18.100B - Problem Set 5

Rishad Rahman

- 1. $\{s_n\}$ converges $\to \forall \epsilon \exists N$ such that $|s-s_n| < \epsilon$ for $n \ge N$. $|s|-|s_n| \le |s-s_n| < \epsilon$ and $|s_n|-|s| \le |s_n-s| < \epsilon$ by the Triangle Inequality. Depending on the sign of $|s|-|s_n|$ we can take the absolute value of the corresponding inequality and achieve $||s|-|s_n|| < \epsilon$. So $\{|s_n|\}$ does converge and it converges to |s|. The converse is not true; take the sequence $s_n = (-1)^n$ for example, $|s_n| \to 1$ but s_n has no limit.
- 2. $\lim_{n \to \infty} \sqrt{n^2 + n} n = \lim_{n \to \infty} \sqrt{n^2 + n} n \cdot \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{2}$. To verify this, note $1 + \frac{1}{n}$ is bounded below by 1 and is monotonically decreasing so $x_n = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1}$ is bounded above by $\frac{1}{1+1} = \frac{1}{2}$ and is monotonically increasing. This is also the least upper bound since if x > 2 we can always find n such that $\sqrt{1 + \frac{1}{n}} + 1 < x$.
- 3. First of all $\{s_n\}$ is bounded above by 2. This is shown by induction. $s_1 = \sqrt{2} < 2$ checks. Now assume $s_k < 2 \to s_{k+1} = \sqrt{2 + \sqrt{s_k}} < \sqrt{2 + \sqrt{2}} < 2$. Now we must show that the sequence is monotonically increasing which we can also do by induction. $s_2 = \sqrt{2 + \sqrt{s_1}} > \sqrt{2} = s_1$ checks. Now assume $s_k < s_{k+1}$. Then $s_{k+1} = \sqrt{2 + \sqrt{s_k}} < \sqrt{2 + \sqrt{s_{k+1}}}$. But $s_{k+2} = \sqrt{2 + \sqrt{s_{k+1}}}$ so $s_{k+2} > s_{k+1}$ and the inductive step is complete. Since the sequence is monotonic and bounded, it therefore converges.
- 4. Note $s_2=0$ and $s_{2m}=\frac{\frac{1}{2}+s_{2m-2}}{2}=\frac{1}{4}+\frac{1}{2}s_{2m-2}$. It is not difficult to see $s_{2m}=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots+\frac{1}{2^m}=\frac{1}{2}\cdot\left(1-\left(\frac{1}{2}\right)^m\right)=\frac{1}{2}-\left(\frac{1}{2}\right)^{m+1}$. Then $s_{2m+1}=1-\left(\frac{1}{2}\right)^{m+1}$. Assume $x\neq\frac{1}{2},1$. Take $r<\min(|x-\frac{1}{2}|,|x-1|)$. If x>1 then $s_n\notin N_r(x)$ since $s_n<1$ so there cannot be any subsequential limits here. Let us take $\{x<1\}\setminus\left\{\frac{1}{2}\right\}$. By the Archimedean property we can find m such that $\frac{1}{2}-\left(\frac{1}{2}\right)^{m+1}>x+r$ or $1-\left(\frac{1}{2}\right)^{m+1}>x+r$ with the left inequality corresponding to $x<\frac{1}{2}$ and the right one to $\frac{1}{2}< x<1$. Thus in both these regions the chosen $N_r(x)$ will contain a finite number of points of the sequence since s_{2m} and s_{2m+1} are monotonically increasing and therefore x cannot be a subsequential limit in those regions. $x=\frac{1}{2}$ and x=1 are the limits of s_{2m} and s_{2m+1} so they are the subsequential limits. Therefore $\lim\sup_{n\to\infty}s_n=1$ and $\lim\inf_{n\to\infty}s_n=\frac{1}{2}$.
- 20. The convergence of p_{n_l} implies $\forall \epsilon \exists N_1$ such that $d(p_{n_l},p) < \frac{\epsilon}{2}$ for all $n_l > N_1$. Since $\{p_n\}$ is Cauchy, $\forall \epsilon \exists N_2$ such that $d(p_n,p_{n_l}) < \frac{\epsilon}{2}$ for all $n,n_l > N_2$. Take $N = \max(N_1,N_2)$, then $d(p_n,p) < d(p_n,p_{n_l}) + d(p_{n_l},p) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ for all n > N. Since ϵ was arbitrary, this means $p_n \to p$.
- 21. If $E = \bigcap_{1}^{\infty} E_n$ had more than 1 points, the proof would be a direct copy of the latter half of the proof of 3.10(b) [diam $E_n \ge$ diam E > 0 which contradicits the limit] so we really only need to show that E is nonempty. Take a sequence $\{x_n\}$ such that $x_n \in E_n$. $\{x_n\}$ is Cauchy (since it is contained within E_n whose diameter goes to 0) and therefore convergent as well since it is in a complete metric space.

1

Let's say $x_n \to x$, then x must be a limit point of $E = \bigcap_{1}^{\infty} E_n$ since $d(x, x_n) < \epsilon$ and $x_n \in E_n \ \forall n$. But E_n is closed so $E = \bigcap_{1}^{\infty} E_n$ is also closed and therefore $x \in E$.

23. $\forall \epsilon \ \exists N_1$ such that $d(p_m,p_n) < \frac{\epsilon}{2}$ for $m,n \geq N_1$. Similar for $d(q_m,q_n)$ and let the determining number for that $\frac{\epsilon}{2}$ be N_2 . Let $N = \max(N_1,N_2)$. By Triangle Inequality $d(p_n,q_n) \leq d(p_n,p_m) + d(p_m,q_m) + d(p_m,q_n) - d(p_m,q_m) < \epsilon$ for $m,n \geq N$. If we computed the inequality focused on $d(p_m,q_m)$ instead we would have gotten $d(p_m,q_m) - d(p_n,q_n) < \epsilon$ so this means $|d(p_n,q_n) - d(p_m,q_m)| < \epsilon$ and therefore we have a Cauchy sequence in R so it converges.