Московский физико-технический институт

Лабораторная работа № 77

"Применение операционных усилителей"

Выполнила студентка Б01-903 Юлия Прохорова

1. Задание №1. Измерение коэффициента усиления ОУ.

Рис. 1: Схема измерения коэффициента усиления.

- 1) Соберем схему указанную на Рис. 1. Сопротивления резисторов $R_1=R_2=R_3=100$ кОм; $R_4=1$ кОм. Так что $\frac{R_3}{R_4}=100$.
- 2) На вход подаем колебание с амплитудой $U_{in}=2.5~\mathrm{B}$ и частотой $f=15~\Gamma$ ц. Измерим величину напряжения $U_a=39.84~\mathrm{mB}$ и $U_{out}=3.92~\mathrm{B}$.
- 3) Рассчитаем коэффициент усиления по формуле:

$$A_0 = (1 + \frac{R_3}{R_4}) \cdot \frac{U_{out}}{U_a} \approx 9 \cdot 10^3 \tag{1}$$

2. Задание №2. Амплитудно-частоотная характеристика ОУ.

1) Для схемы на рис. 1 снимем зависимость коэффициента усиления от частоты (АЧХ), используя формулу:

$$A(f) = \frac{U_o ut}{U_d} = \frac{U_o ut}{U_a} \cdot \frac{U_a}{U_d} = (1 + \frac{R_3}{R_4}) \cdot \frac{U_{out}}{U_a}$$
 (2)

2) Занесем полученные данные в таблицу 1.

f, Гц	50	100	200	500	1k	2k	5k	10k	20k	50k
U_out , B	5.00	5.00	5.00	4.99	4.98	4.92	4.54	3.66	2.38	1.00
U_a , мВ	36.5	41.5	57.5	101.2	181.0	329.0	723.0	1150.0	1480.0	1540.0
A	13836	12169	8783	4980	2779	1510	634	321	162	66
lgf	1.7	2	2.3	2.7	3	3.3	3.7	4	4.3	4.7
20lfA, дБ	83	82	79	74	69	64	56	50	44	36

Таблица 1: Зависимость коэффициента усиления от частоты.

3) Построим снятую зависимость в двойном логарифмическом масштабе, откладывая частоту в герцах, а коэффициент усиления в децибелах.

Рис. 2: АЧХ ОУ.

4) Из рис. 2 получаем:

$$f_T \approx 10^{17} \Gamma \Pi, \ f_p \approx 10^{18} \Gamma \Pi.$$
 (3)

3. Задание №3. Неинвертирующий усилитель.

Рис. 3: Схема неинвертирующего усилителя.

- 1) Соберем схему на рис. 3, выбрав $\frac{R_2}{R_1} = 100$
- 2) Определим входное напряжение сдвига ОУ: $U_{OS} = \frac{U_{out(dc)}}{1 + \frac{R_2}{R_1}} \approx 2.7 \text{мB}$.
- 3) Снимем зависимость от частоты коэффициента усиления $K = \frac{U_{out}}{U_{in}}$ при $U_{\text{bx}} = 10 \text{мB}$.

f, Гц	50	100	200	500	1k	2k	5k	10k	20k	50k	100k	150k
U_out , B	2.46	2.45	2.45	2.45	2.45	2.44	2.39	2.32	2.06	1.32	0.77	0.55
K	246	245	245	245	245	244	239	232	206	132	77	55
lnf	3.9	4.6	5.3	6.2	6.9	7.6	8.5	9.2	9.9	10.8	11.5	11.9
20lnК, дБ	110	110	110	110	110	110	109.5	109	107	98	87	80

Таблица 2: Зависимость коэффициента усиления $\mathrm{K}(\mathrm{f}).$

Рис. 4: Зависимость коэффициента усиления K(f)

- 4) Из рис. 4 определим граничную частоту F_p по уровню 0.7 относительно коэффициента усиления на низких частотах. Получим $F_p \approx 35 \mathrm{k}\Gamma$ ц.
- 5) Проверим, что коэффициент усиления на низких частотаз $(f < F_p)$ и граничная частота усилителя удовлетворяют соотношениям:

$$K_0 = \frac{1}{\beta} = 1 + \frac{R_2}{R_1} = 101F_p = \beta \cdot f_T = 10^{15}\beta = \frac{R_1}{R_1 + R_2} = 0.01$$
 (4)

6) Включи ОУ по схеме повторителя $(R_1 = \infty, R_2 = 0)$. Измерим коэффициент передачи и граничную частоту усилителя. Определим на частоте f = 1.5к Γ ц максимальную амплитуду неискаженного сигнала и характер искажений, возникающих при дальнейшем увеличении амплитуды входного сигнала. Получим $U_{m-out} \approx 8$ В.

f, Гц	50	100	200	500	1k	2k	5k	10k	20k	1M	2M	2.5M
K	1.0	1.01	1.02	1.01	1.02	1.02	1.01	1.01	1.00	1.01	1.02	1.02
lnf	3.9	4.6	5.3	6.2	6.9	7.6	8.5	9.2	9.9	13.8	14.5	14.7
20lnК, дБ	0	0.2	0.4	0.2	0.4	0.4	0.2	0.2	0	0.2	0.4	0.4

Таблица 3: Зависимость коэффициента усиления K(f) повторителя.

Рис. 5: Зависимость коэффициента усиления $\mathrm{K}(\mathrm{f})$ повторителя

7) Из рис. 5 получаем, что граничная частота равна $f\approx 13{\rm M}\Gamma$ ц. Сравним с расчетом по формуле $U_{m-out}=\frac{V_{max}}{2\pi f}\approx 4{\rm B}$.

4. Задание №5. Разностный усилитель.

Рис. 6: Схема разностного усилителя

- 1) Соберем схему, изображенную на рис. 5. Здесь $\frac{R_2}{R_1}=10, R_3=R_1, R_4=R_2.$
- 2) Измерим коэффициент усиления по U_{in1} и U_{in2} .

f, Гц	50	100	500	1k	3k	10k	100k	500k	1M
K_1	35	10	10	10	10	10	9	5	2
K_2	10	10	10	10	10	9	5	8	2

Таблица 4: Зависимость коэффициента усиления К.

- 3) Объединив входы, убедились, что коэффициент усиления общего сигнала близок к нулю.
- 4) $U_{out} = \frac{R_2}{R_1} \cdot (U_{in2} U_{in1}) \approx 1 \text{ B}.$

4.1. Вывод:

Изучили устройство операционного усилителя. Разобрали различные схемы усилителей.