

Minería de Datos

$$SSE = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

$$\mathrm{SSE} = \sum_{i=1}^K \sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

$$\mathrm{SSE} = \sum_{i=1}^K \sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

Espacio métrico

1. Positivity

- (a) $d(\mathbf{x}, \mathbf{x}) \geq 0$ for all \mathbf{x} and \mathbf{y} ,
- (b) $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$.

2. Symmetry

$$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$$
 for all \mathbf{x} and \mathbf{y} .

$$SSE = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

Espacio métrico

- 1. Positivity
 - (a) $d(\mathbf{x}, \mathbf{x}) \geq 0$ for all \mathbf{x} and \mathbf{y} ,
 - (b) $d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$.
- 2. Symmetry

$$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$$
 for all \mathbf{x} and \mathbf{y} .

3. Triangle Inequality

$$d(x, z) \le d(x, y) + d(y, z)$$
 for all points x, y, and z.

¿Métrica?

Proximity Function	Centroid	Objective Function		
Manhattan (L ₁)	median	Minimize sum of the L_1 distance of an ob-		
		ject to its cluster centroid		
Squared Euclidean (L_2^2)	mean	Minimize sum of the squared L ₂ distance		
		of an object to its cluster centroid		
cosine	mean Maximize sum of the cosine similarity of			
		an object to its cluster centroid		

¿Métrica?

Proximity Function	Centroid	Objective Function		
Manhattan (L_1)	median	Minimize sum of the L ₁ distance of an ob-		
		ject to its cluster centroid		
Squared Euclidean (L_2^2)	mean	Minimize sum of the squared L ₂ distance		
		of an object to its cluster centroid		
cosine	ne mean Maximize sum of the cosine similarit			
		an object to its cluster centroid		

Total Cohesion =
$$\sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} cosine(\mathbf{x}, \mathbf{c}_i)$$

Complejidad de k-means

Dimensionalidad de la representación

Espacio: O((m+K)d)

de datos

Complejidad de k-means

```
Dimensionalidad de la representación
Espacio: O((m+K)d)
                        • # iteraciones K_{-MEANS}(\{\vec{x}_1, \dots, \vec{x}_m\}, K)
                                           1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_m\}, K)
2 for k \leftarrow 1 to K
Tiempo: O(I*K*m*d)
                                                        3 do \vec{c}_k \leftarrow \vec{s}_k
                                                        4 while criterio convergencia no cumplido
                                                        5 do for k \leftarrow 1 to K
                                                            do C_k \leftarrow \{\}
                                                            for i \leftarrow 1 to m
                                                            do k \leftarrow Min_k \mid\mid \vec{c}_k - \vec{x}_i \mid\mid  (encontrar el centroide mas cercano)
                                                                     C_k \leftarrow C_k \cup \{\vec{x}_i\} (agregar al cluster)
                                                            for k \leftarrow 1 to K
                                                       10
                                                                 do \vec{c}_k \leftarrow \frac{1}{m_k} \sum_{\vec{x} \in C_k} \vec{x} (recomputacion de centroides)
                                                       12 return \{C_1, \ldots, C_K\}
```


(a) Unequal sizes.

(a) Unequal sizes.

(a) Unequal sizes.

(b) Unequal densities.

(b) Unequal densities.

(c) Non-spherical shapes.

- UC- M. Mendoza -

(c) Non-spherical shapes.

(b) Three K-means clusters.

(a) Original points.

(b) Three K-means clusters.

(b) Three K-means clusters.

_ _ _

(a) Original points.

(b) Three K-means clusters.

(a) Original points.

(b) Three K-means clusters.

(a) Original points.

(b) Two K-means clusters.

(a) Original points.

(a) Original points.

(a) Original points.

(b) Three K-means clusters.

(b) Three K-means clusters.

(b) Two K-means clusters.

Minibatch k-means

```
Given: k, mini-batch size b, iterations t, data set X
Initialize each c \in C with an x picked randomly from X
\nabla \leftarrow 0
for i = 1 to t do
     M ← b examples picked randomly from X
     for x \in M do
           d[x] \leftarrow f(C, x) // Cache the center nearest to x
     end for
     for x \in M do
           c \leftarrow d[x]
                                       // Get cached center for this x
           v[c] \leftarrow v[c] + 1 // Update per-center counts
           \eta \leftarrow 1 / v[c] // Get per-center learning rate
           c \leftarrow (1 - \eta)c + \eta x // Take gradient step
     end for
end for
```

Minibatch k-means

```
Given: k, mini-batch size b, iterations t, data set X
Initialize each c \in C with an x picked randomly from X
\nabla \leftarrow 0
for i = 1 to t do
      M ← b examples picked randomly from X
      for x \in M do
             d[x] \leftarrow f(C, x)
      end for
      for x \in M do
             c \leftarrow d[x]
             v[c] \leftarrow v[c] + 1
             \eta \leftarrow 1 / v[c]
             c \leftarrow (1 - \eta)c + \eta x
      end for
end for
```

// Cache the center nearest to x

Implementación en sklearn

sklearn.cluster.k_means:

```
sklearn.cluster.k_means(X, n_clusters, init='k-means++', n_init=10, max_iter=300, verbose=False, tol=0.0001, n_jobs=1)
```

Parámetros:

```
X: datos de entrada (arreglo de vectores)
n_clusters: k
max_iter: número máximo de iteraciones (def. 300)
n_init: número de reinicios (def. 10). Se muestra el mejor resultado (min SSE).
init: {k-means++, random}, método de inicialización
tol: incremento relativo para declarar convergencia
n_jobs: número de hilos de ejecución:

1: sin paralelismo
-1: todas los procesadores son usados.
<-1: se usan CPUs + n_jobs + 1 procesadores
(Ej. n_jobs=-2, entonces se usan todos menos uno).</pre>
```

Implementación en sklearn

sklearn.cluster.MiniBatchKMeans:

Parámetros (diferencias con k-means):

max_no_improvement: número consecutivo de mini batches en los que no debe haber mejora

para declarar convergencia (def 10).

batch_size: tamaño de los batches (def 100).

reassignment_ratio: controla el número de mínimo de hits que un centroide debe registrar

para no ser reasignado (def 0.01).

- Clustering jerárquico -

	Algoritmo	Parámetro	Escalabilidad	Caso de uso	Geometría
	K-Means	Número de clusters	Escalable Mejora con modificación MiniBatch	Propósito general flat clustering K no muy grande	Distancia entre objetos
	Affinity Propagation	Coeficiente de damping	No escalable	Non-flat clustering K grande	Grafo de distancias
	Mean-shift	Ancho de banda	No escalable	Non-flat clustering K grande	Distancia entre objetos
	Spectral clustering	Número de clusters	Escalabilidad media	Non-flat clustering K no muy grande	Grafo de distancias
	Ward	Número de clusters	Escalable	K grande	Distancias entre objetos
	Clustering aglomerativo	Número de clusters	Escalable	Distancias no Euclideanas K grande	Distancias entre objetos
	DBSCAN	Tamaño del vecindario	Escalable	Clusters de tamaños distintos	Grafo de vecinos más cercanos
	Mezcla de Gaussianas	Muchos	No escalable	Flat clustering Estimación de densidad	Distancias Mahalanobis a centroides

Idea:

Idea:

Algorithm Basic agglomerative hierarchical clustering algorithm.

- 1: Compute the proximity matrix, if necessary.
- 2: repeat
- 3: Merge the closest two clusters.
- 4: Update the proximity matrix to reflect the proximity between the new cluster and the original clusters.
- 5: **until** Only one cluster remains.

