WHAT IS CLAIMED IS:

An isolated peptide selected from the group consisting of:

(X1)_nEVEKIKTTVKESATEEKLTPVX2L(X2)_m (SEQ ID NO: 1);

(Y1)_nEVAALQVDRKVADEEKQ\$YDAV(Y2)_m (SEQ ID NO: 2),

5 wherein

n and m independently représent 0 or 1;

X1, X2 and X3 are independently defined as follows

X1 is GVKETPQQKYQRLLHEVQELTT (SEQ ID NO: 3), or VKETPQQKYQRLLHEVQELTT (SEQ ID NO: 4), or KETPQQKYQRLLHEVQELTT (SEQ ID NO: 5), or ETPQQKYQRLLHEVQELTT (SEQ ID NO: 6), or TPQQKYQRLLHEVQELTT (SEQ ID NO: 7), or PQQKYQRLLHEVQELTT (SEQ ID NO: 8), or QQKYQRLLHEVQELTT (SEQ ID NO: 9), or

QKYQRLLHEVQELTT (SEQ ID NO: 10), or

KYQRLLHEYQELTT (SEQ ID NO: 11), or

YQRLLHEVQELTT (SEQ ID NO: 12), or

QRLLHEVQELTT (SEQ ID NO: 13), or

RLLHEVQELTT (SEQ ID NO: 14), or

LLHEVQELTT (SEQ ID NO: 15), or

LHEVQELTT (SEQ ID NO: 16), or

HEVQELTT (SEQ ID NO: 17), or

EVQELTT(SEQ ID NO: 18), or

VQELTT (SEQ ID NO: 19), or

QELTT (SEQ ID NO: 20), or

ELTT (SEQ ID NO: 21), or

LTT, or

TT, or

T;

X2 is V or L, and

X3 is AKQLAAL (SEQ ID NO: 22), or

1

10

15

20

25

30

			AKQLAA (SEQ ID NO: 23), or
			AKQLA (S	EQ ID NO: 24), or
			AKQL (SE	Q ID NO: 25), or
			AKQ, or	
	5		AK, or	
			A;	
		and		
		Y	and Y2 are inde	pendently defined as follows
		Y	is GEKETPV	QKCQRLQIEMNELLN (SEQ ID NO: 26), or
	10		EKETPVQ:	KCQRLQIEMNELLN (SEQ ID NO: 27), or
			KETPVQK	CQRLQIEMNELLN (SEQ ID NO: 28), or
			ETPVQKC	QRLQIEMNELLN (SEQ ID NO: 29), or
, (TPVQKCQ	RLQIEMNELLN (SEQ ID NO: 30), or
			PVQKCQR	LQIEMNELLN (SEQ ID NO: 31), or
	15		VQKCQRI	QIEMNELLN (SEQ ID NO: 32), or
			QKCQRLQ	IEMNELLN (SEQ ID NO: 33), or
			KCQRLQII	EMNELLN (SEQ ID NO: 34), or
			CQRLQIEN	MNELLN (SEQ ID NO: 35), or
			QRLQIEM	NELLN (SEQ II) NO: 36), or
	20			ELLN (SEQID NO: 37), or
			LQIEMNE	LLN (SEQ ID NO: 38), or
			QIEMNEL	LN (SEQ ID NO 39), or
			IEMNELLI	(SEQ ID NO: 40), or
			EMNELL	(SEQ ID No: 41), or
	25		MNELLN (SEQ ID NO. 42), or
			NELLN (SI	EQ ID NO: 43), or
			ELLN (SEC) ID NO: 44), or
			LLN, or	
			LN, or	
	30		N; and	
		Y	is VATVISTA	AR (SEQ ID NO: 45), or
		•		

VATVIST (SEQ ID NO: 47), or VATVIS (SEQ ID NO: 48), or VATVI (SEQ ID NO: 49), or 5 VATV (SEQ ID NO: 50), or VAT, or VA, or V, and derivatives thereof having at least/about 90% identity with SEQ ID NO: 1 or SEQ ID NO: 2. 10 The peptide of claim 1 which is GVKETPQQKYQRLLHEVQELTTEVEKIKTTVKESATEEKLTPVX2LAKQLAAL (SEQ ID NO: 51), wherein X2 is as defined in claim 1. 15 The peptide of claim 1 which is GEKETPVQK&QRLQIEMNELLNEVAALQVDRKVADEEKQSYDAVVATVISTAR (SEQ ID NO: 52) 20 A peptide having at least 90% sequence identity with the peptide of SEQ ID NO: 51. A peptide having at least 90% sequence identity with the peptide of SEQ ID NO: 52. 25 The peptide of claim 4 having only conservative amino acid substitutions compared with SEQ ID NO: 51.

VATVISTA (SEQ ID NO: 46), or

30

compared with SEQ ID NO: 52.

The peptide of claim 5 having only conservative amino acid substitutions

8. A peptide encoded by nucleic acid hybridizing under stringent conditions to the coding sequence of SEQ ID NO: 52 as set forth in Figure 3 (SEQ ID NO: 55).

50h

9. The peptide of claim 1 capable of modulating cellular proliferation.

10. The peptide of claim 1 capable of inhibiting cellular proliferation.

The peptide of claim 10 capable of selective inhibition of cancerous cells.

12. Nucleic acid encoding a peptide of claim 1.

13. A vector comprising and capable of expressing the nucleic acid of claim

14. A recombinant host cell transformed with the nucleic acid of claim 12.

15. A composition comprising a peptide of claim 1 in admixture with a pharmaceutically acceptable carrier.

16. A composition comprising a nucleic acid of claim 12 in admixture with a carrier.

17. A method for inhibiting dellular proliferation comprising delivering to a target cell an effective amount of an isolated peptide of claim 1 or a nucleic acid encoding said peptide.

18. A method for inhibiting cellular proliferation comprising delivering to a target cell an effective amount of an isolated peptide of claim 4 or a nucleic acid encoding said peptide.

15

12.

25

30

19. A method for inhibiting cellular proliferation comprising delivering to a target cell an effective amount of an isolated peptide of claim 5 or a nucleic acid encoding said peptide.

5

20. A method for inhibiting cellular proliferation comprising delivering to a target cell an effective amount of an isolated peptide of claim 8 or a nucleic acid encoding said peptide.

10

- 21. The method of claim 17 wherein said target cell is a tumor cell.
- 22. The method of claim 21 wherein said tumor cell is a cancer cell.

15

23. A method for identifying a compound capable of inhibiting cellular proliferation comprising incubating a battery of candidate compounds with a mixture of a peptide of claim 1 and a native ZW10 protein for a time and under conditions sufficient for interaction between said candidate compounds and said peptide or ZW10, monitoring said interaction, and selecting a compound that interacts with said peptide or ZW10.

20

24. The method of claim 23 wherein said interaction is monitored by the yeast two-hybrid system.

25

25. The method of claim 23 wherein said interaction is binding to ZW10.

The method of claim 23 wherein said interaction is binding to said

polypeptide.

/27. A molecule identified by the method of claim 23.

30