

Algorithms and Data Structures

Week 10

- Acknowledgement:

 The slide is modified from

 Fan Rui's CS140@ShanghaiTech, Fall 2018

 TA discussion CS101@ShanghaiTech, Fall 2018

 Lecture CS101@ShanghaiTech, Fall 2019

 KeWei Tu's CS181@ShanghaiTech, Fall 2018

Today's topic:

- SSSP: The Dijkstra's algorithm
 - Introduce the motivation of relaxation and what it is
 - Introduce the algorithm and its time complexity with binary heap
 - Introduce the correctness of it(prepare for Prof. Dengji, Zhao 's algorithm section)
- APSP: The Floyd-Warshall algorithm
 - Introduce the algorithm
- A*: An improvement of Dijkstra's algorithm
 - A quick proof
 - Applications

Today's topic:

- SSSP: The Dijkstra's algorithm
 - Introduce the motivation of relaxation and what it is
 - Introduce the algorithm and its time complexity with binary heap
 - Introduce the correctness of it(prepare for Prof. Dengji, Zhao 's algorithm section)
- APSP: The Floyd-Warshall algorithm
 - Introduce the algorithm
- A*: An improvement of Dijkstra's algorithm
 - A quick proof
 - Applications

- Given a weighted directed graph, one common problem is finding the shortest path between two given vertices.
- This is different from the minimum spanning tree.

Idea shortest distance from s to $v \le$ some distance from s to u + distance from u to v

Given source s and node v

Let $\delta(s,v)$ be length of a shortest path from s to v Let $\mathrm{d}(s,v)$ be an estimate of $\delta(s,v)$, where $\mathrm{d}(s,v) \geq \delta(s,v)$. $\mathrm{d}(s,v)$ is the shortest distance as for our best knowledge! Intuitively, we can update $\mathrm{d}(s,v)$ by iterations to "push" it to $\delta(s,v)$. How? By relaxation!

In lecture, Prof. Yuyao, Zhang has guided you how it works by specific example of Dijkstra's algorithm(find the shortcut!)

Relaxation Given a neighbor u of v,

$$d(s,v) \leftarrow \min(d(s,v), d(s,u) + w(u,v))$$

- $\delta(s, v)$ be length of a shortest path from s to v
- d(s, v) is the shortest distance we known

Relaxation compares two paths and picks a better one:

- A shortest path we known(an estimate)
- Another one path which passes u, then reaches v directly

SSSP: single source shortest paths

We will iterate |V| times:

- Find the unvisited vertex v that has a minimum distance to it
- Mark it as visited
- Consider its every adjacent vertex w that is unvisited:
 - Is the distance to v plus the weight of the edge (v, w) less than our currently known shortest distance to w?
 - If so, update the shortest distance(relaxation) to w and record v as the previous pointer

Continue iterating until all vertices are visited or all remaining vertices have a distance of infinity

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

Questions:

- What if at some point, all unvisited vertices have a distance ∞?
 - This means that the graph is unconnected
 - We have found the shortest paths to all vertices in the connected subgraph containing the source vertex
- What if we just want to find the shortest path between vertices v_i and v_k ?
 - Apply the same algorithm, but stop when we are <u>visiting</u> vertex v_k
- Does the algorithm change if we have a directed graph?
 - No

Questions:

- How to re-construct the shortest path?
 - Recall we record previous pointer when each relaxation happens

Shortest path tree There exists a tree T rooted at s such that the shortest path from s to any node v lies in T.

- Each node v has a parent in the tree.
- □ By following parent pointers starting from v,
 we find shortest path from s to v.

The initialization requires $\Theta(|V|)$ memory and run time

- Iterating through the table requires $\Theta(|V|)$ time
- Each time we find a vertex, we must check all of its neighbors
 - With an adjacency matrix, the run time is
 - $\Theta(|V|(|V|(\text{find closest}) + |V|(\text{relaxation}))) = \Theta(|V|^2)$
 - With an adjacency list, the run time is
 - $\Theta(|V|^2 \text{ (find closest)} + |E| \text{ (relaxation)}) = \Theta(|V|^2)$ as $|E| = O(|V|^2)$

Can we do better?

- How about using a priority queue to find the closest vertex?
 - Assume we are using a binary heap
 - Thus, the total run time is O(|V| In(|V|) + |E| In(|V|))
 - O(|V| In(|V|)): find closet vertex and pop it(recall time complexity for a binary heap)
 - O(|E| In(|V|))): for each edge, we do a relaxation, which influences the estimated distance for a vertex. We should maintain the heap.
 - Naïve solution: delete it, decrease it then insert it.
 - It is called decrease the key in heap context (the key is the estimated distance in shortest path context. Relaxation decreases the estimation)

Can we do better then better?

Dijkstra's algorithm for positive edge weights, in $O((|V| + |E|) \log |V|)$ time by binary heap(has discussed in last page).

Improve to $O(|V| \log |V| + |E|)$ using Fibonacci heap

Using a Fibonacci heap, the O(|E|) decrease keys each take O(1), on average, which is used to be log |V| (omit details here. Clarifying it refers to an advanced topic: amortization analysis).

Negative cycles

- A negative weight cycle is a cycle in the graph, s.t. the sum of all weights on cycle is negative.
- If a graph has a negative weight cycle reachable from the source, then shortest paths are not well defined
 - We can repeated go around the cycle to get arbitrarily short paths
- Dijkstra's algorithm assumes all weights are nonnegative(why?)
- Counter example:

Correctness

Idea Order nodes by increasing distance from source, as s, v_1, \dots, v_n . s is source. The larger index indicates larger distance of that vertex to the source.

$$\delta(v_1, s) \le \delta(v_2, s) \le \dots \le \delta(v_n, s)$$

Lemma In round k of Dijkstra's algorithm, node v_k is settled(founded shortest path, visited), and $S = \{s, v_1, \dots, v_k\}$. S is the set of visited vertexes.

Correctness

Lemma In round k of Dijkstra's algorithm, node v_k is settled(founded shortest path, visited), and $S = \{s, v_1, \dots, v_k\}$. S is the set of visited vertexes.

Proof

- 1. In round 0, s is settled.
- 2. Assume lemma on round k-1 establishes, then we prove lemma on k (induction).

Consider shortest path from s to v_k , and let u be node preceding v_k in path.

• Then $\delta(s, v_k) = \delta(s, u) + w(u, v_k)$

Since w(.) > 0, the equation indicates that:

•
$$\delta(s, v_k) \ge \delta(s, u)$$

By increasing distance notation, $\exists j < k: u = v_j$. Otherwise, vertex k is not connected to source(trivial, not consider)

Correctness

Lemma In round k of Dijkstra's algorithm, node v_k is settled(founded shortest path, visited), and $S = \{s, v_1, \dots, v_k\}$. S is the set of visited vertexes.

Proof (cont.)

2. Assume lemma on round k-1 establishes, then we prove lemma on k (induction).

By induction, v_j . d (the estimated distance) = $\delta(s, v_j)$ (the optimal distance).

- v_j is processed in round j (induction, j<k). v_k is its neighbor and being relax:
 - $v_k. d \le v_j. d (= \delta(s, v_j)) + w(v_j, v_k)$ since $v_k. d = \min(v_k. d, v_k. d + w(v_j, v_k))$.
- Since $u = v_j$ therefore, v_k . $d \le \delta(s, u) + w(v_k, u) = \delta(s, v_k) \Rightarrow v_k$. $d = \delta(s, v_k)$ after relaxation in round k.

Correctness

Lemma In round k of Dijkstra's algorithm, node v_k is settled(founded shortest path, visited), and $S = \{s, v_1, \dots, v_k\}$. S is the set of visited vertexes.

Proof (cont.)

2. Assume lemma on round k-1 establishes, then we prove lemma on k (induction).

 v_k . $d = \delta(s, v_k)$ after relaxation in round k.

And in round k, v_k is sure to be selected.

• Since by induction, $V - S = \{v_k, v_{k+1}, \dots\}$ in round k before selection of closet vertex. $S = \{s, v_1, \dots, v_k\}$

S S v_j

q.e.d

Recursively apply Lemma, then correctness of Dijkstra's algorithm is guaranteed

Today's topic:

- SSSP: The Dijkstra's algorithm
 - Introduce the motivation of relaxation and what it is
 - Introduce the algorithm and its time complexity with binary heap
 - Introduce the correctness of it(prepare for Prof. Dengji, Zhao 's algorithm section)
- APSP: The Floyd-Warshall algorithm
 - Introduce the algorithm
- A*: An improvement of Dijkstra's algorithm
 - A quick proof
 - Applications

APSP: Floyd-Warshall algorithm

ASSP: all pairs shortest paths

First, let's consider only edges that connect vertices directly:

$$d_{i,j}^{(0)} = \begin{cases} 0 & \text{If } i = j \\ w_{i,j} & \text{If there is an edge from } i \text{ to } j \\ \infty & \text{Otherwise} \end{cases}$$

Here, $w_{i,j}$ is the weight of the edge connecting vertices i and j

Note, this can be a directed graph; i.e., it may be that

ADSD: Floyd-Warshall algorithm

The calculation is straight forward:

```
for ( int i = 0; i < num_vertices; ++i ) {
    for ( int j = 0; j < num_vertices; ++j ) {
        d[i][j] = std::min( d[i][j], d[i][k-1] + d[k-1][j] );
    }
}</pre>
```

ADSD: Floyd-Warshall algorithm

What Is the Shortest Path?

Let us store the next vertex in the shortest path. Initially:

$$p_{i,j} = \begin{cases} \emptyset & \text{If } i = j \\ j & \text{If there is an edge from } i \text{ to } j \\ \emptyset & \text{Otherwise} \end{cases}$$

APSP: Floyd-Warshall algorithm

When we find a shorter path, update the next node(relaxation):

 $p_{i,i} = p_{i,k}$

Takes $O(n^3)$ time overall.

Today's topic:

- SSSP: The Dijkstra's algorithm
 - Introduce the motivation of relaxation and what it is
 - Introduce the algorithm and its time complexity with binary heap
 - Introduce the correctness of it(prepare for Prof. Dengji, Zhao 's algorithm section)
- APSP: The Floyd-Warshall algorithm
 - Introduce the algorithm
- A*: An improvement of Dijkstra's algorithm
 - A quick proof
 - Applications

SSSP is to find shortest paths from source to all vertexes in graph. When there is a *goal* vertex and regard weights as *cost*, it can be reframed as a searching problem:

Search the goal with lowest cost

(Dijkstra halts when visit the goal vertex)

The strategy employed by Dijkstra: expand the cheapest node first is also called:

Uniform Cost Search

In some context, UCS can access visited vertexes(trivial). 'Visit' is called 'expand' here.

Uniform Cost Search

- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location
- We'll fix that soon!

Search heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Greed Search

Strategy: visit(expand) the node that you think is closet to a goal state (lowest heuristics value).

The ideal scenario: best-first takes you straight to the goal.

Worst-case: like a badly-guided DFS

A* Search

UCS v.s. Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Optimal?

- What went wrong?
- Over-estimated goal cost

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* with admissible heuristics

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Remark1: fringe is the vertexes(nodes) adjacent to visited vertexes

Remark2: A, B here may mean different paths to goal(relaxed from different parents). Also, goal could also be a set of nodes in A* setting.

Optimality of A* with admissible heuristics

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
 Definition of f-cost $f(n) \le g(A)$ Admissibility of h $g(A) = f(A)$ h = 0 at a goal

Optimality of A* with admissible heuristics

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B) -

B is suboptimal

h = 0 at a goal

Optimality of A* with admissible heuristics

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B —
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Optimality of A* with admissible heuristics

Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Applications

- Heuristic: Number of tiles misplaced
- h(start) = 8
- Is it admissible?
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
UCS	112	6,300	3.6 x 10 ⁶
TILES	13	39	227

Thank you!

Goodbye for data structure section and say hello world to algorithm part!