Advanced Machine Learning

Bogdan Alexe,

bogdan.alexe@fmi.unibuc.ro

University of Bucharest, 2nd semester, 2020-2021

Recap: The fundamental theorem of statistical learning

Theorem (The Fundamental Theorem of Statistical Learning).

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0–1 loss. Then, the following are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- 3. \mathcal{H} is agnostic PAC learnable.
- 4. *H* is PAC learnable.
- 5. Any ERM rule is a successful PAC learner for \mathcal{H} .
- 6. \mathcal{H} has a finite VC-dimension.

A finite VC- dimension guarantees learnability. Hence, the VC-dimension characterizes PAC learnability.

The Growth function

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted by τ_H , where $\tau_{\mathcal{H}} \colon N \to N$, is defined as:

$$\tau_H(m) = \max_{C \subseteq X: |C| = m} |H_C|$$

In other words, $\tau_H(m)$ is the maximum number of different functions from a set C of size m to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Observation: if $VCdim(\mathcal{H}) = d$ then for any $m \le d$ we have $\tau_{\mathcal{H}}(m) = 2^m$. In such cases, \mathcal{H} induces all possible functions from C to $\{0,1\}$.

What happens when m becomes larger than the VC-dimension? Answer given by the Sauer's lemma: the growth function $\tau_{\mathcal{H}}$ increases polynomially rather than exponentially with m.

The Sauer's lemma

Lemma (Sauer – Shelah – Perles)

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) \leq d < \infty$. Then, for all m, we have that:

 $\tau_H(m) \leq \sum_{i=0}^d C_m^i$

In particular, if m > d + 1 then $\tau_{\mathcal{H}}(m) \le (em/d)^d = O(m^d)$

Proof for $6 \rightarrow 1$

We want to prove that finite VC-dimension \rightarrow uniform convergence property

Two steps:

- 1. (Sauer's lemma) If $VCdim(\mathcal{H}) \leq d < \infty$, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq X$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$. That is, the size of \mathcal{H}_C grows polynomially rather than exponentially with |C|.
- 2. we have shown in lecture 4 that finite hypothesis classes enjoy the uniform convergence property. We generalize this result and show that uniform convergence holds whenever the hypothesis class has a "small effective size." By "small effective size" we mean classes for which $|\mathcal{H}_C|$ grows polynomially with |C|.

The fundamental theorem of statistical learning – quantitative version

Theorem

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0–1 loss. Assume that $VCdim(\mathcal{H}) = d < \infty$. Then, there are absolute constants C_1 , C_2 such that:

1. \mathcal{H} has the uniform convergence property with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

3. \mathcal{H} is PAC learnable with sample complexity:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

The VC dimension determines (along with ε , δ) the samples complexities of learning a class. It gives us a lower and an upper bound.

Computational complexity of learning

Computational resources of learning

For learning we need 2 type of resources:

- 1. Information = training data
 - so far we analyzed how much training data (sample size) we need in order to learn
 - sample complexity

2. Computation = runtime

- for how much time an algorithm (that implements learning) will run, once we have sufficiently many training examples
- computational complexity
- crucial when we need fast ML applications (driver surveillance, stock exchange trading, etc)
- runtime = number of elementary instructions executed arithmetic operations over real numbers in an asymptotic sense (with respect to input size) of the algorithm, e.g. O(n) where n is the size of the input size

Input size parameter of learning

What should play the role of the input size parameter in learning?

- size of the training set that the algorithm receives?
 - for a very large number of examples, much larger than the sample complexity of learning, the algorithm can ignore the extra samples
 - a larger training set does not make the problem more difficult
- size of the hypothesis class?
 - might be infinite: $|\mathcal{H}_{thresholds}| = \infty$
- accuracy ε , confidence δ and another parameter n related to the size/complexity of X, \mathcal{H}
 - how much computation we need in order to get accuracy ϵ with confidence δ
 - want to have *efficient learning* (give a formal definition later): polynomial in $1/\epsilon$, $1/\delta$ and n (some parameter related to the size/complexity of domain/hypothesis class: more complex hypothesis needs more computation time)

Input size parameter of learning

What should play the role of the input size parameter in learning?

- accuracy ε , confidence δ and another parameter n related to the size/complexity of X, \mathcal{H}
 - how much computation we need in order to get accuracy ε with confidence δ
 - want to have *efficient learning* (give a formal definition later): polynomial in $1/\epsilon$, $1/\delta$ and n (some parameter related to the size/complexity of domain/hypothesis class: more complex hypothesis needs more computation time)
- parameter *n* can be the embedding dimension
 - if we decide to use *n* features to describe objects, how will that increase runtime?
- we study the runtime in an asymptotic sense by defining a sequence of pairs $(X_n, \mathcal{H}_n)_{n=1,2,...}$ and studying asymptotic complexity of learning X_n , \mathcal{H}_n as n grows to ∞

Prevent "cheating"

The output of the learning algorithm L is a hypothesis h from \mathcal{H} .

- a learning algorithm L can "cheat" by transferring the computational burden to the output hypothesis
 - define the output hypothesis to be the function that stores the training set in memory and computes the ERM hypothesis on the training set and applies it to a test example x
- the runtime of a learning algorithm A defined as the maximum of:
 - the time it takes A to output some h
 - the time it takes h to output a label on any given x from X

Example 1: Conjunctions of Boolean literals

- $\mathcal{H}_{\text{conj}}^{d}$ = class of conjunctions of at most d Boolean literals $x_1, ..., x_d$
 - a Boolean literal is either x_i or its negation x_i (or 1 = missing literal)
 - can interpret x_i as feature i
 - example: $h = x_1 \wedge x_2 \wedge x_4$ where x_2 denotes the negation of the Boolean literal x_2
 - $\chi = \{0,1\}^d$
- consider the realizable case
 - there is a conjunction h^* in \mathcal{H}_{conj}^d that labels the examples
- $|\mathcal{H}_{\text{conj}}^{d}| = 3^d + 1 < \infty$ so it has finite VC dimension (less than $\log_2(3^d + 1)$), so it's PAC learnable. In seminar class 3 we shown that VCdim($\mathcal{H}_{\text{conj}}^{d}$) = d so the sample complexity $m_{\mathcal{H}}(\varepsilon, \delta)$ is bounded by:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

• So, $m_{\mathcal{H}}(\varepsilon, \delta)$ is polynomial in $1/\varepsilon$, $1/\delta$, d (measures the complexity of the hypothesis class $\mathcal{H}_{\text{coni}}^{\text{d}}$)

Example 1: Conjunctions of Boolean literals

- $\mathcal{H}_{\text{conj}}^{d}$ = class of conjunctions of at most d Boolean literals $x_1, ..., x_d$
- a simple algorithm for finding an ERM hypothesis is based on positive examples and consists of the following:
 - for each positive example $(b_1, ...b_d)$,
 - if $b_i = 1$ then $\overline{x_i}$ is ruled out as a possible literal in the concept class
 - if $b_i = 0$ then x_i is ruled out.
 - the conjunction of all the literals not ruled out is thus a hypothesis consistent with the target ___ __ __ ___

$$\longrightarrow \overline{x}_1 \wedge x_2 \wedge x_5 \wedge x_6$$

Example 1: Conjunctions of Boolean literals

- $\mathcal{H}_{\text{conj}}^{d}$ = class of conjunctions of at most d Boolean literals $x_1, ..., x_d$
- a simple algorithm for finding an ERM hypothesis is based on positive examples and consists of the following:
 - for each positive example $(b_1, ...b_n)$,
 - if $b_i = 1$ then $\overline{x_i}$ is ruled out as a possible literal in the concept class
 - if $b_i = 0$ then x_i is ruled out.
 - the conjunction of all the literals not ruled out is thus a hypothesis consistent with the target
- runtime of the algorithm is $O(m_{\mathcal{H}}(\varepsilon, \delta)^* d)$, so is polynomial in $1/\varepsilon$, $1/\delta$, d
- in the agnostic (unrealizable) case: unless P = NP, there is no algorithm whose running time is polynomial in $m_{\mathcal{H}}(\varepsilon, \delta)$ and d that is guaranteed to find an ERM hypothesis for the class of Boolean conjunctions.

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}

$$H_{rec}^{d} = \{h_{a_{1},b_{1},a_{2},b_{2},\dots,a_{d},b_{d}}: R^{d} \rightarrow \{0,1\} \mid a_{1} \leq b_{1},a_{2} \leq b_{2},\dots,a_{d} \leq b_{d}, a_{i} \in R, b_{i} \in R\}$$

$$h_{a_{1},b_{1},a_{2},b_{2},\dots,a_{d},b_{d}}(x_{1},x_{2},\dots,x_{d}) = \begin{cases} 1, & \text{if } a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2},\dots,a_{d} \leq x_{d} \leq b_{d} \\ 0, & \text{otherwise} \end{cases}$$

- consider the realizable case:
 - there exists a rectangle h* in \mathcal{H}_{rec}^{d} with real risk = 0

We have shown in the seminar class that:

- the algorithm that returns the rectangle enclosing all positive examples is ERM
- \mathcal{H}_{rec}^{d} is PAC learnable with sample size

$$m_{H^d_{rec}}(\varepsilon, \delta) \le \left[\frac{2d \log(\frac{2d}{\delta})}{\varepsilon} \right]$$

the runtime is $O(m_H d)$ as for each dimension, the algorithm has to find the minimal and the maximal values among the positive instances in the training sequence. So it is polynomial in $1/\epsilon$, $1/\delta$, d.

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}

$$H_{rec}^{d} = \{h_{a_{1},b_{1},a_{2},b_{2},\dots,a_{d},b_{d}}: R^{d} \rightarrow \{0,1\} \mid a_{1} \leq b_{1},a_{2} \leq b_{2},\dots,a_{d} \leq b_{d},a_{i} \in R, b_{i} \in R\}$$

$$h_{a_{1},b_{1},a_{2},b_{2},\dots,a_{d},b_{d}}(x_{1},x_{2},\dots,x_{d}) = \begin{cases} 1, & \text{if } a_{1} \leq x_{1} \leq b_{1},a_{2} \leq x_{2} \leq b_{2},\dots,a_{d} \leq x_{d} \leq b_{d} \\ 0, & \text{otherwise} \end{cases}$$

- consider the agnostic case:
 - distribution \mathcal{D} over $\mathcal{Z} = \mathbf{R}^{d} \times \{0,1\}$ (a sample could get both labels)
 - if there exist a labeling function f this might not be in $\mathcal{H}_{\rm rec}{}^{\rm d}$
- VCdim(\mathcal{H}_{rec}^{d}) = 2d (see seminar class), so we have that:

$$C_1 \frac{2d + \log(\frac{1}{\delta})}{\varepsilon^2} \le m_{H^d_{rec}}(\varepsilon, \delta) \le C_2 \frac{2d + \log(\frac{1}{\delta})}{\varepsilon^2}$$

- $m_{H_{rec}^d}(\varepsilon, \delta)$ is polynomial in $1/\varepsilon$, $1/\delta$, d (measures the complexity of the \mathcal{H}_{rec}^{d})

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbb{R}^{d} $2d + \log(\frac{1}{\delta})$ consider that we have a sample S of size: $m_{H_{rec}^{d}}(\varepsilon, \delta) \approx C \frac{2d + \log(\frac{1}{\delta})}{\varepsilon^{2}}$
- what is the runtime of the ERM algorithm?
 - how long it will take to find the best rectangle in R^d?
 - go over all axis aligned rectangles in R^d and choose the best one (based on minimizing the error on the training data)

$$d = 2$$

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d} $2d + \log(\frac{1}{\delta})$ consider that we have a sample S of size: $m_{H_{rec}^{d}}(\varepsilon, \delta) \approx C \frac{2d + \log(\frac{1}{\delta})}{\varepsilon^{2}}$
- what is the runtime of the ERM algorithm?
 - how long it will take to find the best rectangle in R^d?
 - go over all axis aligned rectangles in R^d and choose the best one (based on minimizing the error on the training data)

$$d = 2$$

error:
$$(1 + 4)/(6 + 9) = 5/15$$

error:
$$(3 + 0)/(6 + 9) = 3/15$$

error:
$$(1 + 1)/(6 + 9) = 2/15$$

- consider that we have a sample S of size: $m_{H_{rec}^d}(\varepsilon, \delta) \approx C \frac{2d + \log(\frac{1}{\delta})}{c^2}$ - \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}
- what is the runtime of the ERM algorithm?
 - how long it will take to find the best rectangle in R^d?
 - go over all axis aligned rectangles in R^d and choose the best one (based on minimizing the error on the training data)

$$d = 2$$

error:
$$(1 + 4)/(6 + 9) = 5/15$$

error:
$$(3 + 0)/(6 + 9) = 3/15$$

error:
$$(1 + 1)/(6 + 9) = 2/15$$

the number of all possible rectangles can be reduced to all possible rectangles that have points of S on every boundary edge (very efficient algorithm)

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d} $2d + \log(\frac{1}{\delta})$ consider that we have a sample S of size: $m_{H_{rec}^{d}}(\varepsilon, \delta) \approx C \frac{2d + \log(\frac{1}{\delta})}{\varepsilon^{2}}$
- what is the runtime of the ERM algorithm?
 - how long it will take to find the best rectangle in R^d?
 - Step 1: generate all the rectangles based on the sample points in R^d
 - Step 2: for each such rectangle compute the training error
 - Step 3: choose the rectangle with the smallest training error

- how many possible rectangles can we construct based on the points in the sample S?

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}
- how many possible rectangles can we construct based on the points in the sample S?

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}
- how many possible rectangles can we construct based on the points in the sample S?

Every such rectangle is determined by at most 2d points from S

So there are at most $|S|^{2d}$ such rectangles.

For each rectangle we need to iterate over all examples to compute the training error.

So, the runtime is:
$$O\left[C\frac{2d + \log(\frac{1}{\delta})}{\varepsilon^2}\right]^{2d+1}$$

- \mathcal{H}_{rec}^{d} = the class of axis aligned rectangles in \mathbf{R}^{d}

- the runtime of the ERM_H is:
$$O\left[C\frac{2d + \log(\frac{1}{\delta})}{\varepsilon^2}\right]^{2d+1}$$

- for every fixed dimension d, ERM_H can be implemented in time which is polynomial in $1/\epsilon$, $1/\delta$, d (measures the complexity of the \mathcal{H}_{rec}^{d}) therefore we have efficient learning (see the formal definition later)
- however, as a function of d the runtime of the algorithm implementing the ERM_H presented is exponential in d. It can be proved that there is no better algorithm (unless P = NP) than the one proposed.

Formal definition of efficient learning

Definition 1

Given a function $f:(0,1)^2 \to \mathbb{N}$, a learning task $(\mathcal{Z}, \mathcal{H}, \mathcal{L})$, and a learning algorithm A, we say that A solves the learning task in time O(f) if there exists some constant number c, such that for every probability distribution \mathcal{D} over \mathcal{Z} , and input ε , $\delta \in (0,1)$, when A has access to samples generated i.i.d by \mathcal{D} , we have that:

- A terminates after performing at most $c * f(\varepsilon, \delta)$ operations;
- the output of A, denoted h_A , can be applied to predict the label of a new example while performing at most $c * f(\varepsilon, \delta)$ operations;
- the output of A is probably approximately correct; namely, with probability of at least 1δ (over the random samples A receives):

$$L_{\mathcal{D}}(h_{A}) \leq \min_{h} L_{\mathcal{D}}(h) + \varepsilon$$

Formal definition of efficient learning

Definition (for graded hypothesis spaces)

Consider a sequence of learning problems, $(\mathcal{Z}_n, \mathcal{H}_n, \mathcal{l}_n)_{n=1,2,...}$ where problem n is defined by a domain \mathcal{Z}_n , a hypothesis class \mathcal{H}_n , and a loss function \mathcal{l}_n . Let A be a learning algorithm designed for solving learning problems of this form. Given a function $g: \mathbb{N} \times (0,1)^2 \to \mathbb{N}$, we say that the runtime of A with respect to the preceding sequence is O(g), if for all n, A solves the problem $(\mathcal{Z}_n, \mathcal{H}_n, \mathcal{l}_n)$ in time $O(f_n)$, where $f_n: (0,1)^2 \to \mathbb{N}$ is defined by $f_n(\varepsilon, \delta) = g(n, \varepsilon, \delta)$.

We say that A is an *efficient* PAC algorithm with respect to a sequence $(\mathcal{Z}_n, \mathcal{H}_n, l_n)$ if its runtime is $O(p(n, 1/\epsilon, 1/\delta))$ for some polynomial p.

Formal definition of efficient PAC learning (Valiant 1984)

In 1984, Leslie Valiant defined efficient PAC learning: PAC learnability + require the number of examples and the runtime of the algorithm A (training + testing) to be polynomial in $1/\varepsilon$, $1/\delta$, n.

Example:

- $U_n = \{h: B^n \to \{0,1\}\}\$ the concept class formed by all subsets of B^n
- $|\mathcal{U}_n| = 2^{2^n}$ finite, so is PAC learnable with $m_{\mathcal{H}}(\varepsilon, \delta)$ in the order of m:

$$m \ge \left[\frac{1}{\varepsilon} \left(2^n \log(2) + \log(\frac{1}{\delta}) \right) \right]$$

- sample complexity exponential in n, number of variables
- it is not efficient PAC-learnable in any practical sense (need polynomial sample complexity)