Course overview

- Introduction and Agents (chapters 1,2)
- Search (chapters 3,4,5,6)
- Logic (chapters 7,8,9)
- Planning (chapters 11,12)
- Uncertainty (chapters 13,14)
- Learning (chapters 18,20)
- Natural Language Processing (chapter 22,23)

What is Intelligence? Intelligence, taken as a whole, consists of the following skills:-

1. The ability to **reason**

2. The ability to acquire and apply knowledge

3. The ability to manipulate and communicate

Has understanding/
INPUTS

Can

Can

Hear Touc h Taste Smell

See

Exhibits behavior

OUTPUT
S

Reason

Artificial Intelligence is a branch of *Science* which deals with helping machines find solutions to complex problems in a more human-like fashion.

This generally involves borrowing characteristics from human intelligence, and applying them as algorithms in a computer friendly way.

- **AI** is generally associated with *Computer Science*, but it has many important links with other fields such as *Maths*, *Psychology*, *Cognition*, *Biology* and *Philosophy*, among many others.
- Our ability to combine knowledge from all these fields will ultimately benefit our progress in the quest of creating an intelligent artificial being.

What is AI?

Views of AI fall into four categories:

- Thinking humanly
- Acting humanly
- Thinking rationally
- Acting rationally

The textbook advocates "acting rationally"

Acting humanly: Turing Test

- Turing (1950) "Computing machinery and intelligence":
- "Can machines think?" □ "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

Thinking humanly: cognitive modeling

- 1960s "cognitive revolution": information-processing psychology
- Requires scientific theories of internal activities of the brain
- -- How to validate? Requires
 - 1) Predicting and testing behavior of human subjects (top-down)
 - or 2) Direct identification from neurological data (bottom-up)
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience)

Thinking rationally: "laws of thought"

- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic: notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
- Direct line through mathematics and philosophy to modern Al

Acting rationally: rational agent

Rational behavior: doing the right thing

- The right thing: that which is expected to maximize goal achievement, given the available information
- Doesn't necessarily involve thinking e.g., blinking reflex – but thinking should be in the service of rational action

Rational agents

- An agent is an entity that perceives and acts
- This course is about designing rational agents
- Abstractly, an agent is a function from percept histories to actions:

[f:
$$\mathcal{P}^* \square \mathcal{A}$$
]

 For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance

Al prehistory

- Philosophy Logic, methods of reasoning, mind as physical system foundations of learning, language, rationality
- Mathematics Formal representation and proof algorithms, computation, (un)decidability, (in)tractability, probability
- Economics utility, decision theory
- Neuroscience physical substrate for mental activity
- Psychology phenomena of perception and motor control, experimental techniques
- Computer building fast computers engineering
- Control theory design systems that maximize an objective function over time
- Linguistics knowledge representation, grammar

Abridged history of Al

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1952—69 Look, Ma, no hands!
- 1950s Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1965 Robinson's complete algorithm for logical reasoning
- 1966—73 Al discovers computational complexity Neural network research almost disappears
- 1969—79 Early development of knowledge-based systems
- 1980-- Al becomes an industry
- 1986-- Neural networks return to popularity
- 1987-- Al becomes a science
- 1995-- The emergence of intelligent agents

State of the art

- Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- Proved a mathematical conjecture (Robbins conjecture) unsolved for decades
- ALVINN No hands across America (driving autonomously from Pittsburgh to San Diego)
- During the 1991 Gulf War, US forces deployed an Allogistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans

Why study AI?

Labor

Science

Search engines

Medicine/ Diagnosis

What else?