Aufgabe 1: Induktivitäten

Die dargestellten, nicht ideal gekoppelten Spulen bilden einen Transformator (im Leerlauf). Die ohmschen Verluste werden vernachlässigt.

Daten: Windungszahl der Spule 1 $N_1 = 400$ Windungszahl der Spule 2 $N_2 = 200$ Kopplungsfaktor k = 0.8 mittlere Länge des Eisenjochs $l_m = 30 \text{ cm}$ Querschnittsfläche des Eisenjochs $A = 1.2 \text{ cm}^2$ relative Permeabilität des Eisenjochs $\mu_r = 1500$

- a) Berechnen Sie die Selbstinduktivitäten L_1 und L_2 der beiden Spulen. Die Streuung soll vernachlässigt werden.
- b) Berechnen Sie die gegenseitige Induktivität L_{12} (= L_{21} = M).
- c) Bestimmen Sie den Verlauf der Spannungen u_1 und u_2 , wenn sich i_1 gemäss dem Diagramm ändert. Grafische Darstellung des Resultats.

Aufgabe 2: Mittelwerte eines periodischen Signals

- a) Berechnen Sie den Gleichwert der Spannung.
- b) Berechnen Sie den Gleichrichtwert der Spannung.
- c) Berechnen Sie den Effektivwert der Spannung.

Aufgabe 3: Phasenbedingung

Bestimmen Sie die Kreisfrequenz ω , so dass \underline{U}_C gegenüber \underline{U}_q um 90° nacheilt. Lösung in allgemeiner Form (Buchstabensymbole).

Aufgabe 4: Leistung im Wechselstromnetzwerk

Daten:

$$U_{\mathbf{q}} = 20 \text{ V}$$

$$R_{\mathbf{i}} = 100 \Omega$$

$$f = 100 \text{ Hz}$$

 $R = 10 \Omega$

Bestimmen Sie die Werte für C und für L (Anpassungsglied), so dass die Leistung in der Last R maximal wird.