Théo Guyard JOPT, HEC Montréal, Canada - May 12th, 2025

Optimization methods for ℓ_0 -problems

Sparse optimization

Minimize a function using a sparse vector

Sparse optimization

Minimize a function using a sparse vector

Sparse optimization

Minimize a function using a sparse vector

loss function

$$\ell_0$$
-regularized problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0$$

Sparse optimization

 $\ell_0\text{-regularized problem}$

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

$$\ell_0$$
-regularized problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})
ightharpoons \mathsf{NP} ext{-hard}$

$$\ell_0$$
-regularized problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \qquad \to \mathsf{NP} ext{-hard}$$

MIP-based methods

Rely on off-the-shelf solvers

X Poor numerical performances

$$\ell_0$$
-regularized problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \rightarrow \mathsf{NP} ext{-hard}$$

MIP-based methods

Rely on off-the-shelf solvers

* Poor numerical performances

BnB-based methods

Tailored solution method
✓ Better numerical performances

$$\ell_0$$
-regularized problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x}) \rightarrow \mathsf{NP} ext{-hard}$$

MIP-based methods

Rely on off-the-shelf solvers

* Poor numerical performances

Topic of this talk

BnB-based methods

Tailored solution method

✓ Better numerical performances

Branch-and-Bound Algorithms

Explore regions in the feasible space and prune those that cannot contain any optimal solution.

Branching step – Region design and exploration **Bounding step** – Pruning test evaluation

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Observation

Solutions are expected to be sparse

Problem

 $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

Problem $\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$

Observation

Solutions are expected to be sparse

Method

Drive the sparsity of the optimization variable

BnB – **Bounding** step

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

BnB – Bounding step

Does region $\boldsymbol{\nu}$ contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

Does region ν contains optimal solutions ?

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p^{\nu} > p^{\star}$$

 \rightarrow prune ν

Does region ν contains optimal solutions ?

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Pruning test

$$p^{
u}_{
m lb} > p^{\star}_{
m ub}$$

 \longrightarrow prune ν

Easy task

Compute an upper bound on p^*

Does region ν contains optimal solutions ?

Problem

$$p^* = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \boldsymbol{\nu}} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^*

Main challenge

Compute a lower bound on p^{ν}

Does region ν contains optimal solutions ?

Problem

$$p^{\star} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pruning test

$$p_{
m lb}^{
u}>p_{
m ub}^{\star}$$

Easy task

Compute an upper bound on p^*

Construct and evaluate a feasible vector in each region explored to refine p_{ub}^{\star}

Main challenge

Compute a lower bound on p^{ν}

Construct and solve a relaxation

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g^{\nu}(\mathbf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

BnB – Building relaxations

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \nu} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0} + h(\mathbf{x})$$

reformulation

Restriction to region ν

$$p^{\nu} = \min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + g^{\nu}(\mathbf{x})$$

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

seek tight/tractable lower bound on p^{ν}

with g^{ν} proper and closed

set $g_{\mathrm{lb}}^{\,
u}$ set as the convex envelope of $g^{\,
u}$

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$

Convex envelope of
$$g(\mathbf{x}) = \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$
 with $\mathbf{x} \in \mathbf{R}^n$

$$\begin{array}{c} \uparrow \\ \hline h \text{ separable} \\ \downarrow \end{array}$$

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ $\frac{\uparrow}{h \text{ separable}}$

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable

Convex envelope of $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$ with $\mathbf{x} \in \mathbf{R}^n$ h separable

Overall solve time

pruning test time \times number of regions processed

Overall solve time

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $\textit{g}^{\nu}_{\text{lb}}$ is proper, closed, convex, separable, and non-smooth at x=0

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{
m lb}^{
u}$ is proper, closed, convex, separable, and non-smooth at ${f x}={f 0}$

This is a convex sparse optimization problem

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g^{
u}_{ ext{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

- \rightarrow first-order methods proximal gradient, coordinate descent, ... $\rightarrow \text{ acceleration strategies}$
 - working set, screening tests, ...

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathrm{lb}}^{\nu}=\min_{\mathbf{x}\in\mathsf{R}^{n}}f(\mathbf{x})+g_{\mathrm{lb}}^{\nu}(\mathbf{x})$$

 $g^{
u}_{
m lb}$ is proper, closed, convex, separable, and non-smooth at ${f x}={f 0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

Overall solve time

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g^{
u}_{
m lb}$ is proper, closed, convex, separable, and non-smooth at ${f x}={f 0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

Overall solve time

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} \, f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{\text{lb}}^{\,
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

perform degraded but low-cost pruning test

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \mathsf{min}_{\mathsf{x} \in \mathsf{R}^n} f(\mathsf{x}) + g_{\mathsf{lb}}^{\nu}(\mathsf{x})$$

 $g_{\text{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

ightarrow first-order methods proximal gradient, coordinate descent, ... ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

perform degraded but low-cost pruning test

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g^{
u}_{ ext{lb}}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

- ightarrow first-order methods proximal gradient, coordinate descent, ...
 - \rightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

processing

low-cost pruning test

Overall solve time

pruning test time × number of regions processed

Relaxation for region ν

$$p_{\mathsf{lb}}^{\nu} = \min_{\mathbf{x} \in \mathsf{R}^n} f(\mathbf{x}) + g_{\mathsf{lb}}^{\nu}(\mathbf{x})$$

 $g_{\text{lb}}^{
u}$ is proper, closed, convex, separable, and non-smooth at $\mathbf{x}=\mathbf{0}$

This is a convex sparse optimization problem

- \rightarrow first-order methods proximal gradient, coordinate descent, ...
 - ightarrow acceleration strategies working set, screening tests, ...

Simultaneous pruning

processing region ...

processing low-cost pruning test

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a BnB solver
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a BnB solver
- **1b)** Use an existing BnB solver
 - 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

BnB – Let's sum up

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

Pipeline

- 1a) Implement a BnB solver
- 1b) Use an existing BnB solver
 - 2) Solve the problem

Pros

- ✓ Numerical efficiency
- ✓ Open-source softwares
- ✓ Any h separable and coercive

Cons

X Less standard pipeline

Numerical Illustration

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP solvers: → cplex → mosek BnB solvers: → 10bnb → el0ps

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP solvers: → cplex → mosek BnB solvers: → 10bnb → el0ps

Instance 1

- $f(x) = \frac{1}{2} ||y Ax||_2^2$
- $h(\mathbf{x}) = \frac{\gamma}{2} \|\mathbf{x}\|_2^2 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- riboflavin dataset with $\mathbf{A} \in \mathbf{R}^{71 \times 4088}$

Problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda ||\mathbf{x}||_0 + h(\mathbf{x})$$

Instance 1

- $f(x) = \frac{1}{2} ||y Ax||_2^2$
- $h(\mathbf{x}) = \frac{\gamma}{2} \|\mathbf{x}\|_2^2 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- riboflavin dataset with $\mathbf{A} \in \mathbf{R}^{71 \times 4088}$

Problem

$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP solvers: → cplex → mosek

BnB solvers: → 10bnb → el0ps

Instance 1

- $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{y} \mathbf{A}\mathbf{x}||_2^2$
- $h(\mathbf{x}) = \frac{\gamma}{2} \|\mathbf{x}\|_2^2 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- riboflavin dataset with $\mathbf{A} \in \mathbf{R}^{71 \times 4088}$

Instance 2

- $f(x) = \mathbf{1}^{\mathrm{T}} \log(1 + \exp(-y \odot Ax))$
- $h(\mathbf{x}) = \gamma \|\mathbf{x}\|_1 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- ullet leukemia dataset with ${f A} \in {f R}^{38 imes 7129}$

Numerics – Feature Selection Problem

Problem
$$\min_{\mathbf{x} \in \mathbf{R}^n} f(\mathbf{x}) + \lambda \|\mathbf{x}\|_0 + h(\mathbf{x})$$

MIP solvers: → cplex → mosek

BnB solvers: → 10bnb → el0ps

Instance 1

- $f(x) = \frac{1}{2} ||y Ax||_2^2$
- $h(\mathbf{x}) = \frac{\gamma}{2} \|\mathbf{x}\|_2^2 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- riboflavin dataset with $\mathbf{A} \in \mathbf{R}^{71 \times 4088}$

Instance 2

- $f(x) = 1^T \log(1 + \exp(-y \odot Ax))$
- $h(\mathbf{x}) = \gamma \|\mathbf{x}\|_1 + \mathsf{Cstr}(\|\mathbf{x}\|_{\infty} \leq M)$
- leukemia dataset with $\mathbf{A} \in \mathbf{R}^{38 \times 7129}$

Conclusion

Take-home messages

- Although NP-hard, ℓ_0 -problems are of practical interest
- There exists methods to tackle them exactly
 - MIP-based off-the-shelf solvers
 - BnB-based specialized algorithms
 - Structure-exploitation is key for numerical efficiency

Question time!

Sparse signal

 $x \in R^n$

n pixels

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}	a _{1,2}		$a_{1,n}$	<i>y</i> ₁
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	<i>a</i> _{3,1}	$A \in R^{mx}$	< n	<i>a</i> _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	× n	a _{3,n}	$\mathbf{y} \in \mathbf{R}^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{A} \in \mathbf{R}^m \longleftrightarrow \mathbf{A} \times \mathbf{A} \times \mathbf{A}$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

	Feature 1	Feature 2		Feature n	Target
Sample 1	$a_{1,1}$			$a_{1,n}$	
Sample 2	a _{2,1}			$a_{2,n}$	
Sample 3	a _{3,1}	$A \in R^{m}$	≺ n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$			$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Model accuracy Loss $\mathcal{L}_{\phi}(\mathbf{A}\mathbf{x},\mathbf{y})$

Model explainability
Use few features

	Feature 1	Feature 2		Feature n	Target
Sample 1	a _{1,1}			$a_{1,n}$	
Sample 2	a _{2,1}			a _{2,n}	
Sample 3	a _{3,1}	$A \in R^{m}$	×n	a _{3,n}	$y \in R^m$
Sample m	$a_{m,1}$	$a_{m,2}$		$a_{m,n}$	Ут

Features
$$\mathbf{A} \in \mathbf{R}^{m \times n} \longleftrightarrow \mathbf{Weights} \ \mathbf{x} \in \mathbf{R}^n$$
 Target $\mathbf{y} = \phi(\mathbf{A}\mathbf{x})$

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Which edges to build to transport products from source to sink nodes?

construct edge $i \in I$ if $x_i > 0$ pay construction cost c

Question

How to construct the least number of edges to satisfy transportation needs?

Balancing solution quality and problem hardness

Riboflavin dataset -	Р.	Bühlmann	et al	. (2014)	1
----------------------	----	----------	-------	----------	---

Colony	AADK	AAPA	ABFA	ABH	 ZUR	B2 prod.
#1	8.49	8.11	8.32	10.28	 7.42	-6.64 -5.43
#2	7.29	6.39	11.32	9.42	 6.99	-5.43
#71	6.85	 8.27	 7.98	 8.04	 6.65	-7.58

4,088 genes

Balancing solution quality and problem hardness

Riboflavin dataset - P. Bühlmann et al. (2014)

				, , ,	•••	201	B2 prod.
#1 #2	8.49 7.29	8.11 6.39	8.32 11.32	10.28 9.42		7.42 6.99	-6.64 -5.43
 #71	 6.85	 8.27	7.98	 8.04		 6.65	-7.58

4,088 genes

