

746

DATE: ch 8

SUBJECT: Sec 4

P.1

$K = 5$ \rightarrow

shifted by 5 letter in cipher

P.2-

seven letter

AL is E B O T

معروفة بعض الحروف فقط

$26! \rightarrow$ أصبحنا كفر

\rightarrow is a cipher كفر

$26 - 7 = 19$ \rightarrow أصبحنا كفر

$19!$

$26! - 19! \approx 10^9$

P3

Yes

K is used and one key for all the text

P4

Block cipher.

one key for one block of text

Scrambler \rightarrow one key for one bit

\rightarrow one key for one loop

the key is not changed every bit

DATE: _____

SUBJECT: _____

a) 1010 0000

T₁ ↓

7 Times

0000 0101

↓

0000 0101

1010 0000 T₁

↓

1010 0000

0000 0101 T₁↓ T₁

0000 0101

repeated 8 times

b) 1010 0000

↓

1010 0001

1000 0101 T₁

↓

1000 0101

1010 0001 T₂

↓

1010 0001

1000 0101 T₂

↓

1000 0101

1000 0101 T₂

↓

1000 0101

1000 0101 T₂

↓

DATE: _____

SUBJECT: 43

P.6. 100 100 1000

011 011 011

Infix

. 111 000 1111s back

. ٣ مرات ٣bit (in pattern 6 bits will be)

IV = 111 → C(0)

m(1) = 100

m = 100 100 1000

m(2) = 100

m(3) = 100

C_i = K_s (m_i ⊕ C_(i-1))C_i = K_s (m(1) ⊕ C₀) = K_s (100 ⊕ 111)= K_s (011) = 100

= 1

C₂ = K_s (m(2) ⊕ C₁) = K_s (100 ⊕ 011) = K_s (010) = 10C₃ = K_s (m(3) ⊕ C₂) = K_s (100 ⊕ 110) = K_s (010) = 10

m = 100 100 1000

100 110 101

P.7

RSA

public, private Key 8 عوچ عوچ

P.9

، و تجزیه

، Cryptanalysis لیست

p = 3 q = 11

p, q, l, r, t, i, o

n = pq = 33

z = (p-1)(q-1) = 2 * 10 = 20

((ALAQSA))

DATE: 5/4/2023

SUBJECT: _____

2. ($e < n$) has no common factors with z

$$z = 120 \cdot 10 + 5 \cdot 2 \quad |$$

$$\bullet e = 8 \quad \text{and } \text{gcd}(e, z) = 1$$

$$\bullet d \Rightarrow e \cdot d \% z = 1 \quad d = 8$$

$$\Rightarrow d \% 20 = 1 \Rightarrow 8 \% 20 = 1$$

Public Key (n, e)Private Key (n, d) \rightarrow , encryption \rightarrow decryption

a)

$$\begin{pmatrix} d & \circ g \\ 4 & 15 & 7 \end{pmatrix} \quad \begin{pmatrix} m = 4 & C = m^e \% n \\ -m = 4 & -4 \% 33 = 4 \end{pmatrix}$$

$$\text{Encryption: } 0(m=15) \quad C = 15^9 \% 33 =$$

$$g(m=7) \quad C = 7^9 \% 33 =$$

$$m = C^d \% n = 4$$

Decryption

b) $4 \cdot 15 \cdot 7 \rightarrow$ product digits
 binary ~~text~~ \rightarrow

$$(00100 \quad 01111 \quad 00111)_2$$

((ALOSA))

des^t is a decimal & binary 1's complement.

P.S.

$$T_A = \frac{g}{100} \cdot p$$

$$T_B = g^{5_B} \% P$$

$$\text{Ansatz: } S = T_B \cdot \frac{5}{4} P$$

$$B_o B \quad S' = T_A^{\text{SB}} \cdot / \circ P$$

(S.712 P. 685)

$$(a \bmod n)^d \bmod n = a^d \bmod n.$$

$$S = T_B^{SA} \% P - [G^{SB} \% P]^{SA} \% P$$

$$= \cancel{I_B \cdot P}^{\text{SA}} \rightarrow [g^{\text{SB, SA}} \cdot I \cdot P] \cdot I \cdot P$$

~~SA~~ /-P \rightarrow [g ^{SA} /-P] ~~SB~~ /-P

$$= \overset{B}{TA} \circ \text{!-P} = S' \quad \#$$

①

Con
Sheet 8

Security

Authentication \rightarrow (PKI) public key encryption.

Integrity \rightarrow Hash $m \rightarrow H(m) \rightarrow H(m) + m$ وتحوّل المعلومة المنشورة إلى ملحوظة المنشورة $\rightarrow H(m) + m \rightarrow H(m) = \text{Digest}$

P.H

Fig (B.8) (7.17)

ويتحقق بذلك التحقق من التسلسل

P.12

Fig (7.19)

التحقق من التسلسل

Sender

Receiver

P.I.Y.

Alice

Bob.

$K_A \cdot (m, H)$

integrity of

$K_A \cdot K_A \cdot (m, H) = m, H$

Authorisation

public Key

Authorisation

Algorithm (using KA as a certificate) (using CA)
other IP is this is authority (CA)
signature is PKL (public key) in the authority's possession
is used to check all
Email address

P.I.Y.

(A, m)

notifying Hm

Web Page

PK is rotating || Process with ①
WTS (Web Token Service) is easier and secure

P.I.Y.

Rotated session

Session Key

$K_A^+ \text{ and } K_B^+(K_S)$

P.15

(2)

nonce \rightarrow

old and new pair

P.16

Alice

Bob

a. encryption
by its private
key.

$I^1_{in Alice}$

R

$KA^-(R)$

R

Alice Authentication

decryption with KA
 $KA^+(KA^-(R)) = R$

b. Trudy

Alice

$K^-(R)$

$K^+(R)$

$K^+(K^-)$

Alice says Trudy is lied