MATH 355: HOMEWORK 1

ALEXANDER LEE

Exercise 1 (1.2.2). Suppose towards a contradiction that there is a rational number $r \in \mathbb{Q}$ satisfying $2^r = 3$. Since $r \in \mathbb{Q}$, we can write $r = \frac{p}{q}$ for some $p, q \in \mathbb{Z}$ with $q \neq 0$. Thus, we have $2^{\frac{p}{q}} = 3 \Rightarrow 2^p = 3^q$. Since $2^p = 2 \cdot 2^{p-1}$ and $2^{p-1} \in \mathbb{Z}$, 2^p is even. As such, 3^q is even as well. However, this is a contradiction since 3^q is odd because the product of odd numbers is odd. Therefore, there is no rational number r satisfying $2^r = 3$.

Exercise 2 (1.2.3). (a) False. Consider infinite set of the form $A_n = [0, \frac{1}{n}]$ for $n \in \mathbb{N}$. Our definition of A_n satisfies $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \cdots$. However, notice that $\bigcap_{n=1}^{\infty} A_n = \{0\}$, which is not an infinite set.

- (b) True
- (c) False. Let $A = \{0\}, B = \{0, 1\}, \text{ and } C = \{2, 3\}.$ Then,

$$A \cap (B \cup C) = \{0\} \cap (\{0,1\} \cup \{2,3\}) = \{0\},\$$

but

$$(A \cap B) \cup C = (\{0\} \cap \{0,1\}) \cup \{2,3\} = \{0,2,3\}.$$

Here, $A \cap (B \cup C) \neq (A \cap B) \cup C$.

- (d) True.
- (e) True.

Exercise 3 (1.2.6). (a) Suppose $a, b \in \mathbb{R}$ where a, b > 0. We have that |a+b| = |a|+|b|. We also have that |-a+(-b)| = |-(a+b)| = |a+b| = |-a|+|-b| = |a|+|b|. Thus, the triangle inequality holds when a and b have the same sign.

(b) Given $a, b \in \mathbb{R}$,

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$\leq |a|^{2} + 2|a||b| + |b|^{2}$$

$$= (|a| + |b|)^{2}.$$

(c) Given $a, b, c, d \in \mathbb{R}$,

$$|a-b| = |(a-c) + (c-d) + (d-b)|$$

$$\leq |a-c| + |(c-d) + (d-b)| \text{ (by the triangle inequality)}$$

$$\leq |a-c| + |c-d| + |d-b| \text{ (by the triangle inequality)}.$$

(d) Given $a, b \in \mathbb{R}$,

$$\begin{aligned} ||a| - |b|| &= ||a - b + b| - |b|| \\ &\leq ||a - b| + |b| - |b|| \text{ (by the triangle inequality)} \\ &= ||a - b|| \\ &= |a - b|. \end{aligned}$$

Exercise 4 (1.2.8). (a) Let $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(n) = n + 1, n \in \mathbb{N}$.

- (b) Let $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(n) = |n|, n \in \mathbb{N}$.
- (c) Let $f: \mathbb{N} \to \mathbb{Z}$ be defined by $f(n) = \begin{cases} \frac{n-1}{2} & n \text{ is odd} \\ \frac{-n}{2} & n \text{ is even} \end{cases}$, $n \in \mathbb{N}$.

Exercise 5 (1.2.10). (a) False. Let a = 1, b = 1, and $\epsilon = 0.5$. We have that 1 < 1 + 0.5 = 1.5, but it is not true that a < b since a = 1 = b.

- (b) False. The same counterexample as in part (a) can be used to show the statement is false.
- (c) False. Let $a=2,\ b=1,$ and $\epsilon=2.$ We have that 2<1+2=3, but a>b since 2>1.

Exercise 6 (1.3.2). (a) Let $B = \{0\}$. $\inf(B) = 0 = \sup(B)$. Thus, $\inf(B) \ge \sup(B)$.

- (b) Impossible.
- (c) Let B be a bounded subset of \mathbb{Q} where $B = \{r \in \mathbb{Q} : 0 < r \leq 1\}$. $\sup(B) = 1 \in B$, but $\inf(B) = 0 \notin B$.

Exercise 7 (1.3.3). (a) By definition, $\inf(A) \in B$ and $\inf(A) \ge b$ for all $b \in B$. Thus, $\inf(A)$ is the maximum of B, which implies that $\inf(A) = \sup(B)$.

- (b) For every nonempty set A of real numbers that is bounded below, we can define $B = \{b \in \mathbb{R} : b \text{ is a lower bound for } A\}$. By the Axiom of Completeness, we know that if B is bounded above, B has a least upper bound $\sup(B)$. From (a), we showed that $\sup(B) = \inf(A)$. Therefore, if A is bounded below, A has a greatest lower bound $\inf(A)$, so there is no need to assert this in the Axiom of Completeness.
- **Exercise 8** (1.3.6). (a) Given $a \in A$ and $b \in B$, consider

$$a+b \le s+b \text{ (since } s=\sup(A) \ge a)$$

 $\le s+t \text{ (since } t=\sup(B) \ge b).$

Therefore, s + t is an upper bound for A + B.

- (b) Given an arbitrary upper bound u for A+B, $a \in A$, and $b \in B$, we have $a+b \le u \Rightarrow b \le u-a$. Thus, u-a is an upper bound for B. Since $t = \sup(B)$ is the least upper bound for B, $t \le u-a$.
- (c) It follows from (b) that $a \le u t$. Thus, u t is an upper bound for A. As such, $\sup(A) \le u t \Rightarrow s \le u t \Rightarrow s + t \le u$. Therefore, $\sup(A + B) = s + t$.
- (d) Since $s = \sup(A)$ and $t = \sup(B)$, given an arbitrary $\epsilon > 0$, $a \in A$, and $b \in B$, we know $s \frac{\epsilon}{2} < a$ and $t \frac{\epsilon}{2} < b$ by Lemma 1.3.8. Then,

$$\left(s - \frac{\epsilon}{2}\right) + \left(t - \frac{\epsilon}{2}\right) < a + b$$

$$s + t - \epsilon < a + b.$$

By Lemma 1.3.8, $\sup(A + B) = s + t$.