

User Manual Radio Modules

deRFarm7-15A02 / 15C02 deRFarm7-25A00 / 25C00 deRFarm7-25A02 / 25C02

Document Version V1.1 2012-01-05

Table of contents

1.	Overview	5
2.	Application	5
3.	Features	6
4.	Technical data	8
5.	Mechanical data	10
-	5.1. Radio module (pluggable)	
	5.2. Footprint receptacles	
	5.3. Radio module (solderable)	
	5.4. Footprint pads	
	5.5. PCB design	12
6.	Soldering profile of deRFarm7	13
7.	Pin assignment	1/
١.	7.1. External Pins	
	7.2. Internal Connections	
8.	Programming	22
	8.1. Required hardware	
	8.2. Programming example	
	8.3. JTAG interface	29
9.	Debugging and tracing	29
4.0		0.0
10.	RF components	
	10.2.deRFarm7-25A00 / 25C00	
	10.3. deRFarm7-25A00 / 25C00	
	10.5. detti aiiii -25A02 / 25002	
11.	Radio certification	32
	11.1.United States (FCC)	32
	11.2.European Union (ETSI)	33
	11.3. Approved antennas	34
12.	Ordering information	35
13	Revision notes	37

Document history

Date Version Description		Description
2011-02-10	1.0	Initial version
2012-01-05	1.1	Addition of PCB design Addition of transceiver signal description Update certification section

Mailing list

Firm	Division / Name
DE	A. Palm

Author / Check / Release

	Firm	Division / Name
Author	DE	Dev. / A. Palm
Check		
Release		

www.dresden-elektronik.de Page 3 of 38

Abbreviations

Abbreviation	Description
ADC	Analog to Digital Converter
BOD	Brownout-Detection
CE	Consumer Electronics
DAC	Digital to Analog Converter
DBGU	Debug Unit
ETH	Eth ernet, family of frame-based computer networking technologies for local area networks (LAN).
EMAC	Ethernet Media Access Controller
ETSI	European Telecommunications Standards Institute
FCC	Federal Communications Commission
GPIO	Generals Purpose Input Output
ISM	Industrial, Scientific and Medical frequency band
JTAG	Joint Test Action Group
ISP	In-System-Programming
MAC	Medium (Media) Access Control
MCU, μC	Microcontroller Unit
PCB	Printed Circuit Board
PCBA	Printed Circuit Board Assembled
PWM	Pulse Width Modulation
RF	Radio Frequency
RMII	Reduced Media Independent Interface
SPI	Serial Peripheral Interface
TWI	Two-Wire Serial Interface
U[S]ART	Universal [Synchronuous/]Asynchronous Receiver Transmitter
USB	Universal Serial Bus

www.dresden-elektronik.de Page 4 of 38

1. Overview

The compact designed radio modules contains a powerful ARM7 microcontroller with 512 kBytes High-Speed Flash, On-chip USB 2.0 Full Speed Transceiver, Ethernet MAC 10/100 base-T in RMII-Mode and an onboard transceiver for 2.4 GHz or 868/915 MHz.

The 46 pin interface gives access to most hardware functions of the microcontroller.

A long radio transmission range can be achieved by using the coaxial jack (U.FL) version with an external antenna attached. In the Sub-GHz band several hundred meters (100 m = 330 feet) can be reached without problems. The 2.4 GHz version is able to cover up to 200 m (650 feet) with a ceramic chip antenna. All versions have a 128-bit AES encryption unit installed.

The 512 kB Flash and 128 kB RAM of the deRFarm7 modules provide enough resources to be used for any tasks within a wireless sensor network.

2. Application

The main applications for the deRFarm7 radio modules are:

- 2.4GHz IEEE 802.15.4
- 868MHz / 915MHz IEEE 802.15.4
- ZigBee[®] Pro
- ZigBee[®] RF4CE
- ZigBee® IP
- 6LoWPAN
- Wireless Sensor Networks (WSN)
- industrial and home controlling and monitoring
- Gateway applications between IEEE 802.15.4 and other networks, e.g. Ethernet

www.dresden-elektronik.de Page 5 of 38

3. Features

The Sub-GHz radio modules deRFarm7-15A00 / 15C00 offer the following features:

- pluggable: 2 male connectors, 23 pins per row, 1.27mm pitch
- solderable: 23 pads per row, 1.27mm pitch
- RF shielding
- usable signals: power supply, peripheral, programming, debugging, tracing, ADC, GPIO, USB, Ethernet MAC
- application interfaces: 1 x UART, 1 x TWI, 1x USB, 1 x Ethernet-MAC
- Debug/Programming interfaces: 1 x SPI, 1 x JTAG
- Onboard chip-antenna and transceiver for 868/900 MHz
- · Certification: FCC pending
- Compliant: CE, ETSI

Figure 1: block diagram deRFarm7-15A00 / 15C00

The radio modules deRFarm7-15A02 / 15C02 offer the same features like the deRFarm7-15A00 / 15C00 except the onboard Sub-GHz chip antenna is replaced by an U.FL coaxial receptacle for connecting an external antenna.

Figure 2: block diagram deRFarm7-15A02 / 15C02

www.dresden-elektronik.de Page 6 of 38

The 2.4 GHz radio modules deRFarm7-25A00 / 25C00 offer the following features:

- compact size: 30 x 22.7 mm (for 25A00) and 30 x 20.4 mm (for 25C00)
- pluggable: 2 male connectors, 23 pins per row, 1.27mm pitch
- solderable: 23 pads per row, 1.27mm pitch
- RF shielding
- usable signals: power supply, peripheral, programming, debugging, tracing, ADC, GPIO, USB, Ethernet MAC
- application interfaces: 1 x UART, 1 x TWI, 1x USB, 1 x Eth-MAC
- Debug/Programming interfaces: 1 x SPI, 1 x JTAG
- Onboard chip-antenna and transceiver for 2.4 GHz
- · Certification: FCC pending
- Compliant: CE, ETSI

Figure 3: block diagram deRFarm7-25A00 / 25C00

The radio modules deRFarm7-25A02 / 25C02 offer the same features like the deRFarm7-25A00 / 25C00 except the onboard 2.4 GHz chip antenna is replaced by an U.FL coaxial receptacle for connecting an external antenna.

Figure 4: block diagram deRFarm7-25A02 / 25C02

www.dresden-elektronik.de Page 7 of 38

4. Technical data

Table 1: Mechanical data

Mechanical					
Radio modules					
Size (L x W x H) 30 x 22.7 x 8.2 mm ¹ (for deRFarm7-15A02 / 25A00 / 25A02) 30 x 20.4 x 4.3 mm (for deRFarm7-15C02 / 25C00 / 25C02)					
Connectors (only for pluggable varia	nts)				
number of headers	2				
pins per header 23					
pitch 1.27 mm					
pin length	3.05 mm				
pin diameter	0.51 mm				
Insulator (L x W x H) 29.2 x 2.5 x 2.5 mm					
Pins / Pads (pluggable and solderable variants)					
pitch 1.27 mm					

¹ unplugged radio module

Table 2: Temperature range

Temperature range					
		Min	Тур	Max	Unit
Working range	T_work	-40		+85	°C

Table 3: Electrical data

Electrical (Vcc = 3.0VDC)						
deRFarm7-15A02 / 15C02						
	Parameter	Min	Тур	Max	Unit	
Supply Voltage	VCC	3.0	3.3	3.6	VDC	
Current	I_TXon (TX_PWR = +10 dBm)		52		mA	
consumption	I_TXon (TX_PWR = +5 dBm)		46		mA	
	I_TXon (TX_PWR = 0 dBm)		43		mA	
	I_RXon		36		mA	
	I_ldle (Txoff, MCK = 12MHz)		21		mA	

www.dresden-elektronik.de Page 8 of 38

	I_Idle (Txoff, MCK = 48MHz)		38		mA
	I_Sleep (depends on Sleep Mode)		250		μΑ
deRFarm7-25A00 / 2	25A02 / 25C00 / 25C02		•		
	Parameter	Min	Тур	Max	Unit
Supply Voltage	VCC	3.0	3.3	3.6	VDC
Current	I_TXon (TX_PWR = +3 dBm)		38		mA
consumption	I_TXon (TX_PWR = +1 dBm)		37		mA
	I_TXon (TX_PWR = -17 dBm)		32		mA
	I_RXon		36		mA
	I_ldle (Txoff, MCK = 12MHz)		21		mA
	I_Idle (Txoff, MCK = 48MHz)		38		mA
	I_Sleep (depends on Sleep Mode)		250		μΑ

Table 4: Radio transmission data

Radio (Vcc = 3.3VDC)					
deRFarm7-15A02 /	15C02				
	Parameter	Value			Unit
Frequency range	Channel 0 (EU)	868.3			MHz
Frequency range	Channel 110 (US)	906924			MHz
	Parameter	Min	Тур	Max	Unit
Transmitting power conducted	Channel 0; 20kBit/sec TX_PWR = +5dBm		5.0		dBm
Transmitting power conducted				dBm	
deRFarm7-25A00 /	^{25A02} /25C00/25C02		•		
	Parameter	Value			Unit
Frequency range	Frequency range Channel 1126 (EU) 24052480 MHz		MHz		
	Parameter	Min	Тур	Max	Unit
Transmitting power conducted	Channel 1126; 250kBit/sec TX_PWR = +3dBm		3.0		dBm

www.dresden-elektronik.de Page 9 of 38

5. Mechanical data

5.1. Radio module (pluggable)

Used connectors: SAMTEC "TMS-123-02-L-S"

Figure 5: Size deRFarm7-15A02 / 25A00 / 25A02

5.2. Footprint receptacles

Used receptacles: SAMTEC "SLM-123-01-L-S"

Figure 6: Footprint receptacles 1.27mm pitch

www.dresden-elektronik.de Page 10 of 38

5.3. Radio module (solderable)

Figure 7: Size deRFarm7-15C02 / 25C00 / 25C02

5.4. Footprint pads

Figure 8: Footprint for deRFarm7-15C02 / 25C00 / 25C02

www.dresden-elektronik.de Page 11 of 38

5.5. PCB design

The PCB design of the radio module base board and placement affects the radio characteristic. The radio module should be placed at the edge or side of a base board. The chip antenna should be directed to PCB side.

Do not place ground areas below the radio module and near the chip-antenna.

If the base board with the radio module will be placed into a metal case, it is necessary to use the radio module variant with coaxial connector and an external antenna.

www.dresden-elektronik.de Page 12 of 38

6. Soldering profile of deRFarm7

Table 5 gives the soldering profile for the radio modules.

Table 5: Soldering Profile

Profile Feature	Values
Average-Ramp-up Rate (217°C to Peak)	3°C/sec max.
Preheat Temperature 175°C ±25°C	120 sec. max
Temperature Maintained Above 217°C	60 sec.
Time within 5°C of Actual Peak Temperature	20 sec. to 40 sec.
Peak Temperature Range	260°
Ramp-down Rate	6°C/sec max.
Time 25°C to Peak Temperature	8 min. max.

Figure 9 shows a recorded soldering profile for a radio module. The blue colored line illustrates a temperature sensor placed next to the soldering-contacts of the radio module. The pink line shows the set temperatures depending on the zone within the reflow soldering machine.

Figure 9: Recorded soldering profile

A solder process without supply of nitrogen causes a discoloration of the metal RF-shielding.

www.dresden-elektronik.de Page 13 of 38

7. Pin assignment

Both pin headers respectively pin contacts provide the most important signals to the customer: power supply, peripheral, programming, debugging, tracing, analog measurement and free programmable ports. All provided signals except VCC, GND, RSTN, JTAGSEL, TDI, TDO, TCK, TMS, USBDM, USBDP and ADVREF are free programmable port pins (GPIO).

Figure 10: Top overlay deRFarm7-15A02

Figure 11: Top overlay deRFarm7-25A00

www.dresden-elektronik.de Page 14 of 38

Figure 12: Top overlay deRFarm7-25A02

coming soon

Figure 13: Top overlay deRFarm7-15C02

www.dresden-elektronik.de Page 15 of 38

coming soon

Figure 14: Top overlay deRFarm7-25C00

coming soon

Figure 15: Top overlay deRFarm7-25C02

www.dresden-elektronik.de Page 16 of 38

7.1. External Pins

Table 6, Table 7 and Table 8 show the external available signals of deRFarm7 radio modules.

Table 6: Pin assignment of deRFarm7 - radio module family

Pin assignment					
Pin	μC-Port	Pin	μC-Port		
1	VCC	24	VCC		
2	GND	25	GND		
3	ADVREF	26	PA27/DRXD/PCK3		
4	USBDM	27	PA0/RXD0		
5	RSTN	28	PA28/DTXD		
6	PB3/ETX1	29	PA4/CTS0/SPI1_NPCS3		
7	PA11/TWCK	30	PB9/EMDIO		
8	PB26/TIOB1/RI1	31	PB21/PWM2/PCK1		
9	PA10/TWD	32	USBDP		
10	PA1/ TXD0	33	PB19/PWM0/TCLK1		
11	PB25/TIOA1/DTR1	34	PB27/TIOA2/PWM0/AD0		
12	PB2/ETX0	35	PA14/SPI0_NPCS2/IRQ1		
13	PA18/SPI0_SPCK	36	PB28/TIOB2/PWM1/AD1		
14	PA3/RTS0/SPI1_NPCS2	37	PB5/ERX0		
15	PA17/SPI0_MOSI	38	тск		
16	PB0/ETXCK/EREFCK	39	PB7/ERXER		
17	PA16/SPI0_MISO	40	TMS		
18	PB8/EMDC	41	PB1/ETXEN		
19	PB6/ERX1	42	TDO		
20	PB18/EF100/ADTRG	43	JTAGSEL		
21	PB15/ERXDV/ECRSDV	44	TDI		
22	GND	45	GND		
23	GND	46	GND		

www.dresden-elektronik.de Page 17 of 38

Table 7: Description of available I/O port pins

Description of available I/O port pins on header pins				
I/O port pin	Alternate function (signal name)			Comments
PA0	RXD0			
PA1	TXD0			
PA3	RTS0			
PA4	CTS0			
PA10	TWD			
PA11	TWCK			
PA14	IRQ1			
PA16	SPI0_MISO			
PA17	SPI0_MOSI			
PA18	SPI0_SPCK			
PA27	DRXD	PCK3		
PA28	DTXD			
PB0	ETXCK/EREFCK	PCK0		
PB1	ETXEN			
PB2	ETX0			
PB3	ETX1			
PB5	ERX0			
PB6	ERX1			
PB7	ERXER			
PB8	EMDC			
PB9	EMDIO			
PB15	ERXDV/ECRSDV			
PB18	EF100	ADTRG		
PB19	PWM0	TCLK1		
PB21	PWM2	PCK1		
PB25	TIOA1	DTR1		
PB26	TIOB1	RI1		
PB27	TIOA2	PWM0	AD0	
PB28	TIOB2	PWM1	AD1	

www.dresden-elektronik.de Page 18 of 38

Table 8: Signal description list

Signal name	Function	Туре	Active Level	Comments		
Power						
VCC	Voltage Regulator Power Supply Input	Power		3.0V to 3.6V		
GND		Ground				
JTAG						
TCK	Test Clock	Input		On-board Pull-up		
TDI	Test Data In	Input		On-board Pull-up		
TDO	Test Data Out	Output				
TMS	Test Mode Select	Input		On-board Pull-up		
JTAGSEL	JTAG Selection	Input		On-Board Pull-down		
Debug Unit						
DRXD	Debug Receive Data	Input				
DTXD	Debug Transmit Data	Output				
Reset						
RSTN	Microcontroller Reset	I/O	Low	Pull-Up resistor		
Clocks, Oscillato	ors					
PCK0 - PCK3	Programmable Clock Output	Output				
U[S]ART						
TXD0	Transmit Data	I/O				
RXD0	Receive Data	Input				
RTS0	Request To Send	Output				
CTS0	Clear To Send	Input				
DTR1	Data Terminal Ready	Output				
RI1	Ring Indicator	Input				
Timer/Counter and PWM Controller						
TIOA1 – 2	I/O Line A	I/O				
TIOB1 – 2	I/O Line B	I/O				
TCLK1	External Clock Inputs	Input				
PWM Controller	PWM Controller					
PWM0 - 2	PWM Channels	Output				
Interrupt	Interrupt					
IRQ1	External Interrupt Inputs	Input				

www.dresden-elektronik.de Page 19 of 38

Signal name	Function	Туре	Active Level	Comments			
SPI	SPI						
SPI0_MISO	Master In / Slave Out	I/O					
SPI0_MOSI	Master Out / Slave In	I/O					
SPI0_SPCK	SPI Serial Clock	I/O					
SPI0_NPCS2	SPI Peripheral Chip Select 2	Output	Low				
SPI1_NPCS2	SPI Peripheral Chip Select 2	Output	Low				
SPI1_NPCS3	SPI Peripheral Chip Select 3	Output	Low				
Two-Wire-Interfa	ace						
TWD	Two-Wire Serial Interface Data	I/O					
TWCK	Two-Wire Serial Interface Clock	I/O					
USB Device Po	rt						
USBDM	USB Device Port Data -	Analog					
USBDP	USB Device Port Data +	Analog					
Analog-to-Digita	al Converter						
AD0 – AD1	Analog Inputs	Analog		Digital pulled-up in- puts at reset			
ADTRG	ADC Trigger	Input					
ADVREF	ADC Reference	Analog					
Ethernet MAC 1	0/100 (RMII Mode)	·					
ETXCK/ EREFCK	Reference Clock	Input		RMII only			
ETXEN	Transmit Enable	Output					
ETX0 – ETX1	Transmit Data	Output					
ERX0 – ERX1	RX0 – ERX1 Receive Data						
ERXER	Receive Error	Input					
EMDC	Management Data Clock	Output					
EMDIO	Management Data Input/Output	I/O					
ERXDV/ ECRSDV	Carrier Sense and Data Valid	Input		RMII only			
EF100	Force 100 Mbits/sec.	Output	High	RMII only			

www.dresden-elektronik.de Page 20 of 38

7.2. Internal Connections

Table 9 shows the internal signal connection between MCU and transceiver. This description is valid for all deRFarm7 radio modules.

Table 9: Internal connection of MCU and Transceiver

Pin a	Pin assignment of ATSAM7X512 to AT86RF212 / AT86RF231				
μC- Pin	μC-Port	TRX- Pin	TRX- Port	Туре	Comments
D1	PA23/TD/SPI1_MOSI	22	MOSI	Input	Master Out / Slave In
D2	PA24/RD/SPI1_MISO	20	MISO	Output	Master In / Slave Out
A1	PA22/TK/SPI1_SPCK	19	SCLK	Input	SPI Serial Clock
A2	PA21/TF/SPI1_NPCS0	23	SEL	Input	SPI Select
J1	PA29/FIQ/SPI1_NPCS3	24	IRQ	Output	Interrupt request signal Frame Buffer Empty Indicator
H7	PA9/CTS1	8	RSTN	Input	Reset
C10	PA15/TCLK2	17	CLKM	Output	Master clock signal output, internal lowpass filter assembled
H8	PA8/RTS1	11	SLP_TR	Input	Controls sleep, transmit start, receive states
F2	PB23/TIOA0/DCD1	10	DIG2	Output	Antenna Diversity RF switch control RX Frame Time Stamping

Note:

For best radio performance results it is recommended to deactivate the clock output. According to transceiver datasheet register 0x03 must be set to value 0x00 to deactivate CLKM.

www.dresden-elektronik.de Page 21 of 38

8. Programming

8.1. Required hardware

Dresden elektronik ingenieurtechnik gmbh offers the hardware components for a fast startup. The following hardware setups are possible:

- deRFarm7 radio module
- deRFgateway or deRFnode (baseboard)
- SEGGER SAM-ICE¹ similar programmer

For example, to exchange the firmware of an ARM-based radio module, use the Atmel SAM-ICE JTAG Emulator. The programmer has to be plugged to the baseboard which is DC- or USB-powered.

Figure 16: SAM-ICE connected with baseboard plus plugged radio module

www.dresden-elektronik.de Page 22 of 38

¹ The SEGGER SAM-ICE programmer will **not** be offered by dresden elektronik ingenieurtechnik gmbh

8.2. Programming example

The described programming examples was done with Atmel's programming software 'SAM-BA v2.10', which is free downloadable on Atmel homepage. Install SAM-BA v2.10 on the PC or laptop and connect the hardware described in section 8.1.

1. Start SAM-BA v2.10

The start screen (Figure 17) shows two selection tables. At first choose the connected SEGGER-SAM-ICE programmer (Figure 18) and then the connected board (Figure 19). In this case the assembled MCU is important for selection, that means choose AT91SAM7X512-EK.

Figure 17: SAM-BA start screen

Figure 18: SAM-BA start screen – Choose programmer

Figure 19: SAM-BA start screen – Choose MCU

www.dresden-elektronik.de Page 23 of 38

2. Click 'CONNECT' to get to the SAM-BA main screen (Figure 20)

If there appears an error message, check if the target board is supplied via USB and/or DC and if the JTAG cable is plugged in the right polarization.

Figure 20: SAM-BA main screen

www.dresden-elektronik.de Page 24 of 38

3. Before programming the MCU flash, it is necessary to erase the internal flash. Select the script 'ERASE ALL FLASH' and click 'EXECUTE' (Figure 21). Be careful: the whole internal flash content will be deleted.

Figure 21: SAM-BA erasing the internal flash

www.dresden-elektronik.de Page 25 of 38

4. After erasing the flash content choose the binary file which must be flash on target MCU. Click on the 'OPEN DIRECTORY' button in the "DOWNLOAD/UPLOAD FILE' section next to 'SEND FILE NAME' (Figure 22). Click on 'SEND FILE' button to flash the binary.

Figure 22: SAM-BA choosing binary

www.dresden-elektronik.de Page 26 of 38

5. After flashing the binary SAM-BA asked for locking the flash content. Click 'NO' (Figure 23).

Figure 23: SAM-BA lock regions

www.dresden-elektronik.de Page 27 of 38

6. The last action is to set the GPNVM2 bit in the boot from flash mode. Just select and execute the script 'BOOT FROM FLASH' (Figure 24).

Figure 24: SAM-BA boot from flash

7. Close SAM-BA, disconnect the SEGGER-SAM-ICE programmer and re-power the target. The new MCU firmware starts now from the internal flash.

www.dresden-elektronik.de Page 28 of 38

8.3. JTAG interface

All deRFarm7 variants are programmable over JTAG interface (TDI, TDO, TCK, TMS). The radio module contains all necessary pull-up resistors onboard. Use the pin configuration shown in Figure 25 to connect the radio module to a suitable ARM programmer like the SEGGER SAM-ICE.

Figure 25: ARM JTAG interface

9. Debugging and tracing

Debugging and tracing of the radio module is possible with the RS232-Level-Shifter. This component is offered by dresden elektronik ingenieurtechnik gmbh. The used pin connection to connect the radio module to a suitable debug and trace hardware is shown in Figure 26.

Figure 26: Debug interface

www.dresden-elektronik.de Page 29 of 38

10.RF components

10.1. deRFarm7-15A02 / 15C02

The U.FL coaxial connector contains a filter network:

- L2 = 10nH (0402)
- C1 = 4.7pF (0402)
- C3 = 4.7pF (0402)

Figure 27: Filter network of deRFarm7-15A02

10.2. deRFarm7-25A00 / 25C00

The chip antenna on the deRFarm7-25A00 is matched with:

- L1 = 1.0nH (0402)
- L2 = 2.2nH (0402)

Figure 28: Matching network of deRFarm7-25A00

www.dresden-elektronik.de Page 30 of 38

10.3. deRFarm7-25A02 / 25C02

The U.FL coaxial connector contains a filter network:

- L2 = 1.0pF (0402) (assembly variant of deRFarm7-25A00)
- C19 = 22pF (0402)

Figure 29: Matching network of deRFarm7-25A02

www.dresden-elektronik.de Page 31 of 38

11. Radio certification

11.1. United States (FCC)

The deRFarm7-15A02, deRFarm7-25A00, deRFarm7-25A02, deRFarm7-15C02, deRFarm7-25C00, deRFarm7-25C02 radio modules comply with the requirements of FCC part 15.

To fulfill FCC Certification requirements, an OEM manufacturer must comply with the following regulations:

The modular transmitter must be labeled with its own FCC ID number, and, if the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module.

This exterior label can use wording such as the following. Any similar wording that expresses the same meaning may be used.

Sample label for radio module deRFarm7-25A00 and deRarm7-25C00:

FCC-ID: XVV-ARM725A00

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Sample label for radio module deRFarm7-25A02 and deRarm7-25C02:

FCC-ID: XVV-ARM725A02

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Sample label for radio module deRFarm7-15A02:

FCC-ID: XVV-ARM715A02

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: The radio modules deRFarm7-15C02, deRFarm7-25C00 and deRFarm7-25C02 fulfill a Permissive Change Class 1 regarding to FCC Section 2.1043 and complies with the requirements of FCC part 15.

To be used with the deRFarm7-15A02, deRFarm7-25A02 modules, the external antenna have been tested and approved which is specified in here below. The deRFarm7-15A02, deRFarm7-25A02 modules may be integrated with other custom design antennas which OEM installer must authorize following the FCC 15.21 requirements.

The Original Equipment Manufacturer (OEM) must ensure that the OEM modular transmitter is labeled with its own FCC ID number. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown below. If the FCC ID is not visible when the equipment is installed inside another device, then the outside of the device into which the equipment is installed must also display a label referring to the enclosed equipment.

www.dresden-elektronik.de Page 32 of 38

This equipment complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation (FCC 15.19). The internal / external antenna(s) used for this mobile transmitter must provide a separation distance of at least 20 cm from all persons and must not be co-located or operated in conjunction with any other antenna or transmitter.

Installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance. This device is approved as a mobile device with respect to RF exposure compliance, and may only be marketed to OEM installers. Use in portable exposure conditions (FCC 2.1093) requires separate equipment authorization

Modifications not expressly approved by this company could void the user's authority to operate this equipment (FCC section 15.21).

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense (FCC section 15.105).

11.2. European Union (ETSI)

The deRFarm7-15A02, deRFarm7-15C02, deRFarm7-25A00, deRFarm7-25C00, deRFarm7-25A02 and deRFarm7-25C02 modules have been tested compliant for use in European Union countries.

If the deRFarm7-15A02, deRFarm7-15C02, deRFarm7-25A00, deRFarm7-25C00, deRFarm7-25A02 and deRFarm7-25C02 modules are incorporated into a product, the manufacturer must ensure compliance of the final product to the European harmonized EMC and low-voltage/safety standards. A Declaration of Conformity must be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive.

The manufacturer must maintain a copy of the deRFarm7-15A02, deRFarm7-15C02, deRFarm7-25A00, deRFarm7-25C00, deRFarm7-25A02 and deRFarm7-25C02 modules documentation and ensure the final product does not exceed the specified power ratings, antenna specifications, and/or installation requirements as specified in the user manual. If any of these specifications are exceeded in the final product, a submission must be made to a notified body for compliance testing to all required standards.

The "CE" marking must be affixed to a visible location on the OEM product. The CE mark shall consist of the initials "CE" taking the following form:

- If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- The CE marking must have a height of at least 5mm except where this is not possible on account of the nature of the apparatus
- The CE marking must be affixed visibly, legibly, and indelibly.

www.dresden-elektronik.de Page 33 of 38

More detailed information about CE marking requirements you can find at "DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL" on 9 March 1999 at section 12.

11.3. Approved antennas

The deRFarm7-25A00 has an integrated chip antenna. The design is fully compliant with all regulations.

The deRFarm7-15A02 has been tested and approved for use with the antenna listed below. The module may be integrated with other custom design antennas which OEM installer must authorize with respective regulatory agencies. The used antenna was connected to the radio module with a 15cm "U.FL-to-SMA pigtail".

Table 10: Approved antenna(s) and accessory

Approved antenna(s) and accessory				
Part number	Description	Manufacturer	Gain [dBi]	Min. Separation [cm]
ANT-916-CW- HWR-RPS	1/2 wave whip antenna (915 MHz) with RP-SMA-Connector	Antenna Factor	0	20
PSKN3-2400RS	1/2 wave whip antenna (2450 MHz) with RP-SMA-Connector	Mobile Mark	2.3	20
BN-032125	U.FL to RP-SMA pigtail, 15 cm	Hirose / Profineon	-0,35	

www.dresden-elektronik.de Page 34 of 38

12. Ordering information

The product name includes the following information:

Table 11: product name code

Product name code				
Information	Code	Explanation	Comments	
Product / Chipset	arm7	AT91SAM7X	radio module	
Frequency range	1	780/868/915 MHz		
	2	2.4 GHz		
Flash memory	5	512 kByte		
Size	А	30 x 22.7 mm	pluggable	
	С	30 x 20.4 mm	solderable	
Features	00	chip antenna	onboard	
	02	coaxial connector	onboard U.FL	
Revision	<blank></blank>	Rev 0		
	1	Rev 1		

www.dresden-elektronik.de Page 35 of 38

Table 12: ordering information

Ordering information				
Part number	Product name	Comments		
BN-030974	deRFarm7-15A02	pluggable Sub-GHz radio module with onboard U.FL coaxial connector		
coming soon	deRFarm7-15C02	solderable Sub-GHz radio module with onboard U.FL coaxial connector		
BN-027264	deRFarm7-25A00	pluggable 2.4-GHz radio module with onboard chip antenna		
coming soon	deRFarm7-25C00	solderable 2.4-GHz radio module with onboard chip antenna		
BN-027265	deRFarm7-25A02	pluggable 2.4-GHz radio module with onboard U.FL coaxial connector		
coming soon	deRFarm7-25C02	solderable 2.4-GHz radio module with onboard U.FL coaxial connector		

www.dresden-elektronik.de Page 36 of 38

User Manual Version 01.01 2012-01-05

Radio modules deRFarm7

13. Revision notes

Up to now for the deRFarm7-15A02, deRFarm7-25A00, deRFarm7-25A02, deRFarm7-15C02, deRFarm7-25C00 and deRFarm7-25C02 radio modules technical problems, malfunctions or any other critical issues are not known.

www.dresden-elektronik.de Page 37 of 38

User Manual Version 01.01 2012-01-05

Radio modules deRFarm7

dresden elektronik ingenieurtechnik gmbh Enno-Heidebroek-Straße 12 01237 Dresden GERMANY

Phone +49 351 - 31850 0
Fax +49 351 - 31850 10
www.dresden-elektronik.de
Email wireless@dresden-elektronik.de

Trademarks and acknowledgements

- ZigBee® is a registered trademark of the ZigBee Alliance.
- 802.15.4 is a trademark of the Institute of Electrical and Electronics Engineers (IEEE).

These trademarks are registered by their respective owners in certain countries only. Other brands and their products are trademarks or registered trademarks of their respective holders and should be noted as such.

Disclaimer

This note is provided as-is and is subject to change without notice. Except to the extent prohibited by law, dresden elektronik ingenieurtechnik gmbh makes no express or implied warranty of any kind with regard to this guide, and specifically disclaims the implied warranties and conditions of merchantability and fitness for a particular purpose. dresden elektronik ingenieurtechnik gmbh shall not be liable for any errors or incidental or consequential damage in connection with the furnishing, performance or use of this guide.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording, for any purpose other than the purchaser's personal use, without the written permission of dresden elektronik ingenieurtechnik gmbh.

Copyright © 2012, dresden elektronik ingenieurtechnik gmbh All rights reserved

www.dresden-elektronik.de Page 38 of 38