Notes: Jury's stability test

- To be able to use the Routh-Hurwitz criterion, we need to transform the characteristic equation in the Z-domain to the W-domain using the bilinear transform.
- The advantage of the Jury stability test is the fact that no transform is required. The test is applied directly to the characteristic equations written as a function of Z.

Let the characteristic equation of a discrete-time system be given by

9n > 0

.. an may not be negative

.. The constant parameter associated with the highest

order of z must be positive

	a			order or	& muse	be positi
Row 1	JURY Z°	TABLE Z'	₹ ² ···	n-k	_	۳ ع
	an	•		9 _k		9,
	, b ₆	ه، عر <i>ر-ا</i>		b _{n-k}		J
	, b _{n-1}	6 _{n-2}	b _{η-3}	٥ ا	bo	
Row S	_ C _	د,	C ₂	cn-k		
Row 6	€ n- 2	c _{n-3}	c _{n-4}	c k-2		

etc.

EVEN - Considering the table

The elements of each of the even-numbered rows are the elements of the preceding row in reverse order

opp - The elements of the odd-numbered rows are

$$b_{k} = \begin{vmatrix} q_{0} & q_{n-k} \\ q_{n} & q_{k} \end{vmatrix}$$

$$C_{k} = \begin{vmatrix} b_{0} & b_{n-1} - k \\ b_{n-1} & b_{k} \end{vmatrix}$$

etc.

- The necessary and sufficient conditions for the polynomial Q(2) to have no roots outside or on the unit circle, with an >0 are as follows

$$Q(1) > 0$$
 $(-1)^n Q(-1) > 0$
 $|q_0| < q_n$
 $|b_0| > |b_{n-1}|$
 $|c_0| > |c_{n-2}|$
 $|d_0| > |d_{n-3}|$

- For a 2nd-order system, the array contains only one row.
- For each additional order, two additional rows are added to the array.
- Constraints: For an nth-order system, there are a total of n+1 constraints.

APPLICATION OF THE JURY TEST

- 1) CHECK THE 3 CONDITIONS Q(1) > 0 $(-1)^N Q(-1) > 0$ $(-1)^N Q(-1) > 0$ $1 q_0 | < q_N$ STOP IF ANY OF THE CONDITIONS **PR**E NOT SATISFIED.
- 2) CONSTRUCT THE ARRAY, CHECK THE CONDITIONS
 AS EACH ROW IS CALCULATED.

 STOP IF ANY CONDITION IS NOT SATISFIED

$$R(s) \xrightarrow{T=0,15} I \xrightarrow{I-e^{-Ts}} K \xrightarrow{K} C(s)$$

$$G(s) = \frac{1-e^{-Ts}}{s} \left[\frac{1}{s(s+1)} \right]$$

$$G(z) = \frac{Z-1}{Z} \left[\frac{(e^{-T} + T-1)z^{2} + (1-e^{-T} - Te^{-T})z}{(z-1)^{2}(Z-e^{-T})} \right]$$

$$G(z)\Big|_{T=1} = \frac{z-1}{z} \left[\frac{(0,368)z^2 + (0,264)z}{(z-1)^2(z-0,368)} \right]$$

$$= \frac{0,368 + 0,264}{(2-1)(2-0,368)} = \frac{0,368 + 0,264}{2^2 - 1,368 + 0,368}$$

CHARACTERISTIC EQ: 1 + KG(Z) =0

$$\frac{1 + K(0,3682 + 0,264)}{2^2 - 1,3682 + 0,368} = 0$$

Jury array:

CHECK CONDITIONS:

$$Q(z) = z^2 + (0,368K - 1,368) z + (0,368 + 0,264K)$$

 $Q(1) = 1^2 + 0,368K - 1,368 + 0,368 + 0,264K > 0$

$$(-1)^2 + (-0,368 \text{ K}) + 1,368 + 0,368 + 0,264 \text{ K} > 0$$

$$1 + 1,368 + 0,368 - 0,368 \text{ K} + 0,264 \text{ K} > 0$$

$$2,736 - 0,104 \text{ K} < \frac{0,104}{2,}$$

$$\text{K} < \frac{-2,736}{-0,104}$$

$$= > \text{K} < \frac{26,3}{2}$$

$$(0,368 + 0,764 \text{ K}) < 1$$

 $0,264 \text{ K} < 1 - 0,368$
 $(0,368 + 0,764 \text{ K}) < 1 - 0,368$
 $(0,368 + 0,764 \text{ K}) < 1 - 0,368)$

Test:

$$Q(Z)$$
 = $Z^2 + [9368(239) - 1,368]Z + 0,368 + 0,204(23)$
Marginally = $Z^2 - 0,488Z + 1 = 0$
stable

Determine the roots of 22-0,4882+1

$$z = 0,244 \pm j0,96978 = 1/\pm 75,9^{\circ}$$

= 1/\pm \frac{1}{2},32 \text{ rad}
= 1/\pm \frac{1}{2}\text{LWT}

Since T=15 :. W= 1,32 rad/s.

$$w = \tan^{-1}\left(\frac{Im}{Re}\right)$$

$$= \tan^{-1}\left(\frac{o_1 q_6 q_7 s}{o_1 2 \mu \mu}\right)$$

$$= 1 32 \text{ rad/s}$$

Example z (Jung test, 3rd -order system)

CHARACTERISTIC EQ:

$$Q(z) = z^3 - 1,8z^2 + 1,05z - 0,20 = 0$$

 $a_3 = 1$ $a_2 = -1,8$ $a_1 = 1,05$ $a_0 = -0,2$.
TEST CONDITIONS:

$$Q(1) = 1 - 1,8 + 1,65 - 92 > 0$$

$$= 0,05 > 0$$

(-1)³
$$Q(-1) = -1 \left[(-1)^3 - 1.8 + 1.05(-1) - 0.2 \right] > 0$$

(-1) (-4.05) > 0
4.05 > 0

n+1 conditions need to satisfied :. 3+1=4
since the first 3 are satisfied we can continue
with Jury array.

$$b_1 = \begin{vmatrix} q_6 & q_{3-1} \\ q_3 & q_1 \end{vmatrix} = \begin{vmatrix} -0.2 & -1.8 \\ 1.05 & = 1.59 \end{vmatrix} = (-0.2)(1.05) - (1)(-1.78)$$

$$b_z = \begin{vmatrix} q_0 & q_{3-2} \\ q_3 & q_{3}z \end{vmatrix} = \begin{vmatrix} -0.2 & 1.05 \\ 1 & -1.8 \end{vmatrix} = -0.69$$

$$|b_{0}| > |b_{n-1}|$$

$$|b_{0}| > |b_{2}|$$

$$|-0.96| > |-0.69|$$

All conditions are satisfied : system is stable.