Ejercicios de Electrónica Analógica Boletín EAN11: Transistores nivel "normalillo".

Revisado marzo 2023

Resuelve el siguiente circuito, que se llama circuito con polarización con realimentación de emisor (β=100)

Solución: I_B = 0'048 mA; I_C = 4'77 mA; = 4'82 mA; V_{CE} = 10'18 V

2. Resuelve el siguiente circuito, que se llama circuito con polarización con realimentación de colector (β =100)

 I_E Solución: I_B = 0'022 mA; I_C = 2'2 mA; I_C = 2'22 mA; I_C = 4'04 V

3. Resuelve el siguiente circuito, que se llama circuito con polarización con realimentación de colector y de emisor.

Solución: I_B = 0'024 mA; I_C = 2'41 mA; = 2'434 mA; V_{CE} = 7'86 V

4. Resuelve el siguiente circuito, indicando el estado en el que está funcionando (β =100).

 I_E Solución: se encuentra en saturación. V_{CE} = 0'2 V; I_B = 0'376 mA; I_C = 4'212 mA; I_E = 4'588 mA

5. La siguiente configuración de dos transistores se llama **par Darlington**. Se utiliza para amplificar una pequeña intensidad y hacerla más grande. Calcula todas las intensidades que pasan por el circuito de la figura. Supón que, en los dos transistores, V_{BE} = 0'65 V y β = 100.

Solución:

PRIMER TRANSITOR:

 $I_{B1} = 0.083 \mu A; I_{C1} = 0.083 \mu A; I_{E1} = 0.084 \mu A; V_{CE1} = 4.13 V$

SEGUNDO TRANSISTOR:

$$I_{B2}$$
 = 0'084 mA; I_{C2} = 0'842 mA; I_{E2} = 0'85 mA; V_{CE2} = 4'75 V

 Resuelve el siguiente circuito, teniendo en cuenta que, en un L.E.D. podemos suponer que existe una tensión de 2 V cuando se encuentra encendido. Supón, además, que V_{BE} = 0'65 V y β = 100.

Solución:

$$I_B = 0'085 \text{ mA}$$
; $I_C = 8'5 \text{ mA}$; $I_E = 8'585 \text{ mA}$
 $V_{CE} = 1'5 \text{ V}$.

- Utilizando el dato del ejercicio anterior sobre el L.E.D., se pide:
 - a) Resuelve el transistor.
 - b) ¿Qué intensidad atraviesa al L.E.D. conectado en serie con la resistencia?
 - c) ¿Qué intensidad atraviesa el L.E.D conectado al colector y al emisor?

Solución:

- a) $I_B = 0.071$ mA; $I_C = 7.08$ mA; $I_E = 7.151$ mA; $V_{CE} = 2$ V.
- b) $I_{LED1} = 26,67 \text{ mA}$
- c) $I_{LED2} = 19'59 \text{ mA}$

