TP3 : Estimation de densité

Préparation:

1) Pour montrer que la translation de K par la constante μ , $\tau_{\mu} K$ est encore un noyau statistique, il faut vérifier que $\tau_{\mu} K$ est une fonction continue, symétrique et positive, et que l'intégrale de $\tau_{\mu} K$ sur R est égale à 1.

On a:

- Continuité : τ_μK est continue car K est continue.
- Symétrie : τ_μK est symétrique car K est symétrique.
- Positivité : τ_μK est positive car K est positive.
- Normalisation : en utilisant le changement de variable $y = x \mu$, on a $\int \tau_{\mu} K(x) dx = \int K(x \mu) dx = 1$ (car K est un noyau statistique).x

Donc Tuk est normalisé et est donc un noyau statistique.

2) Pour montrer que $d_{\lambda}K$ est encore un noyau statistique, il faut vérifier les mêmes conditions que pour $\tau_{\mu}K$.

On a:

- Continuité : d_{\(\lambda\)}K est continue car K est continue.
- Symétrie : $d_{\lambda}K$ est symétrique car K est symétrique.
- Positivité: pour tout x, $d_{\lambda}K(x) = (1/\lambda)*K(x/\lambda)$ est positif car K est positif et λ est non nul.
- Normalisation : $\int d_{\lambda}K(x) dx = \int (1/\lambda)^*K(x/\lambda) dx = (1/\lambda) \int K(y) dy$ (en posant $y = x/\lambda$) = 1 (car K est un noyau statistique) donc $d_{\lambda}K$ est normalisé.

Donc $d_{\lambda}K$ est bien un noyau statistique.

- 3) Pour montrer que $K = 1/2 * 1_{[-1,1]}(x)$ est un noyau statistique, il faut vérifier les conditions suivantes :
 - Continuité : K est continue car c'est une fonction en escalier.
 - Symétrie : K est symétrique car 1_[-1,1] est symétrique.
 - Normalisation: $\int K(x) dx = \int 1/2 * 1_{[-1,1]} dx = 1/2 * 2 = 1$ donc K est normalisé.
 - Positivité: K est positif car il est défini comme une multiplication d'une fonction en escalier positive (1_[-1,1]) par une constante positive (1/2).

Donc K est bien un noyau statistique.

Bretagnolles Mathieu, Peloutier Yannis

- 4) Pour montrer que $K(x) = (1 |x|)1_{[-1,1]}$ est un noyau statistique, il faut vérifier les conditions suivantes :
 - Continuité : K est continue car c'est une fonction polynomiale.
 - Symétrie : K est symétrique car |x| est une fonction symétrique.
 - Normalisation: $\int K(x) dx = \int (1-|x|)1_{[-1,1]} dx = 2 * \int (1-x)1_{[0,1]} dx = 2 * (1/2) = 1.$

Donc K est normal.

- 5) Le noyau d'Epanechnikov <u>est un noyau statistique</u> car il satisfait les conditions suivantes :
 - K est une fonction continue sur R.
 - K est positive sur R.
 - K est intégrable sur R, c'est-à-dire que l'intégrale de K sur R converge.
 - L'intégrale de K² sur R est finie.
- 6) Le noyau gaussien est un noyau statistique car il satisfait les conditions suivantes :
 - K est une fonction continue sur R.
 - K est positive sur R.
 - K est intégrable sur R, c'est-à-dire que l'intégrale de K sur R converge.
 - L'intégrale de K² sur R est finie.

De plus, le noyau gaussien est largement utilisé en pratique car il a des propriétés statistiques intéressantes, telles que sa capacité à s'adapter à des distributions de densité de probabilité très différentes.

- 7) Pour montrer que f_h est une densité de probabilité, il faut vérifier les deux propriétés suivantes :
 - f_h est positive sur R, c'est-à-dire que pour tout $x \in R$, $f_h(x) \ge 0$.
 - L'intégrale de f_h sur R est égale à 1, c'est-à-dire que $\int R f_h(x) dx = 1$.

La positivité de f_h découle directement de la positivité du noyau K et de la constante h. En effet, pour tout $x \in R$, $f_h(x) \ge 0$ car dh > 0 et K est positif sur R.

Pour montrer que l'intégrale de f_h sur R est égale à 1, on peut écrire :