Probabilités

Variables aléatoires

Question 1/54

 L^1

Réponse 1/54

Variables aléatoires réelles discrètes admettant une espérance finie

Question 2/54

Variables décorrélées

Réponse 2/54

$$cov(X,Y) = 0$$

Question 3/54

Structure des variables aléatoires de \mathbb{R}^{Ω}

Réponse 3/54

Sous-algèbre de \mathbb{R}^{Ω}

Question 4/54

Inégalités de Markov

Réponse 4/54

$$\mathbb{P}(X \geqslant \lambda \mathbb{E}(X)) \leqslant \frac{1}{\lambda}$$

$$\mathbb{P}(X \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(X)}{\varepsilon}$$

$$\mathbb{P}(X > \varepsilon) \leqslant \frac{\mathbb{E}(X)}{\varepsilon}$$

$$\mathbb{P}(|X| \geqslant \varepsilon) \leqslant \frac{\mathbb{E}(X^2)}{\varepsilon^2}$$

Question 5/54

Convergence en probabilités

Réponse 5/54

$$\forall \varepsilon > 0, \ \lim_{n \to +\infty} (\mathbb{P}(|X_n - X| \leqslant \varepsilon)) = 0$$

Question 6/54

Théorème d'or de Bernoulli

Réponse 6/54

$$Z_n = \frac{X_1 + \dots + X_n}{n}$$
 avec les X_i mutuellement indépendantes suivant une loi de Bernoulli de paramètre p

$$\forall \varepsilon > 0, \ \forall n \in \mathbb{N}^*, \ \mathbb{P}(|Z_n - p| \geqslant \varepsilon) \leqslant \frac{1}{4n\varepsilon^2}$$

Question 7/54

$$\mathbb{E}(XY)$$

Réponse 7/54

$$\mathbb{E}(X)\mathbb{E}(Y)$$
 si $X \perp \!\!\!\perp Y$

Question 8/54

Inégalité de Bienaymé-Tchebychev

Réponse 8/54

$$\forall \varepsilon > 0, \ \mathbb{P}(|X - \mathbb{E}(X)| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{\varepsilon^2}$$
 $\forall \varepsilon > 0, \ \mathbb{P}(|X - \mathbb{E}(X)| \geqslant \varepsilon) \leqslant \frac{\sigma(X)^2}{\varepsilon^2}$

Question 9/54

Loi binomiale négative

Réponse 9/54

$$X(X)$$
 $X \sim X$

$$X(\Omega) = \mathbb{N}$$

$$X \sim \mathcal{J}(r, p)$$

$$\forall k \in \mathbb{N} \quad \mathbb{P}(X - k) = \ell^{k+r}$$

$$X \sim \mathcal{J}(r, p)$$

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = {rq \choose k} p^r (1 - p)^k$$

$$\mathbb{E}(X) = \frac{rq}{p}$$

$$\mathbb{V}(X) = \frac{rq}{p^2}$$

Question 10/54

Loi hypergéométrique

Réponse 10/54

 $X(\Omega) \subset [1, n]$

 $X \sim \mathcal{H}(N, n, p)$ $\forall k \in X(\Omega), \ \mathbb{P}(X = k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}$

 $\mathbb{E}(X) = np$ $\mathbb{V}(X) = np(1-p)\frac{N-n}{N-1}$

Question 11/54

 $\mathbb{E}(X)$

Réponse 11/54

$$\sum_{x \in X(\Omega)} (x \mathbb{P}(X = x)) = \sum_{\omega \in \Omega} (\mathbb{P}(\{\omega\})X(\omega))$$

Question 12/54

$$\mathbb{V}(\lambda X + \mu)$$

Réponse 12/54

$$\lambda^2 \mathbb{V}(X)$$

Question 13/54

$$\mathbb{P}_{f(X)}$$

Réponse 13/54

$$\mathbb{P}_X \circ \widehat{f^{-1}}$$

Question 14/54

Loi de Poisson

Réponse 14/54

$$X(\Omega) = \mathbb{N}$$
$$X \sim \mathcal{P}(\lambda)$$

 $\mathbb{V}(X) = \lambda$

$$X \sim \mathcal{P}(\lambda)$$

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

$$\mathbb{E}(X) = \lambda$$

Question 15/54

Lemme des coalitions

Réponse 15/54

Si (X_1, \dots, X_n) sont mutuellement indépendantes, alors $f(X_1, \dots, X_m)$ et $g(X_{m+1}, \dots, X_n)$

Question 16/54

Variable aléatoire discrète

Réponse 16/54

$$X(\Omega)$$
 est fini

Question 17/54

Coefficient de corrélation

Réponse 17/54

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$$

Question 18/54

Si
$$X:(\Omega,\mathcal{T})\to (E;\mathcal{T}')$$

 \mathcal{T}_X

Réponse 18/54

$$\{X^{-1}(A), A \in \mathcal{T}'\}$$

Question 19/54

Loi binomiale

Réponse 19/54

$$X(\Omega) = [0, n]$$

$$X \sim \mathcal{B}(n, p)$$

$$\forall k \in [0, n], \ \mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

$$\mathbb{E}(X) = np$$

$$\mathbb{V}(X) = np(1 - p)$$

Question 20/54

Matrice des variances-covariances

Réponse 20/54

$$\underline{\mathbb{V}}(X_1,\cdots,X_n) = (\operatorname{cov}(X_i,X_j))_{(i,j)\in[1,n]^2}$$

Question 21/54

 $\sigma(X)$

Réponse 21/54

$$\sqrt{\mathbb{V}(X)}$$

Question 22/54

$$\mathbb{V}(X_1+\cdots+X_n)$$

Réponse 22/54

$$\sum_{k=1}^{n} (\mathbb{V}(X)_i) + 2 \sum_{1 \leq i < j \leq n} (\text{cov}(X_i, X_j))$$
$$= (1 \cdots 1) \underline{\mathbb{V}}(X_1, \cdots, X_n) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Question 23/54

Loi de Bernoulli

Réponse 23/54

$$X(\Omega) = \{0, 1\}$$

$$X \sim \mathcal{B}(p)$$

$$\mathbb{P}(X = 1) = p, \, \mathbb{P}(X = 0) = 1 - p$$

$$\mathbb{E}(X) = p$$

$$\mathbb{V}(X) = p(1 - p)$$

Question 24/54

Cas d'égalité de l'inégalité de Cauchy-Schwarz pour cov

Réponse 24/54

Il existe $(a, b) \neq (0, 0)$ tel que aX + bY = c presque sûrement

Question 25/54

$$\mathbb{P}(f(X) = x)$$

Réponse 25/54

$$\sum_{y \in f^{-1}(x) \cap X(\Omega)} (\mathbb{P}(X = y))$$

Question 26/54

Variable aléatoire réelle

Réponse 26/54

Variable aléatoire à valeurs dans $(\mathbb{R}, \mathcal{B}^1)$

Question 27/54

Loi géométrique

Réponse 27/54

$$X(\Omega) = \mathbb{N}^*$$

$$X \sim \mathcal{G}(n)$$

$$X \sim \mathcal{G}(n)$$

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1 - p)^{k - 1}$$

$$\mathbb{E}(X) = \frac{1}{p}$$

$$\mathbb{V}(X) = \frac{q}{p^2}$$

Question 28/54

Loi de Pascal

Réponse 28/54

$$X(\Omega) = \llbracket r, +\infty \rrbracket$$

$$X \sim \mathcal{P}(r, p)$$

$$\forall k \in \llbracket r, +\infty \rrbracket, \ \mathbb{P}(X = k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$$

 $\mathbb{E}(X) = \frac{\tau}{-}$

 $\mathbb{V}(X) = \frac{p}{rq}$

Question 29/54

Variable centrée réduite associée à X

Réponse 29/54

$$X^* = \frac{X - \mathbb{E}(X)}{\sigma(X)}$$

Question 30/54

$$\mathbb{V}(X+Y)$$

Réponse 30/54

$$\mathbb{V}(X) + \mathbb{V}(Y) + 2\operatorname{cov}(X, Y)$$

Question 31/54

Moment d'ordre kMoment centré d'ordre k

Réponse 31/54

$$\mathbb{E} \big(X^k \big) \\ \mathbb{E} \Big((X - \mathbb{E}(X))^k \Big)$$

Question 32/54

Inégalité de Cauchy-Schwarz pour $\mathbb E$

Réponse 32/54

$$|\mathbb{E}(XY)| \leqslant \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Question 33/54

Variables indépendantes

Réponse 33/54

$$\forall (A_1, A_2) \in \mathcal{T}_1 \times \mathcal{T}_2$$
$$\mathbb{P}(X \in A_1, Y \in A_2) = \mathbb{P}(X \in A_1)\mathbb{P}(Y \in A_2)$$

 $X \parallel Y$

Question 34/54

Fonction de répartition de $X:\Omega\to\mathbb{R}$

Réponse 34/54

$$F_X(x) = \mathbb{P}(X \leqslant x)$$

Question 35/54

Variable réduite

Réponse 35/54

$$\mathbb{V}(X) = 1$$

Question 36/54

Variable centrée

Réponse 36/54

$$\mathbb{E}(X) = 0$$

Question 37/54

Réponse 37/54

$$\begin{split} \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) \\ &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \end{split}$$

Question 38/54

Loi conjointe de (X_1, \dots, X_n)

Réponse 38/54

$$\mathbb{P}(X_1,\cdots,X_n)$$
 définie sur $(\mathbb{R}^n,\mathcal{B}^n)$

Question 39/54

k-ième loi marginale de (X_1, \cdots, X_n)

Réponse 39/54

Loi de X_k

Question 40/54

 L^n

Réponse 40/54

Variables aléatoires réelles discrètes admettant un moment d'ordre n

Question 41/54

Formule de polarisation

Réponse 41/54

$$cov(X,Y) = \frac{1}{2}(\mathbb{V}(X+Y) - \mathbb{V}(X) - \mathbb{V}(Y))$$

Question 42/54

$$\mathbb{E}(\lambda X + Y)$$

Réponse 42/54

$$\lambda \mathbb{E}(X) + \mathbb{E}(Y)$$

Question 43/54

Variable aléatoire

Réponse 43/54

Application mesurable $X:(\Omega,\mathcal{T})\to (E,\mathcal{T}')$ Si $\Omega'\in\mathcal{T}$ tel que $\mathbb{P}(\Omega')=1$, on peut définir Xsur Ω'

Question 44/54

Réponse 44/54

$$\mathbb{E}\Big((X - \mathbb{E}(X))^2\Big)$$

Question 45/54

Loi quasi-certaine

Réponse 45/54

$$X=c$$
 presque sûrement
$$\mathbb{P}(X=c)=1,\,\mathbb{P}(X\neq c)=0$$

$$\mathbb{E}(X)=c$$

$$\mathbb{V}(X)=0$$

Question 46/54

Application mesurable

Réponse 46/54

Si
$$(E, \mathcal{S})$$
 et (F, \mathcal{T}) sont deux espaces
mesurables et $f: E \to F$
 $\forall B \in \mathcal{T}, f^{-1}(B) \in \mathcal{S}$

Question 47/54

Formule de l'espérance totale

Réponse 47/54

Si (A_i) est un système quasi-complet d'événements au plus dénombrale

d'événements au plus dénombrale
$$\mathbb{E}(X) = \sum (\mathbb{E}(X \mid A_i) \mathbb{P}(A_i))$$

 $i \in I$

Question 48/54

Loi uniforme

Réponse 48/54

 $X(\Omega) = [1, n]$

 $X \sim \mathcal{U}(n)$

 $\forall k \in [1, n], \ \mathbb{P}(X = k) = \frac{1}{n}$

 $\mathbb{E}(X) = \frac{n+1}{2}$ $\mathbb{V}(X) = \frac{n^2 - 1}{12}$

Question 49/54

Vecteur aléatoire réel

Réponse 49/54

Vecteur aléatoire à valeurs dans $(\mathbb{R}^n, \mathcal{B}^n)$

Question 50/54

Loi d'une variable aléatoire

Réponse 50/54

$$\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A))$$

Question 51/54

Loi faible des grands nombres

Réponse 51/54

$$Z_n = \frac{X_1 + \dots + X_n}{n} \text{ avec les } X_i \text{ mutuellement indépendantes suivant une même loi et d'espérance } m$$

$$\forall \varepsilon > 0, \ \forall n \in \mathbb{N}^*, \ \mathbb{P}(|Z_n - m| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{n\varepsilon^2}$$

Question 52/54

Espérance conditionnelle

Réponse 52/54

$$\mathbb{E}(X \mid A) = \sum (x \mathbb{P}(X = x \mid A))$$

 $x \in X(\Omega)$

Question 53/54

Formule de Koenig-Huyghens

Réponse 53/54

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Question 54/54

Inégalité de Cauchy-Schwarz pour cov

Réponse 54/54

$$|cov(X,Y)| \leq \sigma(X)\sigma(Y)$$