Assignment 2 MAT 367

Q7: We first show that \sim as defined is an equivalence relation. First $x \sim x$ since $x = \varphi \circ \varphi^{-1}(x)$ for any φ . If $x \sim y$, then $y = \varphi_i \circ \varphi_j^{-1}(x)$. Applying $\varphi_j \circ \varphi_i^{-1}$, we see that $x = \varphi_j \circ \varphi_i^{-1}(y)$. So $y \sim x$. Finally suppose that $x \sim y$ and $y \sim z$. We can write $y = \varphi_j \circ \varphi_i^{-1}(x)$ and $z = \varphi_l \circ \varphi_j^{-1}(y)$. Composing we see that

$$z = \varphi_l \circ \varphi_i^{-1} \circ \varphi_j \circ \varphi_i^{-1}(x) = \varphi_l \circ \varphi_i^{-1}(x).$$

As desired. We now claim there is a bijection between X and $\bigcup V_i/\sim$. Define $f:X\to \bigcup V_i/\sim$ by $x\mapsto [\varphi_i(x)]$. We claim that such f is a bijection. Let $y\in \bigcup V_i$ belonging to the class $[\varphi_i(x)]$. For some φ_j , we have that $\varphi_j^{-1}(y)=x$ and so $\varphi_j(x)=y$ so f(x)=y. Now suppose that $[\varphi_i(x)]=[\varphi_j(y)]$. By the equivalence relation we have that $\varphi_i(x)=\varphi_i\circ\varphi_j^{-1}\circ\varphi_j(y)=\varphi_i(y)$. Since φ_i is injective we have that x=y. Therefore f is a bijection. Finally we show that X is a smooth manifold and the topology on X is induced by the quotient topology of $\bigcup V_i/\sim$. For each φ_i , using the same f as above, we define the coordinate charts on $\bigcup V_i$ as $\psi_i: f^{-1}(U_i)\to V_i$ with $\psi_i=\varphi_i\circ f^{-1}$. Each ψ_i is a composition of injective and continuous maps, hence they are injective and continuous as well. We also see that they are C^∞ related since

$$\psi_i \circ \psi_j^{-1} = (\varphi_i \circ f^{-1}) \circ (\varphi_j \circ f^{-1})^{-1} = \varphi_i \circ f^{-1} \circ f \circ \varphi_j^{-1} = \varphi_j \circ \varphi_i^{-1}.$$

Therefore $\bigcup V_i/\sim$ is a smooth manifold, and the identification with X makes X a smooth manifold as well.