Multilevel Modellingcourse: DAY 3

University of Zurich PD Dr. Conrad Ziller conrad.ziller@uni-due.de https://conradziller.com

Schedule for Day 3

- Mediation
- Growth curve models
- Logit models (FYI)
- Your models your questions my advise

Schedule for Day 3

- Mediation
- Growth curve models
- Logit models (FYI)
- Your models your questions my advise

Structural Equation Models

Structural Equation Models (= SEM)

- consist of systems of equations
- can be divided into measurement models and structural models
- direct and indirect effects can be distinguished (mediation)
- distinguish between latent (non-measured) and manifest (measured) variables
- typical graphical representation of the models

Structural Equation Models

Measurement Model with one Factor

Measurement Model: Parameter (Loadings and variances)

Example 1: Social Trust

Example 2: Social Trust

Indirect effect of education = a * b

Total effect of education= indirect + direct effect or a * b + c

15.11.2021

Stata

```
* Example 1
sem (ppltrst pplfair pplhlp <- Trust) ///
(Trust <- income educyears) , latent(Trust) stand
estat gof , stats(all) // shows fit-indices

* Example 2
sem (ppltrst pplfair pplhlp <- Trust) ///
(Trust <- income educyears) ///
(income <- educyears) , latent(Trust) stand
estat teffects, stand //shows indirect effect
estat gof , stats(all)</pre>
```

Example Multi-Level SEM

Wagner, U., Christ, O., Pettigrew, T.F., Stellmacher, J., & Wolf, C. (2006). Prejudice and minority proportion: Contact instead of threat effects. *Social Psychology Quarterly*, *69*, 380-390.

Typical Multi-Level SEM-Mediationmodel

Multi-Level SEM

- Without latent variables or mediation, multilevel regression and multilevel SEM produce equivalent results
- Latent measurement models (CFA) only reliable with large number of clusters (> 60)
- With multilevel mediation and level-2 involved, the between-level is one that is interpreted (Preacher et al. 2010)
- Mplus has enormous advantages over Stata in specifying ML-SEM models; Mplus syntax see http://www.quantpsy.org/pubs/syntax appendix 081311.pdf
- In R: lavaan package mimicks Mplus; Stata: gsem (slow and often does not converge)

Example 3: Social Trust on Individual and Country-Level

Mplus – Output

MODEL RESULTS									
	Estimate	S.E. Est./S.E		Two-Tailed P-Value					
Within Level									
TRUST ON									
INCOME	0.056	0.011	5.286	0.000					
EDUCYEARS	0.046	0.004	11.346	0.000					
INCOME ON									
EDUCYEARS	0.177	0.009	20.568	0.000					
Residual Variance	3								
TRUST	3.063	0.157	19.554	0.000					
INCOME	3.487	0.193	18.066	0.000					
Between Level									
TRUST ON									
INCOME	0.458	0.062	7.443	0.000					
EDUCYEARS	0.148	0.076	1.960	0.050					
INCOME ON									
EDUCYEARS	0.429	0.113	3.801	0.000					
Intercepts									
TRUST	0.669	0.870	0.769	0.442					
INCOME	1.022	1.342	0.761	0.447					
Residual Variance	3								
TRUST	0.212	0.048	4.462	0.000					
INCOME	1.646	0.614	2.681	0.007					
New/Additional Parameters									
ITRUST	0.010	0.002	5.752	0.000					
ITRUST2	0.196	0.070	2.814	0.005					

Example 3: Social Trust on Individual- and Country – Level

Group session

Come together in groups and find examples for all three types of multilevel mediation:

Predictor-Mediator-Outcome

L1-L1-L1

L2-L1-L1

L2-L2-L1

Schedule for Day 3

- Mediation
- Growth curve models
- Logit models (FYI)
- Your models your questions my advise

Questions (example DV: Social trust, period 2002-2006)

- 1. Can a change in social trust be observed in the period 2002-2006 and (b) is there variability in the change over time between respondents?
- 2. If there is significant variability in change over time, can this variability be explained by specific variables?
- Growth curve models can be estimated as ML regression models as well as ML-SEM models
- Complex, non-linear developments can be taken into account
- Particularly suitable for genuine panel data of individuals
- Attention: Both between- and within-variance are included in the estimates (no separation between the two)

Basically a RIRS-model with repeated measurements nested in persons (random intercept) & with time as predictor and random slope

$$\pi_{0i} = \beta_{00} + u_{0i}$$
 Comparable with Random Intercept
$$\nabla u_{0i} = \beta_{00} + u_{0i}$$
 Overall average at baseline
$$\nabla u_{1i} = \beta_{10} + u_{1i}$$
 Comparable with Random Slope
$$\nabla u_{0i} = \beta_{00} + u_{0i}$$
 Average linear increase per time point
$$\nabla u_{0i} = \beta_{00} + u_{0i}$$
 Comparable with Random Slope
$$\nabla u_{0i} = \beta_{00} + u_{0i}$$
 Comparable with Random Slope

point

- Additional time-varying and time-constant covariates can be added
- In interaction with time, we want to explain different temporal trajectories with substantial variables (e.g., does gender (Z) explain the found variability in over-time development across individuals $(u_{1i}) \rightarrow$ cross-level interaction
- Polynomial curves can be added by including quadratic, cubic, ... time effects; even dummy variables for time are feasible
- Growth curve models allow for unbalanced panel data

• Example Hox (2010: 90) $GPA_{ti} = \beta_{00} + \beta_{10} Time_{ti} + \beta_{20} Job_{ti} + \beta_{01} Sex_i \\ + \beta_{11} Sex_i Time_{ti} + u_{1i} Time_{ti} + u_{0i} + \varepsilon_{ti}$

Fixed part	Coeff.	S.E.	
Intercept	2.58	(0.09)	
Occasion	0.09	(0.01)	
Job status	-0.13	(0.02)	
GPA highschool	0.09	(0.03)	
Gender	0.08	(0.03)	
Occasion*Gender	0.03	(0.01)	
Random part			
$\sigma^2(e)$	0.042	(0.002)	
$\sigma^2(u0)$	0.038	(0.010)	
$\sigma^2(u1)$	0.004	(0.001)	
σ(u0 u1)	-0.002	(0.001)	

Example: Brault, M.-C., Meuleman, B. & Bracke, P. (2012) Depressive symptoms in the Belgian population: disentangling age and cohort effects. *Journal of Social Psychiatry and Psychiatric Epidemiology*.

Fixed effects					
Initial status			Growth rate		
Intercept y ₀₀	13.65	***	Agec y_{10}	0.054	
C1 1958-1967	4.366	***	Agec2 y ₂₀		272127
C2 1948-1957	1.930	***	Agec × C1_5867	0.165	***
C3 1938-1947	REF		Agec \times C2_4857	0.105	**
	100,00	***	Agec × C3_3847	REF	
C4 1928–1937	-2.808		Agec × C4_2837	-0.003	
C5 1918–1927	-5.489	***	Agec \times C5_1827	0.065	
Woman	3.360	***	Variance components (random effects)		
Education	-0.084	*	Level 1: within-person	30.315	***
Married	REF		Level 2: in initial status	43.739	***
Single/widowed	0.248		Level 2: in linear growth	0.087	***
Divorced/separated	0.349		Proportion of variance explained		
Partner	-1.042	**	Within-person	2.147	6.6%
Monthly income €	-0.163		In initial status	7.708	15.0%
Employed	-0.609	***	In linear growth	0.008	8.4%

Stata

```
//Gowth Curve Model
mixed y t | | id: t , cov(un)
// Growth curve model with predictors to explain differences
at baseline(= Random Intercept)
mixed y t x | | id: t , cov(un)
// Growth curve model with predictors to explain differences
in growth curves (= interaction to explain slope variance)
mixed y t x c.x#c.t ||id: t , cov(un)
```

Schedule for Day 3

- Mediation
- Growth curve models
- Logit models (FYI)
- Your models your questions my advise

Logistic Multilevel-Analysis

- Modelling dichotomous dependent variables as a function of individual and contextual explanatory factors $P(y_{ij}=1\,|\,x_{ij},z_{j})$
- Random Intercept Model
 - Logistic regression function for each country separately

$$\ln\left(\frac{p}{1-p}\right) = \beta_{0j} + \beta_{1j}x_{ij}$$
No error term!
Overall effect of x on the log(odds)

Average log(odds) in each group

Logistic Multilevel-Analysis

- Random Intercept Modell
 - Determination of the group-specific intercepts

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

Average log(odds) across Difference in logged odds für group j all groups

$$\ln\left(\frac{p}{1-p}\right) = \gamma_{00} + \beta_{1j}x_{ij} + u_{0j}$$

Logistic Multilevel-Analysis

- Residual variance is fixed at Pi^2/3
- ICC is computed as

$$ICC = \frac{\sigma_{u0}^{2}}{\sigma_{u0}^{2} + \pi^{2}/3}$$

- Fixation leads to rescaling of coefficients in case of model changes; makes comparison of models difficult (calculate marginal effects!)
- Model fit as proportional reduction of variance

$$R_{MZ}^{2} = \frac{\sigma_{F}^{2}}{\sigma_{F}^{2} + \sigma_{u0}^{2} + \pi^{2}/3}$$

 σ_F^2 = Residual variance of a linear prediction of the estimated model parameters (see Snijders & Bosker 2012: 306)

Stata

```
//compute ICC
disp var(_cons) / (var(_cons) + _pi^2 / 3)

//Random Intercept Modell
melogit DV IV1 IV2 ... ||id:

//Random Slope Modell
melogit DV IV1 IV2 ... ||id: IV1 , cov(un)

margins, dydx(*) predict(mu fixedonly)
```

Schedule for Day 3

- Mediation
- Growth curve models
- Logit models (FYI)
- Your models your questions my advise

Thank you for your Attention!