

ORACLE®

The Evolution Of Clinical Data Warehousing

Srinivas Karri Principal Consultant

Agenda

- Value of Clinical Data
- Clinical Data warehousing &
 The Big Data Challenge
- The Impact of Omics Data
- The Future
- Questions

Value of Clinical Data

• 273

Value of the Opportunity

273Billion USD / yr realised though improved clinical decision support

Value of the Opportunity

273Billion / yr realised though improved clinical decision support

The estimated long-term value of identified levers is more than \$300 billion, with potentially more than \$200 billion savings on national health care spending

Direct reduction on national health care expenditure

Unclear impact on national health care expenditure

Value potential from use of big data

¹ Excluding initial IT investments (~\$120 billion-\$200 billion) and annual operating costs (~\$20 billion per annum).
SOURCE: Expert interviews; press and literature search; McKinsey Global Institute analysis

Integration Across the Data Pools

Four distinct big data pools exist in the US health care domain today with little overlap in ownership and low integration

Data pools Pharmaceutical R&D data Owner: Pharmaceutical Clinical data companies, academia Owners: providers Example datasets: clinical Example datasets: electronic trials, high throughput medical records, medical images screening (HTS) libraries Integration of data pools required for major opportunities Patient behavior and sentiment data Owners: various including consumer Activity (claims) and cost data and stakeholders outside health care Owners: payors, providers (e.g., retail, apparel) Example datasets: utilization Example data sets: patient behaviors of care, cost estimates and preferences, retail purchase history, exercise data captured in running shoes

SOURCE: McKinsey Global Institute analysis

Connecting in Practice

"At the moment data from clinical trials and data from clinical practice are separate entities, but it makes sense to bring these together."

- Severin Schwan, CEO, Roche

Having the right data available is key

Clinical data issues are a significant contributor

- Most companies hold large volumes of data that fuel your development projects, however different databases cover different domains of information and knowledge.
- Inefficient "hand crafting" of data aggregates for an alternate use such as data mining
- Diverse, inconsistent workflows and decision support processes
- Access to all information is critical if you are to be able to identify safety "signals" and manage patient risk.
- No easy way to classify and consolidate data with contextual information
- Access to legacy systems is often limited, although data are still required "on-line"

Current Approach

- Linkages between applications are often custom built, point-to-point, solutions that are hard to maintain – the spaghetti effect!
- Legacy data sometimes held in "near offline" archive systems, but context very often lost

The Vision

Multiple & redundant systems perform their focused job well. Data integration and cross system analysis is painful A data integration hub, that gets data under control, increases availability and improves efficiency

2004 – Aspiration

- Streamline clinical development information management
- Reduce risk
- Simplify clinical integration
- Flexible and extensible architecture
- Rapidly embrace new standards
- Controlled application development
- Empower clinical researchers to make better decisions
- Achieve a single view of clinical data
- Improve productivity with self-service analysis and reporting
- Automate complex processes and approval chains
- Work with regulators to optimise approval processes
- Support ongoing regulatory reviews

2012 - Reality

- Streamline clinical development information management
- Reduce risk
- Simplify clinical integration
- Flexible and extensible architecture
- Rapidly embrace new standards
- Controlled application development
- Empower clinical researchers to make better decisions
- Achieve a single view of clinical data
- Improve productivity with self-service analysis and reporting
- Automate complex processes and approval chains
- Work with regulators to optimise approval processes
- Support ongoing regulatory reviews

Supported Business Processes

Biostats

Supported Sample Use Cases

Core

- Run analysis programs program
- Create analysis outputs
- Create integrated summaries from SDTM pools
- Distribute outputs
- Develop SAS programs
- Execute SAS programs
- Schedule SAS programs
- Copy SAS programs from a library
- Split SAS datasets to view
- View & Edit SAS dataset
- Application bookmarks
- Export SAS to Excel and data exchange
- Parameterized macros
- Meta data search

Options

- Hierarchy
- Macro Libraries

Datamarts and Outputs

- Create/grant access
- Allow application to access data

State of the Art

Clinical Data Repository Solution

But Wait...What about Genomic Data?

- Very Large Data Sets
- New Data Models
- New Visualization Tools
- New Business Processes

New Business Processes

Aggregate & Integrate

Normalize &

Annotaate

Represent & Visualize

- High quality standardized clinical data with appropriate levels of security and access control
- Integration and analysis of cross platform omics data agnostic to scientific approach & technology
 - Analysis of internal datasets in the context of ever increasing large public domain data sets
- Using public domain reference datasets, provides powerful out of the box biological context ready for immediate query
- Biomarker identification and validation through a single integrated analysis ready view of clinical and omics data

New Data Models - Healthcare

Integrated View of Clinical, Financial, Operational, & Research Data Across the Provider Enterprise

Clinical Domain

Patient Encounter

Concern

Intervention

Case

Order

Specimen

Observation

Incident

History

Pharmacy

Care Site Scheduling and Utilization

Accounts Payable & Purchasing Domain

Purchasing

Accounts Payable

Inventory Domain

Inventory

Administrative Domain

Cost Allocation

HR and Payroll

Survey

Advance Directive

Consent

Party

Roles

Facility

Master Catalog

Accounting, Finance, and Revenue Cycle Domain

Accounting and Financial

Patient Financial Services

Billing

Claims

Charge Master

New Data Models – Omics Data Bank

Putting the Pieces Together

Big Data Challenges

300GB Sequencing Data

30GB
Processed Analysis
Data

Data

- Per sequence, > 1
- Per patient
- Per population, >100,000

Big Data Challenges

300GB Sequencing Data

30GB
Processed Analysis
Data

Data

- Per sequence, > 1
- Per patient
- Per population, >100,000
- 30 Petabytes of data
- Google processes approx 24petabyes /day

Life Sciences and Healthcare Converge

Predictive, Preventive, Personalized and Participatory Healthcare

ORACLE®