1. INTRODUCTION, 1	Cyber Exploration Laboratory, 112 Bibliography, 115		
1.1 Introduction, 2 1.2 A History of Control Systems, 4 1.3 System Configurations, 7	3. MODELING IN THE TIME DOMAIN, 117		
1.4 Analysis and Design Objectives, 10 Case Study, 12 1.5 The Design Process, 15 1.6 Computer-Aided Design, 20 1.7 The Control Systems Engineer, 21 Summary, 23 Review Questions, 23 Problems, 24 Cyber Exploration Laboratory, 30 Bibliography, 31 2. MODELING IN THE FREQUENCY DOMAIN, 33	3.1 Introduction, 118 3.2 Some Observations, 119 3.3 The General State-Space Representation, 123 3.4 Applying the State-Space Representation, 124 3.5 Converting a Transfer Function to State Space, 132 Converting from State Space to a Transfer Function, 139 3.7 Linearization, 141 Case Studies, 144 Summary, 148		
2.1 Introduction, 34 2.2 Laplace Transform Review, 35 2.3 The Transfer Function, 44 2.4 Electrical Network Transfer Functions, 47 2.5 Translational Mechanical System	Review Questions, 149 Problems, 149 Cyber Exploration Laboratory, 157 Bibliography, 159		
Transfer Functions, 61 2.6 Rotational Mechanical System	4. TIME RESPONSE, 161		
Transfer Functions, 69 2.7 Transfer Functions for Systems with Gears, 74	4.1 Introduction, 162 4.2 Poles, Zeros, and System Response, 162 4.3 First-Order Systems, 166		
2.8 Electromechanical System Transfer Functions, 79 2.9 Electric Circuit Analogs, 84 2.10 Nonlinearities, 88 2.11 Linearization, 89 Case Studies, 94 Summary, 97 Review Questions, 97	4.4 Second-Order Systems: Introduction, 168 4.5 The General Second-Order System, 173 4.6 Underdamped Second-Order Systems, 177 4.7 System Response with Additional Poles, 186 4.8 System Response With Zeros, 191 4.9 Effects of Nonlinearities Upon Time Response, 196		
	4.10 Laplace Transform Solution of State Equations, 199 4.11 Time Domain Solution of State Equations, 203 Case Studies, 207 Summary, 213 Review Questions, 214 Problems, 215 Cyber Exploration Laboratory, 228 Bibliography, 232 5. REDUCTION OF MULTIPLE SUBSYSTEMS, 235 5.1 Introduction, 236 5.2 Block Diagrams, 236		

5.3 Analysis and Design of

5.5 Mason's Rule, 251

5.6 Signal-Flow Graphs of

Space, 256
5.8 Similarity Transformations, 266

Case Studies, 272 Summary, 278

Problems, 280

6. STABILITY, 301

6.1 Introduction, 302

6.3 Routh-Hurwitz Criterion:

Special Cases, 308
6.4 Routh-Hurwitz Criterion:

Bibliography, 299

Review Questions, 279

6.2 Routh-Hurwitz Criterion, 305

Additional Examples, 314

6.5 Stability in State Space, 320

Review Questions, 325

Case Studies, 323

Summary, 325

Problems, 326

Cyber Exploration Laboratory, 297

5.4 Signal-Flow Graphs, 248

State Equations, 254

5.7 Alternative Representations in State

Feedback Systems, 245

Cyber Exploration Laboratory. 112

```
Cyber Exploration Laboratory, 335
       Bibliography, 336
7. STEADY-STATE ERRORS, 339
  7.1 Introduction, 340
 7.2 Steady-State Error for Unity
      Feedback Systems, 343
 7.3 Static Error Constants
      and System Type, 349
 7.4 Steady-State Error Specifications, 353
 7.5 Steady-State Error for Disturbances, 356
 7.6 Steady-State Error for Nonunity
       Feedback Systems, 358
 7.7 Sensitivity, 362
 7.8 Steady-State Error for Systems in
      State Space, 364
      Case Studies, 368
       Summary, 371
       Review Questions, 372
      Problems, 373
      Cyber Exploration Laboratory, 384
      Bibliography, 386
8. ROOT LOCUS TECHNIQUES, 387
  8.1 Introduction, 388
 8.2 Defining the Root Locus, 392
 8.3 Properties of the Root Locus, 394
 8.4 Sketching the Root Locus, 397
  8.5 Refining the Sketch, 402
 8.6 An Example, 411
  8.7 Transient Response Design
       via Gain Adjustment, 415
  8.8 Generalized Root Locus, 419
  8.9 Root Locus for Positive-Feedback
      Systems, 421
 8.10 Pole Sensitivity, 424
      Case Studies, 426
      Summary, 431
      Review Questions, 432
      Problems, 432
      Cyber Exploration Laboratory, 450
      Bibliography, 452
```

9. DE	SIGN VIA ROOT LOCUS, 455		Review Questions, 609	
9.1	Introduction, 456		Problems, 610	
9.2	Improving Steady-State Error via		Cyber Exploration Laboratory, 621	
	Cascade Compensation, 459		Bibliography, 623	
9.3	Improving Transient Response via			
	Cascade Compensation, 469	11. DESIGN VIA FREQUENCY		
9.4	Improving Steady-State Error and	RESPONSE, 625		
	Transient Response, 482	11.1	Introduction, 626	
9.5	Feedback Compensation, 495	11.2		
9.6	Physical Realization of Compensation, 503	11.2	Gain Adjustment, 627	
	Case Studies, 508	11.2	Lag Compensation, 630	
	Summary, 513	11.3		
	Review Questions, 514	11.4	Lead Compensation, 635	
	Problems, 515	11.5		
	Cyber Exploration Laboratory, 530		Case Studies, 650	
	Bibliography, 531		Summary, 652	
	cionographiy, 551		Review Questions, 653	
O. FR	EQUENCY RESPONSE		Problems, 653	
TEC	CHNIQUES, 533		Cyber Exploration Laboratory, 660	
			Bibliography, 661	
10.1	Introduction, 534			
10.2	Asymptotic Approximations:	12. DESIGN VIA STATE SPACE, 663		
40.7	Bode Plots, 540	12.1	Introduction, 664	
10.3	Introduction to the Nyquist Criterion, 559	12.2	Controller Design, 665	
10.4	Sketching the Nyquist Diagram, 564	12.3	Controllability, 672	
10.5	Stability via the Nyquist Diagram, 569	12.4	Alternative Approaches to	
10.6	Gain Margin and Phase Margin	12.4	Controller Design, 676	
7.0010	via the Nyquist Diagram, 574	12.5		
10.7	Stability, Gain Margin, and Phase Margin	12.6	Observability, 689	
	via Bode Plots, 576	12.7	Alternative Approaches to	
10.8	Relation Between Closed-Loop Transient	12.7	Observer Design, 693	
	and Closed-Loop Frequency	12.8	Steady-State Error Design Via	
	Responses, 580	12.0	이 없는 경기에 하는 것 같아. 이 경기를 가게 되는 것이 되는 것이 되었다.	
10.9	Relation Between Closed- and Open-Loop		Integral Control, 700	
	Frequency Responses, 583		Case Study, 704	
10.10	Relation Between Closed-Loop Transient		Summary, 709	
	and Open-Loop Frequency Responses, 589		Review Questions, 710	
10.11	Steady-State Error Characteristics		Problems, 711	
	from Frequency Response, 593		Cyber Exploration Laboratory, 719	
10.12	Systems with Time Delay, 597		Bibliography, 721	
10.13	.13 Obtaining Transfer Functions		13. DIGITAL CONTROL SYSTEMS, 723	
	Funarimentally (02			

13.1 Introduction, 724

13.2 Modeling the Digital Computer, 727

Experimentally, 602

Case Study, 606

Summary, 607

CH.10 Frequency Response Techniques

- 1. Introduction, 534
- 2. Asymptotic approximations: Bode plots, 540
- 3. Introduction to the Nyquist criterion, 559
- 4. Sketching the Nyquist diagram, 564
- 5. Stability via the Nyquist diagram, 569
- 6. Gain margin and phase margin via the Nyquist diagram, 574
- 7. Stability, gain margin, and phase margin via Bode plots, 576
- 8. Relation between C.L. transient and C.L. frequency responses, 580
- 9. Relation between C.L and O.L. frequency response, 583
- 10. Relation between C.L. transient and O.L. frequency responses, 589
- 11. Steady-state error characteristics from frequency response, 593
- 12. System with time delay, 597

Nyquist Stability Test

Frequency Domain Analysis

• Given function f from a complex plane z to a complex plane w.

• $\Gamma \Rightarrow$ closed contour, counterclockwise

Theorem:

The number of time $f(\Gamma)$ encircles "0" (in w-plane) counterclockwise = number of zeros of inside Γ – number of poles of f inside Γ .

• Now, consider stability of the following configuration:

- Number of times $1+kG_p(s)|_{\Gamma}$ encircles 0 counterclockwise
 - = number of poles of $1+kG_p(s)$ inside Γ number of zeros of $1+kG_p(s)$ inside Γ
 - = number of RHP poles of $1+kG_p(s)$ number of RHP zeros of $1+kG_p(s)$.

$$N=P-Z$$

$G(s) = \frac{N}{D}$ $1 + G(s) = 1 + \frac{N}{D} = \frac{D + N}{D}$ $T(s) = \frac{G(s)}{1 + G(s)} = \frac{D}{D + N}$ pole of 1 + G(s) = pole of G(s)

zero of 1 + G(s) = pole of T(s)

- Stability $\Leftrightarrow 1+kG_p(s)$ has no zeros in RHP \leftrightarrow # of times $1+kG_p(s)|_{\Gamma}$ encircles 0 counterclockwise
 - = # of RHP poles of $1+kG_p(s)$
 - = # of RHP poles of $G_p(s)$, defined as N_p .
- But $1+kG_p(s)|_{\Gamma}$ encircles 0 if and only if $G_p(\Gamma)$ encircles -1/k.

⇒ Nyquist stability test:

The closed-loop system is stable if and only if $G_p(\Gamma)$ encircles -1/k counterclockwise N_p times, where N_p = # of RHP poles of $G_p(s)$.

Example: ①
$$G_P(s) = \frac{s-1}{s+1}$$

$$s = j\omega: \quad G_P(j\omega) = \frac{j\omega - 1}{j\omega + 1} = \frac{(-1 + j\omega)(1 - j\omega)}{(1 + j\omega)(1 - j\omega)} = \frac{(\omega^2 - 1) + 2j\omega}{1 + \omega^2}$$

$$\omega = 0$$
, $G_p = -1$

$$\omega = \infty$$
, $G_P = 1$

Cross Imag-axis: $\omega^2 = 1 \rightarrow \omega = 1$

$$G_P(j\cdot 1) = \frac{2j}{2} = j$$

Cross Real-axis: $\omega = 0$

$$G_P(0) = -1$$

Counterclockwise(*x*)

Example: ②
$$G_p(s) = \frac{s+2}{(s-1)(s+1)} = \frac{s+2}{s^2-1}$$
 $\frac{-2}{\omega=0}$

$$\frac{-2}{\omega = 0} \quad \omega = \infty$$

$$s = j\omega$$
, $G_p = \frac{2 + j\omega}{-1 - \omega^2}$

$$\omega = 0 \rightarrow G_p = -2$$

$$\omega = \infty \rightarrow G_p = 0$$

Cross Imag – axis $\rightarrow 2 \neq 0 \rightarrow$ Never

Cross Real – axis $\rightarrow \omega = 0$

Let $\omega=1$, At what quadrant is $G_n(j\omega)=?$

$$G_p(1 \cdot j) = \frac{2 + j(1)}{-2}$$
 \Rightarrow III rd quadrant

C.C.W (counterclockwise)

Example: (3)
$$G_p(s) = \frac{1}{(s+6)(s+4)(s-1)} = \frac{1}{s^3 + 9s^2 + 14s - 24}$$

 $s = j\omega, \ G_p(s) = \frac{1}{-9\omega^2 - 24 + j(14\omega - \omega^3)}$
 $\omega = 0 \to G_p = -\frac{1}{24}$
 $\omega = \infty \to G_p = 0$

$$\frac{\omega = 0}{-\frac{1}{24}}$$
 $\omega = \infty$

$$\frac{(-9\omega^2 - 24) - j(14\omega - \omega^3)}{\Delta}$$

Cross Imag axis: $-9\omega^2 - 24 = 0 \rightarrow \text{never}$

Cross Real axis: $14\omega - \omega^3 = 0 \rightarrow \omega = 0, \omega^2 = 14$

or

$$\rightarrow G_P = \frac{1}{-9(14) - 24} = \frac{-1}{150}$$

Let, $\omega = 1$, $(<\sqrt{14})$ What quadrant is $G_P(j)$ in ?

$$G_P(j\omega) = \frac{1}{-9 - 24 + j(14 - 1)} = \frac{1}{-33 + 13j} = \frac{-33 - 13j}{\Delta}$$

 \Rightarrow 3rd quadrant

or

$$\begin{array}{c|c}
-33+13j \\
\times \\
\hline
 \\
\frac{1}{-33+13j}
\end{array}$$

$$N_P = 1$$

Stability:
$$-\frac{1}{24} < -\frac{1}{k} < -\frac{1}{150}$$

24 < k < 150

Example: (4)
$$G_p(s) = \frac{s+2}{(s-1)(s+4)(s^2+4s+5)}$$

 N_P =# of RHP poles of $G_P(s)$

$$G_{P}(s) = \frac{s+2}{s^{4} + 7s^{3} + 13s^{2} - s - 20} \qquad s = j\omega$$

$$\Rightarrow G_{P}(j\omega) = \frac{2 + j\omega}{(\omega^{4} - 7j\omega^{3} - 13\omega^{2} - j\omega - 20) \times (2 - j\omega)}$$

$$= \frac{4 + \omega^{2}}{(-5\omega^{4} - 27\omega^{2} - 40) + j(-\omega^{5} - \omega^{3} + 18\omega)}$$

$$\bullet \quad \omega = 0, \quad G_P(j \cdot 0) = -\frac{1}{10}$$

$$\bullet \quad \omega = \infty, \quad G_P(j \cdot \infty) = \quad 0$$

• Cross Real axis;
$$-\omega^5 - \omega^3 + 18\omega = 0$$
, $\omega(\omega^4 + \omega^2 - 18) = 0$

$$\omega^2 = \frac{-1 \pm \sqrt{1 + 4 \cdot 18}}{2} = \frac{-1 \pm \sqrt{73}}{2} = 3.77$$

$$\omega = \sqrt{3.77} = 1.94$$

$$G_P(j\omega)_{\omega=1.94} = \frac{4 + \omega^2}{-5\omega^4 - 27\omega^3 - 40} = -0.0365$$

$$\cong -0.04$$

Imag axis; $5\omega^4 + 27\omega^2 + 40 = 0$ Cross

$$\omega^{2} = \frac{-27 \pm \sqrt{27^{2} - 800}}{10} \implies \text{never}$$

$$\Rightarrow At \quad \omega = 1$$
or
$$G_{P}(j \cdot 1) = \frac{1}{-7}$$

$$0 \quad w = 0 \quad -\frac{1}{10}$$

$$0 \quad w = \infty$$

$$0 \quad N_{P} = 1$$

$$0 \quad \text{stability: } -\frac{1}{10}$$

$$\Rightarrow$$
 never
 $\Rightarrow At \ \omega = 1 \ (0 < 1 < 1.94)$

$$G_P(j\cdot 1) = \frac{5}{-72+i16} \implies \text{III}$$

$$N_P = 1$$

$$N_{P} = 1$$

$$\omega = \infty$$

$$\text{stability: } -\frac{1}{10} < -\frac{1}{k} < -\frac{4}{100}$$

$$10 < k < 25$$

Example: (5)
$$G_P(s) = \frac{s+1}{s(s-1)}$$

Indent the $j\omega$ – axis $s = j\varepsilon$

$$\omega = 0$$
 $G_{p}(0) = \infty$

Semicircle, radius ε , $\varepsilon \to 0$

$$\varepsilon$$
, $\varepsilon \to 0$

** On semicircle;
$$|G_P(s)| = \left| \frac{1}{s} \cdot \frac{s+1}{s-1} \right| = \infty$$

at $s \rightarrow 0$

$$G_P(s) = \frac{1}{s} \cdot \frac{1}{-1} = -\frac{1}{s}$$
 $\angle G_P(s) = \angle -\frac{1}{s} + \angle 0$

$$\angle G_P(s) = \angle -\frac{1}{s} + \angle 0$$

$$\angle G_P(s)$$
: $s = -\varepsilon$:

$$\angle G_P(s)$$
: $s = -\varepsilon$: $G_P = \frac{1}{\varepsilon} \implies \angle = 0$

$$s = \varepsilon j$$
:

$$s = \varepsilon j$$
: $G_P(s) = -\frac{1}{i\varepsilon} = j\frac{1}{\varepsilon} \Rightarrow \angle = 90$

$$*$$
 $s = j\omega$, $\omega > \varepsilon$;

$$G_P(s) = \frac{1+j\omega}{j\omega(j\omega-1)} = \frac{1+j\omega}{-\omega^2-j\omega} = j\frac{(1+j\omega)(1-j\omega)}{-(\omega^2+j\omega)(1-j\omega)} = \frac{-(1+\omega^2)}{2\omega^2+j(\omega-\omega^3)}$$

- Cross Real axis; $\omega \omega^3 = \omega(1 \omega^2) = 0 \rightarrow \omega^2 = 1$ $\rightarrow \omega = 1$, $G_P = -1$
- Cross Imag axis; $\omega^2 = 0 \rightarrow never$
- $\omega = \infty$; $G_P = 0$

$$N_P = 2 \rightarrow \text{ stability } -1 < -\frac{1}{k}$$
 $\rightarrow k > 1$

Example: (6)
$$G_P(s) = \frac{1}{s+1}e^{-sT}$$

$$\frac{1}{s+1} \rightarrow \frac{1}{1+j\omega} = \frac{1-j\omega}{1+\omega^2}$$

$$\omega = 0 \rightarrow G = 1$$

$$\omega = 1 \rightarrow G = (1-j)/2$$

$$\omega = \infty \rightarrow G = 0$$

$$\Rightarrow \frac{\cos(sT) - j\sin(sT)}{s+1}$$

$$N_P = 0$$
; stability: $-\frac{1}{k} < -a$, $k < \frac{1}{a}$

Find 'a':
$$G_P(j\omega) = -a \leftarrow \text{real number}$$

$$G_p(j\omega) = \frac{1}{1+j\omega}e^{-j\omega T} = \frac{\cos\omega T - j\sin\omega T}{1+j\omega} = -a$$

$$\cos \omega T - j \sin \omega T = -a - aj\omega$$

$$\cos \omega T = -a
\sin \omega T = a\omega$$
 \Rightarrow solve graphically

$$\omega T = \frac{\pi}{2} \to \omega = \frac{\pi}{2T}$$

$$\omega T = \frac{3\pi}{2} \to \omega = \frac{3\pi}{2T}$$


```
1
% Gp(s) = -----exp(-sT)
           s+1
function ex6
T=0.5;
w=logspace(-3, 2.2, 300);
y=qp(w,T);
plot(y)
a=-0.5; b=1.1; c=-1; d=0.6;
axis([a b c d])
hold on
plot([a b], [0 0], ':')
plot([0 0], [c d], ':')
hold off
function y=qp(w,T);
j=sqrt(-1);
temp=exp(-j.*w*T);
y=temp./(j*w+1);
```

```
% tan(wT)=-w
T=0.1;
N=100; delta=0.2;
L=pi/2/T;
w1=linspace(-L+delta, L-delta, N);
y1=tan(w1*T);
w2=linspace(-L+delta+pi/T, L-delta+pi/T, N);
y2=tan(w2*T);
w3=linspace(w1(1), w2(N/2), N);
y3=-w3;
plot(w,y1, w2,y2, w3,y3, 'r-')
grid
break
w0=linspace(-L+delta+pi/T, 17, 10*N);
error=w0+tan(w0*T);
```


Gain margin and Phase Margin

Gain margin =
$$G_M = 20\log a = -20\log \left(\frac{1}{a}\right)$$

Phase margin = $\Phi_M = \alpha$

Example:
$$G(s) = \frac{k}{(s^2 + 2s + 2)(s + 2)}$$

Find the gain and phase margin if k = 6

$$G(j\omega) = \frac{6}{(4-4\omega^2) + j\omega(6-\omega^2)}$$

– Cross Real axis:

$$\omega^2 = 6$$
 $-\frac{6}{20} = -\frac{3}{10} = -0.3 = -\frac{1}{a}$

$$G_m = 20\log a = 20\log\left(\frac{1}{0.3}\right) = 10.45 \ dB$$

– Cross Imaginary axis : $\omega^2 = 1$ $\omega = 1$

$$G = \frac{6}{j(6-1)} = -\frac{6}{5}j$$

- For the Phase Margin: $|G(j\omega)| = 1$

$$\omega = 1.253$$
 rad/sec

$$\varphi = -112.33^{\circ}$$

$$\Phi_M = 180^{\circ} - 112.33^{\circ} = 67.67^{\circ}$$

Bode Diagrams

Frequency Domain Analysis

Principle: Draw $G_n(j\omega)$ in polar coordinates.

• Frequency response

$$G_p(s) = \frac{1}{s+2}$$

$$s = j\omega \to G = \frac{1}{j\omega + 2}$$

$$\omega = 1$$
 $\frac{1}{2+j} \rightarrow \frac{2-j}{\Delta}$

\(\rightarrow\) magnitude and phase plot

$$|G(j\omega)| = M(j\omega) = \frac{1}{\sqrt{4+\omega^2}} \to \log(\omega) \text{ vs } 20\log M(\omega)$$

$$\angle G(j\omega) \rightarrow \phi(\omega) = -\arctan\left(\frac{\omega}{2}\right) \rightarrow \log(\omega) \text{ vs } -\arctan\left(\frac{\omega}{2}\right)$$

Can get idea about stability range?

$$G_{p}(s) = A \cdot \frac{\left(1 + \frac{s}{z_{1}}\right) \cdots \left(1 + \frac{s}{z_{m}}\right)}{\left(1 + \frac{s}{\omega_{1}}\right) \cdots \left(1 + \frac{s}{\omega_{n}}\right)}$$
 Assume: $z_{j} : j = 1, \dots, m$
$$\omega : i = 1, \dots, n \text{ are real } A > 0$$

$$G_{p}(s) = A \frac{\prod_{j=1}^{m} \left(1 + \frac{s}{z_{j}}\right)}{\prod_{i=1}^{n} \left(1 + \frac{s}{\omega_{i}}\right)} \to s = j\omega :$$

$$G_{p}(j\omega) = A \frac{\displaystyle\prod_{j=1}^{m} \left(1 + j \frac{\omega}{z_{j}}\right)}{\displaystyle\prod_{i=1}^{n} \left(1 + j \frac{\omega}{\omega_{i}}\right)}$$

 \square Draw: $\left|G_{p}\left(j\omega\right)\right|$ in logarithmic scale, and $\angle G_{p}\left(j\omega\right)$

(A) Magnitude

$$20\log_{10}|G_p(j\omega)| = 20\log\left|A\frac{\Pi\left(1+j\frac{\omega}{z_j}\right)}{\Pi\left(1+j\frac{\omega}{\omega_i}\right)}\right|$$

$$= 20\log A + \sum_{j=1}^{m} 20\log\left|1+j\frac{\omega}{z_j}\right| - \sum_{i=1}^{n} 20\log\left|1+j\frac{\omega}{\omega_i}\right|$$

• Consider the plot of $20\log \left| 1 + j \frac{\omega}{z_j} \right|$

$$20\log\left|1+j\frac{\omega}{z_{j}}\right| = 20\log\sqrt{1+\frac{\omega^{2}}{z_{j}^{2}}} = 10\log\left(1+\frac{\omega^{2}}{z_{j}^{2}}\right)$$

If
$$\omega \gg |z_j|$$
,

$$20\log\left|1+j\frac{\omega}{z_{j}}\right| \cong 10\log\left(\frac{\omega^{2}}{z_{j}^{2}}\right) = 20\log\omega - 20\log\left|z_{j}\right|$$

If
$$\omega \ll |z_j|$$
,

$$20\log\left|1+j\frac{\omega}{z_j}\right| \cong 20\log 1 = 0$$

$$G_p(s) = \frac{1+s/100}{(1+s/10)(1+s/1000)}$$

Example 2

$$G_p(s) = \frac{(s+1000)(s+10)}{(s+100)(s+500)} = \frac{1000 \cdot 10}{100 \cdot 500} \cdot \frac{(1+s/1000)(1+s/10)}{(1+s/100)(1+s/500)}$$

numg=poly([-10 -1000]);
deng=poly([-100 -500]);
G=tf(numg,deng)
bode(G), grid on

$$\rightarrow 20\log(0.2) = -14$$

Chapter10a: 27

$$G_p(s) = \frac{(s-10)}{(s+100)(s+1000)} = -\frac{1}{10^4} \cdot \frac{1-s/10}{(1+s/100)(1+s/1000)}$$

$$\rightarrow 20\log\left(\frac{1}{10^4}\right) = -80$$

numg=poly([10]);
deng=poly([-100 -1000]);
G=tf(numg,deng)
bode(G), grid on

$$G_p(s) = \frac{s}{(1 + \frac{s}{10})(1 + \frac{s}{100})}$$

 \rightarrow Zero at 0!

$$20\log|j\omega| = 20\log\omega \rightarrow \text{add slope of } 20!$$

numg=poly([0]);
deng=poly([-10 -100]);
G=tf(numg,deng)*1000
bode(G), grid on
axis([0.1 13000 -90 90])

$$G_p(s) = \frac{1}{s^2(s+500)} = \frac{1}{500} \frac{1}{s^2\left(1 + \frac{s}{500}\right)}$$

$$\rightarrow 20 \log \left(\frac{1}{500}\right) = -54$$

Bode Diagram

System: G

(B) Phase Response

$$G_p(s) = A \frac{\Pi(1+s/z_j)}{\Pi(1+s/\omega_i)} \rightarrow \angle G_p(s) = \angle A + \sum_{j=1}^m \angle (1+\frac{s}{z_j}) - \sum_{i=1}^n \angle (1+\frac{s}{\omega_i})$$

• Consider: $\angle (1+s/z_i)$

$$s = j\omega : \angle \left(1 + j\frac{\omega}{z_j}\right) = \arctan\left(\frac{\omega}{z_j}\right)$$

i)
$$z_j > 0$$

 $\omega >> z_j$: $\arctan\left(\frac{\omega}{z_j}\right) \approx 90^\circ$
 $\omega << z_j$: $\arctan\left(\frac{\omega}{z_j}\right) \approx 0^\circ$

 $atan(1)=45^{\circ}$

ii)
$$z_j < 0$$

$$\omega >> |z_j| : \arctan\left(\frac{\omega}{z_j}\right) \approx -90^\circ$$

$$\omega << |z_j|$$
: $\arctan\left(\frac{\omega}{z_j}\right) \approx 0^\circ$

$$G_p(s) = \frac{1 + s/10}{1 + s/1000}$$

numg=poly([-10]);
deng=poly([-1000]);
G=tf(numg,deng)*100
bode(G), grid on

Example 7
$$G_p(s) = \frac{1}{(1+s/10)(1+s/50)}$$

numg=poly([]);
deng=poly([-10 -50]);
G=tf(numg,deng)*500
bode(G), grid on

$$G_p(s) = \frac{1}{s(1 + \frac{s}{100})}$$

numg=poly([]);
deng=poly([0 -100]);
G=tf(numg,deng)*100
bode(G), grid on

$$\angle (jw) = 90^{\circ}$$

Add $\pm 90^{\circ}$ to the phase

* Pole at 0

 \rightarrow Add -90° to the phase

Stability test, phase and gain margins (1)

Suppose that $G_p(s)$ has no RHP ploes. The Nyquist plot of $G_p(s)$ is

with k=1, the system is stable.

$$-\frac{1}{k} < -\frac{1}{a} \quad \to \quad k < a$$

$$G_{M} = 20\log(a)$$
$$= -20\log\left(\frac{1}{a}\right)$$

Stability test, phase and gain margins (2)

- * Two questions:
 - ① By how much can you increase the gain of G_p before instability occurs?
 - ② How much delay (negative phase) can you add to G_p before instability occurs?

What is the maximum K with which you still have stability ? \rightarrow Gain Margin

Stability test, phase and gain margins (3)

What is the maximum *T* with which you still have stability?

→ Phase Margin

\Rightarrow From Bode Plots.


```
% Bode Diagrams
k=1.5; ng=1; dg=poly([0 -1 -2]); w=logspace(-1,1,100)';
[m,p]=bode(k*ng, dg,w);
figure(1)
%subplot(211); semilogx(w, 20*log10(m)); grid
%subplot(212); semilogx(w, p); grid
bode(k*ng, dg,w)
[gm,pm,wgc,wpc]=margin(m,p,w);
[gm,pm,wgc,wpc]
                 % 4.0002 41.5332 1.4142 0.6118
margin(m,p,w)
    For Nyquist
%
w2=linspace(0, 2*pi, 100)';
ejw=exp(j*w2); r2=real(ejw); i2=imag(ejw);
[r,i]=nyquist(k*ng, dg, w);
figure(2)
plot(r2,i2, r,i, 'r-');
axis('square'); grid
axis([-1 1 -1 1])
```

Bode Diagrams

Frequency (rad/sec)

