## Script 3

## Introducing a Continuum

## 3.1 Journal

10/20: Axiom 1. A continuum is a nonempty set C.

**Definition 3.1.** Let X be a set. An **ordering** on the set X is a subset < of  $X \times X$  with elements  $(x, y) \in <$  written as x < y, satisfying the following properties:

- a) (Trichotomy) For all  $x, y \in X$ , exactly one of the following holds: x < y, y < x, or x = y.
- b) (Transitivity) For all  $x, y, z \in X$ , if x < y and y < z, then x < z.

## Remark 3.2.

- a) In mathematics, "or" is understood to be inclusive unless stated otherwise. So in Definition 3.1a above, the word "exactly" is needed.
- b) x < y may also be written as y > x.
- c) By  $x \le y$ , we mean x < y or x = y; similarly for  $x \ge y$ .
- d) We often refer to elements of a continuum C as **points**.

**Axiom 2.** A continuum C has an ordering <.

**Definition 3.3.** If  $A \subset C$ , then a point  $a \in A$  is a **first** point of A if for every element  $x \in A$ , either a < x or a = x. Similarly, a point  $b \in A$  is called a **last** point of A if, for every  $x \in A$ , either x < b or x = b.

**Lemma 3.4.** If A is a nonempty, finite subset of a continuum C, then A has a first and last point.

*Proof.* We consider first points herein (the proof is symmetric for last points). If A is a finite set, then |A| = n for some  $n \in \mathbb{N}$ . Thus, if we prove the claim for each  $n \in \mathbb{N}$  individually, we will have proven the claim. To prove a property pertaining to any natural number, we induct on n.

For the base case n=1, there is only one element (which we may call a) in A. Since a=a, i.e., "for every  $x\in A$ , either a< x or a=x" is a true statement, it follows by Definition 3.3 that A has a first point. Now suppose inductively that we have proven the claim for n, i.e., we know that if A is a nonempty, finite subset of a continuum C with |A|=n, then A has a first point. We wish to prove the same claim if |A|=n+1. Let  $A_0$  be a nonempty, finite subset of a continuum C with  $|A_0|=n$ , and let  $\{a\}$  be the singleton set containing a point  $a\in C$  such that  $a\notin A_0$ . (We are not guaranteed that such a point exists for all continua C, i.e., we could have  $A_0=C$  meaning that  $a\in C$  implies  $a\in A_0$ . However, in this case, we would have proven the claim for all subsets of this specific C, but not all subsets of all continua, namely continua with more elements than C. So we may choose WLOG to let C be one of these as-of-yet unconsidered C with more elements.) Let  $A=A_0\cup\{a\}$  so that by Theorem 1.34b, |A|=n+1. By the induction hypothesis, there exists a first point  $a_0\in A_0$  that clearly is also an element of A. Since C has an ordering < (see Axiom 2),

Script 3 MATH 16110

Definition 3.1 asserts that either  $a < a_0$ ,  $a_0 < a$ , or  $a = a_0$ . We now divide into three cases. If  $a < a_0$ , then since  $a_0 \le x$  for all  $x \in A$  by Definition 3.3, Definition 3.1 implies that  $a \le x$  for all  $x \in A$ . Thus, by Definition 3.3, a is the first point in A, and we have proven the claim for n + 1 in this case. If  $a_0 < a$ , then it is still true that  $a_0 \le x$  for all  $x \in A$ . This means by Definition 3.3 that  $a_0$  is still the first point in A, proving the claim for n + 1 in this case. If  $a = a_0$ , then  $a \in A_0$ , contradicting the assumptions describing a, so we need not consider this final case. This closes the induction.

**Theorem 3.5.** Suppose that A is a set of n distinct points in a continuum C, or in other words,  $A \subset C$  has cardinality n. Then the symbols  $a_1, \ldots, a_n$  may be assigned to each point of A so that  $a_1 < a_2 < \cdots < a_n$ , i.e.,  $a_i < a_{i+1}$  for all  $1 \le i \le n-1$ .

Proof. We induct on n. For the base case n=1, denote the single element of A by  $a_1$ . Since  $a_i < a_{i+1}$  for all  $1 \le i \le n-1=0$  is vacuously true, the base case holds. Now suppose inductively that we have proven the claim for n, i.e., for a set  $A \subset C$  satisfying |A| = n, the symbols  $a_1, \ldots, a_n$  may be assigned to each point of A so that  $a_1 < a_2 < \cdots < a_n$ . We now wish to prove the claim with regards to a set  $A \subset C$  with |A| = n+1. By Lemma 3.4, there is a last point  $a_{n+1} \in A$ , which may be denoted as such (we will see why later). Since the set  $A \setminus \{a_{n+1}\}$  has cardinality n, we have by the induction hypothesis that its n elements can be named  $a_1, \ldots, a_n$  and ordered  $a_1 < a_2 < \cdots < a_n$ . Clearly these n elements are elements of n and all that's left to do is determine where n into the established order. But by Definition 3.3, n is n and n all n in all n in all n into the established order. But by Definition 3.3, n in all n i

**Definition 3.6.** If  $x, y, z \in C$  and either (i) both x < y and y < z or (ii) both z < y and y < x, then we say that y is **between** x and z.

Corollary 3.7. Of three distinct points in a continuum, one must be between the other two.

*Proof.* Let A be a subset of the described continuum containing the three distinct points. It follows by Theorem 3.5 that the symbols  $a_1, a_2, a_3$  may be assigned to each point of A so that  $a_1 < a_2 < a_3$ . Thus,  $a_1 < a_2$  and  $a_2 < a_3$ , so  $a_2$  is between  $a_1$  and  $a_3$  by Definition 3.6.