

Winning Space Race with Data Science

Ken Ely 27 October 2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Collected and cleaned Falcon 9 launch data (sourced from API and Wikipedia)
- Conducted EDA using Python, SQL, and interactive dashboards
- Built classification models (LR, SVM, Decision Tree, KNN) with hyperparameter tuning
- Successfully identified parameters that influenced landing success
- Developed machine learning models that could predict landing success from those parameters

Introduction

- SpaceX's Falcon 9 launches cost \$62M, much cheaper than competitors (\$165M+)
- Savings come from reusing the first stage of the rocket
- Thus, predicting first-stage landing success helps estimate launch costs
- Can we predict whether the Falcon 9 first stage will land successfully?

Methodology

Executive Summary

- Data collection methodology
 - Data gathered from SpaceX REST API
- Perform data wrangling
 - Landing outcomes converted to classes y (either 0 or 1)
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Data preprocessed and split into training and testing sets
 - Grid search used to find hyperparameters for each model
 - Confusion matrices used to evaluate models

Data Collection

- Two means of data collection were explored for this project:
 - Gathering data from the SpaceX REST API (i.e., Representational State Transfer Application Programming Interface)
 - Webscraping the "List of Falcon 9 and Falcon Heavy launches" Wikipedia page

Data Collection - SpaceX API

- Data obtained from the SpaceX
 REST API using a GET request to
 https://api.spacexdata.com/v4/launc
 hes/past
- Since there was data from both
 Falcon 1 and Falcon 9 launches, the
 data had to be filtered
- <u>Link</u> to completed SpaceX API calls notebook on GitHub

Data Collection - Scraping

- "BeautifulSoup" Python library used to scrape the <u>"List of Falcon</u>
 9 and Falcon Heavy launches" <u>Wikipedia page</u>
- Table containing launch records was identified, and was converted into a Pandas dataframe
- <u>Link</u> to completed web scraping notebook on GitHub

Data Wrangling

- Using the data collected earlier and the .value_counts() method, the following were evaluated:
 - Number of launches on each site
 - Occurrence of each orbit type
 - Occurrence of each mission outcome
- An additional variable "Class" was appended to the dataframe, which indicates whether the first stage of a particular launch landed successfully
- <u>Link</u> to completed data wrangling notebook on GitHub

EDA with Data Visualization

• Charts plotted:

- Flight Number vs Launch Site shows launch site used for each flight
- Payload vs Launch Site shows masses of payloads launched from each launch site
- Success Rate vs Orbit Type shows how successful flights are by the orbit they used
- Flight Number vs Orbit Type shows how success rates with different orbit types have changed with time
- Payload vs Orbit Type shows how successful each orbit rate is with different masses of payloads
- Launch Success Yearly Trend shows the average launch success trend
- <u>Link</u> to completed EDA with data visualization notebook on GitHub

EDA with SQL

- Queries performed:
 - Names of the unique launch sites
 - Records for CCAFS launch sites
 - Total payload mass carried by boosters launched by NASA (CRS)
 - Average payload mass carried by booster version F9 v1.1
 - Date of first successful landing outcome in ground pad
 - Boosters which have success in drone ship and have payload mass between 4-6 tonnes
 - Total number of successful and failure mission outcomes
 - Booster versions which have carried the maximum payload mass
 - Failed landings in 2015
 - Count of landing outcomes between 4 June 2010 and 20 March 2017
- <u>Link</u> to completed EDA with EDA with SQL notebook on GitHub

Build an Interactive Map with Folium

- Added circles to indicate locations of launch sites
- Added colour-coded markers to indicate individual rocket launches
- Added lines to show proximity of launch site CCAFS SLC-40 to its nearest coastline, railway, highway, and city
- Link to completed interactive map notebook on GitHub

Build a Dashboard with Plotly Dash

- Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose
- Added a pie chart which shows the ratio of successful to failed launches from a specified launch site
 - Choosing "All Sites" will show the number of successful launches by site
 - · Allows the success rates of different launch sites to be compared
- Added a scatter plot which shows the correlation between payload and success for all sites
 - Range slider above it allows the user to narrow down the range of payloads they want to view
 - Dots colour-coded based on booster version used on a particular launch
 - Allows the success rates of different payload ranges and also booster versions to be compared
- Link to completed Plotly Dash lab on GitHub

Predictive Analysis (Classification)

- Data is first preprocessed and split into a "train" set and a "test" set
- Logistic Regression, Support Vector Machine, Decision Tree Classifier, and k-Nearest Neighbours classification models were investigated
- For each model:
 - The best parameters for the model are evaluated using GridSearchCV
 - The score method is used to calculate the accuracy of the model on the test data
 - A confusion matrix is generated to allow the effectiveness of the model to be evaluated
- <u>Link</u> to completed predictive analysis lab on GitHub

Results

- Exploratory Data Analysis (EDA)
 - Launch success highest at KSC LC-39A (76.9%)
 - Success rate increased steadily from 2013–2017
 - Optimal payload range: 2–4 tonnes
 - Best orbits: ES-L1, GEO, HEO, SSO (100% success)
- Interactive Analytics (Dash & Folium)
 - Folium map: Visualized launch sites, success/failure by location
 - Plotly Dash dashboard: Compared success rates by site, payload, and booster version
- Predictive Analysis
 - Tested LR, SVM, Decision Tree, KNN models
 - SVM and Logistic Regression achieved highest accuracy
 - Models effectively predicted landing success using launch features

Flight Number vs. Launch Site

- CCAFS SLC 40 is the most used launch site
- For flights 27-41, KSC LC 49A temporarily became the main launch site used
- VAFB SLC 4E used occasionally

Payload vs. Launch Site

- Most payloads are under 8 tonnes
- VAFB SLC 4E not used for payloads greater than 10 tonnes
- KSC LC 39A not used for payloads less than 2 tonnes

Success Rate vs. Orbit Type

- ES-L1, GEO, HEO and SSO orbits have the highest success rates (100%)
- VLEO also comes in close (85.7%)

Flight Number vs. Orbit Type

- Rate of success increases with flight number in LEO orbit
- Conversely, no relationship between success rate and flight number in GTO orbit

Payload vs. Orbit Type

• Heavier payloads have a higher success rate for PO, LEO and ISS orbits

Launch Success Yearly Trend

- Success rate increased continuously from 2013-2017
 - Stable between 2014-2015

All Launch Site Names

- Found the names of all unique launch sites in the dataset
- Launch sites:
 - CCAFS LC-40
 - VAFB SLC-4E
 - KSC LC-39A
 - CCAFS SLC-40

Launch Site Names Begin with 'CCA'

• Extracted 5 records where launch sites begin with 'CCA':

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_ _KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
4/06/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
8/12/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	. 0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
8/10/2012	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
1/03/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

• Total payload carried by boosters from NASA evaluated to be 45,596 kg

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1 evaluated to be
 2928.4 kg

First Successful Ground Landing Date

 First successful landing outcome on ground pad was found to have occurred on 22 December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

- Boosters which have successfully landed drone ships with payload masses between 4-6 tonnes:
 - F9 FT B1022
 - F9 FT B1026
 - F9 FT B1021.2
 - F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

• Evaluated the frequency of each mission outcome:

Mission_Outcome	count(*)	
Failure (in flight)	1	
Success	98	
Success	1	
Success (payload status unclear)	1	

Boosters Carried Maximum Payload

• Found the boosters which have carried the maximum payload mass:

 F9 B5 B1048.4

- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4

- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

2015 Launch Records

• Found the failed drone ship landings from 2015:

substr(Date,6,2)	Landing_Outcome	Booster_Version	Launch_Site
1	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
4	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Evaluated the frequency of landing outcomes for flights between 4 June 2010 and 20 March 2017 (and listed them in descending order):

Landing_Outcome	count(*)
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

Map of launch sites

- All launch sites are in proximity to the equator line
 - Allows rockets to harness the Earth's rotation better
- All launch sites are near coasts
 - Gives rockets an uninhabited place to travel over (safer in the event the rocket fails)

Map of rocket launches

- Each marker indicates the location of a rocket launch
- Makers colour-coded to indicate the success/failure of the launch (red = failure, green = success)
- From this map, it was evident that KSC LC-39A had the highest launch success rate

Proximity of launch sites to key features

- Launch sites are close to railways and highways
 - Allows rocket components and other goods to be transported onto the launch sites
 - · Also allows staff and visitors to commute to and from the site
- Launch sites are also close to coastlines
 - Gives rockets an uninhabited place to travel over (safer in the event the rocket fails)
- Launch sites keep a distance from cities, but are also not too far away from them
 - They are noisy and hazardous sites that need large amounts of land
 - However, they also depend on a large labor force to operate

Total successful launches by site

- Most successful launches occurred at KSC LC-39A
- CCAFS SLC-40 has the least number of successful launches

Highest launch success ratio

- KSC LC-39A has the highest launch success ratio of all launch sites investigated
- 76.9% of launches at the site were successful.

Payload vs launch outcome

- The 2-4 ton payload range has the highest launch success rate
- The O-2 ton and >6 ton payload ranges had the lowest launch success rates
- Of all the booster version categories, "FT" has the highest launch success rate

Correlation between payload and success for all sites

Classification Accuracy

- Support Vector Machine (SVM) was the machine learning model with the highest classification accuracy
 - Test score tied with Logistic Regression (LR)
 - SVM had a slightly higher validation score

Confusion Matrix

- Both LR and SVM achieved the results shown on the right
- Both of these models successfully predicted all the successful landings in the dataset, but only correctly predicted half of the failed landings.

Conclusions

- Landing success can be effectively predicted using machine-learning models
- SVM and Logistic Regression were the most reliable classifiers
- Launch success is influenced by orbit type, payload mass, and booster version
- Predictive insights can help estimate launch costs and guide competitive pricing strategies

Appendix

- GitHub repository containing all files
- SpaceX REST API (Accessed 29 Sept. 2025)
- List of Falcon 9 and Falcon Heavy launches, Wikipedia (Accessed 29 Sept. 2025)

