CSE 251 Electronic Devices and Circuits

Lecture 1-10 Overview

Course instructor:

Ankan Ghosh Dastider (AGD)
Lecturer, Department of Computer Science and Engineering,
School of Data and Sciences, Brac University

Email: ankan.ghosh@bracu.ac.bd

Lecture 1: Introduction

• Transistor: probable the most impactful invention of the present world

etc.)

Why do we need this course?

```
High Level Programming \rightarrow Assembly language \rightarrow Machine language \rightarrow Architecture... (C, C++, etc.) (x86, ARM, CUDA, etc.) (100110) (RISC, CISC, etc.)
```

...Architecture \rightarrow System level \rightarrow Gate \rightarrow Transistor (Register, (AND, Mux) OR,

Lecture 1: Introduction

Vacuum tube

Triode

- To ensure current
 passes along one
 direction and stops
 flowing in the other
 direction
- Gate allows us to control this is a more robust way

Lecture 2: Alternate circuit representation

Loop representation

Alternate representation

- We shall try to use a common ground for all the sources, minimizing the number of floating sources
- KCL remains the same in both types
 of representations. KVL works along a
 line in the alternate representation,
 not in a loop

Lecture 3: I-V characteristics

Element	Diagram	I-V Characteristic	Explanation
Resistor	I + V - N R	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	A resistor R satisfies Ohm's law $I=V/R$, so its I-V characteristic goes through the origin and has slope $1/R$.
Voltage Source	<u>I</u> + • • • • • • • • • • • • • • • • • •	$\begin{array}{c c} I \\ \uparrow \\ \hline \\ V_s \end{array} \rightarrow V$	A voltage source $V_{s }$ maintains a fixed voltage drop and can allow any current, so its I-V characteristic is a vertical line at $V=V_{s }$
Current Source	I + V t) I,		A current source $I_{\rm s} $ maintains a fixed current and can allow any voltage drop, so its I-V characteristic is a horizontal line at $I=-I_{\rm s} $. Note that there is a negative sign because the current arrow labels on I and $I_{\rm s} $ are in opposite directions.

Lecture 3: I-V characteristics

- (a) A circuit with a non-linear device N_D
- (b) IV Characteristics of the non-linear device N_D
- (a) Identify the equivalent linear circuit models for the 3 linear segments in the IV characteristics of the non-linear device N_D and calculate the model parameters. [3]
- (b) **Show** the alternative representation of the circuit in Figure (a). [2]
- (c) **Detect** the operating region for the device when $v_s = 3$ V and **calculate** the current through the device, i_s , for this voltage. [2]
- (d) Apply KVL and KCL to calculate the value of voltage source V_p when $v_s = 3$ V. [3]

Lecture 4: Introduction to diodes

Figure 4.1 The ideal diode: (a) diode circuit symbol; (b) i-v characteristic; (c) equivalent circuit in the reverse direction; (d) equivalent circuit in the forward direction.

Lecture 5: AC to DC conversion

Figure 4 Block diagram of AC to DC Converter

NOTE: V_i can be sinusoidal (generally), triangular, rectangular, etc. Read the question carefully.

Lecture 5: AC to DC conversion

The Ideal-Diode Model

Figure 4.3 (a) Rectifier circuit. (b) Input waveform. (c) Equivalent circuit when $v_l \ge 0$. (d) Equivalent circuit when $v_l \le 0$. (e) Output waveform.

Lecture 6: Ideal diodes and building logic gates

Max/OR and Min/AND operation:

(remember the conditions when they are applicable)

 Learn to implement AND, OR logics using them
 (like implement y=a+bx using ideal diodes)

Figure 4.5 Diode logic gates: (a) OR gate; (b) AND gate (in a positive-logic system).

Lecture 7: p-n junction, 3 models of diode

Figure 4.7 The i-v characteristic of a silicon junction diode.

Lecture 7: p-n junction, 3 models of diode

The Constant-Voltage-Drop Model

Figure 4.12 Development of the diode constant-voltage-drop model: (a) the exponential characteristic; (b) approximating the exponential characteristic by a constant voltage, usually about $0.7 \, V_i$; (c) the resulting model of the forward-conducting diodes.

The Constant-Voltage-Drop+R Model

Lecture 7: p-n junction, 3 models of diode

Assuming the diodes to be ideal, find the values of *I* and *V* in the circuits of Fig. 4.6.

Figure 4.6 Circuits for Example 4.2.

Lecture 8: Method of assumed state

EXAMPLE 2.9

Objective: Determine the output voltage and diode currents for the circuit shown in Figure 2.35, for two values of input voltage.

Assume the circuit parameters are $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $V_{\gamma} = 0.7 \text{ V}$, $V^+ = +5 \text{ V}$, and $V^- = -5 \text{ V}$. Determine v_O , i_{D1} , and i_{D2} for $v_I = 0$ and $v_I = 4 \text{ V}$.

Figure 2.35 A two-diode circuit

Example: Find the values of I_{D1} , I_{D2} , and V_o in the circuit shown below assuming the diodes to be non-ideal [Hints: use constant voltage drop model with V_{D0} =0.7 V]

Lecture 8: Method of assumed state

Example: Find the values of I_{D1} , I_{D2} , and V_o in the circuit shown below assuming the diodes to be Non-ideal. Here V_i =2V. [Hints: use constant voltage drop model with V_{D0} =0.7 V].

NOTE: Changing the values of R or V_i may change the condition of diodes being ON or OFF

Lecture 9: Half-wave and Full-wave rectifier

Lecture 10: Filtering and calculating ripple values

Lecture 10: Filtering and calculating ripple values

Without capacitor

Rectifier	i/p peak	o/p peak	average
H/W	V_{M}	V_{P}	$V_{avg} = V_{DC} = \frac{1}{\pi}V_{M} - \frac{1}{2}V_{Do}$
F/W	V_{M}	V_p	$V_{avg} = V_{DC} = \frac{2}{\pi}V_{M} - 2V_{Do}$

With capacitor

Rectifier	i/p peak	o/p peak	frequency	Ripple voltage	average
H/W	V _M	$V_p = V_M - V_{Do}$	f _r =f _i	$V_r = \frac{V_p}{f_r R c}$	$V_{avg} = V_{DC} = V_{P} - \frac{1}{2}V_{r}$
F/W	V_{M}	$V_p = V_M - 2V_{Do}$	$f_r=2f_i$	$V_r = \frac{V_p}{f_r R c}$	$V_{avg} = V_{DC} = V_{P} - \frac{1}{2}V_{r}$

$$I_{o,avg} = V_{o,avg}/R$$
, $V_{rms} = V_p/\sqrt{2}$