

Machine learning for tract segmentation in dMRI data

Bao Nguyen

NeuroInformatics Laboratory (NILab)

Contents

- Introduction
- State of the art (SoA)
- Problem statement
- Proposed solution
- Preliminary results
- Conclusion and Future works

Axons

- Number: ~ 10¹² axons
- Size: ~ 2-20μm

Streamline & Tractography

Streamline: a polyline representating thousands of axons. (fiber, track)

Bundle: a group of 'close' streamlines

Tract: the real anatomical group of axons.

dMRI technique

(diffusion Magnetic Resonance Imaging)

in vivo (not invasive) Denis Le Bihan, 1984

Garyfallidis et. al. 2012 (Towards an accurate brain tractography)

MRI images in 3D

Tractography Segmentation

To group streamlines belonging to a common anatomical area into one segmentation

Atlas based Tract Segmentation

ROI based Tract Segmentation

Unsupervised Tract Segmentation

Supervised Tract Segmentation

Survey of tractography segmentation methods

Approach	Target tract / Whole brain	Related anatomy	Co- registration		Visualization /Interaction
Atlas	WB	Yes	Yes	No	No
ROI	TT (indirect)	Yes (indirect)	Yes	No	No
Unsupervised	WB	No	No	Yes (costly)	No
Supervised	TT	Yes (indirect)	Yes	No	No

pros con

Goals

Improve the support of ML for tract segmentation

Challenges

- design an effective method for tract segmentation
- overcome disadvantages of Atlas, ROI
- combine both un-supervised and supervised

Comparison

Approach	Target tract / Whole brain	Related anatomy	Co- registration	Pairwise distance	Visualization /Interaction
Atlas	WB	Yes	Yes	No	No
ROI	TT (indirect)	Yes (indirect)	Yes	No	No
Unsupervised	WB	No	No	Yes (costly)	No
Supervised	TT	Yes (indirect)	Yes	No	No
Ours	TT	Yes	Yes(*)	No	Yes

Process design: interactive segmenation

BOI - bunble of interest

- Focus dirrectly on which bundle (cluster of streamlines) that user wants to work on
- Related to anatomy
- Easy to visualize and to interact

Approach	ROI	BOI
Anatomy related	Yes (indirect)	Yes
Visualization	No	Yes
Interaction	No	Yes
Prior knowledge of trajectory	Yes	No

Interactive tract refinement

Demo of Spaghetti

Problem statement

- Given a set of N objects $\mathcal{X} = \{x_1, \dots, x_N\}$
- $lue{}$ Traditional clustering: find one partition of ${\mathcal X}$

$$C = \{C_1, \ldots, C_K\}$$
 with $K \le N$

with
$$C_i$$
 is a cluster of \mathcal{X} : $C_i = \{x_1^i, \ldots, x_j^i\}$, $j \leq N$

$$i \quad C_i \neq \emptyset, i = 1, \ldots, K$$

$$ii \quad \bigcup_{i=1}^K C_i = \mathcal{X}$$

Interactive clustering

Our approach: find a set m partitions of \mathcal{X}

$$\mathcal{P} = \{ P_1, \ldots, P_m \}$$

where P_i is one partition of \mathcal{X} : $P_i = \{C_1^i, \ldots, C_d^i\}$

- i P_i represents the *ith abstraction level* of \mathcal{X}
- ii constraint γ : $\forall i \in [1, m-1], P_i \leq P_{i+1}$ ("nested in")
- Denoted as a triple $\langle \mathcal{P}, \mathcal{X}, \gamma \rangle$

Interactive clustering: partial order relation

- \mathcal{P}_{y} : set of all possible partitions of \mathcal{X}
- Over \mathcal{P}_{y} , a partial order relation \preceq ("nested in")

$$\forall P_a, P_b \in \mathcal{P}_{\chi}, \ P_a \underline{\prec} P_b \longleftrightarrow \forall \ C^b_i \in P_b, \exists C^a_{i_1}, ..., C^a_{i_k} \in P_a \text{: } C^b_i = \bigcup_{t=1}^k C^a_{i_t}$$

Interactive clustering: update partitions

Remove an old object $x_{rm} \in \mathcal{X}$

$$\mathcal{X} = \{X_1, \dots, X_N\} \qquad \qquad \mathcal{X}' = \mathcal{X} \setminus \{X_{r.m}\}$$

• Add a new object x_{add}

$$\mathcal{X} = \{X_1, \dots, X_N\}$$

$$\mathcal{X}' = \mathcal{X} \cup \{X_{add}\}$$

$$\mathcal{P} = \{ P_1, \dots, P_m \}$$

$$\langle \mathcal{P}, \mathcal{X}, \gamma \rangle, \gamma : P_i \preceq P_{i+1}$$

$$i \in [1, m-1]$$

$$\mathcal{P}' = \{ P'_1, \dots, P'_m \}$$

$$\langle \mathcal{P}', \mathcal{X}', \gamma' \rangle, \gamma' : P'_i \preceq P'_{i+1}$$

$$i \in [1, m-1]$$

current partitions

updating partitions

Hierarchical clustering

Find m partitions of $\mathcal{X}: \mathcal{P} = \{P_1, ..., P_m\}, P_i \leq P_{i+1}, i \in [1, m-1]$

Algorithm

- 1. Assign each s_i to one cluster
- 2. Merge two closest clusters
- 3. Compute distances
- 4. Repeat until all in one cluster

Interactive clustering: remove object

Removing object x_{rm} from all partitions

```
\forall P_i, i \in [1,..,m],
    \forall j \in [1,..,d_i]:
    if x_{r,m} \in C_i^i then
      C_i^i = C_i^i \setminus \{x_{r,m}\},
      if C_i^i = \emptyset, P_i = P_i \setminus \{C_i^i\}
```

Interactive clustering: add object

Denote δ_{max} as the maximum distance in cluster C_i

$$\delta_{\text{max}}(C_i) = \max \{d(x,x')\}, \forall x,x' \in C_i, x \neq x'$$

- 1. Find the closet cluster of x_{add} in P_1 : $C_{close}(x_{add}, P_1)$
- 2. Start from the direct parent of $C_{close}(x_{add}, P_1)$:

$$C_{crt} = C_{close}(x_{add}, P_1).parent$$

- 3. If $(C_{crt} = \emptyset) \vee (d(x_{add}, C_{crt}) < \delta_{max}(C_{crt}))$
 - **3.1.** Merge: $C_{crt} = C_{crt} \cup \{s_a\}$
 - 3.2. Stop
- 4. $C_{crt} = C_{crt}$ parent

Preliminary Results

(method) Dissimilarity representation

E. Olivetti, **T. B. Nguyen**, E. Garyfallidis, *The Approximation of the Dissimilarity Projection*, Pattern Recognition in Neurolmaging, PRNI 2012.

- (software/tool) Spaghetti: an interactive visualization tool for segmentation tractography
 - E. Garyfallidis, S. Gerhard, P. Avesani, **T. B. Nguyen**, V. Tsiaras, I. N. Smith, and E. Olivetti, *A software application for real-time, clustering-based exploration of tractographies*, OHBM 2012.
- (case study) ALS (amyotrophy lateral sclerosis) disease

(dis)Similarity approximation for tractography

FFT: < 1secs, SFF: 2 secs (one iteration)
Tractography of 10³ streamlines

FFT: 15mins, SFF: 2 secs (one iteration)
Tractography of 3x10⁵ streamlines

E. Olivetti, **T. B. Nguyen**, E. Garyfallidis, *The Approximation of the Dissimilarity Projection*, PRNI 2012.

Spaghetti

- Refinement, not support the tract candidate step
- "cluster" recluster, not change partition

E. Garyfallidis, S. Gerhard, P. Avesani, T. B. Nguyen, V. Tsiaras, I. N. Smith, and E. Olivetti, A software application for real-time, clustering-based exploration of tractographies, OHBM 2012.

28

Case study: ALS disease

- Aim: the difference of CST between healthy and ALS (Amyotrophy Lateral Smytrophic) diseased brains
- Based on tractography approach

ALS disease

Cortical spinal tract (CST)

CST segmentation using Sphagetti

Conclusion

- An effective method for tract segmentation: tract candidate (supervised) and tract refinement (clustering)
- An interactive visualization tool for tract segmentation
- ALS case study

Future works

- Implement the modified HAC for tractography
- Revise the solution for 'adding object' to partitions
- Integerate tract candidate (supervised) into Spaghetti

Credits

- Nivedita Agarwal, S.Chiara Trento Hospital, Italy;
 University of Utah, USA
- Eleftherios Garyfallidis, University of Cambridge, UK; University of Sherbrooke, Canada
- Emanuele Olivetti, Fondazione Bruno Kessler, Italy
- Paolo Avesani, Fondazione Bruno Kessler, Italy
- Luigi Cattaneo, CiMeC, University of Trento, Italy
- Francesca Maule, CiMeC, University of Trento, Italy

Thank you!