TEMA D'ESAME

Domanda A

Si dimostri che l'uscita £ della rete a lato assume sempre valore costante per qualsiasi dal valore dell'ingresso di selezione s.

Si realizzi quindi un circuito che realizza la stessa funzione **f** in modo ottimizzato.

Domanda B

Data la funzione seguente:

$$f(x, y, z, w) = \overline{x}y\overline{z} + \overline{x}zw + yz + xz$$

si vuole ottenere la forma SoP minima equivalente . A tal fine si proceda utilizzando il metodo di Quine-McCluskey.

Domanda C

Una macchina a stati dotata di due ingressi a ed b è pilotata da una rete combinatoria secondo il circuito mostrato a lato.

La macchina a stati **FSM** evolve secondo la tabella riportata sotto il circuito.

Tenendo presenti tutte le condizioni di indifferenza e sapendo che **A** è lo stato di reset, si proceda alla minimizzazione della macchina **FSM**.

Si individui per prima cosa la soluzione composta da tutte e sole le classi di massima compatibilità, quindi si proceda in modo intuitivo alla ricerca di eventuali soluzioni migliori.

	ab			
Q	00	01	11	10
A	-/1	-/0	E/1	В/О
В	C/0	D/0	D/1	A/0
С	В/1	A/-	-/0	C/1
D	-/1	-/1	C/-	E/-
E	-/-	F/-	A/0	-/-
F	A/0	A/1	-/-	B/1

Domanda D

Utilizzando un contatore Moebius a tre bit si vuole realizzare un contatore con il seguente ciclo di conteggio:

Si fornisca una specifica delle reti necessarie e si sintetizzino in modo ottimizzato utilizzando unicamente multiplexer a due ingressi. Si disegni la rete complessiva che realizza il contatore richiesto.

