Analyse Hilbertienne

1 Rappels sur les espaces de Hilbert

1.1 Espace de Hilbert

Définition - Produit scalaire

Soit E un espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

On appelle un *produit scalaire* sur E, toute application $E \times E \to \mathbb{K}$, notée $(x,y) \mapsto \langle x,y \rangle$, vérifiant les propriétés suivantes :

- $\forall x, y \in E, x \mapsto \langle x, y \rangle$ et $y \mapsto \langle x, y \rangle$ sont linéaires
- $\forall x, y \in E, \langle x, y \rangle = \overline{\langle y, x \rangle}$ (symétrie conjuguée)
- $\forall x \in E, \langle x, x \rangle \ge 0$
- $\forall x \in E, \langle x, x \rangle = 0 \Leftrightarrow x = 0$

Définition - Norme

Soit E un espace vectoriel muni d'un produit scalaire $\langle \cdot, \cdot \rangle$.

On appelle norme associée à ce produit scalaire, l'application $E \to \mathbb{R}^+$, notée $x \mapsto ||x||$, définie par $||x|| = \sqrt{\langle x, x \rangle}$.

Exemple:

- $E = \mathbb{C}^d$ muni du produit scalaire $\langle x, y \rangle = \sum_{i=1}^d x_i \overline{y_i}$
- $E = \mathbb{R}^d$ muni du produit scalaire $\langle x,y \rangle = \sum_{i=1}^d x_i y_i$
- $E = \mathcal{C}([0,1],\mathbb{C})$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 f(t) \overline{g(t)} dt$
- **Remarque** : $(E, ||\cdot||)$ est appelé un *espace préhilbertien*.

Propriété - Inégalité de Cauchy-Schwarz

Soit $(E, ||\cdot||)$ un espace préhilbertien. Alors $\forall x, y \in E, |\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

► Texte Manquant

Propriété

- $2\operatorname{Re}(\langle x, y \rangle) = ||x + y||^2 ||x||^2 ||y||^2$ (identité de polarisation)
- $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ (identité de Parallelogramme)

Félix de Brandois

1.2Orthogonalité

Définition - Orthogonalité

- Soit $(x,y) \in E^2$. On dit que x et y sont orthogonaux si $\langle x, y \rangle = 0$.
- Soit $A \subset E$. L'orthogonal de A est l'ensemble $A^{\perp} = \{x \in E \mid \forall y \in A, \langle x, y \rangle = 0\}.$

Remarque:

- A[⊥] est un sous-espace vectoriel de E.
 Si A = E, alors A[⊥] = {0}.
 A[⊥] = Vect(A)[⊥].

Texte Manquant

Propriété

Soit H un espace de Hilbert, et (u_n) une suite d'éléments de H. Si la suite (u_n) est composée d'éléments deux à deux orthogonaux et si $\sum ||u_n||^2$ converge, alors la série $\sum u_n$ converge dans H.

▶ $\sum |u_n|$ converge \Leftrightarrow $(T_n) = \sum_{k=0}^n ||u_k||$ converge. $\sum u_n$ converge \Leftrightarrow $(S_n) = \sum_{k=0}^n u_k$ converge. Si E complet, alors $||S_n - S_m|| = ||\sum_{k=m+1}^n u_k|| \le \sum_{k=m+1}^n ||u_k|| \le ||S_n - S_m|| = ||S_n - S_m|| \le ||S_n - S_m||$ T_n-T_m . Donc (T_n) converge \Rightarrow (T_n) de Cauchy \Rightarrow (S_n) de Cauchy dans un complet \Rightarrow (S_n) converge.

1.3Projection sur un convexe

Théorème

Soit H un espace de Hilbert, et C un convexe fermé non-vide de H. Pour tout $f \in H$, il existe un unique point $p \in C$, appelé projection de f sur C, tel que la distance entre f et p soit minimale. Ce point est caractérisé par : $\forall h \in C, \text{Re}(\langle f - p, h - p \rangle) \leq 0.$

Remarque: $d(f,C) = \inf_{h \in C} ||f - h|| = ||f - \Pi_C(f)||.$

▶ Unicité: Soient $g_1, g_2 \in C$ tels que $||f - g_1|| = ||f - g_2|| = d(f, C)$. Texte Manquant

Félix de Brandois 2