Notes in representation theory

Paul Martin

Dec 11, 2008 (printed: November 9, 2011)

Contents

1	Inti	roduction	9
	1.1	Representation theory preamble	6
		1.1.1 Matrices	6
		1.1.2 Groups	10
		1.1.3 Group algebras	12
		1.1.4 Modules and representations	14
	1.2	Notes and references	16
	1.3	Exercises	16
2	Bas	sic definitions, notations and examples	19
	2.1	Preliminaries	19
		2.1.1 Definition summary	19
		2.1.2 Glossary	20
	2.2	Elementary set theory notations and constructions	20
		2.2.1 Set partitions	22
		2.2.2 Exercises	23
	2.3	Initial examples in representation theory	23
		2.3.1 The monoid $hom(\underline{2},\underline{2})$	23
		2.3.2 quaternions	26
	2.4	Basic tools: topology	26
3	Mo	ore basic tools	29
	3.1	reflection groups and geometry	29
		3.1.1 Chamber geometry	30
		3.1.2 Alcove geometry	32
	3.2	Partial orders, lattices and graphs	32
	3.3	Young graph combinatorics	33
		3.3.1 Nearest-neighbour graphs on \mathbb{Z}^n	33
		3.3.2 Large n limits	34
		3.3.3 The Young lattice	35
4	Cat	tegories	37
•	4.1	Categories I	37
	1.1	4.1.1 Functors	39

		4.1.2 Natural transformations
	4.2	R-linear and ab-categories
		4.2.1 Abelian categories
	4.3	Categories II
		4.3.1 Adjunctions
	4.4	Categories III
		4.4.1 Tensor/monoidal categories
		1.1.1 Telisor/ monordan eurogoties
5	Ring	
	5.1	Rings I
		5.1.1 Properties of elements of a ring
	5.2	Ideals
		5.2.1 Posets
		5.2.2 Properties of ideals: Artinian and Noetherian rings
		5.2.3 Properties of ideals: Integral domains
	5.3	Rings II
		5.3.1 Order and valuation
		5.3.2 Complete discrete valuation ring
		5.3.3 p-adic numbers
		5.3.4 Idempotents over the p-adics
6	Ring	$_{ m g-modules}$
	6.1	Ring-modules
	6.2	R-homomorphisms and the category R -mod
		6.2.1 quotients
		6.2.2 Direct sums and simple modules
		6.2.3 Free modules
		6.2.4 Matrices over R and free module basis change 61
	6.3	Finiteness issues
		6.3.1 Composition series
		6.3.2 More on chains of modules and composition series
	6.4	Tensor product
		6.4.1 <i>R</i> -lattices etc
	6.5	Functors on categories of modules
		6.5.1 Hom functors
		6.5.2 Tensor functors, Adjointness and Exactness
	6.6	Simple modules, idempotents and projective modules
		6.6.1 Projective modules
		6.6.2 Idempotent refinement
	6.7	Structure of an Artinian ring
		6.7.1 Homology
	6.8	More on tensor products
		6.8.1 Induction and restriction functors
		6.8.2 Globalisation and localisation functors
	6.9	Morita equivalence

7	\mathbf{Alg}	ebras	7 9
	7.1	Algebras and A-modules	79
	7.2	Finite dimensional algebras over fields	80
		7.2.1 Dependence on the field	80
		7.2.2 Representation theory preliminaries	81
		7.2.3 Structure of a finite dimensional algebra over a field	81
	7.3	Cartan invariants (Draft)	82
		7.3.1 Examples	83
		7.3.2 Idempotent lifting revisited	84
		7.3.3 Brauer reciprocity	84
	7.4	On Quasi-heredity — an axiomatic framework	86
		7.4.1 Definitions	86
		7.4.2 Consequences for $A - \text{mod}$	87
		7.4.3 Examples	87
	7.5	Notes and References	87
	7.6	More axiomatic frameworks	87
		7.6.1 Summary of Donkin on finite dimensional algebras	87
		7.6.2 Quasi-hereditary algebras	88
		7.6.3 Cellular algebras	88
	7.7	Forms, module morphisms and Gram matrices (Draft)	88
		7.7.1 Examples	91
		•	
8	_	presentations of the symmetric group	93
	8.1	Introduction	93
	8.2	Young diagrams and the Young lattice	93
	8.3	Representations of S_n from Set	95
		8.3.1 Connection with Schur's work and Schur functors	95
		8.3.2 Idempotents and other elements in $\mathbb{Z}S_n$	97
		8.3.3 Young modules	99
		8.3.4 Specht modules	100
	8.4	Characteristic p , Nakayama and the James abacus	102
	8.5	James–Murphy theory	103
		8.5.1 Murphy elements	105
	8.6	1 "	105
		1	105
		8.6.2 Actions of S_n	106
		8.6.3 Generalised hook lengths and geometry	107
	8.7	Outer products	107
		8.7.1 Outer products over Young subgroups	107
		8.7.2 Outer products over wreath subgroups	107
		8.7.3 The Leduc–Ram–Wenzl representations	108
	8.8	Finite group generalities	108
		8.8.1 Characters	108

9.1 Ordinary Hecke algebras in brief 9.2 Representations 109.3 Temperley—Lieb algebras 9.4 Diagram categories 9.4.1 Relation to quantum groups 9.5 Temperley—Lieb diagram algebras 9.5.1 TL diagram notations 9.6 Representations of Temperley—Lieb diagram algebras 9.5.1 TL diagram notations 9.6 Representations of Temperley—Lieb diagram algebras 9.6.1 Tower approach: Preparation of small examples 9.7 Idempotent subalgebras, F and G functors 9.7.1 Non-exactness of G 9.7.2 More fun with F and G 9.7.3 Decomposition numbers 116 9.7.3 Decomposition numbers 117 10 Representations of the partition algebra 119 10.1 The partition category 10.1.1 Partition diagrams 120 10.1.2 Partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory is Schur algebras 10.4.1 The Schur algebras 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 129 10.4.4 Alcove geometric charaterisation 120 10.5 Notes and references 130 10.5.1 Notes on the Yale papers on the partition algebra 11.1 Context of the Brauer algebra 11.2. Introduction to Brauer algebra 11.2. Il Reductive and Brauer-modular representation theory 112 113 Brauer diagrams and diagram categories 114 Perceptive of the diagram series 115 Brauer diagrams and diagram categories 116 All All All All All All All All All Al	9	The	Temperley-Lieb algebra	109
9.3 Temperley-Lieb algebras 116 9.4 Diagram categories 112 9.4.1 Relation to quantum groups 112 9.5 Temperley-Lieb diagram algebras 113 9.5 Temperley-Lieb diagram algebras 113 9.6 Representations of Temperley-Lieb diagram algebras 113 9.6.1 Tower approach: Preparation of small examples 114 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 115 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 117 10 Representations of the partition algebra 116 10.1 The partition category 119 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 A-modules 122 10.2 Set partitions and diagrams 122 10.3 Representation theory 123 10.4 Representation theory via Schur algebras 125 10.4.1 The global partition algebra as a localisation 128 10.4.2 The global partition algebra as a localisation 128 10.4.5 More 133		9.1	Ordinary Hecke algebras in brief	109
9.3 Temperley-Lieb algebras 116 9.4 Diagram categories 112 9.4.1 Relation to quantum groups 112 9.5 Temperley-Lieb diagram algebras 113 9.5 Representations of Temperley-Lieb diagram algebras 113 9.6 Representations of Temperley-Lieb diagram algebras 113 9.6.1 Tower approach: Preparation of small examples 113 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 116 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 116 10 Representations of the partition algebra 116 10.1 Partition diagrams 120 10.1.2 Partition category 119 10.1.2 Partition diagrams 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 122 10.3 Representation theory 122 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.5 More 133 10.4.5 Mor		9.2	Representations	109
9.4.1 Relation to quantum groups 112 9.5 Temperley—Lieb diagram algebras 113 9.5.1 TL diagram notations 113 9.6 Representations of Temperley—Lieb diagram algebras 113 9.6.1 Tower approach: Preparation of small examples 113 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 115 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 117 10 Representations of the partition algebra 119 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 120 10.1.4 Δ -modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The global partition algebra as a localisation 125 10.4.2 The global partition algebra as a localisation 126 10.4.3 Representation theory 128 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra <		9.3		110
9.5 Temperley-Lieb diagram algebras 113 9.5.1 TL diagram notations 113 9.6 Representations of Temperley-Lieb diagram algebras 113 9.6.1 Tower approach: Preparation of small examples 113 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 115 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 116 10 Representations of the partition algebra 119 10.1.1 Partition category 115 10.1.1 Partition diagrams 120 10.1.2 Partition diagrams 120 10.1.3 Properties of partition categories 121 10.1.4 A-modules 122 10.2 Set partitions and diagrams 122 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The global partition algebra as a localisation 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation		9.4	Diagram categories	112
9.5.1 TL diagram notations 115 9.6 Representations of Temperley-Lieb diagram algebras 115 9.6.1 Tower approach: Preparation of small examples 115 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 115 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 116 10 Representations of the partition algebra 116 10.1 The partition category 115 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ -modules 122 10.2 Set partitions and diagrams 122 10.3 Representation theory via Schur algebras 122 10.4 Representation theory via Schur algebras 122 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 135 10.5 Notes and references 136 10.5.1 Notes on the Yale papers on the partition algebra 136 11.1 Context of the Brauer algebra			9.4.1 Relation to quantum groups	112
9.6 Representations of Temperley-Lieb diagram algebras 115 9.6.1 Tower approach: Preparation of small examples 115 9.7 Idempotent subalgebras, F and G functors 114 9.7.1 Non-exactness of G 116 9.7.2 More fun with F and G 116 9.7.3 Decomposition numbers 117 10 Representations of the partition algebra 115 10.1 The partition category 115 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ -modules 122 10.2 Set partitions and diagrams 122 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.2 The global partition algebra as a localisation 128 10.4.2 The global partition algebra as a localisation 128 10.4.5 More 133 10.5 Notes and references 134 10.5 Notes on the Yale papers on the partition algebra 136 11.2 Introduction to Brauer alg		9.5	Temperley–Lieb diagram algebras	113
9.6.1 Tower approach: Preparation of small examples1139.7 Idempotent subalgebras, F and G functors1149.7.1 Non-exactness of G 1159.7.2 More fun with F and G 1169.7.3 Decomposition numbers11710 Representations of the partition algebra11810.1 The partition category11910.1.1 Partition diagrams12010.1.2 Partition categories12010.1.3 Properties of partition categories12110.1.4 Δ -modules12210.2 Set partitions and diagrams12310.3 Representation theory12510.4 Representation theory via Schur algebras12610.4.1 The Schur algebras12610.4.2 The global partition algebra as a localisation12810.4.3 Representation theory12810.4.4 Alcove geometric charaterisation1310.4.5 More13310.5 Notes and references13410.5 Notes on the Yale papers on the partition algebra1311. Context of the Brauer algebra1311. Introduction to Brauer algebra representations1311. Introduction to Brauer algebra representation theory1311. 2. Reductive and Brauer-modular representation theory1311. 2.1 Reductive and Brauer-modular representation theory1311. 2.2 Globalisation and towers of recollement1311. 3. Brauer diagrams and diagram categories1411. 3.1 Remarks on the ground ring and Cartan matrices14			9.5.1 TL diagram notations	113
9.7 Idempotent subalgebras, F and G functors1149.7.1 Non-exactness of G .1159.7.2 More fun with F and G .1169.7.3 Decomposition numbers11710 Representations of the partition algebra11810.1 The partition category11810.1.1 Partition diagrams12010.1.2 Partition categories12010.1.3 Properties of partition categories12110.1.4 Δ -modules12210.2 Set partitions and diagrams12310.3 Representation theory12510.4 Representation theory via Schur algebras12510.4.1 The Schur algebras12610.4.2 The global partition algebra as a localisation12810.4.3 Representation theory12810.4.4 Alcove geometric charaterisation13210.5 Notes and references13410.5 Notes and references13410.5 Notes on the Yale papers on the partition algebra13511.1 Context of the Brauer algebra13511.2 Introduction to Brauer algebra representations13611.2.1 Reductive and Brauer-modular representation theory13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13611.3 Brauer diagrams and diagram categories14611.3.1 Remarks on the ground ring and Cartan matrices141		9.6		113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9.6.1 Tower approach: Preparation of small examples	113
9.7.2 More fun with F and G 1169.7.3 Decomposition numbers11710 Representations of the partition algebra11910.1 The partition category11910.1.1 Partition diagrams12010.1.2 Partition categories12010.1.3 Properties of partition categories12110.1.4 Δ -modules12210.2 Set partitions and diagrams12310.3 Representation theory12510.4 Representation theory via Schur algebras12510.4.1 The Schur algebras12610.4.2 The global partition algebra as a localisation12810.4.3 Representation theory12810.4.4 Alcove geometric charaterisation13310.5 Notes and references13410.5 Notes on the Yale papers on the partition algebra13411 On representations of the Brauer algebra13511.1 Context of the Brauer algebra representations13511.2 Introduction to Brauer algebra representation theory13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14611.3.1 Remarks on the ground ring and Cartan matrices141		9.7	Idempotent subalgebras, F and G functors	114
9.7.3 Decomposition numbers 117 10 Representations of the partition algebra 118 10.1 The partition category 119 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 133 10.4.5 More 133 10.5 Notes and references 134 10.5 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra representations 135 11.2 Introduction to Brauer algebra representation theory 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.3 Brauer diagrams and diag			9.7.1 Non-exactness of G	115
10 Representations of the partition algebra 10.1 The partition category 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory 126 10.4.1 The Schur algebras 127 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 10.4.5 More 10.5 Notes and references 10.5.1 Notes on the Yale papers on the partition algebra 11.1 Context of the Brauer algebra 11.2 Introduction to Brauer algebra representation theory 11.2.1 Reductive and Brauer-modular representation theory 11.2.2 Globalisation and towers of recollement 11.3 Brauer diagrams and diagram categories 140 11.3 Brauer diagrams and diagram categories 141 141 142			9.7.2 More fun with F and G	116
10.1 The partition category 119 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5 Notes on the Yale papers on the partition algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				117
10.1 The partition category 119 10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5 Notes on the Yale papers on the partition algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141	10	Rep	resentations of the partition algebra	119
10.1.1 Partition diagrams 120 10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 125 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 13 10.4.5 More 13 10.5 Notes and references 13 10.5.1 Notes on the Yale papers on the partition algebra 13 11 On representations of the Brauer algebra 13 11.1 Context of the Brauer algebra 13 11.2 Introduction to Brauer algebra representations 13 11.2.1 Reductive and Brauer-modular representation theory 13 11.2.2 Globalisation and towers of recollement 13 11.3 Brauer diagrams and diagram categories 14 11.3.1 Remarks on the ground ring and Cartan matrices 141		_		
10.1.2 Partition categories 120 10.1.3 Properties of partition categories 121 10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141			- · · · · · · · · · · · · · · · · · · ·	120
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·	
10.1.4 Δ-modules 122 10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 Context of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.2 Set partitions and diagrams 123 10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra representations 135 11.2 Introduction to Brauer algebra representation theory 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.3 Representation theory 125 10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra representations 135 11.2 Introduction to Brauer algebra representation theory 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141		10.2		
10.4 Representation theory via Schur algebras 125 10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.4.1 The Schur algebras 126 10.4.2 The global partition algebra as a localisation 128 10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.4.2 The global partition algebra as a localisation 10.4.3 Representation theory 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 135 11.1 Context of the Brauer algebra 11.2 Introduction to Brauer algebra 11.2.1 Reductive and Brauer-modular representation theory 11.2.2 Globalisation and towers of recollement 11.2.3 Overview of the Chapter 11.3 Brauer diagrams and diagram categories 11.3 Remarks on the ground ring and Cartan matrices 128 128 129 130 131 132 133 134 135 136 137 137 138 138 139 139 130 130 130 130 130 130 130 130 130 130			-	
10.4.3 Representation theory 128 10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.4.4 Alcove geometric charaterisation 132 10.4.5 More 133 10.5 Notes and references 134 10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141				
10.4.5 More				
10.5 Notes and references13410.5.1 Notes on the Yale papers on the partition algebra13411 On representations of the Brauer algebra13511.1 Context of the Brauer algebra13511.2 Introduction to Brauer algebra representations13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141			· ·	
10.5.1 Notes on the Yale papers on the partition algebra 134 11 On representations of the Brauer algebra 135 11.1 Context of the Brauer algebra 135 11.2 Introduction to Brauer algebra representations 135 11.2.1 Reductive and Brauer-modular representation theory 135 11.2.2 Globalisation and towers of recollement 137 11.2.3 Overview of the Chapter 138 11.3 Brauer diagrams and diagram categories 140 11.3.1 Remarks on the ground ring and Cartan matrices 141		10.5		
11.1 Context of the Brauer algebra13511.2 Introduction to Brauer algebra representations13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141		_0.0		
11.1 Context of the Brauer algebra13511.2 Introduction to Brauer algebra representations13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141	11	On 1	representations of the Brauer algebra	135
11.2 Introduction to Brauer algebra representations13511.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141			-	
11.2.1 Reductive and Brauer-modular representation theory13511.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141			· · · · · · · · · · · · · · · · · · ·	
11.2.2 Globalisation and towers of recollement13711.2.3 Overview of the Chapter13811.3 Brauer diagrams and diagram categories14011.3.1 Remarks on the ground ring and Cartan matrices141			ÿ -	
11.2.3 Overview of the Chapter			- · · · · · · · · · · · · · · · · · · ·	
11.3 Brauer diagrams and diagram categories				
11.3.1 Remarks on the ground ring and Cartan matrices		11.3		
		11.0		
		11 4	Properties of the diagram basis	142
11.4.1 Manipulation of Brauer diagrams: lateral composition		11.1		
11.4.2 Ket-bra diagram decomposition				
11.4.2 Ret bla diagram decomposition $B_n(\delta)$		11.5		

12	Gen	neral representation theory of the Brauer algebra	149
	12.1	Brauer Δ -modules	149
		12.1.1 Filtration of the left regular module	149
		12.1.2 Specht modules	151
		12.1.3 Δ -module constructions	151
		12.1.4 Δ -module examples	152
		12.1.5 Simple head conditions for Δ -modules	153
		12.1.6 The base cases	154
		12.1.7 The case $k \supseteq \mathbb{Q}$	155
	12.2	Δ -Filtration of projective modules	155
		12.2.1 Some character formulae	155
		12.2.2 General preliminaries	155
		12.2.3 Δ -filtration	156
		12.2.4 On simple modules, labelling and Brauer reciprocity	157
	12.3	Globalisation functors	158
		12.3.1 Preliminaries	158
		12.3.2 <i>G</i> -functors	160
		12.3.3 Idempotent globalisation	161
		12.3.4 Simple head conditions revisited using G-functors	163
		12.3.5 Simple modules revisited using G-functors	164
		12.3.6 Induction and restriction	165
	12.4	Characters and Δ -filtration factors	165
	12.1	12.4.1 Aside on case $\delta = 0$	166
		12.4.2 The main case	167
		12.4.3 The <i>n</i> -independence of $(P(\lambda):\Delta(\mu))$	170
		12.1.6 The n independence of $(T(n), \Delta(n))$	110
13	Con	nplex representation theory of the Brauer algebra	173
		Blocks of $B_n(\delta)$	173
		13.1.1 Blocks I: actions of central elements	173
	13.2	Blocks II: δ -balanced pairs of Young diagrams	176
		13.2.1 Aside on the original definition of ' δ -balanced pairs'	176
		13.2.2 A constructive treatment: δ -charge and δ -BS	176
		13.2.3 π -rotation and MiBS	177
		13.2.4 Connections and properties of MiBS	178
		13.2.5 Δ -module maps and block relations	180
	13.3	The block graph	181
		The graph isomorphism, via geometrical considerations	184
		13.4.1 Reflection group action	184
		13.4.2 The graph isomorphism	185
		13.4.3 Aside on alternative reflection group actions	189
	13 5	Decomposition data	190
	10.0	13.5.1 Hypercubical decomposition graphs	190
		13.5.2 Hypercubical decomposition graphs: tools and examples	192
	13 6	Embedding properties of δ -blocks in Λ	192
	10.0	13.6.1 The Relatively–regular–step Lemma	198
		13.6.2 The Reflection Lemmas	198
		10.0.2 Inc iconcentral delimation	100

	13.6.3 The Embedding Theorem	200
13.7	The Decomposition Matrix Theorem	201
		201
	13.7.2 The singularity lemma	204
	13.7.3 The $\operatorname{Proj}_{\lambda}\operatorname{Ind}$ functor	
	13.7.4 The generic projective lemma	
	13.7.5 The generic inductive-step lemma	
	13.7.6 The rank-2 inductive-step lemma	
13.8	Some remarks on the block graph	
14 Eva	mple: the Temperley-Lieb algebra again 2	15
14.1	More on categories of modules	
	14.1.1 More fun with F and G functors	15
	14.1.2 Saturated towers	217
	14.1.3 Quasi-heredity of planar diagram algebras	217
15 Lie	groups 2	19
15.1	Intro	19
	Preliminaries	
	Lie group	
10.0	15.3.1 Example: $SU(2)$	
	15.3.2 Lie algebra	.41

Chapter 1

Introduction

Chapters 1 and 2 give a brief introduction to representation theory, and a review of some of the basic algebra required in later Chapters. A more thorough grounding may be achieved by reading the works listed in §1.2: *Notes and References*.

Section 1.1 (upon which later chapters do not depend) attempts to provide a sketch overview of topics in the representation theory of finite dimensional algebras. In order to bootstrap this process, we use some terms without prior definition. We assume you know what a vector space is, and what a ring is (else see Section 2.1.1). For the rest, either you know them already, or you must intuit their meaning and wait for precise definitions until after the overview.

1.1 Representation theory preamble

1.1.1 Matrices

Let $M_{m,n}(R)$ denote the additive group of $m \times n$ matrices over a ring R, with additive identity $0_{m,n}$. Let $M_n(R)$ denote the ring of $n \times n$ matrices over R. Define a block diagonal composition (matrix direct sum)

Define Kronecker product

$$\otimes: M_{a,b}(R) \times M_{m,n}(R) \quad \to \quad M_{am,bn}(R) \tag{1.1}$$

$$(A,B) \mapsto \begin{pmatrix} a_{11}B & a_{12}B & \dots \\ a_{21}B & a_{22}B & \dots \\ \vdots & & \end{pmatrix}$$
 (1.2)

In general $A \otimes B \neq B \otimes A$, but (if R is commutative then) for each pair A, B there exists a pair of permutation matrices S, T such that $S(A \otimes B) = (B \otimes A)T$ (if A, B square then T = S — the intertwiner of $A \otimes B$ and $B \otimes A$).

1.1.2Groups

(1.1.1) A matrix representation of a group G over a commutative ring R is a map

$$\rho: G \to M_n(R) \tag{1.3}$$

such that $\rho(g_1g_2) = \rho(g_1)\rho(g_2)$. In other words it is a map from the group to a different system, which nonetheless respects the extra structure (of multiplication) in some way. The study of representations — models of the group and its structure — is a way to study the group itself.

- (1.1.2) The map ρ above is an example of the notion of representation that generalises greatly. A mild generalisation is the representation theory of R-algebras that we shall discuss, but one could go further. Physics consists in various attempts to model or represent the observable world. In a model, Physical entities are abstracted, and their behaviour has an image in the behaviour of the model. We say we understand something when we have a model or representation of it mapping to something we understand (better), which does not wash out too much of the detailed behaviour.
- (1.1.3) Representation theory itself seeks to classify and construct representations (of groups, or other systems). Let us try to be more explicit about this.
- (I) Suppose ρ is as above, and let S be an arbitrary invertible element of $M_n(R)$. Then one immediately verifies that

$$\rho_S: G \to M_n(R)$$

$$g \mapsto S\rho(g)S^{-1}$$

$$(1.4)$$

$$g \mapsto S\rho(g)S^{-1} \tag{1.5}$$

is again a representation.

(II) If ρ' is another representation (by $m \times m$ matrices, say) then

$$\rho \oplus \rho' : G \longrightarrow M_{m+n}(R)$$

$$g \mapsto \rho(g) \oplus \rho'(g)$$
(1.6)
$$(1.7)$$

$$g \mapsto \rho(g) \oplus \rho'(g)$$
 (1.7)

is yet another representation.

(III) For a finite group G let $\{g_i : i = 1, ..., |G|\}$ be an ordering of the group elements. Each element g acts on G, written out as this list $\{g_i\}$, by multiplication from the left (say), to permute the list. That is, there is a permutation $\sigma(g)$ such that $gg_i = g_{\sigma(g)(i)}$. This permutation can be recorded as a matrix,

$$\rho_{Reg}(g) = \sum_{i=1}^{|G|} \epsilon_{i \ \sigma(g)(i)}$$

(where $\epsilon_{ij} \in M_{|G|}(R)$ is the i, j-elementary matrix) and one can check that these matrices form a representation, called the regular representation.

Clearly, then, there are unboundedly many representations of any group. However, these constructions also carry the seeds for an organisational scheme...

(1.1.4) Firstly, in light of the ρ_S construction, we only seek to classify representations up to isomorphism (i.e. up to equivalences of the form $\rho \leftrightarrow \rho_S$).

Secondly, we can go further (in the same general direction), and give a cruder classification, by character. (While cruder, this classification is still organisationally very useful.) We can briefly explain this as follows.

Let c_G denote the set of classes of group G. A class function on G is a function that factors through the natural set map from G to the set c_G . Thus an R-valued class function is completely specified by a c_G -tuple of elements of R (that is, an element of the set of maps from c_G to R, denoted R^{c_G}). For each representation ρ define a character map from G to R

$$\chi_{\rho}: G \to R$$

$$g \mapsto \operatorname{Tr}(\rho(g))$$
(1.8)

$$g \mapsto \operatorname{Tr}(\rho(g))$$
 (1.9)

(matrix trace). Note that this map is fixed up to isomorphism. Note also that this map is a class function. Fixing G and varying ρ , therefore, we may regard the character map instead as a map χ_{-} from the collection of representations to the set of c_{G} -tuples of elements of R.

Note that pointwise addition equips R^{c_G} with the structure of abelian group. Thus, for example, the character of a sum of representations isomorphic to ρ lies in the subgroup generated by the character of ρ ; and $\chi_{\rho \oplus \rho'} = \chi_{\rho} + \chi_{\rho'}$ and so on.

We can ask if there is a small set of representations whose characters 'No-span' the image of the collection of representations in R^{c_G} . (We could even ask if such a set provides an R-basis for R^{c_G} (in case R a field, or in a suitably corresponding sense — see later). Note that $|c_G|$ provides an upper bound on the size of such a set.)

(1.1.5) Next, conversely to the direct sum result, suppose $R_1: G \to M_m(R), R_2: G \to M_n(R),$ and $V: G \to M_{m,n}(R)$ are set maps, and that a set map $\rho_{12}: G \to M_{m+n}(R)$ takes the form

$$\rho_{12}(g) = \begin{pmatrix} R_1(g) & V(g) \\ 0 & R_2(g) \end{pmatrix}$$

$$\tag{1.10}$$

(a matrix of matrices). Then ρ_{12} a representation of G implies that both R_1 and R_2 are representations. Further, $\chi_{\rho_{12}} = \chi_{R_1} + \chi_{R_2}$ (i.e. the character of ρ_{12} lies in the span of the characters of the smaller representations). Accordingly, if the isomorphism class of a representation contains an element that can be written in this way, we call the representation reducible.

(1.1.6) For a finite group over $R = \mathbb{C}$ (say) we shall see later that there are only a finite set of 'irreducible' representations needed (up to equivalences of the form $\rho \leftrightarrow \rho_S$) such that every representation can be built (again up to equivalence) as a direct sum of these; and that all of these irreducible representations appear as direct summands in the regular representation.

We have done a couple of things to simplify here. Passing to a field means that we can think of our matrices as recording linear transformations on a space with respect to some basis. To say that ρ is equivalent to a representation of the form ρ_{12} above is to say that this space has a G-subspace (R_1) is the representation associated to the subspace). A representation is irreducible if there is no such proper decomposition (up to equivalence). A representation is completely reducible if for every decomposition $\rho_{12}(q)$ there is an equivalent identical to it except that V(q) = 0 — the direct sum.

Theorem [Mashke] Let ρ be a representation of a finite group G over a field K. If the characteristic of K does not divide the order of G, then ρ is completely reducible.

Corollary Every complex irreducible representation of G is a direct summand of the regular representation.

Representation theory is more complicated in general than it is in the cases to which Mashke's Theorem applies, but the notion of irreducible representations as fundamental building blocks survives in a fair degree of generality. Thus the question arises:

Over a given R, what are the irreducible representations of G (up to $\rho \leftrightarrow \rho_S$ equivalence)? There are other questions, but as far as physical applications (for example) are concerned, this is arguably the main interesting question.

(1.1.7) Examples: In this sense, of constructing irreducible representations, the representation theory of the symmetric groups S_n over \mathbb{C} is completely understood! (We shall review it.) On the other hand, over other fields we do not have even so much as a conjecture as to how to organise the statement of a conjecture! So there is work to be done.

1.1.3 Group algebras

(1.1.8) Remark: When working with R a field it is natural to view $M_n(R)$ as the ring of linear transformations of vector space R^n expressed with respect to a given ordered basis. The equivalence $\rho \leftrightarrow \rho_S$ corresponds to a change of basis, and so working up to equivalence corresponds to demoting the matrices themselves in favour of the underlying linear transformations (on R^n). In this setting it is common to refer to the linear transformations by which G acts on R^n as the representation (and to spell out that the matrices are a matrix representation, regarded as arising from a choice of ordered basis).

Such an action of a group G on a set makes the set a G-set.¹ However, given that it is a set with extra structure (in this case, a vector space), it is a small step to want to try to take advantage of the extra structure. For example, we can define RG to be the R-vector space with basis G (see Exercise 1.3.1), and define a multiplication on RG by

$$\left(\sum_{i} r_i g_i\right) \left(\sum_{j} r'_j g_j\right) = \sum_{ij} (r_i r'_j) (g_i g_j) \tag{1.11}$$

which makes RG a ring (see Exercise 1.3.2). One can quickly check that

$$\rho: RG \to M_n(R) \tag{1.12}$$

$$\sum_{i} r_{i} g_{i} \quad \mapsto \quad \sum_{i} r_{i} \rho(g_{i}) \tag{1.13}$$

extends a representation ρ of G to a representation of RG in the obvious sense. Superficially this construction is extending the use we already made of the multiplicative structure on $M_n(R)$, to make use not only of the additive structure, but also of the particular structure of 'scalar' multiplication (multiplication by an element of the centre), which plays no role in representing the group multiplication $per\ se$. The construction also makes sense at the G-set/vector space level, since linear transformations support the same extra structure.

The same formal construction of RG works when R is an arbitrary commutative ring, except that RG is not then a vector space. Instead it is called (in respect of the vector-space-like aspect

¹For a set S, a map $\psi: G \times S \to S$ (written $\psi(g,s) = gs$) such that (gg')s = g(g's), equips S with the property of left G-set.

of its structure) a free R-module with basis G. The idea of matrix representation goes through unchanged. If one wants a generalisation of the notion of G-set for RG to act on, the additive structure is forced from the outset. This is called a (left) RG-module. This is, then, an abelian group (M, +) with a suitable action of RG defined on it: r(x + y) = rx + ry, (r + s)x = rx + sx, (rs)x = r(sx), 1x = x $(r, s \in RG, x, y \in M)$, just as the original vector space R^n was. What is new at this level is that such a structure may not have a basis (a free module has a basis), and so may not correspond to any class of matrix representations.

(1.1.9) Exercise. Construct an RG-module without basis.

(Possible hints: 1. Consider $R = \mathbb{Z}$, G trivial, and look at $\S 6.3$. 2. Consider the ideal $\langle 2, x \rangle$ in $\mathbb{Z}[x]$.

From this point the study of representation theory may be considered to include the study of both matrix representations and modules.

(1.1.10) What other kinds of systems can we consider representation theory for?

A natural place to start studying representation theory is in Physical modeling. Unfortunately we don't have scope for this in the present work, but we will generalise from groups at least as far as rings and algebras.

The generalisation from groups to group algebras RG over a commutative ring R is quite natural as we have seen. The most general setting within the ring-theory context would be the study of arbitrary ring homomorphisms from a given ring. However, if one wants to study this ring by studying its modules (the obvious generalisation of the RG-modules introduced above) then the parallel of the matrix representation theory above is the study of modules that are also free modules over the centre, or some subring of the centre. (For many rings this accesses only a very small part of their structure, but for many others it captures the main features. The property that every module over a commutative ring is free holds if and only if the ring is a field, so this is our most accessible case. We shall motivate the restriction shortly.) This leads us to the study of algebras.

To introduce the general notion of an algebra, we first write cen(A) for the centre of a ring A

$$cen A = \{ a \in A \mid ab = ba \ \forall b \in A \}$$

(1.1.11) An algebra A (over a commutative ring R), or an R-algebra, is a ring A together with a homomorphism $\psi: R \to \text{cen } (A)$, such that $\psi(1_R) = 1_A$.

Examples: Any ring is a \mathbb{Z} -algebra. Any ring is an algebra over its centre. The group ring RG is an R-algebra by $r \mapsto r1_G$. The ring $M_n(R)$ is an R-algebra.

Let $\psi: R \to \text{cen}(A)$ be a homomorphism as above. We have a composition $R \times A \to A$:

$$(r,a) = ra = \psi(r)a$$

so that A is a left R-module with

$$r(ab) = (ra)b = a(rb) \tag{1.14}$$

Conversely any ring which is a left R-module with this property is an R-algebra.

(1.1.12) An R-representation of A is a homomorphism of R-algebras

$$\rho: A \to M_n(R)$$

(1.1.13) The study of RG depends heavily on R as well as G. The study of such R-algebras takes a relatively simple form when R is an algebraically closed field; and particularly so when that field is \mathbb{C} . We shall aim to focus on these cases. However there are significant technical advantages, even for such cases, in starting by considering the more general situation. Accordingly we shall need to know a little ring theory, even though general ring theory is not the object of our study.

Further, as we have said, neither applications nor aesthetics restrict attention to the study of representations of groups and their algebras. One is also interested in the representation theory of more general algebras.

1.1.4 Modules and representations

The study of algebra-modules and representations for an algebra over a field has some special features, but we start with some general properties of modules over an arbitrary ring R.

- (1.1.14) A left R-module (for R an arbitrary ring) is *simple* if it has no non-trivial submodules... Let M be a left R-module. A *composition series* for M is a sequence of submodules $M = M_0 \supset M_1 \supset M_2 \supset ... \supset M_l = 0$ such that M_i/M_{i+1} is simple.
- (1.1.15) Theorem. (Jordan-Holder) Let M be a left R-module. The following are equivalent:
- (I) M has a composition series;
- (II) every ascending and descending chain of submodules of M stops (these two stopping conditions separately are known as ACC and DCC);
- (III) every sequence of submodules of M can be refined to a composition series.
- (1.1.16) A module M is semisimple if equal to the sum of its simple submodules.

A left ideal of R is a submodule of R regarded as a left-module for itself. The Jacobsen radical of R is the intersection of its maximal left ideals. Ring R itself is a semisimple ring if its radical vanishes.

- (1.1.17) Ring R is Artinian (resp. Noetherian) if it has the DCC (resp. ACC) as a left module for itself.
- (1.1.18) **Theorem.** (Schur's Lemma) Suppose M, M' are nonisomorphic simple R modules. Then the ring $hom_R(M, M)$ of R-module homomorphisms from M to itself is a division ring; and $hom_R(M, M') = 0$.
- (1.1.19) **Theorem.** (Artin-Wedderburn) Suppose R is semisimple and Artinian. Then R is a direct sum of rings of form $M_{n_i}(R_i)$ (i = 1, 2, ..., l, some l) where each R_i is a division ring.
- (1.1.20) Suppose M', M'' submodules of R-module M. They $span\ M$ if M' + M'' = M; and are independent if $M' \cap M'' = 0$. If they are both independent and spanning we write $M = M' \oplus M''$ (direct sum). A module is indecomposable if it has no proper direct sum decomposition.
- (1.1.21) **Theorem.** (Krull–Schmidt) If R is Artinian then as a left-module for itself it is a finite direct sum of indecomposable modules; and any two such decompositions may be ordered so that the i-th summands are isomorphic.
- (1.1.22) If $x: M \to M'$, $x': M' \to M$ are R-module homomorphisms such that $x \circ x' = 1_{M'}$ then x is a *split surjection* (and x' a split injection).
- (1.1.23) An R-module is *projective* if it is a direct summand of a free module.

(1.1.24) **Theorem.** TFAE

- (I) R-module P is projective;
- (II) whenever there is an R-module surjection $x: M \to M'$ and a map $y: P \to M'$ then there is a map $z: P \to M$ such that $x \circ z = y$;
- (III) every R-module surjection $t: M \to P$ splits.
- (1.1.25) If R is Artinian and J_R its radical then

$$R/J_R = \bigoplus_{i=1}^l M_{n_i}(R_i)$$

There is a simple R/J_R -module (L_i say) for each factor, so that as a left module

$$R/J_R \cong \bigoplus_i n_i L_i$$

(i.e. n_i copies of L_i). There is a corresponding decomposition of 1 in R/J_R :

$$1 = \sum_{i} e_{i}$$

into orthogonal idempotents. One may find corresponding idempotents in R itself (see later) so that $1 = \sum_i e'_i$ there. This gives left module decomposition

$$R = \bigoplus_{i} n_i P_i$$

where (by (1.1.21)) the P_i s are a complete set of indecomposable projective modules up to isomorphism.

(1.1.26) TO DO:

Finish overview of modules Grothendieck group Tensor product induction

(1.1.27) Operators acting on a space; their eigenvectors and eigenvalues.

Here we remark very briefly and generally on the kind of Physical problem that can lead us into representation theory.

A typical Physical problem has a linear operator Ω acting on a space H, with that action given by the action of the operator on a (spanning) subset of the space. One wants to find the eigenvalues of Ω .

The eigenvalue problem may be thought of as the problem of finding the one-dimensional subspaces of H as an $\langle \Omega \rangle$ -module, where $\langle \Omega \rangle$ is the (complex) algebra generated by Ω . That is, we want to find elements h_i in H such that:

$$\Omega h_i = \lambda_i h_i$$

— noting only that, usually, the object of primary physical interest is λ_i rather than h_i . If H is finite dimensional then (the complex algebra generated by) Ω will obey a relation of the form

$$\prod_{i} (\Omega - \lambda_i)^{m_i} = 0$$

Of course the details of this form are ab initio unknown to us. But, proceeding formally for a moment, if any $m_i > 1$ (necessarily) here, so that $S = \prod_i (\Omega - \lambda_i) \neq 0$, then S generates a non-vanishing nilpotent ideal (we say, the algebra has a radical). Obviously any such nilpotent object has 0-spectrum, so two operators differing by such an object have the same spectrum. In other words, the image of Ω in the quotient algebra by the radical has the same spectrum $\{\lambda_i\}$. An algebra with vanishing radical (such as the quotient of a complex algebra by its radical) has a particularly simple structural form, so this is a potentially useful step.

However, gaining access to this form may require enormously greater arithmetic complexity than the original algebra. In practice, a balance of techniques is most effective, even when motivated by physical ends. This balance can often be made by analysing the regular module (in which every eigenvalue is manifested), and thus subquotients of projective modules, but not more exotic modules. (Of course Mathematically other modules may well also be interesting — but this is a matter of aesthetic judgement rather than application.)

It may also be necessary to find the subspaces of H as a module for an algebra generated by a set of operators $\langle \Omega_i \rangle$. A similar analysis pertains.

A particularly nice (and Physically manifested) situation is one in which the operators Ω_i (whose unknown spectrum we seek to determine) are known to take the form of the representation matrices of elements of an abstract algebra A in some representation:

$$\Omega_i = \rho(\omega_i)$$

Of course any reduction of Ω_i in the form of (1.10) reduces the problem to finding the spectrum of $R_1(\omega_i)$ and $R_2(\omega_i)$. Thus the reduction of ρ to a (not necessarily direct) sum of irreducibles:

$$\rho(\omega_i) \cong +_{\alpha} \rho_{\alpha}(\omega_i)$$

reduces the spectrum problem in kind. In this way, Physics drives us to study the representation theory of the abstract algebra A.

1.2 Notes and references

The following texts are recommended reading: Jacobson[25, 26], Bass[4], Maclane and Birkoff[31], Green[22], Curtis and Reiner[16, 17], Cohn[12], Anderson and Fuller[3], Benson[5], Adamson[2], Cassels[9], Magnus, Karrass and Solitar[?], and references therein.

1.3 Exercises

(1.3.1) Let R be a commutative ring and S a set. Then RS denotes the 'free R-module with basis S', the R-module of formal finite sums $\sum_i r_i s_i$ with the obvious addition and R action. Show that this is indeed an R-module.

(1.3.2) Let R be a commutative ring and G a finite group. Show that the multiplication in (1.11) makes RG a ring.

1.3. EXERCISES 17

Hints: We need to show associativity. We have

$$\left(\left(\sum_{i} r_{i} g_{i}\right) \left(\sum_{j} r_{j}' g_{j}\right)\right) \left(\sum_{k} r_{k}'' g_{k}\right) = \left(\sum_{ij} (r_{i} r_{j}') (g_{i} g_{j})\right) \left(\sum_{k} r_{k}'' g_{k}\right) = \sum_{ijk} ((r_{i} r_{j}') r_{k}'') ((g_{i} g_{j}) g_{k})$$
(1.15)

and

$$\left(\sum_{i} r_{i} g_{i}\right) \left(\left(\sum_{j} r_{j}' g_{j}\right) \left(\sum_{k} r_{k}'' g_{k}\right)\right) = \left(\sum_{i} r_{i} g_{i}\right) \left(\sum_{j k} (r_{j}' r_{k}'') (g_{j} g_{k})\right) = \sum_{i \neq k} (r_{i} (r_{j}' r_{k}'')) (g_{i} (g_{j} g_{k}))$$

$$(1.16)$$

These are equal by associativity of multiplication in R and G separately.

(1.3.3) Show that RG is still a ring as above if G is a not-necessarily finite monoid and RG means the free module of finite support as above.

Hints: Multiplication in monoid G is also associative.