Лабораторная работа № 4

ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ

Цель: используя пакет **Octave**, проинтерполировать непрерывную функцию с помощью полиномов Лагранжа, Ньютона, Эрмита и кубических сплайнов. Сравнивать погрешности интерполяции на равномерной и Чебышевской сетках для полиномов Лагранжа и Ньютона. Сравнить погрешности интерполяции полиномом Эрмита и кубическим сплайном.

Задача № 1. Приблизить функцию f(x) на отрезке [a,b] интерполяционным многочленом Лагранжа третьей степени по табличным значениям на равномерной сетке. Вычислить погрешность в указанных точках. В **Octave** построить графики исходной функции f(x) и интерполяционного многочлена Лагранжа, а также отметить узлы интерполяции и точки, в которых вычислялась погрешность.

Приблизить функцию f(x) на отрезке [a,b] интерполяционным многочленом Лагранжа третьей степени по табличным значениям на Чебышевской сетке. Вычислить погрешность в указанных точках. В **Octave** построить графики исходной функции f(x) и интерполяционного многочлена Лагранжа, а также отметить узлы интерполяции и точки, в которых вычислялась погрешность.

Сравнить величины погрешностей на разных сетках и сделать вывод. Результаты представить с 6-значными цифрами.

Задача № 2. Приблизить функцию f(x) на отрезке [a,b] интерполяционным многочленом Ньютона третьей степени по табличным значениям на равномерной сетке. Вычислить погрешность в указанных точках. В **Octave** построить графики исходной функции f(x) и интерполяционного многочлена Ньютона, а также отметить узлы интерполяции и точки, в которых вычислялась погрешность.

Приблизить функцию f(x) на отрезке [a,b] интерполяционным многочленом Ньютона третьей степени по табличным значениям на Чебышевской сетке. Вычислить погрешность в указанных точках. На одном чертеже построить графики исходной функции f(x) и интерполяционного многочлена Ньютона, а также отметить узлы интерполяции и точки, в которых вычислялась погрешность.

Сравнить величины погрешностей на разных сетках и сделать вывод. Результаты представить с 6-значными цифрами.

Порядок выполнения работы

Задача № 1

- 1. В **Octave** рассчитать узлы равномерной сетки $x_i = a + i \frac{b-a}{3}, i = \overline{0,3}$ и значение функции f(x) в этих узлах.
- 2. Написать скрипт, вычисляющий значения полинома Лагранжа $L_2(x)$ по этим узлам.

- 3. Рассчитать значения полинома Лагранжа $L_3^r(x_j)$ в точках $x_j = \left\{ (5a+b)/6, (a+b)/2, (a+5b)/6 \right\}$, рассчитать значение функции f(x) в этих же точках. Рассчитать погрешность по формуле $\left| f(x_j) L_3^r(x_j) \right|$.
- 4. На одном чертеже построить графики исходной функции f(x) и интерполяционного многочлена Лагранжа, а также отметить узлы интерполяции.
- 5. Рассчитать узлы Чебышевской сетки $x_i = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2i+1}{8}\pi\right), i = \overline{0,3}$ и значение функции f(x) в этих узлах.
- 6. Написать скрипт, вычисляющий значения полинома Лагранжа по этим узлам.
- 7. Рассчитать значения полинома Лагранжа $L_3^c(x_j)$ в точках $x_j = \left\{ (5a+b)/6, (a+b)/2, (a+5b)/6 \right\}$, рассчитать значение функции f(x) в этих же точках. Рассчитать погрешность по формуле $\left| f(x_j) L_3^c(x_j) \right|$.
- 8. На одном чертеже построить графики исходной функции f(x) и интерполяционного многочлена Лагранжа, а также отметить узлы интерполяции.
- 9. Занести результаты в таблицу:

j	x_{j}	$f(x_j)$	$L_3^r(x_j)$	$\left f(x_j) - L_3^r(x_j) \right $	$L_3^c(x_j)$	$ f(x_j)-L_3^c(x_j) $
0						
1						
2						

 $L_3^r(x_i)$ — значения полинома Лагранжа в узлах равномерной сетки.

 $L_3^c(x_i)$ — значения полинома Лагранжа в узлах Чебышевской сетки.

10. В одной системе координат построить графики погрешностей интерполяции по обеим сеткам и отметить на обоих графиках точки, в которых вычислялась погрешность.

Задача № 2

- 1. Написать скрипт, вычисляющий значения полинома Ньютона по узлам равномерной сетки.
- 2. Рассчитать значения полинома Ньютона $P_3^r(x_j)$ в точках $x_j = \left\{ (5a+b)/6, (a+b)/2, (a+5b)/6 \right\}$, рассчитать значение функции f(x) в этих же точках. Рассчитать погрешность по формуле $\left| f(x_j) P_3^r(x_j) \right|$.
- 3. На одном чертеже построить графики исходной функции f(x) и интерполяционного многочлена Ньютона, а также отметить узлы интерполяции.
- 4. Написать скрипт, вычисляющий значения полинома Ньютона по узлам Чебышевской сетки.

- 5. Рассчитать значения полинома Ньютона $P_3^c(x_j)$ в точках $x_j = \left\{ (5a+b)/6, (a+b)/2, (a+5b)/6 \right\}$, рассчитать значение функции f(x) в этих же точках. Рассчитать погрешность по формуле $\left| f(x_j) P_3^c(x_j) \right|$.
- 6. На одном чертеже построить графики исходной функции f(x) и интерполяционного многочлена Ньютона, а также отметить узлы интерполяции.
- 7. Занести результаты в таблицу:

j	x_{j}	$f(x_j)$	$P_3^r(x_j)$	$\left f(x_j) - P_3^r(x_j) \right $	$P_3^c(x_j)$	$\left f(x_j) - P_3^c(x_j) \right $

 $P_3^r(x_i)$ – значения полинома Ньютона в узлах равномерной сетки.

 $P_3^r(x_i)$ — значения полинома Ньютона в узлах Чебышевской сетки.

8. В одной системе координат построить графики погрешностей интерполяции по обеим сеткам и отметить на обоих графиках точки, в которых вычислялась погрешность.

9. Варианты заданий

№ варианта	№ варианта	№ варианта		
$f(x) \qquad [a,b]$	f(x) $[a,b]$	$f(x) \qquad [a,b]$		
1	2	3		
$x^2 - \sqrt{1+x} [0,3]$	$tg(x+\sqrt{x}) [0.1,0.7]$	$x^2 - 2x + \frac{16}{(x-1)} - 13$ [2,5]		
4	5	6		
$\ln(\sin(\sqrt{x})) [1,4]$	$4^{\cos(x)} \qquad \begin{bmatrix} -3,0 \end{bmatrix}$	$x^3\cos(x^2) \qquad [0,3]$		
7	8	9		
$x + e^{-x^2} \boxed{[-1,2]}$	$e^{-x} - x^3 \qquad \begin{bmatrix} -1,2 \end{bmatrix}$	$x \ln \sqrt{x-2} \qquad [2.5,3.1]$		
10	11	12		
$\frac{2x^2+6}{x^2-2x+5} = \begin{bmatrix} -3,3 \end{bmatrix}$	$\begin{bmatrix} x^2 \cos(x) & \left[\frac{\pi}{2}, \pi \right] \end{bmatrix}$	$x\sin(x^2) \qquad \left[0, \frac{\pi}{2}\right]$		
13	14	15		
$(x-0.5)^3 \ln(x)$ [0.3,0.9]	$0.4^{x\sin(x)} \boxed{[0,3]}$	$x^{-3}e^x$ [-2.5,0.5]		
16	17	18		

$tgx-1/(x+2)^2$	$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$	$\frac{(\sin x+1)}{(x^2+1)}$	[-3,2]	$e^x - \frac{1}{x^2}$	[0.5,2]	
19		20		21		
$\ln x - e^x$	[1,4]	$\sqrt{1+x} - \cos x$	$[0,\pi]$	$\ln x - \frac{1}{(1+x^2)}$	[1,4]	
22		23		24		
$\sin x - \ln x$	$\left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$	$\ln x + x^2$	[0.5,2]	$\sqrt{x} + \ln x$	[1,4]	
25		26		27		
$arctgx - e^x$	[0,1.5]	$e^{2x}-x$	[-3,0]	$x^2 arctgx$	[0,1.5]	
28		29		30		
$x^3 - \ln^2 x$	[0.5,2]	$\sin x - 1/(x+1)$	$\left[0,\frac{\pi}{2}\right]$	$e^{x-2} - \ln^2 x$	[1,4]	
$\cos(e^x)$	[-1,2]	$e^{\sin(2x)}$	$[-\pi,\pi]$	$\frac{1}{1+25x^2}$	[-1,1]	