Concatenate

Concatenate

Two or more arrays can be concatenated together using the *concatenate* function with a tuple of the arrays to be joined:

```
import numpy

array_1 = numpy.array([1,2,3])

array_2 = numpy.array([4,5,6])

array_3 = numpy.array([7,8,9])

print numpy.concatenate((array_1, array_2, array_3))

#Output
[1 2 3 4 5 6 7 8 9]
```

If an array has more than one dimension, it is possible to specify the axis along which multiple arrays are concatenated. By default, it is along the first dimension.

```
import numpy

array_1 = numpy.array([[1,2,3],[0,0,0]])

array_2 = numpy.array([[0,0,0],[7,8,9]])

print numpy.concatenate((array_1, array_2), axis = 1)

#Output
[[1 2 3 0 0 0]
[0 0 0 7 8 9]]
```

Task

You are given two integer arrays of size $N \times P$ and $M \times P$ ($N \otimes M$ are rows, and P is the column). Your task is to *concatenate* the arrays along axis 0.

Input Format

The first line contains space separated integers $N,\ M$ and P.

The next N lines contains the space separated elements of the P columns.

After that, the next M lines contains the space separated elements of the P columns.

Output Format

Print the concatenated array of size $(N+M) \times P$.

Sample Input

```
432
12
12
12
12
12
34
34
```

Sample Output

[[1 2]	
[1 2]	
[1 2]	
[12]	
[3 4]	
[3 4]	
[3 4]]	
20 4	