Diskretna matematika

ponovljeni završni ispit

6.2.2009.

1. U polju \mathbb{F}_{2^8} , definiranom kao $\mathbb{Z}_2[x]/(x^8+x^4+x^3+x+1)$, odredite produkt polinoma $x^6+x^5+x^3+x^2+1$ i $x^7+x^4+x^2+x+1$.

2. Alice je poslala istu poruku m nekolicini agenata. Eva je presrela šifrate c_1 , c_2 , c_3 za trojicu agenata čiji su javni ključevi n_1 , n_2 i n_3 . Poznato je da Alice i agenti koriste RSA kriptosustav s javnim eksponentom e=3. Za zadane

$$n_1 = 403,$$
 $c_1 = 116,$
 $n_2 = 407,$ $c_2 = 393,$
 $n_3 = 551,$ $c_3 = 210.$

pokažite kako će Eva otkriti poruku m (bez poznavanja faktorizacije modula n_1, n_2, n_3).

- 3. Neka je (n, e) = (32311427, 22100011) Bobov javni RSA ključ. Poznato je da tajni eksponent d zadovoljava nejednakost $d < \frac{1}{3} \sqrt[4]{n}$. Odredite d (Bobov tajni RSA ključ) i i pomoću njega dešifrirajte šifrat y = 843 koji je Alice poslala Bobu.
- 4. U Rabinovu kriptosustavu s parametrima

$$(n, p, q) = (3713, 47, 79),$$

dešifrirajte šifrat y=1521. Poznato je da je otvoreni tekst prirodan broj x < n kojem su zadnja četiri bita u binarnom zapisu međusobno jednaka.

5. Zadan je Merkle-Hellmanov kriptosustav s parametrima

$$v = (3, 5, 11, 27, 53, 109, 209, 425), p = 853, a = 127,$$

 $t = (381, 635, 544, 17, 760, 195, 100, 236).$

Dešifri
rajte šifrat y=1627.

- 6. Odredite sve proste brojeve p takve da je Legendreov simbol $\left(\frac{7}{p}\right)=1.$
- 7. Neka je (\mathbb{R}^*,\cdot) multiplikativna grupa realnih brojeva različitih od nule, a $X=\mathbb{R}^*\times\mathbb{R}$. Na X definiramo binarnu operaciju sa

$$(a,b) \bullet (a',b') = (aa',ab'+b).$$

Dokažite da je (X, \bullet) grupa. Je li ta grupa Abelova?

Dozvoljeno je korištenje džepnog kalkulatora.

Kalkulatori se mogu koristiti za standardne operacije, ali nije dozvoljeno korištenje gotovih funkcija za modularno potenciranje, modularni inverz, rješavanje linearnih kongruencija i sustava linearnih kongruencija, razvoj u verižni razlomak i sl.

Andrej Dujella i Marcel Maretić