Алгоритм решения задачи Рост дендритов

Групповой проект. Этап 2

Дворкина Е.В., Чемоданова А.А., Серёгина И.А., Волгин И.А., Александрова У.В., Голощапов Я.В. 9 апреля 2025

Российский университет дружбы народов, Москва, Россия

Состав исследовательской группы

- Александрова Ульяна Вадимовна
- Волгин Иван Алексеевич
- Голощапов Ярослав Вячеславович
- Дворкина Ева Владимировна
- Серёгина Ирина Андреевна
- Чемоданова Ангелина Александровна

Докладчик

- Волгин Иван Алексеевич
- студент учебной группы НФИбд-01-22
- Российский университет дружбы народов
- https://github.com/iavolgin

- Чемоданова Ангелина Александровна
- студент учебной группы НФИбд-02-22
- Российский университет дружбы народов
- https://github.com/aachemodanova

• Описать алгоритм решения задачи моделирования роста дендритов

Описание алгоритма

Шаг 1: Задание начальных условий

- \cdot Плотность ho
- Удельная теплота плавления L
- \cdot Теплоемкость cp
- · Коэффициент теплопроводности κ
- · Температура плавления T_m
- \cdot Коэффициент поверхностного натяжения γ
- Параметры анизотропии

Рис. 1: Физические свойства вещества на примере Гафния

Начальные условия:

- Исходная температура расплава T_{∞}
- \cdot Безразмерное переохлаждение $S = Lcp(T_m T_\infty)$
- Граничные условия
- Условия теплообмена с окружающей средой

Шаг 2: Настройка симуляционной сетки и инициализация затравки

- \cdot Размер сетки N imes N
- \cdot Пространственный шаг h
- Центральная область твердой фазы
- Параметры формы и размеров

Рис. 2: Функция двух переменных Ф, заданная на структурированной сетке

Шаг 3: Расчет температурного поля

• Уравнение теплопроводности

$$\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T \tag{1}$$

- Метод конечных разностей
- · Выбор временного шага Δt и пространственного шага h важен для стабильности и точности расчетов.

Шаги расчета:

- Вычислить новое распределение температуры на каждом шаге времени t;
- Обновлять значения температуры в каждой точке сетки;
- Повторять вычисления до достижения стационарного состояния или заданного времени.

Шаг 4: Моделирование роста дендритов

Критерий затвердевания: Когда температура в точке падает ниже температуры плавления T_m , вещество в точке начинает затвердевать.

Условие Стефана:

$$V = \frac{\kappa}{\rho L} (\nabla T|_s - \nabla T|_l) \tag{2}$$

Условие Гиббса-Томсона:

$$T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R} \right) \tag{3}$$

Определение фрактальной размерности

$$N(r) \sim r^D$$
 (4)

где N(r) — число точек внутри круга радиуса r.

- Выбрать множество точек, принадлежащих образованной структуре
- Для разных значений r подсчитать количество точек внутри круга
- \cdot Построить график $\log(N(r))$ от $\log(r)$

Рис. 3: Фазовое и температурное поле при росте дендрита

Шаг 5: Анализ структуры дендритов

- Морфологический анализ
- Корреляционный анализ

Исследование влияния теплового шума δ

- · Добавлять случайное возмущение к температуре $\eta_{i,j}\delta$, где $\eta_{i,j}$ случайная величина из отрезка [-1,1].
- Повторить моделирование для разных δ
- Сравнить результаты

Шаг 6: Визуализация процесса

Применение графических средств для иллюстраций этапов формирования дендритов

Рис. 4: Рост дендрита

Рис. 5: Рост дендрита

Рис. 6: Рост дендрита

Описали алгоритм моделирования роста дендритов, включающий все ключевые этапы.