Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes

Présentation d'un article : On shape optimization of optical waveguides using inverse problem techniques Thomas Felici & Heinz W Engl

Alexandre Vieira

INSA de Rouen

20 février 2015

Shape Opti. Waveguides

Alexandre Vieira

- Formulation du problème
- Solution du problème direct
- Résultats numériques et interprétation

- Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

numériques et interpréta tion

- Formulation du problème
- Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Équation étudiée

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

$$\Delta U + n^2 U = 0$$

Figure: Profil du taper

Recherche de conditions au bord

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

$$\begin{cases} \Delta U + n^2 U &= 0 & \text{pour } (x,z) \in \Omega \\ U|_{\Gamma} &= 0 & \text{(murs r\'efl\'echissants)} \\ \frac{\partial U}{\partial z} + i \sum_{k=1}^{\infty} \beta_k^{(L)^2} \left\langle U, \tilde{U}_k^{(L)} \right\rangle \tilde{U}_k^{(L)} &= 2i \sum_{k=1}^{\infty} \beta_k^{(L)^2} \left\langle U_I, \tilde{U}_k^{(L)} \right\rangle \tilde{U}_k^{(L)} & \text{sur } \Gamma_L \\ \frac{\partial U}{\partial z} - i \sum_{k=1}^{\infty} \beta_k^{(R)^2} \left\langle U, \tilde{U}_k^{(R)} \right\rangle \tilde{U}_k^{(R)} &= 0 & \text{sur } \Gamma_R \end{cases}$$

Problème d'optimisation

Shape Opti. Waveguides

> Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$\langle \tilde{U}_k, \tilde{U}_k \rangle = \frac{1}{\beta_k}$$
 (2)

On cherche à maximiser :

$$P(n^{2}) = \beta_{1}^{2} |\langle U, \tilde{U}_{1}^{(R)} \rangle|^{2} = \beta_{1}^{2} \left| \int_{x \in \Gamma_{R}} U(x, z_{R}) \tilde{U}_{1}^{(R)}(x) dx \right|^{2}$$
 (3)

⇒Formulation difficile à exploiter.

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interpréta tion

- 1 Formulation du problème
- Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Représentation locale

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

$$L_t(U) = \frac{\partial^2 U}{\partial x^2} + n^2(x, z)U$$

$$L_t(U_k) = \beta_k^2 U_k \text{ dans } \Omega_z$$
(4)

$$L_t(U_k) = \beta_k^2 U_k \text{ dans } \Omega_z$$
 $U_k|_{\partial\Omega_z} = 0$ (4)

$$U = \sum_{k=1}^{\infty} (a_k + a_{-k}) U_k$$

$$\frac{\partial U}{\partial z} = \sum_{k=1}^{\infty} (a_k - a_{-k}) i \beta_k U_k$$
 (5)

Représentation locale

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interpréta tion

Approche par problèmes inverses

Puissance dans le kème mode : $|a_k|^2$ et $|a_{-k}|^2$. Ainsi :

$$P(n) = |a_1|^2$$

Longue démonstration pour avoir :

$$\dot{a}_k(z) - i\beta_k a_k(z) = \sum_{j \neq k, 0} r_{kj}(z) a_j(z), \ k \neq 0$$
 (6)

avec $\beta_{-k} = -\beta_k$ et

$$r_{kj}(z) = \frac{\int_{\Omega_z} \frac{\partial n^2}{\partial z} U_k U_j ds}{2(\beta_k - \beta_j)}$$

pour tout $j \neq k$, $j, k \neq 0$

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

- Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Discrétisation

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Figure: Profil du taper : discrétisation pour le problème d'optimisation

Résultats numériques

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Figure: Profil du taper : résultat avec N=48. (a) Forme initial du taper (b) Forme optimale (c) Perte d'énergie en fonction du nombre d'itérations.

Résultats numériques

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Figure: L'énergie est préservée grâce à la resonnance avec les autres modes

Un problème mal posé

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

- Variations arbitrairement grandes sur l'indice de refraction
 n ⇒ Une solution U toujours aussi proche qu'on veut.
- Or, dans l'algorithme d'optimisation, la fonction objectif et les contraintes ne dépendent que de *U*, et non de *n*!
- Point de vue physique : l'onde ne voit pas les pics plus petites que sa longueur d'onde
- Pour gagner en stabilité : réduire l'espace de recherche (ajouter de la continuité par exemple)
- À contrario, on pourrait plutôt essayer de chercher la distribution des indices provenant d'une certaine mesure.
 - ⇒ approche problème inverse

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interpréta tion

- 1 Formulation du problème
- 2 Solution du problème direct
- 3 Résultats numériques et interprétation
- 4 Approche par problèmes inverses

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$1 = \sum_{k \in RB} |a_{-k}(0)|^2 + \sum_{k \in RB} |a_k(z_R)|^2$$
 avec $RB = \{k \in \mathbb{Z}^* | eta_k^2 > 0\}$

Pour rappel:

$$U(x,z_R) = \sum_{k=1}^{\infty} a_k(z_R) U_k^{(R)}(x)$$

Égalité seulement si :

$$\begin{bmatrix} |a_1(z_R)| \\ |a_2(z_R)| \\ |a_3(z_R)| \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Shape Opti. Waveguides

> Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interpréta tion

Approche par problèmes inverses

Avantage numérique : on prend en compte tous les a_k ! Dépendance non linéaire de n, et pas forcément de solution. D'où : approche par moindre carrés, et utilisation de la méthode de Newton.

$$\frac{\partial \mathbf{a}}{\partial n}\Big|_{n} \delta n = \mathbf{a}_{1} - \mathbf{a}(n) \tag{8}$$

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interprétation

Approche par problèmes inverses

$$\frac{\partial \mathbf{a}}{\partial n}\Big|_{n} = UDV^{T}$$

Instabilité numérique reglé par troncature des valeurs singulières du jacobien : choix de $0<\alpha<1$ et :

$$r := \max\{i | d_i \ge \alpha d_1\}$$

Et:

$$D_{red} = diag(d_1, ..., d_r, 0, ..., 0)$$

$$\delta n = V D_{red}^{\dagger} U^{\dagger} [\mathbf{a}_1 - \mathbf{a}(n)]$$
(9)

Shape Opti. Waveguides

Alexandre Vieira

Formulation du problème

Solution du problème direct

Résultats numériques et interpréta tion

$$\min F(\lambda) = \|\mathbf{a}_1 - \mathbf{a}(n_k + \lambda \delta n)\|_2^2$$