

fundamental system of entourages

 ${\bf Canonical\ name} \quad {\bf Fundamental System Of Entourages}$

Date of creation 2013-03-22 16:29:55 Last modified on 2013-03-22 16:29:55

Owner mps (409) Last modified by mps (409)

Numerical id 5

Author mps (409) Entry type Definition Classification msc 54E15

Defines uniformity generated by

Let (X, \mathcal{U}) be a uniform space. A subset $\mathcal{B} \subseteq \mathcal{U}$ is a fundamental system of entourages for \mathcal{U} provided that each entourage in \mathcal{U} contains an element of \mathcal{B} .

To see that each uniform space (X, \mathcal{U}) has a fundamental system of entourages, define

$$\mathcal{B} = \{ U \cap U^{-1} \colon U \in \mathcal{U} \},\$$

where U^{-1} denotes the inverse relation of U. Since \mathcal{U} is closed under taking relational inverses and binary intersections, $\mathcal{B} \subseteq \mathcal{U}$. By construction, each $U \in \mathcal{U}$ contains the element of $U \cap U^{-1} \in \mathcal{B}$.

There is a useful equivalent condition for being a fundamental system of entourages. Let \mathcal{B} be a nonempty family of subsets of $X \times X$. Then \mathcal{B} is a fundamental system of entourages of a uniformity on X if and only if it the following axioms.

- (B1) If $S, T \in \mathcal{B}$, then $S \cap T$ contains an element of \mathcal{B} .
- (B2) Each element of \mathcal{B} contains the diagonal $\Delta(X)$.
- (B3) For any $S \in \mathcal{B}$, the inverse relation of S contains an element of \mathcal{B} .
- (B4) For any $S \in \mathcal{B}$, there is an element $T \in \mathcal{B}$ such that the relational composition $T \circ T$ is contained in S.

Suppose \mathcal{B} is a fundamental system of entourages for uniformities \mathcal{U} and \mathcal{V} . Then $\mathcal{U} \subset \mathcal{V}$. To see this, suppose $S \in \mathcal{U}$. Since \mathcal{B} is a fundamental system of entourages for \mathcal{U} , there is some element $B \in \mathcal{B}$ such that $B \subset S$. But $\mathcal{B} \subset \mathcal{V}$, so $B \in \mathcal{V}$. Hence by applying the fact that \mathcal{V} is closed under taking supersets we may conclude that $S \in \mathcal{V}$. So if \mathcal{B} is a fundamental system of entourages, it is a fundamental system for a unique uniformity \mathcal{U} . Thus it makes sense to call \mathcal{U} the uniformity generated by the fundamental system \mathcal{B} .

References

[1] Nicolas Bourbaki, Elements of Mathematics: General Topology: Part 1, Hermann, 1966.