§ 2.7 Starter Notes

$$P(2,-1)$$
 lies on $y = \frac{-1}{x-1}$

Goal: Find SLOPE of secant line PQ where Q takes X-values below:

X	1.5	1.9	1.99	1.999	2.001	2.01	2.1	2.5
Msec	2	J. 11ti	1.010161	1.001001	0.9990999	0. 990990.	0.909090.	O.6666

How did you do this calculation?
$$X = \frac{3}{2}$$
, $y = \frac{-1}{2} = \frac{-1}{2} = -2$

$$m = \Delta y = \frac{-1 - (-2)}{2 - \frac{2}{2}} = \frac{1}{2} = 2$$

Con clusion: Slope of tangent
to
$$y = \frac{-1}{x-1}$$

at $x=72$

Secant lines where a gets close to 2.

Slope of Secant

algebres:
$$m_{tan} = \lim_{b \to 2} f(b) - f(2) = f'(2)$$

Called the derivative of $f(x)$ at $x = 2$.

From the other side:

A change of notation makes algebra easter:

So $\lim_{b\to 2} \frac{f(b)-f(z)}{b-2} = \lim_{h\to 0} \frac{f(z+h)-f(z)}{z+h-2} = \lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$

A Specific Example

Find f'(z) = 1Find f'(z) = 1Frevious

work

Recall, we know f'(2)=1 from

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{-1}{h} - \frac{-1}{1}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{-1}{1+h} + 1 \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{-1+1+h}{1+h} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{h}{1+h} \right) = \lim_{h \to 0} \left(\frac{1}{1+h} \right) = 1$$

Big Summary:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$