STAT 111

Recitation 7

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Spring2019

March 22, 2019

Estimation Summary

ightharpoonup Binomial parameter θ :

Estimate: p 95% confidence interval: $p \pm \sqrt{1/n}$

▶ Mean μ :

Estimate: \bar{x} 95% confidence interval: $\bar{x} \pm 2\frac{s}{\sqrt{n}}$

▶ Difference between proportions $\theta_1 - \theta_2$:

Estimate: $p_1 - p_2$

95% confidence interval: $p_1 - p_2 \pm \sqrt{\frac{1}{n} + \frac{1}{m}}$

▶ Difference between means $\mu_1 - \mu_2$:

Estimate: $\bar{x}_1 - \bar{x}_2$

95% confidence interval: $\bar{x}_1 - \bar{x}_2 \pm 2\sqrt{\frac{\hat{s}_1^2}{n} + \frac{\hat{s}_2^2}{m}}$

Note:

$$s = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2 - n(\bar{x}^2)}{n-1}}.$$

Linear Regression

- ► How does the growth height of a plant in a greenhouse depend on the amount of water that we give it?
- Let x be the amount of water we plan to give the plant (fixed).
- Let Y be the (future) growth height of a plant (random variable).
- ► Linear Regression Model: for the *i*th observation,
 - Mean of $Y_i = \alpha + \beta x_i$,

Variance of $Y_i = \sigma^2$.

Figure: Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Linear Regression

▶ Mean of $Y_i = \alpha + \beta x_i$, Variance of $Y_i = \sigma^2$. How do we estimate α , β ?

Calculate:
$$s_{xx} = x_1^2 + x_2^2 + \dots + x_n^2 - n(\overline{x}^2) = \sum_{i=1}^n x_i^2 - n(\overline{x}^2)$$

 $s_{yy} = y_1^2 + y_2^2 + \dots + y_n^2 - n(\overline{y}^2) = \sum_{i=1}^n y_i^2 - n(\overline{y}^2)$
 $s_{xy} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n - n(\overline{xy}) = \sum_{i=1}^n x_i y_i - n(\overline{xy}).$

Estimate β by b and α by a:

$$b = s_{xy}/s_{xx}$$
$$a = \overline{y} - b\overline{x}$$

▶ Estimate σ^2 by s_r^2 :

$$s_r^2 = (s_{vv} - b^2 s_{xx})/(n-2).$$

▶ How accurate is the estimate b of β ?

Standard deviation of
$$b: \frac{s_r}{\sqrt{s_{xx}}} \Rightarrow 95\%$$
 C.I. $b \pm 2\frac{s_r}{\sqrt{s_{xx}}}$

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 188, s_{yy} = 83.54, s_{xy} = 122.4$$

$$ightharpoonup \overline{x} = 21, \overline{y} = 79.7, s_{xx} = 188, s_{yy} = 83.54, s_{xy} = 122.4$$

Estimate α , β

- $\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 188, s_{yy} = 83.54, s_{xy} = 122.4$
- **E**stimate α , β

$$b = s_{xy}/s_{xx} = 0.6511$$

 $a = \overline{y} - \beta \overline{x} = 79.7 - (0.6511)(21) = 66.03$

ightharpoonup Estimate σ^2

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 188, s_{yy} = 83.54, s_{xy} = 122.4$$

Estimate α , β

$$b = s_{xy}/s_{xx} = 0.6511$$

 $a = \overline{y} - \beta \overline{x} = 79.7 - (0.6511)(21) = 66.03$

 \triangleright Estimate σ^2

$$s_r^2 = \frac{83.54 - (0.6511)^2 (188)}{10} = 0.3850$$

 \blacktriangleright Find a 95% C.I. for β .

$$\overline{x} = 21, \overline{y} = 79.7, s_{xx} = 188, s_{yy} = 83.54, s_{xy} = 122.4$$

Estimate α , β

$$b = s_{xy}/s_{xx} = 0.6511$$

 $a = \overline{y} - \beta \overline{x} = 79.7 - (0.6511)(21) = 66.03$

 \triangleright Estimate σ^2

$$s_r^2 = \frac{83.54 - (0.6511)^2(188)}{10} = 0.3850$$

 \blacktriangleright Find a 95% C.I. for β .

95% C.I. for
$$b: 0.6511 \pm 2 \frac{\sqrt{0.3850}}{\sqrt{188}} \Rightarrow (0.56, 0.74)$$