IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2022

EXAMEN

Preguntas en blanco: Preguntas o items entregados en blanco se evaluarán con 0.5 de 6 puntos.

Pregunta 1

Demuestre que para todo autómata apilador \mathcal{P} , existe un autómata apilador alternativo \mathcal{D} tal que:

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{D}).$$

Pregunta 2

Considere los siguientes lenguajes sobre el alfabeto $\{0,1\}$:

$$L_1 = \{a_1 \dots a_{2n} \in \{0,1\}^* \mid n > 0 \land a_1 a_3 \dots a_{2n-1} = a_2 a_4 \dots a_{2n}\}$$

$$L_2 = \{a_1 \dots a_{2n} \in \{0,1\}^* \mid n > 0 \land a_1 a_3 \dots a_{2n-1} = a_{2n} a_{2n-2} \dots a_2\}$$

Uno de los lenguajes es regular y el otro no. ¿Cuál es cuál? Diga cuál lenguaje es regular y cuál no, y demuestre ambas afirmaciones.

Pregunta 3

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática libre de contexto en formal normal de Chomsky.

1. Demuestre que si $\mathcal G$ no tiene variables inútiles, entonces

$$\mathcal{L}(\mathcal{G})$$
 es infinito si, y solo si, existe $X \in V$ y $\alpha, \beta \in (V \cup \Sigma)^*$ tal que $X \stackrel{+}{\Rightarrow} \alpha X \beta$ (1) donde $\stackrel{+}{\Rightarrow}$ significa que es una derivación en uno o más pasos.

2. Demuestre que si \mathcal{G} tiene variables inútiles, entonces (1) no es necesariamente cierto.

Pregunta 4

Considere los siguientes dos problemas:

Problema:	OUTPUTNOVACIO	Problema:	OUTPUTNOTRIVIAL
Input:	Un AnnA \mathcal{N} y $d \in \Sigma^*$.	Input:	Un AnnA \mathcal{N} y $d \in \Sigma^*$.
Output:	TRUE ssi $[\![\mathcal{N}]\!](d) \neq \emptyset$.	Output:	TRUE ssi $\varnothing \neq \llbracket \mathcal{N} \rrbracket(d) \neq \{\epsilon\}.$

Para cada uno de los problemas, escriba un algoritmo que los resuelva en tiempo $\mathcal{O}(|\mathcal{N}| \cdot |d|)$. Explique la correctitud de su algoritmo.