# Pokročilá kryptologie Algebraická kryptoanalýza

Mgr. Martin Jureček

České vysoké učení technické v Praze, Fakulta informačních technologií Katedra informační bezpečnosti

"Breaking a good cipher should require as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type."

C.E. Shannon, 1949

#### Úvod

- Algebraická kryptoanalýza, dále zkráceně AK, je nové odvětví kryptoanalýzy, které si v poslední době získalo velkou pozornost.
- Princip AK spočívá v převodu problému prolomení kryptosystému na problém vyřešení soustavy polynomiálních rovnic nad konečným tělesem.
- Uplatnění AK je hlavně v symetrické kryptografii:
  - příklady blokových šifer: AES, DES
  - príklady proudových šifer: E0 Bluetooth, Toyocrypt

ale AK byla aplikovaná i v asymetrické kryptografii.

#### **Postup**

- Postup algebraické kryptoanalýzy se rozděluje do dvou kroků:
  - 1: Ze specifických vlastností dané šifry se odvodí soustava polynomiálních rovnic nad konečným tělesem.
  - Aplikuje se některý postup pro výpočet řešení soustavy, ze kterého se potom odvodí tajný klíč šifry.
- Ale u AK existuje fundamentální problém: vyřešení soustavy polynomiálních rovnic nad konečným tělesem je NP-úplný problém.
- Proč bysme problém prolomení šifry měli převést na problém, pro který neznáme rychlý algoritmus(t.j. s polynomiální složitostí), který ho vyřeší?

#### 1.krok

- První krok AK spočívá ve využití struktury šifry a všech jejich aktivit a z nich se sestaví soustava rovnic, která chování šifry pro konkrétní případ popisuje.
- Soustavu rovnic uvažujeme nad konečným tělesem, obvykle nad GF(2).
- Cílem je získat co nejmenší soustavu obsahující polynomy s co nejnižšímy stupněmi, pričemž postup, jakým se odvodí rovnice je závislý na konkrétní šifře.
- Když by soustava obsahovala jen lineární rovnice, tak použijeme např. Gaussovu eliminaci, která má kubickou složitost a poměrně rychle se dopracujeme k výsledku.
- Ale dobře navrhnuté šifry poskytují soustavu polynomiálních rovnic, které nedokážeme vyřešit v krátkém čase.

#### 2.krok

- Hlavní částí AK je právě 2.krok, ve kterém se vyřeší soustava polynomiálních rovnic nad konečným tělesem.
- Pro lepší představu uveďme, že v případě AES-128 soustava obsahuje přibližně 8000 rovnic s 1600 proměnnými a v případě AES-256 až 22400 rovnic s 4480 proměnnými.
- Existuje několik postupů pro výpočet takových soustav nelineárních rovnic, ale žádný z nich není rychlý.
- Když by pro tento problém existoval efektivní algoritmus(t.j. s polynomiální složitostí), tak by platilo, že P=NP, což by se považovalo za překvapující.

### Postupy řešení soustavy

- Jednoduchým, ale ne příliš efektivním postupem je postup typu "uhádni a odvod" ("guess and determine").
- Spočívá v tom, že "uhádneme"(spočítáme pomocí hrubé síly) hodnoty vhodných proměnných a zbytek soustavy už dopočítáme jednodušeji.
- Dalšími příklady postupů jsou: linearizace, kterou si později uvedeme na příkladě, dále XL algoritmus a v neposledním případě Gröbnerovy báze.
- Gröbnerovy báze se považují za velmi perspektivní metodu a úspěšně byly aplikované např. na AES

### Aplikace AK na některé typy proudových šifer

- Uvedeme si příklady použití AK na tři třídy proudových šifer:
  - LFSR(Linear Feedback Shift Register) šifra složená jen z jednoho LFSR
  - NLCG(Nonlinear Combination Generator) šifra složená z vícerých LFSR a nelineární booleovské funkce, podle které se počítá výstup(jejím vstupem jsou jen výstupní bity registrů)
  - NLFG(Nonlinear Filter Generator) šifra složená jen z jednoho LFSR a nelineární booleovské funkce, podle které se počítá výstup(jejím vstupem jsou všechny bity registru)
- Každý uvedený příklad AK bude typu "known plaintext attack", což implikuje, že můžeme předpokládat znalost keystreamu.

### Příklad použití AK na LFSR

Uvažujme následující jednoduchý LFSR délky 4:



• Naší úlohou je získat hodnoty  $x_0, \ldots, x_3 \in GF(2)$ .

|   | posun | stav LFSR                                    | výstup                | rovnice   |
|---|-------|----------------------------------------------|-----------------------|-----------|
|   | 1.    | $(x_3, x_2, x_1, x_0)$                       | <i>x</i> <sub>0</sub> | $x_0 = 0$ |
| • | 2.    | $(x_0\oplus x_2,x_3,x_2,x_1)$                | <i>X</i> <sub>1</sub> | $x_1 = 1$ |
|   | 3.    | $(x_1 \oplus x_3, x_0 \oplus x_2, x_3, x_2)$ | <i>X</i> <sub>2</sub> | $x_2 = 0$ |
|   | 4.    | $(x_0,x_1\oplus x_3,x_0\oplus x_2,x_3)$      | <i>X</i> <sub>3</sub> | $x_3 = 1$ |

V tomto případě je už soustava přímo vyřešená.

#### Příklad použití AK na NLCG

Uvažujme následující případ složený ze dvou LFSR:



a nelineární funkce  $f(v_1, v_2) = v_1 + v_1 v_2$ , kde  $v_1$ , resp.  $v_2$  je výstupní bit prvního, resp. druhého registru.

• Cílem je spočítat hodnoty  $x_0, \ldots, x_4 \in GF(2)$ .

### Odvození soustavy

• První registr si označme  $R_1$  a druhý  $R_2$  a jejich výstupní bity po řade  $v_1$  a  $v_2$ 

| posun | stav R <sub>1</sub>                                           | stav R <sub>2</sub>     | <i>v</i> <sub>1</sub> , <i>v</i> <sub>2</sub> |
|-------|---------------------------------------------------------------|-------------------------|-----------------------------------------------|
| 1.    | $(x_2, x_1, x_0)$                                             | $(x_4, x_3)$            | $x_0, x_3$                                    |
| 2.    | $(x_0\oplus x_2,x_2,x_1)$                                     | $(x_3 \oplus x_4, x_4)$ | $x_1, x_4$                                    |
| 3.    | $(x_0 \oplus x_1 \oplus x_2, x_0 \oplus x_2, x_2)$            | $(x_3,x_3\oplus x_4)$   | $x_2, x_3 \oplus x_4$                         |
| 4.    | $(x_0 \oplus x_1, x_0 \oplus x_1 \oplus x_2, x_0 \oplus x_2)$ | $(x_4, x_3)$            | $x_0 \oplus x_2, x_3$                         |
| 5.    | $(x_1 \oplus x_2, x_0 \oplus x_1, x_0 \oplus x_1 \oplus x_2)$ | $(x_3\oplus x_4,x_4)$   | $X_0 \oplus X_1 \oplus X_2, X_4$              |

### Soustava polynomiálních rovnic

$$x_0 + x_0 x_3 = 1$$

$$x_1 + x_1 x_4 = 0$$

$$x_2 + x_2 x_3 + x_2 x_4 = 1$$

$$x_0 + x_2 + x_0 x_3 + x_2 x_3 = 0$$

$$x_0 + x_1 + x_2 + x_0 x_4 + x_1 x_4 + x_2 x_4 = 0$$

- Dokázali byste ji vyřešit?
- (např. z první rovnice je jasné, že  $x_0 = 1$ )

#### Příklad použití AK na NLFG

Uvažujme následující případ jednoho LFSR:



a nelineární funkce  $f(x_0, x_1, x_2, x_3) = x_0 + x_0x_1 + x_1x_3$ .

• Cílem bude opěť spočítat hodnoty  $x_0, \ldots, x_3 \in GF(2)$ .

### Odvození soustavy

| posun | stav registru                                  |  |
|-------|------------------------------------------------|--|
| 1.    | $(x_3, x_2, x_1, x_0)$                         |  |
| 2.    | $(x_0 + x_1 + x_3, x_3, x_2, x_1)$             |  |
| 3.    | $(x_0 + x_2 + x_3, x_0 + x_1 + x_3, x_3, x_2)$ |  |
| 4.    | $(x_0, x_0 + x_2 + x_3, x_0 + x_1 + x_3, x_3)$ |  |

#### Soustava polynomiálních rovnic

$$x_0 + x_0x_1 + x_1x_3 = 1$$

$$x_1 + x_0x_2 + x_2x_3 = 1$$

$$x_2 + x_0x_3 + x_3^2 = 0$$

$$x_3 + x_1x_3 + x_3^2 + x_0^2 + x_0x_1 = 1$$

Dokázali byste uvedenou soustavu vyřešit?



### Poznámky

- V případě verze NLFG platí, že stupeň generovaných rovnic je shora omezený stupněm nelineární funkce f.
- Odhad na maximální stupeň rovnic má pro AK velký význam, protože AK je efektivnější u soustav s nízkým maximálním stupněm.
- Důležitým faktem generování soustavy rovnic je ten, že tento krok nezávisí na konkrétních hodnotách(keystreamu).
- Proto sestavení rovnic můžeme vykonat ještě před samotným útokem a proto hlavním a výpočtově nejsložitějším krokem bude právě 2.krok - výpočet soustavy.
- Challenge: Zkuste sestavit soustavu rovnic pro šifru A5/1, která je složená z 3 LFSR a nelineárního prvku, který určuje, které registry se v aktuálním čase posunou.

#### Linearizace

- Nakonec si uvedeme jeden základní postup na řešení soustavy polynomiálních rovnic nazvaný linearizace.
- Podstatu algoritmu můžeme shrnout do následujících třech kroků:
  - 1: V každé rovnici každý výraz, který je ve tvaru součinu, nahradíme novou proměnnou.
  - 2: Vyřešíme soustavu lineárních rovnic(např. pomocí Gaussovy eliminace).
  - 3: Řešení dosadíme do původní rovnice a oveříme jeho správnost.
- Protože linearizací soustavy můžou vznikat lineárně závislé rovnice, běžně se používají různé vylepšení.

### Linearizace - příklad 1

Uvažujme následující soustavu nad GF(2):

$$x + xy = 1$$
$$x + y = 1$$
$$x + y + xy = 1$$

V 1.kroku algoritmu nahradíme výraz xy proměnnou z:

$$x + z = 1$$

$$x + y = 1$$

$$x + y + z = 1$$

- V 2.kroku lehce spočítáme řešení: x = 1, y = 0, z = 0
- V 3.kroku ověříme, že řešení je skutečně správné.



### Linearizácia - príklad 2

Nutnost ověřování výsledku ilustruje následující příklad:

$$x + xy = 1$$
$$x + y = 0$$
$$x + y + xy = 0$$

V prvním kroku nahradíme výraz xy proměnnou z:

$$x + z = 1$$

$$x + y = 0$$

$$x + y + z = 0$$

- Vyřešením soustavy dostaneme: x = 1, y = 1, z = 0.
- Ale po dosazení do 1.rovnice dostaneme: 1 + 1 \* 1 ≠ 1, takže ověřování výsledku je nevyhnutelné.