Segmentation: Clustering

Luis Francisco Gomez Lopez

FAEDIS

2024-03-16

Contents

- Please Read Me
- Purpose
- Consumer segmentation survey
- References

Please Read Me

• This presentation is based on (Chapman and Feit 2019, chap. 11)

Purpose

• Find groups of customers that differ in different dimensions to engage in more effective promotion

- age: age of the consumer in years
- gender: if the consumer is male of female
- income: yearly disposable income of the consumer
- **kids**: number of children of the consumer
- ownHome: if the consumer owns a home
- subscribe: if the consumer is subscribed or not

Import data

```
segmentation <- read_csv(file = "http://goo.gl/qw303p") |>
select(-Segment) # Remove Segment column to understand how it was build
segmentation |> head(n = 5)

# A tibble: 5 x 6
age gender income kids ownHome subscribe
(db) (db) (db) (db) (db) (db) (db)
```

Inspect data

segmentation |> glimpse()

Transform data

```
segmentation <- segmentation |>
mutate(gender = factor(gender, ordered = FALSE),
    kids = as.integer(kids),
    ownHome = factor(ownHome, ordered = FALSE),
    subscribe = factor(subscribe, ordered = FALSE))

segmentation |> head(n = 5)

# A tibble: 5 x 6
    age gender income kids ownHome subscribe
    <dbl> <fct> <dbl> <int> <fct> <fct> <fct> <
1 47.3 Male 49483. 2 ownNo subNo
2 31.4 Male 35546. 1 ownYes subNo
3 43.2 Male 44169. 0 ownYes subNo
3 43.2 Male 44169. 0 ownYes subNo</pre>
```

subNo

37.3 Female 81042. 1 ownNo

5 41.0 Female 79353. 3 ownYes subNo

Summarize data

 Ups the table is really big!!! Try it in your console to see the complete table

segmentation |> skim()

Table 1: Data summary

Name Number of rows Number of columns	segmentation 300 6
Column type frequency: factor numeric	3 3
Group variables	_ None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts	,
gender	0	1	FALSE	2	Fem: 157, Mal: 143	
ownHome	0	1	FALSE	2	own: 159, own: 141	
subscribe	0	1	FALSE	2	sub: 260. sub: 40	
Luis Francisco Gomez	Lopez (FAEDIS)	Segmentation:	Clustering		2024-03-16	9/38

Segmentation

- Classification (We will not cover this topic)
 - Supervised learning
 - Dependent variable is known and the goal is to predict the dependent variable from the independent variables
 - Naive bayes, Random Forest
- Classification (This topic will be covered)
 - Unsupervised learning
 - Dependent variable is unknown and the goal is to discover it from the independent variables
 - Model-based clustering, (We will not cover these methods)
 - Hierarchical clustering, k-means (These methods will be covered)

Clustering

- Grouping a set of observations in such a way that observations in the same group (cluster) are more similar to each other than to those in other groups (clusters).
- A notation of how "close" 2 observations is necessary to group objects where this is formalized using the concept of distance (know as metric¹ in mathematics)
 - There are many notations of distance (Deza and Deza 2016) where in this chapter the Euclidean and the Gower distance will be used

Euclidean distance: it can only be used for numerical data

•
$$x = (x_1, x_2, \dots, x_n)$$

•
$$y = (y_1, y_2, \dots, y_n)$$

$$\begin{split} d(x,y) &= \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \ldots + (x_n-y_n)^2} \\ &= \sqrt{\sum_{k=1}^n (x_k-y_k)^2} \end{split}$$

- An example:
 - 2 customers characteristic by age and income
 - a = (45, 3500)
 - b = (23, 1500)

Manual calculation

•
$$d(a,b) = \sqrt{(45-23)^2 + (3500-1500)^2} = 2000.121$$

Using R

```
customers <- tibble(Customer = c("a", "b"),
                   Age = c(45, 23),
                  Income = c(3500, 1500)
customers
# A tibble: 2 x 3
 Customer Age Income
 <chr> <dbl> <dbl>
1 a
          45 3500
2 b
    23 1500
library(cluster)
customers |>
 select(-Customer) |>
 daisy(metric = "euclidean")
Dissimilarities :
```

```
2 2000 121
Metric : euclidean
Number of objects: 2
```

- Gower distance: it can be used for categorical, numerical data and missing values
 - $x = (x_1, x_2, \dots, x_n)$
 - $\bullet \ y=(y_1,y_2,\ldots,y_n)$

$$\begin{split} d(x,y) &= \left[\frac{w_1 \delta_{x_1 y_1}^k}{\sum_{k=1}^n w_k \delta_{x_i y_i}^k}\right] d_{x_1 y_1}^1 + \left[\frac{w_2 \delta_{x_2 y_2}^k}{\sum_{k=1}^n w_k \delta_{x_i y_i}^k}\right] d_{x_2 y_2}^2 + \ldots + \left[\frac{w_n \delta_{x_n y_n}^k}{\sum_{k=1}^n w_k \delta_{x_i y_i}^k}\right] d_{x_n y_n}^n \\ &= \frac{\sum_{k=1}^n w_k \delta_{x_i y_i}^k d_{x_i y_i}^k}{\sum_{k=1}^n w_k \delta_{x_i y_i}^k} \end{split}$$

Where:

$$w_k \in \mathbb{R}$$
 for $k = 1, 2, \dots, n$

$$\sum_{k=1}^n w_k \delta_{x_i y_i}^k = w_1 \delta_{x_1 y_1}^1 + w_2 \delta_{x_2 y_2}^2 + \ldots + w_n \delta_{x_n y_n}^n$$

- Gower distance: it can be used for categorical, numerical data and missing values
 - $x = (x_1, x_2, \dots, x_n)$
 - $y = (y_1, y_2, \dots, y_n)$

$$d(x,y) = \frac{\sum_{k=1}^n w_k \delta_{x_k y_k}^k d_{x_k y_k}^k}{\sum_{k=1}^n w_k \delta_{x_k y_k}^k}$$

Where²:

$$\delta_{x_ky_k}^k = \begin{cases} 0 & \text{if } x_k \text{ or } y_k \text{ is a missing value} \\ 0 & \text{if } x_k, y_k \text{ represent an asymmetric binary variable and } x_k = y_k = 0 \\ 1 & \text{otherwise} \end{cases}$$

²See (Kaufman and Rousseeuw 1990, 25–27) for a definition of asymmetric binary variable

 Gower distance: it can be used for categorical, numerical data and missing values

$$\bullet \ x=(x_1,x_2,\dots,x_n)$$

$$\bullet \ y=(y_1,y_2,\dots,y_n)$$

$$d(x,y) = \frac{\sum_{k=1}^{n} w_k \delta_{x_k y_k}^k d_{x_k y_k}^k}{\sum_{k=1}^{n} w_k \delta_{x_k y_k}^k}$$

Where:

$$d_{x_ky_k}^k = \begin{cases} 0\\1\\\frac{|x_k-y_k|}{max(x_k,y_k)-min(x_k,y_k)} \end{cases}$$

 $d^k_{x_ky_k} = \begin{cases} 0 & \text{if } x_k, y_k \text{ represent a nominal or binary variable and } x_k = y_k \\ 1 & \text{if } x_k, y_k \text{ represent a nominal or binary variable and } x_k \neq y_k \end{cases}$ otherwise

If x_k, y_k represent an ordinal variable they are replaced by their integer codes. For example if $x_k \lesssim y_k$ then 1 is assigned to x_k and 2 is assigned to y_k

An example:

- 2 customers characteristic by sex (nominal), income (numerical), satisfaction (ordinal with levels $Low \preceq Medium \preceq High$) and age (with a missing value (NA))
 - $\bullet \ \ a = (Female, 3500, Medium, 45)$
 - $\bullet \ b = (Male, 1500, High, NA)$

Manual calculation:

- \bullet In R $w_k=1$ for every k as a default value where in this example k=1,2,3,4
- $\sum_{k=1}^{4} w_k \delta_{x_k y_k}^k = 1 * 1 + 1 * 1 + 1 * 1 + 1 * 1 + 1 * 0 = 1 + 1 + 1 + 0 = 3$
- $\bullet \ \sum_{k=1}^4 w_k \delta^k_{x_k y_k} d^k_{x_k y_k} = 1*1+1*\frac{|3500-1500|}{3500-1500} + 1*\frac{|2-3|}{3-2} + 0 = 3$
- $d(x,y) = \frac{\sum_{k=1}^{4} w_k \delta_{x_k y_k}^k d_{x_k y_k}^k}{\sum_{k=1}^{4} w_k \delta_{x_k y_k}^k} = \frac{3}{3} = 1$

• Gower distance range:

- $d(x,y) \in [0,1]$ • If $d(x,y) \longrightarrow 0$ is more similar • If $d(x,y) \longrightarrow 1$ is more dissimilar
- Using R

Using R

```
customers2 |>
  select(-Customer) |>
  daisy(metric = "gower")

Dissimilarities:
  1
2 1
```

• In this case:

Number of objects: 2

Metric: mixed; Types = N, I, O, I

- Metric: mixed because it includes categorical and numerical data
- For Types = N, I, O, I check out
 ?cluster::dissimilarity.object3
 - N: Nominal (factor)
 - I: Interval scaled (numeric)
 - 0: Ordinal (ordered factor)

³See (Stevens 1946) and Level of measurement

Using R

```
customers2 |>
  select(-Customer) |>
  daisy(metric = "gower")

Dissimilarities :
  1
  2 1
```

In this case:

Number of objects: 2

Metric : mixed ; Types = N, I, O, I

- Number of objects : 2
 - There are 2 observations that correspond to customers ${\bf a}$ and ${\bf b}$: a=(Female,3500,Medium,45) and b=(Male,1500,High,NA)

- ullet The original dissimilarity matrix is of dimension 300 imes 300
 - ullet Showing only the relation between the first 5 observations
 - \bullet The position (i,j) means the dissimilarity between the observations i and j
 - For example (4,3), which is equal to 0.425, is the dissimilarity between the observations 4 and 3

```
segmentation_dist <- segmentation |>
daisy(metric = "gower")

segmentation_dist |>
as.matrix() |>
as_tibble() |>
select('1':'5') |>
slice(1:5)
```

A tibble: 5 x 5 Customer Sex Income Satisfaction <chr> <fct> <dhl> <ord> <dh1> 1 a Female 3500 Medium 45 2 b Male 1500 High NA Female 200 Low 3 с 34 Female 450 Low 4 d 23

Male 5000 Medium

5 e

55

Hierarchical clustering

• Method: Complete Linkage Clustering

```
customers3_dist <- daisy(x = select(customers3, -Customer),</pre>
                        metric = "gower")
customers3_dist
Dissimilarities :
2 0.63888889
3 0 38281250 0 75694444
4 0 45572917 0 73958333 0 09895833
5 0.40625000 0.40972222 0.78906250 0.86197917
Metric: mixed; Types = N, I, O, I
Number of objects: 5
customers3 hc <- hclust(d = customers3 dist.
                        method = "complete")
customers3 hc
```

```
Call:
hclust(d = customers3_dist, method = "complete")
Cluster method : complete
```

- Hierarchical clustering
 - Method: Complete Linkage Clustering

plot(customers3_hc)

customers3_dist hclust (*, "complete")

• Compare each observation and find the pair that is more similar

	1	2	3	4	5
1	0.0000000	0.6388889	0.3828125	0.4557292	0.4062500
2	0.6388889	0.0000000	0.75694444	0.7395833	0.4097222
3	0.3828125	0.7569444	0	0.0989583	0.7890625
4	0.4557292	0.7395833	0.09895833	0.0000000	0.8619792
5	0.4062500	0.4097222	0.7890625	0.8619792	0.0000000

- \bullet Now we have the first cluster that includes the observations 3 and 4 : C(3,4)
- \bullet Then we need to create clusters with observations $1,\,2$ and 5 and the cluster C(3,4)
 - How we compare a cluster with an observation
 - Complete Linkage Clustering: Use the maximum distance between an observation and an observation that belongs to the cluster

- Compare each observation, including the clusters build, and find the pair that is more similar
 - In our case 1, 2, 5 and C(3,4)
 - ullet The distance between 1 and C(3,4) is 0.45572917
 - ullet The distance between 2 and C(3,4) is 0.7569444
 - ullet The distance between 5 and C(3,4) is 0.8619792

	1	2	3	4	5
1	0	0.6388889	0.3828125	0.4557292	0.4062500
2	0.63888889	0.0000000	0.75694444	0.7395833	0.4097222
3	0.3828125	0.7569444	0	0.0989583	0.7890625
4	0.45572917	0.7395833	0.09895833	0.0000000	0.8619792
5	0.40625	0.4097222	0.7890625	0.8619792	0.0000000

- \bullet Now we have the second cluster that includes the observations 1 and $5\colon\thinspace C(1,5)$
- Then we need to create clusters with observation 2 and clusters C(3,4) and C(1,5)
 - How we compare a cluster with another cluster
 - Complete Linkage Clustering: Use the maximum distance between an observation that belongs to the first cluster and an observation that belongs to the second cluster

- Compare each observation, including the clusters build, and find the pair that is more similar
 - In our case 2, C(3,4) and C(1,5)
 - The distance between 2 and C(3,4) is 0.7569444
 - ullet The distance between 2 and C(1,5) is 0.6388889

	1	2	3	4	5
1	0	0.6388889	0.3828125	0.4557292	0.4062500
2	0.63888889	0.0000000	0.75694444	0.7395833	0.4097222
3	0.3828125	0.7569444	0	0.0989583	0.7890625
4	0.45572917	0.7395833	0.09895833	0.0000000	0.8619792
5	0.40625	0.4097222	0.7890625	0.8619792	0.0000000

- Now we have the third cluster that includes the observation 2 and the cluster $C(1,5)\colon C(2,C(1,5))$
- \bullet Then we need to create clusters with cluster C(2,C(1,5)) and cluster C(3,4)
 - This is the cluster that includes all the observations

2024-03-16

- Compare each observation, including the clusters build, and find the pair that is more similar
 - In our case C(3,4) and C(2,C(1,5))
 - ullet The distance between C(3,4) and C(2,C(1,5)) is 0.86197917

	1	2	3	4	5
1	0	0.6388889	0.3828125	0.45572917	0.4062500
2	0.63888889	0.0000000	0.75694444	0.73958333	0.4097222
3	0.3828125	0.7569444	0	0.09895833	0.7890625
4	0.45572917	0.7395833	0.09895833	0	0.8619792
5	0.40625	0.4097222	0.7890625	0.86197917	0.0000000

 \bullet The heights of the **Cluster Dendrogram** are: 0.09895833, 0.40625, 0.63888889 and 0.86197917

• Select a number of clusters, for example: 2 clusters

```
plot(customers3_hc)
rect.hclust(customers3_hc, k = 2, border = "red")
```


Extract clusters and assign them to observations

```
customers3_hc_clusters <- cutree(customers3_hc, k = 2)
customers3 |>
mutate(cluster = customers3_hc_clusters)
```

```
# A tibble: 5 x 6
 Customer Sex
              Income Satisfaction
                                 Age cluster
 <chr>>
        <fct> <dbl> <ord>
                               <dbl>
                                      <int>
        Female 3500 Medium
    Male 1500 High
3 c
    Female 200 Low
                                34
    Female 450 Low
                                 23
       Male
                5000 Medium
                                 55
```

• Select a number of clusters, using segmentation, for example: 4 clusters

```
segmentation_hc <- hclust(d = segmentation_dist,</pre>
                           method = "complete")
plot(segmentation_hc)
rect.hclust(segmentation_hc, k = 4, border = "red")
```


Segmentation: Clustering

35/38

 Extract clusters and assign them to observations, using segmentation

```
segmentation_hc_clusters <- cutree(segmentation_hc, k = 4)
segmentation |>
 mutate(cluster = segmentation_hc_clusters)
# A tibble: 300 x 7
     age gender income kids ownHome subscribe cluster
   <dbl> <fct> <dbl> <int> <fct>
                                     <fct>
                                                  <int>
 1 47.3 Male 49483.
                           2 ownNo
                                     subNo
  31.4 Male 35546.
                           1 own Yes subNo
3 43.2 Male 44169. 0 ownYes
4 37.3 Female 81042. 1 ownNo
5 41.0 Female 79353. 3 ownYes
                           O ownYes subNo
                                     subNo
                           3 own Yes subNo
6 43.0 Male 58143. 4 ownYes subNo
7 37.6 Male 19282.
                                    subNo
                           3 ownNo
8 28 5 Male 47245 0 own No
                                    subNo
  44.2 Female 48333.
                       1 ownNo
                                     subNo
  35.2 Female 52568.
                           O ownYes subNo
# i 290 more rows
```

References

- Chapman, Chris, and Elea McDonnell Feit. 2019. *R For Marketing Research and Analytics*. 2nd ed. 2019. Use R! Cham: Springer International Publishing: Imprint: Springer. https://doi.org/10.1007/978-3-030-14316-9.
- Deza, Michel Marie, and Elena Deza. 2016. *Encyclopedia of Distances*. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-52844-0.
- Kaufman, Leonard, and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. 1st ed. Wiley Series in Probability and Statistics. Wiley. https://doi.org/10.1002/9780470316801.
- Stevens, S. S. 1946. "On the Theory of Scales of Measurement." *Science* 103 (2684): 677–80. https://doi.org/10.1126/science.103.2684.677.