Práctico 6

ESPACIOS VECTORIALES

Objetivos.

- Familiarizarse con los conceptos de espacio y subespacio vectorial.
- Familiarizarse con los conceptos de conjunto de generadores e independencia lineal, base y dimensión de un espacio vectorial.
- Aprender a caracterizar subespacios por generadores y de manera implícita.
- Dado un subespacio W, aprender a extraer una base de cualquier conjunto de generadores de W, y a completar cualquier subconjunto linealmente independiente de W a una base.

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco. \mathbb{K} denota \mathbb{R} o \mathbb{C} .

- (1) Probar que el conjunto de números reales positivos $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ es un \mathbb{R} -espacio vectorial con las operaciones $x \oplus y = x \cdot y$ y $\lambda \odot x = x^{\lambda}$.
- (2) Si (V, \oplus, \odot) es un K-espacio vectorial y S es un conjunto cualquiera, sea

$$V^S = \{ f : S \to V : f \text{ es una función} \},$$

el conjunto de todas las funciones de S en V. Definimos en V^S la suma y el producto por escalares de la siguiente manera: Si $f, g \in V^S$ y $c \in \mathbb{K}$ entonces $f + g : S \to V$ y $c \cdot f : S \to V$ están dadas por

$$(f+g)(x) = f(x) \oplus g(x), \quad (c \cdot f)(x) = c \odot f(x), \quad \forall x \in S.$$

Probar que $(V^S, +, \cdot)$ es un K-espacio vectorial.

Observación: Los espacios \mathbb{K}^n y $\mathbb{K}^{m \times n}$ son casos particulares del Ejercicio 2. En efecto, \mathbb{K}^n se identifica con el conjunto de todas las funciones de $S = \{1, \ldots, n\}$ en $V = \mathbb{K}$ donde cada n-upla $(a_1,\ldots,a_n)\in\mathbb{K}^n$ representa la función del conjunto $\{1,\ldots,n\}$ en \mathbb{K} dada por $f(i) = a_i$. Análogamente una matriz de $\mathbb{K}^{m \times n}$ se puede pensar como una función del conjunto $\{1, \ldots, m\} \times \{1, \ldots, n\}$ en \mathbb{K} .

Entonces el Ejercicio 2 nos da otra demostración de que \mathbb{K}^n y $\mathbb{K}^{m\times n}$ son espacios vectoriales.

- (3) Sean V un K-espacio vectorial, $v \in V$ no nulo y $\lambda, \mu \in K$ tales que $\lambda v = \mu v$. Probar que $\lambda = \mu$.
- (4) Decidir si los siguientes subconjuntos de \mathbb{R}^3 son subespacios vectoriales.
 - (a) $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}.$ (b) $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$

 - (c) $C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 \ge 0\}.$ (d) $D = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\}.$

 - (e) $B \cup D$.
 - (f) $B \cap D$.
- (5) (a) Decidir si los siguientes subconjuntos de $\mathbb{K}^{n\times n}$ son subespacios vectoriales.
 - (i) El conjunto de matrices invertibles.
 - (ii) El conjunto de matrices de traza cero $\{A \in \mathbb{K}^{n \times n} : \operatorname{Tr}(A) = 0\}$. ¿Qué pasa si cambiamos 0 por cualquier otro escalar de K?

- (iii) El conjunto de matrices A tales que AB = BA, donde B es una matriz fija.
- (b) Decidir si el subconjunto de polinomios de grado 2, junto con el polinomio nulo, es un subespacio vectorial de $\mathbb{K}[x]$.
- (c) Decidir si $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ es continua}\}$ es un subespacio vectorial de $\mathbb{R}^{\mathbb{R}} = \{f: f \in \mathbb{R} \}$ $\mathbb{R} \to \mathbb{R}$.

Observación. Podemos apreciar como un simple cambio en la condición que define al subconjunto hace que dicho subconjunto sea o no un subespacio vectorial.

- (6) Sea L una recta en \mathbb{R}^2 . Dar una condición necesaria y suficiente para que L sea un subespacio vectorial de \mathbb{R}^2 .
- (7) Sean W_1, W_2 subespacios de un espacio vectorial V. Probar que $W_1 \cup W_2$ es un subespacio de V si y sólo si $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.
- (8) Sean u = (1, 1), v = (1, 0), w = (0, 1) y z = (3, 4) vectores de \mathbb{R}^2 .
 - (a) Escribir z como combinación lineal de u, v y w de dos maneras distintas, con coeficientes todos no nulos.
 - (b) Escribir z como combinación lineal de u y v.
 - (c) Escribir z como combinación lineal de u y w.
 - (d) Escribir z como combinación lineal de v y w.

Observación. En (a) de este ejercicio vemos como un vector se puede escribir de varias maneras como combinación lineal de vectores dados. Esto pasa porque $\{u, v, w\}$ es LD.

- (9) Dar un conjunto de generadores para los siguientes subespacios vectoriales.
 - (a) Los conjuntos de soluciones de los sistemas homogéneos del Ejercicio 7 Práctico
 - (b) Los conjuntos descriptos en el Ejercicio 8 Práctico 2.

(c)
$$W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] : p'(1) = 0 \text{ y } p(2) = p(3)\}$$

(d) $W = \left\{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} : A \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} A\right\}.$

- (10) En cada caso, caracterizar con ecuaciones al subespacio vectorial dado por generadores.

 - (a) $\langle (1,0,3), (0,1,-2) \rangle \subseteq \mathbb{R}^3$. (b) $\langle x^3 + 2x + 1, -x^2 x, 2x^3 + 3x^2 x + 4 \rangle \subseteq \mathbb{R}_4[x]$.
- (11) Sean W_1 y W_2 los siguientes subespacios de \mathbb{R}^4 :

$$W_1 = \{(x, y, z, w) \in \mathbb{R}^4 : x + y - 2z = 0\},\$$

$$W_2 = \langle (1, -1, 1, 0), (2, 1, -2, 0), (3, 0, -1, 0) \rangle.$$

- (a) Determinar $W_1 \cap W_2$, y describirlo por generadores y con ecuaciones.
- (b) Determinar $W_1 + W_2$, y describirlo por generadores y con ecuaciones.
- 12 En cada caso, determinar si el subconjunto indicado es linealmente independiente.
 - (a) $\{(4,2,-1),(0,2,1),(-1,1,3)\}\subset\mathbb{R}^3$.
 - (b) $\{(1-i,i),(2,-1+i)\}\subset\mathbb{C}^2$ como \mathbb{R} -espacio vectorial y como \mathbb{C} -espacio vectorial. (c) $\{1,x+1,x^2+x+1,x^3+x^2+x+1\}\subset\mathbb{R}_4[x]$.

 - (d) $\{1, \operatorname{sen}^2(x), \cos^2(x)\} \subset \mathbb{R}^{\mathbb{R}}$.
 - (e) (a) $\{1, \operatorname{sen}(x), \cos(x)\} \subset \mathbb{R}^{\mathbb{R}}$.
- (13) (a) Dar un ejemplo de un conjunto de 3 vectores en \mathbb{R}^3 que sean LD, y tales que dos cualesquiera de ellos sean LI.

2

- (b) Probar que si α , β y γ son vectores LI en el \mathbb{R} -espacio vectorial, entonces $\alpha + \beta$, $\alpha + \gamma$ y $\beta + \gamma$ también son LI.
- (14) Exhibir una base y calcular la dimensión de los siguientes subespacios.
 - (a) Los subespacios del Ejercicio (9).
 - (b) $W = \langle (1,0,-1,1), (1,2,1,1), (0,1,1,0), (0,-2,-2,0) \rangle \subseteq \mathbb{R}^4$.
 - (c) Matrices triangulares superiores 2×2 .
 - (d) El conjunto de matrices triangulares superiores $n \times n$ $(n \ge 3)$ con coeficientes reales (probar primero que es un subespacio).

Observación (útil para Ejercicio 15 y para la vida). Dado un espacio vectorial de dimensión n, entonces un conjunto de n vectores $\{v_1,\ldots,v_n\}$ es LI \iff genera ⇔ es base. Para no olvidarnos de esto, vamos a dejarlo anotado.

- (15) Decidir si es posible extender los siguientes conjuntos a una base de los respectivos espacios vectoriales. En caso afirmativo, extender a una base.
 - (a) $\{(1,2,1,1),(1,0,1,1),(3,2,3,3)\}\subseteq \mathbb{R}^4$.

 - (b) $\{(1,2,0,0), (1,0,1,0)\}\subseteq \mathbb{R}^4$. (c) $\{\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}\}\subseteq M_{2\times 2}(\mathbb{R})$.
- (16) Dar subespacios vectoriales $W_0,\,W_1,\,W_2$ y W_3 de \mathbb{R}^3 tales que $W_0\subset W_1\subset W_2\subset W_3$ y $\dim W_0 = 0$, $\dim W_1 = 1$, $\dim W_2 = 2$ y $\dim W_3 = 3$.
- (17) Sea V un espacio vectorial de dimensión $n \vee \mathcal{B} = \{v_1, ..., v_n\}$ una base de V.
 - (a) Probar que cualquier subconjunto no vacío de \mathcal{B} es LI.
 - (b) Para cada $k \in \mathbb{N}_0$, $0 \le k \le n$, dar un subespacio vectorial W_k de V de dimensión k de manera que $W_0 \subset W_1 \subset \cdots \subset W_n$.
- (18) Dar una base y la dimensión de \mathbb{C}^n como \mathbb{C} -espacio vectorial y como \mathbb{R} -espacio vectorial.
- (19) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Si W_1 y W_2 son subespacios vectoriales de \mathbb{K}^8 de dimensión 5, entonces $W_1 \cap W_2 = 0$.
 - (b) Sean S, T y U subespacios de un espacio vectorial V tales que

$$S \cap T = S \cap U$$
, $S + T = S + U$, y $T \subset U$.

Entonces T = U.

(c) (a) Si W es un subespacio de $\mathbb{K}^{2\times 2}$ de dimensión 2, entonces existe una matriz triangular superior no nula que pertenece a W.

(d) Sean $v_1, v_2, w \in \mathbb{K}^n$ y $A \in \mathbb{K}^{n \times n}$ tales que $Av_1 = Av_2 = 0 \neq Aw$. Si $\{v_1, v_2\}$ es LI, entonces $\{v_1, v_2, w\}$ también es LI.

Definición: Sean W_1, W_2 subespacios de V. Decimos que V es la suma directa de W_1 y W_2 si $V = W_1 + W_2$ y $W_1 \cap W_2 = \{0\}$, y lo denotamos como $V = W_1 \oplus W_2$.

- (20) (a) Probar que $\mathbb{R}^2 = \langle (1,0) \rangle \oplus \langle (0,1) \rangle$.
 - (b) (i) Probar que el conjunto de matrices simétricas $n \times n$ y el conjunto de matrices antisimétricas $n \times n$ son subespacios vectoriales de $\mathbb{R}^{n \times n}$.
 - (ii) (a) Probar que $\mathbb{R}^{n \times n} = \{\text{matrices simétricas}\} \oplus \{\text{matrices antisimétricas}\}.$
- (21) ⓐ Sean $\lambda_1, ..., \lambda_n \in \mathbb{R}$ todos distintos. Probar que el conjunto $\{e^{\lambda_1 x}, ..., e^{\lambda_n x}\} \subset \mathbb{R}^{\mathbb{R}}$ es LI. Concluir que dim $\mathbb{R}^{\mathbb{R}}$ es infinita.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (22) Decidir si los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} con las operaciones abajo definidas.
 - (a) \mathbb{R}^2 con $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ y $c \odot (x, y) = (cx, y)$.
 - (b) \mathbb{R}^2 con $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, 0)$ y $c \odot (x, y) = (cx, 0)$.
- (23) Decidir en cada caso si el subconjunto W dado es un subespacio vectorial del espacio vectorial V.
 - (a) $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_3 = 0\}, V = \mathbb{R}^3.$
 - (b) $W = \{(x_1, \dots, x_n) \in \mathbb{R}^n : \exists j > 1, x_1 = x_j\}, V = \mathbb{R}^n.$
 - (c) $W = \{p(x) \in \mathbb{R}[x] : p'(0) + p''(0) = 0\}, V = \mathbb{R}[x].$
 - (d) $W = \{p(x) \in \mathbb{K}[x] : a_0, \dots, a_{n-1} \in \mathbb{Q}\}, V = \mathbb{R}[x].$
 - (e) El conjunto de matrices triangulares superiores estrictas (es decir, con ceros en la diagonal). $V = \mathbb{K}^{n \times n}$ ¿Qué pasa si cambiamos cero por cualquier otro escalar?
 - (f) El conjunto de matrices A tales que $A^2 = 0$. $V = \mathbb{K}^{n \times n}$.
 - (g) $W = \{ f : \mathbb{R} \to \mathbb{R} \mid f(x) \neq 0 \ \forall x \in \mathbb{R} \}, \ V = \mathbb{R}^{[0,1]}.$
 - (h) $W = \{ f \in \mathbb{R}^{[0,1]} : f(x^2) = f(x)^2 \}, V = \mathbb{R}^{[0,1]}.$
- (24) Escribir al vector 1 + 2i como combinación \mathbb{R} -lineal (es decir, con coeficientes reales) y como combinación \mathbb{C} -lineal (es decir, con coeficientes complejos) de los vectores 1 + i y 1 i.
- (25) En cada caso, determinar si el subconjunto indicado es linealmente independiente.
 - (a) $\langle (1,1,0,0), (0,1,1,0), (0,0,1,1) \rangle \subseteq \mathbb{R}^4$.
 - (b) $(1+x+x^2, x-x^2+x^3, 1-x, 1-x^2, x-x^2, 1+x^4) \subseteq \mathbb{R}[x].$
 - (c) $\{p_1(x), \ldots, p_n(x)\}\subset \mathbb{R}_{n+1}[x]$ donde $p_1(x), \ldots, p_{n+1}(x)$ tienen todos distinto grado.
- (26) En este ejercicio no es necesario hacer ninguna cuenta. Es lógica y comprender bien la definición de LI y LD. Probar las siguientes afirmaciones.
 - (a) Todo conjunto que contiene un subconjunto LD es también LD.
 - (b) Todo conjunto que contiene al vector 0 es LD.
 - (c) Un conjunto es LI si y sólo si todos sus subconjuntos finitos son LI.
- (27) Exhibir una base y calcular la dimensión de los siguientes subespacios.
 - (a) $W = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z = 0, x + y + w = 0\}.$
 - (b) $W = \langle (-1, 1, 1, -1, 1), (0, 0, 1, 0, 0), (2, -1, 0, 2, -1), (1, 0, 1, 1, 0) \rangle \subseteq \mathbb{R}^5.$

(c)
$$W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] : a + d = b + c\}.$$

(28) Sean
$$A_1 = \begin{bmatrix} 1 & -2 & 0 & 3 & 7 \\ 2 & 1 & -3 & 1 & 1 \end{bmatrix}$$
 y $A_2 = \begin{bmatrix} 3 & 2 & 0 & 0 & 3 \\ 1 & 0 & -3 & 1 & 0 \\ -1 & 1 & -3 & 1 & -2 \end{bmatrix}$.

- (a) Sean W_1 y W_2 los espacios solución de los sistemas homogéneos asociados a A_1 y A_2 , respectivamente. Describir implícitamente $W_1 \cap W_2$.
- (b) Sean V_1 y V_2 los subespacios de \mathbb{R}^5 generado por las filas de A_1 y A_2 , respectivamente. Dar un conjunto de generadores de $V_1 + V_2$.

Para el siguiente ejercicio, se recomienda usar la calculadora de matrices para realizar los cálculos, ya que la vida es eso que pasa mientras uno reduce una matriz 6×6 .

(29) Sean W_1 y W_2 los siguientes subespacios de \mathbb{R}^6 :

$$W_1 = \{(u, v, w, x, y, z) : u + v + w = 0, x + y + z = 0\},$$

$$W_2 = \langle (1, -1, 1, -1, 1, -1), (1, 2, 3, 4, 5, 6), (1, 0, -1, -1, 0, 1), (2, 1, 0, 0, 0, 0) \rangle.$$

- (a) Determinar $W_1 \cap W_2$, y describirlo por generadores y con ecuaciones.
- (b) Determinar $W_1 + W_2$, y describirlo por generadores y con ecuaciones.
- (c) Decir cuáles de los siguientes vectores están en $W_1 \cap W_2$ y cuáles en $W_1 + W_2$:

$$(1, 1, -2, -2, 1, 1), (0, 0, 0, 1, 0, -1), (1, 1, 1, 0, 0, 0), (3, 0, 0, 1, 1, 3), (-1, 2, 5, 6, 5, 4).$$

- (d) Para los vectores v del punto anterior que estén en $W_1 + W_2$, hallar $w_1 \in W_1$ y $w_2 \in W_2$ tales que $v = w_1 + w_2$.
- (e) ¿Es la suma $W_1 + W_2$ directa?
- (30) Sea H el conjunto de las matrices hermitianas $n \times n$ y AH el conjunto de matrices antihermitianas $n \times n$.
 - (a) Considerando $\mathbb{C}^{n\times n}$ como \mathbb{R} -esp. vectorial, ison H y AH subspacios vectoriales?
 - (b) Considerando $\mathbb{C}^{n\times n}$ como \mathbb{C} -esp. vectorial, ison H y AH subespacios vectoriales?
 - (c) (a) Probar que $\mathbb{C}^{n\times n}=H\oplus AH$ (como \mathbb{R} -espacio vectorial).
- (31) (a) Exhibir una base y dar la dimensión de:
 - (a) $W = \{A \in \mathbb{R}^{n \times n} : A^t = A\}$. Usar (20b) para dar la dimensión de las matrices antisimétricas.
 - (b) $W = \{A \in \mathbb{C}^{n \times n} : A^* = A\}$ (considerado como \mathbb{R} -subespacio de $\mathbb{C}^{n \times n}$). Usar (30c) para dar la dimensión de las matrices antihermitianas.
 - (c) $W = \{ A \in \mathbb{K}^{n \times n} : \operatorname{Tr} A = 0 \}.$
- (32) Sean $S = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = f(-x) \ \forall x \in \mathbb{R} \}$ y $T = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(x) = -f(x) \ \forall x \in \mathbb{R} \}$, es decir S es el conjunto de funciones pares y T el conjunto de funciones impares. Probar que S y T son subespacios de $\mathbb{R}^{\mathbb{R}}$ y que $\mathbb{R}^{\mathbb{R}} = S \oplus T$.

Ayudas. (12e) Plantear la condición de LI y evaluar en algunos x convenientes para obtener condiciones sobre los escalares.

- (19c) Usar 14c.
- (20b) Probar que, dada $A \in \mathbb{R}^{n \times n}$ se cumple que $\frac{1}{2}(A+A^t)$ es una matriz simétrica y $\frac{1}{2}(A-A^t)$ es una matriz antisimétrica.
- (21) Plantear la condición de LI. Derivar n-1 veces la igualdad y evaluar las n igualdades en 0 para sacar una condición sobre los escalares. Si le es útil piense en el caso n=2 o n=3 primero.
 - (30c) Razone análogamente a 19b.

(31) La idea es similar a 14d. Para ver que son LI, plantear la condición directamente y usar que E_{ij} , $1 \le i, j \le n$ es base de $\mathbb{K}^{n \times n}$.

Comentario: Como podrá observar, muchos de los ejercicios de este práctico se reducen a hacer cuentas con sistemas de ecuaciones como en el Práctico 2, como lo ejemplifican los sigu-

ientes memes:

Dar un conjunto de generadores para un subespacio de K^n definido por ecuaciones

Reducir תוושטוייינונע e igualar a O los coeficientes resultantes de y correspondientes a las filas nulas

Describir implícitamente el conjunto de vectores Y tales que el sistema tiene solución

Caracterizar con ecuaciones e subespacio de K generado nor {v1

