A Multi-layer LSTM-based Approach for Robot Command Interaction Modeling

Martino Mensio¹, Emanuele Bastianelli¹, Ilaria Tiddi², Giuseppe Rizzo³

(¹Knowledge Media Institute, The Open Univerisity, UK. ²Department of Computer Science, VU University Amsterdam, NL. ³Istituto Superiore Mario Boella, Italy)

Human-Robot interaction

- indoor environment
- natural language commands stating:
 - action → semantic frame
 - argument → frame element

Challenges:

- understand the sentence of the user
- instantiate the corresponding command

Dataset

HuRIC: FrameNet-annotated spoken commands
Distribution of samples over the frames

The LSTM neural network

Sequences of words processing using LSTM

- the word embeddings (GloVe) are taken for each word
- a bidirectional LSTM encoder provides contextualized representations of words
- other layers (LSTM decoders, dense, self-attention) specialize on the three different tasks

Semantic parsing results

Using 5-fold evaluation, each task is evaluated:

- AD: Action detection (identification of the Frame)
- Al: Argument Identification (detecting the spans of the arguments)
- AC: Argument Classification (assign a label to each argument)

F1	AD	AI	AC
BAS16	94.67%	90.74%	94.93%
3L-ATT	94.44%	94.73%	94.69%
3L-NO-ATT	95.37%	94.90%	91.90%
2L-ATT	96.29%	94.40%	92.30%
2L-NO-ATT	94.44%	94.50%	92.45%

References

B. Liu and I. Lane, "Attention-based recurrent neural network models for joint intent detection and slot filling," in INTERSPEECH. ISCA, 2016, pp. 685–689.

E. Bastianelli, G. Castellucci, D. Croce, L. Iocchi, R. Basili, and D. Nardi, "Huric: a human robot interaction corpus," in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14). Reykjavik, Iceland: European Language Resources Association (ELRA), 2014.

Grounding

Mapping words in a command to real-world entities:

1) A semantic map stores information about entities in the environment

2) Linking words to the entities' lexical information in the map:

- semantic heads are extracted from each frame element
- grounding through a Lexicalised Grounding Mechanism (LGM)

Whole chain results

The results of the parser are fed into the grounding module and the performances are evaluated.

	Whole chain F1	
BAS16	41.70%	
3L-ATT	43.67%	
3L-NO-ATT	41.92%	
2L-ATT	44.54%	
2L-NO-ATT	42.79%	

Future works

- Study the values of attention towards explainability
- Design an interactive scenario for correction

