Цифровое моделирование физикохимических систем

Раздел 4. Квантовохимическое моделирование

Лекция 4.5-4.6. Катализ. Кинетическое моделирование

Лектор: доцент кафедры информационных компьютерных технологий, к.т.н. Митричев Иван Игоревич Москва 2024

Гомогенный и гетерогенный катализ

Катализ – явление ускорения химической реакции в присутствии вещества – катализатора, который участвует в реакции, но не расходуется в ней.

Гомогенный катализ - катализатор и участники реакции находятся в одной фазе, обычно, жидкой. Реакция происходит в объеме фазы. Катализатором могут являться: комплексы металлов, ионы металлов, кислоты, основания, радикалы, атомы. Это **молекулярные катализаторы**.

Соответственно, используется закон действующих масс и концентрации веществ.

Стадии реакции: образование и разрыв связей с катализатором, перегруппировка.

Гетерогенный катализ - катализатор и участники реакции находятся в разных фазах, реакция происходит на границе раздела фаз.

Используется закон действующих поверхностей и доли покрытия поверхности катализатора адсорбатами (или концентрации частиц на поверхности катализатора).

Стадии гетерогенной реакции: адсорбция, поверхностная реакция, десорбция.

Что же делает катализатор?

Катализатор не меняет химического равновесия, но меняет путь реакции

Что же делает катализатор?

Катализатор не меняет химического равновесия, но меняет путь реакции

Каталитический цикл

Катализатор не расходуется...

А что же с ним происходит?

Энергетическая диаграмма для реакции

Ertl, G. Catalysis: Science and Technology; Anderson, J. R., Boudart, M., Eds.; SpringerVerlag: Berlin, 1983. Рис. по Barsuk D. Metallurgical Design of New Nanoporous Structures. PhD Thesis. Université Grenoble Alpes, 2017.

Реакция окисления СО: простая, да непростая

1)
$$O_2 + 2 Pt(*) \rightarrow 2 OPt(*)$$

2)
$$CO + Pt(*) \rightarrow COPt(*)$$

3) $OPt(*) + COPt(*) \rightarrow CO_2Pt(*) + Pt(*)$
4) $CO_2Pt(*) = CO_2 + Pt(*)$

4) $CO_2Pt(^*) = CO_2 + Pt(^*)$

Брутто-реакция — суммарная реакция от реагентов до продуктов, запись которой не включает промежуточные вещества. Уравнения брутто-реакций можно получить путем сложения стадий реакции с необходимыми коэффициентами для исключения промежуточных веществ.

$$CO + \frac{1}{2}O_2 \rightarrow^{KAT} CO_2$$

Гетерогенно-каталитическая реакция - пример

$$CO + \frac{1}{2}O_2 \stackrel{Pt}{\rightarrow} CO_2$$

Механизм реакции – детальная последовательность шагов, приводящих к реакции (каталитическому циклу). Может быть несколько возможных механизмов у одной реакции.

Гомогенная каталитическая реакция: трансферное гидрирование бензальдегида

Два иона водорода должны перейти от изопропанола к бензальдегиду

Реакция без катализатора не идет

Используем гомогенный катализатор – комплексное соединение иридия.

Молекулы катализатора плавают в растворе. К ним прикрепляются реагенты, открепляются продукты.

Р Поиск

^ ♣ 📮 Φ) ENG 23:37 10.11.2023

Гетерогенные катализаторы

Гетерогенные катализаторы – это обычно твердые вещества, металлы и их оксиды. К металлам, широко используемым в катализе относят благородные металлы (Pt, Pd, Rh, и, в меньшей степени – Au, Ru, Ir, Ag), переходные металлы (Ni, Co, Cu, Fe). Реагенты и продукты в гетерогенном катализе обычно находятся в газовой фазе, иногда – в жидкой. Гетерогенные катализаторы, как правило, имеют кристаллическую структуру и являются поликристаллами – то есть, их поверхность представлена различными кристаллографическими плоскостями. Кристаллы не идеальны и содержат различные дефекты.

Элементы кристаллографии. Решетки Браве

Сингония Тип решетки	Три- клинная	Моно- клинная	Ромби- ческая	Тетра- гональная	Триго- нальная (ромбоэд- рическая)	Гексаго- нальная	Куби- ческая
Примитивный	A B						
Базоцентри- рованный			2000				
Объемноцен- трированный							
Гранецентри- рованный							

Строение платины. Pt(111)

Трехмерная модель по ссылке

https://www.webelements.com/platinum/crystal_structure_pdb.html

Строение гетерогенных катализаторов

Реальные промышленные гетерогенные катализаторы — поликристаллы. В поликристалле присутствует большое число кристаллографических плоскостей (срезов кристалла под разными углами — в итоге получаем поверхности с разными расстояниями между атомами).

Реакция может идти где угодно — на некоторых плоскостях, на некоторого вида дефектах. Поэтому, изучение механизма реакции на поликристаллическом катализаторе так затруднительно.

Классические стадии гетерогенно-каталитической реакции

Адсорбция – прикрепление молекул к поверхности катализатора (при соударении).

Десорбция – удаление прикрепленных молекул с поверхности (за счет колебаний).

Поверхностная реакция — взаимодействие частиц на поверхности катализатора.

Микрокинетическое моделирование

Микрокинетическое моделирование — расчет скорости реакции с использованием детального (многостадийного) кинетического механизма.

Поверхность характеризуется числом Γ_{tot} активных центров на единицу активной поверхности катализатора, кмоль/м². Под одним молем здесь понимают $6,02\cdot10^{23}$ активных центров.

Закон действующих поверхностей

Для частиц на поверхности катализатора можно записать аналог закона действующих масс – закон действующих поверхностей:

$$R'_r = k'_r \prod_{j=1}^{N_j} \theta_j^{\nu'_{rj}} [c^{-1}]$$

 θ_j — степень (доля) покрытия поверхности j-м адсорбатом, от 0 до 1 (либо доля пустых активных центров).

Обобщенный закон действующих масс

В общем виде, з.д.м. (з.д.п.) дает рассчитать скорость стадии r

$$R_r = k_r \prod_{j=1}^{N_j} c_j^{\nu'_{rj}} \left[\frac{ ext{кмоль}}{ ext{м}^3 c} \right]$$
 — гомогенная или $\left[\frac{ ext{кмоль}}{ ext{м}^2 c} \right]$ — гетерогенная

 c_j — концентрация частиц j-го типа, в [кмоль/м²] для частиц, относящихся к поверхности катализатора, и в [кмоль/м³] для частиц в газовой или жидкой фазах,

 v'_{rj} — взятый по модулю стехиометрический коэффициент для частиц j-го типа как реагента стадии r (>0, если j-ая частица участвует в стадии r как реагент, 0, если не участвует),

 k_r – константа скорости r-й стадии [единицы соответствуют порядку реакции].

Константа скорости в микрокинетическом моделировании

Варианты уравнений

– уравнение Эйринга – Поляни (квантовая химия)

$$k_r = \frac{k_B T}{h} \exp\left(-\frac{\Delta G_r^{\ddagger}}{RT}\right)$$

– уравнение Аррениуса

$$k_r = A_r \exp\left(-\frac{E_r}{RT}\right)$$

- модифицированное уравнение Аррениуса

$$k_r = A_r T^{\beta_r} \exp\left(-\frac{E_r}{RT}\right)$$

 A_r - предэкспоненциальный множитель

 E_r - энергия активации

Для адсорбции используют немного другую формулу, вместо A_r стоит $\gamma_{0,r}$ — коэффициент вероятности адсорбции (sticking coefficient), показывающий, какая доля молекул адсорбируется при соударении с полностью незанятой поверхностью;

Как найти кинетические параметры реакций

1) экспериментальное нахождение кинетических параметров

Например, для адсорбции СО на платине: температурно-программируемая десорбция, позволяет оценить энергию связи вещества с поверхностью.

2) подбор/оценка параметров

Подбор параметров осуществляют так, чтобы данные моделирования совпали с данными экспериментов (обычно по конверсии реагентов).

3) определение кинетических параметров на основе квантовохимического моделирования.

Предмет последних лекций.

Остаток лекции посвящен методу 2.

mech_optimiz

Программный комплекс для подбора недостающих параметров в микрокинетических моделях каталитических реакций и анализа полученных моделей.

Автор — Митричев И.И. Язык написания — C++ Текущая версия — 5.2.

Мы будем рассматривать гетерогенно-каталитическую реакцию с реагентами и продуктами в газовой фазе.

Использовать модифицированное уравнение Аррениуса.

Документация

https://imitrichev.github.io/mech_optimiz/main_ru.html

Конверсия

Конверсия (или, степень превращения) – доля вещества-реагента, которая прореагировала.

$$X_A = \frac{N_A^0 - N_A}{N_A^0} \cdot 100\%$$

Вопрос: может ли конверсия быть отрицательной?

Критерии в mech_optimiz *

Задача поиска неизвестных параметров ставится как задача оптимизации — минимизации взвешенной суммы критериев.

Основной критерий (по конверсии)

$$\Phi_{conv} = \frac{\sum_{i=1..N_i} \sum_{u=1..N_u} (X_{iu,exp} - X_{iu,sim})^2}{N_i N_u}$$

где N_i — число экспериментальных замеров конверсии (степени превращения реагентов в продукты); N_u — число реагентов, по которым есть экспериментальные значения конверсии; $X_{iu,exp}$ — экспериментальное значение конверсии в %; $X_{iu,sim}$ — значение конверсии в %, полученное в результате моделирования.

Второй критерий (термодинамической согласованности) отражает степень несогласованности по стандартной энтальпии и энтропии реакции, вычисленных через константы скорости и через термодинамические свойства веществ, после нахождения наилучших оценок для стандартных изменения энтальпии и энтропии для веществ (используются полиномы NASA).

Модель реактора

Катализатор

В реактор насыпан катализатор как порошок.

Количество катализатора задается параметром a — отношением активной поверхности катализатора к объему реактора, м 2 /м 3 (surface-to-volume ratio);

$$a = \frac{S_{_{BET}} m_{_{KAT}}}{V_{\text{peaktop}}}$$

 $S_{_{BET}}$ — удельная поверхность катализатора, измеренная по методу БЭТ, м²/г $m_{_{\rm KAT}}$ — масса катализатора, г;

 $V_{\rm peaktop}$ — объем реактора, м³ (объем цилиндра — надо задать диаметр и длину).

Перевод объемного расхода в массовый

Обычно в экспериментальных данных по катализу указывают объемный расход смеси в мл/мин: например, 40 мл/мин STP. STP означает «при стандартных давлении и температуре». Недостаток задания объемного расхода как раз и есть зависимость от давления, температуры.

В mech_optimiz в конфигурационном файле задается массовый расход, кг/с. Он не зависит от условий, а только от состава газа (поэтому, если мольный состав на входе в реактор изменился, требуется пересчет).

Перевод единиц: применим закон для идеального газа. 1 моль = 22,4 л (то есть, занимает фиксированный объем). То есть, мольные доли равны объемным.

Пусть было 40 мл/мин смеси CH4 10% CO2 10% N2 80%.

Найдем среднюю молярную массу $\overline{M}=16{,}04*0{,}1+44{,}01*0{,}1+28{,}01*0{,}8=28{,}41$ г/моль

$$40 \text{ мл/мин} = \frac{40 \cdot 10^{-3}}{60} \text{ л/c} = \frac{40 \cdot 10^{-3}}{60 \cdot 22,4} \text{ моль/c} = \frac{40 \cdot 10^{-3} \cdot 28,41}{60 \cdot 22,4} \text{ г/c} = \frac{40 \cdot 10^{-6} \cdot 28,41}{60 \cdot 22,4} \text{ кг/c} = 8.46 \cdot 10^{-7} \text{ кг/c}$$

		мольная
Газ	г/моль	доля
CH4	16.04	0.1
CO2	44.01	0.1
N2	28.01	8.0

Итоговая формула

$$G[\kappa\Gamma/c] = \frac{Q\left[\frac{MJ}{MUH}\right] \cdot \overline{M}\left[\frac{\Gamma}{MOJL}\right] \cdot 10^{-6}}{60 \cdot 22.4}$$

mech.inp

```
Файл содержит реакции и полиномы NASA для газов (кроме инертов) и
 катализатора
 SDEN/2.66e-09/ - это \Gamma_{tot} = 2.66e-9 \text{ mol/cm2} (переведите единицы из варианта!!!)
!#7
Ni(S) + H20 => H20(S) 1.959185e-01 0.000000e+00 0.000000e+00
 STICK \longrightarrow Адсорбция \gamma_{0,r}
!#8
H2O(S) = Ni(S) + H2O 1.338647e + 12 0.0000000e + 00 6.040960e + 01
```


Пример: микрокинетическая модель паровой, окислительной и углекислотной конверсии метана на никелевом катализаторе

Авторы K. Delgado..., O. Deutschmann (2015). doi:10.3390/catal5020871 52 реакции, 15 частиц, наблюдаемых экспериментально Ni(S) H2O(S) H(S) COOH(S) OH(S) CO(S) C(S) CH3(S) CH2(S) CH(S) CH4(S) O(S) CO2(S) CHO(S) HCO(S)

Улучшена мной для увеличения термодинамической согласованности

Анализ заполнения поверхности катализатора (surface coverage analysis)

Как изменяется доля покрытия поверхности катализатора адсорбатами по длине реактора.

Паровая конверсия метана при 709,2 К

