Bisher bei der Textanalyse...

Vektorisierung mit Wörtern als Features

- Reihenfolge nicht beachtet
- Zusammenhänge nicht betrachtet
- Semantik geht verloren

Vektorisierung mit N-Grammen als Features

- Reihenfolge beachtet
- Zusammenhänge in Form von Tupeln
- Abstraktion in Form von Semantik fehlt

Worte jeweils einzelne Entitäten

Kontext entscheidet über Semantik!

Distributional Hypothesis (Firth, 1957)

"You shall know a word by the company it keeps."

Beispiel: Was ist "tezgüino"? Was ähnelt "tezgüino"?

A bottle of _____ is on the table.

Everybody likes ____.

Don't have ____ before you drive.

We make ____ out of corn.

EISENSTEIN, JACOB: Natural Language Processing. Georgia Tech, 2018. Ch. 14

Gesucht: Semantischer Zusammenhang von Worten

Dazu anderes Modell notwendig

- Worte können nicht einfach durchnummeriert werden
- Nummerierung beliebig
- Enthält zu wenig Informationen
- "Abstände" sind unbedeutend

Darstellung der Worte als "Wortvektoren"

- Niedrigdimensionaler Vektorraum (100 300 Dimensionen)
- Abstände und Ähnlichkeiten definiert
- "Vektorgleichungen"
- Einfacher als neuronales Netz

Konstruktionsversuche

Naiv: 1-Hot-Encoding

- Bei jedem Vektor immer nur ein 1 bei dem entsprechenden Wort setzen
- Kontext geht verloren
- Kein Ähnlichkeitsmaß

Stattdessen

- Neuronales Netz auf 1-Hot-Vektor trainieren
- Entspricht einem "verteilten" Wortvektor
- Trainingsprozess ist aufwändig

Trainingsziel und Gütefunktion

Ziel: Kontext zwischen den Worten herstellen

CBOW-Modell

Aus Kontext Wort bestimmen

Skipgram-Modell

- Aus Wort Kontext bestimmen
- Langsamer, genauer bei seltenen Worten

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Eigenschaften der Wortvektoren

Ähnlichkeiten

- "Winkel" (Skalarprodukt) als Ähnlichkeitsmaß verwenden
- Semantische und syntaktische Ähnlichkeiten

Vektorgleichungen

 Beispiel: Differenzvektoren entsprechen dem Unterschied zwischen Mann und Frau

