Zadanie numeryczne 02

Autor: Eryk Stępień

22.10.2023

Spis treści:

- 1. Problem
- 2. Program
 - 1. Użyte narzędzia
 - 2. Kompilacja i uruchomienie
 - 3. Opis działania programu
- 3. Analiza wyników
 - 1. Dla wektora b
 - 2. Dla zaburzonego wektora b
 - 3. Podsumowanie

1. Problem

Zadane są dwie manierze A_1 , A_2 oraz wektor b.

Używając wybranego pakietu algebry komputerowej lub biblioteki numerycznej, rozwiąż równania macierzowe $A_iy=b$ dla i = 1,2. Ponadto, rozwiąż analogiczne równania z zaburzonym wektorem wyrazów wolnych, $A_{1i}y=b+\Delta b$. Zaburzenie Δb wygeneruj jako losowy wektor o małej normie euklidesowej (np. $\left||\Delta b|\right|\approx 10^{-6}$). Przeanalizuj jak wyniki dla macierzy manierze A_1 i A_2 zależą od Δb i zinterpretuj zaobserwowane różnice.

2. Program

2.1 Użyte narzędzia

Program został napisany w języku Python 3.10. Przy zastosowaniu środowiska PyCharm 2023.2.2. Korzysta on z następujących bibliotek:

- Numpy
- Scipy.linalg

2.2 Kompilacja i uruchomienie

W celu kompilacji należy wywołać poniższą komendę w terminalu:

python NUM2.py

2.3 Opis działania programu

Program tworzy zadane w poleceniu macierze poprzez funkcje numpy.array. Transpozycja wektora b realizowana jest poprzez .T. Następnie rozwiązywane są równania $A_iy=b$ przy użyciu funkcji scipy.linalg.solve(Ai, b). Zaburzenie wektora realizowane jest poprzez funkcję numpy.random.normal a następnie transponowane przy użyciu .reshape(-1,1). Przy użyciu .solve() program rozwiązuje równania dla zaburzonego wektora. Program następnie wyświetla zaburzony wektor oraz rozwiązania czterech równań. Na końcu program wyświetla współczynniki uwarunkowania dla macierzy A_1 i A_2 .

3. Analiza wyników

3.1 Dla wektora b

Program, korzystając z funkcji bibliotecznych oblicza rozwiązania następującego równania: $A_i y = b$ dla i = 1,2.

```
A1y = b
y1:
[[ 0.22508493]
  [-0.00602226]
  [ 1.84183182]
  [-5.15344244]
  [-0.2176225 ]]

A2y = b
y2:
[[ 0.57747172]
  [-1.27378458]
  [ 1.67675008]
  [-4.8157949 ]
  [ 0.20156347]]
```

3.2 Dla zaburzonego wektora b

Przykładowy wektor zaburzony:

```
ZABURZENIE WEKTORA b

[[-1.95205243e-06]

[ 1.05952151e-06]

[-2.13860717e-06]

[-1.42366828e-06]

[ 8.71042707e-07]]
```

Dla powyższego wektora otrzymujemy następujące rozwiązania równań , $A_{1i}y=b+\Delta b$:

```
A1y = b + delta_b
y1_delta:
[[-1584.69439948]
        [ 5701.97048907]
        [ 744.32499202]
        [-1523.78061665]
        [-1885.577781 ]]

A2y = b + delta_b
y2_delta:
[[ 0.57747081]
        [-1.27378378]
        [ 1.67674936]
        [-4.8157956 ]
        [ 0.20156408]]
```

3.3 Podsumowanie

Różnica rozwiązań przy małej zmianie współczynnika skutkuje w przypadku macierzy A_1 dużą zmianą rozwiązań. Równanie to jest, więc źle uwarunkowane. Natomiast dla macierzy A_2 wyniki z zaburzeniem są niemal identyczne. W tym przypadku mamy do czynienia z prawidłowo uwarunkowanym działaniem.

Współczynnik uwarunkowania dla A_1 wynosi około: 20545906602.2395 a dla A_2 około 4.