ps3

October 31, 2023

1 BA222 Problem Set 3

Ethan Chang, Fall 2023

```
[1]: import pandas as pd
     import pathlib
     import statsmodels.api as sm
[2]: path = pathlib.Path().cwd().parents[1] / 'CSVs' / 'USCarData.csv'
     df = pd.read_csv(path)
     df.head()
[2]:
        price
                   brand
                             model
                                    year
                                           title_status
                                                         mileage
                                                                    color
     0
         6300
                  toyota
                          cruiser
                                    2008
                                         clean vehicle
                                                           274117
                                                                    black
     1
         2899
                    ford
                                    2011
                                          clean vehicle
                                                           190552
                                                                   silver
     2
                                          clean vehicle
         5350
                   dodge
                                    2018
                                                            39590
                                                                   silver
                               mpv
     3 25000
                    ford
                                    2014
                                          clean vehicle
                                                            64146
                                                                     blue
                              door
                                    2018
                                          clean vehicle
     4 27700
               chevrolet
                              1500
                                                             6654
                                                                      red
                        vin
                                    lot
                                              state country
                                                                  condition
     0
          jtezu11f88k007763
                                                               10 days left
                             159348797
                                         new jersey
                                                         usa
     1
          2fmdk3gc4bbb02217
                              166951262
                                          tennessee
                                                         usa
                                                                6 days left
     2
          3c4pdcgg5jt346413
                                                                2 days left
                              167655728
                                            georgia
                                                         usa
          1ftfw1et4efc23745
     3
                              167753855
                                           virginia
                                                         usa 22 hours left
          3gcpcrec2jg473991
                              167763266
                                            florida
                                                         usa 22 hours left
[3]: price = pd.DataFrame(df['price'])
     mileage = pd.DataFrame(df['mileage'])
[4]: X = sm.add_constant(mileage)
     Y = price
     model = sm.OLS(Y, X).fit()
     display(model.summary())
     print(f'The linear regression model is: \n Y = {model.params[0]:.3f} + {model.
      \negparams[1]:.3f} * X')
```

Dep. Variable:	price		R-square	ed:	0.161
Model:	OLS		Adj. R-squared:		0.160
Method:	Least Squares		F-statistic:		478.0
Date:	Tue, 31 Oct 2023		Prob (F-statistic):		4.25e-97
Time:	10:31:30		Log-Likelihood:		-26823.
No. Observations:	2499		AIC:		5.365e + 04
Df Residuals:	2497		BIC:		5.366e + 04
Df Model:	1				
Covariance Type:	nonrobus	st			
coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]
const 2.302e+0	04 295.272	77.968	0.000	2.24e + 04	2.36e + 04
mileage -0.0813	0.004	-21.863	0.000	-0.089	-0.074
Omnibus:	584.790	Durbin-Watson: 1.			.695
Prob(Omnibu	s): 0.000	Jarque-Bera (JB): 144		42.098	
Skew: 1.269		$\mathbf{Prob}(\mathbf{JB})$:		0.00	
Kurtosis:	5.721	Cond. No.		1.06e + 05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+05. This might indicate that there are strong multicollinearity or other numerical problems.

The linear regression model is: Y = 23021.775 + -0.081 * X

1.0.1 Homework response

The coefficient of mileage is the change in price for each additional mile on a vehicle. For example, if a car had 100 more miles than a similar car, we could predict that the car with more miles would cost approximately \$8 less.

In my opinion it is common knowledge that a more used item will fetch a lower price on the resale market. Therefore, I believe that the relationship between mileage and price is a causal one.