Mathematische Methoder der Physik I Übungsserie 2

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Version: 28. Mai 2018 Abgabe: 1. November 2017 Wintersemester 17/18

Aufgabe 1 Orthogonaltrajektorien und Richtungsfeld

Betrachten Sie die Schar von Hyperbeln, die durch die folgende Gleichung beschrieben wird. Dabei stellt c einen reellen Parameter dar.

$$x^2 - 2y^2 = c^2$$

- (a) Stellen Sie eine Differentialgleichung auf, die diese Kurvenschar beschreibt.
- (b) Leiten Sie daraus die Differentialgleichung für die zugehörigen Orthogonaltrajektorien her und skizzieren Sie deren Richtungsfeld.
- (c) Lösen Sie die Differentialgleichung für die Orthogonaltrajektorien durch die Methode der Trennung der Variablen. Ergänzen Sie Ihre Skizze durch Hyperbeln und Orthogonaltrajektorien für den folgenden Anfangswert.

$$x_0 \coloneqq 6$$
, $y_0 \coloneqq y(x_0) \coloneqq 4$

Aufgabe 2 Ähnlichkeitsdifferentialgleichung

Gegeben sei eine gewöhnliche nicht-separable Differentialgleichung mit der freien Variable t und der folgenden Form. Beachten Sie, dass $\dot{y}=\frac{\mathrm{d}y(t)}{\mathrm{d}t}$ die erste Ableitung nach der Zeit beschreibt.

$$t\dot{y} = y\left(1 + \ln y - \ln t\right)$$

Lösen Sie diese Differentialgleichung, indem Sie sie durch die folgende Substitution in eine separable Differentialgleichung überführen und überprüfen Sie Ihr Ergebnis, indem Sie eine Probe durchführen.

$$z(t) \coloneqq \frac{y(t)}{t} , \qquad t \in \mathbb{R}^+$$

Aufgabe 3 Eine Zombieapokalypse

Auf einer kleinen Insel gerät ein Virus in Umlauf, der die Bevölkerung in Zombies verwandelt. Jeder Infizierte hat in einer Zeitspanne $\tau \in \mathbb{R}^+$ Kontakt mit $\tau \cdot k$ anderen Personen, die teilweise ebenfalls infiziert, teilweise aber auch gesunde Menschen sind, wobei $k \in \mathbb{R}^+$ gilt. Gerät ein gesunder Mensch in Kontakt mit einem Zombie, so wird dieser infiziert.

(a) Stellen Sie eine Differentialgleichung auf, die dieser Zombieapokalypse genügt. Verwenden Sie $N \in \mathbb{N}$ für die Größe der Inselbevölkerung, $Z(t) \in [0, N]$ für die Anzahl der Infizierten, $M(t) \in [0, N]$ für die Anzahl der Gesunden und $t \in \mathbb{R}^+$ als freien Parameter der Zeit.

Hinweis: Betrachten Sie zunächst nur die Infizierten zum Zeitpunkt $t + \tau$ und überführen Sie die Differenzengleichung durch Grenzwertbildung in die gesuchte Differentialgleichung.

(b) Lösen Sie diese Differentialgleichung und das folgende Anfangswertproblem.

$$t_0 \coloneqq 0 \; , \qquad Z_0 \coloneqq Z(0) \coloneqq \frac{N}{21}$$

- (c) Skizzieren Sie Z(t) und M(t) für k=2, N=1050 und $t \in \mathbb{R}^+$.
- (d) **Zusatz:** Ab wann ist nur noch weniger als 1% der Bevölkerung nicht infiziert? Wie beeinflussen die Parameter k und N diesen Zeitpunkt?