

01076001 วิศวกรรมคอมพิวเตอร์เบื้องต้น Introduction to Computer Engineering

Arduino #2

Digital Input, Switch, Interrupt

Switch and Pullup Pulldown

$$R_{\text{total}} = R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

SETUP PINMODE

Syntax:

pinMode(pin, mode)

Parameter:

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT or INPUT_PULLUP.

INPUT_PULLUP

I/OPortin AVR microcontrollers

Pull-up Resistor

DIGITAL INPUT PROGRAMMING (ON-OFF)

Syntax:

digitalRead(pin)

Parameter:

pin: the number of the pin whose mode you wish to set

Return:

HIGH: when the logic is HIGH

LOW: when the logic is LOW

Example:

```
// switch input Active Low
#define button 2
#define pressed LOW
void setup()
  Serial.begin (9600);
  pinMode(button,INPUT_PULLUP);
void loop()
  int ReadSwitch = digitalRead(button);
  if(ReadSwitch == pressed)
    Serial.println("Pressed Switch."); delay(500);
```

Activity

- ต่อวงจรโดยใช้ Switch
 - Pull Up
 - Pull Down
 - Internal Pullup
- กดปุ่มไหน ให้ไฟติด (ไม่ต้องกดค้าง)
- กดอีกที่ให้ดับ

Bounce Problem

• ในการกดสวิตซ์ 1 ครั้ง จะมีช่วงเวลาสั้นๆ ที่เกิดสัญญาณคล้ายกับการกดสวิตซ์ หลายครั้ง เนื่องจากหน้าสัมผัส

- การแก้ไข
 - สวิตซ์บางตัวที่มีราคาแพงจะไม่เกิด Bounce
 - แก้ไขโดยวิธีการทางฮาร์ดแวร์
 - แก้ไขโดยวิธีการทางซอฟต์แวร์

Bounce Problem

- Hardware De-bouncing
 - ใช้วงจรฮาร์ดแวร์ในการกำจัดการ Bounce
 - Bounce จาก Button/Switch bounce สามารถลดหรือกำจัดได้โดยใช้ตัว เก็บประจุ และใช้ Schmitt Trigger ในการสร้าง Logic Level

Bounce Problem

- Software De-bouncing
 - ลดผลของ Bounce โดยใช้โปรแกรม โดยไม่ต้องใช้วงจรฮาร์ดแวร์เพิ่มเติม
- Steps:
 - รอการกดคีย์
 - หน่วงเวลา 10 ms (หรือมากกว่า) เพื่อข้ามช่วงเวลาที่เกิดการ Bounce
 - รอการปล่อยคีย์
 - หน่วงเวลา 10 ms


```
int buttonState;
int lastButtonState = LOW;
long lastDebounceTime = 0;
long debounceDelay = 50;
loop(){
  int reading = digitalRead(buttonPin);
  // If the switch changed, due to noise or pressing:
  if (reading != lastButtonState) {
    // reset the debouncing timer
    lastDebounceTime = millis();
  }
  if ((millis() - lastDebounceTime) > debounceDelay) {
    // whatever the reading is at, it's been there for longer
    // than the debounce delay, so take it as the actual current state:
    if (reading != buttonState) {
     buttonState = reading;
  lastButtonState = reading;
```


- คือการขัดจังหวะการทำงานระหว่างที่กำลังทำงานบางอย่างอยู่
- เมื่อถูก Interrupt แล้ว จะต้องมาทำงานที่กำหนดไว้ (เรียกว่า Interrupt Service Routine หรือ ISR) เมื่อเสร็จแล้วจึงจะกลับไปทำงานเดิมต่อ
- 📍 ข้อดีของ Interrupt คือ ไม่ต้อง polling ข้อเสีย คือ debug ยาก


```
#define button 2 // switch input Active Low
#define pressed LOW
void setup()
    Serial.begin(9600);
    pinMode(button,INPUT PULLUP);
}
void loop()
    bool ReadSwitch = digitalRead(button);
    if(ReadSwitch == pressed)
     {
        Serial.println("Pressed Switch.");
        delay(500);
```


Syntax:

attachInterrupt(interrupt, ISR, mode)

Parameter:

interrupt : the number of the interrupt
interrupt -> 0(pin2) , interrupt -> 1(pin3)

ISR: the ISR to call when the interrupt occurs; this function must take no parameters and return nothing. This function is sometimes referred to as an <u>interrupt service routine</u>.

mode: defines when the interrupt should be triggered.

- LOW to trigger the interrupt whenever the pin is low.
- CHANGE to trigger the interrupt whenever the pin changes value.
- RISING to trigger when the pin goes from low to high.
- FALLING for when the pin goes from high to low.


```
#define button 2
#define ledPin 12
void setup()
    pinMode (button, INPUT PULLUP);
    pinMode(ledPin, OUTPUT);
    attachInterrput(0, EXTIO ISR, FALLING);
void loop()
}
void EXTIO ISR()
    digitalWrite(ledPin, !digitalRead(ledPin); // Toggle LED
    delay(150);
```


 จากวงจรใน Slide หน้า 8 ให้ดัดแปลงวงจร และ โปรแกรม โดยให้ใช้ Interrupt กับสวิตซ์ปุ่มที่ ควบคุม LED สีเขียว

การติดต่อระหว่าง Arduino IDE กับบอร์ด

- ในบางครั้งเราต้องการติดต่อระหว่าง Arduino IDE กับ บอร์ด
 - กรณีที่ต้องการส่งค่าจากคีย์บอร์ดไปที่บอร์ด Arduino
 - กรณีที่ต้องการส่งค่าจากบอร์ด Arduino ไปแสดงผล เช่น กรณี debug โดยการ แสดงตัวแปร
 - กรณีต้องการ plot กราฟข้อมูล

การติดต่อระหว่าง Arduino IDE กับบอร์ด

- ใน Arduino IDE จะมีหน้าต่าง Serial Monitor
- Tools -> Serial Monitor
- ช่องด้านบนสำหรับส่งข้อมูลจาก
 PC -> Arduino Board
- หน้าต่างด้านล่างสำหรับแสดงผล ข้อมูลที่ส่งจาก Arduino Board
- Note : ต้องเลือก baud rate
 ให้ตรงกับโปรแกรม
- ข้อควรระวัง : หากเปิด Serial
 Monitor จะ Upload ไม่ได้

Serial Function - Begin

ใช้สำหรับกำหนดว่ามีการใช้งาน Serial และกำหนดค่าความเร็ว (ต้องเท่ากัน)

Syntax:

Serial.begin(speed)

Parameter:

speed: in bits per second(baud)

300, 600, 1200, 2400, 4800, <u>9600</u>, 14400, 19200, 28800, 38400, 57600, or

<u>115200</u>

Serial Function - Begin

สั่งเริ่มต้นการใช้ Serial

Example:

```
void setup()
{
    Serial.begin(9600);
}
```

Serial Function - Print

• สั่งให้บอร์ดส่งข้อมูลไปแสดงผลใน Serial Monitor

Syntax:

```
Serial.print(val)
Serial.print(val, format)
Serial.println(val)
Serial.println(val, format)
```

Parameter:

Serial Function - Print

Example:

- Prints data to the serial port as human-readable ASCII text
 Serial.print(78) gives "78"
 Serial.print(1.23456) gives "1.23"
 Serial.print('N') gives "N"
- An optional second parameter specifies the base (format) to use

Serial.print(78, BIN) gives "1001110" Serial.print(78, OCT) gives "116" Serial.print(78, DEC) gives "78" Serial.print(78, HEX) gives "4E"

Activity

ให้นักศึกษา นำ Switch ต่อกับบอร์ด Arduino ที่ขา 2 รันโปรแกรมและเปิด
 Serial Monitor ดู

```
#define button 2
                         // switch input Active Low
#define pressed LOW
void setup()
  Serial.begin(9600);
 pinMode (button, INPUT PULLUP);
void loop()
  bool ReadSwitch = digitalRead(button);
   if(ReadSwitch == pressed)
      Serial.println("Pressed Switch."); delay(500);
```

Serial Plotter

นอกจากจะแสดงเป็นข้อความแล้ว ยังสามารถแสดงเป็นกราฟได้อีกด้วย

Activity

• ให้นำโปรแกรมต่อไปนี้ไปรัน และดูผลใน Serial Plotter

```
void setup() {
   Serial.begin(9600);
void loop()
  //Sine Wave & Cosine Wave
  float angle=0;
  for (angle=0; angle<=90; angle=angle+0.1)</pre>
    float sina=sin(angle);
    float cosa=cos(angle);
    Serial.print(sina);
    Serial.print(" ");
    Serial.println(cosa);
    delay(1);
```

Activity

• ทดลองสร้างคลื่น Triangle, Saw tooth และ Square

Square wave

Assignment #2

- เขียนโปรแกรม ให้แสดงดังนี้
 - กดปุ่มขวา เขียวติด 3 วินาทีแล้วดับ
 - กดปุ่มซ้าย แดงติด 3 วินาทีแล้วดับ
 - ถ้ากดปุ่มแดงหรือเขียวซ้ำ ให้ดับ
 - แม้จะเขียว แต่ถ้ากดซ้าย แดงต้องติด
 - ถ้าแดงอยู่ กดขวา ไม่มีผล
 - กดปุ่มกลาง เหลืองกระพริบ 2 วินาที (0.5s)
 - ปุ่มกลางจะมีผลเมื่อไฟอื่นไม่ติด
 (ปุ่มกลางมีความสำคัญน้อยที่สุด)

For your attention