EE4580 – Quasi-Optical Systems

Reflector Antennas

MATLAB Instruction

Question:

Write a MATLAB routine to analyze a parabolic reflector. Suppose that the reflector is illuminated by a circular feed with a linearly y-polarized uniform amplitude distribution. The operating frequency is 60 GHz. The aperture of the circular feed has a diameter of 3λ . Suppose that the parabola has a focal length f = 100 cm.

Provide the following plots:

- The far field pattern of the feed of the reflector.
- Plot the equivalent aperture current distribution for a reflector with f/D = 0.5.
- Plot the far field patterns radiated by the parabolic reflector for f/D = 5. Compare with the far field of a uniform aperture.
- Plot the taper efficiency, the spillover efficiency, and the aperture efficiency vs the diameter D of the reflector for 0.5 < f/D < 5.
- Plot the maximum possible directivity (i.e. uniform aperture distribution), the directivity and the gain vs the diameter D of the reflector for 0.5 < f/D < 5.

1. Far field Pattern of the Feed

Feed:

- Circular feed
- Constant amplitude
- y-polarized
- f = 60 GHz
- $D_f = 3\lambda$

1. Far field Pattern of the Feed Recap

Equivalent Aperture Integral Approach

1. Far field Pattern of the Feed

Recap

Equivalent Aperture Integral Approach

Far field of the Circular Feed

Far field of a given current:

Spatial representation:

$$\vec{E}_{feed}^{ff}(\theta_{feed}, \phi_{feed}) = -j\omega\mu(\tilde{I} - \hat{r}\hat{r})\vec{J}_{FT} \frac{e^{-jkr}}{4\pi r}$$

Spectral representation:

$$\vec{E}_{feed}^{ff} \left(\theta_{feed}, \phi_{feed} \right) = j k_{zs} \tilde{G}^{fc} \left(k_{xs}, k_{ys}, z, z' \right) \vec{J}_{FT} \frac{e^{-jkr}}{2\pi r}$$

$$\vec{E}_{feed}^{ff}(\theta_{feed}, \phi_{feed}) = -\frac{2}{jk}\zeta J_f J_{FT} \frac{e^{-jkr_{feed}}}{2\pi r_{feed}} \left[\cos\theta_{feed}\sin\phi_{feed}\hat{\theta}_{feed} + \cos\phi_{feed}\hat{\phi}_{feed}\right]$$

$$J_{FT} = Airy(ka \sin \theta_{feed}) = 2\pi a^2 \frac{J_1(ka \sin \theta_{feed})}{ka \sin \theta_{feed}}$$

$$\vec{H}_{feed}^{ff}(\theta_{feed}, \phi_{feed}) = \frac{1}{7}\hat{r}_{feed} \times \vec{E}_{feed}^{ff}(\theta_{feed}, \phi_{feed})$$

2. Current on Equivalent Aperture

Recap

Parabola Definition:

$$|P - Q| + |Q - F| = 2f$$

 (r', θ') parametrization:

$$r' = \frac{2f}{1 + \cos \theta'} = \frac{f}{\cos^2 \left(\frac{\theta'}{2}\right)} = f\left[1 + \tan^2 \left(\frac{\theta'}{2}\right)\right]$$

 (ρ', z) parametrization: $z = -f + \frac{(\rho')^2}{4f}$

$$z = -f + \frac{(\rho')^2}{4f}$$

2. Current on Equivalent Aperture

Recap

Useful formulas:

$$\vec{E}_a(\rho',\phi') \approx \vec{E}_r(\rho',\phi') = \sqrt{2\zeta U_{feed} \left(2 \tan^{-1} \left(\frac{\rho'}{2f}\right),\phi'\right)} \frac{4f}{4f^2 + (\rho')^2} e^{-j2kf} \hat{e}_r$$

$$U_{feed}(\theta', \phi') = \frac{1}{2\zeta} \left| \vec{f}_{pattern}(\theta', \phi') \right|^2$$

$$\begin{aligned} \left| \vec{f}_{pattern}(\theta', \phi') \right|^2 &= \left| f_{pattern, \theta'}(\theta', \phi') \hat{\theta}' + f_{pattern, \phi'}(\theta', \phi') \hat{\phi}' \right|^2 = \left| E_{feed, \theta'}^{FF}(\theta', \phi') \hat{\theta}' + E_{feed, \phi'}^{FF}(\theta', \phi') \hat{\phi}' \right|^2 (r')^2 \\ &= \left| \vec{E}_{feed}^{ff}(\theta', \phi') \right|^2 (r')^2 \end{aligned}$$

$$\bar{R} = -\hat{\rho}'\hat{\theta}' - \hat{\phi}'\hat{\phi}'$$

$$\hat{e}_r = \bar{R} \cdot \hat{e}_i$$

$$\vec{H}_a(\rho',\phi') \approx \vec{H}_r(\rho',\phi') = \frac{1}{\zeta}\hat{r}'' \times \vec{E}_r(\rho',\phi') = \frac{1}{\zeta}\hat{z} \times \vec{E}_r(\rho',\phi')$$

2. Current on Equivalent Aperture

Recap

3. Far field Patterns of the Reflector Recap

$$\vec{E}_{ref}^{ff}\big(\theta_{ff},\phi_{ff}\big) = jk_{zs}\tilde{G}^{fc}\big(k_{xs},k_{ys},z,z'\big)\vec{J}_{FT}\big(k_{xs},k_{ys}\big)\frac{e^{-jkr}}{2\pi r}$$

$$\vec{J}_{FT}(k_x, k_y) = \iint_{S} \vec{J}(\vec{r}') e^{jk\hat{r}\cdot\vec{r}'} dS'$$

4. Performance of the Antenna Reflector

Recap

Useful formulas:

$$\eta_t = \frac{A_{eff}}{A} = \frac{1}{A} \frac{\left| \iint_A \vec{E}_a(\rho', \phi') dA \right|^2}{\iint_A |\vec{E}_a(\rho', \phi')|^2 dA} \qquad \eta_s = \frac{\int_0^{2\pi} \int_0^{\theta_0} U_{feed}(\theta', \phi') \sin \theta' d\theta' d\phi'}{\int_0^{2\pi} \int_0^{\pi} U_{feed}(\theta', \phi') \sin \theta' d\theta' d\phi'}$$

$$\eta_{s} = \frac{\int_{0}^{2\pi} \int_{0}^{\theta_{0}} U_{feed}(\theta', \phi') \sin \theta' d\theta' d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi} U_{feed}(\theta', \phi') \sin \theta' d\theta' d\phi'}$$

 $\theta_0 = 2 \operatorname{acot}(4f_{\#}^{T})$

Only in Cartesian Coordinates

$$\left| \iint_{A} \vec{E}_{a}(\rho', \phi') dA \right|^{2} =$$

$$\left| \hat{x} \iint_{A} E_{ax}(\rho', \phi') dA + \hat{y} \iint_{A} E_{ay}(\rho', \phi') dA + \hat{z} \iint_{A} E_{az}(\rho', \phi') dA \right|^{2}$$

$$\eta_{ap} = \eta_s \eta_t$$

$$D_M = \frac{4\pi}{\lambda^2} A$$

$$D = D_M \eta_t$$

$$G = D_M \eta_{ap} = \frac{4\pi}{\lambda^2} \eta_s \eta_t A$$