Excitation contraction coupling Muscular Tissue

Muscular Tissue

- Overview of Muscular Tissue
- Skeletal Muscle Tissue
- Contraction and Relaxation of Skeletal Muscle Fibers
- Muscle Metabolism
- Control of Muscle Tension
- Action potential in muscle fiber
- Types of Skeletal Muscle Fibers
- EC coupling
- Applied physiology
- Pharmacophysiology

Types of Muscular Tissue

- The three types of muscular tissue
 - Skeletal
 - Cardiac
 - Smooth

Skeletal Muscle Tissue

- So named because most skeletal <u>muscles move bones</u>
- Skeletal muscle tissue is striated:
 - Alternating light and dark bands (striations) as seen when examined with a microscope
- Skeletal muscle tissue works mainly in a voluntary manner
 - Its activity can be <u>consciously controlled</u>
- Most skeletal muscles also are controlled <u>subconsciously to</u> some extent
 - Ex: the <u>diaphragm</u> alternately contracts and relaxes without conscious control

Cardiac Muscle Tissue

- Found only in the walls of the <u>heart</u>
- Striated like skeletal muscle
- Action is <u>involuntary</u>
 - Contraction and relaxation of the heart is not consciously controlled
 - Contraction of the heart is initiated by a node of tissue called the "pacemaker"

Smooth Muscle Tissue

- Located in the <u>walls</u> of hollow internal structures
 - Blood vessels, airways, and many organs
- Lacks the striations of skeletal and cardiac muscle tissue
- Usually <u>involuntary</u>

- Functions of Muscular Tissue
 - Producing Body Movements
 - Walking and running
 - Stabilizing Body Positions
 - Posture
 - Moving Substances Within the Body
 - Heart muscle pumping blood
 - Moving substances in the digestive tract
 - Generating heat
 - Contracting muscle produces heat
 - Shivering increases heat production

Properties of Muscular Tissue

- Properties that enable muscle to function and contribute to homeostasis
 - Excitability
 - Ability to <u>respond</u> to stimuli
 - Contractility
 - Ability to <u>contract</u> forcefully when stimulated
 - Extensibility
 - Ability to <u>stretch</u> without being damaged
 - Elasticity
 - Ability to return to an original <u>length</u>

Components of a skeletal muscle

Figure 10.01 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Nerve and Blood Supply

- Neurons that stimulate skeletal muscle to contract are <u>somatic motor neurons</u>
- The axon of a somatic motor neuron typically branches many times
 - Each <u>branch</u> extending to a <u>different</u> skeletal muscle <u>fiber</u>
- Each muscle fiber is in close contact with one or more capillaries

Microscopic Anatomy

- The <u>number</u> of skeletal muscle fibers is set before you are born
 - Most of these cells last a lifetime
- Muscle growth occurs by <u>hypertrophy</u>
 - An enlargement of existing muscle fibers
- Testosterone and human growth hormone stimulate hypertrophy
- Satellite cells retain the capacity to regenerate damaged muscle fibers

Sarcolemma

The plasma membrane of a muscle cell

Transverse (T tubules)

- Tunnel in from the plasma membrane
- Muscle action potentials travel through the T tubules
- Sarcoplasm, the cytoplasm of a muscle fiber
 - Sarcoplasm includes <u>glycogen</u> used for synthesis of ATP and a red-colored protein called <u>myoglobin</u> which binds <u>oxygen</u> molecules
 - Myoglobin releases oxygen when it is needed for ATP production

Myofibrils

Thread like structures which have a contractile function

Sarcoplasmic reticulum (SR)

- Membranous <u>sacs</u> which encircles each myofibril
- Stores calcium ions (Ca++)
- Release of Ca++ triggers muscle contraction

Filaments

- Function in the contractile process
- Two types of filaments (<u>Thick</u> and <u>Thin</u>)
- There are two thin filaments for every thick filament

Sarcomeres

- Compartments of arranged filaments
- Basic <u>functional unit</u> of a myofibril

Figure 10.02abc Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Figure 10.02d Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

(b) Details of filaments and Z discs

Figure 10.03 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Muscle Proteins

- Myofibrils are built from three kinds of proteins
 - 1) Contractile proteins
 - Generate force during contraction
 - 2) Regulatory proteins
 - Switch the contraction process on and off
 - 3) Structural proteins
 - Align the thick and thin filaments properly
 - Provide elasticity and extensibility
 - Link the myofibrils to the sarcolemma

Contractile Proteins

Myosin

- Thick filaments
- Functions as a motor protein which can achieve motion
- Convert ATP to energy of motion
- Projections of each myosin molecule protrude outward (myosin head)

Actin

- Thin filaments
- Actin molecules provide a site where a myosin head can attach
- Tropomyosin and troponin are also part of the thin filament
- In relaxed muscle= Myosin is blocked from binding to actin
- Strands of tropomyosin cover the myosin-binding sites
- Calcium ion binding to troponin moves tropomyosin away from myosin-binding sites
- Allows muscle contraction to begin as myosin binds to actin

Structural Proteins

- Titin
 - Stabilize the position of myosin
 - accounts for much of the elasticity and extensibility of myofibrils

Dystrophin

Links thin filaments to the sarcolemma

The Sliding Filament Mechanism

- Myosin <u>heads attach</u> to and "walk" along the thin filaments at both ends of a sarcomere
- Progressively <u>pulling the thin</u> filaments <u>toward</u> the <u>center</u> of the sarcomere
- Z discs come closer together and the sarcomere shortens
- Leading to <u>shortening</u> of the entire muscle

TABLE 10.1

Components of the Sarcomere

COMPONENT	DESCRIPTION
Z discs	Narrow, plate-shaped regions of dense material that separate one sarcomere from the next.
A band	The dark, middle part of the sarcomere that extends the entire length of the thick filaments and also includes those parts of the thin filaments that overlap with the thick filaments.
I band	The lighter, less dense area of the sarcomere that contains the rest of the thin filaments but no thick filaments. A Z disc passes through the center of each I band.
H zone	A narrow region in the center of each A band that contains thick filaments but no thin filaments.
M line	A region in the center of the H zone that contains proteins that hold the thick filaments together at the center of the sarcomere.

Table 10.01 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

(a) One thick filament and a myosin molecule

(b) Portion of a thin filament

Figure 10.05 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

The Contraction Cycle

- The onset of contraction <u>begins</u> with the SR releasing calcium ions into the muscle cell
- Where they <u>bind to actin</u> <u>opening</u> the myosin binding <u>sites</u>

- The contraction cycle consists of 4 steps
 - 1) ATP hydrolysis = ADP
 - Hydrolysis of ATP reorients and energizes the myosin head
 - 2) Formation of cross-bridges
 - Myosin <u>head attaches</u> to the myosin-binding site on actin
 - 3) Power stroke
 - During the power stroke the <u>crossbridge rotates</u>, sliding the filaments
 - 4) Detachment of myosin from actin
 - As the next ATP binds to the myosin head, the myosin head detaches from actin
 - The contraction <u>cycle repeats</u> as long as ATP is available and the Ca⁺⁺ level is sufficiently high
 - Continuing cycles applies the force that shortens the sarcomere

(c) Maximally contracted muscle

Figure 10.06 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

- Excitation—Contraction Coupling= [AP + Ca + Head + ATP] (for molecular level)
 - An increase in <u>Ca++ concentration</u> in the muscle <u>starts</u> contraction
 - A decrease in Ca⁺⁺ stops it
 - Action potentials causes Ca⁺⁺ to be released from the SR into the muscle cell
 - <u>Ca++ moves tropomyosin away</u> from the myosinbinding sites on actin allowing cross-bridges to form
 - The muscle cell membrane contains <u>Ca++</u> pumps to return Ca++ back to the SR quickly
 - Decreasing calcium ion levels
 - As the <u>Ca++ level in the cell drops</u>, myosin-binding <u>sites are covered</u> and the muscle <u>relaxes</u>

Figure 10.08 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Length–Tension Relationship

- The forcefulness of muscle contraction depends on the length of the sarcomeres
- When a muscle fiber is stretched there is less overlap between the thick and thin filaments and tension (forcefulness) is diminished
- When a muscle fiber is shortened the filaments are compressed and fewer myosin heads make less contact with thin filaments and tension is diminished
- Optimal length = maximal tension

The Neuromuscular Junction

 Motor neurons have a threadlike axon that extends from the brain or spinal cord to a group of muscle fibers

Neuromuscular junction (NMJ)

Action potentials arise at the <u>interface</u> of the motor neuron and muscle fiber

Synapse

 Where communication occurs <u>between</u> a somatic motor <u>neuron</u> and a muscle fiber

Synaptic cleft

Gap that separates the two cells

Neurotransmitter

Chemical released by the initial cell communicating with the second cell

Synaptic vesicles

 Sacs suspended within the <u>synaptic end bulb</u> containing molecules of the neurotransmitter <u>acetylcholine (Ach)</u>

Motor end plate

- The region of <u>the muscle cell membrane</u> opposite the synaptic end bulbs
- Contain <u>acetylcholine receptors</u>

- Nerve impulses elicit a muscle action potential in the following way
 - 1) Release of acetylcholine
 - Nerve impulse arriving at the synaptic end bulbs causes many synaptic vesicles to release ACh into the synaptic cleft
 - 2) Activation of ACh receptors
 - Binding of ACh to the receptor on the motor end plate <u>opens an ion</u> <u>channel</u>
 - Allows flow of Na⁺ to the inside of the muscle cell
 - 3) Production of muscle action potential
 - The inflow of Na⁺ makes the inside of the muscle fiber more positively charged triggering a muscle action potential
 - The <u>muscle action potential</u> then propagates to the <u>SR</u> to release its stored Ca⁺⁺
 - 4) Termination of ACh activity
 - Ach effects last only briefly because it is rapidly broken down by acetylcholinesterase (AChE)

(c) Binding of acetylcholine to ACh receptors in the motor end plate

Contraction at myosin

- 1. Calcium binds
- 2. Cross bridge

Applied physiology

- Botulinum toxin
 - Blocks release of ACh from synaptic vesicles
 - May be found in improperly canned foods
 - A tiny amount can cause death by paralyzing respiratory muscles
 - Used as a medicine (Botox®)
 - Strabismus (crossed eyes)
 - Blepharospasm (uncontrollable blinking)
 - Spasms of the vocal cords that interfere with speech
 - Cosmetic treatment to <u>relax muscles that cause facial wrinkles</u>
 - Alleviate chronic back pain due to muscle spasms in the lumbar region

Curare

- A plant poison used by South American Indians on arrows and blowgun darts
- Causes muscle paralysis by blocking ACh receptors inhibiting Na⁺ ion channels
- Derivatives of curare are used during surgery to relax skeletal muscles

Anticholinesterase

- Slows actions of acetylcholinesterase and slows removal of ACh
- Can strengthen weak muscle contractions
 - Ex: Neostigmine
 - Treatment for myasthenia gravis
 - Antidote for curare poisoning
 - Terminate the effects of curare after surgery

Muscle Metabolism

Production of ATP in Muscle Fibers

- 1) From creatine phosphate
- 2) By anaerobic cellular respiration
- 3) By aerobic cellular respiration

(c) ATP from aerobic cellular respiration

Figure 10.12 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Muscle Metabolism

- Creatine Phosphate
 - Excess ATP is used to synthesize creatine phosphate
 - Energy-rich molecule
 - Creatine phosphate transfers its high energy phosphate group to ADP regenerating new ATP
 - Creatine phosphate and ATP provide enough energy for contraction for about 15 seconds

- The tension or force of muscle cell contraction varies
- Maximum Tension (force) is <u>dependent</u> on
 - The rate at which nerve impulses arrive
 - The amount of stretch before contraction
 - The nutrient and oxygen availability
 - The size of the motor unit

Motor Units

- Consists of a motor neuron and the muscle fibers it stimulates
- The axon of a motor neuron <u>branches</u> out forming neuromuscular junctions with <u>different muscle fibers</u>
- A motor neuron makes contact with about 150 muscle fibers
- Control of precise movements consist of many small motor units
 - Muscles that control voice production have 2 3 muscle fibers per motor unit
 - Muscles controlling eye movements have 10 20 muscle fibers per motor unit
 - Muscles in the arm and the leg have 2000 3000 muscle fibers per motor unit
- The total <u>strength</u> of a contraction depends on the <u>size</u> of the motor units and the <u>number</u> that are activated

Motor unit

Figure 10.13 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Twitch Contraction (for whole muscle)

- The brief <u>contraction of the muscle fibers</u> in a motor unit in <u>response to an action potential</u>
- Twitches last from 20 to 200 msec L
- Latent period (2 msec)
 - A brief delay between the stimulus and muscular contraction
 - The action potential sweeps over the sarcolemma and Ca⁺⁺ is released from the SR
- Contraction period (10–100 msec)
 - Ca⁺⁺ binds to troponin
 - Myosin-binding sites on actin are exposed
 - Cross-bridges form

Relaxation period (10–100 msec)

- Ca⁺⁺ is transported into the SR
- Myosin-binding sites are covered by tropomyosin
- Myosin heads detach from actin
 - Muscle fibers that move the eyes have contraction periods lasting 10 msec
 - Muscle fibers that move the legs have contraction periods lasting 100 msec

Refractory period

- When a muscle fiber contracts, it temporarily cannot respond to another action potential
 - Skeletal muscle has a refractory period of 5 milliseconds
 - Cardiac muscle has a refractory period of 300 millisecondsso no tetanus.

Figure 10.14 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Application - <u>evaluation</u> of muscle fatigue degree spinal nerve compression, <u>carpal tunnel syndrome</u> myasthenia gravis, and muscular dystrophy

Summation

- Adding together of individual twitch contractions to increase the intensity of overall muscle contraction
- 1) Multiple fiber summation
- 2) Frequency summation

- Multiple fiber summation
- More the fibers (motor units) taking part in contraction more will be the force of contraction
- For weak contraction, smaller and fewer motor units are stimulated
- For stronger contractions more & more motor units are stimulated (recruitment)
- Frequency summation, tetanus or tetanization
- Sustained contraction due to repeated stimuli of high frequency

Stimulus here will lead to 'treppe' or staircase effect (individual twitch contractions but every subsequent contraction will have higher amplitude)

Muscle fiber types

Slow fibers (Type I)	Fast fibers (Type II)	
(oxidative)	Fast oxidative (IIa)	Fast glycolytic (IIb)
➤ Source of ATP	Source of ATP	➤ Source of ATP
Oxidative	▶ Oxidative	▶ Glycolysis
Contraction velocity	Contraction velocity	Contraction velocity
► Slow	► Fast	► Fast
Mitochondria	 Mitochondria 	Mitochondria
Many	► Many	► Few
Capillaries	Capillaries	Capillaries
Many	► Many	► Few
Myoglobin content	 Myoglobin content 	 Myoglobin content
► High (red muscle)	► High (red muscle)	► Low (white muscle)
Glycolytic enzymes	 Glycolytic enzymes 	► Glycolytic enzymes
► Low	► Intermediate	▶ High

Slow fibers (Type I)	Fast fibers (Type II)	
(oxidative)	Fast oxidative (IIa)	
➤ Glycogen content	▶ Glycogen content	▶ Glycogen content
► low	► Intermediate	► High
 Rate of fatigue 	Rate of fatigue	► Rate of fatigue
► Slow	▶ intermediate	► Fast
 ATPase activity 	 ATPase activity 	► ATPase activity
▶ Low	► High	► High
➤ Fiber diameter	➤ Fiber diameter	► Fiber diameter
► Small	intermediate	► Large
 Motor unit size 	Motor unit size	Motor unit size
► Small	intermediate	► Large
 Innervating by 	Innervating by	Innervating by
► Small neurons	► Intermediate sized	 Large neurons
	neurons	

Muscle tone
 Tautness in muscle when at rest
 Due to continuous firing of some motor neurons
 Contraction of some motor units
 Alternating pattern of motor units contraction

Remodeling of muscle

- Muscle remodels to match its function
- Hypertrophy
- Increase in total mass of muscle
- Occurs in strength exercise (anaerobic exercise) -weight lifting
- Increase in fiber size
- Increase number of actin and myosin
- Change in metabolic machinery

- Atrophy
- Decrease in total mass of muscle
- Denervation atrophy
- Abolishment of trophic signals
- Disuse atrophy
- When muscle is not used for long time

Clinical physiology

- Hypocalcemic tetany
- ↓ ECF Ca++→ ↑ Na+permeability
- Spontaneous contractions
- Muscle cramps
- Involuntary tetanic contractions due to abnormally high rates of action potentials
- due to over-exercise
- Dehydration
- Electrolyte imbalance

Rigor mortis

Contracture of muscles after death

Cause

Non availability of ATP

Cytosolic Ca++rises (failure of Ca++pump)

Myosin heads can not detach from actin

Subsides after several hours/days

Due to destruction of contractile proteins

Isometric contraction

Tension during contraction increases but length of muscle remains the same

Load > tension

Trying to lift heavy loads (but not actually lifting up)

Isotonic contraction

- Tension during contraction remains the same but muscle length changes
- 1) Concentric isotonic contraction
- Load < tension</p>
- Muscle shortens during contraction
- Lifting a weight up running, walking etc
- 2) Eccentric isotonic contraction
- Load > tension
- Already contracted muscle lengthens
- Lowering a weight to ground

Thank you