- 1. Book Problems: 2.37, 2.39 and 2.46
- (2.37) Find the minimum cost SOP and POS forms for $f(x_1, x_2, x_3) = \sum m(1, 2, 3, 5)$

Therefore, we have the simplified (minimum cost) SOP and POS equations:

$$SOP = \overline{x_1}x_2 + \overline{x_2}x_3$$

$$POS = (\overline{x_1} + \overline{x_2})(x_2 + x_3)$$

(2.39) Find the minimum cost SOP and POS forms for $f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 2, 4, 5, 7, 8, 9, 10, 12, 14, 15)$

Therefore, we have the simplified (minimum cost) SOP and POS equations:

$$SOP = x_1 x_2 \overline{x_3} x_4 + \overline{x_2} x_3 x_4 + \overline{x_1} x_2 x_3 \overline{x_4}$$

$$POS = (x_2 + x_3)(x_1 + \overline{x_2} + \overline{x_4})(\overline{x_1} + \overline{x_2} + \overline{x_3})(x_3 + x_4)(x_2 + x_4)$$

(2.46) Derive a minimum cost realization of the four-variable function that is equal to 1 if exactly two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

x_3x_4						
x_1x_2	00	01	11	10		
00	0	0	1	0		
01	0	1	1	1		
11	1	1	0	1		
10	0	1	1	1		

As there are fewer 0's than 1's (5 < 10), the lowest cost formula will be the POS using maxterms, as shown here:

$$POS = (x_1 + x_2 + x_3)(x_1 + x_3 + x_4)(x_1 + x_2 + x_4)(\overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4})(x_2 + x_3 + x_4)$$

Also, note that
$$(\overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4}) = \overline{(x_1 x_2 x_3 x_4)}$$

 x_1

 x_2

 x_3

 x_4

 $2. \ Find \ the \ logic \ equation \ for \ the \ lowest \ cost \ circuit \ for \ the \ implementation \ below \ in \ SOP, \\ and \ then \ synthesize \ the \ circuit \ with \ only \ NAND \ gates.$

$$f(x_1, x_2, x_3, x_4) = \sum m(0, 4, 5, 6, 7, 14)$$

$$SOP = \overline{x_1}\overline{x_3}\overline{x_4} + \overline{x_1}x_2 + x_2x_3\overline{x_4}$$

- x_1

 x_2

- x_3

- x_4

3. Find the logic equation for the lowest cost circuit for the implementation below in POS, and then synthesize the circuit with only NOR gates.

$$f(x_1, x_2, x_3, x_4) = \prod M(0, 2, 6, 7, 8, 10, 12, 13, 14, 15)$$

$$POS = (x_2 + x_4)(\overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2})$$

$$x_1$$

 x_4

4. Given the following truth table (from HW1, HW2) use a Karnaugh map to:

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

x_2	x_3			
x_1	00	01	11	10
0	0	1	1	0
1	1	0	1	1

(a) Show that there are two minimized solutions for SOP form.

Both minimized forms are shown below, as there are two ways to select all the one's from the K-Map with a minimum number of selections.

$$f(x_1, x_2, x_3) = \overline{x_1}x_3 + x_1x_2 + x_1\overline{x_3}$$

$$f(x_1, x_2, x_3) = \overline{x_1}x_3 + x_2x_3 + x_1\overline{x_3}$$

(b) Show the minimized POS form.

$$x_{1}$$
 x_{2}
 x_{3}
 x_{1}
 x_{3}
 x_{4}
 x_{5}
 x_{1}
 x_{5}
 x_{1}
 x_{5}
 x_{5

$$f(x_1, x_2, x_3) = (x_1 + x_3)(\overline{x_1} + x_2 + \overline{x_3})$$