AE 760AA: Micromechanics and multiscale modeling

Lecture 4 - Eshelby

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 4, 2019

schedule

- Feb 4 1D Micromechanics (HW1 Due)
- Feb 6 Mean-field
- Feb 11 Orientation Averaging
- Feb 13 Variational Calculus (HW2 Due)

outline

- eshelby
- aspect ratio

eshelby's equivalent inclusion

eshelby

- Eshelby formulated the exact elastic solution for an elliptical inclusion in an infinite matrix
- While this is not often useful, it serves as an exact analytical model to compare numerical results with
- It is also the base for more useful mean-field theories

eshelby's thought experiment

- Eshelby solution starts with a thought experiment
- Suppose we have a homogeneous, elastic body in equilibrium
- We now cut an ellipsoidal pieces out of that body and allow it to undergo a stress-free transformation, such as thermal expansion
- This stress-free transformation is referred to as the transformation strain, ϵ^T

eshelby's thought experiment

eshelby's thought experiment

- Now, we weld that expanded ellipsoid back into the original body
- Tractions need to be applied to force it to fit
- Once the stresses equilibrate, the ellipsoid has a constrained strain, ϵ^C

eshelby

- After equilibrium is reached the inclusion is still under a state of uniform strain
- The inclusion stress, σ_I can be found as:

$$\sigma_I = C_m (\epsilon^C - \epsilon^T)$$

Where C_m is the stiffness of the material.

- One of Eshelby's critical findings is that $\epsilon^C = S \epsilon^T$
- *S* is known as the Eshelby Tensor, and is a fourth-order tensor
- Function of shape and poisson's ratio
- It has been calculated exactly for ellipsoids, and numerically for other shapes

eshelby tensor

- *v* represents the matrix Poisson's ratio
- s is the aspect ratio of the fibers

$$ullet I_1 = rac{2s}{(s^2-1)^{rac{3}{2}}} (sig(s^2-1ig)^{rac{1}{2}} - \cosh^{-1}sig)$$

$$\bullet \ \ Q = \frac{3}{8(1-\nu)}$$

$$\bullet \ R = \frac{1 - 2\nu'}{8(1 - \nu)}$$

•
$$T=rac{Q(4-3I_1)}{3(s^2-1)}$$

•
$$I_3$$
=4-2 I_1

eshelby tensor

S_{ijkl}	Long Fibers	Short Fibers (Ellipsoids)
$S_{1111} = S_{2222}$	$rac{5- u}{8(1- u)}$	$Q + RI_1 + \frac{3T}{4}$
S_{3333}	O	$rac{4Q}{3}+RI_3+2s^2T$
$S_{1122} = S_{2211}$	$rac{-1{+}4 u}{8(1{-} u)}$	$rac{Q}{3} - RI_1 + rac{4T}{3}$
$S_{1133} = S_{2233}$	$rac{ u}{2(1{-} u)}$	$-R I_1 - s^2 T$
$S_{3311} = S_{3322}$	О	-R I ₃ -T
$egin{array}{l} S_{1212} &= S_{1221} \ &= S_{2112} = S_{2121} \end{array}$	$\frac{3{-}4\nu}{8(1{-}\nu)}$	$rac{Q}{3}+RI_1+rac{T}{4}$
$egin{array}{l} S_{1313} &= S_{1331} \ &= S_{3113} = S_{3131} \ &= S_{3232} = S_{3223} \ &= S_{2332} = S_{2323} \end{array}$	$\frac{1}{4}$	$2R-rac{I_1R}{2}-rac{1-s^2}{2}T$

S_{ijkl}	Long Fibers	Short Fibers (Ellipsoids)
all other S_{ijkl}	0	O

inclusions

- Eshelby's initial thought experiment was for a homogeneous material
- To consider a different type of inclusion, we need to relate the transformation strain between some fictitious ellipsoid of matrix material which would be equivalent to our inclusion.
- We will refer to the inclusion stiffness as C_f , the transformation strain in the matrix as ϵ^T , and the transformation strain in the inclusion ϵ^{T*} .

inclusions

• We are trying to find a transformation equivalent to our inclusion, so we set

$$\sigma_I = C_m(\epsilon^C - \epsilon^T) = C_f(\epsilon^C - \epsilon^{T*})$$

- ullet Now we substitute the relation $\epsilon^C = S \epsilon^T \ C_m (S-I) \epsilon^T = C_f (S \epsilon^T \epsilon^{T*})$
- We can solve this to find the transformation strain

$$\epsilon^T = \left[(C_f - C_m)S + C_m
ight]^{-1} C_f \epsilon^{T*}$$

stiffness

- Since the transformation strain is arbitrary, we can choose ϵ^T such that ϵ^{T*} is 0
- Now suppose we impose some strain, ϵ^0 on the composite
- The stress in the inclusion will be

$$\sigma_I = C_m(\epsilon^0 + \epsilon^C - \epsilon^T) = C_f(\epsilon^0 + \epsilon^C)$$

• Simplifying terms gives

$$\left(C_f-C_m
ight)\left(\epsilon^0+\epsilon^C
ight)=-C_m\epsilon^T$$

stiffness

- We now assume $\epsilon^0+\epsilon^C=ar{\epsilon}^f$ and multiply both sides by SC_m^{-1} $S(C_m)^{-1} \left(C_f-C_m\right) ar{\epsilon}^f = -\epsilon^C$
- Recall $S\epsilon^T = \epsilon^C$
- We can also write ϵ^C in terms of $\bar{\epsilon}^f$ $S(C_m)^{-1} \left(C_f C_m\right) \bar{\epsilon}^f = \epsilon^0 \bar{\epsilon}^f$

strain concentration tensor

- Finally, we can add $Iar{\epsilon}^f$ to both sides to find $[I+S(C_m)^{-1}\,(C_f-C_m)]ar{\epsilon}^f=\epsilon^0$
- We define the inverse of the left-hand side the Eshelby strainconcentration tensor

$$A^E = [I + S(C_m)^{-1} \left(C_f - C_m
ight)]^{-1}$$

• The stiffness can be calculated as

$$C = C_m + v_i (C_f - C_m) A^E \,$$

stiffness

- This stiffness calculation is valid for any number of inclusions
- However, it is only appropriate for very dilute concentrations (<1% volume fraction)
- This ensures that the assumption $\epsilon^0 + \epsilon^C = \bar{\epsilon}^f$

- Some studies have been done to evaluate Eshelby tensors for short fibers
- Long fibers are approximated by an ellipsoid with infinitely long major axis
- This is not appropriate for short fibers
- We could logically consider three different ellipsoids to represent a short fiber

considered, with minor considered, with major axis equal to fiber length and volume equal to fiber volume

- Steif and Hoysan investigated the effect of aspect ratio numerically
- Found that (a) and (c) were good for short fibers
- As fibers get longer, and as stiffness ratio of fiber to matrix increases,
 (a) gives best results
- (a) is also the easiest to use (same aspect ratio), so that is what is done in Eshelby-based models

fiber orientation

- With Eshelby (and derivative models), fibers at different orientations are modeled as a different inclusion
- Since the Eshelby tensor, S is a fourth-order tensor, we can treat it the same way as C
- Write it as 6x6 matrix, transform using R^{σ}

- As an example, let us consider a "laminate" of short fiber composites
- This is a good approximate for many 3D printed composites
- We have a $\pm 45^{\circ}$ laminate, with very short carbon fibers, s=15

- First we find the Eshelby tensor for s = 15
- We also need the matrix Poisson's ratio, v = 0.40
- We find the parameters **here**
- Then we use **this slide** to find S_{ijkl}
- Notice that this assumes fibers are pointed in the 3-direction

- Next, we rotate S_{ijkl} to find S^{45} and S^{*-45}
- Notice: the eshelby tensor, S accounts for rotation, we do not rotate \mathcal{C}_f
- So we find A^{45} and A^{-45}

$$A^{45} = \left[I + S^{45}(C_m)^{-1}(C_f - C_m)
ight]^{-1} \ A^{-45} = \left[I + S^{-45}(C_m)^{-1}(C_f - C_m)
ight]^{-1}$$

- ullet This gives our total stiffness calculation as $C=C_m+v^{45}(C_f-C_m)A^{45}+v^{-45}(C_f-C_m)A^{-45}$
- If we assume the volume fraction of fibers in our part is 20%
- And that there are equally many fibers in 45 and -45 directions
- Then $v^{45}\hat{a}_{y} = \hat{a}_{y} v^{-45} = 0.1$
- Note: Since this is not a dilute concentration, we would not expect this to be very accurate

example

• Python code for this example (with some typical values for C_m and C_f) is posted **here**

fiber orientation

fiber orientation

- While a laminate analogy works well for some cases, in general short fibers are not aligned in laminates
- It is not practical to model each possible fiber orientation as a separate inclusion
- Advani-Tucker introduced a tensorial representation of fiber orientation

fiber in spherical coordinates

fiber direction components

Component	Definition
p_1	$\sin heta \cos \phi$
p_2	$\sin heta \sin \phi$
p_3	$\cos \theta$

orientation tensor

- Within a given volume, a distribution of fibers can be defined by some orientation distribution function, $\psi(\theta, \phi)$.
- Advani and Tucker introduced tensor representations of fiber orientation distribution functions

$$a_{ij}=\oint p_i p_j \psi(p) dp$$

• And

$$a_{ijkl} = \oint p_i p_j p_k p_l \psi(p) dp$$

• Note: any order tensor may be defined in this manner, the orientation distribution function must be even, due to fiber symmetry, and thus any odd-ordered tensor will be zero.

orientation tensor

- It can be noted that some symmetries must exist due to the way the tensors are defined.
- In the second order tensor we have

$$a_{ij}=a_{ji}$$

• and in the fourth order tensor

$$a_{ijkl} = a_{jikl} = a_{kijl}$$

and so on for any permutation of i, j, k and l.

orientation tensor

- The orientation tensor is also normalized such that:
 - $a_{ii}=1$
- And any lower-order tensor can be expressed in terms of the next higher-order tensor, for example

$$a_{ijkk} = a_{ij}$$

example - 2D random

A visualization of a 2D random orientation distribution. This is expressed with the second-order tensor $a_{11} = a_{22} = 0.5$, with all other a_{ij} =0.

example - 3D random

A visualization of a 3D random orientation distribution. This is expressed with the second-order tensor $a_{11} = a_{22} = a_{33} = 1/3$, with all other $a_{ij} = 0$.

example - aligned 45

A visualization of a perfectly aligned, off-axis orientation distribution. This is expressed by rotating the tensor with $a_{11}=1$ and all other $a_{ij}=0$.

next class

- Orientation averaging
- Self-consistent and Mori-Tanaka methods
- Textbook pages 131-150