Estimating the Neutron and Spallation Background Noise

• Same method for the rigidity correction: $F(R_c) = \frac{M(R_c)}{M(4.7)}$

Correction for new detector thickness:

$$\overline{B_{n+s}(E_{\gamma})} = F(R_c) \times \frac{x}{x_{sigma}} \times B_{fig}(E_{\gamma})$$

Using the detector example in the book for Sigma for a 2cm thick NaI detector

$$B_{n+s}(E_{\gamma}) = F(R_c) \times \frac{x}{2} \times B_{fig}(E_{\gamma})$$

Correction for material type:

Need to correct for new detector material, Q, and volume, V_{det} :

$$m_Q = \rho_Q V_{det} = \rho_Q x_{det} A_{det}$$

Where A_{det} is the detector area and x is the detector thickness.

$$B_{n+s}(E_{\gamma}) = F(R_c) \times \frac{m_Q}{m_{sigma}} \times B_{fig}(E_{\gamma})$$

Using the detector example in the book for Sigma for a 2cm thick NaI detector with $A_{Sigma}=2200cm^2$

$$B_{n+s}(E_{\gamma}) = F(R_c) \times \frac{\rho_Q x_{det} A_{det}}{\rho_{NaI}(2cm)(2200cm^2)} \times B_{fig}(E_{\gamma})$$

$$B_{n+s}(E_{\gamma}) = F(R_c) \times \frac{\rho_{Q} x_{det} A_{det}}{\rho_{NaI}(8800cm^3)} \times B_{fig}(E_{\gamma})$$