15

20

25

WHAT IS CLAIMED IS:

1. A method to inhibit or prevent infectious agent transmission in a mammalian transplant recipient, comprising:

- a) introducing to donor swine cells a recombinant DNA comprising a promoter operably linked to a DNA segment encoding a protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent so as to yield transformed swine cells, and
- b) introducing the transformed wine cells to the recipient.
 - 2. A method to inhibit or prevent infectious agent transmission in a mammalian transplant recipient, comprising:
 - a) introducing to donor human blood cells a recombinant DNA comprising a promoter operably linked to a DNA segment encoding a protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent so as to yield transformed human blood cells; and

b) introducing the transformed human blood cells to the recipient.

3. A method to inhibit or prevent infectious agent transmission to a mammalian transplant recipient, comprising:

- a) introducing to a donor organ a recombinant DNA comprising a promoter operably linked to a DNA segment encoding a protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent so as to yield a transformed organ; and
- b) introducing the transformed organ to the recipient.
- 30 4. The method of claim 1, 2 or 3 wherein the DNA segment encodes a fusion protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent and a degradative enzyme.

15.

*** 0 00,		
	5.	The method of claim 4 wherein the degradative enzyme is a nuclease or
		protease.
	6.	The method of claim 1, 2 or 3 wherein the infectious agent is a virus.
5		
3	7.	The method of claim 6 wherein the polypeptide of the infectious agent is
	7.	
		a viral capsid protein, viral glycoprotein or an accessory protein.
	8.	The method of claim 6 wherein the virus is a lentivirus, retrovirus,
10		hepatitis virus or a herpesvirus.
	9.	The method of claim 1 wherein the donor cells are embryonic stem cells,
		blood cells, neuronal ¢ells, liver cells, pancreatic cells, kidney cells or
		islet cells.
15		
13	10.	The method of claim 3 wherein the organ is a heart, liver or kidney.
	10.	The method of claim 5 wherein the organ is a heart, fiver of kidney.
	11.	The method of claim 3 wherein the organ is a human or pig organ.
20	12.	The method of claim 4 wherein the DNA segment encodes a fusion
		protein encoding a polypeptide of a pig endogenous retrovirus.
	13.	The method of claim 5 wherein the enzyme is barnase, staphylococcal
		nuclease, RNase H1, RNase T1, retroviral protease, RNase III, RNaseL,
25		or a ribdzyme.
	14.	The method of claim 7 wherein the polypeptide of the infectious agent is
	1 T.	Vpr, Vpx, Vif or Nef.
		vpi, vpx, vii oi ivei.

segment which comprises at least a portion of a pig endogenous

An isolated and purified nucleic acid molecule comprising a nucleic acid

retrovirus, wherein the nucleic acid segment hybridizes under hybridizing

25

conditions to SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or SEQ ID NO:32.

- 16. An isolated and purified polypeptide encoded by a nucleic acid molecule comprising a nucleic acid segment comprising SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or SEQ ID NO:32.
- 17. A method to detect human tropic pig endogenous retroviruses, comprising:
 - a) contacting a mammalian sample suspected of being infected with a pig endogenous retrovirus with a probe comprising at least a portion of SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or SEQ ID NO:32 so as to form complexes; and
 - b) detecting or determining the presence of the complexes.
- 18. A method of using an isolated and purified nucleic acid molecule comprising the genome of a pig endogenous retrovirus comprising:

 20 introducing to a host cell a recombinant DNA molecule comprising a promoter operably linked to a DNA segment comprising SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or SEQ ID NO:32 so as to yield a transformed host cell, and identifying the transformed host cell.
 - 19. The method of claim 1, 2, 3 or 18 wherein the recombinant DNA molecule further comprises transcriptional termination sequences 3' to the DNA segment.
- 30 20. A host cell, the genome of which is augmented with a recombinant DNA molecule comprising a promoter operably linked to a DNA segment encoding a fusion protein comprising at least a portion of a polypeptide of a pig endogenous retrovirus and a degradative enzyme.

L

32.

33.

34.

virus.

30

10

15

20

- 35. The method of claim 1, 2, 3 or 1/8 wherein the recombinant DNA is introduced to the recipient by infection with a recombinant virus.
- 36. A method to inhibit or prevent infectious agent transmission in a mammalian transplant recipient, comprising:
 - a) introducing to donor mammalian cells a recombinant DNA comprising a promoter operably linked to a DNA segment encoding a protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent so as to yield transformed mammalian cells; and
 - b) introducing the transformed mammalian cells to the recipient.
- 37. A method to inhibit or prevent infectious agent transmission in a mammalian transplant recipient, comprising:
 - a) introducing to donor human cells a recombinant DNA encoding a protein comprising at least a portion of a polypeptide of the infectious agent that is present in the extracellular form of the agent so as to yield transformed human cells; and
 - b) introducing the transformed human cells to the recipient.
- 38. The method of claim 36 or 37 wherein the infectious agent is a virus.
- 39. The method of claim 38 wherein the polypeptide of the infectious agent is a viral capsid protein, viral glycoprotein or an accessory protein.