Fakultet for Informasjonsteknologi og Elektroteknikk Institutt for Elektroniske Systemer

TELE2003 SIGNALBEHANDLING Løsningsforslag til ØVING 1

Oppgave 1

a)

- b) $\underline{x} = r \cos(\theta)$, $\underline{y} = r \sin(\theta)$
- c) Det komplekse tallet z kan skrives $z = r \cdot e^{i \cdot \theta}$ Vi lar vinkelen variere med tiden slik at: $\theta(t) = \omega t + \varphi$.

Vi får:
$$z(t) = \underline{r \cdot e^{i(\omega t + \varphi)}}$$
 $(= r e^{i\varphi} \cdot e^{i\omega t})$

Kan evt. også skrives: $z(t) = r\cos(\omega t + \varphi) + i r\sin(\omega t + \varphi)$

d) Vi tar realdelen eller imaginærdelen til z(t):

$$\operatorname{Re}\left\{z(t)\right\} = r\cos\left(\omega t + \varphi\right)$$

Begge disse er sinusformede.

$$\operatorname{Im}\left\{z(t)\right\} = r\sin\left(\omega t + \varphi\right)$$

e) Et sinusformet signal kan generelt skrives:

$$x(t) = A\cos(\omega t + \varphi) + d$$
 (eller som over: $x(t) = r\cos(\omega t + \varphi) + d$)

Der A er amplituden

 ω er vinkelfrekvensen

 φ er fasen

d er konstantleddet (eller DC-verdien)

Oppgave 2

En vektor i det komplekse plan med lengde $\frac{r}{2}$ og vinkel θ kan skrives:

$$v_1 = \frac{r}{2}e^{i\theta} = \frac{r}{2}\cos(\theta) + i\frac{r}{2}\sin(\theta)$$

$$v_2 = \frac{r}{2}e^{-i\theta} = \frac{r}{2}\cos(-\theta) + i\frac{r}{2}\sin(-\theta) = \frac{r}{2}\cos(\theta) - i\frac{r}{2}\sin(\theta)$$

Vi får:

$$v_1 + v_2 = \frac{r}{2}\cos(\theta) + i\frac{r}{2}\sin(\theta) + \frac{r}{2}\cos(\theta) - i\frac{r}{2}\sin(\theta)$$
$$v_1 + v_2 = \frac{r}{2}\cos(\theta) + \frac{r}{2}\cos(\theta) = 2 \cdot \frac{r}{2}\cos(\theta) = r \cdot \cos(\theta)$$

Hvis vinkelen θ ikke er fast men endrer seg med tiden t, kan vi skifte ut θ med $\theta(t) = \omega t + \phi$. Vi får da signalet:

$$\underbrace{\underline{x(t)}}_{=} = r \cdot \cos(\theta(t)) = \underbrace{\underline{r \cdot \cos(\omega t + \phi)}}_{=}$$

Oppgave 3

a) $r(t) = 4\cos(2\pi400t + \frac{\pi}{4}) + 6\cos(2\pi800t - \frac{\pi}{2}).$ Fra Eulers formel har vi at $A\cos(\omega t + \phi) = \frac{A}{2}e^{i(\omega t + \phi)} + \frac{A}{2}e^{-i(\omega t + \phi)}.$ Da kan vi omforme r(t) til:

$$r(t) = 2e^{\mathrm{i}(2\pi400t + \frac{\pi}{4})} + 2e^{-\mathrm{i}(2\pi400t + \frac{\pi}{4})} + 3e^{\mathrm{i}(2\pi800t - \frac{\pi}{2})} + 3e^{-\mathrm{i}(2\pi800t - \frac{\pi}{2})}$$

b) Hver kompleks eksponential tilsvarer en spektrallinje slik:

Grunnfrekvensen i signalet må være slik at alle frekvenskomponentene i signalet er et helt multiplum av grunnfrekvensen, vi må altså finne største felles multiplum for de frekvensene vi har: 400Hz og 800Hz. Det vil si at vi må finne f_0 slik at 400Hz og 800Hz kan skrives som $n \cdot f_0$, der n er et heltall. Her kan vi da velge $f_0 = 400$, siden $1 \cdot 400 = 400$ og $2 \cdot 400 = 800$. Periodetiden blir da:

$$\underline{\underline{T_0}} = \frac{1}{f_0} = \frac{1}{400 \text{Hz}} = 0,0025 \text{s} = 2,5 \text{ms}$$