

Vorlesung Computational Intelligence

Teil 4: Evolutionäre und Memetische Algorithmen

4.6 Der Evolutionäre Algorithmus GLEAM

Ralf Mikut, Wilfried Jakob, Markus Reischl

Institut für Automation und angewandte Informatik (IAI) / Campus Nord

4.6 Der Evolutionäre Algorithmus GLEAM

Übersicht:

- Motivation
- Aufbau von GLEAM
 - Repräsentation
 - Genmodell
 - Segmentierung
 - Aktionsmodell
 - Roboterbeispiel
 - Ablaufschema und Pseudocode
 - Genetische Operatoren
 - Reparaturmechanismen
 - Bewertung
 - Akzeptanz
 - Abbruchkriterien

GLEAM – Motivation

General Learning Evolutionary Algorithm and Method

Ein eigenständiger Evolutionärer Algorithmus, der Grundelemente

- der Evolutionsstrategie und
- der Genetischen Algorithmen
- mit Konzepten der Informatik (abstrakte Datentypen)

verbindet.

Ideen:

- Breites Anwendungsspektrum durch anwendungsnahe Codierung, was anwendungsbezogene genetische Operatoren ermöglicht. (Genmodell)
- Nutzung von durch die Biologie inspirierten Metastrukturen der Chromosome: Segmentierung der Chromosome des EA
- Nutzung des Evolutionsprinzips zur Planung, Optimierung und Steuerung dynamischer Prozessabläufe (Aktionsmodell)

GLEAM - Aufbau - Repräsentation - Genmodell

Bedeutung eines Gens in der Biologie?

Wie viel Parameter benötigt eine phänotypische Eigenschaft?

Welcher Art (ganzzahlig, reell, Wertebereich) sind diese Parameter?

Anwendungsabhängige Darstellung der Entscheidungsvariable in den

Genen des Chromosoms

GLEAM – Aufbau – Repräsentation - Genmodell

Regeln des Genmodells (1):

- 1. Ein Gen enthält so viele Entscheidungsvariable oder Parameter von geeignetem Datentyp, wie es die Anwendung erfordert.
- 2. Ein Gentyp beschreibt den Aufbau eines Gens samt Wertebereichsgrenzen der Entscheidungsvariable oder Parameter.

Beispiel eines Gentyps:

Genkennung (Typ)				
Kerbentiefe	double	[0.5, 20]		
Kerbenbreite	double	[4, 40]		
Kerbenposition	int	[0, 1] // oben, unten		
Kerbenabstand	double	[4, 100]		

obligatorischer Teil eines Gens

Optionale Parameter eines Gens
Sie unterliegen der Evolution.

Designoptimierung eines Faltenbalgs: Beschreibung einer Kerbe

Beispiel eines Gens vom Typ Kerbe:

GLEAM - Aufbau - Repräsentation - Genmodell

Regeln des Genmodells (2):

- 4. Konstruktionsregeln für Chromosomen je nach Chromosomentyp:
 - Typ 1: Jeder Gentyp kommt genau einmal vor. Gen-Reihenfolge ist <u>nicht</u> bedeutungstragend.
 - Typ 2: Jeder Gentyp kommt genau einmal vor. Gen-Reihenfolge ist bedeutungstragend.

Kombinatorische (und Parameter-) Optimierung

Parameteroptimierung

Typ 3: Jeder Gentyp kommt beliebig oft einschließlich gar nicht vor. Gen-Reihenfolge ist bedeutungstragend Dynamische Chromosomenlänge!
Optimierung dynamische Chromosomenlänge!

Optimierung dynamischer Abläufe, Parameter- und kombinatorische Optimierung

Institut für Automation und angewandte Informatik (IAI) / CN

Eigenschaften des Genmodells:

- 1. Das Genmodell erlaubt die Formulierung allgemeingültiger
 - Routinen zur Chromosomengenerierung,
 - genetischer Operatoren einschließlich Reparaturmechanismen, sowie
 - Mutationen, die die Wertebereichsgrenzen beachten.
- 2. Die anwendungsnahe Darstellung von Entscheidungsvariablen und Genen ermöglicht anwendungsbezogene genetische Operatoren.

GLEAM – Aufbau – Repräsentation - Segmentierung

Segmentierung:

Der Evolution unterliegende Metastruktur zur Zusammenfassung und Vererbung von (guten) Teilstücken eines Chromosoms

- Organisation des Chromosoms als lineare Liste mit Listenkopf
- Zusammenhängende Gene bilden Einheiten, genannt Segmente.
- Anzahl und Größe der Segmente unterliegen der Evolution:
 - Verschiebung von Segmentgrenzen
 - Teilung von Segmenten
 - Zusammenfassung benachbarter Segmente

Keine
phänotypischen
Auswirkungen

Mutationen und Crossover greifen auf die Segmentgrenzen zurück.

Beispiel eines Chromosoms als lineare Liste mit Listenkopf und drei Segmenten:

GLEAM – Aufbau – Motivation des Aktionsmodells

Die Erbinformation ist mehr als ein Bauplan:

- Steuerung von Wachstumsprozessen
- Steuerung der Geschlechtsreife bereits entwickelter Individuen
- Steuerung von Heilungsprozessen

- - -

→ Zeitbezug der Chromosomen-Interpretation

Umsetzung in GLEAM:

- Gene sind Aktionen, die in der realen (technischen) Welt ausgeführt werden.
- Als Aktionen erhalten Gene einen Zeitbezug.
- Die Parameter der Aktionen legen die Details der Ausführung fest.
- Parameter, Aktionsanzahl und –reihenfolge unterliegen der Evolution.

GLEAM – Aufbau – Repräsentation

Sprachliche Unterscheidung:

Statische

Dynamische zeitbezogene

Interpretation eines Chromosoms:

Genmodell

Aktionsmodell

Chromosom

Aktionskette (AK)

Chromosomentyp

Aktionskettentyp, AK-Typ

Gentyp

Aktionstyp

Gene

Aktionen

Entscheidungsvariable Parameter

GLEAM – Aufbau – Repräsentation – Aktionsmodell

Aktionsmodell (1):

- Aktionsketten werden durch einen Simulator interpretiert oder "ausgeführt".
- Jede Aktion der AK führt zu einer Aktion in der simulierten oder realen Welt und greift in den Prozessablauf ein.
- Während der Aktionsausführung kann es zu Ereignissen kommen, welche die Fitness beeinflussen.
- Herstellung des Zeitbezugs durch einen aktionsbezogenen Zeittakt:

Aktion
$$a_1 \rightarrow t_0$$

Aktion $a_2 \rightarrow t_0 + \Delta t$
...
Aktion $a_n \rightarrow t_0 + (n-1) \cdot \Delta t$

Für jede Aktion steht also eine (simulierte) Ausführungszeit ∆t zur Verfügung.

GLEAM – Aufbau – Repräsentation – Aktionsmodell

Aktionsmodell (2):

Zwei Elemente des Standardmodells zur Zeitsteuerung:

1. Block_Begin und Block_End

Alle *m* Aktionen zwischen Block_Begin und Block_End starten im gleichen Zeittakt:

Aktion
$$a_i$$
: Block_Begin \rightarrow t_n

Aktion a_{i+1} : \rightarrow t_n

Aktion a_{i+2} : \rightarrow t_n

Aktion a_{i+m} : \rightarrow t_n

Aktion a_{i+m+1} : Block_End \rightarrow t_n

Aktion a_{i+m+2} : \rightarrow \rightarrow t_{n+1}

GLEAM – Aufbau – Repräsentation – Aktionsmodell

Aktionsmodell (3):

2. Unchanged

Verschiebung der Ausführung der nachfolgenden Aktion um n Takte (Integer-Parameter n).

Beibehaltung der Einstellungen aller vorangegangenen Aktionen für die nächsten n Zyklen.

Aktion a_i : $\rightarrow t_i$

Aktion a_{i+1} : Unchanged $n \rightarrow t_i + \Delta t$

Aktion a_{i+2} : $\rightarrow t_i+(n+1)\cdot\Delta t$

Damit können beliebige zeitliche Abläufe zum Starten und Beenden von Aktionen modelliert werden.

GLEAM - Aufbau - Repräsentation - Roboterbeispiel

Anwendungsbeispiel für das Aktionskonzept: Roboterbahnplanung (1)

Ansteuerung der Motoren eines Industrieroboters mit rotatorischen Achsen:

beispielhafter Achsbefehl:

MotorAn_2 mit 12 Grad/Sekunde, mit 48 Grad/Sekunde²

Mitsubishi-Roboter RV-M1 mit 5 Achsen:

- Rumpf
- Schulter
- Ellenbogen
- Hand, knicken
- · Hand, drehen

GLEAM – Aufbau – Repräsentation – Roboterbeispiel

Roboterbahnplanung (2):

Achs-Befehle:

- 1. MotorAn_<nr> mit Geschwindigkeit=<g_wert>, mit Rampe=<r_wert>
 Bewegung des Motors der Achse <nr> mit einer Zielgeschwindigkeit von <g_wert> Grad/Sekunde
 mit einer Rampe von <r_wert> Grad/Sekunde² zur Erreichung derselben
- 2. MotorAus_<nr> mit Rampe=<r_wert>
 Anhalten des Motors der Achse <nr>
 mit einer Rampe von <r_wert> Grad/Sekunde²

Damit gibt es pro Achse zwei Bewegungsaktionen.

Warum nicht zwei Motor-Aktionen mit der Achsnummer als Parameter?

GLEAM – Aufbau – Repräsentation – Roboterbeispiel

Roboterbahnplanung (3):

Beispiel: Interpretation folgender drei Aktionen:

MotorAn_2 mit Geschwindigkeit=12, mit Rampe=48 Takt 0

Unchanged 10 Takt 1

MotorAus_2 mit Rampe=17 Takt 11

GLEAM – Aufbau – Ablaufschema und Pseudocode

Ubliche Werte des Ranking-Parameters sp im Bereich zwischen 1.4 und 1.6.

Übersicht über die genetischen Operatoren:

- Standard-Mutationen, Beachtung der Wertebereiche des Genmodells
- Standard-Crossoveroperatoren, Beachtung des Chromosomentyps
- Schnittstelle für anwendungsspezifische Operatoren

Die Operatoren werden zu Gruppen zusammengefasst, die

- zwei Nachkommen durch Crossover erzeugen oder
- zwei Nachkommen durch Crossover + anschließenden Mutationen erzeugen oder
- ein mutiertes Elterklon erzeugen.

Dabei hat jede Gruppe und jeder Operator jeweils eine eigene Ausführungswahrscheinlichkeit.

Konsequenzen:

- 1. Die Anzahl der Nachkommen pro Paarung variiert.
- 2. Klone können zufallsbedingt unverändert bleiben und werden gelöscht.

<u>Mutation relative Parameteränderung (1):</u>

Ziele:

- Einhaltung der Bereichsgrenzen
- Gleiche Wahrscheinlichkeit für Vergrößerung und Verkleinerung unabhängig vom aktuellen Wert
- Kleine Änderungen erheblich wahrscheinlicher als große (Vergleichbar mit der von der ES her bekannten Glockenkurve der Normalverteilung)
- Schnelle Berechenbarkeit

Vorgehensweise:

- 1. Einteilung des verfügbaren Gesamtänderungsbereichs in 10 gleichgroße Teilbereiche
- 2. Der erste Teil bildet das erste Änderungsintervall, der erste und zweite Teil das zweite Änderungsintervall, der erste, zweite und dritte Teil das dritte Änderungsintervall, usw.
- 3. Jedem Änderungsintervall wird die gleiche Wahrscheinlichkeit von 10% zugeordnet.

Mutation relative Parameteranderung (2):

<u>Algorithmus:</u>

- 1. Entscheide gleichverteilt, ob vergrößert (vz = 1) oder verkleinert (vz = -1) wird. Daraus ergibt sich der Gesamtänderungsbereich.
- 2. Wähle das Änderungsintervall gleichverteilt aus.
- 3. Wähle den Anderungswert Δw aus diesem Intervall gleichverteilt aus.
- 4. Berechne neuen Parameterwert: $w_{nev} = w_{alt} + vz \cdot \Delta w$

Einteilung und Algorithmus ergeben folgende summierte Wahrscheinlichkeiten für den

1. Teilbereich (0 - 10% Änderung):
$$10\% \cdot (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{10}) = 29,3\%$$

2. Teilbereich (10 - 20% Änderung):
$$10\% \cdot (\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{10}) = 19,3\%$$

3. Teilbereich (20 - 30% Änderung):
$$10\% \cdot ($$
 $\frac{1}{3} + \cdots + \frac{1}{10}) = 14,3\%$

10. Teilbereich (90 - 100% Änderung):
$$10\% \cdot ($$
 $\frac{1}{10}) = 1\%$

aktueller Wert Teil 1 Teil 2 Teil 3 Teil 4 Teil 5 Teil 6 Teil 7 Teil 8 Teil 9 Teil 10 Maximum

5. Änderungsintervall

<u>Mutation relative Parameteränderung (3):</u>

Einteilung und Algorithmus ergeben folgende summierte Wahrscheinlichkeiten der einzelnen Teilbereiche:

→ Kleine Änderungen erheblich wahrscheinlicher als große

Übersicht über die gen- oder aktionsbezogenen Mutationen:

Gen- oder aktionsbezogene	Chromosomen- oder AK-Typ		
Standard-Mutationen	Typ 1	Typ 2	Тур 3
Änderung des Parameterwerts	ja	ja	ja
Neuer Parameterwert	ja	ja	ja
Änderung aller Parameter eines Gens	ja	ja	ja
Erneuerung aller Parameter eines Gens	ja	ja	ja
Verschiebung		ja	ja
Ersetzung			ja
Einfügung			ja
Verdoppelung			ja
Löschung			ja

<u>Ubersicht über die segmentbezogenen Mutationen:</u>

Segmentmutationen:

Invertierung der Aktions- oder Genreihenfolge eines Segments:

Invertiertes Segment

Wirkung einer einzelnen Mutation: Achse 1 stoppt sofort,

Achse 4 startet früher und läuft länger und

Achse 3 startet später und läuft kürzer

<u>Crossoveroperatoren (1):</u>

GLEAM enthält insgesamt vier Standard-Crossoveroperatoren, die alle auf den Segmentgrenzen aufbauen.

Drei allgemeine Crossoveroperatoren, welche die Chromosome an den Segmentgrenzen aufteilen:

- > 1-Punkt-Crossover
- n-Punkt-Crossover
- Segmentaustausch (Austausch genau eines Segments)

Sie sind bei allen Chromosomentypen sinnvoll.

Bei welchen Chromosomen- od. AK

Die drei Operatoren können illegale Nachkommen erzeugen: Ak-Typen? Beispiele

Crossoveroperatoren (2):

n-Punkt-Crossover:

Algorithmus:

- 1. Bildung des 1. Kindes durch abwechselndes Kopieren einer ausgewürfelten Anzahl von Segmenten der Eltern.
- 2. Die Segmente jeweils anderen Elter bilden das 2. Kind.
- 3. Je nach Chromosomentyp Verschiebung überzähliger Gene auf das jeweils andere Kind (Reparatur)

Crossoveroperatoren (3):

<u>Crossoveroperator für kombinatorische Probleme:</u>

Segmentorientierte Variante des Order-based Crossover (OX): (siehe Folie 12, Kap. 4.4)

- Die Segmentierung des 1. Elter bestimmt die Anzahl und Länge der Sequenzen.
- Diese Sequenzen werden ohne Rücksicht auf die Segmentierung des 2. Elters zur Bildung der Kinder genutzt.
- Kind 1 erbt die Segmentstruktur des ersten Elter und Kind 2 entsprechend.

Können dabei illegale Nachkommen entstehen?

Für welche Chromosomentypen sind diese Operatoren sinnvoll?

GLEAM – Aufbau – Reparaturmechanismen

Reparaturmechanismen (1):

Unzulässige Nachkommen können im Allgemeinen entstehen durch:

- Änderungen von Entscheidungsvariablen oder Parametern:
 - Verletzung der Unter- bzw. Obergrenzen bei GLEAM ausgeschlossen
 - Werte in unzulässigen Bereichen innerhalb der Definitionsgrenzen meist Sache der Bewertung. So auch bei GLEAM.
- Mutationen zur Genverschiebung bei kombinatorischen Aufgaben mit einzuhaltenden Reihenfolgen: entweder Sache der Bewertung oder Reparatur (genotypische Reparatur, Genetic Repair)
- die allgemeinen Crossoveroperatoren (Gene zu viel oder zu wenig) entweder Sache der Bewertung oder genotypische Reparatur (GLEAM)

Problem bei der Reparatur:

Sinnvolle Änderungen können nicht auf mehrere Schritte verteilt werden, wenn die Zwischenschritte zu unzulässigen Phänotypen führen.

Alternativen: Bestrafung unzulässiger Phänotypen, phänotypische Reparatur

GLEAM – Aufbau – Reparaturmechanismen

Reparaturmechanismen (2):

Genetic Repair (1):

Fall: Mutationsbedingte unzulässige Genreihenfolgen

Lösungsalternativen:

- 1. Falsch positionierte Gene bis zu einer zulässigen Position verschieben: (genotypische Reparatur)
 - in Richtung Chromosomenanfang (AK-Kopf)
 - in Richtung Chromosomenende (AK-Ende)
- 2. Bei der Interpretation so lange hinten an stellen, bis das Gen zulässig wird. (phänotypische Reparatur)

Die phänotypische Reparatur

- erlaubt die Aufteilung einer zulässigen/positiven Änderung auf mehrere Zwischenschritte (genetische Operatoren) und
- muss auch bei der Ergebnisauswertung erfolgen!

GLEAM – Aufbau – Reparaturmechanismen

Reparaturmechanismen (3):

Genetic Repair (2):

Fall: Zu viel oder zu wenig Gene auf Grund von Crossover:

(GLEAM: nur bei Chromosomentyp 1 und 2 möglich)

Lösung:

Verschiebung überzähliger Gene auf das jeweils andere Kind

Beispiel (basierend auf 1-Punkt-Crossover):

1-Punkt-Crossover ergibt:

Genetic Repair ergibt:

$$Kind 2: Kopf + A + B + C + D + E + F + G + H + I - + j + k + I + m + n + o + p + q + r + s + t$$

GLEAM – Aufbau – Bewertung

Bewertung mit der gewichteten Summe und Straffunktionen (1):

- 1. Normierung der Bewertung der einzelnen Kriterien
 - lacktriangle Abbildung der Werteskala der Kriterien auf eine einheitliche Fitness-Skala: $oldsymbol{0}$.. f_{max}
 - Verwendung von 6 Standard-Normierungsfunktionen:
 - linear
 - exponentiell
 - gemischt linear und exponentiell
- 2. Bildung der Summe aller Kriterien

- → Rohfitness
- 3. Berechnung der Straffunktionen, soweit zutreffend \rightarrow Straffaktoren $\in [0, 1]$
- 4. Multiplikation der Rohfitness mit allen Straffaktoren → Endfitness

Ausblick: Kaskadierte Gewichtete Summe

- Gruppierung der Kriterien nach Prioritäten
- Jedes Kriterium erhält einen Schwellwert.
- Zunächst tragen nur die Kriterien mit höchster Priorität zur gewichteten Summe bei.
- Wenn alle Kriterien einer Gruppe den jeweiligen Schwellwert überschritten haben, werden die Kriterien der Gruppe mit der nächst niedrigeren Priorität aktiviert. [Jak14]

GLEAM – Aufbau – Bewertung

Bewertung mit der gewichteten Summe und Straffunktionen (2):

Beispiel für den Einsatz von Normierungs- und Straffunktion:

Situation: Die Temperatur soll möglichst gering sein und einen Maximalwert t_{max} nicht

überschreiten. Werte bis zu t_{ok} sind unproblematisch. Es gibt weitere Kriterien.

Lösung: Normierung im Bereich bis zu t_{max} mit einer linearen Funktion. Die

Fitnessunterschiede zwischen minimaler Temperatur und t_{ok} sind gering.

Danach starker Abfall bis zu einem noch akzeptablen Wert t_{grob} .

GLEAM – Aufbau – Bewertung

Beseitigung oder Verkleinerung einer

von mehreren gleich großen Spitzen

Bewertung mit der gewichteten Summe und Straffunktionen (3):

Kriterien und Hilfskriterien:

- Bewertungskriterien:
 - Ergeben sich aus der Aufgabenstellung (primäre Ziele)
- Hilfskriterien:
 - sollen die Erreichung primärer Kriterien unterstützen:
 - z.B. Bessere Erreichung einer Senkung der Energiespitzen durch
 - Bewertung des Energiespitzenwertes
 - Bewertung der Anzahl aller Spitzen, die ein Limit überschreiten
 - Bewertung des Gesamtenergieverbrauchs aller ein Limit überschreitenden Spitzen
 - sollen übergeordneten Zielen dienen:
 z.B. dient die Bewertung der Chromosomenlänge bei Chromosomen vom Typ 3 der sanften Begrenzung der dynamischen Chromosomenlänge.

GLEAM – Aufbau – Akzeptanz

Akzeptanzregeln:

Der beste Nachkomme ersetzt das Elter gemäß einer der folgenden Regeln:

- Akzeptiere immer (always)
 Akzeptiere immer den besten Nachkommen.
- 2. Akzeptiere immer, elitäre Strategie (always, ES)

 Akzeptiere den besten Nachkommen, wenn entweder das Elter nicht das Deme-Beste ist oder der Nachkomme besser als sein Elter ist.
- 3. <u>Lokal Schlechtestes (local least)</u>
 Akzeptiere den besten Nachkommen, wenn er besser als das schlechteste Deme-Mitglied ist.
- 4. Lokal Schlechtestes, elitäre Strategie (local least, ES)

 Akzeptiere den besten Nachkommen, wenn er besser als das schlechteste DemeMitglied ist UND wenn entweder das Elter nicht das Deme-Beste ist oder der
 Nachkomme besser als sein Elter ist.
- 5. <u>Elter-Verbesserung (better parent)</u>
 Akzeptiere den besten Nachkommen, wenn er besser als das Elter ist.

GLEAM - Aufbau - Abbruchkriterien

Abbruchkriterien:

Stagnationsbezogene Abbruchkriterien bei einem Nachbarschaftsmodell: (neben Zeit, Fitness oder Generationen, vgl. Folie 19, Kap. 4.4)

GDV Generationen ohne Deme-Verbesserung (= Verbesserung des (Deme-)Besten)

GAk
Generationen ohne Akzeptanz (= keine Nachkommenakzeptanz (im Deme))

Welches Kriterium führt schneller zum Abbruch und ist damit schärfer?

Stagnation vs. Konvergenz:

Stagnation: Ausbleiben von Verbesserungen

Konvergenz: Genotypische Ähnlichkeit aller Individuen einer Population

Kann durch den Hammingabstand der Individuen bestimmt werden.

(aufwändig)

