

Phénomènes géologiques internes

SEISMES ET LA TECTONIQUE DES PLAQUES

Document de révision 2024/2025

Pr. Mohamed DADES

Séisme d'Agadir en 1960

La sismicité : document de révision

Séisme et ses caractéristiques

1- <u>Définir</u> un séisme

Un séisme est un phénomène naturel sous forme de vibrations et de secousses du sol et qui peuvent causer des dégâts matériel et humain.

2- <u>Déterminer</u> où se localise la plupart des séismes mondiaux.

Les séismes se localisent généralement au niveau des limites des plaques lithosphériques.

3- <u>Citer</u> les différentes méthodes pour évaluer un séisme

Méthode des <u>intensités</u> utilisant l'échelle de MSK et la méthode des <u>magnitudes</u> : échelle de Richter.

4- <u>Dresser</u> un tableau comparatif entre les deux méthodes utilisées dans l'évaluation des séismes.

	M.S.K	RICHTER	
Le(s) fondateur(s)	Medvedev, Sponheur et Karnik	Richter	
Une échelle contenante	12 degrés	Echelle ouverte	
Intensité / magnitude	Intensité	Magnitude	
L'évaluation se base sur	Les dégâts, les observations, le témoignage	L'énergie libérée au foyer	
Importance et intérêt	Réalisation des cartes sismiques. Savoir la force ou la pui séisme.		
Relation entre les deux échelles	$M = 1 + \frac{2I}{3}$		

5- <u>Légender</u> les schémas suivants.

immobile

de bouger, mais à sa place le

ressort s'étire.

7- Réaliser un schéma simplifié d'un sismogramme montrant les trois types d'ondes sismiques.

8- A partir du doc. Ci-dessous, <u>déterminer</u> les différents éléments d'un séisme

Les éléments d'un séisme sont :

- <u>Le foyer</u> : appelé aussi l'hypocentre, il correspond au point de la rupture de la roche en profondeur à cause des forces tectoniques. A ce point, un séisme se déclenche.
- **Epicentre** : est le point de la surface le plus proche de foyer.
- Ondes sismiques : deux ondes sismiques sont émises à l'hypocentre lors d'un séisme, P et L.
- La profondeur focale : la distance entre l'épicentre et le foyer.
- La distance focale: la distance entre la station d'enregistrement et le foyer.
- La distance épicentrale : la distance entre la station d'enregistrement et l'épicentre.

9- <u>Préciser</u> les caractéristiques des ondes sismiques.

	Ondes « P »	Ondes « S »	Ondes « L »
Modélisation			
Lieu de propagation	En profondeur	En profondeur	En surface
Mode de propagation	Compression- dilatation	Cisaillement	Torsion
Vitesse de propagation	Variable Plus rapide	Variable Moins rapide que P	Constante $\approx 4 \ km/s$
Etat physique des milieux traversés	Solide, liquide et gaz	Solide seulement	Solide et liquide

10- En utilisant des couleurs différentes, <u>réaliser</u> la carte sismique de ce séisme algérien. Puis <u>déduire</u> son épicentre.

Ville	Ι
Aflou	4
Ain Defla	8
Ain Dehab	5
Ain	5
Ousseria	
Alger	6
Blida	6
Bou Kadir	8
Cherchell	7
Damous	8
Djelfa	4
El Arba	5
El Asnam	9
El Idrissia	4

Ville	Ι
Frenda	5
Ighil	6
Idiovia	7
Khemis	7
Kolea	6
Ksar Cheliata	5
Ksar El Boukhari	6
Le Gualta	6
Le Kreider	4
Médéa	6
Mehdia	6
Miliana	7
Mostaganem	5

Ville	I
Oran	4
Oued foddu	9
Sidi Aissa	4
Sour El	4
Goglane	
Taougrite	7
Telagh	4
Tenés	7
Tenet	7
Thenla	4
Tiaret	6
Tigheunif	5
Tissensilt	7

Intérêt des ondes sismique

 On se basant sur la description ci-dessous, <u>réaliser</u> un schéma qui mettre en évidence d'une discontinuité, puis <u>définir</u> ce terme (discontinuité).

Une discontinuité se caractérise par :

- La vitesse des ondes sismiques varie de façon brusque.
- La réflexion et la réfraction des ondes sismiques.
- Sépare deux milieux de densité et de rigidité différentes.

Il existe trois discontinuités dans le globe terrestre :

- Discontinuité du MOHO qui sépare la croûte du manteau.
- Discontinuité du GUTENBERG qui sépare le manteau du noyau.
- Discontinuité de LEHMAN qui sépare le noyau externe de la graine.

La <u>discontinuité</u> est la surface qui sépare deux milieux différents.

b- Exemple : La discontinuité de MOHO

Cette discontinuité est située à une profondeur de 7km sous les océans, de 35 km en moyenne sous les continents et de 70 km sous les chaînes de montagnes. Elle ne correspond qu'à une <u>limite entre deux milieux de densité différente</u>.

Application:

Le document suivant représente la densité des roches en fonction de la profondeur. Sachant que :

d < 5.9 6 < d' < 6.3d'' > 8

- d : densité des roches de la croûte continentale.d': densité des roches de la croûte océanique.
- d": densité des roches du manteau supérieur.
- ✓ <u>Tracer</u> en rouge la limite (discontinuité) séparant la croûte du manteau.
- ✓ <u>Colorier</u> la croute océanique en **bleu**, la croûte continentale en **marron** et le manteau supérieur en **vert**.

c- Traduire ces graphiques en un schéma de la lithosphère.

d- Structure interne du globe terrestre.

La propagation des ondes sismiques permet de déterminer la structure interne du globe terrestre, le graphique ci-dessous représente la variation de la vitesse des ondes « P » et « S » en fonction de la profondeur.

- a- <u>Tracer</u>, sur le schéma ci-dessus, les différentes discontinuités.
- b- <u>Déduire</u> les principales enveloppes du globe terrestre en complétant ce schéma.

La sismicité et la tectonique des plaques

Afin de comprendre les mécanismes responsables de la sismicité des zones de divergence (zone d'accrétion), on propose d'étudier les documents suivants

 $\underline{\textbf{Interpréter}} \text{ ces documents puis } \underline{\textbf{\'etablir}} \text{ la relation entre la sismicit\'e de cette zone et la tectonique des plaques.}$

A partir des documents ci-dessous, on constate qu'au niveau des zones de divergence, les foyers sismiques sont **superficiels**

de ses deux découvreurs.

plaque subduite ou plongeante. Ce plan se nomme plan de Wadati-Bénioff, des noms

SERIE D'EXERCICES

Sismicité et sa relation avec la tectonique des plaques

Restitution des connaissances

I- <u>Relier</u> chaque terme scientifique à la définition qui lui convient :

Séisme		_	Appareil qui permet d'enregistrer les vibrations du sol.
Épicentre		×//	Feuille sur laquelle est inscrit le tracé d'un sismographe.
Magnitude			Secousses qui font trembler la terre.
Sismographe	/ /		Endroit où le séisme est le plus intense.
Sismogramme			Puissance du séisme.
Foyer sismique			Courbe d'intensité sismique égale, représentée sur une carte géographique.
Isoséistes	•		Lieu ou point où naissent les ondes sismiques.

- II- Parmi les phrases suivantes, <u>indiquer</u> celles qui sont justes et <u>corriger</u> celles qui sont fausses.
- a- Le tremblement de terre dure quelques heures. Faux

Le tremblement de terre dure quelques secondes

- b- Les ondes P et S émanent du foyer sismique au même temps avec des vitesses différentes. Vrai
- c- Les isoséistes se réalisent en se basant sur l'échelle de Richter. Faux

Les isoséistes se réalisent en se fasant sur l'échelle de MSK

d- L'intensité des séismes est déterminée sur l'échelle M.S.K en utilisant le sismographe. Faux

L'intensité des séismes est déterminée sur l'échelle MSK en utilisant les dégâts, les observations et le témoignage

e- Les séismes prennent naissance au niveau de l'épicentre. Faux

Les séismes prennent naissance au niveau de l'hypocentre

III- <u>Compléter</u> le texte suivant par les termes scientifiques convenables :

Les tremblements de terre ou-bien <u>les séismes</u>, sont des vibrations terrestres <u>causant des dégâts</u>.

L'échelle M.S.K contient <u>1.2</u> degrés et permet d'évaluer l'intensité des séismes. L'échelle du Richter exprime <u>la magnitude</u> du séisme qui signifie la quantité <u>de l'énergie</u> libérée à l'hypocentre.

IV- <u>Compléter</u> le schéma en utilisant les termes suivants : foyer ; épicentre ; ondes sismiques ; faille.

Raisonnement scientifique et communication écrite et graphique

Exercice 1:

Vingt-cinq secondes après le déclenchement d'un séisme, nous avons enregistré dans la station d'enregistrement le sismogramme suivant :

- 1- Associer aux signaux A, B et C, le type d'onde détectée et sa signification.
- A: Ondes « P », se sont les premières qui arrivent à la station, appelées aussi ondes de compression- dilatation.
- B: Calme sismique, c'est un enregistrement qui n'a pas de relation avec les vibrations sismiques
- C: Ondes « s », se sont les ondes secondaires, appelées aussi les ondes de cisaillements ou transversales.
 - 2- <u>Déterminer</u> l'heure to où a eu lieu le séisme à l'épicentre.

$$To = Tp - 25s$$

 $To = 18h31mim15s - 25s$
 $To = 18h30 min 50s$

3- Exprimer la vitesse des ondes S(Vs) en fonction de la distance d parcourue et des temps Ts et T_0 . Faire de

même avec les ondes P avec les temps
$$T_P$$
, T_0 et d. $VS=rac{d}{T_S-T_O}$; $Vp=rac{d}{T_P-T_O}$

4- Si $\frac{1}{Vs} - \frac{1}{Vp} = \frac{1}{8}$, <u>déterminer</u> la valeur numérique de **d**. (d est la distance focale).

$$\frac{1}{Vs} - \frac{1}{Vp} = \frac{1}{8}$$

$$\frac{1}{\frac{d}{Ts - To}} - \frac{1}{\frac{d}{Tp - To}} = \frac{1}{8}$$

$$\frac{Ts - To}{d} - \frac{Tp - To}{d} = \frac{1}{8}$$

$$\frac{Ts - To - Tp + To}{d} = \frac{1}{8}$$

$$d = 8(Ts - Tp)$$
$$d = 8 \times 5$$

d = 40 Km

Exercice 2:

Lors d'un séisme, le sismographe enregistre 3 types d'ondes sismiques : P, S et L.

Sachant que le sismographe, qui a enregistré ces vibrations représentées sur le sismogramme de la figure 1, est situé à 15000km de l'épicentre du séisme, et que les ondes P sont arrivées 18 minutes après le déclenchement du séisme.

1- Calculer la vitesse de propagation des ondes P en (km/s).

$$Vp = \frac{15000}{18 \times 60} = 13.9 \, km/s$$

2- Calculer le temps passé par les ondes S et L pour arriver à la même station.

Le temps passé par les ondes S pour arriver à la station : $(18+12) \times 60 = 1800$ secondes.

Le temps passé par les ondes L pour arriver à la station : $(18 + 12 + 32) \times 60 = 3720$ secondes.

3- Calculer la vitesse de propagation des ondes S et L.

$$Vs = \frac{15000}{1800} = 8,33 \text{ km/s}$$
 $VL = \frac{15000}{3720} = 4,03 \text{ km/s}$

Exercice 3 : Localisation de l'épicentre d'un séisme

Au foyer d'un séisme, plusieurs catégories d'ondes sismiques prennent naissance. Dans les stations sismologiques, les ondes les plus rapides sont enregistrées les premières ; d'autres plus lentes sont enregistrées un peu plus tard. Les différences entre les temps d'arrivée de ces deux types/d'ondes ont permis de calculer la distance des stations à l'épicentre. (Voir le tableau).

<u>Déterminer</u> l'épicentre en utilisan<mark>t</mark> les stations : Tunis, Moscou et Paris.

Écart de temps entre l'arrivée des 2 ondes	Distance à l'épicentre (km)
1 min 15 s	1000
2 min 40 s	1500
3 min 04 s	2150
3 min 07 s	2250 (Tunis)
3 min 22 s	2900 (Moscou)
2 min 20 c	3000

3400 (Paris)

Stockholm Moscou ondres Berlin Bruxelles Paris Madrid Lisborine 00 Alger Tunis Rabat Le Caire 1 000 km

Tunis: on a 2,7 cm \rightarrow 1000 km alors 2250 km correspond à: $\frac{2250 \times 2,7}{1000} = 6,075$ cm.

Moscou: on a 2,7 cm \rightarrow 1000 km alors 2900 km correspond à: $\frac{2900 \times 2,7}{1000} = 7,830$ cm. Paris: on a 2,5 cm \rightarrow 1000 km alors 3400 km correspond à: $\frac{3400 \times 2,7}{1000} = 9,180$ cm.

Pour chaque question, il vous est donné quatre propositions A, B, C et D.

Une, deux ou trois propositions peuvent être exactes.

Répondez en entourant la ou les propositions exactes.

QUESTION N° 1: La vitesse moyenne de déplacement des plaques est comparable à :

- A. la vitesse de croissance d'un ongle: quelques cm / an,
- B. la vitesse de déplacement d'un escargot : quelques cm/minute,
- C. la vitesse de déplacement d'un homme : quelques km / heures,
- D. la vitesse de la lumière: 300 000 km / seconde.

QUESTION N° 2 : Les plaques sont constituées par :

- A) l'asthénosphère,
- B) la lithosphère,
- C) l'atmosphère,
- D) du magma.

QUESTION N° 3 : La mobilité des plaques entraîne :

- A. la formation des chaînes de montagne par écartement de 2 plaques,
- B. la formation des chaînes de montagne par rapprochement de 2 plaques,
- C. la formation des chaînes de montagne par collision des 2 plaques,
- D. la formation d'un nouvel océan par rapprochement de 2 plaques.

QUESTION N° 4 : Les plaques sont limitées par :

- A) des zones où se concentre la végétation,
- B) des zones où se concentrent les séismes,
- C) des zones où se concentrent des fossiles,
- D) des zones où se concentrent des volcans.

QUESTION N° 5: Les dorsales sont :

- A. des zones d'écartement entre 2 lithosphères océaniques,
- B. des zones de rapprochement entre 2 lithosphères continentales,
- C. des zones de rapprochement entre 2 lithosphères océaniques,
- D. des zones d'écartement entre une lithosphère océanique et une lithosphère continentale.

QUESTION N° 6 : Les limites des plaques peuvent être repérées par :

- A. la présence de nombreux volcans,
- B. la présence de nombreux séismes,
- C. la présence de chaînes de montagnes,
- D. la présence de mers.

QUESTION N° 7: Les variations de vitesse des ondes sismiques permettent de repérer la limite :

- A. entre la lithosphère et l'atmosphère,
- B. entre la lithosphère et l'asthénosphère,
- C. entre les plaques lithosphériques et la stratosphère,
- D. entre l'atmosphère et l'hydrosphère.

QUESTION N° 8: A l'axe des dorsales:

- A. les plaques s'éloignent l'une de l'autre,
- B. les plaques se rapprochent l'une de l'autre,
- C. les plaques se forment,
- D. les plaques disparaissent.

QUESTION N° 9: L'Himalaya résulte :

- A. de la convergence de deux plaques,
- B. de la divergence de deux plaques,
- C. de la collision de deux continents,
- D. du fonctionnement d'une chaîne de volcans.

QUESTION N° 10 : Les zones de rapprochement des plaques peuvent être repérées par :

- A. la localisation des fosses océaniques,
- B. la localisation des dorsales.
- C. la localisation des séismes,
- D. la localisation des volcans actifs.

QUESTION N° 11 : Au niveau d'une zone d'écartement des plaques :

- A. un océan se ferme,
- B. une fosse océanique se forme,
- C. de l'asthénosphère est mise en place,
- D. de la lithosphère est mise en place.

QUESTION N° 12: Les mouvements des plaques transforment le visage de la Terre en provoquant :

- A. la fermeture d'océans,
- B. l'ouverture d'océans,
- C. la formation de plis et de failles,
- D. la disparition d'asthénosphère dans certaines zones du globe.

QUESTION N° 13 : Les plaques lithosphériques terrestres se déplacent :

- A. de quelques kilomètres par an,
- B. de quelques mètres par an,
- C. de quelques centimètres par an,
- D. de quelques millimètres par siècle.

QUESTION N° 14 : Au milieu de l'océan Atlantique :

- A. les plaques se rapprochent,
- B. de l'asthénosphère se forme,
- C. les plaques s'écartent,
- D. il y a une forte activité volcanique.

QUESTION N° 15 : Une plaque lithosphérique :

- A. n'est pas rigide bien qu'elle soit solide,
- B. a une épaisseur moyenne d'environ 100 km,
- C. correspond toujours soit à un continent, soit à un océan,
- D. se déplace sur l'asthénosphère à raison de quelques mètres par an.

QUESTION N° 16: Toutes les zones de limite entre deux plaques :

- A. présentent une activité sismique,
- B. présentent une activité volcanique,
- C. se caractérisent par l'absence de lithosphère,
- D. se caractérisent par des reliefs.

QUESTION N° 17 : Quand deux plaques se rapprochent :

- A. l'une peut plonger sous l'autre en créant une fosse océanique,
- B. un volcanisme de type explosif peut être la conséquence de ce mouvement,
- C. elles donnent naissance à une dorsale,
- D. elles créent un risque sismique important.

QUESTION N° 18

Document:

Sur ce schéma représentant une région de la surface du globe vue en coupe :

- A) les repères A, B et C correspondent tous les trois à des limites de plaques,
- B) on peut dénombrer trois portions de plaques,
- C) B est une zone de subduction,
- D) C désigne l'emplacement d'une fosse océanique.

Réponses:

	Α	В	C	D
QUESTION N° 1	Х			
QUESTION N° 2		Х		
QUESTION N° 3		Х	Х	
QUESTION N° 4		Х		Х
QUESTION N° 5	Х			
QUESTION N° 6	Х	Х	Х	
QUESTION N° 7		Х		
QUESTION N° 8	Х		Х	
QUESTION N° 9	Х		Х	

	Α	В	C	D
QUESTION N° 10	Х		Х	Х
QUESTION N° 11				Х
QUESTION N° 12	Х	Х	Х	
QUESTION N° 13			Х	
QUESTION N° 14			Х	Х
QUESTION N° 15		Х		
QUESTION N° 16	Х			Х
QUESTION N° 17	Х	Х		Х
QUESTION N° 18		Х		Х

Lexique:

Terme	Définition
Séisme	tremblement de terre
Asthénosphère	couche de la Terre moins rigide composée d'une partie du manteau supérieur
Contrainte	forces auxquelles sont soumises les roches en profondeur
Foyer	point de rupture sur la faille, d'où partent les ondes sismiques
Lithosphère	couche de la Terre rigide composée de la croûte et de la partie supérieure du manteau supérieur
Sismographe	appareil servant à enregistrer les ondes sismiques
Profondeur focale	Distance séparant l'épicentre de l'hypocentre.

Terme	Définition
Sismogramme	graphique obtenu à l'aide d'un sismographe
Epicentre	lieu en surface situé à la verticale du foyer
Faille	fracture séparant deux grands blocs rocheux
Intensité sismique	mesure des effets d'un séisme en un lieu donné
Ondes sismiques	vibrations du sol provenant d'un séisme et se propageant dans toutes les directions.
Viscosité	état d'un liquide dont l'écoulement est difficile
Ondes de volume	Les ondes P et les ondes S