

5/19

PLAG1 cDNA sequence

FIG. 4A

GGCAGCGCAT	ACACTACAAT	GGCTGCTGGA	AAGAGGCCGA	AGGAAACAAT	50
TTCCAGGCC	GCCGCGTCCA	GCCCCGAAATA	TGAGAAAAAA	ATTATTAGAA	100
ATTCCCGCGG	CGGTGTAGAG	GCGGCAGGACG	GGCCGGAGGG	AGGATGTTAA	150
AGCCCCGCGG	TTGCCTCTTG	GTGCTGCCCT	GGCCGTATTT	GGCACCCAGA	200
ATGCTTCATT	CTGTGACGGT	CTATTAATAA	GGTGCCTTG	CTAGAGTTG	250
GAGCAGGGCC	TCAGATTGGC	CAAAATGGGA	AGGATTGGAT	TCCACTCTCT	300
TCCACGAAGA	GTCAATGGGA	CTGGCTAAGA	TCAAAGTCTG	AGGCTTTTC	350
CATCAGTAAT	CAGTCCCTTT	TTGCTTCTT	TTACGACCAC	ATGAAACTTG	400
AGAACGCCACC	TAAAGCTATA	TCATTTAGTG	GAGTGGGCA	GTTCCAAGT	450
GTCCAACAAAG	AAGGCCTGGT	TTAGGCTGCG	ATGGCCACTG	TCATTCCCTGG	500
TGATTTGTCA	GAAGTAAGAG	ATACCCAGAA	AGTCCCTCA	GGGAAACGTA	550
AGCGTGGTGA	AACCAAACCA	AGAAAAAACT	TTCCCTGCCA	ACTGTGTGAC	600
AAGGCCTTTA	ACAGTGTGTA	GAAATTAAAG	GTTCACTCCT	ACTCTCACAC	650
AGGAGAGAGG	CCCTACAAGT	GCATACAACA	AGACTGCACC	AAGGCCTTTG	700
TTTCTAAGTA	CAAATTACAA	AGGCACATGG	CTACTCATTC	TCCTGAGAAA	750
ACCCACAAGT	GTAATTATTG	TGAGAAAATG	TTTCACCGGA	AAGATCATCT	800
GAAGAATCAC	CTCCATACAC	ACGACCCCTAA	CAAAGAGACG	TTTAAGTGC	850
AAGAATGTGG	CAAGAACTAC	AATACCAAGC	TTGGATTAA	ACGTCACTTG	900
GCCTTGCATG	CCGCAACAAG	TGGTGACCTC	ACCTGTAAGG	TATGTTTGCA	950
AACTTTGAA	AGCACGGGAG	TGCTTCTGGA	GCACCTTAAA	TCTCATGCAG	1000
GCAAGTCGTC	TGGTGGGGTT	AAAGAAAAAA	AGCACCAGTG	CGAACATTGT	1050
GATGCCCGGT	TCTACACCCG	AAAGGATGTC	CGGAGACACA	TGGTGGTGCA	1100
CACTGGAAAGA	AAGGACTTCC	TCTGTCAGTA	TTGTGCACAG	AGATTTGGC	1050
GAAAGGATCA	CCTGACTCGA	CATATGAAGA	AGAGTCACAA	TCAAGAGCTT	1200
CTGAAGGTCA	AAACAGAACCC	AGTGGATTTC	CTTGACCCAT	TTACCTGCAA	1250
TGTGTCTGTG	CCTATAAAAG	ACGAGCTCCT	TCCGGTGATG	TCCTTACCTT	1300
CCAGTGAACT	GTATCAAAG	CCATTACAAA	ACACTTTGCA	GTAAACCTC	1350
TACAACACTC	CATTTCAGTC	CATGCAGAGC	TCGGGATCTG	CCCACCAAAT	1400
GATCACAAC	TTACCTTTGG	GAATGACATG	CCCAATAGAT	ATGGACACTG	1450
TTCATCCCTC	TCACCAACCTT	TCTTCAAAAT	ATCCGTTCA	TTCTACCTCA	1500
TATGCAATT	CTATTCCCTGA	AAAAGAACAG	CCATTAAAGG	GGGAAATTGA	1550
GAGTTACCTG	ATGGAGTTAC	AAGGTGGCGT	GCCCTCTTCA	TCCAAGAGATT	1600
CTCAAGCATC	GTCATCATCT	AAGCTAGGGT	TGGATCCTCA	GATTGGGTCC	1650
CTAGATGATG	GTGCAGGAGA	CCTCTCCCTA	TCCAAAAGCT	CTATCTCCAT	1700
CAGTGACCCCC	CTAAACACAC	CAGCATTGGA	TTTTTCTCAG	TTGTTTAATT	1750
TCATACCTT	AAATGGCCT	CCCTATAATC	CTCTATCAGT	GGGGAGCCTT	1800
GGAATGAGCT	ATTCCCAGGA	AGAACGACAT	TCTTCTGTT	CCCAGCTCCC	1850
CACACAAACA	CAGGATCTTC	AGGATCCTGC	AAACACTATA	GGGCTTGGGT	1900
CTCTGCACTC	ACTGTCAGCA	GCTTCACCA	GCAGTTAAAG	CACAAGTACC	1950
ACCCTCCCAC	GTTCATCA	AGCTTTTCAG	TAGGATTCTG	GGACATGGAT	2000
TCATTACAGA	AATGTATGTG	AGCTGTGCC	CTAGATGACC	ATTTTTATT	2050
TAGTGCCTAC	TTTAAAACAG	TATAAAAATT	TCTGCTTTG	TATAATACAA	2100
ATTTTCATTA	AGCCAGTATA	AAATAGAAAC	TAGCTTTAA	ACTGAGCTTT	2150
GGAACCATT	GTGTTCAAGT	AAGTTACCT	GGGTATTTG	TCCTGATTCA	2200
CTGCCAATTG	TCACATTTA	AGACTTTTT	TTTTCCATA	TAGGAAAGCC	2250
ATTATTAGTA	GTAAACTTTT	ACAAATCCA	TTTCAAATT	ACTTTAGAT	2300
CTTAAAATTT	TCATTTTGT	CTAATAACAG	TGGCTCTACC	TTTGACATC	2350
TGGCTCATT	AAAAATTAG	CAATAGAATG	TAAATTGTAT	AAAAAGTTG	2400
TGAATAACTC	AAGGGTTTAA	ATTTTCTTAC	AGCTTCTAA	ATGGATTAAT	2450
AATCAAGTGC	TTCAAATGAA	TTAAGAGTCC	AGTTTCGGAA	GATAATAAAT	2500
GTTTGTAGA	TACACCATAA	TTTCAGATCA	GTATATTCTG	AAGACTCTCT	2550
GTTGTCTGGC	TAATATTTT	GGCATCTTTA	TTATGAGCCT	TTAAGGAAA	2600
CAAACCTAA	ACACAAAGCA	TCAGTATTAA	TAGCAAAAG	AGACTCTGTT	2650

6/19 FIG. 4A (continued)

AGGTGACATG	GCATTTCGTG	TCACTTAATA	GTTGGCCCTA	AATTAGTACA	2700
CAGGATATT	TGTCGTGTT	CATCCTTCTT	AACATGCTAT	CTTTTCATT	2750
AATAATAGTA	ATAGTGTATG	GCATTGGGGT	CTTCAGAGTC	GATATATAGG	2800
TAGATCTCTT	TAGTCTTTTC	CACCTTCAC	ATCCAAGGGG	TGGGTCAAGT	2850
GCAGCCAGCA	ATTTATTTTC	ATTGTTGCC	CACGGTTAGT	CCATAATCTA	2900
GAGCCATTGT	GGAACTGCAG	CCATGAGGTG	TGTTTATCCC	ACAGTGGATT	2950
GACTCAGCCT	CTGTGGGTGA	CAGACTTCTA	AGCAGGAAGA	TAGACGTGAA	3000
GCACATGGTT	ACATTTGGGA	ACTTGTGTAG	GGATCATGGC	CCCTGTAGCC	3050
AGGGTTAAAAA	ACTGGACTTT	TTAGAAGTAA	AGTAAAAGCA	TAKCGTTAT	3100
ATCATTTCTT	GCTGAATTG	ATATGTTTT	CTTCCCTTA	AGAACAAAAA	3150
GCAGAAAACA	AAAACAACAG	TCCTACTCCG	ATGTTATCTT	TCTGATTCAA	3200
TGTGAATCCA	TCTTCCCTG	CAATATTG	GATGGAGAAT	TTGAAGTTA	3250
ATGCATTAGA	AAACTACCTG	ATGAACTAAC	ACAAAGTTT	AAGTGACTAG	3300
AAATATATAC	AGTAAAATCC	CACTTCATG	CATCTCTGGG	AAATGATAGG	3350
AGTATTGCAA	ATAAGTTGAG	TTTGTAGAGG	GTAACAAAGT	AAAGTAAAAC	3400
AAACCTATCT	TGGTTAACAT	GAAAATAACA	ATTGAGAATA	TATTATATT	3450
ACTGAATAAT	TATAGGCTTT	TCCTCACATT	AGACAACCAA	CATAATCTTC	3500
TTAAAGGTCT	AATTAAATATA	TTTTCTAAG	GGTCAGTTGG	GACATTAACC	3550
TAAGAAACAT	ATCTATTAAAG	CACTTGTAA	CACCTTATT	TAGGACCCTT	3600
TCCGTTGGGG	ATGGGGGCAA	GGGTGGGAGG	TTTTAGAAG	AGTATATATC	3650
TCTTTAAAAA	AAAACAGAAA	GAAAAATATT	TCTGAGCACT	CATTAGCCCT	3700
ATATGAAAC	TTCTTCCCTT	TTTGTAGGGC	CAGTTATCAC	TGCAGATTGC	3750
AATGTTACC	AAGAATTCT	AAAAATGAGT	GCAGATTACT	GAATATAATA	3800
CATTATTAA	AATATTGGG	AGTAGTATAA	TTTGTGAGA	AATGTAATT	3850
GTAATAATGT	AAATGGGGGG	CTTCAATATA	TATATATAAT	ACACACACAC	3900
ACACACATGC	ACACATACCG	CACTTCATAG	AATCAAAGTT	GCTCTCTGAA	3950
GGAGCTTGG	CTCCTGATAT	TTTATCATGC	TCCTATATT	TTTAATCCT	4000
TGGAGCAGTA	GTTTTATAC	TTATGTATT	AAATTTTATT	ATGAAAATT	4050
ACATTATTAA	AAAAAGTGTG	TTCCAAGGC	ATTAATTTA	TATATGTTAA	4100
TAAGGAAGTA	CATTTTAAA	TTTTCAAAC	TGCTCCTAGC	TTTGATTAG	4150
GAGAATATT	TTTCTGAAAG	TAGGCTTT	GCTCTGCTTC	ATTACTGCTT	4200
CCTTAGTTT	CTATGAAACA	GATTGCTTAC	CTAAATCTT	AGTGAATGA	4250
TTAGTGTCA	ATATTGCTTT	AATCACCATA	TTAAAGGAAA	AAAATTGGTG	4300
ACAGAGCACA	AATAGAAAAC	CTATTTTAA	ATAGAAATCA	CAAATAGCAA	4350
GTGTGGAAGC	ACTACTTTAT	TCTGTTAAA	ATGTACTTAA	GAAGTCATCA	4400
AATTAGTGA	CTGAGACATT	GGCCTTAGTA	GGCTGTATT	ACTGCTAATT	4450
AAAAAAAGGG	AGTACCAAGGA	TTTATTAAGT	AAAGCATT	GGAAATGGGG	4500
AATAGCGCCA	TATATGTATG	TATGTGTATG	TGTGTGTGTG	GTGTGTGTAT	4550
ATATACACAC	ACACATACAT	ACTTAAATCT	TGCCCTGCAT	GAAATTCAAA	4600
TACATGGAGG	CACATCTCA	GGGCACCACT	GTAAAATT	TGGAGTCTTA	4650
ATTTCATGT	GTACACCTCT	TTGCCTGTT	CCACCCCCAG	ACTTGAATA	4700
ACACTTCAGA	GTAAGAGGGG	ATTCACTAA	TTTGTGTTTA	AAATTGACTG	4750
TAGTGGTCAC	TAAACCCTTT	TTGAGAGAA	TTCTATTAA	GATGAGGCAG	4800
ACTCGCTTAT	TTGAATTGCA	CAATGTTCTA	ACAAGGATGT	AACACAGAAT	4850
TGGCTTTTT	TTCCCTAGAA	AAAGATTGTT	TGTTTCTATG	TCAACTAGAT	4900
ATGATTAAAA	ATAAGTATTG	CCAATGCTGT	TTTCATTCTC	TAGTGGCCAG	4950
AATCATTATC	CTTGAAATT	CTGGTAGTGC	CTTAGCTTG	TTAAAAAAAA	4500
AAAAAAAG	AAAAAAAG	GGATTAACAT	TAATAAAAG	TAGTTTAGAA	4550
TTTGGGCCTC	AGACAAGATA	TTGAACCTCA	TTCACTTCA	CTTCCACATG	5100
TATGTACAAG	TTAGGTCAACC	AAACACGGAA	GTTGAGTGTG	GAAGGATCTT	5150
GGCACTGTAA	GCAATGCTAT	CCATTGATGT	ATACAAGTAC	CTTTATAGTT	5200
ATCGATCACT	GTAAAACCTT	TCATTTAAA	ATCCTATTAC	CAAGTTCACT	5250
TTTTTAAAC	TTCAATTGTC	CTGGCTGATT	ATGCATCACT	CTGTGTGCAA	5300
CTTTTTTATT	TCATTTAGTG	TTTCTTCAA	GCTGTGTATT	TTTGCCTATT	5350
TGTTGCTTGT	GCTTTATTTT	TCTTAGTCAT	TTGTGAATA	TAGTGTATATA	5400

7/19

FIG. 4A (continued)

TTGTGTTAAT TTGGACAGTA GCGGTTTTA AAAACCATA ACTGACTGAA 5450
 ACATGAGCCA GAGCCGATTG CTTTATTAAAG CTAATAATGA ATGTTAAAGA 5500
 GTACATATTT TCAGGATCGT TCATCTAGT AGCAATACAC ATATTATAGG 5550
 CCAATATTT TTTAAAAAAT AGAGCTTGGT CAACCTCTAT ACTACACATA 5600
 TTACAAGATA TAGCACTTTC AAAATGAATC TAAACCTTTA CAGAAACTTT 5650
 CTTATAGGTT ATGCCTTTA TTTTAAGACT TATTATAATT CAAGTGCCAT 5700
 TAGATGATAT ATATGTAGGC CTTTGATATA TAATGCTTTG TGTACAAAAA 5750
 TGGTAGATGG TATTTTAAAC AGGTACATTT TTACAGTGTT TTCTTATCAA 5800
 TTTGCTATAT TGACAGAAAT CAGTGTGTGT CTTTCATAA GGTTTTACAA 5850
 TGGTTTATTT TTTTACAAGG TTTACGTGTC TCAAAGCACA CTGCTTCCC 5900
 AGTACGTAAG TTAAAAAATA CCAGTTCACCA CAAGTTGCTT CTAGCCTACT 5950
 GAGATCCATG TGACATTGGA GGAGATCTTT TAAATGTTA GTATTCGTCA 6000
 TTAGCAATGG CTGGCTGTTA GTTCTGGTAA ATGTGTGCCT AAGTTGAATT 6050
 TGTCTTGTCTT TTCTCACACT GTGTCAGCAG CCATGTCTAC AACACAGATA 6100
 AGTCTGTTGT GATCACATAG ATCTACATAA GTTGTGCAGT TTTGTGCTAA 6150
 AAACCCATAG GGAGCTCCTT TGGGATCATA GAAAAGAAGA TCATGCAACC 6200
 AGCATTGGTG AAGGCACACT CAGATTGCAC TTAGGGCCTT TCTATGATGT 6250
 TGTCAACCCT CTGAGGATGG AAGGCAGTGT CTTTGATGT TATCTAGCCT 6300
 AGAAATGACA CAGAACTATT GCTAATGTAT AAAACACTTC ATTATATAAG 6350
 CTTCAGTGGT ACAGATGAAC CAGAAATGAAT GTTATCTTC TCAGAAACAC 6400
 TCCTTCAATA TTATATTGGA TCATGCTGCT AATGTAACCT GGGCTACAAC 6450
 TCTTCATGGT GCTACAAACT TCTCTGTCTC ATTCACTCGT ATTTTTTTAT 6500
 CCATAGAAAA AGGACTACAT TAGGTGTAAA AGTGTACAAT ATATTTTTAT 6550
 ACTGTGACTT AATTGTCAT TAACAAACTT TTACACCAACC ACAATGTATT 6600
 CATGTGCACT TGCAAAAGGA GATCTCGGAC ATGCAAATGT TACCAAGAAC 6650
 AACCCAGCTT TTGTCCACAA GGTGACTGTA ACTCAGAATG GAAAGTGGGC 6700
 TTTATAATAG GGTGTGGAGT GAAGAACATG CTGTATGTTA CTAACAGCCC 6750
 TTTGAATTAA ACAAAAATG GGAATCCATT AGGAAACGGA TTGCATCATA 6800
 CCTGAACATA AGCTGGACTG CTGAAATTGT ATTTTTAGCT AATGAAAAAG 6850
 TGTTTGGACT AGTACTCTAA AAATGTTCTA ATGATAAAAGT TTTGAGTCAA 6900
 AATAGAAAAG AAAAAAATCT GCATTCCAGG CCGAATTTCG TATATTTTA 6950
 TTGCATTAA AATTGCTATT CTGTAATATT GGGAAATCAA GTGGCTTATC 7000
 ATGTATATCG TGTACTTAAA ATGTATTCAAC AACTACTGT TGTATTTGTA 7050
 TAAAATATAG ACAAAAGATCA TATTTTTGT GTGTGTATAA GCTCTGTAAA 7100
 ATAGCAATCA CATTATGAAG CTGCAGTGAT ACTACATTAA AACACATTCA 7150
 ATCCAAAGAA GCAGACTATT TATTGTCCAT ATACCAAGATT TAAAATATTA 7200
 ATTTGCTGCT AATTAATAA TAGTACTGCA GCTTCTTGTG GCCTACAGTG 7250
 TTATGTTGC TGTAAGAATA AGATATGTGA ATTCCACAAA ATATATGAAT 7300
 AAAATCTCGT GCC

7313

(SEQ ID NO: 116)

8/19

PLAG1 Finger 1 FPC . QLCDKAFNSVEKLKVHSYS . HTGERP (SEQ ID NO: 117)
 PLAG1 Finger 2 YKCIQQDCTKAfvSKYKLQRHMAT . HSPEKT (SEQ ID NO: 118)
 PLAG1 Finger 3 HKC . NYCEKMFHRKDHLKNHLHT . HDPNKEK (SEQ ID NO: 119)
 PLAG1 Finger 4 FKCEE . CGKNYNTKLGFKRHLAL . HAATSGD (SEQ ID NO: 120)
 PLAG1 Finger 5 LTC . KVCLQTFESTGVLLLEHLKS . HAGKSSGGVKEKK (SEQ ID NO: 121)
 PLAG1 Finger 6 HQCEH . CDRRFYTRKDVRRRMVV . HTGRKD (SEQ ID NO: 122)
 PLAG1 Finger 7 FLC . QYCAQRFGRKDHDLTRHMKKSHNQELL (SEQ ID NO: 123)

PLAG1 Consensus . .C. . . .C. . . .F. . . .L. . . .H. . . .H.

C2H2 Consensus FxCxxxxCxxxFxxxxxLxxHxxxxHxxxxx
Y

FIG. 4B

13/19

PLA2 cDNA and Open Reading Frame

[FIG. 8 A]

AGGCTCAGATAAAGACCTTAAGATAACTTCTGTCTCCCTTCTAGGTATTGCATAGGAATCAGAGGA
 GTTAATCTTGTCTCTCAAGGTTGAATCTTCAGACAACCTCTGGGACTCGGCTCCCTGCCCTGCCAGCA
 GATEGTTCCCTGTCACTCAGTAGGCATATGGCTAACCCATTCTCCCCAGAAATCTCACCACTGTGAGA
 AGACGTTCAACCGGAAGAACCCACCTGAAACCAAGGACCCAGGACGGCTAACAGGAAACAAAATGGCCTTGGGTG
 AGGAGTGTGGGAAGAAAGTACAACCCATGGCTGGGGCTATAAGAGGGACCTGGCTCCATGGGCCAGGAGTGGG
 ACCTCACCTGTGGGTCTGTGCCCTGGAGCTAGGACCCCTGGCTAACCTGGACCCACCTCAAAGCCATGCCG
 AAGAGAAGCCCTAGGGCAACCTGGGACCCAGTGGGACTGGGACCACTGTGAAGATGCTTCTAACACCCGG
 AGGATGTGCCGACGCCACCTGGTGGTCCACAGGATGCAAGGACTTCCTGTGCCAGTGGGAGATTG
 GGGCAAGGTTCACCTCACCCGGCATACCAAAAGAAGACCCACTCACAGGAGCTGATGAAGAGAGGCTTGAGACCC
 GAGACCTTCIGGCCACCTTCCACACCATTCTGCCCTCATCCAACTGAAAGGGCTTGTGCAACTGAGGTCC
 TAGGAGCTTCTGCCAGAACGGGCTTGTGCAACTGAGGTCCAGTGGCTGGCCAGGCTGGCCAGGCTGGC
 AACAAAGCCGCCAGGCTATGGAGGCCCTGGCCAGACTGCCCTGGCCCTCCACCCCTCCACCCCTGGCT
 CTCGCCACCCCTCCAAATCACAGTACAACCACTCTACCCCTACACTCCCCACTGGCAAGGCCCTGCCCTCA
 AAGCAGATACTAAAGGTTTTCGCAATATCAGTTGTTGAGGACTTGTGCAAGAGGCCCTAGTCACCTCAA
 AGCTCAACCCAGGTITGTATCTGGCTAACGGAAATGCTGTGAAAGTAAAACCTGCCCAAGGAGCTGCC
 CTGTAACCTAACAAATACCTGCCCTCTGGACCTGTGCCCTGGGGCTCTGGGGAAATCTTGGCC
 CCCAAATAACCTTGGGAATAGGACTCTGGCCTGGGCACTGGCTGGCCAGCTGCCCTGGGG
 GGCAGCAGGCAAGAACCCCACCTGCCATGCCCTGGGCACTGGCTGGCACTGGCTGG
 ATGTGGTCTCAGCTGGCACTGGCTCTGCCATGCCCTGGGCACTGGCTGG
 TGTATTTTCCGTATCTGGAGATTTAAGAAGGCAATTAAATGTCAGTTACAATATGAGAAAGATTGGAA
 AACGAGACTGGGACTATGGCTTATTCTGATGACTGGCTTGAGATGATAAGAGAAATCTCGAAACTGCA
 GTGCCAATCTGTCTGAGGTGTCATGGCTAACCAATTAAATGAAACGGGTGTTCTGTAATCCA
 ATTGTCAACCAACATCCAAATGAGGGCTGCTATATAAGTGTGTCATGG
 CCATGGATCCATAATGTTAAACTTAATCTGGGAGAATTCTACCTTCA
 TTCTCTCCAAATCTGGGAGAATTCTACCTTCAAAATTAACCTT
 TCTGGGATTCTACCTTCAGGGTGGATGTTAGTTACTATACCATAG
 CATATACTTTCTGGAGCAATAGAGTTCTCCATTACAGAAGCATT
 ACAAGATGCTGCAATGTGAGTTACATTCACTTCACTGTAACGGT
 AGAAAAAAATCACTGTGTAACCCAGGTAAAGTGTAAATT
 CTGACTTTAATATGATTATATTAAAGGGAAATTAACTGG
 TATTAAACAAAGAATTTCCTTGGCTGCTAGCTAACGG
 TTGTTTGTAAATCACAATAAAATGCAATTGTAATT
 GTTAAACATGTAACATAATCTGTGAAATTGGTATCT
 TTTAGGCTTTCGGTTAGGGCTTATGTT
 TCTTGCAATT

(SEQ 10 No: 124)

14/19

PLAG2 protein

MATHSPQKSHQCAHCEKTFNRKDHLKNHLQTHDPNPKMAFGCEECCGKKYNTMILGYKRHLALHAASSGDLTCGVCAL
ELGSTEVLLDHLKAHAEKPPSGTKEKHKHQCDHICERCFYTRKDVRRLVYHTGCKDFLCQFCQAQRFGRKVHLTRH
TKKTHSQELMKESLQTGDLLSTFHTISPFSFQLKAALPPFPFLGASAQNGLASSLPAEVHSLTILSPPEQAAQPMQP
LPESLASILHPVSPPGSSPPPLPNHKYNTTSTSYSPLASLPLKADTKGFCNCISLFFDILPLQEPQSPQKLNPQFDLA
KGNAGKVNLPKELPADAVNLTIIPASLDLSPLLGFWQLPPATQNTFGNSTLALGPGESLPHRLSCLGQQQQEPLL
AMGTVSLGQLPLPPIPHVFSA GTGSAILPHFHHAFR.

(SEQ ID NO: 125)

FIG. 8B

15/19

FIG. 9

Nucleotide sequence of cDNA of CRNNB1 (β -catenin)

1 aaggcctctcg gtctgtggca gcagggcttgg cccggccccc ggaggggaga gcgaggggag
 61 gccccggacgg aggaagggtt gaggaggcgc ttcatgtcccc gcccggccgc caccggcagg
 121 cgaggacggt cgactcccg cggcggggagg agcctgtcc cctgagggtt tttgaagtat
 181 accataacaac tggtttgaaa atccaggcgtg gacaatggct actcaagctg atttgatgg
 241 gttggacatg gccatggaaac cagacagaaa agcggctgtt agtcactggc agcaacaaatgc
 301 ttacctggac tctggaaatcc attctgtggc cactaccaca gctccttc tgagtgtttaa
 361 aggcaatccct gaggaaaggg atgtggatac ctcccaaggc ctgttatgtt gggaaacagg
 421 attttctcag tcccttcaatc aagaacaatgtt agcttatattt gatggacatgtt atgcaatgtac
 481 tcgagctcag aggttacgg ctgctatgtt cccttgagaca tttagatggg gcatgttgg cagcggttgg
 541 cccatctaca cagtttgatg ctgcctcatcc cactaatgtc ctgaaccatc

 601 acagatgctg aaacatggcag ttgttaaactt gattaactat caagatgtatg cagaacttgc
 661 cacacgtgca atccctgaaac tgacaaaactt gctaataatgac gaggaccagg tgggttgtttaa
 721 taaggctgca gttatggtc atcagttttc taaaaggaa gcttccaggac acgcttatcat
 781 gcgttctct cagatgggtt ctgttatgtt acgttacatgtt cagaataacaa atgatgttaga
 841 aacagctctg tggacccgtt ggacccgttgc taacccccc catcatcggtt agggctttact
 901 ggcccatcttt aagtcctggag gcatccctgc cctggtggaaa atgctttttt caccagggttga
 961 ttctgtgtt ttttatggca ttacaactt ccacaaccc ttattacatc aagaaggagg
 1021 taaaatggca gtgcgttttag ctgggggttgc gcaaaaaatgtt gttgccttgc tcaacaaac
 1081 aatgtttaaa ttctttggcta ttacacacaa ctgccttcaa attttagctt atggcaacca
 1141 agaaagcaag ctcatcatc tggcttagtgg tggaccccaa gtttttagtaa atataatgtg

 1201 gacctataact tacggaaaaac tactgtggac cacaaggcaga tggtgttggaaagg
 1261 ctggctcttagt aataagccgg ctatgttga agctgttggaa atgcaaggctt taggacttca
 1321 cctqacagat ccaagtcaac qtcgtttca gaactgttca gaaatcttttca
 1381 agatgtgca actaaacagg aaggatggaa aggtctccctt ggactcttttggatccatctt
 1441 gggttcagat gatataaaatg tggtcacccgt tgcaatgttgc attctttcttca accttcactt
 1501 catabattt aagaacaaga tggatggatc ccaagtgggtt ggtatagagg ctcttggtcg
 1561 tactgtccctt cgggtgtggg acaggaaaga catcaactgag cctgcctatctt gttgccttgc
 1621 tcatctgtacc agcqgacac aagaaggcaga gatggcccaag aatgcgttca
 1681 tggactacca gttgtggta agcttttaca cccacccatcc cactggccctt cgtataaaggc
 1741 tactgttggaa ttgatttcgaa atcttgcctt ttttgcgttgc aatcatgtc aatccggca

16/19

FIG. 9 (continued)

1801 gcagggtgcc attccacgac tagttcagtt gcttgttcgt gcacatcagg ataccacgc
 1861 ccgtacgtcc atgggtggg cacagcaga atttgcggca tggaaagaat
 1921 agttgaagggt tgtaacccat cccattcacat ccttagctcg gatgttcaca accgaattgt
 1981 tatcagagga ctaaaatacca ttccattgtt tgtgcagctg cttattctc ccatgtgaaa
 2041 catccaaaga gttagtgcag gggccctctg tgaacttgcgt tgtaacttgcgtt
 2101 agctattgaa gcttgaggag ccacagctcc tctgacagag ttacttcact cttagyaatga
 2161 aggtgtggcg acatatgcag ctgcgtgttt gtcccgaaatg tctgaggaca agccacaaaga
 2221 ttacaagaaa cggcttccag tttagtgcac cagctctc ttcagaacag aggcttatggc
 2281 ttggaaatqag actgtgtatc ttggactttgaa tattggatqcc caggagaac cccttgata
 2341 tggccaggat gatccttagt atcgttcttt tcactctggt ggatatggcc aggatqgctt
 2401 gggatggac cccatgtgg aacatgtgg aacatgtggat gggatggccac caccctgggtg ctgacitaccc
 2461 agttgtatgg ctggccagat tggcccatc tggggcatgc ccaggaccc
 2521 tgacagcaat cagctggcc ttgttgcatac tgaccgtatac atcattttt
 2581 tcgtgaacttg catgtgtat ggcgtgtaga gttgtgtaga ggtggggctgg
 2641 tatctcagaa atggccgtac acactaacca agctgatgtt cctatggaa caatgtgaatg
 2701 aaacttttg ttcttggccct ttcttggatcgg gggatgtggaa tacaatggaa tttttggatg
 2761 gactcaagaa gtgaaagaatg cacaagaatg gatcacaaga tggaaatttag caaacccatg
 2821 ccttgcttgt taaaattttt tttttttttt ttttaagaat atctgtatg gtactgactt
 2881 tgcttgcctt gaagtagctc ttttttttt tttttttttt
 2941 tttaaagtctc tcgtatgtt aagttatgtt gaatactgtt
 3001 agaaattgtgat aatgggttag aacactaattt aatttgcattt aatttgcattt
 3061 tgaataaagt gtaacaattt tgtagccccc ttgtataaaaa tagacaaataa gaaaatggtc
 3121 caatttagtt ccttttttaat atgtttttt gatcttatttca gatcttatttca
 3181 tcaaaaactt tttttttttt gatggatat gtagggtag ggttaaatcag taagagggtgt
 3241 ctgttttgg acagtttac agttgcctt tatccaaag ttgtgttaac ctgctgtgtat
 3301 acgatgcttc aagagaaaat gcgggttataaa aaaatggtttca agaattaaac tttaatttca
 3361 tt

(SEQ ID NO: 126)

FIG. 10

17/19

STSs used to generate the 300 kb cosmid contig mapping at chromosome 8q12 and encompassing PLAG1

STS CH129

GAATTCTAAAACCATTTATAAATCATACTGAATCCCAGAACAAATATTTAAACAACCTTAA
AAAAAAGAACAAAATAAAAGCAAAACATTTAAGAGTGTAGATTCTTGAAATTAAAGG
ACATACTTACCCCTGTAGT (SEQ ID NO: 127)

STS CH280

GAATTCTGCACCGGTTTTCTTATCAGTGTGGGCTGATGTCCATTAACTGTGGTGTAAAT
TTGAGTATAGTCACTGACTGATTCTAGATATTTCAAGAGGGTCAAGACCTTTCTAAGACCT
TTATATGTGGTTGAATTCTTGTCTTGGTTACAGAAGGTATATTAGCAAAGCATTGG
TGTTGAAGCTTGGTCTGTGATCTAGT (SEQ ID NO: 128)

STS CH33

GAATTCTTTTATTTGACAAGCACATGAAGCCTTATCAGACGGAGGCCCTCAATCCTTTGGC
TGGGTTTATAAGCAGGTAGCGCTAGACCTCCCATTCTACATAAGCTGATGGCACGGTAA
TAGCTGGGGTTTCTCACAAAGTCAAAGACAAATTGTCTGTTCAAGCGTGTGAAACAGTT
WAAWACGTTGAGGTCTCTCTTGTCTAGGCCATTTGGCTCAGACATTCTACAGMCA
(SEQ ID NO: 129)

STS EM156

TCTGAGCAACAAGAGCGAAACTCCATCTAAAATATATATATAGTAATTGTTGTCA
TAATATTAATGTAGTAGCAGCAGCACAGTCATGGTAGCAATTGCTCTATTGGGAGGCA
ACTTATAATTATTAACTGTGAATATCTTGA AAAATGTTTNGCAGAMGTATGTTCCA
TTCCTGACTGGMGCTCATATAAACCCATCTCTGAATAGCGCAAGGACTTTGAAAA
AGTGTCTGAGTAAAC (SEQ ID NO: 130)

STS EM195

ACAATCAATTTAGAAAGTAATCATTCACTACCCAAACTGAAACCCGTACCTGTTAGCA
CTCACTCCCCTTTCATTTACTTTTATTATTTATTTGAGAGAGACTTGCTCTATC
GCCCNNGCNVCAGTGCAGTGGCACAACTCACTGCAACCTCTGCCAGGGTCAA
GTGATTCTGTGCCTCAGAGTCCCAAGTACCTGGATTACAGGCATAAGCCACACGCCTGG
CTAAATTTGTATTTCACTGAGTAGTGACGGGTTTACCATGTTGCCAGGCTGTCAA
CTGACCTCAGGTAAATCCACCCCTCCTCAGCCTCCAGAGTTCTGGATTACAGGCGTGA
GTGCCTGGCTCATTTATTTAGAGATGAGATCTCACTCTKWTGCCCAGGCTCAGTGC
ATTGGCGTCATGATGGCTCACTGCAGGCTTCAGCTCTGGCCTCAAAGCATCCTCCGCCTCA
(SEQ ID NO: 131)

STS EM208

CTAGGGCGACAGAGCAAGACTCTGTCTCAARGAAAAAAVRAAAAAATTACCAAAAC
TGACTACAGAAA VHGVARGGTTGAATAGCCTACATTGGVAAATAATTTTATTATAAT
TAAAGATATTTTATAAAAVVTACTCTAGGCCATAAGGCTTCACAGGTTAATTGTATTAA
TATTTAAGGAAAAATAACCAATCTTATTCAGTCTTCAGAAAATAGAGGCGTATCCA
TTTTCTAACTCATTTAAGAAATAGCATCTAATATCAAAGCAACAAAGGMCTTGC
AAAGAAGAAGGGAGAAGGAAGAGGAAGAGGAGGAGAAAGGAAGCAGGAGATGGAGAAGA
AGGAAGCCAGGTACAGTGCATGAAACATAAACACAATTAAAAGTATTAM
CAGGCTGGCTTGGCTCTCACCGTAATCCCAGCMCTTGGAGGCCAAGGCAGGTGG
GHCACAAGGTCAAGGGTTCGAG (SEQ ID NO: 132)

18/19

FIG. 10 (continued)

STS EM216

TACTRACGTGCTGCAGTTBTC_cTGCAGTCAGTCCAGAGGTCAATTCTAACGTTGCACTAT
 GGGKCTATTTAATAGGTTCTAAAGAACAAACATATCTCTTAbAGTTACTCAGAGGGTAC
 ACAATGATGATGTCACACAATTAAATTACCTATTAAAGACTGAAATCCAGCAATGCATAGKGTG
 TGGACTTTACGCACATCCAGAAAAAGTTCTAGCACAAATTGTTTHGTMYATATATTTCA
 AAGCCATAGAAAACACTATTAAAGCCCTCCCTAACACTTAGGGATGCAAAaTCAATAT
 (SEQ ID NO: 133)

STS EM317

GACCAACAAAGGCACACAAAGATTGGTTGCTTCTGAAGAATCTAAAATGGCATTGGGTAT
 AGGAGTGGGAAGCAAGTTGATAGGCACCTACACTTAAGATAATTGTCAATTATAACAA
 TAATTTTAAAGTTAACGCCCTTCTGACATGACACGTCCATGGGTCTTCACCCTTYTT
 KTCTCCTSCAGAGCTCCAGTCTGCCYYTTKSCTTGAGCTCCAAAMCAGTGAWTCCCC
 TGAAGTTACCTAGMCCCACATACAGTTGTGACTCCCTAWMCcGGGGTACCyTCCCATGY
 CTGGCTAATAyTGABTYTTGTDACCCTGGCTCTGTGTTACTACATTGTTTARTGGAAT
 TWATWAARGGGAAGCCTATCAA (SEQ ID NO: 134)

STS EM416

GAGCAACTGAaCDNAGATTGGGTGAGGTAAGATGTGGGCTGCACAGGTGAGGCTGGAGAGGT
 GGGGAGTGCCTCCAGTCGGGGAGAAGAAGAAAAGGGCAGACTAGGGTAGAAATGCTTATW
 ACTcCTGTGACTGGAGCTGATGGTGTCTTAAGGAAAGTGGTGGGAAGGGAGGVCTGCAGAAA
 GGCAAGGCTGGAGTCGACTGAAGGCTGGAGAGGCCACTGCTTAACAAGTGTAMCTGGAGATG
 GAAGGGGCTGCAGGACAGGTCACTCAGCCAGTKGTGGARGCAATCTCACC
 (SEQ ID NO: 135)

STS EM443

TTGATATTGTTCTAACTCCACATTAACATTGACAAATACTCTAAATTGTAGCTACCACATCT
 GTTACGTAGCTAGCAGGTACCCCTAACAGCAATGGGTAGCTTTGAGTAGCGTTCAACCAT
 GTTACCTCGAGTACGGTGTGGTGAGGCCAGACGCAGATGGAGAGAAAGAAACAGAATCGAGC
 ATTTCCATTGGTGTCTCACAGTCCCCAGGGCAAACACAGCACAGCCTACAGGACCATG
 AAGGGGAGCACTGGGTCACTCATGAAGCAGGGAGGTCGGGCCAGTGGTGGGGGgCCTTAT
 GTGTTTCCTCAGGAAGGAATGGCAAGGCAGGGTAAGCATGTTAGGACTGGTTAATTGAA
 ATAACCTCAGGGGGgCTCTAGGGCCTGgRGGCTGCCCTGGTTCTGGTACCYgGSCCTG
 (SEQ ID NO: 136)

STS EM46

ATATCAATCTTGGGTCTATGTATGTTTTGCTTCC_cAGTGTCCAGGCATGATGCTAAG
 GATATAGTGGATGATGAAATATATGCTTGCTGAATATGGGAATAAGAATTATTTATGATCA
 GAHTTTTTTTTGAGATGGAGTCTCGCTCTGTCACNMaGGCTVGTGTCAGTGGCATGAT
 CTCAGCTCACWGCAACCTCTGVCTCCTGGTTCAAGTGATT (SEQ ID NO: 137)

STS EM47

GTAGAGACACACTAGGCATGCACAGACCAGTGCAGAAATGAACAAATATTGTTACATGTGTAG
 TTCTTTATGGTTACAAAACCTCTCCAGCCATTATCTTCTTCAGCCTTATAAAAGACAGAG
 CATATTTATTATCCTCATTACCTWHTCTAGTAAGGCATTCTTCTTACTAGA
 GATATAAGGCTTAGGAAAAAGTGAATACTACGATAAAATGAATACTAGGAAAAGACATCACA
 ATCACAAATTATTAATATCAGAAACAGDTTTAAGAATAAAATWTTCAAWAARgAAA
 (SEQ ID NO: 138)

19/19

FIG. 10 (continued)

STS END2

TAATTTATCACTACGGAATTCTGTGCAGTGAGATCAAAGAGCTGTATGCCATAATGTGA
TTTTACAGCCATTTGTAAAAACTGTAAAATACCTTAATATTCAATTGGCTTAAGGTACAT
TGAGGACTTCTGGTTGAAAATTACAGAGTGGTGAAGATT C (SEQ ID NO : 139)

Known STSs

PENK

D8S285

MOS

STSs part of PLAG1

EM265

KK64

KK63/EM209

KK55/CH283

EM224

EM387