

射频性能测试 使用手册

版本: 2.17

版权 @ 2020

www.bouffalolab.com

Contents

1	版本	记录														 									 		5
2	概述	· ·												•		 						•			 		6
3	下载	开发	烧录	:软件	工具	具包	١.									 									 		8
4	烧写	测试	固件	·												 									 		9
5	运行	测试	固件	:												 									 		13
6	频偏	补偿	设置													 									 		14
7	发送	设置												•		 						•			 		16
	7.1	Ch	ann	el 和	Po	wer	r 设	置.								 									 		16
	7.2	发达	送数	据包	模式	弋设	置									 									 		17
		7.2.	I	11b	数扫	居包	上发:	送								 									 		18
		7.2.2	2	11g	数技	居包	」发:	送						•		 				•				•	 		18
		7.2.3	3	11n	数扫	居包	」发:	送						•		 				•				•	 		18
8	接收	设置														 									 		19
9	BLE	测试												•		 				•				•	 		20
10	设置	!/使用	默し	人发身	付功	率及	及频	偏	补	偿值	值			•		 				•				•	 		21
11	发送	功率	温度	补偿	÷ .									•		 				•				•	 		23
12	PDS	S/DTII	M 设	置.										•		 				•				•	 		24
13	HBN	1 设置												•		 				•		•	•		 		25
14	CW	测试	模式																						 		26

15 RF 测试固件在生产中的使用说明	27
15.1 开发人员将 RF 测试固件添加到要烧写的文件	27
15.1.1 自启动固件的工作流程	27
15.1.2 普通固件的工作流程	27
15.2 工厂烧录以及产测	28
15.2.1 自启动固件	28
15.2.2 普通固件	29
16 串口通信命令	30
16.1 Shakehand	30
16.2 TX on/off	30
16.3 TX modulation	30
16.3.1 2.4G 11n	30
16.3.2 2.4G 11g	31
16.3.3 2.4G 11b	31
16.4 2.4g channel	31
16.5 2.4g tx power	31
16.6 TX frame length	31
16.7 TX frequency	31
16.8 PDS	32
16.9 HBN	32
16.10 RX	32
16.11 Get MFG FW version	32
16.12 Get MFG FW building infomation	32
16.13 Get current power level	32
16.14 Get current channel	33
16.15 Get current tx status	33
16.16 Get tx frequency	33
16.17 Get cap code	33
16.18 Get MFG mode	33
16.19 Set cap code	33
16.20 Set MFG Test(CW) mode	33

16.21 Write data to efuse
16.21.1 Write data to efuse buffer
16.21.2 Load data from efuse buffer
16.21.3 Program data to efuse
16.21.4 Read data from efuse
16.22 Save calibration parameters to efuse
16.22.1 Write cap code to efuse buffer
16.22.2 Load cap code from efuse buffer
16.22.3 Program cap code to efuse
16.22.4 Read cap code from efuse
16.22.5 Write power offset to efuse buffer
16.22.6 Load power offset from efuse buffer
16.22.7 Program power offset to efuse
16.22.8 Read power offset from efuse
16.22.9 Enable power offset in efuse
16.22.10 Write mac address to efuse buffer
16.22.11 Load mac address from efuse buffer
16.22.12 Program mac address to efuse
16.22.13 Read mac address from efuse buffer
16.23 Save calibration parameters to flash
16.24 Save default parameters to flash
16.24.1 save default cap code to flash
16.24.2 read default cap code from flash
16.24.3 save WiFi default power to flash
16.24.4 read WiFi default power from flash
16.24.5 select WiFi default power in flash
16.24.6 save BLE default power to flash
16.24.7 read BLE default power from flash
16.24.8 select BLE default power in flash
16.25 Reset MFG FW
16.26 Set tx duty
16.27 Get tx duty

16.28 BLE Test	39
16.28.1 BLE TX Power	39
16.28.2 BLE TX	39
16.28.3 BLE RX	39
16.28.4 BLE test stop	39
16.29 TX power temperature calibration	40

List of Figures

2.1	工具界面图	8
3.1	干发烧录软件工具包	10
4.1	OT 模组评估套件	11
4.2	尧写界面	12
4.3	更件连接原理图	13
4.4	尧录成功界面	14
5.1	呈序成功运行的 log	15
6.1	更新补偿值	17
7.1	设置 Channel 和 Power 的参数	18
7.2	1b 数据包设置速率	20
7.3	1g 数据包设置速率	20
7.4	1n 数据包发送界面	20
8.1	接收数据包效果图	21
9.1	BLE Payload Type	22
12.1	PDS 模式参数设置	26
13.1	HBN 模式参数设置	27
14.1	则试模式参数设置	28
15.1		30

版本记录

表 1.1: 修改记录

版本	更新内容
V2.17	增加射频性能测试固件与应用固件的切换说明
V2.16	增加射频性能测试在生产中的使用说明
V2.15	增加 EFUSE 读写的相关描述
V2.14	增加温补功能的相关描述
V2.13	增加将产测校准参数写入 Flash 功能
V2.12	增加启用 efuse tx power offset 校准功能命令
V2.11	增加设置 BLE Tx Power 及 default 值功能
V2.10	增加 BLE 和 Auto(Default) TX power 功能
V2.9	将 MFG 功能集成到开发烧录工具中
V2.8	增加 TX Duty 选择,去掉固件下载功能
V2.7	增加 CW 测试模式,在该测试模式下,只能设定 Power 和 Channel
V2.6	去掉 Ch14 的设定,增加 Misc Cfg Get 功能获取 Channel,Power,Capcode
V2.5	增加 Shakehand(H)命令,增加读取 efuse power offset 和 Cap code 并设定功能
V2.4	增加 Reset 命令
V2.3	增加 Efuse Load 和 Save 指令,用于保存校准参数到 Efuse 时候的校验
V2.2	去除 MFG 图形界面工具中数据包长,发送频率,制式参数等冗余设定,简化 用户使用步骤

概述

RF 性能测试工具 (RF MFG) 是 Bouffalo Lab 提供的用于 RF 评估测试的工具,包含测试工具和测试镜像 (MFG Firmware) 两部分。测试工具界面如下图所示。

图 2.1: 工具界面图

RF 性能测试工具 (RF MFG) 可以实现的功能包括:

- WiFi 数据包发送
- WiFi 数据包接收
- BLE 数据包接收 (具有 BLE 功能的芯片)
- BLE 数据包接收 (具有 BLE 功能的芯片)
- 芯片 PDS(Power down sleep) 测试
- 芯片 HBN(Hibernate) 测试

下载开发烧录软件工具包

如果用户没有开发烧录工具,可以通过 Bouffalo Lab Dev Cube,获取开发烧录软件工具包,在该工具包中,包含了 RF 测试固件,RF 测试固件烧写工具,RF 测试工具等。工具包解压后的效果如图所示。它是客户开发博流各种类型芯片使用到的工具集。

名称	修改日期	类型	大小
☐ bl56x	2020/7/14 14:18	文件夹	
☐ bl60x	2020/7/20 9:03	文件夹	
☐ bl562	2020/7/14 14:19	文件夹	
☐ bl602	2020/7/16 17:16	文件夹	
common	2020/7/14 14:18	文件夹	
docs	2020/7/14 14:18	文件夹	
openocd	2020/7/14 14:18	文件夹	
BLDevCube.exe	2020/7/20 10:01	应用程序	24,135 KB
JLink.exe	2020/6/2 14:41	应用程序	273 KB
JLinkARM_32.dll	2020/6/2 14:41	应用程序扩展	13,988 KB
■ openocd.exe	2020/6/2 14:41	应用程序	4,579 KB
version.txt	2020/7/20 9:58	文本文档	1 KB

图 3.1: 开发烧录软件工具包

烧写测试固件

通过 Flash 烧写工具,将 RF 的测试固件烧写到 Flash 中,镜像成功下载后,通过将 Boot 引脚跳到低电平,按下复位 键就可以启动 firmware 固件程序进行 RF 测试了。

对于 RF 评估测试,如果是直接从博流拿到的 RF 评估测试板,里面会提前烧录好测试固件,用户可以跳过烧写测试固件这一步骤,直接连接评估测试板到 PC,运行固件进行 RF 测试评估,详细参考《运行测试固件》这一章节。

在开发烧录软件工具包中,包含了各个芯片的 RF 测试固件。下面以 BL602 的 IOT 模组评估套件烧写为例,介绍烧写过程。BL602 的 IOT 模组评估套件如下图所示。

图 4.1: IOT 模组评估套件

套件由 IOT 模组和模组底板组成,模组底板使用 Mini USB 接口供电同时带有一颗 FT 的 USB 转串口芯片, USB 转串

口与模组的连接关系是:

• TXD: 与模组的 RXD 相连

• RXD: 与模组的 TXD 相连

• DTR: 与模组的 Boot 引脚相连,用于控制芯片从 UART 启动还是 Flash 启动

• RTS: 与模组的 Reset 引脚相连,用于控制芯片的复位

当模组连接到 PC 后,会在 PC 的设备管理器出现两个 USB 转串口,并且这两个 COM 号是相邻的,与芯片的 UART 连接的是其中小号的串口。如果模组连接到 PC 后,没有自动安装驱动,请到https://www.ftdichip.com/Drivers/VCP.htm下载驱动自行安装。

连接模组后,首先运行 BLDevCube.exe,在 Chip Type 中选择 BL602/604,进入如下烧写界面。

图 4.2: 烧写界面

在左侧通信接口设置中:

• Interface: 用于选择烧录的通信接口,这里选择 uart 进行烧写

• COM Port: 当选择 UART 进行烧写的时候这里选择与芯片连接的 COM 口号,可以点击 Refresh 按钮进行 COM 号

的刷新

- Uart Rate: 当选择 UART 进行烧写的时候,填写波特率,可以填写 2M 2000000
- Board: 选择所使用的板子型号,这里选择 IoTKitA, 当板子选定后, Xtal 和 Chip/Flash 会自动更新成与板子匹配的默认值, 当然用户也是可以再次更改的
- Xtal: 用于选择板子所使用的晶振类型,对于评估板,这里选择 40M
- Chip Erase: 默认设置为 False, 即下载时不擦除 Flash

其它项使用默认配置即可。

在右侧烧录镜像配置,分别选择:

- 分区表: 使用烧写工具目录下的对应芯片型号 partition 目录下的分区表,本例中使用 bl602/partition/partition cfg 2M.toml
- Boot2:使用烧写工具目录下的对应芯片型号 builtin_imgs 目录下的 Boot2,本例中使用 bl602/builtin_imgs/blsp_boot2.bin
- 固件程序:使用烧写工具目录下的对应芯片型号 builtin_imgs 目录下的 mfg,本例中选择的是

bl602/builtin imgs/mfg/bl602 bl604 mfg gu 40m.bin

固件的烧写,需要根据通信接口的选择,将芯片设置成正确的启动方式,对于 UART 方式烧写,需要将芯片的 Boot 引 脚设置为高电平,对于 Jlink 方式烧写,需要将芯片的 Boot 引脚设置为低电平。对于博流提供的模组评估套件,在使 用串口烧录的时候,烧写工具会通过 USB 转串口的 DTR 信号自动控制 BOOT 引脚,不需要额外设定。IOT 模组的硬件连接原理图如下所示:

图 4.3: 硬件连接原理图

在上图中,电阻 R5,R8 是用于 USB 转串口的 DTR、RTS 与芯片的 BOOT 引脚、RST 引脚的连接。如果这两个电阻 存在的话,烧写程序可自动控制芯片的启动方式。如果不存在的话,需要用户将 BOOT 引脚根据需求跳到高电平或者 低电平并通过板子上的按键实现 RESET。

完成上述芯片启动设定后,然后点击 Create&Download 按钮,完成固件程序的烧录。烧录成功的示意如下。

图 4.4: 烧录成功界面

运行测试固件

完成测试固件的下载以后,将芯片的 Boot 引脚跳到低电平,然后按下复位键,芯片就可以运行 RF 测试固件了,对于博流提供的模组评估套件,Boot 引脚会被串口程序自动控制,无需额外的设定。在运行 BLFlashEnv.exe 后,通过 View->RF MFG 进入到 RF MFG 测试界面。选择使用到的 COM 号(本例中是 COM6),点击 Open 按钮,即可看到 固件程序成功运行的 log, 示例如下。

图 5.1: 程序成功运行的 log

上位机 UI 程序与测试固件通过 UART 通信,使用的波特率是 115200,数据位为 8 位,没有奇偶校验。

频偏补偿设置

针对晶体的负载电容,BL60X 系列芯片内部有电容补偿,不同的负载电容需求对应不同的电容补偿值,以下表格提供参考值。

备注:实际 PCB 走线也存在一定的寄生电容,所以最佳补偿值还是以实际测试结果为准。

表 6.1: BL606 对应的电容补偿值

XTAL Loading Capacity (pF)	Capacity Code
8	40
10	58

表 6.2: BL602 对应的电容补偿值

XTAL Loading Capacity (pF)	Capacity Code				
12	32~36				
15	58~63				

使用方法如下:

- 1. 在 Cap Code 中填写需要补偿的值。
- 2. 点击 Misc Set 按键更新补偿值。

图 6.1: 更新补偿值

7.1 Channel 和 Power 设置

通过 Channel 和 Power 下拉菜单框,可以设置数据包的发送通道和功率。Channel 可以选择 1-13,Power 可以选择 12-23dbm。

图 7.1: 设置 Channel 和 Power 的参数

WiFi 不同的模式使用不同的调制方式,对信号质量 (EVM) 也有不同的要求,为了满足 WiFi 标准,针对不同制式推荐的最大功率如下表。

Mode	Rate	Maximum Power(dBm)
11n	MCS7	17
	MCS6	18
	MCS5	18
	MCS4	18
	MCS3	18
	MCS2	18
	MCS1	18
	MCS0	18
11g	54Mbps	18
	48Mbps	19
	36Mbps	20
	24Mbps	20
	18Mbps	20
	12Mbps	20
	9Mbps	20
	6Mbps	20
11b	11Mbps	18(BL606)/20(BL602)
	5.5Mbps	18(BL606)/20(BL602)
	2Mbps	18(BL606)/20(BL602)
	1Mbps	18(BL606)/20(BL602)

BL60X 系列芯片提供了功率校准机制,用户可在产品量产环节对各个 Channel 进行功率校准,将校准值写入芯片 Efuse,在应用程序启动后,根据写入的校准值纠正实际的 TX Power。

BL606/BL608 系列芯片针对功率偏差补偿预留了长度为 14 的数组空间(Power_Offset[14]),每个元素为 4bit,MSB 为符号位,允许的功率偏差范围为-4~3(即-4dB~3dB),超出该取值范围则校准失败。

BL602 相比 BL606/BL608, 在 efuse 容量上缩减了 50%, 预留给功率补偿的 efuse bit 数目有大幅减少, 因此 BL602 的功率补偿只能写入高中低 3 个信道的校准值, 其余信道的补偿采用插值的方法。

关于 BL60X 系列芯片的详细校准机制,内容请参考《BL60X_产测校准算法》。

7.2 发送数据包模式设置

射频性能测试使用手册 19/42 @2020 Bouffalo Lab

7.2.1 11b 数据包发送

11b 数据包可以选择速率: 1Mbps,2Mbps,5.5Mbps,11Mbps,前导默认选择 Long preamble。设置完毕后,就可以点击 802.11b Start 按钮进行发送,在发送期间,log 区域会打印已经发送数据包的个数。如果想要停止发送,点击 802.11b Stop 即可。

图 7.2: 11b 数据包设置速率

7.2.2 11g 数据包发送

11g 数据包可以选择速率: 6Mbps, 9Mbps, 12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps, 设置完毕后, 就可以点击 802.11g Start 按钮进行发送, 在发送期间, log 区域会打印已经发送数据包的个数。如果想要停止发送, 点击 802.11g Stop 即可。

图 7.3: 11g 数据包设置速率

7.2.3 11n 数据包发送

11n 数据包可以选择速度模式 MCS0-MCS7, 默认带宽 20MHz, Long GI, 使用 HT-MF 模式。

注解: 目前 HT_GF 模式不支持。

设置完毕后,就可以点击 802.11n Start 按钮进行发送,在发送期间,log 区域会打印已经发送数据包的个数。如果想要停止发送,点击 802.11n Stop 即可。

图 7.4: 11n 数据包发送界面

接收设置

接收设置较为简单,点击 RX Start 按钮后即可进入数据包接收模式,点击 RX Frm Cnt 按钮可以显示数据包接收个数 以及 RSSI 的平均值,效果如下图。

图 8.1: 接收数据包效果图

BLE 测试

RF MFG 提供 BLE 的 TX 和 RX 测试。TX 测试可以设定测试的 Channel,Power,Data Length 和 Payload Type。设定完毕后点击 TX Start 按钮即可。RX 测试可以设定测试的 Channel,然后点击 RX Start 按钮。测试可以使用 Stop 按钮停止。Payload Type 如下图所示。

Value	Parameter Description
0x00	PRBS9 sequence '11111111100000111101' (in transmission order) as described in [Vol 6] Part F, Section 4.1.5
0x01	Repeated '11110000' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5
0x02	Repeated '10101010' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5
0x03	PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5
0x04	Repeated '11111111' (in transmission order) sequence
0x05	Repeated '00000000' (in transmission order) sequence
0x06	Repeated '00001111' (in transmission order) sequence
0x07	Repeated '01010101' (in transmission order) sequence

图 9.1: BLE Payload Type

设置/使用默认发射功率及频偏补偿值

对于不需要对每个芯片都做 RF 功率和频偏校准的用户, RF MFG 提供了设置经验值的方法。用户可抽检一批产品, 从而找出平均发射功率值和频偏值,以此 Golden 值作为默认的发射功率和频偏。

1. 设置频偏校准值

Command 输入框中输入 SFX[频偏值], 然后点击 Send 按钮。举例, 如果设置频偏为 34, 则输入框输入 SFX34

2. 设置 WiFi 默认功率

针对每个 Channel, 每种模式,设置默认的发送功率。

1. 设置 11b 各个 channel 默认发射功率 (-1 代表是 13 个 channel) Command 输入框中输入 SFPDB-1,[Ch1 TX Power],[Ch2 TX Power]...,[Ch13 TX Power]

举例如下:

SFPDB-1,18,19,18,19,18,19,18,19,18,19,20

2. 设置 11g 各个 channel 默认发射功率 (-1 代表是 13 个 channel) Command 输入框中输入 SFPDG-1,[Ch1 TX Power],[Ch2 TX Power]...,[Ch13 TX Power]

举例如下:

SFPDG-1,19,19,18,19,18,19,18,19,18,19,18,19,20

3. 设置 11n 各个 channel 默认发射功率 (-1 代表是 13 个 channel) Command 输入框中输入 SFPDN-1,[Ch1 TX Power],[Ch2 TX Power]...,[Ch13 TX Power]

举例如下:

SFPDN-1,20,19,18,19,18,19,18,19,18,19,18,19,20

如若设置某个 channel 的默认功率,则可以使用 SFPDB[Channel],[Channel TX Power]

或者 SFPDG[Channel],[Channel TX Power] 或者 SFPDN[Channel],[Channel TX Power]

3. 设置 BLE 默认功率

针对每个 Channel,设置默认的发送功率。

1. 设置 BLE 各个 channel 默认发射功率 (-1 代表是 40 个 channel) Command 输入框中输入 SFPE-1,[Ch0 TX Power],[Ch1 TX Power]...,[Ch39 TX Power]

举例如下:

SFPE-1,12,11,12,14,15,11,11,12,12,13,13,14,15,12,11,12,14,15,11,11,12,12,13,13,14,15,12,11,12,14,15,11,11,
12,12,13,13,14,15,12

如若设置某个 channel 的默认功率,则可以使用 SFPE[Channel],[Channel TX Power]

4. 使用默认功率和频偏

完成默认功率的设定后,对应发射功率和频偏分别选择 Auto 选项,即可使用之前设定在 Flash 区域的默认发射功率和频偏参数。

5. 查看默认功率和频偏

Command 输入框中输入 RFPD-1,即可通过 Log 查看存储 Flash 区域的 WiFi 默认功率和频偏。

Command 输入框中输入 RFPE-1,即可通过 Log 查看存储 Flash 区域的 BLE 默认功率。

具体命令协议可参考下文的《Save default parameters to flash》

发送功率温度补偿

BL602/BL604 系列芯片,支持发送功率温度补偿,温补的功率步进是 1dB,在-35°, 5°, 45°, 85°, 125°, 升温时功率增加 1dB,降温时功率下降 1dB,MFG 固件默认打开温补功能,温度补偿检测 5s 钟进行一次。该功能也可以通过命令打开和关闭,并且温补使能的状态会保存到 Flash 上,重启后仍然有效。

打开温补的命令是'ic1', 关闭温补的命令是'ic0'。用户可以通过'it1,0,0' 命令打开温补 log, 查看 MFG 固件检测到的温度值。

PDS/DTIM 设置

PDS 模式可设置芯片工作在较低功耗的同时可以唤醒 CPU 监听 WiFi AP 的 Beacon/DTIM 数据包,在检测到有数据 需要接收时,启动 WiFi 的接收机进行数据的接收。PDS 模式可以设置的参数包括:

- DTIM, 设置间隔多少 Beacon 才含有 DTIM 信息, 芯片会在该时刻唤醒, 监听 Beacon
- DTIM Count, 设置接收多少个 DTIM (亦即睡眠次数) 后,芯片进入正常的模式
- DTIM Wakeup Time, 设置芯片唤醒后,保持接收状态的时间,以便完整的接收到 Beacon

设置好上述三个参数后,点击 Start PDS 按钮即可设置芯片进入 PDS 模式。

图 12.1: PDS 模式参数设置

HBN 设置

HBN 测试可以让芯片进入 HBN 模式,在 HBN 模式下只有极少部分电路处在带电工作状态,其它电路的电源被关闭,功耗达到最低。芯片可以从 HBN 模式唤醒,唤醒后芯片会重新启动。芯片的 HBN 唤醒源支持 RTC 唤醒和 GPIO 唤醒,目前测试工具仅仅支持 RTC 定时唤醒,设置完 HBN 唤醒时间后,点击 Start HBN 按钮即可让芯片进入 HBN 模式,设定的时间到来后,芯片会重新启动。

图 13.1: HBN 模式参数设置

CW 测试模式

MFG 支持 CW(Continue Wave) 测试模式,在界面 Mode 下拉菜单种选择 Test(CW) 模式即可,进入测试模式后,仅仅可以设定 Power 和 Channel, 其它 WiFi 模式 (b/g/n) 相关的测试按钮是被禁止使用的。

图 14.1: 测试模式参数设置

RF 测试固件在生产中的使用说明

客户如果在生产环节需要对 RF 参数进行校准,也可使用 RF 测试固件完成产测。使用步骤如下:

15.1 开发人员将 RF 测试固件添加到要烧写的文件

运行 BLDevCube.exe, 在 Chip Type 中选择对应的芯片型号 (比如 BL602/604),进入烧写界面,在该界面中勾选 MFG Bin,并根据实际产品使用的晶振类型,选择对应的固件。固件位于烧写工具根目录下的芯片型号/builtin_imgs/mfg 文件夹中。固件分为两类,一类是普通的固件 (没有有 autoboot 后缀),一类是烧录后自启动的固件 (带有 autoboot 后缀)。

15.1.1 自启动固件的工作流程

自启动的 RF 测试固件在工厂烧录完整个 Flash 后,会默认启动起来,也就是烧录完成后默认进入产测模式,在产测完成后,芯片再次启动会进入用户应用程序固件。

15.1.2 普通固件的工作流程

普通的 RF 测试固件在烧录完毕后,启动后默认进入用户应用程序固件, 此时如需进入产测固件, 则需要应用程序调用 IOT SDK 中的 API 实现。

客户可以根据自己实际的产测场景和需求,选择对应的产测固件。以选择自启动固件为例,烧录界面配置如下:

图 15.1: 烧写界面

完成上述配置后,点击 Create&Download 按钮,完成镜像文件的生成。生成的对应包含 MFG 的 bin 文件路径为:bl602/img_create/whole_flash_data.bin 和 bl602/img_create/whole_img.pack。whole_flash_data.bin 文件为 flash 原始镜像,可以直接使用 flash 烧录器进行烧录,但是文件比较大。whole_img.pack 为镜像压缩包,可以使用原厂自研的批量烧录工具烧写,烧录效率比较高。

15.2 工厂烧录以及产测

工厂拿到开发人员的 whole_flash_data.bin 或 whole_img.pack,使用工厂批量烧写工具,完成所有镜像的烧写,具体烧写方法,请参考工厂批量烧写文档。

15.2.1 自启动固件

如果烧录的 RF 测试固件是自启动的,完成烧写后,芯片启动会进入 RF 测试固件,此时可以对接测试仪器 (比如极致 汇仪的仪器) 完成产测,产测完成后,芯片再次启动,会进入用户应用程序,产测失败,芯片再次启动还是进入 RF 测试固件。

15.2.2 普通固件

如果烧录的 RF 产测镜像是普通固件,芯片启动后进入用户程序,需要用户程序切换到 RF 测试固件。默认的 SDK 程序中,自带切换到 RF 产测固件功能,用户可以通过串口,使用默认的 2M 波特率发送"mfg\r\n" 命令,即可进入到 RF 产测固件。RF 产测固件使用的串口通信波特率是 115200,用户可以使用 115200 的波特率,发送握手命令"H\r\n" 与产测固件通信,检查是否切换成功。如果需要退出 RF 产测程序,可以使用 115200 的波特率,发送命令"Reset\r\n",即可重启芯片,进入到用户固件。

所有命令均是字符串类型。

16.1 Shakehand

- 命令: H
- 返回: mfg

主机工具应该先发送"H\r\n" 去检测 MFG 固件是否已经运行起来,如果 MFG 固件已经运行起来,它收到"H\r\n" 命令 后会以"mfg\r\n"应答。如果 MFG 没有在运行:

- 1. 主机用正常固件使用的波特率(默认 9600) 发送"mfg\r\n" 命令,让正常固件切换到 MFG 固件。
- 2. 主机使用 115200 的波特率发送"H\r\n" 并检查能否收到"mfg\r\n"。
- 3. 如果主机收不到"mfg\r\n", 重复步骤 1。
- 4. 主机收到"mfg\r\n" 后可以进行正常的测试。

16.2 TX on/off

on:t1

off:t0

16.3 TX modulation

16.3.1 2.4G 11n

mcs idx = 0 - 7

- 1. short GI + HT-GF + HT20:msg2[mcs idx]
- 2. short GI + HT-MF + HT20:msm2[mcs idx]

- 3. long GI + HT-GF + HT20:mlg2[mcs idx]
- 4. long GI + HT-MF + HT20:mlm2[mcs idx]
- 5. short GI + HT-GF + HT40:msg4[mcs idx]
- 6. short GI + HT-MF + HT40:msm4[mcs idx]
- 7. long GI + HT-GF + HT40:mlg4[mcs idx]
- 8. long GI + HT-MF + HT40:mlm4[mcs idx]

注解: BL602 不支持 HT40。

16.3.2 2.4G 11g

rate idx = 0 - 7, 0:6Mbps 1:9Mbps 2:12Mbps 3:18Mbps 4:24Mbps 5:36Mbps 6:48Mbps 7:54Mbps

• 命令: g[rate idx]

16.3.3 2.4G 11b

rate idx = 0 - 3, 0:1Mbps 1:2Mbps 2:5.5Mbps 3:11Mbps

- Long Preamble:B[rate idx]
- 2. short Preamble:b[rate idx]

16.4 2.4g channel

channel idx = 1 - 13

• 命令: c[channel idx]

16.5 2.4g tx power

power dbm = 12 - 23dbm

• 命令: p[power dbm]

16.6 TX frame length

• 命令: 1[length]

16.7 TX frequency

max value=1000

• 命令: f[freq]

16.8 PDS

enter into pds mode

- 1. sleep forever sa
- 2. rtc wakeup mode and dtim mode dtim:1 9 dtim count s: [dtim] [dtim count]
- 3. wakeup keep time keep ms: Unit is microsecond a:w[keep ms]

16.9 HBN

enter into hbn mode

- 1. rtc wake up mode hr [second]
- 2. gpio wake up mode TODO

16.10 RX

- 1. start rx r:s
- 2. get rx information r:g
- 返回:[RX Sensitivity] Frame Count [frame count], RSSI Avg [anverage of RSSI], DSSSFreqOffset Avg [anverage of DSSS Freqency Offset], OFDMFreqOffset Avg [anverage of OFDM Freqency Offset]

16.11 Get MFG FW version

- 命令: y:v
- 返回: #*#*version:[version]

16.12 Get MFG FW building infomation

- 命令: y:d
- 返回: #*#*date:[building date] time:[building time]

16.13 Get current power level

- 命令: y:p
- 返回: #*#*power:[power level dbm]

16.14 Get current channel

```
• 命令: y:c
```

• 返回: #*#*channel:[channel freq]

16.15 Get current tx status

```
• 命令: y:t
```

• 返回: #*#*tx:[0 or 1]

16.16 Get tx frequency

```
• 命令: y:f
```

• 返回: #*#*freq:[tx frequency]

16.17 Get cap code

```
• 命令: y:x
```

• 返回: #*#*capcode:[capcode value]

16.18 Get MFG mode

```
• 命令: y:M
```

• 返回: #*#*mfgmode:[MFG mode]

16.19 Set cap code

• 命令: X[cap code]

16.20 Set MFG Test(CW) mode

0 for normal mode,1 for CW test mode

• 命令: M[MFG mode]

16.21 Write data to efuse

注意,由于 Efuse 具有写入后不可修改的特点,所以在对 efuse 进行读写的时候,要确保芯片正确的收到了主机发出的数据,为此,主机要按照如下流程进行设定:

1. 主机使用 WEA 命令将要写入的数据发给 MFG 的 FW, 此时 FW 只是将数据暂存,并没有写入 Efuse。

- 2. 主机使用 LEA 命令从 Efuse 暂存区读取设定的参数,判断 FW 是否正确接收,如果没有正确接收,重复步骤 1。
- 3. 主机判断设定的参数正确后,使用 SEA 命令,将参数真正的写入 Efuse。
- 4. 主机使用 REA 命令,从 Efuse 中读取设定的参数,校验正确则可认为 Efuse 写入成功。

16.21.1 Write data to efuse buffer

• 命令: WEA[address in hex string]=[value in hex string]

示例:

写入向 0x04 地址写 0x80000008

WEA0x00000004=0x80000008

16.21.2 Load data from efuse buffer

- 命令: LEA[address in hex string]
- 返回: Read efuse [address in hex string]=[value in hex string]

示例:

读取 0x04 地址处的数据

LEA0x00000004

返回

Read efuse 0x00000004=0x80000008

16.21.3 Program data to efuse

- 命令: SEA
- 返回: Save efuse OK

16.21.4 Read data from efuse

- 命令: REA[address in hex string]
- 返回: Read efuse [address in hex string]=[value in hex string]

示例:

读取 0x04 地址处的数据

LEA0x00000004

返回

Read efuse 0x00000004=0x80000008

16.22 Save calibration parameters to efuse

注意,由于 Efuse 具有写入后不可修改的特点,所以在使用 Efuse 进行参数设定的时候,要确保芯片正确的收到了主机发出的参数,为此,主机要按照如下流程进行设定:

- 1. 主机使用 WEx 命令将要写入的数据发给 MFG 的 FW, 此时 FW 只是将数据暂存,并没有写入 Efuse。
- 2. 主机使用 LEx 命令从 Efuse 暂存区读取设定的参数,判断 FW 是否正确接收,如果没有正确接收,重复步骤 1。
- 3. 主机判断设定的参数正确后,使用 SEx 命令,将参数真正的写入 Efuse。
- 4. 主机使用 REx 命令,从 Efuse 中读取设定的参数,校验正确则可认为 Efuse 写入成功。

16.22.1 Write cap code to efuse buffer

• 命令: WEX[cap code]

16.22.2 Load cap code from efuse buffer

- 命令: LEX
- 返回: Cap code2:[cap code]

16.22.3 Program cap code to efuse

• 命令: SEX

16.22.4 Read cap code from efuse

- 命令: REX
- 返回: Cap code2:[cap code]

16.22.5 Write power offset to efuse buffer

• 命令: WEP[Channel 1 power offset],[Channel 2 power offset]...[Channel 12 power offset],[Channel 14 power offset]

示例:

写入 Channel 1-14 的功率偏移-1,2,3,3,3,2,1,0,-1,-2,-3,-4,1,3

WEP-1,2,3,3,3,2,1,0,-1,-2,-3,-4,1,3

注解:如果功率校准采用的是线性插值方法,比如只做 1,7,13 通道的校准,但是使用 WEP 命令的时候仍然需要传递 14 个通道的数值,其它通道的偏移值可以写 0.同样的道理,如果只做某两个通道的校准,也是需要传递 14 个通道的

数值,不关心的通道功率偏移值可以设置为0.

16.22.6 Load power offset from efuse buffer

- 命令: LEP
- 返回:Power offset:[Channel 1 power offset],[Channel 2 power offset]...[Channel 12 power offset],
 [Channel 14 power offset]

16.22.7 Program power offset to efuse

• 命令: SEP

16.22.8 Read power offset from efuse

- 命令: REP
- 返回:Power offset:[Channel 1 power offset],[Channel 2 power offset]...[Channel 12 power offset],
 [Channel 14 power offset]

16.22.9 Enable power offset in efuse

• 命令: V

MFG 固件默认不会使能 TX Power Offset 的校准功能,如果需要验证校准的准确性,需要发送 V 命令使能 TX Power Offset 校准功能,收到该命令后 MFG 固件启用校准功能,并会通过 log 打印使用的 efuse 校准值。

16.22.10 Write mac address to efuse buffer

• 命令:WEM[MACO hex string]:[MAC1 hex string]:[MAC2 hex string]:[MAC3 hex string]:[MAC4 hex string]:
[MAC5 hex string]

示例:

写入 MAC 地址: 18:B9:05:60:0E:74,

WEM18:B9:05:60:0E:74

16.22.11 Load mac address from efuse buffer

- 命令: LEM
- 返回:MAC: [MACO hex string]: [MAC1 hex string]: [MAC2 hex string]: [MAC3 hex string]: [MAC4 hex string]: [MAC5 hex string]

示例:

返回 MAC:18:B9:05:60:0E:74

16.22.12 Program mac address to efuse

• 命令: SEM

16.22.13 Read mac address from efuse buffer

```
• 命令: REM
```

• 返回:MAC: [MACO hex string]: [MAC1 hex string]: [MAC2 hex string]: [MAC3 hex string]: [MAC4 hex string]:

示例:

返回 MAC:18:B9:05:60:0E:74

16.23 Save calibration parameters to flash

由于 efuse 具有写入后无法改写的特点,故产测校准参数写入到 efuse 是有次数限制的,不同系列芯片,最大写入次数不同。为了提供更高的灵活性,产测固件支持将产测的频偏参数,功率校准参数,用户 MAC 地址等参数,写入到 Flash。如需要将产测参数写入到 Flash,用户需要在烧写产测固件时,在分区表中增加"rf_para"这个分区,产测软件启动后,如果在分区表中找到了"rf_para"分区,就会把 RF 的相关参数写在 flash 中,而不会写在 efuse 中。校准参数的写入命令和流程同《Save calibration parameters to efuse》

flash 中 RF 参数结构体如下:

16.24 Save default parameters to flash

16.24.1 save default cap code to flash

• 命令: SFX[cap code]

16.24.2 read default cap code from flash

- 命令: RFX
- 返回: Cap code2:[cap code]

16.24.3 save WiFi default power to flash

• 命令: SFPD[mode][channel],[power]

注解: mode 可以为 B or G or N

16.24.4 read WiFi default power from flash

- 命令: RFPD[channel]
- 返回: Default power:[power]

16.24.5 select WiFi default power in flash

• 命令: P-1

16.24.6 save BLE default power to flash

• 命令: SFPE[channel],[power]

16.24.7 read BLE default power from flash

- 命令: RFPE[channel]
- 返回: Default power:[power]

16.24.8 select BLE default power in flash

• 命令: EP-1

16.25 Reset MFG FW

• 命令: Reset

注解: It's only design for MFG firmware running from flash.

16.26 Set tx duty

• 命令: d[duty]

注解: Duty value is between 0-100

16.27 Get tx duty

• 命令: y:i

• 返回: #*#*duty:[tx duty]

16.28 BLE Test

16.28.1 BLE TX Power

• 命令: EP[power]

Power 参数是 16 进制字符串。

举例: EP11

Set Tx Power 17 dbm.

16.28.2 BLE TX

• 命令: ET[channel][data length][payload type]

所有的参数都是 16 进制字符串。

举例: ET261600

To transmit le test data on RF Channel38, with data Length 22 and with PRBS9 packet payload type and data len 22.

16.28.3 BLE RX

• 命令: ER[channel]

channel 参数是 16 进制字符串。

举例: ER26

To receive le test data on RF Channel38.

16.28.4 BLE test stop

• 命令: EE

16.29 TX power temperature calibration

• 命令: ic[1/0]

ic1 表示打开温补功能,ic0 表示关闭温补功能。用户可以通过 it1,0,0 打开温补 log 进行查看。