## Complejidad de Algoritmos

Luis Garreta

Ingeniería de Sistemas y Computación Pontificia Universidad Javeriana – Cali

29 de julio de 2017

#### Temas

- ▶ Diferencias entre el mejor de los casos, el caso esperado y el peor de los casos de los tiempos de ejecución de un algoritmo.
- Clases de complejidad: constante, logarítmica, lineal, cuadrática y exponencial.
- Comparación informal de la eficiencia de algoritmos (e.g. conteo de operaciones).



# Sobre los Algoritmos

- ▶ Un algoritmo es un **método** para resolver un problema (computacional).
- Un algoritmo es la idea detrás del programa
- Un algorrimo es independiente del
  - lenguaje de programación,
  - ► de la máquina,
  - ▶ etc.

Next: Propiedades Buscadas

### Propiedades buscadas en un Algoritmo

#### ► Correctitud:

 El algoritmo tiene que resover correctamente todas las instancias del problema

#### ▶ Eficiencia:

► El desempeño (tiempo y memoria) tiene que ser "aceptable".

#### Objetivo General del Curso

Diseñar algoritmos correctos y eficientes y probar que estos cumplen las especificaciones.

Next: Porqué Preocuparnos



# Para qué analizar el Tiempo de Ejecución?

#### ▶ Predición:

- ► Cuanto tiempo necesita un algoritmo para resolver un problema?
- ► Cómo este algoritmo escala de acuerdo al tamaño de la entrada?
- Podemos brindar garantías sobre su tiempo de ejecución?

#### Comparación:

- ► Es un algoritmo A mejor que un algoritmo B?
- ▶ Dependiendo de las circunstancias, cuál algoritmo utilizar el A o el B?

Next: Sobre la Máquina

# Algoritmos y Velocidad de la Máquina (Computador)

#### Desempeño Algoritmico vs. Velocidad de la Máquina

#### Para instancias grandes del problema:

Un "buen" algoritmo que se ejecuta sobre una computadora lenta siempre será más rápido que un "mal" algoritmo que se ejecuta sobre una computadora veloz.

Lo que realmente importa es la **taza de crecimiento** del tiempo de ejecución.



# Máquina de Acceso Aleatorio (RAM)

- ▶ Necesitamos una máquina para "ejecutar" nuestros algoritmos
- ► Su modelo debe ser generico e independiente del lenguaje y de la máquina donde se implemente.
- ► Consideraremos a la Random Access Machine (RAM):
  - ▶ Cada operación simple (ej. +, -,  $\leftarrow$ , /, \*, if) toma 1 paso.
  - ► Ciclos y procedimientos, no se consideran operaciones simples.
  - ► Cada acceso a memoria (variables, arreglos) toman también 1 paso.
- Vamos a medir el tiempo de ejecución T(n):
  - ▶ contando el número de pasos como función del tamaño de la entrada (n)
- ► Por simplicidad, las operaciones básicas cuestan igual:
  - Aunque, sumar dos enteros tiene un costo diferente que dividir dos reales.

# Tiempo de ejecución de un algoritmo: **T(n)**

- ► Normalmente, el factor más importante que afecta el tiempo de ejecución de un algoritmos es el tamaño de la entrada.
- ► Para un entrada de tamaño **n** se expresa el tiempo **T** para ejecutar un algoritmo como una función de n y se escribe cómo:

► T(n) siempre es positivo



# Un Ejemplo de Conteo

► Programa Simple:

```
int count = 0;
for ( int i=0; i < n ; i ++)
  if ( v [ i ] == 0)
    count ++</pre>
```

# Conteo de Operaciones

► Programa Simple:

```
int count = 0;
for ( int i=0; i < n ; i ++)
  if ( v [ i ] == 0)
    count ++</pre>
```

► Conteo de las operaciones:

| Declaración de Variables | 2            |
|--------------------------|--------------|
| Asignaciones             | 2            |
| Comparaciones "<"        | n+1          |
| Comparaciones "=="       | n            |
| Accesos a arreglos       | n            |
| Incrementos              | entre n y 2n |

# Peor y Mejor Casos

```
int count = 0;
for ( int i =0; i < n ; i ++)
  if ( v [ i ] == 0)
    count ++</pre>
```

| Declaración de Variables | 2            |
|--------------------------|--------------|
| Asignaciones             | 2            |
| Comparaciones "<"        | n+1          |
| Comparaciones "=="       | n            |
| Accesos a arreglos       | n            |
| Incrementos              | entre n y 2n |

#### ► Análisis de Tiempos:

▶ Número total de pasos en el peor caso:

$$T(n) = 2 + 2 + (n+1) + n + n + 2n$$

► 
$$T(n) = 5 + 5n$$

► Número total de pasos en el mejor caso:

$$T(n) = 2 + 2 + (n+1) + n + n + n = 5 + 4n$$

► 
$$T(n) = 5 + 4n$$

# Tasas de Crecimiento de un Algoritmo

La tasas de crecimiento de un algoritmo es la tasa a la cual el costo del algoritmo crece a medida que el tamaño de su entrada crece.





## Tipos de Análisis de Algoritmos

#### Análisis del Peor Caso - Worst Case - (El más común)

ightharpoonup T(n) = Máxima cantidad de tiempo para cualquier entrada de tamaño <math>n

#### Análisis del Mejor Caso - Best Case - ("Engañosa")

- ightharpoonup T(n) = Cantidad de tiempo para entradas "buenas" de tamaño <math>n
- Es como suponer que un algoritmo es rápido dependiendo de solo "buenas" entradas.

#### Análisis del Caso Promedio - Average Case - (Algunas veces)

- ightharpoonup T(n) =Promedio de tiempo sobre cualquier entrada de tamaño n
  - ▶ Implica conocer la distribución estadística de las entradas.

## Tipos de Análisis de Algoritmos





Ilgoritmos Sobre la Máquina Análisis de Algoritmos **Notación Asintótica** Análisis Asintótico

# Notación Asintótica: **Descripción Gráfica**



Las definiciones implican un  $\mathbf{n}$  para el cual la función está delimitada. Los valores de  $(n \le n_0)$  no "importan".



Complejidad de Algoritmos Luis Garreta

#### Notación Asintótica: **Definiciones**



```
f(n) = O(g(n)): Significa que c * g(n) es un límite superior de f(n)
```

$$f(n) = \Omega(g(n))$$
: Significa que  $c * g(n)$  es un **límite inferior de**  $f(n)$ 

$$f(n) = \Theta(g(n))$$
: Significa que  $c_1 * g(n)$  es un **límite inferior** de  $f(n)$  y  $c_2 * g(n)$  es un **límite superior** de  $f(n)$ 



### Notación Asintótica: Formalización

$$f(n) = O(g(n))$$

Si existen constantes positivas  $n_0$  y c tal que  $f(n) \le c * g(n)$  para toda  $n \ge n_0$ 

$$f(n) = \Omega(g(n))$$

Si existen constantes positivas  $n_0$  y c tal que  $f(n) \ge c * g(n)$  para toda  $n \ge n_0$ 

$$f(n) = \Theta(g(n))$$

Si existen constantes positivas  $n_0$ ,  $c_1$ ,  $c_2$  tal que  $c_1 * g(n) \ge f(n) \ge c_2 * g(n)$  para toda  $n \ge n_0$ 



# Notación Asintótica: Analogías

Comparación entre las funciones f y g y dos numeros a y b

$$f(n) = O(g(n))$$
 es como  $a \le b$ 

$$f(n) = \Omega(g(n))$$
 es como  $a \ge b$ 

$$f(n) = \Theta(g(n))$$
 es como  $a = b$ 

# Notación Asintótica: Reglas Prácticas

► Multiplicar por una constante no afecta:

$$\Theta(c \times f(n)) = \Theta(f(n))$$
  
99 × n<sup>2</sup> =  $\Theta(n^2)$ 

► En un polinomio de la forma  $a_x n^x + a_{x-1} n^{x-1} + ... + a_2 n^2 + a_1 n + a_0$  debemos enfocarnos en el términos con **mayor exponente** 

$$3n^3 - 5n^2 + 100 = \Theta(n^3)$$
  
 $6n^4 - 20^2 = \Theta(n^4)$   
 $0.8n + 224 = \Theta(n)$ 

► En una suma, debemos enfocarnos en el **término dominante**:

$$\mathbf{2^n} + 6n^3 = \Theta(2^n)$$
  

$$\mathbf{n!} - 3n^2 = \Theta(n!)$$
  

$$n \log n + 3\mathbf{n^2} = \Theta(n^2)$$

#### Notación Asintótica: Relaciones de Dominancia

#### Cuando una función es mejor que otra?

- ► Si se quiere minimizar tiempo, las funciones "pequeñas" son mejores.
- ▶ Una función domina a otra si a medida que crece n esta sigue aumentando
- ► Matemáticamente:

$$f(n) \gg g(n)$$
 if  $\lim_{n\to\infty} g(n)/f(n) = 0$ 

#### Algunas relaciones de dominancia:

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

### Notación Asintótica: Una vista práctica

Si una operación toma  $10^{-9}$  segundos, entonces:

|                 | log n   | n             | n log n       | n <sup>2</sup> | n <sup>3</sup> | 2 <sup>n</sup>         | n!       |
|-----------------|---------|---------------|---------------|----------------|----------------|------------------------|----------|
| 10              | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | < 0.01s                | < 0.01s  |
| 20              | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | < 0.01s                | 77 years |
| 30              | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | 1.07 <i>s</i>          |          |
| 40              | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | 18.3 min               |          |
| 50              | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | 13 days                |          |
| 100             | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | < 0.01s        | 10 <sup>13</sup> years |          |
| $10^{3}$        | < 0.01s | < 0.01s       | < 0.01s       | < 0.01s        | 1s             |                        |          |
| $10^{4}$        | < 0.01s | < 0.01s       | < 0.01s       | 0.1s           | 16.7 min       |                        |          |
| $10^{5}$        | < 0.01s | < 0.01s       | < 0.01s       | 10 <i>s</i>    | 11 days        |                        |          |
| $10^{6}$        | < 0.01s | < 0.01s       | 0.02 <i>s</i> | 16.7 min       | 31 years       |                        |          |
| 10 <sup>7</sup> | < 0.01s | 0.01 <i>s</i> | 0.23 <i>s</i> | 1.16 days      |                |                        |          |
| 10 <sup>8</sup> | < 0.01s | 0.1 <i>s</i>  | 2.66 <i>s</i> | 115 days       |                |                        |          |
| 10 <sup>9</sup> | < 0.01s | 1 <i>s</i>    | 29.9 <i>s</i> | 31 years       |                |                        |          |



#### Notación Asintótica: Funciones Comunes

| Function       | Name         | Examples                             |  |
|----------------|--------------|--------------------------------------|--|
| 1              | constante    | summing two numbers                  |  |
| log n          | logarithmic  | binary search, inserting in a heap   |  |
| n              | linear       | 1 cycle to find maximum value        |  |
| $n \log n$     | linearithmic | sorting (ex: mergesort, heapsort)    |  |
| n <sup>2</sup> | quadratic    | 2 cycles (ex: verifying, bubblesort) |  |
| $n^3$          | cubic        | 3 cycles (ex: Floyd-Warshall)        |  |
| 2 <sup>n</sup> | exponential  | exhaustive search (ex: subsets)      |  |
| n!             | factorial    | all permutations                     |  |



# Ejemplos de Algoritmos y Conteo

Desarrollar las funciones (en lenguaje C) y analizar los tiempos para los siguientes problemas.

- 1. Una función que busque el valor mas grande dentro de un arreglo. Ingresa el arreglo y su tamaño, retorna el valor más grande.
- Una función que busca un elemento dentro de un arreglo ordenado.
   Ingresa el arreglo y el valor a busca, retorna 0: Falso, 1: Verdad.
- Una función que verifica si dos arreglos contienen los mismos elementos.
   Ingresan los dos arreglos, retorna 0: Falso, 1: Verdad.
- Una función que ordene un arreglo de forma ascendente. Ingresa el arreglo, retorna 0: Falso, 1: Verdad.

