Projeto e Análise de Algoritmos - Notas colaborativas

Flávio L. C. de Moura

20 de abril de 2018

Fundamentos Matemáticos

Notação Assintótica

Definição 1 (O conjunto O(g)). Seja g uma função dos inteiros não-negativos nos reais positivos. Então O(g) é o conjunto das funções (também dos inteiros não-negativos nos reais positivos) tal que existem uma constante real c>0 e uma constante inteira $n_0>0$ satisfazendo a desigualdade $f(n) \leq c \cdot g(n), \forall n \geq n_0$. Alternativamente, $O(g(n)) = \{f(n) : existem constantes positivas <math>c \in n_0$ tais que $0 < f(n) \leq c \cdot g(n), \forall n \geq n_0$.

Definição 2 (O conjunto $\Omega(g)$). Seja g uma função dos inteiros não-negativos nos reais positivos. Então $\Omega(g)$ é o conjunto das funções (também dos inteiros não-negativos nos reais positivos) tal que existem uma constante real c>0 e uma constante inteira $n_0>0$ satisfazendo a desigualdade $c \cdot g(n) \leq f(n), \forall n \geq n_0$. Alternativamente, $\Omega(g(n)) = \{f(n) : existem constantes positivas <math>c \in n_0$ tais que $0 < c \cdot g(n) \leq f(n), \forall n \geq n_0$.

Definição 3 (O conjunto $\Theta(g)$). Seja g uma função dos inteiros não-negativos nos reais positivos. Então $\Theta(g)$ é o conjunto das funções (também dos inteiros não-negativos nos reais positivos) tal que existem constantes reais positivas c_1 e $[]_2$ e uma constante inteira $n_0 > 0$ satisfazendo a desigualdade $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n), \forall n \ge n_0$. Alternativamente, $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 < c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n), \forall n \ge n_0. \}$

Lema 1. Uma função $f \in O(g)$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$, incluindo o caso em que c = 0.

Lema 2. Uma função $f \in \Omega(g)$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$, incluindo o caso em que o limite é igual

Lema 3. Uma função $f \in \Theta(g)$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, para alguma constante $0 < c < \infty$.

Definição 4 (Complexidade do Pior Caso). Sejam D_n o conjunto das entradas de tamanho n para o algoritmo em questão, e $I \in D_n$. Seja t(I) o número de operações básicas executadas pelo algoritmo na entrada I. Definimos a função W por

$$W(n) = \max\{t(I) \mid I \in D_n\}$$

Definição 5 (Complexidade do Caso Médio). Sejam D_n o conjunto das entradas de tamanho n para o algoritmo em questão, e $I \in D_n$. Sejam t(I) o número de operações básicas executadas pelo algoritmo na entrada I, e Pr(I) a probabilidade da entrada I ocorrer. Definimos a função A por

$$A(n) = \sum_{I \in D_n} Pr(I) \cdot t(I)$$

Lema 4. Se $f \in O(g)$ e $g \in O(h)$ então $f \in O(h)$, ou seja O é transitiva. Também são transitivos Ω, Θ, o e ω .

Lema 5.

- 1. $f \in O(g)$ se, e somente se $g \in \Omega(f)$.
- 2. Se $f \in \Theta(g)$ então $g \in \Theta(f)$.
- 3. Θ define uma relação de equivalência sobre as funções. Cada conjunto $\Theta(f)$ é uma classe de equivalência que chamamos de classe de complexidade.
- 4. $O(f+g) = O(\max\{f,g\})$. Equações análogas valem para Ω e Θ . Estas equações são úteis na análise de algoritmos complexos onde f e g podem descrever o trabalho feito em diferentes partes do algoritmo.

Algoritmos de Ordenação

3.1 Ordenação em Tempo Linear

Algoritmos em Grafos

Definição 6. Um grafo (não dirigido) G é um par (V, E) onde V é um conjunto finito não-vazio, e E é um conjunto de pares não-ordenados de elementos de V. Um digrafo (ou um grafo dirigido) G é um par (V, E) onde V é um conjunto finito não-vazio, e E é uma relação binária sobre V.