Chapter One Sets, Relations and Orders

Part of this chapter is a review of some topics covered in the Mathematical Foundation course.

<u>Part 1</u>.

A, B, C, X, Y, Z, etc. — denote sets.

 \emptyset — denotes the empty set.

 \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} – denote the sets of positive integers, integers, rational numbers, real numbers, and complex numbers, respectively.

Comparing Sets. Let A, B be sets.

 $A \subseteq B$: $\forall x, x \in A \Rightarrow x \in B$.

 $A = B: (A \subseteq B) \land (B \subseteq A) \text{ (i.e., } \forall x, x \in A \Leftrightarrow x \in B).$

 $A \subset B \text{ (or } A \subsetneq B)$: $(A \subseteq B) \land (B \not\subseteq A) \text{ (i.e., } (\forall x, x \in A \Rightarrow x \in B) \land (\exists y, y \in B \land y \not\in A)).$

Set Operations. Let A, B be sets.

$$A \cup B = \{x : x \in A \lor x \in B\}$$

$$A \cap B = \{x : x \in A \land x \in B\}$$

$$A - B = \{x : x \in A \land x \not\in B\}$$

$$A \times B = \{(x, y) : x \in A \land y \in B\}$$

$$\mathcal{P}(A) = \{X : X \subseteq A\}$$
 — denotes the power of A .

For a family $\{A_i\}_{i\in I}$ of sets, we can also define $\bigcup_{i\in I}A_i$, $\bigcap_{i\in I}A_i$ and $\prod_{i\in I}A_i$.

$$\underline{\mathbf{DeMorgan's\ Laws}}. \quad A - \bigcup_{i \in I} A_i \, = \, \bigcap_{i \in I} (A - A_i), \quad A - \bigcap_{i \in I} A_i \, = \, \bigcup_{i \in I} (A - A_i)$$

Relations. Let A, B be sets.

Any subset of $A \times B$ is called a <u>relation</u> from A to B.

E.g., \emptyset , $A \times B$ are relations from A to B.

- If $R \subseteq A \times B$, then $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}$.
- If $R \subseteq A \times B$ and $S \subseteq B \times C$, then $S \circ R = \{(a,c) \in A \times C : \exists b \in B, (a,b) \in R \land (b,c) \in S\}$.

Functions. Let A, B be sets.

A relation f from A to B is called a function from A to B if

- (i) $\forall a \in A, \exists b \in B, (a, b) \in f;$
- (ii) $(a,b) \in f \land (a,c) \in f \Rightarrow b = c$ (the vertical line test).

In this case, we write $f: A \to B$, $a \mapsto b$ or b = f(a).

(So, we actually identify a function with its usual graph.)

The set A is called the domain of f.

The range of f is defined by range(f) = $\{b \in B : \exists a \in A, b = f(a)\}$.

(In fact, for any relation from A to B, we can define its domain and range.)

- If $f: A \to B$, then $f^{-1} \subseteq B \times A$ may not be a function from B to A.
- If $f:A\to B$ and $g:B\to C$, then $g\circ f:A\to C$.
- $f: A \to B$ is called <u>onto</u> (or surjective) if range(f) = B.
- $f: A \to B$ is called <u>one-to-one</u> (or injective) if $(a_1, b) \in f \land (a_2, b) \in f \implies a_1 = a_2$ (the horizontal line test). That is, $f(a_1) = f(a_2) \implies a_1 = a_2$ (the cancellation law), or equivalently, $a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$.
- $f: A \to B$ is called bijective if f is both surjective and injective.

Relations on A. Let $R \subseteq A \times A$. E.g., \emptyset , $A \times A$.

 $id_A = \{(a,a) : a \in A\}$ is called the <u>identity function</u> of A (written as $id_A : A \to A, a \mapsto a$).

• We write aRb if $(a,b) \in R$, and $a \not R b$ if $(a,b) \not \in R$.

Some Properties of Relations on A. Let $R \subseteq A \times A$.

- (i) R is reflexive: $\forall a \in A, aRa$ (i.e., $id_A \subseteq R$).
- (ii) R is symmetric: $\forall a, b \in A, aRb \Longrightarrow bRa$ (i.e., $R^{-1} = R$).
- (iii) R is antisymmetric: $\forall a, b \in A, aRb \land bRa \Longrightarrow a = b$ (i.e., $R \cap R^{-1} \subseteq id_A$).
- (iv) R is <u>transitive</u>: $\forall a, b, c \in A, aRb \land bRc \Longrightarrow aRc$ (i.e., $R \circ R \subseteq R$).

Equivalence Relations on A. If $R \subseteq A \times A$ is reflexive, symmetric and transitive, then R is called an equivalence relation on A. In this case, we write $a \sim b$ if aRb.

For $a \in A$, $[a] = \{b \in A : a \sim b\}$, called the equivalence class of a.

 $A/_{\sim} = \{ [a] : a \in A \}$, called the quotient of the equivalence relation.

The function $q:A\to A/_{\sim}$, $a\mapsto [a]$ is called the quotient map.

Examples. (Check)

- 1) $A \times A$ is the largest equivalence relation on A, and now $\forall a \in A$, [a] = A. id_A is the smallest equivalence relation on A, and now $\forall a \in A$, $[a] = \{a\}$.
- 2) Let A be the set of all students in the class. For $a, b \in A$, we define $a \sim b$ if the last digits in their student IDs are the same. Then \sim is an equivalence relation.

Question. How large can the quotient $A/_{\sim}$ be now?

3) Let $f: A \to B$. For $a_1, a_2 \in A$, define $a_1 \sim a_2$ if $f(a_1) = f(a_2)$. Then \sim is an equivalence relation on A. We can <u>prove</u> that there exists a bijection $h: A/_{\sim} \to \text{range}(f)$ such that $h \circ q = f$, where $q: A \to A/_{\sim}$ is the quotient map.

<u>Orders on A.</u> If $R \subseteq A \times A$ is reflexive, antisymmetric and transitive, then R is called a partial order on A. In this case, we write $a \leq b$ if aRb, and $a \prec b$ if $a \leq b$ but $a \neq b$.

Examples. (Check)

i) id_A is the smallest partial order on A.

Question. Is there the largest partial order on A?

- ii) Let $A = \{0, 1\}$. We can <u>prove</u> that A has totally three partial orders and has no largest partial order.
- iii) If R is both an equivalence relation and a partial order, then $R = id_A$.
- iv) On the power $\mathcal{P}(A)$ of A, define $X \leq Y$ if $X \subseteq Y$. Then \leq is a partial order on $\mathcal{P}(A)$.

A partial order \preceq on A is called a <u>linear order</u> or <u>total order</u> (which is simply called order in the book) if $\forall a,b \in A, (a \prec b) \lor (b \prec a) \lor (a = b)$. In this case, $R \cup R^{-1} = A \times A$.

Examples. (Check)

- a) id_A is not a linear order on A.
- b) The usual order \leq on \mathbb{R} (or on \mathbb{Q} , \mathbb{Z} , \mathbb{N}) is a linear order.
- c) For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, define $(x_1, y_1) \leq (x_2, y_2)$ if $x_1 \leq x_2$ and $y_1 \leq y_2$. Then \leq is a partial order but not a linear order on \mathbb{R}^2 .

Chapter One Sets, Relations and Orders

Part 2.

Smallest/Largest Elements, Minimal/Maximal Elements, Lower/Upper Bounds.

Let (A, \preceq) be a partially ordered set and $a_0 \in A$.

 a_0 is called the <u>smallest element</u> of A if $\forall a \in A, a_0 \leq a$; a_0 is called the largest element of A if $\forall a \in A, a \leq a_0$.

• If the smallest/largest element exists, it must be unique. (Why?)

 a_0 is called a <u>minimal element</u> of A if $\forall a \in A, a \leq a_0 \implies a = a_0$; a_0 is called a <u>maximal element</u> of A if $\forall a \in A, a_0 \leq a \implies a = a_0$.

- ∃ smallest element ⇒ ∃! minimal element;
 ∃ largest element ⇒ ∃! maximal element.
- There may exist more than one minimal/maximal element.

Let $B \subseteq A$. $a \in A$ is called an <u>upper bound</u> of B if $\forall b \in B$, $b \leq a$. In this case, we say that B is <u>bounded above</u> (by a). The <u>least upper bound</u> (or the <u>supremum</u>) of B is defined by

$$lub(B) = sup(B) = the smallest upper bound of B.$$

Similarly, we can define a <u>lower bound</u> of B, and define the <u>greatest lower bound</u> (or the <u>infimum</u>) of B by glb(B) = inf(B) = the largest lower bound of <math>B.

• $\sup(B)$ and $\inf(B)$ may not exist, and may not be in B even if they exist.

Well-ordered Sets.

A linearly ordered set A is called <u>well-ordered</u> if every non-empty subset of A has a smallest element.

Examples.

- (i) Any finite linearly ordered set is well-ordered.
- (ii) \mathbb{Z} (with the usual order) is not well-ordered.

Well-Ordering Principle (WOP). \mathbb{N} (with the usual order) is well-ordered.

• WOP \iff PMI (Principle of Mathematical Induction).

Least-Upper-Bound Property.

A linearly ordered set A is said to have the least-upper-bound property if

 $\forall \emptyset \neq E \subseteq A, E \text{ is bounded above } \Longrightarrow \sup(E) \text{ exists in } A.$

Similarly, A is said to have the greatest-lower-bound property if

 $\forall \emptyset \neq E \subseteq A, E \text{ is bounded below } \Longrightarrow \inf(E) \text{ exists in } A.$

E.g., \mathbb{Z} has the least-upper-bound property;

 $\mathbb Q$ does not have this property (consider $\{r\in\mathbb Q:r^2<2\}).$

Theorem A. Let A be a linearly ordered set. Then

A has the least-upper-bound property \iff A has the greatest-lower-bound property.

Proof. " \Longrightarrow ". Let $\emptyset \neq E \subseteq A$ such that E is bounded below. We show that $\inf(E)$ exists.

Let L be the set of all lower bounds of E. Then $L \neq \emptyset$, and L is bounded above since $y \leq a$ for all $y \in L$ and $a \in E$. By the assumption, $a_0 = \sup(L)$ exists in A.

<u>Claim</u>: $a_0 = \inf(E)$ (the greatest lower bound of E).

Since each $a \in E$ is an upper bound of L and $a_0 = \sup(L)$, $a_0 \leq a$ for all $a \in E$. So, a_0 is a lower bond of E.

If $a_0 \prec b$, then $b \not\in L$ since a_0 is an upper bound of L. Therefore, a_0 is the greatest lower bound of E; that is, $a_0 = \inf(E)$.

" \Leftarrow ". It can be proved similarly.

Completeness Axiom.

A linearly ordered set A is said to satisfy the <u>Completeness Axiom</u> if whenever S, T are non-empty subsets of A such that $a \leq b$ for all $a \in S$ and $b \in T$, there exists $x \in A$ such that $a \leq x \leq b$ for all $a \in S$ and $b \in T$.

<u>Theorem B</u>. Let A be a linearly ordered set. Then

A has the least-upper-bound property \iff A satisfies the Completeness Axiom.

 $\underline{\textit{Proof.}}$ " \Longrightarrow ". It is easy to prove this. (Check)

"←". See the proof of Theorem 12.1(a) in Traynor's Notes, page 35.

Chapter One Sets, Relations and Orders

Part 3.

Ordered Fields.

A <u>field</u> is a set \mathbb{F} with two operations, called <u>addition</u> and <u>multiplication</u> and denoted by $(x,y) \mapsto x + y$ and $(x,y) \mapsto xy$, which satisfy the following <u>field axioms</u> (A), (M) and (D):

- (A1) $\forall x, y \in \mathbb{F}, x + y \in \mathbb{F}.$
- (A2) $\forall x, y \in \mathbb{F}, x + y = y + x.$
- (A3) $\forall x, y, z \in \mathbb{F}, (x+y) + z = x + (y+z).$
- (A4) $\exists 0 \in \mathbb{F}, \forall x \in \mathbb{F}, 0 + x = x + 0 = x.$
- (A5) $\forall x \in \mathbb{F}, \exists (-x) \in \mathbb{F}, x + (-x) = (-x) + x = 0.$
- (M1) $\forall x, y \in \mathbb{F}, xy \in \mathbb{F}.$
- (M2) $\forall x, y \in \mathbb{F}, xy = yx$.
- (M3) $\forall x, y, z \in \mathbb{F}, (xy)z = x(yz).$
- (M4) $\exists 1 \in \mathbb{F}$ with $1 \neq 0$, $\forall x \in \mathbb{F}$, 1x = x1 = x.
- (M5) $\forall x \in \mathbb{F} \text{ with } x \neq 0, \exists \frac{1}{x} \in \mathbb{F}, x \frac{1}{x} = \frac{1}{x}x = 1.$
- (D) $\forall x, y, z \in \mathbb{F}, x(y+z) = xy + xz.$
- (A2), (M2) commutativity
- (A3), (M3) associativity
- (A4), (M4) identity
- (A5), (M5) invertible elements
- (D) distributivity
- In a field, we often use x-y to denote x+(-y), and use $\frac{y}{x}$ to denote $y\frac{1}{x}$.

A field \mathbb{F} is called an <u>ordered field</u> if \mathbb{F} is also a linearly ordered set such that

- (i) $\forall x, y, z \in \mathbb{F}, y \prec z \implies x + y \prec x + z;$
- (ii) $\forall x, y \in \mathbb{F}, (x \succ 0) \land (y \succ 0) \implies xy \succ 0.$
- (i) is equivalent to " $y \prec z \implies y x \prec z x$ ";
 - (ii) is equivalent to " $(x \succ 0) \land (y \succ z) \implies xy \succ xz$ ".

The Ordered Fields \mathbb{Q} and \mathbb{R} .

It is easy to see that \mathbb{Q} is an ordered field.

As we know, \mathbb{Q} does not have the least-upper-bound property. The theorem below shows that \mathbb{Q} can be "extended" to an ordered field \mathbb{R} such that \mathbb{R} has the least-upper-bound property.

<u>Theorem C</u>. There exists an ordered field \mathbb{R} , called the <u>real field</u>, which has the least-upper-bound property and contains \mathbb{Q} as a subfield.

That is, $\mathbb{Q} \subseteq \mathbb{R}$ and the inclusion map $i : \mathbb{Q} \to \mathbb{R}$, $r \mapsto r$ preserves the field operations and order, called an ordered field homomorphism.

Proof. See Appendix on pages 17 - 21 in the book.

• Using WOP and the fact that \mathbb{R} has the least-upper-bound property, we can prove that \mathbb{Q} is dense in \mathbb{R} (see Traynor's Notes, page 37).

Some Properties on Supremum and Infimum in Linearly Ordered Sets.

Let S be a linearly ordered set. In the following, A and B are non-empty subsets of S, and we assume that all sup and inf exist.

Recall:
$$c = \sup(A)$$
 if and only if $(\forall a \in A, a \leq c)$ and $[\forall u \in S, (\forall a \in A, a \leq u) \implies c \leq u]$.
 $d = \inf(A)$ if and only if $(\forall a \in A, d \leq a)$ and $[\forall \ell \in S, (\forall a \in A, \ell \leq a) \implies \ell \leq d]$.

- In \mathbb{R} , $c = \sup(A)$ if and only if $(\forall a \in A, a \leq c)$ and $(\forall \varepsilon > 0, \exists a_0 \in A, c \varepsilon < a_0)$. $d = \inf(A)$ if and only if $(\forall a \in A, d \leq a)$ and $(\forall \varepsilon > 0, \exists a_0 \in A, a_0 < d + \varepsilon)$.
- (i) $\inf(A) \leq \sup(A)$.
 - (ii) If $A \subseteq B$, then $\sup(A) \leq \sup(B)$ and $\inf(B) \leq \inf(A)$.
 - (iii) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}\ \text{ and } \inf(A \cup B) = \min\{\inf(A), \inf(B)\}.$

Chapter One Sets, Relations and Orders

Part 4.

Supremum and Infimum operations on \mathbb{R} .

For $A, B \subseteq \mathbb{R}$ and $c \in \mathbb{R}, A + B \subseteq \mathbb{R}$ and $cA \subseteq \mathbb{R}$ are defined by

$$A + B = \{a + b : a \in A, b \in B\}$$
 and $cA = \{ca : a \in A\}$.

<u>Fact.</u> If $a, b \in \mathbb{R}$ and $\forall \varepsilon > 0$, $a \le b + \varepsilon$, then $a \le b$.

Property 1. $\sup(A+B) = \sup(A) + \sup(B)$, $\inf(A+B) = \inf(A) + \inf(B)$.

Proof. $\forall a \in A \text{ and } b \in B, \ a \leq \sup(A) \text{ and } b \leq \sup(B), \text{ and thus } a + b \leq \sup(A) + \sup(B).$

So, $\sup(A) + \sup(B)$ is an upper bound of A + B. Therefore, $\sup(A + B) \le \sup(A) + \sup(B)$.

Conversely, $\forall \varepsilon > 0$, $\exists a_0 \in A$ and $b_0 \in B$ such that

$$\sup(A) - \varepsilon < a_0 \text{ and } \sup(B) - \varepsilon < b_0.$$

Thus $\sup(A) + \sup(B) - 2\varepsilon < a_0 + b_0 \le \sup(A + B)$. Hence,

$$\forall \varepsilon > 0, \sup(A) + \sup(B) < \sup(A+B) + 2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, by the Fact, we have $\sup(A) + \sup(B) \le \sup(A + B)$.

Therefore, we have $\sup(A + B) = \sup(A) + \sup(B)$.

Similarly, we can prove that $\inf(A + B) = \inf(A) + \inf(B)$.

Property 2. If c > 0, then $\sup(cA) = c \sup(A)$ and $\inf(cA) = c \inf(A)$.

<u>Proof.</u> $\forall a \in A, a \leq \sup(A)$ and hence $ca \leq c \sup(A)$ (since c > 0). Thus $c \sup(A)$ is an upper bound of cA. So, $\sup(cA) \leq c \sup(A)$. Replacing A by cA and c by $\frac{1}{c}$, we have

$$\sup(A) = \sup\left(\frac{1}{c}(cA)\right) \le \frac{1}{c}\sup(cA);$$

that is, $c \sup(A) \leq \sup(cA)$. Therefore, we have $\sup(cA) = c \sup(A)$.

Similarly, we can prove that $\inf(cA) = c\inf(A)$.

Property 3. $\sup(-A) = -\inf(A)$ and $\inf(-A) = -\sup(A)$.

<u>Proof.</u> $\forall a \in A, a \ge \inf(A), \text{ i.e., } -a \le -\inf(A).$ Thus $-\inf(A)$ is an upper bound of -A, and hence $\sup(-A) \le -\inf(A)$.

Conversely, $\forall a \in A, -a \leq \sup(-A)$, i.e., $a \geq -\sup(-A)$. Thus $-\sup(-A)$ is a lower bound of A, and hence $-\sup(-A) \leq \inf(A)$, or $\underline{\sup(-A) \geq -\inf(A)}$.

Therefore, we have $\sup(-A) = -\inf(A)$.

Replacing A by -A, we also get $\inf(-A) = -\sup(A)$.

Property 4. If c < 0, then $\sup(cA) = c \inf(A)$ and $\inf(cA) = c \sup(A)$.

<u>Proof.</u> Let d = -c. Then d > 0 and c = -d. By Properties 2 and 3, we have

$$\sup(cA) = \sup(-dA) = -\inf(dA) = -d\inf(A) = c\inf(A)$$

and
$$\inf(cA) = \inf(-dA) = -\sup(dA) = -d\sup(A) = c\sup(A)$$
.

Supremum and Infimum of Real Valued Functions.

For a function $f: X \to \mathbb{R}$, let

$$\sup_{x\in X} f(x) \,=\, \sup\{f(x): x\in X\} \quad \text{and} \quad \inf_{x\in X} f(x) \,=\, \inf\{f(x): x\in X\}.$$

Note that if $f, g: X \to \mathbb{R}$, then

$$\{f(x) + g(x) : x \in X\} \, \subseteq \, \{f(x) : x \in X\} + \{g(x) : x \in X\},$$

and the equality may not hold. (Example?)

Property 5. Let X be a set and let $f, g: X \to \mathbb{R}$. Then

$$(\mathbf{i}) \ \sup_{x \in X} \bigl(f(x) + g(x) \bigr) \ \leq \ \sup_{x \in X} f(x) \ + \ \sup_{x \in X} g(x).$$

(ii)
$$\inf_{x \in X} (f(x) + g(x)) \ge \inf_{x \in X} f(x) + \inf_{x \in X} g(x)$$
.

In both (i) and (ii), the strict inequalities can hold.

Proof. (i) Let
$$a = \sup_{x \in X} f(x)$$
 and $b = \sup_{x \in X} g(x)$. Then $\forall x \in X$, $f(x) \le a$ and $g(x) \le b$, and hence $f(x) + g(x) \le a + b$. Therefore, $\sup_{x \in X} \left(f(x) + g(x) \right) \le a + b = \sup_{x \in X} f(x) + \sup_{x \in X} g(x)$.

(ii) It can be proved similarly.

Let $f, g: [0.1] \to \mathbb{R}$ be given by f(x) = x and g(x) = -x. Then

$$\sup_{x \in [0.1]} (f(x) + g(x)) = \inf_{x \in [0.1]} (f(x) + g(x)) = 0,$$

$$\sup_{x \in [0.1]} f(x) \ = \ 1, \ \inf_{x \in [0.1]} f(x) \ = \ 0, \ \sup_{x \in [0.1]} g(x) \ = \ 0, \ \text{and} \ \inf_{x \in [0.1]} g(x) \ = \ -1.$$

In this case, we have the strict inequalities in (i) and (ii).

Chapter Two Basic Topology

We will cover the first three parts of this chapter in the book.

Part 1: Finite, Countable and Uncountable Sets

<u>Definition 1.</u> Let A and B be sets. If \exists a bijection $h: A \to B$, then we say that A and B have the same cardinal number (or the same cardinality), and we write $A \sim B$ (or card(A) = card(B), or |A| = |B|).

- "~" is an equivalence relation on any family of sets:
 - (i) $A \stackrel{id_A}{\sim} A$;

(ii)
$$A \stackrel{h}{\sim} B \implies B \stackrel{h^{-1}}{\sim} A;$$

(iii)
$$(A \stackrel{h}{\sim} B) \wedge (B \stackrel{g}{\sim} C) \implies A \stackrel{g \circ h}{\sim} C.$$

For $n \in \mathbb{N}$, we let $\underline{\mathbb{N}_n = \{1, \dots, n\}}$. E.g., $\mathbb{N}_3 = \{1, 2, 3\}$

<u>Definition 2</u>. We say that

- 1) A is finite if $A = \emptyset$ or $A \sim \mathbb{N}_n$ for some $n \in \mathbb{N}$;
- 2) A is <u>infinite</u> if A is not finite;
- 3) A is <u>countable</u> if $A \sim \mathbb{N}$;
- 4) A is at most countable if A is either finite or countable;
- 5) A is <u>uncountable</u> if A is neither finite nor countable.

Examples. (i) $A = \{m \in \mathbb{Z} : m^2 < 10\} = \{0, \pm 1, \pm 2, \pm 3\}$ is a finite set.

- (ii) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are all infinite sets.
- (iii) $\mathbb{N} \subsetneq \mathbb{Z}$, but $\mathbb{Z} \sim \mathbb{N}$ and hence \mathbb{Z} is countable. E.g., the following $\mathbb{N} \to \mathbb{Z}$ is a bijection:

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \cdots$$

$$0 \quad 1 \quad -1 \quad 2 \quad -2 \quad 3 \quad -3 \quad \cdots$$

Let X be a set. By a <u>sequence</u> in X, we mean a function $f : \mathbb{N} \to X$. In this case, we use $\{x_n\}$ or (x_n) for f, where $x_n = f(n)$, called the n^{th} term $(n = 1, 2, \cdots)$. When f is one-to-one, $\{x_n\}$ is called a sequence <u>with distinct terms</u>.

Relations Between Sequences and Countable Sets.

 $\{x_n\}$ is a sequence with distinct terms $\implies A = \{x_n : n \in \mathbb{N}\}\$ is a countable set.

Conversely, A is countable $\implies \exists$ a bijection $h : \mathbb{N} \to A$

 \implies A is given by a sequence with distinct terms $(A = \{x_n : n \in \mathbb{N}\} \text{ with } x_n = h(n)).$

• Therefore, when the set X is given, we get a one-to-one correspondence $\{$ all countable subsets of $X\} \longleftrightarrow \{$ all sequences with distinct terms in $X\}.$

Theorem 1 (Theorem 2.8). Let A be a countable set and let E be an infinite subset of A. Then E is also countable.

Proof. Write elements of A as a sequence of distinct terms: x_1, x_2, x_3, \cdots

Let n_1 be the smallest $m \in \mathbb{N}$ such that $x_m \in E$. Then $\{m \in \mathbb{N} : m > n_1 \text{ and } x_m \in E\} \neq \emptyset$ since E is infinite. Let n_2 be the smallest element of the above set. Inductively, we can get $n_1 < n_2 < n_3 < \cdots$ such that $E = \{x_{n_1}.x_{n_2}, x_{n_3}, \cdots\}$; that is, $\mathbb{N} \sim E$ via $k \mapsto x_{n_k}$. Therefore, E is countable.

Definition 3. We define

$$\operatorname{card}(A) \leq \operatorname{card}(B)$$
 if \exists an injection $A \to B$,
and $\operatorname{card}(A) < \operatorname{card}(B)$ if $\operatorname{card}(A) \leq \operatorname{card}(B)$ but $\operatorname{card}(A) \neq \operatorname{card}(B)$.

 $\underline{\mathbf{Fact}\ \mathbf{1}}.\ A\subseteq B\implies \mathrm{card}(A)\leq \mathrm{card}(B).$

<u>Fact 2</u>. If $A \neq \emptyset$, then $card(A) \leq card(B) \iff \exists \text{ a surjection } B \to A$. (Proof?)

The theorem below is very powerful for proving card(A) = card(B).

<u>Cantor-Bernstein Theorem</u>. Let A and B be sets such that $\operatorname{card}(A) \leq \operatorname{card}(B)$ and $\operatorname{card}(B) \leq \operatorname{card}(A)$. Then $\operatorname{card}(A) = \operatorname{card}(B)$. $\longrightarrow \operatorname{Id}_{A} \cap \operatorname{Id}_{$

Proofs of this theorem can be seen from internet (e.g., www.youtube.com/watch?v=IkoKttTDuxE).

We use \aleph_0 (aleph zero) to denote card(\mathbb{N}).

- We can prove the following:
 - 1) A is finite \iff card(A) $< \aleph_0$;
 - 2) A is infinite \iff card $(A) \ge \aleph_0$;
 - 3) A is countable \iff card $(A) = \aleph_0$;
 - 4) A is at most countable \iff card $(A) \leq \aleph_0$;
 - 5) A is uncountable \iff card $(A) > \aleph_0$.

Therefore, \aleph_0 is the smallest infinite cardinal number.

<u>Theorem 2</u> (Theorem 2.12). Let $\{E_n\}$ be a sequence of countable sets and let $S = \bigcup_{n=1}^{\infty} E_n$. Then S is countable.

<u>Proof.</u> Since $E_1 \subseteq S$, we have $\operatorname{card}(S) \ge \operatorname{card}(E_1) = \aleph_0$ by Fact 1. We only need show that $\operatorname{card}(S) \le \aleph_0$ due to Cantor-Bernstein Theorem. We write

$$E_1$$
: $x_{11}, x_{12}, x_{13}, x_{14}, \cdots$
 E_2 : $x_{21}, x_{22}, x_{23}, x_{24}, \cdots$
 E_3 : $x_{31}, x_{32}, x_{33}, x_{34}, \cdots$
 E_4 : $x_{41}, x_{42}, x_{43}, x_{44}, \cdots$

Then we can list elements of S as

$$x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13}, x_{41}, x_{32}, x_{23}, x_{14}, \cdots,$$

where we can have $x_{ij} = x_{mn}$. In this way, S is the range of a sequence (i.e., \exists a surjection $\mathbb{N} \to S$). Therefore, by Fact 2, we get $\operatorname{card}(S) \leq \aleph_0$.

Corollary 1. If A and B are countable sets, then $A \times B$ is countable. (Proof?)

<u>Fact 3</u>. For any at most countable set E, there exists a countable set E' such that $E \subseteq E'$.

Corollary 2. Let A be a set that is at most countable. Suppose for each $a \in A$, B_a is an at most countable set. Then $S = \bigcup B_a$ is at most countable.

Proof. By Fact 3, \exists a countable set A' such that $A \subseteq A'$. For each $\gamma \in A'$, choose a countable set C_{γ} such that $B_{\gamma} \subseteq C_{\gamma}$ when $\gamma \in A$. Let $T = \bigcup_{\gamma \in A'} C_{\gamma}$. Then $S \subseteq T$, and T is countable

by Theorem 2. So, $\operatorname{card}(S) \leq \operatorname{card}(T) = \aleph_0$. Therefore, S is at most countable.

Corollary 3. If A_1, \dots, A_n are countable sets, then $A = A_1 \times \dots \times A_n$ is countable, where $A_1 \times \cdots \times A_n = \{(a_1, \cdots, a_n) : a_1 \in A_1, \cdots, a_n \in A_n\}.$

Proof. We use PMI to this corollary. First, the assertion is true when n=1.

Assume that $A_1 \times \cdots \times A_{n-1}$ is countable.

Then by Corollary 1, we have $A = (A_1 \times \cdots \times A_{n-1}) \times A_n$ is countable.

Corollary 4. The set \mathbb{Q} of rational numbers is countable.

<u>Proof.</u> For each $r \in \mathbb{Q}$, write $r = \frac{p_r}{q_r}$, where p_r , $q_r \in \mathbb{Z}$ and $q_r \neq 0$. Then $f : \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$, $f(r) = (p_r, q_r)$, is injective. Thus $\operatorname{card}(\mathbb{Q}) \leq \operatorname{card}(\mathbb{Z} \times \mathbb{Z}) = \aleph_0$ (by Corollary 1).

On the other hand, since $\mathbb{N} \subseteq \mathbb{Q}$, we have $\operatorname{card}(\mathbb{Q}) \geq \aleph_0$.

Therefore, $\operatorname{card}(\mathbb{Q}) = \aleph_0$; that is \mathbb{Q} is countable.

Theorem 3 (Theorem 2.14). Let A be the set of all sequences $\{x_n\}$ such that x_n is either 0 or 1 (i.e., A is the set of all functions $\mathbb{N} \to \{0,1\}$). Then A is uncountable.

Proof. Clearly, A is infinite. Assume that A is countable. Then elements of A can be listed as s_1, s_2, s_3, \cdots . Write

$$s_1$$
: $\underline{x}_{11}, x_{12}, x_{13}, x_{14}, \cdots$

$$s_1$$
: \underline{x}_{11} , x_{12} , x_{13} , x_{14} , \cdots
 s_2 : x_{21} , x_{22} , x_{23} , x_{24} , \cdots

$$s_3$$
: x_{31} , x_{32} , x_{33} , x_{34} , \cdots
 s_4 : x_{41} , x_{42} , x_{43} , x_{44} , \cdots

$$s_4$$
: $x_{41}, x_{42}, x_{43}, x_{44}, \cdots$

For $n \in \mathbb{N}$, let $x_n = \begin{cases} 0 & x_{nn} = 1, \\ 1 & x_{nn} = 0. \end{cases}$ Then $s = \{x_n\} \in A$ but $\forall n, s \neq s_n$, a contradiction.

Therefore, A is uncountable.

The above idea of proof was first used by Cantor and is called <u>Cantor's diagonal process</u>. Using this process, we can prove that the interval (0,1) is uncountable.

<u>Fact 4</u>. The interval (0,1) is uncountable, and hence \mathbb{R} is uncountable.

<u>Proof.</u> First we note that each $x \in (0,1)$ can be expressed uniquely as $x = 0.t_1t_2\cdots$, where $t_i \in \{0,1,2,\cdots 9\}$ and there are infinitely many $t_i \neq 0$. E.g., 0.25 is expressed as 0.24999 · · · .

Clearly, (0,1) is infinite. Assume that (0,1) is countable. Then elements of (0,1) can be listed as x_1, x_2, x_3, \cdots . We Write

$$x_1 = 0. t_1^1 t_2^1 t_3^1 t_4^1 \cdots$$

$$x_2 = 0. t_1^2 t_2^2 t_3^2 t_4^2 \cdots$$

$$x_3 = 0. t_1^3 t_2^3 t_3^3 t_4^3 \cdots$$

$$x_4 = 0. t_1^4 t_2^4 t_3^4 t_4^4 \cdots$$

For
$$n \in \mathbb{N}$$
, let $q_n = \begin{cases} 2 & \text{if } t_n^n = 1, \\ & \text{Then } x = 0. \, q_1 \, q_2 \, q_3 \, \cdots \, \in (0, 1) \text{ but } \forall n, \, x \neq x_n, \\ 1 & \text{if } t_n^n \neq 1. \end{cases}$

a contradiction. Therefore, (0,1) is uncountable.

Since $(0,1) \subseteq \mathbb{R}$, we have that \mathbb{R} is also uncountable.

Chapter Two Basic Topology

Part 2: Metric Spaces

In mathematics, space = set + structure(s).

<u>Definition 4</u>. Let X be a set. A function $d: X \times X \to [0, \infty)$ is called a <u>metric</u> (or <u>distance</u>) on X if

- i) $\forall x, y \in X, d(x, y) = 0 \iff x = y;$
- **ii)** $\forall x, y \in X, d(x, y) = d(y, x);$
- iii) $\forall x, y, z \in X, d(x, z) \leq d(x, y) + d(y, z)$. (Triangle inequality)

In this case, (X, d) is called a metric space.

Examples. (1) For $x, y \in \mathbb{R}$, d(x, y) = |x - y| defines a metric on \mathbb{R} .

More general, for
$$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n, d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$
 is

a metric on \mathbb{R}^n . With is metric, \mathbb{R}^n is called the *n*-dimensional Euclidean space.

- (2) Similarly, d(x,y) = |x-y| defines a metric on \mathbb{C} .
- (3) On the set \mathbb{R}^n (n > 1), the following are other distance functions which are all "equivalent to" the Euclidean metric d:

for
$$1 \le p < \infty$$
, $d_p(x, y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$; $d_\infty(x, y) = \max_{1 \le i \le n} |x_i - y_i|$.

It is clear that the Euclidean metric in (1) is just d_2 .

- (4) Let X be a set. Define $d: X \times X \to [0, \infty)$ by $d(x, y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$ Then d is a metric on X, and (X, d) is called a discrete metric space.
- (5) Let (X, d) be a metric space and $Y \subseteq X$. Let d_Y be the restriction of d to $Y \times Y$ (i.e., $d_Y(y_1, y_2) = d(y_1, y_2)$ for all $y_1, y_2 \in Y$). Then d_Y is a metric on Y, and Y with this metric is called a subspace of X.

Some Concepts on Metric Spaces.

Let (X, d) be a metric space, $x \in X$, and r > 0.

(i) Define $B(x,r) = \{y \in X : d(x,y) < r\}$, called the open ball centred at x with radius r, or the r-neighborhood of x.

E.g., in
$$\mathbb{R}$$
, $B(x,r) = (x - r, x + r)$.

A general <u>neighborhood of x</u> is a subset U of X such that $B(x,r) \subseteq U$ for some r > 0. E.g., in \mathbb{R} , [x-r,x+r), [x-r,x+2r], etc. are all neighborhoods of x.

Exercise. For $p = 1, 2, \infty$, on (\mathbb{R}^2, d_p) , compare the sets B((0, 0), 1).

- (ii) A subset G of X is called open if ∀x ∈ G, ∃r > 0, B(x,r) ⊆ G.
 E.g., in ℝ, the interval (0,1) is open, but the interval [0,1) is not open.
 ∅ and X are open in X.
- (iii) Let $E \subseteq X$. x is called a <u>limit point of E</u> (or, <u>cluster point</u>, or <u>accumulation point</u>) if $\forall r > 0$, $B(x,r) \cap E$ contains $y \neq x$ (that is, $(B(x,r) \{x\}) \cap E \neq \emptyset$). We let E' = the set of all limit points of E.

E.g., in \mathbb{R} , 0 is a limit point of E = (0, 1) though 0 is not in (0, 1). In this case, E' = [0, 1]. Also in \mathbb{R} , if $E = \{0, 1\}$, then $E' = \emptyset$.

(iv) A subset E of X is called <u>closed</u> if $E' \subseteq E$. E.g., in \mathbb{R} , the set $\{0,1\}$ is closed but (0,1) is not closed. \emptyset and X are closed in X.

Theorem 4 (Theorem 2.19). Let (X, d) be a metric space, $x \in X$ and r > 0. Then B(x, r) is open in X.

<u>Proof.</u> Let $y \in B(x,r)$. We need find $\varepsilon > 0$ such that $B(y,\varepsilon) \subseteq B(x,r)$.

Let $\varepsilon = r - d(x, y)$. Then $\varepsilon > 0$ since $y \in B(x, r)$. Now $\forall z \in B(y, \varepsilon)$, we have $d(z, x) \le d(z, y) + d(y, x) < \varepsilon + d(y, x) = r,$

and thus $z \in B(x,r)$. Therefore, $B(y,\varepsilon) \subseteq B(x,r)$. Hence, B(x,r) is open.

Theorem 5 (Theorem 2.23). Let E be a subset of a metric space (X, d). Then

- (i) E is open $\iff X E$ is closed;
- (ii) E is closed $\iff X E$ is open.

<u>Proof.</u> (i) " \Longrightarrow ". Suppose E is open. We need prove that $(X - E)' \subseteq X - E$.

Let $x \in (X - E)'$. Then $\forall r > 0$, $\left(B(x, r) - \{x\}\right) \cap (X - E) \neq \emptyset$, which is equivalent to $B(x, r) - \{x\} \nsubseteq E$. So, $\forall r > 0$, $B(x, r) \nsubseteq E$, and thus $x \in E$ (since E is open). That is, $x \in X - E$. Therefore, we obtain that $(X - E)' \subseteq X - E$, and hence X - E is closed.

"\(\infty\)". Suppose X - E is closed. We need prove that $\forall x \in E, \exists r_0 > 0, B(x, r_0) \subseteq E$. Let $x \in E$. Then $x \notin (X - E)'$, since $(X - E)' \subseteq X - E$. Thus $\exists r_0 > 0$ such that

 $(B(x,r_0)-\{x\})\cap (X-E)=\emptyset$; that is, $B(x,r_0)-\{x\}\subseteq E$. Since $x\in E,\, B(x,r_0)\subseteq E$.

Therefore, we prove that E is open.

(ii) Replacing E by X - E in (i), we get X - E is open $\iff X - (X - E) = E$ closed.

In a metric space (X, d), the "closed" ball centred at x with radius r is defined by

$$B[x,r] = \{ y \in X : d(x,y) \le r \}.$$

Corollary 5. B[x,r] is closed.

Proof. By Theorem 5, we only need prove that X - B[x, r] is open.

Let $z \in X - B[x, r]$. Then d(z, x) > r. Let $\varepsilon = d(z, x) - r$. Then r > 0. We prove below that $B(z, \varepsilon) \subseteq X - B[x, r]$.

Let $y \in B(z, \varepsilon)$. Then $d(y, z) < \varepsilon = d(z, x) - r$, or d(z, x) - d(y, z) > r. Since

$$d(z,x) \le d(z,y) + d(y,x),$$

we obtain that

$$d(y,x) \ge d(z,x) - d(z,y) > r.$$

Hence, $y \in X - B[x, r]$. Therefore, we have $B(z, \varepsilon) \subseteq X - B[x, r]$.

Therefore, we prove that X - B[x, r] is open.

Theorem 6 (Theorem 2.24). Let (X, d) be a metric space.

- (i) If $\{G_{\alpha}\}$ is a family of open sets in X, then $\bigcup_{\alpha} G_{\alpha}$ is open in X.
- (ii) If G_1, \dots, G_n are open sets in X, then $\bigcap_{i=1}^n G_i$ is open in X.

<u>Remark 1</u>. The above (i) and (ii) together with " \emptyset , X are open" are used as the definition of a topology on X.

<u>Proof.</u> (i) Let $x \in \bigcup_{\alpha} G_{\alpha}$. Then $x \in G_{\alpha_0}$ for some α_0 . Since G_{α_0} is open, $\exists r > 0$ such that $B(x,r) \subseteq G_{\alpha_0} \subseteq \bigcup_{\alpha} G_{\alpha}$. Therefore, we obtain that $\bigcup_{\alpha} G_{\alpha}$ is open.

(ii) Let $x \in \bigcap_{i=1}^n G_i$. Then for each $1 \leq i \leq n$, $\exists r_i > 0$ such that $B(x, r_i) \subseteq G_i$. Let $r = \min\{r_1, \dots, r_n\}$. Then r > 0 and $B(x, r) \subseteq G_i$ for all $1 \leq i \leq n$. Hence, $B(x, r) \subseteq \bigcap_{i=1}^n G_i$. Therefore, we prove that $\bigcap_{i=1}^n G_i$ is open.

By Theorems 5 and 6 together with DeMorgan's Laws, we have the following corollary on closed sets.

Corollary 6. Let (X, d) be a metric space.

- (i) If $\{F_{\alpha}\}$ is a family of closed sets in X, then $\bigcap_{\alpha} F_{\alpha}$ is closed in X.
- (ii) If F_1, \dots, F_n are closed sets in X, then $\bigcup_{i=1}^n F_i$ is closed in X.

Note that \emptyset and X are both open and closed (called <u>clopen</u>). Therefore, \emptyset is the smallest open set and X is the largest open set, and \emptyset is the smallest closed set and X is the largest closed set.

Question. For any $\emptyset \subseteq E \subseteq X$, does E have the largest open/closed subset, and does E have the smallest open/closed superset?

E.g., (0,1) does not have largest closed subset; [0,1] does not have smallest open superset.

Definition 5. Let $E \subseteq X$. The closure of E is the set $\overline{E} = E \cup E'$.

An element x of X is called an <u>interior point</u> of E if $\exists r > 0$, $B(x,r) \subseteq E$. The <u>interior</u> of E is the set E° of all interior points of E.

• By definition, we have $\underline{E^{\circ} \subseteq E \subseteq \overline{E}}$.

Characterizations of Closure and Closed Sets.

Comparing with $x \in E' \iff \forall r > 0, (B(x,r) - \{x\}) \cap E \neq \emptyset$ (definition), we have

(I)
$$x \in \overline{E} \iff \forall r > 0, B(x,r) \cap E \neq \emptyset.$$

Proof. Since $\overline{E} = E \cup E'$, we have $x \in \overline{E} \implies \forall r > 0, B(x,r) \cap E \neq \emptyset$.

Conversely, suppose that $\forall r > 0$, $B(x,r) \cap E \neq \emptyset$. If $x \in E$, then $x \in \overline{E}$; if $x \notin E$, then $\forall r > 0$, $(B(x,r) - \{x\}) \cap E = B(x,r) \cap E \neq \emptyset$, that is, $x \in E' \subseteq \overline{E}$. So, in both cases, we have $x \in \overline{E}$.

(II) \overline{E} is always closed.

Proof. To prove that \overline{E} is closed, we need show that $\overline{E}' \subseteq \overline{E}$.

Let
$$x \in \overline{E}'$$
. Then $\forall r > 0$, $(B(x,r) - \{x\}) \cap \overline{E} \neq \emptyset$.

Assume that $x \notin \overline{E}$. Then, by (I), $\exists r_0 > 0$ such that $B(x, r_0) \cap E = \emptyset$. Since $B(x, r_0)$ is open, we have $B(x, r_0) \cap E' = \emptyset$. It follows that

$$B(x,r_0) \cap \overline{E} = B(x,r_0) \cap (E \cup E') = (B(x,r_0) \cap E) \cup (B(x,r_0) \cap E') = \emptyset,$$
 contradicting to $(B(x,r_0) - \{x\}) \cap \overline{E} \neq \emptyset$. Therefore, $x \in \overline{E}$. Hence, we have $\overline{E}' \subseteq \overline{E}$.

(III) $\overline{E} = \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}$, and hence \overline{E} is the smallest closed set in X containing E.

Proof. Since \overline{E} is closed, we have that $\bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\} \subseteq \overline{E}$.

Conversely, if $E \subseteq F \subseteq X$ and F is closed, then by (I), $\overline{E} \subseteq \overline{F} = F$. Hence, we have $\overline{E} \subseteq \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}.$

Therefore, $\overline{E} = \bigcap \{F : E \subseteq F \subseteq X \text{ and } F \text{ is closed}\}$, and \overline{E} is the smallest closed set in X containing E.

By (II) and the definition of closure, we have the following

(IV)
$$E$$
 is closed $\iff E = \overline{E} \iff \overline{E} \subseteq E$.

<u>Theorem 7</u> (Theorem 2.28). Let $E \subseteq \mathbb{R}$ be non-empty and bounded above. Then we have $\sup(E) \in \overline{E}$. Similarly, if $E \subseteq \mathbb{R}$ is non-empty and bounded below, then $\inf(E) \in \overline{E}$.

Proof. Let $y = \sup(E)$. To get $y \in \overline{E}$, we need show that

$$\forall \varepsilon > 0, \ B(y,\varepsilon) \cap E = (y-\varepsilon,y+\varepsilon) \cap E \neq \emptyset.$$

Let $\varepsilon > 0$. Then $\exists x \in E, y - \varepsilon < x$. On the other hand, we have $x \leq y < y + \varepsilon$. Therefore, $x \in (y - \varepsilon, y + \varepsilon) \cap E$, and hence $(y - \varepsilon, y + \varepsilon) \cap E \neq \emptyset$.

Characterizations of Interior and Open Sets.

Parallel to the results on the closure \overline{E} and closed sets, we have the followings on the interior E° and open sets.

(V) $E^{\circ} = \bigcup \{G : G \subseteq E \text{ and } G \text{ is open}\}\$, and hence E° is the largest open subset of E.

(VI)
$$E$$
 is open $\iff E = E^{\circ} \iff E \subseteq E^{\circ}$.

Definition 6. Let X be a metric space, $E \subseteq X$ and $x \in X$. x is called a boundary point of E if $\forall r > 0$, $B(x,r) \cap E \neq \emptyset$ and $B(x,r) \cap (X-E) \neq \emptyset$. We use ∂E to denote the set of all boundary points of E, called the boundary of E.

By (I), we have

(VII)
$$\partial E = \overline{E} \cap \overline{(X-E)}$$
. Therefore, ∂E is closed.

(VIII)
$$\overline{E} = E \cup \partial E$$
.

By the definition of E° and ∂E , we have

(IX)
$$E^{\circ} = E - \partial E = \overline{E} - \partial E$$
.