Divergence of a vector field

Let (M, \mathbf{g}) be an oriented smooth Riemannian manifold. We denote by "d" the (de-Rham) exterior derivative. Note that "d" does not require any connection to be defined, it only uses the smooth structure of the manifold. It is actually defined as a map

$$d: \Omega^k(M) \to \Omega^{k+1}(M)$$
,

where $\Omega^k(M)$ is the set of differential k-forms on M, such that:

- $\forall \alpha, \beta \in \Omega^k(M), \forall a, b \in \mathbb{R} : d(a\alpha + b\beta) = a(d\alpha) + b(d\beta)$
- $\forall \alpha \in \Omega^k(M), \forall \beta \in \Omega^l(M) : d(\alpha \wedge \beta) = d(\alpha) \wedge \beta + (-1)^k \wedge (\beta)$
- $d \circ d = 0$
- If $f \in C^{\infty}(M) = \Omega^{0}(M)$, then $df = f_{*}$ where $f_{*}: TM \to T\mathbb{R}$ denotes the induced push-forward map of f.

For a vector field \boldsymbol{v} and a k-form α on M, we denote by $\iota_{\boldsymbol{v}}\alpha$, the contraction of \boldsymbol{v} with the first index of α . Let $d\mathrm{Vol}_g$ be the Riemannian volume form of (M,\boldsymbol{g}) . In a local coordinates system $\{x^a\}_{a\in\{1,\dots,n\}}$, it writes $d\mathrm{Vol}_g=\sqrt{\det \boldsymbol{g}}dx^1\wedge\dots\wedge x^n$. Finally, we can define the divergence of a vector field \boldsymbol{v} based only on the smooth structure and the Riemannian metric of the manifold to be the unique function satisfying

$$d(\iota_{\boldsymbol{v}}(d\operatorname{Vol}_{q})) = (\operatorname{div}(\boldsymbol{v}))d\operatorname{Vol}_{q}.$$

It turns out that this definition is actually equivalent to the definition of the divergence with respect to the **Levi-Civita** connection which in a local coordinate system $\{x^a\}_{a\in\{1,\ldots,n\}}$ writes

$$\operatorname{div} \boldsymbol{v} = v^a{}_{|a} = \frac{\partial v^a}{\partial x^a} + \gamma^a_{ab} v^b /,.$$

If we define the divergence based on any different connection, then it might not agree with the above.