Autómatas y Lenguajes. Curso 2020-21. Control modelos regulares

Nombre:		
---------	--	--

Responde en hojas separadas para cada ejercicio (3 en total). No olvides poner tu nombre en cada una de ellas.

Ejercicio 1 Definimos una *secuencia*, para este ejercicio, como una cadena posiblemente vacía de símbolos iguales consecutivos.

Apartado 1.a (2 puntos)

Propón de manera razonada una expresión regular para el lenguaje sobre el alfabeto {a,b} consistente en cadenas no vacías que empiezan por una secuencia de longitud par (considerando la longitud máxima de la secuencia, es decir, aaa no es válida pese a que empieza por aa, que sí es de longitud par).

Ejemplos. Válidas: aa, bbab, bba. Inválidas: λ , a, ba, abb, aaa, aaab

Apartado 1.b (2 puntos).

Diseña un autómata finito no necesariamente determinista que reconozca el lenguaje anterior. Justifica su diseño.

Ejercicio 2.

Dado el lenguaje sobre el alfabeto {a,b,0,1} de cadenas con la siguiente estructura:

- La cadena empieza por 0 o por 1
- Si la cadena empieza por 0, le sigue una cadena del conjunto $\left\{ww^{-1}, w \in \{a^nb^nc^n, 0 \le n \le 2\}\right\} \text{ donde } w^{-1} \text{ es } w \text{ al revés (ej. } w=\text{aabbcc } w^{-1}=\text{ccbbaa})$
- Si empieza por 1, sigue una secuencia (en el sentido del ejercicio anterior) de al menos una a y una secuencia de al menos una b.

Apartado 2.a (2 puntos) Propón de manera razonada una expresión regular que lo represente

Apartado 2.b (2 puntos) Propón de manera razonada un autómata finito para el lenguaje anterior, pero con la condición n<2 (en lugar de n≤2)

Ejercicio 3

Apartado 3.a (1,6 puntos). Para el autómata siguiente, encuentra razonadamente $\delta^*(q_0, bbb)$, $\delta^*(q_0, aba)$, $\delta^*(q_0, bab)$ y $\delta^*(q_0, bbab)$

Apartado 3.b (0,4 puntos) ¿Qué cadenas entre estas son aceptadas y cuáles rechazadas? Justifica tu respuesta.