Université de Saint Etienne L1 MISPIC

Arithmétique Année 2024/2025

TD 3 : Arithmétique modulaire $\mathbb{Z}/n\mathbb{Z}$

Exercice 1 (F)

1. Etablir la table de multiplication de $\mathbb{Z}/5\mathbb{Z}$. En déduire que $\mathbb{Z}/5\mathbb{Z}$ est un corps commutatif.

2. Trouver l'opposé de $\bar{3}$ dans $\mathbb{Z}/5\mathbb{Z}$.

3. Trouver l'inverse de $\bar{3}$ dans $\mathbb{Z}/5\mathbb{Z}$.

4. Résoudre dans $\mathbb{Z}/5\mathbb{Z}$ l'équation $x^2 + x + \bar{1} = \bar{0}$.

Exercice 2 (F)

1. Donner la table de multiplication de $\mathbb{Z}/6\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\}.$

2. Déterminer les éléments inversibles de Z/6Z et donner leur inverse.

Exercice 3 (F) On travaille dans $A = \mathbb{Z}/43\mathbb{Z}$

1. Est-ce que A est un corps?

2. Trouver une relation de Bézout entre 43 et 30.

3. En déduire l'inverse de 30 dans A.

Exercice 4 (F)

1. Résoudre les équations suivantes :

(a) $n^2 + n + 3 = 0$ dans $\mathbb{Z}/5\mathbb{Z}$, (b) $n^2 - n = 2$ dans $\mathbb{Z}/3\mathbb{Z}$

2. Résoudre les congruences suivantes dans \mathbb{Z} :

(a) $n^2 + n + 3 \equiv 0$ [5], (b) $n^2 - n \equiv 2$

Exercise 5 (F) Montrer que pour tout $n \in \mathbb{N}$, $2^{3n} \equiv (-1)^n \mod 9$

Exercice 6 (*) Les questions suivantes sont indépendantes.

1. Quel est le reste dans la division euclidienne de 6⁵³⁷ par 7?

2. Quel est le reste dans la division euclidienne de 5²⁰²⁴ par 7?

3. Quel est le reste dans la division euclidienne de 793¹²³ par 7?

4. Quels sont les entiers naturels n tels que $2^n - 1$ est divisible par 9?

5. Démontrer que 13 divise $3^{126} + 5^{126}$.

6. Démontrer que $2^{4n+1} + 3^{4n+1}$ est divisible par 5 quel que soit l'entier naturel n.

Exercice 7 (*)

1. Etablir la table de multiplication de $\mathbb{Z}/8\mathbb{Z}$.

2. Enumérer les couples $(a,b) \in (\mathbb{Z}/8\mathbb{Z})^2$ tels que $a \times b = \bar{0}$.

3. Résoudre dans $\mathbb{Z}/8\mathbb{Z}$ les équations $x^2 + x + \bar{1} = \bar{0}$, $x^2 + x = \bar{0}$ et $x^2 + x + \bar{4} = \bar{0}$.

Exercice 8 (F) On considère l'équation $x^5 - x = 0$. Résoudre cette équation dans

 $(a) \mathbb{Z}/5\mathbb{Z},$

(b) $\mathbb{Z}/4\mathbb{Z}$.

Exercice 9 (F) Résoudre le système $\begin{cases} x+y=\bar{2} \\ x-y=\bar{3} \end{cases} dans$

 $(a) \mathbb{Z}/5\mathbb{Z}, \qquad (b) \mathbb{Z}/6\mathbb{Z}.$

Exercice 10 (*)

1. Soit $n \in \mathbb{N}^*$ et $a \in \mathbb{N}^*$.

Montrer que si a et n sont premiers entre eux alors \overline{a} est inversible dans $\mathbb{Z}/n\mathbb{Z}$. (Indication : Utiliser Bézout).

- 2. La réciproque est-elle vraie ?
- 3. Calculer l'inverse de $\overline{18}$ dans $\mathbb{Z}/35\mathbb{Z}$.
- 4. Calculer l'inverse de $\overline{21}$ dans $\mathbb{Z}/32\mathbb{Z}$.

Exercice 11 (F) Déterminer l'ensemble des x dans \mathbb{Z} tels que

(a)
$$\begin{cases} x \equiv 0 & [3] \\ x \equiv 1 & [6] \end{cases}$$
 (b) $\begin{cases} x \equiv 1 & [13] \\ x \equiv 4 & [6] \end{cases}$ (c) $\begin{cases} x \equiv 12 & [150] \\ x \equiv 7 & [41] \end{cases}$ (d) $\begin{cases} x \equiv 3 & [91] \\ x \equiv 4 & [17] \end{cases}$

Exercice 12 (*) Un enfant dispose d'un nombre n de briques de construction. Lorsque qu'il fait un mur de 4 briques de large, il lui reste 3 briques non-utilisées. Lorsqu'il fait un mur de 5 (resp. 7, resp. 9) briques de large, il lui reste 1 (resp. 3, resp. 2) briques non-utilisées. Déterminer les valeurs possibles pour n, ainsi que la plus petite d'entre elles.

Exercice 13 Le but de l'exercice est de déterminer tous les couples d'entiers $(m; n) \in \mathbb{N}^2$ tels que $2^m - 3^n = 1$.

- 1. (*) Déterminer, pour tout entier naturel n, le reste dans la division euclidienne de 3ⁿ par 8.
- 2. (**) En déduire que si (m;n) est solution de $2^m 3^n = 1$, alors $m \leq 2$.
- 3. (*) Conclure en donnant les solutions de l'équation.

Exercice 14 Soit p un nombre premier et soit $G = ((\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}, \times)$.

- 1. (*) Montrer que G est un groupe commutatif.
- 2. (**) Soit $a \in G$, Montrer que $a^{p-1} = \overline{1}$.
- 3. (*) Montrer que $\forall a \in \mathbb{Z}, a^p \equiv a \mod p$ ("Petit théorème de Fermat")
- 4. (*) Soit p = 5. Montrer qu'il existe un morphisme de groupe bijectif entre G et $(\mathbb{Z}/4\mathbb{Z}, +)$
- 5. (***) Soit p arbitraire. Montrer qu'il existe un morphisme de groupe bijectif entre G et $(\mathbb{Z}/(p-1)\mathbb{Z},+)$

Exercice 15 Soit $n \in \mathbb{N}$ fixé. On s'intéresse à l'équation $a^n + b^n = c^n$ avec $a, b, c \in \mathbb{N}$.

- 1. (**) Soit n=2
 - (a) Montrer que $\forall x \in \mathbb{Z}, \ x^2 \not\equiv 2 \bmod 3$.
 - $(b)\ Soit\ a,b,c\ une\ solution\ de\ l'équation,\ montrer\ que\ a\ ou\ b\ est\ un\ multiple\ de\ 3.$
 - $(c)\ Montrer\ que\ si\ c\ est\ un\ multiple\ de\ 3\ alors\ a\ et\ b\ sont\ des\ multiples\ de\ 3.$
 - $(d)\ Montrer\ que\ a\ ou\ b\ est\ multiple\ de\ 4\ et\ que\ a,\ b\ ou\ c\ est\ multiple\ de\ 5$
- 2. (***...*) Soit $n \ge 3$. Montrer qu'il n'existe aucun triplet d'entiers a, b, c tous non-nuls tels que $a^n + b^n = c^n$ ("Grand Théorème de Fermat")