霍尔效应实验及磁阻测量

简要报告

2017011620 计 73 李家昊 实验日期: 2019/5/30

1 实验目的

- (1) 了解霍尔效应的产生原理以及副效应的产生原理。
- (2) 掌握霍尔系数的测量方法, 学习消除霍尔副效应的实验方法。
- (3) 研究半导体材料的电阻值随磁场的变化规律。

2 数据处理

2.1 $U_H \sim I$ 关系曲线及 K_H, R_H, n 的计算

2.1.1 U_H~I关系曲线

实验中调节 $I_M = 500 \text{ mA}$,查表得 $B_0 = 122.3 \text{ mT}$,利用

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

计算出UH, 整理实验数据如下

I/mA	2.00	3.00	4.00	5.00	6.00	7.00	8.00
$U_1(+B, +I_H)/mV$	-46.8	-70.3	-93.8	-117.1	-140.6	-164.3	-188.3
$U_2(+B, -I_H)/mV$	46.8	70.2	93.6	116.8	140.1	163.4	186.7
$U_3(-B, -I_H)/mV$	-47.3	-71.0	-94.8	-118.4	-142.2	-166.5	-190.5
$U_4(-B, +I_H)/mV$	47.3	71.0	94.6	118.1	141.8	165.1	188.4
U _H /mV	-47.1	-70.6	-94.2	-117.6	-141.2	-164.8	-188.5

用 Excel 作出 $U_H \sim I$ 关系图像如下图

图 1 霍尔电压UH与工作电流I的线性拟合图像

拟合直线方程为

$$U_H = a + k \cdot I = 0.088 - 23.559 \cdot I \text{ (mV)}$$

其中 $r^2 = 0.999998$, 拟合程度较好。斜率 $k = -23.559 \,\Omega$, 其不确定度为

$$\Delta_k = t_P(v)S_k = t_P(n-2) \cdot k \cdot \sqrt{\frac{r^{-2}-1}{n-2}} = -0.0383 \,\Omega$$

2.1.2 K_H的计算

由公式

对比系数得

$$U_H = K_H I B$$

$$K_H = \frac{k}{R} = -192.633 \text{ m}^2/\text{C}$$

不确定度为

$$\Delta_{K_H} = \frac{1}{B} \cdot \Delta_k = -0.313 \text{ m}^2/\text{C}$$

最终结果为

$$K_H = -(192.6 \pm 0.3) \text{ m}^2/\text{C}$$

2.1.3 R_H的计算

由公式

$$U_H = R_H \cdot \frac{IB}{d}$$

对比系数得

$$R_H = \frac{kd}{R} = -5.779 \times 10^{-4} \text{ m}^3/\text{C}$$

不确定度为

$$\Delta_{R_H} = \frac{d}{R} \cdot \Delta_k = -9.395 \times 10^{-7} \text{ m}^3/\text{C}$$

最终结果为

$$R_H = -(5.779 \pm 0.009) \times 10^{-4} \text{ m}^3/\text{C}$$

2.1.4 n的计算

由公式

$$R_H = \frac{1}{ne}$$

得

$$n = \frac{1}{eR_H} = -1.080 \times 10^{22} \text{ m}^{-3}$$

不确定度为

$$\Delta_n = n \sqrt{\left(\frac{1}{R_H}\right)^2 \left(\Delta_{R_H}\right)^2} = -1.682 \times 10^{19} \text{ m}^{-3}$$

最终结果为

$$n = -(1.080 + 0.002) \times 10^{22} \text{ m}^{-3}$$

2.1.5 测定不等位效应 U_0

由实验原理

$$U = f(U_H, U_E, U_N, U_R, U_0, U_S) = U_H + U_E + U_N + U_R + U_0 + U_S$$
其中 U_E 很小,可以忽略,则

$$U = U_H + U_N + U_R + U_0 + U_S$$

从而

$$\begin{split} &U_1(+B,+I_H) = +U_H + U_N + U_R + U_0 + U_S \\ &U_2(+B,-I_H) = -U_H + U_N + U_R - U_0 + U_S \\ &U_3(-B,-I_H) = +U_H - U_N - U_R - U_0 + U_S \\ &U_4(-B,+I_H) = -U_H - U_N - U_R + U_0 + U_S \end{split}$$

可得

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$
$$U_0 = \frac{1}{4}(U_1 - U_2 - U_3 + U_4)$$

计算不等位效应如下表

I/mA	2.00	3.00	4.00	5.00	6.00	7.00	8.00
$U_1(+B, +I_H)/mV$	-46.8	-70.3	-93.8	-117.1	-140.6	-164.3	-188.3
$U_2(+B, -I_H)/mV$	46.8	70.2	93.6	116.8	140.1	163.4	186.7
$U_3(-B, -I_H)/mV$	-47.3	-71.0	-94.8	-118.4	-142.2	-166.5	-190.5
$U_4(-B, +I_H)/mV$	47.3	71.0	94.6	118.1	141.8	165.1	188.4
U _H /mV	-47.1	-70.6	-94.2	-117.6	-141.2	-164.8	-188.5
U ₀ /mV	0.25	0.375	0.5	0.65	0.825	0.975	0.975

2.2 标定 I_M 与B的关系

实验中调节 $I = 4.00 \, \text{mA}$,利用公式

$$U_{H} = \frac{1}{4}(U_{1} - U_{2} + U_{3} - U_{4})$$

$$B = \frac{U_{H}}{K_{H}I}$$

计算出磁感应强度,整理实验数据如下

I _M /mA	$U_1(+B, +I_H)$	$U_2(+B, -I_H)$	$U_3(-B, -I_H)$	$U_4(-B, +I_H)$	U _H /mV	B/mT
	/mV	/mV	/mV	/mV		
0	0.7	-1.0	-0.8	0.6	0.08	-0.10
100	-18.5	18.3	-19.5	19.3	-18.90	24.52
200	-37.0	36.8	-38.3	38.1	-37.55	48.73
300	-55.8	55.6	-57.0	56.9	-56.33	73.10
400	-74.9	74.7	-75.9	75.7	-75.30	97.72
500	-93.2	93.1	-94.6	94.5	-93.85	121.80
600	-111.9	111.8	-113.5	113.4	-112.65	146.20
700	-131.5	131.4	-132.5	132.4	-131.95	171.22
800	-149.8	149.7	-151.2	151.1	-150.45	195.25

作出 $B \sim I_M$ 图像如下图

图 2 磁感应强度B与激磁电流 I_M 的线性拟合图像可以看出,B与 I_M 大致呈线性关系,对其进行线性拟合,得到方程 $B=-0.070+0.244\cdot I_M~(\text{mT})$

其中 $r^2 = 0.999991$,拟合程度较好。

2.3 研究磁阻器件的磁电阻效应

实验中调节 $I_{CD}=1.50\,\mathrm{mA}$,利用

$$B = -0.070 + 0.244 \cdot I_M \text{ (mT)}$$

 $R = \frac{U_{CD}}{I_{CD}}$

计算B,R(B), 整理实验数据如下

I_M/mA	U_{CD}/V	B/mT	$R(B)/\Omega$	$\Delta R/R(0)$
0	0.5224	-0.07	348.267	0
50	0.5292	12.13	352.800	0.013
100	0.5468	24.33	364.533	0.047
150	0.5732	36.53	382.133	0.097
200	0.6077	48.73	405.133	0.163
250	0.6494	60.93	432.933	0.243
300	0.6950	73.13	463.333	0.330
350	0.7376	85.33	491.733	0.412
400	0.7766	97.53	517.733	0.487
500	0.8258	121.93	550.533	0.581
600	0.8638	146.33	575.867	0.654
700	0.8949	170.73	596.600	0.713
800	0.9219	195.13	614.600	0.765
900	0.9517	219.53	634.467	0.822
1000	0.9801	243.93	653.400	0.876

作出ΔR/R(0)~B的图像如下

图 3 ΔR/R(0)~B图像

对前7个数据点进行二次拟合,得方程

$$\frac{\Delta R}{R(0)} = 0.000051 B^2 + 0.000891 B - 0.002572$$

其中 $r^2 = 0.999512$, 拟合程度较好。

对后6个数据点进行线性拟合,得方程

$$\frac{\Delta R}{R(0)} = 0.0024 B + 0.2995$$

其中 $r^2 = 0.997$, 拟合程度较好。

2.4 磁场间隙水平方向磁场的分布曲线 $B\sim x$

调节 $I_M=500~\mathrm{mA},I=4.00~\mathrm{mA}$,利用公式

$$U_{H} = \frac{1}{4}(U_{1} - U_{2} + U_{3} - U_{4})$$

$$B = \frac{U_{H}}{K_{H}I}$$

求出B, 整理实验数据如下

x/mm	$U_1(+B, +I_H)$	$U_2(+B, -I_H)$	$U_3(-B, -I_H)$	$U_4(-B, +I_H)$	U _H /mV	B/mT
	/mV	/mV	/mV	/mV		
0	-29.4	29.2	-31.1	30.9	-15.550	20.181
2	-30.7	30.5	-31.7	31.5	-31.100	40.362
4	-32.6	32.4	-33.6	33.4	-33.000	42.828
6	-35.4	35.1	-36.4	36.2	-35.775	46.429
8	-40.8	40.6	-41.8	41.6	-41.200	53.470
10	-52.1	51.8	-53.0	52.9	-52.450	68.070
12	-70.6	70.5	-71.6	71.5	-71.050	92.209
14	-86.4	86.2	-87.4	87.3	-86.825	112.682
16	-92.6	92.5	-93.6	93.5	-93.050	120.761
18	-92.4	92.3	-93.4	93.3	-92.850	120.501
20	-93.3	93.1	-94.3	94.1	-93.700	121.604
22	-92.5	92.3	-93.5	93.4	-92.925	120.598
24	-92.8	92.6	-93.8	93.7	-93.225	120.988

		I	I	I		
26	-92.5	92.3	-93.5	93.4	-92.925	120.598
30	-93.2	93.0	-94.2	94.1	-93.625	121.507
35	-92.4	92.2	-93.4	93.2	-92.800	120.436
40	-92.7	92.6	-93.8	93.6	-93.175	120.923
45	-92.5	92.3	-93.5	93.4	-92.925	120.598
48	-92.6	92.4	-93.6	93.4	-93.000	120.696
50	-91.8	91.7	-92.8	92.7	-92.250	119.722
52	-85.5	85.3	-86.5	86.4	-85.925	111.514
54	-66.5	66.3	-67.5	67.4	-66.925	86.856
56	-50.6	50.3	-51.5	51.3	-50.925	66.091
58	-42.2	42.0	-43.2	43.0	-42.600	55.286

作出磁场分布曲线B~x图像如下

图 4 磁场分布曲线B~x图像

由图可知, 当x < 15 mm时, 磁感应强度B随x增大而增大; 当15 mm $\leq x < 50$ mm时, 磁感应强度B保持不变; 当50 mm $\leq x$ 时, 磁感应强度B随x增大而减小。

2.5 判断载流子类型

霍尔片接线方式及磁场方向如下图

图 5 霍尔片接线图

由左手定则,载流子受洛伦兹力向 2 端口移动,并聚集在 2 端口附近,而实验所测得的 $U_1(+B,+I_H)$ 始终为负值,说明 2 端口电势低,4 端口电势高。因此,载流子为电子。

2.6 计算载流子迁移率

公式推导如下

$$\mu = \frac{v}{E} = \frac{I/nebd}{U_{34}/l} = R_H \cdot \frac{l}{bd} \cdot \frac{I}{U_{34}}$$

得到

$$U_{34} = \frac{R_H l}{b d \mu} \cdot I$$

因此,只需要测量多组 (U_{34},I) 数据,即可计算出 μ 。

实验中调节 $I_M=500~\mathrm{mA}$,实验数据整理如下

I/A	0.002	0.003	0.004	0.005	0.006	0.007	0.008
U_{34}/V	1.543	2.330	3.121	3.926	4.745	5.593	6.466

作出U34~I的线性拟合图像如下图

图 6 U34与I的线性拟合图像

直线方程

$$U_{34} = a + kI = -0.132 + 818.54 \cdot I \text{ (V)}$$

对比系数得

$$\mu = \frac{R_H l}{b d k} = -0.706 \, \mathrm{T}^{-1}$$

斜率k的不确定度

$$\Delta_k = t_P(v)S_k = t_P(n-2) \cdot k \cdot \sqrt{\frac{r^{-2}-1}{n-2}} = 18.819 \,\Omega$$

可得

$$\Delta_{\mu} = \mu \sqrt{\left(\frac{1}{R_H}\right)^2 \cdot (R_H)^2 + \left(\frac{1}{k}\right)^2 \cdot (\Delta_k)^2} = -0.0162 \text{ T}^{-1}$$

最终结果为

$$\mu = -(0.706 \pm 0.016) \,\mathrm{T}^{-1}$$

3 思考题

1. 如何计算实验中的霍尔片的载流子迁移率?

答: 公式推导如下

$$\mu = \frac{v}{E} = \frac{I/nebd}{U_{34}/l} = R_H \cdot \frac{l}{bd} \cdot \frac{I}{U_{34}}$$

得到

$$U_{34} = \frac{R_H l}{h d u} \cdot I$$

因此, 只需要测量多组 (U_{34},I) 数据, 即可计算出 μ 。

2. 如何观察不等位效应? 如何消除不等位效应带来的影响?

答:将励磁电流设为 0,此时无外加磁场,但霍尔片 1、2 两点之间仍存在电位差 U_0 ,改变工作电流方向,电位差 U_0 方向相反,即观察到了不等位效应。测出 $U_1(+B,+I_H),U_2(+B,-I_H),U_3(-B,-I_H),U_4(-B,+I_H),$ 利用公式

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

计算霍尔电压UH, 即可消除不等位效应, 原因已在数据处理部分给出。

3. 如何利用霍尔效应测量磁场?

答:根据公式

$$B = \frac{U_H}{K_H I}$$

只要知道霍尔片灵敏度 K_H ,测出 U_H ,I,即可计算出磁感应强度B。

4 实验总结

- (1) 通过本次实验, 我加深了对霍尔效应及其副效应的理解, 掌握了测量霍尔系数的方法, 认识到半导体材料的电阻值随磁场的变化规律。
- (2) 通过不确定度的计算,提高了自己的数据处理能力。
- (3) 体会到科学研究的严谨性和精确性,认识到实验在科研中的重要作用。
- (4) 感谢老师的详细讲解和耐心指导!

原始数据表格

实验1 Bo=122.3 mT. IM=500mA

I/mA U _H /mV	2.00	3.00	4.00	5.00	6.00	7.00	8.00
$U_{I}(+B, +I_{H})/mV$	-46.8	-70,3	-93.8	-117.1	-140,6	-164.3	-188.3
$U_2(+B, -I_H)/mV$	46.8	70.2	93.6	116.8	140.1	163.K	186.7
U ₃ (-B, -I _H)/mV	-47.3	-71.0	-94.8	-118.4	-142,2	-166.5	-190.5
$U_4(-B, +I_H)/mV$	47.3	71.0	94.6	118.	141.8	165.1	188.4

实验2 I=4.00mA

I _M /mA	0	100	200	300	400	500	600	700	800
$U_1(+B, +I_H)/mV$	٥, ٦	-18.5	-37.0	-57.8	-)49	-93.2	-111.9	-131.5	-149.8
$U_2(+B, -I_H)/mV$	-1.0	18.3	36,8	55.6	74.7	93.1	111.8	131.4	149.7
U ₃ (-B, -I _H)/mV	0.8	-19.5	-38.3	-57.0	-75.9	-94.6	-113.5	-132,5	-15/.2
U ₄ (-B, +I _H)/mV	0,2 6	19.3	38.1	56. 9	75.7	94.5	113.4	132.4	15/1

实验3 Ico=1.50mA

I _M /mA	0	50	100	150	200	250	300	350
U _{CD} /V	0.522/	0.5292	0.5k68	0.5732	0.6077	0.6494	0.6950	6. 7376
I _M /mA	400	500	600	700	800	900	1000	
U _{CD} /V	0.7766	0.8258	0.8638	0.8945	0.9219	0.9517	0.9801	

实验4 Im=500mA I=4.00mA

x/mm	0,0	2.0	φo	6.0	f.o	(0,0	120	140	(p o
$U_I(+B, +I_H)/mV$			-32.6						
$U_2(+B, -I_H)/mV$	29.2	30.5	32.4	35.1	40.6	51.8	70.5	86.2	92.5
$U_3(-B, -I_H)/mV$	-31.]								
U ₄ (-B, +I _H)/mV	30.9	31.5	33.¥	36.2	41.6	52.9	71.5	87.3	93.5

x/mm	18.0	20,0	72.0	W.o	26.0	30,0	35.0	40,0	45,0
$U_1(+B, +I_H)/mV$	-92. K	-93.3	-92.5	-92.8	-925	-93,2	-92.¥	-92.7	-92.5
$U_2(+B, -I_H)/mV$	92.3	93.1	923	92.6	92.3	93.0	92.2	92.6	92.3
U ₃ (-B, -I _H)/mV	-93.4	-94.3	-93.5	-33.8	-93.5	-9K2	-93.4	-93.8	-93.5
$U_4(-B, +I_H)/mV$	94.3	94.1	93.4	93.7	91.4	94.1	93.2	93.6	93.4

x/mm	48.0	20,0	\$2.0	54.0	56.0	58.0		
$U_{I}(+B, +I_{H})/mV$	-92.6	-31.8	-85.5	-66.5	-50,6	-41.2		
$U_2(+B, -I_H)/mV$	92.4	91.7	85.3	66.3	50.3	42.0		
U ₃ (-B, -I _H)/mV	-93.6	- 92. g	-86.5	-67.5	-51.5	-43.2		
U ₄ (-B, +I _H)/mV	91.4	92.7	J6.4	67.4	51.3	43.0		

实验5

实验6
$$M = \frac{U}{E}$$

$$I_{M} = 500 \text{ MA}$$

$$T_{MA} = 0 \quad 100 \quad 2.00 \quad 200 \quad 400 \quad 5.00$$