Chapter 1

Measure Theory

1.1 Probability Spaces

1.1.1. Let $\Omega = \mathbb{R}$, $\mathcal{F} = all \ subsets \ so \ that \ A \ or \ A^c \ is \ countable, \ P(A) = 0 \ in \ the \ first \ case \ and = 1 \ in \ the \ second.$ Show that (Ω, \mathcal{F}, P) is a probability space.

sol. i) \mathcal{F} is a σ -algebra on \mathbb{R} .

 $\emptyset \in \mathcal{F}$ since \emptyset is countable.

By definition, \mathcal{F} is closed under complementations.

Countable union of countable sets is countable. Union of countable sets and uncountable sets is uncountable. Thus, \mathcal{F} is closed under countable union.

ii) P is a probability measure.

 $P(\emptyset) = 0$ since \emptyset is countable. By definition, for any set $A, P(A) \ge 0$.

Countable union of countable sets is countable. Union of countable sets and uncountable sets is uncountable. Thus, P has the countable additivity property.

If A is countable, then A^c is uncountable since Ω is uncountable. Thus,

$$P(\Omega) = P(A) + P(A^c) = 1$$

П

By (i) and (ii), (Ω, \mathcal{F}, P) is a probability space.

1.1.2. Recall the definition of S_d from Example 1.1.5. Show that $\sigma(S_d) = \mathbb{R}^d$, the Borel subsets of \mathbb{R}^d

sol. i) d = 1. In \mathbb{R} , any open set can be represented by countable union of open intervals. Thus, we need to show that any open interval can be represented by elements of S. Let $-\infty < a < b < \infty$.

$$(a,b) = (-\infty, a]^c \cup (\cup_i (-\infty, b - 1/n])$$

If $a = -\infty$, then (a, b) can be represented by the second term. If $b = \infty$, then (a, b) can be represented by the first term. Thus, $\sigma(S) = \sigma(R) = R$.

ii)
$$d \geq 2$$
. S_d is a finite cartesian product of S . Similarly, $\sigma(S_d) = \sigma(\mathcal{R}_d) = \mathcal{R}_d$.

1.1.3. A σ -field F is said to be countably generated if there is a countable collection $C \subset F$ so that $\sigma(C) = F$. Show that \mathcal{R}^d is countably generated.

sol. Let C be the collection that contains all sets of the form

$$[q_1, \infty) \times \cdots \times [q_d, \infty), (q_1, \ldots, q_d) \in \mathbb{Q}^d$$

Then, C is countable, since it is finite union of countable sets. And $\sigma(C) = \mathbb{R}^d$ as presented by previous exercise.

1.1.4. (i) Show that if $F_1 \subset F_2 \subset ...$ are σ -algebras, then $\cup_i F_i$ is an algebra. (ii) Give an example to show that $\cup_i F_i$ need not be a σ -algebra.

sol.

- (i) By definition, $\cup_i F_i$ is not empty. Choose $x \in \cup_i F_i$. Then, there exists F_x such that $x \in F_x$. Therefore, $x^c \in F_x \subset \cup_i F_i$. Thus, $\cup_i F_i$ is closed under complementations.
 - Choose, $x \in F_i, y \in F_j$ and suppose $i \leq j$. Then $x \in F_j$. Thus, $x \cup y \in F_j \Rightarrow x \cup y \in \bigcup_i F_i$. Thus, $\bigcup_i F_i$ is closed under union.

- (ii) Let $F_i = \sigma(\{\{1\}, \{2\}, \dots, \{n\}\})$. Let $A = \{\{n\} : n = 3k | k = 1, 2, 3, \dots\}$. Then for all $i, A \notin F_i$. Thus, $A \notin \cup_i F_i$. However, A can be represented by countable union. Therefore, $\cup_i F_i$ is not a σ -algebra.
- **1.1.5.** A set $A \subset \{1, 2, ...\}$ is said to have asymptotic density θ if

$$\lim_{n \to \infty} |A \cap \{1, 2, \cdots, n\}| / n = \theta$$

Let A be the collection of sets for which the asymptotic density exists. Is A a σ -algebra? an algebra?

sol. Let A be the set of even numbers. Next, we construct a set B in the following way: we begin with $\{2,3\}$ and starting with k=2, take all even numbers $2^k < n \le (3/2) \times 2^k$, and all odd numbers $(3/2) \times 2^k < n \le 2^{k+1}$. Then, the asymptotic density of B is 0.5. However, the asymptotic density $A \cap B$ does not exists.

When $n = (3/2) \times 2^k$, then the density is 1/3. When $n = 2^{k+1}$, then the density is 1/4. Thus, \mathcal{A} is not closed under intersection. \mathcal{A} is neither σ -algebra nor algebra

1.2 Distributions

1.2.1. Suppose X and Y are random variables on (Ω, \mathcal{F}, P) and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

sol. Let the Borel set B which satisfies that

if
$$\omega \in A$$
, then $Z(\omega) \in B$

For arbitrary Borel set S, $S = (S \cap B) \cup (S \cap B^c)$. Since S is Borel set, $\{\omega : X(\omega) \in S\}$, $\{\omega : Y(\omega) \in S\} \in \mathcal{F}$.

$$\{\omega: Z(\omega) \in S\} = \{\omega: Z(\omega) \in (S \cap B)\} \cup \{\omega: Z(\omega) \in (S \cap B^c)\}$$
$$= \{\omega: X(\omega) \in (S \cap B)\} \cup \{\omega: Y(\omega) \in (S \cap B^c)\}$$

Since \mathcal{F} is closed on set operation, $\{\omega : Z(\omega) \in S\} \in \mathcal{F}$.

1.2.2. Let χ have the standard normal distribution. Use Theorem 1.2.6 to get upper and lower bounds on $P(\chi \geq 4)$.

sol.

$$P(\chi \ge 4) = (2\pi)^{-1} \int_4^\infty \exp(-y^2/2) dy \le (8\pi)^{-1} \exp(-8)$$
$$(2\pi)^{-1} \int_4^\infty \exp(-y^2/2) dy \ge (15/128\pi) \exp(-8)$$

1.2.3. Show that a distribution function has at most countably many discontinuities.

sol. Let D be the set of discontinuity points. Choose $x, y \in D$. Then we can choose rational number $q_x \in (F(x-), F(x+))$. Since F is increasing, if $x \neq y$, then $q_x \neq q_y$. Thus $x \to q_x$ is one-to-one function. Since $\mathbb Q$ is countable, D is at most countable. \square

1.2.4. Show that if $F(x) = P(X \le x)$ is continuous then Y = F(X) has a uniform distribution on (0,1), that is, if $y \in [0,1]$, $P(Y \le y) = y$.

sol.

$$\begin{aligned} \{\omega|Y(\omega) \leq y\} &= \{\omega|F(X(\omega)) \leq y\} \\ &= \{\omega|X(\omega) \leq k\} \quad k = \inf\{x|F(x) \geq y\} \\ P(\{\omega|Y(\omega) \leq y\}) &= P(\{\omega|X(\omega) \leq k\}) \\ &= P(X \leq k) = y \end{aligned}$$

1.2.5. Suppose X has continuous density f, $P(\alpha \leq X \leq \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density $f(g^{-1}(y))/g'(g^{-1}(y))$ for $y \in (g(\alpha), g(\beta))$ and θ otherwise. When g(x) = ax + b with a > 0, $g^{-1}(y) = (y - b)/a$ so the answer is (1/a)f((y - b)/a).

sol. Since g is strictly increasing g^{-1} exists.

$$P(g(X) \le y) = P(X \le g^{-1}(y)) = \int_{\alpha}^{g^{-1}(y)} f(x)dx$$
$$\frac{d}{dy}P(g(X) \le y) = f(g^{-1}(y))\frac{d}{dy}g^{-1}(y) = f(g^{-1}(y))/g'(g^{-1}(y))$$

1.2.6. Suppose X has a normal distribution. Use the previous exercise to compute the density of $\exp(X)$.

sol. Let $g(x) = \exp(x)$. Then $g^{-1}(x) = \log(x)$

$$f(g^{-1}(x))/g'(g^{-1}(x)) = f(\log(x))/\exp(\log(x))$$
$$= f(\log(x))/x = \frac{1}{x\sqrt{2\pi}}\exp(-\log(x)^2/2), \ x > 0$$

1.3 Random Variables

1.3.1. Show that if A generates S, then $X^{-1}(A) \equiv \{\{X \in A\} : A \in A\}$ generates $\sigma(X) = \{\{X \in B\} : B \in S\}$.

sol. By assumption, $A \subset S$. Thus, $X^{-1}(A) \subset X^{-1}(S)$. Therefore, $\sigma(X^{-1}(A)) \subset \sigma(X^{-1}(S)) = \sigma(X)$. Choose a set $B \in S$. Since A generates S, B can be represented by sets of A. Thus, $\{X \in B\} \in X^{-1}(A)$. Therefore, $\sigma(X) \in X^{-1}(A)$.

1.3.2. Prove Theorem 1.3.6 when n = 2 by checking $\{X_1 + X_2 < x\} \in \mathcal{F}$.

sol.

$$\{X_1 + X_2 < x\} = \bigcup_{q \in \mathbb{Q}} \{X_1 < q\} \times \{X_2 < x - q\}$$

Both $\{X_1 < q\}$ and $\{X_2 < x - q\}$ are open sets. Thus, $\{X_1 + X_2 < x\} \in \mathbb{R}^2$ since it is represented by countable union.

1.3.3. Show that if f is continuous and $X_n \to X$ almost surely then $f(X_n) \to f(X)$ almost surely.

sol. Let
$$\Omega_0 = \{\omega : \lim X_n(\omega) = X(\omega)\}$$
 and $\Omega_f = \{\omega : \lim f(X_n(\omega)) = f(X(\omega))\}.$

$$\omega \in \Omega_0 \Rightarrow \lim X_n(\omega) = X(\omega)$$

$$\Rightarrow \lim f(X_n(\omega)) = f(X(\omega)) \quad \therefore f \text{ is continuous}$$

$$\Rightarrow \omega \in \Omega_f$$

$$\Rightarrow 1 = P(\Omega_0) \le P(\Omega_f) \le 1$$

1.3.4. (i) Show that a continuous function from $\mathbb{R}^d \to \mathbb{R}$ is a measurable map from $(\mathbb{R}^d, \mathbb{R}^d)$ to (\mathbb{R}, \mathbb{R}) . (ii) Show that \mathbb{R}^d is the smallest σ -field that makes all the continuous functions measurable. sol.

- (i) \mathcal{R} is σ -field which is generated by all open sets. If f is continuous mapping and image is open, then inverse-image is also open. Thus, f is a measurable map.
- (ii) Let S be the smallest σ -field that makes all the continuous functions measurable. Since R is the smallest σ -field which is generated by all open sets, S is generated by all open sets in \mathbb{R}^d .

1.3.5. A function f is said to be lower semicontinuous or l.s.c. if

$$\liminf_{y \to x} f(y) \ge f(x)$$

and upper semicontinuous (u.s.c.) if -f is l.s.c.. Show that f is l.s.c. if and only if $\{x: f(x) \leq a\}$ is closed for each $a \in \mathbb{R}$ and conclude that semicontinuous functions are measurable.

sol. Define $E_a := \{x : f(x) \le a\}$

if Choose x. Let $a = \liminf_{y \to x} f(y)$. Then, by definition, $a \le f(x)$. There is the sequence $\{x_n\}$ such that $x_n \to x, f(x_n) \to a$ as $n \to \infty$ For any b > a, there exists N_b such that for all $n > N_b$, $x_n \in E_b$. Since E_b is closed, the limit point $x \in E_b$ for all b > a. Thus, $x \in E_a$. Since $f(x) \ge a$ and $f(x) \le a$, $f(x) = a = \liminf_{y \to x} f(y)$.

only if Construct a sequence $\{x_n\}$ in E_a which converges to x. Since f is l.s.c

$$f(x) \le \liminf_{y \to x} f(y) \le a$$

Thus, $x \in E_a$. Since an arbitrary limit point is in E_a , E_a is closed.

1.4 Integration

1.4.1. Show that if $f \ge 0$ and $\int f d\mu = 0$ then f = 0 a.e.

sol. Let N be the set that satisfies $x \in N \Rightarrow f(x) = 0$.

$$\int f d\mu = \int_{N} f d\mu + \int_{N^{c}} f d\mu$$
$$= \int_{N^{c}} f d\mu = 0$$
$$\Rightarrow \mu(N^{c}) = 0$$

1.4.2. Let $f \ge 0$ and $E_{n,m} = \{x : m/2^n \le f(x) < (m+1)/2^n\}$. As $n \uparrow \infty$,

$$\sum_{m=1}^{\infty} \frac{m}{2^n} \mu(E_{n,m}) \uparrow \int f d\mu$$

sol. Let $f_n = \sum_{m=1}^{\infty} 1_{E_{n,m}}$. Then, for any n, $f_n < f$. Thus, $\int f d\mu$ is an upper bound of $\int f_n d\mu$. Since $\int f_n d\mu$ is increasing and bounded, it converges. By definition,

$$\int f - f_n d\mu \le \int 1/2^n d\mu \to 0 \text{ as } n \to \infty$$

Thus, $\int f_n d\mu$ converges to $\int f d\mu$

1.4.3. Let g be an integrable function on \mathbb{R} and $\epsilon > 0$. (i) Use the definition of the integral to conclude there is a simple function $\varphi = \sum_k b_k 1_{A_k}$ with $\int |g - \varphi| dx < \epsilon$. (ii) Use Exercise A.2.1 to approximate the A_k by finite unions of intervals to get a step function

$$q = \sum_{j=1}^{k} c_j 1_{(a_{j-1}, a_j)}$$

with $a_0 < a_1 < \cdots < a_k$, so that $\int |\varphi - q| < \epsilon$. (iii) Round the corners of q to get a continuous function r so that $\int |q - r| dx < epsilon$. (iv) To make a continuous function replace each $c_j 1_{(a_{j-1}, a_j)}$ by a function that is 0 $(a_{j-1}, a_j)^c$, c_j on $[a_{j-1} + \delta - j, a_j - \delta_j]$, and linear otherwise. If the δ_j are small enough and we let $r(x) = \sum_{j=1}^k r_j(x)$ then

$$\int |q(x) - r(x)| d\mu = \sum_{j=1}^{k} \delta_j c_j < \epsilon$$

1.4.4. Prove the Rimann-Lebesgue lemma. If g is integrable then

$$\lim_{n \to \infty} \int g(x) \cos nx dx = 0$$

sol. Let ϵ be an arbitrary positive number. We can find a step function φ such that $\int |g - \varphi| dx < \epsilon/2$.

$$\int \varphi(x)\cos(nx)dx = \sum_{i=1}^{m} c_i \int_{a_i}^{b_i} \cos(nx)dx$$
$$= \sum_{i=1}^{m} c_i / n \int_{na_i}^{nb_i} \cos(y)dy$$
$$= \sum_{i=1}^{m} c_i / n(\sin(nb_i) - \sin(na_i)) \to 0$$

Thus, we can choose N which satisfies that for all $m \ge N$, $\int |\varphi(x) \cos(nx)| dx < \epsilon/2$. Then,

$$\begin{split} |\int g(x)\cos(nx)dx| &\leq \int |g(x)\cos(nx)|dx \\ &\leq \int |g(x)-\varphi(x)||\cos(nx)|dx + \int |\varphi(x)\cos(nx)|dx \\ &\leq \epsilon/2 + \epsilon/2 = \epsilon \end{split}$$

Since ϵ is arbitrary, it converges to 0.

1.5 Properties of the integral

1.5.1. Let $||f||_{\infty} = \inf\{M : \mu(\{x : |f(x)| > M\}) = 0\}$. Prove that

$$\int |fg|d\mu \le ||f||_1 ||g||_{\infty}$$

sol. By definition, $g \leq ||g||_{\infty}$ a.e.. Thus,

$$\int |fg| d\mu \le \int |f| \|g\|_{\infty} d\mu = \|g\|_{\infty} \int |f| d\mu = \|f\|_{1} \|g\|_{\infty}$$

1.5.2. Show that if μ is a probability measure then

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$

5

sol. Since μ is a probability measure, $\mu(\Omega) = 1$. Suppose two positive numbers, n < m. Let $\varphi(x) := x^{m/n}$ By Jensen's inequality,

$$||f||_n^m = \varphi(\int |f|^n d\mu) \le \int \varphi(|f|^n) d\mu = ||f||_m^m$$

Thus, $\{||f||_n\}$ is an increasing sequence.

$$||f||_n^n = \int |f|^n d\mu \le \int (||f||_\infty^n) d\mu = ||f||_\infty^n$$

Thus, $||f||_{\infty}$ is an upper bound. Therefore, the sequence converges and $\lim_{p\to\infty} ||f||_p \le ||f||_{\infty}$.

Let ϵ be the arbitrary number between 0 and $||f||_{\infty}$. Then, there exist a set M such that $|f| > ||f||_{\infty} - \epsilon$ for all $x \in M$.

$$\int |f|^p d\mu \ge \int_M |f|^p d\mu \ge (\|f\|_{\infty} - \epsilon)^p \mu(M)$$

$$\Rightarrow \|f\|_p \ge (\|f\|_{\infty} - \epsilon) \mu(M)^{1/p}$$

$$\Rightarrow \lim_{p \to \infty} \|f\|_p \ge \|f\|_{\infty} - \epsilon$$

$$\Rightarrow \lim_{p \to \infty} \|f\|_p \ge \|f\|$$

Thus, the sequences converges to $||f||_{\infty}$.

1.5.3 (Minkowski's inequality). (i) Suppose $p \in (1, \infty)$. The inequality $|f + g|^p \le 2^p (|f|^p + |g|^p)$ shows that if $||f||^p$ and $||g||^p$ are $< \infty$ then $||f + g||_p < \infty$. Apply Holder's inequality to $|f||f + g|^{p-1}$ and $||g||f + g|^{p-1}$ to show $||f + g||_p \le ||f||_p + ||g||_p$ (ii) Show that the last result remains true when p = 1 or $p = \infty$

sol.

(i) By Holder's inequality,

$$\int |f||f+g|^{p-1}d\mu \le ||f||_p ||(f+g)^{p-1}||_{p/(p-1)}$$

$$= (\int |f|^p d\mu)^{1/p} (\int |f+g|^p d\mu)^{(p-1)/p}$$
Similarly,
$$\int |g||f+g|^{p-1}d\mu \le (\int |g|^p d\mu)^{1/p} (\int |f+g|^p d\mu)^{(p-1)/p}$$

$$\int |f+g|^p d\mu = \int (|f|+|g|)|f+g|^{p-1}d\mu \le (||f||_p + ||g||_p)||f+g||_p^{p-1}$$

$$\Rightarrow ||f+g||_p \le (||f||_p + ||g||_p)$$

(ii) When p = 1, it is trivial.

Let the set $E = \{M : \mu(\{x : |f(x) + g(x)| > M\}) = 0\}$. By triangle inequality,

$$|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty} \ a.e.$$

Thus,

$$\mu(\{x: |f(x) + g(x)| > ||f||_{\infty} + ||g||_{\infty}\}) = 0$$

Since $||f||_{\infty} + ||g||_{\infty} \in E$, $||f||_{\infty} + ||g||_{\infty} \ge \inf E = ||f + g||_{\infty}$

1.5.4. If f is integrable and E_m are disjoint sets with union E then

$$\sum_{m=0}^{\infty} \int_{E_m} f d\mu = \int_{E} f d\mu$$

So if $f \ge 0$, then $\nu(E) = \int_E f d\mu$ defines a measure.

sol. If $E = \emptyset$, $\mu(E) = 0$. Since $f \ge 0$, for any set E, $\nu(E) \ge \nu(\emptyset) = 0$. If E_i are disjoint sets, then

$$\mu(\cup_i E_i) = \int_{\cup_i E_i} f d\mu = \sum_i \int_{E_i} f d\mu = \sum_i \nu(E_i)$$

Thus, ν is a measure.

1.5.5. If $g_n \uparrow g$ and $\int g_1^- d\mu < \infty$ then $\int g_n d\mu \uparrow \int g d\mu$.

sol. Since $g_n = g_n^+ - g_n^-$ and $g_n \uparrow g$, $g_n^+ \uparrow g^+$ and $g_n^- \downarrow g^-$. By monotone convergence theorem, $\int g_n^+ d\mu \uparrow \int g^+ d\mu$. Since g_1^- is integrable, by dominated convergence theorem, $\int g_n^- d\mu \to \int g^- d\mu$. Thus, $-\int g_n^- d\mu \uparrow -\int g^- d\mu$.

$$\therefore \int g_n d\mu = \int g_n^+ - g_n^- d\mu \uparrow \int g d\mu$$

1.5.6. If $g_m \ge 0$ then $\int \sum_{m=0}^{\infty} g_m d\mu = \sum_{m=0}^{\infty} \int g_m d\mu$.

sol. Define $f_n := \sum_{m=0}^n g_m$ and $f := \sum_{m=0}^\infty g_m$. Then $f_n \uparrow f$. By result of using previous example, $\int f_n d\mu \uparrow \int f d\mu$. Thus,

$$\int \sum_{m=0}^{\infty} g_m d\mu = \int \lim_{n \to \infty} f_n d\mu$$
$$= \int f d\mu$$
$$= \int \sum_{m=0}^{\infty} g_m d\mu$$

1.5.7. Let $f \geq 0$. (i) Show that $\int f \wedge n \ d\mu \uparrow \int f d\mu$ as $n \to \infty$. (ii) Use (i) to conclude that if g is integrable and $\epsilon > 0$ then we can pick $\delta > 0$ so that $\mu(A) < \delta$ implies $\int_A |g| d\mu < \epsilon$. sol.

(i) Define $E_n := \{x : f(x) > n\}$. Then, for $n \le m$

$$f \wedge m - f \wedge n = (f - n)1_{E_n \cap E_m^c} + (m - n)1_{E_m} \ge 0$$

$$\lim_{n \to \infty} f \wedge n = f$$

By definition $f_n \geq 0$. Thus, by monotone convergence theorem, $\int f \wedge n \ d\mu \uparrow \int f d\mu$.

(ii) By results of (i), we can find the positive N for any positive $\epsilon/2$, $\mu(\{x:|g(x)|>N\})<\epsilon$.

$$\int_{A} |g| d\mu \le \int_{\{x:|g(x)| > N\}} |g| d\mu + \int_{\{x \in A:|g(x)| \le N\}} |g| d\mu$$

$$\le \epsilon/2 + N\mu(A)$$

Thus, if we set $\delta := \epsilon/(2N)$, then $\mu(A) < \delta$ implies $\int_A |g| d\mu < \epsilon$.

1.5.8. Show that if f is integrable on [a, b], $g(x) = \int_{[a, x]} f(y) dy$ is continuous on (a, b).

sol. Since f is integrable, there exists a positive number M such that |f| < M. For $s, t \in (a, b), s \le t$

$$-M(t-s) < g(t) - g(s) = \int_{s}^{t} f(y)dy < M(t-s)$$
$$\Rightarrow |g(t) - g(s)| < M(t-s)$$

Thus, g is Lipschitz continuous. Thus, g is continuous.

1.5.9. Show that if f has $||f||_p = (\int |f|^p d\mu)^{1/p} < \infty$, then there are simple functions φ_n so that $||\varphi_n - f||_p \to 0$.

sol. For f, we can construct sequence of step functions $\{\varphi_n\}$ such that $\varphi_n \uparrow |f|$. By triangle inequality, $|f - \varphi_n| \leq |f| + |\varphi_n|$. Thus, for all n

$$|f - \varphi_n|^p \le (|f| + |\varphi_n|)^p \le (2|f|)^p$$

By dominated convergence theorem,

$$\lim_{n \to \infty} \int |f - \varphi_n|^p = \int \lim_{n \to \infty} |f - \varphi_n|^p = 0$$

$$\Rightarrow ||f - \varphi_n||_p = 0$$

1.5.10. Show that if $\sum_{n} \int |f_n| d\mu < \infty$, then $\sum_{n} \int f_n d\mu = \int \sum_{n} f_n d\mu$. sol.

$$\sum_{n} \int |f_{n}| d\mu = \sum_{n} \int f_{n}^{+} d\mu + \sum_{n} \int f_{n}^{-} d\mu$$

$$\Rightarrow \sum_{n} \int f_{n}^{+} d\mu < \infty, \sum_{n} \int f_{n}^{-} d\mu < \infty$$

By the result of (1.5.6),

$$\sum_{n} \int f_{n}^{+} d\mu = \int \sum_{n} f_{n}^{+} d\mu$$

$$\sum_{n} \int f_{n}^{-} d\mu = \int \sum_{n} f_{n}^{-} d\mu$$

$$\sum_{n} \int f_{n} d\mu = \sum_{n} \int f_{n}^{+} - f_{n}^{-} d\mu$$

$$= \int \sum_{n} f_{n}^{+} d\mu - \int \sum_{n} f_{n}^{-} d\mu$$

$$= \int \sum_{n} f_{n} d\mu$$

1.6 Expected Value

1.6.1. Suppose φ is strictly convex, i.e., > holds for $\lambda \in (0,1)$. Show that, under the assumptions of Theorem 1.6.2, $\varphi(EX) = E(\varphi X)$ implies X = EX a.s.

sol. Let t = EX. Since φ is strictly convex, we can find a which satisfies, for all x, $\varphi(x) \ge \varphi(t) + a(x-t)$. Thus $E\varphi(X) \ge \varphi(t) + E[a(X-t)] = \varphi(EX)$. If we add assumption $\varphi(EX) = E(\varphi X)$, then we can conclude a(X-t) = 0 a.e. Thus, X = t = EX a.e.

1.6.2. Suppose $\varphi: \mathbb{R}^n \to \mathbb{R}$ is convex. Imitate the proof of Theorem 1.5.1 to show

$$E\varphi(X_1,...,X_n) > \varphi(EX_1,...,EX_n)$$

provided $E|E\varphi(X_1,...,X_n)| < \infty$ and $E|X_i| < \infty$ for all i.

1.6.3 (Chebyshev's inequality is and is not sharp). (i) Show that Theorem 1.6.4 is sharp by showing that if $0 < b \le a$ are fixed there is an X with $EX^2 = b^2$ for which $P(|X| \ge a) = b^2/a^2$. (ii) Show that Theorem 1.6.4 is not sharp by showing that if X has $0 < EX^2 < \infty$ then

$$\lim_{a \to \infty} a^2 P(|X| \ge a) / EX^2 = 0$$

1.6.4 (One-sided Chebyshev bound). (i) Let a > b > 0, 0 , and let <math>X have P(X = a) = p and P(X = -b) = 1 - p. Apply Theorem 1.6.4 to $\varphi(x) = (x + b)^2$ and conclude that if Y is any random variable with EY = EX and Var(Y) = Var(X), then $P(Y \ge a) \le p$ and equality holds when Y = X. (ii) Suppose EY = 0, $Var(Y) = \sigma^2$, and a > 0. Show that $P(Y \ge a) \le \sigma^2/(a^2 + \sigma^2)$, and there is a Y for which equality holds.

1.6.5 (Two nonexistent lower bounds). Show that : (i) if $\epsilon > 0$, $\inf\{P(|X| > \epsilon) : EX = 0, Var(X) = 1\} = 0$. (ii) if $y \ge 1, \sigma^2 \in (0, \infty)$, $\inf\{P(|X| > y) : EX = 1, Var(X) = \sigma^2\} = 0$

sol. (i)

$$P(|X| > \epsilon) \le E(|X|)/\epsilon$$

1.6.6 (A useful lower bound). Let $Y \ge 0$ with $EY^2 < \infty$. Apply the Cauchy-Schwarz inequality to $Y1_{Y>0}$ and conclude

$$P(Y > 0) \ge (EY)^2 / EY^2$$

sol.

$$\begin{split} E[Y1_{Y>0}] & \leq \sqrt{EY^2E[1_{Y>0}]} \\ EY - 0 \cdot P(Y=0) & \leq \sqrt{EY^2P(Y>0)} \\ (EY)^2 & \leq EY^2P(Y>0) \\ P(Y>0) & \geq (EY)^2/EY^2 \end{split}$$

1.6.7. Let $\Omega = (0,1)$ equipped with the Borel sets and Lebesgue measure. Let $\alpha \in (1,2)$ and $X_n = n^{\alpha} 1_{(1/(n+1),1/n)} \to 0$ a.s. Show that Theorem 1.6.8 can be applied with h(x) = x and $g(x) = |x|^{2/\alpha}$, but the X_n are not dominated by an integrable function.

sol.

- 1. $g \ge 0$, $\therefore 2/\alpha > 1$, $g(x) \to \infty$ as $|x| \to \infty$
- 2. $|h(x)|/g(x) = |x|^{(\alpha-2)/2}$, $\therefore (\alpha-2) < 1$, $|h(x)|/g(x) \to 0$ as $|x| \to \infty$.
- 3. $Eg_n(X) = n^2 \int 1_{(1/n+1,1/n)} d\mu = n/(n+1) < 1.$

Thus, $Eh(X_n) \to Eh(X)$. However, there is no integrable function which dominates X_n because there is no upper bound for $\sup_n |X_n|$.

1.6.8. Suppose that the probability measure μ has $\mu(A) = \int_A f(x)dx$ for all $A \in \mathcal{R}$. Use the proof technique of Theorem 1.6.9 to show that for any g with $g \geq 0$ or $\int |g(x)|\mu(dx) < \infty$ we have

$$\int g(x)\mu(dx) = \int g(x)f(x)dx$$

sol.

1. Indicator function

Let $g = c1_A$. Then,

$$\int g(x)\mu(dx) = \int_A c\mu(dx) = c\mu(A) = \int_A cf(x)dx = \int g(x)f(x)dx$$

2. Simple function

Let $g = \sum_{i=1}^{n} c_i 1_{A_i}$. Then, by case 1,

$$\int g(x)\mu(dx) = \sum_{i=1}^{n} c_i \mu(A_i) = \int g(x)f(x)dx$$

3. Nonnegative function

There is a sequence of simple functions $\{g_n\}$ which satisfies that $g_n \uparrow g$. By monotone convergence theorem,

$$\int g(x)\mu(dx) = \lim_{n \to \infty} \int g_n(x)\mu(dx) = \lim_{n \to \infty} \int g_n(x)f(x)dx = \int g(x)f(x)dx$$

The proof ends if $g \geq 0$.

4. Integrable function (g is integrable)

Let $g = g^+ - g^-$. Then

$$\int g^{+}(x)\mu(dx) = \int g^{+}(x)f(x)dx, \int g^{-}(x)\mu(dx) = \int g^{-}(x)f(x)dx$$

$$\Rightarrow \int g(x)\mu(dx) = \int g^{+}(x)\mu(dx) - \int g^{-}(x)\mu(dx)$$

$$= \int g^{+}(x)f(x)dx - \int g^{-}(x)f(x)dx = \int g(x)f(x)dx$$

1.6.9 (Inclusion-exclusion formula). Let $A_1, A_2, ..., A_n$ be events and $A = \bigcup_{i=1}^n A_i$. Prove that $1_A = 1 - \prod_{i=1}^n (1 - 1_{A_i})$. Expand out the right hand side, then take expected value to conclude

$$P(\cup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j)$$

+
$$\sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(\cap_{i=1}^{n} A_i)$$

sol.

$$\omega \in A \Leftrightarrow \omega \in \bigcup_{i=1}^{n} A_i \Leftrightarrow \omega \notin \bigcap_{i=1}^{n} A_i^C$$
$$\Rightarrow 1_A(\omega) = 1 - \prod_{i=1}^{n} (1 - 1_{A_i}(\omega))$$

1.6.10.

1.6.11. If $E|X|^k < \infty$ then for 0 < j < k, $E|X|^j < \infty$, and furthermore

$$E|X|^j \le (E|X|^k)^{j/k}$$

sol. Define $\varphi(x) = x^{k/j}$. Then φ is a convex function. By Jensen's inequality

$$(E|X|^{j})^{k/j} = \varphi(E|X|^{j}) \le E\varphi(|X|^{j}) = E|X|^{k}$$

$$\Rightarrow E|X|^{j} \le (E|X|^{k})^{j/k}$$

1.6.12. Apply Jensen's inequality with $\varphi(x) = e^x$ and $P(X = \log y_m) = p(m)$ to conclude that if $\sum_{m=1}^n p(m) = 1$ and $p(m), y_m > 0$ then

$$\sum_{m=1}^{n} p(m) y_m \ge \prod_{m=1}^{n} y_m^{p(m)}$$

When p(m) = 1/n, this says the arithmetic mean exceeds the geometric mean.

sol.

$$E\varphi(X) = \sum_{n=1}^{m} p(m) \exp(\log y_m) = \sum_{n=1}^{m} p(m) y_m$$
$$\varphi(EX) = \exp(\sum_{n=1}^{m} p(m) \log y_m) = \prod_{n=1}^{m} y_m^{p(m)}$$

By Jensen's inequality,

$$\sum_{m=1}^{n} p(m)y_m = E\varphi(X) \ge \varphi(EX) = \prod_{m=1}^{n} y_m^{p(m)}$$

If p(m) = 1/n, the left hand becomes arithmetic mean and the right hand becomes geometric mean.

1.6.13. If $EX_1^- < \infty$ and $X_n \uparrow X$ then $EX_n \uparrow EX$.

sol. Same with Exercise 1.5.5. We use the probability measure in this exercise.

1.6.14. Let $X \geq 0$ but do NOT assume $E(1/X) < \infty$. Show

$$\lim_{y\to\infty} y E(1/X;X>y) = 0, \quad \lim_{y\downarrow 0} y E(1/X;X>y) = 0$$

sol.

$$\begin{split} 0 & \leq y E(1/X; X > y) = \int_{\{\omega: X(\omega) > y\}} y/X d\mu \\ & \leq \int_{\{\omega: X(\omega) > y\}} 1 d\mu \\ & = \mu(\{\omega: X(\omega) > y\}) \\ \Rightarrow \lim_{y \to \infty} y E(1/X; X > y) & \leq \lim_{y \to \infty} \mu(\{\omega: X(\omega) > y\}) = 0 \end{split}$$

1.6.15. If $X_n \ge 0$ then $E(\sum_{n=0}^{\infty} X_n) = \sum_{n=0}^{\infty} EX_n$.

sol. Same with Exercise 1.5.10. We use the probability measure in this exercise. \Box

1.6.16. If X is integrable and A_n are disjoint sets with union A then

$$\sum_{n=0}^{\infty} E(X; A_n) = E(X; A)$$

i.e., the sum converges absolutely and has the value on the right.

sol. Define $Y_n := \sum_{i=0}^n X 1_{A_i}$ and $Y := X 1_A$. Then, $Y_n \to Y$ and $|Y| \le |X|$. Since X is integrable, Y is also integrable. For any $\omega \in \bigcup_{i=0}^n A_i$, $Y_n(\omega) = Y(\omega)$. Thus, $|Y_n| \le |Y|$. By dominated convergence theorem,

$$\lim_{n\to\infty} EY_n \to EY$$

$$\lim_{n \to \infty} EY_n = \lim_{n \to \infty} E(X; A_n)$$
$$EY = E(X; A)$$

1.7 Product Measures, Fubini's Theorem

1.7.1. If $\int_X \int_Y |f(x,y)| \mu_2(dy) \mu_1(dx) < \infty$ then

$$\int_{X} \int_{Y} |f(x,y)| \mu_{2}(dy) \mu_{1}(dx) = \int_{X \times Y} f d(\mu_{1} \times \mu_{2}) = \int_{Y} \int_{X} |f(x,y)| \mu_{1}(dx) \mu_{2}(dy)$$

Corollary. Let $X = \{1, 2, ...\}$, $A = all \ subsets \ of \ X$, and $\mu_1 = counting \ measure$. If $\sum_n \int |f_n| d\mu < \infty$ then $\sum_n \int f_n d\mu = \int \sum_n f_n d\mu$.

1.7.2. Let $g \ge 0$ be a measurable function on (X, \mathcal{A}, μ) . Use Theorem 1.7.2 to conclude that

$$\int_X g d\mu = (\mu \times \lambda)(\{(x,y) : 0 \le y < g(x)\}) = \int_0^\infty \mu(\{x : g(x) > y\}) dy$$

$$\begin{split} \int_X g d\mu &= \int_X \int_{\mathbb{R}} \mathbf{1}_{0 \leq y < g(x)} dy d\mu \\ &= (\mu \times \lambda) (\{(x,y) : 0 \leq y < g(x)\} \\ &= \int_{\mathbb{R}} \int_X \mathbf{1}_{g(x) > y \geq 0} d\mu dy \\ &= \int_{\mathbb{R}} \mu (\{x : g(x) > y \geq 0\}) dy \\ &= \int_0^\infty \mu (\{x : g(x) > y\}) dy \end{split}$$

- **1.7.3.** Let F, G be Stieltjes measure functions and let μ, ν be the corresponding measures on $(\mathbb{R}, \mathcal{R})$. Show that
- **1.7.4.** Let μ be a finite measure on \mathbb{R} and $F(X) = \mu((-\infty, x])$. Show that

$$\int (F(x+c) - F(x))dx = c\mu(\mathbb{R})$$

sol.

$$\int (F(x+c) - F(x))dx = \int \mu((x,x+c])dx$$

$$= \int \int 1_{(x,x+c]}(y)d\mu dx$$

$$= \int \int 1_{[y-c,y)}(x)dxd\mu$$

$$= \int cd\mu = c\mu(\mathbb{R})$$

1.7.5. Show that $e^{-xy} \sin x$ is integrable in the strip 0 < x < a, 0 < y. Perform the double integral in the two orders to get:

$$\int_0^a \frac{\sin x}{x} dx = \arctan(a) - (\cos a) \int_0^\infty \frac{e^{-ay}}{1 + y^2} dy - (\sin a) \int_0^\infty \frac{y e^{-ay}}{1 + y^2} dy$$

and replace $1 + y^2$ by 1 to conclude $\left| \int_0^a (\sin x)/x dx - \arctan(a) \right| \le 2/a$ for $a \ge 1$.