Homework 7

1. Consider the linear transformation considered in the previous homework,

(i)
$$T(x_1, x_2, x_3) = (3x_1 - x_2, x_2 + x_3, x_1 - x_2 - x_3).$$

(ii) T maps
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(iii)
$$T(x_1, x_2) = x_1 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$$
,

Determine if they are surjective or injective.

- 2. Determine if the following statements are true or false. Give explanation.
 - (a) Suppose that there are 6 vectors in \mathbb{R}^4 , it must be linearly deependent.
 - (b) Suppose that there are 6 vectors in \mathbb{R}^4 , it must span \mathbb{R}^4 .
 - (c) Suppose that there are 4 vectors in \mathbb{R}^6 , it must be linearly independent.
 - (d) Suppose that there are 4 vectors in \mathbb{R}^6 , it cannot span \mathbb{R}^6 .
- 3. Find a basis for the kernel and image of the following matrices and compute its dimensions.

$$A = \begin{bmatrix} 1 & 2 & 4 & -2 & 2 \\ 2 & 4 & 6 & 1 & 1 \\ 2 & 3 & 4 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \\ -2 & 4 & -6 \\ 3 & 0 & -1 \end{bmatrix}.$$

4. Let
$$S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix}, \begin{bmatrix} 10\\11\\12 \end{bmatrix}, \begin{bmatrix} 13\\14\\15 \end{bmatrix} \right\}$$
. Is it possible to extract a basis for \mathbb{R}^3 from the set S ? Explain

$$\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

- (i) Find the rank of A.
- (ii) Find a basis for the ker(A). What is its dimension?
- (iii) Find the subset of the columns of A so that it forms a basis for the Im(A). What is the dimension of Im(A)?
- 6. Book Question 26, 27, 53, 55, 56.

EXERCISES 3.4

GOAL Use the concept of coordinates. Apply the definition of the matrix of a linear transformation with respect to a basis. Relate this matrix to the standard matrix of the transformation. Find the matrix of a linear transformation (with respect to any basis) column by column. Use the concept of similarity.

In Exercises 1 through 18, determine whether the vector \vec{x} is in the span V of the vectors $\vec{v}_1, \ldots, \vec{v}_m$ (proceed "by inspection" if possible, and use the reduced row-echelon form if necessary). If \vec{x} is in V, find the coordinates of \vec{x} with respect to the basis $\mathfrak{B} = (\vec{v}_1, \ldots, \vec{v}_m)$ of V, and write the coordinate vector $[\vec{x}]_{\mathfrak{B}}$.

1.
$$\vec{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

2.
$$\vec{x} = \begin{bmatrix} 23 \\ 29 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 46 \\ 58 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 61 \\ 67 \end{bmatrix}$$

3.
$$\vec{x} = \begin{bmatrix} 31 \\ 37 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 23 \\ 29 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 31 \\ 37 \end{bmatrix}$$

4.
$$\vec{x} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
; $\vec{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

5.
$$\vec{x} = \begin{bmatrix} 7 \\ 16 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

6.
$$\vec{x} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

7.
$$\vec{x} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

8.
$$\vec{x} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

9.
$$\vec{x} = \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$$

10.
$$\vec{x} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 8 \\ 4 \\ -1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$

11.
$$\vec{x} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -3 \\ 2 \\ 3 \end{bmatrix}$$

12.
$$\vec{x} = \begin{bmatrix} -5\\1\\3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$

13.
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

14.
$$\vec{x} = \begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$

15.
$$\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}$$

16.
$$\vec{x} = \begin{bmatrix} 3 \\ 7 \\ 13 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

17.
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 1 \end{bmatrix}$$

18.
$$\vec{x} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

In Exercises 19 through 24, find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2)$. For practice, solve each problem in three ways: (a) Use the formula $B = S^{-1}AS$, (b) use a commutative diagram (as in Examples 3 and 4), and (c) construct B "column by column."

19.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

20.
$$A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

21.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

22.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

23.
$$A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

24.
$$A = \begin{bmatrix} 13 & -20 \\ 6 & -9 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

In Exercises 25 through 30, find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\mathfrak{B}=(\vec{v}_1,\ldots,\vec{v}_m).$

25.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

26.
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}; \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

27.
$$A = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix};$$

$$\vec{v}_1 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

28.
$$A = \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}$$
;

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

29.
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & 2 \\ 3 & -9 & 6 \end{bmatrix}$$
;

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$

30.
$$A = \begin{bmatrix} 0 & 2 & -1 \\ 2 & -1 & 0 \\ 4 & -4 & 1 \end{bmatrix}$$
;

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

Let $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ be any basis of \mathbb{R}^3 consisting of perpendicular unit vectors, such that $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2$. In Exercises 31 through 36, find the B-matrix B of the given linear transformation T from \mathbb{R}^3 to \mathbb{R}^3 . Interpret T geometrically.

31.
$$T(\vec{x}) = \vec{v}_2 \times \vec{x}$$
 32. $T(\vec{x}) = \vec{x} \times \vec{v}_3$

2

32.
$$T(\vec{x}) = \vec{x} \times \vec{v}$$

33.
$$T(\vec{x}) = (\vec{v}_2 \cdot \vec{x})\vec{v}_2$$

33.
$$T(\vec{x}) = (\vec{v}_2 \cdot \vec{x})\vec{v}_2$$
 34. $T(\vec{x}) = \vec{x} - 2(\vec{v}_3 \cdot \vec{x})\vec{v}_3$

35.
$$T(\vec{x}) = \vec{x} - 2(\vec{v}_1 \cdot \vec{x})\vec{v}_2$$

36.
$$T(\vec{x}) = \vec{v}_1 \times \vec{x} + (\vec{v}_1 \cdot \vec{x})\vec{v}_1$$

In Exercises 37 through 42, find a basis \mathfrak{B} of \mathbb{R}^n such that the \mathfrak{B} -matrix **B** of the given linear transformation T is diagonal.

37. Orthogonal projection T onto the line in \mathbb{R}^2 spanned by

- **38.** Reflection T about the line in \mathbb{R}^2 spanned by $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- **39.** Reflection *T* about the line in \mathbb{R}^3 spanned by $\boxed{2}$
- **40.** Orthogonal projection T onto the line in \mathbb{R}^3 spanned by
- **41.** Orthogonal projection T onto the plane $3x_1 + x_2 +$ $2x_3 = 0$ in \mathbb{R}^3
- **42.** Reflection T about the plane $x_1 2x_2 + 2x_3 = 0$ in \mathbb{R}^3
- **43.** Consider the plane $x_1 + 2x_2 + x_3 = 0$ with basis \mathfrak{B} consisting of vectors $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ and $\begin{bmatrix} -2\\1\\0 \end{bmatrix}$. If $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} 2\\-3 \end{bmatrix}$, find \vec{x} .
- **44.** Consider the plane $2x_1 3x_2 + 4x_3 = 0$ with basis \mathfrak{B} consisting of vectors $\begin{bmatrix} 8 \\ 4 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$. If $[\vec{x}]_{\mathfrak{B}} =$ $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$, find \vec{x} .
- **45.** Consider the plane $2x_1 3x_2 + 4x_3 = 0$. Find a basis \mathfrak{B} of this plane such that $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ for $\vec{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$.
- **46.** Consider the plane $x_1 + 2x_2 + x_3 = 0$. Find a basis \mathfrak{B} of this plane such that $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ for $\vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
- **47.** Consider a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 . We are told that the matrix of T with respect to the basis $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Find the standard matrix of T in terms of a, b, c, and d.
- **48.** In the accompanying figure, sketch the vector \vec{x} with $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} -1\\2 \end{bmatrix}$, where \mathfrak{B} is the basis of \mathbb{R}^2 consisting of the vectors \vec{v} , \vec{w} .

49. Consider the vectors \vec{u} , \vec{v} , and \vec{w} sketched in the accompanying figure. Find the coordinate vector of \vec{w} with respect to the basis \vec{u} , \vec{v} .

50. Given a hexagonal tiling of the plane, such as you might find on a kitchen floor, consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors \vec{v} , \vec{w} in the following sketch:

- **a.** Find the coordinate vectors $\left[\overrightarrow{OP}\right]_{\mathfrak{B}}$ and $\left[\overrightarrow{OQ}\right]_{\mathfrak{B}}$. *Hint*: Sketch the coordinate grid defined by the basis $\mathfrak{B} = (\vec{v}, \vec{w})$.
- **b.** We are told that $\begin{bmatrix} \overrightarrow{OR} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Sketch the point *R*. Is *R* a vertex or a center of a tile?
- **c.** We are told that $\begin{bmatrix} \overrightarrow{OS} \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 17 \\ 13 \end{bmatrix}$. Is *S* a center or a vertex of a tile?
- **51.** Prove part (a) of Theorem 3.4.2.
- **52.** If \mathfrak{B} is a basis of \mathbb{R}^n , is the transformation T from \mathbb{R}^n to \mathbb{R}^n given by

$$T(\vec{x}) = \left[\vec{x}\right]_{\mathfrak{B}}$$

linear? Justify your answer.

- **53.** Consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. We are told that $[\vec{x}]_{\mathfrak{B}} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$ for a certain vector \vec{x} in \mathbb{R}^2 . Find \vec{x} .
- **54.** Let \mathfrak{B} be the basis of \mathbb{R}^n consisting of the vectors \vec{v}_1 , $\vec{v}_2, \ldots, \vec{v}_n$, and let \mathfrak{T} be some other basis of \mathbb{R}^n . Is

$$[\vec{v}_1]_{\mathfrak{T}}, \quad [\vec{v}_2]_{\mathfrak{T}}, \quad \ldots, \quad [\vec{v}_n]_{\mathfrak{T}}$$

a basis of \mathbb{R}^n as well? Explain.

55. Consider the basis \mathfrak{B} of \mathbb{R}^2 consisting of the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and let \mathfrak{R} be the basis consisting of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Find a matrix P such that

$$\left[\vec{x}\right]_{\mathfrak{R}} = P\left[\vec{x}\right]_{\mathfrak{R}},$$

for all \vec{x} in \mathbb{R}^2 .

56. Find a basis \mathfrak{B} of \mathbb{R}^2 such that

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 3 \\ 4 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

57. Show that if a 3×3 matrix A represents the reflection about a plane, then A is similar to the matrix $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- **58.** Consider a 3×3 matrix A and a vector \vec{v} in \mathbb{R}^3 such that $A^3\vec{v} = \vec{0}$, but $A^2\vec{v} \neq \vec{0}$.
 - **a.** Show that the vectors $A^2\vec{v}$, $A\vec{v}$, \vec{v} form a basis of \mathbb{R}^3 . *Hint*: It suffices to show linear independence. Consider a relation $c_1A^2\vec{v} + c_2A\vec{v} + c_3\vec{v} = \vec{0}$ and multiply by A^2 to show that $c_3 = 0$.
 - **b.** Find the matrix of the transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $A^2\vec{v}$, $A\vec{v}$, \vec{v} .
- **59.** Is matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ similar to matrix $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$?
- **60.** Is matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ similar to matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$?
- **61.** Find a basis \mathfrak{B} of \mathbb{R}^2 such that the \mathfrak{B} -matrix of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} -5 & -9 \\ 4 & 7 \end{bmatrix} \vec{x}$$
 is $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

62. Find a basis $\mathfrak B$ of $\mathbb R^2$ such that the $\mathfrak B$ -matrix of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \vec{x}$$
 is $B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$.

- **63.** Is matrix $\begin{bmatrix} p & -q \\ q & p \end{bmatrix}$ similar to matrix $\begin{bmatrix} p & q \\ -q & p \end{bmatrix}$ for all p and q?
- **64.** Is matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ similar to matrix $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ for all a, b, c, d?
- **65.** Prove parts (a) and (b) of Theorem 3.4.6.

- **66.** Consider a matrix A of the form $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where $a^2 + b^2 = 1$ and $a \ne 1$. Find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$ with respect to the basis $\begin{bmatrix} b \\ 1-a \end{bmatrix}$, $\begin{bmatrix} a-1 \\ b \end{bmatrix}$. Interpret the answer geometrically.
- **67.** If $c \neq 0$, find the matrix of the linear transformation $T(\vec{x}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \vec{x}$ with respect to basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} a \\ c \end{bmatrix}$.
- **68.** Find an invertible 2×2 matrix S such that

$$S^{-1} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} S$$

is of the form $\begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix}$. See Exercise 67.

69. If A is a 2×2 matrix such that

$$A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3\\6\end{bmatrix}$$
 and $A\begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}-2\\-1\end{bmatrix}$,

show that *A* is similar to a diagonal matrix *D*. Find an invertible *S* such that $S^{-1}AS = D$.

70. Is there a basis \mathfrak{B} of \mathbb{R}^2 such that \mathfrak{B} -matrix B of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{x}$$

is upper triangular? Hint: Think about the first column of B.

- **71.** Suppose that matrix *A* is similar to *B*, with $B = S^{-1}AS$.
 - **a.** Show that if \vec{x} is in ker(B), then $S\vec{x}$ is in ker(A).
 - **b.** Show that nullity(A) = nullity(B). *Hint*: If \vec{v}_1 , \vec{v}_2 ,..., \vec{v}_p is a basis of ker(B), then the vectors $S\vec{v}_1, S\vec{v}_2, \ldots, S\vec{v}_p$ in ker(A) are linearly independent. Now reverse the roles of A and B.
- **72.** If *A* is similar to *B*, what is the relationship between rank(*A*) and rank(*B*)? See Exercise 71.
- **73.** Let *L* be the line in \mathbb{R}^3 spanned by the vector

$$\vec{v} = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}.$$

Let T from \mathbb{R}^3 to \mathbb{R}^3 be the rotation about this line through an angle of $\pi/2$, in the direction indicated in

the accompanying sketch. Find the matrix A such that $T(\vec{x}) = A\vec{x}$.

74. Consider the regular tetrahedron in the accompanying sketch whose center is at the origin. Let \vec{v}_0 , \vec{v}_1 , \vec{v}_2 , \vec{v}_3 be the position vectors of the four vertices of the tetrahedron:

$$\vec{v}_0 = \overrightarrow{OP}_0, \dots, \quad \vec{v}_3 = \overrightarrow{OP}_3.$$

- **a.** Find the sum $\vec{v}_0 + \vec{v}_1 + \vec{v}_2 + \vec{v}_3$.
- **b.** Find the coordinate vector of \vec{v}_0 with respect to the basis $\vec{v}_1, \vec{v}_2, \vec{v}_3$.
- **c.** Let T be the linear transformation with $T(\vec{v}_0) = \vec{v}_3$, $T(\vec{v}_3) = \vec{v}_1$, and $T(\vec{v}_1) = \vec{v}_0$. What is $T(\vec{v}_2)$? Describe the transformation T geometrically (as a reflection, rotation, projection, or whatever). Find the matrix B of T with respect to the basis \vec{v}_1 , \vec{v}_2 , \vec{v}_3 . What is B^3 ? Explain.

75. Find the matrix B of the rotation $T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{x}$ with respect to the basis $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$. Interpret your answer geometrically.

163

76. If *t* is any real number, what is the matrix *B* of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix} \vec{x}$$

with respect to basis $\begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$, $\begin{bmatrix} -\sin(t) \\ \cos(t) \end{bmatrix}$? Interpret your answer geometrically.

- 77. Consider a linear transformation $T(\vec{x}) = A\vec{x}$ from \mathbb{R}^n to \mathbb{R}^n . Let B be the matrix of T with respect to the basis $\vec{e}_n, \vec{e}_{n-1}, \dots, \vec{e}_2, \vec{e}_1$ of \mathbb{R}^n . Describe the entries of B in terms of the entries of A.
- **78.** This problem refers to Leontief's input–output model, first discussed in the Exercises 1.1.24 and 1.2.39. Consider three industries I_1 , I_2 , I_3 , each of which produces only one good, with unit prices $p_1 = 2$, $p_2 = 5$, $p_3 = 10$ (in U.S. dollars), respectively. Let the three products be labeled good 1, good 2, and good 3. Let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 & 0.1 \\ 0.1 & 0.3 & 0.3 \\ 0.2 & 0.2 & 0.1 \end{bmatrix}$$

be the matrix that lists the interindustry demand in terms of dollar amounts. The entry a_{ij} tells us how many dollars' worth of good i are required to produce one dollar's worth of good j. Alternatively, the interindustry demand can be measured in units of goods by means of the matrix

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix},$$

where b_{ij} tells us how many units of good i are required to produce one unit of good j. Find the matrix B for the economy discussed here. Also, write an equation relating the three matrices A, B, and S, where

$$S = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{bmatrix}$$

is the diagonal matrix listing the unit prices on the diagonal. Justify your answer carefully.

- **79.** Consider the matrix $A = \begin{bmatrix} 11 & -30 \\ 4 & -11 \end{bmatrix}$. Find a basis \mathfrak{B} of \mathbb{R}^2 such that the \mathfrak{B} -matrix B of $T(\vec{x}) = A\vec{x}$ is $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- **80.** Consider the matrix $A = \begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}$. Find a basis \mathfrak{B} of \mathbb{R}^2 such that the \mathfrak{B} -matrix B of $T(\vec{x}) = A\vec{x}$ is $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- **81.** Consider the linear transformation $T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_2 + x_3 \end{bmatrix}$ from \mathbb{R}^3 to \mathbb{R}^3 .
 - **a.** Find all vectors of the form $\vec{x} = \begin{bmatrix} 1 \\ x_2 \\ x_3 \end{bmatrix}$ such that $T(\vec{x})$ is a scalar multiple of \vec{x} . Be prepared to deal
 - with irrational numbers. **b.** Find a basis \mathfrak{B} of \mathbb{R}^3 such that the \mathfrak{B} -matrix B of T is diagonal.
- **82.** Consider the linear transformation $T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ 3x_3 2x_2 \end{bmatrix}$ from \mathbb{R}^3 to \mathbb{R}^3 .
 - **a.** Find all vectors of the form $\vec{x} = \begin{bmatrix} 1 \\ x_2 \\ x_3 \end{bmatrix}$ such that $T(\vec{x})$ is a scalar multiple of \vec{x} .
 - **b.** Find a basis \mathfrak{B} of \mathbb{R}^3 such that the \mathfrak{B} -matrix B of T is diagonal.

Chapter Three Exercises

TRUE OR FALSE?

- **1.** If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ and $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_m$ are any two bases of a subspace V of \mathbb{R}^{10} , then n must equal m.
- **2.** If A is a 5×6 matrix of rank 4, then the nullity of A is 1.
- **3.** The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .
- **4.** The span of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ consists of all linear combinations of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.
- **5.** If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent vectors in \mathbb{R}^n , then they must form a basis of \mathbb{R}^n .
- **6.** There exists a 5×4 matrix whose image consists of all of \mathbb{R}^5 .
- **7.** The kernel of any invertible matrix consists of the zero vector only.
- **8.** The identity matrix I_n is similar to all invertible $n \times n$ matrices.