Duração: 1 hora 50 minutos

G4 de Álgebra Linear I-2006.1

Data: 26 ou 27 de junho de 2006

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	1.0		
1b	0.5		
1c	1.0		
1d	1.0		
2a	1.0		
2b	0.5		
2c	0.5		
2d	1.0		
2e	0.5		
3a	1.0		
3b	1.0		
3c	1.0		
Total	10.0		

Instruções

- Não é permitido usar calculadora. Mantenha o celular desligado.
- \bullet É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

1) Considere a reta

$$r = (1 + t, 1 - t, 2t), \quad t \in \mathbb{R},$$

e o ponto

$$Q = (1, 0, 2).$$

- (a) Escreva a reta r como a interseção de dois planos π e ρ (escritos na forma cartesiana) tais que π é paralelo ao eixo \mathbb{Y} (isto é, o vetor normal do plano π é ortogonal ao vetor \mathbf{j}) e ρ é paralelo ao eixo \mathbb{Z} (isto é, o vetor normal do plano ρ é ortogonal ao vetor \mathbf{k}).
- (b) Determine a equação cartesiana do plano τ que contém a reta r e o ponto Q.
- (c) Determine a distância do ponto Q à reta r.
- (d) Determine um ponto M da reta r tal que os pontos P=(1,1,0), Q e M formem um triângulo retângulo cuja hipotenusa é o segmento PQ. (Observe que P está na reta r).

Resposta:

2) Considere a transformação linear

$$T, L \colon \mathbb{R}^3 \to \mathbb{R}^3$$

cuja matriz na base canônica é

$$[T] = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -2 & 4 & -2 \\ 2 & -5 & 3 \end{array}\right).$$

- (a) Determine a equação cartesiana da imagem de T.
- (b) Determine uma base da imagem de T.
- (c) Determine o conjunto de vetores v tais que $T(v) = \bar{0}$.
- (d) Determine os autovalores de T com suas multiplicidades.
- (e) Determine duas formas diagonais diferentes de T.

Resposta:

3) Considere a transformação linear

$$T \colon \mathbb{R}^3 \to \mathbb{R}^3, \qquad T(u) = (1, 0, -1) \times u$$

e a base ortonormal de \mathbb{R}^3 definida por

$$\beta = \{(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}); (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}); (1/\sqrt{2}, 0, -1/\sqrt{2})\}.$$

- a) Determine a matriz $[T]_{\beta}$ de T na base β .
- b) Determine a matriz $[T]_{\mathcal{E}}$ de T na base canônica.
- c) Determine explicitamente matrizes P e P^{-1} tais que a matriz $[T]_{\mathcal{E}}$ de T na base canônica se escreva como o produto

$$[T]_{\mathcal{E}} = P[T]_{\beta} P^{-1}.$$

Resposta: