

Durée: 1h45. Énoncé recto-verso. Le barême est indicatif. Un soin tout particulier sera apporté à la précision et la clareté de la rédaction

Exercice 1: Échauffement.

(2 points)

Calculez le rayon de convergence des séries entières suivantes:

1.
$$\sum_{n>1} \left(1 + \frac{1}{\sqrt{n}}\right)^n z^n$$

2. $\sum_{n\geq 0} P(n)z^n,$ où P est un polynôme à coefficients complexes, non nul.

Exercice 2: Une série de fonctions.

(5 points)

On définit pour $n \in \mathbb{N}$, la fonction $f_n(t) = 2te^{-n^4t^2}$.

- 1. Montrez que la série $\sum_{n\geq 1} f_n$ converge uniformément sur $\mathbb R$ vers une fonction que l'on note F.
- **2.** Justifiez que F est continue sur \mathbb{R} .
- 3. Montrez que

$$\lim_{A \to +\infty} \int_0^A F(t)dt = \sum_{n=1}^{+\infty} \frac{1}{n^4}$$

Exercice 3: Séries entières et équations différentielles.

(5 points)

On considère l'équation différentielle (Δ) d'inconnue $y:]-1,1[\to \mathbb{R}:$

$$xy'(x) - y(x) + \ln(1 - x) + x = 0 \tag{\Delta}$$

- 1. Montrez que (Δ) admet une solution $\phi:]-1, 1[\to \mathbb{R}$ qui est développable en série entière en 0, de rayon de convergence égal à 1, vérifiant $\phi(0)=0$ et $\phi'(0)=-1$.
- **2.** Exprimer ϕ à l'aide de fonctions usuelles.

Exercice 4: Le bord du disque de convergence.

(8 points)

On considère une série entière à coefficients complexes $S(z) = \sum_{n \geq 0} a_n z^n$ de rayon de convergence $\rho(S) = 1$.

On note $\overline{D(0,1)} = \{z \in \mathbb{C} \mid |z| \le 1\}$ et $C(0,1) = \{z \in \mathbb{C} \mid |z| = 1\}$.

1. Montrez que si S converge normalement sur C(0,1) alors elle converge normalement sur $\overline{D(0,1)}$.

On suppose maintenant que S converge uniformément sur C(0,1). Le but de l'exercice est de montrer que S converge uniformément sur $\overline{D(0,1)}$. Pour $0 \le p \le q$ et $z \in \mathbb{C}$, on note

$$S_{p,q}(z) = \sum_{n=p}^{q} a_n z^n .$$

2. Soit $\epsilon > 0$. Montrez qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $q \geq p \geq n_0$ on a

$$\forall \theta \in [0, 2\pi], |S_{p,q}(e^{i\theta})| \le \epsilon$$

3. Soit $z \in \overline{D(0,1)}$. On note $r \geq 0$ son module et $\theta \in [0,2\pi[$ son argument: $z = re^{i\theta}$. Montrez que pour tout entiers $1 \leq p \leq q$, on a

$$\sum_{n=p}^{q} a_n z^n = \sum_{n=p}^{q} S_{p,n}(e^{i\theta})(r^n - r^{n+1}) + S_{p,q}(e^{i\theta})r^{q+1}$$

4. En déduire que S converge uniformément sur $\overline{D(0,1)}$.

Bonus (si vous avez déjà tout fini): Théorème de Borel.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. On cherche à montrer l'existence d'une fonction $f\in\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ telle que $\forall n\in\mathbb{N}, f^{(n)}(0)=a_n$.

- **1.** Déterminez f lorsque $\forall n \in \mathbb{N}, a_n = \frac{1}{2^n}$.
- **2.** Construire une fonction "plateau" $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que pour tout $x \in \mathbb{R}$

$$|x| \le 1 \implies \varphi(x) = 1$$
 et $|x| \ge 2 \implies \varphi(x) = 0$

- **3.** Construire pour tout $n \in \mathbb{N}$ une fonction $\varphi_n \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, nulle en dehors de [-2, 2], telle que $\forall k \in \mathbb{N}, \varphi_n^{(k)}(0) = \delta_{n,k}$.
- **4.** Prouver l'existence de suites $(\lambda_n)_{n\in\mathbb{N}}$ et $(\mu_n)_{n\in\mathbb{N}}$ telles que $\sum_{n\geq 0} \lambda_n \varphi_n(\mu_n x)$ converge sur \mathbb{R} et que sa somme f soit \mathcal{C}^{∞} sur \mathbb{R} avec $\forall n\in\mathbb{N}, f^{(n)}(0)=a_n$.
- **5. Application:** théorème du raccord \mathcal{C}^{∞} . Soit $a < b, f \in \mathcal{C}^{\infty}(]-\infty, a], \mathbb{R})$ et $g \in \mathcal{C}^{\infty}([b, +\infty[, \mathbb{R})$. Montrez qu'il existe $h \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ dont les restrictions à $]-\infty, a]$ et $[b, +\infty[$ sont respectivement f et g.

