NAME: KARMA TARAP

CSCI E-89c Deep Reinforcement Learning

Part I of Assignment 9

Please consider a Markov Decision Process (MDP) with $S = \{s^A, s^B, s^C\}$.

Given a particular state $s \in \mathcal{S}$, the agent is allowed to either try staying there or switching to any of the other states. Let's denote an intention to move to state s^A by a^A , to state s^B by a^B , and to state s^C by a^C . The agent does not know transition probabilities, including the distributions of rewards. There is, however, some evidence that the agent gets rewards only at the entrance to s^C ; and transition MDP probabilities to/from s^A appear to be same (or nearly same) as to/from s^B .

Suppose the agent chooses policy $\pi(a^A|s) = 0.05$, $\pi(a^B|s) = 0.05$, $\pi(a^C|s) = 0.90$ for all $s \in \{s^A, s^B, s^C\}$. Because of the apparent symmetry between s^A and s^B , it makes sense to assume that $v_{\pi}(s^A) \approx v_{\pi}(s^B)$ and approximate the state-values as follows:

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}) = w_1 \cdot \mathbb{1}_{(s=s_A)} + w_1 \cdot \mathbb{1}_{(s=s_B)} + w_2 \cdot \mathbb{1}_{(s=s_C)}.$$

Please notice that $\hat{v}(s^A, \mathbf{w}) = \hat{v}(s^B, \mathbf{w})$ for any choice of weights.

Assume that the agent runs the following algorithm with $\alpha = 0.1$ and m = 2 for estimating v_{π} :

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha \sum_{t=mk}^{m(k+1)-1} \left[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}_k) - \hat{v}(S_t, \mathbf{w}_k) \right] \nabla \hat{v}(S_t, \mathbf{w}_k), \ k = 0, 1, 2, \dots$$

This algorithm is a modification of the Semi-gradient 1-step Temporal-Difference (TD) with the model now being trained in mini-batches of size m. Please use $\gamma = 0.9$ and zero weights for k = 0.

If the agent observes the following sequence of states, actions, and rewards:

$$S_{0} = s^{A}, A_{0} = a^{C}, R_{1} = 20,$$

$$S_{1} = s^{C}, A_{1} = a^{B}, R_{2} = 0,$$

$$S_{2} = s^{B}, A_{2} = a^{C}, R_{3} = 20,$$

$$S_{3} = s^{C}, A_{3} = a^{C}, R_{4} = 20,$$

$$S_{4} = s^{C}, A_{4} = a^{B}, R_{5} = 20,$$

$$S_{5} = s^{C}, A_{5} = a^{C}, R_{5} = 0,$$

$$S_{6} = s^{B},$$

find (a) weights \mathbf{w}_k and (b) corresponding approximations $\hat{v}(s, \mathbf{w}_k)$ for iteration step k = 1, 2, 3. Specifically, please fill the tables in below:

SOLUTION:

Gradient is:
$$\nabla \hat{v}(S_t, \mathbf{w}_t) = (\mathbb{1}_{(s=s_A)} + \mathbb{1}_{(s=s_B)}, \mathbb{1}_{(s=s_C)})^T$$
,

(a) weights $\mathbf{w}_k = (w_{1,k}, w_{2,k})^T$:

	k = 0	k = 1	k = 2	k = 3
$w_{1,k}$	0	2	3.8	3.8
$w_{2,k}$	0	0	0	2.0

(b) approximations $\hat{v}(s, \mathbf{w}_k)$:

	k = 0	k=1	k=2	k = 3
$\hat{v}(s^A, \mathbf{w}_k)$	0	2	3.8	3.8
$\hat{v}(s^B, \mathbf{w}_k)$	0	2	3.8	3.8
$\hat{v}(s^C, \mathbf{w}_k)$	0	0	0	2.0