南京理工大学课程考试答案及评分标准

(18-19(春学期)线性代数(A)(2.5)考试试题答案)(19.5.8)

- 一. 是非题 (每题 3 分, 共 15 分): 1. ✓ 2. × 3. × 4. ✓ 5. ×
- 二. 填空题 (每题 4 分,共 20 分): 1. $\underline{-66}$ 2. $\underbrace{\begin{cases} 2n & a \neq \pm b \\ n & a = \pm b \end{cases}}$ 3. $\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}}$ 4. $\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}}_{}$ 5. $\underbrace{\begin{pmatrix} 1 & -2 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & -1 & 2 \end{pmatrix}}_{}$

三. (共 12 分)解:由|A|=1,知 $AA^*=|A|I=I$ 。于是由条件知 $2AA^*X=AA^{-1}B+AX\Rightarrow (2I-A)X=B$ ---

--- (6分) 因
$$|2I - A| = -1$$
, 所以 $2I - A$ 可逆, 于是

$$X = (2I - A)^{-1}B = \begin{pmatrix} -4 & -3 & 1 \\ -5 & -3 & 1 \\ 6 & 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & -1 \\ -1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -8 & 5 & -5 \\ -9 & 5 & -7 \\ 11 & -6 & 8 \end{pmatrix} ---- (6 \%)$$

四.
$$(共 10 分)$$
解: $(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \begin{pmatrix} 1 & -5 & 2 & 1 \\ 3 & 1 & -1 & -2 \\ 2 & 6 & -3 & -3 \\ -1 & -11 & 5 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -5 & 2 & 1 \\ 0 & 16 & -7 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ ----- (6 分) 所以

$$r_{\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}} = 2$$
, dim $L(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = r_{\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}} = 2$, 因 $\begin{vmatrix} 1 & -5 \\ 0 & 16 \end{vmatrix} \neq 0$, 所以 α_1,α_2 为一组基。------ (4 分)

五. (共12分)解:
$$(A|B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & -3 & 0 \\ 0 & 1 & 2 & a & b \\ 5 & 4 & 3 & -1 & a-4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -6 & -3 \\ 0 & 0 & 0 & a-6 & b-3 \\ 0 & 0 & 0 & a-6 \end{pmatrix}$$
----- (4分)所以 $r_A = \begin{cases} 2 & a=6 \\ 3 & a \neq 6 \end{cases}$,

$$r_{(A|B)} = \begin{cases} 2 & a=6,b=3 \\ 3 & a=6,b \neq 3 \end{cases}$$
,因此当 $a=6$, $b=3$ 时, $r_{(A|B)} = r_A = 2 < 4$,线性方程组有无穷多解,------(3 分)此时 $4 \quad a \neq 6$

原方程组的同解方程组为
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ -x_2 - 2x_3 - 6x_4 = -3 \end{cases}$$
,解得
$$\begin{cases} x_1 = -2 + x_3 + 5x_4 \\ x_2 = 3 - 2x_3 - 6x_4 \end{cases}$$
,取 $x_3 = x_4 = 0$,得特解 $X^* = \begin{pmatrix} -2 \\ 3 \\ 0 \\ 0 \end{pmatrix}$,

----- (2 分) 其导出组的解为 $\begin{cases} x_1 = x_3 + 5x_4 \\ x_2 = -2x_3 - 6x_4 \end{cases}, \text{取 } x_3 = 1, x_4 = 0 \ ; x_3 = 0, x_4 = 1 \ \text{得导出组的基础解系}$

$$\eta_1 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \eta_2 = \begin{pmatrix} 5 \\ -6 \\ 0 \\ 1 \end{pmatrix}, \dots (2 分) 故当 a = 6, b = 3 时, 方程组的通解为 $X = \begin{pmatrix} -2 \\ 3 \\ 0 \\ 0 \end{pmatrix} + k_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + k_2 = \begin{pmatrix} 5 \\ -6 \\ 0 \\ 1 \end{pmatrix}, k_1, k_2$$$

为任意常数。----(1分)

六. (共 14 分)解: (1) 由 $(A-4I)\alpha=0 \Rightarrow A\alpha=4\alpha$,知 4 为 A 的特征值, α 为对应的特征向量,设 A 的另两个

特征值为
$$\lambda_1, \lambda_2$$
,则有 $\begin{cases} \lambda_1 + \lambda_2 + 4 = 6 \\ 4\lambda_1\lambda_2 = 4 \end{cases}$,可得 $\lambda_1 = \lambda_2 = 1$ 。设 $\lambda_1 = \lambda_2 = 1$ 的特征向量为 $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$,则

的线性无关的特征向量。-----(5分)

正交化:
$$\beta_1 = \xi_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \beta_2 = \xi_2 - \frac{(\xi_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$
------ (2 分)

单位化:
$$\eta_1 = \frac{\beta_1}{|\beta_1|} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \eta_2 = \frac{\beta_2}{|\beta_2|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \eta_3 = \frac{\alpha}{|\alpha|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$
 ----- (1分)

令
$$T = (\eta_1, \eta_2, \eta_3) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, 作正交变换 $X = TY$,得 $f(X)$ 的标准形 $f = y_1^2 + y_2^2 + 4y_3^2$ 。———

(2) 因
$$T^T A T = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 4 \end{pmatrix}$$
,所以 $A = T \begin{pmatrix} 1 & & \\ & 1 & \\ & & 4 \end{pmatrix} T^T = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ ------ (5分)

七. (共 10 分)解:
$$1$$
、因 $|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -3 & -4 \\ k & \lambda - 1 & -k \\ -1 & -3 & \lambda - 5 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 6)$,得 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 6$ 。

-----(3分)因
$$A$$
 可对角化,所以 $3-r_{(\lambda_1I-A)}=2$ \Rightarrow $r_{(\lambda_1I-A)}=1$,而 $(\lambda_1I-A)=\begin{pmatrix} -1 & -3 & -4 \\ k & 0 & -k \\ -1 & -3 & -4 \end{pmatrix}$ \rightarrow $\begin{pmatrix} -1 & -3 & -4 \\ k & 0 & -k \\ 0 & 0 & 0 \end{pmatrix}$,

$$2$$
、当 $k=0$ 时,对 $\lambda_1=\lambda_2=1$,特征向量为 $\xi_1=\begin{pmatrix} -3\\1\\0 \end{pmatrix}$, $\xi_2=\begin{pmatrix} -4\\0\\1 \end{pmatrix}$,对 $\lambda_3=6$,特征向量为 $\xi_3=\begin{pmatrix} 1\\0\\1 \end{pmatrix}$,------(3 分)

八. (共7分)证明:对任意的实数t,有 $(tI+A)^T=tI+A$,即tI+A为实对称矩阵,又A的特征值均为实数,设 为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则取 $t > \max_{1 \le i \le n} |\lambda_i|$,就可使tI + A正定。------(4分)

事实上,tI+A的特征值为 $t+\lambda_1,t+\lambda_2,\cdots,t+\lambda_n$,且 $t+\lambda_i>0$ $(i=1,2,\cdots,n)$,故tI+A正定。------ (3分) 注: 此题为提高题,考查正定矩阵性质的灵活运用。