Register Allocation – 2 SSA-based Register Allocation

15-411/15-611 Compiler Design

Seth Copen Goldstein

September 8, 2019

Today

- Iterated Register Allocation
 - Conservative Coalescing
 - Special registers
 - Implementation
- SSA-Based Register Allocation
 - SSA
 - ϕ -functions
 - Chordal Graphs
 - Perfect Elimination Order

Chaitin's allocator

- Build: construct the interference graph
- Simplify: node removal, a la Kempe
- Spill: if necessary, remove a degree≥K node, marking it as a potential spill
- Select: rebuild the graph, coloring as we go
 - if a potential spill can't be colored, mark it as an actual spill
- if there are actual spills
 - → generate spill code and start over
- else, done

Where We Are

9/8

Coalescing

Can u & v be coalesced? Should u & v be coalesced?

Where We Are

Coalescing

- Conservative or Aggressive?
- Aggressive:
 - coalesce even if potentially causes spill
 - Then, potentially undo
- Conservative:
 - coalesce if it won't make graph uncolorable
 - How to detect?

Briggs

Can coalesce a and b if
 (# of neighbors of ab with degree < k) < k</p>

- Why?
 - Simplify removes all nodes with degree < k
 - # of remaining nodes < k</p>
 - Thus, ab can be simplified

Preston

- Can coalesce a and b if
 - foreach neighbor t of a
 - -t interferes with b, or,
 - -degree of t < k</pre>

Why?

- let S be set of neighbors of a with degree < k
- If no coalescing, simplify removes all nodes in S, call that graph G¹
- If we coalesce we can still remove all nodes in S, call that graph G²
- G² is a subgraph of G¹

Preston

Why Two Methods?

- With Briggs one needs to look at:
 neighbors of a & b
- With Preston, only need to look at neighbors of a.
- As we will see, we will need to insert "hard" registers into graph and they have LOTS of neighbors
 - RAX, RCX, RDI, ...
 - Called hard registers
 - aka precolored nodes

Briggs and Preston

- With Briggs one needs to look at:
 neighbors of a & b
- With Preston, only need to look at neighbors of a.
- Briggs
 Used when a and b are both temps
- Preston
 Used when either a or b is precolored

Spilling

What should we spill?

Spilling

- What should we spill?
 - Something that will eliminate a lot of interference edges
 - Something that is used infrequently
 - Something that is NOT used in loops
 - Maybe something that is live across a lot of calls?

Setting Up For Better Spills

- We want temps not-live across procedures to be allocated to caller-save registers. Why?
- We want temps live across many procs to be in callee-save registers
- We prefer to use callee-save registers last.
- We want live ranges of precolored nodes to be short!

$$d \leftarrow a * b$$

- Callee-save registers
 - x86-64: **RDI**, **RSI**, **RDX**, **RCX**, **R8**, **R9** must be saved by callee if callee wants to use them.


```
d ← a * b

movl a, rax
imul b ; rdx,rax
movl rax, d
```

Preserving Callee-registers

- Move callee-reg to temp at start of proc
- Move it back at end of proc.
- What happens if there is no register pressure?
- What happens if there is a lot of register pressure?

```
prologue: define r +1 \leftarrow r ... epilogue: r \leftarrow +1 use r
```

Iterated Register Coloring

In practice

- Iterated Register Coloring does a good job
- Building Interference Graph is Expensive
 - Calculating live ranges
 - graph is O(n²)
 - Need quick test for interference
 - Need quick test for neighbors
- Coalescing is important
 - Many passes generate extra temps and moves
 - Aggressive requires fix-up (e.g., live range splitting)
- Spilling has biggest impact on generated code

Today

- Iterated Register Allocation
 - Conservative Coalescing
 - Special registers
 - Implementation
- SSA-Based Register Allocation
 - SSA
 - ϕ -functions
 - Chordal Graphs
 - Perfect Elimination Order

Def-Use Chains

- Common Analysis in support of optimizations, register allocation, etc.
 - Find all the sites where a variable is used
 - Find the definition of a variable in an expression
- Traditional Solution: def-use chains
 - Link each triple defining a variable to all triples that use it
 - Link each use of a variable to its definition

Def-Use chains are expensive

```
foo(int i, int j) {
  switch (i) {
  case 0: x=3;break;
  case 1: x=1; break;
  case 2: x=6; break;
  case 3: x=7; break;
  default: x = 11;
  switch (j) {
  case 0: y=x+7; break;
  case 1: y=x+4; break;
  case 2: y=x-2; break;
  case 3: y=x+1; break;
  default: y=x+9;
```

Def-Use Chains

```
++; i<10)
                    How is this related to
                     register allocation?
       <u>i</u><20)
```

Unrelated uses of the same variable are mixed together – complicates analysis.

Def-Use chains are expensive

```
foo(int i, int j) {
                              In general,
  switch (i) {
                                     N defs
  case 0: x=3;
                                     M uses
  case 1: x=1
                                     \Rightarrow O(NM) space and time
  case 2: x=6
  case/3/
           x=7
  default: x =
  switch
                               A solution is to limit each var to
  case
  case 1.
           y=x+4;
                                        ONE def site
  case 2: x=x-2;
  case 3: y = x+1;
  default: y=x+9;
```

Def-Use chains are expensive

```
foo(int i, int j) {
  switch (i) {
  case 0: x=3; break;
  case 1: x=1; break;
  case 2: x=6;
  case 3: x=7;
  default: x = 11;
  x1 is one of the above x's
  switch (j) {
                               A possible solution is to limit
  case 0: y=x1+7;
                                  each var to ONE def site
  case 1: y=x1+4;
  case 2: y=x1-2;
  case 3: y=x_1+1;
  default: y=x1+9;
```

Basic Blocks & Control Flow Graph

- Control Flow
 - what is potential sequence of instructions?
 - Only interested in transfers of control
 - jump
 - conditional jump
 - call
 - label (target of a transfer)
- Group together non-jumps into Basic Block
 - One entry point
 - One point of exit
 - When entered all instructions are executed
- Basic Blocks are nodes in Control Flow Graph

SSA

- Static single assignment is an IR where every variable has only ONE definition in the program text
 - single static definition
 - (Could be in a loop which is executed dynamically many times.)

Not in SSA form:

- i and s have two static def sites
- x has only one static def site, but may be dynamically defined many times in loop.

SSA

- Static single assignment is an IR where every variable has only ONE definition in the program text
 - single static definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a straight-line code:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.

Advantages of SSA

- Makes du-chains explicit
- Makes dataflow optimizations
 - Easier
 - faster
- Improves register allocation
 - Makes building interference graphs easier
 - Easier register allocation algorithm
 - Decoupling of spill, color, and coalesce
- For most programs reduces space/time requirements

SSA History

 Developed by Wegman, Zadeck, Alpern, and Rosen in 1988

Today used in most production compilers,
 e.g., gcc, llvm, most JIT compilers, ...

Straight-line SSA

$$a \leftarrow x + y$$

$$b \leftarrow a + x$$

$$a \leftarrow b + 2$$

$$c \leftarrow y + 1$$

$$a \leftarrow c + a$$

- Straight forward to convert basic block into SSA
- Connect each use to its most recent definition

Straight-line SSA

$$a \leftarrow x + y$$

$$b \leftarrow a + x$$

$$a \leftarrow b + 2$$

$$c \leftarrow y + 1$$

$$a \leftarrow c + a$$

- Straight forward to convert basic block into SSA
- Connect each use to its most recent definition

Straight-line SSA

$$a \leftarrow x + y$$

$$b \leftarrow a + x$$

$$a \leftarrow b + 2$$

$$c \leftarrow y + 1$$

$$a \leftarrow c + a$$

```
for each variable a:
  Count[a] = 0
  Stack[a] = [0]
rename basic block(B) =
  for each instruction S in block B:
     for each use of a variable x in S:
       i = top(Stack[x])
       replace the use of x with x_i
     for each variable a that S defines
       count[a] = Count[a] + 1
```

i = Count[a]

push *i* onto Stack[*a*]

replace definition of a with a_i

Straight-line SSA

$$a \leftarrow x + y \qquad a_1 \leftarrow x + y$$

$$b \leftarrow a + x \qquad b_1 \leftarrow a_1 + x$$

$$a \leftarrow b + 2 \qquad a_2 \leftarrow b_1 + 2$$

$$c \leftarrow y + 1 \qquad c_1 \leftarrow y + 1$$

$$a \leftarrow c + a \qquad a_3 \leftarrow c_1 + a_2$$

SSA

- Static single assignment is an IR where every variable has only ONE definition in the program text
 - single static definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
- What about at joins in the CFG?

Merging at Joins

SSA

- Static single assignment is an IR where every variable has only ONE definition in the program text
 - single static definition
 - (Could be in a loop which is executed dynamically many times.)
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
- What about at joins in the CFG?
- Use notional fiction: Φ-functions

Merging at Joins

The **P** function

- At a BB with p predecessors, there are p arguments to the Φ function.

$$X_{\text{new}} \leftarrow \Phi(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_p)$$

- How do we choose which x_i to use?
 - We don't really care!
 - If we care, use moves on each incoming edge

"Implementing" Ф*

*Huge caveat here, discussed later. (e.g, lost-copy, swap-problem)

SSA-based Register Allocation

- SSA-based register allocation is a technique to perform register allocation on SSA-form.
 - Simpler algorithm.
 - Decoupling of spilling, coalescing, and register assignment
 - Less spilling.
 - Smaller live ranges
 - Polynomial time minimum register assignment

Traditional Register Allocation

SSA-Based Register Allocation

Basis for Coloring Approach

Simplify – creating order in which to color nodes

Select – Uses "simplify" order to color nodes

Need heuristic because minimal coloring of general graph is NP-complete

Chordal Graphs

 An undirected graph is chordal if every cycle of 4 or more nodes has a chord.

Graph Facts

- Clique: fully connected subgraph
- Chromatic number of graph G: minimal k such that G is k-colorable
- chromatic number of G ≥ size of largest clique
- Perfect graph: chromatic number = size of largest clique
- All chordal graphs are perfect
- Can color perfect graph in poly-time
- Finally, IG of SSA programs is chordal!

Non-chordal example

$$a \leftarrow 0$$

$$b \leftarrow 1$$

$$c \leftarrow a + b$$

$$d \leftarrow b + c$$

$$a \leftarrow c + d$$

$$b' \leftarrow 7$$

$$d \leftarrow a + b'$$

$$x \leftarrow b' + d$$

$$ret x$$

Break up the live ranges

$$a \leftarrow 0$$

$$b \leftarrow 1$$

$$c \leftarrow a + b$$

$$d \leftarrow b + c$$

$$a' \leftarrow c + d$$

$$b' \leftarrow 7$$

$$d' \leftarrow a' + b'$$

$$x \leftarrow b' + d'$$

$$ret x$$

Adding more temps \rightarrow fewer registers!

BTW: now in SSA-form!

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- b & d are simplical
- a & c are not

- If G = (V, E) is a graph, then a vertex v ∈ V is called simplicial if, and only if, its neighborhood in G is a clique.
- A Simplicial Elimination Ordering of G is a bijection σ : V(G) \rightarrow {1, ..., |V|}, such that every vertex v_i is a simplicial vertex in the subgraph induced by { v_1 , ..., v_i }.

b, a, c, d

Greedy Coloring using SEO is optimal

- If G = (V, E) is a graph, then a vertex v ∈ V is called *simplicial* if, and only if, its neighborhood in G is a clique.
- A Simplicial Elimination Ordering of G is a bijection σ : V(G) \rightarrow {1, ..., |V|}, such that every vertex v_i is a simplicial vertex in the subgraph induced by { v_1 , ..., v_i }.

b, a, c, d

Maximal Cardinality Search

Use Maximum Cardinality Search to generate SEO

```
Maximum Cardinality Search
input: G = (V, E) with |V| = n
output: a simplicial elimination ordering \sigma = v_1, ..., v_n
for all v \in V do \lambda(v) \leftarrow 0
for i \leftarrow 1 to n do
let v \in V be a node such that \forall u \in V, \lambda(v) \ge \lambda(u) in \sigma(i) \leftarrow v
for all u \in V \cap N(v) do \lambda(u) \leftarrow \lambda(u) + 1
V = V \setminus \{v\}
```

Running Time: O(|V|+|E|)

SEO: t, x

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x, u

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x, u, w

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x, u, w, v

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x, u, w, v

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

SEO: t, x, u, w, v

SEO: t, x, u, w, v

SEO: t, x, u, w, v

SEO: t, x, u, w, v

Using the SEO is optimal

Greedy coloring in the simplicial elimination ordering yields an optimal coloring.

- If we greedily color the nodes in the order given by the SEO, then, when we color the ith node this ordering, all the neighbors of v_i that have been already colored form a clique.
- All the nodes in a clique must receive different colors.
- Thus, if v_i has M neighbors already colored, we will have to give it color M+1.

I.e., The chromatic number of a chordal graph is the size of largest clique 15-411 © Seth Copen Goldstein 2020

Best Effort Coalescing

```
input: list L of copy instructions, G = (V, E), K
output: G', the coalesced graph G
  G' = G
  for all x = y \in L do
     let S_x be the set of colors in N(x)
     let S<sub>v</sub> be the set of colors in N(y)
     if \exists c, c < K, c \notin S_x \cup S_v then
       let xy, xy ∉ V be a new node in
          add xy to G' with color c
          make xy adjacent to every v, v \in N(x) \cup N(y)
          replace occurrences of x or y in L by xy
          remove x from G'
          remove y from G'
```

Can we Coalesce?

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$u \leftarrow v$$

$$t \leftarrow u + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow u$$

Can we Coalesce?

$$v \leftarrow 1$$

$$w \leftarrow v + 3$$

$$x \leftarrow w + v$$

$$-u \leftarrow v$$

$$t \leftarrow v + x$$

$$\leftarrow w$$

$$\leftarrow t$$

$$\leftarrow v$$

Decoupling Coloring and Spilling

- In iterated register coloring we iterate for both coalescing and spilling.
- With chordal register coloring we can use a decoupled approach.
 - find maximum clique, C, in IG
 - Spill until |C| <= K</p>
 - Use MCS to find the SEO
 - Color graph greedily
 - Perform BestEffortCoalescing

In practice

- pre-colored nodes break chordality
- Often assuming chordal is ok
- Have to get out of SSA sometime
- You will use SSA anyway, so register allocation on SSA seems logical
- Will revisit later