MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2020

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 45 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 25%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

1 (a) Evaluate the indefinite integral $\int \frac{1}{x \ln x} dx$ (for x > 1). Hint: use an appropriate substitution.

2%

(b) Calculate the area between $y = 3^x - x^3$ and the x-axis for $0 \le x \le 2$.

(c) Express as a definite integral and then $\underline{evaluate}$ the limit of the Riemann sum $\lim_{n \to \infty} \sum_{i=1}^n \cos\left(1 + \frac{3i}{n}\right) \frac{1}{n}$ (where one may use the partition 3i

 $P \text{ with } x_i = \frac{3i}{n} \text{ for } i = 0, 1, \dots, n).$ 2%

(d) Evaluate $\frac{d}{dx} \left(\int_{x^2}^{x^4+1} \sqrt{t \sin t} \ dt \right)$.

(e) Consider the four functions: $\cos x$, $\sin x$, $\cos(x^3)$ and $\sin(x^3)$. Specify which of them is odd, even or neither.

Hence, evaluate the integral $\int_{-\pi/2}^{\pi/2} (\cos x + \sin(x^3)) dx$. 2%

.....

2 Evaluate the indefinite integral $\int \sin^3 x \, \cos^2 x \, dx$.

.....

3 Find the average value of the function $\frac{x+5}{x^2+6x+9}$ on the interval [-1,2].

.....

4 Evaluate the indefinite integral $\int \sin^{-1} x \ dx$. (Hint: use integration by parts.) 5%

.....

5 Perform a partial fraction expansion of $\frac{3x-1}{(x^2-2x+1)(x+1)}$;

then evaluate the indefinite integral $\int \frac{3x-1}{(x^2-2x+1)(x+1)} dx$.