CRITERIA B: DESIGN

GENERAL VIEW

PROGRAM OVERVIEW

HARDWARE LAYOUT

Hardware	Purpose	Aspect of project
Component		
HikVision IP	The purpose of an IP Camera is	The IP Camera is connected to
Camera	to capture a video stream from	the HTML Dashboard and keeps
	the lens. Using OpenCV Python,	running. When a person is
	this stream can be stored on the	identified in the stream, the
	laptop or a certain screenshot of	camera captures their face and the
	the stream can be captured and	related Python program starts the
	stored.	temperature detection program.
Cisco SG 350 10	Different devices connected	The video stream from the IP
Port PoE Switch	across a Switch Port have a	Camera is shared with the laptop
	shared LAN network and can	via the LAN Network by
	share information.	connecting both devices to the
		Cisco Port Switch
Melexis Touchless	Thermal scanners measure the	Since the overall context for this
Thermal Scanner	temperature. Touchless ones do	project is the coronavirus, the aim
(MlxCIRT 90632	not require physical contact.	is to minimise physical contact.
3)		The touchless scanner measures
		the temperature, as required, with
		any contact. This reduced the risk
		of infection.
Laptop	Laptop is a portable hardware	The laptop presents the
	device composed of many	dashboard to the customer and
	hardware and software features.	the owner of the shops.

USB Cable		The USB Cable connects the
	USB Cables and Patch cords are	Melexis Thermal Scanner to the
	wires that connect two	laptop, feeding the temperature to
	hardwires. This connection	the CSV file and then to the
	enables the transfer of data from	dashboard.
Patch Cord	one device to another	The Patch Cord connects the
		devices to the Switch Port.

FLOW CHART FOR ENTIRE PROGRAM

PROCESS FOR FACE DETECTION

Execution:

Python detect_faces_IP.py -prototxt deploy.prototxt.txt -model res10 300x300 ssad iter 140000.caffemodel

- detect_faces_IP.py: The python file that begins the face detection and then spurs the rest of the program.
- deploy.prototxt.txt: It is a prototype machine learning model for Caffe. They create .caffemodel files.
- res10_300x300_ssad_iter_140000.caffemodel: This is a machine learning model by Caffe. It classifies and segments images. This helps capture the stream, capture the blob and the bounding box.

Load Models and Start Video Streams:

```
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
This invokes the Prototxt and Caffemodel files
url1="rtsp://admin:1234567a@192.168.1.65:554/doc/page/preview.asp"
cap = cv2.VideoCapture(url1)
print(cap.isOpened())
```

- url1: This is the webpage of the video stream from the IP Camera.
- cap.isOpened(): This signals that the stream url1 has been captured and is now streaming for the program

Confidence:

```
confidence = detections[0, 0, i, 2]
```

This extracts the confidence of the probability of the prediction (person being in the blob) being true.

```
if confidence < args["confidence"]:</pre>
```

continue

The condition ensures that only blobs with a minimum confidence level would be considered by the program and for the temperature detection. This confidence level is predetermined by the owner or the programmer.

PROCESS FOR MEASURING TEMPERATURE

DASHBOARD LAYOUT

DEVELOPMENT PLAN

This is the plan for the development of the project. As in the general overview of the project, this plan has been divided into three aspects: face detection, measuring temperature, and the HTML dashboard. Although the development of the code may take 1 week for each part, the connection to additional hardware equipment for the first two parts requires sensitive handling. Also, the face detection and temperature scanner code need to be connected to one another. This would extend the time required for the development of face detection and measuring temperature.

Face Detection (3 weeks)

- Buy IP Camera, Patch cords, Switch ports
- Write the Prototxt file
- Write the Caffemodel file
- Write the main code:
 - Connect to the IP Camera
 - Verify if person is there
 - Capture bounding box

Measuring Temperature (2 weeks)

- Buy Melexis Thermal Scanner and USB Cables
- Initialise Thermal Scanner
- Write code to sense temperature

Developing Dashboard (1 week)

- Write HTML code independent of above two parts
- Connect face detection stream, bounding box and temperature to dashboard

TEST PLAN

Action test	Way of testing and result
Test if the program runs	Enter the execution code in the Command
	Prompt. If the execution code gives an
	affirmative remark, it means that its running
Check if the dashboard opens	After a small amount of time, the dashboard
	needs to open with any Internet browser
	(Chrome, Microsoft Edge, Internet
	Explorer, Mozilla Firefox)
Check if the video stream is smooth	The video streams should have no
	interruptions
Check if face is identified properly	When a face is identified, the confidence
	must be higher than 95% and the image
	must be clear
Check if bounding box is captured	The bounding box in the bottom-left
	quadrant of the dashboard must show the
	image captured from the stream but
	focusing on the face, with good quality
Check if temperature scanner works	Open the MlxCIRT application and execute
	locally
Check if CSV File for temperature scanner	Open the related CSV file and test the
works without interruptions	temperature scanner
Check if temperature in dashboard is equal	Once the temperature is captured, the
to the maximum temperature in column 4	temperatures in the CSV file must be
	revisited. If the temperature is the highest
	temperature captured in a specific time
	period, the dashboard temperature is
	accurate
If temperature is greater 99 degrees Celsius,	The warning is a large blue box that must
check if there is a warning	appear in the middle of the screen.