# **Spotify Recommender**



## Background

Spotify Sequential Skip Prediction Challenge<sup>^</sup> was a challenge on Al Crowd.

The dataset has a set of listening sessions, and features regarding the tracks.

Traditional statistical methods does not perform quite well with extremely sparse datasets.

Spotify Sequential Skip Prediction Challengel Challenges

## Methodology

Sampled sessions for a few days from the large dataset, ~1TB.

Build and evaluate performance using a set of collaborative and content filters using autoencoders (regular & variational).

Collaborative filters simply uses session\_id, track\_id; and content filters use the features regarding the music tracks too.

### Preprocessing

Interaction matrix of sessions and tracks; heavily sparse even after thresholding: 99.94%! (this is extremely challenging for conventional matrix factorization/nearest neighbor techniques)

Music features >



### 1. Auto Encoder

#### Collaborative filter





### 2. Variational Auto Encoder

#### Collaborative Filter





### 3. Hybrid Auto Encoder

### including Content features





#### **Evaluation**

The Variational Encoder performed the best in terms of Mean Average Precision, Coverage and Personalization on a random test set, and all three autoencoders performed much better than a popular track baseline.

|            | Metric @ k = 10 |          |                 |
|------------|-----------------|----------|-----------------|
| Model      | MAP             | Coverage | Personalization |
| Popular    | 3.25%           | 0.03%    | 0.00%           |
| Regular AE | 31.47%          | 2.83%    | 96.26%          |
| Hybrid AE  | 29.67%          | 2.62%    | 95.88%          |
| VAE        | 35.61%          | 4.30%    | 97.13%          |



# **Encoder Embeddings**



# Questions