UNIT 10 Probability - Two Events

Activities

Activities

10.1	Experimental Probability
10.2	Two Coin Experiment
10.3	Two Dice Experiment
10.4	Tossing Three Coins
	Notes and Solutions (2 pages)

Experimental Probability

If this object is thrown, what do you think will be the probability of it landing on:

- (i) one of its square faces,
- (ii) one of its triangular faces?

Throw the object (at least 100 times) and estimate these probabilities.

How close are they to your original estimates?

Two Coin Experiment

When you toss two unbiased coins, the possible outcomes are as shown in the table. Each of these outcomes is equally likely.

		2nd Coin		
		Н	T	
1st	Н	НН	ΗТ	
Coin	Т	ТН	ТТ	

- 1. You toss the two coins 200 times.
 - (a) Explain why you would expect to get the outcome HH (2 heads) 50 times.
 - (b) How many times would you expect to get:
 - (i) 2 tails,
 - (ii) a tail and a head?
- 2. Toss the two coins 200 times and record your results in a table like this:

Outcome	Tally	Frequency
2 Heads		
1 Head and 1 Tail		
2 Tails		

3. Compare your experimental results with your predictions.

Two Dice Experiment

- 1. Two fair dice are thrown and the sum of the numbers obtained is noted.
 - (i) Complete the table opposite to show the possible outcomes:

••		2nd DICE					
		1	2	3	4	5	6
	1						
1st	2						
D	3						
I C E	4						
$\stackrel{\smile}{E}$	5						
	6						

(ii) Complete the following table:

Score	Probability	Number Expected in 180 Throws
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

- 2. Throw a pair of fair dice 180 times and record your total scores.
- 3. Compare your results with the expected numbers listed above.
- 4. Combine the results for your whole class, and compare the results obtained with your predictions.

Tossing Three Coins

Toss three unbiased coins and record the number of HEADS uppermost in a chart like the one opposite.

Carry out the experiment 40 times, and complete the frequency column in the tally chart.

No. of Heads	Tally	Frequency
0		
1		
2		
3		

You can find the theoretical probabilities by completing the tree diagram begun for you below:

- 1. What is the probability of obtaining exactly:
 - 3 HEADS,
- (b) 2 HEADS,
- (c) 1 HEAD, (d) no HEADS?
- 2. If you perform the experiment 40 times, what is the expected frequency for obtaining:
 - (a) 3 HEADS,
- (b) 2 HEADS,
- (c) 1 HEAD,
- (d) no HEAD?
- 3. Compare your theoretical frequencies with those you actually obtained.

ACTIVITIES 10.2 - 10.3

Notes and solutions given only where appropriate.

10.2 1.

(i) 50

(ii) 100

10.3 1.

(i)

		2nd DICE					
		1	2	3	4	5	6
	1	2	3	4	5	6	7
1st	2	3	4	5	6	7	8
D	3	4	5	6	7	8	9
I C E	4	5	6	7	8	9	10
$\stackrel{\circ}{E}$	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Score	Probability	Number Expected in 180 Throws
2	$\frac{1}{36}$	5
3	$\frac{2}{36} = \frac{1}{8}$	10
4	$\frac{3}{36} = \frac{1}{12}$	15
5	$\frac{4}{36} = \frac{1}{9}$	20
6	<u>5</u> 36	25
7	$\frac{6}{36} = \frac{1}{6}$	30
8	$\frac{5}{36}$	25
9	$\frac{4}{36} = \frac{1}{9}$	20
10	$\frac{3}{36} = \frac{1}{12}$	15
11	$\frac{2}{36} = \frac{1}{18}$	10
12	$\frac{1}{36}$	5

Notes for Solutions

10.4 1. (a) $\frac{1}{8}$ (b) $\frac{3}{8}$ (c) $\frac{3}{8}$ (d) $\frac{1}{8}$

2. (a) 5 (b) 15

(c) 15

(d) 5