Technische Universität Berlin Fakultät II, Institut für Mathematik

Sekretariat MA 5–2, Dorothea Kiefer-Hoeft

Prof. Dr. Martin Skutella

Sven Jäger, Dr. Frank Lutz, Manuel Radons

6. Programmieraufgabe Computerorientierte Mathematik II

Abgabe: 4.6.2021 über den ComaJudge bis 17 Uhr

Aufgabe

Auf ISIS steht zum Download eine Datei intVektor bereit. In dieser finden Sie die Klasse IntVektor, welche die Operationen der Vektorklasse aus der Übung auf der Menge \mathbb{Z}^3 realisiert. Es seien nun zwei Vektoren $b_1, b_2 \in \mathbb{Z}^3$ wiefolgt gegeben:

$$b_1 := \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \qquad b_2 := \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}.$$

Mittels dieser Definieren wir die Teilmenge $G \subset \mathbb{Z}^3$:

$$G := \{k_1 \cdot b_1 + k_2 \cdot b_2 : k_1, k_2 \in \mathbb{Z}\} .$$

G ist ein Teilgitter von \mathbb{Z}^3 . Schreiben Sie eine Klasse Teilgitter, die IntVektor erbt. Teilgitter hat gegenüber IntVektor die zusätzlichen Attribute Koordinate_1 und Koordinate_2, welche die Koordinaten des gegebenen Vektors bezüglich der geordneten Basis $\{b_1, b_2\}$ von G darstellen. Die Klasse Teilgitter soll folgende Methoden bereitstellen:

• __init__(self, x, y, z) Wirft den Fehler "Vektor liegt nicht im Teilgitter." falls der durch x,y,z gegebene ganzzahlige Vektor nicht in G liegt. Ansonsten werden die Attribute x,y,z mit den übergebenen Parametern initialisiert. Koordinate_1 und Koordinate_2 werden mit den Koordinaten des gegebenen Vektors bezüglich der geordneten Basis $\{b_1, b_2\}$ initialisiert.

Hinweis: Überlegen Sie sich, warum es bei der speziellen Eintragsstruktur von b_1 und b_2 einfach ist, die Zugehörigkeit zu G prüfen und gegebenenfalls die Koordinaten zur Basis $\{b_1, b_2\}$ zu berechnen.

• __str__(self) Gibt die Informationen zur Klasseninstanz in folgendem Format aus:

- __add__(self,other) Wie bei IntVektor, lediglich der Rückgabewert ist ein Objekt von Typ Teilgitter.
- __mul__(self,other) Wie bei IntVektor, lediglich der Rückgabewert der skalaren Multiplikation ist ein Objekt von Typ Teilgitter.
- __rmul__(self,other) Siehe Angaben zu __mul__(self,other).
- copy(self) Siehe Angaben zu __add__(self,other).

Wichtige Hinweise

- Bitte kopieren Sie die Klasse IntVektor in Ihre Abgabedatei, der Comajudge kann sonst Ihren Code nicht interpretieren.
- Programme, bei denen alle Funktionen komplett neu geschrieben wurden, ohne Funktionalitäten der ererbten Klasse zu nutzen, werden bei der Abnahme nicht akzeptiert.

Beispielaufrufe

```
_{1}>>> A = Teilgitter(10, 3, 23)
2>>> print (A)
3 (10,3,23); Koordinate 1: 3, Koordinate 2: 4
4>>> B = Teilgitter (14, 4, 34)
5>>> print (B)
6 (14,4,34); Koordinate 1: 4, Koordinate 2: 6
7>>> print (A+B)
s (24,7,57); Koordinate 1: 7, Koordinate 2: 10
9>>> \mathbf{print}(3*A)
10 (30,9,69); Koordinate 1: 9, Koordinate 2: 12
11>>> print(-3*A)
(-30, -9, -69); Koordinate 1: -9, Koordinate 2: -12
13>>> print (B*7)
14 (98,28,238); Koordinate 1: 28, Koordinate 2: 42
15>>> print (A*B)
16934
17>>> print (A. copy())
18 (10,3,23); Koordinate 1: 3, Koordinate 2: 4
19>>>  print (Teilgitter (9,5,0))
20 (9,5,0); Koordinate 1: 5, Koordinate 2: -1
```