三角圏上の Bridgeland 安定性条件

大阪大学大学院理学研究科数学専攻 山本 雄大

目次

1	三角圏の定義	1
2	三角圏の基本的な性質	4
3	アーベル圏の導来圏の定義	7
4	三角圏における基本概念	19
5	t-structure	21
6	Bridgeland 安定性条件	26
7	Bridgeland 安定性条件の空間	30
8	qgr- R の定義	31
9		37

1 三角圏の定義

定義 1.1. [KS06, p.170] 以下の条件をみたす圏 C を前加法圏 (preadditive category) という.

- (i) 任意の $X,Y \in \mathcal{C}$ に対して、射の集合 $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ が加法群になる.
- (ii) 任意の $X,Y,Z\in\mathcal{C}$ に対して、合成写像

が双線型である. つまり、任意の $g, g' \in \operatorname{Hom}_{\mathcal{C}}(Y, Z), f, f' \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ に対して、

$$(g+g') \circ f = g \circ f + g' \circ f$$
$$g \circ (f+f') = g \circ f + g \circ f'.$$

が成り立つ.

定義 1.2. [KS06, p.171] \mathcal{C} を前加法圏とする. このとき、対象 $X \oplus Y \in \mathcal{C}$ と $\iota_X \in \operatorname{Hom}_{\mathcal{C}}(X, X \oplus Y), \iota_Y \in \operatorname{Hom}_{\mathcal{C}}(Y, X \oplus Y)$ の三つ組 $(X \oplus Y, \iota_X, \iota_Y)$ であって、以下の普遍性を満たすものを $X, Y \in \mathcal{C}$ の直和 (direct

sum) という.

$$X \xrightarrow{\iota_X} X \oplus Y \xleftarrow{\iota_Y} Y$$

$$\downarrow^{f_X} \qquad \downarrow^{f_Y} \qquad \downarrow^{f_Y}$$

任意の $Z \in \mathcal{C}$ と $f_X \in \operatorname{Hom}_{\mathcal{C}}(X, Z)$, $f_Y \in \operatorname{Hom}_{\mathcal{C}}(Y, Z)$ に対して, $h \circ \iota_X = f_X$, $h \circ \iota_Y = f_Y$ となる $h \in \operatorname{Hom}_{\mathcal{C}}(X \oplus Y, Z)$ が一意に存在する.

定義 1.3. [KS06, p.171] 以下の条件をみたす前加法圏 C を加法圏 (additive category) という.

- (i) 零対象 (始対象かつ終対象) である $0 \in C$ をを持つ.
- (ii) 任意の対象 $X,Y \in \mathcal{C}$ に対し直和 $X \oplus Y$ が存在する.

定義 1.4. [KS06, p.171] 加法圏 C, D に対し、函手 $F: C \to D$ が以下の条件を満たすとき加法函手 (additve functor) という.

(1) 任意の $X, Y \in \mathcal{C}$ に対し,

$$\begin{array}{cccc} F \colon \operatorname{Hom}_{\mathcal{C}}(X,Y) & \longrightarrow & \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y)) \\ & & & & & & \\ f & & \longmapsto & F(f) & . \end{array}$$

が加法群の準同型写像になっている. つまり任意の $f,g \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ に対し、

$$F(f+g) = F(f) + F(g).$$

となる.

- (2) $0 \in \mathcal{C}$ に対し、F(0) = 0
- (3) 直和を保つ. つまり、任意の対象 $X,Y \in \mathcal{C}$ に対して以下が成り立つ.

$$F(X \oplus Y) \simeq F(X) \oplus F(Y)$$
.

定義 1.5. [KS06, p.175] $\mathcal C$ を加法圏とする. このとき, $f \in \operatorname{Hom}_{\mathcal C}(X,Y)$ の核 (kernel) とは Ker $f \in \mathcal C$ と ker $f \in \operatorname{Hom}_{\mathcal C}(\operatorname{Ker} f, X)$ の組 (Ker f, ker f) であって、以下の普遍性をみたすものである.

$$K \\ \exists ! h \qquad k \\ \text{Ker } f \xrightarrow{\text{ker } f} X \xrightarrow{f} Y.$$

- (i) $f \circ \ker f = 0$
- (ii) 任意の $K \in \mathcal{C}$ と $k \in \operatorname{Hom}_{\mathcal{C}}(K, X)$ で $f \circ k = 0$ を満たすものに対して、一意に $h \in \operatorname{Hom}_{\mathcal{C}}(K, \operatorname{Ker} f)$ が存在して、 $\operatorname{ker} f \circ h = k$ となる.

 $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$ の \mathcal{C} の反対圏での核を余核 (cokernel) とよび, (Cok f, cok f) と記す. また, f の像 (Image) Im f, 余像 (coimage) Coim f を以下のように定義する.

$$\operatorname{Im} f := \operatorname{Ker}(\operatorname{cok} f) \quad \operatorname{Coim} f := \operatorname{Cok}(\ker f).$$

このとき、普遍性により以下の図式を可換にする射 $Coim f \rightarrow Im f$ が一意的に存在することがわかる.

$$\operatorname{Ker} f \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{cok} f} \operatorname{Cok} f$$

$$\downarrow p \qquad \qquad \uparrow i$$

$$\operatorname{Coim} f \xrightarrow{\operatorname{cok} f} \operatorname{Im} f.$$

ただし, $p = \ker(\operatorname{cok} f)$, $i = \operatorname{cok}(\ker f)$ とした.

定義 1.6. [KS06, p.175] 加法圏 A が以下を満たすとき, アーベル圏 (abelian category) という:

- (i) *A* の任意の射 *f* に対し、核 Ker *f* と余核 Cok *f* が存在する.
- (ii) \mathcal{A} の任意の射 f に対し、自然な準同型 $\operatorname{Coim}(f) \simeq \operatorname{Im} f$ が同型となる.

加法圏 \mathcal{D} と自己同値函手 [1]: $\mathcal{D} \to \mathcal{D}$ 与えられているとき、 \mathcal{D} における三角形とは以下の形の射の列をいう.

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].$$

定義 1.7. [KS06, p.243] 加法圏 \mathcal{D} に自己同値函手 [1] と完全三角形 (distinguished triangle) と呼ばれる三角 形の集合が与えられていて,これらが以下の条件を満たすとき, \mathcal{D} を三角圏 (triangulated category) と呼ぶ. 三角形が完全三角形であるとき,「三角形が完全である.」とも表現し,以下の記述も用いることにする.

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$
 (完全).

(TR1) 任意の $X \in \mathcal{D}$ に対して、

$$X \xrightarrow{\mathrm{id}_X} X \to 0 \to X[1].$$

は完全三角形である.

(TR2) 以下の 2 つの三角形とその間の射 f,g,h が

このとき,f,g,h が同型で $X_1\to X_2\to X_3\to X_1[1]$ が完全三角形なら $Y_1\to Y_2\to Y_3\to Y_1[1]$ も完全三角形である.

- (TR3) 任意の射 $X \xrightarrow{f} Y$ は、 $X \xrightarrow{f} Y \to Z \to X[1]$ と完全三角形に拡張できる.
- (TR4) 三角形

$$X_1 \xrightarrow{u} X_2 \xrightarrow{v} X_3 \xrightarrow{w} X_1[1].$$

が完全三角形であることと

$$X_2 \xrightarrow{v} X_3 \xrightarrow{w} X_1[1] \xrightarrow{-u[1]} X_2[1].$$

が完全三角形であることが同値である.

(TR5) 以下の 2 つの完全三角形と図式を可換にする f,g が存在したとする.

このとき、すべての四角形を可換にする h が存在する.

(TR6)(八面体公理)3つの完全三角形

$$X \xrightarrow{f} Y \xrightarrow{h} Z' \longrightarrow X[1]$$

$$X \xrightarrow{g \circ f} Z \xrightarrow{l} Y' \longrightarrow X[1]$$

$$Y \xrightarrow{g} Z \xrightarrow{k} X' \longrightarrow Y[1].$$

に対して、以下の図式のすべての四角形を可換にし、4 行目を完全三角形にするような $u \in \operatorname{Hom}_{\mathcal{D}}(Z',Y'), v \in \operatorname{Hom}_{\mathcal{D}}(Y',X'), w \in \operatorname{Hom}_{\mathcal{D}}(X',Z'[1])$ が存在する.

定義 1.8. [KS06, p.243] 三角圏 D において, 2 つの完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1], \quad X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X'[1].$$

が与えられているとする.

このとき、射の三つ組 (α, β, γ) (ただし $\alpha: X \to X'$ 、 $\beta: Y \to Y'$ 、 $\gamma: Z \to Z'$) が以下の図式が可換にするとき、完全三角形の間の射(morphism of triangles)であるという:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\alpha[1]}$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X'[1].$$

すなわち,以下が成り立つ:

$$\beta \circ f = f' \circ \alpha, \quad \gamma \circ g = g' \circ \beta, \quad \alpha[1] \circ h = h' \circ \gamma.$$

2 三角圏の基本的な性質

命題 2.1. [KS06, p.245] 三角圏 *D* において、任意の完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].$$

に対して, $Y \simeq Y'$ なる $Y' \in \mathcal{D}$ に対して,

$$X \to Y' \xrightarrow{g} Z \xrightarrow{h} X[1].$$

なる完全三角形が存在する.

証明. $u: X \to X'$ を同型射とすると

$$\begin{array}{cccc} X & \xrightarrow{f} & Y & \xrightarrow{g} & Z & \xrightarrow{h} & X[1] \\ \downarrow^{\operatorname{id}_X} & \downarrow^u & \downarrow^{\operatorname{id}_Z} & \downarrow^{\operatorname{id}_X[1]} \\ X & \xrightarrow{u \circ f} & Y' & \xrightarrow{g \circ u^{-1}} & Z & \xrightarrow{h} & X'[1]. \end{array}$$

とすると、上の行は完全三角形で各射は可換にする同型射なので下の行が完全三角形であることがわかる. □

命題 2.2. [KS06, p.245] 三角圏 \mathcal{D} において, 完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].$$

が与えられたとき、合成 $g \circ f = 0$ が成り立つ.

証明. 三角圏の公理 (TR1) と (TR5) により,以下の図式

$$\begin{array}{cccc} X & \xrightarrow{\mathrm{id}} & X & \longrightarrow & 0 & \longrightarrow & X[1] \\ \downarrow_{\mathrm{id}} & & \downarrow_{f} & & \downarrow & & \downarrow_{f[1]} \\ X & \xrightarrow{f} & Y & \xrightarrow{g} & Z & \longrightarrow & X[1]. \end{array}$$

が可換になることから $g \circ f = 0$ である.

命題 2.3. [KS06, p.245] 三角圏 $\mathcal D$ において、対象 $X\in\mathcal D$ と同型射 $f\colon X\xrightarrow{\sim} Y$ が与えられたとする.このとき、三角

$$X \xrightarrow{f} Y \to 0 \to X[1].$$

は完全三角形である.

証明. 三角圏の公理 (TR1) により、任意の対象 X に対して恒等射による完全三角形と以下の完全三角形の同型

$$X \xrightarrow{f} Y \longrightarrow 0 \longrightarrow X[1]$$

$$\parallel \qquad \downarrow_{f^{-1}} \qquad \downarrow \qquad \parallel$$

$$X \xrightarrow{\text{id}} X \xrightarrow{g} 0 \longrightarrow X[1].$$

が存在するので、上の行が完全三角形であることがわかる.

定義 2.4. [KS06, p.245] 三角圏 $\mathcal D$ からアーベル圏 $\mathcal A$ への加法函手 $\mathcal H:\mathcal D\to\mathcal A$ が, $\mathcal D$ における任意の完全三角形:

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].$$

に対して、Aにおいて

$$H(X) \xrightarrow{H(f)} H(Y) \xrightarrow{H(g)} H(Z).$$

が完全列になるとき、コホモロジー的であるという.

命題 2.5. [KS06, p.245] \mathcal{D} を三角圏, $W \in \mathcal{D}$ としたとき、函手

$$\operatorname{Hom}_{\mathcal{D}}(W,-) \colon \mathcal{D} \to \operatorname{Mod-} \mathbb{Z}$$

 $\operatorname{Hom}_{\mathcal{D}}(-,W) \colon \mathcal{D}^{\operatorname{op}} \to \operatorname{Mod-} \mathbb{Z}$.

はコホモロジー的函手である.

証明. $X \to Y \to Z \to X[1]$ を完全三角形, $W \in \mathcal{D}$ とする. このとき, 以下の完全列

$$\operatorname{Hom}_{\mathcal{D}}(W,X) \xrightarrow{\operatorname{Hom}_{\mathcal{D}}(W,f)} \operatorname{Hom}_{\mathcal{D}}(W,Y) \xrightarrow{\operatorname{Hom}_{\mathcal{D}}(W,g)} \operatorname{Hom}_{\mathcal{D}}(W,Z).$$

が完全であることを示す。命題 2.2 より, $\operatorname{Im}(\operatorname{Hom}_{\mathcal{D}}(W,f)) \subset \operatorname{Ker}(\operatorname{Hom}_{\mathcal{D}}(W,g))$ がわかる。逆の包含に関しては $\operatorname{TR4},\operatorname{TR5}$ より, $g\circ\varphi=0$ をみたす $\varphi\colon W\to Y$ を任意にとると,以下の図式を可換にする $\psi\colon W\to X$ が存在する.

つまり、 $\varphi = f \circ \psi$ である. したがって、 $\operatorname{Im}(\operatorname{Hom}_{\mathcal{D}}(W,f)) = \operatorname{Ker}(\operatorname{Hom}_{\mathcal{D}}(W,g))$ が示された.

命題 2.6. [KS06, p.246] 三角圏 D において,次の2つの完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1], \quad X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X'[1].$$

とその間の射,

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$

$$\sim \downarrow^{\alpha} \qquad \sim \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\alpha[1]}$$

$$X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} X'[1].$$

が与えられており、 α, β が同型であれば、 γ も同型となる.

証明. $W \in \mathcal{D}$ を任意にとり、 $\operatorname{Hom}_{\mathcal{D}}(W,-)$ を作用させるとコホモロジー的函手であることにより、以下の完全列が存在する.

5 項補題により、 $\operatorname{Hom}_{\mathcal{D}}(W,\gamma)$ が同型である。 $W\in\mathcal{D}$ は任意なので、米田の補題より γ は同型である。

系 2.7. [KS06, p.246] 三角圏 D において、射 $f: X \to Y$ に対して、2つの完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1], \quad X \xrightarrow{f} Y \xrightarrow{g'} Z' \xrightarrow{h'} X[1].$$

が存在するとする. このとき、対象 Z, Z' は同型であり、さらに完全三角形の間の同型射

$$\begin{array}{cccc} X & \xrightarrow{f} & Y & \xrightarrow{g} & Z & \xrightarrow{h} & X[1] \\ \parallel & & \parallel & & \downarrow^{\varphi} & & \parallel \\ X & \xrightarrow{f} & Y & \xrightarrow{g'} & Z' & \xrightarrow{h'} & X[1]. \end{array}$$

が存在する. このような Z を同型類から 1 つ選び, f の写像錘($mapping\ cone$)と呼び, 記号 Cone(f) と記す.

系 2.8. 三角圏 D における完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1].$$

に対して,以下が成り立つ:

- 1. q が全射であることと h=0 であることは同値である.
- 2. g が単射であることと f = 0 であることは同値である.
- 3. h = 0 ならば、 $Y \cong X \oplus Z$ が成り立ち、この三角は

$$X \xrightarrow{\iota} X \oplus Z \xrightarrow{\pi} Z \xrightarrow{0} X[1].$$

に同型である (ただし ι は自然な包含、 π は射影).

証明. 命題 2.2 より、 $h \circ g = 0$ であり、g が全射なら h = 0. 逆に、任意の $W \in \mathcal{D}$ に対して、

$$\operatorname{Hom}_{\mathcal{D}}(X[1],W) \xrightarrow{\operatorname{Hom}_{\mathcal{D}}(h,W)} \operatorname{Hom}_{\mathcal{D}}(Z,W) \xrightarrow{\operatorname{Hom}_{\mathcal{D}}(g,W)} \operatorname{Hom}_{\mathcal{D}}(Y,W).$$

が完全列なので、h=0 なら、 $\mathrm{Hom}_{\mathcal{D}}(g,W)$ は単射である. したがって g は全射である. 2 は双対的に示される.

$$0 \to \operatorname{Hom}_{\mathcal{D}}(Z, W) \to \operatorname{Hom}_{\mathcal{D}}(Y, W) \to \operatorname{Hom}_{\mathcal{D}}(X, W) \to 0,$$

$$0 \to \operatorname{Hom}_{\mathcal{D}}(W, X) \to \operatorname{Hom}_{\mathcal{D}}(W, Y) \to \operatorname{Hom}_{\mathcal{D}}(W, Z) \to 0.$$

が短完全列になり、とくに W=X,Z として、 $f'\circ f=\mathrm{id}_X,\ g\circ g'=\mathrm{id}_Z$ なる f',g' の存在がわかり、短完全列

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0.$$

が分裂して $Y \simeq X \oplus Z$ となる.

命題 2.9. [KS06, p.247] 三角圏 $\mathcal D$ において、次の 2 つの完全三角形

$$X \to Y \to Z \to X[1], \quad X' \to Y' \to Z' \to X'[1].$$

が与えられているとする.

また、射 $g: Y \to Y'$ が与えられており、さらに

$$\operatorname{Hom}_{\mathcal{D}}(X, Z') = \operatorname{Hom}_{\mathcal{D}}(X, Z'[-1]) = 0.$$

が成り立つとする. このとき, ある一意な射 $f\colon X\to X'$ $h\colon Z\to Z'$ が存在して, 以下の図式が可換になる:

すなわち, (f,g,h) は完全三角形の間の射をなす.

証明. コホモロジー的函手 $\operatorname{Hom}_{\mathcal{D}}(X,-)$ を 2 行目に作用させると、

$$0 = \operatorname{Hom}_{\mathcal{D}}(X, Z'[-1]) \to \operatorname{Hom}_{\mathcal{D}}(X, X') \to \operatorname{Hom}_{\mathcal{D}}(X, Y') \to \operatorname{Hom}_{\mathcal{D}}(X, Z') = 0.$$

という完全列が得られ、可換にする一意的な射 f の存在がわかる.同様に、 $\mathrm{Hom}_{\mathcal{D}}(-,Z')$ を 1 行目に作用させて、 $\mathrm{Hom}_{\mathcal{D}}(X[1],Z')\simeq\mathrm{Hom}_{\mathcal{D}}(X,Z'[-1])$ を用いれば、一意的な射 h の存在もわかる.

3 アーベル圏の導来圏の定義

定義 3.1. [KS06, p.300] \mathcal{A} をアーベル圏とする. このとき, \mathcal{A} における複体の圏 $\mathbf{C}(\mathcal{A})$ を次のように定める:対象 $X^{\bullet} \in \mathrm{Ob}(C(\mathcal{A}))$ は, \mathbb{Z} -次付き加群の族 $\{X^n\}_{n \in \mathbb{Z}}$ と, 各 $n \in \mathbb{Z}$ に対する射 $d_X^n : X^n \to X^{n+1}$ の組

$$X^{\bullet} = (\cdots \xrightarrow{d_X^{n-2}} X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \xrightarrow{d_X^{n+2}} \cdots).$$

であって、すべての $n \in \mathbb{Z}$ に対して $d_X^{n+1} \circ d_X^n = 0$ を満たすものとする.

 $X^{\bullet}, Y^{\bullet} \in \mathrm{Ob}(\mathsf{C}(\mathcal{A}))$ に対し、射 $f^{\bullet} \in \mathrm{Hom}_{\mathsf{C}(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ は、各次数 $n \in \mathbb{Z}$ における射 $f^n : X^n \to Y^n$ の族

$$f^{\bullet} = \{f^n\}_{n \in \mathbb{Z}}.$$

であって、任意の $n \in \mathbb{Z}$ に対して

$$d_Y^n \circ f^n = f^{n+1} \circ d_X^n.$$

7

を満たすものとする. すなわち, 以下の図式におけるすべての四角形を可換にするものである.

$$\cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \xrightarrow{d_X^{n+1}} \cdots$$

$$\uparrow^{n-1} \downarrow \qquad \qquad \uparrow^n \downarrow \qquad \qquad \uparrow^{n+1} \downarrow$$

$$\cdots \longrightarrow Y^{n-1} \xrightarrow{d_Y^{n-1}} Y^n \xrightarrow{d_Y^n} Y^{n+1} \xrightarrow{d_Y^{n+1}} \cdots$$

定義 3.2. [KS06, p.272] A をアーベル圏とし、 $X^{\bullet}, Y^{\bullet} \in C(A)$ を複体とする. 2 つの複体の射 $f^{\bullet}, g^{\bullet}: X^{\bullet} \to Y^{\bullet}$ が次の条件をみたすとき、 f^{\bullet} と g^{\bullet} はホモトピック(homotopic)であるという:

A における射の族 $\{h^n: X^n \to Y^{n-1}\}_{n\in\mathbb{Z}}$ が存在して、任意の $n\in\mathbb{Z}$ に対して

$$f^n-g^n=d_Y^{n-1}\circ h^n+h^{n+1}\circ d_X^n.$$

を満たす. このような射の族 $h^{\bullet} = \{h^n\}_{n \in \mathbb{Z}}$ をホモトピーと呼ぶ. このとき, $f^{\bullet} \stackrel{\text{h.e.}}{\sim} g^{\bullet}$ と記す.

$$\cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \xrightarrow{d_X^{n+1}} \cdots$$

$$\downarrow h^{n-1} f^{n-1} \downarrow g^{n-1} \quad h^n \qquad f^n \downarrow g^n \qquad h^{n+1} f^{n+1} \downarrow g^{n+1} \quad h^{n+2}$$

$$\cdots \longrightarrow Y^{n-2} \xrightarrow{d_X^{n-2}} Y^{n-1} \xrightarrow{d_X^{n-1}} Y^n \xrightarrow{d_X^n} \cdots$$

補題 3.3. [KS06, p.300] C(A) におけるホモトピー関係 $\stackrel{\text{h.e.}}{\sim}$ は、射の集合上の同値関係であり、さらに射の合成と整合している。すなわち、以下が成り立つ:

- 1. 任意の複体の射 $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ に対して $f^{\bullet} \stackrel{\text{h.e.}}{\sim} f^{\bullet}$.
- 2. $f^{\bullet} \stackrel{\text{h.e.}}{\sim} g^{\bullet}$ $f^{\bullet} \stackrel{\text{h.e.}}{\sim} f^{\bullet}$.
- 4. 複体 $X^{\bullet}, Y^{\bullet}, Z^{\bullet}$ に対し、 $f^{\bullet}, g^{\bullet}: X^{\bullet} \to Y^{\bullet}$ が $f^{\bullet} \overset{\text{h.e.}}{\sim} g^{\bullet}$ かつ $u^{\bullet}: Y^{\bullet} \to Z^{\bullet}$ が任意の複体の射とすると、 $u^{\bullet} \circ f^{\bullet} \overset{\text{h.e.}}{\sim} u^{\bullet} \circ g^{\bullet}$.
- 5. 同様に、 $v^{\bullet}: W^{\bullet} \to X^{\bullet}$ を任意の複体の射とすると、 $f^{\bullet} \circ v^{\bullet} \overset{\text{h.e.}}{\sim} q^{\bullet} \circ v^{\bullet}$.

証明. 1. 任意の $f \in \operatorname{Mor}(\mathsf{C}(\mathcal{A}))$ に対して、 $f^n - f^n = 0 = d^{n-1} \circ 0 + 0 \circ d^n$ なので、 $f \stackrel{\text{h.e.}}{\sim} f$.

- $2.\ f\stackrel{\mathrm{h.e.}}{\sim} g$ のとき, $f^n-g^n=d^{n-1}\circ h^n+h^{n+1}\circ d^n$ となる $\{h^n\}_{n\in\mathbb{Z}}$ が存在するが, $g^n-f^n=d^{n-1}\circ (-h^n)+(-h^{n+1})\circ d^n$ なので, $g\stackrel{\mathrm{h.e.}}{\sim} f$
- 3. $f^n-g^n=d^{n-1}\circ h^n+h^{n+1}\circ d^n$ かつ, $g^n-k^n=d^{n-1}\circ h'^n+h'^{n+1}\circ d^n$ なので, $f^n-k^n=d^{n-1}\circ (h^n+h'^n)+(h^{n+1}+h'^{n+1})\circ d^n$
- $4. \ f^n-g^n=d^{n-1}\circ h^n+h^{n+1}\circ d^n \ を用いて, \ u^n\circ f^n-u^n\circ g^n=u^n\circ d^{n-1}\circ h^n+u^n\circ h^{n+1}\circ d^n=d^{n-1}\circ (u^{n-1}\circ h^n)+(u^n\circ h^{n+1})\circ d^n \ となる. \ したがって, ホモトピー <math>\{u^n\circ h^{n+1}\}_{n\in\mathbb{Z}}$ が構成できた. 5. も同様に構成できる.

定義 3.4. [KS06, p.273] A をアーベル圏とする. 補題 3.3 により、ホモトピー関係 $\stackrel{\text{h.e.}}{\sim}$ は $\mathbf{C}(A)$ の射の集合上の同値関係を定め、かつ合成と整合している.

このとき、以下のようにして A 上のホモトピー圏 K(A) を定義する:

- 対象は C(A) の対象と同じく、A における複体とする.
- 射は複体の射のホモトピー同値類であり、複体 X^{\bullet}, Y^{\bullet} に対して

$$\operatorname{Hom}_{\mathsf{K}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) := \operatorname{Hom}_{\mathsf{C}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) / \overset{\text{h.e.}}{\sim} .$$

によって与えられる.

合成は代表元の合成によって定められ、補題 3.3 により、この定義は well-defined である.したがって、 $\mathbf{K}(\mathcal{A})$ は圏をなす.

A をアーベル圏, $\mathsf{K}(A)$ をそのホモトピー圏とする. 複体の射 $f^\bullet: X^\bullet \to Y^\bullet$ に対し, 写像錘 $\mathsf{Cone}(f^\bullet) \in \mathsf{K}(A)$ を次のように定義する:

$$\operatorname{Cone}(f^{\bullet})^n := Y^n \oplus X^{n+1},$$

$$d^n_{\operatorname{Cone}(f^{\bullet})} := \begin{pmatrix} d^n_Y & f^{n+1} \\ 0 & -d^{n+1}_X \end{pmatrix} : Y^n \oplus X^{n+1} \longrightarrow Y^{n+1} \oplus X^{n+2}.$$

このとき,

$$\begin{split} d^{n+1}_{\mathrm{Cone}(f^{\bullet})} \circ d^{n}_{\mathrm{Cone}(f^{\bullet})} &= \begin{pmatrix} d^{n+1}_{Y} & f^{n+2} \\ 0 & -d^{n+2}_{X} \end{pmatrix} \begin{pmatrix} d^{n}_{Y} & f^{n+1} \\ 0 & -d^{n+1}_{X} \end{pmatrix} \\ &= \begin{pmatrix} d^{n+1}_{Y} \circ d^{n}_{Y} & d^{n+1}_{Y} \circ f^{n+1} - f^{n+2} \circ d^{n+1}_{X} \\ 0 & -d^{n+2}_{X} \circ d^{n+1}_{X} \end{pmatrix} \\ &= 0. \end{split}$$

なので $Cone(f^{\bullet})$ が複体となっていることがわかる.

命題 3.5. [KS06, p.273] A をアーベル圏とする. このとき,ホモトピー圏 K(A) は自然な三角構造を持つ三角圏である.すなわち、以下のデータにより三角圏の構造が与えられる:

シフト函手:複体 X[●] に対して、X[1][●] を

$$X[1]^n := X^{n+1}, \quad d^n_{X[1]} := -d^{n+1}_X.$$

により定める関手 $[1]: K(A) \to K(A)$.

• 完全三角形:任意の射 $f^{\bullet}: X^{\bullet} \to Y^{\bullet}$ に対して、写像錘 Cone(f^{\bullet}) を用いて構成される三角形

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} \operatorname{Cone}(f^{\bullet}) \xrightarrow{h^{\bullet}} X^{\bullet}[1].$$

を完全三角形とする. ただし, g^{\bullet} , h^{\bullet} を

$$g^n = \begin{pmatrix} \operatorname{id}_Y^n \\ 0 \end{pmatrix} : Y^n \to Y^n \oplus X^{n+1}, \quad h^n = \begin{pmatrix} 0 & \operatorname{id}_X^{n+1} \end{pmatrix} : Y^n \oplus X^{n+1} \to X^{n+1}.$$

によって定める.

これにより、ホモトピー圏 K(A) は三角圏の構造をもつ.

証明.

(TR1)

任意の $X^{\bullet} \in \mathsf{K}(\mathcal{A})$ に対して、

$$\operatorname{Cone}(\operatorname{id}_X) = \left(X^n \oplus X^{n+1}, d^n_{\operatorname{Cone}(\operatorname{id}_X)}\right)_{n \in \mathbb{Z}}, \quad d^n_{\operatorname{Cone}(\operatorname{id}_X)} = \begin{pmatrix} d^n_X & \operatorname{id}_X^{n+1} \\ 0 & -d^{n+1}_X \end{pmatrix}.$$

であり,

$$h^n \coloneqq \begin{pmatrix} 0 & 0 \\ \mathrm{id}_X^n & 0 \end{pmatrix},$$

と定めると,

$$\begin{split} \operatorname{id}_{\operatorname{Cone}(\operatorname{id}_X)}^n - 0 &= \begin{pmatrix} \operatorname{id}_X^n & 0 \\ 0 & \operatorname{id}_X^{n+1} \end{pmatrix} \\ &= \begin{pmatrix} d_X^{n-1} & \operatorname{id}_X^n \\ 0 & d_X^n \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \operatorname{id}_X^n & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \operatorname{id}_X^{n+1} & 0 \end{pmatrix} \begin{pmatrix} d_X^n & \operatorname{id}_X^{n+1} \\ 0 & d_X^{n+1} \end{pmatrix} \\ &= d_{\operatorname{Cone}(\operatorname{id}_X)}^{n-1} \circ h^n + h^{n+1} \circ d_{\operatorname{Cone}(\operatorname{id}_X)}^{n-1}. \end{split}$$

すなわち, $\mathrm{id}_{\mathrm{Cone}\,(\mathrm{id}_X)}\stackrel{\mathrm{h.e.}}{\sim}0$. したがって, $\mathrm{Cone}(\mathrm{id}_X)\simeq 0$ である. (TR4) 任意の完全三角形:

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} \operatorname{Cone}(f^{\bullet}) \xrightarrow{h^{\bullet}} X^{\bullet}[1].$$

に対して、 $\operatorname{Cone}(g^{\bullet}) \simeq X^{\bullet}[1]$ であることを示す.

$$\operatorname{Cone}(g^{\bullet}) = (Y^n \oplus X^{n+1} \oplus Y^{n+1}, d_{\operatorname{Cone}(g^{\bullet})})_{n \in \mathbb{Z}}, \quad d_{\operatorname{Cone}(g^{\bullet})} = \begin{pmatrix} d_Y^n & f^{n+1} & \operatorname{id}_Y^{n+1} \\ 0 & -d_X^{n+1} & 0 \\ 0 & 0 & -d_Y^{n+2} \end{pmatrix},$$

$$\begin{pmatrix} \operatorname{id}_{Y}^{n+1} & 0 & 0 \\ 0 & f^{n+2} & \operatorname{id}_{Y}^{n+2} \\ 0 & \operatorname{id}_{X}^{n+2} & 0 \end{pmatrix} \cdot d_{\operatorname{Cone}(g^{\bullet})}^{n} \cdot \begin{pmatrix} \operatorname{id}_{Y}^{n} & 0 & 0 \\ 0 & f^{n+1} & \operatorname{id}_{Y}^{n+1} \\ 0 & \operatorname{id}_{X}^{n+1} & 0 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \operatorname{id}_{Y}^{n+1} & 0 & 0 \\ 0 & f^{n+2} & \operatorname{id}_{Y}^{n+2} \\ 0 & \operatorname{id}_{X}^{n+2} & 0 \end{pmatrix} \cdot \begin{pmatrix} d_{Y}^{n} & f^{n+1} & \operatorname{id}_{Y}^{n+1} \\ 0 & -d_{X}^{n+1} & 0 \\ 0 & 0 & -d_{Y}^{n+1} \end{pmatrix} \begin{pmatrix} \operatorname{id}_{Y}^{n} & 0 & 0 \\ 0 & 0 & \operatorname{id}_{X}^{n+1} \\ 0 & \operatorname{id}_{Y}^{n+1} & -f^{n+1} \end{pmatrix}$$

$$= \begin{pmatrix} d_{Y}^{n} & \operatorname{id}_{Y}^{n+1} & 0 \\ 0 & d_{Y}^{n+1} & 0 \\ 0 & 0 & -d_{X}^{n+1} \end{pmatrix} .$$

したがって,

$$\operatorname{Cone}(g^{\bullet}) \simeq \operatorname{Cone}(\operatorname{id}_{V}^{\bullet}) \oplus X^{\bullet}[1] \simeq X^{\bullet}[1]$$

次に、 $Cone(h^{\bullet}) \simeq Y^{\bullet}[1]$ を示す. 任意の完全三角形:

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} \operatorname{Cone}(f^{\bullet}) \xrightarrow{h^{\bullet}} X^{\bullet}[1].$$

に対して,

$$\operatorname{Cone}(h^{\bullet}) = \left(X^{n+1} \oplus Y^{n+1} \oplus X^{n+2}, d_{\operatorname{Cone}(h^{\bullet})}\right)_{n \in \mathbb{Z}}, \quad d_{\operatorname{Cone}(h^{\bullet})} = \begin{pmatrix} d_X^{n+1} & 0 & \operatorname{id}_X^{n+2} \\ 0 & d_Y^{n+1} & f^{n+2} \\ 0 & 0 & -d_X^{n+2} \end{pmatrix},$$

$$\begin{pmatrix} \operatorname{id}_X^{n+2} & 0 & 0 \\ 0 & 0 & \operatorname{id}_X^{n+3} \\ -f^{n+2} & \operatorname{id}_Y^{n+2} & 0 \end{pmatrix} \cdot d_{\operatorname{Cone}(h^{\bullet})}^n \cdot \begin{pmatrix} \operatorname{id}_X^{n+1} & 0 & 0 \\ 0 & 0 & \operatorname{id}_X^{n+2} \\ -f^{n+1} & \operatorname{id}_Y^{n+1} & 0 \end{pmatrix}^{-1} \\ = \begin{pmatrix} \operatorname{id}_X^{n+2} & 0 & 0 \\ 0 & 0 & \operatorname{id}_X^{n+3} \\ -f^{n+2} & \operatorname{id}_Y^{n+2} & 0 \end{pmatrix} \begin{pmatrix} d_X^{n+1} & 0 & \operatorname{id}_X^{n+2} \\ 0 & d_Y^{n+1} & f^{n+2} \\ 0 & 0 & -d_X^{n+2} \end{pmatrix} \begin{pmatrix} \operatorname{id}_X^{n+1} & 0 & 0 \\ f^{n+1} & 0 & \operatorname{id}_Y^{n+1} \\ 0 & \operatorname{id}_X^{n+2} & 0 \end{pmatrix} \\ = \begin{pmatrix} d_X^{n+1} & \operatorname{id}_X^{n+2} & 0 \\ 0 & -d_X^{n+2} & 0 \\ 0 & 0 & d_Y^{n+1} \end{pmatrix}.$$

したがって,

$$\operatorname{Cone}(h^{\bullet}) \simeq \operatorname{Cone}(\operatorname{id}_{X[1]}^{\bullet}) \oplus Y^{\bullet}[1] \simeq Y^{\bullet}[1].$$

(TR5) 以下の 2 つの完全三角形と可換にする射 f_1, f_2 に対して,

 $f_3 \colon \operatorname{Cone}(u) \to \operatorname{Cone}(v) \not \epsilon$

$$\begin{pmatrix} f_2^n & 0 \\ 0 & f_1^{n+1} \end{pmatrix} : \left(X_2^n \oplus X_1^{n+1}, d_{\operatorname{Cone}(u)} \right) \to \left(Y_2^n \oplus Y_1^{n+1}, d_{\operatorname{Cone}(v)} \right).$$

と定めると,

$$\begin{pmatrix} f_2^{n+1} & 0 \\ 0 & f_1^{n+2} \end{pmatrix} \begin{pmatrix} d_{X_2}^n & u^{n+1} \\ 0 & d_{X_1}^{n+1} \end{pmatrix} - \begin{pmatrix} d_{Y_2}^n & u^{n+1} \\ 0 & d_{Y_1}^{n+1} \end{pmatrix} \begin{pmatrix} f_2^n & 0 \\ 0 & f_1^{n+1} \end{pmatrix} = 0.$$

なので、複体の射であることが確認でき,

$$\begin{pmatrix} f_2^n & 0 \\ 0 & f_1^{n+1} \end{pmatrix} \begin{pmatrix} \mathrm{id}_{X_2}^n \\ 0 \end{pmatrix} = \begin{pmatrix} \mathrm{id}_{X_2}^n \\ 0 \end{pmatrix} \begin{pmatrix} f_2^n \end{pmatrix},$$

$$\begin{pmatrix} 0 & \mathrm{id}_{Y_1}^{n+1} \end{pmatrix} \begin{pmatrix} f_2^n & 0 \\ 0 & f_1^{n+1} \end{pmatrix} = \begin{pmatrix} f_2^n & 0 \\ 0 & f_1^{n+1} \end{pmatrix} \begin{pmatrix} 0 & \mathrm{id}_{X_1}^{n+1} \end{pmatrix}.$$

であることから、可換性がわかり、 (f_1, f_2, f_3) が完全三角形の間の射になっている。(TR6) 次に八面体公理を示す。

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \longrightarrow \operatorname{Cone}(f^{\bullet}) \longrightarrow X^{\bullet}[1]$$

$$X^{\bullet} \xrightarrow{g^{\bullet} \circ f^{\bullet}} Z^{\bullet} \longrightarrow \operatorname{Cone}(g^{\bullet} \circ f^{\bullet}) \longrightarrow X^{\bullet}[1]$$

$$Y^{\bullet} \xrightarrow{g^{\bullet}} Z^{\bullet} \longrightarrow \operatorname{Cone}(g^{\bullet}) \longrightarrow Y^{\bullet}[1].$$

射: \tilde{g}^{\bullet} : Cone $(f^{\bullet}) \to \text{Cone}(g^{\bullet} \circ f^{\bullet})$ を

$$\begin{pmatrix} g^n & 0 \\ 0 & \mathrm{id}_X^{n+1} \end{pmatrix} : \left(Y^n \oplus X^{n+1}, d_{\mathrm{Cone}(f^{\bullet})} \right) \to \left(Z^n \oplus X^{n+1}, d_{\mathrm{Cone}(g^{\bullet} \circ f^{\bullet})} \right).$$

と定める. これは,

$$\cdots \longrightarrow Y^n \oplus X^{n+1} \xrightarrow{d^n_{\operatorname{Cone}(f^{\bullet})}} Y^{n+1} \oplus X^{n+2} \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow Z^n \oplus X^{n+1} \xrightarrow{d^n_{\operatorname{Cone}(g^{\bullet} \circ f^{\bullet})}} Z^{n+1} \oplus X^{n+2} \longrightarrow \cdots$$

$$\begin{pmatrix} g^{n+1} & 0 \\ 0 & \operatorname{id}_X^{n+1} \end{pmatrix} \begin{pmatrix} d_Y^n & f^{n+1} \\ 0 & -d_X^{n+1} \end{pmatrix} - \begin{pmatrix} d_Z^n & g^{n+1} \circ f^{n+1} \\ 0 & -d_X^{n+1} \end{pmatrix} \begin{pmatrix} g^n & 0 \\ 0 & \operatorname{id}_X^n \end{pmatrix} = 0,$$

より、複体の射になっている. そこで、 $\operatorname{Cone}(\tilde{g}^{\bullet}) \simeq \operatorname{Cone}(g^{\bullet})$ を示す.

$$Cone(\tilde{g}) = (Z^n \oplus X^{n+1} \oplus Y^{n+1} \oplus X^{n+2}, d_{Cone(\tilde{g})}).$$

$$d_{Cone(\tilde{g})} = \begin{pmatrix} d_Z^n & g^{n+1} \circ f^{n+1} & g^{n+1} & 0\\ 0 & -d_X^{n+1} & 0 & \mathrm{id}_X^{n+2}\\ 0 & 0 & -d_Y^{n+1} & -f^{n+2}\\ 0 & 0 & 0 & d_X^{n+2} \end{pmatrix}.$$

$$\begin{pmatrix} \operatorname{id}_Z^{n+1} & 0 & 0 & 0 \\ 0 & f^{n+2} & \operatorname{id}_Y^{n+2} & 0 \\ 0 & \operatorname{id}_X^{n+2} & 0 & \operatorname{id}_Y^{n+2} \\ 0 & 0 & 0 & \operatorname{id}_X^{n+3} \end{pmatrix} \begin{pmatrix} d_Z^n & g^{n+1} \circ f^{n+1} & g^{n+1} & 0 \\ 0 & -d_X^{n+1} & 0 & \operatorname{id}_X^{n+2} \\ 0 & 0 & -d_Y^{n+1} & -f^{n+2} \\ 0 & 0 & 0 & d_X^{n+2} \end{pmatrix} \begin{pmatrix} \operatorname{id}_Z^n & 0 & 0 & 0 \\ 0 & f^{n+1} & \operatorname{id}_Y^{n+1} & 0 \\ 0 & \operatorname{id}_X^{n+1} & 0 & \operatorname{id}_Y^{n+1} \\ 0 & 0 & 0 & \operatorname{id}_X^{n+2} \end{pmatrix}$$

$$= \begin{pmatrix} \operatorname{id}_Z^{n+1} & 0 & 0 & 0 \\ 0 & f^{n+2} & \operatorname{id}_Y^{n+2} & 0 \\ 0 & \operatorname{id}_X^{n+2} & 0 & \operatorname{id}_Y^{n+2} \\ 0 & 0 & 0 & \operatorname{id}_X^{n+1} \end{pmatrix} \begin{pmatrix} d_Z^n & g^{n+1} \circ f^{n+1} & g^{n+1} & 0 \\ 0 & -d_X^{n+1} & 0 & \operatorname{id}_X^{n+2} \\ 0 & 0 & -d_Y^{n+1} & -f^{n+2} \\ 0 & 0 & 0 & d_X^{n+2} \end{pmatrix} \begin{pmatrix} \operatorname{id}_Z^n & 0 & 0 & 0 \\ 0 & \operatorname{id}_X^{n+1} & 0 \\ 0 & \operatorname{id}_X^{n+1} & 0 \\ 0 & \operatorname{id}_X^{n+1} & -f^{n+1} & \operatorname{id}_Y^{n+1} \\ 0 & 0 & 0 & \operatorname{id}_X^{n+1} \end{pmatrix}$$

$$= \begin{pmatrix} d_Z^n & g^{n+1} & 0 & 0 \\ 0 & -d_Y^{n+1} & 0 & 0 \\ 0 & 0 & -d_X^{n+1} & \operatorname{id}_X^{n+2} \\ 0 & 0 & 0 & d_X^{n+2} \end{pmatrix} .$$

$$= \begin{pmatrix} d_Z^n & g^{n+1} & 0 & 0 \\ 0 & -d_X^{n+1} & \operatorname{id}_X^{n+2} \\ 0 & 0 & 0 & d_X^{n+2} \end{pmatrix} .$$

したがって,

 $\operatorname{Cone}(\tilde{g}) \simeq \operatorname{Cone}(g) \oplus \operatorname{Cone}(\operatorname{id}_{X[1]}) \simeq \operatorname{Cone}(g).$

次に,可換性を示す.

(1) は明らか. (2) については、以下の図式が可換なことから従う.

$$\cdots \longrightarrow Y^{n} \xrightarrow{\begin{pmatrix} \operatorname{id}_{Y}^{n} \\ 0 \end{pmatrix}} Y^{n} \oplus X^{n+1} \longrightarrow \cdots$$

$$\downarrow^{g^{n}} \downarrow \begin{pmatrix} \operatorname{id}_{Z}^{n} \\ 0 \end{pmatrix} \downarrow^{\begin{pmatrix} g^{n} & 0 \\ 0 & \operatorname{id}_{X}^{n+1} \end{pmatrix}} \cdots$$

$$\cdots \longrightarrow Z^{n} \xrightarrow{} Z^{n} \oplus X^{n+1} \longrightarrow \cdots$$

要証明,可換

定義 3.6. [KS06, p.301] A をアーベル圏, K(A) をそのホモトピー圏とする. 各整数 $n \in \mathbb{Z}$ に対して, 函手

$$\mathcal{H}^n: \mathsf{K}(\mathcal{A}) \longrightarrow \mathcal{A}$$

を, K(A) の対象である複体 X^{\bullet} に対して

$$\mathcal{H}^n(X^{\bullet}) := \operatorname{Ker}(d_X^n) / \operatorname{Im}(d_X^{n-1})$$

と定め、射 $[f^{\bullet}]: X^{\bullet} \to Y^{\bullet}$ に対しては、 f^{\bullet} によって誘導されるコホモロジーの射

$$\mathcal{H}^n(f^{\bullet}):\mathcal{H}^n(X^{\bullet})\to\mathcal{H}^n(Y^{\bullet})$$

を対応させる. このとき、任意の $n \in \mathbb{Z}$ に対して、 $\mathcal{H}^n(f^{\bullet})$ が同型であるとき、 f^{\bullet} は擬同型 (quasi-isomorophism) であるという. C(A) に対しても同様に定義して、同じ記号を用いる.

 $f^{ullet} \overset{\text{h.e.}}{\sim} g^{ullet}$ であれば、 $\mathcal{H}^n(f^{ullet}) = \mathcal{H}^n(g^{ullet})$ が成り立つため、この定義は well-defined である。また、 $\mathcal{H}^n(X^{ullet})$ が $\mathsf{K}(\mathcal{A})$ での同型類に依らないこともわかる。

:: 射の族 $h^n: X^n \to Y^{n-1}$ が存在して、任意の $n \in \mathbb{Z}$ に対して、

$$f^n - g^n = d_Y^{n-1} \circ h^n + h^{n+1} \circ d_X^n.$$

が成り立つ. $x+\operatorname{Im} d_X^{n-1}\in\mathcal{H}^n(X)$ をとると、 $d_X^n(x+\operatorname{Im} d_X^{n-1})=0$ なので、

$$(f^n-g^n)(x+{\rm Im}\, d_X^{n-1})=d_Y^{n-1}(h^n(x+{\rm Im}\, d_X^{n-1}))\in {\rm Im}\, d_Y^{n-1}.$$

したがって, $[f^{\bullet}]$ の代表元のとり方によらない.

また、任意の $n \in \mathbb{Z}$ に対して、 $\mathcal{H}^n(X^{\bullet}) \simeq 0$ のとき、 X^{\bullet} が非輪状であるという.

補題 3.7. $X^{\bullet} \in \mathsf{K}(A)$ に対して、以下の列は完全である.

$$0 \to \mathcal{H}^n(X^{\bullet}) \to X^n/\operatorname{Im} d^{n-1} \xrightarrow{\widetilde{d_X^n}} \operatorname{Ker} d^{n+1} \to \mathcal{H}^{n+1}(X^{\bullet}) \to 0.$$

ただし, $\widetilde{d_X^n}$ を

$$\begin{array}{cccc} \widetilde{d_X^n} \colon & X^n/\operatorname{Im} d_X^{n-1} & \longrightarrow & \operatorname{Ker} d_X^{n+1} \\ & & & & & & & \\ & & & & & & & \\ & & & x+\operatorname{Im} d_X^{n-1} & \longmapsto & d_X^n(x) & . \end{array}$$

で定める.

証明. 明らか.

命題 3.8. $X^{\bullet}, Y^{\bullet}, Z^{\bullet} \in C(A)$ に対して、

$$0 \to X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} Z^{\bullet} \to 0.$$

上記の列が完全列となるとき,以下の長完全列が存在する.

$$\cdots \xrightarrow{\mathcal{H}^n(f^{\bullet})} \mathcal{H}^n(Y) \xrightarrow{\mathcal{H}^n(g^{\bullet})} \mathcal{H}^n(Z) \xrightarrow{\delta^n} \mathcal{H}^{n+1}(X) \xrightarrow{\mathcal{H}^{n+1}(f^{\bullet})} \mathcal{H}^{n+1}(Y) \xrightarrow{\mathcal{H}^{n+1}(g^{\bullet})} \cdots$$

証明. $\widetilde{f^n}$, $\widetilde{g^n}$ を以下のように定める:

と定めると、以下の図式の2行が完全列になる.

$$\begin{split} X^n/\operatorname{Im} d_X^{n-1} & \xrightarrow{\widetilde{f^n}} Y^n/\operatorname{Im} d_Y^{n-1} & \xrightarrow{\widetilde{g^n}} Z^n/\operatorname{Im} d_Z^n & \longrightarrow 0 \\ & \downarrow^{\widetilde{d_X^{n-1}}} & \downarrow^{\widetilde{d_Y^{n-1}}} & \downarrow^{\widetilde{d_Y^{n-1}}} \\ 0 & \longrightarrow \operatorname{Ker} d_X^{n+1} & \xrightarrow{f^{n+1}|_{\operatorname{Ker} d_X^{n+1}}} \operatorname{Ker} d_Y^{n+1} & \xrightarrow{g^{n+1}|_{\operatorname{Ker} d_Y^{n+1}}} \operatorname{Ker} d_Z^{n+1} & . \end{split}$$

一行目に関して、 g^n の全射性より $\widetilde{g^n}$ の全射性も従い、 $\operatorname{Im} f^n \subset \operatorname{Ker} g^n$ より、 $\operatorname{Im} \widetilde{f^n} \subset \operatorname{Ker} \widetilde{g^n}$ がわかる。つ ぎに、 $\operatorname{Im} \widetilde{f^n} \supset \operatorname{Ker} \widetilde{g^n}$ を示すために、 $y + \operatorname{Im} d_Y^{n-1} \in \operatorname{Ker} \widetilde{g^n}$ を任意にとる。すると、 $\widetilde{g^n}(y + \operatorname{Im} d_Y^{n-1}) = 0$ 、すなわち $g^n(y) \in \operatorname{Im} d_Z^{n-1}$ なので、ある $z \in \operatorname{Im} d_Z^{n-1}$ で $d_Z^{n-1}(z) = g^n(y)$ となるものが存在する。 g^{n-1} の

全射性より、 $g^{n-1}(y')=z$ なる $y'\in Y^{n-1}$ が存在する。可換性より、 $d_Y^{n-1}(y')-y\in \operatorname{Ker} g^n$. 完全性より、 $f^n(x)=d_Y^{n-1}(y')-y$ となる $x\in X^n$ が存在する。したがって、 $\widetilde{f^n}(x+\operatorname{Im} d_X^{n-1})=y+\operatorname{Im} d_Y^{n-1}$ がわかり、示された.

二行目に関して、 f^{n+1} の単射性から $f^{n+1}|_{\operatorname{Ker}\, d_X^{n+1}}$ の単射性はわかる。また、一行目と同様に $\operatorname{Im}\, f^{n+1}|_{\operatorname{Ker}\, d_X^{n+1}} \subset \operatorname{Ker}\, g^{n+1}|_{\operatorname{Ker}\, d_Y^{n+1}}$ もわかる。 つぎに、 $y \in \operatorname{Ker}\, g^{n+1}|_{\operatorname{Ker}\, d_Y^{n+1}}$ を任意に取る。 すると、 $g^{n+1}(y) = 0$ と完全性から、 $f^{n+1}(x) = y$ となる $x \in X^{n+1}$ がとれる。ここで、

$$f^{n+1} \circ d_X^{n+1}(x) = d_Y^{n+1} \circ f^{n+1}(x) = d_Y^{n+1}(y) = 0.$$

 f^{n+1} の単射性より, $d_X^{n+1}(x)=0$ がわかった. したがって, $x\in {\rm Ker}\, d_X^{n+1}$ これに,蛇の補題を適用すれば所望の式が得られる.

命題 3.9. K(A) において、 \mathcal{H}^0 はコホモロジー的函手である。すなわち、任意の完全三角形

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} \operatorname{Cone}(f^{\bullet}) \xrightarrow{h^{\bullet}} X^{\bullet}[1].$$

に対して,

$$\mathcal{H}^0(X^{\bullet}) \xrightarrow{\mathcal{H}^0(f^{\bullet})} \mathcal{H}^0(Y^{\bullet}) \xrightarrow{\mathcal{H}^0(g^{\bullet})} \mathcal{H}^0(\mathrm{Cone}(f^{\bullet})).$$

が完全列になっている.

証明. シフトしたものを考えることで、

$$\mathcal{H}^0(Y^{\bullet}) \xrightarrow{\mathcal{H}^0(g^{\bullet})} \mathcal{H}^0(\operatorname{Cone}(f^{\bullet})) \xrightarrow{\mathcal{H}^0(h^{\bullet})} \mathcal{H}^0(X^{\bullet}[1]).$$

が完全列になっていることを示せば十分であるが、

$$0 \longrightarrow Y^{\bullet} \xrightarrow{\left(\stackrel{\operatorname{id}_{Y^{\bullet}}}{0} \right)} Y^{\bullet} \oplus X^{\bullet}[1] \xrightarrow{\left(0 \operatorname{id}_{X^{\bullet}[1]} \right)} X^{\bullet}[1] \longrightarrow 0.$$

が C(A) での、完全列であるので、3.8 より、完全列が得られる.

補題 3.10. K(A) において、 f^{\bullet} が擬同型であることと、 $Cone(f^{\bullet})$ が非輪状であることは同値である.

証明. 以下の完全三角形:

$$X^{\bullet} \xrightarrow{f^{\bullet}} Y^{\bullet} \xrightarrow{g^{\bullet}} \operatorname{Cone}(f^{\bullet}) \xrightarrow{h^{\bullet}} X^{\bullet}[1].$$

に対して、コホモロジー的函手 \mathcal{H}^0 を作用させると以下の長完全列が得られる.

$$\cdots \to \mathcal{H}^n(X^{\bullet}) \xrightarrow{\mathcal{H}^n(f^{\bullet})} \mathcal{H}^n(Y^{\bullet}) \xrightarrow{\mathcal{H}^n(g^{\bullet})} \mathcal{H}^n(\operatorname{Cone}(f^{\bullet})) \xrightarrow{\delta^n} \mathcal{H}^{n+1}(X^{\bullet}) \xrightarrow{\mathcal{H}^{n+1}(f^{\bullet})} \mathcal{H}^{n+1}(Y^{\bullet}) \to \cdots$$

 X^{\bullet} が擬同型のとき, 任意の $n \in \mathbb{Z}$ に対して $\mathcal{H}^n(f^{\bullet})$ が同型であることと, 列の完全性により, $\mathcal{H}^n(\operatorname{Cone}(f^{\bullet})) \simeq 0$ がわかり, 逆に, 任意の $n \in \mathbb{Z}$ に対して, $\mathcal{H}^n(\operatorname{Cone}(f^{\bullet})) \simeq 0$ のとき, $\mathcal{H}^n(f^{\bullet})$ が同型であることがわかる. \square

定義 3.11 (乗法系). [KS06, p.152] \mathcal{D} を三角圏とする. \mathcal{D} の射の集合 S が以下の条件をみたすとき, \mathcal{D} 上の乗法系(multiplicative system)という.

- (MS1) 任意の対象 $X \in \mathcal{D}$ に対して、恒等射 id_X は S に属する.
- (MS2) 射 $s, t \in S$ に対して、合成 $t \circ s$ が定義されるならば、 $t \circ s \in S$.
- (MS3) D における以下の任意の図式,

$$X_{3} \downarrow s$$

$$X_{1} \xrightarrow{u} X_{2}.$$

で $s \in S$ となるものに対し、 $X_4 \in \mathcal{D}$ と $s' \in S$ 、 $v \in \text{Hom}_{\mathcal{D}}(X_4, X_3)$ が存在して、以下の図式

$$\begin{array}{ccc} X_4 & \stackrel{v}{\longrightarrow} & X_3 \\ s' & & \downarrow s \\ X_1 & \stackrel{u}{\longrightarrow} & X_2. \end{array}$$

を可換にする. 双対的に,

$$X_4 \xrightarrow{v} X_3$$

$$s' \downarrow \\ X_1 \qquad .$$

で $s' \in S$ となるものに対し、 $X_2 \in \mathcal{D}$ と $s \in S$ 、 $u \in \operatorname{Hom}_{\mathcal{D}}(X_3, X_2)$ が存在して、

$$X_{4} \xrightarrow{v} X_{3}$$

$$\downarrow s \\
X_{1} \xrightarrow{u} X_{2}.$$

を可換にする.

(MS4) 任意の \mathcal{D} における射 $f,g:X\to Y$ に対して、次の二条件は同値である:

- $s \in S$ が存在して, sf = sg が成り立つ.
- $t \in S$ が存在して, ft = gt が成り立つ.

(MS5) [1] を $\mathcal D$ のシフト函手とすると、 $s \in S$ であることと $s[1] \in S$ であることが同値である.

(MS6) 三角圏 D における 2 つの完全三角形において、

 $s,t \in S$ なら、 $u \in S$ で図式を可換にするものが存在する.

命題 3.12. T を三角圏, $H: T \rightarrow A$ をコホモロジー的函手とする.

$$Ob(\mathcal{T}_{ac}) := \{ X \in Ob(\mathcal{T}) \mid H(X[n]) = 0, \ \forall n \in \mathbb{Z} \}$$
$$Hom_{\mathcal{T}_{ac}}(X, Y) := Hom_{\mathcal{T}}(X, Y).$$

上記の充満部分三角圏を考える。このとき $T_{\rm ac}$ は T の同型をとる操作で閉じている部分三角圏である。 H(X[n]) を $H^n(X)$ と記すことにする。

証明. $X \simeq X'$ のとき,任意の $n \in \mathbb{Z}$ に対して, $H^n(X) \simeq H^n(X')$ なので, $X \in \mathcal{T}_{ac}$ なら $X' \in \mathcal{T}_{ac}$ である.任意の X に対して,

$$H^n(X[1]) \simeq H^{n+1}(X) \simeq 0, \quad \forall n \in \mathbb{Z}.$$

したがって、 $X[1] \in \mathcal{T}_{ac}$. シフトを取る操作で閉じている. 任意の $X,Y \in \mathcal{T}_{ac}$, $f \in \operatorname{Hom}_{\mathcal{T}_{ac}}(X,Y)$ に対して、

$$X \xrightarrow{f} Y \to \operatorname{Cone}(f) \to X[1].$$

前半の結果,任意の $n\in\mathbb{Z}$ に対して, $H^0(X[n])\simeq H^0(Y[n])\simeq 0$ より, H^0 がコホモロジー的函手であることから,任意の $n\in\mathbb{Z}$ に対して, $H^n(\mathrm{Cone}(f))\simeq 0$ がわかる.したがって,写像錘をとる操作で閉じている.

命題 3.13. T を三角圏, $\mathcal{N} \subset T$ を同型を取る操作で閉じている部分三角圏とする. このとき, $S \subset \operatorname{Mor}(T)$ を

$$S := \{ s \in \operatorname{Mor}(\mathcal{T}) \mid \operatorname{Cone}(s) \in \mathcal{N} \}.$$

と定めるとSは乗法系となる.

証明. (MS1) 任意の $X \in \mathcal{T}$ に対して、以下の完全三角形

$$X \xrightarrow{\mathrm{id}_X} X \to 0 \to X[1].$$

が存在し、 $0 \in \mathcal{N}$ なので $\mathrm{id}_X \in S$

(MS2) $s \circ t$ が定義できる任意の $s,t \in S$ に対して、八面体公理より

以下の完全三角形が存在する.

$$\operatorname{Cone}(s) \longrightarrow \operatorname{Cone}(t \circ s) \longrightarrow \operatorname{Cone}(t) \longrightarrow \operatorname{Cone}(s)[1].$$

 $\mathrm{Cone}(s), \mathrm{Cone}(t) \in \mathcal{N}$ で、 \mathcal{N} は部分三角圏であることから写像錘とシフトをとる操作で閉じているので、 $\mathrm{Cone}(t \circ s) \in \mathcal{N}$ 、つまり、 $t \circ s \in S$ が従う.

(MS3) $s \in S$ である任意の以下の図式に対して、

$$X_{3} \downarrow^{s} X_{1} \xrightarrow{u} X_{2}.$$

 $s\colon X_3 \to X_2$ を延長して、 $N\in\mathcal{N}$ である以下の完全三角形が存在する.

$$X_3 \xrightarrow{s} X_2 \xrightarrow{e} N \longrightarrow X_3[1]$$

このとき、 $e \circ u$ を延長してできる完全三角形からの三角形の間の射が以下のように定まる.

 $\operatorname{Cone}(s') \in \mathcal{N}$ なので、 $s' \in S$. もう一つも双対的に、 $s' \in S$ なる以下の図式に対して、

$$X_4 \xrightarrow{v} X_3$$

$$s' \downarrow \\ X_1 \qquad .$$

s' を延長した完全三角形と $v[1] \circ f$ を延長した完全三角形の間の射が以下のように定義できて、

$$X_{4} \xrightarrow{s'} X_{1} \longrightarrow N \xrightarrow{f} X_{4}[1]$$

$$\downarrow^{v} \qquad \downarrow^{u} \qquad \downarrow^{v[1]}$$

$$X_{3} \xrightarrow{s} X_{2} \longrightarrow N \xrightarrow{v[1] \circ f} X_{3}[1].$$

 $s \in S$ であるので示された.

(MS4) $f: X \to Y$ とする。移項することで, $s \in S$ に対して $f \circ s = 0$ ならば,ある $t \in S$ が存在して $t \circ f = 0$ であることと, $t \in S$ に対して $t \circ f = 0$ ならば,ある $s \in S$ が存在して $f \circ s = 0$ であることを示せば良い. $f \circ s = 0$ なので,以下の図式を可換にする $h \in \operatorname{Hom}_{\mathcal{T}}(N,Y)$ が存在する.

$$Z \xrightarrow{s} X \xrightarrow{g} N \xrightarrow{} Z[1]$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow h \qquad \qquad \downarrow 0$$

$$0 \longrightarrow Y \xrightarrow{\operatorname{id}_Y} Y \longrightarrow 0.$$

すなわち, $f = h \circ g$ である. h を延長して,

$$N \xrightarrow{h} Y \xrightarrow{t} Cone(h) \longrightarrow N[1].$$

が得られ $t \in S$ であり、 $t \circ f = t \circ g \circ h = 0$. 双対的に、

で得られるh'を延長して,

$$N'[-1] \longrightarrow \operatorname{Cone}(h')[-1] \xrightarrow{s} X \xrightarrow{h'} N'.$$

とすると、 $s \in S$ で $s \circ f = s \circ h' \circ g' = 0$

(MS5) N がシフトで閉じていることからわかる.

(MS6) $s, t \in S$ である以下の図式に対して、

 $f' \circ s = t \circ f$ であり、八面体公理から

 $M, N \in \mathcal{N}$ xor , $\zeta, \xi \in S$, lth thor , $\xi \circ \zeta \in S$ res thor ,

は以下の図式を可換にする.

命題 3.14. [KS06, p.320] \mathcal{A} をアーベル圏とする. ホモトピー圏 $\mathsf{K}(\mathcal{A})$ において、擬同型射全体の集合 $S:=\{f^{\bullet}\in \mathrm{Mor}(\mathsf{K}(\mathcal{A}))\mid \mathcal{H}^n(f^{\bullet})\colon \text{同型}\ \forall n\in\mathbb{Z}\}.$

K(A) における乗法系をなす.

定義 3.15 (三角圏の局所化). [KS06, p.320] 三角圏 \mathcal{T} とその乗法系 $S \subset \text{Mor}(\mathcal{T})$ に対し、局所化 (localization) $S^{-1}\mathcal{T}$ を次のように定義する.

- 対象集合は $Ob(S^{-1}T) := Ob(T)$ とする.
- 射の集合は、

$$\underset{X}{\overset{s}{\swarrow}} \overset{W}{\swarrow} \underset{Y}{\overset{f}{\swarrow}} (s \in S, \ f \in \operatorname{Hom}_{\mathcal{T}}(Z, Y)).$$

の同値類によって与えられ,次のように定義される:

$$\operatorname{Hom}_{S^{-1}\mathcal{T}}(X,Y) := \left\{ \begin{array}{cc} s & W \\ X & \end{array} \right. \mid s \in S, \ f \in \operatorname{Hom}_{\mathcal{T}}(Z,Y) \right\} / \sim.$$

ここで,以下の2つ

$$X$$
 X
 W_1
 Y
 Y
 X
 W_2
 Y
 Y
 Y

が同値 (\sim) であることを,ある対象 Z_3 と射 $t_1\colon W_3 \leadsto W_1$, $t_2\colon W_3 \leadsto W_2$, $t_1,t_2\in S$ が存在して,以下を満たすときと定める:

$$s_1 \circ t_1 = s_2 \circ t_2, \quad f_1 \circ t_1 = f_2 \circ t_2.$$

射の合成は,

$$X \xrightarrow{s} W \xrightarrow{f} Y \xrightarrow{t} W' \xrightarrow{g} Z.$$

に対し、定義 3.11 (MS3) より

$$X \xrightarrow{s} W \xrightarrow{t'} P \xrightarrow{v} W' \xrightarrow{g} Z.$$

が可換になるような P, t', v をとり、

と定める.

定義 3.16 (導来圏). A をアーベル圏とし、そのホモトピー圏を K(A) とする. このとき、A の導来圏 $\mathcal{D}(A)$ を

$$\mathcal{D}(\mathcal{A}) := S^{-1} \mathsf{K}(\mathcal{A}).$$

と定義する. ただし S は K(A) における擬同型射全体の乗法系である.

定義 3.17. \mathcal{A} をアーベル圏とする. 記号 $* \in \{\pm, b\}$ に対して,以下の部分圏をそれぞれ上に有界(bounded above),下に有界(bounded below),および有界(bounded)な複体からなる導来圏と呼び, $\mathcal{D}^*(\mathcal{A})$ ($* \in \{\pm, b\}$) と表す:

$$\mathcal{D}^{-}(\mathcal{A}) := \left\{ X^{\bullet} \in \mathcal{D}(\mathcal{A}) \, | \, \exists N \in \mathbb{Z}, \, \forall n > N, \, X^{n} = 0 \right\},$$

$$\mathcal{D}^{+}(\mathcal{A}) := \left\{ X^{\bullet} \in \mathcal{D}(\mathcal{A}) \, | \, \exists N \in \mathbb{Z}, \, \forall n < N, \, X^{n} = 0 \right\},$$

$$\mathcal{D}^{b}(\mathcal{A}) := \left\{ X^{\bullet} \in \mathcal{D}(\mathcal{A}) \, | \, \exists N \in \mathbb{Z}, \, \forall |n| > N, \, X^{n} = 0 \right\}.$$

命題 3.18. [KS06] アーベル圏 A は、自然にその導来圏 $\mathcal{D}(A)$ および有界導来圏 $\mathcal{D}^b(A)$ に充満忠実な部分圏として埋め込まれる.

この埋め込みは、各対象 $X \in A$ をゼロ次成分に X を持ち、他の次成分が 0 である複体

$$X^{\bullet} := (\cdots \to 0 \to X \to 0 \to \cdots).$$

に対応させることで与えられる. この対応により、 A における短完全列

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0.$$

は、 $\mathcal{D}^b(\mathcal{A})$ において完全三角形

$$X \xrightarrow{f} Y \xrightarrow{g} Z \to X[1].$$

を与える.

命題 3.19. [KS06, p.320] アーベル圏 $\mathcal A$ に対して,その導来圏 $\mathcal D^*(\mathcal A)$ $(* \in \{\pm, b, \emptyset\})$ は自然な三角圏の構造をもつ.

4 三角圏における基本概念

定義 4.1. [Gro57,] アーベル圏 A と三角圏 D に対して,Grothendieck 群 K(A) と K(D) をそれぞれ対象の同型類で自由生成された群を以下の群で割ったものであると定める.

$$\langle [Y] - [X] - [Z] \mid$$
 短完全列 $0 \to X \to Y \to Z \to 0$ が $\mathcal A$ で存在する. \rangle

$$\langle [Y] - [X] - [Z] \mid$$
 完全三角形 $X \to Y \to Z \to X[1]$ が \mathcal{D} で存在する. \rangle .

定義 4.2. [GM03, p.278] D を三角圏, C をその充満部分加法圏とする.

(i) \mathcal{C} の \mathcal{D} における右(左)直交部分圏 (right (left) orthogonal subcategory) \mathcal{C}^{\perp} , $^{\perp}\mathcal{C}$ を,

$$\mathcal{C}^{\perp} \coloneqq \{Y \in \mathcal{D} \mid \forall X \in \mathcal{C}, \ \operatorname{Hom}_{\mathcal{D}}(X,Y) = 0\}, \quad {}^{\perp}\mathcal{C} \coloneqq \{X \in \mathcal{D} \mid \forall Y \in \mathcal{C}, \ \operatorname{Hom}_{\mathcal{D}}(X,Y) = 0\}.$$

によって定める.

- (ii) \mathcal{C} が $X \in \mathcal{C}$ と $Y \in \mathcal{D}$ に対して $X \simeq Y$ ならば $Y \in \mathcal{C}$ が成り立つとき, \mathcal{D} の狭義充満部分圏(strictly full subcategory)という.
- (iii) $\mathcal C$ の $\mathcal D$ における thick 閉包(thick closure)は,直和因子を取る操作で閉じた最小の狭義充満部分三角圏であり,thick $\mathcal C$ と記す.
- (iv) C = thick C が成り立つとき、C を thick という.

 $X^{\bullet} \in \mathcal{D}^b(\mathcal{A})$ に対して、函手 $\tau_{\leq i}, \tau_{\geq i}, \sigma_{\leq i}, \sigma_{\geq i}$ を

$$\tau_{\leq i} X^{\bullet} := (\cdots \to X^{i-2} \to X^{i-1} \to \operatorname{Ker} d_X^i \to 0 \to \cdots),$$

$$\tau_{>i} X^{\bullet} := (\cdots \to 0 \to \operatorname{Im} d_X^i \to X^{i+1} \to X^{i+2} \to \cdots),$$

$$\sigma_{\leq i} X^{\bullet} := (\cdots \to X^{i-2} \to X^{i-1} \to X^i \to 0 \to \cdots),$$

$$\sigma_{>i} X^{\bullet} := (\cdots \to 0 \to X^{i+1} \to X^{i+2} \to X^{i+3} \to \cdots).$$

と定めると

$$\tau_{\leq i} X^{\bullet} \to X^{\bullet} \to \tau_{> i} X^{\bullet} \to \tau_{\leq i} X^{\bullet} [1],$$
(1)

$$\sigma_{>i}X^{\bullet} \to X^{\bullet} \to \sigma_{\le i}X^{\bullet} \to \sigma_{>i}X^{\bullet}[1].$$
 (2)

が完全三角形となる.

補題 4.3. [KS06] $X^{\bullet} \in D^b(A)$ に対し、Grothendieck 群 $K(D^b(A))$ の中で

$$[X^{\bullet}] = \sum_i (-1)^i [\mathcal{H}^i(X^{\bullet})] = \sum_i (-1)^i [X^i].$$

証明. 完全三角形 (2) により,

$$[X^{\bullet}] = [\sigma_{>i} X^{\bullet}] + [\sigma_{$$

が成り立つ。 X^{\bullet} は有界複体なので、繰り返し適用すれば

$$[X^{\bullet}] = \sum_{i \in \mathbb{Z}} [X^{i}[-i]].$$

完全三角形 $X\to 0\to X[1]\to X[1]$ を考えれば,[X]=-[X[1]] より $[X^\bullet]=\sum_{i\in\mathbb{Z}}(-1)^i[X^i]$ 同様に完全三角形 (1) により,

$$[X^{\bullet}] = [\tau_{\leq i} X^{\bullet}] + [\tau_{>i} X^{\bullet}].$$

繰り返し用いて,

$$\begin{split} [X^\bullet] &= \sum_{i \in \mathbb{Z}} ([\operatorname{Im} d_X^i[-i]] + [\operatorname{Ker} d_X^i[-i]]) \\ &= \sum_{i \in \mathbb{Z}} ((-1)^i (-[\operatorname{Im} d_X^{i-1}] + [\operatorname{Ker} d_X^i]), \end{split}$$

 $0 o \operatorname{Im}_X^{i-1} o \operatorname{Ker} d_X^i o \mathcal{H}^i(X) o 0$ の短完全列より

$$= \sum_{i \in \mathbb{Z}} (-1)^i [\mathcal{H}^i(X^{\bullet})].$$

命題 4.4. [KS06] A から $\mathcal{D}^b(A)$ への自然な埋め込みによって,

$$K(\mathcal{A}) \to K(\mathcal{D}^b(\mathcal{A})).$$

で群の同型が与えられる.

証明. A での短完全列は $\mathcal{D}^b(A)$ での完全三角形を対応させるので well-defined である.

$$\phi([X]) := [(\cdots \to 0 \to X \to 0 \to \cdots)],$$

$$\psi([X^{\bullet}]) := \sum_{i} (-1)^{i} [\mathcal{H}^{i}(X^{\bullet})].$$

と定めると互いに逆を与えている.

定義 4.5 (例外対象). [BK89] \mathbb{C} -線形な三角圏 \mathcal{D} における対象 $E \in \mathcal{D}$ が 次の条件を満たすとき,例外対象 (exceptional object) という:

$$\operatorname{Hom}_{\mathcal{D}}(E, E) \cong \mathbb{C}, \quad \operatorname{Hom}_{\mathcal{D}}(E, E[n]) = 0 \quad \forall n \neq 0.$$

定義 4.6 (例外列). [BK89] 有限個の対象の列 $(E_1, E_2, ..., E_r)$ が次の条件をみたすとき,三角圏 \mathcal{D} における例外列 (exceptional collection) であるという:

- 各 *E_i* は例外対象である.
- 任意の i > j に対して

$$\operatorname{Hom}_{\mathcal{D}}(E_i, E_i[n]) = 0 \quad \forall n \in \mathbb{Z}.$$

定義 4.7 (強例外列). [BK89] 例外列 (E_1,\ldots,E_r) が

$$\operatorname{Hom}_{\mathcal{D}}(E_i, E_j[n]) = 0 \quad \forall i, j, \ \forall n \neq 0.$$

を満たすとき、強例外列(strong exceptional collection)という.

定義 4.8 (完全強例外列). [BK89] 強例外列 (E_1,\ldots,E_r) が、三角圏 $\mathcal D$ を生成するとき、すなわち

$$\mathcal{D} = \langle E_1, \dots, E_r \rangle.$$

を満たすとき、完全強例外列 (full strong exceptional collection) という.

定義 4.9 (傾斜対象). [BK89] 三角圏 \mathcal{D} において、対象 $T \in \mathcal{D}$ が、次の二条件を満たすとき、傾斜対象 (tilting object) という:

- 1. $\operatorname{Hom}_{\mathcal{D}}(T,T[i])=0$ が $i\neq 0$ に対して成り立つ.
- 2. T は D を生成する:

$$\mathcal{D} = \langle T \rangle$$
.

定理 4.10. [BK89] \mathbb{C} -線型三角圏 \mathcal{D} を考える. $T\in\mathcal{D}$ が傾斜対象であるとき, $A:=\operatorname{End}_{\mathcal{D}}(T)$ とすると導来 函手:

$$\mathbb{R}\mathrm{Hom}_{\mathcal{D}}(T,-)\colon \mathcal{D}\longrightarrow \mathcal{D}^b(\mathrm{mod}\text{-}A)$$

によって、圏同値を与えられる.

証明. <mark>要証明</mark>

定理 4.11. [BK89] $\mathbb C$ 線型三角圏 $\mathcal D$ において、強例外生成列 (E_1,\ldots,E_n) が存在するとき、その直和

$$T := \bigoplus_{i=1}^{n} E_i.$$

は D における傾斜対象 (tilting object) である.

証明. E_1, \ldots, E_n の定義から,三角圏を生成し 1 次以上の Ext が消えていることがわかる.

5 t-structure

アーベル圏に対して導来圏を構成する操作は、対象を複体へと拡張し、ホモロジー的構造を三角形として扱うことにより、理論を高次化・柔軟化するものである。この構成により得られた導来圏において、逆にアーベル圏的な構造を回復するための枠組みとして、t-構造が導入される。t-構造は、三角圏の中に核と呼ばれるアーベル圏を定めることで、アーベル圏から導来圏を作る操作に対して「逆の操作」を与えるものと見なせる。このような視点は、導来圏上の安定性条件や構造の分類を行う上でも基本的な役割を果たす。

定義 5.1. [BBD, p.29] \mathcal{D} を三角圏. 直和因子と同型を取る操作で閉じている加法部分圏 $\mathcal{D}^{\leq 0}$, $\mathcal{D}^{\geq 0}$ $\subset \mathcal{D}$ が次 の条件を満たすとき, $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ を \mathcal{D} の t-構造 (t-structure) と呼ぶ. $\mathcal{D}^{\leq n} := \mathcal{D}^{\leq 0}[-n]$, $\mathcal{D}^{\geq n} := \mathcal{D}^{\geq 0}[-n]$

- (i) $\mathcal{D}^{\leq 0} \subset \mathcal{D}^{\leq 1}$ $\mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0}$
- (ii) $\mathcal{D}^{\geq 1} \subset (\mathcal{D}^{\leq 0})^{\perp}$. つまり、任意の $X \in \mathcal{D}^{\leq 0}, Y \in \mathcal{D}^{\geq 1}$ に対して、 $\operatorname{Hom}_{\mathcal{D}}(X,Y) = 0$ である.
- (iii) 任意の $X \in \mathcal{D}$ に対して

$$\tau_{\le 0} X \to X \to \tau_{\ge 1} X \to \tau_{\le 0} X[1].$$

となるような $\tau_{\leq 0}X\in\mathcal{D}^{\leq 0},\ \tau_{\geq 1}X\in\mathcal{D}^{\geq 1}$ が存在する.

命題 5.2. [BBD, p.30] \mathcal{D} を三角圏, $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ を \mathcal{D} の t-構造とするとき, 以下が成り立つ.

- (i) $\mathcal{D}^{\geq 1} = (\mathcal{D}^{\leq 0})^{\perp}$
- (ii) $E \in \mathcal{D}$ に対して, $\tau_{\leq 0}E \in \mathcal{D}^{\leq 0}, \tau_{\geq 1}E \in \mathcal{D}^{\geq 1}$ は同型を除いて一意に定まり, $\tau_{\leq 0}, \tau_{\geq 1}$ は函手になっている.

証明. $X \in (\mathcal{D}^{\leq 0})^{\perp}$ を任意にとる. 定義より以下の完全三角形がとれる.

$$\tau_{<0}X \to X \to \tau_{>1}X \to \tau_{<0}X[1].$$

定義より, $\tau_{\leq 0}X \to X$ は 0 射であるので, $\tau_{\geq 1}X \simeq X \oplus \tau_{\leq 0}X[1] \in \mathcal{D}^{\geq 1}$.直和因子と同型を取る操作で閉じているので $X \in \mathcal{D}^{\geq 1}$.

一意性と函手的であることについては、 $X,X'\in\mathcal{D},\ f\in\mathrm{Hom}_{\mathcal{D}}(X,X')$ に対して、t-構造の定義より $Y,Y'\in\mathcal{D}^{\leq 0},\ Z,Z'\in\mathcal{D}^{\geq 1}$ で以下が完全三角形になるものがとれる.

 $g \in \operatorname{Hom}_{\mathcal{D}}(Y,Y'), \ h \in \operatorname{Hom}_{\mathcal{D}}(Z,Z')$ が一意的に存在する.したがって, $\tau_{\leq 0}f \coloneqq g, \ \tau_{\geq 1}f \coloneqq h$ と定めると一意性より,函手的であることがわかる.

別の $Y \in \mathcal{D}^{\leq 0}$, $Z \in \mathcal{D}^{\geq 1}$ と完全三角形

$$Y \to X \to Z \to Y[1].$$

があったとすると、完全三角形の間の射 $f \in \operatorname{Hom}_{\mathcal{D}}(\tau_{\leq 0}X,Y), f' \in \operatorname{Hom}_{\mathcal{D}}(\tau_{\geq 1}X,Z)$ が一意に存在する.

$$\tau_{\leq 0}X \longrightarrow X \longrightarrow \tau_{\geq 1}X \longrightarrow \tau_{\leq 0}X[1]$$

$$\downarrow^{f} \qquad \qquad \downarrow^{g} \qquad \qquad \downarrow^{f[1]}$$

$$Y \longrightarrow X \longrightarrow Z \longrightarrow Y[1]$$

$$\downarrow^{f'} \qquad \qquad \downarrow^{g'} \qquad \qquad \downarrow^{f'[1]}$$

$$\tau_{\leq 0}X \longrightarrow X \longrightarrow \tau_{\geq 1}X \longrightarrow \tau_{\leq 0}X[1].$$

一意性より $f' \circ f = \mathrm{id}, \ g' \circ g = \mathrm{id}$ がわかり、同様に逆もいえるので同型を除いて一意的である.

定義 5.3. [BBD, p.31] $(D^{\leq 0}, \mathcal{D}^{\geq 0})$ が t-構造を与えるとき, \mathcal{D} の部分圏 $\mathcal{H} \coloneqq \mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$ は t-構造の核 (the heart of t-structure) と呼ばれる.

命題 5.4. [BBD, p.33] *H* はアーベル圏である.

証明. まず、 H は核、 余核をもつことを示す.

 $A,B\in\mathcal{H},\ f\in \mathrm{Hom}_{\mathcal{H}}(A,B)$ を任意にとる. このとき、三角圏の公理より以下の完全三角形

$$C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C[1].$$

が存在する. t-構造の定義より

$$X \xrightarrow{x} C[1] \xrightarrow{y} Y \to X[1].$$

が完全三角形となるような $X \in \mathcal{D}^{\leq -1}, Y \in \mathcal{D}^{\geq 0}$ が存在する. このとき、

$$y \circ g \colon B \to Y$$
.

が f の余核を与えることを示す. 八面体公理より,

$$B \xrightarrow{g} C[1] \longrightarrow A[1] \longrightarrow B[1]$$

$$\parallel \qquad \qquad y \downarrow \qquad \qquad \parallel \qquad \qquad \parallel$$

$$B \xrightarrow{g \circ g} Y \longrightarrow M[1] \longrightarrow B[1]$$

$$\downarrow g \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow f[1]$$

$$C[1] \xrightarrow{g} Y \longrightarrow X[1] \longrightarrow C[1]$$

$$\downarrow h \downarrow \qquad \qquad \downarrow h[1]$$

$$A[1] \longrightarrow M[1] \longrightarrow X[1] \longrightarrow A[2].$$

以下の完全三角形が存在する。定義より、 $A \in \mathcal{H} \subset \mathcal{D}^{\leq 0}$ 、 $X \in \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0}$ であり、

$$A \to M \to X \to A[1].$$

 $M\in\mathcal{D}^{\leq 0}$ がわかる. $B\in\mathcal{H}\subset\mathcal{D}^{\leq 0},\ A[1]\in\mathcal{D}^{\leq -1}\subset\mathcal{D}^{\leq 0}$ より $C[1]\in\mathcal{D}^{\leq 0}$ がしたがう. $X[1]\in\mathcal{D}^{\leq -2}\subset\mathcal{D}^{\leq 0}$ と合わせて、 $Y\in\mathcal{D}^{\leq 0}$ がしたがう. 取り方により $Y\in\mathcal{D}^{\geq 0}$ だったので $Y\in\mathcal{H}$ がわかる.

 $Q \in \mathcal{H}$ と $q \circ f = 0$ を満たす $q \in \operatorname{Hom}_{\mathcal{H}}(B,Q)$ を任意にとると, $q = q' \circ g$ を満たす $q' \in \operatorname{Hom}_{\mathcal{D}}(C[1],Q)$ が存在する.

$$A \xrightarrow{f} B \xrightarrow{g} C[1]$$

$$Q \qquad Q \qquad .$$

また, $X \in \mathcal{D}^{\leq -1}$, $Q \in \mathcal{D}^{\geq 0}$ なので $q' \circ x = 0$. したがって, $q' = q'' \circ y$ を満たす $q'' \in \operatorname{Hom}_{\mathcal{D}}(Y,Q)$ が存在する.

$$X \xrightarrow{x} C[1] \xrightarrow{y} Y$$

$$Q \xrightarrow{q'} Q''$$

完全三角形:

$$A \to B \xrightarrow{g} C[1] \to A[1].$$

に対して、コホモロジー的函手 $\mathrm{Hom}_{\mathcal{D}}(-,Q)$ を作用させると $A[1]\in\mathcal{D}^{\leq -1}$ なので $\mathrm{Hom}_{\mathcal{D}}(A[1],Q)=0$ から完全列:

$$0 \to \operatorname{Hom}_{\mathcal{D}}(C[1], Q) \to \operatorname{Hom}_{\mathcal{D}}(B, Q).$$

が存在して、 $q = q' \circ g$ となる q' の一意性がわかる. 同様に、以下の完全三角形を考えて、

$$X \xrightarrow{x} C[1] \xrightarrow{y} Y \to X[1].$$

 $X[1] \in \mathcal{D}^{\leq -1}$ なので,

$$0 \to \operatorname{Hom}_{\mathcal{D}}(Y[1], Q) \to \operatorname{Hom}_{\mathcal{D}}(C[1], Q).$$

 $q'=q''\circ y$ となる q'' の一意性がわかる. したがって, $y\circ g\colon B\to Y$ が $f\colon A\to B$ の余核を与えていること が示された. 双対的に核の存在も証明される.

核、余核の存在は示されたので任意の射 $f \in \operatorname{Hom}_{\mathcal{H}}(A,B)$ に対して、自然な同型

$$\operatorname{Im}(f) \simeq \operatorname{Coim}(f)$$
.

の存在を言えばよい. 完全三角形

$$C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C[1].$$

に対して、 $X \in \mathcal{D}^{\leq -1}$ 、 $Y \in \mathcal{D}^{\geq 0}$ をとって

$$X \xrightarrow{x} C[1] \xrightarrow{y} Y \to X[1].$$

と完全三角形にしたものをとったときに $g \circ g \colon B \to Y$ が f の余核であった. $\operatorname{cok} f$ を延長して

$$M \xrightarrow{m} B \xrightarrow{\operatorname{cok} f} \operatorname{Cok} f \to M[1].$$

 $M \in D^{\leq 0}$ なので $\ker(\operatorname{cok} f) = m$ である. したがって $\operatorname{Im} f = M$. 双対的に、

$$X[-1] \xrightarrow{x[-1]} C \to Y[-1] \to X.$$

で $e \circ x[-1]: X[-1] \to A$ が f の核を与えていて、 $\operatorname{Coim} f = M$ となり、 $\operatorname{Coim} f \simeq \operatorname{Im} f$ がわかった.

アーベル圏 A に対して導来圏 $\mathcal{D}(A)$ を構成する際、理論的には無限に広がる複体全体を扱う必要があるが、実際の応用や計算においては、ある次数において消える複体に制限した有界導来圏 $\mathcal{D}^b(A)$ を考えることが多い。これは、現実的な対象や関手の振る舞いが有界な範囲に収まることが多いためである。同様の観点から、三角圏における t-構造を考える際にも、t-構造の核が有界な複体に対応するような有界な t-構造を考えるのが自然である。

定義 5.5. [BBD] 三角圏 \mathcal{D} の t-構造 $\mathcal{D}^{\leq 0} \subset \mathcal{D}$ が次の式を満たすとき,有界であるという.

$$\mathcal{D} = \bigcup_{i,j \in \mathbb{Z}} (\mathcal{D}^{\leq i} \cap \mathcal{D}^{\geq j}).$$

命題 **5.6.** [BBD] $\mathcal D$ を三角圏, $\mathcal A\subset\mathcal D$ を充満部分加法圏としたとき, $\mathcal A$ 有界な t-構造 $\mathcal F\subset\mathcal D$ の核であることと以下の条件が同値.

- (i) 任意の $k_1, k_2 \in \mathbb{Z}$ $(k_1 > k_2)$ と $A, B \in \mathcal{A}$ に対して、 $\operatorname{Hom}_{\mathcal{D}}(A[k_1], B[k_2]) = 0$
- (ii) 任意の対象 $X \in \mathcal{D}$ に対して,有限の整数の列 $k_1 > k_2 \cdots > k_n$ が存在して $A_j \in \mathcal{A}[k_j]$ とした以下の分解が存在する.

$$0 = X_0 \xrightarrow{f_0} X_1 \longrightarrow \cdots \longrightarrow X_{n-2} \xrightarrow{f_{n-2}} X_{n-1} \xrightarrow{f_{n-1}} X_n = X$$

$$[1] \xrightarrow{f_0} X_1 \longrightarrow \cdots \longrightarrow X_{n-2} \xrightarrow{f_{n-2}} X_{n-1} \xrightarrow{f_{n-1}} X_n = X$$

$$A_1 \longrightarrow A_n$$

証明.

A を t-構造の核としたとき (i),(ii) を示す. (i) については, $A[k_1] \in \mathcal{D}^{\leq -k_1}$, $B[k_2] \in \mathcal{D}^{\geq -k_2}$ なので, $\operatorname{Hom}_{\mathcal{D}}(A[k_1],B[k_2])=0$,t-構造が有界なことから $A_n \coloneqq \tau_{\geq -k_n}X$ が 0 にならない最小の k_n が存在する.t-構造の定義から完全三角形

$$X_{n-1} \to X \to A_n \to X_{n-1}[1].$$

が存在する. ただし $X_{n-1} \in \mathcal{D}^{\leq -k_n-1}$ である. k_{n+1} を k_n より大きい数で $\tau_{\geq -k_{n-1}}X_n$ が 0 にならない最小の数として,同様の手順を繰り返せば有界な t-構造であることから有限回の手続きで終了する. したがって条件が満たされていることが確認された. 逆については,

$$\mathcal{D}^{\geq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(A[k], X), \ \forall A \in \mathcal{A}, k > 0 \},$$
$$\mathcal{D}^{\leq 0} := \{ X \in \mathcal{D} \mid \operatorname{Hom}_{\mathcal{D}}(X, A[k]), \ \forall A \in \mathcal{A}, k < 0 \}.$$

と定めると、定義から $D^{\leq 0}\subset \mathcal{D}^{\leq 1}=\mathcal{D}^{\leq 0}[-1],\ \mathcal{D}^{\geq 1}\subset \mathcal{D}^{\geq 0}, \mathcal{D}^{\geq 1}\subset (\mathcal{D}^{\leq 0})^{\perp}$ がわかる.また,八面体公理 から $X_{n-2}\to X_n\to A\to X_{n-2}[1],\ A_{n-1}\to A\to A_n\to A_{n-1}[1]$ の 2 つの完全三角形が存在し,コホモロ ジー的函手 $\mathrm{Hom}_{\mathcal{D}}(-,X[1])$ を 2 つ目の完全三角形に作用させることで $A\in \mathcal{D}^{\geq 1}$ がわかる.これを $k_j\leq -1$ を満たす最大の j まで繰り返すと,完全三角形

$$X_{j-1} \to X \to A \to X_{j-1}[1].$$

で $X_{j-1}\in\mathcal{D}^{\leq 0},\ A\in\mathcal{D}^{\geq 1}$ となるものが得られて、t-構造となっていることがわかる.

命題 5.7. [GM03, p.283] t-構造が与えられた三角圏 $\mathcal D$ において,命題 5.2 の τ を用いて以下の函手

$$\begin{array}{cccc} H^0\colon & \mathcal{D} & \longrightarrow & \mathcal{A} \\ & & & & \psi \\ & X & \longmapsto & \tau_{\geq 0}\tau_{\leq 0}X. \end{array}$$

を定義すると H^0 はコホモロジー的函手である.

証明. 任意の完全三角形

$$X \to Y \to Z \to X[1].$$

に対して,

$$H^0(X) \to H^0(Y) \to H^0(Z)$$
.

が完全列になることを示せば良い. 要証明

定義 5.8. [GM03, p.285] $\mathcal{D}, \mathcal{D}'$ を t-構造を持った三角圏とする. このとき, 函手 $F: \mathcal{D} \to \mathcal{D}'$ が以下の条件をみたすとき, t-完全函手という.

- (i) F は完全函手である. つまり、シフト函手 [1] と可換で $\mathcal D$ の完全三角形を $\mathcal D'$ の完全三角形にうつす.
- (ii) $F(\mathcal{D}^{\geq 0}) \subset D'^{\geq 0}$ かつ $F(\mathcal{D}^{\leq 0}) \subset D'^{\leq 0}$

命題 5.9. [GM03, p.286] \mathcal{D} を三角圏, $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ を有界な t-構造, $\mathcal{A} = \mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$ をその核とする. このとき, $X,Y \in \mathcal{A}$ に対し,

$$\operatorname{Ext}_{\mathcal{D}}^{i}(X,Y) = \operatorname{Hom}_{\mathcal{D}}(X,Y[i]),$$

$$\operatorname{Ext}_{\mathcal{A}}^{i}(X,Y) = \operatorname{Hom}_{\mathcal{D}^{b}(\mathcal{A})}(X,Y[i]).$$

と定める. このとき,

$$\operatorname{Ext}^i_{\mathcal D}(X,Y) \times \operatorname{Ext}^j_{\mathcal D}(Y,Z) \to \operatorname{Ext}^{i+j}_{\mathcal D}(X,Z).$$

が定まる. $F: \mathcal{D}^b(\mathcal{A}) \to \mathcal{D}$ を t-完全函手としたとき,この函手が圏同値を与えることと $\operatorname{Ext}^1_{\mathcal{D}}$ が $\operatorname{Ext}^\star_{\mathcal{D}}$ を生成すること (すなわち,任意の $X,Y \in \mathcal{A},\ \alpha \in \operatorname{Ext}^i_{\mathcal{D}}(X,Y)$ に対して, $\beta_1\beta_2\ldots\beta_i,\ \beta_j \in \operatorname{Ext}^1_{\mathcal{D}}(X_j,X_{j+1})$ とかける.) は同値である.

証明. Ext_A^1 は Ext_A^* を生成しているので,F が圏同値を与えているのならば Ext_D^1 は Ext_D^* を生成していなければならない.逆に, Ext_D^1 が Ext_D^* を生成していたとする.圏同値であることを示すには F が充満忠実で

本質的全射であることを示せば良い.

任意の $X, Y \in \mathcal{D}^b(\mathcal{A})$ に対して、

$$F : \operatorname{Hom}_{\mathcal{D}^b(\mathcal{A})}(X,Y) \simeq \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y)).$$

要証明

6 Bridgeland 安定性条件

定義 6.1. [Bri07] 三角圏 $\mathcal D$ において,充満部分加法圏の族 $\{\mathcal P(\phi)\}_{\phi\in\mathbb R}\subset\mathcal D$ が,次の条件を満たすとき,スライスという:

- 任意の $\phi \in \mathbb{R}$ に対して, $\mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1]$ が成り立つ.
- 任意の $\phi_1 > \phi_2$ に対して、 $X_i \in \mathcal{P}(\phi_i)$ であるならば、 $\operatorname{Hom}_{\mathcal{D}}(X_1, X_2) = 0$ である.
- 任意の対象 $X \in \mathcal{D}$ に対して,実数列 $\phi_1 > \phi_2 > \cdots > \phi_n$ と $Y_i \in \mathcal{P}(\phi_i)$ が存在し,次のような完全三角形の列による分解が存在する:

スライス $\mathcal P$ と群準同型 $Z\colon K(\mathcal D)\to\mathbb C$ の組 $(\mathcal P,Z)$ を Bridgeland 安定性条件という.ただし,Z は以下の条件をみたすものとする.

任意の $0 \neq E \in \mathcal{P}(\phi)$ に対して、ある $m(E) \in \mathbb{R}_{>0}$ 存在して、

$$Z(E) = m(E)e^{i\pi\phi}$$
.

と表すことができる.

定義 6.2. [Bri07] A をアーベル圏とする. 群準同型:

$$Z: K(\mathcal{A}) \longrightarrow \mathbb{C}.$$

が次の条件を満たすとき、アーベル圏 A 上の安定性条件という:

(i) 任意の $X \in A$, $X \neq 0$ に対して, $Z(X) \in \mathbb{H}$ を満たす. ただし,

$$\mathbb{H} := \{ re^{i\pi\phi} \in \mathbb{C} \mid r > 0, \ 0 < \phi \le 1 \}.$$

と定める.このとき, $Z(X)=|Z(X)|e^{i\pi\phi(X)}$ と書けるような $\phi(X)\in(0,1]$ を位相(phase)と呼ぶ.

(ii) 任意の $X \in A$ に対して、次のような完全列

$$0 = X_0 \subset X_1 \subset \cdots \subset X_k = X.$$

が存在して、各被対象 $Y_i := X_i/X_{i-1}$ が Z に関して Z-半安定であり、かつその位相が

$$\phi(Y_1) > \phi(Y_2) > \dots > \phi(Y_k).$$

を満たす. このような列を Harder-Narasimhan 分解 (HN 分解)と呼ぶ.

ここで、非零対象 $X \in \mathcal{A}$ が任意の非零部分対象 $0 \neq Y \subseteq X$ に対して、

$$\phi(Y) \leq \phi(X)$$
.

が成り立つとき、X は Z-半安定であるという.

補題 6.3. [$Bri\theta$ 7] \mathcal{D} を t-構造が与えられた三角圏,その核に安定性条件が与えられているとする. $X,Y \in \mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$ が半安定で $\phi(X) > \phi(Y)$ であるとき,

$$\operatorname{Hom}_{\mathcal{D}}(X,Y) = 0.$$

である.

証明. $f \in \text{Hom}_{\mathcal{D}}(X,Y)$ が 0 でないと仮定する.

$$0 \to \operatorname{Ker} f \to X \to \operatorname{Im} f \to 0.$$

の完全列が存在して X が半安定対象であることから $\phi(\operatorname{Im} f) \geq \phi(X)$. $\operatorname{Im} f \neq 0$ が Y の部分対象で Y も半安定であることから $\phi(Y) \geq \phi(\operatorname{Im} f)$. これらを合わせると $\phi(Y) \geq \phi(X)$. 仮定に矛盾.

命題 6.4. [Bri07] 三角圏 \mathcal{D} に対して, \mathcal{D} 上の有界な t-構造と,その核のアーベル圏上の stability 函数 Z を与えることと, \mathcal{D} 上の Bridgeland 安定性条件 (Z,\mathcal{P}) で,任意の $\phi \in \mathbb{R}$ と $0 \neq X \in \mathcal{P}(\phi)$ に対して $Z(X) \in \mathbb{R}_{>0}e^{i\pi\phi}$ を満たすものを与えることは同値である.

証明. アーベル圏上の安定性条件 $(Z, A) \to \Xi$ 角圏上の Bridgeland 安定性条件 $\mathcal P$ の構成 各 $0 < \phi \le 1$ に対して、

$$\mathcal{P}(\phi) := \{ X \in \mathcal{A} \mid X \colon Z \text{-} \text{\sharp} \text{\sharp} \text{\sharp} Z(X) \in \mathbb{R}_{>0} e^{i\pi\phi} \} \cup \{0\}.$$

 $\phi \in \mathbb{R}, \phi \in (k, k+1]$ となる整数 k をとって

$$\mathcal{P}(\phi) := \mathcal{P}(\phi - k)[k].$$

こう定めたとき、Bridgeland 安定性条件を定めていることを確かめる.

- 任意の $\phi \in \mathbb{R}$ に対して、 $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ は定義から従う.

このとき $Y_1,Y_2\in\mathcal{P}((0,1])$ を用いて、 $X_1=Y_1[m],\ X_2=Y_2[n],(m>n$ または $m=n,\ \phi(Y_1)>\phi(Y_2))$ とかける。m=n のときは補題 (6.3) より 0 であることがわかる。m>n のとき $\mathrm{Hom}_{\mathcal{D}}(Y_1[m],Y_2[n])\simeq\mathrm{Hom}_{\mathcal{D}}(Y_1,Y_2[-(m-n)])$ なので、 $\mathrm{Hom}_{\mathcal{D}}(Y_1,Y_2[-k])=0,\ (k>0)$ を示せばよいが、 $Y_1\in\mathcal{D}^{\leq 0},\ Y_2[-k]\in\mathcal{D}^{\geq k}$ なので t -構造の定義より 0 となることがわかる。

分解をもつことは t-構造の性質より、整数の列 $k_1 > k_2 \cdots > k_n$ と分解

 $A_j \in \mathcal{A}$ が存在する.各 A_j には仮定より HN 分解が存在するので更に分解することで 3 つ目の条件が得られる.

逆に \mathcal{P} が与えられたとき, $\mathcal{F}^{\perp}[1] = \mathcal{D}^{\geq 0} \coloneqq \mathcal{P}((0,\infty)), \mathcal{F} = \mathcal{D}^{\leq 0} \coloneqq \mathcal{P}((-\infty,1])$ が t-構造を定めることを確かめる.

- $\bullet \ \mathcal{D}^{\leq 0} \subset \mathcal{D}^{\leq 1} \quad \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0}$
- $\mathcal{D}^{\geq 1} \subset (\mathcal{D}^{\leq 0})^{\perp}$. つまり、任意の $X \in \mathcal{D}^{\leq 0}, Y \in \mathcal{D}^{\geq 1}$ に対して、 $\operatorname{Hom}_{\mathcal{D}}(X,Y) = 0$ である上記 2 つの条件については、スライスの定め方からしたがう.
- 任意の $X \in \mathcal{D}$ に対して

$$\tau_{<0}X \to X \to \tau_{>1}X \to \tau_{<0}X[1].$$

となるような $\tau_{\leq 0}X \in \mathcal{D}^{\leq 0}, \ \tau_{\geq 1}X \in \mathcal{D}^{\geq 1}$ が存在する.

スライスの定義から、任意の $X \in \mathcal{D}$ に対して、実数列 $\phi_1 > \phi_2 > \cdots > \phi_n$ と $Y_i \in \mathcal{P}(\phi_i)$ と以下の分解:

が存在する. 八面体公理より, $Y_{1,2}, Y_{n-1,n}$ が存在して,

それぞれ, 二行目が完全三角形なので,

とできる。また、四行目の完全三角形より $Y_1,Y_2\in\mathcal{D}^{\geq 1}$ なら、 $Y_{1,2}\in\mathcal{D}^{\geq 1}$ であり、 $Y_{n-1},Y_n\in\mathcal{D}^{\leq 0}$ なら、 $Y_{n-1,n}\in\mathcal{D}^{\leq 0}$ がわかる。この操作を $\phi_k>1$ と $\phi_k\leq 1$ まで左右とも続ければ、

$$\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to \tau_{\leq 0}X[1].$$

が完全三角形となるような $au_{\leq 0}X\in \mathcal{D}^{\leq 0},\ au_{\geq 1}X\in \mathcal{D}^{\geq 1}$ の存在がわかる.

命題 6.5. [Bri07] A: アーベル圏,群準同型 Z: $K(A) \to \mathbb{C}$ が次の条件を満たすとき,HN 分解が存在する. つまり Z が安定性条件を定める.

(i) 全射の無限列

$$X_1 \twoheadrightarrow X_2 \twoheadrightarrow X_3 \twoheadrightarrow \cdots$$
.

で $\phi(X_i) > \phi(X_{i+1})$ となるものは存在しない.

(ii) 無限降下列

$$X_1 \supset X_2 \supset X_3 \supset \cdots$$
.

で $\phi(X_{i+1}) > \phi(X_i)$ となるものは存在しない.

証明.

Step 1

- •任意の対象 $X \in A$ には $\phi(A) \ge \phi(X)$ を満たす半安定な部分対象 A が存在する.
- •任意の対象 $X \in \mathcal{A}$ には $\phi(X) \ge \phi(B)$ を満たす半安定な対象 B と全射 $X \to B$ が存在する. X が半安定なら OK. そうでないなら $\phi(X') > \phi(X)$ となる部分対象 $X'(\subsetneq X)$ がとれる.

これが無限回繰り返されると条件の (ii) に矛盾するので有限回でとまる.この極小となる A をとれば半安定で \mathbf{x} \mathbf{z}

同様に X が半安定なら全射 $X \xrightarrow{\mathrm{id}} X$ がとれて OK. そうでないとき, $X'(\subseteq X)$ で, $\phi(X') > \phi(X)$ が存在し

て、B' := X/X' と定めると $\phi(X) \ge \phi(B')$ であり、 $X \to X/X'$ がとれて、有限回でこの操作はとまるのでいずれ半安定になる。

Step 2

 $X \rightarrow B$ が次の条件をみたすとき極大不安定商 (mdq) と呼ぶ.

- $\bullet \phi(X) \ge \phi(B)$
- •任意の $X \rightarrow B'$ に対して、 $\phi(B') \ge \phi(B)$ であり、 $\phi(B') = \phi(B)$ なら

$$X \twoheadrightarrow B \twoheadrightarrow B'$$
.

と分解.

このとき,任意の対象 X は mdq を持つことがわかる.X woheadrightarrow B' が半安定でないなら Step 1 から 半安定な対象 B'' で $\phi(B') > \phi(B'')$ と B' woheadrightarrow B'' がとれるので,B' が半安定なときについて示せばよい.同様に mdq の B は半安定でなければならない.

X が半安定対象のとき、任意の全射 $X \rightarrow B'$ に対して、短完全列

$$0 \to \operatorname{Ker} f \to X \xrightarrow{f} B' \to 0.$$

が存在するので $Z(B') = Z(X) - Z(\operatorname{Ker} f)$. 安定対象なので、 $\phi(\operatorname{Ker} f) \leq \phi(X)$

したがって、 $\phi(B') \ge \phi(X)$ となり X が半安定対象のとき、 $X \xrightarrow{\mathrm{id}} X$ は mdq となる. そうでないとき、step1 より $\phi(A) > \phi(X)$ なる半安定対象 $A \subseteq X$ と

$$0 \to A \to X \to X' \to 0.$$

という完全列が存在する. $\phi(A)>\phi(X')$ となっている. $X'\to B$ が X' の mdq となっているとき, 合成 $X\to B$ は X の mdq であることを示す.

 $::X \to B'$ を半安定で $\phi(B') \le \phi(B)$ となっているとすると

$$\phi(A) > \phi(X) > \phi(X') \ge \phi(B) \ge \phi(B').$$

A,B' は半安定対象であり、前の補題より $\operatorname{Hom}_{\mathcal{D}}(A,B')=0$

$$A \xrightarrow{0} X \xrightarrow{*} X/A = X'.$$

図式のように可換にする全射が普遍性から存在する. X' woheadrightarrow B が mdq なので $\mu(B') = \mu(B)$ となり、mdq の 条件より X' woheadrightarrow B woheadrightarrow B' と経由する. したがって X woheadrightarrow B woheadrightarrow B' が存在し、X woheadrightarrow B が mdq であることがわかる

X' が mdq でない場合は X を X' に取り替えて議論を繰り返すことと条件 (ii) から有限回でとまるので mdq の存在がわかる.

Step 3

任意の $X \in \mathcal{A}$ は HN 分解をもつ。0 でない $X \in \mathcal{A}$ を任意にとる。X が半安定なら $0 \subset X$ が HN 分解を与えている。そうでないとき, $X \twoheadrightarrow B^1$ を mdq として

$$0 \to X^1 \to X \to B^1 \to 0.$$

をとる. X^1 が半安定であるなら $0 \subsetneq X^1 \subsetneq X$ が HN 分解になっている. $(X/X^1 \simeq B$ で mdq の B が半安定であるため). X^1 が mdq でないとき, $X^1 \to B^2$ を mdq として

$$0 \to X^2 \to X^1 \to B^2 \to 0.$$

 $Q=X/X^2$ とすると、 $X \to B^1$ が mdq であることから $\phi(Q) \geq \phi(B^1)$ であり、次の短完全列

$$0 \to B^2 \to Q \to B^1 \to 0.$$

から $\phi(B^2) \geq \phi(Q)$ が得られる. $\phi(B^2) = \phi(Q) = \phi(B^1)$ と仮定すると, $X \twoheadrightarrow B^1$ が mdq であることから $X \twoheadrightarrow B^1 \twoheadrightarrow Q$ となって, B^1 と Q の双方向に全射があることから $B^1 \simeq Q$ となり, $B^2 = 0$. これは矛盾. したがって, $\phi(B^2) > \phi(B^1)$ が成り立つ.この操作は条件(ii)より有限回でとまり,その商は半安定なので HN 分解を得る.

7 Bridgeland 安定性条件の空間

定義 7.1. [Bri07] Slice(\mathcal{D}) を \mathcal{D} 上のスライスの集合, \mathcal{P} , $\mathcal{Q} \in \operatorname{Slice}\mathcal{D}$ に対して,

$$d(\mathcal{P},\mathcal{Q})\coloneqq \sup_{0\neq E\in\mathcal{D}}\{|\phi_{\mathcal{P}}^{-}(E)-\phi_{\mathcal{Q}}^{-}(E)|,|\phi_{\mathcal{P}}^{+}(E)-\phi_{\mathcal{Q}}^{+}(E)|\}.$$

と定義する. (Slice(\mathcal{D}), d) は、距離空間である.

補題 7.2. $\phi_*^+(E), \phi_*^-(E)$: Slice(\mathcal{D}) $\to \mathbb{R}$ は連続写像である.

証明. $d(\mathcal{P},\mathcal{Q})=0$ とすると、0 でない $\mathcal{P}(\phi)$ の対象は $\mathcal{Q}(\phi)$ の対象である.したがって、 $\mathcal{P}=\mathcal{Q}$. 対称性、三角不等式は、絶対値と sup の定義よりしたがう.

ある有限生成自由アーベル群 Γ と Grothendieck 群 $K(\mathcal{D})$ からの群準同型

$$v: K(\mathcal{D}) \to \Gamma$$
.

をひとつとり、固定する.

定義 7.3 (台条件(support property)). [Bri07] 三角圏 \mathcal{D} 上の安定性条件 $\sigma=(Z,\mathcal{P})$ が次の条件が成立するとき、台条件を満たすという:

C>0 とノルム $\|\cdot\|: \Gamma \otimes_{\mathbb{Z}} \mathbb{R}$ が上に存在して、任意の σ -安定対象 $E \in \mathcal{D}$ に対して

$$||v(E)|| \le C \cdot |Z(v(E))|.$$

が成立することである.

命題 7.4. [Bri07] $K(\mathcal{D})$ から有限自由アーベル群 Γ への固定された群準同型 $v\colon K(\mathcal{D})\to \Gamma$ に対して、 $\operatorname{Stab}_{\Gamma}(\mathcal{D})$ は次の集合である:

$$\operatorname{Stab}_{\Gamma}(\mathcal{D}) \subset \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \times \operatorname{Slice}(\mathcal{D}).$$

安定性条件の組 (Z, \mathcal{P}) で台条件をみたすものである. この集合は, 忘却写像:

$$\begin{array}{ccc} \operatorname{Stab}_{\Gamma}(\mathcal{D}) & \longrightarrow & \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathbb{C}) \\ & & & & \cup \\ & (Z, \mathcal{P}) & \longmapsto & Z \end{array}$$

は局所同相写像である.とくに、 $\operatorname{Stab}_{\Gamma}(\mathcal{D})$ に $\operatorname{Hom}_{\mathbb{Z}}(\Gamma,\mathbb{C})$ の標準的な複素構造に関して、上記の忘却写像が正則写像になるような複素構造が一意に定まる.

証明. この写像が局所的に単射であることを示す. $\sigma=(Z,\mathcal{P}), \ \tau=(Z,\mathcal{Q}) \in \operatorname{Stab}_{\Gamma}(\mathcal{D})$ の 2 点に対し, $d(\mathcal{P},\mathcal{Q})<1$ を満たすなら $\mathcal{P}=\mathcal{Q}$ となることを背理法で示す.

 $\mathcal{P} \neq \mathcal{Q}$ と仮定する. このとき,ある $\phi \in \mathbb{R}$ と $E \in \mathcal{P}(\phi)$ が存在して, $E \notin \mathcal{Q}(\phi)$ となる. このとき, $Z(E) \in \mathbb{R}_{>0} e^{i\pi\phi}$ である.

 $E \in \mathcal{Q}(\geq \phi)$ とすると、 $d(\mathcal{P},\mathcal{Q}) < 1$ より、 $E \in \mathcal{Q}([\phi,\phi+1))$ となり、 $E \notin \mathcal{Q}(\phi)$ だったので、 $Z(E) \in \mathbb{R}_{>0}e^{i\pi\phi}$ に矛盾.同様に $E \notin \mathcal{Q}(\mathcal{P})$ も言えることから、

$$A \to E \to B \to A[1].$$

で $A \in \mathcal{Q}((\phi, \phi+1))\setminus\{0\}$, $B \in \mathcal{Q}((\phi-1, \phi))\setminus\{0\}$ となるものが存在する. $d(\mathcal{P}, \mathcal{Q}) < 1$ より, $A \in \mathcal{P}((\phi-1, \phi+2))$ となる.

 $A \in \mathcal{P}((\phi-1,\phi])$ であるなら, σ と τ が同じ中心電荷を持つことになり矛盾. したがって, $\psi > \phi$ と $C \in \mathcal{P}(\psi)$ と 0 ではない分解の射が存在する.

8 ggr- R の定義

以下 R を可換環とする.

定義 8.1. A をアーベル圏, $\mathcal{B} \subset A$ を Serre 部分圏とする. すなわち, \mathcal{B} は次の条件を満たす:

任意の短完全列

$$0 \to X \to Y \to Z \to 0$$
.

が A にあり、Y が B に属するとき、X および Z も B に属する (逆も同様).

このとき、 \mathcal{B} による \mathcal{A} の Serre 南圏 (Serre quotient category) \mathcal{A}/\mathcal{B} は次のように定義される:

対象は A の対象と同じである。:

$$Ob(\mathcal{A}/\mathcal{B}) := Ob(\mathcal{A}).$$

• 射は以下のように定義される:

$$\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y) := \varinjlim_{\substack{X' \subset X \\ Y/Y' \in \mathcal{B}}} \varinjlim_{\substack{Y' \subset Y \\ Y' \in \mathcal{B}}} \operatorname{Hom}_{\mathcal{A}}(X',Y/Y').$$

定義 8.2 (次数付き環). 環Rが、アーベル群としての直和

$$R = \bigoplus_{i \in \mathbb{Z}} R_i.$$

に分解され、かつ、環の積が任意の $i,j \in \mathbb{Z}$ に対して

$$R_i R_i \subseteq R_{i+j}$$
.

をみたすとき, R を次数付き環 (graded ring) という. このとき, R_i の元を次数 i の斉次元 (homogeneous element of degree i) と呼ぶ.

以降、特に断りのない限り、次数付き環はネーター環であり、 R_0 上有限生成であるものとする.

定義 8.3 (次数付き加群). $R=\bigoplus_{i\in\mathbb{Z}}R_i$ を次数付き環とし,M を右 R-加群とする.M が部分加群の直和

$$M = \bigoplus_{i \in \mathbb{Z}} M_i.$$

と表され、かつ、任意の $i,j \in \mathbb{Z}$ に対して、環の作用が

$$R_i M_j \subseteq M_{i+j}$$
.

をみたすとき、M を次数付き R-加群 (graded R-module) という。このとき、 M_i の元を次数 i の斉次元 (homogeneous element of degree i) と呼ぶ。

定義 8.4. $R=\bigoplus_{i\geq 0}R_i$ を次数付き環, $M\in \operatorname{gr-}R$ を R 上の次数付き加群とする。M の元 $x\in M$ に対して,ある整数 $i\gg 0$ が存在して, $R_{\geq i}\cdot x=0$ となるとき,捻れ元(torsion element)であるという。ここで $R_{\geq i}=\bigoplus_{m\geq i}R_m$ とする。

すべての元 $x \in M$ が捻れ元である加群 M のことを捻れ加群 (torsion module) であるという.このような加群全体のなす充満部分圏を tors- R で表す.

命題 8.5. 次数付き環 $R=\bigoplus_{i\geq 0}R_i$ に対し,その上の次数付き右 R-加群全体のアーベル圏 gr- R において,torsion 加群全体からなる部分圏 tors- R は Serre 部分圏である.

定義 8.6. [AZ94] $R = \bigoplus_{i>0} R_i$ を次数付きネーター \mathbb{C} -代数とする.

- gr-R は \mathbb{Z} -次数付き有限生成 R-加群のアーベル圏とする.
- tors-R は gr-R のうち、ねじれ加群全体とする.
- qgr-R は gr-R の Serre 部分圏 tors-R による商圏:qgr-R := gr-R/tors-R と定義する.

定義 8.7. [GL87] 重み付き射影直線 (weighted projective line) とは,以下のデータによって定まる射影曲線である:

- 正の整数からなる列 $A = (a_0, a_1, \dots, a_r)$,
- $\mathbb{P}^1(k)$ の互いに異なる点の列 $\Lambda = (\lambda_0, \lambda_1, \dots, \lambda_r)$,

ただし、通常 $\lambda_0=\infty,\ \lambda_1=0,\ \lambda_2=1$ と正規化する. 次に、アーベル群

$$L_A := \mathbb{Z}\vec{x_1} \oplus \cdots \oplus \mathbb{Z}\vec{x_r} \oplus \mathbb{Z}\vec{c} / \langle \vec{c} - a_i \vec{x_i} \mid i = 1, \dots, r \rangle.$$

を定義し、これを次数付き群とする. 多項式環:

$$S = k[X_0, X_1, \dots, X_r], \quad \deg X_i = \vec{x}_i.$$

において、以下の L_A -斉次イデアル:

$$I_{A,\Lambda} = (X_i^{a_i} - X_1^{a_1} + \lambda_i X_0^{a_0} \mid i = 2, \dots, r).$$

を用いて商環

$$R_{A,\Lambda} = k[X_0, X_1, \dots, X_r] / I_{A,\Lambda} \quad \deg(X_i) = \vec{x_i}.$$

を定義する. このとき、 $R_{A,\Lambda}$ は、部分環 $k[X_0^{a_0}, X_1^{a_1}]$ が存在する.

 L_A は階数 1 のアーベル群であるため、各次数 $\vec{\ell} \in L_A$ は一意的に、

$$\vec{\ell} = \sum_{i=0}^{r} \ell_i \vec{x_i} + \ell \vec{c} \quad (0 \le \ell_i < p_i, \quad \ell \in \mathbb{Z}).$$

と表すことができ、 $\ell, m \in L_A$ に対して順序 \leq を

$$\vec{\ell} = \sum_{i=0}^{r} \ell_i \vec{x_i} + \ell \vec{c} \quad (0 \le \ell_i < p_i, \quad \ell \in \mathbb{Z}).$$

$$\vec{m} = \sum_{i=0}^{r} m_i \vec{x_i} + m \vec{c} \quad (0 \le m_i < p_i, \quad \ell \in \mathbb{Z}).$$

とあらわしたときに、すべての $0 \le i \le r$ で $\ell_i \le m_i$ かつ $\ell \le m_i$ とさだめる.ここで、

$$\vec{\omega} \coloneqq (r-1)\vec{c} - \sum_{i=0}^{r} \vec{x_i}.$$

と $\vec{\omega}$ を定義し、双対化元 (dualizing element) と呼ぶ. また、

$$R(A) = \bigoplus_{\ell=0}^{\infty} R_{\ell}, \quad R_{\ell} = S_{\ell\vec{c}}.$$

を $R_{A,\Lambda}$ の核 (core) と呼ぶ.

定義 8.8. [GL87] Serre の定理より,重み付き射影直線 $\mathbb{P}_{A,\Lambda}$ に対応する L_A -次数付き環 $R_{A,\Lambda}$ に対して,次のように連接層の圏 $\mathrm{Coh}(\mathbb{P}_{A,\Lambda})$ を定義する:

$$\operatorname{Coh}(\mathbb{P}_{A,\Lambda}) := \operatorname{qgr-} R_{A,\Lambda} = \operatorname{gr-} R_{A,\Lambda} / \operatorname{tors-} R_{A,\Lambda}.$$

ここで,

- gr- $R_{A,\Lambda}$ は L_A -次数付き有限生成 $R_{A,\Lambda}$ -加群の圏,
- tors- $R_{A,\Lambda}$ は gr- $R_{A,\Lambda}$ のねじれ加群全体の圏.

このとき、2つの圏の間には自然な射影函手 (projection functor) を

$$\pi \colon \operatorname{gr-} R_{A,\Lambda} \longrightarrow \operatorname{Coh}(\mathbb{P}_{A,\Lambda}).$$

と記す. さらに, $\vec{x} \in L_A$ に対して、ひねり(twist)とは, $R_{A,\Lambda}$ -加群 M に対して次のように定義される加群 $M(\vec{x})$ を与える操作である:

$$M(\vec{x})_{\vec{v}} := M_{\vec{x} + \vec{v}} \quad (\vec{y} \in L_A).$$

 $(M, \vec{x}) \rightarrow M(\vec{x})$ により、各圏に対して L_A 作用が定まる.

 $R_{A,\Lambda}(\vec{x})$ を射影函手 π で写した $Coh(\mathbb{P}_{A,\Lambda})$ の対象を,

$$\mathcal{O}(\vec{x}) := \pi(R(\vec{x})).$$

と書き、(次数 \vec{x} による) 捩り層 (twisting sheaf) と呼ぶ.

通常の点 $\lambda \in \mathbb{P}^1 \setminus \Lambda = \mathbb{P}^1 \setminus \{\lambda_0, \lambda_1, \dots, \lambda_r\}$ に対して、 $u = X_1^{p_1} - \lambda X_0^{p_0}$ として、以下の短完全列:

$$0 \longrightarrow \mathcal{O} \xrightarrow{u} \mathcal{O}(\vec{c}) \longrightarrow \mathcal{O}_{\lambda} \longrightarrow 0.$$

で S を定める,すなわち $\mathcal{O}_{\lambda} \coloneqq \operatorname{Cok} u$ とすると $\operatorname{Coh}(\mathbb{P}_{A,\Lambda})$ の単純対象であり, λ にサポートを持つ層である. $X_i=0$ の点のとき, X_i をかける作用:

$$0 \longrightarrow \mathcal{O}(j\vec{x_i}) \xrightarrow{X_i} \mathcal{O}((j+1)\vec{x_i}) \longrightarrow \mathcal{O}_{\lambda_i,j} \longrightarrow 0 \quad (j \in \mathbb{Z}/a_i\mathbb{Z}).$$

で $\mathcal{O}_{\lambda_i,j}$ を定める,すなわち $\mathcal{O}_{\lambda_i,j} \coloneqq \operatorname{Cok}(\mathcal{O}(j\vec{x_i}) \xrightarrow{X_i} \mathcal{O}((j+1)\vec{x_i}))$ とすると,これらは λ_i にサポートをもつ層である.

命題 8.9. $\vec{x} \leq \vec{y}$ であることと $\operatorname{Hom}_{\operatorname{qgr-}R_{A,\Lambda}}(\mathcal{O}(\vec{x}),\mathcal{O}(\vec{y})) \neq 0$ であることは同値である. また $\vec{x} \leq \vec{y}$ のとき,

$$\operatorname{Hom}_{\operatorname{qgr-}R_{A,\Lambda}}(\mathcal{O}(\vec{x}),\mathcal{O}(\vec{y})) = R_{\vec{y}-\vec{x}}.$$

である.

定理 8.10 (Serre 双対性). [GL87] 重み付き射影直線 $\mathbb{P}_{A,\Lambda}$ において,任意の連接層 $\mathcal{F},\mathcal{G} \in \mathrm{Coh}(\mathbb{P}_{A,\Lambda})$ に対して,函手的な同型:

$$\operatorname{Ext}^{1}(\mathcal{F},\mathcal{G})^{\vee} \cong \operatorname{Hom}(\mathcal{G},\mathcal{F}(\vec{\omega})).$$

が存在する. ここで,

- $(-)^{\vee} := \operatorname{Hom}_{\mathbb{C}}(-,\mathbb{C})$ は \mathbb{C} 上の線型双対,
- $\vec{\omega}=(n-1)\vec{c}-\sum_{i=0}^{n}\vec{x}_{i}$ は dualizing element (双対化元) である.

証明.

定義 8.11. 重み付き射影直線 $\mathbb{P}_{A,\Lambda}$ のパラメータ $A=(a_0,\ldots,a_r)$ と $\lambda=(\lambda_0,\ldots,\lambda_r)$ に対して,有理数 χ_A を以下のように定義する:

$$\chi_A = 2 + \sum_{i=0}^r \left(\frac{1}{a_i} - 1\right).$$

 $\mathcal{F} \in \mathrm{Coh}(\mathbb{P}_{A,\Lambda})$ に対して、オイラー標数 (Euler characteristic) $\chi(\mathcal{F})$ を以下のように定義する:

$$\chi(\mathcal{F}) = \dim_k \operatorname{Hom}_{\mathbb{P}_{A,\Lambda}}(\mathcal{O}, \mathcal{F}) - \dim_k \operatorname{Ext}^1_{\mathbb{P}_{A,\Lambda}}(\mathcal{O}, \mathcal{F}).$$

また, $M \in Coh(\mathbb{P}_{A,\Lambda})$ のランクを

$$r(M) = \dim_k M_0 - \dim_k M_{\vec{c}}$$

で定義し,群準同型 $\delta\colon L_A \to \mathbb{Z}$ を生成元 $\vec{x_i} \quad (1 \leq i \leq r)$ に対して

$$\delta(\vec{x_i}) = \frac{a}{a_i} \quad (1 \le i \le r).$$

で定義する. ただし, $a := lcm(a_0, ..., a_r)$ である.

命題 8.12. 次数とよばれる以下の性質をみたす線型写像 $d\colon K_0(\mathrm{Coh}(\mathbb{P}_{A,\Lambda})) \to \mathbb{Z}$ が一意に存在する.

- (i) 各 $\vec{x} \in L_A$ に対して, $d(\mathcal{O}(\vec{x})) = \delta(\vec{x})$
- (ii) $d(\mathcal{O}) = 0$
- (iii) \mathcal{O}_{λ} が λ にサポートを持つ単純層であるとき,

$$d(\mathcal{O}_{\lambda}) = \frac{a}{a(\lambda)}.$$

証明. $\overline{\chi}(\mathcal{F}) = \sum_{j=0}^{a-1} \chi(\mathcal{F}(-j\vec{\omega}))$ と定め、セール双対性を用いると a(x) = 1 のとき、 $\overline{\chi}(\mathcal{O}_{\lambda}) = a$ であり、 $\overline{\chi}(\mathcal{O}_{\lambda_i},j) = \frac{a}{a_i} \quad 0 \leq i \leq r, \ 1 \leq j \leq a_i$ である.したがって、

$$d(\mathcal{F}) := \overline{\chi}(\mathcal{F}) - r(\mathcal{F})\overline{\chi}(\mathcal{O}).$$

で $d: K_0(\operatorname{Coh}(\mathbb{P}_{A,\Lambda})) \to \mathbb{Z}$ は条件 (ii) を満たす. 条件 (i) をみたすことは、以下の短完全列:

$$0 \longrightarrow \mathcal{O}(\vec{x}) \xrightarrow{X_i} \mathcal{O}(\vec{x} + \vec{x_i}) \longrightarrow \mathcal{O}_{\lambda_i,0} \longrightarrow 0 \quad (j \in \mathbb{Z}/a_i\mathbb{Z}).$$

を繰り返し用いればよい.?

定理 8.13. 平均化オイラー標数 (averaged Euler characteristic) $\bar{\chi}(\mathcal{F}) = \sum_{j=0}^{a-1} \chi(\mathcal{F}(-j\vec{\omega}))$ は、

$$\overline{\chi}(\mathcal{F}) = r(\mathcal{F})\overline{\chi}(\mathcal{O}) + d(\mathcal{F}).$$

をみたす. とくに、各 \vec{x} に対して、以下がなりたつ

$$\overline{\chi}(\mathcal{O}(\vec{x})) = \overline{\chi}(\mathcal{O}) + \delta(\vec{x}).$$

したがって,

$$\frac{1}{a}\overline{\chi}(\mathcal{O}) = -\frac{1}{2}\delta(\vec{\omega}) = \frac{p}{2}\left(\sum_{i=0}^{r} \frac{1}{a_i} - (r-1)\right).$$

証明. セール双対性より、各 $j \in \mathbb{Z}$ に対して、

$$\chi(\mathcal{O}(j\vec{\omega})) = \dim_k \operatorname{Hom}_k(\mathcal{O}, \mathcal{O}(j\vec{\omega})) - \dim_k \operatorname{Hom}_k(\mathcal{O}(j\vec{\omega}), \mathcal{O}(\vec{\omega})).$$

であるので,

$$\overline{\chi}(\mathcal{O}) + \overline{\chi}(\mathcal{O}(a\vec{\omega})) = \sum_{j=0}^{a-1} \chi(\mathcal{O}(-j\vec{\omega})) + \sum_{j=0}^{a-1} \chi(\mathcal{O}(a-j\vec{\omega}))$$
$$= \sum_{j=-(a-1)}^{a} \chi(\mathcal{O}(j\vec{\omega}))$$
$$= 0.$$

したがって、 $2\overline{\chi}(\mathcal{O}) + a\delta(\vec{\omega}) = 0$ である.また、 $\vec{\omega} = (r-1)\vec{c} - \sum_{i=0}^r \vec{x_i}$ なので、

$$\delta(\vec{\omega}) = -\sum_{i=0}^{r} \frac{a}{a_i} + (r-1)a$$
$$= -a \left(\sum_{i=0}^{r} \frac{1}{a_i} - (r-1) \right).$$

から示された.

補題 8.14. $\langle \mathcal{O}(\vec{x}) \mid 0 \leq \vec{x} \leq \vec{c} \rangle$ は $\operatorname{Coh}(\mathbb{P}_{A,\Lambda})$ の強例外生成列である.

証明. $0 \le \vec{x}, \vec{y} \le \vec{c}$ に対して、セール双対性より、

$$\operatorname{Ext}^1(\mathcal{O}(\vec{x}), \mathcal{O}(\vec{y}))^{\vee} \simeq \operatorname{Hom}(\mathcal{O}(\vec{y}), \mathcal{O}(\vec{x} + \vec{\omega})).$$

であり $\vec{\omega} + \vec{x} - \vec{y} \le \vec{\omega} + \vec{c}$ は正でないので、 $\operatorname{Hom}(\mathcal{O}(\vec{y}), \mathcal{O}(\vec{x} + \vec{\omega})) = 0$ がしたがう.

定理 8.15. |GL87| 重み付き射影直線 $\mathbb{P}_{A,\Lambda}$ において,次の加群

$$T:=\bigoplus_{0\leq \vec{x}\leq \vec{c}}\mathcal{O}(\vec{x}).$$

をとると、これは $Coh(\mathbb{P}_{A,\Lambda})$ における傾対象である.

証明. (8.9) と (8.14) よりわかる.

命題 8.16. 以下の関係式つき道代数と $\operatorname{End}(T)$ は環の同型である.したがって, $\mathcal{O}(\vec{x})$ $0 \leq \vec{x} \leq \vec{c}$ で生成される $\operatorname{Coh}(\mathbb{P}_{A,\Lambda})$ の充満部分圏と箙の表現は同値である.

$$\vec{x_0} \xrightarrow{X_0} \xrightarrow{X_0} \xrightarrow{X_0} \xrightarrow{X_0} \cdots \xrightarrow{X_0} (a_0 - 1)\vec{x_0}$$

$$\vec{x_1} \xrightarrow{X_1} \xrightarrow{X_1} \xrightarrow{X_1} \xrightarrow{X_1} \cdots \xrightarrow{X_1} (a_1 - 1)\vec{x_1} \xrightarrow{X_0} \vec{x_1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vec{x_r} \xrightarrow{X_r} \xrightarrow{X_r} \xrightarrow{X_r} \xrightarrow{X_r} \cdots \xrightarrow{X_r} (a_r - 1)\vec{x_r}$$

$$\vec{x_1} = X_0^{a_0} - \lambda_i X_1^{a_1}.$$

定理 8.17 (Krull–Schmidt 性). [GL87] 重み付き射影直線 $\mathbb X$ に対して、連接層のアーベル圏

$$\operatorname{Coh}(\mathbb{X}) = \operatorname{qgr-} R_{A,\Lambda} = \operatorname{gr-} R_{A,\Lambda} / \operatorname{tors-} R_{A,\Lambda}.$$

は Krull-Schmidt 圏である. すなわち,任意の対象 $\mathcal{F}\in \mathrm{Coh}(\mathbb{X})$ は直既約対象の有限直和に分解でき,その分解は同型と順序を除いて一意である:

$$\mathcal{F} \cong \bigoplus_{i=1}^n \mathcal{F}_i$$
 (各 \mathcal{F}_i が既約対象).

例 8.18. $R = \mathbb{C}[x,y]$ を \mathbb{Z} 次数付き多項式環とし、 $\deg(x) = 1$ 、 $\deg(y) = 2$ とする. このとき、R は重み付き射影直線 $\mathbb{P}(1,2)$ に対応し、次のような圏同値が成り立つ:

$$\operatorname{qgr-} R := \operatorname{gr-} R / \operatorname{tors-} R \simeq \operatorname{Coh}(\mathbb{P}(1,2)).$$

$$R := \mathbb{C}[x,y], \quad \operatorname{deg}(x) = 1, \quad \operatorname{deg}(y) = 2.$$

各 $n \in \mathbb{Z}_{>0}$ に対して次数成分 R_n は次のように与えられる:

$$R_0 = \mathbb{C}$$

$$R_1 = \mathbb{C}x$$

$$R_2 = \mathbb{C}x^2 \oplus \mathbb{C}y$$

$$R_3 = \mathbb{C}x^3 \oplus \mathbb{C}xy$$

$$R_4 = \mathbb{C}x^4 \oplus \mathbb{C}x^2y \oplus \mathbb{C}y^2$$

$$\vdots$$

このとき,次の列

$$(\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2)),$$

は $\mathcal{D}^b(\mathrm{Coh}(\mathbb{P}(1,2)))$ における強例外生成列 (4.7) であり、その直和

$$T := \mathcal{O} \oplus \mathcal{O}(1) \oplus \mathcal{O}(2),$$

は傾斜対象 (4.9) となる. したがって、導来函手

$$\mathbb{R}\mathrm{Hom}(T,-)\colon \mathcal{D}^b(\mathrm{Coh}(\mathbb{P}(1,2)))\longrightarrow \mathcal{D}^b(\mathrm{mod}\text{-}\mathrm{End}(T)).$$

は三角同値を与える.

定義 9.1. $\mathrm{GL}_2^+(\mathbb{R})$ の普遍被覆 $\widetilde{\mathrm{GL}}_2^+(\mathbb{R})$ を次のように定義する. 元は組 (M,g) であり,

- $M \in \mathrm{GL}_2^+(\mathbb{R})$,
- $g: \mathbb{R} \to \mathbb{R}$ は単調増加連続函数で $g(\phi+1) = g(\phi)+1$ を満たす,

ものである.

積は

$$(M_1, g_1) \cdot (M_2, g_2) = (M_1 M_2, g_1 * g_2),$$

で定義され、ここで $g_1 * g_2$ は

$$(g_1 * g_2)(\phi) = g_1(g_2(\phi)).$$

このとき射影写像 $p:\widetilde{\mathrm{GL}}_2^+(\mathbb{R}) \to \mathrm{GL}_2^+(\mathbb{R}), \ (M,g) \mapsto M$ が被覆準同型となり、 $(\widetilde{\mathrm{GL}}_2^+(\mathbb{R}),p)$ は $\mathrm{GL}_2^+(\mathbb{R})$ の普遍被覆である.

定義 9.2. 三角圏 $\mathcal D$ 上の安定性条件 $\sigma=(Z,\mathcal P)$ に対して、セール函手 $S:\mathcal D\to\mathcal D$ と組 $(M,g)\in\widetilde{\mathrm{GL}}_2^+(\mathbb R)$ が存在して

$$S(\sigma) = \sigma \cdot (M, g),$$

が成り立つとき, σ を Serre 不変な安定性条件 という.

ここで右作用 $(M,g)\cdot \sigma = (Z',\mathcal{P}')$ は

$$Z' = M^{-1} \circ Z, \qquad \mathcal{P}'(\phi) = \mathcal{P}(g(\phi)).$$

で定義される.

定義 9.3. 三角圏 \mathcal{D} 上の安定性条件を $\sigma = (Z, \mathcal{P})$ とする. 任意の $\lambda \in \mathbb{C}$ に対し

$$\lambda \cdot \sigma := (e^{-\pi i \lambda} Z, \mathcal{P}(\phi + \operatorname{Re}(\lambda)))$$

で定まる安定性条件によって, σ の $\mathbb C$ 作用を定める. 三角圏 $\mathcal D$ の自己同値函手 $\Phi \in \operatorname{Aut}(\mathcal D)$ に対して,

$$\Phi_*(\sigma) := (Z \circ \Phi^{-1}, \Phi(\mathcal{P})), \quad \Phi(\mathcal{P})(\phi) := \Phi(\mathcal{P}(\phi)) \quad (\phi \in \mathbb{R})$$

で定まる安定性条件によって、 σ の Φ による作用を定める.

定義 9.4. 三角圏 \mathcal{D} 上の安定性条件 $\sigma=(Z,\mathcal{P})$ に対して、自己同値 $F:\mathcal{D}\to\mathcal{D}$ と複素数 $s\in\mathbb{C}$ が存在して

$$F_*(\sigma) = s \cdot \sigma.$$

が成り立つとき, σ を **Gepner 型安定性条件** という.

定理 9.5. 射影直線 \mathbb{P}^1 上の導来圏 $D^b(\operatorname{Coh}(\mathbb{P}^1))$ には Serre 不変な安定性条件は存在しない.

参考文献

[Bri07] Bridgeland, Tom, Stability conditions on triangulated categories, Annals of Mathematics, Vol. 166, No. 2, 2007, pp. 317 – 345.

[KS06] Masaki Kashiwara and Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 332, Springer-Verlag, Berlin, 2006.

- [GM03] S. I. Gelfand and Yu. I. Manin, Methods of Homological Algebra, 2nd ed., Springer Monographs in Mathematics, Springer, 2003.
- [AZ94] Michael Artin and James J. Zhang, Noncommutative Projective Schemes, Adv. Math. 109 (1994), no. 2, 228–287.
- [BK89] A. Bondal and M. Kapranov, Representable functors, Serre functors, and reconstructions, *Izv. Akad. Nauk SSSR Ser. Mat.* **53** (1989), no. 6, 1183–1205. English transl.: *Math. USSR Izv.* **35** (1990), no. 3, 519–541.
- [Ri89] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456.
- [GL87] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in *Singularities, Representation of Algebras, and Vector Bundles* (Lambrecht, 1985), Lecture Notes in Math. 1273, Springer, Berlin, 1987, pp. 265 297.
- [BBD] A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Astérisque, 100, Société Mathématique de France, 1982. Chapitre 1.
- [Gro57] A. Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221.
- [Serre55] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197–278.