An Introduction to Fourier Transforms

D. S. Sivia

St. John's College Oxford, England

August 12, 2015

Outline	2
Taylor Series	3
Taylor Series (0)	4
Taylor Series (1)	5
Taylor Series (2)	6
Taylor Series (3)	7
Taylor Series (4)	8
Fourier Series	9
Fourier Series (0)	10
Fourier Series (1)	11
Fourier Series (1)	12
Fourier Series (2)	13
Fourier Series (3)	14
Fourier Series (4)	15
Taylor Versus Fourier Series	16
Complex Fourier Series	17
Fourier Transform	18
Some Symmetry Properties	19
Convolution	20
Convolution Theorem	21
Auto-correlation Function	22
Auto-correlation Function (1)	23
Auto-correlation Function (2)	24
Fourier Optics	25
Young's Double Slits	26
Single Wide Slit	
Two Wide Slits (0)	28
Two Wide Slits (1)	29
Two Wide Slits (2)	30
Two Wide Slits (3)	31
Finite Grating (0)	32
Finite Grating (1)	33
Finite Grating (2)	34

Finite Grating (3)	35
Write up of this Talk!	36
The phaseless Fourier problem	37
The phaseless Fourier problem	38

Outline

- Approximating functions
 - ◆ Taylor series
 - Fourier series \rightarrow transform
- Some formal properties
 - ♦ Symmetry
 - ◆ Convolution theorem
 - ♦ Auto-correlation function
- Physical insight
 - ◆ Fourier optics

Oxford School on Neutron Scattering

2/38

Oxford School on Neutron Scattering

4/38

Oxford School on Neutron Scattering

6/38

Oxford School on Neutron Scattering

8/38

Oxford School on Neutron Scattering

10 / 38

Oxford School on Neutron Scattering

12 / 38

Oxford School on Neutron Scattering

14/38

Oxford School on Neutron Scattering

Taylor Versus Fourier Series

■ Taylor:
$$f(x) = \sum_{n=0}^{\infty} \frac{a_n}{(x-x_0)^n}$$
 $|x-x_0| < R$

Fourier:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nkx) + b_n \sin(nkx)$$

$$k = \frac{2\pi}{\lambda}$$

•
$$a_n = \frac{2}{\lambda} \int_0^{\lambda} f(x) \cos(nkx) dx$$
 and $b_n = \frac{2}{\lambda} \int_0^{\lambda} f(x) \sin(nkx) dx$

Oxford School on Neutron Scattering

16/38

Complex Fourier Series

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 , where $i^2 = -1$

Fourier:
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inkx}$$

$$c_{\pm n} = \frac{1}{2} (a_n \mp i b_n) \quad \text{for } n \geqslant 1$$

$$c_0 = a_0$$

Oxford School on Neutron Scattering

Fourier Transform

- As $\lambda \to \infty$, so that $k \to 0$ and f(x) is non-periodic,
 - $\oint \sum_{n=-\infty}^{\infty} c_n e^{inkx} \longrightarrow \int_{-\infty}^{\infty} c(q) e^{iqx} dq$
- In the continuum limit,
 - ◆ Fourier sum (series) → Fourier integral (transform)
 - - $F(q) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-iqx} dx$

Oxford School on Neutron Scattering

18/38

Some Symmetry Properties

- **Even:** $f(x) = f(-x) \iff F(q) = F(-q)$

■ Real: $f(x) = f(x)^* \iff F(q) = F(-q)^*$ (Friedel pairs)

Oxford School on Neutron Scattering

20/38

Convolution Theorem

$$f(x) = g(x) \otimes h(x) \iff F(q) = \sqrt{2\pi} G(q) \times H(q)$$

$$f(x) = g(x) \times h(x) \iff F(q) = \frac{1}{\sqrt{2\pi}} G(q) \otimes H(q)$$

Oxford School on Neutron Scattering

Auto-correlation Function

$$\int_{-\infty}^{\infty} \mathbf{F}(q) \, \mathrm{e}^{\mathrm{i} \, q \, x} \, \mathrm{d}q = \mathbf{f}(x)$$

♦ Patterson map

Oxford School on Neutron Scattering

22 / 38

Oxford School on Neutron Scattering

24 / 38

Oxford School on Neutron Scattering

26 / 38

Oxford School on Neutron Scattering

28/38

Oxford School on Neutron Scattering

30 / 38

Oxford School on Neutron Scattering

32 / 38

Oxford School on Neutron Scattering

34 / 38

Oxford School on Neutron Scattering

Write up of this Talk!

- Elementary Scattering Theory for X-ray and Neutron Users (Chapter 2) D. S. Sivia (2011), Oxford University Press
- Foundations of Science Mathematics (Chapter 15)
 Oxford Chemistry Primers Series, vol. 77 (and 82)
 D. S. Sivia and S. G. Rawlings (1999), Oxford University Press

Oxford School on Neutron Scattering

36 / 38

The phaseless Fourier problem

Oxford School on Neutron Scattering

The phaseless Fourier problem

Oxford School on Neutron Scattering