Elementary Toposes

Jure Smolar

July 23, 2025

1 Introduction

An elementary topos is a Cartesian closed category with finite limits and a subobject classifier. The goal of this project is to formalise this definition in a suitable way. Namely, in mathlib Cartesian closed categories are defined via *chosen* finite products, which realise finite products as an algebraic operation in a category; for each finite product diagram we *choose* a specific object to serve as the product, rather than only asking for the existence of such a product. Classically, we can still, using the axiom of choice, get chosen limits from mere existence.

The first part of the project will be extending this to define finite chosen limits in general – this will allow us to work more naturally in a topos, and keep with the existing definition of Cartesian closedness by getting an instance for chosen finite products from limits.

The second part will be defining a subobject classifier, which we will again see as a chosen subobject classifier – an object of truth values Ω in the category with a monomorphism true : $1 \to \Omega$ and a unique characteristic morphism $\chi_U : X \to \Omega$ for any monomorphism $U \to X$.

If time permits, we will also define a chosen natural numbers object, allowing us to also consider NNO-topoi.

After the definition, the goal will be to apply it and give instances for some common examples, like finite sets, Type, presheaves, and sheaves.

2 Chosen Finite Limits

The first step is to generalise chosen finite products to general finite limit cones. Note that chosen limits are also limits in the sense of there existing a limit cone. Being a chosen limit is a strictly stronger property.

Definition 1 (Chosen Limit). Let $F: J \to C$ be a functor. A *chosen limit* for F is a specified limit cone for F.

Proposition 2 (Chosen Limit implies Limit). If we have a chosen limit for a functor F, then F has a limit.

F has a limit.	
<i>Proof.</i> An inhabited set is nonempty.	
Under choice, the reverse also holds.	
Proposition 3 (Existence of limits implies chosen limit).	
Proof. Classically, a nonempty set is inhabited.	

Definition 4 (Chosen Limits of Shape). A category C has chosen limits of shape J if every functor $F: J \to C$ has a chosen limit.

Definition 5 (Chosen Finite Limits). A category C has chosen finite limits if it has chosen limits of shape J for every finite category J, i. e. for every finite limit cone.

Note that Mathlib already provides a concept of chosen finite product it uses internally for Cartesian closed categories.

Definition 6 (Chosen Finite Products). A category C has chosen finite products if it is equipped with:

- A choice of a limit binary fan (product) for any two objects of the category.
- A choice of a terminal object.

More precisely, this consists of chosen limit cones for the pair functor $X \leftarrow \cdot \rightarrow Y$ and for the empty functor from the empty category.

Note that our definition is compatible, so that a category with chosen finite limits in particular has an instance of chosen finite products.

Lemma 7 (Chosen Finite Products from Limits). If a category C has chosen finite limits, then it has chosen finite products.

Proof. We construct the limit cones for the pair and the terminal object.

3 Cartesian Closedness

The notion of a Cartesian closed category is already defined in Mathlib, so we just state the definitions.

Definition 8 (Monoidal category). In a monoidal category \mathcal{C} , we can take the tensor product of objects, $X \otimes Y$ and of morphisms $f \otimes g$. The tensor product does not need to be strictly associative on objects, but there is a specified associator, $\alpha_{XYZ}: (X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$. There is a tensor unit $\mathbf{1}_{\mathcal{C}}$, with specified left and right unitor isomorphisms $\lambda_X: \mathbf{1}_{\mathcal{C}} \otimes X \cong X$ and $\rho_X: X \otimes \mathbf{1}_{\mathcal{C}} \cong X$.

These associators and unitors satisfy the pentagon and triangle identities.

Definition 9 (Monoidal closed category).

Definition 10 (Cartesian closed category). A category \mathcal{C} is *cartesian closed* if it has finite products and every object is exponentiable.

We define this as a monoidal closed category with respect to the cartesian monoidal structure.

4 Subobject Classifiers

Definition 11 (Subobject Classifier).

In a category C with chosen finite limits, a chosen subobject classifier consists of:

- 1. An object Ω
- 2. A monomorphism true : $1 \to \Omega$

3. For every monomorphism $m:U\to X$, a unique assigned morphism $\chi_m:X\to\Omega$ (the characteristic morphism) such that the square

$$\begin{array}{c} U \longrightarrow 1 \\ \downarrow \text{true} \\ X \longrightarrow \Omega \end{array}$$

is a pullback.

5 Elementary Toposes

Definition 12 (Elementary Topos). An *elementary topos* is a category $\mathcal C$ that

- 1. has chosen finite limits,
- 2. is cartesian closed for the inherited chosen finite products,
- 3. has a subobject classifier.

Definition 13 (Natural Numbers Object). In a topos \mathcal{C} , a natural numbers object is an object N with morphisms $0: 1 \to N$ and $s: N \to N$ satisfying the appropriate universal property.

Definition 14 (Topos with NNO). A topos equipped with a natural numbers object.

6 Examples

- 6.1 Finite Sets
- 6.2 The Category of Types
- 6.3 Presheaves
- 6.4 Sheaves