준영 : 03 수열(1)

2016년 10월 19일

차 례

차]	1
1	수열	2
2	등차수열	4
3	등차수열의 합	9
4	보추·시히 무제	14

1 수열

문제 1)

다음 빈 칸에 알맞은 수를 넣어라.

(2) 1 3 9 27 81
$$729$$
 $\cdots \{b_n\}$

$$(4) \ 0 \ 2 \ 6 \ 12 \ 20 \ \boxed{} \ 42 \ \cdots \ \{c_n\}$$

(5)
$$\frac{1}{3}$$
 $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\boxed{ }$ $\frac{1}{9}$ $\cdots \cdots \{d_n\}$

(6) 6 3 2
$$\frac{3}{2}$$
 $\frac{6}{5}$ $\boxed{}$ $\frac{6}{7}$ $\cdots \qquad \{e_n\}$

$$(7) 1 1 2 3 5$$
 13

정의 2) 수열

위 문제에서처럼, 숫자들이 일정한 규칙에 의해 나열되어 있는 것을 **수열**이라고 한다. 그리고 수열을 구성하는 각각의 숫자들을 **항**이라고 한다. 예를 들어 첫번째 수열의 첫째항은 4이고 둘째항은 6이고 셋째항은 8이다.

수열을 나타낼 때에는 중괄호를 써서 $\{a_n\}$, $\{b_n\}$, \cdots 와 같이 나타낸다. 첫번째 수열을 $\{a_n\}$ 이라고 나타낸다면 $a_1=4$, $a_2=6$, $a_3=8$ 등으로 나타낼 수 있다.

문제 3)

문제 1의 (2)에 나타난 수열을 $\{b_n\}$ 으로 나타내고, (4)에 나타난 수열을 $\{c_n\}$ 으로 나타낼 때, 다음 빈칸을 채우시오.

$$b_1 =$$
 $b_3 =$ $b_5 =$ $b_7 =$ $c_2 =$ $b_4 =$ $b_6 =$

정의 4) 수열의 일반항

문제 1의 (1)에서

$$a_1 = 4$$
, $a_2 = 6$, $a_3 = 8$ $a_4 = 10$, $a_5 = 12$, $a_6 = 14$, $a_7 = 16$

이다. 따라서 자연수 n에 대해

$$a_n = 2n + 2$$

임을 유추할 수 있다. 이와 같은 a_n 을 수열 $\{a_n\}$ 의 **일반항**이라고 부른다.

문제 5)

 $\therefore e_n =$

문제 1의 (2), (4), (5), (6)의 일반항을 구하시오.

$$b_{1} = 1, \quad b_{2} = 3, \quad b_{3} = 9 \quad b_{4} = 27, \quad b_{5} = 81, \quad b_{6} = 243, \quad b_{7} = 729$$

$$\therefore b_{n} = \boxed{}$$

$$c_{1} = 0, \quad c_{2} = 2, \quad c_{3} = 6 \quad c_{4} = 12, \quad c_{5} = 20, \quad c_{6} = 30, \quad c_{7} = 42$$

$$\therefore c_{n} = \boxed{}$$

$$d_{1} = \frac{1}{3}, \quad d_{2} = \frac{1}{4}, \quad d_{3} = \frac{1}{5} \quad d_{4} = \frac{1}{6}, \quad d_{5} = \frac{1}{7}, \quad d_{6} = \frac{1}{8}, \quad d_{7} = \frac{1}{9}$$

$$\therefore d_{n} = \boxed{}$$

$$e_{1} = 6, \quad e_{2} = 3, \quad e_{3} = 2 \quad e_{4} = \frac{3}{2}, \quad e_{5} = \frac{6}{5}, \quad e_{6} = 1, \quad e_{7} = \frac{6}{7}$$

2 등차수열

문제 1의 (1) 번 수열을 다시 보자.

4 6 8 10 12 14 16

 $\cdots \{a_n\}$

이 수열은 항 사이의 차가 2로 일정하다;

$$a_2 - a_1 = 2$$
, $a_3 - a_2 = 2$, $a_4 - a_3 = 2$, $a_5 - a_4 = 2$, $a_6 - a_5 = 2$, \cdots

이처럼, 인접한 항 사이의 차가 일정한 수열을 등차수열이라고 부른다. 이때, 등차수열에서 인접한 항 사이의 차를 공차라고 부른다. 공차는 보통 d로 쓴다.

정의 6) 등차수열

수열 $\{a_n\}$ 이 다음 조건을 만족시키면 이 수열은 등차수열이다.

$$a_{n+1}-a_n=d$$
. $(n$ 은 자연수)

문제 7)

다음 수열들 중 등차수열인 것을 고르고, 등차수열인 경우 공차 d를 구하여라.

- (1) 1 3 5 7 9 11 13
- 등차수열이다/아니다 : *d* =
- (2) 2 4 8 16 32 64 128
- 등차수열이다/아니다 : d =
- (3) -10 -7 -4 -1 2 5 8
- 등차수열이다/아니다 : d = |
- (4) 5 5 5 5 5 5 5
- 등차수열이다/아니다 : *d* =
- (5) 1 0 1 0 1 0 1
- 등차수열이다/아니다 : d =
- (6) 200 300 400 500 600 700 800 등차수열이다/아니다 : d =
- (7) 2 4 6 2 4 6 2
- 등차수열이다/아니다 : *d* =
- (8) 100 99 98 97 96 95 94 등차수열이다/아니다 : d =
- (9) $1 \quad \frac{1}{2} \quad \frac{1}{3} \quad \frac{1}{4} \quad \frac{1}{5} \quad \frac{1}{6} \quad \frac{1}{7}$
- 등차수열이다/아니다 : *d* =
- (10) 0 $-\frac{1}{3}$ $-\frac{2}{3}$ -1 $-\frac{4}{3}$ $-\frac{5}{3}$ -2 등차수열이다/아니다 : $d=\left[\right]$

문제 8)

다음 등차수열의 열번째 항을 구하여라.

(1) 4 6 8 10 12 14 16

 $\cdots \{a_n\}$

(2) 10 20 30 40 50 60 70

 $\cdots \{b_n\}$

(3) 7 4 1 -2 -5 -8 -11

 $\cdots \{c_n\}$

(4) 50 43 36 29 22 15 8

 $(5) \ 3 \ \frac{9}{2} \ 6 \ \frac{15}{2} \ 9 \ \frac{21}{2} \ 12$

답: (1) $a_{10} =$ (2) $b_{10} =$ (3) $c_{10} =$ $(4) d_{10} = \boxed{}, \quad (5) e_{10} = \boxed{}$

문제 9)

문제 8에 제시된 등차수열의 일반항을 구하여라.

(1) $a_n =$

(2) $b_n =$

(3) $c_n =$

 $(4) d_n =$

(5) $e_n =$

정리 10)

첫번째 항 $(=a_1)$ 이 a이고 공차가 d인 등차수열의 일반항은

$$a_n = a + (n-1)d$$

증명)

초항이 a이고 공차가 d인 등차수열의 항을 나열해보면

$$a_1 = a$$

$$a_2 = a_1 + d = a + d$$

$$a_3 = a_2 + d = a + 2d$$

$$a_4 = a_3 + d = a + 3d$$

$$a_5 = a_4 + d = a + 4d$$
:

이다. 따라서

$$a_n = a + (n-1)d$$

이다.

문제 11)

문제 8에서

(1) a=4, d=2이므로

$$a_n = 4 + (n-1) \times 2 = 2n + 2$$

이다.

(2)
$$a =$$
_____, $d = 10$ 이므로

$$a_n = \square + (n-1) \times 10 = 10n$$

이다.

(3)
$$a=7, d=$$
 이므로

$$a_n = 7 + (n-1) \times \boxed{} = -3n + 10$$

(4)
$$a =$$
____, $d =$ ___이므로

$$a_n = \boxed{} + (n-1) \times \boxed{} = \boxed{}$$

이다.

(5)
$$a = 3, d =$$
 이므로

이다. (문제 9의 결과와 비교해보자.)

문제 12)

다음 등차수열들의 일반항 a_n 을 구하시오.

- $(1) -11, -8, -5, -2, \cdots$
- $(2) 6, 3, 0, -3, \cdots$
- $(3) \ 3, \quad 6, \quad 9, \quad 12, \quad \cdots$
- $(4) \ \frac{1}{3}, \ \frac{1}{2}, \ \frac{2}{3}, \ \frac{5}{6}, \cdots$

정리 13) 등차중항

세 숫자 a, b, c가 등차수열을 이룰 때, b를 a와 c의 **등차중항**이라고 한다. 이때 등차중항 b는 다음 조건을 만족한다.

$$b = \frac{a+c}{2}.$$

증명)

a, b, c가 등차수열을 이루므로, 인접한 항 사이의 차가 같다. 즉

$$b - a = c - b$$

이다. 이것을 b에 관한 식으로 정리하면

$$b = \frac{a+c}{2}.$$

예시 14)

(1) 세 숫자

가 등차수열을 이룬다면, $x = \frac{1+9}{2} = 5$ 이다.

(2) 다섯 숫자

$$3, \quad x, \quad y, \quad z, \quad 19$$

가 등차수열을 이룬다고 하면,

가 등차수열을 이루므로 $y = \frac{3+19}{2} = 11$ 이다. 또,

3,
$$x$$
, $y(=11)$

가 등차수열을 이루므로 $x = \frac{3+11}{2} = 7$ 이고

$$y(=11), z, 19$$

가 등차수열을 이루므로 $z=\frac{11+19}{2}=15$ 이다. 따라서 $x=7,\ y=11,$ z=15 이다.

문제 15)

(1) 세 숫자

가 등차수열을 이룰 때, x의 값을 구하시오.

(2) 다섯 숫자

$$4, \quad x, \quad 18, \quad y, \quad z$$

가 등차수열을 이룰 때, x, y, z의 값을 구하시오.

답:
$$(1)$$
 $x =$ ____, (2) $x =$ ____, $y =$ ____, $z =$ ____

3 등차수열의 합

문제 16)

다음을 계산하시오.

$$(1) \ \ 3+4+5+6+7= \boxed{}$$

$$(2) 2+4+6+8+10+12=$$

(3)
$$1+2+3+\cdots+10=$$

예시 17)

문제 16은 다음과 같이 계산할 수도 있다. (3)을 다시 계산해보자. 먼저 구하려는 값을 $S=1+2+3+\cdots+10$ 라고 놓자. 이제 이 식과 이 식을 거꾸로 쓴식을 나란히 놓고,

$$S = 1 + 2 + 3 + 4 + \dots + 9 + 10$$

$$S = 10 + 9 + 8 + 7 + \dots + 2 + 1$$

두 식을 더하자.

$$2S = (1+10) + (2+9) + (3+8) + (4+7) + \dots + (9+2) + (10+1)$$
$$= 11 + 11 + 11 + 11 + \dots + 11 + 11$$
$$= 11 \times 10 = 110$$

따라서 $S = \frac{110}{2} = 55$ 이다.

문제 18)

예시 17의 방법을 이용해 다음 계산을 하여라.

 $(1) \ 1 + 2 + 3 + \dots + 99 + 100 = \boxed{}$

 $(2) 1 + 3 + 5 + \dots + 17 + 19 = \boxed{}$

풀이:	

정리 19) 등차수열의 합

등차수열 $\{a_n\}$ 의 첫번째 항을 a, 공차를 d라고 할 때, 첫째항부터 제n항까지의 합 $S(=a_1+a_2+\cdots+a_n)$ 은

$$S = \frac{n\{2a + (n-1)d\}}{2}$$

이다. 마지막 항을 $l(=a_n)$ 이라고 할 때,

$$S = \frac{n(a+l)}{2}$$

이라고 쓸 수도 있다.

증명)

예시 17와 같이 S를 나열한 식과, 그 식을 거꾸로 쓴 식을 나란히 놓으면

$$S = a_1 + a_2 + \dots + a_{n-1} + a_n$$

 $S = a_n + a_{n-1} + \dots + a_2 + a_1$

이다. 좀 더 자세하게 쓰면

$$S = a + (a+d) + \dots + (a+(n-2)d) + (a+(n-1)d)$$

$$S = (a+(n-1)d) + (a+(n-2)d) + \dots + (a+d) + a$$

이다. 두 식을 더하면

$$2S = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d) + (2a + (n-1)d)$$
$$= (2a + (n-1)d) \times n.$$

따라서

$$S = \frac{n\{2a + (n-1)d\}}{2}$$

이다.

또한,

$$l = a_n = a + (n-1)d$$

이므로

$$S = \frac{n\{2a + (n-1)d\}}{2} = \frac{n\left[a + \{a + (n-1)d\}\right]}{2} = \frac{n(a+l)}{2}$$

이다.

예시 20)

문제 16의 (1)에서 a=3, d=1, n=5이므로

$$S = \frac{5 \times \{2 \times 3 + (5 - 1) \times 1\}}{2} = 25$$

이다. 혹은 l=7이므로

$$S = \frac{5(3+7)}{2} = 25$$

이다.

문제 21)

등차수열의 합 공식을 이용하여 다음 계산을 하여라.

$$(1) \ \ 2+4+6+8+10+12= \boxed{}$$

$$(2) \ 1 + 2 + 3 + \dots + 10 = \boxed{}$$

$$(3) \ 1 + 2 + 3 + \dots + 100 = \boxed{}$$

$$(4) \ 1 + 3 + 5 + 7 + \dots + 19 = \boxed{}$$

풀이:

$$(1)$$
 $a = \square$, $d = \square$, $n = 6$ 이므로

$$S = \frac{6 \times \{2 \times \square + (6-1) \times \square\}}{2} = \square$$

이다. 혹은 l=12 이므로

$$S = \frac{6(\square + 12)}{2} = \square$$

(2)
$$a = 1, d = 1, n =$$
이므로

이다. 혹은 l= 이므로

$$S = \frac{10(1+\square)}{2} = \square$$

이다.

$$(1)$$
 $a = \square$, $d = \square$, $n = \square$ 이므로

이다. 혹은 l= 이므로

이다.

$$(2)$$
 $a = \square$, $d = \square$, $n = \square$ 이므로

$$S = \frac{}{}$$

이다. 혹은 l= 이므로

$$S = \frac{}{2} =$$

이다.

(문제 16, 18의 결과와 비교해보자.)

4 보충·심화 문제

문제 22)

다음 수열의 제9항을 구하여라.

- (1) 1, 4, 9, 16, 25, \cdots
- (2) $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$, $\frac{1}{9}$, $\frac{1}{11}$, ...

문제 23)

다음 수열의 일반항 a_n 을 구하여라.

- (1) 1, 8, 27, 64, 81, 125, \cdots
- $(2) \ 1 \cdot 2, \ 2 \cdot 3, \ 3 \cdot 4, \ 4 \cdot 5, \ 5 \cdot 6, \ \cdots$
- (3) $-1, 1, -1, 1, -1, \cdots$

문제 24)

다음 수열의 일반항 a_n 을 구하여라.

- (1) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, ...
- (2) 10, 100, 1000, 10000, \cdots
- (3) 9, 99, 999, 9999, \cdots
- $(4) \ \frac{3}{1\cdot 2}, \ \frac{4}{2\cdot 3}, \ \frac{5}{3\cdot 4}, \ \frac{6}{4\cdot 5}, \ \cdots$

문제 25)

다음 수열이 등차수열을 이루도록 전에 알맞은 수를 써넣어라

- $(1) \ 2, 5, \square, \square, 14, \cdots$
- $(2) \ 30, \ , \ , \ 24, 22, \cdots$

문제 26)

다음 등차수열 $\{a_n\}$ 의 공차를 구하여라.

- (1) $a_1 = 5, a_7 = 23$
- (2) $a_1 = 10, a_{10} = -8$

문제 27)

다음 등차수열의 일반항 a_n 을 구하여라.

- (1) 첫째항이 10, 공차 -4
- (2) 4, 6, 8, 10, 12, \cdots
- (3) 1, 4, 7, 10, 13, \cdots
- (4) $-7, -4, -1, 2, 5, \cdots$
- $(5) 1, -\frac{1}{2}, -2, -\frac{7}{2}, -5, \cdots$

문제 28)

다음을 구하여라.

(1) 제3항이 5, 제8항이 -5인 등차수열의 일반항

풀이 : a+2d=5, a+7d=-5이므로 두 식을 연립하면 a= ____, d= ____ 이다. 따라서 일반항 a_n 은

$$a_n = 9 + (n-1)(-2) = -2n + 7$$

이다.

(2) 제3항이 7이고, 제8항이 27인 등차수열의 일반항

(3) 등차수열 $\{a_n\}$ 에서 $a_2=3,\,a_7=13$ 일 때, a_{30} 의 값

문제 29)

다음 조건을 만족하는 등차수열의 일반항 a_n 을 구하여라.

(1)
$$a_1 = 2$$
, $a_3 = \frac{2}{3}$

(2)
$$a_2 = -10, a_7 = 20$$

문제 30)

등차수열 $\{a_n\}$ 에서 $a_4 + a_8 = 24$, $a_{15} + a_{19} = 68$ 일 때, 일반항 a_n 을 구하여라.

문제 31)

등차수열 $\{a_n\}$ 에서 $a_7=10,\ a_{11}=4$ 일 때, 처음으로 음수가 되는 항은 제 몇 항인지 구하여라.

풀이 : $a+6d=10,\,a+10d=4$ 이다. 두 식을 연립하면 a= _____, d= 이다. 따라서

$$a_n = 19 + (n-1)(-\frac{3}{2}) = \boxed{}$$

이고 $a_n < 0$ 을 풀면

$$-\frac{3}{2}n + \frac{41}{2} < 0$$
$$n > \frac{41}{3} = 13.666 \cdots$$

따라서 n의 최솟값은 14이고, 처음으로 음수가 되는 항은 제 항이다.

문제 32)

등차수열 $\{a_n\}$ 에서 제5항이 72, 제10항이 37일 때, 처음으로 음수가 되는 항은 제 몇 항인지 구하여라.

문제 33)

등차수열 $\{a_n\}$ 에서 $a_1+a_2+a_3=-12, a_4+a_5+a_6=33$ 일 때, 처음으로 100보다 크게 되는 항은 제 몇 항인지 구하여라.

문제 34)

등차수열 $4, x_1, x_2, x_3, \dots, x_m, 34$ 의 공차가 2일 때, m의 값을 구하여라.

문제 35)

다음 수열이 등차수열을 이룰 때, x, y, z의 값을 구하여라.

- (1) 32, x, 22, y, 12, \cdots
- $(2) -1, x, 5, y, 11, \cdots$
- $(3) x, 13, y, 5, z, \cdots$
- $(4) \ x, -1, y, 11, z, \cdots$

문제 36)

네 수 28, a, b, 13 이 이 순서대로 등차수열을 이룰 때, a, b의 값을 구하여라.

문제 37)

오른쪽 그림에서 가로줄과 세로줄에 있는 세 수가 각각 등차수 열을 이룬다. 예를 들어 -2, a, b가 이 순서대로 등차수열을 이루고, b, 5, f가 이 순서대로 등차수열을 이룰 때, (b-a)+(f-e)의 값을 구하여라.

-2	a	b
c	d	5
4	e	f

문제 38)

세 실수 $\frac{1}{a+b}, \frac{1}{b+c}, \frac{1}{c+a}$ 가 이 순서로 등차수열을 이룰 때, 세 실수 a,b,c 사이의 관계식은?

$$\mathfrak{D}a^2 = b^2 + c^2$$

$$2b^2 = a^2 + c^2$$

$$32a^2 = b^2 + c^2$$

$$2b^2 = a^2 + b^2$$

$$\mathfrak{S}2c^2 = a^2 + b^2$$

문제 39)

등차수열을 이루는 세 수가 있다. 다음 물음에 답하여라.

(1) 세 수의 합이 15 이고, 곱이 105 일 때, 이들 세 수를 구하여라.

풀**이:** 세 수를 a-d, a, a+d로 두면

$$\begin{cases} (a-d) + a + (a+d) = 15\\ (a-d) \times a \times (a+d) = 105 \end{cases}$$

이고, 첫 번째 식을 정리하면 $a = \boxed{}$. 이것을 두 번째 식에 대입하면,

$$(5-d) \times 5 \times (5+d) = 105$$

따라서 $25 - d^2 = 21$, $d^2 = 4$, $d = \pm \square$. 그러므로 구하는 세 수는 3, 5, \square 이다.

(2) 세 수의 합이 12이고, 곱이 28일 때, 이들 세 수를 구하여라.

(3) 세 수의 합이 15이고, 제곱의 합이 83일 때, 이들 세 수를 구하여라.

문제 40)

다음 계산을 하시오.

(1)
$$1+3+5+\cdots+99$$

$$(2) \ \ 3+8+13+18+\cdots+48$$

$$(3) (-2) + 2 + 6 + 10 + \dots + 394$$

문제 41)

등차수열 $\{a_n\}$ 에 대해 공차 d를 구하시오. (단 a는 첫째항이고, $S_{10}=a_1+a_2+a_3+\cdots+a_{10}$ 이다.)

(1)
$$a = 30, S_{10} = 210$$

풀이 :

$$\frac{10(2\times 30 + 9d)}{2} = 210$$

이므로 $d = \bigcirc$ 이다.

(2)
$$a = 40, S_{10} = 175$$

(3)
$$a = -3$$
, $S_{10} = 285$

문제 42)

 $a_2=4,\,a_5=22$ 인 등차수열 $\{a_n\}$ 의 첫째항부터 제30항까지의 합 S_{30} 의 값을 구하여라.

문제 43)

 $a_3=8,\,a_7=20$ 인 등차수열 $\{a_n\}$ 의 첫째항부터 제20항까지의 합 S_{20} 의 값을 구하여라.

문제 44)

10과 30 사이에 n개의 수를 넣어 만든 등차수열 $10, x_1, x_2, \dots, x_n, 30$ 의 모든 항의 합이 820일 때, n의 값과 공차 d를 구하여라.

문제 45)

100부터 300까지의 자연수에 대하여 다음을 구하여라.

(1) 3의 배수의 총합

풀이: 100보다 크고 300보다 작은 수는

이다. 이것은 a= _____, $d=3,\ l=$ _____인 등차수열이다. 항수는 n=100-34+1=67이므로

$$102 + 105 + 108 + \dots + 300 = \frac{67(102 + 300)}{2} = \boxed{ }$$

(2) 4의 배수의 총합

(3) 7의 배수의 총합

문제 46)

100 이하의 자연수 중에서 4로 나누면 3이 남는 자연수의 총합을 구하여라.

문제 47)

100 이상, 200 이하의 자연수 중에서 5로 나누면 3이 남는 자연수의 총합을 구하여라.

문제 48)

세 자리의 자연수 중에서 9의 배수의 총합을 구하여라.

문제 49)

등차수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라고 할 때, 다음 물음에 답하여라.

(1) $S_{10}=120,\,S_{20}=440\,$ 이다. 이때 S_{30} 의 값을 구하여라.

풀이 : 첫항을 a, 공차를 d로 놓고, 공식 $S_n = \frac{n\{2a + (n-1)d\}}{2}$ 을 사용하며

$$\frac{10(2a+9d)}{2} = 120, \quad \frac{20(2a+19d)}{2} = 440$$

따라서

$$2a + 9d = \boxed{}, \quad 2a + 19d = \boxed{}$$

이다. 두 식을 연립하면 $a = \boxed{}, d = \boxed{}$. 따라서

(2) $S_5 = 10$, $S_{10} = 45$ 이다. 이때 S_{20} 의 값을 구하여라.

문제 50)

공차가 3인 등차수열 $\{a_n\}$ 에서 $a_1+a_2+a_3+\cdots+a_{100}=200$ 일 때, $a_2+a_3+a_4+\cdots+a_{101}$ 의 값을 구하여라.