Corso di Logica 2.3 – Funzioni

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

1/70

Funzioni

Definizione

Una relazione $f \subseteq A \times B$ si dice **funzione da** A **in** B se

- ① per ogni $a \in A$ c'è un $b \in B$ tale che $(a,b) \in f$ (ovvero dom(f) = A), e
- ② se $(a, b_1) \in f$ e $(a, b_2) \in f$, allora $b_1 = b_2$.

In questo caso scriveremo $f\colon A\to B$ e l'unico $b\in B$ tale che $(a,b)\in f$ si indica con f(a).

Se $f: A \rightarrow B$ è una funzione

- A = dom(f) si dice **dominio** della funzione f;
- B si dice **codominio** (da non confondersi con il *range* di f).

Rappresentazione grafica di funzioni: diagrammi di Venn

Rappresentazione grafica di una funzione come insieme di frecce tra diagrammi di Venn.

Rappresentazione grafica di funzioni: diagrammi di Venn

Rappresentazione grafica come insieme di frecce tra diagrammi di Venn di una relazione che non è una funzione (perché non è definita su tutto A).

Rappresentazione grafica di funzioni: diagrammi di Venn

Rappresentazione grafica come insieme di frecce tra diagrammi di Venn di una relazione che non è una funzione (perché c'è almeno un punto di A da cui parte più di una freccia).

Immagine

Sia $f : A \rightarrow B$ una funzione.

- L'elemento f(a) si dice **valore** di f su a, oppure **immagine** di a mediante f.
- L'insieme

$$\operatorname{rng}(f) = \{ f(a) \mid a \in A \}$$
$$= \{ b \in B \mid \exists a \in A (f(a) = b) \}$$

è il **range** o **immagine** della funzione f.

• Dato $C \subseteq A$, l'insieme

$$f[C] = \{f(a) \mid a \in C\}$$
$$= \{b \in B \mid \exists a \in C (f(a) = b)\}$$

si dice **immagine** di C. In particolare, f[A] = rng(f).

Immagine di un elemento del dominio (nell'esempio: il punto a_3) di $f\colon A\to B$.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

7 / 70

Immagine (o range) di una funzione $f \colon A \to B$:

Immagine di un insieme $C \subseteq A$ mediante una funzione $f \colon A \to B$:

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

9 / 70

Preimmagine

Sia $f \colon A \to B$ una funzione.

• La preimmagine o controimmagine di un elemento $b \in B$ è l'insieme

$$f^{-1}[\{b\}] = \{a \in A \mid f(a) = b\}.$$

Con un leggero abuso di notazione, scriveremo spesso $f^{-1}(b)$ invece di $f^{-1}[\{b\}].$

• Più in generale, se $D \subseteq B$ l'insieme

$$f^{-1}[D] = \{ a \in A \mid f(a) \in D \}$$

= $\bigcup_{b \in D} f^{-1}(b)$

è la preimmagine o controimmagine di D.

Preimmagine di un elemento del codominio (nell'esempio: il punto b_6) mediante una funzione $f \colon A \to B$:

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

11 / 70

Preimmagine di un insieme $D\subseteq B$ mediante una funzione $f\colon A\to B$:

Come si definisce una funzione?

Una funzione $f: A \to B$ può essere descritta in vari modi:

• fornendo un elenco di tutte le coppie $(a,b) \in A \times B$ tali che $(a,b) \in f$, ovvero tali che b=f(a);

Esempio

Sia $A=\{a,b,c\}$ e $B=\{0,1\}$. Allora la lista

$$f(a) = 0$$
$$f(b) = 1$$
$$f(c) = 0$$

descrive in maniera univoca una funzione $f \colon A \to B$.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

13 / 70

• fornendo una "regola" che permette di determinare i valori di f su ciascun $a \in A$;

Esempio

Sia $A = B = \mathbb{R}$. Allora la scrittura

$$f(x) = x^2 + 3$$

descrive in maniera univoca una funzione $f: \mathbb{R} \to \mathbb{R}$, ovvero la funzione che manda un generico numero reale $r \in \mathbb{R}$ nel numero reale $r^2 + 3$.

• un mix delle due.

Esempio

Sia $A=B=\mathbb{R}$. Allora la scrittura

$$f(x) = \begin{cases} \frac{1}{x} & \text{se } x \neq 0\\ \pi & \text{se } x = 0 \end{cases}$$

descrive in maniera univoca una funzione $f: \mathbb{R} \to \mathbb{R}$ fornendo in alcuni casi il valore esplicito della funzione e in altri casi una "regola" per calcolarne il valore.

Spesso useremo la notazione

$$f \colon A \to B, \qquad a \mapsto f(a)$$

per dire che f è una funzione da A in B che manda un generico elemento $a \in A$ nel valore corrispondente $f(a) \in B$.

Esempio

La scrittura

$$f: \mathbb{N} \to \mathbb{N}, \qquad n \mapsto 2n$$

indica che f è la funzione da $\mathbb N$ in se stesso che manda ogni numero naturale nel suo doppio.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

15 / 70

Restrizione

Data una funzione $f \colon A \to B$ e un insieme $C \subseteq A$, la funzione

$$f \upharpoonright C \colon C \to B, \qquad c \mapsto f(c)$$

si dice **restrizione** di f a C.

Si osservi che

$$\mathrm{dom}(f \upharpoonright C) = C \qquad \mathsf{e} \qquad \mathrm{rng}(f \upharpoonright C) = f[C].$$

Rappresentazione grafica con diagrammi di Venn della restrizione di una funzione.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

17 / 70

Composizione di funzioni

Date due funzioni $f\colon A\to B$ e $g\colon B\to C$, la **composizione di** f **e** g è la funzione

$$g \circ f \colon A \to C, \qquad a \mapsto g(f(a)).$$

Composizione di funzioni

Date due funzioni $f \colon A \to B$ e $g \colon B \to C$, la **composizione di** f **e** g è la funzione

$$g \circ f \colon A \to C, \qquad a \mapsto g(f(a)).$$

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

18 / 70

Ad esempio, siano

$$f: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto x^2$$

е

$$g: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto 2x + 3.$$

Allora $g \circ f$ è anch'essa una funzione da $\mathbb R$ in $\mathbb R$. Per calcolarne i valori si procede come segue:

$$(g \circ f)(2) = g(f(2)) = g(2^2) = g(4) = 2 \cdot 4 + 3 = 11.$$

Più in generale, per ogni $x \in \mathbb{R}$

$$(g \circ f)(x) = g(f(x)) = g(x^2) = 2x^2 + 3.$$

Operazioni

Definizione

Le funzioni della forma $f \colon A^n \to A$ vengono a volte dette **operazioni** n-arie su A.

Esempio

La somma + tra numeri interi è una funzione $+: \mathbb{N}^2 \to \mathbb{N}$, ovvero un'operazione binaria su \mathbb{N} . Lo stesso vale per il prodotto, o quando si considerano queste operazioni su altri insiemi numerici.

Se *: $A \times A \to A$ è un'operazione binaria su A spesso scriveremo a * b invece di *(a,b) (ad esempio, a+b al posto di +(a,b)).

Attenzione!

La differenza non è un'operazione binaria su \mathbb{N} , in quanto non è definita per tutti le coppie in \mathbb{N}^2 . È invece un'operazione binaria su \mathbb{Z} , \mathbb{Q} o \mathbb{R} .

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

20 / 70

Iniezioni, suriezioni, biezioni

Definizione

Una funzione $f \colon A \to B$ si dice

iniettiva se da $a_1 \neq a_2$ segue che $f(a_1) \neq f(a_2)$, o, equivalentemente, se da $f(a_1) = f(a_2)$ segue che $a_1 = a_2$;

suriettiva se ogni $b \in B$ è della forma f(a) per qualche $a \in A$ (equivalentemente, rng(f) = B);

biettiva se è iniettiva e suriettiva.

Per brevità diremo che f è una

- iniezione se è una funzione iniettiva;
- suriezione se è una funzione suriettiva;
- biezione se è una funzione biettiva.

La rappresentazione mediante diagrammi di Venn di una funzione *iniettiva* $f \colon A \to B$ è tale che *ogni punto di* B è raggiunto al più da una freccia.

Quindi la $f \colon A \to B$ seguente è **iniettiva**:

La rappresentazione mediante diagrammi di Venn di una funzione *iniettiva* $f \colon A \to B$ è tale che *ogni punto di* B è raggiunto al più da una freccia.

Quindi la $f: A \to B$ seguente **non** è **iniettiva**:

La rappresentazione mediante diagrammi di Venn di una funzione suriettiva $f \colon A \to B$ è tale che ogni punto di B è raggiunto almeno da una freccia.

Quindi la $f \colon A \to B$ seguente è suriettiva:

La rappresentazione mediante diagrammi di Venn di una funzione suriettiva $f\colon A\to B$ è tale che ogni punto di B è raggiunto almeno da una freccia.

Quindi la $f: A \to B$ seguente **non** è **suriettiva**:

La rappresentazione mediante diagrammi di Venn di una funzione biettiva $f \colon A \to B$ è tale che ogni punto di B è raggiunto esattamente da una freccia.

Quindi la $f: A \rightarrow B$ seguente è **biettiva**:

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

26 / 70

Osservazioni

- ① Se $f:A \to A$ con A finito si ha che f è una biezione se e solo se f è una iniezione se e solo se f è una suriezione. Lo stesso vale per le funzioni $f:A \to B$ in cui A e B sono insiemi finiti con lo stesso numero di elementi.
- ② Se $f: A \to B$ è iniettiva allora $f: A \to \operatorname{rng}(f)$ (ovvero la stessa f, ma vista come funzione da A nella sua immagine) è una biezione.
- 3 Date $f: A \to B$ e $g: B \to C$, si ha che se sia f che g sono iniettive anche $g \circ f$ lo è, e se f e g sono entrambe suriezioni anche $g \circ f$ lo è. In particolare, la composizione di due biezioni è una biezione.
- **④** Sia $f: A \to B$ una funzione. Allora f è un'iniezione se e solo se $f^{-1}(b)$ contiene al più un elemento per ogni $b \in B$, ed è una suriezione se e solo se $f^{-1}(b) \neq \emptyset$ per ogni $b \in B$.

Funzione inversa

Poiché una funzione $f\colon A\to B$ è, per definizione, una relazione $f\subseteq A\times B$, possiamo formare la sua relazione inversa $f^{-1}\subseteq B\times A$, dove $(b,a)\in f^{-1}$ se e solo se $(a,b)\in f$, ovvero se e solo se f(a)=b. Tuttavia non è detto che f^{-1} sia anch'essa una funzione da B in A:

- se f non è iniettiva, allora ci sono $a, a' \in A$ distinti tali che f(a) = f(a') = b per qualche $b \in B$: quindi sia (b, a) che (b, a') appartengono a f^{-1} , perciò f^{-1} non è una funzione (ci sarebbero almeno due valori di f^{-1} su b);
- se f non è suriettiva, allora esiste $b \in B \setminus \operatorname{rng}(f)$: quindi non esiste alcun $a \in A$ tale che $(b,a) \in f^{-1}$, ovvero f^{-1} non può essere una funzione con dominio B.

Dunque una funzione $f: A \to B$ si può **invertire** (ovvero è tale che la sua relazione inversa f^{-1} è ancora una funzione) solo se è iniettiva e anche in questo caso il dominio di f^{-1} è $\operatorname{rng}(f)$ e non necessariamente tutto B.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

28 / 70

Definizione

Se $f: A \to B$ è una funzione *iniettiva*, allora la sua **inversa** è la funzione

$$f^{-1}$$
: rng $(f) \to A$

che manda ciascun $b \in \operatorname{rng}(f)$ nell'unico elemento in $f^{-1}(b)$.

Si osservi che f^{-1} è sempre iniettiva (poiché f era una funzione) e suriettiva (poiché $\mathrm{dom}(f)=A$), ovvero f^{-1} è una biezione tra $\mathrm{rng}(f)$ e A.

Osservazione

Quando f è anche suriettiva (ovvero una biezione) si ha che $\operatorname{rng}(f) = B$: quindi in questo caso $\operatorname{dom}(f^{-1}) = B$. Perciò l'inversa di una biezione $f \colon A \to B$ è a sua volta una biezione $f^{-1} \colon B \to A$.

Osservazione

Tecnicamente, quando $f \colon A \to B$ è una funzione iniettiva e $b \in \operatorname{rng}(f)$ la notazione $f^{-1}(b)$ è lievemente ambigua. Può infatti indicare

- la **preimmagine** dell'elemento b mediante f, ovvero l'insieme $\{a\} = f^{-1}[\{b\}] \subseteq A$ con $a \in A$ unico tale che f(a) = b (l'unicità di a deriva dal fatto che f è iniettiva): in accordo con la notazione introdotta in precedenza, infatti, la preimmagine $f^{-1}[\{b\}]$ di b si denota anche con $f^{-1}(b)$;
- l'**immagine** di b mediante la funzione inversa f^{-1} , ovvero l'*elemento* $a \in A$ tale che $f^{-1}(b) = a$: per definizione, a è l'unico elemento tale che f(a) = b.

Sarà il contesto a chiarire quale dei due significati dare a tale espressione.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

30 / 70

Prodotto di funzioni

Proposizione

Se $f: X \to Y$ e $g: Z \to W$ sono entrambe iniezioni (suriezioni, biezioni) allora lo è anche la **funzione prodotto**

$$f \times g \colon X \times Z \to Y \times W, \qquad (x, z) \mapsto (f(x), g(z)).$$

Dimostrazione.

Sia h la funzione prodotto $f \times g$, cosicché h(x, z) = (f(x), g(z)).

Caso delle iniezioni: Fissiamo $(x,z), (x',z') \in X \times Z$. Se h(x,z) = h(x',z'), allora (f(x),g(z)) = (f(x'),g(z')), da cui f(x) = f(x') e g(z) = g(z'). Poiché f e g sono entrambe iniettive, si ha x = x' e z = z', perciò (x,z) = (x',z').

Caso delle suriezioni: Consideriamo un generico $(y,w) \in Y \times W$. Poiché f e g sono suriezioni, esistono $x \in X$ e $z \in Z$ tali che f(x) = y e g(z) = w. Allora h(x,z) = (y,w).

Come si rappresenta graficamente una funzione?

Di solito una funzione $f\colon A\to B$ si rappresenta graficamente in uno dei due modi seguenti:

• utilizzando i diagrammi di Venn (come abbiamo già visto)

• rappresentandone il grafico sul piano cartesiano (specialmente per funzioni $f \colon A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$)

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

32 / 70

Grafici che rappresentano funzioni

Un **grafico** tracciato sul piano cartesiano può essere una **funzione** con dominio $A \subseteq \mathbb{R}$ se e solo se *ogni retta verticale incrocia il grafico in al più un punto*.

Quindi il grafico seguente non è il grafico di una funzione:

Riconoscere il dominio di una funzione dal suo grafico

Il **dominio** $A \subseteq \mathbb{R}$ di una funzione $f: A \to \mathbb{R}$ è dato dai punti x dell'ascissa tali che *la retta vertica passante per* x *incrocia il grafico di* f.

Quindi il seguente grafico rappresenta una funzione $f\colon A\to \mathbb{R}$ con dominio $A=(0;+\infty)$:

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

34 / 70

Riconoscere una funzione iniettiva dal suo grafico

Una funzione $f: A \to \mathbb{R}$ è **iniettiva** se e solo se *ogni retta orizzontale* incrocia il grafico di f al **più** una volta.

Quindi la funzione $f \colon \mathbb{R} \to \mathbb{R}$ con il grafico seguente è **iniettiva**...

Riconoscere una funzione iniettiva dal suo grafico

Una funzione $f: A \to \mathbb{R}$ è **iniettiva** se e solo se *ogni retta orizzontale* incrocia il grafico di f al **più** una volta.

...mentre la funzione $f: \mathbb{R} \to \mathbb{R}$ con il grafico seguente **non** è **iniettiva**.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

36 / 70

Riconoscere una funzione suriettiva dal suo grafico

Una funzione $f: A \to \mathbb{R}$ è **suriettiva** se e solo se *ogni retta orizzontale* incrocia il grafico di f **almeno** una volta.

Quindi la funzione $f: \mathbb{R} \to \mathbb{R}$ con il grafico seguente è **suriettiva**...

Riconoscere una funzione suriettiva dal suo grafico

Una funzione $f:A\to\mathbb{R}$ è **suriettiva** se e solo se *ogni retta orizzontale* incrocia il grafico di f **almeno** una volta.

...mentre la funzione $f \colon \mathbb{R} \to \mathbb{R}$ con il grafico seguente **non** è **suriettiva**:

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

38 / 70

Riconoscere una funzione biettiva dal suo grafico

Una funzione $f:A\to\mathbb{R}$ è **biettiva** se e solo se *ogni retta orizzontale* incrocia il grafico di f esattamente una volta.

Quindi la funzione $f: \mathbb{R} \to \mathbb{R}$ con il grafico seguente è **biettiva**:

Alcuni esempi ed esercizi

L'operazione di somma tra numeri naturali è una funzione binaria

$$f \colon \mathbb{N}^2 \to \mathbb{N}, \qquad (n,m) \mapsto n + m.$$

È una funzione suriettiva perché ogni $n \in \mathbb{N}$ è immagine, ad esempio, della coppia (n,0), ma non è iniettiva (quindi neanche biettiva) perché, ad esempio, $(1,1) \neq (0,2)$ ma f(1,1) = 1+1=0+2=f(0,2).

Esempio

La funzione (unaria)

$$f: \mathbb{N} \to \mathbb{N}, \qquad n \mapsto 2n$$

è iniettiva poiché se 2n=2m allora n=m, ma non è suriettiva (quindi neanche biettiva) perché i numeri dispari non sono immagine mediante f di alcun numero naturale.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

40 / 70

Esempio

La funzione

$$f \colon \mathbb{R} \to \mathbb{R}, \qquad x \mapsto x^2$$

non è né iniettiva (ad esempio, $-1 \neq 1$ ma $f(-1) = (-1)^2 = 1^2 = f(1)$), né suriettiva (i numeri reali negativi non sono immagine mediante f di alcun numero reale: x^2 è sempre ≥ 0).

Esempio

Dati $a, b \in \mathbb{R}$ con $a \neq 0$, consideriamo la funzione

$$f: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto ax + b.$$

È una iniezione poiché se ax+b=ay+b allora x=y, ed è una suriezione poiché per ogni $y\in\mathbb{R}$ si ha che y=f(x) con $x=\frac{y-b}{a}$. Quindi f è una biezione.

Dimostrare che la funzione "moltiplicazione"

$$f: \mathbb{N}^2 \to \mathbb{N}, \qquad (n,m) \mapsto n \cdot m$$

è suriettiva ma non iniettiva.

La funzione è suriettiva perché per ogni $n\in\mathbb{N}$ si ha $f(1,n)=1\cdot n=n.$ Non è iniettiva perché, ad esempio, $f(3,4)=3\cdot 4=12=2\cdot 6=f(2,6).$

(Per mostrare che f non è iniettiva si può anche semplicemente osservare che f(n,0)=0 per ogni $n\in\mathbb{N}$, oppure che f(n,m)=f(m,n) per ogni $n,m\in\mathbb{N}$.)

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

42 / 70

Dimostrare che la funzione

$$f: \mathbb{N} \to \mathbb{N}, \qquad n \mapsto 2^n$$

è iniettiva ma non suriettiva.

L'iniettività è ovvia: se $n \neq m$ allora $2^n \neq 2^m$ (se n < m allora $2^m = 2^n \cdot 2^{m-n} \geq 2^n \cdot 2 > 2^n$).

La funzione f non è suriettiva perché, ad esempio, $3 \notin \operatorname{rng}(f)$.

Siano $\mathbb{P}=\{n\in\mathbb{N}\mid n \text{ è pari}\}$ e $\mathbb{D}=\{n\in\mathbb{N}\mid n \text{ è dispari}\}.$ Dimostrare che

$$f \colon \mathbb{P} \to \mathbb{D}, \qquad n \mapsto n+1$$

è una biezione.

Iniettività: Ovvia, se f(n) = f(m) (ovvero n + 1 = m + 1) allora n = m.

Suriettività: Se $k \in \mathbb{D}$ allora $k \neq 0$: segue che $n = k - 1 \in \mathbb{P}$ e f(n) = k.

Essendo f sia iniettiva che suriettiva, è una biezione.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

44 / 70

Siano $\mathbb{P}=\{n\in\mathbb{N}\mid n\text{ è pari}\}$ e $\mathbb{D}=\{n\in\mathbb{N}\mid n\text{ è dispari}\}$. Dimostrare che la funzione

$$f: \mathbb{D} \to \mathbb{P}, \qquad n \mapsto n+1$$

è iniettiva ma non suriettiva.

Il fatto che la funzione sia iniettiva è ovvio (vedi slide precedente).

La funzione non è invece suriettiva perché

$$\operatorname{rng}(f) = \{n+1 \mid n \in \mathbb{D}\} = \mathbb{P} \setminus \{0\},\$$

perciò $0 \in \mathbb{P}$ ma $0 \notin \operatorname{rng}(f)$.

Dimostrare che

$$f \colon \mathbb{N}^2 \to \mathbb{N}, \qquad (n,m) \mapsto 2^n(2m+1) - 1$$

è una biezione.

FATTO. Ogni k>0 si scrive in maniera unica come $2^n(2m+1)$. Infatti, se $n\in\mathbb{N}$ è massimo tale che $2^n\mid k$, allora $k=2^n\cdot l$ con l dispari, per cui l=2m+1 per qualche $m\in\mathbb{N}$.

- Iniettività. Siano $(n,m), (n',m') \in \mathbb{N}^2$ tali che f(n,m) = f(n',m'), ovvero $2^n(2m+1)-1=2^{n'}(2m'+1)-1$. Allora $k=2^n(2m+1)$ e $k'=2^{n'}(2m'+1)$ sono >0, e k=k' (per l'uguaglianza precedente). Per l'unicità della scrittura osservata nel FATTO precedente, necessariamente n=n' e m=m', ovvero (n,m)=(n',m').
- Suriettività. Per ogni $j \in \mathbb{N}$, si ha che k = j + 1 > 0. Per il FATTO precedente, ci sono $n, m \in \mathbb{N}$ tali che $k = 2^n(2m + 1)$. Segue che

$$f(n,m) = 2^{n}(2m+1) - 1 = k - 1 = (j+1) - 1 = j,$$

perciò $j \in \operatorname{rng}(f)$.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

46 / 70

Data una funzione $f \colon X \to Y$, sia $R_f \subseteq X \times X$ la relazione definita da

$$x_1 R_f x_2$$
 se e solo se $f(x_1) = f(x_2)$.

- Che tipo di relazione è R_f ? (Ordine? Equivalenza?) È una relazione riflessiva, simmetrica e transitiva, quindi è una relazione di equivalenza.
- Se ogni classe di equivalenza rispetto ad R_f contiene un unico elemento, che tipo di funzione è f? (Iniettiva? Suriettiva? Biettiva?) Iniettiva (ma non necessariamente suriettiva).
- Se $X=Y=\mathbb{R}$ e $f\colon \mathbb{R}\to \mathbb{R}$ è definita da $f(x)=x^2$, come sono fatte le classi di equivalenza di R_f ?

 Sono del tipo $[x]_R=\{x=x\}$ per $x\geq 0$ (si osservi che R_f è la

Sono del tipo $[r]_{R_f} = \{r, -r\}$ per $r \ge 0$ (si osservi che R_f è la relazione di equivalenza della slide 18 del file sulle relazioni).

Data una funzione $f\colon X\to Y$, sia $R_f\subseteq X\times X$ la relazione definita da x_1 R_f x_2 se e solo se $f(x_1)=f(x_2)$.

• Fissiamo $0 \neq n \in \mathbb{N}$. Sia $X = \mathbb{Z}$, $Y = \mathbb{N}$ e definiamo $f \colon \mathbb{Z} \to \mathbb{N}$ ponendo

 $f(z)={\rm il}$ resto della divisione intera per n di z.

Che relazione R_f otteniamo?

Si ha che f(z)=f(z') se e solo se $z\equiv z'\,(\mathrm{mod}\,n)$. Quindi R_f è la relazione di congruenza modulo n.

• Sia $X = \mathbb{N}$. Trovare un opportuno insieme Y e una funzione $f: X \to Y$ tale che la relazione risultante R_f sia la relazione considerata nella slide 20 del file sulle relazioni.

Basta porre $Y=\mathbb{N}$ e definire $f\colon \mathbb{N} \to \mathbb{N}$ ponendo

f(n) = il numero di cifre di n (in notazione decimale).

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

48 / 70

Più in generale, si può dimostrare che ogni relazione d'equivalenza E su un insieme A è della forma R_f per un'opportuna scelta di $f\colon X\to Y$.

Basta infatti prendere X = A, Y = A/E e

$$f \colon X \to Y, \qquad a \mapsto [a]_E$$

e ricordare che dati $a, b \in A$ si ha che

$$a E b$$
 se e solo se $[a]_E = [b]_E$.

Stringhe (o sequenze) finite

Una **stringa finita** (su A) è una sequenza finita di simboli provenienti da un dato insieme non vuoto A, che in questo caso viene detto **alfabeto**. L'insieme di tutte le stringhe finite su A si indica con A^* .

Esempio

Sia A l'insieme di tutti i caratteri presenti su una normale tastiera di computer. Allora i seguenti sono esempi di stringhe su A:

$$abcaaa 102035 a1BnWms()*8x$$

Altri esempi di stringhe su A sono ad esempio le password che inseriamo per accedere ad un account, il codice PIN della Sim di un cellulare, le parole italiane (scritte) e così via.

Attenzione! A differenza di ciò che accade con gli insiemi, in una stringa è essenziale tenere conto sia delle (eventuali) ripetizioni che dell'ordine con cui i vari elementi di A compaiono.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

50 / 70

La stringa

abcaaa

sarà anche scritta con una notazione che spesso viene usata in matematica per rappresentare le sequenze, ovvero

$$\langle a, b, c, a, a, a \rangle$$

In alcuni casi, questo cambio di notazione è necessario! Se ad esempio $A=\mathbb{N}$ non è chiaro se la stringa 703 rappresenti:

- una stringa con tre elementi, ovvero i numeri 7, 0 e 3;
- una stringa con due elementi, ovvero i numeri 70 e 3;
- una stringa con un unico elemento, ovvero il numero 703.

Questo accade perché anche i numeri naturali sono a loro volta scritti come stringhe sull'alfabeto $A' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \subseteq \mathbb{N}$.

Scrivendo invece $\langle 70, 3 \rangle$ non vi è più alcuna ambiguità!

La **lunghezza** di una stringa s, denotata con $\mathrm{lh}(s)$, è il numero di simboli che vi compaiono. Ad esempio, se A è l'alfabeto italiano formato da 21 lettere, la seguente stringa su A

hdilcga

ha lunghezza 7.

Notazione e terminologia

I termini **stringa** (di lunghezza n), **sequenza** (di lunghezza n) e n-**upla** saranno per noi sinonimi, ma graficamente adotteremo la convenzione che le stringhe vengono scritte nella forma abcade (quando questo non porta ad ambiguità!), mentre le corrispondenti sequenze/n-uple vengono scritte nella forma $\langle a,b,c,a,d,e \rangle$.

C'è un'unica stringa/sequenza di lunghezza 0, ovvero quella che non contiene alcun simbolo, detta **stringa** o **sequenza vuota**. Se usiamo la notazione per le sequenze la possiamo indicare con $\langle \rangle$. La notazione per le stringhe non dà alcun modo per rappresentare la stringa vuota: perciò si è stabilito (specialmente in ambito informatico) di denotarla con ε .

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

52 / 70

C'è una naturale biezione tra gli elementi di A e le stringhe su A di lunghezza 1, ovvero la funzione che associa a ciascun $a \in A$ la sequenza $\langle a \rangle$. Per questa ragione, l'insieme delle sequenze su A di lunghezza 1 viene identificato con A stesso.

Le stringhe su A di lunghezza 2 sono invece identificabili con le coppie ordinate di elementi di A, ovvero con gli elementi dell'insieme $A^2=A\times A$.

Le stringhe su A di lunghezza 3 si possono identificare con le triple ordinate di elementi di A, ovvero con gli elementi dell'insieme $A^3=A\times A\times A$.

Più in generale, le stringhe su A di lunghezza n si possono identificare con le n-uple di elementi di A, ovvero con gli elementi dell'insieme A^n .

Questo giustifica l'uso della notazione seguente.

Notazione

L'insieme delle sequenze su A di lunghezza n si denota con A^n . L'insieme di tutte le sequenze finite su A (di qualunque lunghezza) si denota con $A^{<\mathbb{N}}$, ovvero

$$A^{<\mathbb{N}} = \{ \langle a_0, \dots, a_{n-1} \rangle \mid n \in \mathbb{N} \land \forall i < \lambda \}.$$

Dunque

$$A^* = A^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} A^n.$$

Per quanto osservato prima, $A^0 = \{\langle \rangle\} = \{\varepsilon\}$. Inoltre A^1 viene identificato con A stesso.

Esempio

 $\mathbb{N}^{<\mathbb{N}}$ è l'insieme di tutte le sequenze finite di numeri naturali.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

54 / 70

Esempio

Sia $A = \{0, 1\}$. Utilizzando sia la notazione per le sequenze che quella per le stringhe si ottiene:

$$\begin{split} & \underline{A^1} = \{\langle 0 \rangle, \langle 1 \rangle\} \\ & = \{0, 1\} \text{ (com: Strings)} \\ & \underline{A^2} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 1 \rangle\} \\ & = \{00, 01, 10, 11\} \\ & \underline{A^3} = \{\langle 0, 0, 0 \rangle, \langle 0, 0, 1 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 1, 1 \rangle, \langle 1, 0, 0 \rangle, \langle 1, 0, 1 \rangle, \langle 1, 1, 0 \rangle, \langle 1, 1, 1 \rangle\} \\ & = \{000, 001, 010, 011, 100, 101, 110, 111\} \end{split}$$

e così via.

Esercizio 1

- Quante sono le stringhe in $\{0,1\}^4$? Più in generale, dato un numero naturale $n \in \mathbb{N}$ quante sono le stringhe in $\{0,1\}^n$?
- Se A è un insieme finito con k elementi e $n \in \mathbb{N}$, quante sono le stringhe in A^n ? E se A è infinito?

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

56 / 70

Rappresentazione di stringhe come funzioni

Una sequenza finita s su A può anche essere rappresentata come una funzione dall'insieme $\{k\in\mathbb{N}\mid k<\mathrm{lh}(s)\}$ in A. Più precisamente, la sequenza s su A di lunghezza n

$$\langle s_0, \ldots, s_{n-1} \rangle$$

si identifica con la funzione

$$s: \{k \in \mathbb{N} \mid k < n\} \to A, \qquad k \mapsto s_k.$$

L'idea è che la funzione $s\colon \{k\in\mathbb{N}\mid k< n\}\to A$ enumera i simboli della stringa: s(0) è il primo elemento della stringa, s(1) è il secondo elemento della stringa, e così via.

Attenzione!

I numeri naturali partono da 0 e non da 1. Quindi il "primo elemento" di $\langle s_0, s_1, \ldots, s_{n-1} \rangle$ è s_0 e NON s_1 , il "secondo elemento" è s_1 NON s_2 e così via.

Esempio

Sia $A=\{a,b\}$ e $s\in A^4$ la stringa aaba (che si può scrivere anche $\langle a, a, b, a \rangle$). Allora s si può vedere come la funzione $s: \{0, 1, 2, 3\} \to A$ definita da

$$s(0) = a$$
 $s(1) = a$ $s(2) = b$ $s(3) = a$

Invece la funzione

$$s: \{k \in \mathbb{N} \mid k < 10\} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \qquad k \mapsto 9 - k$$

rappresenta la stringa

9876543210

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

58 / 70

Esercizio 2

• Trovare le funzioni che rappresentano le seguenti stringhe

- Trovare la funzione che rappresenta la sequenza (0,1,2,3,4,5).
- Qual'è la funzione che rappresenta la stringa vuota?
- Scrivere come funzioni le seguenti stringhe sul normale alfabeto per la lingua italiana (21 lettere).

telefono pomodoro via casa

=: {0,1,2,3}=> A S(0) = C S(1)=> S(2)=S S(1)

Concatenazione

Date due stringhe $s,t\in A^*$, la **concatenazione** di s e t, denotata con

st,

è la stringa su A di lunghezza lh(s) + lh(t) ottenuta facendo seguire i simboli elencati in s dai simboli elencati in t.

Esempio

Se s è la stringa acbbca e t è la stringa bacac, allora st è la stringa

acbbcabacac.

Si noti che concatenando una qualunque stringa $s \in A^*$ con la sequenza vuota si ottiene la sequenza s di partenza, ovvero

$$s\varepsilon = \varepsilon s = s$$
.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

60 / 70

Utilizzando la notazione per le sequenze, se $s=\langle 5,17,23\rangle$ e $t=\langle 0,73,162\rangle$ si ha che

$$st = \langle 5, 17, 23 \rangle \langle 0, 73, 162 \rangle = \langle 5, 17, 23, 0, 73, 162 \rangle.$$

Infine, utilizzando la rappresentazione come funzioni, se

$$s: \{k \in \mathbb{N} \mid k < \mathrm{lh}(s)\} \to A$$

e

$$t \colon \{k \in \mathbb{N} \mid k < \mathrm{lh}(t)\} \to A$$

allora st è la sequenza di lunghezza $\mathrm{lh}(s)+\mathrm{lh}(t)$ definita ponendo per ogni $k<\mathrm{lh}(s)+\mathrm{lh}(t)$

$$st(k) = \begin{cases} s(k) & \text{se } k < \text{lh}(s) \\ t(k - \text{lh}(s)) & \text{se } k \ge \text{lh}(s). \end{cases}$$

Stringhe/sequenze infinite

Qualche volta è necessario considerare anche stringhe infinite del tipo

Usando la notazione per le sequenze, tali stringhe si possono rappresentare come

$$\langle s_0, s_1, s_2, \ldots, s_n, \ldots \rangle$$

oppure, in maniera più concisa, come

$$\langle s_n \rangle_{n \in \mathbb{N}}$$
.

Esempio

La sequenza $\langle 2n\rangle_{n\in\mathbb{N}}$ è la stringa infinita di tutti i numeri pari (in ordine crescente), ovvero

$$\langle 0, 2, 4, 6, 8, 10, 12, 14, 16, \dots, 2n, \dots \rangle$$

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

62 / 70

Anche una stringa infinita $s=\langle s_n\rangle_{n\in\mathbb{N}}$ su un alfabeto A si può identificare con la sua funzione "enumerante"

$$s: \mathbb{N} \to A, \qquad k \mapsto s_k.$$

Questa identificazione ci permette di dare una definizione rigorosa di che cosa è una stringa infinita su un alfabeto A: ad esempio, una stringa infinita binaria è semplicemente una funzione $f\colon \mathbb{N} \to \{0,1\}$.

Definizione

Dato un insieme A, indichiamo con $A^{\mathbb{N}}$ l'insieme delle funzioni da \mathbb{N} in A, ovvero

$$A^{\mathbb{N}} = \{ f \mid f \colon \mathbb{N} \to A \} .$$

Dunque $A^{\mathbb{N}}$ può anche essere visto come l'insieme di tutte le stringhe infinite su A.

Le sequenze infinite $\langle a_n \rangle_{n \in \mathbb{N}}$ vengono anche chiamate **successioni** e denotate con $(a_n)_{n \in \mathbb{N}}$.

Esempio

La stringa

che alterna 0 ed 1 senza mai ripeterne due consecutivamente è la funzione $f \colon \mathbb{N} \to \{0,1\}$ tale che

$$f(0) = 0$$
 $f(1) = 1$ $f(2) = 0$... $f(2k) = 0$ $f(2k+1) = 1$...

che può essere definita esplicitamente come

$$f\colon \mathbb{N} o \{0,1\}, \qquad n\mapsto [n]_2.$$
 Closse

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

64 / 70

Esempio

La funzione

$$g: \mathbb{N} \to \mathbb{N}, \qquad n \mapsto n^2$$

è la successione

$$(0, 1, 4, 9, 16, 25, \dots)$$

che può anche essere scritta come

$$\langle n^2 \rangle_{n \in \mathbb{N}}.$$

Esercizio 3

Scrivere la stringa

$$\langle 1, 2, 4, 8, 16, 32, 64, 128, 256, \dots \rangle$$

e sequenze

sia come funzione $f: \mathbb{N} \to \mathbb{N}$, sia con la notazione per le sequenze infinite $\langle a_n \rangle_{n \in \mathbb{N}}$.

• Qual'è la successione definita dalla seguente funzione?

$$f \colon \mathbb{N} \to \mathbb{N}, \qquad n \mapsto \frac{1}{2}n(n+1)$$

Scriverne esplicitamente i primi 10 termini.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

66 / 70

Funzioni non numeriche

In matematica capita spesso di lavorare con funzioni di tipo "numerico", ad esempio con funzioni del tipo $f\colon A\to\mathbb{R}$ con $A\subseteq\mathbb{R}$. Tuttavia ha perfettamente senso lavorare con funzioni definite tra insiemi arbitrari. Ad esempio:

- la codifica dei caratteri ASCII è una funzione (iniettiva!) del tipo $f\colon A\to\{0,1\}^7$, dove A è l'insieme dei caratteri da codificare;
- più in generale, la codifica di un testo scritto in una sequenza di bit (mediante la codifica ASCII) è una funzione (iniettiva!) del tipo $f \colon A^{<\mathbb{N}} \to \{0,1\}^{<\mathbb{N}};$
- ...

Esercizio

Dimostrare che la funzione $\{a_{k_0}, c_{k_0}, c_{k_0},$

è iniettiva ma non suriettiva.

[Se ad esempio $A=\{a,b,c\}$ e $s=\langle b,c,a,b\rangle$ allora $f(s)=\langle b,b,c,c,a,a,b,b\rangle$.]

Notiamo che lh(f(s)) = 2 lh(s) per ogni $s \in A^{<\mathbb{N}}$. Se $s = \langle k_0, \dots, k_{n-1} \rangle$ e $s' = \langle k'_0, \dots, k'_{m-1} \rangle$ sono sequenze distinte si possono avere due casi:

- $lh(s) \neq lh(s')$: allora $lh(f(s)) = 2 lh(s) \neq 2 lh(s') = lh(f(s'))$, quindi $f(s) \neq f(s')$.
- $\mathrm{lh}(s) = \mathrm{lh}(s')$ ma $k_i \neq k_i'$ per qualche $0 \leq i < n = \mathrm{lh}(s)$: allora $f(s) \neq f(s')$ poiché posto $f(s) = \langle \ell_0, \dots, \ell_{2n-1} \rangle$ e $f(s') = \langle \ell_0', \dots, \ell_{2n-1}' \rangle$ si ha $\ell_{2i} \neq \ell_{2i}'$ e $\ell_{2i+1} \neq \ell_{2i+1}'$.

Questo dimostra che f è iniettiva. Inoltre f non è suriettiva perché ogni sequenza in rng(f) ha lunghezza pari: ad esempio se $s \in A^3$ allora certamente $s \notin rng(f)$.

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021-2022

68 / 70

Sia X un insieme non vuoto. Per ogni $A\subseteq X$ la **funzione caratteristica** di A è la funzione $\chi_A\colon X\to\{0,1\}$ definita da

$$\chi_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{se } x \notin A. \end{cases}$$

Sia 2^X l'insieme di tutte le funzioni da X in $\{0,1\}$. In particolare, $\chi_A \in 2^X$ per ogni $A \in \mathcal{P}(X)$.

Dimostrare che la funzione $F\colon \mathcal{P}(X)\to 2^X$ che manda ogni $A\subseteq X$ nella sua funzione caratteristica $F(A)=\chi_A$ è una biezione.

Iniettività: Dati $A, B \in \mathcal{P}(X)$ distinti, o esiste $x \in A \setminus B$ oppure esiste $x \in B \setminus A$. Nel primo caso si avrà $\chi_A(x) = 1$ e $\chi_B(x) = 0$, nel secondo caso $\chi_A(x) = 0$ e $\chi_B(x) = 1$. In ogni caso $\chi_A(x) \neq \chi_B(x)$, per cui $\chi_A \neq \chi_B$, cioè $F(A) \neq F(B)$.

Suriettività: Data $f: X \to \{0,1\}$ sia $A = \{x \in X \mid f(x) = 1\}$. Allora per definizione di funzione caratteristica si ha $\chi_A = f$, ovvero F(A) = f.

Abbiamo visto che dato un qualunque insieme non vuoto X, c'è una biezione tra $\mathcal{P}(X)$ e l'insieme 2^X di tutte le funzioni da X in $\{0,1\}$.

Se X è finito e ha $n \in \mathbb{N}$ elementi, allora ci sono esattamente 2^n elementi in 2^X . Quindi

se X è un insieme non vuoto finito con n elementi, allora $\mathfrak{P}(X)$ ha 2^n elementi.

In particolare, si ha che X ha meno elementi di $\mathcal{P}(X)$: questo fatto verrà generalizzato ad insiemi X infiniti quando parleremo di cardinalità (Sezione 2.4).

Andretta, Motto Ros, Viale (Torino)

Funzioni

AA 2021–2022

70 / 70