Differential Geometry

Jacob Denson

January 9, 2018

Table Of Contents

1	Tope	ological Considerations	2
	1.1	Manifolds and Atlases	2
	1.2	Constructing Abstract Manifolds	8
	1.3	Basic Properties of Manifolds	11
	1.4	Construction in the Category of Manifolds	13
	1.5	Euclidean Neighbourhoods are Open	15
	1.6	Equivalence of Regularity Properties	17
	1.7	Boundaries	20
2	Diff	erentiable Structures	22
	2.1	Defining Differentiability	22
	2.2	The Function Space $C^{\infty}(M)$	26
	2.3	Partial Derivatives	28
	2.4	Covariant Differentiation	31
	2.5	The Rank Theorems	32
	2.6	Immersions, Submersions, and Covers	34
	2.7	Submanifolds	37
	2.8	Manifolds and Measure	42
	2.9	The C^{∞} Category	43
	2.10	Defining C^{∞} functions: Partitions of Unity	44
		Differentiable Manifolds with Boundary	48
3	The	Tangent Bundle	50
	3.1	Vector Bundles	52
	3.2	The Space of Derivations	54
	3.3	Curves as Vectors	59
	3.4	Vector Fields	60
	3.5	Universality of the Tangent Bundle	63

	3.6 Orientation	69
	3.7 Tangents on Manifolds with Boundary	72
4	The Cotangent Bundle	74
	4.1 The Method of Lagrangian Multipliers	74
	4.2 Tensors	77
	4.3 The Classical Viewpoint	78
5	Lie Derivatives and Differential Equations	79
6	Lie Groups	85
7	Riemannian Manifolds	94
	7.1 Connections	96

Chapter 1

Topological Considerations

In some form of mathematical heaven, all objects would exist in the linear realm, where problems are easy to solve. Unfortunately, we live in the real world. When a physicist describes the motion of a robot's arm, rigidity forces the joints to move along curves bound to a sphere, forced never to move in a linear fashion. When an algebraic geometer studies the solution set of the equation $X^2 + Y^3 = 5$ in the plane, he must analyze a shape which bends and curves, never straight. Differential geometry gives the mathematician tools to cheat: Most of the time, the shapes we study may not be non-linear, but are at least *locally linear*, so around each point we can recover the methods used in the linear case. The challenge is to figure out how to put all the locally linear properties together into a nice, global form.

1.1 Manifolds and Atlases

Topology attempts to describe the properties of space invariant under continuous stretching and squashing. Differential geometry extends this description to spatial properties constant when space is stretched and squashed, but not 'bent'. Four centuries of calculus have established differentiability in the nice cartesian spaces \mathbb{R}^n . A basic environment to extend the notions of differentiability to topological spaces are those which are locally similar to \mathbb{R}^n . A **topological manifold** is a Hausdorff space M such that at every point $p \in M$, there exists a neighbourhood U of p, and a non-negative integer $n \ge 0$ such that U is homeomorphic to \mathbb{R}^n .

Figure 1.1: Coordinate lines on $\Gamma(f)$

Remark. It is convenient in the theory to let n = 0 be a permissible dimension of space for a manifold to be homeomorphic to, where $\mathbf{R}^0 = \{0\}$ is a point. This makes sense, because most techniques involve the use of linear algebra, and \mathbf{R}^0 is just the canonical example of a zero dimensional vector space. We assume our manifolds are Hausdorff because non-Hausdorff manifolds are far and few between in applications of manifold theory to other areas of mathematics, and make the theory less managable.

Example. \mathbb{R}^n is a manifold. Any ball in Euclidean space is also a manifold; in these examples, we may simply take the entire space as the neighbourhood of each point, since a ball in \mathbb{R}^n is homeomorphic to \mathbb{R}^n .

Example. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous function, and consider the graph

$$\Gamma(f) = \{(x, f(x)) : x \in \mathbf{R}^n\}$$

Then $\Gamma(f)$ is a manifold, since it is homeomorphic to \mathbb{R}^n , by projection down onto the axis of the domain.

The above examples exemplify the fact that any topological space homeomorphic to a topological manifold is also a topological manifold. This is a bad omen, because we want to discuss properties of space which remain invariant under differentiable maps, and differentiability should certainly

Figure 1.2: Coordinates on S^1 obtained from angle coordinates

be a stronger concept than homeomorphism on more general topological spaces. This indicates we must add additional structure to a manifold, so we may distinguish the class of smooth maps from the class of continuous ones. We introduce this structure in the next chapter.

Geometrically a homeomorphism $x: U \to \mathbb{R}^n$ from an open set U on a manifold can be seen as a way of assigning coordinates to points on the manifold, because we associate with each geometric point $p \in U$ a sequence of numbers $x^1(p), \ldots, x^n(p)$. One way to see the study of manifolds is as an extension of analytic geometry to non-planar topological systems. Indeed, the technologies developed have immediate applications to projective, hyperbolic, and elliptic geometries, and the language of manifolds has become the common language of almost all modern day geometers.

Example. Consider the circle $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$. For any proper open subset U of S^1 , an **angle function** is a continuous function $\theta : U \to \mathbb{R}$ such that $e^{i\theta(x)} = x$ for all $x \in U$. This restriction immediately implies θ is an embedding of U in \mathbb{R} , with continuous inverse $\theta^{-1}(t) = e^{it}$. Angle functions exist on any proper subset U of S^1 , and therefore cover S^1 , which is shown to be a 1-manifold.

As a manifold, the circle is distinct from \mathbb{R}^n because we cannot put coordinates over the whole space at once; instead, we must analyze the circle piece by piece to determine the structure on the whole space. This is the main trick to manifold theory – a manifold might be a big nasty object globally, but locally, the shape is just Euclidean space.

Figure 1.3: Projecting S^1 onto $\mathbf{R} \times \{-1\}$

Figure 1.4: Coordinate Lines on S^1 induced by stereoscopic projection

Example. The method of stereographic projection provides another way of coming up with a system of coordinates on the circle, which generalizes to higher dimensional variants of the circle. We will project the open subset $S^1 - \{(1,0)\}$ to the line $\{-1\} \times \mathbf{R}$, by taking the intersection of the line between p and (1,0) and the line $\{-1\} \times \mathbf{R}$. A formula for the projection from $S^1 - \{1,0\}$ to the line $\{-1\} \times \mathbf{R}$ is given by the continuous function

$$f(x,y) = \frac{2y}{1-x}$$

Another calculation shows the inverse is given by

$$f^{-1}(y) = \left(1 - \frac{8}{4 + y^2}, \frac{4y}{4 + y^2}\right)$$

Similar calculations show that the on the n-dimensional spheres S^n , we ahve a projection map from $S^n - \{(1,0,...,0)\}$ onto $\{-1\} \times \mathbb{R}^n$ by the same process, and one calculates that the formula for the projection and it's inverse is given by

$$f(x_1,...,x_n) = \frac{2}{1-x_1}(x_2,...,x_n)$$

$$f^{-1}(y_2,...,y_n) = \left(1 - \frac{8}{4 + \|y\|^2}, \frac{4y_2}{4 + \|y\|^2}, ..., \frac{4y_n}{4 + \|y\|^2}\right)$$
$$= \frac{1}{4 + \|y\|^2} (\|y\|^2 - 4, 4y_2, ..., 4y_n)$$

If we project from the point (-1,0,...,0) to $\{1\} \times \mathbb{R}^{n-1}$ instead of (1,0,...,0), then the homeomorphism defined on $S^1 - \{(-1,0,...,0)\}$ is calculated to be

$$g(x_1, \dots, x_n) = \frac{1}{1+x_1}(x_2, \dots, x_n)$$
$$g^{-1}(y_1, \dots, y_{n-1}) = \frac{1}{4+\|y\|^2} \left(4-\|y\|^2, 4y_2, \dots, 4y_n\right)$$

And we have covered S^n with homeomorphisms. We conclude that the space is a manifold.

Any open subset of \mathbb{R}^n is a manifold; around any point, we may take an open ball as a neighbourhood, and any open ball is homeomorphic to \mathbb{R}^n . In fact, any open subset of a manifold, with the subspace topology, is also a manifold, known as an **open submanifold**. When we analyze manifolds, it is convenient to consider not only homeomorphisms onto \mathbb{R}^n , but also maps onto open subsets of \mathbb{R}^n . We will call a homeomorphism $x: U \to V$, where V is an open subset of Euclidean space a **chart**, and denote it by (x, U). The letters x, y and z are often used for charts, to make it easy to confuse coordinates $(x^1, x^2, ..., x^n) \in \mathbb{R}^n$ with coordinates $(x^1(p), x^2(p), ..., x^n(p))$ on a manifold. It is often very useful to trick your brain into the coordinate way of thinking, and the only disadvantage is that things can become somewhat confusing working on subsets of Euclidean space.

Example. Consider the set M(n) of $n \times n$ matrices with entries in the real numbers. We can identify M(n) with $\mathbf{R}^{n \times n}$ by considering only the coefficients of the matrix, and this tells us M(n) is a topological manifold of dimension n^2 (and more generally, the set M(n,m) of $n \times m$ real matrices has dimension nm). The determinant map $\det: M(n) \to \mathbf{R}$ can be viewed as a polynomial in the entries of the matrix, so the function is continuous, and so the general linear group GL(n) consisting of invertible matrices is an open submanifold of M(n), since $GL(n) = \det^{-1}(\mathbf{R} - \{0\})$. An important fact about GL(n) is that the operations of multiplying matrices is also continuous. This is easily seen, since

multiplication is just a polynomial in the entires of the matrices. By Cramer's rule, the operation mapping M to M^{-1} is also continuous and differentiable, because it is a rational function of the matrix elements which doesn't have any singularities in GL(n).

Example. Let M(n,m;k) be the set of n by m matrices of rank k. For any matrix $M \in M(n,m;k)$, there are permutation matrices P and Q such that

$$PMQ = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

where $A \in GL(k)$. The endomorphism L on M(n,m) defined by

$$L(N) = PNQ = \begin{pmatrix} A(N) & B(N) \\ C(N) & D(N) \end{pmatrix}$$

is rank preserving, and by continuity, and A(N) is still invertible for N in a suitably small neighbourhood of M. The matrix

$$\begin{pmatrix} I_k & 0 \\ -C(N)A^{-1}(N) & I_{n-k} \end{pmatrix}$$

is invertible, and so L(N) has the same rank as

$$\begin{pmatrix} I_k & 0 \\ -C(N)A^{-1}(N) & I_{n-k} \end{pmatrix} \begin{pmatrix} A(N) & B(N) \\ C(N) & D(N) \end{pmatrix} = \begin{pmatrix} A(N) & B(N) \\ 0 & D(N) - C(N)A^{-1}(N)B(N) \end{pmatrix}$$

and this matrix has rank k if and only if $D(N) = C(N)A^{-1}(N)B(N)$. Thus, locally around M we may specify an element of M(n,m;k) by $A \in GL(k)$, $B \in M(k,n-k)$, and $C \in M(k,m-k)$, so we conclude M(n,m;k) is a $k^2 + k(n-k) + k(m-k) = k(n+m-k)$ dimensional manifold. As a special case, this verifies that if $k = \min(m,n)$, then the set M(n,m;k) of matrices of full rank is actually an open subset of M(n,m).

The manifold M(n,m;k) is interesting, because its canonical embedding in Euclidean space is essentially just expressed along canonical coordinates obtained from the coefficients of the matrix entries by forgetting a few coefficients, yet the space cannot be globally linear because of the rank k requirement. The best way to see this is to consider M(2,1;1), which consists of vectors in \mathbf{R}^2 of the form (a,0) and (0,b), with $a,b\neq 0$. This is the union of the x and y axis, with the origin removed, and is a 1 manifold. At any point you can travel left and right, or up and down, just not too far!

Figure 1.5: The space M(2,1;1).

1.2 Constructing Abstract Manifolds

Sometimes, you may wish to place a topological structure on a set, with the purpose of making it into a manifold, without having any topological structure to begin with. In most cases, the set is contained in a bigger space with some topological structure, and you can just surplant the relative topology on the subspace. But in certain cases (most famously, the construction of moduli spaces in algebraic geometry), there is nothing to start working with. The next theorem provides a useful strategy for placing a topology on a space and simultaneously showing it is a manifold. We will later show it has a simpler extension to placing a topology and a structure of a differentiable manifold onto a space.

Theorem 1.1. Let M be a set covered by a family U_{α} of sets, together with bijections x_{α} from U_{α} onto open subsets of euclidean space, such that

- For any α , β , $x_{\alpha}(U_{\alpha} \cap U_{\beta})$ is open, and $x_{\alpha} \circ x_{\beta}^{-1}$ is continuous.
- If $a, b \in M$, then either there is U_{α} with $a, b \in U_{\alpha}$, or disjoint U_{α} , $U_{\beta} = \emptyset$ such that $a \in U_{\alpha}$, $b \in U_{\beta}$.

Then there is a unique topological structure on M making it into a Hausdorff manifold, such that each (x_{α}, U_{α}) is a chart.

Proof. Consider the topological structure on M generated by all sets of the form $x_{\alpha}^{-1}(V)$, where V is an open subset of $x_{\alpha}(U_{\alpha})$. These sets form a base for the topology by the first condition of the theorem; if $x_{\alpha}(U)$ and $x_{\beta}(V)$ are open, then

$$x_{\alpha}(U \cap V) = x_{\alpha}(U) \cap (x_{\alpha} \circ x_{\beta}^{-1})(x_{\beta}(U_{\alpha} \cap V))$$

is open, since it is the intersection of open sets. This also shows that if $V \subset U_{\alpha}$ is open in our topology, then $x_{\alpha}(V)$ is open, so that each x_{α} is a homeomorphism, and the space is Hausdorff since points in a single U_{α} may be separated by Euclidean open sets, and points in disjoint U_{α} , U_{β} may surely be separated. We conclude that M is a manifold under this new topological structure.

Remark. If the family of charts is countable, the manifold we obtain will be second countable. More generally, we may also assume the charts above are maps into manifolds rather than open subsets of Euclidean space, since, locally, these identifications are essentially the same thing.

Example (Grassmannian). Our first example using this construction is the assignment of a topological structure to the space G(k,n) of k dimensional subspaces of \mathbf{R}^n , which makes clear the intuitive idea of two subspaces being 'close to one another'. Using the construction in the above theorem, given some subspace V of \mathbf{R}^n of dimension n-k, we will let A_V consist of all k dimensional subspaces of \mathbf{R}^n which intersect V trivially. We will show that the A_V can be made into a compatible covering of G(k,n) which makes the space into a k(n-k) dimensional manifold. We shall heavily rely on the fact that, given any k dimensional subspace V of \mathbf{R}^n , there is a (not necessarily unique) n-k dimensional complementary subspace V' such that $\mathbf{R}^n = V \oplus V'$.

It is easy to see that the $A_{V'}$ cover \mathbf{R}^n , because $V \in A_{V'}$ for any complementary V'. Given that $\mathbf{R}^n = V \oplus V'$, we will show that $A_{V'}$ corresponds to the set L(V,V') of linear maps from V into V'. To do this, we take a map $T:V \to V'$ to the subspace $V_T = \{v+Tv: v \in V\}$. Denote the projection from \mathbf{R}^n to V by π , and the projection onto V' by ψ . It is clear that the correspondence is injective, for if $V_T = V_S$, then for every $v \in V$ there is $w \in V$ such that v + Tv = w + Sw, and then the direct sum decomposition gives v = w and Tv = Sw = Sv, so T = S. Conversely if $W \in A_{V'}$, then π is an isomorphism between W and V, and $W = V_{\psi \circ \pi^{-1}}$. Thus the correspondence is surjective. Since L(V, V') is homeomorphic to k(n-k) dimensional Euclidean space, it remains to show

this correspondence is suitably regular to give sufficient topological structure to G(k,n).

To show we get a Hausdorff topological structure, let V and W be two subspaces of \mathbb{R}^n of dimension k, and suppose $V \cap W$ has dimension m. Then V + W is a space of dimension 2k - m, and somce choice of (V + W)' has dimension n - (2k - m) = (n - k) - (k - m). Since (V + W)' intersects V and W trivially, it now suffices to prove that V + W has a subspace of dimension k - m that intersects V and W trivially. Note that both

$$X = V' \cap (V + W)$$
 $Y = W' \cap (V \oplus W)$

have dimension k-m. If we consider any isomorphism $T: X \to Y$, then the space X_T is k-m dimensional and intersects both V and W trivially. Thus $X_T \oplus (V+W)'$ is the required subspace.

A more difficult task is to show that the charts are compatible with one another. First, we have to show that the set $A_{V'} \cap A_{W'}$ of spaces U which intersect V' and W' trivially is an open subset of linear transformations. Let π, ψ, ν and η denote the projections onto V, V', W, and W' respectively. The image of $A_V \cap A_W$ in L(V, V') consists of maps $T: V \to V'$ such that $v \circ (1+T)$ is an isomorphism. The association $T \mapsto \pi \circ (1+T)$ is continuous, which shows that the set of all such isomorphisms is open, since this is the inverse image of the maps $\pi \circ (1+T)$ which have nonzero determinant.

Now how does $A_{V'} \cap A_{W'}$ transform between L(V,V') and L(W,W')? Consider a subspace $U \in A_{V'} \cap A_{W'}$ mapped to a transformation $T: V \to V'$, and a transformation $L: W \to W'$. Since U intersects V' and W' trivially, the projection maps $\pi|_U$ and $\nu|_U$ are isomorphisms, and $L = \eta \circ (\nu|_U)^{-1}$. Note that the map $(1+T): V \to U$ is an isomorphism, and so

$$L = (\eta|_U) \circ (1+T) \circ (1+T)^{-1} \circ (\nu|_U)^{-1} = [\eta \circ (1+T)] \circ [\nu \circ (1+T)]^{-1}$$

a formula now expressed independently of U, which holds over all choices of T. The map

$$T \mapsto [\eta \circ (1+T)] \circ [\nu \circ (1+T)]^{-1}$$

is a composition of continuous maps, hence the charts are consistant, and this concludes the construction that G(k,n) is a topological manifold.

1.3 Basic Properties of Manifolds

Many proofs about manifolds use a reliable trick. First, we conjure forth local homeomorphisms to \mathbb{R}^n . Then we transport nice properties of \mathbb{R}^n across the homeomorphism, thereby inducing the properties on the manifold. In fact, the general philosophy of manifold theory is that most properties of \mathbb{R}^n will carry across to arbitrary spaces that look locally like \mathbb{R}^n — we can perform linear algebra on spaces that are not really linear!

Theorem 1.2. Every manifold is locally compact.

Proof. Let p be an arbitrary point on a manifold, with a chart (x, U). If we consider any closed ball around x(p) in x(U), the inverse image will be compact, since compactness is preserved under homeomorphisms. Thus p has a compact neighbourhood.

The same method shows that every manifold is locally path-connected, and thus locally connected. The next problem requires more foresight on the reader, though the basic technique used is exactly the same.

Theorem 1.3. A connected manifold is path-connected.

Proof. Let p be a point on a connected manifold M, and consider the set U of all points in M path connected to p. Local path connectedness shows U is open. Suppose q is a limit point of U. Take some path-connected chart (x, V) around q. Then V contains some $r \in U$, which is path connected to p, and we can then patch this path with a path from r to q obtained in the chart to obtain a path from p to q. Thus U is open, closed, and non-empty, so U = M.

Since every manifold is locally connected, any manifold can be split up into the disjoint sum of its connected components. It is therefore interesting to prove theorems about connected manifolds, since any manifold can be built up as a disjoint union of connected manifolds.

Example. GL(n) is a disconnected manifold, since $\det(GL(n))$ is disconnected. Because of the last theorem, we can identify the connected components of GL(n) by identifying the path connected components. To do this, we shall construct paths in GL(n) reducing invertible matrices to certain canonical forms. In our proof, we shall use the fact that $GL_n(\mathbf{R})$ can be described as tuples of n linearly

independent vectors in \mathbb{R}^n , which simplifies notation. If v_1, \ldots, v_n are linearly independent, consider adding one vector to another.

$$(v_1,\ldots,v_p,\ldots,v_q,\ldots,v_n)\mapsto (v_1,\ldots,v_p+v_q,\ldots,v_q,\ldots,v_n)$$

These vectors are path connected in $GL_n(\mathbf{R})$ by the path

$$t \mapsto (v_1, \dots, v_p + tv_q, \dots, v_q, \dots, v_n)$$

Similarly, we may subtract rows from one another. Next, consider multiplying a row by a scalar $\gamma > 0$,

$$(v_1,\ldots,v_p,\ldots,v_n)\mapsto (v_1,\ldots,\gamma v_p,\ldots,v_n)$$

These matrices are path connected by

$$t \mapsto (v_1 \dots [(1-t)+t\gamma]v_p \dots v_n)^t$$

We cannot perform this technique if $\gamma < 0$, because then $(1-t)+t\gamma = 0$ for some choice of t, and the resulting vectors become linearly dependent. We should not expect to find a path when $\gamma < 0$, since multiplying by a negative number reverses the sign of the determinant, and we know from the continuity of the determinant that the sign of the determinant determines at least two connected components. The same reasoning shows we can't necessarily swap two rows. Fortunately, we don't need these operations – we may use the path-connected elementary matrices to reduce any matrix to a canonical form. A modification of the Gauss Jordan elimination algorithm (left to the reader as a simple exercise) shows all matrices can be path-reduced to a matrix of the form

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & \dots & 0 & \pm 1 \end{pmatrix}$$

One matrix has determinant greater than zero, the other has determinant less than zero. Thus GL(n) consists of two homeomorphic path-connected components: the matrices with determinant greater than zero, and the component with determinant less than zero, reflecting the linear transformations which preserve orientation, and the ones which reverse orientation. This is quite a different situation from the space $GL(n, \mathbb{C})$ of invertible matrices over the complex numbers, which is connected for any n.

Another useful fact of a manifold, if the dimenison of the manifold is the same, is that all the local parts of space look identical to one another. We say a topological space X is **homogenous** if, for every two points $p, q \in X$, there is a homeomorphism mapping p to q.

Theorem 1.4. Every connected manifold is homogenous.

Proof. It is easy to show that \mathbb{R}^n is homogenous. This theorem relies on the fact that we can extend a 'local homeomorphism' to a global homeomorphism. To see how this is done, consider the closed unit disk \mathbf{D}^n in \mathbb{R}^n . Suppose that, for any two points p,q in the interior of the unit disk, there is a homeomorphism f of the entire Euclidean space \mathbb{R}^n mapping pto q, such that f(x) = x for all points outside of the unit ball. Given two points p,q on a general manifold M contained within a common chart (x, U), we can choose some closed disk K which p and q both lie in, find a homeomorphism $f: U \to U$ mapping p to q, and fixing all points outside the unit disk, and then f may be extended to a homeomorphism on M by fixing all points outside the chart. f continuous to be continuous, and a homeomorphism, because it is continuous on two overlapping open sets U and M - K, and these cover M. Thus all that remains is to prove the lemma for the closed disk, and this isn't too difficult. We define a smooth bump function ψ which is equal to one on the line segment between p and q, and vanishes outside of \mathbf{D}^n . We then consider the smooth vector field $v(x) = \psi(x)(q-p)$. This generates a family of evolution maps φ_t , which are homeomorphisms of \mathbb{R}^n , which fix all points outside of the unit disk because the vector field vanishes there, and for some t, $\varphi_t(p) = q$, which is the homeomorphism we wanted.

1.4 Construction in the Category of Manifolds

The category **Man** of topological manifolds has useful constructions which are good to know as tools for constructing more manifolds from simpler ones. The coproduct (disjoint-union) of two manifolds is easily shown to be a manifold. Here are some more constructions.

Theorem 1.5. If M and N are manifolds, then the product space $M \times N$ is also a manifold

Proof. Products of homeomorphisms onto open subsets of \mathbb{R}^n suffice.

Example. Since S^1 is a one dimensional manifold, we obtain a two dimensional manifold $\mathbf{T}^2 = S^1 \times S^1$, the torus. More generally, the n torus $\mathbf{T}^n = S^1 \times \cdots \times S^1$ is an n manifold.

Example (Surfaces of Revolution). If M is a 1-manifold in the subplane of \mathbb{R}^3 defined by

$$X = \{(x, y, 0) : x, y > 0\}$$

Then the space obtained by rotating M around the y axis is a 2-manifold, known as a surface of revolution, and homeomorphic to $M \times S^1$.

Most quotient spaces of manifolds will not be manifolds. Nonetheless, under some restrictions, the quotient space will be a manifold. It shall suffice that if $f: M \to N$ is a locally injective open surjective map, and M is a manifold, then N is a manifold, because we can push sufficiently small charts on M into charts on N. This is satisfied for many of the useful examples which occur in the earlier parts of the quotient theory of manifolds.

Example (The Möbius Strip). Consider the quotient space M obtained from $[-\infty,\infty] \times (-1,1)$ by identifying (x,y) with $(x+n,(-1)^ny)$, for $n \in \mathbb{Z}$. Then the projection is open and locally injective, so M is a manifold, known as the Möbius strip. By throwing away points, we find M can also be obtained from the product space $[-1,1] \times (-1,1)$ by identifying (-1,x) with (1,-x), for each $x \in (0,1)$. It only has one edge, even though it exists in three dimensional space, and if you have a paper copy at hand, try cutting it down the middle!

Example (Projective Space). Consider the quotient space of S^2 obtained by identifying opposite sides of the sphere: glue each point x to -x. The projection is locally injective, so the space is a two dimensional manifold, denoted \mathbb{RP}^2 and known as real projective space. In general \mathbb{RP}^n is created by identifying opposite points on S^n . Another way to describe the space is as $\mathbb{R}^{n+1} - \{0\}$, where x and λx are identified, for $\lambda \neq 0$. To obtain explicit charts on \mathbb{RP}^n , define $x: S^n \to \mathbb{R}^n$ by

$$x(a_1,...,a_{n+1}) = \frac{1}{a_i}(a_1,...,\hat{a_i},...,a_{n+1})$$

This map is continuous whenever $a_i \neq 0$. For all points p, x(p) = x(-p), so the chart descends to a map on \mathbb{RP}^n instead. It even has a continuous inverse

$$x^{-1}(b_1,...,b_n) = [b_1,...,1,...,b_n]$$

Since our maps cover the space, \mathbb{RP}^n is an n dimensional manifold.

Example. A similar space can be formed in the case of complex scalars, by viewing \mathbb{R}^{2n} as \mathbb{C}^n . We then identify z with λz , for $\lambda \in \mathbb{C} - \{0\}$ to form the quotient space \mathbb{CP}^n from $\mathbb{C}^{n+1} - \{0\}$. For n = 1, \mathbb{PC}^1 is just the Riemann sphere, a 2 manifold. In general, \mathbb{CP}^n is a 2n dimensional real manifold, or n 'complex' dimensions. We may consider the chart

$$x(z_1,...,z_{n+1}) = \frac{1}{z_i}(z_1,...,\hat{z_i},...,z_{n+1})$$

with inverse

$$x^{-1}(w_1,...,w_n) = [w_1,...,1,...,w_n]$$

where we consider complex multiplication instead of real multiplication. The space formed is known as complex projective space.

Even though \mathbf{RP}^2 is locally trivial, the space is very strange globally, and cannot be embedded in \mathbf{R}^3 . Nonetheless, the geometry our eyes percieve is modelled very accurately by the spherical construction of projective space. We don't see the really weird part of \mathbf{RP}^2 , since our eye cannot see the full circumpherence of vision, but these topological problems occur in the algorithms involved in patching portions of vision across the entire circumpherence.

Example (Gluing Surfaces). Let M and N be connected n-manifolds. We shall define the connected sum M#N of the two manifolds. There are two sets B_1 and B_2 in M and N respectively, both homeomorphic to the closed unit ball in \mathbb{R}^n . Then there is a homeomorphism $h: \partial B_1 \to \partial B_2$, and we may define the connected sum as

$$M\#N = (M-B_1^\circ) \cup_h (N-B_2^\circ)$$

The topological structure formed is unique up to homeomorphism, but this requires some tough topology to show for general manifolds. An example application is the construction of the n-holed torus T # T # T, which is a surface embeddable in \mathbb{R}^3 .

1.5 Euclidean Neighbourhoods are Open

In these notes, we consider a neighbourhood as in the French school, as any subset containing an open set, regardless of whether it is open or not.

Nonetheless, let M be a manifold, and take a point p with neighbourhood U homeomorphic to \mathbf{R}^n , lets say, by some continuous function $f:U\to\mathbf{R}^n$. Then U contains an open set V, and f(V) is open in \mathbf{R}^n , so that f(V) contains an open ball W around f(x). But then W is homeomorphic to \mathbf{R}^n , and $f^{-1}(W)$ is a neighbourhood of x open in V (and therefore open in M) homeomorphic to \mathbf{R}^n . This complicated discussion stipulates that we may always choose open neighbourhoods in the definition in a manifold. Remarkably, it turns out that all neighbourhoods homeomorphic to \mathbf{R}^n must be open; to prove this, we require an advanced theorem of algebraic topology.

Theorem 1.6 (Invariance of Domain). If $f: U \to \mathbb{R}^n$ is a continuous, injective function, where U is an open subset of \mathbb{R}^n , then f(U) is open, so that f is a homeomorphism.

A domain is a connected open set, and this theorem shows that the property of being a domain is invariant under continuous, injective maps from \mathbf{R}^n to itself. In multivariate calculus, the inverse function theorem shows this for differentiable mappings with non-trivial Jacobian matrices across its domain; invariance of domain stipulates that the theorem in fact holds for any such continuous map f on an open domain. The theorem can be proven in an excursion in some basic algebraic topology. In an appendix to this chapter, we shall prove the theorem based on the weaker assumption of the Jordan curve theorem, which is 'more intuitive' than invariance of domain.

Lemma 1.7. If $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open, then $U \cong V$ implies n = m.

Proof. If n < m, consider the projection $\pi : \mathbb{R}^n \to \mathbb{R}^m$

$$\pi(x_1,...,x_n) = (x_1,...,x_n,0,...,0)$$

Clearly no subset of $\pi(\mathbf{R}^n)$ is open. But if $f: V \to U$ is a homeomorphism, then $\pi \circ f: V \to \mathbf{R}^m$ is continuous and injective, so $\pi(V) \subset \pi(\mathbf{R}^n)$ is open by invariance of domain.

The **dimension** of a point on a manifold is the dimension of the euclidean space which is locally homeomorphic to a neighbourhood of the point. When a manifold is connected, one can show simply that the dimension across the entire space is invariant, and we may call this the **dimension of the manifold**. As shorthand, we let M^n denote a manifold M which is n dimensional.

Corollary 1.8. The dimension of a point on a manifold is unique.

Proof. Let U and V be two non-disjoint neighbourhoods of a point homeomorphic to \mathbb{R}^n and \mathbb{R}^m by $f: U \to \mathbb{R}^n$ and $g: V \to \mathbb{R}^m$. Then $U \cap V$ is also open, and homeomorphic to open sets of \mathbb{R}^n and \mathbb{R}^m . We conclude n=m.

Theorem 1.9. Any subset of a manifold locally homeomorphic to Euclidean space is open in the original topology.

Proof. Let M be a manifold, and $U \subset M$ homeomorphic to \mathbb{R}^n by a function f. Let $x \in U$ be arbitrary. There is an open neighbourhood V of x that is homeomorphic into \mathbb{R}^n by a function g. Since V is open in M, $U \cap V$ is open in U, so $f(U \cap V)$ is open in \mathbb{R}^n . We obtain a one-to-one continuous function from $f(U \cap V)$ to $g(U \cap V)$ by the function $g \circ f^{-1}$. It follows by invariance of domain that $g(U \cap V)$ is open in \mathbb{R}^n , so $U \cap V$ is open in V, and, because V is open in M, $U \cap V$ is open in M. In a complicated manner, we have shown that around every point in U there is an open neighbourhood contained in U, so U itself must be open. □

Really, this theorem is just a generalized invariance of domain for arbitrary manifolds – since the concept of a manifold is so intertwined with Euclidean space, it is no surprise we need the theorem for \mathbf{R}^n before we can prove the theorem here.

1.6 Equivalence of Regularity Properties

Many important results in differentiable geometry require spaces with more stringent properties than those that are merely Hausdorff. At times, we will want to restrict ourselves to topological manifolds with these properties. Fortunately, most of these properties are equivalent.

Theorem 1.10. For any manifold, the following properties are equivalent:

- (1) Every component of the manifold is σ -Compact.
- (2) Every component of the manifold is second countable.
- (3) The manifold is metrizable.
- (4) The manifold is paracompact (so every compact manifold is metrizable).

Lemma 1.11 (1) \rightarrow (2). Every σ -compact, locally second countable space is globally second countable.

Proof. Let X be a locally second countable space, equal to the union of compact sets $\bigcup_{i=1}^{\infty} A_i$. For each x, there is an open neighbourhood U_x with a countable base \mathcal{C}_x . If, for some A_i , we consider the set of U_x for $x \in A_i$, we obtain a cover, which therefore must have a finite subcover $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$. Taking $\bigcup_{i=1}^n \mathcal{C}_{x_i}$, we obtain a countable base \mathcal{C}_i for all points in a neighbourhood of A_i . Then, taking the union $\bigcup_{i=1}^{\infty} \mathcal{C}_i$, we obtain a countable base for X.

Lemma 1.12 (2) \rightarrow (3). *If a manifold is second countable, then it is metrizable.*

Proof. This is a disguised form the Urysohn metrization theorem, proved in a standard course in general topology. If you do not have the background, you will have to have faith that this lemma holds. All we need show here is that a second countable manifold is regular, and this follows because every locally compact Hausdorff space is Tychonoff.

Lemma 1.13 (3) \rightarrow (1). Every connected, locally compact metrizable space is σ -compact.

Proof. Consider any connected, locally compact metric space (X,d). For each x in X, let

$$r(x) = \frac{\sup\{r \in \mathbf{R} : \overline{B}_r(x) \text{ is compact}\}}{2}$$

Since X is locally compact, this function is well defined and positive for all x. If $r(x) = \infty$ for any x, then $\{\overline{B}_n(x) : n \in \mathbb{Z}\}$ is a countable cover of the space by compact sets. Otherwise, r(x) is finite for every x. Suppose that

$$d(x,y)+r'<2r(x)$$

By the triangle inequality, this tells us that $\overline{B}_{r'}(y)$ is a closed subset of $\overline{B}_{r(x)}(x)$, which is hence compact. This shows that, when d(x,y) < r(x),

$$r(y) \geqslant r(x) - \frac{d(x,y)}{2}$$

Put more succinctly, this equation tells us that the function $r: X \to \mathbf{R}$ is continuous:

$$|r(x) - r(y)| < \frac{d(x,y)}{2}$$

This has an important corollary. Consider a compact set A, and let

$$A' = \bigcup_{x \in A} \overline{B}_{r(x)}(x)$$

We claim that A' is also compact. Consider some sequence $\{x_i\}$ in A', and let $\{a_i\}$ be elements of A for which $x_i \in \overline{B}_{r(a_i)}(a_i)$. Since A is compact, we may assume $\{a_i\}$ converges to some a. When $d(a_i, a) < r(a)/2$,

$$r(a_i) < r(a) + r(a)/4$$

and so

$$d(a, x_i) \le d(a, a_i) + d(a_i, x_i) < r(a)/2 + [r(a) + r(a)/4] = 7r(a)/4$$

Since we chose r(a) to be half the supremum of compact sets, the sequence x_k will eventually end up in the compact ball $B_{3r(a)/4}(a)$, and hence will converge.

If A is a compact set, we will let A' be the compact set constructed above. Let A_0 consist of an arbitrary point x_0 is X, and inductively, define $A_{k+1} = A'_k$, and $A = \bigcup_{i=0}^{\infty} A_k$. Then A is the union of countably many compact sets. A is obviously open. If x is a limit point of A, then there is some sequence $\{x_i\}$ in A which converges to x, so $r(x_i) \to r(x)$. If $|r(x_i) - r(x)| < \varepsilon$, and also $d(x_i, x) < r(x) - \varepsilon$, then x is contained in $B_{r(x_i)}(x_i)$, and hence if x_i is in A_k , then x is in A_{k+1} . Thus A is non-empty and clopen, so $X = A = \bigcup A_k$ is σ -compact.

Lemma 1.14 (4) \rightarrow (1). A connected, locally compact, paracompact space is σ compact.

Proof. Consider a locally-finite cover C of precompact neighbourhoods in a space X. Fix $x \in X$. Then x intersects finitely many elements of C, which we may label $U_{1,1}, U_{1,2}, \ldots, U_{1,n_1}$. Then

$$U_1 = \overline{U_{1,1}} \cup \overline{U_{1,2}} \cup \cdots \cup \overline{U_{1,n_1}}$$

intersects only finitely more elements of C, since the set is compact, and we need only add finitely more open sets $U_{2,1},...,U_{2,n_2}$, obtaining

$$U_2 = \overline{U_{2,1}} \cup \cdots \cup \overline{U_{2,n_2}}$$

Continuing inductively, we find an increasing sequence of compact neighbourhoods. Then $U = \bigcup U_i$ is open because a neighbourhood of $y \in U_k$ is contained in U_{k+1} . If y is a limit point of U, take a neighbourhood $V \in C$, which must intersect some U_k . Then $y \in U_{k+1}$, so U is closed. We conclude X = U is σ compact.

Lemma 1.15 (1) \rightarrow (4). A σ compact, locally compact Hausdorff space is paracompact.

Proof. Let $X = \bigcup C_i$ be a locally compact, σ -compact space. Since C_1 is compact, it is contained in an open precompact neighbourhood U_1 . Similarily, $C_2 \cup \overline{U_1}$ is contained in a precompact neighbourhood U_2 with compact closure. We find $U_1 \subset U_2 \subset \ldots$, each with compact closure, and which cover the entire space. Now let \mathcal{U} be an arbitrary open cover of X. Each $V_k = U_k - \overline{U_{k-2}}$ (letting $U_{-2} = U_{-1} = U_0 = \emptyset$) is open, and its closure $\overline{V_k}$ is a closed subset of compact space, hence compact. Since \mathcal{U} covers $\overline{V_k}$, it has a finite subcover U_1, \ldots, U_n , and we let

$$V_1 = (U_1 \cap V_1), (U_2 \cap V_1), \dots, (U_n \cap V_1)$$

be a collection of refined open sets which cover V_1 . Do the same for each V_k , obtaining V_2, V_3, \ldots , and consider $V = \bigcup V_i$. Surely this is a cover of X, and each point is contained only in some V_k and V_{k+1} , so this refined cover is locally finite.

1.7 Boundaries

There is an addition family of 'manifolds with sides' which often occurs in the theory of differential geometry. A **manifold with boundary** is a space also containing points that are *locally bounded*. Points in such a space must either be locally homeomorphic to some \mathbb{R}^n , or be a point on the 'boundary' of the manifold. That is,a point x lies on the **boundary** of the manifold if it has a neighbourhood homeomorphic to a 'halfspace' $\mathbb{H}^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 \geq 0\}$. If M is a manifold with boundary, then we denote the set of points on its boundary by ∂M . This is well defined by the invariance of domain theorem, in the sense that a point on a manifold with boundary *either* has a neighbourhood homeomorphic to some \mathbb{R}^n , or to some \mathbb{H}^m , but not both. The non boundary points are known as the interior, denoted M° .

Theorem 1.16. If M^n is a manifold with boundary, then ∂M , considered as a subspace of M, is a manifold (without boundary) of dimension n-1.

Proof. Let x be a point in ∂M , and let U be a neighbourhood homeomorphic to \mathbf{H}^n by a map $f: U \to \mathbf{H}^n$. Consider the points in U that map to the boundary plane under f,

$$V = \{ y \in U : f(y) = (0, x_2, ..., x_n) \}$$

We contend that $V = U \cap \partial M$, so that V is a neighbourhood of x in the relative topology, and since V is homeomorphic to \mathbf{R}^{n-1} , this will show that ∂M is an n-1 dimensional manifold. It is easy to see that $V \subset U \cap \partial M$. Conversely, the other points in U-V have a neighbourhood homeomorphic to \mathbf{R}^n , so that they do not lie in ∂M . Thus $U-V \subset M^\circ \cap U$, and this completes the proof.

Example. \mathbf{H}^n is the easiest example of a manifold with boundary. It's boundary consists of $\{0\} \times \mathbf{R}^{n-1}$, which is an n-1 manifold. Another manifold with boundary is the unit disc $D^n = \{x \in \mathbf{R}^n : ||x|| \le 1\}$. We have already shown that the discs boundary, $\partial D^n = S^{n-1}$, is an n-1 manifold.

We will see later that considering a manifold boundary as a disjoint structure is very useful. Stoke's theorem provides a direct application. But for now, let's move onto introducing calculus into the picture.

Chapter 2

Differentiable Structures

As a topological space, we know when a map between manifolds is continuous, but when is a map differentiable? What we seek is a definition abstract enough to work on any manifold, yet possessing the same properties of differentiable functions on \mathbb{R}^n .

2.1 Defining Differentiability

Let us be given a map $f: M \to N$ between manifolds. Given a correspondence b = f(a), a reasonable inquiry would be to consider two charts (x,U) and (y,V), where U is a neighbourhood of a and V is a neighbourhood of b. We obtain a map $y \circ f \circ x^{-1}$, defined between open subsets of Euclidean space. We have 'expressed f in coordinates'. f shall then be differentiable at f if f or f is differentiable at f in coordinates, this idea is doomed to fail, for we can hardly expect that the statement holds for all charts when it holds for a pair of them.

Example. Consider the chart $y : \mathbf{R} \to \mathbf{R}$, $y(t) = t^3$, and let x be the identity chart. If $f(x) = \sin(x)$, then $x \circ f \circ x^{-1} = f$ is differentiable, yet

$$(y \circ f \circ y^{-1})(t) = \sin(\sqrt[3]{t})^3$$

is not differentiable at the origin.

If we are to stick with this definition, we either need to define differentiability in terms of the charts g and h used, or identify additional structure to manifolds. The latter option is clearly more elegant. Our

method will be to identify charts which are 'correct', and ignore 'non-differentiable' charts. Two charts (x, U) and (y, V) are \mathbb{C}^{∞} related, if either U and V are disjoint, or

$$y \circ x^{-1} : x(U \cap V) \to y(U \cap V)$$

 $x \circ y^{-1} : y(U \cap V) \to x(U \cap V)$

are C^{∞} functions. One can see a chart as laying a blanket down onto a manifold. Two charts are C^{∞} related if, when we lay them down over each other, they contain no creases! The fact that manifolds do not have a particular preference for coordinates is both a help and a hindrance. On one side, it forces us to come up with elegant, coordinate free approaches to geometry. On the other end, these coordinate free approaches can also be incredibly abstract!

A **smooth** or \mathbb{C}^{∞} **atlas** for a manifold is a family of \mathbb{C}^{∞} charts whose domains cover the entire manifold. A maximal atlas is called a **smooth structure** on a manifold, and a manifold together with a smooth structure is called a **smooth** or **differentiable manifold**. In the literature, each map $y \circ x^{-1}$ is known as a **transition map**, so that we say an atlas for a manifold has \mathbb{C}^{∞} transition maps. From now on, when we mention a chart on a differentiable manifold, we implicitly assume the chart is the member of the smooth structure of the manifold.

A $f: M \to N$ be a map between two smooth manifolds. f is differentiable at $p \in M$ if it is continuous at p, and if for some chart $x: U \to \mathbb{R}^n$ whose domain contains p, and for some chart $y: V \to \mathbb{R}^m$ whose domain contains f(p), the map $y \circ f \circ x^{-1}: x(f^{-1}(V) \cap U) \to \mathbb{R}^m$ is differentiable at x(p). f itself is **differentiable** if it is differentiable at every point on its domain, or correspondingly, if $y \circ f \circ x^{-1}$ is differentiable for any two charts x and y. Since differentiability is a *local* condition on Euclidean spaces, and manifolds are locally Euclidean spaces, the smooth structure, which preserves the differentiability across all local charts, allows us to define differentiability on arbitrary manifolds.

Lemma 2.1. Every atlas extends to a unique smooth structure.

Proof. Let \mathcal{A} be an atlas for a manifold M, and consider the set \mathcal{A}' , which is the union of all atlases containing \mathcal{A} . We shall show that \mathcal{A}' is also an atlas, and therefore necessarily the unique maximal one. Let $x: U \to \mathbb{R}^n$ and $y: V \to \mathbb{R}^n$ be two charts in \mathcal{A}' with non-disjoint domain, containing a

point p. Let $z: W \to \mathbb{R}^n$ be a chart in \mathcal{A} containing p. Then, on $U \cap V \cap W$, an open set containing p, we have

$$x \circ y^{-1} = (x \circ z^{-1}) \circ (z \circ y^{-1})$$

and by assumption, each component map is C^{∞} on this domain, so $x \circ y^{-1}$ is smooth in a neighbourhood of p. The proof for $y \circ x^{-1}$ is exactly the same. Since the point p was arbitrary, we conclude that x and y are C^{∞} related across their domains.

This implies, in particular, that we may specify a smooth structure by just giving a family of C^{∞} related transition maps covering a manifold, which is in almost all cases easier to specify.

Corollary 2.2. If x is a chart defined on a differentiable manifold M, and is C^{∞} related to each map in a generating atlas A, then x is in the smooth structure generated by A.

Lemma 2.3. If a map f is differentiable at a point p in charts x and y, it is differentiable at p for any other charts containing p and q.

Proof. Suppose $y \circ f \circ x^{-1}$ is differentiable at a point x(p), and consider any other charts y' and x'. Then

$$y' \circ f \circ x'^{-1} = (y' \circ y^{-1}) \circ (y \circ f \circ x^{-1}) \circ (x \circ x'^{-1})$$

On a smaller open neighbourhood than was considered. Nonetheless, since differentiability is a local concept, we need only prove the theorem for this map on a reduced domain. This follows since the component maps are differentiable.

Example. Let M be a manifold, and U an open submanifold. Define a differentiable structure on U consisting of all charts defined on M whose domain is a subset of U. This is a maximal atlas, and is the unique such structure such that

- 1. If $f: M \to N$ is differentiable, then $f|_U: U \to M$ is differentiable.
- 2. The inclusion map $i: U \rightarrow M$ is differentiable.
- 3. If $f: N \to M$ is differentiable, and $f(N) \subset U$, then $f: N \to U$ is differentiable.

Example. Consider the manifold \mathbf{R}^n , and define a smooth structure by considering the generating atlas containing only the identity map $id_{\mathbf{R}^n}$. This defines a smooth structure on \mathbf{R}^n , such that

- 1. x is a chart on \mathbb{R}^n if and only if x and x^{-1} are C^{∞} .
- 2. A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable in the sense of a manifold if and only if it is differentiable in the usual sense.
- 3. A map $f: M \to \mathbb{R}^n$ is differentiable if and only if each coordinate $f_i: M \to \mathbb{R}$ is differentiable.
- 4. A chart $x: U \to \mathbb{R}^n$ is a diffeomorphism from U to x(U).

Our definition has naturally extended calculus to arbitrary manifolds.

We note that the transition maps given to define all the topological manifolds in the previous chapter are all C^{∞} related to one another. It is left as an exercise to check this is true. Thus all the topological manifolds in the previous chapter are also differentiable manifolds. We make sure to note that there do exist some topological manifolds which have *no* differentiable structure – the creases in the manifold cannot be evened out. But these occur in certain pathological situations that we won't stumble upon in these introductory notes.

Example. On \mathbb{R}^2 , we have polar coordinates $(\theta, \mathbb{R}^2 - \{0\})$ defined 'in inverse coordinates' by the map $\theta^{-1}(r,u) = re^{iu}$. This chart is locally injective and has full rank at every point, so that θ^{-1} is actually invertible, and θ is \mathbb{C}^{∞} , by the inverse function theorem. Thus the polar coordinate system truly is in the smooth structure generated by the identity. On \mathbb{R}^3 , we have the spherical and cylindrical coordinate systems to work with.

Example. The differentiable structure on S^n is defined by the stereographic projection maps. We may also define this structure on S^1 by the angle functions. If (θ, U) and (ψ, V) are angle functions, then $\theta \circ \psi^{-1}$ is just a translation by a multiple of 2π on each connected component of $\psi(U \cap V)$, hence C^{∞} . Indeed, if

$$\psi^{-1}(t) = e^{it} = \theta^{-1}(t')$$

then $t = t' + 2\pi n$ for some unique integer n. Define f(t) = n, giving us a map $f: U \cap V \to \mathbf{Z}$. This map is continuous because if $t_i \to t$, then

$$(\theta \circ \psi^{-1})(t_i) \to (\theta \circ \psi^{-1})(t)$$

so $t_i + 2\pi f(t_i) \to t + 2\pi f(t)$, hence $f(t_i) \to f(t)$. The continuity of f implies that f is constant on every connected component of $U \cap V$.

Example. Smooth structures on manifolds are not unique. Let \mathbf{R}_1 be the canonical smooth manifold on \mathbf{R} . Let \mathbf{R}_2 be the smooth structure on \mathbf{R} generated by the map x, such that $x(t)=t^3$. Then \mathbf{R}_1 and \mathbf{R}_2 are diffeomorphic. Let $x:\mathbf{R}_2\to\mathbf{R}_1$ be our diffeomorphism. It is surely bijective. Let y be a chart on \mathbf{R}_2 . We must verify that $y=z\circ x$, where z is a chart on \mathbf{R}_1 . We may show this by verifying that $y\circ x^{-1}=z$, and $x\circ y^{-1}=z^{-1}$ is C^∞ on \mathbf{R}_1 . But this was exactly why y was a chart on \mathbf{R}_2 in the first place, hence the map is a diffeomorphism. Later, we will show that every manifold which lies in Euclidean space has a natural smooth structure, however, and this will be taken as the canonical smooth structure in any of these cases.

The C^{∞} maps are not the only classes of maps occuring in calculus, and analogously, C^{∞} manifolds are not the only types of manifolds. More generally, we can consider a C^k atlas, whose transition maps are C^k , and form a C^k manifold. Clearly any C^{∞} manifold can be made into a C^k manifold in a unique way by extending the atlas of transition maps, but it is less clear that a C^k manifold can be specialized to a C^{∞} manifold. Hassler Whitney proved, using advanced tools from differential topology, that every C^k can be specialized into a C^{∞} , such that any two specializations are diffeomorphic. We can even specialize C^{∞} further by requiring that the transition maps are (real) analytic, in which case we obtain a C^{ω} or analytic manifold. If the dimension of the manifold is even, we can identify our charts on \mathbf{R}^{2n} with \mathbf{C}^n , and require the transition maps be complex analytic. This gives us the family of complex manifolds. We will not discuss these types of manifolds in detail, but they occur in applications and in more general contexts.

2.2 The Function Space $C^{\infty}(M)$

The set of all real-valued differentiable maps defined on a manifold M form the algebra $C^{\infty}(M)$, contained with the algebra C(M). Note that a continuous map $f: M \to N$ induces an algebra homomorphism $f^{\#}: C(N) \to C(M)$ defined by $f^{\#}(g) = g \circ f$. If f and g are C^{∞} , then $g \circ f$ is C^{∞} , and so we may restrict $f^{\#}$ to a map from $C^{\infty}(N)$ to $C^{\infty}(M)$. We

see therefore that the 'map' C^{∞} defines a contravariant functor from the category of differential manifolds to the category of algebras.

Lemma 2.4. A continuous map $f: M \to N$ between manifold is smooth if and only if $f^{\#}(C^{\infty}(N)) \subset C^{\infty}(M)$.

Proof. Let (y, V) be a chart on N at a point q, and let (x, U) be a chart on M at $p \in f^{-1}(p)$. By assumption, each $y^i \circ f = f^\#(y^i)$ is differentiable, so that $y^i \circ f \circ x^{-1}$ is differentiable. But this implies $y \circ f \circ x^{-1}$ is differentiable, so f is differentiable.

Theorem 2.5. A homeomorphism $f: M \to N$ is a diffeomorphism if and only if $f^{\#}$ is an isomorphism between $C^{\infty}(N)$ and $C^{\infty}(M)$.

Proof. Given $g = f^{-1}$, we note that $(g \circ f)^\# = f^\# \circ g^\#$ is just the identity map. Thus if f is a diffeomorphism, Then $f^\# \circ g^\#$ is the identity, so that $f^\#$ is invertible, and hence an isomorphism. Conversely, if $f^\#$ is a bijection between $C^\infty(N)$ and $C^\infty(M)$, then $f^\#(C^\infty(N)) = C^\infty(M) \subset f^\#(C^\infty(M))$, so f is differentiable, and $g^\#(C^\infty(M)) = C^\infty(N) \subset C^\infty(N)$, so g is also differentiable, hence f is a diffeomorphism.

Remark. More generally, f is C^k if and only if $f^{\#}(C^k(N)) \subset C^k(M)$, and a C^k diffeomorphism if and only if f maps $C^k(N)$ isomorphically to $C^k(M)$.

Suppose we know $C^{\infty}(M)$ for all manifolds M. Then we may recover the smooth structure on M, which is the set of diffeomorphisms from open subsets of M to open subsets of euclidean space. We can actually define a C^{∞} manifold in a completely algebraic way. Given some topological space X, suppose we have a map associating each open subset U of X with a subalgebra $C^{\infty}(U) \subset C(U)$ containing the constant 1 function, such that

- For each $V \subset U$, if $f \in C^{\infty}(U)$ then $f|_{V} \in C^{\infty}(V)$.
- If $V = \bigcup U_{\alpha}$, and $f : V \to \mathbf{R}$ satisfies $f|_{U_{\alpha}} \in C^{\infty}(U_{\alpha})$ for each α , then $f \in C^{\infty}(V)$.
- Every point $x \in X$ has a neighbourhood U with $x_1, ..., x_n \in C^{\infty}(U)$ such that $x = (x_1, ..., x_n)$ is a homeomorphism of U with an open subset of \mathbb{R}^n , and $f \in C^{\infty}(U)$ if and only if $f \circ x^{-1}$ is a C^{∞} function.

Then there is a unique C^{∞} structure on X such that the C^{∞} real-valued maps on any open set U are precisely the elements of $C^{\infty}(U)$. These facts constitute the foundation of the algebraic viewpoint of manifold theory, which attempts to uncover the nature of manifolds solely by analyzing the commutative algebra $C^{\infty}(M)$. You can actually get pretty far with this approach: Nestruev's book "Smooth Manifolds and Observables" attempts to introduce differential geometry solely in this manner, but we prefer to introduce the geometric and algebraic approach simultaneously for maximal insight.

2.3 Partial Derivatives

In calculus, when a function is differentiable, we obtained a derivative, a measure of a function's local change. On manifolds, determining an analogous object is difficult due to the coordinate invariant definition required. For now, we shall stick to structures corresponding to some particular set of coordinates. Consider a differentiable map $f \in C^1(M)$. We have no conventional coordinates to consider partial derivatives on, but if we fix some chart $x: U \to \mathbb{R}^n$ on M, we obtain a differentiable map $f \circ x^{-1}$, and we define, for a point $p \in U$,

$$\frac{\partial f}{\partial x^k}\Big|_p = D_k(f \circ x^{-1})(x(p))$$

Geometrically, this is the change in the function f when we trace the function along the coordinate lines from the map x; literally, if we define a curve $c(t) = (f \circ x^{-1})(x(p) + te_k)$, then

$$c'(0) = \left. \frac{\partial f}{\partial x^k} \right|_p$$

Sometimes we use the notation $\partial_{x^k} f$ for the partial derivative in the k'th direction, which simplifies the notation in heavy calculations.

Theorem 2.6. If x and y are coordinate systems at a point p, and $f \in C^1(M)$, then

$$\left. \frac{\partial f}{\partial x^i} \right|_p = \sum_j \left. \frac{\partial y^j}{\partial x^i} \right|_p \left. \frac{\partial f}{\partial y^j} \right|_p$$

Proof. We just apply the chain rule in Euclidean space.

$$\begin{split} \frac{\partial f}{\partial x_i}\bigg|_p &= D_i(f\circ x^{-1})(x(p)) = D_i((f\circ y^{-1})\circ (y\circ x^{-1}))(x(p)) \\ &= \sum D_j(f\circ y^{-1})(y(p))D_i(y_j\circ x^{-1})(x(p)) \\ &= \sum \frac{\partial f}{\partial y_j}\bigg|_p \frac{\partial y_j}{\partial x_i}\bigg|_p \end{split}$$

Example. Let us compute the laplacian on \mathbb{R}^2 in polar coordinates.

$$\Delta f = \frac{\partial f^2}{\partial x^2} + \frac{\partial f^2}{\partial y^2}$$

To do this, we need to relate partial differentives by the chain rule. If (r, θ) is the polar coordinate chart, and (x, y) the standard chart on \mathbb{R}^2 , then

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$

(note that this is a relation between functions, and can be applied pointwise at any point on the charts). Thus the matrix of partial derivatives is

$$\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

We can invert this matrix to obtain the partial derivatives with respect to x and y. We have

$$\begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{pmatrix} = \frac{1}{r} \begin{pmatrix} r\cos(\theta) & r\sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\frac{\sin(\theta)}{r} & \frac{\cos(\theta)}{r} \end{pmatrix}$$

Now we apply the chain rule. We have

$$\frac{\partial}{\partial x} = \cos(\theta) \frac{\partial}{\partial r} - \frac{\sin(\theta)}{r} \frac{\partial}{\partial \theta} \qquad \frac{\partial}{\partial y} = \sin(\theta) \frac{\partial}{\partial r} + \frac{\cos(\theta)}{r} \frac{\partial}{\partial \theta}$$

So

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \left(\cos(\theta) \frac{\partial}{\partial r} - \frac{\sin(\theta)}{r} \frac{\partial}{\partial \theta}\right) \left(\cos(\theta) \frac{\partial f}{\partial r} - \frac{\sin(\theta)}{r} \frac{\partial f}{\partial \theta}\right) \\ &= \cos^2(\theta) \frac{\partial^2 f}{\partial r^2} + \frac{\cos(\theta) \sin(\theta)}{r^2} \frac{\partial f}{\partial \theta} - \frac{\cos(\theta) \sin(\theta)}{r} \frac{\partial^2 f}{\partial r \partial \theta} \\ &+ \frac{\sin^2(\theta)}{r} \frac{\partial f}{\partial r} - \frac{\sin(\theta) \cos(\theta)}{r} \frac{\partial^2 f}{\partial \theta \partial r} + \frac{\sin(\theta) \cos(\theta)}{r^2} \frac{\partial f}{\partial \theta} + \frac{\sin^2(\theta)}{r^2} \frac{\partial^2 f}{\partial \theta^2} \end{split}$$

$$\begin{split} \frac{\partial^2 f}{\partial y^2} &= \left(\sin(\theta) \frac{\partial}{\partial r} + \frac{\cos(\theta)}{r} \frac{\partial}{\partial \theta}\right) \left(\sin(\theta) \frac{\partial f}{\partial r} + \frac{\cos(\theta)}{r} \frac{\partial f}{\partial \theta}\right) \\ &= \sin^2(\theta) \frac{\partial^2 f}{\partial r^2} - \frac{\cos(\theta) \sin(\theta)}{r^2} \frac{\partial f}{\partial \theta} + \frac{\cos(\theta) \sin(\theta)}{r} \frac{\partial^2 f}{\partial r \partial \theta} \\ &+ \frac{\cos^2(\theta)}{r} \frac{\partial f}{\partial r} + \frac{\sin(\theta) \cos(\theta)}{r} \frac{\partial^2 f}{\partial \theta \partial r} - \frac{\sin(\theta) \cos(\theta)}{r^2} \frac{\partial f}{\partial \theta} + \frac{\cos^2(\theta)}{r^2} \frac{\partial^2 f}{\partial \theta^2} \end{split}$$

All the nastiness cancels out by use of the trigonometric identities, and we find

$$\Delta f = \frac{\partial f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

Partial derivatives also satisfy a nice 'derivation' property, which we leave to the reader to calculate. It is essentially the product rule for partial derivatives. We shall see later that this property characterizes the partial derivative maps in the space of linear maps on $C^{\infty}(M)$, which relates to the 'intrinsic' tangent space of a manifold.

Lemma 2.7. If f and g are differentiable maps from a manifold M to \mathbf{R} , then

$$\left. \frac{\partial f g}{\partial x^i} \right|_p = f(p) \left. \frac{\partial g}{\partial x^i} \right|_p + g(p) \left. \frac{\partial f}{\partial x^i} \right|_p$$

The partial derivatives provide immediate quantities to measure the rate of change of a real-valued differentiable function on a manifold. Next, we will consider a novel way to measure this rate of change for any two functions, by the introduction of 'infinitisimals' on manifolds.

2.4 Covariant Differentiation

The coordinate operators allow us to extend differentiation to functions in $C^{\infty}(M)$, for any manifold M. However, defining the derivative of a differentiable map $f:M\to N$ between arbitrary manifolds is more tricky. We could define the derivative coordinatewise at a point p by considering the derivative $D(y\circ f\circ x^{-1})(x(p))$, for some coordinate systems x and y. The trouble is that in this way we can only talk of properties of the derivative that are invariant under the coordinate systems chosen. The trouble here is that there is no 'definite' space the operator is defined over – as we change the coordinate systems, the space changes. To obtain a 'universal' coordinate independent map, we need to form a 'universal' space which represents all coordinates at the same time, upon which the derivative operators are invariant. This space is known as the tangent bundle. There are deep and elegant constructions for this bundle, but for now, we only require the absolute basics.

Vectors v in \mathbb{R}^n are often pictured as starting at the origin, and ending at the point with the same coordinates as v. But it is often convenient to picture these vectors as starting at a different beginning point than the origin. We introduce the notation v_p , where p is a point in Euclidean space, and v is a vector, to be the vector beginning at p and ending at p + v. One way to think of these values are as points p in \mathbb{R}^n with an added 'second order' infinitisimal shift in the direction v. If U is an open subset of \mathbb{R}^n , we can set

$$TU = \{v_p : p \in U, v \in \mathbf{R}^n\}$$

to be the **tangent bundle** of U, consisting of all second order approximations of points in U. At each point $p \in U$, the **fibre** at p, denoted TU_p consists of all tangent vectors beginning at p, which can be made into a vector space by defining the operations $v_p + w_p = (v + w)_p$ and $\lambda v_p = (\lambda v)_p$.

There are many complex and elegant ways to form the tangent bundle on a differentiable manifold. We will eventually discuss them in time, but we now construct the space in the most quick and dirty way. On a differentiable manifold M, we locally specify the tangent bundle in charts, and then patch them together into a reasonable structure on the entire manifold. For each point p, we let the fibre TM_p consist of equivalence classes of tuples of the form $(x,v)_p$, where $v \in \mathbb{R}^n$, and (x,U) is a chart

with $p \in U$, where we identify $(x, v)_p$ and $(y, w)_p$ if

$$w = D(y \circ x^{-1})(p)(v)$$

In other words, if w looks like v stretched by a change in coordinates. Putting this altogether gives the required tangent vectors $[x,v]_p$. The fibres TM_p are still vector spaces by the operations $[x,v]_p + [x,w]_p = [x,v+w]_p$, and $\lambda[x,v]_p = [x,\lambda v]_p$.

If $f: U \to V$ maps an open subset $U \subset \mathbb{R}^n$ to $V \subset \mathbb{R}^m$, and is differentiable, then we can consider the derivatives Df(p) at $p \in U$, which describe how the function acts locally around p. Since a differentation indicates that the space is 'locally linear', then the derivative should act on tangent vectors by the actual linear map. In other words, we can put all the derivatives together to define the **covariant derivative** of f, denoted f_* , by

$$f_*(v_p) = (Df(p)(v))_{f(p)}$$

Often, f_* is also denoted by df, and the map restricted to the domain of the fibre at p and the fibre at f(p) is denoted df_p . The chain rule for derivative can be succinctly represented by the fact that if $g:V\to W$ is a differentiable function, then $(g\circ f)_*=g_*\circ f$. Now for a differentiable map $f:M\to N$, we can define the covariant derivative $f_*:TM\to TN$ by mapping $[x,v]_p$ to $[y,w]_{f(p)}$, where $w=D(y\circ f\circ x^{-1})(p)(v)$. This is easily shown to be independent of the coordinates chosen. Thus we obtain linear maps df_p from TM_p to $TN_{f(p)}$. We say that f has $\operatorname{rank} k$ at a point p if df_p has rank k. The next section will show the rank gives essentially all the local information about a differentiable map.

2.5 The Rank Theorems

The rank theorems provide the existence of coordinates on a manifold which simplify how the maps operate immensely. They are essentially an extension of the Euclidean inverse and implicit function theorems.

Theorem 2.8. If f is rank k at a point p, there is a coordinate system x at p and y at f(p) such that for $1 \le i \le k$,

$$y^i \circ f \circ x^{-1}(a_1, \dots, a_n) = a_i$$

or

$$(y \circ f \circ x^{-1})(a_1, \dots, a_n) = (a_1, \dots, a_k, *, \dots, *)$$

where the asterixes denotes arbitrary functions.

Proof. Let (x, U) and (y, V) be arbitrary coordinate systems around p and f(p). By a permutation of the coordinates, we may, by arranging coordinates, guarantee that the matrix

$$\left(\left.\frac{\partial y^i \circ f}{\partial x_j}\right|_p\right)_{i,j=1}^k$$

is invertible. Define a map $z: U \cap f^{-1}(V) \to \mathbf{R}^n$ around p by $z^i = y^i \circ f$, for $1 \le i \le k$, and $z^i = x^i$ otherwise. The matrix

$$D(z \circ x^{-1})(p) = \begin{pmatrix} \left(\frac{\partial y^i \circ f}{\partial x^j} \Big|_p \right) & X \\ 0 & I \end{pmatrix}$$

is invertible, hence, by the inverse function theorem, $x \circ z^{-1}$ is a diffeomorphism in a neighbourhood of z(p). It follows that z is a coordinate system at p, and for $1 \le i \le k$,

$$y_i \circ f \circ z^{-1}(a_1, \ldots, a_n) = a_i$$

and so we have found the required coordinate system.

Corollary 2.9. If f is rank k in a neighbourhood of a point p, then we may choose coordinate systems x and y such that

$$(y \circ f \circ x^{-1})(a_1, \ldots, a_n) = (a_1, \ldots, a_k, 0, \ldots, 0)$$

Proof. Choose x and y from the theorem above. Then

$$D(y \circ f \circ x^{-1})(p) = \begin{pmatrix} I & 0 \\ X & \left(\frac{\partial y_i \circ f}{\partial x_j}\right) \Big|_{p} \end{pmatrix}$$

Since f is rank k, the matrix in the bottom right corner must vanish in a neighbourhood of p. Therefore, for i > k, $y^i \circ f \circ x^{-1}$ can be viewed only as a function of the first k coordinates. Define $z^i = y^i$, for i < k, and

$$z^{i} = y^{i} - (y^{i} \circ f)(y^{1} \dots y^{k})$$

We have an invertible change of coordinate matrix,

$$D(z \circ y^{-1}) = \begin{pmatrix} I & 0 \\ X & I \end{pmatrix}$$

So z is a coordinate system, and

$$z \circ f \circ x^{-1}(a_1, \dots, a_n) = (a_1, \dots, a_k, 0, \dots, 0)$$

we have constructed a coordinate system as needed.

Corollary 2.10. If $f: M^n \to N^m$ is rank m at p, then for any coordinate system y, there exists a coordinate system x such that

$$y \circ f \circ x^{-1}(a_1,\ldots,a_n) = (a_1,\ldots,a_m)$$

Proof. In the proof of the theorem, we need not rearrange coordinates of y in the case that the matrix is rank m, just the coordinates of x.

Corollary 2.11. If $f: M^n \to N^m$ is rank n at p, then for any coordinate system x, there exists a coordinate system y such that

$$y \circ f \circ x^{-1}(a_1,...,a_n) = (a_1,...,a_n,0,...,0)$$

Proof. If f is rank n at a point, then it is rank n on a neighbourhood, since the set of full rank matrices is open. Choose coordinate systems u and v such that $u \circ f \circ v^{-1}(a^1, \ldots, a^n) = (a^1, \ldots, a^n, 0, \ldots, 0)$. Define a map λ on \mathbf{R}^m by $\lambda(a^1, \ldots, a^m) = (x \circ v^{-1}(a^1, \ldots, a^n), a^{n+1}, \ldots, a^m)$. Then λ is a diffeomorphism, hence $\lambda \circ y$ is a coordinate system, and

$$(\lambda \circ y) \circ f \circ x^{-1}(a^{1},...,a^{n}) = \lambda \circ (y \circ f \circ v^{-1}) \circ (v \circ x^{-1})(a^{1},...,a^{n})$$
$$= \lambda (v \circ x^{-1}(a^{1}...a^{n}), 0...0)$$
$$= (a^{1}...a^{n}, 0...0)$$

and we have found the chart required.

2.6 Immersions, Submersions, and Covers

The extremely regular charts we constructed above are purely local, but we can use global topological properties to infer properties of an entire map. Call a map $f: M \to N$ an **immersion** if df_p is injective for all points p, and a **submersion** if df_p is always surjective. In terms of the rank discussion we have been having, if f is an immersion if the rank of f at $p \in M$ is the same as the dimension of M at p, and a submersion if the rank of f is the same as the rank of N at f(p).

Theorem 2.12. Let $f: M \to N$ be a map between smooth manifolds. Then

- (a) If f is injective and has locally constant rank, then f is an immersion.
- (b) If f is surjective, has constant rank, M is second-countable, and N has the same dimension throughout, then f is a submersion.

Proof. If p is arbitrary, if the dimension of N is m at f(p), and if f has rank k < m at p, then there are coordinate systems x and y such that

$$(y \circ f \circ x^{-1})(a^1, \dots, a^n) = (a^1, \dots, a^k, 0, 0, \dots)$$

which clearly isn't injective if k < n. This proves (a). To prove (b), consider a cover of f by charts (x_{α}, U_{α}) , where $f(U_{\alpha}) \subset V_{\alpha}$ for some chart (y, V_{α}) on N. Since M is second-countable, it is also Lindelöf, and we may therefore assume the cover is countable. Let N have dimension m, and f has rank k < n. The coordinate systems can be chosen so that

$$(y \circ f \circ x^{-1})(a^1, \dots, a^n) = (a^1, \dots, a^k, 0, \dots, 0)$$

This shows us that $(y \circ f \circ x_{\alpha}^{-1})(x(U_{\alpha}))$ is nowhere dense in $y(V_{\alpha})$, and thus, $f(U_{\alpha})$ is nowhere dense in N. It then follows by the Baire category theorem that $\bigcup f(U_{\alpha}) = f(M)$ is nowhere dense on N, which implies f is not surjective, a contradiction.

Variants of this proof can be adapted to various other cases, where f may not have constant rank, and N has non-constant dimension. We avoid discussing them in detail, because they are complicated to state, but obvious to adapt to any particular situation by working out the details there.

Theorem 2.13. If $f: M^n \to N^m$ is a submersion, then f is an open map.

Proof. If $p \in M$, pick a neighbourhood x around p and y around f(p) such that

$$x \circ f \circ y^{-1}(a^1, ..., a^n) = (a^1, ..., a^m)$$

This map is open, showing f is locally open, and thus open on its entire domain, since openness is a local property.

Corollary 2.14. A submersion from a compact manifold to a connected manifold with the same dimensions is surjective.

Proof. If M is compact, and $f: M \to N$ an immersion, then f(M) is compact, hence closed, and since f is open, f(M) is also an open subset of N. But then f(M) = N, since it is an open, closed, non-empty set.

Example. Recall the Grassmanian space G(k,n) of k dimensional subspaces of \mathbf{R}^n . There is another way to view the topology of G(k,n) which is very useful for constructing continuous maps on the space. Consider the family M(n,k;k) of full rank n by k matrices, which may be identified by separating columns with the family of linearly independant tuples (v_1, \ldots, v_k) of vectors in \mathbf{R}^n . We obtain a surjective map $f: M(n,k;k) \to G(k,n)$ by mapping a matrix corresponding to the tuples (v_1, \ldots, v_k) to $\mathrm{span}(v_1, \ldots, v_k)$. We claim that this map is a submersion, hence it is a continuous open map identifying the topological structure of G(k,n) as a quotient space of M(n,k;k), by identifying vector tuples which generate the same subspace. The utility of this is that continuous map g with domain G(k,n) can be constructed as continuous maps with domain M(n,k;k) which have the same value on vector tuples that generate the same subspace.

To obtain that the map is a submersion, we consider the open set

$$U = \left\{ \begin{pmatrix} A \\ B \end{pmatrix} : A \in GL_k(\mathbf{R}) \right\}$$

If we let $V = span(e_1,...,e_k)$, and $V' = span(e_{k+1},...,e_n)$, then f(U) is a subset of $A_{V'}$, and if we let $(y,A_{V'})$ be the standard coordinates corresponding to the set $A_{V'}$, identifying L(V,V') with M(k,n-k), then

$$(y \circ f) \begin{pmatrix} A \\ B \end{pmatrix} = BA^{-1}$$

which is the linear transformation mapping the i'th column of A to the i'th column of B. The map is now easily seen to be differentiable. For a fixed A, the map $B \mapsto BA^{-1}$ is an invertible linear map, and therefore the map is a submersion everywhere, because we can always permute the coordinates so that a given matrix is in U (this corresponds to a diffeomorphism of M(n,k;k)), and when we take the span of this vectors, the way to get back to the original span is to unpermute the coordinates, so we can always assume our matrices have the nice form above. In other words, the group $GL_n(\mathbf{R})$ acts transitively

on M(n,k;k) by left multiplication, and transitively on G(k,n) by the action $M \cdot V = \{Mv : v \in V\}$, and we find that f is a $GL_n(\mathbf{R})$ morphism, because f(MN) = Mf(N).

2.7 Submanifolds

All this discussion of ranks and immersions goes to show that submanifolds defined by differentiable functions have a nice structure. If M is a manifold, and $N \subset M$ also has (under the relative topology) the structure of a differentiable manifold, then we say N is a **submanifold** of M if the embedding $i: N \to M$ is an immersion. If such a differentiable structure exists, it is unique, for if (x, U) is a chart in an atlas A on N, there is a chart (\tilde{x}, V) on M such that $(\tilde{x} \circ x^{-1})(a_1, \ldots, a_n) = (a_1, \ldots, a_n, 0, \ldots, 0)$, so that $(\tilde{x}^1, \ldots, \tilde{x}^n)$ is equal to x when restricted to N. But then if B is another atlas on B, then any chart $(y, U) \in B$ can be extended into a chart \tilde{y} in M, and then $y \circ x^{-1} = \tilde{y} \circ \tilde{x}^{-1}$ is differentiable, so that A = B.

Example. The biggest utility is when these manifolds lie in Euclidean space. Classically, a k-dimensional C^m manifold was a subset M of some Euclidean space \mathbf{R}^n , such that at ever $x \in M$, there is an open subset U of Euclidean space containing x, an open subset V of \mathbf{R}^n , and a C^m diffeomorphism $f: U \to V$ such that $f(U \cap M) = V \cap \mathbf{R}^k \times \{0\}$. All these diffeomorphisms, restricted to M, are C^m related to one another, because they are the restricted of diffeomorphisms on the whole of \mathbf{R}^n , and give a C^m differentiable structure onto M. Conversely, any submanifold of Euclidean space has this property because of the rank theorems, because if $i: M \to \mathbf{R}^n$ is an immersion, then we can extend any coordinate system on M to a coordinate system on an open subset of \mathbf{R}^n , such that M is flat in this coordinate system. The natural choice of a differentiable structure on any manifold lying in Euclidean space is this differentiable structure, and, as you can check, this is the differentiable structure we have chosen for all the manifolds we have used in past examples, which naturally can be embedded in Euclidean space.

An important method of finding submanifolds of \mathbb{R}^n is by specifying the submanifolds as a level set of Euclidean space. For instance, the sphere S^n can be defined as the level set $f^{-1}(1)$ of the map f(x) = ||x||. Provided that ∇f does not vanish on the domain level set, the level set is always

a manifold, and this fact can be generalized to maps between arbitrary manifolds.

Theorem 2.15. If $f: M^n \to N^m$ has constant rank k in a neighbourhood of the points mapping to $q \in N$, then $f^{-1}(q)$ is a closed n - k submanifold of M.

Proof. If f(p) = q, and f has rank k at p, then we may write

$$y \circ f \circ x^{-1}(a_1, ..., a_n) = (a_1, ..., a_k, 0, ..., 0)$$

for some charts (x, U) and (y, V), with y centred at q. This implies that if we adjust the last n-k coordinates around p, the resulting point will still be in $f^{-1}(q)$, so that $x(U \cap f^{-1}(q)) = \{(a_1, \ldots, a_k)\} \times \mathbf{R}^{n-k}$. This means that (x^{k+1}, \ldots, x^n) , restricted to $f^{-1}(q)$, is a homeomorphism onto an open subset of \mathbf{R}^{n-k} . We can take all possible $\tilde{x} = (x^{k+1}, \ldots, x^n)$, over all possible points $p \in f^{-1}(q)$, as an atlas, because if $\tilde{y} = (y^{k+1}, \ldots, y^n)$ is also formed by this process, then $\tilde{y} \circ \tilde{x}^{-1}$ is equal to the restriction of $y \circ x^{-1}$ to $\{(a_1, \ldots, a_k)\} \times \mathbf{R}^{n-k}$, hence differentiable. Thus $f^{-1}(q)$ is a closed n-k submanifold of M.

Example. The special linear group $SL(n) = SL_n(\mathbf{R})$ is the set of invertible matrices with determinant one. Since the determinant is a multilinear function, we can find the determinant via the formula

$$D(\det)(v_1,...,v_n)(w_1,...,w_n) = \sum_{k=1}^n \det(v_1,...,w_k,...,v_n)$$

where M(n, n) is identified with $(\mathbf{R}^n)^n$. Then for any $(v_1, ..., v_n) \in GL_n(\mathbf{R})$,

$$D(\det)(v_1,\ldots,v_n)(v_1,\ldots,v_n)=n\det(v_1,\ldots,v_n)\neq 0$$

So det has rank 1 at every point (full rank), and SL(n) is a (closed) submanifold of GL(n) dimension $n^2 - 1$.

Example. The orthogonal group O(n) is the set of matrices M such that $MM^t = I$. Then O(n) is closed, for the map $\psi : M \mapsto MM^t$ is continuous, and $O(n) = \psi^{-1}(I)$. ψ maps M(n,n) into the set of symmetric matrices, which is a subspace of M(n,n) of dimension n(n+1)/2. If we take the i'th diagonal entry of $MM^t = I$, we obtain that

$$v_{i1}^2 + v_{i2}^2 + \dots + v_{in}^2 = 1$$

This implies that M lies on $(S^{n-1})^n \subset \mathbf{R}^{n^2}$, so O(n) is closed and bounded, and therefore compact. Consider the diffeomorphism $R_A : B \mapsto BA$ of GL(n), for a fixed $A \in GL(n)$. We also have $\psi \circ R_A = \psi$, for $A \in O(n)$. We conclude that

$$D(\psi)(A) \circ D(R_A)(I) = D(\psi \circ R_A)(I) = D(\psi)(I)$$

Since R_A is a diffeomorphism, $D(\psi)(A)$ has the same rank as $D(\psi)(I)$. Let us find this rank. Explicitly, we may write the projections of ψ as

$$\psi^{ij}(M) = \sum_{k=1}^{n} M_{ik} M_{jk}$$

Then

$$\left. \frac{\partial \psi^{ij}}{\partial M^{lk}} \right|_{M} = \begin{cases} 2M_{ik} & i = j = l \\ M_{ik} & j = l \\ M_{jk} & i = l \\ 0 & elsewise \end{cases}$$

In particular, at the identity,

$$\left. \frac{\partial \psi^{ij}}{\partial M^{lk}} \right|_{I} = \begin{cases} 2 & i = j = k = l \\ 1 & j = k = l \\ 1 & i = k = l \\ 0 & elsewise \end{cases}$$

It follows that $\psi_*(TGL(n)_I)$ is the space of all symmetric matrices in $TGL(n)_I$, which has dimension n(n+1)/2. Thus ψ has constant rank n(n+1)/2, and we find the space of orthogonal matrices has dimension

$$n^2 - n(n+1)/2 = n(n-1)/2$$

as a differentiable manifold.

Example. Every orthogonal matrix has determinant ± 1 . The special orthogonal group SO(n) is the set of orthogonal matrices of determinant one, and is an open submanifold of O(n). It's actually a connected component. To see this, consider the obvious (Lie-group) action of SO(n) on S^{n-1} . For $n \ge 2$, it is easy to see that the action is transitive: if $v_1 \in S^{n-1}$ is given, we can extend v_1 to an orthonormal basis (v_1, \ldots, v_n) ; possibly permuting this basis, the basis

can be assumed oriented, and then the orthogonal matrix mapping e_i to v_i is in SO(n). For a fixed $p \in S^{n-1}$, the action $M \mapsto Mp$ is surjective, hence open (it in fact must be a submersion). In the 1 dimensional case, the map is not surjective, but in this case $SO(1) = \{1\}$, the action is trivial, and S^0 is discrete, so the maps $M \mapsto Mp$ are trivially open. In any dimension ≥ 2 , the stabilizer of e_n is the subgroup of matrices of the form

$$\begin{pmatrix} X & 0 \\ 0 & 1 \end{pmatrix}$$

where $X \in SO(n-1)$, so the stabilizer is actually diffeomorphic to SO(n-1). Using the orbit stabilizer theorem, we find that for $n \ge 2$, S^{n-1} is homeomorphic to SO_n/SO_{n-1} (the space of cosets, not the identification space). Using induction, we may assume that SO_{n-1} is connected. But for $n \ge 2$, S^{n-1} is connected. The theorem then follows from the general fact that if H is a closed subgroup of G, and H and G/H are connected, then G is connected.

Example. If M is a 1-submanifold of \mathbb{R}^2 , specified as the level set of a function $f: \mathbb{R}^2 \to \mathbb{R}$,

$$M = \{(x, y) \in \mathbf{R}^2 : f(x, y) = 0\}$$

then the surface of revolution about the z-axis related to M can be identified as the space

$$N = \left\{ (x, y, z) \in \mathbf{R}^3 : f\left(\sqrt{x^2 + y^2}, z\right) = 0 \right\}$$

It is a surface, because the differential of the defining level set mapping has rank 1 at any point in a neighbourhood of N (because we can use the chain rule, and the fact that the map $(x, y, z) \mapsto (\sqrt{x^2 + y^2}, z)$ has full rank at every point).

Similar results about defining manifolds can be obtained for manifolds with boundary.

Theorem 2.16. If $f \in C^{\infty}(M)$, where M is a manifold with boundary, and $df_p \neq 0$ for any p with f(p) = a or f(p) = b, where $a, b \in \mathbb{R}$, then $f^{-1}([a,b])$ is a submanifold of M with boundary with the same dimension as the original space.

Proof. Clearly $f^{-1}((a,b))$ is a open subset of M, so it is a smooth manifold with boundary. The boundary of this set is contained within $f^{-1}[a,b]$, and it actually equal to this, since $df_p \neq 0$ for any p with f(p) = a or f(p) = b

(because this implies the function is changing near this point). The result then follows from the fact that if M is a subset of a manifold N, and ∂M is an imbedded submanifold with boundary, then $M \cup \partial M$ is a manifold with boundary.

Like the smooth immersions discussed here, a **topological immersion**, which is a continuous map $f: X \to Y$ between topological spaces which is locally an embedding. Certainly a smooth immersion is a topological immersion, but a smooth topological immersion may not be a smooth immersion (indeed, consider the map $t \mapsto t^3$).

Injective immersions are mostly well behaved, apart from the odd inconsistency of dropping differentiable maps to subdomains. Let $g: M \to N$ be a differentiable function with g(M) contained in the image f(N') of an immersed submanifold N'. If f is globally injective, we may consider the function $g: M \to N'$. A suitable question to ask is whether this function is differentiable. In most cases, the answer is yes.

Example. Immerse $(-\pi,\pi)$ in \mathbb{R}^2 via the lemniscate map

$$f(t) = (\sin 2t, \sin t)$$

The map $g:(-\pi,\pi)\to(-\pi,\pi)$ defined by

$$g(x) = \begin{cases} \pi + x & : x < 0 \\ 0 & : x = 0 \\ x - \pi & : x > 0 \end{cases}$$

is not even continuous, yet $f \circ g$ is differentiable.

Continuity is all that can go wrong in this situation.

Theorem 2.17. Let $f: M^n \to N^m$ be an injective immersion of M in N, and suppose $g: N' \to N$ is differentiable, and $g(N') \subset N$. If g is continuous considered as a map into M, then g is differentiable considered as a map into M.

Proof. Consider an arbitrary point $p \in N'$. There is a coordinate system $((y_1,...,y_m),U)$ around g(p) such that $(y_1,...,y_n)$ is a coordinate system around $f^{-1}(g(p))$. Since g is continuous into M, there is a coordinate system x around p which maps into $U \cap f(M)$. $y \circ g \circ x^{-1}$ is differentiable, so each $y_i \circ g \circ x^{-1}$, which we have constructed a coordinate system at $f^{-1}(g(p))$ at, is differentiable. Thus g is differentiable mapping into M.

Thus we see that, for submanifolds whose topological structure is induced by the relative topology on the subspace, we can always descend to differentiable maps when needed. These submanifolds are known as **imbedded manifolds** (an immersion that is also an embedding).

Theorem 2.18. The following are sufficient to conclude that an injective immersion $f: M \to N$ is an imbedding.

- (a) f is open or closed.
- (b) f is proper (the inverse image of compact sets are compact).
- (c) M is compact.
- (d) The dimension of M is equal to the dimension of N.

Proof. An injective open or closed continuous map is a topological embedding, so (a) is fairly trivial. If M is compact or f is proper, f is closed, and if the dimension of M is equal to the dimension of N, f is open (by looking at the coordinate charts), so (b), (c) and (d) follow from (a).

The idea of a submersive map $f: M \to N$ is very closely related to its family of smooth sections $\sigma: N \to M$, maps such that $f \circ \sigma = \mathrm{id}_N$. More precisely, a submersive map is closely related to its local smooth sections over neighbourhoods of N.

Theorem 2.19. A smooth map $f: M \to N$ is a submersion if and only if every $p \in M$ is in the image of some local section.

Proof. If *f* is a submersion.

2.8 Manifolds and Measure

The Lebesgue measure on \mathbb{R}^n gives us a nice way to calculate the volume of various sorts of objects. A subset A has measure zero if, for any ε , there is a cover of A by open sets B_1, B_2, \ldots with

$$\sum \lambda(B_i) < \varepsilon$$

Manifolds may not necessarily have a measure like Lebesgue's, but we can still define a subset $A \subset M$ to be of **measure zero** if $A = \bigcup C_i$ where $C_i \subset$

 U_i , and there are charts (x_i, U_i) in which $x_i(C_i)$ has measure zero. Indeed, if we place any measure on the manifold, which locally behaves like the Lebesgue measure, then A really will have measure zero, as a countable union of sets of measure zero.

We shall show that there are few problems with differentiable points on manifolds. Call a point p on M criticial for a map $f: M \to N$ if f has rank less than the dimension of p at p. Call f(p) a critical value. Recall Sard's theorem, that if $f: \mathbb{R}^n \to \mathbb{R}^n$ is C^1 , then the critical values form a set of measure zero in \mathbb{R}^n . It follows by localization that the critical values of every C^1 map between manifolds of the same dimension form a set of measure zero. Sard's theorem can actually be generalized to the following:

Theorem 2.20 (Sard). If $f: M^n \to N^m$ is C^k , and $k \ge n-m$, with $k \ge 1$ then the set of critical values from a set of measure zero in N.

The case we shall need is where n = m. It is easy to prove the case where m > n. The tricky case is where m < n.

Theorem 2.21. If $f: M^n \to N^m$ is C^1 , M^n is connected, and n < m, then f(M) has measure zero in N^m .

Proof. Consider the map $g: M \times \mathbf{R}^{m-n} \to N$, defined by g(p,x) = f(p). Then all values of g are critical, and so $g(M \times \mathbf{R}^{m-n}) = f(M)$ has measure zero.

2.9 The C^{∞} Category

We now show that the topological category of manifolds naturally restricts to the category of differentiable manifolds.

Example (Differentiable Product). If M and N are differentiable manifolds, we may consider an atlas on $M \times N$ with the differentiable structure generated by all maps $x \times y$, where x is a chart on M and y is a chart on N. From this definition, we have the property that $(f,g): X \to M \times N$ is differentiable if and only if $f: X \to M$ and $g: X \to N$ are differentiable. This is the unique differentiable structure on $M \times N$ which has this property.

Example (Differentiable Quotients and \mathbf{P}^n). If N is a quotient space of a differentiable manifold M whose projection $\pi: M \to N$ is locally injective, then

we may ascribe a differentiable structure to it. We take all charts $x: U \to \mathbf{R}^n$ on M such that U is homeomorphic to $\pi(U)$ by π . We may then push the chart onto N, and all the charts placed down on N will be C^{∞} related. As a covering, this can be extended to a maximal atlas. In fact, this is the unique structure on N which causes $f: N \to L$ to be differentiable if and only if $f \circ \pi$ is differentiable. It allows us to consider \mathbf{P}^n a differentiable manifold, taking the differentiable structure on S^n , as does the Möbius strip, taking the projection from $(-\infty,\infty) \times (0,1)$.

2.10 Defining C^{∞} functions: Partitions of Unity

The use of C^{∞} functions relies on the fact that manifolds possess them in plenty. The following theorem gives us our first plethora. First, we detail some C^{∞} functions on \mathbf{R}^n .

1. The map $f: \mathbf{R} \to \mathbf{R}$, defined by

$$g(t) = \begin{cases} e^{-t} & : t > 0 \\ 0 & : \text{elsewhere} \end{cases}$$

is C^{∞} . We have 0 < f(t) < 1 on $(0, \infty)$, and $f^{(n)}(0) = 0$ for all n.

- 2. The C^{∞} map g(t) = f(t-1)f(t+1) is positive on (-1,1), and zero everywhere else. Similarly, for any ε , there is a map g_{ε} which is positive on $(-\varepsilon, \varepsilon)$ and zero elsewhere.
- 3. The map

$$l(t) = \begin{cases} \left(\int_{-\varepsilon}^{t} g_{\varepsilon}\right) / \left(\int_{-\varepsilon}^{\varepsilon} g_{\varepsilon}\right) & : t \in (0, \infty) \\ 0 & : \text{elsewise} \end{cases}$$

is C^{∞} , is zero for negative t, increasing on $(0, \varepsilon)$, and one on $[\varepsilon, \infty)$.

4. There is a differentiable map $h : \mathbb{R}^n \to \mathbb{R}$ defined by $h(x_1, ..., x_n) = g(x_1)g(x_2)...g(x_n)$ which is positive on $(-1,1)^n$, and zero elsewhere.

With these nice functions in hand, we may form them on arbitrary manifolds.

Theorem 2.22. If M is a differentiable manifold, and C is a compact set contained in an open set U, then there is a differentiable function $f: M \to \mathbb{R}$ such that f(x) = 1 for x in C, and whose support $\{x \in M : f(x) \neq 0\}$ is contained entirely within U.

Proof. For each point p in C, consider a chart (x,V) around p, with $\overline{V} \subset U$, and x(V) containing the open unit square $(-1,1)^n$ in \mathbb{R}^n . We may clearly select a finite subset of these charts (x_k,V_k) such that the $x_k^{-1}((-1,1)^n)$ cover C. We may define a map $f_k:V_k\to\mathbb{R}$ equal to $h\circ x_k$, where h is defined above. It clearly remains C^∞ if we extend it to be zero outside of V_k . Then $\sum f_k$ is positive on C, and whose closure is contained within $\bigcup \overline{V_k} \subset U$. Since C is compact, and the function is continuous, $\sum f_k$ is bounded below by ε on C. Taking $f = l \circ (\sum f_k)$, where l is defined above, we obtain the map needed.

To enable us to define C^{∞} functions whose support lie beyond this range, we need to consider a technique to extend C^{∞} functions defined locally to manifolds across the entire domain. A **partition of unity** on a manifold M is a family of C^{∞} functions $\{\phi_i: i \in I\}$, and such that the following two properties hold:

- 1. The supports of the functions forms a locally finite set.
- 2. For each point $p \in M$, the finite sum $\sum_{i \in I} \phi_i(p)$ is equal to 1.

If $\{U_i\}$ is an open cover of M, then a partition of unity is subordinate to this cover if it also satisfies (3):

3. The closure of each function is contained in some element of the cover.

It is finally our chance to use the topological 'niceness' established in the previous chapter.

Lemma 2.23 (The Shrinking Lemma). If M is a paracompact manifold, and $\{U_i\}$ is an open cover, then there exists a refined cover $\{V_i\}$ such that for each $i \in I$ there exists i' such that $\overline{V_i} \subset U_{i'}$.

Proof. Without loss of generality, we may assume $\{U_i\}$ is locally finite, and M is connected. Then M is also σ -compact, $M = \bigcup C_i$. Since C_i is compact, and each $p \in C_i$ locally intersects only finitely many U_i , then C_i

intersects only finitely many U_i . Therefore $\bigcup C_i$ intersects only countably many U_i , and thus our locally finite cover is countable. Consider an ordering $\{U_1,U_2,\ldots\}$ of $\{U_i\}$. Let C_1 be the closed set $U_1-(U_2\cup U_3\cup\ldots)$. Let V_1 be an open set with $C_1\subset V_1\subset \overline{V_1}\subset U_1$. Inductively, let C_k be the closed set $U_k-(V_1\cup\cdots\cup V_{k-1}\cup U_{k+1}\cup\ldots)$, and define V_k to be an open set with $C_k\subset V_k\subset \overline{V_k}\subset U_k$. Then $\{V_1,V_2\ldots\}$ is the desired refinement.

Theorem 2.24. Any cover on a paracompact manifold induces a subordinate partition of unity.

Proof. Let $\{U_i\}$ be an open cover of a paracompact manifold M. Without loss of generality, we may consider $\{U_i\}$ locally finite. Suppose that each U_i has compact closure. Choose $\{V_i\}$ satisfying the shrinking lemma. Apply Theorem (2.13) to $\overline{V_i}$ to obtain functions ψ_i that are 1 on $\overline{V_i}$ and zero outside of U_i . These functions are locally finite, and thus we may define ϕ_i by

$$\phi_i(p) = \frac{\psi_i(p)}{\sum_i \psi_i(p)}$$

Then ϕ_i is the partition of unity we desire.

This theorem holds for any $\{U_i\}$ provided Theorem (2.13) holds on any closed set, rather than just a compact one. Let C be a closed subset of a manifold, contained in an open subset U, and for each $p \in C$, choose an open set U_p with compact closure contained in U. For each $p \in C^c$, choose an open subset V_p contained in C^c with compact closure. Then our previous compact case applies to this cover, and we obtain a subordinate partition of unity $\{\zeta_i\}$. Define f on M by

$$f(p) = \sum_{\overline{\zeta_i} \subset U_p} \zeta_i(p)$$

Then the support of f is contained within U, and f = 1 on C.

Partitions of unity allow us to extend local results on a manifold to global results. The utility of these partitions is half the reason that some mathematicians mandate that manifolds must be paracompact – otherwise many nice results are lost.

Theorem 2.25. In a σ -compact manifold M, there exists a smooth, real-valued function f such that $f^{-1}((-\infty,t])$ is compact for each t.

Proof. Let M be a σ -compact manifold with $M = \bigcup B_i$, Where $\overline{B_i}$ is compact, B_i is diffeomorphic to a ball, and the B_i are a locally finite cover. Consider a partition of unity $\{\psi_i\}$ subordinate to $\{B_i\}$, and take the sum

$$f(x) = \sum k\psi_k(x)$$

Then f is smooth, since locally it is the finite sum of smooth functions. If $x \notin B_1, ..., B_n$, then

$$f(x) = \sum_{k=1}^{\infty} k \psi_k(x) = \sum_{k=n+1}^{\infty} k \psi_k(x) \ge (n+1) \sum_{k=n+1}^{\infty} \psi_k(x) = (n+1)$$

Therefore if $\underline{f}(x) < n$, x is in some B_i . Thus $f^{-1}((-\infty, n])$ is a closed subset of $\overline{B_1} \cup \cdots \cup \overline{B_n}$, and is therefore compact.

Other existence proofs also follow naturally.

Lemma 2.26. If A is a closed subset of a paracompact manifold M, there is a differentiable function $f: M \to [0,1]$ with $f^{-1}(0) = A$.

Proof. Let us begin proving this for $M = \mathbb{R}^n$. Let $\{U_i\}$ be a countable cover of $\mathbb{R}^n - A$ by open unit balls. For each U_i , pick a smooth $f_i : \mathbb{R}^n \to [0,1]$ positive on U_i , and equal to zero on $\mathbb{R}^n - U_i$. Define

$$\alpha_{j} = \min \left\{ \left\| \frac{\partial^{n} f_{i}}{\partial x_{i_{1}} \dots \partial x_{i_{n}}} \right\|_{\infty} : i \leq j, n \leq j \right\}$$

Each α_j is well defined, because f_i is C^{∞} and tends to zero as we leave U_i . Define

$$f = \sum_{k=1}^{\infty} \frac{f_k}{\alpha_k 2^k}$$

Then f is differentiable, since if $k \ge n$,

$$\frac{1}{\alpha_k 2^k} \frac{\partial^n f_k}{\partial x_{i_1} \dots \partial x_{i_n}}$$

so the sums of all partial derivatives converge uniformly, and $f^{-1}(0) = C$ because the function is positive for some coefficient everywhere else.

To address the general case, let M be paracompact, and find a cover of coordinate balls $\{B_{\alpha}\}$ for M-A. Then we may find a partition of unity $\{\psi_{\alpha}\}$ for this family, and find smooth $f_{\alpha}: M \to \mathbf{R}$ with $f_{\alpha}^{-1}(0) = A \cap B_{\alpha}$. But then $f = \sum \psi_{\alpha} f_{\alpha}$ is smooth (by local finiteness), and satisfies $f^{-1}(0) = A$.

Corollary 2.27. If A and B are closed on a paracompact manifold M, then there is a function $h: M \to [0,1]$ with $h^{-1}(0) = A$, $h^{-1}(1) = B$.

Proof. Modifying the function obtained in the last theorem, we can find $f: M \to [0,1]$ with $f^{-1}(1) = B$. Denote $f^{-1}(0)$ by C. If $g: M \to [0,1/2]$ satisfies $g^{-1}(0) = A$, and if $\psi: M \to [0,1]$ is a bump function on B, vanishing on $A \cup C$, then

$$h = \psi f + (1 - \psi)g$$

satisfies $h^{-1}(1) = B$, because for $p \notin B$, f(p), g(p) < 1. Now certainly h(p) = 0 for $p \in C$. If $p \in A - C$, $\psi(p) = 0$, so h(p) = g(p) > 0, and if $p \notin A \cup C$, f(p), g(p) > 0, so h(p) > 0. Thus $h^{-1}(0) = A$, and we have shown h is the needed function in the theorem.

2.11 Differentiable Manifolds with Boundary

Recall that we may extend differentiability on subsets of Euclidean space in the following way. In general, a map $f: A \to B$ between arbitrary subsets of Euclidean space is differentiable if f can be extended to a differentiable map on an open subset of Euclidean space containing A.

Theorem 2.28. If $f: \mathbf{H}^n \to \mathbf{R}$ is locally differentiable (every point has a neighbourhood on which f can be locally extended to be differentiable), then f is differentiable in the sense defined above.

Proof. Let $\{U_{\alpha}\}$ be a open cover of \mathbf{H}^n in \mathbf{R}^n with smooth functions $g_{\alpha}: U \to \mathbf{R}$ agreeing with f where the two are jointly defined. Consider a partition of unity $\{\Phi_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$. Define $g = \sum g_k \Phi_k$, defined on $\bigcup U_{\alpha}$, a open extension of \mathbf{H}^n . Each pair g_k and Φ_k are differentiable, so the multiplication of the two is differentiable. Since these functions are locally finite, we also have g differentiable across its domain. If $p \in \mathbf{H}^n$, then $g_k(p) = f(p)$. Thus

$$g(p) = \sum g_k(p)\Phi_k(p) = \sum f(p)\Phi_k(p) = f(p)$$

since the Φ_k sum up to one. Thus $g|_{\mathbf{H}^n} = f$, and we have extended f to be differentiable.

This allows us to define a notion of differentiable structure for a manifold with boundary. We can extend the notion of two charts being C^{∞} consistent, because we have extended differentiability on non open subsets of \mathbf{H}^n to a non-local criterion. Similarily, a map $f:M\to N$ can also be considered differentiable if $y\circ f\circ x^{-1}:x(U)\to y(V)$ can be extended to be a differentiable function on an open subset of Euclidean space. Thus manifolds with boundary have effectively the same theory as manifolds without boundary.

Example (Differentiable structures on the boundary of a manifold). Given a differentiable manifold with boundary M, we can assign a unique differentiable structure to ∂M such that the inclusion map is an imbedding. We can generate it from the atlas consisting of the restriction of charts on M to the boundary, projected into an (n-1) dimensional subspace of \mathbb{R}^n . The transition maps are easily verified to be \mathbb{C}^{∞} .

One issue with manifolds with boundary is that the rank theorem does not hold. The problem is that, at the boundary, we are restricted in how we reapply coordinates – we can only consider smooth automorphisms of \mathbf{H}^n rather than \mathbf{R}^n . However, for immersions f of manifolds with boundary in manifolds without, we do have coordinate charts for which

$$(y \circ f \circ x^{-1})(a_1, \dots, a_n) = (a_1, \dots, a_n, 0, \dots, 0)$$

because in the theorem we currently have, we need not change the coordinates on the manifold with boundary, only on the manifold without. We obtain similar results for submersions of manifolds without boundary in manifolds with boundary.

Chapter 3

The Tangent Bundle

Historically, calculus was the subject of infinitisimals, differentiable functions which are 'infinitisimally linear'. It took over 200 years to make precise the analytical notions defining the field; in the process, infinitisimals vanished from sight, replaced by linear approximations, epsilons and deltas. On manifolds, we cannot discuss global linear approximations, since the space is not globally linear. Thus we must return to reconciling with the use of infinitisimals, which are formalized in a structure called the tangent bundle.

Geometrically, \mathbf{R}^n is just a system of points in space. Identification of these points with coordinates gives us numerical facts about the space we live in. Algebraically, \mathbf{R}^n is a system of arrows about an origin point, which can be added, subtracted, and scaled. But why do these arrows have to start at the origin? A differentiable curve $c:(a,b)\to\mathbf{R}^n$ has a tangent vector $c'(x)\in\mathbf{R}^n$, canonically pictured as eminating from the point c(x). The idea of a vector space eminating from each point on a manifold is the key idea which enables us to linearize differentiable functions on the manifold.

The Euclidean space \mathbf{R}^n shall provide the prototype of the vector space construction we shall construct on all manifolds. Here, the introduction of tangent vectors is easy, because the space is linear to begin with. We consider the space $\mathbf{R}^n \times \mathbf{R}^n$, where we denote (p,v) by v_p , viewed as the vector v eminating from the point p. We then have the projection map $\pi(v_p) = p$, which projects a vector to the point it was emitted from. On each of the 'tangent spaces' $\pi^{-1}(p)$, which we denote \mathbf{R}^n_p , we have a vector space structure defined by $v_p + w_p = (v + w)_p$ and $\lambda(v_p) = (\lambda v)_p$. We shall

denote the space of all the tangent vectors as $T\mathbf{R}^n = \mathbf{R}^n \times \mathbf{R}^n$, known as the tangent bundle.

The nicest part about the tangent bundle is that we can express the collection of all the derivatives Df(p) of a differentiable map $f: \mathbb{R}^n \to \mathbb{R}^m$ as a single mathematical object. Indeed, we may define $f_*: T\mathbb{R}^n \to T\mathbb{R}^m$ by

$$f_*(v_p) = Df(p)(v)_{f(p)}$$

which is essentially a way of putting all the derivatives Df(p) together, acting on the 'infinitisimal' vector spaces at each point. Another feature of the tangent bundle is that if we have two functions $h: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$, we may consider not only their composition $g \circ h$, but also the composition of their derivatives $g_* \circ h_*$. The chain rule can then be expressed as the elegant formula

$$(g \circ h)_* = g_* \circ h_*$$

an obvious fact, once you carry out the computations.

If M is an m-dimensional submanifold of \mathbb{R}^n , we can obtain a bundle TM as the set of vectors in $T\mathbb{R}^n$ which lie tangent to M. Precisely, for each point p, we consider a chart (x, U) at p, and consider the map $i \circ x^{-1}$: $x(U) \to \mathbb{R}^n$, then defining the tangent space at p to be

$$M_p = (i \circ x^{-1})_* \left(\mathbf{R}_{x(p)}^m \right) \subset \mathbf{R}_p^n$$

This set of vectors is invariant of the particular coordinate system x we use, because if y is any other chart, $(y \circ x^{-1})$ is a diffeomorphism, so

$$(y \circ x^{-1})(T\mathbf{R}_{x(p)}^m) = T\mathbf{R}_{y(p)}^m$$

and therefore

$$(i\circ y^{-1})_*\left(T{\bf R}^m_{y(p)}\right)=(i\circ y^{-1})_*\circ (y\circ x^{-1})_*\left(T{\bf R}^m_{x(p)}\right)=(i\circ x^{-1})_*\left(T{\bf R}^m_{(x(p))}\right)$$

we can then put all these vectors together to form the tangent space TM. If M and N are both submanifolds of Euclidean space, and $f: M \to N$ is differentiable, around each point $p \in M$ there is a chart (x, U) on \mathbb{R}^n such that (x^1, \dots, x^m) is a chart on M, and $x^{m+1}(p), \dots, x_n(p) = 0$ for $p \in M \cap U$. We can thus extend f locally around M to a function $\tilde{f}: U \to N$, and

then define f_* on M_p as the restriction of \tilde{f}_* (which is invariant of the extension chosen, since the partial derivatives $\partial \tilde{f}^i/\partial x^j$ are invariant, and are sufficient to describe the operation on M).

Since all manifolds can be imbedded in some dimension of Euclidean space, this is certainly a sufficient method to define the tangent space on all manifolds. Nonetheless, it is not entirely elegant because the imbedding is not unique, so there are many different candidates for the bundle (though all the candidates will essentially be equivalent), and it is not clear which imbedding will make the tangent bundle easiest to work with. There is a much better approach, unified with this approach once we introduce the concept of a vector bundle.

3.1 Vector Bundles

The abstract definition of a vector space eminating from points on a topological space comes from the theory of vector bundles. A **vector bundle** over a topological space X is a topological space B together with a continuous, surjective projection $\pi: B \to X$ such that for each $x \in X$, the set $B_x = \pi^{-1}(\{x\})$ has a vector space structure, and such that we have local triviality; for each point $x \in X$, there is a neighbourhood U and a homeomorphism $\phi: \pi^{-1}(U) \to U \times \mathbf{R}^n$ which is linear on each fibre. If X is connected, the n chosen here is unique, and B is known as an n-dimensional bundle. If X and B are both differentiable manifolds, and the projection maps π and triviality maps ϕ are differentiable, then we shall call the vector bundle a **differentiable bundle**.

Example. For any topological space X, we have trivial n dimensional vector bundles $\varepsilon^n(X) = U \times \mathbb{R}^n$, where the projection map is the obvious one.

Example. The Möbius strip can be identified as a vector bundle over the circle. Indeed, the circle can be topologically identified with $\mathbf{T} = \mathbf{R}/\mathbf{Z}$, and the Möbius strip can also be defined as the quotient of $\varepsilon^1(\mathbf{R}) = \mathbf{R}^2$ where (x, v) is identified with $(x + n, (-1)^n v)$. The projection induced onto \mathbf{T} from the projection onto \mathbf{R} gives us the Möbius bundle.

If X and Y are spaces with bundles $\pi: B \to X$ and $\phi: B' \to Y$, then a **bundle map** is a pair (f, f^{\sharp}) of continuous maps, with $f: X \to Y$ and $f^{\sharp}: B \to B'$, where each $f_p^{\sharp} = (f^{\sharp})|_{E_p}$ is a linear map from B_p to $B'_{f(p)}$. Such a map makes the diagram below commute.

$$E \xrightarrow{f_{\sharp}} F$$

$$\downarrow^{\pi} \qquad \downarrow^{\phi}$$

$$A \xrightarrow{f} B$$

An isomorphism in the category of bundle maps is known as an equivalence. Since f can be easily obtained from f^{\sharp} , we can describe a bundle map solely by the map f^{\sharp} between bundles, or more particularly by the linear maps $f_p^{\sharp}: X_p \to Y_p$, which change continuously with respect to p. Note that the local triviality condition of a bundle can be expressed by saying that every vector bundle is locally equivalent to the trivial bundle by a tangent map preserving base points.

If $f: X \times \mathbf{R}^n \to X \times \mathbf{R}^n$ is a bundle map, then f can be identified with a continuous map $x \mapsto M^x$ from X into $L(\mathbf{R}^n, \mathbf{R}^m)$. Certainly there are unique M^x such that $f(x,v) = (x,M^xv)$. If we let $x_i \to x$ while fixing v, then $(x_i,M^{x_i}v) \to (x,M^xv)$, so that M^x is the pointwise limit of the M^{x_i} . Since the weak topology on $L(\mathbf{R}^n,\mathbf{R}^m)$ corresponds to the standard topology, M^{x_i} actually converges to M^x in $L(\mathbf{R}^n,\mathbf{R}^m)$. Thus a bundle map is locally just a continuous way of assigning linear maps to points in X. We also note that if $f: X \times \mathbf{R}^n \to X \times \mathbf{R}^n$ is a differentiable bundle map, then the map $x \to M^x$ is also differentiable, since M^x_{ij} is equal to the projection of the vector at $f(x,e_i)$ onto the i'th coordinate, which varies differentiably as x varies.

Our current aim is to define, for each manifold M, a bundle TM over M, such that if $f: M \to N$ is differentiable, then it induces a map $f_*: TM \to TN$, which accurately represents the 'infinitismal action' of the function, like the derivative did on \mathbb{R}^n . There are many candidates, and all are useful at some point or another. To recapitulate, we let each M_p consist of equivalence classes of tuples (x,v), where (x,U) is a chart containing $p, v \in \mathbb{R}^n$, and (x,v) and (y,w) are identified if $(x \circ y^{-1})_*(v_{x(p)}) = w_{y(p)}$. Then M_p is seen to be n dimensional, since every element in M_p can be represented as some (x,v), for a fixed chart x around p. We shall denote the equivalence class of some (x,v) in M_p by $[x,v]_p$. Given a map $f:M \to N$ differentiable at p, we define $f_*:TM \to TN$ by

$$f_*([x,v]_p) = [y,D(y\circ f\circ x^{-1})(x(p))(v)]_{f(p)}$$

 f_* is well defined by the equivalence relation imposed on the tangent bundle. It is obviously a linear map. We obtain a tangent bundle structure if we let each x_* be a local trivialization of the space. Our identity

 $(f \circ g)_* = f_* \circ g_*$ still holds, and $(\mathrm{id}_M)_* = \mathrm{id}_{TM}$. In fact, our new definition of the tangent bundle agrees with the previously defined definition on $T\mathbf{R}^n$, which effectively corresponds to choosing representatives $(\mathrm{id}_{\mathbf{R}^n}, v)_p$ on each equivalence class. f_* is known as the **covariant derivative** of the map f.

The tangent bundle of a smooth manifold is a smooth manifold in its own right, since the charts x_* in an atlas are C^{∞} related to one another. This makes the bundle map $\pi:TM\to M$ differentiable, so that TM is actually a smooth vector bundle. Introducing notation, we write

$$x_*(v) = (\dot{x}^1(v), \dots, \dot{x}^n(v))_{(x \circ \pi)(v)}$$

so that the 'coordinates' related to x_* are $(x^1 \circ \pi, \dots, x^n \circ \pi, \dot{x^1}, \dots, \dot{x^n})$, though often we abuse notation and just write $x^k \circ \pi$ as x^k .

3.2 The Space of Derivations

The algebraists found another characterization of the tangent bundle, which, though more elegant, is much more abstract then the definition by coordinates. Note that on \mathbf{R}^n , the space of vectors $v \in T\mathbf{R}_p^n$ can be identified with the space of directional derivatives, functionals D_v on $C^\infty(M)$ defined by

$$D_v(f)(p) = \lim_{h \to 0} \frac{f(p+hv) - f(p)}{h}$$

This map satisfies the product rule

$$D_v(fg)(p) = f(p)D_v(g)(p) + g(p)D_v(f)(p)$$

The idea of the algebraic tangent bundle is to identify tangent vectors with certain functionals on $C^{\infty}(M)$. This is compatible with the interpretation of tangent vectors as velocities over the manifold. If we are moving across a surface, then the velocity we are travelling at determines how the surface below us changes, and the measurement of this change can be identified in the velocity we are travelling at.

Since $C^{\infty}(M)$ is a vector space, we may consider the dual space $C^{\infty}(M)^*$, which is a monstrous vector space consisting of all linear functionals from $C^{\infty}(M)$ to **R**. A derivation at a point $p \in M$ is a linear functional $l \in M$

 $C^{\infty}(M)^*$ satisfying l(fg) = f(p)l(g) + g(p)l(f). A C^{∞} map $f: M \to N$ induces a linear map $f^*: C^{\infty}(N) \to C^{\infty}(M)$, defined by

$$f^*(g) = g \circ f$$

which further induces a map $f_*: C^{\infty}(M)^* \to C^{\infty}(N)^*$, defined by

$$[f_*l](g) = l(f^*(g))$$

If *l* is a derivation at *p*, then

$$f_*(gh) = l(f^*(gh)) = l((gh) \circ f) = l((g \circ f)(h \circ f))$$

= $g(f(p))l(h \circ f) + h(f(p))l(g \circ f)$
= $g(f(p))f_*(h) + h(f(p))f_*(g)$

so $f_*(l)$ is a derivation at f(p). We can directly calculate that $(f_* \circ g_*) = (f \circ g)_*$, so that if f is a diffeomorphism, f_* is an isomorphism. We shall soon find that we can identify the space of derivations at a point p as the space of tangent vectors at p. The identification will match the f_* defined here with the f_* defined on the tangent space, providing an elegant algebraic definition of the covariant derivative.

The differential operators

$$\frac{\partial}{\partial x^1}\Big|_p, \dots, \frac{\partial}{\partial x^n}\Big|_p$$

are all derivations. We will show, in fact, that these operators span the space of all derivations, so that the space is n dimensional, and can be identified with the tangent bundle under the map

$$\left. \sum v^i \frac{\partial}{\partial x^i} \right|_p \mapsto [x, v]_p$$

and so the set of all derivations is the tangent bundle, up to a change in notation.

Lemma 3.1. If $f \in C^{\infty}(M)$ is constant, l(f) = 0 for any derivation l.

Proof. By scaling, assume without loss of generality that f = 1 for all p. Then

$$l(f) = l(f^2) = l(f) + l(f) = 2l(f)$$

We then just subtract l(f) from both sides of the equation.

Lemma 3.2. If l is a derivation, and f(p) = g(p) = 0, then l(fg) = 0.

Proof.

$$l(fg) = f(p)l(g) + g(p)l(f) = 0 + 0 = 0$$

We verified the proof by direct calculation.

If V is the subspace of $C^{\infty}(M)$ consisting of all functions f with f(p) = 0, and W is the subspace of V generated by all products of functions in V, then the lemma above shows that any derivation on $C^{\infty}(M)$ vanishes on W. Conversely, if there is a functional $l: V \to \mathbf{R}$ which vanishes on W, then it can be extended to a unique derivation on $C^{\infty}(M)$, by defining, for arbitrary $f \in C^{\infty}(M)$,

$$l'(f) = l(f - f(p))$$

an equation which must hold for any derivation which extends l. It then follows that l' is a linear operator, and l' annihilates constant functions, from which it then follows that

$$l'(fg) = l(fg - f(p)g(p))$$

$$= l([f - f(p)][g - g(p)]) + f(p)l'(g) + g(p)l'(f) - 2f(p)g(p)l(1)$$

$$= f(p)l'(g) + g(p)l'(f)$$

so derivations on $C^{\infty}(M)$ can be identified with $(V/W)^*$.

Theorem 3.3. The space of derivations at the origin on \mathbb{R}^n is n dimensional, with basis

$$\frac{\partial}{\partial x^1}\Big|_{0}, \dots, \frac{\partial}{\partial x^n}\Big|_{0}$$

Proof. Let $f \in C^{\infty}(\mathbb{R}^n)$. Using Taylor's theorem, we may write

$$f(x) = f(0) + \sum_{k=1}^{n} x^{i} \frac{\partial f}{\partial x^{i}} \Big|_{0} + \sum_{i=1,j=1}^{n} \frac{x^{i} x^{j}}{2} g_{ij}(x)$$

where

$$g_{ij}(x) = \int_0^1 (1-t) \left. \frac{\partial^2 f}{\partial x^i x^j} \right|_{tx}$$

and so $g_{ij} \in C^{\infty}(\mathbf{R}^n)$. If l is an arbitrary derivation at zero,

$$l(f) = l(f(0)) + \sum_{k=1}^{n} \frac{\partial f}{\partial x^{i}} \Big|_{0} l(x^{i}) + \sum_{i=1,j=1}^{n} l(x^{i}x^{j}g_{ij})$$
$$= \sum_{k=1}^{n} \frac{\partial f}{\partial x^{i}} \Big|_{0} l(x^{i})$$

Since the higher order terms of the series are the product of the functions x^i and $x^j g_{ij}$, which both vanish at the origin. But this implies that l is determined by its values on $l(x^i)$, and so

$$l = \sum_{k=1}^{n} l(x^{i}) \left. \frac{\partial}{\partial x^{i}} \right|_{0}$$

so partial derivatives form a spanning set in the space of derivatives. The independence of the partial derivatives is left to the reader. \Box

We can extend this theorem to arbitrary smooth manifolds.

Lemma 3.4. If l is a derivation at p, and f and g are equal in a neighbourhood of p, then l(f) = l(g).

Proof. We shall prove that if f = 0 in a neighbourhood U of p, then l(f) = 0. Consider a bump function $\psi \in C^{\infty}(M)$ such that $\psi = 1$ at p, and $\psi = 0$ outside of U. Then $\psi f = 0$, and

$$0 = l(0) = l(\psi f) = \psi(p)l(f) + f(p)l(\psi) = l(f)$$

hence l(f) = 0.

If f is only defined in a neighbourhood U of p, we may still compute a well-defined value l(f). Consider a function $\psi = 1$ in $V \subset U$, and equal to zero outside of U. Then $\psi f \in C^{\infty}(M)$, and $l(\psi f)$ is invariant of the bump function chosen, by the last lemma. This implies that we can identify the space of derivations at $p \in U$ in $C^{\infty}(U)$ with $C^{\infty}(M)$, and we find that derivations really act on the **germ** of functions defined in a neighbourhood of p. When we are working with analytic or complex manifolds, we no longer have bump functions to work with, so we must begin by working on the space of derivations defined on germs of analytic or holomorphic

functions from the very beginning of the theory.

Theorem 3.5. The space of derivations at p is n-dimensional, and if (x, U) is a chart centered at p, then a basis for the space are the partial derivatives

$$\frac{\partial}{\partial x^1}\Big|_p, \dots, \frac{\partial}{\partial x^n}\Big|_p$$

Proof. By restriction, we can identify derivations at p on M with derivations at p on U, which can be identified by diffeomorphism with the derivations at the origin on $x(U) \subset \mathbb{R}^n$, and therefore with the space of derivations at the origin in \mathbb{R}^n . This identification maps the partial derivatives at p with respect to the coordinates x onto the partial derivatives at x(p), and this is all that is needed to verify the proof.

If we collect all derivations at all points on a manifold together, we obtain a structure corresponding exactly to TM. The correspondence is

$$[x,v]_p \mapsto \sum_{k=1}^n v_i \left. \frac{\partial}{\partial x^i} \right|_p$$

which induces a topology (and smooth structure) on derivations making the correspondence a homeomorphism (diffeomorphism). We will rarely distinguish between the two sets. We will often speak of a tangent vector operating on functions, or of a derivation as an element of the tangent space. Ultimately, they are the same mathematical objects, viewed from two different lenses.

Remark. We can enlarge the space $C^{\infty}(M)$ of real-valued smooth functions to the complex vector space of complex-valued smooth functions on M. The linear functionals l in the complex dual space $C^{\infty}(M)^*$ such that $l(f) \in \mathbf{R}$ is f is a real-valued smooth function can then be identified with the original dual space. In the same way, the functionals l such that l(f) is purely imaginary when f is real-valued and smooth can also be identified with the original dual space. If l is any complex linear functional, and we define

$$l_1(u+iv) = \operatorname{Re}(l(u)) + i\operatorname{Re}(l(u))$$
$$l_2(u+iv) = \operatorname{Im}(l(u)) + i\operatorname{Re}(l(u))$$

Then l_1 and l_2 are complex linear, $l = l_1 + il_2$, and l_1 and l_2 are the unique such functions such that $l_1(f)$ is real and $l_2(f)$ is purely imaginary when

f is real-valued. If d is a derivation on the space of real-valued functions, and if we define d(u+iv)=du+idv, then d is also a derivation on complex-valued functions by a trivial calculation. On the other hand, if d is a complex-valued derivation, then

$$d_1(uv) = \text{Re}(u(p)dv + v(p)du) = u(p)d_1v + v(p)d_1u$$

so d_1 , and, left as an exercise, d_2 , are easily seen to be a derivations. Thus every complex-valued derivation can be split into two real-valued derivations, and so it follows that every complex-valued derivations at p can be written as

$$\sum a_i \left. \frac{\partial}{\partial x_i} \right|_p$$

where $a_i \in \mathbb{C}$. This is sometimes more natural to work with than the original tangent space over the real numbers, and is a kind of 'complexification' of the original tangent space.

3.3 Curves as Vectors

There is a third important view of the tangent bundle on a manifold, which is perhaps the most geometrically visual. To construct M_p , we consider curves $c:(a,b)\to M$ which pass through p at some time t. Given our previous construction of the tangent bundle, we can consider the tangent to the curve $c_*(1_t)$ in M_p , which represents the speed of the curve passing through the point; any tangent vector can be put in this form for some curve c. Classically, $c_*(1_t)$ is often denoted by the Leibnitzian

$$\frac{dc}{dt}$$

where the variable t is obscured. We could have defined M_p by these curves, provided we identify c and c' if dc/dt = dc'/dt. Of course, without the original tangent bundle to work with, stating this isn't so elegant. We have to fix some coordinate system (x, U) at p, and identify two curves c and c' with c(t) = p, c(t') = p if $(x \circ c)'(t) = (x \circ c')(t')$. Our new tangent bundle is obviously equivalent to our original tangent bundle.

This is the closest we can get to visualizing the tangent vectors on an abstract manifold not lying in Euclidean space. If a manifold does not lie

in \mathbb{R}^n , it isn't really fair to see tangent vectors as vectors lying 'off' the manifold, because the tangent vectors don't really 'point' to anything. For instance, in Einsteinian physics, we consider the universe as a 4-dimensional manifold, and seeing the tangent bundle as vectors lying 'outside of the universe' seems particularly strange.

3.4 Vector Fields

A **section** on a vector bundle (E,B,π) is a continuous map $f:B\to E$ for which $\pi\circ f=\mathrm{id}_B$. It is a continuous choice of a vector assigned to each point in space. The main purpose of introducing sections is that we want to consider **vector fields**, which are sections from a manifold to its tangent bundle, especially the differentiable ones, for which the the section is differentiable (when TM is given it's standard differentiable structure). We denote a vector field by capital letters like X, Y, and Z, and denote the value of a vector field X at a point P by X_P . Vector fields are so important that we often denote a single vector in the tangent bundle as X, as well, which could get confusing if we forget to distinguish the two, but often vector fields act just like vectors in the same was that real valued functions 'act' like numbers, so this doesn't cause a problem. Vector fields form a vector space. Locally, around a chart (x,U), we may express the vector field in terms of the basis

$$X_p = \sum a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p$$

This vector field is differentiable or continuous if and only if the functions a^i are differentiable or continuous. The space of all differentiable vector fields is itself a vector space, an algebra over $C^{\infty}(M)$. If X is a vector space, and $f \in C^{\infty}(M)$, then we define a new function $X(f) \in C^{\infty}(M)$, defined by

$$X(f)(p) = X_p(f)$$

Since X_p is a derivation at p, which acts on functions in $C^{\infty}(M)$. What's more, we have the elegant equation

$$X(fg) = fX(g) + gX(f)$$

which expresses the pointwise derivation property globally. In general, a **derivation** is a map $F: A \rightarrow A$ on an algebra such that

$$F(ab) = aF(b) + bF(a)$$

If $F: C^{\infty}(M) \to C^{\infty}(M)$ is any derivation, then we may then define a vector field X by the equation

$$X_p(f) = F(f)(p)$$

and it is easily verified that $X_p \in M_p$. This vector field is the unique field which generates a derivation on $C^{\infty}(M)$, for if locally,

$$X = \sum a^i \frac{\partial}{\partial x^i}$$

Then $a^i(p) = X_p(x^i) = F(x^i)(p)$. The derivation corresponding to X is F, so C^{∞} vector fields and derivations on $C^{\infty}(M)$ are in one to one correspondence.

Sections of a tangent bundle provide an interesting technique for forming trivializations of the bundle. Define a **frame** on vector bundle $\pi : E \to B$ to be a collection s_1, \ldots, s_n of sections such that $s_1(p), \ldots, s_n(p)$ spans B_p at each point $p \in B$. It is effectively a continuous way to choose a basis at each point. Local frames are defined only over subsets of the space B, and are a continuous way to choose a basis in a neighbourhood of some point. If $t : \pi^{-1}(U) \to U \times \mathbb{R}^n$ is a local trivialization, then we obtain a local frame defined by $s_i(p) = t^{-1}(p, e_i)$. Normally we will only be able to choose local frames, because the existence of frames is strongly connected to triviality.

Theorem 3.6. A bundle $\pi: E \to B$ is trivial if and only if there exists a global frame $(s_1, ..., s_n)$ on the space.

Proof. Consider the map $f: B \times \mathbb{R}^n \to E$ defined by

$$f\left(p,\sum a_ie_i\right)=\sum a_is_i(p)$$

If we fix some local trivialization $t: \pi^{-1}(U) \to U \times \mathbb{R}^n$, then the maps $(t \circ s_i)$ form a series of continuous maps from U to \mathbb{R}^n , which we can put together as columns to form a continuous map $F: U \to GL_n(\mathbb{R})$ such that $F(p)(e_1) = s_1(p)$. We then have

$$(t \circ f)(p,v) = (p,F(p)(v))$$

which is continuous where defined, and actually a homeomorphism, because

$$(t \circ f)^{-1}(p,v) = (p,F(p)^{-1}(v))$$

and inversion is continuous on $GL_n(\mathbf{R})$. But by locality, this shows that f is in fact a homeomorphism, and therefore an equivalence.

Sections also provide easy ways to form of **subbundles** $E' \subset E$ of bundles $\pi : E \to B$, which are subspaces such that $\pi^{-1}(p) \cap E'$ is a subspace of E, and E' also has local trivializations in a neighbourhood of each point.

Theorem 3.7. A subset $E' \subset E$ is an m dimensional subbundle of E if and only if there are m linearly independant sections s_1, \ldots, s_m into E' in a neighbourhood of each point in the base space B.

Proof. A modification to the last theorem gives us equivalence maps into $U \times \mathbf{R}^m$ for every linearly independent section $s_1, ..., s_m : U \to E'$. This is sufficient to prove the theorem, for the fact that linearly independent sections exist locally on every manifold is trivial.

Example. Let $f: E \to E'$ be a bundle map between two tangent bundles $\pi: E \to B$ and $\pi': E' \to B'$, such that the dimensional of the kernel of each linear map $f_p: B_p \to B'_{f(p)}$ is locally constant as p varies. Then the collection of kernels of each f_p forms a subbundle Kerf of E. Indeed, if we have a local trivializations $t: \pi^{-1}(U) \to U \times \mathbb{R}^n$ and $t': \pi^{-1}(V) \to V \times \mathbb{R}^m$, then locally f is a way of continuously assigning a matrix $F(p) \in M_{n,m}(\mathbb{R})$ to each point p, such that

$$(t'\circ f\circ t^{-1})(p,v)=(f(p),F(p)v)$$

Suppose that F(p) has rank k on U. Our method will consist of finding a continuous choice of matrices $N(p) \in GL_n(\mathbf{R})$ such that the last n-k columns of F(p)N(p) are zero. Then the kernel of f is locally spanned by the vector fields $s_i(p) \mapsto t^{-1}(p,N(p)e_{k+i})$, for $1 \le i \le n-k$, which give the required trivialization to verify that the kernel is a subbundle.

To construct N(p), we apply column reduction operations continuously, reducing F(p) to column echelon form continuously in a neighbourhood of each point. Since column reduction operations correspond to multiplication on the right by invertible matrices, this process will suffice to finding a continuous N(p) such that F(p)N(p) is as required above, since a matrix in reduced column echelon form surely has n-k vanishing columns to the right. In constructing N(p), we just have to be a bit careful how we perform the column

operations. If $F_{ij}(p) \neq 0$, then $F_{ij} \neq 0$ in a neighbourhood of p, which justifies scaling the column by F_{ij}^{-1} so that the coefficient is equal to one in a neighbourhood of p. Then we must subtract column F_j from every column F_k by a factor of F_{ik} , so that $F_{ik} = 0$ in a neighbourhood of p. Then the matrix F(p)N(p) after column reduction has n-k blank columns, and these columns remain blank in a neighbourhood of p, for the rows corresponding to the unital positions in the non-zero columns must be zero in a neighbourhood, and if other the entries in other rows became nonzero, the rank of the function would increase, contradicting the fact that F is rank k in a neighbourhood of p. This completes the proof, for the n-k sections spanning the kernel of each f_p suffice to construct n-k dimensional trivialization maps in a neighbourhood of each point.

Example. Similarly, if $f: E \to E'$ is a bundle map whose rank is locally constant, then the image of E in E' is a subbundle. To obtain local trivializations, we first trivialize E locally by some t, trivialize E' locally by some t', and then form the matrices N(p), such that the last n-k columns of F(p)N(p) are blank, from which it follows that the first k columns are linearly independent, and then $s_i(p) = (f \circ t^{-1})(e_i)$ are linearly independent for i = 1, ..., k, and span the image of f.

Example. If $(f, f^{\sharp}): (E, B) \to (E', B')$ is an bundle map such that f is injective, and the rank is locally constant, then we can also make the cokernel of f, formed by the union of the cokernels of each f_p and given the quotient topology, into a vector bundle, because we can extend the sections in the last example to local frames, and the added sections, when projected into the cokernel, give trivializations of the bundle.

3.5 Universality of the Tangent Bundle

For a map $f:M\to N$, the map $f_*:TM\to TN$ is meant to be a sufficient generalization of the derivative operator on Euclidean space. The fact that this is a 'universal' generalization can in fact be proved from a categorical viewpoint. Note that the association of M with TM and f with f_* is a functor from the category of C^∞ manifolds to the category of vector bundles, such that

• The bundle $T\mathbf{R}^n$ is isomorphic to $\varepsilon^n(\mathbf{R}^n)$ by a trivialization t_n such that for any map $f: \mathbf{R}^n \to \mathbf{R}^m$, the diagram

$$T\mathbf{R}^{n} \xrightarrow{t_{n}} \varepsilon^{n}(\mathbf{R}^{n})$$

$$\downarrow f_{*} \qquad \qquad \downarrow \text{old } f_{*}$$

$$T\mathbf{R}^{m} \xrightarrow{t_{m}} \varepsilon^{m}(\mathbf{R}^{m})$$

commutes, where old f_* is defined by $(p, v) \mapsto (f(p), Df(p)(v))$.

• If $U \subset M$ is an open submanifold, there are equivalences

$$u_{II.M}: TU \to (TM|_{II})$$

such that if $i: U \rightarrow M$ is the inclusion map, then

commutes, and for any differentiable $f: M \to N$,

commutes.

The first bullet says that the functor, restricted to Euclidean spaces, is naturally equivalent to the functor which associates \mathbf{R}^n with $\varepsilon^n(\mathbf{R}^n)$ and $f:\mathbf{R}^n\to\mathbf{R}^m$ with the old definition of the differential. The second says that the family of maps $u_{U,M}$ is a natural transformation between the tangent functor and the restriction of the functor to open submanifolds.

We shall verify that any functor satisfying these properties is unique up to a natural equivalence. We shall first explore the properties of functors satisfying the properties above. So until necessary, we will let $M \to TM$ stand for such a functor. These properties will be obvious for the standard tangent functor, but as long as we don't use any facts about our constructed tangent bundle, the theorem will remain true for any of the other functors.

Given a chart (x, U) on a manifold M, we have a chain of isomorphisms

$$(TM)|_{U} \stackrel{u_{U,M}}{\longleftarrow} TU \stackrel{x_{*}}{\longrightarrow} Tx(U) \stackrel{u_{x(U),\mathbb{R}^{n}}}{\longrightarrow} (T\mathbb{R}^{n})|_{x(U)} \stackrel{t_{n}|_{x(U)}}{\longrightarrow} \varepsilon^{n}(x(U))$$

Define $\alpha_x:(TM)|_U\to \varepsilon^n(x(U))$ to be the chain of compositions. We shall try and understand the properties of α_x independent of the properties of our tangent bundle, because if we have some other functor $M\mapsto T'M$, with other equivalences t'_n and $u'_{U,M}$, then we have $\beta_x:(T'M)|_U\to \varepsilon^n(x(U))$ defined exactly as α_x is defined, and we can consider $\beta_x^{-1}\circ\alpha_x:(TM)|_U\to (T'M)|_U$. Provided that this map is independent of x, we can put the maps together for all x, and obtain an equivalence between TM and T'M.

Lemma 3.8. If
$$V \subset U$$
 is open, and $y = x|_V$, then $\alpha_v = (\alpha_x)|_V$.

Proof. Denote the inclusion maps by $i: U \to M$, $i: V \to M$, $j: V \to U$, and $k: y(V) \to x(U)$. Then consider the diagram

We verify commutativity by verifying the commutativity of each square. The first square follows by breaking the diagram into triangles.

These subtriangles commutes by the universal properties of the functor, and these gives us the commutativity of the square. The second square follows by functoriality, because $x \circ j = k \circ y$. The third square commutes for the same reason the first square commutes, and the last square obviously commutes.

Lemma 3.9. If $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$ are open, and $f : A \to B$ is C^{∞} , then the diagram

$$TA \xrightarrow{u_{A,\mathbf{R}^n}} (T\mathbf{R}^n)|_A \xrightarrow{t_n|_A} \varepsilon^n(\mathbf{R}^n)|_A$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{old f_*}$$

$$TB \xrightarrow{u_{B,\mathbf{R}^m}} (T\mathbf{R}^m)|_B \xrightarrow{t_m|_B} \varepsilon^m(\mathbf{R}^m)|_B$$

commutes.

Proof. First, assume that f can be extended to a map $g : \mathbb{R}^n \to \mathbb{R}^m$. Denoting inclusions by $i : A \to \mathbb{R}^n$ and $j : B \to \mathbb{R}^m$. Then we have a huge diagram, whose subtriangles and subsquares all obviously commute.

and this diagram contains the other diagram as a subdiagram, since we know that old g_* and old f_* agree on A (since A is an open subset), so that the theorem is proved in this case.

In general, we might not be able to extend the entire map f to all of \mathbb{R}^n , but we can at least find a function g for each $p \in A$ such that g agrees with f on a neighbourhood $A' \subset A$ of p. Then we have a commutative diagram

where $i: A' \to A$ is the inclusion map. Every subshape but the top left and bottom rectangle obviously commutes. First, note that the bottom rectangle is just an instance of this theorem, but where we can extend our map to all of \mathbb{R}^n , so we have already argued it's commutativity. To see that the top left square commutes, we extend it to a larger diagram. Defining $j: A \to \mathbb{R}^n$ to be the inclusion, we have a diagram

To prove that $u_{A,\mathbf{R}^n} \circ i_* = u_{A',\mathbf{R}^n}$, it suffices to prove that $j_* \circ i_* = u_{A',\mathbf{R}^n}$, because j_* is equal to u_{A,\mathbf{R}^n} when viewed as functions without a specified codomain. But $j \circ i$ is just the inclusion of A' in \mathbf{R}^n , so this fact is obvious. We have verified enough commutativity to conclude that the composition

$$TA \xrightarrow{f_*} TB \xrightarrow{u_{B,\mathbf{R}^m}} (T\mathbf{R}^m)|_B \xrightarrow{t_m|_B} \varepsilon^m(\mathbf{R}^m)|_B$$

is equal to the composition

$$TA \xrightarrow{u_{A,\mathbf{R}^n}} (T\mathbf{R}^n)|_A \xrightarrow{t_n|_A} \varepsilon^n(\mathbf{R}^n)|_A \xrightarrow{\text{old } g_*} \varepsilon^m(\mathbf{R}^m)|_B$$

on $TA|_{A'}$, and since old g_* is equal to old f_* on $(TA)|_{A'}$, we have verified the theorem over A'. Since A' was arbitrary, we obtain commutativity over all of A.

Lemma 3.10. If (x, U), (y, V) are two coordinates charts with $p \in U \cap V$, then $\beta_v^{-1} \circ \alpha_v$ and $\beta_x^{-1} \circ \alpha_x$ agree at p.

Proof. We may assume U = V, because our first lemma shows the theorem is true in general otherwise. Assuming this is true, we consider the diagram

The triangle obviously commutes, and the rectangle commutes by the second lemma. This implies that $\alpha_y = \text{old } (y \circ x^{-1})_* \circ \alpha_x$, and $\beta_y = \text{old} (y \circ x^{-1})_* \circ \beta_x$. The desired result follows immediately.

Putting together all $\beta_x^{-1} \circ \alpha_x : (TM)|_U \to (T'M)|_U$, we now have a well defined equivalence e_M from TM to T'M. Now we need only prove that this is in fact a natural equivalence – that is, for any $f: M \to N$, $e_N \circ f_* = f_\sharp \circ e_M$. Let's prove this first for $f: \mathbf{R}^n \to \mathbf{R}^m$. First, note that $e_{\mathbf{R}^n} = (t'_n)^{-1} \circ t_n$, because most of the maps involved in the construction of the equivalence are trivial. The properties of the tangent map imply that the squares and triangles of the diagram

commute, and this shows the naturality equation holds. Second, note that $e_M \circ i_* = i_\sharp \circ e_U$, where $i: U \to M$ is the inclusion of an open submanifold of M, where (x, U) is a chart, because e_M is essentially formed by putting

together all $i_{\sharp} \circ e_M \circ i_*^{-1}$. Similarly, we find that if (x,U) is a chart, then $e_{x(U)} \circ x_* = x_{\sharp} \circ e_U$. Putting all this together, we prove that, given $f: M \to N$, $e_N \circ f_* = f_{\sharp} \circ e_M$ holds at a neighbourhood of each point. Fixing some point p, we choose a chart (x,U) containing the point, and a chart (y,V) containing f(p), such that $f(U) \subset V$. We may assume $x(U) = \mathbf{R}^n$ and $y(V) = \mathbf{R}^m$. If $g = y \circ f \circ x^{-1}$, then

Then we have justified that all the squares in the diagram but the middle one commute, as do the top and bottom triangles, and the rectangle as a whole (in the sense that $e_{\mathbf{R}^m} \circ g_* = g_\sharp \circ e_{\mathbf{R}^n}$). But a final diagram chase justifies that $f_\sharp \circ e_M$ is equal to $e_N \circ f_*$ on $TM|_U$. Since (x,U) was arbitrary, we have shown that the property is a natural equivalence in full. Thus

Theorem 3.11. There is a unique functor from the category of C^{∞} manifolds to the category of vector bundles which satisfies the bullet point properties we denoted at the beginning of the section.

The beauty of this categorical proof is that it depends on very little of the structure of C^{∞} manifolds. The proof easily extends to C^k manifolds, and even to C^{ω} manifolds. It also shows uniqueness of association to C^{∞} vector bundles, and effectively settles the question of how well the tangent bundle represents the linear property of differentiable maps on spaces.

3.6 Orientation

The key idea of differential geometry is that classical geometric concepts (which do not 'really' hold ground rigorously) can be given a rigorous standing when reinterpreted as some structure on the tangent bundle. The first, easiest concept to introduce, is orientation. In a *real* vector space *V*

(in complex vector spaces no such problem arises), each tuple (v_1, \ldots, v_n) gives rise to a linear isomorphism $T: \mathbb{R}^n \to V$ such that $T(e_i) = v_i$. Given another basis (w_1, \dots, w_n) , we obtain another isomorphism $S: \mathbb{R}^n \to V$ with $S(e_i) = v_i$, and therefore a linear operator $T \circ S^{-1} : \mathbb{R}^n \to \mathbb{R}^n$. The determinant of this operator is non-zero and therefore positive or negative. We say these tuples are equally oriented if the determinant of this operator is positive, and oppositely oriented if the determinant is negative. This divides the bases of V into two equivalence classes, and an **orientation** for V is a choice of one of these classes. The equivalence class of some basis $(v_1,...,v_n)$ shall be denoted $[v_1,...,v_n]$, so that if V is an oriented vector space with fixed orientation μ , then (v_1, \ldots, v_n) is oriented if and only if $|v_1, \dots, v_n| = \mu$. Given two vector spaces V and W with a fixed orientation, a linear isomorphism $T: V \to W$ is orientation preserving if T maps oriented bases (v_1, \ldots, v_n) in V to an oriented bases (Tv_1, \ldots, Tv_n) in W. Either an isomorphism is orientation preserving or orientation reversing – it maps oriented bases (v_1, \ldots, v_n) to unoriented bases (Tv_1, \ldots, Tv_n) .

The key reason that orientation exists is that the determinant of an operator is always positive or always negative. We see the same phenomenon occur when considering equivalences $f: \varepsilon^n(\mathbf{R}^n) \to \varepsilon^m(\mathbf{R}^n)$, which can be written

$$f(p,v) = \left(p, \sum a_{ij}(p)v_ie_j\right)$$

where the $a_{ij}: \mathbf{R}^n \to \mathbf{R}$ change continuously, and since the matrix (a_{ij}) is always invertible, it is either always positive or always negative. Thus we may define an orientation to the bundle $\varepsilon^n(\mathbf{R}^n)$ as a choice of orientation on each fibre, such that every equivalence is either orientation preserving on all fibres, or orientation reversing. Our reasoning shows that there are only two choices of orientation on $\varepsilon^n(\mathbf{R}^n)$.

Now on an arbitrary vector bundle, defining such a vector bundle may be impossible, because we have to patch local equivalences up across the whole space. An orientation for an arbitrary bundle $\pi: E \to B$ is a choice of orientation μ_p on each fibre B_p , such that any local trivialization $t: \pi^{-1}(U) \to U \times \mathbf{R}^n$ around a connected set U is either orientation preserving on all fibres, or orientation reversing on all fibres. To verify that a particular orientation is 'consistant', we need only verify it for a set of connected open sets which cover the bundle, because the trivializations are already orientation reversing or preserving when they are locally trivialized, as we already noted. A bundle is called orientable if it has an ori-

entation, and a differentiable manifold is called orientable if its tangent bundle is orientable. An oriented manifold is a manifold with a fixed orientation on its tangent bundle, and if $f: M \to N$ is a local diffeomorphism between oriented manifolds of the same dimension, we say f is orientation preserving if $f_*: TM \to TN$ is orientation preserving on each fibre.

Example. Since $T\mathbf{R}^n$ is equivalent to $\varepsilon^n(\mathbf{R}^n)$, Euclidean space is an orientable manifold, with a canonical orientation induced by the unit vectors $\mu_p = [(e_1)_p, \dots, (e_n)_p]$. Similarly, any open submanifold of an orientable manifold is orientable.

Example. The spheres S^n are all orientable – to obtain the orientation, we note that, viewing TS^n as a subset of $\varepsilon^{n+1}(\mathbf{R}^{n+1})$, we see that $p_p \notin TS^n$ for any $p \in S^n$. We may then define an orientation on S^n by letting $[v_1, \ldots, v_n]$ be an oriented basis at p if $[p, v_1, \ldots, v_n]$ is oriented in \mathbf{R}^n .

Example. For any manifold M, TM is always orientable as a differentiable manifold. We calculate the transition map between two charts induced by the coordinate maps (x, U) and (y, V) on M to be

$$(y^{1},...,y^{n},\dot{y}^{1},...,\dot{y}^{n}) \circ (x^{1},...,x^{n},\dot{x}^{1},...,\dot{x}^{n})^{-1}[p,v]$$

$$= \left[(y \circ x^{-1})(p), \sum_{i,j} v^{j} \frac{\partial y^{i}}{\partial x^{j}} \Big|_{p} e_{i} \right]$$

and so the matrix of partial derivatives is

$$M = \begin{pmatrix} \left(\frac{\partial y^i}{\partial x^j}\right) & 0 \\ X & \left(\frac{\partial y^i}{\partial x^j}\right) \end{pmatrix} = \begin{pmatrix} N & 0 \\ X & N \end{pmatrix}$$

Essentially, we have found that

$$\frac{\partial \dot{y}^i}{\partial \dot{x}^j} = \frac{\partial y^i}{\partial x^j}$$

Now

$$\begin{pmatrix} N^{-1} & 0 \\ 0 & I_n \end{pmatrix} \begin{pmatrix} N & 0 \\ X & N \end{pmatrix} \begin{pmatrix} I_n & 0 \\ 0 & N^{-1} \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ X & I_n \end{pmatrix}$$

Taking determinants on both sides, we find

$$\frac{\det(M)}{\det(N)^2} = 1$$

and so $\det(M) = \det(N)^2 > 0$. This implies that the family of charts (x, \dot{x}) have consistant orientations, and so together they give us an orientation on T(TM). Here we have used the fact that if we have a family of chart $\{(x_\alpha, U_\alpha)\}$ covering a manifold M, and

 $\det\left(\frac{\partial x^i_\beta}{\partial x^j_\alpha}\right)$

is always positive, then the orientations induced from the $(x_{\alpha})_*$ combine to give an orientation on TM.

3.7 Tangents on Manifolds with Boundary

Given a manifold *M* with boundary, it is easy to define the tangent bundle on the interior of the manifold, but it is less clear what the fibres of the bundle should look like on the boundary – should they have the same dimension as on the interior, or one dimension less?

The safest option is to look at the space of derivations at points on the boundary of the manifold, which are defined exactly the same as on any manifold without boundary. The locality properties apply, and so it suffices to determine the space V of derivations on \mathbf{H}^n . Surely we have the partial derivatives

$$\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^{n-1}}$$

So the space is at least n-1 dimensional. But perhaps suprisingly, the partial derivative operator $\frac{\partial}{\partial x^n}$ is also still well defined – to calculate it, we take some $f \in C^\infty(M)$, and extend to some differentiable $\tilde{f}: \mathbf{R}^n \to \mathbf{R}$, and then take partial derivatives. The value we obtain is independent of extension, because we can also calculate the partial derivative as the limit

$$\lim_{t\to 0^+} (f\circ x^{-1})(te_n)$$

Arguing the same way as in our calculation of the space of derivations in \mathbb{R}^n , we may take Taylor series to determine that these partial derivatives span the space of all derivations. Thus we find that, for $p \in \partial M$, M_p is n-dimensional.

An additional feature of the tangent bundle on the boundary of a manifold is we can identify some vectors as 'outward' pointing, 'inward' pointing, and parallel to the manifold at the boundary. For a chart (x, U) at the

boundary, we can write any derivation as

$$\sum a_i \frac{\partial}{\partial x^i}$$

If $a_n < 0$, then we say the vector is outward pointing, if $a_n > 0$ we say the vector is inward pointing, and if $a_n = 0$ then the vector is parallel to the manifold. This is well defined even when we vary coordinate systems, because if $y \circ x^{-1} : U \to V$ is a diffeomorphism, where $U, V \subset \mathbf{H}^n$, then by invariance of domain we know that

$$y \circ x^{-1}(t_1, \dots, t_{n-1}, 0) = (f^1(t_1, \dots, t_{n-1}), \dots, f^{n-1}(t_1, \dots, t_{n-1}), 0)$$

so that $\frac{\partial y^n}{\partial x^i}\Big|_p = 0$ if $i \neq n$ and $p \in \partial \mathbf{H}^n$, and $\frac{\partial y^n}{\partial x^n}\Big|_p > 0$ because y^n is always non-negative, and must be non-zero in order for $y \circ x^{-1}$ to be a diffeomorphism. Thus we find that if a vector v can be written

$$\sum a_i \frac{\partial}{\partial x^i} = \sum b_j \frac{\partial}{\partial y^j}$$

then

$$b_n = \sum a_k \frac{\partial y^n}{\partial x_k} = a_n \frac{\partial y^n}{\partial x^n}$$

and we see that the sign of b_n and a_n agree.

If M is a manifold with boundary, we can consider orientability exactly how we considered it for manifolds without boundary. Given a fixed orientation μ on M, there is actually a natural orientation on ∂M which makes it orientable. We say that a basis (v_1,\ldots,v_{n-1}) of ∂M_p is orientable if $[w,v_1,\ldots,v_{n-1}]=\mu$ for any outward pointing vector $w\in M_p$. This is exactly how we defined the orientation on S^n , as the boundary of the closed, unit ball in \mathbf{R}^{n+1} . If we consider the orientation on \mathbf{R}^{n-1} as a subset of \mathbf{H}^n , we see that we obtain $(-1)^n$ times the standard orientation. The reason for this choice will become clear when we talk about integration on manifolds, in which orientation plays a key role.

Chapter 4

The Cotangent Bundle

4.1 The Method of Lagrangian Multipliers

The theory we have developed is enough to obtain an incredibly practical theorem, which has usage almost everywhere in applied mathematics, and has theoretical usage as well. Let M be a differentiable manifold, and let N be a C^{∞} submanifold. Given a function $f \in C^{\infty}(M)$, we may wish to consider maximizing f over N. One method of finding the maximum over f is to find a cover of N by coordinate charts (x_{α}, U_{α}) , and then find points where

$$\frac{\partial f}{\partial x_{\alpha}^{i}} = 0$$

for all i, which are candidates for extrema. In terms of our notation, if $h = f|_N$, then candidates for extrema are points p for which dh(p) = 0. This may prove impractical, especially when the equations for the partial derivatives are cumbersome to solve. The method of Lagrangian multipliers applies when N is specified as the level set of some specifying function $g: M \to M'$, where $N = g^{-1}(p)$.

Theorem 4.1. If $N = g^{-1}(p)$ is a differentiable manifold, where g has locally constant rank on N, then the tangent bundle TN can be defined as the set of vectors in $TM|_N$ for which $g_*(v) = 0$.

Proof. If $g: M \to M'$ is rank k at p, then choose some coordinate system (x, U) on M and (y, V) centred at f(p) such that

$$(y \circ g \circ x^{-1})(t^1, \dots, t^n) = (t^1, \dots, t^k, 0, \dots, 0)$$

Then $(x^{n-k+1},...,x^n)$ is a coordinate system on N, and

$$g_* \left(\sum a^i \frac{\partial}{\partial x^i} \right) = \sum_{i,j} a^i \frac{\partial y^j \circ g}{\partial x^i} \frac{\partial}{\partial y^j} = \sum_{i=1}^k a^i \frac{\partial}{\partial y^i}$$

and so $g_*\left(\sum a^i \frac{\partial}{\partial x^i}\right) = 0$ if and only if $a^i = 0$ for i = 1, ..., k, in which case $\sum a^i \frac{\partial}{\partial x^i}$ is a vector in TN.

This was essentially the way we defined tangent vectors on S^n , as vectors v_p such that $\langle p,v\rangle=0$. This is the correct definition, because the manifold can be defined by the equation $\|p\|^2=\langle p,p\rangle=1$, and if $f(v)=\langle v,v\rangle$ defines the inner product, then

$$\left. \frac{\partial f}{\partial x^i} \right|_p = 2p^i$$

so a vector v_p is in TS^n if and only if $2\sum v^i p^i = 2\langle v, p \rangle = 0$.

Now consider the special case where $g: M \to \mathbb{R}^n$. Then we can consider the covector fields dg^i , and the vectors in TN are essentially also those vectors for which $dg^i(v) = 0$, since dg^i is obtained from g^i_* by 'forgetting the base point'. That is

$$g_*(v_p) = (dg^1(v), \dots, dg^n(v))_{g(p)}$$

The kernel of the reduction $M_p^* \to N_p^*$ is a space of dimension k, because $\sum a_i dx^i(p)$ annihilates all vectors in N_p if and only if $a_i = 0$ for all i > k, and the $dg^i(p)$ span a space of dimension k, because

$$dg^{i}(p) = \sum \frac{\partial g^{i}}{\partial x^{j}} dx^{j}(p)$$

and $\left(\frac{\partial g^i}{\partial x^j}\right)$ is rank k. This implies that the dg^i are actually a spanning set of the kernel. Now if p maximizes f on N, then df(p)(v)=0 for all vectors $v\in N_p$, implying df(p) is in the kernel of the reduction, and implying the existence of λ_i such that

$$df(p) = \sum \lambda_i dg^i(p)$$

This gives us a different system of equations to solve, with an additional set of unknowns λ_i . If $g: M \to \mathbf{R}$, then we need only find λ such that $df(p) = \lambda dg(p)$.

Example. Consider finding extrema of the function f(x,y) = 5x - 3y, subject to the constraint $x^2 + y^2 = 136$. Then the constraint function is $g(x,y) = x^2 + y^2$, and

$$df = 5dx - 3dy$$
 $dg = 2xdx + 2ydy$

Extrema occur at points (x, y) such that

$$5dx - 3dy = 2\lambda x dx + 2\lambda y dy$$

Which implies that $2\lambda x = 5$, $2\lambda y = -3$, and in order for the point (x,y) to occur in the constraint region, we require $25/4\lambda^2 + 9/4\lambda^2 = 17/2\lambda^2 = 136$, so $1/16 = \lambda^2$, and so $\lambda = \pm 1/4$. If $\lambda = 1/4$, then we have an extrema (10, -6) and (-10,6). Since the constraint region is compact, we must have a maxima and minima, and since the function is non-constant, one of these points must be the maixmum, and one the minimum. Since f(10, -6) = 68, f(-10, 6) = -68, (10, -6) is the maxima of f, and (-10, 6) the minima.

Example. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a self-adjoint operator, and consider maximizing $\langle Tv, v \rangle$ over S^{n-1} . If $f(v) = \langle Tv, v \rangle$, then

$$f(v) = \sum_{i,j} T_{ij} v^i v^j$$

so we may take differentials,

$$df(v) = \sum_{i=1}^{n} \left(\sum_{j \neq i} (T_{ij} + T_{ji}) v^{j} + 2T_{ii} v^{i} \right) dx^{i} = 2 \sum_{i,j} T_{ij} v^{j} dx^{i}$$

and the constraint region is defined by the function $g(v) = \sum (v^i)^2$, so $dg(v) = 2\sum v^i dx^i$. Since S^{n-1} is compact, extrema exist, and at this extremum point v there is λ such that

$$\sum_{i,j} T_{ij} v^j dx^i = \lambda \sum v^i dx^i$$

so for each i

$$\sum_{i} T_{ij} v^j = \lambda v^i$$

Implying that v is an eigenvector of T, with eigenvalue λ .

Now if V is the orthogonal complement of the span of v, then $T(V) \subset V$, because if $\langle w, v \rangle = 0$, then $\langle Tw, v \rangle = \langle w, Tv \rangle = \lambda \langle w, v \rangle = 0$, and $T: V \to V$ is

still self-adjoint, implying the existence of another eigenvector in V. Continuing this process, we find a sequence of orthogonal eigenvectors v_1, \ldots, v_n for T, which enable us to diagonalize T.

The space of self-adjoint matrices is actually a submanifold of $M_n(\mathbf{R})$, of dimension n(n+1)/2. Given such a matrix M, we have shown that M can be diagonalized by some orthogonal matrix $N \in O(n)$. This will allow us to prove a structure theorem for $GL_n(\mathbf{R})$, allowing us to write any invertible matrix A uniquely as A_1A_2 , where A_1 is orthogonal and A_2 is positive definite. The uniqueness is easy, because if $A = A_1A_2 = A_1'A_2'$, then $A^tA = A_2^2 = (A_2')^2$, and this implies by positive definiteness that $A_2 = A_2'$, and from this we conclude that $A_1 = A_1'$. The existence is more tricky.

Given an arbitrary matrix $M \in GL_n(\mathbf{R})$, the matrix M^tM is self-adjoint and positive definite, so that there is a positive definite matrix N such that $M^tM = N^2$. Then MN^{-1} is orthogonal, because N^{-1} is also positive definite, so

$$(MN^{-1})^t(MN^{-1}) = N^{-1}M^tMN^{-1} = I$$

so $M = (MN^{-1})N$ is the required decomposition.

The multiplication map $(A_1,A_2)\mapsto A_1A_2$ is a continuous bijection between the product space of O(n) and orthogonal matrices and positive definite matrices. It is actually a homeomorphism. To see this, suppose $A_1^{\alpha}A_2^{\alpha}\to A$, where A has a decomposition A_1A_2 . Then $(A_2^{\alpha})^2\to A^tA=A_2^2$, and therefore $A_2^{\alpha}\to A_2$. This implies $A_1^{\alpha}\to A_1$.

Finally, we note that the space of positive definite $n \times n$ matrices is an open subset of the symmetric matrices, which is an n(n+1)/2 dimensional vector space. The space is a convex subset, which implies that it is homeomorphic to $\mathbf{R}^{n(n+1)/2}$. We conclude with the general fact that $GL_n(\mathbf{R})$ is homeomorphic to $O(n) \times \mathbf{R}^{n(n+1)/2}$. This is another way to prove that $GL_n(\mathbf{R})$ has two connected components, since it is easy to verify that O(n) has 2 connected components.

4.2 Tensors

Theorem 4.2. If $\sum v_i \mu^i$ is an invariant, for any covector field $\sum v_i dx^i$, then $\sum \mu^i \frac{\partial}{\partial x_i}$ is a well defined vector field.

Proof. For any covector field $\sum v_i dx^i = \sum (v')_i dy^i$, we have

$$\sum \mu^i \nu_i = \sum \mu'^i \nu_i'$$

and we have the relation $(\nu')_i = \sum \nu_j \frac{\partial x^j}{\partial y_i}$. If we choose $\nu_\alpha = 1$, and $\nu_i = 0$ otherwise, we find

$$\mu^{\alpha} = \sum_{i} \mu^{i} \nu_{i} = \sum_{i} \mu^{\prime i} \nu_{i}^{\prime} = \sum_{i,j} \mu^{\prime i} \frac{\partial x^{j}}{\partial y_{i}} \nu_{j} = \sum_{i} (\mu^{\prime})^{i} \frac{\partial x^{\alpha}}{\partial y_{i}}$$

so

$$\sum_{i} \mu^{i} \frac{\partial}{\partial x^{i}} = \sum_{i,j,k} (\mu')^{k} \frac{\partial x^{i}}{\partial y_{k}} \frac{\partial y^{j}}{\partial x^{i}} \frac{\partial}{\partial y^{j}} = \sum_{j,k} (\mu')^{k} \frac{\partial y^{j}}{\partial y^{k}} \frac{\partial}{\partial y^{j}} = \sum_{k} (\mu')^{k} \frac{\partial}{\partial y^{k}} \frac{\partial y^{k}} \frac{\partial}{\partial y^{k}} \frac{\partial}{\partial y^{k}} \frac{\partial}{\partial y^{k}} \frac{\partial}{\partial y^{k}}$$

is a well defined vector field, and is uniquely determined since we can identify μ^i from the function $\sum \mu^i \nu_i$, where $\nu_i = 1$.

4.3 The Classical Viewpoint

The classical viewpoint of vectors in the tangent bundle, and tensors in general, is obsessed with the coefficients associated to these objects and the way they transform with respect to coordinate systems. For instance, for a coordinate chart (x, U) an (n, m) tensor field ω may be written on U as

$$\omega = \sum_{\substack{i_1, \dots, i_n \\ j_1, \dots, j_m \\ j_1, \dots, j_m}} a_{i_1, \dots, i_n}^{j_1, \dots, j_m} dx^{i_1} \otimes \dots \otimes dx^{i_n} \otimes \frac{\partial}{\partial x^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{j_m}}$$

If (y, V) is another coordinate system, then we also have

$$\omega = \sum_{\substack{i_1, \dots, i_n \\ j_1, \dots, j_m}} b_{i_1, \dots, i_n}^{j_1, \dots, j_m} dy^{i_1} \otimes \dots \otimes dy^{i_n} \otimes \frac{\partial}{\partial y^{j_1}} \otimes \dots \otimes \frac{\partial}{\partial y^{j_m}}$$

and on $U \cap V$, we have the monstrous transformation rule

$$a_{i_1,\dots,i_n}^{j_1,\dots,j_m} = \sum_{\substack{\alpha_1,\dots,\alpha_n\\\beta_1,\dots,\beta_m}} b_{\alpha_1,\dots,\alpha_n}^{\beta_1,\dots,\beta_m} \frac{\partial y^{\alpha_1}}{\partial x^{i_1}} \dots \frac{\partial y^{\alpha_n}}{\partial x^{i_n}} \frac{\partial x^{j_1}}{\partial y^{\beta_1}} \dots \frac{\partial x^{j_m}}{\partial y^{\beta_m}}$$

Classically, one defines a (n,m) tensor on a k dimensional manifold as an assignment of k^{n+m} functions to each chart (x,U), defined on U, such that the transformation above is satisfied on $U \cap V$, where (y,V) is another coordinate system.

Chapter 5

Lie Derivatives and Differential **Equations**

So far, we've managed to construct a manifold, and a coordinate-independant way to measure the rate of change of functions between manifolds. However, a problem results when we wish to measure the rate of change of a rate of change. But it's difficult to measure the rate of change of vector field X, because we cannot compare X_p and X_q for $p \neq q$, as the elements lie in different vector spaces. We can of course switch to a coordinate system for close enough p and q, associating with each X a function $F(x): \mathbb{R}^n \to \mathbb{R}^n$ we can differentiate, but this doesn't really apply to a global perspective in any way. On their own, we shouldn't expect there to be a coordinate independent way to measure the rate of change of these vector fields, because if we can choose coordinate arbitrarily, then the rate of change of X can take the form of any derivative we like.

Thus we must add additional structure to our problem – in this case, a direction with which to differentiate. This will turn out to require the theory of differential equations. In particular, we require the following result from the theory of differential equations, which requires only an elementary familiarity with functional analysis.

Theorem 5.1. If $F: \mathbf{R}^n \to \mathbf{R}^n$ is a differentiable function, then at any point $p \in \mathbf{R}^n$, there is a suitably small ε and a unique curve $x: (-\varepsilon, \varepsilon) \to \mathbf{R}^n$ with x(0) = p, and $x' = F \circ x$, and if we extend x to have the maximum possible interval domain, then either x is defined everywhere, or x is defined on some interval (a,b), and $\lim_{t\to a} \|x(t)\| = \lim_{t\to b} \|x(t)\| = \infty$.

The theorem has the following interpretation in the theory of differentiable manifolds. Given any differentiable vector field $X: M \to TM$, and $p \in M$, there is a suitably small ε and a unique differentiable curve $x: (-\varepsilon, \varepsilon) \to M$ such that

$$\frac{dx}{dt} = X_{x(t)}$$

We shall call a curve satisfying this equation an **integral curve** for X. this results obviously follows because we can switch to any particular coordinate system. The unique curves imply that we can define a partial function on $M \times \mathbf{R}$ by

$$\phi_t(p) = x(t)$$

where x is the unique integral curve for X with x(0) = p, where we assume such an x exists in the definition of the function. If $\phi_{t+h}(p)$, and $\phi_t(\phi_h(p))$ are all well defined, then

$$\phi_t(\phi_h(p)) = \phi_{t+h}(p)$$

because if $x: (-\varepsilon_0, \varepsilon_0) \to M$ is an integral curve satisfying x(0) = p, and $y: (-\varepsilon_1, \varepsilon_1) \to M$ is an integral curve with y(0) = x(h), then the uniqueness theorem tells us that y(u) = x(h+u) where these functions are defined, because z(u) = x(h+u) is also an integral curve with z(0) = x(h).

We shall require another theorem of the theory of differential equations, which requires some functional analysis of a much more difficult quality. First, note that the domain of the function ϕ forms an open subset of $M \times \mathbf{R}$, because if we switch back to coordinates, if $F: \mathbf{R}^n \to \mathbf{R}^m$ satisfies $\|DF(p)\| \leq M$ for $\|p\| < \varepsilon$, then any integral curve in x with $\|x(0)\| < \varepsilon/2$ is defined for provided $\|x(p)\| < \varepsilon$

$$|x'| = ||F'(x)|| < M$$

hence $x(t) \leq Mt$, so that x is well defined on $(-\varepsilon/2M, \varepsilon/2M)$. Thus ϕ is well defined on $(-\varepsilon/2M, \varepsilon/2M) \times B_{\varepsilon/2}$, a neighbourhood of the origin, and by transporting coordinates, we obtain the result for arbitrary points on manifolds.

Thus we find ϕ is defined on an open *submanifold* of $M \times \mathbf{R}$, and hence we can consider differentiability. It is a very difficult theorem of differential calculus on Banach spaces to show the following, very important theorem.

Theorem 5.2. If X is a C^k vector field, then ϕ is a C^k function.

Since $\phi_{-t} = \phi_t^{-1}$ on a small enough neighbourhood of every domain, we conclude that each ϕ_t is 'almost' a diffeomorphism, and is certainly a local diffeomorphism. For compact manifolds, we can obtain a global family of diffeomorphisms.

Theorem 5.3. If X is a vector field with compact support, then ϕ is defined everywhere.

Proof. If K is the support of X, then ϕ_t is defined on K^c for all t, because if $p \notin K$, then x(p) = p is an integral curve of X. If we cover K by finitely many coordinate charts $(x_1, U_1), \ldots, (x_n, U_n)$, such that ϕ_t is defined for $|t| < \varepsilon_i$ on U_i , then we have define ϕ_t on M for all $|t| < \min(\varepsilon_1, \ldots, \varepsilon_n)$, and we can then define ϕ for arbitrarily large real numbers by considering the composition $\phi_t^n = \phi(nt)$.

There is also a very useful theorem in both theory, and for the development of the method of proof.

Theorem 5.4. If X is a differentiable vector field on a manifold M with $X_p \neq 0$, then there is a coordinate chart x around p such that in a neighbourhood of p, $X_p = \frac{\partial}{\partial x^1}$.

Proof. It obviously suffices to prove this for p=0, and $M={\bf R}^n$. We may also assume that $X_0=\frac{\partial}{\partial x^1}$ Consider the induced diffeomorphism ϕ from the vector field X, and take the map $y:(-\varepsilon,\varepsilon)\times U$, where $U\subset {\bf R}^{n-1}$ is a neighbourhood defined by

$$y(t,x)=\phi_t(0,x)$$

Clearly the map is C^{∞} , and if p = (0, x),

$$y_* \left(\frac{\partial}{\partial x^i} \Big|_p \right) (f) = \frac{\partial f \circ y}{\partial x^i} = \lim_{h \to 0} \frac{f(0, x + he_i) - f(0, x)}{h}$$
$$= \frac{\partial f}{\partial x^i} \Big|_p$$

and conversely, for any p = (0, x),

$$y_* \left(\frac{\partial}{\partial t} \Big|_p \right) (f) = \lim_{h \to 0} \frac{f(\phi_{t+h}(0, x)) - f(\phi_t(0, x))}{h}$$

$$= \lim_{h \to 0} \frac{(f \circ \phi_h)(\phi_t(0, x)) - (f \circ \phi_0)(\phi_t(0, x))}{h}$$

$$= \frac{d(f \circ \phi_t)}{dt} = X_{\phi_t(0, x)}(f)$$

Hence y has a non-vanishing derivative in a neighbourhood of the origin, and is therefore a coordinate system with

$$y_* \left(\sum a^i \left. \frac{\partial}{\partial x^i} \right|_{(t,x)} + b \left. \frac{\partial}{\partial t} \right|_{(t,x)} \right) = \sum a^i \left. \frac{\partial}{\partial y^i} \right|_{\phi_t(0,x)} + b(y_*X)_{\phi_t(0,x)}$$

hence $x := y^{-1}$ is a coordinate system around the origin with $X = \frac{\partial}{\partial x^1}$.

Note that here we have used the fact that

$$(X_p f) = \lim_{h \to 0} \frac{f(\phi_h(p)) - f(p)}{h}$$

which suggests that the translation maps ϕ_h can be used to measure the rate of change along the vector X_p . As foreshadowed at the beginning of the chapter, we can use this process to measure the rate of change of the many objects defined on a differentiable manifold.

First, we switch notations, we denote X(f) by $L_X(f)$, and call it the **Lie derivative** of f along X. We can also consider the derivatives of covariant vector fields ω , obtaining a new covariant vector field

$$(L_X\omega)(p) = \lim_{h\to 0} \frac{(\phi_h^*\omega)(p) - \omega(p)}{h}$$

So that, 'up to first order', $(L_X\omega)(\phi_h(p)) = \omega(p) + h(L_X\omega)(p)$. Similarly, and most importantly, we consider the derivatives of other vector fields, defined by

$$(L_X Y)(p) = \lim_{h \to 0} \frac{Y_p - ((\phi_h)_* Y)_p}{h}$$

Where the order of terms is switched because $((\phi_h)_*Y)_p$ is really looking at the point on the vector field at $Y_{\phi_{-h}}$. We can define $(\phi_h^*Y)_p = ((\phi_{-h})_*Y)_{\phi_h(p)}$, and then we can interchange the equation, but we'll stick with this definition.

Theorem 5.5. If $f, \omega X$, and Y are given, then

(i)
$$L_X(f\omega) = (L_X f)\omega + f(L_X \omega)$$
.

$$(ii) L_X(fY) = (L_X f)X + f(L_X Y).$$

(iii)
$$L_X(\omega(Y)) = \omega(L_XY) + \omega(L_XY)$$
.

Proof. We write

$$L_X(f\omega)(p)(v) = \lim_{h \to 0} \frac{\phi_h^*(f\omega)(p)(v) - (f\omega)(p)(v)}{h}$$

$$= \lim_{h \to 0} \frac{f(\phi_h(p))\omega(\phi_h(p))((\phi_h)_*(v)) - f(p)\omega(p)(v)}{h}$$

$$= (FG)'(0)$$

Where $F(t) = f(\phi_t(p))$, and $G(t) = \omega(\phi_t(p))((\phi_t)_*(v))$. Since $F(0)' = (L_X f)(p)$, and $G(0)' = (L_X \omega)(p)(v)$, we find that

$$L_X(f\omega)(p)(v) = f(p)(L_X\omega)(p)(v) + (L_Xf)(p)\omega(p)(v)$$

and this completes the proof of (i). The propositions (ii) and (iii) are proved in essentially the same way. \Box

The Lie derivative is obviously linear, and we can obtain a formula for the derivatives in the coordinates. First, let's compute the Lie derivative for a covariant vector field. If

$$X = \sum a^i \frac{\partial}{\partial x^i}$$

Then

$$(L_X dx^i)(p) \left(\frac{\partial}{\partial x^j}\right) = \lim_{h \to 0} \frac{(\phi_h^* dx^i)(p) \left(\frac{\partial}{\partial x^j}\right) - dx^i(p) \left(\frac{\partial}{\partial x^j}\right)}{h}$$

$$= \lim_{h \to 0} \frac{dx^i(\phi_h(p)) \left((\phi_h)_* \frac{\partial}{\partial x^j}\right) - \delta_i^j}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\partial x^i \circ \phi_h}{x^j}\Big|_{\phi_h(p)} - \delta_i^j\right)$$

$$= \frac{\partial^2 (x^i \circ \phi_h)}{\partial h \partial x^j}\Big|_p = \frac{\partial a^i}{\partial x^j}\Big|_p$$

Thus if $\omega = \sum b_i dx^i$, then

$$L_X \omega = \sum \left(b_i \frac{\partial a^i}{\partial x^j} + a_i \frac{\partial b_i}{\partial x^j} \right) dx^j$$

To calculate (L_XY) in coordinates, let $X=\sum a^i\frac{\partial}{\partial x^i}$, and $Y=\sum b^i\frac{\partial}{\partial x^i}$. Using (iii) from the last proposition, we find

$$0 = (L_X \delta_i^j) = L_X \left(dx^i \left(\frac{\partial}{\partial x^j} \right) \right)$$

$$= dx^i \left(L_X \frac{\partial}{\partial x^j} \right) + (L_X dx^i) \left(\frac{\partial}{\partial x^j} \right)$$

$$= dx^i \left(L_X \frac{\partial}{\partial x^j} \right) + \frac{\partial a^i}{\partial x^j}$$

Hence $\left(L_X \frac{\partial}{\partial x^j}\right) = \sum -\frac{\partial a^i}{\partial x^j} \frac{\partial}{\partial x^i}$, and so

$$(L_X Y) = \sum \left(a^i \frac{\partial b^j}{\partial x^i} - b^i \frac{\partial a^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}$$

We can use this theorem to find a much simpler expression for L_XY . Note that if f is a function, then Y(f) is also a function, so we can consider X(Y(f)).

Theorem 5.6. $(L_X Y)(f) = X(Y(f)) - Y(X(f)).$

Proof. If $X = \sum a_i \frac{\partial}{\partial x^i}$, and $Y = \sum b_i \frac{\partial}{\partial x^i}$, then

$$X(Y(f)) - Y(X(f)) = \sum a_i \frac{\partial Y(f)}{\partial x^i} - b_i \frac{\partial X(f)}{\partial x^i}$$

$$= \sum a_i \frac{\partial b_j}{\partial x_i} \frac{\partial f}{\partial x_j} - a_i b_j \frac{\partial^2 f}{\partial x_i \partial x_j} - b_i \frac{\partial a_j}{\partial x_i} \frac{\partial f}{\partial x_j} + b_i a_j \frac{\partial^2 f}{\partial x_i \partial x_j}$$

$$= \sum \left(a_i \frac{\partial b_j}{\partial x_i} - b_i \frac{\partial a_j}{\partial x_i} \right) \frac{\partial f}{\partial x_j}$$

$$= (L_X Y)(f)$$

Chapter 6

Lie Groups

A **Lie group** is a group with a differentiable action. That is, it is a group with a differentiable structure such that multiplication and inversion are differentiable functions on the space. It suffices to verify that the map $(x,y) \mapsto xy^{-1}$ is differentiable. We have actually already considered many of the important Lie groups. The simplest Lie groups are abelian, like the group \mathbf{R}^n under addition, the circle group $S^1 = \mathbf{R}/\mathbf{Z}$, and more generally, the torus groups $\mathbf{T}^n = \mathbf{R}^n/\mathbf{Z}^n$. The main noncommutative exmamples occur as matrix groups, like $GL_n(\mathbf{R})$, $SL_n(\mathbf{R})$, $O_n(\mathbf{R})$ and $SU_n(\mathbf{R})$.

Any subgroup of a Lie group which is also a submanifold is a Lie group, because the group structure on the subgroup is just the restriction of the group structure on the entire group, which is differentiable. This is essentially the argument we used to show that $SL_n(\mathbf{R})$, $O_n(\mathbf{R})$, and $SU_n(\mathbf{R})$ are Lie groups. We could have also used the fact that S^1 is a subgroup of the multiplicative group of non-zero complex numbers to show it was a Lie group. S^3 is a Lie group, because it is a subgroup of the Lie group of quaternions, consisting of elements of norm one. More generally, we define a **Lie subgroup** of a Lie group to be a subgroup, with some C^∞ structure making the operations of the subgroup differentiable, and such that the C^∞ structure makes the inclusion of the subgroup an immersion. As an example of a subgroup that is not an imbedded submanifold, consider the set of points $(x,cx) \in \mathbf{T}^2$, where c is an irrational number.

Lie groups are incredibly useful in geometry, because we often want to consider some symmetries which occur in a problem, which often turn out to be a group with some Lie structure. As an example, suppose we are discussing the metric structure of \mathbb{R}^n . In this situation, it is natural to

discuss the Euclidean group E_n , which is the collection of all isometries of \mathbf{R}^n . The easiest case to analyze is the group E_1 . For each $x \in \mathbf{R}$, and $z \in \{-1,1\}$, define $T_{xz}(t) = x + zt$. Every $T \in E_1$ can be written as T_{xz} for some x and some z. To see this, let x = T(0). Since T is an isometry, either T(1) = x + 1 or T(1) = x - 1, because |T(1) - x| = 1. If T(1) = x + 1, then T(y) = x + y, because x + y is the only number satisfying

$$|T(y) - x| = |y|$$
 $|T(y) - (x+1)| = |y-1|$

Similarly, if T(1) = y - 1, then T(x) = y - x. Since

$$T_{x_0z_0} \circ T_{x_1z_1} = T_{(x_0+z_0x_1)(z_0z_1)}$$

and so E_1 can be described as the *semidirect product* of the multiplicative group $\{-1,1\}$ and \mathbf{R} under the representation $\rho: \{-1,1\} \to \operatorname{Aut}(\mathbf{R})$ defined by $\rho(x)(y) = -y$. For E_2 , we note that if $T: \mathbf{C} \to \mathbf{C}$ is an isometry such that T(0) = 0, and T(1) = 1, then |T(i)| = 1 and $|T(i) - 1| = \sqrt{2}$, so either

- T(i) = 1, which implies T(z) = z for all $z \in \mathbb{C}$, because z is uniquely specified by the values |z|, |z 1|, and |z i|.
- T(i) = -1, which implies $T(z) = \overline{z}$ for all $z \in \mathbb{C}$, because \overline{z} is the unique point with $|\overline{z}| = |z|$, $|\overline{z} 1| = |z 1|$, and $|\overline{z} (-i)| = |z i|$.

If $z \in \mathbb{C}$, and $w \in \mathbb{T}$, we define T_{zw} to be the isometry T(u) = z + wu. If $T \in E_2$ is arbitrary, and if T(0) = u, T(1) = w, then $T_{uw}^{-1} \circ T$ maps 0 to 0, and 1 to 1, hence either $T = T_{uw}$ or $T = \overline{T_{uw}}$. Note that $\overline{T_{uw}}(z) = \overline{T_{uw}}(\overline{z})$, so that the set of all T_{uw} is a normal subgroup of E_2 . Since the group of all T_{uw} is isomorphic to the semidirect product $\mathbb{C} \rtimes \mathbb{T}$, because $T_{u_0w_0} \circ T_{u_1w_1} = T_{(u_0+w_0u_1)(w_0w_1)}$, and therefore E_2 is isomorphic to the semidirect product $(\mathbb{C} \rtimes \mathbb{T}) \rtimes \{-1,1\}$ with multiplication law

$$(z_0,w_0,t_0)(z_1,w_1,t_1) = \begin{cases} (z_0 + \overline{w_0z_1},w_0\overline{w_1},t_0t_1) & t_0 = -1 \\ (z_0 + w_0z_1,w_0w_1,t_0t_1) & t_0 = 1 \end{cases}$$

The fact that $\{-1,1\}$ is isomorphic to O_1 , and $\{-1,1\} \times \mathbf{T}$ is isomorphic to O_2 hints at a more general fact about the structure of the Euclidean groups, but we need to know some structure of the metric of \mathbf{R}^n first. Say a point x lies *between* two points y and z if $x = \lambda y + (1 - \lambda)z$ for $0 \le \lambda \le 1$.

This holds if and only if ||y-x||+||x-z||=||y-z||, because if $x=\lambda y+(1-\lambda)z$, then

$$||y - x|| + ||x - z|| = ||(1 - \lambda)y - (1 - \lambda)z|| + ||\lambda y - \lambda z|| = ||y - z||$$

and the Cauchy Schwartz inequality implies that this inequality occurs only when $y - x = \lambda(x - z)$ for some $\lambda > 0$, in which case we find

$$x = \left(\frac{1}{1+\lambda}\right)y + \left(\frac{\lambda}{\lambda+1}\right)z$$

We say x, y, z are colinear if one point lies between the other pair of points. This occurs if and only if y - x and z - x are linearly dependant, because if $\lambda(y - x) = (z - x)$, then

- If $\lambda < 0$, then ||y x|| + ||x z|| = ||y z||, so x lies between y and z.
- If $0 < \lambda < 1$, then z lies between x and y, because $z = \lambda y + (1 \lambda)x$.
- If $\lambda > 1$, then γ lies between x and z, because

$$y = \frac{1}{\lambda}z + \frac{\lambda - 1}{\lambda}x$$

This tells us that an isometry maps straight lines to straight lines, because betweenness and colinearity are purely metric conditions, hence preserved by an isometry, and a line can be described by a set of points such that any triple of points is colinear. Furthermore, an isometry maps planes to planes, because a plane can be described as the smallest set containing a triple of non-colinear points x, y, z, and also containing the line generated by any points in the set. We claim that this plane is the set of points

$$\{x + \lambda(y - x) + \gamma(z - x) : \lambda, \gamma \in \mathbf{R}\}$$

If $x + \lambda_0(y - x) + \gamma_0(z - x)$ and $x + \lambda_1(y - x) + \gamma_1(z - x)$ are two points in this plane, then the set of points on the line between these two points is exactly $x + (\lambda_0 + t\lambda_1)(y - x) + (\gamma_0 + t\gamma_1)(z - x)$, as t ranges over all real numbers, and these points all lie in the set above. Conversely, if X is any colinearily closed set containing x, y, and z, then $x + t_0(y - x)$ and $x + t_1(z - x)$ are elements of x, for all $t \in \mathbf{R}$, and therefore

$$x + t_0(y - x) + t_2(t_1(z - x) - t_0(y - x)) = x + t_0(1 - t_2)(y - x) + t_2t_1(z - x)$$

are also points in X, for all $t_0, t_1, t_2 \in \mathbf{R}$. This implies that the set of all points $x + \lambda(y - x) + \gamma(z - x)$ are contained in X. Since colinearity is a metric notion, an isometry maps planes to planes.

Now suppose $T: \mathbf{R}^n \to \mathbf{R}^n$ is an isometry, with T(0) = 0. Our discussion implies that T maps lines through the origin to lines through the origin. Thus T(cx) = cT(x), because cT(x) is the only point on the line through the origin and x which lies at a distance $|c|\|x\|$ from the origin and a distance $|c-1|\|x\|$ from x. Similarly, for a fixed $x,y \in \mathbf{R}^n$, if we assume that T maps the plane generated by x and y to itself, then since T(0) = 0 we find T(x+y) = T(x) + T(y). Otherwise, we consider a linear isometry S which projects the plane generated by T(x) and T(y) to the plane generated by x and y, and then it follows that $(S \circ T)(x+y) = S(Tx+Ty)$, hence T(x+y) = Tx+Ty, because S is a bijection. It follows that T(0) = 0 holds if and only if T is an element of the orthogonal group of isometric linear transformations O_n . If $T \in E_n$ is any linear transformation, and if T(0) = x, then the isometry $T_x^{-1} \circ T$ maps zero to zero, hence $T_x^{-1} \circ T \in O_n$, and we find that we can write any Euclidean transformation as a rotation and a translation, and by normality we find the Euclidean group is actually the semidirect product of O_n and \mathbf{R}^n , since if $M, N \in O_n$,

$$(T_x \circ M) \circ (T_v \circ N) = T_{x+Mv} \circ MN$$

 E_n can be given the structure of a Lie group if we take the topology corresponding to $\mathbf{R}^n \times O_n$, in which case

$$(x,M)(y,N)^{-1} = (x,M)(-Ny,N^{-1}) = (x-MNx,MN^{-1})$$

which is differentiable, since the multiplication map on O_n is differentiable, and the map x - MNx is differentiable since the action of M_n on \mathbb{R}^n defined by $(M, x) \mapsto Mx$ is differentiable.

The left and right translation maps $L_x(y) = xy$ and $R_x(y) = yx$ are diffeomorphisms on any Lie group G, so they induce bundle equivalences $(L_x)_*: TG \to TG$ and $(R_x)_*: TG \to TG$. We say a vector field X is **left-invariant** if $(L_x)_*X = L_x \circ X$ for all $x \in G$, i.e. if $(L_x)_*(X_y) = X_{xy}$. It suffices to show that $(L_x)_*(X_e) = X_x$, because then

$$(L_x)_*(X_y) = (L_x \circ L_y)_*(X_e) = (L_{xy})_*(X_e) = X_{xy}$$

Given any $v \in G_e$, we can define a unique left invariant vector field X with $X_e = v$ by setting $X_x = (L_x)_*(v)$.

Theorem 6.1. Any left-invariant vector field is automatically C^{∞} .

Proof. We need only verify that the map $X_p = (L_p)_*(v)$ is C^{∞} for any $v \in G_e$, and it suffices to prove this in a neighbourhood of the origin. Let (x,U) be a chart around a neighbourhood of the origin. Let $V \subset U$ be a neighbourhood chosen such that $ab^{-1} \in U$ if $a,b \in U$. Then

 Xx_i

Corollary 6.2. A Lie group always has trivial tangent bundle.

Since a Lie group is differentiable, we should be able to 'linearly approximate' the group multiplication action.

89

To remedy this fact, we are required to introduce some complicated machinery, which can be skimmed at a first reading. First, the elementary theory of Lie groups tells us that every tangent vector at the identity can be extended to a left-invariant smooth vector field on the Lie group. Given a vector $X_e \in \mathfrak{g}$, we can consider it as a base-point of a left-invariant vector field X, and use the field to generate a unique curve $\phi: \mathbf{R} \to G$ satisfying $\phi_0 = e$ and $d\phi_t/dt = X_{\phi_t}$. It turns out that $\phi_{t+u} = \phi_t \phi_u$, so that ϕ is actually a homomorphism from \mathbf{R} to G (a 'one-parameter subgroup of G'), and we let the **exponential map** from \mathfrak{g} to G by letting $e^X = \phi_1$. It turns out that $e^{tX} = \phi_t$, so the exponential map models all curves emerging from infinitisimals at the identity.

Example. Over the multiplicative group \mathbb{C}^{\times} of non-zero complex numbers, we can identify the tangent bundle $T\mathbb{C}^{\times}$ with $\mathbb{C}^{\times} \times \mathbb{C}$, and the left-invariant vector fields take the form $X_z = wz$ for some $w \in \mathbb{C}$. This tells us that the exponential on this space is the unique solution to the differential equation

$$\frac{dz}{dt} = wz$$

and this is just the standard exponential map $z(t) = e^{tw}$, so that the exponential on \mathbf{C}^{\times} is just the normal exponential function. Since the exponential descends consistently to Lie subgroups, this tells us that the exponential map on the multiplicative group \mathbf{R}^{\times} is just the standard exponential as well.

Example. Over the group $GL_n(\mathbf{R})$, we can identify the tangent space at each point $M \in GL_n(\mathbf{R})$ with the space $M_n(\mathbf{R})$ of all $n \times n$ matrices. The left-invariant vector fields on $GL_n(\mathbf{R})$ are of the form $X_M = NM$ for some $N \in M_n(\mathbf{R})$, and the unique solution to the system of linear equations

$$\frac{dM}{dt} = NM$$

is the matrix exponential

$$e^M = \sum_{n=0}^{\infty} \frac{m^n}{n!}$$

hence the exponential of Lie groups generalizes many versions of the exponential defined in analysis.

Example. Over the additive group of real numbers \mathbf{R} , $T\mathbf{R}$ is just the trivial tangent bundle $\mathbf{R} \times \mathbf{R}$, so elements of the tangent space at the identity can be identified with real numbers, and the left-invariant vector fields are just the vector fields with a constant velocity. Recalling the unique solutions to the differential equation

$$\frac{dx}{dt} = c$$

We find that the for a tangent vector $t \in \mathbf{R}$ at the identity, $e^t = t$ is just the identity map. More generally, the exponential related to the additive group \mathbf{R}^n is just the identity map under a suitable idenfication of the tangent bundle.

Some elementary facts about the exponential, proved in an elementary introduction to differentiable manifolds are that

• For any tangent vector *X*,

$$\left. \frac{de^{tX}}{dt} \right|_{t=0} = X$$

so as t ranges over all real-numbers, e^{tX} is just the one-parameter subgroup of G corresponding to the map ϕ used to construct the exponential. Thus $e^{(t+u)X} = e^{tX}e^{uX}$.

- If $\phi: G \to H$ is a homomorphism, then $e^{\phi_*(X)} = \phi(e^X)$.
- exp : $\mathfrak{g} \to G$ is a diffeomorphism in a neighbourhood of the identity. It is not always surjective, even if G is connected, but it is surjective for the group $GL_n(\mathbb{C})$, or any compact, connected Lie group.

Returning to our discussion of constructing homomorphisms of Lie groups from operations on the tangent space, we see that $e^{\phi_*(X)} = \phi(e^X)$ gives a much stronger condition on the linear map ϕ_* restricting which linear maps can be differentials of homomorphisms. In particular, since the image of exp always contains a neighbourhood of the identity, given any linear map ϕ_* such that $\phi_*(X) = \phi_*(Y)$ if $e^X = e^Y$, we can define a map ϕ on a neighbourhood of the identity of G by letting $\phi(e^X) = e^{\phi_*(X)}$. Provided that $\phi(gh) = \phi(g)\phi(h)$ where defined, we can try to extend ϕ to a homomorphism on the entire space by using the fact that a neighbourhood of the identity in the Lie group generates the entire space. The sufficient condition for this method to work is that the Lie group is simply connected,

and this is not too much of a problem because we can always swap a connected Lie group G with its simply connected cover \tilde{G} , and the underlying space of infinitisimals will be the same.

Thus we are left with determining the conditions on ϕ_* such that $\phi(gh) = \phi(g)\phi(h)$. This is where the Lie bracket enters the picture. If X and Y are arbitrary smooth vector fields on G, then they induce integral curves $\phi: \mathbf{R} \times G \to G$ and $\psi: \mathbf{R} \times G \to G$ respectively, and the Lie bracket operation [X,Y] (turning the space of smooth vector fields into an infinite dimensional Lie algebra) defines a smooth vector field with

$$[X,Y]_p = (1/2) \left. \frac{d^2(\psi_{-t} \circ \phi_{-t} \circ \psi_t \circ \phi_t)}{dt} \right|_p$$

which effectively means that for any C^{∞} function f,

$$[X,Y]_p(f) = (1/2) \left. \frac{d^2(f \circ \psi_{-t} \circ \phi_{-t} \circ \psi_t \circ \phi_t)}{dt} \right|_p$$

The Lie bracket essentially measures the commutivity of *X* and *Y*.

It turns out that if X and Y are both left-invariant vector fields on a Lie group G, then [X,Y] is also a left-invariant vector field, hence the Lie bracket descends to an operation on the tangent space \mathfrak{g} , where if $X,Y \in \mathfrak{g}$, then $[X,Y] \in \mathfrak{g}$ satisfies

$$[X,Y](f) = (1/2)\frac{d^2}{dt}f(e^{tX}e^{tY}e^{-tX}e^{-tY})$$

Viewing \mathfrak{g} as the space of curves through the origin identified up to first order, this implies that for any two curves λ , γ ,

$$f(\lambda_t \gamma_t \lambda_t^{-1} \gamma_t^{-1}) = f(e) + t^2 [\lambda, \gamma](f) + o(t^3)$$

Thus the Lie bracket expresses the second order coefficients of conjugation on the Lie group. Surprisingly, the second order terms are sufficient to characterize the Lie group operation. First note that if $\phi: G \to H$ is a group homomorphism, then in two different ways, we calculate that

$$\begin{split} f(\phi(\lambda_{t}\gamma_{t}\lambda_{t}^{-1}\gamma_{t}^{-1})) &= f(e) + t^{2}[\lambda,\gamma](f\circ\phi) + o(t^{3}) \\ &= f(e) + t^{2}(\phi_{*}[\lambda,\gamma])(f) + o(t^{3}) \\ f(\phi(\lambda_{t}\gamma_{t}\lambda_{t}^{-1}\gamma_{t}^{-1})) &= f((\phi\circ\lambda)_{t}(\phi\circ\gamma)_{t}(\phi\circ\lambda)_{-t}(\phi\circ\gamma)_{-t}) \\ &= f(e) + t^{2}[\phi_{*}(\lambda),\phi_{*}(\gamma)](f) + o(t^{3}) \end{split}$$

It follows that $\phi_*[\lambda,\gamma] = [\phi_*(\lambda),\phi_*(\gamma)]$, so all linear maps on infinitisimals induced by homomorphisms of groups preserve the Lie bracket operation. We shall find that we can 'almost' always find a Lie group homomorphism from a linear map on the space of infinitisimals preserving the Lie bracket.

Since exp is locally a diffeomorphism in a neighbourhood of both identities, we can find a differentiable inverse log, and the Baker-Hausdorff formula implies that there is a neighbourhood of the origin in $\mathfrak g$ and universal constants a_α such that

$$\log(e^X e^Y) = X + Y + \sum_{|\alpha| > 1} a_{\alpha}(X, Y)^{\alpha}$$

where α are multi-indexes, and if $\alpha = (\alpha_1, ..., \alpha_n)$, then

$$(X,Y)^{\alpha} = \underbrace{[X,[X,[...,[X},\underbrace{[Y,[...,[Y},...]]]]]]]}_{\alpha_1 \text{ times}}$$

A nasty formula which implies that given a linear map $\phi_*:\mathfrak{g}\to\mathfrak{h}$, the sufficient condition for the map $\phi:G\to H$ defined by $\phi(e^X)=e^{\phi_*(X)}$ to satisfy $\phi(gh)=\phi(g)\phi(h)$ where defined, a sufficient condition for this to hold is that

$$\log(e^{\phi_*(X)}e^{\phi_*(Y)}) = \phi_*(\log(e^X e^Y))$$

and in terms of the Baker-Hausdorff formula, we find that this means

$$\phi_*(X) + \phi_*(Y) + \sum a_{\alpha}(\phi_*(X), \phi_*(Y))^{\alpha} = \phi_*(X) + \phi_*(Y) + \sum a_{\alpha}\phi_*((X, Y)^{\alpha})$$

It can be proved by induction that for any map ϕ_* with $\phi_*[X,Y] = [\phi_*X,\phi_*Y]$, $\phi_*((X,Y)^\alpha) = (\phi_*(X),\phi_*(Y))^\alpha$, so a sufficient condition for the homomorphism condition $\phi(gh) = \phi(g)\phi(h)$ is that ϕ_* preserves the Lie bracket.

Now that this property holds, if U is the neighbourhood upon which the homomorphism property holds, then any $g \in G$ can be written as $h_1h_2...h_n$ for some $h_i \in U$, and if ϕ can be extended to a homomorphism on all of G, then we can let $\phi(g) = \phi(h_1)...\phi(h_n)$, and provided this is well defined, ϕ will be a homomorphism that is differentiable at the identity, hence differentiable everywhere, and ϕ_* is the differential of ϕ . The only problem is that this extension of ϕ won't necessarily be well defined everywhere, and in order for this to work, we will need to switch to studying simply connected Lie groups.

Chapter 7

Riemannian Manifolds

On \mathbb{R}^n , an inner product enables us to discuss distances and angles. In 1854, Bernard Riemann figured out how to generalize this concept to a smooth manifold. A **Riemannian metric** on a manifold M is a smooth assignment of a positive-definite bilinear form $\langle \cdot, \cdot \rangle_p$ on the tangent spaces T_pM , for each point $p \in M$. This smoothness is characterized either by talking in the language of smooth tensor fields, so that a Riemannian metric is a smooth (0,2) tensor field, in more basic terms, for any smooth vector fields X and Y, $\langle X, Y \rangle$ is a smooth function, or through coordinates, using a coordinate system x to locally write

$$\langle \cdot, \cdot \rangle_p = \sum a_{ij}(p) dx^i \otimes dx^j$$

and then the field is smooth if the a_{ij} are smooth. A **Riemannian manifold** is just a smooth manifold with a Riemannian metric.

Example. \mathbb{R}^n is a Riemannian manifold, with the Riemannian tensor field

$$\sum dx^i \otimes dx^i = \sum (dx^i)^2$$

Often, the field is just denoting by δ .

Example. A surface in \mathbb{R}^3 inherits a Riemannian metric from \mathbb{R}^3 by constricting the restricted inner product on each tangent space to the surface. More generally, a metric is induced on submanifolds of a Riemannian manifold; if we have an immersion $i: M \to N$, and N has a Riemannian metric $\langle \cdot, \cdot \rangle_N$, then we can define a Riemannian metric by the equation

$$\langle X, Y \rangle_M = \langle i_* X, i_* Y \rangle_N$$

so submanifolds of Riemannian manifolds are naturally given the structure of a Riemannian submanifold. Note that since every smooth manifold can be immersed in Euclidean space, every smooth manifold has a Riemannian metric (alternatively, we can construct a Riemannian metric by locally defining a positive definite form, and then extending it using a partition of unity).

Example. The hyperbolic plane \mathbf{H}^2 can be modelled as the upper half plane, where the metric is given by $g = \delta/y^2$, or

$$\langle X, Y \rangle_{(x,y)} = \frac{X^1 Y^1 + X^2 Y^2}{y^2}$$

This metric pushes the x axis 'off to infinity' by stretching the distance between points near the axis. This is known as the Poincare model of the hyperbolic plane. More generally, we can define the higher dimensional hyperbolic spaces $\mathbf{H}^n = \{(x,y) : x \in \mathbf{R}^{n-1}, y > 0\}$ with a metric δ/y^2 .

A slightly generalization of a Riemannian metric is a psuedometric, which smoothly assigns a nondegenerate bilinear form to each points on a manifold. These are useful for applications of differential geometry in the theory of relativity. Since the eigenvalues corresponding to the symmetric operator defining the Riemannian metric also change smoothly, and the eigenvalues cannot be zero by nondegeneracy, so the number of negative and positive eigenvalues do not change across the space (assuming the manifold is connected). The number of negative eigenvalues for a pseudometric is known as the index. An index 0 metric is a Riemannian metric, and an index 1 metric is known as a Lorentz metric. The classical example of a Lorentz metric occurs in special relativity, known as the Minkowski metric on $\mathbb{R}^n \times \mathbb{R}$, which is given by

$$\eta(X,Y) = X^1 Y^1 + \dots + X^n Y^n - X^{n+1} Y^{n+1}$$

In general relativity, we replace $\mathbb{R}^n \times \mathbb{R}$ by a general n+1 dimensional manifold, and the Minkowski metric by an arbitrary Lorentz metric, satisfying certain physical equations known as the Einstein equations, which control the geometry of space.

An **isometry** between two Riemannian manifolds is a diffeomorphism which pullsback one metric on one manifold to a metric on the other. The study of Riemannian geometry can be considered the study of properties of Riemannian manifolds which are invariant under isometries.

In \mathbb{R}^n , the length of a smooth curve c parameterized on [a,b] is given by

$$\int_a^b |c'(t)| \ dt$$

In a Riemannian manifold, we can measure the lengths of tangent vectors v by the equation $|v|^2 = \langle v, v \rangle$, and so we can also measure the lengths of curves on Riemannian manifolds. We also have the existence of a **volume forms**, which enable one to integrate smooth functions on the manifold in a natural way.

7.1 Connections

On \mathbb{R}^n , given two vector fields X and Y, we can define the 'derivative' of the vector field Y along X to be the vector field

$$(D_X Y)_p = \lim_{t \to 0} \frac{Y_{p+tX} - Y_p}{t}$$

On a manifold, there is no canonical way to differentiate vector fields; the Lie derivative L_XY isn't a staisfying definition because it measures how 'independent' two vector fields are, rather than measuring the change of Y along X. The main problem is that we are unable to 'connect' tangent spaces on a manifold close to one another, like we can in \mathbb{R}^n . On a Riemannian manifold, there is a canonical way to connect the fibres of a tangent bundle at points close to one another, and this is best explained through the concept of a connection.

Recall the definition of a smooth vector bundle $\pi: E \to M$, and smooth sections $s: M \to E$. We denote the $C^{\infty}(M)$ module of all smooth sections by $\Gamma(M)$. A **connection** is a map $\nabla: \Gamma(TM) \times \Gamma(E) \to \Gamma(E)$ which maps $(X,s) \to \nabla_X(s)$, which is $C^{\infty}(M)$ linear in X, \mathbb{R} linear in s, and satisfies the product rule

$$\nabla_X(fs) = X(f)s + f\nabla_X(s)$$

for any $f \in C^{\infty}(M)$, so that ∇_X operates 'like a derivative' on s. An **affine connection** is a connection where E = TB.

Example. The definition

$$(\nabla_X Y)_p = D_X(Y)_p = \lim_{t \to 0} \frac{Y_{p+tX} - Y_p}{t}$$

is an affine connection on \mathbb{R}^n .

Example. The Lie derivative is not an affine connection on a manifold, because it isn't $C^{\infty}(M)$ linear in the first variable.

The fact that ∇ is $C^{\infty}(M)$ linear in the 1st variable tells us that for a fixed section s, the map $X \mapsto \nabla_X s$ acts 'like a tensor' in X. An argument analogous to the tensor characterization lemma reveals that $(\nabla_X s)(p)$ depends only on the value X_p of X at p, not the entire vector field. On the other hand, for the sections s we only have \mathbf{R} linearity, so $\nabla_X s$ is allowed to depend on more of the behaviour of s. A bump function type argument, analogous to the proof that derivations on $C^{\infty}(M)$ are local, shows that $(\nabla_X s)(p)$ depends only on the behaviour of s in a neighbourhood of p. The introduction of Christoffel symbols will show that, if fact, $(\nabla_X s)(p)$ depends only on the behaviour of s on a curve tangent to s.

Suppose that we consider a trivialization U from $\pi^{-1}(U) \to U \times \mathbb{R}^n$, some local frame s_1, \ldots, s_n on U, and a coordinate chart (x, U). We know that we can define $\nabla_X(s_k)$, even though the sections s_k are not defined globally, because ∇_X depends only on the behaviour of s_k locally. The **Christoffel symbols** with respect to this setup are functions $\Gamma_{i\beta}^{\alpha}$ such that

$$\nabla_{e_i}(s_\beta) = \sum \Gamma_{i\beta}^\alpha s_\alpha$$

where $e_i=\partial/\partial_{x_i}$. Then if $X=\sum a^ie_i$, and $s=\sum b^\beta s_\beta$

$$\begin{split} \nabla_X(s) &= \sum \nabla_X(b^\beta s_\beta) = \sum X(b^\beta) s_\beta + b^\beta \nabla_X(s_\beta) \\ &= \sum X(b^\beta) s_\beta + b^\beta a^i \nabla_{e_i}(s_\beta) \\ &= \sum X(b^\beta) s_\beta + b^\beta a^i \Gamma^\alpha_{i\beta} s_\alpha \\ &= \sum \left(X(b^\alpha) + b^\beta a^i \Gamma^\alpha_{i\beta} \right) s_\alpha \end{split}$$

The Christoffel symbols and the a^i at p do not depend on s, and $b^{\beta}(p)$ depends only on the values of s at p. $X(b^{\alpha})$ depends only on the behaviour of s tangent to X, and therefore $\nabla_X(s)$ depends only on the bahviour of s locally on a curve tangent to X.

There are infinitely many degrees of freedom for defining an affine connection on a manifold. Any smooth family of Christoffel symbols gives rise to a connection on \mathbb{R}^n , and using a partition of unity type decomposition, one can patch together local connections to a global connection. The only thing to note here is that linear combinations of connections need not be a connection, but convex combinations are.

To introduce the natural choice of connection on a Riemannian manifold, we need to discuss how parallel transports arise from a particular connection. It turns out that if we have a connection on a smooth bundle $\pi: E \to M$, and γ is a curve on M from a point p to a point q, then there arises a linear transformation $P_p^q: E_p \to E_q$ arising from the curve γ , called a parallel transport. Conversely, a family of parallel transports give rise to a connection.

Bibliography

- [1] Michael Spivak, A Concise Introduction to Differential Geometry: Vol. One
- [2] James Lee, An Introduction to Smooth Manifolds
- [3] Paul Halmos, Naive Set Theory
- [4] Wikipedia, Lie Groups