Início da Astronomia: História e Métodos

R. Boczko (mod. R. Costa) IAG-USP

Tales

(Grego, séc. VI a.C.)

A Terra é um disco chato num Universo infinito de água

Pitágoras

(Grego, séc. VI a.C.)

Propôs de que a Terra fosse esférica

Aristóteles

(Grego, séc. IV a.C.)

Geocentrismo por convicção filosófica!

Sistema Geocêntrico

(Grego, Ptolomeu, séc. II)

Sistema de Epiciclos

(Apolônio de Perga, 261 a.C. – 190 a.C.)

Sistema Complexo de Epiciclos

Geocentrismo com epiciclos

(Ptolomeu, séc. II D.C.)

Sistema Híbrido

(Heráclides, séc. IV a .C.)

Instrumentos Astronômicos Antigos

Relógios de Sol

Fundamentos do Gnômon com mostrador horizontal

Gnômon com mostrador horizontal

Astrolábio

(Origem Babilônica)

Astrolábio astronômico

Astrolábio de marinheiro

Quadrante mural do **Observatório** de **Tycho Brahe** da Ilha de Ven (Dinamarca)

Extraído de uma obra de Tycho Brahe

ARMILLÆ ZODIACALES.

Esfera armilar moderna

Sistema Heliocêntrico

(Copérnico, séc. XVI)

Copérnico (Polônia) 1473 - 1543

Distâncias no Sistema solar

Raio da Terra

Eratóstenes 276 a.C. – 196 a.C.

360 ° ____ 2π R 7,2 ° ___ L

Mas... já se sabia que a Terra era esférica naquela época?

Esfericidade da Terra

Terra plana?

Eclipse lunar à meia-noite

Funciona!

Terra não é plana!

Terra plana

Eclipse lunar ao nascer ou ao ocaso do Sol

Não funciona!

Terra tem que ser esférica!

Eclipse lunar a qualquer hora

Funciona!

Distância da Terra à Lua

(Hiparcos, séc. II a .C.)

R = raio da Terra

L = semi-diâmetro angular da Lua ~16' (medido)

s = semi-diâmetro angular do Sol ~ 16' (medido)

a = semi-diâmetro angular da Terra vista do Sol ~ 8,794"

T = período orbital da Lua ~ 27,3 dias

Distância da Terra à Lua

No triângulo ABC: $a + b + x = 180^{\circ}$ Ângulo raso em C: $s + x + c = 180^{\circ}$

a + b + x = s + x + c a + b = s + cNo triângulo BCQ: sen b = R / d $a \sim 0$

Logo: d = R / sen b

= **S** + **C**

Distância da Terra ao Sol

(Aristarco, grego, 320 a.C. - 250 a.C.)

Método de Copérnico para calcular raios orbitais e períodos dos <u>Planetas Interiores</u>

Períodos: em dois períodos sinódicos sucessivos

Terra
A ____ 360°
S ___ a

Planeta
S ____ 360 + a
T 3600

1/T = 1/A + 1/S

Distância X:

Na máxima elongação sen b = X / D

X = D . sen b

Período: em duas oposições sucessivas

Terra

Planeta

1/T = 1/A - 1/S

Raio orbital: duma oposição à próxima quadratura

$$cos d = D / Y$$

Y = D / $cos d$

Mas será que as órbita dos planetas são mesmo circulares?

Johann Kepler 1571 - 1630

Órbita de Marte segundo Kepler

Leis de Kepler

Primeira Lei de Kepler (1571 - 1630)

Um corpo ligado a outro gravitacionalmente gira em torno dele numa órbita elíptica, sendo que um deles ocupa o foco da elipse.

Segunda Lei de Kepler (1571 - 1630)

Um corpo ligado a outro gravitacionalmente gira em torno dele, com seu raio vetor varrendo áreas iguais em tempos iguais.

Terceira Lei de Kepler

As leis de Kepler dum modo que ele jamais teria pensado:

O cálculo da massa do Buraco Negro central da Galáxia, que é de 3.3 milhões de M_☉

Estrutura atualmente conhecida do Sistema Planetário

Órbitas não coplanares

The Sun and Nine Planets

Copyright © Calvin J. Hamilton

50.000 U.A.

