REINFORCEMENT LEARNING & ADVANCED DEEP

M2 DAC

TME 7. Continuous Actions

Ce TME a pour objectif d'expérimenter l'approche DDPG pour environnements à actions continues.

DDPG

Implémenter l'algorithme DDPG suivant:

Algorithm 1 Deep Deterministic Policy Gradient	
1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer \mathcal{D}	Ajout d'un bruit gaussien
2: Set target parameters equal to main parameters $\theta_{targ} \leftarrow \theta$, $\phi_{targ} \leftarrow \phi$	— pour exploration + clip pour
3: repeat	rester dans des valeurs
4: Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$	admissibles
 Execute a in the environment 	damissibles
 Observe next state s', reward r, and done signal d to indicate whether s' is term 	inal
7: Store (s, a, r, s', d) in replay buffer \mathcal{D}	
 If s' is terminal, reset environment state. 	
9: if it's time to update then	
10: for however many updates do	
11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}	
12: Compute targets	
$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$	Utilisation de réseaux cible
13: Update Q-function by one step of gradient descent using	(à la fois pour Q et pour μ)
$\nabla_{\phi} \frac{1}{ B } \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$	pour le calcul de la cible de Q
14: Update policy by one step of gradient ascent using Gradien	t similaire à DPG,
$ abla_{ heta} rac{1}{ B } \sum_{s \in B} Q_{\phi}(s, \mu_{ heta}(s))$ selon le	s transitions du batch
15: Update target networks with	Mise à jour "soft" des paramètres des
$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$ $\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$	réseaux cible
16: end for	
17: end if	
18: until convergence	

Appliquer l'algorithme aux 3 problèmes suivants:

- MountainCarContinuous-v0
- LunarLanderContinuous-v2
- Pendulum-v0

À titre indicatif, voici ce qu'on peut obtenir sur Pendulum avec DDPG utilisant un processus d'exploration de Ornstein-Uhlenbeck avec $\sigma=0.2$ (voir core.py pour la méthode d'échantillonnage du bruit, à réinitialiser à la fin de chaque trajectoire), effectuant une optimisation de 10 étapes tous les 1000 évènements, utilisant deux target networks V et π (mis à jour de manière "soft" à chaque optimisation selon des paramètres $\rho=0.9$), un discount de 0.95, un pas d'apprentissage de 0.001 pour l'acteur et de 0.003 pour la critique, un batch de 1000 transitions échantillonnées dans un buffer de capacité 1000000 à chaque pas d'optimisation (où chaque reward du buffer à été divisé par 1000), une taille d'épisode maximale de 200 évènements en apprentissage (également en test) et selon un réseau de neurones à deux couches cachées de 30 neurones chacune (avec activation leakyRelu sur les couches cachées et batch normalisation avant chaque couche):

(a) Reward en apprentissage (abscisse: nombre d'episodes)

(b) Valeur cible moyenne (abscisse: nombre d'optimisations)

(c) Loss du critique (abscisse: nombre d'optimisations)

On donne également ci-dessous ce qu'on peut obtenir sur LunarLander avec DDPG, avec les mêmes paramètres que pour Pendulum ci-dessus, mais sans batch normalisation, des batchs de 1280 transitions, un replay buffer de capacité 100000, des réseaux acteurs et critiques à 4 couches cachées (2 de 64 suivies de 2 de 32 neurones), 5 pas de gradients à chaque optimisation (effectuée tous les 1000 évènements), sans normalisation des récompenses, un paramètre $\rho=0.99$ pour la mise à jour soft des paramètres de réseaux cible (via Polyak) et un facteur de discount de $\gamma=0.99$.

(a) Reward en apprentissage (abscisse: nombre d'episodes)

(b) Valeur cible moyenne (abscisse: nombre d'optimisations)

(c) Loss du critique (abscisse: nombre d'optimisations)