GROUP THEORY

STUDENT NAME HERE

1. Groups

Definition 1. A group (G,\cdot) is a set G together with a binary operation

$$\cdot:G\times G\to G$$

such that

- (G1) $(g_1g_2)g_3 = g_1(g_2g_3)$ for every $g_1, g_2, g_3 \in G$; (G2) there exists $1 \in G$ such that $g \cdot 1 = 1 \cdot g = g$ for every $g \in G$; (G3) for every $g \in G$ there exists $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = 1$.

Definition 2. A group G is abelian if $g_1g_2 = g_2g_1$ for every $g_1, g_2 \in G$.

Proposition 1. Let G be a group such that $g^2 = 1$ for every $g \in G$. Then G is abelian.

Proof. Type proof here.

Type examples here.

Date: May 15, 2018.

2. Subgroups

Definition 3. Let G be a group and let $H \subset G$. We say that H is a *subgroup* of G, and write $H \leq G$, if

- (S0) H is nonempty;
- **(S1)** $h_1, h_2 \in H$ implies $h_1 h_2 \in H$;
- (S2) $h \in H$ implies $h^{-1} \in H$.

Problem 1. Let G be a group and let $\mathcal H$ be a collection of subgroups of G. The *intersection* of $\mathcal H$ is

$$\cap \mathcal{H} = \{ h \in G \mid h \in H \text{ for every } H \in \mathcal{H} \}.$$

Then $\cap \mathcal{H} \leq G$.

Problem 2. Let G be a group. The *center* of G is

$$Z(G) = \{ h \in G \mid hg = gh \text{ for all } g \in G \}.$$

Then $Z(G) \leq G$.

Problem 3. Let G be a group, $g \in G$, and $H \leq G$. The *centralizer* of G in H is

$$C_H(g) = \{ h \in H \mid hg = gh \}.$$

Then $C_H(g) \leq G$.

Problem 4. Let G be a group and $H, K \leq G$. The normalizer of K in H is

$$N_H(K) = \{ h \in H \mid hK = Kh \}.$$

Then $N_H(K) \leq G$.

3. Cyclic Groups

Type definition and theory here.

4. Next Section

Continue building all significant theory, peppered with examples.

Department of Mathematics and CSci, Southern Arkansas University $E\text{-}mail\ address:$ youremail@saumag.edu