

ใบเนื้อหา	หน้าที่ 1
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3
d	

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

หน่วยที่ 3 สัญญาณนาฬิกา และวงจรฟลิบฟลอบ สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1. วงจรกำเนิดสัญญาณนาฬิกา

วงจรกำเนิดสัญญาณนาฬิกา มีพื้นฐานมาจากวงจรมัลติไวเบรเตอร์ แบบอะสเตเบิลมัลติไวเบรเตอร์ซึ่งจะผลิต สัญญาณพัลส์สี่เหลี่ยมต่อเนื่องออกมาตลอดเวลา โดยวงจรมัลติไวเบรเตอร์อาจจะสร้างมาจากอุปกรณ์ทรานซิสเตอร์ ไอซี 555 ไอซีดิจิทัล หรือไอซีดิจิทัลทำงานร่วมกับอุปกรณ์คริสตัล หรือไอซีออปแอมป์ทำงานร่วมกับอุปกรณ์ RC เป็น ต้น ซึ่งวงจรมัลติไวเบรเตอร์จะมี 3 ประเภทใหญ่ ๆ ดังนี้

1.1 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์

วงจรโมโนสเตเบิลมัลติไวเบรเตอร์ หรือวงจรวันชอร์ต (One-shot) คือวงจรที่ให้สัญญาณเอาต์พุตออกมา หนึ่งพัลส์ (Single Shot Plus) เมื่อถูกกระตุ้นด้วยสัญญาณภายนอก โดยคาบเวลาของสัญญาณที่ปรากฎจะถูกกำหนด ด้วยการทำงานของอุปกรณ์ RC ซึ่งวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ในที่นี้จะขอกล่าวเฉพาะในส่วนของวงจรที่สร้าง จากไอซี 555 และไอซีดิจิทัล 74LS123 ดังนี้

1.1.1 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์จากไอซี 555

ไอซี 555 สามารถออกแบบเป็นวงจรโมโนสเตเบิล และเป็นวงจรออสซิลเลเตอร์แบบอะสเต เบิลมัลติไวเบรเตอร์ได้ ส่วนมากบรรจุในตัวถังเดี่ยวแบบพลาสติกขนาดเล็ก 8 ขา ดังรูปที่ 1.1 ส่วนรูปที่ 1.2 แสดง บล็อกไดอะแกรมที่มีอุปกรณ์ภายในต่อเป็นวงจรของการทำงาน โดยจะมีต้านทาน 5 kΩ จำนวน 3 ตัว ซึ่งต่อเป็นวงจร แบ่งแรงดันจากแหล่งจ่าย (Vcc) กับกราวด์ โดยตัวต้านทานตัวล่างสุดจะมีค่าแรงดันที่ 1/3 Vcc และตัวต้านทาน ตัวกลางจะมีค่าแรงดันที่ 2/3 Vcc เพื่อใช้งานกับวงจรคอมพาราเตอร์ภายในไอซีเพื่อกำหนดการสร้างขอบขาสัญญาณ เอาต์พูต

รูปที่ 1.1 แสดงตำแหน่งขาการต่อใช้งานของไอซี 555

ใบเนื้อหา	หน้าที่ 2
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.2 รูปแสดงบล็อกไดอะแกรมโครงสร้างภายในของไอซี 555 จากรูปที่ 1.2 หน้าที่ของขาสัญญาณของไอซี 555 มีดังนี้

ขา 1 (GND) เป็นกราวด์ของไอซี

ขา 2 (Trigger) เป็นอินพุตรับสัญญาณการกระตุ้นซึ่งต่ออยู่กับตัวเปรียบเทียบแรงดัน (Comparator) ตัวล่าง เมื่อค่าแรงดันอินพุตมีระดับต่ำกว่า 1/3 ของแรงดันแหล่งจ่าย (VCC) คอมพาราเตอร์จะมีค่า เป็น HIGH ซึ่งถูกใช้เซ็ตตัวฟลิบฟลอบให้ทำงาน

ขา 3 (Output) เป็นขาเอาต์พุตของไอซี 555 จ่ายกระแสโดยผ่านบัฟเฟอร์อินเวอร์เตอร์ ที่ สามารถจ่ายกระแสออกและรับกระแสเข้าจากภายนอกได้ที่ 200 mA ค่าระดับแรงดันเอาต์พุตนั้นขึ้นอยู่กับค่ากระแส ที่จ่ายให้โหลด แต่จะมีค่าโดยประมาณที่ VOH = VCC — 1.5 V และ VOL = 0.1 V

ขา 4 (Reset) เป็นขาอินพุตรีเซ็ต มีการทำงานที่ลอจิก LOW ซึ่งจะบังคับให้เอาต์พุตที่ขา 3 เป็น ลอจิก LOW ปกติถ้าไม่ใช้งานจะต่อขานี้รวมกับแหล่งจ่ายของวงจร

ขา 5 (Control) เป็นขาควบคุมระดับแรงดันกระตุ้นที่ขานี้ปกติจะมีระดับแรงดันที่ 2/3 ของ แรงดันแหล่งจ่าย ซึ่งแรงดันนี้ใช้เป็นแรงดันอ้างอิงของวงจรเปรียบเทียบแรงดันทางสูง ขานี้สามารถป้อนแรงดัน ควบคุมจากภายนอกได้ โดยให้แรงดันอยู่ในช่วงต่ำกว่าแหล่งจ่าย 1 V กรณีที่ไม่มีการต่อแรงดันควบคุมจากภายนอก ให้ใช้ตัวเก็บประจุขนาด 0.01uF ต่อขานี้กับกราวด์ เพื่อลัดวงจรสัญญาณรบกวนจากสัญญาณภายนอกลงกราวด์ ทำให้วงจรทำงานได้อย่างถูกต้อง

ใบเนื้อหา	หน้าที่ 3
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

ขา 6 (Threshold) เป็นขาอินพุตตัวเปรียบเทียบแรงดันตัวบนใช้สำหรับเปรียบเทียบแรงดันทางสูง เมื่อระดับแรงดันที่ขา 6 สูงถึง 2/3 ของแรงดันของแหล่งจ่าย ตัวเปรียบเทียบแรงดันจะมีค่าเป็น HIGH ซึ่งถูกใช้รีเซ็ต ตัวฟลิบฟลอบ

ขา 7 (Discharge) เป็นขาที่ต่อกับคอลเลคเตอร์เปิดของทรานซิสเตอร์ชนิด NPN ต่ออยู่ระหว่างขา 7 กับกราวด์ เมื่อ Q เป็น HIGH (เอาต์พุตขา 3 เป็น LOW) เป็นทางผ่านของกระแสคายประจุจากตัวเก็บประจุภายนอกที่มาต่อไอซี 555

ขา 8 (VCC) เป็นขารับแรงดันจากแหล่งจ่ายไฟตรงโดยใช้ระดับแรงดันอยู่ในช่วง 4.5 V ถึง 18 V การต่อวงจรไอซี 555 ให้ทำงานเป็นวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ ทำได้โดยต่อแหล่งจ่ายไฟ Vcc เข้าที่ขา 8 และขา 4 (Reset) ขา 1 ให้ต่อกราวด์ของวงจร ส่วนสัญญาณการกระตุ้นการทำงานของวงจรป้อนเข้า ที่ขา 2 (Trigger) เป็นผลให้เกิดการเปลี่ยนแปลงของสัญญาณเอาต์พุตที่ขา 3 โดยคาบเวลากำหนดจากการต่อตัวเก็บ ประจุ (C) เข้าระหว่างขา 7 (Discharge) และขา 6 (Threshold) กับกราวด์ แล้วต่อตัวต้านทาน (R) เข้ากับ Vcc กับขา 6 และขา 7 ส่วนตัวเก็บประจุ 0.01µF ต่อระหว่างขา 5 (Voltage Control) กับกราวด์ ดังรูปที่ 1.3

รูปที่ 1.3 แสดงตัวอย่างการต่อวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ด้วยไอซี 555

จากรูปที่ 1.3 เป็นวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ด้วยไอซี 555 ที่มีการทางานแบบไม่ สามารถทริกต่อเนื่อง (None Retriggable) ซึ่งการทำงานจะเริ่มต้นขึ้นใหม่ก็ต่อเมื่อการทำงานเดิมสิ้นสุดลงก่อน ส่วน คาบเวลาของสัญญาณเอาต์พุตของวงจรที่จะชำสำหรับเป็นสัญญาณหน่วงเวลา หรือสัญญาณนาฬิกาให้แก่วงจรนับ แบบ 1 พัลส์หาได้จากสมาการของค่า RC ดังนี้

t=1.1RC สมการที่ 1

เมื่อ t คือคาบเวลามีหน่วยเป็นวินาที ส่วน R คือค่าของตัวต้านทาน และ C คือค่าของตัวเก็บ

ประจุ

ใบเนื้อหา	หน้าที่ 4
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.4 แสดงรูปคลื่นสัญญาณการทำงานของวงจรโมโนสเตเบิลมัลติไวเบรเตอร์

ตัวอย่างที่ 1.1 ให้ออกแบบวงจรโมโนสเตเบิลมัลติไวเบรเตอร์เพื่อสร้างสัญญาณลอจิก '1' ที่มี คาบเวลา 110mS โดยใช้ตัวต้านทานค่า 10k Ω

วิธีทำ จาก
$$t=1.1RC$$
ดังนั้น $C=rac{t}{1.1R}$
 $C=rac{110mS}{1.1x10k\Omega}$
 $C=10\mu F$

ดังนั้นสามารถต่อวงจรโมโนสเตเบิลมัลติไวเบรเตอร์เพื่อสร้างสัญญาณลอจิก '1' ที่มีคาบเวลา 110mS เมื่อมีการกระตุ้นจากสัญญาณภายนอกได้ดังนี้

รูปที่ 1.5 แสดงตัวการต่อวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ตามตัวอย่างที่ 1.1

ใบเนื้อหา	หน้าที่ 5
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.1.2 วงจรโมโนสเตเบิลมัลติไวเบรเตอร์จากไอซีดิจิทัล 74LS123

ไอซีเบอร์ 74LS123 เป็นวงจรหน่วงเวลาชนิดโมโนสเตเบิลมัลติไวเบรเตอร์ (Monostable Multivibrator) จำนวน 2 ชุดในไอซีหนึ่งตัว ซึ่งการทำงานจะขึ้นอยู่กับการเปลี่ยนแปลงของสัญญาณขาเข้าที่แสดงใน รูปที่ 1.6 และไอซีดิจิทัล 74LS123 เป็นวงจรโมโนสเตเบิลมัลติไวเบรเตอร์แบบสามารถทริกต่อเนื่อง (Retriggable) ได้ โดยการทำงานจะเริ่มขึ้นใหม่ทุกครั้งที่มีสัญญาณทริก เป็นผลทำให้สัญญาณออกจะเป็นช่วงลอจิก '1' ตลอดเวลา และช่วงเวลาของลอจิก '1' สามารถหาได้จากสมการดังนี้

t=0.33RC สมการที่ 2

โดยให้กำหนดค่า R ให้อยู่ในช่วง 5k Ω ถึง 180k Ω

(ก) แสดงโครงสร้างภายในของไอซี 74LS123

FUNCTION TABLE

CLEAR	A INPUT	B INPUT	Q	Q
L	Х	Х	L	Н
Х	Н	Х	L†	H [†]
Х	Х	L	L†	н†
Н	L	\uparrow	LHL‡	HLH§
Н	\downarrow	Н	LHL‡	HLH§
1	L	Н	LHL‡	HLH§

[†] These lines of the functional tables assume that the indicated steady-state conditions at the A and B inputs have been set up long enough to complete any pulse started before the setup.

(ข) แสดงตารางการทำงานของไอซี 74LS123 ตามสัญญาณอินพุตที่กำหนด รูปที่ 1.6 แสดงโครงสร้างและตารางการทำงานของไอซี 74LS123

[‡] This is a low-to-high-to-low pulse.

[§] This is a high-to-low-to-high pulse.

ใบเนื้อหา	หน้าที่ 6
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

ตัวอย่างที่ 1.2 ให้ออกแบบวงจรโมโนสเตเบิลมัลติไวเบรเตอร์เพื่อสร้างสัญญาณลอจิก '1' ที่มี คาบเวลา 50mS โดยใช้ตัวเก็บประจะค่า 1µF

> วิธีทำ จาก t=0.33RCดังนั้น R=t/(0.33xC) $R=50mS/(0.33x1\mu F)$ $R=151,151.151\Omega$

ดังนั้นสามารถต่อวงจรโมโนสเตเบิลมัลติไวเบรเตอร์เพื่อสร้างสัญญาณลอจิก '1' ที่มีคาบเวลา 50mS เมื่อมีการกระตุ้นจากสัญญาณภายนอกได้ดังนี้

รูปที่ 1.5 แสดงตัวการต่อวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ตามตัวอย่างที่ 1.2

1.2 วงจรไบสเตเบิลมัลติไวเบรเตอร์

วงจรไบสเตเบลิมัลติไวเบรเตอร์ คือวงจรมัลติไวเบรเตอร์ประเภทหนึ่ง ซึ่งมีสถานะการทำงานของ เอาต์พุตที่แน่นอนได้สองลักษณะ ปกติวงจรพื้นฐานของวงจรไบสเตเบลิมัลติไวเบรเตอรจะประกอบด้วยอุปกรณ์ อิเล็กทรอนิกส์ประเภทแอคทีฟ (active element) จำนวน 2 ตัว เช่น อุปกรณ์ทรานซิสเตอร์ หรือเจเฟต เป็นต้น โดยวงจรนี้ถูกนำไปใช้งานในลักษณะของวงจรฟลิบฟลอบ (Flipflop circuit) เพื่อเก็บสถานะของสัญญาณ หรือ อาจจะประยุกต์เป็นอุปกรณ์หน่วยความจำตามคุณสมบัติของฟลิบฟลอบ ซึ่งนักศึกษาจะได้ศึกษาต่อไปในหัวข้อของ วงจรฟลิบฟลอบ

ใบเนื้อหา	หน้าที่ 7
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.3 วงจรอะสเตเบิลมัลติไวเบรเตอร์

วงจรอะสเตเบิลมัลติไวเบรเตอร์ หรือวงจรฟรีรันนิ่งมัลติไวเบรเตอร์ เป็นวงจรที่สร้างสัญญาณนาฬิกาที่ กำเนิดมาจากสัญญาณพัลส์อย่างต่อเนื่องที่ใช้งานกับวงจรดิจิทัล ซึ่งสามารถกำหนดช่วงเวลาในการกำเนิดสัญญาณ เอาต์พุตที่ค่าต่าง ๆ ได้แก่ ค่าความกว้างของพัลส์ คาบเวลา ความถี่ เป็นต้น โดยวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่จะ กล่าวถึงในหัวข้อนี้จะเป็นวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างมาจากอุปกรณ์ไอซี 555 เท่านั้น ทั้งแบบค่า Duty Cycle หรือค่าความกว้างพัลส์ที่มีค่าไม่เท่ากับ 50% และค่า Duty Cycle หรือค่าความกว้างพัลส์ที่มีค่าไม่เท่ากับ 50%

1.3.1 วงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างจากไอซี 555 มีค่า Duty Cycle หรือค่าความกว้างพัลส์ที่ มีค่าไม่เท่ากับ 50%

จากคุณสมบัติของไอซี 555 ในการสร้างวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ ไอซี 555 ยังสามารถ ต่อวงจรให้ทำงานได้ในรูปแบบของวงจรอะสเตเบิลมัลติไวเบรเตอร์ หรือวงจรฟรีรันนิ่งมัลติไวเบรเตอร์ดังรูปที่ 1.6 โดยใช้สมาการในการหาค่าคาบเวลา $T=t_1+t_2$ ดังสมการที่ 3

รูปที่ 1.6 รูปแสดงวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่ใช้ไอซี 555

รูปที่ 1.7 รูปแสดงสัญญาณการทำงานของวงจรอะสเตเบิลมัลติไวเบรเตอร์ของไอซี 555

ใบเนื้อหา	หน้าที่ 8
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

$$T=t_1+t_2=0.693(R_A+2R_B)C$$
 สมาการ 3
โดย $t_1=0.693(R_A+R_B)C$ สมาการ 4
 $t_2=0.693R_BC$ สมาการ 5

เมื่อ T คาบเวลาทั้งหมด

 t_1 คือช่วงเวลาที่เกิดสัญญาณลอจิก '1' และ t_2 คือช่วงเวลาที่เกิดสัญญาณลอจิก '0' และการหาค่า Duty Cycle หาได้จากสมาการ 6

$$D=rac{t_1}{T}$$
 สมาการ 6

ตัวอย่างที่ 1.3 ให้ออกแบบวงจรกำเนิดสัญญาณนาฬิกาที่มีความถี่ 1kHz โดยใช้ตัวเก็บประจุค่า 1µF และ R_{A} ค่า 1k Ω และมีค่า Duty Cycle เท่ากับ 60%

วิธีทำ จาก
$$T=1/F$$
 $T=1/1kHz$ $T=1mS$ และ $t_1=\left(\frac{60}{100}\right)x1mS$ $t_1=0.6mS$ $t_2=T-t_1$ $t_2=1mS-0.6mS$ $t_2=0.4mS$ ดังนั้น $R_B=\frac{t_2}{0.693C}$ $R_B=\frac{0.4mS}{0.693x1\mu F}$ $R_B=577.2\Omega$

รูปที่ 1.8 แสดงตัวการต่อวงจรอะสเตเบิลมัลติไวเบรเตอร์ตามตัวอย่างที่ 1.3

ใบเนื้อหา	หน้าที่ 9
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

1.3.2 วงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างจากไอซี 555 มีค่า Duty Cycle หรือค่าความกว้างพัลส์ที่ มีค่าเท่ากับ 50%

วงจรอะสเตเบิลมัลติไวเบรเตอร์ที่สร้างจากไอซี 555 มีค่า Duty Cycle หรือค่าความกว้างพัลส์ที่ มีค่าเท่ากับ 50% คือวงจรที่มีค่าช่วงเวลา t_1 เท่ากับ t_2 โดยสมาการหาค่า T ของวงจรหาได้จากสมการที่ 7

$$T=t_1+t_2=2(0.693)RC$$
 เมื่อ $t_1=t_2$ สมการที่ 7

รูปที่ 1.9 รูปแสดงวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่ใช้ไอซี 555 และ Duty Cycle มีค่าเท่ากับ 50% **ตัวอย่างที่ 1.4** ให้ออกแบบวงจรกำเนิดสัญญาณนาฬิกาที่มีความถี่ 1kHz โดยใช้ตัวเก็บประจุค่า 1µF และมีค่า Duty Cycle เท่ากับ 50%

วิธีทำ จาก
$$T=1/F$$
 $T=1/1kHz$
 $T=1mS$
 $T=1.386RC$
 $R=T/(1.386C)$
 $R=1mS/(1.386x1\mu F)$
 $R=721.5\Omega$

ใบเนื้อหา	หน้าที่ 10
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3
J	

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.10 แสดงตัวการต่อวงจรอะสเตเบิลมัลติไวเบรเตอร์ตามตัวอย่างที่ 1.4

2. วงจรฟลิบฟลอบ

วงจรฟลิบฟลอบ (Flip-flop) เป็นวงจรหน่วยความจำพื้นฐาน ซึ่งมีการทำงานเช่นเดียวกับวงจรไบสเตเบิลมัลติ ไวเบรเตอร์ (Bistable multivibrator) โดยมีเอาต์พุตของวงจร 2 สภาวะ ได้แก่สภาวะเอาต์พุต Set ทำให้ขาสัญญาณ Q = 1 และสภาวะเอาต์พุต Reset ทำให้ขาสัญญาณ Q = 0 นอกจากนี้วงจรฟลิบฟลอบอาจมีสัญญาณนาฬิกาในการ ควบคุมการทำงานของขาสัญญาณเอาต์พุตตามตารางความจริงของฟลิบฟลอบชนิดนั้น ๆ โดยฟลิบฟลอบสามารถ แบ่งออกเป็น 4 ชนิดได้แก่

2.1 RS-Flipflop

ลักษณะสมบัติและการทำงานของ อาร์-เอส ฟลิบฟลอบ เป็นลักษณะของวงจรแบบการป้อนสัญญาณ อินพุตจากภายนอกโดยตรงบางครั้งเรียกว่า แลตซ์ (Latch) หรือวงจรคงสภาวะ ซึ่งจะมี 2 อินพุต คือ อินพุตเซ็ต (S) และ อินพุตรีเซ็ต (R) และการป้อนสัญญาณอินพุต มี 2 ลักษณะ คือ การทำงานที่ลอจิก HIGH และทำงานที่ลอจิก LOW สำหรับเอาต์พุตของ อาร์-เอส ฟลิบฟลอบมี 2 เอาต์พุต คือ เอาต์พุตปกติ (Q) และเอาต์พุตคอมพลีเมนต์ ($\overline{\mathbf{Q}}$) ที่ ้มีสภาวะลอจิกตรงกันข้ามกับเอาต์พุตปกติเสมอ สำหรับสัญลักษณ์ของ อาร์-เอส ฟลิบฟลอบ แสดงได้ดังรูปที่ 1.11 และรูปที่ 1.12 เป็นแบบที่มีและไม่มีสัญญาณนาฬิกาควบคุมในการทำงาน

รูปที่ 1.11 สัญลักษณ์ อาร์-เอส ฟลิบฟลอบ ที่ไม่มีสัญญาณนาฬิกาควบคุม

ใบเนื้อหา	หน้าที่ 11
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

(ก) ทำงานที่ขอบขาขึ้นของสัญญาณนาฬิกา (ข) ทำงานที่ขอบขาลงของสัญญาณนาฬิกา รูปที่ 1.12 สัญลักษณ์ อาร์-เอส ฟลิบฟลอบ ที่มีสัญญาณนาฬิกาควบคุม

2.1.1 อาร์-เอส ฟลิบฟลอบ แบบนอร์เกต (Cross-NOR R-S Flip-Flop)

เป็นฟลิปฟลอบที่สร้างจากนอร์เกต 2 ตัว ซึ่งแสดงได้ดังรูปที่ 1.13 จะเห็นได้ว่าอินพุตและเอาต์พุต ของทั้งสองตัวจะต่อไขว้กัน กล่าวคือ เอาต์พุตปกติ (Q) ของนอร์เกตตัวที่ 1 ต่อกับขาอินพุต 1 ของ นอร์เกตตัวที่ 2 ส่วนขาอินพุตที่ 2 จะเป็นขาอินพุต เซ็ต (S) และเอาต์พุตคอมพลีเมนต์ ($\overline{\mathbf{Q}}$) ของนอร์เกตตัวที่ 2 ต่อกับขาอินพุตที่ 2 ของนอร์เกตตัวที่ 1 ส่วนขาอินพุตที่ 1 จะเป็นขาอินพุตรีเซ็ต (R) ซึ่งการทำงานของ อาร์-เอส ฟลิบฟลอบ แบบนอร์ เกต มีอินพุตเป็นลักษณะการทำงานที่ลอจิก HIGH คือ การป้อนลอจิก 1 ที่อินพุตเซ็ต (S) เพื่อกำหนดให้เอาต์พุตปกติ (Q) มีสภาวะลอจิกเป็น 1 และการป้อนลอจิก 1 ที่อินพุตรีเซ็ต (R) เพื่อกำหนดให้เอาต์พุตปกติ (Q) มีสภาวะลอจิกเป็น 0 เมื่อพิจารณาจากวงจรสามารถเขียนเป็นสมการพีชคณิตบูลีนของเอาต์พุตทั้งสองของฟลิบฟลอบได้ดังนี้ $\mathbf{Q} = \overline{\mathbf{R} + \overline{\mathbf{Q}}}$ และ $\mathbf{\overline{Q}} = \overline{\mathbf{S} + \mathbf{Q}}$

รูปที่ 1.13 วงจรลอจิกและสัญลักษณ์ อาร์-เอส ฟลิบฟลอบแบบนอร์เกต

ົ້າ	อินพุต		เอาต์พุต			
โหมดการทำงาน	R	S	(Q) (\overline{Q}) ผลของเอาต์พุต (
Hold	0	0	(Q)	(Q)	ไม่เปลี่ยนแปลง	
Set	0	1	1	0	เซ็ตให้ (Q) เป็น 1	
Reset	1	0	0	1	รีเซ็ตให้ (Q) เป็น 0	
Prohibited	1	1	0	0	ห้ามใช้งาน	

รูปที่ 1.14 แสดงรูปตารางความจริงของ อาร์-เอส ฟลิบฟลอบ แบบนอร์เกต

ใบเนื้อหา	หน้าที่ 12
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

2.1.2 อาร์-เอส ฟลิบฟลอบ แบบแนนด์เกต (Cross NAND R-S Flip-Flop)

เป็นฟลิปฟลอบที่สร้างจากการใช้แนนด์เกตจำนวน 2 ตัว ซึ่งแสดงดังรูป 1.15 จะเห็นว่าแนนด์เกต 2 อินพุต ทั้งสองตัวมีการต่อลักษณะไขว้กัน กล่าวคือ เอาต์พุตปกติ (Q) ของแนนด์เกตตัวที่ 1 ต่อกับขาอินพุต 1 ของ แนนด์เกตตัวที่ 2 ส่วนขาอินพุตที่ 2 จะเป็นขาอินพุต รีเซ็ต (R) และเอาต์พุตคอมพลีเมนต์ ($\overline{\mathbf{Q}}$) ของแนนด์เกตตัวที่ 2 ต่อกับขาอินพุตที่ 2 ของแนนด์เกตตัวที่ 1 ส่วนขาอินพุตที่ 1 จะเป็นขาอินพุตเซ็ต (S) ซึ่งการทำงานของ อาร์-เอส ฟลิบฟลอบ แบบแนนด์เกต สำหรับอินพุตเป็นลักษณะการทำงานที่ลอจิก LOW คือ การป้อนลอจิก 0 ที่อินพุตเซ็ต เพื่อกำหนดให้เอาต์พุตปกติ (Q) มีสภาวะลอจิกเป็น 1 และป้อนลอจิก 0 ที่อินพุตรีเซ็ต (R) เพื่อกำหนดให้เอาต์พุต ปกติ (Q) มีสภาวะลอจิกเป็น 1 และป้อนลอจิก 0 ที่อินพุตรีเซ็ต (R) เพื่อกำหนดให้เอาต์พุต ปกติ (Q) มีสภาวะลอจิกเป็น 0 เมื่อพิจารณาจากวงจรสามารถเขียนเป็นสมการพีชคณิตบูลีนของเอาต์พุตทั้งสองของฟลิบฟลอปได้ดังนี้ $\mathbf{Q} = \overline{\mathbf{R} \cdot \overline{\mathbf{Q}}}$ และ $\mathbf{\overline{Q}} = \overline{\mathbf{S} \cdot \mathbf{Q}}$

รูปที่ 1.15 วงจรลอจิกและสัญลักษณ์ อาร์-เอส ฟลิบฟลอบ แบบแนนด์เกต

ໂຄດເວດຕາທິດຄວາ	อินพุต		เอาต์พุต			
โหมดการทำงาน	S	R	(Q)	$\overline{(Q)}$	ผลของเอาต์พุต (Q)	
Prohibited	0	0	1	1	ห้ามใช้งาน	
Set	0	1	1	0	เซ็ตให้ (Q) เป็น 1	
Reset	1	0	0	1	รีเซ็ตให้ (Q) เป็น 0	
Hold	1	1	(Q)	$\overline{(Q)}$	ไม่เปลี่ยนแปลง	

รูปที่ 1.16 แสดงรูปตารางความจริงของ อาร์-เอส ฟลิบฟลอบ แบบแนนด์เกต

รูปที่ 1.17 วงจรลอจิกและสัญลักษณ์ อาร์-เอส ฟลิบฟลอบ แบบใช้สัญญาณนาฬิกา

ใบเนื้อหา	หน้าที่ 13
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

โหมดการทำงาน อินพุต			เอาต์พุต			
เพลดแบรทเมาส	CLK	R	S	(Q)	(Q)	ผลของเอาต์พุต (Q)
Hold	-	0	0	(Q)	(Q)	ไม่เปลี่ยนแปลง
Set	- □	0	1	1	0	เซ็ตให้ (Q) เป็น 1
Reset	- □	1	0	0	1	รีเซ็ตให้ (Q) เป็น 0
Prohibited	₽ □	1	1	1	1	ห้ามใช้งาน

รูปที่ 1.18 แสดงรูปตารางความจริงของ อาร์-เอส ฟลิบฟลอบ แบบแนนด์เกตใช้สัญญาณนาฬิกาควบคุม

2.2 JK-Flipflop

เจ-เค ฟลิบฟลอบ หรือเรียกอีกชื่อว่า ยูนิเวอร์แซล ฟลิบฟลอบ (Universal Flip- Flop) มีสัญลักษณ์ทาง ลอจิก แสดงดังรูป ที่ 1.19 คือ มี 3 อินพุต ประกอบด้วยอินพุตข้อมูลจำนวน 2 อินพุตได้แก่อินพุต J อินพุต K และ อินพุตสัญญาณนาฬิกา 1 อินพุต คือ อินพุต CLK สำหรับเอาต์พุตมี 2 เอาต์พุต คือ เอาต์พุตปกติ (Q) และเอาต์พุต คอมพลีเมนต์ ($\overline{\mathbf{Q}}$) สามารถทำงานแทนฟลิบฟลอบแบบ ที่ ฟลิบฟลอบ และ อาร์-เอส ฟลิบฟลอบได้ แต่จะมีข้อดีกว่า คือ การทำงานในโหมดห้ามใช้งานที่อินพุตมีสภาวะลอจิกเหมือนกันในกรณีของ อาร์-เอส ฟลิบฟลอบจะทำให้เอาต์พุต มีสภาวะลอจิกเหมือนกันทำให้เกิดความไม่แน่นอนของการทำงาน แต่ เจ-เค ฟลิบฟลอบ จะเข้าสู่การทำงานใน รูปแบบของ ที่ ฟลิบฟลอบ ในโหมดทอกเกิล (Toggle) มีการสลับไปสลับมาของสภาวะลอจิกเอาต์พุตทุกครั้งหลังจาก มีสัญญาณนาฬิกาเข้ามา

รูปที่ 1.19 สัญลักษณ์ของ เจ-เค ฟลิบฟลอบ

โหมดการทำงาน	อิน	พุต		เอาต์พุต		
เทมพการทางาน	CLK	J	Κ	(Q)	$\overline{(Q)}$	ผลของเอาต์พุต (Q)
Hold	_	0	0	(Q)	(Q)	ไม่เปลี่ยนแปลง
Reset		0	1	0	1	รีเซ็ตให้ (Q) เป็น 0
Set	₽	1	0	1	0	เซ็ตให้ (Q) เป็น 1
Toggle		1	1	(Q)	(Q)	เปลี่ยนสภาวะเป็นตรงกันข้าม

รูปที่ 1.20 แสดงรูปตารางความจริงของ เจ-เค ฟลิบฟลอบ

ใบเนื้อหา	หน้าที่ 14
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

2.3 D-Flipflop

ดี ฟลิบฟลอบ เป็นฟลิปฟลอปที่มีสภาวะทางเอาต์พุตของสัญญาณ Q ขึ้นอยู่กับสภาวะลอจิกของสัญญาณ อินพุต D โดยควบคุมด้วยสัญญาณ CLK ดังรูปที่ 1.21

รูปที่ 1.21 แสดงสัญลักษณ์ของ ดี ฟลิบฟลอบ ที่ถูกควบคุมด้วยสัญญาณนาฬิกาขอบขาลง

อิน	พุต	เอาต์พุต	
CLK	D	Q_{n+1}	\overline{Q}_{n+1}
	0	0	1
Л	1	1	0
0	х	Q_n	\overline{Q}_n

รูปที่ 1.22 แสดงรูปตารางความจริงของ ดี ฟลิบฟลอบ ที่ถูกควบคุมด้วยสัญญาณนาฬิกาขอบขาขึ้น

2.4 T-Flipflop

ที่ ฟลิบฟลอบ หรือท็อกเกิล ฟลิบฟลอบ เป็นฟลิบฟลอบที่มีการเปลี่ยนสภาวะทางเอาต์พุตเปลี่ยนแปลง เป็นตรงกันข้ามกันทุก ๆ ครั้งที่มีสัญญาณนาฬิกาเข้ามากระตุ้น คือ ถ้าเดิม Q เป็นสภาวะ "1" และ $(\overline{\mathbf{Q}})$ มีสภาวะเป็น "0" และเมื่อมีสัญญาณนาฬิกาเข้ามากระตุ้น 1 ลูก เอาต์พุต Q จะเปลี่ยนสภาวะเป็น "0" และ $(\overline{\mathbf{Q}})$ จะมีเปลี่ยน สภาวะเป็น "1" ดังรูปที่ 1.24 รูปแสดงตารางความจริงของ ที่ ฟลิบฟลอบ

รูปที่ 1.23 แสดงสัญลักษณ์ของ ที ฟลิบฟลอบ

ใบเนื้อหา	หน้าที่ 15
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

CLK	Q_{n+1}
์ หรือ ไ	$\overline{\mathcal{Q}}_n$

รูปที่ 1.24 แสดงรูปตารางความจริงของ ที ฟลิบฟลอบ

3. อุปกรณ์ 7-Segment

7-Segment คืออุปกรณ์ที่ใช้สำหรับการแสดงผลตัวเลข หรือตัวอักษร โดยตัวอักษรสามารถแสดงผลได้แค่ บางตัวเท่านั้น หน้าจอของอุปกรณ์ 7-segment สร้างมาจากอุปกรณ์ LED จัดวางในรูปเลข 8 และมีจุด เมื่อทำให้ อุปกรณ์ LED ทำงานก็จะทำให้เกิดการแสดงผลออกมาเป็นตัวเลขทรงเหลี่ยมในลักษณะต่าง ๆ ซึ่งอุปกรณ์ 7-Segment จะแบ่งออกเป็น 2 ชนิดใหญ่ ๆ ได้แก่ ชนิดคอมมอน Cathode และชนิดคอมมอน Anode แต่ขนาดของ การแสดงผล และแพ็กเก็ตของอุปกรณ์ จะมีหลากหลายขนาด ขึ้นอยู่กับความต้องการของการนำไปใช้งาน

รูปที่ 1.26 รูปร่างหน้าตาของอุปกรณ์ 7-Segment ขนาด 0.56 นิ้วจำนวน 1 หลัก (ที่มา tandyonline.co.uk)

รูปที่ 1.27 รูปแสดงอุปกรณ์ 7-Segment ทำการแสดงผลออกมาเป็นตัวเลขต่าง ๆ ในระบบเลขฐาน 16 (ที่มา maruen.tistory.com)

ใบเนื้อหา	หน้าที่ 16
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3
d	

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.28 รูปแสดงตำแหน่งขาของอุปกรณ์ 7-Segment และการจัดวางตำแหน่งของ LED บนจอแสดงผล (ที่มา projectcircuitpack.yolasite.com)

3.1 7-Segment ชนิดคอมมอน Cathode

7-Segment ชนิดคอมมอน Cathode คือการนำเอาขาคาโทดของอุปกรณ์ LED แต่ละตัวมาต่อร่วมกัน เป็นจุดร่วม (Common) เพื่อนำมาต่อกับลอจิก '0' หรือ GND ส่วนขาอาโนดของอุปกรณ์ LED แต่ละตัวจะใช้สำหรับ ต่อกับชุดข้อมูลดาต้าที่ต้องการให้อุปกรณ์ 7-Segment แสดงผลเป็นตัวลขหรือตัวอักษร โดยจะทำงานที่ลอจิก '1'

รูปที่ 1.29 แสดงโครงสร้างภายในของอุปกรณ์ 7-Segment ชนิดคอมมอน Cathode ขนาด 1 หลัก

รูปที่ 1.30 แสดงโครงสร้างภายในของอุปกรณ์ 7-Segment ชนิดคอมมอน Cathode ขนาด 2 หลัก

ใบเนื้อหา	หน้าที่ 17
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

3.2 7-Segment ชนิดคอมมอน Anode

7-Segment ชนิดคอมมอน Anode คือการนำเอาขาอาโนดของอุปกรณ์ LED แต่ละตัวมาต่อร่วมกัน เป็นจุดร่วม (Common) เพื่อนำมาต่อกับลอจิก '1' หรือ Vcc ส่วนขาคาโทดของอุปกรณ์ LED แต่ละตัวจะใช้สำหรับ ต่อกับชุดข้อมูลดาต้าที่ต้องการให้อุปกรณ์ 7-Segment แสดงผลเป็นตัวลขหรือตัวอักษร โดยจะทำงานที่ลอจิก '0'

รูปที่ 1.31 แสดงโครงสร้างภายในของอุปกรณ์ 7-Segment ชนิดคอมมอน Anode ขนาด 1 หลัก

รูปที่ 1.32 แสดงโครงสร้างภายในของอุปกรณ์ 7-Segment ชนิดคอมมอน Anode ขนาด 2 หลัก การต่อใช้งานอุปกรณ์ 7-Segment จะด้วยกัน 2 ลักษณะคือ

1. การส่งดาต้าแบบแลตซ์ (Latch Data) คือการส่งข้อมูลไปยังขา Segment ของอุปกรณ์ 7-Segment ให้ คงสถานะไว้จนกว่าจะมีการแสดงผลด้วยข้อมูลตัวต่อไป ส่วนใหญ่จะใช้กับการแสดงผลที่ผ่านอุปกรณ์ควบคุมการ แสดงผลของ 7-Segment เช่นไอซี 74LS47 (ใช้กับอุปกรณ์ 7-Segment ชนิดคอมมอน Anode) และ 74LS48 (ใช้ กับอุปกรณ์ 7-Segment ชนิดคอมมอน Cathode) เป็นต้น

รูปที่ 1.33 แสดงการต่ออุปกรณ์ 7-Segment แบบการส่งคาต้าแบบแลตซ์ (Latch Data)

ใบเนื้อหา	หน้าที่ 18
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3
1	

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

2. การแสดงผลแบบมัลติเพล็กซ์ หรือ มัลติสแกน คือการส่งข้อมูลไปยังขา Segment ของอุปกรณ์ 7-Segment ให้คงสถานะไว้ตามคาบเวลาที่ส่งข้อมูลไปควบคุมที่ขาคอมมอนของหลักนั้น ๆ จากนั้นให้ทำการส่งข้อมูล ไปยังขา Segment ของอุปกรณ์ 7-Segment ด้วยข้อมูลของตัวเลขของหลักถัดไป และให้คงสถานะไว้ตามคาบเวลา ที่ส่งข้อมูลไปควบคุมที่ขาคอมมอนของหลักนั้น ๆ แล้วทำการวนรอบการทำงานให้ได้ประมาณ 25 เฟรมต่อวินาที

รูปที่ 1.34 แสดงการต่ออุปกรณ์ 7-Segment แบบมัลติเพล็กซ์ หรือ มัลติสแกน

4. การออกแบบวงจรนับ

การออกแบบวงจรนับ คือการนำอุปกรณ์ฟลิบฟลอบมาต่อประยุกต์ใช้งานเป็นวงจรนับในระบบเลขฐานสอง หรืออาจจะนำไปใช้ประโยชน์ในรูปแบบของวงจรหารสัญญาณก็ได้ ซึ่งการออแบบวงจรนับส่วนใหญ่จะใช้อุปกรณ์ J-K Flipflop มาประยุกต์ใช้งานเป็นวงจรนับมากที่สุด ซึ่งการออกแบบวงจรนับจะมี 2 ประเภทใหญ่ ๆ ได้แก่ การ ออกแบบวงจรนับแบบอะซิงโครนัส และการออกแบบวงจรนับแบบซิงโครนัส

ใบเนื้อหา	หน้าที่ 19		
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3		
4			

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

4.1 วงจรนับแบบอะซิงโครนัส

วงจรนับแบบอะซิงโครนัส (Asynchronous Counter) แบ่งออกเป็น 2 รูปแบบดังนี้

4.1.1 วงจรนับชนิดเลขฐานสอง (Binary Ripple Counter)

วงจรนับชนิดเลขฐานสอง (Binary Ripple Counter) เป็นวงจรนับแบบอะซิงโครนัส ที่นำวงจร เจ-เค ฟลิบฟลอบมาประกอบเป็นวงจร ที่ ฟลิบฟลอบแล้วนำมาต่ออนุกรมกัน โดยป้อนสัญญาณนาฬิกาเป็นสัญญาณ ควบคุมให้กับฟลิบฟลอบตัวแรก และนำเอาต์พุตของฟลิบฟลอบของตัวแรกป้อนเป็นสัญญาณนาฬิกาของฟลิบฟลอบ ตัวต่อไปจนครบทุกตัวเอาต์พุตของวงจรนับเป็นเลขฐานสองคือ Q ของฟลิบฟลอบทุกตัว โดยที่ Q ของฟลิบฟลอบตัว แรกจะเป็นบิตต่ำสุด จำนวนครั้งของการนับจะขึ้นอยู่กับจำนวนฟลิบฟลอบตามสูตร 2ⁿ โดย n คือจำนวนของ ฟลิบฟลอบ วงจรนับเลขฐานสอง (Binary Ripple Counter) เป็นวงจรนับที่เป็นแบบพื้นฐานที่สุด สามารถสร้างขึ้นได้ดัง รูปที่ 1.35 และมีการทำงานดังรูปตารางที่ 1.36

รูปที่ 1.35 วงจรนับเลขฐานสอง (000) $_2$ ถึง (111) $_2$

ตารางที่ 1.1 ตารางแสดงการนับเลขฐานสองของวงจรในรูปที่ 1.35

CC.1 NO ENGINE NO NO 1991 E CONTINUI 1990 E E LA T.T INN E LA								
	เาฬิกาอินพุต	(Output	-	ลำดับการนับ			
ลำดับที่	รูปสัญญาณ	Q _C	Q _B	Q_A				
0		0	0	0	0			
1		0	0	1	1			
2		0	1	0	2			
3		0	1	1	3			
4		1	0	0	4			
5		1	0	1	5			
6		1	1	0	6			
7		1	1	1	7			

ใบเนื้อหา	หน้าที่ 20
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

เอาต์พุตของวงจรนับจะแสดงการนับที่ขาสัญญาณเอาต์พุต Q ของฟลิบฟลอบแต่ละตัวเป็น Q_A Q_B และ Q_C ตามลำดับ โดยผลของการนับสามารถนำมาเขียนเป็นไดอะแกรมเวลาของวงจรนับเลขฐานสองดังรูปที่ 1.36

รูปที่ 1.36 แสดงไดอะแกรมเวลาของการนับเลขฐานสอง (Binary Ripple Counter) จำนวน 3 บิต จากการทำงานของวงจรนับในรูปที่ 1.35 จะพบว่าวงจรสามารถนับได้สูงสุดเท่ากับ (111)₂ หรือ (7)₁₀ แล้วถ้าเราเพิ่มฟลิบฟลอบขึ้นอีกเป็น 4 ตัว จะทำให้สามารถนับได้ถึง (1111)₂ หรือ (15)₁₀ และถ้าเรา เพิ่มฟลิบฟลอบเป็น n ตัว ก็จะนับได้ 2ⁿ คือสามารถนับได้ตั้งแต่ 0 ถึง (2ⁿ – 1) และทุก ๆ ตัวของฟลิบฟลอบจะมีค่า Delay Time เกิดขึ้น ค่า Delay Time ของวงจรจะเท่ากับจำนวนบิตของการนับ ซึ่งเรียกว่า Propagation Delay เราสามารถสรุปได้ว่า ค่าสูงสุดที่วงจรนับใด ๆ สามารถนับได้มีค่าสูงสุดเท่ากับ 2ⁿ - 1 เมื่อ n คือจำนวนฟลิบฟลอบ

4.1.2 วงจรนับแบบโมดูลัส (Modulus Counter)

จากวงจรนับในรูปที่ 1.35 มีสภาวะของการนับที่แตกต่างกันจำนวน 8 สภาวะ $(000_2\ \text{ถึง}\ 111_2)$ หรือเรียกว่าวงจรนับแบบ มอด 8 (MOD – 8) จะเห็นว่าจำนวนมอดจะเท่ากับจำนวนสภาวะที่วงจรนับครบรอบ สมบูรณ์ก่อนที่จะนับรอบใหม่ ดังนั้นตัวเลขที่สามารถนับได้สูงสุด คือ $2^{\text{n}}-1$ และสามารถออกแบบให้สามารถนับเป็น วงจรมอดอื่น ๆ ได้ ซึ่งในรูปที่ 1.37 เป็นวงจรมอด 6 เป็นวงจรที่เริ่มนับตั้งแต่ $(000)_2\ \text{ถึง}\ (101)_2\ \text{แล้วใช้เอาต์พุตที่}$ สภาวะ $(110)_2\ \text{ต่อเข้ากับอินพุตของแนนท์เกต และนำเอาต์พุตของแนนท์เกตกลับไปเคลียร์ฟลิบฟลอบทุกตัวที่ขา CLR ของฟลิบฟลอบเพื่อให้วงจรเริ่มนับที่ตำแหน่ง <math>(000)_2\ \text{ใหม่}$ โดยมีตารางการนับของวงจรมอด 6 ดังตารางที่ 1.2 และมีไดอะแกรมเวลาดังรูปที่ 1.38

ใบเนื้อหา	หน้าที่ 21
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.37 รูปวงจรนับแบบมอด 6 ตารางที่ 1.2 ตารางแสดงการนับเลขฐานสองแบบมอด 6 ในรูปที่ 1.37

		dú.			ขั
สัญญาณน	เาฬิกาอินพุต	Output			ลำดับการนับ
ลำดับที่	รูปสัญญาณ	Q _C	Q_B	Q _A	
0		0	0	0	0
1		0	0	1	1
2		0	1	0	2
3		0	1	1	3
4		1	0	0	4
5		1	0	1	5
6		1	1	0	6(Reset)

รูปที่ 1.38 แสดงไดอะแกรมเวลาของการนับเลขฐานสองแบบมอด 6 จำนวน 3 บิต

ใบเนื้อหา	หน้าที่ 22
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

4.2 วงจรนับแบบซิงโครนัส

วงจรนับแบบอะซิงโครนัส ฟลิบฟลอบจะไม่เปลี่ยนสภาวะพร้อมกับสัญญาณนาฬิกา ซึ่งข้อจำกัดนี้ สามารถแก้ไขได้โดยใช้วงจรนับแบบซิงโครนัส หรือเรียกอีกอย่างหนึ่งว่าวงจรนับแบบขนาน (Parallel Counters) ซึ่งฟลิปฟลอปทุกตัวถูกกระตุ้นพร้อมกันโดยอินพุตของสัญญาณนาฬิกา ดังนั้นเมื่อฟลิบฟลอบทุกตัวต่อกับสัญญาณ นาฬิกาเราต้องควบคุมการเปลี่ยนสภาวะของฟลิบฟลอบ โดยอินพุต J และ K ดังรูปที่ 1.39 แสดงวงจรนับแบบ ซิงโครนัสมอด 16 (Synchronous MOD 16 Counters)

รูปที่ 1.39 รูปวงจรนับแบบซิงโครนัสมอด 16

การออกแบบวงจรนับแบบซิงโครนัส (Synchronous Counter) โดยใช้ JK-FF ซึ่งมีขั้นตอนดังนี้

1. ให้พิจารณาว่าจะใช้ฟลิบฟลอบจำนวนกี่ตัว ซึ่งจะขึ้นอยู่กับจำนวนบิตที่ต้องการนับ ในตัวอย่างนี้ เป็นวงจรนับ 0₁₀ – 7₁₀ คือ (000₂ – 111₂) คือการนับเลขจำนวน 3 บิตของเลขฐานสอง แสดงว่าจะต้องใช้ JK-FF จำนวน 3 ตัว ดังรูปที่ 1.40

รูปที่ 1.40 วงจรนับแบบอะซิงโครนัสที่ใช้ JK-FF จำนวน 3 ตัว

ใบเนื้อหา	หน้าที่ 23
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

จากรูปที่ 1.40 ต่อขาคล๊อกของ JK-FF เข้าด้วยกันเพื่อป้อนสัญญาณนาฬิกา ส่วนขาเอาต์พุต ประกอบด้วย Q_A , Q_B และ Q_C และขาของอินพุตประกอบด้วย J_A , K_A , J_B , K_B , J_C และ K_C ยังไม่ต้องกำหนดว่า จะต้องต่อกับอะไร โดยจะขึ้นอยู่กับการออกแบบของวงจร ซึ่งในตัวอย่างจะนับตั้งแต่ (000 $_2$) ถึง (111 $_2$) และสามารถ เขียน State Transition Diagram ได้ดังรูปที่ 1.41

รูปที่ 1.41 State Transition Diagram ของการนับ 000_2 ถึง 111_2

2. พิจารณาผลการเปลี่ยนแปลงเอาต์พุต อันเกิดจากสภาวะอินพุตของ J และ K ดังรูปตารางที่ 1.42

การเปลี่ยนแร	ปลงที่เอาต์พุต	สภาวะจ์	ที่อินพุต	
Q_n	Q_{n+1}	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

รูปที่ 1.42 แสดงรูปตารางการเปลี่ยนแปลงที่เอาต์พุตเนื่องมาจากสภาวะอินพุต JK

3. ให้พิจารณาเหตุการณ์ที่เอาต์พุตเปลี่ยนแปลงจาก 000_2 เป็น 001_2 แล้วสภาวะของอินพุต J_A , K_A , J_B , K_B , J_C และ K_C อยู่ในสภาวะอะไรให้บันทึกผลในรูปตารางที่ 1.43

ใบเนื้อหา	หน้าที่ 24
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

	การเปลี่ยนแปลงที่เอาต์พุต					สภาวะที่อินพุต					
สภาว	ะปัจจุบัเ	$\iota(Q_n)$	สภาว	ะต่อไป(Q_{n+1})	$J_{\scriptscriptstyle C}$	K_{C}	$J_{\scriptscriptstyle B}$	$K_{\scriptscriptstyle B}$	$J_{\scriptscriptstyle A}$	$K_{\scriptscriptstyle A}$
Q_{c}	Q_{B}	Q_{A}	Q_{c}	Q_{B}	Q_{A}						
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0						
0	1	0	0	1	1						
0	1	1	1	0	0						
1	0	0	1	0	1						
1	0	1	1	1	0						
1	1	0	1	1	1						
1	1	1	0	0	0						

รูปที่ 1.43 รูปตารางบันทึกผลการเปลี่ยนแปลงของเอาต์พุตที่สภาวะอินพุตของ JK

เอาต์พุต Q_C สภาวะปัจจุบันเป็น '0' ในสภาวะต่อไปเมื่อมีสัญญาณนาฬิกา (Clock) 1 ลูก เอาต์พุต Q_C จะมีสภาวะเป็น '0' อยู่ซึ่งจากตารางความจริงของ JK-FF จะได้ J มีสภาวะเป็น '0' และ K มีสภาวะ 'X' ซึ่งจะ ทำให้ได้ $J_C=$ '0' และ $K_C=$ 'X'

เอาต์พุต Q_B ภาวะปัจจุบันเป็น '0' ในสภาวะต่อไปเมื่อมีสัญญาณนาฬิกา (Clock) 1 ลูก เอาต์พุต Q_B จะมีสภาวะเป็น '0' อยู่ซึ่งจากตารางความจริงของ JK-FF จะได้ J มีสภาวะเป็น '0' และ K มีสภาวะ 'X' ซึ่งจะทำให้ ได้ $J_B=$ '0' และ $K_B=$ 'X'

เอาต์พุต Q_A ภาวะปัจจุบันเป็น '0' ในสภาวะต่อไปเมื่อมีสัญญาณนาฬิกา (Clock) 1 ลูก เอาต์พุต Q_A จะมีสภาวะเป็น "1" ซึ่งจากตารางความจริงของ JK-FF จะได้ J มีสภาวะเป็น '1' และ K มีสภาวะ 'X' ซึ่งจะทำ ให้ได้ J_A = '1', และ K_A = 'X' เมื่อพิจารณาทุกเหตุการณ์ที่เอาต์พุตจะได้ผลลัพธ์ตามรูปตารางรูปที่ 1.44

ใบเนื้อหา	หน้าที่ 25
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

การเปลี่ยนแปลงที่เอาต์พุต						สภาวะที่อินพุต					
สภาวะปัจจุบัน(Q_n)			สภาวะต่อไป($Q_{\scriptscriptstyle n+1}$)			ī	ν	7	$_{V}$	7	V
$Q_{\rm c}$	Q_{B}	Q_{A}	Q_{c}	$Q_{\rm B}$	Q_{A}	$J_{\scriptscriptstyle C}$	K_{c}	$J_{\scriptscriptstyle B}$	K_{B}	$J_{\scriptscriptstyle A}$	$K_{\scriptscriptstyle A}$
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	0	1	X	X	1	X	1
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	0	0	X	1	X	1	X	1

รูปที่ 1.44 รูปแสดงการเปลี่ยนแปลงของเอาต์พุตที่สภาวะอินพุตของ JK ของวงจรนับแบบซิงโครนัส

4. เขียนสมการที่อินพุต J และ K ของฟลิบฟลอบแต่ละตัวจากตารางความจริง และทำการลดรูป สมการลอจิกด้วย K- Map ดังรูปที่ 1.45

รูปที่ 1.45 การหาค่าสมการลอจิกที่ขาอินพุต J และ K ของฟลิบฟลอบ

ใบเนื้อหา	หน้าที่ 26
	หน่วยที่ 3
2004	

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

รูปที่ 1.45 การหาค่าสมการลอจิกที่ขาอินพุต J และ K ของฟลิบฟลอบ (ต่อ)

5. เขียนวงจรลอจิกจากการลดรูปสมการในข้อที่ 4 ได้วงจรดังรูปที่ 1.46

รูปที่ 1.46 วงจรนับขึ้นแบบซิงโครนัสขนาด 3 บิต นับ 000_2-111_2

การออกแบบวงจรนับนอกจากจะใช้ไอซีฟลิบฟลอบ แล้วยังสามารถใช้ไอซีดิจิทัลเบอร์ 74LS90 และไอซี ดิจิทัลเบอร์ 74LS93 ในการออกแบบวงจรนับแบบอะซิงโครนัสได้ โดยสามารถศึกษาข้อมูลเพิ่มเติมได้จากเอกสาร รายละเอียดของอุปกรณ์นั้น ๆ

แบบฝึกหัด หน้าที่ 1 ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 หน่วยที่ 3

ชื่อหน่วย สัญญาณนาฬิกา และวงจรฟลิบฟลอบ

ชื่อเรื่อง สัญญาณนาฬิกา และวงจรฟลิบฟลอบ
คำสั่ง จงตอบคำถามต่อไปนี้ให้ถูกต้อง 1. จงอธิบายลักษณะของการทำงานของวงจรมัลติไวเบรเตอร์
2. วงจรมัลติไวเบรเตอร์มีกี่ชนิด อะไรบ้าง
3. จงออกแบบวงจรโมโนสเตเบิลมัลติไวเบรเตอร์ที่มีคาบเวลาของลอจิก '1' เท่ากับ 10mS และใช้ตัวเก็บประจุค่า 0.1µF โดยใช้ไอซี 555
4. จงออกแบบวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่มีความถี่ 2kHz Duty Cycle 70% และใช้ตัวเก็บประจุค่า 0.1µF โดยใช้ไอซี 555
5. จงออกแบบวงจรอะสเตเบิลมัลติไวเบรเตอร์ที่มีความถี่ 500Hz Duty Cycle 50% และใช้ตัวเก็บประจุค่า 0.1µF โดยใช้ไอซี 555
6. จงอธิบายลักษณะการทำงานของอุปกรณ์ฟลิบฟลอบ
7. ฟลิบฟลอบมีกี่ชนิด อะไรบ้าง

หน้าที่ 2 เเจเจเยี่ไกรรัด

	เบบผาหม	ทนาท 2								
O COLOR	ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 3								
TOTAL EDUCATION COM	ชื่อหน่วย สัญญาณนาฬิกา และวงจรฟลิบฟลอบ									
ชื่อเรื่อง สัญญาณนาฬิกา	และวงจรฟลิบฟลอบ									
8. จงอธิบายข้อแตกต่างระ	หว่างอุปกรณ์ 7-Segment ชนิด Common Cathode และ Commo	n Anode								
9. จงออกแบบวงจรนับแบ	บอะซิงโครนัสชนิดนับขึ้นแบบมอด 10									
 10. จงออกแบบวงจรนับแ	บบซิงโครนัสชนิดนับเลขฐานสองแบบนับลงค่า 7 ₁₀ - 0 ₁₀									
	d3									