

Vehicle & Pedestrian collision prediction

06/06/2017

Presented by Aghiles DJOUDI University Pierre and Marie Curie

Urban area

Location

Smartphone Location

RTK Location

Urban area

Location

Smartphone Location

RTK Location

Urban area

Location

Sunny day

Smartphone Location

Errors: 2 to 7 meters

Smartphone Location

Errors: 3 to 9 meters

Location

Smartphone Location

RTK Location

Location

Smartphone Location

RTK Location

*Plan area

Location

Sunny day

Smartphone Location

Errors: 2 to 3 meters

Smartphone Location

Errors: 2 to 6 meters

GPS errors

Area and weather condition

GPS Errors	Urban area	Plan area
Sunny day Ċ	2 to 7 meters	2 to 3 meters
Cloudy day	3 to 9 meters	2 to 6 meters

GPS accuracy

Area and weather condition

GPS accuracy depends on:

- Signal strength
- Weather condition
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
 - Use map information to correct the location

Experimentation, Results & Validation

Hardware-based approach

Deferential GPS

GPS accuracy depends on:

- Signal strength
- Weather condition
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
 - Use map information to correct the location

Software-based approach

Map-matching approach

GPS accuracy depends on:

- Signal strength
- Weather condition
- Building obstacle
- Noise and interference

How can we increase GPS accuracy?

- Hardware-based approach:
 - Eliminate noise and interference (signal processing)
 - Deferential GPS (Base station approach)
- Software-based approach:
 - Use map information to correct the location

How to increase horizontal accuracy

2 steps

Step 1:

- Identify the direction of the pedestrian

Step 2:

- Reduce location prediction error based on this direction

Linear regression algorithm

Linear regression algorithm

RTK

Direction	А	В	С	D	E	F	G	Н
Coefficient	-1.0350107	0.26566971	1.91619518	0.16367673	-1.0783095	-5.0405544	1.78695061	-5.3157862

RTK

ı	Direction	Α	В	С	D	E	F	G	Н
	Coefficient	-1.0350107	0.26566971	1.91619518	0.16367673	-1.0783095	-5.0405544	1.78695061	-5.3157862

Smart-phone

Direction	A'	B'	C'	D'	E'	F'	G'	H'
Coefficient	-0.9666001	0.23728145	1.34641352	0.07461613	-1.2108362	-5.8262457	1.93176513	-5.1664880

RTK

Direction	Α	В	С	D	E	F	G	Н	
Coefficient	-1.0350107	0.26566971	1.91619518	0.16367673	-1.0783095	-5.0405544	1.78695061	-5.3157862	
Smart-phone									

Direction	A'	B'	C'	D'	E'	F'	G'	H'
Coefficient	-0.9666001	0.23728145	1.34641352	0.07461613	-1.2108362	-5.8262457	1.93176513	-5.1664880

Difference

Direction	A - A'	B - B'	C - C'	D - D'	E - E'	F - F'	G - G'	H - H'
Coefficient	0,06841052	0,0283882	0,5697816	0,7856913	0,1325266	0,0890606	1,7869506	0,14929826

Linear regression algorithm

Step 2: Location errors in plane area

Step 2: Location errors in plane area

RTK

Error	Α	В	С	D	E	F	G	Н	
R^2	0.99550775	0.96944446	0.99719662	0.95419267	0.99730340	0.89937049	0.99230581	0.98588831	
Smart-phone									

Error	A'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94396797	0.63719028	0.93629317	0.06020403	0.93676206	0.77280729	0.91409588	0.82847928

Artificial neural network

Step 2: Location errors in plane area

Map-matching approach

Step 2: Location correction in plane area

Step 2: Location correction in plane area

Error	Α'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94396797	0.63719028	0.93629317	0.06020403	0.93676206	0.77280729	0.91409588	0.82847928

Step 2: Location correction in plane area

Error	Α'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94396797	0.63719028	0.93629317	0.06020403	0.93676206	0.88961241	0.91409588	0.82847928

Direction errors in urban area

Linear regression algorithm

RTK

Direction	А	В	С	D	Е	F	G	Н
Coefficient	-1.0598147	0.0781908	2.09278067	-4.2876946	-0.9337665	0.08456471	2.14901023	-14.721285

RTK

Direction	Α	В	С	D	Е	F	G	Н
Coefficient	-1.0598147	0.0781908	2.09278067	-4.2876946	-0.9337665	0.08456471	2.14901023	-14.721285

Smart-phone

Direction	A'	B'	C'	D'	E'	F'	G'	H'	
Coefficient	-0.9896452	-0.0737344	1.37782101	-4.2182173	-0.5864491	0.10219062	3.07430095	-7.3396637	

RTK

Direction	Α	В	С	D	E	F	G	Н	
Coefficient	-1.0598147	0.0781908	2.09278067	-4.2876946	-0.9337665	0.08456471	2.14901023	-14.721285	
Smart-phone									

Direction	A'	B'	C'	D'	E'	F'	G'	H'
Coefficient	-0.9896452	-0.0737344	1.37782101	-4.2182173	-0.5864491	0.10219062	3.07430095	-14.339663

Difference

Direction	A - A'	B - B'	C - C'	D - D'	E - E'	F - F'	G - G'	H - H'
Coefficient	0,0701695	0,15192529	0,71495966	0,06947737	0,3473174	0,01762591	0,92529072	1,38162199

Direction errors in urban area

Linear regression algorithm

Location errors in urban area

Step 2: Location errors in urban area

RTK

Error	Α	В	С	D	E	F	G	Н	
R^2	0.96518147	0.91822714	0.96216233	0.98503134	0.99633253	0.93645041	0.99287674	0.91222112	
Smart-phone									

Error	A'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94761938	0.84504314	0.95482338	0.61086726	0.73050575	0.1025010	0.86147849	0.56749197

Step 2: Location errors in urban area

Map-matching approach

Step 2: Location errors in urban area

Step 2: Location errors in urban area

Error	Α'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94761938	0.84504314	0.95482338	0.61086726	0.73050575	0.1025010	0.86147849	0.56749197

Step 2: Location correction

Error	A'	B'	C'	D'	E'	F'	G'	H'
R^2	0.94761938	0.84504314	0.95482338	0.61086726	0.73050575	0.67524985	0.86147849	0.56749197

Methodology

Map-matching approach

Artificial neural network

Training algorithm

Error estimation

Update weight

$$\begin{cases} H_h = \left(\sum_{i} w_{ih} \times I_i\right) + \theta_h \\ O_o = \left(\sum_{h} w_{ho} \times H_h\right) + \theta_o \end{cases} \tag{1}$$

$$O_o = \left(\sum_h w_{ho} \times H_h\right) + \theta_o \tag{2}$$

$$\delta_o = desired output - actual output \quad (3)$$

$$\begin{cases} \delta_h = \sum_o \delta_o \times w_{ho} \end{cases} \tag{4}$$

$$\Delta w_{ho} = \gamma \times \delta_o \times H_h \tag{5}$$

$$\Delta w_{ih} = \gamma \times \delta_h \times I_i \tag{6}$$

Hidden Layer Input Layer Output Layer

Results

Horizontal trajectory

QoS of the network

Delay transmission over distance

3G

QoS of the network

Packet delivery ratio over distance

3G

Algorithm:

```
Dmin1 = V_{veh} * (T_{perception} + T_{reaction} + T_{transmission} + T_{computation}) + GPS_{err-veh} + GPS_{err-ped}
```

Evaluation:

```
Dmin2 = V\_veh* (830 ms+170 ms+150 ms+200 ms) + 1m + 1m

If (Dmin2 < Dact and Dmin1 < Dact) then True\_negative\_alert++
If (Dmin2 < Dact and Dmin1 > Dact) then False\_positive\_alert++
If (Dmin2 > Dact and Dmin1 < Dact) then False\_negative\_alert++
If (Dmin2 > Dact and Dmin1 > Dact) then True\_positive\_alert++
```


Application

Real environment

Application

Simulation

Thank You for Watching!

Any Questions?

