

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07K 14/00		A2	(11) International Publication Number: WO 98/55508 (43) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: PCT/JP98/02445 (22) International Filing Date: 3 June 1998 (03.06.98)		(81) Designated States: AU, CA, JP, MX, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 9/144948 3 June 1997 (03.06.97) JP		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).			
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). SEKINE, Shingo [JP/JP]; Remonzu 101, 2-8-15, Atago, Ageo-shi, Saitama 362-0034 (JP). YAMAGUCHI, Tomoko [JP/JP]; 5-13-11, Takasago, Katsushika-ku, Tokyo 125-0054 (JP).			
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).			
(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAs ENCODING THESE PROTEINS			
(57) Abstract			
Proteins comprising any of the amino acid sequences of SEQ ID NOS: 1 to 18 and DNAs encoding said proteins and comprising any of the nucleotide sequences of SEQ ID NOS: 19 to 36 are provided.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

DESCRIPTION

Human Proteins Having Transmembrane
Domains and DNAs Encoding These Proteins

5

FIELD OF THE INVENTION

The present invention relates to human proteins having transmembrane domains and cDNAs encoding these proteins. The membrane proteins of this invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. The cDNAs of the invention can be used as probes for the gene diagnosis and gene sources for the gene therapy. The cDNAs can also be used as gene sources for large-scale production of the membrane proteins encoded by the same. The cells into which the genes encoding the membrane proteins are introduced for expression of such membrane proteins in large amounts can be used for detection of the corresponding ligands, screening of low molecular weight medicines, etc.

20 BACKGROUND OF THE INVENTION

Membrane proteins play important roles as signal receptors, ion channels, transporters, etc. for the material transportation or information transmission mediated by the cell membrane. For instance, they are known to serve as receptors for various cytokines, ion channels for sodium ion, potassium ion, chloride ion, etc., transporters for saccharides and amino acids, and so on. The genes for many of them have been cloned already.

In recent years, it was clarified that the abnormalities

of these membrane proteins are related to a number of hitherto cryptogenic diseases. For example, a gene for a membrane protein having 12 transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al.,
5 Science 245: 1059-1065 (1989)]. It was also clarified that several membrane proteins act as the receptors when a virus infects the cells. For example, HIV-1 was revealed to infect into the cells through the mediation of a membrane protein fusin, a membrane protein on the T-cell membrane, having a CD-4
10 antigen and 7 transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, the discovery of new membrane proteins is anticipated to lead to the elucidation of the causes of many diseases, and the isolation of new genes coding for the membrane proteins is desired.

15 Heretofore, owing to the difficulty in their purification, many of membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in the animal cells to express the cDNA and detection
20 of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a physiological technique for the change in the membrane permeability. However, this method is applicable only to cloning of a gene for a membrane protein with a known function.

25 In general, membrane proteins possess hydrophobic transmembrane domains inside the proteins which are synthesized in the ribosome. Said domains remain in the phospholipid to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination

of the whole base sequence of a full-length cDNA and detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

As a result of the extensive study, there have successfully been obtained human proteins having transmembrane domains, particularly comprising any of the amino acid sequences of SEQ ID NOS: 1 to 18, by cloning cDNAs coding for proteins having transmembrane domains, particularly comprising any of the nucleotide sequences of SEQ ID NOS: 19 to 36, from a human full-length cDNA bank. The present invention is based on the above success.

SUMMARY OF THE INVENTION

A main object of the present invention is to provide novel human proteins having transmembrane domains, particularly comprising any of the amino acid sequences of SEQ ID NOS: 1 to 18. Another object of this invention is to provide DNAs coding for said novel proteins, particularly comprising any of the nucleotide sequences of SEQ ID NOS: 19 to 36. A further object of the invention is to provide expression vectors capable of in vitro translating said DNAs or expressing said DNAs in eukaryotic cells. A still further object of the invention is to provide transformed eukaryotic cells capable of expressing said DNAs to produce said proteins.

In one embodiment, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOS: 1 to 18 and their fragments.

In another embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 19 to 36.

5 In a further embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 37 to 54.

10 BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the structure of the secretory signal sequence detection vector pSSD3.

Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01263.

15 Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01299.

Figure 4: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01347.

20 Figure 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01440.

Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01526.

Figure 7: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10230.

25 Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10389.

Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10408.

Figure 10: A figure depicting the hydrophobicity/hydro-

philicity profile of the protein encoded by clone HP10412.

Figure 11: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10413.

5 Figure 12: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10415.

Figure 13: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10419.

Figure 14: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10424.

10 Figure 15: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10428.

Figure 16: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10429.

15 Figure 17: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10432.

Figure 18: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10433.

Figure 19: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10480.

20

BEST MODE FOR CARRING OUT INVENTION

The proteins of the present invention can be obtained, for example, by isolation from human organs, cell lines, etc., by chemical synthesis on the basis of the amino acid sequences as 25 herein disclosed, or by recombinant DNA technology using the DNA encoding the transmembrane domains of the invention. Among them, adoption of the recombinant DNA technology is preferred. Specifically, each of the proteins may be prepared by in vitro transcription of a vector comprising the cDNA of the invention

to make RNA and in vitro translation using this RNA as a template to accomplish in vitro expression. Also, each of the proteins may be prepared in a large amount by the use of *Escherichia coli*, *Bacillus subtilis*, yeasts, animal cells, etc.

5 comprising a suitable expression vector having the DNA encoding such protein.

In the case of producing the protein of the invention by the use of a microorganism such as *Escherichia coli*, the translation region of the cDNA of the invention is constructed

10 in an expression vector having an origin, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator, etc. that can be replicated in the microorganism and, after transformation of the host cells with said expression vector, the resultant transformant is incubated, whereby the protein

15 encoded by said cDNA can be produced in a large amount in the microorganism. In that case, a protein fragment containing an optional region can be obtained by performing the expression with inserting an initiation codon and a termination codon before and after the optional translation region. Alternative-

20 ly, a fusion protein with another protein can be expressed. Only a protein portion encoding said cDNA can be obtained by cleavage of said fusion protein with an appropriate protease.

For production of the protein of the invention by expression of DNA coding for such protein in eukaryotic cells,

25 the translation region of said cDNA may be recombined into an expression vector for eukaryotic cells having a promoter, a splicing domain, a poly(A) addition site, etc., followed by introduction into eukaryotic cells so that the protein of the invention is produced as a membrane protein on the cell

membrane surface. Examples of the expression vector are pKA1, pED6_dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, etc. As the eukaryotic cells, there are exemplified mammalian animal culture cells (e.g. simian kidney 5 cells COS7, chinese hamster ovary cells CHO), budding yeasts, Schizosaccharomyces pombe, silkworm cells, Xenopus laevis egg cells, etc., but any other eukaryotic cells may also be used insofar as the protein of the invention can be expressed on the membrane surface. In order to introduce the expression vector 10 into eukaryotic cells, there may be adopted any conventional procedure such as electroporation, calcium phosphate method, liposome method or DEAE dextran method.

The proteins of the present invention include peptide fragments (5 or more amino acid residues) containing any 15 partial amino acid sequence of the amino acid sequences of SEQ ID NOS: 1 to 18. These fragments can be used as antigens for preparation of the antibodies. Also, the proteins of the invention that have signal sequences appear in the form of maturation proteins on the cell surface, after the signal 20 sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japan Patent Kokai No. 25 187100/96]. Further, many membrane proteins are subjected to the processing on the cell surface to be converted to the secretor forms. These secretor proteins or peptides shall come within the scope of the present invention. When glycosylation sites are present in the amino acid sequences, expression in

appropriate animal cells affords glycosylated proteins. Therefore, these glycosylated proteins or peptides also shall come within the scope of the invention.

The DNAs of the invention include all DNAs encoding the 5 above-mentioned proteins. Said DNAs can be obtained using the method by chemical synthesis, the method by cDNA cloning, and so on.

Each of the cDNAs of the invention can be cloned from, for example, the cDNA libraries of the human cell origin. The cDNA 10 is synthesized using as a template a poly(A)⁺ RNA extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNA can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, 15 P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)] as illustrated in Examples in order to obtain a full-length clone in an effective manner.

20 The primary selection of a cDNA encoding a human protein having transmembrane domains is performed by the sequencing of a partial base sequence of the cDNA clone selected at random from the cDNA libraries, sequencing of the amino acid sequence encoded by the base sequence, and recognition of the presence 25 or absence of hydrophobic site(s) in the resulting N-terminal amino acid sequence region. Next, the secondary selection is carried out by determination of the whole base sequence by the sequencing and the protein expression by the in vitro translation. The ascertainment of the cDNA of the present

invention for encoding the protein having the secretory signal sequence is performed by using the signal sequence detection method [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. In other words, the ascertainment for the coding portion of the inserted cDNA fragment to function as a signal sequence is provided by fusing a cDNA fragment encoding the N-terminus of the target protein with a cDNA encoding the protease domain of urokinase and then expressing the resulting cDNA in COS7 cells to detect the urokinase activity in the cell culture medium. On the other hand, the N-terminal region is judged to remain in the membrane in the case where the urokinase activity is not detected in the cell culture medium.

The cDNAs of the invention are characterized by containing any of the nucleotide sequences of SEQ ID NOS: 19 to 36 or any of the nucleotide sequences of SEQ ID NOS: 37 to 54. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total nucleotide number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

	Sequence Number	HP Number	Cells	Number of Nucleotides	Number of Amino Acid Residues
5	1, 19, 37	HP01263	Liver	1502	382
10	2, 20, 38	HP01299	Liver	1349	317
15	3, 21, 39	HP01347	Liver	1643	296
20	4, 22, 40	HP01440	Stomach cancer	729	197
25	5, 23, 41	HP01526	Stomach cancer	1322	221
30	6, 24, 42	HP10230	Stomach cancer	3045	251
35	7, 25, 43	HP10389	KB	653	106
40	8, 26, 44	HP10408	Stomach cancer	439	78
45	9, 27, 45	HP10412	Stomach cancer	1131	314
	10, 28, 46	HP10413	Stomach cancer	1875	195
	11, 29, 47	HP10415	Stomach cancer	1563	462
	12, 30, 48	HP10419	Stomach cancer	2030	247
	13, 31, 49	HP10424	Stomach cancer	493	113
	14, 32, 50	HP10428	KB	2044	365
	15, 33, 51	HP10429	Stomach cancer	1043	226
	16, 34, 52	HP10432	Liver	972	129
	17, 35, 53	HP10433	Liver	695	163
	18, 36, 54	HP10480	Stomach cancer	1914	193

Hereupon, the same clone as any of the cDNAs of the invention can be easily obtained by screening of the cDNA libraries constructed from the cell line or the human tissues employed in the invention, by the use of an oligonucleotide probe synthesized on the basis of the corresponding cDNA nucleotide sequence of SEQ ID NOS: 37 to 54.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Therefore, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides

in SEQ ID NOS: 37 to 54 shall come within the scope of the invention.

In a similar manner, any protein that is produced by these modifications comprising insertion or deletion of one or plural 5 nucleotides and/or substitution with other nucleotides shall come within the scope of the present invention, as far as said protein possesses the activity of the corresponding protein having the amino acid sequence of SEQ ID NOS: 1 to 18.

The cDNAs of the invention include cDNA fragments (more 10 than 10 bp) containing any partial nucleotide sequence of the nucleotide sequence of SEQ ID NOS: 19 to 36 or of the nucleotide sequence of SEQ ID NOS: 37 to 54. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be used 15 as the probes for the gene diagnosis.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are 20 derived and may include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or 25 suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate

genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

- 5 Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave
- 10 the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254; Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that
- 15 have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified
- 20 genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to
- 25 the polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through

insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, *Bioessays* 14(9): 629-633; Zwaal et al., 1993, *Proc. Natl. Acad. Sci. USA* 90(16): 7431-7435; Clark et al., 1994, *Proc. Natl. Acad. Sci. USA* 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, *Nature* 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 10 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the 15 corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s).

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention 20 also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be 25 identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at

least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined 5 by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, 10 most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and 15 proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of 20 skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the 25 disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences

complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably 5 highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, 10 conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 2

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) [‡]	Hybridization Temperature and Buffer [†]	Wash Temperature and Buffer [†]
A	DNA : DNA	≥50	65°C; 1×SSC -or- 42°C; 1×SSC, 50% formamide	65°C; 0.3×SSC
B	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA : RNA	≥50	67°C; 1×SSC -or- 45°C; 1×SSC, 50% formamide	67°C; 0.3×SSC
D	DNA : RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA : RNA	≥50	70°C; 1×SSC -or- 50°C; 1×SSC, 50% formamide	70°C; 0.3×SSC
F	RNA : RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or- 42°C; 4×SSC, 50% formamide	65°C; 1×SSC
H	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or- 45°C; 4×SSC, 50% formamide	67°C; 1×SSC
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA : RNA	≥50	70°C; 4×SSC -or- 50°C; 4×SSC, 50% formamide	67°C; 1×SSC
L	RNA : RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or- 40°C; 6×SSC, 50% formamide	50°C; 2×SSC
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
O	DNA : RNA	≥50	55°C; 4×SSC -or- 42°C; 6×SSC, 50% formamide	55°C; 2×SSC
P	DNA : RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA : RNA	≥50	60°C; 4×SSC -or- 45°C; 6×SSC, 50% formamide	60°C; 2×SSC
R	RNA : RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

‡ : The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

† : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

*T_B - T_R: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m(°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory

5 Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and

Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

10 Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more

preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of

the present invention to which it hybridizes, and has at least

15 60% sequence identity (more

preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the

polynucleotide of the present invention to which it hybridizes, where sequence identity is

20 determined by comparing the sequences of the hybridizing polynucleotides when aligned so as

to maximize overlap and identity while minimizing sequence gaps.

25 EXAMPLE

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are

carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from 5 Takara Shuzo Co., Ltd. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

10 (1) Preparation of Poly(A)⁺ RNA

The epidermoid carcinoma cell line KB (ATCC CRL 17), tissues of stomach cancer delivered by the operation, and liver were used for human cells to extract mRNAs. The cell line was cultured by a conventional procedure.

15 After about 1 g of human tissues was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, total mRNAs were prepared in accordance with the literature [Okayama, H. et al., "Methods in Enzymology" Vol. 164, Academic Press, 1987]. These mRNAs were subjected to chromatography using an oligo(dT)-
20 cellulose column washed with 20 mM Tris-hydrochloric acid buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A)⁺ RNA in accordance with the above-mentioned literature.

(2) Construction of cDNA Library

25 To a solution of 10 µg of the above-mentioned poly(A)⁺ RNA in 100 mM Tris-hydrochloric acid buffer solution (pH 8) was added one unit of an RNase-free, bacterium-origin alkaline phosphatase and the resulting solution was allowed to react at 37°C for one hour. After the reaction solution underwent the

phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-
5 origin pyrophosphatase (Epicenter Technologies) and the resulting solution at a total volume of 100 μ l was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in
10 water to obtain a decapped poly(A)⁺ RNA solution.

To a solution of the decapped poly(A)⁺ RNA and 3 nmol of a DNA-RNA chimeric oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') in a mixed aqueous solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 0.5 mM ATP, 5 mM
15 MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol were added 50 units of T4 RNA ligase and the resulting solution at a total volume of 30 μ l was allowed to react at 20°C for 12 hours. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-
20 obtained pellets were dissolved in water to obtain a chimeric oligo-capped poly(A)⁺ RNA.

After the vector pKA1 developed by the present inventors (Japanese Patent Kokai Publication No. 1992-117292) was digested with KpnI, an about 60-dT tail was inserted by a
25 terminal transferase. This product was digested with EcoRV to remove the dT tail at one side and the resulting molecule was used as a vectorial primer.

After 6 μ g of the previously-prepared chimeric oligo-capped poly(A)⁺ RNA was annealed with 1.2 μ g of the vectorial

primer, the product was dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), mixed with 200 units of a reverse transferase 5 (GIBCO-BRL), and the resulting solution at a total volume of 20 µl was allowed to react at 42°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in a mixed solution of 50 mM Tris-hydrochloric acid 10 buffer solution (pH 7.5), 100 mM NaCl, 10 mM MgCl₂, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and the resulting solution at a total volume of 20 µl was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol 15 precipitation, the obtained pellets were dissolved in a mixed solution of 20 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl₂, 10 mM (NH₄)₂SO₄, and 50 µg/ml bovine serum albumin. Thereto were added 60 units of *Escherichia coli* DNA ligase and the resulting solution was 20 allowed to react at 16°C for 16 hours. To the reaction solution were added 2 µl of 2 mM dNTP, 4 units of *Escherichia coli* DNA polymerase I, and 0.1 unit of *Escherichia coli* DNase H and the resulting solution was allowed to react at 12°C for one hour and then at 22°C for one hour.

25 Next, the cDNA-synthesis reaction solution was used to transform *Escherichia coli* DH12S (GIBCO-BRL). The transformation was carried out by the electroporation method. A portion of the transformant was inoculated on a 2xYT agar culture medium containing 100 µg/ml ampicillin, which was

incubated at 37°C overnight. A colony grown on the culture medium was randomly picked up and inoculated on 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. The culture medium was centrifuged
5 to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. After the plasmid DNA was double-digested with EcoRI and NotI, the product was subjected to 0.8% agarose gel electrophoresis to determine the size of the cDNA insert. In addition, by the use of the obtained plasmid as a
10 template, the sequence reaction using M13 universal primer labeled with a fluorescent dye and Taq polymerase (a kit of Applied Biosystems Inc.) was carried out and the product was analyzed by a fluorescent DNA-sequencer (Applied Biosystems Inc.) to determine the base sequence of the cDNA 5'-terminal of
15 about 400 bp. The sequence data were filed as a homo-protein cDNA bank data base.

(3) Selection of cDNAs Encoding Proteins Having
Transmembrane Domains

The base sequence registered in the homo-protein cDNA bank
20 data base was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminal of the
25 portion encoded by ORF. These clones were sequenced from the both 5' and 3' directions by using the deletion method to determine the sequence of the whole base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by ORF by the Kyte-Doolittle method [Kyte, J.

& Doolittle, R. F., J. Mol. Bio. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of putative transmembrane domain(s) in the amino acid sequence of an 5 encoded protein, this protein was considered as a membrane protein.

(4) Construction of Secretory Signal Detection Vector
pSSD3

One microgram of pSSD1 carrying the SV40 promoter and a 10 cDNA encoding the protease domain of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)] was digested with 5 units of BglII and 5 units of EcoRV. Then, after dephosphorylation at the 5' terminal by the CIP treatment, a DNA fragment of about 4.2 kbp was purified by cutting off from 15 the gel of agarose gel electrophoresis.

Two oligo DNA linkers, L1 (5'-GATCCGGGTACGTGGAT-3') and L2 (5'-ATCCCACGTGACCCGG-3'), were synthesized and phosphorylated by T4 polynucleotide kinase. After annealing of the both linkers, followed by ligation with the previously-20 prepared pSSD1 fragment by T4 DNA ligase, *Escherichia coli* JM109 was transformed. A plasmid pSSD3 was prepared from the transformant and the objective recombinant was confirmed by the determination of the base sequence of the linker-inserted fragment. Figure 1 illustrates the structure of the thus-25 obtained plasmid. The present plasmid vector carries three types of blunt-end formation restriction enzyme sites, SmaI, PmaCI, and EcoRV. Since these cleavage sites are positioned in succession at an interval of 7 bp, selection of an appropriate site in combination of three types of frames for the inserting

cDNA allows to construct a vector expressing a fusion protein.

(5) Functional Verification of Secretory Signal Sequence

Whether the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the above-mentioned steps 5 functions as the secretory signal sequence was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site that existed at the downstream of the portion 10 expected for encoding the secretory signal sequence. In the case in which this restriction enzyme site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the mung-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 15 promoter and a cDNA encoding the secretory sequence at the downstream of the promoter was separated by agarose gel electrophoresis. This fragment was inserted between the pSSD3 HindIII site and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a 20 vector expressing a fusion protein of the secretory signal portion of the target cDNA and the urokinase protease domain.

After *Escherichia coli* (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 µg/ml 25 ampicillin, the helper phage M13KO7 (50 µl) was added and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM

EDTA, pH 8 (TE). Also, there was used as a control a suspension of single-stranded particles prepared in the same manner from the vector pLA1-UPA containing pSSD3 and a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196
5 (1995)].

The simian-kidney-origin culture cells, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% bovine fetus albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well 10 diameter) were inoculated 1 × 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Tris-hydrochloric acid (pH 7.5) 15 (TDMEM). To the cells were added 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 µl of TRANSFECTAM™ (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed, the cell surface was washed 20 with TDMEM, 2 ml per well of DMEM containing 10% bovine fetus albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO₂.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4) containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 25 1 mM potassium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the

transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. The diameter of the thus-obtained clear circle was taken as an index for the urokinase activity. In the case in which a cDNA fragment codes for the 5 amino acid sequence that functions as a secretory signal sequence, a fusion protein is secreted to form a clear circle by its urokinase activity. Therefore, in the case in which a clear circle is not formed, the fusion protein remains as trapped in the membrane and the cDNA fragment is considered to 10 code for a transmembrane domain.

(6) Protein Synthesis by In Vitro Translation

The plasmid vector carrying the cDNA of the present invention was utilized for the transcription/translation by the TNT rabbit reticulocyte lysate kit (Promega Biotec). In this 15 case, [³⁵S]methionine was added and the expression product was labeled with the radioisotope. All reactions were carried out by following the protocols attached to the kit. Two micrograms of the plasmid was allowed to react at 30°C for 90 minutes in total 25 ml of a reaction solution containing 12.5 µl of the 20 TNT rabbit reticulocyte lysate, 0.5 µl of the buffer solution (attached to the kit), 2 µl of an amino acid mixture (methionine-free), 2 µl (0.37 MBq/µl) of [³⁵S]methionine (Amersham Corporation), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. To 3 µl of the reaction solution was added 2 µl of 25 an SDS sampling buffer (125 mM Tris-hydrochloric acid suffer solution, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting solution was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of

the translation product was determined by carrying out the autoradiography.

(7) Expression in COS7

Escherichia coli bearing a vector expressing the protein 5 of the invention was infected with helper phage M13KO7, and single-stranded phage particles were obtained according to the method as stated above. Using the thus obtained phages, each expression vecotr was introduced into simian-kidney-origin culture cells COS7 in the manner as stated above. After 10 incubation at 37 °C for 2 days in the presence of 5 % CO₂, further incubation was carried out in a medium containing [³⁵S]cysteine or [³⁵S]methionine for 1 hour. The cells were collected, dissolved and then subjected to SDS-PAGE whereby a band corresponding to the expression product of each protein 15 which is not present in COS7 cells was revealed. In Table 3, the molecular weight of each expression product is shown.

Table 3

20	HP Number	Supernatant of culture	Membrane fraction
		(kDa)	(kDa)
	HP01263	50	-
	HP01299	-	30
	HP01526	-	22
25	HP10230	-	24
	HP10408	-	7
	HP10415	-	45
	HP10424	-	14
	HP10429	-	27
30	HP10432	-	17
	HP10480	-	22

(8) Clone Examples

<HP01263> (Sequence Number 1, 19, 37)

Determination of the whole base sequence for the cDNA insert of clone HP01263 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 36 bp, an ORF of 1149 bp, and a 3'-non-translation region of 316 bp. The ORF codes for a protein consisting of 382 amino acid residues with one transmembrane domain at the N-terminal. Figure 2 depicts the hydrophobicity /hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in formation of a translation product of 42 kDa, which is almost consistent with the molecular weight of 42,054 as predicted from the ORF. On expression in COS cells, an expression product of about 50 kDa was observed in the culture supernatant. Therefore, said protein can be understood to be a secreted protein. Application of the rule (-3, -1) as a method for anticipation of a cutting site in a secretion signal sequence suggested that the mature protein would start from methionine at 19 position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human α -2-HS-glycoprotein (SWISS-PROT Accession No. P02765). Table 4 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human α -2-HS-glycoprotein (GP). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the

prot in of the present invention. The both proteins possessed a homology of 25.5%. The cysteine position is reserved and this region is analogous to that in cystatins (thiol proteinase inhibitors). There are observed other analogy with histidine-
5 rich glycoprotein (P04196, 30.9%/194 amino acid residues), kininogen (P01045, 24.1%/261 amino acid residues), tyrosine kinase inhibitor (A32827, 24.4%/291 amino acid residues), and so on.

Table 4

10

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H57204), but it can not be assessed whether these ESTs with 5 partial sequences code for the same protein as the protein of the present invention. Hereupon, most of ESTs matching with the present cDNA are available from liver cDNA libraries, whereby the present clone is considered to be expressed specifically in the liver.

10 The present protein, because of being a type-II membrane protein, is considered to exert its function as a receptor on the membrane surface with the C-terminal side exposed outside the cells or after undergoing a processing followed by being excreted in the serum. The present protein, because of bearing 15 a cystatin-like domain, is considered to possess a proteinase-inhibitor activity as well as many physiological activities in the same manner as for other members of this family. In addition, the present protein, because of being expressed specifically in liver cells, is considered to play a 20 significant role for maintaining the liver function.

<HP01299> (Sequence Number 2, 20, 38)

Determination of the whole base sequence for the cDNA insert of clone HP01299 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non- 25 translation region of 110 bp, an ORF of 954 bp, and a 3'-non-translation region of 285 bp. The ORF codes for a protein consisting of 317 amino acid residues with two or more transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile of the present protein

obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 32 kDa that was almost consistent with the molecular weight of 35,965 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat retinol dehydrogenase (NBRF Accession No. A55884). Table 5 indicates the comparison of the amino acid sequences between the human protein of the present invention
10 (HP) and the rat retinol dehydrogenase (RN). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and. represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 65.3%
15 among the entire regions.

Table 5

	HP MWLYLAAFPGLYYLLHWYRERQVVSHLQDKYVFITGCDSGFGNLLARQLDARGLRVLAAC
5	***** *.*.*. **. .***.*****
	RN MWLYLLALVGLWNLLRLFRERKVVSQSHLQDKYVFITGCDSGFGNLLARQLDRRGMRVLAAC
	HP LTEKGAEQLRGQTSDRLETVDVTKMESIAAATQWVKEHVGDRGLWGLVNNAGILTPIT

	RN LTEKGAEQLRSKTSRLETVIDVTKTESIVAATQWVKERVGNRGLWGLVNNAGISVPVG
10	HP LCEWLNTEDSMNMLKVNLIGVIQVTLSPMLPVRRARGRIVNVSSILGRVAFFVGGYCWSK
* ..*.*.*.***.*****.*****.**..*...**... ****.**
	RN PNEWMRKKDFASVLDVNLLGVIEVTLNMLPLVRKARGRVVNIASTMGRMSLVGGGYCISK
	HP YGVEAFSDILRREIQHFGVKISIVEPGYFRTGMTNMTQSLERMKQSWKEAPKHICKETYQ

15	RN YGVEAFSDSLRRELTYFGVKVAlIEPGGFKTNVTNMRSLSDNLKKLWDQTTEEVKEIYGE
	HP QYFDALYNIMKEGLLNCSNTNLNVTDCMEHALTSVHPRTRYSGWDAKFFFPLSYLPTS
	.. *. .. *... .**..*,*****
	RN KFQDSYMKAMESLVTNCGDLISLVTDCMEHALTSCHPRTRYSPGWDAKFFYLPMMSYLPTF
	HP LADYILTRSWPKPAQAV
20	*.* ... ***.*.
	RN LSDAVIHWGGSVKPARAL

Furthermore, the search of GenBank using the base sequence
25 of the present cDNA revealed that there existed some ESTs
possessing the homology of 90% or more (for example, Accession
No. R35197), but any of them was shorter than the present cDNA
and did not contain the initiation codon.

The rat retinol dehydrogenase has been found as a
30 microsomal membrane protein participating in the retinoic acid

biosynthesis in the liver [Chai, X. et al., J. Biol. Chem. 270: 28408-28412 (1995)]. Accordingly, its homologue, the protein of the present invention, is considered to possess a similar function and can be utilized for diagnosis and treatment of 5 diseases caused by the abnormality of this protein.

<HP01347> (Sequence Number 3, 21, 39)

Determination of the whole base sequence for the cDNA insert of clone HP01347 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-10 translation region of 24 bp, an ORF of 891 bp, and a 3'-non-translation region of 728 bp. The ORF codes for a protein consisting of 296 amino acid residues with one transmembrane domain at the N-terminal. Figure 4 depicts the hydrophobicity/hydrophilicity profile of the present protein 15 obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified and the urokinase activity was detected on the membrane surface, upon transduction into the COS7 cells of an expression vector 20 in which a HindIII-SacI fragment (treated with the mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 73 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro 25 translation resulted in the formation of a translation product of 33 kDa that was almost consistent with the molecular weight of 33,527 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was

analogous to the human HIV envelope glycoprotein gp120-binding C-type lectin (GenBank Accession No. M98457). Table 6 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human HIV envelope glycoprotein gp120-binding C-type lectin (CL). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 85.6% among 284 amino acid residues. There is observed at the downstream of the transmembrane domain a sequence with seven repetition of Ile-Tyr-Gln-Xaa-Leu-Thr-Xaa-Leu-Lys-Ala-Ala-Val-Gly-Glu-Leu-Xaa-Xaa-Ser-Lys-Xaa-Gln-Xaa.

Table 6

	HP	MSDSKEPRVQQLGLL-----GCLGHGALVLQLLSFMLLAGVLVAI
		*****.*****
5	CL	MSDSKEPRIQQLGLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVQLQLSFTLLAG---L
	HP	LVQVSKVPSSLSQESEQDAIYQNLTKAAVGELSEKSKLQEIYQELTQLKAAVGELPE
		*****.***** *****.*****
	CL	LVQVSKVPSSISQEQRQDAIYQNLTKAAVGELSEKSKLQEIYQELTQLKAAVGELPE
	HP	KSKLQEIYQELTRLKAAVGELPEKS KLQEIYQELTRLKAAVGELPEKS KLQEIYQELTRL
10		*****.*****.*****.*****.*****.*****
	CL	KSKLQEIYQELTRLKAAVGELPEKS KLQEIYQELTTLKAAVGELPEKS KMQEIYQELTRL
	HP	KAAVGELPEKS KLQEIYQELTELKAAVGELPEKS KLQEIYQELTQLKAAVGELPDQSKQQ
		*****.*****.*****.*****.*****.*****.*****.*****.*****.*****
	CL	KAAVGELPEKS KQQEIYQELTRLKAAVGELPEKS KQQEIYQELTRLKAAVGELPEKS KQQ
15	HP	QIYQELTDLKTAFERLCRHC PKDWTFQGN CYFMSNSQRNWHDSVTACQEVRAQLVVIKT
		.*****.**.*.*****.**.*****.*****.***.**.*****.
	CL	EIYQELTQLKAVERLCHPCPWEWTFFQGN CYFMSNSQRNWHDSITACKEVGAQLVVIKS
	HP	AEEQLPAVLEQWRTQQ
		**** * . *...
20	CL	AEEQNFLQLQSSRSNRFTWMGLSDLNQEGTWQWVDGSPLLPSFKQYWNRGEPNNVGEEDC

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H90360), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The present protein, because of being a type-II membrane protein, is considered to exert its function as a receptor on

the membrane surface with the C-terminal side exposed outside the cells or after undergoing a processing followed by being excreted in the serum. Hereupon, the human HIV envelope glycoprotein gp120-binding C-type lectin that is highly homologous with the present protein has been found as a CD4-independent HIV receptor [Curtis, B. M. et al., Proc. Natl. Acad. Sci. USA 89: 8356-8360 (1992)].

<HP01440> (Sequence Number 4, 22, 40)

Determination of the whole base sequence for the cDNA insert of clone HP01440 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 37 bp, an ORF of 594 bp, and a 3'-non-translation region of 98 bp. The ORF codes for a protein consisting of 197 amino acid residues with four transmembrane domains. Figure 5 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 20,822 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human tumor-associated antigen L6 (SWISS-PROT Accession No. P30408). Table 7 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human tumor-associated antigen L6 (L6). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed

a homology of 47.0% among the entire regions.

Table 7

5	HP	MCTGKCARCVGLSLITLCLVCIVANALLVPNGETSWTNHLSIQVWLMGGFIGGGLMV ** *****.* *..* .*,** ** * * *****....**** *...*..****..
	L6	MCYGKCARCIGHSLVGLALLCIAANILLYFPNGETKYASENHLSRFVWFFSGIVGGGLM
	HP	LCPG---IAAVRAGGKGCCGAGCCGNRCMLRSVFSSAFGVLGAIYCLSVSGAGLRNGPR * *. * **** . **.** **.**... .*. *. **. *. ** .. ** .**
10	L6	LLPAFVFIGLEQDDCCGCCGHENCGKRCAMLSSVLAALIGIAGSGYCVIVAALGLAEGPL
	HP	CLMN-GEWGYHFEDTAGAYLLNRTLWDRCEAPPRVVFWNTLFSILVAASCLEIVLCGIQ ** . *.*.* *...*.****. . *. *. ** ..* ***.***.*.* . .*.** **
	L6	CLDSLQWNYTFASTEGQYLLDTSTWSECTEPKHIVEWNVSLFSILLALGGIEFILCLIQ
	HP	LVNATIGVFCGDCRKQDTPH
15		..*...* .** * ..*
	L6	VINGVLGGICGFCCSHQQQYDC

Furthermore, the search of GenBank using the base sequence
20 of the present cDNA revealed that there existed some ESTs
possessing the homology of 90% or more and also containing the
initiation codon (for example, Accession No. T55097), but many
sequences were not distinct and the same ORF as that in the
present cDNA was not identified.

25 The human tumor-associated antigen L6 is a member of a
membrane antigen TM4 superfamily proteins which are expressed
in large quantities on the surface of human tumor cells
[Marken, J. S. et al., Proc. Natl. Acad. Sci. USA 89: 3503-3507
(1992)]. Since these membrane antigens are expressed
30 specifically on some specified cells or cancer cells,

antibodies against these antigens, if constructed, are useful for a variety of diagnoses and as carriers for the drug delivery. In addition, the cells in which genes of these membrane antigens are transduced and the membrane antigens are
5 expressed are applicable for detection of the corresponding ligands and so on.

<HP01526> (Sequence Number 5, 23, 41)

Determination of the whole base sequence for the cDNA insert of clone HP01526 obtained from the human stomach cancer
10 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 83 bp, an ORF of 666 bp, and a 3'-non-translation region of 573 bp. The ORF codes for a protein consisting of 221 amino acid residues with a hydrophobic region of putative six transmembrane domains. Figure 6 depicts the
15 hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was almost consistent with the molecular weight of 25,030 predicted from the ORF.

20 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the mouse interstitial cell protein (GenBank Accession No. X96618). Table 8 indicates the comparison of the amino acid sequences between the human protein of the present
25 invention (HP) and the mouse interstitial cell protein (MM). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . r presents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed

a homology of 79.6% among the entire regions.

Table 8

5	HP	MEAGGFQFLDSLIYGACVVFTLGMFSAGLSDLRHMTRSVNVQFLPFLTTEVNNLGWLSY ***** *.. .***.*****.*****.*****.*****.*****.*****.*****
	MM	MEAGGVADSFLSSACVLFTLGMFSTGLSDLRHMQRTRSVDNIQFLPFLTTDVNNLSWLSY
	HP	GALKGDGILIVVNTVGAALQTLYILAYLHYCPRKRVLLQTATLLGVLLLGYGYFWLLVP *.*****.**.**.***.*****.*****.*****.*****.*****.*****.*****
10	MM	GVLKGDTLIIVNSVGAVLQTLTLYILAYLHYSPQKHGVLLQTATLLAVLLLGYGYFWLLVP
	HP	NPEARLQQQLGLFCCSVFTISMYSPLADLAKVIQTQCLSYPLTIATLLTSASWCLYGF .*****.*****.*****.*****.*****.*****.*****.*****.*****.*****
	MM	DLEARLQQQLGLFCCSVFTISMYSPLADLAKIVQTQCLSYPLTIATLLTSASWCLYGF
	HP	RLRDPYIMVSNFPGIVTSFIRFWLKYPQEQRNYWLLQT
15		***** *.*.***.**.**.** ***.*****.*****.*****
	MM	RLRDPYIAVPNLPGILTSLIRLGLFCKYPPEQDRKYRLLQT

Furthermore, the search of GenBank using the base sequence
20 of the present cDNA revealed that there existed some ESTs
possessing the homology of 90% or more and also containing the
initiation codon (for example, Accession No. H02682), but many
sequences were not distinct and the same ORF as that in the
present cDNA was not identified.

25 The mouse interstitial cell protein has been cloned as a
membrane protein that is expressed with highly increasing in
interstitial cells stimulated by a cytokine [Tagoh, H. et al.,
Biochem. Biophys. Res. Commun. 221: 744-749 (1996)]. Since
these membrane proteins are expressed specifically on some
30 specified cells and cancer cells, antibodies against these

proteins, if constructed, are useful for a variety of diagnoses and as carriers for the drug delivery. In addition, the cells in which genes of these membrane antigens are transduced and the membrane antigens are expressed are applicable for
5 detection of the corresponding ligands and so on.

<HP10230> (Sequence Number 6, 24, 42)

Determination of the whole base sequence for the cDNA insert of clone HP10230 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-
10 translation region of 190 bp, an ORF of 756 bp, and a 3'-non-translation region of 2099 bp. The ORF codes for a protein consisting of 251 amino acid residues with at least one transmembrane domain. Figure 7 depicts the hydrophobicity/hydrophilicity profile of the present protein
15 obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 30 kDa that was almost consistent with the molecular weight of 28,800 predicted from the ORF.

The search of the protein data base using the amino acid
20 sequence of the present protein revealed that the protein was analogous to the nematode hypothetical protein F25D7.1 (GenBank Accession No. Z78418). Table 9 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the nematode hypothetical protein F25D7.1
25 (CE). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 49.8% among the entire regions.

Table 9

	HS	MSDIGDWFRSIPAI TRYWFAATVAVPLVGKLG LISPAYLFL-WPEAFLYRFQIWRPITAT *..... .** .***** *.. .**.*..*. ...** * . . .**.***.**
5	CE	MDLENFLLGIPIVTRYWFLASTI IPLLGRFGFINVQWMFLQW-DLVVNKFQFWRPLTAL
	HS	FYFPVPGTGFYLVNLYFLYQYSTRLETGAFDGRPADYLFMILLFNW-ICIVITGLAMDM .**.* *** .*. ****.**. **.... **.*****.*** .* . .**.
	CE	IYYPVTPQTGFHWLMMCYFLYNYSKALES ETYRGRSADYL FMLIFNWFFCSGLC-MALDI
	HS	QLLMIPLIMS VLYVVAQLNRDMIVSF WFGTRFKAC YLPWVILGFNYIIGGSVINELIGNL .**. *...***** *. *. * ***** * * * *****. *** .. *. .***.* *
10	CE	YFLLEPMVISVLYVWCQVN KDTIVSF WFGMRF PARYLPWVLWG FNAVLRGGGTNE LVGIL
	HS	VGHLYFFLMFRYPMDLGGRNFLSTPQFLYRWLPSRRGGVSGFGVPPASMRRAADQNGGG *** ***. ..** . * ...***.**. *. **. * * * * *
	CE	VGHAYFFVALKY PDEYGV-DLISTPEFLHRLIPDEDGGIHG---QDGNI RGARQQPRG--
15	HS	RHNW--GQGF RLGDQ * * * * *
	CE	-HQWP GGVGARLGGN

20 Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. W01493), but many sequences were not distinct and the same ORF as that in the

25 present cDNA was not identified.

 <HP10389> (Sequence Number 7, 25, 43)

 Determination of the whole base sequence for the cDNA insert of clone HP10389 obtained from the human epidermoid carcinoma cell line KBc cDNA libraries revealed the structure

30 consisting of a 5'-non-translation region of 62 bp, an ORF of

321 bp, and a 3'-non-translation region of 270 bp. The ORF codes for a protein consisting of 106 amino acid residues with a hydrophobic region of putative two transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile of 5 the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 12 kDa that was almost consistent with the molecular weight of 11,528 predicted from the ORF.

The search of the protein data base using the amino acid 10 sequence of the present protein revealed that the protein was not analogous to any of known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H70816), but many sequences 15 were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10408> (Sequence Number 8, 26, 44)

Determination of the whole base sequence for the cDNA insert of clone HP10408 obtained from the human stomach cancer 20 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 74 bp, an ORF of 237 bp, and a 3'-non-translation region of 128 bp. The ORF codes for a protein consisting of 78 amino acid residues with a putative signal sequence at the N-terminal as well as a sequence of one 25 putative interior transmembrane domain. Figure 9 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified

upon transduction into the COS7 cells of an expression vector in which a HindIII-BglII fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 70 amino acid residues in the present protein was inserted at the 5 HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 9 kDa that was almost consistent with the molecular weight of 8,396 predicted from the ORF.

Furthermore, the search of GenBank using the base sequence 10 of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T94049), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

15 <HP10412> (Sequence Number 9, 27, 45)

Determination of the whole base sequence for the cDNA insert of clone HP10412 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 55 bp, an ORF of 945 bp, and a 3'-non- 20 translation region of 131 bp. The ORF codes for a protein consisting of 314 amino acid residues with one transmembrane domain at the N-terminal. Figure 10 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that 25 the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-ApaI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 65

amino acid residues in the present prot in was inserted at the HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 44 kDa that was somewhat larger than the molecular weight of 35,610 predicted
5 from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the nematode hypothetical protein of 28.5 kDa (SWISS-PROT Accession No. P34623). Table 10 indicates the
10 comparison of the amino acid sequences between the human protein of the present invention (HP) and the nematode hypothetical protein of 28.5 kDa (CE). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino
15 acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 42.8% in the C-terminal region of 243 amino acid residues.

Table 10

HP MVAPVWYLVAALLVGFILFLTRSGRAASAGQEPLNEELAGAGRVAQPGPLEPEEPRA
 5 HP GGRPRRRRLGSRLQAQRRAQRVAWAEA--DENEEAVILAQEEEGVEKPAETHLSGKIG
 * . *.*..* ***
 CE MRRNARRRVNRDEQEDGFVNHMNDGEDVEDLDGGAEQFEYDEDGKKIG
 HP AKKLRKLEEKQARKAQREAEAAEREERKRLESQREAEEKKEERLRLEEEQKEEEE--RK
 .* ***..*.... ** * ***** *..* * *..*** . *...*.*** **
 10 CE KRKAALKQAKEEKRQMREYEVREREERKRREEER--EKKRDEERAKEADEKAEEERLRK
 HP AREEQAQREHEEYLKLKEAFVVEEGVGETMTEEQSQSQLTEFINYIKQSKVVLLEDLAS
 .***....***** .*.*..*****..... *...*.*** .*** ...*.**
 CE EREEKERKEHEEYLAMKASFAIEEG-TDAIEGEEAENLIRDVFVDYVTKTNKVNNIDELOSS
 HP QVGLRTQDTINRIQDLLAEGTTITGVVIDDRGKFIYITPEELAAVANFIRQRGRVSIAELAQ
 . ***....*..**.** . **.*****. **.****.**.***** *.*.
 CE HFGLKSEDAVNRLQHFIEEGLVQGVMDDRKGKFIYISDEEFAAVAKFINQRGRVSIHEIAE
 HP ASNSLLAWGRESPAQAPA
 .**.** . *.*.
 CE QSNRLIRLETPSAAE

20

Furthermore, the search of GenBank using the base sequence
 of the present cDNA revealed that there existed some ESTs
 possessing the homology of 90% or more (for example, Accession
 25 No. T09311), but it can not be assessed whether these ESTs with
 partial sequences code for the same protein as the protein of
 the present invention.

<HP10413> (Sequence Number 10, 28, 46)

Determination of the whole base sequence for the cDNA
 30 insert of clone HP10413 obtained from the human stomach cancer

cDNA libraries revealed the structure consisting of a 5'-non-translation region of 78 bp, an ORF of 588 bp, and a 3'-non-translation region of 1209 bp. The ORF codes for a protein consisting of 195 amino acid residues with one transmembrane domain at the N-terminal. Figure 11 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-PmaCI fragment containing a cDNA fragment encoding the N-terminal 65 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. The in vitro translation resulted in the formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 21,671 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the swine steroid membrane-binding protein (GenBank Accession No. X99714). Table 11 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the swine steroid membrane-binding protein (SS). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 96.4% among the entire regions.

Table 11

HP MAAEDVVATGADPSDLESGGLLHEIFTSPLNLLLLGLCIFLLYKIVRGDQPAASGDSDDD
*****.*****.**.*****

5 SS MAAEDVAATGADPSELEGGGLLHEIFTSPLNLLLLGLCIFLLYKIVRGDQPAAS-DSDDD

HP EPPPLPRLKRRDFTPAELRRFDGVQDPRIILMAINGKVDVTKGRKFYGPPEGPYGVFAGRD

SS EPPPLPRLKRRDFTPAELRRFDGVQDPRIILMAINGKVDVTKGRKFYGPPEGPYGVFAGRD

HP ASRGLATFCLDKEALKDEYDDLSDLTAAQQETLSDWESQFTFKYHHVGKLLKEGEEPTVY

10 SS ASRGLATFCLDKEALKDEYDDLSDLTPAQQTTLNDWDSQFTFKYHHVGKLLKEGEEPTVY

HP SDEEEPKDESARKND

SS SDEEEPKDESARKND

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA021062), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10415> (Sequence Number 11, 29, 47)

Determination of the whole base sequence for the cDNA insert of clone HP10415 obtained from the human stomach cancer 25 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 71 bp, an ORF of 1389 bp, and a 3'-non-translation region of 103 bp. The ORF codes for a protein consisting of 462 amino acid residues with one transmembrane domain at the N-terminal. Figure 12 depicts the 30 hydrophobicity/hydrophilicity profile of the present protein

obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 48 kDa that was somewhat smaller than the molecular weight of 52,458 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the cytochrome P450 as exemplified by the simian cytochrome P450IIIA8 (SWISS-PROT Accession No. P33268). Table 12 indicates the comparison of the amino acid sequences between
10 the human protein of the present invention (HP) and the simian cytochrome P450IIIA8 (CP). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The
15 both proteins possessed a homology of 21.3% among the entire regions.

Table 12

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs

possessing the homology of 90% or more (for example, Accession No. AA381169), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

5 The cytochrome P450 participates in the drug metabolism and can be utilized as a catalyst in organic synthesis reactions such as oxidation and so on.

<HP10419> (Sequence Number 12, 30, 48)

Determination of the whole base sequence for the cDNA 10 insert of clone HP10419 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 170 bp, an ORF of 744 bp, and a 3'-non-translation region of 1116 bp. The ORF codes for a protein consisting of 247 amino acid residues with a hydrophobic region 15 of putative seven transmembrane domains. Figure 13 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method.

The search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing 20 the homology of 90% or more (for example, Accession No. AA340663), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10424> (Sequence Number 13, 31, 49)

25 Determination of the whole base sequence for the cDNA insert of clone HP10424 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 97 bp, an ORF of 342 bp, and a 3'-non-translation region of 54 bp. The ORF codes for a protein

consisting of 113 amino acid residues with one transmembrane domain at the N-terminal. Figure 14 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that
5 the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-AccI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 58 amino
10 acid residues in the present protein was inserted at the HindIII-SmaI site of pSSD3. The in vitro translation resulted in the formation of a translation product of 14 kDa that was somewhat larger than the molecular weight of 12,784 predicted from the ORF.

15 Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA401979), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein
20 of the present invention.

<HP10428> (Sequence Number 14, 32, 50)

Determination of the whole base sequence for the cDNA insert of clone HP10428 obtained from the human epidermoid carcinoma cell line KBc cDNA libraries revealed the structure
25 consisting of a 5'-non-translation region of 287 bp, an ORF of 1098 bp, and a 3'-non-translation region of 659 bp. The ORF codes for a protein consisting of 365 amino acid residues with a hydrophobic region of putative nine transmembrane domains.

Figure 15 depicts the hydrophobicity/hydrophilicity profile of

the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation did not reveal the formation of distinct bands and only revealed the formation of smearable bands at the high-molecular-weight position.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein YML038c (NBRF Accession No. S49741). Table 13 indicates the comparison of the amino acid sequences between the human
10 protein of the present invention (HP) and the baker's yeast hypothetical membrane protein YML038c (SC). - represents a gap,
* represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present
15 invention. The both proteins possessed a homology of 26.3% among the N-terminal region of 281 amino acid residues.

Table 13

	HP	MGRWALDVAFLWKAVLTLGLVL-LYYCFSIGITFYNEWL-----TKSFHFPLFMTMLHLA
	 *.* *....**.*. . . . *....* .* *
5	SC	MNRTVFLAFVGWYFCS-IALSIYNRWMFDPKDGLGIGYPVLVTTFHQA
	HP	VIFLFSALSRALVQ---CSSHRARVVLSWADYLRRVAPTLATALDVGLSNWSFLYVTVS
		...*.*... * . . . * . . *. .*. . ***.*.* .***** * * *...
	SC	TLWLLSGIYIKLRHKPVKNVLRKNNGFNWSFFLKFLPTAVASAGDIGLSNVSFQYVPLT
	HP	LYTMTKSSAVLFILIFSLIFKLEEL--RAALVLVVLLIAGGLFMF-----TYKSTQ-FN
10		.***.***.. *.*.*. *****.. . ***..* . *.* .
	SC	IYTIIKSSSIAFVLLFGCIFKLEKFHWKLALSVIIMFVGVALMVKPSDSTSTKNDQALV
	HP	VEGPALVLGASFIGGIRWTLTQMLLQKAELGLQNPIDTMPHLQPLMFLGLFPLFAVFEGL
		. * ***..* ..*.*. ***.*... * . . .
	SC	IFGSFLVLAASSCLSGLRWVYTQLMLRNNPIQTNTAAVEES-DGALFTENEDNVDNEPVV
15	HP	HLSTSEKIFRFQDT-GLLLRLGSLFLGGILAFGLGFSEFLVSRSSLTLISAGIFKEV
		.*..... .* * . *....* ... ***.... . . * ..**.
	SC	NLANNKMLENFGESKPHIHTIHQ--LAPIMGITLLLTS-LLVEKPPGIFS-SSIFRLD
	HP	CTLLLAHLLGDQISLLNWLGFA CLSGISLHVALKALHSRGDGPKALKGLGSSPDLEL
20	SC	TSNGGVGTETTVLSIVRGIVLLILPGFAVFLLTICEFSILEQTPVLTIVGIVKELLTV
	HP	LLRSSQREECDNEEEYFVAQGQQ
	SC	IFGIIILSERLSGFYNWLGLIIMADVCYNYFRYKQDLLQKYHSVSTQDNRNELKGFD

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. AA018345), but it can not be assessed whether these ESTs

with partial sequences code for the same protein as the protein of the present invention.

<HP10429> (Sequence Number 15, 33, 51)

Determination of the whole base sequence for the cDNA 5 insert of clone HP10429 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 156 bp, an ORF of 681 bp, and a 3'-non-translation region of 206 bp. The ORF codes for a protein 10 consisting of 226 amino acid residues with four transmembrane domains. Figure 16 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 25 kDa that was almost consistent with the molecular weight of 25,321 predicted from the ORF.

15 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or 20 more (for example, Accession No. AA315933), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

<HP10432> (Sequence Number 16, 34, 52)

Determination of the whole base sequence for the cDNA 25 insert of clone HP10429 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 28 bp, an ORF of 390 bp, and a 3'-non-translation region of 554 bp. The ORF codes for a protein consisting of 129 amino acid residues with a signal-like

sequence at the N-terminal and one interior transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 17 depicts the hydrophobicity/hydrophilicity profile of the present protein 5 obtained by the Kyte-Doolittle method.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed 10 that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T74424), but the same ORF as that in the present cDNA was not identified.

<HP10433> (Sequence Number 17, 35, 53)

Determination of the whole base sequence for the cDNA 15 insert of clone HP10433 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 72 bp, an ORF of 492 bp, and a 3'-non-translation region of 131 bp. The ORF codes for a protein 20 consisting of 163 amino acid residues with one transmembrane domain at the N-terminal. Figure 18 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified 25 upon transduction into the COS7 cells of an expression vector in which a HindIII-Eco81I fragment (treated with the mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 137 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein

is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 18,617 predicted from the ORF.

5 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or
10 more (for example, Accession No. H84693), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10480> (Sequence Number 18, 36, 54)

Determination of the whole base sequence for the cDNA
15 insert of clone HP10480 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 79 bp, an ORF of 582 bp, and a 3'-non-translation region of 1253 bp. The ORF codes for a protein consisting of 193 amino acid residues with four transmembrane
20 domains. Figure 19 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,445 predicted from the ORF.

25 The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or

more (for example, Accession No. W93606), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

The present invention provides human proteins having transmembrane domains and cDNAs encoding said proteins. All of the proteins of the present invention are putative proteins controlling the proliferation and differentiation of the cells, because said proteins exist on the cell membrane. Therefore, the proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. Furthermore, said DNAs can be used for the expression of large amounts of said proteins. The cells expressing large amounts of membrane proteins with transfection of these membrane protein genes can be applied to the detection of the corresponding ligands, the screening of novel low-molecular medicines, and so on.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for

analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in

assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

25 Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source

and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, 5 pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation

10 Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell 15 populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention 20 is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

25 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H.

Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500; 5 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of 10 spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Po lyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse 15 and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of 20 hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; DeVries et al., J. Exp. Med. 173:1205-1211, 25 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 -Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et

al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark,S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

10 Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in
15 Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans);
20 Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

25 A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined

immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be 5 caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis 10 viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

15 Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, 20 insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or 25 other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be

possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of
5 activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance,
10 which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure
15 to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful
20 in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its
25 recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2

activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the 5 natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may 10 also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may 15 also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of 20 appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow et al., *Science* 257:789-792 (1992) and 25 Turka et al., *Proc. Natl. Acad. Sci USA*, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., *Fundamental Immunology*, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease.

The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosus in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., *Fundamental Immunology*, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B

lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression

vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression 5 of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection *in vivo*.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface 10 of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II 15 molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins 20 on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which 25 blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a

T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

- 5 Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays
- 10 for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol.
- 15 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowman et al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988;
- 20 Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John

Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 20 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in:

Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et 5 al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et 10 al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad. Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in 15 regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation 20 of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the 25 growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently

of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation 5 of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal 10 nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells 15 or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

20 Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. *Cellular Biology* 15:141-151, 1995; Keller et al., *Molecular and Cellular Biology* 13:473-486, 1993; McClanahan et al., *Blood* 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney,

M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high
5 proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of
10 Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc.,
15 New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

20 A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

25 A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the

invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, 5 trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract 10 bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or 15 processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, 20 which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a 25 tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue

formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of 5 tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of 10 tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or 15 sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as 20 mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized 25 neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders,

such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

5 Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

10 It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular 15 endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

20 A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for 25 promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, 5 neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year 10 Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are 15 characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of 20 the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, 25 as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of

the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

- 5 The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale 10 et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or 15 chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell 20 population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of 25 infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell

population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or 5 peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays 10 that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in 15 Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller 20 et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or 25 thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A

protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors

of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include
5 without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al.,
10 Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

15 Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by
20 inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can
25 be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis,

complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be 5 useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of 10 the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary 15 to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

20 · Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi 25 and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in

bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, 5 protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing 10 effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related 15 diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another 20 material or entity which is cross-reactive with such protein.

Sequence Table

(2) INFORMATION FOR SEQ ID NO: 1:

5 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 382

(B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

10 (iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Liver

15 (D) CLONE NAME: HP01263

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

	Met	Gly	Leu	Leu	Leu	Pro	Leu	Ala	Leu	Cys	Ile	Leu	Val	Leu	Cys	Cys
20	1					5					10				15	
	Gly	Ala	Met	Ser	Pro	Pro	Gln	Leu	Ala	Leu	Asn	Pro	Ser	Ala	Leu	Leu
								20			25				30	
	Ser	Arg	Gly	Cys	Asn	Asp	Ser	Asp	Val	Leu	Ala	Val	Ala	Gly	Phe	Ala
									35		40			45		
25	Leu	Arg	Asp	Ile	Asn	Lys	Asp	Arg	Lys	Asp	Gly	Tyr	Val	Leu	Arg	Leu
							50		55			60				
	Asn	Arg	Val	Asn	Asp	Ala	Gln	Glu	Tyr	Arg	Arg	Gly	Gly	Leu	Gly	Ser
							65		70			75			80	
	Leu	Phe	Tyr	Leu	Thr	Leu	Asp	Val	Leu	Glu	Thr	Asp	Cys	His	Val	Leu
30								85			90			95		
	Arg	Lys	Lys	Ala	Trp	Gln	Asp	Cys	Gly	Met	Arg	Ile	Phe	Phe	Glu	Ser
							100			105			110			
	Val	Tyr	Gly	Gln	Cys	Lys	Ala	Ile	Phe	Tyr	Met	Asn	Asn	Pro	Ser	Arg
							115		120			125				
35	Val	Leu	Tyr	Leu	Ala	Ala	Tyr	Asn	Cys	Thr	Leu	Arg	Pro	Val	Ser	Lys
							130		135			140				
	Lys	Lys	Ile	Tyr	Met	Thr	Cys	Pro	Asp	Cys	Pro	Ser	Ser	Ile	Pro	Thr
145							150			155			160			

Asp Ser Ser Asn His Gln Val Leu Glu Ala Ala Thr Glu Ser Leu Ala
 165 170 175
 Lys Tyr Asn Asn Glu Asn Thr Ser Lys Gln Tyr Ser Leu Phe Lys Val
 180 185 190
 5 Thr Arg Ala Ser Ser Gln Trp Val Val Gly Pro Ser Tyr Phe Val Glu
 195 200 205
 Tyr Leu Ile Lys Glu Ser Pro Cys Thr Lys Ser Gln Ala Ser Ser Cys
 210 215 220
 Ser Leu Gln Ser Ser Asp Ser Val Pro Val Gly Leu Cys Lys Gly Ser
 10 225 230 235 240
 Leu Thr Arg Thr His Trp Glu Lys Phe Val Ser Val Thr Cys Asp Phe
 245 250 255
 Phe Glu Ser Gln Ala Pro Ala Thr Gly Ser Glu Asn Ser Ala Val Asn
 260 265 270
 15 Gln Lys Pro Thr Asn Leu Pro Lys Val Glu Glu Ser Gln Gln Lys Asn
 275 280 285
 Thr Pro Pro Thr Asp Ser Pro Ser Lys Ala Gly Pro Arg Gly Ser Val
 290 295 300
 Gln Tyr Leu Pro Asp Leu Asp Asp Lys Asn Ser Gln Glu Lys Gly Pro
 20 305 310 315 320
 Gln Glu Ala Phe Pro Val His Leu Asp Leu Thr Thr Asn Pro Gln Gly
 325 330 335
 Glu Thr Leu Asp Ile Ser Phe Leu Phe Leu Glu Pro Met Glu Glu Lys
 340 345 350
 25 Leu Val Val Leu Pro Phe Pro Lys Glu Lys Ala Arg Thr Ala Glu Cys
 355 360 365
 Pro Gly Pro Ala Gln Asn Ala Ser Pro Leu Val Leu Pro Pro
 370 375 380

30

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 317

(B) TYPE: Amino acid

35 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP01299

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Trp Leu Tyr Leu Ala Ala Phe Val Gly Leu Tyr Tyr Leu Leu His
1 5 10 15

10 Trp Tyr Arg Glu Arg Gln Val Val Ser His Leu Gln Asp Lys Tyr Val
20 25 30

Phe Ile Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Leu Ala Arg Gln
35 40 45

Leu Asp Ala Arg Gly Leu Arg Val Leu Ala Ala Cys Leu Thr Glu Lys
15 50 55 60

Gly Ala Glu Gln Leu Arg Gly Gln Thr Ser Asp Arg Leu Glu Thr Val
65 70 75 80

Thr Leu Asp Val Thr Lys Met Glu Ser Ile Ala Ala Ala Thr Gln Trp
85 90 95

20 Val Lys Glu His Val Gly Asp Arg Gly Leu Trp Gly Leu Val Asn Asn
100 105 110

Ala Gly Ile Leu Thr Pro Ile Thr Leu Cys Glu Trp Leu Asn Thr Glu
115 120 125

Asp Ser Met Asn Met Leu Lys Val Asn Leu Ile Gly Val Ile Gln Val
25 130 135 140

Thr Leu Ser Met Leu Pro Leu Val Arg Arg Ala Arg Gly Arg Ile Val
145 150 155 160

Asn Val Ser Ser Ile Leu Gly Arg Val Ala Phe Phe Val Gly Gly Tyr
165 170 175

30 Cys Val Ser Lys Tyr Gly Val Glu Ala Phe Ser Asp Ile Leu Arg Arg
180 185 190

Glu Ile Gln His Phe Gly Val Lys Ile Ser Ile Val Glu Pro Gly Tyr
195 200 205

Phe Arg Thr Gly Met Thr Asn Met Thr Gln Ser Leu Glu Arg Met Lys
35 210 215 220

Gln Ser Trp Lys Glu Ala Pro Lys His Ile Lys Glu Thr Tyr Gly Gln
225 230 235 240

Gln Tyr Phe Asp Ala Leu Tyr Asn Ile Met Lys Glu Gly Leu Leu Asn

86

	245	250	255
	Cys Ser Thr Asn Leu Asn Leu Val Thr Asp Cys Met Glu His Ala Leu		
	260	265	270
	Thr Ser Val His Pro Arg Thr Arg Tyr Ser Ala Gly Trp Asp Ala Lys		
5	275	280	285
	Phe Phe Phe Ile Pro Leu Ser Tyr Leu Pro Thr Ser Leu Ala Asp Tyr		
	290	295	300
	Ile Leu Thr Arg Ser Trp Pro Lys Pro Ala Gln Ala Val		
	305	310	315

10

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 296
- 15 (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: Protein
- (iii) HYPOTHETICAL: No

20 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP01347

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

	Met Ser Asp Ser Lys Glu Pro Arg Val Gln Gln Leu Gly Leu Leu Gly			
	1	5	10	15
	Cys Leu Gly His Gly Ala Leu Val Leu Gln Leu Leu Ser Phe Met Leu			
30	20	25		30
	Leu Ala Gly Val Leu Val Ala Ile Leu Val Gln Val Ser Lys Val Pro			
	35	40		45
	Ser Ser Leu Ser Gln Glu Gln Ser Glu Gln Asp Ala Ile Tyr Gln Asn			
	50	55	60	
35	Leu Thr Gln Leu Lys Ala Ala Val Gly Glu Leu Ser Glu Lys Ser Lys			
	65	70	75	80
	Leu Gln Glu Ile Tyr Gln Glu Leu Thr Gln Leu Lys Ala Ala Val Gly			
	85	90	95	

Glu L u Pro Glu Lys Ser Lys Leu Gln Glu Ile Tyr Gln Glu Leu Thr
 100 105 110
 Arg Leu Lys Ala Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Leu Gln
 115 120 125
 5 Glu Ile Tyr Gln Glu Leu Thr Arg Leu Lys Ala Ala Val Gly Glu Leu
 130 135 140
 Pro Glu Lys Ser Lys Leu Gln Glu Ile Tyr Gln Glu Leu Thr Arg Leu
 145 150 155 160
 Lys Ala Ala Val Gly Glu Leu Pro Glu Lys Ser Lys Leu Gln Glu Ile
 10 165 170 175
 Tyr Gln Glu Leu Thr Glu Leu Lys Ala Ala Val Gly Glu Leu Pro Glu
 180 185 190
 Lys Ser Lys Leu Gln Glu Ile Tyr Gln Glu Leu Thr Gln Leu Lys Ala
 195 200 205
 15 Ala Val Gly Glu Leu Pro Asp Gln Ser Lys Gln Gln Gln Ile Tyr Gln
 210 215 220
 Glu Leu Thr Asp Leu Lys Thr Ala Phe Glu Arg Leu Cys Arg His Cys
 225 230 235 240
 Pro Lys Asp Trp Thr Phe Phe Gln Gly Asn Cys Tyr Phe Met Ser Asn
 20 245 250 255
 Ser Gln Arg Asn Trp His Asp Ser Val Thr Ala Cys Gln Glu Val Arg
 260 265 270
 Ala Gln Leu Val Val Ile Lys Thr Ala Glu Glu Gln Leu Pro Ala Val
 275 280 285
 25 Leu Glu Gln Trp Arg Thr Gln Gln
 290 295

(2) INFORMATION FOR SEQ ID NO: 4:

30 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 197

(B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

35 (iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP01440

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5

Met Cys Thr Gly Lys Cys Ala Arg Cys Val Gly Leu Ser Leu Ile Thr
1 5 10 15
Leu Cys Leu Val Cys Ile Val Ala Asn Ala Leu Leu Leu Val Pro Asn
20 25 30
10 Gly Glu Thr Ser Trp Thr Asn Thr Asn His Leu Ser Leu Gln Val Trp
35 40 45
Leu Met Gly Gly Phe Ile Gly Gly Leu Met Val Leu Cys Pro Gly
50 55 60
Ile Ala Ala Val Arg Ala Gly Gly Lys Gly Cys Cys Gly Ala Gly Cys
15 65 70 75 80
Cys Gly Asn Arg Cys Arg Met Leu Arg Ser Val Phe Ser Ser Ala Phe
85 90 95
Gly Val Leu Gly Ala Ile Tyr Cys Leu Ser Val Ser Gly Ala Gly Leu
100 105 110
20 Arg Asn Gly Pro Arg Cys Leu Met Asn Gly Glu Trp Gly Tyr His Phe
115 120 125
Glu Asp Thr Ala Gly Ala Tyr Leu Leu Asn Arg Thr Leu Trp Asp Arg
130 135 140
Cys Glu Ala Pro Pro Arg Val Val Pro Trp Asn Val Thr Leu Phe Ser
25 145 150 155 160
Leu Leu Val Ala Ala Ser Cys Leu Glu Ile Val Leu Cys Gly Ile Gln
165 170 175
Leu Val Asn Ala Thr Ile Gly Val Phe Cys Gly Asp Cys Arg Lys Lys
180 185 190
30 Gln Asp Thr Pro His
195

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

35 (A) LENGTH: 221
(B) TYPE: Amino acid
(D) TOPOLOGY: Linear
(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: N

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

5 (B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP01526

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

10 Met Glu Ala Gly Gly Phe Leu Asp Ser Leu Ile Tyr Gly Ala Cys Val
1 5 10 15
Val Phe Thr Leu Gly Met Phe Ser Ala Gly Leu Ser Asp Leu Arg His
20 25 30
Met Arg Met Thr Arg Ser Val Asp Asn Val Gln Phe Leu Pro Phe Leu
15 35 40 45
Thr Thr Glu Val Asn Asn Leu Gly Trp Leu Ser Tyr Gly Ala Leu Lys
50 55 60
Gly Asp Gly Ile Leu Ile Val Val Asn Thr Val Gly Ala Ala Leu Gln
65 70 75 80
20 Thr Leu Tyr Ile Leu Ala Tyr Leu His Tyr Cys Pro Arg Lys Arg Val
85 90 95
Val Leu Leu Gln Thr Ala Thr Leu Leu Gly Val Leu Leu Leu Gly Tyr
100 105 110
Gly Tyr Phe Trp Leu Leu Val Pro Asn Pro Glu Ala Arg Leu Gln Gln
25 115 120 125
Leu Gly Leu Phe Cys Ser Val Phe Thr Ile Ser Met Tyr Leu Ser Pro
130 135 140
Leu Ala Asp Leu Ala Lys Val Ile Gln Thr Lys Ser Thr Gln Cys Leu
145 150 155 160
30 Ser Tyr Pro Leu Thr Ile Ala Thr Leu Leu Thr Ser Ala Ser Trp Cys
165 170 175
Leu Tyr Gly Phe Arg Leu Arg Asp Pro Tyr Ile Met Val Ser Asn Phe
180 185 190
Pro Gly Ile Val Thr Ser Phe Ile Arg Phe Trp Leu Phe Trp Lys Tyr
35 195 200 205
Pro Gln Glu Gln Asp Arg Asn Tyr Trp Leu Leu Gln Thr
210 215 220

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 251

(B) TYPE: Amino acid

5 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

10 (A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10230

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

15

Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr Arg
1 5 10 15
Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys Leu Gly
20 25 30
20 Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala Phe Leu Tyr
35 40 45
Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe Tyr Phe Pro Val
50 55 60
Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn Leu Tyr Phe Leu Tyr
25 65 70 75 80
Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala Phe Asp Gly Arg Pro Ala
85 90 95
Asp Tyr Leu Phe Met Leu Leu Phe Asn Trp Ile Cys Ile Val Ile Thr
100 105 110
30 Gly Leu Ala Met Asp Met Gln Leu Leu Met Ile Pro Leu Ile Met Ser
115 120 125
Val Leu Tyr Val Trp Ala Gln Leu Asn Arg Asp Met Ile Val Ser Phe
130 135 140
Trp Phe Gly Thr Arg Phe Lys Ala Cys Tyr Leu Pro Trp Val Ile Leu
35 145 150 155 160
Gly Phe Asn Tyr Ile Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly
165 170 175
Asn Leu Val Gly His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met

91

	180	185	190
	Asp Leu Gly Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe Leu Tyr Arg		
	195	200	205
	Trp Leu Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly Val Pro Pro		
5	210	215	220
	Ala Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly Arg His		
	225	230	235
	Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln		
	245	250	

10

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 106

15 (B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

20 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Epidermoid carcinoma

(C) CELL LINE: KB

(D) CLONE NAME: HP10389

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Ala Thr Pro Gly Pro Val Ile Pro Glu Val Pro Phe Glu Pro Ser

1 5 10 15

30 Lys Pro Pro Val Ile Glu Gly Leu Ser Pro Thr Val Tyr Arg Asn Pro

20 25 30

Glu Ser Phe Lys Glu Lys Phe Val Arg Lys Thr Arg Glu Asn Pro Val

35 40 45

Val Pro Ile Gly Cys Leu Ala Thr Ala Ala Leu Thr Tyr Gly Leu

35 50 55 60

Tyr Ser Phe His Arg Gly Asn Ser Gln Arg Ser Gln Leu Met Met Arg

65 70 75 80

Thr Arg Ile Ala Ala Gln Gly Phe Thr Val Ala Ala Ile Leu Leu Gly

92

85 90

Leu Ala Val Thr Ala Met Lys Ser Arg Pro
100 105

5

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 78

10 (B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

15 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10408

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly Ser

1 5 10 15

Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu Lys Glu

25 20 25 30

Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu Glu Leu Leu

35 35 40 45

Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly Thr Ser Val Thr

50 55 60

30 Leu His His Ala Arg Ser Gln His His Val Val Cys Asn Thr

65 70 75

(2) INFORMATION FOR SEQ ID NO: 9:

35 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 314

(B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- 5 (A) ORGANISM: *Homo sapiens*
 (B) CELL KIND: Stomach cancer
 (D) CLONE NAME: HP10412

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

10

Met Val Ala Pro Val Trp Tyr Leu Val Ala Ala Ala Leu Leu Val Gly
1 5 10 15
Phe Ile Leu Phe Leu Thr Arg Ser Arg Gly Arg Ala Ala Ser Ala Gly
20 25 30
15 Gln Glu Pro Leu His Asn Glu Glu Leu Ala Gly Ala Gly Arg Val Ala
35 40 45
Gln Pro Gly Pro Leu Glu Pro Glu Glu Pro Arg Ala Gly Gly Arg Pro
50 55 60
Arg Arg Arg Arg Asp Leu Gly Ser Arg Leu Gln Ala Gln Arg Arg Ala
20 65 70 75 80
Gln Arg Val Ala Trp Ala Glu Ala Asp Glu Asn Glu Glu Ala Val
85 90 95
Ile Leu Ala Gln Glu Glu Gly Val Glu Lys Pro Ala Glu Thr His
100 105 110
25 Leu Ser Gly Lys Ile Gly Ala Lys Lys Leu Arg Lys Leu Glu Glu Lys
115 120 125
Gln Ala Arg Lys Ala Gln Arg Glu Ala Glu Glu Ala Glu Arg Glu Glu
130 135 140
Arg Lys Arg Leu Glu Ser Gln Arg Glu Ala Glu Trp Lys Lys Glu Glu
30 145 150 155 160
Glu Arg Leu Arg Leu Glu Glu Glu Gln Lys Glu Glu Glu Glu Arg Lys
165 170 175
Ala Arg Glu Glu Gln Ala Gln Arg Glu His Glu Glu Tyr Leu Lys Leu
180 185 190
35 Lys Glu Ala Phe Val Val Glu Glu Glu Gly Val Gly Glu Thr Met Thr
195 200 205
Glu Glu Gln Ser Gln Ser Phe Leu Thr Glu Phe Ile Asn Tyr Ile Lys
210 215 220

Gln Ser Lys Val Val Leu Leu Glu Asp Leu Ala Ser Gln Val Gly Leu
 225 230 235 240
 Arg Thr Gln Asp Thr Ile Asn Arg Ile Gln Asp Leu Leu Ala Glu Gly
 245 250 255
 5 Thr Ile Thr Gly Val Ile Asp Asp Arg Gly Lys Phe Ile Tyr Ile Thr
 260 265 270
 Pro Glu Glu Leu Ala Ala Val Ala Asn Phe Ile Arg Gln Arg Gly Arg
 275 280 285
 Val Ser Ile Ala Glu Leu Ala Gln Ala Ser Asn Ser Leu Ile Ala Trp
 10 290 295 300
 Gly Arg Glu Ser Pro Ala Gln Ala Pro Ala
 305 310

15 (2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 195
- (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear

20 (ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10413

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

30 Met Ala Ala Glu Asp Val Val Ala Thr Gly Ala Asp Pro Ser Asp Leu
 1 5 10 15
 Glu Ser Gly Gly Leu Leu His Glu Ile Phe Thr Ser Pro Leu Asn Leu
 20 25 30
 Leu Leu Leu Gly Leu Cys Ile Phe Leu Leu Tyr Lys Ile Val Arg Gly
 35 35 40 45
 Asp Gin Pr Ala Ala Ser Gly Asp Ser Asp Asp Asp Glu Pro Pro Pro
 50 55 60
 Leu Pro Arg Leu Lys Arg Arg Asp Phe Thr Pro Ala Glu Leu Arg Arg

95

65	70	75	80
Phe Asp Gly Val Gln Asp Pro Arg Ile L u Met Ala II Asn Gly Lys			
85	90	95	
Val Phe Asp Val Thr Lys Gly Arg Lys Phe Tyr Gly Pro Glu Gly Pro			
5	100	105	110
Tyr Gly Val Phe Ala Gly Arg Asp Ala Ser Arg Gly Leu Ala Thr Phe			
115	120	125	
Cys Leu Asp Lys Glu Ala Leu Lys Asp Glu Tyr Asp Asp Leu Ser Asp			
130	135	140	
10	Leu Thr Ala Ala Gln Gln Glu Thr Leu Ser Asp Trp Glu Ser Gln Phe		
145	150	155	160
Thr Phe Lys Tyr His His Val Gly Lys Leu Leu Lys Glu Gly Glu Glu			
165	170	175	
Pro Thr Val Tyr Ser Asp Glu Glu Pro Lys Asp Glu Ser Ala Arg			
15	180	185	190
Lys Asn Asp			
	195		

20 (2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 462
- (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear

25 (ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10415

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

35	Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu Ala Leu Val		
1	5	10	15
Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala Ala Gly Ile			
20	25	30	

Pr Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn L u Pro Asp Ile
 35 40 45
 Val Asn S r Gly Ser Leu His Glu Phe Leu Val Asn Leu His Glu Arg
 50 55 60
 5 Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg Arg Leu Val Val Ser
 65 70 75 80
 Leu Gly Thr Val Asp Val Leu Lys Gln His Ile Asn Pro Asn Lys Thr
 85 90 95
 Leu Asp Pro Phe Glu Thr Met Leu Lys Ser Leu Leu Arg Tyr Gln Ser
 10 100 105 110
 Gly Gly Gly Ser Val Ser Glu Asn His Met Arg Lys Lys Leu Tyr Glu
 115 120 125
 Asn Gly Val Thr Asp Ser Leu Lys Ser Asn Phe Ala Leu Leu Lys
 130 135 140
 15 Leu Ser Glu Glu Leu Leu Asp Lys Trp Leu Ser Tyr Pro Glu Thr Gln
 145 150 155 160
 His Val Pro Leu Ser Gln His Met Leu Gly Phe Ala Met Lys Ser Val
 165 170 175
 Thr Gln Met Val Met Gly Ser Thr Phe Glu Asp Asp Gln Glu Val Ile
 20 180 185 190
 Arg Phe Gln Lys Asn His Gly Thr Val Trp Ser Glu Ile Gly Lys Gly
 195 200 205
 Phe Leu Asp Gly Ser Leu Asp Lys Asn Met Thr Arg Lys Lys Gln Tyr
 210 215 220
 25 Glu Asp Ala Leu Met Gln Leu Glu Ser Val Leu Arg Asn Ile Ile Lys
 225 230 235 240
 Glu Arg Lys Gly Arg Asn Phe Ser Gln His Ile Phe Ile Asp Ser Leu
 245 250 255
 Val Gln Gly Asn Leu Asn Asp Gln Gln Ile Leu Glu Asp Ser Met Ile
 30 260 265 270
 Phe Ser Leu Ala Ser Cys Ile Ile Thr Ala Lys Leu Cys Thr Trp Ala
 275 280 285
 Ile Cys Phe Leu Thr Thr Ser Glu Glu Val Gln Lys Lys Leu Tyr Glu
 290 295 300
 35 Glu Ile Asn Gln Val Phe Gly Asn Gly Pro Val Thr Pro Glu Lys Ile
 305 310 315 320
 Glu Gln L u Arg Tyr Cys Gln His Val Leu Cys Glu Thr Val Arg Thr
 325 330 335

Ala Lys Leu Thr Pro Val Ser Ala Gln Leu Gln Asp Ile Glu Gly Lys
 340 345 350
 Ile Asp Arg Phe Ile Ile Pro Arg Glu Thr Leu Val Leu Tyr Ala Leu
 355 360 365
 5 Gly Val Val Leu Gln Asp Pro Asn Thr Trp Pro Ser Pro His Lys Phe
 370 375 380
 Asp Pro Asp Arg Phe Asp Asp Glu Leu Val Met Lys Thr Phe Ser Ser
 385 390 395 400
 Leu Gly Phe Ser Gly Thr Gln Glu Cys Pro Glu Leu Arg Phe Ala Tyr
 10 405 410 415
 Met Val Thr Thr Val Leu Leu Ser Val Leu Val Lys Arg Leu His Leu
 420 425 430
 Leu Ser Val Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu Leu Val Thr
 435 440 445
 15 Ser Ser Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg Tyr
 450 455 460

(2) INFORMATION FOR SEQ ID NO: 12:

20 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 247

(B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

25 (iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

30 (D) CLONE NAME: HP10419

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly Pro
 35 1 5 10 15
 Ala Phe Ala Leu Phe Leu Il Thr Val Ala Gly Asp Pro Leu Arg Val
 20 25 30
 Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser Leu Leu Leu

	35	40	45
	Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr Asp Arg Ser Asp		
	50	55	60
	Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly Ala Ala Val Ser Val		
5	65	70	75
	Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr Tyr Lys Leu Leu Lys Lys		
	85	90	95
	Ala Asp Glu Gly Leu Ala Ser Leu Ser Glu Asp Gly Arg Ser Pro Ile		
	100	105	110
10	Ser Ile Arg Gln Met Ala Tyr Val Ser Gly Leu Ser Phe Gly Ile Ile		
	115	120	125
	Ser Gly Val Phe Ser Val Ile Asn Ile Leu Ala Asp Ala Leu Gly Pro		
	130	135	140
	Gly Val Val Gly Ile His Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser		
15	145	150	155
	Ala Phe Leu Thr Ala Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val		
	165	170	175
	Val Phe Phe Asp Ala Cys Glu Arg Arg Arg Tyr Trp Ala Leu Gly Leu		
	180	185	190
20	Val Val Gly Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro		
	195	200	205
	Trp Tyr Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met		
	210	215	220
	Gly Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln		
25	225	230	235
	Arg Ser Leu Leu Cys Lys Asp		
	245		

30 (2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 113

(B) TYPE: Amino acid

(D) TOPOLOGY: Linear

35 (ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10424

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Asn Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile
1 5 10 15

Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser
10 20 25 30

Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Gly Leu
35 40 45

Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg
50 55 60

15 Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile
65 70 75 80

Leu Val Asn Leu Ser Met Val Glu Asn Lys Leu Val Glu Leu Glu His
85 90 95

Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser
20 100 105 110

Thr

(2) INFORMATION FOR SEQ ID NO: 14:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 365
- (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear

30 (ii) SEQUENCE KIND: Protein
(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Epidermoid carcinoma
- 35 (C) CELL LINE: KB
- (D) CLONE NAME: HP10428

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

100

Met Gly Arg Trp Ala L u Asp Val Ala Phe L u Trp Lys Ala Val Leu
 1 5 10 15
 Thr Leu Gly Leu Val Leu Leu Tyr Tyr Cys Phe Ser Ile Gly Ile Thr
 20 25 30
 5 Phe Tyr Asn Lys Trp Leu Thr Lys Ser Phe His Phe Pro Leu Phe Met
 35 40 45
 Thr Met Leu His Leu Ala Val Ile Phe Leu Phe Ser Ala Leu Ser Arg
 50 55 60
 Ala Leu Val Gln Cys Ser Ser His Arg Ala Arg Val Val Leu Ser Trp
 10 65 70 75 80
 Ala Asp Tyr Leu Arg Arg Val Ala Pro Thr Ala Leu Ala Thr Ala Leu
 85 90 95
 Asp Val Gly Leu Ser Asn Trp Ser Phe Leu Tyr Val Thr Val Ser Leu
 100 105 110
 15 Tyr Thr Met Thr Lys Ser Ser Ala Val Leu Phe Ile Leu Ile Phe Ser
 115 120 125
 Leu Ile Phe Lys Leu Glu Glu Leu Arg Ala Ala Leu Val Leu Val Val
 130 135 140
 Leu Leu Ile Ala Gly Gly Leu Phe Met Phe Thr Tyr Lys Ser Thr Gln
 20 145 150 155 160
 Phe Asn Val Glu Gly Phe Ala Leu Val Leu Gly Ala Ser Phe Ile Gly
 165 170 175
 Gly Ile Arg Trp Thr Leu Thr Gln Met Leu Leu Gln Lys Ala Glu Leu
 180 185 190
 25 Gly Leu Gln Asn Pro Ile Asp Thr Met Phe His Leu Gln Pro Leu Met
 195 200 205
 Phe Leu Gly Leu Phe Pro Leu Phe Ala Val Phe Glu Gly Leu His Leu
 210 215 220
 Ser Thr Ser Glu Lys Ile Phe Arg Phe Gln Asp Thr Gly Leu Leu Leu
 30 225 230 235 240
 Arg Val Leu Gly Ser Leu Phe Leu Gly Gly Ile Leu Ala Phe Gly Leu
 245 250 255
 Gly Phe Ser Glu Phe Leu Leu Val Ser Arg Thr Ser Ser Leu Thr Leu
 260 265 270
 35 Ser Ile Ala Gly Ile Phe Lys Glu Val Cys Thr Leu Leu Leu Ala Ala
 275 280 285
 His Leu Leu Gly Asp Gln Ile Ser Leu Leu Asn Trp Leu Gly Ph Ala
 290 295 300

101

Leu Cys Leu Ser Gly Ile Ser Leu His Val Ala Leu Lys Ala Leu His
305 310 315 320
Ser Arg Gly Asp Gly Gly Pro Lys Ala Leu Lys Gly Leu Gly Ser Ser
325 330 335
5 Pro Asp Leu Glu Leu Leu Leu Arg Ser Ser Gln Arg Glu Glu Gly Asp
340 345 350
Asn Glu Glu Glu Glu Tyr Phe Val Ala Gln Gly Gln Gln
355 360 365

10

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 226

(B) TYPE: Amino acid

15 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

20 (A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10429

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

25

Met Pro Thr Thr Lys Lys Thr Leu Met Phe Leu Ser Ser Phe Phe Thr
1 5 10 15

Ser Leu Gly Ser Phe Ile Val Ile Cys Ser Ile Leu Gly Thr Gln Ala
20 25 30

30 Trp Ile Thr Ser Thr Ile Ala Val Arg Asp Ser Ala Ser Asn Gly Ser
35 40 45

Ile Phe Ile Thr Tyr Gly Leu Phe Arg Gly Glu Ser Ser Glu Glu Leu
50 55 60

Ser His Gly Leu Ala Glu Pro Lys Lys Lys Phe Ala Val Leu Glu Ile
35 65 70 75 80

Leu Asn Asn S r Ser Gln Lys Thr Leu His Ser Val Thr Ile Leu Phe
85 90 95

Leu Val Leu Ser Leu Ile Thr Ser Leu Leu Ser Ser Gly Ph Thr Phe

102

	100	105	110
	Tyr Asn Ser Ile Ser Asn Pro Tyr Gln Thr Phe Leu Gly Pro Thr Gly		
	115	120	125
	Val Tyr Thr Trp Asn Gly Leu Gly Ala Ser Phe Val Phe Val Thr Met		
5	130	135	140
	Ile Leu Phe Val Ala Asn Thr Gln Ser Asn Gln Leu Ser Glu Glu Leu		
	145	150	155
	Phe Gln Met Leu Tyr Pro Ala Thr Thr Ser Lys Gly Thr Thr His Ser		
	165	170	175
10	Tyr Gly Tyr Ser Phe Trp Leu Ile Leu Leu Val Ile Leu Leu Asn Ile		
	180	185	190
	Val Thr Val Thr Ile Ile Ile Phe Tyr Gln Lys Ala Arg Tyr Gln Arg		
	195	200	205
	Lys Gln Glu Gln Arg Lys Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile		
15	210	215	220
	Leu Phe		
	225		

20 (2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 129
- (B) TYPE: Amino acid
- (D) TOPOLOGY: Linear

25 (ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP10432

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

35 Met Ala Arg Gly Ser Leu Arg Arg Leu Leu Arg Leu Leu Val Leu Gly

1 5 10 15

Leu Trp Leu Ala Leu Leu Arg Ser Val Ala Gly Glu Gln Ala Pro Gly

20 25 30

103

Thr Ala Pro Cys Ser Arg Gly Ser Ser Trp S r Ala Asp Leu Asp Lys
 35 40 45
 Cys M t Asp Cys Ala Ser Cys Arg Ala Arg Pro His Ser Asp Phe Cys
 50 55 60
 5 Leu Gly Cys Ala Ala Ala Pro Pro Ala Pro Phe Arg Leu Leu Trp Pro
 65 70 75 80
 Ile Leu Gly Gly Ala Leu Ser Leu Thr Phe Val Leu Gly Leu Leu Ser
 85 90 95
 Gly Phe Leu Val Trp Arg Arg Cys Arg Arg Arg Glu Lys Phe Thr Thr
 10 100 105 110
 Pro Ile Glu Glu Thr Gly Gly Glu Gly Cys Pro Ala Val Ala Leu Ile
 115 120 125
 Gln

15

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 163
 - 20 (B) TYPE: Amino acid
 - (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: Protein
- (iii) HYPOTHETICAL: No
- 25 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Liver
 - (D) CLONE NAME: HP10433
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly Ala Val Gly
 1 5 10 15
 Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val
 35 20 25 30
 Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln
 35 40 45
 Glu Thr Ser Val Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile

104

50 55 60
Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg
65 70 75 80
Asp Trp Lys Lys Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg
5 85 90 95
Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly
100 105 110
Arg Leu Val His Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu
115 120 125
10 Glu His Gln Glu Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp
130 135 140
Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser Lys Ala Leu
145 150 155 160
Pro Arg Ser
15

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 193

20 (B) TYPE: Amino acid

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: Protein

(iii) HYPOTHETICAL: No

25 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10480

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro
1 5 10 15
Leu Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly
35 20 25 30
Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp
35 40 45
Trp Lys Cys Ser Gln Glu Gly Gly Ser Gly Ser Tyr Glu Glu Gly

105

50	55	60	
Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala M t			
65	70	75	80
Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe			
5	85	90	95
Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly			
100	105	110	
Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile			
115	120	125	
10 Tyr Pro Val Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Arg Ala			
130	135	140	
Val Thr Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr			
145	150	155	160
Ile Ile Leu Ile Gly Cys Ala Phe Phe Cys Cys Leu Pro Asn Tyr			
15	165	170	175
Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser			
180	185	190	
Ala			

20

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1146

(B) TYPE: Nucleic acid

25 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

30 (A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Linear

(D) CLONE NAME: HP01263

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

35

ATGGGTCTGC TCCTTCCCCT GGCACTCTGC ATCCTAGTCC TGTGCTCGGG AGCAATGTCT	60
CCACCCCCAGC TGGCCCTCAA CCCCTCGGCT CTGCTCTCCC GGGGCTGCAA TGACTCCGAT	120
GTGCTGGCAG TTGCAGGCTT TGCCCTGCGG GATATTAACA AAGACAGAAA GGATGGCTAT	180

106

	GTGCTGAGAC TCAACCGAGT GAACGGACGCC CAGGAATACA GACGGGGTGG CCTGGGATCT	240
	CTGTTCTATC TTACACTGGA TGTGCTAGAG ACTGACTGCC ATGTGCTCG AAAGAAGGCA	300
	TGGCAAGACT GTGGAATGAG GATATTTTT GAATCAGTT ATGGTCAATG CAAAGCAATA	360
	TTTATATGA ACAACCCAAG TAGAGTTCTC TATTTAGCTG CTTATAACTG TACTCTTCGC	420
5	CCAGTTCAA AAAAAAAGAT TTACATGACG TGCCCTGACT GCCCAAGCTC CATAACCACT	480
	GACTCTTCCA ATCACCAAGT GCTGGAGGCT GCCACCGAGT CTCTTGCAGA ATACAACAAT	540
	GAGAACACAT CCAAGCAGTA TTCTCTCTTC AAAGTCACCA GGGCTTCTAG CCAGTGGGTG	600
	GTGGGCCCTT CTTACTTTGT GGAATACTTA ATTAAAGAAT CACCATGTAC TAAATCCCAG	660
	GCCAGCAGCT GTTCACTTCA GTCCCTCCGAC TCTGTGCCTG TTGGTCTTTG CAAAGGTTCT	720
10	CTGACTCGAA CACACTGGGA AAAGTTGTC TCTGTGACTT GTGACTTCTT TGAATCACAG	780
	GCTCCAGCCA CTGGAAGTGA AAACCTCTGCT GTTAACCAGA AACCTACAAA CCTTCCCAAG	840
	GTGGAAGAAT CCCAGCAGAA AAACACCCCC CCAACAGACT CCCCCCTCCAA AGCTGGGCCA	900
	AGAGGATCTG TCCAATATCT TCCTGACTTG GATGATAAAA ATTCCCAGGA AAAGGGCCCT	960
	CAGGAGGCCT TTCCTGTGCA TCTGGACCTA ACCACGAATC CCCAGGGAGA AACCTGGAT	1020
15	ATTCCTTCC TCTTCCTGGGA GCCTATGGAG GAGAAGCTGG TTGTCTGCC TTTCCCCAAA	1080
	GAAAAAGCAC GCACTGCTGA GTGCCAGGG CCAGCCCAGA ATGCCAGCCC TCTTGTCCCTT	1140
	CCGCCA	1146

20 (2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 951
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

25 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP01299

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

35	ATGTGGCTCT ACCTGGCGGC CTTCTGGGGC CTGTACTACC TTCTGCCTG GTACCGGGAG	60
	AGGCAGGTGG TGAGCCACCT CCAAGACAAG TATGTCTTTA TCACGGGCTG TGACTCGGGC	120
	TTTGGGAACC TGCTGGCCAG ACAGCTGGAT GCACGAGGCT TGAGAGTGCT GGCTGCGTGT	180
	CTGACGGAGA AGGGGGCCGA GCAGCTGAGG GGCCAGACGT CTGACAGGCT GGAGACGGTG	240

	ACCCCTGGATG TTACCAAGAT GGAGAGCATC GCTGCAGCTA CTCAGTGGGT GAAGGAGCAT	300
	GTGGGGGACA GAGGACTCTG GGGACTGGTG AACAAATGCAG GCATTCTTAC ACCAATTACC	360
	TTATGTGAGT GGCTGAACAC TGAGGACTCT ATGAATATGC TCAAAGTGAA CCTCATTGGT	420
	GTGATCCAGG TGACCTTGAG CATGCTTCCT TTGGTGAGGA GAGCACGGGG AAGAATTGTC	480
5	AATGCTCTCCA GCATTCTGGG AAGAGTTGCT TTCTTTGTAG GAGGCTACTG TGTCTCCAAG	540
	TATGGAGTGG AAGCCTTTTC AGATATTCTG AGGCGTGAGA TTCAACATTT TGGGGTGAAA	600
	ATCAGCCATAG TTGAACCTGG CTACTTCAGA ACGGGAATGAA CAAACATGAC ACAGTCCTTA	660
	GAGCGAACATGA AGCAAAAGTTG GAAAGAAGCC CCCAAGCATA TTAAGGAGAC CTATGGACAG	720
	CAGTATTTTG ATGCCCTTA CAATATCATG AAGGAAGGGC TGTGAATTG TAGCACAAAC	780
10	CTGAACCTGG TCACTGACTG CATGGAACAT GCTCTGACAT CGGTGCATCC GCGAACTCGA	840
	TATTCAGCTG GCTGGGATGC TAAATTTTC TTCATCCCTC TATCTTATTT ACCTACATCA	900
	CTGGCAGACT ACATTTGAC TAGATCTTGG CCCAAACCAG CCCAGGCAGT C	951

15 (2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 888
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

20 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP01347

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

30	ATGAGTGACT CCAAGGAACC AAGGGTGCAG CAGCTGGGCC TCCTGGGTG TCTTGGCCAT	60
	GGCGCCCTGG TGCTGCAACT CCTCTCCTTC ATGCTCTTGG CTGGGGTCCT GGTGGCCATC	120
	CTTGTCCAAG TGTCCAAGGT CCCCAGCTCC CTAAGTCAGG AACAAATCCGA GCAAGACGCA	180
	ATCTACCAGA ACCTGACCCA GCTTAAAGCT GCAGTGGGTG AGCTCTCAGA GAAATCCAAG	240
	CTGCAGGAGA TCTACCAGGA GCTGACCCAG CTGAAGGCTG CAGTGGGTGA GTGCCAGAG	300
35	AAATCCAAGC TGCAGGAGAT CTACCAAGGAG CTGACCCGGC TGAAGGCTGC AGTGGGTGAG	360
	TTGCCAGAGA AATCCAAGCT GCAGGAGATC TACCAAGGAGC TGACCCGGCT GAAGGCTGCA	420
	GTGGGTGAGT TGCCAGAGAA ATCCAAGCTG CAGGAGATCT ACCAGGAGCT GACCCGGCTG	480
	AAGGCTGCAG TGGGTGAGTT GCCAGAGAAA TCCAAGCTGC AGGAGATCTA CCAGGAGCTG	540

108

ACGGAGCTGA	AGGCTGCAGT	GGGTGAGTTG	CCAGAGAAAT	CCAAGCTGCA	GGAGATCTAC	600	
CAGGAGCTGA	CCCAGCTGAA	GGCTGCAGTG	GGTGAGTTGC	CAGACCAGTC	CAAGCAGCAG	660	
CAAATCTATC	AAGAACTGAC	CGATTGAAG	ACTGCATTTG	AACGCCGTG	CCGCCACTGT	720	
5	CCCAAGGACT	GGACATTCTT	CCAAGGAAAC	TGTTACTTCA	TGTCTAACTC	CCAGCGAAC	780
TGGCACGACT	CCGTCACCGC	CTGCCAGGAA	GTGAGGGCCC	AGCTCGTCGT	AATCAAAACT	840	
GCTGAGGAGC	AGCTTCCAGC	GGTACTGGAA	CAGTGGAGAA	CCCAACAA		888	

(2) INFORMATION FOR SEQ ID NO: 22:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 591
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

15 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP01440

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ATGTGTACGG	GAAAATGTGC	CCGCTGTGTG	GGGCTCTCCC	TCATTACCCCT	CTGCCCTCGTC	60	
25	TGCATTGTGG	CCAACGCCCT	CCTGCTGGTA	CCTAATGGGG	AGACCTCCTG	660	
AACCATCTCA	GCTTGCAAGT	CTGGCTCATG	GGCGGCTTCA	TTGGCGGGGG	CCTAATGGTA	120	
CTGTGTCCGG	GGATTGCAGC	CGTTCGGGCA	GGGGGCAAGG	GCTGCTGTGG	TGCTGGGTGC	180	
TGTGGAAACC	GCTGCAGGAT	GCTGCCCTCG	GTCTTCTCCT	CGCGCTTCGG	GGTGCTTGGT	240	
GCCATCTACT	GCCTCTCGGT	GTCTGGAGCT	GGGCTCCGAA	ATGGACCCAG	ATGCTTAATG	300	
30	AACGGCGAGT	GGGGCTACCA	CTTCGAAGAC	ACCGCGGGAG	CTTACTTGCT	CAACCGCACT	360
CTATGGGATC	GGTGCAGGAGC	GCCCCCTCGC	GTGGTCCCT	GGAATGTGAC	GCTCTTCTCG	420	
CTGCTGGTGG	CCGCCCTCCTG	CCTGGAGATA	GTACTGTGTG	GGATCCAGCT	GGTGAACGCG	480	
ACCATTGGTG	TCTTCTGCCG	CGATTGCAGG	AAAAAACAGG	ACACCCCTCA	C	540	
						591	

35

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 663

109

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

5

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Stomach cancer
 - (D) CLONE NAME: HP01526

10

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

ATGGAGGCGG GCGGCTTCT GGACTCGCTC ATTTACGGAG CATGCGTGGT CTCACCCCTT	60
GGCATGTTCT CCGCCGGCCT CTCGGACCTC AGGCACATGC GAATGACCCG GAGTGTGGAC	120
15 AACGTCCAGT TCCTGCCCTT TCTCACCAAG GAAAGTCAACA ACCTGGGCTG GCTGAGTTAT	180
GGGGCTTGA AGGGAGACGG GATCCTCATC GTCGTCAACA CAGTGGTGC TGCGCTTCAG	240
ACCTGTATA TCTTGGCATA TCTGCATTAC TGCCCTCGGA AGCGTGGTGT GCTCCTACAG	300
ACTGCAACCC TGCTAGGGGT CCTTCTCCTG GGTTATGGCT ACTTTGGCT CCTGGTACCC	360
AACCTGAGG CCCGGCTTCA GCAGTTGGC CTCTTCTGCA GTGTCTTCAC CATCAGCATG	420
20 TACCTCTCAC CACTGGCTGA CTTGGCTAAG GTGATTCAAA CTAAATCAAC CCAATGTCTC	480
TCCTACCCAC TCACCATTGC TACCCTTCTC ACCTCTGCCT CCTGGTGCCT CTATGGTTT	540
CGACTCAGAG ATCCCTATAT CATGGTGTCC AACTTCCAG GAATCGTCAC CAGCTTATC	600
CGCTTCTGGC TTTTCTGGAA GTACCCCCAG GAGCAAGACA GGAACACTACTG GCTCCTGCAA	660
ACC	663

25

- (2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753
 - 30 (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

- 35 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Stomach cancer
 - (D) CLONE NAME: HP10230

110

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

	ATGTCGGACA TCGGAGACTG GTTCAGGAGC ATCCCGGCGA TCACGCGCTA TTGGTTGCC	60
	GCCACCGTCT CGGTGCCCTT GGTCGGCAAA CTCGGCCTCA TCAGCCCGGC CTACCTCTTC	120
5	CTCTGGCCCC AAGCCTTCCT TTATCGCTTT CAGATTTGGA GGCCAATCAC TGCCACCTTT	180
	TATTCCTCTG TGGGTCCAGG AACTGGATT CTTTATTGGA TCAATTATAA TTTCTTATAT	240
	CAGTATTCTA CGCGACTTGA AACAGGAGCT TTTGATGGGA GGCCAGCAGA CTATTTATTC	300
	ATGCTCCCTCT TTAACCTGGAT TTGCATCGTG ATTACTGGCT TAGCAATGGA TATGCAGTTG	360
	CTGATGATTC CTCTGATCAT GTCAGTACTT TATGTCTGGG CCCAGCTGAA CAGAGACATG	420
10	ATTGTATCAT TTTGGTTGG AACACGATT AAGGCCTGCT ATTTACCCCTG GGTTATCCTT	480
	GGATTCAACT ATATCATCGG AGGCTCGGTA ATCAATGAGC TTATTGGAAA TCTGGTTGGA	540
	CATCTTTATT TTTTCCTAAAT GTTCAGATAC CCAATGGACT TGGGAGGAAG AAATTTCTA	600
	TCCACACCTC AGTTTTGTA CCGCTGGCTG CCCAGTAGGA GAGGAGGAGT ATCAGGATT	660
	GGTGTGCCCT CTGCTAGCAT GAGGGAGCT GCTGATCAGA ATGGCGGAGG CGGGAGACAC	720
15	AACTGGGGCC AGGGCTTTG ACTTGGAGAC CAG	753

(2) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS:

- 20 (A) LENGTH: 318
 (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

- 25 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Homo sapiens*
 (B) CELL KIND: Epidermoid carcinoma
 (C) CELL LINE: KB
 30 (D) CLONE NAME: HP10389

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

	ATGGCGACTC CCGGCCCTGT GATTCCGGAG GTCCCCTTG AACCATCGAA GCCTCCAGTC	60
35	ATTGAGGGGC TGAGCCCCAC TGTTTACAGG AATCCAGAGA GTTCAAGGA AAAGTTCGTT	120
	CGCAAGACCC GCGAGAACCC GGTGGTACCC ATAGGTTGCC TGGCCACGGC GGCCGCCCTC	180
	ACCTACGGCC TCTACTCCTT CCACCGGGGC AACAGCCAGC GCTCTCAGCT CATGATGCGC	240
	ACCCGGATCG CCGCCCAGGG TTTCACGGTC GCAGCCATCT TGCTGGGTCT GGCTGTCACT	300

111

GCTATGAAGT CTCGACCC

318

(2) INFORMATION FOR SEQ ID NO: 26:

- 5 (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 234
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- 10 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- 15 (D) CLONE NAME: HP10408

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

ATGGGGTCTG GGCTGCCCT TGTCCCTCTC TTGACCTCC TTGGCAGCTC ACATGGAACA	60
20 GGGCCGGGTA TGACTTTGCA ACTGAAGCTG AAGGAGTCTT TTCTGACAAA TTCCCTCCTAT	120
GAGTCCAGCT TCCTGGAATT GCTTGAAAG CTCTGCCTCC TCCTCCATCT CCCTTCAGGG	180
ACCAGCGTCA CCCTCCACCA TGCAAGATCT CAACACCATG TTGTCTGCAA CACA	234

25 (2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 942
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - 30 (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- 35 (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10412

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

112

	ATGGTGGCGC CTGTGTGGTA CTTGGTAGCG GCGGCTCTGC TAGTCGGCTT TATCCTCTTC	60
	CTGACTCGCA GCCGGGGCCG GGCGGCATCA GCCGGCCAAG AGCCACTGCA CAATGAGGAG	120
	CTGGCAGGAG CAGGCCGGGT GGCCCAGCCT GGGCCCCCTGG AGCCTGAGGA GCCGAGAGCT	180
	GGAGGCAGGC CTCGGGCCG GAGGGACCTG GGCAGCCGCC TACAGGCCA GCGTCGAGCC	240
5	CAGCGGGTGG CCTGGGCAGA AGCAGATGAG AACGAGGAGG AAGCTGTCA CCTAGCCCCAG	300
	GAGGAGGAAG GTGTCGAGAA GCCAGCGAA ACTCACCTGT CGGGGAAAAT TGGAGCTAAG	360
	AAACTGCGGA AGCTGGAGGA GAAACAAGCG CGAAAGGCC AGCGTGAGGC AGAGGAGGCT	420
	GAACGTGAGG AGCGGAAACG ACTCGAGTCC CAGCGCGAAG CTGAGTGGAA GAAGGAGGAG	480
	GAGCGGCTTC CCCTGGAGGA GGAGCAGAAG GAGGAGGAGG AGAGGAAGGC CCGCGAGGAG	540
10	CAGGCCAGC GGGAGCATGA GGAGTACCTG AAACGTGAAGG AGGCCTTTGT GGTGGAGGAG	600
	GAAGGCGTAG GAGAGACCAT GACTGAGGAA CAGTCCCAGA GCTTCCTGAC AGAGTTCATC	660
	AACTACATCA AGCAGTCAA GGTTGTGCTC TTGGAAGACC TGGCTCCCA GGTGGGCCTA	720
	CGCACTCAGG ACACCATAAA TCGCATCCAG GACCTGCTGG CTGAGGGAC TATAACAGGT	780
	GTGATTGACG ACCGGGGCAA GTTCATCTAC ATAACCCCAG AGGAACTGGC CGCCGTGGCC	840
15	AACTTCATCC GACAGCGGGG CGGGGTGTCC ATCGCCGAGC TTGCCAAGC CAGCAACTCC	900
	CTCATCGCCT GGGGCCGGGA GTCCCTGCC CAAGCCCCAG CC	942

(2) INFORMATION FOR SEQ ID NO: 28:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 585
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

25 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10413

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

	ATGGCTGCCG AGGATGTGGT GGCGACTGGC GCCGACCCAA GCGATCTGGA GACCGGGCGGG	60
35	CTGCTGCATG AGATTTCAC GTCGCCGCTC AACCTGCTGC TGCTTGGCCT CTGCATCTTC	120
	CTGCTCTACA AGATCGTGGC CGGGGACCAAG CGGGCGGCCA GCGCGACAG CGACGACGAC	180
	GAGCCGCCCG CTCTGCCCG CCTCAAGCGG CGCGACTTCA CCCCCGCCGA GCTGCCGGCG	240
	TTCGACGGCG TCCAGGACCC GCGCATACTC ATGGCCATCA ACGGCAAGGT GTTCGATGTG	300

ACCAAAGGCC	GCAAATTCTA	CGGGCCCGAG	GGGCCGTATG	GGGTCTTGC	TGGAAGAGAT	360
GCATCCAGGG	GCCTTGCCAC	ATTTGCCTG	GATAAGGAAG	CACTGAAGGA	TGAGTACGAT	420
GACCTTCCTG	ACCTCACTGC	TGCCCAGCAG	GAGACTCTGA	GTGACTGGGA	GTCTCAGTTC	480
ACTTTCAAGT	ATCATCACGT	GGGCAAACGT	CTGAAGGAGG	GGGAGGAGCC	CACTGTGTAC	540
5	TCAGATGAGG	AAGAACAAA	AGATGAGAGT	GCCCCGAAAA	ATGAT	585

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 1386
 (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

- 15 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Homo sapiens*
 (B) CELL KIND: Stomach cancer
 (D) CLONE NAME: HP10415

- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

ATGTTGGACT	TCGCGATCTT	CGCCGTTACC	TTCTTGCTGG	CGTTGGTGGG	AGCCGTGCTC	60	
TACCTCTATC	CGGCTTCCAG	ACAAGCTGCA	GBAATTCCAG	GGATTACTCC	AACTGAAGAA	120	
25	AAAGATGGTA	ATCTTCCAGA	TATTGTGAAT	AGTGGAAAGTT	TGCATGAGTT	CCTGGTTAAT	180
	TTGCATGAGA	GATATGGGCC	TGTGGTCTCC	TTCTGGTTTG	GCAGGGCCCT	CGTGGTTAGT	240
	TTGGGCAGTG	TTGATGTACT	GAAGCAGCAT	ATCAATCCCA	ATAAGACATT	GGACCCCTTT	300
	GAAACCATGC	TGAAGTCATT	ATTAAGGTAT	CAATCTGGTG	GTGGCAGTGT	GAGTGAAAAC	360
	CACATGAGGA	AAAAATTGTA	TGAAAATGGT	GTGACTGATT	CTCTGAAGAG	TAACTTGCC	420
30	CTCCTCCTAA	AGCTTCAGA	AGAATTATTA	GATAAAATGGC	TCTCCTACCC	AGAGACCCAG	480
	CACGTGCC	TCAGCCAGCA	TATGCTTGGT	TTGCTATGA	AGTCTGTTAC	ACAGATGGTA	540
	ATGGGTAGTA	CATTTGAAGA	TGATCAGGAA	GTCATTGCT	TCCAGAAGAA	TCATGGCACA	600
	GTGGTCTG	AGATTGGAAA	AGGCTTCTA	GATGGGTAC	TTGATAAAAA	CATGACTCGG	660
	AAAAAACAAAT	ATGAAGATGC	CCTCATGCAA	CTGGAGTCTG	TTTTAAGGAA	CATCATAAAA	720
35	GAACGAAAAG	GAAGGAAC	TT CAGTCAACAT	ATTTCATG	ACTCCTTAGT	ACAAGGGAAC	780
	CTTAATGACC	AACAGATCCT	AGAAGACAGT	ATGATATTTT	CTCTGGCCAG	TTGCATAATA	840
	ACTGCAAAAT	TGTGTACCTG	GGCAATCTGT	TTTTAACCA	CCTCTGAAGA	AGTTCAAAAA	900
	AAATTATATG	AAGAGATAAA	CCAAGTTTT	GGAAATGGTC	CTGTTACTCC	AGAGAAAATT	960

GAGCAGCTCA GATATTGTCA GCATGTGCTT TGTGAAACTG TTCGAACACTGC CAAACTGACT 1020
 CCAGTTCTG CCCAGCTTCA AGATATTGAA GGAAAAATTG ACCGATTAT TATTCCCTAGA 1080
 GAGACCCTCG TCCTTTATGC CCTTGGTGTG GTACTTCAGG ATCCTAAATAC TTGGCCATCT 1140
 CCACACAAAGT TTGATCCAGA TCGGTTTGAT GATGAATTAG TAATGAAAAC TTTTCCTCA 1200
 5 CTTGGATTCT CAGGCACACA GGAGTGTCCA GAGTTGAGGT TTGCATATAT GGTGACCACA 1260
 GTACTTCTTA GTGTATTGGT GAAGAGACTG CACCTACTTT CTGTGGAGGG ACAGGTTATT 1320
 GAAACAAAGT ATGAACTGGT AACATCATCA AGGGAAGAAG CTTGGATCAC TGTCTCAAAG 1380
 AGATAT 1386

10

(2) INFORMATION FOR SEQ ID NO: 30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 741
- (B) TYPE: Nucleic acid
- 15 (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- 20 (A) ORGANISM: *Homo sapiens*
 (B) CELL KIND: Stomach cancer
 (D) CLONE NAME: HP10419

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

25 ATGGGGGCTG CGGTGTTTT CGGCTGCACT TTCTCGCGT TCGGCCGGC CTTCGCGCTT 60
 TTCTTGATCA CTGTGGCTGG GGACCCGCTT CGCGTTATCA TCCTGGTCGC AGGGGCATTT 120
 TTCTGGCTGG TCTCCCTGCT CCTGGGCTCT GTGGTCTGGT TCATCTTGTT CCATGTGACC 180
 GACCGGTCAG ATGCCCGGCT CCAGTACGGC CTCCGTATT TTGGTGCCTGC TGTCTCTGTC 240
 30 CTTCTACAGG AGGTGTTCCG CTTTGCCTAC TACAAGCTGC TTAAGAAGGC AGATGAGGGG 300
 TTAGCATCGC TGAGTGAGGA CGGAAGATCA CCCATCTCCA TCCGCCAGAT GGCCTATGTT 360
 TCTGGTCTCT CCTTCGGTAT CATCAGTGGT GTCTTCTCTG TTATCAATAT TTGGTCTGAT 420
 GCACCTGGGC CAGGTGTGGT TGGGATCCAT GGAGACTCAC CCTATTACTT CCTGACTTCA 480
 GCCTTCTGA CAGCAGCCAT TATCCTGCTC CATACTTTT GGGGAGTTGT GTTCTTTGAT 540
 35 GCCTGTGAGA GGAGACGGTA CTGGGCTTG GCCCTGGTGG TTGGGAGTCA CCTACTGACA 600
 TCGGGACTGA CATTCCGTAA CCCCTGGTAT GAGGCCAGCC TGCTGCCAT CTATGCAGTC 660
 ACTGTTCCA TGGGGCTCTG GGCCTTCATC ACAGCTGGAG GGTCCCTCCG AAGTATTCA 720
 CGCAGCCTCT TGTGTAAGGA C 741

(2) INFORMATION FOR SEQ ID NO: 31:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 339

5

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

10 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10424

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

ATGAACTTCT ATTTACTCCT AGCGAGCAGC ATTCTGTGTC CCTTGATTGT CTTCTGGAAA	60
TATCGCCGCT TTCAGAGAAA CACTGGCGAA ATGTCATCAA ATTCAACTGC TCTTGCACCA	120
GTGAGACCCT CTTCTTCTGG GTTAATTAAC AGCAATACAG ACAACAATCT TGCAGTCTAC	180
20 GACCTCTCTC GGGATATTTT AAATAATTTC CCACACTCAA TAGCCAGGCA GAAGCGAATA	240
TTGGTAAACC TCAGTATGGT GGAAAACAAG CTGGTTGAAC TGGAACATAC TCTACTTAGC	300
AAGGGTTTCA GAGGTGCATC ACCTCACCGG AAATCCACC	339

25 (2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1095

30

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

35

(B) CELL KIND: Epidermoid carcinoma

(C) CELL LINE: KB

(D) CLONE NAME: HP10428

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

	ATGGGGAGGT GGGCCCTCGA TGTCGCCTTT TTGTGGAAGG CGGTGTTGAC CCTGGGGCTG	60
	GTGCTTCTCT ACTACTGCTT CTCCATCGGC ATCACCTCT ACAACAAGTG GCTGACAAAG	120
5	AGCTTCCATT TCCCCCTCTT CATGACGATG CTGCACCTGG CCGTGATCTT CCTCTTCTCC	180
	GCCCTGTCCA GGGCGCTGGT TCAGTGCTCC AGCCACAGGG CCCGTGTGGT GCTGAGCTGG	240
	GCCGACTACC TCAGAAGAGT GGCTCCCACA GCTCTGGCGA CGGCGCTTGA CGTGGGCTTG	300
	TCCAAGTGG A GCTTCCTGTA TGTCACCGTC TCGCTGTACA CAATGACCAA ATCCTCAGCT	360
	GTCCTCTTCA TCTTGATCTT CTCTCTGATC TTCAAGCTGG AGGAGCTGCG CGCGGCACTG	420
10	GTCCTGGTGG TCCTCCTCAT CGCCGGGGT CTCTTCATGT TCACCTACAA GTCCACACAG	480
	TTCAACGTGG AGGGCTTCGC CTTGGTGCTG GGGGCCTCGT TCATCGGTGG CATTGCGCTGG	540
	ACCCCTCACCC AGATGCTCCT GCAGAAGGCT GAACTCGGCC TCCAGAAATCC CATCGACACC	600
	ATGTTCCACC TGCAGCCACT CATGTTCCCTG GGGCTCTTCC CTCTCTTGC TGTATTTGAA	660
	GGTCTCCATT TGTCCACATC TGAGAAAATC TTCCGTTTCC AGGACACAGG GCTGCTCCTG	720
15	CGGGTACTTG GGAGCCTCTT CCTTGGCGGG ATTCTCGCCT TTGGTTTGGG CTTCTCTGAG	780
	TTCCCTCCTGG TCTCCAGAAC CTCCAGCCTC ACTCTCTCCA TTGCGGGCAT TTTAAGGAA	840
	GTCTGCACTT TGCTGTTGGC AGCTCATCTG CTGGGCGATC AGATCAGCCT CCTGAACCTGG	900
	CTGGGCTTCTG CCCTCTGCCT CTCGGGAATA TCCCTCCACG TTGCCCTCAA AGCCCTGCAT	960
20	TCCAGAGGTG ATGGTGGCCC CAAGGCCTTG AAGGGGCTGG GCTCCAGCCC CGACCTGGAG	1020
	CTGCTGCTCC GGAGCAGCCA GCGGGAGGAA GGTGACAATG AGGAGGAGGA GTACTTTGTG	1080
	GCCCCAGGGGGC AGCAG	1095

(2) INFORMATION FOR SEQ ID NO: 33:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 678
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

30 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10429

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

	ATGCCTACCA CAAAGAAGAC ATTGATGTT TTATCAAGCT TTTTCAACCAG CCTTGGGTCC	60
	TTCATTGTAA TTTGCTCTAT TCTTGGGACA CAAGCATGGA TCACCAAGTAC AATTGCTGTT	120
	AGAGACTCTG CTTCAAATGG GAGCATTTC ATCACTTACG GACTTTTCG TGGGGAGAGT	180
	AGTGAAGAAC TGAGTCACCG ACTTGAGAA CCAAAGAAAA AGTTGCAGT TTTAGAGATA	240
5	CTGAATAATT CTTCCCCAAA AACTCTGCAT TCGGTGACTA TCCTGTTCCCT GGTCTGAGT	300
	TTGATCACGT CGCTGCTGAG CTCTGGGTTT ACCTTCTACA ACAGCATCAG CAACCCCTAC	360
	CAGACATTCC TGGGGCCGAC GGGGGTGTAC ACCTGGAACG GGCTCGGTGC ATCCTTCGTT	420
	TTTGTGACCA TGATACTGTT TGTGGCGAAC ACCGAGTCCA ACCAACTCTC CGAAGAGTTG	480
	TTCCAAATGC TTTACCCGGC AACCAACAGT AAAGGAACGA CCCACAGTTA CGGATACTCG	540
10	TTCTGGCTCA TACTGCTCGT CATTCTTCTA AATATAGTCA CTGTAACCAT CATCATTTC	600
	TACCAAGG CCAGATACCA GCGGAAGCAG GAGCAGAGAA AGCCAATGGA ATATGCTCCA	660
	AGGGACGGAA TTTTATTTC	678

15 (2) INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 387
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- 25 (B) CELL KIND: Liver
- (D) CLONE NAME: HP10432

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

30

	ATGGCTCGGG GCTCGCTGCG CCGGTTGCTG CGGCTCCTCG TGCTGGGGCT CTGGCTGGCG	60
	TTGCTGCGCT CCGTGGCCGG GGAGCAAGCG CCAGGCACCG CCCCCTGCTC CCGCGGCAGC	120
	TCCTGGAGCG CGGACCTGGA CAAGTGCATG GACTGCGCGT CTTGCAGGGC GCGACCGCAC	180
	AGCGACTTCT GCCTGGGCTG CGCTGCAGCA CCTCCTGCC CCTTCCGGCT GCTTTGGCCC	240
35	ATCCTGGGG GCGCTCTGAG CCTGACCTTC GTGCTGGGGC TGCTTCTGG CTTTTGGTC	300
	TGGAGACGAT GCCGCAGGAG AGAGAAGTTC ACCACCCCCA TAGAGGAGAC CGGGGGAGAG	360
	GGCTGCCAG CTGTGGCGCT GATCCAG	387

(2) INFORMATION FOR SEQ ID NO: 35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 489
- (B) TYPE: Nucleic acid
- 5 (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- 10 (A) ORGANISM: *Homo sapiens*
(B) CELL KIND: Liver
(D) CLONE NAME: HP10433

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

15 ATGGCACGGC TGCTGATCCC TCTGGCCCTG TGGCTGGCG CGGTGGCGT GGGCGTCGCC 60
GAGCTCACGG AAGCCCAGCG CCGGGGCCTG CAGGTGGCCC TGGAGGAATT TCACAAGCAC 120
CCGCCCCGTGC AGTGGGCCTT CCAGGAGACC AGTGTGGAGA GCGCCGTGGA CACGCCCTTC 180
CCAGCTGAA TATTGTGAG GCTGGAATT AAGCTGCAGC AGACAAGCTG CCCGAAGAGG 240
20 GACTGGAAGA AACCCGAGTG CAAAGTCAGG CCCAATGGGA CGAACCGGAA ATGCCCTGGCC 300
TGCATCAAAC TGGGCTCTGA GGACAAAGTT CTGGGCCGGT TGGTCCACTG CCCCATAGAG 360
ACCCAAGTTC TGCGGGAGGC TGAGGAGCAC CAGGAGACCC AGTGCCTCAG GGTGCAGCGG 420
GCTGGTGAGG ACCCCCCACAG CTTCTACTTC CCTGGACAGT TCGCCTTCTC CAAGGCCCTG 480
CCCCGCAGC 489

25

(2) INFORMATION FOR SEQ ID NO: 36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 579
- 30 (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

35 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10480

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

	ATGATCCGCT GCGGCCCTGGC CTGGAGCGC TGCCGCTGGA TCCTGCCCT GCTCCTACTC	60
	AGCGCCATCG CCTTCGACAT CATCGCGCTG GCCGGCCCG GCTGGTTGCA GTCTAGCGAC	120
5	CACGGCCAGA CGTCCTCGCT GTGGTGGAAA TGCTCCCAAG AGGGCGGC GG CAGCGGGTCC	180
	TACGAGGAGG GCTGTCA GAG CCTCATGGAG TACCGCGTGGG GTAGAGCAGC GGCTGCCATG	240
	CTCTTCTGTG GCTTCATCAT CCTGGTGATC TGTTTCATCC TCTCCTTCTT CGCCCTCTGT	300
	GGACCCCAGA TGCTTGCTT CCTGAGAGTG ATTGGAGGTC TCCTTGCTT GGCTGCTGTG	360
10	TTCCAGATCA TCTCCCTGGT AATT TACCCC GTGAAGTACA CCCAGACCTT CACCCCTTCAT	420
	GCCAACCGTG CTGTCACTTA CATCTATAAC TGGGCCTACG GCTTTGGGTG GGCAGCCACG	480
	ATTATCCTGA TCGGCTGTGC CTTCTTCTTC TGCTGCCTCC CCAACTACGA AGATGACCTT	540
	CTGGGCAATG CCAAGCCCAG GTACTTCTAC ACATCTGCC	579

15 (2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1502
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- 25 (B) CELL KIND: Liver
- (D) CLONE NAME: HP01263

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- 30 (B) EXISTENCE POSITION: 37.. 1185
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

35	ACAAACTGAC CCATCCTGGG CCTTGTTCACAGA ATG GGT CTG CTC CTT CCC	54
	Met Gly Leu Leu Leu Pro	
	1 5	
	CTG GCA CTC TGC ATC CTA GTC CTG TGC GGA GCA ATG TCT CCA CCC	102

120

L u Ala Leu Cys Ile Leu Val L u Cys Cys Gly Ala Met Ser Pro Pro			
10	15	20	
CAG CTG GCC CTC AAC CCC TCG GCT CTG CTC TCC CGG GGC TGC AAT GAC			150
Gln Leu Ala Leu Asn Pro Ser Ala Leu Leu Ser Arg Gly Cys Asn Asp			
5 25	30	35	
TCC GAT GTG CTG GCA GTT GCA GGC TTT GCC CTG CGG GAT ATT AAC AAA			198
Ser Asp Val Leu Ala Val Ala Gly Phe Ala Leu Arg Asp Ile Asn Lys			
40 45	50		
GAC AGA AAG GAT GGC TAT GTG CTG AGA CTC AAC CGA GTG AAC GAC GCC			246
10 Asp Arg Lys Asp Gly Tyr Val Leu Arg Leu Asn Arg Val Asn Asp Ala			
55 60	65	70	
CAG GAA TAC AGA CGG GGT GGC CTG GGA TCT CTG TTC TAT CTT ACA CTG			294
Gln Glu Tyr Arg Arg Gly Gly Leu Gly Ser Leu Phe Tyr Leu Thr Leu			
75 80	85		
15 GAT GTG CTA GAG ACT GAC TGC CAT GTG CTC AGA AAG AAG GCA TGG CAA			342
Asp Val Leu Glu Thr Asp Cys His Val Leu Arg Lys Lys Ala Trp Gln			
90 95	100		
GAC TGT GGA ATG AGG ATA TTT TTT GAA TCA GTT TAT GGT CAA TGC AAA			390
Asp Cys Gly Met Arg Ile Phe Phe Glu Ser Val Tyr Gly Gln Cys Lys			
20 105 110	115		
GCA ATA TTT TAT ATG AAC AAC CCA AGT AGA GTT CTC TAT TTA GCT GCT			438
Ala Ile Phe Tyr Met Asn Asn Pro Ser Arg Val Leu Tyr Leu Ala Ala			
120 125	130		
TAT AAC TGT ACT CTT CGC CCA GTT TCA AAA AAA AAG ATT TAC ATG ACG			486
25 Tyr Asn Cys Thr Leu Arg Pro Val Ser Lys Lys Ile Tyr Met Thr			
135 140	145	150	
TGC CCT GAC TGC CCA AGC TCC ATA CCC ACT GAC TCT TCC AAT CAC CAA			534
Cys Pro Asp Cys Pro Ser Ser Ile Pro Thr Asp Ser Ser Asn His Gln			
155 160	165		
30 GTG CTG GAG GCT GCC ACC GAG TCT CTT GCG AAA TAC AAC AAT GAG AAC			582
Val Leu Glu Ala Ala Thr Glu Ser Leu Ala Lys Tyr Asn Asn Glu Asn			
170 175	180		
ACA TCC AAG CAG TAT TCT CTC TTC AAA GTC ACC AGG GCT TCT AGC CAG			630
Thr Ser Lys Gln Tyr Ser Leu Phe Lys Val Thr Arg Ala Ser Ser Gln			
35 185 190	195		
TGG GTG GTC GGC CCT TCT TAC TTT GTG GAA TAC TTA ATT AAA GAA TCA			678
Trp Val Val Gly Pro Ser Tyr Phe Val Glu Tyr Leu Ile Lys Glu Ser			
200 205	210		

121

	CCA TGT ACT AAA TCC CAG GCC AGC AGC TGT TCA CTT CAG TCC TCC GAC	726
	Pro Cys Thr Lys Ser Gln Ala Ser Ser Cys Ser Leu Gln Ser Ser Asp	
215	220	225
	230	
	TCT GTG CCT GTT GGT CTT TGC AAA GGT TCT CTG ACT CGA ACA CAC TGG	774
5	Ser Val Pro Val Gly Leu Cys Lys Gly Ser Leu Thr Arg Thr His Trp	
	235	240
	245	
	GAA AAG TTT GTC TCT GTG ACT TGT GAC TTC TTT GAA TCA CAG GCT CCA	822
	Glu Lys Phe Val Ser Val Thr Cys Asp Phe Phe Glu Ser Gln Ala Pro	
	250	255
	260	
10	GCC ACT GGA AGT GAA AAC TCT GCT GTT AAC CAG AAA CCT ACA AAC CTT	870
	Ala Thr Gly Ser Glu Asn Ser Ala Val Asn Gln Lys Pro Thr Asn Leu	
	265	270
	275	
	CCC AAG GTG GAA GAA TCC CAG CAG AAA AAC ACC CCC CCA ACA GAC TCC	918
	Pro Lys Val Glu Glu Ser Gln Gln Lys Asn Thr Pro Pro Thr Asp Ser	
15	280	285
	290	
	CCC TCC AAA GCT GGG CCA AGA GGA TCT GTC CAA TAT CTT CCT GAC TTG	966
	Pro Ser Lys Ala Gly Pro Arg Gly Ser Val Gln Tyr Leu Pro Asp Leu	
	295	300
	305	310
	GAT GAT AAA AAT TCC CAG GAA AAG GGC CCT CAG GAG GCC TTT CCT GTG	1014
20	Asp Asp Lys Asn Ser Gln Glu Lys Gly Pro Gln Glu Ala Phe Pro Val	
	315	320
	325	
	CAT CTG GAC CTA ACC ACG AAT CCC CAG GGA GAA ACC CTG GAT ATT TCC	1062
	His Leu Asp Leu Thr Thr Asn Pro Gln Gly Glu Thr Leu Asp Ile Ser	
	330	335
	340	
25	TTC CTC TTC CTG GAG CCT ATG GAG GAG AAG CTG GTT GTC CTG CCT TTC	1110
	Phe Leu Phe Leu Glu Pro Met Glu Glu Lys Leu Val Val Leu Pro Phe	
	345	350
	355	
	CCC AAA GAA AAA GCA CGC ACT GCT GAG TGC CCA GGG CCA GCC CAG AAT	1158
	Pro Lys Glu Lys Ala Arg Thr Ala Glu Cys Pro Gly Pro Ala Gln Asn	
30	360	365
	370	
	GCC AGC CCT CTT GTC CTT CCG CCA TGAGAACAC ACAGAGTCTT CTGTAGGG	1210
	Ala Ser Pro Leu Val Leu Pro Pro	
	375	380
	GTATGGTGCG CCGCATGACA TGGGAGGCCGA TGGGGACGAT GGACAGAGAC AGACCGTGCA	1270
35	CACGTAGAGT GGCTAGTGAA GGACGCCCTT TTGACTCTTC TTGGTCTCAG CATGTTGACT	1330
	GGGATTGGAA ATAATGAGAC TGAGCCCTCG GCTTGGGCTG CACTCTACCC TGTACACTGC	1390
	CTTGTACCCCT GAGCTGCATC ACCTCCCTAAA CTGAGCAGTC TCATACCATG GAGAGATGCC	1450
	TCTCTTATGT CTTCAAGCCAC TCACTTATAA AGATACTTAT CTTTCAGCA GT	1502

(2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1349
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA TO mRNA

10 (vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Liver
 - (D) CLONE NAME: HP01299

15

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
 - (B) EXISTENCE POSITION: 111.. 1064
 - (C) CHARACTERIZATION METHOD: E

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

```

AGCAGTTGGG GCAGGAGGAA GCCGACTGCT GCCTGGTCTG CAAAGAAGTC CTTTCAAGTC      60
TCTAGGACTG GACTCTTCCT AAGCAAGTCC GAGAAGGAAG CACCCCTCACT ATG TGG      116
                                         Met Trp

                                         1

CTC TAC CTG GCG GCC TTC GTG GGC CTG TAC TAC CTT CTG CAC TGG TAC
164

Leu Tyr Leu Ala Ala Phe Val Gly Leu Tyr Tyr Leu Leu His Trp Tyr
      5           10           15

CGG GAG AGG CAG GTG GTG AGC CAC CTC CAA GAC AAG TAT GTC TTT ATC      212
Arg Glu Arg Gln Val Val Ser His Leu Gln Asp Lys Tyr Val Phe Ile
      20          25          30

ACG GGC TGT GAC TCG GGC TTT GGG AAC CTG CTG GCC AGA CAG CTG GAT      260
Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Leu Ala Arg Gln Leu Asp
      35          40          45          50

GCA CGA GGC TTG AGA GTG CTG GCT GCG TGT CTG ACG GAG AAG GGG GCC      308
Ala Arg Gly L u Arg Val Leu Ala Ala Cys Leu Thr Glu Lys Gly Ala

```

123

	55	60	65	
	GAG CAG CTG AGG GGC CAG ACG TCT GAC AGG CTG GAG ACG GTG ACC CTG			356
	Glu Gln L u Arg Gly Gln Thr S r Asp Arg Leu Glu Thr Val Thr L u			
	70	75	80	
5	GAT GTT ACC AAG ATG GAG AGC ATC GCT GCA GCT ACT CAG TGG GTG AAG			404
	Asp Val Thr Lys Met Glu Ser Ile Ala Ala Ala Thr Gln Trp Val Lys			
	85	90	95	
	GAG CAT GTG GGG GAC AGA GGA CTC TGG GGA CTG GTG AAC AAT GCA GGC			452
	Glu His Val Gly Asp Arg Gly Leu Trp Gly Leu Val Asn Asn Ala Gly			
10	100	105	110	
	ATT CTT ACA CCA ATT ACC TTA TGT GAG TGG CTG AAC ACT GAG GAC TCT			500
	Ile Leu Thr Pro Ile Thr Leu Cys Glu Trp Leu Asn Thr Glu Asp Ser			
	115	120	125	130
	ATG AAT ATG CTC AAA GTG AAC CTC ATT GGT GTG ATC CAG GTG ACC TTG			548
15	Met Asn Met Leu Lys Val Asn Leu Ile Gly Val Ile Gln Val Thr Leu			
	135	140	145	
	AGC ATG CTT CCT TTG GTG AGG AGA GCA CGG GGA AGA ATT GTC AAT GTC			596
	Ser Met Leu Pro Leu Val Arg Arg Ala Arg Gly Arg Ile Val Asn Val			
	150	155	160	
20	TCC AGC ATT CTG GGA AGA GTT GCT TTC TTT GTA GGA GGC TAC TGT GTC			644
	Ser Ser Ile Leu Gly Arg Val Ala Phe Phe Val Gly Gly Tyr Cys Val			
	165	170	175	
	TCC AAG TAT GGA GTG GAA GCC TTT TCA GAT ATT CTG AGG CGT GAG ATT			692
	Ser Lys Tyr Gly Val Glu Ala Phe Ser Asp Ile Leu Arg Arg Glu Ile			
25	180	185	190	
	CAA CAT TTT GGG GTG AAA ATC AGC ATA GTT GAA CCT GGC TAC TTC AGA			740
	Gln His Phe Gly Val Lys Ile Ser Ile Val Glu Pro Gly Tyr Phe Arg			
	195	200	205	210
	ACG GGA ATG ACA AAC ATG ACA CAG TCC TTA GAG CGA ATG AAG CAA AGT			788
30	Thr Gly Met Thr Asn Met Thr Gln Ser Leu Glu Arg Met Lys Gln Ser			
	215	220	225	
	TGG AAA GAA GCC CCC AAG CAT ATT AAG GAG ACC TAT GGA CAG CAG TAT			836
	Trp Lys Glu Ala Pro Lys His Ile Lys Glu Thr Tyr Gly Gln Gln Tyr			
	230	235	240	
35	TTT GAT GCC CTT TAC AAT ATC ATG AAG GAA GGG CTG TTG AAT TGT AGC			884
	Phe Asp Ala Leu Tyr Asn Ile Met Lys Glu Gly Leu Leu Asn Cys S r			
	245	250	255	
	ACA AAC CTG AAC CTG GTC ACT GAC TGC ATG GAA CAT GCT CTG ACA TCG			932

124

Thr Asn Leu Asn Leu Val Thr Asp Cys Met Glu His Ala Leu Thr Ser			
260	265	270	
GTG CAT CCG CGA ACT CGA TAT TCA GCT GGC TGG GAT GCT AAA TTT TTC			980
Val His Pro Arg Thr Arg Tyr Ser Ala Gly Trp Asp Ala Lys Phe Phe			
5 275	280	285	290
TTC ATC CCT CTA TCT TAT TTA CCT ACA TCA CTG GCA GAC TAC ATT TTG			1028
Phe Ile Pro Leu Ser Tyr Leu Pro Thr Ser Leu Ala Asp Tyr Ile Leu			
295	300	305	
ACT AGA TCT TGG CCC AAA CCA GCC CAG GCA GTC TAAAGAAAAC TGGGTTGGT			1080
10 Thr Arg Ser Trp Pro Lys Pro Ala Gln Ala Val			
310	315		
GCTTCTTGGA ATGAAGGCCAA AAATCTGAAA TTGTTAGTGT CTCAGTAATC CTGATTTAGA			1140
ACCCAGGCTT TTTGTAACAA TGTGTTTCT TGCCCTAAATT CATTATCTG GCATCATCAG			1200
AGTACTAACAA TGTTTATATT TCAGATATCC AAAGCTTACC ACTTTAGGTG ATGAATCTT			1260
15 ACTATTTAG CCCTTTTTG ATGAGACTAT TTGTCTAAAG TGAATCATTT GTTCTTGCCT			1320
TATTAACAG AGTAGATGGA AAACAATTT			1349

(2) INFORMATION FOR SEQ ID NO: 39:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1643
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

25 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (D) CLONE NAME: HP01347

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 25.. 915
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

125

AACATCTGGG	GACAGCGGGA	AAAC	ATG	AGT	GAC	TCC	AAG	GAA	CCA	AGG	GTG	51					
Met Ser Asp Ser Lys Glu Pro Arg Val																	
			1				5										
CAG	CAG	CTG	GGC	CTC	CTG	GGG	TGT	CTT	GGC	CAT	GGC	GCC	CTG	GTG	CTG	99	
5	Gln	Gln	Leu	Gly	Leu	Leu	Gly	Cys	Leu	Gly	His	Gly	Ala	Leu	Val	Leu	
10				15					20				25				
CAA	CTC	CTC	TCC	TTC	ATG	CTC	TTG	GCT	GGG	GTC	CTG	GTG	GCC	ATC	CTT	147	
	Gln	Leu	Leu	Ser	Phe	Met	Leu	Leu	Ala	Gly	Val	Leu	Val	Ala	Ile	Leu	
				30				35				40					
10	GTC	CAA	GTG	TCC	AAG	GTC	CCC	AGC	TCC	CTA	AGT	CAG	GAA	CAA	TCC	GAG	195
	Val	Gln	Val	Ser	Lys	Val	Pro	Ser	Ser	Leu	Ser	Gln	Glu	Gln	Ser	Glu	
				45			50				55						
	CAA	GAC	GCA	ATC	TAC	CAG	AAC	CTG	ACC	CAG	CTT	AAA	GCT	GCA	GTG	GGT	243
	Gln	Asp	Ala	Ile	Tyr	Gln	Asn	Leu	Thr	Gln	Leu	Lys	Ala	Ala	Val	Gly	
15				60			65			70							
	GAG	CTC	TCA	GAG	AAA	TCC	AAG	CTG	CAG	GAG	ATC	TAC	CAG	GAG	CTG	ACC	291
	Glu	Leu	Ser	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	
				75			80			85							
	CAG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	CCA	GAG	AAA	TCC	AAG	CTG	CAG	339
20	Gln	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	
				90			95			100			105				
	GAG	ATC	TAC	CAG	GAG	CTG	ACC	CGG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	387
	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Arg	Leu	Lys	Ala-Ala	Val	Gly	Glu	Leu		
				110			115			120							
25	CCA	GAG	AAA	TCC	AAG	CTG	CAG	GAG	ATC	TAC	CAG	GAG	CTG	ACC	CGG	CTG	435
	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Arg	Leu	
				125			130			135							
	AAG	GCT	GCA	GTG	GGT	GAG	TTG	CCA	GAG	AAA	TCC	AAG	CTG	CAG	GAG	ATC	483
	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	
30				140			145			150							
	TAC	CAG	GAG	CTG	ACC	CGG	CTG	AAG	GCT	GCA	GTG	GGT	GAG	TTG	CCA	GAG	531
	Tyr	Gln	Glu	Leu	Thr	Arg	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	
				155			160			165							
	AAA	TCC	AAG	CTG	CAG	GAG	ATC	TAC	CAG	GAG	CTG	ACG	GAG	CTG	AAG	GCT	579
35	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	Glu	Leu	Thr	Glu	Leu	Lys	Ala	
				170			175			180			185				
	GCA	GTG	GGT	GAG	TTG	CCA	GAG	AAA	TCC	AAG	CTG	CAG	GAG	ATC	TAC	CAG	627
	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	Glu	Ile	Tyr	Gln	

126

	190	195	200	
	GAG CTG ACC CAG CTG AAG GCT GCA GTG GGT GAG TTG CCA GAC CAG TCC			675
	Glu Leu Thr Gln L u Lys Ala Ala Val Gly Glu Leu Pro Asp Gln Ser			
	205	210	215	
5	AAG CAG CAG CAA ATC TAT CAA GAA CTG ACC GAT TTG AAG ACT GCA TTT			723
	Lys Gln Gln Gln Ile Tyr Gln Glu Leu Thr Asp Leu Lys Thr Ala Phe			
	220	225	230	
	GAA CGC CTG TGC CGC CAC TGT CCC AAG GAC TGG ACA TTC TTC CAA GGA			771
	Glu Arg Leu Cys Arg His Cys Pro Lys Asp Trp Thr Phe Phe Gln Gly			
10	235	240	245	
	AAC TGT TAC TTC ATG TCT AAC TCC CAG CGG AAC TGG CAC GAC TCC GTC			819
	Asn Cys Tyr Phe Met Ser Asn Ser Gln Arg Asn Trp His Asp Ser Val			
	250	255	260	265
	ACC GCC TGC CAG GAA GTG AGG GCC CAG CTC GTC GTA ATC AAA ACT GCT			867
15	Thr Ala Cys Gln Glu Val Arg Ala Gln Leu Val Val Ile Lys Thr Ala			
	270	275	280	
	GAG GAG CAG CTT CCA GCG GTA CTG GAA CAG TGG AGA ACC CAA CAA			912
	Glu Glu Gln Leu Pro Ala Val Leu Glu Gln Trp Arg Thr Gln Gln			
	285	290	295	
20	TAGCGGGAAT GAAGACTGTG CGGAATTAG TGGCAGTGGC TGGAACGACA ATCGATGT			970
	GACGTTGACA ATTACTGGAT CTGCAAAAAG CCCGCAGCCT CCTTCAGAGA CGAATAGTTG			1030
	TTTCCCTGCT AGCCTCAGCC TCCATTGTGG TATAGCAGAA CTTCACCCAC TTGTAAGCCA			1090
	GCGCTTCTTC TCTCCATCCT TGGACCTTCA CAAATGCCCT GAGACGGTTC TCTGTTCGAT			1150
	TTTCATCCC CTATGAACCT GGGCTTATT CTGTCCTTCT GATGCCCTCA AGTTTCCCTG			1210
25	GTGTAGAGCT TGTGTTCTTG GCCCATCCTT GGAGCTTTAT AAGTGACCTG AGTGGGATGC			1270
	ATTAGGGGG CGGGCTTGGT ATGTTGTATG AATCCACTCT CTGTCCTTT TGGAGATTAG			1330
	ACTATTTGGA TTCATGTGTA GCTGCCCTGT CCCCTGGGGC TTTATCTCAT CCATGCAAAC			1390
	TACCATCTGC TCAACTTCCA GCTACACCCCC GTGCACCCCT TTGACTGGGG ACTTGCTGGT			1450
	TGAAGGAGCT CATCTTGCAG GCTGGAAGCA CCAGGGAAATT AATTCCCCCA GTCAACCAAT			1510
30	GGCATCCAGA GAGGGCATGG AGGCTCCATA CAACCTCTTC CACCCCCACA TCTTCTTTG			1570
	TCCTATACAT GTCTTCCATT TGGCTGTTTC TGAGTTGTAG CCTTTATAAT AAAGTGGTAA			1630
	ATGTTGTAAC TGC			1643

35 (2) INFORMATION FOR SEQ ID NO: 40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 729

(B) TYPE: Nucleic acid

128

Tyr Cys Leu Ser Val Ser Gly Ala Gly Leu Arg Asn Gly Pro Arg Cys			
105	110	115	
TTA ATG AAC GGC GAG TGG GGC TAC CAC TTC GAA GAC ACC GCG GGA GCT			439
Leu Met Asn Gly Glu Trp Gly Tyr His Phe Glu Asp Thr Ala Gly Ala			
5 120	125	130	
TAC TTG CTC AAC CGC ACT CTA TGG GAT CGG TGC GAG GCG CCC CCT CGC			487
Tyr Leu Leu Asn Arg Thr Leu Trp Asp Arg Cys Glu Ala Pro Pro Arg			
135	140	145	150
G TG GTC CCC TGG AAT GTG ACG CTC TTC TCG CTG CTG GTG GCC GCC TCC			535
10 Val Val Pro Trp Asn Val Thr Leu Phe Ser Leu Leu Val Ala Ala Ser			
155	160	165	
TGC CTG GAG ATA GTA CTG TGT GGG ATC CAG CTG GTG AAC GCG ACC ATT			583
Cys Leu Glu Ile Val Leu Cys Gly Ile Gln Leu Val Asn Ala Thr Ile			
170	175	180	
15 GGT GTC TTC TGC GGC GAT TGC AGG AAA AAA CAG GAC ACC CCT CAC TG			630
Gly Val Phe Cys Gly Asp Cys Arg Lys Lys Gln Asp Thr Pro His			
185	190	195	
AGGCTCCACT GACCGCCGGG TTACACCTGC TCCTTCCTGG ACGCCTACCT GGCTCGCTCA			690
20 CTCCCTTGCT CGCTAGAATA AACTGCTTTG CGCTCTCTT			729

20

(2) INFORMATION FOR SEQ ID NO: 41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1322

25

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

30

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP01526

35

(ix) SEQUENCE CHARACTERISTICS:

(A) CHARACTERIZATION CODE: CDS

(B) EXISTENCE POSITION: 84.. 749

(C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:

	GAGCCGCAGG	TCTGGGCTGC	AGTAGGTCCC	GGCAACCGCA	GGCTCGCGGC	GGCGCCTGGG	60
	CGCGGGATCC	GACTCTAGTC	GTA ATG GAG	GCG GGC GGC	TTT CTG GAC	TCG CTC	113
5	Met Glu Ala Gly Gly Phe Leu Asp Ser Leu						
	1	5	10				
	ATT TAC GGA GCA TGC GTG GTC	TTC ACC CTT GGC	ATG TTC TCC	GCC GGC			161
	Ile Tyr Gly Ala Cys Val Val	Phe Thr Leu Gly	Met Phe Ser Ala Gly				
	15	20	25				
10	CTC TCG GAC CTC AGG CAC ATG CGA ATG ACC CGG AGT GTG GAC AAC GTC						209
	Leu Ser Asp Leu Arg His Met Arg Met Thr Arg Ser Val Asp Asn Val						
	30	35	40				
	CAG TTC CTG CCC TTT CTC ACC ACG GAA GTC AAC AAC CTG GGC TGG CTG						257
	Gln Phe Leu Pro Phe Leu Thr Thr Glu Val Asn Asn Leu Gly Trp Leu						
15	45	50	55				
	AGT TAT GGG GCT TTG AAG GGA GAC GGG ATC CTC ATC GTC GTC AAC ACA						305
	Ser Tyr Gly Ala Leu Lys Gly Asp Gly Ile Leu Ile Val Val Asn Thr						
	60	65	70				
	G TG GGT GCT GCG CTT CAG ACC CTG TAT ATC TTG GCA TAT CTG CAT TAC						353
20	Val Gly Ala Ala Leu Gln Thr Leu Tyr Ile Leu Ala Tyr Leu His Tyr						
	75	80	85	90			
	TGC CCT CGG AAG CGT GTT GTG CTC CTA CAG ACT GCA ACC CTG CTA GGG						401
	Cys Pro Arg Lys Arg Val Val Leu Leu Gln Thr Ala Thr Leu Leu Gly						
	95	100	105				
25	GTC CTT CTC CTG GGT TAT GGC TAC TTT TGG CTC CTG GTC CCC AAC CCT						449
	Val Leu Leu Leu Gly Tyr Gly Tyr Phe Trp Leu Leu Val Pro Asn Pro						
	110	115	120				
	GAG GCC CGG CTT CAG CAG TTG GGC CTC TTC TGC AGT GTC TTC ACC ATC						497
	Glu Ala Arg Leu Gln Gln Leu Gly Leu Phe Cys Ser Val Phe Thr Ile						
30	125	130	135				
	AGC ATG TAC CTC TCA CCA CTG GCT GAC TTG GCT AAG GTG ATT CAA ACT						545
	Ser Met Tyr Leu Ser Pro Leu Ala Asp Leu Ala Lys Val Ile Gln Thr						
	140	145	150				
	AAA TCA ACC CAA TGT CTC TCC TAC CCA CTC ACC ATT GCT ACC CTT CTC						593
35	Lys Ser Thr Gln Cys Leu Ser Tyr Pro Leu Thr Ile Ala Thr Leu Leu						
	155	160	165	170			
	ACC TCT GCC TCC TGG TGC CTC TAT GGG TTT CGA CTC AGA GAT CCC TAT						641
	Thr Ser Ala Ser Trp Cys Leu Tyr Gly Phe Arg Leu Arg Asp Pro Tyr						

	130		
	175	180	185
	ATC ATG GTG TCC AAC TTT CCA GGA ATC GTC ACC AGC TTT ATC CGC TTC		689
	Ile Met Val Ser Asn Phe Pro Gly Ile Val Thr Ser Phe Ile Arg Phe		
	190	195	200
5	TGG CTT TTC TGG AAG TAC CCC CAG GAG CAA GAC AGG AAC TAC TGG CTC		737
	Trp Leu Phe Trp Lys Tyr Pro Gln Glu Gln Asp Arg Asn Tyr Trp Leu		
	205	210	215
	CTG CAA ACC TGAGGCTGCT CATCTGACCA CTGGGCACCT TAGGCCAAC CTGA		790
	Leu Gln Thr		
10	220		
	ACCAAAAGAGA CCTCCTTGTT TCAGCTGGGC CTGCTGTCCA GCTTCCCAGG TGCAGTGCGGT		850
	TGTGGGAACA AGAGATGACT TTGAGGATAA AAGGACCAAA GAAAAAGCTT TACTTAGATG		910
	ATTGATTGGG GCCTAGGAGA TGAAATCACT TTTTATTTT TAGAGATTT TTTTTTTAAT		970
	TTTGGAGGTT GGGGTGCAAT CTTAGAATA TGCCTTAAAA GGCCGGCGC GGTGGCTCAC		1030
15	GCCTGTAATC CCAGCACTTT GGGAGGCCAA GGTGGGCGGA TCGCCTGAGG TCAGGAGTTC		1090
	AAGACCAACC TGACTAACAT GGTGAAACCC CATCTCTACT AAAAATACAA AATTAGCCAG		1150
	GCATGATGGC ACATGCCTGT AATCCCAGAT ACTTGGGAGG CTGAGGCAGG AGAATTGCTT		1210
	GAACCCAGGA GGTGGAGGTT GCAGTGAGCT GAGATCGTGC CATTGTGATA TGAATATGCC		1270
	TTATATGCTG ATATGAATAT GCCTTAAAAT AAAGTGTCC CCACCCCTGC CC		1322
20			

(2) INFORMATION FOR SEQ ID NO: 42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3045
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear
- (ii) SEQUENCE KIND: cDNA to mRNA

- 30 (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Stomach cancer
 - (D) CLONE NAME: HP10230

- 35 (ix) SEQUENCE CHARACTERISTICS:
 - (A) CHARACTERIZATION CODE: CDS
 - (B) EXISTENCE POSITION: 191.. 946
 - (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

	GTTCGGCCTC AGAAGGCTGC CTCGCTGGTC	CGAACATCGGT GGCCACGT CCGCCCGTCT	60
	CCGCCTCTG CATCGGGCT TCGGCGGCTT CCACCTAGAC ACCTAACAGT CGCGGAGCCG		120
5	GCCGCGTCGT GAGGGGGTCG GCACGGGGAG TCGGGCGGTC TTGTGCATCT TGGCTACCTG		180
	TGGGTCGAAG ATG TCG GAC ATC GGA GAC TGG TTC AGG AGC ATC CCG GCG		229
	Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala		
	1 5 10		
	ATC ACG CGC TAT TGG TTC GCC GCC ACC GTC GCC GTG CCC TTG GTC GGC		277
10	Ile Thr Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly		
	15 20 25		
	AAA CTC GGC CTC ATC AGC CCG GCC TAC CTC TTC CTC TGG CCC GAA GCC		325
	Lys Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala		
	30 35 40 45		
15	TTC CTT TAT CGC TTT CAG ATT TGG AGG CCA ATC ACT GCC ACC TTT TAT		373
	Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe Tyr		
	50 55 60		
	TTC CCT GTG GGT CCA GGA ACT GGA TTT CTT TAT TTG GTC AAT TTA TAT		421
	Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn Leu Tyr		
20	65 70 75		
	TTC TTA TAT CAG TAT TCT ACG CGA CTT GAA ACA GGA GCT TTT GAT GGG		469
	Phe Leu Tyr Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala Phe Asp Gly		
	80 85 90		
	AGG CCA GCA GAC TAT TTA TTC ATG CTC CTC TTT AAC TGG ATT TGC ATC		517
25	Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn Trp Ile Cys Ile		
	95 100 105		
	GTG ATT ACT GGC TTA GCA ATG GAT ATG CAG TTG CTG ATG ATT CCT CTG		565
	Val Ile Thr Gly Leu Ala Met Asp Met Gln Leu Leu Met Ile Pro Leu		
	110 115 120 125		
30	ATC ATG TCA GTA CTT TAT GTC TGG GCC CAG CTG AAC AGA GAC ATG ATT		613
	Ile Met Ser Val Leu Tyr Val Trp Ala Gln Leu Asn Arg Asp Met Ile		
	130 135 140		
	GTA TCA TTT TGG TTT GGA ACA CGA TTT AAG GCC TGC TAT TTA CCC TGG		661
	Val Ser Phe Trp Phe Gly Thr Arg Phe Lys Ala Cys Tyr Leu Pro Trp		
35	145 150 155		
	GTT ATC CTT GGA TTC AAC TAT ATC ATC GGA GGC TCG GTA ATC AAT GAG		709
	Val Ile L u Gly Phe Asn Tyr Ile Ile Gly Gly Ser Val Ile Asn Glu		
	160 165 170		

CTT ATT GGA AAT CTG GTT GGA CAT CTT TAT TTT TTC CTA ATG TTC AGA	757
Leu Ile Gly Asn Leu Val Gly His Leu Tyr Phe Phe Leu Met Phe Arg	
175 180 185	
TAC CCA ATG GAC TTG GGA GGA AGA AAT TTT CTA TCC ACA CCT CAG TTT	805
5 Tyr Pro Met Asp Leu Gly Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe	
190 195 200 205	
TTG TAC CGC TGG CTG CCC AGT AGG AGA GGA GGA GTA TCA GGA TTT GGT	853
Leu Tyr Arg Trp Leu Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly	
210 215 220	
10 GTG CCC CCT GCT AGC ATG AGG CGA GCT GCT GAT CAG AAT GGC GGA GGC	901
Val Pro Pro Ala Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly	
225 230 235	
GGG AGA CAC AAC TGG GGC CAG GGC TTT CGA CTT GGA GAC CAG TGAAGGG	950
Gly Arg His Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln	
15 240 245 250	
GCGGCCCTCGG GCAGCCGCTC CTCTCAAGCC ACATTTCTC CCAGTGCTGG GTGGCGTTAA	1010
CAA CTGCGTT CTGGCTAAC A CTGTTGGACC TGACCCACAC TGAATGTAGT CTTTCAGTAC	1070
GAGACAAAGT TTCTTAAATC CCGAAGAAAA ATATAAGTGT TCCACAAGTT TCACGATTCT	1130
CATTCAAGTC CTTACTGCTG TGAAGAACAA ATACCAACTG TGCAAAATTGC AAAACTGACT	1190
20 ACATTTTTG GTGTCTTCTC TTCTCCCCTT TCCGTCTGAA TAATGGGTTT TAGCGGGTCC	1250
TAGTCTGCTG GCATTGAGCT GGGGCTGGGT CACCAAACCC TTCCAAAAG GACCCTTATC	1310
TCTTCTTGC ACACATGCCT CTCTCCCACT TTTCCCAACC CCCACATTG CAACTAGAAG	1370
AGGTTGCCA TAAAATTGCT CTGCCCTTGA CAGGTTCTGT TATTATTGA CTTTGCCAA	1430
GGCTTGGTCA CAACAATCAT ATTCACTGAA TTTCCCCCT TTGGTGGCAG AACTGTAGCA	1490
25 ATAGGGGGAG AAGACAAGCA GCGGATGAAG CGTTTCTCA GCTTTGGAA TTGCTTCGAC	1550
CTGACATCCG TTGTAACCGT TTGCCACTTC TTCAGATATT TTTATAAAAA AGTACCACTG	1610
AGTCAGTGAG GGCCACAGAT TGGTATTAAT GAGATACGAG GGTGTTGCT GGGTGGTTGT	1670
TTCCCTGAGCT AAGTGATCAA GACTGTAGTG GAGTTGCAGC TAACATGGGT TAGGTTAAA	1730
CCGTGGGGGA TGCAACCCCT TTGCGTTCA TATGTAGGCC TACTGGCTTT GTGTAGCTGG	1790
30 AGTAGTTGGG TTGCTTTGTG TTAGGAGGAT CCAGATCATG TTGGCTACAG GGAGATGCTC	1850
TCTTGAGAG GCTCCTGGGC ATTGATTCCA TTTCAATCTC ATTCTGGATA TGTGTTCATT	1910
GAGTAAAGGA GGAGAGACCC TCATACGCTA TTTAAATGTC ACTTTTTGC CTATCCCCCG	1970
TTTTTGGTC ATGTTCAAT TAATTGTAG GAGGGCGCAG CTCCTCTCTG CACGTAGATC	2030
ATTTTTAAA GCTAATGTAA GCACATCTAA GGGAAATAACA TGATTTAAGG TTGAAATGGC	2090
35 TTTAGAATCA TTTGGGTTG AGGGTGTGTT ATTTGAGTC ATGAATGTAC AAGCTCTGTG	2150
AATCAGACCA GCTTAAATAC CCACACCTT TTTCGTAGG TGGGCTTTTC CTATCAGAGC	2210
TTGGCTCATA ACCAAATAAA GTTTTGAA GGCCATGGCT TTTCACACAG TTATTTTATT	2270
TTATGACGTT ATCTGAAAGC AGACTGTTAG GAGCAGTATT GAGTGGCTGT CACACTTGA	2330

GGCAACTAAA	AAGGCTTCAA	ACGTTTGAT	CAGTTCTT	TCAGGAAACA	TTGTGCTCTA	2390	
ACAGTATGAC	TATTCTTCC	CCCACTCTTA	AACAGTGTGA	TGTGTGTTAT	CCTAGGAAAT	2450	
GAGAGTTGGC	AAACAACTTC	TCATTTGAA	TAGAGTTGT	GTGTACCTCT	CCATATTTAA	2510	
TTTATATGAT	AAAATAGGTG	GGGAGAGTCT	GAACCTAAC	TGTATGTTT	TGTTGTTCAT	2570	
5	CTGTGGCCAC	AATAAAAGTTT	ACTTGAAAAA	TTTAGAGGC	CATTACTCCA	ATTATGTTGC	2630
	ACGTACACTC	ATTGTACAGG	CGTGGAGACT	CATTGTATGT	ATAAGAAATAT	TCTGACAGTG	2690
	AGTGACCCGG	AGTCTCTGGT	GTACCCTCTT	ACCAAGTCAGC	TGCCTGCGAG	CAGTCATTCT	2750
	TTCCTAAAGG	TTTACAAGTA	TTTAGAACTC	TTCAGTTCA	GGCAAAATGT	TCATGAAGTT	2810
	ATTCCCTCTTA	AACATGGTTA	CGAAGCTGAT	GACGTTATTG	ATTTTGTCTG	GATTATGTTT	2870
10	CTGGAATAAT	TTTACCAAAA	CAAGCTATT	GAGTTTGAC	TTGACAAGGC	AAAACATGAC	2930
	AGTGGATTCT	CTTTACAAAT	TGAAAAAAA	AATCCTTATT	TTGTATAAAG	GACTTCCCTT	2990
	TTTGTAAACT	AATCCTTTT	ATTGGTAAAAA	ATTGTAAATT	AAAATGTGCA	ACTTG	3045

15 (2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 653
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 20 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- 25 (B) CELL KIND: Epidermoid carcinoma
- (C) CELL LINE: KB
- (D) CLONE NAME: HP10389

(ix) SEQUENCE CHARACTERISTICS:

- 30 (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 63.. 383
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

35	ATGACCTTCA	CCGGGAGGCT	GAGGTCGGAG	TCCCGATT	CTCCTGCTGC	TGTGGCCCGG	60
	AC ATG GCG ACT CCC GGC CCT GTG ATT CCG GAG GTC CCC TTT GAA CCA						107
	Met Ala Thr Pro Gly Pro Val Ile Pro Glu Val Pro Ph Glu Pro						

134

	1	5	10	15	
	TCG AAG CCT CCA GTC ATT GAG GGG CTG AGC CCC ACT GTT TAC AGG AAT				155
	Ser Lys Pro Pro Val Ile Glu Gly Leu Ser Pro Thr Val Tyr Arg Asn				
		20	25	30	
5	CCA GAG AGT TTC AAG GAA AAG TTC GTT CGC AAG ACC CGC GAG AAC CCG				203
	Pro Glu Ser Phe Lys Glu Lys Phe Val Arg Lys Thr Arg Glu Asn Pro				
		35	40	45	
	G TG GTA CCC ATA GGT TGC CTG GCC ACG CGC CCC GCC CTC ACC TAC GGC				251
	Val Val Pro Ile Gly Cys Leu Ala Thr Ala Ala Ala Leu Thr Tyr Gly				
10		50	55	60	
	CTC TAC TCC TTC CAC CGG GGC AAC AGC CAG CGC TCT CAG CTC ATG ATG				299
	Leu Tyr Ser Phe His Arg Gly Asn Ser Gln Arg Ser Gln Leu Met Met				
		65	70	75	
	CGC ACC CGG ATC GCC GCC CAG GGT TTC ACG GTC GCA GCC ATC TTG CTG				347
15	Arg Thr Arg Ile Ala Ala Gln Gly Phe Thr Val Ala Ala Ile Leu Leu				
		80	85	90	95
	GGT CTG GCT GTC ACT GCT ATG AAG TCT CGA CCC TAAGCCCCAGG GTCTGGCCTT				400
	Gly Leu Ala Val Thr Ala Met Lys Ser Arg Pro				
		100	105		
20	GAAAGCTCCG CAGAAATGAT TCCAAAACCC AGGGAGCAAC CACTGGCCCT ACCGTGGGAC				460
	TTACTCCCTC CTCTCCTTTG AGAGGCCAT GTGTCGCTGG GGAGGAAGTG ACCCTTTGTG				520
	TAACGTAAAC CGAAAGTTTT TTCAAAAATC CTAGATGCTG TTGTTGAAT GTTACATACT				580
	TCTATTTGTG CCACATCTCC CCTCCACTCC CCTGCTTAAT AAACCTCTAAA AATCCACTTG				640
	TATTTAACATC AGT				653
25					

(2) INFORMATION FOR SEQ ID NO: 44:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 439

30 (B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10408

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 75.. 311
- (C) CHARACTERIZATION METHOD: E

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

	GTAGAAACAG GCCTGTTAAG GAGAGGCCAC CGGGACTTCA GTGTCTCCTC CATCCCAGGA			60	
	GGCGAGTGGC CACT ATG GGG TCT GGG CTG CCC CTT GTC CTC CTC TTG ACC			110	
10	Met	Gly	Ser	Gly Leu Pro Leu Val Leu Leu Leu Thr	
	1	5	10		
	CTC	CTT	GGC	AGC TCA CAT GGA ACA GCA GGG CCG GGT ATG ACT TTG CAA CTG	158
	Leu	Leu	Gly	Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu	
	15	20	25		
15	AAG	CTG	AAG	GAG TCT TTT CTG ACA AAT TCC TCC TAT GAG TCC AGC TTC	206
	Lys	Leu	Lys	Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe	
	30	35	40		
	CTG	GAA	TTG	CTT GAA AAG CTC TGC CTC CTC CAT CTC CCT TCA GGG	254
	Leu	Glu	Leu	Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly	
20	45	50	55	60	
	ACC	AGC	GTC	ACC CTC CAC CAT GCA AGA TCT CAA CAC CAT GTT GTC TGC	302
	Thr	Ser	Val	Thr Leu His His Ala Arg Ser Gln His His Val Val Cys	
	65	70	75		
	AAC	ACA	TGACAGCCAT	TGAAGCCTGT GTCCTTCTTG GCCCGGGCTT TTGGGCCGGG GA	360
25	Asn	Thr			
	TGCAGGAGGC	AGGCCCGAC	CCTGCTTTG	AGCAGGCCCG CACCCCTCCTG AGTGGCAATA	420
	AATAAAATTC	GGTATGCTG			439
30					
	(2) INFORMATION FOR SEQ ID NO: 45:				
	(i) SEQUENCE CHARACTERISTICS:				
	<ul style="list-style-type: none"> (A) LENGTH: 1131 (B) TYPE: Nucleic acid 				
35	<ul style="list-style-type: none"> (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 				
	(ii) SEQUENCE KIND: cDNA to mRNA				

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
 - (B) CELL KIND: Stomach cancer
 - (D) CLONE NAME: HP10412

5

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
 - (B) EXISTENCE POSITION: 56.. 1000
 - (C) CHARACTERIZATION METHOD: E

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

	CTATGAGATC CCGGCCTCAG GGTGGACGCA GTGGTTCTGC ACTGAGGCC TCGTC ATG	58
15	Met	
	1	
	GTG GCG CCT GTG TGG TAC TTG GTA GCG GCG GCT CTG CTA GTC GGC TTT	106
	Val Ala Pro Val Trp Tyr Leu Val Ala Ala Ala Leu Leu Val Gly Phe	
	5 10 15	
	ATC CTC TTC CTG ACT CGC AGC CGG GGC CGG GCG GCA TCA GCC GGC CAA	154
20	Ile Leu Phe Leu Thr Arg Ser Arg Gly Arg Ala Ala Ser Ala Gly Gln	
	20 25 30	
	GAG CCA CTG CAC AAT GAG GAG CTG GCA GGA GCA GGC CGG GTG GCC CAG	202
	Glu Pro Leu His Asn Glu Glu Leu Ala Gly Ala Gly Arg Val Ala Gln	
	35 40 45	
25	CCT GGG CCC CTG GAG CCT GAG GAG CCG AGA GCT GGA GGC AGG CCT CGG	250
	Pro Gly Pro Leu Glu Pro Glu Glu Pro Arg Ala Gly Gly Arg Pro Arg	
	50 55 60 65	
	CGC CGG AGG GAC CTG GGC AGC CGC CTA CAG GCC CAG CGT CGA GCC CAG	298
	Arg Arg Arg Asp Leu Gly Ser Arg Leu Gln Ala Gln Arg Arg Ala Gln	
30	70 75 80	
	CGG GTG GCC TGG GCA GAA GCA GAT GAG AAC GAG GAG GAA GCT GTC ATC	346
	Arg Val Ala Trp Ala Glu Ala Asp Glu Asn Glu Glu Ala Val Ile	
	85 90 95	
	CTA GCC CAG GAG GAG GAA GGT GTC GAG AAG CCA GCG GAA ACT CAC CTG	394
35	Leu Ala Gln Glu Glu Gly Val Glu Lys Pro Ala Glu Thr His Leu.	
	100 105 110	
	TCG GGG AAA ATT GGA GCT AAG AAA CTG CGG AAG CTG GAG GAG AAA CAA	442
	Ser Gly Lys Ile Gly Ala Lys Lys Leu Arg Lys Leu Glu Glu Lys Gln	

137

115	120	125	
GCG CGA AAG GCC CAG CGT GAG GCA GAG GAG GCT GAA CGT GAG GAG CGG			490
Ala Arg Lys Ala Gln Arg Glu Ala Glu Glu Ala Glu Arg Glu Glu Arg			
130	135	140	145
5 AAA CGA CTC GAG TCC CAG CGC GAA GCT GAG TGG AAG AAG GAG GAG GAG			538
Lys Arg Leu Glu Ser Gln Arg Glu Ala Glu Trp Lys Lys Glu Glu Glu			
150	155	160	
CGG CTT CGC CTG GAG GAG CAG AAG GAG GAG GAG GAG AGG AAG GCC			586
Arg Leu Arg Leu Glu Glu Gln Lys Glu Glu Glu Glu Arg Lys Ala			
10 165	170	175	
CGC GAG GAG CAG GCC CAG CGG GAG CAT GAG GAG TAC CTG AAA CTG AAG			634
Arg Glu Glu Gln Ala Gln Arg Glu His Glu Glu Tyr Leu Lys Leu Lys			
180	185	190	
GAG GCC TTT GTG GTG GAG GAG GAA GGC GTA GGA GAG ACC ATG ACT GAG			682
15 Glu Ala Phe Val Val Glu Glu Gly Val Gly Glu Thr Met Thr Glu			
195	200	205	
GAA CAG TCC CAG AGC TTC CTG ACA GAG TTC ATC AAC TAC ATC AAG CAG			730
Glu Gln Ser Gln Ser Phe Leu Thr Glu Phe Ile Asn Tyr Ile Lys Gln			
210	215	220	225
20 TCC AAG GTT GTG CTC TTG GAA GAC CTG GCT TCC CAG GTG GGC CTA CGC			778
Ser Lys Val Val Leu Leu Glu Asp Leu Ala Ser Gln Val Gly Leu Arg			
230	235	240	
ACT CAG GAC ACC ATA AAT CGC ATC CAG GAC CTG CTG GCT GAG GGG ACT			826
Thr Gln Asp Thr Ile Asn Arg Ile Gln Asp Leu Leu Ala Glu Gly Thr			
25 245	250	255	
ATA ACA GGT GTG ATT GAC GAC CGG GGC AAG TTC ATC TAC ATA ACC CCA			874
Ile Thr Gly Val Ile Asp Asp Arg Gly Lys Phe Ile Tyr Ile Thr Pro			
260	265	270	
GAG GAA CTG GCC GCC GTG GCC AAC TTC ATC CGA CAG CGG GGC CGG GTG			922
30 Glu Glu Leu Ala Ala Val Ala Asn Phe Ile Arg Gln Arg Gly Arg Val			
275	280	285	
TCC ATC GCC GAG CTT GCC CAA GCC AGC AAC TCC CTC ATC GCC TGG GGC			970
Ser Ile Ala Glu Leu Ala Gln Ala Ser Asn Ser Leu Ile Ala Trp Gly			
290	295	300	305
35 CGG GAG TCC CCT GCC CAA GCC CCA GCC TGACCCCCAGT CCTTCCCTCT TGG			1020
Arg Glu Ser Pro Ala Gln Ala Pro Ala			
310			
ACTCAGAGTT GGTGTGGCCT ACCTGGCTAT ACATCTTCAT CCCTCCCCAC CATCCTGGGG			1080

AAGTGATGGT GTGCCAGGC AGTTATAGAT TAAAGGCCTG TGAGTACTGC T

1131

(2) INFORMATION FOR SEQ ID NO: 46:

5 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1875
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

10 (ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10413

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 79.. 666
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

CTCGCTCGCT CAGAGGGAGG AGAAAGTGGC GAGTTCCGGA TCCCTGCCTA GCGCGGCCCA 60

25 ACCTTTACTC CAGAGATC ATG GCT GCC GAG GAT GTG GTG GCG ACT GGC GCC 111

Met Ala Ala Glu Asp Val Val Ala Thr Gly Ala

1 5 10

GAC CCA AGC GAT CTG GAG AGC GGC GGG CTG CTG CAT GAG ATT TTC ACG 159

Asp Pro Ser Asp Leu Glu Ser Gly Gly Leu Leu His Glu Ile Phe Thr

30 15 20 25

TCG CCG CTC AAC CTG CTG CTT GGC CTC TGC ATC TTC CTG CTC TAC 207

Ser Pro Leu Asn Leu Leu Leu Gly Leu Cys Ile Phe Leu Leu Tyr

30 35 40

AAG ATC GTG CGC GGG GAC CAG CCG GCG GCC AGC GGC GAC AGC GAC GAC 255

35 Lys Ile Val Arg Gly Asp Gln Pro Ala Ala Ser Gly Asp Ser Asp Asp

45 50 55

GAC GAG CCG CCC CCT CTG CCC CGC CTC AAG CGG CGC GAC TTC ACC CCC 303

Asp Glu Pro Pro Pro Leu Pro Arg Leu Lys Arg Arg Asp Phe Thr Pro

139

	60	65	70	75	
	GCC GAG CTG CGG CGC TTC GAC GGC GTC CAG GAC CCG CGC ATA CTC ATG				351
	Ala Glu L u Arg Arg Phe Asp Gly Val Gln Asp Pro Arg Ile Leu Met				
	80	85	90		
5	GCC ATC AAC GGC AAG GTG TTC GAT GTG ACC AAA GGC CGC AAA TTC TAC				399
	Ala Ile Asn Gly Lys Val Phe Asp Val Thr Lys Gly Arg Lys Phe Tyr				
	95	100	105		
	GGG CCC GAG GGG CCG TAT GGG GTC TTT GCT GGA AGA GAT GCA TCC AGG				447
	Gly Pro Glu Gly Pro Tyr Gly Val Phe Ala Gly Arg Asp Ala Ser Arg				
10	110	115	120		
	GGC CTT GCC ACA TTT TGC CTG GAT AAG GAA GCA CTG AAG GAT GAG TAC				495
	Gly Leu Ala Thr Phe Cys Leu Asp Lys Glu Ala Leu Lys Asp Glu Tyr				
	125	130	135		
	GAT GAC CTT TCT GAC CTC ACT GCT GCC CAG CAG GAG ACT CTG AGT GAC				543
15	Asp Asp Leu Ser Asp Leu Thr Ala Ala Gln Gln Glu Thr Leu Ser Asp				
	140	145	150	155	
	TGG GAG TCT CAG TTC ACT TTC AAG TAT CAT CAC GTG GGC AAA CTG CTG				591
	Trp Glu Ser Gln Phe Thr Phe Lys Tyr His His Val Gly Lys Leu Leu				
	160	165	170		
20	AAG GAG GGG GAG GAG CCC ACT GTG TAC TCA GAT GAG GAA GAA CCA AAA				639
	Lys Glu Gly Glu Glu Pro Thr Val Tyr Ser Asp Glu Glu Glu Pro Lys				
	175	180	185		
	GAT GAG AGT GCC CGG AAA AAT GAT TAAAGCATTC AGTGGAAAGTA TATCTAT				690
	Asp Glu Ser Ala Arg Lys Asn Asp				
25	190	195			
	TTTTGTATTT TGCAAAATCA TTTGTAACAG TCCACTCTGT CTTAAAACA TAGTGATTAC				750
	AATATTTAGA AAGTTTGAG CACTGCTAT AAGTTTTTA TAACATCACT AGTGACACTA				810
	ATAAAATTAA CTTCTTAGAA TGCATGATGT GTTTGTGTGT CACAAATCCA GAAAGTGAAC				870
	TGCAGTGCTG TAATACACAT GTTAATACTG TTTTCTTCT ATCTGTAGTT AGTACAGGAT				930
30	GAATTTAAAT GTGTTTTCC TGAGAGACAA GGAAGACTTG GGTATTTCCC AAAACAGGTA				990
	AAAATCTAA ATGTGCACCA AGAGCAAAGG ATCAACTTT AGTCATGATG TTCTGTAAAG				1050
	ACAACAAATC CCTTTTTTCT CTCATTGA CTTAACTGCA TGATTTCTGT TTTATCTACC				1110
	TCTAAAGCAA ATCTGCAGTG TTCCAAAGAC TTTGGTATGG ATTAAGCGCT GTCCAGTAAC				1170
	AAAATGAAAT CTCAAAACAG AGCTCAGCTG CAAAAAAGCA TATTTCTGT GTTTCTGGAC				1230
35	TGCACTGTTG TCCTTGCCT CACATAGACA CTCAGACACC CTCACAAACA CAGTAGTCTA				1290
	TAGTTAGGAT TAAAATAGGA TCTAACATT CAAAAGAAAG CTTTGGAAAA AAAGAGCTGG				1350
	CTGGCCTAAA AACCTAAATA TATGATGAAG ATTGTAGGAC TGTCTTCCCA AGCCCCATGT				1410
	TCATGGTGGG GCAATGGTTA TTTGGTTATT TTACTCAATT GGTTACTCTC ATTTGAAATG				1470

140

AGGGAGGGAC ATACAGAATA GGAACAGGTG TTTGCTCTCC TAAGAGCCTT CATGCACACC	1530
CCTGAACCAC GAGGAAACAG TACAGTCGCT AGTCAAGTGG TTTTAAAGT AAAGTATATT	1590
CATAAGGTAA CAGTTATTCT GTTGTATCAA AACTATACCC ACTGCAAAAG TAGTAGTCAA	1650
GTGTCTAGGT CTTTGATATT GCTCTTTGG TTAACACTAA GCTTAAGTAG ACTATACAGT	1710
5 TGTATGAATT TGTAAGTA TATGAACACC TAGTGAGATT TCAAACCTGT AATTGTGGTT	1770
AAATAGTCAT TGTATTTCT TGTGAACTGT GTTTATGAT TTTACCTCAA ATCAGAAAAC	1830
AAAATGATGT GCTTGGTCA GTTAATAAAA ATGGTTTAC CCACT	1875

10 (2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1563
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 15 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- 20 (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10415

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- 25 (B) EXISTENCE POSITION: 72.. 1460
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

30 AAATTGGGCC AGGCTGAGGC GCTGCTGCTG GAGCGGCCGA TCCGAGACGT GGCTCCCTGG	60
GCGGCAGAAC C ATG TTG GAC TTC GCG ATC TTC GCC GTT ACC TTC TTG CTG	110
Met Leu Asp Phe Ala Ile Phe Ala Val Thr Phe Leu Leu	
1 5 10	
GCG TTG GTG GGA GCC GTG CTC TAC CTC TAT CCG GCT TCC AGA CAA GCT	158
35 Ala Leu Val Gly Ala Val Leu Tyr Leu Tyr Pro Ala Ser Arg Gln Ala	
15 20 25	
GCA GGA ATT CCA GGG ATT ACT CCA ACT GAA GAA AAA GAT GGT AAT CTT	206
Ala Gly Ile Pro Gly Ile Thr Pro Thr Glu Glu Lys Asp Gly Asn Leu	

141

	30	35	40	45	
	CCA GAT ATT GTG AAT AGT GGA AGT TTG CAT GAG TTC CTG GTT AAT TTG				254
	Pro Asp Ile Val Asn Ser Gly Ser Leu His Glu Phe Leu Val Asn Leu				
	50	55	60		
5	CAT GAG AGA TAT GGG CCT GTG GTC TCC TTC TGG TTT GGC AGG CGC CTC				302
	His Glu Arg Tyr Gly Pro Val Val Ser Phe Trp Phe Gly Arg Arg Leu				
	65	70	75		
	GTG GTT AGT TTG GGC ACT GTT GAT GTC CTG AAG CAG CAT ATC AAT CCC				350
	Val Val Ser Leu Gly Thr Val Asp Val Leu Lys Gln His Ile Asn Pro				
10	10	80	85	90	
	AAT AAG ACA TTG GAC CCT TTT GAA ACC ATG CTG AAG TCA TTA TTA AGG				398
	Asn Lys Thr Leu Asp Pro Phe Glu Thr Met Leu Lys Ser Leu Leu Arg				
	95	100	105		
	TAT CAA TCT GGT GGC AGT GTG AGT GAA AAC CAC ATG AGG AAA AAA				446
15	Tyr Gln Ser Gly Gly Ser Val Ser Glu Asn His Met Arg Lys Lys				
	110	115	120	125	
	TTG TAT GAA AAT GGT GTG ACT GAT TCT CTG AAG AGT AAC TTT GCC CTC				494
	Leu Tyr Glu Asn Gly Val Thr Asp Ser Leu Lys Ser Asn Phe Ala Leu				
	130	135	140		
20	20	CTC CTA AAG CTT TCA GAA GAA TTA TTA GAT AAA TGG CTC TCC TAC CCA			542
	Leu Leu Lys Leu Ser Glu Glu Leu Leu Asp Lys Trp Leu Ser Tyr Pro				
	145	150	155		
	GAG ACC CAG CAC GTG CCC CTC AGC CAG CAT ATG CTT GGT TTT GCT ATG				590
	Glu Thr Gln His Val Pro Leu Ser Gln His Met Leu Gly Phe Ala Met				
25	160	165	170		
	AAG TCT GTT ACA CAG ATG GTA ATG GGT AGT ACA TTT GAA GAT GAT CAG				638
	Lys Ser Val Thr Gln Met Val Met Gly Ser Thr Phe Glu Asp Asp Gln				
	175	180	185		
	GAA GTC ATT CGC TTC CAG AAG AAT CAT GGC ACA GTT TGG TCT GAG ATT				686
30	30	Glu Val Ile Arg Phe Gln Lys Asn His Gly Thr Val Trp Ser Glu Ile			
	190	195	200	205	
	GGA AAA GGC TTT CTA GAT GGG TCA CTT GAT AAA AAC ATG ACT CGG AAA				734
	Gly Lys Gly Phe Leu Asp Gly Ser Leu Asp Lys Asn Met Thr Arg Lys				
	210	215	220		
35	35	AAA CAA TAT GAA GAT GCC CTC ATG CAA CTG GAG TCT GTT TTA AGG AAC			782
	Lys Gln Tyr Glu Asp Ala Leu Met Gln Leu Glu Ser Val Leu Arg Asn				
	225	230	235		
	ATC ATA AAA GAA CGA AAA GGA AGG AAC TTC AGT CAA CAT ATT TTC ATT				830

Ile Ile Lys Glu Arg Lys Gly Arg Asn Phe Ser Gln His Ile Phe Ile			
240	245	250	
GAC TCC TTA GTA CAA GGG AAC CTT AAT GAC CAA CAG ATC CTA GAA GAC			878
Asp Ser Leu Val Gln Gly Asn Leu Asn Asp Gln Gln Ile Leu Glu Asp			
5 255	260	265	
AGT ATG ATA TTT TCT CTG GCC AGT TGC ATA ATA ACT GCA AAA TTG TGT			926
Ser Met Ile Phe Ser Leu Ala Ser Cys Ile Ile Thr Ala Lys Leu Cys			
270	275	280	285
ACC TGG GCA ATC TGT TTT TTA ACC ACC TCT GAA GAA GTT CAA AAA AAA			974
10 Thr Trp Ala Ile Cys Phe Leu Thr Thr Ser Glu Glu Val Gln Lys Lys			
290	295	300	
TTA TAT GAA GAG ATA AAC CAA GTT TTT GGA AAT GGT CCT GTT ACT CCA			1022
Leu Tyr Glu Glu Ile Asn Gln Val Phe Gly Asn Gly Pro Val Thr Pro			
305	310	315	
15 GAG AAA ATT GAG CAG CTC AGA TAT TGT CAG CAT GTG CTT TGT GAA ACT			1070
Glu Lys Ile Glu Gln Leu Arg Tyr Cys Gln His Val Leu Cys Glu Thr			
320	325	330	
GTT CGA ACT GCC AAA CTG ACT CCA GTT TCT GCC CAG CTT CAA GAT ATT			1118
Val Arg Thr Ala Lys Leu Thr Pro Val Ser Ala Gln Leu Gln Asp Ile			
20 335	340	345	
GAA GGA AAA ATT GAC CGA TTT ATT ATT CCT AGA GAG ACC CTC GTC CTT			1166
Glu Gly Lys Ile Asp Arg Phe Ile Ile Pro Arg Glu Thr Leu Val Leu			
350	355	360	365
TAT GCC CTT GGT GTG GTA CTT CAG GAT CCT AAT ACT TGG CCA TCT CCA			1214
25 Tyr Ala Leu Gly Val Val Leu Gln Asp Pro Asn Thr Trp Pro Ser Pro			
370	375	380	
CAC AAG TTT GAT CCA GAT CGG TTT GAT GAT GAA TTA GTA ATG AAA ACT			1262
His Lys Phe Asp Pro Asp Arg Phe Asp Asp Glu Leu Val Met Lys Thr			
385	390	395	
30 TTT TCC TCA CTT GGA TTC TCA GGC ACA CAG GAG TGT CCA GAG TTG AGG			1310
Phe Ser Ser Leu Gly Phe Ser Gly Thr Gln Glu Cys Pro Glu Leu Arg			
400	405	410	
TTT GCA TAT ATG GTG ACC ACA GTA CTT CTT AGT GTA TTG GTG AAG AGA			1358
Phe Ala Tyr Met Val Thr Thr Val Leu Leu Ser Val Leu Val Lys Arg			
35 415	420	425	
CTG CAC CTA CTT TCT GTG GAG GGA CAG GTT ATT GAA ACA AAG TAT GAA			1406
Leu His Leu Leu Ser Val Glu Gly Gln Val Ile Glu Thr Lys Tyr Glu			
430	435	440	445

143

CTG GTA ACA TCA TCA AGG GAA GAA GCT TGG ATC ACT GTC TCA AAG AGA 1454
 Leu Val Thr Ser Ser Arg Glu Glu Ala Trp Ile Thr Val Ser Lys Arg
 450 455 460

TAT TAAAATTTA TACATTAAA ATCATTGTTA AATTGATTGA GGAAAACAAC CAT 1510

5 Tyr

TTAAAAAAA TCTATGTTGA ATCCCTTAT AAACCGAT TACTTGTAA TAT 1563

10 (2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2030
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

15 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10419

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 171.. 914
- (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

30 CATTGGGGT TTCGGTTCCC CCCCTTCCCC TTCCCCGGGG TCTGGGGGTG ACATTGCACC 60
 GCGCCCCCTCG TGGGGTCCGCG TTGCCACCCC ACGCGGACTC CCCAGCTGGC GCGCCCCCTCC 120
 CATTTGCCTG TCCTGGTCAG GCCCCCACCC CCCTTCCAC CTGACCAGCC ATG GGG 176
 Met Gly

1

35 GCT GCG GTG TTT TTC GGC TGC ACT TTC GTC GCG TTC GGC CCG GCC TTC 224
 Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly Pro Ala Phe

5 10 15

GCG CTT TTC TTG ATC ACT GTG GCT GGG GAC CCG CTT CGC GTT ATC ATC 272

	Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu Arg Val Ile Il		
20	25	30	
CTG GTC GCA GGG GCA TTT TTC TGG CTG GTC TCC CTG CTC CTG GCC TCT			320
Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser Leu Leu Leu Ala Ser			
5 35	40	45	50
G TG GTC TGG TTC ATC TTG GTC CAT GTG ACC GAC CGG TCA GAT GCC CGG			368
Val Val Trp Phe Ile Leu Val His Val Thr Asp Arg Ser Asp Ala Arg			
55	60	65	
CTC CAG TAC GGC CTC CTG ATT TTT GGT GCT GCT GTC TCT GTC CTT CTA			416
10 Leu Gln Tyr Gly Leu Leu Ile Phe Gly Ala Ala Val Ser Val Leu Leu			
70	75	80	
CAG GAG GTG TTC CGC TTT GCC TAC TAC AAG CTG CTT AAG AAG GCA GAT			464
Gln Glu Val Phe Arg Phe Ala Tyr Tyr Lys Leu Leu Lys Lys Ala Asp			
85	90	95	
15 GAG GGG TTA GCA TCG CTG AGT GAG GAC GGA AGA TCA CCC ATC TCC ATC			512
Glu Gly Leu Ala Ser Leu Ser Glu Asp Gly Arg Ser Pro Ile Ser Ile			
100	105	110	
CGC CAG ATG GCC TAT GTT TCT GGT CTC TCC TTC GGT ATC ATC AGT GGT			560
Arg Gln Met Ala Tyr Val Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly			
20 115	120	125	130
GTC TTC TCT GTT ATC AAT ATT TTG GCT GAT GCA CTT GGG CCA GGT GTG			608
Val Phe Ser Val Ile Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val			
135	140	145	
GTT GGG ATC CAT GGA GAC TCA CCC TAT TAC TTC CTG ACT TCA GCC TTT			656
25 Val Gly Ile His Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe			
150	155	160	
CTG ACA GCA GCC ATT ATC CTG CTC CAT ACC TTT TGG GGA GTT GTG TTC			704
Leu Thr Ala Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe			
165	170	175	
30 TTT GAT GCC TGT GAG AGG AGA CGG TAC TGG GCT TTG GGC CTG GTG GTT			752
Phe Asp Ala Cys Glu Arg Arg Tyr Trp Ala Leu Gly Leu Val Val			
180	185	190	
GGG AGT CAC CTA CTG ACA TCG GGA CTG ACA TTC CTG AAC CCC TGG TAT			800
Gly Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr			
35 195	200	205	210
GAG GCC AGC CTG CTG CCC ATC TAT GCA GTC ACT GTT TCC ATG GGG CTC			848
Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly Leu			
215	220	225	

145

TGG	GCC	TTC	ATC	ACA	GCT	GGA	GGG	TCC	CTC	CGA	AGT	ATT	CAG	CGC	AGC	896
Trp	Ala	Phe	Ile	Thr	Ala	Gly	Gly	Ser	Leu	Arg	Ser	Ile	Gln	Arg	Ser	
230								235						240		
CTC	TTG	TGT	AAG	GAC	TGACTACCTG	GACTGATCGC	CTGACAGATC	CCACCTGCC							950	
5	Leu	Leu	Cys	Lys	Asp											
						245										
TGTCCACTGC	CCATGACTGA	GCCCAGCCCC	AGCCCGGGTC	CATTGCCAC	ATTCTCTGTC										1010	
TCCTTCTCGT	CGGTCTACCC	CACTACCTCC	AGGGTTTGC	TTTGTCTTT	TGTGACCGTT										1070	
AGTCTCTAAC	CTTTACCAGG	AGCAGCCTGG	GTTCAGCCAG	TCAGTGACTG	GTGGGTTTGA										1130	
10	ATCTGCAC	TT ATCCCCACCA	CCTGGGGACC	CCCTTGTGT	GTCCAGGACT	CCCCCTGTGT									1190	
CAGTGCTCTG	CTCTCACCC	GCCCAAGACT	CACCTCCCTT	CCCCTCTGCA	GGCCGACGGC										1250	
AGGAGGACAG	TCGGGTGATG	GTTGATTCTG	CCCTGCGCAT	CCCACCCGAG	GACTGAGGGA										1310	
ACCTAGGGGG	GACCCCTGGG	CCTGGGGTGC	CCTCCTGATG	TCCTGCCCT	GTATTTCTCC										1370	
ATCTCCAGTT	CTGGACAGTG	CAGGTTGCCA	AGAAAAGGGA	CCTAGTTAG	CCATTGCCCT										1430	
15	GGAGATGAAA	TTAATGGAGG	CTCAAGGATA	GATGAGCTCT	GAGTTCTCA	GTACTCCCTC									1490	
AAGACTGGAC	ATCTTGGTCT	TTTCTCAGG	CCTGAGGGGG	AACCATTTT	GGTGTGATAAA										1550	
ATACCCCTAAA	CTGCCTTTT	TTCTTTTTG	AGGTGGGGGG	AGGGAGGAGG	TATATTGGAA										1610	
CTCTTCTAAC	CTCCTTGGC	TATATTTCT	CTCCTCGAGT	TGCTCCTCAT	GGCTGGGCTC										1670	
ATTCCGGTCC	CTTTCTCCTT	GGTCCCAGAC	CTTGGGGAA	AGGAAGGAAG	TGCTGTTG										1730	
20	GGAAC	CTGGCA TTACTGGAAC	TAATGGTTT	AACCTCCTTA	ACCACCA	TCCCTCCTCT									1790	
CCCCAAGGTG	AAAGTGGAGGG	TGCTGTGGTG	AGCTGGCAC	TCCAGAGCTG	CAGTGCCACT										1850	
GGAGGAGTCA	GACTACCATG	ACATCGTAGG	GAAGGAGGGG	AGATTTTTT	GTAGTTTTA										1910	
ATTGGGGTGT	GGGAGGGGCG	GGGAGGTTT	CTATAAACTG	TATCATTTC	TGCTGAGGGT										1970	
GGAGTGTCCC	ATCCTTTAA	TCAAGGTGAT	TGTGATTTG	ACTAATAAAA	AAGAATTGT										2030	

25

(2) INFORMATION FOR SEQ ID NO: 49:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 493

30 (B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

35 (vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Stomach cancer

(D) CLONE NAME: HP10424

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
 - (B) EXISTENCE POSITION: 98.. 439
 - (C) CHARACTERIZATION METHOD: E

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:

AAAGTTCCC AAATCCAGGC GGCTAGAGGC CCACTGCTTC CCAACTACCA GCTGAGGGGG	60
TCCGTCCCCGA GAAGGGAGAA GAGGCCGAAG AGGAAAC ATG AAC TTC TAT TTA CTC	115
10	Met Asn Phe Tyr Leu Leu
	1 5
CTA GCG AGC AGC ATT CTG TGT GCC TTG ATT GTC TTC TGG AAA TAT CGC	163
Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile Val Phe Trp Lys Tyr Arg	
10 15 20	
15 CGC TTT CAG AGA AAC ACT GGC GAA ATG TCA TCA AAT TCA ACT GCT CTT	211
Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser Asn Ser Thr Ala Leu	
25 30 35	
GCA CTA GTG AGA CCC TCT TCT TCT GGG TTA ATT AAC AGC AAT ACA GAC	259
Ala Leu Val Arg Pro Ser Ser Ser Gly Leu Ile Asn Ser Asn Thr Asp	
20 40 45 50	
AAC AAT CTT GCA GTC TAC GAC CTC TCT CGG GAT ATT TTA AAT AAT TTC	307
Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg Asp Ile Leu Asn Asn Phe	
55 60 65 70	
CCA CAC TCA ATA GCC AGG CAG AAG CGA ATA TTG GTA AAC CTC AGT ATG	355
25 Pro His Ser Ile Ala Arg Gln Lys Arg Ile Leu Val Asn Leu Ser Met	
75 80 85	
GTG GAA AAC AAG CTG GTT GAA CTG GAA CAT ACT CTA CTT AGC AAG GGT	403
Val Glu Asn Lys Leu Val Glu Leu Glu His Thr Leu Leu Ser Lys Gly	
90 95 100	
30 TTC AGA GGT GCA TCA CCT CAC CGG AAA TCC ACC TAAAAGCGTA CAGG	450
Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr	
105 110	
ATGTAATGCC AGTGGTGGAA ATCATTAAG ACACTTGA GTAG	493

35

(2) INFORMATION FOR SEQ ID NO: 50:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2044

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

5

(vi) ORIGINAL SOURCE:

(A) ORGANISM: *Homo sapiens*

(B) CELL KIND: Epidermoid carcinoma

(C) CELL LINE: KB

10

(D) CLONE NAME: HP10428

15

(ix) SEQUENCE CHARACTERISTICS:

(A) CHARACTERIZATION CODE: CDS

(B) EXISTENCE POSITION: 288.. 1385

(C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:

AGATTCCGGC	CTGGAGCTCC	CAGGCCGAG	CAGACCTTGG	GACCTGTGAG	CGCTGCATCC	60
20 AATTAACCAT	GGGAAGGGTC	AGCACCAAGCC	ACCAGCCCCCT	TAGGTGAGGA	CTCTGCCTGG	120
GGCTCTGCTG	ATGGTTCCGA	ATCATGGAGC	TGCAGAGAGC	TCCTCCAGCC	TGGAGACGTT	180
CTTGGTGAAA	GCTGTGGTCT	AACTCCACCG	GCTCTTCCTG	CACATTGTAT	TCAAGAGGGG	240
TGCCTGCCCC	CGCTGACTCA	GGAGCTCCGG	TGCTGCAGCC	GCCACGA	ATG GGG AGG	296
				Met	Gly Arg	
25				1		
TGG GCC CTC GAT GTG	GCC TTT TTG	TGG AAG GCG	GTG TTG ACC CTG	GGG		344
Trp Ala Leu Asp Val	Ala Phe Leu Trp	Lys Ala Val	Leu Thr Leu Gly			
5	10	15				
CTG GTG CTT CTC TAC	TAC TGC TTC	TCC ATC GGC	ATC ACC TTC	TAC AAC		392
30 Leu Val Leu Tyr	Tyr Cys Phe Ser	Ile Gly Ile	Thr Phe Tyr	Asn		
20	25	30	35			
AAG TGG CTG ACA AAG	AGC TTC CAT	TTC CCC CTC	TTC ATG ACG	ATG CTG		440
Lys Trp Leu Thr Lys	Ser Phe His	Phe Pro	Leu Phe Met	Thr Met Leu		
40	45	50				
35 CAC CTG GCC GTG	ATC TTC CTC	TTC GCC CTG	TCC AGG GCG	CTG GTT		488
His Leu Ala Val Ile	Phe Leu Phe	Ser Ala	Leu Ser Arg	Ala Leu Val		
55	60	65				
CAG TGC TCC AGC CAC	AGG GCC CGT	GTG GTG	CTG AGC TGG	GCC GAC TAC		536

Gln	Cys	Ser	Ser	His	Arg	Ala	Arg	Val	Val	Leu	Ser	Trp	Ala	Asp	Tyr		
70																	
CTC	AGA	AGA	GTG	GCT	CCC	ACA	GCT	CTG	GCG	ACG	GCG	CTT	GAC	GTG	GGC	584	
Leu	Arg	Arg	Val	Ala	Pro	Thr	Ala	Leu	Ala	Thr	Ala	Leu	Asp	Val	Gly		
5	85																
		90													95		
TTG	TCC	AAC	TGG	AGC	TTC	CTG	TAT	GTC	ACC	GTC	TCG	CTG	TAC	ACA	ATG	632	
Leu	Ser	Asn	Trp	Ser	Phe	Leu	Tyr	Val	Thr	Val	Ser	Leu	Tyr	Thr	Met		
100					105					110					115		
ACC	AAA	TCC	TCA	GCT	GTC	CTC	TTC	ATC	TTG	ATC	TTC	TCT	CTG	ATC	TTC	680	
10	Thr	Lys	Ser	Ser	Ala	Val	Leu	Phe	Ile	Leu	Ile	Phe	Ser	Leu	Ile	Phe	
					120				125						130		
AAG	CTG	GAG	GAG	CTG	CGC	GCG	GCA	CTG	GTC	CTG	GTG	GTC	CTC	ATC		728	
Lys	Leu	Glu	Glu	Leu	Arg	Ala	Ala	Leu	Val	Leu	Val	Val	Leu	Leu	Ile		
					135				140						145		
15	GCC	GGG	GGT	CTC	TTC	ATG	TTC	ACC	TAC	AAG	TCC	ACA	CAG	TTC	AAC	GTG	776
Ala	Gly	Gly	Leu	Phe	Met	Phe	Thr	Tyr	Lys	Ser	Thr	Gln	Phe	Asn	Val		
150					155										160		
GAG	GGC	TTC	GCC	TTG	GTG	CTG	GGG	GCC	TCG	TTC	ATC	GGT	GGC	ATT	CGC	824	
Glu	Gly	Phe	Ala	Leu	Val	Leu	Gly	Ala	Ser	Phe	Ile	Gly	Gly	Ile	Arg		
20	165				170										175		
TGG	ACC	CTC	ACC	CAG	ATG	CTC	CTG	CAG	AAG	GCT	GAA	CTC	GGC	CTC	CAG	872	
Trp	Thr	Leu	Thr	Gln	Met	Leu	Leu	Gln	Lys	Ala	Glu	Leu	Gly	Leu	Gln		
180					185				190						195		
AAT	CCC	ATC	GAC	ACC	ATG	TTC	CAC	CTG	CAG	CCA	CTC	ATG	TTC	CTG	GGG	920	
25	Asn	Pro	Ile	Asp	Thr	Met	Phe	His	Leu	Gln	Pro	Leu	Met	Phe	Leu	Gly	
					200				205						210		
CTC	TTC	CCT	CTC	TTT	GCT	GTA	TTT	GAA	GGT	CTC	CAT	TTG	TCC	ACA	TCT	968	
Leu	Phe	Pro	Leu	Phe	Ala	Val	Phe	Glu	Gly	Leu	His	Leu	Ser	Thr	Ser		
					215				220						225		
30	GAG	AAA	ATC	TTC	CGT	TTC	CAG	GAC	ACA	GGG	CTG	CTC	CTG	CGG	GTA	CTT	1016
Glu	Lys	Ile	Phe	Arg	Phe	Gln	Asp	Thr	Gly	Leu	Leu	Leu	Arg	Val	Leu		
230					235										240		
GGG	AGC	CTC	TTC	CTT	GGC	GGG	ATT	CTC	GCC	TTT	GGT	TTG	GGC	TTC	TCT	1064	
Gly	Ser	Leu	Phe	Leu	Gly	Gly	Ile	Leu	Ala	Phe	Gly	Leu	Gly	Phe	Ser		
35	245				250										255		
GAG	TTC	CTC	CTG	GTC	TCC	AGA	ACC	TCC	AGC	CTC	ACT	CTC	TCC	ATT	GCC	1112	
Glu	Phe	Leu	Leu	Val	Ser	Arg	Thr	Ser	Ser	Leu	Thr	Leu	Ser	Ile	Ala		
260					265					270					275		

149

GGC ATT TTT AAG GAA GTC TGC ACT TTG CTG TTG GCA GCT CAT CTG CTG	1160		
Gly Ile Phe Lys Glu Val Cys Thr Leu L u Leu Ala Ala His Leu Leu			
280	285	290	
GGC GAT CAG ATC AGC CTC CTG AAC TGG CTG GGC TTC GCC CTC TGC CTC	1208		
5 Gly Asp Gln Ile Ser Leu Leu Asn Trp Leu Gly Phe Ala Leu Cys Leu			
295	300	305	
TCG GGA ATA TCC CTC CAC GTT GCC CTC AAA GCC CTG CAT TCC AGA GGT	1256		
Ser Gly Ile Ser Leu His Val Ala Leu Lys Ala Leu His Ser Arg Gly			
310	315	320	
10 GAT GGT GGC CCC AAG GCC TTG AAG GGG CTG GGC TCC AGC CCC GAC CTG	1304		
Asp Gly Gly Pro Lys Ala Leu Lys Gly Leu Gly Ser Ser Pro Asp Leu			
325	330	335	
GAG CTG CTG CTC CGG AGC AGC CAG CGG GAG GAA GGT GAC AAT GAG GAG	1352		
Glu Leu Leu Leu Arg Ser Ser Gln Arg Glu Glu Gly Asp Asn Glu Glu			
15 340	345	350	355
GAG GAG TAC TTT GTG GCC CAG GGG CAG CAG TGACCAGCCA GGGCAAAT	1400		
Glu Glu Tyr Phe Val Ala Gln Gly Gln Gln			
360	365		
GGCTTAGAACAGGCCACTC CCCAGCCTGC TGCCAGCACT CACTGTGCTC AAGCCGCCAG	1460		
20 GGCTCATCAT GGTAGCTGGG AGCTGTGGAC GGGAGTCACC AGGTGGTGGG GCCAAGCCAG	1520		
GGACTCATGA CTTTGCCCC TCCCCTCAGA GCCTGGTCAC ACAAGGGCG AGCACCAAGGC	1580		
CAGCCTGGGA CTGGCCAGAG CTGGGCCAA GCTGCGCTGG AATCGCAGCA GGAGAGGGGA	1640		
GTGGGCTGGT TCTTCCCACC ACTTCCCAGG CTCTGACAGC CGAGACTCAT TTCCAAGGCA	1700		
CAGCAGCTTT CTAAAGGGAC TGAGTTGGA CTGGGTTTG GACCTCCAGG GGCTGGAGCT	1760		
25 TCATCACCTG GGCAGTGTCT TTTCTCAGAG AGCAGGTTTC TTTATAGTTT GGAAATAAAAT	1820		
GGTTCACGGT CCACTGGCCG CCTTGTGTTG CTGGAGACGT GGGGGCAGGG AGGGGACAGT	1880		
GTGGGCCTGG CCTCTCCCTT CCTTCCCTG CCTGGAGCCT TCTTCAAATG TCTGGTCTTA	1940		
AGCCAGGCCT CCTTCATTT CTCGCTCCTG TTAGAACACC AGTCCCTCC CCAGTGGGGC	2000		
CCCAC TGCTGGCAG GAAATAAAATG AATGTTACT GAGT	2044		
30			

(2) INFORMATION FOR SEQ ID NO: 51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1043

35 (B) TYPE: Nucleic acid

(C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

150

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10429

5

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 157.. 837
- (C) CHARACTERIZATION METHOD: E

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

ATTAGCATAA CCCTTCCTCA GGAAGAGTGA GATTTTATAT TTGACAATAA AGTGTTAGAC	60
TCCATTTCTA AATACCAGAC TTCAAAAGAT AAGGTTCAAA AGTGTATAA GAAGATATTC	120
15 CTTTTTTGT CCTAGAGAAC TTATTTCT GTGAAA ATG CCT ACC ACA AAG AAG	174
Met Pro Thr Thr Lys Lys	
1 5	
ACA TTG ATG TTC TTA TCA AGC TTT TTC ACC AGC CTT GGG TCC TTC ATT	222
Thr Leu Met Phe Leu Ser Ser Phe Phe Thr Ser Leu Gly Ser Phe Ile	
20 10 15 20	
GTA ATT TGC TCT ATT CTT GGG ACA CAA GCA TGG ATC ACC AGT ACA ATT	270
Val Ile Cys Ser Ile Leu Gly Thr Gln Ala Trp Ile Thr Ser Thr Ile	
25 30 35	
GCT GTT AGA GAC TCT GCT TCA AAT GGG AGC ATT TTC ATC ACT TAC GGA	318
25 Ala Val Arg Asp Ser Ala Ser Asn Gly Ser Ile Phe Ile Thr Tyr Gly	
40 45 50	
CTT TTT CGT GGG GAG AGT AGT GAA GAA TTG AGT CAC GGA CTT GCA GAA	366
Leu Phe Arg Gly Glu Ser Ser Glu Glu Leu Ser His Gly Leu Ala Glu	
55 60 65 70	
30 CCA AAG AAA AAG TTT GCA GTT TTA GAG ATA CTG AAT AAT TCT TCC CAA	414
Pro Lys Lys Phe Ala Val Leu Glu Ile Leu Asn Asn Ser Ser Gln	
75 80 85	
AAA ACT CTG CAT TCG GTG ACT ATC CTG TTC CTG GTC CTG AGT TTG ATC	462
Lys Thr Leu His Ser Val Thr Ile Leu Phe Leu Val Leu Ser Leu Ile	
35 90 95 100	
ACG TCG CTG CTG AGC TCT GGG TTT ACC TTC TAC AAC AGC ATC AGC AAC	510
Thr Ser Leu L u Ser Ser Gly Phe Thr Phe Tyr Asn Ser Ile Ser Asn	
105 110 115	

151

CCT TAC CAG ACA TTC CTG GGG CCG ACG GGG GTG TAC ACC TGG AAC GGG	558
Pro Tyr Gln Thr Phe Leu Gly Pro Thr Gly Val Tyr Thr Trp Asn Gly	
120 125 130	
CTC GGT GCA TCC TTC GTT TTT GTG ACC ATG ATA CTG TTT GTG GCG AAC	606
5 Leu Gly Ala Ser Phe Val Phe Val Thr Met Ile Leu Phe Val Ala Asn	
135 140 145 150	
ACG CAG TCC AAC CAA CTC TCC GAA GAG TTG TTC CAA ATG CTT TAC CCG	654
Thr Gln Ser Asn Gln Leu Ser Glu Glu Leu Phe Gln Met Leu Tyr Pro	
155 160 165	
10 GCA ACC ACC AGT AAA GGA ACG ACC CAC AGT TAC GGA TAC TCG TTC TGG	702
Ala Thr Thr Ser Lys Gly Thr Thr His Ser Tyr Gly Tyr Ser Phe Trp	
170 175 180	
CTC ATA CTG CTC GTC ATT CTT CTA AAT ATA GTC ACT GTA ACC ATC ATC	750
Leu Ile Leu Leu Val Ile Leu Leu Asn Ile Val Thr Val Thr Ile Ile	
15 185 190 195	
ATT TTC TAC CAG AAG GCC AGA TAC CAG CGG AAG CAG GAG CAG AGA AAG	798
Ile Phe Tyr Gln Lys Ala Arg Tyr Gln Arg Lys Gln Glu Gln Arg Lys	
200 205 210	
CCA ATG GAA TAT GCT CCA AGG GAC GGA ATT TTA TTC TGAATTCTCT TTCATC	850
20 Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile Leu Phe	
215 220 225	
TCATTTGGC GTTGCATCTA TTGTACATCA GCCCTGAGTA GTAACTGGTT AGCTTCTCTG	910
GACAATTCAAG CATGGTAACG TGACTGTCAT CTGTGACAGC ATTTGTGTTT CATGACACTG	970
TGTTCTTCAT TGATGCTGTA CTCCGAAAA TTTTCCCAC AAGGTTGGGG AAATGAATGG	1030
25 GAAATGTCGC TGG	1043

(2) INFORMATION FOR SEQ ID NO: 52:

(i) SEQUENCE CHARACTERISTICS:

- 30 (A) LENGTH: 972
 (B) TYPE: Nucleic acid
 (C) STRANDEDNESS: Double
 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

- 35 (vi) ORIGINAL SOURCE:
 (A) ORGANISM: *Homo sapiens*
 (B) CELL KIND: Liver

(D) CLONE NAME: HP10432

(ix) SEQUENCE CHARACTERISTICS:

(A) CHARACTERIZATION CODE: CDS

5 (B) EXISTENCE POSITION: 29.. 418

(C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

10	AGACAGCGGC	GGGCGCAGGA	CGTCACT	ATG GCT CGG GGC TCG CTG CGC CGG	52
				Met Ala Arg Gly Ser Leu Arg Arg	
			1	5	
	TTG	CTG CGG CTC CTC GTG CTG GGG CTC	TGG CTG GCG TTG CTG CGC TCC	100	
	Leu	Leu Arg Leu Leu Val Leu Gly Leu Trp Leu Ala Leu Leu Arg Ser			
15	10	15	20		
	GTG GCC GGG GAG CAA GCG CCA GGC ACC GCC CCC TGC TCC CGC GGC AGC	148			
	Val Ala Gly Glu Gln Ala Pro Gly Thr Ala Pro Cys Ser Arg Gly Ser				
	25	30	35	40	
	TCC TGG AGC GCG GAC CTG GAC AAG TGC ATG GAC TGC GCG TCT TGC AGG	196			
20	Ser Trp Ser Ala Asp Leu Asp Lys Cys Met Asp Cys Ala Ser Cys Arg				
	45	50	55		
	GCG CGA CCG CAC AGC GAC TTC TGC CTG GGC TGC GCT GCA GCA CCT CCT	244			
	Ala Arg Pro His Ser Asp Phe Cys Leu Gly Cys Ala Ala Pro Pro				
	60	65	70		
25	GCC CCC TTC CGG CTG CTT TGG CCC ATC CTT GGG GGC GCT CTG AGC CTG	292			
	Ala Pro Phe Arg Leu Leu Trp Pro Ile Leu Gly Gly Ala Leu Ser Leu				
	75	80	85		
	ACC TTC GTG CTG GGG CTG CTT TCT GGC TTT TTG GTC TGG AGA CGA TGC	340			
	Thr Phe Val Leu Gly Leu Leu Ser Gly Phe Leu Val Trp Arg Arg Cys				
30	90	95	100		
	CGC AGG AGA GAG AAG TTC ACC ACC CCC ATA GAG GAG ACC GGC GGA GAG	388			
	Arg Arg Arg Glu Lys Phe Thr Thr Pro Ile Glu Glu Thr Gly Gly Glu				
	105	110	115	120	
	GGC TGC CCA GCT GTG GCG CTG ATC CAG TGACA ATGT GCCCCCTGCC A CCCG	440			
35	Gly Cys Pro Ala Val Ala Leu Ile Gln				
	125				
	GGCTCGCCCCA CTCATCATTC ATTCAATCCAT TCTAGAGCCA GTCTCTGCCT CCCAGACGCG	500			
	GCAGGGAGCCA AGCTCCTCCA ACCACAAGGG GGGTGGGGGG CGGTGAATCA CCTCTGAGGC	560			

153

CTGGGCCAG GGTCAGGG AACCTTCAA GGTGCTGGT TGCCCTGCCT CTGGCTCCAG	620
AACAGAAAGG GAGCCTCACG CTGGCTACA CAAACAGCT GACACTGACT AAGGAACACTGC	680
AGCATTGCA CAGGGGAGGG GGGTGCCCTC CTTCTAGAG GCCCTGGGG CCAGGCTGAC	740
TGCCCCGCA GACTTGACAC TAGGCCAC TCACTCAGAT GTCCTGAAAT TCCACCACGG	800
5 GGGTCACCCCT GGGGGGTTAG GGACCTATTT TTAACACTAG GGGGCTGGCC CACTAGGAGG	860
GCTGGCCCTA AGATACAGAC CCCCCCAACT CCCCAAAGCG CGGAGGAGAT ATTTATTTG	920
GGGAGAGTTT GGAGGGAGG GAGAATTAT TAATAAAAAGA ATCTTAACT TT	972

10 (2) INFORMATION FOR SEQ ID NO: 53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 695
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double

15 (D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Liver
- (C) CELL LINE:
- (D) CLONE NAME: HP10433

(ix) SEQUENCE CHARACTERISTICS:

- 25 (A) CHARACTERIZATION CODE: CDS
 (B) EXISTENCE POSITION: 73.. 564
 (C) CHARACTERIZATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

30

AAGATTCAG CTGCGGGACG GTCAGGGAG ACCTCCAGGC GCAGGGAAGG ACGGCCAGGG	60
TGACACGGAA GC ATG CGA CGG CTG CTG ATC CCT CTG GCC CTG TGG CTG GGC	111

Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly	
---	--

1	5	10
---	---	----

35 GCG GTG GGC GTG GGC GTC GCC GAG CTC ACG GAA GCC CAG CGC CGG GGC	159
--	-----

Ala Val Gly Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly	
---	--

15	20	25
----	----	----

CTG CAG GTG GCC CTG GAG GAA TTT CAC AAG CAC CCG CCC GTG CAG TGG	207
---	-----

154

Leu Gln Val Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp			
30	35	40	45
GCC TTC CAG GAG ACC AGT GTG GAG AGC GCC GTG GAC ACG CCC TTC CCA			255
Ala Phe Gln Glu Thr Ser Val Glu Ser Ala Val Asp Thr Pro Phe Pro			
5	50	55	60
GCT GGA ATA TTT GTG AGG CTG GAA TTT AAG CTG CAG CAG ACA AGC TGC			303
Ala Gly Ile Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys			
65	70	75	
CGG AAG AGG GAC TGG AAG AAA CCC GAG TGC AAA GTC AGG CCC AAT GGG			351
10 Arg Lys Arg Asp Trp Lys Lys Pro Glu Cys Lys Val Arg Pro Asn Gly			
80	85	90	
AGG AAA CGG AAA TGC CTG GCC TGC ATC AAA CTG GGC TCT GAG GAC AAA			399
Arg Lys Arg Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys			
95	100	105	
15 GTT CTG GGC CGG TTG GTC CAC TGC CCC ATA GAG ACC CAA GTT CTG CGG			447
Val Leu Gly Arg Leu Val His Cys Pro Ile Glu Thr Gln Val Leu Arg			
110	115	120	125
GAG GCT GAG GAG CAC CAG GAG ACC CAG TGC CTC AGG GTG CAG CGG GCT			495
Glu Ala Glu Glu His Gln Glu Thr Gln Cys Leu Arg Val Gln Arg Ala			
20	130	135	140
GGT GAG GAC CCC CAC AGC TTC TAC TTC CCT GGA CAG TTC GCC TCC			543
Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser			
145	150	155	
AAG GCC CTG CCC CGC AGC TAAGCCAGCA CTGAGCTGCG TGGTGCCTC			590
25 Lys Ala Leu Pro Arg Ser			
160			
CAGGACCGCT GCCGGTGGTA ACCAGTGGAA GACCCCAGCC CCCAGGGAGA GGACCCCGTT			650
CTATCCCCAG CCATGATAAT AAAGCTGCTC TCCCAGCTGC CTCTC			695
30			

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1914

(B) TYPE: Nucleic acid

35 (C) STRANDEDNESS: Double

(D) TOPOLOGY: Linear

(ii) SEQUENCE KIND: cDNA to mRNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Homo sapiens*
- (B) CELL KIND: Stomach cancer
- (D) CLONE NAME: HP10480

5

(ix) SEQUENCE CHARACTERISTICS:

- (A) CHARACTERIZATION CODE: CDS
- (B) EXISTENCE POSITION: 80.. 661
- (C) CHARACTERIZATION METHOD: E

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

	ACTCTCTGCT GTCGCCGTC CCGCGCGCTC CTCCGACCCG CTCCGCTCCG CTCCGCTCGG	60
	CCCCGCCCG CCCGTCAAC ATG ATC CGC TGC GGC CTG GCC TGC GAG CGC TGC	112
15	Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys	
	1 5 10	
	CGC TGG ATC CTG CCC CTG CTC CTA CTC AGC GCC ATC GCC TTC GAC ATC	160
	Arg Trp Ile Leu Pro Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile	
	15 20 25	
20	ATC GCG CTG GCC GGC CGC GGC TGG TTG CAG TCT AGC GAC CAC GGC CAG	208
	Ile Ala Leu Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln	
	30 35 40	
	ACG TCC TCG CTG TGG TGG AAA TGC TCC CAA GAG GGC GGC GGC AGC GGG	256
	Thr Ser Ser Leu Trp Trp Lys Cys Ser Gln Glu Gly Gly Ser Gly	
25	45 50 55	
	TCC TAC GAG GAG GGC TGT CAG AGC CTC ATG GAG TAC GCG TGG GGT AGA	304
	Ser Tyr Glu Glu Gly Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg	
	60 65 70 75	
	GCA GCG GCT GCC ATG CTC TTC TGT GGC TTC ATC ATC CTG GTG ATC TGT	352
30	Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys	
	80 85 90	
	TTC ATC CTC TCC TTC GCC CTC TGT GGA CCC CAG ATG CTT GTC TTC	400
	Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe	
	95 100 105	
35	CTG AGA GTG ATT GGA GGT CTC CTT GCC TTG GCT GCT GTG TTC CAG ATC	448
	Leu Arg Val Ile Gly Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile	
	110 115 120	
	ATC TCC CTG GTA ATT TAC CCC GTG AAG TAC ACC CAG ACC TTC ACC CTT	496

156

	Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr Thr Gln Thr Phe Thr Leu		
125	130	135	
CAT GCC AAC CGT GCT GTC ACT TAC ATC TAT AAC TGG GCC TAC GGC TTT			544
His Ala Asn Arg Ala Val Thr Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe			
5 140 145 150 155			
GGG TGG GCA GCC ACG ATT ATC CTG ATC GGC TGT GCC TTC TTC TGC			592
Gly Trp Ala Ala Thr Ile Ile Leu Ile Gly Cys Ala Phe Phe Phe Cys			
160 165 170			
TGC CTC CCC AAC TAC GAA GAT GAC CTT CTG GGC AAT GCC AAG CCC AGG			640
10 Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro Arg			
175 180 185			
TAC TTC TAC ACA TCT GCC TA ACTTGGG AATGAATGTG GGAGAAAATC GCT			690
Tyr Phe Tyr Thr Ser Ala			
190			
15 GCTGCTGAGA TGGACTCCAG AAGAAGAAC TGTTCTCCA GGCGACTTTG AACCCATT			750
TTGGCAGTGT TCATATTATT AAACTAGTC AAAATGCTAA AATAATTGG GAGAAAATAT			810
TTTTAAGTA GTGTTATAGT TTCACTGTTA TCTTTTATTAT TGTTTGTA AGTTGTGTCT			870
TTTCACTAAT TACCTATACT ATGCCAATAT TTCCCTTATAT CTATCCATAA CATTTATACT			930
ACATTTGTAAGA GAGAATATGC ACCTGAAACT TAACACTTTA TAAGGTTAAA ATGAGGTTTC			990
20 CAAGATTAA TAATCTGATC AAGTTCTGT TATTTCCAAA TAGAATGGAC TTGGTCTGTT			1050
AAGGGCTAAG GAGAAGAGGA AGATAAGGTT AAAAGTTGTT AATGACCAAA CATTCTAAAA			1110
GAAATGCAAA AAAAAGTTT ATTTCAAGC CTTCGAACTA TTTAAGGAAA GCAAAATCAT			1170
TTCCCTAAATG CATATCATTG GTGAGAATTT CTCATTAATA TCCTGAATCA TTCATTCAG			1230
CTAAGGCTTC ATGTTGACTC GATATGTCAT CTAGGAAAGT ACTATTCAT GGTCCAAACC			1290
25 TGTTGCCATA GTTGGTAAGG CTTTCCCTTA AGTGTGAAAT ATTTAGATGA AATTTCTCT			1350
TTTAAAGTTC TTTATAGGGT TAGGGTGTGG GAAAATGCTA TATTAATAAA TCTGTAGTGT			1410
TTTGTGTTA TATGTTCAGA ACCAGAGTAG ACTGGATTGA AAGATGGACT GGGTCTAATT			1470
TATCATGACT GATAGATCTG GTTAAGTTGT GTAGTAAAGC ATTAGGAGGG TCATTCTGT			1530
CACAAAAGTG CCACTAAAAC AGCCTCAGGA GAATAAAATGA CTTGCTTTTC TAAATCTCAG			1590
30 GTTTATCTGG GCTCTATCAT ATAGACAGGC TTCTGATAGT TTGCAACTGT AAGCAGAAC			1650
CTACATATAG TTAAAATCCT GGTCTTCTT GGTAAACAGA TTTTAAATGT CTGATATAAA			1710
ACATGCCACA GGAGAATTG GGGATTGAG TTTCTCTGAA TAGCATATAT ATGATGCATC			1770
GGATAGGTCA TTATGATTTT TTACCATTTG GACTTACATA ATGAAAACCA ATTCACTTTA			1830
AATATCAGAT TATTATTTG TAAGTTGTGG AAAAGCTAA TTGTAGTTT CATTATGAAG			1890
35 TTTTCCCAAT AAACCAGGTA TTCT			1914

CLAIMS

1. A protein comprising an amino acid sequence selected from the group consisting of the amino acid sequences of SEQ ID NOS: 1 to 18.

2. A DNA encoding the protein according to claim 1.

3. A cDNA comprising a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 19 to 36.

4. A cDNA according to claim 3, which comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 37 to 54.

5. An expression vector capable of in vitro translating the DNA according to any of claims 2 to 4 or expressing said DNA in an eukaryotic cell.

20

6. A transformed eukaryotic cell capable of expressing the DNA according to any of claims 2 to 4 to produce the protein according to claim 1.

Fig.1

2/19

Fig.2

3/19

Fig.3

4/19

Fig.4

5/19

Fig.5

Fig.6

Fig.7

Fig.8

9/19

Fig.9

Fig.10

Fig.11

Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

Fig.18

19/19

Fig.19