

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 24, 2024

Recap

Learnt in last module:

- Stochastic convergence
 - ▷ Convergence in distribution
 - Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - ▶ Relationship between convergences

Outline

- Convergence of functions of random variables
 - ▷ Slutsky's theorem
 - ▷ Continuous mapping theorem
- Laws of large numbers
 - ▶ WLLN
 - ▷ SLLN
- Central limit theorem

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

e-9.
$$x_n + x_n \rightarrow ?$$

$$x_n \cdot x_n \rightarrow ?$$

$$x_n \cdot x_n \rightarrow ?$$

$$x_n / x_n \rightarrow ?$$

$$x_n / x_n \rightarrow ?$$

$$x_n \rightarrow ?$$

$$x_n \rightarrow ?$$

Recall: Stochastic convergence If $X_n \to X$, $Y_n \to Y$ in some sense, how is the limiting property of $f(X_n, Y_n)$?

Convergence of functions of random variables (a.s.)

Suppose the probability space is complete, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then for any real numbers a, b,

- $aX_n + bY_n \xrightarrow{a.s.} aX + bY$;
- $X_n Y_n \xrightarrow{a.s.} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables (probability)

Suppose the probability space is complete, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then for any real numbers a,b,

- $aX_n + bY_n \xrightarrow{P} aX + bY$;
- $X_n Y_n \xrightarrow{P} XY$.

Remark:

• Still require all the random variables to be defined on the same probability space

$$\begin{array}{lll} & \begin{array}{llll} & \begin{array}{lllll} & \begin{array}{llllll} & \begin{array}{lllll} & \begin{array}{lllll} & \begin{array}{lllll} & \begin{array}{lllll} & \begin{array}{lllll} & \begin{array}{lllll} & \begin{array}{llllll} & \begin{array}{llllll} & \begin{array}{lllll} & \begin{array}{llllll} & & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$$

Hence.
$$P(|(x_1+x_2)-(x+x_3)|) \leq P(|x_1-x_2|) + P(|x_1-x_2|)$$

Convergence of functions of random variables (L^p)

Suppose the probability space is complete, if $X_n \xrightarrow{L^p} X$, $Y_n \xrightarrow{L^p} Y$, then for any real numbers a, b,

•
$$aX_n + bY_n \xrightarrow{L^p} aX + bY$$
;

Remark:

• Still require all the random variables to be defined on the same probability space

Kut Ty -> Xt7 (Pf)(Fact) It PZI, then I'm spear has triaghe inequality 11 xt711 = 11 x11 = 11 x11 = 11 XULP = (E [XIP) " By triangle inequality 11(Xn+Yn) - (X+7) 11 = = 11xn- x11p + 117,- x11p -> 0--) U -> 6 Since Xu -> X -> X -> 7

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{P}{\to} c \stackrel{O}{(c)}$ is a constant), then

- $X_n + Y_n \stackrel{d}{\rightarrow} X + c$;
- $X_n Y_n \stackrel{d}{\rightarrow} cX$;
- $X_n/Y_n \xrightarrow{d} X/c$, where $c \neq 0$.

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{P}{\to} c$ (c is a constant), then

- $X_n + Y_n \xrightarrow{d} X + c$;
- $X_n Y_n \stackrel{d}{\to} cX$;
- $X_n/Y_n \stackrel{d}{\to} X/c$, where $c \neq 0$.

Remark:

• The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Remark: The requirement that $Y_n \xrightarrow{P} c$ (c is a constant) is necessary.

Remark: The requirement that $Y_n \stackrel{P}{\to} c$ (c is a constant) is necessary.

Examples:

 $X_n \sim \mathcal{N}(0,1), Y_n = -X_n$, then

- $X_n \stackrel{d}{\to} Z \sim \mathcal{N}(0,1), Y_n \stackrel{d}{\to} Z \sim \mathcal{N}(0,1);$
- $X_n Y_n = -X_n^2 \xrightarrow{d} -\chi^2(1); + 2^2$
- $X_n/Y_n = -1$. $\Leftrightarrow \frac{9}{2}$

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \stackrel{d}{\to} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\to} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Continuous mapping theorem

Let X_n , X be random variables, if $g(\cdot): \mathbb{R} \to \mathbb{R}$ satisfies $\mathbb{P}(X \in D_g) = 0$, then

- $X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$;
- $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$;
- $X_n \stackrel{d}{\to} X \quad \Rightarrow \quad g(X_n) \stackrel{d}{\to} g(X)$;

where D_g is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_g only include countably many points, then ...

Weak Law of Large Numbers (WLLN)

If X_1, X_2, \dots, X_n are i.i.d. random variables, $\mu = \mathbb{Z}(X_1, X_2, \dots, X_n)$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \stackrel{\text{F. X.c.}}{\longleftarrow} \mu.$$

Remark:

A more easy-to-prove version is the L^2 weak law, where an additional assumption $Var(X_i) < \infty$ is required.

Sketch of the proof:

$$\mathbb{E}\left(\overline{X}-\mu\right)^{2}=Var\left(\overline{X}\right)$$

$$= Var\left(\frac{\sum x_{c}}{n}\right)$$

 $= \frac{1}{m^2} \sum_{c=1}^{n} V_{cw}(x_c) \quad \text{since } x_c \text{ is are independent}$ $= \frac{m \, V_{ov}(x_1)}{m^2} = \frac{V_{ov}(x_1)}{m} \longrightarrow 0$ $\text{as } n \to \infty$ than fore $X \to M \quad \text{in } L^2$

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\{X_{n,k}\}_{1 \leq k \leq n}$.

$$n = (-) X_{1,1} \xrightarrow{Sun_3} S_1$$

 $n = 2 \longrightarrow X_{2,1}, X_{2,2} \xrightarrow{Sun_3} S_2$
 $n = 3 \longrightarrow X_{3,1}, X_{3,2}, X_{3,3} \xrightarrow{Sun_3} S_3$
 \vdots
 $n \longrightarrow X_{n,1}, X_{n,2}, \dots, X_{n,n} \xrightarrow{Sun_3} S_n$

Remark: We can consider the limiting property of the row sum S_n .

Law of Large Numbers

L^2 weak law for triangular array

Suppose $\{X_{n,k}\}$ is a triangular array, $n=1,2,\cdots,k=1,2,\cdots,n$. Let $S_n=\sum_{k=1}^n X_{n,k},\ \mu_n=\mathbb{E}(S_n)$, if $\sigma_n^2/b_n^2\to 0$, where $\sigma_n^2=Var(S_n)$ and b_n is a sequence of positive real numbers, then

$$\frac{S_n-\mu_n}{b_n} \stackrel{P}{\longrightarrow} 0.$$

Remark:

The L^2 weak law for i.i.d. random variables is a special case of that for triangular array.

Proof:
$$\left| \frac{3n - u_n}{b_n} \right|^2 = \frac{\sigma_u^2}{b_n^2}$$

$$\frac{5n - u_n}{b_n} > 0 \quad \text{in probability.}$$

$$\frac{3n - u_n}{b_n} > 0 \quad \text{in probability.}$$

Proof:

Remark:

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^n X_i}{2}$ μ .

Remark: The proof needs Borel-Cantelli lemma.

Strong Law of Large Numbers (SLLN)

Let X_1, X_2, \cdots be an i.i.d. sequence satisfying $\mathbb{E}(X_i) = \mu$ and $\mathbb{E}(|X_i|) < \infty$, then $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{\longrightarrow} \mu.$

Remark: The proof needs Borel-Cantelli lemma.

Glivenko-Cantelli theorem

Let X_i , $i = 1, \dots, n$ i.i.d. with distribution function $F(\cdot)$, and let

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I((x_i) \le x), \text{ then as } n \to \infty,$$

$$\sup_{x \in \mathbb{R}} |F(x) - F_n(x)| \to 0, \quad \text{a.s.}$$

$$\sup_{x} |F(x) - F_n(x)|$$

Pit's how to prove with supremum.

Proof: We aber version.

S:,
$$0 \leq \mathbb{E} \mathbb{I}(X_0 \leq x) = \mathbb{P}(X_0 \leq x) = \mathbb{F}(x) \leq 1$$

Limit Theorems and Counterexamples

Recall: For the law of large numbers to hold, the assumption $E|X| < \infty$ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If $X_1X_2,...$ are i.i.d. to X with $E|X_i|=\infty$, then for $S_n=X_1+\cdots+X_n$, $P(\lim_{n\to\infty}S_n/n\in(-\infty,\infty))=0$.

Proof: Omitted

Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT

Suppose X_1, \dots, X_n is a sequence of i.i.d. random variables with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2 < \infty$, then

$$\frac{\sqrt{n}(ar{X}_n-\mu)}{\sigma} \stackrel{\text{Convergen}}{\Longrightarrow} \mathcal{N}(0,1).$$

Remark:

- The proof involves characteristic function.
- A more generalized CLT is referred to as "Lindeberg CLT".

17 / 18

Central Limit Theorem

Example:

Suppose $X_i \sim Bernoulli(p)$, i.i.d., consider $Z_n = \frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$, then by CLT, $Z_n \sim \mathcal{N}(0,1)$ asymptotically.

Monotone Convergence Theorem

Monotone Convergence Theorem

If $X_n > c$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Usage:

Lt
$$X_n$$
 h_r $P\left(X = h^2\right) = P = 1 - P\left(X = 0\right)$

Note:

 $0 \le X_n \le h^2$ and $E X_n = h^2$

Lt $S_n = \sum_{i=1}^{m} X_i$. Then $S_n \ge 0$ and $S_n = 0$ monotonically increasing.

Furthermore, $3u \leq \frac{\pi}{2} + \frac{\pi}{2} \leq \frac{\pi}{2} < \omega$

19 / 18

Q. F/h -> F5?

A. Yes by monotone converge theorem.

Therefor ES= lim ESn

$$=\lim_{M\to\infty}\frac{n}{C^2}\frac{1}{C^2}=p,\frac{\pi^2}{6}$$

we ased

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Dominate Convergence Theorem

E171<∞

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \le Y$ a.s. for all n and Y is integrable, then $EX_n \to EX$

Usage:

all an must be dominated integrable 7.

We can show if M(H) (or for any t \in [-\in \text{E}],

then d H(H) = \in X

when M(t) = # exp(xt), moment generating faction.

July 24, 2024 20 / 18

(Proof) For
$$h \in C^{4}2, e_{2}$$
)

$$\frac{\mu(h) - \mu(0)}{h} = \frac{e^{hx} - 1}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{x}{h}$$

$$\mu(h) + \mu(1) = \frac{e^{hx} - 1}{h} = \frac{e^{hx} - 1}{h}$$

$$\mu(h) + \mu(h) + \mu(h)$$

$$\mu(h) + \mu(h)$$

(Prouf.)

By dominated converger theorem,

lin Fehr-1

htio Lin Fehr-1

E Lin Lehr-1

htio

Delta Method

More about CLT: Delta method

Suppose X_n are i.i.d. random variables with $EX_n=0$, $VAR(X_n)=\sigma^2>0$. Let g be a measurable function that is differentiable at 0 with $g'(0)\neq 0$. Then

$$\sqrt{n}\left(g\left(rac{\sum_{k=1}^{n}X_{k}}{n}
ight)\!\!-g(0)
ight)
ight)
ightarrow extit{N}(0,\sigma^{2}g'(0)^{2})\quad ext{weakly}.$$

Proof under stronger assumption: Here, we suppose g is continuously differentiable on \mathbb{R} . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.

By SLLN,
$$\lim_{m \to \infty} \bar{\chi} = 0$$
 a.s., $\lim_{m \to \infty} C_n = 0$ a.s. Since $C_n = 0$ between 0 and $\bar{\chi}$, $\lim_{m \to \infty} C_n = 0$ a.s. Since g is continuously differentiable.

Lin $g'(C_n) = g'(0)$ constitution $f'(0) = g'(0)$

 B_7 CLT, $\overline{n} \times \xrightarrow{d} N(0, \sigma^2)$.

Then fue, by SLutsky's theorem. (g(x)-g(0))=g(C1). In X

$$\int_{M} (g(x) - g(0)) = \int_{M} (G(0) - M(0), \sigma^{2})$$

$$= N(0, \sigma^2 g(0)^2)$$

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{a.s.} X$, $Y_n \xrightarrow{a.s.} Y$, then $X_n + Y_n \xrightarrow{a.s.} X + Y$.

Problem 2: Prove that on a complete probability space, if $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_i for customer i has mean $\mathbb{E}(X_i) = 2$ (minutes) and $Var(X_i) = 1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90 < Y < 110)$.

