## 注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。 如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题 卡上。写在本试卷上无效。

|            | 3. 考试结束后,将本试卷和答题卡一并交回。                                                                                                  |                                    |                                          |                     |
|------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|---------------------|
| <b>—</b> 、 | 选择题:本题共 8 小                                                                                                             | 、题,每小题 5 分,共                       | <b>ķ 40 分。在每小题给</b> l                    | 出的四个选项中,只           |
|            | 有一项是符合题目要求的。                                                                                                            |                                    |                                          |                     |
| 1.         | 己知集合 $A = \{x \mid -$                                                                                                   | $-5 < x^3 < 5$ , $B = {$           | $[-3, -1, 0, 2, 3]$ , $\mathbb{M}$ A     | $A \cap B =$        |
|            | A. $\{-1,0\}$                                                                                                           | B. $\{2,3\}$                       | C. $\{-3, -1, 0\}$                       | D. $\{-1,0,2\}$     |
| 2.         | 若 $\frac{z}{z-1} = 1 + i$ ,则 $z =$                                                                                      |                                    |                                          |                     |
|            | A. $-1 - i$                                                                                                             | B. $-1 + i$                        | C. $1 - i$                               | D. $1 + i$          |
| 3.         | 已知向量 $\boldsymbol{a}=(0,1)$ , $\boldsymbol{b}=(2,x)$ , 若 $\boldsymbol{b}\perp(\boldsymbol{b}-4\boldsymbol{a})$ , 则 $x=$ |                                    |                                          |                     |
|            | A2                                                                                                                      | B1                                 | C. 1                                     | D. 2                |
| 4.         | 已知 $\cos(\alpha + \beta) = m$ , $\tan \alpha \tan \beta = 2$ ,则 $\cos(\alpha - \beta) =$                                |                                    |                                          |                     |
|            | A. $-3m$                                                                                                                | B. $-\frac{m}{3}$                  | C. $\frac{m}{3}$                         | D. 3m               |
| 5.         | 已知圆柱和圆锥的底                                                                                                               | 面半径相等,侧面积                          | 相等,且它们的高均为                               | $\sqrt{3}$ ,则圆锥的体积  |
|            | 为                                                                                                                       |                                    |                                          |                     |
|            | A. $2\sqrt{3}\pi$                                                                                                       | B. $3\sqrt{3}\pi$                  | C. $6\sqrt{3}\pi$                        | D. $9\sqrt{3}\pi$   |
| 6          | 已知函数 $f(x) = \begin{cases} -1 \\ -1 \end{cases}$                                                                        | $-x^2 - 2ax - a,  x <$             | 0,<br>在 ℝ 上单调递增,<br>0                    | 则 a 的取值范围是          |
| 0.         | $\left(e^{-\frac{1}{2}}\right)^{-1}$                                                                                    | $x^{x} + \ln(x+1),  x \geqslant 0$ | 0                                        | A, w H, K E IC E AC |
|            |                                                                                                                         |                                    | C. $[-1, 1]$                             |                     |
| 7.         | 当 $x \in [0, 2\pi]$ 时,曲                                                                                                 | 线 $y = \sin x$ 与 $y = 2$           | $2\sin\left(3x-\frac{\pi}{6}\right)$ 的交点 | 个数为                 |
|            | A. 3                                                                                                                    | B. 4                               | C. 6                                     | D. 8                |
|            |                                                                                                                         |                                    |                                          |                     |

8. 己知函数 f(x) 的定义域为  $\mathbb{R}$ , f(x) > f(x-1) + f(x-2), 且当 x < 3 时, f(x) = x, 则下列结论中一定正确的是

A. f(10) > 100 B. f(20) > 1000 C. f(10) < 1000 D. f(20) < 10000

- 二、选择题:本题共 3 小题,每小题 6 分,共 18 分。在每小题给出的选项中,有多项符合题目要求。全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分。
- 9. 为了解推动出口后的亩收入(单位: 万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值  $\overline{x}=2.1$ ,样本方差  $s^2=0.01$ ,已知该种植区以往的亩收入 X 服从正态分布  $N\left(1.8,0.1^2\right)$ ,假设推动出口后的亩收入 Y 服从正态分布  $N\left(\overline{x},s^2\right)$ ,则(若随机变量 Z 服从正态分布  $N\left(\mu,\sigma^2\right)$ ,则  $P(Z<\mu+\sigma)\approx0.8413$ )

A. 
$$P(X > 2) > 0.2$$

B. 
$$P(X > 2) < 0.5$$

C. 
$$P(Y > 2) > 0.5$$

D. 
$$P(Y > 2) < 0.8$$

- 10. 设函数  $f(x) = (x-1)^2 (x-4)$ ,则
  - A. x = 3 是 f(x) 的极小值点

  - C. 当 1 < x < 2 时,-4 < f(2x-1) < 0
  - D.  $\stackrel{\text{def}}{=} -1 < x < 0$  时,f(2-x) > f(x)
- 11. 造型 " $\times$ " 可以做成美丽的丝带,将其看作图中曲线 C 的一部分. 已知 C 过坐标原点 O,且 C 上的点满足横坐标大于 -2,到点 F(2,0) 的距离与到定直线 x=a (a<0) 的距离之积为 4,则





 $C.\ C$  在第一象限的点的纵坐标的最大值为 1

D. 当点 
$$(x_0, y_0)$$
 在  $C$  上时,  $y_0 \leqslant \frac{4}{x_0 + 2}$ 



- 三、填空题: 本题共 3 小题, 每小题 5 分, 共 15 分。
- 12. 设双曲线  $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a > 0, b > 0) 的左、右焦点分别为  $F_1$ ,  $F_2$ , 过  $F_2$  作平行于 y 轴的直线交 C 于 A、B 两点,若  $|F_1A| = 13$ ,|AB| = 10,则 C 的离心率为 \_\_\_\_\_\_\_.
- 13. 若曲线  $y=\mathrm{e}^x+x$  在点 (0,1) 处的切线也是曲线  $y=\ln(x+1)+a$  的切线,则 a=
- 14. 甲乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字 1,3,5,7,乙的卡片上分别标有数字 2,4,6,8. 两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上的数字大小,数字大的人得 1 分,数字小的人得 0 分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用),则四轮比赛后,甲的总得分不小于 2 的概率为 \_\_\_\_\_\_.

四、解答题: 本题共 5 小题, 共 77 分。解答应写出文字说明、证明过程或演算步骤。

15. (13分)

设  $\triangle ABC$  的内角 A,B,C 的对边分别为 a,b,c,已知  $\sin C = \sqrt{2}\cos B$ , $a^2 + b^2 - c^2 = \sqrt{2}ab$ .

- (1) 求 B;
- (2) 若  $\triangle ABC$  的面积为  $3+\sqrt{3}$ ,求 c.

16. (15分)

已知 
$$A(0,3)$$
 和  $P\left(3,\frac{3}{2}\right)$  为椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$  上两点.

- (1) 求 C 的离心率;
- (2) 若过 P 的直线 l 交 C 于另一点 B,且  $\triangle ABP$  的面积为 9,求 l 的方程.

17. (15分)

如图,四棱锥 P-ABCD 中,PA  $\bot$  底面ABCD,PA=AC=2, BC=1, $AB=\sqrt{3}$ .

- (1) 若 *AD* ⊥ *PB*, 证明: *AD* || 平面*PBC*;
- (2) 若  $AD \perp DC$ ,且二面角 A–CP–D 的正弦值为  $\frac{\sqrt{42}}{7}$ ,求 AD.



## 18. (17分)

已知函数  $f(x) = \ln \frac{x}{2-x} + ax + b(x-1)^3$ .

- (1) 若 b = 0, 且  $f'(x) \ge 0$ , 求 a 的最小值;
- (2) 证明: 曲线 y = f(x) 是中心对称图形;
- (3) 若 f(x) > -2 当且仅当 1 < x < 2,求 b 的取值范围.

## 19. (17分)

设 m 为正整数,数列  $a_1$ ,  $a_2$ ,  $\cdots$ ,  $a_{4m+2}$  是公差不为 0 的等差数列,若从中删去两项  $a_i$  和  $a_j$  (i < j) 后剩余的 4m 项可被平均分为 m 组,且每组的 4 个数都能构成等差数列,则称数列  $a_1$ ,  $a_2$ ,  $\cdots$ ,  $a_{4m+2}$  是 (i, j)—可分数列.

- (1) 写出所有的 (i, j),  $1 \le i < j \le 6$ , 使得数列  $a_1$ ,  $a_2$ , ...,  $a_6$  是 (i, j)-可分数列;
- (2) 当  $m \ge 3$  时,证明:数列  $a_1$ ,  $a_2$ , …,  $a_{4m+2}$  是 (2,13)-可分数列;
- (3)从 1,2,…,4m+2 中一次任取两个数 i 和 j (i < j),记数列  $a_1$ , $a_2$ ,…, $a_{4m+2}$  是 (i,j)—可分数列的概率为  $P_m$ ,证明:  $P_m > \frac{1}{8}$ .