

Two-Line Element Sets

- Orbital elements are a set of 6 numbers that describe an orbit
- A standard way to communicate orbital elements for real Earth-orbiting satellites is through the "two-line element set", or TLE *
- TLEs include not only the orbital elements, but also other information about the satellite, including information about the effects of perturbations such as aerodynamic drag

The Classical Orbital Elements

- semimajor axis (size of orbit), a;
- eccentricity (shape of orbit), e;
- <u>inclination</u>, *i*;

- Longitude of ascending node, Ω ;
- argument of periapsis, ω ;
- true anomaly, ν ;

The Two-Line Element (TLE) Sets for Orbital Elements

The TLE is a standard format for communicating of orbital elements of an earth-orbiting satellite.

The first row of numbers shown here are the orbital elements.

Note that the "mean motion" n is directly related to the semi-major axis a, and the "mean anomaly" M is directly related to the true anomaly v

In the unperturbed two-body problem, n is constant, but in reality it varies slightly and the TLE reports that variation, along with the "ballistic coefficient"

$$\bar{n} = \sqrt{\frac{\mu}{a^3}}$$
 e i Ω ω M

$$\frac{\dot{n}}{2} \qquad \frac{\ddot{n}}{6} \qquad B^* = \frac{C_D A}{2m} \rho_0 \quad UTC$$

The Two-Line Element (TLE) Sets for Orbital Elements

Example:

Satellite Number	International Designator	Epoch	<u>n</u> 2	<u>n</u> 6	BStar	Element Number	
			S	S	SSE		
1 1 6 6 0 9 U	8 6 0 1 7 A	93352 . 53502934	.00007889	000000	10529-3	3 4	
	Inclination	Right Ascension of node Eccentric	Argument of perigee	Mean Anomaly	Mean Motion	Epoch Rev	
2 1 6 6 0 9	51.6190	1 3 . 3 3 4 0 0 0 0 5 7 7	0 102.5680	257.5950	15.59114070	4 4 7 8 6	

Note: See http://celestrak.com/ for everything you need to know about TLEs

Matlab Code for Reading TLEs

```
function [elements, epoch, yr, M, E, satname] = TLE2oe(fname);
% fname is a filename string for a file containing
           a two-line element set (TLE)
% elements is a 1/6 matrix containing the orbital elements
           [a e Om inc om nu]
% yr is the two-digit year
% M is the mean anomaly at epoch
% E is the eccentric anomaly at epoch
% satname is the satellite name
% Calls Newton iteration function file EofMe.m
function E = EofMe(M, e, tol)
% this function solves Kepler's equation,
% computing E as a function of M and e
```

These functions are available directly from me