Handleiding: Threat CVE-2024-6387 Uittesten

Deze handleiding beschrijft hoe je de kwetsbaarheid CVE-2024-6387 kunt uittesten in een kritieke Debianomgeving (32bit versie 11 Bullseye), die wordt aangevallen vanaf een Kali Linux-machine. Beide virtuele machines (VM's) worden opgestart via VBoxManage, en de benodigde scripts worden automatisch geïnstalleerd via PowerShell-scripts.

0. Voor het stappenplan

- 1. Clone de github-repo op: https://github.com/JoranVanGoethem/NPE-Cybersecurity
- 2. Voer in deze repository het stappenplan uit, hierin vind u ook de nieuwste handleiding en extra informatie over de aanval. Daarnaast staan hier ook de meest recente scripts in voor het testen van deze aanval.

1. Stappenplan

1.1 VM's Aanmaken

1. Download de benodigde VDI-bestanden:

Kali Linux: Kali.vdi

o Debian 11 Bullseye: Debian.vdi

2. extract de zip files

- o extract Kali in de locatie: /vdi-files/Kali
- het pad noemt: /vdi-files/64bit/64bit/Kali Linux 2024.4 (64bit).vdi
- extract Debian in de locatie: /vdi-files/Debian
- het pad noemt: /vdi-files/32bit/32bit/Debian 11 (32bit).vdi

```
VM-Scripts > $ Build-VM.sh
     set -o errexit # abort on nonzero exitstatus
     set -o nounset # abort on unbound variable
     set -o pipefail # don't mask errors in piped commands
     set -u # Stop het script bij een onbestaande variabele
     # Variables
      DEBIAN_VM_NAME="vulnerable-debian"
      KALI_VM_NAME="attacker-kali"
      # Pad naar VDI-bestanden (vervang deze door jouw correcte paden met forward slashes)
      DEBIAN_VDI_PATH=".../vdi-files/Debian/64bit/64bit/Debian.vdi"
 20
      KALI_VDI_PATH="../vdi-files/Kali/64bit/64bit/Kali.vdi"
      # Naam van het interne netwerk
      INTNET_NAME="intnet"
      function create_VM(){
         create_Debian
         create_Kali
```

3. Pas de Build-VM.sh aan INDIEN vorige stap niet gevolgd:

Vervang DEBIAN VDI PATH="" met:

```
DEBIAN_VDI_PATH="/jouw/pad/naar/Debian.vdi"
```

Vervang KALI_VDI_PATH="" met:

```
KALI_VDI_PATH="/jouw/pad/naar/Kali.vdi"
```


4. Voeg VBoxManage toe aan de terminal

voer het commando: export PATH=\$PATH:"/c/Program Files/Oracle/VirtualBox" uit

```
MINGW64:/c/Users/leand/Documents/cyber Syc/NPE-Cybersecurity/VM-Scripts

leand@Leander_station MINGW64 ~/Documents/cyber Syc/NPE-Cybersecurity/VM-Scri
(main)
s export PATH=$PATH:"/c/Program Files/Oracle/VirtualBox"5~
```

5. Voer het script Build-VM.sh uit.

- open een git bash terminal in de map /src/VM-Scripts/
- Voer dit commando uit om kali & Debian aan te maken: ./Build-VM.sh
- De virtuele machines worden aangemaakt in VirtualBox.

```
MINGW64:/c/Users/leand/Documents/cyber Syc/NPE-Cybersecurity/VM-Scripts
leand@Leander_station MINGW64 ~/Documents/cyber Syc/NPE-Cybersecurity/VM-Scripts
(main)
$./Build-VM.sh|
```

6. start de VM's

o open virtualbox en start beide VM's

7. Controleer of de VM's correct zijn opgestart via de VirtualBox GUI of via:

```
VBoxManage list runningvms
```

8. Log in op de VM's

- Log in met het wachtwoord: osboxes.org op de kali VM
- Log in met het wachtwoord: osboxes.org op de Debian VM


```
Osboxes login: osboxes
Password:
Linux osboxes 5.10.0-8-amd64 #1 SMP Debian 5.10.46-4 (2021–08-03) x86_64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu May 15 14:11:35 EDT 2025 on tty3
osboxes@osboxes:~$
```

1. Maak een SSH-verbinding met de Debian VM:

```
ssh -p 2222 osboxes@127.0.0.1
# wachtwoord = osboxes.org
```

```
C:\Users\camma>ssh -p 2222 osboxes@127.0.0.1
The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)' can't be established.
ED25519 key fingerprint is SHA256:enbsCjQvNP3vJ60tiKuLsj1gmmv9TPkJ6GozRs3Exbg.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '[127.0.0.1]:2222' (ED25519) to the list of known hosts.
osboxes@127.0.0.1's password:
Linux osboxes 5.10.0-8-686 #1 SMP Debian 5.10.46-4 (2021-08-03) i686

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Fri May 16 09:47:03 2025
osboxes@osboxes:~$
```

2. Maak het install script aan:

```
nano install_openssh_8.5p1.sh
```

```
osboxes@osboxes:~$
osboxes@osboxes:~$ sudo ./install_openssh_8.5p1.sh |
```

3. Maak het script uitvoerbaar en voer het uit:

```
chmod +x install_openssh_8.5p1.sh
sudo ./install_openssh_8.5p1.sh
```

Na het uitvoeren moet je onderstaande afbeelding verkrijgen. Ook kun je controleren of de juiste versie van OpenSSH is geïnstalleerd.

```
✓ Stap 4: Configuratie aanpassen...
✓ Stap 5: sshd starten...
✓ Installatie voltooid. Controleer met: ssh -V
osboxes@osboxes:~$ ssh -V
OpenSSH_8.5p1, OpenSSL 1.1.1w 11 Sep 2023
osboxes@osboxes:~$
```

Sluit hier de SSH-

verbinding met Debian zodat poort 22 niet bezet is tijdens de aanval.

1.3 Aanval Uitvoeren vanuit Kali op de Debian VM

1. Test de verbinding tussen Kali en Debian.

```
ping 192.168.56.101
```

```
osboxes osboxes)-[~]

$ ping 192.168.56.101

PING 192.168.56.101 (192.168.56.101) 56(84) bytes of data.

64 bytes from 192.168.56.101: icmp_seq=1 ttl=64 time=3.16 ms

64 bytes from 192.168.56.101: icmp_seq=2 ttl=64 time=0.945 ms

64 bytes from 192.168.56.101: icmp_seq=3 ttl=64 time=2.77 ms

64 bytes from 192.168.56.101: icmp_seq=4 ttl=64 time=1.76 ms

64 bytes from 192.168.56.101: icmp_seq=5 ttl=64 time=1.29 ms

^C

— 192.168.56.101 ping statistics —

5 packets transmitted, 5 received, 0% packet loss, time 4023ms

rtt min/avg/max/mdev = 0.945/1.984/3.161/0.850 ms
```

2. Start sshd in debugmodus (voor live logging tijdens aanval):

```
sudo /usr/sbin/sshd -ddd
```

osboxes@osboxes:~\$ sudo /usr/sbin/sshd

Als je een fout zou krijgen zoals: Bind to port 22 failed: Address already in use Stop dan de actieve SSH-service:

```
sudo systemctl stop ssh
sudo systemctl disable ssh
```

Na het uitvoeren van deze commando's zou alles correct moeten verlopen.

3. Voer de exploit uit

op de doelmachine via netwerkinterface eth1 worden met 200 gelijktijdige verbindingen geconecteerd om de race condition te triggeren.

```
python3 CVE-2024-6387.py exploit -T 192.168.56.101 -p 22 -n eth1 -s 200
```

```
File Actions Edit View Help

(osboxes® osboxes)-[~/Downloads]

$ python3 CVE-2024-6387.py exploit -T 192.168.56.101 -p 22 -n eth1 -s 200 -t 3
```

4. Monitor ondertussen de debug-output in Debian:

Let op onderstaande signalen in de debug-output, die wijzen op succesvolle exploitatie.

- padding error
- o ssh_dispatch_run_fatal
- message authentication code incorrect
- o killing privsep child

```
debug3: send packet: type 20 [preauth]
debug1: SSH2_MSG_KEXINIT sent [preauth]
padding error: need 37 block 8 mod 5 [preauth]
debug3: send packet: type 1 [preauth]
ssh_dispatch_run_fatal: Connection from 192.168.56.102 port 36164: message authentication code incor
rect [preauth]
debug1: do_cleanup [preauth]
debug1: monitor_read_log: child log fd closed
debug3: mm_request_receive: entering
debug1: do_cleanup
debug1: Killing privsep child 1910
osboxes@osboxes:~$ _
```

2. Cheatsheet

Handige commando's en referenties:

Commando	Omschrijving
ssh -p 2222 osboxes@127.0.0.1	Maakt verbinding met de Debian VM via poort 2222 (port forwarding)
nano install_openssh_8.5p1.sh	Opent een nieuw scriptbestand om OpenSSH 8.5p1 te installeren
<pre>chmod +x install_openssh_8.5p1.sh</pre>	Maakt het script uitvoerbaar
<pre>sudo ./install_openssh_8.5p1.sh</pre>	Voert het installatiescript uit als root
sudo /usr/sbin/sshd -ddd	Start sshd in debugmodus voor live monitoring van de aanval
<pre>sudo systemctl stop ssh && sudo systemctl disable ssh</pre>	Stopt en schakelt de standaard SSH-service uit om conflicten te vermijden
ping 192.168.56.101	Test de netwerkverbinding vanaf Kali naar Debian
python3 CVE-2024-6387.py exploit -T 192.168.56.101 -p 22 -n eth1 -s 200	Voert de exploit uit vanaf Kali met 200 gelijktijdige verbindingen

Zeker, hier is een nog duidelijker en verder opgesplitste versie:

3. Mogelijke gevaren en oplossingen

3.1 Gevaren

• Race condition in OpenSSH Een fout in de sshd-component veroorzaakt een race condition die remote code execution zonder authenticatie mogelijk maakt.

- Volledige roottoegang Aanvallers kunnen hiermee volledige controle over het systeem krijgen.
- **Massale exploitatie** De aanval kan automatisch en op grote schaal plaatsvinden, vooral op publiek toegankelijke servers.
- Moeilijke detectie Door het karakter van de race condition blijven sporen in logbestanden vaak uit, waardoor detectie lastig is.

3.2 Oplossingen

• Toegangsbeperking

- o SSH-toegang beperken tot VPN of specifieke IP-adressen.
- Firewallregels toepassen om verbindingen te reguleren.

• Configuratie-aanpassingen

- Verlaag LoginGraceTime in sshd_config.
- Beperk MaxStartups om overbelasting tegen te gaan.

• Beveiligingsmaatregelen

- Gebruik monitoring om verdachte SSH-activiteit te signaleren.
- o Activeer SELinux of AppArmor voor extra systeembeveiliging.
- o Zet fail2ban in om brute-force aanvallen te blokkeren.

Voorbereiding en beheer

- Maak regelmatige back-ups en sla deze extern op.
- Gebruik een extern logging systeem (SIEM) voor analyse en detectie.
- Automatiseer patchbeheer om updates snel toe te passen.

Strategische aanpak

Implementeer een Zero Trust beveiligingsmodel voor een gelaagde verdediging.

4. Samenvatting

Deze handleiding beschrijft het opzetten en testen van de kwetsbaarheid **CVE-2024-6387** op een Debian 11 (32-bit) VM, aangevallen vanuit een Kali Linux VM. Het doel is om de race condition in OpenSSH 8.5p1 te demonstreren.

4.1 Aanmaken

- 1. **Download** de Kali Linux (64-bit) en Debian 11 Bullseye (32-bit) VDI-bestanden van osboxes.org.
- 2. **Pak** de gedownloade .7z-bestanden uit naar een bekende map, bijvoorbeeld /vdi-files/Kali/ en /vdi-files/Debian/.

- 3. **Pas** in het script Build-VM.sh de paden aan naar de uitgepakte VDI-bestanden.
- 4. **Zorg** dat VBoxManage via de terminal toegankelijk is (voeg het pad toe aan je PATH).
- 5. **Voer** het script Build-VM. sh uit om de VM's automatisch aan te maken en configureren in VirtualBox.
- 6. Start de VM's handmatig via de VirtualBox GUI.
- 7. Log in met gebruikersnaam en wachtwoord osboxes / osboxes.org.

4.2 Aanval

- Start beide VM's (Kali & Debian) in VirtualBox
- Installeer OpenSSH 8.5p1 op Debian via script
- Sluit SSH-verbinding met Debian zodat poort 22 vrij is voor de aanval
- Start sshd in debugmodus op Debian

```
sudo /usr/sbin/sshd -ddd
```

• Voer exploit uit vanaf Kali

```
python3 CVE-2024-6387.py exploit -T 192.168.56.101 -p 22 -n eth1 -s 200
```

- Observeer in Debian de volgende signalen (debug-output):
 - padding error
 - message authentication code incorrect
 - ssh_dispatch_run_fatal
 - killing privsep child

5. Opmerkingen

- De gebruikte PoC werkt enkel op **32-bit Linux-systemen** met **glibc** en de kwetsbare versie van OpenSSH (8.5p1). De meeste moderne 64-bit systemen zijn hiermee niet kwetsbaar.
- Voor een succesvolle demonstratie is het cruciaal dat sshd manueel wordt gestart (bijv. met sshd -ddd) zodat je live kunt observeren wat er gebeurt.
- Tijdens de aanval mogen er **geen actieve SSH-sessies** zijn, anders kan het exploit-effect (zoals race condition of crash) uitblijven.
- De CVE richt zich voornamelijk op **pre-auth heap corruptie**, met aangepaste payloads zou dit potentieel tot **Remote Code Execution** kunnen leiden.

!!! Deze GitHub-repository is uitsluitend bedoeld voor educatieve doeleinden en mag niet worden gebruikt voor kwaadwillige of illegale activiteiten.

6. Makers van het Project

Deze handleiding is gebaseerd op de resources en scripts die beschikbaar zijn op de GitHub-pagina van het project:

- GitHub Repository: NPE-Cybersecurity
- Auteurs: Joran Van Goethem, Leander Counye en Vincent Cammaert

6. Bron van het Python-script

Het Python-script CVE-2024-6387.py is geïnspireerd door de repository van de volgende auteur:

• GitHub Repository: CVE-2024-6387 Exploit

• Auteur: Karmakstylez