INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 22: Algorithms for Microfluidic Biochips

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

Dilution of a Fluid

Dilution and Mixing: Problem Formulation

Example: Dilution of biosamples / chemical reagents – target concentration factor

 $C_{T} = (3/8) = 37.5\%$ of a biosample

Sequencing Graph (DAG):

Dilution and Mixing – Concentration Factor

Only two extreme CFs are supplied: Sample with 100% concentration or

1024 1024

Buffer solution with 0% concentration or

<u>0</u> 1024

Dilution on DMF Biochip:

On-Chip Dilution

Courtesy: Wheeler Microfluidic Lab, University of Toronto, 2013.

$$T1 = (G+R)/2 :-> CF(G)=1/2$$

$$T2 = (G+3R)/4 :-> CF(G)=1/4$$

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or **CF = 1.0**

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or **CF = 1.0**

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or **CF = 1.0**

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or

$$\frac{1024}{1024}$$
 or **CF = 1.0**

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or $\frac{1024}{1024}$ or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or $\frac{1024}{1024}$ or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or $\frac{1024}{1024}$ or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Two extreme CFs are supplied: Sample with 100% concentration or $\frac{1024}{1024}$ or CF = 1.0

Buffer solution with 0% concentration or $\frac{0}{1024}$ or CF = 0.0

Mixing of Several Fluids

Mixing on Biochip:

On-Chip Mixing

$$T1 = R:G:B:Y = 1:1:1:1$$

$$T2 = R:G:Y = 1:1:2$$

$$T3 = R:Y = 1:1$$

$$T4 = R:G:B:Y = 2:1:3:2$$

Courtesy: IMNF Lab, University of Texas Arlington, 2013

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Thies et al., Natural Computing, 2008

Target ratio of volumes of x1, x2, x3, x4, x5, x6, x7 = 2:3:5:7:11:13:87

MinMix-tree

<u>Target Ratio = </u>					
<u>2:3:5</u>	:7:11	: 13 : 87			
$\mathbf{x}_1 : 0$	0 0 0	$0 \ 1 \ 0_2$			
$\mathbf{x}^{5}: 0$	0 0 0	$0 \ 1 \ 1_2$			
$\mathbf{x}^3: 0$	0 0 0	$1 \ 0 \ 1_2$			
$x_4 : 0$	0 0 0	$1\ 1\ 1_2$			
$\mathbf{x}_5 : 0$	0 0 1	$0\ 1\ 1_2$			
$\mathbf{x}^{e}: 0$	0 0 1	$1 \ 0 \ 1_2$			

 \mathbf{x}_7 : 1010111₂

M---- D-4:-

Discussion on Concentration Factor in Dilution Process and Algorithm for Getting Directed Graph from Binary Fraction

Dilution of a Fluid and Binary Fractions:

- (e) Let us consider that you are given some acid solution (also known as sample) and water (also known as buffer) having concentration factors as 100% and 0%, respectively. You are asked to follow the sequence of steps as below (considering unit volume as 10 ml):
 - S1: Take one unit volume of sample (S) and one unit volume of buffer (B) in a single container.
 - S2: Mix the liquid mixture very well and Discard (remove) half of the total volume.
 - S3: Take one unit volume of S again and pour that in the container.
 - S4: Mix the liquid mixture very well and Discard (remove) half of the total volume.
 - S5: Take one unit volume of S again and pour that in the container.
 - S6: Mix the liquid mixture very well and Discard (remove) half of the total volume.
 - S7: Take one unit volume of B and pour that in the container.
 - S8: Mix the liquid mixture very well and Discard (remove) half of the total volume.
 - S9: Take one unit volume of B and pour that in the container.
 - S10: Mix the liquid mixture very well and Discard (remove) half of the total volume.
 - S11: Take one unit volume of S and pour that in the container.
 - S12: Mix the liquid mixture very well and Discard (remove) half of the total volume.

After Step 12, what is the concentration factor in decimal fraction (in the form of x/y, where x is numerator and y is denominator). Convert that decimal fraction into 6-bit binary number (without binary point).

Homework for CF=111/512 and A:B:C:D = 2:3:5:6

Scope in CoDA Lab

Microcontroller based System Design:

Arduino Uno kit

Raspberry Pi kit

OpenDrop Kits by GaudiLabs, Switzerland [May, 2017]

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 22: Binary Number System, Binary Number Storage and Registers, Boolean Algebra and Logic Gates

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

Comparing the signed number systems

- Positive numbers are the same in all three representations
- Signed magnitude and one's complement have two ways of representing 0. This makes things more complicated
- Two's complement has asymmetric ranges; there is one more negative number than positive number. Here, you can represent -8 but not +8
- However, two's complement is preferred because it has only one 0, and its addition algorithm is the simplest

Decimal	S.M.	1's comp.	2's comp.
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
- 0	1000	1111	_
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	_	1000

Ranges of the signed number systems

 How many negative and positive numbers can be represented in each of the different systems on the previous page?

	Unsigned		One's complement	Two's complement
Smallest	·	1111 (-7)	1000 (-7)	1000 (-8)
Largest		0111 (+7)	0111 (+7)	0111 (+7)

• In general, with n-bit numbers including the sign, the ranges are:

	Unsigned	Signed Magnitude	One's complement	Two's complement
	Onsigned	Magnitude	complement	complement
Smallest	0	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹ -1)	-2 ⁿ⁻¹
Largest	2 ⁿ -1	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)

Real Numbers:

Conversion from real binary to real decimal

-
$$1101.1011_2 = -13.6875_{10}$$

since: $1101_2 = 2^3 + 2^2 + 2^0 = 13_{10}$ and $0.1011_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0.5 + 0.125 + 0.0625 = 0.6875_{10}$

Conversion from real decimal to real binary:

```
+927.45_{10} = + 11100111111.01 1100 1100 1100 ....
 927/2 = 463 + \frac{1}{2} \leftarrow LSB 0.45 \times 2 = 0.9
 463/2 = 231 + \frac{1}{2}  0.9 \times 2 = 1.8
 231/2 = 155 + 1/2
                         0.8 \times 2 = 1.6
 155/2 = 57 + \frac{1}{2}
                                   0.6 \times 2 = 1.2
  57/2 = 28 + \frac{1}{2}
                                   0.2 \times 2 = 0.4
  28/2 = 14 + 0
                                    0.4 \times 2 = 0.8
   14/2 = 7 + 0
                                    0.8 \times 2 = 1.6
    7/2 = 3 + \frac{1}{2}
                                    0.6 \times 2 = 1.2
    3/2 = 1 + \frac{1}{2}
                                    0.2 \times 2 = 0.4
    1/2 = 0 + \frac{1}{2}
                                    0.4 \times 2 = 0.8 \dots
```

Floating-Point Number Formats:

- The term floating point number refers to representation of real binary numbers in computers
- ❖ IEEE 754 standard defines standards for floating point representations
- General format

$$\pm 1.bbbbb_{two} \times 2^{eeee}$$

or

$$(-1)^S \times (1+F) \times 2^E$$

- Where
 - x S = sign, 0 for positive, 1 for negative
 - F = fraction (or mantissa) as a binary integer, 1+F is called significand
 - E = exponent as a binary integer, positive or negative (two's complement)

IEEE 754 Floating Point Standard:

- Biased exponent: true exponent range [-127,128] is changed to [0, 255]:
 - ▼ Biased exponent is an 8-bit positive binary integer.
 - ▼ True exponent obtained by subtracting 127_{ten} or 01111111_{two}
- First bit of significand is always 1:

$$\pm$$
 1.bbbb . . . b \times 2^E

- 1 before the binary point is implicitly assumed.
- × Bias = $2^{(k-1)}$ − 1, in general
- Significand field represents 23 bit fraction after the binary point.
- imes Significand range is [1, 2), to be exact [1, 2 − 2⁻²³]
- ▼ True exponent = biased exponent 127, for 32-bit representation

Floating-Point Numbers (Single Precision):

- $-127 \le E \le 128$, Max $|E| \sim 128$
- Overflow: Exponent requiring more than 8 bits. Number can be positive or negative.
- Underflow: Fraction requiring more than 23 bits. Number can be positive or negative.

Floating-Point Numbers (Double Precision):

- $-1023 \le E \le 1024$, Max $|E| \sim 1024$
- Overflow: Exponent requiring more than 11 bits. Number can be positive or negative.
- Underflow: Fraction requiring more than 52 bits. Number can be positive or negative.

IEEE 754 Floating Point Standard:

- +/- 1.significand x 2^{exponent}
- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

Conversion to Decimal:

- Sign bit is 1, number is negative
- Biased exponent is $2^7+2^0 = 129$
- The number is

$$(-1)^{S} \times (1 + F) \times 2^{(exponent - bias)} = (-1)^{1} \times (1 + F) \times 2^{(129 - 127)}$$

= -1 \times 1.25 \times 2^{2}
= -1.25 \times 4
= -5.0

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 0000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $-\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $-\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $-\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating Point Arithmetic:

- Addition and subtraction are more complex than multiplication and division
- Need to align mantissas
- Algorithm:
 - Check for zeros
 - Align significands (adjusting exponents)
 - Add or subtract significands
 - Normalize result

Not required for CSN-101 course.

You will learn more about this in CSN-221 course.

Floating Point in C

C Guarantees Two Levels

```
float single precision double double precision
```

- Conversions
 - Casting between int, float, and double changes numeric values
 - Double or float to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - Generally saturates to TMin or TMax
 - int to double
 - Exact conversion, as long as int has \leq 53 bit word size
 - int to float
 - Will round according to rounding mode

Binary Storage and Registers

- Registers
- A binary cell is a device that possesses two stable states and is capable of storing one of the two states.
- A *register* is a group of binary cells. A register with *n* cells can store any discrete quantity of information that contains *n* bits.

n cells 2^n possible states

- A binary cell
 - two stable state
 - store one bit of information
 - examples: flip-flop circuits, ferrite cores, capacitor
- A register
 - a group of binary cells
 - AX in x86 CPU
- Register Transfer
 - a transfer of the information stored in one register to another
 - one of the major operations in digital system
 - an example

Transfer of information

Fig. 1-1 Transfer of information with registers

- The other major component of a digital system
 - circuit elements to manipulate individual bits of information

Fig. 1-2 Example of binary information processing

Щ

Plan for Lecture Classes in CSN-101 (Autumn, 2019-2020)

Week	Lecture 1 (Monday 4-5 PM)	Lecture 2 (Friday 5-6 PM)
1	Evolution of Computer Hardware and Moore's Law, Software and Hardware in a Computer	Computer Structure and Components, Operating Systems
2	Computer Hardware: Block Diagrams, List of Components	Computer Hardware: List of Components, Working Principles in Brief, Organization of a Computer System
3	Linux OS	Linux OS
4	Writing Pseudo-codes for Algorithms to Solve Computational Problems	Writing Pseudo-codes for Algorithms to Solve Computational Problems
5	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms	Sorting Algorithms – Bubble sort, selection sort, and Search Algorithms
6	C Programming	C Programming
7	Number Systems: Binary, Octal, Hexadecimal, Conversions among them	Number Systems: Binary, Octal, Hexadecimal, Conversions among them
8	Number Systems: Negative number representation, Fractional (Real) number representation	Boolean Logic: Boolean Logic Basics, De Morgan's Theorem, Logic Gates: AND, OR, NOT, NOR, NAND, XOR, XNOR, Truth-tables
9	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput	Computer Networking and Web Technologies: Basic concepts of networking, bandwidth, throughput
10	Different layers of networking, Network components, Type of networks	Network topologies, MAC, IP Addresses, DNS, URL
11	Different fields of CSE: Computer Architecture and Chip Design	Different fields of CSE: Data Structures, Algorithms and Programming Languages
12	Different fields of CSE: Database management	Different fields of CSE: Operating systems and System softwares
13	Different fields of CSE: Computer Networking, HPCs, Web technologies	Different Applications of CSE: Image Processing, CV, ML, DL
14	Different Applications of CSE: Data mining, Computaional Geometry, Cryptography, Information	Different Applications of CSE: Cyber-physical systems and