Lycée Buffon
 TD 19

 MPSI
 Année 2020-2021

Espaces vectoriels

Exercice 1: Les ensembles suivant sont-ils des \mathbb{R} -espaces vectoriels?

- 1. L'ensemble des suites réelles convergentes.
- 2. L'ensemble des suites réelles convergentes vers 0.
- 3. L'ensemble des suites réelles convergentes vers 1.
- 4. L'ensemble des suites réelles bornées.
- 5. L'ensemble des suites réelles croissantes.
- 6. L'ensemble des suites réelles monotones.
- 7. L'ensemble des suites réelles non convergentes.
- 8. L'ensemble des suites réelles périodiques à partir d'un certain rang.
- 9. L'ensemble des suites arithmétiques.
- 10. L'ensemble des suites géométriques.
- 11. L'ensemble des fonctions lipschitziennes de \mathbb{R} dans \mathbb{R} .
- 12. L'ensemble des fonctions paires de \mathbb{R} dans \mathbb{R} .
- 13. L'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui prennent la valeur β en α .

Exercice 2: On définit les sous-ensembles

 $F = \{(u_n)_{n \in \mathbb{N}} \in E \mid \forall \ n \in \mathbb{N}, \ u_{2n} = u_{2n+1}\} \text{ et } G = \{(u_n)_{n \in \mathbb{N}} \in E \mid \forall \ n \in \mathbb{N}, \ u_{2n} = 0\}$

- 1. Montrer que F et G sont deux sev de $\mathbb{R}^{\mathbb{N}}$.
- 2. Prouver que F et G sont supplémentaires.

 $\mathbf{Exercice}~\mathbf{3}$: Vérifier que les ensembles suivants sont des espaces vectoriels. En trouver un supplémentaire.

1.
$$E = \left\{ f \in \mathcal{C}([0,1], \mathbb{R}) : \int_0^1 f(t) dt = 0 \right\}$$

2. $E = \left\{ f \in \mathcal{C}([0,1], \mathbb{R}) : \int_0^1 f(t) dt = 0 \text{ et } f(0) = 0 \right\}$
3. $E = \left\{ f \in \mathcal{C}^1([0,1], \mathbb{R}) : \int_0^1 f(t) dt = 0, f(0) = 0 \text{ et } f'(0) = 0 \right\}$

4.
$$E = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$$

5.
$$E = \{(x, y, z) \in \mathbb{R}^3 : x - y + 2z = y + z = 0\}$$

6. L'ensemble des suites réelles arithmétiques.

7.
$$E = \{ f \in \mathcal{C}^1 (\mathbb{R}, \mathbb{R}) : f' + 2f = 0 \}$$

Exercice 4: Déterminer si les familles suivantes sont libres.

1. Dans
$$\mathbb{R}^3$$
: $e_1 = (1,0,1)$ et $e_2 = (1,2,0)$.

2. Dans
$$\mathbb{R}^3$$
: $e_1 = (1,0,1)$, $e_2 = (1,2,0)$, $e_3 = (1,1,0)$ et $e_4 = (1,0,0)$.

3. Dans
$$\mathbb{R}^4$$
: $e_1 = (1,0,1,0)$, $e_2 = (1,2,0,2)$, $e_3 = (1,1,0,1)$ et $e_4 = (1,0,0,3)$.

4. Dans
$$\mathbb{R}^{\mathbb{R}}: f_1: x \mapsto \cos x, f_2: x \mapsto \sin x \text{ et } f_3: x \mapsto 1.$$

Exercice 5 : Déterminer une base des R-espaces vectoriels suivants :

1.
$$E = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$$

2.
$$E = \{(x, y, z) \in \mathbb{R}^3 : x - y + 2z = y + z = 0\}$$

3. L'ensemble des suites réelles arithmétiques.

4.
$$E = \{ P \in \mathbb{R}_n [X] : P(2) = 0 \}$$

5.
$$E = \{ f \in \mathcal{C}^1 (\mathbb{R}, \mathbb{R}) : f' + 2f = 0 \}$$

Exercice 6: Montrer que les familles suivantes sont libres dans $\mathbb{R}^{\mathbb{R}}$.

1.
$$(f_a)_{a\in\mathbb{R}}$$
 où pour $a\in\mathbb{R}, f_a:\mathbb{R}\to\mathbb{R}, x\mapsto e^{ax}$.

2.
$$(g_a)_{a\in\mathbb{R}}$$
 où pour $a\in\mathbb{R}, g_a:\mathbb{R}\to\mathbb{R}, x\mapsto |x-a|$.

3.
$$(h_a)_{a \in \mathbb{R}^+}$$
 où pour $a \in \mathbb{R}, h_a : \mathbb{R} \to \mathbb{R}, x \mapsto \cos(ax)$.