Raciocínio Lógico

<u>Lógica</u> = um raciocínio é válido se conduzir à conclusão verdadeira em todas as situações em que as premissas sejam verdadeiras. Se preocupa com a validade dos argumentos, não a veracidade.

<u>Argumento</u> = conjunto de afirmações estruturadas em que uma delas (a conclusão) seja apoiada pelas outras (as premissas).

<u>Períodos da Lógica</u> -= Aristotélico (390a. C a 1840), Aristóteles criou a definição de lógica e o silogismo; Booleano (1840 a 1910),

George Boole, definiu o sistema de lógica algébrica; Atual (1910 a atualmente), criação da inteligência artificial.

<u>Lógica Indutiva</u> = começa com observação, apoia-a em padrões e chega a uma hipótese ou teoria. Vai do menor para o maior.

Lógica Dedutiva = começa com uma teoria, apoia-a em observação e chega a uma confirmação. Vai do maior para o menor. Divide-se em 3: lógica clássica (cerne da lógica dedutiva, incapacidade de lidar com incertezas, pois sentenças são verdade ou falsidade, não é possível raciocinar sobre possibilidades), lógicas complementares da clássica (complementa o que é dito na clássica) e lógicas não clássicas (discorda das anteriores).

<u>3 Princípios da Lógica Formal</u> = identidade (todo objeto é idêntico a si mesmo); não contradição (um objeto não pode ser V e F ao mesmo tempo); terceiro excluído (todo objeto é V ou F, não há terceira opção).

<u>Conectivos Lógicos</u> = não ("]; e, mas (]; ou (]; se, então (\rightarrow); se e somente se (\leftrightarrow).

Linguagem Simbólica	Linguagem Corrente	Linguagem Matemática
٦	não	Modificador
٨	e	Conjunção
V	ou	Disjunção
\rightarrow	seentão	Implicação ou condicional
\leftrightarrow	se e somente se	Bicondicional ou equivalência

<u>Proposições</u> = sentenças V ou F. Podem ser simples (sem conectivo lógico) ou compostas (com conectivo lógico).

<u>Predicados</u> = proposições mostradas através de símbolos, como p,q,r ou s.

<u>Cálculo Proposicional</u> = proposição + conectivo + proposição = "a lua é quadrada" e "a neve é branca".

<u>Cálculo de Predicados</u> = predicado + conectivo + predicado = "p" "q".

<u>Conclusão</u> = resultado lógico a partir de duas proposições, como por exemplo: se todos os gatos são animais e Mia é um gato, a conclusão é de que Mia é um animal.

<u>Fórmula Proposicional</u> = cálculo de predicados mostrada por uma letra maiúscula, como A (p,q): se p, então q.

<u>Operações</u> = com proposições ou fórmulas, respeitando a precedência (1° ~; 2° ; 3° ; 4° →; 5° ↔) e os parênteses.

<u>Tabela Verdade</u> = mostra os valores das proposições compostas. As colunas mostram as proposições, o entre parênteses e a proposição composta. As linhas mostram as respostas das proposições, V ou F. Para x proposições, existem x² linhas.

<u>Construção</u> = pôr as proposições em ordem alfabética; o entre parênteses na ordem em que aparecem; e a proposição composta; preencher a última coluna de preposições com V e F alternados, a penúltima com 2V e 2F, e ir dobrando até a primeira coluna.

р	q	p∨q	p∧q	$p \vee q \rightarrow p \wedge q$
V	٧	V	V	V
V	F	V	F	F
F	٧	V	F	F
F	F	F	F	V

<u>Não,</u> = p é verdadeiro se p for falso.

p	~ p
v	F
F	٧

<u>E e Mas,</u> = p q é verdadeiro se p e q forem verdadeiros.

p	q	$p \wedge q$
٧	>	>
V	F	F
F	٧	F
F	F	F

<u>Ou,</u> = p q é verdadeiro se p ou q forem verdadeiros.

p	q	$p \lor q$
^	٧	>
٧	F	٧
F	٧	٧
F	Œ.	Œ.

 $\underline{Se, Ent ilde{ao}, o} = p o q$ é sempre verdadeiro, exceto se p for verdadeiro e q falso.

p	q	$p \rightarrow q$
>	>	>
٧	F	F
F	٧	٧
F	F	v

<u>Se e Somente Se, \leftrightarrow = $p \leftrightarrow q$ é verdadeiro se ambos forem verdadeiros ou ambos forem falsos.</u>

p	q	$p \leftrightarrow q$
٧	٧	٧
٧	F	F
F	٧	F
F	F	٧

<u>Interpretação de Fórmula</u> = igual a 2 elevado ao número de proposições. Como na fórmula A(p,q,r): p q r, há 2³ interpretações.

$$I[A(V,V,V)] = V$$

$$I[A(V,V,F)] = V$$

$$I[A(V,F,V)] = V$$

$$I[A(V,F,F)] = F$$

$$I[A(F,V,V)] = V$$

$$I[A(F,V,F)] = F$$

$$I[A(F,F,V)] = V$$

<u>Iautologia</u> = proposição cujo conjunto resposta da tabela-verdade é formado só por V.

<u>Contradição</u> = proposição cujo conjunto resposta da tabela-verdade é formado só por F.

<u>Contingência</u> = proposição cujo conjunto resposta da tabela-verdade é formado por V e F.

<u>Satisfazível</u> = uma fórmula é satisfazível se possuir uma tautologia.

<u>Falsificável</u> = uma fórmula é falsificável se possuir uma contradição.

<u>Relação,</u> \Rightarrow = uma operação condicional que é tautologia. Por exemplo, p o q \Rightarrow V.

Relação de Equivalência, \Leftrightarrow = uma operação de equivalência que é tautologia. Por exemplo, p o q \Leftrightarrow V.

<u>Propriedade Reflexiva</u> = qualquer proposição implica a própria proposição.

<u>Propriedade Simétrica</u> = se $P \Leftrightarrow Q$, então $Q \Leftrightarrow P$.

<u>Propriedade Transitiva</u> = se $P \Leftrightarrow Q \in Q \Leftrightarrow R$, então $P \Leftrightarrow R$.

<u>Álgebra das Proposições</u> = conjunto de regras para simplificar proposições através das implicações e equivalências notáveis.

<u>Silogismo</u> = qualquer argumento válido.

Lógica dos Predicados = composta por objetos, predicados, conectivos, variáveis e quantificadores.

<u>Objetos</u> = representados por minúsculas de a a t. Podem ser concretos (bola, livro, lua); abstratos (conjunto vazio, felicidade,

paz); fictícios (unicórnio, vampiro, fada); atômicos e/ou compostos (teclas que compõem um teclado).

<u>. Predicados</u> = representados por maiúsculas. Podem descrever algo dos objetos (João ama Maria) e adjetivar (João é humano).

<u>Variáveis</u> = representados por maiúsculas de u a z. São os elementos desconhecidos, as incógnitas.

<u>Quantificadores</u> = representados por & (universal, todos e nenhum) e = (existencial, alguns). Vêm antes das variáveis.

Monádicos = predicado de um só termo.

<u>Diádicos</u> = predicado de dois termos

<u>Triádicos</u> = predicado de três termos.

Poliádicos = predicado de quatro ou mais termos.

Enunciados Categóricos Universais =

universal (∀) afirmativo (conjuntivo)

Sentença: "todos humanos são mortais"

Sintaxe: $\forall X[h(X) \rightarrow m(X)]$

Semântica: para todo X, $se X \in h \ ent$ ão $X \in m$

universal (∀) negativo (disjuntivo)

Sentença: "nenhum humano é mortal"

Sintaxe: $\forall X[h(X) \rightarrow \sim m(X)]$

Semântica: para todo X, se X ∈ h então X∉ m

Enunciados Categóricos Existenciais =

existencial (3) afirmativo

Sentença: "alguns humanos são mortais"

Sintaxe: $\exists X[h(X) \land m(X)]$

Semântica: Existe X, tal que $X \in h e X \in m$

existencial (∃) negativo

Sentença: "alguns humanos não são mortais"

Sintaxe: $\exists X[h(X) \land \sim m(X)]$

Semântica: Existe X, tal que $X \in h \ e \ X \notin m$

