Code No: **R204104B**

Set No. 1

IV B.Tech I Semester Regular Examinations, January – 2024 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions
ONE Question from Each unit
All Questions Carry Equal Marks

		All Questions Carry Equal Marks *****	
1	- >	UNIT - I	
1	a)	Calculate the Radon Transform for a given image and describe its applications	[7]
	1.	in medical imaging, specifically in computed tomography (CT) scans.	[7]
	b)	Describe the components of an image processing system and their functions.	
		How do these components work together to enhance or manipulate digital	
		images?	[7]
		(OR)	
2	a)	Perform a Haar Transform on a grayscale image. Show the transformation	
		process and the resulting Haar coefficients.	[7]
	b)	Explain the concept of mathematical tools used in digital image processing.	
		How do these mathematical tools contribute to image enhancement and	
		analysis?	[7]
_	,	UNIT - II	
3	a)	Explain how different intensity transformation functions are used to enhance	
	1 \	or modify images.	[5]
	b)	Apply a frequency domain filter to smooth a noisy image. Provide the	
		calculations for the filter's frequency response and the transformed image.	F0.7
		Discuss how this approach differs from spatial domain filtering.	[9]
	`	(OR)	
4	a)	Explore the fundamental concepts of spatial filtering in image processing.	
		Discuss the differences between smoothing and sharpening spatial filters, and	F0.7
	1 \	provide real-world examples where each type of filter is applied.	[9]
	b)	Describe the differences between smoothing and sharpening spatial filters.	[5]
		UNIT - III	
5	a)	Discuss strategies for restoring images in the presence of noise, focusing on	
,	a)	spatial filtering techniques.	[7]
	b)	Include all the calculations and steps necessary to reconstruct the image using	[/]
	<i>U)</i>	an appropriate method.	[7]
		(OR)	[/]
		(OIC)	

1 of 2

Code No: **R204104B**

Set No. 1

6	a)	Discuss the importance of understanding the image degradation and restoration process in digital image processing.	[7]
	b)	Explain the role of each block and the mathematical formulation involved in	Γ,]
	0)	Constrained Least Squares filter process.	[7]
		UNIT - IV	
7	a)	Provide a step-by-step explanation of how LZW coding works and discuss its	
		applications and limitations in image compression.	[7]
	b)	Explain the concept of Run-Length coding and Symbol-Based coding in image	
		compression.	[7]
		(OR)	
8	a)	Discuss the fundamentals of image compression & Discuss Bit-Plane coding	
		as a method of image compression.	[7]
	b)	Explain the principles of Huffman coding and highlight strengths and	
		weaknesses.	[7]
		UNIT - V	
9	a)	Explain its significance and provide real-world scenarios where thresholding is	
		an effective technique for separating objects from the background.	[7]
	b)	Numerically demonstrate the application of morphological operations (erosion	
		and dilation) to a binary image. Provide the original image, the structuring	
		element, and the results of the operations.	[7]
		(OR)	
10	a)	Describe the process of thresholding in image segmentation and Discuss the	
		fundamental concepts of image segmentation.	[7]
	b)	Perform a color-based segmentation on a full-color image. Choose a suitable	
		color space model, apply relevant transformations, and describe how the	
		segmentation process can separate objects based on color information.	[7]

Set No. 2

IV B.Tech I Semester Regular Examinations, January – 2024 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions
ONE Question from Each unit
All Questions Carry Equal Marks

		All Questions Carry Equal Marks	
		***** UNIT - I	
1	a)	Perform Hadamard Transform on a grayscale image and explain its significance in pattern recognition and image encryption.	[7]
	b)	Discuss the fundamental steps in digital image processing. Explain how image sensing and acquisition play a crucial role in this process. (OR)	[7]
2	a)	Apply the Discrete Cosine Transform (DCT) to compress an image. Discuss	F. 77
	b)	the principles of image compression using DCT. Compare and contrast the Discrete Fourier Transform (DFT) of one variable with the extension to functions of two variables. What are the practical	[7]
		implications of these transforms in image processing?	[7]
		UNIT - II	
3	a)	Given a blurred image and the corresponding point spread function (PSF), perform image restoration using spatial filtering. Explain the deconvolution	
		process and its impact on the restored image.	[9]
	b)	Enlist the fundamentals of Spatial Enhancement methods with examples. (OR)	[5]
4	a)	Discuss the advantages and challenges of applying spatial enhancement methods in image processing. Provide a detailed analysis of techniques that	
		combine multiple spatial enhancement methods for superior image quality.	[9]
	b)	Describe the advantages of analyzing and processing images in the	[<i>E</i>]
		frequency domain.	[5]
		UNIT - III	
5	a)	Noise can significantly affect the quality of digital images. Describe various noise models that are commonly encountered.	[7]
	b)	You have an image corrupted by noise. Apply the Minimum Mean Square Error (Wiener) filtering technique to restore the image.	[7]
		(OR)	

6	a)	Explain the concept of periodic noise in digital images.	[7]
	b)	Explain the role of each block and the mathematical formulation involved of	
		the image restoration process using the Constrained Least Squares filter.	[7]
		UNIT - IV	
7	a)	Compare and contrast the basic compression methods such as Golomb	
		coding, and Arithmetic coding.	[7]
	b)	Design an image compression system using LZW coding. Apply LZW	
		coding to a given image and decode it, demonstrating the compression and	
		decompression processes.	[7]
		(OR)	
8	a)	Discuss the fundamentals of image compression & Describe the LZW	
		coding algorithm in image compression.	[7]
	b)	Provide a numerical example of image compression using Wavelet coding.	
		Use a 1D or 2D wavelet transform on a grayscale image	[7]
		UNIT - V	
9	a)	Explore region-based segmentation techniques in digital image processing.	[7]
	b)	Provide a practical example of edge detection in image segmentation.	[7]
		(OR)	
10	a)	Discuss the fundamental concepts of image segmentation. Explain various	
		methods such as point, and line, detection	[7]
	b)	Explore the concept of color image compression.	[7]

Code No: **R204104B**

Set No. 3

IV B.Tech I Semester Regular Examinations, January – 2024 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

		UNIT - I	
1	a)	Analyze the phase components of a 2-D image's Discrete Fourier Transform (DFT) and explain their impact on the image's visual features.	[7]
	b)	The 2-D Discrete Fourier Transform is a key concept in image processing. Explain its properties and significance in the context of image analysis and manipulation.	[7]
		(OR)	[,]
2	a)	Explain the concept of Nyquist theorem and aliasing in image sampling. Describe advanced techniques used to address aliasing in high-frequency	
		image components.	[7]
	b)	Discuss the need for image transforms in digital image processing. Provide	[/]
		examples of situations where various image transforms, such as the Discrete Fourier Transform and Discrete Cosine Transform, are applied.	[7]
		UNIT - II	
3	a)	Describe the process of restoring a degraded image using spatial filters.	
		Explain the role of the point spread function (PSF) in this context and the	
		challenges associated with it.	[9]
	b)	Describe frequency domain filters are more effective than spatial domain	
		filters with real world examples.	[5]
		(OR)	
4	a)	Design a spatial filter for edge detection and sharpening in a digital	
		photograph. Explain the mathematical formulation of the filter and	
		demonstrate its effectiveness through image examples.	[9]
	b)	Explain the concepts of histogram equalization and contrast stretching.	[5]

Code No: **R204104B R**

Set No. 3

UNIT	- III
-------------	-------

5	a)	Explain the concept of periodic noise in digital images. How does periodic	[7]
	b)	noise impact image quality. Provide a numerical example of image restoration from projections using	[7]
	b)	Provide a numerical example of image restoration from projections using	[7]
		an appropriate method. (OR)	[7]
_	- \	,	
6	a)	Apply the Minimum Mean Square Error (Wiener) filtering technique to restore the image. Explain the steps of this method and the rationale behind	
		using it.	[7]
	b)	Create a block diagram representing the image restoration process using	
		the Constrained Least Squares filter.	[7]
		UNIT - IV	
7	a)	Compare and contrast the basic compression methods such as Huffman	
		coding, and Arithmetic coding.	[7]
	b)	Discuss Bit-Plane coding as a method of image compression.	[7]
		(OR)	
8	a)	Given a grayscale image, perform Huffman coding to compress it. Include	
		the construction of the Huffman tree, encoding, and decoding steps.	
		Provide an example with calculations.	[7]
	b)	Explain the principles of Golomb coding and highlight strengths and	
		weaknesses.	[7]
		TIMITE V	
0	۵)	UNIT - V	
9	a)	Discuss the fundamental concepts of image segmentation. Explain various	[7]
	L	methods such as line, and edge detection.	[7]
	b)	Explain any two morphological algorithms for boundary extraction in	[7]
		Morphological Image Processing.	
10	,	(OR)	
10	a)	Discuss the principles and advantages of region-based segmentation and	[7]
	1 \	provide examples of when and how it is used.	[7]
	b)	Explain the fundamentals of color image processing, including color	r = -
		models and transformations.	[7]

Code No: **R204104B**

Set No. 4

IV B.Tech I Semester Regular Examinations, January – 2024 DIGITAL IMAGE PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT - I

		01121 2	
1	a)	Implement advanced filtering techniques, such as anisotropic diffusion or	
		nonlinear diffusion, for image enhancement. Explain the principles of these	
		filters and their effect on image features.	[7]
	b)	Discuss the importance of phase in image transforms. How does phase	
		information impact the interpretation and manipulation of digital images?	[7]
		(OR)	
2	a)	Discuss the trade-offs between image quantization levels and image quality.	
		How do quantization errors affect the perceptual quality of the image, and what	
		strategies are used to mitigate these errors?	[7]
	b)	Explain the concept of Nyquist theorem and aliasing in image sampling.	
		Describe advanced techniques used to address aliasing in high-frequency image	
		components.	[7]
		UNIT - II	
3	a)	Given a low-contrast image, perform histogram equalization to enhance its	
		visibility and dynamic range. Provide the step-by-step calculations and the	
		resulting enhanced image.	[9]
	b)	Discuss scenarios where frequency domain filtering may not be effective,	
		especially when dealing with complex noise patterns and non-uniform	
		illumination.	[5]
		(OR)	
4	a)	Implement a spatial filter to reduce noise in a grayscale image. Discuss the	
		choice of filter type and parameters, and provide before-and-after images to	
	• .	demonstrate the noise reduction.	[9]
	b)	Discuss the advantages of frequency domain filtering over spatial domain	F
		filtering in this context.	[5]

Code No: **R204104B**

Set No. 4

UNIT - III

5	a)	Design a constrained least squares filtering process to restore an image affected	[7]
	1.	by linear, position-invariant degradation.	[7]
	b)	Create a block diagram illustrating the steps involved in the image restoration	[7]
		process using the Geometric Mean filter.	[7]
		(OR)	
6	a)	Given a set of image projections, perform image reconstruction using an appropriate technique, and explain the mathematical principles behind this	
		process.	[7]
	b)	Provide detailed explanations for each block's function and the overall process	
		of Geometric Mean filter.	[7]
		UNIT - IV	
7	a)	Explain the importance of image compression in digital image processing and	
,		provide an overview of any two image compression techniques covered.	[7]
	b)	Explain the principles of Arithmetic coding and highlight strengths and	
		weaknesses.	[7]
		(OR)	
8	a)	Compare and contrast the basic compression methods such as Huffman coding,	
		Golomb coding.	[7]
	b)	Explain the concept of Run-Length coding and Symbol-Based coding in image	
	ŕ	compression.	[7]
		UNIT - V	
9	a)	Discuss the fundamental concepts of image segmentation. Explain various	
	,	methods such as point and edge detection.	[7]
	b)	Explore the concept of color image compression. Discuss various compression	L . J
	-,	methods and their effectiveness in reducing the size of color images while	
		preserving quality.	[7]
		(OR)	Γ,]
10	a)	Explain the basic principles of morphological image processing.	[7]
- 0	b)	Discuss the concept of morphological watersheds for image segmentation.	[7]
	σ_{j}	Disease the concept of inorphological watersheds for image segmentation.	