Unified Modeling Language

Szoftvertechnológia

Dr. Goldschmidt Balázs BME, IIT

Tartalom

- UML diagramok:
 - Szekvenciadiagram
 - Kommunikációs diagram
 - Interakciós áttekintő diagram

(2)

Dr. Simon Balázs, BME, IIT

Most következik: Hogyan tervezzük meg egy komponens belsejét? (Viselkedés)

4

Most következik:

Hogyan tervezzük meg egy komponens belsejét? (Viselkedés)

Strukturális UML diagramok:

Komponens- diagram	Telepítési diagram	Osztálydiagram	Csomagdiagram
Objektumdiagram	Összetett struktúradiagram	Profildiagram	

Viselkedési UML diagramok:

Use case diagram	Aktivitásdiagram	Szekvenciadiagram	Kommunikációs diagram
Állapotdiagram	Időzítődiagram	Interakciós áttekintő diagram	

< 5 **>**

Szekvenciadiagram (Sequence Diagram)

Szekvenciadiagram (Sequence Diagram)

- Interakciók grafikus ábrázolására szolgál
 - a rendszer dinamikus viselkedését mutatja
 - az interakciók a részvevők közötti információcserére fókuszálnak
- A szekvenciadiagram használható use case forgatókönyvek leírására, metódusok belső logikájának definiálására és egy protokollban történő üzenetváltások ábrázolására
- Egy szekvenciadiagram üzenetváltások egy lehetséges időbeli lefutását mutatja
 - egyszerű futássorozatok vannak ábrázolva
 - le lehet írni helyes és helytelen lefutásokat is
 - a nem ábrázolt lefutásokról nem mindig dönthető el egyértelműen, hogy helyesek vagy helytelenek

Dr. Simon Balázs, BME, IIT

Pacman: osztálydiagram részlet

Dr. Simon Balázs, BME, IIT

Pacman: objektumdiagram egy lehetséges kezdőállapotra

Életvonal (lifeline)

- Egy folyamat idővonalát ábrázolja, ahol az idő fentről lefelé telik
- Az életvonal feje nem objektum!
 - egy objektum (példány specifikáció) az csak egy pillanatkép a dinamikus példányról, amit ő modellez
 - a szekvenciadiagram nem egy pillanatkép, hanem egy időbeli folyamat
 - vagyis: a lifeline fejében nem kell aláhúzni a szöveget
 - akár interfész vagy absztrakt osztály is szerepelhet a lifeline fejében
 - de természetesen absztrakt függvények vagy interfészek függvényei csak hívhatók, de mivel nekik nincs implementációjuk, ők nem hívhatnak más függvényeket
- A név és a típus is opcionális, de legalább egyiknek szerepelnie kell

(18)

Szekvenciadiagram: szinkron üzenet

- Szinkron üzenet (synchronous message):
 - szinkron függvényhívás
 - az operáció neve és a paraméterek a nyíl felett szerepelnek
 - hatására egy futási specifikáció (execution specification) indul
 - a hívó megvárja, amíg a meghívott függvény véget ér
- Válasz üzenet:
 - a futási specifikáció végétől van rajzolva
 - a visszatérési érték a szaggatott vonal felett szerepel
- Futási specifikáció (execution specification):
 - egy függvényhívás törzsének futását jelöli, ekkor aktív a függvény
 - a programozási nyelvekben ez a stack frame

Szekvenciadiagram: aszinkron üzenet

- Aszinkron üzenet (asynchronous message), jelzés (signal):
 - aszinkron függvényhívás
 - a hívó nem várja meg a függvény lefutásának végét
 - egy másik szálat vagy folyamatot indít el
 - az operáció neve és a paraméterek a nyíl felett szerepelnek
 - hatására egy futási specifikáció (execution specification) indul
 - ami nem feltétlenül fér bele a hívó futási specifikációjának időtartamába
 - aszinkron üzenetnek nincs válaszüzenete
 - egy másik aszinkron hívással lehet visszahívást (callback) végezni

Szekvenciadiagram: létrehozás és megszüntetés

Létrehozás üzenet (create message): új életvonalat készít

Megszüntetés (destruction): befejez egy életvonalat

Szekvenciadiagram: alternatívák (alternatives)

Szekvenciadiagram: opció (option)

Feltételes viselkedés: opt

else nélküli if

```
C++ leképzés:
 class Bomb {
 private:
    int timer;
 public:
   void Tick() {
      --timer;
      if (timer == 0) {
        this.Explode();
   void Explode() { /*...*/ }
```

```
b: Bomb
              timer
                                         Combined
                                         fragment
                      tick()
                    opt
  Őrfeltétel -
                                      explode()
                      [timer==0]
Operandus
Java/C# leképzés:
  public class Bomb {
    private int timer;
    public void Tick() {
      --timer;
      if (timer == 0) {
         this.Explode();
    public void Explode() { /*...*/ }
```

Szekvenciadiagram: ciklus (loop)

Ismételt viselkedés: loop

```
C++ leképzés:
  class Bomb
  private:
    int timer;
  public:
    void Start()
      while(timer > 0)
        this.Tick();
      this.Explode();
    void Tick()
      --timer;
    void Explode() { /*...*/ }
 Dr Simon Balázs, BME, IIT
```

```
b: Bomb
           main
                                       Combined
                                       fragment
                    start()
                    loop
  Őrfeltétel
                                      tick()
                   > [timer > 0]
Operandus
                                     explode()
Java/C# leképzés:
 public class Bomb {
   private int timer;
   public void Start() {
     while(timer > 0) {
        this.Tick();
     this.Explode();
   public void Tick() {
     --timer;
   public void Explode() { /*...*/ }
```

Szekvenciadiagram: combined fragments

Rövidí- tés	Fajta	Jelentés
alt	Anternatívák	Viselkedés kiválasztása feltétel alapján: legfeljebb egy operandus lesz lefuttatva.
opt	Opció	Opcionális viselkedés feltétel alapján: vagy lefut az egyetlen operandus, vagy nem történik semmi.
break	Megszakítás	A tartalmazó fragment futása megszakad, és a maradék rész nem fut le.
par	Párhuzamos	Párhuzamosan futnak le az operandusok.
seq	Gyenge sorrend	Gyenge sorrendet határoz meg az operandusok között: csak az azonos lifeline-on belül kell tartani a sorrendet.
strict	Erős sorrend	Erős sorrendet határoz meg az operandusok között: a függőleges koordináta szigorúan meghatározza a sorrendet.

Szekvenciadiagram: combined fragments

Rövidí- tés	Fajta	Jelentés
neg	Negatív	Helytelen lefutásokat mutat. Minden ezektől eltérő lefutás helyesnek és lehetségesnek számít.
critical	Kritikus szakasz	Atomi műveletnek tekinthető a tartalmazó fragment szempontjából.
ignore	Rejtett üzenetek	Azt jelzi, hogy néhány üzenet nincs megmutatva az adott fragmentben.
consider	Fontos üzenetek	Azt jelzi, hogy néhány üzenet fontos az adott fragmentben, a többi üzenet rejtettnek tekinthető.
assert	Állítás	Egy állítást reprezentál. Csak az operandus szekvenciái a helyes folytatások, minden más folytatás helytelen.
loop	Ciklus	Ciklust reprezentál: az operandus ismételten le lesz futtatva.

Szekvenciadiagram: interakció használata (interaction use)

 A szekvenciadiagramok meghivatkozhatnak más szekvenciadiagramokat az interakció használata segítségével

Előnyök:

- modularitás: nagy diagramok feldarabolhatók több kisebb diagramra
- újrahasznosítás: több diagramon előforduló azonos viselkedés kiemelhető és meghivatkozható egy közös diagram alapján
- olvashatóság: magasabb szintű diagramok finomíthatók alacsonyabb szintű diagramok segítségével

Szekvenciadiagram: Thing moves

Dr. Simon Balázs, BME, IIT

Szekvenciadiagram: Interakció használata

Konzisztens és kezelhető szekvenciadiagramok

- Egy diagram pontosan egy viselkedést ábrázoljon
- Azonos típusú, de különböző objektumok külön lifeline-t kapjanak
- A hívónak ismernie kell a cél objektumot
 - egy objektumdiagramon ábrázolhatjuk a kezdeti ismeretségeket
- A hívott függvénynek elérhetőnek kell lennie a használt objektum ismert statikus típusa alapján
- A polimorfikus viselkedés leírására külön diagramokat rajzoljunk
- Ugyanaz a függvény ugyanúgy viselkedjen különböző diagramokon
- Tüntessük fel a paramétereket és a visszatérési értékeket is
- Az operációknak létezniük kell az osztálydiagramon

Informális szekvenciadiagram

- Informális szekvenciadiagramok:
 - enyhítenek az UML szigorú formalizmusán
 - nem pontosan követik az UML szabványt
 - de kiválóan alkalmasak ötletek felvázolására
- Tipikusan nem rajzoljuk meg a rendszer minden egyes apró részletét formális diagramokon
 - általában ez szükségtelen
 - sokszor időpazarló: a viselkedés leprogramozása egyszerűbb és gyorsabb, mint béna eszközökkel szekvenciadiagramokat rajzolgatni
 - szinkronban tartani őket a forráskóddal is időpazarló, és nehéz
- Általában az informális diagramok elegendő információt adnak a rendszer működéséről
 - ezeket könnyebb használni vázlatként
 - elegendő részletet adnak az áttekintő kép megértéséhez
 - csak akkor kell őket frissíteni a dokumentációban, ha az általuk mutatott viselkedést befolyásoló tervezői döntések megváltoznak
- Megjegyzés: a házi feladatban és a vizsgán, valamint a "Szoftver projekt labor" c. tárgyban részletes formális diagramokat várunk el
 - a célunk, hogy lássuk, sikerült-e elsajátítani az UML szabványt

〈31〉

Példa: Pénzfelvétel use case

Use case: Pénzfelvétel

Aktorok: Ügyfél, Bank

Főforgatókönyv:

- 1. Az Ügyfél átadja a bankkártyát és a pinkódot
- 2. Az ATM ellenőrzi, hogy a bankkártyához tartozik-e a pinkód
- 3. Az Ügyfél megadja, hogy mennyi pénzt venne fel
- 4. Az ATM megkérdezi a Bank-ot, hogy ez így rendben van-e
- 5. A Bank megerősíti, hogy mehet a tranzakció
- 6. Az ATM kiadja a bankkártyát
- 7. Az Ügyfél elveszi a bankkártyát
- 8. Az ATM kinyomtatja a bizonylatot és kiadja a pénzzel együtt
- 9. Az Ügyfél elveszi a pénzt és a bizonylatot

Alternatív forgatókönyv 5.A:

- 5.A.1. A Bank jelzi, hogy az Ügyfél számláján nincs elég pénz
- 5.A.2. Az ATM visszaadja a bankkártyát és hibaüzenetet ír
- 5.A.3. Az Ügyfél elveszi a bankkártyát

(34)

Informális szekvenciadiagram a pénzfelvételre

Strukturális UML diagramok:

Komponens- diagram	Telepítési diagram	Osztálydiagram	Csomagdiagram
Objektumdiagram	Összetett struktúradiagram	Profildiagram	

Viselkedési UML diagramok:

Use case diagram	Aktivitásdiagram	Szekvenciadiagram	Kommunikációs diagram
Állapotdiagram	Időzítődiagram	Interakciós áttekintő diagram	

(36)

Kommunikációs diagram (Communication diagram)

Kommunikációs diagram

- Interakciók grafikus ábrázolására szolgál
 - a rendszer dinamikus viselkedését mutatja
 - az interakciók a részvevők közötti információcserére fókuszálnak
 - az üzenetek sorrendjét hierarchikus számozás határozza meg
- Egy kommunikációs diagram olyan szekvenciadiagramnak felel meg, amelyen nincs strukturális jelölés (interakció használata, combined fragment)
 - a szekvenciadiagramok erőssége a logikai sorrend mutatása, az áttekintő képet azonban nehéz látni
 - a kommunikációs diagramok nagyon jó áttekintő képet adnak (szereplők és kapcsolataik), de nehéz követni a logikai sorrendet
 - a kommunikációs diagram olyan, mintha a szekvenciadiagramot felülről néznénk

(38)

Emlékeztető: a szörny megeszi a Pacmant

Kommunikációs diagram: a szörny megeszi a Pacmant

Strukturális UML diagramok:

Komponens- diagram	Telepítési diagram	Osztálydiagram	Csomagdiagram
Objektumdiagram	Összetett struktúradiagram	Profildiagram	

Viselkedési UML diagramok:

Use case diagram	Aktivitásdiagram	Szekvenciadiagram	Kommunikációs diagram
Állapotdiagram	Időzítődiagram	Interakciós áttekintő diagram	

Dr. Simon Balázs, BME, IIT

Interakciós áttekintő diagram (Interaction Overview Diagram)

Interakciós áttekintő diagram

- Az interakciós áttekintő diagramok az aktivitásdiagramok egyfajta változatai, amelyek az interakciók egymásutániságáról adnak áttekintő képet
- A különbség az aktivitásdiagramhoz képest: a csomópontok nem akciók, hanem interakciók és interakció használatok
 - Interakciók: inline szekvenciadiagram, kollaborációs diagram, vagy interakciós áttekintő diagram
 - Interakció használatok: referencia egy szekvenciadiagramra, kollaborációs diagramra vagy interakciós áttekintő diagramra

43

Korlátozások

- További különbségek az aktivitásdiagramokhoz képest:
 - csomópontok: interakciók vagy interakció használatok
 - feltételes combined fragment-ek megfelelője a döntési-merge csomópontpárok
 - a párhuzamos combined fragment-ek megfelelője a fork-join csomópontpárok
 - a ciklus combined fragment-ek megfelelője a gráfban létrehozott körök
 - a feltételes és párhuzamos részeknek hierarchikusan egymásba ágyazottnak kell lennie
 - az interakciós áttekintő diagramok is ugyanolyan interakciós keretben vannak, mint a szekvenciadiagramok és a kollaborációs diagramok

44

Interakciós áttekintő diagram példa: Pacman játék

Strukturális UML diagramok:

Komponens- diagram	Telepítési diagram	Osztálydiagram	Csomagdiagram
Objektumdiagram	Összetett struktúradiagram	Profildiagram	

Viselkedési UML diagramok:

Use case diagram	Aktivitásdiagram	Szekvenciadiagram	Kommunikációs diagram
Állapotdiagram	Időzítődiagram	Interakciós áttekintő diagram	

Dr. Simon Balázs, BME, IIT

Összefoglalás

- Interakciós grafikus reprezentációja
- A fókusz a részvevők közötti információcserén van
- UML diagramok:
 - Szekvenciadiagram: a logikai sorrendet mutatja, az áttekintő képet azonban nehéz látni
 - Kommunikációs diagram: nagyon jó áttekintő képet ad (szereplők és kapcsolataik), de nehéz követni a logikai sorrendet
 - Interakciós áttekintő diagram: az aktivitásdiagramok egyfajta változata, amely az interakciók egymásutániságáról ad áttekintő képet

48

Köszönöm a figyelmet!

