NOTAÇÕES

conjunto dos números naturais

 $\arg z$: argumento do número

conjunto dos números reais

complexo z $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

 \mathbb{R}^+ : conjunto dos números reais

não-negativos

 $A \setminus B = \{x : x \in A \in x \notin B\}$

i: unidade imaginária; $i^2 = -1$

 A^C : complementar do conjunto A

P(A): conjunto de todos os subconjuntos do conjunto A

n(A): número de elementos do conjunto finito A

 \overline{AB} : segmento de reta unindo os pontos A e B

AB: arco de circunferência de extremidades A e B

$$\sum_{k=0}^{n} a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \ n \in \mathbb{N}$$

Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Questão 1. Deseja-se trocar uma moeda de 25 centavos, usando-se apenas moedas de 1, 5 e 10 centavos. Então, o número de diferentes maneiras em que a moeda de 25 centavos pode ser trocada é igual a

- A () 6.
- B () 8. C () 10. D () 12.
- E () 14.

Questão 2. Dois atiradores acertam o alvo uma vez a cada três disparos. Se os dois atiradores disparam simultaneamente, então a probabilidade do alvo ser atingido pelo menos uma vez é igual a

- A () $\frac{2}{9}$.
- B() $\frac{1}{3}$. C() $\frac{4}{9}$. D() $\frac{5}{9}$. E() $\frac{2}{3}$.

Questão 3. Sejam $z = n^2(\cos 45^\circ + i \sin 45^\circ)$ e $w = n(\cos 15^\circ + i \sin 15^\circ)$, em que n é o menor inteiro positivo tal que $(1+i)^n$ é real. Então, $\frac{z}{w}$ é igual a

A () $\sqrt{3} + i$.

- B () $2(\sqrt{3}+i)$.
- C () $2(\sqrt{2}+i)$.

- D () $2(\sqrt{2}-i)$. E () $2(\sqrt{3}-i)$.

Questão 4. Se arg $z = \frac{\pi}{4}$, então um valor para arg(-2iz) é

- A () $-\frac{\pi}{2}$. B () $\frac{\pi}{4}$. C () $\frac{\pi}{2}$. D () $\frac{3\pi}{4}$. E () $\frac{7\pi}{4}$.

Questão 5. Sejam r_1, r_2 e r_3 números reais tais que $r_1 - r_2$ e $r_1 + r_2 + r_3$ são racionais. Das afirmações:

- I · Se r_1 é racional ou r_2 é racional, então r_3 é racional;
- II · Se r_3 é racional, então $r_1 + r_2$ é racional;
- III · Se r_3 é racional, então r_1 e r_2 são racionais,

é (são) sempre verdadeira(s)

A () apenas I.

B() apenas II.

C () apenas III.

D () apenas $I \in II$.

E () *I*, *II* e *III*.

Questão 6. As raízes x_1 , x_2 e x_3 do polinômio $p(x) = 16 + ax - (4 + \sqrt{2})x^2 + x^3$ estão relacionadas pelas equações:

$$x_1 + 2x_2 + \frac{x_3}{2} = 2$$
 e $x_1 - 2x_2 - \sqrt{2}x_3 = 0$

Então, o coeficiente a é igual a

A () $2(1-\sqrt{2})$.

B () $\sqrt{2} - 4$.

C () $2(2+\sqrt{2})$.

D () $4 + \sqrt{2}$.

E () $4(\sqrt{2}-1)$.

Questão 7. Sabe-se que (x + 2y, 3x - 5y, 8x - 2y, 11x - 7y + 2z) é uma progressão aritmética com o último termo igual a -127. Então, o produto xyz é igual a

A () -60.

B () -30.

C () 0.

D () 30.

E () 60.

Questão 8. Considere um polinômio p(x), de grau 5, com coeficientes reais. Sabe-se que -2i e $i-\sqrt{3}$ são duas de suas raízes. Sabe-se, ainda, que dividindo-se p(x) pelo polinômio q(x) = x - 5 obtém-se resto zero e que $p(1) = 20(5 + 2\sqrt{3})$. Então, p(-1) é igual a

A () $5(5-2\sqrt{3})$.

B () $15(5-2\sqrt{3})$.

C () $30(5-2\sqrt{3})$.

D () $45(5-2\sqrt{3})$.

E () $50(5-2\sqrt{3})$.

Questão 9. Um triângulo ABC tem lados com medidas $a = \frac{\sqrt{3}}{2}$ cm, b = 1 cm e $c = \frac{1}{2}$ cm. Uma circunferência é tangente ao lado a e também aos prolongamentos dos outros dois lados do triângulo, ou seja, a circunferência é ex-inscrita ao triângulo. Então, o raio da circunferência, em cm, é igual a

A () $\frac{\sqrt{3}+1}{4}$.

B () $\frac{\sqrt{3}}{4}$.

C () $\frac{\sqrt{3}+1}{3}$.

D () $\frac{\sqrt{3}}{2}$.

E () $\frac{\sqrt{3}+2}{4}$.

Questão 10. Sejam A = (0,0), B = (0,6) e C = (4,3) vértices de um triângulo. A distância do baricentro deste triângulo ao vértice A, em unidades de distância, é igual a

A ()
$$\frac{5}{3}$$
.

B ()
$$\frac{\sqrt{97}}{3}$$
.

B ()
$$\frac{\sqrt{97}}{3}$$
. C () $\frac{\sqrt{109}}{3}$. D () $\frac{\sqrt{5}}{3}$. E () $\frac{10}{3}$.

D ()
$$\frac{\sqrt{5}}{3}$$

E ()
$$\frac{10}{3}$$
.

Questão 11. A área do quadrilátero definido pelos eixos coordenados e as retas r: x - 3y + 3 = 0 e s:3x+y-21=0,em unidades de área, é igual a

A ()
$$\frac{19}{2}$$
.

B () 10. C ()
$$\frac{25}{2}$$
. D () $\frac{27}{2}$. E () $\frac{29}{2}$.

D ()
$$\frac{27}{2}$$
.

E()
$$\frac{29}{2}$$

Questão 12. Dados os pontos A = (0,0), B = (2,0) e C = (1,1), o lugar geométrico dos pontos que se encontram a uma distância d=2 da bissetriz interna, por A, do triângulo ABC é um par de retas definidas por

A ()
$$r_{1,2}: \sqrt{2}y - x \pm 2\sqrt{4 + \sqrt{2}} = 0.$$

A ()
$$r_{1,2}: \sqrt{2}y - x \pm 2\sqrt{4 + \sqrt{2}} = 0.$$
 B () $r_{1,2}: \frac{\sqrt{2}}{2}y - x \pm 2\sqrt{10 + \sqrt{2}} = 0.$

C ()
$$r_{1,2}: 2y - x \pm 2\sqrt{10 + \sqrt{2}} = 0.$$

C ()
$$r_{1,2}: 2y - x \pm 2\sqrt{10 + \sqrt{2}} = 0$$
. D () $r_{1,2}: (\sqrt{2} + 1)y - x \pm \sqrt{2 + 4\sqrt{2}} = 0$.

E ()
$$r_{1,2}: (\sqrt{2}+1)y - x \pm 2\sqrt{4+2\sqrt{2}} = 0.$$

Questão 13. Sejam $A, B \in C$ subconjuntos de um conjunto universo U. Das afirmações:

$$I \cdot (A \setminus B^C) \setminus C^C = A \cap (B \cup C);$$

$$II \cdot (A \setminus B^C) \setminus C = A \cup (B \cap C^C)^C;$$

$$III \cdot B^C \cup C^C = (B \cap C)^C,$$

é (são) sempre verdadeira(s) apenas

D ()
$$I \in III$$
.

$$\mathbf{E}$$
 () II \mathbf{e} III .

Questão 14. Sejam A e B dois conjuntos disjuntos, ambos finitos e não-vazios, tais que $n(P(A) \cup P(B)) + 1 = n(P(A \cup B))$. Então, a diferença n(A) - n(B) pode assumir

A () um único valor.

B () apenas dois valores distintos.

C () apenas três valores distintos.

D () apenas quatro valores distintos.

E () mais do que quatro valores distintos.

Questão 15. Considere um número real $a \neq 1$ positivo, fixado, e a equação em x

$$a^{2x} + 2\beta a^x - \beta = 0, \ \beta \in \mathbb{R}$$

Das afirmações:

 $I \cdot \text{Se } \beta < 0$, então existem duas soluções reais distintas;

II · Se $\beta = -1$, então existe apenas uma solução real;

III. Se $\beta = 0$, então não existem soluções reais;

IV. Se $\beta > 0$, então existem duas soluções reais distintas,

é (são) sempre verdadeira(s) apenas

A () I.

 $B() I e III \qquad C() II e III.$

D () II e IV.

 $\mathrm{E}\left(\right)I,III\:\mathrm{e}\:IV.$

Questão 16. Seja $S = \left\{ x \in \mathbb{R} | \arcsin\left(\frac{e^{-x} - e^x}{2}\right) + \arccos\left(\frac{e^x - e^{-x}}{2}\right) = \frac{\pi}{2} \right\}$. Então,

A () $S = \emptyset$.

B () $S = \{0\}.$

 $C() S = \mathbb{R}^+ \setminus \{0\}.$

D () $S = \mathbb{R}^+$.

 $E() S = \mathbb{R}.$

Questão 17. Seja $x \in [0, 2\pi]$ tal que $sen(x) cos(x) = \frac{2}{5}$. Então, o produto e a soma de todos os possíveis valores de tg(x) são, respectivamente

A () 1 e 0.

B () 1 e $\frac{5}{2}$.

C() -1 e 0.

D () 1 e 5.

E () $-1 e -\frac{5}{2}$.

Questão 18. A soma $\sum_{k=0}^{n} \cos(\alpha + k\pi)$, para todo $\alpha \in [0, 2\pi]$, vale

A () $-\cos(\alpha)$ quando n é par.

B () $-\operatorname{sen}(\alpha)$ quando n é ímpar. D () $\operatorname{sen}(\alpha)$ quando n é par.

C () $\cos(\alpha)$ quando n é ímpar.

zero quando n é impar.

Questão 19. Um cone circular reto de altura 1 cm e geratriz $\frac{2\sqrt{3}}{3}$ cm é interceptado por um plano paralelo à sua base, sendo determinado, assim, um novo cone. Para que este novo cone tenha o mesmo volume de um cubo de aresta $\left(\frac{\pi}{243}\right)^{1/3}$ cm, é necessário que a distância do plano à base do cone original seja, em cm, igual a

A () $\frac{1}{4}$.

B() $\frac{1}{3}$. C() $\frac{1}{2}$. D() $\frac{2}{3}$. E() $\frac{3}{4}$.

Questão 20. A superfície lateral de um cone circular reto é um setor circular de 120° e área igual a 3π cm^2 . A área total e o volume deste cone medem, em cm^2 e cm^3 , respectivamente

A ()
$$4\pi \ e^{\frac{2\pi\sqrt{2}}{3}}$$
.

B ()
$$4\pi \ e^{\frac{\pi\sqrt{2}}{3}}$$
.

C ()
$$4\pi \ e \ \pi \sqrt{2}$$

D ()
$$3\pi \ e^{\frac{2\pi\sqrt{2}}{3}}$$
.

E ()
$$\pi$$
 e $2\pi\sqrt{2}$.

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E REPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Dez cartões estão numerados de 1 a 10. Depois de embaralhados, são formados dois conjuntos de 5 cartões cada. Determine a probabilidade de que os números 9 e 10 apareçam num mesmo conjunto.

Questão 22. Determine os valores reais de x de modo que $sen(2x) - \sqrt{3}\cos(2x)$ seja máximo.

Questão 23. Considere a matriz quadrada A em que os termos da diagonal principal são $1, 1 + x_1, 1 + x_2, \ldots, 1 + x_n$ e todos os outros termos são iguais a 1. Sabe-se que (x_1, x_2, \ldots, x_n) é uma progressão geométrica cujo primeiro termo é $\frac{1}{2}$ e a razão é 4. Determine a ordem da matriz A para que o seu determinante seja igual a 256.

 $\mathbf{Quest\~ao}$ 24. Seja n um número natural. Sabendo que o determinante da matriz

$$A = \begin{bmatrix} n & \log_2 2 & -\log_2 \frac{1}{2} \\ n+5 & \log_3 3^n & \log_3 243 \\ -5 & \log_5 \frac{1}{125} & -\log_5 25 \end{bmatrix}$$

é igual a 9, determine n e também a soma dos elementos da primeira coluna da matriz inversa A^{-1} .

Questão 25. Em um plano estão situados uma circunferência ω de raio 2 cm e um ponto P que dista $2\sqrt{2}$ cm do centro de ω . Considere os segmentos \overline{PA} e \overline{PB} tangentes a ω nos pontos A e B, respectivamente. Ao girar a região fechada delimitada pelos segmentos \overline{PA} e \overline{PB} e pelo arco menor \widehat{AB} em torno de um eixo passando pelo centro de ω e perpendicular ao segmento \overline{PA} , obtém-se um sólido de revolução. Determine:

- a) A área total da superfície do sólido.
- b) O volume do sólido.

Questão 26. As interseções das retas r: x - 3y + 3 = 0, s: x + 2y - 7 = 0 e t: x + 7y - 7 = 0, duas a duas, respectivamente, definem os vértices de um triângulo que é a base de um prisma reto de altura igual a 2 unidades de comprimento. Determine:

- a) A área total da superfície do prisma.
- **b)** O volume do prisma.

Questão 27. Dos n alunos de um colégio, cada um estuda pelo menos uma das três matérias: Matemática, Física e Química. Sabe-se que 48% dos alunos estudam Matemática, 32% estudam Química e 36% estudam Física. Sabe-se, ainda, que 8% dos alunos estudam apenas Física e Matemática, enquanto 4% estudam todas as três matérias. Os alunos que estudam apenas Química e Física mais aqueles que estudam apenas Matemática e Química totalizam 63 estudantes. Determine n.

Questão 28. Analise se $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 3+x^2, & x \geq 0 \\ 3-x^2, & x < 0 \end{cases}$ é bijetora e, em caso afirmativo, encontre $f^{-1}: \mathbb{R} \to \mathbb{R}$.

Questão 29. Determine os valores de $\theta \in [0, 2\pi]$ tais que $\log_{tg(\theta)} e^{sen(\theta)} \geq 0$.

Questão 30. As retas r_1 e r_2 são concorrentes no ponto P, exterior a um círculo ω . A reta r_1 tangencia ω no ponto A e a reta r_2 intercepta ω nos pontos B e C diametralmente opostos. A medida do arco $\stackrel{\frown}{AC}$ é $\stackrel{\frown}{60}$ ° e $\stackrel{\frown}{PA}$ mede $\stackrel{\frown}{\sqrt{2}}$ cm. Determine a área do setor menor de ω definido pelo arco $\stackrel{\frown}{AB}$.