

BLM2502 Theory of Computation

BLM2502 Theory of Computation

» Course Outline

Week Content

1. Introduction to Course

- 2. Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
- 3. Regular Expressions
- 4. Finite Automata
- 5. Deterministic and Nondeterministic Finite Automata
- 6. Epsilon Transition, Equivalence of Automata
- 7. Pumping Theorem
- 8. Context Free Grammars
- 9. Parse Tree, Ambiguity,
- 10. Pumping Theorem
- 11. Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- 12. Turing Machines, Recognition and Computation, Church-Turing Hypothesis
- 13. Review

NFA Non-Deterministic Finite Automata

Same inputs

Formal Definition of NFA

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q$$
: Set of states, i.e. $\{q_0,q_1,q_2\}_{\mathcal{A}}^{0}$

$$\Sigma$$
: Input applied, i.e. $\{a,b\}$ $\mathcal{E} \notin \Sigma$

$$\delta$$
: Transition function $Q \times \Sigma \rightarrow 2^{Q}$

90: Initial state

<i>F</i> :	Accep	oting	states
------------	-------	-------	--------

Ą	D	A	ß
AB	ε	ΔV	٤
A	Ŋ	A	13
AB	٤	AD	٤

Transition Function δ

100 - diterministic

$$\delta(q,x) = \{q_1,q_2,\ldots,q_k\}$$

-andon y

resulting states with following one transition with symbol x

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\varepsilon) = \{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet =
$$\{a\}$$

Alphabet =
$$\{a\}$$

 \downarrow a a

All input is consumed

a a

Input cannot be consumed

An NFA accepts a string:

if there exists a computation of the NFA that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

aa is accepted by the NFA:

because this computation accepts aa

this computation is ignored

Rejection example

Another Rejection example

Input cannot be consumed

a a a

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

· The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Epsilon Transition

a a

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\mathcal{E}} q_2 \xrightarrow{a} q_3$$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\mathcal{E}} q_2 \xrightarrow{a} q_3$$

input tape head does not move

all input is consumed

String aa is accepted

Rejection Example

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\mathcal{E}} q_2 \xrightarrow{a} q_3$$

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L = \{aa\}$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\mathcal{E}} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

a b a b

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = \{\varepsilon, 10, 1010, 101010, ...\}$$

= $\{10\}$ *

Remarks:

- The & symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Extended Transition Function δ $\hat{}$ Same with δ but applied on strings

$$\delta^*(q_0,a)=\{q_1\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

In general

$$q_j \in \delta^*(q_i, w)$$
 : there is a walk from q_i to q_j with label w

The Language of an NFA

» The language accepted by M is:

$$L(M) = \{w_1, w_2, \dots w_n\}$$

» where

$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

» and there is some $q_k \in F$

(accepting state)

 $w_m \in L(M)$ $\delta^*(q_0, w_m)$ >> $q_k \in F$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\varepsilon$$

$$q_3$$

$$\delta^*(q_0,aa) = \{q_4,q_5\} \qquad aa \in L(M)$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\} \longrightarrow ab \in L(M)$$

$$\in F$$

$$F = \{q_0, q_5\}$$

$$q_4 \qquad q_5$$

$$q_0 \qquad a \qquad q_1 \qquad b \qquad q_2 \qquad \mathcal{E} \qquad q_3$$

$$\mathcal{E} \qquad \mathcal{E} \qquad \mathcal{$$

$$\delta^*(q_0,abaa) = \left\{q_4,\underline{q_5}\right\} \qquad \text{abaa} \in L(M)$$

$$\cong \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$b$$

$$q_2$$

$$E$$

$$\delta^*(q_0,aba) = \{q_1\} \implies aba \notin L(M)$$

$$\notin F$$

$$L(M) = \{ab\} * \bigcirc_{o_r} \{ab\} * \{aa\}$$

Equivalence of Machines

» Definition:

» Machine M_1 is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

NFAs accept Regular Languages

Theorem: Languages accepted by NFAs Regular Languages Languages Accepted by DFAs

NFAs and DFAs have the same computation power, accept the same set of languages

Proof: we only need to show

Languages
accepted
by NFAs

NEA - DFA'

DFA J. NFAY

Regular
Languages

AND

Languages accepted by NFAs

Regular Languages

Proof-Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Proof-Step 2

 Languages

 accepted

 by NFAs

 Regular

 Languages

Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Lemma:

If we convert NFA M to DFA M' then the two automata are equivalent:

$$L(M) = L(M')$$

Proof:

We only need to show:
$$L(M) \subseteq L(M')$$
 AND
$$L(M) \supseteq L(M')$$

First we show:
$$L(M)\!\subseteq\!L(M')$$

We only need to prove:

$$w \in L(M)$$
 $w \in L(M')$

NFA Consider $w \in L(M)$

symbol

denotes a possible sub-path like

symbol

We will show that if $w \in L(M)$

$$\begin{array}{c} \mathsf{DFA} \ M' \colon \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} & \qquad \qquad \{q_f, \ldots\} \\ \mathsf{state} & \qquad w \in L(M') & \qquad \mathsf{state} \\ \mathsf{label} & \qquad \mathsf{label} & \qquad \mathsf{label} \end{array}$$

More generally, we will show that if in M:

(arbitrary string) $v = a_1 a_2 \cdots a_n$

NFA
$$M: -q_0 \stackrel{a_1}{\smile} q_i \stackrel{a_2}{\smile} q_j \stackrel{a_2}{\smile} q_l \stackrel{a_n}{\smile} q_m$$

then

DFA
$$M'$$
: $\xrightarrow{a_1}$ $\xrightarrow{a_2}$ $\xrightarrow{a_2}$ $\underbrace{\{q_0\}}$ $\underbrace{\{q_1,\ldots\}}$ $\underbrace{\{q_1,\ldots\}}$ $\underbrace{\{q_m,\ldots\}}$

Proof by induction on |v|

Induction Basis:
$$|v|=1$$
 $v=a_1$

NFA
$$M: -q_0 q_i$$

DFA
$$M'$$
: q_0 q_i ...

is true by construction of M'

Induction hypothesis:
$$1 \le |v| \le k$$

 $v = a_1 a_2 \cdots a_k$

Suppose that the following hold

NFA
$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_k}{\longrightarrow} q_d$$

$$\mathsf{DFA}\ M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_i,\ldots\}} \underbrace{a_k}_{\{q_c,\ldots\}} \underbrace{a_k}_{\{q_d,\ldots\}}$$

Induction Step:
$$|v| = k+1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{\cdot} a_{k+1} = v' a_{k+1}$$

Then this is true by construction of M'

NFA
$$M: q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_k} q_d^{a_{k+1}} q_e$$

Therefore if $w \in L(M)$

 $\{q_0\}$

 $w \in L(M')$

We have shown: $L(M) \subseteq L(M')$

With a similar proof we can show: $L(M) \supseteq L(M')$

Therefore:
$$L(M) = L(M')$$

Conversion NFA to DFA

$$\delta^*(q_0,b) = \emptyset$$
 empty set

END OF CONSTRUCTION

General Conversion Procedure

» Input: an NFA M

» Output: an equivalent DFA M' with L(M) = L(M')

» The NFA has states

$$q_0, q_1, q_2, \dots$$

» The DFA has states from the power set

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Conversion Procedure Steps

>>

Step 1

» Initial state of NFA: q_0

» Initial state of DFA: $\{q_0\}$

Example

DFA
$$M'$$

$$\rightarrow \{q_0\}$$

Step 2

For every DFA's state
$$\{q_i,q_j,...,q_m\}$$
 compute in the NFA
$$\delta * (q_i,a)$$

$$\cup \delta * (q_j,a)$$
 Union
$$= \{q_k',q_l',...,q_n'\}$$

$$\cup \delta * (q_m,a)$$
 add transition to DFA
$$\delta (\{q_i,q_j,...,q_m\},\ a) = \{q_k',q_l',...,q_n'\}$$

Example $\delta^*(q_0,a) = \{q_1,q_2\}$

$$\mathbf{DFA} \ \mathbf{M'} \qquad \delta(\{q_0\}, a) = \{q_1, q_2\}$$

$$\rightarrow \{q_0\} \qquad \qquad a \qquad \qquad \{q_1,q_2\}$$

Step 3

» Repeat Step 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

Example

Step 4

» For any DFA state $\{q_i,q_j,...,q_m\}$

» if some q_j is accepting state in NFA

Then, $\{q_i,q_j,...,q_m\}$ is accepting state in DFA $\{q_i,q_j,...,q_m\}$ hopeing final state $\{q_i,q_j,...,q_m\}$

Example

- Design an NFA for the language that accepst strings over En1] serond symbol 2. NFA

20	41	2001
1	Ø	212
۵,	42	92

	0	1
do	4	4291
2091	91	90979
4	43	d1d2
919	1	
	C 2	2
929195	919	409195
2	الم	dz
١, ١	23	2
		٠)

NFA ends with 01

