OLAP a Datamining

Michal Soukup 20. srpna 2025

Obsah

1	Pro	jekt	9		
2	ERD				
3	Duc	ckDB jako analytické řešení	4		
4	Ana	alýza výstupů OLAP dotazů	5		
	4.1		5		
	4.2	Dotaz 2 – Celkový obrat za jednotlivé roky			
	4.3		7		
	4.4	Dotaz 4 – Průměrná denní tržba v jednotlivých měsících			
5	Analýza klasifikačních modelů				
	5.1	Random Forest	10		
	5.2	Gradient Boosting	10		
	5.3	Decision Tree	10		
		5.3.1 Ukázka matice záměn	11		
	5.4	Predikce	11		
6	Záv	ěr	12		

1 Projekt

Vznikl v rámci předmětu KI/ODM (Olap a Datamining) Celý projekt se nachází na GitHub [1]

2 ERD

Zvolená data[2]

3 DuckDB jako analytické řešení

DuckDB[3] je in-process analytická databáze určená pro OLAP[4] dotazy. Mezi její hlavní výhody patří:

- Integrace přímo v Pythonu, či jiném jazyce (nepotřebuje server)
- Vysoký výkon pro sloupcové operace

V projektu byla DuckDB využita pro spouštění SQL dotazů uložených v souboru olap_queries.sql. Dotazy byly spouštěny prostřednicvím Pythonu

4 Analýza výstupů OLAP dotazů

V této části jsou prezentovány výsledky čtyř vybraných analytických dotazů nad datovým skladem. Výsledky byly zpracovány pomocí nástroje DuckDB a uloženy jako textové i CSV výstupy.

4.1 Dotaz 1 – Počet transakcí za měsíc

```
SELECT t.Year, t.Month, COUNT(*) AS TransactionCount
FROM transaction_fact f
JOIN time_dim t ON f.TimeID = t.TimeID
GROUP BY t.Year, t.Month
ORDER BY t.Year, t.Month
```

Year	Month	TransactionCount
2023	12	4
2024	01	107
2024	02	77
2024	03	80
2024	04	86
2024	05	86
2024	06	69
2024	07	96
2024	08	94
2024	09	96
2024	10	70
2024	11	57
2024	12	78

Tabulka 1: Počet transakcí za jednotlivé měsíce

1. Počet transakcí za měsíc

4.2 Dotaz 2 – Celkový obrat za jednotlivé roky

SELECT t.Year, SUM(f.TotalValue) AS TotalRevenue
FROM transaction_fact f
JOIN time_dim t ON f.TimeID = t.TimeID
GROUP BY t.Year
ORDER BY t.Year

Year	TotalRevenue
2023	3769.52
2024	686226.04

Tabulka 2: Celkový obrat za roky 2023 a 2024

2. Celkový obrat za jednotlivé roky

4.3 Dotaz 3 – Sezónnost: obrat podle kvartálu

```
SELECT
    t.Year,
    FLOOR((CAST(t.Month AS INTEGER) - 1) / 3) + 1 AS Quarter,
    SUM(f.TotalValue) AS QuarterlyRevenue
FROM transaction_fact f
JOIN time_dim t ON f.TimeID = t.TimeID
GROUP BY t.Year, Quarter
ORDER BY t.Year, Quarter
```

Year	Quarter	QuarterlyRevenue
2023	4	3769.52
2024	1	165664.39
2024	2	170817.98
2024	3	205406.88
2024	4	144336.79

Tabulka 3: Obrat podle kvartálů

3. Sezónnost: obrat podle kvartálu (FLOOR)

4.4 Dotaz 4 – Průměrná denní tržba v jednotlivých měsících

```
SELECT
    daily_data.Year,
    daily_data.Month,
    AVG(daily_data.DailyRevenue) AS AvgDailyRevenue
FROM (
    SELECT
        t.Year,
        t.Month,
        t.Day,
        SUM(f.TotalValue) AS DailyRevenue
    FROM transaction_fact f
    JOIN time_dim t ON f.TimeID = t.TimeID
    GROUP BY t. Year, t. Month, t. Day
) AS daily_data
GROUP BY daily_data.Year, daily_data.Month
ORDER BY daily_data.Year, daily_data.Month
```

Year	Month	AvgDailyRevenue
2023	12	1884.76
2024	01	2212.55
2024	02	2058.37
2024	03	1594.29
2024	04	1983.42
2024	05	2304.56
2024	06	1875.81
2024	07	2302.14
2024	08	2114.56
2024	09	2521.56
2024	10	1680.83
2024	11	1592.68
2024	12	2271.12

Tabulka 4: Průměrná denní tržba v jednotlivých měsících

5 Analýza klasifikačních modelů

Pro klasifikaci produktů podle jejich kategorie byly vyzkoušeny různé algoritmy strojového učení. Hodnocení probíhalo pomocí pětinásobné křížové validace a metrik přesnosti, recallu a F1 skóre. Výsledky ukázaly významné rozdíly mezi jednotlivými modely.

5.1 Random Forest

Model Random Forest dosáhl vynikajících výsledků s průměrnou přesností z křížové validace 94,7 %. V testovací množině dosáhl celkové přesnosti 89 %, přičemž jednotlivé třídy byly klasifikovány velmi vyrovnaně. Nejnižší recall měl pro kategorii Clothing (81 %).

Kategorie	Precision	Recall	F1-score
Books	0.85	0.95	0.90
Clothing	0.93	0.81	0.87
Electronics	0.92	0.88	0.90
Home Decor	0.87	0.89	0.88
Celkem	0.89	0.89	0.89

Tabulka 5: Výsledky klasifikace – Random Forest

5.2 Gradient Boosting

Model **Gradient Boosting** dosáhl dokonce průměrné přesnosti z křížové validace **99,9** %. Na testovací množině dosáhl celkové přesnosti **96** % a skvělých výsledků napříč všemi kategoriemi. Byl velmi přesný zejména u **Electronics** (precision 1.00) a Home Decor (f1-score 1.00).

Kategorie	Precision	Recall	F1-score
Books	0.92	1.00	0.96
Clothing	0.94	0.90	0.92
Electronics	1.00	0.95	0.97
Home Decor	1.00	1.00	1.00
Celkem	0.97	0.96	0.96

Tabulka 6: Výsledky klasifikace – Gradient Boosting

5.3 Decision Tree

Model **Decision Tree** vykazoval extrémně vysokou přesnost v rámci křížové validace i testovací množiny. S průměrnou přesností **99,9** % a F1 skóre přesahujícím 0.97 u všech tříd dosáhl podobně skvělých výsledků jako Gradient Boosting.

Kategorie	Precision	Recall	F1-score
Books	0.96	1.00	0.98
Clothing	1.00	0.93	0.97
Electronics	0.99	1.00	1.00
Home Decor	1.00	1.00	1.00
Celkem	0.99	0.98	0.98

Tabulka 7: Výsledky klasifikace – Decision Tree

5.3.1 Ukázka matice záměn

5.4 Predikce

Využití lineární regrese pro předpověď průměrné denní tržby v následujících měsících na základě dotazu $4\,$

Z výsledků je patrné, že model nemá výpovědní hodnotu, jelikož uvedené predikce se drží příliš stejných hodnot.

6 Závěr

Projekt demonstruje možnost použití DuckDB jako lehkého analytického nástroje a propojení OLAP dotazů s data mining pipeline. Kromě dobrých výsledků GradientBoosting a DecisionTree metod, byla vizualizace klíčová pro interpretaci sezónních trendů i predikční přesnosti modelů.

Odkazy

- 1. SOUKUP, Michal. *ODM (Olap a DataMining)*. 2025. Dostupné také z: https://github.com/Mysczk/ODM. Citováno 20. srpna 2025.
- 2. WAMBLES, Chad. Ecommerce Transactions Dataset. 2021. Dostupné také z: https://www.kaggle.com/datasets/chadwambles/ecommerce-transactions. Citováno 30. června 2025.
- 3. RAASVELDT, Mark; MÜHLEISEN, Hannes. *DuckDB*. 2019. Dostupné také z: https://duckdb.org. Citováno 30. června 2025.
- 4. WIKIPEDIA CONTRIBUTORS. Online Analytical Processing. 2024. Dostupné také z: https://cs.wikipedia.org/wiki/Online_Analytical_Processing. Citováno 30. června 2025.