

What is ML

Machine learningis an application of artificial **intelligence**(AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. **Machine learning** focuses on the development of computer programs that can access data and use it learn for themselves.

Types of Machine Learning – At a Glance

Supervised Learning

- Makes machine Learn explicitly
- Data with clearly defined output is given
- Direct feedback is given
- Predicts outcome/future
- Resolves classification and regression problems

Unsupervised Learning

- Machine understands the data (Identifies patterns/structures)
- Evaluation is qualitative or indirect
- Does not predict/find anything specific

Reinforcement Learning

- * An approach to Al
- Reward based learning
- Learning form +ve &
- +ve reinforcement
- *Machine Learns how to act in a certain environment
- To maximize rewards

Al related Subjects

What is Regression

Regression models (both linear and non-linear) are used for predicting a real value, like salary for example.

If your independent variable is time, then you are forecasting future values, otherwise your model is predicting present but unknown values. Types of Machine Learning Regression models:

Simple Linear Regression
Multiple Linear Regression
Polynomial Regression
Support Vector for Regression (SVR)
Decision Tree Regression
Random Forest Regression

Data Set

	A		В
1	YearsExperience	Salary	
2	1	.1	39343
3	1	1.3	46205
4	1	5	37731
5		2	43525
6	2	2.2	39891
7	2	2.9	56642
8		3	60150
9	3	3.2	54445
10	3	3.2	64445

Simple Linear Regression

Simple linear regression is a statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables

What is Data Science

Simple Linear Regression:

$$y = b_0 + b_1^*x$$

Salary $= b_0^* + b_1^* = b_0^*$

Salary $= b_0^* + b_1^* = b_0^* = b_0^*$

What is Data Science

Simple Linear Regression:

$$y = b_0 + b_1^*x$$

Salary $b_0 + b_1^*$ Experience

What is Data Science

Polynomial linear regression

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Polynomial linear regression

Polynomial linear regression

Non-linear regression

Nonlinear regression involves curves. This is partly true, and if you want a loose definition for the difference, you can probably stop right there. However, linear equations can sometimes produce curves.

In order to understand why, you need to take a look at the linear regression equation form.

SVM, which stands for Support Vector Machine, is a classifier. Classifiers perform classification, predicting discrete categorical labels. SVR, which stands for Support Vector Regressor, is a regressor. Regressorsperform regression, predicting continuous ordered variables. Both use very similar algorithms, but predict different types of variables

In simple regression we try to minimisethe error rate. While in SVR we try to fit the error within a certain threshold.

Kernel: The function used to map a lower dimensional data into a higher dimensional data. Hyper Plane: In SVM this is basically the separation line between the data classes. Although in SVR we are going to define it as the line that will willhelp us predict the continuous value or target value Boundary line: In SVM there are two lines other than Hyper Plane which creates a margin . The support vectors can be on the Boundary lines or outside it. This boundary line separates the two classes. In SVR the concept is same. Support vectors: This are the data points which are closest to the boundary. The distance of the points is minimum or least.

What is Cart

A Classification And Regression Tree (CART), is a predictive model, which explains how an outcome variable's values can be predicted based on other values. ACARToutputis a decision tree where each fork is a split in a predictor variable and each end node contains a prediction for the outcome variable

Decision Tree Regression

Decision Tree Regression

Random Forest Regression

Supervised Learning Of Machine Learning

Variable/Data its types in Machine Learning

Classification In Supervised Learning

Unlike regression where you predict a continuous number, you use classification to predict a category. There is a wide variety of classification applications from medicine to marketing. Classification models include linear models like Logistic Regression, and nonlinear ones like K-NN, Kernel SVM and Random Forests. Learning Classification models: 1.Logistic Regression 2.K-Nearest Neighbors (K-NN) 3.Support Vector Machine (SVM) 4.Kernel SVM 5.Naive Bayes 6.Decision Tree Classification 7.Random Forest Classification

Logistic Regression

Logistic regressionis a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. The outcome is measured with a dichotomous variable (in which there are only two possible outcomes).

In logistic regression, the dependent variable is binary or dichotomous, i.e. it only contains data coded as 1 (TRUE, success, pregnant, etc.) or 0 (FALSE, failure, non-pregnant, etc.).

Also

Probabilityis the likelihood or chance of an event occurring. **Probability**= the number of ways of achieving success. the total number of possible outcomes.

Is it classification algo.? So why is it called regression?

Logistic Regression

Logistic regression also called binary regression And also it can be Multiple ...
So it become multiple logistic regression