Algorithmique & Programmation (Suite)

Chapitre 4- Utilisation de Numpy

Informatique

TD - 01

Exercices d'applications

Savoirs et compétences :

Alg – C17: tris d'un tableau à une dimension de valeurs numériques (tri par insertion, tri rapide, tri fusion).

Exercice 1 - Calcul de somme

Pour cet exercice, on prend n=1000000. On pourra augmenter ou diminuer cette valeur en fonction de la machine utilisée.

- 1. Calculer $\sum_{i=0}^{n} i$ sans utiliser numpy.
- 2. Chronométrer le temps nécessaire pour le calcul précédent, par exemple en utilisant time.clock().
- 3. Utiliser un tableau numpy et la méthode sum pour calculer à nouveau la somme proposée.
- Comparer le temps de calcul avec la méthode précédente.

Exercice 2 - Produit de Wallis

On peut justifier que : $\pi=2\prod_{n=1}^{+\infty}\frac{4n^2}{4n^2-1}$ appelé le *produit de Wallis*.

- 1. Écrire une fonction itérative, d'argument n, calculant : $2\prod_{i=1}^{n}\frac{4i^2}{4i^2-1}$.
- 2. Écrire une fonction utilisant un tableau numpy, effectuant le même calcul.
- 3. Comparer le temps de calcul de ces deux fonctions.

Exercice 3

- 1. Définir une matrice aléatoire a de taille 50×50 .
- 2. Déterminer la valeur $\max_{i} |a_{i,j+1} a_{i,j}|$.

Exercice 4

- 1. Définir une matrice aléatoire de flottants a de taille 50×50 .
- 2. Compter le nombre de valeurs inférieures à 0.5.
- 3. Remplacer toutes les valeurs inférieures à 0.5 par 0, et celles strictement supérieures à 0.5 par 1.

Exercice 5

D'après exemple 3.15 p 28 « Algèbre linéaire », Robert C. Dalang, Amel Chaabouni.

On s'intéresse au système linéaire suivant :

$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + x_4 = 0 \\ x_1 + x_3 + 2x_4 = 1 \\ 2x_1 + x_2 + x_4 = 0 \end{cases}$$

- 1. Vérifier qu'il n'y a qu'une solution à ce système.
- 2. En utilisant np.linalg.solve, déterminer cette solution.
- 3. Vérifier le résultat obtenu en utilisant un produit matriciel
- Construire la matrice m de format 4 x 5, dont les colonnes sont successivement les colonnes de a et b.
- 5. Appliquer à m la méthode du pivot de Gauss pour résoudre « à la main » le système proposé.

Exercice 6

Créer une matrice 8×8 , remplie de 0 et de 1 comme un échiquier.

Exercice 7

1

- 1. Créer une matrice aléatoire de taille 5×15 , constituées d'entiers et l'afficher.
- 2. Mettre à zéro tous les éléments de la première ligne de cette matrice.
- 3. Déterminer la moyenne des éléments de cette matrice.
- 4. Construire le vecteur dont les composantes sont les moyennes des lignes de la matrice.
- 5. Déterminer la moyenne des éléments de ce vecteur.