(Justifique las respuestas)

Cuestión 1 (3 puntos)

Dado el lenguaje $L = \{x \in \{a,b\}^* : |x|_b = |x|_a + 1\}$ y el homomorfismo:

$$\begin{cases} h(0) = b \\ h(1) = ab \\ h(2) = ba \end{cases}$$

(a) (0.75 puntos) Enumere las primeras 10 palabras en orden canónico del lenguaje \overline{L} .

Solución:

 λ , a, aa, ab, ba, bb, aaa, aab, aba, baa.

(b) (0.75 puntos) Describa el lenguaje $(bb)^{-1}L$.

Solución:

$$(bb)^{-1}L_2 = \{x \in \{a,b\}^* : |x|_a = |x|_b + 1\}.$$

(c) (0.75 puntos) Describa el lenguaje LL^r .

Solución:

Teniendo en cuenta que $L^r = \{x \in \{a,b\}^* : |x|_b = |x|_a + 1\}$, se tiene que $LL^r = \{x \in \{a,b\}^* : |x|_b = |x|_a + 2\}$.

(d) (0.75 puntos) Describa el lenguaje $h^{-1}(L)$.

Solución:

$$h^{-1}(L) = \{x \in \{0, 1, 2\}^* : |x|_0 = 1\}.$$

Cuestión 2 (3 puntos)

Proporcione:

(a) (1 punto) Un AF que acepte el lenguaje $L = \{x \in \{a, b\}^* : aa \in Seg(x) \lor a \in Suf(x)\}.$

Solución:

Un AFN que acepta el lenguaje es el siguiente:

(b) (2 puntos) Un AFD que acepte el lenguaje $L = \{x \in \{0,1\}^* : 01 \in Suf(x) \land |x|_0 \text{ m\'od } 2 = 0\}.$

Solución:

Un AFD que identifica el lenguaje es el siguiente:

Los nombres de los estados representan información relevante a la hora de aceptar las palabras del lenguaje. Así, se indica la cadena que puede ser considerada en la búsqueda del sufijo 01 y si el número de símbolos 0 analizados es par o impar.

Cuestión 3 (2 puntos)

Proporcione un AFD equivalente al siguiente autómata.

Solución:

La siguiente tabla muestra la λ -clausura de cada estado:

Q	$\lambda - clausura$
q_1	$\{q_1,q_2,q_3\}$
q_2	$\{q_1,q_2,q_3\}$
q_3	$\{q_1,q_2,q_3\}$
q_4	$\{q_4\}$
q_5	$\{q_4,q_5\}$
q_6	$\{q_4,q_5,q_6\}$

Aplicando la construcción para obtener directamente un AFD equivalente se obtiene el siguiente autómata:

Si se considera la construcción de un AFN equivalente al AF- λ , el resultado es el siguiente:

a partir del cual puede obtenerse el AFD representado en la siguiente tabla:

Cuestión 4 (2 puntos)

Pronúnciese sobre la veracidad o falsedad de las siguientes afirmaciones:

(a) (1 punto)

Considere dos lenguajes cualesquiera L_1 y L_2 sobre el alfabeto Σ y un homomorfismo $h: \Delta \to \Sigma$.

Si L_1 y L_2 son tales que $h^{-1}(L_1) = h^{-1}(L_2)$, entonces $L_1 = L_2$.

Solución:

La afirmación es falsa. Como contraejemplo considérense los lenguajes $L_1=\{a\}$ y $L_2=\{b\}$ y el homomorfismo:

$$\begin{cases} h(0) = ba \\ h(1) = bb \end{cases}$$

Puede verse que $h^{-1}(L_1) = h^{-1}(L_2) = \emptyset$, con lo que se contradice la afirmación.

(b) (1 punto)

Dada una palabra $x \in \Sigma^*$, se define la clase de lenguajes \mathcal{L}_x como:

$$\mathcal{L}_x = \{ L \subseteq \Sigma^+ : x \in L \}.$$

Si L_1 y L_2 son lenguajes en la clase \mathcal{L}_x , entonces se cumple que L_1L_2 también es un lenguaje en la misma clase.

Solución:

La afirmación es falsa. Como contraejemplo considérese la clase de lenguajes \mathcal{L}_a y los lenguajes $L_1 = \{a\}$ y $L_2 = \{a, b\}$.

El producto de los lenguajes considerados es $L_1L_2 = \{aa, ab\}$, que no pertenece a la clase \mathcal{L}_a (no contiene la palabra a), con lo que se contradice la afirmación.