Lista 5

MAT5734/MAT0501 — 2° semestre de 2017

Exercício 1.

Mostre dois matrizes (não escalares) 2×2 sobre um corpo F são semelhantes se e somente se eles têm o mesmo polinomio carasterístico.

Exercício 2.

Mostre que dois matrizes 3×3 são semelhantes se e somente se eles têm o mesmo polinomio característico e mesmo polinomio minimal. Encontre counterexemplo para essa afirmação para matrizes 4×4 .

Exercício 3.

Seja V um espaço vetorial sobre F com $\dim_F(V) = n$. Mostre que o polinomio minimal de qualquer transformação linear $T: V \to V$ tem polinomio minimal com grau menor igual a n^2 .

Exercício 4.

Determine os autovalores da matriz

$$\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]$$

Exercício 5.

Mostre que o polinomio carasteristico da matriz

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}$$

Exercício 6.

Encontre a forma racional canonica das matrizes:

$$\begin{bmatrix} 0 & -1 & -0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} c & 0 & -1 \\ 0 & c & 1 \\ -1 & 1 & c \end{bmatrix}, \begin{bmatrix} 422 & 465 & 15 & -30 \\ -420 & -463 & -15 & 30 \\ 840 & 930 & 32 & -60 \\ -140 & -155 & -5 & 12 \end{bmatrix}.$$

1

Exercício 7.

Encontre todas as classes de similaridade de matrizes 6×6 sobre \mathbb{C} com polinomio característico $(x^4 - 1)(x^2 - 1)$.

Exercício 8.

Encontre todas as classes de similaridade de matrizes 3×3 sobre \mathbb{F}_2 com $\mathsf{A}^6=\mathsf{I}$. Encontre todas as classes de similaridade de matrizes 4×4 sobre \mathbb{F}_2 com $\mathsf{A}^{20}=\mathsf{I}$.

Exercício 9.

Determine todas formas racionais canonicais possiveis para transformações lineares com polimonio carasterístico $x^2(x^2+1)^2$.

Exercício 10.

Determine todas (a menos semelhança) matrizes 2×2 racionais com ordem (multiplicativo) 4.

Exercício 11.

Mostre que $x^5 - 1 = (x - 1)(x^2 - 4x + 1)(x^2 + 5x + 1)$ em $\mathbb{F}_{19}[x]$. Usando isso determine todas (a menos semelhança) matrizes 2×2 sobre \mathbb{F}_{19} de ordem 5.

Exercício 12.

Determine todos representantes de classes de congugação para $GL_3(\mathbb{F}_2)$.

Exercício 13.

Seja V um espaço vetorial de dimenção finita sobre \mathbb{Q} , e $T:V\to V$ uma transformação linear tal que $T^{-1}=T^2+T$. Mostre que $\dim V$ é multiplo de 3. Caso $\dim V=3$ mostre que todas tais transformações são semelhantes.

Exercício 14.

Mostre que se $\lambda_1, \ldots, \lambda_n$ são autovalores de matriz $A \in M_n(F)$ assim $\lambda_1^k, \ldots, \lambda_n^k$ são autovalores de matriz $A^k \in M_n(F)$.

Exercício 15.

Determine forma canonica de Jordan das matrizes:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 5 & 4 & 1 \\ -1 & 0 & 0 \\ -3 & -4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 4 & 2 \\ -2 & -3 & -1 \\ -4 & -4 & -3 \end{bmatrix}.$$

Exercício 16.

Mostre que as matrizes

$$\begin{bmatrix} 5 & 6 & 0 \\ -3 & -4 & 0 \\ -2 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -1 & 2 \\ -10 & 6 & -14 \\ -6 & 3 & -7 \end{bmatrix}$$

são semelhantes.

Exercício 17.

Mostre que as matrizes

$$\begin{bmatrix} -8 & -10 & -1 \\ 7 & 9 & 1 \\ 3 & 2 & 0 \end{bmatrix}, \begin{bmatrix} -3 & 2 & -4 \\ 4 & -1 & 4 \\ 4 & -2 & 5 \end{bmatrix}$$

têm polinomio carasteristico $(x-1)^2(x+1)$ mas uma é diagonalizavel e outra não. Determina a forma de Jordan para ambas matrizes.

Exercício 18.

Determine as formas de Jordan das matrizes

$$\left[\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array}\right], \quad \left[\begin{array}{ccccc} 3 & 0 & -2 & -3 \\ 4 & -8 & 14 & -15 \\ 2 & -4 & 7 & -7 \\ 0 & 2 & -4 & 3 \end{array}\right].$$

Exercício 19.

Mostre que as matrizes são semelhantes

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ -4 & -1 & -4 & 0 \\ 2 & 1 & 3 & 0 \\ -2 & 4 & 9 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 0 & -4 & -7 \\ 3 & -8 & 15 & -13 \\ 2 & -4 & 7 & -7 \\ 1 & 2 & -5 & 1 \end{bmatrix}.$$

Exercício 20.

Mostre que qualquer matriz A é semelhante á sua transposta A^{T} .

Exercício 21

Classifique, a menos de semelhança, todas as matrizes reais 6×6 com polinomio minimal $(x^2 + 3x + 5)(x + 2)$.

Exercício 22.

Mostre que se $A^2 = A$ assim A é semelhante á matriz diagonal que tem 0 ou 1 na diagonal.

Exercício 23.

Mostre que todo matriz nilpotente em $M_n(F)$ é semelhante á matriz da forma

$$\left[\begin{array}{cccc} N_1 & 0 & \dots & 0 \\ 0 & N_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & N_s \end{array}\right],$$

onde N_i tem forma

$$\left[\begin{array}{ccccc} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{array}\right].$$

Exercício 24.

Mostre que as seguintes matrizes são semelhantes em $M_p(\mathbb{Z}/(p))$, com p um primo

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$

Exercício 25.

Mostre que não existe matrizes $A \in M_3(\mathbb{Q})$ tal que $A^8 = I$ mas $A^4 \neq I$.

Exercício 26.

Mostre que qualquer matriz $A \in M_n(\mathbb{C})$ com $A^3 = A$ é diagonalizavel.

Exercício 27.

Mostre que para todos R-modulos M e N temos

$$l(M+N) + l(M \cap N) = l(M) + l(N).$$

Exercício 28.

Seja M um modulo de comprimento finito. Mostre que para todo endomorfismo $\phi: M \to M$ é injetivo se e somente se ele é sobrejetivo.

Exercício 29.

Determine o comprimento dos seguintes modulos:

- (a) $\mathbb{Z}/120\mathbb{Z}$ sobre \mathbb{Z} .
- (b) $\mathbb{C}[x]/(x^{100} + x + 1)$ sobre $\mathbb{C}[x]$.
- (c) $\mathbb{R}[x]/(x^4 + 2x^2 + 1)$ sobre $\mathbb{R}[x]$.
- (d) $\mathbb{Z}[x]/(x^4 + 2x^2 + 1)$ sobre $\mathbb{Z}[x]$.

Exercício 30.

(a) Seja R um anel local com ideal maximal ideal \mathfrak{m} e seja M um R-modulo finitamente gerado tal que $\mathfrak{m}M=0$. Mostre que

$$l(M) = \dim_{R/m} M$$

(b) Mostre que um R-modulo M tem comprimento 1 se e somente se ele é isomorfo ao R/m para algum ideal maximal m em R.

Exercício 31.

Seja M um R-modulo e N_1, N_2 dois submodulos em M. Mostre que se M/N_1 e M/N_2 são Noetherianos (resp. Artinianos) assim $M/(N_1\cap N_2)$ é Noetheriano (resp. Artiniano).