The Malthusian Theory and Epoch

Ömer Özak

Department of Economics Southern Methodist University

Economic Growth and Comparative Development

- Technological progress and land expansion
 - Temporary increase in the level of income per capita
 - \Longrightarrow An increase in the size of the population
- \Longrightarrow No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

Technological progress and land expansion

- \Longrightarrow Temporary increase in the level of income per capita
- \Longrightarrow An increase in the size of the population
- \Longrightarrow No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - ullet Temporary increase in the level of income per capita
 - An increase in the size of the population
- \Longrightarrow No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - ullet \Longrightarrow Temporary increase in the level of income per capita
 - \Longrightarrow An increase in the size of the population
- \Longrightarrow No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - \Longrightarrow Temporary increase in the level of income per capita
 - \Longrightarrow An increase in the size of the population
- >> No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - \Longrightarrow Temporary increase in the level of income per capita
 - ullet An increase in the size of the population
- >> No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - \Longrightarrow Temporary increase in the level of income per capita
 - ullet An increase in the size of the population
- >> No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - => Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - \Longrightarrow Temporary increase in the level of income per capita
 - \Longrightarrow An increase in the size of the population
- >> No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - \Longrightarrow Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

- Technological progress and land expansion
 - \Longrightarrow Temporary increase in the level of income per capita
 - \Longrightarrow An increase in the size of the population
- >> No effect on the level of income per capita in the long run
- Output per capita fluctuates around a subsistence level
- Technologically advanced or land rich economies
 - \Longrightarrow Higher population density
 - \Longrightarrow Similar level of income per-capita in the long-run

• Positive effect of income on population

•
$$y \uparrow \Longrightarrow L \uparrow$$

- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Positive effect of income on population
 - $y \uparrow \Longrightarrow L \uparrow$
- Fixed factor of production Land
 - $L \uparrow \Longrightarrow MPL \downarrow \Longrightarrow y \downarrow$

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha}$$
 $\alpha \in (0,1)$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha}$$
 $\alpha \in (0,1)$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- X = land
- $A \equiv$ technological level
- AX = effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^c$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^{\alpha}$$

Production

The output produced in period t

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left\lceil \frac{AX}{L_t} \right\rceil^{\alpha}$$

Production

The output produced in period t

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad \alpha \in (0,1)$$

- $L_t \equiv$ labor employed in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^{\alpha}$$

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Governed by the endogenous rate of population growth
 - Determined by households' optimal number of children

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Governed by the endogenous rate of population growth
 - Determined by households' optimal number of children

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Governed by the endogenous rate of population growth
 - Determined by households' optimal number of children

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Governed by the endogenous rate of population growth
 - Determined by households' optimal number of children

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Governed by the endogenous rate of population growth
 - Determined by households' optimal number of children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

- Live for 2 period
- Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
- Parenthood (2nd Period):
 - Work
 - Allocate income between consumption and children

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1)$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

• Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1)$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

• Preferences of individual t(adult at time t)

$$\mathbf{u_t} = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0, 1)$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1]$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \le y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \gamma \in (0,1]$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1)$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1)$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$
 $\gamma \in (0,1)$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- ullet $c_t \equiv ext{ consumption of individual } t$
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- ullet $c_t \equiv ext{ consumption of individual } t$
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- ullet $c_t \equiv ext{ consumption of individual } t$
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences of individual t(adult at time t)

$$u_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad \gamma \in (0,1)$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

• $\rho \equiv {\rm cost} \ {\rm of} \ {\rm raising} \ {\rm a} \ {\rm child}$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]'$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\circ}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]'$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\circ}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$\mathbf{n_t} = \frac{\gamma}{\rho} \mathbf{y_t} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_{t} = \frac{\gamma}{\rho} y_{t} = \frac{\gamma}{\rho} \left[\frac{AX}{L_{t}} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$

$$\rho n_t = \gamma y_t$$

$$n_t = \frac{\gamma}{\rho} y_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha}$$

$$L_{t+1} = \frac{\gamma}{\rho} \left[\frac{AX}{L_t} \right]^{\alpha} L_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

$$ar{L} = (rac{\gamma}{
ho})^{1/lpha}(AX) \equiv ar{L}(A)$$

Adjustment of Population to Advancements in Technology

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{1}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{1}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{1}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{1}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{1}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = rac{\gamma}{
ho} y_t$$
 $y_{t+1} = rac{y_t}{\sigma} = rac{y_t}{\Gamma \cdot 1 \cdot \alpha}$

$$y_{t+1} = \frac{y_t}{n_t^{\alpha}} = \frac{y_t}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_t^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$\mathbf{y_{t+1}} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha} \equiv \psi(y_t)$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_{t} = \frac{\gamma}{\rho} y_{t}$$

$$y_{t+1} = \frac{y_{t}}{n_{t}^{\alpha}} = \frac{y_{t}}{\left[\frac{\gamma}{\rho}\right]^{\alpha} y_{t}^{\alpha}}$$

$$y_{t+1} = \left[\frac{
ho}{\gamma}\right]^{lpha} y_t^{1-lpha} \equiv \psi(y_t)$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

The steady-state level of income per worker

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{\mathbf{y}} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{\mathbf{y}}^{1-\alpha}$$

• The steady-state level of income per worker

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

• The steady-state level of income per worker

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

The steady-state level of income per worker

$$\bar{\mathbf{y}} = \left[\frac{\rho}{\gamma}\right]$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

The steady-state level of income per worker

$$\bar{\mathbf{y}} = \left[\frac{\rho}{\gamma}\right]$$

The Effect of Technological Advancement on income per Worker

The Effect of Technological Advancement on the Time Path of Population and Income per Worker

The Effect of Advancement in Technology or Land Productivity

 Increases the short-run and the steady-state level of the working population

$$\frac{\partial L_t}{\partial A} > 0$$
 and $\frac{\partial \bar{L}}{\partial A} > 0$

 Increases the level of income per capita in the short-run but does not affect the steady-state levels of income per worker

$$\frac{\partial y_t}{\partial A} > 0$$
 and $\frac{\partial \bar{y}}{\partial A} = 0$

- Variations in technology and land quality across countries will be reflected primarily in variation in population density:
 - Technological superiority will result primarily in higher population density without any sizable effect on income per-capita in the long-run
 - Superior land quality will result primarily in higher population density without any sizable effect on income per-capita in the long-run

- Variations in technology and land quality across countries will be reflected primarily in variation in population density:
 - Technological superiority will result primarily in higher population density without any sizable effect on income per-capita in the long-run
 - Superior land quality will result primarily in higher population density without any sizable effect on income per-capita in the long-run

- Variations in technology and land quality across countries will be reflected primarily in variation in population density:
 - Technological superiority will result primarily in higher population density without any sizable effect on income per-capita in the long-run
 - Superior land quality will result primarily in higher population density without any sizable effect on income per-capita in the long-run

- Variations in technology and land quality across countries will be reflected primarily in variation in population density:
 - Technological superiority will result primarily in higher population density without any sizable effect on income per-capita in the long-run
 - Superior land quality will result primarily in higher population density without any sizable effect on income per-capita in the long-run

• Endogeneity of:

- population and technology
 - Technology ↑ ⇒ Population ↑
 - Population ↑ ⇒ Technology ↑

- Endogeneity of:
 - population and technology
 - Technology ↑ ⇒ Population ↑
 - Population ↑ ⇒ Technology ↑

- Endogeneity of:
 - population and technology
 - Technology $\uparrow \Longrightarrow$ Population \uparrow
 - Population ↑ ⇒ Technology ↑

- Endogeneity of:
 - population and technology
 - Technology ↑ ⇒ Population ↑
 - Population $\uparrow \Longrightarrow$ Technology \uparrow

Identification Strategy

- Resolving: reverse causality
 - Variation in the onset of the Neolithic Revolution (NR) across the globe a proxy for variation in the technological level
- Resolving: omitted variable bias (i.e., 3rd factor (e.g., HC)) affected population & NR
 - Variation in prehistoric domesticable species of plants and animals IV for the timing of the NR

- Resolving: reverse causality
 - Variation in the onset of the Neolithic Revolution (NR) across the globe a proxy for variation in the technological level
- Resolving: omitted variable bias (i.e., 3rd factor (e.g., HC)) affected population & NR
 - Variation in prehistoric domesticable species of plants and animals IV for the timing of the NR

- Resolving: reverse causality
 - Variation in the onset of the Neolithic Revolution (NR) across the globe a proxy for variation in the technological level
- Resolving: omitted variable bias (i.e., 3rd factor (e.g., HC)) affected population & NR
 - Variation in prehistoric domesticable species of plants and animals IV for the timing of the NR

- Resolving: reverse causality
 - Variation in the onset of the Neolithic Revolution (NR) across the globe a proxy for variation in the technological level
- Resolving: omitted variable bias (i.e., 3rd factor (e.g., HC)) affected population & NR
 - Variation in prehistoric domesticable species of plants and animals IV for the timing of the NR

- Resolving: reverse causality
 - Variation in the onset of the Neolithic Revolution (NR) across the globe a proxy for variation in the technological level
- Resolving: omitted variable bias (i.e., 3rd factor (e.g., HC)) affected population & NR
 - Variation in prehistoric domesticable species of plants and animals IV for the timing of the NR

Years Elapsed since the Onset of the Neolithic Revolution across the Globe

The Neolithic Revolution as a proxy for Technological Advancement

	OLS	OLS	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)
	Dependent Variable:					
_	Log Communications Technology in:		Log Industrial Technology in:		Log Transportation Technology in:	
_	1000 CE	1 CE	1000 CE	1 CE	1000 CE	1 CE
og Years since Neolithic Transition	0.368*** (0.028)	0.283*** (0.030)	0.074*** (0.014)	0.068*** (0.015)	0.380*** (0.029)	0.367*** (0.031)
Observations	143	143	143	143	143	143 0.51
Observations R ²	143 0.48	143 0.26	143 0.17	143 0.12	143 0.52	

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

Robustness of Identification Strategy

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

Robustness of Identification Strategy

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Variation in prehistoric biogeographic endowments IV for this direct measure of technology
- Robustness to the exclusion of unobserved time-invariant country fixed effects
 - First-difference estimation strategy (with a lagged explanatory variable)
 - The effect of changes in the level of technology in 1000 BCE-1 CE on population density and income per capita in 1-1000CE

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv \text{vector of geographical controls for country } i$
- $D_i \equiv$ vector of continental fixed effect in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

Determinants of Population Density in 1500 CE

	(1)	(2)	(3)	(4)	(5)	(6)			
	OLS	OLS	OLS	OLS	OLS	IV			
	Dependent Variable: Log population density in 1500 CE								
Log years since Neolithic	0.833*** (0.298)		1.025)*** (0.223	1.087*** (0.184)	1.389*** (0.224)	2.077*** (0.391)			
Log land productivity		0.587*** (0.071)	0.641*** (0.059)	0.576*** (0.052)	0.573*** (0.095)	0.571*** (0.082)			
Log absolute latitude		-0.425*** (0.124)	-0.353*** (0.104)	-0.314*** (0.103)	-0.278** (0.131)	-0.248** (0.117)			
Distance to nearest coast or river				-0.392*** (0.142)	0.220 (0.346)	0.250 (0.333)			
% land within 100 km of coast or river				0.899*** (0.282)	1.185*** (0.377)	1.350*** (0.380)			
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes			
Observations	147	147	147	147	96	96			
R^2	0.40	0.60	0.66	0.73	0.73	0.70			
First-stage F-statistic Overident. p-value						14.65 0.44			
Notes: Robus	st standard err	ors in parenthe	eses; *** p<0.	01, ** p<0.05	5, * p<0.1				

Timing of Neolithic and Population Density in 1500 CE

Conditional on land productivity, geographical factors, and continental fixed effects

Land Productivity and Population Density in 1500 CE

Conditional on transition timing, geographical factors, and continental fixed effects

Determinants of Population Density in 1000 CE

	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	OLS	OLS	IV
		Dependent Var		opulation den		
Log years since Neolithic	1.232***		1.435***	1.480***	1.803***	2.933***
	(0.293)		(0.243)	(0.205)	(0.251)	(0.504)
Log land productivity		0.470***	0.555***	0.497***	0.535***	0.549***
Log land productivity		(0.081)	(0.065)	(0.056)	(0.098)	(0.092)
Log absolute latitude		-0.377**	-0.283**	-0.229**	-0.147	-0.095
		(0.148)	(0.116)	(0.111)	(0.127)	(0.116)
Distance to nearest				-0.528***	0.147	0.225
coast or river				(0.153)	(0.338)	(0.354)
% land within 100 km				0.716**	1.050**	1.358**
of coast or river				(0.323)	(0.421)	(0.465)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	142	142	142	142	94	94
R^2	0.38	0.46	0.59	0.67	0.69	0.62
First-stage F-statistic						15.10
Overident. p-value						0.281

Determinants of Population Density in 1 CE

	(4)	(0)	(0)	(4)	/=\	(6)
	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	OLS	OLS	OLS	OLS	IV
		Dependent V		population de		
Log years since Neolithic	1.560***		1.903***	1.930***	2.561***	3.459***
	(0.326)		(0.312)	(0.272)	(0.369)	(0.437)
Law law dawada aki da		0.404***	0.556***	0.394***	0.421***	0.479***
Log land productivity		(0.106)	(0.081)	(0.067)	(0.094)	(0.089)
		(0.100)	(0.001)	(0.007)	(0.094)	(0.009)
Log absolute latitude		-0.080	-0.030	0.057	0.116	0.113
J		(0.161)	(0.120)	(0.101)	(0.121)	(0.113)
		()	()	()	(-)	(/
Distance to nearest				-0.685***	-0.418	-0.320
coast or river				(0.155)	(0.273)	(0.306)
				, ,	, ,	, ,
% land within 100 km				0.857**	1.108***	1.360***
of coast or river				(0.351)	(0.412)	(0.488)
				, ,	, ,	, ,
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	128	128	128	128	83	83
R^2	0.47	0.41	0.59	0.69	0.75	0.72
First-stage F-statistic						10.85
Overident. p-value						0.590
-						
Notes: Robus	st standard ei	rrors in parenth	eses; *** p<0	0.01, ** p<0.0	05, * p<0.1	

Effects on Income per Capita versus Population Density

	OLS	OLS	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)	(5)	(6)		
	Log In	come Per Cap	oita in	Log F	Log Population Density in			
	1500 CE	1000 CE	1 CE	1500 CE	1000 CE	1 CE		
Log years since Neolithic	0.159	0.073	0.109	1.337**	0.832**	1.006**		
	(0.136)	(0.045)	(0.072)	(0.594)	(0.363)	(0.483)		
Log land productivity	0.041	-0.021	-0.001	0.584***	0.364***	0.681**		
	(0.025)	(0.025)	(0.027)	(0.159)	(0.110)	(0.255)		
Log absolute latitude	-0.041	0.060	-0.175	0.050	-2.140**	-2.163**		
	(0.073)	(0.147)	(0.175)	(0.463)	(0.801)	(0.979)		
Distance to nearest	0.215	-0.111	0.043	-0.429	-0.237	0.118		
coast or river	(0.198)	(0.138)	(0.159)	(1.237)	(0.751)	(0.883)		
% land within 100 km of	0.124	-0.150	0.042	1.855**	1.326**	0.228		
coast or river	(0.145)	(0.121)	(0.127)	(0.820)	(0.615)	(0.919)		
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	31	26	29	31	26	29		
R^2	0.66	0.68	0.33	0.88	0.95	0.89		
Notes: Robus	t standard er	rors in parent	heses; *** i	p<0.01, ** p<	<0.05, * p<0.1	1		

Transition Timing and Population Density in 1500 CE

Conditional on land productivity, geographical factors, and continental fixed effects

Transition Timing and Income Per Capita in 1500 CE

Conditional on land productivity, geographical factors, and continental fixed effects

Land Productivity and Population Density in 1500 CE

Conditional on transition timing, geographical factors, and continental fixed effects

Land Productivity and Income Per Capita in 1500 CE

Conditional on transition timing, geographical factors, and continental fixed effects

Robustness to Income per Capita Data Quality Concerns

	OLS	OLS	OLS	OLS	OLS	OLS
	Weighted	Weigthed	Weighted	Weigthed	Weighted	Weigthed
	(1)	(2)	(3)	(4)	(5)	(6)
			Weighted A	ccording to:		
	Incor	me Data Frequ	iency	Tot	al Population :	Size
				og Income Per		
	1500 CE	1000 CE	1 CE	1500 CE	1000 CE	1 CE
Log years since Neolithic	0.173 (0.162)	0.122* (0.063)	0.189 (0.121)	0.278 (0.171)	0.143* (0.068)	0.289 (0.175)
Log land productivity	0.039 (0.023)	-0.045* (0.022)	0.008 (0.031)	-0.005 (0.026)	-0.062* (0.030)	-0.011 (0.027)
Log absolute latitude	-0.042 (0.080)	0.205* (0.108)	-0.442 (0.362)	-0.089 (0.052)	0.298*** (0.031)	0.080 (0.089)
Distance to nearest coast or river	0.219 (0.202)	-0.370** (0.148)	0.139 (0.298)	0.332** (0.148)	-0.592*** (0.108)	-0.180 (0.189)
% land within 100 km of coast or river	0.153 (0.169)	-0.228 (0.137)	0.159 (0.257)	0.329 (0.227)	-0.477*** (0.122)	0.003 (0.277)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	31	26	29	31	26	29
R^2	0.54	0.79	0.29	0.74	0.83	0.45

Robustness to Direct Measures of Technological Sophistication

	OLS	OLS	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)
			Dependent			
	Log Po	pulation	Log Inco	me Per	Log Po	pulation
		ity in:	Capit		Densi	
	1000 CE	1 CE	1000 CE	1 CE	1000 CE	1 CE
Log Technology Index in Relevant Period	4.315*** (0.850)	4.216*** (0.745)	0.064 (0.230)	0.678 (0.432)	12.762*** (0.918)	7.461** (3.181)
Log land productivity	0.449*** (0.056)	0.379*** (0.082)	-0.016 (0.030)	0.004 (0.033)	0.429** (0.182)	0.725** (0.303)
Log absolute latitude	-0.283** (0.120)	-0.051 (0.127)	0.036 (0.161)	-0.198 (0.176)	-1.919*** (0.576)	-2.350*** (0.784)
Distance to nearest coast or river	-0.638*** (0.188)	-0.782*** (0.198)	-0.092 (0.144)	0.114 (0.164)	0.609 (0.469)	0.886 (0.904)
% land within 100 km of coast or river	0.385 (0.313)	0.237 (0.329)	-0.156 (0.139)	0.092 (0.136)	1.265** (0.555)	0.788 (0.934)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	140	129	26	29	26	29
R ²	0.61	0.62	0.64	0.30	0.97	0.88
Notes: Robus	t standard erre	ors in parenthe	ses; *** p<0	0.01, ** p<	0.05, * p<0.1	

The Causal Effect of Technological Sophistication on Population Density

	OLS	OLS	IV	OLS	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)
		Depend	lent Variable:	Population De	nsity in:	
		1000CE			1CE	
Log Technology Index in	4.315***	4.198***	14.530***	4.216***	3.947***	10.798**
Relevant Period	(0.850)	(1.164)	(4.437)	(0.745)	(0.983)	(2.857)
Log land productivity	0.449***	0.498***	0.572***	0.379***	0.350**	0.464**
	(0.056)	(0.139)	(0.148)	(0.082)	(0.172)	(0.182)
Log absolute latitude	-0.283**	-0.185	-0.209	-0.051	0.083	-0.052
	(0.120)	(0.151)	(0.209)	(0.127)	(0.170)	(0.214)
Distance to nearest coast or river	-0.638***	-0.363	-1.155*	-0.782***	-0.625	-0.616
	(0.188)	(0.426)	(0.640)	(0.198)	(0.434)	(0.834)
% land within 100 km of coast or river	0.385	0.442	0.153	0.237	0.146	-0.172
	(0.313)	(0.422)	(0.606)	(0.329)	(0.424)	(0.642)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	140	92	92	129	83	83
R ²	0.61	0.55	0.13	0.62	0.58	0.32
First-stage F-statistic Overid. p-value			12.52 0.941			12.00 0.160

Ömer Özak

Robustness to Technology Diffusion and Geographic Features

	(1)	(2)	(3)	(4)	(5)	(6)
	Log Po	pulation	Log Income Per		Log Population	
	Density	in 1500	Capita	in 1500	Density	in 1500
Log Technology Index in Relevant Period	0.828*** (0.208)	0.877*** (0.214)	0.117 (0.221)	0.103 (0.214)	1.498** (0.546)	1.478** (0.556)
Log land productivity	0.559*** (0.048)	0.545*** (0.063)	0.036 (0.032)	0.047 (0.037)	0.596*** (0.123)	0.691*** (0.122)
Log Distance to Frontier	-0.186*** (0.035)	-0.191*** (0.036)	-0.005 (0.011)	-0.001 (0.013)	-0.130* (0.066)	-0.108* (0.055)
Small Island Dummy	0.067 (0.582)	0.086 (0.626)	-0.118 (0.216)	-0.046 (0.198)	1.962** (0.709)	2.720*** (0.699)
Landlocked Dummy	0.131 (0.209)	0.119 (0.203)	0.056 (0.084)	0.024 (0.101)	1.490*** (0.293)	1.269*** (0.282)
% Land in Temperate Climate Zones		-0.196 (0.513)		-0.192 (0.180)		-1.624* (0.917)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	147	147	31	31	31	31
R^2	0.76	0.76	0.67	0.67	0.94	0.96

$$\ln P_{i,t} = \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p$$

$$\ln y_{i,t} = \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3' D_i + \xi_{i,t}^y$$

- $P_{i,t} \equiv$ population density in country i in year t
- $y_{i,t} \equiv$ income per capita in country i in year t
- ullet $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{p}\equiv$ disturbance term for population density in country i in period t
- $\bullet~\xi_{i~t}^{y} \equiv$ disturbance term for income per capita in country i in period t

$$\ln P_{i,t} = \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2' \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p$$

$$\ln y_{i,t} = \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3' D_i + \xi_{i,t}^y$$

- ullet $P_{i,t} \equiv$ population density in country i in year t
- ullet $y_{i,t} \equiv$ income per capita in country i in year t
- ullet $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{
 ho} \equiv$ disturbance term for population density in country i in period t
- ullet $\xi_{i,t}^{y}\equiv$ disturbance term for income per capita in country i in period t

$$\begin{split} \ln P_{i,t} &= \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p \\ \ln y_{i,t} &= \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2^{'} \Gamma_i + \gamma_3^{'} D_i + \xi_{i,t}^y \\ \end{split}$$

- $P_{i,t} \equiv$ population density in country i in year t
- $y_{i,t} \equiv$ income per capita in country i in year t
- $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{
 ho} \equiv$ disturbance term for population density in country i in period t
- ullet $\xi_{i,t}^{y}\equiv$ disturbance term for income per capita in country i in period t

$$\ln P_{i,t} = \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p$$

$$\ln y_{i,t} = \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3' D_i + \xi_{i,t}^y$$

- $P_{i,t} \equiv$ population density in country i in year t
- $y_{i,t} \equiv$ income per capita in country i in year t
- ullet $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{
 ho} \equiv$ disturbance term for population density in country i in period t
- $\bullet~\xi_{i.t}^{y} \equiv$ disturbance term for income per capita in country i in period t

$$\begin{split} \ln P_{i,t} &= \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p \\ \ln y_{i,t} &= \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2^{'} \Gamma_i + \gamma_3^{'} D_i + \xi_{i,t}^y \\ \end{split}$$

- $P_{i,t} \equiv$ population density in country i in year t
- $y_{i,t} \equiv$ income per capita in country i in year t
- ullet $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{oldsymbol{
 ho}} \equiv$ disturbance term for population density in country i in period t
- $\xi_{i,t}^y \equiv$ disturbance term for income per capita in country i in period t

$$\ln P_{i,t} = \gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3 D_i + \xi_{i,t}^p$$

$$\ln y_{i,t} = \gamma_0 + \nu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + \gamma_2' \Gamma_i + \gamma_3' D_i + \xi_{i,t}^y$$

- ullet $P_{i,t} \equiv$ population density in country i in year t
- $y_{i,t} \equiv$ income per capita in country i in year t
- ullet $A_{i,t-1} \equiv$ technological level in country i in year t-1
- ullet $\xi_{i,t}^{p}\equiv$ disturbance term for population density in country i in period t
- ullet $\xi_{i,t}^{y} \equiv$ disturbance term for income per capita in country i in period t

$$\xi_{i,t}^p = \eta_i^p + \mu_0 t + \sigma_{i,t}^p$$

$$\xi_{i,t}^y = \eta_i^y + \nu_0 t + \sigma_{i,t}^y$$

- $\eta_i^p \equiv$ unobserved time-invariant country fixed effect on population density in country i
- ullet $\sigma^p_{i,t} \equiv$ random disturbance in population density in country i in period t
- μ_0 $[
 u_0] \equiv$ global time fixed-effect on population density [income per capita]
- $oldsymbol{\eta}_i^{y} \equiv$ unobserved time-invariant country fixed effect on income per capita in country i
- $\sigma_{i,t}^y \equiv$ random disturbance in income per capita in country i in period t

$$\xi_{i,t}^p = \eta_i^p + \mu_0 t + \sigma_{i,t}^p$$

$$\xi_{i,t}^y = \eta_i^y + \nu_0 t + \sigma_{i,t}^y$$

- $\eta_i^p \equiv$ unobserved time-invariant country fixed effect on population density in country i
- $\sigma_{i,t}^{p} \equiv$ random disturbance in population density in country i in period t
- ullet μ_0 $[
 u_0]$ \equiv global time fixed-effect on population density [income per capita]
- $oldsymbol{\eta}_i^y \equiv$ unobserved time-invariant country fixed effect on income per capita in country i
- $\sigma_{i,t}^y \equiv$ random disturbance in income per capita in country i in period t

$$\xi_{i,t}^p = \eta_i^p + \mu_0 t + \sigma_{i,t}^p$$

$$\xi_{i,t}^{y} = \eta_{i}^{y} + \nu_{0}t + \sigma_{i,t}^{y}$$

- $\eta_i^p \equiv$ unobserved time-invariant country fixed effect on population density in country i
- ullet $\sigma^p_{i,t} \equiv$ random disturbance in population density in country i in period t
- ullet μ_0 $[
 u_0]$ \equiv global time fixed-effect on population density [income per capita]
- $oldsymbol{ heta}_i^y \equiv$ unobserved time-invariant country fixed effect on income per capita in country i
- $\sigma_{i,t}^y \equiv$ random disturbance in income per capita in country i in period t

$$\xi_{i,t}^p = \eta_i^p + \mu_0 t + \sigma_{i,t}^p$$

$$\xi_{i,t}^{y} = \eta_{i}^{y} + \nu_{0}t + \sigma_{i,t}^{y}$$

- \bullet $\eta_i^p \equiv$ unobserved time-invariant country fixed effect on population density in country i
- ullet $\sigma^p_{i,t} \equiv$ random disturbance in population density in country i in period t
- ullet μ_0 $[
 u_0]$ \equiv global time fixed-effect on population density [income per capita]
- $\eta_i^y \equiv$ unobserved time-invariant country fixed effect on income per capita in country i
- $\sigma_{i,t}^y \equiv$ random disturbance in income per capita in country i in period t

$$\xi_{i,t}^p = \eta_i^p + \mu_0 t + \sigma_{i,t}^p$$

$$\xi_{i,t}^{y} = \eta_{i}^{y} + \nu_{0}t + \sigma_{i,t}^{y}$$

- \bullet $\eta_i^p \equiv$ unobserved time-invariant country fixed effect on population density in country i
- ullet $\sigma^p_{i,t} \equiv$ random disturbance in population density in country i in period t
- μ_0 $[\nu_0] \equiv$ global time fixed-effect on population density [income per capita]
- $\eta_i^y \equiv$ unobserved time-invariant country fixed effect on income per capita in country i
- $\sigma_{i,t}^y \equiv$ random disturbance in income per capita in country i in period t

Control for Unobserved Heterogeneity across Country: Population Density

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where

$$\xi_{i,t}^{\rho} - \xi_{i,t-1}^{\rho} = [\eta_i^{\rho} + \mu_0 t + \sigma_{i,t}^{\rho}] - [\eta_i^{\rho} + \mu_0 (t-1) + \sigma_{i,t-1}^{\rho}] = \mu_0 + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^p_{i,t} - \sigma^p_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Control for Unobserved Heterogeneity across Country: Population Density

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\boldsymbol{\xi_{i,t}^{\rho}} - \boldsymbol{\xi_{i,t-1}^{\rho}} = [\eta_i^{\rho} + \mu_0 t + \sigma_{i,t}^{\rho}] - [\eta_i^{\rho} + \mu_0 (t-1) + \sigma_{i,t-1}^{\rho}] = \mu_0 + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^p_{i,t} - \sigma^p_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Control for Unobserved Heterogeneity across Country: Population Density

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^p_{i,t} - \sigma^p_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^p_{i,t} - \sigma^p_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^p_{i,t} - \sigma^p_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t}\equiv\sigma_{i,t}^{\it p}-\sigma_{i,t-1}^{\it p}\equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t}\equiv\sigma_{i,t}^{p}-\sigma_{i,t-1}^{p}\equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t} \equiv \sigma^{p}_{i,t} - \sigma^{p}_{i,t-1} \equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in Population density in country i from time t-1 to time t:

$$\begin{split} \Delta \ln P_{i,t} & \equiv & \ln P_{i,t} - \ln P_{i,t-1} \\ & = & \left[\gamma_0 + \mu_1 \ln A_{i,t-1} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t}^{p} \right] \\ & - \left[\gamma_0 + \mu_1 \ln A_{i,t-2} + \gamma_1 \ln X_i + + \gamma_2^{'} \Gamma_i + \gamma_3 D_i + \xi_{i,t-1}^{p} \right] \end{split}$$

where,

$$\xi_{i,t}^{p} - \xi_{i,t-1}^{p} = [\eta_{i}^{p} + \mu_{0}t + \sigma_{i,t}^{p}] - [\eta_{i}^{p} + \mu_{0}(t-1) + \sigma_{i,t-1}^{p}] = \mu_{0} + \phi_{i,t}$$

• $\phi_{i,t}\equiv\sigma_{i,t}^{p}-\sigma_{i,t-1}^{p}\equiv$ random disturbance in the change in population density in country i from time t to time t+1

$$\Delta \ln P_{i,t} = \mu_0 + \mu_1 \Delta \ln A_{i,t-1} + \phi_{i,t}$$

Changes in income per capita in country i from time t-1 to time t:

$$\Delta \ln y_{i,t} \equiv \ln y_{i,t} - \ln y_{i,t-1}$$

$$= v_0 + v_1 \Delta \ln A_{i,t-1} + \psi_{i,t}$$

• $\psi_{i,t} \equiv \sigma_{i,t}^{y} - \sigma_{i,t-1}^{y} \equiv$ random disturbance in the change in income per capita in country i

Changes in income per capita in country i from time t-1 to time t:

$$\begin{array}{lcl} \Delta \ln y_{i,t} & \equiv & \ln y_{i,t} - \ln y_{i,t-1} \\ \\ & = & \upsilon_0 + \upsilon_1 \Delta \ln A_{i,t-1} + \psi_{i,t} \end{array}$$

• $\psi_{i,t} \equiv \sigma_{i,t}^{\rm y} - \sigma_{i,t-1}^{\rm y} \equiv$ random disturbance in the change in income per capita in country i

Changes in income per capita in country i from time t-1 to time t:

$$\Delta \ln y_{i,t} \equiv \ln y_{i,t} - \ln y_{i,t-1}$$

$$= v_0 + v_1 \Delta \ln A_{i,t-1} + \psi_{i,t}$$

• $\psi_{i,t} \equiv \sigma_{i,t}^{y} - \sigma_{i,t-1}^{y} \equiv$ random disturbance in the change in income per capita in country i

Robustness to First Differences and Migration Theory

	OLS	OLS	OLS
	(1)	(2)	(3)
	Dependent Variable Differences in:		
	Log Population Density 1 CE - 1000 CE		Log Income Per Capita 1 CE - 1000 CE
Diff. in Log Technology Index between 1000 BCE and 1 CE	1.747*** (0.429)	3.133* (1.550)	0.073 (0.265)
Constant	0.451***	-0.026	-0.040
	(0.053)	(0.204)	(0.064)
Observations	126	26	26
R^2	0.17	0.34	0.00

- Migration Theory: variations in technology and land quality across countries will induce migration from the low to the high productivity country:
 - Technological superiority will result primarily in higher population density
 - Technological superiority will not be reflected in higher income per capita
 - Advancements in technology will result in higher income per capita in all countries (i.e., $v_0 > 0$).
- Findings: $v_0 = 0$.

- Migration Theory: variations in technology and land quality across countries will induce migration from the low to the high productivity country:
 - Technological superiority will result primarily in higher population density
 - Technological superiority will not be reflected in higher income per capita
 - Advancements in technology will result in higher income per capita in all countries (i.e., $v_0 > 0$).
- Findings: $v_0 = 0$.

- Migration Theory: variations in technology and land quality across countries will induce migration from the low to the high productivity country:
 - Technological superiority will result primarily in higher population density
 - Technological superiority will not be reflected in higher income per capita
 - Advancements in technology will result in higher income per capita in all countries (i.e., $v_0 > 0$).
- Findings: $v_0 = 0$.

- Migration Theory: variations in technology and land quality across countries will induce migration from the low to the high productivity country:
 - Technological superiority will result primarily in higher population density
 - Technological superiority will not be reflected in higher income per capita
 - Advancements in technology will result in higher income per capita in all countries (i.e., $v_0 > 0$).
- Findings: $v_0 = 0$.

- Migration Theory: variations in technology and land quality across countries will induce migration from the low to the high productivity country:
 - Technological superiority will result primarily in higher population density
 - Technological superiority will not be reflected in higher income per capita
 - Advancements in technology will result in higher income per capita in all countries (i.e., $v_0 > 0$).
- Findings: $v_0 = 0$.