Course 3: Unsupervised Learning

Summary

Last session

- Supervised learning learning from labeled examples
- Bias/variance tradeoff
- 3 Overfitting and cross-validation
- VC Dimension and curse of dimensionality

Today's session

- Learning from Unlabeled examples
- Clustering, decomposition and dimensionality reduction

Notations

Notations

Notations

Vector space (\mathbb{R}^d)

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K
 - Manifold Learning
- Applications:
 - Quantization,
 - Dimensionality reduction
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications :
 - Quantization, Dimensionality reduction
 - Visualizati

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications :
 - Quantization, Dimensionality reduction
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications:
 - Quantization, Dimensionality reduction
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications:
 - Quantization,Dimensionality reduction
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels
- Main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
 - Manifold Learning.
- Applications :
 - Quantization, Dimensionality reduction
 - Visualization...

Example: clustering using L_2 norm (1/6)

An example to perform clustering is to rely on distances to centroids. We define K cluster centroids $\Omega_k, \forall k \in [1..K]$

Definitions

We denote $q: \mathbb{R}^d \to [1..K]$ a function that associates a vector **x** with the index of (one of) its closest centroid $q(\mathbf{x})$. Formally:

- $\forall k \in [1..K], \Omega_k \in \mathbb{R}^d$
- $\forall \mathbf{x} \in X, \forall j \in [1..K], \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2 \le \|\mathbf{x} \Omega_j\|_2$
- Error $E(q) \triangleq \sum_{\mathbf{x} \in X} \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2$
- $X = \bigcup_k \{ \mathbf{x} \in X, q(\mathbf{x}) = k \}$

cluster k

Example: clustering using L_2 norm (2/6)

Example: clustering using L_2 norm (2/6)

Clustering using L_2 norm (3/6)

MNIST Dataset

- "Toy" dataset (=small and easy)
- 60000 + 10000 handwritten digits

Clustering MNIST

Using K-means algorithm with K = 10

- 00011112223
- 33444555666
- 6771888999

Clustering using L_2 norm (4/6)

Quantizing MNIST

- Replace **x** by $\Omega_{k(\mathbf{x})}$
- Compression factor $\kappa = 1 K/N$

Clustering using L_2 norm (5/6)

Optimal clustering

- Define $E_{opt_K}(q^*) \triangleq \arg \min_{q:\mathbb{R}^d \to [1..K]} E(q)$,
- Finding an optimal clustering is an NP-hard problem.

Properties

- $\qquad \mathbf{0} = \mathsf{E}_{\mathsf{opt}_N}(q^*) \leq \mathsf{E}_{\mathsf{opt}_{N-1}}(q^*) \leq \cdots \leq \mathsf{E}_{\mathsf{opt}_1}(q^*) = \mathsf{var}(X),$
 - Proof: monotonicity by particularization, extremes with identity function (left) and variance (right).
- $0 \le \kappa \le \frac{N-1}{N}$.

Clustering using L_2 norm (6/6)

Choosing K

- Finding a compromise between error and compression,
- Simple practical method : "elbow".

Example 2: Sparse Dictionary Learning (1/4)

Definitions

Dictionary learning solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using a dictionary $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and a code $U \in \mathcal{M}_{N \times k}(\mathbb{R})$, with the lines of V being with norm 1,
- Error $E(U, V) \triangleq ||X UV||_2 + \alpha ||U||_1$
- Training: find U^* , V^* that minimizes $E(U^*, V^*)$
- f lpha is a sparsity control parameter that enforces codes with soft (ℓ_1) sparsity

Example: Sparse Dictionary Learning (2/4)

Learning a dictionary on MNIST with K = 64

Example 2: Sparse Dictionary Learning (3/4)

Reconstruction $\tilde{\mathbf{x}} = UV$ of \mathbf{x}

8 atoms with largest absolute values:

Example 2: Sparse Dictionary Learning (4/4)

Optimal error

 $\blacksquare E_{opt_K}(U^*, V^*) \triangleq \arg\min_{U, V} E(U, V).$

Some results

- For $\alpha = 0$ and $K \ge d$, $E_{opt_d}(U^*, V^*) = 0$,
 - One can choose any completion of a basis.
- For K = N, $\forall \alpha$, $E_{opt_K}(U^*, V^*) = \alpha N$,
 - If vectors of X are with norm 1, one can choose V = X and $U = I_N$.

Example 3: Manifold Learning

Approaches to uncover lower dimensional structure of high dimensional data. Source: Manifold module, sklearn website

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically Mean Square Error: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Inputs/outputs

- Often: inputs are raw signals,
- Often: outputs are raw signals.

- Parameters are trained to reproduce the input,
- Some (arbitrary) intermediate representation is interpreted as the decomposition,
- Loss is typically **Mean Square Error**: $\sum_{i} (\mathbf{y}_{i} \mathbf{x}_{i})^{2}$.

Autoencoder on MNIST

Illustrated example of an autoencoder in Pytorch on MNIST

https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1 🔗 > 4 🛢 > 4 🛢 > 9 Q

Clustering on pyrat derived features

	density(rat)	density(python)	distance(rat, python)	density(cheese_0)	distance(rat, cheese_0)	distance(python, cheese_0)	density(cheese_1)	distance(rat, cheese_1)	distance(python, cheese_1)
0	3.475423	2.307948	9.0	2.266966	1.0	8.0	2.016979	4.0	11.0
1	2.401837	2.202623	1.0	2.091537	3.0	4.0	2.109535	6.0	7.0
2	2.948456	2.659309	11.0	2.474181	3.0	14.0	3.116937	5.0	16.0
3	2.655862	2.352433	13.0	2.355235	2.0	11.0	2.183774	3.0	10.0
4	2.204104	2.645298	3.0	3.629737	5.0	8.0	3.910904	6.0	9.0
MT-	1T-Atlantique			Course 3: Unsupervised Learning					

Clustering on pyrat derived features

We give you 1000 initial game configurations (two players, 21 cheese pieces) with the following features (66 in total):

- Distance between the two players d(p, r)
- Distance between each player and each cheese
- Density of cheese around each player starting position $density(p) = \sum_{c} \frac{1}{d(p,c)}$
- Density of cheese around each cheese position $density(c) = \sum_{c' \neq c} \frac{1}{d(c,c')}$

Your task: Find clusters in this dataset, we will evaluate your cluster labels using the ground truth.

Working with features

N.b.: valid in unsupervised and supervised settings.

Feature preprocessing

Objective: change the statistical distribution of the features

- Scaling / Normalization
- Power transform
- Encode, discretization
- Manual feature engineering
- See more https: //scikit-learn.org/stable/modules/preprocessing.html

Many techniques need or are greatly helped when features are on the unit sphere.

Working with features

N.b.: valid in unsupervised and supervised settings.

Feature selection

Objective: remove features

- Remove features with low variance
- Select features according to their explained variance towards labels (e.g. SelectKBest)
- See more https:
 //scikit-learn.org/stable/modules/feature_selection.html

Helps to adress the dimensionality curse.

In supervised learning: per class metric

Clustering Metrics:

- Error defined slide 5 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 5 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 5 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Clustering Metrics:

- Error defined slide 5 : similar to inertia (sum of squared distances)
- The Silhouette score (per sample) is (b a)/max(a, b), with mean intra-cluster distance (a) and the mean nearest-cluster distance (b).

Clustering metrics using labels:

- Random Index: measures the similarity of two assignments, ignoring permutations
- Homogeneity: each cluster contains only members of a single class.
- Completeness: all members of a given class are assigned to the same cluster.

Lab Session 3 and assignments for Session 5

TP Unsupervised Learning (TP2)

- K-means, Dictionary Learning and Manifold Learning
- Application on Digits and PyRat

Project 2 (P2)

- Find clusters in the provided dataset of pyrat games features.
- You can combine every technique you want (feature selection, decomposition, clustering, ...)
- During Session 4 you will have 7 minutes to present your work.
- We will evaluate the quality of your clustering during your presentation.