

A - Print row wise seen.

for
$$i \rightarrow 0$$
 to $(N-1)$
 $sun = 0$
for $j \rightarrow 0$ to $(M-1)$
 $sun + = Ali I j I I$
print (sum) $TC = O(N \times M)$
 $SC = O(1)$

0 - Fird mon column sum.

ans = INT_MIN
for
$$j \rightarrow 0$$
 to $(M-1)$
seem = 0
for $i \rightarrow 0$ to $(N-1)$?
L sum += Ali? Lj??
ans = max(ans, seen)

 $0 \rightarrow \text{ liver a square matrix } A[N][N].$ Print main diagonal from \rightarrow top left to bottom right

for
$$i \rightarrow 0$$
 to $(N-1)$
 $0,0$
 $1,1$
 $2,2$
 3
 $4*4$
 $3,3$
 $(i==i)$

 $A \rightarrow \text{ liver a square matrix } A[N][N].$ Print main diagonal from \rightarrow top right to bottom left

a → Print all diagonals from right to left.

A→ Civer a <u>square matrix</u> A[N][N]. Update the matrix to ite <u>transpose</u> without extra space.

$$i = 2$$

$$j = 3$$

$$(2,3) \longleftrightarrow (3,2) \text{ is } j \qquad j \longrightarrow (i+1) \text{ to } (N-1)$$

$$t = A \text{ is } j \text{ swap } (A \text{ is } j)$$

$$j = 2$$

$$TC = O(N^2)$$

$$SC = O(1)$$

 $\theta \rightarrow \text{ Given a } \underline{\text{square matrix}} \text{ A[N][N]. Update the } \underline{\text{matrix}} \text{ to its } \underline{90^{\circ}} \underline{\text{clockwise rotation}} \text{ without extra space.}$

a→ liver a square matrix. Print boundary elements in clockwise order starting from (0,0).

$$TC = O(4 * (N-1))$$

$$= O(N)$$

$$SC = O(1)$$

$$N = 3$$

$$M = 5$$