Chapitre

Suites réelles

2. Généralités

2.1. Définition

Une suite réelle u est une application de $\mathbb{N} \to \mathbb{R}$ et $n \longmapsto u_n$. On écrit u_n au lieu de u(n)

 u_n est le nieme terme de la suite.

On écrit aussi $u = (u_n)_{n \in \mathbb{N}}$.

Les suites (u_n) et v_n sont égales si $\forall n \in \mathbb{N}, u_n = v_n$.

On note : $S(\mathbb{R}) = \mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles.

Exemple

 $u = (n+1)_{n \in \mathbb{N}}$

 $0 = (0)_{n \in \mathbb{N}}$

 $v = ((-1)^n)_{n \in \mathbb{N}}$

2.1. Opérations sur les suites

On définit sur $S(\mathbb{R})$ les opérations $+, \times$ et \cdot

 $u + v = (u_n + v_n)_{n \in \mathbb{N}}$

 $uv = (u_n v_n)_{n \in \mathbb{N}}$

 $\lambda u = (\lambda u)_{n \in \mathbb{N}}$

Pour diviser par (v_n) , elle doit être tout le temps non nulle.

Difficulté

 u_n ne désigne pas la suite u_n . Il faut écrire $(u_n)_{n\in\mathbb{N}}$.

2.1. Variations

Soit $u \in S(\mathbb{R})$ et $n_0 \in \mathbb{N}$.

Théorème 1.1 : Suite croissante

La suite est croissante à partir du rang n_0 si $\forall n \geq n_0, u_{n+1} \geq u_n$ et u est stictement croissante à partir de n_0 si $n \geq n_0$ on a $u_{n+1} > u_n$.

Théorème 1.2 : Suite décroissante

La suite est décroissante à partir du rang n_0 si $\forall n \geq n_0, u_{n+1} \leq u_n$ et u est stictement croissante à partir de n_0 si $n \geq n_0$ on a $u_{n+1} < u_n$.

Exemple : $(n^2)_{n\in\mathbb{N}}$ croissante

 $(\frac{1}{n})_{n\in\mathbb{N}}$ décroissante

 $\neg(u_n \text{ est croissante à partir du premier terme}) = (\exists n \in \mathbb{N}, u_{n+1} < u_n)$

Théorème 1.3 : Majoré et minorant

La suite est majorée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.

La suite est minorée si $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \geq m$.

La suite est bornée si elle est minorée et majorée.

u bornée $\iff \exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leq M.$

Valeur absolue

$$|x| = x \text{ si } x > 0 \text{ et } -x \text{ si } x < 0.$$

|x-y| mesure la distance e x à y.

|xy| = |x||y|

 $|x+y| \le |x| + |y|$ (inégalité triangulaire)

T

Preuve 1.1

Preuve : On étudie la différence des carrés : $(|x|+|y|)^2-(|x+y|)^2=x^2+2|x||y|+y^2-(x^2+xy+y^2)=2(|xy|-xy)\geq 0$. Donc $(|x|+|y|)^2\geq (|x+y|)^2$. Or la fonction x^2 est croissante, donc l'inégalité est vérifiée.

$$|x| = 0 \rightarrow x = 0$$

2. Limites d'une suite

Soit u une suite réelle.

Théorème 2.1: Définition

On dit que la suite u est convergente (CV) si existe $l \in \mathbb{R}$ tel que $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow |u_n - l| < \epsilon$. On dit que l est une limite de (U_n) .

Voir schéma

Théorème 2.2 : Unicité d'une limite d'une suite convergente

Si (U_n) est convergente, sa limite l'est unique on note $l=\lim_{n\to\infty}u_n$.

Preuve 2.1: Démonstration par l'absurde

Supposons que (U_n) admette l_1 et l_2 comme limite, avec $l_1 \neq l_2$. Nous avons donc, pour tout $\epsilon>0$:

$$\exists N_1 \in \mathbb{N}, \forall n \ge N_1, |u_n - l_1| \le \epsilon \tag{2.1}$$

$$\exists N_2 \in \mathbb{N}, \forall n \ge N_2, |u_n - l_2| \le \epsilon \tag{2.2}$$

On pose alors $\epsilon=\frac{|l_1-l_2|}{3}.$ Il existe donc N_1 et N_2 tel que les 2 assertions sont vraies.

Choisissons un nombre entier supérieur à N_1 et N_2 , comme $\max(N_1,N_2)$.

Pour cette valeur de n, nous avons à la fois $|u_n-l_1|<\epsilon$ et $|u_n-l_2|<\epsilon$.

Par l'inégalité triangulaire, on obtient :

$$3\epsilon = |l_1 - l_2| = |(u_n - l_2) - (u_n - l_1)| \le |u_n - l_1| + |u_n - l_2| \le 2\epsilon$$

Le nombre réel vérifie à la fois $\epsilon > 0$ et $3\epsilon \le 2\epsilon$, ce qui est absurde. Donc $l_1 = l_2$.

On utilise Valeur absolue d'une expression pour la majorer par une valeur. Il vaut mieux dire que $|(-1)^n| \le 1$ que $-1 \le |(-1)^n| \le 1$. Utiliser ensuite l'inégalité triangulaire.

Théorème 2.3 : Borne d'une suite convergente

Toute suite convergente est bornée

π Preuve 2.2

Soit $(U_n)_{n\in\mathbb{N}}$ une suite réelle convergente. Notons l sa limite $\in \mathbb{R}$. $\text{Elle est convergente} \iff \forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\epsilon} \Rightarrow$ $|u_n - l| \le \epsilon$.

Pour $\epsilon=1$:

$$\exists N_1 \in \mathbb{N}, n \ge N_1 \Rightarrow |u_n - l| \le 1$$
$$\Rightarrow -1 \le u_n - l \le 1$$
$$\Rightarrow -1 + l \le u_n \le 1 + l$$

Donc pour $n \ge N_1, |u_n| \le \max(|-1+l|, |1+l|)$

Donc pour $n < N_1$, le nombre de terme de (U_n) est fini.

Donc $M = \max(|u_k|)$ existe et est fini, avec $0 \le k \le N_1 - 1$ et $|U_n| \le M, \forall 0 \le n \le N_1 - 1.$

2.1 imites

2.3. Limites et monotonie

Théorème 3.1 :

Toute suite croissante et majorée converge vers son plus petit

majorant

Toute suite décroissante et minorée converge vers son plus grand minorant.

Remarque

Si (U_n) est croissante et si $\lim_{l \to \infty} U_n = l \in \mathbb{R}$, alors $\forall n \in \mathbb{N}, u_n \leq l$ car (U_n) est croissante..

En effet, si $x \leq u_n$ et si $u_{n+1} > u_n$, alors $\epsilon = U_{n+1} - U_n > 0$ et $\forall n \in \mathbb{N}, n > n_0, u_n, \geq x + \frac{\epsilon}{2}$ et $|u_n - x| > \frac{\epsilon}{2}$. Donc x ne peut être la limite de (U_n) .

De plus, $\forall \epsilon > 0, l - \epsilon$ n'est pas la limite de (U_n) dnc $\exists n \in \mathbb{N}, l - \epsilon < u_n \leq l$ et l est bien le plus petit des minorants de (U_n) .

2.3. Suites adjacentes

π Théorème 3.2 : Définition

2 suites (U_n) et (V_n) sont adjacentes si

- (U_n) est décroissante
- (V_n) est croissante
- $\cdot \lim_{+\infty} U_n V_n = 0$
- $u_n \ge v_n, \forall n \in \mathbb{N}$.

Théorème 3.3: Définition

Si les suites (U_n) et (V_n) sont adjacentes, alors elles sont convergentes de même limite.

Preuve 3.1

 $\forall n\in\mathbb{N}, u_n\geq v_n\geq v_0$ car (v_n) est croissante. Donc (U_n) est décroissante et minorée par v_0 donc convergente. Notons $l_1=\lim_{n\to\infty}U_n$.

De même, $\forall n \in \mathbb{N} v_n \leq u_n \leq u_n \leq u_n$ car u_n est décroissante. Donc v_n est croissante et majorée par v_0 donc convergente. Notons $u_0 = \lim_{n \to \infty} v_n$.

De plus,
$$\lim_{l \to \infty} U_n - V_n = 0 = l_1 - l_2 \iff l_1 = l_2$$

Donc, si elles sont adjacentes, (U_n) et (V_n) convergent vers un unique l.

2.3. Limites infinies

Soit (u_n) une suite réelle.

Théorème 3.4: définition

Elle a pour limite $+\infty$ si $\forall A > 0, \exists N_A \in \mathbb{N}, \forall n, n \geq N_A \Rightarrow u_n \geq A$.

Elle a pour limite $-\infty$ si $\forall A>0, \exists N_A\in\mathbb{N}, \forall n,n\geq N_A\Rightarrow u_n\leq -A.$

2.3. \$uites et opérations

On considère 2 suites réelles (u_n) et (v_n) . On suppose que $\lim_{t\to\infty}=l/\pm\infty$.

Somme des limites

Produit des limites

Voir tableau des limites

Preuve 3.2 : Somme des limites l et l'

On veut savoir si $\forall \epsilon > 0, \exists ?N \in \mathbb{N}, n \geq N \Rightarrow |u_n + v_n - (l + l')| < \epsilon.$

On sait que d'après l'inégalité triangulaire, $|u_n+v_n-(l+l')|=|u_n-l+v_n-l'|\leq |u_n-l|+|v_n-l'|$.

Or $\lim_{n \to \infty} u_n = l$, donc $\exists N_1 \in \mathbb{N}, n \geq N_1$, alors $|u_n - l| \leq \frac{\epsilon}{2}$.

De même, $\lim_{\infty} \, v_n = l'$, donc $\exists N_2 \in \mathbb{N}, n \geq N_2$, alors $|u_n - l'| \leq \frac{\epsilon}{2}$

Donc si $n \geq N_1 + N_2$, alors $|u_n - l| \leq \frac{\epsilon}{2}$ et $|v_n - l'| \leq \frac{\epsilon}{2}$

Donc $|u_n+v_n-(l+l')|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Donc u_n+v_n est convergente et $\lim_{n\to\infty}u_n+v_n=l$.

Preuve 3.3 : Produit des limites l et l'

Soit $(u_n),(v_n)$ 2 suites convergentes. On veut démontrer que $\lim_{\infty}u_nv_n=\lim_{u} \lim_{n}\lim_{\infty}v_n$. Notons que $\lim_{\infty}u_n=l\in\mathbb{R}$ et $\lim_{\infty}v_n=l'\in\mathbb{R}$. On doit démontrer que la définition de la limite existe pour la suite u_nv_n , i.e, $\forall n\in\mathbb{N}, n\geq N_0\Rightarrow |u_nv_n-ll'|\leq \epsilon>0$.

$$|u_n v_n - ll'| = |(u_n - l)v_n + lv_n - ll'|$$

$$= |v_n(u_n - l) + l(v_n - l')|$$

$$\le |v_n||u_n - l| + |l||v_n - l'|$$

 (v_n) convergen, donc est bornée, donc, $\exists M>0, \forall n\in\mathbb{N}|v_n|\leq M$.

$$\leq M|u_n - l| + |l||v_n - l'|$$

$$\leq M\frac{\epsilon}{2M} + |l|\frac{\epsilon}{2M + 1 + |l|}$$

On a donc:

- $\begin{array}{ll} \cdot \lim\limits_{\infty} \, u_n \, = \, l \text{, donc pour } \epsilon' \, = \, \frac{\epsilon}{2M} \, > \, 0, \exists N_1 \, \in \, \mathbb{N} \text{, donc } n \, \geq \\ N_1 \Rightarrow |u_n l| \, < \, \frac{\epsilon}{2M}. \end{array}$
- $\begin{array}{ll} \cdot \lim\limits_{\substack{\infty \\ n \geq N_2 \Rightarrow |u_n-l| < \frac{\epsilon}{2(1+|l|)}}} > 0, \exists N_2 \in \mathbb{N} \text{, donc} \end{array}$

Donc $\forall n\geq N_1+N_2$, on a $|u_nv_n-ll'|\leq M\frac{\epsilon}{2M}+|l|\frac{\epsilon}{2M+1+|l|}$, puis $|u_nv_n-ll'|\leq \frac{\epsilon}{2}+1$ et $|u_nv_n-ll'|\leq \epsilon$

On a bien l'inégalité, CQFD

2.3. Limites et inégalités

Théorème 3.5 : Inégalités

Supposons que $u_n \leq v_n$. On a : $\lim_{n \to \infty} u_n = +\infty \Rightarrow \lim_{n \to \infty} v_n = +\infty$ et $\lim_{n \to \infty} v_n = -\infty \Rightarrow \lim_{n \to \infty} u_n = -\infty$

Si les 2 suites sont convergentes, $\lim_{n \to \infty} u_n \leq \lim_{n \to \infty} v_n$.

Théorème 3.6: Théorème des gendarmes

Si on a 3 suites réelles avec $u_n \leq w_n \leq v_n$. Si u_n et v_n sont convergentes de même limite l, alors w_n est convergente vers l.

π Preuve 3.4

Soit $\epsilon>0$, on cherche $N_0\in\mathbb{N}, n\geq N_0 \Rightarrow |w_n-l|\leq \epsilon$, avec $\lim_{\infty} u_n = l = \lim_{\infty} v_n \text{ et } u_n \leq w_n \leq v_n, \forall n \in \mathbb{N}.$

$$\begin{aligned} |w_n - l| &= |w_n - u_n + u_n - l| \\ &\leq |w_n - u_n| + |u_n - l| \\ &\leq |v_n - u_n| + |u_n - l| \\ &\leq |v_n - l + l - u_n| + |u_n - l| \\ &\leq |v_n - l| + |l - u_n| + |u_n - l| \\ &\leq |v_n - l| + 2|u_n - l| \\ &\leq \frac{\epsilon}{2} + 2\frac{\epsilon}{4} \end{aligned}$$

On a : $\lim u_n = l$, donc $\exists N \in \mathbb{N}, n \geq N_1 \Rightarrow |u_n - l| \leq \frac{\epsilon}{4}$ et $\lim v_n = l$, donc $\exists N \in \mathbb{N}, n \geq N_1 \Rightarrow |v_n - l| \leq \frac{\epsilon}{2}$.

Donc pour $N_3=N_1+N_2$, on a : $n\geq N_0\Rightarrow |w_n-l|\leq \frac{\epsilon}{2}+2 imes \frac{\epsilon}{4}=\epsilon.$ Ce qui démontre bien l'égalité souhaitée.

Si une suite est encadrée, la limite de la suite l'est aussi. La limite est un point fixe de (u_n) .

Partie entière

× Difficulté

Les inégalités strictes deviennent larges quand on passe à la limite. Par exemple, $\forall n \in \mathbb{N}, u_n > 0$ et u_n converge, alors $\lim u_n \geq 0$.

 $\forall x \in \mathbb{R}, \exists ! n \in \mathbb{N}$, tel que $n \leq x < n+1$. C'est noté E(x) = n.

2 Méthodes

2.4. Lever une Forme Indéterminée

Du type Infini/Infini

On donne d'abord le type de FI puis on met en facteur le terme variant de plus haut degré en facteur.

Exemple

Voir le 2 et 3 du TD 2.4

$$U_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
$$= \frac{2n(1 + \frac{(-1)^n}{2n})}{5n(1 + \frac{(-1)^n}{5n})}$$
$$= \frac{2(1 + \frac{(-1)^n}{2n})}{5(1 + \frac{(-1)^{n+1}}{5n})}$$

$$\lim_{+\infty} \frac{(-1)^n}{2n} = \lim_{+\infty} \frac{(-1)^n}{2n} = 0$$

Donc
$$\lim_{+\infty} (U_n) = \frac{2}{5} \times \frac{1}{1}$$
.

Du type + Infini - Infini avec des racines

On multiplie par la quantité conjuguée au numérateur et au dénominateur

$$(\sqrt{a} - \sqrt{b}) = (\sqrt{a} - \sqrt{b})\frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} - \sqrt{a}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

Exemple

Voir le 4 du TD 2.4

$$(\sqrt{2n+1} - \sqrt{2n-1}) = (\sqrt{2n+1} - \sqrt{2n-1}) \frac{\sqrt{2n-1} - \sqrt{2n+1}}{\sqrt{2n-1} - \sqrt{2n+1}}$$
$$= \frac{(2n+1) - (2n-1)}{\sqrt{2n+1} + \sqrt{2n-1}}$$
$$= \frac{2}{\sqrt{2n+1} + \sqrt{2n-1}}$$

Avec des exponentielles

Les exponentielles dominent les polynômes. Donc On le met en facteur et on utilise la croissance comparée :

Théorème 4.1: Croissance comparée

$$\lim_{+\infty} \frac{n^x}{y^n} = 0.$$

2.4. Montrer que 2 suites sont adjacentes (2.11)

Montrer que les 2 suites sont définies

Il peut être utile de montrer que les 2 suites sont définies et toujours positives.

Pour cela, on peut faire un raisonnement par récurrence.

Montrer qu'une suite est supérieure à l'autre

On fait la différence $u_n - v_n$ et selon le signe, on conclue.

On étudie la monotonie des suites

Il faut montrer que l'une est croissante et l'autre décroissante. Pour cela, on fait la différence $u_{n-1}-u_n$ et on conclue, pareil pour (v_n) .

Montrer que les suites sont convergentes

Une suite est croissante et majorée par le premier terme de l'autre suite; l'autre suite est décroissante et minorée par le premier terme de la première suite.

Les deux suites sont convergentes et on note l et l' leur limite respective.

Montrer que l=l'

Les 2 suites sont convergentes, donc en exprimant la limite du terme n+1 d'une suite en fonction de l'autre suite, on peut montrer que l=l'.

Conclusion

Toutes les conditions sont réunies pour dire que les 2 suites sont adjacentes.

Exemple

Énoncé

On pose $a_0>0$ et $b_0>0$. On a : $\frac{2}{u_{n+1}}=\frac{1}{u_n}+\frac{1}{v_n}$ et $v_{n+1}=\frac{u_n+v_n}{2}$. On veut montrer que les suites sont adjacentes.

- 1. On montre d'abord que les suites sont positives, par récurrence : L'initialisation est immédiate d'après l'énonce $(a_0>0$ et $b_0>0$). Hérédité : On suppose (H_n) . Donc $u_n>0$ et $v_n>0$. On a alors : $v_{n+1}=\frac{u_n+v_n}{2}>0$. De plus, $\frac{1}{u_n}>0$ et $\frac{1}{v_n}>0$ Donc la suite est bien définie et supérieure à o.
- 2. On montre qu'une suite est supérieure à l'autre. On a $u_{n+1}=\frac{2u_nv_n}{v_n+u_n}$, donc la différence $u_{n+1}-v_{n+1}$ vaut :

$$u_{n+1} - v_{n+1} = \frac{2u_n v_n}{v_n + u_n} - \frac{u_n + v_n}{2}$$

$$= \frac{4u_n v_n}{2(v_n + u_n)} - \frac{(u_n + v_n)^2}{2(u_n + v_n)}$$

$$= \frac{4u_n v_n - (u_n + v_n)^2}{2(v_n + u_n)}$$

$$= \frac{4u_n v_n - (u_n^2 + 2u_n v_n + v_n^2)}{2(v_n + u_n)}$$

$$= \frac{4u_n v_n - u_n^2 - 2u_n v_n - v_n^2}{2(v_n + u_n)}$$

$$= \frac{2u_n v_n - u_n^2 - v_n^2}{2(v_n + u_n)}$$

$$= \frac{-(-2u_n v_n + u_n^2 + v_n^2)}{2(v_n + u_n)}$$

$$= \frac{-(u_n + v_n)^2}{2(v_n + u_n)} \le 0$$

Donc $v_n \geq u_n$

- 3. On étudie la monotonie de (v_n) et (u_n) : $v_{n+1}-v_n=\frac{u_n+v_n}{2}-v_n$ Mais $v_n\geq u_n$, donc $\frac{u_n+v_n}{2}-v_n\leq 0$ De plus, $u_{n+1}-u_n=\frac{u_n(-u_n+v_n)}{u_n+v_n}\geq 0$, car comme $v_n\geq u_n$, on a $-u_n+v_n\geq 0$
- 4. On montre que les suites sont convergentes (u_n) est majorée par v_1 et est croissante, donc elle convergente et on note l sa limite. (v_n) est minorée par u_1 et est décroissante, donc elle convergente et on note l' sa limite.
- 5. On montre que l=l' On sait que $v_{n+1}=\frac{u_n+v_n}{2}$, donc :

$$\lim_{\infty} u_{n+1} = \lim_{\infty} \frac{u_n + v_n}{2}$$
$$l' = \frac{l+l'}{2}$$

Les 2 suites sont bien adjacentes.

2.4. Itiliser la définition de la convergence (2.10)

Montrer qu'une suite est inférieure à un certain nombre supérieur à sa limite

Soit $\lim_{+\infty} = l$. On souhaite montrer que $u_n \le x$.

D'après la définition de la limite, $\forall \epsilon>0, \exists N_0\in\mathbb{N}, n\geq N_0\Rightarrow |U_n-l|\leq \epsilon.$ Donc :

$$u_n - l \le \varepsilon$$

$$\iff -\varepsilon \le u_n - l \le \varepsilon$$

$$\iff l - \varepsilon \le u_n \le \varepsilon + l$$

Ainsi, en prenant ε tel que $l + \varepsilon = x$, $\exists n_0 \in \mathbb{N}, n \ge n_0 \Rightarrow u_n \le x$.

2.4. Exercice type: Montrer qu'une suite converge (2.6/2.12)

Encadrer la suite

On trouve un majorant et un minorant de la suite, souvent par récurrence. Si la suite est positive, un minorant est o.

On montre qu'elle est croissante/décroissante

On montre sa convergence

On déduit qu'elle est convergente et, comme on sait que la limite est un point fixe, on peut écrire que $\lim_{\infty}\,u_{n+1}=\lim_{\infty}\,u_n=l$ et déterminer l à l'aide de cette relation.

Exemple

On a : $u_{n+1}^2=1+u_n$. On peut donc écrire : $l^2=1+l$ Seul le nombre d'or au vérifie cette relation, donc l= au