DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat (c) 2004 EPO. All rts. reserv.

16746303

Basic Patent (No,Kind,Date): JP 2001051251 A2 20010223 <No. of Patents: 001> ELECTROOPTICAL DEVICE AND ELECTRONIC APPLIANCE USING THE SAME

(English)

Patent Assignee: SEIKO EPSON CORP

Author (Inventor): OZAWA YUTAKA; SUZUKI NOBUTAKA; IINO SEIICHI

IPC: *G02F-001/133; G02F-001/1333; G02F-001/1335; G02F-001/1336;

G09F-009/40; G09G-003/20; G09G-003/36

Derwent WPI Acc No: *G 01-261767; G 01-261767

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2001051251 A2 20010223 JP 99228747 A 19990812 (BASIC)

Priority Data (No,Kind,Date): JP 99228747 A 19990812 DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

06823757 **Image available**

ELECTROOPTICAL DEVICE AND ELECTRONIC APPLIANCE USING THE SAME

PUB. NO.: **2001-051251** [JP 2001051251 A] PUBLISHED: February 23, 2001 (20010223)

INVENTOR(s): OZAWA YUTAKA

SUZUKI NOBUTAKA

IINO SEIICHI

APPLICANT(s): SEIKO EPSON CORP

APPL. NO.: 11-228747 [JP 99228747] FILED: August 12, 1999 (19990812)

INTL CLASS: G02F-001/133; G02F-001/1333; G02F-001/1335; G02F-001/13363;

G09F-009/40; G09G-003/20; G09G-003/36

ABSTRACT

PROBLEM TO BE SOLVED: To attain image display over an entire area on one side of a liquid crystal panel, while in a part on the other side.

side of a liquid crystal panel, while in a part on the other side.

SOLUTION: A double display type liquid crystal display device 18 has a liquid crystal panel 22, with a liquid crystal layer 28 held between a pair of substrates 24, 32, a pair of reflective polarizing plates 36, 38 which are disposed on both sides of the liquid crystal panel, reflect polarized light having axis of polarization in a 1st direction, transmit the polarized light having the axis of polarization in a 2nd direction which is different from the 1st direction and form 1st and 2nd display faces, capable of displaying images on both sides of the liquid crystal panel, a service condition detecting means 220 which detects a 1st usage condition for displaying the image on the 1st display face and a 2nd usage condition for displaying the image on the 2nd display face and a drive circuit 210, which makes a region of the 1st display face the display region and makes the other region the non-display region, when the 1st usage condition is detected and makes the whole area of the 2nd display face into a display region, when the 2nd service condition is detected.

(19)日本国特許庁(JP)

(n)公開特許公報 (a)

(11)特許出願公開番号 特開2001 — 51251

(P2001-51251A) (43)公開日 平成13年2月23日(2001.2.23)

				-					
(51) Int. Cl	. 7	識別記号		FΙ			j	テーマコート・	(参考)
G02F	1/133	505		G02F	1/133	505	2H08	9	
	1/1333				1/1333		2Н09	1	
	1/1335	510			1/1335	510	2Н09	3	
	1/13363				1/13363		5C00	6	
G09F	9/40	303		G09F	9/40	303	5C080		
			審査請求	未請求	請求項の数10	OL	(全11頁)	最終頁に	こ続く

(21)出願番号 特願平11-228747

(22)出願日 平成11年8月12日(1999.8.12)

(71)出願人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 小澤 裕

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(72)発明者 鈴木 信孝

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(74)代理人 100093388

弁理士 鈴木 喜三郎 (外2名)

最終頁に続く

(54) 【発明の名称】電気光学装置およびそれを用いた電子機器

(57)【要約】 (修正有)

【課題】 1枚の液晶パネルの一方の側では全面に他方の側では一部の面に画像を表示可能な液晶表示装置及びそれを用いた電子機器を提供する。

【解決手段】 両面表示型の液晶表示装置18は、一対の基板24、32の間に液晶層28を挟んだ液晶パネル22と、液晶パネルの両側に配置され、第1の方向の偏光軸を有する偏光を反射し且つ第1の方向と異なる第2の方向の偏光軸を有する偏光を透過させて、液晶パネルの両側に画像を表示可能な第1及び第2の表示面を形成する一対の反射偏光板36、38と、第1の表示面に画像を表示する第1の使用状態と第2の表示面に画像を表示する第2の使用状態とを検出する使用状態検出手段と、第1の使用状態が検出されたときに、第1の表示面の一部の領域を表示領域とし且つ第1の表示面の他の領域を非表示領域にし、第2の使用状態が検出されたときに、第2の表示面の全面を表示領域とする駆動回路を有する。

【特許請求の範囲】

【請求項1】 一対の基板間に電気光学層を有してなる 電気光学装置において、

1

第1の表示面及び該第1の表示面と対向する第2の表示 面の両面側から画像を視認でき、且つ、前記第1の表示 面を視認する第1の使用状態と前記第2の表示面を視認 する第2の使用状態を選択可能であり、

選択された使用状態に応じて、表示面の表示領域と非表 示領域の割合を切り替える駆動手段を有することを特徴 とする電気光学装置。

【請求項2】 請求項1に記載の電気光学装置において、

前記第1の使用状態と前記第2の使用状態のいずれかが 選択されたのかを検出する使用状態検出手段を備えることを特徴とする電気光学装置。

【請求項3】 請求項2に記載の電気光学装置において、

前記駆動手段が、前記使用状態検出手段によって前記第 1の使用状態が検出されたときに、前記第1の表示面の 一部の領域を表示領域とし且つ前記第1の表示面の他の 20 領域を非表示領域として、前記表示領域のみに画像を表 示可能にすることを特徴とする電気光学装置。

【請求項4】 請求項1乃至請求項3のうちいずれかに 記載の電気光学装置において、

複数の走査線が設けられとともに、前記複数の走査線と 交差するように配置された複数の信号線が設けられて、 前記複数の走査線と前記複数の信号線が交差する各々の 位置に前記第1および第2の表示面上の各々の画素を形 成し、

前記駆動手段が、画像表示を制御する表示制御回路と、 この表示制御回路によって制御されて前記複数の走査線 に走査電位を順次供給する走査線ドライバと、前記表示 制御回路によって制御されて前記複数の信号線に接続さ れた各々の画素に対応する信号電位を同時に供給する信 号線ドライバと備えたことを特徴とする電気光学装置。

【請求項5】 請求項1乃至請求項3のうちいずれかに 記載の電気光学装置において、

複数の走査線と、前記複数の走査線と交差するように配置された複数の信号線が設けられて、前記複数の走査線と前記複数の信号線が交差する各々の位置に前記第1お 40 よび第2の表示面上の各々の画素を形成し、

前記駆動手段が、画像表示を制御する表示制御回路と、 この表示制御回路によって制御されて前記複数の走査線 に走査電位を順次供給する走査線ドライバと、前記表示 制御回路によって制御されて前記複数の信号線に接続さ れた画素に対応する信号電位を同時に供給する信号線ド ライバと備えたことを特徴とする電気光学装置。

【請求項6】 請求項4又は請求項5に記載の電気光学装置において、

前記表示制御回路が、前記使用状態検出手段によって前 50 パネルの両面に画像を表示可能な液晶表示装置が提案さ

記第1の使用状態が検出されたときに、前記信号線ドライバが、前記複数の信号線のうちの前記非表示領域に対応する信号線に前記表示面をオフにする信号電位を供給し、前記表示領域に対応する信号線のみに画像データに応じた信号電位を供給することを特徴とする電気光学装置。

【請求項7】 請求項4乃至請求項6のうちいずれかに 記載の電気光学装置において、

前記表示制御回路が、前記使用状態検出手段によって前 10 記第1の使用状態が検出されたときに、前記複数の走査 線のうちの前記表示領域に対応する走査線のみを選択し て他の走査線を選択しないことを特徴とする電気光学装 置。

【請求項8】 請求項1乃至請求項7のうちいずれかに 記載の電気光学装置において、

前記一対の基板間に前記電気光学層として液晶層を挟持 した液晶パネルと、

前記液晶パネルの両側に配置され、第1の方向の偏光軸を有する偏光を反射し且つ第1の方向と異なる第2の方向の偏光軸を有する偏光を透過させる一対の反射偏光板と、を具備することを特徴とする電気光学装置。

【請求項9】 請求項8に記載の電気光学装置において、

前記一対の反射偏光板が、第1の方向の偏光軸を有する 偏光を透過し且つ第2の方向の偏光軸を有する偏光を吸 収する一対の吸収型偏光板の間に配置されることを特徴 とする電気光学装置。

【請求項10】 本体部と、この本体部に開閉可能に取付けられた蓋部と、この蓋部に取付けられて蓋部の両側の第1および第2の表示面に画像を表示可能な電気光学装置と、この電気光学装置に画像情報を入力する入力手段とを備えた電子機器において、前記電気光学装置が、一対の基板間に電気光学層を有してなり、

第1の表示面及び該第1の表示面と対向する第2の表示 面の両面側から画像を視認でき、且つ、前記第1の表示 面を視認する第1の使用状態と前記第2の表示面を視認 する第2の使用状態を選択可能であり、

選択された使用状態に応じて、表示面の表示領域と非表 示領域の割合を切り替える駆動手段を有することを特徴 とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気光学装置およびそれを用いた電子機器に関し、特に両面に画像を表示可能な両面表示型の液晶表示装置およびそれを用いた電子機器に関する。

[0002]

【従来の技術】従来、携帯電話や携帯用コンピュータなどの小型・軽量の携帯情報端末の表示装置として、液晶パネルの両面に両角を表示可能な液晶表示装置が場案さ

(3)

れている。このような両面表示型の液晶表示装置の一つ として、バックライトを挟んで2枚の透過型の液晶パネ ルを背中合わせに配置することによって両面に画像を表 示可能な液晶表示装置がある。また、他の両面表示型の 液晶表示装置として、1枚の反射型の液晶パネルの一方 の側の一部に反射板を配置するとともに残りの部分の他 方の側に反射板を配置することによって、液晶パネルの 他方の側で一部を表示可能にするとともに一方の側で残 りの部分を表示可能にする両面表示型の液晶表示装置が ある (特開平10-198291号参照)。

[0003]

【発明が解決しようとする課題】しかし、前者の液晶表 示装置では、2枚の液晶パネルを使用する必要があり、 部品点数および重量が増加し、厚さも厚くなるという問 題がある。また、後者の液晶表示装置では、液晶パネル のいずれの側の表示面も液晶パネルの一部の面だけであ り、少なくとも一方の表示面の全面にわたって画像を表 示することができないため、多くの情報を表示する必要 がある場合には十分でないという問題がある。

【0004】これらの問題を解消するため、本発明者ら は、1枚の液晶パネルの両面の全面にわたって画像を表 示可能な両面表示型の液晶表示装置を提案している。し かし、このような両面表示型の液晶表示装置を携帯電話 などの携帯情報端末の蓋に組み込んで使用する場合にお いて、蓋が閉じている間に蓋の外側の表示面に常に情報 を表示するような場合や、蓋を閉じた状態では少ない情 報を表示すればよいが開いた状態では多くの情報を表示 する必要がある場合には、蓋を閉じている間の消費電力 が大きくなってしまうという問題がある。

【0005】そこで、本発明は、上記の問題点を解消 し、1枚の液晶パネルの一方の側では全面にわたって画 像を表示可能であり且つ他方の側では一部の面に画像を 表示可能な液晶表示装置およびそれを用いた電子機器を 提供することを目的とする。

[0006]

【課題を解決するための手段】上記の目的を達成するた め、本発明による電気光学装置は、一対の基板間に電気 光学層を有してなる電気光学装置において、第1の表示 面及び該第1の表示面と対向する第2の表示面の両面側 から画像を視認でき、且つ、前記第1の表示面を視認す る第1の使用状態と前記第2の表示面を視認する第2の 使用状態を選択可能であり、選択された使用状態に応じ て、表示面の表示領域と非表示領域の割合を切り替える 駆動手段を有することを特徴とする。

【0007】この電気光学装置によれば、1枚の液晶パ ネルを使用して両面に画像を表示可能な電気光学装置と して使用することができ、2枚の液晶パネルを使用して 両面に画像を表示する液晶表示装置と比べて、部品点数 および重量を削減し、厚さを薄くすることができる。ま た、使用状態に応じて、表示領域と非表示領域の割合を 50 切り替えて必要な部分だけを表示するため消費電力を低 減することができる。

【0008】本発明の電気光学装置においては、第1の 使用状態と第2の使用状態のいずれかが選択されたのか を検出する使用状態検出手段を備えていることが好まし い。この使用状態検出手段が検出する使用状態に応じ、 表示面の表示領域と非表示領域の割合を駆動手段によっ て切り替えることができる。

【0009】また、上記の電気光学装置において、複数 10 の走査線が設けられとともに、前記複数の走査線と交差 するように配置された複数の信号線が設けられて、複数 の走査線と複数の信号線が交差する各々の位置に前記第 1および第2の表示面上の各々の画素を形成し、駆動手 段が、画像表示を制御する表示制御回路と、この表示制 御回路によって制御されて複数の走査線に走査電位を順 次供給する走査線ドライバと、表示制御回路によって制 御されて前記複数の信号線に接続された各々の画素に対 応する信号電位を同時に供給する信号線ドライバと備え るように構成するか、あるいは、上記電気光学装置が、 複数の走査線と、複数の走査線と交差するように配置さ 20 れた複数の信号線が設けられて、複数の走査線と複数の 信号線が交差する各々の位置に第1および第2の表示面 上の各々の画素を形成し、駆動手段が、画像表示を制御 する表示制御回路と、この表示制御回路によって制御さ れて複数の走査線に走査電位を順次供給する走査線ドラ イバと、表示制御回路によって制御されて複数の信号線 に接続された画素に対応する信号電位を同時に供給する 信号線ドライバと備えるように構成できる。

【0010】上記の電気光学装置は、表示制御回路が、 使用状態検出手段によって第1の使用状態が検出された ときに、信号線ドライバが、複数の信号線のうちの非表 示領域に対応する信号線に表示面をオフにする信号電位 を供給し、表示領域に対応する信号線のみに画像データ に応じた信号電位を供給するか、あるいは駆動回路が、 使用状態検出手段によって第1の使用状態が検出された ときに、複数の走査線のうちの表示領域に対応する走査 線のみを選択して他の走査線を選択しないようにする か、またはその双方をするように構成できる。

【0011】このように構成することにより、第1の表 示面の一部である表示領域を第1の表示面上の所望の領 域に設定することができ、設定された表示領域のみに画 像を表示可能にして、第1の表示面を使用するときの消 費電力を低減することができる。

【0012】上述してきた本発明の電気光学装置にあっ ては、前記一対の基板間に前記電気光学層として液晶層 を挟持した液晶パネルと、前記液晶パネルの両側に配置 され、第1の方向の偏光軸を有する偏光を反射し且つ第 1の方向と異なる第2の方向の偏光軸を有する偏光を透 過させる一対の反射偏光板と、を具備すると好ましい。 このように構成すれば、反射偏光板によって、第1の表

ĥ

示面及び第2の表示面を反射偏光板によって形成できる ので、液晶パネルの両面のほぼ全面にわたって画像を表 示することができる電気光学装置が実現する。尚、その 場合にあっては、前記一対の反射偏光板が、第1の方向 の偏光軸を有する偏光を透過し且つ第2の方向の偏光軸 を有する偏光を吸収する一対の吸収型偏光板の間に配置 されると好ましい。一対の吸収型偏光板を反射偏光板間 に配置することにより、反射偏光板の透過軸と直交する 方向の偏光を反射偏光板に入射する前に吸収することが でき、その偏光が反射偏光板に直接入射して反射光とな 10 るのを防止することができる。このように不必要な反射 を防止することによって、表示コントラストを改善し、 見やすい表示を実現することができる。

【0013】また、本発明の電子機器は、本体部と、こ の本体部に開閉可能に取付けられた蓋部と、この蓋部に 取付けられて蓋部の両側の第1および第2の表示面に画 像を表示可能な電気光学装置と、この電気光学装置に画 像情報を入力する入力手段とを備えた電子機器におい て、前記電気光学装置が、一対の基板間に電気光学層を 有してなり、第1の表示面及び該第1の表示面と対向す る第2の表示面の両面側から画像を視認でき、且つ、前 記第1の表示面を視認する第1の使用状態と前記第2の 表示面を視認する第2の使用状態を選択可能であり、選 択された使用状態に応じて、表示面の表示領域と非表示 領域の割合を切り替える駆動手段を有することを特徴と する。

【0014】本発明の電子機器によれば、電子機器の使 用状態に応じて表示面の必要な領域のみに画像を表示で きるので消費電力を低減できる。

[0015]

【発明の実施の形態】以下、添付図面を参照して、本発 明による両面表示型の電気光学装置の実施の形態を説明

【0016】図1は、本発明による両面表示型の電気光 学装置を備えた電子機器としての携帯情報端末の実施の 形態を示す斜視図であり、(a)は携帯情報端末を閉じ た状態を示し、(b)は携帯情報端末を開いた状態を示 している。

【0017】図1に示すように、本実施形態の携帯情報 端末10は、本体部12と、この本体部12に開閉自在 40 々な電子機器を適用することができる。 に取付けられた蓋部14とを備えている。本体部12に は、情報を入力するためのキーボードなどの入力部16 が設けられ、蓋部14には、画像表示部として、電気光 学装置18が組み込まれている。本実施の形態において は、電気光学装置として液晶表示装置18を採用してい る。蓋部14の外面の一部には、比較的小さい略矩形の 窓部14 aが形成されて、液晶表示装置18の一方の面 の一部を露出している。一方、蓋部14の内面には、そ の大部分を占有するような比較的大きい略矩形の窓部1 4 bが形成されて、液晶表示装置18の他方の面を露出 50

している。液晶表示装置18は、図1 (a) に示す蓋部 14を閉じた状態および図1(b)に示す蓋部14を開 いた状態のいずれの状態でも画像表示部としての機能を 果たす両面表示型の液晶表示装置、すなわち蓋部14の 両面に画像表示面を有する両面表示型の液晶表示装置か らなる。すなわち、図1(a)に示す蓋部14を閉じた 状態では、液晶表示装置18の一方の面が外側表示面と しての機能を果たし、図1(b)に示す蓋部14を開い た状態では、液晶表示装置18の他方の面が内側表示面 としての機能を果たす。

【0018】また、本体部12には、蓋部14の開閉状 態を検出する後述する使用状態検出手段220が設けら れている。図1 (b) に示すように、使用状態検出手段 220は、本体部12の上面の角部付近に設けられて上 方に突出可能なピン20と、このピン20を上方に付勢 する図示しないバネを備えている。すなわち、図1

(b) に示す蓋部14が開いた状態では、ピン20が上 方に突出し、図1(a)に示す蓋部14が閉じた状態で は、ピン20が蓋部14によってバネの付勢力に抗して 本体部12内に収容されるように構成されている。この ようにして、ピン20の位置によって蓋部14の開閉状 態すなわち携帯情報端末10の使用状態を検出できるよ うに構成されている。後述するように、使用状態検出手 段220によって検出された携帯情報端末10の使用状 態に応じて、液晶表示装置18のいずれか一方の面が画 像表示面としての機能を果たすようになっている。すな わち、蓋部14が開いた状態が検出されたときには、図 1 (b) に示す液晶表示装置18の外側表示面が使用可 能になり、蓋部14が閉じた状態が検出されたときに 30 は、図1 (a) に示す液晶表示装置18の内側表示面が 使用可能になる。

【0019】なお、携帯情報端末10は、上述した構成 の他に、図示しない表示情報出力源、表示情報処理回 路、クロック発生回路などの様々な回路や、それらの回 路に電源を供給する電源回路などを含んでいる。また、 本発明による両面表示型の液晶表示装置を備えた電子機 器としては、携帯電話機、腕時計、携帯用コンピュー タ、ノート型パソコン、電子手帳、ページャ、電卓、P OS端末、ICカード、ミニディスクプレーヤなどの様

【0020】図2は、本発明による両面表示型の液晶表 示装置を備えた電子機器としての携帯情報端末の他の実 施の形態を示す斜視図であり、(a)は携帯情報端末を 閉じた状態を示し、(b)は携帯情報端末を開いた状態 を示している。

【0021】図2に示すように、本実施形態の携帯情報 端末110では、蓋部114の外面および内面に形成さ れた窓部114a、114bがいずれも蓋部114の外 面および内面の大部分を占有するような比較的大きい略 矩形の窓部である点で、上述した実施形態の携帯情報端

末10と異なっている。この実施形態では、蓋部114 の外面の窓部114aによって露出した液晶表示装置1 8の外側の面のうち、図2 (a) で斜線で示す部分のみ を外側表示面として使用できるように構成されている。 この場合、液晶表示装置18の外側表示面が、この斜線 で示す部分のみになるように構成してもよいし、選択的 に斜線で示す部分または窓部114aによって露出され たすべての部分になるように構成してもよい。他の構成 は上述した図1の実施形態と同様であるので、図2にお いて図1の参照符号の百の位に1を付して、その説明を 10 省略する。

【0022】次に、上述した図1および図2に示す携帯 情報端末10、110に適用可能な本発明による両面表 示型の液晶表示装置の実施の形態について説明する。図 3は、本実施形態の液晶表示装置を示す断面図である。 図3に示すように、液晶表示装置18は、図示しないセ ルギャップ制御用のスペーサを介して一対の基板24、 32が互いに対向するように配置された液晶パネル22 を備えている。これらの基板24、32には、それぞれ 他方の基板に対向する面に走査線および信号線としての 互いに離間して平行に延びる複数の透明電極26、30 が形成されている。これらの透明電極26、30は、互 いに交差するように配置されて単純マトリックス(パッ シブマトリックス)型の液晶パネル22を形成してい る。一対の基板24、32の対向する面の周縁部にはシ ール材34が塗布されており、このシール材34によっ て基板24、32間に充填されるTN液晶層28を封止 している。なお、TN液晶層28の厚さは、液晶パネル に電界を印加しない状態でTN液晶層28に入射した直 線偏光がTN液晶層28を通過したときにその位相が9 0° ずれるように設定されている。また、説明を容易に するために、図3および後述する同様な他の図面では、 横方向の寸法に比べて縦方向(高さ方向)の寸法を拡大 して示しており、一対の基板24、32の間の間隙は数 μ m乃至数十 μ mである。

【0023】液晶パネル22の一方の側には第1の反射 偏光板36が配置され、他方の側には第2の反射偏光板 38が配置されている。また、第1の反射偏光板36の 外面側すなわち液晶パネル22から遠い側には第1の吸 収型偏光板40が配置され、第2の反射偏光板38の外 面側すなわち液晶パネル22から遠い側には第2の吸収 型偏光板42が配置されている。

【0024】第1および第2の反射偏光板36、38 は、例えば、国際公開(WO95/17692) におい て開示された多層構造フィルムからなる反射偏光子によ り構成することができる。図4に示すように、この多層 構造フィルムは、重合体を延伸形成した異なる2種類の 層、例えば、ポリエチレンナフタレートからなるA層 と、ナフタレン・ジカルボン酸とテレフタル酸との共重 合エステルからなるB層とを交互に2軸方向に積層した 50 て反射されるような偏光を吸収する。したがって、第1

多層構造を有している。A層およびB層の各層は1μm 以下の厚さであり、多層構造フィルム全体の厚さは20 0 μ m程度である。

【0025】多層構造フィルムからなる反射偏光子のA 層のX軸方向の屈折率(n_{Ax})とY軸方向の屈折率 (n_A y) は互いに異なるように設定され、B層のX軸 方向の屈折率 (n_{B x}) とY軸方向の屈折率 (n_{B y}) は互いに略等しくなるように設定されている。また、A 層のY軸方向の屈折率(n,))とB層のY軸方向の屈 折率 (ng y) は互いに略等しくなるように設定されて いる。したがって、これらの屈折率の間には、

 $(n_{A X}) \neq (n_{A Y}), (n_{B X}) = (n_{B Y}) =$ (n_A)の関係がある。このように形成された第1お よび第2の反射偏光板36、38に入射した光のうちY 軸方向の偏光軸を有する直線偏光は、実質的に各層間に 屈折率の差がないので、そのまま透過する。

【0026】また、隣接する一対のA層およびB層のZ 軸方向の膜厚をそれぞれ t A 、 t B とし、入射光の波長 をλとして、 以下の式(1)の関係を満たすように設 定すれば、第1および第2の反射偏光板36、38に入 射した波長入の光のうちX軸方向の偏光軸を有する直線 偏光は、隣接するA層とB層の界面においてX軸方向の 偏光軸を有する直線偏光として反射される。

[0027]

 $t_A \cdot n_{A X} + t_B \cdot n_{B X} = \lambda / 2$ (1)さらに、隣接するそれぞれの対のA層およびB層の膜厚 t_A、t_Bを変化させ、可視光領域の広範囲の波長入に わたって上記の式(1)の関係を満たすようにそれぞれ の対のA層およびB層の膜厚 t A 、 t B を設定すれば、 第1および第2の反射偏光板36、38に入射した白色 光のうちX軸方向の偏光軸を有する直線偏光をその方向 の直線偏光として反射させることができる。

【0028】したがって、第1および第2の反射偏光板 36、38は、全可視光領域において、X軸方向の偏光 軸を有する直線偏光をその方向の直線偏光として反射さ せ、Y軸方向の偏光軸を有する直線偏光をその方向の直 線偏光として透過させる。

【0029】また、第1および第2の吸収型偏光板4 0、42は、透過軸方向に平行な偏光を透過し、透過軸 方向と直交する吸収軸方向の偏光を吸収する偏光板であ り、例えば、ヨウ素や染料などの二色性物質を用いるこ とによって形成される。また、第1の吸収型偏光板40 はその透過軸が第1の反射偏光板36の透過軸と略平行 になるように配置され、第2の吸収型偏光板42はその 透過軸が第2の反射偏光板38の透過軸と略平行になる ように配置されている。そのため、第1および第2の吸 収型偏光板40、42は、それぞれ第1および第2の反 射偏光板36、38を透過するような偏光をそのまま透 過させ、第1および第2の反射偏光板36、38によっ

または第2の反射偏光板36、38の透過軸と直交する 方向の偏光は、第1または第2の反射偏光板36、38 に入射する前に第1または第2の吸収型偏光板40、4 2によって吸収され、その偏光が第1または第2の反射 偏光板36、38に直接入射して反射光となるのを防止 することができる。このように不必要な反射を防止する ことによって、表示コントラストを改善し、見やすい表 示を実現することができる。

9

【0030】さらに、本実施形態では、第1の反射偏光 板36および第1の吸収型偏光板40は、それらの透過 10 軸が第2の反射偏光板38および第2の吸収型偏光板4 2の透過軸と略平行になるように配置されている。

【0031】次に、図5を参照して、上記のように構成 された液晶表示装置18を明るい光の下で反射型液晶表 示装置として用いる場合の動作を説明する。なお、図5 (a) は、液晶パネル22に電界を印加しない場合、す なわち液晶パネル22を通過する直線偏光の偏光軸を9 0°回転(旋光)させる場合を示し、図5(b)は、液 晶パネル22に電界を印加する場合、すなわち液晶パネ ル22通過する直線偏光の偏光軸を回転させない場合を 示している。また、図5において、アスタリスクは白色 光などの偏光軸を有しない外光を示し、左右方向の矢印 は紙面と平行な偏光軸を有する直線偏光を示し、丸の中 に小さい黒丸を描いた記号は紙面に垂直な偏光軸を有す る直線偏光を示している。

【0032】まず、図5(a)の左側に示す場合、すな わち液晶パネル22を通過する直線偏光の偏光軸を90 。回転させる状態の領域に外光60が第1の吸収型偏光 板40の側から入射する場合について説明する。この場 合、入射した外光60は、第1の吸収型偏光板40の吸 30 収軸40Aの方向の偏光成分が第1の吸収型偏光板40 によって吸収され、第1の吸収型偏光板40の透過軸4 0 Tの方向の偏光成分のみが第1の吸収型偏光板40を 透過し、その透過軸40Tの方向の偏光軸を有する直線 偏光60aとして出射する。この直線偏光60aは、第 1の吸収型偏光板40の透過軸40Tと略平行な透過軸 36Tを有する第1の反射偏光板36をそのまま透過し て、さらに液晶パネル22を通過する。液晶パネル22 を通過した直線偏光の偏光軸は90°回転して直線偏光 60 bとなり、第2の反射偏光板38に入射する。第2 の反射偏光板38に入射した直線偏光60bは、その偏 光軸が第2の反射偏光板38の反射軸38Rと略平行で あるため、第2の反射偏光板38によって反射される。 反射された直線偏光60cは、第2の反射偏光板38の 反射軸38尺に略平行な偏光軸を有し、液晶パネル22 に入射する。液晶パネル22に入射した直線偏光60c は、液晶パネル22によってその偏光軸が90°回転し て、第1の反射偏光板36の透過軸36Tと平行な偏光 軸を有する直線偏光60dとなり、第1の反射偏光板3 6をそのまま透過し、さらに第1の反射偏光板36の透 50

過軸36Tと略平行な透過軸40Tを有する第1の吸収 型偏光板40を透過して、第1の吸収偏光板40の側の 表示面に到達する。

【0033】また、図5(a)の右側に示す場合、すな わち液晶パネル22を通過する直線偏光の偏光軸が90 。回転する領域に外光61が第2の吸収型偏光板42の 側から入射する場合も、上記の場合と同様に、第2の吸 収型偏光板42に入射した外光61は、第2の吸収型偏 光板42の透過軸42Tと平行な直線偏光61dとして 第2の吸収型偏光板42の側の表示面に到達する。

【0034】このように、液晶パネル22を通過する直 線偏光の偏光軸を90°回転させる状態の領域に入射し た外光は、その殆どが第1または第2の反射偏光板3 6、38で反射されて入射光と逆の経路で出射するた め、第1または第2の吸収型偏光板40、42のいずれ の側から外光が入射した場合でも、液晶パネル22を通 過する直線偏光の偏光軸を90。回転させる状態の領域 は明るい白色表示となる。

【0035】次に、図5(b)の左側に示す場合、すな わち液晶パネル22を通過する直線偏光の偏光軸を回転 させない状態の領域に外光62が第1の吸収型偏光板4 0の側から入射する場合について説明する。この場合、 入射した外光62は、第1の吸収型偏光板40の吸収軸 40Aの方向の偏光成分が第1の吸収型偏光板40によ って吸収され、第1の吸収型偏光板40の透過軸40T の方向の偏光成分が第1の吸収型偏光板40を透過し て、その透過軸40Tの方向の偏光軸を有する直線偏光 62aとして第1の吸収型偏光板40から出射する。こ の直線偏光60aは、第1の吸収型偏光板40の透過軸 40Tと略平行な透過軸36Tを有する第1の反射偏光 板36をそのまま透過し、偏光軸を回転することなく液 晶パネル22を通過し、第1の吸収型偏光板40の誘過 軸40Tと略平行な透過軸38Tを有する第2の反射偏 光板38を透過し、第2の反射偏光板38の透過軸38 Tと略平行な透過軸42Tを有する第2の吸収型偏光板 42を透過してそのまま進行し、第1の吸収型偏光板4 0の側の表示面には戻らない。

【0036】また、図5(b)の右側に示す場合、すな わち液晶パネル22を通過する直線偏光の偏光軸を回転 させない状態の領域に外光63が第2の吸収型偏光板4 2の側から入射する場合も、上記の場合と同様に、第2 の吸収型偏光板42に入射した外光63は、第1の吸収 型偏光板40の透過軸40Tと平行な偏光63aとして 第1の吸収型偏光板40を透過してそのまま出射され、 表示面である入射側には戻らない。

【0037】このように、液晶パネル22を通過する直 線偏光の偏光軸を回転させない状態の領域に入射した外 光は、入射側とは逆側に透過して入射側には戻らないた め、第1または第2の吸収型偏光板40、42のいずれ の側から外光が入射した場合でも、液晶パネル22を通

11

過する直線偏光の偏光軸を回転させない状態の領域は暗 い表示となる。

【0038】上述したように、本実施形態の液晶表示装置18は、明るい外光の下で反射型液晶表示装置として使用する場合、液晶パネル22を通過する直線偏光の偏光軸を90°回転させる状態の領域は、液晶パネル22のいずれの側を表示面として用いた場合でも明るい白色表示領域となり、液晶パネル22を通過する直線偏光の偏光軸を回転させない状態の領域は、液晶パネルのいずれの側を表示面として用いた場合でも暗い表示領域とない、両面表示を行うことができる。なお、液晶パネル22は、通過する直線偏光の偏光軸を90°回転させる状態と回転させない状態との中間の状態にして中間調表示を行うことができる。

【0039】上述したように、本実施形態の液晶表示装置18は、1枚の液晶パネル22を使用して両面に画像を表示可能な反射型液晶表示装置として使用することができ、2枚の液晶パネルを使用して両面に画像を表示する液晶表示装置と比べて、部品点数および重量を削減し、厚さを薄くすることができる。また、液晶表示装置18では、液晶パネル22の両面の全面にわたって配置される反射偏光板36、38が反射板として作用する反射型液晶表示装置として使用することができるため、液晶パネル22の全面にわたって両面に画像を表示することができる。さらに、第1および第2の反射偏光板36、38は所定の方向の偏光軸を有する偏光を殆ど反射することができるため、明るい反射型液晶表示装置となる。

【0040】上記の実施例は、単純マトリクス型のTN 液晶パネルを持つ液晶表示装置であるが、TN液晶パネ 30 ルを持つ2端子や3端子のアクティブマトリクス型の液 晶表示装置であっても、同様の効果が得られる。

【0041】図6は、図1および図2に示す携帯情報端 末10、110に適用可能な本発明による両面表示型の 液晶表示装置の他の実施の形態を示す断面図である。図 6に示すように、本実施形態の液晶表示装置118で は、図3に示す実施形態の液晶表示装置18の構成に加 えて、光を散乱させ拡散させる機能を有する散乱層44 が液晶パネル22と第2の反射偏光板38と間に配置さ れている。この散乱層44は、第2の反射偏光板38で 40 反射された部分に対応する表示画像が鏡面により反射さ れた光であるような表示画像となるのを防止し、第2の 反射偏光板38で反射された部分に対応する表示画像を ペーパーホワイトに近い表示画像にするために使用され る。散乱層44は、例えば、ビーズを分散させたプラス チックフィルムからなり、液晶パネル22と第2の反射 偏光板38を接着する光学接着剤からなる接着層中にビ ーズを混入させることによって形成することができる。 なお、散乱層44は、液晶パネル22と第2の反射偏光 板38との間に限らず、液晶パネル22と第1の反射偏 50

光板36との間、第1の反射偏光板36と第1の吸収型偏光板40との間、第2の反射偏光板38と第2の吸収型偏光板42との間、第1の吸収型偏光板40または第2の吸収型偏光板42の外面側のいずれに配置してもよい。また、散乱層44を透過した直線偏光の偏光軸は変わらないので、図5に示したような液晶パネル22に入射する光の挙動には影響を与えない。他の構成は図3に示す実施形態と同様であるので、図6において図3の実施形態の液晶表示装置18に対応する部分に同一の符号を付して、その説明を省略する。

【0042】図7は、図1および図2に示す携帯情報端 末10、110に適用可能な本発明による両面表示型の 液晶表示装置のさらに他の実施の形態を示す断面図であ る。図7に示すように、本実施形態の液晶表示装置21 8では、図3および図6に示す実施形態の液晶表示装置 18および118のTN液晶層28封止した液晶パネル 22の代わりに、STN液晶層128を封止した液晶パ ネル122を使用するとともに、このSTN型の液晶パ ネル122によって発生する着色を解消するために、第 1の反射偏光板36と第1の吸収型偏光板40との間お よび第2の反射偏光板38と第2の吸収型偏光板42と の間に位相差板46、46を設けている。また、第1の 反射偏光板36および第1の吸収型偏光板40の透過軸 と第2の反射偏光板38および第2の吸収型偏光板42 の透過軸との間の角度は、STN型の液晶パネル122 のツイスト角に応じて決定されている点で、TN型の液 晶パネル22を使用する図3の実施形態の場合と異な る。さらに、本実施形態の液晶表示装置218の動作 は、STN型の液晶パネル122による位相のずれを位 相差板46、46によって補償する点を除いて、上述し た図3の実施形態と同様である。他の構成は図6に示す 実施形態と同様であるので、図7において図6の実施形 態の液晶表示装置118に対応する部分に同一の符号を 付して、その説明を省略する。なお、位相差板46、4 6は、STN型の液晶パネル122による着色が問題に ならなければ、必ずしも設ける必要はなく、あるいは位 相差板46、46の一方のみを設けるようにしてもよ

【0043】また、図3、図6または図7に示す実施形態の液晶表示装置18、118、218において、最も外面側の一方に図示しない光吸収層を着脱可能に配置してもよい。この光吸収層は、この光吸収層がない側を表示面として使用したときに反射板として機能する第1または第2の反射偏光板36、38を透過した光を吸収するとともに、光吸収層が配置する側の第1または第2の吸収型偏光板40、42に入射する外光を吸収するので、コントラストを改善することができる。

【0044】上述したように、図3、図6および図7に示す両面表示型の液晶表示装置18(118、218)は、液晶パネル22(122)の両面の全面にわたって

画像を表示する構成であり、このような液晶表示装置18(118、218)を図1および図2に示す実施形態の携帯情報端末10(110)に適用する場合には、蓋部14(114)を閉じているときに液晶表示装置18(118、218)の外側表示面の全面にわたって画像を表示する必要はない。また、蓋部14(114)を閉じているときにも液晶表示装置18(118、218)の外側表示面の全面にわたって画像を表示すると消費電力が大きくなる。そこで、本発明では、液晶表示装置18(118、218)の外側表示面の一部の領域だけを10表示状態とし、他の領域を非表示状態にして消費電力を低減している。また、外面表示時と内面表示時で画像の反転は、フォントローテーションや走査方向を切り替えることによって防ぐことができる。

【0045】以下、このように液晶表示装置18(118、218)の外側表示面の一部の領域だけを表示状態とすることができる本発明による液晶表示装置の駆動回路の実施の形態について説明する。

【0046】図8は、本発明による液晶表示装置18 (118、218)の駆動回路の実施の形態を示すプロ 20 ック図である。

【0047】図8に示すように、本実施形態の液晶表示装置18(118、218)の駆動回路210は、画像表示を制御する表示制御211と、この表示制御回路211によって制御されるシフトレジスタにより複数の走査線26に走査電位を順次供給し線順次走査を行う走査線ドライバ212と、この走査ドライバ212により選択された各画素に対し、表示制御回路211によって制御されるシフトレジスタにより複数の信号線30に各画素の画像データに対応する信号電位を供給する信号線ド30ライバ213とを備えている。

【0048】走査線ドライバ212により走査線26に 供給される走査電位、および信号線ドライバ213によ り信号線30に供給される信号電位は、液晶電位生成回 路200によって生成され、それぞれ走査線ドライバ2 12、信号線ドライバ213に供給される。

【0049】また、駆動回路210は、図9(a)に示す液晶表示装置18(118、218)の左側の斜線部分のみを表示領域として他の領域を非表示領域とする場合や図9(b)に示す液晶表示装置18(118、21408)の上側の斜線部分のみを表示領域として他の領域を非表示領域とする場合のように、液晶表示装置18(118、218)の一部のみを表示領域として他の領域を非表示領域とすることができるように構成されている。すなわち、駆動回路210は、例えば、特開平6-95621号に開示されている方法と同様に、図9(a)に斜線で示す領域のみを表示領域とする場合には、液晶表示装置18(118、218)の表示面信号線ドライバ213のシフトレジスタの表示領域に対応する部分に画像データに応じたデータを転送し、非表示領域に対応す50

る部分にオフデータを転送する。このようにしてでデータの転送のための消費電力を低減するように構成されている。

14

【0050】また、図9(b)に斜線で示す領域のみを表示領域とする場合には、上側の表示領域に対応する走査線26のみを選択して他の走査線26を選択しないようにして消費電力を低減するように構成されている。

【0051】あるいは、特開平7-281632に開示された周知の方法または本発明者らの特願平9-518751に開示された方法を使用して、液晶表示装置18(118、218)の外側表示面の一部の領域だけを表示状態とし、他の領域を非表示状態にすることにより、液晶表示装置18(118、218)の消費電力を低減するようにしてもよい。

【0052】上述したように、本発明による両面表示型の液晶表示装置では、液晶表示装置の表示面の一部のみを表示領域とし、他の部分を非表示領域としたので、液晶表示装置の消費電力を低減することができる。

【図面の簡単な説明】

【図1】本発明による両面表示型の液晶表示装置を備えた電子機器としての携帯情報端末の実施の形態を示す斜視図。

【図2】本発明による両面表示型の液晶表示装置を備えた電子機器としての携帯情報端末の他の実施の形態を示す概略図。

【図3】本発明による両面表示型の液晶表示装置の実施 の形態を示す断面図。

【図4】図3に示す実施の形態の両面表示型の液晶表示 装置の反射偏光板として使用される多層構造フィルムか らなる反射偏光子を概略的に示す斜視図。

【図5】図3に示す両面表示型の液晶表示装置の動作の 説明図。

【図6】本発明による両面表示型の液晶表示装置の他の 実施の形態を示す断面図。

【図7】本発明による両面表示型の液晶表示装置のさら に他の実施の形態を示す断面図。

【図8】本発明による両面表示型の液晶表示装置の駆動 回路の実施の形態を示すプロック図。

【図9】本発明による両面表示型の液晶表示装置の外側 40 表示面の表示領域と非表示領域を示す概略図である。

【符号の説明】

10、110 携帯情報端末

12、112 本体部

14、114 蓋部

16、116 入力部

18(118、218) 液晶表示装置

20、120 ピン

22、122 液晶パネル

24、32 基板

0 26 透明電極(走査線)

30 透明電極(信号線)

34 シール材

36 第1の反射偏光板

38 第2の反射偏光板

40 第1の吸収型偏光板

42 第2の吸収型偏光板

44 散乱層

15

128 STN液晶層

200 液晶電位生成回路

210 駆動回路

211 表示制御回路

212 走査線ドライバ

213 信号線ドライバ

220 使用状態検出手段

【図2】

【図4】

【図5】

【図6】

【図7】

[図8]

【図9】

フロントページの続き

(51) Int. Cl.' 識別記号 F I デーマコード (参考) G 0 9 G 3/20 6 8 0 G 0 9 G 3/20 6 8 0 T 5 C 0 9 4 6 8 0 S 6 8 0 H 3/36 3/36

(72)発明者 飯野 聖一 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 EB02 ED11 ED14 HA02 HA08