32. Spectral methods for boundary-value problems

Last time

- Recurrence relation for Chebyshev polynomials
- Clenshaw—Curtis integration

Goals for today

- Spectral methods
- Boundary-value problems for ODEs
- Eigenvalue problems
- Time evolution

(Pseudo)-spectral methods for boundary-value problems

- Want to solve boundary-value problems
- E.g. Poisson equation for potential due to electric charges

(Pseudo)-spectral methods for boundary-value problems

- Want to solve boundary-value problems
- E.g. Poisson equation for potential due to electric charges

Example:

$$u_{xx} = f(x) \quad \text{for } -1 < x < 1$$

with boundary conditions u(-1) = u(+1) = 0

(Pseudo)-spectral methods for boundary-value problems

- Want to solve boundary-value problems
- E.g. Poisson equation for potential due to electric charges

Example:

$$u_{xx} = f(x)$$
 for $-1 < x < 1$

with boundary conditions u(-1) = u(+1) = 0

- Notation: derivative $u_x := u' := \frac{du}{dx}$
- \mathbf{u}_{xx} = 2nd derivative

- Note that there is no time
- Everything must be satisfied simultaneously

- Note that there is no time
- Everything must be satisfied simultaneously
- Information from both boundaries influences value at intermediate point

- Note that there is no time
- Everything must be satisfied simultaneously
- Information from both boundaries influences value at intermediate point
- There are stepping methods (shooting) but they do not work well

- Note that there is no time
- Everything must be satisfied simultaneously
- Information from both boundaries influences value at intermediate point
- There are stepping methods (shooting) but they do not work well

■ Try to reduce to a linear algebra problem

- Note that there is no time
- Everything must be satisfied simultaneously
- Information from both boundaries influences value at intermediate point
- There are stepping methods (shooting) but they do not work well

- Try to reduce to a linear algebra problem
- Will follow Trefethen, Spectral Methods in MATLAB (Chaps. 6 + 7)

- We will use collocation method to solve
- Sometimes called "pseudo-spectral"

- We will use collocation method to solve
- Sometimes called "pseudo-spectral"
- Extension / inverse of methods used so far

- We will use collocation method to solve
- Sometimes called "pseudo-spectral"
- Extension / inverse of methods used so far

lacksquare Suppose that equation satisfed by function u (unknown)

- We will use collocation method to solve
- Sometimes called "pseudo-spectral"
- Extension / inverse of methods used so far

- lacktriangle Suppose that equation satisfed by function u (unknown)
- \blacksquare Look at collection of N+1 nodes t_j
- lacksquare With *unknown* values $u_j := u(t_j)$ at t_j

- \blacksquare Let p(x) be degree- N polynomial interpolating u_j at t_j
- Note that u_i are the *unknowns*!
- Then we impose

$$p''(t_j) = u_j$$

- \blacksquare Let p(x) be degree-N polynomial interpolating u_j at t_j
- Note that u_i are the *unknowns*!
- Then we impose

$$p''(t_j) = u_j$$

So

$$Mu = f$$

where $M := D_N^2$

lacksquare D_N is differentiation matrix

Need to impose boundary conditions

- Need to impose boundary conditions
- e.g. Dirichlet:

$$u(-1) = u(1) = 0$$

- Need to impose boundary conditions
- e.g. Dirichlet:

$$u(-1) = u(1) = 0$$

- Various ways to implement this
- E.g. boundary bordering: set rows 1 and N of M to rows of identy matrix to impose $u_0=u_N=0$

- Need to impose boundary conditions
- e.g. Dirichlet:

$$u(-1) = u(1) = 0$$

- Various ways to implement this
- E.g. boundary bordering: set rows 1 and N of M to rows of identy matrix to impose $u_0=u_N=0$
- ODE is imposed at interior points

Chebyshev spectral methods

 Formulation in terms of differentiation matrices holds for finite differences – as in Problem Set

Chebyshev spectral methods

- Formulation in terms of differentiation matrices holds for finite differences – as in Problem Set
- But Chebyshev methods have usual advantage: spectral convergence

Chebyshev spectral methods

- Formulation in terms of differentiation matrices holds for finite differences – as in Problem Set
- But Chebyshev methods have usual advantage: spectral convergence
- Additional advantage: interpolant is output from method

Summary

- Chebyshev spectral methods
- Collocation: Assume ODE is satisfied at interior points