Écrire sous la forme d'une puissance d'un nombre :

$$\frac{9^{(-4)}}{9^4} = \dots$$

Question 3:

Résoudre l'équation:

$$12x + 26 = 0$$

Question 2:

Simplifier l'écriture de la racine suivante :

$$\sqrt{147}$$

Écrire sous la forme d'une **puissance d'un nombre** :

$$\frac{9^{(-4)}}{9^4} = \dots$$

Question 2:

Simplifier l'écriture de la racine suivante :

$$\sqrt{147}$$

Question 3:

Résoudre l'équation :

$$12x + 26 = 0$$

1.
$$9^{(-8)}$$

Écrire sous la forme d'une **puissance d'un nombre** :

$$\frac{9^{(-4)}}{9^4} = \dots$$

Question 2:

Simplifier l'écriture de la racine suivante :

$$\sqrt{147}$$

Question 3:

Résoudre l'équation :

$$12x + 26 = 0$$

- 1. $9^{(-8)}$
- 2. $7\sqrt{3}$

Écrire sous la forme d'une **puissance d'un nombre** :

$$\frac{9^{(-4)}}{9^4} = \dots$$

Question 2:

Simplifier l'écriture de la racine suivante :

$$\sqrt{147}$$

Question 3:

Résoudre l'équation :

$$12x + 26 = 0$$

- 1. $9^{(-8)}$
- 2. $7\sqrt{3}$
- $\frac{-13}{6} = (-2,16666666666666667)$

Solution détaillée de la question 1 :

$$\frac{9^{(-4)}}{9^4} = \dots$$

Formule:
$$\frac{a^m}{a^n} = a^{m-n}$$
 avec $a = 9$, $m = (-4)$ et $\left| \frac{9^{(-4)}}{9^4} = 9^{(-4)-4} = 9^{(-8)} \right|$

Solution détaillée de la question 2 :

Simplifier l'écriture de la racine suivante :

$$\sqrt{147}$$

Pour simplifier, on cherche les carrés parfaits dans la décomposition :

$$147 = 3 \times 7^2$$

Ensuite on utilise la formule : $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ (si $a, b \ge 0$) et on simplifie l'écriture des racines avec des termes au carré.

 $147 = 7\sqrt{3}$

Résultat simplifié:

Solution détaillée de la question 3 :

Résoudre l'équation :

$$12x + 26 = 0$$

=-26+26

= 0

On **isole** *x* du côté gauche de l'égalité en effectuant des **manipulation algébriques** :

$$\iff 12 \times x + 26 - 26 = -26$$

$$\iff 12 \times x = (-26)$$

$$\iff 12 \times x = (-26)$$

$$\iff \frac{12 \times x}{12} = \frac{(-26)}{12}$$

 $12 \times x + 26 = 0$

On vérifie que la solution est correcte en remplaçant
$$x$$
 par $\frac{-26}{12}$: