PH133 Logic Lecture 7

Lecturer: s.butterfill@warwick.ac.uk

Proof example: ∀Elim, ∃Intro

∃x YelBk(x)

4.

5.

∀Elim	∃Intro	
$\forall x S(x)$	S(a)	
S(c)	∃x S(x)	

∃Intro: 4

'If' and '→' do match

L	$\neg A \vee B$	America does not exist \vee Baudrillard is wrong If America exists, Baudrillard is wrong
	If A, B	If America exists, Baudrillard is wrong

If you love logic, things will fall into place $\neg (A \land \neg B)$ Not both: you take logic and things don't fall into place

Multiple quantifiers: simple examples

"Something is above something" $\exists x \exists y \text{ Above}(x,y)$

"Everyone likes puffins" $\forall y \ \forall x \ (Puffin(x) \rightarrow Likes(y,x))$

Puffin(x): x is a puffin

b:Steve

Likes(x,y): x likes y

"Something makes someone want to die inside" $\exists x \exists y \text{ WantToDieInside}(x,y)$

WantToDieInside(x,y): x makes y want to die inside

Scope

Underlining shows the scope of the quantifiers

"All squares are blue" $\forall x'$ (Square(x) \rightarrow Blue(x))

"If everything is square, everything is blue" $\forall x \ Square(x) \rightarrow \forall x \ Blue(x)$

Quantifiers bind variables

Read §9.2 of Barwise & Etchemendy

Proof example: ∃Elim

Invalid use of ∃Elim

Conjunction Introduction (∧ Intro)

Conjunction Elimination $(\land Elim)$

$$\mid \begin{array}{c} \mathsf{P}_1 \wedge \ldots \wedge \mathsf{P}_i \wedge \ldots \wedge \mathsf{P}_n \\ \vdots \\ \mathsf{P}_i \end{array}$$

Conditional Introduction $(\rightarrow Intro)$

Universal Introduction (∀ Intro)

Disjunction Introduction (∨ Intro)

$$\begin{array}{c|c}
P_i \\
\vdots \\
P_1 \lor \dots \lor P_i \lor \dots \lor P_n
\end{array}$$

$$\begin{array}{l} \textbf{Biconditional Introduction} \\ (\leftrightarrow \textbf{Intro}) \end{array}$$

Biconditional Elimination $(\leftrightarrow \text{Elim})$

Conditional Elimination

 $(\rightarrow Elim)$

$$\begin{array}{|c|c|c|} P \leftrightarrow Q \ (\mathrm{or} \ Q \leftrightarrow P) \\ \vdots \\ P \\ \vdots \\ Q \end{array}$$

Universal Elimination (∀ Elim)

where c does not occur outside the subproof where it is introduced.

Negation Introduction (¬ Intro)

Reiteration (Reit)

Existential Introduction (∃ Intro)

Existential Elimination (∃ Elim)

where c does not occur outside the subproof where it is introduced.

\perp Introduction

(¬ Elim)

\perp Elimination (Elim)

Identity Introduction (= Intro)

$$\triangleright$$
 $\mathbf{n} = \mathbf{n}$

Identity Elimination (= Elim)

$$\begin{array}{c} P(n) \\ \vdots \\ n=m \\ \vdots \\ P(m) \end{array}$$