$\begin{array}{c} {\bf High\mbox{-}Throughput\ Sequencing\ Course} \\ {\bf Multiple\ Testing} \end{array}$

Biostatistics and Bioinformatics

Summer 2018

Introduction

➤ You have previously considered the significance of a single gene

Introduction

- ➤ You have previously considered the significance of a single gene
- ► The analysis of high-dimensional data is concerned with assessing the significance of multiple loci/genes
 - \blacktriangleright Microarray : 20,000-50,000 probe sets \blacktriangleright GWAS: 500,000-5,000,000 typed SNPs
 - ► RNA-Seq: 22,000 genes (humans)

Introduction

- ➤ You have previously considered the significance of a single gene
- ► The analysis of high-dimensional data is concerned with assessing the significance of multiple loci/genes
 - ightharpoonup Microarray: 20,000-50,000 probe sets
 - \blacktriangleright GWAS: 500,000-5,000,000 typed SNPs
 - ► RNA-Seq: 22,000 genes (humans)
- ► This leads to the *Multiple Testing* problem

Introduction

- ➤ You have previously considered the significance of a single gene
- ► The analysis of high-dimensional data is concerned with assessing the significance of multiple loci/genes
 - \blacktriangleright Microarray : 20,000-50,000 probe sets
 - ► GWAS: 500,000-5,000,000 typed SNPs
 - ► RNA-Seq: 22,000 genes (humans)
- ► This leads to the *Multiple Testing* problem
- ▶ Before we address this problem, let's quickly review the single hypothesis case

INTRODUCTION: TYPE I AND II ERRORS

Recall that in hypothesis testing with a single hypothesis (gene), errors can be classified as:

- ▶ Type I error rejecting H_0 when it is true
- ▶ Type II error not rejecting H_0 when it is false

INTRODUCTION: TYPE I AND II ERRORS

Recall that in hypothesis testing with a single hypothesis (gene), errors can be classified as:

- ▶ Type I error rejecting H_0 when it is true
- ▶ Type II error not rejecting H_0 when it is false

We can define probabilities associated with each of these errors:

 $\alpha = Pr(\text{reject } H_0|H_0 \text{ true})$

 $\beta = Pr(\text{do not reject } H_0|H_0 \text{ false})$

INTRODUCTION: TYPE I AND II ERRORS

Decision	H_0 True	H_0 False
Do not reject H_0	$1-\alpha$	β
Reject H_0	α	$1-\beta$

INTRODUCTION: TYPE I AND II ERRORS

► Always a compromise between type I and type II error

INTRODUCTION: TYPE I AND II ERRORS

- ▶ Always a compromise between type I and type II error
- ► An α-level test has probability α of rejecting H_0 when H_0 is true

INTRODUCTION: TYPE I AND II ERRORS

- ▶ Always a compromise between type I and type II error
- ► An α -level test has probability α of rejecting H_0 when H_0 is true
- ▶ Usually try to use the most powerful (smallest β) test for a given α -level

INTRODUCTION: TYPE I AND II ERRORS

- ► Always a compromise between type I and type II error
- ► An α-level test has probability α of rejecting H_0 when H_0 is true
- ▶ Usually try to use the most powerful (smallest β) test for a given α -level $\rightarrow control$ type I error

Introduction: Multiple Tests

► Single-hypothesis type-I-error-control proves inadequate when experiment is characterized by a collection of hypotheses

INTRODUCTION: MULTIPLE TESTS

- ► Single-hypothesis type-I-error-control proves inadequate when experiment is characterized by a collection of hypotheses
 - \leftarrow Genomics

Introduction: Multiple Tests

- ► Single-hypothesis type-I-error-control proves inadequate when experiment is characterized by a collection of hypotheses
 - \leftarrow Genomics
- ► Why?

Introduction: Multiple Tests

ightharpoonup Assume we have m hypotheses we wish to test as part of a given experiment

Introduction: Multiple Tests

- Assume we have *m* hypotheses we wish to test as part of a given experiment
 - ightharpoonup These hypotheses could correspond to m genes that we are investigating for differential expression between two groups

Introduction: Multiple Tests

- ightharpoonup Assume we have m hypotheses we wish to test as part of a given experiment
 - ightharpoonup These hypotheses could correspond to m genes that we are investigating for differential expression between two groups
- ▶ Assume that each hypothesis is tested using a α -level test

Introduction: Multiple Tests

- ightharpoonup Assume we have m hypotheses we wish to test as part of a given experiment
 - ▶ These hypotheses could correspond to m genes that we are investigating for differential expression between two groups
- ▶ Assume that each hypothesis is tested using a α -level test
- ightharpoonup Assume that the tests are INDEPENDENT and that the null is true for each of the hypothesis

Introduction: Multiple Tests

What is the probability of rejecting a null hypothesis even though all hypotheses are actually null?

Introduction: Multiple Tests

What is the probability of rejecting a null hypothesis even though all hypotheses are actually null?

 \blacktriangleright For a given test, we have an α chance of rejecting its null

INTRODUCTION: MULTIPLE TESTS

What is the probability of rejecting a null hypothesis even though all hypotheses are actually null?

- \blacktriangleright For a given test, we have an α chance of rejecting its null
- ► Therefore we have a 1α chance of not rejecting

Introduction: Multiple Tests

What is the probability of rejecting a null hypothesis even though all hypotheses are actually null?

- \blacktriangleright For a given test, we have an α chance of rejecting its null
- ▶ Therefore we have a 1α chance of not rejecting
- ▶ We have m independent α -level tests, so the chance of not rejecting any of them is:

$$(1-\alpha)^m$$

Introduction: Multiple Tests

What is the probability of rejecting a null hypothesis even though all hypotheses are actually null?

- \blacktriangleright For a given test, we have an α chance of rejecting its null
- ▶ Therefore we have a 1α chance of not rejecting
- ▶ We have m independent α -level tests, so the chance of not rejecting any of them is:

$$(1-\alpha)^m$$

► Therefore, the chance of rejecting at least one hypothesis is:

$$1 - (1 - \alpha)^m$$

INTRODUCTION: MULTIPLE TESTS

Introduction: Notation

- lacktriangle Gene j (among the m genes) is either associated with the outcome or not
- ► The truth is unknown to us
- ▶ The null hypothesis for gene j is denoted by H_i
- ▶ H_j : gene j is not associated with the outcome of interest
- ▶ The alternative hypothesis is denoted by \bar{H}_i
- $ightharpoonup \bar{H}_j$: gene j is associated with the outcome of interest
- ▶ H_j and \bar{H}_j are called marginal or local hypotheses

Introduction: Marginal and Global Hypotheses

- ▶ H_j and \bar{H}_j are called marginal or local hypotheses
- \blacktriangleright A global null hypothesis: None of the m genes is associated with the outcome
- ightharpoonup A global alternative: At least one of the m genes is is associated with the outcome
- ► Using notation
 - ▶ Global Null: $\mathbb{H}_0: H_1$ and H_2 and ... H_m
 - ▶ Global Alternative: $\mathbb{H}_1 : \bar{H}_1$ or \bar{H}_2 or $\dots \bar{H}_m$

Introduction: Unadjusted vs Adjusted P-values

- ightharpoonup Suppose that we only test a single gene, say gene j, among the m genes
- \blacktriangleright Let p_i (lower case p) denote P-value corresponding to H_i
- $ightharpoonup p_j$ is called the marginal or unadjusted P-value
- ▶ If m hypotheses are tested, inference on H_j on the basis of p_j is inappropriate
- ▶ The *P*-value for H_j has to account for testing the other m-1 hypotheses
- \blacktriangleright We will denote the *adjusted P*-value by P_i (upper case P)
- ► When testing multiple genes, using the marginal *P*-value is inappropriate
- ► Why?

INTRODUCTION: MORE NOTATION

- ▶ Suppose that gene j is not associated with the outcome of interest $(H_j$ is true)
- ► Then
 - ► Decision rule rejects → False-Positive (FP)
 - ▶ Decision rule fails to reject → True-Negative (TN)
- ▶ Suppose that gene j is associated with the outcome of interest $(H_j$ is false)
 - ► Decision rule rejects → True-Positive (TP)
 - ightharpoonup Decision rule fails to reject ightharpoonup False-Negative (FN)

Introduction: Summarizing a Multiple Testing Procedure

► The results from any multiple testing procedure can be summarized as the following table

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ► Notation:
 - $\blacktriangleright \ m \colon$ Number of tests, m_0, m_1 number of null/true genes
 - ► R: Number of genes rejected according to the decision rule
 - ► A: Number of genes accepted according to the decision rule
 - ▶ R_0/R_1 number of TN/FP
 - ► A_0/A_1 number of FN/TP

INTRODUCTION: EXAMPLE

▶ Results from an analysis based on m = 10 genes:

```
## gene truth pvalue
## 1 gene1 0 0.29070
## 2 gene2 1 0.61630
## 3 gene3 1 0.00320
## 4 gene4 0 0.01641
## 5 gene5 0 0.25150
## 6 gene6 0 0.58450
## 7 gene7 0 0.22890
## 8 gene8 1 0.12630
## 9 gene9 0 0.26080
## 10 gene10 0 0.04980
```

- ▶ Investigator decides to use following decision rule: Any gene with a corresponding unadjusted P-value of less than 0.05 will be rejected.
- ▶ Reject H_j if $p_j < 0.05$ or accept H_j otherwise

EXERCISE: FILL IN THE 2X2 TABLE

EXAMPLE: FILL IN THE 2X2 TABLE

- ▶ $m_0 = 7$ and $m_1 = 3$
- ightharpoonup R = 3 will be rejected based on the decision rule
- ▶ Consequently A = m R = 7 will be accepted
- $ightharpoonup R_0 = 2, R_1 = 1, A_0 = 5 \text{ and } A_1 = 2$

THE TRUTH

ightharpoonup What know or observe is this

```
## gene pvalue
## 1 gene1 0.29070
## 2 gene2 0.61630
## 3 gene3 0.00320
## 4 gene4 0.01641
## 5 gene5 0.25150
## 6 gene6 0.58450
## 7 gene7 0.22890
## 8 gene8 0.12630
## 9 gene9 0.26080
## 10 gene10 0.04980
```

▶ and not (truth colum is not known to us):

```
## gene truth pvalue

## 1 gene 1 0 0.29070

## 2 gene 2 1 0.61630

## 3 gene 3 1 0.00320

## 4 gene 4 0 0.01641

## 5 gene 5 0 0.25150

## 6 gene 6 0 0.58450

## 7 gene 7 0 0.22890

## 8 gene 8 1 0.12630

## 9 gene 9 0.26080

## 10 gene 1 0 0.04980
```

EXAMPLE: FILL IN THE 2X2 TABLE (BASED ON WHAT WE OBSERVE)

▶ We can only fill in the bottom row of the table

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A = 7	R=3	m = 10

► The remaining quantities are fixed unknown quantities or unobservable random variables.

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

ightharpoonup m is a known constant

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ightharpoonup m is a known constant
- ▶ m_0 and m_1 are unknown constants

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ightharpoonup m is a known constant
- ▶ m_0 and m_1 are unknown constants
- \blacktriangleright R and A are determined on the basis of applying the decision rule to the data

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ightharpoonup m is a known constant
- ▶ m_0 and m_1 are unknown constants
- ightharpoonup R and A are determined on the basis of applying the decision rule to the data
- ightharpoonup They are observable random quantities

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ightharpoonup m is a known constant
- $ightharpoonup m_0$ and m_1 are unknown constants
- ightharpoonup R and A are determined on the basis of applying the decision rule to the data
- ightharpoonup They are observable random quantities
- ▶ The true states of the genes of the genes are unknown

Comments

	Accept	Reject	Total
Truth Null	A_0	R_0	m_0
Alt.	A_1	R_1	m_1
	A	R	m

- ightharpoonup m is a known constant
- ▶ m_0 and m_1 are unknown constants
- ightharpoonup R and A are determined on the basis of applying the decision rule to the data
- ► They are *observable* random quantities
- ightharpoonup The true states of the genes of the genes are unknown
- ▶ A_0, A_1, R_0 and R_1 are *unobservable* random quantities

Introduction: Multiple Testing Problem

► Control error rate(s) in multiple testing context

Introduction: Multiple Testing Problem

- ► Control error rate(s) in multiple testing context
- ► Multiple testing methods are designed to control a particular error rate

Introduction: Multiple Testing Problem

- ► Control error rate(s) in multiple testing context
- ► Multiple testing methods are designed to control a particular error rate
- \blacktriangleright Multiple error rates exist

Introduction: Multiple Testing Problem

- ► Control error rate(s) in multiple testing context
- ► Multiple testing methods are designed to control a particular error rate
- \blacktriangleright Multiple error rates exist \rightarrow need to chose error rate to control and then method to control it

INTRODUCTION: ERROR RATES

► Family-wise error rate (FWER): the probability of at least one type I error

INTRODUCTION: ERROR RATES

- ► Family-wise error rate (FWER): the probability of at least one type I error
- ► False discovery rate (FDR): the expected proportion of type I errors among the rejected hypotheses.

FAMILY-WISE ERROR RATE (FWER)

► Probability of committing at least one false-rejection (among m) given that *all* genes are null

FAMILY-WISE ERROR RATE (FWER)

- ► Probability of committing at least one false-rejection (among m) given that *all* genes are null
- FWER = $P(R \ge 1|m = m0)$

FAMILY-WISE ERROR RATE (FWER)

- ► Probability of committing at least one false-rejection (among m) given that *all* genes are null
- FWER = $P(R \ge 1|m = m0)$
- ▶ Note that when m = 1 (single gene), this definition is identical to the type I error we have previously considered

CONTROLLING FWER: SIDAK'S METHOD

Recall that we showed that with m independent α -level tests:

$$FWER = 1 - (1 - \alpha)^m$$

CONTROLLING FWER: SIDAK'S METHOD

Recall that we showed that with m independent α -level tests:

$$FWER = 1 - (1 - \alpha)^m$$

Therefore,

$$1 - \text{FWER} = (1 - \alpha)^m$$
$$(1 - \text{FWER})^{1/m} = 1 - \alpha$$
$$1 - (1 - \text{FWER})^{1/m} = \alpha$$

CONTROLLING FWER: SIDAK'S METHOD

Recall that we showed that with m independent α -level tests:

$$FWER = 1 - (1 - \alpha)^m$$

Therefore,

$$1 - \text{FWER} = (1 - \alpha)^m$$
$$(1 - \text{FWER})^{1/m} = 1 - \alpha$$
$$1 - (1 - \text{FWER})^{1/m} = \alpha$$

This suggests that we can control FWER by choosing α for each individual test to be $1-(1-{\rm FWER})^{1/m}$

CONTROLLING FWER: BONFERRONI

Note that $(1-x)^m \approx 1 - mx$ (for x close to zero)

CONTROLLING FWER: BONFERRONI

Note that $(1-x)^m \approx 1 - mx$ (for x close to zero)

CONTROLLING FWER: BONFERRONI

Note that $(1-x)^m \approx 1 - mx$ (for x close to zero)

Therefore

$$1 - \text{FWER} = (1 - \alpha)^m$$

$$1 - \text{FWER} \approx 1 - m\alpha$$

FWER $\approx m\alpha$

CONTROLLING FWER: BONFERRONI

Note that $(1-x)^m \approx 1 - mx$ (for x close to zero)

Therefore

$$1 - \text{FWER} = (1 - \alpha)^m$$

 $1 - \text{FWER} \approx 1 - m\alpha$
 $\text{FWER} \approx m\alpha$

This suggests that we can control FWER by choosing α for each individual test to be $\frac{\mathrm{FWER}}{m}$

CONTROLLING FWER: BONFERRONI

ightharpoonup The Bonferroni adjusted P-value is defined as

$$P_j = m \times p_j$$

ightharpoonup Technical note: P_j is defined above could be larger than 1 so a more technically rigorous definition is

$$P_j = \min\{m \times p_j, 1\}$$

▶ In other words, if $m \times p_j$ is larger than 1, then truncate P_j at 1.

CONTROLLING FWER: HOLM'S

► Sidak and Bonferroni are one-step approaches

CONTROLLING FWER: HOLM'S

- ► Sidak and Bonferroni are one-step approaches
- ▶ Some power can be gained by sequential methods

CONTROLLING FWER: HOLM'S

- ► Sidak and Bonferroni are one-step approaches
- ▶ Some power can be gained by sequential methods
- ▶ The simplest sequential method is Holm's method:

CONTROLLING FWER: HOLM'S

- ► Sidak and Bonferroni are one-step approaches
- ▶ Some power can be gained by sequential methods
- \blacktriangleright The simplest sequential method is Holm's method:
 - ▶ Order the unadjusted *P*-values such that $p_1 \leq p_2 \leq ... \leq p_m$

CONTROLLING FWER: HOLM'S

- ► Sidak and Bonferroni are one-step approaches
- ► Some power can be gained by sequential methods
- ► The simplest sequential method is Holm's method:
 - ▶ Order the unadjusted P-values such that $p_1 \leq p_2 \leq ... \leq p_m$
 - \blacktriangleright To control FWER, the step-down Holm adjusted P-values are

$$P_j = \min\{(m - j + 1) \times p_j, 1\}$$

CONTROLLING FWER: HOLM'S

- ► Sidak and Bonferroni are one-step approaches
- ▶ Some power can be gained by sequential methods
- ► The simplest sequential method is Holm's method:
 - ▶ Order the unadjusted *P*-values such that $p_1 \leq p_2 \leq ... \leq p_m$
 - \blacktriangleright To control FWER, the step-down Holm adjusted P-values are

$$P_j = \min\{(m - j + 1) \times p_j, 1\}$$

► Note that every unadjusted P-value is not multiplied by same factor

CONTROLLING FWER: PERMUTATION

► These methods work well when tests are independent

CONTROLLING FWER: PERMUTATION

► These methods work well when tests are independent (not generally the case in genomics experiments)

CONTROLLING FWER: PERMUTATION

- ► These methods work well when tests are independent (not generally the case in genomics experiments)
- ▶ When tests are correlated, these methods are conservative

CONTROLLING FWER: PERMUTATION

- ► These methods work well when tests are independent (not generally the case in genomics experiments)
- ▶ When tests are correlated, these methods are conservative
- lacktriangle Permutation approaches are useful in this context

CONTROLLING FWER: PERMUTATION

Assume we are interested in assessing differential expression between 2 groups :

- 1. Compute minimum unadjusted P-value for all genes from the observed data (call it p_1)
- 2. Randomly permute the group labels
 - ▶ Breaks relationship between group and expression
 - ► Reflects sample from global null hypothesis
- 3. Compute minimum P-value from data set generated in 2 (call it p_1^1)
- 4. Repeat 2 and 3 B times to get $p_1^1, p_1^2, ..., p_1^B$
- 5. Compute the proportion of $p_1^1, p_1^2, ..., p_1^B$ that are $\leq p_1$
- 6. This proportion is the permutation adjusted P_1

CONTROLLING FWER: PERMUTATION

► Can get $P_2, ..., P_m$ in a similar way (a Holm's-like permutation proceedure)

CONTROLLING FWER: PERMUTATION

- ► Can get $P_2, ..., P_m$ in a similar way (a Holm's-like permutation proceedure)
- ► Correlation among the genes is accounted for

FALSE DISCOVERY RATE (FDR)

- ► Consider the quantity $\frac{R_0}{R}$
- ► This is the proportion of of false discoveries among the genes rejected
- ▶ This is an *unobservable* random quantity (R_0 is not observable)
- ▶ In the FDR framework is based on controlling the *expected* value of this ratio
- ► FDR $\equiv E[\frac{R_0}{R}]$
 - Expectation is set to zero if R = 0, therefore FDR = $E[\frac{R_0}{R}|R>0]Pr(R>0)$
- ▶ Note that when $m_0 = m$ (none of the genes are true), FWER=FDR

CONTROLLING FDR: BENJAMINI AND HOCHBERG

1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$
- 3. Reject null hypotheses affiliated with $p_1, p_2, ..., p_j$

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$
- 3. Reject null hypotheses affiliated with $p_1, p_2, ..., p_j$

This proceedure will control FDR at $\alpha m_0/m$ when the tests are independent and continuous

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$
- 3. Reject null hypotheses affiliated with $p_1, p_2, ..., p_j$

This proceedure will control FDR at $\alpha m_0/m$ when the tests are independent and continuous

Benjamini and Yekutieli (2001) proposed a modification of the BH procedure that always controls FDR (no larger than $\alpha m_0/m$)

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$
- 3. Reject null hypotheses affiliated with $p_1, p_2, ..., p_j$

This proceedure will control FDR at $\alpha m_0/m$ when the tests are independent and continuous

Benjamini and Yekutieli (2001) proposed a modification of the BH procedure that always controls FDR (no larger than $\alpha m_0/m$)

 \leftarrow can be quite conservative

CONTROLLING FDR: BENJAMINI AND HOCHBERG

- 1. Order the unadjusted P-values $p_1 \leq p_2 \leq ... \leq p_m$
- 2. Find the largest j such that $p_j \leq j\alpha/m$
- 3. Reject null hypotheses affiliated with $p_1, p_2, ..., p_j$

This proceedure will control FDR at $\alpha m_0/m$ when the tests are independent and continuous

Benjamini and Yekutieli (2001) proposed a modification of the BH procedure that always controls FDR (no larger than $\alpha m_0/m$)

 \leftarrow can be quite conservative

Note that when $m_0=m$ (i.e., all hypotheses are null), these procedures maintain FWER at α

CONTROLLING PFDR: Q-VALUES

$$FDR = E[\frac{R_0}{R}|R > 0]Pr(R > 0)$$

CONTROLLING PFDR: Q-VALUES

$$\begin{aligned} &\text{FDR} = E[\frac{R_0}{R}|R>0]Pr(R>0) \\ &\text{pFDR} = E[\frac{R_0}{R}|R>0] \leftarrow \textit{positive} \; \text{FDR} \end{aligned}$$

CONTROLLING PFDR: Q-VALUES

$$\begin{aligned} &\text{FDR} = E[\frac{R_0}{R}|R>0]Pr(R>0) \\ &\text{pFDR} = E[\frac{R_0}{R}|R>0] \leftarrow \textit{positive} \text{ FDR} \end{aligned}$$

▶ Since Pr(R > 0) is often ~ 1 in most genomics experiments, FDR and pFDR are ver similar

CONTROLLING PFDR: Q-VALUES

 \blacktriangleright q-value is the minimum pFDR for which the affiliated hypothesis is rejected

CONTROLLING PFDR: Q-VALUES

- ► q-value is the minimum pFDR for which the affiliated hypothesis is rejected
- ► q-value can be interpreted as the expected proportion of false positives incurred when calling that test significant

GENOME-WIDE SIGNIFICANCE

- ▶ In GWAS papers, $\alpha = 5 \times 10^{-8}$ is typically considered the threshold for genome-wide significance
- ▶ It is based on a Bonferroni correction: If you consider testing m=1,000,000 SNPs at the FWER level of 0.05, then each SNP should be tested at the

$$\alpha = \frac{0.05}{1,000,000} = 5 \times 10^{-8},$$

level

- ▶ Suppose that the unadjusted P=value for a SNP is 5×10^{-7}
- ► Is this "reaching" genome-wide significance?
- ► The term "suggestive" is also used

"REACHING" GENOME-WIDE SIGNIFICANCE

- ▶ Suppose that your m = 1,000,000 SNPs are independent
- ightharpoonup The adjusted P-value is

$$P = 5 \times 10^{-7} \times m = 5 \times 10^{-7} \times 10^{6} = 0.5,$$

- ▶ This is off by an order of magnitude $(0.5 = 0.05 \times 10)$
- ► It is not "reaching"
- \blacktriangleright Note: Due to linkage disequiblirium among SNPs the adjusted P-value is likely to be smaller than 0.5
- ▶ The point is that while 5×10^{-7} is small number, it may not be small enough when tesing a large number of hypotheses

Conclusions

- ightharpoonup Multiple testing must be accounted for when testing for associations in the context of high-dimensional data
- ► FWER and FDR are the two common frameworks for quantifying error
- ► Error rate estimates can be used to compute 'adjusted' p-values
- ► Resampling-based methods can increase power in controlling error when sample sizes are sufficient for their use.
- ▶ When large-scale patterns of differential expression are observed, it is important to consider if such effects are biologically reasonable, and if technical factors can be attributed to the variation.