Age's mont ou [Manion tuman
Assignment - oy Manion kumar
Assignment - oy [Manion tumar] 220621
solution (1) - given N imputs neutrons
M Wilden neuerons
Coupout neurong.
Deconnection between input-hidden and
hidden outputs layers=
go total wedget = NXH + HXC
그리고 있다고 있다. 선생님들은 경기를 가게 되었다면 하게 되었다면 하는데 그렇게 되었다면 하는데 하는데 하는데 하는데 하는데 하는데 하다 되었다.
(b) If there are
in also direct connections from
Total mediate = (N+()×H input: +0 output: Total mediate = (N+()×H connections from
Total weights = N.4 + 4.0C+N.C
= N.4 + H.C+N.C
Solution (2) - Two multiplayer perception with linear
altibation
g) one adventage of Not [100 units]
9) one adventage of Network A _ [100 units]
we can see A is more of the land
19 Deleurst of 1.0
of hidden
of hidden layer and [100 units] [100 units] Uvounits Luesgut so we can say Network (1) That it is less from to analy
trust it is less form Network (A) Network (
Trust it is less form to averte
tent it is less form to overfitting than B (b) B is deeper network from A so now line are network and be better peredicted and deeper network allows. for nierarichial feature extractor
U 18 deeper network than 1
relationship can be
metwork cellare better peredicted in
for hieraria deeper
mal feature extracto

 $\begin{array}{c} X_{1}=-1 \\ X_{2}=-1 \end{array} \begin{array}{c} 0\cdot 1 \\ X_{3}=-1 \end{array} \begin{array}{c} 0\cdot 1 \\ X_{4}=-1 \end{array} \begin{array}{c} 0\cdot 1 \\ X_{5}=-1 \end{array} \begin{array}{c} 0\cdot 1 \\ X_{5$ given e=2, Now, Z=Q(w,x,+w,x,+b,) Z = 2 (0.1x(-1) +005 ×1+4) $\frac{L}{1+e^{-2}} = 0.73$ $1+e^{-2} = 0.73$ $7 e^{-2} = 27$ 73 $Z = \frac{1}{27}$ $\frac{7}{27}$ 25 = 0.995-0.9 Z= 0.995 bies et by = 0.097 Solution (9) > @ Not : Perception. trum tables X NOXX Let perception autilise. (1) of wix+5>0 Now; (i) when x = 0, $w \times 0 + b = b$ 0/wif b > 0. From output well 1 (imput as 0)

- 12+1 (i) when x=1, wo1+5= w+6 wtb <0 than output well o

so let b=2, so. w+250 3 (w5-2) let w = -2, then output = 1 if (-2x+2)0). NAND Perception cet A & B ibe input B AND NAND 0 by a legionadux ou 0 ニーショウムロニアント perception output is = 1 if uqx, +w2x2 t3>0 Now) D for A = 0, B=0 w,,0 + wz0+6=6>0-1 for A=0, B=1 W1,0+W2,1+6=W2+6>0 1 for A=1, B=0 Wel+ W200 + 5=W1+5>0 4) for A=1 ; B=1 W/11+W2'1+8= W/+W2+6<0 bet b = 2 fren w2>-2, w1>-2 ond m1+m5 2-5 Now W1 = W2 = -1.5

so for the (4) cur. -1.5 + (-1.5) + 2= -3+2 frence frind values are =-160 lez = -1/05, wz=-1.5, 6=2 output = / L if -1.5x, -1.5x2 + 2>0 Solution - 5 3 bet us suppose ! = odd . 8 2 = even therefore our input -output. table will be x, x₂ x₃ y y= ((x, XOR xz)xOK x 0_ = $x_1 = \frac{-0.6}{0.6}$ $x_1 = 0.9$ $x_2 = 0.9$ $x_3 = 0.9$ $x_4 = 0.9$ $x_5 = 0$ Pos Pr, Pz 7 P3, Pa B Ps. Cu have sin function unere: Sqn (x) = { 1 - x 70

Solution 6 -3 To derive update equation for on uses RelV in its widden units, MP frat let d'se que no of imputs · X E IRd 18 imput layer Wir GRAXO De midden layer ut metrix for hidden hayer 6" È IRH Le tre bias vector hidder Layer 2(1) = w(1) x + 6(1) Relu activation function. h= ROLU (2013) = more (0, 2(1)) for hidden layer to outt layer w(2) - R 1X4. 262) output . "y' = 10 2(W) + 6(2) loss (rusid | [= = 1 (y-9)2 | Psints propagation. -) $\frac{dL}{d\hat{y}} = -(y - \hat{y})$ $\frac{dL}{d\hat{y}} = \frac{dL}{d\hat{y}} \cdot \frac{d\hat{y}}{d\hat{y}} = -(y - \hat{y}) \cdot h^{T}$ 25; = - (y-9)

$$\frac{\partial L}{\partial h} = \frac{\partial L}{\partial \hat{y}} \cdot \omega^{(2)}$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot \omega^{(2)}$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial z} \cdot D$$

$$\frac{\partial L}{\partial z} =$$