推荐系统离线算法应用介绍

打造千人千面的个性化推荐引擎

推荐搜索部

刘思喆

2014年12月17日

目录

推荐系统

- 京东推荐产品及架构
- 2 离线推荐算法
- ₃排序通用架构 -CTR 预测
- ₫ 零散的问题

目录

推荐系统

- 京东推荐产品及架构
- ② 离线推荐算法
- ₃排序通用架构 -CTR 预测
- ₫ 零散的问题

京东推荐产品

- 90+推荐产品,包括移动端和 Web 端
- 20+ 推荐服务,支撑 EDM、广告、微信端等
- 遍布用户网购的各个环节

推荐系统的价值

- 挖掘用户潜在购买需求
- 缩短用户到商品的距离
- 用户需求不明确时提供参考
- 满足用户的好奇心

推荐产品截图示例

不同位置的推荐产品定位不同

• 单品页:购买意图识别

• 过渡页:提高客单价

购物车页:购物决策

• 无结果页:减少跳出率

• 订单完成页:交叉销售

• 关注推荐:提高转化,意图发现

• 我的京东推荐:提高忠诚度

京东推荐系统架构

目录

推荐系统

- 京东推荐产品及架构
- 2 离线推荐算法
- ₃排序通用架构 -CTR 预测
- ₫ 零散的问题

京东对推荐数据的理解

用户行为

- 1 浏览
- ② 点击
 - 普通点击
 - 搜索点击
- 3 加入购物车(或关注)
- 4 购买
 - 订单
 - 用户
- **9** 评分

基于内容

- 标题
- 扩展属性
- 评论
- 描述
- ...

京东对推荐数据的理解

用户行为

- 1 浏览
- ◎ 点击
 - 普通点击
 - 搜索点击
- 3 加入购物车(或关注)
- 4 购买
 - 订单
 - 用户
- **6** 评分

基干内容

- 标题
- 扩展属性
- 评论
- 描述
- ...

2014年12月17日

典型推荐系统技术

按照数据的分类: 协同过滤、内容过滤、社会化过滤

按照模型的分类: 基于近邻的模型、矩阵分解模型、图模型

关联规则 (Association Rules)

 $A \Rightarrow D$ 2/5 2/3 10/9 $C \Rightarrow A$ 2/5 2/4 5/6 2/5 2/3 5/6 $A \Rightarrow C$ $B \& C \Rightarrow D$ 1/5 1/3 5/9

Figure 1: 关联规则三个重要指标的示例

频繁项集 (以 FP Growth 算法为例)

transaction	lexicographically	prefix tree
database	sorted	representation
a, d, e b, c, d a, c, e a, c, d, e a, c, d b, c a, c, d, e b, c a, c, d, e b, c, e a, d, e	a, c, d a, c, d, e a, c, d, e a, c, e a, d, e a, d, e a, e b, c b, c, d b, c, e	$ \begin{array}{c} c:4 \\ d:3 \\ e:1 \end{array} $ $ \begin{array}{c} c:4 \\ e:1 \end{array} $ $ \begin{array}{c} c:3 \\ e:1 \end{array} $ $ \begin{array}{c} c:3 \\ e:1 \end{array} $

Figure 2: 频繁项集是推荐系统中基础算法之一,很多推荐位都有体现

e:2

协同过滤

用户和商品的共现阵:

Ι TT 1,0,0,0,0,1, 0.1.0.0.0.0. 1,1,0,0,0,1, 0.0.0.0.1.0. 0.0.1.0.1.0. 0.0.1.0.1.0. 0.0.0.1.0.0. 0,0,0,0,0,1, 0,0,0,0,1,0, 0.0.1.0.0.1. 对于商品 (item) 向量大约有 10+ 的距离计算公式来计算商品间的距离,一般有:

- Jaccard 距离
- (修正)cosine 距离
- Manhattan 距离
- Chebychev 距离
- RA(AA)
- 欧(闵)式距离
- ...

序列挖掘

用户购买行为的序列 (B \to AC) 是另一序列 (AB \to E \to ACD) 的子序列,因为 B \subseteq AB 且 AC \subseteq ACD,且序列的顺序没有改变

Figure 3:通过挖掘频繁发生的最小的子序列,即可得到被反复购买的商品。上图是根据京东实际订单挖掘的有周期性购买倾向的商品(包括非自身类)

基于内容的相似

- 图书简介 (LDA)
- 标题 (LSH)
- 扩展属性

目录

推荐系统

- 京东推荐产品及架构
- 2 离线推荐算法
- ₃排序通用架构 -CTR 预测
- ₫ 零散的问题

推荐的 CTR 预测

什么是推荐商品的 CTR (Click Through Rate)?

- 关联推荐的情境下,根据给定主商品推出的推荐商品,在用户浏览后被点击的概率。
- 可以理解为条件概率 P(Y = 1|X)

为什么要预测推荐商品的 CTR?

- □ 调整推荐商品的排序
- 2 用于多模型的融合
- 会 发现影响推荐商品点击率的重要因素

特征表征方法

用目标问题所在的特定领域知识或者自动化方法来生成、提取、删减或组合变化来得到特征。

领域经验法

- 条件关系 (=,!=)
- 几何运算
- 分段及比例
- 其他

自动化技术

- PCA, ICA, NMF
- Linear Discriminant Analysis
- · Collaborative Filtering
- AutoEncoder

最优子集(Feature selection)的优点

- 提高模型的可解释性
- 减少训练和预测的时间
- 有效降低过拟合,提升模型的适应能力

如何对商品属性进行描述

对商品的形容:

品牌词、中心词、修饰词;类目属性、扩展属性;

基于用户行为的在商品上的反映:

- 销量、PageRank、评论数、好评度
- 商品的标签(如时间标签、地域标签、性别标签等)

对于商品标签(以时间差异构建的时间 feature 为例):

假设 9:00-19:00 为白天 (D), 19:00-9:00 为夜间 (N),则在这两个时间段内的用户购买则构成了该商品的时间标签,该商品标签的一般性定义为:

$$\frac{\sum_{u \in D} M_{u,i}}{\sum_{u \in D} M_{u,i} + \sum_{u \in N} M_{u,i}} - \frac{\sum_{u \in D} M_u}{\sum_{u \in D} M_u + \sum_{u \in N} M_u}$$

商品的组合属性

基于单一属性组合产生的属性,有以下三种:

- 相同类属性的组合:如时序上的销量(趋势系数),销量的方差
- 不同类属性的组合:如商品的展示和点击组合(如 CTR)、点击和购买的组合(如 CVR)
- 推荐主商品和推荐品属性的组合。比如品牌词是否一致,价格的比值是否在一定范围内。

推荐主商品和推荐品三级类目关系需要使用两两配对的 feature 表征形式。

数据预处理及建模过程

- 去掉样本量较小的类,共25个一级类需要预测
- 对不均衡样本采取了 undersampling 策略,同时配置 5 次重复抽样预测 (data.table)
- 训练数据量为 500w,在并行 CV 选取 λ 的时间为 15-20 分钟 (glmnet,doMC)
- 预测重排序数据为 6 亿条
- 预测所有数据, 16 线程情况约为 1 小时 (snow)

不同 λ 交叉验证的 MSE 曲线

部分三级类组合系数展示

	前项	后项	权重
1	产后塑身	孕妇装	-1.55
2	月子装	孕妇装	-1.32
3	婴儿外出服	羽绒服/棉服	-1.28
4	水壶/水杯	洗衣液/皂	-1.27
5	宝宝洗浴	爬行垫/毯	-1.25
6	待产/新生	湿巾	-1.17
7	待产/新生	宝宝护肤	-1.13
8	婴儿鞋帽袜	防辐射服	-1.12
9	扭扭车	日常护理	-1.04
10	宝宝零食	钙铁锌/维生素	-1.00
11	日常护理	孕妈美容	-0.99
12	奶瓶奶嘴	驱蚊防蚊	-0.97
13	婴儿内衣	防辐射服	-0.97
14	婴儿鞋帽袜	摇铃/床铃	-0.97
15	滑板车	日常护理	-0.87
16	拉拉裤	婴幼奶粉	-0.87
17	奶瓶奶嘴	吸奶器	-0.85
18	婴儿尿裤	调味品	-0.84
19	婴幼奶粉	水壶/水杯	-0.84

CTR 预测模型实验

- 1 过渡页实验效果
 - 实验流量 10%
 - 请求点击率:提升14%
 - 千次请求订单行数:提升1%
- 2 单品页实验效果
 - 实验流量 25%
 - CTR 提升 30%

目录

推荐系统

- 京东推荐产品及架构
- ② 离线推荐算法
- ₃排序通用架构 -CTR 预测
- ₫ 零散的问题

冷启动

三级类和三级类关系,产品词和产品词关系

```
1591_瓜子
            1590 锅巴
                        1.000
   1591_瓜子 1590_薯片
                       0.596
   1591 瓜子 1590 花生
                       0.443
   1591 瓜子 1591 开心果
                        0.318
   1591_瓜子 1591_花生
                        0.274
   1591 瓜子 1591 西瓜子
                       0.265
   1591 瓜子 1591 腰果
                        0.235
   1591 瓜子 1595 饼干
                       0.230
   1591 瓜子 1590 豆腐干
                        0.227
   1591 瓜子 1592 牛肉干
10
                        0.226
   1591_瓜子 1594_口香糖
                       0.206
11
   1591 瓜子 1591 炒货
                        0.204
12
   1591 瓜子 1590 肉松饼
13
                        0.203
   1591 瓜子 1671 卫生纸
14
                        0.172
   1591 瓜子 1593 大枣
15
                        0.165
```

对用户的降权

异常行为的用户产生的规则,在推荐中会被降权

商品的价格区间和性别

Figure 4: 主 SKU 商品价格等级低(高)时,点击或购买的 CSKU 商品价格等级也低(高)。

24 / 27

总结和回顾

- 推荐的优化是一个迭代过程
- 2 巧妇难为无米之炊
- 3 数据!数据!
- **A** ..

未来算法团队优化方向

User Profile 系统 用户提取用户的所有已知信息,包括 demographic 以及推断信息;

商品属性系统 对商品的全方位描述,不限于人工录入体系;

Recall Model Profile 系统 离线召回模型的集合,适用于模型融合场景;

搜索推荐的技术融合 自然语言处理技术同推荐技术的混搭;

实时兴趣引擎 个性化和千人千面的基础

Q and A