Visión Computacional para imágenes y video

Módulo 2

Tema 2.3
Mejoramiento de imágenes usando Fourier

Gilberto Ochoa Ruiz, PhD Associate Professor Researcher in Computer Vision

Computer Science Dept.
Advanced AI Research Group
qilberto.ochoa@tec.mx

Representación de imágenes

Representación de imágenes

La mayoría de las operaciones de de mejoramiento de imágenes en el domino especial se puede reducir a la forma

$$g(x, y) = T[f(x, y)]$$
 donde

 $f(x, y) \square$ imagen de entrada

 $g(x, y) \square$ imagen de salida

 $T(x, y) \square$ operador matematico

Representación de imágenes

Tipos de mejoramiento de imágenes

Dominio espacial: técnicas que operan directamente sobre los pixeles

Dominio de la frecuencia: técnicas asadas en la modificación de la transformada de Fourier de una

imagen

Imagen entrada

Transformada de Fourier

Imagen salida

Imagen Original

Imagen Suavizada

Filtrado de imágenes en el espacio de Fourier

Filtro de suavizado de 5x5 (lowpass filter)

Filtrado de imágenes en el espacio de Fourier

Kernel

$$\frac{1}{5}(1 \ 1 \ [1] \ 1 \ 1)$$

Respuesta en frecuencia

Filtrado de imágenes en el espacio de Fourier

Imagen original

Laplaciano

$$\frac{1}{4} \left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & [8] & -1 \\
0 & -1 & 0
\end{array} \right)$$

Imagen refinada

Filtrado de imágenes en el espacio de Fourier

Usando otro kernel

$$H(e^{j\omega_x}, e^{j\omega_y}) = 5 - 2\cos\omega_x - 2\cos\omega_y$$

Filtrado de imágenes en el espacio de Fourier

Zoneplate pattern to visualize frequency plane

$$s(x, y) = \hat{s}\cos(a_x x^2 + a_y y^2) + s_0$$

Frecuencias locales en pixel (x,y)

$$\frac{\partial}{\partial x} \left(a_x x^2 + a_y y^2 \right) = 2a_x x$$

$$\frac{\partial}{\partial x} \left(a_x x^2 + a_y y^2 \right) = 2a_x x$$
$$\frac{\partial}{\partial y} \left(a_x x^2 + a_y y^2 \right) = 2a_y y$$

Original Zoneplate

Lowpass filtered with 5x5 box filter

Filtrado de imágenes en el espacio de Fourier

Filtrado de imágenes en el espacio de Fourier

Filtrado de imágenes en el espacio de Fourier

Imagen de entrada

Transf. De Fourier Original

Transf. De Fourier Centrada

Filtrado de imágenes en el espacio de Fourier

Filtrado de imágenes en el espacio de Fourier

Filtrado de imágenes en el espacio de Fourier

Filtrado de imágenes en el espacio de Fourier

La parte central de la FT, es decir, los componentes de baja frecuencia contiene la información de la apariencia general de la imagen

Por otro lado, los componentes de alta frecuencia son contienen la información de los "detalles" de la imagen

Filtrado de imágenes en el espacio de Fourier

Los contornos/líneas y transiciones bruscas (e.g., ruido) en la imagen contribuyen significativamente el contenido de alta frecuencia de la Trasformada de Fourier

Los componentes de baja frecuencia de la Transformada de Fourier son responsables de la apariencia general de la imagen sobre áreas homogéneas

El suavizado de una imagen se logra atenuando el rango de componentes de alta frecuencia de la imagen

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Filtrado de imágenes en el espacio de Fourier

El filtrado en el dominio de la frecuencia H(u,v) es equivalente a filtrar (usando la convolución) en el dominio especial f(x,y).

-1	0	1
-2	0	2
-1	0	1

Filtrado de imágenes en el espacio de Fourier

Ideal low-pass filter (ILPF)

$$H(u,v) = \begin{cases} 1 & D(u,v) \le D_0 \\ 0 & D(u,v) > D_0 \end{cases}$$

$$D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

(M/2,N/2): centro del kernel en el dominio de la frecuencia

D_o es denominada como frecuencia de corte

Filtrado de imágenes en el espacio de Fourier

Filtrado pasabajas

Patron de test

Circulos T.F. □ Radios de 10, 30, 60, 160, 460 pixels (> E de la T.F)

Filtrado de imágenes en el espacio de Fourier

Butterworth Lowpass Filters (BLPF)

Función de transferencia suave, sin discontinuidades bruscas, frecuencia de corte difusa

Filtrado de imágenes en el espacio de Fourier

Butterworth Lowpass Filters (BLPF)

Filtrado de imágenes en el espacio de Fourier

Gaussian Lowpass Filters (GLPF)

Smooth transfer function, smooth impulse response, no ringing

Filtrado de imágenes en el espacio de Fourier

Comparación de filtros

ILPF

GLPF

Filtrado de imágenes en el espacio de Fourier

Ejemplos de aplicacion de filtros pasabajas

a b

FIGURE 4.19

(a) Sample text of poor resolution (note broken characters in magnified view). (b) Result of filtering with a GLPF (broken character segments were joined).

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Filtrado de imágenes en el espacio de Fourier

Ejemplos de aplicacion de filtros pasabajas

Filtrado de imágenes en el espacio de Fourier

Ejemplos de aplicación de filtros pasabajas

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas

Ideal:

$$H(u,v) = \begin{cases} 1 & D(u,v) > D_0 \\ 0 & D(u,v) \le D_0 \end{cases}$$

Butterworth:

$$|H(u,v)|^2 = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$$

Gaussian:

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas

Ideal:

Butterworth:

Gaussian:

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas (ideal)

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas (Butterworth)

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas (Gaussian)

Filtrado de imágenes en el espacio de Fourier

Filtrado pasaltas (comparison)

IHPF BHPF

Filtrado de imágenes en el espacio de Fourier

Ejemplos de filtrado pasaltas

Imagen Original

Filtro Gaussiano H(u,v)

Imagen Filtrada

Filtrado de imágenes en el espacio de Fourier

Ejemplos de filtrado pasaltas

Filtrado de imágenes en el espacio de Fourier

Ejemplos de filtrado pasaltas

Filtrado de imágenes en el espacio de Fourier

Filtro para sharpening

El Laplaciano de una imagen

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

2da derivada w.r.t. x

$$\frac{\partial^2 f}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

2da derivada w.r.t. y

Por lo que el Laplaciano Discreto para 2D es

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Filtrado de imágenes en el espacio de Fourier

Filtro para sharpening - Laplaciano

0	1	0
1	-4	1
0	1	0

0	-1	0
-1	4	-1
0	-1	0

Laplaciano en direcciones X -Y

Esta ecuación se implementa en los kernels de la izquierda, el cual es isotrópico en 90°

1	1	1
1	-8	1
1	1	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplaciano en direcciones X -Y

El mismo laplaciano puedo usarse para considera direcciones diagonales, lo que hace que el centro sea 8 (4 x (-2 f(x,y))

Filtrado de imágenes en el espacio de Fourier

Filtro para sharpening - Laplaciano

Laplaciano 2D – dominio frecuencia

Equivalente en imagen 2D

Filtrado de imágenes en el espacio de Fourier

Filtro para sharpening - Laplaciano

Laplaciano 2D – dominio especial (IDFT)

Mascara en 2D

0	1	0
1	-4	1
0	1	0

Filtrado de imágenes en el espacio de Fourier

Imagen mejorada Imagen Original

Salida del Laplaciano

Dominio espacial

$$g(x,y) = f(x,y) - \nabla^{2} f(x,y)$$

Dominio frecuencia

$$G(u,v) = F(u,v) + (u^2 + v^2)F(u,v)$$

Nuevo operador

$$H_{2}(u,v) = 1 + (u^{2} + v^{2}) = 1 - H_{1}(u,v)$$

Laplacian

Imagen Original

Imagen Mejorada

Filtrado de imágenes en el espacio de Fourier

Imagen de Rayos X (pecho)

GHPF Rayos X (pecho)

GHPF + enfasis Rayos X (pecho)

+
enfasis
+
Hist. Eq.
Rayos X
(pecho)

GHPF

