Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Tutorial Sheet 1

- 1. Show that there is no rational number whose square is 2.
- 2. Show that $\sqrt{8}$ is not a rational number.
- 3. Find the solution set of the following inequality $|\frac{x+3}{2x-6}| \le 1$.
- 4. Find $\sup S$ and $\inf S$, where

(a)
$$S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$
.

(b)
$$S = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\}.$$

(c)
$$S = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}.$$

(d)
$$S = \left\{ 1 + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}.$$

(e)
$$S = \{ x \in \mathbb{R} : x^2 < 1 \}.$$

(f)
$$S = \left\{ x \in \mathbb{R} : x^2 - 6x + 3 < 0 \right\}.$$

(g)
$$S = \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\}$$
.

(h)
$$S = \left\{ (-1)^m + \frac{1}{n} : m, n \in \mathbb{N} \right\}.$$

In question 4, which of these (i.e $\sup S$, $\inf S$) belongs to the set S?

5. Let S be a non-empty bounded subset of \mathbb{R} with $\sup S = M$ and $\inf S = m$. Prove that the set $T = \{|x - y|, x, y \in S\}$ is bounded above.

1

- 6. Give examples of sets which are:
 - (a) Bounded.
 - (b) Not bounded.
 - (c) Bounded below but not bounded above.
 - (d) Bounded above but not bounded below.