CS601: Software Development for Scientific Computing

Autumn 2021

Week6:

Structured Grids (Elliptic PDEs contd..)

Last Week...

- Intermediate C++
 - Class templates, STL, Operator overloading
- Structured Grids (Elliptic PDEs introduction)

- 1. Approximate the derivatives of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ using central differences
- 2. Choose step sizes δx and δy for x and y axis resp.
 - 1. Both and x and y are independent variables here.
 - 2. Choose $\delta x = \delta y = h$
- 3. Write difference equation for approximating the PDE above

1. Approximate the derivatives of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ using central differences

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{\left(u(x+\delta x,y) - 2u(x,y) + u(x-\delta x,y)\right)}{(\delta x)^2}$$

$$\frac{\partial^2 u}{\partial y^2} \approx \frac{\left(u(x, y + \delta y) - 2u(x, y) + u(x, y - \delta y)\right)}{(\delta y)^2}$$

Where, δx and δy are step sizes along x and y direction resp.

• Substituting in
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$$
:

$$\frac{\left(u(x+\delta x,y)-2u(x,y)+u(x-\delta x,y)\right)}{(\delta x)^2}$$

+

$$\frac{\left(u(x,y+\delta y)-2u(x,y)+u(x,y-\delta y)\right)}{(\delta y)^2}$$

$$\frac{\left(u(x+\delta x,y)+u(x,y+\delta y)-4u(x,y)+u(x-\delta x,y)+u(x,y-\delta y)\right)}{(h)^2}$$

$$= f(x, y)$$

• Representing u(x, y)

Notation: $u_{i,j}$

• Representing $u(x - \delta x, y)$

Notation: $u_{i-1,i}$

• Representing $u(x + \delta x, y)$

Notation: $u_{i+1,j}$

• Representing $u(x, y - \delta y)$

Notation: $u_{i,i-1}$

• Representing $u(x, y + \delta y)$

Notation: $u_{i,j+1}$

Rewriting:

$$\frac{\left(u(x + \delta x, y) + u(x, y + \delta y) - 4u(x, y) + u(x - \delta x, y) + u(x, y - \delta y)\right)}{(h)^{2}}$$

$$= f(x, y)$$

$$u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}$$

$$h^{2}$$

$$u_{i,j}$$

$$j$$
5-point stencil

Consider the boundary-value problem:

 $u_{xx} + uyy = 0$ in the square 0 < x < 1, 0 < y < 1 $u = x^2y$ on the boundary, h = 1/3

$$\frac{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}{h^2} = 0$$

Computing u₁₁

$$(u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1} = 0)$$

$$u_{21} + u_{12} - 4u_{11} + u_{01} + u_{10} = 0$$

$$u_{21} + u_{12} - 4u_{11} + 0 + 0 = 0$$

Computing u₂₁

$$(u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1} = 0)$$

 $u_{31} + u_{22} - 4u_{21} + u_{11} + u_{20} = 0$

$$1/3 + u_{22} - 4u_{21} + U_{11} + 0 = 0$$

Computing u₁₂

$$(u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1} = 0)$$

 $u_{22} + u_{13} - 4u_{12} + u_{02} + u_{11} = 0$

$$u_{22} + 1/9 - 4u_{12} + 0 + u_{11} = 0$$

Computing u₂₂

$$(u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1} = 0)$$

 $u_{32} + u_{23} - 4u_{22} + u_{12} + u_{21} = 0$

$$2/3 + 4/9 - 4u_{22} + u_{12} + u_{21} = 0$$

System of Equations

Computing System of Equations:

$$u_{21} + u_{12} - 4u_{11} + 0 + 0 = 0$$
 $1/3 + u_{22} - 4u_{21} + u_{11} + 0 = 0$
 $u_{22} + 1/9 - 4u_{12} + 0 + u_{11} = 0$
 $2/3 + 4/9 - 4u_{22} + u_{12} + u_{21} = 0$

$$\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix}$$

$$A \qquad x = B$$
Matrix A has only coefficients

Matrix A has only coefficients

Consider the boundary-value problem:

 $u_{xx} + u_{yy} = 0$ in the square 0 < x < 1, 0 < y < 1 $u = x^2y$ on the boundary, h = 1/5

 Computing stencil (boundary values are all given): 16 unknowns (u₁₁ to u₄₄), So, 16 equations.

										-		_
-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Lot of Zeros!
- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

												$\overline{}$
-4	1	0	0	1								
1	-4	1	0	0	1							
9	1	-4	1	0	0	1						
0	0	1	4/	1	0	0	1					
1	0	0	/ ~_	-4	1	0	0	1				
	1	0	6	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	4	1	0	0	1	
				1	0	0	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$	-4	1	0	0	1

Lot of Zeros!

Five non-zero bands

Left

- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Nikhil Hegde

Right

												_
-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0/	0	1				
	1	0	0	1	-4	1	Q	0	1			
		1	0	0	1	4	1	9	0	1		
			1	0	0	1	-4	1	9	0	1	
				1	0	0	1	-4	1)	0	0	1
									X			

Lot of Zeros!

Five non-zero bands

Top-left to bottom-right diagonals

- Main diagonal is all -4 (from center of the stencil)
- What about others?

Nikhil Hegde

												_
-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	Q	0	1	-4	1	0	0	1				
	1	Q	0	1	-4	1	0	0	1			
		1	9	0	1	-4	1	0	0	1		
			1	9	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

Lot of Zeros!

Bottom

- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Nikhil Hegde

												_
-4	1	0	0 (1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1
	1											

Lot of Zeros!

Five non-zero bands

- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Nikhil Hegde

Computing Stencil – Iterative Methods

- Jacobi and Gauss-Seidel
 - Start with an initial guess for the unknowns u⁰;
 - Improve the guess u¹_{ij}
 - Iterate: derive the new guess, uⁿ⁺¹_{ij}, from old guess
 uⁿ_{ij}
- Solution (Jacobi):
 - Approximate the value of the center with old values of (left, right, top, bottom)

Background – Jacobi Iteration

- Goal: find solution to system of equations represented by AX=B
- Approach: find sequence of approximations X⁰
 X¹ X² . . . Xⁿ which gradually approach X .
 X⁰ is called initial guess, X¹ s called *iterates*

Method:

Split A into A=L+D+U e.g.

$$\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Nikhil Hegde

Background – Jacobi Iteration

Compute: AX=B is (L+D+U)X=B

$$\Rightarrow$$
 DX = -(L+U)X+B

$$\Rightarrow$$
 DX^(k+1)= -(L+U)X^k+B (iterate step)

$$\Rightarrow X^{(k+1)} = D^{-1} (-(L+U)X^k) + D^{-1}B$$

(As long as D has no zeros in the diagonal $X^{(k+1)}$ is obtained)

• E.g.
$$\begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = -\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} + \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix},$$

u_{ij} 's value in (1)st iteration is computed based on u_{ij} values computed in (0)th iteration

Background – Jacobi Iteration

• E.g.
$$\begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = -\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} + \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix},$$

 u_{ij} 's value in $(k+1)^{st}$ iteration is computed based on u_{ij} values computed in $(k)^{th}$ iteration

Center's value is updated. Why?

5-point stencil

- Jacobi and Gauss-Seidel (Solution approach)
 - Start with an initial guess for the unknowns u⁰;
 - Improve the guess u¹_{ij}
 - Iterate: derive the new guess, uⁿ⁺¹_{ij}, from old guess
 uⁿ_{ij}
- Solution (Jacobi):
 - Approximate the value of the center with old values of (left, right, top, bottom)

•
$$u_{right} + u_{top} - 4u_{center} + u_{left} + u_{bottom} = 0$$

=> $u_{center} = 1/4(u_{right} + u_{top} + u_{left} + u_{bottom})$

Applying Jacobi Iteration:

$$u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k)} + u_{bottom}^{(k)})$$

Example: applying Jacobi Iteration:

$$u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k)} + u_{bottom}^{(k)})$$

Iteration 1

1) Compute u_{11} using initial guess for u_{12} and u_{21} . u_{01} and u_{10} are known from boundary conditions

Example: applying Jacobi Iteration:

$$u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k)} + u_{bottom}^{(k)})$$

Nikhil Hegde

Iteration 1

- 1) Compute u_{11} using initial guess for u_{12} and u_{21} . u_{01} and u_{10} are known from boundary conditions
- 2) Compute u_{21} using initial guess for u_{11} , u_{31} , and u_{22} . u_{20} are known from boundary conditions

In 2), note that the initial guess for u_{11} is used even though u_{11} was updated just before in 1)

 In every iteration, suppose we follow the computing order as shown (dashed):

In any iteration, what are all the points of a 5-point stencil already updated while computing u_{ij} ?

Nikhil Hegde

What are the points that are already computed at u_{i,i}?

Background – Gauss-Seidel Iteration

Compute: AX=B is (L+D+U)X=B

$$\Rightarrow$$
 (L+D)X = -UX+B

$$\Rightarrow$$
 (L+D)X^(k+1)= -UX^k+B (iterate step)

$$\Rightarrow X^{(k+1)} = (L+D)^{-1} (-UX^k) + (L+D)^{-1}B$$

(As long as L+D has no zeros in the diagonal $X^{(k+1)}$ is obtained)

• E.g.
$$\begin{pmatrix} -4 & 0 & 0 & 0 \\ 1 & -4 & 0 & 0 \\ 1 & 0 & -4 & 0 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = - \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} + \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix}$$

Computing Stencil – Gauss-Seidel

Gauss-Seidel: Applying for 2D Laplace Equation

$$u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k+1)} + u_{bottom}^{(k+1)})$$

- Gauss-Seidel: Observations
 - For a given problem and initial guess, Gauss-seidel converges faster than Jacobi
 - An iteration in Jacobi can be parallelized

Program Representation – Structured Grids

Requirements:

- Grid dimension shall not be hardcoded
 - Consequence: implementations must define a compile-time constant
- Grid step size shall not be hardcoded E.g. h=1/3, h=1/5 etc.
 - Consequence: can't define int arr[m][n]; //m,n to be constant expr.
- A grid point shall be identified with cartesian coordinates / polar coordinates (e.g. with angle and radius from origin)
 - Shall be able to generate a structured grid given number of points, xi, and eta.
- Shall allow access to any grid point
- Shall allow for implementation of grid operators

Structured Grids - Representation

- Because of regular connectivity between cells
 - Cells can be identified with indices (x,y) or (x,y,z) and neighboring cell info can be obtained.
 - How about identifying a cell here?
 Given:

$$\xi$$
 = ("Xi") radius η = ("Eta") angle

Compute:

$$x = \left(\frac{1}{2} + \xi\right) \cos(\pi \eta)$$

Nikhil Hegde
$$y = \left(\frac{1}{2} + \xi\right) \sin(\pi \eta)$$

class Domain

We discretize the domain using a grid

```
class Domain{
    public:
        generate_grid(int m, int n);
        Domain(); // constructor
        //...
    private:
        //...
};
```

Method generate_grid

What is the shortcoming of the following method?

Assumes a 2D grid.

Grid Function

- We let a grid function to operate on the grid points
 - Example of an operator: numerical differentiation
 - Different operations possible
 - Note: grid function always operates on some grid.
 - Many functions may operate on the same grid.

```
class GridFn{
    public:
        //...
    private:
        Domain* d; //aggregation
        //...
};
```

Boundary conditions

Multiple options: affect the accuracy of the solution

Name	Prescription	Interpretation
Dirichlet (essential)	u	Fixed temperature
Neumann (Natural)	∂u/∂n	Energy Flow
Robin (Mixed)	$\partial u/\partial n + f(u)$	Temperature dependent flow

How to represent boundary conditions?

Solution

pseudo-code

```
1 Domain dom; // create domain
2 GridFn g(dom); //create grid function to operate on a domain
3 Solution u(g) //prepare to compute a solution:
4 u.initcond() //1) set initial conditions
5 for(int step=0; step<maxsteps; step++) 2) iterate:
6 {
7          u.compute(); //2) compute solution repeatedly
8 }</pre>
```

class Solution

We discretize the domain using a grid

```
class Solution{
   public:
        Solution(GridFn* d): sol(d) {}
        initcond();
        boundarycond();
        //... other member functions?
   private:
        GridFn* sol;
};
```

What is missing?

- Data array?
- Type of data as template parameter?
- Operation on subgrids (Box)?