Quiz 8

Due Mar 19 at 11:59pm **Points** 6 **Questions** 6

Available Mar 16 at 11:59pm - Apr 24 at 11:59pm Time Limit 30 Minutes

Instructions

Quiz 8

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	9 minutes	6 out of 6

Score for this quiz: **6** out of 6 Submitted Mar 19 at 8:20pm This attempt took 9 minutes.

Question 1

1 / 1 pts

If L_1 is regular and L_2 is a finite language (i.e., a language with a finite number of strings), then L_1 union L_2 must be a regular language

Correct!

- True
- False

Question 2

1 / 1 pts

Which of the properties are decidable in case of finite automaton.

3/19/23, 8:20 PM	Quiz 8: CS 3186-02 (34283) (i) Empty (ii) Non-empty (iii) Finite (iv) Infinite			
	(v) Membership (vi) Equality			
Correct!	✓ IV			
Correct!	✓ V			
Correct!	☑ I			
Correct!	☑ II			
Correct!	✓ VI			
Correct!	✓ III			
	Question 3 1 / 1 pts			
	If M = (Q, Σ , δ , q0, F) is an automata and q0 $\not\in$ F, Then we can conclude that $\lambda \not\in$ L(M).			
	This statement is true for the following:			
	(I) If M is either a DFA or a NFA (II) If M is a DFA only (III) If M is a NFA only (IV) None of the above			

Correct!

II

	Question 4	1 / 1 pts
	Regular expressions that do not contain the star operator can reponly finite languages.	present
Correct!	True	
	○ False	
	Question 5	1 / 1 pts
	If L is a finite language (i.e., a language with a finite number of strings), then L must be a regular language	
Correct!	True	
	○ False	
	Question 6	1 / 1 pts
	Regular languages can be expressed by regular expressions. We pointed out that difference operator (-) is not a valid operator in reexpressions. Hence, Regular languages are not closed under the difference operator.	egular
	○ True	
Correct!	False	

Quiz Score: 6 out of 6