

STRIP: A Defence Against Trojan Attacks on Deep Neural Networks

Accordi Gianmarco, Calabrese Mattia Cavallo Amedeo, Irno Consalvo Stefano

November 27th, 2020

Deep Neural Networks

Building — Training

DNNs Problem

Trojan Attacks

Handwriting Recognition

Handwriting Recognition

Aim of the project

STR ong
I ntentional
P erturbation

Threat Model

Assumptions:

Worst Case Scenario

2. No access to trojanized inputs

Objectives:

1. Same behavior for clean inputs

2. Predictable output for trojanized inputs

Detection System Overview

Detection System Overview Algorithm

```
1: procedure detection (x, \mathcal{D}_{test}, F_{\Theta}(), detection boundary)
         trojanedFlag \leftarrow No
 2:
        for n = 1 : N do
 3:
             randomly drawing the n_{\rm th} image, x_n^t, from \mathcal{D}_{\rm test}
 4:
             produce the n_{th} perturbed images x^{p_n} by superimposing in-
 5:
    coming image x with x_n^t.
         end for
 6:
        \mathbb{H} \leftarrow F_{\Theta}(\mathcal{D}_p) \rightarrow \mathcal{D}_p is the set of perturbed images consisting of
    \{x^{p_1}, \ldots, x^{p_N}\}, \mathbb{H} is the entropy of incoming input x assessed by
    Eq 4.
         if \mathbb{H} \leq detection boundary then
 8:
             trojanedFlag \leftarrow Yes
 9:
         end if
10:
         return trojanedFlag
11:
12: end procedure
```

日 - Entropy

Shannon definition of Entropy

$$\mathbb{H}_n = -\sum_{i=1}^{i=M} y_i \times \log_2 y_i$$

M total number of classes y_i probability to belong to class i

Normalization

$$\mathbb{H} = \frac{1}{N} \times \sum_{n=1}^{n=N} \mathbb{H}_n$$

The obtained \mathbb{H} is the entropy of the input x, that will be used to understand if the incoming inputs has been trojanized or not.

Evaluation

Dataset	# of labels	Image size	# of images	Model architecture	Total parameters
MNIST	10	28 × 28 × 1	60,000	2 Conv + 2 Dense	80,758
CIFAR10	10	32 × 32 × 3	60,000	8 Conv + 3 Pool + 3 Dropout 1 Flatten + 1 Dense	308,394
GTSRB	10	$32 \times 32 \times 3$	51,839	ResNet20 [15]	276,587

Considering MNIST dataset for the CNN

Detection Boundary - 1

FRR (False Rejection Rate)

Robustness of our detection system

FAR (False Acceptance Rate)

Level of security provided by the detection system

Objective

Lowest FAR (higher security), but we have to accept an higher FRR in order to achieve that

Detection Boundary - 2

The defender will proceed in the following way:

- 1. Estimate the entropy distribution of the clean inputs
- 2. Set the value of the FRR
- 3. Compute the *Percentile* of the normal distribution
- 4. This *Percentile* is now the detection boundary

Dataset	Trigger type	N	Mean	Standard variation	FRR	Detection boundary	FAR
MNIST	square	100	0.196	0.074	3%	0.058	0.75%
					2%	0.046	1.1%
					1%1	0.026	1.85%
MNIST	trigger a	a 100	0.189	0.071	2%	0.055	0%
					1%	0.0235	0%
					0.5%	0.0057	1.5%

Detection Time Overhead

Relationship between the latency required in the analysis of the input and the number of *N* used perturbed inputs

Select *N* when the variation of the standard deviation slope is small

Input-Agnostic Trojan Attack

The evaluation is done on CIFAR10 dataset and 8-layer model

1. Large Trigger Size

Chen et al. 2017 Arxiv

Transparency: 70%

Overlap: 100%

STRIP achieves 0% both in FAR and FRR

2. Trigger Transparency

FRR is preset to be 0.5%

Transp.	Classification rate of clean image	Attack success rate	Min. entropy of clean images	Max. entropy of trojaned images	Detection boundary	FAR
90%	87.11%	99.93%	0.0647	0.6218	0.2247	0.10%
80%	85.81%	100%	0.0040	0.0172	0.1526	0%
70%	88.59%	100%	0.0323	0.0167	0.1546	0%
60%	86.68%	100%	0.0314	3.04×10^{-17}	0.1459	0%
50%	86.80%	100%	0.0235	4.31×10^{-6}	0.1001	0%

3. Separate Triggers to Separate Target Labels

 Given a preset FRR of 0.5%, the worst-case FAR is 0.10% for the trigger targeting 'airplane';

4. Separate Triggers to Same Target Labels

For any trigger, STRIP achieves 0% for both FAR and FRR.

5. Entropy Manipulation(Adaptive Attack)

The attacker manipulate the entropy of clean and trojaned samples in order to delete the entropy difference between them.

6. Source-label-specific (partial backdoor)

Source-label: label trojaned

Non-source-label: label non-trojaned

The trigger will be activate only when impose on source-label image.

Detection requires the access of training dataset(i.e. trojaned sample) from the defender side, and this assumption violates the threat model of STRIP and other detection systems.

Related Works

1. Activation Clustering¹

- Detection is prior to the deployment.
- Observing neuron activations of benign samples and trojaned samples
- WhiteBox Approach

¹B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and B. Srivastava, "Detecting backdoor attacks on deep neural networks by activation clustering," arXiv preprint arXiv:1811.03728, 2018

Related Works

2. SentiNet²

- First use techniques from model interpretability and object detection to discover highly salient contiguous regions of an input image that are important for the classification
- For each region, they overlay those extracted regions on a large number of held-out clean images and test how often this results in a misclassification.

²] E. Chou, F. Tramer, G. Pellegrino, and D. Boneh, "Sentinet: Detecting physical attacks against deep learning systems," arXiv preprint arXiv:1812.00292, 2018

Related Works

3. Neural Cleanse³

- Detection is prior to the deployment.
- Measuring the minimum amount of perturbation necessary to change all inputs from each region to the target region.
- high computation cost and less effective with increasing of trigger size

³B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks," in Proceedings of the 40th IEEE Symposium on Security and Privacy, 2019

Comparison

Work	Black/White -Box Access ¹	Run-time	Computation Cost	Time Overhead	Trigger Size Dependence	Access to Trojaned Samples	Detection Capability
Activation Clustering (AC) by Chen et al. [20]	White-box	No	Moderate	Moderate	No	Yes	F1 score nearly 100%
Neural Cleanse by Wang et al. [17]	Black-box	No	High	High	Yes	No	100%2
SentiNet by Chou et al. [11]	Black-box	Yes	Moderate	Moderate	Yes	No	5.74% FAR and 6.04% FRR
STRIP by us	Black-box	Yes	Low	Low	No	No	0.46% FAR and 1% FRR ³

STRIP Recap

- Run-time detection capability
- Operates in Black-box setting
- Plug-and-play compatible with pre-existing DNN systems in deployments.
- Easy to implement
- Robust against different variants of input-agnostic trojan attack

Is STRIP the Superman defense against Trojan Attack?

Is STRIP the Superman defense against Trojan Attack?

STRIP Bypass

Live Trojan Attacks on Deep Neural Networks

Robby Costales *1, Chengzhi Mao¹, Raphael Norwitz †2, Bryan Kim^{†3}, and Junfeng Yang¹

¹Columbia University, ²Nutanix, Inc., ³Stanford University

STRIP Bypass

Add two regularization to the loss function:

$$R_1 = \|\mu_{H(\hat{y}_p)} - \mu_{H_0}\|^2 / \mu_{H_0}$$

$$R_2 = ||\sigma_{H(\hat{y}_p)} - \sigma_{H_0}||^2 / \sigma_{H_0}$$

Loss Function

$$loss = H(y, \hat{y}) + \lambda_1 R_1 + \lambda_2 R_2$$

STRIP Bypass

Thanks for your attention