Model search for X-ray data

Prepared by Grigorii Antonov (me)

Motivation

- High amount of medical images
- Low amount of medical specialists
- Result: delays in declaration of diagnosis and start of curing

About data

- **Chest X-ray images**; were selected from retrospective cohorts of pediatric patients of one to five years old.
- The dataset is organized into 3 folders (train, test, val) and contains subfolders for each image category (Pneumonia/Normal). There are 5,863 X-Ray images (JPEG) and 2 categories (Pneumonia/Normal)
- **Unbalanced labels**: 70% of the "Normal" class

Data: https://data.mendeley.com/datasets/rscbjbr9sj/2

Project structure

Separate files for models, datasets and visualization operated by main file

Separate folders for images, code and data

Separate virtual environment to run the code without conflicts

Aim and methods

Aim: compare different lightweight models to find the most efficient one for the selected data; find the optimal classificator to distinguish normal condition from pathological

Methods:

Dimension reduction methods: PCA, tSNE, UMAP

Support Vector Classification

Convolutional Neural Networks

Transfer Learning

Different dimensional reduction method

Good separable clusters for tSNE and UMAP even on low-dimentional data

Nested Grid Search for optimal SVC Model

Best C for inner CV: 0.1 Best kernel for inner CV: linear Best score for outer CV: 0.961

Comparison of Models AUC scores

Baseline is represented by the "dummy model"

- as a dummy model sklearn module was used with most frequent option

Best AUC was shown with SVM (linear, C = 1) on raw data

Testing different RNN Models

The best accuracy I achieved: 75% (refined RNN with 2 conv and 3 fc layers)

Techniques: dropout, batch norm, Adam optimizer, data augmentation (a bit)

Transfer Learning with ResNet18

Either **refining** all parameters of the models as well as training only the last FC layer and **freezing** the other ones

Best accuracy achieved: 87% **Problem** - fast overfitting

Conclusion

Sometimes simple decision are better that fancy ones > do not overcomplicate