B3M38DIT1 Fault detection of sensors with machine learning using LSTM neural networks

Vít Zeman 09.01.2023

Task

- Fault detection on temperature sensor
- Long-term time series data from multiple sensors
- Using Long short-term memory (LSTM) neural network

Faults

- Three types of faults:
- Drift:
 - Linear
 - [0.75; 1.25] kelvins every 5 days
- Offset:
 - Shift in temperature values
 - ± [0.5; 5] Kelvin
- Outliers:
 - Sudden big jump in value
 - ± [10; 30] Kelvin from average

Data

- Temperature, relative humidity, energy consumption and generation
- Approx. 704 days of continuous measurements
- Average over hour
- Inconsistencies (-6999 °F, missing data)

Dataset generation

- Conversion to Kelvins
- Random location and duration
- 4 classes
 - Faultless
 - Drift
 - Offset
 - Outlier
- Distribution of [0.4, 0.2,0.2,0.2]

RNNs and LSTMs

- Memory: Previous input/output impacts current case
- RNNs
 - Only short memory
 - Vanishing or exploding gradient
- LSTMs
 - Added long term memory
 - Used for classification and prediction

Images: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Proposed model

- Idea use LSTM to extract features
- Use Dense layers to classify outputs

- Metrics
 - Accuracy
 - Confusion matrix

Results

Accuracy 64%

References

- [1] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12 1997.
- [2] R. C. Staudemeyer and E. R. Morris. Understanding Istm-a tutorial into long short-term memory recurrent neural networks. 2019.