Comparative Study of HPCC and HADOOP based on PUMA Benchmarks

CSC 591-007 : Data Intensive Computing Instructor: Dr. Vincent W. Freeh

Group No.2

Presentation by:
Haiyu Yao
Vishal Mishra
Nakul Shukla

Introduction

- Develop and run benchmark scripts for HPCC and Hadoop
 - Hadoop, a popular framework for processing large data.
 - HPCC, a computing platform to process and deliver big data solutions.
 - PUMA is a benchmark suite for Hadoop.

Motivation

- Lack of comparison results based on different types of problems.
- Published available comparisons.
 - Based on TeraSort between HPCC and Hadoop
- Last benchmark test on HPCC was performed in 2011 on Terasort.

Benchmark Scripts Used

- Word Count
- Inverted Index
- Adjacency List
- Self Join
- K-means Clustering
- Histogram Movies

Environment

- Virtual Machine Cluster
 - 1 master node
 - 8 slave nodes
- Main Memory: 2 GB per node (usually 1 GB free)
- CPU Cores: 2 per node (Intel(R) Xeon(R) E5645 @ 2.40GHz)
- Storage: 30 GB per node
- Operating System: Ubuntu Linux 14.04 Base

Environment (Cont.)

Hadoop

- dfs.blocksize: 128 MB (64 MB for Adjacency-List)
- dfs.replication: 1
- mapreduce.map.java.opts: 512 MB
- mapreduce.reduce.java.opts: 768 MB
- mapreduce.task.io.sort.mb: 256MB

• HPCC

- 2 thor slave processes per node
- no roxie
- replication factor: 2 (default configuration)

Methods

- Same Input/Output
- Same cluster environment
- Consecutively run same benchmark task for Hadoop and HPCC
- Execute each benchmark task at least twice
- Test different size of data

Results

Unit: Minute

	10 GB		20 GB		30 GB	
	Hadoop	НРСС	Hadoop	НРСС	Hadoop	НРСС
Word Count	7:42	2:03	21:25	4:05	29:07	29:53
Inverted Index	10:01	6:19	21:49	10:52	27:42	16:22
Adjacency-List	19:46	11:58	44:09	30:20	N/A	51:56
Self-Join	4:58	5:46	11:20	13:52	16:01	21:28
	1 GB		10 GB		30 GB	
	Hadoop	НРСС	Hadoop	НРСС	Hadoop	HPCC
K-Means	00:36	2:14	3:16	13:45	8:17	34:19
Histogram	00:36	19:56	2:59	3:02:57	7:27	9:08:51(Est.)

Interesting Facts (Adjacency-List)

Interesting Facts (Word Count)

Interesting Facts (Histogram)

Lessons Learned (HPCC)

Pros

- HPCC is quite fast when less data pre-processing required
- HPCC is easy to deploy
- Works well with non- embarrassingly independent tasks
- Easier to work with different distributions of data

• Cons

- HPCC is not ideal for data pre-processing
- Learning curve of ECL is steep
- ECL is difficult to debug

Lessons Learned (Hadoop)

• Pros

- Faster for data pre-processing
- Flexible in dealing with data in different formats
- Good community support and documentation

• Cons

- Configuration is complicated
- Sensitive to memory shortage
- Requires embarrassingly independent tasks

Q&A