Beispiel für den 3-Means-Algorithmus

Dr. Hermann Völlinger 01.09.2024

Ausgangsdaten

Wir haben die folgenden acht Punkte in einem 2D-Raum:

Punkt A: (1, 1) Punkt B: (2, 1) Punkt C: (4, 3) Punkt D: (5, 4) Punkt E: (6, 7) Punkt F: (8, 8)

Punkt G: (3,3)

Punkt H: (7,7)

Ziel ist es, diese Punkte in drei Cluster aufzuteilen.

Schritt 1: Initialisierung der Cluster-Zentren

Wir wählen drei Anfangszentren zufällig aus den Punkten:

Cluster 1 Zentrum: (1,1) (Punkt A) Cluster 2 Zentrum: (5,4) (Punkt D) Cluster 3 Zentrum: (8,8) (Punkt F)

Iteration 1: Zuordnung der Punkte zu den Zentren

Für jeden Punkt berechnen wir die euklidische Distanz zu den drei Zentren und ordnen den Punkt dem nächstgelegenen Zentrum zu.

Berechnung der Distanzen und Zuordnung

• Punkt A (1, 1):

$$d(A, \text{Cluster 1}) = \sqrt{(1-1)^2 + (1-1)^2} = 0$$

$$d(A, \text{Cluster 2}) = \sqrt{(1-5)^2 + (1-4)^2} = \sqrt{16+9} = 5$$

$$d(A, \text{Cluster 3}) = \sqrt{(1-8)^2 + (1-8)^2} = \sqrt{49+49} = 9.899$$
Zuordnung: Cluster 1

• Punkt B (2, 1):

$$d(B, \text{Cluster 1}) = \sqrt{(2-1)^2 + (1-1)^2} = \sqrt{1} = 1$$

$$d(B, \text{Cluster 2}) = \sqrt{(2-5)^2 + (1-4)^2} = \sqrt{9+9} = 4.243$$

$$d(B, \text{Cluster 3}) = \sqrt{(2-8)^2 + (1-8)^2} = \sqrt{36+49} = 9.219$$
Zuordnung: Cluster 1

• Punkt C (4, 3):

$$d(C, \text{Cluster 1}) = \sqrt{(4-1)^2 + (3-1)^2} = \sqrt{9+4} = 3.606$$

$$d(C, \text{Cluster 2}) = \sqrt{(4-5)^2 + (3-4)^2} = \sqrt{1+1} = 1.414$$

$$d(C, \text{Cluster 3}) = \sqrt{(4-8)^2 + (3-8)^2} = \sqrt{16+25} = 6.403$$
Zuordnung: Cluster 2

• Punkt D (5, 4):

$$d(D, \text{Cluster 1}) = \sqrt{(5-1)^2 + (4-1)^2} = \sqrt{16+9} = 5$$

$$d(D, \text{Cluster 2}) = \sqrt{(5-5)^2 + (4-4)^2} = 0$$

$$d(D, \text{Cluster 3}) = \sqrt{(5-8)^2 + (4-8)^2} = \sqrt{9+16} = 5$$
Zuordnung: Cluster 2

• Punkt E (6, 7):

$$d(E, \text{Cluster 1}) = \sqrt{(6-1)^2 + (7-1)^2} = \sqrt{25+36} = 7.810$$

$$d(E, \text{Cluster 2}) = \sqrt{(6-5)^2 + (7-4)^2} = \sqrt{1+9} = 3.162$$

$$d(E, \text{Cluster 3}) = \sqrt{(6-8)^2 + (7-8)^2} = \sqrt{4+1} = 2.236$$
Zuordnung: Cluster 3

• Punkt F (8, 8):

$$d(F, \text{Cluster 1}) = \sqrt{(8-1)^2 + (8-1)^2} = \sqrt{49+49} = 9.899$$

$$d(F, \text{Cluster 2}) = \sqrt{(8-5)^2 + (8-4)^2} = \sqrt{9+16} = 5$$

$$d(F, \text{Cluster 3}) = \sqrt{(8-8)^2 + (8-8)^2} = 0$$
Zuordnung: Cluster 3

• Punkt G (3, 3):

$$d(G, \text{Cluster 1}) = \sqrt{(3-1)^2 + (3-1)^2} = \sqrt{4+4} = 2.828$$

$$d(G, \text{Cluster 2}) = \sqrt{(3-5)^2 + (3-4)^2} = \sqrt{4+1} = 2.236$$

$$d(G, \text{Cluster 3}) = \sqrt{(3-8)^2 + (3-8)^2} = \sqrt{25+25} = 7.071$$
Zuordnung: Cluster 2

• Punkt H (7, 7):

$$d(H, \text{Cluster 1}) = \sqrt{(7-1)^2 + (7-1)^2} = \sqrt{36+36} = 8.485$$

$$d(H, \text{Cluster 2}) = \sqrt{(7-5)^2 + (7-4)^2} = \sqrt{4+9} = 3.605$$

$$d(H, \text{Cluster 3}) = \sqrt{(7-8)^2 + (7-8)^2} = \sqrt{1+1} = 1.414$$
Zuordnung: Cluster 3

Ergebnis der ersten Iteration

- Cluster 1: Punkte A, B
- Cluster 2: Punkte C, D, G
- Cluster 3: Punkte E, F, H

Schritt 3: Neuberechnung der Cluster-Zentren

- Neues Zentrum für Cluster 1: $(\frac{1+2}{2},\frac{1+1}{2})=(1.5,1)$
- Neues Zentrum für Cluster 2: $(\frac{4+5+3}{3}, \frac{3+4+3}{3}) = (4, 3.33)$
- Neues Zentrum für Cluster 3: $(\frac{6+8+7}{3}, \frac{7+8+7}{3}) = (7, 7.33)$

Iteration 2: Neue Zuordnung der Punkte

Nach der Neuberechnung der Cluster-Zentren bleiben die Punkte den gleichen Clustern zugeordnet. Daher ist der Algorithmus nach zwei Iterationen konvergiert.

Endergebnis

Die finalen Cluster sind:

- Cluster 1 (Zentrum: (1.5, 1)): Punkte A, B
- Cluster 2 (Zentrum: (4, 3.33)): Punkte C, D, G
- Cluster 3 (Zentrum: (7, 7.33)): Punkte E, F, H