Hochschule für Technik und Wirtschaft Dresden Fachbereich Informatik/Mathematik

Bachelorarbeit

im Studiengang Wirtschaftsinformatik

Thema: Vergleich der Web API Ansätze REST und GraphQL

eingereicht von: Fabian Meyertöns

eingereicht am: 4. Oktober 2019

Betreuer: Prof. Dr.-Ing. Thomas Wiedemann

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung 3	
	1.1	Motivation und Zielstellung	
	1.2	Aufbau der Arbeit	
2	Vorbetrachtungen		
	2.1	Client-Server Architektur	
	2.2	Web APIs	
	2.3	Abgrenzung zu anderen Web API Ansätzen	
3	Das	REST Architekturkonzept 7	
	3.1	Entstehung	
	3.2	Grundlagen	
	3.3	Implementierung von RESTful APIs	
	3.4	Verbreitung und Standardisierung	
4	Gra	hophQL 11	
	4.1	Entwicklung	
	4.2	Spezifikation und Funktionsweise	
	4.3	Server-Execution	
5	Vergleich 12		
	5.1	Versionierung und Weiterentwicklung	
	5.2	Caching	
	5.3	Abfrageflexibilität	
	5.4	Batching/Deduping	
	5.5	Fehlerbehandlung	
	5.6	Sicherheit	
	5.7	Kosten	
	5.8	Lernkurve, Fehlersuche, Community	
	5.9	Bibliotheken und Tools	
6	Fazit und Auswertung 13		
	6.1	Zusammenfassung	
	6.2	Kombinierte Verwendung von GraphQL und REST 13	
	6.3	Ausblick	

1 Einleitung

1.1 Motivation und Zielstellung

- Entwicklung von Web Anwendungen über die Zeit vom Monolith zu Service-orientierter Architektur
- Entwicklung vom Thin-Client zum Fat-Client, vom Server zu Services.
- Single Page Applikationen gesamte Kommunikation über Web APIs
- Vielzahl von internen Services im Unternehmen und externen Serviceanbietern führt zu wachsender Komplexität
- Einheitliche Kommunikation zwischen Client und Services ist wichtig.
- REST hat sich etabliert als Architekturkonzept, bleibt aber Implementierungsdetails schuldig. Verschiedene Standards und Dateiformate versuchen Einheitlichkeit zu schaffen und Komplexität zu verringern.
- GraphQL, 15 Jahre nach REST veröffentlicht, schafft festes Regelwerk/Protokoll für Client-Server Kommunikation, erfordert aber Umdenken und sehr verschiedene Implementierung.
- Frage für bestehende Anwendungen und APIs nach Migration zu GraphQL.
- Ersetzt GraphQL REST? Bei welchen Anwendungszwecken kann es als Ersatz dienen, bei welchen nicht?
- Welche neuen Probleme entstehen erst durch GraphQL?
- Ist ein gemeinsamer Einsatz von REST und GraphQL sinnvoll und möglich?

1.2 Aufbau der Arbeit

- Betrachtung der Entwicklung von Web Anwendungen mit der Client-Server Architektur als Grundlage
- Abgrenzung des Begriffes API und Differenzierung von anderen API Ansätzen
- Das REST Architekturkonzept als Grundlage für das Web und APIs
- GraphQL als Alternative, seine Funktionsweise
- Vergleich von REST und GraphQL

- Welchen klassischen Problemen müssen sich API Entwickler stellen?
- Welche Probleme von REST löst GraphQL?
- \bullet Welche Vorteile hat REST gegenüber GraphQL?
- Vorstellung einer Auswahl von Tools und Bibliotheken, die verschiedene Probleme von REST und GraphQL lösen bzw. die Entwicklung vereinfachen.
- Untersuchung der Kompatibilität von Bibliotheken
- Tests von REST und GraphQL in verschiedenen Szenarien.
- Kombinierter Einsatz von GraphQL und REST

2 Vorbetrachtungen

2.1 Client-Server Architektur

- Client-Server ist ein verteiltes System
- Zwischen Client und Server geschieht Nachrichtenaustausch
- Client fordert eine Operation vom Server an. Server sendet Resultat der Operation an den Client zurück.
- Client initiiert die Interaktion. Server reagiert.
- Mehrere Clients können den gleichen Server nutzen. Abbildung aus 'Grundkurs verteilte Systeme'!
- Client kann mehrere Server benutzen. Server kann in anderer Interaktion selbst zum Client/Vermittler werden.
- Vorteile
 - getrennte Entwicklung
 - unabhängige Ausfälle
 - Festgelegte Rollenverteilung: Client ist Konsument. Server ist Produzent.
- Herausforderung: einheitliches Kommunikationsprotokoll

2.2 Web APIs

- API bezeichnet Application Programming Interface
- Grundsatz ist die Kommunikation zweier Programme zur Konsumierung von anderem Quellcode, Abstraktion und Verstecken von Implementierungsdetails und Komplexität.
- Frameworks und Bibliotheken vieler Programmiersprachen bieten oft benötigte Funktionalität. Kommunikation besteht aus Aufruf mit Parametern und Antwort mit Ergebnis.
- Die Arbeit beschäftigt sich nur mit API von verteilten Systemen.
- Hauptaugenmerk auf Systemen mit Fat-Client. Großer Teil der Anwendungslogik auf Clientseite. Server dient als Datenspeicher. Hauptinteraktionen mit CRUD (Create, Read, Update, Delete)
- Popularität von Cloudservices und öffentlichen APIs bzw. Interaktion mit externen Services

2.3 Abgrenzung zu anderen Web API Ansätzen

- $\bullet\,$ SOAP (Simple Object Access Protocol), XML basiert, nutzt nur POST
- RPC (Remote Procedure Call), Zentraler Punkt ist das Aufrufen von Anwendungslogik auf dem Server, nicht Datentransport.

3 Das REST Architekturkonzept

3.1 Entstehung

- Bekanntmachung Roy T. Fielding in Dissertation 2000
- Akronym für Representational State Transfer
- Prinzipien für die Entwicklung von verteilten Systemen. Baut auf bekannten Architekturen auf (Client-Server)

3.2 Grundlagen

- Ziele von REST
 - skalierbare Komponenteninteraktionen
 - generische Interfaces
 - unabhängige Entwicklung der Komponenten
 - Zwischenkomponenten können spezielle Aufgaben übernehmen (Cache, Sicherheit, Schnittstelle zu Altsystemen)
- REST hatte Einfluss (und macht Gebrauch von) HTTP und URI (IRI)
- REST ist zustandslos (daher auch client-stateless-server). Jeder Request von Client zu Server beinhaltet alle notwendigen Informationen, um den Request zu verstehen.
- Client speichert gewöhnlich Zustand. Server behält keine Clientsession bei.
- Vorteile
 - Sichtbarkeit: Requests können einzeln untersucht werden
 - Zuverlässigkeit: einfachere Wiederherstellung bei teilweisen Fehlern
 - Skalierbarkeit: Server kann schnell Ressourcen wieder freigeben.
 Speichert keine Zustände

• Nachteile

- verringerte Netzwerkperformance, da mit jedem Request Daten wiederholt
- verringerte Kontrolle des Servers über Verhalten der Clientanwendung
- Clientseitiges Caching

- Ressourcen implizit oder explizit gecacht
- erlaubt Wiederverwendung früherer Serverantworten für zukünftige, gleiche Requests
- bessere Effizienz und Skalierbarkeit, erhöhte gefühlte Performance durch Verringerung der durchschnittlichen Latenz (jede einzelne Latenz durch Cache-Lookup erhöht)
- verringerte Verlässlichkeit je stärker gecachte Daten von tatsächlichen Daten abweichen
- 4 Grundsätze für Komponentenschnittstellen
 - Identifizierung von Ressourcen
 - Manipulation von Ressourcen durch ihre Repräsentation
 - Selbsterklärende Nachrichten
 - 'hypermedia as the engine of application state'
- Die Daten werden zum Ort der Verarbeitung geschickt, nicht die Anweisungen zu den Daten.
- Komponenten in REST Architektur sehen nur Komponenten, mit denen sie direkt interagieren (Schichten). Begrenztes Wissen verringert Komplexität. Schichten ermöglichen Kapselung. Zwischenkomponenten (Proxies) können Daten transformieren (wie Pipes/Filter)
- Schichtenarchitektur bedeutet mehr Datenverarbeitung und Latenz
- Client kann Repräsentation der Daten wählen. Ursprung der Daten hinter Serverinterface versteckt
- Ressourcen ist Abstraktion für jede Art Information (Dokumente, Bilder, Sammlung anderer Ressourcen)
- Jede Webseite ist Ressource
- Ressource wird durch Identifier (Bezeichner) bekannt gemacht und abrufbar. Bezeichner ändert sich nicht, wenn sich die Ressource ändert. Mehrere Ressourcen können die gleichen Informationen beinhalten.
- Repräsentation einer Ressource (Antwort des Servers) besteht aus Daten und Metadaten
- Kontrolldaten übermitteln den Zweck der Nachricht oder zum Umgang mit der Nachricht (HTTP Methoden, Status codes, Header)
- REST kennt drei Komponententypen:

- user agent: Web Browser, Benutzeranwendung, letztendlicher Empfänger der Antwort
- origin server: endgültige Quelle der Repräsentation der Ressource, letztendlicher Empfänger von Requests, die Modifikationen vornehmen; bietet Schnittstelle als Hierarchie von Ressourcen
- intermediary: agiert sowohl als Client, als auch als Server; leitet Requests und Responses weiter bzw. modifiziert sie; Gateway oder Proxy;
- Leichtes Einführen von Zwischenkomponenten möglich durch selbstbeschreibende Nachrichten, generische Client- und Server-Schnittstellen und zustandslose Kommunikation. Keine einzige Komponente braucht Überblick über ganzes System.
- REST ermöglicht Verbindung zu anderen nicht-REST Systemen, indem diese eine REST-konforme Schnittstelle bereitstellen.
- Abbildung REST connectors and components

3.3 Implementierung von RESTful APIs

- APIs die sich an REST halten werden RESTful genannt
- Richardson Maturity Model ermöglicht Bestimmung wie REST konform Web service (API) ist
- Level 0
- Level 1 URI
- Level 2
 - HTTP Methoden genutzt als Kontrolldaten um Intention auszudrücken
 - CRUD Operationen werden abgedeckt
 - GET: Anfragen einer Repräsentation der Ressource, idempotent
 - POST: kann zum Erstellen, Modifizieren und Löschen von Ressourcen verwendet werden, schlecht definiert; Funktionsweise in folgende Methoden aufgeteilt
 - PUT: Erstellen/Ersetzen einer Repräsentation
 - PATCH: Modifizieren einer Repräsentation
 - DELETE: Löschen der Ressource
- Level 3

- Hypermedia ermöglicht Navigation durch die API. Client ändert seinen Zustand, indem er URIs (Links) folgt (HATEOAS)
- keine externe Dokumentation nötig. Links zwischen Dokumenten dokumentieren die Ressourcen
- Datenformat ist entscheidend. Bestimmte Formate haben native Unterstützung für Links und Forms (HTML, ATOM)
- Media Type bestimmt Auswertung (und Anzeige) der Antwort.
 JSON, XML können genutzt werden. Client benötigt Informationen, um Links in diesen Dokumenten auszuwerten.

3.4 Verbreitung und Standardisierung

- REST bestimmt nicht welches Format benutzt werden muss.
- Kein REST Standard
- XML und HTML zur direkten Anzeige geeignet. JSON beliebter geworden, das leichter für Menschen und Maschinen zu lesen
- verschiedene Ansätze um Struktur von JSON Dokumenten zur Verwendung in APIs zu definieren. Teilweise miteinander verwendbar (definieren verschiedene Aspekte der Kommunikation)
- OpenAPI
- JSON:API
- Abbildung Beispiel Request und Response

- 4 GraphQL
- 4.1 Entwicklung
- 4.2 Spezifikation und Funktionsweise
- 4.3 Server-Execution

- 5 Vergleich
- 5.1 Versionierung und Weiterentwicklung
- 5.2 Caching
- 5.3 Abfrageflexibilität
- 5.4 Batching/Deduping
- 5.5 Fehlerbehandlung
- 5.6 Sicherheit
- 5.7 Kosten
- 5.8 Lernkurve, Fehlersuche, Community
- 5.9 Bibliotheken und Tools

- 6 Fazit und Auswertung
- 6.1 Zusammenfassung
- 6.2 Kombinierte Verwendung von GraphQL und REST
- 6.3 Ausblick