Cómputo Evolutivo

Tarea III

Arturo Márquez Flores

Maestría en Inteligencia Artificial Universidad Veracruzana CIIA – Centro de Investigación en Inteligencia Artificial Sebastián Camacho No 5, Xalapa, Ver., México 91000 arturomf94@gmail.com

https://github.com/arturomf94/ce-mia

14 de abril del 2019

En este documento se reportan los resultados de la implementación de dos algoritmos genéticos para la minimización de dos funciones diferentes, ilustradas en el Apéndice E. Para ambos algoritmos, los parámetros fueron fijados de la siguiente manera: tamaño de población = 300, número de generaciones = 500, probabilidad de cruza = 0.5 y probabilidad de mutación = 0.1. En el caso del segundo algoritmo además se utilizó una probabilidad de ganar el torneo probabilístico en 0.7. Las tablas de los Apéndices A-D muestran los resultados de 30 ejecuciones independientes de los algoritmos aplicados a los dos diferentes problemas. Por otro lado, la siguiente tabla resume los resultados del segundo inciso de la tarea. Por último, tenemos en el Apéndice G las gráficas de convergencia de ambos problemas.

Toda esta evidencia apunta a lo obvio. El primer problema es evidentemente más fácil de resolver para cualquier algoritmo que el segundo, pues en el primero el único mínimo local es también global. En cambio, en el segundo, existen mínimos locales que no son globales. Esto afecta la convergencia, como se muestra en el Apéndice G. Esta dificultad se muestra notoriamente cuando se utiliza el primer algoritmo. Lo más probable es que esto se deba al hecho de que el primer algoritmo, a diferencia del segundo, utiliza una representación binaria que no es *natural* para el tipo de problema a resolver. Esto muestra la potencia de la representación real.

Problema		Técnicas Con	nparadas
Tiobienia	Estadística	Algoritmo I	Algoritmo II
	Max	0.182	0.000
Problema I	Media	0.073	0.000
	Mediana	0.057	0.000
	Min	0.020	0.000
	Des. Est.	0.042	0.000
	Max	22.721	1.990
	Media	13.616	0.135
Problema II	Mediana	12.507	0.001
	Min	7.438	0.000
	Des. Est	4.093	0.424

Por otro lado, aunque quiźa menos importante, el segundo algoritmo utiliza SBX como método de cruza, que es el método más popular y hereda propiedades importantes y deseables de la cruza binaria. Cabe resaltar que tras hacer una prueba estadística de Wilcoxon Rank Sum se obtuvo un coeficiente de 6.652 con un valor p de 2.8719490663203234e-11, por lo cual rechazamos la hipótesis nula de la prueba.

Apéndice A

Ejecucion	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10	f(x)
0	0.033	0.103	0.044	-0.124	-0.014	-0.015	-0.075	0.089	-0.042	-0.123	0.060
1	-0.002	-0.031	-0.129	0.108	0.012	0.005	0.000	-0.024	0.084	0.028	0.038
2	0.005	-0.001	0.096	0.067	0.041	0.130	-0.009	0.002	0.038	0.111	0.046
3	0.047	-0.063	-0.050	-0.066	-0.259	-0.012	-0.027	0.033	-0.005	0.052	0.085
4	-0.015	0.086	0.001	-0.078	-0.023	0.063	0.034	-0.320	0.002	0.049	0.124
5	-0.067	-0.087	-0.144	-0.014	-0.151	-0.035	0.142	-0.014	-0.070	-0.317	0.183
6	-0.058	-0.029	-0.058	-0.094	-0.061	0.014	-0.006	-0.069	0.022	-0.042	0.027
7	-0.001	-0.021	0.075	-0.049	0.024	0.043	0.036	0.003	0.077	0.066	0.023
8	0.070	-0.066	0.092	-0.076	-0.081	-0.046	0.017	0.060	0.006	0.093	0.045
9	0.047	-0.165	0.009	-0.027	0.002	0.084	-0.021	-0.022	-0.075	0.099	0.054
10	0.130	-0.047	0.080	0.218	-0.167	0.002	-0.027	0.131	0.013	-0.018	0.119
11	0.100	-0.114	-0.179	0.051	-0.157	-0.017	-0.044	0.072	0.136	-0.014	0.108
12	-0.135	-0.013	-0.080	0.004	-0.048	0.122	-0.051	-0.007	0.020	-0.078	0.051
13	-0.056	-0.178	0.002	0.016	0.022	0.008	-0.089	0.016	0.080	-0.013	0.050
14	-0.090	0.072	0.027	0.001	-0.056	-0.092	-0.003	-0.082	-0.008	-0.011	0.033
15	0.160	0.055	-0.059	-0.027	-0.006	-0.012	-0.072	0.080	-0.053	-0.021	0.048
16	0.119	0.009	0.009	0.033	0.085	0.061	-0.035	0.127	0.061	0.179	0.079
17	0.042	-0.029	-0.179	-0.025	-0.001	-0.005	0.003	-0.049	0.043	0.083	0.046
18	-0.051	-0.086	-0.114	-0.031	0.251	0.079	0.006	0.065	-0.008	0.064	0.102
19	-0.105	0.019	-0.063	-0.028	-0.086	-0.001	-0.101	0.043	-0.009	0.019	0.036
20	-0.045	0.008	-0.027	-0.008	-0.008	-0.113	0.020	0.011	-0.196	0.011	0.055
21	-0.078	-0.080	-0.177	0.090	0.042	-0.069	0.063	-0.110	0.051	0.030	0.078
22	0.162	0.047	-0.005	-0.075	0.009	-0.014	-0.169	0.132	0.049	-0.013	0.083
23	-0.090	-0.013	-0.016	-0.123	0.031	0.013	-0.102	-0.027	-0.172	-0.023	0.066
24	-0.019	0.002	0.032	-0.116	0.029	0.006	-0.288	-0.207	0.050	0.045	0.146
25	0.023	0.067	-0.081	0.081	-0.011	-0.016	0.005	0.001	0.039	-0.006	0.020
26	-0.039	-0.010	-0.041	0.080	0.127	0.006	0.211	0.045	-0.166	0.045	0.102
27	0.009	-0.107	-0.052	-0.010	0.027	0.003	-0.081	-0.044	-0.023	0.014	0.024
28	0.041	0.012	-0.028	-0.041	-0.315	-0.204	0.091	0.104	0.078	-0.003	0.171
29	-0.026	-0.006	-0.087	-0.168	0.127	0.011	0.000	0.025	-0.125	0.159	0.094

Apéndice B

Ejecucion	x1	x2	х3	x4	x5	x6	x7	x8	x9	x10	f(x)
0	0.016	0.062	0.012	1.992	2.032	0.033	-0.946	-0.120	0.994	-1.031	15.796
1	1.922	-0.039	-0.931	-0.933	0.081	-0.002	-2.066	1.003	0.992	0.005	17.114
2	-0.965	0.004	1.016	-1.875	1.057	0.932	0.932	0.907	-1.016	-0.905	20.132
3	-0.018	0.948	0.993	0.033	0.927	0.178	-0.896	0.052	-0.006	-0.003	13.642
4	1.952	-0.006	0.002	2.024	-1.021	-0.049	0.932	-0.920	0.985	-0.990	15.941
5	0.927	-1.951	0.989	0.078	-0.918	-0.003	0.995	-0.077	0.980	-0.003	13.700
6	-1.011	-0.044	0.968	1.026	-1.006	-0.033	-0.012	-1.025	-0.987	-1.033	8.468
7	-0.002	1.050	1.012	1.036	-0.009	-0.931	0.932	-0.996	0.970	-1.958	13.836
8	0.042	-0.932	-0.045	1.105	0.045	-1.019	0.000	-0.001	-0.061	0.932	9.863
9	-0.013	0.020	0.010	-1.001	0.984	0.994	0.013	-0.001	0.948	-1.953	8.863
10	0.000	2.033	-0.996	-0.995	0.999	0.014	0.990	-0.028	-0.002	-1.997	12.514
11	-0.927	2.982	0.004	0.996	-0.995	0.003	0.976	-0.975	1.872	-0.078	22.721
12	1.021	0.991	-0.986	-0.949	0.060	-1.009	-0.005	-0.991	-0.991	0.935	9.989
13	2.068	2.001	0.935	-0.020	-0.937	0.000	0.924	1.017	0.974	0.992	17.736
14	-0.987	-0.003	0.992	0.929	2.032	-0.937	-0.011	-0.995	0.996	1.004	12.844
15	0.937	0.981	-1.014	0.962	-0.935	0.020	-1.020	-0.064	-0.028	0.932	10.599
16	-0.966	-0.916	-1.026	0.923	0.020	-0.976	0.016	-1.021	-0.006	0.998	9.891
17	-0.941	-0.070	0.030	0.934	-1.983	-0.927	0.011	-1.017	-0.002	-0.975	12.502
18	-0.969	0.936	-0.030	1.010	-1.026	-0.030	0.993	0.007	0.002	0.978	7.439
19	-0.028	-0.057	-0.003	0.030	-0.039	-1.964	-0.984	-1.028	2.942	-0.989	17.946
20	0.995	0.935	0.991	0.927	-0.932	0.999	-0.030	-1.028	-0.061	0.986	11.469
21	-1.002	0.008	0.042	-0.934	-0.013	-0.985	-0.998	-1.070	1.064	-1.032	10.430
22	0.999	1.029	-1.036	0.919	0.994	-0.926	0.003	0.000	0.026	-0.990	9.708
23	-2.036	-0.032	0.006	0.003	1.024	0.926	-1.017	0.932	0.001	-1.017	11.647
24	-0.990	2.035	0.993	0.976	-0.967	1.019	-0.014	-1.870	-1.003	0.907	19.847
25	1.993	0.029	0.898	1.028	-2.023	-0.048	0.997	1.003	1.872	0.999	22.354
26	1.996	0.014	-0.008	0.967	-0.945	-0.974	-0.997	0.981	-0.041	-0.983	11.140
27	-1.986	0.040	-0.020	-1.035	-0.952	0.042	1.012	-0.005	-1.994	0.001	12.453
28	0.937	-0.052	-0.047	-1.938	0.081	-0.077	0.990	-0.013	-0.019	0.000	10.658
29	-0.957	-2.033	0.000	-1.947	1.066	-0.010	2.000	-0.038	-0.999	-0.004	17.267

Apéndice C

Ejecucion	x1	x2	х3	x4	x5	х6	x7	x8	x9	x10	f(x)
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	0.001	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	-0.001	0.000	0.000
2	0.001	0.000	0.000	0.000	-0.001	0.000	0.000	0.001	0.000	0.000	0.000
3	0.000	0.001	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.001	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
11	0.000	0.001	0.000	-0.001	0.000	0.001	0.000	0.001	-0.001	0.000	0.000
12	0.000	0.001	0.000	0.000	0.002	-0.001	0.000	0.000	-0.001	0.000	0.000
13	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000
14	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
16	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
18	-0.001	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
21	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
22	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
23	0.000	0.000	0.000	-0.001	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
24	-0.001	-0.001	0.000	-0.002	0.000	0.001	-0.001	0.000	0.000	-0.001	0.000
25	-0.001	0.000	0.000	0.000	0.001	0.000	-0.001	0.000	0.000	0.000	0.000
26	-0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
27	0.000	0.001	0.001	-0.001	0.000	0.000	0.000	0.000	-0.001	0.000	0.000
28	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
29	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Apéndice D

Ejecucion	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	f(x)
0	0.001	-0.001	0.001	0.000	-0.001	0.001	0.000	0.000	-0.001	-0.001	0.001
1	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	-0.001	0.000
2	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.004	0.000	0.000	0.004
3	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	-0.001	0.001	-0.001	0.000	0.000	0.001	0.000	0.002	0.001
5	-0.001	0.001	0.000	0.003	0.001	-0.002	0.000	0.001	-0.001	-0.001	0.003
6	-0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	-0.001	0.002
7	0.001	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	0.000
8	0.000	-0.002	-0.002	-0.005	-0.002	-0.001	0.000	0.001	-0.001	0.001	0.009
9	0.002	0.000	0.003	0.001	-0.001	0.000	0.000	0.001	0.001	0.001	0.004
10	-0.008	-0.011	0.001	-0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.037
11	-0.002	-0.001	-0.004	-0.001	-0.003	0.001	0.000	-0.002	-0.001	0.000	0.006
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.002
13	0.000	-0.001	0.001	0.995	0.000	-0.001	-0.001	-0.001	-0.001	0.000	0.996
14	0.000	0.000	0.001	-0.001	0.001	0.000	0.001	-0.001	0.000	0.000	0.001
15	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.002	-0.001	-0.001	0.001
16	-0.001	0.000	0.000	0.000	-0.001	0.000	0.001	-0.001	0.000	0.000	0.001
17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000
18	-0.001	0.000	0.000	-0.001	-0.001	0.000	0.001	0.001	0.000	-0.002	0.001
19	0.995	-0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.994	1.991
20	0.000	0.000	-0.001	-0.001	0.000	0.000	0.000	-0.001	0.001	0.001	0.001
21	0.001	0.001	0.001	0.000	-0.001	-0.995	0.001	0.000	-0.001	0.000	0.996
22	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
23	-0.001	0.001	0.000	-0.001	-0.001	-0.002	0.000	0.000	-0.002	0.000	0.003
24	-0.002	0.001	0.000	-0.001	0.002	0.001	0.001	0.001	0.000	0.001	0.003
25	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
26	0.000	0.000	0.000	0.000	0.000	-0.001	0.000	0.000	0.000	0.000	0.000
27	-0.002	0.000	-0.001	-0.002	0.001	0.001	-0.001	0.001	0.000	-0.002	0.002
28	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29	0.000	0.000	0.000	0.000	-0.001	0.001	-0.001	0.000	0.000	0.000	0.001

Apéndice E

Figura 1: Problema I

Figura 2: Problema II

Apéndice G

Figura 3: Convergencias