Consider the predator-prey model with $b \neq 0$, equation 50.1. Calculate all possible equilibrium solutions. Compare these populations to the ones which occur if b = 0. Briefly explain the qualitative and quantitative differences between the two cases, b = 0 and $b \neq 0$.

Not going to "Solve" this for you (b/c it's a part of your HW7!)

But let's "Discuss" it, especially focusing on the diff. btw. Ch. 50 of the book (or, equivalently, Lecture 17)

The system of equations is:

 $(*) - \begin{cases} \dot{F} = F(\alpha - bF - cS) \\ \dot{S} = S(-k + \lambda F) \end{cases}$

where S: fish population

In Ch. 50 (Textbook) or Lecture 17, b = 0 is assumed. All other params are positive.

Here, we can explain each param in biological/ecological terms

· a : growth rate of fish, assuming no competition betwee fish (b=0)

and no sharks (S=6)

(with b=0, S=0, we have F= aF, thus F(t) has an exponential growth: F(t) = F(0) eat)

. b: Negative effect on the growth rate of F, caused by F.

May include (but not limited to) the effects from, e.g.

- * Competition between fish, due to limited food source, etc.
- C: Negative (inhibiting) effect on the growth rate of F, caused by S.

May depend on, e.g.,

- * how much fish each shark eats per time
- * how effective each shark is as a hunter

				•	k			(n	ega	tive) (grow	th	rat	æ	of	th	L .	shar	k	Pof	nlo	tion	۸ ,	Īn	the	ab	sen c	و ،	•f	F.									
								1	Nay	de	end	Vo.	,	e.g.																										
									,				ong			sharl	c	(an	Sul	VIV	e	wlo		fish																
													9																1.	1,					_ c	ŧ,				
								Note	2:	Wif	hout	+	ish	(F	= o)	,	9	=	-k	2	56		?	diw	i N is	w	ex	pone	ut(a	lly	(SIt	= (S(b)	e)				
					λ			. 0	٠. ١			C.L	po 1	. la-	·		Ц.	Oko	. 11.	lov,	6	al	d	مرا	c															
				•	٨	•										971	The	J	jwi vi	100	1c	7	34	iw r																
								٨					•																											
									*	: }	lon) (mucl	^	fish	9	ach	şt	ark	n	eeds	+	, 60	it	per	- d	ay													
_	11		(1		- 1																	()				_								C	11					
																																						•	tem	
_	On	th	e	oth	ur \	han	۱,	the	ere	on	6	Son	he	qu	ant	tie.	S	16	sul	Lin	9	From	٨	(a	þ	vel) r	nathe	mat	ical)	an	aly	યંટ	·f		(2	♦).		
_	+																																							
Lot	F	,																																						
		•	0				The	(can	yho	, 0	apa	city	of	-	F,	.72	in 1	the	abri	en œ	of	(S.								7.1								
										Ĭ															U	-fo		swf	ijn/n	g	F.)								
_				k			71		. 1	1:	C	r				11					(,														
		•		λ			1 he	p.	ymi	al ven	۰۲		t	that	И	ne ith	ur	too too	mu	.ch nall	(5. t	that	: ;	∕ 0	<i>)</i>														
														for	r	nsf																								
_														1				4																						
Fo	r	ς,																																						
				<u>A</u>		:	The	- P	P -	of	2		that		Ma	હ	Ė	= 0		(con	tole	1	ne -l	fish	Pop	•	jwf	rig)	+)											
_												Ur	der		No	(om:	peti-	io N	Į,	bta	, 1	F (į,	e ,	b= :	»)														
	Amo	ng	th.	ese	qu	iant	itie	<i>s</i> ,	+	wo	t	sh	P	P.		طاله	ar	9	1	T	W	ill	Pl	ny	an	7	mpo	rtav	rt	10	le	ŧ	D	the	2	rk	m.			
						7																																		

Here, again, it depends on
$$\frac{a}{b}$$
 vs. $\frac{1}{\lambda}$:

* (ase (A): $\frac{a}{b} > \frac{1}{\lambda}$: $-k + \frac{a\lambda}{b} = \lambda(\frac{a}{b} - \frac{1}{\lambda}) > 0$. Thus $(0, \frac{a}{b})$ is a stable node.

* (ase (B): $\frac{a}{b} < \frac{1}{\lambda}$: $-k + \frac{a\lambda}{b} < 0$. Thus $(0, \frac{a}{b})$ is a stable node.

* In (ase (A), ot $(\frac{a}{c} - \frac{bk}{c\lambda}, \frac{k}{\lambda})$,

$$DG(\frac{a}{c} + \frac{bk}{c\lambda}, \frac{k}{\lambda}) = \begin{pmatrix} 0 & \frac{a\lambda - bk}{c} \\ -\frac{ck}{\lambda} & -\frac{bk}{\lambda} \end{pmatrix}$$

$$T = -\frac{bk}{\lambda} < 0 \text{ and } \Delta = bk(\frac{a}{b} - \frac{k}{\lambda}) > 0$$
.

Thus $(\frac{a}{c} - \frac{bk}{c\lambda}, \frac{k}{\lambda})$ is either a stable spiral or a stable node (or a degenerate one, but still stable).

Thus $(\frac{a}{C} - \frac{bk}{c\lambda}, \frac{k}{\lambda})$ is either a stable spiral or a stable node (or a degenerate one, but still stable).

Note:
$$\tau^2 - 4\Delta = \frac{k}{\lambda} \left(\frac{b^2 k}{\lambda} - 4a\lambda + 4bk \right)$$
 Out be $+$, 0 , or $-\frac{1}{2}$ for $-\frac{1}{2}$ $-\frac{a\lambda}{k}$ e.g. $k = \lambda = a = 1$, $\tau^2 - 4\Delta = b^2 + 4b - 4 = (b+2)^2 - 8 = 0$ if $b = 2(5z - 1) \approx 0.83 < 1 = \frac{a\lambda}{k}$ > 0 if $b \in (2(5z - 1), 1)$ < 0 if $b \in [0, 2(5z - 1))$

To sum up, we have

Case (A):
$$\frac{a}{b} > \frac{k}{\lambda}$$

F

 $\frac{a}{b}$
 $\frac{a}{b}$
 $\frac{a}{b}$
 $\frac{a}{b}$

(Three fixed pts)

Converges to a dynamic equilibrium (& - bk, k)

(Two fixed pts)

Sharks tend towards extinction and fish goes to its carrying capacity $(0, \frac{a}{6})$

Note also that when b =0, the system cannot be conservative (although it is when b=0.) [Changing the parameter b: from a large # to 0, while fixing all other params] And eventually, closed curves: As b gets smaller, more rotations:

 $F = \frac{1}{\sqrt{K}}$ $\frac{1}{\sqrt{K}}$ $\frac{1}{\sqrt{K}}$

