H(n) on H(io)	Valeur de la pulsation de normalisation	Fonction de transfert normalisée $H_{PB}(s)$ ou $\underline{H}_{PB}(ju)$
$H(p) = \frac{1}{1 + \frac{p}{100}}$ $H(-) = \frac{1}{1 + \frac{p}{100}}$	$\omega_p = 100 \text{ rad.s}^{-1}$	H(a) = 1 = 1 = HPB(0)
$H(p) = \frac{5}{5 + \frac{p}{100}} (\omega_c = 5)$	$\omega_{\rm p} = 20 \text{ rad.s}^{-1}$	$H(A) = \frac{15}{5 + 8 \cdot 20} = \frac{5}{5 + 8} = \frac{1}{1 + 904}$
1p= 1 1+4. Pwp = 1+ P 250 = wc	$\omega_{\rm p} = 1000 \; {\rm rad.s}^{-1}$	$\mathbf{H}_{PB}(\mathbf{s}) = \frac{1}{1+4\mathbf{s}}$
$H(p) = \frac{1}{\omega_o} \frac{p}{800}^2 + \frac{p}{8000} + 1$ $H(p) = \frac{1}{\omega_o} \frac{p}{500}^2 + \frac{p}{500} + 1$	$\omega_{\rm p} = 800 \; {\rm rad.s^{-1}}$	$H(a) = \frac{1}{\left(\frac{\Delta \cdot w_p}{800}\right)^2 + \frac{\Delta \cdot w_p}{8000} + 1} = \frac{1}{\Delta^2 + 9 \cdot \Delta + 1} = H$
	$\omega_p = 250 \text{ rad.s}^{-1}$	$H(A) = \frac{1}{\left(\frac{A \cdot 250}{500}\right)^{\frac{2}{5}} \frac{A \cdot 250}{500} + 1} = \frac{1}{0.25 A^{2} + 0.5 A + 1}$
$ \gamma = \frac{1}{4\left(\frac{P}{1600}\right)^2 + \frac{P}{1600} + 1} = \frac{1}{\left(\frac{P}{800}\right)^2 + 0.5 \frac{P}{800}}$		$H_{PB}(s) = \frac{1}{4s^2 + s + 1}$
Fitre néel à néaliser	Issue de la " wo n'est pas	Normalisation" en F.P.B.P. forcement égale à juc (1eronde)