

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

LOCALIZATION, NAVIGATION AND SMART MOBILITY Project presentation A.Y. 2023/2024

General rules

- Project mark
 - July 2024 up to **+4 points**
 - September 2024 up to **+4 points**
 - January 2025 up to +3 points
- The project is valid only for the 23/24 academic year.
- The project can be done individually or in group (up to 4 members). All group members will get the same score (unless disparities or issues are motivated by group members). The project data are available in WeBeep.
- Evaluation strategy: **presentation** of the results (please also deliver the matlab code and the slides/ppt), a report is optional.
- There will be one day for presenting the project at the end of Jul24, one at the end of Sep24, and one at the end of Jan25. The exact day of presentation will be provided.

Group composition

Please organize yourselves in groups by writing the members in this file:

Groups.xlsx

Deadline: 31 May 2024

The sooner you organize, the sooner you can start (even tomorrow).

Vehicle localization

Vehicle localization with UWB

Video of one experiment

Brambilla Mattia

3 tests, 3 datasets, same data structure (next slides)

tunnel_experiment_ 70kmh tunnel_experiment_ 100kmh

tunnel_experiment_ slalom

Data structure – AP positions

Data structure – vehicle trajectory

	ground_trut								
Ï	1	2	3	4	5	6	7		
1	0.1466	0.5585	0.9039	1.6047	1.7959	2.4842	3.1174		X [m]
2	1.3372	1.2729	1.2064	0.9834	0.8982	0.8653	0.9210		Y [m]
3	1.1488	1.1666	1.1639	1.0966	0.9531	0.9448	0.9693		Z [m]
4	1.6693e+09	1.6693e+09	1.6693e+09	1.6693e+09	1.6693e+09	1.6693e+09	1.6693e+09	1.6	Time (se

To be used only for performance benchmark!

Data structure – TDOA measurement

meas_	tdoa 🗶						
double							
26	27	28	29	30	31	32	33
-3.9411	-4.8245	-5.6409	6.4293	7.7936	8.6770	9.4542	10.3097
9.7237	NaN	7.9177	13.3964	13.3964	13.3964	13.2622	13.2622
NaN	23.4361	NaN	28.0594	28.1265	28.0594	27.9811	27.9531
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	1	1	2	2	2	2	2
40.40	> 0 TD 0 A 15			1			

 d_i : distance of the i-th AP

 d_m : distance of the master AP

TDOA meas: $\rho_i = d_i - d_m$

TDOA indexes are incremental, and the master is excluded from the count (see next slide)

10 APs -> 9 TDOA meas., expressed in meters The master AP m is indicated in row 10 (last row)

TDOA explanation

$$\rho_2 = d_2 - d_1$$
$$\rho_3 = d_3 - d_1$$

	28	29
i	-5.6409	6.4293
	7.9177	13.3964
	NaN	28.0594
	NaN	NaN
	1	2
1		

Data structure – AOA measurement

degrees

ELEVATION

AOA are local (w.r.t. the antenna reference system).

To convert from local to global, a correction by pitch and yaw must be applied.

-90 deg

0 deg

What to do

- 1. Load, analyze, understand and visualize data
- 2. Localize the vehicle **(2D only)** Implement at least one localization/tracking algorithm for localizing the vehicle with
 - TDOA
 - AOA
 - TDOA+AOA measurements. **The choice is up to you (choose correctly ©)**. Compare and analyze the results.
- 3. Play and tune the algorithm Compare the performance for different configurations of the algorithm over the 3 datasets, optimizing the localization accuracy.

NOTE: CAREFULLY SELECT THE WAY TO PRESENT THE RESULTS, THE TYPES OF ANALYSIS AND GRAPH. MOTIVATE YOUR CHOICES AND PROVIDE CRITICAL ANALYSES.