$\omega(e)=1$) 为 Ω_{δ} 的子图,其连通分支数记为 $k(\omega)$ 。定义 \mathcal{S} 上的如下概率测度为 参数为 (p,q) 的随机簇模型:

$$\mathbb{P}(\omega) = \frac{1}{Z_{p,q}} p^{o(\omega)} (1 - p)^{c(\omega)} q^{k(\omega)},$$

其中

$$Z_{p,q} = \sum_{\omega \in S} p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega)}.$$

同样定义

$$S^* := \{ \omega : E_\delta^* \to \{0, 1\}, \omega|_{(\partial_{ab}^\delta)^*} = 1 \}.$$

在给定 $\omega \in \mathcal{S}$ 之后,对应地可定义 $\omega^* \in \mathcal{S}^*$ 如下:

如果 $e^* \notin (\partial_{ab}^{\delta})^*$,定义 $\omega^*(e^*)=1-\omega(e)$,这里 e 是与 e^* 对偶的边;如果 $e^* \in (\partial_{ab}^{\delta})^*$,定义 $\omega^*(e^*)=1$ 。

在给定 $\omega \in \mathcal{S}$ 后,存在唯一的由 E_{δ}° 中的定向线段组成的折线 γ_{δ} 连接 a_{δ}° 和 b_{δ}° ,并且将 $\{V_{\delta}, \{e \in E_{\delta} : \omega(e) = 1\}\}$ 中 ∂_{ba}^{δ} 所在的连通分支和 $V_{\delta}^{*}\{e^{*} \in E_{\delta}^{*} : \omega^{*}(e^{*}) = 1\}$ 中 $(\partial_{ab}^{\delta})^{*}$ 所在的连通分支分离开。具体看参见如下示意图,图中蓝色的折线即为 γ_{δ} 。

定义 2.17. 任取 $e \in E_{\delta}^{\diamond}$, 定义自旋函数如下:

$$F_{\delta}(e) := \mathbb{E}[1_{\{e \in \gamma_{\delta}\}} e^{i\frac{1}{2}W_{\gamma_{\delta}}(e, e_b)}],$$