Práctica 2

Estructuras Discretas, 2017-1 Facultad de Ciencias, UNAM

Laura Freidberg Gojman

José Ricardo Rodríguez Abreu

lfreidberg@yahoo.com

ricardo_rodab@ciencias.unam.mx

Albert Manuel Orozco Camacho

alorozco53@ciencias.unam.mx

2 de septiembre de 2016

Objetivo de la práctica

El alumno ejercitará el uso de las diversas herramientas para imprimir símbolos, operaciones, ecuaciones y figuras matemáticas. Además, tendrá la posibilidad de establecer definiciones, axiomas, teoremas y corolarios, así como demostrar éstos últimos.

Preámbulo

Probablemente la característica que hace que LATEX sea tan popular en la comunidad académica es la facilidad que brinda al usuario de incorporar sintaxis técnica a documentos. En particular, los que radicamos dentro de o para alguna carrera del Departamento de Matemáticas de la Facultad de Ciencias, nos interesamos en simbología matemática.

Actividades a realizar

Utilizando lo visto en clase (presentación y libro de consulta), realizar lo siguiente, especificando paso por paso:

- 1. $\left[\frac{1}{10} \text{ pts.}\right]$ Formalice el siguiente argumento usando variables proposicionales:
 - "Si un unicornio es mítico también es inmortal, pero si no lo es, entonces es un mamífero mortal. Si un unicornio es inmortal o mamífero tiene cuerno. Un unicornio es mágico si tiene un cuerno. Luego entonces simpre un unicornio es mágico y tiene cuerno."
- 2. $\left[\frac{1}{10} \text{ pts.}\right]$ Probar que el argumento anterior es válido (satisfacible) utilizando interpretaciones.
- 3. $\left[\frac{1}{10} \text{ pts.}\right]$ Decida si la siguiente equivalencia lógica es válida o no, utilizando las leyes vistas en clase y justificando paso por paso:

$$(p \land (q \to r)) \to r \land (p \lor s) \equiv \neg p \lor (q \land \neg r) \lor (r \land p) \lor (r \land s)$$

- 4. $\left[\frac{1}{8}\right]$ pts.] Resuelva las siguientes ecuaciones y desigualdades, indicando paso por paso las acciones que va realizando. Se sugiere fuertemente que se consulten las páginas 57 a 59 del libro. Escoja una ecuación de las siguientes y explique el procedimiento dentro de un párrafo. (Si alguna de las siguientes, no tiene solución real, especifique las soluciones complejas.)
 - $36x^2 80x + 23 = 17x 6.$
 - $\sqrt{4x^2 28x + 49} \le \sqrt[3]{x^{3 + \log_x 27}} + 38.$
 - $\frac{1+\sin x}{\cos x} + \frac{\cos x}{1+\sin x} = 4.$ Especifique la(s) solucion(es) exacta(s).
 - $\begin{array}{c}
 3x + 2x 10 = 8y \\
 9x + 3 = -24y + 5 z \\
 10z 2x + 3 = 0
 \end{array}$
- 5. $\left[\frac{1}{10}\right]$ pts.] Escriba el sistema de ecuaciones del inciso anterior en forma matricial AX = B (Busque en su libro de Álgebra Superior I o en uno de Álgebra Lineal o consúltelo con su profesor de la materia y cite su fuente.)
- 6. $\left[\frac{1}{20} \text{ pts.}\right]$ Defina formalmente el concepto de límite de una función real usando ϵ 's y δ 's.
- 7. $\left[\frac{1}{10} \text{ pts.}\right]$ Calcule lo siguiente, justificando paso por paso:
 - $\blacksquare \lim_{x \to -2} \frac{3x^2 8x 3}{2x^2 18}$

 - $\int_0^1 (x^6 2x^3 + 5x 3) dx$
- 8. $\left[\frac{1}{10} \text{ pts.}\right]$ Enuncie los axiomas de Peano.
- 9. $\left[\frac{1}{10} \text{ pts.}\right]$ Enuncie la paradoja de Russell.

10. $\left[\frac{1}{4} \text{ pts.}\right]$ Enuncie y demuestre la siguiente proposición:

$$A \bigcap A^C = \emptyset.$$

11. $\left[\frac{1}{8} \text{ pts.}\right]$ Enuncie una de las propiedades distributivas para cualesquiera tres conuntos y demuéstrela. (**NOTA**: Su prueba deberá de incluir un argumento en el que use dos contenciones de conjuntos.)

Sugerencias

Pueden ayudarse entre varias personas para realizar los ejercicios anteriores. Sin embargo, la entrega es individual.

Recuerden que pueden buscar y anotar quién es el personaje que viene en la primera diapositiva de dicha presentación y qué ha contribuido al mundo de la computación y/o programación para ganar un punto extra.

Uso de bibliografía

Deberán de escribir todas las fuentes bibliográficas consultadas en una bibliográfía ubicada al final de su documento .tex utilizando los comandos \begin{thebibliography} ... \end{thebibliography}.

Por ejemplo, pueden hacer algo como lo siguiente:

para producir:

Referencias

- [1] M. Goossens; F, Mittelbach; A. Samarin. The LaTeXCompanion. Addison-Wesley. 1993.
- [2] L. Lamport. $\rlap/\!\!E T_E X$. Addison-Wesley. 1996.

Nótese que el parámetro 99 indica el número $m\'{a}ximo$ de referencias a insertar y que cada referencia va precedida por un comando $\bibitem{...}$.

Entrega

La entrega es por correo electrónico siguiendo los lineamientos establecidos en el documento que se encuentra en la página del curso. Incluyan en el mismo cualquier comentario, inquietud o dificultad al realizar la práctica.

La fecha de entrega es el próximo lunes 12 de septiembre de 2016 antes de las 23:59 hrs.