Photogrammetry & Robotics Lab

Machine Learning for Robotics and Computer Vision

Unsupervised Learning

Jens Behley

Last Lecture

- Discussed ensemble methods:
 - Bagging
 - Random Forests
 - Boosting: AdaBoost and Gradient Tree Boosting
- Powerful off-the-shelf methods

Unsupervised Learning

- Unsupervised setting, we have data points without specific labels
- Goal: Learn a representation of the data that can be used to extract information or gain insights

Density Estimation

- In **density estimation**, we want determine a model for $P(\mathbf{x})$ of the given data
- Simple model with a single Gaussian cannot capture the structure of the data

Multiple Gaussians

- Now, we assume that clusters correspond to K Gaussians given by $\mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$
- Each Gaussian models part of the data

Latent variables

 Assume that data can be decomposed in multiple parts by a latent variable h:

$$P(\mathbf{x}) = \sum_{i=0}^{K} P(h = i, \mathbf{x})$$
$$= \sum_{k=1}^{K} P(h = k) P(\mathbf{x}|h = k)$$

For the Gaussian Mixture Model (GMM):

$$P(h=k)=\lambda_k \quad ext{with} \quad \sum_k \lambda_k=1$$
 $P(\mathbf{x}|h=k)=\mathcal{N}(\mathbf{x}|\mu_k,\Sigma_k)$

Gradient of Gaussian Mixture

The log-likelihood takes the following form:

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^{N} \sum_{k} P(h = k, \mathbf{x}_i)$$

$$= \arg \max_{\theta} \log \prod_{i=1}^{N} \sum_{k} P(h = k, \mathbf{x}_i)$$

$$= \arg \max_{\theta} \sum_{i=1}^{N} \log \sum_{k} P(h = k, \mathbf{x}_i)$$

• Problem: To get parameters of P(h) we need $P(\mathbf{x}|h)$ and vice versa.

Expectation Maximization

- Instead of maximizing directly the loglikelihood, we maximize a lower bound with the same parameters
- Alternate between getting a new lower bound (E-Step) and maximizing the lower bound (M-Step)

Finding the lower bound

• Adding the distribution $q_i(h)$, we can use Jensen's Inequality to get a lower bound:

$$\sum_{i=1}^{N} \log \sum_{k} \frac{q_i(h=k)}{q_i(h=k)} P(\mathbf{x}_i, h=k)$$

$$= \sum_{i=1}^{N} \log \sum_{k} q_i(h=k) \frac{P(\mathbf{x}_i, h=k)}{q_i(h=k)}$$

$$\geq \sum_{i=1}^{N} \sum_{k} q_i(h=k) \log \frac{P(\mathbf{x}_i, h=k)}{q_i(h=k)}$$

 $\mathcal{B}(q_i, \theta)$

Jensen's Inequality*

$$f\left(\sum_{i} \pi_{i} x_{i}\right) \geq \sum_{i} \pi_{i} f(x_{i})$$

is concave

What is q?

• For finding $q_i(h)$, we rewrite one of the N terms in $\mathcal{B}(q_i, \theta)$:

$$\sum_{k} q_{i}(h = k) \log \frac{P(\mathbf{x}_{i}, h = k)}{q_{i}(h = k)}$$

$$= \sum_{k} q_{i}(h = k) \log \frac{P(h = k|\mathbf{x}_{i})P(\mathbf{x}_{i})}{q_{i}(h = k)}$$

$$= \sum_{k} q_{i}(h = k) \log \frac{P(h = k|\mathbf{x}_{i})}{q_{i}(h = k)} + \sum_{k} q_{i}(h = k) \log P(\mathbf{x}_{i})$$

$$-\mathbb{KL}(q_{i}(h = k)||P(h = k|\mathbf{x}_{i})) \leftarrow$$

Kullback-Leibler (KL) Divergence
$$\mathbb{KL}(P||Q) = \sum_{x} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

Lower Bound

• Thus, to get a tight bound $\mathcal{B}(q_i,\theta)$, we use

$$q_i(h=k) = P(h=k|\mathbf{x}_i)$$

• We compute $P(h = k | \mathbf{x}_i)$ as follows:

$$P(h = k | \mathbf{x}_i) = \frac{P(h=k, \mathbf{x}_i)}{P(\mathbf{x}_i)}$$

$$= \frac{P(h=k, \mathbf{x}_i)}{\sum_{j} P(h=j, \mathbf{x}_i)}$$

$$= \frac{P(h=k)P(\mathbf{x}_i | h=k)}{\sum_{k} P(h=j)P(h=j, \mathbf{x}_i)}$$

Expectation Maximization (EM)

- In EM algorithm, we optimize parameters iteratively as follows:
 - 1. E-Step: Update lower bound with respect to **old** parameters by determining $P(h = k | \mathbf{x}_i) =: r_{ki}$
 - 2. M-Step: Maximize lower bound with given r_{ki} to find updated **new** parameters.
- The responsibilities r_{ki} determine the influence of \mathbf{x}_i on the parameter update.

M-Step

In the M-Step, we maximize the bound:

$$\theta^{[t]} = \arg \max_{\theta} \sum_{i=1}^{N} \sum_{k} q_{i}(h = k) \log \frac{P(\mathbf{x}_{i}, h = k)}{q_{i}(h = k)}$$

$$= \arg \max_{\theta} \sum_{i=1}^{N} \sum_{k} r_{ik}^{[t-1]} \log P(h = k) P(\mathbf{x}_{i} | h = k) - \log r_{ik}^{[t-1]}$$

$$= \arg \max_{\theta} \sum_{i=1}^{N} \sum_{k} r_{ik}^{[t-1]} \left(\log \lambda_{k}^{[t]} + \log \mathcal{N}(\mathbf{x} | \mu_{k}^{[t]}, \Sigma_{k}^{[t]}) \right)$$

• For the Gaussian $\mathcal{N}(\mathbf{x}|\mu_k^{[t]}, \Sigma_k^{[t]})$, we already derived the maximum likelihood update; account for weights now:

$$\mu_k^{[t]} = \frac{\sum_{i=1}^N r_{ik}^{[t-1]} \mathbf{x}_i}{\sum_{i=1}^N r_{ik}^{[t-1]}} \quad \Sigma_k^{[t]} = \frac{\sum_{i=1}^N r_{ik}^{[t-1]} \left(\mathbf{x}_i - \mu_k^{[t]}\right) \left(\mathbf{x}_i - \mu_k^{[t]}\right)^T}{\sum_{i=1}^N r_{ik}^{[t-1]}}$$

Updating the mixture weights

• For the maximum likelihood update of $\lambda_k^{[t]}$, we use a Lagrange multiplier:

$$\theta_h^{[t]} = \arg\max_{\theta} \sum_{i=1}^{N} \sum_{k} r_{ik}^{[t-1]} \log \lambda_k + \rho \left(\sum_{k} \lambda_k - 1\right)$$

• Determining $\frac{\partial L}{\partial \lambda_j}$ and $\frac{\partial \mathcal{L}}{\partial \rho}$, setting this to zero, leads to the parameter update (see notes):

$$\lambda_j^{[t]} = \frac{1}{N} \sum_{i=1}^{N} r_{ij}^{[t-1]}$$

EM for Gaussian Mixture Model

- Algorithm for learning a GMM:
- 1. Initialize $\mu_k^{[0]}$ by selecting K random examples $\mathbf{x} \in \mathcal{X}$, $\Sigma_k^{[0]} = \mathbf{I}$, and $\lambda_k^{[0]} = K^{-1}$
- 2. E-Step: Determine $r_{ik}^{[t-1]}$ by computing:

$$r_{ki}^{[t-1]} = P(h = k | \mathbf{x}_i) = \frac{\lambda_k^{[t-1]} \mathcal{N}\left(\mathbf{x}_i | \mu_k^{[t-1]}, \Sigma_k^{[t-1]}\right)}{\sum_k \lambda_k^{[t-1]} \mathcal{N}\left(\mathbf{x}_i | \mu_k^{[t-1]}, \Sigma_k^{[t-1]}\right)}$$

3. M-Step: Update parameters:

$$\lambda_{k}^{[t]} = \frac{1}{N} \sum_{i=1}^{N} r_{ik}^{[t-1]} \qquad \mu_{k}^{[t]} = \frac{\sum_{i=1}^{N} r_{ik}^{[t-1]} \mathbf{x}_{i}}{\sum_{i=1}^{N} r_{ik}^{[t-1]}}$$

$$\Sigma_{k}^{[t]} = \frac{\sum_{i=1}^{N} r_{ik}^{[t-1]} \left(\mathbf{x}_{i} - \mu_{k}^{[t]}\right) \left(\mathbf{x}_{i} - \mu_{k}^{[t]}\right)^{T}}{\sum_{i=1}^{N} r_{ik}^{[t-1]}}$$

4. Repeat E-Step & M-Step until convergance.₁₅

Ex: Gaussian Mixture Model (1)

Set K = 3 and initial means to random points.

Ex: Gaussian Mixture Model (2)

Iterate until convergence.

Ex: Gaussian Mixture Model (3)

- Iterate until convergence.
- Here, 50 iterations until no changes.

Relation to Clustering

- Clustering aims at finding groups (clusters), where points are more similar inside the cluster than other clusters, e.g., distance, ...
- Means μ_k correspond to cluster centers.
- Responsibilities r_{ki} are soft cluster assignments

Relation to k-Means Clustering

• K-Means is special case with hard responsibilities, i.e., 0 or 1, and fixed Σ

- K-Means algorithm:
 - 1. Initialize means/cluster center randomly.
 - 2. Assign each point to nearest cluster center.
 - 3. Update cluster center by mean of assigned points
- Choice of initial cluster centers (more) important.

Dimensionality Reduction

- High-dimensional data hard to analyze, visualize, ...
- Goal: Find low-dimensional representation that retains as much information as possible

[MML Chap. 10]

Projection

• We are looking for a matrix $\mathbf{B} \in \mathbb{R}^{D \times M}$ that projects points $\mathbf{x} \in \mathbb{R}^D$ to lower dimensional vectors $\mathbf{z} \in \mathbb{R}^M$, where M < D:

$$\mathbf{z} = \mathbf{B}^T \mathbf{x}$$

• We assume that ${f B}$ is orthonormal, i.e., columns ${f b}_i \in \mathbb{R}^D$ fulfill the properties:

$$\mathbf{b}_i^T \mathbf{b}_j = 0, i \neq j$$
 and $\mathbf{b}_i^T \mathbf{b}_i = 1$

Maximum Variance Perspective

- Want to find projection that retains variance in each dimension as much as possible
- Goal: Encoded vectors $\mathbf{z} \in \mathbb{R}^M$ should maximize the variance in each dimension

[MML Chap. 10]

Finding Maximal Variance Direction of Projection

- For the projection, we now assume zero centered data, i.e., $\mu = N^{-1} \sum_{i=1}^{N} \mathbf{x} = \mathbf{0}$.
- Projection of first dimension with $\mathbf{b}_1 \in \mathbb{R}^D$

$$z_{1i} = \mathbf{b}_1^T \mathbf{x}_i$$

Variance of projection given by:

$$V_1 = \frac{1}{N} \sum_{i=1}^{N} z_{1i}^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{b}_1^T \mathbf{x}_i)^2$$

Deriving the Objective

Rearranging terms leads to

$$V_{1} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{b}_{1}^{T} \mathbf{x}_{i})^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbf{b}_{1}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{b}_{1}$$

$$= \mathbf{b}_{1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{b}_{1}$$

$$=: \mathbf{S} \qquad \text{data}$$

$$\text{covariance}$$

Therefore, we want to optimize:

$$\max_{\mathbf{b}_1} \mathbf{b}_1^T \mathbf{S} \mathbf{b}_1$$

s.t. $\mathbf{b}_1^T \mathbf{b}_1 = 1$

Principal Component

 Finding the maximum, we can use a Lagrange multiplier:

$$\mathcal{L} := \mathbf{b}_1^T \mathbf{S} \mathbf{b}_1 + \lambda_1 (1 - \mathbf{b}_1^T \mathbf{b}_1)$$

With the partial derivatives:

$$\frac{\mathcal{L}}{\partial \mathbf{b}_1} = 2\mathbf{b}_1^T \mathbf{S} - 2\lambda_1 \mathbf{b}_1^T$$
 $\frac{\mathcal{L}}{\partial \lambda_1} = 1 - \mathbf{b}_1^T \mathbf{b}_1$

Setting these to zero, we get the following:

$$\mathbf{b}_1^T \mathbf{b}_1 = 1$$
 Eigenvalue problem

Thus, basis vector is the Eigenvector to the largest Eigenvalue (principle component) 26

Finding remaining basis vectors

- Remaining columns $\mathbf{b}_2, \dots, \mathbf{b}_m$ can be derived similarly
- $\mathbf{b}_2, \dots, \mathbf{b}_m$ correspond to eigenvectors of data covariance S

- Therefore, finding projection is finding M eigenvectors of largest eigenvalues
- Maximum variance captured by M principle components:

$$V_M = \sum_{k=1}^M \lambda_k$$

[MML Chap. 10]

Principal Components Analysis

- Algorithm for PCA
 - 1. Standardize the data, i.e., subtract mean and divide each dimension by it's variance
 - 2. Determine Eigenvectors and Eigenvalues to get basis $\mathbf{B} \in \mathbb{R}^{D \times M}$
 - Projected points are then given by

$$\tilde{\mathbf{x}}_* = \mathbf{B}\mathbf{B}^T\mathbf{x}_*$$

where

$$x_*^{(d)} = \frac{x^{(d)} - \mu^{(d)}}{\sigma_d}$$

• Reconstruction in original space by destandardization of $\tilde{\mathbf{x}}_*$

Example

 Reconstructions with increasing number of principal components (PCs)

Visualizing high-dimensional data

 Here, want to find low-dimensional embedding that retains distances of highdimensional data

Distance Preserving Embedding

■ Task: Find for each $\mathbf{x}_i \in \mathbb{R}^D$, an embedding vector $\mathbf{y}_i \in \mathbb{R}^2$ that preserves the structure of high dimensional data.

Stochastic Neighbor Embedding

 Convert Euclidean distances in original space into conditional prob. (= affinities):

$$P_{j|i} = \frac{\exp(-||\mathbf{x}_i - \mathbf{x}_j||^2/(2\sigma_i^2))}{\sum_{k \neq i} \exp(-||\mathbf{x}_i - \mathbf{x}_k||^2/(2\sigma_i^2))}$$
 (P_{i|i} = 0)

For low-dimensional embeddings, we have:

$$Q_{j|i} = \frac{\exp(-||\mathbf{y}_i - \mathbf{y}_j||^2)}{\sum_{k \neq i} \exp(-||\mathbf{x}_i - \mathbf{x}_k||^2)}$$
 (Q_{i|i} = 0)

SNE minimizes KL-divergence for all points:

$$\mathbf{y}_1, \dots, \mathbf{y}_N = \arg\min \sum_{i=0}^N \sum_j P_{j|i} \log \frac{P_{j|i}}{Q_{j|i}}$$

Determining variances

- For each data point, we have to determine a variance σ_i
- Want to have smaller σ_i in dense regions than in sparse regions
- In t-SNE, σ_i is determined via binary search to match desired perplexity π :

$$\sigma_i = rg \min_{\sigma} |\mathrm{Perp}(P_i) - \pi|$$
 Entropy with $\mathrm{Perp}(P_i) = 2^{-\sum_j P_{j|i} \log_2 P_{j|i}}$

From SNE to t-SNE

t-SNE improves upon SNE by following modifications:

1. Compute symmetric affinities:

$$P_{ij} = \frac{P_{i|j} + P_{j|i}}{2N}$$

2. Use Student's t-distribution for low-dimensional affinities:

$$Q_{ij} = \frac{(1+||y_i-y||^2)^{-1}}{\sum_{k\neq l} (1+||y_k-y_l||^2)^{-1}}$$

Optimization in t-SNE

As before, we minimize the KL-divergence:

$$C := \mathbb{KL}(P||Q) = \sum_{i=1}^{N} \sum_{j} P_{ij} \log_2 \frac{P_{ij}}{Q_{ij}}$$

• Using the gradient $\frac{\partial C}{\partial \mathbf{y}_i}$, we can optimize this via gradient descent:

$$\frac{\partial C}{\partial \mathbf{v}_i} = 4 \sum_{j} (P_{ij} - Q_{ij}) (\mathbf{y}_i - \mathbf{y}_j) (1 + ||y_i - y_j||^2)^{-1}$$

t-SNE Algorithm

- Hyperparameters: perplexity π , number of iterations T, learning rate η , momentum $\alpha(t)$
- 1. Compute pairwise affinities $P_{i|i}$ with desired perplexity π
- 2. Sample initial solution $\mathbf{y}_i \sim \mathcal{N}(x|0, 10^{-4}\mathbf{I})$
- 3. For t = 1, ..., T do:
 - 1. Compute low-dimensional affinities Q_{ij}

 - 2. Compute gradient $\frac{\partial C}{\partial \mathbf{y}_i}$ 3. Update $\mathbf{y}_i^{[t]} = \mathbf{y}_i^{[t-1]} + \eta \frac{\partial C}{\partial \mathbf{y}_i} + \alpha(t) \left(\mathbf{y}_i^{[t-1]} \mathbf{y}_i^{[t-2]} \right)$

Summary

- Discussed several unsupervised learning approaches solving different tasks:
 - Density Estimation (Gaussian Mixture Models)
 - Dimensionality Reduction (PCA)
 - Visualization (t-SNE)

References

- L. van der Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine Learning Research (JMLR), vol. 9, pp. 2579-2605, 2008.
- Wattenberg et al. How to Use t-SNE Effectively, Distill, 2016.

See you next week!