Package 'BayesQuantify'

December 17, 2024

Title An R package utilized to refine the ACMG/AMP criteria according to the Bayesian framework **Version** 1.0.0

Description The guidelines proposed by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP)have undergone continuous review and refinement for different rules, genes, and diseases, driving optimization and enhancing variant interpretation standards in genetic testing. In 2018, the Clinical Genome Resource (ClinGen) Sequence Variant Interpretation (SVI) Working Group has proposed a Bayesian Classification Framework to model the ACMG/AMP guidelines. This framework has successfully quantified the thresholds for applying PM5 and PP3/BP4 criteria. However, existing software and tools designed for quantifying the evidence strength and establishing corresponding thresholds to refine the ACMG/AMP criteria are lacking. This package provide users with a unified resource for quantifying the strength of evidence for ACMG/AMP criteria using a naive Bayes classifier.

```
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports bootLR,
      ComplexHeatmap,
      dplyr,
      ggplot2,
      gridExtra,
     patchwork,
      reshape2,
      scales,
      stringr,
      ggpie,
      stats,
      utils,
      circlize,
      plyr
Depends R (>= 4.1.0)
LazyData true
Suggests knitr,
      rmarkdown,
      testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
```

2 .onLoad

R topics documented:

	.onLoad	- 2
	ACMG_Classification	3
	add_info	3
	auto_select_postp	4
	BCF	4
	ClinGen_dataset	5
	ClinVar_2019_dataset	6
	discrete_cutoff	7
	get_lr_threshold	8
	heatmap_LR	8
	local_bootstrapped_lr	9
	local_lr	10
	LR	11
	lr_CI	12
	lr_CI_result	13
	LR_result	13
	multi_plot	14
	op_postp	15
	plot_lr	16
	Point_Classification	16
	VUS_classify	17
Index		19

 $. \, {\sf onLoad} \,$

Define the global Variables

Description

Define the global Variables

Usage

.onLoad(libname, pkgname)

Arguments

lib name pkgname package name

Value

global variables

Examples

#null

ACMG_Classification 3

ACMG_Classification	Classifying variants into five distinct categories according to the 2015
	ACMG/AMP guidelines

Description

Classifying variants into five distinct categories according to the 2015 ACMG/AMP guidelines

Usage

```
ACMG_Classification(data, evidence_col)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

evidence_col The column name for ACMG evidence(str)

Value

A new DataFrame that incorporates the input data and the results of variant classification

Examples

```
## Not run:
data("ClinGen_dataset")
ACMG_Classification(ClinGen_dataset, "Applied Evidence Codes (Met)")
## End(Not run)
```

Description

Count the number of "supporting", "moderate", "strong" and "very strong" strengths of evidence for pathogenicity

Usage

```
add_info(data, classification_col)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and classification details

classification_col

The column name for variant classification (str). Variants should be classified into five distinct categories: "P," "LP," "B," "LB," and "VUS."

4 BCF

Value

A new DataFrame that includes the input data and four new columns, these four columns count the number of different pathogenic evidence strengths for each variant, which can be used for further categorization

Examples

```
data("ClinGen_dataset")
ClinGen_dataset <- add_info(ClinGen_dataset, "Assertion")</pre>
```

auto_select_postp

Automatic definition of posterior probability and odds of pathogenicity values for different strengths of evidence

Description

Automatic definition of posterior probability and odds of pathogenicity values for different strengths of evidence

Usage

```
auto_select_postp(prior_probability)
```

Arguments

prior_probability

The prior probability of pathogenicity (proportion of P/LP variants in a set of variants)

Value

Prior_probability and OP for each evidence level

Examples

```
auto_select_postp(0.1)
```

BCF

Classifying variants into five distinct categories according to the Bayesian classification framework

Description

Classifying variants into five distinct categories according to the Bayesian classification framework

Usage

```
BCF(data, evidence_col, prior_p, op_vs)
```

ClinGen_dataset 5

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

evidence_col The column name for ACMG evidence(str)

prior_p The prior probability of pathogenicity (proportion of P/LP variants in a set of

variants)

op_vs Odds of pathogenicity (OP) of "Very String"

Value

A new DataFrame that incorporates the input data and the results of variant classification

Examples

```
## Not run:
data("ClinGen_dataset")
BCF(ClinGen_dataset, "Applied Evidence Codes (Met)", 0.1, 350)
## End(Not run)
```

ClinGen_dataset

The ClinGen Curated Variants dataset

Description

This dataset encompasses classification summaries for 6,768 curated variants across 74 diseases, including 1850 P, 1463 LP, 679 LB, 775 B, and 2001 US variants.

Usage

ClinGen_dataset

Format

A data frame with 6768 rows and 20 variables:

#Variation Variation, in HGVSc

ClinVar Variation Id ClinVar Variation ID

Allele Registry Id ClinGen Allele Registry ID

HGVS Expressions HGVS Expressions in ClinVar

HGNC Gene Symbol Gene Symbol

Disease Variant related disease

Mondo Id Mondo Disease Ontology ID

Mode of Inheritance Genetic Inheritance pattern

Assertion Variant Classification

Applied Evidence Codes (Met) Criteria, represent following the SVI's recommendations

Applied Evidence Codes (Not Met) Criteria not used

6 ClinVar_2019_dataset

Summary of interpretation Detailed information for each applied criteria

PubMed Articles PubMed ID

Expert Panel The name of variant curation expert panel

Guideline Links of specific guidelines

Approval Date Approval Date
Published Date Published Date
Retracted Retracted, in logical

Evidence Repo Link Evidence Repo Link

Uuid ID ...

Source

https://erepo.clinicalgenome.org/evrepo/

ClinVar_2019_dataset The ClinVar 2019 dataset compiled by Pejaver et al.

Description

11,834 variants (2,787 P/LP and 6,327 B/LB variants) from 1,914 genes are included in this dataset.

Usage

ClinVar_2019_dataset

Format

A data frame with 11834 rows and 27 variables:

hg19_chr Chromosome

hg19_pos(1-based) Position

ref Reference allele

alt Alternative allele

rs dbSNP151 rsID

genename Gene name

Ensembl_geneid GeneID

Ensembl_transcriptID TranscriptID

Ensembl_proteinID ProteinID

Uniprot_acc Uniprot Accession

Uniprot_entry UniProt entry name

aavar AA change

clnsig ClinVar Significance

MAF Minor allele frequency

SIFT_score SIFT score

FATHMM_score FATHMM score

discrete_cutoff 7

```
VEST4_score VEST4 score

REVEL_score REVEL score

GERP++_RS GERP++ score

phyloP100way_vertebrate phyloP score

EA_1.0 EA score

BayesDel_nsfp33a_noAF BayesDel score

MutPred2.0_score MutPred score

CADDv1.6_PHRED CADD score

pph2_prob pph2 score

MPC_score MPC score

PrimateAI_score PrimateAI score ...
```

Source

https://zenodo.org/records/8347415

discrete_cutoff	Introducing columns to assess if the observed value is above (1) or
	below (0) a tested cutoff. A value of 1 indicates being above the tested
	cutoff, while 0 indicates being below the tested cutoff

Description

Introducing columns to assess if the observed value is above (1) or below (0) a tested cutoff. A value of 1 indicates being above the tested cutoff, while 0 indicates being below the tested cutoff

Usage

```
discrete_cutoff(data, feature, range = NULL, criteria = NULL)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

feature The column name that requires testing for optimizing the thresholds

range Evaluated intervals

criteria ACMG/AMP guidelines criteria (str)

Value

A fresh DataFrame incorporating the input data with additional column

Examples

```
data("ClinGen_dataset")
discrete_cutoff(ClinGen_dataset, "Applied Evidence Codes (Met)", criteria = "PM2")
```

8 heatmap_LR

get_lr_threshold	Establish the thresholds for each level of evidence strength
get_II _till eslioiu	Establish the infestibles for each level of evidence strength

Description

Establish the thresholds for each level of evidence strength

Usage

```
get_lr_threshold(postp_list, direction, discountonesided, bootstrap, dir)
```

Arguments

postp_list A list of posterior probability corresponding to each level of evidence strength

direction The direction of evidence pathogenic (Pathogenic or Benign)

discountonesided

The one-sided confidence intervals

bootstrap The number of bootstrapping iterations

dir The directory containing the results of bootstrapping

Value

A list of optimized thresholds

Examples

```
## Not run:
data("ClinVar_2019_dataset")
data <- add_info(ClinVar_2019_dataset, "clnsig")
local_bootstrapped_lr(data, "PrimateAI_score", "Pathogenic",0.0441, 10000, 100, 0.01, "test_dir")
postp_list <- c(0.100, 0.211, 0.608, 0.981)
get_lr_threshold(postp_list, "Pathogenic",0.05, 10000, "test_dir")
## End(Not run)</pre>
```

heatmap_LR

Visualize the results of LR+ for each evaluated cutoff

Description

Visualize the results of LR+ for each evaluated cutoff

Usage

```
heatmap_LR(data, direction, op_list)
```

local_bootstrapped_lr

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

direction The direction of evidence pathogenic (Pathogenic or Benign)
op_list A list of odds path corresponding to each level of evidence strength

Value

Figures

Examples

```
data("LR_result")
op_list <- c(2.08, 4.33, 18.70, 350)
heatmap_LR(LR_result, "Pathogenic", op_list)</pre>
```

local_bootstrapped_lr The one-sided 95% confidence bound for each estimated lr+ was determined through bootstrapping iterations, enabling the assessment of evidence strength.

Description

The one-sided 95% confidence bound for each estimated lr+ was determined through bootstrapping iterations, enabling the assessment of evidence strength.

Usage

```
local_bootstrapped_lr(
  input_data,
  feature,
  direction,
  alpha,
  bootstrap,
  minpoints,
  increment,
  output_dir
)
```

Arguments

input_data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

feature The column name that requires testing for optimizing the thresholds

direction The direction of evidence pathogenic (Pathogenic or Benign)

alpha Prior probability

bootstrap The number of bootstrapping iterations

minpoints The number of at least pathogenic and non-pathogenic variants

increment Sliding window output_dir Output directory

local_lr

Value

The posterior probability values for each bootstrap iteration

Examples

```
## Not run:
data("ClinVar_2019_dataset")
data <- add_info(ClinVar_2019_dataset, "clnsig")
local_bootstrapped_lr(data, "PrimateAI_score", "Pathogenic", 0.0441, 10000, 100, 0.01, "test_dir")
## End(Not run)</pre>
```

local_lr

Calculating the local positive likelihood ratio (lr+) value, which is applicable to continuous evidence proposed by Pejaver et al. First, all unique tested cutoff values were sorted, then each value was positioned at the center of a sliding window. The posterior probability was calculated for each tested cutoff value within the interval, considering a minimum of selected pathogenic and non-pathogenic variants.

Description

Calculating the local positive likelihood ratio (lr+) value, which is applicable to continuous evidence proposed by Pejaver et al. First, all unique tested cutoff values were sorted, then each value was positioned at the center of a sliding window. The posterior probability was calculated for each tested cutoff value within the interval, considering a minimum of selected pathogenic and non-pathogenic variants.

Usage

```
local_lr(input_data, feature, direction, alpha, minpoints, increment)
```

Arguments

input_data	DataFrame comprising fundamental variant information, evidence labeling, and classification details
feature	The column name that requires testing for optimizing the thresholds
direction	The direction of evidence pathogenic (Pathogenic or Benign)

alpha Prior probability

minpoints The number of at least pathogenic and non-pathogenic variants

increment Sliding window

Value

The posterior probability value for each tested cutoff

LR 11

Examples

```
## Not run:
data("ClinVar_2019_dataset")
data <- add_info(ClinVar_2019_dataset, "clnsig")
local_lr(data, "PrimateAI_score", "Pathogenic",0.0441, 100, 0.01)
## End(Not run)</pre>
```

LR

Calculating positive likelihood ratio (LR) for each tested cutoff (for discrete cutoffs) For each cutoff, true positive (TP, the number of P/LP variants above a tested cutoff), false positive (FP, the number of BL-VUS/B/LB variants above a tested cutoff), true negative (TN, the number of BL-VUS/B/LB variants below a tested cutoff), and false negative (FN, the number of P/LP variants below a tested cutoff) were estimated. Subsequently, LR+, overall accuracy, true positive rate (sensitivity), true negative rate (specificity), positive predictive value (PPV), negative predictive value (NPV), and F1 score were calculated. Estimates of 95% CI of LR+ were generated using bootstrapping in the R package, bootLR.

Description

Calculating positive likelihood ratio (LR) for each tested cutoff (for discrete cutoffs) For each cutoff, true positive (TP, the number of P/LP variants above a tested cutoff), false positive (FP, the number of BL-VUS/B/LB variants above a tested cutoff), true negative (TN, the number of BL-VUS/B/LB variants below a tested cutoff), and false negative (FN, the number of P/LP variants below a tested cutoff) were estimated. Subsequently, LR+, overall accuracy, true positive rate (sensitivity), true negative rate (specificity), positive predictive value (PPV), negative predictive value (NPV), and F1 score were calculated. Estimates of 95% CI of LR+ were generated using bootstrapping in the R package, bootLR.

Usage

```
LR(data, start, end)
```

Arguments

data	DataFrame comprising fundamental variant information, evidence labeling, and classification details
start	The beginning column index of the evaluated cutoffs
end	The concluding column index of evaluated cutoffs

Value

A DataFrame comprising the evaluation metrics for each assessed cutoff

12 lr_CI

Examples

```
## Not run:
data("ClinGen_dataset")
data <- add_info(ClinGen_dataset, "Assertion")</pre>
data <- VUS_classify(data, "Assertion", "Applied Evidence Codes (Met)")</pre>
#data <- data[data$`Applied Evidence Codes (Met)`!="",]</pre>
all_evidence <- unlist(str_replace_all(data$`Applied Evidence Codes (Met)`," ", ""))</pre>
split_evidence <- strsplit(all_evidence, ",")</pre>
unique_evidence <- unique(unlist(split_evidence))</pre>
P_evidence<-grep("^P", unique_evidence, value = TRUE)
library(dplyr)
truth_set <- filter(data, VUS_class %in% c("IceCold", "Cold", "Cool", ""))</pre>
for(i in P_evidence){
  truth_set <- discrete_cutoff(truth_set, "Applied Evidence Codes (Met)", criteria = i)</pre>
LR_result<-LR(truth_set, 28, 72)
rownames(LR_result)<-LR_result[,1]</pre>
LR_result<-LR_result[,-1]</pre>
name_evidence<-rownames(LR_result)</pre>
LR_result<-data.frame(lapply(LR_result,as.numeric))</pre>
rownames(LR_result)<-name_evidence</pre>
LR_result<-LR_result[c(-1,-2,-4,-5,-6,-7,-8,-10,-11,-12,-14,-17,-18,-19,-20,-21,-22,-24,-25,-26),]
LR_result < -LR_result[c(2,4,6,1,3,5),]
## End(Not run)
```

lr_CI

Merging the results from bootstrap

Description

Merging the results from bootstrap

Usage

```
lr_CI(bootstrap, dir)
```

Arguments

bootstrap

The number of bootstrapping iterations

dir

The directory containing the results of bootstrapping

Value

A DataFrame containing posterior probabilities and the 95% confidence interval lower bounds of posterior probabilities for each cutoff

lr_CI_result

Examples

```
## Not run:
data("ClinVar_2019_dataset")
data <- add_info(ClinVar_2019_dataset, "clnsig")
local_bootstrapped_lr(data, "PrimateAI_score", "Pathogenic",0.0441, 10000, 100, 0.01, "test_dir")
lr_CI_result <- lr_CI(10000, "test_dir")
## End(Not run)</pre>
```

lr_CI_result

Local posterior probability and one-sided 95% confidence intervals of the local posterior probability for each unique PrimateAI score in the ClinVar 2019 dataset

Description

Local posterior probability and one-sided 95% confidence intervals of the local posterior probability for each unique PrimateAI score in the ClinVar 2019 dataset

Usage

```
lr_CI_result
```

Format

A data frame with 8596 rows and 3 variables:

test_cutoff Each PrimateAI score
Posterior Posterior probability

Posterior 1 The 95% CI lower boundry of posterior probability ...

Source

ClinVar_2019_dataset

LR_result Evaluation metrics and positive likelihood ratio for PM2 and PM2_Supporting derived from the ClinGen Curated Variants dataset

Description

Evaluation metrics and positive likelihood ratio for PM2 and PM2_Supporting derived from the ClinGen Curated Variants dataset

Usage

LR_result

14 multi_plot

Format

A data frame with 8 rows and 20 variables:

TP True positive

FN False negative

FP False positive

TN True negative

Accuracy (TP+TN)/Total

PPV Positive predictive values

NPV Negative predictive values

FNR False negative rate

FPR False positive rate

FOR False omission rate

FDR False discovery rate

F1 F1 score

Sensitivity True positive rate

Specificity True negative rate

posLR Positive likelihood ratio

posLR_LB The 95% CI lower boundry of posLR

posLR_UB The 95% CI upper boundry of posLR

negLR Negative likelihood ratio

negLR_LB The 95% CI lower boundry of negLR

negLR_UB The 95% CI upper boundry of negLR ...

Source

ClinGen_dataset

multi_plot

Visualize the distribution of variants

Description

Visualize the distribution of variants

Usage

```
multi_plot(data, classification_col, gene_col, consequence_col = NULL)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

 ${\tt classification_col}$

The column name for variant classification (str)

gene_col The column name for the gene where the variant is located(str)

consequence_col

The column name for the annotation results of variant consequences(str)

op_postp

Value

Figures

Examples

```
data("ClinGen_dataset")
ClinGen_dataset <- add_info(ClinGen_dataset, "Assertion")
ClinGen_dataset <- VUS_classify(ClinGen_dataset, "Assertion", "Applied Evidence Codes (Met)")
multi_plot(ClinGen_dataset, "Assertion", "HGNC Gene Symbol")</pre>
```

op_postp

Calculate the corresponding combined odds_path and posterior probability of 17 combination rules for a given prior_probability and odds_path of pathogenicity

Description

Calculate the corresponding combined odds_path and posterior probability of 17 combination rules for a given prior_probability and odds_path of pathogenicity

Usage

```
op_postp(prior_probability, op_vs)
```

Arguments

prior_probability

The prior probability of pathogenicity (proportion of P/LP variants in a set of variants)

op_vs Odds of pathogeni

Odds of pathogenicity (OP) of "Very String"

Value

Prior_probability, OP for each evidence level and Combined odds_path and posterior probability of 17 combination rules outlined by avtigian et al.(2018)

Examples

```
op_postp(0.1, 350)
```

Point_Classification

plot_lr

Generate plots depicting the results of lr+ for each tested cutoff

Description

Generate plots depicting the results of lr+ for each tested cutoff

Usage

```
plot_lr(data, direction, postp_list)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

direction The direction of evidence pathogenic (Pathogenic or Benign)

postp_list A list of posterior probability corresponding to each level of evidence strength

Value

Figures

Examples

```
data("lr_CI_result")
# data <- add_info(ClinVar_2019_dataset, "clnsig")
# local_bootstrapped_lr(data, "PrimateAI_score", 0.0441, 10000, 100, 0.01, "test_dir")
postp_list <- c(0.100, 0.211, 0.608, 0.981)
# lr_CI_result <- lr_CI(30, "test_dir")
plot_lr(lr_CI_result, "Pathogenic", postp_list)</pre>
```

Point_Classification

Classifying variants into five distinct categories according to the scaled point system.

Description

Classifying variants into five distinct categories according to the scaled point system.

Usage

```
Point_Classification(data, evidence_col)
```

Arguments

data DataFrame comprising fundamental variant information, evidence labeling, and

classification details

evidence_col The column name for ACMG evidence(str)

VUS_classify 17

Value

A new DataFrame that incorporates the input data and the results of variant classification

Examples

```
## Not run:
data("ClinGen_dataset")
Point_Classification(ClinGen_dataset, "Applied Evidence Codes (Met)")
## End(Not run)
```

VUS_classify

Variants of uncertain significance (VUS) were categorized into six levels (hot, warm, tepid, cool, cold, and ice cold), according to the Association for Clinical Genomic Science (ACGS) Best Practice Guidelines. hot: 1 very strong or 1 strong + 1 supporting or 2 moderate + 1 supporting or 1 moderate + 3 supporting evidence; warm: 1 strong or 2 moderate or 1 moderate + 2 supporting or 4 supporting evidence; tepid: 1 moderate + 1 supporting or 3 supporting evidence; cool: 1 moderate or 2 supporting evidence; cold: 1 supporting evidence; ice cold: no supporting evidence (https://www.acgs.uk.com/quality/best-practice-guidelines/#VariantGuidelines). Variants classified as cool, cold, or ice cold were considered as benign-leaning VUS, unlikely to be disease-causing. Variants classified as hot, warm, or tepid were considered to be pathogenic-leaning VUS.

Description

Variants of uncertain significance (VUS) were categorized into six levels (hot, warm, tepid, cool, cold, and ice cold), according to the Association for Clinical Genomic Science (ACGS) Best Practice Guidelines. hot: 1 very strong or 1 strong + 1 supporting or 2 moderate + 1 supporting or 1 moderate + 3 supporting evidence; warm: 1 strong or 2 moderate or 1 moderate + 2 supporting or 4 supporting evidence; tepid: 1 moderate + 1 supporting or 3 supporting evidence; cool: 1 moderate or 2 supporting evidence; cold: 1 supporting evidence; ice cold: no supporting evidence (https://www.acgs.uk.com/quality/best-practice-guidelines/#VariantGuidelines). Variants classified as cool, cold, or ice cold were considered as benign-leaning VUS, unlikely to be disease-causing. Variants classified as hot, warm, or tepid were considered to be pathogenic-leaning VUS.

Usage

```
VUS_classify(data, classification_col, evidence_col)
```

Arguments

data

DataFrame comprising fundamental variant information, evidence labeling, and classification details

classification_col

The column name for variant classification (str). Variants should be classified into five distinct categories: "P," "LP," "B," "LB," and "VUS."

evidence_col

The column name for ACMG evidence(str). The content of this column should be composed of evidence names and their strengths, connected by semicolons or comma, such as "PM2_Supporting;PM5;BP4"

VUS_classify

Value

A new DataFrame that includes the input data and VUS classification

Examples

```
data("ClinGen_dataset")
ClinGen_dataset <- VUS_classify(ClinGen_dataset, "Assertion", "Applied Evidence Codes (Met)")</pre>
```

Index

```
* datasets
    ClinGen_dataset, 5
    ClinVar_2019_dataset, 6
    lr_CI_result, 13
    LR_result, 13
.onLoad, 2
{\tt ACMG\_Classification, 3}
\operatorname{add\_info}, 3
auto_select_postp, 4
BCF, 4
ClinGen_dataset, 5
ClinVar_2019_dataset, 6
{\tt discrete\_cutoff, 7}
{\tt get\_lr\_threshold}, 8
heatmap_LR, 8
local\_bootstrapped\_lr, 9
local_lr, 10
LR, 11
lr_CI, 12
lr_CI_result, 13
LR_result, 13
multi_plot, 14
op_postp, 15
plot_lr, 16
{\tt Point\_Classification}, 16
VUS_classify, 17
```