

CENTRO UNIVERSITÁRIO SATC ENGENHARIA DE SOFTWARE/COMPUTAÇÃO - DISCIPLINA DE ESTATÍSTICA APLICADA

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

	Data:// Horário: 18h50min às 22h00min
A1 ()	Peso: 0,0
Aluno (a):	
, ,	um breve resumo explanando a sua compreensão lógica de

cada linha do código. Utilize da numeração definida em cada linha caso precise reforçar pontos específicos.

Linha 01: import pandas as pd

Linha 02: import random

Linha 03: import numpy as np

Linha 04: dataset = pd.read_csv('census.csv')

Linha 05: dataset.shape
Linha 06: dataset.head()

Linha 07: dataset.tail()

Linha 08: df_amostra_aleatoria_simples = dataset.sample(n = 100, random_state = 1)

Linha 09: df_amostra_aleatoria_simples.shape **Linha 10:** df_amostra_aleatoria_simples.head()

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

 Para o código abaixo faça um breve resumo explanando a sua compreensão lógica de cada linha do código. Utilize da numeração definida em cada linha caso precise reforçar pontos específicos.

Linha 01: import pandas as pd

Linha 02: import random

Linha 03: import numpy as np

Linha 04: dataset = pd.read_csv('census.csv')

Linha 05: len(dataset) // 100

Linha 06: random.seed(1)

Linha 07: random.randint(0, 325)

Linha 08: np.arange(68, len(dataset), step = 325)

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

 Para o código abaixo faça um breve resumo explanando a sua compreensão lógica de cada linha do código. Utilize da numeração definida em cada linha caso precise reforçar pontos específicos.

Linha 01: import pandas as pd

Linha 02: import random

Linha 03: import numpy as np

Linha 04: dataset = pd.read csv('census.csv')

Linha 05: len(dataset) / 10

Linha 06: grupos = []

Linha 07: id_grupo = 0

Linha 08: contagem = 0

Linha 09:for _ in dataset.iterrows():

Linha 10: grupos.append(id grupo)

Linha 11: contagem += 1

Linha 12: if contagem > 3256:

Linha 13: contagem = 0

Linha 14: id_grupo += 1

Linha 15: print(grupos)

Linha 16: np.unique(grupos, return_counts=True)

Linha 17: np.shape(grupos), dataset.shape

Linha 18: dataset['grupo'] = grupos

Linha 19: dataset.head()

Linha 20: dataset.tail()

Linha 21: random.randint(0, 9)

Linha 22: df_agrupamento = dataset[dataset['grupo'] == 7]

Linha 23: df_agrupamento.shape

Linha 24: df_agrupamento['grupo'].value_counts()

CENTRO UNIVERSITÁRIO SATC ENGENHARIA DE SOFTWARE/COMPUTAÇÃO - DISCIPLINA DE ESTATÍSTICA APLICADA

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

4) Para o código abaixo faça um breve resumo explanando a sua compreensão lógica de cada linha do código. Utilize da numeração definida em cada linha caso precise reforçar pontos específicos.

Linha 01: import pandas as pd

Linha 02: import random

Linha 03: import numpy as np

Linha 04: dataset = pd.read_csv('census.csv')

Linha 05: def amostragem1(dataset, amostras):

Linha 06: intervalo = len(dataset) // amostras

Linha 07: random.seed(1)

Linha 08: inicio = random.randint(0, intervalo)

Linha 09: indices = np.arange(inicio, len(dataset), step = intervalo)

Linha 10: amostraaa = dataset.iloc[indices]

Linha 11: return amostraaa

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

5) Para o código abaixo faça um breve resumo explanando a sua compreensão lógica de cada linha do código. Utilize da numeração definida em cada linha caso precise reforçar pontos específicos.

Linha 01: import pandas as pd

Linha 02: import random

Linha 03: import numpy as np

Linha 04: dataset = pd.read_csv('census.csv')

Linha 05:from sklearn.model selection import StratifiedShuffleSplit

Linha 06: dataset['income'].value_counts()

Linha 07: 7841 / len(dataset), 24720 / len(dataset)

Linha 08: 100 / len(dataset)

Linha 09: split = StratifiedShuffleSplit(test size=0.0030711587481956942)

Linha 10: for x, y in split.split(dataset, dataset['income']):

Linha 11: df_x = dataset.iloc[x]

Linha 12: df_y = dataset.iloc[y]

Linha 13: df_x.shape, df_y.shape

Linha 14: df_y.head()

Linha 15: df y['income'].value counts()

CENTRO UNIVERSITÁRIO SATC ENGENHARIA DE SOFTWARE/COMPUTAÇÃO - DISCIPLINA DE ESTATÍSTICA APLICADA

Professor: Max Gabriel Steiner

Avaliação: Técnicas de Amostragem Aplicadas em Python

6) Exercício de Estatística Aplicada: Técnicas de Amostragem com o DataFrame da Netflix. Utilize o DataFrame carregado com os dados da Netflix. Nosso objetivo é de aplicar os métodos de amostragem aleatória simples e estratificada para extrair subconjuntos representativos dos dados.

Dica: para abrir este arquivo com sucesso utilize a seguinte codificação:

df = pd.read csv('netflix.csv', encoding='latin1')

- Em seguida verifique a quantidade de linhas e colunas deste arquivo:
- Valide também quais são os títulos das colunas:

Após realizar os passos anteriores pudemos verificar que o arquivo está um pouco poluído com dados sem valor, certo?

Portanto:

- 1. Limpeza inicial dos dados: elimine todas as colunas Unnamed, pois estão vazias ou são irrelevantes.
 - 2. Remova linhas com valores nulos nas colunas type, country ou rating.
- 3. Selecione 50 registros aleatórios do DataFrame total aplicando, portanto, amostragem aleatória simples.
- 4. Aplicar uma amostragem estratificada na coluna type, selecionando uma amostra estratificada que represente 5% do DataFrame.