

22-212

Base + Perpendicular = Hyp2

(n2-n2)2 + (y2-y2)2 = Hyp2

1 (n2-n2) + (y2-y2)2

Examples

$$A = A (3,5)$$
 $A = A (3,5)$
 $A = A (6-3)^{2} + (1-5)^{2}$
 $A = A (2,5)$
 $A = A (2,-5)$
 $A = A (2,-5)$

$$A=(2,-5)$$
 $B(14,0)$
 $AB=\sqrt{(44-2)^2+(0-45)^2}$
 $=\sqrt{(44-2)^2+(0-45)^2}$
 $=\sqrt{(64)}$
 $=\sqrt{(34+2)^2+(0-45)^2}$

2a)
$$A(a,s)$$
 $B(3,a)$. Giventhat $AB = Sunits$ Find thousances of a

$$AB = \sqrt{(3-a)^2 + (a-s)^2} = S$$

$$(3-a)^2 + 16 = 2s$$

$$(3-a)^2 = 9$$

$$3-a = 23$$

a= 6

(b)
$$P(x, -2)$$
 Q (6, 13). Given that $PQ = 17$ units. Find the values of P .

$$(6-p)^{2} + (13+2)^{2} = 17$$

$$(6-p)^{2} = 289-225$$

$$(6-p)^{2} = 54$$

$$6-p = 18$$

$$-2 = p$$

0.63 A(-1,0) , B(1,6) and C(7,4)Show that triangle ABC is aright angle isospeckes triangle AB- 1 (1+2)2+ (6-0)2 BC= 1 (7-1)+(4-6) = 140 some values prove that they ore isoseleces AC = \ (7-12)2 + (4-0)2 AB2+ BC2 = AC2 140= 180 - 1 64 + 16 - 1 80 40 +40=80 80:80 hence proved that they are right orphed. Area Of Triangle

Francises

(i)
$$A(1,3)$$
 $B(4,7)$ C^2 $P(-1,2)$ $Q(-1,2)$ $Q(-1,2)$ D^2

In $= \frac{7\cdot 3}{4\cdot 4\cdot 4} = \frac{4}{3}$

3. If the gradent of the line joining, the points C^2 , C^2 and C^2 is C^2 .

3. If the gradent of the line joining, the points C^2 , C^2 and C^2 is C^2 .

4. If the gradent of the line joining, the points C^2 and C^2 is C^2 .

4. If the gradent of the line joining, the points C^2 and C^2 is C^2 .

5. If the gradent of the line joining, the points C^2 and C^2 is C^2 .

6. If the gradent of the line joining, the points C^2 and C^2 are collinear find the above same shought line.

6. If the gradent of the line joining, the points C^2 and C^2 and C^2 and C^2 are collinear forms.

6. If the gradent of the line joining, the points C^2 and C^2 and C^2 and C^2 are collinear forms.

6. If the gradent of the line joining, the points C^2 and C^2 and C^2 are collinear forms.

6. If the gradent of the line joining, the points C^2 and C^2 are C^2 are C^2 and C^2 are C^2 and C^2 are C^2 are C^2 are C^2 and C^2 are C^2

