

Fig.11.

	Т	T-	T	T		$\overline{\mathbf{T}}$	_			T	7		_	_	_	_		
IRIDIUM IF2	(MHz)		13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000	13.000
IRIDIUM IF1	(MHz)		71.333	71.375	71.417	71.458	70.500	70.542	70.583	70.625	70.667	70.708	70.750	70.792	70.833	70.875	70.917	70.958
VHF	(MHz)		233.333	233.500	233.667	233.833	230.000	230.167	230.333	230.500	230.667	230.833	231.000	231.167	231.333	231.500	231.667	231.833
SHF	(MHz)		1545.0	1545.0	1545.0	1545.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0	1546.0
IRIDIUM INPUT	(MHz)		1616.333	1616.375	1616.417	1616.458	1616.500	1616.542	1616.583	1616.625	1616.667	1616.708	1616.750	1616.792	1616.833	1616.875	1616.917	1616.958
CHANNEL			8	o	9	17	12	13	14	15	16	17	18	19	20	21	22	23

Fig.12.

CHANNEL	VHF	IRIDIUM IF1	SHF	IRIDIUM OUTPUT
	(MHz)	(MHz)	(MHz)	(MHz)
		-		
8	232.667	116.333	1500.0	1616.333
9	232.750	116.375	1500.0	1616.375
10	232.833	116.417	1500.0	1616.417
11	232.917	116.458	1500.0	1616.458
12	231.000	115.500	1501.0	1616.500
13	231.083	115.542	1501.0	1616.542
14	231.167	115.583	1501.0	1616.583
15	231.250	115.625	1501.0	1616.625
16	231.333	115.667	1501.0	1616.667
17	231.417	115.708	1501.0	1616.708
18	231.500	115.750	1501.0	1616.750
19	231.583	115.792	1501.0	1616.792
20	231.667	115.833	1501.0	1616.833
21	231.750	115.875	1501.0	1616.875
22	231.833	115.917	1501.0	1616.917
23	231.917	115.958	1501.0	1616.958

Fig.13.

	T _L	<u> </u>	Т	T	Т	-		Т	<u> </u>	Т	\top	T	1	-	T	7	Т	T	1
	SLOT				1	- ?	1 5	! 4	- '	-	- ?-	1 9	1 2	+		7	-2	7	1
	IF3 OFFSET	(KHz)			-25	-50	+50	+25		-25	-20	-50	+20	+25	1	-25	-50	+50	+25
	ICO IF3	(MHz)		13,000	12.975	12.950	13.050	13.025	13.000	12.975	12.950	12.950	13.050	13.025	13.000	12.975	12.950	13.050	13.025
	IF2 OFFSET	(KHZ)		ı	-25	-50	+25	1	-25	-50	-75	•	+75	+50	+25	1	-25	+50	+25
	ICO IF2	(MHz)		71.000	70.975	70.950	71.025	71.000	70.975	70.950	70.925	71.000	71.075	71.050	71.025	71.000	70.975	71.050	71.025
)	ICO IF1	(MHz)		933.600	933.625	933.650	933.675	933.700	933.725	933.750	933.775	933.600	933.625	933.650	933.675	933.700	933.725	933.750	933.775
	VHF	(MHz)		232.0	232.0	232.0	231.9	231.9	231.9	231.9	231.9	232.2	232.1	232.1	232.1	232.1	232.1	232.0	232.0
	UHF	(MHz)		1236.6	1236.6	1236.6	1236.6	1236.6	1236.6	1236.6	1236.6	1236.8	1236.8	1236.8	1236.8	1236.8	1236.8	1236.8	1236.8
	ICO INPUT	(MHz)		2170.200	2170.225	2170.250	2170.275	2170.300	2170.325	2170.350	2170.375	2170.400	2170.425	2170.450	2170.475	2170.500	2170.525	2170.550	2170.575
	CHANNEL			8	6	10	-	12	13	14	15	16	17	18	19	20	21	22	23

Fig.14.

_			, .	_			_	_	<u>.</u>		-		,		,	_			
1000	100 001 PUI	(MHz)		1980.200	1980.225	1980.250	1980.275	1980.300	1980.325	1980.350	1980.375	1980.400	1980.425	1980.450	1980.475	1980.500	1980.525	1980.550	1980.575
	און סטו	(MHz)		890.200	890.225	890.250	890.275	890.300	890.325	890.350	890.375	890.400	890.425	890.450	890.475	890.500	890.525	890.550	890.575
ובי טבבטבד				•	-25	-50	+25		-25	+50	+25	8	-25	-50	+25	ľ	-25	+50	+25
100		(MHz)		116.000	115.975	115.950	116.025	116.000	115.975	116.050	116.025	116.000	115.975	115.950	116.025	116.000	115.975	116.050	116.025
) <u>‡</u>		(MHZ)		1238.2	1238.2	1238.2	1238.4	1238.4	1238.2	1238.4	1238.4	1238.4	1238.4	1238.4	1238.6	1238.6	1238.4	1238.6	1238.6
井		(MHZ)		232.0	232.0	232.0	232.1	232.1	231.9	232.0	232.0	232.0	232.0	232.0	232.1	232.1	231.9	232.0	232.0
BB OFFSFT	(-11/1)	(KHZ)		•	-25	-50	-25	-50	+25	+20	+25	•	-25	-50	-25	-50	+25	+20	+25
SLOT				1	-1	-2	-	-2	+1	+2	+1	-	-1	-2	-	-2	+1	+2	+
CHANNEL				8	6	10	=	12	1 3	14	15	9	17	18	19	20	21	22	23