Catch-age Assessments

Something Familiar Something New

Overview

- Virtual Population Analysis
- Cohort Analysis
- CAGEAN / ADAPT
- Some New Ideas (AD Model Bldr.)
- Ref: Quinn and Deriso (1999)
 - Quantitative Fish Dynamics

Cohort Numbers at Age

Virtual Population Analysis

$$N_{t+1} = N_t S_t$$

$$C_t = N_t (1 - S_t)$$

History of VPA

- Virtual Population Analysis
 - (Fry 1949)
- Virtual Population Analysis
 - (Gulland 1965)
- Cohort Analysis
 - (Pope 1972)

Baranov Catch Equation

$$N_{t+1,a+1} = N_{t,a} \exp(-(F_{t,a} + M))$$

$$C_{t,a} = \frac{F_{t,a}}{F_{t,a} + M} (1 - \exp(-(F_{t,a} + M))) N_{t,a}$$

Cohort Numbers at Age

VPA

- Number of Estimates
 - = Number of Observations 1

Statistical Catch-Age Analysis

Cohort Numbers at Age

Year Effect

Age Effect

Key Structural Assumptions

$$F_{ta}$$
 $f_t s_a$

$$f_t q E_t$$

Cohort Effect

Initial Numbers & Recruitment

Separable Catch-Age

- Number of Estimates
 - = Y+A+1+A+Y
 - year effect
 - age effect
 - catchability
 - initial numbers and recruitment

Catch-age Analysis with Auxiliary Information

 Paloheimo (1980), Dupont (1983), Fournier and Archibald (1982), Deriso, Quinn, and Neal (1985)

CPUE

Objective Function (Effort)

$$SS_{Catch} = \sum_{t,a} (\log(C_{t,a}) - \log(\hat{C}_{t,a}))^2$$

$$SS_{Effort} = I \sum_{t} (\log(E_t) - \log(\hat{q}) - \log(\hat{f}_t))^2$$

$$SS_{Total} = SS_{Catch} + SS_{Effort}$$

Objective Function (CPUE)

$$SS_{Catch} = \sum_{t,a} (\log(C_{t,a}) - \log(\hat{C}_{t,a}))^2$$

$$SS_{CPUE} = I \sum_{t} (\log(CPUE_{t}) - \log(CPU\hat{E}_{t}))^{2}$$

$$SS_{Total} = SS_{Catch} + SS_{CPUE}$$

Catch-age Programs Using Auxiliary Information

- CAGEAN (Statistical Catch-age)
- ADAPT (VPA)

So what the heck is AD Model Builder?

AD Model Builder

- Model builder, not a model
- Template to C++
- Parameter Estimation via Optimization
 - Least squares
 - Maximum likelihood
- Automatic differentiation

```
DATA_SECTION
 init_int nobs
 init_vector Y(1,nobs)
 init_vector X(1,nobs)
PARAMETER_SECTION
 init_number a
 init_number b
vector pred_Y(1,nobs)
 objective_function_value SS
PROCEDURE_SECTION
 pred_Y=a*X+b;
SS=norm2(pred_Y-Y);
```

Fournier's Philosophy

- "Easier" Programming (than C++)
- Efficient Optimization
- One Step at a Time
 - Phases
 - Large Scale then Small Scale
- Other Features
 - Profile Likelihoods
 - Linear Approximation of Parameter Standard
 Deviations
 - Markov Chain Monte Carlo

Likelihood Profile

Spawning Stock Biomass

Walleye Catchability

A New Paradigm

- Opening the black box!
- AD Model
 - Template to C++
 - Facilitates model development
- No longer restricted to small class of standard models
- Powerful, but rules of statistics still apply!!!

