Incremental Learning through Deep Adaption

Zichao Yan¹, Jianing Sun²

¹Department of Computer Science ²Department of Electrical Computer Engineering

Incremental Learning

Let's start from the problem of Deep Neural Network

- Typically a separate model needs to be trained for each new task
- Given two tasks of a similar modality or nature, each would require a similar architecture or computations

Incremental Learning aims at enhancement of knowledge

- Our goal is to enable a network to learn a set of related tasks be learned incrementally, without fine-tuning all parameters again, and achieve a comparable performance
- Compared with full-transfer learning: double the parameters (100%).
 Our method only requires a 22% to be trained

Approach

- Each convolutional layer of a base network is modified by re-combining its weights through a controller module
- A binary switching vector α controls the output of the network

(Amir Rosenfeld, Incremental Learning Through Deep Adaptation, OpenReview.ICLR2018)

- Given two tasks, T1 and T2, we then learn a base network N to solve T1
- We augment N so that it will be able to solve T2 as well

For each convolutional layer \emptyset_l in N, let $F_l \in R^{C_0 \times C_l \times k \times k}$, where C_0 is the number of output features, C_l is the number of inputs, $k \times k$ is the kernel size

Denote by $\widetilde{F}_l \in R^{C_0 \times D}$ the matrix whose rows are the flattened versions of the filters of \widetilde{F}_l , where $D = C_i \cdot k \cdot k$. Let $f \in R^{C_l \times k \times k}$ be a filter from F_l whose values are

$$f^{1} = \begin{pmatrix} f_{11}^{1} & \cdots & f_{1k}^{1} \\ & \ddots & \\ & & f_{kk}^{1} \end{pmatrix}, \cdots, f^{i} = \begin{pmatrix} f_{11}^{i} & \cdots & f_{1k}^{i} \\ & \ddots & \\ & & f_{kk}^{i} \end{pmatrix}$$

The flattened version of f is a row vector $\tilde{f} = (f_{11}^1, \dots, f_{kk}^1, \dots, \dots f_{11}^i, \dots, f_{kk}^i) \in \mathbb{R}^D$

Adaption Representations

Hence,
$$\widetilde{F_l^a} = W_l \cdot \widetilde{F_l}$$

where $W_l \in R^{C_0 \times C_0}$ is a weight matrix defining linear combinations of the flattened filters of F_l , resulting in C_0 new filters

Unflattening $\widetilde{F_l^a}$ to its original shape results in $F_l^a \in R^{C_0 \times C_l \times k \times k}$, which we call the adapted filters of layer \emptyset_l .

Using the symbol $a \otimes b$ as shorthand for *flatten b -> matrix multiply by a -> unflatten*, then we can write

$$F_l^a = W_l \otimes F_l$$

Let x_l be the input of \emptyset_l in the adapted network. For a given switching parameter $\alpha \in \{0,1\}$, we can get the output of the modified layer as follows:

$$x_{l+1} = [\alpha(W_l \otimes F_l) + (1-\alpha)F_l] * x_l + \alpha b_l^{\alpha} + (1-\alpha)b_l$$

Pre Experiments – 2 layer CNN

Standard 2-layer CNN model:

New model with controller module:

```
CNNModel (
(cnn1): controlledConv2 (
(conv): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
)
(relu1): ReLU ()
(maxpool1): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(cnn2): controlledConv2 (
(conv): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1))
)
(relu2): ReLU ()
(maxpool2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(fc1): Linear (800 -> 10)
```

Experiments – VGGB(13_bn)

		ConvNet Co	figuration					
A	A-LRN	В	C D		Е			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
		input (224 \times 22	RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
		max						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
		max						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max	pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
		max						
FC-4096								
FC-4096								
FC-1000								
soft-max								

Current Results

Dataset

CIFAR10

Test Accuracy

Test Acc	CIFAR10			
VGGB S	82.22			
DAN noise	77.48			
DAN imagenet	86.52			

Current Re

Dataset

CIFAR10

Net	C-10	GTSR	SVHN	Caltech	Dped	Oglt	Plnk	Sketch	Perf.	#par
VGG-B(S)	92.5	98.2	96.2	88.2	92.9	86.9	74.5	69.2	87.32	8
VGG-B(P)	93.2	99.0	95.8	92.6	98.7	83.8	73.2	65.4	87.71	8
$\mathrm{DAN_{caltech-256}}$	77.9	93.6	91.8	88.2	93.8	81.0	63.6	49.4	79.91	2.54
DAN_{sketch}	77.9	93.3	93.2	86.9	94.0	85.4	69.6	69.2	83.7	2.54
DAN_{noise}	68.1	90.9	90.4	84.6	91.3	80.6	61.7	42.7	76.29	1.76
$DAN_{imagenet}$	91.6	97.6	94.6	92.2	98.7	81.3	72.5	63.2	86.46	2.76
$DAN_{imagenet+sketch}$	91.6	97.6	94.6	92.2	98.7	85.4	72.5	69.2	87.76	3.32

Validation Accuracy

Test Accuracy

Test Acc	CIFAR10			
VGGB S	82.22			
DAN noise	77.48			
DAN imagenet	86.52			

Future work

We will compare our implementation to the authors'.

Complete all experiments on CIFAR10 dataset.

Integrate the binary switch vector α into DAN.

Codes on github:

https://github.com/HarveyYan/ReproDANs

https://github.com/jianingsun21/cnn_incremental-learning

https://github.com/rosenfeldamir/incremental_learning