

Fundamentos de Álgebra Linear

Vetores: Tratamento Geométrico Aula 1

Escola Politécnica UNISINOS

Slalom Gigante

O **slalom gigante**, ou abreviadamente **gigante**, é uma das modalidades do esqui alpino e do snowboard. Trata-se de uma prova contra-relógio na qual os esquiadores e *snowboarders* devem passar através de uma série de pórticos (gates) dispostos pelo caminho.

Deslocamento no Slalom Gigante

Deslocamento \vec{r} :

De acordo com os princípios da mecânica, o deslocamento é a soma dos vetores posição que parte de um gate e chega no gate posterior.

Formulação:

Como determinar geometricamente \vec{r} ?

<u>Definição Geométrica [Vetor]:</u>

Um vetor \vec{v} é um segmento de reta orientado (seta) que possui Módulo, Direção e Sentido.

Módulo $|\vec{v}| = v$: Comprimento ou magnitude do vetor.

Direção: Noção de orientação/inclinação espacial.

Sentido: Para onde o vetor aponta.

Exemplo:

Módulo: $|\vec{v}| = 4 \, unidades$

Direção: 40^o com a vertical (norte).

Sentido: De A para B.

<u>Definição [Vetor Induzido por dois Pontos]</u>: $\vec{v} = \overrightarrow{AB} = B - A$

É o vetor que parte do ponto A e chega no ponto B.

<u>Definição [Igualdade Vetorial]:</u>

Dois vetores \vec{a} e \vec{b} são iguais $\vec{a}=\vec{b}$ se, e somente se, possuem mesmo módulo, direção e sentido.

<u>Definição [Vetores Paralelos]:</u>

Dois vetores \vec{u} e \vec{v} são Paralelos, notação \vec{u} // \vec{v} se possuem mesma direção.

<u>Definição [Vetor Oposto]:</u>

A cada vetor \vec{v} , corresponde um Vetor Oposto $-\vec{v}$, de mesmo módulo e direção mas sentido contrário.

<u>Definição [Vetor Unitário e Versor]:</u>

Um vetor é Unitário se $|\vec{u}| = 1$

A cada vetor \vec{v} podemos associar dois vetores unitários paralelos a \vec{v} : \vec{u} e $-\vec{u}$ (vide figura).

O vetor \vec{u} que tem mesmo sentido de \vec{v} é chamado de Versor de \vec{v} .

<u>Definição [Vetores Ortogonais]:</u> Dois vetores \vec{u} e \vec{v} são Ortogonais, notação $\vec{u} \perp \vec{v}$, se algum representante de \vec{u} forma

ângulo de 90^o com algum representante de \vec{v} .

<u>Definição [Vetores Coplanares]:</u>

Três ou mais vetores são coplanares, se existe um plano que os contenha.

 \vec{u} , \vec{v} e \vec{w} São coplanares

 \vec{u} , \vec{v} e \vec{w} Não são coplanares

Tratamento Geométrico

Exemplo 1: A figura abaixo é constituída por 9 quadrados de mesmo tamanho. Decida se é verdadeira ou falsa cada uma das seguintes afirmações:

()
$$\overrightarrow{AB} = \overrightarrow{OF}$$
 () $\overrightarrow{ED} = \overrightarrow{LK}$
() $\overrightarrow{LB} \parallel \overrightarrow{FG}$ () $\overrightarrow{HC} \parallel \overrightarrow{PI}$
() $\overrightarrow{NC} \perp \overrightarrow{HI}$ () $\overrightarrow{OP} \perp \overrightarrow{LN}$

Solução:

$$(V)\overrightarrow{AB} = \overrightarrow{OF}$$

 $(F)\overrightarrow{ED} = \overrightarrow{LK}$

$$(\begin{array}{c} \mathbf{F} \end{array}) \overrightarrow{LB} \parallel \overrightarrow{FG}$$
$$(\begin{array}{c} \mathbf{V} \end{array}) \overrightarrow{HC} \parallel \overrightarrow{PI}$$

$$(\stackrel{\mathsf{V}}{\mathsf{V}})\overrightarrow{NC}\perp\overrightarrow{HI}$$

$$(F)\overrightarrow{OP} \perp \overrightarrow{LN}$$

Tratamento Geométrico

Exercício 1: A figura abaixo é constituída por 9 quadrados congruentes (de mesmo tamanho). Decida se é verdadeira ou falsa cada uma das seguintes afirmações.

a)
$$\overrightarrow{AB} = \overrightarrow{OF}$$
 (), b) $\overrightarrow{BC} = \overrightarrow{OP}$ (), c) $\overrightarrow{DE} = -\overrightarrow{ED}$ (), d) $\overrightarrow{KN} = \overrightarrow{FI}$ ()

e)
$$\overrightarrow{AC}$$
 // \overrightarrow{HI} (), f) \overrightarrow{AJ} // \overrightarrow{FG} (), g) $\overrightarrow{AM} \perp \overrightarrow{BL}$ (), h) $\overrightarrow{PN} \perp \overrightarrow{NB}$ ()

i)
$$\overrightarrow{PN} \perp \overrightarrow{AM}$$
 (), j) $|\overrightarrow{AJ}| = |\overrightarrow{AC}|$ (), k) $|\overrightarrow{AO}| = 2|\overrightarrow{NP}|$ ().

Soma ou Adição de Vetores: $\vec{S} = \vec{u} + \vec{v}$

Dados os vetores \vec{u} e \vec{v} , qual é o vetor $\vec{S} = \vec{u} + \vec{v}$ que representa a soma de \vec{u} com \vec{v} ?

(i) <u>Regra do Paralelogramo</u>: Os vetores precisam partir do mesmo ponto, e o vetor soma é a seta que parte da origem comum a ambos, e termina no vértice oposto do paralelogramo constituído.

Neste caso, $\vec{S} = \vec{u} + \vec{v} = \overrightarrow{AC}$.

(ii) <u>Caminho Vetorial</u>: Neste caso, o fim de um vetor deve coincidir com o início do outro, e o vetor soma é a seta que parte do início do "caminho vetorial" e chega no fim.

Exercício 2:

Dados os vetores, represente geometricamente $\vec{u} + \vec{v}$ pela regra do paralelogramo e pela regra do caminho Vetorial.

<u>Diferença ou Subtração de Vetores: $\vec{d} = \vec{u} - \vec{v}$ </u>

Dados os vetores \vec{u} e \vec{v} , qual é o vetor $\vec{d} = \vec{u} - \vec{v}$ que representa a subtração de \vec{u} com \vec{v} nesta ordem?

Resposta: $\vec{d} = \vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

Exercício 3:

Dados os vetores, represente geometricamente $\vec{u} - \vec{v}$

<u>Produto de um Número Real com um Vetor:</u>

Dados o vetor \vec{v} e um escalar α Real, quais são as características do vetor $\vec{u} = \alpha \vec{v}$?

- (i) Módulo: $|\alpha \vec{v}| = |\alpha| |\vec{v}|$, isto é, o comprimento de $\alpha \vec{v}$ é o comprimento de \vec{v} multiplicado por $|\alpha|$.
- (ii) Direção: Mesma de \vec{v} .
- (iii) Sentido: $\alpha \vec{v}$ e \vec{v} têm mesmo sentido se $\alpha > 0$, e sentidos contrários se $\alpha < 0$.

Exemplo 2:

Tratamento Geométrico

Exemplo 3: O paralelogramo \overrightarrow{ABCD} , veja figura, é determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AD} , sendo M e N pontos médios dos lados DC e AB, respectivamente. Representar os vetores:

a)
$$\overrightarrow{AB} + \overrightarrow{AD}$$

b)
$$\overrightarrow{MN} + \overrightarrow{BC}$$

c)
$$\overrightarrow{AN} - \overrightarrow{DC}$$

a)
$$\overrightarrow{AB} + \overrightarrow{AD}$$
 b) $\overrightarrow{MN} + \overrightarrow{BC}$ c) $\overrightarrow{AN} - \overrightarrow{DC}$ d) $\overrightarrow{BM} - \frac{1}{2}\overrightarrow{AB}$

Solução:

Observações.

- (i) Dois vetores \vec{u} e \vec{v} são paralelos se, e somente se, existe um escalar $\alpha \in R$ tal que $\vec{u} = \alpha \vec{v}$.
- (ii) Agora podemos escrever uma expressão analítica para o Versor de \vec{v} , basta escolher $\alpha=1/|\vec{v}|$. Assim, sempre podemos construir o Versor de \vec{v} como $\vec{u}=\frac{\vec{v}}{|\vec{v}|}$.

Exercício 4:

Dado o vetor \vec{v} de módulo 30 unidades, determine uma expressão para um vetor paralelo a \vec{v} e que tenha módulo 10 unidades.

Deslocamento no Slalom Gigante [Explorando Conceitos]

Conforme podemos observar, os vetores posição intermediários estão na configuração de caminho vetorial. Logo o vetor Deslocamento, por ser a soma vetorial destes vetores, é o vetor que tem início no gate de largada e término no gate de chegada.

Este vetor tem relevância, por exemplo, no cálculo da velocidade vetorial média.

Tarefa Extraclasse

Problemas: 1 a 10 (páginas: 13 a 15)