Disnect Sum, Rank-Nullity Theosem Affine Map

* The Rank-Nullity Theorem; Gorassmann's Relation

Theorem 5.8. (Rank-nullity theorem) Let $f: E \to F$ be a linear map with finite image. For any choice of a basis (f_1, \ldots, f_r) of Im f, let (u_1, \ldots, u_r) be any vectors in E such that $f_i = f(u_i)$, for i = 1, ..., r. If s: Im $f \to E$ is the unique linear map defined by $s(f_i) = u_i$, for i = 1, ..., r, then s is injective, $f \circ s = id$, and we have a direct sum

$$E = \operatorname{Ker} f \oplus \operatorname{Im} s$$

as illustrated by the following diagram:

$$\operatorname{Ker} f \longrightarrow E = \operatorname{Ker} f \oplus \operatorname{Im} s \xrightarrow{f \atop \underline{\qquad}} \operatorname{Im} f \subseteq F.$$

See Figure 5.2. As a consequence, if E is finite-dimensional, then

$$\dim(E) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f) = \dim(\operatorname{Ker} f) + \operatorname{rk}(f).$$

 \Rightarrow The dimension dim(Ker f) of the kernel of a linear map f is called the nullity of f . $\int Q$

Proposition 5.9. Given a vector space E, if U and V are any two finite-dimensional subspaces of E, then

$$\dim(U) + \dim(V) = \dim(U + V) + \dim(U \cap V),$$

an equation known as Grassmann's relation.

The Grassmann relation can be very useful to figure out whether two subspace have a nontrivial intersection in spaces of dimension > 3.

Proposition 5.10. If U_1, \ldots, U_p are any subspaces of a finite dimensional vector space E, then

$$\dim(U_1 + \dots + U_p) \le \dim(U_1) + \dots + \dim(U_p),$$

and

$$\dim(U_1 + \dots + U_p) = \dim(U_1) + \dots + \dim(U_p)$$

iff the U_is form a direct sum $U_1 \oplus \cdots \oplus U_p$.

Proposition 5.11. Let E and F be two vector spaces with the same finite dimension $\dim(E) = \dim(F) = n$. For every linear map $f: E \to F$, the following properties are equivalent:

- (a) f is bijective.
- (b) f is surjective.
- (c) f is injective.
- (d) Ker f = (0).

Proposition 5.12. Let E and F be vector spaces, and let $f: E \to F$ be a linear map. If $f: E \to F$ is injective, then there is a surjective linear map $r: F \to E$ called a retraction, such that $r \circ f = \mathrm{id}_E$. See Figure 5.3. If $f: E \to F$ is surjective, then there is an injective linear map $s: F \to E$ called a section, such that $f \circ s = \mathrm{id}_F$. See Figure 5.2.

Proposition 5.13. Given a linear map $f: E \to F$, the following properties hold:

- (i) $\operatorname{rk}(f) + \dim(\operatorname{Ker} f) = \dim(E)$.
- (ii) $\operatorname{rk}(f) \leq \min(\dim(E), \dim(F))$.

Definition 5.5. Given a $m \times n$ -matrix $A = (a_{ij})$, the $rank \operatorname{rk}(A)$ of the matrix A is the maximum number of linearly independent columns of A (viewed as vectors in \mathbb{R}^m).

* Affine Marp

₹ Every linear map f must send the zero vector to the zero vector; that is:

Yet for any fixed nonzero vector u ∈ E (where E is any vector space), the function t_u given by

$$t_u(x) = x + u$$
, for all $x \in E$

ج shows up in practice (for example, in robotics).

Functions of this type are called translations.

They are not linear for u != 0, since t u (0) = 0 + u = u.

More generally, functions combining linear maps and translations occur naturally in many applications (robotics, computer vision, etc.)

 \Rightarrow For any vector space E, given any family (u_i) i \in I of vectors u_i \in E, an affine combination of the family (u_i) i \in I is an expression of the form

$$\sum_{i \in I} \lambda_i u_i \quad \text{with} \quad \sum_{i \in I} \lambda_i = 1,$$

where (λ_i) i \in I is a family of scalars.

→ Affine combinations are also called barycentric combinations.

Proposition 5.14. For any two vector spaces E and F, given any function $f: E \to F$ defined such that

$$f(x) = h(x) + b$$
, for all $x \in E$,

where $h: E \to F$ is a linear map and b is some fixed vector in F, for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have

$$f\left(\sum_{i\in I}\lambda_i u_i\right) = \sum_{i\in I}\lambda_i f(u_i).$$

In other words, f preserves affine combinations.

Proposition 5.15. For any two vector spaces E and F, let $f: E \to F$ be any function that preserves affine combinations, i.e., for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have

$$f\left(\sum_{i\in I}\lambda_i u_i\right) = \sum_{i\in I}\lambda_i f(u_i).$$

Then for any $a \in E$, the function $h: E \to F$ given by

$$h(x) = f(a+x) - f(a)$$

is a linear map independent of a, and

$$f(a+x) = h(x) + f(a)$$
, for all $x \in E$.

In particular, for a = 0, if we let c = f(0), then

$$f(x) = h(x) + c$$
, for all $x \in E$.

- > We should think of a as 'a' chosen origin in E.
- → The function f maps the origin 'a' in E to the origin f(a) in F.
- →Also, since

$$f(x) = h(x) + c$$
, for all $x \in E$

for some fixed vector $c \in F$, we see that f is the composition of the linear map h with the translation t c (in F).

 \Rightarrow The unique linear map h as above is called the linear map associated with f , and it is sometimes denoted by \widehat{f} .

Definition 5.6. For any two vector spaces E and F, a function $f: E \to F$ is an affine map if f preserves affine combinations, i.e., for every affine combination $\sum_{i \in I} \lambda_i u_i$ (with $\sum_{i \in I} \lambda_i = 1$), we have

$$f\left(\sum_{i\in I}\lambda_i u_i\right) = \sum_{i\in I}\lambda_i f(u_i).$$

Equivalently, a function $f: E \to F$ is an affine map if there is some linear map $h: E \to F$ (also denoted by \overrightarrow{f}) and some fixed vector $c \in F$ such that

$$f(x) = h(x) + c$$
, for all $x \in E$.

Definition 5.7. An *affine space* is either the degenerate space reduced to the empty set, or a triple $\langle E, \overrightarrow{E}, + \rangle$ consisting of a nonempty set E (of *points*), a vector space \overrightarrow{E} (of *translations*, or *free vectors*), and an action $+: E \times \overrightarrow{E} \to E$, satisfying the following conditions.

- (A1) a + 0 = a, for every $a \in E$.
- (A2) (a+u)+v=a+(u+v), for every $a \in E$, and every $u,v \in \overrightarrow{E}$.
- (A3) For any two points $a, b \in E$, there is a unique $u \in \overrightarrow{E}$ such that a + u = b.

The unique vector $u \in \overrightarrow{E}$ such that a + u = b is denoted by \overrightarrow{ab} , or sometimes by \mathbf{ab} , or even by b - a. Thus, we also write

$$b = a + \overrightarrow{ab}$$

(or b = a + ab, or even b = a + (b - a)).

 \Rightarrow If E and F are finite dimensional vector spaces with dim(E) = n and dim(F) = m, then it is useful to represent an affine map with respect to bases in E in F.

- \Rightarrow There is a standard trick to do this which amounts to viewing an affine map as a linear map between spaces of dimension n + 1 and m + 1.
- \Rightarrow Let (u 1, ..., u n) be a basis of E, (v 1, ..., v m) be a basis of F, and let a \in E and b \in F be any two fixed vectors viewed as origins.
- \Rightarrow Our affine map f has the property that if v = f(u), then

$$v - b = f(a + u - a) - b = f(a) - b + h(u - a),$$

 \Rightarrow If we let y = v - b, x = u - a, and d = f(a) - b, then

$$y = h(x) + d, \quad x \in E.$$

 \Rightarrow Over the basis $\mathcal{U} = (u_1, \dots, u_n)$, we write

$$x = x_1 u_1 + \dots + x_n u_n,$$

and over the basis $\mathcal{V} = (v_1, \dots, v_m)$, we write

$$y = y_1 v_1 + \dots + y_m v_m,$$

$$d = d_1 v_1 + \dots + d_m v_m.$$

 \Rightarrow If we let A be the m x n matrix representing the linear map h, that is, the jth column of A consists of the coordinates of h(u j) over the basis (v 1, . . . , v m), then we can write

$$y_{\mathcal{V}} = Ax_{\mathcal{U}} + d_{\mathcal{V}}.$$

where
$$x_{\mathcal{U}} = (x_1, \dots, x_n)^{\top}, y_{\mathcal{V}} = (y_1, \dots, y_m)^{\top}, \text{ and } d_{\mathcal{V}} = (d_1, \dots, d_m)^{\top}.$$

- \Rightarrow The above is the matrix representation of our affine map f with respect to (a, (u 1, . . . , u n)) and (b, (v 1, . . . , v m)).
 - When E = F, if there is some $a \in E$ such that f(a) = a (a is a fixed point of f), then we can pick b = a. Then because f(a) = a, we get

$$v = f(u) = f(a + u - a) = f(a) + h(u - a) = a + h(u - a),$$

that is

$$v - a = h(u - a).$$

With respect to the new origin a, if we define x and y by

$$x = u - a$$

$$y = v - a,$$

then we get

$$y = h(x)$$
.

- Therefore, f really behaves like a linear map, but with respect to the new origin a (not the standard origin 0). This is the case of a rotation around an axis that does not pass through the origin.
- \Rightarrow A pair (a, (u_1, ..., u_n)) where (u_1, ..., u_n) is a basis of E and a is an origin chosen in E is called an affine frame.

- ₹ We now describe the trick which allows us to incorporate the translation part d into the matrix A.
- \Rightarrow We define the $(m+1) \times (n+1)$ matrix A' obtained by first adding d as the (n+1)th column and then $(\underbrace{0,\ldots,0}_n,1)$ as the (m+1)th row:

$$A' = \begin{pmatrix} A & d \\ 0_n & 1 \end{pmatrix}.$$

It is clear that

$$\begin{pmatrix} y \\ 1 \end{pmatrix} = \begin{pmatrix} A & d \\ 0_n & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}$$

iff

$$y = Ax + d.$$

- \Rightarrow This amounts to considering a point $x \in \mathbb{R}^n$ as a point (x,1) in the (affine) hyperplane H_{n+1} in \mathbb{R}^{n+1} of equation $x_{n+1} = 1$.
 - \Rightarrow The idea of considering \mathbb{R}^n as an hyperplane in \mathbb{R}^{n+1} can be used to define *projective* maps.