Scribe: [Scribe's name here]

Consider the following naive implementation of a priority selector. This priority selector takes 3 data inputs, "A," "B," and "C" and one data output, "O." It has 2 requester inputs, "A_req," "B_req". If A_req is asserted, O outputs the value of A. If A_req is not asserted but B_req is, O outputs the value of B. If no requesters are asserted, C is outputted.

Assume that NOT gates have a 1ns delay, and that OR and AND gates have a 2ns delay regardless of the number of input wires. Assume no wire delay.

Say that for an infinite amount of time before we start measuring, all input signals are "1."

- At 1ns, B_req goes to "0"
- At 2ns, A reg goes to "0"
- At 6ns, C goes to "0".
- At 8ns, A goes to "0".
- At 9ns, A_req and B_req go to "1".

a. Draw a timing diagram from t=0ns to t=16ns showing the input signals (A, B, C), requester signals (A_req, B_req), the output signal (O), and all intermediate gates (!A_req, !B_req, X, Y, Z). The inputs, requesters, and 1 intermediate gate have been done for you. Also include a line "L" (for Logic) depicting what the output signal would be with no delay. [10 points] For drawings, you may draw by hand and insert a photo of your work, or merge PDFs before submission, or just digitally modify the drawing below.

- b. Draw a circuit using only two 2-input Muxes that implements the circuit. [5 points] The definition of the 3-input priority selector is repeated:
 - If A_req is asserted, O outputs the value of A.
 - If A reg is not asserted but B reg is, O outputs the value of B.
 - If no requesters are asserted, C is outputted.

Problem 2: Finely Stated [15 points] Scribe: [Scribe's name here]

Consider the finite state machine diagram below. This FSM tracks the last 2 values of the input B, sets an output L to 1 if a code is received.

On the next page, convert the Finite State Machine into a circuit. Fill in the provided bubbles in the control ROM to determine the next state [7.5 points]. Inside the dotted box, add wires and logic gates to complete the rest of the logic for the output L [7.5 points].

- Assume the clock is connected but not shown.
- Assume the flip flops have a starting value of 0.
- Do not add outputs to the control ROM, and do not modify anything outside the ROM bubbles and the dotted box.
- The decoder inputs are {State₁, State₀, B}
- Filling in one of the control ROM bubbles means there is a connection, so current flows and we get a 1. Otherwise, the wires are disconnected and we get a 0.
 - For example, state 0 is done for you in the first 2 rows. When the FSM is in state 0 and B=0, the next state is 0, so both Next State bits are 0 and not filled in. But when the FSM is in state 0 and B=1, the next state is 2 (binary 10), so the bubble for the Next State₁ bit is filled in while the bubble for Next State₀ is not.

