第2章 数据简化原理

《统计推断》第6章

感谢清华大学自动化系江瑞教授提供PPT

Key points of statistics

- Population
 - A distribution that we are unable to see but interested in
- Sample
 - A set of iid random variables sampled from the population
- Statistic
 - Summary of the sample, reduction of the data
 - Identical observations of samples lead to equal values of statistics
 - Equal values of statistics do not mean identical observations of samples

$$\mathbf{x} = \mathbf{y} \Rightarrow T(\mathbf{x}) = T(\mathbf{y})$$
 $T(\mathbf{x}) = T(\mathbf{y}) \Rightarrow \mathbf{x} = \mathbf{y}$

Data reduction

Report a small number of data instead of a large number of data

Sample space partition

A statistic implies a partition of the sample space

The sufficiency principle

SUFFICIENCY PRINCIPLE

If $T(\mathbf{X})$ is a **sufficient statistic** for θ , then any inference about θ should depend on the sample \mathbf{X} only through the value $T(\mathbf{X})$. That is, if \mathbf{x} and \mathbf{y} are two sample points such that $T(\mathbf{x}) = T(\mathbf{y})$, then the inference about θ should be the same whether $\mathbf{X} = \mathbf{x}$ or $\mathbf{X} = \mathbf{y}$ is observed.

A sufficient statistic captures **ALL** the information about the parameter contained in the sample. Any additional information in the sample, besides the value of the sufficient statistic, does **not** contain any more information about the parameter.

Sufficient statistics

Sufficient statistics

A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if the conditional distribution of the sample \mathbf{X} given the value of $T(\mathbf{X})$ does not depend on θ .

$$P_{\theta}(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) = \frac{P_{\theta}(\mathbf{X} = \mathbf{x} \text{ and } T(\mathbf{X}) = T(\mathbf{x}))}{P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))}$$

$$= \frac{P_{\theta}(\mathbf{X} = \mathbf{x})}{P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))}$$

$$P(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) = \frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)}$$
说明: 上面的写法只对离散分布适用。

Sufficient statistics

Sufficient condition

If $p(\mathbf{x} \mid \theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t \mid \theta)$ is the pdf or pmf of $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if, for every \mathbf{x} in the sample space, the ratio

$$\frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)}$$

is constant as a function of θ .

需要先给定T, 然后再验证其充分性

Binomial sufficient statistic

Let $X_1, ..., X_n$ be iid Bernoulli random variables with parameter θ , where $0 < \theta < 1$. Define the statistic $T(\mathbf{X}) = X_1 + \dots + X_n = \sum_{i=1}^n X_i$. Then,

$$p(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} = \theta^t (1 - \theta)^{n - t}$$

$$q(T(\mathbf{x}) \mid \theta) = \binom{n}{t} \theta^t (1 - \theta)^{1 - t}$$

$$\frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)} = \frac{\theta^t (1 - \theta)^{n - t}}{\binom{n}{t} \theta^t (1 - \theta)^{1 - t}} = \binom{n}{t}^{-1} = \binom{n}{t}^{n - t}$$

The total number of successes in a Bernoulli sample is a sufficient statistic for the ratio of success.

Multinomial sufficient statistic

Let $X_1, ..., X_n$ be iid random variables from a multinomial trial, for which parameters are $0 < \theta_k < 1$ and $\sum_{k=1}^m \theta_k = 1$. Define $T(\mathbf{X}) = (T_1(\mathbf{X}), ..., T_m(\mathbf{X}))$, where $T_k(\mathbf{X}) = \sum_{i=1}^n I(X_i = k)$ is the number of X_i s that are equal to the k-th outcome. Then,

$$\begin{split} p(\mathbf{x} \mid \theta) &= \prod_{i=1}^{n} \prod_{k=1}^{m} \theta_{k}^{I(x_{i}=k)} = \prod_{k=1}^{m} \prod_{i=1}^{n} \theta_{k}^{I(x_{i}=k)} = \prod_{k=1}^{m} \theta_{k}^{\sum_{i=1}^{n} I(x_{i}=k)} = \prod_{k=1}^{m} \theta_{k}^{n_{k}} \\ q(T(\mathbf{x}) \mid \theta) &= \frac{n!}{n_{1}! \cdots n_{m}!} \prod_{k=1}^{m} \theta_{k}^{n_{k}} = \frac{\left(\sum_{k=1}^{m} n_{k}\right)!}{\prod_{k=1}^{m} n_{k}!} \prod_{k=1}^{m} \theta_{k}^{n_{k}} \\ \frac{p(\mathbf{x} \mid \theta)}{q(T(\mathbf{x}) \mid \theta)} &= \frac{\prod_{k=1}^{m} \theta_{k}^{n_{k}}}{\left(\sum_{k=1}^{m} n_{k}\right)!} \prod_{k=1}^{m} \theta_{k}^{n_{k}} = \left[\frac{\left(\sum_{k=1}^{m} n_{k}\right)!}{\prod_{k=1}^{m} n_{k}!}\right]^{-1} \end{split}$$

The vector of the number of occurrence of each outcome is a sufficient statistic for the multinomial distribution.

Normal sufficient statistic

Let $X_1, ..., X_n$ be iid random variables with common pdf $N(\mu, \sigma^2)$, where σ^2

is known. Define the statistic $T(\mathbf{X}) = \overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then,

$$\begin{split} p(\mathbf{x} \mid \mu) &= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}} = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right] \\ &= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x} + \overline{x} - \mu)^{2}\right] \\ &= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right] \exp\left[-\frac{n}{2\sigma^{2}} (\overline{x} - \mu)^{2}\right] \\ q(T(\mathbf{x}) \mid \mu) &= \frac{\sqrt{n}}{\sqrt{2\pi}\sigma} \exp\left[-\frac{n}{2\sigma^{2}} (\overline{x} - \mu)^{2}\right] \\ \frac{p(\mathbf{x} \mid \mu)}{q(T(\mathbf{x}) \mid \mu)} &= n^{-\frac{1}{2}} (2\pi\sigma^{2})^{-\frac{n-1}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right] \end{split}$$

The sample mean is a sufficient statistic for the population mean when population variance is known.

Sufficient order statistics

Let $X_1, ..., X_n$ be iid random variables from a certain pdf f(x), about which we are unable to specific any more information. Define the statistic $T(\mathbf{X}) = (X_{(1)}, ..., X_{(n)})$.

Then,

$$q(T(\mathbf{x})) = f_{X_{(1)}, \dots, X_{(n)}}(x_1, \dots, x_n) = n! f_X(x_1) f_X(x_2) \dots f_X(x_n) \propto p(\mathbf{x})$$

The vector of all order statistics is a sufficient statistic for the unknown population f(x).

Factorization theorem

Sufficient and necessary condition

Let $f(\mathbf{x} \mid \theta)$ denote the joint pdf or pmf of a sample \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t \mid \theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and all parameter points θ ,

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}).$$

因子分解定理告诉我们如何去构造充分统计量

Sufficiency

If there exist functions $g(t \mid \theta)$ and $h(\mathbf{x})$ such that

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}),$$

then $T(\mathbf{X})$ is a sufficient statistic for θ .

Let $q(t \mid \theta)$ be the pmf of $T(\mathbf{X})$, examine the ratio $f(\mathbf{x} \mid \theta) / q(T(\mathbf{x}) \mid \theta)$.

$$\begin{split} \frac{f(\mathbf{x} \mid \boldsymbol{\theta})}{q(T(\mathbf{x}) \mid \boldsymbol{\theta})} &= \frac{g(T(\mathbf{x}) \mid \boldsymbol{\theta})h(\mathbf{x})}{q(T(\mathbf{x}) \mid \boldsymbol{\theta})} \\ &= \frac{g(T(\mathbf{x}) \mid \boldsymbol{\theta})h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}} g(T(\mathbf{y}) \mid \boldsymbol{\theta})h(\mathbf{y})} , \quad A_{T(\mathbf{x})} = \{\mathbf{y} : T(\mathbf{y}) = T(\mathbf{x})\} \\ &= \frac{g(T(\mathbf{x}) \mid \boldsymbol{\theta})h(\mathbf{x})}{g(T(\mathbf{x}) \mid \boldsymbol{\theta})\sum_{A_{T(\mathbf{x})}} h(\mathbf{y})} \\ &= \frac{h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}} h(\mathbf{y})} \end{split}$$

Independent of θ , therefore, $T(\mathbf{X})$ is a sufficient statistic for θ .

Necessity

If $T(\mathbf{X})$ is a sufficient statistic for θ , then there exist functions $g(t \mid \theta)$ and $h(\mathbf{x})$ such that

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x})$$

Choose

$$g(T(\mathbf{x}) \mid \theta) = P_{\theta}(T(\mathbf{X}) = T(\mathbf{x})), \text{ the pmf of } T(\mathbf{X})$$

 $h(\mathbf{x}) = P(\mathbf{X} = x \mid T(\mathbf{X}) = T(\mathbf{x}))$

Since $T(\mathbf{X})$ is a sufficient statistic for θ , $h(\mathbf{x})$ does not depend on θ . We now show that the product of the above valid choice yields the pmf of \mathbf{X} .

$$\begin{split} f(\mathbf{x} \mid \theta) &= P_{\theta}(\mathbf{X} = \mathbf{x}) \\ &= P_{\theta}(\mathbf{X} = \mathbf{x} \ \mathbf{AND} \ T(\mathbf{X}) = T(\mathbf{x})) \\ &= P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))P_{\theta}(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) \\ &= P_{\theta}(T(\mathbf{X}) = T(\mathbf{x}))P(\mathbf{X} = \mathbf{x} \mid T(\mathbf{X}) = T(\mathbf{x})) \\ &= g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}) \end{split}$$

Normal sufficient statistic

Let $X_1, ..., X_n$ be iid random variables with common pdf $N(\mu, \sigma^2)$. Define statistics

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Then,

$$f(\mathbf{x} \mid \mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right] = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right]$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x} + \overline{x} - \mu)^{2}\right]$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (\overline{x} - \mu)^{2} + 2\sum_{i=1}^{n} (x_{i} - \overline{x})(\overline{x} - \mu)\right]\right\}$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{n}{2\sigma^{2}} (\overline{x} - \mu)^{2} - \frac{n-1}{2\sigma^{2}} s^{2}\right] \times \frac{1}{h(\mathbf{x})}$$

The vector of the sample mean and the sample variance is a sufficient statistic in the case that the population variance is unknown.

Uniform sufficient statistic

Let $X_1, ..., X_n$ be iid random variables from a uniform $(0,\theta)$ distribution.

$$f(x) = \begin{cases} 1/\theta & 0 < x < \theta \\ 0 & \text{otherwise} \end{cases}$$

Then,

$$f(\mathbf{x}\mid\theta) = \prod_{i=1}^{n} \left[\theta^{-1}I_{(0,\theta)}(x_i)\right] = \theta^{-n} \prod_{i=1}^{n} I_{(0,\theta)}(x_i) = \theta^{-n} I_{(0,\theta)}(x_{(n)}) \prod_{i=1}^{n} I_{(0,\infty)}(x_i)$$

Choose

$$g(T(\mathbf{x}) \mid \theta) = \theta^{-n} I_{(0,\theta)}(x_{(n)})$$

$$h(\mathbf{x}) = \prod_{i=1}^{n} I_{(0,\infty)}(x_i)$$
, independent of θ

By the factorization theorem,

$$T(\mathbf{X}) = X_{(n)} = \max_{1 \le i \le n} X_i.$$

is a sufficient statistic for θ .

The largest order statistic is a sufficient statistic for the uniform population.

Exponential family

Sufficient statistic for the exponential family

Let X_1, \ldots, X_n be iid random variables from a pdf or pmf that belongs to an exponential family given by

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right],$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then,

$$T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is a sufficient statistic for θ .

Normal sufficient statistics

Normal pdf

$$\varphi(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Written it as exponential family,

$$\varphi(x \mid \mu, \sigma^2) = \underbrace{\frac{1}{\sqrt[3]{2\pi\sigma}}}_{h(x)} \cdot \underbrace{\frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]}_{c(\mu, \sigma^2)} \exp\left[\underbrace{\frac{\mu}{\sigma^2} \underbrace{x}_{t_1(x)} + \left[\underbrace{\frac{1}{2\sigma^2} \underbrace{x}_{t_2(x)}}_{w_2(\mu, \sigma^2)} \underbrace{t_2(x)}\right]}_{v_2(\mu, \sigma^2)}\right].$$

Thus for a sample X_1, \dots, X_n , a sufficient statistic for (μ, σ^2) is $\left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$.

Sufficient statistic is not unique

Let $X_1, ..., X_n$ be iid random variables with common pdf $N(\mu, \sigma^2)$, where σ^2 is known. Define

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

Then,

$$\begin{split} f(\mathbf{x} \mid \boldsymbol{\mu}) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x_i - \boldsymbol{\mu})^2}{2\sigma^2}\right] = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \boldsymbol{\mu})^2\right] \\ &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x} + \overline{x} - \boldsymbol{\mu})^2\right] \\ &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{n}{2\sigma^2} (\overline{x} - \boldsymbol{\mu})^2 - \frac{n-1}{2\sigma^2} s^2\right] \times \underset{h(\mathbf{x})}{\overset{1}{\smile}} \\ &= \exp\left[-\frac{n}{2\sigma^2} (\overline{x} - \boldsymbol{\mu})^2\right] (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right] \\ &= \underbrace{\exp\left[-\frac{n}{2\sigma^2} (\overline{x} - \boldsymbol{\mu})^2\right]}_{g(\overline{x}|\boldsymbol{\mu})} \underbrace{(2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right]}_{h(x)} \end{split}$$

Two trivial sufficient statistics

Let $X_1, ..., X_n$ be iid random variables from a certain pdf $f(x \mid \theta)$. Define the statistic $T(\mathbf{X}) = (X_1, ..., X_n)$, then,

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \underbrace{\prod_{i=1}^{n} f(x_i \mid \theta)}_{g(T(x)|\theta)} \times \underbrace{1}_{h(x)}$$

Define the statistic $T(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)})$, then,

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \underbrace{\prod_{i=1}^{n} f(x_{(i)} \mid \theta)}_{g(T(x)|\theta)} \times \underbrace{1}_{h(x)}$$

The complete sample is always a sufficient statistic! The vector of all order statistics is always a sufficient statistic!

Functions of a sufficient statistic

Suppose $T(\mathbf{X})$ is a sufficient statistic, by the Factorization Theorem, there exist g and h such that

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}).$$

Now, define $T^*(\mathbf{x}) = r(T(\mathbf{x}))$ for all \mathbf{x} , where r is a one-to-one function with inverse r^{-1} . Then,

$$f(\mathbf{x} \mid \theta) = g(T(\mathbf{x}) \mid \theta)h(\mathbf{x}) = g(r^{-1}(T^{\star}(\mathbf{x})) \mid \theta)h(\mathbf{x}).$$

Define a new function $g^{\star}(t \mid \theta) = g(r^{-1}(t) \mid \theta)$, we see that

$$f(\mathbf{x} \mid \theta) = g^{\star}(T^{\star}(\mathbf{x}) \mid \theta)h(\mathbf{x}).$$

Again, by the Factorization Theorem, $T^*(\mathbf{x})$ is a sufficient statistic.

Any one-to-one function of a sufficient statistic is a sufficient statistic

Minimal sufficient statistics

Minimal sufficient statistics

A sufficient statistic $T(\mathbf{X})$ is called a minimal sufficient statistic if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$. Or simply,

if
$$T'(\mathbf{x}) = T'(\mathbf{y})$$
, then $T(\mathbf{x}) = T(\mathbf{y})$.

极小的意义:最大程度的简化

直观上:每做一次简化,是进行一次函数约化。对应到样本空间上,涵盖的样本更多。

Coarsest partition of the sample space

Two normal sufficient statistic

Let $X_1, ..., X_n$ be iid random variables with common pdf $N(\mu, \sigma^2)$, where σ^2 is known.

Define

$$T(\mathbf{X}) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } S(\mathbf{X}) = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

Then, both

$$T_1(\mathbf{X}) = T(\mathbf{X}) = \bar{X}$$

and

$$T_2(\mathbf{X}) = (T(\mathbf{X}), S(\mathbf{X})) = (\overline{X}, S^2)$$

are sufficient statistics of the population mean.

However, if we define a function $\varphi(a,b) = a$, then,

$$T_1(\mathbf{x}) = \overline{x} = \varphi(\overline{x}, s^2) = \varphi(T_2(\mathbf{x})).$$

Minimal sufficient statistics

Sufficient condition

Let $f(\mathbf{x} \mid \theta)$ be the pmf or pdf of a sample \mathbf{X} . Suppose there exists a function $T(\mathbf{x})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x} \mid \theta) / f(\mathbf{y} \mid \theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

定理证明(I)

为简化证明,不妨设 $f(x|\theta) > 0, \forall x \in \mathcal{X}$.

现证T(x)是充分统计量。令

$$A_t = \{x : T(x) = t\}$$

对任意 $x, y \in A_t, f(x|\theta)/f(y|\theta)$ 是 θ 的常函数,于是可定义义上的函数 $f(x|\theta)$

$$h(x) = \frac{f(x|\theta)}{f(A_{T(x)}|\theta)}$$

再令 $g(t|\theta) = f(A_t|\theta)$,于是

$$f(x|\theta) = \frac{f(x|\theta)f(A_t|\theta)}{f(A_{T(x)}|\theta)} = g(T(x)|\theta)h(x)$$

由因子分解定理得T(x)是充分统计量。

定理证明(II)

• 下面证明T(x)是极小充分统计量。设T'(x)是任一充分统计量。由因子分解定理

$$f(x|\theta) = g'(T'(x)|\theta)h'(x)$$

• 若x与y满足: T'(x) = T'(y)

$$\frac{f(x|\theta)}{f(y|\theta)} = \frac{g'(T'(x)|\theta)h'(x)}{g'(T'(y)|\theta)h'(y)} = \frac{h'(x)}{h'(y)}$$

• 上式与 θ 无关。由定理假设知 T(x) = T(y), 从而 T(x)是 T'(x)的函数。因 T'(x)任意,故T(x)是极小充分统计量

Normal minimal sufficient statistic

Let $X_1, ..., X_n$ be iid random variables from a normal population $N(\mu, \sigma^2)$, both μ , σ^2 are unknown. Let **x** and **y** denote two sample points, and let (\overline{x}, s_x^2) and (\overline{y}, s_y^2) be the sample means and variances corresponding to the sample points of \mathbf{x} and \mathbf{y} , respectively.

Then,

$$f(\mathbf{x} \mid \mu, \sigma^{2}) = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{n}{2\sigma^{2}}(\overline{x} - \mu)^{2} - \frac{n-1}{2\sigma^{2}}s_{x}^{2}\right],$$

$$f(\mathbf{y} \mid \mu, \sigma^{2}) = (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{n}{2\sigma^{2}}(\overline{y} - \mu)^{2} - \frac{n-1}{2\sigma^{2}}s_{y}^{2}\right],$$

$$\frac{f(\mathbf{x} \mid \mu, \sigma^{2})}{f(\mathbf{y} \mid \mu, \sigma^{2})} = \exp\left\{-\frac{1}{2\sigma^{2}}\left[-n(\overline{x}^{2} - \overline{y}^{2}) + 2n\mu(\overline{x} - \overline{y}) - (n-1)(s_{x}^{2} - s_{y}^{2})\right]\right\},$$

which will be constant as a function of (μ, σ^2) if and only if $\overline{x} = \overline{y}$ and $s_x^2 = s_y^2$. Therefore, (\bar{X}, S^2) is a minimal sufficient statistic of (μ, σ^2) .

Normal minimal sufficient statistic

Since

$$\begin{split} (n-1)s^2 &= \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n x_i^2 - n\overline{x}^2 \\ \frac{f(\mathbf{x} \mid \mu, \sigma^2)}{f(\mathbf{y} \mid \mu, \sigma^2)} &= \exp\left\{ -\frac{1}{2\sigma^2} \left[-n(\overline{x}^2 - \overline{y}^2) + 2n\mu(\overline{x} - \overline{y}) - (n-1)(s_x^2 - s_y^2) \right] \right\} \\ &= \exp\left\{ -\frac{1}{2\sigma^2} \left[-n(\overline{x}^2 - \overline{y}^2) + 2n\mu(\overline{x} - \overline{y}) - \left(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right) + \left(\sum_{i=1}^n y_i^2 - n\overline{y}^2 \right) \right] \right\} \\ &= \exp\left\{ -\frac{1}{2\sigma^2} \left[2n\mu(\overline{x} - \overline{y}) - \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2 \right) \right] \right\} \end{split}$$

which will be constant as a function of (μ, σ^2) if and only if $\overline{x} = \overline{y}$ and $\sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i^2$.

Therefore, $\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ is also a minimal sufficient statistic of (μ, σ^{2}) .

A minimal sufficient statistic is not unique. Any one-to-one function of a minimal sufficient statistic is also a minimal sufficient statistic.

Uniform minimal sufficient statistic

Let $X_1, ..., X_n$ be iid random variables from a uniform population whose pdf is

$$f(x \mid \theta) = \begin{cases} 1 & \text{if } \theta < x < \theta + 1 \\ 0 & \text{otherwise} \end{cases}. \text{ Then, } f(\mathbf{x} \mid \theta) = \begin{cases} 1 & \text{if } \theta < x_i < \theta + 1, \ i = 1, 2, \dots n \\ 0 & \text{otherwise} \end{cases}.$$

In other words,

$$f(\mathbf{x}\mid\theta) = \begin{cases} 1 & \text{if } \max_{1\leq i\leq n} x_i - 1 < \theta < \min_{1\leq i\leq n} x_i \\ 0 & \text{otherwise} \end{cases}.$$

Consequently,

$$\frac{f(\mathbf{x}\mid\theta)}{f(\mathbf{y}\mid\theta)}=1, \text{ if and only if } \max_{1\leq i\leq n}x_i-1<\theta<\min_{1\leq i\leq n}x_i \text{ and } \max_{1\leq i\leq n}y_i-1<\theta<\min_{1\leq i\leq n}y_i.$$

In other words, if and only if $\min_{1 \le i \le n} x_i = \min_{1 \le i \le n} y_i$ and $\max_{1 \le i \le n} x_i = \max_{1 \le i \le n} y_i$.

Therefore, $(X_{(1)}, X_{(n)})$ is a minimal sufficient statistic of θ .

Actually, $(X_{(n)} - X_{(1)}, (X_{(n)} + X_{(1)})/2)$ is also a minimal sufficient statistic of θ .

It has been shown (example 5.4.7) that $f_R(r \mid \theta) = n(n-1)r^{n-2}(1-r) = \text{Beta}(n-1,2)$, and thus the distribution of the range statistic, $f_R(r \mid \theta)$, is the same for all θ .

In other words, $f_{\mathbb{R}}(r)$ is independent of the parameter θ .

Ancillary statistics

Ancillary statistics

A statistic $S(\mathbf{X})$ whose distribution does not depend on the parameter θ is called an ancillary statistic.

Alone, an ancillary statistic contains **no** information about the parameter. When used in conjunction with other statistics, however, an ancillary statistic sometimes does contain valuable information for inferences about the parameter.

不含有待估参数的任何信息的统计量

均匀辅助统计量(I)

设 $X_1, \dots, X_n \sim U(\theta, \theta + 1)$, 那么极差R是辅助统计量. 其中极差定义为 $R = X_{(n)} - X_{(1)}$. 证明:

$$F(x|\theta) = \begin{cases} 0 & x \le \theta \\ 2 - \theta & \theta < x \le \theta + 1 \\ 1 & x \ge \theta + 1 \end{cases}$$

根据次序统计量的密度公式X₍₁₎和X_(n)的联合密度

$$g(x_{(1)}, x_{(n)}) = \begin{cases} n(n-1)(x_{(n)} - x_{(1)})^{n-2} & \theta < x_{(1)} < \theta_{(n)} < \theta + 1 \\ 0 & \text{other.} \end{cases}$$

均匀辅助统计量(II)

做坐标变换

$$\begin{cases} R = X_{(n)} - X_{(1)} \\ M = \frac{1}{2}(X_{(n)} + X_{(1)}) \end{cases} \begin{cases} X_{(1)} = \frac{1}{2}(2M - R) \\ X_{(n)} = \frac{1}{2}(2M + R) \end{cases}$$

得R和M的联合概率密度

$$h(r, m|\theta) = \begin{cases} n(n-1)r^{n-2} & 0 < r < 1, \theta + (r/2) < m < \theta + 1 - (r/2) \\ 0 & \text{other} \end{cases}$$

积分得R的概率密度函数为

$$h(r|\theta) = \int_{\theta+1-(r/2)}^{\theta+(r/2)} n(n-1)r^{n-2}dm$$
$$= n(n-1)r^{n-2}(1-r), 0 < r < 1$$

均匀辅助统计量(III)

• 上面的推导说明了极差统计量是辅助统计量。

本质的原因是所考察的概率模型是位置参数模型,所考察的参数恰好是位置参数,与Xi的均匀分布并无关系。

Location family ancillary statistic

Let $X_1, ..., X_n$ be iid random variables from a location parameter family with cdf $F(x-\theta), -\infty < \theta < \infty$. Let $Z_1 = X_1 - \theta, ..., Z_n = X_n - \theta$. We have that $Z_1, ..., Z_n$ are iid random variables from F(x). Now, consider the range statistic $R = X_{(n)} - X_{(1)}$.

$$\begin{split} F_R(r \mid \theta) &= P(R \leq r \mid \theta) \\ &= P\left(\max_{1 \leq i \leq n} X_i - \min_{1 \leq i \leq n} X_i \leq r \mid \theta\right) \\ &= P\left(\max_{1 \leq i \leq n} (Z_i + \theta) - \min_{1 \leq i \leq n} (Z_i + \theta) \leq r \mid \theta\right) \\ &= P\left(\max_{1 \leq i \leq n} Z_i - \min_{1 \leq i \leq n} Z_i + \theta - \theta \leq r \mid \theta\right) \\ &= P\left(\max_{1 \leq i \leq n} Z_i - \min_{1 \leq i \leq n} Z_i \leq r \mid \theta\right) \\ &= P\left(\max_{1 \leq i \leq n} Z_i - \min_{1 \leq i \leq n} Z_i \leq r\right) \end{split}$$

The range statistic is an ancillary statistic for the location parameter.

Scale family ancillary statistic

Let X_1,\ldots,X_n be iid random variables from a location parameter family with cdf $F(x \mid \sigma),\ \sigma>0$. Let $Z_1=X_1\mid \sigma,\ldots,Z_n=X_n\mid \sigma$. We have that Z_1,\ldots,Z_n are iid random variables from F(x). Now, consider the statistic $T(\mathbf{X})=(X_1\mid X_n,\ldots,X_{n-1}\mid X_n)$. Let $Y_i=X_i\mid X_n$. Then, $F(y_1,\ldots,y_{n-1}\mid \sigma)=P(Y_1\leq y_1,\ldots,Y_{n-1}\leq y_{n-1}\mid \sigma)\\ =P\left(X_1\mid X_n\leq y_1,\ldots,X_{n-1}\mid X_n\leq y_{n-1}\mid \sigma\right)\\ =P\left((\sigma Z_1\mid \sigma Z_n)\leq y_1,\ldots,(\sigma Z_{n-1}\mid \sigma Z_n)\leq y_{n-1}\mid \sigma\right)\\ =P\left(Z_1\mid Z_n\leq y_1,\ldots,Z_{n-1}\mid Z_n\leq y_{n-1}\mid \sigma\right)\\ =P\left(Z_1\mid Z_n\leq y_1,\ldots,Z_{n-1}\mid Z_n\leq y_{n-1}\mid \sigma\right)$

Any statistic that depends on the sample only through the n-1 values $X_1/X_n, ..., X_{n-1}/X_n$ is an ancillary statistic for the scale parameter.

Complete statistics

Let $f(t \mid \theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distribution is called complete if $\mathbf{E}_{\theta}g(T)=0$ for all θ implies $P_{\theta}(g(T)=0)=1$ for all θ . Equivalently, $T(\mathbf{X})$ is called a complete statistic.

Binomial complete sufficient statistic

Suppose that T has a binomial(n, p) distribution, $0 . Let <math>g(\cdot)$ be a function such that $E_p g(T) = 0$. Then,

$$E_{p}g(T) = \sum_{t=0}^{n} g(t) \binom{n}{t} p^{t} (1-p)^{n-t} = (1-p)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} \left(\frac{p}{1-p}\right)^{t}$$

In order to ensure $E_p g(T) = 0$ for all 0 must be 0 for all <math>t. In other words,

$$P_{p}(g(T)=0)=1.$$

Therefore, T is a complete statistic.

The probability that g(T)=0 must be 1.

Exponential family

Let $X_1, ..., X_n$ be iid random variables from a pdf or pmf that belongs to an exponential family given by

$$f(x \mid \boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right],$$

where $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d), d \leq k$. Then,

$$T(X) = \left(\sum_{i=1}^{n} t_1(X_i), \dots, \sum_{i=1}^{n} t_k(X_i)\right)$$

is a complete statistic as long as the parameter space Θ contains an open set in \Re^k .

Open set

A subset U of the Euclidean n-space R^n is called open if, given any point $x \in U$, there exists a real number $\varepsilon > 0$ such that, given any point y in R^n whose Euclidean distance from x is smaller than ε , y also belongs to U. Equivalently, U is open if every point in U has a neighbourhood contained in U.

The parameter space for a normal distribution $N(\mu, \sigma^2)$ is $(-\infty, \infty) \times (0, \infty)$, which is obviously a open set.

The parameter space for a curved normal distribution $N(\theta, \theta^2)$ is a parabola, which does not contain a two-dimensional open set.

Basu's theorem

If $T(\mathbf{X})$ is a complete and minimal sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Normal complete statistic

Let $X_1, ..., X_n$ be iid random variables with common pdf $N(\mu, \sigma^2)$, where μ is unknown but σ^2 is known. Then,

 \bar{X} is a sufficient statistic for μ .

 \overline{X} is a minimal sufficient statistic for μ .

 \overline{X} is a complete statistic.

 S^2 is an ancillary statistic for μ .

By Basu's theorem,

The complete and minimal sufficient statistic \bar{X} is independent of the ancillary statistic S^2 .

The Likelihood Principle

Let X_1, \ldots, X_n be iid random variables from a Bernoulli (θ) population.

Then the joint pdf of $X_1, ..., X_n$ is

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum_{i=1}^{n} x_i} (1-\theta)^{n-\sum_{i=1}^{n} x_i} = \theta^{n_1} (1-\theta)^{n-n_1},$$

where, $n_1 = \sum_{i=1}^{n} x_i$.

Now, we have two guesses, θ_1 and θ_2 , about the true parameter θ .

Which one is more likely to be true?

Since $f(\mathbf{x} \mid \theta) = P(\mathbf{X} = \mathbf{x} \mid \theta)$, we may like to compare the two probabilities $f(\mathbf{x} \mid \theta_1)$ vs. $f(\mathbf{x} \mid \theta_2)$.

If $f(\mathbf{x} \mid \theta_1) > f(\mathbf{x} \mid \theta_2)$, θ_1 is more likely to be true.

If $f(\mathbf{x} \mid \theta_1) = f(\mathbf{x} \mid \theta_2)$, θ_1 and θ_2 are equally likely to be true.

If $f(\mathbf{x} \mid \theta_1) < f(\mathbf{x} \mid \theta_2)$, θ_2 is more likely to be true.

The Likelihood Function

Let $f(\mathbf{x} \mid \theta)$ denote the joint pmf or pdf of the sample

$$\mathbf{X} = (X_1, \dots X_n)$$
. Then, given that $\mathbf{X} = \mathbf{x}$ is observed,

the function of θ defined by

$$L(\theta \mid \mathbf{x}) = f(\mathbf{x} \mid \theta)$$

is called the **likelihood function**.

The likelihood function measures the plausibility that the sample is observed under a certain parameter. Larger likelihood means the sample that we observed is more likely to have occurred due to the given parameter.

Bernoulli Likelihood Function

Let X_1, \ldots, X_n be iid random variables from a Bernoulli (θ) population.

Then the joint pdf of $X_1, ..., X_n$ is

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} = \theta^{n_1} (1 - \theta)^{n - n_1},$$

where $n_{1} = \sum_{i=1}^{n} x_{i}$.

Therefore, the likelihood function for p is given by

$$L(\theta|\mathbf{x}) = \theta^{n_1} (1-\theta)^{n-n_1}.$$

In $f(x|\theta)$, θ is fixed, and x is varying over all possible sample points. In $L(\theta|x)$, however, x is fixed, and θ is varying over all possible parameter values.

Normal Likelihood Function

Let $X_1, ..., X_n$ be iid random variables from a normal population $N(\mu, \sigma^2)$, where σ^2 is already know and the only parameter is μ . Then the joint pdf of $X_1, ..., X_n$ is

$$f(\mathbf{x} \mid \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right] = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right],$$

Therefore, the likelihood function for μ is given by

$$L(\mu|\mathbf{x}) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right].$$

In $f(x|\mu)$, μ is fixed, and x is varying over all possible sample points. In $L(\mu|x)$, however, x is fixed, and μ is varying over all possible parameter values.

Normal Likelihood Function

Let $X_1, ..., X_n$ be iid random variables from a normal population $N(\mu, \sigma^2)$.

Then the joint pdf of $X_1, ..., X_n$ is

$$f(\mathbf{x} \mid \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right] = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right],$$

Therefore, the likelihood function for (μ, σ^2) is given by

$$L(\mu, \sigma^2 | \mathbf{x}) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right].$$

In $f(x|\mu, \sigma^2)$, (μ, σ^2) is fixed, and x is varying over all possible sample points. In $L(\mu, \sigma^2|x)$, however, x is fixed, and (μ, σ^2) is varying over all possible parameter values.

Binomial Likelihood Function

Let $X_1, ..., X_n$ be iid random variables from a Bernoulli (p) population. From previous results, we know that $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic of p, and more importantly,

$$Y \sim \text{binomial}(n, p)$$
.

Because the pdf of Y is

$$f(y \mid p) = {n \choose y} p^y (1-p)^{n-y},$$

the likelihood function for p is given by

$$L(p \mid y) = \binom{n}{y} p^y (1-p)^{n-y}.$$

Multinomial Likelihood Function

Let X_1, \ldots, X_n be iid random variables from a multinomial trial population

with cell probability $\boldsymbol{\theta} = (\theta_1, ..., \theta_m)$, where $0 < \theta_i < 1$ and $\sum_{i=1}^m \theta_i = 1$.

Then $\mathbf{n} = (n_1, \dots, n_m)$ has a multinomial distribution,

$$f(\mathbf{n} \mid \boldsymbol{\theta}) = \frac{(\sum_{i=1}^{m} n_i)!}{\prod_{i=1}^{m} n_i!} \prod_{i=1}^{m} \theta_i^{n_i},$$

where $n_i = \sum_{j=1}^n I(x_j = i), i = 1, ..., m$.

Therefore, the likelihood function for $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)$ is given by

$$L(\boldsymbol{\theta} \mid \mathbf{n}) = \frac{(\sum_{i=1}^{m} n_i)!}{\prod_{i=1}^{m} n_i!} \prod_{i=1}^{m} \theta_i^{n_i}.$$

Normal Likelihood Function

Let X_1, \ldots, X_n be iid random variables from a normal population $N(\mu, \sigma^2)$, where σ^2 is already known and the only parameter is μ . From previous results, we know that \bar{X} is a sufficient statistic of μ , and more importantly, $\bar{X} \sim N(\mu, \sigma^2 / n)$. Then the pdf of \bar{X} is

$$f(\overline{x} \mid \mu) = \frac{1}{\sqrt{2\pi\sigma} / \sqrt{n}} \exp\left[-\frac{(\overline{x} - \mu)^2}{2\sigma^2 / n}\right],$$

and the likelihood function for μ is given by

$$L(\mu \mid \overline{x}) = \frac{\sqrt{n}}{\sqrt{2\pi\sigma}} \exp\left[-\frac{n(\overline{x} - \mu)^2}{2\sigma^2}\right].$$

Calculations of Likelihoods

Suppose that 1000 Bernoulli trials have been done, n=1000, $n_1=500$. Then the likelihood for p=0.5 is

$$0.5^{500}(1-0.5)^{1000-500} = 0.5^{1000} \approx 9.33 \times 10^{-302}$$

Suppose that 800 observations have been obtained from a standard normal population, and their squares add up to 800. Then the likelihood for $(\mu, \sigma^2)=(0, 1)$ is

$$(2\pi)^{-400}e^{-400} \approx 5.35 \times 10^{-320} \times 1.92 \times 10^{-174} \approx 1.03 \times 10^{-493}$$

Log Likelihoods

Let $X_1, ..., X_n$ be iid random variables from a Bernoulli (θ) population.

Then the likelihood function for θ is

$$L(\theta|\mathbf{x}) = \theta^{n_1} (1-\theta)^{n-n_1}.$$

Therefore, the log likelihood is

$$l(\theta|\mathbf{x}) = \log L(\theta|\mathbf{x}) = n_1 \log \theta + (n - n_1) \log(1 - \theta).$$

Let $X_1, ..., X_n$ be iid random variables from a normal (μ, σ^2) population. Then the likelihood function for (μ, σ^2) is

$$L(\mu, \sigma^2 | \mathbf{x}) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right].$$

Therefore, the log likelihood is

$$l(\mu, \sigma^2 | \mathbf{x}) = \log L(\mu, \sigma^2 | \mathbf{x}) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2} (\sigma^2)^{-1} \sum_{i=1}^{n} (x_i - \mu)^2.$$

Likelihood Ratio

Let $X_1, ..., X_n$ be iid random variables from a multinomial trial population with cell probability $\boldsymbol{\theta} = (\theta_1, ..., \theta_m)$. Then the joint pdf of $X_1, ..., X_n$ is

$$L(\boldsymbol{\theta}|\mathbf{x}) = \prod_{j=1}^{m} \theta_{j}^{n_{j}} \text{ and } l(\boldsymbol{\theta}|\mathbf{x}) = L(\boldsymbol{\theta}|\mathbf{x}) = \sum_{j=1}^{m} n_{j} \log \theta_{j},$$

where $n_{j} = \sum_{i=1}^{n} I(x_{i} = j), j = 1, ... m$.

Suppose that we have two guesses for θ , say, $\theta^{(1)}$ and $\theta^{(2)}$. Then,

$$rac{L(m{ heta}^{(1)}|\mathbf{x})}{L(m{ heta}^{(2)}|\mathbf{x})} = rac{\prod\limits_{j=1}^{m} \left(heta_{j}^{(1)}
ight)^{n_{j}}}{\prod\limits_{i=1}^{m} \left(heta_{j}^{(2)}
ight)^{n_{j}}} = \prod\limits_{j=1}^{m} \left(rac{ heta_{j}^{(1)}}{ heta_{j}^{(2)}}
ight)^{n_{j}}.$$

Obviously,

$$\log \frac{L(\boldsymbol{\theta}^{(1)}|\mathbf{x})}{L(\boldsymbol{\theta}^{(2)}|\mathbf{x})} = l(\boldsymbol{\theta}^{(1)}|\mathbf{x}) - l(\boldsymbol{\theta}^{(2)}|\mathbf{x}) = \sum_{j=1}^{m} n_{j} \Big(\log \theta_{j}^{(1)} - \log \theta_{j}^{(2)}\Big).$$

Likelihood Ratio for Comparing Parameters

Intuitively, the likelihood ratio provides a means of measuring the goodness of $\theta^{(1)}$ and $\theta^{(2)}$.

If $L(\theta^{(1)}|\mathbf{x})/L(\theta^{(2)}|\mathbf{x}) > 1$, $\theta^{(1)}$ is more likely to be the true.

If $L(\theta^{(1)}|\mathbf{x})/L(\theta^{(2)}|\mathbf{x}) = 1$, $\theta^{(1)}$ and $\theta^{(2)}$ are equally likely to be true.

If $L(\theta^{(1)}|\mathbf{x})/L(\theta^{(2)}|\mathbf{x}) < 1$, $\theta^{(2)}$ is more likely to be the true.

But how about we have another sample point \mathbf{y} instead of \mathbf{x} , in what condition we would have the same inference results?

The Likelihood Principle

If \mathbf{x} and \mathbf{y} are two sample points such that $L(\theta \mid \mathbf{x})$ is proportional to $L(\theta \mid \mathbf{y})$, that is, there exists a constant $C(\mathbf{x}, \mathbf{y})$ such that

$$L(\theta \mid \mathbf{x}) = C(\mathbf{x}, \mathbf{y}) L(\theta \mid \mathbf{y})$$
 for all θ ,

then the conclusions drawn from \mathbf{x} and \mathbf{y} should be identical.

$$\frac{L(\boldsymbol{\theta}^{(1)} \mid \mathbf{x})}{L(\boldsymbol{\theta}^{(2)} \mid \mathbf{x})} = \frac{C(\mathbf{x}, \mathbf{y})L(\boldsymbol{\theta}^{(1)} \mid \mathbf{y})}{C(\mathbf{x}, \mathbf{y})L(\boldsymbol{\theta}^{(2)} \mid \mathbf{y})} = \frac{L(\boldsymbol{\theta}^{(1)} \mid \mathbf{y})}{L(\boldsymbol{\theta}^{(2)} \mid \mathbf{y})}$$

Summary Statistics

数据的概括就是根据数据简约的原理,设计出描述统计量来描述试验数据。

我们处理的是样本的观测值!

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

Introductory statistics with R, page 57-80

Quantiles

- 四分位数 (Quartiles)
 - 1st quartile, Median, 3rd quartile
 - Interquartile range (IQR)
- 十分位数 (Centiles)
- 百分位数 (Percentiles)

```
> quantile(x)
> quantile(x, seq(0, 1, 0.1))
> quantile(x, seq(0, 1, 0.01))
> quantile(x, type=2)
```


Summary Statistics

```
> fivenum(x)
```

> summary(x)

fivenum(): return Tukey's five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data

Index	Statistic
1	Min
2	1st Qu.
3	Median
4	Mean
5	3rd Qu.
6	Max
7	NAs

Histograms

Histogram of rnorm(1000)


```
> hist(x)
> hist(x, freq=F)
> hist(x, freq=F, col="red")
> H <- hist(x)</pre>
```

Empirical cdf (ecdf)


```
> F <- ecdf(x)
> plot(ecdf(x))
```


Q-Q plots

How to build a Q-Q plot

Digging into Q-Q plots — I

Samples from normal populations

Box plots

