

DK_START_GW2A-LV55PG484C8I7_V1.3 **User Guide**

DBUG404-1.1E, 03/10/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is the trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description			
09/02/2021	1.0E	Initial version published.			
10/21/2022	1.0.1E	Figure 3-18 "LED Connection Diagram" updated.			
03/10/2023	1.1E	Chapter 4 "Quick Start" removed.			

Contents

Contents	i
List of Figures	iv
List of Tables	
1 About This Guide	1
1.1 Purpose	
1.2 Related Documents	1
1.3 Terminology and Abbreviations	1
1.4 Support and Feedback	2
2 Development Board Introduction	3
2.1 Overview	3
2.2 Development Board Suite	4
2.3 PCB Components	5
2.4 System Block Diagram	5
2.5 Features	6
3 Development Board Circuit	8
3.1 FPGA Module	8
3.2 Download Module	8
3.2.1 Introduction	8
3.2.2 Pinout	<u></u>
3.3 Power Supply	10
3.3.1 Introduction	10
3.4 Clock and Reset	11
3.4.1 Introduction	11
3.4.2 Pinout	11
3.5 DDR3	12
G404-1.1E	

3.5.1 Introduction	12
3.5.2 Pinout	12
3.6 Ethernet	14
3.6.1 Introduction	14
3.6.2 Pinout	14
3.7 LVDS Interfaces	15
3.7.1 Introduction	15
3.7.2 Pinout	16
3.8 MIPI DSI	17
3.8.1 Introduction	17
3.8.2 Pinout	18
3.9 MIPI CSI	19
3.9.1 Introduction	19
3.9.2 Pinout	20
3.10 SD Card	20
3.10.1 Introduction	20
3.10.2 Pinout	21
3.11 RTC	21
3.11.1 Introduction	21
3.11.2 Pinout	21
3.12 AD/DA	22
3.12.1 Introduction	22
3.12.2 Pinout	22
3.13 CAN	22
3.13.1 Introduction	22
3.13.2 Pinout	23
3.14 WIFI	23
3.14.1 Introduction	23
3.14.2 Pinout	23
3.15 GPIO	24
3.15.1 Introduction	24
3.15.2 Pinout	25

3.16 Industry Screen Interface	27
3.16.1 Introduction	27
3.16.2 Pinout	28
3.17 LED Module	29
3.17.1 Introduction	29
3.17.2 Pinout	29
3.18 Keys Module	30
3.18.1 Introduction	30
3.18.2 Pinout	30
3.19 Switches Module	31
3.19.1 Introduction	31
3.19.2 Pinout	31

List of Figures

Figure 2-1 DK_START_GW2A-LV55PG484C8I7_V1.3 Development Board	3
Figure 2-2 Development Board Suite	4
Figure 2-3 PCB Components	5
Figure 2-4 System Block Diagram	5
Figure 3-1 Connection Diagram of FPGA Downloading and Configuration	9
Figure 3-2 Asynchronous FIFO Connection Diagram	9
Figure 3-3 Connection Diagram of Clock and Reset	11
Figure 3-4 Connection Diagram of FPGA and DDR3	12
Figure 3-5 Connection Diagram of FPGA and Ethernet	14
Figure 3-6 LVDS TX Interface	15
Figure 3-7 LVDS RX Interface	16
Figure 3-8 Connection Diagram of MIPI DSI	18
Figure 3-9 Connection Diagram of MIPI CSI	19
Figure 3-10 Connection Diagram of SD Card	20
Figure 3-11 Connection Diagram of RTC	21
Figure 3-12 Connection Diagram of AD/DA	22
Figure 3-13 Connection Diagram of CAN	23
Figure 3-14 Connection Diagram of WIFI	23
Figure 3-15 40pin Diagram	24
Figure 3-16 20pin Diagram	25
Figure 3-17 50pin FPC Interface Diagram	27
Figure 3-18 LED Connection Diagram	29
Figure 3-19 Key Circuit Diagram	30
Figure 3-20 Switch Circuit Diagram	31

DBUG404-1.1E

List of Tables

Table 1-1 Abbreviations and Terminology	2
Table 3-1 FPGA Download and Pinout	9
Table 3-2 Asynchronous FIFO Pinout	10
Table 3-3 Clock and Reset Pinout	11
Table 3-4 DDR3 Pinout	12
Table 3-5 Ethernet Pinout	14
Table 3-6 LVDS TX Pinout	16
Table 3-7 LVDS TX2 Pinout	16
Table 3-8 LVDS TX2 Pinout	17
Table 3-9 LVDS TX2 Pinout	17
Table 3-10 MIPI DSI Pinout	18
Table 3-11 MIPI DSI Pinout	20
Table 3-12 SD Card Pinout	21
Table 3-13 RTC Pinout	21
Table 3-14 AD/DA Pinout	22
Table 3-15 CAN Pinout	23
Table 3-16 WIFI Pinout	23
Table 3-17 40pin Interface Pinout	25
Table 3-18 20pin Interface Pinout	26
Table 3-19 50pin FPC Interface Pinout	28
Table 3-20 LCD Screen Brightness Control Pinout	28
Table 3-21 LED Pinout	29
Table 3-22 Keys Module Pinout	30
Table 3-23 Switches Module Pinout	31

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

The DK_START_GW2A-LV55PG484C8I7_V1.3 development board (hereinafter referred to development board) user guide consists of following three parts:

- A brief introduction to the features of the development board;
- An introduction to the development board system architecture and hardware resources;
- An introduction to the hardware circuits, functions and pinout.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at www.gowinsemi.com:

- DS102, GW2A series FPGA Products Data Sheet
- UG113, GW2A-55 Pinout
- <u>UG111, GW2A series of FPGA Products Package and Pinout User</u> Guide
- UG290, Gowin FPGA Products Programming and Configuration Guide
- SUG100, Gowin Software User Guide

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

DBUG404-1.1E 1(31)

Table 1-1 Abbreviations and Terminology

Terminology and Abbreviations	Meaning		
BSRAM	Block Static Random Access Memory		
DDR	Double Data Rate		
DSP	Digital Signal Processing		
FLASH	Flash Memory		
FPGA	Field Programmable Gate Array		
GPIO	Gowin Programmable I/O		
LDO	Low Dropout Regulator		
LUT4	Four-input Look-up Table		
LVDS	Low-Voltage Differential Signaling		
SSRAM	Shadow Static Random Access Memory		

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

DBUG404-1.1E 2(31)

2 Development Board Introduction

2.1 Overview

Figure 2-1 DK_START_GW2A-LV55PG484C8I7_V1.3 Development Board

DK_START_GW2A-LV55PG484C8I7_V1.3 applies to high speed data storage based on DDR3, high-speed communication test based on MIPI, LVDS and GbE, 55k series of FPGA products functions evaluation, the verification of hardware reliability, software learning and debugging, etc.

The development board uses the GW2A- LV55PG484 FPGA device, which is the first generation product of Gowin Arora family. The GW2A series of FPGA products offer a range of features and rich resources like high-performance DSP, high-speed LVDS interface and BSRAM. These embedded resources combine a streamlined FPGA architecture with a 55nm process to make the GW2A series of FPGA products ideal for high-speed and low-cost applications.

DBUG404-1.1E 3(31)

The development board includes:

- A DDR3 chip with 2Gbit, 16-bit bus width.
- Two Gigabit Ethernet interfaces support 10M, 100M, 1000M Ethernet communication.
- Abundant peripheral interfaces, including LVDS interfaces, a SD card socket, CAN bus interface, MIPI CSI, MIPI DSI, AD/DA interface and GPIO interfaces.
- RTC module is designed to provide real-time clock for MCU IP.
- An external Flash, switches, keys, LED, etc.

2.2 Development Board Suite

The development board suite includes the following items:

- 1. DK_START_GW2A-LV55PG484C8I7_V1.3 development board
- 2. 5V power (Input: 100-240V~50/60Hz 0.5A, output: DC 5V 2A)
- 3. USB Mini B Cable

Figure 2-2 Development Board Suite

- ① DK_START_GW2A-LV55PG484C8I7_V1.3 development board
- ② 5V power
- ③ USB Mini B cable

DBUG404-1.1E 4(31)

2.3 PCB Components

Figure 2-3 PCB Components

2.4 System Block Diagram

Figure 2-4 System Block Diagram

DBUG404-1.1E 5(31)

2.5 Features

The key features are as follows:

- 1. The FPGA device
 - Gowin GW2A-LV55PG484 FPGA
 - Max. user I/O 319
- 2. Download and Boot
 - Integrates the download module and can be downloaded with USB Mini B cable
 - External Flash boot
 - The blue DONE light is on after loading.
- 3. Power
 - External DC 5V 2A
 - The blue POWER light is on after power on.
 - The development board generates 3.3v, 2.5v, 1.8v, 1.5v, 1.2v, 1.0v, 0.75v and the power needed by LCD interface and MIPI interface.
- Clock system

50MHz crystal oscillator input

- 5. Memory Device
 - 2Gbit DDR3 SDRAM
 - 64Mbit FLASH
- 6. Ethernet interface
 - Two Ethernet interfaces
 - Supports RGMII (10/100/1000) interface.
 - RJ45 connector integrating transformer
- 7. LVDS interfaces
 - Two LVDS interfaces for receiving, including ten pairs of differential signals.
 - Two LVDS interface for sending, including ten pairs of differential signals.
 - I/O voltage is adjustable when used as GPIO, supporting 3.3v, 2.5v and 1.8v.

Note!

J13 needs to be set to 2.5V when LVDS is used.

- 8. MIPI DSI Interface
 - The interface includes 5 pairs of differential signals, among which one for clock and four for data.
 - The stacked board connector with 30 contacts, 0.4mm pitch is used.
 - Five lane DSI signals are simultaneously channeled to 20pin

DBUG404-1.1E 6(31)

double row of pins with 2.00mm pitch.

9. MIPI CSI Interface

- MIPI interface includes 3 pairs of differential signals, among which one for clock and four for data.
- 15pin FPC connector with 1mm pitch is used.
- Differential signals of three lanes are simultaneously channeled to the double row pin of 20 pin and 2.00mm pitch.

10. SD card slot

- Eight contacts, push-push type
- Card detection

11. RTC

- Externally connected to 32.768KHz quartz crystal is used.
- Dual power supply design can be used to develop board power supply or button cell.
- The communication interface with FPGA is I2C.

12. AD/DA

- Supports 12-bit A/D and D/A converters, and 8-channel interface can be configured to any combination of ADC/DAC/GPIO.
- The input and output interface uses 8pin.

13. CAN

- The communication with FPGA is via UART.
- The maximum rate is 1Mbps.

14. WIFI

- The communication with FPGA is via SPI;
- SPI rate is 20Mbps.

15. GPIO Interface

- There are 40PIN double rows pins, including 34 GPIOs. I/O Bank voltage is adjusted to 3.3V and there are 3.3V voltage and 5V voltage and two ground pins.
- There are 20PIN double rows pins, including 16 GPIOs. All I/O and 40PIN multiplex GPIO of FPGA. There are two 3.3V ground pins and one 5V ground pin.

16. Debug

- Four keys
- Four switches
- Four blue LEDs

DBUG404-1.1E 7(31)

3 Development Board Circuit

3.1 FPGA Module

Overview

For the resources of GW2A-LV55PG484 FPGA products, see <u>DS102</u>, <u>GW2A series FPGA Products Data Sheet</u>.

I/O BANK Introduction

For the I/O BANK, package and pinout information, see <u>UG111, GW2A</u> series of FPGA Products Package and Pinout User Guide.

3.2 Download Module

3.2.1 Introduction

The development board provides USB download interface, which is realized by the A channel of FT2232 USB conversion chip. You can set the MODE value to download the programs to the on-chip SRAM or external Flash. When downloaded to SRAM, the data stream file will be lost if the device is power down. When downloaded to Flash, the data stream file will not be lost if power down.

The MODE value configuration is as follows:

- 1. In any modes, you can download the data stream file to the on-chip SRAM and run it immediately.
- Set MODE as "011" to download the data stream file to the external Flash. Set MODE to "000" and power on again. The device will read the FPGA configuration data from the Flash automatically.

The connection diagram for downloading and configuration is as follows.

DBUG404-1.1E 8(31)

JTAG TCK **GOWIN** USB_D+ JTAG_TDO USB D-USB-to-JTAG_TDI JTAG Chip **Arora** JTAG_TMS FLASH_SPI_MISO FLASH_SPI_MOSI Configuration FLASH_SPI_CS_N FLASH FLASH_SPI_CLK

Figure 3-1 Connection Diagram of FPGA Downloading and Configuration

By configuring EEPROM chip, the B channel of FT2232 can be configured as an asynchronous FIFO interface. The connection diagram is as follows.

Figure 3-2 Asynchronous FIFO Connection Diagram

3.2.2 Pinout

Table 3-1 FPGA Download and Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
JTAG_TCK	N20	2	3.3V	JTAG Signal
JTAG_TDO	M22	2	3.3V	JTAG Signal
JTAG_TDI	M20	2	3.3V	JTAG Signal
JTAG_TMS	N22	2	3.3V	JTAG Signal
FLASH_SPI_MISO	P19	3	1.5V	Configure FLASH Signal
FLASH_SPI_MOSI	P20	3	1.5V	Configure FLASH Signal

DBUG404-1.1E 9(31)

Name	FPGA Pin No.	BANK	I/O Level	Description
FLASH_SPI_CS_N	N18	3	1.5V	Configure FLASH Signal
FLASH_SPI_CLK	P18	3	1.5V	Configure FLASH Signal

Table 3-2 Asynchronous FIFO Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
FTDI_SIWU#	B12	0	1.2V	Send/wake up signal
FTDI_WR#	A11	0	1.2V	Write signal
FTDI_RD#	B11	0	1.2V	Read signal
FTDI_TXE#	C9	0	1.2V	Write Enable Signal
FTDI_RXF#	C10	0	1.2V	Read Enable Signal
FIFO_D0	E19	2	3.3V	Data bits 0
FIFO_D1	E20	2	3.3V	Data bit 1
FIFO_D2	F18	2	3.3V	Data bit 2
FIFO_D3	F19	2	3.3V	Data bit 3
FIFO_D4	G20	2	3.3V	Data bit 4
FIFO_D5	G19	2	3.3V	Data bit 5
FIFO_D6	H20	2	3.3V	Data bit 6
FIFO_D7	H18	2	3.3V	Data bit 7

3.3 Power Supply

3.3.1 Introduction

The development board is powered through a power adapter. The input parameter is 100-240V~50/60MHz 0.5A, and the output is DC +5V 2A.

The input 5V power can generate 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V and 0.75V power required by DDR3, 17.4V, +5V and -5V required by MIPI DSI interface and 16V, 10.4V, 9.9V, -7V required by RGB screen interface through the power chip on the development board.

Three NCP3170ADR2G DC-DC power supply chips are used to generate 3.3V, 1.5V and 1.0V, and the maximum output current is 3A.

Three TPS7A7001 LDO power supply chips are used to generate 2.5V,

DBUG404-1.1E 10(31)

1.8V and 1.2V, and the maximum output current is 2A.

One TPS51200 power chip is used to generate 0.75V power for DDR3 chip.

One APW7136CCI power chip is used to generate 9.9V power for RGB industry screen.

One RT9284A power chip is used to generate 16V, 10.4V and -7V power for RGB industry screen.

One AAT1541A power chip is used to generate +5V and -5V power for MIPI DSI interface.

One TPS61161A power chip is used to generate 17.4V power for MIPI DSI interface backlighting.

3.4 Clock and Reset

3.4.1 Introduction

The development board offers a 50MHz oscillator, connecting to the global clock pins.

The reset circuit uses keys and dedicated reset chips. After power on, the reset chip automatically generates a reset signal to reset the FPGA and Ethernet PHY chip. 3.3V voltage is monitored in real time, and the reset signal is generated immediately when the exception occurs. The reset signal can also be generated via the reset key.

Figure 3-3 Connection Diagram of Clock and Reset

3.4.2 Pinout

Table 3-3 Clock and Reset Pinout

Name	FPGA Pin No.	o. BANK I/O Level Description		Description
CLK_G	M19	2	3.3V	50MHz crystal oscillator input
RST_N	A14	1	2.5V	Reset Signal, active Low

DBUG404-1.1E 11(31)

3.5 DDR3

3.5.1 Introduction

The development board includes a DDR3 chip with 2Gbit, 16-bit bus width, and the highest data rate is 1600MT/s.

Figure 3-4 Connection Diagram of FPGA and DDR3

3.5.2 Pinout

Table 3-4 DDR3 Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
DDR3_A0	G1	7	1.5V	Address
DDR3_A1	U5	6	1.5V	Address
DDR3_A2	G5	7	1.5V	Address
DDR3_A3	F5	7	1.5V	Address
DDR3_A4	V3	6	1.5V	Address
DDR3_A5	G2	7	1.5V	Address
DDR3_A6	AA22	3	1.5V	Address
DDR3_A7	H5	7	1.5V	Address
DDR3_A8	AB22	3	1.5V	Address
DDR3_A9	J4	7	1.5V	Address
DDR3_A10	R5	6	1.5V	Address
DDR3_A11	AA21	3	1.5V	Address
DDR3_A12	T5	6	1.5V	Address
DDR3_A13	AA1	6	1.5V	Address

DBUG404-1.1E 12(31)

Name	FPGA Pin No.	BANK	I/O Level	Description
DDR3_BA0	F4	7	1.5V	Bank address
DDR3_BA1	U4	6	1.5V	Bank address
DDR3_BA2	F3	7	1.5V	Bank address
DDR3_CASn	C3	7	1.5V	Column address strobe
DDR3_CK_EN	E3	7	1.5V	Clock Enable
DDR3_CKn	R22	3	1.5V	Differential clock
DDR3_CKp	P22	3	1.5V	Differential clock
DDR3_DQ0	M5	6	1.5V	Data
DDR3_DQ1	Т3	6	1.5V	Data
DDR3_DQ2	M3	6	1.5V	Data
DDR3_DQ3	T2	6	1.5V	Data
DDR3_DQ4	Y1	6	1.5V	Data
DDR3_DQ5	U1	6	1.5V	Data
DDR3_DQ6	N3	6	1.5V	Data
DDR3_DQ7	V1	6	1.5V	Data
DDR3_DQ8	T1	7	1.5V	Data
DDR3_DQ9	K3	7	1.5V	Data
DDR3_DQ10	P1	7	1.5V	Data
DDR3_DQ11	J1	7	1.5V	Data
DDR3_DQ12	L5	7	1.5V	Data
DDR3_DQ13	H3	7	1.5V	Data
DDR3_DQ14	M1	7	1.5V	Data
DDR3_DQ15	H1	7	1.5V	Data
DDR3_LDM	R3	6	1.5V	Data input mask
DDR3_LDQSn	R4	6	1.5V	Data strobe
DDR3_LDQSp	P4	6	1.5V	Data strobe
DDR3_ODT	B2	7	1.5V	On-Die Termination Enable
DDR3_RASn	D1	7	1.5V	Row address strobe
DDR3_RSTn	W4	6	1.5V	Reset
DDR3_UDM	K4	7	1.5V	Data input mask
DDR3_UDQSn	L1	7	1.5V	Data strobe
DDR3_UDQSp	L2	7	1.5V	Data strobe
DDR3_WEn	C1	7	1.5V	Write enable

DBUG404-1.1E 13(31)

3.6 Ethernet

3.6.1 Introduction

The development board has two Ethernet circuits and supports gigabit mode, which can provide hardware testing environment in the LED display applications. The interface connected to other devices is RJ45 and the transformer is integrated. The connection diagram is as follows.

GbE 1 CLK PHY1 PHY1_GTXCLK PHY1_TX_EN PHY1_TXD[3..0] PHY1 PHY1_RXC PHY1_RX_DV PHY1_RXD[3:0] **GOWIN** PHY_MDC RST_N PHY_MDIO **Arora** GbE 2 PHY2_GTXCLK PHY2 TX EN PHY2 TXD[3..0] PHY2_RXC PHY2 PHY2 RX DV PHY2 RXD[3:0] CLK_PHY2 25MHz

Figure 3-5 Connection Diagram of FPGA and Ethernet

3.6.2 Pinout

Table 3-5 Ethernet Pinout

Name	FPGA	BANK	I/O	Description
	Pin No.		Level	
PHY_MDC	H19	2	3.3V	Manage channel clock
PHY_MDIO	J18	2	3.3V	Manage channel data
PHY1_GTCLK	H21	2	3.3V	PHY1 Transmit Clock
PHY1_TXD0	H22	2	3.3V	PHY1 transmitting data channel 0
PHY1_TXD1	G21	2	3.3V	PHY1 transmitting data channel 1
PHY1_TXD2	G22	2	3.3V	PHY1 transmitting data channel 2
PHY1_TXD3	F21	2	3.3V	PHY1 transmitting data channel 3
PHY1_TX_EN	F22	2	3.3V	PHY1 transmitting data enable
PHY1_RXC	E22	2	3.3V	PHY1 receiving clock
PHY1_RXD0	D22	2	3.3V	PHY1 receiving data channel 0
PHY1_RXD1	D20	2	3.3V	PHY1 receiving data channel 1

DBUG404-1.1E 14(31)

Name	FPGA	BANK	I/O	Description
	Pin No.		Level	
PHY1_RXD2	C22	2	3.3V	PHY1 receiving data channel 2
PHY1_RXD3	B21	2	3.3V	PHY1 receiving data channel 3
PHY1_RX_DV	B20	2	3.3V	PHY1 receiving data enable
PHY2_GTCLK	N19	2	3.3V	PHY2 transmitting clock
PHY2_TXD0	M21	2	3.3V	PHY2 transmitting data channel 0
PHY2_TXD1	L21	2	3.3V	PHY2 transmitting data channel 1
PHY2_TXD2	L22	2	3.3V	PHY2 transmitting data channel 2
PHY2_TXD3	K22	2	3.3V	PHY2 transmitting data channel 3
PHY2_TX_EN	J22	2	3.3V	PHY2 transmitting data enable
PHY2_RXC	L20	2	3.3V	PHY2 receiving clock
PHY2_RXD0	K20	2	3.3V	PHY2 receiving data channel 0
PHY2_RXD1	L19	2	3.3V	PHY2 receiving data channel 1
PHY2_RXD2	J20	2	3.3V	PHY2 receiving data channel 2
PHY2_RXD3	K19	2	3.3V	PHY2 receiving data channel 3
PHY2_RX_DV	K18	2	3.3V	PHY2 receiving data enable

3.7 LVDS Interfaces

3.7.1 Introduction

The LVDS interfaces are the four 20 pins with the pitch of 2.00mm, two of which are transmitting interfaces, and the other are receiving interfaces. Each interface includes five pairs of differential signals. J13 needs to be set to 2.5V when LVDS is used.

Figure 3-6 LVDS TX Interface

DBUG404-1.1E 15(31)

Figure 3-7 LVDS RX Interface

3.7.2 Pinout

Table 3-6 LVDS TX Pinout

Pin	Name	FPGA	BANK	I/O Level	Description
No.		Pin No.			
1	LVDS_B1_P	V16	4	2.5V	Differential Channel 1+
2	LVDS_B1_N	U16	4	2.5V	Differential Channel 1-
5	LVDS_B2_P	V17	4	2.5V	Differential Channel 2+
6	LVDS_B2_N	V18	4	2.5V	Differential Channel 2-
9	LVDS_B3_P	Y19	4	2.5V	Differential Channel 3+
10	LVDS_B3_N	Y18	4	2.5V	Differential Channel 3-
13	LVDS_B4_P	AA17	4	2.5V	Differential Channel 4+
14	LVDS_B4_N	Y17	4	2.5V	Differential Channel 4-
17	LVDS_B5_P	AB16	4	2.5V	Differential Channel 5+
18	LVDS_B5_N	AA16	4	2.5V	Differential Channel 5-

Table 3-7 LVDS TX2 Pinout

Pin	Name	FPGA	BANK	I/O Level	Description
No.		Pin No.			
1	LVDS_B6_P	AB15	4	2.5V	Differential Channel 6+
2	LVDS_B6_N	AA15	4	2.5V	Differential Channel 6-
5	LVDS_B7_P	Y16	4	2.5V	Differential Channel 7+
6	LVDS_B7_N	W16	4	2.5V	Differential Channel 7-
9	LVDS_B8_P	V14	4	2.5V	Differential Channel 8+
10	LVDS_B8_N	V15	4	2.5V	Differential Channel 8-
13	LVDS_B9_P	AB12	4	2.5V	Differential Channel 9+
14	LVDS_B9_N	AA12	4	2.5V	Differential Channel 9-
17	LVDS_B10_P	W12	4	2.5V	Differential Channel 10+
18	LVDS_B10_N	W13	4	2.5V	Differential Channel 10-

DBUG404-1.1E 16(31)

Table 3-8 LVDS TX2 Pinout

Pin	Name	FPGA	BANK	I/O Level	Description
No.		Pin No.			
1	LVDS_A1_P	W19	4	2.5V	Differential Channel 1+
2	LVDS_A1_N	V19	4	2.5V	Differential Channel 1-
5	LVDS_A2_P	W17	4	2.5V	Differential Channel 2+
6	LVDS_A2_N	W18	4	2.5V	Differential Channel 2-
9	LVDS_A3_P	AB19	4	2.5V	Differential Channel 3+
10	LVDS_A3_N	AB20	4	2.5V	Differential Channel 3-
13	LVDS_A4_P	AA20	4	2.5V	Differential Channel 4+
14	LVDS_A4_N	Y20	4	2.5V	Differential Channel 4-
17	LVDS_A5_P	AB17	4	2.5V	Differential Channel 5+
18	LVDS_A5_N	AB18	4	2.5V	Differential Channel 5-

Table 3-9 LVDS TX2 Pinout

Pin	Name	FPGA	BANK	I/O Level	Description
No.		Pin No.			
1	LVDS_A6_P	Y14	4	2.5V	Differential Channel 6+
2	LVDS_A6_N	Y15	4	2.5V	Differential Channel 6-
5	LVDS_A7_P	W14	4	2.5V	Differential Channel 7+
6	LVDS_A7_N	W15	4	2.5V	Differential Channel 7-
9	LVDS_A8_P	AB13	4	2.5V	Differential Channel 8+
10	LVDS_A8_N	AB14	4	2.5V	Differential Channel 8-
13	LVDS_A9_P	Y12	4	2.5V	Differential Channel 9+
14	LVDS_A9_N	Y13	4	2.5V	Differential Channel 9-
17	LVDS_A10_P	V12	4	2.5V	Differential Channel 10+
18	LVDS_A10_N	V13	4	2.5V	Differential Channel 10-

3.8 MIPI DSI

3.8.1 Introduction

The DSI interface uses the 30-contact stacked board connector, which channels to 5 pairs of differential signals, including one for clock and four for data, corresponding to TXD T550UZPA-75 mobile phone screen interface. At the same time, DSI signals of 5 lanes are channeled to the double rows pin of 20pin with 2.00mm pitch.

DBUG404-1.1E 17(31)

Figure 3-8 Connection Diagram of MIPI DSI

3.8.2 Pinout

Table 3-10 MIPI DSI Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
DSI_D0n	B22	1	2.5V	HS differential data 0-
DSI_D0p	A22	1	2.5V	HS differential data 0+
DSI_D1n	C19	1	2.5V	HS differential data 1
DSI_D1p	C18	1	2.5V	HS differential data 1+
DSI_CLKn	A19	1	2.5V	HS Differential clock-
DSI_CLKp	A18	1	2.5V	HS Differential clock+
DSI_D2n	B17	1	2.5V	HS differential data 2-
DSI_D2p	A17	1	2.5V	HS differential data 2+
DSI_D3n	B15	1	2.5V	HS differential data 3-
DSI_D3p	A15	1	2.5V	HS differential data 3+
DSI_LP_D0n	C7	0	1.2V	LP single-ended data 0
DSI_LP_D0p	A7	0	1.2V	LP single-ended data 0

DBUG404-1.1E 18(31)

Name	FPGA Pin No.	BANK	I/O Level	Description	
DSI_LP_D1n	A6	0	1.2V	LP single-ended data 1	
DSI_LP_D1p	B7	0	1.2V	LP single-ended data 1	
DSI_LP_CLKn	B6	0	1.2V	LP single-ended clock	
DSI_LP_CLKp	D7	0	1.2V	LP single-ended clock	
DSI_LP_D2n	D6	0	1.2V	LP single-ended data 2	
DSI_LP_D2p	C6	0	1.2V	LP single-ended data 2	
DSI_LP_D3n	A4	0	1.2V	LP single-ended data 3	
DSI_LP_D3p	A5	0	1.2V	LP single-ended data 3	
DSI_RSTn	A16	1	2.5V	Reset signal	
DSI_CABC	B16	1	2.5V	Backlighting control signal	
DSI_TE	D16	1	2.5V	Tearing effect output signal	

3.9 MIPI CSI

3.9.1 Introduction

MIPI CSI uses 15pin connector with 1mm pitch. The interface includes 3 pairs of differential signals, among which one for clock and two for data. Differential signals of three lanes are simultaneously channeled to the double rows pin of 20pin with 2.00mm pitch.

Figure 3-9 Connection Diagram of MIPI CSI

DBUG404-1.1E 19(31)

3.9.2 Pinout

Table 3-11 MIPI DSI Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
CSI_D0n	C15	1	2.5V	HS differential data 0-
CSI_D0p	C14	1	2.5V	HS differential data 0+
CSI_D1n	E13	1	2.5V	HS differential data 1
CSI_D1p	E12	1	2.5V	HS differential data 1+
CSI_CLKn	D12	1	2.5V	HS Differential clock-
CSI_CLKp	D11	1	2.5V	HS Differential clock+
CSI_LP_D0n	A2	0	1.2V	LP single-ended data 0
CSI_LP_D0p	A3	0	1.2V	LP single-ended data 0
CSI_LP_D1n	A1	0	1.2V	LP single-ended data 1
CSI_LP_D1p	B1	0	1.2V	LP single-ended data 1
CSI_LP_CLKn	C4	0	1.2V	LP single-ended clock
CSI_LP_CLKp	C5	0	1.2V	LP single-ended clock
CSI_RESET	C21	2	3.3V	Reset signal
CSI_CLK	C20	2	3.3V	Clock
CSI_SCL	D19	2	3.3V	I2C signal
CSI_SDA	G17	2	3.3V	I2C signal

3.10 SD Card

3.10.1 Introduction

The SD card slot on the board is the push-push type with eight contacts. It offers the detection of the card insertion. The connection diagram is shown as follows.

Figure 3-10 Connection Diagram of SD Card

DBUG404-1.1E 20(31)

3.10.2 Pinout

Table 3-12 SD Card Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
SD_D0	W5	5	3.3V	Data bit 0
SD_D1	U6	5	3.3V	Data bit 1
SD_D2	Y6	5	3.3V	Data bit 2
SD_CD/D3	U7	5	3.3V	Card detection/Data bit 3
SD_CMD	W6	5	3.3V	Commands/Response
SD_CLK	V6	5	3.3V	Clock
SD_SWITCH	Y22	3	1.5V	Insertion Detection

3.11 RTC

3.11.1 Introduction

The real-time clock module is externally connected with 32.768kHz quartz crystal. It can be powered by the board power supply and the button battery. The communication interface with the FPGA is I2C. The connection diagram is as follows.

Figure 3-11 Connection Diagram of RTC

3.11.2 Pinout

Table 3-13 RTC Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
RTC_CLK	D13	1	2.5V	Clock signal
RTC_INT	D14	1	2.5V	Interrupt signal
IIC_SCL	A13	1	2.5V	I2C signal
IIC_SDA	C13	1	2.5V	I2C signal

DBUG404-1.1E 21(31)

3.12 AD/DA

3.12.1 Introduction

The AD/DA module uses a chip that is a 12-bit A/D and D/A converter with configurable 8-channel interface, which can be configured as any combination of ADC/DAC/GPIO and shares the I2C bus with the RTC module. The input and output interface uses 8pin, and the connection diagram is as follows.

Figure 3-12 Connection Diagram of AD/DA

3.12.2 Pinout

Table 3-14 AD/DA Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
AD/DA_A0	E14	1	2.5V	Address input
IIC_SCL	A13	1	2.5V	I2C signal
IIC_SDA	C13	1	2.5V	I2C signal

3.13 CAN

3.13.1 Introduction

The FPGA communicates with the transceiver via the UART interface, and the maximum transmission rate is 1Mbps. The connection diagram is as follows.

DBUG404-1.1E 22(31)

Figure 3-13 Connection Diagram of CAN

3.13.2 Pinout

Table 3-15 CAN Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
CAN_TXD	C11	1	2.5V	Transmitting data
CAN_RXD	C12	1	2.5V	Receiving data

3.14 WIFI

3.14.1 Introduction

The WIFI module supports SPI and UART. SPI transmission rate is 20Mbps. The connection diagram is as follows.

Figure 3-14 Connection Diagram of WIFI

3.14.2 Pinout

Table 3-16 WIFI Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
WIFI_SPI_CLK	D9	0	1.2V	SPI clock
WIFI_SPI_MISO	A10	0	1.2V	SPI data
WIFI_SPI_MOSI	B8	0	1.2V	SPI data
WIFI_SPI_CS	C8	0	1.2V	SPI chip selection

DBUG404-1.1E 23(31)

Name	FPGA Pin No.	BANK	I/O Level	Description
WIFI_TX	D8	0	1.2V	UART transmitting
WIFI_RX	A9	0	1.2V	UART receiving

3.15 GPIO

3.15.1 Introduction

34 GPIOs channeled by two double-column pins with 2.54mm pitch are reserved on the development board for testing. The 40pin interfaces are connected to Bank5. The I/O level is 3.3v. 20pin interface and 40pin multiplex GPIO.

Figure 3-15 40pin Diagram

DBUG404-1.1E 24(31)

Figure 3-16 20pin Diagram

3.15.2 Pinout

Table 3-17 40pin Interface Pinout

Pin No.	Name	FPGA Pin No.	BANK	I/O Level	Description
3	H_GPIO_01	AA11	5	3.3V	General I/O
4	H_GPIO_02	V11	5	3.3V	General I/O
5	H_GPIO_03	AB11	5	3.3V	General I/O
6	H_GPIO_04	V9	5	3.3V	General I/O
7	H_GPIO_05	Y11	5	3.3V	General I/O
8	H_GPIO_06	Y3	5	3.3V	General I/O
9	H_GPIO_07	V10	5	3.3V	General I/O
10	H_GPIO_08	W11	5	3.3V	General I/O
11	H_GPIO_09	W10	5	3.3V	General I/O
12	H_GPIO_10	Y10	5	3.3V	General I/O
13	H_GPIO_11	W9	5	3.3V	General I/O
14	H_GPIO_12	Y8	5	3.3V	General I/O
15	H_GPIO_13	Y9	5	3.3V	General I/O
16	H_GPIO_14	AB10	5	3.3V	General I/O
17	H_GPIO_15	V7	5	3.3V	General I/O
18	H_GPIO_16	AB9	5	3.3V	General I/O
19	H_GPIO_17	Y7	5	3.3V	General I/O
20	H_GPIO_18	AA8	5	3.3V	General I/O
21	H_GPIO_19	W7	5	3.3V	General I/O
22	H_GPIO_20	AB8	5	3.3V	General I/O
23	H_GPIO_21	V8	5	3.3V	General I/O

DBUG404-1.1E 25(31)

Pin No.	Name	FPGA Pin No.	BANK	I/O Level	Description
24	H_GPIO_22	W8	5	3.3V	General I/O
25	H_GPIO_23	AB7	5	3.3V	General I/O
26	H_GPIO_24	AA7	5	3.3V	General I/O
27	H_GPIO_25	AB6	5	3.3V	General I/O
28	H_GPIO_26	AA6	5	3.3V	General I/O
29	H_GPIO_27	Y5	5	3.3V	General I/O
30	H_GPIO_28	AB5	5	3.3V	General I/O
31	H_GPIO_29	AB4	5	3.3V	General I/O
32	H_GPIO_30	Y4	5	3.3V	General I/O
33	H_GPIO_31	AB3	5	3.3V	General I/O
34	H_GPIO_32	AA3	5	3.3V	General I/O
35	H_GPIO_33	AB2	5	3.3V	General I/O
36	H_GPIO_34	AB1	5	3.3V	General I/O

Table 3-18 20pin Interface Pinout

Pin No.	Name	FPGA Pin No.	BANK	I/O Level	Description
3	H_GPIO_01	AA11	5	3.3V	General I/O
4	H_GPIO_11	W9	5	3.3V	General I/O
5	H_GPIO_02	V11	5	3.3V	General I/O
6	H_GPIO_03	AB11	5	3.3V	General I/O
7	H_GPIO_04	V9	5	3.3V	General I/O
8	H_GPIO_12	Y8	5	3.3V	General I/O
9	H_GPIO_05	Y11	5	3.3V	General I/O
10	H_GPIO_13	Y9	5	3.3V	General I/O
11	H_GPIO_06	Y3	5	3.3V	General I/O
12	H_GPIO_14	AB10	5	3.3V	General I/O
13	H_GPIO_07	V10	5	3.3V	General I/O
14	H_GPIO_15	V7	5	3.3V	General I/O
15	H_GPIO_08	W11	5	3.3V	General I/O
16	H_GPIO_16	AB9	5	3.3V	General I/O
17	H_GPIO_10	Y10	5	3.3V	General I/O
18	H_GPIO_09	W10	5	3.3V	General I/O

DBUG404-1.1E 26(31)

3.16 Industry Screen Interface

3.16.1 Introduction

This interface uses 50pin FPC connector with 0.5mm pitch. The pin definition conforms to the industry screen of AT070TN92 model, and all I/O and 40PIN multiplex GPIO of FPGA.

Figure 3-17 50pin FPC Interface Diagram

DBUG404-1.1E 27(31)

3.16.2 Pinout

Table 3-19 50pin FPC Interface Pinout

Pin	Name	FPGA	BANK	I/O	Description
No.		Pin No.		Level	
8	LCD_MODE	W10	5	3.3V	DE or SYNC mode selection
9	LCD_DE	Y8	5	3.3V	Data input enable
10	LCD_VS	W9	5	3.3V	Column synchronization signal
11	LCD_HS	AB10	5	3.3V	Row synchronization signal
12	LCD_B7	Y9	5	3.3V	Blue data bit7
13	LCD_B6	AB9	5	3.3V	Blue data bit7
14	LCD_B5	V7	5	3.3V	Blue data bit7
15	LCD_B4	AA8	5	3.3V	Blue data bit7
16	LCD_B3	Y7	5	3.3V	Blue data bit7
17	LCD_B2	W8	5	3.3V	Blue data bit7
20	LCD_G7	V8	5	3.3V	Green data bit7
21	LCD_G6	AB8	5	3.3V	Green data bit7
22	LCD_G5	W7	5	3.3V	Green data bit7
23	LCD_G4	AA7	5	3.3V	Green data bit7
24	LCD_G3	AB7	5	3.3V	Green data bit7
25	LCD_G2	AA6	5	3.3V	Green data bit7
28	LCD_R7	AB6	5	3.3V	Red data bit7
29	LCD_R6	AB5	5	3.3V	Red data bit7
30	LCD_R5	Y5	5	3.3V	Red data bit7
31	LCD_R4	Y4	5	3.3V	Red data bit7
32	LCD_R3	AB4	5	3.3V	Red data bit7
33	LCD_R2	AB1	5	3.3V	Red data bit7
37	LCD_DCLK	AB2	5	3.3V	Sampling clock
39	LCD_R/L	AA3	5	3.3V	Select left or right
40	LCD_U/D	AB3	5	3.3V	Select up or down

Table 3-20 LCD Screen Brightness Control Pinout

Power chip	Name	FPGA	BANK	I/O	Description
Pin No.		Pin No.		Level	
4	LCD_CTR	A12	0	1.2V	LCD screen brightness
					control

DBUG404-1.1E 28(31)

3.17 LED Module

3.17.1 Introduction

There are four blue LED lights on the development board, which can be used for demo. When the output signal of FPGA corresponding pin is low, the LED is lit up. When the output signal is high, the LED is off. The connection diagram is shown in Figure 3-18.

Figure 3-18 LED Connection Diagram

3.17.2 Pinout

Table 3-21 LED Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
LED1	W20	3	1.5V	LED 1
LED2	W22	3	1.5V	LED 2
LED3	V22	3	1.5V	LED 3
LED 4	U20	3	1.5V	LED 4

Note!

SSPI needs to be reused as GPIO.

DBUG404-1.1E 29(31)

3.18 Keys Module

3.18.1 Introduction

The development board has four keys that can be used to control input during testing. When the key is pressed, the input is low. The diagram is as shown in Figure 3-19.

Figure 3-19 Key Circuit Diagram

3.18.2 Pinout

Table 3-22 Keys Module Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
KEY1	V20	3	1.5V	KEY1
KEY2	T18	3	1.5V	KEY2
KEY3	U18	3	1.5V	KEY3
KEY4	T17	3	1.5V	KEY4

DBUG404-1.1E 30(31)

3.19 Switches Module

3.19.1 Introduction

There are four switches on the development board to control input during testing.

Figure 3-20 Switch Circuit Diagram

3.19.2 Pinout

Table 3-23 Switches Module Pinout

Name	FPGA Pin No.	BANK	I/O Level	Description
SW1	R18	3	1.5V	Switch1
SW2	AB21	3	1.5V	Switch2
SW3	R19	3	1.5V	Switch3
SW4	Y21	3	1.5V	Switch4

DBUG404-1.1E 31(31)

