Линейные сортировки

Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2020

Содержание

- 🚺 Виды сортировок
- 2 Сортировки за линейное время
- Ортировка подсчетом (CountingSort)
- Поразрядная сортировка или цифровая (RadixSort)

Виды сортировок

Напомним классификацию

- Сортировки сравнением Особенность категории - в лучшем случае за $O(n \log(n))$
 - Вставками (InsertionSort)
 - Слиянием (MergeSort)
 - Быстрая (QuickSort)
 - С помощью кучи (HeapSort)
 - **⑤** ...
- Сортировки без явного сравнения элементов
 - Сортировка подсчетом (CountingSort)
 - ② Сортировка поразрядная или цифровая (RadixSort)
 - LSD
 - MSD

Сортировка подсчетом (CountingSort)

Основная идея: для каждого входного элемента x определить количество элементов, которые меньше x.

С помощью этой информации элемент **х** можно разместить в той позиции выходного массива, где он должен находиться.

Например, если всего имеется 17 элементов, которые меньше \mathbf{x} , то в выходной последовательности элемент \mathbf{x} должен занимать 18 позицию.

Идея

Сортировка подсчетом (CountingSort)

```
Код
```

```
COUNTING-SORT(A, B, k)
    Пусть C[0..k] — новый массив
 2 for i = 0 to k
    C[i] = 0
    for j = 1 to A. length
        C[A[i]] = C[A[i]] + 1
   // Сейчас C[i] содержит количество элементов, равных i.
    for i = 1 to k
        C[i] = C[i] + C[i-1]
    // Сейчас C[i] содержит количество элементов, не превышающих i.
10
    for j = A. length downto 1
        B[C[A[j]]] = A[j]
11
12
        C[A[j]] = C[A[j]] - 1
```

Сортировка подсчетом (CountingSort)

Пример

Поразрядная сортировка или цифровая (RadixSort)

Задача

Имеем множество последовательностей одинаковой длины, состоящих из элементов, на которых задано отношение линейного порядка. Требуется отсортировать эти последовательности в лексикографическом порядке.

Идея

Сортируем поразрядно. На каждом шаге применяем устойчивую сортировку. Например, сортировку подсчетом.

Разновидности поразрядной сортировки

- LSD Least Significant Digit radix sort
- MSD Most Significant Digit radix sort

Поразрядная сортировка

Пример LSD

329	720	7.	20	329
457	355	3	29	3 55
657	436	4	<mark>3</mark> 6	4 36
839	457	→ 8	3 9 →	4 57
436	657	3.	<mark>5</mark> 5	<mark>6</mark> 57
720	32 <mark>9</mark>	4.	<mark>5</mark> 7	<mark>7</mark> 20
355	83 <mark>9</mark>	6.	5 7	829

Поразрядная сортировка код LSD

```
function radixSort(int[] A):
     for i = 1 to m
         for j = 0 to k - 1
             C[j] = 0
         for j = 0 to n - 1
             d = digit(A[j], i)
             C[d]++
         count = 0
         for j = 0 to k - 1
             tmp = C[j]
             C[j] = count
             count += tmp
         for j = 0 to n - 1
             d = digit(A[j], i)
             B[C[d]] = A[i]
             C[d]++
         A = B
```

Поразрядная сортировка

Пример MSD

Поразрядная сортировка

Koд MSD

```
function radixSort(int[] A, int 1, int r, int d):
     if d > m or l >= r
         return
     for j = 0 to k + 1
         cnt[i] = 0
     for i = 1 to r
         j = digit(A[i], d)
         cnt[j + 1]++
     for j = 2 to k
         cnt[i] += cnt[i - 1]
     for i = 1 to r
         j = digit(A[i], d)
         c[1 + cnt[i]] = A[i]
         cnt[j]--
     for i = 1 to r
         A[i] = c[i]
     radixSort(A, 1, 1 + cnt[0] - 1, d + 1)
     for i = 1 to k
         radixSort(A, 1 + cnt[i - 1], 1 + cnt[i] - 1, d + 1)
```

Полезные ссылки І

Университет ИТМО: Цифровая сортировка https://bit.ly/35wM87g