Solutions to Homework #2

1. List all the partitions of the set $\{1, 2, 3, 4, 5\}$ which do not have any 1-element blocks.

Solution: Since blocks of a partition must be disjoint and non-empty and we are disallowing 1-element blocks, there are only two choices for the block sizes: we can have just one block of size 5 or two blocks, one of size 2 and the other one of size 3. Clearly, there is just one partition with one block, namely $\{\{1,2,3,4,5\}\}$. To specify a partition of 2+3 type we just need to choose which elements are included in the block of size 2. There are 10 = 5(5-1)/2 ways to do so (counting problems of this type are discussed in Chapter 4). Explicitly, the partitions of type 2+3 are $\{\{1,2\},\{3,4,5\}\},\{\{1,3\},\{2,4,5\}\},\{\{1,4\},\{2,3,5\}\},\{\{1,5\},\{2,3,4\}\},\{\{2,3\},\{1,4,5\}\},\{\{2,4\},\{1,3,5\}\},\{\{2,5\},\{1,3,4\}\},\{\{3,4\},\{1,2,5\}\},\{\{3,5\},\{1,2,4\}\}$ and $\{\{4,5\},\{1,2,3\}\}$.

2. Problem 7 in 1.3 from the BOOK.

Solution: (a) $\{C \cup D, H \cup S\}$ (here C stands for the set of all clubs etc.); (b) $\{C, D, H, S\}$; (c) $\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{10}, \mathbf{J} \cup \mathbf{Q}, \mathbf{K} \cup \mathbf{A}\}$. Here **2** stands for the set of all 2's etc.; (d) There is exactly one partition with this property, namely the one where all the blocks have size 1, that is, each card forms its one block.

- 3. Problem 1 in 1.3 from the BOOK. Justify your answer.
- (a) We claim that $\{R, S \setminus R\}$ is a partition of $R \cup S \iff (R \neq \emptyset)$ and $S \not\subseteq R$, that is, $\{R, S \setminus R\}$ is a partition of $R \cup S \iff R$ is non-empty and S is not contained in R. We will prove this equivalence by establishing implications in both directions.
- " \Rightarrow " Suppose $\{R, S \setminus R\}$ is a partition of $R \cup S$. We want to show that $R \neq \emptyset$ and $S \not\subseteq R$. Since blocks of the partitions must be non-empty, we must have $R \neq \emptyset$ and $S \setminus R \neq \emptyset$. The set $S \setminus R$ is non-empty \iff there is at least one element of S which does not lie in R, which is the same as saying that S is not contained in S. Thus, we proved that $S \not\subseteq S$ and $S \not\subseteq S$, as desired. Note that there are several conditions in the definition of a partition that we did not have to use for this first part of the proof.

" \Leftarrow " Now suppose that $R \neq \emptyset$ and $S \not\subseteq R$. We want to show that $\{R, S \setminus R\}$ is a partition. For this we need to check three properties:

(i) $R \neq \emptyset$ and $S \setminus R \neq \emptyset$

- (ii) $R \cap (S \setminus R) = \emptyset$
- (iii) $R \cup (S \setminus R) = R \cup S$
- For (i), we are given that $R \neq \emptyset$, and condition $S \nsubseteq R$ (also given to us) implies that (in fact, is equivalent to) $S \setminus R \neq \emptyset$, as we observed in the proof of the forward direction.
- (ii) By definition an element of $S \setminus R$ cannot lie in R, so the intersection $R \cap (S \setminus R)$ must be empty.
- (iii) This is also fairly clear from the definition; alternatively (as usual) one can use truth tables.
- (b) **Answer:** The collection $\{B_i \mid i \in I\}$ is a partition of $\bigcup_{i \in I} B_i$ if and only if the collection is disjoint $(B_i \cap B_j = \emptyset)$ for all $i \neq j$ and each B_i is non-empty. The proof is fairly similar to that of part (a).
- **5.** Problem 9(b)(d) in 1.3 from the BOOK. Note that the definition of a refinement can be rephrased as follows. Let $\mathcal{C} = \{C_i \mid i \in I\}$ and $\mathcal{D} = \{D_j \mid j \in J\}$ be partitions of the same set. Then \mathcal{C} is a refinement of \mathcal{D} if every block of C is contained in some block of D, that is, for every $i \in I$ there exists $j \in J$ such that $C_i \subseteq D_j$. Justify your answer.
- **Solution:** (b) For simplicity let us use the following notations: E will denote the set of all even natural numbers; O the set of all odd integers; $E_{<99}$ the set of all even natural numbers < 99 and $E_{>99}$ the set of all even natural numbers > 99. Thus, $\mathcal{P} = \{E, O\}$ and $\mathcal{C} = \{E_{<99}, E_{>99}, O\}$. We claim that \mathcal{P} is finer than \mathcal{C} to prove this we need to show that each block of \mathcal{P} is contained in some block of \mathcal{C} . The latter is clear: the first two blocks of \mathcal{C} are both contained in E (which is a block of \mathcal{P}), and the third block of \mathcal{C} is itself a block of \mathcal{P} (this is fine, since every set is contained in itself).
- (d) Again \mathcal{P} is finer than \mathcal{C} . In this case every block of \mathcal{P} has size 1, so \mathcal{P} is actually finer than any partition of \mathbb{R} .
- **6.** Problem 2(b)(d)(f) in 1.4 from the BOOK. Your statements should avoid expression like "it is not true that ..." or "it is false that ..."

Solution:

- (b) Presidential candidates must be 35 years or older and must be citizens of the United States.
- (d) Presidential candidates do not have to be citizens of United States or possess \$27 million. This is the most direct way to phrase the negation, but the obtained statement may be somewhat ambiguous. Using the De Morgan law $\sim (Q \vee R) \equiv (\sim Q) \wedge (\sim R)$, we can restate the negation in a longer (but probably a more transparent) way: Presidential candidates do not have be

citizens of United States and presidential candidates do not have to possess \$27 million.

- (f) This is a bit challenging to phrase in good English. The best I could come up with is "Presidential candidates do not have to be citizens of United States who are 35 years or older and possess \$27 million."
- **7.** Solve problem 6 in 1.4 from the BOOK using truth tables (here A, B and C are arbitrary statements).

Solution: This is essentially identical to 4(c) in HW#1. The only difference is that here A, B and C are statement and not sets (which is why column labels are A, B, C etc. instead of $x \in A$ etc.).

A	В	C	$B \lor C$	$A \wedge (B \vee C)$	$A \wedge B$	$A \wedge C$	$(A \land B) \lor (A \land C)$
Т	Т	Т	Т	T	Т	Т	T
Т	Т	F	Т	T	Т	F	T
Т	F	Т	Т	T	F	Т	T
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

8. Solve problem 13 in 1.4 from the BOOK using just De Morgan and distributive laws (do not compute the truth tables).

Solution: We have $\sim [(P \lor \sim Q) \land R] \equiv (\sim [(P \lor \sim Q]) \lor (\sim R) \equiv (\sim P \land \sim (\sim Q)) \lor (\sim R) \equiv (\sim P \land Q) \lor (\sim R)$. The first two equivalences hold by de Morgan laws, and the third equivalence uses the "double negation law" $\sim (\sim Q) \equiv Q$.

- **9.** Let P, Q and R be statements.
- (a) Find a statement S obtained from P,Q and R using negation, conjunction and disjunction (possibly several times) whose truth value is given by the following table:

Р	Q	R	\mathbf{S}				
Τ	Τ	Т	F				
Т	Т	F	F				
Т	F	Т	F				
Т	F	F	Τ				
F	Т	Т	Т				
F	Т	F	F				
F	F	Т	F				
F	F	F	Τ				

(b) Now let U be any statement whose truth value is completely determined once the truth values of P,Q and R are known. Prove that

there exists a statement V obtained from P,Q and R using negation, conjunction and disjunction such that V and U are equivalent statements.

Solution: We will describe the general algorithm for part (b), prove that it does work, and then apply the algorithm to the statement S in part (a).

(b) The algorithm is as follows: We start by looking at the U-column of the truth table. For each line L which has T in the U-column we form a statement V_L of the form $P' \wedge Q' \wedge R'$ where P' = P if L has T in the P-column and P' = P if L has F in the P-column; similarly Q' is Q or P and P is P or P depending on the entries in the P and P columns. For instance, if P in the P entires are P in the statement P is P in the statement P in the line P in the line P in all other lines.

Now if \mathcal{L} is the set of all lines which have T in the U column and V is the disjunction of all the statements V_L with $L \in \mathcal{L}$ (that is, $V = \vee_{L \in \mathcal{L}} V_L$), then the V-column will have T in all lines from \mathcal{L} and F in all other lines. Thus by construction, the U-column and the V-column coincide and hence $U \equiv V$.

(a) Now we apply the above algorithm to the statement U = S from part (a). The S-column has T in lines 4, 5 and 8. The corresponding statements V_L are $P \wedge (\sim Q) \wedge (\sim R)$ (for line 4), $(\sim P) \wedge Q \wedge R$ (for line 5) and $(\sim P) \wedge (\sim Q) \wedge (\sim R)$ (for line 8).

Thus the statement

$$V = (P \land (\sim Q) \land (\sim R)) \lor ((\sim P) \land Q \land R) \lor ((\sim P) \land (\sim Q) \land (\sim R))$$

is equivalent to S. Note that the disjunction of the first and third statements above is $(\sim Q) \land (\sim R)$ (by distributivity laws and the fact that $P \lor (\sim P)$ is identically true), so the above statement V could be replaced by $((\sim Q) \land (\sim R)) \lor ((\sim P) \land Q \land R)$.