Branden Fitelson

Philosophy 1115 Notes

1 Branden Fitelson

Philosophy 1115 Notes

2

Announcements & Overview

- Administrative Stuff
 - HW #2 grades & solutions will be posted tonight
 - The mid-term is *next Friday* March 4
 - * I've posted a practice mid-term (same structure as actual mid-term)
 - * We will go over the practice mid-term on Tuesday (March 1)
 - * I've also posted a handout with some rules/definitions you'll be given at the mid-term (otherwise, it'll be a closed-book exam).
 - HW #3 has been posted
 - * 5 truth-table exercises due next Friday (same day as mid-term)
 - I have posted 25 additional truth-table problems (with solutions)
- Today: Unit #3, Continued
 - Truth-tables and their applications (continued)

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

				p	q	p & q		_p	q	$p \vee q$
p	~p	_		Т	Т	Т		Т	Т	Т
Т	Т			Т		Т		Т	. _	Т
\perp	Т			\perp	Т	Т		Т	. т	Т
				\perp				Т	. _	1
	p	q	<i>p</i> →	q			p	q	$p \leftrightarrow$	q
	Т	Т	Т				Т	Т	Т	
	Т						Т	1	Τ	
	\perp	Т	Т				\perp	Т	Τ	
	\perp	_	Т				丄		Т	

Branden Fitelson

Philosophy 1115 Notes

3

02/26/16

Chapter 3 — Semantics of LSL: Additional Remarks on →

- Last time, I explained *why* our conditional → behaves "like a disjunction."
 - 1. We want a *truth-functional* semantics for →. This is a simplifying *idealization*. Truth-functional semantics are the simplest compositional semantics for sentential logic. [A "Newtonian" semantic model.]
 - 2. Given (1), the *only* way to define \rightarrow is *our* way, since it's the *only* binary truth-function that has the following three essential *logical* properties:
 - (i) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$ \therefore q] is a valid sentential form.
 - (ii) Affirming the consequent [q and $\lceil p \rightarrow q \rceil$: p] is *not* a valid form.
 - (iii) All sentences of the form $p \to p$ are logical truths.
- ullet There are *non*-truth-functional semantics for the English conditional.
- These may be "closer" to the English *meaning* of "if". But, they agree with our semantics for →, when it comes to the crucial *logical* properties (i)-(iii). Indeed, our → captures *most* of the (intuitive) *logical* properties of "if".

Branden Fitelson

Northeastern Philosophy

Philosophy 1115 Notes

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Constructing Truth-Tables for LSL Sentences

- With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound LSL statements.
- The procedure for constructing the truth-table of p is as follows:
 - 1. Determine the number of rows in the truth-table. This is 2^n , where n is the number of atomic sentences in the compound statement p.
 - 2. The table will have n + 1 main columns: n columns for the atomic sentences in p, and one for the truth-values of p itself.
 - 3. The table will also have some "quasi-columns" one for each atom and each connective occurring in p which needn't be drawn explicitly, but which go into the determination of p's truth values.
 - 4. Place the atomic letters in the left most columns, in alphabetical order from left to right. And, place p in the right most column.
 - 5. Write in all possible combinations of truth-values for the atomic statements. There are 2^n of these one for each row of the table.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

- 6. Convention: start on the *n*th column (farthest down the alphabet) with the pattern $\top \bot \top \bot \dots$ repeated until the column is filled. Then, write $\top \top \bot \bot \bot ...$ in the (n-1)st column, $\top \top \top \top \top \bot \bot \bot \bot \bot ...$ in the (n-2)nd column,... alternations of $2^{n-m} \top s + 2^{n-m} \bot s$ in the *m*th column ... until the first (m = 1) column has been completed.
- 7. Finally, we compute the truth-values of p in each row of the table. Here, we start from the inside-out. We first copy the truth-values of the atoms, then we compute the negations, conjunctions, etc. which compose p. Finally, we will be in a position to compute the value of the main connective of p, at which point we'll be done with the table.
- Example: Step-By-Step Truth-Table Construction of ' $A \leftrightarrow (B \& A)$.'

A	В	A	\leftrightarrow	(B	&	A)
Т	Т	Т	Т	Т	Т	Т
Т	上	Т	Т	Τ	Т	Т
	Т	1	Т	Т	\perp	\perp
	工		Т	Т	Т	

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Interpretations and the Relation of Logical Consequence

- An *interpretation* of an LSL formula *p* is an assignment of truth-values to all of the sentence letters in p - i.e., a row in p's truth-table.
- A formula *p* is a *logical consequence* of a set of formulae *S* [written $S \models p$ just in case there is no interpretation (*i.e.*, no row in the joint truth-table of *S* and p) on which all the members of *S* are \top but p is \bot .
- $S \models p$ is another way of saying that the argument from S to p is *valid*.
- Two LSL sentences p and q are said to be *logically equivalent* [written p = |q| iff they have the same truth-value on all (joint) interpretations.
- That is, p and q are logically equivalent iff both $p \models q$ and $q \models p$.
- I will often express p = q by saying that p entails q. This is easier than saying that ^{r}q is a logical consequence of p^{γ} .
- The logical consequence relation ⊨ is our central theoretical relation.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Branden Fitelson

Philosophy 1115 Notes

Logical Truth, Logical Falsity, and Contingency: Definitions

• A statement is said to be logically true (or tautologous) if it is \top on all interpretations. *E.g.*, any statement of the form $p \leftrightarrow p$ is tautological.

• A statement is logically false (or self-contradictory) if it is \bot on all interpretations. *E.g.*, any statement of the form $p \& \sim p$ is logically false:

• A statement is contingent if it is *neither* tautological *nor* self-contradictory. Example: 'A' (or any basic sentence) is contingent.

$$\begin{array}{c|c|c} A & A \\ \hline \top & \top \\ \hline \bot & \bot \end{array}$$

Branden Fitelson

Philosophy 1115 Notes

Logical Truth, Logical Falsity, and Contingency: Problems

- Classify the following statements as logically true (tautologous), logically false (self-contradictory), or contingent:
- 1. $N \rightarrow (N \rightarrow N)$
- 2. $(G \rightarrow G) \rightarrow G$
- 3. $(S \to R) & (S \& \sim R)$
- 4. $((E \rightarrow F) \rightarrow F) \rightarrow E$
- 6. $(M \rightarrow P) \lor (P \rightarrow M)$
- 11. $[(O \rightarrow P) \& (\sim O \rightarrow R)] \& \sim (P \lor R)$
- 12. $[(H \rightarrow N) \& (T \rightarrow N)] \rightarrow [(H \lor T) \rightarrow N]$
- 15. $\lceil (F \vee E) \& (G \vee H) \rceil \leftrightarrow \lceil (G \& E) \vee (F \& H) \rceil$

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Statements p and q are equivalent [p
ightharpoonup q] if they have the same truth-value on all interpretations. For instance, 'A
ightharpoonup B' and ' $\sim A \lor B$ '.

A	В	A	→	В	~	\boldsymbol{A}	٧	В
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т		Т	Т	Т	1	
	Т	1	Т	Т	Т	Т	Т	Т
	Τ	1	Т	1	Т	1	Т	

• Statements p and q are contradictory [p = -q] if they have opposite truth-values on all interpretations. For instance, ' $A \rightarrow B$ ' and ' $A \& \sim B$ '.

A	В	A	→	В	A	&	~	В
Т	Т	Т	Т	Т	Т	Τ	Τ	Т
Т	Т	Т		Т	Т	Т	Т	
	Т	1	Т	Т	1	Т	Τ	Т
	Т	1	Т	1	1	1	Т	

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Statements *p* and *q* are inconsistent [*p* ⊨ ~*q*] if there is no interpretation on which they are both true. For instance, 'A ↔ B' and 'A & ~B' are inconsistent [Note: they are *not* contradictory!].

A	В	A	\leftrightarrow	В	A	&	~	В
Т	Т	Т	Т	Т	Т	Τ	Τ	Т
Т	Т	Т	Τ	Τ	Т	Т	Т	Τ
Τ	Т		1	Т		1	Τ	Т
Т	1	1	Т	Τ	1	1	Т	

• Statements p and q are consistent $[p \neq \sim q]$ if there's an interpretation on which they are both true. *E.g.*, 'A & B' and 'A \vee B' are consistent:

A	В	$\mid A$	&	В	A	V	В
Т	Т	Т	Т	Т	Т	Т	Т
Т	\perp	Т				Т	\perp
	Т	Т	1	Т		Т	Т
\perp	Τ		Τ	\perp	\perp	Τ.	\perp

Northeastern Philosophy

Branden Fitelson

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Branden Fitelson

Philosophy 1115 Notes

11

Semantic Equivalence, Contradictoriness, etc.: Relationships

What are the logical relationships between 'p and q are equivalent', 'p and q are consistent', 'p and q are contradictory', and 'p and q are inconsistent'? That is, which of these entails which (and which don't)?

Equivalent

Contradictory

l ? ↑

₩ ? ↑

Consistent

Inconsistent

• Answers:

Northeastern Philosophy

- 1. Equivalent *⇒* Consistent (*example*?)
- 2. Consistent *⇒* Equivalent (*example*?)
- 3. Contradictory \Rightarrow Inconsistent (*why*?)
- 4. Inconsistent *⇒* Contradictory (*example*?)

Branden Fitelson

Philosophy 1115 Notes

12

Semantic Equivalence: Example #1

- Recall that p unless q translates in LSL as $q \to p$.
- We've said that we can also translate p unless q as $p \vee q$.
- This is because $\lceil \sim q \rightarrow p \rceil$ is *semantically equivalent to* $\lceil p \lor q \rceil$. We may demonstrate this, using the following joint truth-table.

- The truth-tables of $p \lor q$ and $\sim q \to p$ are the same.
- Thus, $\sim q \rightarrow p \Rightarrow p \lor q$.

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL 02/26/16 Northeastern

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

Semantic Equivalence: Example #2

- $\lceil p \leftrightarrow q \rceil$ is an abbreviation for $\lceil (p \rightarrow q) \& (q \rightarrow p) \rceil$.
- The following truth-table shows it is a *legitimate* abbreviation:

p	q	$(p \rightarrow q)$	&	$(q \rightarrow p)$	p⊶q
Т	Т	Т	Т	Т	Т
Т	_		Τ	Т	Τ
\perp	Т	Т	Τ	Т	Τ
\perp	_	Т	Т	Т	Т

- $\lceil p \leftrightarrow q \rceil$ and $\lceil (p \to q) \& (q \to p) \rceil$ have the same truth-table.
- Thus, $p \leftrightarrow q = (p \rightarrow q) \& (q \rightarrow p)$.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

13

Semantic Equivalence: Example #3

- Intuitively, the truth-conditions for *exclusive or* (⊕) are such that 「p ⊕ q¹ is true if and only if *exactly* one of p or q is true.
- I said that we could say something equivalent to this using our \lor , &, and \sim . Specifically, I said $p \oplus q \Rightarrow (p \lor q) \& \sim (p \& q)$.
- The following truth-table shows that this is correct:

p	q	$(p \lor q)$	&	$\sim (p \& q)$	p⊕q
Т	Т	Т	Τ	Т	
Т	_	Т	Т	Т	Т
\perp	Т	Т	Т	Т	Т
\perp	_		Τ	Т	

• $\lceil p \oplus q \rceil$ and $\lceil (p \vee q) \& \sim (p \& q) \rceil$ have the same truth-table.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Branden Fitelson

Philosophy 1115 Notes

15

Equivalence, Contradictoriness, etc.: Some Problems

- Use truth-tables to determine whether the following pairs of statements are semantically equivalent, contradictory, consistent, or inconsistent.
 - 1. 'F & M' and ' \sim ($F \vee M$)'
 - 2. ' $R \vee \sim S$ ' and ' $S \& \sim R$ '
 - 3. ' $H \leftrightarrow \sim G$ ' and ' $(G \& H) \lor (\sim G \& \sim H)$ '
 - 4. '*N* & $(A \lor \sim E)$ ' and ' $\sim A$ & $(E \lor \sim N)$ '
 - 5. ' $W \leftrightarrow (B \& T)$ ' and ' $W \& (T \rightarrow \sim B)$ '
 - 6. 'R & $(Q \vee S)$ ' and ' $(S \vee R)$ & $(Q \vee R)$ '
 - 7. ' $Z \& (C \leftrightarrow P)$ ' and ' $C \leftrightarrow (Z \& \sim P)$ '
 - 8. ' $Q \rightarrow \sim (K \vee F)$ ' and ' $(K \& Q) \vee (F \& Q)$ '

Branden Fitelson

Philosophy 1115 Notes

16

Some More Semantic Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \dashv \vDash (A \& B) \lor (\sim A \& \sim B)$$

A	В	A	\leftrightarrow	В	(A	&	B)	V	(~	A	&	~	B)
Т	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	T	T	Т
Т	Τ	Т		\perp	Т				Τ	Т	Т	Т	
	Т	Т	1	Т		T	Т		Т		1	Τ	Т
	Τ	1	Т					Т	Т		Т	Т	

- Can you prove the following equivalences with truth-tables?
 - $\sim (A \& B) \Rightarrow = \sim A \lor \sim B$
 - $\sim (A \vee B) \Rightarrow = \sim A \& \sim B$
 - $-A = (A \& B) \lor (A \& \sim B)$
 - $-A = A \otimes (B \rightarrow B)$
 - $-A = A \lor (B \& \sim B)$

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

Northeastern Philosophy

Unit #3: Truth-Functional Semantics of LSL

• The following simultaneous truth-table establishes that

$$p\,\&\,(q\vee r) \mathrel{\dashv}\vDash (p\,\&\, q)\vee (p\,\&\, r)$$

p	q	r	p	&	$(q \vee r)$	(p & q)	V	(p & r)
Т	Т	Т	Т	Т	Т	Т	T	Т
T	Т	\perp	Т	Т	Т	Т	Т	\perp
T	\perp	Т	Т	Т	Т		Т	Т
T	\perp	\perp	Т	\perp			\perp	\perp
\perp	Т	Т	Т	Τ	Т		Τ	\perp
\perp	Т	\perp	Т	Τ	Т		Τ	\perp
\perp	\perp	Т	1	Τ	Т		Τ	\perp
\perp	\perp	\perp	1	Τ			Τ	Τ

• This is *distributivity* of & over \lor . It also works for \lor over &.

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

17

The Exhaustive Truth-Table Method for Testing Validity

• Remember, an argument is valid if it is *impossible* for its premises to be true while its conclusion is false. Let p_1, \ldots, p_n be the premises of a LSL argument, and let *q* be the conclusion of the argument. Then, we have:

is valid if and only if there is no row in the simultaneous

truth-table of p_1, \ldots, p_n , and q which looks like the following:

atoms premises conclusion

• We will use simultaneous truth-tables to prove validities and invalidities. For example, consider the following valid argument:

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

02/26/16

18

Branden Fitelson

Philosophy 1115 Notes

19

A
$A \to B$
∴ <i>B</i>

Northeastern Philosophy

ato	ms		pren	nises	conclusion	
\boldsymbol{A}	В	A	A	→	В	B
Т	Т	Т	Т	Т	Т	Т
Т	\perp	Т	Т	1	1	1
\perp	Τ	1		Т	Т	Т
Τ	1	1		Т	1	1

- \blacksquare VALID there is no row in which *A* and *A* → *B* are both \top , but *B* is \bot .
- In general, we'll use the following procedure for evaluating arguments:
- 1. Translate and symbolize the the argument (if given in English).
- 2. Write out the symbolized argument (as above).
- 3. Draw a simultaneous truth-table for the symbolized argument, outlining the columns representing the premises and conclusion.
- 4. Is there a row of the table in which all premises are \top but the conclusion is \bot ? If so, the argument is invalid; if not, it's valid.
- We will practice this on examples. But, first, a "short-cut" method.

Branden Fitelson

Philosophy 1115 Notes

20

The "Short" Truth Table Method for Validity Testing I

• Consider the following LSL argument:

$$A \rightarrow (B \& E)$$

$$D \to (A \vee F)$$

$$\sim E$$

$$\therefore D \to B$$

- This argument has 3 premises and contains 5 atomic sentences. This would lead to a complete truth-table with 32 rows and 8 columns (this will be far more than 256 distinct computations).
- As such, the exhaustive truth-table method does not seem practical in this case. So, instead, let's try to construct or "reverse engineer" an invalidating interpretation.
- To do this, we "work backward" from the assumption that the conclusion is \bot and all the premises are \top on some row.

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL 02/26/16

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL

Branden Fitelson

Philosophy 1115 Notes

21

• Step 1: Assume there is an interpretation on which all three premises are \top and the conclusion is \bot . This leads to:

A	В	D	Ε	F	A	\rightarrow	(B & E)	D	→	$(A \vee F)$	~ <i>E</i>	$D \rightarrow B$
						Т			Т		Т	Т

• Step 2: From the assumption that $\sim E$ is \top , we may infer that both E and B & E are \bot . This fills-in two more cells:

• Step 3: Now, the only way that $A \rightarrow (B \& E)$ can be \top (as we've assumed) is if its antecedent A is \bot . This yields the following:

Northeastern Philosophy

Unit #3: Truth-Functional Semantics of LSL

02/26/16

Branden Fitelson Philosophy 1115 Notes 22

• Step 4: Now, $D \to B$ can be \bot (as we've been assuming) if and only if D is \top and B is \bot (just by the definition of \to). So:

• Step 5: Then, $D \to (A \vee F)$ can be \top (as we've assumed) only if its consequent $A \vee F$ is \top , which gives the following:

• Step 6: Finally, since *A* is ⊥, the only way that *A* ∨ *F* can be ⊤ is if *F* is ⊤, which completes our construction!

Northeastern Philosophy

UNIT #3: TRUTH-FUNCTIONAL SEMANTICS OF LSL