Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Расстояния в графе

- Расстояние между парой вершин u,v это длина кратчайшей цепи, соединяющей эти вершины. Обозначение: d(u,v)
- Диаметр графа это максимальное из расстояний между парами вершин. Обозначение:

$$diam(G) = \max_{u,v} d(u,v)$$

• Диаметральная цепь — это цепь, соединяющая пару вершин, расстояние между которыми равно диаметру

Расстояния в графе

- Эксцентриситет вершины v это величина $\max_{u} d(u,v)$
- Центр графа это вершина, имеющая минимальный эксцентриситет (центров у графа может быть много)
- *Радиус* графа это эксцентриситет центра Обозначение: r(G)
- Для любого связного графа G выполнено:

$$r(G) \le \operatorname{diam}(G) \le 2 \cdot r(G)$$

- В дереве любой конец диаметральной цепи является листом
- В дереве ровно один центр, если диаметр дерева кратен 2, и ровно два центра иначе. Причём, если центра два, то они соседи.
- \bullet В любом дереве T

$$r(T) = \left[\frac{1}{2} \cdot \operatorname{diam}(T)\right]$$

- Докажем, что в дереве один или два центра.
- Пусть дано произвольное T.
- «Обстрижём» T: удалим из T все листья.
- Получим новое дерево T^{\prime} , в котором центры останутся теми же, что и в T

- Прямая задача о расстояниях: в заданном графе найти расстояние между некоторыми/всеми парами вершин.
- Обратная задача: по заданным расстояниям попытаться восстановить граф.

Обратная задача о расстояниях в деревьях актуальна, например, при построении деревьев классификации

Расстояния между вершинами могут быть заданы матрицей расстояний:

$$D = \begin{pmatrix} d_{11} & \cdots & d_{1n} \\ \vdots & \ddots & \vdots \\ d_{n1} & \cdots & d_{nn} \end{pmatrix}$$

В матрице расстояний $d_{ij} \coloneqq d(v_i, v_j)$.

В общем случае расстояния могут быть заданы необязательно для всех пар вершин.

Вопросы:

- При каких условиях на матрицу D существует реализующее её дерево?
- Если дерево существует, является ли оно единственным?
- Как это дерево построить?

Рассмотрим необходимые условия существования дерева:

1. Для любых i,j выполнены соотношения $d_{ii}=0, \ d_{ij}=d_{ji}>0$

2. Для любых i,j,k величина $d_{ij}+d_{jk}-d_{ik}$ является чётным числом.

3. Для любых i,j,k,l из чисел $d_{ij}+d_{kl},d_{ik}+d_{jl},d_{il}+d_{jk}$ два числа равны между собой и не меньше третьего.

Теорема. Следующие три условия являются необходимыми и достаточными для существования дерева:

- 1. Для любых i,j выполнены соотношения $\,d_{ii}=0,\;\;d_{ij}=d_{ji}>0\,$
- 2. Для любых i,j,k величина $d_{ij}+d_{jk}-d_{ik}$ является чётным неотрицательным числом
- 3. Для любых i,j,k,l из чисел $d_{ij}+d_{kl},d_{ik}+d_{jl},d_{il}+d_{jk}$ два числа равны между собой и не меньше третьего

При этом если в D учтены все листья, то такое дерево будет единственным.

План доказательства достаточности:

- Индукция по размеру матрицы
- По матрице D строим некоторую матрицу D' меньшей размерности
- Доказываем, что если для D выполнены условия 1-3, то они выполнены и для D^\prime
- Указываем способ построения по дереву T^{\prime} , соответствующего матрице D^{\prime} , дерева T, соответствующего матрице D

Идея перехода к новой матрице:

Допустим, у нас уже есть дерево T, соответствующее матрице D, и все листья дерева участвуют в D.

Дерево T можно «сильно остричь», удалив не листья, а сразу целые «висячие цепочки». Висячая цепочка — от листа дерева до вершины степени 3 или первой нелистовой вершины, участвующей в D.

Надо понять, как меняются длины путей при переходе к «сильно обстриженному» дереву, и куда переходят вершины, по которым строилась исходная матрица D.

Для этого надо понять, как по матрице D определить длины цепочек, которыми висячие вершины присоединены к дереву.

Вспомним про величины $d_{ij} + d_{jk} - d_{ik}$.

Длина цепочки, которой v_j присоединяется к дереву, равна

$$\frac{1}{2} \cdot \min_{p,q \neq j} \left(d_{pj} + d_{jq} - d_{pq} \right)$$

(Для невисячих вершин длина такой цепочки принимается равной нулю)

Обозначим
$$c_j\coloneqq rac{1}{2}\cdot \min_{p,q\neq j} (d_{pj}+d_{jq}-d_{pq})$$

Если мы обстригаем одну из цепочек, оканчивающуюся на листе j, при этом переводя j в другой конец этой цепочки, то расстояния от j_{new} до остальных вершин сократятся на длину цепочки:

$$d_{ij}^{new} = d_{ij}^{old} - c_j$$

Обозначим
$$c_j\coloneqq rac{1}{2}\cdot \min\limits_{p,q
eq j} (d_{pj}+d_{jq}-d_{pq})$$

Если мы «сильно обстригаем» дерево, смещая листья соответствующим образом, то расстояния в новом дереве вычисляются по формулам $d_{ij}^{new}=d_{ij}^{old}-c_i-c_j$

Обратно, если у нас есть дерево T', реализующее матрицу D_{new} , то дерево, реализующее матрицу D, можно построить, присоединив к соответствующим вершинам дерева T', цепочки длины c_i

Всё, сказанное до сих пор — *идея* доказательства. Для формального обоснования и индукции сделаем следующее:

- Рассмотрим матрицу $\widetilde{D}'=\{d'_{ij}\}$, в которой $d'_{ij}\coloneqq (d_{ij}-c_i-c_j)$ при $i\neq j$, и $d'_{ii}\coloneqq 0$
- Докажем, что если исходный набор чисел d_{ij} удовлетворяет условиям 1-3, то и набор чисел вида d'_{ij} тоже удовлетворяет этим условиям, кроме условия положительности всех d'_{ij} при $i\neq j$
- Докажем, что в матрице \widetilde{D}' есть совпадающие строки/столбцы, так что можно, отождествив их, получить матрицу D' меньшей размерности, в которой уже все недиагональные элементы положительны

Проверяем выполнение условия 3 для d_{ij}' :

$$d'_{ij} + d'_{kl} = d_{ij} - c_i - c_j + d_{kl} - c_k - c_l =$$

$$= d_{ij} + d_{kl} - (c_i + c_j + c_k + c_l)$$

Аналогично

$$d'_{ik} + d'_{jl} = d_{ik} + d_{jl} - (c_i + c_j + c_k + c_l)$$

И

$$d'_{il} + d'_{jk} = d_{il} + d_{jk} - (c_i + c_j + c_k + c_l).$$

Отсюда следует, что и для d_{ij}^{\prime} условие 3 выполняется, раз оно выполнено для d_{ij} .

Проверяем выполнение условия 2 для d_{ij}' :

$$d'_{ij} + d'_{jk} - d'_{ik} = d_{ij} - c_i - c_j + d_{jk} - c_j - c_k - d_{ik} + c_i + c_k = d_{ij} + d_{jk} - d_{ik} - 2c_j = d_{ij} + d_{jk} - d_{ik} - d_{ik} - d_{pq} \ge 0$$

$$= d_{ij} + d_{jk} - d_{ik} - \min_{p,q \neq j} (d_{pj} + d_{jq} - d_{pq}) \ge 0$$

Очевидно также, что числа $\left(d'_{ij}+d'_{jk}-d'_{ik}\right)$ чётны, так что условие 2 выполняется.

Проверяем неотрицательность d_{ij}' :

$$d'_{ij} = d_{ij} - c_i - c_j =$$

$$= d_{ij} - \frac{1}{2} \min_{p,q \neq i} (d_{pi} + d_{iq} - d_{pq}) - \frac{1}{2} \min_{r,s \neq j} (d_{rj} + d_{js} - d_{rs}) \ge$$

$$\ge d_{ij} - \frac{1}{2} (d_{ji} + d_{ik} - d_{jk}) - \frac{1}{2} (d_{ij} + d_{jk} - d_{ik}) = 0$$

Теперь покажем, что если $d_{ij}' = 0$, то для любого k выполнено $d_{ik}' = d_{jk}'$.

Это означает, что если в \widetilde{D}' есть нулевой недиагональный элемент, то соответствующие строки и столбцы совпадают, а значит в D' уже не будет нулевых недиагональных элементов.

Пусть $d_{ij}'=0$. Тогда и $d_{ji}'=0$.

Для любого k имеем

$$d'_{ij} + d'_{jk} - d'_{ik} \ge 0 \quad \Rightarrow \quad d'_{jk} \ge d'_{ik}$$

Аналогично

$$d'_{ji} + d'_{ik} - d'_{jk} \ge 0 \quad \Rightarrow \quad d'_{ik} \ge d'_{jk}$$

Отсюда $d'_{ik}=d'_{jk}.$

Осталось доказать теперь, что найдутся $i \neq j$, такие, что $d'_{ij} = 0$. Это будет означать, что у матрицы D' размерность меньше, чем у D, а значит можно будет провести индукцию по размерности матрицы.

Лемма. Для любых $i \neq j$ найдётся $k \notin \{i,j\}$, такое, что

$$c_j = \frac{1}{2} (d_{ij} + d_{jk} - d_{ik}).$$

Доказательство.

По определению c_j , существуют k, l, для которых $2c_j = d_{lj} + d_{jk} - d_{lk}$.

Так как
$$c_j = \frac{1}{2} \min_{p,q \neq j} (d_{pj} + d_{jq} - d_{pq})$$
, то $2c_j \leq d_{lj} + d_{ji} - d_{li}$, отсюда

$$d_{lj} + d_{jk} - d_{lk} \le d_{lj} + d_{ji} - d_{li}$$

Итак,

$$d_{lj} + d_{jk} - d_{lk} \le d_{lj} + d_{ji} - d_{li}$$
,

поэтому $d_{jk}+d_{li}\leq d_{ji}+d_{lk}.$ Отсюда и из условия 3 получаем $d_{ii}+d_{lk}=d_{il}+d_{ik}.$

Имеем

$$2c_{j} = d_{lj} + d_{jk} - d_{lk} = d_{jk} + (d_{lj} - d_{lk}) =$$

$$= d_{jk} + (d_{ji} - d_{ik}) = d_{ij} + d_{jk} - d_{ik},$$

что и требовалось.

Теперь доказываем, что найдутся $i \neq j$, такие, что $d'_{ij} = 0$.

Возьмём произвольные $i \neq j_1$. По лемме, найдётся $j_2 \neq j_1$, такой, что $c_{j_1} = \frac{1}{2} (d_{ij_1} + d_{j_1j_2} - d_{ij_2})$

Аналогично, найдётся $j_3 \neq j_2$, для которого $c_{i_2} = \frac{1}{2}(d_{i\,j_2} + d_{j_2\,j_3} - d_{i\,j_3})$

$$c_{j_2} = \frac{1}{2}(a_{ij_2} + a_{j_2j_3} - a_{ij_3})$$

И так далее. Получаем последовательность $\{j_m\}$.

Пусть $j_{\alpha}=j_{\beta}$ — первое повторение в этой последовательности ($\beta \geq \alpha+2$).

Пусть $j_{\alpha}=j_{\beta}$, $\alpha<\beta$. Преобразуем $\sum c_{j_m}$:

$$2 \cdot \sum_{m=\alpha}^{\beta-1} c_{j_m} = \sum_{m=\alpha}^{\beta-1} (d_{ij_m} + d_{j_m j_{m+1}} - d_{ij_{m+1}}) =$$

$$= \sum_{m=\alpha}^{\beta-1} (d_{ij_m} - d_{ij_{m+1}}) + \sum_{m=\alpha}^{\beta-1} d_{j_m j_{m+1}} =$$

$$= d_{ij_\alpha} - d_{ij_{(\beta-1)+1}} + \sum_{m=\alpha}^{\beta-1} d_{j_m j_{m+1}} = \sum_{m=\alpha}^{\beta-1} d_{j_m j_{m+1}}$$

Ещё немного преобразований:

$$0 = \sum_{m=\alpha}^{\beta-1} d_{j_m j_{m+1}} - 2 \cdot \sum_{m=\alpha}^{\beta-1} c_{j_m} =$$

$$= \sum_{m=\alpha}^{\beta-1} d_{j_m j_{m+1}} - \sum_{m=\alpha}^{\beta-1} c_{j_m} - \sum_{m=\alpha}^{\beta-1} c_{j_{m+1}} - c_{j_{\alpha}} + c_{j_{\beta}} =$$

$$= \sum_{m=\alpha}^{\beta-1} (d_{j_m j_{m+1}} - c_{j_m} - c_{j_{m+1}}) = \sum_{m=\alpha}^{\beta-1} d'_{j_m j_{m+1}}$$

В итоге получаем:

$$\sum_{m=\alpha}^{\beta-1} d'_{j_m j_{m+1}} = 0$$

Отсюда $d'_{j_m j_{m+1}} = 0$ при всех $\alpha \leq m < \beta$.

Таким образом, в матрице \widetilde{D}' есть ненулевой недиагональный элемент (например, $d_{j_{\alpha}j_{\alpha+1}}$).

Значит, размерность матрицы D' строго меньше размерности \widetilde{D}' , а значит, и размерности D.

- Размерность матрицы D' строго меньше размерности \widetilde{D}' , а значит и размерности D.
- Условия 1-3 для D' выполнены.
- Следовательно, можно доказать теорему индукцией по размерности матрицы.
- Базис индукции: $D \in \mathbb{R}^{1 \times 1}$ или $D \in \mathbb{R}^{2 \times 2}$. В случае $D \in \mathbb{R}^{1 \times 1}$, дерево T одна вершина. В случае $D \in \mathbb{R}^{2 \times 2}$ в качестве T берётся цепь длины d_{12} , концы этой цепи и будут вершинами, соответствующими строкам/столбцам D.

Индуктивный переход:

- Пусть дана D, и для матриц меньших размерностей соответствующие деревья существуют.
- Строим по D матрицу D', как описано ранее. При этом некоторые строки/столбцы D' соответствуют группам строк/столбцов D. Для D', по предположению, есть дерево T'.

Индуктивный переход:

• Строим дерево T для исходной матрицы D. Пусть группе строк j_1, \ldots, j_s матрицы D соответствует строка j матрицы D', а этой строке соответствует вершина v_j дерева T'. Тогда в дереве T к вершине v_j протягиваем цепочки длин c_{j_1}, \ldots, c_{j_s} , а концы этих цепочек объявляем вершинами v_{j_1}, \ldots, v_{j_s} .

