Solar: a least-angle regression for accurate and stable variable selection in high-dimensional data

Ning Xu

November 12, 2019

Overview

- Motivation
 - Dimensions, computataion load and complicated structure
 - Motivating examples
- Solar algorithm
 - Pseudo code
 - Computation flow
- Simulation results
 - p/n approaching 0
 - p/n approaching 1
 - p/n does not change
 - irrepresentable condition simulation

The curse of dimensionality

- Dimensionality : *p* (number of variables) for natural language processing can easily go beyond 10 million;
- Greater dimensions requires
 - improvements of the variable selection algorithm (e.g., better sparsity and accruracy);
 - restraining the growth of computation load for variable selection
- More complicated dependence structures in datasets (more severe multicollinearity if the structure is linear);

These challenges compel variable-selection algorithms to enhance the accuracy, stability and robustness of variable-selection in high dimensional spaces.

Bayesian Network (Koller and Friedman, 2009)

Directed acyclic graphs (DAG) are used to describe dependence structure of the data.

Figure: the DAG (referred to as the *standard structure*) typically assumed in the regression analysis, where $\{x_1, x_2\}$ are the 'parents' of Y; Y is the 'child' of $\{x_1, x_2\}$ and x_1 is a 'spouse' of x_2 .

Example 1 (Lim and Yu, 2016)

Assuming the standard strcture, consider the lars-lasso algorithm, which uses the L_1 -norm fraction $t \in [0,1]$ as a tuning parameter. In each CV training-validation split, for all β on the solution path,

$$t = \frac{\|\beta\|_1}{\|\beta_{\text{max}}\|_1},\tag{1}$$

where $\|\beta_{\max}\|_1$ is defined as the L_1 norm of the non-shrinked solution on the solution path.

Example 1 (Lim and Yu, 2016)

The solution path of lars-lasso is unstable in high dimensions (also applies to coordinate descend of lasso).

- When p > n, $\beta_{\rm max}$ is the traditional forward regression solution with n selected variables.
- β_{\max} uses up all *n* degrees of freedom (a saturated fit)
- Hence, due to the resampling randomness in CV, $\|\beta_{\max}\|_1$ may vary substantially across validation sets.
- As a result, the same value of t may correspond to different amounts of shrinkage (or λ) on the solution paths of different CV training-validation splits.

Example 1 (Lim and Yu, 2016)

Figure: Histogram of $\|\beta_{\max}\|_1$ from 10,000 bootstrap lasso estimates from a Gaussian simulation, where the variance of each variable is 1, pairwise correlations are 0.5, n=100 and p=150 (Lim and Yu, 2016, Section 3.1.1.).

Example 2. (Zhao and Yu, 2006)

Figure: Example 2 dependence structure.

$$\begin{cases} \mathbf{x}_3 = \omega_1 \mathbf{x}_1 + \omega_2 \mathbf{x}_2 + \sqrt{1 - 2\omega^2} \cdot u \\ Y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \delta e \end{cases}$$
 (2)

irrepresentable condition: for variable selection consistency of any lasso-type estimator, $\sum_i |\omega_i| < 1$

Example 2. (Zhao and Yu, 2006)

Figure: $\sum_i |\omega_i| > 1$: the irrepresentable condition fails and lasso selects redundant variables

Solar algorithm

Algorithm 1: average L_0 solution path estimation

```
input : (Y, X).
1 generate K subsamples \{(Y^k, X^k)\}_{k=1}^K;
2 set \widetilde{p} = \min\{n_{\text{sub}}, p\};
3 for k := 1 to K, stepsize = 1 do
        run an unrestricted lars (Algorithm 3.2 in Friedman et al. (2001)) on
          (Y^k, X^k) and record the order of variable inclusion at each stage;
define \widehat{q}^k = \mathbf{0} \in \mathbb{R}^p:
for all i and l, if \mathbf{x}_i is included at stage l, set \widehat{q}_i^k = (\widetilde{p} + 1 - l)/\widetilde{p}, where
          \hat{q}_{i}^{k} is the i^{th} entry of \hat{q}^{k};
7 end
8 \hat{q} := \frac{1}{K} \sum_{k=1}^{K} \hat{q}^{k};
9 return \hat{q}
```

Solar algorithm

Algorithm 2: Subsample-ordered least-angle regression (solar)

```
input: (Y, X)

Randomly select 20% of the points in (Y, X) to be the validation set (Y_v, X_v); denote the remaining points (Y_r, X_r);

estimate \widehat{q} using Algorithm 1 on (Y_r, X_r);

for c := 1 to 0, stepsize = -0.02 do

set Q(c) = \{\mathbf{x}_j \mid \widehat{q}_j \geqslant c, \forall j\} and add all variables in Q(c) into an OLS model:
```

train the OLS model on (Y_r, X_r) and compute its validation error on

 $(Y_v, X_v);$ else

| break the if-else statement and for loop

if sample size of (Y_r, X_r) is not less than |Q(c)| then

end in find c^* , the value of c associated with the minimal validation error on (Y_{ν}, X_{ν}) ; find $Q(c^*)$;

return \widehat{q} , $\beta(Q(c^*), Y)$

end

Solar algorithm demo

Figure: Computation of \hat{q} on 2 subsamples, where $\{\mathbf{x}_1, \mathbf{x}_2\}$ are informative and \mathbf{x}_3 is redundant.

Solar algorithm demo

Figure: Computation flow for Algorithm 2 (continued from Figure 5).

Solar algorithm demo

- Same computation load as CV-lars-lasso: one least-angle regression on each subsample to compute \hat{q} ; Another one for selecting variable.
- less computational expensive than coordinate descend
- My goal: outperform lasso-type estimators withouting increasing the computation load

Comparison simulation

vs CV-lars-lasso and cross-validated, cyclic pathwise coordinate descent with warm start (CV-cd, for short)

- when p/n approaches 0;
- when p/n approaches 1;
- ullet when n and p both increase rapidly in high-dimensional space;
- when the dependence structure gets complicated and voilates the irrepresentable condition;

Simulation settings

$$Y = X\beta + e = 2\mathbf{x}_0 + 3\mathbf{x}_1 + 4\mathbf{x}_2 + 5\mathbf{x}_3 + 6\mathbf{x}_4 + e \tag{3}$$

- $X \in \mathbb{R}^{n \times p}$ is generated from a zero-mean, multivariate Gaussian distribution with covariance matrix with 1 on the main diagonal and 0.5 for the off-diagonal elements.
- All data points are identically and independently distributed. Each \mathbf{x}_j is independent from the noise term e, which is standard Gaussian.
- *n* is the sample size and *p* is the dimension.
- we generate 200 samples, on each of which we run lasso solvers and solar. We average the performance of each algorithm on 200 samples.

Simulation result : p/n approaching 0

Table: Number of variables selected

		p/n		
		100/50	100/100	100/200
mean	solar	12.33	10.43	7.58
	CV-lars-lasso	19.75	20.09	19.19
	CV-cd	20.77	20.46	20.00
median	solar	9.5	6	5
	CV-lars-lasso	18	19	18
	CV-cd	18	19	18
$Pr(only\;select\;\{x_0,x_1,x_2,x_3,x_4\})$	solar	0.025	0.305	0.560
	CV-lars-lasso	0	0	0
	CV-cd	0	0	0

Histogram of the number of variables selected by solar

Probability of selecting redundant variables (top 15).

CV-lars-lasso

CV-lars-lasso

CV-lars-lasso

Probability of selecting informative variables.

Solar regression coefficient boxplots (top 15 by mean)

Simulation result: p/n approaching 1

Table: Number of variables selected

		p/n		
		150/50	200/100	250/150
mean	solar	14.07	10.10	9.7
	CV-lars-lasso	22.41	23.34	25.37
	CV-cd	24.37	24.92	26.96
median	solar	12	8	6
	CV-lars-lasso	20	22	23
	CV-cd	20	22	23
Pr(only select $\{\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$)	solar	0.015	0.115	0.445
	CV-lars-lasso	0	0	0
	CV-cd	0	0	0

Histogram of the number of variables selected by solar

Probability of selecting informative variables

Probability of selecting redundant variables (top 15)

Solar regression coefficient boxplots (top 15 by mean)

Simulation result: p/n does not change

Table: Number of variables selected.

		p/n		
		400/200	800/400	1200/600
mean	solar	10.88	13.80	14.85
	CV-lars-lasso	28.17	33.13	36.90
	CV-cd	29.58	35.07	38.76
median	solar	7	11	13
	CV-lars-lasso	26	31	33
	CV-cd	26	31	33
$Pr(active\;set=\{x_0,x_1,x_2,x_3,x_4\})$	solar	0.150	0.010	0
	CV-lars-lasso	0	0	0
	CV-cd	0	0	0

Solar regression coefficient boxplots (top 15 by mean)

simulation setting about irrepresentable condition

$$\begin{cases} \mathbf{x}_5 = \omega_1 \mathbf{x}_0 + \omega_2 \mathbf{x}_1 + \gamma \cdot \sqrt{1 - 2\omega^2} \\ Y = 2\mathbf{x}_0 + 3\mathbf{x}_1 + 4\mathbf{x}_2 + 5\mathbf{x}_3 + 6\mathbf{x}_4 + e \end{cases}$$
(4)

where n=150, p=50, $\omega_i\in\mathbb{R}$ and γ , e are both standard Gaussian noise terms, independent from each other and all the other variables in the simulation. By setting ω_i to either 1/4, 1/3 or 1/2, the population value of $\sum_i |\omega_i|$ changes, respectively, to either 1/2, 2/3 or 1.

Histogram of the number of variables selected by solar

Probability of selecting redundant variables (x_5 in orange, top 15 by probability)

Probability of selecting informative variables

Reference

- Friedman, J., Hastie, T., Tibshirani, R., 2001. The elements of statistical learning. Vol. 1 of Springer Series in Statistics. Springer-Verlag New York.
- Koller, D., Friedman, N., 2009. Probabilistic graphical models: principles and techniques. MIT press.
- Lim, C., Yu, B., 2016. Estimation stability with cross-validation (ESCV). Journal of Computational and Graphical Statistics 25 (2), 464–492.
- Zhao, P., Yu, B., 2006. On model selection consistency of Lasso. Journal of Machine Learning Research 7, 2541–2563.