Abi 2012/2013 GK Nachtermin: Aufgabe B2

Inhaltsverzeichnis

2	Auf	${ m Gabe~B2}$	2
		Längen der Spannseile von Punkt B	
	2.2	A und C bestimmen	•
		2.2.1 C bestimmen	•
		2.2.2 A bestimmen	•
	2.3	Landwirtschaftliche Nutzfläche	4
		2.3.1 $\triangle OBD$ kein rechtwinkliges Dreieck	4
		2.3.2 Winkel β zwischen \vec{BO} und \vec{BD}	
		2.3.3 Abstand von B und F	ŗ
		2.3.4 Koordinaten Punkt F	ŗ
	2.4	Sturm und Sendemast	e

2 Aufgabe B2

2.1 Längen der Spannseile von Punkt B

$$\vec{BD} = D - B = \begin{pmatrix} -40 \\ -80 \\ 65 \end{pmatrix}$$

$$\vec{BE} = D - E = \begin{pmatrix} -40 \\ -80 \\ 116 \end{pmatrix}$$

$$\implies |\vec{BD}| = \sqrt{(-40)^2 + (-80)^2 + (65)^2} = 110.57$$

$$\implies |\vec{BD}| = \sqrt{(-40)^2 + (-80)^2 + (116)^2} = 146.48$$

2.2 A und C bestimmen

2.2.1 C bestimmen

$$H: x + 20z = 0,$$
 $g: \vec{x} = \vec{E} + k \cdot \vec{v} = \begin{pmatrix} 0 \\ 0 \\ 114 \end{pmatrix} + k \cdot \begin{pmatrix} 5 \\ -10 \\ 14 \end{pmatrix}$

Schnittpunkt g mit H ausrechnen: g in H einsetzten:

$$x + 20z = 0$$

$$5k + 20(114 + k \cdot 14) = 0$$

$$5k + 2280 + 280k = 0$$

$$285k + 2280 = 0 \qquad | -2280$$

$$285k = -2280 \qquad | : 285$$

$$k = -8$$

k einsetzten und schnittpunkt ausrechnen:

$$\vec{OC} = \begin{pmatrix} 0\\0\\114 \end{pmatrix} - 8 \cdot \begin{pmatrix} 5\\-10\\14 \end{pmatrix} = \begin{pmatrix} 0\\0\\114 \end{pmatrix} + \begin{pmatrix} -40\\80\\-112 \end{pmatrix}$$
$$= \begin{pmatrix} -40\\80\\2 \end{pmatrix}$$
$$\implies C = (-40|80|2)$$

2.2.2 A bestimmen

$$A = (0, y, 0), \qquad \left| \vec{EA} \right| = 145, \qquad y \in \mathbb{R}^-$$

Gleichung:

$$\begin{vmatrix} \vec{EA} \end{vmatrix} = 145$$

$$\sqrt{(0)^2 + (y)^2 + (-114)^2} = 145 \qquad |^2$$

$$(y)^2 + (-114)^2 = 145^2 \qquad |-(-114)^2|$$

$$y^2 = 145^2 - (-114)^2 = 8029$$

$$\implies y = -\sqrt{8029} = -89.6$$

$$\implies A = (0|-89.6|0)$$

2.3 Landwirtschaftliche Nutzfläche

2.3.1 $\triangle OBD$ kein rechtwinkliges Dreieck

$$\vec{OB} = \begin{pmatrix} 40\\80\\-2 \end{pmatrix}, \quad \vec{OD} = \begin{pmatrix} 0\\0\\63 \end{pmatrix}, \quad \vec{BD} = \begin{pmatrix} -40\\-80\\65 \end{pmatrix}$$

Bestimmung des Winkels (über Skalarprodukt):

$$\vec{OB} \circ \vec{OD} = 40 \cdot 0 + 80 \cdot 0 - 2 \cdot 63$$

= -126 \neq 0

 \implies Kein rechter Winkel bei O

$$\vec{OB} \circ \vec{BD} = 40 \cdot (-40) + 80 \cdot (-80) - 2 \cdot 65$$

= $-8130 \neq 0$

 \implies Kein rechter Winkel bei B

$$\vec{OD} \circ \vec{BD} = 0 \cdot (-40) + 0 \cdot (-80) + 63 \cdot 65$$

= $4095 \neq 0$

 \implies Kein rechter Winkel bei D

 \implies kein rechtwinkliges Dreieck $\triangle OBD$

2.3.2 Winkel β zwischen \vec{BO} und \vec{BD}

$$\vec{BO} = \begin{pmatrix} -40 \\ -80 \\ 2 \end{pmatrix}, \quad \vec{BD} = \begin{pmatrix} -40 \\ -80 \\ 65 \end{pmatrix}$$

Bestimmung des Winkels (über Skalarprodukt):

$$\frac{\vec{BO} \circ \vec{BD}}{|\vec{BO}| \cdot |\vec{BD}|} = \frac{40^2 + 80^2 + 2 \cdot 65}{\sqrt{40^2 + 80^2 + 2^2} \cdot \sqrt{40^2 + 80^2 + 65^2}}$$
$$= \frac{8130}{9891.86} = 0.8219$$

$$\beta = a\cos(0.8219) = \cos^{-1}(0.8219) = 34.72^{\circ}$$

Hinweis:

Dein Fehler war die beiden Vektoren in unterschiedliche Richtungen laufen zu lassen. Es wird immer der Winkel berechnet welcher in Richtung beider Vektoren anliegt. Wenn du von 180° deinen Winkel abziehst wirst du auf das gleiche β kommen wie ich.

2.3.3 Abstand von B und F

Pythagoras:

$$tan(\beta) = \frac{4}{|\vec{BF}|}$$

$$\Leftrightarrow |\vec{BF}| = \frac{4}{tan(\beta)}$$

$$= 5.77m$$

2.3.4 Koordinaten Punkt F

$$\vec{BO} = \begin{pmatrix} -40 \\ -80 \\ 2 \end{pmatrix}, \quad |\vec{BF}| = 5.77m$$

Über Gerade lösen:

$$\vec{OF} = \vec{OB} + \frac{|\vec{BF}|}{|\vec{BO}|} \cdot \vec{BO}$$

$$= \begin{pmatrix} 40 \\ 80 \\ -2 \end{pmatrix} + \frac{5.77}{\sqrt{40^2 + 80^2 + 2^2}} \cdot \begin{pmatrix} -40 \\ -80 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 40 \\ 80 \\ -2 \end{pmatrix} + 0.06 \cdot \begin{pmatrix} -40 \\ -80 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 40 \\ 80 \\ -2 \end{pmatrix} + \begin{pmatrix} -2.4 \\ -4.8 \\ 0.12 \end{pmatrix}$$

$$= \begin{pmatrix} 37.6 \\ 77.6 \\ -1.88 \end{pmatrix}$$

2.4 Sturm und Sendemast

$$g_1: \vec{x} = \begin{pmatrix} 100\\10\\-4 \end{pmatrix} + k \cdot \begin{pmatrix} -100.10\\-10.20\\154.00 \end{pmatrix}, \qquad g_2: \vec{x} = \begin{pmatrix} 10\\100\\0.75 \end{pmatrix} + t \cdot \begin{pmatrix} -10.10\\-100.20\\149.25 \end{pmatrix}$$

Schnittpunkt g_1 und g_2 :

$$\begin{pmatrix} 100 \\ 10 \\ -4 \end{pmatrix} + k \cdot \begin{pmatrix} -100.10 \\ -10.20 \\ 154.00 \end{pmatrix} = \begin{pmatrix} 10 \\ 100 \\ 0.75 \end{pmatrix} + t \cdot \begin{pmatrix} -10.10 \\ -100.20 \\ 149.25 \end{pmatrix} \qquad | -\begin{pmatrix} 100 \\ 10 \\ -4 \end{pmatrix}$$

$$k \cdot \begin{pmatrix} -100.10 \\ -10.20 \\ 154.00 \end{pmatrix} = \begin{pmatrix} -90 \\ 90 \\ 4.75 \end{pmatrix} + t \cdot \begin{pmatrix} -10.10 \\ -100.20 \\ 149.25 \end{pmatrix} \qquad | -t \cdot \begin{pmatrix} -10.10 \\ -100.20 \\ 149.25 \end{pmatrix}$$

$$k \cdot \begin{pmatrix} -100.10 \\ -100.20 \\ 154.00 \end{pmatrix} - t \cdot \begin{pmatrix} -10.10 \\ -100.20 \\ 149.25 \end{pmatrix} = \begin{pmatrix} -90 \\ 90 \\ 4.75 \end{pmatrix}$$

$$\implies k = 1, \quad t = 1$$

Einsetzten ergibt:

$$E' = (-0, 1| -0, 2| 150)$$

Winkel zwischen Sendemast vor und Nach dem Sturm (φ) :

$$\vec{OE'} = \begin{pmatrix} -0.1 \\ -0.2 \\ 150 \end{pmatrix}, \qquad \vec{OE} = \begin{pmatrix} 0 \\ 0 \\ 114 \end{pmatrix}$$

$$\frac{\vec{OE'} \circ \vec{OE}}{|\vec{OE'}| \cdot |\vec{OE}|} = \frac{-0.1 \cdot 0 + -0.2 \cdot 0 + 150 \cdot 114}{\sqrt{(-0.1)^2 + (-0.2)^2 + (150)^2} \cdot \sqrt{(0)^2 + (0)^2 + (114)^2}}$$
$$= \frac{17100}{17100.02} = 0.99999883$$

Runden ist hier nicht sinnvoll, da $cos(1) = 0^{\circ}$ ist.

$$\varphi = a\cos(0.99999883) = \cos^{-1}(0.99999883) \approx 0.09^{\circ}$$

Damit ist der Mast auch nichtmehr senkrecht.

Hinweis:

Theoretisch könnte man auch zeigen das der Mast nicht mehr senkrecht ist, indem du das

Skalarprodukt mit den Einheitsvektoren $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ bildest. (Theoretisch müsste

das aber auch über Winkel (φ) argumentierbar sein, denn E war ja senkrecht, also ist E' nicht mehr senkrecht wenn der Winkel größer als 0 ist)