課題 1

(1) (Z_{p*}, \times) が群の構造を持つことを示せ.

条件 1. 演算 \times が閉じている.

演算 \times が閉じている,つまり $a,b \in Z_p*$ のとき, $a \times b \pmod{p} \in Z_p*$ であることを示せば良い. $Z_p* = \{1,2,\cdots,p-1\}$ より, $a \times b \pmod{p} \in Z_p*$ が成り立たない場合は, $a \times b \pmod{p} = 0$ のときである.背理法により $a \times b \pmod{p} = 0$ が成り立たないことを示すことで演算 \times が閉じていることを示す.

はじめに, $a \times b \pmod{p} = 0$ と仮定する. $a \times b \pmod{p} = 0$ となるのは

$$a \times b = kp \tag{1}$$

となるときである. ただしkは自然数である. 式変形すると,

$$\frac{a \times b}{p} = k \tag{2}$$

p となる. 右辺のk は自然数であるから、左辺も自然数でないとならない. しかし、左辺の分母p は素数である. また $a,b \in \mathbb{Z}_p*$ であり、 $a \neq p,b \neq p$ であるから左辺は約分できず自然数とならない. よって、(2) 式また (1) 式は成り立たない. これは最初の仮定に矛盾する. よって、 $a \times b \pmod{p} = 0$ は成り立たず、演算 \times が閉じていると言える.

条件 2. 結合法則が成立する.

 $a,b,c \in \mathbb{Z}_p*$ とすると,a,b,c は自然数であるから,結合法則 $a \times (b \times c) = (a \times b) \times c$ は成り立つ.

条件3. 単位元, 逆元がある.

 $a \in Z_p*$ とすると, $a \times 1 = 1 \times a = a$ が成り立ち,単位元である 1 が存在する.また, $ax + py = \gcd(a, p) = 1$ とすると,

$$ax + py = 1 (3)$$

$$ax = 1(\bmod p) = 1 \tag{4}$$

となり、aの逆元はxであり逆元は存在する.以上の3つの条件全て満たしているので, (Z_{p^*}, \times) が群の構造を持つ.

(2) (1) を用いて、フェルマーの小定理 $a^{p-1} \pmod{p} = 1$ (a は Z_p* の任意の要素) を示せ.

 Z_{p*} の要素をすべてかけたものを考える.

$$1 \times 2 \times \dots \times (p-1) \tag{5}$$

次に, Z_{p*} の要素に $a \in Z_{p*}$ をかけて, そのすべてをかけたもの考える.

$$(1 \times a) \times (2 \times a) \times \dots \times \{(p-1) \times a\} \tag{6}$$

ここで $a,b,c \in Z_p *$, $b \neq c$ のとき, $a \times b \neq a \times c$ より, 式の $(1 \times a),(2 \times a),\cdots,(p-1) \times a$ はすべて異なる要素である。また, 課題1(1)より演算 \times は閉じているので(5),(6)式は等しい。

$$1 \times 2 \times \dots \times (p-1) = (1 \times a) \times (2 \times a) \times \dots \times \{(p-1) \times a\}$$
 (7)

$$= a^{p-1}(1 \times 2 \times \dots \times (p-1)) \tag{8}$$

となり,

$$a^{p-1}(\text{mod }p) = 1 \tag{9}$$

が成り立つ.

課題 2

(1) p = 7, q = 13 で公開鍵 e と秘密鍵 d を設定せよ.

公開鍵 e と秘密鍵 d は

$$n = p \times q = 7 \times 13 = 91$$

 $\lambda = \text{lcm}(p - 1, q - 1) = \text{lcm}(7 - 1, 13 - 1) = \text{lcm}(6, 12) = 12$
 $1 = \gcd(d, \lambda) \iff \gcd(d, 12) = 1 \therefore d = 5$
 $ed = 1 \pmod{\lambda} \iff e5 = 1 \pmod{12} \therefore e = 5$

より e = 5, d = 5となる.

(2) コーディングを以下とする、 $a=1,\dots,z=26,A=27,\dots,Z=52,0=60,\dots,9=69$ (a) kit を送受信せよ.

 \mathbf{k} ,i,t の文字コードはそれぞれ $x_1=11, x_2=9, x_3=20$ であるので暗号化コード c_1, c_2, c_3 は $c_1 = 11^5 \pmod{91} = 11^2 \cdot 11^2 \cdot 11 \pmod{91} = 30 \cdot 30 \cdot 11 \pmod{91} = 81 \cdot 11 \pmod{91} = 72$ $c_2 = 9^5 \pmod{91} = 9^3 \cdot 9^2 \pmod{91} = 1 \cdot 9^2 \pmod{91} = 81$

 $c_3 = 20^5 \pmod{91} = 20^2 \cdot 20^2 \cdot 20 \pmod{91} = 36 \cdot 36 \cdot 20 \pmod{91} = 36 \cdot 83 \pmod{91} = 76$ となる. また復元化コードは

 $X_1 = 72^5 \pmod{91} = 72^2 \cdot 72^2 \cdot 72 \pmod{91} = 88 \cdot 88 \cdot 72 \pmod{91} = 9 \cdot 72 \pmod{91} = 11$

 $X_2 = 81^5 \pmod{91} = 81^2 \cdot 81^2 \cdot 81 \pmod{91} = 9 \cdot 9 \cdot 81 \pmod{91} = 9$

 $X_3 = 76^5 \pmod{91} = 76^2 \cdot 76^2 \cdot 76 \pmod{91} = 43 \cdot 43 \cdot 76 \pmod{91} = 29 \cdot 76 \pmod{91} = 20$ となり文字コードと一致する.

(b) 各人のイニシャル2文字を送受信せよ.

 $\stackrel{\checkmark}{ ext{A}}$ のイニシャル YT の文字コードは $x_1=51, x_2=46$ であるので暗号化コード c_1, c_2 は $c_1 = 51^5 \pmod{91} = 51^2 \cdot 51^2 \cdot 51 \pmod{91} = 53 \cdot 53 \cdot 51 \pmod{91} = 79 \cdot 51 \pmod{91} = 25$ $c_2 = 46^5 \pmod{91} = 46^2 \cdot 46^2 \cdot 46 \pmod{91} = 23 \cdot 23 \cdot 46 \pmod{91} = 74 \cdot 46 \pmod{91} = 37$ となる. また復元化コードは

 $X_1 = 25^5 \pmod{91} = 25^2 \cdot 25^2 \cdot 25 \pmod{91} = 79 \cdot 79 \cdot 25 \pmod{91} = 53 \cdot 25 \pmod{91} = 51$ $X_2 = 37^5 \pmod{91} = 37^2 \cdot 37^2 \cdot 37 \pmod{91} = 4 \cdot 4 \cdot 37 \pmod{91} = 46$ となり文字コードと一致する.

(c) 学籍番号の下4桁を送受信せよ.

 $\dot{f \chi}$ 字コードは $x_1=64, x_2=62, x_3=61, x_4=67$ であるので暗号化コード c_1, c_2, c_3, c_4 は $c_1 = 64^5 \pmod{91} = 64^2 \cdot 64^2 \cdot 64 \pmod{91} = 1 \cdot 1 \cdot 64 \pmod{91} = 64$ $c_2 = 62^5 \pmod{91} = 62^2 \cdot 62^2 \cdot 62 \pmod{91} = 22 \cdot 22 \cdot 62 \pmod{91} = 29 \cdot 62 \pmod{91} = 69$ $c_3 = 61^5 \pmod{91} = 61^2 \cdot 61^2 \cdot 61 \pmod{91} = 81 \cdot 81 \cdot 61 \pmod{91} = 9 \cdot 61 \pmod{91} = 3$ $c_4 = 67^5 \pmod{91} = 67^2 \cdot 67^2 \cdot 67 \pmod{91} = 30 \cdot 30 \cdot 67 \pmod{91} = 81 \cdot 67 \pmod{91} = 58$

となる. また復元化コードは

 $X_1 = 64^5 \pmod{91} = 64^2 \cdot 64^2 \cdot 64 \pmod{91} = 1 \cdot 1 \cdot 64 \pmod{91} = 64$

 $X_2 = 69^5 \pmod{91} = 69^2 \cdot 69^2 \cdot 69 \pmod{91} = 29 \cdot 29 \cdot 69 \pmod{91} = 22 \cdot 69 \pmod{91} = 62$

 $X_3 = 3^5 \pmod{91} = 61$

 $X_4 = 58^5 \pmod{91} = 58^2 \cdot 58^2 \cdot 58 \pmod{91} = 88 \cdot 88 \cdot 58 \pmod{91} = 9 \cdot 58 \pmod{91} = 67$ となり文字コードと一致する.