Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Oxidation of primary alcohols with DMP

Substrates:

1. 2-Methyl-3-buten-1-ol - available at Sigma-Aldrich

Products:

 $1. \ \, \hbox{$2$-methyl-but-$3$-enal}$

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.1.2 Condensation of esters with aldehydes

Substrates:

1. 2-methyl-but-3-enal

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.1.3 Ring-Closing Metathesis

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.1.4 Alkenylation-Acylation of enones and enoate esters

Substrates:

1. b-Bromostyrene - available at Sigma-Aldrich

2. CC1C=CC2COC(=O)C2=C1

3. Acetyl chloride - available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13033

2.2 Path 2

Score: 106.04

Figure 2: Outline of path 2

2.2.1 Double decarboxylative coupling or aryl halides with alcohols as latent nucleophiles

Substrates:

- 1. 2-Methyl-3-buten-1-ol available at Sigma-Aldrich
- 2. 3-Bromofuran available at Sigma-Aldrich

Products:

1. 3-(2-methyl-but-3-enyl)-furan

Protections: none

Reference: 10.1021/jacs.6b09533

Retrosynthesis ID: 10032259

2.2.2 Ozonolysis

Substrates:

1. 3-(2-methyl-but-3-enyl)-furan

Products:

1. CC(C=O)Cc1ccoc1

 $\textbf{Typical conditions:} \ \ O3. MeOH. CH2Cl2. PPh3 \ or \ Me2S. low \ temperature$

Protections: none

Reference: 10.1016/j.tet.2017.03.039

Retrosynthesis ID: 5074

2.2.3 Iodoolefination of aldehydes

1. Diiodomethane - available at Sigma-Aldrich

2. CC(C=O)Cc1ccoc1

Products:

1. $CC(/C=C\backslash I)Cc1ccoc1$

Typical conditions: 1.PPh3.2.NaN(TMS)2.HMPA.THF

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C00B00977F and WO2009033499

(p.25)

Retrosynthesis ID: 10001773

2.2.4 NBS-promoted oxidation of furans to lactones

Substrates:

1. $CC(/C=C\backslash I)Cc1ccoc1$

Products:

 $1. \ CC(/C{=}C\backslash I)CC1{=}CCOC1{=}O$

 ${\bf Typical\ conditions:\ NBS.MW.MeOH}$

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

2.2.5 Heck Reaction

Substrates:

1. $CC(/C=C\setminus I)CC1=CCOC1=O$

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.2.6 Alkenylation-Acylation of enones and enoate esters

Substrates:

1. b-Bromostyrene - available at Sigma-Aldrich

- $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13033

2.3 Path 3

Score: 106.04

Figure 3: Outline of path 3

2.3.1 Condensation of esters with aldehydes/ketones

Substrates:

1. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

2. 2-methyl-[1,3]dioxolane-2-carbaldehyde

Products:

1. C=CC1COC(=O)C1=CC1(C)OCCO1

Typical conditions: LDA.THF

Protections: none

Reference: 10.1021/op040006z AND 10.1016/j.bmcl.2005.10.104 AND

Retrosynthesis ID: 14983

2.3.2 Hydrolysis of ketals

Substrates:

 $1. \ C{=}CC1COC({=}O)C1{=}CC1(C)OCCO1$

Products:

 $1. \ C{=}CC1COC(=O)C1{=}CC(C){=}O$

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

2.3.3 Olefination of ketones followed by hydrolysis

Substrates:

- $1. \ C{=}CC1COC(=O)C1{=}CC(C){=}O$
- 2. triphenylphosphonium methoxymethylide

Products:

1. C=CC1COC(=O)C1=CC(C)C=O

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.3.4 Tebbe Olefination

Substrates:

1. C=CC1COC(=O)C1=CC(C)C=O

Products:

1. C=CC(C)C=C1C(=O)OCC1C=C

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.3.5 Alkenylation-Acylation of enones and enoate esters

Substrates:

 $1. \ C=CC(C)C=C1C(=O)OCC1C=C$

2. b-Bromostyrene - available at Sigma-Aldrich

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ C = CC(C)C(/C = C/c1ccccc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3 AND 10.1021/ja0320018 AND 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815

2.3.6 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC(C)C(/C{=}C/c1cccc1)C1(C(C){=}O)C({=}O)OCC1C{=}C$

Products:

 $1. \ \mathrm{CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1}$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and} \ \ \text{10.1021/acs.orglett.8b04003} \ \ \text{10.1021/acs.orglett.8b04003} \ \ \text{and} \ \ \text{10.1021/acs.orglett.8b04003} \ \ \text{and} \ \ \text{10.1021/acs.orglett.8b04003} \ \ \text{10.1021/ac$

 $10.1021/jo0264729 \ \ {\rm and} \ \ 10.1021/ja072334v \ \ {\rm and} \ \ 10.1002/ejoc.201001102$

Retrosynthesis ID: 31014187

2.4 Path 4

Score: 115.31

Figure 4: Outline of path 4

2.4.1 Tandem oxidation-esterification

Substrates:

 $1. \ \, \hbox{2-methylene-but-3-en-1-ol}$

Products:

1. 2-methylene-but-3-enoic acid methyl ester

Typical conditions: Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

Retrosynthesis ID: 25234

2.4.2 Aldehyde Formation

Substrates:

 $1. \ \, \hbox{$2$-methylene-but-$3$-enoic acid methyl ester}$

Products:

 $1.\ is oprenal$

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and 10.1021/j000222a054 and 10.1021/ja9934908 and 10.1021/j0902426z

Retrosynthesis ID: 28551

2.4.3 Condensation of esters with aldehydes

Substrates:

1. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

2. isoprenal

Products:

1. C=CC(=C)/C=C1/C(=O)OCC1C=C

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.4.4 Ring-Closing Metathesis

1. C=CC(=C)/C=C1/C(=O)OCC1C=C

Products:

 $1. \ C=C1C=CC2COC(=O)C2=C1$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.4.5 Heterogeneous Reduction of C=C Double Bond

Substrates:

1. C=C1C=CC2COC(=O)C2=C1

Products:

1. CC1C=CC2COC(=O)C2=C1

Typical conditions: H2. Wilkinson's Catalyst or other catalyst e.g. Crabtree's

Protections: none

Reference: DOI: 10.1021/jo00052a031 and 10.1021/jo050669u and 10.1016/j.tetlet.2010.11.078 and 10.1002/anie.198701901 and Patent: US2005/119242 A1, 2005 (page 39) and 10.1021/ja412342g

2.4.6 Alkenylation-Acylation of enones and enoate esters

Substrates:

- 1. b-Bromostyrene available at Sigma-Aldrich
- $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3

Retrosynthesis ID: 13033

2.5 Path 5

Score: 115.31

2.5.1 Reduction of nitriles to aldehydes

Figure 5: Outline of path 5

1. 2-Methyl-3-butenenitrile - available at Sigma-Aldrich

Products:

1. 2-methyl-but-3-enal

Typical conditions: DIBALH.DCM

Protections: none

Reference: 10.1016/j.bmc.2006.01.061 and 10.1016/j.tet.2012.07.022 and 10.1016/j.bmcl.2009.01.075 and 10.1016/j.bmcl.2007.09.081 and 10.1021/jo000502v

Retrosynthesis ID: 31406

2.5.2 Condensation of esters with aldehydes

Substrates:

- $1. \ \, \hbox{$2$-methyl-but-$3$-enal}$
- 2. 4-ethenyloxolan-2-one available at Sigma-Aldrich

Products:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

Retrosynthesis ID: 14981

2.5.3 Ring-Closing Metathesis

Substrates:

1. C=CC(C)/C=C1/C(=O)OCC1C=C

Products:

 $1. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.5.4 Alkenylation-Acylation of enones and enoate esters

Substrates:

- 1. b-Bromostyrene available at Sigma-Aldrich
- $2. \ \mathrm{CC1C}{=}\mathrm{CC2COC}(=\mathrm{O})\mathrm{C2}{=}\mathrm{C1}$
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

1. CC(=O)C12C(=O)OCC1C=CC(C)C2/C=C/c1ccccc1

 $\textbf{Typical conditions:}\ 1. RCuLi. 2. AcCl. HMPA$

Protections: none

Reference: 10.1246/cl.1989.1063 AND 10.1248/cpb.33.1815 AND 10.1021/ja0320018 AND 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3