## CS495 Optimiztaion

Waleed A. Yousef, Ph.D.,

Human Computer Interaction Lab., Computer Science Department, Faculty of Computers and Information, Helwan University, Egypt.

April 8, 2019

#### Lectures follow:

Boyd and Vandenberghe (2004)



Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

Book and Stanford course: http://web.stanford.edu/ ~boyd/cvxbook/

## Some examples from: Chong and Zak (2013)



Chong, E. K., & Zak, S. (2001). An introduction to optimization: Wiley-Interscience.

Other complementary rigorous books for optimization/convex analysis are:

Bagirov (2014)
Bertsekas (2003)
Borwein (2006)
Dattorro (2009)
Hiriart (2001)
Rockafellar (1997)

## **Course Objectives**

- Developing rigorous mathematical treatment for mathematical optimization.
- Building intuition, in particular to practical problems.
- Developing computer practice to using optimization SW.

## **Prerequisites**

- 1. Discrete Mathematics
- 2. Calculus (single variable)
- 3. Calculus (multi variable)
- 4. Linear Algebra
- 5. Some Real Analysis and some Topology: Wade (2000); Kreyszig (1978) are rigorous and wonderfully lucid; Rudin (1976) is the reference of references but very terse.



# Chapter 1 Introduction Snapshot on Optimization

| (          | <b>Co</b> 1 | ntents                                       |          |     | 2.3<br>2.4<br>2.5<br>2.6 | 2.2.4       Polyhedra         2.2.5       The positive semidefinite cone         Operations that preserve convexity         Generalized inequalities         Separating and supporting hyperplanes | d ellipsoids 25 orm cones 26 |  |
|------------|-------------|----------------------------------------------|----------|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
|            |             |                                              |          | 3   |                          | functions                                                                                                                                                                                          | 46                           |  |
|            |             |                                              |          |     | 3.1                      |                                                                                                                                                                                                    |                              |  |
|            |             |                                              |          |     | 3.2                      | Operations that preserve convexity                                                                                                                                                                 |                              |  |
|            |             |                                              |          |     | 3.3                      | The conjugate function                                                                                                                                                                             |                              |  |
| Contents v |             |                                              | .,       |     | 3.4<br>3.5               | Quasiconvex functions                                                                                                                                                                              | 50<br>51                     |  |
|            |             |                                              |          | 3.5 | U U                      | 52                                                                                                                                                                                                 |                              |  |
|            |             |                                              |          |     | 3.0                      | Convexity with respect to generalized mequalities                                                                                                                                                  | 32                           |  |
| 1          | 1.1         | duction  Mathematical Optimization           | 1<br>2   |     |                          |                                                                                                                                                                                                    |                              |  |
|            | 1.1         | 1.1.1 Motivation and Applications            | 4        | 4   |                          | optimization problems                                                                                                                                                                              | 67                           |  |
|            |             | 1.1.2 Solving Optimization Problems          | 6        |     | 4.1                      |                                                                                                                                                                                                    | 68                           |  |
|            | 1.2         | Least-Squares and Linear Programming         | 7        |     | 4.2                      |                                                                                                                                                                                                    | 69                           |  |
|            |             | 1.2.1 Least-Squares Problems                 | 7        |     | 4.3<br>4.4               | <u></u>                                                                                                                                                                                            | 70                           |  |
|            |             | 1.2.2 Linear Programming                     | 8        |     | 4.4                      |                                                                                                                                                                                                    | 71<br>72                     |  |
|            | 1.3         | Convex Optimization                          | 9        |     | 4.6                      | 1 0 0                                                                                                                                                                                              | 73                           |  |
|            | 1.4         | Nonlinear Optimization                       | 10       |     | 4.7                      | Vector optimization                                                                                                                                                                                |                              |  |
|            |             |                                              |          |     | 1.1                      | vector optimization                                                                                                                                                                                |                              |  |
|            | TPI.        |                                              | 10       | 5   | Duality                  |                                                                                                                                                                                                    | 89                           |  |
| I          | In          | <b>eory</b>                                  | 12       |     | 5.1                      | 8 . 8                                                                                                                                                                                              | 90                           |  |
|            |             |                                              |          |     | 5.2                      | 0 0 1                                                                                                                                                                                              | 91                           |  |
| 2          |             | rex sets                                     | 13       |     | 5.3                      | •                                                                                                                                                                                                  | 92                           |  |
|            | 2.1         | Affine and convex sets                       | 14       |     | 5.4                      |                                                                                                                                                                                                    | 93                           |  |
|            |             | 2.1.1 Lines and line segments                | 14       |     | 5.5                      |                                                                                                                                                                                                    | 94                           |  |
|            |             | 2.1.2 Affine sets                            | 15       |     | 5.6<br>5.7               |                                                                                                                                                                                                    | 95<br>96                     |  |
|            |             | 2.1.3 Affine dimension and relative interior | 19<br>21 |     | 5. <i>1</i><br>5.8       |                                                                                                                                                                                                    | 96<br>97                     |  |
|            |             | 2.1.4 Convex sets                            | 21       |     | 5.6<br>5.9               |                                                                                                                                                                                                    | 98                           |  |
|            |             | 2.1.0                                        | ~~       | 1   | 0.0                      | Generalized inequalities                                                                                                                                                                           | 50                           |  |

2.2

Convright © 2019 2019 Waleed A Yousef All Rights Reserved

| II | App                                           | plications 109                                                                                                                                                                                                                                                                                                                                                                       | III   | Algo                                                         | rithms                                                                                                                                                                                                                             | 191                                                |
|----|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 6  | Appro<br>6.1<br>6.2<br>6.3<br>6.4<br>6.5      | eximation and fitting         110           Norm approximation         111           Least-norm problems         112           Regularized approximation         113           Robust approximation         114           Function fitting and interpolation         115                                                                                                             | 9     | Uncons<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.6<br>9.7      | Strained minimization Unconstrained minimization Descent methods Gradient descent method Steepest descent method Newton's method Self-concordance Implementation                                                                   | . 194<br>. 195<br>. 196<br>. 197<br>. 198          |
| 7  | 7.1<br>7.2<br>7.3<br>7.4<br>7.5               | tical estimation         142           Parametric distribution estimation         143           Nonparametric distribution estimation         144           Optimal detector design and hypothesis testing         145           Chebyshev and Chernoff bounds         146           Experiment design         147                                                                   | 10    | Equalit<br>10.1<br>10.2<br>10.3<br>10.4                      | y constrained minimization  Equality constrained minimization problems                                                                                                                                                             | . 228<br>. 229                                     |
|    |                                               |                                                                                                                                                                                                                                                                                                                                                                                      | 11    | Interior                                                     | r-point methods Inequality constrained minimization problems                                                                                                                                                                       | 239                                                |
| 8  | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7 | etric problems         160           Projection on a set         161           Distance between sets         162           Euclidean distance and angle problems         163           Extremal volume ellipsoids         164           Centering         165           Classification         166           Placement and location         167           Floor planning         168 | Bibli | 11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6<br>11.7<br>11.8 | Logarithmic barrier function and central path The barrier method Feasibility and phase I methods Complexity analysis via self-concordance Problems with generalized inequalities Primal-dual interior-point methods Implementation | . 241<br>. 242<br>. 243<br>. 244<br>. 245<br>. 246 |

## Chapter 1

## Introduction

#### **Mathematical Optimization** 1.1

**Definition 1** A mathematical optimization problem  $| \bullet |$  minimize  $f_0 \equiv \text{maximize} - f_0$ . or just optimization problem, has the form (Boyd and Vandenberghe, 2004):

minimize 
$$f_0(x)$$
  
subject to:  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $h_i(x) = 0$ ,  $i = 1, ..., p$ ,  
 $x = (x_1, ..., x_n) \in \mathbf{R}^n$ , (optimization variable)  
 $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$ , (objective (cost/utility) function)  
 $f_i : \mathbf{R}^n \mapsto \mathbf{R}$ , (inequality constraints (functions))  
 $h_i : \mathbf{R}^n \mapsto \mathbf{R}$ , (equality constraints (functions))  
 $\mathcal{D} : \bigcap_{i=1}^m \mathbf{dom} f_i \cap \bigcap_{i=1}^p \mathbf{dom} h_i$  (feasible set)  
 $= \{x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0\}$   
 $x^* : \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$  (solution)

- $f_i \le 0 \equiv -f_i \ge 0$ .
- 0s can be replaced of course by constants  $b_i$ ,  $c_i$
- unconstrained problem when m = p = 0.

## Example 2:

minimize subject to:  $x \le 2 \land x \ge 1$ .



 $x^* = 1$ .

If the constraints are relaxed, then  $x^* = 0$ .



minimize  $f_0(x)$ 

subject to:  $f_i(x) \le 0, \qquad i = 1, \dots, m$ 

$$h_i(x) = 0, i = 1, \dots, p,$$

 $x = (x_1, \dots, x_n) \in \mathbf{R}^n$ , (optimization variable)

 $f_0: \mathbf{R}^n \mapsto \mathbf{R}$ , (objective (cost/utility) function)

 $f_i: \mathbf{R}^n \mapsto \mathbf{R}$ , (inequality constraints (functions))  $h_i: \mathbf{R}^n \to \mathbf{R},$  (equality constraints (functions))

$$\mathcal{D}: \bigcap_{i=1}^{m} \mathbf{dom} \, f_i \, \cap \bigcap_{i=1}^{p} \mathbf{dom} \, h_i \qquad (feasible \, set)$$

$$= \left\{ x \mid x \in \mathbf{R}^n \land f_i(x) \le 0 \land h_i(x) = 0 \right\}$$

 $x^*: \{x \mid x \in \mathcal{D} \land f_0(x) \le f_0(z) \ \forall z \in \mathcal{D}\}$  (solution)  $\mid x^* = (1/2, 3/2)'$ . (Let's see animation)

**Example 3** (*Chong and Zak, 2013, Ex. 20.1, P. 454*):

minimize 
$$(x_1 - 1)^2 + x_2 - 2$$

subject to: 
$$x_2 - x_1 = 1$$

$$x_1 + x_2 \le 2.$$

No global minimizer:  $\partial z/\partial x_2 = 1 \neq 0$ . However,  $z|_{(x_2-x_1=1)} = (x_1-1)^2 + (x_1-1)$ , which attains a minima at  $x_1 = 1/2$ .



## 1.1.1 Motivation and Applications

cost (or utility)

- optimization problem is an abstraction of how to make "best" possible choice of  $x \in \mathbb{R}^n$ .
- *constrains* represent trim requirements or specifications that limit the possible choices.
- *objective function* represents the *cost* to minimize or the *utility* to maximize for each x.

## **Examples:**

 $f_0$ 

sessment.

| <br>Any problem                               | Portfolio Optimization                | Device Sizing                         | Data Science              |
|-----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------|
| <br>choice made firm requirements /conditions | investment in capitals overall budget | dimensions<br>engineering constraints | parameters<br>regularizer |

• Amazing variety of practical problems. In particular, data science: two sub-fields: construction and as-

overall risk

- The construction of: Least Mean Square (LMS), Logistic Regression (LR), Support Vector Machines (SVM), Neural Networks(NN), Deep Neural Networks (DNN), etc.
  - Managarahari
- Many techniques are for solving the optimization problem:
  Closed form solutions: convex optimization problems
  - Numerical solutions: Newton's methods, Gradient methods, Gradient descent, etc.
  - "Intelligent" methods: particle swarm optimization, genetic algorithms, etc.

error

power consumption

### **Example 4 (Machine Learning: construction)**:

Let's suppose that the best regression function is  $Y = \beta_0 + \beta_1 X$ , then for the training dataset  $(x_i, y_i)$  we need to minimize the MSE.

- Half of ML field is construction: NN, SVM, etc.
- In DNN it is an optimization problem of millions of parameters.
- Let's see animation.
- Where are Probability, Statistics, and Linear Algebra here? Let's re-visit the chart.
- Is the optimization problem solvable:
  - closed form? (LSM)
  - numerically and guaranteed? (convex and linear)
  - numerically but not guaranteed? (non-convex):
    - \* numerical algorithms, e.g., GD,
    - \* local optimization,
    - \* heuristics, swarm, and genetics,
    - \* brute-force with exhaustive search

$$\underset{\beta_o,\beta_1}{\text{minimize}} \sum_i (\beta_o + \beta_1 x_i - y_i)^2$$



## 1.1.2 Solving Optimization Problems

- A solution method for a class of optimization problems is an algorithm that computes a solution.
- Even when the *objective function* and constraints are smooth, e.g., polynomials, the solution is very difficult.
- There are three classes where solutions exist, theory is very well developed, and amazingly found in many practical problems:

 $Linear \subset Quadratic \subset Convex \subset Non-linear (not linear and not known to be convex!)$ 

• For the first three classes, the problem can be solved very reliably in hundreds or thousands of variables!

## 1.2 Least-Squares and Linear Programming

#### 1.2.1 Least-Squares Problems

A *least-squares* problem is an optimization problem with no constraints (i.e., m = p = 0), and an objective in the form:

minimize 
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 = ||A_{k \times n} x_{n \times 1} - b_{k \times 1}||^2$$
.

The solution is given in **closed form** by:

$$x = (A'A)^{-1}A'b$$

- Good algorithms in many SC SW exist; it is a very mature technology.
- Solution time is  $O(n^2k)$ .
- Easily solvable even for hundreds or thousands of variables.
- More on that in the Linear Algebra course.
- Many other problems reduce to typical LS problem:
  - Weighted LS (to emphasize some observations)

$$\underset{x}{\text{minimize}} f_0(x) = \sum_{i=1}^k w_i (a_i' x - b_i)^2.$$

- Regularization (to penalize for over-fitting)

minimize 
$$f_0(x) = \sum_{i=1}^k (a_i' x - b_i)^2 + \rho \sum_{i=1}^n x_j^2$$
.

## 1.2.2 Linear Programming

A *linear programming* problem is an optimization problem with objective and all constraint functions are linear:

- minimize  $f_0(x) = C'x$ subject to:  $a_i'x \le b_i,$  i = 1, ..., m $h_i'x = q_i,$  i = 1, ..., p,
- No closed form solution as opposed to LS.
  Very robust, reliable, and effective set of methods for numerical solution; e.g., Dantzig's simplex, and interior point.
- Complexity is  $\simeq O(n^2 m)$ .
- Similar to LS, we can solve a problem of thousands of variables.

• Example is *Chebyshev minimization* problem:

- $\min_{x} \operatorname{minimize} f_0(x) = \max_{i=1} |a_i' x b_i|,$
- The objective is different from the LS: minimize the maximum error. Ex:
- After some tricks, requiring familiarity with optimization, it is equivalent to a LP:

## 1.3 Convex Optimization

A *convex optimization* problem is an optimization problem with objective and all constraint function are convex:

$$\begin{aligned} & \underset{x}{\text{minimize}} & & f_0(x) \\ & \text{subject to:} & & f_i(x) \leq 0, & & i = 1, \dots, m \\ & & h_i(x) = 0, & & i = 1, \dots, p, \\ & & & f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y), & & \alpha + \beta = 1, & & 0 \leq \alpha, \ 0 \leq \beta, & & 0 \leq i \leq m \\ & & h_i(x) = a_i' x + b_i & & & 0 \leq i \leq p \end{aligned}$$

- The LP and LS are special cases; however, only LS has closed-form solution.
- Very robust, reliable, and effective set of methods, including *interior point methods*.
- Complexity is almost:  $O(\max(n^3, n^2m, F))$ , where F is the cost of evaluating 1st and 2nd derivatives of  $f_i$  and  $h_i$ .
- Similar to LS and LP, we can solve a problem of thousands of variables.
- However, it is not as very mature technology as the LP and LS yet.
- There are many practical problems that can be re-formulated as convex problem **BUT** requires mathematical skills; but once done the problem is solved. **Hint:** realizing that the problem is convex requires more mathematical maturity than those required for LP and LS.

## 1.4 Nonlinear Optimization

A *non-linear optimization* problem is an optimization problem with objective and constraint functions are non-linear **BUT** not known to be convex (**so far**). Even simple-looking problems in 10 variables can be extremely challenging. Several approaches for solutions:

## **Local Optimization**: starting at initial point in space, using differentiablity, then navigate

- does not guarantee global optimal.
- affected heavily by initial point.

• depends heavily on numerical algorithm and their parameters.

- More art than technology.
- In contrast to convex optimization, where a lot of art and mathematical skills are required to formulate the problem as convex; then numerical solution is straightforward.

## **Global Optimization**: the true global solution is found; the compromise is complexity.

- The complexity goes exponential with dimensions.
- Sometimes it is worth it when: the cost is huge, not in real time, and dimensionality is low.

#### **Role of Convex Optimization:**

- Approximate the non-linear function to a convex one, finding the exact solution, then using it as a starting point for the original problem. (Also does not guarantee optimality)
- Setting bounds on the global solution.

**Evolutionary Computations**: Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), etc.

## Example 5 (Nonlinear Objective Function): (Chong and Zak, 2013, Ex. 14.3, P.290)

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10e^{-x^2 - y^2} \left( -x^3 + \frac{x}{5} - y^5 \right) - \frac{1}{3}e^{-(x+1)^2 - y^2}$$



## Part I

# **Theory**

## **Chapter 2**

## **Convex sets**

## 2.1 Affine and convex sets

## 2.1.1 Lines and line segments

## **Definition 6 (line and line segment)** Suppose $x_1 \neq x_2 \in \mathbb{R}^n$ . Points of the form

$$y = \theta x_1 + (1 - \theta)x_2$$
  
=  $x_2 + \theta(x_1 - x_2)$ ,

where  $\theta \in \mathbf{R}$ , form the line passing through  $x_1$  and  $x_2$ .

- As usual, this is a definition for high dimensions taken from a proof for  $n \le 3$ .
  - We have done it many times: angle, norm, cardinality of sets, etc.
  - if  $0 \le \theta \le 1$  this forms a line segment.



#### 2.1.2 Affine sets

## **Definition 7 (Affine sets)** A set $C \subset \mathbb{R}^n$ is affine if the line through any two distinct points in C lies in C. I.e.,

 $\forall x_1, x_2 \in C \text{ and } \theta \in \mathbf{R}, \text{ we have } \theta x_1 + (1 - \theta)x_2 \in C.$ *In other words, C contains any linear combination* 

(summing to one) of any two points in C.

**Examples:** what about line, line segment, circle, disk, strip, first quadrant?

**Corollary 8** Suppose C is an affine set, and  $x_1, \ldots, x_k \in C$ , then C contains every general affine combination of the form  $\theta_1 x_1 + ... + \theta_k x_k$ , where  $\theta_1 + \ldots + \theta_k = 1$ .

**Wrong Proof.** Suppose  $y_1, y_2 \in C$ , then

$$x = \sum_{i=1}^{k} \theta_i x_i = \sum_{i=1}^{k} \theta_i (\alpha_i y_1 + (1 - \alpha_i) y_2);$$

and the summation of the coefficients will be

$$\sum_{i=1}^k \theta_i \alpha_i + \sum_{i=1}^k \theta_i (1 - \alpha_i) = \sum_{i=1}^k \theta_i (\alpha_i + 1 - \alpha_i) = \sum_{i=1}^k \theta_i = 1.$$

Where is the bug?

**Correct Proof.** base: k = 3.

$$x = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$
  
=  $(1 - \theta_3) \left( \frac{\theta_1}{1 - \theta_2} x_1 + \frac{\theta_2}{1 - \theta_2} x_2 \right) + \theta_3 x_3.$ 

$$= (1 - \theta_3)(\cdot \in C) + \theta_3(\cdot \in C).$$

**induction:** suppose it is true for some  $k \ge 3$ ; i.e.,  $\sum_{i=1}^k \theta_i x_i \in C$  when  $\sum_{i=1}^k \theta_i = 1$ . Then

$$x = \sum_{i=1}^{k+1} \theta_i x_i$$
$$= \sum_{i=1}^{k} \theta_i x_i + \theta_{k+1} x_{k+1}$$

$$= (1 - \theta_{k+1}) \sum_{i=1}^{k} \theta_i / (1 - \theta_{k+1}) x_i + \theta_{k+1} x_{k+1}$$

 $= (1 - \theta_{k+1})(\cdot \in C) + \theta_{k+1}(\cdot \in C),$ 

$$=\sum_{i=1}^{k}\theta_{i}=1.$$

which completes the proof.

(from the induction hypothesis)

## $\forall v_1, v_2 \in V \text{ and } \forall \alpha, \beta \in \mathbf{R} \text{ we have } \alpha v_1 + \beta v_2 \in V.$

**Definition 9 (Subspace from Linear Algebra)** a set **Proof.** 

closed under sums and scalar multiplication. I.e.,

## • $\alpha + \beta$ not necessarily equals 1

• 
$$\alpha = 0, \beta = 0 \rightarrow 0 \in V$$
.

• Any subspace 
$$V$$
 is the solution set of  $A_{m \times n} x_{n \times 1} =$ 

0, which is 
$$\mathcal{N}(A)$$
 (the null space of  $A$ ). Geometry? I.e.,  $V = \{x \mid Ax = 0\}$ 

# • $\operatorname{rank}(A) = n - \dim(V)$ .

Remember:

## Corollary 10.

1. If C is affine, then  $V = C - x_0 = \{x - x_0 \mid x, x_0 \in C\}$ is a subspace. 2. If V is a subspace, then  $C = V + x_0 = \{x + x_0 \mid x \in V\}$ 

is affine  $\forall x_0$ . 3. An affine set C can be represented as the solution set

of a nonhomogeneous linear system Ax = b, where  $V = C - x_0$  is  $\mathcal{N}(A)$ .

4. The solution set of any nonhomogeneous system is an affine set. (Ex. 2.1)

is a subspace.

 $V \subset \mathbf{R}^n$  of vector (here points) is a subspace if it is 1. Suppose  $x_1, x_2, x_0 \in C$ , an affine set. Both  $x_1 - x_0$ 

Suppose  $x_1, x_2 \in V$ , a subspace. Both  $x_1 + x_0$  and

 $x_2 + x_0$ , by construction,  $\in C$ ; then

 $x = \theta(x_1 + x_0) + (1 - \theta)(x_2 + x_0)$  $= \theta x_1 + (1 - \theta)x_2 + x_0 = (\cdot \in V) + x_0 \in C$ 

If C is affine and  $x_0 \in C$ , then

 $C - x_0 = \{x \mid Ax = 0\}$  (since it is a subspace)

and  $x_2 - x_0$ , by construction,  $\in V$ ; then

 $x = \alpha(x_1 - x_0) + \beta(x_2 - x_0) + x_0$  $=\alpha x_1 + \beta x_2 + (1 - \alpha - \beta)x_0 \in C$ 

Then  $x - x_0 = \alpha(x_1 - x_0) + \beta(x_2 - x_0) \in V$ ; hence V

 $C = \{x + x_0 \mid A(x + x_0) = Ax_0\}$  $C = \{c \mid Ac = b\}.$ 

Convright © 2019, 2019 Waleed A. Yousef, All Rights Reserv

4.  $C = \{x \mid Ax = b\}$ ; if  $x_0 \in C$  then  $Ax_0 = b$  and

 $C - x_0 = \{x - x_0 \mid A(x - x_0) = b - Ax_0 = 0\}.$ Hence,  $C - x_0$  is a subspace and C is affine.

**Proof of the book.** Suppose  $x_1, x_2 \in C$ , where  $C = \{x \mid Ax = b\}$ . Then

$$A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2 = \theta b + (1 - \theta)b = b,$$

which means  $\theta x_1 + (1 - \theta)x_2 \in C$  as well.

#### Remark 1:

- The dimension of affine is defined to be the dimension of the associate subspace.
- affine is a subspace plus offset.
- every subspace is affine but not the vice versa; i.e., subspace is a special case of affine.

**Corollary 12 aff** C *is affine.* **Proof.** For  $x_1 = \sum_i \alpha_i x_i$ ,  $\sum_i \alpha_i = 1$ , and  $x_2 = \sum_i \beta_i x_i$ ,  $\sum_i \beta_i = 1$ , we have

**Definition 11 (affine hull)** The "smallest" set of all affine combinations of some set C (not necessarily affine)

**aff**  $C = \{\sum_{i=1}^{k} \theta_i x_i \mid x_i \in C, \sum_{i=1}^{k} \theta_i = 1\}.$ 

$$\theta x_1 + (1 - \theta)x_2 = \theta \sum_i \alpha_i x_i + (1 - \theta) \sum_i \beta_i x_i = \sum_i (\theta \alpha_i + (1 - \theta)\beta_i)x_i$$

$$\sum_{i} (\theta \alpha_i + (1 - \theta)\beta_i) = \theta \sum_{i} \alpha_i + (1 - \theta) \sum_{i} \beta_i = \theta + (1 - \theta) = 1.$$

Hence, **aff** C is affine as well.

is called the affine hull (**aff** C):

**Example 13** Construct the affine hull of the set 
$$C = \{(-1,0), (1,0), (0,1)\}$$

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = (1 - \theta_3) \left( \frac{\theta_1}{1 - \theta_3} x_1 + \frac{\theta_2}{1 - \theta_3} x_2 \right) + \theta_3 x_3$$

$$= (1 - \alpha_3) \left( (1 - \alpha_2) x_1 + \alpha_2 x_2 \right) + \alpha_3 x_3 \qquad = (1 - \alpha_2) (1 - \alpha_3) x_1 + \alpha_2 (1 - \alpha_3) x_2 + \alpha_3 x_3,$$

$$\theta_3 = \alpha_3$$
  $\theta_2 = \alpha_2(1 - \alpha_3)$   $\theta_3 = \theta_3$   $\alpha_2 = \theta_2/(1 - \theta_3)$ 

$$\theta_1 = 1 - \theta_2 - \theta_3 = (1 - \alpha_2)(1 - \alpha_3)$$
  
 $\alpha_1 = 1 - \alpha_2 = \theta_1/(1 - \theta_3).$ 

**HW:** Derive expressions for  $\alpha_i$  and  $\theta_i$  for n-point combination.

## 2.1.3 Affine dimension and relative interior

## Definition 14 (some basic topology in $\mathbb{R}^n$ ): 1. The ball of radious r and center x in the norm $\|\cdot\|$ .

$$B(x,r) = \{ y \mid ||y - x|| \le r \}.$$

 $B(x,\epsilon) = \{y \mid ||y - x||_2 \le \varepsilon\} \subseteq C.$ 

2. An element 
$$x \in C \subseteq \mathbf{R}^n$$
 is called an interior point of  $C$  if  $\exists \varepsilon > 0$  for which

I.e.,  $\exists$  a ball centered at x that lies entirely in C.

3. The set of all points interior to C is called the interior of C and is denoted int C. 4. A set C is open if int C = C. I.e., every point in C is

an interior point. 5. A set C is closed if its complement is open

$$\mathbf{R}^n \setminus C = \{ x \in \mathbf{R}^n \mid x \notin C \}$$

6. The closure of a set 
$$C$$
 is defined as

cl 
$$C = \mathbf{R}^n \setminus \mathbf{int}(\mathbf{R}^n \setminus C)$$
.

7. The boundary C is defined as

**bd** 
$$C = \mathbf{cl} \ C \setminus \mathbf{int} \ C$$
.

**Corollary 15** A boundary point (a point  $x \in \mathbf{bd}C$ ) satisfies:  $\forall \epsilon > 0, \exists y \in C \text{ and } z \notin C \text{ s.t. } y, z \in B(x, \epsilon).$ 

int  $(\mathbf{R}^n \setminus C)$ cl  $C = \mathbb{R}^n \setminus \operatorname{int}(\mathbb{R}^n \setminus C)$ int C $\operatorname{bd} C = \operatorname{cl} C \setminus \operatorname{int} C$ 



Definition 16 (alter. equiv. def.) :

- **int** *C* and **bd** *C* are defined as 2,3, corollary.
- (It is obvious that: int  $C \cap \mathbf{bd}$   $C = \phi$ .)
- C is open if int  $C = C \equiv C \cap \mathbf{bd} \ C = \phi$ . • C is closed if **bd**  $C \subseteq C$ .
- cl  $C = \mathbf{bd} \ C \cup \mathbf{int} \ C$ .

19

Convright © 2019 2019 Waleed A. Vousef, All Rights Reserved

/B(0.3)

**Example 18** The unit circle in  $\mathbb{R}^2$ , i.e.,  $\{x \mid x_1^2 + x_2^2 = 1\}$  has affine hull of whole  $\mathbb{R}^2$ . So its affine dimension is 2. However, it has a dimensionality of 1 since it is parametric in just one parameter (manifold).

**Definition 19** We define the relative interior of the set C, denoted **relint** C, as its interior relative to **aff** C

relint 
$$C = \{x \in C \mid B(x,r) \cap \text{aff } C \subseteq C \text{ for some } r > 0\},$$

**Definition 17** We define the affine dimension of a set C as the dimension of its affine hull.

relbd  $C = \operatorname{cl} C \setminus \operatorname{relint} C$ .

and its relative boundary, denoted **relbd** C is defined as

**Example 20** Consider a square in the  $(x_1, x_2)$ -plane in  $\mathbb{R}^3$ , defined as:

$$C = \{ x \in \mathbf{R}^3 \mid -1 \le x_1 \le 1, \ -1 \le x_2 \le 1, \ x_3 = 0 \}.$$

Then:

$$int C = \Phi$$

$$cl C = \mathbf{R}^n \setminus int(\mathbf{R}^n \setminus C) = C$$

$$\mathbf{ci} \ C = \mathbf{R}^{\infty} \setminus \mathbf{int}(\mathbf{R}^{\infty} \setminus C) =$$

$$\mathbf{bd} \ C = \mathbf{ci} \ C \setminus \mathbf{int} \ C = C$$

$$\mathbf{bd} \ C = \mathbf{cl} \ C \setminus \mathbf{int} \ C = C$$

$$\mathbf{aff} \ C = \{x \in \mathbb{R}^3 \mid x_3 = 0\}$$

**relbd** 
$$C = \{x \in \mathbb{R}^3 \mid \max\{|x_1|, |x_2|\} = 1, x_3 = 0\}$$

**relint**  $C = \{x \in \mathbb{R}^3 \mid -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0\}$ 

#### Convex sets

2.1.4

have

# **Definition 21 (convex set)** A set C is convex if the line segment between any two points in C lies in C; i.e., if for any $x_1, x_2 \in C$ and any $\theta$ with $0 \le \theta \le 1$ , we

$$\theta x_1 + (1 - \theta)x_2 \in C.$$

**Corollary 22** Suppose C is convex set, and  $x_1, ..., x_k \in C$ , then C contains every general convex combination (also called mixture); i.e.,

$$\sum_{i} \theta_{i} x_{i} \in C, \sum_{i} \theta_{i} = 1, \ \theta_{i} \ge 0.$$

**Proof.** identical to proof of corollary 8.

**Definition 23 (convex hull)** The "smallest" set of all convex combinations of some set C (not necessarily

convex) is called the convex hull (conv C) 
$$\mathbf{conv} C = \Bigl\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in C, \ \sum_i \theta_i = 1, \ \theta_i \geq 0 \Bigr\}.$$

## Corollary 24 conv C is convex.

•

**Proof.** identical to proof of corollary 12.



**Example 25** Revisit example 13.

**Example 26 (Applications)** :  $Suppose X \in C$  is a r.v.,

$$EX = \sum_{i=1}^{n} p_i x_i$$

C is convex. Then  $EX \in C$  if it exists:

$$EX = \sum_{i=1}^{\infty} p_i x_i$$

$$\mathbf{E}X = \int_{C} f_X(x)x \, dx \qquad \text{(Riemann sum)}$$

#### **2.1.5** Cones

**Definition 27** A set C is called a cone (or nonnegative homogeneous) if  $\forall x \in C$ ,  $\theta \ge 0$  we have  $\theta x \in C$ ; and it is a convex cone if it is convex in addition to being a cone.

**Definition 28** A point of the form  $\sum_{i=1}^{k} \theta_i x_i$ ,  $\theta_i \ge 0$  is called a conic combination.

**Corollary 29** A set C is a convex cone if and only if it contains all conic combinations of its elements; i.e.,

$$\sum_{i} \theta_{i} x_{i} \in C \ \forall x_{i} \in C \ and \ \theta_{i} \geq 0.$$

## Proof.

**Sufficiency:** is obvious. Choosing  $\sum_i \theta_i = 1$  implies C is convex; and setting  $\theta_i = 0 \ \forall i > 1$  implies C is cone. **Necessity:** Since C is convex cone, then  $\forall x_i \in C, \theta_i \geq$ 

0 we have: 
$$\theta_i x_i \in C \qquad \qquad \text{(cone)}$$
 
$$\sum (1/n)(\theta, x_i) \in C \qquad \qquad \text{(convex)}$$

$$\sum_{i} (1/n)(\theta_{i}x_{i}) \in C \qquad \text{(convex)}$$
 
$$n \sum_{i} (1/n)(\theta_{i}x_{i}) = \sum_{i} \theta_{i}x_{i} \in C \qquad \text{(cone)}$$



**Definition 30** A conic hull of a set C is the minimum set of all conic combination:

**cone** 
$$C = \{ \sum_{i} \theta_{i} x_{i} \mid x_{i} \in C, \ \theta_{i} \geq 0, \ i = 1, \dots, n \}.$$

Corollary 31 cone C is convex cone.

**Proof.** If  $y \in \operatorname{cone} C, \alpha \geq 0$ , then  $\alpha y = \alpha \sum_i \theta_i x_i = \sum_i (\alpha \theta_i) x_i \in \operatorname{cone} C$ . And if  $y_1, y_2 \in \operatorname{cone} C$  then  $\alpha y_1 + (1 - \alpha) y_2 = \alpha \sum_i \theta_i x_i + (1 - \alpha) \sum_i \mu_i x_i = \sum_i (\alpha \theta_i + (1 - \alpha) \mu_i) x_i \in \operatorname{cone} C$ 



## 2.2 Some important examples

#### **Fast Revision**

- Each of the sets:  $\phi$ ,  $x_0$  (a singleton),  $\mathbf{R}^n$  are affine and convex.
- Any line is affine. If it passes through zero, it is a subspace and a convex cone.
- Any subspace is convex cone but not vise versa.
- A line segment is convex, but not affine (unless it reduces to a singleton).
- A *ray*,  $\{x_0 + \theta v \mid \theta \ge 0, v \ne 0\}$  is convex but not affine. It is convex cone if  $x_0 = 0$ .

## 2.2.1 Hyperplanes and halfspaces

## **Definition 32** A hyperplane is a set of the form

$$S = \{x \mid a'x = b\},$$
  $a, b \in \mathbb{R}^n, a \neq 0$   
 $\equiv \{x \mid a'(x - x_0) = 0\},$   $a'x_0 = b.$ 

• Vectors with inner product with a is b:  $\frac{a'}{\|a\|}x = \frac{b}{\|a\|}$ . I.e., from  $\mathbf{0}$ , walk a distance  $\frac{b}{\|a\|}$  (either + or -) in the direction of a, then draw perpendicular line.

# **Definition 33** A closed halfspace is the region generated by the hyperplane and defined as:

 $\mathcal{H} = \{x \mid a'x \le b\}, \qquad a, b \in \mathbf{R}^n, \ a \ne 0$ 

$$\equiv \{x \mid a'(x-x_0) \le 0\}, \qquad a'x_0 = b.$$
region of all vectors with projection < \( b / ||a|| \)

- region of all vectors with projection < b/||a||.</li>
   Vectors with obtuse angle with a: (cos θ = a'x | ||a||||x||).
- Line passing with  $p_0$  and  $\perp$  on S:

 $x_0 - p_0 = \frac{(b - a'p_0)}{\|a\|} \overline{a}.$ 

$$x = p_0 + \theta \overline{a}$$
 (parametric eq.) 
$$a'x_0 = a'p_0 + \theta_0 \|a\|$$

$$\theta_0 = (b - a'p_0) / \|a\| \quad (x_0 \text{ pt. of intersection.})$$



**Corollary 34** S *is affine,* H *is convex and not affine,* **int**  $H = H \setminus S$ , *and* **bd** H = S.

**Proof.** S is affine done. 
$$\mathcal{H}$$
 is convex: take  $0 \le \theta \le 1$   $\theta a' x_1 + (1 - \theta) a' x_2 \le \theta b + (1 - \theta) b = b$ . (why not affine?!)  $y = x + ru$ ,  $0 \le ||u|| \le 1$   $(y \in B(x, r))$ 

 $a'y = a'x + ra'u = b - (b - a'x) + r||a|| ||u|| \cos(a, u)$ 

If b = a'x, i.e.,  $x \in \mathcal{S}$ , a'u > 0 or < 0 (depending on the angle) and hence a'y > b or < b. Then  $\mathcal{S} \subseteq \mathbf{bd}$   $\mathcal{H}$ .

If 
$$a'x < b$$
, i.e.,  $x \in \mathcal{H} \setminus \mathcal{S}$ ,  $\exists r < \frac{b-a'x}{\|a\|}$ , s.t.  $a'y < b$ . Hence:

$$24$$
int  $\mathcal{H} = \mathcal{H} \setminus \mathcal{S}$  and bd  $\mathcal{H} = \mathcal{S}$ .

Copyright © 2019 2019 Waleed A. Yousef, All Rights Reserved.

## 2.2.2 Euclidean balls and ellipsoids

### **Definition 35** A Euclidean ball in $\mathbb{R}^n$ is the set:

$$B(x_c, r) = \{x = x_c + ru \mid ||u||_2 \le 1\}$$

$$= \{x \mid ||x - x_c||_2 / r \le 1\}$$

$$= \{x \mid (x - x_c)' (x - x_c) / r^2 \le 1\}.$$

## **Definition 36** *Ellipsoid in* $\mathbb{R}^n$ *is the set:*

$$\mathcal{E} = \left\{ x = x_c + Au \mid ||u||_2 \le 1, \ A > 0 \right\}$$

$$= \left\{ x \mid ||A^{-1}(x - x_c)||_2 \le 1, A > 0 \right\}$$

$$= \left\{ x \mid (x - x_c)'(A^{-1})'A^{-1}(x - x_c) \le 1 \right\}$$

## **Spectral decomposition for** A = A'.

$$Au = (\lambda_1 v_1 v_1' + \lambda_2 v_2 v_2' + \dots + \lambda_n v_n v_n') u$$
  
=  $\lambda_1 v_1 (v_1' u) + \lambda_2 v_2 (v_2' u) + \dots + \lambda_n v_n (v_n' u),$ 

which reduces to a Ball when  $\lambda_i = r$ .

## **Remark 2** A does not have to be symmetric; put:

$$P^{-1} = (A^{-1})'A^{-1} = V\Sigma^{-1/2}\Sigma^{-1/2}V' \quad symmetric$$
 
$$P^{1/2}u_2 = Au_1 \quad is \ bijection$$
 
$$\|u_2\|^2 = u_1'A'P^{-1/2}P^{-1/2}Au_1 = \|u_1\|^2$$



#### **Remark 3 (Contours of** $\mathcal{N}(\mu, \Sigma)$ ) :

$$f_X(x) = \frac{1}{((2\pi)^p |\Sigma|)^{1/2}} e^{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)}$$

## **Corollary 37** An ellipsoid, hence a ball, is convex

**Proof.** For  $x_1, x_2 \in \mathcal{E}, 0 \le \theta \le 1$ ,

$$x_{1} = x_{c} + Au_{1}, ||u_{1}|| \le 1$$

$$x_{2} = x_{c} + Au_{2}, ||u_{2}|| \le 1$$

$$x = \theta(x_{c} + Au_{1}) + (1 - \theta)(x_{c} + Au_{2})$$

$$= x_{c} + A(\theta u_{1} + (1 - \theta)u_{2})$$

$$||u|| = ||(\theta u_{1} + (1 - \theta)u_{2})||$$

$$\leq \theta \|u_1\| + (1 - \theta)\|u_2\|$$
  
 $< \theta + (1 - \theta) = 1.$ 

## Norm balls and norm cones

### Introduction: norm, metric, and loss

**Definition 38 (Norm)** Let 
$$x, y \in \mathbb{R}^n$$
,  $t \in \mathbb{R}$ ; a function

$$f: \mathbf{R}^n \mapsto \mathbf{R}_+ \text{ with } \mathbf{dom} \ f = \mathbf{R}^n \text{ is called a norm if}$$
  
1.  $f(x) = 0 \rightarrow x = 0$  (defined)

1. 
$$f(x) = 0 \rightarrow x = 0$$
 (definite)  
2.  $f(tx) = |t| f(x)$  (homogeneous)

3. 
$$f(x+y) \le f(x) + f(y)$$
 (triangle inequality)  
  $f(0) = 0$  is implied from (2) (positive definite)

## **Definition 39** ( $L^p$ -norm ( $\|\cdot\|_p$ )) is defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = \left(|x_1|^p + \dots + |x_2|^p\right)^{1/p}.$$

$$\|\cdot\|_n$$
 is a norm. :

3.  $||x+y||_p \le ||x||_p + ||y||_p$ :

1. 
$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = 0 \to \sum_{i=1}^{n} |x_i|^p = 0 \to x_i = 0.$$

$$\frac{1}{i=1}$$
2.  $||tx||_p = \left(\sum_{i=1}^n |tx_i|^p\right)^{1/p} = |t| \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = |t| ||x||_p$ 

2. 
$$||tx||_p = \left(\sum_{i=1}^{n} |tx_i|^p\right)^{1/p} = |t|\left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} = |t|||x||_p$$

**counter example for** 
$$p < 1$$
:  $||(0,1)||_{1/2} + ||(1,0)||_{1/2} = 1 + 1 = 2$ , whereas  $||(1,1)||_{1/2} = (1+1)^{1/(1/2)} = 4$ .

$$\{x \in \mathbf{R}^2 \mid ||x||_p = c, \ p = 4, 2, 1, 0.5, 0.1\}$$

•  $L_1$ -norm, Manhatan dist., Taxicab, abs. value

$$||x||_1 = \left(\sum_{i=1}^n |x_i|\right).$$

• L<sub>2</sub>-norm, Euclidean distance (most meaningful)

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}.$$

•  $L_{\infty}$ -norm

$$||x||_{\infty} = \lim_{p \to \infty} \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p} = \max_{i} |x_i|$$

Convright © 2019 2019 Waleed A Yousef All Rights Reserved

 $S \times S \mapsto \mathbf{R}_+$  is called a metric on S if:

1.  $\delta(x,y) = 0 \leftrightarrow x = y$ (positive definite) 2.  $\delta(x,y) = \delta(y,x)$ (symmetric)

**Definition 40 (Metric)** *Let*  $x, y, z \in S$ *, a function*  $\delta$  :

3.  $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$ (triangle inequality)

**Lemma 41** : 
$$\delta(x,y) = f(x-y)$$
 is a metric  $(\delta(x,0) = f(x))$ :

$$\delta(x,y) = f(x-y) = 0 \leftrightarrow x - y = 0 \leftrightarrow x = y$$

$$\delta(x,y) = f(x-y) = f((x-z) + (z-y))$$

$$\leq f(x-z) + f(z-y) = \delta(x,z) + \delta(y,z)$$

$$\delta(x,y) = f(x-y) = f(-1(y-x)) = f(y,x) = \delta(y,x)$$
  
$$\delta(x,y) = f(x-y) = f((x-z) + (z-y))$$

the action y based on the truth of nature x. For details on loss and utility theory see Berger (1993).

**Definition 42 (Loss)** Let  $x \in S_1$  (called set of nature),

and  $y \in S_2$  (called set of actions); then a function L:

 $S_1 \times S_2 \mapsto \mathbf{R}_+$  is called a loss incurred from assigning

## Remark 4:

- Not any metric defines a norm; e.g.,  $\delta(x,y) = I_{x=y}$  $\delta(x,0) = f(x) = 1 \neq 10 = f(10x) = \delta(10x,0) \quad \forall x \neq 0.$
- Why? metric suites any set even categorical.
- Loss do not have to follow metric properties at all; e.g.,  $L(P,N) \neq L(N,P)$  in medical classification prediction.

#### Norm balls and norm cones

**Corollary 43** A norm ball, for any norm  $\|\cdot\|$ , of radius r and center  $x_c$  is convex.

**Definition 44** The norm cone associated with any norm  $\|\cdot\|$  is the set

$$C = \{(x, t) \in \mathbf{R}^{n+1} \mid ||x|| \le t, \ t > 0\}$$

**Example 45** The second-order cone is the norm cone for the Euclidean norm; i.e.,

$$C = \{(x,t) \in \mathbf{R}^{n+1} \mid ||x||_2 \le t\}$$
  
= \{(x,t) \| x'x \le t, t > 0\}

**Corollary 46** The norm cone is convex.

Proof.



## 2.2.4 Polyhedra

**Definition 47** A polyhedron is defined as the solution set of a finite number of linear qualities and inequalities:

$$\mathcal{P} = \{x \mid a'_j x \le b_j, \ j = 1, \cdots, m, \quad c'_j x = d_j, \ j = 1, \cdots, p\}.$$

For short notation, we write

$$\mathcal{P} = \{x \mid Ax \leq b, Cx = d\}, \quad A = \begin{pmatrix} a_1' \\ \vdots \\ a_m' \end{pmatrix}, \quad C = \begin{pmatrix} c_1' \\ \vdots \\ c_m' \end{pmatrix}.$$

The polyhedron is called polytope if it is bounded.

**Example 48** The nonnegative orthant

$$\mathbf{R}^n_+ = \left\{x \in \mathbf{R}^n \mid x_i \geq 0, \ i = 1, \cdots, n\right\} = \left\{x \in \mathbf{R}^n \mid x \succeq 0\right\}$$



Corollary 49 The polyhedron is convex

Proof.

## 2.2.5 The positive semidefinite cone



2.3 Operations that preserve convexity

## 2.4 Generalized inequalities

2.5 Separating and supporting hyperplanes

2.6 Dual cones and generalized inequalities

# Part II Applications

## **Part III**

# **Algorithms**

## **Bibliography**

Bagirov, A. (2014), Introduction to nonsmooth optimization: theory, practice and software, Cham: Springer.

Berger, J. O. (1993), Statistical decision theory and Bayesian analysis, New York: Springer-Verlag, 2nd ed.

Bertsekas, D. (2003), Convex analysis and optimization, Belmont, Mass: Athena Scientific.

Borwein, J. (2006), Convex analysis and nonlinear optimization: theory and examples, New York: Springer.

Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge: Cambridge University Press.

Chong, E. K. and Zak, Stanislaw, H. (2013), An Introduction to Optimization, Wiley-Interscience, 4th ed.

Dattorro, J. (2009), Convex Optimization & Euclidean Distance Geometry, California:  $\mathcal{M} \in \beta OO$  Publishing.

Hiriart (2001), Fundamentals of convex analysis, Berlin New York: Springer.

 $Kreyszig, E.~(1978), {\it Introductory functional analysis with applications}, New York: Wiley.$ 

Rockafellar, R. (1997), Convex analysis, Princeton, N.J: Princeton University Press.

Rudin, W. (1976), Principles of mathematical analysis, New York: McGraw-Hill, 3rd ed.

Wade, W. R. (2000), An introduction to analysis, Upper Saddle River, NJ: Prentice Hall, 2nd ed.