Простой итеративный алгоритм вычисления базисов Грёбнера, основанный на сигнатурах

19 апреля 2012 г.

Аннотация

Данная работа описывает алгоритм вычисления базисов Грёбнера, основанный на использовании отмеченных многочленов и идеях из алгоритма F5. Отличительными особенностями рассматриваемого алгоритма являются простота реализации и доказательств корректной работы.

1 Определения

Рассмотрим кольцо многочленов $P=k[x_1,\ldots,x_n]$ над полем k. Будем предполагать, что на моноиде его мономов $\mathbb T$ задан допустимый мономиальный порядок \prec . В этом кольце может быть поставлена задача вычисления базиса Грёбнера для произвольного идеала (f_1,\ldots,f_l) . Один из способов её решения инкрементальный: последовательно вычисляются базисы идеалов (f_1,\ldots,f_i) , $i=2\ldots l$ на основе уже вычисленного для идеала (f_1,\ldots,f_{i-1}) базиса R_{i-1} и многочлена f_i . Представляемый алгоритм позволяет выполнить шаг такого вычисления. Таким образом, входные данные для алгоритма – это некоторый многочлен f и множество многочленов, обозначаемое $\{g_1,\ldots,g_m\}$, являющееся базисом Грёбнера идеала $I_0=(g_1,\ldots,g_m)$. В качестве результата своей работы алгоритм должен построить множество многочленов R, являющееся базисом Грёбнера идеала $I=(g_1,\ldots,g_m,f)$. Поскольку случаи $f=0\Rightarrow I=I_0$ и $\exists i\ g_i\in k\Rightarrow I=P$ не представляет интереса, далее предполагается что $f\neq 0, \forall i\ g_i\notin k$.

Введём обозначения: $\mathbb{T}_0 = \mathbb{T} \cup \{0\}$ — моноид мономов, расширенный нулём. Порядок \prec продолжается с сохранением вполне упорядоченности на \mathbb{T}_0 как \prec_0 определением $\forall t \in \mathbb{T} t \succ_0 0$. Понятие делимости мономов также расширяется на \mathbb{T}_0 : $t_1|t_2 \stackrel{\mathrm{def}}{=} \exists t_3: t_1t_3 = t_2$. Для $p \in P, p \neq 0$ старшие по \prec моном и коэффициент обозначим $\mathrm{HM}(p) \in \mathbb{T}$ и $\mathrm{HC}(p) \in k$. Для нуля — $\mathrm{HM}(0) \stackrel{\mathrm{def}}{=} 0 \in \mathbb{T}_0$, $\mathrm{HC}(0) \stackrel{\mathrm{def}}{=} 0 \in k$. За $\mathrm{LCM}(t_1,t_2) \in \mathbb{T}$ обозначим наименьшее общее кратное $t_1,t_2 \in \mathbb{T}$. Далее все определения даются для фиксированных I_0 и f:

Определение 1. Отмеченным многочленом называется пара $h = (\sigma, p) \in \mathbb{T}_0 \times P$, удовлетворяющая условию корректности: $\exists u \in P : \mathrm{HM}(u) = \sigma, uf = p \mod I_0$. На отмеченные многочлены распространяются определения старшего монома $\mathrm{HM}(h) \stackrel{\mathrm{def}}{=} \mathrm{HM}(p)$ и коэффициента $\mathrm{HC}(h) \stackrel{\mathrm{def}}{=} \mathrm{HC}(p)$. Также определяются сигнатура $\mathcal{S}(h) \stackrel{\mathrm{def}}{=} \sigma$ и

вводится обозначение многочлена – второго элемента пары: $\operatorname{poly}(h) \stackrel{\text{def}}{=} p$. Множество отмеченных многочленов обозначается за $H \subset \mathbb{T}_0 \times P$. Тривиальными примерами отмеченных многочленов являются (1,f) и (0,g) для $g \in I_0$.

Пемма 2. Умножение для $h \in H, t \in \mathbb{T}$, заданное как $th \stackrel{\text{def}}{=} (t\sigma, tp) \in H$, корректно.

Корректность определения проверяется явным нахождением u для h.

Определение 3. Если для некоторых $h'_1, h_2 \in H, t \in \mathbb{T}$ выполняется $\mathcal{S}(h'_1) \succ_0 \mathcal{S}(th_2), \mathrm{HM}(h'_1) = \mathrm{HM}(th_2) \neq 0$, то возможна редукция h'_1 по h_2 с сохранением сигнатуры, дающая в результате многочлен $h_1 \in H$, равный:

$$h_1 = (\mathcal{S}(h'_1), \operatorname{poly}(h'_1) + Kt \operatorname{poly}(h_2)),$$

где коэффициент $K \in k$ взят так, чтоб при сложении сократились старшие мономы и выполнилось $\mathrm{HM}(h_1) \prec_0 \mathrm{HM}(h'_1)$. По сути такая редукция представляет из себя обычную top-редукцию многочлена, дополненную требованием того, что сигнатура редуктора меньше сигнатуры редуцируемого. Корректность проверяется как и выше.

Введём частичный порядок $<_{gvw}$ на H:

$$h_1 = (\sigma_1, p_1) <_{\text{gvw}} h_2 = (\sigma_2, p_2) \stackrel{\text{def}}{\Leftrightarrow} \text{HM}(p_1) \sigma_2 \prec_0 \text{HM}(p_2) \sigma_1.$$

Элементы с нулевой сигнатурой и старшим мономом оказываются экстремумами: $\forall \sigma_1, \sigma_2, p_1, p_2 \ (0, p_1) \not\leq_{\text{gvw}} (\sigma_2, p_2), \ (\sigma_1, 0) \not\geqslant_{\text{gvw}} (\sigma_2, p_2).$

Лемма 4. Пусть $h_1, h_2 \in H, t \in \mathbb{T}$. Тогда $h_1 >_{\text{gvw}} h_2 \iff h_1 >_{\text{gvw}} th_2$.

Выводится из того, что умножение на t одного из сравниваемых отмеченных многочленов приводит к умножению на t обоих частей в определении $>_{\rm gvw}$.

Лемма 5. Пусть $h_1, h_2 \in H, \text{HM}(h_1) | \text{HM}(h_2), \text{HM}(h_2) \neq 0$. Тогда редукция h_2 по h_1 с сохранением сигнатуры возможна если и только если $h_1 >_{\text{gvw}} h_2$.

Следует из того что оба утверждения равносильны $\mathcal{S}(h_2) \succ_0 \mathcal{S}(h_1) \frac{\mathrm{HM}(h_2)}{\mathrm{HM}(h_1)}$.

Лемма 6. Пусть $h_1 \in H$ – результат редукции h'_1 с сохранением сигнатур по некоторому многочлену. Тогда $h_1 <_{\text{gvw}} h'_1$.

Следует из $\mathcal{S}(h_1) = \mathcal{S}(h_1')$ и уменьшения НМ при редукции: $\mathrm{HM}(h_1) \prec_0 \mathrm{HM}(h_1')$.

Лемма 7. Пусть $h_1 <_{\text{gvw}} h_2$ отмеченные многочлены. Тогда для любого отмеченного многочлена $h_3 \neq (0,0)$ выполняется по крайней мере одно из двух неравенств $h_1 <_{\text{gvw}} h_3$ и $h_3 <_{\text{gvw}} h_2$.

Из условия леммы известно, что

$$\operatorname{HM}(h_1) \mathcal{S}(h_2) \prec_0 \operatorname{HM}(h_2) \mathcal{S}(h_1) \tag{1.1}$$

откуда $\mathrm{HM}(h_2) \neq 0$, $\mathcal{S}(h_1) \neq 0$. Поэтому, если $\mathrm{HM}(h_3) = 0$, имеем $h_3 <_{\mathrm{gvw}} h_2$, а если $\mathcal{S}(h_3) = 0$ – то $h_1 <_{\mathrm{gvw}} h_3$. Иначе можно домножить неравенство (1.1) на ненулевой элемент $\mathrm{HM}(h_3)\,\mathcal{S}(h_3)$:

$$\operatorname{HM}(h_3) \mathcal{S}(h_3) \operatorname{HM}(h_1) \mathcal{S}(h_2) \prec_0 \operatorname{HM}(h_3) \mathcal{S}(h_3) \operatorname{HM}(h_2) \mathcal{S}(h_1).$$
 (1.2)

Поэтому $\mathrm{HM}(h_3)^2\,\mathcal{S}(h_2)\,\mathcal{S}(h_1)\in\mathbb{T}_0$ будет или \succ_0 левой или \prec_0 правой части неравенства (1.2), и после сокращения даст эквивалентное утверждению леммы неравенство.

2 Алгоритм

Вход: многочлены $\{g_1, \ldots, g_m\}$, образующие базис Грёбнера; многочлен f.

Переменные: R и B — подмножества H; $(\sigma,p')\in H$ — отмеченный многочлен текущего шага до редукции; (σ, p) – он же после редукции; r, b – элементы R и B

Результат: базис Грёбнера идеала $I = (g_1, \dots, g_m, f)$

SimpleSignatureGroebner($\{g_1, \ldots, g_n\}, f$)

- 1. $R \leftarrow \{(0, g_1), (0, g_2), \dots, (0, g_n)\}$
- 2. $B \leftarrow \{\}$
- 3. $(\sigma, p') \leftarrow (1, f)$
- 4. do forever:
 - (a) $p \leftarrow \text{ReduceCheckingSignatures}(\sigma, p', R)$
 - (b) $R \leftarrow R \cup \{(\sigma, p)\}$
 - (c) if $p \neq 0$:

i. for
$$\{r \in R | r <_{gvw} (\sigma, p), HM(r) \neq 0\}$$

A.
$$B \leftarrow B \cup \left\{ \frac{\text{LCM}(\text{HM}(r), \text{HM}(p))}{\text{HM}(r)} r \right\}$$

i. for
$$\{r \in R | r <_{\text{gvw}}(\sigma, p), \text{HM}(r) \neq 0\}$$
:
A. $B \leftarrow B \cup \{\frac{\text{LCM}(\text{HM}(r), \text{HM}(p))}{\text{HM}(r)}r\}$
ii. for $\{r \in R | r >_{\text{gvw}}(\sigma, p)\}$:
A. $B \leftarrow B \cup \{\frac{\text{LCM}(\text{HM}(r), \text{HM}(p))}{\text{HM}(p)}(\sigma, p)\}$

- (d) $B \leftarrow B \setminus \{b \in B | \exists r \in R, r <_{gvw} b \land \mathcal{S}(r) | \mathcal{S}(b)\}$
- (e) if $B \neq \emptyset$: $(\sigma, p') \leftarrow$ элемент B с \prec -минимальной сигнатурой
- (f) else: break
- 5. **return** $\{\text{poly}(r)|r \in R\}$

ReduceCheckingSignatures (σ, p, R)

- 1. do while $\exists r \in R | r >_{gvw} (\sigma, p) \land HM(r) | HM(p)$:
 - (a) $p \leftarrow$ редуцировать p с сохранением сигнатуры по $>_{\text{gvw}}$ -максимальному элементу r среди указанных в условии цикла
- 2. return p

Лемма 8. Все пары из $\mathbb{T}_0 \times P$ в алгоритме – элементы $H \setminus \{(0,0)\}$.

Элементы, формируемые до начала главного цикла являются рассмотренными выше примерами тривиальных отмеченных многочленов. Все остальные отмеченные многочлены в алгоритме формируются или умножением на $t \in \mathbb{T}$ или редукцией с сохранением сигнатуры, поэтому они корректны и лежат в H.

Условия циклов, расширяющих B, таковы, что в B нет ни нулевых сигнатур, ни нулевых старших мономов. Поэтому σ никогда не обращается в 0 и нулевые сигнатуры в R лишь у элементов $(0, g_1), (0, g_2), ..., (0, g_n)$. Нулевой старший моном может быть у любого многочлена, добавляемого в R, а нулевых многочленов с одновременно нулевой сигнатурой в R нет.

3 Остановка алгоритма

Пемма 9. В любой момент работы алгоритма любой отмеченный многочлен из В может быть редуцирован с сохранением сигнатуры по некоторому элементу R.

Отмеченные многочлены добавляются в B таким образом, чтоб иметь хотя бы один подходящий редуктор. При добавлении в первом цикле **for** редуктором является $(\sigma, p) \in R$, во втором $r \in R$.

Лемма 10. До редукции многочлена p', то есть на шаге 4а любой итерации алгоритма, сигнатуры элементов $\{r \in R | r <_{\text{gvw}} (\sigma, p')\}$ не делят σ .

На первой итерации алгоритма это выполняется, поскольку $\sigma=1$ и R не содержит элементы с сигнатурами, делящими 1. На последующих итерациях это выполнено, поскольку если бы в R существовали такие элементы, то (σ, p') был бы убран из B в предыдущей итерации на шаге 4d.

Лемма 11. После редукции многочлена p' до p, на шаге 4b любой итерации алгоритма, старшие мономы элементов $\{r \in R | r >_{\mathrm{gvw}} (\sigma, p)\}$ не делят $\mathrm{HM}(p)$.

Вытекает из того, что цикл в ReduceCheckingSignatures (σ, p, R) останавливается по достижении p, для которого такие элементы в R не существуют.

Пемма 12. После редукции многочлена p' до p, на шаге 4b любой итерации алгоритма, элементы R не могут одновременно иметь старшие мономы, делящие $\mathrm{HM}(p)$ и сигнатуры, делящие σ .

В силу леммы 9 будет произведена хотя бы одна редукция p', поэтому $(\sigma, p') >_{\text{gvw}} (\sigma, p)$. Отсюда по лемме 7 для $\forall r \in R$ имеем $r >_{\text{gvw}} (\sigma, p)$ или $r <_{\text{gvw}} (\sigma, p')$. Выполнение одного из неравенств позволяет применить одну из лемм 10 и 11.

Теорема 13. Описанный алгоритм останавливается на любых входных данных

Для доказательства остановки нужно показать, что все циклы **do** выполняются лишь конечное число раз. В ReduceCheckingSignatures (σ, p, R) при ненулевых p на каждой итерации $\mathrm{HM}(p)$ уменьшается относительно \prec_0 , что возможно лишь конечное число раз. При обнулении p он завершится в силу $<_{\mathrm{gvw}}$ -минимальности $(\sigma, 0)$.

На каждом шаге основного цикла пополняется множество $R \subset \mathbb{T}_0 \times P$. Оно может быть разбито как $R_{*0} \cup R_{0*} \cup R_{**}$, где $R_{*0} \subset \mathbb{T} \times \{0\}$, $R_{0*} \subset \{0\} \times P \setminus \{0\}$, $R_{**} \subset \mathbb{T} \times P \setminus \{0\}$. R_{0*} не пополняется в силу $\sigma \neq 0$. Для остальных рассмотрим идеалы моноидов: $L_{*0} = (\{\sigma | (\sigma, 0) \in R_{*0}\}) \subset \mathbb{T}$ и $L_{**} = (\{(\sigma, t) | \exists (\sigma, p) \in R_{**}, t = \mathrm{HM}(p)\}) \subset \mathbb{T} \times \mathbb{T}$. В силу леммы 12 добавляемые элементы расширяют на каждом шаге L_{*0} или L_{**} , что по лемме Диксона может происходить лишь конечное число раз.

4 Корректность

Определение 14. *S-представлением* $h \in H$ относительно множества $\{r_i\} \subset H$ будем называть выражение $h = \sum_j K_j t_j r_{i_j}, K_j \in k, t_j \in \mathbb{T}, i_j \in \mathbb{N}$, такое что $\forall j \text{ HM}(h) \succcurlyeq_0 \text{ HM}(t_j r_{i_j}), \mathcal{S}(h) \succcurlyeq_0 \mathcal{S}(t_j r_{i_j})$.

Следующее определение расширяет понятие S-базиса из работы Arri and Perry [1]:

Определение 15. Множество отмеченных многочленов называется S_{σ} -базисом, если относительно него любой допустимый отмеченный многочлен сигнатуры $\prec_0 \sigma$ имеет S-представление. Если S-представление имеет допустимый многочлен любой сигнатуры, то множество называется просто S-базисом.

Лемма 16. Если $R = \{r_i\}$ – S-базис, то R является базисом Γ рёбнера идеала I.

Вытекает из того что для $p \in I$ можно взять некоторый допустимый $h = (\sigma, p)$ в S-представлении которого найдётся r_{i_j} , такой что $\mathrm{HM}(p) = t_j \, \mathrm{HM}(r_{i_j})$.

Для доказательства корректности алгоритма будем доказывать следующую теорему, из которой будет следовать корректность ответа в момент остановки алгоритма, поскольку при $B=\emptyset$ её инвариант станет выполняться для всех многочленов.

Теорема 17. На каждой итерации алгоритма после шага 4d выполнен следующий инвариант: любой допустимый отмеченный многочлен, сигнатура которого \prec чем сигнатуры всех элементов B имеет S-представление относительно R.

Предположим, что утверждение теоремы неверно на определённой итерации алгоритма. Зафиксируем множества R и B на момент после шага 4d этой итерации, и все S-представления будем рассматривать относительно этого R. Пусть V — множество допустимых многочленов, для которых не выполняется инвариант, а $V_0 = \{v \in V | S(v) = \sigma_0\}$ — подмножество с минимальной сигнатурой. Все элементы I_0 имеют S-представления относительно $\{(0,g_1),(0,g_2),...,(0,g_n)\} \subset R$, поэтому $\sigma_0 \neq 0$. Выберем $v_0 = (\sigma_0,q_0) \in V_0$ — многочлен с наименьшим старшим мономом. Он не может быть редуцирован с сохранением сигнатуры относительно R, поскольку иначе результат его редукции v_1 являлся бы элементом V_0 с $\mathrm{HM}(v_1) \prec \mathrm{HM}(v_0)$.

Рассмотрим множество $\{r \in R | \mathcal{S}(r) | \sigma_0\}$. Поскольку $\sigma_0 \neq 0$, оно содержит добавленный на первой итерации элемент r с $\mathcal{S}(r) = 1$ и, значит, непусто. Рассмотрим его $<_{\mathrm{gvw}}$ -минимальный элемент r_0 и обозначим $t_0 = \frac{\sigma_0}{\mathcal{S}(r_0)}$. Предположим, что отмеченный многочлен $t_0r_0 = (\sigma_0, t_0p_0)$ может быть редуцирован с сохранением сигнатуры относительно некоторого $r_1 \in R$. Отсюда следует, что $r_1 >_{\mathrm{gvw}} r_0$, а также что они не нулевые. Значит на той же итерации, когда в R был добавлен последний из $\{r_0, r_1\}$, в множество B был добавлен многочлен $t'r_0$, где $t' = \frac{\mathrm{LCM}(\mathrm{HM}(r_1), \mathrm{HM}(r_0))}{\mathrm{HM}(r_0)}$, причём $t' | t_0$. Отсюда $\mathcal{S}(t'r_0) | \mathcal{S}(t_0r_0) = \sigma_0 \Rightarrow \mathcal{S}(t'r_0) \leqslant \sigma_0$. Поскольку σ_0 — сигнатура v_0 , для которого не выполняется инвариант, она \prec чем сигнатуры элементов B — то есть $t'r_0$ был выкинут на шаге 4d одной из итераций, что влечёт существование $r_2 \in R$, $r_2 <_{\mathrm{gvw}} t'r_0$, $\mathcal{S}(r_2) | \mathcal{S}(t'r_0)$. Это невозможно, поскольку влечёт $r_2 <_{\mathrm{gvw}} r_0$, $\mathcal{S}(r_2) | \mathcal{S}(t_0r_0) = \sigma_0$, что противоречит $<_{\mathrm{gvw}}$ -минимальности r_0 .

Таким образом показано, что $t_0r_0=(\sigma_0,t_0p_0)$ и $v_0=(\sigma_0,q_0)$ не могут быть редуцированы относительно R с сохранением сигнатуры, при этом первый из них имеет тривиальное S-представление t_0r_0 , а второй не имеет S-представления. Из допустимости следует, что их разность $w=(\sigma_1,q_0-Kt_0p_0)$ с некоторым коэффициентом $K\in k$ есть допустимый многочлен сигнатуры $\sigma_1\prec\sigma_0.$ $w\not\in V$ в силу малости сигнатуры и имеет S-представление $w=\sum_j K_jt_jr_{i_j}.$ Значит $\exists j|\operatorname{HM}(t_jr_{i_j})=\operatorname{HM}(w),\mathcal{S}(t_jr_{i_j})\preccurlyeq \mathcal{S}(w)=\sigma_1\prec\sigma_0.$ Если бы $\operatorname{HM}(w)\in\{\operatorname{HM}(v_0),\operatorname{HM}(t_0r_0)\},$ то r_{i_j} был бы сохраняющим сигнатуру редуктором для v_0 или t_0r_0 , что невозможно. Значит старшие мо-

номы сокращаются при вычитании, то есть $\mathrm{HM}(v_0) = \mathrm{HM}(t_0 r_0)$. Отсюда выводим S-представление: $v_0 = K t_0 r_0 + \sum_j K_j K t_j r_{i_j}$. Противоречие.

4.1 Связь с аналогами

Представленный алгоритм связан с двумя уже известными алгоритмами, основанных на сигнатурах — алгоритм G2V из работы Gao et al. [4] и версию F5, опубликованную в работе Arri and Perry [1]. Оба они в определённом смысле являются модификациями простого F5, впервые представленного в работе Faugère [3], причём модификации направлены на сокращение числа редукций многочленов, занимающих большую часть времени в процессе вычисления базисов Грёбнера. Первый из них отличается от немодифицированной версии тем, что не использует явного вычисления S-полиномов до проведения редукции и вводит специальный критерий «super-topreducible» для отбрасывания некоторых многочленов после их редукции. Второй применяет расширенный критерий, отбрасывая до редукции те из посчитанных S-полиномов, которые не смогут удовлетворять критерию «primit ve S-irreducble» после редукции. Эти методики позволяют ускорить работу алгоритма, однако в обоих случаях в определённый момент отбрасывается многочлен, полученный в процессе предыдущих вычислений путём редукции или создания S-полинома.

Практически во всех алгоритмах, основанных на сигнатурах, в том числе в исходном алгоритме F5 применяется и более эффективный тип критериев: критерии отбрасывания S-пар, не требующие вычислений с многочленами для своей проверки – их отличия в различных алгоритмах подробно разобраны в работе Eder and Perry [2]. Однако вопрос об их сравнительной эффективности остаётся неясным как с теоретической, так и с эмпирической точек зрения – на различных примерах большее или меньшее преимущество могут иметь различные подходы.

В алгоритме SimpleSignatureGroebner используется подход, который можно интерпретировать как объединение всего вышеуказанного: S-полиномы не вычисляются явно и их отбрасывание осуществляется на основе критерия, записываемого в точности как критерий второго алгоритма. При этом для проверки на шаге 4d элемента B достаточно знать лишь его сигнатуру и старший моном. Поскольку каждый элемент B получается как домноженный на моном m элемент $r \in R$ их можно хранить в виде пары (m,r), не выполняя без необходимости операции домножения всего многочлена на моном. Таким образом, для отброшенных элементов B не производится никаких операций, сложность которых пропорциональна длине многочлена. Заметим, что применяемое во втором алгоритме вычисление старшего монома Sпары в общем случае напротив имеет именно такую сложность. Таким образом, возможна реализация алгоритма SimpleSignatureGroebner, в которой все операции над многолченами производятся лишь для многочленов, попадающих в результирующее множество. Результирующее множество не является минимальным базисом Грёбнера, но при этом в определённом смысле минимально. Это минимальное множество, удовлетворяющее определению S-базиса.

Отсюда можно сделать вывод о некоторой полноте критериев отбрасывания: не может существовать критерия, который бы позволил убрать какие-либо операции редукции многочленов из алгоритма не добавив новых редукций и не лишив результат свойства быть базисом S-представлений. Из доказательств корректности многих алгоритмов, основанных на сигнатурах следует что их результат содержит такое

множество, поэтому представленный алгоритм является в указанном смысле оптимальным алгоритмом, находящим минимальный базис S-представлений для последовательности идеалов, расширяемых одним многочленом на каждом шаге.

Эта оптимальность не глобальна — могут существовать более эффективные модификации алгоритма, которые не просто убирают вычисления, а заменяют одни вычисления над полиномами другими. К примеру, вопрос наиболее эффективного способа выбора редуктора в процедуре Редуцировать _ с _ учётом _ сигнатур является открытым. Представленный способ выбора, основанный на < gvw - сравнении наиболее близок к способу выбора, применявшегося в оригинальном алгоритме F5.

Алгоритм был реализован на C++ с использованием функций ядра программного комплекса Singular 3-1-4 и открытых наработок Christian Eder по реализации F5-подобных алгоритмов на этом ядре. Исходный код реализации содержится в функции ssg файла, доступного по адресу https://github.com/galkinvv/Singular-f5-like/blob/ssg/kernel/kstd2.cc

Сравнение реализации с другими алгоритмами вычисления базисов Грёбнера, реализованных Christian Eder подтвердили следующие теоретические соображения:

- Алгоритм SimpleSignatureGroebner корректно вычисляет базис Грёбнера
- Возвращаемое множество содержит не большее число многочленов, чем множество возвращаемое другими инкрементальными алгоритмами, про которые известно, что они возвращают S-представление
- Время работы алгоритма оказывается несколько меньше, чем у других инкрементальных алгоритмов, основанных на сигнатурах.

Список литературы

- [1] Alberto Arri and John Perry. The f5 criterion revised. *J. Symb. Comput.*, 46(9): 1017–1029, sep 2011. ISSN 0747-7171.
- [2] Christian Eder and John Edward Perry. Signature-based algorithms to compute gröbner bases. In *Proceedings of the 36th international symposium on Symbolic and algebraic computation*, ISSAC '11, pages 99–106, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0675-1.
- [3] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases without reduction to zero (f5). In *Proceedings of the 2002 international symposium on Symbolic and algebraic computation*, ISSAC '02, pages 75–83, New York, NY, USA, 2002. ACM. ISBN 1-58113-484-3.
- [4] Shuhong Gao, Yinhua Guan, and Frank Volny, IV. A new incremental algorithm for computing groebner bases. In *Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation*, ISSAC '10, pages 13–19, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0150-3.