CHE 105 Spring 2019 Exam 3

Your Name:	Your ID:
------------	----------

Question #: 1

Which one is true of the enthalpy change (ΔH) of a reaction?

- A. ΔH is equal to q_p , the heat of the reaction under conditions of constant pressure.
- B. ΔH is equal to the heat capacity in units of kJ/mol.
- C. ΔH is equal to the sum of the potential and kinetic energies.
- D. ΔH is only associated with exothermic processes.

Question #: 2

From the standard reaction enthalpies given below, what is ΔH^{o}_{rxn} for the following reaction? $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \quad \Delta H^{o}_{rxn} = ?$

Given:

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
 $\Delta H^{\circ}_{rxn} = +183 \text{ kJ}$
 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ $\Delta H^{\circ}_{rxn} = +66 \text{ kJ}$

- A. -150 kJ
- B. -117 kJ
- C. -333 kJ
- D. +115 kJ
- E. +238 kJ

Question #: 3

Which reaction represents ΔH°_{f} , the standard enthalpy of formation, for Ca(NO₃)₂?

A.
$$Ca(s) + 2N(g) + 6O(g) \rightarrow Ca(NO_3)_2(s)$$

B.
$$Ca^{2+}(aq) + 2NO_3^{-}(aq) \rightarrow Ca(NO_3)_2(aq)$$

C.
$$Ca(s) + 2NO_3(g) \rightarrow Ca(NO_3)_2(g)$$

D.
$$Ca(s) + N_2(g) + 3O_2(g) \rightarrow Ca(NO_3)_2(s)$$

From the information provided below, what is ΔH°_{rxn} for the following reaction? $CH_4(g) + 3Cl_2(g) \rightarrow CHCl_3(l) + 3HCl(g)$ $\Delta H^{\circ}_{rxn} = ?$

$$\begin{array}{cc} & \Delta \underline{H^{\rm o}_{\rm f}} \\ \mathrm{CH}_4(g) & -75 \ \mathrm{kJ/mol} \\ \mathrm{CHCl}_3(l) & -134 \ \mathrm{kJ/mol} \\ \mathrm{HCl}(g) & -92 \ \mathrm{kJ/mol} \end{array}$$

- A. –151 kJ
- B. -335 kJ
- C. +662 kJ
- D. +117 kJ

Question #: 5

Methane gas reacts in the presence of oxygen to yield carbon dioxide and water. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = -890.0 \text{ kJ}$ What is the result when 1.70 g of methane reacts with excess oxygen at constant pressure?

- A. 94 kJ of heat is absorbed by the reaction.
- B. 33 kJ of heat is released by the reaction.
- C. 94 kJ of heat is released by the reaction.
- D. 33 kJ of hear is absorbed by the reaction.

Question #: 6

A sunburn is caused by overexposure to radiation in which region of the electromagnetic spectrum?

- A. gamma-ray
- B. infrared
- C. X-ray
- D. ultraviolet
- E. microwave
- F. radio wave

Question #: 7

Which one occurs as the energy of a photon is increased?

A. The frequency decreases.

- B. The speed increases.
- C. The wavelength increases.
- D. The wavelength decreases.
- E. Planck's constant decreases.
- F. The uncertainty principle no longer is applicable.

Question #: 8

What occurs when waves of equal amplitude from two sources which are out of phase interact?

A. constructive interference

B. diffraction

C. destructive interference

D. effusion

E. amplitude modulation

Question #: 9

What is the energy of an emitted photon of green light with a frequency of 5.49 ×10¹⁴ Hz?

A. $2.75 \times 10^{-19} \,\mathrm{J}$

B. 3.64 ×10⁻¹⁹ J

C. $1.83 \times 10^{-19} J$

D. $4.68 \times 10^{-19} \, J$

How many photons are contained in a flash of green light (525 nm) that contains 189 kJ of energy?

- A. 5.67 ×10²³ photons
- B. 2.10 ×10²⁴ photons
- C. 7.99 ×1030 photons
- D. 4.99 ×10²³ photons

Question #: 11

What is the longest wavelength of light required to remove an electron from the surface of potassium metal by the photoelectric effect if the binding energy of an electron is 1.76×10^3 kJ/mol?

- A. 68.0 nm
- B. 147 nm
- C. 387 nm
- D. 885 nm

Question #: 12

What is the wavelength of light with a frequency of 7.30×10^{14} Hz?

- A. 765 nm
- B. 88.3 nm
- C. 325 nm
- D. 411 nm

Which transition in a hydrogen atom represents **absorption** of a photon with the smallest energy?

A.
$$n = 4 \text{ to } n = 6$$

B.
$$n = 4 \text{ to } n = 1$$

C.
$$n = 1 \text{ to } n = 3$$

D.
$$n = 4 \text{ to } n = 1$$

E.
$$n = 6 \text{ to } n = 5$$

Question #: 14

What is the wavelength if a 155 gram baseball is moving at 32.5 m/s?

A.
$$7.60 \times 10^{-36} \text{ m}$$

Question #: 15

Which statement about electron subshells and orbitals in atoms is **incorrect**?

- A. If a subshell contains two electrons, then it must be an s subshell?
- B. Any orbital can contain zero, one, or two electrons, with two being the maximum.
- C. A *d* subshell can hold more electrons than can a *p* subshell because the *d* subshell is composed of more orbitals than is the *p* subshell.
- D. Each p subshell is composed of three p orbitals, so a p subshell can hold a maximum of six electrons.

Which set of quantum numbers for an electron in the ground state of a neutral atom does **not** contain an error?

A.
$$n = 4$$
, $l = 0$, $m_l = -1$, $m_s = +\frac{1}{2}$

B.
$$n = 3$$
, $l = 3$, $m_l = 1$, $m_s = +\frac{1}{2}$

C.
$$n = 5$$
, $l = 3$, $m_l = -3$, $m_s = -\frac{1}{2}$

D.
$$n = 3$$
, $l = 2$, $m_l = 3$, $m_s = -1/2$

Question #: 17

The quantum numbers of the outermost electron of an element in its ground state are n = 6, l = 1, $m_l = -1$, $m_s = +1/2$. What is the element?

- A. Gd
- В. Те
- C. Hf
- D. Bi

Question #: 18

What is the ground state electron configuration of a neutral Mo atom?

- A. [Xe] $5s^25p^4$
- B. [Kr]5s²4d⁴
- C. [Ar] $5s^24d^5$
- D. [Kr] $5s^{1}4d^{5}$

- A. Ar and S2-
- B. S and Se
- C. As3+ and Kr
- D. Ar and Rb+

Question #: 20

Which species is paramagnetic?

- A. Ca
- B. O²⁻
- C. Cd2+
- D. Zn
- E. Nb3+

Question #: 21

The ionization energies (in kJ/mol) of a period 4 element are given below. Which element is it? $IE_1 = 590$ $IE_2 = 1145$ $IE_3 = 4912$ $IE_4 = 6491$ $IE_5 = 8153$

- A. K
- B. Ca
- C. Sc
- D. Ga
- E. Ge

Based on the general trends in electronegativities, which bond is **most** polar?

- A. Si-S
- B. Si-O
- C. C-Si
- D. C-N
- E. Si-Si

Question #: 23

From Lewis theory, what is the chemical formula of the compound formed from calcium and nitrogen?

- A. CaN
- B. CaN₂
- C. Ca₂N₃
- D. Ca₃N₂
- E. Ca₃N₄

Question #: 24

Of the compounds shown below, which are exceptions to the octet rule? $XeF_2 \quad IF_5 \quad BF_3 \quad NO \quad SF_6$

.

- A. only IF₅ and SF₆
- B. only NO and BF₃
- C. only XeF₂, IF₅, and SF₆
- D. All of these compounds are exceptions to the octet rule.

For the preferred structure of the OCN- ion, which atom has a non-zero formal charge?

- A. O
- B. C
- C. N
- D. None of these atoms would have a non-zero formal charge.

Question #: 26

The Lewis structure of the CO_3^{2-} ion and its resonance structures contain:

.

- A. one C–O single bond and two C=O double bonds.
- B. two C–O single bonds and one C=O double bond.
- C. three C=O double bonds.
- D. two C–O single bonds and one carbon-oxygen triple bond.

Question #: 27

From the general properties of bonds, which statement is true?

- A. Ionic bonds are stronger than covalent bonds.
- B. All bonds are of the same length.
- ${\sf C}.$ Covalent triple bonds contain four electrons.
- D. Covalent double bonds are shorter than covalent triple bonds.

The lattice energy:

- A. applies only for compounds with covalent bonding.
- B. can be used to determine the lengths of double and triple bonds.
- C. cannot be measured directly but can be calculated from a thermochemical cycle.
- D. can be used to determine the formal charge on an atom.

Question #: 29

How many <u>lone pairs</u> of electrons are on the As atom in $AsCl_3$?

•

- A. 0
- B. 1
- C. 2
- D. 3

Question #: 30

Which ionic compound would be expected to have the <u>largest</u> lattice energy?

- A. Rb₂O
- B. SrO
- C. KCl
- D. CO₂

DRAFT

Do Not Use Until Posted.

CHE 105 Spring 2019 Exam 3 - Confidential

Your Name:				Your ID:																
	IUPAC Periodic Table of the Elements															18 VIIIA				
	l H	2											13	14	15	16	17	He		
	1.008	IIA		Key:									IIIA	IVA	VA	VIA	VIIA	4.0026		
	3	4		atomic nur	mber								5	6	7	8	9	10		
	Li	Be		Symb									В	С	N	0	F	Ne		
	6.941	9.012		atomic we	eight								10.81	12.011	14.007	15.999	18.998	20.180		
	11	12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
	Na 22.990	Mg	IIIB	IVB	VB	VIB	VIIB	VIIIB	IXB	XB	XIB	XIIB	Al	Si 28.085	P 30.974	S 32.06	CI	Ar		
	19	24.305	21	22	23	24	25	26	27	28	29	30	26.982	32	30.974	32.06	35.45	39.948		
	ΙŘ	Ča	Sc	Τί	v	Čr	Mn	Fe	Co	Ni	Ĉu	Ž'n	Ğa	Ge	As	Se	Br	Kr		
	39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	78.971	79.904	83.798		
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe		
	85.468	87.62	88.906	91.224	92.906	95.95		101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29		
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
	Cs 132.91	Ba 137.33	lanthanides	Hf 178.49	Ta 180.95	W 183.84	Re 186.21	Os 190.23	lr 192.22	Pt 195.08	Au 196.97	Hg 200.59	TI 204.38	Pb 207.2	Bi 208.98	Po	At	Rn		
	87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118		
	Fr	Ra	actinides	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og		
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
				Ľa	Če	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Ĕr	Tm	Yb	Lu		
				138.91	140.12	140.91	144.24		150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97		
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	103		
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
					232.04	231.04	238.03													
	Faraday constan				deal gas at STP = 22.4 L Ideal gas constant:										Speed of light, $c = 3.00 \times 10^8 \text{m} \cdot \text{s}^{-1}$					
					$F = 9.6485 \times 10^4 \text{ C/mol e}$ $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$										Rydberg constant, $R_{\rm H} = 2.18 \times 10^{-18} \rm J$					
	Avogadro's number, $N = 6.022 \times 10^{23} \text{mol}^{-1}$ $R = 1.987 \text{cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Electron charge, $e = 1.602 \times 10^{-19} \text{mol}^{-1}$											C								
	Planck's consta			$R = 8.206 \times 10^{-34} \text{J} \cdot \text{s}$ $R = 8.206 \times 10^{-2} \text{L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ Atomic mass unit, $u = 1.66$								= 1.660	05 × 10	^{−24} g						

attachment_for_pubExamUID_Inxp115541397438601498XX_367.jpg

Question #: 1

Which one is true of the enthalpy change (ΔH) of a reaction?

- \checkmark A. ΔH is equal to q_p , the heat of the reaction under conditions of constant pressure.
 - B. ΔH is equal to the heat capacity in units of kJ/mol.
 - C. ΔH is equal to the sum of the potential and kinetic energies.
 - D. ΔH is only associated with exothermic processes.

Question #: 2

From the standard reaction enthalpies given below, what is $\Delta H^{\rm o}_{\rm rxn}$ for the following reaction? $2{\rm NO}(g)+{\rm O}_2(g)\to 2{\rm NO}_2(g)$ $\Delta H^{\rm o}_{\rm rxn}=?$ Given:

$$\begin{split} &\mathrm{N_2(g)} + \mathrm{O_2(g)} \rightarrow 2\mathrm{NO}(g) & \Delta H^{\mathrm{o}}_{\mathrm{rxn}} = +183 \; \mathrm{kJ} \\ &\mathrm{N_2(g)} + 2\mathrm{O_2(g)} \rightarrow 2\mathrm{NO_2(g)} & \Delta H^{\mathrm{o}}_{\mathrm{rxn}} = +66 \; \mathrm{kJ} \end{split}$$

Which reaction represents $\Delta H_{\rm f}^{\rm o}$, the standard enthalpy of formation, for Ca(NO₃)₂?

A.
$$Ca(s) + 2N(g) + 6O(g) \rightarrow Ca(NO_{2})_{2}(s)$$

B.
$$Ca^{2+}(aq) + 2NO_{3}^{-}(aq) \rightarrow Ca(NO_{3}^{3})_{2}(aq)$$

C.
$$Ca(s) + 2NO_2(g) \rightarrow Ca(NO_2)_2(g)$$

A.
$$Ca(s) + 2N(g) + 6O(g) \rightarrow Ca(NO_3)_2(s)$$

B. $Ca^{2+}(aq) + 2NO_3^{-}(aq) \rightarrow Ca(NO_3)_2(aq)$
C. $Ca(s) + 2NO_3(g) \rightarrow Ca(NO_3)_2(g)$
 \checkmark D. $Ca(s) + N_2(g) + 3O_2(g) \rightarrow Ca(NO_3)_2(s)$

Question #: 4

From the information provided below, what is ΔH^{o}_{rxn} for the following reaction? $CH_4(g) + 3Cl_2(g) \rightarrow CHCl_3(l) + 3HCl(g) \quad \Delta H^{\circ}_{rxn} = ?$

$$\begin{array}{cc} & \underline{\Delta H^{\rm o}}_{\rm f} \\ {\rm CH}_4(g) & -75~{\rm kJ/mol} \\ {\rm CHCl}_3(l) & -134~{\rm kJ/mol} \\ {\rm HCl}(g) & -92~{\rm kJ/mol} \end{array}$$

Methane gas reacts in the presence of oxygen to yield carbon dioxide and water.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$
 $\Delta H = -890.0 \text{ kJ}$

What is the result when 1.70 g of methane reacts with excess oxygen at constant pressure?

- A. 94 kJ of heat is absorbed by the reaction.
- B. 33 kJ of heat is released by the reaction.
- ✓C. 94 kJ of heat is released by the reaction.
 - D. 33 kJ of hear is absorbed by the reaction.

Question #: 6

A sunburn is caused by overexposure to radiation in which region of the electromagnetic spectrum?

- A. gamma-ray
- B. infrared
- C. X-ray
- ✓D. ultraviolet
 - E. microwave
 - F. radio wave

Question #: 7

Which one occurs as the energy of a photon is increased?

- A. The frequency decreases.
- B. The speed increases.
- C. The wavelength increases.
- ✓D. The wavelength decreases.
 - E. Planck's constant decreases.
 - F. The uncertainty principle no longer is applicable.

What occurs when waves of equal amplitude from two sources which are out of phase interact?

- A. constructive interference
- B. diffraction
- ✓C. destructive interference
 - D. effusion
 - E. amplitude modulation

Question #: 9

What is the energy of an emitted photon of green light with a frequency of 5.49 \times 10 Hz?

A.
$$2.75 \times 10^{-19} \,\mathrm{J}$$

$$✓$$
B. 3.64 ×10⁻¹⁹ J

C.
$$1.83 \times 10^{-19} \,\mathrm{J}$$

D.
$$4.68 \times 10^{-19} \,\mathrm{J}$$

Question #: 10

How many photons are contained in a flash of green light (525 nm) that contains 189 kJ of energy?

A.
$$5.67 \times 10^{23}$$
 photons

B.
$$2.10 \times 10^{24}$$
 photons

B.
$$2.10 \times 10^{24}$$
 photons
C. 7.99×10^{30} photons

$$\checkmark$$
D. 4.99 ×10²³ photons

Question #: 11

What is the longest wavelength of light required to remove an electron from the surface of potassium metal by the photoelectric effect if the binding energy of an electron is 1.76 $\times 10^3$ kJ/mol?

- ✓A. 68.0 nm
 - B. 147 nm
 - C. 387 nm

D. 885 nm

Question #: 12

What is the wavelength of light with a frequency of 7.30×10^{14} Hz?

- A. 765 nm
- B. 88.3 nm
- C. 325 nm
- **√**D. 411 nm

Question #: 13

Which transition in a hydrogen atom represents **absorption** of a photon with the smallest energy?

$$✓$$
A. n = 4 to n = 6

B.
$$n = 4 \text{ to } n = 1$$

C.
$$n = 1 \text{ to } n = 3$$

D.
$$n = 4 \text{ to } n = 1$$

E.
$$n = 6$$
 to $n = 5$

Question #: 14

What is the wavelength if a 155 gram baseball is moving at 32.5 m/s?

A.
$$7.60 \times 10^{-36}$$
 m

$$\checkmark$$
B. 1.32 ×10⁻³⁴ m

C.
$$2.15 \times 10^{-32}$$
 m

D.
$$3.57 \times 10^{-32}$$
 m

Question #: 15

Which statement about electron subshells and orbitals in atoms is incorrect?

- \checkmark A. If a subshell contains two electrons, then it must be an s subshell?
 - B. Any orbital can contain zero, one, or two electrons, with two being the maximum.
 - C. A *d* subshell can hold more electrons than can a *p* subshell because the *d* subshell is composed of more orbitals than is the *p* subshell.
 - D. Each p subshell is composed of three p orbitals, so a p subshell can hold a maximum of six electrons.

Which set of quantum numbers for an electron in the ground state of a neutral atom does <u>not</u> contain an error?

A.
$$n = 4$$
, $l = 0$, $m_{\tilde{l}} = -1$, $m_{\tilde{S}} = +1/2$

B.
$$n = 3$$
, $l = 3$, $m_{\tilde{l}} = 1$, $m_{\tilde{S}} = +1/2$

✓C.
$$n = 5$$
, $l = 3$, $m_l = -3$, $m_s = -1/2$

D.
$$n = 3$$
, $l = 2$, $m_{\tilde{l}} = 3$, $m_{\tilde{S}} = -1/2$

Question #: 17

The quantum numbers of the outermost electron of an element in its ground state are n=6, l=1, $m_l=-1$, $m_S=+1/2$. What is the element?

- A. Gd
- B. Te
- C. Hf
- ✓D. Bi

Question #: 18

What is the ground state electron configuration of a neutral Mo atom?

- A. [Xe] $5s^25p^4$
- B. $[Kr]_{5}s^2 4d^4$
- C. $[Ar]_{5}s^2 4d^5$
- ✓D. [Kr] $5s^{1}4d^{5}$

Which one contains an isoelectronic pair?

- \checkmark A. Ar and S²⁻
 - B. S and Se
 - $C. As^{3+}$ and Kr
 - D. Ar and Rb⁺

Question #: 20

Which species is paramagnetic?

- A. Ca
- $B. O^{2-}$
- $C. Cd^{2+}$
- D. Zn
- ✓E. Nb³⁺

Question #: 21

The ionization energies (in kJ/mol) of a period 4 element are given below. Which element is it?

$$IE_1 = 590$$
 $IE_2 = 1145$ $IE_3 = 4912$ $IE_4 = 6491$ $IE_5 = 8153$

.

- A. K
- ✓B. Ca
 - C. Sc
 - D. Ga
 - E. Ge

Question #: 22

Based on the general trends in electronegativities, which bond is **most** polar?

✓B. Si-O

C. C-Si

D. C-N

E. Si-Si

Question #: 23

From Lewis theory, what is the chemical formula of the compound formed from calcium and nitrogen?

A. CaN

B. CaN₂

C. $Ca_2\bar{N}_c$

✓D. Ca₃N₂ E. Ca₃N₄

Question #: 24

Of the compounds shown below, which are exceptions to the octet rule?

NO SF₆ XeF₂ IF₅ BF₃

A. only IF₅ and SF₆
B. only NO and BF₃
C. only XeF₂, IF₅, and SF₆
✓D. All of these compounds are exceptions to the octet rule.

Question #: 25

For the preferred structure of the OCN ion, which atom has a non-zero formal charge?

✓A. O

B. C

C. N

D. None of these atoms would have a non-zero formal charge.

The Lewis structure of the ${\rm CO_3}^{2-}$ ion and its resonance structures contain:

.

- A. one C-O single bond and two C=O double bonds.
- ✓B. two C–O single bonds and one C=O double bond.
 - C. three C=O double bonds.
 - D. two C-O single bonds and one carbon-oxygen triple bond.

Question #: 27

From the general properties of bonds, which statement is true?

- ✓A. Ionic bonds are stronger than covalent bonds.
 - B. All bonds are of the same length.
 - C. Covalent triple bonds contain four electrons.
 - D. Covalent double bonds are shorter than covalent triple bonds.

Question #: 28

The lattice energy:

- A. applies only for compounds with covalent bonding.
- B. can be used to determine the lengths of double and triple bonds.
- ✓C. cannot be measured directly but can be calculated from a thermochemical cycle.
 - D. can be used to determine the formal charge on an atom.

Question #: 29

How many **lone pairs** of electrons are on the As atom in AsCl₃?

.

A. 0

√B. 1

C. 2

Which ionic compound would be expected to have the <u>largest</u> lattice energy?

- A. Rb₂O ✓B. SrO
- - C. KCl
 - $\mathsf{D.\,CO}_2$