Assignment Activity Recognition

Georg Hess | William Ljungbergh | Adam Tonderski

Background

- Aim: Create an algorithm capable to discriminate between standing still, walking and running
- Challenge: Phones generally have lower processing capabilities, and limited battery life
 - Create as simple algorithm as possible

Method

- Initial data collection for the three activities with all possible sensors
- Visual inspection of data for sensor selection and algorithm design
 - Identify patterns unique to each activity
 - Find easy way to algorithmically identify said patterns
- Tune algorithm on collected data
- Evaluate on test sequence containing all three activities and transitions between them

Data collection

- Recorded five logs
 - Standstill where person is using phone but not walking or running
 - Pressing buttons etc. should not lead to missclassification
 - Walking with phone in hand
 - Walking with phone in pocket
 - Running with phone in hand
 - Running with phone in pocket
- Inhand vs. in pocket should assure some robustness
- Total acceleration seemed to give good indication of activity
 - Both frequency and magnitude differed between activities
 - Patterns in Fourier domain where unique between activities

Stand-still

- Top is total acceleration over time
- Bottom is same log in Fourier domain, i.e., magnitude for difference frequencies
- Phone placed in pocket @10 seconds and taken out @23 seconds

Walking

- Walking gives spike @ 1.5Hz
- Maximum
 magnitude in
 Fourier domain
 much higher than
 standing still

In pocket In hand

Running

- Running gives spike @ 2.5Hz
- Maximum
 magnitude in
 Fourier domain
 even higher than
 walking

In pocket In hand

The algorithm

- Apply fast Fourier transform to window of temporal data
 - If: maximum magnitude < WALKING_THRESHOLD or magnitude peak @ < 1Hz -> standing still
 - else if: maximum magnitude < RUNNING_THRESHOLD or magnitude peak @ < 2Hz -> walking
 - else: running
- Tuning gave:
 - temporal window of 3 seconds
 - WALKING_THRESHOLD = 80
 - RUNNING_THRESHOLD = 700
 - Note that temporal window will change magnitudes, hence these may seem small when looking at plots from previous slides

Testing

Conclusions

- Algorithm successfully identifies activities
- 3 second time window causes some delay when switching between activities
- Moving phone fast in hand could spoof algorithm
 - Putting it in the pocket was interpreted as walking in the test
 - Could be avoided by increasing time window, at cost of switching between activities fast

Data & Code @ github

https://github.com/wljungbergh/activity-recognition