

IEEE SOLID-STATE CIRCUITS SOCIETY Where ICs are in IEEE

Solid-State Circuits Society

"Where ICs are in the IEEE"

Professional Organization

- ▶ 10,000 members
- ▶ 70+ chapters located worldwide
- Foster information exchange in electronics
 - Distinguished Lectures
 - Online tutorials
 - International and regional conferences
 - Journals & magazines
- Part of IEEE with 400,000 members

IEEE SOLID-STATE CIRCUITS SOCIETY

Publications & Conferences

Where ICs are in IEEE

Journal of Solid-State Circuits (JSSC)

- > #1 technical source for circuits
- Most downloaded IEEE journal articles
- > Top cited reference in US Patent applications

Solid-Sate Circuits Magazine

- Discusses historical milestones, trends and future developments
- > Articles by leaders from industry and academia in a tutorial and editorial style

International and Regional Conferences

- ➤ 4 International Sponsored Conferences
- Technically co-sponsored conferences

IEEE SOLID-STATE CIRCUITS SOCIETY

Where ICs are in IEEE

Chapter & DL Events

Swedish SOC Conference (May 2011)

Individual DL Presentations

SSCS-Italy: International Analog VLSI Workshop (September 2011)

Annual SSCS DL Tour

IEEE SOLID-STATE CIRCUITS SOCIETY

Where ICs are in IEEE

Why join IEEE and SSCS?

Knowledge ...

staying current with the fast changing world of solid-state circuit technology

Community ...

local and global activities, unparalleled networking opportunities, chapter activities, electing IEEE SSCS leadership

Profession ...

empowering members to build and own their careers, mentoring, making the world a better place

Recognition ...

Best Paper Awards, IEEE Fellow & Field Awards, Student Travel Grants & Pre-doctoral Achievement Award

. . .

IEEE SOLID-STATE CIRCUITS SOCIETY Where ICs are in IEEE

Getting Involved

- Organize chapter events
- Participate in & organize conferences
- As an author
- As a reviewer
- Compete in a student design contest
- Nominate senior members & fellows

Energy Limits in A/D Converters

A/D Converter ca. 1954

- ♦ 19" × 15" × 26"
- ♦ 150 lbs
- ◆ 500W
- **\$8,500.00**

 $P/f_s = 500W/50kS/s = 10mJ$

Courtesy, Analogic Corporation 8 Centennial Drive Peabody, MA 01960

http://www.analogic.com

Figure 4.3: 1954 "DATRAC" 11-bit, 50-kSPS SAR ADC Designed by Bernard M. Gordon at EPSCO

http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html

ADC Landscape in 2004

B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

ADC Landscape in 2012

B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.html

Observation

- ADCs have become substantially "greener" over the years
- Questions
 - How much more improvement can we hope for?
 - What are the trends and limits for today's popular architectures?
 - Can we benefit from further process technology scaling?

Outline

- Fundamental limit
- General trend analysis
- Architecture-specific analysis
 - Flash
 - Pipeline
 - -SAR
 - Delta-Sigma
- Summary

Fundamental Limit

$$SNR = \frac{\frac{1}{2} \left(\frac{V_{FS}}{2}\right)^2}{\frac{kT}{C}} \frac{f_s}{f_{snyq}} \qquad P_{min} = CV_{FS}f_s \cdot V_{DD} \qquad V_{DD} = V_{FS}$$

$$E_{min} = \frac{P_{min}}{f_{snyq}} = 8kT \cdot SNR$$

[Hosticka, Proc. IEEE 1985; Vittoz, ISCAS 1990]

ADC Landscape in 2004

ADC Landscape in 2012

Normalized Plot

Aside: Figure of Merit Considerations

- There are (at least) two widely used ADC figures of merit (FOM) used in literature
- Walden FOM
 - Energy increases 2x per bit (ENOB)
 - Empirical

$$FOM = \frac{Power}{2^{ENOB} \cdot f_{snyq}}$$

- Schreier FOM
 - Energy increases 4x per bit (DR)
 - Thermal
 - Ignores distortion

$$FOM = DR(dB) + 10log\left(\frac{BW}{P}\right)$$

FOM Lines

Best to use thermal FOM for designs above 60dB

Walden FOM vs. Speed

FOM "corner" around 100...300MHz

Schreier FOM vs. Speed

Energy by Architecture

Flash ADC

- High Speed
 - Limited by single comparator plus encoding logic
- High complexity, high input capacitance
 - Typically use for resolutions up to 6 bits

Encoder

- Assume a Wallace encoder ("ones counter")
- Uses ~2^B−B full adders, equivalent to ~ 5·(2^B−B) gates

$$\mathsf{E}_{\mathsf{enc}} \cong 5 \cdot \left(2^{\mathsf{B}} - \mathsf{B} \right) \cdot \mathsf{E}_{\mathsf{gate}}$$

Matching-Limited Comparator

Simple Dynamic Latch

Assuming $C_{cmin} = 5fF$ for wires, clocking, etc.

$$\sigma_{\text{VOS}}^2 \cong \frac{A_{\text{VT}}^2}{\text{WL}} = A_{\text{VT}}^2 \frac{C_c}{C_{ox}}$$

Offset

$$C_{c} = \frac{A_{VT}^{2}C_{ox}}{\sigma_{VOS}^{2}} + C_{cmin}$$

Required capacitance

$$3\sigma_{VOS} = \frac{1}{4} \frac{V_{inpp}}{2^B}$$

Confidence interval

$$B\cong \frac{SNR[dB]+3}{6}$$

3dB penalty accounts for "DNL noise"

$$\begin{aligned} \textbf{E}_{\text{comp}} & \cong \left(144 \cdot 2^{2B} \cdot \underbrace{C_{\text{ox}} A_{\text{VT}}^2}_{\text{ox}} \cdot \frac{V_{\text{DD}}^2}{V_{\text{inpp}}^2} + C_{\text{cmin}} V_{\text{DD}}^2 \right) \cdot \left(2^B - 1 \right) \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\$$

Typical Process Parameters

Process [nm]	A _{VT} [mV-μm]	C _{ox} [fF/μm²]	A _{VT} ² C _{ox} /kT	E _{gate} [fJ]
250	8	9	139	80
130	4	14	54	10
65	3	17	37	3
32	1.5	43	23	1.5

Comparison to State-of-the-Art

- [1] Van der Plas, ISSCC 2006
- [2] El-Chammas, VLSI 2010
- [3] Verbruggen, VLSI 2008

- [4] Daly, ISSCC 2008
- [5] Chen, VLSI 2008
- [6] Geelen, ISSCC 2001 (!)

Impact of Scaling

Impact of Calibration (1)

 Important to realize that only comparator power reduces

$$3\sigma_{\text{VOS}} = \frac{1}{4} \frac{V_{\text{inpp}}}{2^{\text{B-B}_{cal}}}$$

 $B_{\text{cal}}\!\cong 3$

Impact of Calibration (2)

Ways to Approach E_{min} (1)

- Offset calibrate each comparator
 - Using trim-DACs

[El-Chammas, VLSI 2010]

Ways to Approach E_{min} (2)

- Find ways to reduce clock power
- Example: resonant clocking

Raison D'Être for Architectures Other than Flash...

Pipeline ADC

- Conversion occurs along a cascade of stages
- Each stage performs a coarse quantization and computes its error (V_{res})
- Stages operate concurrently

Stage n

Throughput is set by the speed of one single stage

Pipelining – A Very Old Idea

Typical Stage Implementation

Simplified Model for Energy Calculation

- Considering the most basic case
 - Stage gain = $2 \rightarrow 1$ bit resolution per stage
 - Capacitances scaled down by a factor of two from stage to stage (first order optimum)
 - No front-end track-and-hold
 - Neglect comparator energy

Simplified Gain Stage Model

Feedback factor

Assumptions

Closed-loop gain = 2

Infinite transistor f_T ($C_{qs}=0$)

Thermal noise factor γ = 1, no flicker noise

Bias device has same noise as amplifier device

Linear settling only (no slewing)

$$C_{\text{eff}} = \frac{C}{2} (1 - \beta) + \frac{C}{2} = \frac{5}{6} C$$

$$N_{\text{out}} = 2\frac{1}{\beta} \frac{kI}{C_{\text{eff}}} = 6\frac{kI}{C_{\text{eff}}} = 5\frac{kI}{C}$$

Effective load capacitance

Total integrated output noise

Total Pipeline Noise

$$\begin{split} N_{\text{in,tot}} &= \frac{kT}{C} \left(1 + \frac{1}{2} \right) + 5\frac{kT}{C} \left\{ \frac{1}{2^2} + \frac{1}{\frac{1}{2}4^2} + \frac{1}{\frac{1}{4}8^2} + \dots \right\} \\ &= \frac{3}{2}\frac{kT}{C} + 5\frac{kT}{C} \left\{ \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \right\} \\ &\cong 4\frac{kT}{C} \end{split}$$

Key Constraints

$$SNR \cong \frac{\frac{1}{2} \left(\frac{V_{inpp}}{2}\right)^2}{4 \frac{kT}{C}}$$

Thermal noise sets C

$$\tau = \frac{C_{\text{eff}}}{\beta g_{\text{m}}} = \frac{T_{\text{s}}/2}{\ln\left(\frac{1}{\epsilon_{\text{d}}}\right)} \cong \frac{T_{\text{s}}/2}{\ln\left(\sqrt{\text{SNR}}\right)}$$

Settling time sets g_m

$$P = V_{DD} \frac{g_m}{\left(\frac{g_m}{I_D}\right)}$$

g_m sets power

Pulling It All Together

$$\begin{aligned} & \text{Settling} \\ & \text{"Number of τ"} \end{aligned} \end{aligned} \quad \begin{aligned} & \text{Pod penalty} \end{aligned}$$

$$E_{\text{pipe}} = 640 \cdot \text{kT} \cdot \text{SNDR} \cdot \text{In} \left(\sqrt{\text{SNDR}} \right) \cdot \left(\frac{V_{\text{DD}}}{V_{\text{inpp}}} \right)^2 \cdot \frac{1}{V_{\text{DD}}} \cdot \frac{1}{\frac{g_m}{I_{\text{D}}}} \end{aligned}$$

$$\begin{aligned} & \text{Excess noise} \\ & \text{Non-unity feedback} \\ & \text{factor} \end{aligned} \qquad \qquad \end{aligned} \quad \begin{aligned} & \text{Supply} \\ & \text{utilization} \end{aligned} \quad \begin{aligned} & \text{Transconductor} \\ & \text{efficiency} \end{aligned}$$

• For SNDR = $\{60..80\}$ dB, $V_{DD}=1V$, $g_m/I_D=1/(1.5kT/q)$, $V_{inpp}=2/3V$, the entire expression becomes

$$E_{pipe} \cong \{388...517\} \cdot kT \cdot SNDR$$

 For realistic numbers at low resolution, we must introduce a bound for minimum component sizes

Energy Bound

- Assume that in each stage C_{eff} > C_{effmin} = 50fF
- For n stages, detailed analysis shows that this leads to a minimum energy of

$$E_{\text{pipe,min}} = 2n \cdot C_{\text{eff min}} V_{\text{DD}} \frac{In(\sqrt{\text{SNDR}})}{\beta \left(\frac{g_{\text{m}}}{I_{\text{D}}}\right)}$$

 Adding this overhead to E_{pipe} gives the energy curve shown on the next slide

Comparison to State-of-the-Art

- [1] Verbruggen, ISSCC 2012
- [2] Chu, VLSI 2010
- [3] Lee, VLSI 2010

- [4] Anthony, VLSI 2008
- [5] Lee, ISSCC 2012
- [6] Hershberg, ISSCC 2012

Ways to Approach E_{min} (1)

[Chu, VLSI 2010]

- Comparator-based SC circuits replace op-amps with comparators
- Current ramp outputs
 - Essentially "class-B" (all charge goes to load)

Ways to Approach E_{min} (2)

- Use only one residue amplifier
- Build sub-ADCs using energy efficient SAR ADCs
- Essential idea: minimize overhead as much as possible

Ways to Approach E_{min} (3)

[Hershberg, ISSCC 2012]

- Completely new idea: ring amplifier
 - As in "ring oscillator"

Ways to Approach E_{min} (4)

- Class-C-like oscillations until charge transfer is complete
 - Very energy efficient

Expected Impact of Technology Scaling

- Low resolution (SNDR ~ 40-60dB)
 - Continue to benefit from scaling
 - Expect energy reductions due to reduced
 C_{min} and reduction of CV²-type contributors
- High resolution (SNDR ~ 70dB+)
 - It appears that future improvements will have to come from architectural innovation
 - Technology scaling will not help much and is in fact often perceived as a negative factor in noise limited designs (due to reduced V_{DD})
 - Let's have a closer look at this...

A Closer Look at the Impact of Technology Scaling

As we have shown

$$\mathsf{E} \propto \frac{1}{\mathsf{V}_{\mathsf{DD}}} \cdot \left(\frac{\mathsf{V}_{\mathsf{DD}}}{\mathsf{V}_{\mathsf{inpp}}}\right)^2 \cdot \frac{1}{\left(\underline{\underline{g}_{\mathsf{m}}}\right)}$$

- Low V_{DD} hurts, indeed, but one should realize that this is not the only factor
- Designers have worked hard to maintain (if not improve) V_{inpp}/V_{DD} in low-voltage designs
- How about g_m/I_D ?

g_m/I_D Considerations (1)

- Largest value occurs in subthreshold ~(1.5·kT/q)-1
- Range of g_m/I_D does not scale (much) with technology

g_m/I_D Considerations (2)

- f_T is small in subthreshold region
- Must look at g_m/l_D for given f_T requirement to compare technologies

g_m/I_D Considerations (3)

- Example
 - $f_T = 30GHz$
 - $-90nm: g_m/I_D = 18S/A$
 - 180nm: $g_m/I_D = 9$ S/A
- For a given f_T, 90nm device takes less current to produce same g_m
 - Helps mitigate, if not eliminate penalty due to lower V_{DD} (!)

ADC Energy for 90nm and Below

Successive Approximation Register ADC

- Input is approximated via a binary search
- Relatively low complexity
- Moderate speed, since at least B+1 clock cycles are needed for one conversion
- Precision is determined by DAC and comparator

Classical Implementation

DAC Energy

- Is a strong function of the switching scheme
- Excluding adiabatic approaches, the "merged capacitor switching" scheme achieves minimum possible energy

[Hariprasath, Electronics Lett., 4/2010]

$$\mathsf{E}_{\mathsf{dac}} \cong \sum_{i=1}^{\mathsf{n}-1} 2^{\mathsf{n}-3-2i} \left(2^{\mathsf{i}} - 1 \right) \mathsf{CV}_{\mathsf{ref}}^2$$

For 10 bits:

$$\mathsf{E}_\mathsf{dac} \cong 85\mathsf{CV}^2_\mathsf{ref}$$

DAC Unit Capacitor Size (C)

- Is either set by noise, matching, or minimum realizable capacitance (assume $C_{min} = 0.5fF$)
- We will exclude matching limitations here, since these can be addressed through calibration
- Assuming that one third of the total noise power is allocated for the DAC, we have

$$SNR \cong \frac{\frac{1}{2} \left(\frac{V_{inpp}}{2}\right)^2}{\frac{kT}{2^BC} + N_{comp} + N_{quant}} \qquad C = 24kT \cdot SNR \cdot \frac{1}{2^B \cdot V_{inpp}^2} + C_{min}$$

Comparator

Simple Dynamic Latch

(Assuming $C_{cmin} = 5fF$)

$$N_{\text{in}} \cong \frac{kT}{C_c}$$
 Thermal Noise

$$C_{c} \qquad C_{c} = 24kT \cdot SNR \cdot \frac{1}{V_{inpp}^{2}} + C_{cmin}$$

$$B\cong \frac{SNR[dB]-3}{6}$$

$$\mathsf{E}_{\mathsf{comp}} \cong \left(24\mathsf{kT} \cdot \mathsf{SNR} \cdot \frac{\mathsf{V}_{\mathsf{DD}}^2}{\mathsf{V}_{\mathsf{inpp}}^2} + \mathsf{C}_{\mathsf{cmin}} \mathsf{V}_{\mathsf{DD}}^2 \right) \cdot \frac{1}{2} \cdot \mathsf{B}$$

Switching probability

Comparison to State-of-the-Art

- [1] Shikata, VLSI 2011
- [2] Van Elzakker, ISSCC 2008
- [3] Harpe, ISSCC 2012
- [4] Liu, VLSI 2010

- [5] Liu, ISSCC 2010
- [6] Hurrell, ISSCC 2010
- [7] Hesener, ISSCC 2007

Ways to Approach E_{min} (1)

Ways to Approach E_{min} (2)

- Minimize unit caps as much as possible for moderate resolution designs
 - Scaling helps!

0.5fF unit capacitors

[Shikata, VLSI 2011]

Delta-Sigma ADCs

Discrete time

- Energy is dominated by the first-stage switched-capacitor integrator
- Energy analysis is similar to that of a pipeline stage

Continuous time

- Energy is dominated by the noise and distortion requirements of the first-stage continuous time integrator
- Noise sets resistance level, distortion sets amplifier current level
- Interestingly, this leads to about the same energy limits as in a discrete-time design

Overall Picture

Summary

- No matter how you look at it, today's ADCs are <u>extremely</u> well optimized
- The main trend is that the "thermal knee" shifts very rapidly toward lower resolutions
 - Thanks to process scaling and creative design
- At high resolution, we seem to be stuck at E/E_{min}~100
 - The factor 100 is due to architectural complexity and inefficiency: excess noise, signal < supply, non-noise limited circuitry, class-A biasing, ...
- This will be very hard to change
 - Scaling won't help (much)
 - Some of the recent data points already use class-B-like amplification
 - Can we somehow recycle the signal charge?
- Are there completely new ways to approach A/D conversion?

Darpa Has Seen the Future of Computing ... And It's Analog

☐ Like 773

☐ Tweet 740

☐ +1 270

BY ROBERT MCMILLAN M

08.22.12 6:30 AM

