

MTConnect® Standard Guide: MTConnect and OPC/UA Companion Specification Version 2.0

Prepared for: MTConnect Institute

Prepared by: William Sobel

Prepared on: September 29, 2018

MTConnect® Specification and Materials

2

- AMT The Association For Manufacturing Technology ("AMT") owns the copyright in this MTConnect[®] Specification or Material. AMT grants to you a non-exclusive, non-transferable, revocable, non-sublicensable, fully-paid-up copyright
- 6 license to reproduce, copy and redistribute this MTConnect® Specification or Ma-
- 7 terial, provided that you may only copy or redistribute the MTConnect® Speci-
- 8 fication or Material in the form in which you received it, without modifications,
- 9 and with all copyright notices and other notices and disclaimers contained in the
- 10 MTConnect[®] Specification or Material.
- 11 If you intend to adopt or implement an MTConnect® Specification or Material
- in a product, whether hardware, software or firmware, which complies with an
- 13 MTConnect[®] Specification, you **SHALL** agree to the MTConnect[®] Specifica-
- 14 tion Implementer License Agreement ("Implementer License") or to the MTConnect®
- 15 Intellectual Property Policy and Agreement ("IP Policy"). The Implementer Li-
- cense and IP Policy each sets forth the license terms and other terms of use for
- MTConnect® Implementers to adopt or implement the MTConnect® Specifica-
- tions, including certain license rights covering necessary patent claims for that
- 19 purpose. These materials can be found at www.MTConnect.org, or by contact-
- 20 ing Paul Warndorf at mailto:pwarndorf@mtconnect.hyperoffice.
- 21 com.
- 22 MTConnect® Institute and AMT have no responsibility to identify patents, patent
- claims or patent applications which may relate to or be required to implement
- 24 a Specification, or to determine the legal validity or scope of any such patent
- 25 claims brought to their attention. Each MTConnect[®] Implementer is responsible
- 26 for securing its own licenses or rights to any patent or other intellectual property
- 27 rights that may be necessary for such use, and neither AMT nor MTConnect®
- 28 Institute have any obligation to secure any such rights.
- 29 This Material and all MTConnect® Specifications and Materials are provided "as
- 30 is" and MTConnect® Institute and AMT, and each of their respective members,
- officers, affiliates, sponsors and agents, make no representation or warranty of
- any kind relating to these materials or to any implementation of the MTConnect[®]
- 33 Specifications or Materials in any product, including, without limitation, any ex-
- 34 pressed or implied warranty of noninfringement, merchantability, or fitness for

particular purpose, or of the accuracy, reliability, or completeness of information contained herein. In no event shall MTConnect[®] Institute or AMT be liable to any user or implementer of MTConnect[®] Specifications or Materials for the cost of procuring substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, indirect, special or punitive damages or other direct damages, whether under contract, tort, warranty or otherwise, arising in any way out of access, use or inability to use the MTConnect[®] Specification or other MTConnect[®] Materials, whether or not they had advance notice of the possibility of such damage.

Table of Contents

45	1	Intro	oductio	n	1
46		1.1	Overvi	ew	1
	2	Т			1
47	2	Type		an auto	1
48		2.1	-	onents	1
49			2.1.1	Defintion of Channel Type	3
50			2.1.2	Defintion of DescriptionType	4
51			2.1.2	2.1.2.1 Operations	5
52			2.1.3	Defintion of MTComponentType	5
53			2.1.4	Defintion of MTCompositionType	6
54			2.1.5	Defintion of MTConfigurationType	7
55			2.1.6	Defintion of MTDeviceType	8
56				2.1.6.1 Operations	9
57			2.1.7	Defintion of SensorConfigurationType	9
58			2.1.8	Defintion of {Component} Type	10
59			2.1.9	Defintion of {Composition} Type	11
60		2.2	Data It	ems	12
61			2.2.1	Defintion of AssetChangedType	14
62			2.2.2	Defintion of AssetEventType	15
63			2.2.3	Defintion of AssetRemovedType	16
64			2.2.4	Defintion of MTDataItemType	17
65				2.2.4.1 Operations	18
66			2.2.5	Defintion of MTEnumeratedEventType	18
67			2.2.6	Defintion of MTFilterType	19
68				2.2.6.1 Operations	20
69			2.2.7	Defintion of MTMessageType	20
70			2.2.8	Defintion of MTNumericDataItemType	21
71				2.2.8.1 Operations	22
72			2.2.9	Defintion of MTNumericEventType	22
73			2.2.10	Defintion of MTSampleType	23
74				Defintion of MTStringEventType	24
75					25
76				Defintion of PeriodFilterType	26
77				Definition of {DataItem} Type	27
78		2.3		ions	28
70				Definition of MTF values involved in the Condition Type	29

80		2.3.2	Defintion of MTNonExclusiveConditionType 30
81		2.3.3	Defintion of {ConditionClass} Type 31
82	2.4	Factori	es
83		2.4.1	Defintion of «Object Factory» ComponentObjectFactory 33
84			2.4.1.1 Operations
85		2.4.2	Defintion of «Type Factory» ComponentTypeFactory 33
86			2.4.2.1 Operations
87		2.4.3	Defintion of «Object Factory» CompositionObjectFactory 34
88			2.4.3.1 Operations
89		2.4.4	Defintion of «Type Factory» CompositionTypeFactory 34
90			2.4.4.1 Operations
91		2.4.5	Defintion of «Type Factory» ConditionClassFactory 35
92			2.4.5.1 Operations
93		2.4.6	Defintion of «Object Factory» ConditionObjectFactory 35
94			2.4.6.1 Operations
95		2.4.7	Defintion of «Object Factory» DataItemObjectFactory 35
96			2.4.7.1 Operations
97		2.4.8	Defintion of «Type Factory» DataItemTypeFactory . 36
98			2.4.8.1 Operations
99		2.4.9	Defintion of «Object Factory» DeviceObjectFactory 37
100			2.4.9.1 Operations
101		2.4.10	Defintion of «Object Factory» FilterObjectFactory 38
102			2.4.10.1 Operations
103		2.4.11	Defintion of «Object Factory» ObjectFactory 38
104			2.4.11.1 Operations
105		2.4.12	Defintion of «Object Factory» SensorChannelObjectFactory 38
106			2.4.12.1 Operations
107		2.4.13	Defintion of «Object Factory» SensorObjectFactory 39
108			2.4.13.1 Operations
109		2.4.14	Defintion of «Type Factory» TypeFactory 39
110			2.4.14.1 Operations
111	2.5	MTCo	nnect Device Profile
112		2.5.1	Defintion of Dynamic Type 40
113		2.5.2	Defintion of MTConnect XML 40
114		2.5.3	Defintion of MTRelationshipType 40
115		2.5.4	Defintion of Mixes In 40
116		2.5.5	Defintion of Object Factory 41
117		2.5.6	Defintion of Type Factory 41

September 29, 2018

118	2.5.7	Defintion of bind	41
119	2.5.8	Defintion of constrains	41
120	2.5.9	Defintion of mixin	41
121	2.5.10	Defintion of use	41

122 List of Figures

123	Figure 1: Components Diagram	2
124	Figure 2: Data Items Diagram	3
125	Figure 3: Conditions Diagram	9
126	Figure 4: Factories Diagram	2
127	Figure 5: MTConnect Device Profile Diagram	.(

1 Introduction

- 128 The following conventions will be used throughout the document to provide a
- clear and consistent understanding of the use of each type of data and information used to define the MTConnect[®] standard and associated data.

Overview 1.1

131 Overview of the standards...

Types

2.1 **Components**

Figure 1: Components Diagram

The Components documents the Component models and the owned objects.

2.1.1 Defintion of ChannelType

Table 1: Channel Type Definition

Attribute	Value	Value						
BrowseName	ChannelTyp	e						
IsAbstract	False							
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of Bas	eObjectType ((See OPCUA Docum	nentation)					
HasProperty	Variable	Number	Int32	PropertyType	Manditory			
HasProperty	Variable	Name	String	PropertyType	Optional			
HasProperty	Variable	MTDescription	String	PropertyType	Optional			
HasProperty	Variable	CalibrationDate	UtcTime	PropertyType	Optional			
HasProperty	Variable	NextCalibrationDa	teUtcTime	PropertyType	Optional			
HasProperty	Variable	CalibrationInitials	String	PropertyType	Optional			

2.1.2 Defintion of DescriptionType

- 133 The desription provides some general information about the manufacture and se-
- 134 rial number of the component. In the XML, the CDATA is freeform text that is
- 135 represented in the Data Property of the Description Object. The description is
- 136 related to the component with the OPC/UA HasComponent relationship.

Table 2: DescriptionType Definition

Attribute	Value							
BrowseName	Description'	DescriptionType						
IsAbstract	False							
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of Bas	eObjectType (See OPCUA Docur	nentation)					
HasProperty	Variable	Station	String	PropertyType	Optional			
HasProperty	Variable	SerialNumber	String	PropertyType	Optional			
HasProperty	Variable	Manufacturer	String	PropertyType	Optional			
HasProperty	Variable	Data	String	PropertyType	Optional			

137 2.1.2.1 Operations

- deriveBrowseName(element)
- 139 Specification: "Description"
- deriveNodeId(element)
- Specification: concat (self.parent.NodeId, BrowseName)

2.1.3 Defintion of MTComponentType

- 142 The base Component Type from which all MTConnect Components are derived.
- 143 The component type factory is used to create the specific OPC/UA Types as sub-
- 144 types of the MTConnect MTComponentType. The component types will be
- created once for all Component objects of that type based on the QName of the
- 146 MTConnect XML element.
- The object factory will instantiate the Component Objects and insert them into
- 148 the Components folder with a browse name of the Component QName and the
- 149 name element if specified surrounded by square brackets, []. For example if the
- 150 MTConnect Element is:
- 151 <Linear name='X'>...</...>

 Table 3:
 MTComponent Type Definition

Attribute	Value							
BrowseName	MTCompon	MTComponentType						
IsAbstract	True							
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
HasProperty	Variable	XmlId	IdType	PropertyType	Manditory			
HasProperty	Variable	Name	String	PropertyType	Optional			
HasProperty	Variable	NativeName	String	PropertyType	Optional			
HasProperty	Variable	Uuid	String	PropertyType	Optional			
HasProperty	Variable	SampleRate	float	PropertyType	Optional			
HasProperty	Variable	SampleInterval	float	PropertyType	Optional			
HasComponent	Object	Description		DescriptionType	Optional			
HasComponent	Object	Configuration		MTConfiguration	T@ppetional			
Organizes	Object	Components	MTComponentType	FolderType	Optional			
Organizes	Object	Compositions	MTCompositionType	FolderType	Optional			
HasProperty	Variable	<dynamic></dynamic>	DataItemType	<dynamic></dynamic>	Optional			
HasProperty	Variable	<dynamic></dynamic>	BaseObjectType	<dynamic></dynamic>	Optional			
Organizes	Object	Conditions	MTNonExclusiveCond	itFooldToypEype	Optional			
HasProperty	Variable	<dynamic></dynamic>	DataItemType	<dynamic></dynamic>	Manditory			

- 152 The OPC/UA Object with browse name Linear[X] will be created with the
- 153 HasTypeDefinition referencing the Linear OPC/UA type.
- 154 The meta data for the component and it's relationships are static. The dynamic
- data will be represented using the *OPC/UA Part 8*.

2.1.4 Defintion of MTCompositionType

 Table 4: MTCompositionType Definition

Attribute	Value							
BrowseName	MTCompos	MTCompositionType						
IsAbstract	True	True						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of Bas	eObjectType ((See OPCUA Docum	nentation)					
HasProperty	Variable	Uuid	String	PropertyType	Optional			
HasProperty	Variable	Name	String	PropertyType	Optional			
HasProperty	Variable	MTDescription	String	PropertyType	Optional			
NonHierarchia	R Offejært ceTyp	ecomposition	DataItemType	NonHierarchialRo	ef erptionTil ype			

2.1.5 Defintion of MTConfigurationType

 Table 5:
 MTConfigurationType Definition

Attribute	Value	Value						
BrowseName	MTConfigu	MTConfigurationType						
IsAbstract	True	True						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of BaseObjectType (See OPCUA Documentation)								

2.1.6 Defintion of MTDeviceType

- 156 The MTDevice is a special type whose object will be the root of the device graph.
- 157 The Device uses the component type factory and the component object factories
- to create each of the first level components.
- The compositions, relationships, and data items are then recursively created as
- one decendes the MTConnect information model.

Table 6: MTDeviceType Definition

Attribute	Value	Value						
BrowseName	MTDeviceT	MTDeviceType						
IsAbstract	False	False						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of MTComponentType (see section 2.1.3)								
HasProperty	Variable	Version	String	PropertyType	Optional			
HasProperty	Variable	Iso841Class	String	PropertyType	Optional			

161 **2.1.6.1 Operations**

- deriveBrowseName(element)
- Specification: self.name
- deriveNodeId(element)
- Specification: self.uuid

2.1.7 Defintion of SensorConfigurationType

- 166 The SensorConfiguration browse name will be created as an Object relationship
- with the parent component.

Table 7: SensorConfigurationType Definition

Attribute	Value							
BrowseName	SensorConfi	gurationType						
IsAbstract	False							
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of MT	Configuration	Type (see section 2.1	1.5)					
HasProperty	Variable	FirwareVersion	String	PropertyType	Manditory			
HasProperty	Variable	CalibrationDate	UtcTime	PropertyType	Optional			
HasProperty	Variable	able NextCalibrationDateUtcTime PropertyType Op						
HasProperty	Variable	CalibrationInitials	String	PropertyType	Optional			
Organizes	Object	Channels	ChannelType	FolderType	Optional			

2.1.8 Defintion of {Component} Type

 Table 8: {Component} Type Definition

Attribute	Value	Value					
BrowseName	Component	ComponentType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of MTComponentType (see section 2.1.3)							

2.1.9 Defintion of {Composition} Type

 Table 9: {Composition} Type Definition

Attribute	Value	Value					
BrowseName	Composition	CompositionType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of MT	Subtype of MTCompositionType (see section 2.1.4)						

2.2 Data Items

Figure 2: Data Items Diagram

2.2.1 Defintion of AssetChangedType

 $\textbf{Table 10:} \ \texttt{AssetChangedType Definition}$

Attribute	Value	Value					
BrowseName	AssetChang	AssetChangedType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of Ass	etEventType (see section 2.2.2)					

MTConnect[®] Guide: Style Guide - Version 2.0

2.2.2 Defintion of AssetEventType

 $\textbf{Table 11:} \ \texttt{AssetEventType Definition}$

Attribute	Value	Value						
BrowseName	AssetEvent	AssetEventType						
IsAbstract	False	False						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of MT	StringEventTy	pe (see section 2.2.	11)					
HasProperty	Variable	AssetType	String	PropertyType	Manditory			

 $MTConnect^{\circledR}$ Guide: Style Guide - Version 2.0

2.2.3 Defintion of AssetRemovedType

 $\textbf{Table 12:} \ \texttt{AssetRemovedType} \ \textbf{Definition}$

Attribute	Value	Value					
BrowseName	AssetRemov	AssetRemovedType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of Ass	etEventType (see section 2.2.2)					

MTConnect[®] Guide: Style Guide - Version 2.0

2.2.4 Defintion of MTDataItemType

- The data item mixin will inject the properties and the methods into the related
- classes. This facility is similar to the Ruby module mixin or the Scala traits.

Table 13: MTDataItemType Definition

Attribute	Value				
BrowseName	MTDataIten	пТуре			
IsAbstract	False				
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule
HasProperty	Variable	SourceName	String	PropertyType	Optional
HasProperty	Variable	StreamRate	Double	PropertyType	Optional
HasProperty	Variable	SampleRate	Double	PropertyType	Optional
HasProperty	Variable	Representation	RepresentationType	PropertyType	Optional
HasProperty	Variable	Category	MTCategoryType	PropertyType	Manditory
HasProperty	Variable	<dynamic></dynamic>	MTFilterType	<dynamic></dynamic>	Optional
HasComponent	Object	source		BaseObjectType	Optional

170 **2.2.4.1 Operations**

- deriveSourceName(element)
- Specification: self.Source.CDATA
- Documentation: Derive the source name from the Source element CDATA.
- This will represent the alternative long name for the data item's source.
- 175 getStatusCode()
- Documentation: The OPC/UA status code will be created using the follow-
- ing process:
- If the value of the data item is UNAVAILABLE a status code of Uncertain_NoCommunicationLastUsable
- When a reset trigger is specified, new Good_ status codes will be created. See ResetTrigger enumeration.

2.2.5 Defintion of MTEnumeratedEventType

- All Data Items with Category EVENT having a Controlled Vocabularies will be
- of this type. Otherwise, MTString

 $\textbf{Table 14:} \ \texttt{MTEnumeratedEventType} \ \textbf{Definition}$

Attribute	Value	Value					
BrowseName	MTEnumera	MTEnumeratedEventType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of Mul	ltiStateValueD	DiscreteType (See OF	CUA Documentation)				
HasProperty	Variable	ConstrainedValues	EnumValuesType	PropertyType	Manditory		

2.2.6 Defintion of MTFilterType

184 These features will be subsumed by the OPC/UA client filtering directives.

Table 15: MTFilterType Definition

Attribute	Value						
BrowseName	MTFilterTy	MTFilterType					
IsAbstract	True	True					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
HasProperty	Variable	Value	float	PropertyType	Manditory		

185 **2.2.6.1 Operations**

```
    deriveBrowseName (element)
    Specification: concat (parent.BrowseName, pascalCase (element.type))
    deriveNodeId (element)
    Specification: concat (parent.NodeId, pascalCase (element.type))
```

2.2.7 Defintion of MTMessageType

 Table 16:
 MTMessageType Definition

Attribute	Value	Value						
BrowseName	MTMessage	MTMessageType						
IsAbstract	False	False						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling			
					Rule			
Subtype of MT	StringEventTy	pe (see section 2.2.			0			

2.2.8 Defintion of MTNumericDataItemType

- 190 These are the additional attributes that are relevent to numeric data items. The
- 191 factory will evaluate these values and will set the engineering units and the range
- 192 associated with the parent entity.

Table 17: MTNumericDataItemType Definition

Attribute	Value	Value						
BrowseName	MTNumerio	MTNumericDataItemType						
IsAbstract	False	False						
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of MT	DataItemType	e (see section 2.2.4)						
HasProperty	Variable	SignificantDigits	UInt16	PropertyType	Optional			
HasProperty	Variable	Statistic	MTStatisticType	PropertyType	Optional			
HasProperty	Variable	Units	MTUnits	PropertyType	Optional			
HasProperty	Variable	NativeUnits	MTNativeUnitsType	PropertyType	Optional			
HasProperty	Variable	CoordinateSystem	MTCoordinateSystem?	Гу Рв ореrtyТуре	Optional			
HasProperty	Variable	InitialValue	Double	PropertyType	Optional			
HasProperty	Variable	ResetTrigger	DataItemResetValueTy	p ₽ ropertyType	Optional			
HasProperty	Variable	Nominal	Double	PropertyType	Optional			

193 **2.2.8.1 Operations**

- deriveEngineeringUnits(units)
 Specification: EngineeringUnits <- self.units
- deriveEURange (constraints)
- Specification: EURange.Low <- self.Constraints.Minimum EURange.High
- 198 <- self.Constraints.Maximum
- Documentation: Uses the MTConnect Constraints element if present to de-
- rive the minimum and maximum values for the numeric values. This applies
- to both the Numeric Event and the Sample types.

2.2.9 Defintion of MTNumericEventType

202 All data items with category EVENT and a numeric value.

 $\textbf{Table 18:} \ \texttt{MTNumericEventType Definition}$

Attribute	Value	Value						
BrowseName	MTNumerio	MTNumericEventType						
IsAbstract	False	False						
References	NodeClass	NodeClass BrowseName DataType TypeDefinition Modeling						
					Rule			
Subtype of Dat	aItemType (Se	ee OPCUA Documen	ntation)					
HasProperty	Variable	EURange	Range	PropertyType	Optional			
HasProperty	Variable	EngineeringUnits	EUInformation	PropertyType	Optional			

2.2.10 Defintion of MTSampleType

203 Data Items with category SAMPLE

 Table 19:
 MTSampleType Definition

Attribute	Value	Value						
BrowseName	MTSampleT	MTSampleType						
IsAbstract	False							
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule			
Subtype of AnalogItemType (See OPCUA Documentation)								

2.2.11 Defintion of MTStringEventType

- 204 All data items with category EVENT where the data is freeform text. The set_-
- 205 data_type constraint derives makes the data type a string for this type.

Table 20: MTStringEventType Definition

Attribute	Value						
BrowseName	MTStringEv	MTStringEventType					
IsAbstract	False	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule		
Subtype of Bas	Subtype of BaseDataVariableType (See OPCUA Documentation)						

 $MTConnect^{\mathbb{R}}$ Guide: Style Guide - Version 2.0

2.2.12 Defintion of MinimumDeltaFilterType

Table 21: MinimumDeltaFilterType Definition

Attribute	Value				
BrowseName	MinimumDeltaFilterType				
IsAbstract	False				
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule
Subtype of MTFilterType (see section 2.2.6)					

MTConnect[®] Guide: Style Guide - Version 2.0

2.2.13 Defintion of PeriodFilterType

 Table 22:
 PeriodFilterType Definition

Attribute	Value				
BrowseName	PeriodFilterType				
IsAbstract	False				
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule
Subtype of MTFilterType (see section 2.2.6)					

MTConnect[®] Guide: Style Guide - Version 2.0

2.2.14 Defintion of {DataItem} Type

- For each DataItem the Sub Type, and the Type will be composed to be the HasTypeDefinition
- 207 relationship of the object. The BrowseName will also include the Composition
- 208 Type if a composition Id is provided.

Table 23: {DataItem} Type Definition

Attribute	Value					
BrowseName	DataItemType					
IsAbstract	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule	
Subtype of MTNumericEventType (see section 2.2.9)						

2.3 Conditions

Figure 3: Conditions Diagram

2.3.1 Defintion of MTExclusiveLimitConditionType

Table 24: MTExclusiveLimitConditionType Definition

Attribute	Value					
BrowseName	MTExclusiveLimitConditionType					
IsAbstract	False					
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule	
Subtype of ExclusiveLimitAlarmType (See OPCUA Documentation)						

2.3.2 Defintion of MTNonExclusiveConditionType

Table 25: MTNonExclusiveConditionType Definition

Attribute	Value				
BrowseName	MTNonExclusiveConditionType				
IsAbstract	False				
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule
Subtype of NonEclusiveLimitAlarmType (See OPCUA Documentation)					

2.3.3 Defintion of {ConditionClass} Type

 $\textbf{Table 26:} \ \{\texttt{ConditionClass}\} \\ \texttt{Type Definition}$

Attribute	Value				
BrowseName	ConditionClassType				
IsAbstract	False				
References	NodeClass	BrowseName	DataType	TypeDefinition	Modeling Rule
Subtype of SystemConditionClassType (See OPCUA Documentation)					

MTConnect[®] Guide: Style Guide - Version 2.0

2.4 Factories

Figure 4: Factories Diagram

- 209 The factories are not part of the OPC/UA information model. They are a set
- 210 of helper classes that are used to create dynamic types and objects. Since the
- 211 MTConnect information model can be layered on top of the OPC/UA abstrations,
- 212 the factories provide the rules for creating the browse and display names for each
- 213 type.
- 214 The factories also create dynamic objects when required for variables of various
- classes when they are required, such as the Data Items and the Components. Some
- of the relationships are more complex since they require a dynamic super-type
- relationship that relies on the correct placement of the MTConnect elements to be
- 218 correctly represented using the OPC/UA base types.
- 219 This is especially evident when mapping the DataItems and the Conditions to the
- 220 MTConnect Information Models and providing sufficent definition to allow for
- 221 unambiguous implementation.

2.4.1 Defintion of «Object Factory» ComponentObjectFactory

222 **2.4.1.1 Operations**

```
e deriveBrowseName(element)

Specification: concat (element.QName, (if self.name.notEmpty())

then concat('[', self.name, ']')) else " endif))
```

• deriveNodeId(element)

Specification: concat (self.findDevice().uuid, element.id)

2.4.2 Defintion of «Type Factory» ComponentTypeFactory

- 228 The 'ComponentTypeFactory' creates component types using the MTConnect
- 229 XML element as an input. The factory takes the 'QName' (or qualified name)
- 230 of the XML element and then appends 'Type'. For example an '<Controller
- 231 id='...'></...>' element will create an OPC/UA 'ControllerType' type definition
- as an extension of the base 'MTControllerType'.

- 233 Currently there is no additional abstractions or super types required by the com-
- panion specification. The types will be a single level where each Component is a
- sub-type of the base 'MTComponentType'.

236 **2.4.2.1 Operations**

- deriveTypeName(element)
- Specification: derive: Component <- element.QName
- Documentation: The QName of the element for the component will be used
- to derive the type of the node.

2.4.3 Defintion of «Object Factory» CompositionObjectFactory

241 2.4.3.1 Operations

- deriveNodeId(element)
- Specification: concat (self.findDevice().uuid, element.id)

2.4.4 Defintion of «Type Factory» CompositionTypeFactory

247 **2.4.4.1 Operations**

- deriveTypeName(element)
- Specification: derive: Composition <- pascalCase(element.type)
- Documentation: The type for the composition will be created using the pas-
- cal case of the 'type' from the composition element.

2.4.5 Defintion of «Type Factory» ConditionClassFactory

252 **2.4.5.1 Operations**

- deriveTypeName(element)
- Documentation: Create condition classes based on the OPC/UA three con-
- dition types.

2.4.6 Defintion of «Object Factory» ConditionObjectFactory

256 **2.4.6.1 Operations**

- deriveBrowseName (element)
- deriveNodeId(element)

2.4.7 Defintion of «Object Factory» DataItemObjectFactory

259 **2.4.7.1 Operations**

- deriveSourceRelation(element)
- Documentation: Use the source composition, component id, or data item id
- 262 to locate the source node id for this relationship. If one exists, add an object
- with browse name "source" that relates to the entity referenced by the id.
- The most specific identity should be used in the following order:
- 265 DataItemId
- 266 CompositionId
- ComponentId
- Since the data item implies composition and component and the compo-
- sition implies component, there should only be one attribute given for the
- source.

271 272	 deriveDisplayName (element) Documentation: Same as the BrowseName.
273	• deriveNodeId(element)
274	Documentation: The nodeId will be given by the device uuid and the DataItem
275	id attribute.
276	• deriveBrowseName(element)
277	Documentation: The browse name will be composed of the following parts
278	of the model:
279	1. If the compositionId is present, the compositionId will be resolved the
280	the Composition element and the pascal case of the type attribute will
281	be placed first.
282	2. If the subType is present, the pascal case of the subType will be placed
283	next.
284	3. The pascal case of the type will be placed last.
285	For example, for a data item with the following attributes:
286	- type: TEMPERATURE
287	composition type: STORAGE_BATTERY
288	will have the following browse name: StorageBatteryTemperature
289	For the data item with the following attributes:
290	- type: ANGLE
291	- subType: ACTUAL
292	- composition type: ENCODER
293	will have the following browse name: EncoderActualAngle

${\bf 2.4.8}\quad {\bf Defintion\ of\ \tt \ {\bf \ \ } Factory \tt \ \ \ \, DataItemTypeFactory}$

- 294 Based on the data item category, type, and subType, this class creates a new
- 295 OPC/UA type and also provides the template parameter for the ParentType from
- 296 which this type is derived.

297 **2.4.8.1 Operations**

- deriveParentType (type, subType)

 Documentation: The parent type is derived from the category as follows:
- Documentation: The parent type is derived from the category as follows:
- 300 SAMPLE -> SampleType
- 301 EVENT ->
- * Enumerated Value -> MTEnumeratedEventType
- * Integer Value -> MTNumericEventType
- * Otherwise -> MTStringEventType
- deriveTypeName(type, subType)
- Specification: concat (pascalCase(subType), pascalCase(type))
- Documentation: Used to derive the class name for creating a pascal case
- name from the sub type and the type. For example type ROTARY_VELOCITY
- and subType ACTUAL will become ActualRotaryVelocity.

2.4.9 Defintion of «Object Factory» DeviceObjectFactory

- 310 The model instantiation for MTConnect begins with the 'Device' MTConnect
- 311 element and then recursively traverses the sub-elements. The device will the ca-
- pabilities in the component factory to generate all the data items and component
- 313 **types**.

314 **2.4.9.1 Operations**

- 315 deriveBrowseName(element)
- Specification: derive: element.name
- 318 Specification: derive: element.uuid

2.4.10 Defintion of «Object Factory» FilterObjectFactory

319 Creates filters based on the type attribute of the Filter element.

320 **2.4.10.1 Operations**

- 321 deriveBrowseName(element)
- Documentation: The node id is composed of the data item id and the browse
- 324 name.

2.4.11 Defintion of «Object Factory» ObjectFactory

325 **2.4.11.1 Operations**

- 327 deriveNodeId(element)
- 328 deriveDisplayName(element)
- 329 Specification: deriveBrowseName(element)
- createObject(element)

2.4.12 Defintion of «Object Factory» SensorChannelObjectFactory

331 **2.4.12.1 Operations**

- deriveBrowseName(element)
- Specification: concat('Channel', self.number)
- deriveNodeId(element)
- Specification: concat (self.parent.NodeId, BrowseName)

2.4.13 Defintion of «Object Factory» SensorObjectFactory

336 **2.4.13.1 Operations**

```
    deriveBrowseName (element)
    Specification: element.QName
    deriveNodeId(element)
    Specification: concat (self.parent.NodeId, BrowseName)
```

2.4.14 Defintion of «Type Factory» TypeFactory

341 2.4.14.1 Operations

- createType(element)

2.5 MTConnect Device Profile

Stereotypes Mixes In Stereotypes Mixes In Stereotypes Stereotypes Stereotypes Indian Stereotypes Stere

Figure 5: MTConnect Device Profile Diagram

- The device profile documents the common data types and stereotypes that are used
- 345 to construct the model. A stereotype is a design or modeling pattern that provides
- additional information about the type or the relationship between types.
- 347 It can also identify the behavior of a property or the role the type or relation will
- 348 play in the model.
- Stereotypes are used throughout the model to provide additional information that
- will halp provide context and definition to aid in better understanding the data
- 351 model.

2.5.1 Defintion of Dynamic Type

2.5.2 Defintion of MTConnect XML

2.5.3 Defintion of MTRelationshipType

2.5.4 Defintion of Mixes In

- 352 This stereotype is associated with the dependency between a type and a mixin.
- 353 See Section 2.5.9 for a complete description of the mixin.

2.5.5 Defintion of Object Factory

2.5.6 Defintion of Type Factory

2.5.7 Defintion of bind

- When a dynamic type (See Section 2.5.1) creates an instance where the super-type
- 355 can be associated based on the data item category and type, the Type Factory
- will specify which supertype is to be referenced.
- 357 The bind stereotype indicates the relationship between the dynamic sub-type and
- 358 the parent type are resolved baed on the MTConnect DataItem meta data.

2.5.8 Defintion of constrains

2.5.9 Defintion of mixin

- 359 The mixin pattern injects the properties and operations into the types that are
- 360 related to the using the Mixes In dependency. Mixins allow for lightweight
- 361 multiple inheritance. Since OPC/UA does not allow for multiple inheritance and
- 362 the MTConnect types require the same set of properties when they are sub-typed
- 363 from existing OPC/UA types, this mechanism allows for this relationship to be
- 364 expressed.

2.5.10 Defintion of use

- The use stereotype indicates that one class uses as a helper to perform a specific
- 366 operation or activity. This stereotype is mainly used to indicate that a specific
- 367 factory is being employed by another type to create dynamic properties or rela-
- 368 tionships.