Faculty of Engineering, University of Jaffna Department of Computer Engineering EC1011 – Computing

Lab 08 - Domain Specific Programming Languages

Date: 17 August 2022 Duration: 3 Hours

Date: 17 August 2022 Instructions:

• Any plagiarized work will be given 0 marks.

Submit your lab work as a pdf file named <u>Lab0Z_2021EXXX.pdf</u> (XXX – Your Registration Number & Z is your lab number) on/before given deadline via team

Teams EC1011 → Assignments → Lab_08

- Final submission should contain lab report as pdf format and all .m files.
- Prepare your lab report with the screen shots of your answers.
- Note all images necessary are also provided separately.
- Include a title with your index number for all images.

Image Processing Toolbox

A color image is just a 3 dimensional matrix, the RGB format which is the common format for images has three layers of 2D matrices. Each layer contains the intensity level variation of the pixels (a pixel is the smallest area of the screen which can emit controlled light independent of similar adjacent portions) across the screen for a particular color. In the RGB format the 3 layers correspond to the primary colors red blue and green. The position of each element on the matrix directly corresponds the physical position of the pixel. The superposition of the colors produced by each layer forms the image. Figure 1 below shows the above description visually.

Figure 1: An RGB image -source: geeksforgeeks.org

As illustrated above each pixel contains its intensity level for each pixel for each color plane, commonly 8-bits (bit depth) is used to represent this intensity level. When 8 bits is used the maximum intensity is represented by 255 and the minimum intensity is represented by 0. In MATLAB these values are stored in the data type of unsigned integer of 8 bits (uint8 in short).

Another common format like RGB is the grayscale format. This format ignores the color information it only contains the intensity, this can be obtained in MATLAB by the command 'rgb2gray'. A comparison of the two types is shown in the figure below.

RGB image

Greyscale image

Figure 2:RGB and grayscale comparison

- 1. Image Basics
- a. Use the command 'imread' to import Figure 3 (ensure the image is in the current folder of MATLAB and you are using the relevant group image) into the variable A.

Figure 3: Toy Parts

Hint: Use full name. Example to import an image named test.png into the variable F the command would be,

- >> F=imread('test.png'); % remember the semicolon
- b. Use **'imshow'** to display the image you stored in A.
- c. Show A is a 3 dimensional matrix by using the 'size' command.
- d. The first second and third layers of the image correspond to red, green and blue respectively. The red layer can be extracted and store it in the variable R by the command, >> R=A(:,:,1); % the first and second colons (:) mean to keep all elements in the x and y directions respectively and '1' is used to extract the first layer. Likewise extract the red, green and blue layers in to the variables R, G and B respectively. Then use imshow to view each layer separately in a subplot including the three layers and the original image. Observe the objects of the corresponding color are brighter in their respective layer.
- e. Obtain the grayscale image, by using the command 'rgb2gray' and store the output in the variable BW. Then output it in a figure with 'imshow'.

- 2. Image Rotation
- a. Import figures 4 and 5 into the variables P and L respectively.

Figure 4: Portrait Mode

Figure 5: Landscape Mode

- b. Rotate the figure in P by 45 degrees in the clockwise and anti-clockwise using the command 'imrotate' sense and store the results in the variables PCW and PACW respectively. Then using subplot show those images in a single figure with appropriate titles. (Hint: B=imrotate(P,70); will rotate P by 70 degrees counter clockwise and store it in B, to rotate clockwise simply use -70.)
- c. Flip the figure in P horizontally and vertically using the command 'flip' and store the results in the variables PFH and PFV respectively. Then using subplot show those images in a single figure with appropriate titles. (Hint: B=flip(P,1); will flip P vertically and store it in B, to flip horizontally it will be flip(P,2) instead.)

d. The following table and the figures 6 and 7 illustrate how the image should be depending on the final angle. You have to write a function named 'phoneRotate' which will input the number of degrees the phone has to be turned (from the portrait position in the clockwise direction, note input can be negative for counter clockwise rotation also input can exceed 360°) and display the final image of the phone after turning the said degrees. (Hint: use a combination of rotation and flip or just rotation and some conditional statements.)

Table 1: Relationship between angle and Orientation

Range of final angle 'x'	Orientation
0°≤x≤45°	Portrait
45° <x≤135°< td=""><td>Landscape</td></x≤135°<>	Landscape
135° <x≤225°< td=""><td>Portrait</td></x≤225°<>	Portrait
225° <x≤315°< td=""><td>Landscape</td></x≤315°<>	Landscape
315° <x≤360°< td=""><td>Portrait</td></x≤360°<>	Portrait

Figure 6: Relationship between angle and Orientation

e. Using the above function create a subplot of output images for 4 rotation angles the **angles you should** use are given at the end of the report.

Figure 7: Example Outputs for Phone Rotation

3. Image filters

Image filters are used for various purposes for like blur, sharpen, detect edges and remove noise. One such image filter is the average filter it can be used to blur images.

Average Filer

1. This filter is applied to a gray scale image or applied layer by layer to a color image then combined into one.

255	4	5	250	248	11	12	243	241	18
23	232	230	28	30	225	223	35	37	218
44	211	209	50	51	204	202	57	58	197
191	67	69	186	184	74	76	179	177	81
170	89	90	165	163	96	97	158	156	103
108	147	145	113	115	140	138	120	122	133
129	126	124	135	136	119	117	142	143	112
106	152	154	101	99	159	161	94	92	166
85	174	175	80	78	181	182	73	71	188
193	62	60	198	200	55	53	205	207	48
214	41	39	220	221	34	32	227	228	27
21	237	239	16	14	244	246	9	7	251

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

3x3 Average Filter

1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25
1/25	1/25	1/25	1/25	1/25

5x5 Average Filter

Greyscale Image or a Layer of a Color Image

Figure 8: Example image and average filters

2. For this filer the center of a square matrix of odd number of rows is moved on to each pixel. This square matrix is called the filter and is also known as the kernel. Its special properties to be an average filter is that all its elements are the same and the sum of all elements is one.

Figure 9: Applying 3x3 Filter to Image at Pixel (a, b)

3. Next elements overlapping in the filter and the image pixel are multiplied elementwise to form a result matrix. The sum of all the elements in the resulting matrix gives the pixel value of the output image's corresponding pixel (Usually the output image is of the same size of the input image.)

Figure 10: Filter result being transferred to output image

4. The process is repeated for each pixel until the entire image is formed. At edges and corners when the filter matrix exceeds the image boundaries non overlapping elements are considered to have a value of zero in the method of zero padding (there are also other methods too to deal with this scenario.)

0	0	0	0	0	0	0	0	0	0	0
0	255	4	5	250	248	11	12	243	241	18
0	23	232	230	28	30	225	223	35	37	218
0	44	211	209	50	51	204	202	57	58	197
O	191	67	69	186	184	74	76	179	177	81
O	170	89	90	165	163	96	97	158	156	103
o	108	147	145	113	115	140	138	120	122	133
0	129	126	124	135	136	119	117	142	143	112
O	106	152	154	101	99	159	161	94	92	166
o	85	174	175	80	78	181	182	73	71	188
O	193	62	60	198	200	55	53	205	207	48
o	214	41	39	220	221	34	32	227	228	27
o	21	237	239	16	14	244	246	9	7	251

Figure 11: When filter exceeds boundaries virtual outer pixels are considered to be zero

- a. The first step in preforming the average filter is to make the kernel. As all elements should be the same use the 'ones' command to create a 21x21 matrix of ones and store it in k. (Hint: ones(2,3) makes a matrix of ones with 2 rows and 3 columns)
- b. Now make the sum of all elements in k to be equal to unity (the value 1) keeping all its elements same as each other. (**Hint: k=k/sum of all elements in k**)
- c. Now apply the filter to the image in the figure 12 given below, by using the command 'imfilter' and store the result in the variable 'blur'. (Hint: B=imfilter(A, k) applies the filter with kernel 'k' on to the image stored in 'A' and stores the result in 'B'.

Figure 12: Figure to be blurred

d. Output the result on 'blur' on to a figure.

4. Image Histogram

Image histogram for a grayscale image or a layer of color image is a bar graph of number of pixels containing a particular intensity vs the intensity level. Since we are using 8 bit depth it will be a bar graph showing the number of pixels containing each intensity level from 0 to 255. These plots can be used to segment images in to objects or segment objects from the background. Below is a grayscale image and its histogram. The light background has the more pixels close to a higher intensity level of 230 and the dark object on it has many pixels with lower intensity close to 100, thus giving the shape of the histogram. Thus a mid-value around 160 can be used to septate the object from the background, in this case any pixel less than 160 can be considered the object.

Figure 13: Grayscale image and its histogram

- Use 'imhist' to obtain the histogram of the grayscale image of figure 3 obtained in question 1 part e.
 (Hint: imhist(A) gives the histogram of the image stored in A)
- b. Observe the histogram and suggest a suitable intensity level (threshold) to separate the dark background from the toys. (**Hint:** The background is dark so the first heap in the histogram should denote the background)
- c. The above intensity level can also be calculated statistically using the command 'graythresh'.

 Use this command to obtain the threshold. (T= graythresh (BW) stores a suitable threshold

- to separate the image into 2 segments as a fraction of the maximum intensity (255) in T, thus actually the required value is T=255* graythresh (BW))
- d. Now obtain a binary image containing the toys by using the above threshold and display it on a figure. (Hint: B=BW>T, where BW, T and B are the grayscale image, threshold and the Binary image respectively)
- e. You will see lots of white spots (noise) in addition to the toys, to prevent this blur the grayscale image with a filter of size 25x25 and then perform steps c. and d. on it.
- f. Now use the command '[~,n]=bwlabel(B)' to obtain the number of toy pieces in the variable n, where B is the binary image obtained from the blurred image in part e. (The command counts the number of non-connected objects.
- g. Now write a script to count the number of red pieces. (Hint: use the specific color layer instead of the grayscale image)

Table 2: List of angles for question 2 part e

Index No.		Angles in degrees					
	1.455	-	_	929			
2021/E/001	-1455	1184	1237	-828			
2021/E/002	-1079	-1027	920	674			
2021/E/003	-377	830	1645	-1153			
2021/E/004	-1465	1869	-165	628			
2021/E/005	684	-271	-567	1025			
2021/E/006	1801	-1674	1271	-1565			
2021/E/007	-392	1520	-1222	2107			
2021/E/008	1431	-608	-1230	1334			
2021/E/009	719	1547	-498	-465			
2021/E/010	-1421	1901	908	-1156			
2021/E/011	-1832	840	-932	2078			
2021/E/012	-1841	-228	512	2085			
2021/E/013	733	426	-1629	-124			
2021/E/014	-1762	441	-580	616			
2021/E/015	693	-970	2000	-1136			
2021/E/016	-690	-276	1257	995			
2021/E/017	-1774	-605	1995	2037			
2021/E/018	-1431	1204	939	-1526			
2021/E/019	1469	-239	-911	1718			
2021/E/020	-681	1198	899	-1147			
2021/E/021	-1766	1567	-1615	999			
2021/E/022	-1785	-615	1226	1702			
2021/E/023	-330	1540	1267	-825			
2021/E/024	-754	838	-916	1687			
2021/E/025	760	-610	-189	1380			
2021/E/026	1044	779	-888	-778			
2021/E/027	1762	-1675	501	-456			
2021/E/028	-1045	1898	1620	-1160			
2021/E/029	-1780	1516	902	-805			
2021/E/030	-370	835	-879	1344			
2021/E/031	680	1146	-150	-1213			

2021/E/032	-1071	1850	501	-1561
2021/E/033	-1835	1172	-572	635
2021/E/034	-1079	1178	-1597	1673
2021/E/035	-1804	1200	543	-805
2021/E/036	-378	1161	930	-459
2021/E/037	-367	-664	540	648
2021/E/038	1048	-651	1231	-482
2021/E/039	322	1524	-1289	-1212
2021/E/040	-715	1505	-1596	2046
2021/E/041	368	-645	571	-455
2021/E/042	1791	1894	-1660	-1165
2021/E/043	-1109	798	-928	1666
2021/E/044	383	-263	-1238	1363
2021/E/045	-343	1508	-1664	2073
2021/E/046	1041	446	-173	-1513
2021/E/047	-739	458	941	-478
2021/E/048	-1113	1164	504	-800
2021/E/049	-707	1865	1650	-1128
2021/E/050	1051	1854	-922	-1498
2021/E/051	-1836	1514	-539	1311
2021/E/052	742	-1745	-1655	1690
2021/E/053	1778	413	-870	-442
2021/E/054	-331	1186	-1646	1334
2021/E/055	-1482	-1750	927	1706
2021/E/056	402	-1388	-172	2062
2021/E/057	-1773	443	1280	-1170
2021/E/058	-1841	1930	-1237	1355
2021/E/059	1839	-992	-1644	621
2021/E/060	-1480	433	1987	-87
2021/E/061	-722	1868	-912	1364
2021/E/062	1051	-1668	1972	-779
2021/E/063	-1095	819	576	-72
2021/E/064	1044	-273	496	-1133

2021/E/065	-733	1915	-1626	2064
2021/E/066	1799	-295	1596	-807
2021/E/067	-1806	1924	-190	961
2021/E/068	1038	-1700	505	-818
2021/E/069	1472	-1751	-163	1753
2021/E/070	1786	-997	1589	-1142
2021/E/071	1109	1859	-184	-1519
2021/E/072	-1088	-1031	922	1679
2021/E/073	1770	1862	-576	-466
2021/E/074	1082	794	-870	-1502
2021/E/075	-1777	-1667	1236	633
2021/E/076	-716	1864	1235	-1546
2021/E/077	1835	-283	-896	1696
2021/E/078	745	-1722	-158	1385
2021/E/079	-750	840	870	-1530
2021/E/080	-1784	1571	1974	-771
2021/E/081	-1774	1515	-1645	973
2021/E/082	1829	-1694	878	-812
2021/E/083	-1794	828	1642	-787
2021/E/084	-1399	413	-1260	992
2021/E/085	355	-599	-1287	973
2021/E/086	-1758	1572	1273	-1138
2021/E/087	-1406	423	-189	1754
2021/E/088	366	-1309	1282	-76
2021/E/089	755	795	-1644	-844
2021/E/090	-697	1539	925	-844
2021/E/091	-1071	1179	1975	-1211
2021/E/092	393	-1390	1235	-94
2021/E/093	1074	1501	-1238	-102
2021/E/094	1474	-1753	522	-1558
2021/E/095	363	-1333	-1286	1714
2021/E/096	-1454	850	-178	2110
2021/E/097	-695	1510	1596	-826

2021/E/098	1435	-273	-200	646
2021/E/099	-1832	1178	-578	2099
2021/E/100	679	1875	-858	-1182
2021/E/101	-713	-972	1938	632
2021/E/102	320	-313	-1244	639
2021/E/103	697	-1373	-215	662
2021/E/104	-1123	-949	942	1677
2021/E/105	-685	1910	532	-411
2021/E/106	1448	-296	1272	-1503
2021/E/107	397	810	-560	-796
2021/E/108	-737	-253	504	981
2021/E/109	-355	-957	1219	666
2021/E/110	367	819	-1645	-448
2021/E/111	323	-1709	1608	-69
2021/E/112	1475	-629	-1616	999
2021/E/113	-691	1861	867	-776
2021/E/114	-391	1875	-197	1385
2021/E/115	1758	1193	-522	-835
2021/E/116	1778	-952	-543	968
2021/E/117	-1825	452	-1266	1371
2021/E/118	1410	1126	-516	-1506
2021/E/119	1103	1564	-1658	-1198
2021/E/120	-1798	-1728	558	619
2021/E/121	683	-1731	858	-97
2021/E/122	361	-598	-910	1367
2021/E/123	-1046	-633	534	652
2021/E/124	-1765	1506	-1588	1369
2021/E/125	677	-979	516	-1168
2021/E/126	1841	414	-581	-776
2021/E/127	-1792	-255	1993	624
2021/E/128	1470	1560	-220	-446
2021/E/129	-1066	1889	-138	2092
2021/E/130	-402	1566	-1584	992

2021/E/131	372	436	-925	-425
2021/E/132	1066	431	-209	-1179
2021/E/133	1779	-265	-500	2089
2021/E/134	1104	808	-1604	-817
2021/E/135	1111	1882	-1623	-1501
2021/E/136	-347	1519	-1622	667
2021/E/137	1794	-1730	-497	1360
2021/E/138	1113	-1024	-868	666
2021/E/139	687	-957	1269	-1551
2021/E/140	-1055	1852	1960	-1541
2021/E/141	739	-608	1296	-489
2021/E/142	-398	1133	1942	-458
2021/E/143	-1481	1858	1582	-1509
2021/E/144	-1443	1138	-938	1369
2021/E/145	1479	-1000	1226	-833
2021/E/146	-360	-257	2002	2052
2021/E/147	1844	1922	-941	-806
2021/E/148	-734	1910	1937	-821
2021/E/149	-1756	1166	-907	964
2021/E/150	1088	-302	-220	646
2021/E/151	-367	1169	-1650	1005
2021/E/152	1470	-602	-889	2026
2021/E/153	391	-1009	1996	-1183
2021/E/154	328	-996	1967	-1172
2021/E/155	-1423	1887	519	-804
2021/E/156	1811	-233	-885	620
2021/E/157	-1451	478	1597	-1136
2021/E/158	1102	-228	1250	-471
2021/E/159	-1456	-1690	541	2096
2021/E/160	1801	-980	1964	-488
2021/E/161	1791	-1333	-939	652
2021/E/162	-339	1902	1222	-844
2021/E/163	-1440	1852	-1225	971

2021/E/164	1774	1165	-942	-777
2021/E/165	-1424	-1721	1222	986
2021/E/166	1419	833	-136	-823
2021/E/167	1452	-663	-1264	1004
2021/E/168	-1820	766	-911	1344
2021/E/169	1439	-290	2024	-838
2021/E/170	1418	-263	937	-415
2021/E/171	754	-1753	1291	-469
2021/E/172	1122	-1315	-928	586
2021/E/173	737	-1310	-1227	1676
2021/E/174	1787	-1750	559	-406
2021/E/175	-400	1540	-875	1711
2021/E/176	40	120	160	280
2021/E/177	-925	646	436	1435
2021/E/178	-209	2099	431	-1832
2021/E/179	-500	-1182	-265	679
2021/E/180	-1604	632	808	-713
2021/E/181	-1623	639	1882	320
2021/E/182	-1622	662	1519	697
2021/E/183	-497	1677	-1730	-1123
2021/E/184	-868	-411	-1024	-685
2021/E/185	1269	-1503	-957	1448
2021/E/186	1960	-796	1852	397
2021/E/187	1296	981	-608	-737
2021/E/188	1942	666	1133	-355
2021/E/189	1582	-448	1858	367
2021/E/190	-938	-69	1138	323
2021/E/191	1226	999	-1000	1475
2021/E/192	2002	-776	-257	-691
2021/E/193	-941	1385	1922	-391
L		l	l	<u> </u>