On Practical Coexistence Gaps in Space for LTE-U/WiFi Coexistence

A. Zubow, **P. Gawłowicz**, S. Bayhan European Wireless 2018

Motivation

 Rapid growth in the use of smart phones / tablets a appearance of new applications like multimedia streaming & cloud storage.

Motivation

- Rapid growth in the use of smart phones / tablets are appearance of new applications like multimedia streaming & cloud storage.
- WiFi is the dominant access technology in residential/ enterprise environments and there is strong trend towards further development and densification,
 - Concerts,
 - Stadiums,
 - Airports,
 - Malls

Motivation

- Rapid growth in the use of smart phones / tablets a appearance of new applications like multimedia streaming & cloud storage.
- WiFi is the dominant access technology in residential/ enterprise environments and there is strong trend towards further development and densification,
 - Concerts,
 - Stadiums,
 - Airports,
 - Malls

5 GHz band is spectrum of choice
 for next-gen WiFi as 2.4 GHz is already very crowded.

Trend in Mobile Networks

Mobile Internet connectivity
has gained a wide spread
popularity with LTE,

Trend in Mobile Networks

Mobile Internet connectivity
has gained a wide spread
popularity with LTE,

- To support rapid traffic growth cost-effective solutions for capacity expansion are needed,
 - Massive network densification using (small) cells with higher capacity per cell,
 - Direct usage of unlicensed (free) spectrum

LTE-Unlicensed Primer

- First cellular solution for use of 5GHz unlicensed band
 - Channel bandwidth is 20MHz as in WiFi
- Two versions of LTE-Unlicensed:
 - LTE-LAA(LBT) and LTE-U(CSAT)

LTE-U CSAT

- Carrier Sense Adaptive Transmission (CSAT):
 - No Listen-Before Talk, but duty cycled channel access
 - Period: 40, 80, 160ms
 - Duty cycle adaptation based on number of WiFi and LTE nodes, max 50%
- Puncturing for low-latency WiFi traffic

Coexistence Issues

- LTE and WiFi compete for shared radio resources leading to performance degradation in both NWs due to:
 - *i)* increased **contention**,

How does LTE interference affect WiFi?

How does LTE interference affect WiFi?

How does LTE interference affect WiFi?

Coexistence gaps put by LTE-U

- Current solutions focus on simple but inefficient uncoordinated coexistence
 - LTE creates coexistence gaps in frequency/time/ space domain,
 - E.g. LTE-U: channel access w/ adaptive duty cycling

Transmitter

Coexistence Gaps in Space

- Favorable as competition for shared time/freq resources is reduced,
- Promises a win-win solution for both LTE & WiFi
 - Increased throughput,
 - Lower medium access delay
- Trend towards massive MIMO even for small cells

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:
 - 1/ No nulling: $a_{no} = 1 / (N_{cs} + 1)$
 - 2/ Nulling K_Ø Wifi nodes:

$$\alpha(K_{\varnothing}) = 1 / (N_{cs} - K_{\varnothing} + 1)$$

where N_{cs} is number of detected WiFi nodes

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:

1/ No nulling:

$$a_{no} = 1 / (N_{cs} + 1)$$

2/ Nulling
$$K_{\emptyset}$$
 Wifi nodes:
 $\alpha(K_{\emptyset}) = 1 / (N_{cs} - K_{\emptyset} + 1)$

where N_{cs} is number of detected WiFi nodes

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:

1/ No nulling:

$$a_{no} = 1 / (N_{cs} + 1)$$

2/ Nulling
$$K_{\emptyset}$$
 Wifi nodes:

$$\alpha(K_{\emptyset}) = 1 / (N_{cs} - K_{\emptyset} + 1)$$

where N_{cs} is number of detected WiFi nodes

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:

1/ No nulling:

$$a_{no} = 1 / (N_{cs} + 1)$$

2/ Nulling
$$K_{\emptyset}$$
 Wifi nodes:

$$\alpha(K_{\emptyset}) = 1 / (N_{cs} - K_{\emptyset} + 1)$$

where N_{cs} is number of detected WiFi nodes

... with some reduction in SNR on BS-UE link -> tradeoff,

- LTE-U must leave the medium for WiFi proportional to the number of WiFi nodes observed in its neighborhood.
- With nulling LTE-U can increase its airtime usage:

1/ No nulling:

$$a_{no} = 1 / (N_{cs} + 1)$$

2/ Nulling
$$K_{\emptyset}$$
 Wifi nodes:
 $\alpha(K_{\emptyset}) = 1 / (N_{cs} - K_{\emptyset} + 1)$

where N_{cs} is number of detected WiFi nodes

- ... with some reduction in SNR on BS-UE link -> tradeoff,
- Interesting case when K < N_{cs}, where only a subset of WiFi nodes can be selected for nulling -> optimization problem [1]

[1] Bayhan, Zubow, Wolisz, "Coexistence Gaps in Space via Interference Nulling for LTE-U/WiFi Coexistence",

Is Cross-technology Interference-Nulling practically feasible?

- Such coordinated co-existence scheme requires:
 - 1. Cross-Technology Communication (CTC)
 channel for the exchange of control messages
 - LtFi CTC by us 69
 - 2. Interference nulling requires channel state information (CSI) at transmitter side, i.e. LTE-U BS
 - Cannot be obtained over LtFi-CTC
 - Cannot be obtained at all....

XZero: Our Approach to Practical CTIN

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

XZero: Our Approach to Practical CTIN

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

WiFi STA

XZero: Our Approach to Practical CTIN

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

5. Continue with testing next nulling configuration

Our idea: Do not estimate channel state information (CSI) but perform null search steered by the feedback from the WiFi nodes to be nulled

5. Continue with testing next nulling configuration

Problem: Linear (exhaustive) search is very slow Our idea: Tree-based search testing null regions

Ground truth nulling direction: 1°

Azimuth angle (degrees)

-50

1-100

Est. null direction:

-50

-100

Tree leaves:

-50

-100

-3

-2

Azimuth angle (degrees)

-50

1-100

Est. null direction:

-50

-100

Tree leaves:

-50

-100

-3

-2

Main Steps in XZero

Challenges:

- Power correction for precoding vector needed to tackle multi path propagation,
- Backhaul latency for feedback from WiFi to LTE,
- Precoding weight: for each LTE OFDMA RRB,
- WiFi-side measurement: OFDM subcarrier,
- A mapping needed between WiFi side and LTE side

XZero Prototype

- Is custom hardware needed?
 - No, prototype based on SDR-USRP (LTE) and COTS (WiFi)
- Is special software needed?
 - No, usage of open-source software-based LTE stack (srsLTE) & WiFi driver (ATH9k),
 - Most functionality of XZero implemented in Python

LTE-U BS+UE

WiFi nodes (Atheros AR95xx

Small-scale Evaluation at TKN

 Interference-to-noise ratio (INR) reduction under optimal conditions - frequency-flat wired channel

Large-scale Evaluation in ORBIT Grid

Real wireless (frequency-selective) channel, 2.4

ULA w/ K=4 antennas selected

- 27 randomly selected WiFi nodes
- Main results:
 - 15.7 dB decrease in INR at nulled WiFi nodes
 - Linear-search slightly better: higher INR
 - Tree-search: 10× faster than linear search

Reconfiguration Delay

- Null search has to be performed upon change in network topology,
- Parameters affecting configuration delay:
 - Selected angular resolution, length of LTE-U on-period, WiFi sampling frequency, LTE-WiFi backhaul latency, tree-search fanout
- For single WiFi node: < 1 sec & speed-up of 10x compared to linear search

Take-aways

- Need for efficient coexistence schemes for operation in unlicensed 5 GHz spectrum,
- We propose explicit cooperation between co-located LTE-U and WiFi networks,
- We suggest to create coexistence gaps in space by means of cross-technology interference nulling (CTIN),
- XZero is practical CTIN on SDR/COTS hardware

Thank you!

Contact: gawlowicz@tu-berlin.de