Analysis 1

08.12.2023

F. Gmeineder

P. Stephan

A. von Pippich

Wintersemester 2023

Abgabe: Bis zum 15.12.2023 um 10:00 Uhr

Übungsblatt 8

Aufgabe 1: Topologisches I

2 + 2 + 2 + 4 = 10 Punkte

Es sei $(A_i)_{i\in I}$ eine Familie von Teilmengen von $\mathbb R$ und $A:=\bigcap_{i\in I}A_i$. Zeigen Sie:

- (a) Sind alle A_i 's abgeschlossen, so auch A.
- (b) Sind alle A_i 's kompakt, so auch A.
- (c) Sind alle A_i 's offen, so nicht notwendigerweise A. Geben Sie hierzu ein Gegenbeispiel an.
- (d) Basierend auf (a) definieren wir für eine Menge $B \subset \mathbb{R}$

$$\overline{B} = \bigcap_{\substack{C \text{ abgeschlossen mit } B \subset C}} C.$$

Zeigen Sie, dass \overline{B} die bezüglich Mengeninklusion kleinste abgeschlossene Teilmenge von $\mathbb R$ ist, die B enthält. Das bedeutet: Ist $M\subset \mathbb R$ eine weitere abgeschlossene Teilmenge mit $B\subset M$, so ist $\overline{B}\subset M$.

Aufgabe 2: Topologisches II

4 + 3 + 3 = 10 Punkte

Sei $A\subset\mathbb{R}$ nichtleer. Zeigen Sie, dass der in Aufgabe 1 eingeführte Abschluss von Agegeben ist durch

$$\overline{A} = \{x \in \mathbb{R} : x \text{ ist Häufungspunkt von } A\}.$$

Schlussfolgern Sie weiter, dass

- (a) $\overline{\mathbb{Q}} = \mathbb{R}$.
- (b) \overline{A} kompakt ist, falls A beschränkt ist.

Aufgabe 3: Stetigkeit

3 + 2 + 2 + 3 = 10 Punkte

Wir definieren $f: \mathbb{R} \to \mathbb{R}$ durch

$$f(x) := \left| \lfloor x + \frac{1}{2} \rfloor - x \right|.$$

- (a) Fertigen Sie eine Skizze des Graphen der Funktion f an.
- (b) Zeigen Sie: Für $|x| \le \frac{1}{2}$ gilt f(x) = |x|.
- (c) Für alle $x \in \mathbb{R}$ und alle $n \in \mathbb{Z}$ gilt f(x+n) = f(x).

(d) f ist stetig.

Hinweis: Dies ist ein Beispiel einer zackigen, stetigen Funktion. Mit $\lfloor x \rfloor$ notieren wir die größte ganze Zahl, die kleiner oder gleich x ist.

Aufgabe 4: Beweismechanik

10 Punkte

Es seien $a_1, b_1 \in \mathbb{R}$ mit $0 < a_1 < b_1$. Betrachte die Folgen $(a_n)_{n \in \mathbb{N}}$ und $(b_n)_{n \in \mathbb{N}}$ reeller Zahlen, rekursiv definiert durch

$$a_{n+1} := \frac{2a_n b_n}{a_n + b_n}$$
 und $b_{n+1} := \frac{a_n + b_n}{2}$ $(n \in \mathbb{N}).$

- (a) Zeige, dass für alle $n \in \mathbb{N}$ folgende Aussagen gelten:
 - (i) $0 < a_n < b_n$,
 - (ii) $a_n \le a_{n+1} \text{ und } b_n \ge b_{n+1}$,
 - (iii) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n].$
- (b) Zeige, dass $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergieren mit $\lim_{n\to\infty}(a_n)=\lim_{n\to\infty}(b_n)$ und dass $(b_n-a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist.
- (c) Folgere, dass ein eindeutiges $x \in \mathbb{R}$ mit $x \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ existiert, nämlich

$$x = \sqrt{a_1 b_1}.$$

Hinweis: Zeige: $\lim_{n\to\infty} (a_n \cdot b_n) = a_1 b_1$.

(d) Setze $a_1 = 1$ und $b_1 = 2$ und gib jeweils die ersten vier Folgenglieder der obigen Intervallschachtelung zur Berechnung von $\sqrt{2}$ an. Gib weiter die ersten vier Folgenglieder der in Korollar 3.4.5 (Existenz von Quadratwurzeln) definierten Folge $(x_n)_{n \in \mathbb{N}_0}$, wobei $x_0 := 1$, zur Bestimmung von $\sqrt{2}$ an.

Sofern die Wetterlage es zulässt, werden Aufgabe 1 als Musterlösung hochgeladen, Aufgabe 2 und 3 in den Tutorien besprochen, Aufgabe 4 in der Plenumsübung.