```
AI Externship Assignment 2
Vishwas Saproo
20BBS0217
```

import numpy as np
import seaborn as sns

from sklearn.model_selection import train_test_split

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from sklearn.preprocessing import LabelEncoder, StandardScaler

import pandas as pd
df=pd.read_csv("/content/drug200.csv")
print(df)

[200 rows x 6 columns]

df.describe(include='all')

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
count	200.000000	200	200	200	200.000000	200
unique	NaN	2	3	2	NaN	5
top	NaN	М	HIGH	HIGH	NaN	DrugY
freq	NaN	104	77	103	NaN	91
mean	44.315000	NaN	NaN	NaN	16.084485	NaN
std	16.544315	NaN	NaN	NaN	7.223956	NaN
min	15.000000	NaN	NaN	NaN	6.269000	NaN
25%	31.000000	NaN	NaN	NaN	10.445500	NaN
50%	45.000000	NaN	NaN	NaN	13.936500	NaN
75%	58.000000	NaN	NaN	NaN	19.380000	NaN
max	74.000000	NaN	NaN	NaN	38.247000	NaN

df.isnull().sum()

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64

```
5 Drug
             200 non-null
                      object
  dtypes: float64(1), int64(1), object(4)
  memory usage: 9.5+ KB
Data Splitting
y = pd.get_dummies(df.iloc[:,5:]).values
x = df.drop('Drug', axis=1)
Label Encoding
categorical_features = {'Sex', 'BP', "Cholesterol"}
label_encoders={}
for feature in categorical features:
 label_encoders[feature] = LabelEncoder()
 x[feature] = label_encoders[feature].fit_transform(x[feature])
Split data into test and train
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.2,random_state=21)
Task - 2 Build the ANN model with (input layer, min 3 hidden layers & output layer)
Creating ANN model
model = Sequential()
model.add(Dense(5,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dense(26,activation='relu'))
model.add(Dense(18,activation='relu'))
model.add(Dense(12,activation='relu'))
model.add(Dense(5,activation='relu'))
model.compile(optimizer='adam', loss= 'categorical_crossentropy', metrics=['accuracy'])
model.fit(xtrain,ytrain, batch_size=10, epochs=10, validation_data=(xtest,ytest))
  Epoch 1/10
  16/16 [==========] - 3s 24ms/step - loss: 3.0404 - accuracy: 0.2812 - val_loss: 3.1187 - val_accuracy: 0.3000
  Epoch 2/10
  16/16 [====
         Epoch 3/10
  Epoch 4/10
  Epoch 5/10
  Epoch 6/10
          16/16 [=====
  Epoch 7/10
         16/16 [====
  Epoch 8/10
  Epoch 9/10
  16/16 [====
          Epoch 10/10
  <keras.callbacks.History at 0x7f52428434c0>
Task - 3 Test the model with random data.
Testing with random values
model.predict([[12,1,0,5.146,44]])
```

• ×