

# Net-Zero America - connecticut state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at <a href="https://netzeroamerica.princeton.edu">https://netzeroamerica.princeton.edu</a>.

#### Notes

- These data are all data from the study available at <a href="https://netzeroamerica.prince-ton.edu">https://netzeroamerica.prince-ton.edu</a>.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

# Data by category and subcategory

| 1  | E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 1  |
|----|------------------------------------------------------------------------------|----|
| 2  | E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | 1  |
| 3  | E+ scenario - PILLAR 1: Efficiency/Electrification - Overview                | 1  |
| 4  | E+ scenario - PILLAR 1: Efficiency/Electrification - Residential             | 1  |
| 5  | E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation          | 2  |
| 6  | E+ scenario - PILLAR 2: Clean Electricity - Generating capacity              | 2  |
| 7  | E+ scenario - PILLAR 2: Clean Electricity - Generation                       | 2  |
| 8  | E+ scenario - PILLAR 3: Clean fuels - Bioenergy                              | 3  |
| 9  | E+ scenario - PILLAR 4: CCUS - CO2 capture                                   | 3  |
| 10 | E+ scenario - PILLAR 4: CCUS - CO2 pipelines                                 | 3  |
| 11 | E+ scenario - PILLAR 4: CCUS - CO2 storage                                   | 3  |
| 12 | E+ scenario - PILLAR 6: Land sinks - Agriculture                             | 4  |
| 13 | E+ scenario - PILLAR 6: Land sinks - Forests                                 | 4  |
| 14 | E+ scenario - IMPACTS - Fossil fuel industries                               | 7  |
| 15 | E+ scenario - IMPACTS - Health                                               | 7  |
| 16 | E+ scenario - IMPACTS - Jobs                                                 | 7  |
| 17 | E- scenario - PILLAR 1: Efficiency/Electrification - Commercial              | 8  |
| 18 | E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand      | 9  |
| 19 | E- scenario - PILLAR 1: Efficiency/Electrification - Overview                | 9  |
| 20 | E- scenario - PILLAR 1: Efficiency/Electrification - Residential             | 9  |
| 21 | E- scenario - PILLAR 1: Efficiency/Electrification - Transportation          | 9  |
| 22 | E- scenario - PILLAR 6: Land sinks - Agriculture                             | 10 |
| 23 | E- scenario - PILLAR 6: Land sinks - Forests                                 | 11 |
| 24 | E- scenario - IMPACTS - Health                                               | 13 |
| 25 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial           | 13 |
| 26 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand . | 14 |
| 27 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview             | 14 |
| 28 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential          | 14 |
| 29 | E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 14 |
| 30 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity           | 15 |
| 31 | E+RE+ scenario - PILLAR 2: Clean Electricity - Generation                    | 15 |
| 32 | E+RE+ scenario - PILLAR 6: Land sinks - Agriculture                          | 15 |
| 33 | E+RE+ scenario - PILLAR 6: Land sinks - Forests                              | 16 |
| 34 | E+RE+ scenario - IMPACTS - Health                                            | 18 |
| 35 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial           | 19 |
| 36 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand   | 19 |
| 37 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview             | 19 |
| 38 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential          | 19 |
| 39 | E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation       | 20 |
| 40 | E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity           | 20 |
| 41 | E+RE- scenario - PILLAR 2: Clean Electricity - Generation                    | 20 |
| 42 | E+RE- scenario - PILLAR 6: Land sinks - Agriculture                          | 21 |
| 43 | E+RE- scenario - PILLAR 6: Land sinks - Forests                              | 21 |

| 44 | E+RE- scenario - IMPACTS - Health                                         | 24 |
|----|---------------------------------------------------------------------------|----|
| 45 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial         | 24 |
| 46 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand | 24 |
| 47 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview           | 24 |
| 48 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential        | 25 |
| 49 | E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation     | 25 |
| 50 | E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity         | 26 |
| 51 | E-B+ scenario - PILLAR 2: Clean Electricity - Generation                  | 26 |
| 52 | E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy                         | 26 |
| 53 | E-B+ scenario - PILLAR 4: CCUS - CO2 capture                              | 26 |
| 54 | E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines                            | 26 |
| 55 | E-B+ scenario - PILLAR 4: CCUS - CO2 storage                              | 27 |
| 56 | E-B+ scenario - PILLAR 6: Land sinks - Agriculture                        | 27 |
| 57 | E-B+ scenario - PILLAR 6: Land sinks - Forests                            | 28 |
| 58 | E-B+ scenario - IMPACTS - Health                                          | 30 |
| 59 | REF scenario - PILLAR 1: Efficiency/Electrification - Commercial          | 31 |
| 60 | REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand  | 31 |
| 61 | REF scenario - PILLAR 1: Efficiency/Electrification - Overview            | 31 |
| 62 | REF scenario - PILLAR 1: Efficiency/Electrification - Residential         | 31 |
| 63 | REF scenario - PILLAR 1: Efficiency/Electrification - Transportation      | 32 |
| 64 | REF scenario - PILLAR 6: Land sinks - Forests                             | 32 |
| 65 | REF scenario - PILLAR 6: Land sinks - Forests - REF only                  | 34 |
| 66 | REF scenario - IMPACTS - Health                                           | 35 |

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020 | 2025  | 2030  | 2035  | 2040  | 2045 | 2050 |
|---------------------------------------------------------------------------|------|-------|-------|-------|-------|------|------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) | 0    | 7,080 | 7,732 | 0     | 0     | 0    | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                       | 36.9 | 49.9  | 81.2  | 87.4  | 87.7  | 87.7 | 87.7 |
| Sales of cooking units - Gas (%)                                          | 63.1 | 50.1  | 18.8  | 12.6  | 12.3  | 12.3 | 12.3 |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 4.76 | 11    | 39.3  | 72.4  | 77.8  | 78.1 | 78.1 |
| Sales of space heating units - Electric<br>Resistance (%)                 | 2.29 | 4.46  | 16.5  | 21.3  | 21.9  | 21.9 | 21.9 |
| Sales of space heating units - Fossil (%)                                 | 42.2 | 31.2  | 5.99  | 0.253 | 0     | 0    | 0    |
| Sales of space heating units - Gas Furnace (%)                            | 50.7 | 53.4  | 38.2  | 6.11  | 0.363 | 0    | 0    |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 2.81 | 3.52  | 15.9  | 41    | 45.5  | 45.9 | 45.9 |
| Sales of water heating units - Electric<br>Resistance (%)                 | 13.8 | 12.6  | 24    | 48.1  | 52.3  | 52.5 | 52.5 |
| Sales of water heating units - Gas Furnace (%)                            | 78.2 | 80    | 58.2  | 9.28  | 0.549 | 0    | 0    |
| Sales of water heating units - Other (%)                                  | 5.24 | 3.95  | 1.94  | 1.61  | 1.6   | 1.59 | 1.61 |

# Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 1.3  | 1.34 | 3.78 | 4.11 | 3.37 | 3.57 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

# Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 120  | 114  | 109  | 101  | 93.4 | 88.1 | 84.9 |
| Final energy use - Industry (PJ)       | 64.9 | 63.4 | 62.5 | 61.2 | 61.1 | 61.8 | 62.1 |
| Final energy use - Residential (PJ)    | 155  | 143  | 130  | 112  | 94.5 | 81.6 | 73.9 |
| Final energy use - Transportation (PJ) | 228  | 212  | 186  | 152  | 122  | 104  | 95.6 |

#### Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|------|------|------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.13 | 3.5  | 0     | 0     | 0     | 0     |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |       |       |       |       |
| Sales of cooking units - Electric          | 71.8 | 77.8 | 96.2 | 99.8  | 100   | 100   | 100   |
| Resistance (%)                             |      |      |      |       |       |       |       |
| Sales of cooking units - Gas (%)           | 28.2 | 22.2 | 3.79 | 0.191 | 0     | 0     | 0     |
| Sales of space heating units - Electric    | 7.5  | 14.9 | 62.3 | 88.8  | 92.4  | 92.6  | 92.6  |
| Heat Pump (%)                              |      |      |      |       |       |       |       |
| Sales of space heating units - Electric    | 4.92 | 6.44 | 5.03 | 2.19  | 1.67  | 1.64  | 1.81  |
| Resistance (%)                             |      |      |      |       |       |       |       |
| Sales of space heating units - Fossil (%)  | 53.1 | 58.8 | 18.6 | 6.59  | 5.61  | 5.57  | 5.44  |
| Sales of space heating units - Gas (%)     | 34.4 | 19.8 | 14   | 2.38  | 0.3   | 0.169 | 0.163 |
| Sales of water heating units - Electric    | 0    | 1.56 | 13.2 | 30.7  | 33.7  | 33.9  | 33.9  |
| Heat Pump (%)                              |      |      |      |       |       |       |       |
| Sales of water heating units - Electric    | 35.5 | 54.6 | 60.4 | 65.2  | 66    | 66    | 66    |
| Resistance (%)                             |      |      |      |       |       |       |       |
| Sales of water heating units - Gas Furnace | 46.8 | 33.5 | 24.3 | 3.88  | 0.229 | 0     | 0     |
| (%)                                        |      |      |      |       |       |       |       |
| Sales of water heating units - Other (%)   | 17.6 | 10.3 | 2.05 | 0.206 | 0.126 | 0.127 | 0.126 |

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 549   | 1,419 | 2,279 | 3,460 | 3,757 | 3,587 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.229 | 0     | 0.879 | 0     | 3.72  | 0     | 5.99  |
| _units)                                    |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.794 | 0     | 21.1  | 0     | 89.3  | 0     | 144   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.31  | 1.6   | 1.16  | 0.37  | 0.071 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 4.71  | 17.6  | 50.1  | 83.2  | 96.5  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 88.6  | 75.2  | 45.1  | 15.1  | 3.1   | 0.584 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 5.19  | 5.1   | 3.47  | 1.26  | 0.312 | 0.069 | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.326 | 0.184 | 0.056 | 0.012 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.091 | 0.086 | 0.054 | 0.019 | 0.004 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                      | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Capital invested - Biomass power plant (billion \$2018)                   | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Capital invested - Biomass w/ccu allam power plant (billion \$2018)       | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Capital invested - Biomass w/ccu power plant (billion \$2018)             | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Capital invested - Solar PV - Base (billion \$2018)                       | 0    | 0     | 3.53  | 1.92  | 1.05  | 1.09  | 0     |
| Capital invested - Solar PV - Constrained (billion \$2018)                | 0    | 0.09  | 2.85  | 0.72  | 0.909 | 1.6   | 0     |
| Capital invested - Wind - Base (billion<br>\$2018)                        | 0    | 0     | 0.755 | 0.336 | 0.169 | 0     | 0.073 |
| Capital invested - Wind - Constrained (billion \$2018)                    | 0    | 0     | 0.822 | 0.087 | 0.108 | 0     | 0     |
| Installed (cumulative) - OffshoreWind -<br>Base land use assumptions (MW) | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Installed (cumulative) - Rooftop PV (MW)                                  | 770  | 1,341 | 1,570 | 1,838 | 2,141 | 2,479 | 2,857 |
| Installed (cumulative) - Solar - Base land use assumptions (MW)           | 81.5 | 81.5  | 3,031 | 4,770 | 5,779 | 6,889 | 6,889 |
| Installed (cumulative) - Wind - Base land use assumptions (MW)            | 5.8  | 5.8   | 321   | 472   | 551   | 551   | 590   |

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050 |
|------------------------------------------------|------|------|-------|-------|-------|-------|------|
| Biomass power plant (GWh)                      | 0    | 0    | 0     | 0     | 0     | 0     | 0    |
| Biomass w/ccu allam power plant (GWh)          | 0    | 0    | 0     | 0     | 0     | 0     | 0    |
| Biomass w/ccu power plant (GWh)                | 0    | 0    | 0     | 0     | 0     | 0     | 0    |
| Solar - Base land use assumptions (GWh)        | 169  | 0    | 5,252 | 3,057 | 1,764 | 1,943 | 0    |
| Solar - Constrained land use assumptions (GWh) | 112  | 167  | 6,115 | 4,036 | 2,955 | 1,265 | 220  |

#### Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

|                                         | •    | •    |       |      |      |      |      |
|-----------------------------------------|------|------|-------|------|------|------|------|
| Item                                    | 2020 | 2025 | 2030  | 2035 | 2040 | 2045 | 2050 |
| Wind - Base land use assumptions (GWh)  | 24   | 0    | 1,129 | 523  | 279  | 0    | 133  |
| Wind - Constrained land use assumptions | 24   | 0    | 1,235 | 140  | 172  | 0    | 0    |
| (GWh)                                   |      |      |       |      |      |      |      |

#### Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|----------------------------------------------|------|------|------|------|------|------|-------|
| Biomass purchases (million \$2018/year)      | 0    | 0    | 0    | 0    | 0    | 0    | 55    |
| Conversion capital investment -              | 0    | 0    | 0    | 0    | 0    | 0    | 1,600 |
| Cumulative 5-yr (million \$2018)             |      |      |      |      |      |      |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0    | 0    | 0    | 1     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

#### Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Annual - BECCS (MMT)               |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Cumulative - All (MMT)             |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Cumulative - BECCS (MMT)           |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0.01 |

#### Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| All (km)                                       |      | 0    | 146   | 146   | 146   | 146   | 146   |
| Cumulative investment - All (million \$2018)   |      | 0    | 262   | 262   | 262   | 262   | 262   |
| Cumulative investment - Spur (million \$2018)  |      | 0    | 0.702 | 0.702 | 0.702 | 0.702 | 0.703 |
| Cumulative investment - Trunk (million \$2018) |      | 0    | 262   | 262   | 262   | 262   | 262   |
| Spur (km)                                      |      | 0    | 1.21  | 1.21  | 1.21  | 1.21  | 1.21  |
| Trunk (km)                                     |      | 0    | 145   | 145   | 145   | 145   | 145   |

#### Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-------------------------------------------------------------------------|------|------|------|------|------|------|------|
| CO2 storage (MMT)                                                       |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Injection wells (wells)                                                 |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 0    | 0    | 0    | 0    | 0    |

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050    |
|------------------------------------------|------|------|------|------|------|------|---------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0       |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |         |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -79     |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |         |
| tCO2e/y)                                 |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -3.14   |
| deployment - Permanent conservation      |      |      |      |      |      |      | <b></b> |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |         |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -82.1   |
| deployment - Total (1000 tC02e/y)        |      |      |      |      |      |      | 02.1    |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0       |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | U       |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -41.5   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | -41.5   |
|                                          |      |      |      |      |      |      |         |
| tCO2e/y)                                 |      |      |      |      |      |      | 1 [7    |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -1.57   |
| deployment - Permanent conservation      |      |      |      |      |      |      |         |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |         |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -43.1   |
| deployment - Total (1000 tC02e/y)        |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0       |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |         |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 54.5    |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |         |
| measures (1000 hectares)                 |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 5.72    |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |         |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |         |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 60.2    |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |         |
| hectares)                                |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0       |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |         |
| grasses (1000 hectares)                  |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 28.7    |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |         |
| hectares)                                |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2.86    |
| deployment - Permanent conservation      |      |      |      |      |      |      | 2.50    |
| cover (1000 hectares)                    |      |      |      |      |      |      |         |
| Land impacted for carbon sink - Moderate |      |      |      | +    |      |      | 31.5    |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      | 01.0    |
| aspisyment Total (1000 neotal os)        |      |      |      |      |      |      |         |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -54.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -3,043 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -768   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,158 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -10.4  |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -360   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|--------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Increase    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | -143   |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      | -143   |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | U      |
| Carbon sink potential - High - Reforest    |      |      |      |      |      |      | -224   |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      | -224   |
|                                            |      |      |      |      |      |      | 205    |
| Carbon sink potential - High - Restore     |      |      |      |      |      |      | -325   |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      | 07./   |
| Carbon sink potential - Low - Accelerate   |      |      |      |      |      |      | -27.4  |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not     |      |      |      |      |      |      | -902   |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Avoid        |      |      |      |      |      |      | -128   |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend       |      |      |      |      |      |      | -445   |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Improve      |      |      |      |      |      |      | -5.3   |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -120   |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase     |      |      |      |      |      |      | -50.1  |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | U      |
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -17    |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      | -11    |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -109   |
| •                                          |      |      |      |      |      |      | -109   |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -41    |
| regeneration (1000 tC02e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -1,973 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -448   |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -801   |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -7.77  |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -240   |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -96.7  |
| trees outside forests (1000 tC02e/y)       |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      | Ū      |
| Carbon sink potential - Mid - Reforest     |      |      |      | +    |      |      | -121   |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      | -121   |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -217   |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      | -217   |
|                                            |      |      |      |      |      |      | 0.07   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 8.94   |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 104    |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      |        |
| (1000 hectares)                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 591    |
| High - Extend rotation length (1000        |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 3.84   |
| High - Improve plantations (1000           |      |      |      |      |      |      |        |
|                                            | I    |      | 1    |      |      | 1    |        |

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                                | 2020 | 2025 | 2030     | 2035 | 2040 | 2045 | 2050 |
|-------------------------------------------------------------------------------------|------|------|----------|------|------|------|------|
| Land impacted for carbon sink potential -<br>High - Increase retention of HWP (1000 |      |      |          |      |      |      | 0    |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 13.6 |
| High - Increase trees outside forests                                               |      |      |          |      |      |      |      |
| (1000 hectares)                                                                     |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 0    |
| High - Reforest cropland (1000 hectares)  Land impacted for carbon sink potential - |      |      |          |      |      |      | 6.37 |
| High - Reforest pasture (1000 hectares)                                             |      |      |          |      |      |      | 0.31 |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 108  |
| High - Restore productivity (1000                                                   |      |      |          |      |      |      | 100  |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 835  |
| High - Total impacted (over 30 years)                                               |      |      |          |      |      |      |      |
| (1000 hectares)                                                                     |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 4.47 |
| Low - Accelerate regeneration (1000                                                 |      |      |          |      |      |      |      |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 97.6 |
| Low - Avoid deforestation (over 30 years)                                           |      |      |          |      |      |      |      |
| (1000 hectares)                                                                     |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 226  |
| Low - Extend rotation length (1000                                                  |      |      |          |      |      |      |      |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 1.92 |
| Low - Improve plantations (1000                                                     |      |      |          |      |      |      |      |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 0    |
| Low - Increase retention of HWP (1000                                               |      |      |          |      |      |      |      |
| hectares) Land impacted for carbon sink potential -                                 |      |      |          |      |      |      | 7.16 |
| Low - Increase trees outside forests                                                |      |      |          |      |      |      | 1.10 |
| (1000 hectares)                                                                     |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 0    |
| Low - Reforest cropland (1000 hectares)                                             |      |      |          |      |      |      | · ·  |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 1.1  |
| Low - Reforest pasture (1000 hectares)                                              |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 65.1 |
| Low - Restore productivity (1000                                                    |      |      |          |      |      |      |      |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 404  |
| Low - Total impacted (over 30 years)                                                |      |      |          |      |      |      |      |
| (1000 hectares)                                                                     |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 6.7  |
| Mid - Accelerate regeneration (1000                                                 |      |      |          |      |      |      |      |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 101  |
| Mid - Avoid deforestation (over 30 years)                                           |      |      |          |      |      |      |      |
| (1000 hectares)                                                                     |      |      |          |      |      |      | / 00 |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 408  |
| Mid - Extend rotation length (1000 hectares)                                        |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 2.89 |
| Mid - Improve plantations (1000 hectares)                                           |      |      |          |      |      |      | 2.07 |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 0    |
| Mid - Increase retention of HWP (1000                                               |      |      |          |      |      |      | U    |
| hectares)                                                                           |      |      |          |      |      |      |      |
| Land impacted for carbon sink potential -                                           |      |      |          |      |      |      | 10.4 |
| Mid - Increase trees outside forests (1000                                          |      |      |          |      |      |      | .0т  |
| hectares)                                                                           |      |      | <u> </u> |      |      | I    |      |

| Table 13: E+        | ccanario - | DTII AD 6. | Land cinke   | Enracte     | (continued)   |
|---------------------|------------|------------|--------------|-------------|---------------|
| Table 13: <i>E+</i> | scenario - | PILLAR 6:  | Luna sinks - | · Forests i | i continuea i |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 7.98 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 131  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 668  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

#### Table 14: E+ scenario - IMPACTS - Fossil fuel industries

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|---------------------------------------------|------|------|------|------|------|------|-------|
| Natural gas consumption - Annual (tcf)      |      | 215  | 181  | 145  | 109  | 68.9 | 47.8  |
| Natural gas consumption - Cumulative (tcf)  |      | 0    | 0    | 0    | 0    | 0    | 4,381 |
| Natural gas production - Annual (tcf)       |      | 0    | 0    | 0    | 0    | 0    | 0     |
| Oil consumption - Annual (million bbls)     |      | 52.3 | 44.4 | 33   | 22.4 | 14.2 | 7.82  |
| Oil consumption - Cumulative (million bbls) |      | 0    | 0    | 0    | 0    | 0    | 1,024 |
| Oil production - Annual (million bbls)      |      | 0    | 0    | 0    | 0    | 0    | 0     |

#### Table 15: E+ scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 361  | 0.581 | 0.58  | 0.562 | 0.335 | 0.01  |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 224  | 119   | 82.9  | 82.1  | 54.6  | 23.3  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 995  | 923   | 697   | 399   | 179   | 67.5  |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 40.8 | 0.066 | 0.065 | 0.063 | 0.038 | 0.001 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 25.2 | 13.4  | 9.36  | 9.27  | 6.16  | 2.63  |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 112  | 104   | 78.3  | 44.9  | 20.2  | 7.59  |

#### Table 16: E+ scenario - IMPACTS - Jobs

| Item                                        | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050   |
|---------------------------------------------|------|-------|-------|-------|-------|-------|--------|
| By economic sector - Agriculture (jobs)     |      | 79.2  | 161   | 61.4  | 47.7  | 35    | 122    |
| By economic sector - Construction (jobs)    |      | 4,586 | 5,887 | 5,803 | 5,929 | 5,614 | 7,066  |
| By economic sector - Manufacturing          |      | 2,163 | 3,528 | 3,391 | 3,758 | 4,876 | 7,051  |
| (jobs)                                      |      |       |       |       |       |       |        |
| By economic sector - Mining (jobs)          |      | 1,037 | 732   | 463   | 271   | 142   | 70.8   |
| By economic sector - Other (jobs)           |      | 613   | 907   | 885   | 922   | 987   | 1,477  |
| By economic sector - Pipeline (jobs)        |      | 262   | 252   | 171   | 124   | 77.9  | 50.3   |
| By economic sector - Professional (jobs)    |      | 1,973 | 2,470 | 2,382 | 2,473 | 2,388 | 3,228  |
| By economic sector - Trade (jobs)           |      | 1,461 | 1,702 | 1,627 | 1,647 | 1,616 | 2,201  |
| By economic sector - Utilities (jobs)       |      | 3,810 | 4,406 | 5,113 | 5,821 | 5,367 | 6,156  |
| By education level - All sectors -          |      | 4,997 | 6,340 | 6,404 | 6,838 | 6,872 | 8,885  |
| Associates degree or some college (jobs)    |      |       |       |       |       |       |        |
| By education level - All sectors -          |      | 3,309 | 3,996 | 3,879 | 4,039 | 4,054 | 5,278  |
| Bachelors degree (jobs)                     |      |       |       |       |       |       |        |
| By education level - All sectors - Doctoral |      | 116   | 137   | 126   | 127   | 123   | 163    |
| degree (jobs)                               |      |       |       |       |       |       |        |
| By education level - All sectors - High     |      | 6,761 | 8,613 | 8,557 | 9,022 | 9,096 | 11,851 |
| school diploma or less (jobs)               |      |       |       |       |       |       |        |

Table 16: E+ scenario - IMPACTS - Jobs (continued)

| Table 10. L+ 3certai 10 - 111FA010 - 3003 (coi | itiiiucuj |        |        |        |        |        |        |
|------------------------------------------------|-----------|--------|--------|--------|--------|--------|--------|
| Item                                           | 2020      | 2025   | 2030   | 2035   | 2040   | 2045   | 2050   |
| By education level - All sectors - Masters     |           | 800    | 958    | 932    | 969    | 957    | 1,245  |
| or professional degree (jobs)                  |           |        |        |        |        |        |        |
| By resource sector - Biomass (jobs)            |           | 340    | 443    | 175    | 143    | 128    | 520    |
| By resource sector - CO2 (jobs)                |           | 0      | 258    | 0.7    | 1.78   | 1.77   | 1.31   |
| By resource sector - Coal (jobs)               |           | 54.1   | 0      | 0      | 0      | 0      | 0      |
| By resource sector - Grid (jobs)               |           | 3,873  | 5,650  | 8,553  | 10,078 | 9,742  | 11,892 |
| By resource sector - Natural Gas (jobs)        |           | 2,665  | 2,096  | 1,726  | 2,137  | 1,482  | 950    |
| By resource sector - Nuclear (jobs)            |           | 1,092  | 889    | 361    | 0      | 0      | 0      |
| By resource sector - Oil (jobs)                |           | 2,327  | 1,811  | 1,242  | 785    | 463    | 240    |
| By resource sector - Solar (jobs)              |           | 5,521  | 7,776  | 6,104  | 6,253  | 7,768  | 10,627 |
| By resource sector - Wind (jobs)               |           | 111    | 1,120  | 1,735  | 1,597  | 1,519  | 3,191  |
| Median wages - Annual - All (\$2019 per        |           | 69,495 | 69,357 | 70,702 | 71,735 | 71,921 | 72,238 |
| job)                                           |           |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs - 1  |           | 2,614  | 3,286  | 3,307  | 3,513  | 3,505  | 4,507  |
| to 4 years (jobs)                              |           |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs - 4  |           | 1,100  | 1,358  | 1,377  | 1,462  | 1,406  | 1,764  |
| to 10 years (jobs)                             |           |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -    |           | 2,611  | 3,278  | 3,205  | 3,361  | 3,399  | 4,455  |
| None (jobs)                                    |           |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -    |           | 134    | 171    | 176    | 191    | 189    | 240    |
| Over 10 years (jobs)                           |           |        |        |        |        |        |        |
| On-Site or In-Plant Training - Total jobs -    |           | 9,524  | 11,950 | 11,832 | 12,469 | 12,603 | 16,456 |
| Up to 1 year (jobs)                            |           |        |        |        |        |        |        |
| On-the-Job Training - All sectors - 1 to 4     |           | 3,369  | 4,229  | 4,263  | 4,533  | 4,510  | 5,780  |
| years (jobs)                                   |           |        |        |        |        |        |        |
| On-the-Job Training - All sectors - 4 to 10    |           | 1,076  | 1,339  | 1,368  | 1,458  | 1,400  | 1,755  |
| years (jobs)                                   |           |        |        |        |        |        |        |
| On-the-Job Training - All sectors - None       |           | 891    | 1,101  | 1,066  | 1,104  | 1,112  | 1,463  |
| (jobs)                                         |           |        |        |        |        |        |        |
| On-the-Job Training - All sectors - Over 10    |           | 162    | 206    | 197    | 204    | 210    | 277    |
| years (jobs)                                   |           |        |        |        |        |        |        |
| On-the-Job Training - All sectors - Up to 1    |           | 10,485 | 13,168 | 13,004 | 13,696 | 13,870 | 18,147 |
| year (jobs)                                    |           |        |        |        |        |        |        |
| Related work experience - All sectors - 1      |           | 5,753  | 7,164  | 7,115  | 7,504  | 7,518  | 9,742  |
| to 4 years (jobs)                              |           |        |        |        |        |        |        |
| Related work experience - All sectors - 4      |           | 3,727  | 4,633  | 4,616  | 4,881  | 4,875  | 6,284  |
| to 10 years (jobs)                             |           |        |        |        |        |        |        |
| Related work experience - All sectors -        |           | 2,301  | 2,900  | 2,900  | 3,076  | 3,078  | 3,991  |
| None (jobs)                                    |           |        |        |        |        |        |        |
| Related work experience - All sectors -        |           | 992    | 1,238  | 1,227  | 1,296  | 1,318  | 1,713  |
| Over 10 years (jobs)                           |           |        |        |        |        |        |        |
| Related work experience - All sectors - Up     |           | 3,210  | 4,110  | 4,040  | 4,238  | 4,314  | 5,692  |
| to 1 year (jobs)                               |           |        |        |        |        |        |        |
| Wage income - All (million \$2019)             |           | 1,111  | 1,390  | 1,407  | 1,506  | 1,518  | 1,981  |
|                                                |           |        |        |        |        |        |        |

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|-------|-------|------|------|------|------|
| Commercial HVAC investment in 2020s -      | 0    | 7,079 | 7,740 | 0    | 0    | 0    | 0    |
| Cumulative 5-yr (million \$2018)           |      |       |       |      |      |      |      |
| Sales of cooking units - Electric          | 36.9 | 40.7  | 44.7  | 56.5 | 72.7 | 82.9 | 86.4 |
| Resistance (%)                             |      |       |       |      |      |      |      |
| Sales of cooking units - Gas (%)           | 63.1 | 59.3  | 55.3  | 43.5 | 27.3 | 17.1 | 13.6 |
| Sales of space heating units - Electric    | 4.76 | 7.71  | 11    | 20.9 | 40.9 | 61.8 | 73   |
| Heat Pump (%)                              |      |       |       |      |      |      |      |
| Sales of space heating units - Electric    | 2.29 | 2.3   | 3.61  | 7.63 | 14.2 | 19.1 | 21   |
| Resistance (%)                             |      |       |       |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 42.2 | 36.1  | 33.8  | 25.4 | 12.4 | 3.94 | 1.03 |
| Sales of space heating units - Gas Furnace | 50.7 | 53.9  | 51.7  | 46   | 32.5 | 15.2 | 4.94 |
| (%)                                        |      |       |       |      |      |      |      |

| Table 17: E- scenario -   | DILLAR 1. Efficience | //Electrification - | Commercial     | continued  |
|---------------------------|----------------------|---------------------|----------------|------------|
| Table II. E- Scellul IO - | PILLAK I. EIIILIEIIL | // EIECH 111CUHUH - | CUITITIETCIULT | Continueur |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Sales of water heating units - Electric    | 2.81 | 2.92 | 4.33 | 9.01 | 20.1 | 33.9 | 42   |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 13.8 | 12   | 13   | 17.7 | 28.2 | 41.2 | 48.8 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 78.2 | 80.8 | 78.7 | 69.9 | 49.2 | 23   | 7.51 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 5.24 | 4.31 | 3.95 | 3.35 | 2.49 | 1.86 | 1.68 |

# Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 0.975 | 0.97 | 1.63 | 1.7  | 3.09 | 3.32 |
| Cumulative 5-yr (billion \$2018)            |      |       |      |      |      |      |      |

#### Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 120  | 114  | 111  | 108  | 105  | 101  | 96.5 |
| Final energy use - Industry (PJ)       | 64.9 | 63.5 | 62.9 | 62.4 | 62.9 | 63.5 | 63.2 |
| Final energy use - Residential (PJ)    | 155  | 144  | 135  | 128  | 118  | 105  | 91.1 |
| Final energy use - Transportation (PJ) | 228  | 214  | 195  | 179  | 167  | 152  | 134  |

#### Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                                                               | 2020 | 2025  | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------------------------------------------------|------|-------|------|------|------|------|-------|
| Residential HVAC investment in 2020s vs.<br>REF - Cumulative 5-yr (billion \$2018) | 0    | 3.14  | 3.73 | 0    | 0    | 0    | 0     |
| Sales of cooking units - Electric<br>Resistance (%)                                | 71.7 | 72.5  | 75.1 | 81.9 | 91.4 | 97.2 | 99.2  |
| Sales of cooking units - Gas (%)                                                   | 28.3 | 27.5  | 24.9 | 18.1 | 8.64 | 2.79 | 0.75  |
| Sales of space heating units - Electric<br>Heat Pump (%)                           | 7.5  | 7.1   | 12.5 | 28.5 | 55.7 | 78.2 | 88.3  |
| Sales of space heating units - Electric<br>Resistance (%)                          | 4.92 | 6.49  | 6.23 | 5.8  | 4.6  | 2.99 | 2.13  |
| Sales of space heating units - Fossil (%)                                          | 53.1 | 66.3  | 61.9 | 48.5 | 27.6 | 13.1 | 7.61  |
| Sales of space heating units - Gas (%)                                             | 34.4 | 20.1  | 19.4 | 17.2 | 12.1 | 5.68 | 1.98  |
| Sales of water heating units - Electric<br>Heat Pump (%)                           | 0    | 0.484 | 1.83 | 6.09 | 15.2 | 25.5 | 31.2  |
| Sales of water heating units - Electric<br>Resistance (%)                          | 35.5 | 53.7  | 54.4 | 56.4 | 60.1 | 63.5 | 65.2  |
| Sales of water heating units - Gas Furnace (%)                                     | 46.8 | 33.9  | 32.8 | 29.2 | 20.5 | 9.58 | 3.12  |
| Sales of water heating units - Other (%)                                           | 17.6 | 11.9  | 11   | 8.3  | 4.13 | 1.41 | 0.461 |

#### Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 0     | 91    | 186   | 634   | 1,979 | 2,888 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.229 | 0     | 0.29  | 0     | 1.39  | 0     | 3.84  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.794 | 0     | 6.97  | 0     | 33.5  | 0     | 92.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.33  | 1.78  | 2.01  | 1.59  | 0.999 | 0.509 | 0.219 |

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Light-duty - EV (%)        | 2.17  | 5.3   | 13.1  | 27.8  | 50.5  | 73.4  | 88.1  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.9  | 86.3  | 77.7  | 64.2  | 43.8  | 23.4  | 10.4  |
| Vehicle sales - Light-duty - hybrid (%)    | 5.4   | 6.17  | 6.83  | 6.1   | 4.45  | 2.56  | 1.22  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.112 | 0.373 | 0.312 | 0.234 | 0.163 | 0.089 | 0.042 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.093 | 0.096 | 0.086 | 0.074 | 0.053 | 0.029 | 0.013 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -79   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -3.14 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -82.1 |
| deployment - Total (1000 tC02e/y)        |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -41.5 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -1.57 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -43.1 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 54.5  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      | 0     |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 5.72  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      | 0.12  |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 60.2  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      | 00.2  |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | U     |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 28.7  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      | 20.1  |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2.86  |
| deployment - Permanent conservation      |      |      |      |      |      |      | 2.00  |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

|                                          | •    | •    | •    |      |      |      |      |
|------------------------------------------|------|------|------|------|------|------|------|
| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 31.5 |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |      |

# Table 23: E- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      | 20.0 | -54.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -3,043 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      | •      |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -768   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,158 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      | ,      |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -10.4  |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -360   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -143   |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -224   |
| pasture (1000 tC02e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -325   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -27.4  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -902   |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -128   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -445   |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -5.3   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -120   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -50.1  |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      | -      |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -17    |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -109   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      | ,      |
| Carbon sink potential - Mid - Accelerate  |      |      |      |      |      |      | -41    |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      | •••    |
| Carbon sink potential - Mid - All (not    |      |      |      |      |      |      | -1,973 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      | 1,710  |
| Carbon sink potential - Mid - Avoid       |      |      |      |      |      |      | -448   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      | 1.10   |
| Carbon sink potential - Mid - Extend      |      |      |      |      |      |      | -801   |
| rotation length (1000 tC02e/y)            |      |      |      |      |      |      | 301    |
| Carbon sink potential - Mid - Improve     |      |      |      | +    |      |      | -7.77  |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase    |      | +    |      |      |      |      | -240   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      | 240    |
| Carbon sink potential - Mid - Increase    |      |      |      | +    |      |      | -96.7  |
| trees outside forests (1000 tC02e/y)      |      |      |      |      |      |      | 70.1   |
| τι σσο σατοίαο τοι σστο (1000 του26/γ)    |      |      |      |      |      |      |        |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                          | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------------------------|------|------|------|------|------|------|------|
| Carbon sink potential - Mid - Reforest                        |      |      |      |      |      |      | C    |
| cropland (1000 tC02e/y)                                       |      |      |      |      |      |      | 101  |
| Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y) |      |      |      |      |      |      | -121 |
| Carbon sink potential - Mid - Restore                         |      |      |      |      |      |      | -217 |
| productivity (1000 tCO2e/y)                                   |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 8.94 |
| High - Accelerate regeneration (1000                          |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 104  |
| High - Avoid deforestation (over 30 years)                    |      |      |      |      |      |      |      |
| (1000 hectares)                                               |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 591  |
| High - Extend rotation length (1000                           |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 3.84 |
| High - Improve plantations (1000                              |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | C    |
| High - Increase retention of HWP (1000                        |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 13.6 |
| High - Increase trees outside forests                         |      |      |      |      |      |      |      |
| (1000 hectares)                                               |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | C    |
| High - Reforest cropland (1000 hectares)                      |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 6.37 |
| High - Reforest pasture (1000 hectares)                       |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 108  |
| High - Restore productivity (1000                             |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 835  |
| High - Total impacted (over 30 years)                         |      |      |      |      |      |      |      |
| (1000 hectares)                                               |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 4.47 |
| Low - Accelerate regeneration (1000                           |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 97.6 |
| Low - Avoid deforestation (over 30 years)                     |      |      |      |      |      |      |      |
| (1000 hectares)                                               |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 226  |
| Low - Extend rotation length (1000                            |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 1.92 |
| Low - Improve plantations (1000                               |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | С    |
| Low - Increase retention of HWP (1000                         |      |      |      |      |      |      |      |
| hectares)                                                     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 7.16 |
| Low - Increase trees outside forests                          |      |      |      |      |      |      |      |
| (1000 hectares)                                               |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | C    |
| Low - Reforest cropland (1000 hectares)                       |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 1.   |
| Low - Reforest pasture (1000 hectares)                        |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                     |      |      |      |      |      |      | 65.  |
| Low - Restore productivity (1000                              |      |      |      |      |      |      | 00.  |
|                                                               |      |      | 1    |      |      |      |      |

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 404  |
| Low - Total impacted (over 30 years)       |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.7  |
| Mid - Accelerate regeneration (1000        |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 101  |
| Mid - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |      |
| (1000 hectares)                            |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 408  |
| Mid - Extend rotation length (1000         |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 2.89 |
| Mid - Improve plantations (1000 hectares)  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Increase retention of HWP (1000      |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 10.4 |
| Mid - Increase trees outside forests (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 7.98 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 131  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 668  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

#### Table 24: E- scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 361   | 0.581 | 0.58  | 0.562 | 0.335 | 0.01  |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 221   | 95.2  | 40.4  | 16.6  | 4.81  | 5.98  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 1,013 | 1,020 | 985   | 880   | 695   | 473   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 40.8  | 0.066 | 0.065 | 0.063 | 0.038 | 0.001 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 25    | 10.8  | 4.57  | 1.88  | 0.543 | 0.675 |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 114   | 115   | 111   | 99    | 78.2  | 53.2  |

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                      | 2020 | 2025  | 2030  | 2035  | 2040 | 2045 | 2050 |
|-------------------------------------------|------|-------|-------|-------|------|------|------|
| Commercial HVAC investment in 2020s -     | 0    | 7,080 | 7,732 | 0     | 0    | 0    | 0    |
| Cumulative 5-yr (million \$2018)          |      |       |       |       |      |      |      |
| Sales of cooking units - Electric         | 36.9 | 49.9  | 81.2  | 87.4  | 87.7 | 87.7 | 87.7 |
| Resistance (%)                            |      |       |       |       |      |      |      |
| Sales of cooking units - Gas (%)          | 63.1 | 50.1  | 18.8  | 12.6  | 12.3 | 12.3 | 12.3 |
| Sales of space heating units - Electric   | 4.76 | 11    | 39.3  | 72.4  | 77.8 | 78.1 | 78.1 |
| Heat Pump (%)                             |      |       |       |       |      |      |      |
| Sales of space heating units - Electric   | 2.29 | 4.46  | 16.5  | 21.3  | 21.9 | 21.9 | 21.9 |
| Resistance (%)                            |      |       |       |       |      |      |      |
| Sales of space heating units - Fossil (%) | 42.2 | 31.2  | 5.99  | 0.253 | 0    | 0    | 0    |

| Table 25: F+RF+  | scenario - DIII AR 1     | Efficiency/Electrification - | Commercial (continued)     |
|------------------|--------------------------|------------------------------|----------------------------|
| I abit 25. ETRET | . OCEIIUI IU - PILLAK I. |                              | · Gommer Ciai i Comunicati |

| Item                                                      | 2020 | 2025 | 2030 | 2035 | 2040  | 2045 | 2050 |
|-----------------------------------------------------------|------|------|------|------|-------|------|------|
| Sales of space heating units - Gas Furnace (%)            | 50.7 | 53.4 | 38.2 | 6.11 | 0.363 | 0    | 0    |
| Sales of water heating units - Electric<br>Heat Pump (%)  | 2.81 | 3.52 | 15.9 | 41   | 45.5  | 45.9 | 45.9 |
| Sales of water heating units - Electric<br>Resistance (%) | 13.8 | 12.6 | 24   | 48.1 | 52.3  | 52.5 | 52.5 |
| Sales of water heating units - Gas Furnace (%)            | 78.2 | 80   | 58.2 | 9.28 | 0.549 | 0    | 0    |
| Sales of water heating units - Other (%)                  | 5.24 | 3.95 | 1.94 | 1.61 | 1.6   | 1.59 | 1.61 |

#### Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 1.3  | 1.34 | 3.78 | 4.11 | 3.37 | 3.57 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

#### Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 120  | 114  | 109  | 101  | 93.4 | 88.1 | 84.9 |
| Final energy use - Industry (PJ)       | 64.9 | 63.4 | 62.5 | 61.2 | 61.1 | 61.8 | 62.1 |
| Final energy use - Residential (PJ)    | 155  | 143  | 130  | 112  | 94.5 | 81.6 | 73.9 |
| Final energy use - Transportation (PJ) | 228  | 212  | 186  | 152  | 122  | 104  | 95.6 |

#### Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                                                               | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------------------------------------------|------|------|------|-------|-------|-------|-------|
| Residential HVAC investment in 2020s vs.<br>REF - Cumulative 5-yr (billion \$2018) | 0    | 3.13 | 3.5  | 0     | 0     | 0     | 0     |
| Sales of cooking units - Electric<br>Resistance (%)                                | 71.8 | 77.8 | 96.2 | 99.8  | 100   | 100   | 100   |
| Sales of cooking units - Gas (%)                                                   | 28.2 | 22.2 | 3.79 | 0.191 | 0     | 0     | 0     |
| Sales of space heating units - Electric<br>Heat Pump (%)                           | 7.5  | 14.9 | 62.3 | 88.8  | 92.4  | 92.6  | 92.6  |
| Sales of space heating units - Electric<br>Resistance (%)                          | 4.92 | 6.44 | 5.03 | 2.19  | 1.67  | 1.64  | 1.81  |
| Sales of space heating units - Fossil (%)                                          | 53.1 | 58.8 | 18.6 | 6.59  | 5.61  | 5.57  | 5.44  |
| Sales of space heating units - Gas (%)                                             | 34.4 | 19.8 | 14   | 2.38  | 0.3   | 0.169 | 0.163 |
| Sales of water heating units - Electric<br>Heat Pump (%)                           | 0    | 1.56 | 13.2 | 30.7  | 33.7  | 33.9  | 33.9  |
| Sales of water heating units - Electric<br>Resistance (%)                          | 35.5 | 54.6 | 60.4 | 65.2  | 66    | 66    | 66    |
| Sales of water heating units - Gas Furnace (%)                                     | 46.8 | 33.5 | 24.3 | 3.88  | 0.229 | 0     | 0     |
| Sales of water heating units - Other (%)                                           | 17.6 | 10.3 | 2.05 | 0.206 | 0.126 | 0.127 | 0.126 |

#### Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                            | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -              | 0     | 549   | 1,419 | 2,279 | 3,460 | 3,757 | 3,587 |
| Cumulative 5-yr (million \$2018)                |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000 units) | 0.229 | 0     | 0.879 | 0     | 3.72  | 0     | 5.99  |
| ,                                               | 0.707 | 0     | 01.1  | 0     | 00.0  | 0     | 1//   |
| Public EV charging plugs - L2 (1000 units)      | 0.794 | 0     | 21.1  | 0     | 89.3  | 0     | 144   |
| Vehicle sales - Heavy-duty - diesel (%)         | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)             | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)       | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)         | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC        | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                             |       |       |       |       |       |       |       |

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050 |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|------|
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0    |
| Vehicle sales - Light-duty - diesel (%)    | 1.31  | 1.6   | 1.16  | 0.37  | 0.071 | 0.013 | 0    |
| Vehicle sales - Light-duty - EV (%)        | 4.71  | 17.6  | 50.1  | 83.2  | 96.5  | 99.3  | 100  |
| Vehicle sales - Light-duty - gasoline (%)  | 88.6  | 75.2  | 45.1  | 15.1  | 3.1   | 0.584 | 0    |
| Vehicle sales - Light-duty - hybrid (%)    | 5.19  | 5.1   | 3.47  | 1.26  | 0.312 | 0.069 | 0    |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.326 | 0.184 | 0.056 | 0.012 | 0.002 | 0    |
| (%)                                        |       |       |       |       |       |       |      |
| Vehicle sales - Light-duty - other (%)     | 0.091 | 0.086 | 0.054 | 0.019 | 0.004 | 0.001 | 0    |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0    |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80   |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0    |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0    |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20   |
| FC (%)                                     |       |       |       |       |       |       |      |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0    |

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| able cor 2 · N2 · comarie in 122 in 21 clour clour, only departing departing |      |      |       |       |       |       |       |  |  |  |
|------------------------------------------------------------------------------|------|------|-------|-------|-------|-------|-------|--|--|--|
| Item                                                                         | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |  |  |  |
| Capital invested - Solar PV - Base (billion \$2018)                          | 0    | 0    | 3.3   | 0.826 | 0.459 | 0     | 0     |  |  |  |
| Capital invested - Wind - Base (billion<br>\$2018)                           | 0    | 0    | 0.755 | 0.336 | 0.169 | 0     | 0.073 |  |  |  |
| Installed (cumulative) - OffshoreWind -<br>Base land use assumptions (MW)    | 0    | 0    | 0     | 0     | 0     | 0     | 0     |  |  |  |
| Installed (cumulative) - Solar - Base land use assumptions (MW)              | 81.5 | 81.5 | 2,839 | 3,588 | 4,030 | 4,030 | 4,030 |  |  |  |
| Installed (cumulative) - Wind - Base land use assumptions (MW)               | 5.8  | 5.8  | 321   | 472   | 551   | 551   | 590   |  |  |  |

#### Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045 | 2050 |
|------------------------------------------------|------|------|-------|-------|-------|------|------|
| Solar - Base land use assumptions (GWh)        | 169  |      | 4,930 | 1,310 | 771   |      | 0    |
| Solar - Constrained land use assumptions (GWh) | 169  |      | 7,480 | 3,086 | 1,563 |      | 0    |
| Wind - Base land use assumptions (GWh)         | 24   |      | 1,129 | 523   | 279   |      | 133  |
| Wind - Constrained land use assumptions (GWh)  | 24   |      | 1,235 | 140   | 172   |      | 114  |

#### Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

| Item                                 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy  |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)               |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -79   |
| deployment - Cropland measures (1000 |      |      |      |      |      |      |       |
| tCO2e/y)                             |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -3.14 |
| deployment - Permanent conservation  |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                 |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive   |      |      |      |      |      |      | -82.1 |
| deployment - Total (1000 tCO2e/y)    |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate     |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy  |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)               |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate     |      |      |      |      |      |      | -41.5 |
| deployment - Cropland measures (1000 |      |      |      |      |      |      |       |
| tCO2e/y)                             |      |      |      |      |      |      |       |

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -1.57 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -43.1 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 54.5  |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |       |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 5.72  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |       |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 60.2  |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 28.7  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2.86  |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 31.5  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |       |
|                                          |      |      |      |      |      |      |       |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

| Item                                                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)        |      |      |      |      |      |      | -54.6  |
| Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)     |      |      |      |      |      |      | -3,043 |
| Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)            |      |      |      |      |      |      | -768   |
| Carbon sink potential - High - Extend rotation length (1000 tC02e/y)         |      |      |      |      |      |      | -1,158 |
| Carbon sink potential - High - Improve plantations (1000 tCO2e/y)            |      |      |      |      |      |      | -10.4  |
| Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)      |      |      |      |      |      |      | -360   |
| Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y) |      |      |      |      |      |      | -143   |
| Carbon sink potential - High - Reforest cropland (1000 tC02e/y)              |      |      |      |      |      |      | 0      |
| Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)               |      |      |      |      |      |      | -224   |
| Carbon sink potential - High - Restore productivity (1000 tC02e/y)           |      |      |      |      |      |      | -325   |
| Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)         |      |      |      |      |      |      | -27.4  |
| Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y)      |      |      |      |      |      |      | -902   |
| Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)             |      |      |      |      |      |      | -128   |
| Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)          |      |      |      |      |      |      | -445   |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|------------------------------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Low - Improve                                  |      |      |      |      |      |      | -5.3   |
| plantations (1000 tCO2e/y)                                             |      |      |      |      |      |      | -120   |
| Carbon sink potential - Low - Increase retention of HWP (1000 tCO2e/y) |      |      |      |      |      |      | -120   |
| Carbon sink potential - Low - Increase                                 |      | +    |      |      |      | +    | -50.1  |
| trees outside forests (1000 tC02e/y)                                   |      |      |      |      |      |      | -50.1  |
| Carbon sink potential - Low - Reforest                                 |      | +    |      |      |      | +    | 0      |
| cropland (1000 tCO2e/y)                                                |      |      |      |      |      |      | U      |
| Carbon sink potential - Low - Reforest                                 |      | +    |      |      |      | +    | -17    |
| pasture (1000 tC02e/y)                                                 |      |      |      |      |      |      | "      |
| Carbon sink potential - Low - Restore                                  |      |      |      |      |      |      | -109   |
| productivity (1000 tCO2e/y)                                            |      |      |      |      |      |      | 107    |
| Carbon sink potential - Mid - Accelerate                               |      |      |      |      |      |      | -41    |
| regeneration (1000 tCO2e/y)                                            |      |      |      |      |      |      | 71     |
| Carbon sink potential - Mid - All (not                                 |      | +    |      |      |      |      | -1,973 |
| counting overlap) (1000 tCO2e/y)                                       |      |      |      |      |      |      | 1,710  |
| Carbon sink potential - Mid - Avoid                                    |      |      |      |      |      |      | -448   |
| deforestation (1000 tC02e/y)                                           |      |      |      |      |      |      | 7-70   |
| Carbon sink potential - Mid - Extend                                   |      |      |      |      |      |      | -801   |
| rotation length (1000 tC02e/y)                                         |      |      |      |      |      |      | 001    |
| Carbon sink potential - Mid - Improve                                  |      |      |      |      |      |      | -7.77  |
| plantations (1000 tC02e/y)                                             |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase                                 |      |      |      |      |      |      | -240   |
| retention of HWP (1000 tC02e/y)                                        |      |      |      |      |      |      | -240   |
| Carbon sink potential - Mid - Increase                                 |      | +    |      |      |      |      | -96.7  |
| trees outside forests (1000 tC02e/y)                                   |      |      |      |      |      |      | 70.1   |
| Carbon sink potential - Mid - Reforest                                 |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                                                |      |      |      |      |      |      | O      |
| Carbon sink potential - Mid - Reforest                                 |      |      |      |      |      |      | -121   |
| pasture (1000 tC02e/y)                                                 |      |      |      |      |      |      | 121    |
| Carbon sink potential - Mid - Restore                                  |      |      |      |      |      |      | -217   |
| productivity (1000 tCO2e/y)                                            |      |      |      |      |      |      | 211    |
| Land impacted for carbon sink potential -                              |      | +    |      |      |      | +    | 8.94   |
| High - Accelerate regeneration (1000                                   |      |      |      |      |      |      | 0.7 1  |
| hectares)                                                              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      | +    |      |      |      | +    | 104    |
| High - Avoid deforestation (over 30 years)                             |      |      |      |      |      |      |        |
| (1000 hectares)                                                        |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      | +    |      |      |      | +    | 591    |
| High - Extend rotation length (1000                                    |      |      |      |      |      |      |        |
| hectares)                                                              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 3.84   |
| High - Improve plantations (1000                                       |      |      |      |      |      |      |        |
| hectares)                                                              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 0      |
| High - Increase retention of HWP (1000                                 |      |      |      |      |      |      |        |
| hectares)                                                              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 13.6   |
| High - Increase trees outside forests                                  |      |      |      |      |      |      |        |
| (1000 hectares)                                                        |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 0      |
| High - Reforest cropland (1000 hectares)                               |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 6.37   |
| High - Reforest pasture (1000 hectares)                                |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 108    |
| High - Restore productivity (1000                                      |      |      |      |      |      |      |        |
| hectares)                                                              |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 835    |
| High - Total impacted (over 30 years)                                  |      |      |      |      |      |      |        |
| (1000 hectares)                                                        |      |      |      |      |      |      |        |

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Table 33. ETRET Section 10 TILLAN 6. Ear                                           | ia siriks i o | 1 6010 (601111 | Hacaj |      |      |      |      |
|------------------------------------------------------------------------------------|---------------|----------------|-------|------|------|------|------|
| Item                                                                               | 2020          | 2025           | 2030  | 2035 | 2040 | 2045 | 2050 |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 4.47 |
| Low - Accelerate regeneration (1000                                                |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 97.6 |
| Low - Avoid deforestation (over 30 years)                                          |               |                |       |      |      |      |      |
| (1000 hectares)                                                                    |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 226  |
| Low - Extend rotation length (1000                                                 |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      | 1.00 |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 1.92 |
| Low - Improve plantations (1000                                                    |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -<br>Low - Increase retention of HWP (1000 |               |                |       |      |      |      | 0    |
| •                                                                                  |               |                |       |      |      |      |      |
| hectares) Land impacted for carbon sink potential -                                |               |                |       |      |      |      | 7.16 |
| Low - Increase trees outside forests                                               |               |                |       |      |      |      | 7.10 |
| (1000 hectares)                                                                    |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 0    |
| Low - Reforest cropland (1000 hectares)                                            |               |                |       |      |      |      | U    |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 1.1  |
| Low - Reforest pasture (1000 hectares)                                             |               |                |       |      |      |      | 1.1  |
| Land impacted for carbon sink potential -                                          |               |                | +     |      |      |      | 65.1 |
| Low - Restore productivity (1000                                                   |               |                |       |      |      |      | 00.1 |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 404  |
| Low - Total impacted (over 30 years)                                               |               |                |       |      |      |      | 707  |
| (1000 hectares)                                                                    |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 6.7  |
| Mid - Accelerate regeneration (1000                                                |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 101  |
| Mid - Avoid deforestation (over 30 years)                                          |               |                |       |      |      |      |      |
| (1000 hectares)                                                                    |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 408  |
| Mid - Extend rotation length (1000                                                 |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 2.89 |
| Mid - Improve plantations (1000 hectares)                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 0    |
| Mid - Increase retention of HWP (1000                                              |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 10.4 |
| Mid - Increase trees outside forests (1000                                         |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 0    |
| Mid - Reforest cropland (1000 hectares)                                            |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                | T     |      |      |      | 7.98 |
| Mid - Reforest pasture (1000 hectares)                                             |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 131  |
| Mid - Restore productivity (1000                                                   |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |
| Land impacted for carbon sink potential -                                          |               |                |       |      |      |      | 668  |
| Mid - Total impacted (over 30 years) (1000                                         |               |                |       |      |      |      |      |
| hectares)                                                                          |               |                |       |      |      |      |      |

Table 34: E+RE+ scenario - IMPACTS - Health

| Item                                                           | 2020 | 2025 | 2030  | 2035 | 2040  | 2045  | 2050 |
|----------------------------------------------------------------|------|------|-------|------|-------|-------|------|
| Monetary damages from air pollution -<br>Coal (million 2019\$) |      | 361  | 0.581 | 0.58 | 0.562 | 0.335 | 0.01 |

| Table 34: | E+RE+ scenario - | · IMPACTS - | Health | l continued l |
|-----------|------------------|-------------|--------|---------------|

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 210  | 108   | 60.8  | 50.2  | 18.8  | 6.07  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 995  | 923   | 697   | 399   | 179   | 67.5  |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 40.8 | 0.066 | 0.065 | 0.063 | 0.038 | 0.001 |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 23.8 | 12.1  | 6.86  | 5.66  | 2.12  | 0.685 |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 112  | 104   | 78.3  | 44.9  | 20.2  | 7.59  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

# Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

| - <u>-</u> .                               | ,,   |       |       |       |       |      |      |
|--------------------------------------------|------|-------|-------|-------|-------|------|------|
| Item                                       | 2020 | 2025  | 2030  | 2035  | 2040  | 2045 | 2050 |
| Commercial HVAC investment in 2020s -      | 0    | 7,080 | 7,732 | 0     | 0     | 0    | 0    |
| Cumulative 5-yr (million \$2018)           |      |       |       |       |       |      |      |
| Sales of cooking units - Electric          | 36.9 | 49.9  | 81.2  | 87.4  | 87.7  | 87.7 | 87.7 |
| Resistance (%)                             |      |       |       |       |       |      |      |
| Sales of cooking units - Gas (%)           | 63.1 | 50.1  | 18.8  | 12.6  | 12.3  | 12.3 | 12.3 |
| Sales of space heating units - Electric    | 4.76 | 11    | 39.3  | 72.4  | 77.8  | 78.1 | 78.1 |
| Heat Pump (%)                              |      |       |       |       |       |      |      |
| Sales of space heating units - Electric    | 2.29 | 4.46  | 16.5  | 21.3  | 21.9  | 21.9 | 21.9 |
| Resistance (%)                             |      |       |       |       |       |      |      |
| Sales of space heating units - Fossil (%)  | 42.2 | 31.2  | 5.99  | 0.253 | 0     | 0    | 0    |
| Sales of space heating units - Gas Furnace | 50.7 | 53.4  | 38.2  | 6.11  | 0.363 | 0    | 0    |
| (%)                                        |      |       |       |       |       |      |      |
| Sales of water heating units - Electric    | 2.81 | 3.52  | 15.9  | 41    | 45.5  | 45.9 | 45.9 |
| Heat Pump (%)                              |      |       |       |       |       |      |      |
| Sales of water heating units - Electric    | 13.8 | 12.6  | 24    | 48.1  | 52.3  | 52.5 | 52.5 |
| Resistance (%)                             |      |       |       |       |       |      |      |
| Sales of water heating units - Gas Furnace | 78.2 | 80    | 58.2  | 9.28  | 0.549 | 0    | 0    |
| (%)                                        |      |       |       |       |       |      |      |
| Sales of water heating units - Other (%)   | 5.24 | 3.95  | 1.94  | 1.61  | 1.6   | 1.59 | 1.61 |

# Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 1.3  | 1.34 | 3.78 | 4.11 | 3.37 | 3.57 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

#### Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                                   | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|----------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ)     | 120  | 114  | 109  | 101  | 93.4 | 88.1 | 84.9 |
| Final energy use - Industry (PJ)       | 64.9 | 63.4 | 62.5 | 61.2 | 61.1 | 61.8 | 62.1 |
| Final energy use - Residential (PJ)    | 155  | 143  | 130  | 112  | 94.5 | 81.6 | 73.9 |
| Final energy use - Transportation (PJ) | 228  | 212  | 186  | 152  | 122  | 104  | 95.6 |

#### Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                     | 2020 | 2025 | 2030 | 2035  | 2040 | 2045 | 2050 |
|------------------------------------------|------|------|------|-------|------|------|------|
| Residential HVAC investment in 2020s vs. | 0    | 3.13 | 3.5  | 0     | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)   |      |      |      |       |      |      |      |
| Sales of cooking units - Electric        | 71.8 | 77.8 | 96.2 | 99.8  | 100  | 100  | 100  |
| Resistance (%)                           |      |      |      |       |      |      |      |
| Sales of cooking units - Gas (%)         | 28.2 | 22.2 | 3.79 | 0.191 | 0    | 0    | 0    |
| Sales of space heating units - Electric  | 7.5  | 14.9 | 62.3 | 88.8  | 92.4 | 92.6 | 92.6 |
| Heat Pump (%)                            |      |      |      |       |      |      |      |
| Sales of space heating units - Electric  | 4.92 | 6.44 | 5.03 | 2.19  | 1.67 | 1.64 | 1.81 |
| Resistance (%)                           |      |      |      |       |      |      |      |

| Table 38: E+RE- | acanania DII   | IAD 1. Eff  | icionou/Floota | ification  | Dooidontial | (continued) |
|-----------------|----------------|-------------|----------------|------------|-------------|-------------|
| 14016 20: E+KE- | SCEHULTO - PIL | LAK I. EIII | ICIEHCV/EIECH  | IIICULIUII | Residentian | COMUNICEUM  |

| Item                                                      | 2020 | 2025 | 2030 | 2035  | 2040  | 2045  | 2050  |
|-----------------------------------------------------------|------|------|------|-------|-------|-------|-------|
| Sales of space heating units - Fossil (%)                 | 53.1 | 58.8 | 18.6 | 6.59  | 5.61  | 5.57  | 5.44  |
| Sales of space heating units - Gas (%)                    | 34.4 | 19.8 | 14   | 2.38  | 0.3   | 0.169 | 0.163 |
| Sales of water heating units - Electric<br>Heat Pump (%)  | 0    | 1.56 | 13.2 | 30.7  | 33.7  | 33.9  | 33.9  |
| Sales of water heating units - Electric<br>Resistance (%) | 35.5 | 54.6 | 60.4 | 65.2  | 66    | 66    | 66    |
| Sales of water heating units - Gas Furnace (%)            | 46.8 | 33.5 | 24.3 | 3.88  | 0.229 | 0     | 0     |
| Sales of water heating units - Other (%)                  | 17.6 | 10.3 | 2.05 | 0.206 | 0.126 | 0.127 | 0.126 |

# Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 549   | 1,419 | 2,279 | 3,460 | 3,757 | 3,587 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.229 | 0     | 0.879 | 0     | 3.72  | 0     | 5.99  |
| units)                                     |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.794 | 0     | 21.1  | 0     | 89.3  | 0     | 144   |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.2  | 92.1  | 67    | 23.3  | 4.22  | 0.628 | 0     |
| Vehicle sales - Heavy-duty - EV (%)        | 0.588 | 3.81  | 19    | 45.6  | 57.4  | 59.6  | 60    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.227 | 0.227 | 0.176 | 0.066 | 0.013 | 0.002 | 0     |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.082 | 0.09  | 0.077 | 0.031 | 0.007 | 0.001 | 0     |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.392 | 2.54  | 12.7  | 30.4  | 38.2  | 39.7  | 40    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.23  | 1.07  | 0.568 | 0.163 | 0.038 | 0     |
| Vehicle sales - Light-duty - diesel (%)    | 1.31  | 1.6   | 1.16  | 0.37  | 0.071 | 0.013 | 0     |
| Vehicle sales - Light-duty - EV (%)        | 4.71  | 17.6  | 50.1  | 83.2  | 96.5  | 99.3  | 100   |
| Vehicle sales - Light-duty - gasoline (%)  | 88.6  | 75.2  | 45.1  | 15.1  | 3.1   | 0.584 | 0     |
| Vehicle sales - Light-duty - hybrid (%)    | 5.19  | 5.1   | 3.47  | 1.26  | 0.312 | 0.069 | 0     |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.326 | 0.184 | 0.056 | 0.012 | 0.002 | 0     |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.091 | 0.086 | 0.054 | 0.019 | 0.004 | 0.001 | 0     |
| Vehicle sales - Medium-duty - diesel (%)   | 64.7  | 59.7  | 42.3  | 14.4  | 2.59  | 0.384 | 0     |
| Vehicle sales - Medium-duty - EV (%)       | 0.784 | 5.07  | 25.3  | 60.8  | 76.5  | 79.5  | 80    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.7  | 33.3  | 25.5  | 9.32  | 1.77  | 0.277 | 0     |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.402 | 0.341 | 0.14  | 0.03  | 0.005 | 0     |
| Vehicle sales - Medium-duty - hydrogen     | 0.196 | 1.27  | 6.33  | 15.2  | 19.1  | 19.9  | 20    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.255 | 0.205 | 0.083 | 0.019 | 0.004 | 0     |

#### Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                       | 2020 | 2025 | 2030  | 2035 | 2040  | 2045  | 2050  |
|------------------------------------------------------------|------|------|-------|------|-------|-------|-------|
| Capital invested - Solar PV - Base (billion \$2018)        |      | 3.19 | 0     | 0    | 0.619 | 0     | 0     |
| Capital invested - Solar PV - Constrained (billion \$2018) |      | 1.64 | 1.06  | 0    | 1.56  | 0     | 0.347 |
| Capital invested - Wind - Base (billion<br>\$2018)         |      | 0    | 0.273 | 0    | 0     | 0.106 | 0.283 |
| Capital invested - Wind - Constrained (billion \$2018)     |      | 0    | 0.396 | 0    | 0     | 0     | 0.338 |

#### Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

| Item                                     | 2020  | 2025  | 2030  | 2035 | 2040  | 2045 | 2050 |
|------------------------------------------|-------|-------|-------|------|-------|------|------|
| Solar - Base land use assumptions (GWh)  | 2,320 | 4,229 | 0     |      | 1,041 | 0    | 0    |
| Solar - Constrained land use assumptions | 3,653 | 2,172 | 1,579 |      | 2,641 | 0    | 662  |
| (GWh)                                    |       |       |       |      |       |      |      |
| Wind - Base land use assumptions (GWh)   | 24    | 0     | 409   |      | 0     | 192  | 528  |
| Wind - Constrained land use assumptions  | 24    | 0     | 604   |      | 0     | 0    | 631  |
| (GWh)                                    |       |       |       |      |       |      |      |

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

| Item                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|-----------------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive                  |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy                 |      |      |      |      |      |      |       |
| grasses (1000 tCO2e/y)                              |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive                  |      |      |      |      |      |      | -79   |
| deployment - Cropland measures (1000                |      |      |      |      |      |      |       |
| tCO2e/y)                                            |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive                  |      |      |      |      |      |      | -3.14 |
| deployment - Permanent conservation                 |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                                |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive                  |      |      |      |      |      |      | -82.1 |
| deployment - Total (1000 tCO2e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate                    |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy                 |      |      |      |      |      |      |       |
| grasses (1000 tC02e/y)                              |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate                    |      |      |      |      |      |      | -41.5 |
| deployment - Cropland measures (1000                |      |      |      |      |      |      |       |
| tCO2e/y)                                            |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate                    |      |      |      |      |      |      | -1.57 |
| deployment - Permanent conservation                 |      |      |      |      |      |      |       |
| cover (1000 tC02e/y)                                |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate                    |      |      |      |      |      |      | -43.1 |
| deployment - Total (1000 tCO2e/y)                   |      |      |      |      |      |      | 70.1  |
| Land impacted for carbon sink -                     |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to             |      |      |      |      |      |      | U     |
| energy grasses (1000 hectares)                      |      |      |      |      |      |      |       |
| Land impacted for carbon sink -                     |      |      |      |      |      |      | 54.5  |
| Aggressive deployment - Cropland                    |      |      |      |      |      |      | 54.5  |
| measures (1000 hectares)                            |      |      |      |      |      |      |       |
| Land impacted for carbon sink -                     |      |      |      |      |      |      | 5.72  |
| Aggressive deployment - Permanent                   |      |      |      |      |      |      | J.1 Z |
| conservation cover (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink -                     |      |      |      |      |      |      | 60.2  |
| Aggressive deployment - Total (1000                 |      |      |      |      |      |      | 00.2  |
| ,                                                   |      |      |      |      |      |      |       |
| hectares)  Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
|                                                     |      |      |      |      |      |      | U     |
| deployment - Corn-ethanol to energy                 |      |      |      |      |      |      |       |
| grasses (1000 hectares)                             |      |      |      |      |      |      | 00.7  |
| Land impacted for carbon sink - Moderate            |      |      |      |      |      |      | 28.7  |
| deployment - Cropland measures (1000                |      |      |      |      |      |      |       |
| hectares)                                           |      |      |      |      |      |      | 0.07  |
| Land impacted for carbon sink - Moderate            |      |      |      |      |      |      | 2.86  |
| deployment - Permanent conservation                 |      |      |      |      |      |      |       |
| cover (1000 hectares)                               |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate            |      |      |      |      |      |      | 31.5  |
| deployment - Total (1000 hectares)                  |      |      |      |      |      |      |       |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -54.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -3,043 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -768   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,158 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -10.4  |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -360   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|--------------------------------------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Increase                                        |      |      |      |      |      |      | -143   |
| trees outside forests (1000 tCO2e/y)                                           |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)                |      |      |      |      |      |      | 0      |
| Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)                 |      |      |      |      |      |      | -224   |
| Carbon sink potential - High - Restore productivity (1000 tC02e/y)             |      |      |      |      |      |      | -325   |
| Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)           |      |      |      |      |      |      | -27.4  |
| Carbon sink potential - Low - All (not                                         |      |      |      |      |      |      | -902   |
| counting overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid           |      |      |      |      |      |      | -128   |
| deforestation (1000 tC02e/y)  Carbon sink potential - Low - Extend             |      |      |      |      |      |      | -445   |
| rotation length (1000 tC02e/y)  Carbon sink potential - Low - Improve          |      |      |      |      |      |      | -5.3   |
| plantations (1000 tCO2e/y)                                                     |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase retention of HWP (1000 tCO2e/y)         |      |      |      |      |      |      | -120   |
| Carbon sink potential - Low - Increase trees outside forests (1000 tCO2e/y)    |      |      |      |      |      |      | -50.1  |
| Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)                 |      |      |      |      |      |      | 0      |
| Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)                  |      |      |      |      |      |      | -17    |
| Carbon sink potential - Low - Restore                                          |      |      |      |      |      |      | -109   |
| productivity (1000 tCO2e/y)  Carbon sink potential - Mid - Accelerate          |      |      |      |      |      |      | -41    |
| regeneration (1000 tCO2e/y)  Carbon sink potential - Mid - All (not            |      |      |      |      |      |      | -1,973 |
| counting overlap) (1000 tCO2e/y)  Carbon sink potential - Mid - Avoid          |      |      |      |      |      |      | -448   |
| deforestation (1000 tCO2e/y) Carbon sink potential - Mid - Extend              |      |      |      |      |      |      | -801   |
| rotation length (1000 tCO2e/y)                                                 |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)               |      |      |      |      |      |      | -7.77  |
| Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)         |      |      |      |      |      |      | -240   |
| Carbon sink potential - Mid - Increase<br>trees outside forests (1000 tC02e/y) |      |      |      |      |      |      | -96.7  |
| Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)                 |      |      |      |      |      |      | 0      |
| Carbon sink potential - Mid - Reforest                                         |      |      |      |      |      |      | -121   |
| pasture (1000 tCO2e/y) Carbon sink potential - Mid - Restore                   |      |      |      |      |      |      | -217   |
| productivity (1000 tCO2e/y)  Land impacted for carbon sink potential -         |      |      |      |      |      |      | 8.94   |
| High - Accelerate regeneration (1000 hectares)                                 |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -                                      | +    |      |      |      | +    |      | 104    |
| High - Avoid deforestation (over 30 years) (1000 hectares)                     |      |      |      |      |      |      | 10-1   |
| Land impacted for carbon sink potential -                                      |      |      |      |      |      |      | 591    |
| High - Extend rotation length (1000 hectares)                                  |      |      |      |      |      |      | J71    |
| Land impacted for carbon sink potential -                                      |      |      |      |      |      |      | 3.84   |
| High - Improve plantations (1000 hectares)                                     |      |      |      |      |      |      |        |

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

| Land impacted for carbon sink potential -                 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|-----------------------------------------------------------|------|------|------|------|------|------|------|
| High - Increase retention of HWP (1000                    |      |      |      |      |      |      | ·    |
| hectares) Land impacted for carbon sink potential -       |      |      |      |      |      |      | 13.6 |
| High - Increase trees outside forests                     |      |      |      |      |      |      | 13.0 |
| (1000 hectares)                                           |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      | +    | (    |
| High - Reforest cropland (1000 hectares)                  |      |      |      |      |      |      | ,    |
| Land impacted for carbon sink potential -                 |      |      |      |      |      | +    | 6.3  |
| High - Reforest pasture (1000 hectares)                   |      |      |      |      |      |      | 0.01 |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 108  |
| High - Restore productivity (1000                         |      |      |      |      |      |      | 100  |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 835  |
| High - Total impacted (over 30 years)                     |      |      |      |      |      |      | 000  |
| (1000 hectares)                                           |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      | +    | 4.4  |
| Low - Accelerate regeneration (1000                       |      |      |      |      |      |      | 4.41 |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 97.6 |
| Low - Avoid deforestation (over 30 years)                 |      |      |      |      |      |      | 71.0 |
| (1000 hectares)                                           |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 226  |
| Low - Extend rotation length (1000                        |      |      |      |      |      |      | 220  |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 1.92 |
| Low - Improve plantations (1000                           |      |      |      |      |      |      | 1.74 |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | (    |
| Low - Increase retention of HWP (1000                     |      |      |      |      |      |      | ,    |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 7.16 |
| Low - Increase trees outside forests                      |      |      |      |      |      |      | 7.10 |
| (1000 hectares)                                           |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | (    |
| Low - Reforest cropland (1000 hectares)                   |      |      |      |      |      |      | ·    |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 1.   |
| ·                                                         |      |      |      |      |      |      | l.   |
| Low - Reforest pasture (1000 hectares)                    |      |      |      |      |      |      | / [  |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 65.  |
| Low - Restore productivity (1000                          |      |      |      |      |      |      |      |
| hectares)                                                 |      |      |      |      |      |      | / 0  |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 404  |
| Low - Total impacted (over 30 years)                      |      |      |      |      |      |      |      |
| (1000 hectares) Land impacted for carbon sink potential - |      |      |      |      |      |      | ,-   |
| ·                                                         |      |      |      |      |      |      | 6.7  |
| Mid - Accelerate regeneration (1000                       |      |      |      |      |      |      |      |
| hectares)                                                 |      |      |      |      |      |      | 10   |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 10   |
| Mid - Avoid deforestation (over 30 years)                 |      |      |      |      |      |      |      |
| (1000 hectares)                                           |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 408  |
| Mid - Extend rotation length (1000                        |      |      |      |      |      |      |      |
| hectares)                                                 |      |      |      |      |      |      | 2.5  |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 2.89 |
| Mid - Improve plantations (1000 hectares)                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | (    |
| Mid - Increase retention of HWP (1000                     |      |      |      |      |      |      |      |
| hectares)                                                 |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -                 |      |      |      |      |      |      | 10.4 |
| Mid - Increase trees outside forests (1000                |      |      |      |      |      |      |      |
| hectares)                                                 |      | [    |      |      |      |      |      |

| Table 43: E+RE- | econario -   | DTIIADA | · I and einke .   | Enrecte    | (continued) |
|-----------------|--------------|---------|-------------------|------------|-------------|
| 1auit 45. E+KE- | SCEIIUI 10 - | PILLAR  | o. Luiiu Siiiks · | - ศบาษธเธา | CUILLIIUEUI |

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 0    |
| Mid - Reforest cropland (1000 hectares)    |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 7.98 |
| Mid - Reforest pasture (1000 hectares)     |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 131  |
| Mid - Restore productivity (1000           |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 668  |
| Mid - Total impacted (over 30 years) (1000 |      |      |      |      |      |      |      |
| hectares)                                  |      |      |      |      |      |      |      |

#### Table 44: E+RE- scenario - IMPACTS - Health

| Item                                  | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|---------------------------------------|------|------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution - |      | 361  | 0.581 | 0.58  | 0.562 | 0.335 | 0.01  |
| Coal (million 2019\$)                 |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 218  | 117   | 135   | 105   | 56.9  | 11.6  |
| Natural Gas (million 2019\$)          |      |      |       |       |       |       |       |
| Monetary damages from air pollution - |      | 995  | 923   | 697   | 399   | 179   | 67.5  |
| Transportation (million 2019\$)       |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 40.8 | 0.066 | 0.065 | 0.063 | 0.038 | 0.001 |
| Coal (deaths)                         |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 24.6 | 13.2  | 15.2  | 11.9  | 6.42  | 1.31  |
| Natural Gas (deaths)                  |      |      |       |       |       |       |       |
| Premature deaths from air pollution - |      | 112  | 104   | 78.3  | 44.9  | 20.2  | 7.59  |
| Transportation (deaths)               |      |      |       |       |       |       |       |

#### Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                       | 2020 | 2025  | 2030  | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|-------|-------|------|------|------|------|
| Commercial HVAC investment in 2020s -      | 0    | 7,079 | 7,740 | 0    | 0    | 0    | 0    |
| Cumulative 5-yr (million \$2018)           |      |       |       |      |      |      |      |
| Sales of cooking units - Electric          | 36.9 | 40.7  | 44.7  | 56.5 | 72.7 | 82.9 | 86.4 |
| Resistance (%)                             |      |       |       |      |      |      |      |
| Sales of cooking units - Gas (%)           | 63.1 | 59.3  | 55.3  | 43.5 | 27.3 | 17.1 | 13.6 |
| Sales of space heating units - Electric    | 4.76 | 7.71  | 11    | 20.9 | 40.9 | 61.8 | 73   |
| Heat Pump (%)                              |      |       |       |      |      |      |      |
| Sales of space heating units - Electric    | 2.29 | 2.3   | 3.61  | 7.63 | 14.2 | 19.1 | 21   |
| Resistance (%)                             |      |       |       |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 42.2 | 36.1  | 33.8  | 25.4 | 12.4 | 3.94 | 1.03 |
| Sales of space heating units - Gas Furnace | 50.7 | 53.9  | 51.7  | 46   | 32.5 | 15.2 | 4.94 |
| (%)                                        |      |       |       |      |      |      |      |
| Sales of water heating units - Electric    | 2.81 | 2.92  | 4.33  | 9.01 | 20.1 | 33.9 | 42   |
| Heat Pump (%)                              |      |       |       |      |      |      |      |
| Sales of water heating units - Electric    | 13.8 | 12    | 13    | 17.7 | 28.2 | 41.2 | 48.8 |
| Resistance (%)                             |      |       |       |      |      |      |      |
| Sales of water heating units - Gas Furnace | 78.2 | 80.8  | 78.7  | 69.9 | 49.2 | 23   | 7.51 |
| (%)                                        |      |       |       |      |      |      |      |
| Sales of water heating units - Other (%)   | 5.24 | 4.31  | 3.95  | 3.35 | 2.49 | 1.86 | 1.68 |

#### Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025  | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|-------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 0.975 | 0.97 | 1.63 | 1.7  | 3.09 | 3.32 |
| Cumulative 5-yr (billion \$2018)            |      |       |      |      |      |      |      |

#### Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Final energy use - Commercial (PJ) | 120  | 114  | 111  | 108  | 105  | 101  | 96.5 |

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

| The state of the s |      |      |      |      |      |      |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Final energy use - Industry (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.9 | 63.5 | 62.9 | 62.4 | 62.9 | 63.5 | 63.2 |
| Final energy use - Residential (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 155  | 144  | 135  | 128  | 118  | 105  | 91.1 |
| Final energy use - Transportation (PJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228  | 214  | 195  | 179  | 167  | 152  | 134  |

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025  | 2030 | 2035 | 2040 | 2045 | 2050  |
|--------------------------------------------|------|-------|------|------|------|------|-------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.14  | 3.73 | 0    | 0    | 0    | 0     |
| REF - Cumulative 5-yr (billion \$2018)     |      |       |      |      |      |      |       |
| Sales of cooking units - Electric          | 71.7 | 72.5  | 75.1 | 81.9 | 91.4 | 97.2 | 99.2  |
| Resistance (%)                             |      |       |      |      |      |      |       |
| Sales of cooking units - Gas (%)           | 28.3 | 27.5  | 24.9 | 18.1 | 8.64 | 2.79 | 0.75  |
| Sales of space heating units - Electric    | 7.5  | 7.1   | 12.5 | 28.5 | 55.7 | 78.2 | 88.3  |
| Heat Pump (%)                              |      |       |      |      |      |      |       |
| Sales of space heating units - Electric    | 4.92 | 6.49  | 6.23 | 5.8  | 4.6  | 2.99 | 2.13  |
| Resistance (%)                             |      |       |      |      |      |      |       |
| Sales of space heating units - Fossil (%)  | 53.1 | 66.3  | 61.9 | 48.5 | 27.6 | 13.1 | 7.61  |
| Sales of space heating units - Gas (%)     | 34.4 | 20.1  | 19.4 | 17.2 | 12.1 | 5.68 | 1.98  |
| Sales of water heating units - Electric    | 0    | 0.484 | 1.83 | 6.09 | 15.2 | 25.5 | 31.2  |
| Heat Pump (%)                              |      |       |      |      |      |      |       |
| Sales of water heating units - Electric    | 35.5 | 53.7  | 54.4 | 56.4 | 60.1 | 63.5 | 65.2  |
| Resistance (%)                             |      |       |      |      |      |      |       |
| Sales of water heating units - Gas Furnace | 46.8 | 33.9  | 32.8 | 29.2 | 20.5 | 9.58 | 3.12  |
| (%)                                        |      |       |      |      |      |      |       |
| Sales of water heating units - Other (%)   | 17.6 | 11.9  | 11   | 8.3  | 4.13 | 1.41 | 0.461 |

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Light-duty vehicle capital costs -         | 0     | 0     | 91    | 186   | 634   | 1,979 | 2,888 |
| Cumulative 5-yr (million \$2018)           |       |       |       |       |       |       |       |
| Public EV charging plugs - DC Fast (1000   | 0.229 | 0     | 0.29  | 0     | 1.39  | 0     | 3.84  |
| _units)                                    |       |       |       |       |       |       |       |
| Public EV charging plugs - L2 (1000 units) | 0.794 | 0     | 6.97  | 0     | 33.5  | 0     | 92.2  |
| Vehicle sales - Heavy-duty - diesel (%)    | 97.4  | 96    | 91.3  | 79.8  | 58.2  | 32.1  | 13.7  |
| Vehicle sales - Heavy-duty - EV (%)        | 0.498 | 1.45  | 4.11  | 10.8  | 23.6  | 39.5  | 51    |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.228 | 0.236 | 0.239 | 0.225 | 0.179 | 0.109 | 0.051 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.094 | 0.104 | 0.107 | 0.092 | 0.06  | 0.03  |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.332 | 0.969 | 2.74  | 7.17  | 15.7  | 26.3  | 34    |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.5   | 1.28  | 1.46  | 1.95  | 2.25  | 1.96  | 1.14  |
| Vehicle sales - Light-duty - diesel (%)    | 1.33  | 1.78  | 2.01  | 1.59  | 0.999 | 0.509 | 0.219 |
| Vehicle sales - Light-duty - EV (%)        | 2.17  | 5.3   | 13.1  | 27.8  | 50.5  | 73.4  | 88.1  |
| Vehicle sales - Light-duty - gasoline (%)  | 90.9  | 86.3  | 77.7  | 64.2  | 43.8  | 23.4  | 10.4  |
| Vehicle sales - Light-duty - hybrid (%)    | 5.4   | 6.17  | 6.83  | 6.1   | 4.45  | 2.56  | 1.22  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.112 | 0.373 | 0.312 | 0.234 | 0.163 | 0.089 | 0.042 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.093 | 0.096 | 0.086 | 0.074 | 0.053 | 0.029 | 0.013 |
| Vehicle sales - Medium-duty - diesel (%)   | 64.8  | 62.2  | 57.7  | 49.4  | 35.6  | 19.6  | 8.37  |
| Vehicle sales - Medium-duty - EV (%)       | 0.664 | 1.94  | 5.49  | 14.3  | 31.4  | 52.6  | 68    |
| Vehicle sales - Medium-duty - gasoline (%) | 33.8  | 34.7  | 34.7  | 31.9  | 24.4  | 14.2  | 6.33  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.363 | 0.418 | 0.464 | 0.478 | 0.414 | 0.275 | 0.141 |
| Vehicle sales - Medium-duty - hydrogen     | 0.166 | 0.485 | 1.37  | 3.58  | 7.86  | 13.2  | 17    |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.253 | 0.266 | 0.279 | 0.286 | 0.258 | 0.184 | 0.102 |

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

| Item                                                                | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------------------------------|------|------|------|------|------|------|------|
| Capital invested - Biomass power plant (billion \$2018)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Capital invested - Biomass w/ccu allam power plant (billion \$2018) | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Capital invested - Biomass w/ccu power plant (billion \$2018)       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

| Item                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------|------|------|------|------|------|------|------|
| Biomass power plant (GWh)             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu allam power plant (GWh) | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Biomass w/ccu power plant (GWh)       | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

| Item                                         | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|----------------------------------------------|------|------|------|------|------|------|-------|
| Biomass purchases (million \$2018/year)      | 0    | 0    | 0    | 0    | 0    | 0    | 142   |
| Conversion capital investment -              | 0    | 0    | 0    | 0    | 0    | 0    | 2,269 |
| Cumulative 5-yr (million \$2018)             |      |      |      |      |      |      |       |
| Number of facilities - Allam power w ccu     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Beccs hydrogen        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Diesel (quantity)     | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Diesel ccu (quantity) | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power (quantity)      | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Power ccu             | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Pyrolysis (quantity)  | 0    | 0    | 0    | 0    | 0    | 0    | 2     |
| Number of facilities - Pyrolysis ccu         | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| (quantity)                                   |      |      |      |      |      |      |       |
| Number of facilities - Sng (quantity)        | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| Number of facilities - Sng ccu (quantity)    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |

#### Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

| Item                               | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------|------|------|------|------|------|------|------|
| Annual - All (MMT)                 |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Annual - BECCS (MMT)               |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - Cement and lime (MMT)     |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Annual - NGCC (MMT)                |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Cumulative - All (MMT)             |      | 0    | 0    | 0    | 0    | 0    | 0.01 |
| Cumulative - BECCS (MMT)           |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - Cement and lime (MMT) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Cumulative - NGCC (MMT)            |      | 0    | 0    | 0    | 0    | 0    | 0.01 |

# Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

| Item                                           | 2020 | 2025 | 2030  | 2035  | 2040  | 2045  | 2050  |
|------------------------------------------------|------|------|-------|-------|-------|-------|-------|
| All (km)                                       |      | 0    | 146   | 146   | 146   | 146   | 146   |
| Cumulative investment - All (million \$2018)   |      | 0    | 262   | 262   | 262   | 262   | 262   |
| Cumulative investment - Spur (million \$2018)  |      | 0    | 0.702 | 0.702 | 0.702 | 0.702 | 0.703 |
| Cumulative investment - Trunk (million \$2018) |      | 0    | 262   | 262   | 262   | 262   | 262   |
| Spur (km)                                      |      | 0    | 1.21  | 1.21  | 1.21  | 1.21  | 1.21  |
| Trunk (km)                                     |      | 0    | 145   | 145   | 145   | 145   | 145   |

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

|                                                                         |      | •    |      |      |      |      |      |
|-------------------------------------------------------------------------|------|------|------|------|------|------|------|
| Item                                                                    | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| CO2 storage (MMT)                                                       |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Injection wells (wells)                                                 |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Resource characterization, appraisal, permitting costs (million \$2020) |      | 0    | 0    | 0    | 0    | 0    | 0    |
| Wells and facilities construction costs (million \$2020)                |      | 0    | 0    | 0    | 0    | 0    | 0    |

#### Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

| Table 56: E-B+ scenario - PILLAR 6: Land | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Carbon sink potential - Aggressive       |      |      |      |      |      | 20.0 | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | · ·   |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -79   |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0     |
| deployment - Cropland to woody energy    |      |      |      |      |      |      | -     |
| crops (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | 0     |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |       |
| (1000 tC02e/y)                           |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -3.14 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Aggressive       |      |      |      |      |      |      | -82.1 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      | -     |
| grasses (1000 tC02e/y)                   |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -41.5 |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| tCO2e/y)                                 |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Cropland to woody energy    |      |      |      |      |      |      | -     |
| crops (1000 tC02e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | 0     |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |       |
| (1000 tC02e/y)                           |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -1.57 |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 tCO2e/y)                     |      |      |      |      |      |      |       |
| Carbon sink potential - Moderate         |      |      |      |      |      |      | -43.1 |
| deployment - Total (1000 tCO2e/y)        |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Corn-ethanol to  |      |      |      |      |      |      |       |
| energy grasses (1000 hectares)           |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 134   |
| Aggressive deployment - Cropland         |      |      |      |      |      |      |       |
| measures (1000 hectares)                 |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0     |
| Aggressive deployment - Cropland to      |      |      |      |      |      |      |       |
| woody energy crops (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 0.313 |
| Aggressive deployment - Pasture to       |      |      |      |      |      |      |       |
| energy crops (1000 hectares)             |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 5.72  |
| Aggressive deployment - Permanent        |      |      |      |      |      |      |       |
| conservation cover (1000 hectares)       |      |      |      |      |      |      |       |
| Land impacted for carbon sink -          |      |      |      |      |      |      | 141   |
| Aggressive deployment - Total (1000      |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

| Item                                     | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Corn-ethanol to energy      |      |      |      |      |      |      |       |
| grasses (1000 hectares)                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 28.7  |
| deployment - Cropland measures (1000     |      |      |      |      |      |      |       |
| hectares)                                |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0     |
| deployment - Cropland to woody energy    |      |      |      |      |      |      |       |
| crops (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 0.313 |
| deployment - Pasture to energy crops     |      |      |      |      |      |      |       |
| (1000 hectares)                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 2.86  |
| deployment - Permanent conservation      |      |      |      |      |      |      |       |
| cover (1000 hectares)                    |      |      |      |      |      |      |       |
| Land impacted for carbon sink - Moderate |      |      |      |      |      |      | 31.8  |
| deployment - Total (1000 hectares)       |      |      |      |      |      |      |       |

#### Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

| Item                                      | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate |      |      |      |      |      |      | -54.6  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - High - All (not   |      |      |      |      |      |      | -3,043 |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - High - Avoid      |      |      |      |      |      |      | -768   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - High - Extend     |      |      |      |      |      |      | -1,158 |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - High - Improve    |      |      |      |      |      |      | -10.4  |
| plantations (1000 tC02e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -360   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - High - Increase   |      |      |      |      |      |      | -143   |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | C      |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - High - Reforest   |      |      |      |      |      |      | -224   |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - High - Restore    |      |      |      |      |      |      | -325   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Accelerate  |      |      |      |      |      |      | -27.4  |
| regeneration (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Low - All (not    |      |      |      |      |      |      | -902   |
| counting overlap) (1000 tCO2e/y)          |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Avoid       |      |      |      |      |      |      | -128   |
| deforestation (1000 tCO2e/y)              |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Extend      |      |      |      |      |      |      | -445   |
| rotation length (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Improve     |      |      |      |      |      |      | -5.3   |
| plantations (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -120   |
| retention of HWP (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -50.   |
| trees outside forests (1000 tCO2e/y)      |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | (      |
| cropland (1000 tCO2e/y)                   |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest    |      |      |      |      |      |      | -1     |
| pasture (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Restore     |      |      |      |      |      |      | -109   |
| productivity (1000 tCO2e/y)               |      |      |      |      |      |      |        |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

| Iable 57: E-B+ scenario - PILLAR 6: Land s<br>Item | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|----------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Mid - Accelerate           | 2020 | 2023 | 2000 | 2000 | 2040 | 2043 | -41    |
| regeneration (1000 tCO2e/y)                        |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - All (not             |      |      |      |      |      |      | -1,973 |
| counting overlap) (1000 tC02e/y)                   |      |      |      |      |      |      | 1,710  |
| Carbon sink potential - Mid - Avoid                |      |      |      |      |      |      | -448   |
| deforestation (1000 tC02e/y)                       |      |      |      |      |      |      | -440   |
| Carbon sink potential - Mid - Extend               |      | -    |      |      |      |      | -801   |
| rotation length (1000 tCO2e/y)                     |      |      |      |      |      |      | -001   |
| Carbon sink potential - Mid - Improve              |      |      |      |      |      |      | -7.77  |
|                                                    |      |      |      |      |      |      | -1.11  |
| plantations (1000 tC02e/y)                         |      |      |      |      |      |      | 0/0    |
| Carbon sink potential - Mid - Increase             |      |      |      |      |      |      | -240   |
| retention of HWP (1000 tC02e/y)                    |      |      |      |      |      |      | 0/7    |
| Carbon sink potential - Mid - Increase             |      |      |      |      |      |      | -96.7  |
| trees outside forests (1000 tC02e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest             |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                            |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest             |      |      |      |      |      |      | -121   |
| pasture (1000 tCO2e/y)                             |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Restore              |      |      |      |      |      |      | -217   |
| productivity (1000 tCO2e/y)                        |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 8.94   |
| High - Accelerate regeneration (1000               |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 104    |
| High - Avoid deforestation (over 30 years)         |      |      |      |      |      |      |        |
| (1000 hectares)                                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 591    |
| High - Extend rotation length (1000                |      |      |      |      |      |      | 071    |
| hectares)                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 3.84   |
| High - Improve plantations (1000                   |      |      |      |      |      |      | 5.04   |
| hectares)                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 0      |
| High - Increase retention of HWP (1000             |      |      |      |      |      |      | U      |
| -                                                  |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      | 10 /   |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 13.6   |
| High - Increase trees outside forests              |      |      |      |      |      |      |        |
| (1000 hectares)                                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 0      |
| High - Reforest cropland (1000 hectares)           |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 6.37   |
| High - Reforest pasture (1000 hectares)            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 108    |
| High - Restore productivity (1000                  |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 835    |
| High - Total impacted (over 30 years)              |      |      |      |      |      |      |        |
| (1000 hectares)                                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 4.47   |
| Low - Accelerate regeneration (1000                |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 97.6   |
| Low - Avoid deforestation (over 30 years)          |      |      |      |      |      |      | , 1.0  |
| (1000 hectares)                                    |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -          |      |      |      |      |      | -    | 226    |
| Low - Extend rotation length (1000                 |      |      |      |      |      |      | 220    |
|                                                    |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      | 100    |
| Land impacted for carbon sink potential -          |      |      |      |      |      |      | 1.92   |
| Low - Improve plantations (1000                    |      |      |      |      |      |      |        |
| hectares)                                          |      |      |      |      |      |      |        |
|                                                    |      |      |      |      |      |      |        |

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

|   |  |  | 2045 | 2050 |
|---|--|--|------|------|
|   |  |  |      | 0    |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 7.16 |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 0    |
|   |  |  |      |      |
|   |  |  |      | 1.1  |
|   |  |  |      |      |
|   |  |  |      | 65.1 |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 404  |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 6.7  |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 101  |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 408  |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 2.89 |
|   |  |  |      |      |
|   |  |  |      | 0    |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 10.4 |
|   |  |  |      |      |
|   |  |  |      |      |
|   |  |  |      | 0    |
|   |  |  |      | _    |
|   |  |  |      | 7.98 |
|   |  |  |      |      |
|   |  |  |      | 131  |
|   |  |  |      | .51  |
|   |  |  |      |      |
| - |  |  |      | 668  |
|   |  |  |      | 550  |
|   |  |  |      |      |
|   |  |  |      |      |

Table 58: E-B+ scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 361   | 0.581 | 0.58  | 0.562 | 0.335 | 0.01  |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 222   | 90.9  | 47.2  | 37.1  | 23    | 8.13  |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 1,013 | 1,020 | 985   | 880   | 695   | 473   |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 40.8  | 0.066 | 0.065 | 0.063 | 0.038 | 0.001 |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 25.1  | 10.3  | 5.33  | 4.18  | 2.6   | 0.918 |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 114   | 115   | 111   | 99    | 78.2  | 53.2  |

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

| Item                                                                      | 2020 | 2025  | 2030  | 2035 | 2040  | 2045  | 2050 |
|---------------------------------------------------------------------------|------|-------|-------|------|-------|-------|------|
| Commercial HVAC investment in 2020s -<br>Cumulative 5-yr (million \$2018) | 0    | 6,993 | 7,196 | 0    | 0     | 0     | 0    |
| Sales of cooking units - Electric<br>Resistance (%)                       | 36.9 | 39    | 38.6  | 38.5 | 38.3  | 38.5  | 38.4 |
| Sales of cooking units - Gas (%)                                          | 63.1 | 61    | 61.4  | 61.5 | 61.7  | 61.5  | 61.6 |
| Sales of space heating units - Electric<br>Heat Pump (%)                  | 4.76 | 13    | 41.2  | 64.2 | 67.9  | 68.3  | 68.4 |
| Sales of space heating units - Electric<br>Resistance (%)                 | 2.29 | 2.72  | 7.48  | 19.8 | 29.9  | 31.6  | 31.6 |
| Sales of space heating units - Fossil (%)                                 | 42.2 | 34.8  | 24.4  | 9.58 | 1.37  | 0.108 | 0    |
| Sales of space heating units - Gas Furnace (%)                            | 50.7 | 49.5  | 26.9  | 6.44 | 0.813 | 0.044 | 0    |
| Sales of water heating units - Electric<br>Heat Pump (%)                  | 2.81 | 2.41  | 2.38  | 2.38 | 2.36  | 2.39  | 2.38 |
| Sales of water heating units - Electric<br>Resistance (%)                 | 13.8 | 11.5  | 11.2  | 11.4 | 11.4  | 11.2  | 11.3 |
| Sales of water heating units - Gas Furnace (%)                            | 78.2 | 81.7  | 82.2  | 82   | 82    | 82.3  | 82.2 |
| Sales of water heating units - Other (%)                                  | 5.24 | 4.38  | 4.24  | 4.21 | 4.3   | 4.08  | 4.12 |

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

| Item                                        | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|---------------------------------------------|------|------|------|------|------|------|------|
| Electricity distribution capital invested - |      | 1.02 | 1.02 | 2.7  | 2.9  | 2.76 | 2.92 |
| Cumulative 5-yr (billion \$2018)            |      |      |      |      |      |      |      |

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

|                                        | , , = |      |      |      |      |      |      |
|----------------------------------------|-------|------|------|------|------|------|------|
| Item                                   | 2020  | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
| Final energy use - Commercial (PJ)     | 120   | 116  | 117  | 116  | 115  | 117  | 121  |
| Final energy use - Industry (PJ)       | 64.9  | 65.9 | 67.9 | 70.3 | 74.3 | 78.9 | 82.7 |
| Final energy use - Residential (PJ)    | 155   | 145  | 139  | 135  | 132  | 130  | 128  |
| Final energy use - Transportation (PJ) | 228   | 214  | 197  | 187  | 187  | 193  | 200  |

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|--------------------------------------------|------|------|------|------|------|------|------|
| Residential HVAC investment in 2020s vs.   | 0    | 3.06 | 3.2  | 0    | 0    | 0    | 0    |
| REF - Cumulative 5-yr (billion \$2018)     |      |      |      |      |      |      |      |
| Sales of cooking units - Electric          | 71.5 | 71.5 | 71.5 | 71.5 | 71.5 | 71.5 | 71.5 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of cooking units - Gas (%)           | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 |
| Sales of space heating units - Electric    | 7.29 | 8.79 | 9.1  | 9.58 | 9.77 | 9.98 | 10.3 |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of space heating units - Electric    | 4.95 | 6.28 | 6.15 | 6.11 | 6.12 | 5.85 | 5.64 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of space heating units - Fossil (%)  | 53.3 | 57.9 | 31.1 | 12.3 | 11.1 | 11   | 11   |
| Sales of space heating units - Gas (%)     | 34.5 | 27.1 | 53.6 | 72   | 73   | 73.2 | 73.1 |
| Sales of water heating units - Electric    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Heat Pump (%)                              |      |      |      |      |      |      |      |
| Sales of water heating units - Electric    | 35.5 | 53.5 | 53.4 | 53.5 | 53.4 | 53.4 | 53.4 |
| Resistance (%)                             |      |      |      |      |      |      |      |
| Sales of water heating units - Gas Furnace | 46.8 | 34.3 | 34.3 | 34.2 | 34.2 | 34.2 | 34.2 |
| (%)                                        |      |      |      |      |      |      |      |
| Sales of water heating units - Other (%)   | 17.6 | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 | 12.3 |

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

| Item                                       | 2020  | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vehicle sales - Heavy-duty - diesel (%)    | 98.1  | 98.2  | 97.9  | 97    | 95.6  | 93.5  | 91.6  |
| Vehicle sales - Heavy-duty - EV (%)        | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Vehicle sales - Heavy-duty - gasoline (%)  | 0.229 | 0.242 | 0.257 | 0.274 | 0.294 | 0.317 | 0.343 |
| Vehicle sales - Heavy-duty - hybrid (%)    | 0.083 | 0.096 | 0.112 | 0.13  | 0.15  | 0.174 | 0.202 |
| Vehicle sales - Heavy-duty - hydrogen FC   | 0.119 | 0.138 | 0.16  | 0.186 | 0.216 | 0.25  | 0.29  |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Heavy-duty - other (%)     | 1.51  | 1.31  | 1.57  | 2.37  | 3.69  | 5.71  | 7.57  |
| Vehicle sales - Light-duty - diesel (%)    | 1.32  | 1.76  | 2.14  | 2     | 1.79  | 1.67  | 1.58  |
| Vehicle sales - Light-duty - EV (%)        | 4.35  | 6.62  | 7.45  | 9.21  | 11.1  | 12.7  | 13.9  |
| Vehicle sales - Light-duty - gasoline (%)  | 88.9  | 85.1  | 82.7  | 80.6  | 78.3  | 76.5  | 75    |
| Vehicle sales - Light-duty - hybrid (%)    | 5.22  | 6.03  | 7.31  | 7.85  | 8.36  | 8.82  | 9.12  |
| Vehicle sales - Light-duty - hydrogen FC   | 0.109 | 0.368 | 0.332 | 0.292 | 0.287 | 0.286 | 0.296 |
| (%)                                        |       |       |       |       |       |       |       |
| Vehicle sales - Light-duty - other (%)     | 0.091 | 0.095 | 0.091 | 0.092 | 0.091 | 0.09  | 0.092 |
| Vehicle sales - Medium-duty - diesel (%)   | 65.2  | 63.5  | 61.6  | 59.6  | 58    | 56.5  | 55.2  |
| Vehicle sales - Medium-duty - EV (%)       | 0.027 | 0.105 | 0.329 | 0.671 | 0.895 | 0.973 | 0.993 |
| Vehicle sales - Medium-duty - gasoline (%) | 34    | 35.5  | 37    | 38.5  | 39.7  | 40.8  | 41.7  |
| Vehicle sales - Medium-duty - hybrid (%)   | 0.365 | 0.427 | 0.496 | 0.577 | 0.674 | 0.793 | 0.929 |
| Vehicle sales - Medium-duty - hydrogen     | 0.175 | 0.208 | 0.242 | 0.285 | 0.339 | 0.409 | 0.487 |
| FC (%)                                     |       |       |       |       |       |       |       |
| Vehicle sales - Medium-duty - other (%)    | 0.255 | 0.271 | 0.298 | 0.345 | 0.42  | 0.528 | 0.671 |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

| Item                                                                  | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|-----------------------------------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y) |      |      |      |      |      |      | -54.6  |
| Carbon sink potential - High - All (not                               |      |      |      |      |      |      | -3,043 |
| counting overlap) (1000 tCO2e/y)                                      |      |      |      |      |      |      | -3,043 |
| Carbon sink potential - High - Avoid                                  |      |      |      |      |      |      | -768   |
| deforestation (1000 tC02e/y)                                          |      |      |      |      |      |      | -100   |
| Carbon sink potential - High - Extend                                 |      |      |      |      |      |      | -1,158 |
| rotation length (1000 tC02e/y)                                        |      |      |      |      |      |      | -1,100 |
| Carbon sink potential - High - Improve                                |      |      |      |      |      |      | -10.4  |
| plantations (1000 tCO2e/y)                                            |      |      |      |      |      |      | -10.4  |
| Carbon sink potential - High - Increase                               |      |      |      |      |      |      | -360   |
| retention of HWP (1000 tC02e/y)                                       |      |      |      |      |      |      | -300   |
| Carbon sink potential - High - Increase                               |      |      |      |      |      |      | -143   |
| trees outside forests (1000 tCO2e/y)                                  |      |      |      |      |      |      | -143   |
| Carbon sink potential - High - Reforest                               |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                                               |      |      |      |      |      |      | U      |
| Carbon sink potential - High - Reforest                               |      |      |      |      |      |      | -224   |
| pasture (1000 tCO2e/y)                                                |      |      |      |      |      |      | -224   |
| Carbon sink potential - High - Restore                                |      |      |      |      |      |      | -325   |
| productivity (1000 tCO2e/y)                                           |      |      |      |      |      |      | -323   |
| Carbon sink potential - Low - Accelerate                              |      |      |      |      |      |      | -27.4  |
| regeneration (1000 tCO2e/y)                                           |      |      |      |      |      |      | -21.4  |
| Carbon sink potential - Low - All (not                                |      |      |      |      |      |      | -902   |
| counting overlap) (1000 tCO2e/y)                                      |      |      |      |      |      |      | -902   |
| Carbon sink potential - Low - Avoid                                   |      |      |      |      |      |      | -128   |
| deforestation (1000 tC02e/y)                                          |      |      |      |      |      |      | -120   |
| Carbon sink potential - Low - Extend                                  |      |      |      |      |      |      | -445   |
| ·                                                                     |      |      |      |      |      |      | -445   |
| rotation length (1000 tC02e/y)  Carbon sink potential - Low - Improve |      |      |      |      |      |      | -5.3   |
| ·                                                                     |      |      |      |      |      |      | -5.3   |
| plantations (1000 tC02e/y)  Carbon sink potential - Low - Increase    |      |      |      |      |      |      | -120   |
| ·                                                                     |      |      |      |      |      |      | -120   |
| retention of HWP (1000 tC02e/y)                                       |      |      |      |      |      |      | FO 1   |
| Carbon sink potential - Low - Increase                                |      |      |      |      |      |      | -50.1  |
| trees outside forests (1000 tC02e/y)                                  |      |      |      |      |      |      |        |
| Carbon sink potential - Low - Reforest                                |      |      |      |      |      |      | 0      |
| cropland (1000 tCO2e/y)                                               |      |      |      |      |      |      |        |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                       | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050   |
|--------------------------------------------|------|------|------|------|------|------|--------|
| Carbon sink potential - Low - Reforest     |      |      |      |      |      |      | -1     |
| pasture (1000 tC02e/y)                     |      |      |      |      |      |      | 10     |
| Carbon sink potential - Low - Restore      |      |      |      |      |      |      | -109   |
| productivity (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Accelerate   |      |      |      |      |      |      | -4     |
| regeneration (1000 tCO2e/y)                |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - All (not     |      |      |      |      |      |      | -1,973 |
| counting overlap) (1000 tCO2e/y)           |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Avoid        |      |      |      |      |      |      | -448   |
| deforestation (1000 tCO2e/y)               |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Extend       |      |      |      |      |      |      | -80    |
| rotation length (1000 tCO2e/y)             |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Improve      |      |      |      |      |      |      | -7.77  |
| plantations (1000 tCO2e/y)                 |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -240   |
| retention of HWP (1000 tCO2e/y)            |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Increase     |      |      |      |      |      |      | -96.7  |
| trees outside forests (1000 tCO2e/y)       |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | C      |
| cropland (1000 tCO2e/y)                    |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Reforest     |      |      |      |      |      |      | -12    |
| pasture (1000 tCO2e/y)                     |      |      |      |      |      |      |        |
| Carbon sink potential - Mid - Restore      |      |      |      |      |      |      | -217   |
| productivity (1000 tC02e/y)                |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 8.94   |
| High - Accelerate regeneration (1000       |      |      |      |      |      |      | 0.7    |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 104    |
| High - Avoid deforestation (over 30 years) |      |      |      |      |      |      | 10-    |
| (1000 hectares)                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 59     |
| High - Extend rotation length (1000        |      |      |      |      |      |      | 07     |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  | +    |      |      |      |      |      | 3.84   |
| High - Improve plantations (1000           |      |      |      |      |      |      | 0.0-   |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | C      |
| High - Increase retention of HWP (1000     |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 13.6   |
| High - Increase trees outside forests      |      |      |      |      |      |      | 13.0   |
| (1000 hectares)                            |      |      |      |      |      |      |        |
| ,                                          |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | C      |
| High - Reforest cropland (1000 hectares)   |      |      |      |      |      |      | / 0-   |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 6.37   |
| High - Reforest pasture (1000 hectares)    |      |      |      |      |      |      | 100    |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 108    |
| High - Restore productivity (1000          |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 835    |
| High - Total impacted (over 30 years)      |      |      |      |      |      |      |        |
| (1000 hectares)                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 4.47   |
| Low - Accelerate regeneration (1000        |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 97.6   |
| Low - Avoid deforestation (over 30 years)  |      |      |      |      |      |      |        |
| (1000 hectares)                            |      |      |      |      |      |      |        |
| Land impacted for carbon sink potential -  |      |      |      |      |      |      | 226    |
| Low - Extend rotation length (1000         |      |      |      |      |      |      |        |
| hectares)                                  |      |      |      |      |      |      |        |

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

| Item                                                                             | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050  |
|----------------------------------------------------------------------------------|------|------|------|------|------|------|-------|
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 1.92  |
| Low - Improve plantations (1000                                                  |      |      |      |      |      |      |       |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 0     |
| Low - Increase retention of HWP (1000                                            |      |      |      |      |      |      |       |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 7.16  |
| Low - Increase trees outside forests                                             |      |      |      |      |      |      |       |
| (1000 hectares)                                                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 0     |
| Low - Reforest cropland (1000 hectares)                                          |      |      |      |      |      |      | 11    |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 1.1   |
| Low - Reforest pasture (1000 hectares)                                           |      |      |      |      |      |      | / - 1 |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 65.1  |
| Low - Restore productivity (1000                                                 |      |      |      |      |      |      |       |
| hectares) Land impacted for carbon sink potential -                              |      |      |      |      |      |      | 101   |
|                                                                                  |      |      |      |      |      |      | 404   |
| Low - Total impacted (over 30 years)                                             |      |      |      |      |      |      |       |
| (1000 hectares)                                                                  |      |      |      |      |      |      | 6.7   |
| Land impacted for carbon sink potential -<br>Mid - Accelerate regeneration (1000 |      |      |      |      |      |      | 0.7   |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 101   |
| Mid - Avoid deforestation (over 30 years)                                        |      |      |      |      |      |      | 101   |
| (1000 hectares)                                                                  |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 408   |
| Mid - Extend rotation length (1000                                               |      |      |      |      |      |      | 400   |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 2.89  |
| Mid - Improve plantations (1000 hectares)                                        |      |      |      |      |      |      | 2.07  |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 0     |
| Mid - Increase retention of HWP (1000                                            |      |      |      |      |      |      | J     |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 10.4  |
| Mid - Increase trees outside forests (1000                                       |      |      |      |      |      |      |       |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 0     |
| Mid - Reforest cropland (1000 hectares)                                          |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 7.98  |
| Mid - Reforest pasture (1000 hectares)                                           |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 131   |
| Mid - Restore productivity (1000                                                 |      |      |      |      |      |      |       |
| hectares)                                                                        |      |      |      |      |      |      |       |
| Land impacted for carbon sink potential -                                        |      |      |      |      |      |      | 668   |
| Mid - Total impacted (over 30 years) (1000                                       |      |      |      |      |      |      |       |
| hectares)                                                                        |      |      |      |      |      |      |       |
|                                                                                  |      |      |      |      |      |      |       |

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

|                                                                           |        |      | ,      |      |      |      |        |
|---------------------------------------------------------------------------|--------|------|--------|------|------|------|--------|
| Item                                                                      | 2020   | 2025 | 2030   | 2035 | 2040 | 2045 | 2050   |
| Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)                | -10.2  |      | -1.57  |      |      |      | -1.41  |
| Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y) | -0.098 |      | -0.176 |      |      |      | -0.183 |
| Business-as-usual carbon sink - Total (Mt<br>CO2e/y)                      | -10.3  |      | -1.75  |      |      |      | -1.59  |

Table 66: REF scenario - IMPACTS - Health

| Item                                                                     | 2020 | 2025  | 2030  | 2035  | 2040  | 2045  | 2050  |
|--------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|-------|
| Monetary damages from air pollution -<br>Coal (million 2019\$)           |      | 996   | 649   | 609   | 593   | 582   | 521   |
| Monetary damages from air pollution -<br>Natural Gas (million 2019\$)    |      | 149   | 122   | 158   | 173   | 182   | 172   |
| Monetary damages from air pollution -<br>Transportation (million 2019\$) |      | 1,011 | 1,031 | 1,048 | 1,068 | 1,088 | 1,109 |
| Premature deaths from air pollution -<br>Coal (deaths)                   |      | 112   | 73.4  | 68.8  | 67    | 65.8  | 58.8  |
| Premature deaths from air pollution -<br>Natural Gas (deaths)            |      | 16.8  | 13.7  | 17.9  | 19.5  | 20.6  | 19.5  |
| Premature deaths from air pollution -<br>Transportation (deaths)         |      | 114   | 116   | 118   | 120   | 122   | 125   |