Project Sigma

Algebraic Geometry

Yunhai Xiang

May 9, 2021

Contents

1 Affine Algebraic Sets

5

CONTENTS 4

Chapter 1

Affine Algebraic Sets

Let k be a field and $n \in \mathbb{N}$, then the *affine space* $\mathbf{A}^n(k)$ of dimension n, or simply \mathbf{A}^n if it does not cause confusion, is the same structure as the n-dimensional vector space k^n over k, except with affine maps as morphisms, where an affine map is a linear map shifted by a constant. In this course note, unless otherwise specified, I will take $k = \mathbf{C}$ the set of complex numbers.

Definition 1.0.1. Suppose that $S \subseteq k[X_1, ..., X_n]$ for some $n \in \mathbb{N}$, we define

$$\mathcal{V}(S) = \{ x \in \mathbf{A}^n(k) : \forall f \in S, f(x) = 0 \}$$

as the *set of zeros* of *S*. Subsets of $A^n(k)$ that are sets of zeros of some *S* are called *algebraic*.

For example, in $\mathbf{A}^2(k)$, the sets $\mathcal{V}(Y)$ and $\mathcal{V}(X)$ are the *x*-axis and the *y*-axis, the set $\mathcal{V}(X,Y)$ is the origin. The set $\mathcal{V}(f)$, where $f \in k[X,Y]$ is polynomial of degree 2, is known as a *conic section*, for example, the circle $\mathcal{V}(X^2 + Y^2 - 1)$, the parabola $\mathcal{V}(Y - X^2)$, and the hyperbola $\mathcal{V}(XY - 1)$.

Definition 1.0.2. Let $X \subseteq \mathbf{A}^n(k)$, then define the ideal corresponding to X

$$\mathcal{I}(X) = \{ f \in k[X_1, \dots, X_n] : \forall p \in X, f(p) = 0 \}$$

which is the set of polynomials vanishing on all of *X*.

We can easily verify that $\mathcal{I}(X)$ is indeed an ideal of $k[X_1,\ldots,X_n]$, and it is a radical ideal. We recall that a radical ideal $I\subseteq R$ is an ideal that satisfies $I=\sqrt{I}:=\{r\in R:\exists n>0,\,r^n\in I\}$. Note that we always have $I\subseteq \sqrt{I}$ and \sqrt{I} is an ideal if I is. Thus, to see that $\mathcal{I}(X)$ is a radical ideal, note that $f^n(p)=0$ for all $p\in X$ implies f(p)=0 for all $p\in X$, as k is a field.

Theorem 1.0.3 (Hilbert's Nullstellensatz). There is a bijective correspondance

{radical ideals of
$$k[X_1, ..., X_n]$$
} \longleftrightarrow {algebraic sets of $\mathbf{A}^n(k)$ }

given by $I \mapsto \mathcal{V}(I)$ and $X \mapsto \mathcal{I}(X)$.

Proof. Note that each V(I) is an algebraic set, and each $\mathcal{I}(X)$ is a radical ideal, so these maps are well defined.