Lógica Digital (1001351) Mapas de Karnaugh

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 6 de março de 2019

Estratégias de minimização

- Obter a expressão mínima depende do critério usado;
- Exemplo: número de termos na expressão e o número de literais nos termos;
 - Ligeiramente diferente do nosso critério anterior;
- Estratégia intuitiva: encontrar o menor número possível de grupos de 1s que cobrem todos os casos em que a função tem um valor igual a 1;
 - Funciona bem para mapas pequenos, mas precisamos de um método organizado;

► Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		x_2x_3				
		00	01	11	10	
m.	0	1	1	0	0	
x_1	1	1	1	0	0	

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		x_2x_3				
		00	01	11	10	
~	0	1	1	0	0	
x_1	1	1	1	0	0	

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		x_2x_3				
		00	01	11	10	
m.	0	1	1	0	0	
x_1	1	1	1	0	0	

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		x_2x_3			
		00	01	11	10
œ.	0	1	1	0	0
x_1	1	1	1	0	0

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;

		x_2x_3			
		00	01	11	10
x_1	0	1	1	0	0
	1	1	1	0	0

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;
- Implicante primo essencial: contém pelo menos um mintermo que não está contido em nenhum outro implicante primo;

- Literal: cada variável que aparece em um termo de produto, na sua forma normal ou inversa;
- ▶ **Implicante:** agrupamento de 2^n mintermos adjacentes;
 - ▶ Ex. $f(x_1, x_2, x_3) = \overline{x}_2$ tem 9 implicantes;
- Implicante primo: implicante que não pode ser alargado;
 - Os maiores grupos de 1s que podem ser circulados no mapa;
- Implicante primo essencial: contém pelo menos um mintermo que não está contido em nenhum outro implicante primo;
- Cobertura: um conjunto de implicantes que abranja todas as saídas 1 da função;
 - O conjunto de todos os mintermos;
 - O conjunto de todos os implicantes primos;

Estratégias de minimização: algoritmo

- 1. Gerar todos os implicantes primos para a função;
- 2. Encontrar o conjunto dos implicantes primos essenciais;
- Se esse oferece cobertura à função, então é a solução desejada; senão, adicionar os implicantes primos não essenciais com custo mínimo;

Figure 2.58 The function $f(x_1, ..., x_4) = \sum m(0, 4, 8, 10, 11, 12, 13, 15).$

Figure 2.59 The function $f(x_1, ..., x_4) = \sum m(0, 2, 4, 5, 10, 11, 13, 15).$

		x_3x_4				
		00	01	11	10	
	00	0	1	0	0	
x_1x_2	01	0	1	1	1	
£1&2	11	1	1	1	0	
	10	0	0	1	0	

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1.5, 6.7, 11, 12, 13, 15)}$$

		x_3x_4				
		00	01	11	10	
	00	0	1	0	0	
x_1x_2	01	0	1	1	1	
w1w2	11	1	1	1	0	
	10	0	0	1	0	

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(1,5,6,7,11,12,13,15)} f(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_3 x_4 + \overline{x}_1 x_2 x_3 + x_1 x_2 \overline{x}_3 + x_1 x_3 x_4$$

		x_3x_4				
		00	01	11	10	
	00	1	1	0	0	
x_1x_2	01	0	1	1	0	
w1w2	11	0	0	1	1	
	10	0	0	0	1	

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

$$f(x_1, x_2, x_3, x_4) = \sum m_{(0,1,5,7,10,14,15)}$$

Bibliografia

▶ Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351) Mapas de Karnaugh

Prof. Edilson Kato kato@ufscar.br

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Maurício Figueiredo mauricio@ufscar.br

Prof. Roberto Inoue rsinoue@ufscar.br

Departamento de Computação Universidade Federal de São Carlos

Atualizado em: 6 de março de 2019

