1.7

a. CPI =
$$T_{exec} \times f/No.$$
 instr.

Compiler A
$$CPI = 1.1$$

Compiler B
$$CPI = 1.25$$

b.
$$f_B/f_A = (No. instr.(B) \times CPI(B))/(No. instr.(A) \times CPI(A)) = 1.37$$

c.
$$T_A/T_{new} = 1.67$$

$$T_{\rm\scriptscriptstyle B}/T_{\rm\scriptscriptstyle new}=2.27$$

1.9

1.9.1

P	# arith inst.	# L/S inst.	# branch inst.	cycles	ex. time	speedup
1	2.56E9	1.28E9	2.56E8	7.94E10	39.7	1
2	1.83E9	9.14E8	2.56E8	5.67E10	28.3	1.4
4	9.12E8	4.57E8	2.56E8	2.83E10	14.2	2.8
8	4.57E8	2.29E8	2.56E8	1.42E10	7.10	5.6

1.9.2

р	ex. time
1	41.0
2	29.3
4	14.6
8	7.33

1.9.3 3

1.10

1.10.1 die area_{15cm} = wafer area/dies per wafer = pi*7.5² / 84 = 2.10 cm² yield_{15cm} =
$$1/(1+(0.020*2.10/2))^2 = 0.9593$$
 die area_{20cm} = wafer area/dies per wafer = pi*10²/100 = 3.14 cm² yield_{20cm} = $1/(1+(0.031*3.14/2))^2 = 0.9093$

1.10.2
$$\operatorname{cost/die}_{15\text{cm}} = 12/(84*0.9593) = 0.1489$$

 $\operatorname{cost/die}_{20\text{cm}} = 15/(100*0.9093) = 0.1650$

1.10.3 die area_{15cm} = wafer area/dies per wafer = pi*7.5²/(84*1.1) = 1.91 cm² yield_{15cm} =
$$1/(1 + (0.020*1.15*1.91/2))^2 = 0.9575$$
 die area_{20cm} = wafer area/dies per wafer = pi*10²/(100*1.1) = 2.86 cm² yield_{20cm} = $1/(1 + (0.03*1.15*2.86/2))^2 = 0.9082$

1.10.4 defects per area_{0.92} =
$$(1-y^5)/(y^5 - 5^* die_area/2)$$
 = $(1-0.92^5)/(0.92^5 - 5^* 2/2)$ = 0.043 defects/cm² defects per area_{0.95} = $(1-y^5)/(y^5 - 5^* die_area/2)$ = $(1-0.95^5 - 5)/(0.95^5 - 5^* 2/2)$ = 0.026 defects/cm²