

EJERCICIOS DE REGRESIÓN

Ejercicio1

La empresa **DESTILER S.A.** está interesada en saber si existe algún tipo de relación entre la pureza de oxígeno obtenido en un proceso de destilación y la presencia de hidrocarburos en el condensador principal de la columna de destilación. Para ello ha realizado 10 pruebas con los resultados que se muestran en la siguiente tabla.

	1	2	3	4	5	6	7	8	9	10
Pureza_Oxígeno (%)	90.0	89.0 5	91.4	93.7 4	96.7 3	94.4 5	87.5 9	91.7 7	99.4 2	93.6 5
Contenido_Hidrocarbur o (%)	0.99	1.02	1.15	1.29	1.46	1.36	0.87	1.23	1.55	1.40

A partir de los datos anteriores la empresa ha elaborado las siguientes herramientas estadísticas:

	riable: Pureza variable: Cont	_Oxigeno enido Hidrocarl	buro		
	Estimate	Standard	T Statistic	D Walu	
	ESCIMATE	EIIOI		P-Valu	
Intercept Slope	73,6219 15,5537		37,987 10,0302	0,000	
		Analysis of Va	ariance		
Source	Sum of	Squares Df	Mean Square	F-Ratio	P-Value
Model Residual		107,014 1 8,50964 8	107,014 1,0637	100,61	0,0000
Total (Corr.)		115,524 9			
Correlation C R-squared = 9 Standard Erro	02,6339 percen	it			
	ues				
Predicted Val					
Predicted Val	Predicted		5,00%		00%
Predicted Val		Predic	tion Limits	Confiden	
	Y 7 87.1536	Predic- Lower 	Upper 89,9639	Confiden Lower 85,6565 96,3667	Upper 88,6507 99,0934
0,87	8 Y 87,1536 97,7301 6 96,9524 87,4646	Prediction Lower 84,3433 94,9887 94,2802 84,6866	Upper 89,9639 100,471 99,6246 90,2427	Confiden Lower 85,6565	Upper 88,6507 99,0934 98,1706 88,9004

Si la empresa te pasase toda esta información estadística, interpreta cada una de las herramientas elaboradas indicando, justificadamente, qué finalidad tiene cada una de ellas y la conclusión que se puede extraer. Empieza identificando quién sería la variable dependiente y quién la independiente.

Ejercicio 2

La empresa **PINK S.A.** ha diseñado unas pruebas para medir el efecto de un cierto tipo de aditivo en el tiempo de secado de pintura obteniéndose los siguientes resultados:

	1	2	3	4	5	6	7	8	9	10
Concentración_Aditivo (%)	4.0	4.2	4.4	4.6	4.8	5.0	5.2	5.4	5.6	5.8
Tiempo_Secado (h)	8.7	8.8	8.3	8.7	8.1	8.0	8.1	7.7	7.5	7.2

A partir de los datos anteriores la empresa ha elaborado las siguientes herramientas estadísticas:

Plot of Tiempo_Secado vs Concentracion_Aditivo 8,8 8,4 7,6 7,2 4 4,3 4,6 4,9 5,2 5,5 5,8 Concentracion_Aditivo

Regression Analysis - Linear model: Y = a + b*X

Dependent variable: Tiempo_Secado

 ${\tt Independent\ variable:\ Concentracion_Aditivo}$

Parameter	Estimate	Standard Error	T Statistic	P-Value
Intercept	12,1933	0,523576	23,2885	0,0000
Slope	-0,833333	0,106126	-7,85234	

Analysis	of	Variance

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
Model Residual	2,29167 0,297333	1	2,29167 0,0371667	61,66	0,0000
Total (Corr.)	2,589	9			

Correlation Coefficient = -0,940827

R-squared = 88,5155 percent

Standard Error of Est. = 0,192787

		95,	00%	95,	00%
	Predicted	Predicti	on Limits	Confiden	ce Limits
X	Y	Lower	Upper	Lower	Upper
4,3	8,61	8 , 12116	9,09884	8,40671	8,81329
4,5	8,44333	7,9669	8,91976	8,27202	8,61464
4,9	8,11	7,64373	8,57627	7,96942	8,25058
5,1	7,94333	7,4745	8,41216	7,79447	8,09219
5,3	7,77667	7,30024	8,2531	7,60536	7,94798

Si la empresa te pasase toda esta información estadística, interpreta cada una de las herramientas elaboradas indicando, justificadamente, qué finalidad tiene cada una de ellas y la conclusión que se puede extraer. Empieza identificando quién sería la variable dependiente y quién la independiente.

Problema 3

La factoría **ACEROX** quiere controlar el consumo de energía diario, medido en termias, (utilizada en su mayor parte en la climatización de las naves) Se ha establecido el siguiente modelo de regresión lineal para la variable consumo en función de la temperatura. Interpreta los parámetros estimados.

Análisis de F	Análisis de Regresión - Modelo Lineal Y = a + b*X									
	pendiente: Con ependiente: Te		а							
	Error Estimación	Estadís estánda	ar			alor				
Ordenada	449,227 -18,4226	7,6332	1	58,85°	16 0					
 Fuente	Análisis d			 Cuadra	 .do media	 o Cociente-F	P-Valo			
Modelo	552226 35156	,0 1	5522	26,0		-				
Total (Corr.)	587383	3,0 56								
R-cuadrado R-cuadrado	de Correlación = 94,0147 por (ajustado para lar de est. = 25	centaje g.l.) = 93		porce	entaje					

- a) ¿Podemos suponer que la variable temperatura es significativa desde el punto de vista estadístico? Explica qué implica ese hecho.
- b) Interpreta en este contexto los parámetros del modelo y propón la mejor estimación posible para ellos.

- c) ¿Qué porcentaje de la variabilidad del consumo diario de energía está explicado por otras variables distintas a la temperatura?
- d) ¿Qué consumo energético medio podríamos esperar si la temperatura fuese igual a 3 grados? ¿Podríamos predecir el consumo energético medio para una temperatura de 23 grados, si sabemos que en la muestra la temperatura máxima ha sido de 19.5 grados?, ¿por qué?
- e) Si suponemos que la variable Consumo diario de energía cuando la temperatura es igual a 3 grados se comporta como una normal, estima la media y la desviación para esa variable. Calcula entre qué valores se encontrará la variable con una probabilidad del 95%.