Positive curvature and fundamental group

Midwest Geometry Conference

Iowa State University

Elahe Khalili Samani

Syracuse University

September 6, 2019

Setup: (M^n, g) – compact, sec > 0.

Question: What is $\pi_1(M)$?

Setup: (M^n, g) – compact, sec > 0.

Question: What is $\pi_1(M)$?

Theorem (Bonnet-Myers): $\pi_1(M)$ finite.

Theorem (Synge): n is even $\Longrightarrow \pi_1(M) \cong 1$ or \mathbb{Z}_2 .

Setup: (M^n, g) – compact, sec > 0.

Question: What is $\pi_1(M)$?

Theorem (Bonnet-Myers): $\pi_1(M)$ finite.

Theorem (Synge): n is even $\Longrightarrow \pi_1(M) \cong 1$ or \mathbb{Z}_2 .

Results with symmetry (Grove program):

Theorem (Wilking and Ziller, 2018):

M homogeneous $\Longrightarrow \pi_1(M) \leq SO(3)$ or SU(2).

Setup: (M^n, g) – compact, sec > 0.

Question: What is $\pi_1(M)$?

Theorem (Bonnet-Myers): $\pi_1(M)$ finite.

Theorem (Synge): n is even $\Longrightarrow \pi_1(M) \cong 1$ or \mathbb{Z}_2 .

Results with symmetry (Grove program):

Theorem (Wilking and Ziller, 2018):

M homogeneous $\Longrightarrow \pi_1(M) \leq SO(3)$ or SU(2).

Theorem (Wilking, 2003):

 $T^r \subseteq Isom(M^n, g), r \ge \frac{n}{4} + 1 \Longrightarrow \pi_1(M)$ cyclic.

Setup: (M^n, g) – compact, sec > 0.

Question: What is $\pi_1(M)$?

Theorem (Bonnet-Myers): $\pi_1(M)$ finite.

Theorem (Synge): n is even $\Longrightarrow \pi_1(M) \cong 1$ or \mathbb{Z}_2 .

Results with symmetry (Grove program):

Theorem (Wilking and Ziller, 2018):

M homogeneous $\Longrightarrow \pi_1(M) < SO(3)$ or SU(2).

Theorem (Wilking, 2003):

 $T^r \subseteq Isom(M^n, g), r \geq \frac{n}{4} + 1 \Longrightarrow \pi_1(M)$ cyclic.

Theorem (Rong, 1999):

 $S^1 \subseteq \text{Isom}(M^n, g) \Longrightarrow \pi_1(M)$ has a cyclic subgroup of index $\leq w(n)$.

Setup: (M^{13}, g) – compact, sec > 0.

Setup: (M^{13}, g) – compact, sec > 0.

Setup: (M^{13}, g) – compact, sec > 0.

Examples: Bazaikin Spaces, $B_{(q_1,...,q_5)}^{13}$:

• Only known examples in dimension 13 with sec > 0 (except S^{13}/Γ).

Setup: (M^{13}, g) – compact, sec > 0.

- ullet Only known examples in dimension 13 with sec > 0 (except S^{13}/Γ).
- Generalization of the Berger homogeneous space $B^{13} = SU(5)/Sp(2).S^1$.

Setup: (M^{13}, g) – compact, sec > 0.

- Only known examples in dimension 13 with $\sec > 0$ (except S^{13}/Γ).
- Generalization of the Berger homogeneous space $B^{13} = SU(5)/Sp(2).S^1$.
- Infinitely many homotopy types.

Setup: (M^{13}, g) – compact, sec > 0.

- Only known examples in dimension 13 with sec > 0 (except S^{13}/Γ).
- Generalization of the Berger homogeneous space $B^{13} = SU(5)/Sp(2).S^1$.
- Infinitely many homotopy types.
- \bullet Rational cohomology looks like $\mathbb{CP}^2\times \mathbb{S}^9.$

Setup: (M^{13}, g) – compact, sec > 0.

Examples: Bazaikin Spaces, $B_{(a_1,...,a_5)}^{13}$:

- Only known examples in dimension 13 with $\sec > 0$ (except S^{13}/Γ). Generalization of the Berger homogeneous space $B^{13} = SU(5)/Sp(2).S^1$.
- Infinitely many homotopy types.
- Rational cohomology looks like $\mathbb{CP}^2 \times \mathbb{S}^9$.

Theorem (K.): If $T^2 \subseteq \text{Isom}(M,g)$ and $H^*(\widetilde{M};\mathbb{Q}) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Q})$, then $\pi_1(M)$ has a cyclic subgroup of index dividing 18. Moreover, if $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$, then the index is at most 9.

Setup: (M^{13}, g) – compact, sec > 0.

Examples: Bazaikin Spaces, $B_{(q_1,...,q_5)}^{13}$:

- Only known examples in dimension 13 with $\sec > 0$ (except S^{13}/Γ). Generalization of the Berger homogeneous space $B^{13} = SU(5)/Sp(2).S^1$.
- Infinitely many homotopy types.
- Rational cohomology looks like $\mathbb{CP}^2 \times \mathbb{S}^9$.

Theorem (K.): If $T^2 \subseteq \text{Isom}(M,g)$ and $H^*(\widetilde{M};\mathbb{Q}) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Q})$, then $\pi_1(M)$ has a cyclic subgroup of index dividing 18. Moreover, if $H^*(\widetilde{M}; \mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)}; \mathbb{Z}_3)$, then the index is at most 9.

Corollary (K.): If $T^3 \subseteq \text{Isom}(M,g)$ and $H^*(\widetilde{M};\mathbb{Q}) \cong H^*(B^{13}_{(q_1,\dots,q_5)};\mathbb{Q})$, then $\pi_1(M)$ has a cyclic subgroup of index at most 3.

 $\textbf{Setup: } (\mathit{M}^{13}, g) - \mathsf{compact}, \ \mathsf{sec} > 0, \ \mathit{H}^*(\widetilde{\mathit{M}}; \mathbb{Q}) \cong \mathit{H}^*(\mathit{B}^{13}_{(q_1, \ldots, q_5)}; \mathbb{Q}).$

 $\textbf{Setup: } (\mathit{M}^{13}, g) - \mathsf{compact}, \ \mathsf{sec} > 0, \ \mathit{H}^*(\widetilde{\mathit{M}}; \mathbb{Q}) \cong \mathit{H}^*(\mathit{B}^{13}_{(q_1, \ldots, q_5)}; \mathbb{Q}).$

1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.
- 5. Write $\Gamma = \mathbb{Z}_{2^a} \times \Gamma'_{\text{odd}}$ (Davis-Weinberger and Weinstein).

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.
- 5. Write $\Gamma = \mathbb{Z}_{2^a} \times \Gamma'_{\mathrm{odd}}$ (Davis-Weinberger and Weinstein).
- 6. Compute $\chi(P/S_1^1, P^{S_1^1}) = 3$ where $S_1^1 = T^2/S^1$ (Smith-Gysin).

Setup: (M^{13}, g) – compact, $\sec > 0$, $H^*(\widetilde{M}; \mathbb{Q}) \cong H^*(B^{13}_{(q_1, \dots, q_5)}; \mathbb{Q})$.

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.
- 5. Write $\Gamma = \mathbb{Z}_{2^a} \times \Gamma'_{\mathrm{odd}}$ (Davis-Weinberger and Weinstein).
- 6. Compute $\chi(P/S_1^1, P^{S_1^1}) = 3$ where $S_1^1 = T^2/S^1$ (Smith-Gysin).

Main lemma (K.): Suppose that G has odd order and acts freely on a positively curved manifold P. If P admits a circle action which commutes with the action of G, then for any cyclic normal $N \leq G$, either |G/N| divides $\chi(P/S^1, P^{S^1})$ or $N \subsetneq \langle \alpha \rangle \subseteq G$.

Setup: (M^{13}, g) – compact, $\sec > 0$, $H^*(M; \mathbb{Q}) \cong H^*(B^{13}_{(g_1, \dots, g_n)}; \mathbb{Q})$.

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.
- 5. Write $\Gamma = \mathbb{Z}_{2^a} \times \Gamma'_{odd}$ (Davis-Weinberger and Weinstein).
- 6. Compute $\chi(P/S_1^1, P_1^2) = 3$ where $S_1^1 = T^2/S^1$ (Smith-Gysin).

Main lemma (K.): Suppose that G has odd order and acts freely on a positively curved manifold P. If P admits a circle action which commutes with the action of G, then for any cyclic normal $N \leq G$, either |G/N| divides $\chi(P/S^1, P^{S^1})$ or $N \subseteq \langle \alpha \rangle \subseteq G$.

7. Main lemma and Burnside p-complement theorem \implies there exists $\Gamma'' \leq \Gamma'$ of index at most **three** such that $\Gamma'' \not\supseteq \mathbb{Z}_p \times \mathbb{Z}_p$ for all p.

Setup: (M^{13}, g) – compact, $\sec > 0$, $H^*(\widetilde{M}; \mathbb{Q}) \cong H^*(B^{13}_{(q_1, \dots, q_5)}; \mathbb{Q})$.

- 1. Choose $S^1 \subseteq T^2$ such that $\widetilde{M}^{S^1} \neq \emptyset$ (sec > 0 and Berger).
- 2. Calculate $H^*(\widetilde{M}^{S^1}; \mathbb{Q})$ (equivariant cohomology).
- 3. One case: $\widetilde{M}^{S^1} = P \sqcup Q$, where $P, Q \simeq_{\mathbb{Q}} \mathbb{S}^5$.
- 4. Let $\Gamma \leq \pi_1(M)$ be the subgroup of index at most **two** which acts on P.
- 5. Write $\Gamma = \mathbb{Z}_{2^a} \times \Gamma'_{\mathrm{odd}}$ (Davis-Weinberger and Weinstein).
- 6. Compute $\chi(P/S_1^1, P^{S_1^1}) = 3$ where $S_1^1 = T^2/S^1$ (Smith-Gysin).

Main lemma (K.): Suppose that G has odd order and acts freely on a positively curved manifold P. If P admits a circle action which commutes with the action of G, then for any cyclic normal $N \leq G$, either |G/N| divides $\chi(P/S^1, P^{S^1})$ or $N \subsetneq \langle \alpha \rangle \subseteq G$.

- 7. Main lemma and Burnside *p*-complement theorem \Longrightarrow there exists $\Gamma'' \leq \Gamma'$ of index at most **three** such that $\Gamma'' \not\supseteq \mathbb{Z}_p \times \mathbb{Z}_p$ for all *p*.
- 8. Main lemma $\Longrightarrow \Gamma''$ has a cyclic subgroup of index at most **three**.

 $\textbf{Setup: } (\mathit{M}^{13},g) - \mathsf{compact}, \ \mathsf{sec} > 0, \ \mathit{H}^*(\widetilde{\mathit{M}};\mathbb{Z}_3) \cong \mathit{H}^*(\mathit{B}^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3).$

Setup: (M^{13},g) – compact, $\sec > 0$, $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$.

Idea: rule out the possibility of $\Gamma' \supseteq \mathbb{Z}_3^2$ using spectral sequences.

 $\textbf{Setup: } (\mathit{M}^{13}, g) - \mathsf{compact, sec} > 0, \ \mathit{H}^*(\widetilde{\mathit{M}}; \mathbb{Z}_3) \cong \mathit{H}^*(\mathit{B}^{13}_{(q_1, \ldots, q_5)}; \mathbb{Z}_3).$

Idea: rule out the possibility of $\Gamma' \supseteq \mathbb{Z}_3^2$ using spectral sequences.

• Control over \mathbb{Z}_3 -cohomology $\Longrightarrow P$ is a \mathbb{Z}_3 -cohomology \mathbb{S}^5 or $\mathbb{S}^2 \times \mathbb{S}^3$.

Setup: (M^{13},g) – compact, $\sec > 0$, $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$.

Idea: rule out the possibility of $\Gamma' \supseteq \mathbb{Z}_3^2$ using spectral sequences.

• Control over \mathbb{Z}_3 -cohomology $\Longrightarrow P$ is a \mathbb{Z}_3 -cohomology \mathbb{S}^5 or $\mathbb{S}^2 \times \mathbb{S}^3$.

Theorem (Smith): \mathbb{Z}_p^2 cannot act freely on a \mathbb{Z}_p -cohomology sphere.

Setup: (M^{13},g) – compact, $\sec > 0$, $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$.

Idea: rule out the possibility of $\Gamma' \supseteq \mathbb{Z}_3^2$ using spectral sequences.

• Control over \mathbb{Z}_3 -cohomology $\Longrightarrow P$ is a \mathbb{Z}_3 -cohomology \mathbb{S}^5 or $\mathbb{S}^2 \times \mathbb{S}^3$.

Theorem (Smith): \mathbb{Z}_p^2 cannot act freely on a \mathbb{Z}_p -cohomology sphere.

Theorem (Heller): \mathbb{Z}_p^3 cannot act freely on a \mathbb{Z}_p -cohomology $\mathbb{S}^m \times \mathbb{S}^n$.

Setup: (M^{13},g) – compact, $\sec > 0$, $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$.

Idea: rule out the possibility of $\Gamma' \supseteq \mathbb{Z}_3^2$ using spectral sequences.

• Control over \mathbb{Z}_3 -cohomology $\Longrightarrow P$ is a \mathbb{Z}_3 -cohomology \mathbb{S}^5 or $\mathbb{S}^2 \times \mathbb{S}^3$.

Theorem (Smith): \mathbb{Z}_p^2 cannot act freely on a \mathbb{Z}_p -cohomology sphere.

Theorem (Heller): \mathbb{Z}_p^3 cannot act freely on a \mathbb{Z}_p -cohomology $\mathbb{S}^m \times \mathbb{S}^n$. (Idea of proof: consider the Serre spectral sequence associated to the Borel fibration $M \to M_G \to BG$, where $G = \mathbb{Z}_p^3$ and M is a \mathbb{Z}_p -cohomology $\mathbb{S}^m \times \mathbb{S}^n$. If G acts freely, then $M_G \simeq M/G$. This, together with computing some basic bounds on the dimensions, leads to a contradiction.)

Setup: (M^{13},g) – compact, $\sec > 0$, $H^*(\widetilde{M};\mathbb{Z}_3) \cong H^*(B^{13}_{(q_1,\ldots,q_5)};\mathbb{Z}_3)$.

Idea: rule out the possibility of $\Gamma'\supseteq\mathbb{Z}_3^2$ using spectral sequences.

• Control over \mathbb{Z}_3 -cohomology $\Longrightarrow P$ is a \mathbb{Z}_3 -cohomology \mathbb{S}^5 or $\mathbb{S}^2 \times \mathbb{S}^3$.

Theorem (Smith): \mathbb{Z}_p^2 cannot act freely on a \mathbb{Z}_p -cohomology sphere.

Theorem (Heller): \mathbb{Z}_p^3 cannot act freely on a \mathbb{Z}_p -cohomology $\mathbb{S}^m \times \mathbb{S}^n$. (Idea of proof: consider the Serre spectral sequence associated to the Borel fibration $M \to M_G \to BG$, where $G = \mathbb{Z}_p^3$ and M is a \mathbb{Z}_p -cohomology $\mathbb{S}^m \times \mathbb{S}^n$. If G acts freely, then $M_G \simeq M/G$. This, together with computing some basic bounds on the dimensions, leads to a contradiction.)

Lemma (K.): \mathbb{Z}_p^2 cannot act freely on a \mathbb{Z}_p -cohomolgy $\mathbb{S}^2 \times \mathbb{S}^3$.

Proof: Refine Heller's argument by computing the differentials.