GigaDevice Semiconductor Inc.

GD32F150xx Arm® Cortex®-M3 32-bit MCU

Datasheet

Table of Contents

Ta	able o	f Contents	1
Li	st of	Figures	4
Li	st of	Tables	5
1.	Gei	neral description	7
2.		vice overview	
	2.1.	Device information	
	2.2.	Block diagram	
	2.3.	Pinouts and pin assignment	
	2.4.	-	
		Memory map	
	2.5.	Clock tree	
	2.6.	Pin definitions	
	2.6.	•	
	2.6.2		
	2.6.3	· • •	
	2.6.4		
	2.6.	5. GD32F150xx pin alternate functions	31
3.	Fur	nctional description	36
	3.1.	Arm® Cortex®-M3 core	36
	3.2.	On-chip memory	36
	3.3.	Clock, reset and supply management	37
	3.4.	Boot modes	37
	3.5.	Power saving modes	38
	3.6.	Analog to digital converter (ADC)	38
	3.7.	Digital to analog converter (DAC)	39
	3.8.	DMA	39
	3.9.	General-purpose inputs/outputs (GPIOs)	39
	3.10.	Timers and PWM generation	40
	3.11.	Real time clock (RTC)	41
	3.12.	Inter-integrated circuit (I2C)	
	3.13.	Serial peripheral interface (SPI)	
	3.14.	Universal synchronous asynchronous receiver transmitter (USART)	
		· · · · · · · · · · · · · · · · · · ·	

	3.15.	Inter-IC sound (I2S)	42
	3.16.	HDMI CEC	43
	3.17.	Universal serial bus full-speed (USBD)	43
	3.18.	Touch sensing interface (TSI)	43
	3.19.	Comparators (CMP)	43
	3.20.	Debug mode	44
	3.21.	Package and operation temperature	44
4	. Ele	ctrical characteristics	45
	4.1.	Absolute maximum ratings	45
	4.2.	Operating conditions characteristics	45
	4.3.	Power consumption	47
	4.4.	EMC characteristics	51
	4.5.	Power supply supervisor characteristics	51
	4.6.	Electrical sensitivity	52
	4.7.	External clock characteristics	53
	4.8.	Internal clock characteristics	55
	4.9.	PLL characteristics	56
	4.10.	Memory characteristics	56
	4.11.	NRST pin characteristics	57
	4.12.	GPIO characteristics	57
	4.13.	ADC characteristics	59
	4.14.	Temperature sensor characteristics	60
	4.15.	DAC characteristics	60
	4.16.	I2C characteristics	61
	4.17.	USART characteristics	62
	4.18.	USBD characteristics	62
	4.19.	TIMER characteristics	63
	4.20.	WDGT characteristics	63
	4.21.	Parameter conditions	64
5	. Pac	kage information	65
	5.1.	LQFP64 package outline dimensions	65
	5.2.	LQFP48 package outline dimensions	67

۵.9		SD 9	∠ I	100XX Datasiicci
5	5.3.	QFN32 package outline dimensions		69
5	5.4.	QFN28 package outline dimensions	••••	71
5	5.5.	Thermal characteristics	••••	73
6.	Ore	dering information		75
7.	Re	vision history		76

List of Figures

Figure 2-1. GD32F150xx block diagram	10
Figure 2-2. GD32F150Rx LQFP64 pinouts	11
Figure 2-3. GD32F150Cx LQFP48 pinouts	11
Figure 2-4. GD32F150Kx QFN32 pinouts	12
Figure 2-5. GD32F150Gx QFN28 pinouts	12
Figure 2-6. GD32F150xx clock tree	15
Figure 4-1. Recommended power supply decoupling capacitors ⁽¹⁾	46
Figure 4-2. Typical supply current consumption in Run mode	50
Figure 4-3. Typical supply current consumption in Sleep mode	50
Figure 4-4. Recommended external NRST pin circuit ⁽¹⁾	57
Figure 4-5. I2C bus timing diagram	62
Figure 4-6. USBD timings: definition of data signal rise and fall time	63
Figure 5-1. LQFP64 package outline	65
Figure 5-2. LQFP64 recommended footprint	66
Figure 5-3. LQFP48 package outline	67
Figure 5-4. LQFP48 recommended footprint	68
Figure 5-5. QFN32 package outline	69
Figure 5-6. QFN32 recommended footprint	70
Figure 5-7. QFN28 package outline	71
Figure 5-8. QFN28 recommended footprint	72

List of Tables

Table 2-1. GD32F150xx devices features and peripheral list	8							
Table 2-2. GD32F150xx memory map	13							
Table 2-3. GD32F150Rx LQFP64 pin definitions	16							
Table 2-4. GD32F150Cx LQFP48 pin definitions	21							
Table 2-5. GD32F150Kx QFN32 pin definitions	25							
Table 2-6. GD32F150Gx QFN28 pin definitions								
Table 2-7. Port A alternate functions summary	31							
Table 2-8. Port B alternate functions summary	33							
Table 2-9. Port C & D & F alternate functions summary	35							
Table 4-1. Absolute maximum ratings ⁽¹⁾⁽⁴⁾	45							
Table 4-2. DC operating conditions	45							
Table 4-3. Clock frequency ⁽¹⁾	46							
Table 4-4. Operating conditions at Power up/ Power down ⁽¹⁾	46							
Table 4-5. Start-up timings of Operating conditions ⁽¹⁾⁽²⁾⁽³⁾	46							
Table 4-6. Power saving mode wakeup timings characteristics ⁽¹⁾⁽²⁾	46							
Table 4-7.Power consumption characteristics(2)(3)(3)(4)(5)	47							
Table 4-8. EMS characteristics ⁽¹⁾	51							
Table 4-9. EMI characteristics ⁽¹⁾	51							
Table 4-10. Power supply supervisor characteristics	51							
Table 4-11. ESD characteristics ⁽¹⁾	52							
Table 4-12. Static latch-up characteristics ⁽¹⁾	53							
Table 4-13. High speed crystal oscillator (HXTAL) generated from a crystal/ceramic characteris	tics							
	53							
Table 4-14. High speed external clock characteristics (HXTAL in bypass mode)	53							
Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics	54							
Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)	54							
Table 4-17. Internal 8 MHz RC oscillator (IRC8M) characteristics								
Table 4-18. Internal 40KHz RC oscillator (IRC40K) characteristics								
Table 4-19. High speed internal clock (IRC14M) characteristics	55							
Table 4-20. PLL characteristics	56							
Table 4-21. Flash memory characteristics	56							
Table 4-22. NRST pin characteristics	57							
Table 4-23. I/O port DC characteristics ⁽¹⁾⁽³⁾	57							
Table 4-24. I/O port AC characteristics(1)(2)(4)	59							
Table 4-25. ADC characteristics	59							
Table 4-26. ADC R _{AIN max} for f _{ADC} =14 MHz	60							
Table 4-27. Temperature sensor characteristics ⁽¹⁾	60							
Table 4-28. DAC characteristics	60							
Table 4-29. I2C characteristics (1) (2) (3)	61							
Table 4-30. USART characteristics (1)	62							

Table 4-31. USBD start up time	62
Table 4-32. USBD DC electrical characteristics	62
Table 4-33. USBD full speed-electrical characteristics ⁽¹⁾	62
Table 4-34. TIMER characteristics (1)	63
Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K) (1)	63
Table 4-36. WWDGT min-max timeout value at 36 MHz (f _{PCLK1}) (1)	64
Table 5-1. LQFP64 package dimensions	65
Table 5-2. LQFP48 package dimensions	67
Table 5-3. QFN32 package dimensions	69
Table 5-4. QFN28 package dimensions	71
Table 5-5. Package thermal characteristics ⁽¹⁾	73
Table 6-1. Part ordering code for GD32F150xx devices	75
Table 7-1. Revision history	76

1. General description

The GD32F150xx device belongs to the value line of GD32 MCU family. It is a 32-bit general-purpose microcontroller based on the high performance Arm® Cortex®-M3 RISC core with best ratio in terms of processing power, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.

The GD32F150xx device incorporates the Arm® Cortex®-M3 32-bit processor core operating at 72 MHz frequency with Flash accesses zero wait states to obtain maximum efficiency. It provides up to 64 KB on-chip Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC, one 12-bit DAC and two comparators, up to five general-purpose 16-bit timers, a general-purpose 32-bit timer, a basic timer, a PWM advanced-control timer, as well as standard and advanced communication interfaces: up to two SPIs, two I²Cs, two USARTs, a I²S, a HDMI-CEC a TSI and an USBD.

The device operates from a 2.6 to 3.6 V power supply and available in -40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.

The above features make the GD32F150xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

2. Device overview

2.1. Device information

Table 2-1. GD32F150xx devices features and peripheral list

Part Number		GD32F150xx												
		G4	G6	G8	K4	K6	K8	C4	C6	C8	R4	R6	R8	
ľ	Code area (KB)	16	32	32	16	32	32	16	32	32	16	32	32	
Flash	Data area (KB)	0	0	32	0	0	32	0	0	32	0	0	32	
	Total (KB)	16	32	64	16	32	64	16	32	64	16	32	64	
SF	RAM (KB)	4	6	8	4	6	8	4	6	8	4	6	8	
	GPTM(32	1	1	1	1	1	1	1	1	1	1	1	1	
	bit)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	
	GPTM(16	5	5	5	5	5	5	5	5	5	5	5	5	
	bit)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	(2,13-16)	
	Advanced	1	1	1	1	1	1	1	1	1	1	1	1	
Timers	TM(16 bit)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	
Tim	Basic	1	1	1	1	1	1	1	1	1	1	1	1	
	TM(16 bit)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	
	SysTick	1	1	1	1	1	1	1	1	1	1	1	1	
	Watchdog	2	2	2	2	2	2	2	2	2	2	2	2	
	RTC	1	1	1	1	1	1	1	1	1	1	1	1	
	USART	1	2	2	1	2	2	1	2	2	1	2	2	
		(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	(0)	(0-1)	(0-1)	
	I2C	1	1	2	1	1	2	1	1	2	1	1	2	
ry.	120	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)	
Connectivity	SPI	1	1	2	1	1	2	1	1	2	1	1	2	
euu		(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)	(0)	(0)	(0-1)	
ၓ	I2S	1	1	1	1	1	1	1	1	1	1	1	1	
	USBD	1	(O) 1	1	1	(O) 1	(O) 1	1	1	1	(O) 1	1	1	
			ı	1	ı	ı	ı	ı	ı	ı	1	1	ı	
	HDMI CEC	1	1	1	1	1	1	1	1	1	1	1	1	
	GPIO	24	24	24	27	27	27	39	39	39	55	55	55	
	apacitive Touch hannels	14	14	14	14	14	14	17	17	17	18	18	18	
	EXTI	16	16	16	16	16	16	16	16	16	16	16	16	

GD32F150xx Datasheet

Part Number			GD32F150xx											
		G4	G6	G8	K4	K6	K8	C4	C6	C8	R4	R6	R8	
	Analog mparator	2	2	2	2	2	2	2	2	2	2	2	2	
	Units	1	1	1	1	1	1	1	1	1	1	1	1	
ADC	Channels (Ext.)	10	10	10	10	10	10	10	10	10	16	16	16	
	Channels (Int.)	3	3	3	3	3	3	3	3	3	3	3	3	
	DAC	1	1	1	1	1	1	1	1	1	1	1	1	
F	Package		QFN28			QFN32			LQFP48			LQFP64		

2.2. Block diagram

Figure 2-1. GD32F150xx block diagram

2.3. Pinouts and pin assignment

Figure 2-2. GD32F150Rx LQFP64 pinouts

Figure 2-3. GD32F150Cx LQFP48 pinouts

Figure 2-4. GD32F150Kx QFN32 pinouts

Figure 2-5. GD32F150Gx QFN28 pinouts

2.4. Memory map

Table 2-2. GD32F150xx memory map

Pre-defined		cinory map	
Regions	Bus	ADDRESS	Peripherals
		0xE000 0000 - 0xE00F FFFF	Cortex-M3 internal peripherals
External Device		0xA000 0000 - 0xDFFF FFFF	Reserved
External RAM		0x6000 0000 - 0x9FFF FFFF	Reserved
	AHB1	0x5000 0000 - 0x5FFF FFFF	Reserved
		0x4800 1800 - 0x4FFF FFFF	Reserved
		0x4800 1400 - 0x4800 17FF	GPIOF
		0x4800 1000 - 0x4800 13FF	Reserved
	AHB2	0x4800 0C00 - 0x4800 0FFF	GPIOD
		0x4800 0800 - 0x4800 0BFF	GPIOC
		0x4800 0400 - 0x4800 07FF	GPIOB
		0x4800 0000 - 0x4800 03FF	GPIOA
		0x4002 4400 - 0x47FF FFFF	Reserved
		0x4002 4000 - 0x4002 43FF	TSI
		0x4002 3400 - 0x4002 3FFF	Reserved
	AHB1	0x4002 3000 - 0x4002 33FF	CRC
		0x4002 2400 - 0x4002 2FFF	Reserved
		0x4002 2000 - 0x4002 23FF	FMC
		0x4002 1400 - 0x4002 1FFF	Reserved
		0x4002 1000 - 0x4002 13FF	RCU
B		0x4002 0400 - 0x4002 0FFF	Reserved
Peripherals		0x4002 0000 - 0x4002 03FF	DMA
		0x4001 4C00 - 0x4001 FFFF	Reserved
		0x4001 4800 - 0x4001 4BFF	TIMER16
		0x4001 4400 - 0x4001 47FF	TIMER15
		0x4001 4000 - 0x4001 43FF	TIMER14
		0x4001 3C00 - 0x4001 3FFF	Reserved
		0x4001 3800 - 0x4001 3BFF	USART0
	A DDO	0x4001 3400 - 0x4001 37FF	Reserved
	APB2	0x4001 3000 - 0x4001 33FF	SPI0/I2S0
		0x4001 2C00 - 0x4001 2FFF	TIMER0
		0x4001 2800 - 0x4001 2BFF	Reserved
		0x4001 2400 - 0x4001 27FF	ADC
		0x4001 0800 - 0x4001 23FF	Reserved
		0x4001 0400 - 0x4001 07FF	EXTI
		0x4001 0000 - 0x4001 03FF	SYSCFG+CMP
	A DD 4	0x4000 C400 - 0x4000 FFFF	Reserved
	APB1	0x4000 C000 - 0x4000 C3FF	Reserved

GD32F150xx Datasheet

			DOZI 130XX Datasilee
Pre-defined Regions	Bus	ADDRESS	Peripherals
regions		0x4000 8000 - 0x4000 BFFF	Reserved
		0x4000 7C00 - 0x4000 7FFF	Reserved
		0x4000 7800 - 0x4000 7BFF	CEC
		0x4000 7400 - 0x4000 77FF	DAC
		0x4000 7000 - 0x4000 73FF	PMU
		0x4000 6400 - 0x4000 6FFF	Reserved
		0x4000 6000 - 0x4000 63FF	USB SRAM
		0x4000 5C00 - 0x4000 5FFF	USB registers
		0x4000 5800 - 0x4000 5BFF	I2C1
		0x4000 5400 - 0x4000 57FF	12C0
		0x4000 4800 - 0x4000 53FF	Reserved
		0x4000 4400 - 0x4000 47FF	USART1
		0x4000 4000 - 0x4000 43FF	Reserved
		0x4000 3C00 - 0x4000 3FFF	Reserved
		0x4000 3800 - 0x4000 3BFF	SPI1
		0x4000 3400 - 0x4000 37FF	Reserved
		0x4000 3000 - 0x4000 33FF	FWDGT
		0x4000 2C00 - 0x4000 2FFF	WWDGT
		0x4000 2800 - 0x4000 2BFF	RTC
		0x4000 2400 - 0x4000 27FF	Reserved
		0x4000 2000 - 0x4000 23FF	TIMER13
		0x4000 1400 - 0x4000 1FFF	Reserved
		0x4000 1000 - 0x4000 13FF	TIMER5
		0x4000 0800 - 0x4000 0FFF	Reserved
		0x4000 0400 - 0x4000 07FF	TIMER2
		0x4000 0000 - 0x4000 03FF	TIMER1
SDAM.		0x2000 2000 - 0x3FFF FFFF	Reserved
SRAM		0x2000 0000 - 0x2000 1FFF	SRAM
		0x1FFF F80F - 0x1FFF FFFF	Reserved
		0x1FFF F800 - 0x1FFF F80E	Option bytes
Code		0x1FFF EC00 - 0x1FFF F7FF	System memory
Code		0x0801 0000 - 0x1FFF EBFF	Reserved
		0x0800 0000 - 0x0800 FFFF	Main Flash memory
		0x0000 0000 - 0x07FF FFFF	Aliased to Flash or system memory

2.5. Clock tree

Figure 2-6. GD32F150xx clock tree

Legend:

HXTAL: High speed crystal oscillator LXTAL: Low speed crystal oscillator IRC8M: Internal 8M RC oscillators IRC40K: Internal 40K RC oscillator

2.6. Pin definitions

2.6.1. GD32F150Rx LQFP64 pin definitions

Table 2-3. GD32F150Rx LQFP64 pin definitions

				pin dennitions
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
VBAT	1	Р		Default: V _{BAT}
PC13-TAM PER-RTC	2	I/O		Default: PC13 Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1
PC14-OSC 32IN	3	I/O		Default: PC14 Additional: OSC32IN
PC15- OSC32OUT	4	I/O		Default: PC15 Additional: OSC32OUT
PF0-OSCIN	5	I/O	5VT	Default: PF0 Additional: OSCIN
PF1-OSCO UT	6	I/O	5VT	Default: PF1 Additional: OSCOUT
NRST	7	I/O		Default: NRST
PC0	8	I/O		Default: PC0 Alternate: EVENTOUT Additional: ADC_IN10
PC1	9	I/O		Default: PC1 Alternate: EVENTOUT Additional: ADC_IN11
PC2	10	I/O		Default: PC2 Alternate: EVENTOUT Additional: ADC_IN12
PC3	11	I/O		Default: PC3 Alternate: EVENTOUT Additional: ADC_IN13
Vssa	12	Р		Default: V _{SSA}
V_{DDA}	13	Р		Default: V _{DDA}
PA0-WKUP	14	I/O		Default: PA0 Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI,CMP0_OUT, TSI_G0_IO0, I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0
PA1	15	I/O		Default: PA1 Alternate: USART0_RTS ⁽³⁾ /USART0_DE ⁽³⁾ , USART1_RTS ⁽⁴⁾ /USART1_DE ⁽⁴⁾ , TIMER1_CH1, TSI_G0_IO1,

				ODOZI TOOM DataSHCC
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				I2C1_SDA ⁽⁵⁾ , EVENTOUT Additional: ADC_IN1, CMP0_IP
PA2	16	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , TIMER1_CH2, TIMER14_CH0, CMP1_OUT, TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6
PA3	17	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3,CMP1_IP
PF4	18	I/O	5VT	Default: PF4 Alternate: SPI1_NSS ⁽⁵⁾ , EVENTOUT
PF5	19	I/O	5VT	Default: PF5 Alternate: EVENTOUT
PA4	20	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER13_CH0, TSI_G1_IO0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT
PA5	21	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5
PA6	22	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6
PA7	23	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7
PC4	24	I/O		Default: PC4 Alternate: EVENTOUT Additional: ADC_IN14
PC5	25	I/O		Default: PC5 Alternate: TSI_G2_IO0 Additional: ADC_IN15
PB0	26	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, TSI_G2_IO1, USART1_RX, EVENTOUT

_				ODOZI TOOXX Datastice
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Additional: ADC IN8
PB1	27	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9
PB2	28	I/O	5VT	Default: PB2 Alternate: TSI_G2_IO3
PB10	29	I/O	5VT	Default: PB10 Alternate: I2C1_SCL ⁽⁵⁾ , CEC, TIMER1_CH2, TSITG
PB11	30	I/O	5VT	Default: PB11 Alternate: I2C1_SDA ⁽⁵⁾ , TIMER1_CH3, TSI_G5_IO0, EVENTOUT
Vss	31	Р		Default: Vss
V_{DD}	32	Р		Default: V _{DD}
PB12	33	I/O	5VT	Default: PB12 Alternate: SPI0_NSS ⁽³⁾ , SPI1_NSS ⁽⁵⁾ , TIMER0_BRKIN, TSI_G5_IO1, I2C1_SMBA ⁽⁵⁾ , EVENTOUT
PB13	34	I/O	5VT	Default: PB13 Alternate: SPI0_SCK ⁽³⁾ , SPI1_SCK ⁽⁵⁾ , TIMER0_CH0_ON, TSI_G5_IO2
PB14	35	I/O	5VT	Default: PB14 Alternate: SPI0_MISO ⁽³⁾ , SPI1_MISO ⁽⁵⁾ , TIMER0_CH1_ON, TIMER14_CH0, TSI_G5_IO3
PB15	36	I/O	5VT	Default: PB15 Alternate: SPI0_MOSI ⁽³⁾ , SPI1_MOSI ⁽⁵⁾ , TIMER0_CH2_ON, TIMER14_CH0_ON, TIMER14_CH1 Additional: RTC_REFIN
PC6	37	I/O	5VT	Default: PC6 Alternate: TIMER2_CH0
PC7	38	I/O	5VT	Default: PC7 Alternate: TIMER2_CH1
PC8	39	I/O	5VT	Default: PC8 Alternate: TIMER2_CH2
PC9	40	I/O	5VT	Default: PC9 Alternate: TIMER2_CH3
PA8	41	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, MCO, USART1_TX, EVENTOUT
PA9	42	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN, TSI_G3_IO0, I2C0_SCL

				ODOZI TOOM DataSHCC
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA10	43	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, TSI_G3_IO1, I2C0_SDA
PA11	44	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT Additional: USBDM
PA12	45	I/O	5VT	Default: PA12 Alternate: USART0_RTS/USART0_DE, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT Additional: USBDP
PA13	46	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO ⁽⁵⁾
PF6	47	I/O	5VT	Default: I2C1_SCL ⁽⁵⁾
PF7	48	I/O	5VT	Default: I2C1_SDA ⁽⁵⁾
PA14	49	I/O	5VT	Default: PA14 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK, SPI1_MOSI ⁽⁵⁾
PA15	50	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI, SPI1_NSS ⁽⁵⁾ , EVENTOUT
PC10	51	I/O	5VT	Default: PC10
PC11	52	I/O	5VT	Default: PC11
PC12	53	I/O	5VT	Default: PC12
PD2	54	I/O	5VT	Default: PD2 Alternate: TIMER2_ETI
PB3	55	I/O	5VT	Default: PB3 Alternate: SPI0_SCK,I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT
PB4	56	I/O	5VT	Default: PB4 Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT
PB5	57	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1
PB6	58	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2
PB7	59	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, USART0_RX,

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				TIMER16_CH0_ON,TSI_G4_IO3
воото	60	I		Default: BOOT0
PB8	61	I/O	5\/T	Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG
PB9	62	I/O	5VT	Default: PB9 Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0, EVENTOUT
Vss	63	Р		Default: V _{SS}
V _{DD}	64	Р		Default: V _{DD}

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F150R4 devices only.
- (4) Functions are available on GD32F150R8/6 devices.
- (5) Functions are available on GD32F150R8 devices.

20

2.6.2. GD32F150Cx LQFP48 pin definitions

Table 2-4. GD32F150Cx LQFP48 pin definitions

Table 2-4. C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13001	LOCI I TO	s pin definitions
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
V _{BAT}	1	Р		Default: V _{BAT}
PC13-TAMP				Default: PC13
ER-RTC	2	I/O		Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1
PC14-OSC3				Default: PC14
2IN	3	I/O		Additional: OSC32IN
PC15-				Default: PC15
OSC32OUT	4	I/O		Additional: OSC32OUT
				Default: PF0
PF0-OSCIN	5	I/O	5VT	Additional: OSCIN
PF1-OSCOU				Default: PF1
Т	6	I/O	5VT	Additional: OSCOUT
NRST	7	I/O		Default: NRST
V _{SSA}	8	Р		Default: V _{SSA}
V _{DDA}	9	Р		Default: V _{DDA}
PA0-WKUP	10	I/O		Default: PA0 Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI,CMP0_OUT, TSI_G0_IO0, I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0
PA1	11	I/O		Default: PA1 Alternate: USART0_RTS ⁽³⁾ /USART0_DE ⁽³⁾ , USART1_RTS ⁽⁴⁾ /USART1_DE ⁽⁴⁾ , TIMER1_CH1, TSI_G0_IO1, I2C1_SDA ⁽⁵⁾ , EVENTOUT Additional: ADC_IN1, CMP0_IP
PA2	12	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , TIMER1_CH2, TIMER14_CH0, CMP1_OUT, TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6
PA3	13	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3,CMP1_IP
PA4	14	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER13_CH0, TSI_G1_IO0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT

				ODOZI TOOM DataSHCC
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA5	15	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5
PA6	16	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6
PA7	17	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7
PB0	18	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, TSI_G2_IO1, USART1_RX ⁽⁴⁾ , EVENTOUT Additional: ADC_IN8
PB1	19	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9
PB2	20	I/O	5VT	Default: PB2 Alternate: TSI_G2_IO3
PB10	21	I/O	5VT	Default: PB10 Alternate: I2C1_SCL ⁽⁵⁾ , CEC, TIMER1_CH2, TSITG
PB11	22	I/O	5VT	Default: PB11 Alternate: I2C1_SDA ⁽⁵⁾ , TIMER1_CH3, TSI_G5_IO0, EVENTOUT
Vss	23	Р		Default: Vss
V_{DD}	24	Р		Default: V _{DD}
PB12	25	I/O	5VT	Default: PB12 Alternate: SPI0_NSS ⁽³⁾ , SPI1_NSS ⁽⁵⁾ , TIMER0_BRKIN, TSI_G5_IO1, I2C1_SMBA ⁽⁵⁾ , EVENTOUT
PB13	26	I/O	5VT	Default: PB13 Alternate: SPI0_SCK ⁽³⁾ , SPI1_SCK ⁽⁵⁾ , TIMER0_CH0_ON, TSI_G5_IO2
PB14	27	I/O	5VT	Default: PB14 Alternate: SPI0_MISO ⁽³⁾ , SPI1_MISO ⁽⁵⁾ , TIMER0_CH1_ON, TIMER14_CH0, TSI_G5_IO3
PB15	28	I/O	5VT	Default: PB15

				22 221 100/01 201001100
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: SPI0_MOSI ⁽³⁾ , SPI1_MOSI ⁽⁵⁾ , TIMER0_CH2_ON,
				TIMER14_CH0_ON, TIMER14_CH1 Additional: RTC_REFIN
				Default: PA8
PA8	29	I/O	5VT	Alternate: USART0_CK, TIMER0_CH0, MCO, USART1_TX ⁽⁴⁾ , EVENTOUT
				Default: PA9
PA9	30	I/O	5VT	Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN, TSI_G3_IO0, I2C0_SCL
				Default: PA10
PA10	31	I/O	5VT	Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN,
				TSI_G3_IO1, I2C0_SDA
				Default: PA11
PA11	32	I/O	5VT	Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT,
				TSI_G3_IO2, EVENTOUT Additional: USBDM
				Default: PA12
		I/O	5VT	Alternate: USART0_RTS/USART0_DE, TIMER0_ETI,
PA12	33			CMP1_OUT, TSI_G3_IO3, EVENTOUT
				Additional: USBDP
PA13	34	I/O	5VT	Default: PA13
			_	Alternate: IFRP_OUT, SWDIO, SPI1_MISO ⁽⁵⁾
PF6	35	I/O		Default: I2C1_SCL ⁽⁵⁾
PF7	36	I/O	5VT	Default: I2C1_SDA ⁽⁵⁾
PA14	37	I/O	5VT	Default: PA14 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK,
PA14	31	1/0	301	SPI1_MOSI ⁽⁵⁾
				Default: PA15
DA45	00	1/0	5) /T	Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ ,
PA15	38	I/O	5VT	USART1_RX ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI, SPI1_NSS ⁽⁵⁾ ,
				EVENTOUT
				Default: PB3
PB3	39	I/O	5VT	Alternate: SPI0_SCK,I2S0_CK, TIMER1_CH1, TSI_G4_IO0,
				EVENTOUT Default: PB4
PB4	40	I/O	5VT	Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0,
		" •		TSI_G4_IO1, EVENTOUT
				Default: PB5
PB5	41	I/O	5VT	Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA,
				TIMER15_BRKIN, TIMER2_CH1
PB6	42	I/O	5VT	Default: PB6

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2
PB7	43	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, USART0_RX, TIMER16_CH0_ON,TSI_G4_IO3
воото	44	I		Default: BOOT0
PB8	45	I/O	5VT	Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG
PB9	46	I/O	5VT	Default: PB9 Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0, EVENTOUT
Vss	47	Р		Default: Vss
V_{DD}	48	Р		Default: V _{DD}

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F150C4 devices only.
- (4) Functions are available on GD32F150C8/6 devices.
- (5) Functions are available on GD32F150C8 devices.

2.6.3. GD32F150Kx QFN32 pin definitions

Table 2-5. GD32F150Kx QFN32 pin definitions

		10010	~u=	pin deminions
Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
V_{DD}	1	Р		Default: V _{DD}
PF0-OSCIN	2	I/O	5VT	Default: PF0 Additional: OSCIN
PF1-OSCOU T	3	I/O	5VT	Default: PF1 Additional: OSCOUT
NRST	4	I/O		Default: NRST
V _{DDA}	5	Р		Default: V _{DDA}
VODA	0			Default: PA0
PA0-WKUP	6	I/O		Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI,CMP0_OUT, TSI_G0_IO0, I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0
PA1	7	I/O		Default: PA1 Alternate: USART0_RTS ⁽³⁾ /USART0_DE ⁽³⁾ , USART1_RTS ⁽⁴⁾ /USART1_DE ⁽⁴⁾ , TIMER1_CH1, TSI_G0_IO1, I2C1_SDA ⁽⁵⁾ , EVENTOUT Additional: ADC_IN1, CMP0_IP
PA2	8	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , TIMER1_CH2, TIMER14_CH0, CMP1_OUT, TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6
PA3	9	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3,CMP1_IP
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER13_CH0, TSI_G1_IO0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5
PA6	12	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA7	13	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7
PB0	14	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, TSI_G2_IO1, USART1_RX ⁽⁴⁾ , EVENTOUT Additional: ADC_IN8
PB1	15	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9
PB2	16	I/O	5VT	Default: PB2 Alternate: TSI_G2_IO3
V _{DD}	17	Р		Default: V _{DD}
PA8	18	I/O	5VT	Default: PA8 Alternate: USART0_CK, TIMER0_CH0, MCO, USART1_TX ⁽⁴⁾ , EVENTOUT
PA9	19	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN, TSI_G3_IO0, I2C0_SCL
PA10	20	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, TSI_G3_IO1, I2C0_SDA
PA11	21	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT Additional: USBDM
PA12	22	I/O	5VT	Default: PA12 Alternate: USART0_RTS/USART0_DE, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT Additional: USBDP
PA13	23	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO ⁽⁵⁾
PA14	24	I/O	5VT	Default: PA14 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK, SPI1_MOSI ⁽⁵⁾
PA15	25	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI, SPI1_NSS ⁽⁵⁾ ,

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				EVENTOUT
PB3	26	I/O	5VT	Default: PB3 Alternate: SPI0_SCK,I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT
PB4	27	I/O	5VT	Default: PB4 Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT
PB5	28	I/O	5VT	Default: PB5 Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1
PB6	29	I/O	5VT	Default: PB6 Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2
PB7	30	I/O	5VT	Default: PB7 Alternate: I2C0_SDA, USART0_RX, TIMER16_CH0_ON,TSI_G4_IO3
воото	31	I		Default: BOOT0
PB8	32	I/O	5VT	Default: PB8 Alternate: I2C0_SCL, CEC, TIMER15_CH0, TSITG

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F150K4 devices only.
- (4) Functions are available on GD32F150K8/6 devices.
- (5) Functions are available on GD32F150K8 devices.

2.6.4. GD32F150Gx QFN28 pin definitions

Table 2-6. GD32F150Gx QFN28 pin definitions

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
BOOT0	1	I		Default: BOOT0
PF0-OSCIN	2	I/O	5VT	Default: PF0 Additional: OSCIN
PF1-OSCOU T	3	I/O	5VT	Default: PF1 Additional: OSCOUT
NRST	4	I/O		Default: NRST
V _{DDA}	5	Р		Default: V _{DDA}
PA0-WKUP	6	I/O		Default: PA0 Alternate: USART0_CTS ⁽³⁾ , USART1_CTS ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI,CMP0_OUT, TSI_G0_IO0, I2C1_SCL ⁽⁵⁾ Additional: ADC_IN0, CMP0_IM6, RTC_TAMP1, WKUP0
PA1	7	I/O		Default: PA1 Alternate: USART0_RTS ⁽³⁾ /USART0_DE ⁽³⁾ , USART1_RTS ⁽⁴⁾ /USART1_DE ⁽⁴⁾ , TIMER1_CH1, TSI_G0_IO1, I2C1_SDA ⁽⁵⁾ , EVENTOUT Additional: ADC_IN1, CMP0_IP
PA2	8	I/O		Default: PA2 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , TIMER1_CH2, TIMER14_CH0, CMP1_OUT, TSI_G0_IO2 Additional: ADC_IN2, CMP1_IM6
PA3	9	I/O		Default: PA3 Alternate: USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH3, TIMER14_CH1, TSI_G0_IO3 Additional: ADC_IN3,CMP1_IP
PA4	10	I/O		Default: PA4 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER13_CH0, TSI_G1_IO0, SPI1_NSS ⁽⁵⁾ Additional: ADC_IN4, CMP0_IM4, CMP1_IM4, DAC0_OUT
PA5	11	I/O		Default: PA5 Alternate: SPI0_SCK, I2S0_CK, CEC, TIMER1_CH0, TIMER1_ETI, TSI_G1_IO1 Additional: ADC_IN5, CMP0_IM5, CMP1_IM5
PA6	12	I/O		Default: PA6 Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, CMP0_OUT, TSI_G1_IO2, EVENTOUT Additional: ADC_IN6

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
PA7	13	I/O		Default: PA7 Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, CMP1_OUT, TSI_G1_IO3, EVENTOUT Additional: ADC_IN7
PB0	14	I/O		Default: PB0 Alternate: TIMER2_CH2, TIMER0_CH1_ON, TSI_G2_IO1, USART1_RX ⁽⁴⁾ , EVENTOUT Additional: ADC_IN8
PB1	15	I/O		Default: PB1 Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, TSI_G2_IO2, SPI1_SCK ⁽⁵⁾ Additional: ADC_IN9
V_{DD}	16	Р		Default: V _{DD}
PA9	17	I/O	5VT	Default: PA9 Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN, TSI_G3_IO0, I2C0_SCL
PA10	18	I/O	5VT	Default: PA10 Alternate: USART0_RX, TIMER0_CH2, TIMER16_BRKIN, TSI_G3_IO1, I2C0_SDA
PA11	19	I/O	5VT	Default: PA11 Alternate: USART0_CTS, TIMER0_CH3, CMP0_OUT, TSI_G3_IO2, EVENTOUT Additional: USBDM
PA12	20	I/O	5VT	Default: PA12 Alternate: USART0_RTS/USART0_DE, TIMER0_ETI, CMP1_OUT, TSI_G3_IO3, EVENTOUT Additional: USBDP
PA13	21	I/O	5VT	Default: PA13 Alternate: IFRP_OUT, SWDIO, SPI1_MISO ⁽⁵⁾
PA14	22	I/O	5VT	Default: PA14 Alternate: USART0_TX ⁽³⁾ , USART1_TX ⁽⁴⁾ , SWCLK, SPI1_MOSI ⁽⁵⁾
PA15	23	I/O	5VT	Default: PA15 Alternate: SPI0_NSS, I2S0_WS, USART0_RX ⁽³⁾ , USART1_RX ⁽⁴⁾ , TIMER1_CH0, TIMER1_ETI, SPI1_NSS ⁽⁵⁾ , EVENTOUT
PB3	24	I/O	5VT	Default: PB3 Alternate: SPI0_SCK,I2S0_CK, TIMER1_CH1, TSI_G4_IO0, EVENTOUT
PB4	25	I/O	5VT	Default: PB4

Pin Name	Pins	Pin Type ⁽¹⁾	I/O Level ⁽²⁾	Functions description
				Alternate: SPI0_MISO,I2S0_MCK, TIMER2_CH0, TSI_G4_IO1, EVENTOUT
DDE	00	I/O	5VT	Default: PB5
PB5	26			Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1
Default: PB6		Default: PB6		
PB6	27	I/O	5VT	Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON, TSI_G4_IO2
				Default: PB7
PB7	28	I/O	5VT	Alternate: I2C0_SDA, USART0_RX,
				TIMER16_CH0_ON,TSI_G4_IO3

- (1) Type: I = input, O = output, P = power.
- (2) I/O Level: 5VT = 5 V tolerant.
- (3) Functions are available on GD32F150G4 devices only.
- (4) Functions are available on GD32F150G8/6 devices.
- (5) Functions are available on GD32F150G8 devices.

30

2.6.5. GD32F150xx pin alternate functions

Table 2-7. Port A alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0		USARTO_ CTS ⁽¹⁾ USART1_ CTS ⁽²⁾	TIMER1_ CH0, TIMER1_ ETI	TSI_G0_I O0	I2C1_SCL			CMP0_O UT
PA1	EVENTO UT	USARTO_ RTS ⁽¹⁾ /US ARTO_DE ⁽ 1) USART1_ RTS ⁽²⁾ /US ART1_DE ⁽ 2)	TIMER1_ CH1	TSI_G0_I O1	I2C1_SD A ⁽³⁾			
PA2	TIMER14 _CH0	USARTO_ TX ⁽¹⁾ USART1_ TX ⁽²⁾	TIMER1_ CH2	TSI_G0_I O2				CMP1_O UT
PA3	TIMER14 _CH1	USARTO_ RX ⁽¹⁾ USART1_ RX ⁽²⁾	TIMER1_ CH3	TSI_G0_I O3				
PA4	SPI0_NS S/ I2S0_WS	USARTO_ CK ⁽¹⁾ USART1_ CK ⁽²⁾		TSI_G1_I O0	TIMER13 _CH0		SPI1_NS S ⁽³⁾	
PA5	SPI0_SC K/ I2S0_CK	CEC	TIMER1_ CH0, TIMER1_ ETI	TSI_G1_I O1				
PA6	SPI0_MIS O/ I2S0_MC K	TIMER2_ CH0	TIMER0_ BRKIN	TSI_G1_I O2		TIMER15 _CH0	EVENTO UT	CMP0_O UT
PA7	SPI0_MO SI/ I2S0_SD	TIMER2_ CH1	TIMER0_ CH0_ON	TSI_G1_I O3	TIMER13 _CH0	TIMER16 _CH0	EVENTO UT	CMP1_O UT
PA8	MCO	USART0_ CK	TIMER0_ CH0	EVENTO UT	USART1_ TX ⁽²⁾			
PA9	TIMER14 _BRKIN	USART0_ TX	TIMER0_ CH1	TSI_G3_I O1	I2C0_SCL			

GD32F150xx Datasheet

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA10	TIMER16	USART0_	TIMER0_	TSI_G3_I	I2C0_SD			
	_BRKIN	RX	CH2	O1	Α			
DA44	EVENTO	USART0_	TIMER0_	TSI_G3_I				CMP0_O
PA11	UT	CTS	СНЗ	O2				UT
PA12	EVENTO UT	USARTO_ RTS/USA RTO_DE	TIMER0_ ETI	TSI_G3_I O3				CMP1_O UT
PA13	SWDIO	IFRP_OU T					SPI1_MIS O ⁽³⁾	
PA14	SWCLK	USARTO_ TX ⁽¹⁾ USART1_ TX ⁽²⁾					SPI1_MO SI ⁽³⁾	
PA15	SPI0_NS S, I2S0_WS	USART0_ RX ⁽¹⁾ USART1_ RX ⁽²⁾	TIMER1_ CH0, TIMER1_ ETI	EVENTO UT			SPI1_NS S ⁽³⁾	

Notes:

- (1) Functions are available on GD32F150x4 devices only.
- (2) Functions are available on GD32F150x8/6 devices.
- (3) Functions are available on GD32F150x8 devices.

Table 2-8. Port B alternate functions summary

		Thate fullet		· · · · ·			
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
DDO	EVENTOU	TIMER2_C	TIMER0_C	TSI_G2_IO	USART1_R		
PB0	Т	H2	H1_ON	1	X ⁽²⁾		
PB1	TIMER13_	TIMER2_C	TIMER0_C	TSI_G2_IO			SPI1_SCK(
PDI	CH0	НЗ	H2_ON	2			3)
PB2				TSI_G2_IO			
PBZ				3			
PB3	SPI0_SCK/	EVENTOU	TIMER1_C	TSI_G4_IO			
FB3	12S0_CK	Т	H1	0			
	SPI0_MISO	TIMED2 C	EVENTOU	TSI G4 IO			
PB4	/	H0	T	1			
	I2S0_MCK	110	'	'			
PB5	SPI0_MOSI	TIMER2_C	TIMER15_	I2C0_SMB			
1 50	/ I2S0_SD	H1	BRKIN	Α			
PB6	USART0_T	I2C0_SCL	TIMER15_	TSI_G4_IO			
1 00	X		CH0_ON	2			
PB7	USART0_R	I2C0_SDA	TIMER16_	TSI_G4_IO			
1 57	X		CH0_ON	3			
PB8	CEC	I2C0_SCL	TIMER15_	TSITG			
1 00			CH0	10110			
PB9	IFRP_OUT		TIMER16_	EVENTOU			
. 50			CH0	Т			
PB10	CEC	I2C1_SCL ⁽³	TIMER1_C	TSITG			
	020		H2				
PB11	EVENTOU	I2C1_SDA ⁽	TIMER1_C	TSI_G5_IO			
	Т	3)	НЗ	0			
	SPI0_NSS(
PB12	1)	EVENTOU	TIMER0_B	TSI_G5_IO			
	SPI1_NSS(Т	RKIN	1	A ⁽³⁾		
	3)						
	SPI0_SCK(
PB13	1)			TSI_G5_IO			
	SPI1_SCK(H0_ON	2			
	3)						
PB14	SPI0_MISO						
	(1)	TIMER14_		TSI_G5_IO			
	SPI1_MISO	CH0	H1_ON	3			
	(3)						
PB15	SPI0_MOSI		TIMES : :	TIN 455 / /			
	(1)	TIMER14_	TIMER0_C	TIMER14_			
	SPI1_MOSI	CH1	H2_ON	CH0_ON			
	(3)						

- (1) Functions are available on GD32F150x4 devices only.
- (2) Functions are available on GD32F150x8/6 devices.
- (3) Functions are available on GD32F150x8 devices.

Table 2-9. Port C & D & F alternate functions summary

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PC0	EVENTOU T						
PC1	EVENTOU T						
PC2	EVENTOU T						
PC3	EVENTOU T						
PC4	EVENTOU T						
PC5	TSI_G2_IO 0						
PC6	TIMER2_C H0						
PC7	TIMER2_C H1						
PC8	TIMER2_C H2						
PC9	TIMER2_C H3						
PD2	TIMER2_E TI						
PF0	OSCIN						
PF1	OSCOUT						
PF4	SPI1_NSS, EVENTOU T						
PF5	EVENTOU T						

3. Functional description

3.1. Arm® Cortex®-M3 core

The Cortex®-M3 processor is the latest generation of Arm® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

- 32-bit Arm® Cortex®-M3 processor core
- Up to 72 MHz operation frequency
- Single-cycle multiplication and hardware divider
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer

The Cortex®-M3 processor is based on the Armv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M3:

- Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
- Nested Vectored Interrupt Controller (NVIC)
- Flash Patch and Breakpoint (FPB)
- Data Watchpoint and Trace (DWT)
- Instrument Trace Macrocell (ITM)
- Serial Wire JTAG Debug Port (SWJ-DP)
- Trace Port Interface Unit (TPIU)

3.2. On-chip memory

- Up to 64 Kbytes of Flash memory
- The region of the MCU executing instructions without waiting time is up to 32K bytes (in case that the Flash size equal to 16K or 32K, all memory is no waiting time). A long time delay when CPU fetches the instructions out of the range.
- Up to 8 Kbytes of SRAM with hardware parity checking

The Arm® Cortex®-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 64 Kbytes of inner Flash at most, which includes code Flash and data Flash is available for storing programs and data, and there is no waiting time within code Flash area when CPU executes instructions. The <u>Table</u> 2-2. <u>GD32F150xx memory map</u> shows the memory map of the GD32F150xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

3.3. Clock, reset and supply management

- Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator
- Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
- Integrated system clock PLL
- 2.6 to 3.6 V application supply and I/Os
- Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)

The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB and two APB domains is 72 MHz. See <u>Figure</u> 2-6. GD32F150xx clock tree for details on the clock tree.

The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when V_{DD} is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.

Power supply schemes:

- V_{DD} range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} range: 1.8 to 3.6 V, power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

3.4. Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from main Flash memory (default)
- Boot from system memory
- Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA2 and PA3,PA14 and PA15) in device mode.

3.5. Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.

■ Sleep mode

In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.

■ Deep-sleep mode

In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.

■ Standby mode

In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except Backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

3.6. Analog to digital converter (ADC)

- 12-bit SAR ADC's conversion rate is up to 1 MSPS.
- Conversion range: V_{SSA} to V_{DDA} (2.6 to 3.6 V)
- Temperature sensor

One 12-bit 1 MSPS multi-channel ADCs are integrated in the device. It is a total of up to 16 multiplexed external channels, 1 channel for internal temperature sensor (V_{SENSE}), 1 channel for internal reference voltage (V_{REFINT}) and 1 channel for battery voltage (V_{BAT}). The input voltage range is between V_{SSA} and V_{DDA}. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.

The ADC can be triggered from the events generated by the general timers (TIMERx, x=1,2,14) and the advanced timers (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. Each device is factory-calibrated to improve the accuracy and the calibration data are stored in the system memory area.

3.7. Digital to analog converter (DAC)

- 12-bit DAC converter of independent output channel
- 8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is VREF+.

3.8. DMA

- 7 channel DMA controller
- Peripherals supported: Timers, ADC, SPIs, I²Cs, USARTs, DAC and I²S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory

Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

3.9. General-purpose inputs/outputs (GPIOs)

- Up to 55 fast GPIOs, all mappable on 16 external interrupt vectors (EXTI)
- Analog input/output configurable
- Alternate function input/output configurable

There are up to 55 general purpose I/O pins (GPIO) in GD32F150xx, named PA0 ~ PA15 and PB0 ~ PB15, PC0 ~ PC15, PD2, PF0, PF1, PF4-PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

3.10. Timers and PWM generation

- One 16-bit advanced-control timer (TIMER0), one 32-bit general-purpose timer (TIMER1), five 16-bit general-purpose timers (TIMER2, TIMER13 ~ TIMER16), and one 16-bit basic timer (TIMER5)
- Up to 4 independent channels of PWM, output compare or input capture for each general-purpose timer (GPTM) and external trigger input
- 16-bit, motor control PWM advanced-control timer with programmable dead-time generation for output match
- Encoder interface controller with two inputs using quadrature decoder
- 24-bit SysTick timer down counter
- 2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced-control timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general-purpose timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge-aligned or center-aligned mode) and single pulse mode output. If configured as a general-purpose 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other GPTMs together which have the same architecture and features.

The general-purpose timer (GPTM) can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER1 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER2 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. The GPTM also supports an encoder interface with two inputs using quadrature decoder.

The basic timer, known as TIMER5, is mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.

The GD32F150xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.

The free watchdog timer includes a 12-bit down-counting counter and a 8-bit prescaler, It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.

The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wake up interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Auto reload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.11. Real time clock (RTC)

- Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
- Calendar with subsecond, seconds, minutes, hours, week day, date, year and month automatically correction
- Alarm function with wake up from deep-sleep and standby mode capability
- On-the-fly correction for synchronization with master clock. Digital calibration with 1 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an Independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

3.12. Inter-integrated circuit (I2C)

- Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 400 kHz
- Provide arbitration function, optional PEC (packet error checking) generation and checking
- Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

3.13. Serial peripheral interface (SPI)

- Up to two SPI interfaces with a frequency of up to 18 MHz
- Support both master and slave mode
- Hardware CRC calculation and transmit automatic CRC error checking

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking.

3.14. Universal synchronous asynchronous receiver transmitter (USART)

- Up to two USARTs with operating speed up to 9 Mbit/s
- Supports both asynchronous and clocked synchronous serial communication modes
- IrDA SIR encoder and decoder support
- LIN break generation and detection
- ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

3.15. Inter-IC sound (I2S)

- One I2S bus Interfaces with sampling frequency from 8 kHz to 192 kHz, multiplexed with SPI1
- Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F150xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI1. The audio sampling frequency from 8 kHz to 192 kHz is supported with less than 0.5% accuracy error.

3.16. **HDMI CEC**

Hardware support Consumer Electronics Control (CEC) protocol (HDMI standard rev1.4)

The CEC protocol provides high-level control functions between the audiovisual products linked with HDMI cables. GD32F150xx contain a HDMI-CEC controller which has an Independent clock domain and can wake up the MCU from deep-sleep mode on data reception.

3.17. Universal serial bus full-speed (USBD)

- One full-speed USB Interface with frequency up to 12 Mbit/s
- Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between one or more devices. Full-speed peripheral is compliant with the USB 2.0 specification. The device controller enables 12 Mbit/s data exchange with a USB Host controller. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

3.18. Touch sensing interface (TSI)

- Supports up to 18 external electrodes by the sensing channels distributed over 6 analog
 I/O groups
- Programmable charging frequency and I/O pins
- Capability to wake up the MCU from power saving modes

Capacitive sensing technology can be used for the detection of a finger (or any conductive object) presence near an electrode. The capacitive variation of the electrode introduced by the finger can be measured by charging and detecting the voltage across the sampling capacitor. GD32F150xx contain a hardware touch sensing interface (TSI) and only requires few external components to operate. The sensing channels are distributed over 6 analog I/O groups including: Group1 (PA0 ~ PA3), Group2 (PA4 ~ PA7), Group3 (PC5, PB0 ~ PB2), Group4 (PA9 ~ PA12), Group5 (PB3, PB4, PB6, PA7) and Group6 (PB11 ~ PB14),

3.19. Comparators (CMP)

- Two fast rail-to-rail low-power comparators with software configurable
- Programmable reference voltage (internal, external I/O or DAC output pin)

Two Comparators (CMP) are implemented within the devices. Both comparators can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

3.20. Debug mode

■ Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

3.21. Package and operation temperature

- LQFP64 (GD32F150Rx), LQFP48 (GD32F150Cx), QFN32 (GD32F150Kx) and QFN28 (GD32F150Gx)
- Operation temperature range: -40°C to +85°C (industrial level)

4. Electrical characteristics

4.1. Absolute maximum ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Table 4-1. Absolute maximum ratings(1)(4)

Symbol	Parameter	Min	Max	Unit
V_{DD}	External voltage range(2)	Vss - 0.3	Vss + 3.6	V
V_{DDA}	External analog supply voltage	V _{SSA} - 0.3	V _{SSA} + 3.6	V
V_{BAT}	External battery supply voltage	V _{SS} - 0.3	V _{SS} + 3.6	V
Vin	Input voltage on 5V tolerant pin(3)	V _{SS} - 0.3	V _{DD} + 3.6	٧
VIN	Input voltage on other I/O	Vss - 0.3	3.6	V
$ \Delta V_{DDX} $	/ _{DDX} Variations between different V _{DD} power pins —		50	mV
V _{SSX} -V _{SS}	Variations between different ground pins	_	50	mV
lio	Maximum current for GPIO pins	_	±25	mA
TA	Operating temperature range	-40	+85	°C
	Power dissipation at T _A = 85°C of LQFP64	_	629	
D-	Power dissipation at T _A = 85°C of LQFP48	_	621	2011/
P _D	Power dissipation at T _A = 85°C of QFN32	_	825	mW
	Power dissipation at T _A = 85°C of QFN28	_	605	
T _{STG}	Storage temperature range	-65	+150	°C
T _J Maximum junction temperature		_	+125	°C

⁽¹⁾ Guaranteed by design, not tested in production.

4.2. Operating conditions characteristics

Table 4-2. DC operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Supply voltage		2.6	3.3	3.6	>
V_{DDA}	Analog supply voltage	Same as V _{DD}	2.6	3.3	3.6	٧
V _{BAT}	Battery supply voltage	_	1.8		3.6	٧

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ All main power and ground pins should be connected to an external power source within the allowable range.

⁽³⁾ V_{IN} maximum value cannot exceed 5.5 V.

⁽⁴⁾ It is recommended that V_{DD} and V_{DDA} are powered by the same source. The maximum difference between V_{DD} and V_{DDA} does not exceed 300 mV during power-up and operation.

Figure 4-1. Recommended power supply decoupling capacitors⁽¹⁾

(1) All decoupling capacitors need to be as close as possible to the pins on the PCB board.

Table 4-3. Clock frequency(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK1}	AHB1 clock frequency	_	_	72	MHz
f _{HCLK2}	AHB2 clock frequency	_	_	72	MHz
f _{APB1}	APB1 clock frequency	_	_	72	MHz
f _{APB2}	APB2 clock frequency	_	_	72	MHz

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-4. Operating conditions at Power up/ Power down(1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	8	
t∨DD	V _{DD} fall time rate	_	2 0	8	µs/v

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-5. Start-up timings of Operating conditions (1)(2)(3)

Symbol	Parameter	Parameter Conditions		Unit
4	0:	Clock source from HXTAL	19	ms
t start-up	Start-up time	Clock source from IRC8M	19	ms

⁽¹⁾ Based on characterization, not tested in production.

Table 4-6. Power saving mode wakeup timings characteristics(1)(2)

Symbol	Parameter	Тур	Unit
tsleep	Wakeup from Sleep mode	3.3	
+	Wakeup from Deep-sleep mode (LDO in run mode)	4.9	μs
tDeep-sleep	Wakeup from Deep-sleep mode (LDO in low power mode)	4.9	
tStandby	Wakeup from Standby mode	21	ms

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ After power-up, the start-up time is the time between the rising edge of NRST high and the main function.

⁽³⁾ PLL is off.

(2) The wakeup time is measured from the wakeup event to the point at which the application code reads the first instruction under the below conditions: $V_{DD} = V_{DDA} = 3.3 \text{ V}$, IRC8M = System clock = 8MHz.

4.3. Power consumption

The power measurements specified in the tables represent that code with data executing from on-chip Flash with the following specifications.

Table 4-7.Power consumption characteristics (2)(3)(3)(4)(5)

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		V _{DD} =V _{DDA} =3.3V, HXTAL=8MHz, System clock=72 MHz, All peripherals enabled		26.8		mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =72 MHz, All peripherals disabled	_	18.9	_	mA
		V _{DD} =V _{DDA} =3.3V, HXTAL=8MHz, System clock=48 MHz, All peripherals enabled	_	18.5	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =48 MHz, All peripherals disabled	_	13.2	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =36 MHz, All peripherals enabled		14.6		mA
	Supply current	V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System Clock =36 MHz, All peripherals disabled	_	10.5	_	mA
	(Run mode)	V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =24 MHz, All peripherals enabled		10.3	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System Clock =24 MHz, All peripherals disabled	_	7.5		mA
I _{DD} +I _{DDA}		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =16 MHz, All peripherals enabled		7.4	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System Clock =16 MHz, All peripherals disabled	_	5.6		mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System clock =8 MHz, All peripherals enabled		4.5	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, System Clock =8 MHz, All peripherals disabled	_	3.6	_	mA
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock off, System clock =72 MHz, All peripherals enabled	-	15.9		mA
	Supply current	V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock off, System clock =72 MHz, All peripherals disabled	-	6.3	_	mA
	(Sleep mode)	V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock off, System clock =48 MHz, All peripherals enabled	_	11.6	_	mA
	-	V_{DD} = V_{DDA} =3.3V, HXTAL=8MHz, CPU clock off, System clock =48 MHz, All peripherals	_	5.1		mA

0	ODSZI			T (1)		
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		disabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =36 MHz, All peripherals	_	9.1	_	mA
		enabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =36 MHz, All peripherals	_	4.2	_	mΑ
		disabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =24 MHz, All peripherals	_	6.6	_	mΑ
		enabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =24 MHz, All peripherals	_	3.4	_	mA
		disabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =16 MHz, All peripherals		5.0		mA
		enabled		0.0		
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
				2.8		mΑ
		off, System clock =16 MHz, All peripherals		2.0		ША
		disabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock		0.0		A
		off, System clock =8 MHz, All peripherals		3.3		mA
		enabled				
		V _{DD} = V _{DDA} =3.3V, HXTAL=8MHz, CPU clock				
		off, System clock =8 MHz, All peripherals		2.2	_	mA
		disabled				
		V_{DD} = V_{DDA} =3.3 V , Regulator in run mode,		263	1100	μΑ
	Supply current	IRC40K off, RTC off, All GPIOs analog mode				P 1
	(Deep-Sleep	V _{DD} = V _{DDA} =3.3V, Regulator in low power				
	mode)	mode, IRC40K off, RTC off, All GPIOs analog		255	_	μΑ
		mode				
		V _{DD} = V _{DDA} =3.3V, LXTAL off, IRC40K on, RTC		7.3		μΑ
		on		7.5		μΑ
	Supply current	V _{DD} = V _{DDA} =3.3V, LXTAL off, IRC40K on, RTC		6.0		
	(Standby	off		6.8		μΑ
	mode)	V _{DD} = V _{DDA} =3.3V, LXTAL off, IRC40K off, RTC			07.5	
		off		5.5	27.5	μΑ
		V _{DD} and V _{DDA} not available, V _{BAT} =3.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL High	_	2.6	_	μΑ
		driving				
	Battery supply	V _{DD} and V _{DDA} not available, V _{BAT} =3.3 V, LXTAL				
I BAT		on with external crystal, RTC on, LXTAL High	_	2.4	_	μΑ
	current					μ, ι
		driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =2.6 V, LXTAL	_	1.9	_	μΑ
		on with external crystal, RTC on, LXTAL High				

		0 2 0 2 1	TOOKK Batas		<i></i>	
Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
		driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =1.8 V, LXTAL				
		on with external crystal, RTC on, LXTAL High	_	1.3	_	μΑ
		driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	2.6	_	μΑ
		Medium High driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.3 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	2.3	_	μΑ
		Medium High driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =2.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.8	_	μΑ
		Medium High driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =1.8 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.3	_	μΑ
		Medium High driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.5	_	μΑ
		Medium Low driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.3 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.4	_	μΑ
		Medium Low driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =2.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.2	_	μΑ
		Medium Low driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =1.8 V, LXTAL				
		on with external crystal, RTC on, LXTAL	_	1.0	_	μΑ
		Medium Low driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.6 V, LXTAL				
		on with external crystal, RTC on, LXTAL Low	_	1.4	_	μΑ
		driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =3.3 V, LXTAL				
		on with external crystal, RTC on, LXTAL Low	_	1.3	_	μΑ
		driving				
		V_{DD} and V_{DDA} not available, $V_{\text{BAT}}\text{=}2.6~\text{V}, \text{LXTAL}$				
		on with external crystal, RTC on, LXTAL Low	_	1.1	_	μΑ
		driving				
		V _{DD} and V _{DDA} not available, V _{BAT} =1.8 V, LXTAL				
		on with external crystal, RTC on, LXTAL Low	_	0.9	_	μΑ
		driving				

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all values given for T_A = 25 $\,^{\circ}C$ and test result is mean value.
- (3) When System Clock is less than 4 MHz, an external source is used, and the HXTAL bypass function is needed, no PLL.
- (4) When System Clock is greater than 8 MHz, a crystal 8 MHz is used, and the HXTAL bypass function is closed,

using PLL.

(5) When analog peripheral blocks such as ADCs, HXTAL, LXTAL, IRC8M, or IRC40K are ON, an additional power consumption should be considered.

Figure 4-2. Typical supply current consumption in Run mode

Figure 4-3. Typical supply current consumption in Sleep mode

4.4. EMC characteristics

EMS (electromagnetic susceptibility) includes ESD (Electrostatic discharge, positive and negative) and FTB (Burst of Fast Transient voltage, positive and negative) testing result is given in the <u>Table 4-8. EMS characteristics</u>, based on the EMS levels and classes compliant with IEC 61000 series standard.

Table 4-8. EMS characteristics(1)

Symbol	Parameter	Conditions	Level/Class	
\/===	Voltage applied to all device pins to	$V_{DD} = 3.3 \text{ V}, T_A = +25 ^{\circ}\text{C}$	3B	
VESD	induce a functional disturbance	conforms to IEC 61000-4-2) JB	
	Fast transient voltage burst applied to	V 22VT .25°C		
V _{FTB}	induce a functional disturbance through	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C}$	4A	
	100 pF on V_{DD} and V_{SS} pins	conforms to IEC 61000-4-4		

⁽¹⁾ Based on characterization, not tested in production.

EMI (Electromagnetic Interference) emission test result is given in the <u>Table 4-9. EMI characteristics</u>⁽¹⁾, The electromagnetic field emitted by the device are monitored while an application, executing EEMBC code, is running. The test is compliant with SAE J1752-3:2017 standard which specifies the test board and the pin loading.

Table 4-9. EMI characteristics(1)

Symbol	Parameter	Conditions	Tested frequency band	Max vs. [f _{HXTAL} /f _{HCLK}] 8/72 MHz	Unit	
	Peak level	$V_{DD} = 3.6 \text{ V}, T_A = +25 \text{ °C},$		0.15 to 30 MHz	8.41	
Semi		LQFP64, fhclk = 72 MHz,	30 to 130 MHz	8.12	dΒμV	
SEMI		conforms to SAE J1752-3:2017	130 MHz to 1GHz	12.84		

⁽¹⁾ Based on characterization, not tested in production.

4.5. Power supply supervisor characteristics

Table 4-10. Power supply supervisor characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		LVDT<2:0> = 000(rising edge)	_	2.123	_	V
		LVDT<2:0> = 000(falling edge)	_	2.019	_	V
V _{I VD} (1)	Low Voltage Detector Threshold	LVDT<2:0> = 001(rising edge)	_	2.213	_	V
V LVD(**)		LVDT<2:0> = 001(falling edge)	_	2.181	_	V
		LVDT<2:0> = 010(rising edge)	_	2.31		V
		LVDT<2:0> = 010(falling edge)	_	2.194		V

		LVDT<2:0> = 011(rising edge)	_	2.404	-	V
		LVDT<2:0> = 011(falling edge)	_	2.304	_	V
		LVDT<2:0> = 100(rising edge)	_	2.505	_	V
		LVDT<2:0> = 100(falling edge)	_	2.382	_	V
		LVDT<2:0> = 101(rising edge)	_	2.604	_	V
		LVDT<2:0> = 101(falling edge)	_	2.498	_	V
		LVDT<2:0> = 110(rising edge)	_	2.702	_	٧
		LVDT<2:0> = 110(falling edge)	_	2.59		V
		LVDT<2:0> = 111(rising edge)	_	2.803		V
		LVDT<2:0> = 111(falling edge)	_	2.684		٧
V _{LVDhyst} ⁽²⁾	LVD hysteresis	_	_	100	_	mV
V _{POR} ⁽¹⁾	Power on reset threshold		_	2.4	_	٧
V _{PDR} ⁽¹⁾	Power down reset threshold	PDRVS = 0	_	2.35	_	٧
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	0.05	_	٧
trsttempo ⁽²⁾	Reset temporization		_	2	_	ms
V _{POR} ⁽¹⁾	Power on reset threshold		_	2.4	_	٧
V _{PDR} ⁽¹⁾	Power down reset threshold	PDRVS = 1	_	1.8	_	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis		_	0.6	_	V
trsttempo ⁽²⁾	Reset temporization		_	2	_	ms

⁽¹⁾ Based on characterization, not tested in production.

4.6. Electrical sensitivity

The device is strained in order to determine its performance in terms of electrical sensitivity. Electrostatic discharges (ESD) are applied directly to the pins of the sample. Static latch-up (LU) test is based on the two measurement methods.

Table 4-11. ESD characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
\/	Electrostatic discharge	T _A =25 °C;			5000	\/
VESD(HBM)	voltage (human body model)	JS-001-2014		_	5000	

⁽²⁾ Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
\/	Electrostatic discharge	T _A =25 °C;			500	\/
VESD(CDM)	voltage (charge device model)	JS-002-2014				V

⁽¹⁾ Based on characterization, not tested in production.

Table 4-12. Static latch-up characteristics(1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	I-test	_	_	±100	mA	
LU	V _{supply} over voltage	T _A =25 °C; JESD78	_	_	5.4	V

⁽¹⁾ Based on characterization, not tested in production.

4.7. External clock characteristics

Table 4-13. High speed crystal oscillator (HXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL} ⁽¹⁾	High Speed crystal oscillator	V _{DD} = 3.3V	4	8	32	MHz
IHXTAL'	(HXTAL) frequency	V DD = 3.3 V	4	O	32	IVII IZ
	Recommended external feedback					
R _F ⁽²⁾	resistor between XTALIN and	_	_	200	_	kΩ
	XTALOUT					
	Recommended matching					
C _{HXTAL} ^{(2) (3)}	capacitance on OSCIN and	_	_	20	30	pF
	OSCOUT					
Ducy _(HXTAL)	HXTAL oscillator duty cycle		48	50	52	%
(2)	TIXTAL oscillator duty cycle		40	50	52	%
g _m ⁽²⁾	Oscillator transconductance	Startup		25	_	mA/V
I _{DDHXTAL} ⁽¹⁾	HXTAL oscillator operating current	$V_{DD} = 3.3V, T_A = 25^{\circ}C$		1.1	_	mA
tsuhxtal ⁽¹⁾	HXTAL oscillator startup time	$V_{DD} = 3.3V, T_A = 25^{\circ}C$	_	1.5	_	ms

⁽¹⁾ Based on characterization, not tested in production.

Table 4-14. High speed external clock characteristics (HXTAL in bypass mode)

		•				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HXTAL_ext} ⁽¹⁾	External clock source or oscillator frequency	$V_{DD} = 3.3 \text{ V}$	1	_	50	MHz
V _{HXTALH} ⁽²⁾	OSCIN input pin high level voltage	V _{DD} = 3.3 V	0.7 V _{DD}	_	V _{DD}	V
V _{HXTALL} ⁽²⁾	OSCIN input pin low level voltage		Vss	_	0.3 V _{DD}	V
t _{H/L(HXTAL)} (2)	OSCIN high or low time	_	5	_	_	ns

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{HXTAL1} = C_{HXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{HXTAL1} and C_{HXTAL2} , it is recommended matching capacitance on OSCIN and OSCOUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{R/F(HXTAL)} (2)	OSCIN rise or fall time	_	_	-	10	ns
C _{IN} ⁽²⁾	OSCIN input capacitance	_	_	5	_	pF
Ducy _(HXTAL) (2)	Duty cycle	_	40	_	60	%

⁽¹⁾ Based on characterization, not tested in production.

Table 4-15. Low speed external clock (LXTAL) generated from a crystal/ceramic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL} ⁽¹⁾	Low Speed crystal oscillator (LXTAL) frequency	V _{DD} = 3.3V	_	32.768	1	KHz
C _{LXTAL} ⁽²⁾⁽³⁾	Recommended load capacitance on OSC32IN and OSC32OUT	_	_	10	_	pF
Ducy _(LXTAL) ⁽²⁾	LXTAL oscillator duty cycle	_	48	50	52	%
	Oscillator transconductance	Lower driving capability	_	4	_	
g _m ⁽²⁾		Higher driving capability	_	18	_	μA/V
		Lower driving capability	_	0.9	_	
I _{DDLXTAL} ⁽¹⁾	LXTAL oscillator operating current	Higher driving capability	_	1.9		μA
		Lower driving capability	_	1.36		S
tsulxtal ⁽¹⁾⁽⁴⁾	LXTAL oscillator startup time	Higher driving capability	_	0.55		S

⁽¹⁾ Based on characterization, not tested in production.

Table 4-16. Low speed external user clock characteristics (LXTAL in bypass mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LXTAL_ext} ⁽¹⁾	External clock source or oscillator frequency	V _{DD} = 3.3 V	_	32.768	1000	kHz
V _{LXTALH} ⁽²⁾	OSC32IN input pin high level voltage	П	0.7 V _{DD}	l	V_{DD}	V
V _{LXTALL} ⁽²⁾	OSC32IN input pin low level voltage	_	Vss	_	0.3 V _{DD}	V
t _{H/L(LXTAL)} (2)	OSC32IN high or low time		450		_	
t _{R/F(LXTAL)} (2)	OSC32IN rise or fall time	_			50	ns
C _{IN} ⁽²⁾	OSC32IN input capacitance	_	_	5	_	pF
Ducy _(LXTAL) (2)	Duty cycle	_	30	50	70	%

⁽¹⁾ Based on characterization, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ $C_{LXTAL1} = C_{LXTAL2} = 2*(C_{LOAD} - C_S)$, For C_{LXTAL1} and C_{LXTAL2} , it is recommended matching capacitance on OSC32IN and OSC32OUT. For C_{LOAD} , it is crystal/ceramic load capacitance, provided by the crystal or ceramic manufacturer. For C_S , it is PCB and MCU pin stray capacitance.

⁽⁴⁾ tsulxtal is the startup time measured from the moment it is enabled (by software) to the 32.768 kHz oscillator stabilization flags is SET. This value varies significantly with the crystal manufacturer.

(2) Guaranteed by design, not tested in production.

4.8. Internal clock characteristics

Table 4-17. Internal 8 MHz RC oscillator (IRC8M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Internal 8 MHz RC					
firc8M	oscillator (IRC8M)	V _{DD} =V _{VDDA} =3.3V	_	8	_	MHz
	frequency					
	IRC8M oscillator	V _{DD} =V _{VDDA} =3.3V,		-1.7~1.4		%
	Frequency accuracy,	T _A =-40°C ~+85°C		-1.7~1.4		%
ACC:	Factory-trimmed	V _{DD} =V _{VDDA} =3.3V, T _A =25°C	-1.0	_	+1.0	%
ACC _{IRC8M}	IRC8M oscillator					
	Frequency accuracy, User	_	_	0.5	_	%
	trimming step ⁽¹⁾					
Ducy _{IRC8M} ⁽²⁾	IRC8M oscillator duty	\/\/	48	50	52	%
Ducyircsm\-/	cycle	V _{DD} =V _{VDDA} =3.3V, f _{IRC8M} =8MHz	40	50	52	70
I _{DDIRC8M}	IRC8M oscillator	\/\/		39		
+IDDAIRC8M (1)	operating current	$V_{DD}=V_{VDDA}=3.3V$, $f_{IRC8M}=8MHz$		39		μΑ
to (1)	IRC8M oscillator startup	\\\		2.6		
tsuircem ⁽¹⁾	time	V _{DD} =V _{VDDA} =3.3V, f _{IRC8M} =8MHz	3.6		us	

⁽¹⁾ Based on characterization, not tested in production.

Table 4-18. Internal 40KHz RC oscillator (IRC40K) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Internal 40KHz RC					
firc40K ⁽¹⁾	oscillator (IRC40K)	$V_{DD}=V_{VDDA}=3.3V$	25	40	60	KHz
	frequency					
IDDIRC40KI	IRC40K oscillator operating	V V 0.0V T 0500		1.3		
+I _{DDAIRC40KI} (2)	current	V _{DD} =V _{VDDA} =3.3V, T _A =25°C		1.3		μΑ
t _{SUIRC40K} ⁽²⁾	IRC40K oscillator startup	V _{DD} =V _{CDDA} =3.3V, T _A =25°C	·	115.7	·	
	time	VDD=VCDDA=3.3V, 1A=23 C		113.7		μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-19. High speed internal clock (IRC14M) characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{IRC14M}	Internal 14 MHz RC oscillator (IRC14M) frequency	V _{DD} =V _{DDA} =3.3V		14	_	MHz
ACCIRC14M	IRC14M oscillator Frequency accuracy, Factory-trimmed	V _{DD} =V _{DDA} =3.3V, T _A =-40°C ~+85°C	_	-0.9~ 0.029		%
	accuracy, Factory-trimmed	$V_{DD}=V_{DDA}=3.3V$, $T_A=25$ °C	-1.0	_	+1.0	%

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Based on characterization, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	IRC14M oscillator Frequency accuracy, User trimming step ⁽¹⁾	_	_	0.5	_	%
DIRC14M ⁽²⁾	IRC14M oscillator duty cycle	V _{DD} =V _{DDA} =3.3V, f _{IRC14M} =14MHz	48	50	52	%
IDDIRC14M +IDDAIRC14M (1)	IRC14M oscillator operating current	$V_{DD}=V_{DDA}=3.3V$, $f_{IRC14M}=14MHz$	_	54	_	μΑ
tsuirc _{14M} ⁽¹⁾	IRC14M oscillator startup time	$V_{DD}=V_{DDA}=3.3V$, $f_{IRC14M}=14MHz$	_	2.9	_	us

⁽¹⁾ Based on characterization, not tested in production.

4.9. PLL characteristics

Table 4-20. PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLLIN} ⁽¹⁾	PLL input clock frequency	_	1	_	25	MHz
f _{PLLOUT} (2)	PLL output clock frequency	_	16	_	72	MHz
f _{VCO} ⁽²⁾	PLL VCO output clock				72	MHz
IVCO(-/	frequency	_			12	IVITZ
t _{LOCK} (2)	PLL lock time	_		_	300	μs
I _{DDA} ⁽¹⁾	Current consumption on	VCO freq = 72 MHz		270		
IDDA	V _{DDA}	VOO 1164 – 72 WI12		210		μΑ
	Cycle to cycle Jitter			32.1		
Jitter _{PLL} (1)(3)	(rms)	System clock		32.1		nc
JILLEIPLE ()(*)	Cycle to cycle Jitter	System Clock		255.6		ps
	(peak to peak)			255.6		

⁽¹⁾ Based on characterization, not tested in production.

4.10. Memory characteristics

Table 4-21. Flash memory characteristics

	•					
Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽²⁾	Unit
PEcyc	Number of guaranteed program /erase cycles before failure (Endurance)	T _A = -40 °C ~ +85 °C	100	_	ı	kcycles
t _{RET}	Data retention time		_	20	1	years
t PROG	Word programming time	T _A = -40°C ~ +85 °C	_	37.5	105	μs
terase	Page erase time	T _A = -40°C ~ +85 °C	_	50	400	ms

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ Value given with main PLL running.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽²⁾	Unit
t _{MERASE(16K)} (2)	Mass erase time	T _A = -40°C ~ +85 °C	_	0.3	3	s
t _{MERASE(32K)} (2)	Mass erase time	T _A = -40°C ~ +85 °C	_	0.6	6	s
t _{MERASE(64K)} (2)	Mass erase time	T _A = -40°C ~ +85 °C	_	1.2	12	s

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

4.11. NRST pin characteristics

Table 4-22. NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} (1)	NRST Input low level voltage		-0.3	_	0.3 V _{DD}	\ \
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 2.6 \text{ V}$	$0.7 V_{DD}$	_	V _{DD} + 0.3	V
V _{hyst} ⁽²⁾	Schmidt trigger Voltage hysteresis		_	330	1	mV
V _{IL(NRST)} (1)	NRST Input low level voltage		-0.3	_	0.3 V _{DD}	V
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.3 \text{ V}$	0.7 V _{DD}		V _{DD} + 0.3	V
V _{hyst} ⁽²⁾	Schmidt trigger Voltage hysteresis		_	340	_	mV
VIL(NRST) (1)	NRST Input low level voltage		-0.3		0.3 V _{DD}	V
V _{IH(NRST)} (1)	NRST Input high level voltage	$V_{DD} = V_{DDA} = 3.6 \text{ V}$	0.7 V _{DD}		V _{DD} + 0.3	
V _{hyst} ⁽²⁾	Schmidt trigger Voltage hysteresis		_	350	_	mV
R _{pu} ⁽²⁾	Pull-up equivalent resistor	_	_	40		kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Figure 4-4. Recommended external NRST pin circuit⁽¹⁾

(1) Unless the voltage on NRST pin go below $V_{\text{IL}(NRST)}$ level, the device would not generate a reliable reset.

4.12. **GPIO** characteristics

Table 4-23. I/O port DC characteristics(1)(3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	Standard IO Low level	$2.6 \text{ V} \le \text{V}_{\text{DD}} = \text{V}_{\text{DDA}} \le 3.3 \text{ V}$	_	ı	0.3 V _{DD}	V

		GD32f	1307	\ \ L	alasi	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	input voltage					
	5V-tolerant IO Low	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq 3.3 \text{ V}$	_	_	0.3 V _{DD}	
	level input voltage	2.0 V = V DD = V DDA = 0.0 V			0.0 0.0	
	Standard IO High	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq 3.3 \text{ V}$	0.7 Vpp			
V _{IH}	level input voltage	2.0 V 3 VDD = VDDA 3 3.3 V	U.1 VDD			
VIH	5 V-tolerant IO High	$2.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DDA} \leq 3.3 \text{ V}$	0.7 Vpp			
	level input voltage	2.0 V = VDD = VDDA = 0.0 V	0.7 VDD			
	10_	_speed=50MHz				
	Low level output	V _{DD} = 2.6 V	_	0.24	_	
	voltage for an IO Pin	$V_{DD} = 3.3 \text{ V}$	_	0.21		
VoL	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 3.6 V	_	0.2	_	
	Low level output	V _{DD} = 2.6 V	_	0.66	_	
	voltage for an IO Pin	V _{DD} = 3.3 V	_	0.56	_	٧
	(I _{IO} = +20 mA)	V _{DD} = 3.6 V	_	0.54	_	
	High level output	V _{DD} = 2.6 V	_	2.25		
	voltage for an IO Pin	V _{DD} = 3.3 V		2.94	_	
	$(I_{IO} = +8 \text{ mA})$	V _{DD} = 3.6 V	_	3.23	_	
V _{OH}	(I _{IO} = +10 mA)	V _{DD} = 2.6 V	_	2.16	_	
	High level output	V _{DD} = 3.3 V	_	2.36	_	V
	voltage for an IO Pin	V _{DD} = 3.6 V		2.83		ľ
	(I _{IO} = +20 mA)					
		_speed=10MHz		0.25		
	Low level output	V _{DD} = 2.6 V	_	0.35	_	
	voltage for an IO Pin			0.29		
VoL	(I _{IO} = +4 mA)	$V_{DD} = 3.6 \text{ V}$	_	0.28	_	V
	Low level output	$V_{DD} = 3.3 \text{ V}$	_	0.82	_	
	voltage for an IO Pin (I _{IO} = +10 mA)	V _{DD} = 3.6 V	_	0.76	_	
		V _{DD} = 2.6 V	_	2.21	_	
	High level output	V _{DD} = 3.3 V	_	2.96	_	
	voltage for an IO Pin (I _{IO} = +4 mA)	V _{DD} = 3.6 V	_	3.28		
Vон	High level output					V
	voltage for an IO Pin	V _{DD} = 3.3 V	_	2.49	_	
	(I _{IO} = +10 mA)	V _{DD} = 3.6 V	_	2.85	_	
	IO	_speed=2MHz				
	Low level output	V _{DD} = 2.6 V	_	0.91	_	
Vol	voltage for an IO Pin	V _{DD} = 3.3 V		0.72		
	$(I_{10} = +4 \text{ mA})$	V _{DD} = 3.6 V	_	0.69	_	.,
	High level output	V _{DD} = 2.6 V	_	1.75	_	V
Vон	voltage for an IO Pin	V _{DD} = 3.3 V		2.70		
	(I _{IO} = +4 mA)	V _{DD} = 3.6 V	_	3.04	_	
[1		l	l		ı

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU} ⁽²⁾	Internal pull-up resistor	V _{IN} =V _{SS}	_	40		kΩ
R _{PD} ⁽²⁾	Internal pull-down resistor	V _{IN} =V _{DD}	_	40	_	kΩ

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.
- (3) All pins except PC13 / PC14 / PC15. Since PC13 to PC15 are supplied through the Power Switch, which can only be obtained by a small current, the speed of GPIOs PC13 to PC15 should not exceed 2 MHz when they are in output mode(maximum load: 30 pF).

Table 4-24. I/O port AC characteristics(1)(2)(4)

GPIOx_OSPDy[1:0] bit value ⁽³⁾	Parameter	Conditions	Тур	Unit	
CDIOX OSDDy M.O. VO		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	65.2		
GPIOx_OSPDy [1:0] = X0 (IO_Speed = 2 MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	55.4	ns	
		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	45		
GPIOx OSPDy [1:0] = 01		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	18.4		
(IO Speed = 10 MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	25.6	ns	
(10_Speed = 10 Wil 12)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	30.4		
CDIOv. OSDDv [1:0] - 11		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 10 \text{ pF}$	2.6		
GPIOx_OSPDy [1:0] = 11 (IO Speed = 50 MHz)	T _{Rise} /T _{Fall}	$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 30 \text{ pF}$	3.4	ns	
(10_Speed = 50 MHz)		$2.6 \le V_{DD} \le 3.6 \text{ V}, C_L = 50 \text{ pF}$	4.8		

- (1) Based on characterization, not tested in production.
- (2) Unless otherwise specified, all test results given for $T_A = 25$ °C.
- (3) The I/O speed is configured using the GPIOx_CTL -> MDy[1:0] bits.
- (4) Only for reference, Depending on user's design.

4.13. ADC characteristics

Table 4-25. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage	_	2.6	3.3	3.6	V
V _{IN} ⁽¹⁾	ADC input voltage range	16 external; 3 internal	0	_	V_{DDA}	V
f _{ADC} ⁽¹⁾	ADC clock	_	0.6	_	14	MHz
fs ⁽¹⁾	Sampling rate	12-bit	0.04	_	1	MSPS
R _{AIN} ⁽²⁾	External input impedance	See Equation 1	_	_	54.8	kΩ
R _{ADC} ⁽²⁾	Input sampling switch resistance	_	_	_	0.2	kΩ
C _{ADC} ⁽²⁾	Input sampling capacitance	No pin/pad capacitance included		32		pF
t _{CAL} ⁽²⁾	Calibration time	$f_{ADC} = 14 \text{ MHz}$	_	5.928	_	μs
t _s (2)	Sampling time	f _{ADC} = 14 MHz	0.11	_	17.11	μs
t _{CONV} (2)	Total conversion time(including sampling	12-bit	_	14	_	1/ f _{ADC}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	time)					
tsu ⁽²⁾	Startup time	_	_	_	1	μS

- (1) Based on characterization, not tested in production.
- (2) Guaranteed by design, not tested in production.

Equation 1: Rain max formula
$$R_{AIN} < \frac{T_s}{f_{ADC}*C_{ADC}*ln(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N=12 (from 12-bit resolution).

Table 4-26. ADC $R_{AIN max}$ for f_{ADC} =14 MHz

T _s (cycles)	t _s (μs)	R _{AIN max} (kΩ)
1.5	0.11	0.14
7.5	0.54	1.5
13.5	0.96	2.9
28.5	2.04	6.3
41.5	2.96	9.3
55.5	3.96	12.5
71.5	5.11	16.2
239.5	17.11	54.8

4.14. Temperature sensor characteristics

Table 4-27. Temperature sensor characteristics(1)

Symbol	Parameter	Min	Тур	Max	Unit
TL	VSENSE linearity with temperature		±1.5		°C
Avg_Slope	Average slope		4.1	_	mV/°C
V ₂₅	Voltage at 25 °C	_	1.45	_	V
t _{S_temp} (2)	ADC sampling time when reading the temperature	_	17.1		μs

⁽¹⁾ Based on characterization, not tested in production.

4.15. DAC characteristics

Table 4-28. DAC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA} ⁽¹⁾	Operating voltage		2.6	3.3	3.6	V
V _{REF+} ⁽²⁾	Positive Reference Voltage	_	2.6	_	V_{DDA}	V
V _{REF-} (2)	Negative Reference Voltage	ı		V _{SSA}		V
R _{LOAD} ⁽²⁾	Load resistance	Resistive load with buffer ON	5	_	_	kΩ
Ro ⁽²⁾ Impedance output with		_	_	_	15	kΩ

⁽²⁾ Shortest sampling time can be determined in the application by multiple iterations.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	buffer OFF					
C _{LOAD} ⁽²⁾	Load capacitance	No pin/pad capacitance included		_	50	pF
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	_	0.2	_	_	V
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	_	_	_	V _{DDA} -	V
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	_	_	0.5	_	mV
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF			_	V _{DDA} -	٧
T _{wakeup} (2)	Wakeup from off state	_		5	10	μs
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change from code i to i±1LSBs	$C_{LOAD} \leqslant 50 pF, R_{LOAD} \geqslant 5 k\Omega$	_	_	4	MS/s
PSRR ⁽²⁾	Power supply rejection ratio (to V _{DDA})	_	55	80	_	dB

⁽¹⁾ Based on characterization, not tested in production.

4.16. I2C characteristics

Table 4-29. I2C characteristics (1) (2) (3)

Cumabal	Parameter	Conditions	Standar	d mode	Fast	I I m ! 4	
Symbol	Parameter	Conditions	Min	Max	Min	Max	Unit
t _{SCL(H)}	SCL clock high time	_	4.0	_	0.6	_	μs
t _{SCL(L)}	SCL clock low time	_	4.7	_	1.3	_	μs
t _{su(SDA)}	SDA setup time	_	250	_	100	_	ns
t _{h(SDA)}	SDA data hold time	_	0(3)	3450	0	900	ns
t _{r(SDA/SCL)}	SDA and SCL rise time	_	_	1000	_	300	ns
t _{f(SDA/SCL)}	SDA and SCL fall time	_	_	300	_	300	ns
th(STA)	Start condition hold time	_	4.0	_	0.6	_	μs
t _{s(STA)}	Repeated Start condition setup time	_	4.7	_	0.6	_	μs
t _{s(STO)}	Stop condition setup time	_	4.0	_	0.6	_	μs
tbuff	Stop to Start condition time (bus free)	_	4.7	_	1.3	_	μs

⁽¹⁾ Guaranteed by design, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽²⁾ To ensure the standard mode I2C frequency, f_{PCLK1} must be at least 2 MHz. To ensure the fast mode I2C frequency, f_{PCLK1} must be at least 4 MHz.

⁽³⁾ The device should provide a data hold time of 300 ns at least in order to bridge the undefined region of the falling edge of SCL.

Figure 4-5. I2C bus timing diagram

4.17. USART characteristics

Table 4-30. USART characteristics (1)

Symbol	nbol Parameter Conditions		Min	Тур	Max	Unit
f _{SCK}	SCK clock frequency	f _{PCLKx} = 72 MHz		_	36	MHz
t _{SCK(H)}	SCK clock high time	f _{PCLKx} = 72 MHz	13.8	_	_	ns
t _{SCK(L)}	SCK clock low time	f _{PCLKx} = 72 MHz	13.8	_	_	ns

⁽¹⁾ Based on characterization, not tested in production.

4.18. USBD characteristics

Table 4-31. USBD start up time

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	USBD startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-32. USBD DC electrical characteristics

Symb	ool	Parameter	Conditions	Min	Тур	Max	Unit
	V_{DD}	USBD operating voltage	_	3	_	٧	
levels ⁽¹⁾ V _{CM} Differen		Differential input sensitivity	I(USBDP, USBDM)	0.2	_	_	V
		Differential common mode range	Includes V _{DI} range	0.8	_	2.5	V
		Single ended receiver threshold	_	0.8	_	2.0	
Output	Vol	Static output level low	R_L of 1.5 $k\Omega$ to 3.6 V	_	0.064	٧	٧
levels (2) V _{OH} Static output level high		R_L of 15 $k\Omega$ to V_{SS}	2.8	3.3	3.6	V	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-33. USBD full speed-electrical characteristics⁽¹⁾

t _R	Rise time	CL = 50 pF	4	5	20	ns
t _F	Fall time	CL = 50 pF	4	5	20	ns
t _{RFM}	Rise/ fall time matching	t _R / t _F	90	_	110	%

⁽²⁾ Based on characterization, not tested in production.

VCRS	Output signal crossover voltage		1.3		2.0	V
t_R	Rise time	CL = 50 pF	4	5	20	ns

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 4-6. USBD timings: definition of data signal rise and fall time

4.19. TIMER characteristics

Table 4-34. TIMER characteristics (1)

Symbol	Parameter	Conditions	Min	Max	Unit
4	Timer resolution time	_	1	_	t _{TIMERxCLK}
t _{res}	Timer resolution time	ftimerxclk = 72 MHz	13.9	_	ns
4	Timer external clock	_	0	f _{TIMERxCLK} /2	MHz
f _{EXT}	frequency	$f_{TIMERxCLK} = 72 \text{ MHz}$	0	36	MHz
RES	Timer resolution	_	_	16	bit
	16-bit counter clock	_	1	65536	tTIMERXCLK
tcounter	period when internal	ftimer×ci k = 72 MHz	0.0139	910	
	clock is selected	TIMERXCLK = 72 IVII IZ	0.0139	910	μs
taay ooung	Maximum possible count	_	_	65536 × 65536	t _{TIMERxCLK}
tmax_count	iviaximum possible count	ftimerxclk = 72 MHz	_	59.6	s

⁽¹⁾ Guaranteed by design, not tested in production.

4.20. WDGT characteristics

Table 4-35. FWDGT min/max timeout period at 40 kHz (IRC40K) (1)

Prescaler divider	PR[2:0] bits	Min timeout RLD[11:0] = 0x000	Max timeout RLD[11:0] = 0xFFF	Unit
1/4	000	0.025	409.525	
1/8	001	0.025	819.025	
1/16	010	0.025	1638.025	
1/32	011	0.025	3276.025	ms
1/64	100	0.025	6552.025	
1/128	101	0.025	13104.025	
1/256	110 or 111	0.025	26208.025	

⁽¹⁾ Guaranteed by design, not tested in production.

Table 4-36. WWDGT min-max timeout value at 36 MHz (f_{PCLK1}) (1)

					•	
P	Prescaler divider	PSC[1:0]	Min timeout value CNT[6:0] = 0x40	Unit	Max timeout value CNT[6:0] = 0x7F	Unit
	1/1	00	56.89		3.64	
	1/2	01	113.78		7.28	
	1/4	10	227.56	μs	14.56	ms
	1/8	11	455.11		29.13	

⁽¹⁾ Guaranteed by design, not tested in production.

4.21. Parameter conditions

Unless otherwise specified, all values given for $V_{DD} = V_{DDA} = 3.3 \text{ V}$, $T_A = 25 \, ^{\circ}\text{C}$.

5. Package information

5.1. LQFP64 package outline dimensions

Figure 5-1. LQFP64 package outline

Table 5-1. LQFP64 package dimensions

Symbol	Min	Тур	Max
А	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
А3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	11.80	12.00	12.20
D1	9.90	10.00	10.10
E	11.80	12.00	12.20
E1	9.90	10.00	10.10
е	_	0.50 —	
eB	11.25	— 11.49	
L	0.45	— 0.75	
L1	_	1.00	_
θ	0°	_	7°

(Original dimensions are in millimeters)

Figure 5-2. LQFP64 recommended footprint

5.2. LQFP48 package outline dimensions

Figure 5-3. LQFP48 package outline

Table 5-2. LQFP48 package dimensions

Symbol	Min	Тур	Max
А	_	_	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
А3	0.59	0.64	0.69
b	0.18	_	0.26
b1	0.17	0.20	0.23
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
е	_	0.50	_
eB	8.10	_	8.25
L	0.45	_	0.75
L1	_	1.00	_
θ	0°	_	7°

Figure 5-4. LQFP48 recommended footprint

5.3. QFN32 package outline dimensions

Figure 5-5. QFN32 package outline

Table 5-3. QFN32 package dimensions

Symbol	Min	Тур	Max
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.18	0.25	0.30
С	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.40	3.40 3.50	
E	4.90	4.90 5.00	
E2	3.40	3.50	3.60
е	_	0.50 —	
h	0.30	.30 0.35	
L	0.35	0.40 0.45	
Ne	_	3.50	

Figure 5-6. QFN32 recommended footprint

5.4. QFN28 package outline dimensions

Figure 5-7. QFN28 package outline

Table 5-4. QFN28 package dimensions

Symbol	Min	Тур	Max	
Α	0.70	0.75	0.80	
A1	0	0.02	0.05	
b	0.15	0.20	0.25	
b1	_	0.14	_	
С	0.18	0.20	0.25	
D	3.90	4.00	4.10	
D2	2.70	2.80	2.90	
E	3.90	4.00	4.10	
E2	2.70	2.80	2.90	
е	_	0.40	_	
h	0.30	0.35 0.40		
L	0.30	0.35 0.40		
Nd	_	2.40	_	
Ne	_	2.40	_	

Figure 5-8. QFN28 recommended footprint

5.5. Thermal characteristics

Thermal resistance is used to characterize the thermal performance of the package device, which is represented by the Greek letter "0". For semiconductor devices, thermal resistance represents the steady-state temperature rise of the chip junction due to the heat dissipated on the chip surface.

 θ_{JA} : Thermal resistance, junction-to-ambient.

 θ_{JB} : Thermal resistance, junction-to-board.

 θ_{JC} : Thermal resistance, junction-to-case.

Ψ_{JB}: Thermal characterization parameter, junction-to-board.

ΨJT: Thermal characterization parameter, junction-to-top center.

$$\theta_{\mathsf{JA}} = (\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{A}})/\mathsf{P}_{\mathsf{D}} \tag{5-1}$$

$$\theta_{JB} = (T_J - T_B)/P_D \tag{5-2}$$

$$\theta_{JC} = (T_J - T_C)/P_D \tag{5-3}$$

Where, T_J = Junction temperature.

 $T_A = Ambient temperature$

T_B = Board temperature

T_C = Case temperature which is monitoring on package surface

P_D = Total power dissipation

 θ_{JA} represents the resistance of the heat flows from the heating junction to ambient air. It is an indicator of package heat dissipation capability. Lower θ_{JA} can be considerate as better overall thermal performance. θ_{JA} is generally used to estimate junction temperature.

 θ_{JB} is used to measure the heat flow resistance between the chip surface and the PCB board.

 θ_{JC} represents the thermal resistance between the chip surface and the package top case. θ_{JC} is mainly used to estimate the heat dissipation of the system (using heat sink or other heat dissipation methods outside the device package).

Table 5-5. Package thermal characteristics⁽¹⁾

Symbol	Condition	Package	Value	Unit
θја		LQFP64	63.57	°C/W
	Natural convection, 2S2P PCB	LQFP48	64.40	
		QFN32	48.50	
		QFN28	66.07	
θЈВ	Cold plate, 2S2P PCB	LQFP64	44.40	°C/W
	Colu plate, 252P PCB	LQFP48	42.32	C/VV

GD32F150xx Datasheet

Symbol	Condition	Package	Value	Unit
		QFN32	28.32	
		QFN28	32.52	
	Cold plate, 2S2P PCB	LQFP64	21.98	
Δ		LQFP48	22.47	°C ///
θ_{JC}		QFN32	24.07	°C/W
		QFN28	30.58	
	Natural convection, 2S2P PCB	LQFP64	44.64	°C/W
		LQFP48	42.42	
ΨЈВ		QFN32	28.93	
		QFN28	32.55	
	Natural convection, 2S2P PCB	LQFP64	1.51	°C/W
ΨЈТ		LQFP48	1.74	
		QFN32	3.33	
		QFN28	3.27	

⁽¹⁾ Thermal characteristics are based on simulation, and meet JEDEC specification.

6. Ordering information

Table 6-1. Part ordering code for GD32F150xx devices

Ordering code	Flash (KB)	Package	Package type	Temperature operating range
GD32F150R8T6	64	LQFP64	Green	Industrial -40°C to +85°C
GD32F150R6T6	32	LQFP64	Green	Industrial -40°C to +85°C
GD32F150R4T6	16	LQFP64	Green	Industrial -40°C to +85°C
GD32F150C8T6	64	LQFP48	Green	Industrial -40°C to +85°C
GD32F150C6T6	32	LQFP48	Green	Industrial -40°C to +85°C
GD32F150C4T6	16	LQFP48	Green	Industrial -40°C to +85°C
GD32F150K8U6	64	QFN32	Green	Industrial -40°C to +85°C
GD32F150K6U6	32	QFN32	Green	Industrial -40°C to +85°C
GD32F150K4U6	16	QFN32	Green	Industrial -40°C to +85°C
GD32F150G8U6	64	QFN28	Green	Industrial -40°C to +85°C
GD32F150G6U6	32	QFN28	Green	Industrial -40°C to +85°C
GD32F150G4U6	16	QFN28	Green	Industrial -40°C to +85°C

7. Revision history

Table 7-1. Revision history

Revision No.	Description	Date	
1.0	1. Initial Release	Mar.8, 2014	
	1. Package data updated in Table 5-1. QFN package		
1.1	<u>dimensions</u> and <u>Table 6-1. Part ordering code for</u>	Jun.18, 2014	
	GD32F150xx devices.		
2.1	1. Characteristics values updated in <u>Table 4-3. Power</u>	Oct.20, 2014	
2.1	consumption characteristics.	Oct.20, 2014	
3.0	Adapt To New Name Convention.	Jan.24, 2018	
3.1	Modify formats and descriptions.	Nov.21, 2019	
3.2	1. Table 4-3 update, refers to <u>Table 4-3. Power</u>	Jun.16.2021	
3.2	consumption characteristics.		
	1. Update <u>Table 4-1. Absolute maximum ratings(1)(4)</u> .		
3.3	2. Update electrical parameters in chapter Electrical	Jul. 12. 2022	
	characteristics.		

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2022 GigaDevice - All rights reserved