8 ECUACIONES DIFERENCIALES ORDINARIAS

8.1 PRESENTACIÓN DEL PROBLEMA:

Muchos problemas de ingeniería se resuelven al solucionar una ecuación diferencial, podemos citar, la deformación de una viga, la interacción ente suelo y pilotes, o simplemente lo que ya han visto: la segunda ley de Newton:

$$F = ma$$

$$F=m\frac{\partial v}{\partial t}$$

Como ven se puede expresar como una ecuación diferencial.

Resolver estas ecuaciones consiste en integrar adecuadamente cada caso. Estudiaremos cuatro métodos de los varios que existen.

8.2. MÉTODO DE EULER:

Estos métodos intentan resolver las ecuaciones diferenciales ordinarias de la forma:

$$\frac{dy}{dx} = f(x, y)$$

Una forma de obtener una solución, es expandiendo un polinomio de Taylor, en torno al punto X_i :

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + f''(x_i)\frac{(x_{i+1} - x_i)^2}{2!} + \dots + f^{(n)}(x_i)\frac{(x_{i+1} - x_i)^n}{n!}$$

Si tomamos el elemento de primer orden, truncando la serie, quedaría:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + f''(x_i) \frac{(x_{i+1} - x_i)^2}{2!}$$

Tomando:

$$h = x_{i+1} - x_i$$

$$y' = \frac{dy}{dx} = f(x, y)$$

Y reemplazando queda:

$$y_{i+1} = y_i + y'_i h + E$$

$$y_{i+1} = y_i + f(x_i; y_i)h + E$$

$$y_{i+1} = y_i + \emptyset h + E$$

Donde \emptyset es la pendiente de la derivada de la función en el punto $X_{i\cdot}$

El error está dado por el término de la derivada segunda:

$$E = f''(x_i) \frac{(x_{i+1} - x_i)^2}{2!}$$

$$E = \frac{f'(x_i; y_i)}{2} h^2 = (0)h^2$$

Veamos un ejemplo numérico, tomemos el primer ejercicio de la guía de trabajos prácticos:

$$\frac{dy}{dx} = e^{0.8x} - 0.50y$$
 $y(0) = 2$ h=0.1 [0:4]

La fórmula de Euler es:

$$y_{i+1} = y_i + f(x_i; y_i)h$$

 $y_{i+1} = y_i + (e^{0.80x_i} - 0.50y_i)h$

i	Xi	Y _{i+1}	
0	0,00000	2,00000	
1	0,10000	2,00000	
2	0,20000	2,00833	
3	0,30000	2,02526	
4	0,40000	2,05113	
5	0,50000	2,08628	
6	0,60000	2,13115	
7	0,70000	2,18620	
8	0,80000	2,25196	
9	0,90000	2,32901	
10	1,00000	0000 2,41800	
11	1,10000	2,51965	
12	1,20000	0000 2,63476	
13	1,30000	000 2,76419	
14	1,40000	2,90891	
15	1,50000	3,06995	
16	1,60000	3,24846	
17	1,70000	3,44570	
18	1,80000	3,66304	
19	1,90000	3,90195	
20	2,00000		
21	2,10000	4,45118	

2,20000	4,76517
2,30000	5,10816
2,40000	5,48240
2,50000	5,89038
2,60000	6,33477
2,70000	6,81848
2,80000	7,34467
2,90000	7,91677
3,00000	8,53849
3,10000	9,21389
3,20000	9,94732
3,30000	10,74354
3,40000	11,60768
3,50000	12,54533
3,60000	13,56253
3,70000	14,66583
3,80000	15,86233
3,90000	17,15974
4,00000	18,56639
	2,30000 2,40000 2,50000 2,60000 2,70000 2,80000 2,90000 3,00000 3,10000 3,20000 3,30000 3,40000 3,50000 3,60000 3,70000 3,80000 3,90000

Observen que el resultado es un conjunto de pares ordenados que deberían pertenecer a la gráfica de la función solución, obviamente con un error. Este error, vimos que es función de h², por lo tanto, si queremos aproximar mejor con este método, deberemos achicar h. Este hecho se ilustra en el siguiente ejemplo:

8.3 METODO DE HEUN

Si analizan gráficamente la solución de Euler, es la derivada en el punto inicial del intervalo $[x_i;x_{i+1}]$:

Es factible, calcular la derivada al final de dicho intervalo y promediarla con la anterior, logrando una mejor aproximación a la solución real.

La pendiente al inicio del intervalo está dada por:

$$y' = f(x_i; y_i)$$

Que la usamos para extrapolar linealmente a través del método de Euler:

$$y_{i+1} = y_i + f(x_i; y_i)h$$

En el método de Euler esta sería el valor a adoptar, en este caso este sería un valor "predictorio" intermedio que me permitiría calcular el valor promedio final. Esta ecuación se la conoce como la "ecuación predictora" y la denotaremos con un superíndice "0"

$$y_{i+1}^0 = y_i + f(x_i; y_i)h$$

Esta ecuación nos permite calcular la pendiente al final del intervalo:

$$y'_{i+1} = f(x_{i+1}; y_{i+1}^0)$$

Si combinamos estas dos pendientes, tendremos:

$$\overline{y} = \frac{f(x_i; y_i) + f(x_{i+1}; y_{i+1}^0)}{2}$$

Reemplazando:

$$y_{i+1} = y_i + \frac{f(x_i; y_i) + f(x_{i+1}; y_{i+1}^0)}{2}h$$

Que se llama "ecuación correctora".

El método de Heun es un método "predictor – corrector" de un paso. Posterior mente estudiaremos los métodos "predictores – correctores" de pasos múltiples.

Gráficamente esta pendiente promedio sería:

En resumen, tendríamos:

Predictor:

$$y_{i+1}^0 = y_i + f(x_i; y_i)h$$

Corrector:

$$y_{i+1} = y_i + \frac{f(x_i; y_i) + f(x_{i+1}; y_{i+1}^0)}{2}h$$

Realicemos como ejemplo el primer ejercicio de la guía de trabajos prácticos.

$$\frac{dy}{dx} = e^{0.8x} - 0.50y$$
 $y(0) = 2$ h=0.1 [0;4]

i	x_i	y_{i+1}^0	y_{i+1}
0	0,0000	2,0000	2,00000
1	0,1000	2,0000	2,00416
2	0,2000	2,0083	2,01680
3	0,3000	2,0253	2,03819
4	0,4000	2,0511	2,06870
5	0,5000	2,0863	2,10872
6	0,6000	2,1312	2,15867
7	0,7000	2,1862	2,21908
8	0,8000	2,2520	2,29048
9	0,9000	2,3290	2,37350
10	1,0000	2,4180	2,46883
11	1,1000	2,5197	2,57721
12	1,2000	2,6348	2,69948
13	1,3000	2,7642	2,83655
14	1,4000	2,9089	2,98943
15	1,5000	3,0699	3,15920
16	1,6000	3,2485	3,34708
17	1,7000	3,4457	3,55437
18	1,8000	3,6630	3,78249
19	1,9000	3,9020	4,03302
20	2,0000	4,1641	4,30763
21	2,1000	4,4512	4,60818
22	2,2000	4,7652	4,93667
23	2,3000	5,1082	5,29528
24	2,4000	5,4824	5,68639
25	2,5000	5,8904	6,11257

26	2,6000	6,3348	6,57662
27	2,7000	6,8185	7,08157
28	2,8000	7,3447	7,63072
29	2,9000	7,9168	8,22763
30	3,0000	8,5385	8,87619
31	3,1000	9,2139	9,58060
32	3,2000	9,9473	10,34543
33	3,3000	10,7435	11,17561
34	3,4000	11,6077	12,07650
35	3,5000	12,5453	13,05393
36	3,6000	13,5625	14,11418
37	3,7000	14,6658	15,26408
38	3,8000	15,8623	16,51104
39	3,9000	17,1597	17,86307
40	4,0000	18,5664	19,32886

8.4 MÉTODOS DE RUNGE – KUTTA

Los métodos de Runge Kutta tienen un espíritu semejante al método de Heun. Usa promedio de pendientes para no realizar cálculos engorrosos de orden superior en el polinomio de Taylor. La expresión es semejante al de Euler:

$$y_{i+1} = y_i + \emptyset(x_i, y_i, h)h$$

Donde a $\emptyset(x_i,y_i,h)$ se le llama función incremento y es el promedio de las pendientes dentro del intervalo. Esta función fue escrita por los autores de la siguiente manera:

$$\emptyset = a_1 K_1 + a_2 K_2 + \dots + a_n K_n$$

Donde a_1 , a_2 , ..., a_n son constantes a determinar y los K_i son:

$$K_{1} = f(x_{i}; y_{i})$$

$$K_{2} = f(x_{i} + p_{1}h; y_{i} + q_{11}K_{1}h)$$

$$K_{3} = f(x_{i} + p_{2}h; y_{i} + q_{21}K_{1}h + q_{22}K_{2}h)$$

$$\cdot$$

$$\cdot$$

$$K_n = f(x_i + p_{n-1}h; y_iq_{n-1,1}K_1h + q_{n-1,2}K_2h + \dots + q_{n-1,n-1}K_{n-1}h)$$

Las relaciones K son recurrentes, es decir que:

$$K_{2} = f(K_{1})$$

$$K_{3} = f(K_{1}, K_{2})$$

$$\cdot$$

$$\cdot$$

$$\cdot$$

$$K_{n} = f(K_{1}, K_{2}, \dots, K_{n-1})$$

Esto hace que estos métodos sean de fácil programación. Solo debe determinarse el "orden" "n" y en función de dicho orden se determinan los coeficientes p y q. Esta determinación es bastante engorrosa y escapa a los fines de este curso. Una demostración de dicha deducción puede encontrarse en los libros de la bibliografía.

8.4.1 METODO DE RUNGE KUTTA DE SEGUNDO ORDEN:

Si tomamos n=2, nos quedaría:

$$y_{i+1} = y_i + (a_1K_1 + a_2K_2)h$$

Donde:

$$K_1 = f(x_i; y_i)$$

 $K_2 = f(x_i + p_1 h; y_i + q_{11} K_1 h)$

Los valores de a_1 , a_2 , p_1 y q_{11} ; se determinan formando un sistema de ecuaciones. El problema es que se pueden plantear tres ecuaciones mediante Taylor, lo que es irresoluble, salvo que fijemos el valor de a_2 . Como puedo dar infinitos valores a a_2 , es que tendremos infinitos métodos de Runge Kutta de segundo orden. El más usado es el siguiente:

$$y_{i+1} = y_i + \left(\frac{1}{2}K_1 + \frac{1}{2}K_2\right)h$$

Con:

$$K_1 = f(x_i; y_i)$$

$$K_2 = f(x_i + h; y_i + hK_1)$$

En este caso K_1 es la pendiente en el inicio del intervalo y K_2 es la del final del intervalo; es decir que este método de Runge Kutta es equivalente al método de Heun con una sola iteración de corrector.

Veamos cómo se resuelve el primer ejercicio de la guía con este método:

$$\frac{dy}{dx} = e^{0.8x} - 0.50y$$
 $y(0) = 2$ h=0.1 [0:4]

x_i	y_i	K_1	K_2
0	2	0	0,08328707
0,1	2,00416435	0,08120489	0,16736845

0,2	2,01659302	0,16521436	0,25469192
0,3	2,03758833	0,25245498	0,34571085
0,4	2,06749663	0,34337945	0,44090741
0,5	2,10671097	0,43846921	0,54079546
0,6	2,1556742	0,5382373	0,64592353
0,7	2,21488224	0,64323138	0,75687819
0,8	2,28488772	0,75403702	0,8742875
0,9	2,36630395	0,87128124	0,99882489
1	2,45980926	0,9956363	1,13121326
1,1	2,56615173	1,12782384	1,27222941
1,2	2,6861544	1,26861928	1,42270885
1,3	2,8207208	1,41885661	1,58355097
1,4	2,97084118	1,57943361	1,75572465
1,5	3,13759909	1,75131738	1,94027431
1,6	3,32217868	1,93555039	2,13832644
1,7	3,52587252	2,13325704	2,3510967
1,8	3,75009021	2,34565071	2,57989756
1,9	3,99636762	2,57404138	2,82614654
2	4,26637702	2,81984392	3,09137527
2,1	4,56193798	3,08458698	3,37723906
2,2	4,88502928	3,36992276	3,68552748
2,3	5,23780179	3,67763737	4,01817571
2,4	5,62259244	4,00966225	4,37727676
2,5	6,04193939	4,3680864	4,7650949
2,6	6,49859846	4,75516968	5,18407994

2,7	6,99556094	5,17335719	5,63688296
2,8	7,53607295	5,62529481	6,12637309
2,9	8,12365634	6,11384613	6,6556559
3	8,76213145	6,64211066	7,22809316
3,1	9,45564164	7,2134436	7,84732432
3,2	10,20868	7,8314773	8,51728973
3,3	11,0261184	8,50014442	9,24225583
3,4	11,9132384	9,22370305	10,0268424
3,5	12,8757657	10,0067639	10,8760521
3,6	13,9199065	10,8543199	11,7953025
3,7	15,0523876	11,771778	12,7904605
3,8	16,2804995	12,7649935	13,8678802
3,9	17,6121432	13,840308	15,0344432
4	19,0558808	15,0045898	16,2976028

La solución analítica de esta ecuación diferencial está dada por:

$$y = \frac{10}{13}e^{0.80x} + \frac{16}{13}$$

La que podemos adoptar como solución verdadera. En el siguiente cuadro se comparan las distintas soluciones encontradas:

i	x_i	<i>ANAL</i> ÍT <i>ICA</i>	EULER	HEUN	RK II
0	0,0000	1,999970	2,0000	2,00000	2,00000000
1	0,1000	2,064034	2,0000	2,00416	2,00416435
2	0,2000	2,133435	2,0083	2,01680	2,01659302
3	0,3000	2,208615	2,0253	2,03819	2,03758833
4	0,4000	2,290057	2,0511	2,06870	2,06749663
5	0,5000	2,378282	2,0863	2,10872	2,10671097
6	0,6000	2,473854	2,1312	2,15867	2,1556742
7	0,7000	2,577387	2,1862	2,21908	2,21488224

8	0,8000	2,689543	2,2520	2,29048	2,28488772
9	0,9000	2,811040	2,3290	2,37350	2,36630395
10	1,0000	2,942656	2,4180	2,46883	2,45980926
11	1,1000	3,085234	2,5197	2,57721	2,56615173
12	1,2000	3,239687	2,6348	2,69948	2,6861544
13	1,3000	3,407004	2,7642	2,83655	2,8207208
14	1,4000	3,588256	2,9089	2,98943	2,97084118
15	1,5000	3,784604	3,0699	3,15920	3,13759909
16	1,6000	3,997305	3,2485	3,34708	3,32217868
17	1,7000	4,227722	3,4457	3,55437	3,52587252
18	1,8000	4,477329	3,6630	3,78249	3,75009021
19	1,9000	4,747726	3,9020	4,03302	3,99636762
20	2,0000	5,040643	4,1641	4,30763	4,26637702
21	2,1000	5,357956	4,4512	4,60818	4,56193798
22	2,2000	5,701697	4,7652	4,93667	4,88502928
23	2,3000	6,074067	5,1082	5,29528	5,23780179
24	2,4000	6,477451	5,4824	5,68639	5,62259244
25	2,5000	6,914432	5,8904	6,11257	6,04193939
26	2,6000	7,387807	6,3348	6,57662	6,49859846
27	2,7000	7,900609	6,8185	7,08157	6,99556094
28	2,8000	8,456120	7,3447	7,63072	7,53607295
29	2,9000	9,057899	7,9168	8,22763	8,12365634
30	3,0000	9,709797	8,5385	8,87619	8,76213145
31	3,1000	10,415991	9,2139	9,58060	9,45564164
32	3,2000	11,181001	9,9473	10,34543	10,20868
33	3,3000	12,009726	10,7435	11,17561	11,0261184
34	3,4000	12,907474	11,6077	12,07650	11,9132384
35	3,5000	13,879992	12,5453	13,05393	12,8757657
36	3,6000	14,933509	13,5625	14,11418	13,9199065
37	3,7000	16,074770	14,6658	15,26408	15,0523876
38	3,8000	17,311083	15,8623	16,51104	16,2804995
39	3,9000	18,650365	17,1597	17,86307	17,6121432
40	4,0000	20,101192	18,5664	19,32886	19,0558808

8.4.2. MÉTODO DE RUNGE KUTTA DE TERCER ORDEN:

De manera análoga a la anterior y tomando n=3, se deduce el método de Runge Kutta de tercer orden:

$$y_{i+1} = y_i + \left[\frac{1}{6}(K_1 + 4K_2 + K_3)\right]h$$

Donde:

$$K_{1} = f(x_{i}; y_{i})$$

$$K_{2} = f\left(x_{i} + \frac{1}{2}h; y_{i} + \frac{1}{2}hK_{1}\right)$$

$$K_{3} = f(x_{i} + h; y_{i} - hK_{1} + 2hK_{2})$$

8.4.3. MÉTODO DE RUNGE KUTTA DE CUARTO ORDEN:

De manera análoga a la anterior y tomando n=4, se deduce el método de Runge Kutta de tercer orden:

$$y_{i+1} = y_i + \left[\frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)\right]h$$

Donde:

$$K_{1} = f(x_{i}; y_{i})$$

$$K_{2} = f\left(x_{i} + \frac{1}{2}h; y_{i} + \frac{1}{2}hK_{1}\right)$$

$$K_{3} = f(x_{i} + \frac{1}{2}h; y_{i} + \frac{1}{2}hK_{2})$$

$$K_{4} = f(x_{i} + h; y_{i} + hK_{3})$$

De esta manera podemos obtener métodos del orden que necesitemos y obtendremos infinitas expresiones de cada uno de ellos. En todos los casos el error está en el orden (O)hⁿ.

8.5 METODOS PREDICTORES CORRECTORES MULTIPASOS.

Vimos un método predictor corrector de un paso como el método de Heun, ahora nos abocaremos al estudio de los predictores correctores múltiple pasos.

En los métodos de un paso, usamos la información de un punto x_i para predecir un valor de la variable dependiente y_{i+1} , en un punto posterior x_{i+1} . En los métodos múltiple pasos o de pasos múltiples, usamos la información de más puntos para analizar la tendencia que va tomando la solución:

Métodos de un paso

Métodos de pasos múltiples

8.5.1 MÉTODO DE ADAMS – BASHFORTH

$$y_{i+1} = y_i + h \sum_{k=0}^{n-1} \beta_k f_{i-k} + O(h^{n+1})$$

Donde los β y los errores de truncamiento están en función del orden :

orden	$oldsymbol{eta}_0$	β_1	β_2	β_3	$oldsymbol{eta_4}$	$oldsymbol{eta}_5$	Error
							1
1	1						$\frac{1}{2}h^2f'(\varepsilon)$
2	3	1					$\frac{5}{12}h^3f''(\varepsilon)$
	$\frac{\overline{2}}{2}$	$-\frac{1}{2}$					$\frac{12}{12}n^{\epsilon_j}$ (ϵ_j)
3	23	16	5				9
	$\overline{12}$	$-\frac{12}{12}$	12				$\frac{1}{24}n^{4}f^{m}(\varepsilon)$
4	55	59	37	9			251,5000
	$\overline{24}$	$-{24}$	$\overline{24}$	$-{24}$			$\frac{9}{24}h^4f'''(\varepsilon)$ $\frac{251}{720}h^5f^{IV}(\varepsilon)$ $\frac{475}{1440}h^6f^V(\varepsilon)$
5	1901	2774	2616	1274	251		475
	720	720	720	720	720		$\frac{1440}{1440}n^{\circ}f^{\prime}(\varepsilon)$
6	4227	7923	9982	7298	2877	475	
	720	$-{720}$	720	$-{720}$	720	$-{720}$	$\frac{19087}{60480}h^7f^{VI}(\varepsilon)$

8.5.2. MÉTODO DE ADAMS - MOULTON

$$y_{i+1} = y_i + h \sum_{k=0}^{n-1} \beta_k f_{i+1-k} + O(h^{n+1})$$

Donde los β y los errores de truncamiento están en función del orden

orden	$\boldsymbol{\beta_0}$	β_1	β_2	β_3	$oldsymbol{eta_4}$	$oldsymbol{eta}_5$	Error
2	1	1					1,3000
	$\frac{\overline{2}}{2}$	$\overline{2}$					$-\frac{1}{12}h^3f''(\varepsilon)$
3	5	8	1				1
	$\overline{12}$	$\overline{12}$	$-\frac{1}{12}$				$-\frac{1}{24}h^4f'''(\varepsilon)$
4	9	19	5	1			19
	$\overline{24}$	$\overline{24}$	$-{24}$	$\frac{\overline{24}}{24}$			$-\frac{19}{720}h^5f^{IV}(\varepsilon)$
5	251	646	264	106	19		27
	$\overline{720}$	$\frac{1}{720}$	$-{720}$	$\frac{1}{720}$	$-{720}$		$-\frac{1440}{1440}h^{6}f^{r}(\varepsilon)$
6	475	1427	720 798	482	173	27	863
	$\overline{1440}$	$\overline{1440}$	$-{1440}$	$\overline{1440}$	$-{1440}$	$\overline{1440}$	$-\frac{27}{1440}h^{6}f^{V}(\varepsilon) \\ -\frac{863}{60480}h^{7}f^{VI}(\varepsilon)$