COMPLEX NUMBERS AND QUADRATIC EQUATIONS SYNOPSIS

- A number of the form a+ib, where a and b are real numbers, is called a complex number, a is called the *real part* and b is called the *imaginary part*.
- Let $z_1 = a + ib$ $z_2 = c + id$ then $z_1 + z_2 = (a + c) + i(b + d)$ and $z_1, z_2 = ac bd + i(ad + bc)$.
- $i^2 = -1$, $i^3 = -i$ $i^4 = 1$.

1) Find the multiplicative inverse of 2-3i

b) $\frac{2}{13} - \frac{3i}{13}$

b) 1

b) 3

3) Find the modulus of the complex number 3+4i

- The conjugate of a complex number z = a + ib denoted by \overline{z} is $\overline{z} = a ib$.
- The polar form of a complex number z=x+iy is $r(\cos\theta+\sin\theta)$ where $r=\sqrt{x^2+y^2}$ r is called the modulus and θ is called the *argument*. The value of θ such that $-\pi < \theta \le \pi$ is called the principle argument of z.

c) $\frac{-2}{13} + \frac{3i}{13}$

c) 0

c) 4

5.COMPLEX AND QUADRATIC EQUATIONS

d) $\frac{-2}{13} + \frac{3i}{13}$

d) - i

d) 7

MCQ

a) $\frac{2}{13} + \frac{3i}{13}$

a) i

a) 5

2) The value of $i^9 + i^{19}$

4) Express in a+ i	b form : $\left(-1 + \sqrt{3}i\right)^{-1}$		
a) $\frac{1+i\sqrt{3}}{4}$	b) $\frac{-1+i\sqrt{3}}{4}$	$c)\frac{1-i\sqrt{3}}{4}$	$d) \frac{1+i\sqrt{3}}{-4}$
5) Find the argun	nent of the given comp	plex number $-1 - \sqrt{3}i$	
a) $2\pi/3$	b) $-2\pi/3$	c) $\pi/3$	d) 0
6) If $a + ib = \frac{\sqrt{1}}{\sqrt{1}}$ a) $a^2 - b^2 = 1$	$\frac{\overline{+i}}{\overline{-i}}$ then		
a) $a^2 - b^2 = 1$	b) $a^2 + b^2 = 1$	c) $-a^2 + b^2 = 1$	d) $-a^2 - b^2 = 1$

7) Simplify
$$\frac{(1+i)(3+i)}{(3-i)}$$

c)
$$\frac{1+7i}{5}$$

8) Find the conjugate of the following: $(6+5i)^2$

c)
$$-19 + 10i$$

9) Find the square root of -15-8i

a)
$$\mp$$
 (1-4i)

b)
$$\pm$$
 (1+4i)

10) If
$$\frac{1-ix}{1+ix} = a + ib$$
, then $a^2 + b^2 = ----$
a) 1 b) -1

Fill in the blanks

2)
$$1 + i^2 + i^4 + i^6 + ... + i^{20} = ----$$

3) If
$$(3x-7) + 2iy = -5y + (5 + x)i$$
 then value of $x = ---$ and $y = -----$

- 4) The product of 3-2i and its conjugate = ---
- 5) If the complex numbers -3+i x^2 y and x^2+y+4 i are conjugate of each other, then value(s) of x = --- , y = --

VSA (1 mark each)

1. Evaluate (i)
$$i^{998}$$

Evaluate (i)
$$i^{998}$$
 (ii) $i^{37} + \frac{1}{i^{67}}$ (iv) i^{-71}

(iii)
$$i^{-71}$$

(iv)
$$i^{-1}$$

2. Find the value of

(i)
$$i^n + i^{n+1} + i^{n+2} + i^{n+3}$$

(ii)
$$i^{107} + i^{112} + i^{117} + i^{122}$$

(iii)
$$(1+i)^4 \times \left(1+\frac{1}{i}\right)^4$$

3. Simplify

(i)
$$\left(-2i\right)\left(\frac{1}{6}i\right)$$

(ii)
$$\left(-i\right)\left(3i\right)\left(\frac{-1}{6}i\right)^3$$

(iii)
$$\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} - \sqrt{-625}$$

(iv)
$$6i^{54} + 5i^{37} - 2i^{11} + 6i^{68}$$

$$(v)\frac{1}{i} - \frac{1}{i^2} + \frac{1}{i^3} - \frac{1}{i^4}$$

4 (i) If
$$2y + (3x - y)i = 5 - 2i$$
. find x and y (ii) $2 + z = 3 - i$ where $z = x + iy$

5. Find the modulus of the following complex nos:

(i)
$$2 + 3i$$

(iii) -i (iv)
$$2+\sqrt{-3}$$
 (v) $(3i-1)^2$

$$(v) (3i-1)^2$$

6. Find the conjugate of the following:

(i)
$$-3 + \sqrt{-1}$$

(ii)
$$i^3$$

(ii)
$$i^3$$
 (iii) $(6+5i)^2$

7. Express in the form a + ib:

(i)
$$\frac{i}{1+i}$$

(i)
$$\frac{i}{1+i}$$
 (ii) $\left(-1+\sqrt{3}i\right)^{-1}$

SECTION B (2 marks each)

8. Solve:

(i)
$$9x^2 + 10x + 3 = 0$$

(ii)
$$\sqrt{3}x^2 - \sqrt{2}x + 3\sqrt{3} = 0$$

(iii)
$$3x^2 + 8ix + 3 = 0$$

Find the modulus of the following $\frac{(2-3i^2)}{4+3i}$, $(\sqrt{7}-3i)^3$ 9

10 If
$$z=3-\sqrt{7}i$$
, then find $|z^{-1}|$

Express in complex number form
$$\frac{i+i^2+i^4}{1+i^2+i^4}$$

12 Express the square of
$$\frac{i}{1+i}$$
 in the form a+ib

SECTION C (4marks each)

Represent the following in polar form: 13.

(i)
$$-1 - \sqrt{3}i$$

(ii)
$$\frac{-16}{1+i\sqrt{3}}$$

(ii)
$$\frac{-16}{1+i\sqrt{3}}$$
 (iii) -2i iv) $\frac{2+i6\sqrt{3}}{5+i\sqrt{3}}$ v) -4 + 4 $\sqrt{3}$ i

- For complex values of z solve: |z| + z = 2 + i14.
- If $a + ib = \frac{\sqrt{1+i}}{\sqrt{1-i}}$ then prove that $a^2 + b^2 = 1$ 15.
- Reduce to standard form: $\frac{1}{1-2i} + \frac{3}{1+i}$ 16.
- If $\frac{|z-5i|}{|z+5i|} = 1$, then show that z is a real number. 17
- Show that $\frac{(1+i)(3+i)}{(3-i)} = \frac{14i}{5}$ 18.
- Show that $\left[\frac{\sqrt{7} + i\sqrt{3}}{\sqrt{7} i\sqrt{3}} + \frac{\sqrt{7} i\sqrt{3}}{\sqrt{7} + i\sqrt{3}}\right]$ is real. 19.
- If z = x + iy and $w = \frac{1 iz}{z i}$ and |w| = 1 show that z is purely real. 20.
- Find x and y if $\frac{x-1}{3+i} + \frac{y-1}{3-i} = i$ 21.
 - (ii) $(1+i)y^2 + (6+i) = (2+i)x$
 - (x + iy) (2 3i) = 4 + i(iii)
- 22 Reduce to standard form:

(i)
$$\frac{3+2i}{2-3i} + \frac{3-2i}{2+i}$$

(ii)
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$

(iii)
$$\frac{3-4i}{(4-2i)(1+i)}$$

SECTION D(6 marks each)

23. If
$$p + iq = \frac{(a-i)^2}{2a-i}$$
 show that $p^2 + q^2 = \frac{(a^2+1)^2}{4a^2+1}$

24. If
$$\frac{3+2i\sin\theta}{1-2i\sin\theta}$$
 is purely real, find real values of θ .

25. If
$$(x + iy)^3 = u + iv$$
, prove that $\frac{v^2}{v^2} - \frac{u^2}{x^2} = 8(x^4 - y^4)$

Find the square root of 26.

iii)-15+8i iv) -3-4i v) -2-
$$2\sqrt{3}$$
 i

Solve the following quadratic equations 27.

i)
$$ix^2 - x + 2i = 0$$
 ii) $x^2 - (3\sqrt{2} - 2i)x - \sqrt{2}i = 0$ iii) $x^2 - (\sqrt{2} + i)x + \sqrt{2}i = 0$

iv)
$$2x^2 - (3+7i)x + 9i - 3 = 0$$
 v) $x^2 - (3\sqrt{2} - 2i)x - 6\sqrt{2}i = 0$

MCQ

1)a)
$$\frac{2}{13} + \frac{3i}{13}$$

1)a) $\frac{2}{13} + \frac{3i}{13}$ 2) c) 0 3) a) 5 4) d) $\frac{1+i\sqrt{3}}{-4}$ 5)b) $-2\pi/3$ 6) b) $a^2 + b^2 = 1$ 7) c) $\frac{1+7i}{5}$ 8) b) 11 -60i 4) d) $\frac{1+i\sqrt{3}}{-4}$

5)b)
$$-2\pi/3$$

9) a)
$$\mp$$
 (1-4i) 10) a) 1

Fill in the blanks

3)
$$x = -1$$
, $y = 2$

2) 1 3)
$$x = -1$$
, $y = 2$ 4) 13 5) $x = \pm 1$, $y = -4$

1.	(i) -1 (ii) 2i				(iii) i		(iv) -i			
2.	(i) 0		(ii) 0			(iii)16		j		
3.	(i)1/3 (ii) i/72		l	(iii) 0		(iv) 7i		(v) 0		
4.	(i) $x = \frac{1}{6}, y = \frac{5}{2}$ (i) $\sqrt{13}$ (ii) $\sqrt{41}$					(ii) $x = 1, y = -1$				
5.	$(i) \sqrt{13} \qquad (ii) \sqrt{41}$		$\sqrt{41}$		(iii) 1		(iv) v	√7	(v) 10	
6.	(i) -3 – i			(ii) i		((iii) 11 – 60i			
7.	(i) $\frac{1}{2} + \frac{1}{2}i$ (i) $\frac{-5 \pm \sqrt{2}i}{9}$ (ii)					$(ii) \frac{-1}{4} - \frac{\sqrt{3}}{4}i$				
8.	$(i) \frac{-5 \pm \sqrt{2}i}{9}$		(ii) $\frac{\sqrt{2} \pm i\sqrt{34}}{2\sqrt{3}}$			(iii) $\frac{1}{3i}$, -3 <i>i</i> 12) 0 + (1/2) i				
9	13/5 , 64 10) 1/4		10) 1/4	11) 0+i			•	12) 0 + (1/2) i		
13	(i) 2(cos 240 +isin240)									
	(ii) 8(cos120 +isin120)]									
	(iii) 2(cos270 + isin270)]									
	(iv) 2(cos60 + isin60)]									
	(v) 8(cos120 +isin120)]									
14	$z = \frac{3}{4} + i$									
16	$\frac{17}{10} - \frac{11i}{10}$									

21	(i)x = -4, y =	6	(ii)x = 5, y	y = 2 or	x = 5, y = -2		(iii) x	$=\frac{5}{13}, y = \frac{14}{13}$
22	(i) $\frac{4}{5} - \frac{2i}{5}$			(ii) $\frac{63}{25}$	$\frac{3}{5} - \frac{16i}{25}$	((iii) $\frac{1}{4}$	$-\frac{3i}{4}$
26	$i) \pm (1+4i)$	ii)±(3	3-2i		$iii) \pm (1-4i)$	$iv) \pm (1$	(-2i)	$(v) \pm (\sqrt{3} - i)$
27	i) -2i , i	$\frac{\text{ii})}{(3\sqrt{2})}$	$\frac{-2i}{2}$ $\pm \frac{(4-2i)}{2}$	$\frac{-\sqrt{2}i}{2}$	iii) $\sqrt{2}$, i	iv) $\frac{3+i}{2}$,3	3i	v)3√2 , -2i