¿Cómo migrar de Excel a R?

Valery Zúñiga - Carolina Montoya

Motivación

- Un mercado que demanda análisis de datos de forma eficiente.
- Automatización de procesos.
- ¿Por qué R? Costo de oportunidad de lo tradicional.

Caso de estudio.

Provisión matemática. Actuarial Mathematics, Bowers et al (1984)

$$_{k}V_{x}=A_{x+k}-P_{x}\ddot{a}_{x+k}$$

- Periodicidad del cálculo.
- Flexibilidad al cambio de parámetros. (Ejemplo: la tasa de interés.)
- Eficencia.

Paquetes recomendados: tidyxl & unpivotr

A	В	C	D	Е	F	G	Н	1	J	K	
Année 2014,	semaine et weekend										
		Popula	ition âgé à 74 ans				Selon le	genre			
			Ensemble			Hommes			Femmes		
		Total	Population réalisée		Total	Populati réalisée	on ayant l'activité	Total	Population réalisée		
		Durée	Durée	%	Durée	Durée	%	Durée	Durée	%	
0 Besoins physio	logiques	11:35	11:35	100,0	11:28	11:28	100,0	11:43	11:43	100,0	
01 Dormir		08:46	08:46	99,9	08:44	08:45	99,9	08:48	08:48	100,0	
02 Manger et boire		01:53	01:54	99,7	01:52	01:53	99,7	01:54	01:54	99,7	
03 Soins personne	ls et médicaux à domicile	00:56	00:57	97.5	00:51	00:53	97.2	01:01	01:02	97.9	

```
## # A tibble: 6 x 21
## sheet address row col is blank data type error logical numeric
## <chr> <int> <int> <int> <lgl>
                                   <chr>>
                                             <chr> <lgl>
                                                           <dbl>
## 1 Tndex Δ1
                1 1 FΔISE
                                   character <NA> NA
                                                             NΔ
                         2 TRUE
## 2 Index B1
                                   blank <NA> NA
                                                            NA
## 3 Index C1 1
                         3 TRUE
                                   blank <NA> NA
                                                          NA
## 4 Index D1
                         4 TRUE
                                   hlank
                                          <NA> NA
                                                          NΔ
## 5 Index F1
                         5 TRUE
                                   blank
                                          <NA> NA
                                                             NΔ
## 6 Index F1
                          6 TRUE
                                   blank
                                            <NA> NA
                                                             NA
## # ... with 12 more variables: date <dttm>, character <chr>,
## # character formatted <list>, formula <chr>, is array <lgl>,
## # formula ref <chr>, formula group <int>, comment <chr>, height <dbl>,
## # width <dbl>, style format <chr>, local format id <int>
```

Transición Excel - R: librerías de ayuda.

Paquetes utilizados	Descripción				
dplyr	Manipulación de datos.				
data.table	Como alternativa al data.frame.				
lubridate	Trabajo con fechas.				
readxl	Lectura de archivos de excel.				
openxlsx	Impresión en excel.				
readr	Lectura de archivos csv y txt.				

Herramienta de conversión: VBA a R.

```
#VBA
Public Function prob_Sobrev(prob_muerte As Range,
                             x, inic, omega)
For j = 1 To omega - x
p(j + 1) = p(j) * (1 - prob_muerte(x + j - inic))
Next.
End Function
#R.
prob Sobrev <- function(prob muerte , x, inic, omega){</pre>
for(j in 1:(omega - x)){
p(j + 1) = p(j) * (1 - prob_muerte(x + j - inic))
```

Herramienta de conversión: VBA a R.

```
#VBA
k = Fix(ant)
                                  'Antigüedad entera
x = ed + k
                                  'Edad actual del cliente
If (k < n) And (x <= omega) Then
#R.
k = floor(ant)
                                  #Antigüedad entera
x = ed + k
                                  #Edad actual del cliente
if((k < n)\&(x \le omega)){
```

Herramienta de conversión: VBA a R.

```
#VBA
Prov_gasto = WorksheetFunction.Max((A + B * C * ((1 + jp) ^
          Fix(WorksheetFunction.Min(ant, 60 - ed - 1), 0)))
Else
Prov gasto = 0
End If
End Function
#R
Prov_gasto = max((A + B * C * ((1 + jp))^{\sim})
          floor(min(ant, 60 - ed - 1), 0)))
}else{
Prov_gasto = 0
```

Programación vectorial

¿Qué entendemos por programación vectorial?

Programación vectorial

```
#No vectorial
prob_Sobrev <- function(prob_muerte , x, inic, omega){</pre>
p < -c()
p[1] <- 1
for(j in 1:(omega - x)){
p(j + 1) = p(j) * (1 - prob_muerte(x + j - inic))
#Vectorial
prob Sobrev Vec <- function(prob muert , x, inic, omega){</pre>
 j <- mapply(":", 1, omega - x)</pre>
 sapply(1:length(omega),function(i)
 c(1, cumprod(1 - prob_muert[[i]][x[i] + j[[i]] - inic[i]])))
```

Estructura de la programación.

• Cálculo por fila:

```
df %>%
  rowwise() %>%
  mutate(provision = funcion(var1, var2...)) %>%
  ungroup()
```

Paralelo:

Estructura de la programación.

pmap:

```
vector <- pmap_dbl(list(var1, var2...), funcion)</pre>
```

Vectorial con dplyr:

```
df %>%
  mutate(provision = funcion_vectorial(var1, var2...))
```

Vectorial con DT:

```
DT[ ,provision := funcion_vectorial(var1, var2...)]
```

Tiempos de ejecución: VBA vs métodos en R.

VBA vs métodos en R. Escala reducida.

VBA vs métodos en R. Hasta 100.000 registros.

Ahora de R a Excel: openxlsx

```
wb <- loadWorkbook("Provision.xlsx")</pre>
addWorksheet(wb, "Provision calculada")
writeData(df, sheet = "Provision calculada",
          startCol = 1.
          startRow = 2)
saveWorkbook(wb, file = "Provision.xlsx", overwrite = TRUE)
openXL("Provision.xlsx")
```

Referencias.

- Spreadsheet Munging Strategies, Duncan Garmonsway.
- Going from a human readable Excel file to a machine-readable csv with {tidyxl}, Bruno Rodrigues.
- https://regexone.com/
- Advanced R, Hadley Wickman.
- Parallel R, Q. Etahn McCallun & Stephen Weston.