

5.1 Menggambar grafik fungsi

Informasi yang dibutuhkan:

A. Titik potong dengan sumbu x dan sumbu y

B. Asimtot fungsi

Definisi 5.1: Asimtot fungsi adalah garis lurus yang didekati oleh grafik fungsi. Ada Tiga jenis asimtot fungsi, yakni

(i) Asimtot Tegak

Garis $\mathbf{x} = \mathbf{c}$ disebut asimtot tegak dari $\mathbf{y} = f(\mathbf{x})$ jika $\lim_{x \to c} f(x) = \pm \infty$

(ii) Asimtot Datar

Garis y = b disebut asimtot datar dari y = f(x) jika $\lim_{x \to \pm \infty} f(x) = b$

(iii) Asimtot Miring

Garis y = ax + b disebut asimtot miring jika

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \quad \text{dan} \quad \lim_{x \to \pm \infty} f(x) - ax = b$$
MA1114 KALKULUS I

Asimtot tegak

x=a asimtot tegak

Dalam kasus

$$\lim_{x \to a^{-}} f(x) = \infty$$

dan

$$\lim_{x \to a^+} f(x) = \infty$$

x=a asimtot tegak

Dalam kasus

$$\lim_{x \to a^{-}} f(x) = -\infty$$

dan

$$\lim_{x \to a^+} f(x) = \infty$$

Garis y = b asimtot datar karena $\lim_{x \to +\infty} f(x) = b$

Asimtot datar mungkin dipotong oleh grafik fungsi untuk x hingga Tapi, jika untuk x menuju tak hingga asimtot datar dihampiri oleh grafik fungsi(tidak dipotong lagi)

Garis y = ax + b asimtot miring

Asimtot miring bisa dipotong oleh kurva untuk nilai x hingga. Untuk satu fungsi tidak mungkin ada sekaligus asimtot datar dan asimtot miring

Contoh Tentukan semua asimtot dari $f(x) = \frac{x^2 - 2x + 4}{x - 2}$ Jawab :

(i) Asimtot tegak : x = 2, karena

$$\lim_{x \to 2^{-}} \frac{x^{2} - 2x + 4}{x - 2} = -\infty \quad \text{dan} \quad \lim_{x \to 2^{+}} \frac{x^{2} - 2x + 4}{x - 2} = \infty$$

(ii) Asimtot datar:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^2 - 2x + 4}{x - 2} = \lim_{x \to \infty} \frac{x^2 (1 - \frac{2}{x} + \frac{4}{x^2})}{x^2 (\frac{1}{x} - \frac{2}{x^2})}$$
$$= \lim_{x \to \infty} \frac{(1 - \frac{2}{x} + \frac{4}{x^2})}{(\frac{1}{x} - \frac{2}{x^2})} = \infty$$

Maka asimtot datar tidak ada

(iii) Asimtot miring; y = ax+b

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 4}{x - 2} \cdot \frac{1}{x} = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 4}{x^2 - 2x}$$

$$= \lim_{x \to \pm \infty} \frac{x^2 (1 - \frac{2}{x} + \frac{4}{x^2})}{x^2 (1 - \frac{2}{x})} = \lim_{x \to \pm \infty} \frac{(1 - \frac{2}{x} + \frac{4}{x^2})}{(1 - \frac{2}{x})} = 1$$

$$b = \lim_{x \to \pm \infty} f(x) - ax = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 4}{x - 2} - x$$

$$= \lim_{x \to \pm \infty} \frac{x^2 - 2x + 4 - x(x - 2)}{x - 2} = \lim_{x \to \pm \infty} \frac{x^2 - 2x + 4 - x^2 + 2x}{x - 2}$$

$$= \lim_{x \to \pm \infty} \frac{4}{x - 2} = 0$$

Asimtot miring y = x

Soal Latihan

Tentukan semua asimtot dari fungsi berikut :

$$1. \qquad f(x) = \frac{1}{x - 1}$$

$$2. \qquad f(x) = \frac{2x}{x - 3}$$

3.
$$f(x) = x^3 - 2x + 1$$

C. Kemonotonan Fungsi

Definisi 5.2 Fungsi f(x) dikatakan monoton naik pada interval I jika untuk

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2), \forall x_1, x_2 \in I$$

Fungsi f(x) monoton naik pada selang I

monoton turun pada interval I jika untuk

$$x_1 < x_2 \Longrightarrow f(x_1) > f(x_2), \forall x_1, x_2 \in I$$

Fungsi f monoton turun pada selang I

Teorema 5.1: Andaikan f diferensiabel di selang I, maka

- □ Fungsi f(x) monoton naik pada I jika $f'(x) > 0 \ \forall \ x \in I$
- □ Fungsi f(x) monoton turun pada I jika $f'(x) < 0 \ \forall \ x \in I$

Contoh: Tentukan selang kemonotonan dari $f(x) = \frac{x^2 - 2x + 4}{x - 2}$

Jawab:

$$f'(x) = \frac{(2x-2)(x-2)-1(x^2-2x+4)}{(x-2)^2} = \frac{2x^2-6x+4-x^2+2x-4}{(x-2)^2}$$
$$= \frac{x^2-4x}{(x-2)^2} = \frac{x(x-4)}{(x-2)^2}$$

- f(x) monoton naik pada $(-\infty,0)$ dan $(4,+\infty)$
- f(x) monoton turun pada (0,2) dan (2,4).

D. Ekstrim Fungsi

Definisi 5.3 Misalkan f(x) kontinu pada selang I yang memuat c,

$$f(c)$$
 disebut nilai $\frac{\text{maksimum}}{\text{min imum}}$ global dari f pada I jika $\frac{f(c) \ge f(x)}{f(c) \le f(x)} \ \forall \ x \in I$

f(c) disebut nilai $\frac{maksimum}{min \ imum}$ lokal dari f pada I jika terdapat selang

buka yang memuat c sehingga $\frac{f(c) \ge f(x)}{f(c) \le f(x)}$ untuk setiap x pada

selang buka tadi. Nilai maksimum dan minimum fungsi disebut juga nilai ekstrim

Titik pada daerah definisi dimana kemungkinan terjadinya ekstrim fungsi disebut titik kritis.

Nilai ekstrem fungsi pada selang $I = [a_i f]$

- Ada tiga jenis titik kritis :
 - □ Titik ujung selang I
 - □ Titik stasioner (yaitu x = c dimana f'(c) = 0), secara geometris : garis singgung mendatar dititik (c, f(c))
 - □ Titik singulir (x = c dimana f'(c) tidak ada), secara geometris: terjadi patahan pada grafik f di titik (c,f(c))

Teorema 5.3: Uji turunan pertama untuk ekstrim lokal

Jika
$$\frac{f'(x) > 0}{f'(x) < 0}$$
 pada $(c - u, c)$ dan $\frac{f'(x) < 0}{f'(x) > 0}$ pada

(c, c + U) Maka f(c) merupakan nilai $\frac{\text{maksimum}}{\text{minimum}}$ lokal

Disebelah kiri c monoton naik (f '>0) dan disebelah kanan c monoton turun (f'<0)

f(c) nilai min lokal

Disebelah kiri c monoton turun (f '<0) dan disebelah kanan c monoton naik (f'>0)

Teorema 5.4 Uji turunan kedua untuk ekstrim lokal

Misalkan
$$f'(c)=0$$
 . Jika $\frac{f''(c)<0}{f''(c)>0}$,maka f(c) merupakan nilai $\frac{\text{maksimum}}{\text{minimum}}$ lokal f

Contoh : Tentukan nilai ekstrim dari
$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

Jawab:
$$f'(x) = \frac{x(x-4)}{(x-2)^2}$$

Dengan menggunakan uji turunan pertama:

di x = 0 tercapai maksimum lokal dengan nilai f(0) = -2

di x = 4 tercapai minimum lokal dengan nilai f(4) = 6

Soal Latihan

Tentukan selang kemonotonan dan ektrim fungsi berikut :

1.
$$f(x) = 2x^5 - 15x^4 + 30x^3 - 6$$

2.
$$f(x) = \frac{x^2 - 3x + 1}{x - 3}$$
3.
$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

3.
$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

E. Kecekungan Fungsi

Fungsi f(x) dikatakan <u>cekung ke atas</u> pada interval I bila f'(x) naik pada interval I, dan f(x) dikatakan cekung kebawah pada interval I bila f'(x) turun pada interval I.

Teorema 5.6 Uji turunan kedua untuk kecekungan

- 1. Jika f''(x) > 0, $\forall x \in I$, maka f cekung ke atas pada I.
- Jika $f''(x) < 0, \forall x \in I$, maka f cekung ke bawah pada I.

Jawab:

$$f'(x) = \frac{x^2 - 4x}{(x - 2)^2}$$

$$f''(x) = \frac{(2x - 4)(x - 2)^2 - 2(x - 2)(x^2 - 4x)}{(x - 2)^4}$$

$$= \frac{(x - 2)((2x - 4)(x - 2) - 2(x^2 - 4x))}{(x - 2)^4}$$

$$= \frac{2x^2 - 8x + 8 - 2x^2 + 8x}{(x - 2)^3} = \frac{8}{(x - 2)^3}$$

Grafik f cekung keatas pada $(2,\infty)$ dan cekung kebawah pada selang $(-\infty,2)$

■ F. Titik belok

Definisi 5.4 Misal f(x) kontinu di x = b. Maka (b,f(b)) disebut titik belok dari kurva f(x) jika: terjadi perubahan kecekungan di x = b, yaitu di sebelah kiri x = b, fungsi f cekung ke atas dan di sebelah kanan x = b fungsi f cekung ke bawah atau sebaliknya.

Karena disebelah kiri c cekung keatas dan disebelah kanan c cekung kebawah

Karena disebelah kiri c cekung kebawah dan disebelah kanan c cekung keatas

(c,f(c)) bukan titik belok karena disekitar c tidak terjadi perubahan kecekungan

Walaupun di sekitar c terjadi perubahan kecekungan tapi tidak ada titik belok karena f tidak terdefinisi di c

Tentukan titik belok (jika ada) dari

1.
$$f(x) = 2x^3 - 1$$

$$f'(x) = 6x^2$$
, $f''(x) = 12x$

Di x = 0 terjadi perubahan kecekungan, dan f(0) = -1 maka (0,-1) merupakan titik belok

2.
$$f(x) = x^4$$

 $f''(x) = 12x^2$
 $\frac{+++++++}{0}$

Tidak ada titik belok, karena tidak terjadi perubahan kecekungan

3.
$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

Walaupun di x = 2, terjadi perubahan kecekungan, tidak ada titik belok karena fungsi f(x) tidak terdefinisi di x = 2

Soal Latihan

Tentukan selang kecekungan dan titik belok fungsi berikut :

1.
$$f(x) = 2x^5 - 15x^4 + 30x^3 - 6$$

2.
$$f(x) = \frac{x^2 - 3x + 1}{x - 3}$$

3.
$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

3.
$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

Contoh: Diketahui
$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$

- a. Tentukan selang kemonotonan dan ekstrim fungsi
- b. Tentukan selang kecekungan dan titik belok
- c. Tentukan semua asimtot
- d. Gambarkan grafik f(x)
- a. Fungsi f(x) monoton naik pada selang $(-\infty,0)$, $(4,+\infty)$ monoton turun pada selang (0,2) dan (2,4). di x=0 tercapai maksimum lokal dengan nilai f(0)=-2 di x=4 tercapai minimum lokal dengan nilai f(4)=6
- b. Grafik f cekung keatas pada $(2,\infty)$ dan cekung kebawah pada selang $(-\infty,2)$, tidak ada titik belok
- c. Asimtot tegak x = 2, asimtot miring y = x, tidak ada asimtot datar

Soal Latihan

Gambarkan grafik fungsi berikut dengan mencari terlebih dahulu selang kemonotonan, ekstrim fungsi, kecekungan, titik belok, dan asimtot

$$1. \quad f(x) = \frac{x}{x+1}$$

2.
$$f(x) = x^3 - \frac{3}{2}x^2 + 3$$

3.
$$f(x) = \frac{x^4}{4} - \frac{x^3}{3} - x^2 + 1$$

$$4. \qquad f(x) = \frac{2x}{1+x^2}$$

5.2 Menghitung limit fungsi dengan Aturan L'Hôpital

Bentuk tak tentu dalam limit : $\frac{0}{0}, \frac{\infty}{\infty}, 0.\infty, \infty - \infty$

1. Aturan L'Hôpital untuk bentuk $\frac{0}{0}$

Andaikan
$$\lim f(x) = \lim g(x) = 0$$
. Jika $\lim \frac{f'(x)}{g'(x)} = L, +\infty$, atau $-\infty$

Maka

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

Jawab:

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin 2x}{2x} = \lim_{x \to 0} \frac{4\cos 2x}{2} = 2$$

Ctt: aturan L'hopital bisa digunakan beberapa kali asalkan syaratnya dipenuhi

2. Aturan L'Hôpital untuk bentuk $\frac{\infty}{\infty}$

Andaikan lim
$$f(x) = \lim g(x) = \infty$$
. Jika $\lim \frac{f'(x)}{g'(x)} = L, +\infty$, atau $-\infty$ maka $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$

Contoh: Hitung $\lim_{x\to\infty} \frac{x^2 + x + 1}{x^2 + 3x + 5}$ (bentuk $\frac{\infty}{\infty}$)

Jawab:

$$\lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + 3x + 5} = \lim_{x \to \infty} \frac{2x + 1}{2x + 3} = \lim_{x \to \infty} \frac{2}{2} = 1$$

Ctt: walaupun syarat di penuhi, belum tentu limit dapat dihitung dengan menggunakan dalil L'Hopital

Contoh: Hitung
$$\lim_{x \to \infty} \frac{x+1}{\sqrt{x^2 + 2x + 3}}$$
 ($\frac{\infty}{\infty}$)

$$\lim_{x \to \infty} \frac{x+1}{\sqrt{x^2 + 2x + 3}} = \lim_{x \to \infty} \frac{1}{\frac{1}{2}(x^2 + 2x + 3)^{-\frac{1}{2}}(2x + 2)} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 2x + 3}}{x + 1}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{2}(x^2 + 2x + 3)^{-\frac{1}{2}}(2x + 2)}{1} = \lim_{x \to \infty} \frac{x + 1}{\sqrt{x^2 + 2x + 3}}$$

Soal seperti diatas tidak bisa diselesaikan dengan menggunakan aturan L'Hopital, karena setelah dilakukan aturan L'Hopital muncul lagi bentuk semula

Soal seperti diatas diselesaikan dengan cara sbb:

$$\lim_{x \to \infty} \frac{x+1}{\sqrt{x^2 + 2x + 3}} = \lim_{x \to \infty} \frac{x(1 + \frac{1}{x})}{\sqrt{x^2 (1 + \frac{2}{x} + \frac{3}{x^2})}} = \lim_{x \to \infty} \frac{x(1 + \frac{1}{x})}{\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}}}$$

$$= \lim_{x \to \infty} \frac{x(1 + \frac{1}{x})}{|x| \sqrt{1 + \frac{2}{x} + \frac{3}{x^2}}} = \lim_{x \to \infty} \frac{x(1 + \frac{1}{x})}{x\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}}}$$

$$= \lim_{x \to \infty} \frac{(1 + \frac{1}{x})}{\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}}} = 1$$

3. **Bentuk 0 .** 之

Untuk menyelesaikannya rubah kedalam bentuk

$$\frac{0}{0}$$
 atau $\frac{\infty}{\infty}$

Contoh: Hitung
$$\lim_{x\to 0} x^2 \csc x$$

Jawab:

$$\lim_{x \to 0} x^2 \csc x = \lim_{x \to 0} \frac{x^2}{\sin x} = \lim_{x \to 0} \frac{2x}{\cos x} = 0$$

■ 4. Bentuk خ - خ

Misalkan $\lim f(x)=\lim g(x)=\infty$. Untuk menghitung $\lim [f(x)-g(x)]$ dilakukan dengan menyederhanakan bentuk [f(x)-g(x)] sehingga dapat dikerjakan menggunakan cara yang telah dikenal sebelumnya

Contoh: Hitung
$$\lim_{x\to 0} (\csc x - \cot x)$$

Jawab:

$$\lim_{x \to 0} (\csc x - \cot x) = \lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{\cos x}{\sin x} \right) = \lim_{x \to 0} \frac{1 - \cos x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

Soal Latihan

Hitung limit berikut:

$$1. \quad \lim_{x \to 0} \frac{\sin x}{1 - \cos x}$$

$$2. \quad \lim_{x \to 0} \frac{3x^2 + 3}{2x^3 + 5x + 2}$$

$$3. \quad \lim_{x \to 0} \frac{2x^2}{\sin x}$$

4.
$$\lim_{x \to +\infty} \frac{2x+1}{2-5x}$$

$$5. \quad \lim_{x \to 0} \frac{3x^3 - 2x}{2x^2}$$