Meta TaskWave

Meta-Selection for Hybrid Dynamic Scheduling in FaaS Environments

Theresa To, MSc Computing and Information Systems

What is Function-as-a-Service?

laaS	PaaS [Faas	SaaS
FUNCTION	FUNCTION	FUNCTION	FUNCTION
APPLICATIONS	APPLICATIONS	APPLICATIONS	APPLICATIONS
RUNTIME	RUNTIME	RUNTIME	RUNTIME
O/S	O/S	O/S	O/S
VIRTUALIZATION	VIRTUALIZATION	VIRTUALIZATION	VIRTUALIZATION
SERVERS	SERVERS	SERVERS	SERVERS
STORAGE	STORAGE	STORAGE	STORAGE
NETWORKING	NETWORKING	NETWORKING	NETWORKING
	FUNCTION APPLICATIONS RUNTIME O/S VIRTUALIZATION SERVERS STORAGE	FUNCTION APPLICATIONS APPLICATIONS RUNTIME O/S O/S VIRTUALIZATION SERVERS STORAGE FUNCTION APPLICATIONS VINTIME RUNTIME VIRTUALIZATION SERVERS STORAGE	FUNCTION FUNCTION APPLICATIONS APPLICATIONS RUNTIME RUNTIME RUNTIME O/S O/S O/S VIRTUALIZATION VIRTUALIZATION SERVERS SERVERS STORAGE STORAGE STORAGE

What is Function-as-a-Service?

Event Driven

It's a micro-architecture responsive service that is only invoked when functions are called

Zero-Operational Requirements

Upload your function to a cloud provider and instantly access elastic scaling for computing, storage, and deployment.

Pay-per-execution

It's cost effective — you only pay per millisecond of compute time when your function is called

The Problem

Growing Market

27.8% annually \rightarrow \$62.5B

Expected year-on-year growth for FaaS Market (Grand View Research Inc, 2024)

Proprietary

Black box platforms — no transparency

No systematic way to choose optimal scheduling algorithms

So what?

Need a transparent framework

For algorithm selection and systemic behaviour understanding

What's Missing?

Research Gap

While adaptive scheduling exists in production FaaS platforms, academic research lacks a transparent framework for evaluating hybrid scheduling strategies.

Our contribution

First **systematic benchmarking** of hybrid scheduling combinations via a **literature backed simulation** with **interpretable performance analysis**.

Research Questions

Main Research Question

How do scheduling algorithms differ in observable behaviours within FaaS platforms, and when do these differences matter for performance?

Sub-Questions

- 1. Can we **build a framework** to characterise scheduling trade-offs despite system-level noise?
- 2. What distinct behavioural patterns emerge when algorithms are properly characterised?
- 3. How can these patterns inform adaptive scheduling decisions?

System Design & Methodology

Foundations of the distributed system through literature

Distributed System Architecture

Job Generator (1)

Synthetic workload creation with configurable patterns

- Batch size control
- Inter-arrival timing
- Priority distribution

Central Scheduler

Hybrid algorithm implementation and job assignment

- 3 job algorithms
- 5 worker algorithms
- 15 combinations total

Worker Pool (N)

Heterogeneous workers with realistic constraints

- Capacity variation
- Network simulation
- Cold start penalties

- Mahgoub, A., Yi, E.B., Shankar, K., Minocha, E., Elnikety, S., Bagchi, S. & Chaterji, S. (2022) WISEFUSE: Workload Characterization and DAG Transformation for Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6 (2), 26:1-26:28. doi:10.1145/3530892.
- Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Laureano, E., Tresness, C., Russinovich, M. & Bianchini, R. (2020) Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider. In: 2020 pp. 205–218. https://www.usenix.org/conference/atc20/presentation/shahrad.
- Vandebon, J., Coutinho, J.G.F. & Luk, W. (2021) Scheduling Hardware-Accelerated Cloud Functions. Journal of Signal Processing Systems. 93 (12), 1419–1431. doi:10.1007/s11265-021-01695-7.

- Am azon Web Services, Inc. (2025) AWS Lambda Developer Guide. https://docs.aws.amazon.com/pdfs/lambda/latest/dg/lambda-dg.pdf.
- Chu, K., Li, X. & Qin, X. (2025) Optimizing Resource Utilization in Edge Computing Environment with Dynamic Load Balancing Scheduling Algorithm. In: 2025 6th International Conference on Computer Science, Engineering, and Education (CSEE). February 2025 pp. 49–56. doi:10.1109/CSEE64583.2025.00017.
- Copik, M., Kwasniewski, G., Besta, M., Podstawski, M. & Hoefler, T. (2021) SeBS: a serverless benchmark suite for function-as-a-service computing. In: Proceedings of the 22nd International Middleware Conference. Middleware '21. 2 October 2021 New York, NY, USA, Association for Computing Machinery. pp. 64–78. doi:10.1145/3464298.3476133.
- Mahgoub, A., Yi, E.B., Shankar, K., Minocha, E., Elnikety, S., Bagchi, S. & Chaterji, S. (2022) WISEFUSE: Workload Characterization and DAG Transformation for Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6 (2), 26:1-26:28. doi:10.1145/3530892.
- Thinakaran, P., Gunasekaran, J.R., Sharma, B., Kandemir, M.T. & Das, C.R. (2019) Kube-Knots: Resource Harvesting through Dynamic Container Orchestration in GPU-based Datacenters. In: 2019 IEEE International Conference on Cluster Computing (CLUSTER). September 2019 pp. 1–13. doi:10.1109/CLUSTER.2019.8891040.

Distributed System Architecture

Worker Algorithm

		Random	Round Robin	Least Loaded Fair	Fastest Worker Fair	Network Optimal Fair
•	Round Robin	RR + Ran	RR + RR	RR + LLF	RR + FWF	RR + NOF
	EDF	EDF + Ran	EDF + RR	EDF + LLF	EDF + FWF	EDF + NOF
	Urgency First	UF + Ran	UF + RR	UF + LLF	UF + FWF	UF + NOF

Job Algorithm

Methodology

1,050 Total Trials — Data Collection Process

Experimental	Variable Type	Variable	Values/Range	Literature Support
Design	Independent	Algorithm Combinations	15 hybrid strategies	Foundational algorithms
What we test	Independent	Workload Intensity	Light: 8.0 – 15.0s Moderate : 2.0 – 5.0s Heavy: 0.5 – 1.5s	Joosen et al. (2023); Shahrad et al. (2020)
What we measure	Dependent	Job Level Metrics	Total Response Time, Job Processing Time, Cooling Penalties, Queue Penalties	Copik et al. (2021)
What we control for	Control	Worker Configuration	4 WORKERS 600-1200 MB ~ 1vCPU	Shahrad et al. (2019); AWS Lambda standards
	Control	Number of Trials per Algorithm	Light: 30 trials Moderate: 20 trials Heavy: 20 trials	

Anatomy of E2E Execution

- There are enough backup worker containers
- And there are negligible queue delays

Anatomy of E2E Execution

- Processing time variations
- Cooling penalty variations

Latency

Cooling Penalties

Delay experienced when a container must be initialised (cold start) or reactivated (warm start) **before executing the function**, rather than running immediately from an active state.

Total Response Time = Job Processing Time + Cooling Penalties + Queue Delays Full initialisation + Partial Initialisation

In our simulation:

- Cold start: Full container boot (300ms)
- Warm penalty: Partial reactivation (=>60ms)
- Hot state: No penalty (0ms)

Hypothesis: Cooling penalties drive FaaS performance variance

Statistical Evaluation Framework

Results

Distribution and Variance Component

What's causing variation?

2. Categorical Association

Where do algorithms differ in penalties?

3. Thermal Efficiency

How do they create these differences

4. Cross Validation

Testing our hypothesis

CV & ANOVA Discovery

Total Response Time = Job Processing Time + Cooling Penalties + Queue Delays

Penalties vs Processing

Key Insights

- √ Total Response Time CV: 227%
- √ After controlling penalties: 23%
- ✓ Processing time effect: <2%</p>
- √ Algorithms statistically significant
- Max impact: 0.083ms only!

Conclusion: Penalties drive 98% of variance

ANOVA confirms negligible algorithmic effect

Results

Penalties must be the driver of variation

1. Distribution and Variance Component

What's causing variation?

2. Categorical Association

Where do algorithms differ in penalties?

3. Thermal Efficiency

How do they create these differences

4. Cross Validation

Testing our hypothesis

Algorithm-Penalty Associations

Hybrid Algorithm - Categorical Analysis Table

Workload	Chi-Square Result	Sample Size	Significance	Cramér's V	Effect Size
Overall	$\chi^2 = 825.19, p = 0.0000$	109,568 jobs	SIGNIFICANT	0.0614	Negligible
Light	$\chi^2 = 3277.62$, p = 0.0000	14,807 jobs	SIGNIFICANT	0.3327	Moderate
Moderate	$\chi^2 = 382.82, p = 0.0000$	39,397 jobs	SIGNIFICANT	0.0697	Negligible
Heavy	$\chi^2 = 805.86$, p = 0.0000	55,364 jobs	SIGNIFICANT	0.0853	Negligible

Hybrid Algorithms show statistical significance on penalties

But whether it's the job queueing or worker queueing, we don't know.

Algorithm-Penalty Associations

Job Algorithm - Categorical Analysis Table

Workload	Chi-Square Result	Sample Size	Significance	Cramér's V	Effect Size
Overall	$\chi^2 = 3.30, p = 0.5090$	109,568 jobs	NOT SIGNIFICANT	0.0039	Negligible
Light	$\chi^2 = 0.96$, p = 0.9164	14,807 jobs	NOT SIGNIFICANT	0.0057	Negligible
Moderate	$\chi^2 = 0.47$, p = 0.9764	39,397 jobs	NOT SIGNIFICANT	0.0024	Negligible
Heavy	$\chi^2 = 4.26$, p = 0.3726	55,364 jobs	NOT SIGNIFICANT	0.0062	Negligible

Job Algorithms have no statistical effect on cooling penalties

All p-values show that job algorithm choices don't affect whether it will incur penalties on processing — and we now realise that container heterogeneity when looking at the whole system affects this.

Algorithm-Penalty Associations

Worker Algorithm - Categorical Analysis Table

Workload	Chi-Square Result	Sample Size	Significance	Cramér's V	Effect Size
Overall	$\chi^2 = 781.94$, p = 0.0000	109,568 jobs	SIGNIFICANT	0.0597	Negligible
Light	$\chi^2 = 3255.30$, p = 0.0000	14,807 jobs	SIGNIFICANT	0.3315	Moderate
Moderate	$\chi^2 = 352.59, p = 0.0000$	39,397 jobs	SIGNIFICANT	0.0669	Negligible
Heavy	$\chi^2 = 741.57$, p = 0.0000	55,364 jobs	SIGNIFICANT	0.0818	Negligible

Meanwhile, Worker Algorithms show strong correlation to startup delays.

All p-values show that worker algorithm choices (**p < 0.0001**) significantly affect cold start penalties across every workload condition — revealing that container assignment is the primary performance driver.

Worker algorithms: Penalty drivers

Algorithm-Penalty Associations

Stat. Sig. and Effect

Job

Workload	Chi-Square Result	Sample Size	Significance	Cramér's V	Effect Size
Overall	$\chi^2 = 3.30$, p = 0.5090	109,568 jobs	NOT SIGNIFICANT	0.0039	Negligible
Light	$\chi^2 = 0.96$, p = 0.9164	14,807 jobs	NOT SIGNIFICANT	0.0057	Negligible
Moderate	$\chi^2 = 0.47$, p = 0.9764	39,397 jobs	NOT SIGNIFICANT	0.0024	Negligible
Heavy	$\chi^2 = 4.26$, p = 0.3726	55,364 jobs	NOT SIGNIFICANT	0.0062	Negligible

Worker

Workload	Chi-Square Result	Sample Size	Significance	Cramér's V	Effect Size
Overall	$\chi^2 = 781.94$, p = 0.0000	109,568 jobs	SIGNIFICANT	0.0597	Negligible
Light	χ² = 3255.30, p = 0.0000	14,807 jobs	SIGNIFICANT	0.3315	Moderate
Moderate	$\chi^2 = 352.59, p = 0.0000$	39,397 jobs	SIGNIFICANT	0.0669	Negligible
Heavy	χ² = 741.57, p = 0.0000	55,364 jobs	SIGNIFICANT	0.0818	Negligible

Key Insights

√ Hybrids significant (p<0.001)
</p>

✓ Jobs: No effect (p>0.05)

✓ Workers: Drive penalties

Light workload: V = 0.33 (moderate effect)

Moderate workload: V = 0.07 (small effect)

Conclusion:

Confirms Light-to-Moderate as FaaS operating zone

Percentage of jobs with cooling delays:

- Light = 40% cold starts
- Moderate = 3.8%)

Job algorithms: No Association

Worker algorithms: Penalty drivers

Are there patterns?

Algorithm-Penalty Associations

Cooling Penalties as % of Total Jobs:

Light: 38.1% 5,637 out of 14,807 Moderate: 3.8% 1,483 out of 39,397

Heavy: 0.4% 236 out of 55,364

Job algorithms: No Association

Worker algorithms: Penalty drivers

Standardised residuals: Penalty patterns uncovered

Algorithm-Penalty Associations

Sophisticated

Fastest Worker Fair: -17.8

Least Loaded Fair: -14.4

Network Optimal Fair: -14.1

Simple 💢

Random Worker: 16.7

Round Robin Worker: 30.2

Simple

Random Worker: -7.4

Round Robin Worker:-7.7

Least Loaded Worker: -7.7

> Too saturated! Add more containers

Heavy Workload

Worker algorithms: Penalty drivers

Standardised residuals: Penalty patterns uncovered

Results

Penalties must be the driver of variation

Worker algorithms drive penalties

1. Distribution and Variance Component

What's causing variation?

2. Categorical Association

Where do algorithms differ in penalties?

3. Thermal Efficiency

How do they create these differences

4. Cross Validation

Testing our hypothesis

Container Degradation, Stability Chain, & Thermal Efficiency Ratio

How do they create differences?

Thermal Degradation

- How often containers fail

Thermal Stability Chain

- How long they stay hot for

Thermal Efficiency (TE)

- The ratio between them

Thermal Degradation

Container restarts ↑ = wasted warmth

Red zone = 67th percentile+

Pattern:

Smart selection to Equal distribution

Who restarts the most?

• Light: Random worst, FWF best

Moderate: Random worst, RR best

Thermal Stability Chain

Longer Chains ↑ = better container utilisation | Red line = Mean chain across all jobs

Pattern:

Intelligent reuse to Fair rotation

Who sustains containers longest?

- **Light**: FWF best, Random worst
- Moderate: RR worst, Random best

Thermal Efficiency

Mapping out the landscape between DR and SC

LIGHT WORKLOADS

Light workloads:

- Best TE: 24.48 (FWF) very low
- Clustering near x-axis
- High restart overhead

Signal: Room for algorithmic optimisation

Thermal Eff. (TE) Scale:

0-50: Poor (high restart overhead)50-100: Fair (approaching the elbow)100-200: Good (elbow/tipping point area)

200-400: Very good utilisation

400++: Excellent but may cause bottlenecks

HEAVY WORKLOADS

Heavy workloads:

- Peak TE: 3,220 (NOF)
- But dark dots cluster at zero
- Near-vertical = bottlenecked

Signal: System saturated, not optimised

Thermal Eff. (TE) Scale:

0-50: Poor (high restart overhead)50-100: Fair (approaching the elbow)100-200: Good (elbow/tipping point area)

200-400: Very good utilisation

400++: Excellent but may cause bottlenecks

MODERATE WORKLOADS

Moderate workloads:

- Peak: 2,680 TE (NOF)
- Iteration dots spreading evenly
- Moving toward y-axis

Signal: Load balancing becoming critical

Thermal Eff. (TE) Scale:

0-50: Poor (high restart overhead)50-100: Fair (approaching the elbow)100-200: Good (elbow/tipping point area)

200-400: Very good utilisation

400++: Excellent but may cause bottlenecks

Thermal Efficiency Landscape

Thermal Efficiency Landscape

Results

Penalties must be the driver of variation

Worker algorithms drive penalties

Thermal management hypothesis formed

1. Distribution and Variance Component

What's causing variation?

2. Categorical Association

Where do algorithms differ in penalties?

3. Thermal Efficiency

How do they create these differences

4. Cross Validation

Testing our hypothesis

Pattern checking

Algorithm Type	ı Workload	r	р	Sig.
Worker	Light	-0.825	0.085	ns
	Moderate	-0.798	0.106	ns
	Heavy	-0.385	0.523	ns
Hybrid	Light	-0.892	0	***
	Moderate	-0.77	0.001	***
	Heavy	0.01	0.971	ns

Pattern: Strong → Significant → None

37

LIGHT WORKLOADS: Maximum Elasticity

Light workloads: Maximum Algorithmic Control

- **Statistical**: Strong correlation (r = -0.892)
- **Practical**: 38.1% cooling penalties
- **Shallow slope:** y = -0.086x

Small TE improvements → Large SR gains = Maximum algorithmic leverage

Trend lines (linear regression)

Light: y = -0.0855x + 0.1178Moderate: y = -7.4906x + 9.6236Heavy: y = -40.0907x + 68.9546

38

MODERATE WORKLOADS: Approaching Saturation

Moderate Workload Warning Signs

- Still Significant (r = -0.770)
- Only 3.8% cooling penalties (10× reduction)
- **Steep slope**: y = -7.49x (87× steeper!)

Large TE changes → Small SR gains = Diminishing returns setting in

Trend lines (linear regression)

Light: y = -0.0855x + 0.1178

Moderate: y = -7.4906x + 9.6236

Heavy: y = -40.0907x + 68.9546

Slope is 87x steeper than light!

39

The Optimal Zone Discovery

The Optimal Zone Discovery

Results

Penalties must be the driver of variation

Worker algorithms drive penalties

Thermal management hypothesis

TE and Std. Res. Correlation

1. Distribution and Variance Component

What's causing variation?

2. Categorical Association

Which algorithms differ in penalties?

3. Thermal Efficiency

How do they create these differences

4. Cross Validation

Testing our hypothesis

Discovery #1

Penalties Drive Performance

- **Processing time: negligible** (0.083ms)
- **Penalties:** drive all variability (227% → 23% CV)
- Container lifecycle > Algorithmic sophistication

Discovery # 2

Worker Selection Hierarchy

- Worker algorithms: 15× stronger associations
- Job algorithms: zero statistical effect
- BUT only when resources allow differentiation
- Heavy workloads in our experiment are oversaturated

Discovery #3

Optimal
Sensitivity
Zone

- Light: Maximum algorithmic control
- Moderate: Approaching saturation limits
- Heavy: Fully saturated (algorithms irrelevant)

Optimal zone: Between Light and Moderate

Discovery #1

Penalties Drive Performance Discovery # 2

Worker Selection Hierarchy Discovery #3

Optimal
Sensitivity
Zone

Answering the Main Question: Transparent Framework Key Insights

- 1. Optimal zone exists BEFORE full container utilisation
 - 2. Systematic evaluation of black-box schedulers is possible

Worker selection >> Job prioritisation

Thermal patterns predict performance at scale

Future Research Questions

Meta-Scheduling Opportunities

- Can we dynamically target the elbow zone (TE 20-50)?
- How do we adapt as workload intensity shifts?
- Is there an optimal path along this curve?
- Can predictive models guide this transition?

Thank You!

Meta TaskWave

Theresa To
MSc Computing and Information Systems

