Simulating and Imaging Supermassive Black Hole Accretion Flows

Andrew Chael

(he/him)

NHFP Fellow Princeton University PhD @ Harvard/CfA

January 9, 2020

The EHT Collaboration

In particular: Ramesh Narayan, Michael Johnson, Shep Doeleman, Katie Bouman, Kazu Akiyama, Sara Issaoun, and Michael Rowan

What does a black hole look like?

$$r_{\rm shadow} = \sqrt{27}GM/c^2$$

Schnittman+ (2006) EHTC+ 2019

The Event Horizon Telescope

Resolution
$$\approx \frac{\lambda}{d_{\rm Earth}} \approx \frac{1.3 \,\mathrm{mm}}{1.3 \times 10^{10} \,\mathrm{mm}} \approx 20 \,\mu\mathrm{as}$$

Simulations

Using physics to predict and interpret what the EHT sees

What tests are possible given the limitations of EHT data?

Imaging

Using EHT data to make measurements of black hole emission

How can we use images to test black hole & accretion physics?

Imaging a supermassive black hole accretion flow

Very Long Baseline Interferometry (VLBI)

Traditional Approach: CLEAN

VLBI Imaging: Bayesian approach

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Regularized Maximum Likelihood

Image Credit: Katie Bouman Simulation Credit: Avery Broderick

Feature-driven Image Regularizers

Sparsity:

Favors the image to be mostly empty space

Smoothness:

Favors an image that varies slowly over small spatial scales

Maximum Entropy:

Favors compatibility with a specified "prior" image

The eht-imaging software library

- Python software to image, analyze, and simulate interferometric data
- Flexible framework for developing new tools – e.g. polarimetric imaging, dynamical imaging.
- Used in 18 published papers (including all 5/6 EHT result papers)

Closure-only imaging

Image Credit: Chael+ 2018a Simulation Credit: Roman Gold

Closure-Only & RML Imaging have wide applicability!

EHT 2017

Photo Credits: EHT Collaboration 2019 (Paper III) ALMA, Sven Dornbusch, Junhan Kim, Helge Rottmann, David Sanchez, Daniel Michalik, Jonathan Weintroub, William Montgomerie, Tom Folkers, ESO, IRAM

After lots of work....

See special session 429 this afternoon in Room 310!

Three imaging pipelines

Radiative GRMHD simulations of M87

General Relativistic MagnetoHydroDynamics (GRMHD)

General Relativistic Ray
Tracing

Solves coupled equations of fluid dynamics and magnetic field in a black hole spacetime

Tracks light rays and solves for the emitted radiation

What parameters determine the images we see?

- 1. Spacetime geometry: M, a
 - -Liberating potential energy heats the plasma.
 - -Extraction of spin energy
- 2. (Radiative) Magnetohydrodynamics: \dot{M}, Φ_B
 - Does the magnetic field arrest accretion?
 - How does the B-field determine the jet power & shape?
- 3. Electron (non)thermodynamics: $T_e, n_e(\gamma)$
 - -What is the electron temperature?
 - -What is their distribution function?

From simulations to observables

GRMHD Simulations

Usually evolve a **single** fluid and magnetic field

What can we learn from:

1.) Simulating M87 with electron heating and cooling?

2.) Connecting these simulations to horizon-scale and large-scale jet images?

Two-Temperature GRRMHD Simulations

- Evolve plasma and magnetic field as in standard GRMHD
- But include radiative feedback on gas energy-momentum.
 - -- M87's radiative efficiency $~L/\dot{M}c^2\sim 1\%~$ (Ryan+ 2018, EHTC+ 2019)
- Also evolve electron and ion temperatures via the 1st law of thermodynamics:

Using the GRRMHD code KORAL: (Sądowski+ 2013, 2015, 2017, Chael+ 2017)

Plasma uncertainties: Electron & Ion Heating

- We can identify the total dissipative heating in the simulation but...
- **Sub-grid physics** must be used to determine what fraction of the dissipation goes into the electrons.

Two-temperature MAD simulations of M87

Both simulations are in the magnetically arrested (MAD) state.

- Two different microphysical plasma heating mechanisms
- Density is scaled to match 0.98 Jy at 230 GHz.

230 GHz Images

0.0 yr
Turbulent Heating

Reconnection Heating

 $50 \ \mu as$

Simulations and Images

EHT 2017 image

Simulated image from GRMHD model

EHT 2017 visibility amplitudes and model amplitudes

M87 SED

Data from Prieto+16 New points (cyan and magenta) from Akiyama+15, Doeleman+12, Walker+18, Kim+18, and MOJAVE

Image Credit: Chael+ 2019

43 GHz images – comparison with VLBI

Walker+ 2018

High

VLBA

Resolution

Resolution

Apparent opening angle at 43 GHz:

 55°

(Walker+ 2018)

The mechanical jet power in R17 is in the measured range of 10^{43} – 10^{44} erg/s!

Image Credit: Chael+ 2019 VLBA Image Credit: Chael+ 2018a Original VLBA data: Walker+ 2018

43 GHz jets

0.0 yrTurbulent Heating

 $P_{
m jet}$ is too small!

 $500~\mu as$

Reconnection Heating

 $P_{
m jet}$ in the measured range!

Electron Heating + Radiation > Jet Dynamics

Turbulent heating produces too much radiation at the jet base, which saps the jet power

Electron Heating + Radiation → Dynamics!

Major uncertainty: Funnel emission

• In the simulation inner jet, the magnetic field is strong, $\sigma_i \geq 1$

- We don't trust the gas thermodynamics in regions with very strong magnetic field, so we only include regions where $\sigma_i \leq 25$
- Spectra and images at frequencies ≥230 GHz depend strongly on the choice of cut!

ngEHT will illuminate the BH-jet connection

The current EHT lacks <u>short</u> baselines, which are necessary to detect extended structure.

Idea: add many more small, ~6m dishes to the array

Slide Credit: Michael Johnson

See: EHT Ground Astro2020 APC White Paper (Blackburn, Doeleman+; arXiv:1909.01411)

ngEHT

Takeaways

- RML interferometric imaging techniques can produce images with poor amplitude/phase calibration
 - These techniques were critical in producing the EHT M87 image
- Global simulations can connect EHT images on horizon scales to the extended jet on ~pc scales.
- MAD models produce powerful, wide opening-angle jets which match VLBI observations.
 - But uncertainty about high-magnetization thermodynamics is a big problem.

Thank you!

Work with Ramesh Narayan, Michael Johnson, Katie Bouman, Shep Doeleman, Michael Rowan, and the entire EHT collaboration

arXiv: 1803.07088, 1810.01983 EHTC+ 2019, Papers I-VI (ApJL 875) my thesis! https://achael.github.io/ pages/pubs

Two-temperature MAD simulations of M87

Model	Spin	Heating	$\langle \dot{M}/\dot{M}_{ m Edd} angle$	$\langle \Phi_{\mathrm{BH}}/(\dot{M}c)^{1/2}r_{\mathrm{g}} \rangle$	$\langle P_{J(100)} \rangle \ [{\rm erg \ s^{-1}}]$
H10	0.9375	Turb. Cascade	3.5×10^{-6}	54	6.6×10^{42}
R17	0.9375	Mag. Reconnection	2.3×10^{-6}	63	1.2×10^{43}
·			•		
				"MAD parameter"	Jet mechanical power

