Complexity Analysis

Program A vs Program B

ถ้าโปรแกรม A กับ B ให้ Output เคียวกัน เราจะรู้ได้ไงว่าอันใหนดีกว่ากัน

Performance measurement

	Time	Memory
Program A	26 ms	1 MB
Program B	100 ms	256 KB

How to measure time/memory?

- ► To measure memory, we must know...
 - ???
- ► To measure time, we must know....
 - ????
 - ???
 - ???

It's too hard!!!!

Complexity

- ► Big O notation
- ► Big Theta notation

Big Theta

```
If g(x) = Theta(f(x))
```

There exist c, d and y that makes g(z) <= d * f(z) and g(z) >= c * f(z) for every z >= y

Example

- $f(x) = x^2 + 2x -> theta(???)$
- $f(x) = x + \log(x) \rightarrow theta(???)$
- $f(x, y) = x^2 + y -> theta(???)$

Big theta for this function

Big theta for this function

```
\\สมติว่าเราใช้ triangle_number ข้างบน
int func(int n) {
    int total = 0;
    for (int i = 1; i <= n; i++) {
        total += trianble_number(i);
    }
}
```

Is Big Theta notation enough?

```
bool lucky (int n) {
   for (int i = 1; i <= n; i++) {
                if (rand() == 99) {
                        return true;
        return false;
```

Big O notation: The worst case

```
If g(x) = Theta(f(x))
```

► There exist d and y that makes $g(z) \le d * f(z)$ for every $z \ge y$

Big O for this function

```
bool lucky (int n) {
   for (int i = 1; i \le n; i++) {
                if (rand() == 99) {
                        return true;
        return false;
```

Time approximation (from my experience)

- ► Find O(f(...))
- Approximate max f(...)
- ► 10,000,000 / sec for average
- Can be faster/slower.

Big O is not everything

```
// n <= 10'000
int birthday_paradox(int n) {
    bool found[n];
        for (int i = 0; i < n; i++)
                found[i] = false;
        for (int i = 1; i <= n; i++) {
                int x = rand() % n;
                if (found[x]) return i;
                found[x] = true;
        return n + 1;
```