Assignment 6, Al1110

Rajiv Shailesh Chitale (cs21btech11051)

May 19, 2022

Outline

- Question
- Random Variables
- Markov Chain
- Conditional Probability

Question

Question 15, NCERT class 12 Probability Ex 13.1

Consider the experiment of throwing a die.

If a multiple of 3 comes up, throw the die again

If any other number comes, toss a coin.

Find the conditional probability of the event 'the coin shows a tail', given that 'at least one die shows a 3'.

Random Variables

Solution:

Some useful random variables are defined below. Y_n describes whether 3 has occurred before n^{th} throw.

Event	Description
$X_n \in \{1, 2, 3, 4, 5, 6\}$	Number obtained from n^{th} die throw
$Y_n = 0$	$\nexists k < n : X_k = 3$
$Y_n = 1$	$\exists k < n : X_k = 3$
Z=0	Getting heads from a coin toss
Z=1	Getting tails from a coin toss

Table: Random variables

Markov Chain

Let us construct a Markov chain with discrete time t. The states $e_1 \dots e_5$ describe the outcomes from the latest dice throw or coin toss. States $e_6 \dots e_{10}$ are similar but they denote that at least one die showed 3 before t.

States

i	State e _i
1	$X_t = 3 \wedge Y_t = 0$
2	$X_t = 6 \wedge Y_t = 0$
3	$X_t = i : i \in \{1, 2, 4, 5\} \land Y_t = 0$
4	$Z=0 \wedge Y_t=0$
5	$Z=1 \wedge Y_t=0$
6	$X_t = 3 \wedge Y_t = 1$
7	$X_t = 6 \wedge Y_t = 1$
8	$X_t = i : i \in \{1, 2, 4, 5\} \land Y_t = 1$
9	$Z=0 \wedge Y_t=1$
10	$Z=1 \wedge Y_t=1$

Table: Event states

Transition Probability Matrix

The transition probability matrix P_{ij} =

(-)

State vector

An element in P_{ij} represents the probability of moving from state e_i to e_j . Q_t is the state vector at a given t. Initial state vector is provided for t = 1

$$\mathbf{Q_1} = \begin{pmatrix} 1/6 & 1/6 & 4/6 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \tag{2}$$

$$\mathbf{Q_t} = \mathbf{Q_1} \mathbf{P}^{t-1} \tag{3}$$

The limiting probabilities of states are given by,

$$\lim_{t \to \infty} \mathbf{Q_t} = \begin{pmatrix} 0 & 0 & 0 & 0.4 & 0.4 & 0 & 0 & 0.1 & 0.1 \end{pmatrix}$$
 (4)

(5)

Coniditional Probability

Required conditional probability is,

$$\lim_{t\to\infty} \Pr\left((Z=1) \,|\, \Pr\left(Y_t = 1 \right) \right) \tag{6}$$

$$= \lim_{t \to \infty} \frac{\Pr\left(\left(Z=1\right)\left(Y_{t}=1\right)\right)}{\Pr\left(Y_{t}=1\right)} \tag{7}$$

$$= \lim_{t \to \infty} \frac{\Pr(e_{10})}{\sum_{i=6}^{10} \Pr(e_i)}$$
 (8)

$$=\frac{0.1}{0.2}$$
 (9)

$$=0.5 \tag{10}$$