CIAC 2015

An opportunistic text indexing structure based on run length encoding

Yuya Tamakoshi, Keisuke Goto, <u>Shunsuke Inenaga</u>, Hideo Bannai, Masayuki Takeda

Kyushu University, Japan

Kyushu University, Japan

Kyushu University, Japan

Kyushu University, Japan

String Island

String matching

Input: text string T and pattern string P

Output: all occurrences of P in T

String matching

Input: text string T and pattern string P

Output: all occurrences of P in T

text T

We introduce a general framework which is suitable to capture an essence of compressed pattern matching according to various dictionary based compressions. The goal is to find all occurrences of a pattern in a text without decompression, which is one of the most active topics in string matching. Our framework includes such compression methods as Lempel-Ziv family, (LZ77, LZSS, LZ78, LZW), byte-pair encoding, and the static dictionary based method.

pattern P

compress

String matching

Input: text string T and pattern string P

Output: all occurrences of P in T

- ✓ String matching is fundamental to areas such as
 - Information Retrieval
 - Bioinformatics, etc.

Indexed string matching

Preprocess: build index on fixed text T

Query: pattern string P

Answer: all occurrences of P in T

- ✓ Goal is to construct a <u>space-efficient</u> index on *T*which <u>quickly</u> answers to string matching query.
 - \triangleright Text T can be very long (e.g., DNA sequences).
 - We may receive many different query patterns.

Classical text index: Suffix Array

The <u>suffix array</u> SA of text T is an array which stores the beginning positions of the suffixes of T in <u>lexicographic order</u> [Manber & Myers, 1991].

$$T = \cos$$

\$ is an end-marker which appears only at the end of any string.

Classical text index: Suffix Array

The <u>suffix array</u> SA of text T is an array which stores the beginning positions of the suffixes of T in <u>lexicographic order</u> [Manber & Myers, 1991].

```
1 cococacao$
2 ococacao$
3 cocacao$
4 ocacao$
5 cacao$
6 acao$
7 cao$
8 ao$
9 o$
```

Classical text index: Suffix Array

The <u>suffix array</u> SA of text T is an array which stores the beginning positions of the suffixes of T in <u>lexicographic order</u> [Manber & Myers, 1991].

Binary search a given pattern P on SA

$$P = coc$$

Binary search a given pattern P on SA

$$P = \underline{\text{coc}}$$
 $\underline{\text{cao}}$

10	\$
6	acao\$
8	ao\$
5	cacao\$
7	cao\$
3	cocacao\$
1	cococacao\$
9	0\$
4	ocacao\$
2	ococacao\$

Binary search a given pattern P on SA

$$P = \underline{c}$$
oc \wedge \underline{o} \$

10	\$
6	acao\$
8	ao\$
5	cacao\$
7	cao\$
3	cocacao\$
1	cococacaos
9	0\$
4	ocacao\$
2	ococacao\$
	l

Binary search a given pattern P on SA

$$P = \frac{\text{coc}}{\text{II}}$$

- 10 \$
 6 acao\$
 8 ao\$
 - 5 cacao\$
 - 7 cao\$
- /3 <u>coc</u>acao\$
 - l cococacao\$
 - 9 | 0 \$
 - 4 ocacao\$
 - 2 ococacao\$

Binary search a given pattern P on SA

$$P = \frac{\text{coc}}{\text{II}}$$

- 10 \$
 6 acao\$
 - 8 ao\$
 - 5 cacao\$
 - 7 cao\$
- √3 <u>coc</u>acao\$
- /1 <u>coc</u>ocacao\$
 - 0\$
 - 4 ocacao\$
 - 2 ococacao\$

Binary search a given pattern P on SA

$$T = \frac{\sqrt{3}}{12345678910}$$
 $T = \frac{\text{cococacao}}{\text{cococacao}}$

$$P = coc$$

SA

10 \$
6 acao\$
8 ao\$
5 cacao\$
7 cao\$
✓3 cocacao\$
✓1 cococacao\$
9 o\$
4 ocacao\$
2 ococacao\$

All occurrences of P in T can be found in $O(m \log u + occ)$ time using SA.

The search time can be improved to $O(m+\log u+occ)$ using the LCP array.

$$u = |T|$$

 $m = |P|$
 $occ = \#$ occ. of P in T

SA+LCP

Theorem [Manber & Myers, 1991]

There is an index (SA+LCP) which reports all occ occurrences of P in T in $O(m+\log u+occ)$ time, and requires $2u\log u + u\log \sigma + O(u)$ bits of space.

SA & LCP

Text T

Auxiliary data structure

$$u = |T|$$
 $m = |P|$
 $\sigma = |\Sigma|$

✓ This can take too much space for large text T (i.e., for large u).

Compressed index

- ✓ There are a number of compressed indexes which occupy only <u>compressed size</u> of text.
 - FM-index [Ferragina & Mancini, 2000], Compressed Suffix Array [Grossi & Vitter, 2000], Lempel-Ziv index [Gagie et al., 2014], etc.
- ✓ Most of them are <u>slower</u> than SA+LCP.

Our proposal

New compressed index based on run length encoding (RLE) of text which is smaller & faster than SA+LCP.

Run Length Encoding (RLE)

The run length encoding of text T, denoted RLE(T), is a compressed representation of T in which each maximal run a...a of characters is encoded by a^p , where p denotes the length of the maximal run.

T = aaaabbbaaccccccbbbbbaaaaa\$ $RLE(T) = a^4b^3a^2c^7b^5a^5$$

- ✓ Applications to RLE include:
 - black-white fax messages
 - image format (PackBits, TIFF)
 - music format (MIDI)

RLE suffixes

Let n = |RLE(T)|. For any $1 \le i \le n$, RLEsuf(i) is the suffix of RLE(T) starting with the i-th run.

RLE(T):
$$a^4b^3a^2c^7b^5a^5$$
\$
$$n = 7$$

RLEsuf(1): $a^4b^3a^2c^7b^5a^5$ \$

RLEsuf(2): $b^3a^2c^7b^5a^5$ \$

RLEsuf(3): $a^2c^7b^5a^5$ \$

RLEsuf(4): $c^7b^5a^5$ \$

RLEsuf(5): b^5a^5 \$

RLEsuf(6): a⁵\$

RLEsuf(7):

Difficulty in indexing RLE suffixes

✓ We want to index only RLE suffixes of the text, but simply sorted RLE suffixes don't work!

sorted RLE suffixes of text

```
a<sup>5</sup>b···
a<sup>5</sup>b···
a<sup>5</sup>c···
a<sup>4</sup>c···
a<sup>4</sup>c···
a<sup>4</sup>c···
a<sup>4</sup>c···
a<sup>3</sup>b···
a<sup>3</sup>b···
```

Difficulty in indexing RLE suffixes

✓ We want to index only RLE suffixes of the text, but simply sorted RLE suffixes don't work!

sorted RLE suffixes of text

```
aaaaaab···
aaaaaac···
aaaaac···
aaaaac···
aaaaac···
aaaac···
aaaab···
aaaab···
```

Difficulty in indexing RLE suffixes

✓ We want to index only RLE suffixes of the text, but simply sorted RLE suffixes don't work!

RLE(P): a^2b^1

Pattern occurrences are spread out, so we cannot binary search!!

sorted RLE suffixes of text

- ✓ aaa<u>aab</u>····
- ✓ aaa<u>aab</u>…
 aaaaac…
- ✓ aa<u>aab</u>…
 aaaac…
 aaaac…
 aaaac…
- ✓ a<u>aab</u>····
- √ a<u>aab</u>…

Our ideas to index RLE suffixes

- ✓ When sorting RLE suffixes, we "ignore" the exponents of the <u>first runs</u> of RLE suffixes of text T.
- ✓ To find occurrences of pattern P, we first "ignore" the exponent of the first run of RLE(P), and find its corresponding range.
- ✓ We then pick up only the occurrences of RLE(P) from this range.

Truncated RLE suffixes

tRLEsuf(i) is the suffix of RLEsuf(i) where the first exponent p_i is truncated to 1.

RLEsuf(1):	a ⁴ b ³ a ² c ⁷ b ³ a ³ \$	tRLEsuf(1): a	b ³ a ² c/b ³ a ³ \$
<i>RLEsuf</i> (2):	$b^3a^2c^7b^5a^5$ \$	tRLEsuf(2):	b a2c7b5a5\$
<i>RLEsuf</i> (3):	$a^2c^7b^5a^5$ \$	tRLEsuf(3):	$a c^7 b^5 a^5 $ \$
<i>RLEsuf</i> (4):	$c^7b^5a^5$ \$	tRLEsuf(4):	c b ⁵ a ⁵ \$
<i>RLEsuf</i> (5):	b ⁵ a ⁵ \$	tRLEsuf(5):	b a ⁵ \$
<i>RLEsuf</i> (6):	a ⁵ \$	<i>tRLEsuf</i> (6):	a \$
<i>RLEsuf</i> (7):	\$	tRLEsuf(7):	\$

Our index: Truncated RLE Suffix Array

The <u>tRLE suffix array</u> tRLESA of text T is an array which stores the beginning positions of the tRLE suffixes in <u>lexicographical order</u>.

1	a $b^3a^2c^7b^5a^5$ \$	tRLESA	7	\$
2	$b a^2c^7b^5a^5$ \$		6	a \$
3	a c ⁷ b ⁵ a ⁵ \$		1	a $b^3a^2c^7b^5a^5$ \$
4	c b^5a^5 \$	Sort	3	a c ⁷ b ⁵ a ⁵ \$
5	$b a^5$ \$		5	b a ⁵ \$
6	a \$			$b a^2c^7b^5a^5$ \$
7	\$		4	c b ⁵ a ⁵ \$

```
tRLESA
            tRLE suffixes
    47 b^{(2)}c^5a^2b^2a^6...
    99 | b^{(9)}c^5a^2b^3a^1...
          b^{(1)}c^{5}a^{2}b^{5}a^{4}\cdots
    11
   40
          b^{(2)}c^{5}a^{2}b^{7}a^{3}...
          b^{(3)}c^{5}a^{2}b^{8}c^{2}...
    55
          b^{(9)}c^5a^2b^6c^3...
   72
    19
          b^{(1)}c^{5}a^{2}b^{6}c^{3}...
          b^{(5)}c^{5}a^{2}b^{4}c^{7}...
   26
           b^{(1)}c^5a^2b^1c^8...
```

Ignored exponents in parentheses

47

99

11

40

55

72

19

26

We next look for $bc^5a^2b^4$

RLE(P): $b^3c^5a^2b^4$

The range bc⁵a²matches

tRLESA tRLE suffixes

 $b^{(2)}c^{5}a^{2}b^{2}a^{6}\cdots$ $b^{(9)}c^{5}a^{2}b^{3}a^{1}\cdots$ $b^{(1)}c^{5}a^{2}b^{5}a^{4}\cdots$ $b^{(2)}c^{5}a^{2}b^{7}a^{3}\cdots$ $b^{(3)}c^{5}a^{2}b^{8}c^{2}\cdots$ $b^{(9)}c^{5}a^{2}b^{6}c^{3}...$ $b^{(1)}c^{5}a^{2}b^{6}c^{3}...$ $b^{(5)}c^{5}a^{2}b^{4}c^{7}...$ $b^{(1)}c^{5}a^{2}b^{1}c^{8}\cdots$

exponents tRLESA tRLE suffixes

RLE(P): $b^3c^5a^2b^4$

We use an array of ignored exponents of the first runs.

•	10110		i cital sairintes
	•••	• • •	
	2	47	$b^{(2)}c^5a^2b^2a^6\cdots$
	9	99	$b^{(9)}c^5a^2b^3a^1$
	1	11	$b^{(1)}c^5a^2b^5a^4\cdots$
	2	40	$b^{(2)}c^5a^2b^7a^3\cdots$
	3	55	$b^{(3)}c^5a^2b^8c^2$
	9	72	$b^{(9)}c^5a^2b^6c^3$
	1	19	$b^{(1)}c^5a^2b^6c^3$
	5	26	$b^{(5)}c^5a^2b^4c^7$
	1	4	$b^{(1)}c^5a^2b^1c^8$
	•	•	<u>:</u>

We finally look for $b^3c^5a^2b^4$

exponents tRLESA

tRLE suffixes

RLE(P): $b^3c^5a^2b^4$ the range bc⁵a²b⁴ matches

nent	tF	
:		
2		
9		
1		
2		
3		
9		
1		
5		
1 :		

$$\begin{array}{c} \vdots \\ b^{(2)}c^5a^2b^2a^6 \cdots \\ b^{(9)}c^5a^2b^3a^1 \cdots \\ b^{(9)}c^5a^2b^5a^4 \cdots \\ b^{(1)}c^5a^2b^7a^3 \cdots \\ b^{(2)}c^5a^2b^8c^2 \cdots \\ b^{(9)}c^5a^2b^6c^3 \cdots \\ b^{(9)}c^5a^2b^4c^7 \cdots \\ b^{(1)}c^5a^2b^1c^8 \cdots \\ \vdots \end{array}$$

We finally look for b³c⁵a²b⁴

exponents tRLESA

tRLE suffixes

RLE(P): $b^3c^5a^2b^4$

Range Maximum Query (RMQ)

$$\begin{array}{c} \vdots \\ b^{(2)}c^5a^2b^2a^6\cdots \\ b^{(9)}c^5a^2b^3a^1\cdots \\ b^{(1)}c^5a^2b^5a^4\cdots \\ b^{(2)}c^5a^2b^7a^3\cdots \\ b^{(3)}c^5a^2b^8c^2\cdots \\ b^{(9)}c^5a^2b^6c^3\cdots \\ b^{(1)}c^5a^2b^4c^7\cdots \\ b^{(1)}c^5a^2b^1c^8\cdots \\ \vdots \end{array}$$

We finally look for $b^3c^5a^2b^4$

expo

We perform RMQ's recursively, in the 1st & 2nd halves of the range.

exponents tRLESA tRLE suffixes

RLE(P): $b^3c^5a^2b^4$

of RMQ's we perform is O(occ).

Each RMQ takes O(1) time [Fischer & Heum, 2011].

				thee Jannes
:		:		<u>:</u>
2		47	П	$b^{(2)}c^5a^2b^2a^6\cdots$
9		99	ı	$b^{(9)}c^5a^2b^3a^1$
1		11	ı	$b^{(1)}c^5a^2b^5a^4\cdots$
2		40		$b^{(2)}c^5a^2b^7a^3\cdots$
3	√	55		$b^{(3)}c^5a^2b^8c^2\cdots$
9	√	72		$b^{(9)}c^{5}a^{2}b^{6}c^{3}\cdots$

19

26

 $b^{(2)}c^5a^2b^7a^3...$ $b^{(3)}c^{5}a^{2}b^{8}c^{2}\cdots$ $b^{(9)}c^{5}a^{2}b^{6}c^{3}...$ $b^{(1)}c^5a^2b^6c^3...$ $b^{(5)}c^{5}a^{2}b^{4}c^{7}...$ $b^{(1)}c^5a^2b^1c^8...$

Theorem 1 (RLE-index)

There is an index which, given RLE(P), reports all occ occurrences of P in T in $O(q+\log n+occ)$ time, and requires $2n\log u + n\log \sigma + n\log n + O(n)$ bits of space.

$$u = |T|$$

$$n = |RLE(T)|$$

$$(n \le u)$$

$$q = |RLE(P)|$$

$$\sigma = |\Sigma|$$

Theorem 1 (RLE-index)

There is an index which, given RLE(P), reports all occ occurrences of P in T in $O(q+\log n+occ)$ time, and requires $2n\log u + n\log \sigma + n\log n + O(n)$ bits of space.

- ✓ SA+LCP takes $O(m+\log u+occ)$ time for pattern matching (m=|P|).
- ✓ Since $q \le m$ and $n \le u$ always hold, our index is <u>faster</u> than SA+LCP.

$$u = |T|$$

$$n = |RLE(T)|$$

$$(n \le u)$$

$$q = |RLE(P)|$$

$$\sigma = |\Sigma|$$

Theorem 1 (RLE-index)

There is an index which, given RLE(P), reports all occ occurrences of P in T in $O(q+\log n+occ)$ time, and requires $2n\log u + n\log \sigma + n\log n + O(n)$ bits of space.

- ✓ SA+LCP requires $2u\log u + u\log \sigma + O(u)$ bits of space.
- ✓ Our RLE-index is $\underline{\text{smaller}}$ when text T is compressible with RLE.

$$u = |T|$$

$$n = |RLE(T)|$$

$$(n \le u)$$

$$q = |RLE(P)|$$

$$\sigma = |\Sigma|$$

Theorem 2 (Construction time & space)

Given RLE(T) of size n, the RLE-index of T can be constructed in $O(n \log n)$ time with $O(n \log u)$ bits of working space.

✓ We introduced <u>new combinatorial</u> <u>properties of RLE suffixes</u>.

$$u = |T|$$

$$n = |RLE(T)|$$

✓ We also use the idea of induced-sorting [Nong et al., 2011] which was originally designed for fast suffix array construction.

Conclusions & Future work

- ✓ Our RLE-index is <u>always faster</u> than SA+LCP.
- ✓ Our RLE-index is <u>smaller</u> than SA+LCP when the text is compressible by RLE (i.e. when the $n \log n$ term is negligible).
- Comparisons to other compressed index (e.g., FM-index, compressed SA, LZ-index).

FAQ

The LCP array of T stores the length of the <u>longest</u> common prefix of neighboring suffixes in SA of T.

The LCP array of T stores the length of the <u>longest</u> common prefix of neighboring suffixes in SA of T.

The LCP array of T stores the length of the <u>longest</u> common prefix of neighboring suffixes in SA of T.

The length of the LCP of <u>any</u> suffixes can also be computed by a range <u>minimum</u> query.

```
LCP
- $
0 acao$
   ao$
  ✓ cacao$
    cao$
    cocacao$
  ✓ cococacao$
 0
 1 ocacao$
   ococacao$
```

The length of the LCP of <u>any</u> suffixes can also be computed by a range <u>minimum</u> query.

Range minimum query

For any integer array of length k, there is a data structure which supports range minimum query in O(1) time, and requires 2k + o(k) bits of extra space [Fischer & Heum, 2011].

S-type and L-type RLE suffixes

RLEsuf(i) is S-type if RLEsuf(i) < RLEsuf(i+1). RLEsuf(i) is L-type if RLEsuf(i) > RLEsuf(i+1).

- ✓ $a^4b^3a^2c^7b^5a^5$ \$ is S-type, because $a^4b^3a^2c^7b^5a^5$ \$ < $b^3a^2c^7b^5a^5$ \$.
- ✓ $b^3a^2c^7b^5a^5$ \$ is L-type, because $b^3a^2c^7b^5a^5$ \$ < $a^2c^7b^5a^5$ \$.
 - * Lex. order < on RLE strings is the same as the lex. order < on decompressed strings.

For any $1 \le i \le n$, let a_i , p_i be the ith character and exponent of RLE(T), respectively.

Lemma

For any RLEsuf(i) and RLEsuf(j) with $a_i = a_j$,

- 1. if RLEsuf(i) is L-type and RLEsuf(j) is S-type, then RLEsuf(i) < RLEsuf(j).
- 2. if RLEsuf(i) and RLEsuf(j) are L-type and $p_i < p_i$, then RLEsuf(i) < RLEsuf(j).
- 3. if RLEsuf(i) and RLEsuf(j) are S-type and $p_i > p_i$, then RLEsuf(i) < RLEsuf(j).

Lemma (Case 1)

For any RLEsuf(i) and RLEsuf(j) with $a_i = a_j$,

1. if RLEsuf(i) is L-type and RLEsuf(j) is S-type, then RLEsuf(i) < RLEsuf(j).

Lemma (Case 2)

For any RLEsuf(i) and RLEsuf(j) with $a_i = a_j$,

2. if RLEsuf(i) and RLEsuf(j) are L-type and $p_i < p_i$, then RLEsuf(i) < RLEsuf(j).

L-type (
$$b > a$$
)

$$b^{3}a^{2}c^{7}b^{5}a^{5}$$
\$ < $b^{5}a^{5}$ \$

bbbaaccccccbbbbbaaaaa\$

^
bbbbbaaaaa\$

Lemma (Case 3)

For any RLEsuf(i) and RLEsuf(j) with $a_i = a_j$,

3. if RLEsuf(i) and RLEsuf(j) are S-type and $p_i > p_i$, then RLEsuf(i) < RLEsuf(j).

S-type (a < b) S-type (a < c)
$$a^{4}b^{3}a^{2}c^{7}b^{5}a^{5}\$ < a^{2}c^{7}b^{5}a^{5}\$$$

aaaabbbaaccccccbbbbbaaaaa\$
^
aaccccccbbbbbaaaaa\$

Theorem 3 (accessing SA)

There is an index which, given an integer $1 \le j \le u$, answers SA[j] in $O(\log^2 n)$ time, and requires $n(3\log u + \log n + \log \sigma) + 2\sigma\log\frac{u}{\sigma} + O(n\log\log n)$ bits of space.

- ✓ Use a wavelet tree [Grossi et al., 2003] in place of RMQ data structure.
- ✓ Then, we can access arbitrary position of SA, using our RLE-index.

$$u = |T|$$

 $n = |RLE(T)|$
 $\sigma = |\Sigma|$