Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II

Fecha: 27 de marzo de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2244

Normalidad y separabilidad

1. Extensiones normales

1. Sea $f(x) \in k[x]$ un polinomio de grado n, sea K su cuerpo de escisión. Pruebe que $[K:k] \mid n!$

2. Defina $\zeta_n := e^{2\pi/ni} \in \mathbb{C}$ y note que $\zeta_n^n = 1$, pero $\zeta_n^j \neq 1$ para $1 \leq j < n$.

a) Pruebe que $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ es una extensión normal.

b) Pruebe que para n = p primo, $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p - 1$.

c) Construya el cuerpo de escisión K de x^5-2 sobre $\mathbb Q$ y calcule $[K:\mathbb Q]$.

2. Extensiones (in)separables

Como se vio en clases, las extensiones en característica cero son todas separables, por lo que en esta sección k será un cuerpo de car k = p > 0.

3. Sea K/k una extensión algebraica y sea $\alpha \in K$.

- a) Pruebe que si α es inseparable, entonces su polinomio minimal $f(x) \in k[x]$ satisface que $f(x) = g(x^p)$.
- b) Pruebe que α es separable syss $k(\alpha) = k(\alpha^p)$.
- 4. Pruebe que si $f(x) \in k[x]$ es irreducible, entonces todas sus raíces (en su cuerpo de escisión) tienen la misma multiplicidad y esta es una potencia de p.
- 5. Sea K/k una extensión algebraica de cuerpos. Un elemento $\alpha \in K$ se dice **puramente inseparable** si su polinomio minimal $f(x) \in k[x]$ es una potencia del monomio $x \alpha$.
 - a) Empleando el ejercicio anterior pruebe que si $\alpha \in K$ es puramente inseparable, entonces $\alpha^{p^e} \in k$ para algún $e \geq 1$.
 - b) Pruebe que si $a \in k \setminus k^p$, entonces el polinomio $x^{p^e} a$ es irreducible para $e \in \mathbb{N}$.
 - c) Pruebe que

00

 \odot

 \odot

$$K_{\text{ins}} = \{ \alpha \in K : \alpha \text{ es puramente inseparable} \}$$

es un subcuerpo de K.

- 6. Para un entero $n \geq 1$, denote por $k^{p^{-n}}$ a la mínima extensión de k en la cual todo elemento tiene raíz p^n -ésima.
 - a) Pruebe que $k^{p^{-n}}/k$ es una extensión puramente inseparable (i.e., algebraica y todo elemento suyo es puramente inseparable).
 - b) Pruebe que

$$k^{p^{-\infty}} := \bigcup_{n \ge 1} k^{p^{-n}}$$

es un cuerpo perfecto.

A. Ejercicios propuestos

- 1. Pruebe que toda extensión cuadrática es normal.
 - 2. Definamos el polinomio de Artin-Schreier $\wp(x) := x^p x$. Sea $a \in k$ tal que $a \notin \wp[k]$. Pruebe que el polinomio $\wp(x) a$ es irreducible e inseparable.

Referencias

- 1. JACOBSON, N. Basic Algebra 2 vols. (Freeman y Company, 1910).
- 2. Nagata, M. Theory of Commutative Fields Translations in Mathematical Monographies 125 (American Mathematical Society, 1967).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-1-ayud/