Modelltheorie Übungsblatt 2

Aufgabe 1.

- a) Betrachten Sie die Unterstruktur $(3\mathbb{Z}, +)$ von $(\mathbb{Z}, +)$.
 - i) Zeigen Sie, dass $Th(\langle 3\mathbb{Z}, + \rangle) = Th(\langle \mathbb{Z}, + \rangle)$.
 - ii) Ist $(3\mathbb{Z}, +)$ eine elementare Unterstruktur von $(\mathbb{Z}, +)$?
- b) Betrachten Sie die Struktur

$$(\mathcal{P}(\mathbb{N}),\subseteq).$$

- i) Zeigen Sie, dass es eine abzählbare Teilmenge $B \subseteq \mathcal{P}(\mathbb{N})$ gibt, sodass $(B, \subseteq) \preceq (\mathcal{P}(\mathbb{N}), \subseteq)$.
- ii) Zeigen Sie, dass es dann für jedes $n \in \mathbb{N}$ eine Teilmenge $F_n \subseteq \mathbb{N}$ mit $|F_n| = n$ und $\mathcal{P}(F_n) \subseteq B$ gibt.

Aufgabe 2. Sei $\mathcal{A} = (\mathbb{R}, 0, <, f)$ mit einem einstelligem Funktionsymbol f. Ein Element $x \in \mathcal{A}^* \succcurlyeq \mathcal{A}$ heißt infinitesimal, falls -r < x < r für alle $r \in \mathcal{A}$ mit r > 0 gilt. Angenommen, es gilt $f^{\mathcal{A}}(0) = 0$. Zeigen Sie, dass f genau dann stetig bei 0 ist, wenn für alle infinitesimalen $x \in \mathcal{A}^* \succcurlyeq \mathcal{A}$ auch $f^{\mathcal{A}^*}(x)$ infinitesimal ist.

Aufgabe 3. Sei p eine Primzahl und $\mathbb{Z}_{p^{\infty}} = \{x \in \mathbb{C} \mid \exists k \in \mathbb{N} : x^{p^k} = 1\}$ die Prüfer Gruppe.

- a) Zeigen Sie, dass $\mathbb{Z}_{p^{\infty}}^n$ und $\mathbb{Z}_{p^{\infty}}^m$ für $m \neq n$ in der Gruppensprache $\mathcal{L}_G = \{1, \cdot, ^{-1}\}$ nicht elementar äquivalent sind.
- b) Zeigen sie, dass \mathbb{Z}^n und \mathbb{Z}^m für $m \neq n$ in der Gruppensprache nicht elementar äquivalent sind.

Aufgabe 4. Sei E die Äquivalenzrelation auf $\omega \times \omega$, die durch $(i,j)E(i',j') \Leftrightarrow i=i'$ definiert wird. Betrachten Sie $T=\operatorname{Th}(\langle \omega \times \omega \, ; \, E \rangle)$.

- a) Zeigen Sie, dass E unendliche viele Äquivalenzklassen mit unendlich vielen Elementen hat.
- b) Zeigen Sie, dass $T \aleph_0$ -kategorisch ist.

Hinweis: Verwenden Sie die Hin-und-Her-Methode.

Abgabe bis Donnerstag, den 25.10, 10:00 Uhr

Die Ubungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: http://wwwmath.uni-muenster.de/u/franziska.jahnke/mt/