

HEV TCP TASK 26 WORKSHOP

MEETING 7: WIRELESS CHARGING AND V2X GRID AND MARKET INTEGRATION

19-20 MARCH 2018 HOSTED BY

THE SCHOOL OF ENGINEERING AT NEWCASTLE UNIVERSITY
NEWCASTLE, UNITED KINGDOM

ABOUT US

International Energy Agency (IEA)

Established in 1974, the **International Energy Agency (IEA)** carries out a comprehensive programme of energy co-operation for its 29-member countries and beyond by examining the full spectrum of energy issues and advocating policies that will enhance energy security, economic development, environmental awareness and engagement worldwide. The IEA is governed by the IEA Governing Board which is supported through a number of specialised standing groups and committees. For more information on the IEA, see www.iea.org.

IEA Energy Technology Network

The **IEA Energy Technology Network (ETN)** is comprised of 6,000 experts participating in governing bodies and international groups managing technology programmes. The <u>Committee on Energy Research and Technology (CERT)</u>, comprised of senior experts from IEA member governments, considers effective energy technology and policies to improve energy security, encourage environmental protection and maintain economic growth. The CERT is supported by four specialised Working Parties:

- Working Party on Energy End-use Technologies (EUWP): technologies and processes to improve efficiency in the buildings, electricity, industry, and transport sectors
- Working Party on Fossil Fuels (WPFF): cleaner use of coal, improvements in gas/oil exploration, and carbon capture and storage
- <u>Fusion Power Co-ordinating Committee (FPCC)</u>: fusion devices, technologies, materials, and physics phenomena
- Working Party on Renewable Energy Technology (REWP): technologies, socio-economic issues and deployment policies

Each Working Party coordinates the research activities of relevant IEA Technology Collaboration Programmes (TCPs). The CERT directly oversees TCPs of a cross-cutting nature.

IEA Technology Collaboration Programmes (TCPs)

The IEA Technology Collaboration Programmes (TCPs) are international groups of experts that enable governments and industries from around the world to lead programmes and projects on a wide range of energy technologies and related issues, from building pilot plants to providing policy guidance in support of energy security, economic growth and environmental protection. The first TCP was created in 1975. To date, TCP participants have examined close to 2 000 topics. Today TCP participants represent more than 300 public and private-sector organisations from over 50 countries. TCPs are governed by a flexible and effective framework and organised through an Implementing Agreement. TCP activities and programmes are managed and financed by the participants. To learn more about the TCPs, please consult the short promotional film, the Frequently Asked Questions brochure, or the IEA website www.iea.org/tcp.

TCP on Hybrid and Electric Vehicles (HEV TCP)

Created in 1993, the activities of the TCP on Hybrid and Electric Vehicles (HEV TCP) are coordinated by the Working Party on Energy End-Use Technologies (EUWP). The aims of the HEV TCP are to produce and disseminate balanced, objective information about advanced electric, hybrid, and fuel cell vehicles. The HEV TCP accomplishes this through multilateral task-force projects. For further information on the HEV TCP see http://www.ieahev.org/. Views, findings, and publications of the HEV TCP do not necessarily represent the views or policies of the IEA Secretariat or of its individual member countries.

Version	Date	Details	Prepared by:	Reviewed by:	Approved on:
V 0.0	January 17, 2019	Initial Draft	Richard Bogacz	Burak Ozpineci Lee Slezak	n/a
V 0.1	January 30, 2019	Updated Key Findings & Conclusions	Richard Bogacz	Burak Ozpineci	
V 0.2	March 2019	Incorporated Edits	Richard Bogacz	All Task Members	
V 0.3	June 2019	Task Member Edits	Richard Bogacz	n/a	FINAL RELEASE

Information or material of the Technology Collaboration Programme (TCP) on Hybrid and Electric Vehicles (HEV TCP) (formally organised under the auspices of the Implementing Agreement for Co-operation on Hybrid and Electric Vehicle Technologies and Programmes), does not necessarily represent the views or policies of the IEA Secretariat or of the IEA's individual Member countries. The IEA does not make any representation or warranty (express or implied) in respect of such information (including as to its completeness, accuracy or non-infringement) and shall not be held liable for any use of, or reliance on, such information.

IEA INTERNATIONAL ENERGY AGENCY

SUMMARY OF FINDINGS REPORT - WORKSHOP 7

FOR EXTERNAL DISTRIBUTION

HYBRID & ELECTRIC VEHICLE TECHNOLOGY COLLABORATION PROGRAMME

SUMMARY OF FINDINGS REPORT - WORKSHOP 7

FOR EXTERNAL DISTRIBUTION

Table of Contents

1 TASK APPROACH		6
1.1	OBJECTIVE OF TASK 26	6
1.2	FOCUS OF WORKSHOP	6
2 W	VORKSHOP ACTIVITIES	7
2.1	HOST LOCATION	7
2.2	Presentation Topics	
3 KE	EY FINDINGS	9
4 CC	ONCLUSIONS	10

FOR EXTERNAL DISTRIBUTION

1 Task Approach

Multilateral task-force projects within the TCP on Hybrid and Electric Vehicles (HEV TCP) are known as Tasks. Participation in a Task is an efficient way of increasing national knowledge, both with respect to the specific project objective and in terms of information exchange with peer institutions. Shared activity allows Task members to combine strengths, optimize resources, mitigate risk, and share knowledge.

1.1 Objective of Task 26

Task 26 aims to develop a greater global understanding of wireless power transfer (WPT) systems and interoperability through a focused study of WPT technologies being developed in the participating countries. This task includes a study of country-based standards (JARI, SAE, ISO/IEC), technical approaches, grid interactions, regulatory policy, and safety codes for WPT. The task will operate from Summer/Fall 2014 through May 2019 conducting two workshops per year, with each workshop focused on a particular aspect of wireless charging.

Participants in this task will benefit from their involvement. Some of the benefits of participation include:

- Broadening and deepening the expertise of automotive research organizations in WPT for electric vehicles (EVs) and related technologies.
- Strengthen working relationships and international collaborations.
- Access to information on research performed by other participants.
- Receive updates on recent developments in other countries.
- Remaining informed on the state of standards that may facilitate (or hinder) interoperability with WPT for EVs.

1.2 Focus of Workshop

Task 26 has conducted six previous workshops (Figure 1). The Wireless charging and V2X grid and market integration International Expert Workshop is co-organized by Task 26 "Wireless Power Transfer for EVs" and Task 28 "Home Grids and V2X Technologies" in the framework of the HEV TCP of the IEA with the local support of the Newcastle University (United Kingdom). This International Workshop featured high-level world-speakers and academics from the fields of engineering, management, economics, and political science, among others, who exchanged their views and debated about wireless charging and V2X grid and market challenges and related topics. Workshop objectives were as follows:

- Explore grid impact and integration: issues, barriers, enablers, future developments.
- Explore bi-directional wired and wireless chargers: present status and future developments.
- Discuss V2X and wireless chargers' impact on batteries.
- Consider business models: Is there a market?

FOR EXTERNAL DISTRIBUTION

Workshop #	Month	Year	Focus	Location / Host
1	October	2014	Kickoff	Vancouver, BC – Canada
2	May	2015	Leading Applications	Seoul, Korea / EVS 28
3	October	2015	Power Levels	Goteborg, Sweden / RISE Viktoria
4	June	2016	Interoperability & Standards	Rotterdam, The Netherlands / proov
5	October	2016	Safety of WPT Systems	Knoxville, TN USA / ORNL
6	April	2017	Installations & Alignment	Versailles, France / VEDECOM
7	March	2018	Wireless charging and V2X grid and market integration	Newcastle, UK/Newcastle University

Figure 1. Task 26 Workshop Topics

2 Workshop Activities

2.1 Host Location

This workshop took place 19-20 March 2018 in Newcastle, England, United Kingdom (UK). Our hosts for this event were Sara Walker of Newcastle University, Myriam Neaimeh of Newcastle University, the National Centre for Energy Systems Integration, and the HEV TCP of the IEA. This location was selected for co-locating the workshop with the UK Energy Storage Conference, 20-22 March, Newcastle University. Speakers at this conference included wireless and V2X topics focused on grid impacts and issues. The workshop also included a technical visit of Newcastle University.

2.2 Presentation Topics

With the support of the task members, 18 speakers were identified to present on grid impacts and issues, and bi-directional wireless charging (Figure 2). Technical presentations were grouped among five panels:

- Panel 1: Grid Impacts/Issues—the UK Case
- Panel 2: Grid Impacts/Issues—Other Countries
- Panel 3: Controls, Simulation, and Testing
- Panel 4: HEV TCP Bi-Directional Wireless Charging and Hubs Charging
- Panel 5: Grid Impacts Bi-Directional Wireless Charging

FOR EXTERNAL DISTRIBUTION

Presentation	Contributor ¹	Affiliation
Introductions 8	Welcoming Remarks	
Introducing Newcastle University	SARA WALKER	Newcastle University
Electric Vehicle Innovation Research at	MYRIAM NEAIMEH	Newcastle University
Newcastle University		
IEA Hybrid Electric Vehicle-Technology	BURAK OZPINECI	Oak Ridge National
Commercialization Programme (HEV TCP) Task 26		Laboratory
Task 28 "Home Grids and V2X Technologies"	CRISTINA CORCHERO	IREC
Panel 1 – Grid Imp	acts/Issues—the UK Case	
V2G Status and Future Roll-out: the UK case	MARCO LANDI	InnovateUK
Efficient System Integration of Electric Vehicles	THOMAS MAIDONIS	National Grid
Electric Vehicles Impacts & Opportunities	THAZI EDWARDS	UK Power Networks
Panel 2 - Grid Impac	ts/Issues—Other Countries	1
Learnings from Denmark	PETER BACH ANDERSEN	DTU
AC V2G in The Netherlands	BRAM van EIJSDEN	ElaadNL
Commercial Smart Charging with the JuiceNet	VINCENT SCHACHTER	JuiceNet by
aggregation platform		eMotorWerks
Panel 3 – Controls	, Simulation, and Testing	
Identifying the dimensions for a viable V2X	YUE WANG, Ghamin	Northumbria University
model	Putrus, Dr. Richard	
	Kotter, and Ridoy Das	
Multi-Output Wireless Charger for Electric	BINH VU, Volker Pickert,	Newcastle University
Vehicles	Mohamed Dahidah, and	
	Van-Tang Phan	
Learnings from including degradation in the	KOTUB UDDIN	OVO Energy
techno-economics of systems that employ		
lithium ion batteries for storage		h Oh
Panel 4 - HEV TCP Bi-Directiona		
Design and implementation of an 85-kHz Bidirectional Wireless Charger	ALICIA TRIVINO	University of Malaga
Bi-directional Wireless Power Flow for	BURAK OZPINECI	Oak Ridge National
Medium Duty Vehicle Grid Connectivity		Laboratory
Cost Reduction Methods in high density rapid charging V2G hubs	CHRISTOPHER JACKSON	Powerstar
Panel 5 - Grid Impacts B	i-Directional Wireless Char	ging
Impact of Static and Dynamic Fast Inductive Charging on the Distribution Network and its	IOANNIS KARAKITSIOS	National Technical University of Athens
Mitigation through Effective Management		·

 $^{^{\}rm 1}$ Contributor listed in ${\bf BOLD}$ was the presenter at the workshop.

FOR EXTERNAL DISTRIBUTION

Presentation	Contributor ¹	Affiliation
Dynamic wireless power transfer for EV	CHRISTINA	ISENSE ICCS
charging: Grid impact and demand	ANAGNOSTOPOULOU	
management strategies	and Hans Bludszuweit	

Figure 2. Wireless Charging and V2X Grid and Market Integration

3 Key Findings

Based on the presentations of this workshop and the demonstration witnessed, Task Members had an in-depth discussion of wireless charging and V2X grid and market integration. A number of key points emerged during the workshop. These ideas are listed below. The order in which they are presented is not intended to reflect their relative importance.

- An attendee discussed considering the customer's perspective with V2G programs. V2G needs to find a way to reward EV drivers. Customers will join V2G schemes if they see clear advantages and no disruption in EV use.
- Innovate UK emphasized that using EVs as a controllable load allows for deferring power system upgrades. As distributed storage, EVs act as a flexibility source by supporting the local grid, providing demand side response, and allowing for the integration of renewable resources.
- Innovate UK pointed out that V2G does not involve bulk energy transfers: only a small percentage of battery state of charge is used to support the grid.
- Attendees emphasized that EVs will increase electricity demand, and unmanaged peak-time charging will significantly impact the distribution networks. Smart-charging and V2G will be essential for efficient system integration.
- UK Power Networks discussed that challenges are V2G charger costs are still high, and regulatory provisions/licenses for vehicles to provide grid services are not established.
- DTU Electrical Engineering noted that challenges in Denmark for providing V2G include technical regulations, energy tariffs and taxation, requirements for settlement meters, and frequency energy bias.
- JuiceBox presented that V2G is not so much a technical problem as it is a business and maturity challenge. Next steps to V2G maturity include new hardware, regulatory and market learnings from pilots, and business model experimentation with commercial smart-charging and V2G pilots. V1G to V2G will be a continuum, not a step change.
- Newcastle University presented on a new concept to implement a multi-output wireless charger using one AC/DC converter and one inverter for several outputs. This setup is expected to reduce components and implementing costs.
- OVO Energy presented that smart grids are a requirement for V2G viability, and for addressing lithium (Li)-ion degradation. Li-ion battery degradation should be addressed in systems modeling and online transactions. Barriers for smart grids are technical, economic, and regulatory in nature, but all can be successfully addressed.
- Attendees discussed that barriers to smart grids include intelligent management of storage assets, business/compensation models, and interoperability.

FOR EXTERNAL DISTRIBUTION

- EV charging impacts on the grid differ according to traffic, season, location, and charging installation properties.
- Grid operational issues resulting from deployment of static and dynamic fast-charging can be effectively resolved through a management system.

4 Conclusions

The main conclusions of the workshops are listed below. The order of the points is not reflective of their importance.

- Li-ion battery degradation can impact the viability of electricity storage. Li-ion degradation needs to be addressed in systems modeling and online transactions.
- Technical improvements are needed to overcome two-way energy loss, and battery degradation.
- Unmanaged peak-time charging will significantly impact distribution networks. With V2G, EVs can reduce peak loads, provide energy services, and shift demand.
- V2G will be essential for efficient system integration. Investing in charging infrastructure and electricity networks is needed to accommodate the growth of EVs.
- Need to create best possible forecasts of EV uptake and charging behavior.
- Need to perform targeted network monitoring to inform deployment of smart solutions.
- Must optimize existing network capacity first.
- Smart-charging and V2G will be essential for efficient system integration with the grid.