Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty.

Ph.D defense **N.Drougard**

doctoral school: EDSYS,

institution: ISAE-SUPAERO,

laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Partially Observable Markov Decision Processes (POMDPs)

 a_t

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$.

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$.

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$.

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

belief state, strategy, criterion.

POMDP:
$$\langle S, A, O, T, O, r, \gamma \rangle$$
,

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$;
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$.

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

probabilistic belief update

$$b_{t+1}(s') \propto \mathbf{p}(o' \mid s', a) \cdot \sum_{s \in \mathcal{S}} \mathbf{p}(s' \mid s, a) \cdot b_t(s)$$

action choices: strategy $\delta(b_t) = a_t \in \mathcal{A}$

$$\text{maximizing } \mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r \Big(s_t, \delta(b_t) \Big) \right] \text{, } 0 < \gamma < 1.$$

Flaws of the POMDP model POMDPs in practice

- optimal strategy computation ≥ PSPACE;
- probabilities are imprecisely known in practice;
- agent's ignorance not taken into account.

practical issues: Complexity, Vision and Initial Belief.

■ strategy computation > PSPACE-complete:

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' | s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ **Initial belief** b_0 (*prior* information on the system state).

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' | s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ Initial belief b_0 (prior information on the system state). uniform = subjectif, mix up with frequencies!

practical issues: Complexity, Vision and Initial Belief.

- strategy computation > PSPACE-complete:
- → optimality for "small" ou "structured" POMDPs;
- \rightarrow approximate computations (no optimality garantee).
 - **Computer Vision**, statistical learning: $\mathbf{p}(o' \mid s', a)$
- \rightarrow wide picture variability? \Rightarrow hard extraction of a classifier;
- \rightarrow more observations? \Rightarrow more complex POMDP.

■ Initial belief b_0 (prior information on the system state). uniform = subjectif, mix up with frequencies!

Qualitative Possibility Theory:

 \rightarrow simplification, ignorance and imprecision modeling.

knowledge is not always encouraged with POMDPs

$$b_0(s_A)=1$$

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

knowledge is not always encouraged with POMDPs

$$\mathbb{E}_{s_0 \sim b_0} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot r(s_t) \, \middle| \, a_0 = \tilde{\mathbf{a}} \text{ or } \mathbf{a'} \right] = r(s_0) + 5\gamma.$$
 the safe action is not preferred.

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account, BUT frequentist information lost;
- ignorance modeling;
- **p** possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account,
 BUT frequentist information lost;
- ignorance modeling;
- possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).
- POMDP with possibilistic belief states
 - → heuristic for solving POMDPs;
 - \rightarrow results in a standard MDP.

Qualitative Possibility Theory

an hybrid model with possibilistic belief states

Qualitative Possibility Theory

- simplification/imprecision taken into account,
 BUT frequentist information lost;
- ignorance modeling;
- **p** possibilistic belief states already studied: π -POMDP (Sabbadin UAI98, Drougard UAI13, AAAI14).
- POMDP with possibilistic belief states
 - → heuristic for solving POMDPs;
 - \rightarrow results in a standard MDP.
- defined distributions π :
 - $\mathbb{P} \to \pi$ transformations: pignistic, specific, ...

Qualitative Possibility Theory presentation

$$1 = l_1 > l_2 > \ldots > l_{\#\mathcal{L}} = 0$$
 form the **finite scale** \mathcal{L} .

events $e \subset \Omega$ (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$, \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities).

Qualitative Possibility Theory presentation

$$1 = l_1 > l_2 > \ldots > l_{\#\mathcal{L}} = 0$$
 form the **finite scale** \mathcal{L} .

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$,

quantified with **frequencies** $p(e) \in [0,1]$ (probabilities).

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

$$\blacksquare$$
 $\pi(e_1) < \pi(e_2) \Leftrightarrow$ " e_1 is less plausible than e_2 ";

Qualitative Possibility Theory presentation

$$1 = l_1 > l_2 > \ldots > l_{\#\mathcal{L}} = 0$$
 form the **finite scale** \mathcal{L} .

events
$$e \subset \Omega$$
 (universe) sorted using possibility degrees $\pi(e) \in \mathcal{L}$, \neq quantified with frequencies $\mathbf{p}(e) \in [0,1]$ (probabilities).

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$
 $\pi(e_1) < \pi(e_2) \Leftrightarrow "e_1$ is less plausible than e_2 ";

Probability (\mathbb{P}) / Possibility (Π):		
e_1 or e_2	$\mathbf{p}(e_1) + \mathbf{p}(e_2 \cap \overline{e_1})$	$\max\left\{\pi(e_1),\pi(e_2)\right\}$
e_1 and e_2	$\mathbf{p}(e_1).\mathbf{p}(e_2 \mid e_1)$	$\min \{\pi(e_1), \pi(e_2 \mid e_1)\}$

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Possibilistic models: π -MOMDPs

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

• finite belief space $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

Possibilistic models: π -MOMDPs

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

• finite belief space $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

contribution (UAI13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ *i.e.* state $s = \text{visible component } s_v$ & hidden component s_h .

Possibilistic models: π -MOMDPs

possibilistic POMDPs (π -POMDPs): Sabbadin UAI-98.

• finite belief space $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

contribution (UAI13):

Mixed-Observability: system state $s \in \mathcal{S} = \mathcal{S}_{v} \times \mathcal{S}_{h}$

i.e. state s = visible component s_v & hidden component s_h .

- beliefs are only over S_h (component s_v observed),
- lacktriangle computations on $\mathcal{X} = \mathcal{S}_{v} \times \mathcal{B}_{h}$ whose size is

$$\#\mathcal{X} = \#\mathcal{S}_{\mathsf{v}} \cdot (\#\mathcal{L}^{\#\mathcal{S}_h} - (\#\mathcal{L} - 1)^{\#\mathcal{S}_h}) \ll \#\mathcal{B}.$$

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

$$\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$$
 preference,

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$ **preference**, and, until convergence,

 $\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\},\,$

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$ **preference**, and, until convergence, $V_{(x,x)}(x) = \max \min \{ \pi(x' \mid x, a), V_0(x') \}$ and

$$\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\},\,$$

if
$$V_{i+1}(x) > V_i(x)$$
, $\delta(x) = \underset{a \in \mathcal{A}}{\operatorname{argmaxmaxmin}} \{\pi(x' \mid x, a), V_i(x')\}$.

contribution (UAI13): Infinite Horizon

Dynamic Programming scheme: # iterations $< \# \mathcal{X}$.

 $\forall x \in \mathcal{X}, \ V_0(x) = \mu(x)$ **preference**, and, until convergence, $\bullet V_{i+1}(x) = \max_{a \in \mathcal{A}} \max_{x' \in \mathcal{X}} \min \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}, \text{ and }$ if $V_{i+1}(x) > V_i(x), \delta(x) = \underset{a \in \mathcal{A}}{\operatorname{argmaxmaxmin}} \left\{ \pi \left(x' \mid x, a \right), V_i(x') \right\}.$

Recognition mission: robot on a grid $g \times g$, 2 targets T1, T2.

- **goal:** reach the object A = T1 or T2; - noisy observations of the targets natures: $\mathbf{p}(o' \mid s', a)$.

Actually, misperception in the error zone is: $P_{bad} > \frac{1}{2}$.

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Factorization and symbolic solver

contribution (AAAI14): factored π -MOMDP

 \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \mathcal{B}_{\hbar} =$ Boolean variables (X_1, \dots, X_n) + independence assumptions \Leftarrow graphical model.

Factorization and symbolic solver

contribution (AAAI14): factored π -MOMDP

 \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \mathcal{B}_{h} =$ Boolean variables (X_{1}, \dots, X_{n}) + independence assumptions \Leftarrow graphical model.

transition functions
 T_i^a = π (X_i' | parents(X_i'), a)
 represented by Algebraic Decision
 Diagrams (ADD).
 (SPUDD − Hoey et al., UAI-99).

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{c|c} \mathbf{1} & V^* \leftarrow 0 \; ; V^c \leftarrow \mu \; ; \; \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} \\ \mathbf{3} & V^* \leftarrow V^c \; ; \\ \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} \\ \mathbf{5} & \mathbf{6} & q^a \leftarrow \mathrm{swap} \; \mathrm{each} \; X_i \; \mathrm{variable} \; \mathrm{in} \; V^* \; \mathrm{with} \; X_i' \; ; \\ \mathbf{6} & \mathbf{for} \; \mathbf{1} \leqslant i \leqslant n \; \mathbf{do} \\ \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \left\{ q^a, \pi(X_i' \mid parents(X_i'), a) \right\} \; ; \\ \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ \mathbf{9} & V^c \leftarrow \overline{\max} \left\{ q^a, V^c \right\} \; ; \\ \mathbf{10} & \mathbf{0} & \mathbf{0} & \mathbf{0} \; \mathbf{0}
```

computations on trees: CU Decision Diagram Package.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **possibilistic** model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
 \begin{array}{lll} 1 & V^* \leftarrow 0 \; ; \, V^c \leftarrow \mu \; ; \, \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} & \blacktriangleleft & \texttt{factorization} \\ \mathbf{3} & V^* \leftarrow V^c \; ; \\ \mathbf{4} & \mathbf{for} \; a \in \mathcal{A} \; \mathbf{do} & \Rightarrow & \mathsf{dynamic} \; \mathsf{programming} \\ \mathbf{5} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} & \\ \mathbf{7} & \mathbf{for} \; 1 \leqslant i \leqslant n \; \mathbf{do} & \\ \mathbf{7} & \mathbf{8} & q^a \leftarrow \overline{\min} \{ q^a, \pi(X_i' \mid \mathit{parents}(X_i'), a) \} \; ; \\ \mathbf{8} & q^a \leftarrow \overline{\max}_{X_i'} q^a \; ; \\ \mathbf{9} & V^c \leftarrow \overline{\max}_{X_i'} \{ q^a, V^c \} \; ; \\ \mathbf{10} & \mathbf{volume} \; \mathbf{1} \; \mathbf{1} \; \mathbf{volume} \; \mathbf{1} \; \mathbf{1} \; \mathbf{volume} \; \mathbf{1} \; \mathbf{
```

computations on trees: CU Decision Diagram Package.

- probabilistic model: + and × ⇒ new values created, number of ADDs leaves potentially huge.
- **p** possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite, number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
\begin{array}{lll} & 1 & V^* \leftarrow 0 \ ; \ V^c \leftarrow \mu \ ; \ \delta \leftarrow \overline{a} \ ; \\ & \text{2 while } V^* \neq V^c \ \text{do} & & & \text{factorization} \\ & & & V^* \leftarrow V^c \ ; \\ & & & \text{for } a \in \mathcal{A} \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & \text{for } 1 \leqslant i \leqslant n \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & & & \text{for } 1 \leqslant i \leqslant n \ \text{do} & & & \text{divided into } n \ \text{stages} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &
```

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

Natural factorisation: belief independence.

contribution (AAAI14): π -MOMDP following independence assumptions of the graphical model:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ belief over $s_{h,i}$.

assumptions: independent captors, hidden states...

Experiments: Navigation problem – agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: reach a goal; spots with accident risk. 2 possibilistic translations: M1 (optimistic) et M2 (cautious).

Experiments: Navigation problem – agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: reach a goal; spots with accident risk. 2 possibilistic translations: M1 (optimistic) et M2 (cautious).

Performances, function of the instance size

reached goal frequency

SPUDD O.8 PPUDD M2 PPUDD M2 PPUDD M2 PPUDD M2 PPUDD M2 PPUDD M2 Size of the navigation problem

time to reach the goal

Experiments: Navigation problem – agent = robot.

computation time

max size of ADDs

- PPUDD + M2 (pessimistic translation) faster and same performances as SPUDD;
- SPUDD only solves the 5 first instances;
- verified intuition: ADDs are smaller.

Experiments: RockSample problem – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al., solver POMDP*).

RockSample benchmark: recognize and sample "good" rocks;

Experiments: RockSample problem – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al.*, solver POMDP).

RockSample benchmark: recognize and sample "good" rocks;

computation time:

probabilistic solvers, prec. 1; PPUDD, exact resolution.

average of rewards

APPL stopped when

- approximate model + exact resolution solver
 - ightarrow can improve of computation time and performances.

IPPC 2014 – MDP track. ADDs-based approaches: PPUDD vs symbolic LRTDP (*Bonet et al.*)

PPUDD + BDD mask over reachable states.

Figure: mean of rewards over simulations.

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Independent beliefs

A π -MOMDP fulfilling

assumptions of the Dynamic Bayesian Network below has a

natural factorization:

$$(s_{v},\beta)=(s_{v,1},\ldots,s_{v,m},\beta_{1},\ldots,\beta_{l})$$
, with β_{i} belief about $s_{h,i}$.

Independent beliefs

A π -MOMDP fulfilling

assumptions of the Dynamic Bayesian Network below has a

natural factorization:

 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l)$, with β_i belief about $s_{h,i}$. some assumptions: one observation variable for each hidden state variable, hidden state variables independent on other hidden state variables ...

- $\forall 1 \leq i < j \leq l$, $s_{h,i}$ and $s_{h,j}$ are d-separated by evidence h_t (history)
- ightarrow for each time t, hidden state variables $s_{h,i}$ are independent given h_t

i.e.
$$\beta_t(s_h) = \pi(s_h \mid h_t) = \min_i \pi(s_{h,i} \mid h_t) = \min_i \beta_{t,i}(s_{h,i})$$

Belief factorization towards a hybrid POMDP

Possibility Theory:

- **granulated** belief space representation (discretization),
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs);
- **ignorance and imprecision** modeling.

Possibility Theory:

- **granulated** belief space representation (discretization),
- efficient problem simplification (PPUDD 2× better than LRTDP with ADDs);
- ignorance and imprecision modeling.
- choice of the qualitative criterion (optimistic/pessimistic);
- non additive utility degrees, from the same scale as possibility degrees.

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

Processus π -MOMDPs, outils de diagnostic pour l'Intéraction Homme-Machine (avec Sergio Pizziol)

- **occurrences:** états de la machine et actions humaines;
- évaluation humaine (de l'état de la machine);
- **effets:** transitions, classées par degrés de possibilité.

Processus π -MOMDPs, outils de diagnostic pour l'Intéraction Homme-Machine (avec Sergio Pizziol)

- **occurrences:** états de la machine et actions humaines;
- évaluation humaine (de l'état de la machine);
- effets: transitions, classées par degrés de possibilité.

- **estimation** de l'état selon l'opérateur humain;
- **détection** des erreurs humaines d'évaluation de l'état;
- causes plausibles de ces erreurs (diagnostique).

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 $\rightarrow \mbox{belief space discretization}.$

belief space discretization

$$\Pi_S = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_S < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(o', s' \mid b_t^{\pi}, a\right) = \pi\left(o' \mid b_t^{\pi}, a\right) \\ \pi\left(o', s' \mid b_t^{\pi}, a\right) & \text{otherwise.} \end{array} \right.$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by $b_{t+1}^{\pi}(s') \propto^{\pi} \pi(o', s' \mid b_t^{\pi}, a)$

- $\blacksquare \pi(o' \mid s', a) = \max_{s' \in \mathcal{S}} \pi(o', s' \mid b_t^{\pi}, a).$

belief space discretization

$$\Pi_{S} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{S} < +\infty$$

 \rightarrow belief space discretization.

$$b_t^{\pi}(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

update – **possibilistic** belief state

$$b_{t+1}^{\pi}(s') = \left\{ \begin{array}{cc} 1 & \text{if } \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) = \pi\left(\left.o' \left|\right.\right. b_{t}^{\pi}, a\right.\right) \\ \pi\left(\left.o', s' \left|\right.\right. b_{t}^{\pi}, a\right.\right) & \text{otherwise.} \end{array} \right.$$

denoted by
$$b^\pi_{t+1}(s') \propto^\pi \pi \left(o', s' \mid b^\pi_t, a
ight)$$

■ the update only depends on o' and a.

Pignistic transformation and transitions Pignistic transformation

numbering of the
$$n=\#\mathcal{S}$$
 system states: $1=b^{\pi}(s_1)\geqslant\ldots\geqslant b^{\pi}(s_n)\geqslant b^{\pi}(s_{n+1})=0.$

pignistic transformation – $P:\Pi_{\mathcal{S}} \to \mathbb{P}_{\mathcal{S}}$

$$\overline{b^\pi}(s_i) = \sum_{j=i}^{\#\mathcal{S}} \frac{b^\pi(s_j) - b^\pi(s_{j+1})}{j}.$$

- probability distribution $\overline{b^{\pi}} = \mathbf{gravity}$ center of the represented probabilistic distributions;
- Laplace principle: ignorance → uniform probability.

Pignistic transformation

Examples of pignistic transformations (red) of possibility distributions (blue)

Pignistic transformation and transitions

Transition function of epistemic states

Approximation of the probabilities over the observations:

$$\mathbf{p}(o' \mid s, a) = \sum_{s' \in \mathcal{S}} O(s', a, o') \cdot T(s, a, s');$$

$$\mathbf{p}\left(\left.o'\left|\right.\right.b^{\pi},a\right):=\sum_{s\in\mathcal{S}}\mathbf{p}\left(\left.o'\left|\right.\right.s,a\right)\cdot\overline{b^{\pi}}(s).$$

$$\Rightarrow \mathbf{p}\Big((b^{\pi})'\Big|b^{\pi},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ u(b^{\pi},a,o') = (b^{\pi})'}} \mathbf{p}\left(o' \mid b^{\pi},a\right).$$

notation: if $a \in \mathcal{A}$ selected, $o' \in \mathcal{O}$ received,

$$b_{t+1}^{\pi} = u(o', a, b_t^{\pi}) = \text{ update of } b_t^{\pi}.$$

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi} = \text{agent ignorance} + \text{discretization}$: **pessimistic reward** about these imprecisions.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity \mathcal{N} such that $\forall A \subseteq \mathcal{S}$, $\mathcal{N}(A) = 1 - \Pi(\overline{A})$.

pessimistic evaluation of the rewards - necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to ${\mathcal N}$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{\kappa} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace)$$
 (1)

(2)

pessimistic evaluation of the rewards – necessity measure

imprecision of $b^{\pi}=$ agent ignorance + discretization: **pessimistic reward** about these imprecisions.

Dual measure of $\Pi: 2^{\mathcal{S}} \to \mathcal{L}$

necessity $\mathcal N$ such that $\forall A\subseteq \mathcal S$, $\mathcal N(A)=1-\Pi(\overline A)$.

 $r_1 > r_2 > \ldots > r_{k+1} = 0$ represents elements of $\{r(s, a) | s \in \mathcal{S}\}$.

Choquet integral of r with respect to ${\cal N}$

$$Ch(r,\mathcal{N}) = \sum_{i=1}^{k} (r_i - r_{i+1}) \cdot \mathcal{N}(\lbrace r(s) \geqslant r_i \rbrace) \qquad (1)$$

$$= \sum_{i=1}^{\#\mathcal{L}-1} (l_i - l_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ b^{\pi}(s) \geqslant l_i}} r(s).$$
 (2)

notation $\mathcal{L} = \{ l_1 = 1, l_2, l_3, \dots, 0 \}.$

back to the example about ignorance

$$b_1^{\pi}(s_B) = 1$$
 $r(s_B) = 10$
 $b_1^{\pi}(s_C) = 1$ $r(s_C) = 0$
 $b_1^{\pi}(s_D) = 0$
 $b_1^{\pi}(s_D) = 1$ $r(s_D) = 5$
 $b_1^{\pi}(s_B) = b_1^{\pi}(s_C) = 0$

back to the example about ignorance

$$b_{1}^{\pi}(s_{B}) = 1$$
 $r(s_{B}) = 10$
 c_{C} $c_{D}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{A}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{A}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{A}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$$

•
$$Ch(r, N_{b_1^{\pi}} | a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$$

the safe action is prefered! dispersion reduced

back to the example about ignorance

$$b_{1}^{\pi}(s_{B}) = 1$$
 $r(s_{B}) = 10$
 c_{C} $c_{D}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{A}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{A}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{C}) = 1$ $r(s_{C}) = 0$
 $c_{D}^{\pi}(s_{C}) = 0$

- $Ch(r, N_{b_1^{\pi}} | a_0 = \tilde{a}) = r(s_D, \tilde{a}) = 5,$
- $Ch(r, N_{b_1^{\pi}} \mid a_0 = a') = \min_{s \in \mathcal{S}} r(s, a') = 0.$

the safe action is prefered! dispersion reduced

if $\mathcal{N}_{b_1^{\pi}}$ replaced by $b_1 \Rightarrow \mathit{Ch}(r,b_1) = \mathbb{E}_{s \sim b_1} \left[r(s,a) \right]$.

resulting MDP

translation summary

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle:
```

resulting MDP

translation summary

```
input: a POMDP \langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T, O, r, \gamma \rangle; output: the MDP \langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle:
```

■ state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;

resulting MDP translation summary

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$;

output: the MDP $\langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{T}, \tilde{r}, \gamma \rangle$:

state space $\tilde{\mathcal{S}} = \Pi_{\mathcal{S}}$,

■ $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$

the set of the possibility distributions over S;

resulting MDP

translation summary

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$; output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;
- $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$
- reward $\tilde{r}(a, b^{\pi}) = Ch(r(a, .), \mathcal{N}_{b^{\pi}}),$ $\mathcal{N}_{b^{\pi}}$ necessity measure computed from b^{π} .

resulting MDP

translation summary

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$; output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{S}$, the set of the possibility distributions over S;
- $\forall b^{\pi}, (b^{\pi})'$ possibilistic belief states $\in \Pi_{\mathcal{S}}, \forall a \in \mathcal{A},$ transitions $\tilde{T}(b^{\pi}, a, (b^{\pi})') = \mathbf{p}((b^{\pi})'|b^{\pi}, a);$
- reward $\tilde{r}(a, b^{\pi}) = Ch(r(a, .), \mathcal{N}_{b^{\pi}})$, $\mathcal{N}_{b^{\pi}}$ necessity measure computed from b^{π} .

criterion:
$$\mathbb{E}_{(b_t^{\pi}) \sim \tilde{T}} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot \tilde{r} \left(b_t^{\pi}, d_t \right) \right]$$
.

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid POMDP and π -POMDP

differences with possibilistic models

	hybrid POMDP	$\pi ext{-POMDP}$
transitions	probabilities	qualitative possibility
rewards	quantitative $\in \mathbb{R}$	qualitative $\in \mathcal{L}$
situation	-some imprecisions -large POMDP	few quantitative
issues	π definition	commensurability
in practice	MDP	$\pi ext{-MDP}$

hybrid model:

- only belief states are possibilistic:
- \rightarrow agent knowledge = **possibility** distribution;
 - probabilistic dynamics:
- \rightarrow approximated (prob.) transition between epistemic states.

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

factorized POMDP definition

■ S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right), \ \forall j \in \{1, \dots, m\} \text{ et } \forall a \in \mathcal{A};$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacktriangledown \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

definition

- S described by $S = \{s_1, \ldots, s_m\}$: $S = s_1 \times \ldots \times s_m$. Notation: $S' = \{s'_1, \ldots, s'_m\}$;
- transition function of s'_j , $T^a_j(\mathbb{S}, s'_j) = \mathbf{p}\left(s'_j \mid \mathbb{S}, a\right)$, $\forall j \in \{1, \dots, m\}$ et $\forall a \in \mathcal{A}$;
- lacksquare \mathcal{O} described by $\mathbb{O} = \{o_1, \ldots, o_n\}$: $\mathcal{O} = o_1 \times \ldots \times o_n$;
- **observation** function of o'_i , $O^a_i(\mathbb{S}', o'_i) = \mathbf{p}(o'_i | \mathbb{S}', a), \forall i \in \{1, \dots, n\} \text{ et } \forall a \in \mathcal{A}.$

independences:

$$o orall s_i', s_j' \in \mathbb{S}', \qquad s_i' \perp \!\!\! \perp s_j' \mid \{\mathbb{S}, a \in \mathcal{A}\},$$

$$\rightarrow \forall o_i', o_i' \in \mathbb{O}', \quad o_i' \perp\!\!\!\perp o_i' \mid \{\mathbb{S}', a \in \mathcal{A}\}.$$

some variables does not interact with each other

variables about the current system state,

variable s'_j about the **next** state.

some variables does not interact with each other

variables about the current system state,

$$s_k o s_j'$$
 \updownarrow

 $\exists a \in \mathcal{A}$, such that

 $T_i^a(\mathbb{S}, s_i')$ depends on s_k .

some variables does not interact with each other

variables about the current system state,

concerning observation variables

next state

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that } O_i^a(\mathbb{S}', o_i')$

depends on s'_i .

next state

concerning observation variables

$$s_j' o o_i'$$
 \Leftrightarrow $\exists a \in \mathcal{A}, ext{ such that } O_i^a(\mathbb{S}', o_i')$ depends on $s_j'.$

concerning observation variables

 $\exists a \in \mathcal{A}$, such that $O_i^a(\mathbb{S}',o_i')$ depends on s'_i .

current state S_{k_1} Sko S_{k_3} S_{k_n} S_{m}

next state

concerning observation variables

 $\exists a \in \mathcal{A}, \text{ such that}$ $O_i^a(\mathbb{S}', o_i')$ depends on s_i' .

concerning observation variables

 $s_j^{\cdot} \rightarrow o_i^{\cdot}$ \Leftrightarrow $\exists a \in \mathcal{A}$, such that $O_i^a(\mathbb{S}',o_i^{\prime})$ depends on s_j^{\prime} .

concerning observation variables

Rewritings of parameters **PROBABILISTIC** parameters

$$T_j^a(\mathbb{S}, s_j') = T_j^a(\mathcal{P}(s_j'), s_j');$$

$$O_j^a(\mathbb{S}', o_i') = O_j^a(\mathcal{P}(o_i'), o_i').$$

$$O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i')$$

Rewritings of parameters **PROBABILISTIC** parameters

- $T_j^a\left(\mathbb{S},s_j'\right)=T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\mathbf{p}(o'_i, \mathcal{P}(o'_i) \mid \mathbb{S}, a) = O_i^a(\mathcal{P}(o'_i), o'_i) \cdot \prod_{s'_j \in \mathcal{P}(o'_i)} T_i^a(\mathcal{P}(s'_j), s'_j)$$
$$= \mathbf{p}(o'_i, \mathcal{P}(o'_i) \mid \mathcal{Q}(o'_i), a).$$

Rewritings of parameters PROBABILISTIC parameters

- $T_j^a\left(\mathbb{S},s_j'\right)=T_j^a\left(\mathcal{P}(s_j'),s_j'\right);$
- $O_i^a(\mathbb{S}',o_i') = O_i^a(\mathcal{P}(o_i'),o_i').$

consequences on the joint distribution

$$\mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathbb{S}, a\right) = O_{i}^{a}\left(\mathcal{P}(o_{i}^{\prime}), o_{i}^{\prime}\right) \cdot \prod_{s_{j}^{\prime} \in \mathcal{P}(o_{i}^{\prime})} T_{i}^{a}\left(\mathcal{P}(s_{j}^{\prime}), s_{j}^{\prime}\right)$$
$$= \mathbf{p}\left(o_{i}^{\prime}, \mathcal{P}(o_{i}^{\prime}) \mid \mathcal{Q}(o_{i}^{\prime}), a\right).$$

observation probabilities

epistemic state

$$b^\pi(\mathbb{S}) \xrightarrow{\mathbf{marginalization}} b^\pi(\mathcal{Q}(o_i')) \xrightarrow{\mathbf{pignistic}} \overline{b^\pi}(\mathcal{Q}(o_i'))$$

$$\mathbf{p}\left(\left.o_{i}'\right|\ b^{\pi},a\right) = \sum_{2^{\mathcal{P}\left(o_{i}'\right)}\ 2^{\mathcal{Q}\left(o_{i}'\right)}}\mathbf{p}\left(\left.o_{i}',\mathcal{P}(o_{i}')\right|\ \mathcal{Q}(o_{i}'),a\right)\cdot\overline{b^{\pi}}\big(\mathcal{Q}(o_{i}')\big)$$

$$\blacksquare \pi (s_i' \mid \mathbb{S}, a) = \pi (s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i | S', a) = \pi(o'_i | \mathcal{P}(o'_i), a).$$

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\blacksquare \pi(o'_i \mid \mathbb{S}', a) = \pi(o'_i \mid \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\forall o_i' \in \mathbb{O}$$
,

$$b_{t+1}^{\pi}\Big(\mathcal{P}(o_i')\Big) \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i')\Big|a_0, o_1, \ldots, a_{t-1}, o_t\Big)$$

$$\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$$

$$\pi (o'_i | S', a) = \pi (o'_i | \mathcal{P}(o'_i), a).$$

marginal possibilistic belief states

$$\begin{aligned} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \end{aligned}$$

- $\blacksquare \pi(s_i' \mid \mathbb{S}, a) = \pi(s_i' \mid \mathcal{P}(s_i'), a);$
- $\pi (o'_i | \mathbb{S}', a) = \pi (o'_i | \mathcal{P}(o'_i), a).$

marginal possibilistic belief states

$$\begin{aligned} \forall o_i' \in \mathbb{O}, \\ b_{t+1}^{\pi} \Big(\mathcal{P}(o_i') \Big) & \propto^{\pi} \pi \Big(o_i', \mathcal{P}(o_i') \Big| a_0, o_1, \dots, a_{t-1}, o_t \Big) \\ &= \max_{2^{\mathcal{Q}(o_i')}} \min \left\{ \pi \Big(o_i', \mathcal{P}(o_i') \Big| \mathcal{Q}(o_i'), a \Big), b_t^{\pi} \Big(\mathcal{Q}(o_i') \Big) \right\} \\ & \text{denoted by } \pi \Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a \Big). \end{aligned}$$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

$$S_{v}' \xrightarrow{S_{v}' = O_{v}'} O_{v}'$$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

$$S'_{\nu} \xrightarrow{S'_{\nu} = O'_{\nu}} O'_{\nu}$$

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a\right)=\sum_{2^{\mathcal{P}\left(s_{v}'\right)}}\mathcal{T}^{a}\left(\mathcal{P}\left(s_{v}'\right),s_{v}'\right)\cdot\overline{b_{t}^{\pi}}\left(\mathcal{P}\left(s_{v}'\right)\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

s'_h

3 classes of state variables

 $\underline{\text{variable:}} \text{ visible } s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$s'_{v} \xrightarrow{s'_{v} = o'_{v}} o'_{v}$$

$$\mathbf{p}\left(s_{v}'\mid\ b_{t}^{\pi},a\right)=\textstyle\sum_{2^{\mathcal{P}(s_{v}')}} T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot \overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

 s'_h

3 classes of state variables

 $\underline{\text{variable:}}$ visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}\left(\mathcal{P}(s'_{v}), s'_{v}\right) \cdot \overline{b^{\pi}_{t}}\left(\mathcal{P}(s'_{v})\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s'_{v} \mid b^{\pi}_{t}, a\right) = \sum_{2^{\mathcal{P}(s'_{v})}} T^{a}\left(\mathcal{P}(s'_{v}), s'_{v}\right) \cdot \overline{b^{\pi}_{t}}\left(\mathcal{P}(s'_{v})\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c)$$

3 classes of state variables

 $\underline{\mathsf{variable:}}\ \mathsf{visible}\ s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid\ b_{t}^{\pi},a\right)=\textstyle\sum_{2^{\mathcal{P}(s_{v}')}} T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot \overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

3 classes of state variables

<u>variable</u>: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid\ b_{t}^{\pi},a\right)=\textstyle\sum_{2^{\mathcal{P}(s_{v}')}} T^{a}(\mathcal{P}(s_{v}'),s_{v}')\cdot \overline{b_{t}^{\pi}}\Big(\mathcal{P}(s_{v}')\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i')\Big|b_t^\pi, a\Big). \end{aligned}$$

 $\wedge \mathcal{P}(o_i')$ may contain visible variables.

 S_h^b S_h^b S_h^c

3 classes of state variables

 $\underline{\text{variable:}}$ visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}(\mathcal{P}(s_{v}'), s_{v}') \cdot \overline{b_{t}^{\pi}} \Big(\mathcal{P}(s_{v}')\Big).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$egin{aligned} b^\pi_{t+1}(\mathcal{P}(o_i')) &= b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ &\propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big). \end{aligned}$$

 S_h^b S_h^c

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

$$\Leftrightarrow$$
 deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi},a\right)=\sum_{2^{\mathcal{P}\left(s_{v}'\right)}}\mathcal{T}^{a}\left(\mathcal{P}\left(s_{v}'\right),s_{v}'\right)\cdot\overline{b_{t}^{\pi}}\left(\mathcal{P}\left(s_{v}'\right)\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$b_{t+1}^{\pi}(\mathcal{P}(o_i')) = b_{t+1}^{\pi}(s_h, s_h^a, s_h^b, s_h^c) \ \propto^{\pi} \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^{\pi}, a\Big).$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$b_{t+1}^{\pi}(s_f') = \max_{2^{\mathcal{P}(s_f')}} \min \left\{ \pi \left(s_f' \middle| \mathcal{P}(s_f'), a \right), b_t^{\pi} \left(\mathcal{P}(s_f') \right) \right\}.$$

3 classes of state variables

variable: visible $s_v \in \mathbb{S}_v$

⇔ deterministic belief variable.

$$\mathbf{p}\left(s_{v}'\mid b_{t}^{\pi}, a\right) = \sum_{2^{\mathcal{P}(s_{v}')}} T^{a}\left(\mathcal{P}(s_{v}'), s_{v}'\right) \cdot \overline{b_{t}^{\pi}}\left(\mathcal{P}(s_{v}')\right).$$

inferred hidden $s_h \in \mathbb{S}_h$

$$b^\pi_{t+1}(\mathcal{P}(o_i')) = b^\pi_{t+1}(s_h, s_h^a, s_h^b, s_h^c) \ \propto^\pi \pi\Big(o_i', \mathcal{P}(o_i') \Big| b_t^\pi, a\Big).$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$b_{t+1}^{\pi}(s_f') = \max_{2^{\mathcal{P}(s_f')}} \min \left\{ \pi \left(s_f' \middle| \mathcal{P}(s_f'), a \right), b_t^{\pi} \left(\mathcal{P}(s_f') \right) \right\}.$$

Possibilistic belief variables

global belief state

$$\mathbb{O}_h = \mathbb{O} \setminus \mathbb{S}_v$$
.

bound over the global belief state

$$b_{t+1}^{\pi}(\mathbb{S}') = \pi(\mathbb{S}' \mid a_0, o_1, \dots, a_t, o_{t+1})$$

$$\leq \beta_{t+1}(\mathbb{S}')$$

$$= \min \left\{ \min_{s'_j \in \mathbb{S}_v} \left[\mathbb{1}_{\left\{ s'_j = o'_j \right\}} \right], \min_{s'_j \in \mathbb{S}_f} \left[b^{\pi}_{t+1}(s'_j) \right], \min_{o'_i \in \mathbb{O}_h} \left[b^{\pi}_{t+1} \left(\mathcal{P}(o'_i) \right) \right] \right\}$$

Possibilistic belief variables

global belief state

$$\mathbb{O}_h = \mathbb{O} \setminus \mathbb{S}_v$$
.

bound over the global belief state

$$b_{t+1}^{\pi}(\mathbb{S}') = \pi(\mathbb{S}' \mid a_0, o_1, \dots, a_t, o_{t+1})$$

$$\leqslant \beta_{t+1}(\mathbb{S}')$$

$$= \min \left\{ \min_{s'_j \in \mathbb{S}_v} \left[\mathbb{1}_{\left\{ s'_j = o'_j \right\}} \right], \min_{s'_j \in \mathbb{S}_f} \left[b^{\pi}_{t+1}(s'_j) \right], \min_{o'_i \in \mathbb{O}_h} \left[b^{\pi}_{t+1} \left(\mathcal{P}(o'_i) \right) \right] \right\}$$

- $\beta_t =$ less informative version of the belief state: $b_t^{\pi} \leq \beta_t$;
- computed using marginal belief states ↔ factorization.

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

 $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_{\nu} \in \mathbb{S}_{\nu}$, 1 variable β'_{ν} is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_v$$
, $\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}$ belief states,
 $\Rightarrow \lceil \log_2(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}}) \rceil$ boolean variables β_h' .

Variables de croyance

different according to the class of the variable

$$\lambda = \#\mathcal{L}$$

- $\forall s'_v \in \mathbb{S}_v$, 1 variable β'_v is enough.
- $p_i = \# \mathcal{P}(o_i').$

$$\forall o_i \in \mathbb{O} \setminus \mathbb{S}_{v}, \ \lambda^{2^{\rho_i}} - (\lambda - 1)^{2^{\rho_i}} \text{ belief states,}$$

$$\Rightarrow \lceil \log_2(\lambda^{2^{\rho_i}} - (\lambda - 1)^{2^{\rho_i}}) \rceil \text{ boolean variables } \beta'_h \ .$$

■ $\forall s'_f \in \mathbb{S}_f$, $\lambda^2 - (\lambda - 1)^2 = 2\lambda - 1$ belief states, ⇒ $\lceil \log_2(2\lambda - 1) \rceil$ boolean variables β'_f .

resulting MDP in practice

trick: "flipflop" variable

boolean variable "flipflop" f changes state at each time step \rightarrow defines 2 phases:

- 1 observation generation,
- 2 belief update (deterministic knowing the observation).

MDP variables:

$$\begin{split} \tilde{\mathbb{S}} &= \\ \mathbf{beliefs} \colon \beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f} \\ &\times \\ \mathbf{visible} \\ \mathbf{variables} \colon v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k. \end{split}$$

resulting MDP in practice final structured MDP

$$\tilde{\mathbb{S}} =$$

beliefs:
$$\beta = \beta_v^1 \times \ldots \times \beta_v^{m_v} \times \beta_h^1 \times \ldots \times \beta_h^{m_h} \times \beta_f^1 \times \ldots \times \beta_f^{m_f}$$

visible variables :
$$v = f \times s_v^1 \times \ldots \times s_v^{m_v} \times o_1 \times \ldots \times o_k$$
.

resulting MDP in practice

final structured MDP

factorized model's variables: $\#\mathbb{O} + \#\mathbb{S}_{\nu} +$

$$+\sum_{i=1}^{\#\mathbb{O}_h} \left\lceil \log_2 \left(\lambda^{2^{p_i}} - (\lambda - 1)^{2^{p_i}} \right) \right\rceil + \#\mathbb{S}_f \cdot \left\lceil \log_2 \left(2\lambda - 1 \right) \right\rceil$$

initial hybrid model's variables:

$$\left\lceil \log_2 \left(\lambda^{2^{\#\mathbb{S}}} - (\lambda - 1)^{2^{\#\mathbb{S}}} \right) \right\rceil$$

resulting MDP in practice final structured MDP

factorized model's variables:

$$\leqslant \#\mathbb{O} + \#\mathbb{S}_{v} + \sum_{i=1}^{r-\mathfrak{O}_{n}} \log_{2}(\lambda) \cdot 2^{p_{i}} + \#\mathbb{S}_{f} \cdot (1 + \log_{2}(\lambda))$$

 \ll # initial hybrid model's variables: $\geq \log_2(\lambda) \cdot (2^{\#\mathbb{S}} - 1).$

Plan

- 1 Context
- 2 Mixed-Observability and unbounded mission durations
- 3 Factored π -MOMDP and computations with ADDs
- 4 Belief factorization
- 5 Human-machine interaction
- 6 An hybrid POMDP
- 7 Benefiting from factorized structures

$POMDP \xrightarrow{\textbf{translation}} MDP \text{ with finite state space}$

transition probabilities on the possibilistic belief states;

$\mathsf{POMDP} \xrightarrow{\mathsf{translation}} \mathsf{MDP} \text{ with finite state space}$

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

POMDP $\xrightarrow{\text{translation}}$ MDP with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

$POMDP \xrightarrow{translation} MDP$ with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

perspectives:

■ IPPC problems (factorized POMDPs);

$POMDP \xrightarrow{translation} MDP$ with finite state space

- transition probabilities on the possibilistic belief states;
- pessimistic evaluation of the rewards (Choquet integral);

perspectives:

- IPPC problems (factorized POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition $(\pi$ -normalization, pignistic transformation, most specific, ...);
 - **2** imprecision: robust in practice?

Thank you!

