EECS 114: Engineering Data Structures and Algorithms Lecture 5

Instructor: Ryan Rusich

E-mail: rusichr@uci.edu

Office: EH 2204

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Trees

What is a Tree

- A tree is an abstract model that captures hierarchical structure
- Tree A connected acyclic graph of nodes

Trees

- Examples:
 - Organizational charts
 - File systems Unix, Windows
 - Genealogy (family tree)

Recursive Definition of a Tree

- A tree is a collection of tree nodes
 - One node is called the root
 - o root has a rank of zero
- A tree can be empty, otherwise a tree consists of a node called a root (R) and zero or more non-empty subtrees each of whose roots are connected by an edge to the root.

Recursive Definition of a Tree

Tree: Nodes and Edges

• A tree has **N nodes** and **N-1 edges** because each edge connects some node to its parent and every node except the root has exactly one parent

- **Root:** node without parent (A)
- Internal node:
 - o node with at least one child
 - \circ (A, B, C, F)
- External node (or leaf):
 - o node without children
 - \circ (E, I, J, K, G, H, D)
- Ancestors of a node:
 - o parent,
 - o grandparent,
 - o grand-grandparent, etc.
- **Subtree**: tree consisting of a node and its descendants

- Descendant of a node:
 - o child,
 - o grandchild,
 - o grand-grandchild, etc.
- Siblings:
 - nodes with <u>the same</u> parent

- Depth of a node:
 - o number of ancestors
- Height of root:
 - maximum depth of any node.
 - The height of a tree is the number of edges on the longest path from the root to a leaf
 - Can similarly find the height of any node

- Path a sequence of nodes $n_1, n_2, ..., n_k$ such that n_i is the parent of n_{i+1} .
- Path length the number of edges on the path (k-1)
- There is a path of length zero from every node to itself, i.e., shortest path.
- There is exactly <u>one</u> path from the root to each node (acyclic)

• If there is a path from n_1 to n_2 then n_1 is an <u>ancestor</u> of n_2 and n_2 is a <u>descendant</u> of n_1

- In class exercise what is/are the...
 - o Root
 - Leaves
 - Height of H
 - Depth of H
 - Ancestors of H
 - Descendants of H
 - Path from A to M
 - Length of path from A to M
 - Internal nodes

- In class exercise what is/are the...
 - o Root A
 - o Leaves B F G L M I J N
 - o Height of H 1
 - o Depth of H 2
 - o Ancestors of H A D
 - Descendants of H L M
 - o Path from A to M A D H M
 - Length of path from A to M 3
 - o Internal nodes A C D H E K

Tree Traversals

Tree Traversal

• Definition: a **traversal** of a tree **T** is a systematic way of accessing, or "visiting", all of the nodes in **T**.

Preorder Traversal

- In a **preorder traversal**, a node is visited before its descendants
- The preorder listing of the nodes of T is the root of T followed by the nodes of T_1 in preorder, then the nodes of T_2 in preorder, and so on up to the nodes of T_k in preorder.
- Intuition: List the node the <u>first time</u> it is visited

Preorder Traversal

ABCFGDHLMIJEKN

Inorder Traversal

- In a **inorder traversal**, a node is visited between its descendants.
- The inorder listing of the nodes of T are the nodes of T_1 inorder, followed by the root, followed by the nodes of $T_2, ..., T_k$ each group of nodes in inorder.
- Intuition: List the node the <u>second time</u> it is passed

Inorder Traversal

BAFCGLHMDIJNKE

Postorder Traversal

- In a **postorder traversal**, a node is visited after its descendants.
- The **postorder** listing of the nodes of T is the nodes of T_1 in **postorder** then the nodes of T_2 in **postorder** and so on up to T_k all followed by the node n.
- Intuition: List the node the <u>last time</u> it is passed.

Postorder Traversal

In class exercise

Data Structure for Trees

- A node is represented by an object storing
 - o Element
 - o Parent node
 - Sequence of children nodes

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has at most <u>two</u> children
- We call the children of an internal node <u>left child</u> and <u>right child</u>
- Alternative recursive definition: a binary tree is either
 - o a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

Applications:

- arithmetic expressions
- decision processes
- searching

Data Structure for Binary Trees

Properties of Binary Trees

- Notation
 - n number of nodes
 - e number of external nodes
 - i number of internal nodes
 - h height

Properties:

$$e \le i + 1$$

$$n \le 2e - 1$$

■
$$h \leq i$$

■
$$h \le (n-1)/2$$

$$e \le 2^h$$

■
$$h \ge \log_2 e$$

■
$$h \ge \log_2(n+1) - 1$$

Binary Search Tree

- A binary search tree is a binary tree storing keys (or key-element pairs) satisfying the following property:
 - \circ Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v.
 - $\circ key(u) < key(v) < key(w)$

Binary Search Tree?

Preorder Traversal

```
void preorder(Node curr)
  if ( curr != null )
      print curr.value
      preorder (curr.left)
      preorder (curr.right)
```

Postorder Traversal

```
void postorder(Node curr)
  if ( curr != null)
      postorder (curr.left)
      postorder (curr.right)
      print curr.value
```

Inorder Traversal

```
void inorder(Node curr)
  if ( curr != null)
    inorder (curr.left)
    print curr.value
  inorder (curr.right)
```

Inorder Traversal – C++

```
void inorder(Node* curr)
  if ( curr )
     inorder (curr->left)
     print curr->value
  inorder (curr->right)
```

Inorder Traversal

3 5 6 7 8 9

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - o internal nodes: operators
 - o external nodes: operands
- Example: arithmetic expression tree for the expression:

$$(2 \times (a - 1) + (3 \times b))$$

Arithmetic Expression Tree

• In class exercise - give postfix notation by doing postorder traversal

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees


```
Algorithm evalExpr(v)

if isExternal(v)

return v.element()

else

x \leftarrow evalExpr(leftChild(v))

y \leftarrow evalExpr(rightChild(v))

\Diamond \leftarrow operator stored at v

return x \Diamond y
```

- Given an infix expression, use the stack based algorithm to convert infix to postfix
- Convert postfix expression to a tree

Algorithm

- Make a stack of node pointers
- Operands push a new tree onto the stack
- Operators pop two trees from the stack. Use the operator as the root of a new tree with the popped trees as children. Push a new tree onto the stack

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

$$(a + b) * (c * (d + e)) \longrightarrow ab+cde+**$$

