

planetmath.org

Math for the people, by the people.

design

Canonical name Design

Date of creation 2013-03-22 19:14:09 Last modified on 2013-03-22 19:14:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

CWoo (3771) Author Entry type Definition Classification msc 62K10Classification msc 51E30Classification ${\rm msc}~51{\rm E}05$ Classification msc 05B25Classification msc 05B07Classification msc 05B05Synonym block design Synonym tau-design Synonym τ -design BIBD Synonym Defines block

Defines simple design
Defines square design
Defines symmetric design
Defines tactical configuration

Defines balanced incomplete block design

A τ -(ν, κ, λ) **design**, aka τ -design or **block design**, is an incidence structure ($\mathcal{P}, \mathcal{B}, \mathcal{I}$) with

- $|\mathcal{P}| = \nu$ points in all,
- $|\mathcal{P}_B| = \kappa$ points in each block B, and such that
- any set $T \subseteq \mathcal{P}$ of $|T| = \tau$ points occurs as subset $T \subseteq \mathcal{P}_B$ in exactly λ blocks.

The numbers $\tau, \nu, \kappa, lambda$ are called the parameters of a design. They are often called t, v, k, λ (in mixed Latin and Greek alphabets) by some authors.

Given parameters $\tau, \nu, \kappa, lambda$, there may be several non-isomorphic designs, or no designs at all.

Designs need not be simple (they can have **repeated blocks**), but they usually are (and don't) in which case B can again be used as synonym for \mathcal{P}_B .

- \circ 0-designs ($\tau = 0$) are allowed.
- 1-designs ($\tau = 1$) are known as **tactical configurations**.
- 2-designs are called **balanced incomplete block designs** or **BIBD**.
- \circ 3, 4, 5... -designs have all been studied.

Being a τ - (ν, κ, λ) design implies also being an ι - $(\nu, \kappa, \lambda_{\iota})$ design for every $0 \le \iota \le \tau$ (on the same ν points and with the same block size κ), with λ_{ι} given by $\lambda_{\tau} = \lambda$ and recursively

$$\lambda_{\iota} = \frac{\nu - \iota}{\kappa - \iota} \lambda_{\iota + 1}$$

from which we get the number of blocks as

$$\lambda_0 = \frac{\nu! / (\nu - \tau)!}{\kappa! / (\kappa - \tau)!} = \binom{\nu}{\tau} / \binom{\kappa}{\tau}$$

Being a 0-design says nothing more than all blocks having the same size. As soon as we have $\tau \geq 1$ however we also have a 1-design, so the number $\lambda_1 = |\mathcal{B}_P|$ of blocks per point P is constant throughout the structure. Note now

$$\lambda_0 \kappa = \lambda_1 \nu$$

which is also evident from their interpretation.

As an example: designs (simple designs) with $\kappa = 2$ are multigraphs (simple **graphs**), now

- $\circ \tau = 0$ implies no more than that,
- $\circ \tau = 1$ gives **regular graphs**, and
- $\circ \tau = 2$ gives complete graphs.

A more elaborate "lambda calculus" (pun intended) can be introduced as follows. Let $I \subseteq P$ and $O \subseteq P$ with $|I| = \iota$ and |O| = o. The number of blocks B such that all the points of I are inside B and all the points of O are outside B is independent of the choice of I and O, only depending on ι and O, provided $\iota + o \le \tau$. Call this number λ_{ι}^{o} . It satisfies a kind of reverse Pascal triangle like recursion

$$\lambda_{\iota}^{o} = \lambda_{\iota+1}^{o} + \lambda_{\iota}^{o+1}$$

that starts off for o = 0 with $\lambda_{\iota}^{0} = \lambda_{\iota}$. An important quantity (for designs with $\tau \geq 2$) is the **order** $\lambda_{1}^{1} = \lambda_{1}^{0} - \lambda_{2}^{0} = \lambda_{1} - \lambda_{2}$.

Finally, the dual of a design can be a design but need not be.

• A square design aka symmetric design is one where $\tau = 2$ and $|\mathcal{P}| = |\mathcal{B}|$, now also $|\mathcal{P}_B| = |\mathcal{B}_P|$. Here the dual is also a square design.

Note that for $\tau \geq 3$ no designs exist with $|\mathcal{P}| = |\mathcal{B}|$ other than trivial ones (where any $\kappa = \nu - 1$ points form a block).