

SPI

Преглед Начин функционисања Имплементације

MOVEMBER

ЦИЉЕВИ

- Након завршетка овог предавања имаћете:
 - Боље разумевање:
 - Како SPI функционише
 - Како исправно повезати и подесити
 - Како се на хардверском нивоу изводе операције
 - Кратак преглед:
 - Практичних разматрања

ПРЕГЛЕД СТРУКТУРЕ ПРЕДАВАЊА

•SPI

- Увод
- Примена
- Могућности
- Регистри
- Ожичење
- Начин рада
- Подешавање такта
- Проширивање са више периферија
- Предности и мане
- Закључци

SPI преглед

- <u>Serial Peripheral Interface</u>
- Развој *Motorola* познато као MicroWire, QSPI, MicrowirePlus
- •Синхрона серијска комуникација
- Карактеристике:
 - Једноставност: повезивање са 4 жице
 - Брже од UART-a: 250Kbit to 2Mbit/s
 - Кратак домет: ~ n x 10 cm

- 1 господар (master)
- № поданика (slaves)

SPIПРИМЕНА

•Примена:

- Понајвише за повезивање процесора и периферија
- Могуће повезати 2 процесора
- Широки спектар подржаних периферија

• Периферије:

- LCDs
- Radios
- Converters (ADC, DAC)
- Memories (EEPROM, RAM, Flash)
- Sensors (Temperature, Humidity, Pressure)
- Real Time Clocks
- Misc: MP3, Potentiometers, UART/USB/CAN controller, amplifiers

• Интеграција у микроконтролерима:

- Готово сви микроконтролери имају SPI господаре (руководиоце)
- Неки имају и SPI подређене (робове)

SPI<u>МОГУЋНОСТИ</u>

- •Пренос података:
 - Одвојене линије за пренос у оба смера
 - Кодовање: NRZ–L
 - Непостојање стартног и стоп бита последица?
 - Групе бита (4, 8, 16)
 - Једноставан HW померачки регистри (енг. shift registers)
 - MSB or LSB (Most/Least Significant Bit)
- •Дуплек: могућност симултане комуникације у оба правца
 - потребна подршка на чипу

SPI<u>МОГУЋНОСТИ</u>

•Синхронизација:

- Посебна линија за такт неактивна кад се постави 1 или 0 на дужи период
- Високе и подесиве брзине: типично 1-2 MHz (постоји и до 50 MHz)
- Нема потребе за усклађивањем такта (baudrate)
- Постојање горње границе такта
- Читање на опадајућу или растућу ивицу

•Руководилац – подређени (енг. Master – Slave) повезивање:

- Посебне линије за више периферија
- Господар активира поданике са ниским сигналом
- Висок сигнал: типично ~60% Vdd

SPI РЕГИСТРИ

- •SPDR (transferred Data read/write Register):
 - смештање примо-предајних података
- •SPCR (Control Register):
 - смештање контролних подешавања
- SPSR (Status Register)
 - смештање статусних информација
- (SPTCI) (Transfer Complete Interrupt)
 - смештање прекидачке рутине за готов пренос

SPI ожичење

•Линије:

- Master-Out, Slave-In (MOSI)
 преноси податке од руководиоца до подређеног
- Master-In, Slave-Out (MISO)
 преноси податке од подређеног до руководиоца
- System Clock (SCLK)
 такт за усклађивање преноса
- Slave Select/Chip Select (SS1#, ..., SS#n or CS1, ..., CSn)
 посебна линија за одабир сваког подређеног

•Понашање:

- Обе линије: MOSI и MISO активне током сваког преноса
- Руководилац поставља линију за одабир
- Такт се диктира се са стране руководиоца
- Померачки регистри симултано избацују и убацују податке

SPI<u>ПОМЕРАЧКИ РЕГИСТАР</u>

SPIповезивање

SPI ПРИМЕР ПРЕНОСА

SPI

РЕЖИМИ РАДА ТАКТА

- •Постоје 4 режима као комбинација:
 - 2 стања фазе такта (СРНА)
 - 2 стања поларитета такта (*CKP/CPOL*)

SPI Mode	(CPOL/CKP)	(CPHA)	(CKE/NCPHA)
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

Clock Polarity Clock Phase Clock Edge

- •Не постоји подразумевани начин
- •Режими дају слободу и флексибилност
- •Обавезно руководилац и подређени исти режим
- •Руководилац може у лету да мења режим

SPIФАЗА И ПОЛАРИТЕТ ТАКТА

- Фаза (СРНА): дефинише значење предње и задње ивице такта
 - пресликавање узорковања и прелаза на нови бит некој од ивица
 - Различите ивице имају разчичито значење
- Поларитет (СРОL): дефинише вредност активног и стања мировања
 - пресликавање 0 и 1 на активност и мировање
 - мировање као почетак и референца за ивице
- Начин фукционисања:
- Када је CPOL=0: мировање је 0 а активност 1
 - *СРНА*=0, узорковање на предњу (узлазну) ивицу $(0 \rightarrow 1)$ а прелаз на нови бит на задњу (силазну) $(1 \rightarrow 0)$
 - For *CPHA*=1, узорковање на задњу(силазну) ивицу $(1 \rightarrow 0)$ а прелаз на нови бит на предњу (узлазну) $(0 \rightarrow 1)$
- Када је CPOL=1: мировање је 1 а активност 0 (инверзија за CPOL=0)
 - For *СРНА*=0, узорковање на предњу (силазну) ивицу (1 \rightarrow 0) а прелаз на нови бит на задњу (узлазну) (0 \rightarrow 1)
 - **За СРНА**=1, узорковање на задњу (узлазну) ивицу $(0 \rightarrow 1)$ а прелаз на нови бит на предњу (силазну) $(1 \rightarrow 0)$

SPI ПРИМЕРИ ФАЗА И ПОЛАРИТЕТ

SPI ПРИМЕРИ ФАЗА И ПОЛАРИТЕТ

SPI ПОВЕЗИВАЊЕ

- •Увек у "руководилац подређени" односу
- •Микроконтролер: углавном руководилац
- •Периферије: увек подређени
- •Линија за одабир: обара се на ниско (0)

SPI ОДАБИР ПОДРЕЂЕНОГ

SPI ВИШЕ *НЕЗАВИСНИХ* ПОДРЕЂЕНИХ

- Један руководилац и више независних подређених
 - Одвојене линије за одабир подређених (SS)
 - Додељен приступ само једном од више понуђених
 - Руководилац постави 0 на одабрани, а 1 на све остале
 - Проширење: бинарни декодер може да претвори 3 у 8 излазних линија за одабир

SPI РЕДОСЛЕД ОПЕРАЦИЈА

- •Комуникација са 2 подређена мора да се испоштује редослед:
 - Господар подеси такт да се подудара са подређеним 01
 - Активирати подређеног 01 постављањем 0 на његову линију
 - Обавити пренос података
 - Деактивирати подређеног 01
 - Господар подеси такт да се подудара са подређеним 02
 - Активирати подређеног 02 постављањем 0 на његову линију
 - Обавити пренос података
 - Деактивирати подређеног 02

SPI више *зависних* подређених

- Један руководилац и више нанизаних подређених (енг. daisy chained)
 - Употреба: контрола пасивних елемената нпр. LED ниска
 - Дељена линија за одабир
 - Подаци се једино истискују из руководиоца и уписују у подређене
 - Подаци се "преливају" из једног у други подређени
 - Потребно послати довољно података тако да се прелију и у најудаљеније
 - Првопослати подаци завршавају у последњем подређеном

SPI 3<u>A И ПРОТИВ</u>

•Предности:

- Велика брзина за тачка на тачку преносе
- Подршка за симултани улазно/излазни ток података
- Не постоји адресирање: олакшана имплементација
- Широко подржан

•Мане:

- Руковање више подређених: усложњава линије
- Немогућност комуникације између подређених
- Нема потврде пријема: такт могуће да одлута
- Не постоји решавање колизија
- Не постоји контрола тока (потребно знати брзину подређених)

ЗАКЉУЧЦИ ЗА ПОНЕТИ

Шта смо радили

ЗАКЉУЧЦИ ЗА ПОНЕТИ

- •SPI: намењен за проширење микроконтролера са периферијама
- •Брзо и робусно уз веома мало подешавања
- •Лако проширивање: додавање линија, транспарентно за софтвер
- •Ограничења у броју периферија