Universidad Industrial de Santander

Introducción a la Física (2013)

Unidad: 02

• Clase: 03

Fecha: 20130801J

Contenido: Electrostática

Web: http://halley.uis.edu.co/fisica_para_todos/

• Archivo: 20130801J-HA-electrostatica.pdf

En el episodio anterior...

Imagen tomada por la sonda Galileo desde una distancia de 6.2 millones de km

Saturno a contraluz y, al fondo, la Tierra

Una buena respuesta...

"Para llegar a la Luna hacen falta 500 años de ciencia y millones de mentes humanas. Para inventarse que no se llegó basta con un gilipollas"

Visto en Microsiervos, http://goo.gl/MB6FI

Ida y vuelta

"Pozo de Potencial"

planeta+aceleración

01/08/13

L. Nuñez - H. Asorey - A. Estupiñan - Fisica Para Todos

aceleración=Fuerza / masa

masa de prueba

Muevo la masa de prueba en el plano z=0

g(r) es un campo vectorial.A cada punto r del espacio le asigna el vector g(r)

$$F(r) = \frac{GMm}{|r|^2} \hat{r}$$

$$F(r) = m \left[\left(\frac{GM}{|r|^2} \right) \hat{r} \right]$$

$$F(r) = m g(r)$$

$$g(r) = \left(\frac{GM}{|r|^2} \right) \hat{r}$$

Campo gravitatorio sistema Tierra-Luna

Campo gravitatorio sistema Tierra-Luna

$$g(r) = g_T(r) + g_L(r) g(r) = 0 \rightarrow |r| = 0.91 TL$$

Energía potencial gravitatoria

- Recordemos las características de la energía potencial
 - Interacción → "Cargas"
 - Depende de la posición relativa
 - configuración espacial en presencia de un CAMPO de fuerzas conservativas
- ¿podemos aventurar una dependencia funcional?

Energía potencial gravitatoria

$$E_g(r) = -G \frac{m_1 m_2}{r}$$

$$G = 6.67 \times 10^{-11} \frac{\text{J m}}{\text{kg}^2}$$
 $G = 6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

En la naturaleza existe otra interacción

- Es de la largo alcance (como la gravedad)
- Tiene "dos" tipos de cargas
 - Convención: Carga Positiva (+) y Carga Negativa (-)
 - Unidad de carga → Coulomb → C
- Depende de la posición relativa entre las cargas
- ¿podemos aventurar una dependencia funcional para la energía potencial asociada?

Energía potencial electrostática

k_e = Constante de CoulombIdea de la magnitud de la intensidad de la interacción

$$E_e(r) = k_e \frac{q_1 q_2}{r}$$

$$E_g(r) = -G \frac{m_1 m_2}{r}$$

$$k_e = 9 \times 10^9 \frac{\text{J m}}{\text{C}^2}$$

$$G = 6.67 \times 10^{-11} \frac{\text{J m}}{\text{kg}^2}$$

Supongo dos cuerpos, con masas m₁=m₂=1 kg, y cargas q₁=+1 C y q₂=-1 C, separados por una distancia de 1 m. ¿Cuál es la relación entre la energías potenciales electrostática y gravitatorias?

Relación entre las interacciones G y E

$$E_e(r) = 9 \times 10^9 \frac{\text{J m}}{\text{C}^2} \frac{(1 \text{C})(-1 \text{C})}{1 \text{ m}} = -9 \times 10^9 J$$

$$E_g = -6.67 \times 10^{-11} \frac{\text{J m}}{\text{kg}^2} \frac{(1 \text{kg})(1 \text{kg})}{1 \text{ m}} = -6.67 \times 10^{-11} \text{J}$$

$$\frac{E_e}{E_g} = \frac{-9 \times 10^9 \,\text{J}}{-6.67 \times 10^{-11} \,\text{J}} = 1.35 \times 10^{20}$$

1.35×10^{20}

Algunos ejemplos

Punto de referencia

 Al igual que en el caso gravitatorio, consideramos la referencia para la energía potencial electrostática en el infinito:

 La energía potencial electrostática de dos cuerpos a distancia r es igual al trabajo necesario para separar esos cuerpos desde esa distancia r hasta una distancia infinita.

Potencial eléctrico

Q es mi carga "fuente" q es mi carga de prueba V(r) es el potencial eléctrico

$$E_{e}(\mathbf{r}) = k_{e} \frac{Qq}{|\mathbf{r}|}$$

$$E_{e}(\mathbf{r}) = q k_{e} \frac{Q}{|\mathbf{r}|}$$

$$E_{e}(\mathbf{r}) = q \left(k_{e} \frac{Q}{|\mathbf{r}|} \right)$$

$$E_{e}(\mathbf{r}) = q V(\mathbf{r})$$

V(**r**) es un campo escalar

Potencial eléctrico en el plano z=0

Carga "Puntual" ← Sin distribución espacial de carga Q=1 C en el orígen

Potencial eléctrico → distribución de cargas puntuales

- Principio de superposición:
 - Supongo que cada carga es independiente
 - Calculo los potenciales asociados a cada carga
 - Sumo todos los potenciales
- Si tengo N cargas, cada una Q, en las posiciones r, el potencial en el punto r será:

$$V(\mathbf{r}) = \sum_{i}^{N} V_{i}(\mathbf{r}) = \sum_{i}^{N} k_{e} \frac{Q_{i}}{|\mathbf{r} - \mathbf{r}_{i}|}$$

• Y la energía potencial para una carga q de prueba:
$$E_e(\mathbf{r}) = q V(\mathbf{r}) = q \sum_{i}^{N} k_e \frac{Q_i}{|\mathbf{r} - \mathbf{r}_i|}$$

2 cargas Q=1C en X=+/-3 m

4 cargas Q=1C en X=+/- 3 m y Y=+/-3

4 cargas Q=1C en X=+/-3 m y Y=+/-3 y una carga Q=-0.5 C en el orígen

Energía almacenada en una configuración de cargas

Sabemos que para una carga de prueba:

$$E_e(\mathbf{r}) = q V(\mathbf{r}) = q \sum_{i}^{N} k_e \frac{Q_i}{|\mathbf{r} - \mathbf{r}_i|}$$

- Ahora, cada carga Q_i, podría pensarse como una carga de prueba para las otras Q_{ii} cargas:
 - Superposición:

$$E_{e} = \frac{1}{2} \sum_{i=1}^{N} Q_{i} \sum_{j=1}^{N, (j \neq i)} k_{e} \frac{Q_{j}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$