```
In [1]: # here is how we activate an environment in our current directory
import Pkg; Pkg.activate(@__DIR__)

# instantate this environment (download packages if you haven't)
Pkg.instantiate();

# let's load LinearAlgebra in
using LinearAlgebra
using Test
```

Activating environment at `~/Work/CMU/Courses/OCRL/OCRL2024/HW/HW0/Projec
t toml`

Question 1: Differentiation in Julia (10 pts)

Julia has a fast and easy to use forward-mode automatic differentiation package called ForwardDiff.jl that we will make use of throughout this course. In general it is easy to use and very fast, but there are a few quirks that are detailed below. This notebook will start by walking through general usage for the following cases:

- functions with a single input
- functions with multiple inputs
- composite functions

as well as a guide on how to avoid the most common ForwardDiff.jl error caused by creating arrays inside the function being differentiated. First, let's look at the ForwardDiff.jl functions that we are going to use:

- FD.derivative(f,x) derivative of scalar or vector valued f wrt scalar x
- FD.jacobian(f,x) jacobian of vector valued f wrt vector x
- FD.gradient(f,x) gradient of scalar valued f wrt vector x
- FD.hessian(f,x) hessian of scalar valued f wrt vector x

Note on gradients:

For an arbitrary function $f(x):\mathbb{R}^N o\mathbb{R}^M$, the jacobian is the following:

$$rac{\partial f(x)}{\partial x} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Now if we have a scalar valued function (like a cost function) $f(x):\mathbb{R}^N o\mathbb{R}$, the jacobian is the following row vector:

$$rac{\partial f(x)}{\partial x} = \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \end{array}
ight]$$

The transpose of this jacobian for scalar valued functions is called the gradient:

$$abla f(x) = \left[rac{\partial f(x)}{\partial x}
ight]^T$$

TLDR:

- the jacobian of a scalar value function is a row vector
- the gradient is the transpose of this jacobian, making the gradient a column vector
- ForwardDiff.jl will give you an error if you try to take a jacobian of a scalar valued function, use the gradient function instead

Part (a): General usage (2 pts)

The API for functions with one input is detailed below:

```
In [2]: # NOTE: this block is a tutorial, you do not have to fill anything out.
        #-----load the package-----
        # using ForwardDiff # this puts all exported functions into our namespace
        # import ForwardDiff # this means we have to use ForwardDiff.<function name>
        import ForwardDiff as FD # this let's us do FD.<function name>
        function fool(x)
            #scalar input, scalar output
            return sin(x)*cos(x)^2
        end
        function foo2(x)
            # vector input, scalar output
            return sin(x[1]) + cos(x[2])
        function foo3(x)
            # vector input, vector output
            return [\sin(x[1])*x[2];\cos(x[2])*x[1]]
        end
        let # we just use this to avoid creating global variables
            # evaluate the derivative of fool at x1
            x1 = 5*randn();
            @show \partialfool \partialx = FD.derivative(fool, x1);
```

```
# evaluate the gradient and hessian of foo2 at x2
            x2 = 5*randn(2);
            @show \nablafoo2 = FD.gradient(foo2, x2);
            @show \nabla^2 foo2 = FD.hessian(foo2, x2);
            # evluate the jacobian of foo3 at x2
            @show \partialfoo3 \partialx = FD.jacobian(foo3,x2);
        end
       \partial fool \partialx = FD.derivative(fool, x1) = 0.45764753952036985
       \nablafoo2 = FD.gradient(foo2, x2) = [-0.7522505689532956, 0.21526620540017383]
       \nabla^2 foo2 = FD.hessian(foo2, x2) = [0.6588771368847481 0.0; 0.0 -0.976555405910
       28941
       \partial foo3 \ \partial x = FD.jacobian(foo3, x2) = [4.889741329022147 -0.6588771368847481;
       0.9765554059102894 0.8311251166764739]
Out[2]: 2x2 Matrix{Float64}:
         4.88974 -0.658877
          0.976555 0.831125
       2×2 Matrix{Float64}:
         2.90887
                    0.652197
        -0.767598 -1.55818
In [3]: # here is our function of interest
        function foo4(x)
            Q = diagm([1;2;3.0]) # this creates a diagonal matrix from a vector
             return 0.5*x'*0*x/x[1] - log(x[1])*exp(x[2])^x[3]
        end
        function foo4 expansion(x)
            # TODO: this function should output the hessian H and gradient g of the
            # TODO: calculate the gradient of foo4 evaluated at x
            q = FD.gradient(foo4,x)
            # TODO: calculate the hessian of foo4 evaluated at x
            H = FD.hessian(foo4,x)
            return g, H
        end
Out[3]: foo4 expansion (generic function with 1 method)
In [4]: @testset "la" begin
            x = [.2; .4; .5]
            q,H = foo4 expansion(x)
            @test isapprox(g,[-18.98201379080085, 4.982885952667278, 8.2863087621338
            @test norm(H -[164.2850689540042 -23.053506895400425 -39.942805516320334
                                       -23.053506895400425 10.491442976333639 2.358926
                                       -39.94280551632034 2.3589262864014673 15.314523
        end
       Test Summary: | Pass Total
                           2
Out[4]: Test.DefaultTestSet("1a", Any[], 2, false, false)
```

Part (b): Derivatives for functions with multiple input arguments (2 pts)

```
In [5]: # NOTE: this block is a tutorial, you do not have to fill anything out.
        # calculate derivatives for functions with multiple inputs
        function dynamics(x,a,b,c)
             return [x[1]*a; b*c*x[2]*x[1]]
        end
        let
            x1 = randn(2)
            a = randn()
            b = randn()
            c = randn()
            # this evaluates the jacobian with respect to x, given a, b, and c
            A1 = FD.jacobian(dx \rightarrow dynamics(dx, a, b, c), x1)
            # it doesn't matter what we call the new variable
            A2 = FD.jacobian(x \rightarrow dynamics(x, a, b, c), x1)
            # alternatively we can do it like this using a closure
             dynamics just x(x) = dynamics(x, a, b, c)
            A3 = FD.jacobian(dynamics just x, x1)
             \texttt{@test norm(A1 - A2)} < 1e-13
             \texttt{@test norm(A1 - A3)} < 1e-13
        end
```

Out[5]: **Test Passed**

```
In [6]: function eulers(x,u,J)
    # dynamics when x is angular velocity and u is an input torque
    x = J\(u - cross(x,J*x))
    return x
end

function eulers_jacobians(x,u,J)
    # given x, u, and J, calculate the following two jacobians

# TODO: fill in the following two jacobians

# ∂x/∂x
A = FD.jacobian(_x -> eulers(_x,u,J), x)

# ∂x/∂u
B = FD.jacobian(_u -> eulers(x,_u,J), u)

return A, B
end
```

```
In [7]: @testset "1b" begin
             x = [.2; -7; .2]
             u = [.1; -.2; .343]
             J = diagm([1.03;4;3.45])
             A,B = eulers jacobians(x,u,J)
             skew(v) = [0 - v[3] v[2]; v[3] 0 - v[1]; - v[2] v[1] 0]
             (\text{dtest isapprox}(A, -J) (\text{skew}(x)*J - \text{skew}(J*x)), \text{ atol} = 1e-8)
             (atest norm(B - inv(J)) < 1e-8)
         end
       Test Summary: | Pass Total
Out[7]: Test.DefaultTestSet("1b", Any[], 2, false, false)
         Part (c): Derivatives of composite functions (1
         pts)
In [8]: # NOTE: this block is a tutorial, you do not have to fill anything out.
         function f(x)
             return x[1]*x[2]
         end
         function g(x)
             return [x[1]^2; x[2]^3]
         end
        let
             x1 = 2*randn(2)
             # using gradient of the composite function
             \nabla f 1 = FD.gradient(dx -> f(g(dx)), x1)
             # using the chain rule
             J = FD.jacobian(g, x1)
             \nabla f 2 = J'*FD.gradient(f, g(x1))
             @show norm(\nabla f 1 - \nabla f 2)
         end
       norm(\nabla f 1 - \nabla f 2) = 0.0
Out[8]: 0.0
In [9]: function f2(x)
             return x*sin(x)/2
         end
         function q2(x)
             return cos(x)^2 - tan(x)^3
```

end

Part (d): Fixing the most common ForwardDiff error (2 pt)

First we will show an example of this error:

```
In [11]: # NOTE: this block is a tutorial, you do not have to fill anything out.
         function f zero 1(x)
            println("-----")
            @show typeof(x) # print out type of x
            Oshow eltype(x) # print out the element type of x
            xdot = zeros(length(x)) # this default creates zeros of type Float64
            println("-----types of output xdot-----")
            @show typeof(xdot)
            @show eltype(xdot)
            # these lines will error because i'm trying to put a ForwardDiff.dual
            # inside of a Vector{Float64}
            xdot[1] = x[1]*x[2]
            xdot[2] = x[2]^2
            return xdot
         end
         let
            # try and calculate the jacobian of f zero 1 on x1
            x1 = randn(2)
            @info "this error is expected:"
                FD.jacobian(f zero 1,x1)
            catch e
                buf = IOBuffer()
```

```
showerror(buf,e)
  message = String(take!(buf))
  Base.showerror(stdout,e)
  end
end
```

```
[ Info: this error is expected:
-----types of input x-----
typeof(x) = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float6
4}, Float64, 2}}
eltype(x) = ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float64}, Flo
-----types of output xdot-----
typeof(xdot) = Vector{Float64}
eltype(xdot) = Float64
MethodError: no method matching Float64(::ForwardDiff.Dual{ForwardDiff.Tag{t
ypeof(f zero 1), Float64}, Float64, 2})
Closest candidates are:
  (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat at rounding.jl:</pre>
200
  (::Type{T})(::T) where T<:Number at boot.jl:760</pre>
  (::Type{T})(::AbstractChar) where T<:Union{AbstractChar, Number} at char.j</pre>
l:50
  . . .
```

This is the most common ForwardDiff error that you will encounter. ForwardDiff works by pushing ForwardDiff.Dual variables through the function being differentiated. Normally this works without issue, but if you create a vector of Float64 (like you would with xdot = zeros(5), it is unable to fit the ForwardDiff.Dual 's in with the Float64 's. To get around this, you have two options:

Option 1

Our first option is just creating xdot directly, without creating an array of zeros to index into.

```
In [12]: # NOTE: this block is a tutorial, you do not have to fill anything out.
function f_zero_1(x)

# let's create xdot directly, without first making a vector of zeros
xdot = [x[1]*x[2], x[2]^2]

# NOTE: the compiler figures out which type to make xdot, so when you ca
# it's a Float64, and when it's being diffed, it's automatically promote

println("-----types of input x-----")
@show typeof(x) # print out type of x
@show eltype(x) # print out the element type of x

println("-----types of output xdot-----")
@show typeof(xdot)
@show eltype(xdot)
```

```
return xdot
         end
         let
             # try and calculate the jacobian of f zero 1 on x1
             x1 = randn(2)
             FD.jacobian(f zero 1,x1) # this will work
         end
        -----types of input x-----
        typeof(x) = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float6}}
        4}, Float64, 2}}
        eltype(x) = ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float64}, Flo
        at64, 2}
        -----types of output xdot-----
        typeof(xdot) = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Flo
        at64}, Float64, 2}}
        eltype(xdot) = ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float64},
        Float64, 2}
Out[12]: 2×2 Matrix{Float64}:
          0.304646 -0.8579
          0.0
                     0.609293
```

Option 2

The second option is to create the array of zeros in a way that accounts for the input type. This can be done by replacing zeros(length(x)) with zeros(eltype(x), length(x)). The first argument eltype(x) simply creates a vector of zeros that is the same type as the element type in vector x.

```
In [13]: # NOTE: this block is a tutorial, you do not have to fill anything out.
         function f zero 1(x)
            xdot = zeros(eltype(x), length(x))
            xdot[1] = x[1]*x[2]
            xdot[2] = x[2]^2
            println("-----")
            @show typeof(x) # print out type of x
            Qshow eltype(x) # print out the element type of x
            println("-----types of output xdot-----")
            @show typeof(xdot)
            @show eltype(xdot)
            return xdot
         end
        let
            # try and calculate the jacobian of f zero 1 on x1
            x1 = randn(2)
```

```
FD.jacobian(f zero 1,x1) # this will fail!
         end
        -----types of input x-----
        typeof(x) = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float6}}
        4}, Float64, 2}}
        eltype(x) = ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float64}, Flo
        at64, 2}
        -----types of output xdot-----
        typeof(xdot) = Vector{ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Flo
        at64}, Float64, 2}}
        eltype(xdot) = ForwardDiff.Dual{ForwardDiff.Tag{typeof(f zero 1), Float64},
        Float64, 2}
Out[13]: 2×2 Matrix{Float64}:
           0.167526 0.782037
           0.0
                     0.335051
          Now you can show that you understand these two options by fixing two broken
         functions.
In [14]: # TODO: fix this error when trying to diff through this function
         # hint: you can use promote type(eltype(x), eltype(u)) to return the correct
          function dynamics(x,u)
              \# \dot{x} = zeros(promote\ type(eltype(x),\ eltype(u)),\ length(x))
              \# \dot{x}[1] = x[1]*sin(u[1])
             \# \dot{x}[2] = x[2]*cos(u[2])
             \dot{x} = [x[1]*sin(u[1]), x[2]*cos(u[2])]
              return x
         end
Out[14]: dynamics (generic function with 2 methods)
In [15]: @testset "1d" begin
             x = [.1; .4]
             u = [.2; -.3]
             A = FD.jacobian(x \rightarrow dynamics(x,u),x)
              B = FD.jacobian(u \rightarrow dynamics(x, u), u)
             @test typeof(A) == Matrix{Float64}
             @test typeof(B) == Matrix{Float64}
         end
```

Finite Difference Derivatives

1d | 2 2
Out[15]: Test.DefaultTestSet("1d", Any[], 2, false, false)

Test Summary: | Pass Total

If you ever have trouble working through a ForwardDiff error, you should always feel free to use the FiniteDiff.jl FiniteDiff.jl package instead. This computes derivatives through a finite difference method. This is slower and less accurate than ForwardDiff, but it will always work so long as the function works.

Before with ForwardDiff we had this:

- FD.derivative(f,x) derivative of scalar or vector valued f wrt scalar x
- FD. jacobian(f,x) jacobian of vector valued f wrt vector x
- FD.gradient(f,x) gradient of scalar valued f wrt vector x
- FD.hessian(f,x) hessian of scalar valued f wrt vector x

Now with FiniteDiff we have this:

- FD2.finite_difference_derivative(f,x) derivative of scalar or vector valued f wrt scalar x
- FD2.finite_difference_jacobian(f,x) jacobian of vector valued f wrt vector x
- FD2.finite_difference_gradient(f,x) gradient of scalar valued f wrt vector x
- FD2.finite_difference_hessian(f,x) hessian of scalar valued f wrt vector x

```
In [16]: # NOTE: this block is a tutorial, you do not have to fill anything out.
          # load the package
          import FiniteDiff as FD2
          function fool(x)
              #scalar input, scalar output
              return sin(x)*cos(x)^2
          end
          function foo2(x)
              # vector input, scalar output
              return sin(x[1]) + cos(x[2])
          end
          function foo3(x)
              # vector input, vector output
              return [\sin(x[1])*x[2];\cos(x[2])*x[1]]
          end
          let # we just use this to avoid creating global variables
              # evaluate the derivative of fool at x1
              x1 = 5*randn();
              @show \partialfool \partialx = FD2.finite difference derivative(fool, x1);
              # evaluate the gradient and hessian of foo2 at x2
              x2 = 5*randn(2);
              @show \nablafoo2 = FD2.finite difference gradient(foo2, x2);
              @show \nabla^2 foo2 = FD2.finite difference hessian(foo2, x2);
              # evluate the jacobian of foo3 at x2
              @show \partialfoo3 \partialx = FD2.finite difference jacobian(foo3,x2);
```

Out[16]: **Test Passed**