Q: We've thoroughly practiced employing LSTM (Long Short-Term Memory) in our previous assignment to forecast forthcoming work tasks. The current objective involves computing values for the below given tasks.

- 1. Compute embedding from the given target weight matrix based on One Hot vector: [1 0 0 0].
- 2. Define Stacked Input.
- 3. Compute value for forget gate from the data given below.
- 4. Compute C_t & h_t value from all supporting values given below.
- 5. Write Equations for finding $C_t \& h_t$.

Target Weight Matrix:

Weight Matrix for Forget Gate:

Bias for Forget Gate:

4	1	3	4	
2	3	3	4	
4	1	1	0	
2	0	2	4	

6	2	4	6	6	4	4	5
5	5	1	1	0	5	6	4
2	4	2	0	1	5	5	5
6	4	2	3	1	6	3	6

0	
0	
2	
0	

Forget Gate

Input Gate

1
1
1
0.99

Output Gate

•
1
1
0.99
1

 h_{t-1}

n_{t-1}	
0	
0	
0	
0	

 C_{t-1}

v -
0
0
0
0

Solution: (Show Steps)

Q: We've thoroughly practiced employing LSTM (Long Short-Term Memory) in our previous assignment to forecast forthcoming work tasks. The current objective involves computing values for the below given tasks.

- 1. Compute embedding from the given target weight matrix based on One Hot vector: [0 1 0 0]
- 2. Compute value for forget gate from the data given below.
- 3. Compute C_t & h_t value from all supporting values given below.
- 4. Write Equations for finding $C_t \& h_t$.

Target Weight Matrix:

Weight Matrix for Input Gate:

Bias for Input Gate:

4	1	3	4
2	3	3	4
4	1	1	0
2	0	2	4

6	4	3	1	5	6	2	0
0	0	6	6	1	3	3	5
6	4	2	3	4	5	1	2
6	6	2	6	1	4	0	0

4
4
2
1

Forget Gate

1
1
1
1

Input Gate

		-	-	_		
			_			

Output Gate

out Gate	h_{t-1}
1	0.76
1	0.76
1	0.76
1	0.76
	

υ _{t-1}
1
1
1
0.99

Solution: (Show Steps)

Q: We've thoroughly practiced employing LSTM (Long Short-Term Memory) in our previous assignment to forecast forthcoming work tasks. The current objective involves computing values for the below given tasks.

- 1. Compute embedding from the given target weight matrix based on One Hot vector: [0 0 1 0]
- 2. Compute value for forget gate from the data given below.
- 3. Compute C_t & h_t value from all supporting values given below.
- 4. Write Equations for finding $C_t \& h_t$.

Target Weight Matrix:

Weight Matrix for Output Gate:

Bias for Output Gate:

4	1	3	4
2	3	3	4
4	1	1	0
2	0	2	4

1	3	0	2	2	4	2	3
0	2	0	2	0	3	6	0
0	4	0	2	0	0	1	3
3	4	1	0	5	1	1	0

5
2
3
8

Forget Gate

1
1
1

'	iput Gat
	1
	1
	1
	1

J	utput	Gat

h_{t-1}	
0.964	
0.964	
0.964	
0.964	
	•

Solution: (Show Steps)