

The
Patent
Office

66 E 70 / 66 857 10
PCT / GB 55 / 04399

INVESTOR IN PEOPLE

G-B99
04399

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 17 January 2000

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

1. Your reference

2. Patent application number

(The Patent Office will fill in this part)

SJK/BP574572 RECEIVED BY HAND

9828713.93. Full name, address and postcode of the or of each applicant (underline all surnames)UNIVERSITY COLLEGE LONDON
GOWER STREET
LONDON WC1E 6BT
GB

Patents ADP number (if you know it)

0079 8652003

If the applicant is a corporate body, give the country/state of its incorporation

4. Title of the invention

GLYCOSYLPHOSPHATIDYLINOSITOL SPECIFIC PHOSPHOLIPASE D PROTEINS AND USES THEREOF

5. Name of your agent (if you have one)

MEWBURN ELLIS

"Address for service" in the United Kingdom to which all correspondence should be sent
(including the postcode)

YORK HOUSE
23 KINGSWAY
LONDON
WC2B 6HP

Patents ADP number (if you know it)

109006 ✓

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number
(if you know it)Date of filing
(day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:
 a) any applicant named in part 3 is not an inventor, or
 b) there is an inventor who is not named as an applicant, or
 c) any named applicant is a corporate body.
 See note (d))

YES

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form	0	<i>JSM</i>
Description	32	
Claim(s)	0	
Abstract	0	
Drawing(s)	18	<i>X\8</i>

10. If you are also filing any of the following, state

Priority documents	0
Translations of priority documents	0
Statement of inventorship and right to grant of a patent (<i>Patents Form 7/77</i>)	0
Request for preliminary examination and search (<i>Patents Form 9/77</i>)	0
Request for substantive examination (<i>Patents Form 10/77</i>)	0
Any other documents (Please specify)	0

11.

I/We request the grant of a patent on the basis of this application.

Signature
Menzelum Ellis

Date
23 December 1998

12. Name and daytime telephone number of person
to contact in the United Kingdom

SIMON J. KIDDLE

0117 926 6411

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

Glycosylphosphatidylinositol Specific Phospholipase D
Proteins and Uses Thereof

Field of the Invention

5 The present invention relates to
glycosylphosphatidylinositol specific phospholipase D
(GPI-PLD) proteins and uses of these proteins, in
particular in the treatment and diagnosis of conditions
mediated by a product of an infectious organism which is
10 capable of inhibiting GPI-PLD, such as septic shock.

Background of the Invention

15 Studies have shown that a number of cell surface proteins
are attached to the cell membrane by covalent linkage to
a glycosylphosphatidylinositol (GPI) anchor. It has been
shown that the enzyme GPI-PLD cleaves the photodiester
bond linking glycosylphosphatidylinositol to phosphatidic
acid, thereby releasing anchored proteins.

20 GPI-PLD enzymes are abundantly present in human and
bovine serum (5-10 μ g/ml in human serum). US Patent No:
5,418,147 (Huang et al) describes the purification of
GPI-PLD from bovine liver, and the subsequent cloning of
three GPI-PLD enzymes from bovine liver, human liver and
25 human pancreas cDNA libraries. This patent reports the
full length cDNA and amino acid sequences of the GPI-PLDs
from human and bovine liver, and the partial cDNA and
amino acid sequences of the human pancreatic form of the
enzyme. Subsequently, the full length sequence of the
30 pancreatic form of GPI-PLD was reported in Tsang et al
(1992), and this enzyme has been found in cDNA libraries
from breast, eye, spleen and tonsil. The three forms of
the enzymes are highly homologous with the predicted
mature protein sequences of bovine liver GPI-PLD sharing
35 82% sequence identity with the human liver enzyme and 81%
sequence identity with the human pancreatic enzyme. The
amino acid sequences of human liver and pancreatic forms
of GPI-PLD were deposited at GenBank under accession
numbers L11701 and L11702 and consist of 841 and 840

amino acids respectively. The human liver and pancreatic forms of GPI-PLD share 94.6% sequence identity. The structure of GPI-PLDs is further discussed in Scallion et al, 1991.

5

However, despite cloning three forms of GPI-PLD, there is no suggestion in these references as to the *in vivo* role of the enzymes. Further, the only application of the enzymes suggested is in an expression system in which a heterologous protein is expressed in a host cell as a fusion with a GPI-signal peptide, leading to the heterologous protein becoming anchored to the cell membrane by a GPI anchor, where it can be cleaved off by coexpressed or added GPI-PLD.

10

15

GPI-PLD has also been isolated from human serum by Hoener et al (1992) and this form of the enzyme was found to be identical to the human pancreatic GPI-PLD apart from changes at 531 to 534 where VIGS is replaced by MLGT. This paper also showed that treatment of serum GPI-PLD with N-glycosidase F reduced the apparent molecular weight from 123 kD to 87 kD. Similarly, by Li et al (1994) showed GPI-PLD was cleaved by trypsin into 3 fragments (2 x 40 kD and 30 kD), and by Heller et al (1994) which showed that 33, 39 and 47kD species were produced, with only the N-terminal 39 kD fragment moiety showing enzyme activity after renaturation.

20

25

30

35

It has been proposed that one function of GPI-PLD enzyme is to produce inositolphosphoglycans (IPGs) by the cleavage of "free" GPIs in the plasma membrane in response to binding of a growth factor to its receptor (Rademacher et al, 1994). This role for GPI-PLD has been demonstrated in mast cells where IgE-dependent activation of these cells results in release of their granule contents, which include substances such as histamine, a mediator of the inflammatory response. In the presence

of antigen, histamine is released; this release can be mimicked by addition of IPGs and is blocked by addition of anti-GPI-PLD antibodies (Lin et al, 1991).

5 The role of GPI-PLD in cleaving GPI-anchored proteins, and especially inositolphosphoglycans (IPGs), is examined in Jones et al (1997). However, the authors reflect the uncertainty in the art regarding the mechanism of IPG generation, noting that "The definitive activated enzyme, being a GPI-PLC or a GPI-PLD, has yet to be unequivocally identified" and that "little attention has been payed to the role of GPI-PLD as the hydrolysing enzyme".

10 In summary, despite the cloning of GPI-PLD enzymes and 15 investigation as to their biochemical properties, the role of the enzyme *in vivo* or any possible medical use remains unknown.

Summary of the Invention

20 Broadly, the present invention relates to GPI-PLD for medical use, and in particular to the use of GPI-PLD in the treatment of conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD. The GPI-PLD can be the forms of the enzyme disclosed in the prior art, or the GPI-PLDs disclosed for 25 the first time here. An example of such a condition includes septic shock which commonly occurs following abdominal surgery, severe burns, trauma or cardiac failure. Septic shock is generally preceded by a reduction in splanchnic blood flow, resulting in 30 ischaemia and epithelial damage on reperfusion, allowing ingress of microorganisms and subsequent sepsis.

35 The present invention is based on the observation that in conditions such as septic shock, endotoxin is released from the microorganisms causing sepsis, leading to the clinical symptoms of septic shock such as total organ

failure and fatal shock. The endotoxins can be glycolipids released from gram negative bacteria or glycolipids such as LAM released from mycobacteria such as Tuberculosis. Without wishing to be bound by any particular theory, these endotoxins are believed to act by inhibiting GPI-PLD.

At present, despite many attempts in the art to develop a treatment for septic shock and other related conditions, there are no approved treatments available. In particular, a reliable diagnostic test for determining whether a patient has or is at risk of developing conditions such as septic shock would be useful as an early warning of the condition and to allow timely treatment to be given.

Accordingly, in a first aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD.

In a further aspect, the present invention provides a method of treating a patient having a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, the method comprising administering to the patient a therapeutically effective amount of GPI-PLD.

In the above aspects, the product of the infectious organism is typically an endotoxin, such as the glycolipids produced by gram negative or mycobacteria mentioned above.

In a further aspect, the present invention provides a pharmaceutical composition comprising a GPI-PLD protein.

In a further aspect, the present invention provides the use of GPI-PLD or IPG levels in the diagnosis of conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, and especially to the diagnosis of septic shock and/or distinguishing between different forms of septic shock.

By way of example, the GPI-PLD or IPG levels can be determined by measuring the amount of the material and/or a characteristic activity of the material in the biological sample.

Thus, the present invention provides a method of diagnosing a condition mediated by a product of an infectious organism, the method comprising determining the level or activity of GPI-PLD or IPGs in a biological sample from a patient. This determination can help in the diagnosis or prognosis of the patient, allowing the treatment of the patient to be tailored accordingly to the patient's individual needs. IPGs can be used in this diagnosis as the inhibition of GPI-PLD by endotoxins is likely to cause the level of IPGs (e.g. in urine, blood etc) to drop since the GPI-PLD causes the release of IPG precursors. Thus, monitoring either or both of the level of GPI-PLD or the IPGs provides a way of assessing the likelihood of developing conditions such as septic shock or their prognosis. A determination of the amount of GPI-PLD can be carried out using immobilised binding agents or by determining one or more of the activities associated with GPI-PLD and/or IPGs (see further below).

In one embodiment, the method of diagnosing a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, the method comprising the steps of:

(a) contacting a biological sample obtained from the patient with a solid support having immobilised thereon a binding agent having binding sites specific for

GPI-PLD or IPGs;

(b) contacting the solid support with one or more labelled developing agents capable of binding to unoccupied binding sites, bound GPI-PLD or IPGs or occupied binding sites; and,

(c) detecting the label of the developing agents specifically binding in step (b) to obtain a value representative of the amount of GPI-PLD or IPGs in the sample.

These and other aspects of the present invention are described in more detail below.

By way of example, embodiments of the present invention will now be described in more detail with reference to the accompanying figures.

Brief Description of the Figures

Figure 1 shows an alignment of the deduced amino acid sequences of GPI-PLD encoded by cDNA clone A1 and the bovine and human liver GPI-PLD sequences disclosed in US Patent No: 5,418,147 (Huang et al).

Figure 2 shows the nucleic acid sequence from cDNA clone A1 aligned with the pancreatic forms of GPI-PLD disclosed in US Patent No: 5,418,147 (Huang et al) (partial sequence) and the corresponding full length nucleic acid sequence deposited at GenBank.

Figure 3 shows the amino acid sequences of the GPI-PLDs in clones a1, b2 and d3, and consist of 840, 795 and 510 amino acids respectively.

Figure 4 shows the nucleic acid sequence of cDNA clone a1 encoding GPI-PLD, consisting of 2832 bp.

Figure 5 shows the nucleic acid sequence of cDNA clone b2

encoding GPI-PLD, consisting of 2472 bp.

Figure 6 shows the nucleic acid sequence of cDNA clone d3
encoding GPI-PLD, consisting of 1942 bp.

5 Figure 7 shows an alignment of the deduced amino acid
sequences of GPI-PLDs encoded by cDNA clones a1, b2 and
d3 with the pancreatic form of the enzyme deposited at
GenBank under accession number 11702.

10 Figure 8 shows an alignment of the nucleic acid sequences
from cDNA clones a1, b2 and d3 with the cDNA sequence
encoding the human pancreatic form of GPI-PLD deposited
at GenBank under accession number 11702.

15 Detailed Description
GPI-PLD Proteins
The term "GPI-PLD biological activity" is herein defined
as the enzymatic activity of GPI-PLD in cleaving the
20 photodiester bond linking glycosylphosphatidylinositol to
phosphatidic acid, e.g. releasing a GPI-anchored protein.
As noted in Heller et al (1994), this activity has been
localised to the N-terminal 39 kD portion of full length
GPI-PLD.

25 The medical uses of GPI-PLD described herein can use the
novel GPI-PLD variants or the forms of the enzyme
disclosed in the prior art. In either event, the skilled
person can use the techniques described herein and others
30 well known in the art to produce large amounts of these
proteins, or fragments or active portions thereof, for
use as pharmaceuticals, in the developments of drugs and
for further study into its properties and role *in vivo*.

35 In a further aspect of the present invention provides a
polypeptide having the amino acid sequence shown in
figure 3, which may be in isolated and/or purified form,

free or substantially free of material with which it is naturally associated. In one embodiment, the clone a1 has an amino acid sequence consisting of 840 amino acids, a 23 amino acid signal peptide and a 817 amino acid mature protein.

5

GPI-PLD proteins which are an amino acid sequence variants, alleles or derivatives can also be used in the present invention. A polypeptide which is a variant, 10 allele or derivative may have an amino acid sequence which differs from that given in figures 1 or 3 by one or more of addition, substitution, deletion and insertion of one or more amino acids. Preferred polypeptides have GPI-PLD enzymatic function as defined above.

15

A GPI-PLD protein which is an amino acid sequence variant, allele or derivative of an amino acid sequence shown in figures 1 or 3 may comprise an amino acid sequence which shares greater than about 70%, greater than about 80%, greater than about 90%, greater than about 95%, greater than about 97%, greater than about 98% or greater than about 99% sequence identity with an amino acid sequence shown in figures 1 or 3. Sequence comparison and identity calculations were carried out 20 using the Cluster program (Thompson et al, 1994), using the following parameters (Pairwise Alignment Parameters: Weight Matrix: pam series; Gap Open Penalty: 10.00; Gap Extension Penalty: 0.10). Alternatively, the GCG program could be used which is available from Genetics Computer 25 Group, Oxford Molecular Group, Madison, Wisconsin, USA, Version 9.1. Particular amino acid sequence variants may differ from those shown in figures 1 and 3 by insertion, addition, substitution or deletion of 1 amino acid, 2, 3, 4, 5-10, 10-20 20-30, 30-50, 50-100, 100-150, or more 30 than 150 amino acids.

35

The present invention also includes the use of active

portions, fragments and derivatives of the GPI-PLD proteins.

An "active portion" of GPI-PLD protein is a polypeptide which is less than said full length GPI-PLD protein, but which retains at least one its essential biological activity, e.g. the enzyme activity mentioned above. For instance, portions of GPI-PLD protein can act as sequestrators or competitive antagonists by interacting with other proteins.

A "fragment" of the GPI-PLD protein means a stretch of amino acid residues of at least about 5 to 7 contiguous amino acids, often at least about 7 to 9 contiguous amino acids, typically at least about 9 to 13 contiguous amino acids and, most preferably, at least about 20 to 30 or more contiguous amino acids.

A "derivative" of the GPI-PLD protein, or a fragment thereof, means a polypeptide modified by varying the amino acid sequence of the GPI-PLD protein, e.g. by manipulation of the nucleic acid encoding the protein or by altering the protein itself. Such derivatives of the natural amino acid sequence may involve insertion, addition, deletion or substitution of one, two, three, five or more amino acids, without fundamentally altering a biological activity of the wild type GPI-PLD protein.

A polypeptide according to the present invention may be isolated and/or purified (e.g. using an antibody) for instance after production by expression from encoding nucleic acid (for which see below). Polypeptides according to the present invention may also be generated wholly or partly by chemical synthesis. The isolated and/or purified polypeptide may be used in formulation of a composition, which may include at least one additional component, for example a pharmaceutical composition

including a pharmaceutically acceptable excipient, vehicle or carrier. A composition including a polypeptide according to the invention may be used in prophylactic and/or therapeutic treatment as discussed below.

The GPI-PLD polypeptides can also be linked to a coupling partner, e.g. an effector molecule, a label, a drug, a toxin and/or a carrier or transport molecule. Techniques for coupling the peptides of the invention to both peptidyl and non-peptidyl coupling partners are well known in the art. In one embodiment, the carrier molecule is a 16 aa peptide sequence derived from the homeodomain of *Antennapedia* (e.g. as sold under the name "Penetratin"), which can be coupled to a peptide via a terminal Cys residue. The "Penetratin" molecule and its properties are described in WO91/18981.

A and P-type IPGs

As mentioned above, the level of inositolphosphoglycans (IPGs) can be used in the diagnosis of conditions caused by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock. Studies have shown that A-type mediators modulate the activity of a number of insulin-dependent enzymes such as cAMP dependent protein kinase (inhibits), adenylate cyclase (inhibits) and cAMP phospho-diesterases (stimulates). In contrast, P-type mediators modulate the activity of insulin-dependent enzymes such as pyruvate dehydrogenase phosphatase (stimulates), glycogen synthase phosphatase (stimulates), and cAMP dependent protein kinase (inhibits). The A-type mediators mimic the lipogenic activity of insulin on adipocytes, whereas the P-type mediators mimic the glycogenic activity of insulin on muscle. Both A-and P-type mediators inhibit cAMP dependent protein kinase and are mitogenic when added to fibroblasts in serum free media. The ability of the

mediators to stimulate fibroblast proliferation is enhanced if the cells are transfected with the EGF-receptor. A-type mediators can stimulate cell proliferation in the chick cochleovestibular ganglia.

5

Soluble IPG fractions having A-type and P-type activity have been obtained from a variety of animal tissues including rat tissues (liver, kidney, muscle brain, adipose, heart) and bovine liver. A-type and P-type IPG biological activity has also been detected in human liver and placenta, malaria parasitized RBC and mycobacteria. The ability of an anti-inositolglycan antibody to inhibit insulin action on human placental cytotrophoblasts and BC3H1 myocytes or bovine-derived IPG action on rat diaphragm and chick cochleovestibular ganglia suggests cross-species conservation of many structural features.

20

A-type substances are cyclitol-containing carbohydrates, also containing Zn²⁺ ions and optionally phosphate and having the properties of regulating lipogenic activity and inhibiting cAMP dependent protein kinase. They may also inhibit adenylate cyclase, be mitogenic when added to EGF-transfected fibroblasts in serum free medium. A-type IPGs isolated from sources such as human or bovine liver have the property of stimulating lipogenesis in adipocytes. In contrast, the A-type substances from porcine tissue disclosed herein have the properties of inhibiting lipogenesis and lowering blood glucose levels when administered to diabetics, i.e. patients or a suitable animal model.

30

P-type substances are cyclitol-containing carbohydrates, also containing Mn²⁺ and/or Zn²⁺ ions and optionally phosphate and having the properties of regulating glycogen metabolism and activating pyruvate dehydrogenase phosphatase. They may also stimulate the activity of glycogen synthase phosphatase, be mitogenic when added to

fibroblasts in serum free medium, and inhibit cAMP dependent protein kinase.

5 Methods for obtaining A-type and P-type IPGs are set out in Caro et al, 1997, and in WO98/11116 and WO98/11117.

Pharmaceutical Compositions

As mentioned above, GPI-PLD proteins and IPGs can be used for treating treatment of conditions caused by a product 10 of an infectious organism which is capable of inhibiting GPI-PLD. Thus, these materials can be formulated in pharmaceutical compositions, which may comprise, in addition to one of the above substances, a pharmaceutically acceptable excipient, carrier, buffer, 15 stabiliser or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material may depend on the route of administration, e.g. 20 oral, intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.

Pharmaceutical compositions for oral administration may be in tablet, capsule, powder or liquid form. A tablet 25 may include a solid carrier such as gelatin or an adjuvant. Liquid pharmaceutical compositions generally include a liquid carrier such as water, petroleum, animal or vegetable oils, mineral oil or synthetic oil. Physiological saline solution, dextrose or other 30 saccharide solution or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included.

For intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active 35 ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of

relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as sodium chloride injection, Ringer's injection, lactated Ringer's injection. Preservatives, stabilisers, 5 buffers, antioxidants and/or other additives may be included as required.

Whether it is a polypeptide, peptide, nucleic acid molecule, small molecule or other pharmaceutically useful compound of the invention that is to be given to an individual, administration is preferably in a "prophylactically effective amount" or a "therapeutically effective amount" (as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's 15 Pharmaceutical Sciences, 16th edition, Oslo, A. (ed), 20 25 1980.

As mentioned above, in further embodiments, the GPI-PLD 30 can be administered alone or in combination with P and/or A-type IPGs.

GPI-PLD nucleic acid

"GPI-PLD nucleic acid" includes a nucleic acid molecule 35 which has a nucleotide sequence encoding a polypeptide which includes the amino acid sequence shown in figures 4 to 6, and in some embodiments of the invention extends to

the known human liver and pancreatic forms of GPI-PLD (L11701 and L11702). These forms of GPI-PLD have been mapped to human chromosome 6 and are contained in the 4 centimorgan region of D6S1660-D6S1558 at positions 95.95
5 and 99.71 (NCBI GeneMap'98). This corresponds to the cytogenetic region of 6p21.3. This region also contains the IDDM1 and HLA loci (although the HLA genes map to the adjacent D6S1558-D6S1616 interval). The mouse GPI-PLD gene has also been mapped to chromosome 13, near the *fim*
10 *locus*, which is found in humans on chromosome 6.

The GPI-PLD coding sequence may be that shown in figures 2, 4 to 6 or 8, a complementary nucleic acid sequence, or it may be a mutant, variant, derivative or allele of
15 these sequences. The sequence may differ from that shown by a change which is one or more of addition, insertion, deletion and substitution of one or more nucleotides of the sequence shown. Changes to a nucleotide sequence may result in an amino acid change at the protein level, or
20 not, as determined by the genetic code.

The encoded polypeptide may comprise an amino acid sequence which differs by one or more amino acid residues from the amino acid sequence shown in the figures.
25 Nucleic acid encoding a polypeptide which is an amino acid sequence mutant, variant, derivative or allele of the sequence shown in figures 1, 3 or 7 is further provided by the present invention. Such polypeptides are discussed below. Nucleic acid encoding such a
30 polypeptide may show greater than about 70% identity, greater than about 80% identity, greater than about 90% identity, greater than about 95% identity, greater than about 98% identity, or greater than about 99% identity with a sequence shown in the figures.

35 The present invention also includes fragments of the GPI-PLD nucleic acid sequences described herein, the

fragments preferably being at least 12, 15, 30, 45, 60, or 120 nucleotides in length.

Generally, nucleic acid according to the present
5 invention is provided as an isolate, in isolated and/or purified form, or free or substantially free of material with which it is naturally associated, such as free or substantially free of nucleic acid flanking the gene in the human genome, except possibly one or more regulatory
10 sequence(s) for expression. Nucleic acid may be wholly or partially synthetic and may include genomic DNA, cDNA or RNA. Where nucleic acid according to the invention includes RNA, reference to the sequence shown should be construed as reference to the RNA equivalent, with U
15 substituted for T.

Nucleic acid sequences encoding all or part of the GPI-PLD gene and/or its regulatory elements can be readily prepared by the skilled person using the information and references contained herein and techniques known in the art (for example, see Sambrook, Fritsch and Maniatis, "Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989, and Ausubel et al, Short Protocols in Molecular Biology, John Wiley and Sons, 1992). These techniques include (i) the use of the polymerase chain reaction (PCR) to amplify samples of such nucleic acid, e.g. from genomic sources, (ii) chemical synthesis, or (iii) amplification in *E. coli*. Modifications to the GPI-PLD sequences can be made, e.g.
20 using site directed mutagenesis, to provide expression of modified GPI-PLD protein or to take account of codon preference in the host cells used to express the nucleic acid.
25

30 In order to obtain expression of the GPI-PLD nucleic acid sequences, the sequences can be incorporated in a vector having control sequences operably linked to the GPI-PLD
35

nucleic acid to control its expression. The use of expression systems has reached an advanced degree of sophistication. The vectors may include other sequences such as promoters or enhancers to drive the expression of the inserted nucleic acid, nucleic acid sequences so that the GPI-PLD protein is produced as a fusion and/or nucleic acid encoding secretion signals so that the polypeptide produced in the host cell is secreted from the cell. GPI-PLD protein can then be obtained by transforming the vectors into host cells in which the vector is functional, culturing the host cells so that the GPI-PLD protein is produced and recovering the GPI-PLD protein from the host cells or the surrounding medium. Prokaryotic and eukaryotic cells are used for this purpose in the art, including strains of *E. coli*, yeast, and eukaryotic cells such as COS or CHO cells. The choice of host cell can be used to control the properties of the GPI-PLD protein expressed in those cells, e.g. controlling where the polypeptide is deposited in the host cells or affecting properties such as its glycosylation and phosphorylation.

PCR techniques for the amplification of nucleic acid are described in US Patent No: 4,683,195. In general, such techniques require that sequence information from the ends of the target sequence is known to allow suitable forward and reverse oligonucleotide primers to be designed to be identical or similar to the polynucleotide sequence that is the target for the amplification. PCR comprises steps of denaturation of template nucleic acid (if double-stranded), annealing of primer to target, and polymerisation. The nucleic acid probed or used as template in the amplification reaction may be genomic DNA, cDNA or RNA. PCR can be used to amplify specific sequences from genomic DNA, specific RNA sequences and cDNA transcribed from mRNA, bacteriophage or plasmid sequences. The GPI-PLD protein nucleic acid sequences

provided herein readily allow the skilled person to design PCR primers. References for the general use of PCR techniques include Mullis et al, Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Ehrlich (ed), PCR Technology, Stockton Press, NY, 1989; Ehrlich et al, Science, 252:1643-1650, 1991; "PCR protocols; A Guide to Methods and Applications", Eds. Innis et al, Academic Press, New York, 1990.

10 Nucleic acid according to the present invention is obtainable using one or more oligonucleotide probes or primers designed to hybridize with one or more fragments of the nucleic acid sequence shown in the figures, particularly fragments of relatively rare sequence, based on codon usage or statistical analysis. A primer designed to hybridize with a fragment of the nucleic acid sequence shown in the above figures may be used in conjunction with one or more oligonucleotides designed to hybridize to a sequence in a cloning vector within which target nucleic acid has been cloned, or in so-called "RACE" (rapid amplification of cDNA ends) in which cDNA's in a library are ligated to an oligonucleotide linker and PCR is performed using a primer which hybridizes with a GPI-PLD nucleic acid sequence shown in figures and a primer which hybridizes to the oligonucleotide linker.

25 Such oligonucleotide probes or primers, as well as the full-length sequence (and mutants, alleles, variants and derivatives) are also useful in screening a test sample containing nucleic acid for the presence of alleles, mutants and variants, especially those that lead to the production of inactive forms of GPI-PLD protein protein, the probes hybridizing with a target sequence from a sample obtained from the individual being tested. The conditions of the hybridization can be controlled to minimise non-specific binding, and preferably stringent to moderately stringent hybridization conditions are

preferred. The skilled person is readily able to design such probes, label them and devise suitable conditions for the hybridization reactions, assisted by textbooks such as Sambrook et al (1989) and Ausubel et al (1992).

5

Examples of "stringent conditions" are those which: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulphate at 50°C; (2) 10 employ during hybridisation a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% BSA/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750mM sodium chloride, 75mM sodium citrate at 42°C; or (3) employ 50% formamide, 15 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50µg/ml), 0.1% SDS, and 10% dextran sulphate at 42°C, with washes at 42°C in 0.2 x SSC and 50% formamide at 20 55°C, followed by high stringency wash consisting of 0.1 x SSC containing EDTA at 55°C. These hybridisation conditions may be used in the context of defining nucleic acid sequences which hybridize with GPI-PLD nucleic acid sequences.

25

Uses of GPI-PLD Nucleic Acid

The GPI-PLD nucleic acid sequences can be used in the preparation of cell lines capable of expressing GPI-PLD and in gene therapy techniques.

30

Thus, the present invention provides a cell line for transplantation into a patient, the cell line being transformed with nucleic acid encoding GPI-PLD, and being capable of expressing and secreting GPI-PLD. In one embodiment, the cell lines are encapsulated, e.g. in a biocompatible polymer, so that the GPI-PLD produced by the cell line can be secreted into the patient, while

35

preventing rejection by the immune system of the host. Methods for encapsulating cells in biocompatible polymers are described in WO93/16687 and WO96/31199.

5 As a further alternative, the nucleic acid encoded the
GPI-PLD protein could be used in a method of gene
therapy, to treat a patient who is unable to synthesize
the active polypeptide or unable to synthesize it at the
normal level, thereby providing the effect provided by
10 wild-type GPI-PLD protein and suppressing the occurrence
of diabetes in the target cells.

vectors such as viral vectors have been used in the prior
art to introduce genes into a wide variety of different
15 target cells. Typically, the vectors are exposed to the
target cells so that transfection can take place in a
sufficient proportion of the cells to provide a useful
therapeutic or prophylactic effect from the expression of
the desired polypeptide. The transfected nucleic acid
20 may be permanently incorporated into the genome of each
of the targeted tumour cells, providing long lasting
effect, or alternatively the treatment may have to be
repeated periodically.

25 A variety of vectors, both viral vectors and plasmid
vectors, are known in the art, see US Patent No:
5,252,479 and WO93/07282. In particular, a number of
viruses have been used as gene transfer vectors,
including papovaviruses, such as SV40, vaccinia virus,
30 herpesviruses, including HSV and EBV, and retroviruses.
Many gene therapy protocols in the prior art have used
disabled murine retroviruses.

As an alternative to the use of viral vectors other known
35 methods of introducing nucleic acid into cells includes
electroporation, calcium phosphate co-precipitation,
mechanical techniques such as microinjection, transfer

mediated by liposomes and direct DNA uptake and receptor-mediated DNA transfer.

As mentioned above, the aim of gene therapy using nucleic acid encoding the GPI-PLD protein, or an active portion thereof, is to increase the amount of the expression product of the nucleic acid in cells in which the level of the wild-type GPI-PLD protein is absent or present only at reduced levels. Target cells for gene therapy include insulin secreting β -cells or any neuron derived cells. Cell engineering can be used to provide the overexpression or repression of GPI-PLD protein in transfected cell lines which can then be subsequently transplanted to humans. Gene therapy can be employed using a promoter to drive GPI-PLD protein expression in a tissue specific manner (i.e. an insulin promoter linked to GPI-PLD cDNA will overexpress GPI-PLD protein in β -cells and transiently in the brain). If defective function of GPI-PLD protein is involved in neurological disease, GPI-PLD protein can be overexpressed in transformed cell lines for transplantation.

Gene transfer techniques which selectively target the GPI-PLD nucleic acid to target tissues are preferred. Examples of this included receptor-mediated gene transfer, in which the nucleic acid is linked to a protein ligand via polylysine, with the ligand being specific for a receptor present on the surface of the target cells.

30

Diagnostic Methods

Methods for determining the concentration of analytes in biological samples from individuals are well known in the art and can be employed in the context of the present invention to determine the presence or amount of GPI-PLD or IPGs in a biological sample from a patient. This in turn can allow a physician to determine whether a patient

suffers from or is at risk of a condition caused by a product of an infectious organism which is capable of inhibiting GPI-PLD, and so optimise the treatment of it. It may also be possible to use this determination to 5 distinguish between different conditions caused by products of infectious organisms.

Broadly, the methods divide into those which determine the presence or amount of GPI-PLD or IPGs in a binding 10 assay and those which measure a characteristic activity of the GPI-PLD or IPGs.

These diagnostic methods can employ biological samples such as blood, serum, tissue samples or urine. In view 15 of the fact that the activity of GPI-PLD is thought to be due to the level of the enzyme circulating in serum, the use of serum or blood samples is preferred.

The assay methods for determining the amount or 20 concentration of GPI-PLD protein typically employ binding agents having binding sites capable of specifically binding to GPI-PLD in preference to other molecules. Examples of binding agents include antibodies, receptors and other molecules capable of specifically binding the 25 enzyme. Conveniently, the binding agent(s) are immobilised on solid support, e.g. at defined locations, to make them easy to manipulate during the assay.

The sample is generally contacted with the binding 30 agent(s) under appropriate conditions so that GPI-PLD present in the sample can bind to the binding agent(s). The fractional occupancy of the binding sites of the binding agent(s) can then be determined using a developing agent or agents. Typically, the developing 35 agents are labelled (e.g. with radioactive, fluorescent or enzyme labels) so that they can be detected using techniques well known in the art. Thus, radioactive

labels can be detected using a scintillation counter or other radiation counting device, fluorescent labels using a laser and confocal microscope, and enzyme labels by the action of an enzyme label on a substrate, typically to produce a colour change. The developing agent(s) can be used in a competitive method in which the developing agent competes with the analyte for occupied binding sites of the binding agent, or non-competitive method, in which the labelled developing agent binds analyte bound by the binding agent or to occupied binding sites. Both methods provide an indication of the number of the binding sites occupied by the analyte, and hence the concentration of the analyte in the sample, e.g. by comparison with standards obtained using samples containing known concentrations of the analyte.

Experimental

The present invention is based on the realisation that GPI-PLD is responsible for the production of IPG second messengers following binding of insulin to its receptor. The IPGs then interact with other cellular enzymes instigating some of the metabolic effects of the hormone. In view of this, insulin resistance may be caused by deficiencies in GPI-PLD; it has shown that pancreatic islet cells produce and secrete GPI-PLD, which is transported in blood complexed with apolipoprotein A1, and may therefore represent the major source of circulating enzyme. If this is indeed the case then the insulin resistance seen in early type I diabetes mellitus (IDDM) may result from decreased circulating GPI-PLD levels. This may have direct therapeutic relevance in that co-infusion of insulin with GPI-PLD may in fact be a far more effective therapy for diabetic patients than insulin.

35

Screening of human liver cDNA library

A human liver cDNA library (Gibco BRL, cat # 10422-012,

lot # HF4703) was screened for GPI-PLD, resulting in the isolation of 3 cDNA clones. The nucleic acid sequences of the clones are shown in figures 4 to 6, with the deduced amino acid sequences shown in figure 3.

5

Clone a1 represents the full length cDNA. There are only two differences within the coding region of this sequence when compared to that of the human GPI-PLD pancreatic form described in the GenBank database (accession number L11702). These are a g to a conversion at positions 88 (L11702), 199 (a1) and a t to g conversion at positions 797 (L11702), 908(a1). Interestingly this latter this latter conversion creates a unique *HindIII* restriction site in the a1 clone. Both conversions result in amino acid differences, the first changes amino acid 30 from a valine in L11702 to an isoleucine in a1, and the second changes amino acid 266 from an isoleucine in L11702 to a serine in a1. Clone a1 also differs from L11702 in that it contains 5' untranslated region (UTR) and only shares the first 168 bases of the 3' UTR before terminating in a poly-A tail.

25

Clone b2 lacks the exon of GPI-PLD, which begins at position 2469 in the a1 nucleotide sequence. However, the sequence from here to the end of b2 (2444-2473) does not contain a stop codon. It is therefore not clear whether b2 represents a cDNA with a different final exon or is the produce of aberrant processing.

30

Clone d3 shared the coding 3' UTR sequence of the a1 clone from a1 position 1119 onwards, however the initial 1008 base pairs of coding sequence are absent from this clone. Clone d3 contains a methionine initiation codon in frame to the coding sequence at position 202 and a unique 5' UTR. Translation of d3 from this codon would result in a unique sequence of 6 amino acids (1-6). Clone d3 therefore appears to represent a true

transcript, in that it contains initiation and stop codons and both 5' and 3' UTRs. The predicted protein product of this transcript would apparently lack the catalytic domain, which has been localised to the N-terminus of the GPI-PLD enzyme (amino acids 1-375), however the 3 EF hand-like domains would still be present.

Huang et al and Tsang et al (1992) reported that two variants or isoenzymes of GPI-PLD exist, the so-called liver and pancreatic forms (accession numbers L11701 and 11702). Other workers have detected L11702 cDNAs in human breast, eye, spleen, tonsil, and pancreas, as well as in liver. However, we failed to detect the liver form of GPI-PLD in the liver or in any other tissues.

Gene mapping and localisation

The chromosomal gene isolated in the experiments above is about 20-30 kb in length. The gene was also isolated on a PAC and mapped by fluorescence-in situ hybridisation (FISH) to 6p21.3, agreeing with recent radiation hybrid maps as seen on GeneMap'98; NCBI). The IDDM1 susceptibility gene also maps to 6p21.3, although recent evidence suggests that at least two closely-linked loci for IDDM1 are in the MHC region. The MHC locus itself seems to map to a region adjoining the GPI-PLD locus rather than within the same microsatellite band, so the significance of the proximity of the GPI-PLD and IDDM1 loci is unclear.

Northern blots of the mRNA species found in liver have shown two presumed splice variants as well as the full-length transcript. One has a deletion of about 160 amino acids from the mature 817 amino acid protein. The other seems to be a C-terminal deletion, which may therefore be non-functional if other authors are correct in finding that the C-terminus is necessary for enzyme activity.

The predominant GPI-PLD species detected after tissue extraction by antibodies (Western blots) has apparent molecular weight of about 47 kD, which agrees with other authors that full-length GPI-PLD is taken up from the plasma and processed to smaller active species.

5

GPI-PLD obtained from serum by cells is required for second messenger signalling

10

The principle goal of these experiments was to determine the role of glycosylphosphatidylinositol phospholipase D (GPI-PLD) in a type one hypersensitivity reaction. This reaction involved the cross-linking of IgE receptors on the mast cell surface, leading to the release of allergic mediators.

15

20

Such an allergic reaction has been experimentally reproduced in our laboratory, using a rat basophilic leukaemia cell line, RBL-2H3. These cells naturally have unoccupied IgE receptors (Fc ϵ R1, or high-affinity receptors), allowing them to be passively sensitised with an IgE isotype of choice.

25

RBL-2H3 cell culture was maintained in Eagles minimum essential medium, containing 10% Foetal Bovine Serum (FBS) (heat activated), 100 U/ml Penicillin, 100 μ g/ml Streptomycin and 2 mM L-glutamine.

30

Previous research indicates that RBL-2H3 cells derive their GPI-PLD from the culture serum (data not shown). Therefore, it follows that inactivation of this external source of GPI-PLD would deprive the cells of any further enzyme.

35

Inactivation of GPI-PLD activity in foetal bovine serum was achieved according to the method of Kung et al (Biochimica et Biophysica Acta, 1357:329-338, 1997). Briefly, FCS was adjusted to pH 11 using concentrated

hydrochloric acid, and incubated for 1 hour at 37°C using. After this time, the pH was adjusted to 7.4, and GPI-PLD activity was determined using an enzymatic assay (Davitz et al, J. Biol. Chem., 264:13760-13764, 1989).

5 Results indicated that this alkaline incubation severely depleted GPI-PLD activity (data not shown).

To determine the effect of culture of RBL-2H3 cells in 10 GPI-PLD inactive serum, the supplemented MEM was replaced with MEM in which the FBS had been inactivated. Although the cell appearance was not dramatically altered by the altered culture conditions, determination of GPI-PLD activity showed a dramatic reduction in activity.

15 **GPI-PLD activity in cells cultured with GPI-PLD active/inactive FBS:**

Active = 0.66 units GPI-PLD activity/mg of protein.

20 Inactive = 0.11 units GPI-PLD activity/mg of protein.

The effect of a reduced GPI-PLD activity on the cell's ability to respond to IgE cross-linking was determined as follows:

25 RBL-2H3 cells were grown to confluence, after which time the adherent cells were removed from the culture flask using a cell scraper. The cell density was determined, using a haemocytometer, and adjusted to 2×10^5 per ml. 30 The cells were seeded at 1 ml per well in a 24 well culture plate and cultured for overnight at 37°C in a humidified 5% CO₂ incubator.

35 The overnight culture media was aspirated and replaced with fresh media containing Rat IgE anti-DNP 3 μ g/ml. After a 2 hour incubation period, the media was aspirated, and the cells were washed twice, with HEPES

Buffered Saline. Cross-linking was achieved by the addition of 200 μ l of DNP-Albumin at 100 ng/ml, and incubation for 2 hours. Mediator release was determined using a colorimetric assay to detect the presence of β -hexosaminidase and compared with the total cell β -hexosaminidase content (as determined by incubation with 200 μ l 5% Triton X-100 detergent). (Yasuda et al, Int. Immunol., 7:251-258, 1995). As shown in the table below, the responsiveness to cross-linking was significantly reduced in those cells that were cultured in GPI-PLD inactive media.

Percentage release in IgE linking activity assay
(compared with total)

Active GPI-PLD culture = 48.79%

Inactive GPI-PLD culture = 5.07%

Phosphorylation of GPI-PLD

The phosphorylation state of the GPI-PLD enzymes can be determined using MALDI-TOF mass spectrometry as described by Yip & Hutchins (1992). Spectrums of tryptic digests of the four proteins can be compared before and after treatment with calf intestinal alkaline phosphatase. The specific kinases responsible for phosphorylation of GPI-PLD can then be determined by incubation of the GPI-PLD tryptic fragments with ATP in the presence of various kinases. Motif analysis of the amino acid sequence of human GPI-PLD using the HGMP "motif" package has revealed the presence of numerous potential phosphorylation sites for two enzymes: protein kinase C and protein kinase ck2 (formerly known as casine kinase II). These enzymes may therefore be involved in the activation of GPI-PLD. Intriguingly the activity of protein kinase ck2 has been shown to be modulated by IPGs (Alemany et al, 1990) and there is also indirect evidence suggesting that IPGs may

act through protein kinase C, thus suggesting the possibility of feedback loops regulating the production of IPGs.

5 **GPI-PLD as a metal ion transferase**

Two families of IPGs exist. IPGs of the P-type stimulate incorporation of glucose into glycogen whereas the A-type IPGs stimulate incorporation of glucose into lipid.

10 Metal ion analysis has shown that the P-type IPGs contain manganese and the A-type zinc. It is known that the serum form of GPI-PLD contains approximately 10 atoms of zinc per molecule. Investigation can therefore show whether the different isoforms of human GPI-PLD produce IPGs with differing metal ion content.

15

This experiment can be performed in two ways. Firstly purified A-type and P-type IPGs can be extracted from rat liver (Caro et al, 1997) and their metal ions removed using dithiazone in chloroform. The IPGs can be
20 incubated in the presence of radiosotopes of zinc ($^{65}\text{Zn}^{2+}$) and manganese ($^{52}\text{Mn}^{2+}$) respectively. The radiolabelled IPGs can then be added to the different isoforms of purified GPI-PLD (as determined in the above experiments) in the absence of GPI substrate thus driving the reaction
25 from product (IPG) to substrate (GPI). It can then be determined whether or not the GPI-PLD protein have incorporated radioactive metal ions from the IPGs. The reverse situation will also be examined, whereby the metal ions of GPI-PLD isoforms are replaced by the
30 respective radioisotopes. GPI-PLD can then be incubated with GPIs extracted from membrane preparations and the resulting IPG products analysed for incorporation of radioisotope. These experiments will thus determine whether or not GPI-PLD is responsible for the transfer of
35 divalent cations (Mn^{2+} or Zn^{2+}) to its IPG products.

Site of action

The function of the enzyme in releasing GPI-anchored proteins, and its postulated function as the generator of IPG second messengers require the enzyme to be active at the cell surface. It is known that GPI-anchored proteins accumulate in clusters in caveolae, an uncoated pit membrane specialisation, and so this is a good potential site for GPI-PLD activity. Analysis of the primary structure of the protein predicts a secondary structural arrangement of four amphipathic helices, thus suggesting that the protein can interact with lipids in membranes.

Previous experiments have demonstrated significant amounts of the enzyme in the lysosomal fraction but not in the cytosol. The location of GPI-PLD will be examined by staining tissues with anti-GPI-PLD antibodies, followed by a gold particle-labelled second antibody. Tissue can then be prepared for transmission electron microscopy and the location of the GPI-PLD protein determined. Caveolae will also be produced according to the protocol of Chang et al (1994), which involves three rounds of sucrose step gradient ultracentrifugation. Caveolae-enriched proteins will then be separated by SDS-PAGE and electrophoretically transferred to nitrocellulose membranes. We can then use the anti-GPI-PLD antibody to determine if GPI-PLD is present in these membrane specialisations.

Activation of GPI-PLD

If GPI-PLD is found to be phosphorylated by protein kinase C and/or protein kinase ck2 by MALDI-TOF spectrometry, the interaction of these proteins can be confirmed using immunoprecipitation since antibodies to GPI-PLD, protein kinase C and protein kinase ck2 have all been produced. The yeast two hybrid system can also be used to identify other proteins which interact with GPI-PLD in the cell. The yeast two hybrid systems (Chen et al, 1991) is based on the property of the yeast

transcriptional activator Ga14, which is separable into DNA binding and transcriptional activating domains. GPI-PLD cDNAs can be cloned in frame into the DNA binding domain vector. This will be co-transfected into an 5 appropriate yeast host strain along with a library of cDNAs cloned into the activation domain vector. Interaction of a protein with GPI-PLD will therefore result in localisation of the activation and DNA binding domains, and hence transcription of the galactosidase 10 reporter gene. Clones containing interacting proteins are then identified by the colour reaction they produce. The advantage of this system is that the gene encoding 15 the interacting protein is immediately available for sequence analysis and thus identification. The use of this system has enabled identification of many interacting proteins and the system available in kit form from Clontech. This also provides a method of screening for substances which are capable of activating GPI-PLD, e.g. for further development as lead compounds.

20

Discussion

GPI-PLD is a metalloenzyme with 5 and 10 atoms per molecule of calcium and zinc, respectively. It circulates in a complex with apolipoprotein A1. GPI-PLD 25 is produced in the pancreas by both α and β -cells in the islets of Langerhans. It is also produced by a mouse insulinoma cell line (TC3), with GPI-PLD and insulin generally colocalised intracellularly. The enzyme was shown to be secreted in response to insulin 30 secretagogues. Both isoenzymes of GPI-PLD also seem to be present in liver; a major part of the activity could be washed away from the tissue by extraction with detergent-free buffer (thus, likely to be the plasma enzyme). There is some suggestions that the liver, as 35 well as the pancreas, may contribute to the serum pool of GPI-PLD as patients with liver disease have lower levels of active enzyme, which is correlated with the reduced

albumin levels.

References:

The references mentioned herein are all incorporated by reference in their entirety.

- 5 Huang et al, US Patent No: 5,418,147.
- Tsang et al, FASEB J. (supp), 6:A1922, 1992.
- 10 Scallon et al, Science, 252:446-448, 1991.
- Hoener et al, Eur. J. Biochem., 206:747-757, 1992.
- Li et al, J. Biol. Chem., 269:28963-28971, 1994.
- 15 Heller et al, Eur. J. Biochem., 224:823-833, 1994.
- Jones et al, Biochem. Biophys. Res. Comm., 233:432-437, 1997.
- 20 Rademacher et al, Brazilian J. Med. Biol. Res., 27:327-341, 1994.
- Lin et al, J. Cell Biol., 115:220a, 1991
- 25 Thompson et al, Nucleic Acid Research, 22:4673-4680, 1994, with algorithm from Higgins et al, CABIOS, 8(2):189-191, 1992.
- Alemany et al, Nature, 330:77-79, 1987.
- 30 Caro et al, Biochem. Molec. Med., 61:214-228, 1997.
- WO98/11116 and WO98/11117 (Hoeft Rademacher Limited).
- 35 Deeg & Verchere, Endocrinology, 136:819-826, 1997.

Figure 1: Alignment of GPI-PLD deduced amino acid sequences

Top: protein produced from cDNA clone A1
 Mid: protein produced from Roche patent bovine liver sequence
 Bot: protein produced from Roche patent human liver sequence

MSAFRLWPGLLIMLG-SLCHRGS PCGLSTHIEIGHRALEFLQLHN GRV NYRELL LEHQDA
 MSAFRFW S GLLMLLG-FLCPRSSPCGISTHIEIGHRALEFLHLQDG SINYKELL RHQDA
 MSAFRLWPGLLIMV MASLCRGSSC GLSTHIEIGHRALEFLHLHNGHV NYKELL LEHQDA

 YQAGIVFPDCF YPSICKGGKFHDVSESTHWT PFLNA SVHYIREN YPLPWEKDTEK LVAFL
 YQAGSVFPDSF YPSICERGQFHDVSESTHWT PFLNA SVHYIRKN YPLPWEKDTEK LVAFL
 YQAGTVFPDCF YPSLCKGGKFHDVSESTHWT PFLNA SVHYIREN YPLPWEKDTEK LVAFL

 FGITSHMAADVS W HSLGLEQGFLRTMGAIDFHGSYSEAH SAGDFGGDVLSQFEFN FNYLA
 FGITSHMVADVNWHS LGIENGFLRTMAAIDFHNSYPEAH PAGDFGGDVLSQFEFKEN YLS
 FGITSHMVADVS W HSLGIEQGFLRTMGAIDFHGSYSEAH SAGDFGGDVLSQFEFN FNYLA

 RRWYVPVKDLLGIYEKLYGRKVITENVIVDC SHI QFLEMYG EMLAVSKLYPTYSTKSPFL
 RRWYVPKAEDLLGIYEKLYRELYGRIVITKKAI VDCSYLQFLEMYAEM LAISKLYPTYSVKSPFL
 RRWYVPVKDLLGIYEKLYGREVITENVIVDC SHI QFLEMYG EMLAVSKLYPSYSTKSPFL

 VEQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPENPLFIACGGQQNHTQG
 VEQFQEYFLGGLEDMAFWSTNIYHLSTM KNGTSNCNL PENP---LFITCGGQQNNTHG
 VEQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCSL FENPENPLFIACGGQQNHTQG

 SKMQKND FHRNLTTSLTESVDRNIN YTERGVFFSVNSWTPDSMSFIYKALERNIR TMFIG
 SKVQKNGFHKNVTAALT KNIKGHINYTKRGVFFSVDSW TMDFLSF MYKSLERSIREM FIG
 SKMQKND FHRNLTTSLTENIDRNIN YTERGVFFSVNSWTPDSMSFIYKALERNVR TMFIG

 GSQLSQKHSSPLASYFLSFPYARLGWAMTSADLNQDGHD L VVGAPGYSRPGHIHIGRV
 SSQP-LTHVSSPAASYYLSFPYTRLGWAMTSADLNQDGHD L VVGAPGYSHPGRIHVGRV
 GSQLSQKHSSPLASYFLSFPYARLGWAMTSADLNQDGHD L VVGAPGYSRPGRIHIGRV

 YLIYGN DLGLPPVDL DKEAHRILEGFQPSGRFGS ALAVLD FNVDGVPD LAVGAPS VGS
 YLIYGN DLG-PRIDL DKEA H GILEGFQPSGRFGS AVA VLD FNVDGVPD LAVGAPS VGS
 YLIYGN ELGLPPVDL DKEA H GILEGFQPSGRFGS ALA MLDFNMDGVPD LAVGAPS VGS

 EQLTYKGAVVYVFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPD-LVIGSP
 EKLTYGAVVYVFGSKQGQLSSSPNVTISCQDTYCNLGWTLLAADVGDSEPD L VIGSP
 EQLTYKGAVVYVFGSKQGRMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPD-LVIGSP

 FAPGGGKQKGIVAAF YSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLL
 FAFGGGKQKGIVAAF YSGSSYSSREKL NVEAANWMVKGEEDFAWLGYSLHGVN VNNRTLL
 FAPGGGKQKGIVAAF YSGPSLSNKEKLNVEAANWTVRGEEDFAWF GYSLHGVTVDNRTLL

 LVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGH
 LAGSPTWKDTSSQGHLFRTRDEKQSPGRVYGYFPPICQSWFTISGDKAMGKLGTSLSSGH
 LVGSPTWKNASRLGRLLHIRDEKKSLGRVYGYFPPNSQSWFTIVGDKAMGKLGTSLSSGH

 VLMNGTLKQVLLVGAP TYDDVSKVAFLT VTLH QGGATR MYAL ISDAQPLL STFSGDRRF
 VIVNGTRTQVLLVGAP TDVVS KS-FLTMTLH QGGSTRM YELTPDSQPSLL STFSGNR RF
 VLMNGT LTQVLLVGAP TRDDVSKMAFLMTLH QGGATR MYAL TS DLQ PPL STFSGDRRF

 SRFGGVLHLSL DDDG LDEII MAAPL RIADVT SGLIGGEDGRVYVY NGKETTLGDMTGKC
 SRFGGVLHLSL DNDGLDEII VAAPL RIADVT DATA GLM GEEDGRVYVFN GQITVGDVTGKC
 SRFGGVLHLSL DDDGVDEII VAAPL RIADVT SGLIGGEDGRVYVY NGKETTLGDMTGKC

 KSWITPCPEEKAQYVLISPEASSRFGSSLITVRSKAKNQV VIAAGRSSLGARLS GALHV
 KSWVTPCPEEKAQYVLISPEAGS RFGSSV ITVRSKEKNQVIIAAGRSSLGARLS GALHV
 KSWMTPCPEEKAQYVLISPEASSRFGSSLITVRSKAKNQV VIAAGRSSLGARLS GALHV

SLGSD
RLGQD
SLGSD

3/18

Figure 2: Alignment of human GPI-PLD nucleic acid sequences

Top: pancreatic-form cDNA sequence from GenBank database
 mid: our sequence cloned from human liver cDNA library
 bot: Roche patent pancreatic-form partial cDNA sequence

1	GTGACCTGCTTAGAGAGAAGCGGTGGCTGCACCTGGATTTGGAGTCCAGTGCTGCT	60
1	-----ATGTCTGCT	9
61	GCAGCTCTGAGCATTCCCACGTACCAGAGAAGCCGGTGGCAATGAGAGCATGTCTGCT	120
10	-----	
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTCACCG	69
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTCACCG	180
70	-----	
181	TGTGGCCTTCAACACACACGTAGAAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
181	TGTGGCCTTCAACACACATAGAAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
130	-----	
241	AATGGGCGTGTAACTACAGAGAGCTGTACTAGAACACCAGGATGCGTATCAGGCTGGA	189
241	AATGGGCGTGTAACTACAGAGAGCTGTACTAGAACACCAGGATGCGTATCAGGCTGGA	300
190	-----	
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAAATTCCATGATGTG	249
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAAATTCCATGATGTG	360
250	-----	
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTCATTATATCCGAGAGAAC	309
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTCATTATATCCGAGAGAAC	420
310	-----	
421	TATCCCCCTCCCTGGGAGAACGGACACAGAGAAAATGGTAGCTTCTTGGAAATTACT	369
421	TATCCCCCTCCCTGGGAGAACGGACACAGAGAAAATGGTAGCTTCTTGGAAATTACT	480
370	-----	
481	TCTCACATGGCGGAGATGTCAGCTGGCATAGTCAGCTGGCCTTGAAACAAGGATTCTTAGG	429
481	TCTCACATGGCGGAGATGTCAGCTGGCATAGTCAGCTGGCCTTGAAACAAGGATTCTTAGG	540
430	-----	
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTATTT	489
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTATTT	600
490	-----	
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGACGACGCTGGTAT	549
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGACGACGCTGGTAT	660
550	-----	
661	GTGCCAGTAAAGATCTACTGGAAATTATGAGAAAATGTATGGTCGAAAAGTCATCACC	609
661	GTGCCAGTAAAGATCTACTGGAAATTATGAGAAAATGTATGGTCGAAAAGTCATCACC	720
610	-----	
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTAGAAAATGTATGGTGAGATGCTA	669
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTAGAAAATGTATGGTGAGATGCTA	780
670	-----	
781	GCTGTTCCAAGTTATATCCACTTACTCTACAAAGTCCCCGTTTGGTGGAAACAATT	729
781	GCTGTTCCAAGTTATATCCACTTACTCTACAAAGTCCCCGTTTGGTGGAAACAATT	840

730 CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTTGGTCCACTAATAATTACCAT 789
 841 CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTTGGTCCACTAATAATTACCAT 900

 790 CTAACAATCTTCATGTTGGAGAATGGGACCAGTGACTGCAACCTGCCTGAGAACCTCTG 849
 901 CTAACAAGCTTCATGTTGGAGAATGGGACCAGTGACTGCAACCTGCCTGAGAACCTCTG 960

 850 TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTCAAAAATGCAGAAAAATGAT 909
 961 TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTCAAAAATGCAGAAAAATGAT 1020

 910 TTTCACAGAAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAACTATACT 969
 1021 TTTCACAGAAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAACTATACT 1080

 970 GAAAGAGGAGTGTCTTTAGTGTAAATTCTGGACCCCGGATTCCATGTCCTTATCTAC 1029
 1081 GAAAGAGGAGTGTCTTTAGTGTAAATTCTGGACCCCGGATTCCATGTCCTTATCTAC 1140

 1030 AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG 1089
 1141 AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG 1200

 1090 CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG 1149
 1201 CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTGGCTGG 1260

 1150 GCAATGACCTCAGCTGACCTCAACCAGGATGGGACCGGTGACCTCGTGGTGGCGCACCA 1209
 1261 GCAATGACCTCAGCTGACCTCAACCAGGATGGGACCGGTGACCTCGTGGTGGCGCACCA 1320

 1210 GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC 1269
 1321 GGCTACAGCCGCCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC 1380

 1270 CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTGAAGGC 1329
 1381 CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTGAAGGC 1440

 1330 TTCCAGCCCTCAGGTCGGTTGGCTGGCCTGGCTGTGTTGGACTTTAACGTGGACGGC 1389
 1441 TTCCAGCCCTCAGGTCGGTTGGCTGGCCTGGCTGTGTTGGACTTTAACGTGGACGGC 1500

 1390 GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT 1449
 1501 GTGCCTGACCTGGCGTGGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT 1560

 1450 GCCGTGTATGTCTACTTGGTCCAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC 1509
 1561 GCCGTGTATGTCTACTTGGTCCAACAAGGAGGAATGTCTTCTTCCCCTAACATCACC 1620

 1510 ATTTCTGCCAGGACATCTACTGTAACCTGGACTCTCTGGCTGCAGATGTGAAT 1569
 1621 ATTTCTGCCAGGACATCTACTGTAACCTGGACTCTCTGGCTGCAGATGTGAAT 1680

 1570 GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCTTGGCACCAGGTGGAGGGAAGCAG 1629
 1681 GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCTTGGCACCAGGTGGAGGGAAGCAG 1740

 1630 AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1689
 1741 AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1800
 1 CTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 35

1690 GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTTCTCCTGGTTGGATATTCC 1749
 1801 GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTTCTCCTGGTTGGATATTCC 1860
 36 GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTTCTCCTGGTTGGATATTCC 95

 1750 CTTCACGGTGTCACTGTGGACAACAGAACCTTGCTGTTGGTGGGAGCCCACCTGGAAG 1809
 1861 CTTCACGGTGTCACTGTGGACAACAGAACCTTGCTGTTGGTGGGAGCCCACCTGGAAG 1920
 96 CTTCACGGTGTCACTGTGGACAACAGAACCTTGCTGTTGGTGGGAGCCCACCTGGAAG 155

 1810 AATGCCAGCAGGCTGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1869
 1921 AATGCCAGCAGGCTGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1980
 156 AATGCCAGCAGGCTGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 215

 1870 GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 1929
 1981 GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 2040
 216 GTGTATGGCTACTTCC-ACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 275

 1930 ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCCACGTACTGATGAATGGACTCTGAAA 1989
 2041 ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCCACGTACTGATGAATGGACTCTGAAA 2100
 276 ATGGGGAAACTGGGTACTTCCCTTCCAGTGGTCACGTACTGATGAATGGACTCTGAAA 335

 1990 CAAGTGTGCTGGTTGGAGCCCCACGTACGATGACGTGCTAAGGTGGCATTCTGACC 2049
 2101 CAAGTGTGCTGGTTGGAGCCCCACGTACGATGACGTGCTAAGGTGGCATTCTGACC 2160
 336 CAAGTGTGCTGGTTGGAGCCCCACGTACGATGACGTGCTAAGGTGGCATTCTGACC 395

 2050 GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2109
 2161 GTGACCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2220
 396 GTGACCTACACCAAGGCGGAGCCACTCGCGTGTACGCACTCATATCTGACGCGCAGCCT 455

 2110 CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCTCCCAGTTGGTGGCGTTCTGCAC 2169
 2221 CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCTCCCAGTTGGTGGCGTTCTGCAC 2280
 456 CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTTCTCCCAGTTGGTGGCGTTCTGCAC 515

 2170 TTGAGTGACCTGGATGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2229
 2281 TTGAGTGACCTGGATGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2340
 516 TTGAGTGACCTGGATGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 575

 2230 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGGCCGAGTATATGTATATAATGGC 2289
 2341 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGGCCGAGTATATGTATATAATGGC 2400
 576 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGGCCGAGTATATGTATATAATGGC 635

 2290 AAAGAGACCACCCCTGGTGACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2349
 2401 AAAGAGACCACCCCTGGTGACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2460
 636 AAAGAGACCACCCCTGGTGACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 695

 2350 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2409
 2461 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2520
 696 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 755

 2410 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 2469
 2521 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 2580
 756 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 815

 2470 TTGGGAGCCCGACTCTCGGGGACTTCACGTCTATAGCCTGGCTCAGATTGAAGATTT 2529
 2581 TTGGGAGCCCGACTCTCGGGGACTTCACGTCTATAGCCTGGCTCAGATTGAAGATTT 2640
 816 TTGGGAGCCCGACTCTCGGGGACTTCACGTCTATAGCCTGGCTCAGATTGAAGATTT 875

 2530 CACTGCATTCCCCACTCTGGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2589
 2641 CACTGCATTCCCCACTCTGGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2700
 876 CACTGCATTCCCCACTCTGGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 935

 2590 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGGTAGATCCTGATAGACATGGGCTC 2649
 2701 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGGTAGATCCTGATAGACATGGGCTC 2760
 936 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGGTAGATCCTGATAGACATGGGCTC 995

2650 CTGGGA----- 2655
 2761 CTGGGA----- 2766
 996 CTGGGACAGTGAACCCGATCTGGTCATCGGCTCCCTTTGCACCAGGTGGAGGGAAAGCA 1055
 2656 -----GTAGAGAGACACACTAACAGGCCACACCCCTCTG 2687
 2767 -----GTAGAGAGACACACTAACAGGCCACACCCCTCTG 2798
 1056 GAAGGGAATTGTGGCTGCGTTTATTGAGTAGAGAGACACACTAACAGGCCACACCCCTCTG 1115
 2688 GAAATCTGATACTACAGTAAATATATGACTGCACCAGAAAATATGTGAAATAGCAGACATTCTG 2747
 2799 GAAATCTGATACTACAGTAAATATATGACTGCACCAG----- 2833
 1116 GAAATCTGATACTACAGTAAATATATGACTACACCAGAAAATATGTGAAATAGCAGACATTCTG 1175
 2748 CTTACTCATGTCTCCTTCCACAGTTACTTCCTCGCTCCCTTGCATCTAAACCTTCTT 2807
 1176 CTTACTCATGTCTCCTTCCACAGTTACTTCCTCGCTCCCTTGCATCTAAACCTTCTT 1235
 2808 CTTTCCCAACTTATTGCCTGTAGTCAGACCTGCTGTACAACCTATTCCTCTTCTTG 2867
 1236 CTTTCCCAACTTATTGCCTGTAGTC----- 1261
 2868 AATGTCTTCCAGTGGCTGGAAAGGTCCCTCTGGTTATCTGTTAGAACAGTCTCTGTA 2927

 2928 CACAATTCCCTCTAAAAACATCCTTTTAAAAAAAAGAATTGTTAGCCATAAAGAAAGA 2987

 2988 ACAAGATCATGCCCTTGCAGGGACATGGATGGAGCTGGAGGCCATTATCCTTCATAAAC 3047

 3048 TATTGCAGGAACAGAAAACAAACACTCCATATTCTCACTTGTAAGTGGAGCTAAGTGA 3107

 3108 GAACACGTGGACACATAGAGGGAAACAACACACACTGGGGCCTATGAGAGGGCGGAAGGT 3167

 3168 GGGAGGAGGGAGAGATCAGGAAAAATAACTAATGGATACTTAGGGTGATGAAATAATCTG 3227

 3228 TGTAACAAACCCCCATGACACACCTTATGTATGTAACAAACAGCACTCCTGCGCATG 3287

 3288 TACCCCTGAACTTAAAGTTAAAAAAAGTTGAACCTAAAAATAACAGATTGGCCCATGC 3347

 3348 CAATCAAAGTATAATAGAAAGCATAGTATAC 3378

7/18

Figure 3: Amino acid sequences of GPI-PLD a1, b2 and d3.

cDNA clone d3

MILLFQDSMSFIYKALERNI RTMFIGGSQLSQKHVSSPLASYFLSFYARLGWAMTSADLNQDGHDLVVGAPGYSRPGHIHGRVYLIYGNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPPDLAVGAPSVGSEQLTKGAVYVYFGSKQGGMSSPNITISCDIYCNLGWTLLAADVNGDSEPDIVIGSPFAPGGGKQKGIVAAFYSGPSLSDKEKLNV EAANWTVRGEEDFSWFGYSLHGTVDNRTLLLGVSPTWKNASRLGHLLHIRDEKKSLRVYGYFPPNGQSWFTISGDKAMGKLGTSLSGGHVLMNGTLKVLLVGAPTYDDVSKVAFLT VTLHQGGA TRMYALISDAQPILLSTFSGDRRFSRFGGVHLSDLDDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEKAQYVLISPEASSRGSSLITVRSKA KNQVVIAGRSSLGLARLSGALHVYSLGSD

cDNA clone b2

MSAFRLWPGLLIMLGSCLCHRSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY
QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF
GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFNLYLAR
RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAWSKLYPTYSTKSPFLV
EQFQEYFLGGLDDMAFWSTMUYHLTSFMLENGTSDCNLPENPLFIACGGQQQNHTQGSKMQ
KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWPDSMSFIYKALERNIRTFIGGSQ
SQKHVSPLASYFLSFPLYARLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIIHGRVYLIY
GNDLGLPPVLDLIDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDIAVGAPSVGSEQLT
YKGAVVVYFGSKQGGMSSSPNITISQDIYCNLGWTLLAADVNGDSEPDLVIGSPFAPGG
GKQKGIVAAFYSGPSLSDKEKLNEAANWTVRGEEDFSWFYGSLHGVTVDNRLLLGVSP
TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMMG
TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPILLSTFSGDRRFSRG
VLHLSLDDDGGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT
PCPEEKVSEKKKKKK

cDNA clone a1

MSAFRLWPGLLIMLGS LCHRGS PCGLSTHIEIGHRALEFLQLHNDRVNYRELLLEHQDAY
QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPPLPWEKDTEKLVAFLF
GITSHMAADVSWSHLGLEQGFLRTMGAIDFHGSYSEAHSAAGDFGGDVLSQFEFNFNYLAR
RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAWSKLYPTYSTKSPLV
EQFQEYFLGGDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ
KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWPDSMSFIYKALERNIRTMFIGGSQ
SQKHVSPLASYFLSF PYARLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIY
GNDLGLPPVLDLDEAHRILEGFQPSGRFGSALAVLDFNVDGVPDIAVGAPSVGSEQLT
YKGAVVVYFGSKQGGMSSSPNITISQCQDIYCNLGWTLAADVNGDSEPDLVIGSPFAPGG
GKQKGIVAAFYSGPSLSDKEKLNVAAANWTVRGEEDFSWFYSLHGVTVDNRTLLLGVSP
TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSGGHVLMNG
TLKQVLLVGAPTYDDVSKVAFLTVTLHQGGATRMYALISDAQPILLSTFGGDRRFSRFGG
VLHLSLDDDGGLDEIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGCKCWSWIT
PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQVIAAGRSSLGARLSGALHVYSLGSD

Figure 4: Human GPI-PLD cDNA clone a1

2832 bp: 690 a 688 c 735 g 719 t

1 gtgacctgct tagagagaag cgggtggct gcacctggat tttggagtcc cagtgcgt
 61 gcagctctga gcattccac gtcaccagag aagccggtgg gcaatgagag catgtctgt
 121 ttcaaggctgt ggcctggct gtgtatcatg ttgggttctc tctgccatag agttcac
 181 tggccctt caacacat agaaatagga cacagagctc tggagttct tcagcttcac
 241 aatggcggtg ttaactacag agagctgtt ctagaacacc aggatgcgt acaaggctgga
 301 atcggtttt ctgattttt ttaccctagc atctgcaaa gaggaaaatt ccatgtgt
 361 tctgagagca ctcactggac tccgtttttt aatgcaagcg ttcattatcc cgagagaac
 421 tatcccccttc cctggggagaa ggacacagag aaactggtag ctttcttggtt tggaattact
 481 tctcacatgg cggcagatgt cagctggcat agtctggcc ttgaacaagg attccttagg
 541 accatgggag ctattgattt tcacggctcc tattcagagg ctcattcggc tgggtatttt
 601 ggaggagatg tggtagcca gtttgaattt aattttattt accttgcacg acgctggtat
 661 gtgccagtca aagatctact gggaaattttt gagaactgtt atggtcgaaa agtcatcacc
 721 gaaaatgtaa tcgttattt ttcacatattc cagttcttag aatgtatgg ttagatgtca
 781 gctgtttcca agttatattc cacttactt acaaagtccc cgttttttgtt ggaacaattc
 841 caagagtatt ttcttgagg actggatgtt atggcattttt ggtccactaa tatttaccat
 901 ctaacaagct tcatgttggaa gaatgggacc agtgaatgtca acctgcctga gaaccctctg
 961 ttcatgtcat gtggccggcca gaaaaaccac acccagggtt caaaaatgtca gaaaaatgt
 1021 tttcacagaa atttgactac atccctaact gaaagtgtt acaggaatat aaactataact
 1081 gaaagaggag tggcttttag tggtaaaattttt tggacccccc attccatgtc ctttatctac
 1141 aaggctttgg aaaggaaacat aaggacaatg ttcataggtt gctctcagtt gtcacaaaag
 1201 cacgtctcca gccccttagc atcttacttc ttgtcattttt cttatgcgag gcttggctgg
 1261 gcaatgaccc tcaaggatgtt caaccaggat gggcacgggtt acctcgtgtt gggcgcccca
 1321 ggctacagcc gccccggcca catccacatc gggcgctgtt acctcatcta cgcaatgac
 1381 ctgggcctgc cacctgttga cctggacccctt gacaaggagg cccacaggat ctttgaaggc
 1441 ttccagccctt caggctcggtt tggctcggtt ttggctgtt gacagctcac ctacaaagg
 1501 gtgcctgacc tggccgtggg agtccctcg gtgggctccg cttttttttt taacatcacc
 1561 gccgtgtatg tctactttgg ttccaaacaa ggaggaatgtt ctttggctgc agatgtgaat
 1621 atttcttgcg aggacatcta ctgttaacttgg ggctggactc tttttttt caccagggtt agggaaagg
 1681 ggagacagtg aaccggatctt ggtcatcggtt tccctttttt cggacaaaaga aaaactgtac
 1741 aagggaattt tggctcggtt ttattctggc cccagctgtt gcttggctgg tttttttttt taacatcacc
 1801 gtggaggcgcc ccaactggac ggtgagaggc gaggaaatgtt tttttttttt tggatattcc
 1861 cttcacgggtt tcaactgttga caacagaacc ttgtgttgggg gacctggaaag
 1921 aatgcccggcc ggctggccca tttgttacac atccggatgtt agaaaaaggag ctttggggagg
 1981 gtgtatggctt acttcccacc aaacggccaa agtgggttta ccatttctgg agacaaggca
 2041 atggggaaac tgggtacttc cttttccagg ggccacgtac tggatgttgg gactctgaaa
 2101 caagtgtgc tgggtggaccc ccttacgtac gatgacgtgtt ctaagggttgc atttctgacc
 2161 gtgaccctac accaaggccg agccactcgat atgtacgcac tcatatctgtca cgcgcagct
 2221 ctgtgtctca gcacccttgc cggagacccg cgttctccc gattttgggg ctttctgcac
 2281 ttgagtgacc tggatgttga tggcttagat gaaatcatca tggcagcccc cctgaggata
 2341 gcagatgtaa cctctggact gattggggaa gaagacggcc gagttatgtt atataatggc
 2401 aaagagacca cccttgggttga catgactggc aaatgcaaaat catggataac tccatgttca
 2461 gaagaaaagg cccaaatatgtt attgattttt cctgttgcac gctcaagggtt tgggagctcc
 2521 ctcatcaccg tgaggccaa ggcaaaagac caagtgtca ttgtgttgg aaggagttt
 2581 ttgggagccc gactctccgg ggcacttcac gtctatagcc ttggctcaga ttgaagattt
 2641 cactgcattt ccccaactctg cccaccccttc tcatgttgcac tcatatccat ggtgagccatt
 2701 ttgatggaca aagtggcaca tccagggttgg cgggtgttgc tccatgtataga catggggctc
 2761 ctgggagtag agagacacac taacagccac accctcttggaa atctgtatata agtaaatata
 2821 tgactgttca ag

9/18

Figure 5: Human GPI-PLD cDNA clone b2

2472 bp: 617 a 588 c 639 g 628 t

1 gtctgcacct ggattttgga gtcccagtgc tgctgcagct ctgagcattc ccacgtcacc
61 agagaagccg gtgggcaatg agagcatgtc tgcttcagg ttgtggcctg gcctgtgtat
121 catgttgggt tctctctgcc atagagggtc accgtgtggc ctttcaacac acatagaata
181 aggacacaga gctctggagt ttcttcagct tcacaatggg cgtgttaact acagagagct
241 gttacttagaa caccaggatg cgtatcaggc tggaatcgtg tttcctgatt gtttttaccc
301 tagcatctgc aaaggaggaa aattccatga tggatcgtg agcactcaact ggactccgtt
361 tcttaatgca agcgttcat atatccgaga gaactatccc cttccctggg agaaggacac
421 agagaaaactg gtatgtttct tggatcgttacttctc atggccgcag atgtcagctg
481 gcatagtcg ggccttgaac aaggatttct taggaccatg ggagctatttgc attttcacgg
541 ctccttattca gaggcttattt cggctggta tttggagga gatgttga gccagtttga
601 atttaatttt aattaccttgc cagcacgtt gatatgttgcata gtcaaaatc tactggat
661 ttatgagaaa ctgtatggtc gaaaagtcat caccgaaaat gtaatcgatg attgttcaca
721 tatccagtgc tttagaaatgt atggatgttgc gctatgttgc tccaaatgtt atccccatca
781 ctctacaaag tccccgtttt tggatcgttgc tttggagga attccaagatg tattttctt gaggacttgg
841 tgatatggca ttttgttca ctaatatttta ccatctaaca agcttcatgt tggagaatgg
901 gaccagtgtac tgcaacctgc ctgagaaccc tctgttcat gcatgtggcg gccagcaaaa
961 ccacaccccg ggctaaaaaa tgcagaaaaaa tgattttcatc agaaatttga ctacatccct
1021 aactgaaaatgt gttgacagga atataaaacta tactgaaaga ggagtgttct ttatgttaaa
1081 ttcctggacc ccggatttca tgcctttat ctacaaggct ttggaaagga acataaggac
1141 aatgttcata ggtggcttc agttgtcaca aaagcacgtc tccagccccct tagcatctt
1201 cttcttgta tttcctttagt cgaggcttgg ctgggcaatg acctcagctg acctcaacca
1261 gatggggcac ggtgacctcg tggatggcgc accaggctac agccggcccg gcccacatcca
1321 catcgccgcg gtgtacctca tctacggcaa tgacctggc ctgccccctg ttgaccttgg
1381 cctggacaag gaggccaca ggatccttgc aggttccag ccctcaggc ggtttggctc
1441 ggccttggct gtgttggact ttaacgttgc cggcgtgcct gacctggccg tggagctcc
1501 ctcgggtggc tccgagcagc tcacccatc aaatgttgcgt tatgttctact ttggatccaa
1561 acaaggagga atgttcttcc cccctaaatc caccatttttgc tggcaggaca tctactgtaa
1621 cttgggcttgc actcttgc tgcagatgt gaatggagac agtggaccccg atctggat
1681 cggctccctt tttgaccatcg gtggaggaa gcaaaaggaa attgtggctg cgttttattt
1741 tggcccccacg ctgagcgcaca aagaaaaactt gaaatgttgc gcaatggcact ggacgggttag
1801 agggcggagaa gacttcttcc tggatggata tttccatc ggtgttactg tggacaaacag
1861 aaccttgcg ttggatggaa gcccggatcg gaatggatgc agcaggctgg gcccattttt
1921 acacatccga gatggaaaaa agggcccttgc ggggtgttat ggctacttcc caccacccgg
1981 ccaaagctgg ttttaccattt ctggagacaa gcaatgggg aaactggta cttcccttcc
2041 cagtggccac gtactgtatgc atgggactct gaaatggatg ctgatgttgc gagccccatc
2101 gtacgtatgc gtgttcaagg tggatccatc gaccgtgacc ctacaccaag gcccggccac
2161 tcgcgtatgc gcaatcatgc ctgacgcgc gccccttgc ttcagcacct tcagcggaga
2221 ccggccgttc tcccgatttgc gtggatggact gcaatggatg gacctggatg atgtatggct
2281 agatggaaatc atcatggcag ccccccgttgc gatggatgc gtaaccttgc gactgttgg
2341 gggagaagac ggccgatgttgc atgtatataa tggatggatgc accacccttgc gtgacatgac
2401 tggcaatgc aaatcatggc taactccatgc tccagaagaa aaggttggatg aaaaaaaaaaaa
2461 aaaaaaaaaaa aa

10/18

Figure 6: Human GPI-PLD cDNA clone d3

1942 bp: 455 a 496 c 502 g 489 t

1 gggctgtAAC tctGCCatCC ctcAGCataA tttGGGGta tgatttcaCT atcctaattG
61 cctgtcctAA gtgatcttac ttgctgatag gaccTAATgt tttattttat tgTTtagcac
121 ttctaaaaAC tcatttccTT tacacaAGTC caataCTTg gacaggAAAC agtagCTTg
181 ttgattatGC tacgtgtCTT tactgtCTat aatgattCTT ttatTTcagg attccatgtC
241 ctttatCTAC aaggCTTgg aaaggAACat aaggacaATg ttcataggtg gctctcaggt
301 gtcacaaaAG cacgtctCCA gcccCTtagC atcttacttC ttgtcatttC ctatgcgag
361 gcttggCTgg gcaatgacCT cagCTgacCT caaccaggat gggcacggTg acctcggtg
421 gggcgacca ggctacagCC gccccggcca catccacatC gggcgctgt acctcatcta
481 cgccaatgac ctgggCCTgc cacCTgttga cctggacCTg gacaaggagg cccacaggat
541 ccttgaaggc ttccagCCt caggTCggTt tggTCggCC ttggCTgtgt tggactttAA
601 cgtggacggc gtgcctgacc tggccgttgg agctccCTcg gtgggCTCCg agcagctcac
661 ctacaaaggt gccgtgtatg tctactttgg ttccaaacAA ggaggaatgt ctcttcccc
721 taacatcacc atttttgcc aggacatcta ctgtAACTtG ggctggactc tcttggctgc
781 agatgtGAAT ggagacagtG aacccgatct ggtcatcggc tcccctttg caccaggTgg
841 agggAACAG aaggGAATTG tggCTgCgtt ttattctggc cccagcctGA gcgacaAAAGA
901 aaaactgaac gtggaggcag ccaactggac ggtgagaggc gaggaagact tctcctggg
961 tggatattCC cttcacggTg tcactgtgga caacagaacc ttgctgttgg ttggagccc
1021 gacCTggAAg aatGCCAGCA ggctgggcca ttgttacac atccgagatg agaaaaAGAG
1081 ccttgggagg gtgtatggct acttccCacc aaacggccaa agctggTTt ccatttctgg
1141 agacaaggcA atggggAAAC tgggtacttC ccttCCAGt ggcacgtac tgatGAATgg
1201 gactctgAAA caagtctgc tggTggAgc ccctacgtac gatgacgtgt ctaaggTgC
1261 attcctgacc gtgaccCTAC accaaggCgg agccactcgc atgtacgcac tcatatctGA
1321 cgcgcagcct ctgctgctCA gcacCCttag cggagaccgc cgcttctccc gatttggTgg
1381 cgttctgCAC ttgagtgacc tggatgtGA tggCTtagat gaaatcatCA tggcagcccc
1441 cctgaggata gcagatgtAA cctctggact gattggggA gaagacggcc gagtatatgt
1501 atataatggc aaagagacca cccttggta catgactggc aaatgcaat catggataAC
1561 tccatgtCCA gaagAAAAGG cccaatatgt attgatttct cctgaagcc gctcaagggt
1621 tgggagCTCC ctcatcaccg tgaggTCcaa ggcaaAGAac caagTCgtCA ttgctgCTgg
1681 aaggagttct ttggagccc gactctccgg ggcaacttac gtcTAGCC ttggCTcaga
1741 ttgaagattt cactgcattt ccccacttG cccacCTtC tcAtgtgaa tcacatccat
1801 ggtgagcatt ttgatggaca aagtggcaca tccagtggag cggTggtagA tcctgtatGA
1861 catggggCTC ctgggagtag agagacacac taacagccac accctctggA aatctgatAC
1921 agtaaatata tgactgcacc AG

11/18

7.1

Figure 7: Alignment of GPIPLD protein sequences

database	MSAFRLWPGLLIMLGS LCHRGS PCGLSTHVEIGHRALEFLQLHN GRV NYRELL LEHQDAY	60
d3	-----	
b2	MSAFRLWPGLLIMLGS LCHRGS PCGLSTHIEIGHRALEFLQLHN GRV NYRELL LEHQDAY	60
a1	MSAFRLWPGLLIMLGS LCHRGS PCGLSTHIEIGHRALEFLQLHN GRV NYRELL LEHQDAY	60
database	QAGIVFPDCFYP SICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLV AFLF	120
d3	-----	
b2	QAGIVFPDCFYP SICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLV AFLF	120
a1	QAGIVFPDCFYP SICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLV AFLF	120
database	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSA GDFGGDVL SQFE FN FNYLAR	180
d3	-----	
b2	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSA GDFGGDVL SQFE FN FNYLAR	180
a1	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSA GDFGGDVL SQFE FN FNYLAR	180
database	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHI QFLEMYGEMLA VSKLYPTYSTKSPFLV	240
d3	-----	
b2	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHI QFLEMYGEMLA VSKLYPTYSTKSPFLV	240
a1	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHI QFLEMYGEMLA VSKLYPTYSTKSPFLV	240
database	EQFQEYFLGGLDDMAFWSTNIYHLTIFML ENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
d3	-----	
b2	EQFQEYFLGGLDDMAFWSTNIYHLTSFML ENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
a1	EQFQEYFLGGLDDMAFWSTNIYHLTSFML ENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
database	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
d3	-----	
b2	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
a1	KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
database	SQKHVSSPLASYFLSF PYARLG WAMTSADLNQDG HGD L VVGAPG YSRPGHI IGRVY LIY	420
d3	SQKHVSSPLASYFLSF PYARLG WAMTSADLNQDG HGD L VVGAPG YSRPGHI IGRVY LIY	90
b2	SQKHVSSPLASYFLSF PYARLG WAMTSADLNQDG HGD L VVGAPG YSRPGHI IGRVY LIY	420
a1	SQKHVSSPLASYFLSF PYARLG WAMTSADLNQDG HGD L VVGAPG YSRPGHI IGRVY LIY	420
database	GNDLGLPPVDL DDKEAH RILEGFQPSGRFGS ALAVL DFNV DGP DLA VGAP S VGS EQLT	480
d3	GNDLGLPPVDL DDKEAH RILEGFQPSGRFGS ALAVL DFNV DGP DLA VGAP S VGS EQLT	150
b2	GNDLGLPPVDL DDKEAH RILEGFQPSGRFGS ALAVL DFNV DGP DLA VGAP S VGS EQLT	480
a1	GNDLGLPPVDL DDKEAH RILEGFQPSGRFGS ALAVL DFNV DGP DLA VGAP S VGS EQLT	480
database	YKGAVV VYFGSKQGGMSSSPNITISCQDIYCN LGWTLLA ADVNGD SEPD LVI GSPFAPGG	540
d3	YKGAVV VYFGSKQGGMSSSPNITISCQDIYCN LGWTLLA ADVNGD SEPD LVI GSPFAPGG	210
b2	YKGAVV VYFGSKQGGMSSSPNITISCQDIYCN LGWTLLA ADVNGD SEPD LVI GSPFAPGG	540
a1	YKGAVV VYFGSKQGGMSSSPNITISCQDIYCN LGWTLLA ADVNGD SEPD LVI GSPFAPGG	540
database	GKQKGIVAA FYSGPSL SDKE KLN VEA ANWTVR GEED FSWFGY SLHG VTV DNRTLLL VGS P	600
d3	GKQKGIVAA FYSGPSL SDKE KLN VEA ANWTVR GEED FSWFGY SLHG VTV DNRTLLL VGS P	270
b2	GKQKGIVAA FYSGPSL SDKE KLN VEA ANWTVR GEED FSWFGY SLHG VTV DNRTLLL VGS P	600
a1	GKQKGIVAA FYSGPSL SDKE KLN VEA ANWTVR GEED FSWFGY SLHG VTV DNRTLLL VGS P	600
database	TWKNASRLGHLLHIRDEKKS LGRVYGYFPPNGQSWFTISGDKAMGKL GTSLSS GHVLMNG	660
d3	TWKNASRLGHLLHIRDEKKS LGRVYGYFPPNGQSWFTISGDKAMGKL GTSLSS GHVLMNG	330
b2	TWKNASRLGHLLHIRDEKKS LGRVYGYFPPNGQSWFTISGDKAMGKL GTSLSS GHVLMNG	660
a1	TWKNASRLGHLLHIRDEKKS LGRVYGYFPPNGQSWFTISGDKAMGKL GTSLSS GHVLMNG	660
database	TLKQVLLVGAP TYDDVSKVAFLT VTLHQGGATR MYAL ISDAQPLL STFSGD RRFSR FGG	720
d3	TLKQVLLVGAP TYDDVSKVAFLT VTLHQGGATR MYAL ISDAQPLL STFSGD RRFSR FGG	390
b2	TLKQVLLVGAP TYDDVSKVAFLT VTLHQGGATR MYAL ISDAQPLL STFSGD RRFSR FGG	720
a1	TLKQVLLVGAP TYDDVSKVAFLT VTLHQGGATR MYAL ISDAQPLL STFSGD RRFSR FGG	720

13/18

Figure 8: Alignment of human GPI-PLD nucleic acid sequences

1: pancreatic-form: cDNA sequence from GenBank database (L11702)

- 2: cDNA clone A1
 3: cDNA clone B2
 4: cDNA clone D3

1	GTGACCTGCTTAGAGAGAAGCGGTGGGCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	60
1	-----GTCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	34
1	-----ATGTCGCT	9
61	GCAGCTCTGAGCATTCCCACGTCACCAAGAGAAGCCGGTGGGCAATGAGAGCATGTCGCT	120
35	GCAGCTCTGAGCATTCCCACGTCACCAAGAGAAGCCGGTGGGCAATGAGAGCATGTCGCT	94
10	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTCACCG	69
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTCACCG	180
95	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGGTTCTCTGCCATAGAGGTTCACCG	154
70	TGTGGCCTTCAACACACAGTAGAAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
181	TGTGGCCTTCAACACACATAGAAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
155	TGTGGCCTTCAACACACATAGAAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	214
130	AATGGGGGTGTTAACTACAGAGAGCTGTTACTAGAACACCAGGATGCGTATCAGGCTGGA	189
241	AATGGGGGTGTTAACTACAGAGAGCTGTTACTAGAACACCAGGATGCGTATCAGGCTGGA	300
215	AATGGGGGTGTTAACTACAGAGAGCTGTTACTAGAACACCAGGATGCGTATCAGGCTGGA	274
190	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	249
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	360
275	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	334
250	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	309
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	420
335	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCAATTATATCCGAGAGAAC	394
310	TATCCCCCTCCCTGGAGAAGGACACAGAGAAAAGTGGTAGCTTCTGTTGGAATTACT	369
421	TATCCCCCTCCCTGGAGAAGGACACAGAGAAAAGTGGTAGCTTCTGTTGGAATTACT	480
395	TATCCCCCTCCCTGGAGAAGGACACAGAGAAAAGTGGTAGCTTCTGTTGGAATTACT	454
370	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCAGCTGGCCTTGAACAAGGATTCTTAGG	429
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCAGCTGGCCTTGAACAAGGATTCTTAGG	540
541	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCAGCTGGCCTTGAACAAGGATTCTTAGG	514
430	ACCATGGGAGCTATTGATTTACGGCTCTATTCAAGAGGCTCATTGGCTGGTGA	489
541	ACCATGGGAGCTATTGATTTACGGCTCTATTCAAGAGGCTCATTGGCTGGTGA	600
515	ACCATGGGAGCTATTGATTTACGGCTCTATTCAAGAGGCTCATTGGCTGGTGA	574

490	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTAAATTACCTTGCACGACGCTGGTAT	549
601	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTAAATTACCTTGCACGACGCTGGTAT	660
575	GGAGGAGATGTGTTGAGCCAGTTGAATTAAATTAAATTACCTTGCACGACGCTGGTAT	634
<hr/>		
550	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGCGAAAAGTCATCACC	609
661	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGCGAAAAGTCATCACC	720
635	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGCGAAAAGTCATCACC	694
<hr/>		
610	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGAGATGCTA	669
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGAGATGCTA	780
695	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTAGAAATGTATGGTGAGATGCTA	754
<hr/>		
670	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTTGGTGGAACAAATTC	729
781	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTTGGTGGAACAAATTC	840
755	GCTGTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTTGGTGGAACAAATTC	814
<hr/>		
730	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTGGTCCACTAATATTTACCAT	789
841	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTGGTCCACTAATATTTACCAT	900
815	CAAGAGTATTTCTGGAGGACTGGATGATATGGCATTGGTCCACTAATATTTACCAT	874
	-----GGGCTGTAAC	10
<hr/>		
790	CTAACAACTTCACTGGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	849
901	CTAACAAAGCTTCATGGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	960
875	CTAACAAAGCTTCATGGGAGAATGGGACCACTGACTGCAACCTGCCTGAGAACCCCTCTG	934
11	TCTGCCATCCCTCAGCATAATTGGGGTATGATTCACTATCCTAATTGCCTGCTCAA	70
<hr/>		
850	TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTCAAAATGCAGAAAATGAT	909
961	TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTCAAAATGCAGAAAATGAT	1020
935	TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTCAAAATGCAGAAAATGAT	994
71	GTGATCTTACTGCTGATAGGACCTAATTGTTATTGTTAGCACTTCTAAAAAC	130
<hr/>		
910	TTTCACAGAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAAACTATACT	969
1021	TTTCACAGAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAAACTATACT	1080
995	TTTCACAGAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAAACTATACT	1054
131	TCATTCCTTACACAAGTCCAATACTTGGACAGGAAACAGTAGCTTGTGATTATGC	180
<hr/>		
970	GAAAGAGGAGTGTCTTTAGTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTATCTAC	1029
1081	GAAAGAGGAGTGTCTTTAGTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTATCTAC	1140
1055	GAAAGAGGAGTGTCTTTAGTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTATCTAC	1114
181	TACGTGTCTTACTGTCTATAATGATTCTTTATTGAGGATTCCATGTCCTTATCTAC	240
<hr/>		
1030	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG	1089
1141	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG	1200
1115	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG	1174
241	AAGGCTTGGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAAG	300
<hr/>		
1090	CACGTCTCCAGCCCTTAGCATCTTACTTCTGTCAATTCTTATGCGAGGCTTGGCTGG	1149
1201	CACGTCTCCAGCCCTTAGCATCTTACTTCTGTCAATTCTTATGCGAGGCTTGGCTGG	1260
1175	CACGTCTCCAGCCCTTAGCATCTTACTTCTGTCAATTCTTATGCGAGGCTTGGCTGG	1234
301	CACGTCTCCAGCCCTTAGCATCTTACTTCTGTCAATTCTTATGCGAGGCTTGGCTGG	360

15/18

1150	GCAATGACCTCAGCTGACCTAACCCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	1209
1261	GCAATGACCTCAGCTGACCTAACCCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	1320
1235	GCAATGACCTCAGCTGACCTAACCCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	1294
361	GCAATGACCTCAGCTGACCTAACCCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	420
1210	GGCTACAGCCGCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1269
1321	GGCTACAGCCGCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1380
1295	GGCTACAGCCGCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1354
421	GGCTACAGCCGCCGGCCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	480
1270	CTGGGCCTGCCACCTGTTGACCTGGACACTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1329
1381	CTGGGCCTGCCACCTGTTGACCTGGACACTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1440
1355	CTGGGCCTGCCACCTGTTGACCTGGACACTGGACAAGGAGGCCACAGGATCCTTGAAGGC	1414
481	CTGGGCCTGCCACCTGTTGACCTGGACACTGGACAAGGAGGCCACAGGATCCTTGAAGGC	540
1330	TTCCAGCCCTCAGGTCGGTTGGCTCGGCCCTGGCTGTGGACTTTAACGTGGACGGC	1389
1441	TTCCAGCCCTCAGGTCGGTTGGCTCGGCCCTGGCTGTGGACTTTAACGTGGACGGC	1500
1415	TTCCAGCCCTCAGGTCGGTTGGCTCGGCCCTGGCTGTGGACTTTAACGTGGACGGC	1474
541	TTCCAGCCCTCAGGTCGGTTGGCTCGGCCCTGGCTGTGGACTTTAACGTGGACGGC	600
1390	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1449
1501	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1560
1475	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	1534
601	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACCTACAAAGGT	660
1450	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCCCCAACATCACC	1509
1561	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCCCCAACATCACC	1620
1535	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCCCCAACATCACC	1594
661	GCCGTGTATGTCTACTTGGTCCAAACAAGGAGGAATGTCTTCCCCAACATCACC	720
1510	ATTCTTGCCAGGACATCTACTGTAACCTGGCTGGACTCTTGGCTGCAGATGTGAAT	1569
1621	ATTCTTGCCAGGACATCTACTGTAACCTGGCTGGACTCTTGGCTGCAGATGTGAAT	1680
1595	ATTCTTGCCAGGACATCTACTGTAACCTGGCTGGACTCTTGGCTGCAGATGTGAAT	1654
721	ATTCTTGCCAGGACATCTACTGTAACCTGGCTGGACTCTTGGCTGCAGATGTGAAT	780
1570	GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCCCTTGCACCAAGGTGGAGGGAAAGCAG	1629
1681	GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCCCTTGCACCAAGGTGGAGGGAAAGCAG	1740
1655	GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCCCTTGCACCAAGGTGGAGGGAAAGCAG	1714
781	GGAGACAGTGAACCCGATCTGGTCATCGGCTCCCCCTTGCACCAAGGTGGAGGGAAAGCAG	840
1630	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1689
1741	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1800
1715	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1774
841	AAGGGAATTGTGGCTGCCTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC	900
1690	GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTCTCCTGGTTGGATATTCC	1749
1801	GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTCTCCTGGTTGGATATTCC	1860
1775	GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTCTCCTGGTTGGATATTCC	1834
901	GTGGAGGCAGCCAACCTGGACGGTGAGAGGGGAGGAAGACTCTCCTGGTTGGATATTCC	960
1750	CTTCACGGTGTCACTGTGGACAACAGAACCTTGCCTGGTGGTGGAGCCCACCTGGAAG	1809
1861	CTTCACGGTGTCACTGTGGACAACAGAACCTTGCCTGGTGGTGGAGCCCACCTGGAAG	1920
1835	CTTCACGGTGTCACTGTGGACAACAGAACCTTGCCTGGTGGTGGAGCCCACCTGGAAG	1894
961	CTTCACGGTGTCACTGTGGACAACAGAACCTTGCCTGGTGGTGGAGCCCACCTGGAAG	1020

16/18

8-4

1810	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1869
1921	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1980
1895	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1954
1021	AATGCCAGCAGGCTGGGCCATTGTTACACATCCGAGATGAGAAAAAGAGCCTTGGGAGG	1080
1870	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1929
1981	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2040
1955	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2014
1081	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1140
1930	ATGGGGAAACTGGGTACTTCCCTTCAGTGGCACCGTACTGATGAATGGGACTCTGAAA	1989
2041	ATGGGGAAACTGGGTACTTCCCTTCAGTGGCACCGTACTGATGAATGGGACTCTGAAA	2100
2015	ATGGGGAAACTGGGTACTTCCCTTCAGTGGCACCGTACTGATGAATGGGACTCTGAAA	2074
1141	ATGGGGAAACTGGGTACTTCCCTTCAGTGGCACCGTACTGATGAATGGGACTCTGAAA	1200
1990	CAAGTGCTGCTGGTGGAGCCCCTACGTACGATGACGTGTCAGGTGGCATTCCGTGACC	2049
2101	CAAGTGCTGCTGGTGGAGCCCCTACGTACGATGACGTGTCAGGTGGCATTCCGTGACC	2160
2075	CAAGTGCTGCTGGTGGAGCCCCTACGTACGATGACGTGTCAGGTGGCATTCCGTGACC	2134
1201	CAAGTGCTGCTGGTGGAGCCCCTACGTACGATGACGTGTCAGGTGGCATTCCGTGACC	1260
2050	GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2109
2161	GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2220
2135	GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2194
1261	GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	1320
2110	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTCTCCGATTTGGTGGCGTTCTGCAC	2169
2221	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTCTCCGATTTGGTGGCGTTCTGCAC	2280
2195	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTCTCCGATTTGGTGGCGTTCTGCAC	2254
1321	CTGCTGCTCAGCACCTTCAGCGGAGACCGCCGCTCTCCGATTTGGTGGCGTTCTGCAC	1380
2170	TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2229
2281	TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2340
2255	TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2314
1381	TTGAGTGACCTGGATGATGGCTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	1440
2230	GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGCCAGTATATGTATATAATGGC	2289
2341	GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGCCAGTATATGTATATAATGGC	2400
2315	GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGCCAGTATATGTATATAATGGC	2374
1441	GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGCCAGTATATGTATATAATGGC	1500
2290	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2349
2401	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2460
2375	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2434
1501	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	1560
2350	GAAGAAAAGGCCAATATGTATTGATTCTCTGAAGCCAGCTCAAGGTTGGGAGCTCC	2409
2461	GAAGAAAAGGCCAATATGTATTGATTCTCTGAAGCCAGCTCAAGGTTGGGAGCTCC	2520
2435	GAAGAAAAGGTAAAGTGA-----	2472
1561	GAAGAAAAGGCCAATATGTATTGATTCTCTGAAGCCAGCTCAAGGTTGGGAGCTCC	1620
2410	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAGGAGTTCT	2469
2521	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAGGAGTTCT	2580
1621	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAGGAGTTCT	1680

18/18

0.6

3130 AAACAAACACACACTGGGCCTATGAGAGGGCGGAAGGTGGAGGAGGGAGAGATCAGGAA 3189

3190 AAATAACTAATGGATACTTAGGGTGTGAAATAATCTGTGTAACAAACCCCCATGACACA 3249

3250 CCTTTATGTATGTAACAAACCAAGCACTTCCTGCGCATGTACCCCTGAACTTAAAAGTTAA 3309

3310 AAAAAAGTTGAACTTAAAATAACAGATTGCCATGCCAATCAAAGTATAATAGAAAGC 3369

3370 ATAGTATAAC 3378

Pct No : G899 / 04399

Form 23/m : 24/12/99

Agent : Newsum Ellis

Creation date: 09-29-2003

Indexing Officer: PBOUNMASANONH - PHALYCHANH BOUNMASANONH

Team: OIPEBackFileIndexing

Dossier: 09868879

Legal Date: 02-04-2000

No.	Doccode	Number of pages
1	FRPR	80

Total number of pages: 80

Remarks:

Order of re-scan issued on

