Временные ряды 3

модель ARIMA

План

- 1. Домашнее задание 2
- 2. ARIMA
 - a. Модель AR
 - b. Модель MA
 - с. модель І
- 3. SARIMA
 - а. модель S
- 4. Практика применения моделей

Вывод ДЗ 2.

Чем дальше смотрим - хуже видим

Модель ARIMA

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

εt— стационарный временной ряд;

c,ai,bi - параметры модели.

Δd — оператор разности временного ряда порядка d

AR

Модель авторегрессии, autoregressive, AR(p)

р - глубина регрессии

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

AR

Регрессия ряда на самого себя в прошлом

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t,$$

у_t - стационарный ряд

е_t - шум

у_t - линейная комбинация р предыдущих значений ряда и шума

MA

модель скользящего среднего (moving average, MA)

длина скользящего среднего - q.

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

MA

Регрессия шумов в q предыдущие моменты времени

$$y_t = \alpha + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

у_t - стационарный ряд

e_t - шум

у_t - линейная комбинация q предыдущих значений шума (Авторегрессия на шум?)

Получили ARMA(p,q)

Теорема Волда: любой стационарный временной ряд можно описать модель ARMA(p,q)

Теперь понятно для чего нужна была стационарность

Порядок интегрирования

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

ARIMA(p,d,q)

Ряд можно описать моделью ARIMA(p,d,q), если ряд его разностей порядка d можно описать моделью ARMA(p,q)

Модель ARIMA

$$riangle^d X_t = c + \sum_{i=1}^p a_i riangle^d X_{t-i} + \sum_{j=1}^q b_j arepsilon_{t-j} + arepsilon_t$$

εt— стационарный временной ряд;

c,ai,bi - параметры модели.

∆d — оператор разности временного ряда порядка d

d=0 : $X(t) = c + \Sigma$ ai $X(t-i) + \Sigma$ bj e(t-j) + et

 $q=0: X(t) = c + \Sigma \text{ ai } X(t-i) + \text{et}$

p=0: X(t) = c + et

порядок обработки

оценивается стационарность ряда

оценивается автокорреляция

оценивается автокорреляция разностей

выбираем параметры

проводим оценку

MA(q) AR(p) $ARIMA(p,d,q)(P,D,Q)_s$

SARIMA

Добавим модель сезона: PDQ

SARIMA (p,d,q)(P,D,Q)