Existing Graph Alignment Algorithms

Ning Zhang

Social network deanonymization

Social network deanonymization

Social network deanonymization

Graph alignment: Find a one-to-one correspondence for users in the two "similar" networks

Graph Isomorphism

In graph theory, an **isomorphism** of graphs G and H is a bijection between the vertex sets $f \colon V(G) \to V(H)$

s.t. any vertices u and v of G are adjacent in G iff f(u) and f(v) are adjacent in H.

Graph G	Graph H	An isomorphism between G and H
a g b h	5 6 8 7 3	f(a) = 1 $f(b) = 6$ $f(c) = 8$ $f(d) = 3$ $f(g) = 5$ $f(h) = 2$ $f(i) = 4$

Figure source: wikipedia

Graph Isomorphism

Canonical labeling: assigning a unique label to each vertex such that the labels are invariant under isomorphism.

Figure source: wikipedia

1. Graph Isomorphism

Canonical labeling: assigning a unique label to each vertex such that the labels are invariant under isomorphism.

Algorithms:

(1.1)LABEL Algorithm[1]

(1.2)Canonical labeling algorithm[2]

Input: graph G and degree threshold L

e.g. L =3

Step1: Relabel the vertices of G so that they satisfy $d_G(v_1) \geq d_G(v_2) \geq \cdots \geq d_G(v_n)$

Step1: Relabel the vertices of *G* so that they satisfy

$$d_G(v_1) \ge d_G(v_2) \ge \dots \ge d_G(v_n)$$

 $7 \ge 6 \ge 5 \ge 4 \ge 3 \ge 2 \ge 2 \ge 2 \ge 1$

Note1: if there exists i < L, $d_G(v_i) \ge d_G(v_{i+1})$, then FAIL.

Step1: Relabel the vertices of G so that they satisfy $d_G(v_1) \geq d_G(v_2) \geq \cdots \geq d_G(v_n)$

Step2: For i > L, let $X_i = \{j \in \{1, 2, ..., L\}: \{v_i, v_j\} \in E(G)\}$.

Relabel vertices $(v_{L+1}, v_{L+2} \dots, v_n)$ so that these sets satisfy $X_{L+1} \succ X_{L+2} \succ \cdots \succ X_n$

Step2: For i > L, let $X_i = \{j \in \{1,2,...,L\}: \{v_i,v_j\} \in E(G)\}.$

Relabel vertices $(v_{L+1}, v_{L+2} \dots, v_n)$ so that these sets satisfy $X_{L+1} \succ X_{L+2} \succ \cdots \succ X_n$

Step2: For i > L, let $X_i = \{j \in \{1, 2, ..., L\}: \{v_i, v_j\} \in E(G)\}$.

Relabel vertices $(v_{L+1}, v_{L+2} \dots, v_n)$ so that these sets satisfy $X_{L+1} > X_{L+2} > \dots > X_n$

Note2: If there exists i < n such that $X_i = X_{i+1}$ then FAIL

Step2: For i > L, let $X_i = \{j \in \{1, 2, ..., L\}: \{v_i, v_j\} \in E(G)\}$.

Relabel vertices $(v_{L+1}, v_{L+2} \dots, v_n)$ so that these sets satisfy $X_{L+1} \succ X_{L+2} \succ \cdots \succ X_n$

LABEL Algorithm Summary:

Input: graph *G* and degree threshold *L*

Step1:

Relabel the vertices of G so that they satisfy

$$d_G(v_1) \ge d_G(v_2) \ge \dots \ge d_G(v_n)$$

Step2:

For
$$i > L$$
, let $X_i = \{j \in \{1, 2, ..., L\}: \{v_i, v_j\} \in E(G)\}.$

Relabel vertices $(v_{L+1}, v_{L+2}, \dots, v_n)$ so that these sets satisfy

$$X_{L+1} > X_{L+2} > \cdots > X_n$$

Key idea: distinguish all vertices of a graph using the degrees of their neighbors

degree neighborhood of a vertex: a sorted list of the degrees of the vertex's neighbors

Step1. Compute vertex degrees

7, 6, 5, 4, 3, 2, 2, 2, 2, 1

Step2. Compute degree neighborhoods for each vertex.

Step3. Sort vertices by-degree neighborhoods in lexicographical order.

Note: If the degree neighborhoods are not distinct for each vertex, FAIL.

Canonical labeling algorithm Summary:

- **Step1.** Compute vertex degrees.
- Step2. Compute degree neighborhoods for each vertex.
- Step3. Sort vertices by-degree neighborhoods in lexicographical order.

2. Graph Alignment/Matching

Graph alignment: A noisy version of graph isomorphism, where we seek a **bijection** that minimizes the number of edge disagreements.

2. Graph Alignment/Matching

Graph alignment: A noisy version of graph isomorphism, where we seek a **bijection** that minimizes the number of edge disagreements.

Graph Alignment Algorithms:

- (2.1) Noisy LABEL algorithm [3]
- (2.2) Black Swan Algorithm[4]

Input: Graph $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$, and integer h e.g. h=4

 G_1

Step1: Anchor alignment (match high degree vertices)

 $w_{G_1} \in V_1^h$, $w_{G_2} \in V_2^h$ are h highest degree vertices (decreasing order)

Step1: Anchor alignment (match high degree vertices)

 $w_{G_1} \in V_1^h$, $w_{G_2} \in V_2^h$ are h highest degree vertices (decreasing order)

$$\mathbf{w}_{G_1} = (1,2,3,4); \ \mathbf{w}_{G_2} = (a,b,c,d)$$

Step1: Anchor alignment (match high degree vertices)

 $w_{G_1} \in V_1^h$, $w_{G_2} \in V_2^h$ are h highest degree vertices (decreasing order)

$$\mathbf{w}_{G_1} = (1,2,3,4); \ \mathbf{w}_{G_2} = (a,b,c,d)$$

match: 1-a, 2-b, 3-c, 4-d

Step2: Bipartite alignment (match low degree vertices)

$$sig_{G_1}(u), sig_{G_2}(u) \in \{0,1\}^h \text{ where } sig_G(u)_i = \mathbb{I}\{(u, w_G(i)) \in E(G)\}$$

Step2: Bipartite alignment (match low degree vertices)

 $\operatorname{sig}_{G_1}(u), \operatorname{sig}_{G_2}(u) \in \{0,1\}^h \text{ where } \operatorname{sig}_G(u)_i = \mathbb{I}\{(u, w_G(i)) \in E(G)\}$ e.g. $\operatorname{sig}_{G_1}(5) = (1,1,1,0)$ and $\operatorname{sig}_{G_1}(e) = (1,1,1,0)$

Step2: Bipartite alignment (match low degree vertices)

For $u \in V_1$,

check every $v \in G_2$ and match (u, v) if it minimize $|\operatorname{sig}_{G_1}(u) - \operatorname{sig}_{G_2}(v)|$

A Swan	A Black Swan	
The variance of #appearance is large.	✓ #appearance concentrates near exp.	
Too many automorphisms.	✓ Unique automorphism.	
Large overlap with other swans.	✓ Small overlap with other black swans.	

Step 1. Initialize a graph family containing large number of black swans

Step 1. Initialize a graph family containing large number of black swans

Step 2. Partial assignment

align vertices according to their location in black swans

 G_1

- Step 1. Initialize a graph family containing large number of black swans
- Step 2. Partial assignment
- Step 3. Boosting

use the partial assignment as the seeds and generate a full permutation

3. Seeded graph alignment

Seed set: collection of vertices $S_1 \subset V_1$, $S_2 \subset V_2$ where true alignment $S_1 \to S_2$ is known

3. Seeded graph alignment

Seed set: collection of vertices $S_1 \subset V_1$, $S_2 \subset V_2$ where true alignment $S_1 \to S_2$ is known

e.g.
$$S_1 = \{1,2,3\}$$
 and $S_2 = \{a,b,c\}$

3. Seeded graph alignment

Seed set: collection of vertices $S_1 \subset V_1$, $S_2 \subset V_2$ where true alignment $S_1 \to S_2$ is known

Goal: With extra information form seed set, find the one-to-one correspondence for the remaining vertices

3. Seeded graph alignment

Seed set: collection of vertices $S_1 \subset V_1$, $S_2 \subset V_2$ where true alignment $S_1 \to S_2$ is known

Goal: With extra information form seed set, find the one-to-one correspondence for the remaining vertices

Algorithms

- (3.1) User-matching Algorithm [5]
- (3.2) Large neighborhood matching[6]
- (3.3) Percolation Algorithm[7]

Input: G_1 , G_2 and matching between the seed sets $\pi: S_1 \to S_2$, maximum degree D

For $j=\log D,\ldots,1$ For all user $u\in G_1,v\in G_2$ s.t. $d_{G_1}(u)\geq 2^j$ and $d_{G_2}(v)\geq 2^j$, compute $W_{uv}=\#$ common witnesses between u and v and match largest score pair

For $j=\log D,\ldots,1$ For all user $u\in G_1,v\in G_2$ s.t. $d_{G_1}(u)\geq 2^j$ and $d_{G_2}(v)\geq 2^j$, compute $W_{uv}=\#$ common witnesses between u and v and match largest score pair

 π user: seeds:

for
$$j = 2$$

 $d_{G_1}(2), d_{G_2}(2) \ge 2^2$

$$N_{G_1}(2) \cap N_{G_2}(2) = \{6,7,8\}$$

 $W_{22} = 3$

Then match 2-2

 G_2

For $j=\log D,\ldots,1$ For all user $u\in G_1,v\in G_2$ s.t. $d_{G_1}(u)\geq 2^j$ and $d_{G_2}(v)\geq 2^j$ Compute $W_{uv}=\#$ common witnesses between u and v and match largest score pair

user:

seeds:

for
$$j = 1$$

 $d_{G_1}(1), d_{G_1}(3) \ge 2^1$
 $d_{G_2}(1), d_{G_2}(3) \ge 2^1$

$$N_{G_1}(1) \cap N_{G_2}(1) = \{5,6\}$$

 $W_{11} = 2$

For $j = \log D, ..., 1$

user:

seeds:

For all user $u \in G_1$, $v \in G_2$ s.t. $d_{G_1}(u) \ge 2^j$ and $d_{G_2}(v) \ge 2^j$

Compute $W_{uv} = \#$ common witnesses between u and v and match largest score pair

 π G_2 G_1

for
$$j = 1$$

 $d_{G_1}(1), d_{G_1}(3) \ge 2^1$
 $d_{G_2}(1), d_{G_2}(3) \ge 2^1$

$$N_{G_1}(1) \cap N_{G_2}(1) = \{5,6\}$$

 $W_{11} = 2$

$$N_1(1) \cap N_2(3) = \{6\}$$

 $W_{13} = 1 < W_{11} = 2$

Then match 1-1

user:

seeds:

For $j=\log D,\ldots,1$ For all user $u\in G_1,v\in G_2$ s.t. $d_{G_1}(u)\geq 2^j$ and $d_{G_2}(v)\geq 2^j$ Compute $W_{uv}=\#$ common witnesses between u and v and match largest score pair

user:

For $j = \log D, ..., 1$ For all user $u \in G_1$, $v \in G_2$ s.t. $d_{G_1}(u) \ge 2^j$ and $d_{G_2}(v) \ge 2^j$ Compute $W_{uv} = \#$ common witnesses between u and v and match largest score pair

Output: {1-1, 2-2, 3-3, 4-4}

Input: G_1 , G_2 , π_0 and $m, l \in Z$

Step 1. Align high degree vertices

For $i_1 \in G_1$ and $i_2 \in G_2$, if

- there are m independent l —paths in G_2 from i_2 to a set of m seeded vertices $L \subset \Gamma_\ell^{G_2}(i_2)$
- there are m independent l —path in G_1 from i_1 to the same set of m seeded vertices $\pi_0(L) \subset \Gamma_\ell^{G_2}(i_1)$,

then set $\pi(i_2) = i_2$

e.g.
$$l = 2, m = 3$$

Input: G_1, G_2, π_0 and $m, l \in Z$

Step 1. Align high degree vertices

Step 2. Align low degree vertices

For all the pairs of unmatched vertices (i_1, i_2) , if i_1 is adjacent to a matched vertex j_1 in G_1 and i_2 is adjacent to vertex $\pi(j_1)$ in G_2 , set $\pi(i_2) = i_1$.

Input: G_1, G_2, π_0 and $m, l \in Z$

Step 1. Align high degree vertices

Step 2. Align low degree vertices

For all the pairs of unmatched vertices (i_1, i_2) , if i_1 is adjacent to a matched vertex j_1 in G_1 and i_2 is adjacent to vertex $\pi(j_1)$ in G_2 , set $\pi(i_2) = i_1$.

Output: π

Key idea: in each iteration, we map any two nodes with at least r neighboring pairs already mapped.

Input: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \pi_0, r$

e.g. r = 2

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

Associate with every pair of nodes $(i \in V_1, j \in V_2)$ a count of marks $M_{i,j}$ in the following way:

at each time step t, uses exactly one unused but already mapped pair (i_t, j_t)

• • •

repeat until there are no unused pairs.

References

- [1] Babai, László, Paul Erdos, and Stanley M. Selkow. "Random graph isomorphism." *SlaM Journal on computing* 9.3 (1980): 628-635.
- [2] Czajka, Tomek, and Gopal Pandurangan. "Improved random graph isomorphism." *Journal of Discrete Algorithms* 6.1 (2008): 85-92.
- [3] Dai, Osman Emre, et al. "Analysis of a canonical labeling algorithm for the alignment of correlated erdos-rényi graphs." *Proceedings of the ACM on Measurement and Analysis of Computing Systems* 3.2 (2019): 1-25.
- [4] Barak, Boaz, et al. "(Nearly) efficient algorithms for the graph matching problem on correlated random graphs." *Advances in Neural Information Processing Systems* 32 (2019): 9190-9198.
- [5] Korula, Nitish, and Silvio Lattanzi. "An efficient reconciliation algorithm for social networks." arXiv preprint arXiv:1307.1690 (2013).
- [6] Mossel, Elchanan, and Jiaming Xu. "Seeded graph matching via large neighborhood statistics." *Random Structures & Algorithms* 57.3 (2020): 570-611.
- [7] Yartseva, Lyudmila, and Matthias Grossglauser. "On the performance of percolation graph matching." *Proceedings of the first ACM conference on Online social networks*. 2013.