

연관분석을 활용한 Audience Targeting (부제 : 잠재고객 맞춤 컨텐츠 추천)

01. 서론

- 아이디어 제안 배경
- 분석 목적 및 기법

02. 알고리즘 및 분석 결과

- 알고리즘 설명
- 알고리즘 적용
- 분석 결과

03. 비즈니스 모델 및 전략

부록. 변수 설명

BIGTATO **PART.01**

아이디어 제안 배경연구 목적

아이디어 제안 배경

온라인 쇼핑 이용객 증가

- 정보의 급격한 증가로 인해 소비자는 원하는 정보를 얻 기는 점점 힘들어지고, 제공되는 정보들의 가치는 저하 되는 문제 발생
- 이에 따라 '대중 맞춤(Mass Customization)'이 기업 경 쟁력 강화에 중요한 마케팅 이슈로 작용

빅데이터 축적

기업들은 수집된 데이터를 통해 소비자들의 행동패턴을 분석하여, 비즈니스 인사인트를 적용할 수 있는 환경이 조성

분석 목적 및 기법

분석 목적

- 2019년 7월 ~ 2019년 9월 LPOINT 사용자 행동 데이터를 분석
- Al 기반 고객 맞춤 상품 추천 알고리즘을 도출하여 비즈니스 전략 수립

데이터 마이닝 기법

- 내용 기반(Content-Based) 필터링 방법:
 - 사용자가 과거에 선호했던 아이템과 유사한 성격을 가진 아이템을 추천하는 방식
 - 대표적 기법: 연관규칙 마이닝 (Association Rule Mining), 순 차패턴 마이닝 (Sequential Pattern Mining)
- 사용 프로그램
 - Python

BIGTATO

PART.02

알고리즘 및

- 알고리즘 설명
- 알고리즘 적용분석 결과

연관규칙 마이닝 (Association Rule Mining)

- 대형 데이터베이스에서 변수 간의 흥미로운 관계를 발견하기 위한 규칙-기반 기계 학습 방법
- 동시에 구매될 가능성이 큰 상품들을 찾아냄으로써 장바구니 분석(Market Basket Analysis)에서 다루는 문제들에 적용 가능
- 소비자들의 구매이력을 토대로 "X 아이템을 구매하는 고객들은 Y 아이템 역시 구매할 가능성이 높다"는 식의 결론 가능
- Ex) 슈퍼마켓의 판매 데이터에서 발견된 "{양파, 감자} ⇒ {버거}" 규칙에서 고객이 양파와 감자를 함께 구매하면 햄버거 고기도 사기 쉽다는 것을 알 수 있다.

연관규칙 알고리즘 (Using Apriori Algorithm)

- 순서
- 1) 빈발항목집합을 찾는다.
- 미리 결정된 최소지지도 $supp_{min}$ 이상의 트랜잭션 지지도를 갖는 모든 빈발항목 생성
- 2) 생성된 빈발항목집합으로 연관규칙 생성
- $I = \{i_1, i_2, \dots, i_n\}$ 을 빈발항목들의 집합이라 할 때, 각 트랜잭션 T는 $T \subseteq I$ 인 항목들의 집합
- 모든 빈발항목집합 I 에 대하여 I의 모든 공집합이 아닌 부분집합들을 찾고 최소신뢰도 $conf_{min}$ 및 최소향상도 $lift_{min}$ 이상인 규칙을 생성
- 3) 연관규칙은 X ⇒ Y로 표시한다.
- Ex) 판매 제품 간의 연관규칙이 {onion, potato} ⇒ {meat}이면, {onion, potato}를 구매하면 {meat}도 구매하는 규칙

사용 척도

- 의미 있는 연관규칙의 선택을 위해 다음의 측도가 유용하게 사용된다.
- 지지도(support): 전체 구매 건수 가운데 상품 X와 Y를 동시에 구매한 비율

$$supp(X) = \frac{|\{t \in T; X \subseteq Y\}|}{|T|}$$

○ 신뢰도(confidence): 상품 X를 구매한 건수 가운데 Y도 같이 구매한 비율

$$conf(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X)}$$

 \bigcirc 향상도(lift): 전체에서 상품 Y를 구매한 비율에 비해 X를 구매한 고객이 Y를 구매한 비율이 몇 배인지 알 수 있어 독립성 검증에 활용

$$lift(X \Rightarrow Y) = \frac{supp(X \cup Y)}{supp(X) \times supp(Y)}$$

알고리즘 적용

	cInt_id	new
0	2	A03_Ramens
1	2	A03_Ramens
2	2	A03_Cream and Condensed milk
3	2	A03_Coffee Drinks
4	2	A03_Canned Vegetable Foods
5	2	A02_Men's T-shirts
6	2	A02_Infant / Toddlers' T-shirts / Tops
7	2	A03_Coffee Drinks
8	2	A03_Coffee Drinks
9	2	A03_Ramens
10	2	A03_Crab Sticks
11	2	A03_Fried Tofu
12	9	A03_Pasta Noodles
13	9	B01_Fresh Milk
14	9	B01_Tofu
15	9	A03_Pasta Sauces

	support	itemsets
0	0.034353	(A02_Others)
1	0.030598	(A02_Women's T-shirts / Tops)
2	0.033658	(A02_Women's Underwear Sets)
3	0.070515	(A03_Apples)
4	0.043533	(A03_Australian Imported Beefs - Shoulders)
8034	0.030042	(A03_General Snacks, A03_Ramens, A03_Chicken E
8035	0.030042	(A03_General Snacks, A03_Ramens, A03_Chicken E
8036	0.030459	(A03_General Snacks, A03_Ramens, A03_Chicken E
8037	0.030181	(A03_General Snacks, A03_Ramens, A03_Chicken E
8038	0.030459	(A03_General Snacks, A03_Ramens, A03_Chicken E

구매 품목과 biz_unit을 합쳐 새로운 column으로 만듦

CInt_id를 기준으로 묶은 뒤 연관 분석 실행

알고리즘 적용

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
7634	(B02_Trash Bags)	(A03_Bibim Ramens, A03_Ramens)	0.246592	0.144784	0.036439	0.147772	1.020636
18273	(A03_Ramens)	(B02_General Snacks, B02_Chicken Eggs)	0.281085	0.105285	0.030459	0.108362	1.029226
18279	(A03_Ramens)	(B02_Tofu, B02_Chicken Eggs)	0.281085	0.111544	0.032545	0.115784	1.038016
18260	(B02_Trash Bags)	(A03_Tofu, A03_Ramens)	0.246592	0.139777	0.035883	0.145516	1.041055
18248	(B02_General Snacks)	(A03_Tofu, A03_Ramens)	0.232545	0.139777	0.034771	0.149522	1.069711
20695	(B02_Bar Ice Creams)	(B02_Trash Bags, B02_Tube Ice Creams)	0.103755	0.048540	0.034492	0.332440	6.848829
21997	(B02_Cone Ice Creams)	(B02_General Snacks, B02_Tube Ice Creams)	0.088317	0.052156	0.031711	0.359055	6.884283
20653	(B02_Bar Ice Creams)	(B02_General Snacks, B02_Tube Ice Creams)	0.103755	0.052156	0.037274	0.359249	6.888007
20655	(B02_Tube Ice Creams)	(B02_Bar Ice Creams, B02_General Snacks)	0.073713	0.071627	0.037274	0.505660	7.059608
21999	(B02_Tube Ice Creams)	(B02_Cone Ice Creams, B02_General Snacks)	0.073713	0.060918	0.031711	0.430189	7.061773
0045							

support: 0.03 이상, confidence: 0.001 이상
- 최대한 많은 패턴을 보고싶어서 confidence값을 낮게함

antecedents개수는 1개, consequents의 개수는 2개로 고정 - 전략 수립을 위해 그룹을 세분화함.

9915개의 패턴이 나왔으며 이 중에서 같은 biz_unit간 거래를 제외하면 396개의 패턴이 나옴.

9915 rows × 11 columns

분석 결과

antecedents_x consequents_x

(A03_Corn Snacks)	(B02_General Snacks, A03_General Snacks)
(A03_General Snacks)	(B02_General Snacks, A03_Corn Snacks)
(B02_Fresh Milk)	(B02_Spoon Type Yogurts, A03_Fresh Milk)
(B02_Soybean Sprouts)	(A03_Chicken Eggs, B02_Tofu)
(B02_Fresh Milk)	(B02_Chicken Eggs, A03_Fresh Milk)
	(A03_General Snacks) (B02_Fresh Milk) (B02_Soybean Sprouts)

- 연관 분석 결과 중 업종간 거래가 있는 패턴만 추출
- 특정 업종에서 거래를 한 고객이 다른 업종에서는 어느 상품을 구매하는지 알아냄

BIGTATO

PART.03

비즈니스 모델 및 건강

비즈니스 모델 및 전략

타업종 쿠폰 및 프로모션 제공

- 분석 결과, A03 업종에서 ComSnacks 상품을 구매한 고객이 B03 업종 GeneralSnacks 상품을 구매하는 형태의 패턴을 발견함
- A03 업종에서 ComSnacks 상품을 구매한 고객이 모두 B03 업종 GeneralSnacks 상품을 구매하는 것은 아니므로, A03 업종에서 ComSnacks 상품을 구매한 고객은 B03 업종 GeneralSnacks 상품을 구매하는 잠재고객이 될 수 있다.

비즈니스 모델 및 전략

antecedents_x consequents_x

14433	(A03_Corn Snacks)	(B02_General Snacks, A03_General Snacks)
14432	(A03_General Snacks)	(B02_General Snacks, A03_Corn Snacks)
16328	(B02_Fresh Milk)	(B02_Spoon Type Yogurts, A03_Fresh Milk)
12386	(B02_Soybean Sprouts)	(A03_Chicken Eggs, B02_Tofu)
16310	(B02_Fresh Milk)	(B02_Chicken Eggs, A03_Fresh Milk)

A03 이용고객에게 B02 쿠폰 및 프로모션 정보 제공

B02 이용고객에게 A03 쿠폰 및 프로모션 정보 제공

기대 효과

A 업종에서 X 상품을 구매한 고객에게 B 업종의 Y 상품 쿠폰 및 프로모션을 제공한다면, 타업종으로의 유입이 예상 됨

연관규칙 마이닝의 결과로 나온 패턴을 바탕으로 타업종 간 쿠폰 및 프로모션 제공 가능

BIGTATO

<u> 부록</u> 변수 설명

변수명	설명
df_trans	거래 정보 csv 데이터 프레임
df_prodt	상품 분류 정보 csv 데이터 프레임
trans_Poten	biz_unit이 2개 이상인 고객만 나와있는 데이터 프레임
Biz_nm3	trans_poten데이터에서 pd_c기준으로 df_prodt와 merge하여 소분류명을 뽑아낸 데이터 프레임
df_poten	biz_unit 열과 clac_nm3열을 합쳐서 새로 만든 데이터 프레임(ex. A03에서 onions를 구매한 고객: A03_onions)
lst	Biz_nm3 데이터를 clnt_id로 그룹핑하여 clnt_id별 구매 품목을 담은 리스트
frequent_itemsets	apriori 연관분석 결과
arules	frequent_itemsets의 패턴 분석
result	antecedents의 개수가 1개 이상이고 consequents의 개수가 2개 이상인 패턴들의 규칙
result_	같은 biz_unit에서 거래된 패턴 제외한 규칙
final	result_ 상에서는 상품명이 제외된 상태이므로 index를 기준으로 merge하여 상품명이 명시된 최종 데이터 프레임