TP de RDM: Traction

Crosnier Matteo D1

Daudé Alyssia D1

Dobrenel Thomas D1

Banc d'essai de Traction:

1 : Plat en acier

9 : Eprouvettes de traction

14 : Comparateur

16 : Vis de charge

17 : Volant de manœuvre

18 : Chape inférieur

Charge Maximal: 2KN

Dimensions des éprouvettes : 400 – 430 mm

Mise en œuvre:

Effectué par le professeur dans le cadre du confinement.

Mesure Expérimental :

Eprouvette en Aluminium a 2 mm d'épaisseur :

L(mm)	360						
I(mm)	20						
e(mm)	2						
F(daN)	20	40	60	80	100	120	140
dS(mm)	0,005	0,01	0,01	0,015	0,02	0,025	0,04
df(mm)	0,06	0,1	0,14	0,185	0,22	0,26	0,295
dL(mm)	0,055	0,09	0,13	0,17	0,2	0,235	0,255
Epsilon	0,00015278	0,00025	0,00036111	0,00047222	0,00055556	0,00065278	0,00070833
Sigma	0,5	1	1,5	2	2,5	3	3,5

$\underline{ \mbox{Eprouvette en } \mbox{Aluminium a 1 mm d'épaisseur}}:$

L(IIIIII)	300						
I(mm)	20						
e(mm)	1						
F(daN)	20	40	60	80	100	120	140
dS(mm)	0,02	0,03	0,04	0,05	0,06	0,06	0,065
df(mm)	0,25	0,33	0,4	0,47	0,53	0,59	0,66
dL(mm)	0,23	0,3	0,36	0,42	0,47	0,53	0,595
Epsilon	0,00063889	0,00083333	0,001	0,00116667	0,00130556	0,00147222	0,00165278
Sigma	1	2	3	4	5	6	7

Eprouvette en Acier a 1 mm d'épaisseur :

L(mm)	360						
I(mm)	20						
e(mm)	1						
F(daN)	20	40	60	80	100	120	140
dS(mm)	0,02	0,02	0,02	0,025	0,03	0,035	0,04
df(mm)	0,07	0,13	0,17	0,19	0,21	0,25	0,27
dL(mm)	0,05	0,11	0,15	0,165	0,18	0,215	0,23
Epsilon	0,00013889	0,00030556	0,00041667	0,00045833	0,0005	0,00059722	0,00063889
Sigma	1	2	3	4	5	6	7

Eprouvette en PVC a 1 mm d'épaisseur :

L(mm)	360				
I(mm)	40				
e(mm)	2				
F(daN)	10	20	30	40	50
dS(mm)	0,05	0,1	0,02	0,02	0,025
df(mm)	0,4	0,72	1,07	1,4	1,76
dL(mm)	0,35	0,62	1,05	1,38	1,735
Epsilon	0,00097222	0,00172222	0,00291667	0,00383333	0,00481944
Sigma	0,125	0,25	0,375	0,5	0,625

Analyse des résultats :

Courbe de Variations de charge F:

Valeur de k:

D'après le graphique ci-dessus :

- k = 579,31 (N/m) pour l'Aluminium avec e = 2mm
- k = 678,47 (N/m) pour l'Acier avec e = 1mm
- k = **335,85 (N/m)** pour **l'Aluminium** avec **e = 1mm**
- k = 28.231 (N/m) pour PVC avec e = 2mm

Courbe de variation de la contrainte normale :

variation de la contrainte normale en fonction de la deformation unitaire

Module de YOUNG:

D'après le graphique ci-dessus :

E_{alu} (1mm): 60 GPa
E_{alu} (2mm): 50 GPa
E_{acier} (1mm): 120 GPa
E_{PVC} (2mm): 2GPa

Observation:

D'après nos observations durant ce travail pratique, nous remarquons :

Les courbes sont des droites affines, preuve que l'expérience se passent en zone élastiques des matériaux utilisés.

On remarque aussi un écart entre les valeurs théoriques et les valeurs expérimentales

Résultats théoriques :

E Acier(Gpa)	120
E Alu(Gpa)	69
E PVC(Gpa)	3

Résultats expérimentaux :

E Acier(Gpa)	120
E Alu(Gpa)	50-60
E PVC(Gpa)	2

Ecart Relatif:

Acier : 0%

• Aluminium: 20%

• PVC:33%

L'importance de l'épaisseur dans le cas de la variation de F en fonction de Delta L alors que dans le cas de la contrainte normale sigma, la variation de e équivaut à une dizaine de Giga Pascal de différences.

D'après nos informations ainsi que la condition de ce travail pratique. Les écarts peuvent être expliqué par :

- L'incertitude intrinsèque au banc de traction
- L'incertitude intrinsèque de chaque éprouvette
- L'utilisation à répétition de mêmes éprouvettes qui auraient pu subir une déformation plastique au fur et à mesure du temps et des expériences.