Libro: Quarteroni, "Scientific Computing with MATLAB and Octave"

Cap5: Sistemas Lineales

Regla de Cramer

Table 5.1. Time required to solve a linear system of dimension n by the Cramer rule. "o.r." stands for "out of reach"

			Flops		
n	10^9 (Giga)	10^{10}	10^{11}	$10^{12} (Tera)$	$10^{15} \; (Peta)$
10	$10^{-1} \mathrm{sec}$	$10^{-2} \mathrm{sec}$	$10^{-3} \mathrm{sec}$	10^{-4}sec	negligible
15	17 hours	1.74 hours	$10.46 \min$	$1 \min$	$0.6 \ 10^{-1} \ \text{sec}$
20	4860 years	486 years	48.6 years	4.86 years	$1.7 \mathrm{day}$
25	o.r.	o.r.	o.r.	o.r.	38365 years

Eliminación Gaussiana

for
$$k = 1, ..., n - 1$$

for $i = k + 1, ..., n$

$$l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}},$$
for $j = k + 1, ..., n$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)}$$

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} \\ l_{21} & a_{22}^{(2)} & & a_{2n}^{(2)} \\ \vdots & \ddots & \ddots & \vdots \\ l_{k1} & \dots & l_{k,k-1} & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ \vdots & & \vdots & & \vdots \\ l_{n1} & \dots & l_{n,k-1} & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{bmatrix}$$

```
for k = 1, ..., n - 1

for i = k + 1, ..., n

l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}},
for j = k + 1, ..., n

a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)}
b_i^{(k+1)} = b_i^{(k)} - l_{ik} b_k^{(k)}
```

Programa lugauss.m:

```
function A=lugauss (A)
%LUGAUSS LU factorization without pivoting .
% A = LUGAUSS(A) stores an upper triangular matrix in
% the upper triangular part of A and a lower triangular
% matrix in the strictly lower part of A (the diagonal
% elements of L are 1).
[n,m] = size (A);
if n ~= m; error('A is not a square matrix'); else
for k = 1:n-1
    for i = k+1:n
    A(i,k) = A(i,k)/A(k,k);
    if A(k,k) == 0, error('Null diagonal element'); end
    j = [k+1:n]; A(i,j) = A(i,j) - A(i,k)*A(k,j);
    end
end
end
EJEMPLO 5.5:
A =
 -0.3700 0.0500 0.0500 0.0700
 0.0500 -0.1160
                  0 0.0500
 0.0500
           0 -0.1160 0.0500
 0.0700 0.0500 0.0500 -0.2020
b =
 -2
  0
  0
  0
>> A= lugauss(A); y(1)= b(1);
```

>> for i=2:4;
$$y=[y; b(i)-A(i,1:i-1)* y(1:i-1)]$$
; end

$$>> x(4)= y(4)/A(4,4);$$

$$x(i)=(y(i)-A(i,i+1:4)*x(i+1:4)')/A(i,i);$$
 end

>> x

x =

8.1172 5.9893 5.9893 5.7779

Factorización LU (A=LU)

$$y_1 = \frac{1}{l_{11}} b_1,$$

$$y_i = \frac{1}{l_{ii}} \left(b_i - \sum_{j=1}^{i-1} l_{ij} y_j \right), i = 2, \dots, n$$

$$x_{n} = \frac{1}{u_{nn}} y_{n},$$

$$x_{i} = \frac{1}{u_{ii}} \left(y_{i} - \sum_{j=i+1}^{n} u_{ij} x_{j} \right), i = n - 1, \dots, 1$$

EJEMPLO 5.6:

Para e=1

A =

1 0 3

2 2 2

3 6 4

Usando la función lugauss, obtenemos L y U:

```
L =
 1 0 0
 2
   1 0
 3
U =
 1
   0
      3
   2 -4
 0 0 7
Ahora, para e=0
A =
   1
      3
 1
   2 2
 2
 3 6 4
>> A=lugauss(A)
Error using lugauss (line 12)
Null diagonal element
EJEMPLO 5.8:
A =
 >> A(1,2)-A(1,1)
ans =
 4.440892098500626e-16
Usando la función lugauss, obtenemos L y U:
L=
 1.0e+15 *
 0.0000000000000001
                          0
 0.0000000000000002 \quad 0.0000000000000001
```

0.00000000000003 -3.377699720527871 0.000000000000001

U =

1.0e+16 *

- 0 -0.00000000000000 0.00000000000001
- 0 0 4.728779608739018

Calculamos A-LU:

>> A-L*U

ans =

0 0 0

0 0 0

0 0 4

PIVOTEO

Algoritmo para descomposición LU con pivoteo parcial:

for
$$k = 1, \ldots, n-1$$
,
find \bar{r} such that $|a_{\bar{r}k}^{(k)}| = \max_{r=k,\ldots,n} |a_{rk}^{(k)}|$,
exchange row k with row \bar{r}
in both A and P,

for $i = k+1,\ldots,n$

$$l_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}},$$
for $j = k+1,\ldots,n$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik}a_{kj}^{(k)}$$

Dos formas de usar el programa lu del MATLAB:

```
FORMA 1:
>> [L,U]=lu(A)
L =
0
1.000000000000000
            0
                 0
U =
0 -2.00000000000000 17.33333333333333
      0 -6.9999999999999
>> A-L*U
ans =
1.0e-15 *
       0 -0.888178419700125
             0
        0
             0
FORMA 2:
>> [L,U,P]=lu(A)
1.0000000000000000
U =
0 -2.00000000000000 17.33333333333333
     0 -6.99999999999996
 0 0 1
 0 1 0
```

1 0 0

Factorización de Cholesky (A=R'R)

$$r_{ij} = \frac{1}{r_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj} \right), i = 1, \dots, j - 1$$
$$r_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} r_{kj}^2}$$