第七章 实数的完备性

§1 关于实数集完备性的基本定理

1. 验证:数集 $\{(-1)^n + \frac{1}{n}\}$ 有且只有两个聚点 $\xi_1 = -1$ 和 $\xi_2 = -1$.

证:因为
$$(-1)^{2k} + \frac{1}{2k}$$
; $(-1)^{2k+1} + \frac{1}{2k+1} \in \{(-1)^n + \frac{1}{n}\}$ 且 $\lim_{k \to \infty} (-1)^{2k} + \frac{1}{2k} = 1$, $\lim_{k \to \infty} (-1)^{2k+1} + \frac{1}{2k+1} = -1$, 所以 1 和 -1 为 $\{(-1)^n + \frac{1}{n}\}$ 的聚点.

反证法:假设 x_0 为不同于 1 和 -1 的聚点,则取 $\varepsilon_0 = \frac{1}{2} min\{ | x_0 - 1|, |x_0 + 1| \}$,存在 $N = 1/\varepsilon_0$ 当 n > N 时 $(-1)^n + \frac{1}{n}$ 落在 $U(x_0, \varepsilon_0)$ 外部,即落在 $U(x_0, \varepsilon_0)$ 至多只有有限点,这于聚点定义相矛盾.

2. 证明:任何有限集都没有聚点.

证明:设 S 为有限集, x_0 为其聚点, 由聚点定义存在互异 $\{x_n\}$ \subset S 且有 $\lim_{n\to\infty} x_n = x_0$, 数列 $\{x_n\}$ 有无限项, 这于 S 为有限集相矛盾.

3. 设 $\{a_n,b_n\}$ 是一严格开区间套,即 $a_1 < a_2 < \cdots < a_n < \cdots < b_n < \cdots < b_2 < b_1,$

且 $\lim_{n\to\infty} (b_n - a_n) = 0$.证明存在唯一一点 ξ ,有

$$a_n < \xi < b_n, n = 1, 2, \cdots$$

证 作闭区间列 $\{[x_n,y_n]\}$,其中

$$x_n = \frac{a_n + a_{n+1}}{2}$$
, $y_n = \frac{b_n + b_{n+1}}{2}$, $n = 1, 2, \cdots$

由于 $a_n < x_n < a_{n+1}$, $b_{n+1} < y_n < b_n$, 故有

$$(1)(a_{n+1},b_{n+1}) \subset [x_n,y_n] \subset (a_n,b_n)$$
,从而
$$[x_{n+1},y_{n+1}] \subset [x_n,y_n], n = 1,2,\cdots$$

 $(2)b_{n+1} - a_{n+1} < y_n - x_n < b_n - a_n$, 从而由 $\lim_{n \to \infty} (b_n - a_n) = 0$, 得 $\lim_{n \to \infty} (y_n - x_n) = 0$.

所以 $\{[x_n,y_n]\}$ 为闭区间套,由区间套定理,存在一点 ξ ,使得 $\xi \in [x_n,y_n]$, $n=1,2,\cdots$,由(1)有 $a_n < \xi < b_n (n=1,2,\cdots)$,满足条件 $a_n < \xi < b_n (n=1,2,\cdots)$,点 ξ 的唯一性与区间套定理同样证得.

4. 试举例说明:在有理数集内,确界原理,单调有界原理聚点定理和柯西收敛准则一般都不能成立.

解:设 $a_n = (1 + \frac{1}{n})^n$ $b_n = (1 + \frac{1}{n})^{n+1}$,则 $\{a_n\}\{b_n\}$ 均是有理数列

- (1) 点集 $\{a_n \mid n = 1, 2, \dots\}$ 非空有界,但在有理数集内无上确界.
- (2) 数列{a_n} 单调递增有上界,但在有理数集无极限.
- (3) 点集 $\{a_n \mid n = 1, 2, \dots\}$ 有界无限,但在有理数集无聚点.
- (4) 数列 {a_n} 满足柯西收敛准则,但在有理集内无极限.
- 5. 设 H = $\{(\frac{1}{n+2}, \frac{1}{n}) \mid n = 1, 2, \cdots\}$ 是一个无限开区间集,问: (1)H 能否覆盖(0,1)?
- (2) 能否从 H 中选出有限个开区间覆盖 $(0,\frac{1}{2})$?
- (3) 能否从 H 中选出有限个开区间覆盖 $(\frac{1}{100},1)$?

解 (1)H能覆盖(0,1),因为对任意 $x \in (0,1)$,存在 n,使 $\frac{1}{n+2}$ $< x < \frac{1}{n}$.

(2) 不能从 H 中选出有限个开区间覆盖 $(0,\frac{1}{2})$, 因对 H 中任意有限个开区间,设其中左端点最小的为 $\frac{1}{N+2}$,则当 $0 < x < \frac{1}{N+3}$ 时,这有限个开区间就不能覆盖 x.

- (3) 能从 H 中选出有限个开区间覆盖 $(\frac{1}{100},1)$. 例如选取 $(\frac{1}{n+2},\frac{1}{n})$, $n=1,2,\cdots$, 99 即可.
 - 6. 证明:闭区间[a,b]的全体聚点的集合[a,b]本身.

证 设 $x \in [a,b]$, 若 $x \in (a,b)$, 取 $\delta = min\{|x-a|, |x-b|\}$. 则 $\delta > 0$, 且 $U(x,\delta) \subset [a,b]$, 从而对任给正数 $\varepsilon(<\delta)$, 有 $U(x,\varepsilon) \subset [a,b]$, 而 $U(x,\varepsilon)$ 中含有 [a,b] 的无限多个点, 故 x 为 [a,b] 的聚点. 若 x = a,则对任给正数 $\varepsilon(<b-a)$, 有 $U_+(a,\varepsilon) \subset U(a,\varepsilon)$, 且 $U_+(a,\varepsilon) \subset [a,b]$, 即 $U(a,\varepsilon)$ 内含有 [a,b] 的无限多个点, 故 a 是 [a,b] 的聚点, x = b 同理可证.

设 x 为[a,b] 聚点,假设 x \in [a,b],则 x < a,或 a > b,若x < a,取 0 < ϵ < a - x,则 U(x, ϵ) \cap [a,b] = Ø,即 U(x, ϵ) 中不含[a,b] 的点,这与 x 为[a,b] 的聚点相矛盾.所以 x \in [a,b],x > b 同样可证.

7. 证明:单调数列 $\{x_n\}$ 若存在聚点,则一定是唯一的,且是 $\{x_n\}$ 的确界.

证 设递增数列 $\{x_n\}$ 的聚点 ζ , 设 a 为任一实数且 a $\neq \zeta$, 不妨设 a $< \zeta$ (a $> \zeta$ 同理可证),取 $\varepsilon = \frac{\zeta - a}{2} > 0$,由聚点定义, $U(\zeta, \varepsilon)$ 中含有 $\{x_n\}$ 的无限多个项,设 $x_N \in U(\zeta, \varepsilon)$,由 $\{x_n\}$ 的递增性,当 $n \ge N$ 时, $x_n \ge x_N$,故 $U(a, \varepsilon)$ 中最多含有 $\{x_n\}$ 的有限多个项: $x_1, x_2, \cdots, x_{N-1}$,所以 a 不可能是 $\{x_n\}$ 的聚点:由 a 的任意性, ζ 为 $\{x_n\}$ 的唯一聚点:

现在证明: $\zeta = \sup\{x_n\}$,事实上,

(1) ζ 为 $\{x_n\}$ 的上界, 反之, 若存在 $x_N > \zeta$, 则当 n > N 时, 有 $x_n > \zeta$, 取 $\varepsilon = x_N - \zeta > 0$, 则在 $U(\zeta, \varepsilon)$ 内最多含有 $\{x_n\}$ 的有限多个项 $x_n, n = 1, 2, \dots, N - 1$, 与聚点相矛盾.

 $(2)\zeta = \sup\{x_n\}$,因为对任给正数 ε ,存在 $x_n \in U(\zeta,\varepsilon)$,从而 $x_n > \zeta - \varepsilon$,结合(1) 便知 $\zeta = \sup\{x_n\}$.对递减数列类似可证.

8. 试用有限覆盖定理证明聚点定理、

证 设 E 为直线上有界无穷点集,则存在 M > 0,使 E \subset [-M,M],

假设[-M,M] 中任何点都不是E的聚点,则对每一个 $x \in [-M$,M],必存在相应的 $\delta_2 > 0$,使得在 $U(x,\delta_2)$ 内至多含有E的有限多个点. 设 $H = \{U(x,\delta_2) \mid x \in [-M,M]\}$,则 H是[-M,M] 的一个开覆盖,由有限 覆盖定理,H 中存在有限个开邻域: $U(x_j,\delta_{x_j})(j=1,2,\cdots,n)$ 构成[-M,M] 的一开覆盖,当然也覆盖了E. 由邻域 $U(x_j,\delta_{x_j})$ 的原意,在其内 至多含有有限个点,这于E为无穷点集相矛盾. 所以[-M,M] 中至少有 E的一个聚点.

9. 试用聚点定理证明柯西收敛准则.

证 只需证明充分性,设数列 $\{a_n\}$ 满足条件:对任给正数 ϵ ,总存在某一个自然数 N,使得当 m,n > N时,都有 $+a_m-a_n$ $|<\epsilon$,取 $\epsilon=1$,则存在自然数 N₁,当 n > N₁ 时,有 $+a_n-a_{N_1+1}$ |<1,从而 $+a_n$ $|<+a_{N_1+1}$ |+1,令 M = $\max\{+a_1$, $+a_2$,…, $+a_{N_1}$ $|+1\}$,则对一切 n = 1,2,…,有 $+a_n$ $|\leq M$,即 $\{a_n\}$ 有界.

下证 $\{a_n\}$ 有收敛子列,若 $E=(a_n\mid n=1,2,\cdots)$ 是有限集,则 $\{a_n\}$ 必有一常子列,若 E 为无限集.则由聚点定理,E 有一聚点 A,由聚点定义可证,存在 (a_{n_k}) ,使 $\lim_{k\to\infty}a_{n_k}=A$,总之, $\{a_n\}$ 有收敛子列. 设 $\lim_{k\to\infty}a_{n_k}=A$,则对任给正数 ϵ ,存在 N,当 k,m,n>N 时, $|a_n-a_m|<\frac{\epsilon}{2}$, $|a_{n_k}-A|<\frac{\epsilon}{2}$. 所以当 n>N (任取 k>N,使 $n_k>n$) 时,有

$$|a_n - A| \leqslant |a_n - a_{n_k}| + |a_{n_k} - A| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

故
$$\lim_{k \to \infty} a_n = A$$

§2 闭区间上连续函数性质的证明

1. 设f为R上连续的周期函数.证明:f在R上有最大值与小值.

证 设 f 的周期为 T,由于 f 在闭区间[0,T] 上连续,故有最大值 $f(\xi)$ 和最小值 $f(\zeta)$, ξ , $\zeta \in [0,T]$. 任给 $x \in (-\infty, +\infty)$,则存在某整数 k,使得 $x \in [kT,(k+1)T]$,于是 $x - kT \in [0,T]$,从而有

$$f(\zeta) \leqslant f(x) = f(x - kT) \leqslant f(\xi)$$
.

所以
$$f(\xi) = \max_{x \in (-\infty, +\infty)} \{f(x)\}, f(\zeta) = \min_{x \in (-\infty, +\infty)} \{f(x)\}$$

2. 设 I 为有限区间. 证明:若 f 在 I 上一致连续,则 f 在 I 上有界,举例说明此结论当 I 为无限区间不一定成立.

证:设区间 I 的左、右端点为 a,b. 由于 f 在 I 上一致连续,故对 $\varepsilon = 1$,存在 $\delta > 0$ ($\delta < \frac{b-a}{2}$),当 +x'-x'' $|< \delta(x',x'' \in I)$ 时,有 +f(x')-f(x'') |< 1,对于上述 $\delta > 0$,令 $a_1 = a + \frac{\delta}{2}$, $b_= b - \frac{\delta}{2}$,则 $a < a_1 < b_1 < b$,由于 f 在 $[a_1,b_1]$ 上连续,故 f 在 $[a_1,b_1]$ 上有界,设 +f(x) $|\leqslant M_1$, $x \in [a_1,b_1]$,当 $x \in [a,a_1)$ \cap I 时,因 $0 < a_1 - x < \frac{\delta}{2} < \delta$,故 $+f(x) - f(a_1)$ |< 1,从而 +f(x) $|\leqslant |$ +1.同理当 $x \in (b_1,b]$ \cap I 时,有 +f(x) $|\leqslant |$ +1,令

$$M = max\{M_1, | f(a_1)| + 1, | f(b_1)| + 1\}$$

则对一切 $x \in I$,必有 $|f(x)| \leq M$.

例证 $y = x^2, x \in (-\infty, +\infty)$ 一致连续,但 $\lim_{x \to \infty} x^2 = +\infty$ 无界.

3. 证明: $f(x) = \frac{\sin x}{x}$ 在(0, + ∞)上一致连续.

证: $\lim_{x\to\infty} \frac{\sin x}{x} = 0$,由柯西收敛准则知,对 $\forall \epsilon > 0$,存在 $M_1 > 0$ 当 $x',x'' > M_1$ 时,有 $|f(x') - f(x'')| < \epsilon$

又: $\lim_{x\to\infty} \frac{\sin x}{x} = 1$,同理可知,存在 $M_2 > 0 \leq 0 < x', x'' < M_2$ 时,有

$$|f(x') - f(x'')| < \varepsilon$$

现在把 $(0, +\infty)$ 分成三个相交的区间 $(0, M_2]$, $[\frac{M_2}{2}, M_1 + \frac{M_2}{2}]$, $[M_1, +\infty]$. 由于 $f(x) = \frac{\sin x}{x}$ 在 $[\frac{M_2}{2}, M_1 + \frac{M_2}{2}]$ 连续,所以一致连续从而对上述 $\varepsilon > 0$, 必存在 $\delta > 0$ ($\delta < \frac{M_2}{2}$), 当 x', $x'' \in [\frac{M_2}{2}, M_1 + \frac{M_2}{2}]$ 且 +x'

- $-\mathbf{x}'' \mid < \delta$ 时,有 $+\mathbf{f}(\mathbf{x}') \mathbf{f}(\mathbf{x}'') \mid < \varepsilon$,于是对一切 $\mathbf{x}'\mathbf{x}'' \in (0, +\infty)$ 当 $+\mathbf{x}' \mathbf{x}'' \mid < \delta$ 时,必有 \mathbf{x}',\mathbf{x}'' 同属于上述区间中的一个,但都有 $+\mathbf{f}(\mathbf{x}') \mathbf{f}(\mathbf{x}'') \mid < \varepsilon$,故 f 在 $(0, +\infty)$ 上一致连续.
 - 4. 试用有限覆盖定理证明根的存在性定理.

证 设 f在[a,b]上连续,且 f(a),f(b) 异号,不妨设 f(a) < 0,f(b) > 0,假设在(a,b) 内没有 f(x) = 0 的根,即对每一个 x \in (a,b),都有 f(x) \neq 0,从而对一切 x \in [a,b],有 f(x) \neq 0,由连续性,对每一个 x \in [a,b] 存在 δ_x > 0,使得 f 在 U(x, δ_x) \cap [a,b] 上同号,而

$$H = \{U(x, \delta_x)\} \mid x \in [a, b]\}$$

是[a,b]的一个开覆盖,由覆盖定理知在 H 中必存在有限个开邻域 $H = \{U(x_j,\delta_{x_i} \mid x_j \in [a,b], j=1,2,\cdots,n\}$

也构成[a,b]的一个开覆盖,设 $a \in U(x_k,\delta_{x_k})(k$ 为 $1,2,\cdots,n$ 中某一个),由 $U(x_j,\delta_{x_j})$ 的原意,f 在 $U(x_i,\delta_{x_j})$ \cap [a,b] 内同号,故 $x \in U(x_k,\delta_{x_k})$ \cap [a,b]时,有 f(x) < 0,因 H覆盖了[a,b],所以 f在[a,b]上恒负,从而 f(b) < 0,与题设条件 f(b) > 0 相矛盾.于是在(a,b) 内至少存在一点 x_0 ,使得 $f(x_0) = 0$.

5. 证明:在(a,b)上连续函数 f 为一致连续的充要条件是 f(a+0)、 f(b-0) 存在且有限.

证 必要性 设 f 在(a,b) 一致连续,即对任给正数 ε ,存在 $\delta > 0$, 当 x', $x'' \in (a,b)$ 且 $|x'-x''| < \delta$ 时,有 $|f(x')-f(x'')| < \varepsilon$,特别 当 x', $x'' \in (a,a+\delta)$ 时,有 $|x'-x''| < \delta$,从而也有 $|f(x')-f(x'')| < \varepsilon$,由函数极限的柯西准则知 f(a+0) 存在且为有限值,同理可证 f(b-0) 存在且为有限值.

充分性 设 f在(a,b) 连续,且 f(a+0),f(b-0)存在并为有限值,补充定义:f(a) = f(a+0),f(b) = f(b-0),使得 f在[a,b]上连续,从而一致连续,因此 f在(a,b)上一致连续.

§3 上极限和下极限

1. 求下列数列的上、下极限:

$$(1)\{1+(-1)^n\};(2)\{(-1)^n\frac{n}{2n+1}\};$$

(3)
$$\{2n+1\}$$
; (4) $\{\frac{2n}{n+1}\sin\frac{n\pi}{4}\}$;

$$(5)\left\{\frac{n^{2}+1}{n}\right\}\sin\frac{\pi}{n}\right\};(6)\left\{\sqrt{|\cos\frac{n\pi}{3}|}\right\}.$$

解 记原数列为 $\{x_n\}$.

(1) 由于 $\lim_{k\to\infty} x_{2k-1} = 0$, $\lim_{k\to\infty} x_{2k} = 2$, 从而对任给正数 ϵ , 存在自然数N, 当k > N 时, 有

$$\mathbf{x}_{2\mathbf{k}-1} < 0 + \varepsilon, 2 - \varepsilon < \mathbf{x}_{2\mathbf{k}}.$$

可见小于 $0+\epsilon$ 的 x_n 有无限项,大于 $2-\epsilon$ 的也有无限项,又没有一项 x_n 使得 $x_n<0-\epsilon$ 或 $x_n>2+\epsilon$,故由定义可知

$$\underline{\lim}_{n\to\infty} x_n = 0, \overline{\lim}_{n\to\infty} x_n = 2.$$

注:一般地,若P为自然数,且

$$\lim_{k\to\infty} x_{kp} = A_0, \lim_{k\to\infty} x_{kp-1} = A_1, \cdots, \lim_{k\to\infty} x_{kp-p,1} = A_{p,1}$$
存在,
$$\lim_{k\to\infty} x_n = \min\{A_0, A_1, \cdots, A_{p,1}\}$$

事实上,对任一正数 ϵ ,存在自然数 N,使得当 k > N 时

$$A_i - \varepsilon < x_{kn+i} < A_i + \varepsilon (i = 0, 1, \dots, p-1)$$

设 $min\{A_0,A_1,\cdots,A_{p,1}\}=A_0$,则小于 $A_0+\epsilon$ 的 x_n 有无限项. 若对某个正数 ϵ , 数列 $\{x_n\}$ 中小于 $A_0-\epsilon$ 的有无穷项,设它们是

$$X_{n_i}$$
, X_{n_j} , \cdots , X_{n_i} , \cdots

其中 $n_1 < n_2 < \dots < n_j, \dots$,由于自然数集 N 可分为有限个子集 $\{kp \mid k \in N\}, \{kp + 1 \mid k \in N\}, \dots, \{kp + p - 1 \mid k \in N\}$

且 n_i 有无限个,从而以上 P个子集中,必有一个(设为第 i 个)含有无限个 n_i ,因而

$$n_{j_1} = k_1 p + j(1 = 1, 2, \cdots).$$

于是
$$\lim_{k \to \infty} x_{a_{j_1}} = \lim_{k \to \infty} x_{k_j p + j} = A_j$$
 可见 $A_i \leq A_0 - \epsilon \leq A_0$

则

这与 Ao 为最小者矛盾,因此

$$A_0 = \lim_{n \to \infty} x_n$$

同理 $max\{A_0,A_1,\cdots,A_{p-1}\}=\overline{\lim_{n\to\infty}}x_n$

(2) 由于 $\lim_{k\to\infty} x_{2k} = \lim_{k\to\infty} \frac{2k}{4k+1} = \frac{1}{2}$, $\lim_{k\to\infty} x_{2k+1} = -\frac{1}{2}$, 从而由(1) 后的注知

$$\lim_{n\to\infty}x_n=-\frac{1}{2},\overline{\lim_{n\to\infty}x_n}=\frac{1}{2}.$$

(3) 由于 $\lim_{n\to\infty} (2n+1) = +\infty$,从而

$$\lim_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n = +\infty.$$

(4) 由于 $\lim_{k\to\infty} x_{8k} = \lim_{k\to\infty} x_4 k$

$$\lim_{k\to\infty}x_{4k}=\lim_{k\to\infty}x_{8k+4}=0,$$

$$\lim_{k \to \infty} x_{8k+1} = \lim_{k \to \infty} x_{8k+2} = \sqrt{2}$$

 $\lim_{k \to \infty} x_{8k+2} = 2$, $\lim_{k \to \infty} x_{8k+5} = \lim_{k \to \infty} x_{8k+7} = -\sqrt{2}$, $\lim_{k \to \infty} x_{8k+6} = -2$ 从而由注知

$$\lim_{n\to\infty}x_n=-2,\overline{\lim_{n\to\infty}x_n}=2,$$

(5)
$$\overline{\lim_{n\to\infty}} x_n = \underline{\lim_{n\to\infty}} x_n = \lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{(n^2+1)\pi}{n^2} \cdot \frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}} = \pi$$

(6) 由于

$$\lim_{k \to \infty} x_{3k+j} = \lim_{k \to \infty} \sqrt[3k+1]{\cos \frac{i}{3}\pi + \lim_{k \to \infty} \sqrt[3k+j]{\frac{1}{2}}} = 1(i = 0,1,2)$$

从而

$$\overline{\lim_{n\to\infty}} x_n = \underline{\lim_{n\to\infty}} x_n = 1.$$

2. 设[an] {bn} 为有界数列,证明

$$(1) \underline{\lim_{n\to\infty}} a_n = -\overline{\lim_{n\to\infty}} (-a_n)$$

$$(2) \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n \leqslant \lim_{n \to \infty} (a_n + b_n)$$

(3) 若
$$a_n > 0, b_n > 0 (n = 1, 2, 3, \dots), 则$$

$$\frac{\lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n}{\lim_{n \to \infty} a_n b_n},$$

 $\overline{\lim_{n\to\infty}} a_n \overline{\lim_{n\to\infty}} b_n \geqslant \overline{\lim_{n\to\infty}} a_n b_n$

(4) 若
$$a_n > 0$$
, $\overline{\lim_{n \to \infty}} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n}$

证 (1) 设 $\lim_{n\to\infty} a_n = A$,则对任给正数 ϵ ,小于 $A-\alpha$ 的 a_n 至多有限项,小于 $A+\epsilon$ 的 a_n 有无限项,即 $\{-a_n\}$ 中大于 $-A+\epsilon$ 的至多有限项,大于 $-A-\epsilon$ 的有无限项,所以 $\overline{\lim}_{n\to\infty} (-a_n) = -A$,即

$$\underline{\lim_{n\to\infty}}a_n=-\overline{\lim_{n\to\infty}}(-a_n)$$

(2) 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, $\lim_{n\to\infty} (a_n + b_n) = c$, 假设 a + b > c, 由下极限充要条件知对任给正数 ε , 有无限个 n, 使得 $a_n + b_n < c + \varepsilon$, 今取 $\varepsilon_0 = \frac{1}{2}(a + b - c) > 0$, 则有无限个 n, 使得 $a_n + b_n < c + \frac{1}{2}(a + b - c) = \frac{1}{2}(a + b + c) = a + b - \varepsilon_0$. 另一方面,由于 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, 故至多有有限个 n 和有限个 m, 使得 $a_n < a - \frac{\varepsilon_0}{2} + b_m < b - \frac{\varepsilon_0}{2}$, 设 $\{a_n\}$ 满足关系式 $a_n < a - \frac{\varepsilon_0}{2}$ 的项数为 a_n ,则满足关系式 $a_n < a - \frac{\varepsilon_0}{2}$ 的项数为 a_n ,则满足关系式 $a_n < a - \frac{\varepsilon_0}{2}$ 的项数为 a_n ,则满足之,则为有限个 $a_n + b_n < a + b - \varepsilon_0$ 的 $a_n = a$,则可能是 $a_n + b = a$,则

$$\lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n \leqslant \lim_{n\to\infty} (a_n + b_n).$$

(3) 先证第一式,设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, $\lim_{n\to\infty} a_n b_n = c$, 若 a = 0(或 b = 0),则因 $a_n b_n \geqslant 0$,故 $c \geqslant 0$,所以有

$$0 = ab = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n \leqslant c = \lim_{n \to \infty} a_n b_n$$

若 a > 0, b > 0, 假设 ab > c, 任取正数 ϵ 使 ab $- c > \epsilon > 0$, 则有无限多项满足

$$a_nb_n < c + \frac{\varepsilon}{2} < c + \frac{1}{2}(ab-c) = \frac{1}{2}(ab+c) < ab - \frac{\varepsilon}{2}$$

另一方面,至多有有限项(设为 p 项)满足 $a_n < a - \frac{\varepsilon}{4b}$;也至多有有限项(设为 q 项)满足 $b_m < b - \frac{\varepsilon}{4a}$,从而至多有 p + q 项能满足

$$a_n b_n < (a - \frac{\varepsilon}{4b})(b - \frac{\varepsilon}{4b}) = ab - \frac{\varepsilon}{2} + \frac{\varepsilon^2}{16ab}$$

这样又导致了与前面有无限项满足

$$a_nb_n < ab - \frac{\varepsilon}{2} < ab - \frac{\varepsilon}{2} + \frac{\varepsilon^2}{16ab}$$

相矛盾的结果,所以只能是 ab≤c,即

$$\lim_{n\to\infty} a_n \lim_{n\to\infty} b_n \leq \lim_{n\to\infty} a_n b_n$$

第二个不等式同理可证

(4) 设 $\lim_{n\to\infty} a_n = a > 0$,欲证 $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{a}$,对任给正数 ε (取 ε 充分小,使 $\varepsilon > a$,且 $a\varepsilon > 1$),令

$$\varepsilon_1 = \frac{a^2 \varepsilon}{1 - a \varepsilon} > 0, \varepsilon_2 = \frac{a^{\varepsilon}}{1 + a \varepsilon} > 0$$

则 $\{a_n\}$ 中小于 $a + \varepsilon_1 = \frac{a}{1 - a\varepsilon}$ 的项有无限多个, $\{a_n\}$ 中小于 $a - \varepsilon_2$ $= \frac{a}{1 + a\varepsilon}$ 的项至多有限多个,从而 $\{\frac{1}{a_n}\}$ 中大于 $\frac{1 - a\varepsilon}{a} = \frac{1}{a} - \varepsilon$ 的项有无限多个, $\{\frac{1}{a_n}\}$ 中大于 $\frac{1 + a\varepsilon}{a} = \frac{1}{a} + \varepsilon$ 的项至多有限个,所以

3. 证明:若 $\{a_n\}$ 为递增数列,则 $\overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n$.

证:若 $\{a_n\}$ 有界,则由单调有界定理,极限 $\lim_{n\to\infty}a_n$ 存在,从而 $\lim_{n\to\infty}a_n$ = $\lim_{n\to\infty}a_n$,

若 $\{a_n\}$ 无界,则 $\overline{lim}a_n = + \infty$,从而对任意正数M, $\{a_n\}$ 中大于M的

项有无限多个,设 $a_N > M$,由 $\{a_n\}$ 的递增性,当 n > N时,有 $a_n > a_N > M$,所以

$$\lim_{n\to 0} a_n = +\infty$$
.

4. 证明:若 $a_n > 0$ $(n = 1, 2, \dots)$ 且 $\overline{\lim_{n \to \infty} a_n} \cdot \overline{\lim_{n \to \infty} \frac{1}{a_n}} = 1$,则数列 $\{a_n\}$ 收敛.

证 因 $a_n > 0$ ($n = 1, 2, \cdots$),故 $\lim_{n \to \infty} a_n \ge 0$,若 $\lim_{n \to \infty} a_n = 0$,则对任给 正数 M, $\{a_n\}$ 中小于 $\frac{1}{M}$ 的项有无限多个,即 $\{\frac{1}{a_n}\}$ 中大于 M 的项有无限多个,所以 $\lim_{n \to \infty} \frac{1}{a_n} = +\infty$,这与 $\lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} \frac{1}{a_n} = 1$ 相矛盾,故 $\lim_{n \to \infty} a_n > 0$,由习题 2(4),有 $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n}$,从而由已知 $\lim_{n \to \infty} a_n$, $\lim_{n \to \infty} \frac{1}{a_n} = 1$ 知, $\lim_{n \to \infty} a_n \cdot \frac{1}{\lim_{n \to \infty} a_n} = 1$,所以 $\lim_{n \to \infty} a_n \cdot \frac{1}{\lim_{n \to \infty} a_n} = 1$,所以

$$\overline{\lim_{n\to\infty}}a_n=\underline{\lim_{n\to\infty}}a_n$$

于是{an} 收敛.

5. 证明定理 7.8

定理 7.8(上下极限的保不等式性) 没有界数列 $\{a_n\}\{b_n\}$ 满足存在 $N_0>0$, 当 $n>N_0$ 时有 $a_n\leqslant b_n$,则

$$\overline{\lim_{n\to\infty}}a_n\leqslant \overline{\lim_{n\to\infty}}b_n, \underline{\lim_{n\to\infty}}a_n\leqslant \underline{\lim_{n\to\infty}}b_n$$

特别,若 α 为常数,又存在 $N_0 > 0$,当 $n > N_0$ 时有 $\alpha \leqslant a_n \leqslant \beta$,则 $\alpha \leqslant \underset{r \to \infty}{\underline{\lim}} a_n \leqslant \overline{\lim} a_n \leqslant \beta$

证 设 $\overline{\lim}_{n\to\infty} a_n = a$, $\overline{\lim}_{n\to\infty} b_n = b$. 假设a > b, 取 $\varepsilon = \frac{a-b}{2} > 0$, 则 $\{a_n\}$ 中大于 $a - \varepsilon = a - \frac{a-b}{2} = b + \varepsilon$ 的项有无限多个,由于 $b_n \geqslant a_n (n = 1, 2, \cdots)$,所以 $\{b_n\}$ 中大于 $b + \varepsilon$ 的项有无限多个,这与 $\overline{\lim}_{n\to\infty} b_n = b$ 相矛盾,故 $a \leqslant b$,即

$$\overline{\lim_{n\to\infty}} a_n \leqslant \overline{\lim_{n\to\infty}} b_n.$$

<u>lim</u>a_n≤ <u>lim</u>b_n 同理可证.

由上述定理

$$\alpha = \underset{n \to \infty}{\lim} \alpha \leqslant \underset{n \to \infty}{\underline{\lim}} a_n \leqslant \underset{n \to \infty}{\overline{\lim}} a_n \leqslant \underset{n \to \infty}{\overline{\lim}} \beta = \beta$$

6. 证明定理 7.9

定理 7.9 设 $\{x_n\}$ 为有界数列.

(1)A 为{xn} 上极限的充要条件是

$$\overline{A} = \lim_{k \to \infty} \sup_{k \to \infty} \{x_k\};$$

(2) A 为{x_n} 下极限的充要条件是

$$\underline{\mathbf{A}} = \lim_{k \to \infty} \inf \{\mathbf{x}_k\}$$

证 (1) 必要性 设 $\overline{\lim}_{r \to \infty} x_n = \overline{A}(\overline{A})$ 为有限值). 则对任给正数 ε ,

 $\{x_n\}$ 中大于 $\overline{A} + \frac{\varepsilon}{2}$ 的项至多有限个. 设这有限项中下标最大者为N,则 当 $n \ge N+1$ 时, $x_n \le \overline{A} + \frac{\varepsilon}{2}$, 所以 $\sup_{k \ge N+1} \{x_k\} \le \overline{A} + \frac{\varepsilon}{2} < \overline{A} + \varepsilon$, 又对上述 $\varepsilon > 0$, $\{x_n\}$ 中大于 $\overline{A} - \varepsilon$ 的项有无限多个, 故对一切 n, 有 $\sup_{k \ge n} \{x_k\} > \overline{A} - \varepsilon$, 于是, 当 n > N 时, 有

$$\overline{A} - \varepsilon < \sup_{k \ge n} \{x_k\} < \overline{A} + \varepsilon$$

所以 $\lim_{n\to\infty} \sup_{k\geq n} = \overline{A}$

充分性 设 $\lim_{n\to\infty}\sup_{n\to\infty}\{x_k\}=\overline{A}(\overline{A})$ 为有限值)

设 $A_n = \sup_{x_n} \{x_k\}$,则 $\{A_n\}$ 递减,故 $\overline{A} = \inf_x \{A_n\}$,从而对任给正数 ϵ ,存在 N,使 $A_N < \overline{A} + \epsilon$,于是当 $n \geqslant N$ 时,有 $x_0 < \overline{A} + \epsilon$,即 $\{x_n\}$ 中大于 $\overline{A} + \epsilon$ 的项至多有限个;又对一切 n,有 $A_n \geqslant \overline{A} > \overline{A} - \epsilon$,所以, $\{x_n\}$ 中大于 $\overline{A} - \epsilon$ 的项有无限个,因此 $\overline{\lim}_{x_n} x_n = \overline{A}$

(2) 由习题 2 的(1),得

$$\begin{array}{c} \overline{\lim_{n\to\infty}}(-\mathbf{x}_n)=\lim_{n\to\infty}\sup_{k\in\mathbb{N}}\{-\mathbf{x}_k\}=-\overline{\lim_{n\to\infty}}\sup_{k\in\mathbb{N}}\{\mathbf{x}_k\}\\ \text{所以,} 有 \underset{n\to\infty}{\lim}\mathbf{x}_n=\lim_{n\to\infty}\inf_{k\in\mathbb{N}}\{\mathbf{x}_k\} \end{array}$$

总练习题

1. 证明: $\{x_n\}$ 为有界数列的充要条件是 $\{x_n\}$ 的任一子列都存在它的收敛子列.

证 必要性 设 $\{x_n\}$ 为有界数列,则其任一子列 $\{x_{n_k}\}$ 也都有界. 由致密性定理知每个有界子列 $\{x_{n_k}\}$ 必定存在收敛"子子列" $(x_{n_{k_i}})$ \subset (x_{n_k}) \subset (x_n) . 当然 (x_{n_k}) 仍然是 (x_n) 的一子列.

充分性 设 $\{x_n\}$ 的任一子列都有它的收敛子列,假设 $\{x_n\}$ 为无界数列,则必有某一子列 $\{x_{n_k}\}$ 为无穷大量,即 $\lim_{t\to\infty} |x_{n_k}| = +\infty$,因此 $\{x_{n_k}\}$ 的一切子列 $\{x_{n_k}\}$ 都是无穷大量,这与 $\{x_{n_k}\}$ 必有收敛子列的题设相矛盾,所以 $\{x_n\}$ 为有界数列.

2. 设 f(x) 在(a,b) 内连续,且 $\lim_{x \to a^+} f(x) = \lim_{x \to b^-} f(x) = 0$.证明 f(x) 在(a,b) 内有最大值或最小值.

证 若 $f(x) \equiv 0, x \in (a,b)$,则结论成立.若 $f(x) \neq 0$,则存在一点 $x_1 \in (a,b)$,使得 $f(x_1) \neq 0$,令

$$F(x) = \begin{cases} 0, & x = a, b \\ f(x), & x \in (a, b) \end{cases}$$

则 F 在 [a,b] 上连续,故可取得最大值与最小值. 若 $f(x_1) > 0$,则 F 在 [a,b] 上的最大值必为正数,而 F(a) = f(b) = 0. 故 F 的最大值只能在 (a,b) 内取得. 由于在 (a,b) 内 F(x) = f(x),所以 f 在 (a,b) 内有最大值,若 $f(x_1) < 0$,则同理要证 f 在 (a,b) 内有最小值.

3. 证明:设 f(x) 在[a,b] 上连续,若{x_n} ⊂ [a,b],且 lim f(x_n) = A,则必存在点 x₀ ∈ [a,b],使得 f(x₀) = A.

证 因 $\{x_n\}$ \subset [a,b] 为有界数列,故 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$,设 $\lim_{b\to\infty}x_{n_k}=x_n$.由于 $\{x_{n_k}\}\subset[a,b]$,故 $x_0\in[a,b]$,因为 $\lim_{n\to\infty}f(x_n)=A$,

 $\{f(x_{n_k})\}\subset \{f(x_n)\}$,所以 $\lim_{k\to\infty} f(x_{n_k})=A$,又f在点 x_0 处连续,故 $\lim_{k\to\infty} f(x)=f(x_0)$,由归结原则,

$$A = \lim_{k \to \infty} f(x_{n_k}) = \lim_{x \to x_0} f(x) = f(x_0)$$

- 4. 设函数 f 和 g 都在区间 I 上一致连续.
- (1) 证明 f + g 在 I 上一致连续;
- (2) 若 I 为有限区间,证明 f·g 在 I 上一致连续;
- (3) 若 I 为无限区间,举例说明 f·g 在 I 上不一定一致连续.

证 (1) 因对任给正数 ε ,存在 $\delta_1 > 0$, $\delta_2 > 0$, 当 x', $x'' \in I$ 且 + x' $- x'' \mid < \delta_1$ 时,有 $+ f(x') - f(x'') \mid < \frac{\varepsilon}{2}$, 当 x', $x'' \in I$ 且 $+ x' - x'' \mid < \delta_2$ 时, $+ g(x') - g(x'') \mid < \frac{\varepsilon}{2}$, 故当 x', $x'' \in I$ 且 $+ x' - x'' \mid < \delta = min \{\delta_1, \delta_2\}$ 时,同时有 $+ f(x') - f(x'') \mid < \frac{\varepsilon}{2}$, $+ g(x') - g(x'') \mid < \frac{\varepsilon}{2}$, 于是 $+ [f(x') + g(x')] - [f(x'') + g(x'')] \mid \leq |f(x') - f(x'')| + |g(x') - g(x'')| < \varepsilon$. 故 f + g 在 I 上一致连续.

(2)由 § 2 习题 2, f, g 均在 I 上有界. 设 | f(x) | , | g(x) | < M, x ∈ I, 因对任给正数 ε, 存在 δ > 0, 当 x', x" ∈ I 且 | x' - x" | < δ 时, 有

$$\mid f(\mathbf{x}') - f(\mathbf{x}'') \mid < \frac{\varepsilon}{2M}, \mid g(\mathbf{x}') - g(\mathbf{x}'') \mid < \frac{\varepsilon}{2M}$$

从而

$$\begin{split} &|f(\mathbf{x}')g(\mathbf{x}') - f(\mathbf{x}'')g(\mathbf{x}'')| \leqslant |f(\mathbf{x}')| + |g(\mathbf{x}') - g(\mathbf{x}'')| + |g(\mathbf{x}'')| |\\ &f(\mathbf{x}') - f(\mathbf{x}'')| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon. \end{split}$$

故f・g在I上一致连续.

(3) 设 f(x) = g(x) = x,则 f,g 在 $(-\infty, +\infty)$ 上都一致连续.但 $f(x)g(x) = x^2$ 在 $(-\infty, +\infty)$ 上不一致连续,事实上,取 $\epsilon_0 = 1$,对任给 正数 δ ,存在 n 使 $\frac{1}{n} < \delta$,令 $x_1 = n$, $x_2 = n + \frac{1}{n}$,则 $+ x_1 - x_2 + < \delta$,但

$$\mid x_1^2 - x_2^2 \mid = \mid x_1 + x_2 \mid \mid x_1 - x_2 \mid = (2n + \frac{1}{n})(\frac{1}{n}) = 2 + \frac{1}{n^2} > 1.$$

5. 证明:设函数 f(x) 定义在有限区间(a,b) 上,若对于(a,b) 内任一收敛数列 $\{x_n\}$,极限 $\lim_{n\to\infty} f(x_n)$ 都存在,则 f(x) 在(a,b) 上一致连续.

证 假设 f(x) 在 (a,b) 上不一致连续,则存在某正数 ε_0 ,对任给正数 δ ,总可找到与此 δ 相应的两点 $x_1,x_2 \in (a,b)$,使得 $|x_1-x_2| < \delta$,但 $|f(x_1)-f(x_2)| \geq \varepsilon_0$. 现取 $\delta_n = \frac{1}{n}(n=1,2,\cdots)$,则可相应找到 $\{x_n^{(1)}\}$ 与 $\{x_n^{(2)}\}$ \subset (a,b),使得 $|x_n^{(1)}-x_n^{(2)}| \geq \varepsilon_0$,从 $\{x_n^{(1)}\}$ \subset (a,b) 中总可选出收敛子列 $\{x_n^{(1)}\}$,对 $\{x_n^{(2)}\}$ 有子列 $\{x_{n_k}^{(2)}\}$,由于 $0 \leq |x_{n_k}^{(1)}-x_{n_k}^{(2)}| < \frac{1}{n_k} \rightarrow 0$ $(k \rightarrow \infty)$,所以

$$\lim_{k\to\infty}x_{n_k}^{(1)}=\lim_{k\to\infty}x_{n_k}^{(2)}$$

从而

$$\lim_{k\to\infty} [f(x_{n_k}^{(1)}) - f(x_{n_k}^{(2)})] = 0.$$

故当 k 充分大时,有 $+ f(\mathbf{x}_{n_k}^{(1)}) - f(\mathbf{x}_{n_k}^{(2)}) + < \epsilon_0$. 但由 $\{\mathbf{x}_{n_k}^{(1)}\}$ 与 $\{\mathbf{x}_{n_k}^{(2)}\}$ 的原意,对一切 k,有

$$\mid f(\mathbf{x}_{\mathbf{n}}^{(1)}) - f(\mathbf{x}_{\mathbf{n}}^{(2)}) \mid \geqslant \varepsilon_{0}$$

这一矛盾结果说明反证法假设不真,所以 f 在(a,b) 上一致连续,

6. 设函数 f 在[a, + ∞) 上连续,且有新近线,即有数 b 与 c,使得 $\lim_{x\to +\infty} [f(x) - bx - c] = 0$.证明 f 在[a, + ∞) 上一致连续.

证 设 g(x) = bx + c,则 g(x) 在 $[a, +\infty)$ 上一致连续,故对任给 正数 ε ,存在 $\delta_1 > 0$,当 $x',x'' \in [a, +\infty)$ 且 $|x'-x''| < \delta_1$ 时,有

$$\mid g(\mathbf{x}') - g(\mathbf{x}'') \mid < \frac{\varepsilon}{3} \tag{1}$$

又 $\lim_{x\to +\infty} [f(x) - g(x)] = 0$,故对上述 $\varepsilon > 0$,存在 M > a,当 $x \ge M$ 时,有

$$|f(x) - g(x)| < \frac{\varepsilon}{3}$$
 (2)

取二重叠区间 $I_1 = [a, M+1], I_2 = [M, +\infty), Mf 在 I_1 上一致连续,$

于是对上述 $\varepsilon > 0$,存在 $\delta_2 > 0$,当 x', $x'' \in I_1$,且 $+x'-x'' + < \delta_2$ 时,有

$$+ f(\mathbf{x}') - f(\mathbf{x}'') + < \frac{\varepsilon}{3}$$
 (3)

所以对任何 $x', x'' \in [a, +\infty)$,且 $|x'-x''| < \delta = min \{\delta_1, \delta_2, 1\}$ 时必有 $x', x'' \in I_k$ 或 $x', x'' \in I_2$,若 $x', x'' \in I_1$,则由(3)有 $|f(x')| < \epsilon$,若 $|x'| < \epsilon$,也有 $|x'| < \epsilon$.

$$| f(x') - f(x'') | \leq | f(x') - g(x') | + | g(x') - g(x'') | +$$

$$| g(x'') - f(x') | < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

所以对任意 $\mathbf{x}', \mathbf{x}'' \in [\mathbf{a}, +\infty)$, 当 $|\mathbf{x}' - \mathbf{x}''| < \delta$ 时, 总有 $|\mathbf{f}(\mathbf{x}') - \mathbf{f}(\mathbf{x}'')| < \varepsilon$

即 f 在[a, + ∞) 上致连续.