A Probabilistic Model for Component-Based Shape Synthesis

Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun

Stanford University

Goal: generative model of shape

Goal: generative model of shape

Challenge: understand shape variability

- Structural variability
- Geometric variability
- Stylistic variability

Related work: variability in human body and face

- A morphable model for the synthesis of 3D faces [Blanz & Vetter 99]
- The space of human body shapes [Allen et al. 03]
- Shape completion and animation of people [Anguelov et al. 05]

Scanned bodies

Related work: probabilistic reasoning for assembly-based modeling

[Chaudhuri et al. 2011]

Probabilistic model

Modeling interface

Related work: probabilistic reasoning for assembly-based modeling

Randomly shuffling components of the same category

• Synthesizes plausible and complete shapes automatically

- Synthesizes plausible and complete shapes automatically
- Represents shape variability at hierarchical levels of abstraction

- Synthesizes plausible and complete shapes automatically
- Represents shape variability at hierarchical levels of abstraction
- Understands latent causes of structural and geometric variability

- Synthesizes plausible and complete shapes automatically
- Represents shape variability at hierarchical levels of abstraction
- Understands latent causes of structural and geometric variability
- Learned without supervision from a set of segmented shapes

Learning stage

Synthesis stage

Learning shape variability

We model attributes related to shape structure:

Shape type

Component types

Number of components

Component geometry

 $P(R) \prod_{l \in L} \left[P(N_l/R) P(S_l/R) P(D_l/S_l) P(C_l/S_l) \right]$

Latent object style

Latent component style

$$P(R) \prod_{l \in L} \left[P(N_l/R) P(S_l/R) P(D_l/S_l) P(C_l/S_l) \right]$$

Learn from training data:

latent styles

lateral edges

parameters of CPDs

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Given observed data O, find structure G that maximizes:

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Assuming uniform prior over structures, maximize marginal likelihood:

$$P(\mathbf{O} \mid G) = \sum_{R, \mathbf{S}} \int_{\mathbf{\Theta}} P(\mathbf{O}, R, \mathbf{S} \mid \Theta, G) P(\Theta \mid G) d\Theta$$

Given observed data O, find structure G that maximizes:

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Assuming uniform prior over structures, maximize marginal likelihood:

$$P(\mathbf{O} \mid G) = \sum_{R, \mathbf{S}} \int_{\Theta} P(\mathbf{O}, R, \mathbf{S} \mid \Theta, G) P(\Theta \mid G) d\Theta$$

Complete likelihood

Given observed data O, find structure G that maximizes:

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Assuming uniform prior over structures, maximize marginal likelihood:

$$P(\mathbf{O} \mid G) = \sum_{R, \mathbf{S}} \int_{\Theta} P(\mathbf{O}, R, \mathbf{S} \mid \Theta, G) P(\Theta \mid G) d\Theta$$

Parameter priors

Given observed data O, find structure G that maximizes:

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Assuming uniform prior over structures, maximize marginal likelihood:

$$P(\mathbf{O} \mid G) = \sum_{R, \mathbf{S}} \int_{\Theta} P(\mathbf{O}, R, \mathbf{S} \mid \Theta, G) P(\Theta \mid G) d\Theta$$

Given observed data O, find structure G that maximizes:

$$P(G \mid \mathbf{O}) = \frac{P(\mathbf{O} \mid G)P(G)}{P(\mathbf{O})}$$

Assuming uniform prior over structures, maximize marginal likelihood:

$$P(\mathbf{O} \mid G) = \sum_{R, \mathbf{S}} \int_{\mathbf{\Theta}} P(\mathbf{O}, R, \mathbf{S} \mid \Theta, G) P(\Theta \mid G) d\Theta$$

Cheeseman-Stutz approximation

Our probabilistic model: synthesis stage

Shape Synthesis

Enumerate high-probability instantiations of the model

$$\{R=1\} \qquad \{R=2\}$$

$$\{R=1,S_1=1\} \ \{R=1,S_1=2\} \ \{R=2,S_1=2\} \ \{R=2,S_1=2\}$$

...

Component placement

Database Amplification - Airplanes

Database Amplification - Airplanes

Database Amplification - Chairs

Database Amplification - Chairs

Database Amplification - Ships

Database Amplification - Ships

Database Amplification - Animals

Database Amplification - Animals

Database Amplification – Construction vehicles

Database Amplification – Construction vehicles

Interactive Shape Synthesis

User Survey

prefer left undecided prefer right

Results

New shape

Source shapes (colored parts are selected for the new shape)

Results

New shape

Source shapes (colored parts are selected for the new shape)

Results of alternative models: no latent variables

Results of alternative models: no part correlations

Summary

- Generative model of component-based shape synthesis
- Automatically synthesizes new shapes from a domain demonstrated by a set of example shapes
- Enables shape database amplification or interactive synthesis with high-level user constraints

Future Work

- Our model can be used as a shape prior applications to reconstruction and interactive modeling
- Synthesis of shapes with new geometry for parts
- Model locations and spatial relationships of parts

Thank you!

Acknowledgements: Aaron Hertzmann, Sergey Levine, Philipp Krähenbühl, Tom Funkhouser

Our project web page:

http://graphics.stanford.edu/~kalo/papers/ShapeSynthesis/

