

LINUX PLUMBERS CONFERENCE

NUMA and Virtualization, the case of Xen

Dario Faggioli, Senior Software Engineer, Citrix dario.faggioli@citrix.com

What is NUMA

- Non-Uniform Memory Access: it will take longer to access some regions of memory than others
- Groups of processors (<u>NUMA node</u>) have their own <u>local memory</u>
- Any processor can access any memory, but accessing <u>remote memory</u> will be slower

Local Memory Access

Remote Memory Access Dario Faggioli,

dario.faggioli@citrix.com

NUMA and Virtualization

What we wan to avoid:

NUMA and Xen

What we used to have in Xen:

August 29-31, 2012, San Diego, CA, USA

Dario Faggioli, dario.faggioli@citrix.com

NUMA and Xen

Automatic Placement

What we have now

- 1.VM1 creation time: **pin** VM1 to the first node
- 2.VM2 creation time:

 pin VM2 to the
 second node, as
 first one already
 has another VM

 Dario Faggioli, pinned to it CITRIX

 dario.faggioli@citrix.com

August 29-31, 2012, San Diego, CA, USA

NUMA Aware Scheduling

However, if using **pinning** ...

August 29-31, 2012, San Diego, CA, USA

NUMA Aware Scheduling

What we will have in Xen (4.3 release): node affiniy, i.e., where a VM prefers to run

VM1 can run immediately: remote accesses are better than not running at all!

Performances Evaluation

- Host: Intel Xeon(R) E5620, 16 cores, 12 GB RAM 2 NUMA nodes
- VMs: 2, 4, 6, 8 and 10 of them, <u>2 vCPUs</u>, <u>960MB</u>
 RAM

- SPECjbb2005 executed concurrently in all VMs
- 3 configurations: all-cpus, auto-pinning, auto-affinity
- Exp. repeated 3 times per each configuration

Open Problems

- Dynamic memory migration
- IO NUMA
- Guest (or Virtual) NUMA
- Ballooning and memory sharing
- Inter-VM dependencies
- Benchmarking and performances evaluation

Dynamic Memory Migration

If VM2 goes away, we want move VM1's

memory!

IO NUMA

Different devices can be attached to different nodes: needs to be considered during placement / scheduling

Guest NUMA

If a VM is bigger than 1 node, should it know?

Pros: VM performances

Cons: what if that needs to change?

- suspend/resume
- live migration

August 29-31, 2012, San Diego, CA, USA

Ballooning and Sharing

Ballooning should be NUMA aware

Sharing, should we allow that cross-node?

Inter-VM Dependences

Are we sure the situation on the right is always better? Might it be workload dependant (VM cooperation VS.

dario.faggioli@citrix.com

Benchmarking and Performances Evaluation

How to verify we are actually improving:

What kind of workload(s)?

What VMs configuration?

Thanks!

Any Questions?

