CS420

Introduction to the Theory of Computation

Lecture 9: Push-down automata

Tiago Cogumbreiro

HW4 Errata

Exercise 3

The grammar should be:

$$egin{aligned} C &
ightarrow BbA \ A &
ightarrow BAC \mid \epsilon \ B &
ightarrow \epsilon \mid AbA \end{aligned}$$

Please update your copy of the PDF

Today we will learn...

- Pushdown automata (PDA)
- Formalizing PDAs
- Union of PDAs
- Examples

Section 2.2

Intuition

Define an automata family \iff CFG

NFA recap

Each transition performs one input operations: read/skip an input

Examples

• Read one input: $q_1 \stackrel{\mathtt{a}}{\longrightarrow} q_2$

• Skip one input: $q_1 \stackrel{\epsilon}{\longrightarrow} q_2$

Nondeterministic Push Down Automata (PDA)

- Extend NFAs with an unbounded stack
- Recognizes the same language as CFGs

PDA Execution

Each transition:

input op, pre-stack op, post-stack op

ullet Format: $q \xrightarrow{\mathtt{\$INPUT},\mathtt{\$PRE} o \mathtt{\$POST}} q'$

Example

$$q_\mathtt{a} \xrightarrow{\mathtt{READ} \ \mathtt{a},\mathtt{SKIP} o \mathtt{PUSH} \ \mathtt{a}} q_\mathtt{a}$$

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

Nondeterministic Push Down Automata (PDA) WMASS

- Extend NFAs with an unbounded stack
- Recognizes the same language as CFGs

PDA Execution

Each transition:

input op, pre-stack op, post-stack op

$$ullet$$
 Format: $q \xrightarrow{\mathtt{\$INPUT},\mathtt{\$PRE} o \mathtt{\$POST}} q'$

Example

$$q_\mathtt{a} \xrightarrow{\mathtt{READ} \ \mathtt{a},\mathtt{SKIP} o \mathtt{PUSH} \ \mathtt{a}} q_\mathtt{a}$$

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

Attention!

The comma does not denote parallel edges. Instead, we stack multiple transitions **vertically**.

PDA example (intuition)

Give a PDA that recognizes $\{ \mathtt{a}^n \mathtt{b}^n \mid n \geq 0 \}$

$$\begin{array}{c} \text{1. } q_{\mathtt{a}} \xrightarrow{\mathtt{READ \ a,SKIP} \to \mathtt{PUSH \ a}} q_{\mathtt{a}} \\ \text{2. } q_{\mathtt{a}} \xrightarrow{\mathtt{SKIP,SKIP} \to \mathtt{SKIP}} q_{\mathtt{b}} \\ \text{3. } q_{\mathtt{b}} \xrightarrow{\mathtt{READ \ b,POP \ a} \to \mathtt{SKIP}} q_{\mathtt{b}} \\ \text{4. } q_{\mathtt{b}} \xrightarrow{\mathtt{SKIP,EMPTY?} \to \mathtt{SKIP}} q_{\mathtt{v}} \end{array}$$

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

Exercises

1. Pop 0 and clear the stack:

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

- 1. Pop 0 and clear the stack: SKIP, POP 0 \rightarrow CLEAR
- 2. Check if read 0 and stack is empty (two solutions):

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

- 1. Pop 0 and clear the stack: SKIP, POP 0 \rightarrow CLEAR
- 2. Check if read 0 and stack is empty (two solutions): READ 0, EMPTY? \rightarrow SKIP READ 0, EMPTY? \rightarrow CLEAR
- 3. Check if stack is empty (2 solutions):

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

- 1. Pop 0 and clear the stack: SKIP, POP 0 \rightarrow CLEAR
- 2. Check if read 0 and stack is empty (two solutions): READ 0, EMPTY? \rightarrow SKIP READ 0, EMPTY? \rightarrow CLEAR
- 3. Check if stack is empty (2 solutions): $SKIP, EMPTY? \rightarrow CLEAR$ $SKIP, EMPTY? \rightarrow SKIP$
- 4. Check if 0 is on top and leave stack untouched:

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

- 1. Pop 0 and clear the stack: SKIP, POP 0 \rightarrow CLEAR
- 2. Check if read 0 and stack is empty (two solutions): READ 0, EMPTY? \rightarrow SKIP READ 0, EMPTY? \rightarrow CLEAR
- 3. Check if stack is empty (2 solutions): $SKIP, EMPTY? \rightarrow CLEAR$ $SKIP, EMPTY? \rightarrow SKIP$
- 4. Check if 0 is on top and leave stack untouched: SKIP, POP $0 \rightarrow PUSH \ 0$
- 5. Read 2 and leave stack untouched:

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP
	EMPTY?	CLEAR

- 1. Pop 0 and clear the stack: SKIP, POP 0 \rightarrow CLEAR
- 2. Check if read 0 and stack is empty (two solutions): READ 0, EMPTY? \rightarrow SKIP READ 0, EMPTY? \rightarrow CLEAR
- 3. Check if stack is empty (2 solutions): $SKIP, EMPTY? \rightarrow CLEAR$ $SKIP, EMPTY? \rightarrow SKIP$
- 4. Check if 0 is on top and leave stack untouched: SKIP, POP $0 \rightarrow PUSH \ 0$
- 5. Read 2 and leave stack untouched: READ 2, SKIP \rightarrow SKIP

We can replace SKIP by ϵ

We can replace SKIP by ϵ

We can replace SKIP by ϵ

We can omit READ

We can replace SKIP by ϵ

We can omit RFAD

Since read always appears in the same position, we can omit it, as we do in regular DFAs/NFAs.

We can omit PUSH/POP

We can omit PUSH/POP

Since push/pop always appear in the same position, we can omit them.

We can replace EMPTY?/CLEAR by \$

We can omit PUSH/POP

Since push/pop always appear in the same position, we can omit them.

We can replace EMPTY?/CLEAR by \$

Since empty?/clear always appear in the same position.

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

Exercises

1. Check if read 0 and stack is empty

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

Exercises

1. Check if read 0 and stack is empty

$$0,\$ o\epsilon$$
 or $0,\$ o\$$

2. Pop 0 and clear the stack

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

- 1. Check if read 0 and stack is empty $0,\$ o \epsilon$ or 0,\$ o \$
- 2. Pop 0 and clear the stack $\epsilon, 0 \to \$$
- 3. Check if stack is empty (2 solutions)

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

Exercises

- 1. Check if read 0 and stack is empty $0,\$ o \epsilon$ or 0,\$ o \$
- 2. Pop 0 and clear the stack $\epsilon, 0 \to \$$
- 3. Check if stack is empty (2 solutions)

$$\epsilon,\$ o\$ \ \epsilon,\$ o\epsilon$$

4. Check if 0 is on top of the stack and leave stack untouched:

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	$PUSH\left(n\right)$
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

- 1. Check if read 0 and stack is empty $0,\$ o \epsilon$ or 0,\$ o \$
- 2. Pop 0 and clear the stack $\epsilon,0 o \$$
- 3. Check if stack is empty (2 solutions) $\epsilon,\$\to\$$

$$\epsilon, \$
ightarrow \epsilon$$

- 4. Check if 0 is on top of the stack and leave stack untouched: $\epsilon, 0 \to 0$
- 5. Read 2, leave stack untouched

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)
	EMPTY?(\$)	CLEAR (\$)

- 1. Check if read 0 and stack is empty $0,\$ o \epsilon$ or 0,\$ o \$
- 2. Pop 0 and clear the stack $\epsilon, 0 \to \$$
- 3. Check if stack is empty (2 solutions) $\epsilon,\$ o \$$

$$\epsilon,\$ o\epsilon$$

- 4. Check if 0 is on top of the stack and leave stack untouched: $\epsilon, 0 \to 0$
- 5. Read 2, leave stack untouched $2, \epsilon
 ightarrow \epsilon$

Accepting [€0011]

Accepting [**0€**011]

Accepting [00€11]

Accepting [00**1€**1]

Accepting [001**1**€]

Accepting: 11

Accepting: 11

Accepting: ϵ

Acceptance example

Accepting: ϵ

Formalizing a PDA

Formalizing a PDA

Definition 2.13

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- 1. Q is a finite set called states
- 2. Σ is a finite set called input alphabet
- 3. Γ is a finite set called stack alphabet

- 4. $\delta \colon Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $F \subseteq Q$ is the set of accepted states

Example

Let $(Q, \Sigma, \Gamma, \delta, q_1, \{q_F\})$ be defined as:

1.
$$Q = \{q_0, q_1, q_F\}$$

2.
$$\Sigma = \{0, 1\}$$

3.
$$\Gamma = \{0, \$\}$$

where δ is defined by branches

$$egin{aligned} \delta(q_0,0,\epsilon) &= \{(q_0,0)\} \ \delta(q_0,\epsilon,\epsilon) &= \{(q_1,\epsilon)\} \ \delta(q_1,1,0) &= \{(q_1,\epsilon)\} \ \delta(q_1,\epsilon,\$) &= \{(q_1,\$)\} \ \delta(q,c,s) &= \{\} \end{aligned}$$

Give a PDA for the following grammar

Ballanced parenthesis

$$C
ightarrow {\color{red} { extstyle o}} \ C \ {\color{red} { extstyle c}} \ | \ CC \ | \ \epsilon$$

Give a PDA for the following grammar

Ballanced parenthesis

$$C
ightarrow {\color{red} \underline{\mathsf{o}}} \ C \ {\color{red} \underline{\mathsf{c}}} \ | \ CC \ | \ \epsilon$$

Acceptance: 00

Acceptance: 00

Acceptance: ϵ

Acceptance: ϵ

Acceptance: 00C0CC

Acceptance: 00C0CC

Formalizing stack operation

Let $S(o_1,o_2,s)$ be defined as follows, where $S:\Gamma_\epsilon imes \Gamma_\epsilon imes \mathrm{Stack}(\Gamma) o \mathrm{Stack}(\Gamma)$ and $\mathrm{Stack}(\Gamma) = \mathrm{List}(\Gamma-\$)$:

Pop operation

$$egin{aligned} s riangleright \epsilon &= s \ [] riangleright \$ &= [] \ n :: s riangleright n &= s \end{aligned}$$

Examples

$$egin{aligned} [0,1]
hd \epsilon &= [0,1] \ [0,1]
hd \$ & ext{ is undefined!} \ []
hd \$ &= \$ \ [0,1]
hd 0 &= [1] \ [0,1]
hd 1 & ext{ is undefined!} \end{aligned}$$

Push operation

$$egin{aligned} s &\lhd \epsilon = s \ s &\lhd \$ = [] \ s &\lhd n = n :: s \end{aligned}$$

Examples

$$egin{aligned} [0,1] riangleleft \epsilon &= [0,1] \ [0,1] riangleleft \$ &= [] \ [0,1] riangleleft 0 &= [0,0,1] \ [0,1] riangleleft 1 &= [1,0,1] \end{aligned}$$

Stack operation exercises

Examples

Expression	Result
$ab \triangleright c =$	
$ab \triangleleft c =$	
$ab \triangleright a =$	
$ab \triangleleft a =$	
$ab \triangleright \$ =$	
$ab \triangleleft \$ =$	
$\epsilon riangleright \$ =$	
$\epsilon \triangleleft \$ =$	
$\epsilon \triangleright a =$	
$\epsilon \triangleleft a =$	

Stack operation exercises

Examples

Expression	Result
$ab \triangleright c =$	undef
$ab \triangleleft c =$	cab
$ab \triangleright a =$	b
$ab \triangleleft a =$	aab
$ab \triangleright \$ =$	undef
$ab \triangleleft \$ =$	ϵ
$\epsilon riangles \$ =$	ϵ
$\epsilon \triangleleft \$ =$	ϵ
$\epsilon \triangleright a =$	undef
$\epsilon \triangleleft a =$	a

Formalizing acceptance

$$rac{(q',o')\in\delta(q,y,o)}{(q,s)\stackrel{y}{\longrightarrow}(q',s riangleright odo')}$$

Rule 0. We can go from state q and stack s into state q' and stack s' with input $y \in \Sigma_\epsilon$ if we can construct s' from a push o and a pop o' on stack s.

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$, let the **steps through** relation, notation $q\curvearrowright_M w$, be defined as:

$$\frac{q \in F}{(q,s) \curvearrowright_M []}$$

$$\dfrac{(q,s) \overset{y}{\longrightarrow} (q',s') \qquad (q',s') \curvearrowright_M w}{(q,s) \curvearrowright_M y \cdot w}$$

Rule 1. State q steps through [] if q is a final state.

Rule 2. If we can go from q to q' with y and q' steps through w, then q steps through $y \cdot w$.

Acceptance. We say that M accepts w if, and only if, $q_0, [] \curvearrowright_M w$.

Example of acceptance

We can build a chain of states as follows

$$(q_0,[])\stackrel{0}{\longrightarrow} (q_0,[0])\stackrel{0}{\longrightarrow} (q_1,[0,0])\stackrel{\epsilon}{\longrightarrow} (q_1,[0,0])\stackrel{1}{\longrightarrow} (q_1,[0])\stackrel{1}{\longrightarrow} (q_1,[])\stackrel{\epsilon}{\longrightarrow} (q_F,[])$$

Since q_F is a final state, we have that

$$(q_0, []) \curvearrowright [0, 0, 1, 1]$$

Recall

Example 2.16

A sequence of a-s then b-s and finally c-s with as many a-s as there are b-s or as there are c-s.

$$\{a^ib^jc^k\mid i=jee i=k\}$$

Example 2.16

A sequence of a-s then b-s and finally c-s with as many a-s as there are b-s or as there are c-s.

$$\{a^ib^jc^k\mid i=j\lor i=k\}$$

A solution

Step 1. read and push a total of $N\ a$'s.

Step 2. Either:

- ullet (i=j) read N b's and pop a's; followed by reading an arbitrary number of c's
- ullet (i=k) read an arbitrary number of b's followed by read N c's and pop a's

State diagram of Example 2.16

Example 2.16 accept [a,a,b,b,c,c]?

Example 2.16 accept [a,a,b,b,c,c]?

Example 2.16 accept [a,a,b,c,c]?

Example 2.16 accept [a,a,b,c,c]?

Example 2.16 accept [a,a,b,b,c]?

Example 2.16 accept [a,a,b,b,c]?

Example 2.16 accept [a,a,b,b,b,c,c]?

Example 2.16 accept [a,a,b,b,b,c,c]?

Union for PDAs?

Example 2.16

$$\{a^ib^jc^k \mid i=j ee i=k\} = \{a^ib^jc^k \mid i=j\} \cup \{a^ib^jc^k \mid i=k\}$$

Example 2.16

$$\{a^ib^jc^k \mid i=j ee i=k\} = \{a^ib^jc^k \mid i=j\} \cup \{a^ib^jc^k \mid i=k\}$$

