Olimpiada Naţională de Matematică Etapa Judeţeană şi a Municipiului Bucureşti, 10 martie 2018

CLASA a 9-a, SOLUŢII ŞI BAREME

Varianta 2

Problema 1. Determinați funcțiile strict crescătoare $f: \mathbb{N} \to \mathbb{N}$ cu proprietatea că
$\frac{f(x)+f(y)}{1+f(x+y)}$ este un număr natural nenul, pentru orice $x,y\in\mathbb{N}$.
Gazeta Matematică
Soluţie. Luând $x=y=0$ rezultă $\frac{2f(0)}{1+f(0)}\in\mathbb{N}^*$, deci $f(0)\neq 0$. Dar $f(0)$ şi $1+f(0)$ sunt relative prime, deci $1+f(0)$ divide pe 2, adică $f(0)=1$
Din (*) rezultă $f(x+1) = f(x) + f(1) - 1$ pentru orice $x \ge 1$, de unde obținem $f(n) = nf(1) - n + 1, \forall n, \in \mathbb{N}^*$, relație care este valabilă și pentru $n = 0 \dots 2p$ Obținem astfel funcțiile de forma $f(n) = an + 1$, unde $a = f(1) - 1 \in \mathbb{N}^*$, care verifică proprietățile din enunț
Problema 2. Se consideră triunghiul dreptunghic ABC , $m(\angle A) = 90^{\circ}$ și punctele D și E pe cateta (AB) astfel încât $\angle ACD \equiv \angle DCE \equiv \angle ECB$. Arătați că dacă $3\overrightarrow{AD} = 2\overrightarrow{DE}$ și $\overrightarrow{CD} + \overrightarrow{CE} = 2\overrightarrow{CM}$ atunci $\overrightarrow{AB} = 4\overrightarrow{AM}$.
Soluţie. Relaţia $\overrightarrow{CD} + \overrightarrow{CE} = 2\overrightarrow{CM}$ arată că M este mijlocul segmentului $[DE]$. Cum $M \in (AB)$, trebuie să demonstrăm că $AB = 4AM$

Problema 3. Fie AD, BE, CF înălțimile triunghiului ABC şi K, L, M ortocentrele triunghiurilor AEF, BFD, respectiv CDE. Notăm cu G_1 şi G_2 centrele de greutate ale triunghiurilor DEF, respectiv KLM. Să se arate că $HG_1 = G_1G_2$, unde H este ortocentrul triunghiului ABC.

Soluție. Cum $FK \perp AC$ (FK este înălțime în triunghiul AEF) și $BE \perp AC$ (BE este înălțime în triunghiul ABC), $FK \parallel HE$ (1)

Analog, $EK \perp AB$ (EK este înălţime în triunghiul AEF) şi $CF \perp AB$ (CF este înălţime în triunghiul ABC), deci $EK \parallel HF$ (2)......**3p** Din (1) şi (2) FHEK este paralelogram, deci $\overrightarrow{r_F} + \overrightarrow{r_E} = \overrightarrow{r_H} + \overrightarrow{r_K}$ (3)

Problema 4. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție. Pentru fiecare $a \in \mathbb{Z}$ considerăm funcția $f_a: \mathbb{R} \to \mathbb{R}$, $f_a(x) = (x-a)f(x)$. Arătați că dacă există o infinitate de valori $a \in \mathbb{Z}$ pentru care funcțiile f_a sunt crescătoare, atunci funcția f este monotonă.

$$\frac{p_2 f(p_2) - p_1 f(p_1)}{f(p_2) - f(p_1)} \le a \le \frac{q_2 f(q_2) - q_1 f(q_1)}{f(q_2) - f(q_1)}.$$
 (**)

Cum relația (**) nu poate fi îndeplinită decât de un număr finit de valori întregi ale lui a, presupunerea că f nu este monotonă contrazice ipoteza......**3p**