LTSPICE PROJECT

INFORMATICA INDUSTRIALE

FABIO CIMMINO 807070 ROBERTO LOTTERIO 807500

INTRO

- L'obiettivo di questo progetto è realizzare un circuito sincrono che consente di sommare due numeri che verranno forniti da due registri sincroni.
- Il risultato finale della somma può essere salvato in un registro finale in base ad una delle seguenti modalità:
 - Il risultato viene sempre salvato nel registro d'uscita (MOD 0)
 - Il risultato viene salvato quando i numeri sommati sono uguali (MOD I)
 - Il risultato viene salvato solo se l'operazione di somma genera un CarryOut (MOD 2)
- Il circuito è dotato dei segnali di Preset, Reset ed Enable.

SPECIFICATIONS

- Dato che l'Adder deve poter operare in 3 modalità abbiamo deciso che il segnale esterno «Mod» ha risoluzione di 2 bit. Abbiamo quindi associato ogni modalità al corrispettivo numero binario su 2 bit. La modalità inutilizzata (Mod = 11) è stata gestita mantenendo l'ultimo risultato calcolato.
- L'utilizzo di Preset e Reset deve essere mutualmente esclusivo; in caso contrario manteniamo i numeri presenti nei registri di ingresso.

Signal	Direction	Resolution	Comments
ln_l	Input	l bit	Input data
In_2	Input	l bit	Input data
Out	Output	l bit	Output data
Sel	Input	l bit	Selection

MULTIPLEXER

REGISTRO A 2 BIT

Pseudo-codice del registro a 2 bit

```
IF( (Preset = 0 AND Reset = 0) OR (Preset = I AND Reset = I) ) then
    Num out = Num In
ELSIF (Preset = I) then
    Num out = I
ELSE
    Num out = 0
```

DIGITAL COMPARATOR

Pseudo-codice digital comparator

Signal	Direction	Resolution	Comments
Α	Input Number	2 bit	Input data
В	Input Number	2 bit	Input data
Y	Output	l bit	A=B

FULL ADDER X2

DECISION WRITE FUNCTION

Signal	Direction	Resolution	Comments
Carry out	Input	l bit	Input data
Comparator	Input	l bit	Input data
Mod	Input	2 bit	Input data
Scrivi/no scrivi	Output	l bit	(MOD=00) OR (MOD=01 AND COMP=1) OR (MOD=10 AND CARRY=1)

REGISTRO A 3 BIT

TOP VIEW CIRCUITO

TESTBENCH - MOD 0

TESTBENCH - MOD I

TESTBENCH – MOD 2

TESTBENCH – RISULTATI AL VARIARE DI MOD

TESTBENCH - ENABLE

TESTBENCH – PRESET E RESET

TESTBENCH – PRESET E RESET ATTIVI CONTEMPORANEAMENTE

TESTBENCH – FAULT MANAGEMENT MOD 4 (MOD 11)

