UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE PROBABILIDAD B

Ejemplo: Grandes desviaciones

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: **Séptimo u octavo**

CLAVE: **0710**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Probabilidad II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Con este curso se busca hacer una introducción a la Teoría de Grandes Desviaciones. El objetivo es adquirir un manejo adecuado de los resultados básicos de esta Teoría y de algunas de sus aplicaciones.

NUM. HORAS	UNIDADES TEMÁTICAS	
20	1. Introducción: Eventos Raros y Grandes Desviaciones	
	1.1 Leyes de los Grandes Números.	
	1.2 Teorema Central del Límite.	
	1.3 Grandes Desviaciones: un aspecto intuitivo.	
30	2. Teoremas de Cramer	
	2.1 Para alfabetos finitos.	
	$2.2 \text{ Para } \mathbb{R}.$	
	$2.3 \operatorname{Para} \mathbb{R}^n$.	
	2.4 Teorema de Gartner-Ellis.	
10	3. Propiedades del Principio de Grandes Desviaciones	
	3.1 Existencia.	
	3.2 Transformaciones.	
	3.3 Principio de Contracción.	
	3.4 Lema de Varadhan.	
20	4. Aplicaciones, por ejemplo:	
	4.1 Principio condicional de Gibbs y Mecánica Estadística.	
	4.2 Algoritmos en paralelo.	

BIBLIOGRAFÍA BÁSICA:

- 1. Dembo, A., Zeitouni, O. *Large Deviations Techiques and Applications*. New York: Springer Verlag, 2a ed., Serie Applications of Mathematics. 1998.
- 2. Shwarz, A., Weiss, A. Large Deviations for Performance Analysis, New York: Chapman & Hall, Primera Edición, Serie Stochastic Modeling Series. 1995.
- 3. Varadhan, S.R.S. *Large Deviations and Applications*, Pennsylvania: SIAM, Serie Regional Conference in Applied Mathematics. 1984.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Ellis, R. Entropy, Large Deviations and Statistical Mechanics, New York: Springer Verlag. Serie A Series of Comprehensive Studies in Mathematics #271, 1985.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.