Estimation theory – Report 1

Marta Frankowska, 208581 Agnieszka Szkutek, 208619

October 24, 2017

Contents

1	Exercise 1	1
	1.1 Part 1	. 1
	1.2 Part 2	. 2
	1.3 Part 3 and 4	. 3
2	Exercise 2	5
	2.1 Part 1	. 5
	2.2 Part 2	. 5
	2.3 Part 3	. 6
	2.4 Part 4	. 7
3	Exercise 3	8
	3.1 Part 1	. 8
	3.2 Part 2	. 9
	3.3 Part 3	. 9

1 Exercise 1

1.1 Part 1

We generate a vector of $Y \sim N(\mu = 2, \sigma^2 = 4)$ with length N = 1000 and transform it into variable Y_1 :

```
Y <- rnorm(n = 1000, mean = 2, sd = 2)
# transform Y to Y1
Y1 <- 3 * (Y - 1)
```

 Y_1 has normal distribution, because it is a linear combination of Y. We can calculate analytical mean μ_1 and variance σ_1^2 as follows:

$$\mu_1 = E(Y_1) = E(3(Y - 1)) = 3E(Y - 1) = 3E(Y) - 3 = 3 \cdot 2 - 3 = 3,$$

$$\sigma_1^2 = Var(Y_1) = Var(3(Y - 1)) = 9Var(Y) = 9 \cdot 4 = 36$$

and compute them numerically:

```
Y <- rnorm(n = 1000, mean = 2, sd = 2)
Y1 <- 3 * (Y - 1)
mean(Y1)
## [1] 3.290679
var(Y1)
## [1] 36.98737</pre>
```

As expected, numerical and analytical results are quite similar. Now we can plot the frequency histogram of Y_1 and analytical normal density with $\mu = 3$ and $\sigma^2 = 36$.

Figure 1: Frequency historam of Y_1 and analytical density of $N(\mu = 3, \sigma^2 = 36)$.

1.2 Part 2

Next, we create variable $Y_2 = \left(\frac{Y-2}{2}\right)^2$, which is a quadratic function of Y, so we know that distribution of Y_2 is not normal. What is more,

$$\frac{Y-2}{2} \sim N(0,1).$$

It means that Y_2 , as a sum of squared standard normally distributed variables, has χ^2 distribution with 1 degree of freedom.

Histogram of Y2

Figure 2: Histogram of Y_2 and theoretical probability density function of $\chi^2(1)$ distribution.

1.3 Part 3 and 4

Next we will compute a sequence of means m_n and a sequence of variances σ_n^2 for the variable Y, where

$$m_n = \frac{1}{n} \sum_{i=1}^n Y_i,$$

$$v_n = \frac{1}{n} \sum_{i=1}^{n} (Y_i - m_n)^2$$

and plot the results.

Figure 3: Sequence of means and variances and their respective analytical values.

The sequences m_n and v_n^2 converge to theoretical mean and variance, respectively. To examine the variability of the sequences we can calculate relative errors for both values.

$$err_{m_n} = \left| \frac{m_n - \mu_n}{\mu_n} \right|, \quad err_{v_n} = \left| \frac{v_n - \sigma_n^2}{\sigma_n^2} \right|$$

Figure 4: Relative errors for sequences of means and variances.

We can observe that the values of both err_{m_n} and err_{σ^2} are bounded by 0.1.

2 Exercise 2

2.1 Part 1

We simulate 10000 times and then plot 2-dimensional random variable $X \sim N(0, I_2)$.

Figure 5: 2-dimensional random variable $X \sim N(0, I_2)$.

2.2 Part 2

To transform variable X into variable $Y \sim N(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\Sigma = \begin{bmatrix} 2 & 0.5 \\ 0.5 & 2 \end{bmatrix}$,

we should find vector a and matrix A, such that Y = AX + a. Expected value of Y is equal to

$$E(Y) = E(AX + a) = AE(X) + a = a,$$

and variance

$$Var(Y) = Var(AX + a) = Var(AX) = AVar(X)A' = AIA' = AA' = \Sigma.$$

We know that Σ is a symmetric and positive definite matrix, so we can use Cholesky decomposition (chol() function in R) to obtain the value of A:

```
Sigma <- matrix(c(2, 0.5, 0.5, 2), 2, 2)
chol(Sigma)

## [,1] [,2]
## [1,] 1.414214 0.3535534
## [2,] 0.000000 1.3693064</pre>
```


Figure 6: Histograms and probability density functions of Y

2.3 Part 3

Now we can plot the 3D histogram of the random variable $Y = \begin{bmatrix} 1.414214 & 0.3535534 \\ 0.0 & 1.3693064 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Figure 7: Random variable Y and its 3D histogram with 30 bins and bars colored according to height.

2.4 Part 4

We are going to transform the variable Y into the variable $Z = (Y - \mu)' \Sigma^{-1} (Y - \mu)$, and Σ is a non-singular matrix.

$$Z = (Y - \mu)' \Sigma^{-1} (Y - \mu) = (Y - \mu)' \Sigma^{-0.5} \Sigma^{-0.5} (Y - \mu) = \left(\Sigma^{-0.5} (Y - \mu) \right)' \left(\Sigma^{-0.5} (Y - \mu) \right)$$

Let's take $\Sigma^{-0.5}(Y - \mu) = B$. We know that $B \sim N(0, I)$, so $B'B \sim \chi^2(k)$, where k = 2.

Figure 8: Random variable Z and its 3D histogram with 30 bins and bars colored according to height.

3 Exercise 3

Let $\hat{\beta}$ be a sequence of estimators of a $(K \times 1)$ vector β , which is asymptotically normal with

$$\sqrt{N}(\hat{\beta} - \beta) \to^d N(0, \Sigma).$$

3.1 Part 1

If $R \neq 0$ is an $(M \times K)$ matrix, then $\sqrt{N}(R\hat{\beta} - R\beta) \to^d N(\mu, \sigma^2)$. We will compute the mean and the variance of $\sqrt{N}(R\hat{\beta} - R\beta)$:

$$\mu = E\left(\sqrt{N}(R\hat{\beta} - R\beta)\right) = E\left(\sqrt{N}R(\hat{\beta} - \beta)\right) = R E\left(\sqrt{N}(\hat{\beta} - \beta)\right) = 0$$

and

$$\sigma^2 = Var\left(\sqrt{N}(R\hat{\beta} - R\beta)\right) = Var\left(\sqrt{N}R(\hat{\beta} - \beta)\right) = {}^1 R Var\left(\sqrt{N}(\hat{\beta} - \beta)\right)R' = R\Sigma R',$$

SO

$$\sqrt{N}(R\hat{\beta} - R\beta) \to^d N(0, R\Sigma R'), \text{ for } R \neq 0.$$

 $^{^{1}}$ From task 2 point 2.

3.2 Part 2

If $p \lim \hat{A} = A$, then what does $\sqrt{N}\hat{A}(\hat{\beta} - \beta)$ converge to? We know that if $x_n \to^d x$ and $y_n \to^p c$, then $x_n y_n \to^d cx$, so if

$$\hat{A} \to^p A$$
 and $\sqrt{N}R(\hat{\beta} - \beta) \to^d N(0, R\Sigma R')$ for $R \neq 0$,

then

$$\sqrt{N}\hat{A}(\hat{\beta} - \beta) \to^d N(0, A\Sigma A').$$

3.3 Part 3

We will prove that $N\left(\hat{\beta}-\beta\right)'\hat{\Sigma}^{-1}\left(\hat{\beta}-\beta\right) \to^d \chi^2(K)$ if Σ is a non-singular matrix and $p\lim\hat{\Sigma}=\Sigma$.

$$N\left(\hat{\beta} - \beta\right)' \hat{\Sigma}^{-1} \left(\hat{\beta} - \beta\right)$$

$$=$$

$$\sqrt{N} \left(\hat{\beta} - \beta\right)' \hat{\Sigma}^{-0.5} \hat{\Sigma}^{-0.5} \left(\hat{\beta} - \beta\right) \sqrt{N}$$

$$\downarrow^{d}$$

$$\sqrt{N} \left(\hat{\beta} - \beta\right)' \hat{\Sigma}^{-0.5} \hat{\Sigma}^{-0.5} \left(\hat{\beta} - \beta\right) \sqrt{N}$$

$$=$$

$$\left(\sqrt{N} \hat{\Sigma}^{-0.5} \left(\hat{\beta} - \beta\right)\right)' \left(\sqrt{N} \hat{\Sigma}^{-0.5} \left(\hat{\beta} - \beta\right)\right).$$

From part 1 of task 3 we know that

$$\left(\sqrt{N}\Sigma^{-0.5}\left(\hat{\beta}-\beta\right)\right) \to^d N(0,\underbrace{\Sigma^{-0.5}\Sigma\Sigma^{-0.5}}_{I_K}).$$

Let
$$C = (\sqrt{N}\Sigma^{-0.5}(\hat{\beta} - \beta))$$
. We have $C'C$, where $C \to^d N(0, I_K)$, so $C'C \to^d \chi^2(K)$.