Reliable and Trustworthy Artificial Intelligence

Lecture 13: Federated Learning

Dimitar I. Dimitrov

ETH Zurich

Fall 2021

Federated Learning Motivation

Federated Learning - Motivation

Deep Learning requires a lot of task-dependent data to learn:

- Requires access to a lot of data:
 - Only accessible to companies with many data sources/users
 - Privacy concerns of the individual users
 - Legal issues surrounding the use of user data
 - Or scraping data from the internet
 - Copyright issues
 - Data might not be available for the task being solved

Federated Learning - Basic Idea

Can we learn without forcing individual data sources to share their data? Yes, using federated learning

Types of Federated Learning

Cross-device setting:

- Millions of sources of data
- Each source is contacted rarely to participate in training
- Sources might dynamically drop in and out of the learning process
- There is **small amount of data** per-source
- Example: Google training spell checker on phone users

Cross-sillo setting:

- Small number of sources of data
- Data sources participate in the training constantly
- More data per source
- Often at different sources the data is heterogenous
- Example: Hospitals jointly training a model to predict cancer from X-ray images

Overview of Federated Learning

Federated Learning - Overview

Elements:

 Federated Server - Stores the global neural network model and manages clients

Federated Learning - Overview

Elements:

- Federated Server Stores the global neural network model and manages clients
- Individual Clients Use private data to train local models

Federated Learning - Overview

Elements:

- Federated Server Stores the global neural network model and manages clients
- Individual Clients Use private data to train local models
- Local Updates Computed from the local model to preserve data privacy and shared with server

A Round of Training in Federated Learning

Step 1: Global Model sent to clients

Server needs to **decide which clients are selected** to participate in the round

Choice is can be based on:

- Cross-device vs Cross-silo?
- How often we have selected the clients so far?
- How much data is available at different client?
- How much the client has improved global model?

A Round of Training in Federated Learning

Step 2: Local computation on private data

- Update the global model using the private data to produce local models
- Use the local models to produce local update

Considerations for constructing the local update:

- Private data must not be exposed
- Update needs to improve performance on private data

A Round of Training in Federated Learning

Step 3: Aggregation of Local Updates

- Clients send information to the Server:
 - Local Updates
 - Local Training Statistics e.g number of datapoints used, number of local SGD iterations, batch norm statistics
- Server aggregates the local updates to produce a new global model:
 - Usually a weighted average of local updates
 - Weights selected based on the Local Training Statistics

Common Federated Learning Algorithms - FedSGD

Client updates:

- ullet Local private data $\{x_i^k,y_i^k\}$ is chosen randomly
- Local updates are given by the network gradient g_s with respect to the global model weights Θ_t

$$egin{aligned} \{x_i^k, y_i^k\} &\sim \mathcal{D}_k \ g_k &\leftarrow
abla_{\Theta_t} \mathcal{L}(f_{\Theta_t}(x_i^k), y_i^k) \end{aligned}$$

Server aggregation:

• The server applies the average gradient update g_c to the global model using standard single step SGD

$$g_c \leftarrow rac{1}{K} \sum_{k=1}^{K} g_k \ \Theta_{t+1} \leftarrow \Theta_t - \gamma g_c$$

Pros:

Guarantees of convergence to a local minima

Cons:

 Only single step of SGD before sending an update. Communication is very expensive

Common Federated Learning Algorithms - FedAvg

Client updates:

- Several iterations of SGD on private data
- Local updates consist of local model parameters after SGD

Server aggregation:

• Aggregation just averages the weights of the local models from different clients based on the number of examples in each client n_k .

Pros:

 Allows several SGD steps to be executed before communication which leads to less communication overhead $\begin{aligned} &\textbf{for each local epoch } i \text{ from } 1 \text{ to } E \textbf{ do} \\ & \{x_i^k, y_i^k\} \sim \mathcal{D}_k \\ & \Theta_{t+1}^k \leftarrow \Theta_{t+1}^k - \gamma \nabla_{\Theta_t} \mathcal{L}(f_{\Theta_t}(x_i^k), y_i^k) \\ & \text{return } \Theta_{t+1}^k \end{aligned}$

$$\Theta_{t+1} \leftarrow \sum_{k=1}^{K} rac{n_k}{n} \Theta_{t+1}^k$$

Cons:

No guarantees of convergence

Attacks in Federated Learning

Server-side Attacks: Gradient Inversion

Honest-but-Curious Server:

- Aim: Expose private data of clients
- Allowed: Look at clients' local updates and statistics, old global model parameters
- Not Allowed: Malicious updates of the global model

Match gradients of reconstructed and client data

Regularizer to enforce realistic reconstructed images

$$g(
abla_{\Theta}\mathcal{L}(f_{\Theta}(x_i), y_i), f_{\Theta}) = \operatorname*{argmin}_{(x_i^*, y_i^*)} \lVert \widehat{
abla_{\Theta}\mathcal{L}(f_{\Theta}(x_i), y_i) -
abla_{\Theta}\mathcal{L}(f_{\Theta}(x_i^*), y_i^*)} \rVert_p + \widehat{\mathcal{R}(x_i^*)}$$

Server-side Attacks: Gradient Inversion SOTA

Gradients leak a lot of information about the client data

Original batch - ground truth

GradInversion

Gradient Inversion - Our work

Probabilistic view of the gradient inversion function:

- We assume that the client sent gradient g_k is a corrupted version of the true gradient $\nabla_{\Theta} \mathcal{L}(f_{\Theta}(x_i), y_i) \xrightarrow{}$ Many defenses can be interpreted that way
- We show that under these circumstances existing attacks can be viewed as the Bayesian optimal adversary:

Posterior probability of observing the gradient the client supplied with current data estimate
$$g(\nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i),y_i),f_{\Theta}) = \underset{(x_i^*,y_i^*)}{\operatorname{argmax}} \underbrace{p(\nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i^*),y_i^*) = g_k|x_i^*,y_i^*)}_{p(\nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i),y_i) - \nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i^*),y_i^*)||_p + \mathcal{R}(x_i^*)}^{\operatorname{Image prior probability}} \bullet \underbrace{p(x_i^*,y_i^*)}_{p(x_i^*,y_i^*)}$$

Key point: Many existing attacks including SOTA can be seen as instantiations of our framework

Gradient Inversion - Our work

How to select prior and posterior?

- Strong image priors like PixelCNN are preferable. Affects results drastically
- Model posterior probability based on defense mechanism applied

Posterior probability of observing the gradient the client supplied with current data estimate
$$g(\nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i),y_i),f_{\Theta}) = \operatorname*{argmax}_{(x_i^*,y_i^*)} p(\nabla_{\Theta}\mathcal{L}(f_{\Theta}(x_i^*),y_i^*) = g_k|x_i^*,y_i^*) \qquad \bullet \qquad p(x_i^*)$$

Key point: Optimal attack depends on the defense

Gradient Inversion - Our work

Experiments

We use Bayes Optimal attack to break several heuristic defenses

Client-side Attacks: Poisoning

Client Poisoning Attack:

- Aim: Force to model to diverge or to have bad behaviour on certain data
- Allowed: Send malicious local updates to the server
- Allowed: Coordination between multiple malicious clients
- Not Allowed: Changes to the model aggregation scheme

Other Concerns: Client Fairness

FedSGD optimizes the average of individual client losses:

$$\operatorname*{argmin}_{\Theta} \mathcal{L}(\Theta, \mathcal{D}) = rac{1}{k} \sum_{k=1}^K \mathcal{L}(\Theta, \mathcal{D}_k)$$

Issue: Possibly big variance of accuracy of the global model for individual clients despite good performance on average

Cause: Data heterogeneity

Trade-off: Client Fairness vs Robustness to Poisoning

Issue: Server cannot distinguish between highly heterogeneous client and adversarial client

Case 1:

Server allows the client to adapt the model more to its data

→ Adversary will affect global model more easily

Case 2:

Server prevents the client to adapt the model to its data No Client Fairness

Defenses in Federated Learning

Defenses against Gradient Inversion - Differential Privacy

Formal Definition of Differential Privacy:

The stochastic algorithm \mathbf{M} is differentiably private with parameters $\boldsymbol{\epsilon}$ and $\boldsymbol{\delta}$ if for all similar input datasets $\boldsymbol{\mathcal{D}}$ and $\boldsymbol{\mathcal{D}}'$ and all possible outputs $\boldsymbol{\mathcal{S}}$ of the algorithm, it is true that:

$$\Pr[\mathsf{M}[\mathcal{D}] \in \mathcal{S}] \leq \exp[\epsilon] \Pr[\mathsf{M}[\mathcal{D}'] \in \mathcal{S}] + \delta$$

Intuitive Definition of Differential Privacy:

Small changes of the input are indistinguishable to observer that only see the output of the algorithm with high probability

Defenses against Gradient Inversion - DP-SGD

Key Idea: DP-SGD **clips the gradients** of individual clients and **adds noise** to them to achieve differential privacy. **Only the modified gradients are sent to server**

Clip gradient norm to
$$C$$
 Add Gaussian noise $g_k = \min(rac{C}{\|
abla_{\Theta}\mathcal{L}(f_{\Theta}(x_i),y_i)\|_2},1)\cdot
abla_{\Theta}\mathcal{L}(f_{\Theta}(x_i),y_i) + \xi_i \quad \text{with} \quad \xi_i \sim \mathcal{N}(0,\sigma^2C^2I)$

 σ is a complicated function of desired ϵ and δ

Solving the Robustness vs Fairness Trade-off

Key Idea: Model personalization

Advantages:

- Model is allowed to personalize the global model locally
 - **⇒** Client Fairness
- Personalizations are **only** local
 - ⇒ Adversary cannot use them to corrupt the model

Future work

GradInversion:

- Beyond images (e.g Text, Audio) Deng, Jieren, et al. "TAG: Gradient Attack on Transformer-based Language Models." Findings of the Association for Computational Linguistics: EMNLP 2021. 2021.
- Adapting to FedAvg Geng, Jiahui, et al. "Towards General Deep Leakage in Federated Learning." arXiv preprint arXiv:2110.09074 (2021).
- Defenses beyond DP-SGD Can we exploit more problem-specific information?

Poisoning Attacks:

- Current attacks are successful only under **unrealistic assumptions** Shejwalkar, Virat, et al. "Back to the drawing board: A critical evaluation of poisoning attacks on federated learning." arXiv preprint arXiv:2108.10241 (2021).
- Exploring different model personalization schemes active area of research

