Utility maximization implies

$$u_{ij} + \epsilon_{ij} > u_{ik} + \epsilon_{ik} \text{ for all } k \neq j$$
 (1)

Utility maximization implies

$$u_{ij} + \epsilon_{ij} > u_{ik} + \epsilon_{ik} \text{ for all } k \neq j$$
 (1)

With the ϵ 's unobserved, the probability of i making choice j is given by:

$$P_{ij} = \Pr(u_{ij} + \epsilon_{ij} > u_{ij'} + \epsilon_{ij'} \,\forall \, j' \neq j)$$

$$= \Pr(\epsilon_{ij'} - \epsilon_{ij} < u_{ij} - u_{ij'} \,\forall \, j' \neq j)$$

$$= \int I(\epsilon_{ij'} - \epsilon_{ij} < u_{ij} - u_{ij'} \,\forall \, j' \neq j) f(\epsilon) d\epsilon$$
(2)

Regardless of the distribution of the ϵ 's, probabilities don't change when we:

 Add a constant to the utility of all options or

• Multiply by a positive number

Regardless of the distribution of the ϵ 's, probabilities don't change when we:

- Add a constant to the utility of all options or
- Multiply by a positive number

Thus, we need to make some normalizations to identify preferences:

- Only differences in utility matter (location normalization)
- We need to scale the variance of the ϵ 's (scale normalization)

Suppose we have two options with the following observable utilities:

$$u_{i1} = \alpha Tall_i + \beta_1 X_i + \gamma Z_1$$

$$u_{i2} = \alpha Tall_i + \beta_2 X_i + \gamma Z_2$$

Suppose we have two options with the following observable utilities:

$$u_{i1} = \alpha Tall_i + \beta_1 X_i + \gamma Z_1$$

$$u_{i2} = \alpha Tall_i + \beta_2 X_i + \gamma Z_2$$

Since only differences in utility matter:

$$u_{i1} - u_{i2} = (\beta_1 - \beta_2)X_i + \gamma(Z_1 - Z_2)$$

Suppose we have two options with the following observable utilities:

$$u_{i1} = \alpha Tall_i + \beta_1 X_i + \gamma Z_1$$

$$u_{i2} = \alpha Tall_i + \beta_2 X_i + \gamma Z_2$$

Since only differences in utility matter:

$$u_{i1} - u_{i2} = (\beta_1 - \beta_2)X_i + \gamma(Z_1 - Z_2)$$

- We can't tell whether tall people are happier (overall) than short people, but we can tell whether they more strongly prefer one option
- We can only obtain *differenced* coefficient estimates on X's
- We can only obtain an estimate of a coefficient that is constant across choice alternatives if its corresponding variable varies by alternative

Because only differences in utility matter, we end up having one fewer dimension of ϵ

Rewriting the last line of (2) as a J-1 dimensional integral over the differenced ϵ 's:

$$P_{ij} = \int_{z} I(\tilde{\epsilon}_{ij'} < \tilde{u}_{ij'} \, \forall \, j' \neq j) g(\tilde{\epsilon}) d\tilde{\epsilon} \tag{4}$$

where $\tilde{\epsilon}_j \equiv \epsilon_j - \epsilon_J$, etc. (*J* is reference alternative)

•	The need t	o normalize s	cale mean	s we can	never	estimate	the	variance	of	$G(\tilde{\epsilon})$

• This contrasts with linear regression models, where we can easily estimate MSE

- The need to normalize scale means we can never estimate the variance of $G(\tilde{\epsilon})$
- This contrasts with linear regression models, where we can easily estimate MSE
- The scale normalization means our β 's and γ 's are implicitly divided by an unknown variance term:

- ullet The need to normalize scale means we can never estimate the variance of $G(ilde{\epsilon})$
- This contrasts with linear regression models, where we can easily estimate MSE
- The scale normalization means our β 's and γ 's are implicitly divided by an unknown variance term:

$$u_{i1} - u_{i2} = (\beta_1 - \beta_2)X_i + \gamma(Z_1 - Z_2)$$
$$= \tilde{\beta}X_i + \gamma \tilde{Z}$$
$$= \frac{\beta^*}{\sigma}X_i + \frac{\gamma^*}{\sigma}\tilde{Z}$$

 $ilde{eta}$ is what we estimate, but we will never know eta^* because utility is scale-invariant

	(1)	(2)	(3)
Price (\$)	-0.145	-0.112	-0.098
Distance (miles)	(0.023)	(0.028) -0.067	(0.031) -0.054
` ,		(0.015)	(0.018)
Weekend			0.423 (0.089)
	2,456	2,456	2,456
Pseudo R^2	0.142	0.198	0.234

Important: We cannot directly compare coefficient magnitudes across specifications due to the scale normalization. Each model implicitly rescales coefficients by $1/\sigma$, where σ varies with the set of included variables. ($\sigma \downarrow$ as more covariates are included)

Instead, use marginal effects for comparison across specifications