CITY SIMULATIONS IN EXTRAORDINARY CIRCUMSTANCES

MID-TERM PRESENTATION GROUP 5 PRIII 3CD1

<u>INDEX</u>

- 1. INTRODUCTION
- 2. GOALS AND VALUE
- 3. STATE OF ART
- 4. METHODOLOGY
- 5. PROJECT PLAN
- 6. DATA
- 7. FINAL IMPACT
- 8. MODEL
- 9. REFERENCES

INTRODUCTION

Main goal

Prepare population in case of:

- Natural disasters.
- 2. Terrorist attacks.
- 3. War-related catastrophes.

¿How we will develop such goal?

Programming languages able to support agent-based modeling.

Model

- 1. Human Behaviour
- 2. Graph-like city modelling
- 3. Urban mobility

Data related topics

- 1. Geographical data
- 2. Mobility
- 3. Agent features

Innovative ideas

- 1. Emulate situations that cannot be studied in real life.
- 2. Studying how public transport could be helpful in a critical scenario.
- 3. Study everything on a local scale.
- 4. Adapting our work to certain Valencia-related events → Fallas

STATE OF ART

- Digital twins.

STATE OF ART

- Digital twins.

- Agent-based modeling.

STATE OF ART

- Digital twins.

- Agent-based modeling.

Base models

- All data has been obtained from Valencia City Council Open Data and Geoportal webpages.
- All files had to be available in .shp extension as so as to work with GAMA.

The data we've acquired is the following:

- Linear axes of the city's streets.
- Urban squares with its registered population by group ages.
- Direction of the circulation in the lanes of the municipality.
- Traffic in Valencia main ways (vehicles per hour).
- Cadastre with types of use of the different locations.
- Paths closed to traffic because of Fallas.

- More data may be used in order to have a closer twin of the conurbation.
- The data we have to analyse will be obtained by the model of the city, in order to optimise the actions we end up simulating.

DATA PREPARATION

Name	Туре	Unit	Explanation
nb_people	int	number	Number of people in the city
nb_turism	int	number	Number of tourists in the city
min work start	float	hour	Minimum start time
max work start	float	hour	Maximum start time

Name	Туре	Explanation	
industrial_buildings	list	A list of all industrial buildings	
recreative_buildings	list	A list of all recreative buildings	
turism_buildings	list	A list of all turism buildings	
residential_buildings	list	A list of all residential buildings	
host_buildings	list	A list of all host buildings	

Name	Explanation
speed	A random number between the parameters of min_speed_walk and max_speed_walk
start_work	A random number between the parameters of min_work_start and max_work_start
end_work	A random number between the parameters of min_work_end and max_work_end
living place	A building on the list of residential_buildings
working place	A building on the list of industrial_buildings
location	Any location in living_place
leisure	The list of recreative_buildings

Name	Explanation	
speed	A random number between the parameters of min_speed_walk and max_speed_walk	
hotel	A building on the list of host_buildings	
turism	The list of turism_buildings	
location	Any location in hotel	

Model

- Grey: residential buildings

- Blue: working centres

- Green: recreative areas

- Purple: tourist centres

Main components:

- Basic environment
- Agents

Graph:

- External data in shape files.
- Colored squares → buildings.
- Lines \rightarrow streets.

Agents:

- Emulated.
- Behaviour determined by both parameters in background & user interaction.
- Color determines type.

```
create locals number: nb_people {
    speed <- rnd(min_speed_walk, max_speed_walk);
    start_work <- rnd (min_work_start, max_work_start);
    end_work <- rnd(min_work_end, max_work_end);
    living_place <- one_of(residential_buildings);
    working_place <- one_of(industrial_buildings);
    objective <- "resting";
    location <- any_location_in (living_place);
    color <- #yellow;
    ocio <- recreative_buildings;
}</pre>
```

Execution (1):

- Each model written in a script.
- GAMA automatically pops up a green square with a play button.
- Experiment runs in a new window.

```
Topology,experiment 🖾
5 * Tags: spatial, topology, grid, graph
   model testTopology
 9⊖ global {
       graph c graph4;
       graph c graph6;
13
       graph c_graph8;
15
       int x_cells <- 10;
16
       int y_cells <- 10;
17
189
       init {
19
           c_graph4 <- grid_cells_to_graph(cell4);
           c graph6 <- grid cells to graph(cell6);
21
           c graph8 <- grid cells to graph(cell8);
           create dummy number:100:
24
25 }
   grid cell4 width: x_cells height: y_cells neighbors: 4 {}
   grid cell6 width: x_cells height: y_cells neighbors: 6 {}
   grid cell8 width: x cells height: y cells neighbors: 8 {}
31 species dummy { aspect default {draw shape color:#grey;} }
```


Execution (2):

- Besides the graphical representation, a statistics page will appear.
- Bar graph.
- Pie graph.

FINAL IMPACT

- Computational cost
- People's privacy
- Evacuation
- Mobility
- Risks

<u>REFERENCES</u>

Bankes, S. C. (2002). Agent-based modeling: A revolution? PNAS, 99(3), 7199-7200.

https://doi.org/10.1073/pnas.072081299

Batty, M. (2018, September 10). Digital twins. SAGE Journals, 5(5), 817-820.

https://doi.org/10.1177/2399808318796416

Castiglione, F. (2006). Agent based modeling. Scholarpedia, 1(10), 1562.

https://doi.org/10.4249/scholarpedia.1562

Data assimilation for Agent-Based Modelling (DUST). (n.d.).

https://urban-analytics.github.io/dust/index.html

Deren, L., Wenbo, Y., & Zhenfeng, S. (2021, March 29). Smart city based on digital twins.

Computational Urban Science, 1(4), 1-11. https://doi.org/10.1007/s43762-021-00005-y

Gama main page. (n.d.). GAMA-Platform · GAMA. https://gama-platform.org/

Helbing, D. (2012). Social Self-Organization: Agent-Based Simulations and Experiments to Study

Emergent Social Behavior. Springer.

Marroco, L., & Castelló Ferrer, E. (2019). Towards a Blockchained Agent-Based Slmulator for

Cities (T. Ishida, F. Zambonelli, I. Noda, & D. Lin, Eds.). Massively Multi-Agent Systems II:

International Workshop, MMAS 2018, Stockholm, Sweden, July 14, 2018, Revised Selected

Papers, 144-162. https://doi.org/10.1007/978-3-030-20937-7 10

Mitropoulos, V. (2019). Modeling and simulation of the movement of people in space in a city

environment (National Technical University of Athens, Ed.) [Bachelor thesis].

https://dspace.lib.ntua.gr/xmlui/handle/123456789/50344

Traffic model: network, demand and agent-based simulation for San Francisco or other cities.

(2018, September 11). GitHub. https://github.com/cb-cities/sf_abm

Wiesner, P., & Thamsen, L. (2021). 2021 IEEE 5th International Conference on Fog and Edge

Computing (ICFEC). IEEE. https://doi.org/10.1109/ICFEC51620.2021.00012