Sistemas Distribuidos Grado en Ingeniería Informática

Ejercicios de sincronización

- 1. Siendo el tiempo mínimo de comunicación entre cliente y servidor de 10 ms; y el tiempo total (D) desde que se envía m_{req} y se recibe m_t de 50 ms, con el algoritmo de Cristian, determine:
 - (a) La desviación, suponiendo que m_t se recibe en el instante 435ms (t_1), recibiendo el tiempo de referencia 401ms. ($t(m_t)$).
 - (b) La precisión.
 - (c) El diagrama de interacción entre cliente y servidor, donde quede reflejado el envío y recepción de m_{req} y m_t , respectivamente, el tiempo total D y el tiempo que se tomará como referencia t.
- 2. Siendo el tiempo mínimo de comunicación entre cliente y servidor de 25 ms; y el tiempo total (D) desde que se envía m_{req} y se recibe m_t de 60 ms, con el algoritmo de Cristian, determine:
 - (a) La desviación, suponiendo que m_t se recibe en el instante 122ms (t_1), recibiendo el tiempo de referencia 80ms. ($t(m_t)$).
 - (b) La precisión.
 - (c) El diagrama de interacción entre cliente y servidor, donde quede reflejado el envío y recepción de m_{req} y m_t , respectivamente, el tiempo total D y el tiempo que se tomará como referencia t.
- 3. Siendo el tiempo mínimo de comunicación entre cliente y servidor de 12 ms, ¿cuál debería ser el tiempo total (D) desde que se envía m_{req} y se recibe m_t para garantizar una precisión de 1ms con el algoritmo de Cristian?
- 4. Utilizando el algoritmo de Berkeley con 5 nodos, siendo el nodo 1 (N1) el coordinador y con los datos que se muestran en la siguiente tabla, determine:

Nodo	D (ms)	t
N1 (coord.)	0	11:25:42.120
N2	12	11:25:43.566
N3	21	11:25:41.969
N4	10	11:25:42.021
N5	235	11:15:32.661

(a) El tiempo medio para la sincronización y la desviación a enviar y a la que se debe ajustar cada nodo.

- (b) Mediante el algoritmo de Cristian, calcule la precisión en el ajuste para cada nodo, siendo min 4 ms para todos los nodos que se comunican con el coordinador.
- 5. Etiquete los siguientes eventos utilizando:

- (a) El algoritmo de Tiempo Lógico de Lamport.
- (b) Vectores de Tiempo.
- 6. Etiquete los siguientes eventos utilizando:

- (a) El algoritmo de Tiempo Lógico de Lamport.
- (b) Vectores de Tiempo.