Visualización de Información

Daniela Opitz

dopitz@udd.cl

Instituto Data Science, Universidad del Desarrollo Edición 2024

Visualización de la Información

- 1. Entender los conceptos fundamentales del área de visualización de información.
- 2. Aprender las técnicas y mejores prácticas para diseñar una visualización de datos.
- 3. Desarrollar un pensamiento crítico frente a los gráficos con los que se relacionan día a día.
- 4. Crear e implementar visualizaciones de datos en Python
- 5. Usar la visualización de datos como una forma de comunicar y contar una historia

Outline

- Reglas
- Definiciones y conceptos
- Ejemplos de visualizaciones históricas
- Ejemplos de visualizaciones actuales

Evaluaciones

Evaluaciones

1. **Certamen 1 (teórico)**.

2. **Certamen 2 (practico)**: **proyecto de visualización** grupal de máximo cuatro personas de un tema cotidiano o de relevancia personal, científica, industrial o pública usando un dataset público y **Python.** Informe y código.

 Examen: presentación presencial del proyecto 2 extendido y mejorado. Diseño de un poster.

Certamen 2

Compuesto de dos partes:

- **entregas**: avance durante el semestre. Cada entrega tiene un 7 por defecto con excepción de la entrega final, siempre que demuestre que hizo algo nuevo.
- **evaluacion final:** proyecto final

nota certamen 2=entrega1*0.1+entrega2*0.2 + entrega3*0.2 + entrega final*0.5

Controles

- Controles de conceptos
- Controles de lectura
- Controles de codigo simple

Aproximadamente un total de 5 controles, se borra la nota más baja

Evaluaciones

certamen 1 35% certamen 2 35% controles 30%

nota de presentación a examen 70%

examen (superior a 3.0) 30%

Bibliografía

Bibliografía

Visualization & Analysis Design (<u>Tamara Munzer</u>)

How Charts Lie (Alberto Cairo)

Introducción a la Visualización

Motivación

Un video de Hans Rosling titulado The Joy of Stats

https://www.youtube.com/watch?v=V8lbiiTF2P0

¿Opiniones?

1- Definiciones y Conceptos

Definicion 1

La **Real Academia Española** define **visualizar** como visibilizar, representar mediante imágenes ópticas fenómenos de otro carácter. Formar en la mente una imagen visual de un concepto abstracto.

Definicion 2

Card, Mackinlay y Shneiderman (1999) describen la visualización de datos como la utilización de representaciones visuales de datos generados por computadoras interactivas para mejorar nuestra capacidad cognitiva.

Definición 3

Los sistemas computacionales de visualización proveen representaciones visuales de conjuntos de datos diseñadas para ayudar a las personas a efectuar tareas de manera más efectiva.

Tamara Munzner

Ideas Principales

- El uso de imágenes visuales con o sin interacción en un computador.
- La representación de lo abstracto o de datos.
- Y ayudar a personas a ser más eficientes al amplificar capacidades cognitivas.

Ciencia de Datos

Es una ciencia interdisciplinaria que involucra métodos científicos, procesos y sistemas para extraer **conocimiento** o un mejor entendimiento de datos en sus diferentes formas, sea estructurados o no estructurados.

Proceso de Ciencia de Datos

Codigo Pregunta: 2805247

¿Por qué hay computadores involucrados?

- Capacidad de procesamiento de datos.
 - Más rápido, más cantidad.
 - Análisis de variabilidad.
- Escalabilidad.
 - Las personas pueden realizar ciertas tareas para un dataset pequeño. ¿Son capaces de hacerlas para un dataset mucho más grande?
- Colaboración.
 - Tanto en el desarrollo como en el uso de un sistema de visualización.

¿Por qué depender de la visión?

- Es un sentido perceptualmente eficiente.
 - La comunicación con el cerebro es rápida.
 - Una gran proporción del procesamiento de información visual ocurre simultáneamente
 - En contraste, otros sentidos son secuenciales (por ej., sonido).
- Todavía no hemos desarrollado el entendimiento ni la tecnología para construir sistemas basados en el tacto o el olor tan efectivos como los visuales. Todavía no tenemos interfaces hápticas (tacto) mainstream.

La visualización como representación externa

- Reemplaza cognición por percepción.
- Un diagrama puede organizar la información de manera que podamos realizar consultas de manera eficiente.

2009 Sales (thousands of U.S. \$)

Region	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Domestic	1,983	2,343	2,593	2,283	2,574	2,838	2,382	2,634	2,938	2,739	2,983	3,493	31,783
International	574	636	673	593	644	679	593	139	599	583	602	690	7,005
Total	2,557	2,979	3,266	2,876	3,218	3,517	2,975	2,773	3,537	3,322	3,585	4,183	38,788

Stephen Few. Why do we visualize quantitative data? https://www.perceptualedge.com/blog/?p=1897

¿Dónde está el punto rojo?

Fuente:
Perception in Visualization
Christopher G. Healy
https://www.csc2.ncsu.edu/faculty/healey/PP/

¿Por qué mostrar los datos en detalle?

- Las estadísticas descriptivas ocultan variabilidad que puede ser importante.
 - Puede inducir a errores de interpretación.
- Los datos agregados pueden ocultar patrones en los datos.
 - Limita la capacidad de encontrar algo que no esperábamos, porque la agregación usualmente se hace pensando en un fin específico.

¿Por qué mostrar los datos en detalle?

Anscombe's Quartet: Raw Data

	1		2		3		4	
	Χ	Υ	X	Υ	Χ	Υ	X	Y
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.816		0.816		0.816	

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing.

Justin Matejka, George Fitzmaurice. ACM SIGCHI Conference on <u>Human Factors in Computing Systems</u>, 2017.

¿Por qué usar interactividad?

- Una visualización estática solamente permite una única vista de los datos.
 - A medida que nos acercamos a los límites de personas y computadoras, la interactividad permite **que lo que se muestra cambie**: potencialmente infinitas vistas, cada una adaptada a los límites.
 - "InfoVis Mantra": Overview first, zoom & filter, details on demand (Ben Shneiderman)
- "Una imagen vale mil palabras. Una interfaz de usuario vale mil imágenes" (B. Shneiderman también)

¿Por qué hay recursos limitados?

- Estamos sujetos a los límites humanos
 - Change Blindness: no vemos cambios grandes si estamos atentos a otra cosa.
 - Limitada memoria de corto plazo.
- Estamos sujetos a límites del medio como los límites del papel o del computador
- Y los límites de los datos
 - Suciedad, completitud, sesgos, etc.

¿Cuándo necesitamos una visualización?

- Necesitamos aumentar la capacidad humana para obtener insights (no reemplazarla)
- Para muchos problemas de análisis las preguntas no están claras desde el inicio
- Algunas tareas no pueden ser pueden ser automatizadas.

¿Cuándo es posible usar visualización?

Tamara Munzner. https://www.cs.ubc.ca/labs/imager/tr/2012/dsm/

¿Por qué enfocarse en las tareas a realizar?

- La visualización **no es arte** (puede llegar a serlo). Nuestro propósito es crear **herramientas efectivas**.
 - La efectividad depende del contexto. Así, las tareas permiten restringir y enfocar el diseño.
 - Podemos descubrir algo que de otro modo no hubiésemos descubierto
- No todas las tareas están relacionadas a necesidades de negocio.
 - A veces la tarea es única y personal

GIORGIA Stefanie

Tarea: Compartir información cotidiana a través de tarjetas postales para conocerse mejor. Dear Data. Por Giorgia Lupi and Stefanie Posavec

COVER BY STEFANIE

Dear Data

Resumen

Los **sistemas computacionales** de visualización proveen **representaciones visuales** de conjuntos de **datos** diseñadas para **ayudar a las personas** a **efectuar tareas** de manera más **efectiva**.

2- Ejemplos de Visualizaciones Históricas

Tarea: encontrar relación entre incidencia de cólera y fuentes de contagio. Por John Snow en 1855.

https://en.wikipedia.org/wiki/1854 Broad Street cholera outbreak

Diagrama de la Rosa

- gris: enfermedades infecciosas
- rojo: muertos por heridas de bala
- negro: otras causas

Tarea: visualizar el impacto en la reducción de muertes en los hospitales en las colonias inglesas tras una intervención de higiene. Por Florence Nightingale en 1857. https://es.wikipedia.org/wiki/Florence Nightingale

Dos rediseños de la visualización anterior.

Codigo Pregunta: 74 55 237

3-Ejemplos de Visualizaciones Actuales

Fuente: Ed Hawkins

Viajes en el Gran Santiago

Fuente: Opitz, Becerra, Graells-Garrido, Astroza, Marín, Campos, Bravo et al 2024

¿Preguntas?

Herramientas

Herramientas

Opciones

1-Google Colab

Colaboratory, o "Colab" para abreviar, es un producto de Google Research. Permite a cualquier usuario escribir y ejecutar código arbitrario de Python en el navegador. Requiere una cuenta de Gmail.

2- Instalar Anaconda en su computador personal (Recomendado)

Puede que tome un tiempo configurarlo correctamente. Que no funcione al principio es normal y resolverlo es una situación a la que se va a enfrentar de la vida laboral real.

Opción 1

Accede a Google Colab:

clase01.ipynb

• Ve a Google Colab en tu navegador web. Si no has iniciado sesión en tu cuenta de Google, se te pedirá que lo hagas.

Abrir archivo:

- En la página de inicio de Colab, verás varias opciones para abrir un notebook. Puedes elegir entre:
 - Subir: Si tienes el notebook en tu computadora, haz clic en "Subir" y selecciona el archivo .ipynb desde tu dispositivo.
 - Google Drive: Si el notebook está guardado en Google Drive, haz clic en "Google Drive" y navega por tu Drive para encontrar y abrir el archivo.
 - GitHub: Si el notebook está en un repositorio de GitHub, haz clic en "GitHub", ingresa la URL del repositorio y selecciona el notebook que deseas abrir.

Cargar el Notebook:

• Una vez que hayas seleccionado el archivo, se cargará en Google Colab y podrás ver su contenido.

Trabajar en el Notebook:

• Ahora puedes editar, ejecutar y modificar el notebook como lo desees. Google Colab proporciona un entorno interactivo para trabajar con notebooks de Jupyter.

Guardar cambios:

• Si realizas cambios en el notebook, puedes guardarlos directamente en Google Drive haciendo clic en "Archivo" > "Guardar" o "Guardar una copia en Drive". También puedes descargar el notebook a tu computadora si lo deseas.

Opción 2

Opción 2

En un terminal cree el entorno vizudd (puede nombrarlo como quiera):

- > conda create --name vizudd python=3.11.6 jupyter notebook
- > conda activate vizudd
- > conda install conda-forge::ipykernel
- > conda install conda-forge::pandas
- > conda install conda-forge::matplotlib
- > python -m ipykernel install --user --name vizudd --display-name
 "Python 3.11.6 (vizudd)"

Actividad

- Corran el notebook de la clase 01 en Google Colab individualmente. Asegurense que todo se ejecuta sin errores.
- Armar un grupo de máximo tres personas, este será su equipo de trabajo a lo largo del curso. **Consejo**: traten de armar grupos en los que al menos dos miembros sean medianamente fuertes en programación.

Algunos Datasets

http://www.datagramas.cl/courses/infovis/resources/

Actividad Proxima Clase

- Instalar anaconda y abrir Jupyter en su propio computador.

Instalar ipykernel, pandas y matplotlib.