Week 11

Robert

July 2024

List of Definitions

1.1	Definition $(T_1 \text{ space}) \dots \dots$
1.2	Definition $(T_2 \text{ space})$
1.3	Definition $(T_3 \text{ space})$
1.4	Definition $(T_3.5 \text{ space})$
1.5	Definition $(T_4 \text{ space})$
List	of Propositions
1.6	Proposition (Completely regular implies regular)
1.9	Lemma (Equivalent condition to regularity)
1.10	Lemma (Equivalent condition to normality)
	Proposition (Regularity of subspace and products)
1.14	Proposition (Sufficient conditions for normality)
	Lemma (Urysohn's)
2.1	Lemma
2.3	Theorem (Urysohn Metrization Theorem)
3.1	Theorem

1 Separation axioms

Here, the word separation shall mean that we can put disjoint open neighborhoods around things.

Definition 1.1 (T_1 space). A space X is T_1 if points are closed.

Definition 1.2 (T_2 space). A space is T_2 if it is Hausdorff. Recall that a space is Hausdorff if you can separate points with disjoint closed sets.

Definition 1.3 (T_3 space). A space is **regular** or T_3 if it is T_1 and given a point x and a closed set C such that $x \notin C$, there is a neighborhood U of x and $V \supseteq C$ such that U, V are disjoint.

In other words, a space is T_3 if we can separate points from closed sets.

Definition 1.4 ($T_3.5$ space). A space is **completely regular** if it is T_1 and given a point x and a closed set C not containing x, there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 and $f[C] = \{1\}$.

Definition 1.5 (T_4 space). A space is **normal** if it is T_1 and given disjoint closed sets C, D, there exists disjoint open sets U, V such that $C \subseteq U$ and $D \subseteq V$.

Clearly normal implies regular implies Hausdorff. A completely regular space is also regular. Normal also implies completely regular, but this is nontrivial (Lemma 1.15).

Proposition 1.6 (Completely regular implies regular). A completely regular space is regular.

Proof. Suppose X is completely regular. Let x be a point and A a closed set not containing x. Then, there is a function $f: X \to [0,1]$ such that f(x) = 0 and f is 1 on A. Now preimage some disjoint open neighborhoods of 0 and 1.

The implications are not reversible.

Example 1.7 (T_1 but not Hausdorff). Let $X = \mathbb{R}$ with the cofinite topology. Then X is clearly T_1 since singletons are finite and are thus closed. It is easily seen to be not Hausdorff.

Example 1.8 (Hausdorff but not regular). Let $X = \mathbb{R}_K$ be the K-topology on the reals. However, it is not regular since we cannot separate the set K from the point 0.

Lemma 1.9 (Equivalent condition to regularity). Let X be a topological space. Then X is regular if and only if for every $x \in X$ and neighborhood U of x, there is a neighborhood V of x such that $\overline{V} \subseteq U$.

Proof. For the forward direction, apply the definition of regularity to the closed set $X \setminus U$. For the converse direction, if C is a closed set not containing x, then $X \setminus C$ is a neighborhood of x.

Lemma 1.10 (Equivalent condition to normality). Let X be a topological space. Then X is normal if and only if given a closed set $C \subseteq X$ and an open set $U \supseteq C$, there exists an open set V such that $C \subseteq V$ and $\overline{V} \subseteq U$.

Proof. Same idea as Lemma 1.9.

Proposition 1.11 (Regularity of subspace and products). 1. A subspace of a (completely) regular space is (completely) regular.

2. Products of (completely) regular space is (completely) regular.

- *Proof.* 1. Let X be regular, and $Y \subseteq X$. Let $y \in Y$ and $A \subseteq Y$ be closed with $y \notin A$. Then there is some $C \subseteq X$ closed such that $A = C \cap Y$. Clearly $x \notin C$ so we may find disjoint U, V containing x and C respectively. Then $U \cap Y$, $V \cap Y$ are the neighborhoods as desired. If X is completely regular instead, let $f: X \to [0, 1]$ be a function that separates y and C. The restriction of f to Y is still continuous and has the desired property.
 - 2. Let X_{α} , $\alpha \in \Lambda$ be a collection of regular spaces. Set $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Given a point $\mathbf{x} = \langle x_{\alpha} : \alpha \in \Lambda \rangle \in X$, let $U = \prod_{\alpha \in \Lambda} U_{\alpha}$ be an open neighborhood of \mathbf{x} , so that $U_{\alpha} = X_{\alpha}$ for all but finitely many α . For those U_{α} which are not equal to X_{α} , we may find V_{α} such that $x_{\alpha} \in V_{\alpha}$ and $\overline{V_{\alpha}} \subseteq U_{\alpha}$ (by Lemma 1.9). For those U_{α} which are equal to X_{α} , set V_{α} to be X_{α} . Then $V := \prod_{\alpha \in \Lambda} V_{\alpha}$ has closure contained in U, since $\overline{\prod_{\alpha \in \Lambda} V_{\alpha}} = \prod_{\alpha \in \Lambda} \overline{V_{\alpha}}$.

Now suppose the X_{α} 's are now completely regularly. Let A be closed in X and not containing x. Let $U \subseteq X$ be a basic open neighborhood of $\mathbf x$ that is disjoint from A. (This uses regularity of X_{α} , but finitely many of them). Now, U is the product of open sets U_{α} in X_{α} 's. Then there are U_{α} 's which are not X_{α} 's, finitely many of them, say $\alpha_1, \ldots, \alpha_n$. For each α_i , let $f_i: X_{\alpha_i} \to [0,1]$ be a continuous function such that $f_i(x_{\alpha_i}) = 0$, and f is 1 on the set $X_{\alpha_i} \setminus U_{\alpha_i}$. Define g_i to be $f_i \circ \pi_{\alpha_i}$ and let $g(x) = \prod_{i \le n} g_i(x)$. Then g is the desired function.

A similar proposition is not true for normal spaces.

Example 1.12 (Product of normal may not be normal). Let $X = \mathbb{R}_l$ be the Sorgenfrey line. Then X is normal. Let A, B be disjoint closed sets. For $a \in A$, let $[a, x_a) \subseteq X$ be disjoint from B. This is possible because $X \setminus A$ is open. We repeat the same trick for each $b \in B$, letting $[b, x_b) \subseteq X$ be disjoint from A. Now, $A \subseteq \bigcup_{a \in A} [a, x_a)$ and $B \subseteq \bigcup_{b \in B} [b, x_b)$. We claim that those unions are disjoint. Otherwise, let $a \in A, b \in B$ such that $[a, x_a) \cap [b, x_b) \neq \emptyset$. WLOG let us assume a < b, so this means $x_a > b$. But then $b \in [a, x_a)$, oops.

However, $X \times X$ is not normal. Let L be the line consisting of the points $\langle x, -x \rangle$. This set is closed¹, and it is discrete, so every subset of L is closed in $X \times X$. For all $A \subseteq L$, we have disjoint open sets U_A, V_A of $X \times X$, such that $A \subseteq U_A, L \setminus A \subseteq V_A$. Let us now define a function $f : \mathcal{P}(L) \to \mathcal{P}(\mathbb{Q}^2)$ as follows:

$$f(\varnothing) = \varnothing,$$

 $f(L) = \mathbb{Q}^2,$
 $f(A) = U_A \cap \mathbb{Q}^2$ if $\varnothing \subset A \subset L$.

We claim that f is injective. To see this, let A be a subset of L. If A is nonempty, then U_A is nonempty. As \mathbb{Q}^2 is dense in $X \times X$, f(A) is nonempty. If A is a proper subset of L, then $L \setminus A$ is nonempty, and so V_A is nonempty. Thus f(A) is not all of \mathbb{Q}^2 . Now suppose A, B are subsets of L and $A \neq B$. WLOG let $x \in A \setminus B$. Thus $x \in U_A$ and $x \in V_B$, so $U_A \cap V_B$ is a nonempty open set, thus it contains an element of \mathbb{Q}^2 , say q. Then $q \in f(A) \setminus f(B)$, so $f(A) \neq f(B)$.

However, f cannot be injective, since the cardinality of $\mathcal{P}(L)$ is strictly bigger than the cardinality of $\mathcal{P}(\mathbb{Q}^2)$.

See [Mun00, Example 3, p. 198] for a full exposition.

Example 1.13 (Subspaces of normal need not be normal). The following example is called Tychonoff's plank (see [SS78, Example 87, p. 106]). Let us take $X = \alpha\omega_1 \times \alpha\omega$. Recall that αX of a locally compact Hausdorff space X is the one-point compactification of it. Clearly X is compact and Hausdorff. Now, let us set Y to be $X \setminus (\infty_{\alpha\omega_1}, \infty_{\alpha\omega})$, so we remove the point added by the one point compactification. Let $A = \omega_1 \times \{\infty_{\alpha\omega}\}$, let $B = \{\infty_{\alpha\omega_1}\} \times \omega$.

The following proposition gives sufficient conditions for normality. Similar theorems can be seen in [Mun00, Chp. 32, pp. 198–203].

J 1

¹Previously proven

Proposition 1.14 (Sufficient conditions for normality). Let X be a space. Then X is normal if at least one of the conditions are satisified:

- 1. X is regular and Lindelof;
- 2. X is compact and Hausdorff:
- 3. X is metrizable;
- 4. X is a linearly ordered space (with the order topology).

Proof. (1) Suppose X is regular. Let A, B be closed and disjoint in X. For each $a \in A$, there are disjoint neighborhoods U_a of a and V_a of B. Since X is regular there is a neighborhood W_a of a such that $\overline{W_a} \subseteq U_a$. The collection of these W_a 's is an open cover of A, and since A is closed, it too is Lindelof; thus it has a countable subcover. Let us denote this subcover by $\{W_i\}$. Observe that each W_i has closure that is disjoint from B. Let us now repeat this construction for B, so that we have a countable collection of sets $\{V_i\}$ such that V_i has closure disjoint from A.

We now set $W'_n = W_n \setminus \bigcup_{i=1}^n \overline{V_i}$ and $V'_n = V_n \setminus \bigcup_{i=1}^n \overline{W_i}$. Then each W'_n and V'_n are open. The collections $\{W'_n\}$ and $\{V'_n\}$ still cover A and B, since if $a \in A$, then $a \in W_n$ for some n, and a is not in $\overline{V_i}$ for all i as $\overline{V_i}$ is disjoint from A, thus $a \in W'_n$. A similar idea holds for B. Set $W = \bigcup W'_n$ and $V = \bigcup V'_n$. We are basically done; all that's left is to show W, V are disjoint. Suppose not, then there is some point $x \in W'_n$ and $x \in V'_m$ for some n, m. Without loss of generality, say $n \leq m$. Notice that by construction V'_m could not possibly contain any points of W'_n , yet it does.

- (2) See Proposition 5.4 in Week 8 Notes.
- (3) To do this, we shall use the converse of Lemma 1.15. Let A, B be disjoint closed sets in X. Define

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)},$$

where $d(x, A) = \inf \{ d(x, a) : a \in A \}$. It is easy to see that f is continuous, and that f is 0 on A and 1 on B.

Lemma 1.15 (Urysohn's). Let X be a normal topological space and A, B be disjoint closed sets in X. Then, there exists a continuous function $f: X \to [0,1]$ such that f is 0 on A and f is 1 on B.

Proof. We shall construct for each rational number r, an open set U_r . These sets will have the following properties:

- 1. $U_r = \emptyset$ if r < 0, $U_r = X$ if r > 1;
- 2. $U_0 \supseteq A$ and $U_1 = X \setminus B$;
- 3. If p < q, then $\overline{U}_p \subseteq U_q$.

Let us first define $U_1 = X \setminus B$, and U_r for the cases in (1). To find U_0 , we apply Lemma 1.10 to find U_0 such that $A \subseteq U_0$ and $\overline{U}_0 \subseteq U_1$, since U_1 contains A. Thus we have satisfied condition (2).

At this point, it is unclear how we can get condition (3) out. What we would like to do; say r is a rational between p and q; is to shove the set U_r between U_p and U_q . We can do that due to normality: choose U_r such that $\overline{U_p} \subseteq U_r$ and $U_r \subseteq U_q$. If the rationals were well ordered in a way like the naturals, that would be easy. Unfortunately, reality is often disappointing. However, we observe crucially that if we had a finite collection of rationals and sets with property (3), we can do it quite easily. So instead we shall perform induction on a sequence containing all the rational numbers. Let $(r_i)_{i\in\mathbb{N}}$ be a sequence that enumerates all the rational numbers in (0,1) exactly once. By normality, there exists

 U_{r_1} such that $\overline{U_{r_1}} \subseteq U_1$ and $\overline{U_0} \subseteq U_{r_1}$. Now, let $n \in \mathbb{N}$ and suppose we have chosen sets U_{r_i} where i < n with the property that whenever $r_i < r_j$, then $\overline{U_{r_i}} \subseteq U_{r_j}$. Let p be the smallest rational number in the set $\{0, r_1, \ldots, r_{n-1}, 1\}$ that is bigger than r_n and q be the largest rational number from that set that is smaller than r_n . We quickly remark that this means $q < r_n < p$. By the inductive hypothesis, $\overline{U_q} \subseteq U_p$. Normality implies that there is a open set U_{r_n} such that $\overline{U_q} \subseteq U_{r_n}$ and $\overline{U_{r_n}} \subseteq U_p$.

Now, define

$$f(x) = \inf \left\{ q \in \mathbb{Q} : x \in U_q \right\}.$$

This function is well defined, and attains values between 0 and 1 due to property 1. Property 2 tells us that it is 0 on A and 1 on B. To show f is continuous, we shall show that preimages of subbasic elements are open, i.e. $f^{-1}[(-\infty, a)]$ and $f^{-1}[(a, \infty)]$ are open. To begin, we make the following observations:

$$f(x) < a \iff x \in U_p \text{ for some } p \in \mathbb{Q}, p < a.$$
 (1)

$$f(x) \le a \iff x \in \overline{U_p} \text{ for all } p \in \mathbb{Q}, p > a.$$
 (2)

The first one (Equation (1)) follows immediately by definition of inf. For Equation (2), if $f(x) \leq a$, and r > a is a rational, by definition of f, there is some rational s < r such that $x \in U_s \subseteq U_r \subseteq \overline{U_r}$. Now for the converse. Suppose s > a is a rational, we show that $f(x) \leq s$. Let us choose a rational r such that a < r < s. Then $x \in \overline{U_r}$ by hypothesis, and $\overline{U_r} \subseteq U_s$, so this tells us that $f(x) \leq s$. Since this holds for every rational bigger than a, we must have $f(x) \leq a$. Now, we thus have $f^{-1}[(-\infty, a)] = \bigcup_{r \in \mathbb{Q}, r < a} U_r$ and $f^{-1}[(a, \infty)] = X \setminus \bigcap_{r \in \mathbb{Q}, r > a} \overline{U_r}$. Both of those are open, so f is continuous.

The converse of Urysohn's lemma is true: if disjoint closed sets can be separated with continuous functions, then the space is normal.

2 Urysohn Metrization Theorem

Lemma 2.1. Let X be a T_1 space and let $\{f_\alpha : \alpha \in \Lambda\}$ be a family of continuous functions from X into [0,1] such that for every $x \in X$ and every neighborhood U of x, there is some $\alpha \in \Lambda$ such that $f_\alpha(x) = 1$ and $f_\alpha|_{X \setminus U} = 0$. Then the map $F: X \to [0,1]^{\Lambda}$ (product topology) given by $F(x) := \langle f_\alpha(x) : \alpha \in \Lambda \rangle$ is a topological embedding.

Proof. We first check injectivity. If $x \neq y$, there are neighborhoods U of x and Y of y such that y is not in U and x is not in Y. Thus there is some α such that $f_{\alpha}(x) = 1$ and f_{α} is 0 on $X \setminus U$, so in particular $f_{\alpha}(y) = 0$. So $F(x) \neq F(y)$.

Now, F is clearly continuous since every component of F is continuous². Let us suppose U is open in X. Let $x \in U$, so that U is an open neighborhood of x. Thus there is some α such that $f_{\alpha}(x) = 1$ and f_{α} is 0 on $X \setminus U$. Let $V = \pi_{\alpha}^{-1}[(0,1]]$. It remains to show that for every $F(z) \in F[U]$, there is a neighborhood of F(z) living in F[U]. We claim that $F(z) \in F[X] \cap V \subseteq F[U]$, so $F[X] \cap V$ is our desired neighborhood. If $F[y] \in F[X] \cap V$ then $f_{\alpha}(y) > 0$, so $y \in U$, thus $F(y) \in F[U]$.

Corollary 2.2. The following are equivalent:

- (1) X is completely regular;
- (2) X is homeomorphic to a subspace of $[0,1]^{\Lambda}$ for some Λ .

Theorem 2.3 (Urysohn Metrization Theorem). Let X be a regular second-countable space. Then X is metrizable.

Proof. Since X is regular and second-countable, it is normal by Proposition 1.14 (second countability implies Lindelof). The idea here is to make the Λ in the previous lemma countable, then we would see that X is homeomorphic to a subspace of a metrizable space. What we need is a countable family of functions that separate points from closed sets. Let $\mathcal{B} = \{U_n : n \in \mathbb{N}\}$ be a countable basis of X. For every n, m such that $\overline{U_n} \subseteq U_m$, using Lemma 1.15, choose a function $f_{n,m} : X \to [0,1]$ such that $f_{n,m}$ is 1 on $\overline{U_n}$ and it is 0 on $X \setminus U_m$. Let us check that these functions satisfy the property in the lemma. Suppose we have x and a neighborhood U of x. There is some basic U_m such that $x \in U_m \subseteq U$. By regularity, there is some U_n such that $x \in \overline{U_n} \subseteq U_m$. Then $f_{n,m}$ is 1 on $\overline{U_n}$, and it is 0 on $X \setminus U_m$, so in particular it is 0 outside of U.

²This is the universal property of the product topology

3 Stone-Čech Compactifications

We have previously constructed the Stone-Čech compactification of the naturals. Now we describe a different way to construct it that does not involve ultrafilters.

Theorem 3.1. Let X be a space. Then, the following are equivalent:

- 1. X is completely regular;
- 2. X is homeomorphic to a subspace of $[0,1]^{\Lambda}$ for some Λ ;
- 3. There is a compactification Y of X such that for every compact Hausdorff space K, every continuous function $f: X \to K$ has a unique continuous extension $g: Y \to K$.

Proof. Suppose X is completely regular. Let $(f_{\alpha})_{\alpha \in \Lambda}$ be all the continuous functions from X into [0,1]. By the imbedding lemma, the function $F: X \to [0,1]^{\Lambda}$ that sends a point x to $\langle f_{\alpha}(x) : \alpha \in \Lambda \rangle$ is an imbedding. Let $Y = \overline{F[X]}$. Then Y is compact Hausdorff since it is a closed subspace of a compact space. Moreover, it is a compactification since X is dense in Y^3 . Let $f: X \to [0,1]$ be continuous, so there is some β such that $f = f_{\beta}$. Notice that $\pi_{\beta}: Y \to [0,1]$ is continuous, and $\pi_{\beta}(F(x)) = f_{\beta}(x) = f(x)$. If there is another function $g: Y \to [0,1]$ that extends f, notice that g agrees with π_{β} on f[X], and so in particular it agrees with π_{β} on f[X] = Y. So $g = \pi_{\beta}$.

The situation of 3 is easily illustrated in the following commutative diagram:

$$X \xrightarrow{F} Y \\ \downarrow \exists ! g \\ K$$

 $^{{}^3}F[X]$ is a homeomorphic copy of X in Y