VECTOR / MATRIX DERIVATIVES

Everything You Need To Know

KANG GYEONGHUN

ESC, YONSEI UNIVERSITY

March 29, 2020

Table of Contents

- Vector Derivatives
 - Directional Derivative
 - Jacobian Matrix
 - Vector Derivatives Rules
 - Example: Least Sqaures Estimators
- Change of Variables
 - Why do we need Jacobian?
 - Example: Geometric Interpretation of MVN
- Matrix Derivatives
 - Directional Derivative in Matrix space
 - Matrix Derivatives for Determinant
 - Matrix Derivatives for Trace
 - Example: MLE for MVN

I. Vector Derivatives

Taylor Expansion for Derivatives

• Suppose $f(x) \in C^2[a,b]$. We consider **Taylor expansion** of the function f at w;

$$f(x) \approx f(w) + \frac{(x-w)}{1!}f'(w) + \frac{(x-w)^2}{2!}f''(w)$$

• Then for sufficiently small e, we have;

$$f(x+e) \approx f(w) + \frac{(x+e-w)}{1!}f'(w) + \frac{(x+e-w)^2}{2!}f''(w)$$

With respect to e, we can say

$$f(x+e) \approx O(1) + O(e) + O(e^2)$$

This formulation provides us an intuitive framework in understanding derivatives in various spaces.

Recall: 1-dimensional Derivative

• For $f(x): \mathbb{R} \mapsto \mathbb{R}$, an infinitsimal change e in the input x leads to change in the output;

$$f(x+e) = f(x) + e\frac{df}{dx} + O(e^2)$$

• Rearrage, $e \to 0$, and we have 1D Derivative;

$$\frac{dy}{dx} = \lim_{e \to 0} \frac{f(x+e) - f(x)}{e}$$

Scalar field

n-dimensional Derivative

• For $f(x): \mathbb{R}^n \to \mathbb{R}$, an infinitsimal change e in the input \mathbf{x} in the direction of \mathbf{H} leads to change in the output;

$$f(\mathbf{X} + e\mathbf{H}) = f(\mathbf{X}) + e\nabla_{\mathbf{H}}f(\mathbf{X}) + O(e^2)$$

• Rearrage, $e \rightarrow 0$, and we have nD **Directional** Derivative;

$$\nabla_{\mathbf{H}} f(\mathbf{X}) = \lim_{e \to 0} \frac{f(\mathbf{X} + e\mathbf{H}) - f(\mathbf{X})}{e}$$

$$\nabla_H f(X) = H \cdot \nabla f = H \cdot \frac{\partial f}{\partial X}$$

Directional Derivative in Vectorspace

• With a gradient of a function $f; \mathbf{x} \mapsto \mathbb{R}$, once we specify a direction \mathbf{b} (unit vector) of variation in the input \mathbf{x} , we have a **directional derivative of** f;

$$\nabla_{\mathbf{b}} f(\mathbf{x}) = f'(\mathbf{x}) \cdot \mathbf{b} = \lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{b}) - f(\mathbf{x})}{\epsilon}$$
$$= \nabla f(\mathbf{x}) \cdot \mathbf{b} = \|\nabla f(\mathbf{x})\| \|\mathbf{b}\| \cos \theta$$

• Directional derivative is just a \mathbb{R}^1 derivative generalized to \mathbb{R}^n space. The difference is that, unlike in \mathbb{R}^1 where we had only a number line, in higher dimensions we have to specify which direction $d\mathbf{x}$ is headed.

1D derivatives:
$$\frac{df(x)}{dx} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• $\nabla f(\mathbf{x})$ is called **gradient** and represents a direction in \mathbf{x} of the maximum change in $f(\mathbf{x})$ since $\cos \theta = 1 \iff \theta = 0$.

JACOBIAN MATRIX

Jacobian Matrix for Multidimensional Output

Define $\psi: \mathbb{R}^n \to \mathbb{R}^m$ by $\mathbf{y} = \psi(\mathbf{x})$. The $m \times n$ matrix of first-order derivatives of this transformation is called **Jacobian Matrix** and is expressed as;

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \nabla y_1 \\ \nabla y_2 \\ \vdots \\ \nabla y_m \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}_{m \times n}$$

- If $\psi : \mathbb{R}^n \to \mathbb{R}^1$, we have a single row $\frac{\partial y}{\partial \mathbf{x}} = \nabla \psi(\mathbf{x}) = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n} \end{bmatrix}$, which is called **Gradient of** y.
- Jacobian Matrix for $m \times 1$ vector if essentially a vertical stack of each element's gradient.

JACOBIAN MATRIX

Jacobian Matrix for Multidimensional Output

Define $\psi: \mathbb{R}^n \to \mathbb{R}^m$ by $\mathbf{y} = \psi(\mathbf{x})$. The $m \times n$ matrix of first-order derivatives of this transformation is called **Jacobian Matrix** and is expressed as;

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}_{m \times n}$$

• If $\psi: \mathbb{R}^1 \to \mathbb{R}^m$, we have a single column $\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$

Vector Derivatives Rule 1

Let $\mathbf{y} = \mathbf{A}\mathbf{x}$ where $\mathbf{y} \in \mathbb{R}^{m \times 1}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}$. (A is constant matrix.)

• pf) The easiest way is by showing element-wise operations.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

So we have
$$y_i=a_{i1}x_1+a_{i2}x_2+\ldots+a_{in}x_n$$
, and $\frac{\partial y_i}{\partial x_j}=a_{ij}$.

Therefore,
$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial^y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_n} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}.$$

Vector Derivatives Rule 2

Let $\mathbf{y} = \mathbf{A}\mathbf{x}$ where $\mathbf{y} \in \mathbb{R}^{m \times 1}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$ (\mathbf{x} is a function of \mathbf{z}), and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then $\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$. (\mathbf{A} is constant matrix.)

• **pf)** Since $y_i = a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n$, we have $\frac{\partial y_i}{\partial z_j} = a_{i1}\frac{\partial x_1}{\partial z_j} + a_{i2}\frac{\partial x_2}{\partial z_j} + ... + a_{in}\frac{\partial x_n}{\partial z_j}$. Since $\frac{\partial x_i}{\partial z_j}$ is (i,j)th element of $\frac{\partial \mathbf{x}}{\partial \mathbf{z}}$,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{z}_{(i,j)}} = \frac{\partial y_i}{\partial z_j} = \sum_{k=1}^n a_{ik} \frac{\partial x_k}{\partial z_j} = \sum_{k=1}^n \mathbf{A}_{(i,k)} \frac{\partial \mathbf{x}}{\partial \mathbf{z}_{(k,j)}} = \frac{\partial \mathbf{x}}{\partial \mathbf{z}_{(i,j)}} \quad \Box$$

• This serves as a proof of vector chain rule: $\frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$.

Vector Derivatives Rule 3

Let $\alpha = \mathbf{y^T} \mathbf{A} \mathbf{x}$ where $\mathbf{y} \in \mathbb{R}^{m \times 1}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$, and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then $\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y^T} \mathbf{A}$ and $\frac{\partial \alpha}{\partial \mathbf{y}} = \mathbf{x^T} \mathbf{A^T}$ (**A** is constant matrix.)

• **pf)** Since $\alpha = \mathbf{y^T} \mathbf{A} \mathbf{x} = \mathbf{x^T} \mathbf{A^T} \mathbf{y}$, we only prove $\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y^T} \mathbf{A}$.

$$\alpha = \mathbf{y}^{\mathbf{T}} \mathbf{A} \mathbf{x} = \mathbf{w}^{\mathbf{T}} \mathbf{x} = w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$\frac{\partial \alpha}{\partial x_j} = w_j = [y^T \mathbf{A}]_j$$

$$\therefore \frac{\partial \alpha}{\partial \mathbf{x}_j} = [\mathbf{y}^{\mathbf{T}} \mathbf{A}]_j \implies \frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{y}^{\mathbf{T}} \mathbf{A}$$

Vector Derivatives Rule 4 (Quadratic formula)

Let $\alpha = \mathbf{x^T} \mathbf{A} \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^{n \times 1}$, and $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then $\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x^T} (\mathbf{A} + \mathbf{A^T})$. (A is constant matrix.)

• **pf)** It helps to see what α is made of.

$$\alpha = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \left[\sum_{i=1}^{n} x_{i} a_{i1} \quad \sum_{i=1}^{n} x_{i} a_{i2} \quad \dots \quad \sum_{i=i}^{n} x_{i} a_{in} \right] \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} x_{i} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} x_{j} a_{ij}$$

Vector Derivatives Rule 4 (Quadratic formula) (continued)

Let
$$\alpha = \mathbf{x^T} \mathbf{A} \mathbf{x}$$
 where $\mathbf{x} \in \mathbb{R}^{n \times 1}$, and $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then $\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x^T} (\mathbf{A} + \mathbf{A^T})$. (A is constant matrix.)

• **pf)** It helps to see what α is made of.

$$\alpha = \sum_{j=1}^{n} \sum_{i=1}^{n} x_i x_j a_{ij}$$

Note that each x_j has coefficients 1) along the row $(\sum_{i=1}^n a_{ji}x_i)$ and 2) along the column $(\sum_{i=1}^n a_{ij}x_i)$. Therefore,

$$\frac{\partial \alpha}{\partial x_j} = \sum_{i=1}^n a_{ji} x_i + \sum_{i=1}^n a_{ij} x_i$$
$$\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{x}^{\mathbf{T}} \mathbf{A} + \mathbf{x}^{\mathbf{T}} \mathbf{A}^{\mathbf{T}} = \mathbf{x}^{\mathbf{T}} (\mathbf{A} + \mathbf{A}^{\mathbf{T}}) \quad \Box$$

Vector Derivatives Rule 5 (Quadratic formula)

Let $\alpha = \mathbf{y^T}\mathbf{x}$ where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n \times 1}$, and each is a function of \mathbf{z} . Then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x^T} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y^T} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$.

• pf) In element-wise expansion,

$$\alpha = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$\frac{\partial \alpha}{\partial z_k} = \sum_{i=1}^n y_i \frac{\partial x_i}{\partial z_k} + \sum_{j=1}^n x_i \frac{\partial y_j}{\partial z_k} = \sum_{i=1}^n y_i \frac{\partial \mathbf{x}}{\partial \mathbf{z}}_{(i,k)} + \sum_{i=1}^n y_i \frac{\partial \mathbf{y}}{\partial \mathbf{z}}_{(j,k)}$$

$$= [\mathbf{y}^{\mathbf{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}]_k + [\mathbf{x}^{\mathbf{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}]_k \quad \Box$$

Or with the chain rule, $\frac{\partial \alpha}{\partial \mathbf{z}} = \frac{\partial \alpha}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \mathbf{x}^{\mathbf{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} + \mathbf{y}^{\mathbf{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}}.$

Vector Derivatives Rule 6 (Quadratic formula)

Let $\alpha = \mathbf{y^T} \mathbf{A} \mathbf{x}$ where $\mathbf{y} \in \mathbb{R}^{m \times 1}$, $\mathbf{x} \in \mathbb{R}^{n \times 1}$, both a function of \mathbf{z} and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{y^T} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x^T} \mathbf{A^T} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}$. (\mathbf{A} is constant matrix.)

• **pf)** Let $\mathbf{y^T}\mathbf{A} = \mathbf{w^T}$. By the last rule,

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{w}^{\mathbf{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\mathbf{T}} \frac{\partial \mathbf{w}}{\partial \mathbf{z}} = \mathbf{y}^{\mathbf{T}} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\mathbf{T}} \frac{\partial \mathbf{A}^{\mathbf{T}} \mathbf{y}}{\partial \mathbf{z}} = \mathbf{y}^{\mathbf{T}} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\mathbf{T}} \mathbf{A}^{\mathbf{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \quad \Box$$

Or with the chain rule,

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \frac{\partial \alpha}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \frac{\partial \alpha}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}} = \mathbf{y}^{\mathbf{T}} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\mathbf{T}} \mathbf{A}^{\mathbf{T}} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}. \quad \Box$$

Vector Derivatives Rule 7 (Quadratic formula)

Let $\alpha = \mathbf{x^T} \mathbf{A} \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^{n \times 1}$, a function of \mathbf{z} , and $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A^T}) \frac{\partial \mathbf{x}}{\partial \mathbf{z}}$. (A is constant matrix.)

• **pf)** Since if $\alpha = \mathbf{y^T} \mathbf{A} \mathbf{x}$, then $\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{y^T} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x^T} \mathbf{A^T} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}$, we have

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \mathbf{x}^{\mathbf{T}} \mathbf{A} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} + \mathbf{x}^{\mathbf{T}} \mathbf{A}^{\mathbf{T}} \frac{\partial \mathbf{x}}{\partial \mathbf{z}} = \mathbf{x}^{T} (\mathbf{A} + \mathbf{A}^{\mathbf{T}}) \frac{\partial \mathbf{x}}{\partial \mathbf{z}} \quad \Box$$

LEAST SQUARES ESTIMATORS

Example: Least Sqaures Estimators

ullet For a target vector ${f t}$ and a design matrix ${f \Phi}$, LSE ${f w}$ can be obatained by;

$$\mathbf{w} = \arg\min_{\mathbf{w}} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 = (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf{w})$$

Differentiate wrt w and we have

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{t}^{\mathbf{T}} \mathbf{t} - 2\mathbf{t}^{\mathbf{T}} \mathbf{\Phi} \mathbf{w} + \mathbf{w}^{\mathbf{T}} \mathbf{\Phi}^{\mathbf{T}} \mathbf{\Phi} \mathbf{w}) =^{set} 0$$

$$:: \mathbf{w}_{OLS} = (\mathbf{\Phi}^{\mathbf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathbf{T}}\mathbf{t}$$

II. Change of Variables

WHY NEED JACOBIAN?

Recall: Change of Variable Technique for Integration

- For $\int_0^2 \sin(x^2) dx$, substitute $u := x^2$ to have $\int_0^2 \sin(x^2) dx = \int_0^4 \sin(u) dx$.
- ullet By substituting $u:=x^2$, the coordinate space has been extended by $\dfrac{du}{dx}$.

WHY NEED JACOBIAN?

Recall: Change of Variable Technique for Integration

- We multiply by $\frac{dx}{du}$ to mitigate this elongation; $\int_0^4 \sin(u) dx = \int_0^4 \sin(u) \frac{dx}{du} du = \int_0^4 \frac{\sin(u)}{2\sqrt{u}} du$
- Generalization of $\frac{dx}{du}$ to nd space is det of Jacobian; $|\frac{\partial \mathbf{x}}{\partial \mathbf{u}}|$. It comes from the amount that the area is stretched under the coordinate transformation. (source)

WHY NEED JACOBIAN?

Change of Variable in Probability Distribution

ullet COV for probability distribution is identical to COV for definite integral. For $x\sim p(x)$,

$$u := f(x) \sim p(f^{-1}(u)) \left| \frac{dx}{du} \right|.$$

- Example: Let $x \sim 3x^2$ over [0,1]. Define $u := x^2$. Then $u \sim 3u |\frac{1}{2}y^{-1/2}| = \frac{3}{2}u^{1/2}$.
- For multivariable case where y = f(x), we have

$$p(\mathbf{y}) = p(\mathbf{x}) \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \right|$$

where $p(\mathbf{x})$ is expressed in terms of \mathbf{y} .

MVN: GEOMETRIC INTERPRETATION

Change of Basis to Eigenvectors of Σ

MVN:
$$N(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{(\Sigma)^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \mu)^{\mathbf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\}$$

- Since Σ is symmetric and positive definite, we have eigenvalue decomposition of Σ with strictly positive λ_i ; $\Sigma = \sum_{i=1}^D \lambda_i \mathbf{u}_i \mathbf{u}_i^T$, and $\Sigma^{-1} = \sum_{i=1}^D \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$
- Substitute $\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^T$ and we have $(\mathbf{x} \mu)^T \Sigma^{-1} (\mathbf{x} \mu) = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i}$, where we defined $y_i := \mathbf{u}_i^T (\mathbf{x} \mu)$, which is a coordinate of $(\mathbf{x} \mu)$ projected to a unit vector \mathbf{u} .
- Define $\mathbf{y} := \mathbf{U}^T(\mathbf{x} \mu)$ where \mathbf{U} has \mathbf{u}_i as column. Then we have a det of jocobian of 1 since $|\mathbf{J}|^2 = |\mathbf{U}^T|^2 = |\mathbf{U}^T||\mathbf{U}| = |\mathbf{I}|$. Thus we have $p(\mathbf{y}) = \prod_{i=1}^D \frac{1}{(2\pi\lambda_i)^{1/2}} \exp\{-\sum_{i=1}^D \frac{y_i^2}{2\lambda_i}\}$.

MVN: GEOMETRIC INTERPRETATION

Change of Basis to Eigenvectors of Σ

PCA derives from the exactly same logic, except that sample cov matrix $\Phi^T\Phi$ is used in lieu of Σ .

III. Matrix Derivatives

25 / 37

MATRIX DERIVATIVES

Matrix Derivatives

Let **A** be $m \times n$ matrix. Derivative of **A** with respect to a scalar k is:

$$\frac{\partial \mathbf{A}}{\partial \alpha} = \begin{bmatrix} \frac{\partial a_{11}}{\partial \alpha} & \frac{\partial a_{12}}{\partial \alpha} & \dots & \frac{\partial a_{1n}}{\partial \alpha} \\ \frac{\partial a_{21}}{\partial \alpha} & \frac{\partial a_{22}}{\partial \alpha} & \dots & \frac{\partial a_{2n}}{\partial \alpha} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial a_{m1}}{\partial \alpha} & \frac{\partial a_{m2}}{\partial \alpha} & \dots & \frac{\partial a_{mn}}{\partial \alpha} \end{bmatrix}_{m \times n}$$

Matrix Derivatives Rule:

Let
$$\mathbf{A}$$
 be nonsingular. Then $\frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1}$

• \mathbf{pf}) Since $\mathbf{A}^{-1} \mathbf{A} = \mathbf{I}$, $\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} + \frac{\partial \mathbf{A}^{-1}}{\partial \alpha} \mathbf{A} = \mathbf{0}$. Rearrange and we have $\frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1}$.

Directional Derivative in Matrix Space

• Since $\det : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$, we first need to define directional derivative in matrix space. For a mapping $f : \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ from a matrix to a real number, a differential in f in response to an infinitesimal change in the input \mathbf{X} in the direction of \mathbf{H} is defined as:

Directional Derivative in Matrix space:
$$\nabla_{\mathbf{H}} f(\mathbf{X}) = \lim_{\epsilon \to 0} \frac{f(\mathbf{X} + \epsilon \mathbf{H}) - f(\mathbf{X})}{\epsilon}$$

There are at least dozens of alternative notations for this; $Df(\mathbf{X})(\mathbf{H})$, $f'(\mathbf{X})\mathbf{H}$ ($f'(\mathbf{X})\mathbf{H}$ is NOT a matrix multiplication. In fact, it should be written $\langle f'(\mathbf{X}), \mathbf{H} \rangle_F$ where $_F$ denotes Frobenius inner product.)

• For comparison, in scalar space and vector space we had;

Derivative in scalar space:
$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

Derivative in Vector space:
$$\nabla_{\mathbf{h}} f(\mathbf{X}) = \lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{h}) - f(\mathbf{x})}{\epsilon}$$

Directional Derivative for det

• Armed with this concept, we can define a directional derivative for det;

$$\nabla_{\mathbf{H}} det(\mathbf{X}) = det'(\mathbf{X})\mathbf{H} = \lim_{\epsilon \to 0} \frac{det(\mathbf{X} + \epsilon \mathbf{H}) - det(\mathbf{X})}{\epsilon}$$

and prove some useful facts.

Fact 1. $det'(\mathbf{I})\mathbf{H} = tr(\mathbf{H})$

- **pf**) $det(\mathbf{I} + \epsilon \mathbf{H}) = 1 + \epsilon tr(\mathbf{H}) + o(\epsilon)$, where $o(\epsilon)$ consists of terms with $2 \le$ degree in ϵ , so when divided by ϵ , gets annihilated as $\epsilon \to 0$. To see this, recall that det is a sum of signed products of one element of each column that are NOT on the same rows. This makes the diagonal product the only term with ϵ of 1st degree. \square
- This tells us that tr is more than a boring sum of diagonal element. If T moves in the direction of H, then its determinant changes accordingly by a factor of tr(H).

Fact 2.
$$det'(\mathbf{X})\mathbf{H} = det(\mathbf{X})tr(\mathbf{X}^{-1}\mathbf{H})$$

• pf) The proof is similar to that of Fact 1;

$$det(\mathbf{X} + \epsilon \mathbf{H}) = det(\mathbf{X}) \ det(\mathbf{I} + \epsilon \mathbf{X}^{-1} \mathbf{H})$$
$$= det(\mathbf{X}) \ (1 + \epsilon \ tr(\mathbf{X}^{-1} \mathbf{H}) + o(\epsilon))$$
$$= det(\mathbf{X}) + \epsilon \ det(\mathbf{X}) \ tr(\mathbf{X}^{-1} \mathbf{H}) + o(\epsilon) \quad \Box$$

Fact 3.
$$\frac{\partial}{\partial \mathbf{X}} \det(\mathbf{X}) = \det(\mathbf{X}) \mathbf{X}^{-T}$$
. Equivalently, $\frac{\partial}{\partial \mathbf{X}} \ln \det(\mathbf{X}) = \mathbf{X}^{-T}$.

• **pf)** We use $\langle \mathbf{A}, \mathbf{B} \rangle_F = tr(\mathbf{A}^T \mathbf{B})$. From the Fact 2,

$$det'(\mathbf{X})\mathbf{H} = \langle det'(\mathbf{X}), \mathbf{H} \rangle_F = \det(\mathbf{X})tr(\mathbf{X}^{-1}\mathbf{H})$$
$$= \langle \det(\mathbf{X})\mathbf{X}^{-T}, \mathbf{H} \rangle_F \quad \Box$$

Fact 4.
$$\frac{\partial}{\partial x} det(\mathbf{X}) = \det(\mathbf{X}) tr(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial x}).$$

• pf) This follows from Fact 2. We had;

$$det'(\mathbf{X})\mathbf{H} = \det(\mathbf{X})tr(\mathbf{X}^{-1}\mathbf{H})$$

Now put $\mathbf{H} = \frac{\partial \mathbf{X}}{\partial x}$, which is a matrix itself, and by the Chain Rule we have;

$$\frac{\partial det \mathbf{X}}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial x} = \frac{\partial}{\partial x} det(\mathbf{X}) = \det(\mathbf{X}) tr(\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial x}) \quad \Box$$

MATRIX DERIVATIVES: TRACE

These are relatively intuitive, and the proof is literally no more than laying out elementwise multiplications.

$$\frac{\partial}{\partial A_{ij}} tr(\mathbf{A}\mathbf{B}) = B_{ji}$$

$$\frac{\partial}{\partial \mathbf{A}} tr(\mathbf{A}\mathbf{B}) = \mathbf{B}^{\mathbf{T}}$$

$$\frac{\partial}{\partial \mathbf{A}} tr(\mathbf{A}\mathbf{B}^{\mathbf{T}}) = \frac{\partial}{\partial \mathbf{A}} tr(\mathbf{A}^{\mathbf{T}}\mathbf{B}) = \mathbf{B}$$

$$\frac{\partial}{\partial \mathbf{A}} tr(\mathbf{A}) = \mathbf{I}$$

$$\frac{\partial}{\partial \mathbf{A}} tr(\mathbf{A}\mathbf{B}\mathbf{A}^{\mathbf{T}}) = \mathbf{A}(\mathbf{B} + \mathbf{B}^{\mathbf{T}})$$

Let's say we have a data $\mathbf X$ consists of N observations with D features, with each observation is iid sample of $MVN(\mu, \mathbf \Sigma)$. Then the joint likelihood of $\mathbf X$ is given as;

$$p(\mathbf{X}|\mu, \mathbf{\Sigma}) = (2\pi)^{-ND/2} \mathbf{\Sigma}^{-N/2} \prod_{n=1}^{N} \exp(-\frac{1}{2} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu))$$

Taking a log we have

$$\ln p(\mathbf{X}|\mu, \mathbf{\Sigma}) = -\frac{ND}{2} \ln 2\pi - \frac{N}{2} \ln |\mathbf{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu)$$

We can get MLE for μ, Σ by differentiating the above formula by each and find μ_{ml}, Σ_{ml} that sets it to zero.

Differentiating w.r.t. μ : By the Vector Derivatives Rule 4,

$$\frac{\partial \ln p}{\partial \mu} = \sum_{n=1}^{N} \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu) =^{set} \mathbf{0} \quad \to \quad \mu_{ml} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

Differentiating w.r.t. Σ : This is the tricky part. We have;

$$\frac{\partial \ln p}{\partial \mathbf{\Sigma}} = -\frac{N}{2} \frac{\partial \ln |\mathbf{\Sigma}|}{\partial \mathbf{\Sigma}} - \frac{1}{2} \frac{\partial}{\partial \mathbf{\Sigma}} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu)$$

We know from Fact 3 that $\frac{\partial \ln |\Sigma|}{\partial \Sigma} = \Sigma^{-T}$. The second term is a headache. It helps us to know that for any square matrix \mathbf{A} and vector \mathbf{x} ,

$$\mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x} = tr(\mathbf{A} \mathbf{x} \mathbf{x}^{\mathbf{T}})$$

Differentiating w.r.t. Σ : (continued)

$$tr(\mathbf{A}\mathbf{x}\mathbf{x}^{\mathbf{T}}) = tr\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{bmatrix} x_1x_1 & x_1x_2 & \dots & x_1x_n \\ x_2x_1 & x_2x_2 & \dots & x_2x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_nx_1 & x_nx_2 & \dots & x_nx_n \end{bmatrix})$$

$$= \sum_{i=1}^n x_1a_{1i}x_i + \dots + \sum_{i=1}^n x_na_{ni}x_i$$

$$= \sum_{j=1}^n \sum_{i=1}^n x_ja_{ji}x_i$$

$$= \mathbf{x}^{\mathbf{T}}\mathbf{A}\mathbf{x}$$

Differentiating w.r.t. Σ : (continued)

Hence we have $(\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu) = tr(\mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu)(\mathbf{x_n} - \mu)^T)$, and the second term can be expressed as; $\sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu) = Ntr(\mathbf{\Sigma}^{-1}\mathbf{S})$, where $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)(\mathbf{x_n} - \mu)^T$.

$$\frac{\partial}{\partial \mathbf{\Sigma}_{ij}} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu) = N \frac{\partial}{\partial \mathbf{\Sigma}_{ij}} tr(\mathbf{\Sigma}^{-1} \mathbf{S}) = N tr(\frac{\partial}{\partial \mathbf{\Sigma}_{ij}} \mathbf{\Sigma}^{-1} \mathbf{S})$$

$$= -N tr(\mathbf{\Sigma}^{-1} \frac{\partial \mathbf{\Sigma}}{\partial \mathbf{\Sigma}_{ij}} \mathbf{\Sigma}^{-1} \mathbf{S})$$

$$= -N tr(\frac{\partial \mathbf{\Sigma}}{\partial \mathbf{\Sigma}_{ij}} \mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1})$$

$$= -N (\mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1})_{ij}$$

The last line follows since $[\frac{\partial \Sigma}{\partial \Sigma_{ii}}]_{ij} = 0$ for all but the position (i,j).

Differentiating w.r.t. Σ : (continued)

This makes the derivative in the second term

$$-\frac{1}{2}\frac{\partial}{\partial \mathbf{\Sigma}} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu) = \frac{1}{2} N(\mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1})$$

To sum up, rewriting
$$\frac{\partial \ln p}{\partial \mathbf{\Sigma}} = -\frac{N}{2} \frac{\partial \ln |\mathbf{\Sigma}|}{\partial \mathbf{\Sigma}} - \frac{1}{2} \frac{\partial}{\partial \mathbf{\Sigma}} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mu), \text{ we have}$$
$$-\frac{N}{2} \mathbf{\Sigma}^{-T} + \frac{N}{2} \mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{\Sigma}^{-1} = ^{set} \mathbf{0}$$

and this yields

$$\Sigma_{ml} = \mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x_n} - \mu)(\mathbf{x_n} - \mu)^T$$

References

- https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
- https://www.comp.nus.edu.sg/~cs5240/lecture/matrix-differentiation.pdf
- https://math.stackexchange.com/questions/1151569/ how-to-calculate-the-derivative-of-log-det-matrix
- https://math.stackexchange.com/questions/38701/ how-to-calculate-the-gradient-of-log-det-matrix-inverse
- http://www.math.ucdenver.edu/~esulliva/Calculus3/Taylor.pdf
- https://www.quora.com/ What-is-the-Jacobian-how-does-it-work-and-what-is-an-intuitive-explanation-of-the-
- Pattern Recognition and machine learning, Christopher M. Bishop
- Advanced Engineering Mathematics, Erwin Kreyszig

