Análise de Sistemas Elétricos de Potência através do OpenDSS

Quantificação das perdas de energia em condições harmônicas e fator de potência variável

M.Sc. Eduardo Tavares Silvério M.Sc. Lucas Rodrigues de Almeida

Prof. M.Sc. Paulo Ricardo Radatz de Freitas

Motivação

Cargas modeladas como modelo ZIP

Linhas modeladas considerando as impedâncias de sequência

Motivação

Objetivo Principal

Quantificar as perdas de energia considerando condições reais

Cargas não-lineares (emissividade harmônica) – espectros variando ao longo do dia para cada carga

%SeriesRL = 50 – Default – OpenDSSModelo de carga para a solução harmônica

Fator de potência variando ao longo do dia (Pmult e Qmult)

Motivação

Objetivo Principal

LADEE

Dados de entrada provenientes de um Projeto de Pesquisa e Desenvolvimento (Análise e quantificação das perdas harmônicas em sistemas de distribuição)

Medições de QEE

• Mais de 800 consumidores considerados

Medições de QEE (IEC 61000-4-30 – Classe A)

Medições harmônicas e interharmônicas (IEC 61000-4-7)

As medições são tratadas estatisticamente a fim de gerar curvas representativas para os espectros e fatores de potência

Fundamentação Teórica

Quais os resultados esperados considerando a emissividade harmônica das cargas na quantificação das perdas de energia? Perdas

Fundamentação Teórica

Quais os resultados esperados considerando a emissividade harmônica das cargas na quantificação das perdas de energia? Perdas Perdas

 $Perdas Totais = R_1 I_1^2 + \sum_{h=2}^{\infty} R_h I_h^2$

Aumento nas perdas devido ao incremento da corrente rms como resultado da consideração das Emissões Harmônicas.

Aumento nas perdas devido ao incremento da resistência elétrica do conductor como resultado do Efeito Pelicular.

Fundamentação Teórica

Quais os resultados esperados considerando um fator de potência variável na quantificação das perdas de energia?

Fator de Potência menor que 0,92 – aumenta a corrente (aumenta as perdas) \uparrow Perdas de Energia = $\uparrow RI_1^2$

Metodologia (Ckt 5)

Start

RES – Type 1: $kW \le 5$ (fases A, B ou C)

RES – Type 2: $5 < kW \le 10$ (fases A, B ou C)

RES – Type 3: kW > 10 (fases A, B ou C)

 $COM - Type 1: kW \le 5$ (fases A, B ou C)

COM – Type 2: $5 < kW \le 10$ (fases A, B ou C)

COM – Type 3: $10 < kW \le 15$ (fases A, B ou C)

COM - Type 4: kW > 15 (fases A, B ou C)

Metodologia (Ckt 5)

Metodologia (Fluxo de Potência Fundamental)

Metodologia (Fluxo de Potência Fundamental)

Potências Ativas e Reativas do Alimentador

PF = 0.92

Pmult and Qmult

Metodologia (Fluxo de Potência Fundamental)

Resultados

Aumento das perdas devido à consideração das distorções harmônicas

CASO	Energia Ativa Total (kWh)	Perda Ativa Total (kWh)	Perda Percentual (%)	Diferença Percentual (%)	Notas
1	200,000	8598,139	4.299	-	PF = 0.92 (Caso Base)
2	200,000	8791,945	4.396	+ 2.254	Pmult and Qmult
3	200,000	8834,825	4.417	+ 2.753	Harmônicas
4	200,000	9032,953	4.516	+ 5.057	Pmult and Qmult + Harmônicas

Conclusões

- Discussões sobre melhorias na metodologia da ANEEL é pertinente.
- Modelagem das cargas de forma mais real (distorções harmonicas e fator de potência) impacta no cálculo de perdas.
- Os dados de entrada são relevantes, então medições de QEE são necessárias.

Para este estudo, ambas análises, considerando a variação do fator de potência e as distorções harmonicas, implicaram em um incremento de perdas.

Análise de Sistemas Elétricos de Potência através do OpenDSS

Quantificação das perdas de energia em condições harmônicas e fator de potência variável

M.Sc. Eduardo Tavares Silvério (eduardot.silverio@hotmail.com)

M.Sc. Lucas Rodrigues de Almeida (ralmeida.lucas@gmail.com)