

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5350 N
Ν
                                                                 M,
                                                                            = -21100 Nmm
                                                                                                                                   G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 1870 N
          = 1650 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
                                                                  \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5990 N
Ν
                                                                M,
                                                                          = 23300 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 2020 N
                                                                          = 200000 \text{ N/mm}^2
          = 1240 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
          =
                                                                \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
          =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 6730 N
                                                                   M,
                                                                              = 25700 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1490 N
                                                                              = 200000 \text{ N/mm}^2
          = 1440 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 5100 N
Ν
                                                                     M,
                                                                                = 28200 Nmm
                                                                                                                                          G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 1670 N
           = 1640 Nmm
                                                                                = 200000 \text{ N/mm}^2
                                                                     E
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                          \sigma_{\text{ld}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                          \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                          \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                          \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5840 N
Ν
                                                                   M,
                                                                              = 20800 Nmm
                                                                                                                                       G
T<sub>y</sub>
M₁
                                                                              = 240 \text{ N/mm}^2
          = 1840 N
                                                                              = 200000 \text{ N/mm}^2
          = -1860 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5380 N
Ν
                                                                 M,
                                                                            = 26800 Nmm
                                                                                                                                   G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 1990 N
                                                                            = 200000 \text{ N/mm}^2
          = 1030 Nmm
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 6070 N	M_x	= 29600 Nmm	G	$= 75000 \text{ N/mm}^2$
T _v	= 1460 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
M _t	= 1200 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	
J_u	=	σ		θ_{t}	=
J_{v}	=	$ au_{ extsf{s}}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
~ ()		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_{_{X}})$	=	$\sigma_{\sf lls}$	=	J_p	=
	K 7 1 1 5 1 5 10 11	11. 8.411	0.4.05.05	1.	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 4610 N
Ν
                                                                    M,
                                                                              = 32400 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1640 N
                                                                              = 200000 \text{ N/mm}^2
          = 1380 Nmm
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
C_{w}
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5300 N
Ν
                                                                   M,
                                                                              = 23900 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1810 N
          = -1570 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6020 N	M_{x}	= 26700 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1980 N	$\sigma_{a}^{}$	= 240 N/mm ²		
$\dot{M_t}$	= 1200 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
v_{o}	=	$\tau(T_{yb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_{y})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$	_d =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 5570 N	M_{x}	= 34700 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 1400 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= -994 Nmm	Ε	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	_I =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4240 N
Ν
                                                                   M,
                                                                              = 38000 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1560 N
          = 1150 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{ld}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 4890 N
Ν
                                                                    M,
                                                                               = 28000 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 1730 N
                                                                               = 200000 \text{ N/mm}^2
          = 1320 Nmm
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 5570 N
                                                                   M,
                                                                              = 31200 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1890 N
          = 1010 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
C_{w}
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6270 N
Ν
                                                                   M,
                                                                              = 34400 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1390 N
          = -1180 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4050 N
Ν
                                                                   M,
                                                                              = 39500 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1550 N
          = 1050 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{ld}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 4670 N
                                                                  M,
                                                                             = 29100 Nmm
                                                                                                                                     G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 1710 N
          = 1210 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{ld}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yb})_d =
                                                                                                                                     \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 5330 N
Ν
                                                                    M,
                                                                               = 32500 Nmm
                                                                                                                                         G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
           = 1870 N
                                                                               = 200000 \text{ N/mm}^2
           = 939 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                         \sigma_{\text{IId}}
                                                                     \tau(T_{yb})_d =
                                                                                                                                         \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                         \sigma_{\text{mises}} =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                         \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6010 N	M_{x}	= 35800 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1380 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1090 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4570 N
Ν
                                                                    M,
                                                                               = 39100 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 1540 N
          = 1260 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{ld}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 4450 N	M_{x}	= 30300 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1700 N	σ_a	$= 240 \text{ N/mm}^2$		
M _t	= -1100 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$	=	σ_{mises}	
C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5080 N
Ν
                                                                   M,
                                                                              = 33700 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1850 N
                                                                              = 200000 \text{ N/mm}^2
          = 857 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{ld}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 5740 N	M_{x}	= 37200 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 1370 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1000 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4380 N
Ν
                                                                    M,
                                                                               = 40600 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 1520 N
          = -1160 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{ld}}
                                                                    \tau(T_{yc}) =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5040 N
Ν
                                                                   M,
                                                                              = 29900 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1680 N
          = -1330 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6160 N
Ν
                                                                   M,
                                                                              = 26800 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2260 N
                                                                              = 200000 \text{ N/mm}^2
          = 1290 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 6920 N	M_{x}	= 29700 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1670 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1490 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	=	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_o	=
$\sigma(M_{_{X}})$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5240 N
Ν
                                                               M,
                                                                          = 32500 Nmm
                                                                                                                               G
T_y
                                                                          = 240 \text{ N/mm}^2
          = 1880 N
                                                                          = 200000 \text{ N/mm}^2
          = 1700 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                               \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                               \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                               \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                               \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6000 N
Ν
                                                                    M,
                                                                               = 24100 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 2080 N
                                                                               = 200000 \text{ N/mm}^2
          = 1920 Nmm
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 6790 N
                                                                   M,
                                                                              = 26900 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2280 N
                                                                              = 200000 \text{ N/mm}^2
          = 1460 Nmm
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6270 N
Ν
                                                                    M,
                                                                               = 33700 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 1620 N
          = 1250 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 4760 N
Ν
                                                                     M,
                                                                                = 36900 Nmm
                                                                                                                                          G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 1810 N
                                                                                = 200000 \text{ N/mm}^2
           = 1440 Nmm
                                                                     E
                                                                     \tau(M_t)_d =
y_{G}
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                          \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_{v})_{s} =
                                                                                                                                          \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                          \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                     \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 5460 N
Ν
                                                                    M,
                                                                               = 27300 Nmm
                                                                                                                                         G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
           = 2010 N
           = 1630 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
           =
                                                                                                                                         \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                         \sigma_{tresca} =
           =
                                                                     \tau(T_{v})_{s} =
                                                                                                                                         \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                         \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6190 N
Ν
                                                                  M,
                                                                             = 30500 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 2200 N
                                                                             = 200000 \text{ N/mm}^2
          = -1250 Nmm
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_{v})_{s} =
                                                                                                                                    \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
          =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6950 N	M_x	= 33700 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1630 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1440 Nmm	Ε			
y_{G}	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$	₁ =	$\sigma_{\text{st.ven}}$	
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	σ_{IIs}	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4360 N
Ν
                                                                M,
                                                                           = 42200 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 1740 N
          = 1200 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{ld}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                 \tau(T_{v})_{s} =
                                                                                                                                 \sigma_{\text{mises}} =
          =
                                                                 \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 5020 N
Ν
                                                                     M,
                                                                                = 31200 Nmm
                                                                                                                                          G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 1920 N
                                                                                = 200000 \text{ N/mm}^2
           = 1370 Nmm
                                                                     E
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                          \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                          \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                          \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 5700 N	M_{x}	= 34800 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2110 N	$\sigma_{a}^{}$	= 240 N/mm ²		
$\dot{M_t}$	= 1050 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
v_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{y})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$		$\sigma_{\text{st.ven}}$	
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{ extsf{s}}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$	<u>(</u>) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6420 N
Ν
                                                                  M,
                                                                             = 38500 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 1560 N
                                                                             = 200000 \text{ N/mm}^2
          = 1230 Nmm
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
          =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 4870 N
Ν
                                                                    M,
                                                                               = 42100 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 1740 N
                                                                               = 200000 \text{ N/mm}^2
          = -1410 Nmm
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
C_{w}
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4810 N
Ν
                                                                   M,
                                                                              = 32300 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1900 N
          = 1260 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                      \sigma_{\text{ld}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 5470 N
Ν
                                                                     M,
                                                                                = 36100 Nmm
                                                                                                                                           G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 2080 N
                                                                                = 200000 \text{ N/mm}^2
           = 979 Nmm
                                                                     E
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{ld}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                           \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                           \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 6170 N	M_{x}	= 39900 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1540 N	$\sigma_{a}^{}$	= 240 N/mm ²		
$\dot{M_t}$	= 1140 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	=
C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	=
J_u	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 4690 N
Ν
                                                                     M,
                                                                                = 43700 Nmm
                                                                                                                                           G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 1710 N
                                                                                = 200000 \text{ N/mm}^2
           = 1310 Nmm
                                                                     E
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                           \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                           \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                           \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                           \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                           \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 5390 N	M_x	= 32200 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1890 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1500 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$		$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5240 N
Ν
                                                                   M,
                                                                              = 37400 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2060 N
                                                                              = 200000 \text{ N/mm}^2
          = 899 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{ld}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                   \tau(T_y)_d =
                                                                                                                                       \sigma_{\text{st.ven}} =
J_{t}
\sigma(N) =
\sigma(M_x) =
                                                                   \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

1	N	= 5910 N	M_{x}	= 41300 Nmm	G	$= 75000 \text{ N/mm}^2$
-	Τ,,	= 1520 N	σ_a	$= 240 \text{ N/mm}^2$		
ľ	Μ _t	= 1050 Nmm	E	= 200000 N/mm ²		
)	/ _G	=	$\tau(M_t)_d$	=	σ_{Id}	=
ι	J _o	=	$\tau(T_{yc})$	=	σ_{IId}	=
١	v _o	=	$\tau(T_{yb})$		σ_{tresca}	=
1	4	=	$\tau(T_y)_s$		σ_{mises}	
(C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	=
	J _u	=	σ	=	θ_{t}	=
	J_v	=	$ au_{s}$	=	r_u	=
·	J _t	=	$ au_{\sf d}$	=	r_{v}	=
	σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
($\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 4500 N	$M_x = 45200 \text{ Nmm}$	$G = 75000 \text{ N/mm}^2$
T,	= 1690 N	$\sigma_a^n = 240 \text{ N/mm}^2$	
Μ́ _t	= 1210 Nmm	$E = 200000 \text{ N/mm}^2$	
y_{G}	=	$\tau(M_t)_d =$	σ_{ld} =
u_{o}	=	$\tau(T_{yc}) =$	$\sigma_{IId} =$
V_{o}	=	$\tau(T_{yb})_{d} =$	$\sigma_{\text{tresca}} =$
Α	=	$\tau(T_y)_s =$	σ_{mises} =
C_{v}	v =	$\tau(T_y)_d =$	$\sigma_{\text{st.ven}} =$
$J_{\rm u}$	=	σ =	$\theta_{t} =$
J_v	=	τ_s =	$r_u =$
J_t	=	τ_{d} =	$r_v =$
	N) =	σ_{ls} =	$r_o =$
σ (l	$M_{x}) =$	$\sigma_{\sf lls}$ =	$J_p =$
_			ŗ

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 5170 N
                                                                     M,
                                                                                = 33400 Nmm
                                                                                                                                          G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 1870 N
                                                                                = 200000 \text{ N/mm}^2
           = -1390 Nmm
                                                                     E
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
           =
                                                                                                                                          \sigma_{\text{IId}}
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                          \sigma_{\text{mises}} =
           =
                                                                     \tau(T_{v})_{d} =
                                                                                                                                          \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5880 N
Ν
                                                                   M,
                                                                             = 37300 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 2050 N
          = 1070 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
           =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 7120 N
                                                                 M,
                                                                            = 33900 Nmm
                                                                                                                                   G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 1870 N
                                                                            = 200000 \text{ N/mm}^2
          = 1540 Nmm
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
V<sub>o</sub>
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5380 N
Ν
                                                                   M,
                                                                              = 37200 Nmm
                                                                                                                                      G
T<sub>y</sub>
M₁
                                                                              = 240 \text{ N/mm}^2
          = 2100 N
                                                                              = 200000 \text{ N/mm}^2
          = 1760 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6160 N	M_{x}	= 27600 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2330 N	$\sigma_{a}^{}$	= 240 N/mm ²		
$\dot{M_t}$	= 1980 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
v_{o}	=	$\tau(T_{yb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_y)_{\xi}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_{o}$	_d =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6960 N
Ν
                                                                  M,
                                                                             = 30900 Nmm
                                                                                                                                     G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 2560 N
          = 1510 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                     \sigma_{\text{IId}}
                                                                   \tau(T_{yb})_d =
                                                                                                                                     \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                     \sigma_{\text{st.ven}} =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 7790 N
                                                                M,
                                                                           = 34300 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 1900 N
          = 1730 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{ld}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4910 N
Ν
                                                                 M,
                                                                            = 41600 Nmm
                                                                                                                                   G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 2000 N
          = 1500 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                 \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                 \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 5630 N	M_{x}	= 30800 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2220 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1700 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	=
C_{w}	=	$\tau(T_y)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6380 N
Ν
                                                                   M,
                                                                             = 34500 Nmm
                                                                                                                                      G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 2440 N
                                                                             = 200000 \text{ N/mm}^2
          = 1290 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 7160 N
                                                                M,
                                                                           = 38200 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 1800 N
                                                                           = 200000 \text{ N/mm}^2
          = -1490 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                 \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                 \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5410 N
Ν
                                                                  M,
                                                                             = 41900 Nmm
                                                                                                                                     G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 2020 N
                                                                             = 200000 \text{ N/mm}^2
          = -1700 Nmm
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                     \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                     \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                     \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{mises}} =
C_{w}
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                     \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 5150 N	M_{x}	= 34500 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2130 N	σ_{a}	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= -1420 Nmm	Ε	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_d$	=	σ_{Id}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	σ_{ls}	=	r_{o}	=
$\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=
		-		•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5840 N
Ν
                                                                M,
                                                                          = 38600 Nmm
                                                                                                                                G
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 2340 N
          = 1090 Nmm
                                                                          = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6570 N
Ν
                                                                 M,
                                                                            = 42700 Nmm
                                                                                                                                   G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 1730 N
          = 1270 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{\text{IId}}
          =
                                                                 \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                 \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                 \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4980 N
Ν
                                                                 M,
                                                                            = 46900 Nmm
                                                                                                                                   G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 1930 N
                                                                            = 200000 \text{ N/mm}^2
          = 1460 Nmm
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
J_t
\sigma(N) =
\sigma(M_x) =
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di DE

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 5710 N	M_{x}	= 34700 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2140 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1650 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5620 N
Ν
                                                                   M,
                                                                              = 39900 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2300 N
          = 1020 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6330 N	M_{x}	= 44100 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 1700 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1180 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$		$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4810 N
Ν
                                                                  M,
                                                                            = 48400 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 1900 N
          = 1360 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
          =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 5520 N	M_{x}	= 35800 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2100 N	$\sigma_{a}^{}$	= 240 N/mm ²		
$\dot{M_t}$	= 1550 Nmm	Е	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$) _d =	σ_{tresca}	=
Α	=	$\tau(T_{y})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$	_d =	$\sigma_{\text{st.ven}}$	
J_u	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
σ(M ₃	_×) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6250 N
Ν
                                                                M,
                                                                           = 40000 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 2310 N
          = 1190 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
          =
                                                                \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 6080 N	M_{x}	= 45500 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1670 N	σ_{a}	= 240 N/mm ²		
$\dot{M_t}$	= 1100 Nmm	Ε	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_d$	₁ =	σ_{Id}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	=	$\sigma_{\text{st.ven}}$	
J_u	=	σ	=	θ_{t}	=
J_{v}	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
σ(N)	=	σ_{ls}	=	r_{o}	=
$\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=
		-			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	N	= 4620 N	M_{x}	= 49900 Nmm	G	$= 75000 \text{ N/mm}^2$
	T,	= 1870 N	σ_a	$= 240 \text{ N/mm}^2$		
	M _t	= 1270 Nmm	E	= 200000 N/mm ²		
,	y _G	=	$\tau(M_t)_d$	=	σ_{ld}	=
	u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
,	V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
	Α	=	$\tau(T_y)_s$	=	σ_{mises}	
	C_{w}	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	
,	J_u	=	σ	=	θ_{t}	=
,	J_v	=	$ au_{s}$	=	r_u	=
	J_t	=	$ au_{\sf d}$	=	r_v	=
	σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
	$\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=

Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di DE

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	l	= 5310 N	M_{x}	= 36900 Nmm	G	$= 75000 \text{ N/mm}^2$
Т	V	= 2070 N	σ_a	$= 240 \text{ N/mm}^2$		
M	ĺ,	= 1440 Nmm	Ε	= 200000 N/mm ²		
У	G	=	$\tau(M_t)_d$	_I =	σ_{Id}	=
u	0	=	$\tau(T_{yc})$	=	σ_{IId}	=
V	0	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	١.	=	$\tau(T_y)_s$		σ_{mises}	
C	w	=	$\tau(T_y)_d$		$\sigma_{\text{st.ven}}$	
J	u	=	σ΄	=	θ_{t}	=
J,	v	=	$ au_{s}$	=	r_u	=
J,		=	$ au_{\sf d}$	=	r_{v}	=
	(N)		$\sigma_{\sf ls}$	=	r_{o}	=
σ	(M_x)	=	$\sigma_{\sf lls}$	=	J_p	=
_						

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6030 N	M_{x}	= 41300 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2270 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1110 Nmm	Ε̈́	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 6780 N
                                                                  M,
                                                                            = 45700 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 1680 N
          = 1290 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{ld}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5530 N
Ν
                                                                M,
                                                                           = 42200 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 2330 N
                                                                           = 200000 \text{ N/mm}^2
          = 1820 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                 \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                 \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6320 N
Ν
                                                                   M,
                                                                              = 31300 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2590 N
                                                                              = 200000 \text{ N/mm}^2
          = 2050 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 7140 N
Ν
                                                                  M,
                                                                            = 35200 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 2850 N
          = 1550 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 7990 N
Ν
                                                                   M,
                                                                              = 39100 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2120 N
                                                                              = 200000 \text{ N/mm}^2
          = 1780 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6030 N
Ν
                                                                  M,
                                                                            = 42900 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 2380 N
                                                                            = 200000 \text{ N/mm}^2
          = 2020 Nmm
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5800 N
Ν
                                                                M,
                                                                          = 34500 Nmm
                                                                                                                                 G
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 2440 N
                                                                          = 200000 \text{ N/mm}^2
          = 1760 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{ld}}
                                                                \tau(T_{yc}) =
          =
                                                                                                                                 \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                 \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6570 N
Ν
                                                                    M,
                                                                               = 38800 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 2680 N
                                                                               = 200000 \text{ N/mm}^2
          = 1340 Nmm
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
C_{w}
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
           = 7360 N
                                                                    M,
                                                                               = 43000 Nmm
                                                                                                                                        G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
           = 1990 N
           = 1550 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
           =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 5560 N
                                                                   M,
                                                                             = 47200 Nmm
                                                                                                                                      G
T<sub>y</sub>
M₁
                                                                             = 240 \text{ N/mm}^2
          = 2230 N
                                                                             = 200000 \text{ N/mm}^2
          = -1760 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
C_{w}
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 6360 N
Ν
                                                                       M,
                                                                                   = 35000 Nmm
                                                                                                                                               G
T_y \\ M_t
                                                                                   = 240 \text{ N/mm}^2
           = 2480 N
                                                                                   = 200000 \text{ N/mm}^2
           = 1990 Nmm
                                                                       E
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{Id}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                               \sigma_{\text{IId}}
V<sub>o</sub>
                                                                       \tau(T_{yb})_d =
                                                                                                                                               \sigma_{tresca} =
           =
                                                                        \tau(T_v)_s =
                                                                                                                                               \sigma_{\text{mises}} =
C_{w}
           =
                                                                        \tau(T_{v})_{d} =
                                                                                                                                               \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{lls}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 5990 N
                                                                M,
                                                                          = 42500 Nmm
                                                                                                                                G
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 2560 N
          = -1130 Nmm
                                                                          = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{Id}}
                                                                \tau(T_{yc}) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 6730 N
                                                                   M,
                                                                              = 47100 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 1900 N
          = 1310 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	I = 5100 N	$M_x = 51700 \text{ Nmm}$	$G = 75000 \text{ N/mm}^2$
T,	= 2130 N		
M	$\vec{\mathbf{l}}_{t} = 1500 Nmm$	$\sigma_{\rm a} = 240 \text{ N/mm}^2$ E = 200000 N/mm ²	
y	_G =	$\tau(M_t)_d =$	σ_{Id} =
u _c	o =	$\tau(T_{yc}) =$	$\sigma_{IId} =$
V	o =	$\tau(T_{yb})_d =$	$\sigma_{\text{tresca}} =$
Α	. =	$\tau(T_{y})_{s} =$	σ_{mises} =
С	Ç _w =	$\tau(T_y)_d =$	$\sigma_{\text{st.ven}} =$
J_{ι}	u =	σ =	$\theta_{t} =$
J^{\prime}	v =	τ_s =	$r_u =$
J_t	l	τ_{d} =	$r_v =$
	(N) =	σ_{ls} =	r _o =
σ	$(M_x) =$	σ_{lls} =	$J_p =$
_			'

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5840 N
Ν
                                                                   M,
                                                                              = 38300 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2360 N
          = -1700 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
           =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
C_{w}
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6610 N
Ν
                                                                   M,
                                                                              = 42900 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2600 N
          = 1300 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{G}
                                                                                                                                       \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                       \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                       \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                       \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                       \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di DE Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 6500 N
Ν
                                                                M,
                                                                          = 48400 Nmm
                                                                                                                                G
T_y \\ M_t
                                                                          = 240 \text{ N/mm}^2
          = 1860 N
          = 1230 Nmm
                                                                          = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{ld}}
                                                                \tau(T_{yc}) =
                                                                                                                                \sigma_{\text{IId}}
                                                                \tau(T_{yb})_d =
                                                                                                                                \sigma_{tresca} =
          =
                                                                \tau(T_v)_s =
                                                                                                                                \sigma_{\text{mises}} =
                                                                \tau(T_{v})_{d} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4930 N
Ν
                                                                 M,
                                                                            = 53200 Nmm
                                                                                                                                   G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 2090 N
                                                                            = 200000 \text{ N/mm}^2
          = 1410 Nmm
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
J_{t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5650 N
Ν
                                                                 M,
                                                                            = 39400 Nmm
                                                                                                                                   G
T_y \\ M_t
                                                                            = 240 \text{ N/mm}^2
          = 2320 N
          = 1600 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t)_d =
y_{G}
                                                                                                                                   \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                   \sigma_{\text{IId}}
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                   \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{mises}} =
          =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                   \sigma_{\text{st.ven}} =
          =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

1	V	= 6400 N	M_{x}	= 44200 Nmm	G	$= 75000 \text{ N/mm}^2$
٦	Γ,,	= 2540 N	σ_a	$= 240 \text{ N/mm}^2$		
N	∕ľ _t	= 1230 Nmm	Ε	= 200000 N/mm ²		
)	′ _G	=	$\tau(M_t)_d$	=	σ_{ld}	=
ι	1 ₀	=	$\tau(T_{yc})$	=	σ_{IId}	=
١	′ 0	=	$\tau(T_{yb})$		σ_{tresca}	=
A	4	=	$\tau(T_y)_s$		σ_{mises}	
(C_{w}	=	$\tau(T_y)_d$	=	$\sigma_{\text{st.ven}}$	
·	J _u	=	σ	=	θ_{t}	=
·	J_v	=	$ au_{s}$	=	r_u	=
·		=	$ au_{\sf d}$	=	r_{v}	=
	5(N)		$\sigma_{\sf ls}$	=	r_{o}	=
C	$\sigma(M_x)$	=	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 7180 N
                                                                  M,
                                                                             = 48900 Nmm
                                                                                                                                    G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 1880 N
          = 1420 Nmm
                                                                             = 200000 \text{ N/mm}^2
                                                                  E
                                                                  \tau(M_t)_d =
y_{G}
                                                                                                                                    \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
          =
                                                                                                                                    \sigma_{\text{IId}}
                                                                  \tau(T_{yb})_d =
                                                                                                                                    \sigma_{tresca} =
          =
                                                                  \tau(T_v)_s =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                  \tau(T_{v})_{d} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 4750 N
Ν
                                                                    M,
                                                                               = 54600 Nmm
                                                                                                                                       G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
          = 2050 N
          = 1320 Nmm
                                                                               = 200000 \text{ N/mm}^2
                                                                    E
                                                                    \tau(M_t)_d =
y_{G}
                                                                                                                                        \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
          =
                                                                                                                                        \sigma_{\text{IId}}
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                        \sigma_{tresca} =
          =
                                                                    \tau(T_v)_s =
                                                                                                                                        \sigma_{\text{mises}} =
           =
                                                                    \tau(T_{v})_{d} =
                                                                                                                                        \sigma_{\text{st.ven}} =
J_{t}
\sigma(N) =
\sigma(M_x) =
                                                                    \sigma_{\text{lls}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di DE

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 5450 N	M_{x}	= 40500 Nmm	G	$= 75000 \text{ N/mm}^2$
Τ,,	= 2270 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1500 Nmm	Ε	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 6180 N	M_{x}	= 45400 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2490 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= -1150 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$		$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6940 N	M_{x}	= 50300 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 1850 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1330 Nmm	Ε	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 5260 N
Ν
                                                                   M,
                                                                              = 55200 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2070 N
          = 1530 Nmm
                                                                              = 200000 \text{ N/mm}^2
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
          =
                                                                                                                                      \sigma_{\text{IId}}
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
           =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6490 N	M_{x}	= 35300 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2860 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 2110 Nmm	Ε	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_{v}	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 7320 N	M_{x}	= 39700 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 3150 N	σ_{a}^{n}	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= -1600 Nmm	E	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	Θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 8190 N
Ν
                                                                 M,
                                                                           = 44100 Nmm
                                                                                                                                  G
T_y \\ M_t
                                                                           = 240 \text{ N/mm}^2
          = 2350 N
                                                                           = 200000 \text{ N/mm}^2
          = -1840 Nmm
                                                                 E
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{Id}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{\text{IId}}
          =
                                                                 \tau(T_{yb})_d =
                                                                                                                                  \sigma_{tresca} =
          =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{mises}} =
          =
                                                                 \tau(T_y)_d =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 6170 N
Ν
                                                                     M,
                                                                                = 48600 Nmm
                                                                                                                                          G
T_y \\ M_t
                                                                                = 240 \text{ N/mm}^2
           = 2640 N
                                                                                = 200000 \text{ N/mm}^2
           = 2080 Nmm
                                                                     \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                          \sigma_{\text{Id}}
                                                                     \tau(T_{yc}) =
                                                                                                                                          \sigma_{\text{IId}}
           =
V<sub>o</sub>
                                                                     \tau(T_{yb})_d =
                                                                                                                                          \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                          \sigma_{\text{mises}} =
           =
                                                                     \tau(T_y)_d =
                                                                                                                                          \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 7040 N
Ν
                                                                  M,
                                                                             = 36100 Nmm
                                                                                                                                     G
T_y \\ M_t
                                                                             = 240 \text{ N/mm}^2
          = 2940 N
                                                                             = 200000 \text{ N/mm}^2
          = -2340 Nmm
                                                                  E
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{Id}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{\text{IId}}
          =
V<sub>o</sub>
                                                                  \tau(T_{yb})_d =
                                                                                                                                     \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                   \tau(T_y)_d =
                                                                                                                                     \sigma_{\text{st.ven}} =
           =
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 6760 N	M_{x}	= 43100 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 2930 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1390 Nmm	Ε	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_c$		$\sigma_{\text{st.ven}}$	=
J_u	=	σ	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 7570 N	M_{x}	= 47900 Nmm	G	$= 75000 \text{ N/mm}^2$
T,	= 2180 N	σ_a	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1600 Nmm	Ε̈́	= 200000 N/mm ²		
y_{G}	=	$\tau(M_t)_c$	₁ =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$	=	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_{v})_{s}$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	₁ =	$\sigma_{\text{st.ven}}$	=
J_{u}	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
- ()	=	$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf lls}$	=	J_p	=
				•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 5720 N
                                                                   M,
                                                                              = 52700 Nmm
                                                                                                                                      G
T_y \\ M_t
                                                                              = 240 \text{ N/mm}^2
          = 2450 N
                                                                              = 200000 \text{ N/mm}^2
          = 1820 Nmm
                                                                   E
                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                      \sigma_{\text{Id}}
                                                                   \tau(T_{yc}) =
                                                                                                                                      \sigma_{\text{IId}}
          =
V<sub>o</sub>
                                                                   \tau(T_{yb})_d =
                                                                                                                                      \sigma_{tresca} =
          =
                                                                   \tau(T_v)_s =
                                                                                                                                      \sigma_{\text{mises}} =
           =
                                                                   \tau(T_{v})_{d} =
                                                                                                                                      \sigma_{\text{st.ven}} =
           =
J_t
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
           = 6530 N
Ν
                                                                    M,
                                                                               = 39200 Nmm
                                                                                                                                         G
T_y \\ M_t
                                                                               = 240 \text{ N/mm}^2
           = 2720 N
                                                                               = 200000 \text{ N/mm}^2
           = 2050 Nmm
                                                                    E
                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                         \sigma_{\text{Id}}
                                                                    \tau(T_{yc}) =
                                                                                                                                         \sigma_{\text{IId}}
           =
V<sub>o</sub>
                                                                    \tau(T_{yb})_d =
                                                                                                                                         \sigma_{tresca} =
           =
                                                                     \tau(T_v)_s =
                                                                                                                                         \sigma_{\text{mises}} =
           =
                                                                     \tau(T_y)_d =
                                                                                                                                         \sigma_{\text{st.ven}} =
           =
\boldsymbol{J_t}
\sigma(N) =
\sigma(M_x) =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 7360 N	M_{x}	= 44000 Nmm	G	$= 75000 \text{ N/mm}^2$
T_v	= 3000 N	$\sigma_{a}^{}$	$= 240 \text{ N/mm}^2$		
$\dot{M_t}$	= 1560 Nmm	Е	= 200000 N/mm ²		
y_G	=	$\tau(M_t)_c$	_d =	σ_{ld}	=
u_o	=	$\tau(T_{yc})$) =	σ_{IId}	=
V_{o}	=	$\tau(T_{yb})$		σ_{tresca}	=
Α	=	$\tau(T_y)_s$		σ_{mises}	
C_{w}	=	$\tau(T_y)_d$	_i =	$\sigma_{\text{st.ven}}$	=
J_u	=	σ΄	=	θ_{t}	=
J_v	=	$ au_{\sf s}$	=	r_u	=
J_t	=	$ au_{\sf d}$	=	r_v	=
σ(N)		$\sigma_{\sf ls}$	=	r_{o}	=
$\sigma(M_x)$) =	$\sigma_{\sf IIs}$	=	J_p	=
				r	