Formularium Logica voor Informatici

28 november 2011

Definitie 0.1. Zij A een formule, \mathfrak{A} een structuur met domein D die A interpreteert. We definiëren dat A waar is in \mathfrak{A} (notatie $\mathfrak{A} \models A$) door middel van inductie op het aantal symbolen in A:

•
$$\mathfrak{A} \models P(t_1, \dots, t_n) \text{ asa } (t_1^{\mathfrak{A}}, \dots, t_n^{\mathfrak{A}}) \in P^{\mathfrak{A}}.$$
 (Atoom-regel)

•
$$\mathfrak{A} \models t_1 = t_2 \text{ asa } t_1^{\mathfrak{A}} = t_2^{\mathfrak{A}}.$$
 (=-regel)

•
$$\mathfrak{A} \models \neg A$$
 as $\mathfrak{A} \not\models A$, of in woorden, als het niet het geval is dat $\mathfrak{A} \models A$. (¬-regel)

•
$$\mathfrak{A} \models A \wedge B \text{ asa } \mathfrak{A} \models A \text{ en } \mathfrak{A} \models B.$$
 (\(\triangle \text{-regel}\))

•
$$\mathfrak{A} \models A \lor B \text{ asa } \mathfrak{A} \models A \text{ of } \mathfrak{A} \models B \text{ (of allebei)}.$$
 (\lor -regel)

•
$$\mathfrak{A} \models A \Rightarrow B \text{ asa } \mathfrak{A} \not\models A \text{ of } \mathfrak{A} \models B \text{ (of allebei)}.$$
 $(\Rightarrow\text{-regel})$

- $\mathfrak{A} \models A \Leftrightarrow B$ as $\mathfrak{A} \models A$ en $\mathfrak{A} \models B$ of als $\mathfrak{A} \not\models A$ en $\mathfrak{A} \not\models B$. M.a.w. als A en B dezelfde waarheidswaarde hebben. (⇔-regel)
- $\mathfrak{A} \models (\exists x) A$ as aer een domeinelement $a \in D$ bestaat zodat $\mathfrak{A}[x:a] \models A$. (∃-regel)
- $\mathfrak{A} \models (\forall x)A$ as aer voor elk domeinelement $a \in D, \theta$ geldt dat $\mathfrak{A}[x:a] \models A$. (∀-regel)

Fundamentele equivalenties van de connectieven.

1. $(P \lor Q) \Leftrightarrow (Q \lor P)$

Eigenschap 0.1 (basiswetten van \wedge and \vee). Zij P,Q,R propositionele symbolen, dan zijn de volgende propositionele zinnen tautologieën.

$$(P \wedge Q) \Leftrightarrow (Q \wedge P)$$
2. $[(P \vee Q) \vee R] \Leftrightarrow [P \vee (Q \vee R)]$ (associativiteit van \wedge and \vee)
$$[(P \wedge Q) \wedge R] \Leftrightarrow [P \wedge (Q \wedge R)]$$
3. $[P \wedge (Q \vee R)] \Leftrightarrow [(P \wedge Q) \vee (P \wedge R)]$ (distributiviteit van \wedge t.o.v. \vee)
$$[P \vee (Q \wedge R)] \Leftrightarrow [(P \vee Q) \wedge (P \vee R)]$$
 (distributiviteit van \vee t.o.v. \wedge)

(commutativiteit van \land and \lor)

(distributiviteit van \vee t.o.v. \wedge)

4.
$$(P \lor P) \Leftrightarrow P$$
 (idempotentie) $(P \land P) \Leftrightarrow P$

Eigenschap 0.2 (basiswetten van \neg). Zij P,Q propositionele symbolen, dan zijn de volgende propositionele zinnen tautologieën.

1.
$$\neg \neg P \Leftrightarrow P$$
 (dubbele ontkenning)

2.
$$P \vee \neg P$$
 (uitgesloten derde)

3.
$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$
 (wetten van De Morgan) $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

4.
$$\neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$$
 (negatie van de implicatie)

Eigenschap 0.3 (De betekenis van \Rightarrow , \Leftrightarrow). Zij P,Q propositionele symbolen, dan zijn de volgende propositionele zinnen tautologieën.

1.
$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$
 $(\Rightarrow \text{ in termen van } \neg, \lor)$

2.
$$(P \Leftrightarrow Q) \Leftrightarrow [(P \Rightarrow Q) \land (Q \Rightarrow P)]$$
 (\Leftrightarrow in terms van implication)

3.
$$(P \Leftrightarrow Q) \Leftrightarrow [(P \land Q) \lor (\neg P \land \neg Q)]$$
 $(\Leftrightarrow \text{ in termen van } \land \text{ en } \lor)$

Eigenschap 0.4 (Eigenschappen van \Rightarrow , \Leftrightarrow). Zij P, Q, R, S propositionele symbolen, dan zijn de volgende propositionele zinnen tautologieën.

1.
$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$
 (contrapositie bij \Rightarrow)

2.
$$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$$
 (transitiviteit van \Rightarrow)

3.
$$(P \Leftrightarrow Q) \Leftrightarrow (Q \Leftrightarrow P)$$
 (commutativiteit \Leftrightarrow)

4.
$$(P \Leftrightarrow Q) \Leftrightarrow (\neg P \Leftrightarrow \neg Q)$$
 (contrapositie bij \Leftrightarrow)

5.
$$[(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)] \Rightarrow (P \Leftrightarrow R)$$
 (transitiviteit van \Leftrightarrow)

6.
$$[P \Rightarrow (Q \Rightarrow R)] \Leftrightarrow [(P \land Q) \Rightarrow R]$$

 $[P \Rightarrow (Q \Rightarrow (R \Rightarrow S))] \Leftrightarrow [(P \land Q \land R) \Rightarrow S]$
enzovoort.

Eigenschap 0.5 (Bewijsprincipes). Zij P,Q propositionele symbolen, dan zijn de volgende propositionele zinnen tautologieën.

1.
$$(P \land \neg P) \Rightarrow Q$$
 (uit een contradictie volgt alles)

2.
$$[\neg P \Rightarrow (Q \land \neg Q)] \Rightarrow P$$
 (bewijs uit het ongerijmde)

3.
$$P \Leftrightarrow [(Q \Rightarrow P) \land (\neg Q \Rightarrow P)]$$
 (bewijs door gevallenonderscheid)

Generaliseren van logische waarheden.

Propositie 0.1 (Generalisatiepropositie). Zij A een logisch ware propositionele zin, en voor elk symbool P in A bestaat er een logische formule B_P . We construeren de formule A' door elk symbool P in A te vervangen door B_P . Dan is A' logisch waar.

Propositie 0.2. Zij A een formule met vrije constante-symbolen v_0, \ldots, v_n . Dan is A logisch waar asa $(\forall v_0) \ldots (\forall v_n) A$ logisch waar is.

Propositie 0.3 (Vervangpropositie). Zij A, B logisch equivalente formules. Zij C een formule waarin A één of meerdere keren als deelformule voorkomt. Veronderstel dat de formule C' kan bekomen worden door één of meerdere voorkomens van A te vervangen door B. Dan geldt dat C en C' logisch equivalent zijn.

Wetten van de kwantificatie.

Eigenschap 0.6. Zij A een formule zonder vrije variabele x.

- 1. $(\forall x)A \Leftrightarrow A$ is logisch waar.
- 2. $(\exists x) A \Leftrightarrow A$ is logisch waar.

Eigenschap 0.7 (negatie van een kwantor). Zij A een formule en x een variabele. De volgende equivalenties zijn logisch waar.

- 1. $\neg(\exists x)A \Leftrightarrow (\forall x)\neg A$
- 2. $\neg(\forall x)A \Leftrightarrow (\exists x)\neg A$
- 3. $(\exists x) A \Leftrightarrow \neg(\forall x) \neg A$
- 4. $(\forall x)A \Leftrightarrow \neg(\exists x)\neg A$

Eigenschap 0.8 (Doorschuiven van kwantoren). Zij A en B formules, en x een variabele, dan geldt:

1.
$$\models (\exists x)(A \lor B) \Leftrightarrow (\exists x)A \lor (\exists x)B$$
 \exists schuift door \lor

2.
$$\models (\forall x)(A \land B) \Leftrightarrow (\forall x)A \land (\forall x)B$$
 \forall schuift door \land

3.
$$\models (\exists x)(A \land B) \Rightarrow (\exists x)A \land (\exists x)B$$
 maar $\not\models (\exists x)(A \land B) \Leftarrow (\exists x)A \land (\exists x)B$ tenzij $\models (\exists x)(A \land B) \Leftrightarrow (\exists x)A \land B$ als x geen vrije variabele is van B .

4.
$$\models (\forall x)(A \lor B) \Leftarrow (\forall x)A \lor (\forall x)B$$
 maar $\not\models (\forall x)(A \lor B) \Rightarrow (\forall x)A \lor (\forall x)B$ tenzij $\models (\forall x)(A \lor B) \Leftrightarrow (\forall x)A \lor B$ als x geen vrije variabele is van B

5.
$$\models (\forall x)(A \Rightarrow B) \Rightarrow ((\exists x)A \Rightarrow (\exists x)B)$$
 maar $\not\models (\forall x)(A \Rightarrow B) \Leftarrow ((\exists x)A \Rightarrow (\exists x)B)$

6.
$$\models (\forall x)(A \Rightarrow B) \Rightarrow ((\forall x)A \Rightarrow (\forall x)B)$$
 maar $\not\models (\forall x)(A \Rightarrow B) \Leftarrow ((\forall x)A \Rightarrow (\forall x)B)$

Eigenschap 0.9 (verwisselen van kwantoren). Zij A een formule en zij x, y variabelen, dan

1.
$$\models (\forall x)(\forall y)A \Leftrightarrow (\forall y)(\forall x)A$$

2.
$$\models (\exists x)(\exists y)A \Leftrightarrow (\exists y)(\exists x)A$$

3.
$$\models (\exists x)(\forall y)A \Rightarrow (\forall y)(\exists x)A$$
 maar $\not\models (\exists x)(\forall y)A \Leftarrow (\forall y)(\exists x)A$

Propositie 0.4 (Een gebonden variabele van naam veranderen). Zij A[x] een formule waarin o.a. x vrij mag voorkomen. Zij A[y] de formule die men bekomt door in A[x], op elke plaats waar x vrij voorkomt, x te vervangen door y.

Als y niet voorkomt in de formule A[x] dan hebben we:

$$\models (\exists x) A[x] \Leftrightarrow (\exists y) A[y]$$

$$\models (\forall x) A[x] \Leftrightarrow (\forall y) A[y]$$

KE-bewijzen

Hypothesen-regel. Elke zin van T mag toegevoegd worden onderaan een tak.

Propagatieregels van KE-bewijzen

	$\neg \neg A$	\longrightarrow	A	¬¬-prop
\land	$A \wedge B$	\longrightarrow	A, B	∧-prop
	$\neg (A \land B), B$	\longrightarrow	$\neg A$	¬∧-prop
	$\neg (A \land B), A$	\longrightarrow	$\neg B$	¬∧-prop
V	$A \vee B$, $\neg A$	\longrightarrow	B	∨-prop
	$A \vee B, \neg B$	\longrightarrow	A	∨-prop
	$\neg (A \lor B)$	\longrightarrow	$\neg A, \neg B$	¬∨-prop
\Rightarrow	$A \Rightarrow B, A$	\longrightarrow	B	⇒-prop
	$A \Rightarrow B, \neg B$	\longrightarrow	$\neg A$	⇒-prop
	$\neg(A \Rightarrow B)$	\longrightarrow	$A, \neg B$	¬⇒-prop
\Leftrightarrow	$A \Leftrightarrow B, A$	\longrightarrow	B	⇔-prop
	$A \Leftrightarrow B, B$	\longrightarrow	A	⇔-prop
	$A \Leftrightarrow B, \neg A$	\longrightarrow	$\neg B$	⇔-prop
	$A \Leftrightarrow B, \neg B$	\longrightarrow	$\neg A$	⇔-prop
	$\neg (A \Leftrightarrow B), A$	\longrightarrow	$\neg B$	¬⇔-prop
	$\neg (A \Leftrightarrow B), B$	\longrightarrow	$\neg A$	¬⇔-prop
	$\neg (A \Leftrightarrow B), \neg A$	\longrightarrow	B	¬⇔-prop
	$\neg (A \Leftrightarrow B), \neg B$	\longrightarrow	A	¬⇔-prop

ERule : \exists -regel.

- Indien $(\exists x)A[x]$ voorkomt in een tak, dan mag men A[c] toevoegen aan die tak, met c een nieuwe constante die nog niet voorkomt in deze tak noch in T.
- Indien $\neg(\forall x)A[x]$ voorkomt in een tak, dan mag men $\neg A[c]$ toevoegen aan die tak voor c opnieuw zo'n nieuwe constante.

ARule: \forall -regel.

- Indien $(\forall x)A[x]$ voorkomt in een tak, dan mag men A[t] toevoegen aan die tak.
- Indien $\neg(\exists x)A[x]$ voorkomt, dan mag men $\neg A[t]$ toevoegen aan die tak. Hierbij is t een willekeurige term zonder variabelen.

Gelijkheid-regels.

- $\bullet\,$ Zij teen term zonder variabelen. Dan mag men t=t toevoegen.
- Zij t_1, t_2 termen zonder variabelen. Indien de zinnen $t_1 = t_2$ en A_1 voorkomen in een tak waarbij A_1 een voorkomen van t_1 bevat, dan mag men A_2 toevoegen aan die tak. Hierbij is A_2 bekomen door het vervangen van één of meerdere voorkomens van t_1 door t_2 in A_1 .

Gevalsonderscheiding-regel Een gevalsonderscheiding maken we door onderaan een tak twee nieuwe deelrijen te openen, één beginnend met een formule A, de andere met $\neg A$.