Memo: On computation of the atmosphere excitation function of the Earth rotation

L. Petrov Leonid.Petrov@lpetrov.net

2015.07.30

According to Gross (2007), the excitation function is

$$\chi_{1} = \alpha_{p} \Delta I_{13}(t) + \beta_{p} h_{1}(t)
\chi_{2} = \alpha_{p} \Delta I_{23}(t) + \beta_{p} h_{2}(t)
\chi_{3} = \alpha_{u} \Delta I_{33}(t) + \beta_{u} h_{3}(t) ,$$
(1)

where $\alpha_p, \alpha_u, \beta_p, \beta_u$ are the following constants:

$$\alpha_{p} = \frac{\Omega(1 + k_{2}' + \Delta k_{a}')}{(C_{t} - (A_{t} + B_{t})/2 + (A_{m} + B_{m})/2 + \varepsilon_{c} A_{c}) \sigma_{cw}}$$

$$\alpha_{u} = \frac{k_{r} (1 + \alpha_{3} (k_{2}' + \Delta k_{a}'))}{C_{m}}$$

$$\beta_{p} = \frac{1}{(C_{t} - (A_{t} + B_{t})/2 + (A_{m} + B_{m})/2 + \varepsilon_{c} A_{c}) \sigma_{cw}}$$

$$\beta_{u} = \frac{k_{r}}{\Omega C_{m}}.$$
(2)

Components of momentum of inertia are expressed via these integrals:

$$\Delta I_{13}(t) = -\int_{0-\pi/2}^{2\pi} \int_{h_b}^{\pi/2} \int_{h_b}^{h_t} (h + R_{\text{ell}}(\varphi))^4 \rho(h) \cos^2 \varphi \sin \varphi \cos \lambda \, d\varphi \, d\lambda \, dh$$

$$\Delta I_{23}(t) = -\int_{0-\pi/2}^{2\pi} \int_{h_b}^{\pi/2} \int_{h_b}^{h_t} (h + R_{\text{ell}}(\varphi))^4 \rho(h) \cos^2 \varphi \sin \varphi \sin \lambda \, d\varphi \, d\lambda \, dh$$

$$\Delta I_{33}(t) = \int_{0-\pi/2}^{2\pi} \int_{h_b}^{\pi/2} \int_{h_b}^{h_t} (h + R_{\text{ell}}(\varphi))^4 \rho(h) \cos^3 \varphi \, d\varphi \, d\lambda \, dh$$
(3)

and

$$h_{1}(t) = \int_{0-\pi/2}^{2\pi} \int_{h_{b}}^{\pi/2} \int_{h_{b}}^{h_{t}} (h + R_{\text{ell}}(\varphi))^{3} \rho(\varphi, \lambda, h) \left(-u(\varphi, \lambda, h) \sin \varphi \cos \lambda + v(\varphi, \lambda, h) \sin \lambda\right) \cos \varphi \, d\varphi \, d\lambda \, dh$$

$$h_{2}(t) = \int_{0-\pi/2}^{2\pi} \int_{h_{b}}^{\pi/2} \int_{h_{b}}^{h_{t}} (h + R_{\text{ell}}(\varphi))^{3} \rho(\varphi, \lambda, h) \left(-u(\varphi, \lambda, h) \sin \varphi \sin \lambda - v(\varphi, \lambda, h) \cos \lambda\right) \cos \varphi \, d\varphi \, d\lambda \, dh \quad (4)$$

$$h_{3}(t) = \int_{0-\pi/2}^{2\pi} \int_{h_{b}}^{\pi/2} \int_{h_{b}}^{h_{t}} (h + R_{\text{ell}}(\varphi))^{3} \rho(\varphi, \lambda, h) u(\varphi, \lambda, h) \cos^{2}\varphi \, d\varphi \, d\lambda \, dh \quad (4)$$

where $R_{\rm ell}(\varphi, \lambda)$ is the distance from the geocenter to the point on the reference ellipsoid at geodetic latitude φ and longitude λ . h is the height above the reference ellipsoid.

Let us introduce integrals:

$$U(\varphi,\lambda) = \int_{h_b}^{h_t} \rho(\varphi,\lambda,h) \frac{(h+R_{\text{ell}}(\varphi))^3}{R_{\oplus}^3} u(\varphi,\lambda,h) dh$$

$$V(\varphi,\lambda) = \int_{h_b}^{h_t} \rho(\varphi,\lambda,h) \frac{(h+R_{\text{ell}}(\varphi))^3}{R_{\oplus}^3} v(\varphi,\lambda,h) dh .$$

$$W(\varphi,\lambda) = \int_{h_b}^{h_t} \rho(\varphi,\lambda,h) \frac{(h+R_{\text{ell}}(\varphi))^4}{R_{\oplus}^4} dh$$
(5)

Considering that $h \ll R_{\rm ell}$, we replace $h + R_{\rm ell}$ with $R_{\oplus} \left(1 + \frac{h + R_{\rm ell} - R_{\oplus}}{R_{\oplus}} \right)$, and expand $(h + R_{\rm ell})^a$ in Taylor series retaining the linear and quadratic terms:

$$U(\varphi,\lambda) = \int_{h_{b}}^{h_{t}} \rho(\varphi,\lambda,h) \left(1 + 3\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}} + 3\left(\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}}\right)^{2}\right) v(\varphi,\lambda,h) dh$$

$$V(\varphi,\lambda) = \int_{h_{b}}^{h_{t}} \rho(\varphi,\lambda,h) \left(1 + 3\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}} + 3\left(\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}}\right)^{2}\right) u(\varphi,\lambda,h) dh . (6)$$

$$W(\varphi,\lambda) = \int_{h_{b}}^{h_{t}} \rho(\varphi,\lambda,h) \left(1 + 4\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}} + 6\left(\frac{h + R_{\text{ell}}(\varphi) - R_{\oplus}}{R_{\oplus}}\right)^{2}\right) dh$$

The difference between the distance from the point at the ellipsoid with coordinate φ and the equatorial radius is

$$R_{\rm ell}(\varphi) - R_{\oplus} = R_{\oplus} \left(\sqrt{1 - e_{\oplus}^2 \sin^2 \varphi} - 1 \right), \tag{7}$$

where e_{\oplus} is the eccentricity of the Earth's figure. Integration is performed from the h_b that corresponds to the Earth's surface according to the digital elevation map through the nominal top of the atmosphere: fixed height 80,000 km. Height h is counted from the reference ellipsoid.

Density of moist air obeys the law of state:

$$\rho = \left((P - P_w) M_d + P_w M_w \right) \frac{Z^{-1}(P, P_w, T)}{R T}$$
(8)

where P is the total atmospheric pressure, P_w is the partial pressure of water vapor, T is the absolute temperature, M_d and M_w are molar mass of dry air and water vapor respectively, R is the universal gas constant, and Z^{-1} is the inverse compressibility of moist air.

Then integrals 3-4 can be re-written as

$$\Delta I_{13}(t) = -R_{\oplus}^4 \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} W(\varphi,\lambda) \cos^2 \varphi \sin \varphi \cos \lambda \, d\varphi \, d\lambda$$

$$\Delta I_{23}(t) = -R_{\oplus}^4 \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} W(\varphi,\lambda) \cos^2 \varphi \sin \varphi \sin \lambda \, d\varphi \, d\lambda$$

$$\Delta I_{33}(t) = R_{\oplus}^4 \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} W(\varphi,\lambda) \cos^3 \varphi \, d\varphi \, d\lambda$$
(9)

and

$$h_{1}(t) = R_{\oplus}^{3} \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} \left(-U(\varphi,\lambda) \sin \varphi \cos \lambda + V(\varphi,\lambda) \sin \lambda\right) \cos \varphi \, d\varphi \, d\lambda$$

$$h_{2}(t) = R_{\oplus}^{3} \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} \left(-U(\varphi,\lambda) \sin \varphi \sin \lambda - V(\varphi,\lambda) \cos \lambda\right) \cos \varphi \, d\varphi \, d\lambda$$

$$h_{3}(t) = R_{\oplus}^{3} \int_{0-\pi/2}^{2\pi} \int_{0-\pi/2}^{\pi/2} U(\varphi,\lambda) \cos^{2}\varphi \, d\varphi \, d\lambda$$

$$(10)$$

Geodetic parameters of the Earth (Gross, 2007):

G	=	$6.67259 \cdot 10^{-11}$	$\rm m^3/kg~s^2$
M_{atm}	=	$5.1441 \cdot 10^{18}$	kg
M_{ocn}	=	$1.4 \cdot 10^{21}$	kg

Whole Earth (observed)

R_{\oplus}	=	6378137.0	\mathbf{m}
e_{\oplus}^2	=	0.0033528132	
Ω_{\oplus}	=	$7.2921151467 \cdot 10^{-5}$	rad/s
σ_{cw}	=	$1.67485 \cdot 10^{-7}$	rad/s
M_{\oplus}	=	$5.9737 \cdot 10^{24}$	kg
C_t	=	$8.0365 \cdot 10^{37}$	${\rm kg}~{\rm m}^2$
B_t	=	$8.0103 \cdot 10^{37}$	${\rm kg}~{\rm m}^2$
A_t	=	$8.0101 \cdot 10^{37}$	${\rm kg}~{\rm m}^2$
$C_t - A_t$	=	$2.6398 \cdot 10^{35}$	${\rm kg}~{\rm m}^2$
$C_t - B_t$	=	$2.6221 \cdot 10^{35}$	${\rm kg}~{\rm m}^2$
$B_t - A_t$	=	$1.765 \cdot 10^{33}$	${\rm kg}~{\rm m}^2$
a	=	6371000	m
k_2	=	0.298	

 k_2 = 0.298 $k_{ocn,w}$ = 0.047715 $k_{ocn,s}$ = 0.043228 k_r = 0.997191 k'_2 = -0.305

 $\Delta k'_a = -0.011 + i \ 0.003$

 $\alpha_3 = 0.792$

Crust and mantle (PREM)

$arepsilon_a$	=	$3.334 \cdot 10^{-3}$	
$M_m =$	=	$4.0337 \cdot 10^{24}$	kg
$C_m =$	=	$7.1236 \cdot 10^{37}$	${\rm kg} {\rm m}^2$
$A_m =$	=	$7.0999 \cdot 10^{37}$	${ m kg~m^2}$

Core (PREM)

$$\begin{array}{lll} \varepsilon_c & = & 2.546 \cdot 10^{-3} \\ M_c & = & 1.9395 \cdot 10^{24} \\ C_c = & = & 9.1401 \cdot 10^{36} \\ A_c = & = & 9.1168 \cdot 10^{36} \\ \end{array} \quad \begin{array}{ll} \text{kg m}^2 \\ \text{kg m}^2 \end{array}$$

Finally, can write the excitation function in the form

$$\chi_{1} = \alpha_{p} \Delta I_{13}(t) + \beta_{p} h_{1}(t)
\chi_{2} = \alpha_{p} \Delta I_{23}(t) + \beta_{p} h_{2}(t)
\chi_{3} = \alpha_{u} \Delta I_{33}(t) + \beta_{u} h_{3}(t)$$
(11)

where

$$\alpha_{p} = \frac{\Omega(1 + k_{2}' + \Delta k_{a}')}{(C_{t} - (A_{t} + B_{t})/2 + (A_{m} + B_{m})/2 + \varepsilon_{c} A_{c}) \sigma_{cw}} = 4.17767 \cdot 10^{-36} \text{ m}^{2}/(\text{s} \cdot \text{kg})$$

$$\alpha_{u} = \frac{k_{r} (1 + \alpha_{3}(k_{2}' + \Delta k_{a}'))}{C_{m}} = 1.04950 \cdot 10^{-38} \text{ m}^{2}/(\text{s} \cdot \text{kg})$$

$$\beta_{p} = \frac{1}{(C_{t} - (A_{t} + B_{t})/2 + (A_{m} + B_{m})/2 + \varepsilon_{c} A_{c}) \sigma_{cw}} = 8.37576 \cdot 10^{-32} \text{ m}^{2}/\text{kg}$$

$$\beta_{u} = \frac{k_{r}}{\Omega C_{m}} = 1.91966 \cdot 10^{-34} \text{ m}^{2}/\text{kg}$$

References

Gross, R. S., Earth Rotation Variations – Long Period, in Physical Geodesy, edited by T. A. Herring, Treatise on Geophysics, Vol. 11, Elsevier, Amsterdam, in press, 2007.