HW1 - GA in Numerical Optimization

Sheng-Hsuan Peng

Dept. of Power Mechanical Engineering National Tsing Hua University Hsinchu, Taiwan shenghsuan@gapp.nthu.edu.tw

Index Terms—surface roughness, evolutionary computation, data-driven optimization, machining

I. OBJECTIVES

Practice and get familiar with the most widely used evolutionary algorithm — genetic algorithm (GA). In this assignment you need to make use of the taught subject matters about GA's representation, crossover, mutation, and survivor to solve the given problem.

II. PROBLEM DESCRIPTION

Write efficient programs to implement GAs to find the minimal solution of the Schwefel function (SCH):

$$f_{SCH}(\vec{x}) = 418.98291N - \sum_{i=1}^{N} x_i \sin\left(\sqrt{|x_i|}\right)$$

where $-512 \le x_i \le 511$ and N = 10. This function is a continuous, multimodal, non-convex, deceptive, and N-dimensional function with a global minimum of 0.

TABLE I GA PARAMETERS

	Binary GA	Real-valued GA
Representation	$c_i \in 2^{10}$	$c_i \in \mathbb{R}$
Population	Generation (size 100)	
Parent Selection	Tournament Selection $(n = 2)$	
Crossover $(p_c = 0.9)$	Uniform	
	2-point	Whole-Arithmetic
Mutation $(p_m = 1/l)$	Bit-flip	Uniform
Mutation $(p_m = 1/l)$ Survivor Selection Termination		Uniform $\mu + \lambda$ generations

III. IDEAS

對加工資料進行資料前處理,篩選出關鍵因子,再利用Data-Driven Evolutionary Optimizer建立加工參數與加工震動的資料庫,供未來智慧製造在加工時能對加工狀態有即時預測之功能。

IV. Pros & Cons

A. Pros

- 及時狀態預測
- 震動異常顯示

B. Cons

• 需大量資料才可建立足夠信賴之model

V. EXPECTED RESULT

建立一model能將加工參數與及時震動資料進行預測出 預期加工品質。

REFERENCES

- Jin, Yaochu, et al. "Data-driven evolutionary optimization: An overview and case studies," IEEE Transactions on Evolutionary Computation, 2018.
- [2] Wang, Handing, et al. "Offline data-driven evolutionary optimization using selective surrogate ensembles." IEEE Transactions on Evolutionary Computation, 2018.
- Y. Jin, Ed., Knowledge Incorporation in Evolutionary Computation. Springer, 2005.