3MICT

НАУКА ТА ОСВІТА

в. ь. клепков до 90-річчя кафедри «Автоматизовані електромеханічні системи» Національного технічного університету «Харківський політехнічний інститут»	. 3
ТЕОРЕТИЧНІ ПИТАННЯ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДА	
В. В. Грабко, О. В. Дідушок Математична модель виявлення зносу контактної системи при комутації вакуумного вимикача	12
СУЧАСНІ СИСТЕМИ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДА	
О. П. Чорний, В. Ю. Ноженко, В. К. Титюк, О. К. Данилейко Дослідження пуску частотно-регульованого електроприводу зарезонансної вібраційної машини	19
Б. М. Чунашвілі, А. М. Петросян, Т. Г. Гамрекелашвілі Система керування пристроєм обмеження вищих гармонік, що створені трифазними електродуговими печами	26
С. С. Міхайков Пристрій керування навантаженням частотно-регульованого електропривода на базі ПЛК	30
КОМПОНЕНТИ АВТОМАТИЗОВАНОГО ЕЛЕКТРОПРИВОДА	
Л. В. Асмолова, М. В. Аніщенко Локаційні датчики на платі «Сенсори мехатроніки» на базі освітньої платформи National Instruments	35
В. В. Бушер, О. В. Глазєва Дослідження нормальних та аварійних режимів роботи суднових високовольтних перетворювачів частоти	40
О. В. Семіков Застосування багатофазного широтно-імпульсного перетворювача з двома накопичувачами електроенергії в тяговому електроприводі електромобіля	47
ЕНЕРГОЕФЕКТИВНІСТЬ ЕЛЕКТРОМЕХАНІЧНИХ СИСТЕМ	
Б. В. Воробйов Енергоефективний асинхронний електропривод електромобілю	52
О. Г. Гриб, Г. А. Сендерович, О. В. Дяченко, І. Т. Карпалюк, С. В. Швець Аналіз методів визначення часткової участі суб'єктів у відповідальності за порушення якості електроенергії по синусоїдальності кривої напруги	57
О. Ю. Лозинський, Я. Ю. Марущак, В. І. Мороз, Я. С. Паранчук Технологічні особливості представлення електричного режиму дугової сталеплавильної печі моделлю зміни станів	
М. Й. Муха, А. О. Дранкова, І. І. Красовський Експериментальна установка для вивчення і дослідження енергоефективних режимів електромеханічних систем	67
Є. В. Сакун Комп'ютерне моделювання синхронізації швидкостей в електроприводі електромобіля зі спрощеною коробкою передач	72
ЮВІЛЕЇ	
Андрієнко Петро Дмитрович.	79

СОДЕРЖАНИЕ

НАУКА И ОБРАЗОВАНИЕ

В. Б. Клепиков К 90-летию кафедры «Автоматизированные электромеханические системы» Национального технического университета «Харьковский политехнический институт»	3
ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА	
В. В. Грабко, О. В. Дидушок Математическая модель выявления износа контактной системы при коммутации вакуумного выключателя	.12
СОВРЕМЕННЫЕ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА	
А. П. Черный, В. Ю. Ноженко, В. К. Тытюк, О. К. Данилейко Исследование пуска частотно-регулируемого электропривода зарезонансной вибрационной машины	.19
Б. М. Чунашвили, А. М. Петросян, Т. Г. Гамрекелашвили Система управления устройством ограничения высших гармоник, создаваемых трехфазными электродуговыми печами	.26
С. С. Михайков Устройство управления нагрузкой частотно-регулируемого электропривода на базе ПЛК	.30
КОМПОНЕНТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА	
Л. В. Асмолова, Н. В. Анищенко Локационные датчики на плате «Сенсоры мехатроники» на базе образовательной платформы National Instruments	.35
В. В. Бушер, О. В. Глазева Исследование нормальных и аварийных режимов работы судовых высоковольтных преобразователей частоты	.40
А. В. Семиков Применение многофазного широтно-импульсного преобразователя с двумя накопителями электроэнергии в тяговом электроприводе электромобиля	.47
ЭНЕРГОЭФФЕКТИВНОСТЬ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ	
Б. В. Воробьёв Энергоэффективный асинхронный электропривод электромобиля	.52
О. Г. Гриб, Г. А. Сендерович, А. В. Дяченко, И. Т. Карпалюк, С. В. Швец Анализ методов определения долевого участия субъектов в ответственности за нарушение качества электроэнергии по синусоидальности кривой напряжения	.57
О. Ю. Лозинский, Я. Ю. Марущак, В. И. Мороз, Я. С. Паранчук Технологические особенности представления электрического режима дуговой сталеплавильной печи моделью смены состояний	
Н. И. Муха, А. О. Дранкова, И. И. Красовский Экспериментальная установка для изучения и исследования энергоэффективных режимов электромеханических систем	.67
Е. В. Сакун Компьютерное моделирование синхронизации скоростей в электроприводе электромобиля с упрощённой коробкой передач	.72
ЮБИЛЕИ	
Андриенко Пётр Дмитриевич	.79

CONTENT

SCIENCE AND EDUCATION

V. B. Klepikov To 90-th anniversary of the Automated electromechanical systems department of National technical university «KHarkiv polytechnical institute»	3
THEORETICAL ISSUES OF AUTOMATED ELECTRIC DRIVE	
V. V. Hrabko, O. V. Didushok Mathematical model of detection of wear of a contact systems when switching a vacuum switch	12
MODERN SYSTEMS OF AUTOMATED ELECTRIC DRIVE	
O. P. Chornyi, V. Yu. Nozhenko, V. K. Tytiuk, O. K. Danileyko Study of starting a frequency-regulated electric drive of above resonance vibration machine	19
B. M. Tchunashvili, A. M. Petrosyan, T. G. Gamrekelashvili Device control system for high harmonics created by three-phase electric arc furnaces	26
S. S. Mikhaykov The load control device of the variable frequency drive on the basis of PLC	30
COMPONENTS OF AN AUTOMATED ELECTRIC DRIVE	
L. V. Asmolova, M. V. Anishchenko Location sensors on the board «Mechatronics sensors» on the basis of the National Instruments education platform	35
V. V. Busher, O. V. Glazeva Research of high-voltage frequency converters in ship electric power systems	40
O. V. Semikov The using of a multiphase pulse-width converter with two electric energy storage at a traction electric drive of an electric vehicle	47
ENERGY EFFICIENCY OF ELECTROMECHANICAL SYSTEMS	
B. V. Vorobiov Energy efficient asynchronous electric drive of an electromobile	52
O. H. Hryb, G. A. Senderovich, O. V. Diachenko, I. T. Karpaliuk, S. V. Shvets Analysis of methods of determination of partial participation of subjects in responsibility for violation of electricity quality on sinusoid current voltage	- 7
O. Y. Lozynskyi, Y. Y. Marushchak, V. I.Moroz, Y. S. Paranchuk Technological peculiarities of the	3/
steel-melting furnace electric mode representation by state change model	63
M. Mukha, A. Drankova, I. Krasovskyi The experimental installation for the study and research of electromechanical systems energy-efficient modes	67
Y. V. Sakun Computer simulation of speed synchronization process in electric vehicle drive with simplified 2-speed gearbox	72
ANNIVERSARIES	
Andrienko Petr Dmitrievich	79