </u>	<u> </u>	-				

TASK DELAGATION	Physical Hardware	Software development	Server Development
Group Members Responsible	Mayank, Peter, Matthew	Nicolas, Jack, Luke	Luke, Nicolas
Components	Arduino, wiring, circuitry, waterproofing, housing electronics base plates for hives	Frontend of website, SMS communications, UML diagrams, transfer data to excel.	SMS communications, backend, webhosting, connection to Arduino Server construction

Questions?

