Grupo 9 TP3 SIA

Juan Godfrid Agustina Osimani Constanza De Rienzo Pablo Radnic

Introducción

Defensor 2

Desempeño = 0.1 * Ataque + 0.9 * Defensa

Genética

6 genes:

- 1, Altura
- 5, piezas de equipamiento

Estructura

- Se pensaron distintas posibilidades
- Se optó por una lista de diccionarios

Ejemplo de individuo

{ 'height': 1.5638, 'items': [10, 658, 32, 988988, 1806]}

Parámetros de Población

N: Balance entre

- Tiempo de ejecución
- Capacidad de albergar diversidad

K: Balance entre

- Eliminación de genética mala
- Capacidad de mantener diversidad

N	К	Max_Fitness	Max Generaciones
150	130	49.0065	35831
300	260	49.5119	18392
300	150	49.2982	18590
150	76	48.7133	36686
76	60	46.1245	50125
76	34	45.8513	50233

Parámetros de Selección

Selección de Selectores:

- Método Elite (1). Mejora la performance, buenos resultados iniciales.
 Quita diversidad genética.
- Métodos Complementarios. Que agreguen diversidad (aleatoriedad).
 Reducen la posibilidad de caer en máximos locales (convergencias prematuras)
 - Torneo Probabilístico (6)
 - Boltzmann (4)
 - Torneo Determinístico (5)

Selection		Max
method	Max_Fitness	Generaciones
1416	49.5119	35831
1515	49.0113	35742
1414	48.9813	36043
1111	48.6781	35581

Parámetros de Mutación

Convergencia Prematura.

¿Cuál es la mejor manera de evitar la convergencia?

Probabilidad inicial de mutación: Balance entre

- Agregar diversidad.
- Perder genética buena.

	P_M			Max
mutation	cooling	P_M init	Max_Fit	Generacion
	alpha		ness	es
Uni	N/A	0.1	49.0065	35831
No Uni	0.0001	0.1	46.7922	36755
No Uni	0.00001	0.3	47.25	36481

Mutación uniforme vs no uniforme:

- Pasar de etapas de exploración a etapas de explotación.
- Conseguir nueva genética o Alcanzar el mejor desempeño con la genética existente.

Mutación Uniforme vs No Uniforme

Population			Mutation		Selection	Cruza	Valores finales		
				P_M					Max
N	K	mutation	P_M init	Cooling	Gen	Selection	P_C	Max_Fit	Generacio
				Alpha	method		ness	nes	
150	130	Uni	0.1	N/A	Multi Gen	1416	8.0	49.0065	35831
300	260	Uni	0.1	N/A	Multi Gen	1416	8.0	49.5119	18392
300	150	Uni	0.1	N/A	Multi Gen	1416	8.0	49.2982	18590
150	75	Uni	0.1	N/A	Multi Gen	1416	8.0	48.7133	36686
150	130	No Uni	0.1	0.0001	Multi Gen	1416	8.0	46.7922	36755
150	130	No Uni	0.3	0.00001	Multi Gen	1416	8.0	47.25	36481
150	130	Uni	0.1	N/A	Uni Gen	1416	8.0	48.1935	35773
150	130	Uni	0.1	N/A	Multi Gen	1516	8.0	49.01	35742
150	130	Uni	0.1	N/A	Multi Gen	1416	0.5	48.5152	36385

- Se puede ver que en todas las ejecuciones la mutación no uniforme convergió en un valor de desempeño menor
- Todas las configuraciones se ejecutaron sin criterio de corte, por 16 horas

Peor desempeño en Mutación No Uniforme

 La explicación de la convergencia prematura es que observamos que no podía (o tomaba mucho tiempo) superar ciertos máximos locales

 Esto se debe a que la mejor manera de superar los máximos locales en nuestra experiencia fue la mutación

 No uniforme achica la probabilidad de una mutación constantemente, a costo de mantener la explotación, cuando se necesita exploración

Kicking

- Intentando obtener lo mejor de los dos mundos, ideamos un nuevo tipo de corte llamado "kicking"
- Si el 98% de la pob. no se modifica \rightarrow Pm = Pi (se le da un kick)
- Exploración ←→ Explotación

Obtuvimos mejoras con la mutación no uniforme con esta optimización, pero obtuvimos resultados similares a los de la mutación uniforme

Kicking

Estimación de altura óptima

$$\frac{\partial}{\partial h} \left(0.1 \, F \left(-(3 \, h - 5)^4 + (3 \, h - 5)^2 + \frac{h}{2} + 0.5 \right) (A + P) + \\
0.9 \left((3 \, h - 5)^4 - (3 \, h - 5)^2 - \frac{h}{2} + 2 \right) (P + R) \, V \right) = \\
\left(h^3 - 5 \, h^2 + 8.27778 \, h - 4.53858 \right) (291.6 \, V \, (P + R) - 32.4 \, F \, (A + P))$$

	n	Desempeno(h)
Roots:	1.30000	0.08959 F (A + P) + 1.44369 V (P + R)
<i>h</i> ≈ 1.44628	1.44628	0.146919 F (A + P) + 0.927731 V (P + R)
$h \approx 1.63856$ $h \approx 1.91516$	1.63856	0.132634 F (A + P) + 1.05629 V (P + R)
	1.91516	0.170447 F (A + P) + 0.715974 V (P + R)
	2.00000	0.15 F (A + P) + 0.9 V (P + R)

Se observa que el extremo 1.3 es el que maximiza el coeficiente defensivo (el más significativo) del desempeño.

Altura

- Cada mutación se genera un h € [1.3, 2]
- Baja adecuadamente

 Parece que llega al óptimo, pero con una inspección más cercana...

Altura vs Generaciones

¡Se puede quedar cientos de generaciones sin bajar! ¿Por qué?

Mutación Especializada de Altura

- Modificamos el rango de mutación de altura
- En vez de h € [1.3, 2], con
 ± Δh
- $\Delta h \leq 0.1$
- Se achica de modo inversamente proporcional al nº de generación

Con Mutación Especializada

Rápidamente llega al número esperado y se mantiene constante.

Boltzmann

- Se implementaron diferentes cooling schedules:
 - Quadratic Multiplicative
 - Logarithmic Multiplicative
 - Linear Multiplicative
 - Linear Additive
- Se realizaron cálculos estimativos para temperatura inicial y alpha

Quadratic Multiplicative

Configuracion optima?

		mutation							Max
N	K	uni	P_M init	P_M Cooling Alpha	Multi Gen	Selection method	P_C	Max_Fitness	Generaciones
300	260	Uni	0.1	N/A	Multi Gen	1416	0.8	50.477	59730

Alcanzado en 59730 generaciones. Se mantuvo por 188850.

- Altura: 1.3
- items:
 - o armas=167031
 - o botas=801166
 - casco=158267
 - o guantes=382596
 - pecheras= 849816

Desempeño 50.447.

Sin embargo se han alcanzado desempeños similares con configuraciones totalmente diferentes.

Siempre Podría haber una configuración muy diferente a esta con un desempeño mayor.

Conclusión

Las configuraciones que mejor reducen su convergencia prematura son aquellas con nivel de mutación relativamente alto y uniforme.

- N's pequeños: Poca información genética nueva
- Mutación > Cruza para empoderamiento de la población
- Desarrollos adicionales importantes en este tipo de trabajos, kicking y mutación de altura mejoraron el desempeño, en mayor o menor medida