Model-Free Temporal-Difference (Q-Learning)

Alina Vereshchaka

CSE4/510 Reinforcement Learning Fall 2019

avereshc@buffalo.edu

September 19, 2019

Overview

Recap

SARSA

Table of Contents

Recap

2 SARSA

Recap: Monte Carlo (MC) and Temporal Difference (TD) Learning

- ightarrow Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π
- Incremental every-visit Monte-Carlo:
 - Update value V(S_t) toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

- Simplest Temporal-Difference learning algorithm: TD(0)
 - Update value V(S_t) toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $ightharpoonup R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error.

TD(0) Method

- Policy Evaluation (the prediction problem):
 - for a given policy π , compute the state-value function v_π
- Remember: Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

target: the actual return after time t

The simplest Temporal-Difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

target: an estimate of the return

Example: Driving Home

	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	$Time\ to\ Go$	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Example: Driving Home

Table of Contents

Recap

SARSA

Learning an Action-Value Function

 \rightarrow Estimate q_{π} for the current policy π

After every transition from a nonterminal state, S_t , do this:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$

SARSA

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$$

 $S \leftarrow S'$; $A \leftarrow A'$;

until S is terminal

SARSA

- SARSA is an **on-policy** algorithm which means that while learning the optimal policy it uses the current estimate of the optimal policy to generate the behaviour
- SARSA converges to an **optimal policy** as long as all state-action pairs are visited an infinite number of times and the policy converges in the limit to the greedy policy $(\epsilon = \frac{1}{t})$.

Table of Contents

Recap

SARSA

Q-learning: Off-Policy TD Control

In Q-learning the learned action-value function, Q, directly approximates the optimal action-value function, independent of the policy being followed.

$$Q(s_t, a_t) \leftarrow (s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

Q-Learning Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S' Target

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

$$S \leftarrow S'$$

until S is terminal