MATH 108A Review Sheet Solutions

Vincent La Math 108A March 20, 2017

Solutions to Ch 1

1.A \mathbb{R}^n and \mathbb{C}^n

- 1. A **complex number** is an ordered pair (a, b) of real numbers $a, b \in \mathbb{R}$ that we write a + bi.
- 2. Suppose we have $\alpha, \beta \in \mathbb{C}$ such that

$$\alpha := a + bi$$

$$\beta := c + di$$

Then
$$\alpha \cdot \beta = (ac - bd) + (ad + bc)i$$

- 3. If $a \in \mathbb{R}$ then if $b \in \mathbb{R}$ is the multiplicative inverse of a, $a \cdot b = 1$
- 4. Two lists of vectors are considered the same if they have the same length and have the same entries/elements in the same order.

1.B Definition of Vector Space

- 1. A field is a set with two operations vector addition and scalar multiplication such that the operations are commutative, associative, and distributive and both have identity and inverse elements.
- 2. A vector space over a field \mathbb{F} is a set V with two operations
 - Vector addition +
 - Scalar multiplication ·
- 3. In general, is there a such thing as multiplication between vectors? No.
- 4. An element of a vector space is called a **vector**.
- 5. The **trivial vector space** is the set containing the zero vector $\{0\}$.
- 6. The set F^{∞} is the set of all sequences.
- 7. The set $\mathbb{R}^{\mathbb{R}}$ is the set of continuous real valued functions.
- 8. What are the sets \mathbb{R}^n , \mathbb{C}^n , and \mathbb{F}^n ?
 - All lists of real numbers of length n
 - All lists of complex numbers of length n
 - \bullet All lists of numbers of length n

(See pre-midterm review lecture on February 7)

1.C Subspace

- 1. Subspace Test
 - (a) A set U is a subspace of some vector space V if it meets the following three conditions of the Subspace Test
 - i. The zero vector is in U.
 - ii. U is closed under vector addition.
 - iii. U is closed under scalar multiplication.
 - (b) Write out the Subspace Test using logical symbols.
 - i. $\vec{0} \in U$
 - ii. $\forall u_1, u_2 \in U, u_1 + u_2 \in U$
 - iii. $\forall u \in U, \forall \lambda \in \mathbb{F}, \lambda \cdot u \in U$.
- 2. Suppose that $U_1, U_2, ... U_m$ are subspaces of V such that

$$0 = u_1 + u_2 + \dots + u_m$$

where $u_1 \in U_1, ..., u_m \in U_m$, has a unique solution.

Then we can say that $u_1 + u_2 + ... + u_m$ is a **direct sum**, where $u_i = 0$ for i = 1, 2, ...m. (See textbook).

- 3. If U + W are subspaces of V, then U + W is a direct sum if and only if there is a unique way to write zero. (Equivalently, U + W is a direct sum if $U \cap W = \{0\}$.)
- 4. Let $v_1, v_2, ..., v_m$ be a list of vectors in V. Then, span $(v_1, v_2, ..., v_m)$ is a subspace of V.
- 5. Let U_1, U_2, U_3 be subspaces of V such that $U_1 \cap U_2 \cap U_3 = \{0\}$ and that $U_1 + U_2 + U_3 = V$. Can we conclude that $U_1 \oplus U_2 \oplus U_3 = V$?

No. See midterm/lecture notes.

Solutions to Ch 2

2.A Span and Linear Independence

- 1. The set $\mathscr{P}(\mathbb{F})$ is infinite-dimensional while $\mathscr{P}_m(\mathbb{F})$ is finite-dimensional.
- 2. Two functions p, q are the **same** if for all $z \in \mathbb{F}$ p(z) = q(z) (i.e. they have the same output).
- 3. Suppose for there exists a $v_j \in \text{span}(v_1, v_2, ..., v_n)$. Then, we know that $v_1, v_2, ..., v_j, ..., v_n$ is **linearly dependent**.

4. True or False. If $a_1v_1 + a_2v_2 + ... + a_mv_m = 0$, given that $a_1 = a_2 = ... = a_m = 0$, then $v_1, v_2, ..., v_m$ are linearly independent.

False. This is trivially true for all vectors. We need $a_1 = a_2 = ... = a_m = 0$ to be **the only** solution to this equation to know that $v_1, v_2, ..., v_m$ are linearly independent. (See after midterm lecture on February 14).

2.B Bases

- 1. If a list $v_1, v_2, ..., v_n \in V$ is both linearly independent and spanning, then it is a **basis** for V.
- 2. If a list is spanning but not a basis, then it is **linearly dependent** (and we can drop some vectors to make it a basis). (See Linear Dependence Lemma).
- 3. The standard basis for \mathbb{F}^n is the list
 - (1,0,0,...,0)
 - (0, 1, 0, ..., 0)
 - ...
 - (0,0,0,...,1)
- 4. If a list $v_1, v_2, ..., v_n$ (of length n) is a basis for V, then dim V = n.
- 5. If $v_1, v_2, ..., v_j$ is linearly independent in V, and $v_1, v_2, ..., v_k$ spans V, then $j \le k$. (This is based on the fact that all linear independent lists are either spanning or shorter than a spanning list.)

2.C

• • •

Solutions to Ch 3

3.A The Vector Space of Linear Maps

- 1. A linear map (linear transformation) from V to W is a function $T: V \to W$ such that
 - T(u+v) = Tu + Tv for all $u, v \in V$
 - $\lambda T(u) = T(\lambda u)$ for all $\lambda \in \mathbb{F}$ and $u \in V$

3.B Null Space and Range

1. Suppose $v_1, v_2, ..., v_n$ is linearly independent in V. Do we know that $v_1, v_2, ..., v_n$ can be extended to be a basis for V?

No. This is true if V was finite-dimensional, but we don't know that. (See midterm/beginning of February 14 lecture).

- Let T∈ ℒ(V, W). Then,
 dim V = dim null T + dim range T. (This is the Fundamental Theorem of Linear Maps).
- 3. Let $T: L \to W$, be a linear map. Then the **null space** of T is the set

$$\{v \in V | Tv = 0\}$$

4. Does the null space contain the zero vector?

Yes. It's also true that the null space is a subspace.

- 5. A linear map $T: V \to W$ if injective if whenever $u \neq w$, then $Tu \neq Tw$. (From lecture notes. This is the contrapositive of the normal definition of injectivity.)
- 6. Prove that T is injective, if and only if null $T = \{\vec{0}\}\$. (See pg. 61 of LADR or February 14 lecture for another version of this proof)

Proof. For one direction, suppose that null $T = \{0\}$ and show that T is injective. This implies we want to show that if Tu = Tv then u = v.

So suppose that Tu = Tv, implying

$$Tu = Tv$$

$$Tu - Tv = 0$$

$$T(u - v) = 0$$

$$u - v = 0$$
Because only $T0 = 0$ as implied by null $T = \{0\}$

$$u = v$$

as we set out to prove.

Now, for the other direction, suppose that T is injective and show that null $T = \{0\}$. Suppose for a contradiction that null T is bigger than $\{0\}$. That implies there is some v such that Tv = 0, but $v \neq 0$. However, because T0 = Tv but $0 \neq v$, T is not injective. So it must be that null $T = \{0\}$.

This completes the proof.

7. If a linear map $T: V \to W$ is such that range T = W then we say T is **surjective** (or **onto**).

3.C Matrices

- 1. $\mathbb{F}^{m,n}$ is the set of all $\mathbf{m} \times \mathbf{n}$ matrices.
- 2. Suppose $T \in \mathcal{L}(V)$ is such that with respect to the basis v_1, v_2, v_3

$$\mathcal{M}(T) = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

What are Tv_1, Tv_2, Tv_3 equal to?

$$Tv_1 = 8v_1 + 0v_2 + 0v_3$$
$$Tv_2 = 0v_1 + 5v_2 + 0v_3$$

$$Tv_3 = 0v_1 + 0v_2 + 5v_3$$

Source: Last lecture

3.D Invertibility and Isomorphic Vector Spaces

1. Suppose $T \in \mathcal{L}(V, W)$ is such that null $T = \{\vec{0}\}$ and range T = W. Then, we know that T is **invertible**.

Explanation null $T = \{0\}$ implies T is injective, and range T = W implies T is surjective. Now recall that T is invertible if and only if it it is injective and surjective.

2. Let $T \in L(V, W)$ be such there are $R, S \in L(W, V)$ such that R, S are inverses of T. Is R = S?

Yes. R = S because inverses are unique.

- 3. Suppose $T \in L(V, W)$ is invertible. Then, we can say V and W are **isomorphic** and T is **an isomorphism**.
- 4. Let V, W be finite-dimensional and isomorphic. Then,

$$\dim V = \dim W$$

5. Suppose T is a linear function from \mathbb{R}^3 to \mathbb{R}^3 . Then we can say, T is a(n) linear operator on \mathbb{R}^3 .

Solutions to Ch 4

- 1. Let p(z) = 0 for all $z \in \mathbb{F}$, i.e. the zero polynomial. Then, $\deg(p) = -\infty$.
- 2. Let $p(z) = a_0 + a_1 z + a_2 z^2 + ... + a_m z^m$ for all $z \in \mathbb{F}$. Then, $\deg(p) = m$.

5

Solutions to Ch 5

5.A Invariant Subspaces

- 1. Suppose U is a subspace of V and $T \in \mathcal{L}(V)$. If for any $u \in U$, Tu is also in U, we say U is **invariant under** T. (Def 5.2: invariant subspace)
- $2. \lambda v.$
- 3. By definition, for any $v \in \text{null } T$, Tv = 0. Because $0 \in \text{null } T$, the null space is invariant under T.
- 4. Because T maps any vector into its range, range T is invariant under T.
- 5. Suppose that U is a one-dimensional subspace invariant under T and v is a basis for U. Then v is a(n) eigenvector for T and there exists a scalar λ such that $Tv = \lambda v$. (See March 7 lecture notes)
- 6. No, T is not invertible.

Theorem 5.30: Determination of invertibility from upper-triangular matrix Suppose $T \in \mathcal{L}(V)$ has an upper-triangular matrix with respect to some basis of V. Then T is invertible if and only if all the entries of the diagonal of that upper-triangular matrix are nonzero.

7. Linearly independent.