Lezione 5: Spazi Vettoriali (Park I)

Lo spatio endideo

Def: Lo spatio enclideo n-dimensionale è l'insieme $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Un elemento $x \in \mathbb{R}^n$ è una successione (x_1, x_2, \dots, x_n) di n numeri reali.

 \mathbb{R}^2 : piano; un punto in \mathbb{R}^2 è una copia (x,y). \mathbb{R}^3 : spazi tridimensionale; un punto in \mathbb{R}^3 è una terna (x,y,z).

L'elements (0,0,--,0) à l'origine della spazio e viene indicata con O.

Un elemento $x \in \mathbb{R}^n$ possiamo interpretare come un punto oppure come un vertore (dall'origine a questo punto)

- noi spesso Cambiamo punto di vista in questo corso.

Spesso, se pensiamo

di X = (x1,..., xn) come

un vettore scriviamo

(x1)

Per vettori usiamo spesso nomi come v, w ecc. per punti invece P, Q, ecc.

Se
$$x = \begin{pmatrix} x_n \\ \vdots \\ x_n \end{pmatrix}$$
, $y \in \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$, poniamo $x + y = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \in \mathbb{R}^n$.

Prodotto per scalare:

Se
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
, $\lambda \in \mathbb{R}$, poniamo $\lambda x = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix} \in \mathbb{R}^n$.

(Esempi: solo in leabne)

Définizione de uno spazio retoriale

Def (1.5.1) Un grappo è un insième G dotato di un'operazione binaria *: G×G - G (a,b) Ho a*b

- (1) L'operazione è associativa: $(a*b)*c = a*(b*c) \quad \forall a,b,c \in G$
- (2) Esistenza di un elemento nentro: JeEG: e*a = a*e = a, YaEG
- (3) Esistenza di elementi inversi:

 Vae G J be G: a*b = b*a = e

 l'inverso di a,

 scriviama h = a⁻¹

Il gruppo G è commutativo (o abeliano) se l'operazione è commutativa: a*b = b*a, $\forall a,b \in G$.

Def (1.5.3) Un <u>campo</u> è un insieme K con due operazioni +, binarie con le seguenti proprietà:

- (1) (K,+) è un gruppo commutativo con elemento neutro 0 = 0 x.
- (2) (K) {0K}, ·) è un grappo commutativo con elemento neutro 1 = 1K.
- (3) Distributività: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ $\forall a,b,c \in \mathbb{K}$

Esempi: (Q,+,·), (R,+,·), (C,+,·) sono campi. Invece (Z,+,·) non è un campo. (Più dettugli in lezione.]

Def: (2.2.1) Fissiamo un campo K.

[Per noi, questo K è quasi sempre o R o C.]

Uno spazio vettoriale (su IK) è un insieme V

con due operazioni:

- una addizione binaria: V×V → V (v, w) → v+w
- un prodotto per scalare: KXV-e V con le seguenti proprietà:

$$(2) \lambda(v+w) = \lambda v + \lambda w$$

∀v,w∈V ∀λ,μek

$$(3) (\lambda + \mu) v = \lambda v + \mu v$$

 $(4) (\lambda \mu) v = \lambda (\mu v)$

$$(5) \quad 1 \vee = 1_{\mathbf{k}} \cdot \vee = \vee$$

Visto che (V, t) è un grappo, esiste un elemento neutro 0 = 0v (tale che 0 + v = v + 0 = v). NON va confuso con lo zero $0 = 0_K$ del Campo K? [Quale zero intendiamo è chiaro dal contesto.]

Prop 2.7.1:
$$Ov = O$$
, $\forall v \in V \left(O_{\mathbb{K}} \cdot v = O_{V}\right)$

Esempio 0: Se Kè un campo, allora Kè uno spazio vettoriale su se stesso (con le stesse operazioni).

Esemplo 1: Lo spazio K".

Sia IK un campo de IK" = IK × IK × ___ × IK.
Un elemento x di IK" è

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \quad \text{con} \quad X_{1,---}, X_n \in \mathbb{K}$$

[Per IK = IR otheriamo la Spazió enclidea dell'inizio della lezione]

Per
$$x = \begin{pmatrix} x_1 \\ x_n \end{pmatrix}$$
, $y = \begin{pmatrix} y_1 \\ y_n \end{pmatrix} \in \mathbb{K}^n$, definiamo $x + y = \begin{pmatrix} x_1 + y_1 \\ x_n + y_n \end{pmatrix} \in \mathbb{K}^n$. Per $\lambda \in \mathbb{K}$, definiamo $\lambda x = \begin{pmatrix} \lambda x_1 \\ \lambda x_n \end{pmatrix} \in \mathbb{K}^n$.

Con queste operazioni, K' direnta uno spazio vettoriale su K. [Condollo delle 5 proprietà solo in lezione.]

Esempio 2: La spazio K[x] dei polinomi

K[x] = { polinomi in variabile x con coeff. in lk }

IK[x] ha in modo naturale due operazioni:

.) somma di due polinomi (addizione binaria)

.) il prodotto di un Scalare con un polinomio. Con queste due operazioni, K[x] diventa uno

Spario vettoriale. [Controllo delle 5 proprietà

della definizione solo in lezione.]