Supplemental Information

- **Table S1.** 38 RiPPs discovered by MetaMiner, related to Figure 2.
- **Table S2.** 31 known RiPPs identified by MetaMiner, related to Figure 2.
- **Table S3.** List of RiPP modifications considered in this paper, related to Figure 1.
- Figure S1. Comparison of performance of MetaMiner in all-ORF and motif-ORF modes, related to Figure 1.
- Figure S2. Identification of informatipeptin B, related to Figure 2.
- Figure S3. Identification of Compound CNT360-1769, related to Figure 2.
- Figure S4. Identification of Compound Svirid-1645, related to Figure 2.
- Figure S5. Identification of Compound Bac-ISS-2196, related to Figure 2.
- Figure S6. Identification of Cyanobactin X, related to Figure 2.
- **Figure S7.** Identification of wewakazole, related to Figure 2.
- Figure S8. Identification of AIP-III from HUMAN-CF dataset, related to Figure 2.
- Figure S9. Identification of delta-toxin from HUMAN-iso dataset, related to Figure 2
- Figure S10. Identification of Mec-PSM from HUMAN-CF dataset, related to Figure 2.
- Figure S11. Identification of delta-hemolysin from HUMAN-CF dataset, related to Figure 2.
- Figure S12. Identification of delta-hemolysin-W-R from HUMAN-CF dataset, related to Figure 2.
- **Figure S13.** Identification of PSM-beta from HUMAN-CF dataset, related to Figure 2.
- **Figure S14.** Identification of PSM-2147 from HUMAN-iso dataset, related to Figure 2.
- Figure S15. High Resolution Mass Spectrum of Wewakazole, related to Figure 2.
- Figure S16. ¹H-¹³C HSQC NMR spectrum of Wewakazole in CDCl₃ at 600MHz, related to Figure 2.
- Figure S17. ¹H-¹³C HMBC NMR spectrum of Wewakazole in CDCl₃ at 600MHz, related to Figure 2.
- **Figure S18.** ¹H NMR spectrum of Wewakazole in CDCl₃ at 500MHz, related to Figure 2.
- **Figure S19.** LC-MS/MS spectrum of Wewakazole, related to Figure 2.
- Figure S20. LC-MS chromatogram of Wewakazole, related to Figure 2.
- Figure S21. ECCD spectrum of Wewakazole in MeOH, related to Figure 2.

Table S1. 38 RiPPs discovered by MetaMiner, related to Figure 2. MetaMiner identified 31 known and discovered seven unknown RiPPs in STANDARD, ACTI, BACIL, SPACE, SPONGE, CYANO, HUMANiso and HUMAN-CF datasets at 1% FDR threshold for each dataset. All identified RiPPs are linear except for cyclic cyanobactins. The unknown RiPPs are shown in bold. The mode stands for the mode of discovery. The "A" mode stands for RiPPs discovered by the antiSMASH motif search, the "B" mode stands for RiPPs discovered by the BOA search, and the "E" mode stands for RiPPs discovered by exhaustive search (all-ORF mode of MetaMiner). Overall, 11 out of 38 RiPPs are predicted by antiSMASH motif search, 8 by BOA search, and 21 only with exhaustive search.

STANDRAD Inthipspeptides SVAGGGBIOTICS/GAGGTSCGTINCTAC EA 3 · 10 ⁻⁶¹ P. memius prochisoros (Taga and van der Donk, 2012)	Dataset	RiPP class	core peptide	mode	p-value	strain	reference
STANDRAD	STANDRAD	lanthipeptides	SVAGGGRIDTCPAGGGTSEQTGTCC	EA	3 · 10 ⁻⁴⁷	P. marinus	prochlorosin (Tang and van der Donk, 2012)
STANDRAD Ianthipeptides	STANDRAD	lanthipeptides	LEAASGGGDTGIQAVLHTAGCYGGTKMCRA	EA	1 · 10-40	P. marinus	prochlorosin (Tang and van der Donk, 2012)
STANDRAD Jenthieppeldes	STANDRAD	lanthipeptides	GAAGGCCITGESPGSAPTNDYKCTKGRGPGGCY	EA	1 · 10 -30	P. marinus	prochlorosin (Tang and van der Donk, 2012)
STANDRAD phrocion GIGRACCAMUNICASGOTICGGGGNACQNYRQCR EB 1 - 10 ¹⁷ 8 _ subtiles subtancin (Paik et al., 1988)	STANDRAD	lanthipeptides	GVAGGGGCDGIRITDKQTVADNTIVPCSCFHQ	EA	1 · 10 -26	P. marinus	prochlorosin (Tang and van der Donk, 2012)
STANDRAD Ianthipepides	STANDRAD	lanthipeptides	VSPQSTIVCVSLRICNWSLRFCPSFKVRCPM	E	3 · 10 ⁻²⁴	G. thermodenitrificans	geobacillin (Garg et al., 2012)
STANDRAD	STANDRAD	glycocins	GLGKAQCAALWLQCASGGTIGCGGGAVACQNYRQFCR	EB	1 · 10 ⁻¹⁷	B. subtilis	sublancin (Paik et al., 1998)
STANDRAD	STANDRAD	lanthipeptides	TTWPCATVGVSVALCPTTKCTSQC	EB	2 · 10 ⁻¹⁷	B. halodurans	haloduracin (McClerren et al., 2006)
STANDRAD	STANDRAD	lanthipeptides	KGGSGVIHTISHECNMNSWQFVFTCCS	EB	1 · 10-14	L. lactis	lacticin 481 (Rince et al., 1994)
STANDRAD	STANDRAD	lanthipeptides	AVEQRATPATPWLIKASYVVSGAGVSFVASYITVN	E	6 · 10 ⁻²¹	B. cereus	bicereucin alpha (Huo and van der Donk, 2016)
STANDRAD	STANDRAD	lanthipeptides	AVEQRATPTLATPLTPHTPYATYVVSGGVVSAISGIFSNNKTCLG	EA	8 · 10 ⁻¹⁴	B. cereus	bicereucin beta (Huo and van der Donk, 2016)
STANDRAD	STANDRAD	lanthipeptides	NITGAGSTIQCVNTTIGTILSVVFDCCPTSACTPPCRF	E	5 · 10 ⁻⁵⁵	R. flavefaciens	flavecin A2.d (Zhao and van der Donk, 2016)
STANDRAD Ianthipeptides TIVGAGSTLPCAEVVITYGINKATTGFDWCPTGACTHSCRF E 2 · 10 * 7	STANDRAD	lanthipeptides	NMAGAGSPLTVTITGLIVAATTGFDWCPTGACTYSCRV	E	9 · 10 -44	R. flavefaciens	flavecin A2.b (Zhao and van der Donk, 2016)
STANDRAD lanthipeptides TTVGAGSSNDCADLILKITGVVVSATSKFDWCPTGACTTSCRF E 3-10 ⁻¹⁵ R, flowefociens flavecin A2.c (Zhao and van der Donk, 2016) STANDRAD lanthipeptides KOTIVCTIAGGTVGCLVSYGIGLONGGYCCTTVTCCSXTCNK EB 8-10 ⁻¹⁵ R, flowefociens flavecin A2.c (Zhao and van der Donk, 2016) STANDRAD lanthipeptides MFDDSVVGAWGYTTYWGILPLVTKNPQICPVSENTVKCRLL E 1-10 ⁻¹⁷ R, flowefociens flavecin A2.c (Zhao and van der Donk, 2016) STANDRAD lanthipeptides SNViGGTSSIDCVRLANTPGGTVNLTVRIECPSAACTYCRLL E 1-10 ⁻¹⁷ R, flowefociens flavecin A2.c (Zhao and van der Donk, 2016) ACTI linaridins ATPAVAQFVIQGSTICLVC EB 3-10 ⁻¹⁸ S, griseus grisemycin (Claesen and Bibb, 2011; Kersten et al., 2011) ACTI lanthipeptides TGSQVSLUCEYSSLSVVLCTP EAB 4-10 ⁻¹⁹ S, griseus Amf5 (Ueda et al., 2002) ACTI lanthipeptides TVTVCSPTGTLGSCSSMGTRGCC EA 9-10 ⁻¹⁹ S, roseosporous SRO-3108 (Kersten et al., 2011) ACTI lanthipeptides ASTYSLLSCISASVLLCL(-64Da) EA 2-10 ⁻¹⁹ S, viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSRASLLGGDSSLSTTCN EAB 6-10 ⁻¹¹ S, colliculor SapB (Kodani et al., 2004) ACTI lanthipeptides TGSRASLLCGDSSLSTTCN EAB 6-10 ⁻¹¹ S, colliculor SapB (Kodani et al., 2004) ACTI lanthipeptides DGGGASTYSLSCYSAGSVLCV EA 9-10 ⁻¹⁹ S, viridochromogenes (Informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides DGGGSLGTCVLTOVYC EA 9-10 ⁻¹¹ S, viridochromogenes Compound Svirid-1645 (Figure S3) ACTI lanthipeptides TGGCSSLGTVLGTVVC EA 9-10 ⁻¹¹ S, viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCTTAGVTVSASLCPTTKCTSRC EB 2-10 ⁻¹¹ S, viridochromogenes Compound Svirid-1645 (Figure S5) SPACE lanthipeptides DATITYTYTSTSTNASTVSNHC(-87Da) E 3-10 ⁻¹⁹ S and 10 ⁻¹⁹ S and	STANDRAD	lanthipeptides	TTGGASTVNTVGIHTTYLISKGLQNCPLKPTTILPILPRK	E	2 · 10 ⁻³⁹	R. flavefaciens	flvecin A2.a (Zhao and van der Donk, 2016)
STANDRAD lanthipeptides KQTIVCTIAQGTVGCLVSYGLGNGGYCCTYTVECSKTCNK EB 8 · 10 ⁻²³ R. flovefaciens flavetin A1 (Zhao and van der Donk, 2016) STANDRAD lanthipeptides MFDDSVVGAVGTTYWGIPLVTKNPCICPVSENTVCKRLL E 1 · 10 ⁻²³ R. flovefaciens flavetin A2 h. (Zhao and van der Donk, 2016) STANDRAD lanthipeptides SNVIGGTSSIDCVLASANTPEGTVNLTVRIEFCPSAACTYSCRL E 4 · 10 ⁻²³ R. flovefaciens flavetin A2 h. (Zhao and van der Donk, 2016) ACTI lianthipeptides SNVIGGTSSIDCVLASANTPEGTVNLTVRIEFCPSAACTYSCRL E 4 · 10 ⁻²³ R. flovefaciens flavetin A2 h. (Zhao and van der Donk, 2016) ACTI lanthipeptides TGSQVSLIVCEYSSLSVVLCTP EAB 4 · 10 ⁻²³ S. griseus grisenvini (Claesen and Bibb, 2011; Kersten et al., 2011) ACTI lanthipeptides TVTVCSPTGTLCGSCSMGTRGCC EA 9 · 10 ⁻¹² S. griseus Am5 (Ueda et al., 2002) ACTI lanthipeptides ATSVILLSGASSVLLQL(-640a) EA 2 · 10 ⁻¹³ S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides ASTVSLLSGASSVLLQL(-640a) EA 2 · 10 ⁻¹³ S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides GGGASTVSLLSCVSAGSVLLQV EA 5 · 10 ⁻¹² S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides GGGASTVSLLSCVSAGSVLLQV EA 5 · 10 ⁻¹² S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides DTGGCSGLTVILVTVVC EA 9 · 10 ⁻¹³ Streptomyces sp. CNT360 Compound Svirid-1645 (Figure S3) ACTI lassopeptide LIGHRONDRILISKN(-590a) E 5 · 10 ⁻¹³ S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCTAGYTVSASLCPTTKCTSRC EB 2 · 10 ⁻¹⁴ S. lichenlgris ES-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATTTYTYTSTSWASTVSANC(-870a) E 3 · 10 ⁻¹² S. solidus sp. ISSFN-3F Compound Svirid-1645 (Figure S4) BYONGE proteusins Tigicov/Lava/Cachanaticachan	STANDRAD	lanthipeptides	TTVGAASTLPCAEVVVTVTGIIVKATTGFDWCPTGACTHSCRF	E	2 · 10-27	R. flavefaciens	flavecin A2.g (Zhao and van der Donk, 2016)
STANDRAD lanthipeptides MFDSVVGAVGYTTYWGILPLYTKNPQICPVSENTVKCRLL E 1 · 10 · 12 R. flovefaciens flavecin A2.f (Zhao and van der Donk, 2016) STANDRAD lanthipeptides SNIVGGTSSIDCVRLASNTPGGTVNLTVRIEFCPSAACTYSCRL E 4 · 10 · 12 R. flovefaciens flavecin A2.f (Zhao and van der Donk, 2016) ACTI linaridins ATPAVAQFVIQGSTICLVC EB 3 · 10 · 12 S. griseus grisemycin (Claesen and Bibb, 2011; Kersten et al., 2011) ACTI lanthipeptides TGSQVSLUCYESSLSVLCTP EAB 4 · 10 · 12 S. griseus AmfS (Ueda et al., 2002) ACTI lanthipeptides TVTVCSPTGTLCGSCSMGTRGCC EA 9 · 10 · 12 S. griseus AmfS (Ueda et al., 2001) ACTI lanthipeptides ASTYSLLSCISAASVLCL(-64Da) EA 2 · 10 · 13 S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSAASLLLCGDSSLSTITCN EAB 6 · 10 · 12 S. coelicolor Sapl (Korsten et al., 2014) ACTI lanthipeptides GGGASTYSLLSCVSAGSVLCV EA 5 · 10 · 12 S. coelicolor Sapl (Kodani et al., 2004) ACTI lanthipeptides DTGGCSGLCTVLCVTVVC EA 5 · 10 · 12 S. cotilyo informatipeptin (Regue S2) ACTI lanthipeptides DTGGCSGLCTVLCVTVVC EA 9 · 10 · 12 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lastopeptides LLGRHGORRILLSKN(-59Da) E 5 · 10 · 13 Streptomyces sp. CNT360 Compound Svirid-164S (Figure S4) BACILL lanthipeptides TTPATTSSWTCTIAGVTVASACCPTTKCTSRC EB 2 · 10 · 14 S. licheniforis ES-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITYTYTSTSWATSTSNNC(-87Da) E 3 · 10 · 10 · 28 Bellius sp. ISSR-3 E Compound Swirid-164S (Figure S6) SPONGE proteusins TGIGVVAVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNINNQTT E 1 · 10 · 22 S. epidermidis 1457 delta-toxin (Figure S6) CYANO Cyanobactins Cyclic(ISNAGVLIP) E 2 · 10 · 10 · 22 S. epidermidis 1457 delta-toxin (Figure S6) (Note and Kapral, 1981) HUMAN-CF phenol-soluble modulins MADDISTIGDLVKR E 1 · 10 · 22 S. aureus VVPO029 API-II (Figure S10) (Right et al., 2003) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E E 1 · 10 · 27 S. aureus VVPO045 delta-hemolysin (Figure S11) (Fitton et al., 1980)	STANDRAD	lanthipeptides	TTVGAGSSNDCADLILKITGVVVSATSKFDWCPTGACTTSCRF	E	3 · 10 ⁻²⁵	R. flavefaciens	flavecin A2.c (Zhao and van der Donk, 2016)
STANDRAD Ianthipeptides SNVIGGTSSIDCVRLASNTPEGTVNLTVRIEFCPSAACTYSCRL E 4 · 10 ⁻³² R. flavefaciens flavecin A2.h (Zhao and van der Donk, 2016) ACTI Ilnaridins ATPAVAQFVIQGSTICLVC EB 3 · 10 ⁻³⁸ 5, griseus grisemycin (Claesen and Bibb, 2011; Kersten et al., 2011) ACTI Ianthipeptides TGSQVSLLVCEYSSLSVLCP EAB 4 · 10 ⁻³² 5, griseus AmfS (Ueda et al., 2002) ACTI Ianthipeptides TVTVCSPTGTLGSCSMGTRGCC EA 9 · 10 ⁻³² 5, orseosporous SRO-3108 (Kersten et al., 2011) ACTI Ianthipeptides ASTVSLISCISAASVLLCL(-64Da) EA 2 · 10 ⁻³⁴ 5, viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI Ianthipeptides TGSRASLLICGDSSLSTTON EAB 6 · 10 ⁻¹¹ 5, coelicolor SapB (Kodani et al., 2004) ACTI Ianthipeptides DTGGCSGLCTVLVCTVIVC EA 9 · 10 ⁻¹¹ 5, terture of transporters Compound CNT360-1769 (Figure S3) ACTI Iastopeptide LIGRHGNDRLISKNI-590a) E 5 · 10 ⁻³¹ 5, viridochromogenes Compound CNT360-1769 (Figure S3) ACTI	STANDRAD	lanthipeptides	KQTIVCTIAQGTVGCLVSYGLGNGGYCCTYTVECSKTCNK	EB	8 · 10 ⁻²⁵	R. flavefaciens	flavecin A1 (Zhao and van der Donk, 2016)
ACTI linaridins ATPAVAQFVIQGSTICLVC EB 3 · 10 ° k S. griseus grisemycin (Claesen and Bibb, 2011; Kersten et al., 2011) ACTI lanthipeptides TGSQVSLIVECYSSLSWICTP EAB 4 · 10 ° ½ S. griseus AmfS (Ueda et al., 2002) ACTI lanthipeptides TVYCSPTGTLCGSCSMGTRGCC EA 9 · 10 ° ½ S. oseosporous SRO-3108 (Kersten et al., 2011) ACTI lanthipeptides ASTSLLSCISAASVLLCL(-64Da) EA 2 · 10 ° ½ S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSRASILLGOSSLSTITON EAB 6 · 10 ° ½ S. coelicolor Sap8 (Kodani et al., 2004) ACTI lanthipeptides GGGASTVSLISCVSAGSVILCV EA 5 · 10 ° ½ S. catilya informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLCTIVLYCTIVIC EA 9 · 10 ° ½ S. catilya informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLCTIVLXCTIVIC EA 9 · 10 ° ½ S. viridochromogenes Compound Nario-1645 (Figure S3) ACTI lanthipeptides DTGGCSGLCTIVLYCTIVIC	STANDRAD	lanthipeptides	MFDDSVVGAVGYTTYWGILPLVTKNPQICPVSENTVKCRLL	E	1 · 10-17	R. flavefaciens	flavecin A2.f (Zhao and van der Donk, 2016)
ACTI lanthipeptides TGSQVSLLVCEYSSLSVVLCTP EAB 4 · 10 · 12 S. griseus AmfS (leda et al., 2002) ACTI lanthipeptides TVTVCSPTGTLCGSCSMGTRGCC EA 9 · 10 · 12 S. roseosporous SRO-3108 (Kersten et al., 2011) ACTI lanthipeptides ASTVSLLSCISAASVLLCL(-64Da) EA 2 · 10 · 14 S. viridochromagenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSRASLLLCGDSSLSITTCN EAB 6 · 10 · 11 S. viridochromagenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides GGGASTVSLSCVSAGSVILCV EA 5 · 10 · 12 S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides DTGGCSGLCTVLVCTVIVC EA 5 · 10 · 12 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lassopeptide LLGRHGNDRLILSKN(-S9Da) E 5 · 10 · 13 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S4) BACIL lanthipeptides TPATTSSWTCTAGOTVSASLCPTTKCTSRC EB 2 · 10 · 14 B. lichenjforis ES-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITYTVTSTSIWASTVSNHC(-87Da) E 3 · 10 · 35 Bacillus sp. ISSFR-3F Compound Bar-13S-2136 (Figure S5) SPONGE proteusins TGIGVVAVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT E 1 · 10 · 30 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·	STANDRAD	lanthipeptides	SNVIGGTSSIDCVRLASNTPEGTVNLTVRIEFCPSAACTYSCRL	E	4 · 10 -17	R. flavefaciens	flavecin A2.h (Zhao and van der Donk, 2016)
ACTI lanthipeptides TVTVCSPTGTLCGSCSMGTRGCC EA 9 · 10 · 12 S. roseosporous SRO-3108 (Kersten et al., 2011) ACTI lanthipeptides ASTVSLLSCISAASVLLCL(-64Da) EA 2 · 10 · 13 S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSRASLLCGDSSLSITTCN EAB 6 · 10 · 11 S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides GGGASTVSLLSCVSAGSVILCV EA 5 · 10 · 12 S. cotilva informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLCTVLVCTVIVC EA 9 · 10 · 12 S. cotilva informatipeptin B (Figure S3) ACTI lassopeptide LLGRHONDRILISKN(-59Da) E 5 · 10 · 11 S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 · 12 S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides DATITYTVTSTSWASTVSNHC(-87Da) E 3 · 10 · 12 S. viridochromogenes Compound Svirid-1645 (Figure S4) SPONGE proteusins TGIGVVVAVVAQAVAVTAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT E 1 · 10 · 25 T. swinhoel symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO Cyanobactins Cyclic(ISMPGVIP) E 2 · 10 · 27 PNG22APR06-1 Cyanobactin X (Figure S5) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MADIISTIGDLVKWIIDTVNK E 1 · 10 · 27 S. epidermidis 11228 PSM-2147 (Figure S1) (Nogle et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 · 3 S. aureus VVPO045 delta-hemolysin-Wa F (Figure S11) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW	ACTI	linaridins	ATPAVAQFVIQGSTICLVC	EB	3 · 10 ⁻³⁶	S. griseus	grisemycin (Claesen and Bibb, 2011; Kersten et al., 2011)
ACTI lanthipeptides ASTVSLLSCISAASVILCL(-64Da) EA 2 · 10 · 18 S. viridochromogenes informatipeptin (Mohimani et al., 2014) ACTI lanthipeptides TGSRASLLICGDSSLSITTCN EAB 6 · 10 · 12 S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides GGGASTVSLSCVSAGSVILCV EA 5 · 10 · 12 S. cattlya informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLTVLVCTVIVC EA 9 · 10 · 11 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lassopeptide LLGRHGNDRILISKN(-59Da) E 5 · 10 · 13 S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITACVTVSASLCPTTKCTSRC EB 2 · 10 · 14 B. licheniforis ES-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITTVTYTSTSIWASTVSNHC(-87Da) E 3 · 10 · 15 Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGIGVVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT E 1 · 10 · 20 T. swinhoel symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISAPPOVTTSFP) E 2 · 10 · 12 PMG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPOVTTSFP) E 2 · 10 · 12 PMG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MADIISTIGDLVKWIIDTVNK E 1 · 10 · 23 S. epidermidis 1457 delta-toxin (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKWI E 6 · 10 · 10 · 3 S. aureus VVP0029 AIP-III (Figure S9)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E E 6 · 10 · 10 · 3 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E E 1 · 10 · 27 S. aureus VVP0045 delta-hemolysin (Figure S12)	ACTI	lanthipeptides	TGSQVSLLVCEYSSLSVVLCTP	EAB	4 · 10-12	S. griseus	AmfS (Ueda et al., 2002)
ACTI lanthipeptides TGSRASILLCGDSSLSITTCN EAB 6 · 10 · 11 S. coelicolor SapB (Kodani et al., 2004) ACTI lanthipeptides GGGASTVSLSCVSAGSVILCV EA 5 · 10 · 12 S. cattlya informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLCTVLCTVIVC EA 9 · 10 · 11 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lassopeptide LLGRHGNDRULSKN(-59Da) E 5 · 10 · 11 S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 · 14 B. licheniforis ES-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITTVTSTSIWASTVSNHC(-87Da) E 3 · 10 · 25 Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGGVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTI E 1 · 10 · 20 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISNGYLIP) E 2 · 10 · 21 PNG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 · 22 PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MADIISTIGDLVKWIIDTVNK E 1 · 10 · 23 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKWI E E 4 · 10 · 3 S. aureus VVPO029 AIP-III (Figure S9)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E E 6 · 10 · 3 S. aureus VVPO033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW	ACTI	lanthipeptides	TVTVCSPTGTLCGSCSMGTRGCC	EA	9 · 10-12	S. roseosporous	SRO-3108 (Kersten et al., 2011)
ACTI lanthipeptides GGGASTVSLISCVSAGSVILCV EA 5 · 10 ⁻¹² S. cattlya informatipeptin B (Figure S2) ACTI lanthipeptides DTGGCSGLCTVLCTVIVC EA 9 · 10 ⁻¹³ Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lassopeptide LLGRIGADRILISKIN(-S9Da) E 5 · 10 ⁻³¹ S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 ⁻¹⁴ B. licheniforis E5-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITTVTVSTSIWASTVSNHC(-87Da) E 3 · 10 ⁻²⁵ Bacillus sp. ISSFR-3F Compound Bac-tS5-2196 (Figure S5) SPONGE proteusins TGIGVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMQTT E 1 · 10 ⁻²⁶ T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISNGYLIP) E 2 · 10 ⁻²⁷ PNG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 ⁻²⁷ PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MADIISTIGDLVKWIIDTVNK E 1 · 10 ⁻²⁷ S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-CF phenol-soluble modulins MADIISTIGDLVKWIIDTXCA E 6 · 10 ⁻⁴⁷ S. aureus VVP0029 AIP-III (Figure S9)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E E 6 · 10 ⁻⁴⁷ S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW	ACTI	lanthipeptides	ASTVSLLSCISAASVLLCL(-64Da)	EA	2 · 10 -18	S. viridochromogenes	informatipeptin (Mohimani et al., 2014)
ACTI lanthipeptides DTGGCSGLCTVLCTVIVC EA 9 · 10 · 11 Streptomyces sp. CNT360 Compound CNT360-1769 (Figure S3) ACTI lassopeptide LLGRHGNDRLILSKN(-59Da) E 5 · 10 · 31 S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 · 31 B. (Incheniforis E5-221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITYTVTSTSIWASTVSNHC(-87Da) E 3 · 10 · 25 Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGIGVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMQTT E 1 · 10 · 20 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISACPGVTFSFP) E 2 · 10 · 20 PNG22APR06-1 Cyanobactin X (Figure S6) HUMAN-iso phenol-soluble modulins MAADIISTIGDLYKWIIDTVNK E 1 · 10 · 20 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLYKW E E 4 · 10 · 2 S. aureus VVPO292 AIP-III (Figure S9)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLYKW E E 1 · 10 · 2 S. aureus VVPO293 delta-hemolysin (Figure S11) (Figure S12) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLYKW E E 1 · 10 · 27 S. aureus VVPO035 delta-hemolysin (Figure S11) (Figure S12)	ACTI	lanthipeptides	TGSRASLLLCGDSSLSITTCN	EAB	6 · 10 ⁻¹¹	S. coelicolor	SapB (Kodani et al., 2004)
ACTI lassopeptide LLGRHGNDRLILSKN(-59Da) E 5 · 10 ⁻³¹ S. viridochromogenes Compound Svirid-1645 (Figure S4) BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 ⁻³¹ B. lichenliforis E5-221 lichenlicidin (Begley et al., 2009) SPACE lanthipeptides DATITYTVTSTSIWASTVSNHC(-87Da) E 3 · 10 ⁻²⁵ Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGIGVVVAVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMQTT E 1 · 10 ⁻²⁰ T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 ⁻²² PNG22APR06-1 Cyanobactin X (Figure S6) HUMAN-iso phenol-soluble modulins MAADIISTIGDLVKWIIDTVNK E 1 · 10 ⁻²² S. epidermidis 1457 delta-toxin (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MENIFINLFIKFFTILE E 1 · 10 ⁻²³ S. epidermidis 12228 PSM-2147 (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 ⁻⁴⁷ S. aureus VVPO023 AlP-III (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 ⁻⁴⁷ S. aureus VVPO033 delta-hemolysin (Figure S11) (Filtron et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 1 · 10 ⁻²⁷ S. aureus VVPO035 delta-hemolysin (Figure S11) (Filtron et al., 1980)	ACTI	lanthipeptides	GGGASTVSLLSCVSAGSVILCV	EA	5 · 10 ⁻¹²	S. cattlya	informatipeptin B (Figure S2)
BACIL lanthipeptides TTPATTSSWTCITAGVTVSASLCPTTKCTSRC EB 2 · 10 · 14 B. licheniforis E5 · 221 lichenicidin (Begley et al., 2009) SPACE lanthipeptides DATITYTVTSTSIWASTVSNHC(-87Da) E 3 · 10 · 23 Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGIGVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT E 1 · 10 · 20 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISNGYUP) E 2 · 10 · 10 · 20 PMG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 · 20 PMG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MAADIISTIGDLVKWIIDTVNK E 1 · 10 · 20 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-CF AIP INCDELL E 4 · 10 · 3 S. aureus VVPO292 AIP-III (Figure S9) (Kalkun et al., 2003) HUMAN-CF phenol-soluble modulins MADDISTIGDLVKW E 6 · 10 · 41 S. aureus VVPO033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 1 · 10 · 20 S. aureus VVPO045 delta-hemolysin-W-R (Figure S12)	ACTI	lanthipeptides	DTGGCSGLCTVLVCTVIVC	EA	9 · 10 -11	Streptomyces sp. CNT360	Compound CNT360-1769 (Figure S3)
SPACE lanthipeptides DATITYTVTSTSIWASTVSNHC(-87Da) E 3 · 10 · 25 Bacillus sp. ISSFR-3F Compound Bac-ISS-2196 (Figure S5) SPONGE proteusins TGIGVVVAVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT E 1 · 10 · 20 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISNGYLIP) E 2 · 10 · 27 PNG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTTSFP) E 2 · 10 · 20 PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MAADIISTIGDLVKWIIDTVNK E 1 · 10 · 27 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-CF AIP INCDFLL E 4 · 10 · 9 S. aureus WPO292 AIP-III (Figure S9) (Kalkun et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 · 41 S. aureus WPO292 AIP-III (Figure S9) (Kalkun et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 · 41 S. aureus WPO203 delta-hemolysin (Figure S10) (Kitot et al., 2009) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6 · 10 · 47 S. aureus WPO033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKR E 1 · 10 · 27 S. aureus WPO045 delta-hemolysin-W-R (Figure S12)	ACTI	lassopeptide	LLGRHGNDRLILSKN(-59Da)	E	5 · 10 ⁻³¹	S. viridochromogenes	Compound Svirid-1645 (Figure S4)
SPONGE proteusins TGIGVVVAVAGAVANTGAGVINVVAGGNINVVANVSVNMNQTT E 1.10-20 T. swinhoei symbiont polytheonamide (Freeman et al., 2012; Hamada et al., 2005) CYANO cyanobactins Cyclic(ISNGYLIP) E 2.10-27 PNG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2.10-27 PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MADIISTIGDLVKWIIDTVNK E 1.10-27 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-iso phenol-soluble modulins MENIFRIFILE E 1.10-32 S. epidermidis 12228 PSM-2147 (Figure S14) HUMAN-CF AIP INCDFLL HUMAN-CF phenol-soluble modulins MDFTGVTSIIDLIKTCIQAFG E 6.10-43 S. aureus VVP0292 AIP-III (Figure S9)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKW E 6.10-47 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKR E 1.10-27 S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	BACIL	lanthipeptides	TTPATTSSWTCITAGVTVSASLCPTTKCTSRC	EB	2 · 10-14	B. licheniforis ES-221	lichenicidin (Begley et al., 2009)
CYANO cyanobactins Cyclic(ISNGYLIP) E 2 · 10 ⁻¹⁷ PNG22APR06-1 Cyanobactin X (Figure S6) CYANO cyanobactins Cyclic(ISAPPGVTFSFP) E 2 · 10 ⁻²² PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MAADIISTIGDLVKWIIDTVNK E 1 · 10 ⁻²² S. epidermidis 1457 delta toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-iso phenol-soluble modulins MENIFNLFIKFFTILE E 1 · 10 ⁻²² S. epidermidis 12228 PSM-2147 (Figure S14) HUMAN-CF AIP INCDFLL E 4 · 10 ⁻⁹ S. aureus VVP0292 AIP-III (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MDFTGVTSIIDLKTCIQAFG E 6 · 10 ⁻⁴¹ S. aureus VVP014 Mec-PSM (Figure S10) (Kalto et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 · 10 ⁻⁴⁷ S. aureus VVP0033 delta-hemolysin (Figure S11) (Filton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 ⁻²⁷ S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	SPACE	lanthipeptides	DATITTVTVTSTSIWASTVSNHC(-87Da)	E	3 · 10 ⁻²⁵	Bacillus sp. ISSFR-3F	Compound Bac-ISS-2196 (Figure S5)
CYANO cyanobactins Cyclic(ISAPPGYTFSFP) E 2 · 10 · 22 PNG14DEC03 Wewakazole (Figure S7) (Nogle et al., 2003) HUMAN-iso phenol-soluble modulins MAADIISTIGDLYKWIIDTVNK E 1 · 10 · 27 S. epidermidis 1457 delta-toxin (Figure S8) (Nolte and Kapral, 1981) HUMAN-iso phenol-soluble modulins MENIFINLFIKFFTILE E 1 · 10 · 27 S. epidermidis 12228 PSM-2147 (Figure S14) HUMAN-CF AIP INCDFLL E 4 · 10 · 7 S. aureus VVP0292 AIP-III (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MDFTGYTISTIDLYTCQAFG E 6 · 10 · 41 S. aureus VVP014 Mec-PSM (Figure S10) (Kaito et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLYKW E 6 · 10 · 47 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDIISTIGDLYKR E 1 · 10 · 27 S. aureus VVP0045 delta-hemolysin (Figure S12)	SPONGE	proteusins	TGIGVVVAVVAGAVANTGAGVNQVAGGNINVVGNINVNANVSVNMNQTT	E	1 · 10 ⁻²⁰	T. swinhoei symbiont	polytheonamide (Freeman et al., 2012; Hamada et al., 2005)
HUMAN-iso phenol-soluble modulins MAADIISTIGDLVKWIIDTVNK E 1 · 10 · 27 / S. epidermidis 1457 delta-toxin (Figure \$8) (Nolte and Kapral, 1981) HUMAN-iso phenol-soluble modulins MENIFINEFIKFFTILE E 1 · 10 · 32 / S. epidermidis 12228 PSM-2147 (Figure \$14) HUMAN-CF AIP INCDFLL E 4 · 10 ° S. oureus VVP0292 AIP-III (Figure \$9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MDFTGVITSIIDLIKTCIQAFG E 6 · 10 · 43 / S. oureus VVP0114 Mec-PSM (Figure \$10) (Kaito et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 · 10 · 47 / S. oureus VVP0033 delta-hemolysin (Figure \$11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 · 27 / S. oureus VVP0045 delta-hemolysin-W-R (Figure \$12)	CYANO	cyanobactins	Cyclic(ISNGYLIP)	E	2 · 10 ⁻¹⁷	PNG22APR06-1	Cyanobactin X (Figure S6)
HUMAN-iso phenol-soluble modulins MENIFIKFETTILE E 1 · 10 · 32 S. epidermidis 12228 PSM-2147 (Figure S14) HUMAN-CF AIP INCDFLL E 4 · 10 ° 9 S. aureus VVP0292 AIP-III (Figure S9) (Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MDFTGVITSIIDLIKTCIQAFG E 6 · 10 · 43 S. aureus VVP0114 Mec-PSM (Figure S10) (Kaito et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 · 10 · 47 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 · 27 S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	CYANO	cyanobactins	Cyclic(ISAPPGVTFSFP)	E	2 · 10 ⁻²²	PNG14DEC03	Wewakazole (Figure S7) (Nogle et al., 2003)
HUMAN-CF AIP INCDFLL E 4 · 10 ° S. aureus VVP0292 AIP-III (Figure 59)(Kalkum et al., 2003) HUMAN-CF phenol-soluble modulins MDFTGVITSIIDLIKTCIQAFG E 6 · 10 ° ³ S. aureus VVP0114 Mec-PSM (Figure S10) (Kaito et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 · 10 ° ³ S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 ° ² ° S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	HUMAN-iso	phenol-soluble modulins	MAADIISTIGDLVKWIIDTVNK	E	1 · 10-27	S. epidermidis 1457	delta-toxin (Figure S8) (Nolte and Kapral, 1981)
HUMAN-CF phenol-soluble modulins MDFTGVITSIIDLIKTCIQAFG E 6 · 10 · 41 S. aureus VVP0114 Mec-PSM (Figure S10) (Kaito et al., 2011; Queck et al., 2009) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 · 10 · 47 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 · 27 S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	HUMAN-iso	phenol-soluble modulins	MENIFNLFIKFFTTILE	E	1 · 10-32	S. epidermidis 12228	PSM-2147 (Figure S14)
HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKW E 6 6 · 10 · 47 S. aureus VVP0033 delta-hemolysin (Figure S11) (Fitton et al., 1980) HUMAN-CF phenol-soluble modulins MAQDISTIGDLVKR E 1 · 10 · 27 S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	HUMAN-CF	AIP	INCDFLL	E	4 · 10 ⁻⁹	S. aureus VVP0292	AIP-III (Figure S9)(Kalkum et al., 2003)
HUMAN-CF phenol-soluble modulins MAQDIISTIGDLVKR E 1 · 10 -27 S. aureus VVP0045 delta-hemolysin-W-R (Figure S12)	HUMAN-CF	phenol-soluble modulins	MDFTGVITSIIDLIKTCIQAFG	E	6 · 10 ⁻⁴³	S. aureus VVP0114	Mec-PSM (Figure S10) (Kaito et al., 2011; Queck et al., 2009)
	HUMAN-CF	phenol-soluble modulins	MAQDIISTIGDLVKW	E	6 · 10 ⁻⁴⁷	S. aureus VVP0033	delta-hemolysin (Figure S11) (Fitton et al., 1980)
HUMAN-CF phenoi-soluble modulins MEGIFNAIKDTVTAAINNDGAKLGT E 2 · 10 ⁻¹¹ S. aureus VVP0304 PSM-beta (Figure S13) (Wang et al., 2007)	HUMAN-CF	phenol-soluble modulins	MAQDIISTIGDLVKR	E	1 · 10 -27	S. aureus VVP0045	delta-hemolysin-W-R (Figure S12)
	HUMAN-CF	phenol-soluble modulins	MEGLFNAIKDTVTAAINNDGAKLGT	E	2 · 10-11	S. aureus VVP0304	PSM-beta (Figure S13) (Wang et al., 2007)

Table S2. 31 known RiPPs identified by MetaMiner, related to Figure 2. In order to evaluate the consistency of MetaMiner identifications with the previous results, we compared the strains/species/samples in which we discovered known RiPPs to the previous reports. The results show that out of 31 known RiPPs, 23 were identified in strains identical to the previous reports, three were identified in strains with 99% or higher 16S rRNA similarity, two were identified in the same species, one was identified in the same genus, and two were identified in the same samples.

RiPP name	Current strain/sample	Original strain/sample	Similarity
Prochlorosin	Prochlorococcus marinus MIT9313	Prochlorococcus marinus MIT9313 (Tang and van der Donk, 2012)	The same strain
Prochlorosin	Prochlorococcus marinus MIT9313	Prochlorococcus marinus MIT9313 (Tang and van der Donk, 2012)	The same strain
Prochlorosin	Prochlorococcus marinus MIT9313	Prochlorococcus marinus MIT9313 (Tang and van der Donk, 2012)	The same strain
Prochlorosin	Prochlorococcus marinus MIT9313	Prochlorococcus marinus MIT9313 (Tang and van der Donk, 2012)	The same strain
geobacillin	Geobacillus thermodenitrificans NG80-2	Geobacillus thermodenitrificans NG80-2 (Garg et al., 2012)	The same strain
sublancin	Bacillus subtilis 168	Bacillus subtilis 168 (Paik et al., 1998)	The same strain
haloduracin	Bacillus halodurans C-125	Bacillus halodurans C-125 (McClerren et al., 2006)	The same strain
lacticin 481	Lactococcus lactis ADRIA 85LO30	Lactococcus lactis ADRIA 85LO30 (Rince et al., 1994)	The same strain
bicereucin alpha	Bacillus cereus SJ1	Bacillus cereus SJ1 (Huo and van der Donk, 2016)	The same strain
bicereucin beta	Bacillus cereus SJ1	Bacillus cereus SJ1 (Huo and van der Donk, 2016)	The same strain
flavecin A2.d	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A2.b	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flvecin A2.a	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A2.g	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A2.c	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A1	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A2.f	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
flavecin A2.h	Ruminococcus flavefaciens FD-1	Ruminococcus flavefaciens FD-1 (Zhao and van der Donk, 2016)	The same strain
grisemycin	Streptomyces griseus IFO 13350	Streptomyces griseus IFO 13350(Claesen and Bibb, 2011)	The same strain
AmfS	Streptomyces griseus IFO 13350	Streptomyces griseus IFO 13350 (Ueda et al., 2002)	The same strain
SRO15-3108	Streptomyces roseosporus NRRL 15998	Streptomyces roseosporus NRRL 15998 (Kersten et al., 2011)	The same strain
informatipeptin	Streptomyces viridochromogenes DSM 40736	Streptomyces viridochromogenes DSM 40736 (Mohimani et al., 2014)	The same strain
SapB	Streptomyces coelicolor J1501	Streptomyces coelicolor J1501 (Kodani et al., 2004)	The same strain
lichenicidin	Bacillus licheniformis ES-221	Bacillus licheniformis ATCC 14580 (Begley et al., 2009)	The same species
polytheonamide	Theonella swinhoei symbionts	Theonella swinhoei symbionts (Freeman et al., 2012; Hamada et al., 2005)	The same sample
Wewakazole	PNG14DEC03	PNG14DEC03 (Nogle et al., 2003)	The same sample
delta-toxin	S. epidermidis 1457	Staphylococcus aureus PG114 (Nolte and Kapral, 1981)	The same genus
AIP-III	S. aureus VVP0292	Staphylococcus aureus RN8465 (Kalkum et al., 2003)	The same species
Mec-PSM	S. aureus VVP0114	Staphylococcus aureus NCTC8325(Kaito et al., 2011)	The same species, 99.87% 16S similarity
PSM-beta	S. aureus VVP0304	Staphylococcus aureus MW2 (Wang et al., 2007)	The same species, 100% 16S similarity
delta-hemolysin	S. aureus VVP0033	Staphylococcus aureus RN25 (Fitton et al., 1980)	The same species, 99% 16S similarity

Table S3. List of RiPP modifications considered in this paper, related to Figure 1. The list is curated from (Arnison et al., 2013).

	enzyme		
RiPP-type	(Pfam/TIGR)	modification / mass-shift	pos
Lanthipeptides	Lant-dehydration	TS-18, TS-C	All
Lanthipeptides	ElxO	S-15	N-ter
Lanthipeptides	Flavoprotein	TS-64, C-80	C-ter
Lanthipeptides	LtnJ	S-16	all
Lanthipeptides	CinX	D+16	all
Lanthipeptides	Cinorf7	K-18	all
Lanthipeptides	DsbB	C-1	all
Lanthipeptides	MibHS	W+34	all
Lanthipeptides	MibO	P+16, P+32	all
Lanthipeptides	GarO	C+16	all
LAPs	YcaO	CTS-20, T-18	all
LAPs	Methyltransf-31	R+28	N-ter
Lassopeptides	Asn-synthase	DE-18, Cyclization to DE	all
Lassopeptides	DsbA	C-1	all
Linaridins	CypL	TS-18	all
Linaridins	CypM	AIL+28	N-ter
Linaridins	Flavoprotein	C-80	C-ter
Phenol-soluble modulins	AgrB/MreB	M+28/M+44 *	all
Proteusins	Cupin-4	NV+16/N+30	all
Proteusins	MTS	N+14	all
Proteusins	B12-Binding	M+44/IQVT+14	all
Proteusins	DUF4135	D+39	N-ter
Cyanobactins	dehydratase	CTS-18,CTS-20, YFST+68, I+136	all
Glycocins	Glucose-Cys	C+162	all
Glycocins	DsbB	C-1	all
AIP	AgrB	C-18	all

Figure S1. Comparison of performance of MetaMiner in all-ORF and motif-ORF modes, related to Figure 1. Number of peptide-spectrum matches/peptides identified by MetaMiner at different p-value thresholds for the target and decoy databases in the search of ACTI dataset in the all-ORF (a,b) and motif-ORF (c,d) modes. X-axis represents different p-value threshold, and Y-axis represent number of identified peptide-spectrum match or peptides. These distributions are very consistent with the distribution of peptide spectrum match scores/p-values reported in the database search using Dereplicator and Dereplicator+, and also the distributions reported by Fenyo et al. (Fenyo and Beavis, 2003). Here, the distributions are the truncated Gumbel distributions, as we only looked at p-values below 10⁻⁵.

Figure S2. Identification of informatipeptin B, related to Figure 2. (a) Biosynthetic gene cluster of informatipeptin B from *S. cattleya* and the precursor peptide correctly predicted by antiSMASH. (b) The BGC of informatipeptin B has all essential class III lanthipeptide genes, a lanM-like enzyme, a transporter, and a regulator. (c) Spectral network revealed a plethora of compounds similar to informatipeptin B. Masses shown here are in charge +2 state. Dehydrated serines are shown in red and dehydrated threonines are shown in blue (d) Tandem mass spectrum of informatipeptin B (score 7, p-value 5•10⁻¹²).

Gene	Predicted Function	Length
1	glycosyl transferase family 1	468
2	TetR family transcriptional regulator	208
3	helix-turn-helix transcriptional regulator	239
4	ABC transporter ATP-binding protein	591
5	ABC transporter, AmfB	737
6	AmfS protein	37
7	serine/threonine protein kinase	882
8	aldehyde dehydrogenase	488
9	metal dependent hydrolase 1	351
10	hypothetical protein	410

Figure S3. Identification of Compound CNT360-1769, related to Figure 2. (a) Biosynthetic gene cluster of Compound CNT360-1769 from *Streptomyces* sp. and the precursor peptide as correctly predicted by antiSMASH. (b) The gene cluster of Compound CNT360-1769 has several genes with approximately 60% similarity to genes from BGCs encoding subtilin and other class I lanthipeptide, suggesting that Compound CNT360-1769 is a class I lanthipeptide. (c) Spectral networking revealed an analog of Compound CNT360-1769, called Compound CNT360-1769-1, lacking the N-terminal aspartic acid residue. Dehydrated serines are shown in red and dehydrated threonines are shown in blue (d) Tandem mass spectrum of Compound CNT360-1769 (score 7, p-value 9.8•10-11).

(a)

Gene	Predicted Function	Length
1	TetR family transcriptional regulator	175
2	NADPH: quinone reductase	327
3	hypothetical protein TGGTI 239580	57
4	urea transporter	314
5	subtilin biosynthesis protein spaC	450
6	hypothetical protein K530 51195	53
7	lantibiotic dehydratase	954
8	O-methyltransferase clustered with LanBC	400
9	NAD(P)H dehydrogenase	102
10	oxctanocin A resistance protein	324
11	translation initiation factor IF-2	269
12	transcriptional regulator, PucR family protein	536
13	MerR family transcriptional regulator	131

Figure S4. Identification of Compound Svirid-1645, related to Figure 2. (a) Biosynthetic gene cluster of Compound Svirid-1645 from *S. viridochromogenes*. AntiSMASH failed to predict any precursor peptide for this gene cluster. (b) The biosynthetic gene cluster of Compound Svirid-1645 has several genes with similarity to the biosynthetic gene cluster of lassopeptide microcin J25. (c) Spectral network of Compound Svirid-1645 (d) Tandem mass spectrum of Compound Svirid-1645 (score 14, p-value 5•10⁻³¹). MetaMiner discovered Compound Svirid-1645 in blind modification search mode, and assigned a modification of -59Da to the histidine residue, shown in green. While *m/z* 858.97 clusters with Compound Svirid-1645 in the spectral network, MetaMiner does not identify it with a low p-value.

Gene	(a) Predicted Function	Length
1	Transcriptional regulator	253
2	Endo-1,4-beta-xylanase	1620
3	Dihydrolipyl dehydrogenase	470
4	Putative microcin mature peptide	36
5	Asparagine Synthetase B/C	617
6	PQQ synthetase	84
7	Microcin J25 C	145
8	Lipid A export permease/ATP-binding protein	613
9	Calcium-binding protein	205
10	2-keto-3deoxy-gluconate kinase	331
11	adolase	260
12	3-oxoacyl-[acyl-carrier-protein] reductase	170
13	TetR family transcriptional regulator	218
14	Cytochrome P450 monooxygenase	437
15	Dihydroxy-acid dehydratase	571
16	Regulatory protein	275
17	Alcohol dehydrogenase	336
	(b) 823.974 858.977 LLGRH GNDRLILSKN Compound Svirid-1645	

Figure S5. Identification of Compound Bac-ISS-2196, related to Figure 2. (a) Biosynthetic gene cluster of Compound Bac-ISS-2196 in Bacillus sp. ISSFR-3F. AntiSMASH failed to predict any precursor peptide for this gene cluster. The precursor gene is repeated fourteen times, with thirteen being exactly the same and one differing from the rest by a His to Tyr replacement (b) The BGC of Compound Bac-ISS-2196 (c) Spectral networking revealed analogs of Compound Bac-ISS-2196 with various N-terminal and C-terminal modifications. Dehydrated serines are shown in red and dehydrated threonines are shown in blue (d) Tandem mass spectrum of Compound Bac-ISS-2196 (score 13, p-value 3•10⁻²⁵). MetaMiner discovered Compound Bac-ISS-2196 in blind modification search mode, and assigned -87Da, -15Da, and -1Da modifications to the aspartic acid residue, shown in green residue. Compound Bac-ISS-2196-4 and Compound Bac-ISS-2196-5 are discovered in charge +1, while other compounds are charge +2.

orf05	699		orf05732
		(a)	
	Gene	Predicted Function	Length
	1	transcriptional regulator	117
	2	enterotoxin	421
	3	multidrug ABC transporter permease	555
	4	putative SAM-dependent methyltransferase	277
	5	serine/threonine protein kinase	872
	6	ABC-2 transporter family protein	197
	7	multidrug ABC transporter ATP-binding protein	284
	8	peptidase M16	427
	9	multidrug ABC transporter permease	201
	10	sodium ABC transporter ATP-binding protein	290

Figure S6. Identification of Cyanobactin X, related to Figure 2. (a) The biosynthetic gene cluster of cyanobactin X (b) Annotation of the genes in the biosynthetic gene cluster of cyanobactin X by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011) (c) Tandem mass spectrum of Cyanobactin X (score 14, p-value $2 \cdot 10^{-17}$).

Gene	Predicted Function	Length
1	hypothetical protein	62
2	hypothetical protein	122
3	Asparaginase N-terminal	144
4	Domain of unknown function DUF29	143
5	HicA toxin of bacterial toxin-antitoxin	56
6	conserved domain protein	69
7	Cyanobactin X	54
8	Acetyltransferase (GNAT) family5	311
9	protein of unknown function DUF820	190
10	Putative restriction endonuclease	171
11	Putative restriction endonuclease	210

(c)

Figure S7. Identification of wewakazole, related to Figure 2. (a) Biosynthetic gene cluster of wewakazole in the Cyanobacterium PNG26APR06-4. AntiSMASH failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of wewakazole by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011) (c) Tandem mass spectrum of wewakazole (score 10, p-value 2•10⁻²²).

Gene	Predicted Function	Length
1	hypothetical protein	494
2	peptidase M16 domain protein	439
3	fructosamine kinase	295
4	four helix bundle protein	120
5	sporulation-control protein Spo0M homolog	257
6	PilT protein-like	148
7	hypothetical protein	86
8	methylglyoxal synthase-like protein putative	425
9	peptidase S8 and S53 subtilisin kexin sedolisin	738
10	Wewakazole	68
11	hypothetical protein	65
12	hypothetical protein	68
13	hypothetical protein	66
14	Putative restriction endonuclease	215
15	XisI protein fdxN element excision controlling factor protein	110
16	unknown protein	64
17	hypothetical protein	151
18	YcaO cyclodehydratase ATP-ad Mg2+-binding	827
19	S23 ribosomal protein	133
20	hypothetical protein	202
21	hypothetical protein	105
22	hypothetical protein	111
23	alpha-amylase family protein	554
24	hypothetical protein	545
25	methyltransferase type 11	278

8.394 7.859

8.752

59.296

7.501

34.113

10.002

11.966

19.468 7.501

Figure S8. Identification of AIP-III from HUMAN-CF dataset, related to Figure 2. (a) Mapping of the short metagenomics reads from the HUMAN-CF dataset to the biosynthetic gene cluster of AIP-III. Both AntiSMASH and BOA failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of AIP-III by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Tandem mass spectrum of AIP-III (score 4, p-value $4 \cdot 10^{-9}$).

Gene	Predicted Function	Length
1	accessory gene regulator protein B	206
2	AIP-III	47
3	histidine kinase	431
4	accessory gene regulator protein A	239
5	fructokinase	320
6	invertase	498

Annota	ted peaks	
Mass error (ppm)	Charge	

M/z (Da/e)	Mass error (ppm)	Charge	Intensity
261.161	3.9	1	7.275
376.188	4.7	1	12.228
592.280	0.2	1	9.184
706.322	-1.5	1	16.768

(c)

Figure S9. Identification of delta-toxin from HUMAN-iso dataset, related to Figure 2. (a) Mapping of the short metagenomics reads from the HUMAN-iso dataset to the biosynthetic gene cluster of delta-toxin. Both AntiSMASH and BOA failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of delta-toxin. (c) Spectral network of delta-toxin. (d) Tandem mass spectrum of delta-toxin (score 14, p-value $1 \cdot 10^{-27}$).

Gene	Predicted Function	Length
1	10 kDa chaperonin	95
2	CAAX amino protease	247
3	hypothetical protein	445
4	hydrolase	262
5	delta-toxin	25
6	accessory gene regulator protein B	197
7	accessory gene regulator protein D	47
8	histidine kinase	430
	(b)	

(d)

Figure S10. Identification of Mec-PSM from HUMAN-CF dataset, related to Figure 2. (a) Mapping of the short metagenomics reads from the HUMAN-CF dataset to the biosynthetic gene cluster of Mec-PSM. Both AntiSMASH and BOA failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of Mec-PSM by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Spectral network of Mec-PSM. (d) Tandem mass spectrum of Mec-PSM (score 20, p-value 6•10⁻⁴³).

Gene	Predicted Function	Length
1	Metal-sensitive transcriptional repressor	87
2	dihydroneopterin aldolase	355
3	Metallo-beta-lactamase superfamily	313
4	Rhodanese-like domain	102
5	transcriptional regulator	370
6	Mec-PSM	22
7	penicillinase repressor BlaI	124
8	BlaR1 family beta-lactam sensor/signal transducer	586
9	penicillin-binding protein 3	669
10	MaoC like domain	143

(d)

Figure S11. Identification of delta-hemolysin from HUMAN-CF dataset, related to Figure 2. (a)

Mapping of the short metagenomics reads from the HUMAN-CF dataset to the biosynthetic gene cluster of delta-hemolysin. Both AntiSMASH and BOA failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of delta-hemolysin by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Spectral network of delta-hemolysin. (d) Tandem mass spectrum of delta-hemolysin (score 20, p-value 6•10⁻⁴⁷).

Gene	Predicted Function	Length	
1	fructokinase	320	
2	accessory gene regulator protein A	239	
3	histidine kinase	431	
4	accessory gene regulator protein D	47	867.96
5	accessory gene regulator protein B	208	070.44
6	PSM-y	29	
7	hydrolase in agr operon	262	
8	nitroreductase	209	859.44
9	hypothetical protein	418	333.44
10	CAAX amino protease	248	M ⁺²⁸ AQDII <mark>S</mark> TIGDLVKW delta-hemolysin
	(b)		(c)

(d)

Figure S12. Identification of delta-hemolysin-W-R from HUMAN-CF dataset, related to Figure 2. (a) Mapping of the short metagenomics reads from the HUMAN-CF dataset to the biosynthetic gene cluster of delta-hemolysin-W-R. AntiSMASH failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of delta-hemolysin-W-R by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Tandem mass spectrum of delta-hemolysin-W-R (score 14, p-value 1•10⁻²⁷).

Gene	Predicted Function	Length
1	fructokinase	320
2	accessory gene regulator protein A	239
3	histidine kinase	428
4	accessory gene regulator protein D	48
5	accessory gene regulator protein B	206
6	PSM-y-WR	27
7	hydrolase in agr operon	262
8	nitroreductase	209
9	hypothetical protein	420
10	CAAX amino protease	248

(c)

Figure S13. Identification of PSM-beta from HUMAN-CF dataset, related to Figure 2. (a) Mapping of the short metagenomics reads from the HUMAN-CF dataset to the biosynthetic gene cluster of PSM-beta. AntiSMASH failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of PSM-beta by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Tandem mass spectrum of PSM-beta (score 10, p-value 2•10⁻¹¹).

Gene	Predicted Function	Length
1	C4-dicarboxylate anaerobic carrier	519
2	hypothetical protein	76
3	tellurite resistance protein related permease	316
4	hypothetical protein	63
5	$ m tRNA ext{-}Arg$	26
6	PSM-beta	45
7	hemolytic protein	45
8	HAD family hydrolase	232
9	putative N-acetyltransferase	147
10	putative cysteine ligase BshC	538
11	cell division protein MraZ	144
12	16S rRNA (cytosine(1402)-N(4))-methyltransferase	312

Figure S14. Identification of PSM-2147 from HUMAN-iso dataset, related to Figure 2. (a) The biosynthetic gene cluster of PSM-2147. AntiSMASH failed to predict the precursor peptide for this gene cluster by motif search; however, MetaMiner was able to discover this peptide in all-ORF mode. (b) Annotation of the BGC of PSM-2147 by DFAST (Tanizawa et al., 2018) and HMMER (Eddy, 2011). (c) Tandem mass spectrum of PSM-2147 (score 15, p-value 1•10⁻³²).

Gene	Predicted Function	Length
1	CAAX amino protease	247
2	hypothetical protein	482
3	hydrolase	265
4	accessory gene regulator protein B	204
5	PSM-2147	47
6	hypothetical protein	267
7	accessory gene regulator protein A	239
8	fructokinase	320
9	invertase	491

Figure S15. High Resolution Mass Spectrum of Wewakazole, related to Figure 2. $[M+Na]^+$ 1163.5282 (calcd for C_{59} H_{72} N_{12} O_{12} Na 1163.5285; Δ = -0.3 ppm).

Figure S16. ¹H-¹³C HSQC NMR spectrum of Wewakazole in CDCl₃ at 600MHz, related to Figure 2.

Figure S17. 1H-13C HMBC NMR spectrum of Wewakazole in CDCl3 at 600MHz, related to Figure 2.

Figure S18. ¹H NMR spectrum of Wewakazole in CDCl₃ at 500MHz, related to Figure 2.

Figure S19. LC-MS/MS spectrum of Wewakazole, related to Figure 2.

Figure S20. LC-MS chromatogram of Wewakazole, related to Figure 2.

Figure S21. ECCD spectrum of Wewakazole in MeOH, related to Figure 2. Solvent absorptions are seen in the region below 200 nm.

