Developing a computational model of heterogeneous pancreatic islet cell interactions

Logan Barrios (IPHY), Pedro Lemos (CS), Zachary Caterer (ChBE)

Richard Benninger (Bioengineering, Anschutz) and Stephen Kissler (CS)

The Understanding of the Pancreas

Project Motivation and Goals

Model Development

Experimental Validation

Model Analysis

Conclusions and Future Directions

The Diabetes Epidemic

- In 2021, 537 million adults worldwide had a form of diabetes
- Diabetes is characterized by high blood glucose as a result of insufficient secretion of insulin
 - Type 1 Diabetes
 - Type 2 Diabetes
- Improvements needed to make more sustainable interventions and work towards a cure

the pancreas

How this electrical coupling with other pancreatic cells, particularly delta cells, impacts the metabolic process is still being studied

Delta cell heterogeneity impact on insulin response

The Project Motivation and Goals

Model Development

Experimental Validation

Model Analysis

Conclusions and Future Directions

Goals of our project

- Develop a Scalable Islet Model
- Implement Electrical Coupling Mechanisms
- Refine Electrophysiology Modeling
- Integrate Experimental Data
- Enhance Model Visualization

Project Motivation and Goals

The Model Development

Experimental Validation

Model Analysis

Conclusions and Future Directions

Single beta (β) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

Single beta (β) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

Single beta (β) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

$$\sum_{k} I_k(t) = I_{Ca} + I_K + I_{leak} + I_{K(Ca)} + I_{KATP}$$

Adapted from "The Phantom Burster Model for Pancreatic Beta-Cells", Biophysical Journal, vol. 79, pp. 2880-2892, 2000

Single beta (β) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

$$\sum_{k} I_k(t) = I_{Ca} + I_K + I_{leak} + I_{K(Ca)} + I_{KATP}$$

 Adapted from "The Phantom Burster Model for Pancreatic Beta-Cells", Biophysical Journal, vol. 79, pp. 2880-2892, 2000

Single delta (δ) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

 Adapted from Briant, L.J.B., et al. (2018), δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J Physiol, 596: 197-215.

Single delta (δ) cell model

$$C_m \frac{dV}{dt} = -\sum_k I_k(t)$$

$$\sum_{k} I_k(t) = -(I_{CaL} + I_{CaT} + I_{CaN} + I_{Na} + I_{Kdr} + I_{KATP} + I_{Ka} + I_{leak})$$

 Adapted from Briant, L.J.B., et al. (2018), δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J Physiol, 596: 197-215.

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

* Gap junction coupling between beta cells

Beta cells coupled to 1 to 5 other beta cells

Synchrony improves insulin release

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

* Gap junction coupling between beta cells

Beta cells coupled to 1 to 5 other beta cells

Synchrony improves insulin release

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

Delta cells modulate beta cell activity via paracrine somatostatin signaling

Delta Cell somatostatin

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

Delta cells modulate beta cell activity via paracrine somatostatin signaling

$$C_m \frac{dV}{dt} = -\sum_k I_k(t) + I_{GJ}$$

Delta cells modulate beta cell activity via paracrine somatostatin signaling

Project Motivation and Goals

Model Development

The Experimental Validation

Model Analysis

Conclusions and Future Directions

Experimental validation of our model

Experimental validation of our model

Wild type pancreatic islet cells experience more synchronization and heterogeneity

Wild type pancreatic islet cells experience more synchronization

Wild type pancreatic islet cells experience more heterogeneity

need to model gap junction coupling preserving synchronization and heterogeneity.

In the second phase of insulin secretion, we

Project Motivation and Goals

Model Development

Experimental Validation

The Model Analysis

Conclusions and Future Directions

Inferring Coupling Dynamics from Data

Inferring Coupling Dynamics from Data

```
A \leftarrow random\_adjacency\_matrix()
for j = 1, \ldots, N do
    A_{\text{new}} \leftarrow \text{propose\_adjacency\_matrix}(A)
    V_{sim} \leftarrow simulate_voltage_dynamics(A_new)
    C_{sim} \leftarrow compute\_correlation\_matrix(V\_sim)
    if error(C_sim, C_obs) < error(C_sim_prev, C_obs) then
       A \leftarrow A_{-new}
       C_{sim\_prev} \leftarrow C_{sim}
    else
       reject()
return A
```

Inferring Coupling Dynamics from Data

Project Motivation and Goals

Model Development

Experimental Validation

Model Analysis

The Conclusions and Future Directions

Conclusions and Future Directions

- Our model captures cell coupling and heterogeneity
- Incorporate statistical inference to determine coupling dynamics that optimize hormonal secretion pathways (e.g., insulin, somatostatin)
- Expand to a 3D islet model using imaging data to better reflect physiological structure
- Validate model predictions experimentally
- Long-term goal: guide therapeutic strategies to restore healthy islet communication in diabetes.

Acknowledgments

Dr. Richard Benninger

Dr. Stephen Kissler

Carissa Birznieks

Claire Levitt

Jennifer Briggs

