

ANÁLISIS MATEMÁTICO II

Examen Final

25/07/2023

APELLIDO DEL ALUMNO:	NOMBI	RE:
	REVISÓ:	***************************************
CORRIGIÓ:	P2 P3 P4	CALIFICACIÓN
T1 T2 P1	13	

Todas las respuestas deben ser justificadas ade<mark>cuada</mark>mente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

T1) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Si es verdadera proporcione una demostración, caso contrario exhiba un contraejemplo.

a. El campo escalar $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ definido por $f(x,y) = 1 + \sqrt[3]{x^2(y-1)}$ admite en el punto (0,1) derivada en toda dirección pero no es diferenciable en dicho punto

b. Si $f: W \subseteq R^3 \to R$ de clase $C^2(W)$ y la curva C seccionalmente regular es la frontera de la superficie orientada $S \subset W$, entonces $\oint_C \overrightarrow{\nabla f} \cdot d\vec{s} = 0$.

T2) a. Sea un campo escalar $g: A \subseteq \mathbb{R}^n \to \mathbb{R}$ (n > 1) $y \vec{x}_0 \in A^o$. Muestre que si existe $g'(\vec{x}_0, \vec{u}) \ \forall \vec{u} \ y \ \vec{x}_0$ es un punto de extremo local de g, entonces $g'(\vec{x}_0, \vec{u}) = 0$. b. ¿Existe un único $\alpha \in R$ para el cual la función definida por $h(x,y) = x^3 + y^2 - \alpha x + 2$

admite un punto de extremo local en el punto (0,0)? Justifique la respuesta.

P1) Para el campo vectorial $\vec{F}: R^3 \to R^3 / \vec{F}(x, y, z) = (xz, yz, x^2 + y^2)$, calcule el flujo de \vec{F} a través de la superficie de ecuación $z = 4 - \sqrt{x^2 + y^2}$ que se encuentra en semiespacio $z \ge 0$ y orientada con el campo de versores normales en el sentido de las z negativas.

P2) Calcule la circulación del campo vectorial $\vec{G}: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

 $\vec{G}(x,y,z) = (12xyz + 2, 6x^2z, 6x^2y - 1) \text{ a lo largo del arco de curva } C: \begin{cases} x+y+z=1\\ z=y \end{cases} \text{ desde}$ el punto A = (1,0,0) hacia el punto B = $(0,\frac{1}{2},\frac{1}{2})$. Fundamente claramente el procedimiento elegido para el cálculo.

P3) Calcule la circulación del campo vectorial $\vec{H}: \mathbb{R}^2 \to \mathbb{R}^2$ definido por

 $\vec{H}(x,y) = (3xy^2 + 2y, 3x^2y - 4x)$ a lo largo de la curva ortogonal a la familia dada por

y = ax + 2 que pasa por el punto (0,1) y recorrida en sentido horario. Fundamente el cálculo.

P4) Sea la función $f: R \to R$ derivable y sea además la función definida por $F(x, y) = \frac{1}{x} \cdot f\left(\frac{y}{x}\right)$

para $x \neq 0$. Verifique que $x \cdot \frac{\partial F}{\partial x} + y \cdot \frac{\partial F}{\partial y} + F(x, y) = 0$. Justifique el procedimiento escogido.