

81408-4400.ST25.txt

SEQUENCE LISTING

<110> ProChon Biotech, Ltd.
MorphoSys AG
Yayon, Avner
Thomassen-Wolf, Elisabeth
Rom, Eran
Borges, Eric

<120> ANTIBODIES THAT BLOCK RECEPTOR PROTEIN TYROSINE KINASE ACTIVATION

<130> 81408-4400

<140> US 10/734,661
<141> 2003-12-15

<150> US 60/299,187
<151> 2001-06-20

<150> PCT/IL02/00494
<151> 2002-06-20

<160> 106

<170> PatentIn version 3.2

<210> 1
<211> 806
<212> PRT
<213> Homo sapiens

<300>
<308> np_000133
<309> 2001-02-21
<313> (1)..(806)

<400> 1

Met Gly Ala Pro Ala Cys Ala Leu Ala Leu Cys Val Ala Val Ala Ile
1 5 10 15

Val Ala Gly Ala Ser Ser Glu Ser Leu Gly Thr Glu Gln Arg Val Val
20 25 30

Gly Arg Ala Ala Glu Val Pro Gly Pro Glu Pro Gly Gln Gln Glu Gln
35 40 45

Leu Val Phe Gly Ser Gly Asp Ala Val Glu Leu Ser Cys Pro Pro Pro
50 55 60

Gly Gly Gly Pro Met Gly Pro Thr Val Trp Val Lys Asp Gly Thr Gly
65 70 75 80

Leu Val Pro Ser Glu Arg Val Leu Val Gly Pro Gln Arg Leu Gln Val
85 90 95

Leu Asn Ala Ser His Glu Asp Ser Gly Ala Tyr Ser Cys Arg Gln Arg
100 105 110

Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala
115 120 125

Pro Ser Ser Gly Asp Asp Glu Asp Gly Glu Asp Glu Ala Glu Asp Thr
 130 135 140
 Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp
 145 150 155 160
 Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys
 165 170 175
 Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly
 180 185 190
 Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His
 195 200 205
 Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly
 210 215 220
 Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr
 225 230 235 240
 Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln
 245 250 255
 Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu
 260 265 270
 Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu
 275 280 285
 Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro
 290 295 300
 Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu
 305 310 315 320
 Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu
 325 330 335
 Tyr Thr Cys Leu Ala Gly Asn Ser Ile Gly Phe Ser His His Ser Ala
 340 345 350
 Trp Leu Val Val Leu Pro Ala Glu Glu Leu Val Glu Ala Asp Glu
 355 360 365
 Ala Gly Ser Val Tyr Ala Gly Ile Leu Ser Tyr Gly Val Gly Phe Phe
 370 375 380
 Leu Phe Ile Leu Val Val Ala Ala Val Thr Leu Cys Arg Leu Arg Ser
 385 390 395 400
 Pro Pro Lys Lys Gly Leu Gly Ser Pro Thr Val His Lys Ile Ser Arg
 405 410 415
 Phe Pro Leu Lys Arg Gln Val Ser Leu Glu Ser Asn Ala Ser Met Ser
 420 425 430
 Ser Asn Thr Pro Leu Val Arg Ile Ala Arg Leu Ser Ser Gly Glu Gly
 435 440 445

Pro Thr Leu Ala Asn Val Ser Glu Leu Glu Leu Pro Ala Asp Pro Lys
 450 455 460

 Trp Glu Leu Ser Arg Ala Arg Leu Thr Leu Gly Lys Pro Leu Gly Glu
 465 470 475 480

 Gly Cys Phe Gly Gln Val Val Met Ala Glu Ala Ile Gly Ile Asp Lys
 485 490 495

 Asp Arg Ala Ala Lys Pro Val Thr Val Ala Val Lys Met Leu Lys Asp
 500 505 510

 Asp Ala Thr Asp Lys Asp Leu Ser Asp Leu Val Ser Glu Met Glu Met
 515 520 525

 Met Lys Met Ile Gly Lys His Lys Asn Ile Ile Asn Leu Leu Gly Ala
 530 535 540

 Cys Thr Gln Gly Gly Pro Leu Tyr Val Leu Val Glu Tyr Ala Ala Lys
 545 550 555 560

 Gly Asn Leu Arg Glu Phe Leu Arg Ala Arg Arg Pro Pro Gly Leu Asp
 565 570 575

 Tyr Ser Phe Asp Thr Cys Lys Pro Pro Glu Glu Gln Leu Thr Phe Lys
 580 585 590

 Asp Leu Val Ser Cys Ala Tyr Gln Val Ala Arg Gly Met Glu Tyr Leu
 595 600 605

 Ala Ser Gln Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu
 610 615 620

 Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg
 625 630 635 640

 Asp Val His Asn Leu Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu
 645 650 655

 Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Val Tyr Thr
 660 665 670

 His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe
 675 680 685

 Thr Leu Gly Gly Ser Pro Tyr Pro Gly Ile Pro Val Glu Glu Leu Phe
 690 695 700

 Lys Leu Leu Lys Glu Gly His Arg Met Asp Lys Pro Ala Asn Cys Thr
 705 710 715 720

 His Asp Leu Tyr Met Ile Met Arg Glu Cys Trp His Ala Ala Pro Ser
 725 730 735

 Gln Arg Pro Thr Phe Lys Gln Leu Val Glu Asp Leu Asp Arg Val Leu
 740 745 750

 Thr Val Thr Ser Thr Asp Glu Tyr Leu Asp Leu Ser Ala Pro Phe Glu
 755 760 765

 Gln Tyr Ser Pro Gly Gly Gln Asp Thr Pro Ser Ser Ser Ser Gly

81408-4400.ST25.txt

770	775	780				
Asp	Asp	Ser	Val Phe Ala His Asp Leu Leu Pro Pro Pro Ala Pro Pro Ser			
785		790	795	800		
Ser	Gly	Gly	Ser Arg Thr			
		805				
<210>	2					
<211>	32					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	artificial primer					
<400>	2					
acgtgcttagc	tgagtccttg	gggacggagc	ag			
			32			
<210>	3					
<211>	55					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	artificial primer					
<400>	3					
acgtctcgag	ttaatggta	tggtgatgg	gtgcatacac acagcccgcc tcgtc			
			55			
<210>	4					
<211>	1147					
<212>	DNA					
<213>	Homo sapiens					
<300>						
<308>	m58051					
<309>	1994-11-08					
<313>	(1)...(1147)					
<400>	4					
gcgcgcgtgcc	tgaggacgccc	gcggcccccg	cccccgccat	gggcgcggcct	gcctgcgc	60
tcgcgcgtcg	cgtggccgtg	gccatcggtg	ccggcgcc	ctcgaggatcc	ttggggacgg	120
agcagcgcgt	cgtggggcga	gcggcagaag	tccggggccc	agagcccg	cagcaggagc	180
agtttgttctt	cggcagcggg	gatgctgtgg	agctgagctg	tcccccggcc	gggggtggtc	240
ccatggggcc	cactgtctgg	gtcaaggatg	gcacagg	gtgcctcg	gagcgtgtcc	300
tggtggggcc	ccagcggctg	caggtgtcga	atgcctccca	cgaggactcc	ggggcctaca	360
gctgccccca	gcggctc	cagcgcgtac	tgtgccactt	catgtgtcgg	gtgacagacg	420
ctccatcctc	gggagatgac	gaagacgggg	aggacgaggc	tgaggacaca	gtgtggaca	480
cagggggccc	ttactggaca	cggcccgagc	ggatggacaa	gaagctgctg	gccgtggcc	540
ccgccaacac	cgtccgc	cgctgccc	ccgctggcaa	ccccactccc	tccatctc	600
ggctgaagaa	cgccagg	ttccgcggc	agcacccat	tggaggcatc	aagctgc	660
atcagcagt	gagcctgg	atggaaagcg	tggccctc	ggaccgc	aactacac	720
gcgtcggt	gaacaa	ggcagcatcc	ggcagacgt	cacgctggac	gtgctggagc	780
gctccccc	ccggcc	ctgcaggc	ggctgccc	caacc	gcgggtg	840
gcagcgt	ggat	ccac	ggc	agac	gtt	900
tcaagc	ggagg	ttt	ggc	acac	acc	960
tgctcaagac	ggcgg	ttt	ggc	acac	acc	1020

acgtcacctt tgaggacgcc	ggggaggtaca cctgcctggc	ggcaattct attgggttt	1080
ctcatcaactc tgcgtggctg	gtggtgctgc cagccgagga	ggagctggtg gaggctgacg	1140
aggcggg			1147

<210> 5
<211> 5695
<212> DNA
<213> Artificial sequence

<220>
<223> Expression Vector pCEP-PU/AC7

<400> 5				
gacggatcg	gagatctccc	gatccccat ggtcgactct	cagtacaatc tgctctgatg	60
ccgcata	aggcagt	at ctgc	ttgtgtgtt ggaggtcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga caattgc	180
tttagggtag	gcgtttgc	ctgcttcg	atgtacgggc cagatatacg	240
gattattgac	tagtattaa	tagtaatcaa	ttacggggtc attagttcat	300
tggagttcc	cgttacataa	cttacggtaa	atggcccgcc tggctgaccg	360
cccgccatt	gacgtcaata	atgacgtatg	ttcccatagt aacgccaata	420
attgacgtca	atgggtggac	tat	aaactgccc cttggcagta catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg taaatggccc	540
atgcccagta	catgaccta	tgggactt	ctacttggca gtacatctac	600
tcgctattac	catggtgat	cggtttggc	agtacatcaa tggcgtgga tagcggg	660
actcacgggg	at	ttccacccca ttgacgtcaa	tggagtttgc	720
aaaatcaacg	ggacttcca	aatgtcgta	acaactccgc cccattgacg	780
gtaggcgtgt	acgggtggag	gtctatataa	gcagagctct cttggctaact	840
ctgcttactg	gcttatcgaa	attaatacga	ctcaactatag ggagacccaa	900
gtttaaactt	aagcttggta	ccgagctcg	atccccgtcg tgcacatctac	960
gagatcccg	ggagccaaa	tcttgtgaca	aaactcacac atgcccaccg	1020
ctgaactcct	ggggggaccg	tcagtctcc	tctccccccc aaaacccaa	1080
tgatctcccg	gaccctgag	gtcacatcg	tgggtggta cgtgagccac	1140
aggtcaagtt	caactggta	gtggacggcg	tggaggtgca taatgccaag	1200
gggaggagca	gtacaacagc	acgtaccggg	acaaagccgc	1260
actggctgaa	tggcaaggag	tacaagtgc	tggtctccaa	1320
tcgagaaaac	catctccaa	gccaagg	ggagacccaa gctggctagc	1380
ccccatcccc	ggatgagctg	accaagaacc	accacaggtg tacaccctgc	1440
tctatcccg	cgacatcgcc	aggtcagcct	accacaggtg tacaccctgc	1500
agaccacgccc	tccctgtctg	gactccgacg	accacaggtg tacaccctgc	1560
tggacaagag	cagg	gggaaacg	accacaggtg tacaccctgc	1620
tgccacaacca	ctacacgc	aaagccctc	accacaggtg tacaccctgc	1680
ccgtttaaac	ccgctgatca	ccctgtctc	accacaggtg tacaccctgc	1740
gcccctcccc	cgtgccttcc	gggtaaatga	accacaggtg tacaccctgc	1800
aaaatgagga	aattgc	tcttgtc	ttctattctg ggggtgggg	1860
tggggcagga	cagcaagg	tttgc	tttgc	1920
tgggc	gggttttt	tttgc	tttgc	1980
cgcctgt	gggttttt	tttgc	tttgc	2040
cacttgc	gggttttt	tttgc	tttgc	2100
tcgccc	gggttttt	tttgc	tttgc	2160
cttacggc	gggttttt	tttgc	tttgc	2220
cgcctgt	gggttttt	tttgc	tttgc	2280
tcttgttcc	aaactgaa	tttgc	tttgc	2340
ggat	tttgc	tttgc	tttgc	2400
cgaattaa	tttgc	tttgc	tttgc	2460
caggcaga	tttgc	tttgc	tttgc	2520
caggctcccc	tttgc	tttgc	tttgc	2580
tcccgcccc	tttgc	tttgc	tttgc	2640
cccatggct	tttgc	tttgc	tttgc	2700
tattccagaa	tttgc	tttgc	tttgc	2760
gagcttgtat	tttgc	tttgc	tttgc	2820

gtatatacggc atagtataat acgacaagg	gaggaactaa accatggcca agttgaccag	2880
tgcgggtccg gtgctcac	cgcgacgt cgccggagcg gtcgagttt ggaccgac	2940
gctcggttc tcccggact	tcgtggagga cgacttcgc ggtgtgtcc gggacgac	3000
gaccctgttc atcagcgcgg	tccaggacca ggtgtgtcc gacaacaccc tggcctgg	3060
gtgggtgcgc ggcctggac	gagctgtacgc cgagtggc gaggtcgtt ccacgaact	3120
ccgggacgcc tccggggccgg	ccatgacca gatcggcag cagccgtgg ggcgggagg	3180
cgcctgcgc gaccggccg	gcaactgcgt gcacttcgt gccgaggagc aggactgaca	3240
cgtgctacga gatttcgatt	ccaccgcgc cttctatgaa aggtgggct tcggaatcg	3300
tttccggac gccggctgga	tgatcctcca gcgcgggat ctcatgtt agttcttcgc	3360
ccaccccaac ttgtttattt	cagcttataa tggttacaaa taaagaataa gcatcacaaa	3420
tttcacaaat aaagcattt	tttcaactgca ttctatgtt ggttgtcca aactcatcaa	3480
tgtatcttat catgtctgta	taccgtcgac ctctagctg agcttggcgt aatcatggc	3540
atagctgttt cctgtgtgaa	attgttatcc gctcacaatt ccacacaaca tacgagccgg	3600
aagcataaaag tgtaaaggcct	gggggtgccta atgagtgago taactcacat taattgcgtt	3660
gchgctactg cccgc	tttccataggc tccgcctt cgcgtactga	3720
ccaaacgcgcg gggagaggcg	gtttgcgtat tggcgcctt tccgcctt cgcgtactga	3780
ctcgctgcgc tcggcgtt	ggctgcggcg agcgttatca gctcactcaa aggccgtaat	3840
acggttatcc acagaatcag	gggataacgc agggaaagaac atgtgagcaa aaggccagca	3900
aaaggccagg aaccgtaaaa	aggccgcgtt gctggcggtt ttccataggc tccgcctt	3960
tgacgagcat cacaatc	gacgctcaag tcagagggtt cgaaacccga caggactata	4020
aagataccag gcgttcccc	cttgcgtgcgc tctcgttgcgc tctcgttgcgc	4080
gcttaccgga tacctgtcc	ccttctccc ttccggaa gtcgtgcgtt ctcgttgcgtt	4140
acgctgttagg tatctcagtt	cggtgttagt cggtgttgcgc aagctggct gtgtgcac	4200
accccccgtt cagccgcacc	gctgcgcctt atccggtaac tattgttgcgc agtccaaacc	4260
ggtaagacac gacttacgc	cactggcagc agccactggt aacaggatta gcagagcgag	4320
gtatgttaggc ggtgtacag	agttcttgcgc gtgtgtggcct aactacggct acactagaag	4380
gacagtattt ggtatctgc	ctctgttgcgc gccagttacc ttccggaaaaa gagttggtag	4440
ctcttgcgtt ggcaaaacaaa	ccaccgcgtt tagccgttgcgc ttccggatcc gcaagcagca	4500
gattacgcgc agaaaaaaag	gatctcaaga agatccttgcgc atctttcttgcgc cgggtcttgc	4560
cgctcagtgg aacgaaaact	cacgtttaagg gatccggcgtt atgagattat caaaaaggat	4620
cttcacccat tagtccat	atccctttaa attaaaaatg aagttttaaa tcaatctaaa gtatataatg	4680
gtaaacttgg tctgacagtt	accaatgtt aatcgttgcgc gcacccatct cagcgatctg	4740
tctatttcgt tcatccat	ttgcgttgcgtt cccgcgttgcgc tagataacta cgatacgg	4800
gggcttacca tctggccccc	gtgtgttgcgtt gatccggcgtt gacccacgcgtt caccggcgtt	4860
agatttatca gcaataaaacc	agccagccgg aaggcccgag cgccggcgtt gtcgttgcgtt	4920
tttatccgc tccatccat	cttgcgttgcgtt gatccggcgtt gtcgttgcgtt	4980
agttaatagt ttgcgttgcgtt	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5040
gtttggatgt gcttcattca	gatccggcgtt gatccggcgtt gtcgttgcgtt	5100
catgttgcgc aaaaaagccgg	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5160
ggccgcgtt ttatcactca	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5220
atccgttataa tgctttcttgcgtt	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5280
tatgcggcgtt ccgagttgt	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5340
cagaacttta aaagtgtca	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5400
cttaccgcgtt ttgagatcca	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5460
atctttactt ttcaccagcg	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5520
aaagggaaata agggcgacac	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5580
ttgaagcatt tatcagggtt	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5640
aaataaaacaa ataggggtt	ttgttgcgtt gatccggcgtt gtcgttgcgtt	5695

<210> 6
<211> 235
<212> PRT
<213> Artificial sequence

<220>
<223> Fc domain of Immunoglobulin

<400> 6

Asp Pro Glu Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro

81408-4400.ST25.txt

1	5	10	15
Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro			
20	25	30	
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr			
35	40	45	
Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn			
50	55	60	
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg			
65	70	75	80
Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val			
85	90	95	
Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser			
100	105	110	
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys			
115	120	125	
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp			
130	135	140	
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe			
145	150	155	160
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu			
165	170	175	
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe			
180	185	190	
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly			
195	200	205	
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr			
210	215	220	
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys			
225	230	235	
<210> 7			
<211> 1078			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> mutation			
<222> (1046)..(1048)			
<223> BASE PAIRS ENCODING THANATOPHORIC DYSPLASIA (TD) SUBSTITUTION IN FGFR3			
<400> 7			
tgagtcccttg gggacggagc agcgcgctgt ggggcgagcg gcagaagtcc cggggcccaga	60		
gccccggccag caggagcagt tggtcttcgg cagcggggat gctgtggagc tgagctgtcc	120		
cccgccccggg ggtggtccca tggggccac tgctctggtc aaggatggca cagggctgtt	180		

81408-4400.ST25.txt

gccctcgag cgtgcctgg tggggccca	gcggctgcag gtgctaatt	cctcccacga	240
ggactccggg gcctacagct gcccgcacgc	gctcacgcag cgctactgt	gccacttcag	300
tgtcggttgc acagacgctc	catcctcggtt	agatgacgaa gacggggagg	360
ggacacaggt gtggacacag	ggggccctta	ctggacacgg cccgagcgga	420
gctgctggcc gtgcggccg	ccaacaccgt	ccgctccgc tgcccagccg	480
cactccctcc atctcctggc	tgaagaacgg	ctggagttc cgccgcgagc	540
aggcatcaag ctgcggcatc	agcagtggag	cctggtcatg gaaagcgtgg	600
ccgcggcaac tacacctgcg	tcgtggagaa	caagtttggc agcatccggc	660
gctggacgtg ctggagcgct	ccccgcacccg	gcccatcctg caggcggggc	720
ccagacggcg gtgctggca	gchgacgttga	gttccactgc aaggtgtaca	780
gccccacatc cagtggtctca	agcacgttga	gtgacgcaca gggcggacgg	840
cacaccctac gttaccgtgc	tcaagacggc	ggcgcttaac accaccgaca	900
ggttctctcc ttgcacaacg	tcaccttta	ggacgcccgg gagtacacct	960
caattctatt gggtttctc atcactctgc	gtggctgggt	gtgctgccag ccgaggagga	1020
gctggtggag gctgacgagg	cgggctgtgt	gtatgcacac catcaccatc	1078

<210> 8

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> CDR domain from phage library

<400> 8

Asp Phe Leu Gly Tyr Glu Phe Asp Tyr

1 5

<210> 9

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> CDR domain from phage library

<400> 9

Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr

1 5

<210> 10

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> CDR domain from phage library

<400> 10

Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe Ile Asp

1 5 10 15

Tyr

<210> 11
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 11

Gln Ser His His Phe Tyr Glu
1 5

<210> 12
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 12

Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr Val Gly Tyr
1 5 10 15

Met Phe Asp Tyr
20

<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 13

Gln Ser Tyr Asp Phe Asp Phe Ala
1 5

<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 14

Asp Asn Trp Phe Lys Pro Phe Ser Asp Val
1 5 10

<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 15

Gln Gln Tyr Asp Ser Ile Pro Tyr
1 5

<210> 16
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 16

Val Asn His Trp Thr Tyr Thr Phe Asp Tyr
1 5 10

<210> 17
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 17

Gln Gln Met Ser Asn Tyr Pro Asp
1 5

<210> 18
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 18

Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr Phe Asp
1 5 10 15

Asn

<210> 19
<211> 9

<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 19

Gln Ser Tyr Asp Asn Asn Ser Asp Val
1 5

<210> 20
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 20

Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr Tyr Phe
1 5 10 15

Asp Ile

<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 21

Gln Gln Thr Asn Asn Ala Pro Val
1 5

<210> 22
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 22

Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His Phe Asp
1 5 10 15

Tyr

<210> 23
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 23

Gln Ser Tyr Asp Tyr Phe Lys Leu
1 5

<210> 24
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 24

Ser Tyr Tyr Pro Asp Phe Asp Tyr
1 5

<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 25

Gln Ser Tyr Asp Gly Pro Asp Leu Trp
1 5

<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 26

Gly Gly Gly Trp Val Ser His Gly Tyr Tyr Tyr Leu Phe Asp Leu
1 5 10 15

<210> 27
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 27

Phe Gln Tyr Gly Ser Ile Pro Pro
1 5

<210> 28
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 28

Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu Phe Asp
1 5 10 15

His

<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> CDR domain from phage library

<400> 29

Gln Ser Tyr Asp Met Tyr Met Tyr Ile
1 5

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 30
gattttcttg gttatgagtt tgattat 27

<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 31
cagagctatg actattctgc tgattat 27

<210> 32
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 32
tattatggtt cttctctta tcattatgtt tttgggtggtt ttattgatta t 51

<210> 33
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 33
cagtctcatc attttatga g 21

<210> 34
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 34
tatcattctt ggtatgagat gggttattat ggttctactg ttggttatat gtttgattat 60

<210> 35
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 35
cagagctatg actttgattt tgct 24

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 36		
gataatttgtt ttaaggccttt ttctgatgtt		30
<210> 37		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 37		
cagcagtatg attcttattcc ttat		24
<210> 38		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 38		
gttaatcatt ggacttatac ttttgattat		30
<210> 39		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 39		
cagcagatgt ctaattatcc tgat		24
<210> 40		
<211> 51		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 40		
ggttatttgtt atgcttattt tacttatatt aattatggtt atttgataaa t		51
<210> 41		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 41		

cagagctatg acaataattc tgatgtt

27

<210> 42
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 42
ggtgtgggtt gggtttctca tggttattat tatcttttg atctt

45

<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 43
tttcagtatg gttctattcc tcct

24

<210> 44
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 44
acttggcagt attcttattt ttattatctt gatgggtggtt attatttga tatt

54

<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 45
cagcagacta ataatgctcc tgtt

24

<210> 46
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of CDR domain from phage library

<400> 46
aatatggctt atactaatta tcagtagtt aatatgcctc attttgatta t

51

<210> 47		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 47		
cagagctatg actatttaa gctt		24
<210> 48		
<211> 51		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 48		
tctatgaatt ctactatgtat ttggtatctt cgtcggttc ttttgatca t		51
<210> 49		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 49		
cagagctatg acatgtataa ttatatt		27
<210> 50		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 50		
tcttattatc ctgattttga ttat		24
<210> 51		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> polynucleotide sequence of CDR domain from phage library		
<400> 51		
cagagctatg acggccctga tctttgg		27

<210> 52
 <211> 5020
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> polynucleotide sequence of cloning vector

 <300>
 <301> Knappik et al
 <302> Fully synthetic human combinatorial antibody libraries (HuCAL)
 based on modular consensus frameworks and CDRs randomized with
 trinucleotides.
 <303> J Mol Biol
 <304> 296
 <305> 1
 <306> 57-86
 <307> 2000-02-11
 <308> pubmed/10656818
 <309> 2000-02-11
 <313> (1)..(5020)

 <400> 52

atcgtgctga	cccgccgccc	ttcagttagt	ggcgacccag	gtcagcgtgt	gaccatctcg	60
tgttagcggca	gcagcagcaa	cattggcagc	aactatgtga	gctggtagcca	gcagttgcc	120
gggacggcgc	cgaaaactgct	gatttatgtat	aacaaccaggc	gtccctcagg	cgtgcccggat	180
cgttttagcg	gatccaaaag	cggcaccaggc	gcgagccttg	cgattacggg	cctgcaaaagc	240
gaagacgaag	cggattatta	ttgccagagc	tatgacatgc	ctcaggctgt	gtttggcggc	300
ggcacgaagt	ttaaccgttc	ttggccagcc	gaaagccgca	ccgagttgtga	cgctgtttcc	360
gccgagcagc	gaagaattgc	aggcgaacaa	agcggaccctg	gtgtgcctga	ttagcgactt	420
ttatccggga	gccgtgacag	tggcctggaa	ggcagatagc	agccccgtca	aggcggggagt	480
ggagaccacc	acacccctca	aacaaagcaa	caacaagtac	gcccggcagca	gctatctgag	540
cctgacgcct	gagcgttgg	agtcccacag	aagctacagc	tgccaggtca	cgcatgaggg	600
gagcacccgt	aaaaaaaccg	ttgcggccgac	tgaggcctga	taagcatgcg	taggagaaaa	660
taaaatgaaa	caaagcacta	ttgcactggc	actcttaccg	ttgctcttca	cccctgttac	720
caaagccca	gtgcaattga	aagaaagcgg	cccgccctg	gtgaaaccga	cccaaaccct	780
gaccctgacc	tgtaccttt	ccggatttag	cctgtccacg	tctggcgtt	gcgtgggctg	840
gattcgccag	ccgcctggga	aaggccctcg	gtggctggct	ctgatttgatt	gggatgtatga	900
taagtattat	agcaccagcc	tggcctggat	gtggcgtt	agcaaaagata	cttcgaaaaaa	960
tcaggtgggt	ctgactatga	ccaacatgg	cccggtggat	acggccacct	attattgcgc	1020
gcgttctcct	cgttatcg	gtgttttga	ttattggggc	caaggcaccc	ttgtgacggt	1080
tagctcagcg	tcgacccaaag	gtccaagcgt	gtttccgctg	gtcccgagca	gaaaaagcac	1140
cagcggcggc	acggctgccc	tgggctgcct	ggttaaagat	tatcccgg	aaccagtcac	1200
cgtgagctgg	aacagcgggg	cgctgaccag	cgccgtgtcat	accttccgg	cggtgctgca	1260
aagcagcggc	ctgtatagcc	tgagcagcgt	tgtgaccgt	ccgagcagca	gtttaggcac	1320
tcagacctat	atttgcacg	tgaaccataa	accgagcaac	accaaagtgg	ataaaaaaagt	1380
ggaaccgaaa	agcgaattcg	actataaaga	tgacgatgac	aaaggcgcgc	cgtggagcca	1440
cccgcagttt	gaaaaatgtat	aagcttgc	tgtgaagtga	aaaatggcgc	agattgtgcg	1500
acattttttt	tgtctggcg	ttaattaaag	gggggggggg	gccggcctgg	gggggggtgt	1560
acatgaaatt	gtaaacgtt	atattttgtt	aaaattcg	ttaattttt	gttaaatcag	1620
ctcatttttt	aaccaatagg	ccgaaatcg	caaaatccct	tataatcaa	aagaatagac	1680
cgagataggg	tttagtgg	ttccagttt	gaacaagagt	ccactattaa	agaacgtgga	1740
ctccaacgtc	aaaggcgaa	aaaccgtcta	tcagggcgat	ggccactac	gagaaccatc	1800
accctaata	agtttttgg	gtcgaggt	ccgtaaagca	ctaaatcg	accctaaagg	1860
gagcccccga	tttagagctt	gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	1920
gaaagcgaaa	ggagcggggcg	ctagggcgct	ggcaagtgt	gccccacgc	tgccgttaac	1980
caccacaccc	gccgcgtt	atgcggcg	acagggcg	tgctagacta	gtgtttaaac	2040
cggaccgggg	gggggcttaa	gtgggctgca	aaacaaaacg	gcctctgtc	aggaagccgc	2100
tttatcggg	tagcctact	gcccgtt	cagtcggaa	acctgtcg	ccagctgc	2160
cagtgaatcg	gccaacgcgc	ggggagaggc	gtttgcgt	ttgggagcca	gggtgggtt	2220

tctttcacc	agtgagacgg	gcaaacagctg	attgcccttc	accgcctggc	cctgagagag	2280
ttgcagcaag	cggcccacgc	tggttgc	cccc	caggcga	aaatccgtt	2340
cagcggcggg	atataacatg	agctgtc	c	gtatcg	tatcccacta	2400
cgcaccaacg	cgcagcccgg	actcg	taat	ggcacgc	ccgagatgtc	2460
gttggcaacc	agcatcg	tg	ggaa	acgat	ccctcattc	2520
aaaaccggac	atggcactc	act	ggc	cttgc	atcggtgaa	2580
agttagat	ttatgcc	ag	cc	ccgttccg	tttattgcg	2640
agctaacagc	gcgatttgc	gg	ttggcc	aa	tgcgaccaga	2700
accgtc	ttggagaaaa	taat	actgtt	gatgggt	ttgtcagaga	2760
taacgc	ggg	act	atgtc	aggcag	cacagcaata	2820
atagttaata	atcagcc	tg	acac	gttgc	gcacgcgtt	2880
ggcttcg	acg	cc	ttgc	acc	ccatccatc	2940
gcgagat	atcgc	ca	atttgc	ggcgcgt	aggccagac	3000
aacgcca	atc	gg	cccgc	gttgc	ggtaggtggc	3060
attcag	ccatcg	cc	ttcc	actt	tttgc	3120
ctgg	ac	cg	ggg	cgata	gcatactcg	3180
taacgtt	act	gtt	ccac	ccct	ttccggc	3240
cataccgc	ga	agg	tttgc	gct	gtatcatgc	3300
ggcc	agg	ttt	gc	ccat	ccatcgat	3360
cgag	agg	ttt	cc	ttgc	tgagcaaa	3420
ataccagg	cc	ttt	cc	act	cgatcc	3480
tac	cc	cc	cc	cc	ctgtcc	3540
ctgg	gata	cc	cc	cc	ccat	3600
ctgt	gat	cc	cc	cc	ccat	3660
cccc	gg	cc	cc	cc	ccat	3720
aag	ac	cc	cc	cc	ccat	3780
ttag	gg	cc	cc	cc	ccat	3840
ttgat	cc	cc	cc	cc	ccat	3900
tac	cg	cc	cc	cc	ccat	3960
tc	ag	cc	cc	cc	ccat	4020
ggc	ac	cc	cc	cc	ccat	4080
gta	att	cc	cc	cc	ccat	4140
tc	cc	cc	cc	cc	ccat	4200
gg	gc	cc	cc	cc	ccat	4260
gat	tg	cc	cc	cc	ccat	4320
cac	cg	cc	cc	cc	ccat	4380
att	ct	cc	cc	cc	ccat	4440
ga	ac	cc	cc	cc	ccat	4500
catt	ccat	cc	cc	cc	ccat	4560
ttac	gg	cc	cc	cc	ccat	4620
ca	act	cc	cc	cc	ccat	4680
tat	cc	cc	cc	cc	ccat	4740
ca	aaa	cc	cc	cc	ccat	4800
cgt	ct	cc	cc	cc	ccat	4860
ctc	gt	cc	cc	cc	ccat	4920
atg	att	cc	cc	cc	ccat	4980
agt	gg	cc	cc	cc	ccat	5020

<210> 53
<211> 4151
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of cloning vector

<300>
<301> knappik et al
<302> Fully synthetic human combinatorial antibody libraries (HuCAL)
based on modular consensus frameworks and CDRs randomized with

trinucleotides.
<303> j mol biol
<304> 296
<305> 1
<306> 57-86
<307> 2000-02-11
<308> pubmed/10656818
<309> 2000-02-11
<313> (1)..(4151)

<400> 53

ctagataac gagggcaaaa aatgaaaaaag acagctatcg cgattgcagt ggcactggct	60
ggtttcgcta ccgtacgcga ggccgatatac gtgctgaccc agagcccggc gaccctgagc	120
ctgtctccgg gcgaacgtgc gaccctgagc tgcaagagcga gccagagcgt gagcagcaga	180
tatctggcggt ggtaccagca gaaaccaggta caagcaccgc gtctattaat ttatggcg	240
agcagccgtg caactgggtt cccggcgcgt ttttagcggct ctggatccgg cacggatttt	300
accctgacca ttagcagcct ggaacctgaa gactttgcgg tgtattattt ccagcagcat	360
tataccaccc cgccgacctt tggccagggt acgaaagttt aaattaaacg tacggtggt	420
gctccgagcg tgtttatttt tccgcccggc gatgaacaac tggaaagcgg cacggcggagc	480
gtgggtgtgcc tgctgaacaa cttttatccg cgtgaagcga aagttcagtg gaaagttagac	540
aacgcgctgc aaagcggcaa cagccaggaa agcgtgaccg aacaggatag caaagatagc	600
acctattctc tgagcagcac cctgaccctt agcaaagcgg attatgaaaa acataaaagt	660
tatgcgtgcg aagtgaccca tcaaggctcg agcagccgg tgactaaatc tttaatcgt	720
ggcgaggcct gataagcatg cgtaggagaa aataaaatga aacaaagcac tattgcactg	780
gcactcttac cggtctctt caccctgtt accaaagccg aagtgcattt ggtggaaagc	840
ggcggcggccc tggtgcaacc gggcggcggc ctgcgtctga gctgcgcggc ctccggatt	900
accttttagca gctatgcgtt gagctgggtt cgccaagccc ctgggaaggg tctcgagtgg	960
gtgagcgcga ttagcggtag cggcggcggc acctattatg cggatagcgt gaaaggccgt	1020
tttaccattt cacgtataa ttcaaaaaac accctgtatc tgcaaatgaa cagcctgcgt	1080
gcggaaagata cggccgtgtt ttattgcgcg cgttggggcg gcgatggctt ttatgcgt	1140
gattattggg gccaaggcac cctggtgacg gtttagctcag cgtcgaccaa aggtccaagc	1200
gtgtttccgc tggctccgag cagcaaaagc accagcggcg gcacggctgc cctgggctgc	1260
ctggttaaag attatttccc ggaaccagtc accgtgagct ggaacagcgg ggcgtgacc	1320
agcggcgtgc ataccttcc ggcgggtgtt caaagcagcg gcctgtatag cctgagcagc	1380
gttgtgaccc tgccgagcag cagcttaggc actcagacat atatttgcac cgtgaaccat	1440
aaaccgagca acaccaaaatg ggataaaaaaa gtgaaaccga aaagcgttatttgggatggg	1500
agcgggagcg gtgattttga ttatgaaaaatg atggcaaaacg ctaataaggg ggctatgacc	1560
gaaaatgccg atgaaaacgc gctacagtct gacgctaaag gcaaacttga ttctgtcgt	1620
actgattacg gtgctgttat cgtatggttt attggtgacg ttccggcct tgctaattgt	1680
aatggtgcta ctggtgattt tgctggctt aattccaaa tggctcaagt cggtgacgt	1740
gataattcac cttaatgaa taattccgt caatatttac ttccctccc tcaatcggt	1800
gaatgtcgcc cttttgtctt tggcgctgtt aaaccatatg aattttctat tgattgtac	1860
aaaataaaact tattccgtgg tgcgtttgcg ttcttttat atgttgcac ctttatgtat	1920
gtatattctt cgtttgttca catactgcgt aataaggagt cttgataacg ttgacctgt	1980
aagtgaaaaaa tggcgcatat tggcgacat ttttttgac tgccgtttaa tgaaattgt	2040
aacgttaata tttttttaaa attcgcgtt aattttgtt aaatcagtc attttttaac	2100
caataggccc aaatcgccaa aatcccttat aaatcaaaaag aatagaccga gatagggttg	2160
agtgttggcc cagttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa	2220
gggcgaaaaaa cggcttatca gggcgatggc ccactacgag aaccatcacc ctaatcaagt	2280
tttttgggtt cgagggtggc taaagcacta aatcggttccg ctttttttccaa taggctccgc cccctgacg	2340
agagcttgcg gggggaaagcc ggcgaacgtg gcgagaaagg aagggaaagaa agcggaaagga	2400
ggggggcgcta gggcgctggc aagtgttagcg gtcaacgtgc gctgttaccac cacaccggcc	2460
ggcgcttaatg cggcttatca gggcgctgtc tagccatgtg agcaaaaaggc cagcaaaaagg	2520
ccagggaaaccg taaaaaggcc gcggtgttccg ctttttttccaa taggctccgc cccctgacg	2580
agcatcaca aatcgacgc tcaagtccaga ggtggcgaaa cccgacagga ctataaaatgt	2640
accaggcggtt tcccccttgcg agctccctcg tgccgtctcc tggccgttccacc ctggcgctt	2700
ccggataacct gtccgcctt cttcccttccg gaagcgttccg gctttctcat agctcacgt	2760
gttaggtatct cagttcggtt taggtcggtt gctccaagct gggctgtgtg cacaacccc	2820
ccgttcagtc cgaccgtgc gccttatccg gtaactatcg tctttagtcc aaccggtaa	2880
gacacgactt atcgccactg gcagcggcca ctggtaacag gattagcaga gcgaggtatg	2940
taggcgggtgc tacagagttt ttgaagtttggt ggcttaacta cggctacact agaagaacag	3000

tatttggtat ctgcgctctg	ctgttagccag ttacccctcg	aaaaagagtt ggtagctctt	3060
gatccggcaa acaaaccacc	gctggtagcg gtggttttt	tgttgcaag cagcagatta	3120
cgcgcagaaa aaaaggatct	caagaagatc ctttgatctt	ttctacgggg tctgacgctc	3180
agtggAACGA aaactcacgt	taagggattt tggtcagatc	tagcaccagg cgTTAAGGG	3240
caccaataac tgcctaaaaa	aaattacGCC ccGCCCTGCC	actcatcgca gtactgttgt	3300
aattcattaa gcattctGCC	gacatggaa ccatacaca	cggcatacatg aaccta	3360
gccagcggca tcagcacctt	gtcgccctgc gtataatatt	tgcccatagt gaaaacgggg	3420
gCGAAGAAGT tgtccatatt	ggctacgtt aaatcaaa	tggtgaaact caccCAGGGA	3480
ttggctgaga cgaaaaacat	attctcaata aacccttag	ggaaataggc caggTTTCA	3540
ccgtAACACG ccacatctt	cgaatatatg tgtagaaact	gccggaaatc gtcgtggat	3600
tcactccaga gcgatgaaaa	cgTTTCAGTT tgctcatgg	aaacgggtga acaagggtga	3660
acactatccc atatcaccag	ctcaccgtct ttcatggca	tacggaaactc cgggtgagca	3720
ttcatcaggc gggcaagaat	gtgaataaaag gccggataaa	acttgtgctt atttttctt	3780
acggTCTTA aaaaggccgt	aatatccagc tgaacggtct	ggttataatgt acattgagca	3840
actgactgaa atgcctaaa	atgttctta cgatgccatt	gggatataatc aacgggtgta	3900
tatccagtga ttttttctc	cattttagct tccttagctc	ctgaaaatct cgataactca	3960
aaaaatacgc ccggtagtga	tcttatttca ttatggtaa	agttggaaacc tcacCCGACG	4020
tctaATGTGA gttagctcac	tcattaggca ccccaggctt	tacactttat gcttccggct	4080
cgtatgtgt gtggaattgt	gagcggataa caatttcaca	cagggaaacag ctatgaccat	4140
gattacaaat t			4151

<210> 54
<211> 306
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VL domain

<220>
<221> misc_feature
<222> (253)..(255)
<223> NNN=ACT OR GTT

<400> 54	gatatccaga tgacccagag	cccgtctagc ctgagcgcga	gcgtgggtga tcgtgtgacc	60
attacctgca gagcggcca	gggcatttagc agctatctgg	cgtggtagcca	gcagaaaccca	120
ggtaaAGCAC cgaaaactatt	aatttatgca	gccagcagct	tgcaaAGCGG	180
cgttttagcg gctctggatc	cggcactgat	tttaccctga	ccattagcag	240
gaagactttg cgnnttatta	ttgccagacc	tttggccagg	gtacgaaagt	300
cgtacg				306

<210> 55
<211> 327
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VL domain

<400> 55	gatatccaga tgacccagag	cccgtctagc ctgagcgcga	gcgtgggtga tcgtgtgacc	60
attacctgca gagcggcca	gggcatttagc agctatctgg	cgtggtagcca	gcagaaaccca	120
ggtaaAGCAC cgaaaactatt	aatttatgca	gccagcagct	tgcaaAGCGG	180
cgttttagcg gctctggatc	cggcactgat	tttaccctga	ccattagcag	240
gaagactttg cggtttatta	ttgcttcag	tatggttcta	ttcctcctac	300
ggtacgaaag ttgaaattaa	acgtacg			327

<210> 56
<211> 309
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VL domain

<220>
<221> misc_feature
<222> (256)..(258)
<223> NNN=ACT OR GTT

<400> 56
gatatcgtgc tgaccagag cccggcgacc ctgaggctgt ctccggcgaa acgtgcgacc 60
ctgagctgca gagcggccca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120
ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180
gcccgtttta gcggctctgg atccggcactg gattttaccc tgaccattag cagcctggaa 240
cctgaagact ttgcgnnta ttattgccag acctttggcc agggtacgaa agttgaaatt 300
aaacgtacg 309

<210> 57
<211> 330
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VL domain

<400> 57
gatatcgtgc tgaccagag cccggcgacc ctgaggctgt ctccggcgaa acgtgcgacc 60
ctgagctgca gagcggccca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120
ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180
gcccgtttta gcggctctgg atccggcactg gattttaccc tgaccattag cagcctggaa 240
cctgaagact ttgcgactta ttattgccag cagatgtcta attatcctga tacctttggc 300
cagggtacga aagttgaaat taaacgtacg 330

<210> 58
<211> 330
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VL domain

<400> 58
gatatcgtgc tgaccagag cccggcgacc ctgaggctgt ctccggcgaa acgtgcgacc 60
ctgagctgca gagcggccca gagcgtgagc agcagctatc tggcgtggta ccagcagaaa 120
ccaggtcaag caccgcgtct attaatttat ggcgcgagca gccgtgcaac tggggtcccg 180
gcccgtttta gcggctctgg atccggcactg gattttaccc tgaccattag cagcctggaa 240
cctgaagact ttgcgactta ttattgccag cagactaata atgctctgt tacctttggc 300
cagggtacga aagttgaaat taaacgtacg 330

<210> 59
<211> 324
<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 59

gatatcgta	tgacccagag	cccggatagc	ctggcggtga	gcctggcg	acgtgcgacc	60
attaactgca	gaaggagcca	gagcgtgctg	tatagcagca	acaacaaaaaa	ctatctggcg	120
tggtaccagc	agaaaccagg	tcagccggcg	aaactattaa	tttattggc	atccacccgt	180
gaaagcgggg	tcccgatcg	tttttagccgc	tctggatccg	gcactgattt	taccctgacc	240
atttcgtccc	tgcaagctga	agacgtggcg	gtgtattatt	gccagacctt	tggccagggt	300
acgaaagtt	aaattaaacg	tacg				324

<210> 60

<211> 345

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 60

gatatcgta	tgacccagag	cccggatagc	ctggcggtga	gcctggcg	acgtgcgacc	60
attaactgca	gaaggagcca	gagcgtgctg	tatagcagca	acaacaaaaaa	ctatctggcg	120
tggtaccagc	agaaaccagg	tcagccggcg	aaactattaa	tttattggc	atccacccgt	180
gaaagcgggg	tcccgatcg	tttttagccgc	tctggatccg	gcactgattt	taccctgacc	240
atttcgtccc	tgcaagctga	agacgtggcg	gtgtattatt	gccagcagta	tgattctatt	300
ccttataacct	ttggccagggt	tacgaaagtt	gaaattaaac	gtacg		345

<210> 61

<211> 315

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 61

gatatcgcac	tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tctgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccagcag	120
catccccggg	aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaagcggc	aacaccgcga	gcctgaccat	tagcggcgtg	240
caagcggaaag	acgaagcggaa	ttattattgc	caggacgtgt	ttggcggcgg	cacgaagtta	300
accgttcttg	gccag					315

<210> 62

<211> 336

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 62

gatatcgcac	tgacccagcc	agcttcagtg	agcggctcac	caggtcagag	cattaccatc	60
tctgtacgg	gtactagcag	cgatgtggc	ggctataact	atgtgagctg	gtaccagcag	120
catccccggg	aggcgccgaa	actgatgatt	tatgatgtga	gcaaccgtcc	ctcaggcgtg	180
agcaaccgtt	ttagcggatc	caaagcggc	aacaccgcga	gcctgaccat	tagcggcgtg	240

81408-4400.ST25.txt

caagcggaaag acgaagcgg a ttattattgc cagagctatg acatgtataa ttatattgtg	300
tttggccggc gcacgaagtt aaccgttctt ggccag	336
<210> 63	
<211> 330	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VL domain	
<400> 63	
gatatcgcac tgacctcagcc agcttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtacttagcag cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggccccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcgg a ttattattgc cagtcctatc atttttatga ggtgtttggc	300
ggccggcactga agttaaccgt tcttggccag	330
<210> 64	
<211> 336	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VL domain	
<400> 64	
gatatcgcac tgacctcagcc agcttcagtg agcggctcac caggtcagag cattaccatc	60
tcgtgtacgg gtacttagcag cgatgtggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggccccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaaag acgaagcgg a ttattattgc cagagctatg acaataattc tgatgttgtg	300
tttggccggc gcacgaagtt aaccgttctt ggccag	336
<210> 65	
<211> 306	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VL domain	
<400> 65	
gatatcgaaac tgacctcagcc gccttcagtg agcggtgcac caggtcagac cgccgcgtatc	60
tcgtgtacgg gcgtatgcgtc gggcgataaa tacgcgagct ggtaccagca gaaaccgggg	120
caggcgccag ttctgggtat ttatgatgat tctgaccgtc cctcaggcat cccggAACgc	180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccaggacgtg tttggccggc gcacgaagtt aaccgttctt	300
ggccag	306
<210> 66	
<211> 324	
<212> DNA	
<213> Artificial Sequence	
<220>	

<223> polynucleotide sequence of a VL domain

<400> 66

gatatcgaac	tgaccaggcc	gccttcagtg	agcgttgcac	caggtcagac	cgcgcgtatc	60
tcgtgttagcg	gcgatgcgct	gggcgataaaa	tacgcgagct	ggtaccagca	gaaaccggg	120
caggcgccag	ttctgggtat	ttatgtat	tctgaccgto	cctcaggcat	cccggAACGC	180
tttagcggat	ccaacagcgg	caacaccgct	accctgacca	ttagcggcac	tcagggcggaa	240
gacgaagcgg	attattattt	ccagagctat	gactattta	agcttgtt	tggcggcggc	300
acgaagttaa	ccgttcttgg	ccag				324

<210> 67

<211> 327

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 67

gatatcgaac	tgaccaggcc	gccttcagtg	agcgttgcac	caggtcagac	cgcgcgtatc	60
tcgtgttagcg	gcgatgcgct	gggcgataaaa	tacgcgagct	ggtaccagca	gaaaccggg	120
caggcgccag	ttctgggtat	ttatgtat	tctgaccgto	cctcaggcat	cccggAACGC	180
tttagcggat	ccaacagcgg	caacaccgct	accctgacca	ttagcggcac	tcagggcggaa	240
gacgaagcgg	attattattt	ccagagctat	gactattctg	ctgattatgt	gtttggcggc	300
ggcacgaagt	taaccgttct	tggccag				327

<210> 68

<211> 324

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 68

gatatcgaac	tgaccaggcc	gccttcagtg	agcgttgcac	caggtcagac	cgcgcgtatc	60
tcgtgttagcg	gcgatgcgct	gggcgataaaa	tacgcgagct	ggtaccagca	gaaaccggg	120
caggcgccag	ttctgggtat	ttatgtat	tctgaccgto	cctcaggcat	cccggAACGC	180
tttagcggat	ccaacagcgg	caacaccgct	accctgacca	ttagcggcac	tcagggcggaa	240
gacgaagcgg	attattattt	ccagagctat	gactttgatt	ttgcttgtt	tggcggcggc	300
acgaagttaa	ccgttcttgg	ccag				324

<210> 69

<211> 327

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<400> 69

gatatcgaac	tgaccaggcc	gccttcagtg	agcgttgcac	caggtcagac	cgcgcgtatc	60
tcgtgttagcg	gcgatgcgct	gggcgataaaa	tacgcgagct	ggtaccagca	gaaaccggg	120
caggcgccag	ttctgggtat	ttatgtat	tctgaccgto	cctcaggcat	cccggAACGC	180
tttagcggat	ccaacagcgg	caacaccgct	accctgacca	ttagcggcac	tcagggcggaa	240
gacgaagcgg	attattattt	ccagagctat	gacggtcctg	atctttgggt	gtttggcggc	300
ggcacgaagt	taaccgttct	tggccag				327

<210> 70
<211> 332
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VH domain

<220>
<221> misc_feature
<222> (1)..(3)
<223> NNN=GAA OR CAG

<400> 70
nnngtcaat tggttcagtc tggcgcgaa gtaaaaaac cgggcagcag cgtaaaagtg 60
agctgcaaag cctccggagg cacttttagc agctatgcga tttagctgggt gcgccaagcc 120
cctggcagg gtctcgagtg gatgggcggc attattccga ttttggcac ggcgaactac 180
gcccagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaactga gcagcctgctg tagcgaagat acggccgtgt attattgcgc gcgtgattgg 300
ggccaaggca ccctggtgac gtttagctca gc 332

<210> 71
<211> 359
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VH domain.

<400> 71
caggtcaat tggttcagtc tggcgcgaa gtaaaaaac cgggcagcag cgtaaaagtg 60
agctgcaaag cctccggagg cacttttagc agctatgcga tttagctgggt gcgccaagcc 120
cctggcagg gtctcgagtg gatgggcggc attattccga ttttggcac ggcgaactac 180
gcccagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaactga gcagcctgctg tagcgaagat acggccgtgt attattgcgc gcgtgataat 300
tggtaaagc cttttctga tggtgggc caaggcaccc tggtgacggc tagctcagc 359

<210> 72
<211> 359
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VH domain

<400> 72
caggtcaat tggttcagtc tggcgcgaa gtaaaaaac cgggcagcag cgtaaaagtg 60
agctgcaaag cctccggagg cacttttagc agctatgcga tttagctgggt gcgccaagcc 120
cctggcagg gtctcgagtg gatgggcggc attattccga ttttggcac ggcgaactac 180
gcccagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaactga gcagcctgctg tagcgaagat acggccgtgt attattgcgc gcgtgttaat 300
cattggactt atactttga ttattgggc caaggcaccc tggtgacggc tagctcagc 359

<210> 73
<211> 374
<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 73

caggtcaat tggttcagtc tggcgcgaa gtaaaaaac cgggcagcag cgtaaaagtg	60
agctgcaaag cctccggagg cacttttagc agctatgcga tttagctgggt ggcggcaagcc	120
cctggcagg gtctcgagt gatgggcggc attattccga ttttggcac ggcgaactac	180
gcccagaagt ttcatggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat	240
atgaaactga gcagcctgct tagcgaagat acggccgtgt attattgcgc gcgtgggtgt	300
ggttgggtt ctatggta ttattatctt tttagatctt gggccaagg caccctggtg	360
acggtagct cagc	374

<210> 74

<211> 332

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<220>

<221> misc_feature

<222> (1)..(3)

<223> NNN=GAA OR CAG

<400> 74

nnngtcaat tggttcagag cggcgcgaa gtaaaaaac cgggcgcgag cgtaaaagtg	60
agctgcaaag cctccggata taccttacc agctattata tgcactgggt cgcggcaagcc	120
cctggcagg gtctcgagt gatgggcgtt attaaccga atagcggcgg cacgaactac	180
gcccagaagt ttcatggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat	240
atgaaactga gcagcctgct tagcgaagat acggccgtgt attattgcgc gcgtgattgg	300
ggccaaggca ccctggtgac ggttagctca gc	332

<210> 75

<211> 380

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 75

caggtcaat tggttcagag cggcgcgaa gtaaaaaac cgggcgcgag cgtaaaagtg	60
agctgcaaag cctccggata taccttacc agctattata tgcactgggt cgcggcaagcc	120
cctggcagg gtctcgagt gatgggcgtt attaaccga atagcggcgg cacgaactac	180
gcccagaagt ttcatggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat	240
atgaaactga gcagcctgct tagcgaagat acggccgtgt attattgcgc gcgtaatatg	300
gcttatacta attatcagta tgttaatatg cctcatatgtt attattgggg ccaaggcacc	360
ctggtagcgg ttagctcagc	380

<210> 76

<211> 380

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 76

caggtgcaat	tggttcagag	cggcgccgaa	gtaaaaaac	cgggcgcgag	cgtaaaagt	60
agctgcaaag	cctccggata	taccttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaaccga	atagcggcgg	cacgaactac	180
gcccagaagt	ttcagggccg	ggtgaccatg	accctgtata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctg	tagcgaagat	acggccgtgt	attattgcgc	gcgttctatg	300
aattctacta	tgtattgta	tcttcgtcgt	gttcttttg	atcattgggg	ccaaggcacc	360
ctgggtacgg	ttagctcagc					380

<210> 77

<211> 356

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 77

caggtgcaat	tggttcagag	cggcgccgaa	gtaaaaaac	cgggcgcgag	cgtaaaagt	60
agctgcaaag	cctccggata	taccttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaaccga	atagcggcgg	cacgaactac	180
gcccagaagt	ttcagggccg	ggtgaccatg	accctgtata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctg	tagcgaagat	acggccgtgt	attattgcgc	gcgtgatttt	300
cttggttatg	agtttgatta	ttggggccaa	ggcacccctgg	tgacggtag	ctcagc	356

<210> 78

<211> 380

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 78

caggtgcaat	tggttcagag	cggcgccgaa	gtaaaaaac	cgggcgcgag	cgtaaaagt	60
agctgcaaag	cctccggata	taccttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaaccga	atagcggcgg	cacgaactac	180
gcccagaagt	ttcagggccg	ggtgaccatg	accctgtata	ccagcattag	caccgcgtat	240
atggaactga	gcagcctg	tagcgaagat	acggccgtgt	attattgcgc	gcgttattat	300
ggttcttctc	tttatcatta	tgttttgg	gtttttattg	attattgggg	ccaaggcacc	360
ctgggtacgg	ttagctcagc					380

<210> 79

<211> 380

<212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<400> 79

caggtgcaat	tggttcagag	cggcgccgaa	gtaaaaaac	cgggcgcgag	cgtaaaagt	60
agctgcaaag	cctccggata	taccttacc	agctattata	tgcactgggt	ccgccaagcc	120
cctggcagg	gtctcgagt	gatgggctgg	attaaccga	atagcggcgg	cacgaactac	180
gcccagaagt	ttcagggccg	ggtgaccatg	accctgtata	ccagcattag	caccgcgtat	240

atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtggttat	300
tgttatgctt atttactta tattaattat gttattttg ataattgggg ccaaggcacc	360
ctggtgacgg ttagctcagc	380
<210> 80	
<211> 383	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VH domain	
<400> 80	
caggtgcaat tggttcagag cggcgcgaa gtgaaaaaac cgggcgcgag cgtaaaagtg	60
actgtcaaag cctccggata taccttacc agctattata tgcactgggt ccgccaagcc	120
cctggcagg gtctcgagtg gatgggctgg attaaccga atagcggcgg cacgaactac	180
gcccagaagt ttcagggccg ggtgaccatg acccggtata ccagcattag caccgcgtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtacttgg	300
cagtattctt attttatta tcttgatggt gtttattatt ttgatatttg gggccaaggc	360
accctggta cggttagctc agc	383
<210> 81	
<211> 335	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VH domain	
<220>	
<221> misc_feature	
<222> (1)..(3)	
<223> NNN=GAA OR CAG	
<400> 81	
nnngtcaat tgaaagaaag cggccccggcc ctggtgaaac cgacccaaacc cctgaccctg	60
acctgtacctt ttccggatt tagcctgtcc acgtctggcg ttggcgtggg ctggattcgc	120
cagccgcctg ggaaagccct cgagtggctg gctctgattt attggatga tgataagtat	180
tatagcacca gcctgaaaac gcgtctgacc attagcaaag atacttcgaa aaatcaggtg	240
gtgctgacta tgaccaacat ggaccggctg gatacggcca cctattatttgcgcgtat	300
tggggccaag gcaccctggta gacggtagc tcagc	335
<210> 82	
<211> 392	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> polynucleotide sequence of a VH domain	
<400> 82	
caggtgcaat tgaaagaaag cggccccggcc ctggtgaaac cgacccaaacc cctgaccctg	60
acctgtacctt ttccggatt tagcctgtcc acgtctggcg ttggcgtggg ctggattcgc	120
cagccgcctg ggaaagccct cgagtggctg gctctgattt attggatga tgataagtat	180
tatagcacca gcctgaaaac gcgtctgacc attagcaaag atacttcgaa aaatcaggtg	240
gtgctgacta tgaccaacat ggaccggctg gatacggcca cctattatttgcgcgtat	300
cattcttggta atgagatggg ttattatggta tctactgttg gttatatgtt tgattattgg	360

ggccaaggca ccctggtgac ggttagctca gc

392

<210> 83
<211> 341
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VH domain

<220>
<221> misc_feature
<222> (1)..(3)
<223> NNN=GAA OR CAG

<400> 83
nnngtcaat tgcaaacagtc tggccgggc ctggtaaaac cgagccaaac cctgagcctg 60
acctgtgcga ttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc 120
cagtctcctg ggcgtggcct cgagtggctg ggccgtacct attatcgttag caaatggtat 180
aacgattatg cggtagcgt gaaaagccgg attaccatca accccgataac ttcgaaaaac 240
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg 300
cgtgattggg gccaaggcac cctggtaac gttagctcag c 341

<210> 84
<211> 362
<212> DNA
<213> Artificial Sequence

<220>
<223> polynucleotide sequence of a VH domain

<400> 84
caggtcaat tgcaaacagtc tggccgggc ctggtaaaac cgagccaaac cctgagcctg 60
acctgtgcga ttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc 120
cagtctcctg ggcgtggcct cgagtggctg ggccgtacct attatcgttag caaatggtat 180
aacgattatg cggtagcgt gaaaagccgg attaccatca accccgataac ttcgaaaaac 240
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg 300
cgttcttatt atcctgattt tgattattgg gccaaggca ccctggtaac gttagctcag 360
gc 362

<210> 85
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain

<400> 85

Asp	Ile	Glu	Leu	Thr	Gln	Pro	Pro	Ser	Val	Ser	Val	Ala	Pro	Gly	Gln
1						5			10				15		

Thr	Ala	Arg	Ile	Ser	Cys	Ser	Gly	Asp	Ala	Leu	Gly	Asp	Lys	Tyr	Ala
20								25				30			

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr

81408-4400.ST25.txt

35	40	45
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser		
50	55	60
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu		
65	70	75
80		
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr		
85	90	95
Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln		
100	105	

<210> 86
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain
<400> 86

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
50 55 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser His His Phe Tyr
85 90 95

Glu Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110

<210> 87
<211> 108
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain
<400> 87

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala

20

25

30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
 50 55 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
 65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asp Phe Ala Val
 85 90 95

Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
 100 105

<210> 88

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 88

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
 1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser
 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

Tyr Asp Ser Ile Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

Lys Arg Thr
 115

<210> 89

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 89

Asp	Ile	Val	Leu	Thr	Gln	Ser	Pro	Ala	Thr	Leu	Ser	Leu	Ser	Pro	Gly
1					5					10					15
Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	Val	Ser	Ser	Ser
				20					25						30
Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu
					35			40							45
Ile	Tyr	Gly	Ala	Ser	Ser	Arg	Ala	Thr	Gly	Val	Pro	Ala	Arg	Phe	Ser
				50				55							60
Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Glu
					65			70			75				80
Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Met	Ser	Asn	Tyr	Pro
					85				90						95
Asp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr		
					100				105						110

<210> 90

<211> 112

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 90

Asp	Ile	Ala	Leu	Thr	Gln	Pro	Ala	Ser	Val	Ser	Gly	Ser	Pro	Gly	Gln
1						5				10					15
Ser	Ile	Thr	Ile	Ser	Cys	Thr	Gly	Thr	Ser	Ser	Asp	Val	Gly	Gly	Tyr
				20				25							30
Asn	Tyr	Val	Ser	Trp	Tyr	Gln	Gln	His	Pro	Gly	Lys	Ala	Pro	Lys	Leu
				35				40							45
Met	Ile	Tyr	Asp	Val	Ser	Asn	Arg	Pro	Ser	Gly	Val	Ser	Asn	Arg	Phe
				50				55			60				
Ser	Gly	Ser	Lys	Ser	Gly	Asn	Thr	Ala	Ser	Leu	Thr	Ile	Ser	Gly	Leu
					65			70			75				80
Gln	Ala	Glu	Asp	Glu	Ala	Asp	Tyr	Tyr	Cys	Gln	Ser	Tyr	Asp	Asn	Asn
					85				90						95
Ser	Asp	Val	Val	Phe	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	
				100					105						110

<210> 91

<211> 109

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 91

Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val	Gly
1				5					10					15	

Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Gly	Ile	Ser	Ser	Tyr
	20				25							30			

Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Leu	Ile
	35				40							45			

Tyr	Ala	Ala	Ser	Ser	Leu	Gln	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly
	50				55						60				

Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro
65				70				75					80		

Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Phe	Gln	Tyr	Gly	Ser	Ile	Pro	Pro
				85				90					95		

Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr			
					100		105								

<210> 92

<211> 110

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 92

Asp	Ile	Val	Leu	Thr	Gln	Ser	Pro	Ala	Thr	Leu	Ser	Leu	Ser	Pro	Gly
1				5					10					15	

Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Ser	Val	Ser	Ser	Ser
	20				25							30			

Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu
	35				40							45			

Ile	Tyr	Gly	Ala	Ser	Ser	Arg	Ala	Thr	Gly	Val	Pro	Ala	Arg	Phe	Ser
	50				55							60			

Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Glu
65					70				75					80	

Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Thr	Asn	Asn	Ala	Pro
					85				90					95	

Val	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	Thr		
						100		105				110			

<210> 93

<211> 108

<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain

<400> 93

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
50 55 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Phe Lys Leu Val
85 90 95

Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105

<210> 94
<211> 112
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain

<400> 94

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln
1 5 10 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr
20 25 30

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu
35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe
50 55 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu
65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Tyr
85 90 95

Asn Tyr Ile Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105 110

<210> 95
<211> 109
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VL domain
<400> 95

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln
1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala
20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr
35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
50 55 60

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu
65 70 75 80

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Pro Asp Leu Trp
85 90 95

Val Phe Gly Gly Thr Lys Leu Thr Val Leu Gly Gln
100 105

<210> 96
<211> 118
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain
<400> 96

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

81408-4400.ST25.txt

Ala Arg Asp Phe Leu Gly Tyr Glu Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ser
115

<210> 97
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain

<400> 97

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe
100 105 110

Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 98
<211> 130
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain

<400> 98

Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser
20 25 30

Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu
35 40 45

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser
 50 55 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val
 65 70 75 80

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
 85 90 95

Cys Ala Arg Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr
 100 105 110

Val Gly Tyr Met Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val
 115 120 125

Ser Ser
 130

<210> 99
 <211> 119
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> polypeptide sequence of a VH domain
 <400> 99

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
 20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Asn Trp Phe Lys Pro Phe Ser Asp Val Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser
 115

<210> 100
 <211> 119
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> polypeptide sequence of a VH domain

<400> 100

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ser
1					5				10				15		

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Gly	Thr	Phe	Ser	Ser	Tyr
					20			25				30			

Ala	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
					35			40				45			

Gly	Gly	Ile	Ile	Pro	Ile	Phe	Gly	Thr	Ala	Asn	Tyr	Ala	Gln	Lys	Phe
					50			55			60				

Gln	Gly	Arg	Val	Thr	Ile	Thr	Ala	Asp	Glu	Ser	Thr	Ser	Thr	Ala	Tyr
					65			70		75				80	

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85			90			95				

Ala	Arg	Val	Asn	His	Trp	Thr	Tyr	Thr	Phe	Asp	Tyr	Trp	Gly	Gln	Gly
					100			105			110				

Thr	Leu	Val	Thr	Val	Ser	Ser									
					115										

<210> 101

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 101

Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1					5				10				15		

Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Ser	Tyr
					20			25			30				

Tyr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met
					35			40				45			

Gly	Trp	Ile	Asn	Pro	Asn	Ser	Gly	Gly	Thr	Asn	Tyr	Ala	Gln	Lys	Phe
					50			55			60				

Gln	Gly	Arg	Val	Thr	Met	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Ala	Tyr
					65			70		75				80	

Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
					85			90			95				

Ala	Arg	Gly	Tyr	Trp	Tyr	Ala	Tyr	Phe	Thr	Tyr	Ile	Asn	Tyr	Gly	Tyr
					100			105			110				

Phe	Asp	Asn	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser		
					115			120			125				

<210> 102
<211> 124
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain
<400> 102

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr
20 25 30

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gly Gly Trp Val Ser His Gly Tyr Tyr Tyr Leu Phe Asp
100 105 110

Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 103
<211> 127
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain
<400> 103

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr
 100 105 110

Tyr Phe Asp Ile Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120 125

<210> 104

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 104

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His
 100 105 110

Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120 125

<210> 105

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 105

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr
 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe
 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu
 100 105 110

Phe Asp His Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120 125

<210> 106
<211> 120
<212> PRT
<213> Artificial Sequence

<220>
<223> polypeptide sequence of a VH domain

<400> 106

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
 20 25 30

Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu
 35 40 45

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala
 50 55 60

Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn
 65 70 75 80

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
 85 90 95

Tyr Tyr Cys Ala Arg Ser Tyr Tyr Pro Asp Phe Asp Tyr Trp Gly Gln
 100 105 110

Gly Thr Leu Val Thr Val Ser Ser
 115 120