Universidade Federal de Santa Catarina Centro de Ciências, Tecnologias e Saúde Coord. Esp. de Física, Química e Matemática

Lista 10 – Cálculo III

Integrais de Linha de Campos Escalares, Parte 2

Link: https://mtm.grad.ufsc.br/livrosdigitais/ Livro: Cálculo III e IV (Autores: Marcos Henrique Santos Martins e Rosimary Pereira)

Página 153: Exercícios de 1 a 6.

James Stewart, CÁLCULO, vol. 2, 7ª ed. (Exercícios na próxima página)

1–16 Calcule a integral de linha, onde C é a curva dada.

1.
$$\int_C y^3 ds$$
, $C: x = t^3$, $y = t$, $0 \le t \le 2$

2.
$$\int_C xy \, ds$$
, $C: x = t^2$, $y = 2t$, $0 \le t \le 1$

3.
$$\int_C xy^4 ds$$
, C é a metade direita do círculo $x^2 + y^2 = 16$.

4.
$$\int_C x \sin y \, ds$$
, $C \notin o$ segmento de reta que liga $(0, 3)$ a $(4, 6)$.

5.
$$\int_C (x^2 y^3 - \sqrt{x}) dy$$
, C é o arco da curva $y = \sqrt{x}$ de $(1, 1)$ a $(4, 2)$.

6.
$$\int_C xe^y dx$$
, $C \neq 0$ arco da curva $x = e^y de(1, 0)$ a $(e, 1)$.

7.
$$\int_C (x + 2y) dx + x^2 dy$$
, C consiste nos segmentos de reta de $(0, 0)$ a $(2, 1)$ e de $(2, 1)$ a $(3, 0)$.

8.
$$\int_C x^2 dy + y^2 dy$$
, *C* consiste na metade superior da circunferência $x^2 + y^2 = 4$ de $(2, 0)$ a $(0, 2)$ e no segmento de reta de $(0, 2)$ a $(4, 3)$.

9.
$$\int_C xyzds$$
, $C: x = 2 \operatorname{sen} t$, $y = t$, $z = -2 \cos t$, $0 \le t \le \pi$

10.
$$\int_C xyz^2 ds$$
, C é o segmento de reta de $(-1, 5, 0)$ a $(1, 6, 4)$.

11.
$$\int_C xe^{yz} ds$$
, C é o segmento de reta de $(0, 0, 0)$ a $(1, 2, 3)$.

12.
$$\int_C (x^2 + y^2 + z^2) ds$$
, $C: x = t$, $y = \cos 2t$, $z = \sin 2t$, $0 \le t \le 2\pi$

13.
$$\int_C x y e^{yz} dy$$
, $C: x = t$, $y = t^2$, $z = t^3$, $0 \le t \le 1$

14.
$$\int_C z \, dx + x \, dy + y \, dz$$
, $C: x = t^2$, $y = t^3$, $z = t^2$, $0 \le t \le 1$

15.
$$\int_C z^2 dx + x^2 dy + y^2 dz$$
, C consiste nos segmentos de reta de (1, 0, 0) a (4, 1, 2).

16.
$$\int_C (y+z) dx + (x+z) dy$$
, $+ (x+y) dz$, C consiste nos segmentos de reta de $(0,0,0)$ a $(1,0,1)$ e de $(1,0,1)$ a $(0,1,2)$.