# Multi-agent reinforcement learning

### Schnebli Zoltán 1

<sup>1</sup>Babeş-Bolyai University, Faculty of Mathematics and Computer Science

## Introduction

· Motivation?

· Automatization

· Robotics

# Reinforcement learning

## Working principle:

- · Agent
- · Environment
- · Action State
- · Reward



# Reinforcement learning

## Exploration vs. exploitation

- $\cdot$   $\epsilon$  greedy strategy
- $\cdot$   $\epsilon$  decay

## Single agent environment

## Markov decision process

- $\cdot \langle S, A, \mathcal{P}_{\cdot}(\cdot, \cdot), \mathcal{R}_{\cdot}(\cdot, \cdot), \gamma \rangle$ 
  - · S set of states
  - · A set of actions
  - $\cdot \mathcal{P}_a(s,s')$  probability of reaching state s'
  - $\cdot \mathcal{R}_a(s,s')$  value of the reward if we go to s'
  - $\cdot \gamma$  discount factor

# Single agent environment

### Partially observable Markov decision process

$$\cdot \ \langle S, A, P_{.}(\cdot, \cdot), R_{.}(\cdot, \cdot), \gamma, \Omega, O(\cdot, \cdot) \rangle$$

- $\cdot$  S, A, T, R,  $\gamma$
- $\cdot \Omega$  set of all observations
- ·  $\mathcal{O}_a(o,s')$  probability of getting observation o

# Multi agent environment

### Markov games

· N agents

$$\cdot \ \mathcal{A} := \{\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n\}$$

$$\cdot \ \mathcal{O} := \{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_n\}$$

 $\cdot$  It is the most general modell

# Deep deterministic policy gradient algorithm with generative cooperative policy network

- · Every agent has 3 policies
  - · Q-network -> optimal action during execution
  - Greedy policy network -> maximizes the global objective based on the local actions
  - Generative cooperative policy newtork -> learn other agents policies during training
- · pro: cooperativeness
- · con: extra policies to train

### **Experiment - Compared algorithms**

- · CF shared
- · FDMARL individual
- · DDPG
- · DDPG-GCPN
- DDPG-GCPN with random GCPNs in sample-generating



### **Experiment - Results**

### 2 reward functions

- · shared reward (a)
- · individual (b)



### Emergent Complexity via Multi-Agent Competition

· goal: get complex agent behavior from simple environments

· ideea: self-play

### **Environments**

- · Run to Goal
- · You Shall Not Pass
- · Sumo
- · Kick and Defend









### Experiment - Results

- · opponent sampling random old opponent better
- exploration curriculum dense reward at the beginning to learn basic motor skills faster
- · interesting behaviors: blocking, rising arms, charging, kicking high, etc.

