Examenul de bacalaureat național 2013 Proba E. d) **Fizică**

BAREM DE EVALUARE ŞI DE NOTARE

Filiera tehnologică - profilul tehnic și profilul resurse naturale și protecția mediului

Varianta 2

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracţiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	b	3р
2.	d	3р
3.	C	3р
4.	a	3р
5.	C	3р
TOTAL pentru Subiectul I		15p

Subjectul al II-lea

II.a.	Pentru:		3р
	reprezentarea corectă a forțelor ce acționează asupra corpului 1	2p	
	reprezentarea corectă a forțelor ce acționează asupra corpului 2	1p	
b.	Pentru:		4p
	$N = m_1 g \cos \alpha$	1p	
	$F_{t} = \mu N$	2p	
	rezultat final: $F_f = 1,5N$	1p	
c.	Pentru:		4p
	$m_{t} \cdot a = G_{t1} - T - F_{t}$	1p	
	$m_2 \cdot a = T - m_2 g$	1p	
	$G_{t1} = m_1 \cdot g \cdot \sin \alpha$	1p	
	rezultat final: $a = 0.5 \text{m/s}^2$	1p	
d.	Pentru:		4p
	$a = \Delta v / \Delta t$	2p	
	$\Delta V = V$	1p	
	rezultat final: $v = 0.5 \text{ m/s}$	1p	
TOTAL	nentru Subjectul al II-lea		15n

Subjectul al III-lea				
III.a.	Pentru:	3р		
	$E_{A} = E_{cA} + E_{pA} $ 1p			
	$E_A = mgh$			
	rezultat final: $E_A = 16J$			
b.	Pentru:	4p		
	$L_{F_f} = -F_f \cdot d $ 2p			
	$F_f = \mu N = \mu mg$			
	rezultat final: $L_{F_i} = -9 \mathrm{J}$			
C.	Pentru:	4p		
	$\Delta E_c = L_{total}$ 1p			
	$L_{total} = L_G + L_{F_f} $ 1p			
	$E_{cC} = mgh - \mu mgd$ 1p			
	rezultat final: $E_{cc} = 7J$			
d.	Pentru:	4p		
	$E_{cD} - E_{cA} = -\mu mgd $ 1p			
	$E_{cD} = 0$			
	$E_{cA} = m v_A^2 / 2$			
	rezultat final: $v_A = 3 \text{ m/s}$			
TOTAL pentru Subiectul al III-lea				