

Instacart Market Basket Analysis

——Data Mining Final Project
Group Member:
Qing Ruan
Zixuan Huang
Ya Liu

CONTENTS

- 1 Introduction
- 02 Exploratory Data Analysis
- 03 Data Preprocessing
- 14 Feature Engineering
- Model Development and Evaluation
- 06 Summary

Introduction

Dataset Description

File Name	Column Names
orders.csv	order_id,user_id,eval_set,order_number,order_dow,order_hour_of_day,days_since_prior_order
order_products*.csv	order_id,product_id,add_to_cart_order,reordered
aisles.csv	aisle_id,aisle
departments.csv	department_id,department
products.csv	product_id,product_name,aisle_id,department_id

02

Exploratory Data Analysis

• Three sets.

Frequency of orders

• Times of orders

Times of orders

Product Information

Products and Sales

Product Information

Reordered products

Product Information

Add to cart-reorder ratio

GOAL: PREDICT WHICH PREVIOUSLY PURCHASED PRODUCTS WILL BE IN A USER'S NEXT ORDER

0 MEANS WILL NOT BUY, 1 MEANS WILL BUY

14 FEATURES WE CREATED

Data Preprocessing

Data Preprocessing

- Almost no missing value
- except for `days_since_prior_order` in orders.csv
 - 1048575 missing values
 - means these orders are first ordered by the user.
- replace NaN with -1 to indicate that it is a different level.

Feature Engineering

FEATURE SELECTION

User Features Product Features

User and Product Features

USER FEATURES

n_orders_users

The number of orders for each user

n_productss_users

The number of products for each user

avg_products_users

Average number of products per user ordered

dow most user

The day on which each user ordered most frequently

times_h

The time of a day on which each user ordered most frequently

reorder_ratio_user

Reordered ratio per user

shopping_freq

Shopping frequency for each user

USER FEATURES

	user_id	n_orders_users	n_products_users	avg_products_users	dow_most_user	hod_most_user	reorder_ratio_user	shopping_freq
0	1	10	59	5.900000	4	7	0.694915	17.600000
1	2	14	195	13.928571	2	9	0.476923	14.142857
2	3	12	88	7.333333	0	16	0.625000	11.083333
3	4	5	18	3.600000	4	15	0.055556	11.000000
4	5	4	37	9.250000	3	18	0.378378	10.000000

We combine all the user features above into a new data frame. 'user_id' is the key variable in this data frame.

PRODUCT FEATURES

times_bought_prod reorder_ratio_prod

Ordering frequency for each product.

Reordered ratio for each product.

position_cart_prod

Average sequence in the cart for each product.

reorder_ratio_prod

Reordered ratio for each department

PRODUCT FEATURES

	product_id	times_bought_prod	reorder_ratio_prod	position_cart_prod	department_id	reorder_ratio_dept
0	1	1852	0.613391	5.801836	19	0.438319
1	2	90	0.133333	9.888889	13	0.242846
2	3	277	0.732852	6.415162	7	0.471714
3	4	329	0.446809	9.507599	1	0.418642
4	5	15	0.600000	6.466667	13	0.242846

Next, we merged these product features together. 'product_id' is the key variable in this data frame.

USER & PRODUCT FEATURES

times_bought_up

Times of each product bought by each user.

reorder_ratio_up

The ratio at which each product is reordered by each user.

ratio_last4_orders_up

The ratio of each product bought in each user's last four orders

USER & PRODUCT FEATURES

	user_id	product_id	times_bought_up	reorder_ratio_up	ratio_last4_orders_up
0	1	196	10	1.000000	1.0
1	1	10258	9	1.000000	1.0
2	1	10326	1	0.166667	NaN
3	1	12427	10	1.000000	1.0
4	1	13032	3	0.333333	0.5

Next, we merged these new features we just created

Get Features and Target

Target Features user_id_product_id_times_bought_up_reorder_ratio_up_ratio_last4_orders_up_n_orders_users_n_products_users_avg_products_users_dow_most_user_reorder_ratio_user_shopping_freq_times_bought_prod_reorder_ratio_prod_products_users_avg_products_avg_ 1.000000 1.00 5.900000 0.694915 20.259259 35791 3.721774 0.471714 10 10 59 0.776480 1.0 10258 1.00 5.900000 4.277492 9 1.000000 10 0.694915 20.259259 1946 0.713772 0.438319 1.0 10326 0.166667 0.00 5.900000 0.694915 20.259259 0.652009 4.191097 10 59 5526 0.412660 12427 1.00 10 5.900000 0.694915 20.259259 6476 0.740735 4.760037 0.0 10 1.000000 59 0.438319 13032 0.50 0.333333 10 5.900000 0.694915 20.259259 3751 0.657158 5.622767 0.466878 1.0 13176 2 0.222222 0.00 10 5.900000 0.694915 20.259259 379450 0.832555 5.095947 0.412660 0.0 14084 0.00 0.694915 20.259259 5.792595 0.100000 10 59 5.900000 15935 0.810982 0.505622 0.0 17122 0.166667 0.00 10 5.900000 0.694915 20.259259 13880 0.675576 6.257421 0.412660 0.0 25133 1.000000 1.00 10 5.900000 0.694915 20.259259 6196 0.740155 7.001614 0.505622 8 1.0 26088 2 0.200000 0.00 10 59 5.900000 0.694915 20.259259 2523 0.539041 6.495838 0.438319 26405 2 0.200000 0.00 10 59 5.900000 0.694915 20.259259 1214 0.441516 3.116969 0.250641 1.0

Model Development and Evaluation

A Problem Happens

• When developing logistic regression, we found that the model accuracy is high, but the confusion matrix shows it is not a good model.

Classification Report:							
	precision	recall	f1-score	support			
				1500160			
0.0	0.91	0.99	0.95	1529168			
1.0	0.62	0.11	0.19	165765			
accuracy			0.91	1694933			
macro avg	0.77	0.55	0.57	1694933			
weighted avg	0.88	0.91	0.88	1694933			

Accuracy: 90.6327860747298

ROC_AUC: 79.50233767175897

Oversampling

- Target 'reordered' is a binary variable. Level 0 accounts for 90%, while level 1 only accounts for 10%.
- Even without modeling, we can have 90% accuracy.

target	frequency	target	frequency
0	2,334,883	0	2,334,883
1	253,930	1	2,334,883

Train and Test Split

- Data shape (4669766, 15)
- Train dataset 70%, test dataset 30%
- Train dataset shape (3268836, 15)
- Test dataset shape (1400930, 15)
- We use train dataset to train the model, and test dataset to predict.

Logistic Regression

• Misclassification rate =
$$\frac{False\ Positives\ + False\ Negatives}{Total\ instances} = \frac{172213 + 231781}{1400930} = 28.84\%$$
.

Classification Report: precision recall f1-score support								
	0.0 1.0	0.70 0.73	0.75 0.67	0.72 0.70	700447 700483			
accur macro weighted	avg	0.71 0.71	0.71 0.71	0.71 0.71 0.71	1400930 1400930 1400930			

Accuracy: 71.16244209203886

ROC_AUC : 77.71164554475179

K-Nearest-Neighbor

- K = 3
- Misclassification rate = 9.99%.

Classification Report:							
		precision	recall	f1-score	support		
	0.0	0.99	0.81	0.89	700447		
	1.0	0.84	0.99	0.91	700483		
accur	acy			0.90	1400930		
macro	avg	0.91	0.90	0.90	1400930		
weighted	avg	0.91	0.90	0.90	1400930		
werduced	avg	0.91	0.90	0.90	1400930		

Accuracy: 90.01320551348033

ROC_AUC : 99.97228979749896

Random Forest

- n_estimators=100
- Misclassification rate = 2.06%.

Classific	atio	n Report:			
		precision	recall	f1-score	support
	0.0	1.00	0.96	0.98	700447
	1.0	0.96	1.00	0.98	700483
accur	асу			0.98	1400930
macro	avg	0.98	0.98	0.98	1400930
weighted	avg	0.98	0.98	0.98	1400930

Accuracy: 97.93508597859993

ROC_AUC : 99.97318652685728

Random Forest

Feature importance plot

Summary

06

Summary

Goal

• Predict whether a user will buy a product in the next order.

Process

- We create 14 features and merge them all into one dataset.
- Then, we use oversampling to deal with the imbalance of the dataset.
- After splitting train and test dataset, we train logistic regression, KNN, random forest and other classifiers.

Improvements

- Hyperparameter tuning
- Gradient Boosting

Thanks for listening