25-09

Eye-tracking and pupillometry

When and why do we need eye-tracking?

Descriptive research: we're interested in the what, why and where of eye movements themselves

Explanatory research: oculomotor data may provide a window onto various cognitive processes

Terminology

Saccade
Saccadic amplitude
Saccadic latency
Fixation
Fixation duration
Microsaccade

Terminology

Saccade
Saccadic amplitude
Saccadic latency
Fixation
Fixation duration
Microsaccade

Eye position: two signals

Pupil location

Corneal reflection of (infrared) light sent from camera

Eye position: calibrate

0

lacksquare

Pupil location

Corneal reflection of (infrared) light sent from camera

Eye position: calibrate

Pupil location

Corneal reflection of (infrared) light sent from camera

Thus far:

Tracking the eye position (and pupil size) in a normal behavioral experiment

But what about gaze-contingent trickery?

From today's module on Canvas, download *eyetracking.osexp*

Mac users: may have to install PyGaze package manually

Install from source

On other systems, you can install PyGaze as follows:

- Download the PyGaze source code (.zip) from https://github.com/esdalmaijer/PyGaze.
 - Do not download the standalone Windows packages provided on the PyGaze website.
 - Verify that the version of PyGaze is compatible with your version of OpenSesame, as described here.
- 2. Extract the .zip archive somewhere.
- 3. Inside, you will find these folders:
 - opensesame_plugins: As the name suggests, this folder contains the
 OpenSesame plugins, which need to be copied to (one of) the plugin folders, as described here.
 - pygaze: This is the PyGaze Python library. You need to copy this to a folder in the Python path. On Windows, you can copy this folder to the OpenSesame program folder.
- 4. Done!

Attention is biased by top-down cues

e.g., it takes longer for you to note the square on the right, when the arrow points to the left.

Task: indicate location of square (left / right)

Potential confound:
Simon effect (Maybe arrow biased response rather than attention)

Attention is biased by top-down cues

e.g., it takes longer for you to note the square on the right, when the arrow points to the left.

Task: Move eyes to the square

Potential confound averted

In our experiment we have a simple response_time variable...

Do we need more?

If possible, avoid having to dive into these files

→ define DV's in OpenSesame

sub_7 - No	otepad								- 🗆	\times
File Edit Format View Help										
ESACC L 2	2248653	2248710	58	627.1	534.1	1188.5	544.5	12.17	369	^
SFIX L 2	2248711									
EFIX L 2	2248711	2249027	317	1186.3	548.4	1914				
SSACC L 2	2249028									
ESACC L 2	2249028	2249090	63	1185.3	548.4	703.4	522.3	10.48	357	
SFIX L 2	2249091									
MSG 22	249659 move to	word 2								
EFIX L 2	2249091	2250585	1495	664.3	526.3	2158				
SSACC L 2	2250586									
SBLINK L 2	2250609									
EBLINK L 2	2250609	2250686	78							
ESACC L 2	2250586	2250742	157	667.2	524.4	698.0	543.8	0.79	1264	
SFIX L 2	2250743									
EFIX L 2	2250743	2251010	268	694.0	544.1	2347				
SSACC L 2	2251011									
ESACC L 2	2251011	2251055	45	692.8	548.2	1110.7	568.5	9.10	421	
SFIX L 2	2251056									
EFIX L 2	2251056	2251299	244	1124.1	573.1	1828				
SSACC L 2	2251300									
ESACC L 2	2251300	2251340	41	1129.8	571.0	1421.5	569.2	6.19	304	
SFIX L 2	2251341									
EFIX L 2	2251341	2251749	409	1429.4	569.5	1515				
SSACC L 2	2251750									
ESACC L 2	2251750	2251821	72	1432.3	565.8	700.4	535.4	15.64	418	
SFIX L 2	2251822									
MSG 22	252601 move to	word 3								
EFIX L 2	2251822	2253059	1238	675.0	533.8	1626				
SSACC L 2	2253060									
ESACC L 2	2253060	2253105	46	670.2	542.0	1097.7	566.2	9.32	378	
SFIX L 2	2253106									
	2252106	225227	າດາ	1105 1	E60 0	1000				· ·
<										>

→ define DV's in OpenSesame Example: saccadic curvature

→ define DV's in OpenSesame Example: saccadic curvature

→ define DV's in OpenSesame Example: saccadic curvature

```
all_y_values.append(384-y) # add deviation from vertical center to list
    # Check if the eye position is in the square:
    if x in range(left_boundary,right_boundary) and y in range(352,416):
        # If so, we first want to make sure it's a true response, and not some
        # accidental measurement (e.g. due to blinking). Let's say the response
        # is real if the eyes are there for at least 50 ms. So we take a 50ms break.
        self.sleep(50)
        #... and then check again:
        if x in range(left_boundary,right_boundary) and y in range(352,416):
            # If so, then specify the response time (i.e. current time minus start_time
            exp.set('response_time', self.time() - start_time-50)
            break # And break out of the loop
        # Note that if the eye position isn't on the square anymore, we just start a
curvature = int(float(sum(all_y_values))/len(all_y_values))
exp.set('curvature',curvature)
```


Assignment due: Sunday 1st 23:59

Pupillary light response: not just to our direct visual environment

Also to memorized brightness

(Mathôt et al., 2017: pupil response to semantic brightness of words)

Assignment due: Sunday 1st 23:59

Assignment due: Sunday 1st 23:59

"have you seen this orientation?"

H: pupil responds to brightness of memorized stimulus location

Assignment due: Sunday 1st 23:59

From today's module in Canvas, download pupillometry practical.pdf

Assignment consists of 2 parts; Part 2 is about analyzing data (*Thursday!*)

