Model Potentials for Molecular Calculations. I. The sd-MP Set for Transition Metal Atoms Sc through Hg

Yoshiko Sakai

College of General Education, Kyushu University, Fukuoka, 810, Japan

Eisaku Miyoshi

Fukuoka Dental College, Fukuoka, 814, Japan

Mariusz Klobukowski and Sigeru Huzinaga

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received 26 February 1986; accepted 24 June 1986

Model potential parameters and valence orbitals were generated for the transition metal atoms Sc through Hg. Only the nd and (n + 1)s valence electrons were treated explicitly and the effects of the remaining electrons were replaced by model potentials. For brevity they may be called sd-MPs. Major relativistic effects were incorporated on the level of Cowan and Griffin's quasirelativistic Hartree-Fock (QRHF) method for the second and third transition metal atoms. The model potential parameters and valence orbitals were determined so as to reproduce the results of the numerical Hartree-Fock reference calculations. The obtained valence orbitals have inner nodal structure. The model potential method can yield a balanced description of the s^2d^{n-1} , sd^n , and d^{n+1} configurations of the atoms. The polarization functions were also generated for the use in molecular calculations.

I. INTRODUCTION

A variety of effective potential methods called pseudopotentials, effective core potentials, or model potentials have been developed by many authors to simplify the treatment of chemically inert core electrons. Most of these methods are more or less successful in reproducing results of allelectron calculations for molecules. Also, efforts have been made to include relativistic effects in the core potentials in order to treat the molecules containing heavy atoms. 12-22

The model potential (MP) method²³ was devised as an economical alternative to the Hartree-Fock-Roothaan method with the frozen-core approximation. The method is unique among various effective core potential methods in that it is capable of producing the valence orbitals with the proper nodal structures. Most of the other methods, based on the Pillips-Kleinman's approach are tied to smoothed-out pseudovalence orbitals without nodal structures.

The MP method has undergone substantial refinements in past years. 7-12 At the first stage of the development, 7,8 model potentials have been prepared for the atoms Li through Ca and some other atoms such as Ni, Cu, Pd, and Br, where the MP parameters and valence orbitals were optimized in reference to the all-electron calculations with MINI-4 basis sets. 24-27 A number of test calculations have shown that the MP method yields molecular orbital energies, dissociation energies, geometries, and spectroscopic constants in very good agreement with the results of the reference calculations.9 The method also has been modified so as to allow for approximate treatment of relativistic effects¹² on the level of Cowan and Griffin's quasirelativistic Hartree-Fock approach.

In the present work, the MP parameters and valence orbitals were determined systematically for the transition metal atoms Sc through Hg. The nd and (n + 1)s valence electrons were treated explicitly and all other

electrons were replaced by the model potentials. These model potentials are called the sd-MPs. The nonrelativistic MPs (NRMPs) are generated for the first-row transition metal atom series and the quasirelativistic model potentials (QRMPs) incorporating the mass velocity and Darwin relativistic effects were generated for the second and third series. In order to secure uniform treatment of both NRMP and QRMP parameters, the MP parameters and valence orbitals were determined by using the results of numerical nonrelativistic Hartree-Fock (HF) or quasirelativistic HF (QRHF) calculations as reference data. The model potential determined in this way has been tested in molecular calculations 11 and applied in calculations on clusters such as Pd₄, Pt₄,²⁸ and Pd₄H.²⁹ Further representative molecular applications will be given in later work.

II. DETERMINATION OF MODEL POTENTIALS AND VALENCE ORBITALS

The theoretical background of the MP method has been discussed in detail previously.8 Here we only outline the method.

In the present article, the (3d, 4s), (4d, 5s), and (5d, 6s) electrons for the first-, second-, and third-row transition metal atoms, respectively, were treated explicitly. The core electrons replaced by the MPs were as follows:

first series (Sc \sim Zn): K(2)L(8)3s²3p⁶, second series (Y \sim Cd):

$$K(2)L(8)M(18)4s^24p^6$$

third series (Lu \sim Hg):

$$K(2)L(8)M(18)N(32)5s^25p^6$$
 (1)

The atomic MP Hamiltonian for valence electrons (in atomic units) was chosen as follows:

$$H = \sum_{i=1}^{N_v} \left[-\frac{1}{2} \Delta_i + V_{mp}(r_i) + \sum_C B_C |\psi_C\rangle \langle\psi_C| \right] + \sum_{i>j}^{N_v} 1/r_{ij} \quad (2)$$

with

$$V_{mp}(r) = -(Z - N_C)/r$$

$$\cdot \left[1 + \sum_{I=1}^{3} A_I \exp(-\alpha_I r^2) + \sum_{I=1}^{6} A_I r \exp(-\alpha_I r^2) \right]$$
(3)

and the explicit forms of $\sum B_C |\psi_C\rangle \langle \psi_C|$ are as follows:

first series:
$$\sum_{n=1}^{3} B_{ns} |\psi_{ns}\rangle \langle \psi_{ns}|$$

$$+ \sum_{n=2}^{3} B_{np} \sum_{m=-1}^{1} |\psi_{np,m}\rangle \langle \psi_{np,m}|.$$
second series:
$$\sum_{n=1}^{4} B_{ns} |\psi_{ns}\rangle \langle \psi_{ns}|$$

$$+ \sum_{n=2}^{4} B_{np} \sum_{m=-1}^{1} |\psi_{np,m}\rangle \langle \psi_{np,m}|$$

$$+ B_{3d} \sum_{m=-2}^{2} |\psi_{3d,m}\rangle \langle \psi_{3d,m}|.$$
third series:
$$\sum_{n=1}^{5} B_{ns} |\psi_{ns}\rangle \langle \psi_{ns}|$$

$$+ \sum_{n=2}^{5} B_{np} \sum_{m=-1}^{1} |\psi_{np,m}\rangle \langle \psi_{np,m}|$$

$$+ \sum_{n=3}^{4} B_{nd} \sum_{m=-2}^{2} |\psi_{nd,m}\rangle \langle \psi_{nd,m}|$$

$$+ B_{4f} \sum_{n=3}^{3} |\psi_{4f,m}\rangle \langle \psi_{4f,m}| \quad (4)$$

where N_V and N_C are the number of valence electrons and core electrons, respectively, and Z is the atomic number of the atom. A_I , α_I , and B_c ($c=1s,2s,\ldots$) are the MP parameters; ψ_C denotes core orbitals. In the one-electron part of MP Hamiltonian (2), the second and third term represent (i) the local Coulomb interaction, (ii) the nonlocal exchange interaction, and (iii) the Pauli exclusion effect of the core in the form of projection operators. It is to be noted that both the local potential term $V_{mp}(r_i)$ and the nonlocal projection operators $\sum B_C |\psi_C\rangle \langle \psi_C|$ share the burden of approximating the nonlocal exchange interaction terms.

Prior to the determination of the model potential parameters we performed the allelectron numerical HF calculations³⁰ for the first-transition metal atoms and QRHF calculations¹² with Cowan and Griffin's method³¹ for the second- and third-row transition metal atoms to prepare the reference functions.

In the QRHF method the mass velocity and Darwin terms of the Pauli Hamiltonian are 228 Sakai et al.

added to the Hartree-Fock differential equations, which are subsequently solved in a self-consistent fashion. This technique allows for incorporating the major direct and indirect relativistic effects into the orbital functions while retaining the commonly used non-relativistic formulation of the energy level calculations.

All the calculations were performed for the atoms in the lowest state of the s^1d^n configuration except for Zn, Cd, and Hg, for which calculations were carried out in the 1S state of the s^2d^{10} configuration. Although s^2d^{n-1} is often the ground-state configuration of the transition metal atoms, we have chosen s^1d^n instead of s^2d^{n-1} because the valence orbitals derived for the s^2d^{n-1} state are too contracted to describe the atoms in the s^1d^n and d^{n+1} states properly.

The core orbitals, $\{\psi_C\}$, are expanded in terms of the Gaussian type functions (GTFs) which were determined by the least-squares fitting to the numerical reference functions. The details of the fitting technique have been given elsewhere. 12 The size of the core orbitals was chosen as 10s/7p, 13s/10p/5d, and 14s/10p/7d/4f for the first-, second-, and third-row transition metal atoms, respectively. This size is rather large, but the computer time spent for these core orbitals is negligibly small because they are used only for the evaluation of overlap integrals in the molecular calculations. All the core orbitals thus obtained were frozen in the course of determination of the MP parameters.

Valence orbitals were expanded in terms of a small number of GTFs as follows:

first series (Sc
$$\sim$$
 Zn): $(5s/5d)$

second series (Y ~ Cd):
$$(6s/5d)$$

third series (Lu
$$\sim$$
 Hg): $(7s/5d)$ (5)

These orbital basis functions were also determined by the least-squares fitting to the numerical radial functions. The orbital exponents were carefully chosen in order to retain the inner nodal structure. The valence orbitals thus obtained yield all of the inner nodes for the d valence orbital and all the nodes except for the innermost one for the s valence orbital. The exponents of the valence orbital basis functions were not reoptimized in the atomic model potential calculations.

There are three kinds of model potential parameters to be determined: $\{A_I\}$, $\{\alpha_I\}$, and

 $\{B_c\}$. We define B_c as

$$B_C = -F_C \,\varepsilon_C \tag{6}$$

where ε_C 's are the core orbital energies given by the reference all-electron HF (or QRHF) calculations.

At the initial stage of the parameter optimization F_C 's are usually taken to be 2.8 The remaining parameters $\{A_I\}$ and $\{\alpha_I\}$ are determined through a series of atomic SCF calculations in which the valence orbital energies and orbital shapes are constrained as described in the following. The pivotal quantity for the process is Δ :

$$\Delta = \sum_{i=1}^{N_{V}} w_{i} |\varepsilon_{i}^{\text{ref}} - \varepsilon_{i}^{\text{MP}}| + \sum_{i=1}^{N_{V}} \sum_{k=1}^{K} W_{i} [r_{k} R_{i}^{\text{ref}}(r_{k}) - r_{k} R_{i}^{\text{MP}}(r_{k})]^{2}$$
(7)

where ε_i and $R_i(r)$ are the orbital energy and radial function of the ith valence orbital, respectively, and w_i and W_i are appropriately chosen weight factors. The quantity rR(r) is computed at K discrete points $\{r_k\}$; ref and MP stand for "reference" and "model potential", respectively.

The starting values of $\{A_I\}$ and $\{\alpha_I\}$ were estimated from the previous work.^{8,11} For the set of parameters $\{A_I\}$ and $\{\alpha_I\}$ an atomic SCF calculation is performed with the chosen basis set and $\varepsilon_i^{\text{MP}}$ and $R_i^{\text{MP}}(r)$ are obtained. They are then put into eq. (7) to compute Δ . This process defines the quantity Δ as a function of $\{A_I\}$ and $\{\alpha_I\}$, and the minimization of Δ with respect to these MP parameters constitutes the optimization procedure of the MP method. In the atomic SCF calculation the valence orbitals are used without contraction.

In the previous papers, F_c s were taken to be equal to 2.7-9,12 The MP calculations using $F_c = 2$ have successfully mimicked the allelectron calculations for the molecules containing light atoms such as C, O, and Cl. 7-9 However, the MP calculations using the hardcore value of F_c (= 2) lead to overly repulsive potential curves for AgH and Ag2, compared with the all-electron calculations. 12 Performing the test model potential calculations on simple diatomic molecules we have found that the soft-core value of $F_c = (\sim 1)$ brings about a better agreement of the model potential results with all-electron results.11 In the light of these past experiences, we decided to use the soft-core value of $F_c (= 1.0 \sim 1.3)$ for the sd-MPs in the present article. They

were determined in the following way. First, the MP parameters, $\{A_I\}$ and $\{\alpha_I\}$, were optimized using an extended valence basis set with the hard-core value of F_c (= 2). Then, the extended basis set was replaced by a smaller basis set in (5) determined previously by the least-squares fitting. The atomic SCF calculation was repeated with the same $\{A_I\}$ and $\{\alpha_I\}$, but now varying F_c for the range from 1.0 to 1.5. Dependence of the atomic SCF results on F_c was always mild and we could choose the F_c value within the above range that reproduces the all-electron reference calculation almost as satisfactorily as the extended basis set does. After the F_c value was chosen, the process of optimizing $\{A_I\}$ and $\{\alpha_I\}$ was repeated to obtain the finely tuned final model potential. The orbital exponents of the valence orbital basis functions were not subjected to any readjustment.

The total energies and orbital energies given by the MP SCF calculations are shown in Table I along with the reference orbital energies (the HF values for Sc to Zn, and the QRHF values for Y to Hg). The reproduction of the orbital energies is very good. The MP parameters are given in Tables II—IV, and the valence orbitals are given in Tables V—VII. The core orbitals are given in the Appendix.

III. POLARIZATION FUNCTIONS

The need of the polarization functions are well documented for achieving overall reliability in the molecular calculations.³² The exponents of the polarization functions have been often determined by minimizing the molecular total energy. However, the exponents determined in this way may depend on the particular molecular environments. Our

Table I. Total energies (TE) and orbital energies (in a.u.)

Atom	State	TE	3d	4s
Sc	⁴ F (d ² s)	-1.5217	-0.206 (-0.215)	-0.192 (-0.196)
Ti	$^{5}\mathrm{F} (d^{3}s)$	-3.3972	-0.273 (-0.273)	-0.205 (-0.205)
V	⁶ D (d⁴s)	-6.1515	$-0.321 \; (-0.321)$	-0.213 (-0.214)
\mathbf{Cr}	$^{7}\mathrm{S}~(d^{5}s)$	-10.1871	-0.373 (-0.374)	$-0.221 \; (-0.222)$
Mn	6 D ($d^{6}s$)	-15.3559	-0.383 (-0.383)	-0.222 (-0.227)
Fe	$^{5}\mathrm{F}~(d^{7}s)$	-21.6583	$-0.407 \; (-0.407)$	-0.230 (-0.230)
Co	⁴ F (d ⁸ s)	-29.6413	-0.432 (-0.432)	-0.233 (-0.233)
Ni	$^{3}\mathrm{D}\;(d^{9}s)$	-39.6549	-0.459 (-0.458)	-0.236 (-0.236)
Cu	${}^{2}S (d^{10}s)$	-51.1273	-0.491 (-0.491)	-0.238 (-0.238)
Zn	${}^{1}S (d^{10}s^{2})$	-63.7604	$-0.783 \; (-0.783)$	-0.297 (-0.293)
			4d	5 <i>s</i>
Y	$^{4}\mathrm{F}~(d^{2}s)$	-1.3215	-0.182 (-0.185)	-0.197 (-0.203)
\mathbf{Zr}	${}^{5}\mathrm{F} \ (d^{3}s)$	-2.8199	-0.238 (-0.239)	-0.213 (-0.217)
Nb	$^{6}\mathrm{D}\;(d^{4}s)$	-4.9912	-0.287 (-0.287)	-0.226 (-0.229)
Mo	⁷ S (d ⁵ s)	-8.0101	-0.342 (-0.342)	-0.238 (-0.238)
\mathbf{Tc}	$^{6}\mathrm{D}\;(d^{6}s)$	-11.8738	-0.361 (-0.361)	-0.239 (-0.239)
Ru	$^{5}\mathrm{F}~(d^{7}s)$	-16.6132	-0.393 (-0.394)	-0.235 (-0.239)
Rh	$^{4}\mathrm{F}$ $(d^{8}s)$	-22.7636	-0.429 (-0.429)	-0.236 (-0.238)
Pd	$^{3}D(d^{9}s)$	-29.6960	-0.466 (-0.467)	-0.234 (-0.238)
Ag	² S (d ¹⁰ s)	-37.5867	-0.512 (-0.512)	-0.237 (-0.237)
Ag Cd	$^{1}S (d^{10}s^{2})$	-47.3834	-0.721 (-0.721)	-0.282 (-0.281)
			5d	6s
Lu	$^{4}\mathrm{F}$ $(d^{2}s)$	-1.3245	-0.160 (-0.166)	-0.234 (-0.237)
Hf	${}^{5}\mathrm{F} (d^{3}s)$	-2.7045	-0.209 (-0.214)	-0.251 (-0.256)
Ta	$^{6}\mathrm{D}\;(d^{4}s)$	-4.7145	-0.252 (-0.258)	-0.268 (-0.274)
W	^{7}S $(d^{5}s)$	-7.6031	-0.305 (-0.307)	-0.287 (-0.289)
Re	$^{6}D(d^{6}s)$	-10.9869	-0.321 (-0.322)	-0.289 (-0.292)
Os	$^{5}\mathrm{F}~(d^{7}s)$	-15.3317	-0.349 (-0.350)	-0.288 (-0.292)
Ir	4 F $(d^{8}s)$	-20.4530	-0.380 (-0.381)	-0.288 (-0.292)
Pt	$^{3}\mathrm{D}\;(d^{9}s)$	-26.5771	-0.413 (-0.414)	-0.287 (-0.292)
Au	2 S $(d^{10}s)$	-33.9372	-0.454 (-0.454)	-0.288 (-0.291)
Hg	$^{1}S (d^{10}s^{2})$	-41.9541	-0.604 (-0.604)	-0.328(-0.327)

[&]quot;The values in parentheses are the reference values: the HF values for Sc to Zn and the QRHF values for Y to Hg. See text for details.

Table II. Model potential parameters of first-series transition metal atoms.

Zn	0.495477 0.444466 0.142482 3.12274 3.48936 0.069556 169.11 6.48005 1.34701 248.33 75.1582 1.37744 353.305 4.3317744 353.305 38.9248 3.83940
Çn	0.506690 0.474124 0.176770 2.65546 5.01383 0.079232 197.608 6.09610 1.38786 2673.61 75.8692 1.29097 328.792 40.8180 5.01126 35.6170
ï	0.629140 0.572690 0.208870 3.30162 3.97315 0.091355 168.171 6.54484 1.33631 2143.03 77.2570 1.17934 305.397 37.6720 4.65535 32.7004
రి	0.720792 0.617513 0.228803 3.60099 5.49869 0.098734 167.266 6.05553 1.24865 2895.71 58.1670 0.999671 311.139 38.0975 4.773224 32.8793
Fe	0.801137 0.692263 0.273210 4.20480 8.04217 0.116564 160.313 6.00990 1.12295 3186.30 57.4313 1.02671 287.291 34.8850 4.35355 29.9155 2.80017
Mn	1.09042 0.825940 0.332400 5.00219 11.5313 0.138520 154.533 5.79484 1.09751 3068.48 56.9253 6.9253 0.988770 288.426 34.6914 4.34616 29.5397 2.75863
Ç	1.16791 0.883778 0.367446 6.11330 13.4884 0.144743 161.872 4.88759 0.915365 43.9771 0.864164 264.63 31.4515 3.94219 26.5679 2.46108
Λ	1.21349 1.06666 0.458059 6.12818 19.1365 0.193497 166.840 4.85727 0.850197 3830.57 44.7076 0.793285 261.720 30.7739 3.89082 25.7712 25.7712
Τi	1.79181 1.35446 0.608610 9.11437 30.8675 0.255772 138.59 4.53804 0.809696 4313.16 47.1074 0.736155 238.04 27.6098 3.51001 22.8936 2.12796
&	2.38182 1.90005 0.863580 15.5070 26.5536 0.313973 166.54 4.34975 0.750411 4574.23 32.8755 0.704069 215.486 24.5925 3.13791 20.1613 1.86669
	A A A A B B B B B B B B B B B B B B B B

*F, values in $B_c = -F_c \varepsilon_c$ are taken to be 1.3 for Sc, Ti, and V; 1.2 for Cr and Mn; 1.1 for Fe and Co; and 1.0 for Ni, Cu, and Zn.

Table III. Model potential parameters of second-series transition metal atoms.*

A_1 6.91373 5.18535 3.97462 3.11385 3.05200 2.32278 A_2 3.66472 2.69200 2.13076 1.73333 1.46761 1.32997 A_4 7.56758 0.970770 0.685515 0.585096 0.502499 0.4355107 A_4 7.56758 37.1722 2.0,1599 14.9973 10.0073 10.3169 A_6 1.5710 0.76258 0.57834 0.439924 2.76726 2.33666 A_1 1.66.663 174.977 188.901 164.398 171.537 158.714 α_2 5.75456 5.99272 6.32017 6.3674 6.79001 7.32762 α_3 1.42636 1.31697 1.37466 1.52280 1.43464 1.43513 α_4 1.103.48 14.09.48 185.106 1.944.96 1.65303 0.58343 α_4 1.103.48 1.409.48 1.85.306 0.745910 0.813830 0.85343 α_5 1.24.49 1.65.306 1.44591	Zr		Mo	Te	Ru	Rh	Pd	Ag	Cq
0.685515 0.585096 0.602499 20,1599 14,9973 10,0073 41,3919 35,3882 27,6726 0.578342 0.439924 0.350531 188,901 164,398 171,537 6,32017 6,63674 6,79001 1,37466 1,52280 1,43464 1854,06 1984,96 2244,38 58,3388 61,8470 62,5903 0,738902 0,74591 0,31830 842,799 887,880 34,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 3,18358 3,47852 3,80496 107,35 114,847 122,101 17,1431 18,8278 20,1912 17,1431 18,9541 2,10200 2,33820	5.18535	1	3.11385	3.03520	2.32278	2.33668	1.54674	1.49384	1.39173
20,1599 14,9973 10,0073 41,3919 35,3882 27,6726 0,578342 0,439924 0,350531 188,901 164,398 171,537 6,32017 6,65674 6,79001 1,37466 1,52280 1,43464 1854,06 1,8470 62,5903 6,3388 61,8470 62,5903 6,3389 0,445910 0,811830 842,799 887,880 934,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 3,18358 3,47852 3,80496 10,7355 114,847 122,010 17,1431 18,6278 20,1912 189541 2,10200 2,33820	0.97077		0.585096	0.502499	0.455107	0.403167	0.314479	0.267545	0.247361
41,3919 35,3882 27,6726 0,578342 0,439924 0,350531 188,901 164,398 171,537 6,32017 6,63674 6,79001 1,37466 1,52280 1,43464 1854,06 198,396 2244,38 58,338 61,8470 62,5903 0,738902 0,745910 0,811830 842,799 887,890 934,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 3,18358 3,47852 3,80496 107,395 11,4847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	37.1722		14.9973	10.0073	10.3169	7.74945	6.15610	5.31510	3.80137
0.578342 0.439924 0.350531 188.901 164.398 171.537 6.32017 6.53674 6.79001 1.37466 1.52280 1.43464 1854.06 1984.36 2244.98 58.338 61.8470 62.5903 0.738902 0.745910 0.811830 842.799 887.880 934.266 121.115 128.702 136.573 21.5885 23.3106 25.1194 21.5885 23.3106 25.1194 21.5885 3.47852 3.804.96 107.305 114.847 122.010 17.1431 18.6278 20.1912	57.6453		35,3682	27.6726	23.3666	18.8326	16.8382	15.7334	12.3844
188.901 164.998 171.537 6.32017 6.53674 6.79001 1.37466 1.52280 1.43464 1854.06 1984.96 2244.98 58.338 6.1.8470 62.5903 0.738902 0.745910 0.811830 842.799 887.890 934.266 121.115 128.702 136.573 21.5885 23.3106 25.1194 21.3835 3.47852 3.80496 107.305 114.847 122.010 17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	0.76258		0.439924	0.350531	0.280249	0.252520	0.231505	0.196306	0.166047
6.32017 6.63674 6.79001 1.37466 1.52280 1.43464 1854.06 1984.96 2244.98 58.338 6.15470 62.5903 0.733802 0.745910 0.811830 842.799 887.890 934.266 121.115 128.702 136.573 21.5885 23.3106 25.1194 21.5885 23.3106 25.1194 3.18358 3.47852 3.80496 107.343 18.6278 20.1912 17.1431 18.6278 20.1912	174.977		164.998	171.537	158.714	196.365	269.700	275.685	237.760
1.37466 1.52280 1.43464 1854.06 1984.96 2244.98 58.3388 61.8470 62.5903 0.738902 0.745910 0.811830 842.799 887.880 934.266 121.115 128.702 136.573 21.5885 23.3106 25.1194 3.18358 3.47852 3.80496 107.35 114.847 122.010 17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	5.99272		6.63674	6.79001	7.32762	7.00244	7.52096	8.03006	7.81593
1854,06 1984,96 2244,98 58,3388 61,8470 62,5903 0,738902 0,745910 0,811830 842,799 887,880 934,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 3,18358 3,47852 3,80496 107,935 114,847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	1,31697		1.52280	1.43464	1.49513	1.58238	1.49882	1.47366	1.59482
58,338 61,8470 62,5903 0,738902 0,745910 0.811830 842,799 887,880 934,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 3,18358 3,47852 3,80496 107,935 114,847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	1409.48		1984.96	2244.98	1682.37	2248.07	2284.70	2168.06	2155.09
0,738902 0,745910 0.811830 842,799 887,880 934,266 121,115 128,702 136,573 21,5885 23,3106 25,1194 21,8385 3,47852 3,80496 107,335 114,847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	64.4624		61.8470	62,5903	69.5252	65.1922	70.7754	71.3190	65.8827
642.799 887.880 934.266 121.115 128.702 136.573 21.5885 23.3106 25.1194 23.8358 3.47852 380496 107.305 114.847 122.010 17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	7 0.71290		0.745910	0.811830	0.853430	0.932351	1.03016	1.03324	1.10018
121.115 128.702 136.573 21.5885 23.3106 25.1194 3.18358 3.47852 3.80496 107.35 114.847 122.010 17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	865.556		887.880	934.266	981.930	987.932	946.004	991.130	1037.62
21.5885 23.3106 25.1194 3.18358 3.47852 3.80496 107.935 114.847 122.010 17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	123,245		128.702	136.573	144.688	146.680	141,475	149.248	157.467
3.18358 3.47852 3.80496 107,935 114,847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	21.5707		23.3106	25.1194	26.9756	27.6845	27,0014	28.7729	30.8102
107,935 114,847 122,010 17,1431 18,6278 20,1912 1,89541 2,10200 2,33820	3.12508		3.47852	3.80496	4.12908	4.27227	4.19364	4.48879	4.98517
17.1431 18.6278 20.1912 1.89541 2.10200 2.33820	109.667		114.847	122.010	129.383	131.268	126.689	133.714	141.147
1.89541 2.10200 2.33820	17.0033		18,6278	20.1912	21.7933	22.4659	21.9978	23.5219	25.3003
	1.82636		2.10200	2.33820	2.57196	2.69238	2.66998	2.88285	3.27605
9.85860 10.9933 12.2006	9.48572		10.9933	12.2006	13.4411	14.1089	14.0394	15.2292	16.6650

*Fe values in $B_e = -F_e \varepsilon_e$ are taken to be 1.4 for Y; 1.3 for Zr; 1.2 for Nb, Mo, Tc, and Ru; 1.15 for Rh; and 1.05 for Pd, Ag, and Cd.

Table IV. Model potential parameters of third-series transition metal atoms.*

	Hg	3.04505 1.64340 0.468490 22.1671 24.2154 0.224831 2.32165 3367.27 7.59273 3367.27 1.00886 3391.04 607.414 146.896 33.8048 5.62298 5.62
	Au	3.46270 1.78764 0.486721 16.8104 26.2003 0.256973 0.256973 240.745 7.14153 7.14153 7.14153 7.14153 7.14153 7.14153 7.14153 141.333 3.21368 5.16071 5.09.634 118.320 24.4345 3.02170 92.7874 14.8388 4.17030
	Pt	3.51543 2.07273 0.543471 19.5510 28.280 0.296594 232.592 7.17190 7.171
	Ir	4,49851 2,32539 0,603248 24,5184 29,8842 0,352423 234,097 6,45510 2,15965 2752.70 0,925495 3386.70 119,862 2,85900 3,5739 11,862 2,85900 3,5739 14,4163 3,50151
	o _s	5.21949 2.63911 0.731645 31.6473 34.8432 0.422794 245.764 6.71327 7.41461 0.921386 3286.61 578.854 137.396 30.3869 4.64424 505.529 115.408 2.64424 90.0241 13.5629 3.00545
	Re	5.84876 3.06070 0.885107 44.1433 39.3356 0.514972 242.962 6.59363 2.07577 2179.69 75.5540 0.883945 3188.49 559.180 132.096 4.32780 489.337 111.057 111.057 24.3248 86.4498 12.7330 2.52980
	W	8.38002 2.51505 1.18274 60.3178 52.0017 0.849928 310.873 4.46263 3.05937 2085.73 0.940253 3092.31 539.970 126.935 27.4968 4.01040 473.446 106.802 20.7506 2.21767 82.9502 11.9210 2.06863
	Ta	9,06402 2,99646 1,53381 85,8105 61,8657 1,04276 290,323 4,16216 3,15252 3006,75 52,2824 0,90933 2998,07 521,256 121,950 26,1510 3,72775 457,895 102,684 19,6940 2,03293 79,5658 11,1663 1,11663
•	ЭH	11,3250 3,74500 1,92808 100,827 81,4661 1,40409 307,644 3,91243 2,96337 2826,35 6,884879 2905,68 502,994 117,105 2,8510 3,4600 442,646 98,6684 18,6702 1,84686 76,2627 10,4354
	Lu	14,9750 4,66963 2,86330 116,090 2,11553 315,424 3,54413 2,97657 2074,2
		AAAAA COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

*Fe values in $B_c = -F_c \varepsilon_c$ are taken to be 1.25 for Lu; 1.2 for Hf, Ta, W, Re, Os, and Ir; and 1.1 for Pt, Au, and Hg.

Table V. Valence orbitals of first-series transition metal atoms (5s/5d).

Mn	4s 0.119139 -0.247653 -0.128981 0.584790 0.526440 $3d$ 0.054295 0.233767 0.439932 0.442485 0.220397	Zn	4s -0.114873 0.243836 0.118020 -0.640208 -0.472993 3d 0.036975 0.217344 0.442189 0.442189 0.442189 0.448210
M	Exponent 6.00971 1.42468 0.637644 0.087679 0.032593 Exponent 25.4349 6.42026 2.00032 0.614663	Z	Exponent 8.92230 2.32400 1.07486 0.137640 0.047637 Exponent 46.7857 12.2567 3.96114 1.27340 0.371096
H	4s 0.125583 -0.272181 -0.121814 0.624124 0.491085 3d 0.052942 0.216750 0.432224 0.455524 0.455524	n	4s 0.094256 -0.198708 -0.108993 0.591288 0.506664 $3d$ 0.044154 0.242367 0.453371 0.453371 0.453371
Cr	Exponent 5.48170 1.27058 0.572299 0.082771 0.031206 Exponent 22.7680 5.70909 1.77631 0.548985 0.154990	Cu	Exponent 8.36994 2.09394 0.893787 0.102440 0.036394 Exponent 38.4224 9.91260 3.12112 0.957792
	4s 0.121896 -0.266888 -0.143305 0.629546 0.492569 $3d$ 0.050830 0.202530 0.429135 0.463660 0.20239775	ï	4s 0.101423 -0.210635 -0.104516 0.599636 0.499931 $3d$ 0.046396 0.244731 0.447937 0.447937 0.447937 0.447937 0.447937
Λ	Exponent 4.98293 1.12399 0.503312 0.076392 0.029325 Exponent 19.4681 4.82648 1.48581 0.454106 0.127841	Ni	Exponent 7.73397 1.91940 0.830556 0.099221 0.035596 Exponent 34.8800 2.81275 0.862389 0.234758
i	4s -0.142085 0.314752 0.115503 -0.642395 -0.477337 $3d$ 0.052384 0.203284 0.429915 0.429915 0.429915 0.429915	0	4s -0.103444 0.221131 0.122512 -0.608647 -0.496675 3d 0.047483 0.235569 0.441782 0.443233
Ti	Exponent 4.50859 0.984177 0.435766 0.069355 0.027158 Exponent 16.3351 3.99368 1.21301 0.365839 0.103099	ပိ	Exponent 7.13634 1.74870 0.765530 0.095485 0.034631 Exponent 31.6025 8.07501 2.53009 0.776164 0.212404
J J	4s -0.123918 0.269140 0.163549 -0.624035 -0.507377 $3d$ 0.059272 0.205331 0.411639 0.452683 0.292897	Fe	4s -0.113942 0.243259 0.14090 -0.614878 -0.492022 $3d$ 0.048851 0.228455 0.441088 0.447147 0.219729
Sc	Exponent 4.05792 0.852923 0.371379 0.062372 0.024989 Exponent 12.9698 3.10607 0.920176 0.269761 0.075763	Ħ	Exponent 6.55742 1.58371 0.701224 0.091656 0.033637 Exponent 28.4463 7.22741 2.25860 0.693345 0.190936

Table VI. Valence orbitals of second-series transition metal atoms (6s/5d).

	5s -0.113381 0.295230 -0.426488 -0.199305 0.685343 0.454969 4d 0.072660 0.151317 -0.464523 -0.4644523 -0.510448		5s -0.095817 0.261649 -0.318977 -0.268838 0.669468 0.469119 4d -0.074738 -0.202049 0.492392 0.492392 0.492392
Тс		Cd	
	Exponent 22.8698 5.26243 1.05393 0.556100 0.086725 0.033230 Exponent 51.1651 12.5925 1.28312 0.426185 0.129699		Exponent 29.2811 7.27142 1.71419 0.892837 0.043424 Expinent 72.0674 18.1929 2.07498 0.738540 0.243100
Мо	5s 0.109004 -0.279387 0.427654 0.200247 -0.706760 -0.443740 4d 0.071360 0.139047 -0.440766 -0.52956	Ag	5s -0.076324 0.220405 -0.228877 -0.228887 0.641494 0.481376 4d 0.050184 0.134845 -0.489766 -0.503842 -0.503842
N	Exponent 21.7104 4.90269 0.940254 0.498687 0.083059 0.032347 Exponent 47.2410 11.5477 1.14614 0.379329 0.116664	<i>A</i>	Exponent 27.9733 6.83995 1.54045 0.763423 0.095573 0.034876 Exponent 67.7607 17.0309 1.88338 0.642886 0.198335
Nb	$\begin{array}{c} 5s \\ -0.103016 \\ 0.268030 \\ -0.428976 \\ -0.199028 \\ 0.690004 \\ 0.462900 \\ 4d \\ 0.062717 \\ 0.124291 \\ -0.437375 \\ -0.521183 \\ -0.271245 \end{array}$	Pd	$\frac{5s}{0.237660}$ $\frac{0.237660}{0.237660}$ $\frac{0.237660}{0.227903}$ $\frac{0.625354}{0.498915}$ $\frac{4d}{0.489580}$ $\frac{4d}{0.489580}$ $\frac{4d}{0.489580}$ $\frac{4d}{0.489580}$
Z	Exponent 20.5917 4.55825 0.837520 0.436630 0.076267 0.030250 Exponent 43.6585 10.5915 1.01050 0.325442 0.098049	P	Exponent 26.6233 6.42393 1.41679 0.715379 0.093967 0.034620 Exponent 63.4456 15.8755 1.72587 0.585110 0.179333
1	5s -0.098433 0.272600 -0.450999 -0.185247 0.685060 0.466989 $4d$ 0.056933 0.115640 -0.432447 -0.432447 -0.6515009	Rh	$\frac{5s}{0.102961}$ -0.278557 0.364349 0.215657 -0.643574 -0.484480 $4d$ 0.077943 0.184169 -0.487617 -0.494392 -0.223610
Zr	Exponent 19.5163 4.22637 0.741718 0.376579 0.068657 0.027760 Exponent 40.1874 9.66756 0.877003 0.272654 0.080482	R	Exponent 25.3141 6.02255 1.29355 0.664208 0.091842 0.034218 Exponent 59.2365 14.7487 1.57348 0.530223 0.161940
	$\frac{5s}{0.229757}$ $\frac{-0.079024}{0.229757}$ $\frac{-0.363487}{-0.236713}$ $\frac{4d}{0.054234}$ $\frac{4d}{0.054234}$ $\frac{0.054234}{0.105853}$ $\frac{-0.388752}{-0.360227}$	n	5s 0.090455 -0.255456 0.331386 0.237756 -0.652138 -0.487331 4d 0.071818 0.159136 -0.470352 -0.507907
Ā	Exponent 18.4749 3.90741 0.652288 0.318921 0.06509 0.025013 Exponent 36.9778 8.81079 0.739120 0.739120	Ru	Exponent 24.0703 5.63554 1.17222 0.611131 0.089460 0.033766 Exponent 55.1434 13.6546 1.42595 0.477247

Table VII. Valence orbitals of third-series transition metal atoms (7s/5d).

a	$\begin{array}{c} 6s \\ 0.165622 \\ -0.276457 \\ 0.390985 \\ -0.403405 \\ -0.294963 \\ 0.734621 \\ 0.439549 \\ 5d \\ 0.080140 \\ -0.224984 \\ 0.60903 \\ 0.509903 \\ 0.244548 \end{array}$	84	6s 0.164741 -0.275356 0.421201 -0.256139 -0.446385 0.727643 0.444342 5d 0.107327 -0.268339 0.491357 0.499101 0.192034
Re	Exponent 68.0306 34.8389 5.26717 1.11447 0.637970 0.041587 Exponent 96.5819 7.91452 1.04277 0.356530	Hg	Exponent 81.3603 41.7021 6.53351 1.73625 1.01235 0.051785 Exponent 114.443 9.74070 1.52641 0.575541
,	$\begin{array}{c} 6s \\ 0.177169 \\ -0.298683 \\ 0.401974 \\ -0.503182 \\ -0.219788 \\ 0.740948 \\ 0.431138 \\ 5d \\ 0.089222 \\ -0.213132 \\ 0.089222 \\ -0.213132 \\ 0.08922 \\ 0.08922 \\ 0.$	n	6s -0.159414 0.261339 -0.392168 0.274220 0.374938 -0.688610 -0.466485 $5d$ 0.112471 -0.255103 0.487592 0.209156
W	Exponent 65.4900 33.6098 5.04754 1.00269 0.102679 0.040257 Exponent 93.255 7.56820 0.324650 0.101560	Au	Exponent 78.5552 40.2333 6.25774 1.58806 0.899751 0.123315 0.044658 Exponent 110.688 9.36724 1.40605 0.507003
3	$\begin{array}{c} 6s \\ 0.131543 \\ -0.229915 \\ 0.328040 \\ -0.393136 \\ -0.279359 \\ 0.722198 \\ 0.456301 \\ 5d \\ 0.072098 \\ -0.190017 \\ 0.428324 \\ 0.517688 \\ 0.517688 \\ 0.289526 \end{array}$	t (6s 0.147000 -0.245276 0.367059 -0.275496 -0.369531 0.694462 0.467590 5d 0.097890 -0.241889 0.481181 0.505039
Ta	Exponent 63.1547 32.3877 4.82297 0.942500 0.513330 0.037090 Exponent 89.9005 7.25076 0.284800 0.086498	Pt	Exponent 75.3806 39.0268 5.99843 1.45580 0.834046 0.120162 0.044145 Exponent 107.062 8.99278 1.31094 0.466810 0.147520
f	$\begin{array}{c} 6s \\ 0.126589 \\ -0.222760 \\ 0.321925 \\ -0.403644 \\ -0.263970 \\ 0.713213 \\ 0.458620 \\ 5d \\ 0.062021 \\ -0.172001 \\ 0.417262 \\ 0.514341 \\ 0.323201 \end{array}$		6s -0.144530 0.250267 -0.369784 0.313968 0.353273 -0.709811 -0.456966 5d 0.084802 -0.251996 0.474221 0.507390
H	Exponent 60.9473 31.1508 4.61460 0.873358 0.456072 0.083437 0.033649 Exponent 86.6148 6.94754 0.791554 0.072067	Ir	Exponent 73.1280 37.4640 5.74588 1.33506 0.769143 0.016378 0.043406 Exponent 103.501 8.62513 1.21862 0.428574 0.134511
n	$\begin{array}{c} 6s \\ 0.119126 \\ -0.211772 \\ 0.315119 \\ -0.447357 \\ -0.248087 \\ 0.715931 \\ 0.447522 \\ 5d \\ 0.044986 \\ -0.143548 \\ 0.395131 \\ 0.506229 \\ 0.384241 \end{array}$	S	6s -0.174239 0.284680 -0.391916 0.370692 0.320274 -0.716940 -0.451798 5d 0.091363 -0.240621 0.475839 0.502223 0.502223
Lu	Exponent 58.7495 29.9669 4.41706 0.809864 0.400708 0.073326 0.030017 Exponent 83.3004 6.67850 0.698346 0.055470	SO	Exponent 70.5411 37.1328 5.50241 1.21979 0.703100 0.112299 0.042571 Exponent 100.008 8.26563 1.12928 0.391840 0.122232

group has published Gaussian basis sets for the atoms Li through Rn for use in the allelectron molecular calculations.³³ In this work the exponents of polarization functions have been determined by maximizing the radial overlap integrals between the polarization function and the valence orbital to be polarized.

The polarization functions for the MP calculations were determined in the same way as in the all-electron case: the polarization functions for the first-row transition metal atoms were taken from those determined for all-electron basis sets, 33 and the ones for the second and third series were obtained by maximizing radial overlap integrals with the quasirelativistic Hartree-Fock valence functions. The exponents of the polarization functions are given in Table VIII.

Table VIII. Exponents of *p*-type polarization functions.

Table VIII.	Dybolicing of b	rtype polariza	tion functions.
Atom	$f_{\mathrm{pol}}^{\mathtt{a}}$	$f_{\mathbb{P}}$	b ol
Sc	0.059	0.073	0.024
Ti	0.065	0.083	0.028
V	0.071	0.092	0.030
\mathbf{Cr}	0.077	0.103	0.034
Mn	0.080	0.110	0.036
\mathbf{Fe}	0.082	0.118	0.038
Co .	0.085	0.125	0.040
Ni	0.088	0.133	0.041
Cu	0.090	0.142	0.044
Zn	0.123	0.176	0.055
Y	0.056	0.063	0.020
\mathbf{Zr}	0.064	0.072	0.023
Nb	0.070	0.081	0.025
Mo	0.076	0.089	0.028
Tc	0.080	0.095	0.030
Ru	0.083	0.100	0.032
Rh	0.085	0.106	0.033
Pd	0.086	0.111	0.036
Ag	0.087	0.116	0.036
\mathbf{Cd}	0.109	0.135	0.042
Lu	0.067	0.075	0.024
\mathbf{Hf}	0.075	0.083	0.026
Ta	0.083	0.091	0.026
W	0.090	0.098	0.027
${ m Re}$	0.095	0.104	0.029
Os	0.098	0.110	0.031
${ m Ir}$	0.102	0.115	0.033
$\mathbf{P}\mathbf{t}$	0.105	0.121	0.035
<u>A</u> u	0.107	0.126	0.037
Hg	0.125	0.135	0.037

^{*}One-member polarization function set.

IV. ATOMIC EXCITATION ENERGIES

In the transition metal compounds the metal atom often has the sd^n and d^{n+1} configurations, whereas s^2d^{n-1} is usually the ground-state configuration for the first- and third-row transition metal atoms. Therefore, the basis sets for the molecular calculation need to be flexible to describe the d orbitals of various atomic configurations. Hay³⁴ has observed that if a basis set is determined for s^2d^{n-1} , an additional diffuse d function is necessary to describe the s^1d^n and d^{n+1} configurations properly.

In the present work, the model potentials were generated for the s^1d^n configuration. The exponents of valence orbitals determined by the least-squares fitting to the numerical radial functions, contain more diffuse d functions than the all-electron basis sets determined by minimizing the total energy: the smallest exponent of 3d orbital is 0.2601 for MP (5s/5d) and 0.3755 for all-electron (AE) $(5333/53/5)^{33}$ for Cu atom in $^1S(sd^{10})$ state. These values are far smaller than the value of 0.4649 for AE $(5333/53/5)^{33}$ of $^2D(s^2d^9)$ state.

The excitation energies to the s^2d^{n-1} and d^{n+1} configurations from the sd^n configuration were calculated using the four types of contracted basis sets. The results are shown in Table IX for Cr, Ni, Pd, Mo, Pt, and W as examples. For the first-row transition metal atoms the (311/311) and (41/311) basis sets give nearly the same excitation energies, which agree well with the numerical HF values. The (41/41) basis set also gives a good agreement with the reference values. The minimal basis set, (5/5), gives poor excitation energies. All the split-type basis sets, (411/311), (51/311), and (51/41) for the second series, and (511/311), (61/311), and (61/41) for the third series, give almost the same excitation energies and are able to describe the s^2d^{n-1} , sd^n , and d^{n+1} configurations properly. The minimal basis sets of the second and third series give better agreement with the reference values than in the case of the first series.

It was found in a previous article⁸ that the core potential is hardly affected by an electron excitation such as sd^n to s^2d^{n-1} , and that only the flexibility of the valence basis set is required to describe the excited state properly.

Two-member polarization function set.

236 Sakai et al.

Table IX. Excitation energies (in eV) for transition metal atoms. The valence orbital set were used in various types of contraction.

					Contraction		
Atom	i	State	(5/5)	(41/41)	(41/311)	(311/311)	HF
Ni .	³ D ³ F ¹ S	$3d^{9}4s$ $3d^{8}4s^{2}$ $3d^{10}$	0.0 2.80 8.92	0.0 -0.79 4.75	0.0 -1.01 4.71	0.0 -1.13 4.71	0.0 -1.27 4.20
Cr	${}^{7}S$ ${}^{5}D$ ${}^{5}D$	$3d^{5}4s \ 3d^{4}4s^{2} \ 3d^{6}$	0.0 3.54 10.25	0.0 1.88 7.34	0.0 1.59 7.31	0.0 1.57 7.31	0.0 1.27 7.03
			(6/5)	(51/41)	(51/311)	(411/311)	RHF
Pd	3P 3F 1S	$rac{4d}{4}^95s$ $rac{4d}{4}^85s^2$ $rac{4d}{4}^{10}$	0.0 3.76 1.90	0.0 2.26 0.30	0.0 2.23 0.29	0.0 2.16 0.29	0.0 2.09 -0.10
Mo	^{7}S ^{5}D ^{5}D	$4d^{5}5s \ 4d^{4}5s^{2} \ 4d^{6}$	0.0 3.05 5.67	0.0 2.38 4.69	0.0 2.34 4.69	0.0 2.34 4.69	0.0 2.37 4.36
			(7/5)	(61/41)	(61/311)	(511/311)	RHF
Pt	$^{3}\!P$ $^{3}\!F$ $^{1}\!S$	$5d^{9}6s \ 5d^{8}6s^{2} \ 5d^{10}$	0.0 1.35 1.89	0.0 0.51 1.00	0.0 0.49 0.99	0.0 0.47 0.99	0.0 0.40 0.90
W	7S 5D 5D	5d⁵6s 5d⁴6s² 5d⁵	0.0 1.57 6.39	0.0 1.16 5.77	0.0 1.13 5.77	0.0 1.11 5.77	0.0 1.29 5.45

 $^{^{\}circ}$ (41/41) means that five primitive GTF are contracted to two CGTF's, which consist of four and one primitive GTF's, for both s and d orbitals.

We may conclude that the MP calculation with the basis sets determined in the present work can provide even better balanced description of the s^2d^{n-1} , sd^n , and d^{n+1} configurations than the all-electron calculations in which the small basis sets such as (4333/43/4) or (5333/53/5) are used for the first-row transition metal atom series.

V. SUMMARY

The *sd*-MPs were generated systematically for the transition metal atoms Sc through Hg for use in molecular calculations. The use of the model potentials will bring the benefits summarized as follows:

Saving of Computational Time

In the sdMP's only the s and d valence electrons are treated explicitly and the other electrons are replaced by the model potential. Compared with all-electron calculations, saving of the computational time is substantial especially for the molecules containing heavy atoms. In addition, the core potential in our method is approximated by a simple spherical

local function of $V_{\rm MP}$ given by eq. (3), which is independent on the angular momentum of the valence orbitals. The computational time needed for evaluation of the core potential term is negligibly small compared with that used for evaluation of the two-electron integrals of the valence electrons. Most of the other effective core potentials (ECPs) introduce angular momentum dependence of the core potentials and the formulas are more complicated than the ones of the MP method. The use of such ECPs will require significantly more computational time for the calculations of the derivatives with respect to the nuclear coordinates (for the analytic gradient method of geometry optimization).35

Incorporation of Relativistic Effects

The quasirelativistic model potentials were generated for the second- and third-row transition metal atoms. The effects of the mass velocity and Darwin terms were implicitly incorporated in the MP parameters and basis sets. Therefore, the major relativistic effects are easily incorporated into the molecular calculations without solving the Dirac-Hartree-Fock equation. The spin-orbit effects

omitted in this approach could be treated perturbationally, possibly together with the electron correlation effects.

Balanced Description of the s^2d^{n-1} , sd^n , and d^{n+1} Configurations

The MP method provides good flexibility to describe properly all the s^2d^{n-1} , sd^n , and d^{n+1} configurations of an atom as discussed in the preceding section. The method provides more flexibility than the all-electron calculation with the limited basis set such as MIDI-i level basis set.

Elimination of Basis Set Superposition Error (BSSE)

In the all-electron molecular calculations using unsaturated basis sets, BSSE is inevitable, especially in the core region. The use of the MP method provides a good way of eliminating BSSE originating from the core region.

Good Reproduction of the Numerical HF Values

In Table X the total energies and orbital energies given by the all-electron calculations with various basis sets³³ are shown for Cu in the 1S (sd^{10}) state, along with the numerical HF values. It is seen that the addition of d-type GTF improves both 4s and 3d orbital energies, and the improvement of the 3d orbital energy is particularly significant.

Table X. Valence orbital energies (in a.u.) for Cu 2S (3 $d^{10}4s$).

Method	Basis	3d	4 s
AE	GTF (3333/33/3) ^a	-0.2853	-0.2089
\mathbf{AE}	GTF (4322/42/3) ^a	-0.2633	-0.2060
ΑE	GTF (4333/43/4) ^a	-0.4227	-0.2228
\mathbf{AE}	GTF (3333/33/5) ^a	-0.4716	-0.2301
\mathbf{AE}	GTF (4333/43/5) ^a	-0.4675	-0.2309
\mathbf{AE}	GTF (5333/53/5) ^a	-0.4710	-0.2321
ΑE	GTF $(14s9p7d)$	-0.4838	-0.2358
MP	GTF $(5s/5p)$	-0.4907	-0.2375
AE	STF DZ ^b	-0.4041	-0.2181
ΑĒ	STF (11s6p5d) ^b	-0.4907	-0.2379
HF	,,	-0.4912	-0.2385

^aSee ref. 33.

However, the discrepancy in the d orbital energies between the SCF value and numerical HF value is still 0.02 a.u. even if five primitive d-type GTFs are used. The orbital energies given by the MP method, also shown in Table X, are nearly the same as those given by the numerical HF calculation. In Figure 1 the rR(r) functions of the 3d orbital of Cu in $^1S(sd^{10})$ are plotted for the MP(5s/5d). AE(4333/43/4), and AE(4333/43/5) basis sets. The d- orbital shape is also described better by the MP basis set than by the AE basis set.

Nodal Structure of the Valence Orbitals

The rR(r) functions of the 6s and 5d orbitals of Pt $^3D(sd^9)$ are plotted for the MP basis sets in Figures 2 and 3, respectively, and they are compared with those of the reference QRHF orbitals. Both s and d valence orbitals have proper inner nodal structures and they can reproduce the reference orbitals well.

Hay and Wadt^{20,22} have also generated two sets of effective core potentials (ECPs) for the transition metal atoms Sc through Hg. The valence orbitals of the first ECP set are nodeless.²⁰ They are included in Figures 2 and 3 for comparison. The s valence orbital of the second set²² gains a node in the valence region by including the outermost core ns orbital. The use of the second set is, however, more expensive because the additional eight electrons (ns and np electrons) have to be treated explicitly.

An extensive test of MPs prepared in the present work has been successfully conducted in a subsequent article. There are a few exceptions in which the present sd-MPs fail to reproduce satisfactorily the results of the allelectron calculations. The remedy we have adopted is to treat the outermost core np electrons explicitly together with the valence nd and (n + 1)s electrons. These model potentials may be called the spd-MPs and they will be described in later work.

APPENDIX

The core orbitals, used for the calculations of the projection operators given by (4), are shown in the Tables as follows:

first series ($Sc \sim Zn$): Table (XI)

^bFrom E. Clementi and C. Roetti, "Roothaan-Hartree-Fock atomic wave functions," *Atomic and Nuclear Data Table 14*, Academic. New York, 1974.

Figure 1. rR(r) functions of the 3d orbital of Cu in ${}^1S(sd^{10})$ corresponding to the numerical HF(——), MP(5s/5d) (*****), AE(4333/43/4) (xxxxx), and AE(4333/43/5) (****).

Figure 2. rR(r) functions of the 6s orbital of Pt in $^3P(sd^9)$ corresponding to the RHF (——), MP(7s/5d) (*****), and the psuedo-orbital given by Hay and Wadt ref. 20 (xxxxx).

second series (Y \sim Cd): Table (XII) third series (Lu \sim Hg): Table (XIII)

The normalized 1s, 2p, 3d, and 4f primitive GTFs are used for s, p, d, and f orbitals, respectively.

Figure 3. rR(r) functions of the 5d orbital of Pt in $^3P(sd^9)$ corresponding to the RHF(----), MP(7s/5d) (*****), and the pseudo-orbital given by Hay and Wadt ref. 20 (xxxxx).

Table XI. Core orbitals of first-series transition metal atoms.

	Core orbita	als of Sc	
Exponent	1 s	2 s	3s
5833.14	0.021081	0.006767	0.002379
802.772	0.147954	0.047491	0.016698
182.975	0.473775	0.152073	0.053470
51.8286	0.485204	0.155742	0.054760
84.1777	-0.003250	0.108486	0.043708
8.91890	0.019914	-0.664339	-0.267657
3.55842	0.013478	-0.449624	-0.181150
6.13288	0.004089	0.002384	-0.237714
0.929673	-0.013879	-0.008092	0.806879
0.363904	-0.006945	-0.004049	0.403812
Exponent	2p	3p	•
223.599	0.034946	0.012688	
48.6631	0.217888	0.079108	
14.5608	0.528264	0.191795	
4.86936	0.396631	0.144003	
1.98890	0.007423	-0.376610	
0.734035	0.011743	-0.595810	
0.269306	0.004181	-0.212143	
	Core orbita	als of Ti	
Exponent	1 s	2 s	3 s
6457.64	0.020873	0.006753	0.002708
888.772	0.146681	0.047457	0.019030
202.614	0.471634	0.152593	0.061188
57.4368	0.487825	0.157832	0.063289
92.9207	-0.003425	0.109373	0.044816
9.89517	0.020980	-0.669583	-0.274365
3.96534	0.013941	-0.444950	-0.182321
6.94432	0.004667	0.002393	-0.240496
1.06144	-0.015737	-0.008068	0.810998
0.413040	-0.007844	-0.004021	0.404283

Table XI (Continued)

Table XI (Continued)			
Exponent	2p	3 <i>p</i>	
		0.012821	
250.339	0.034491	0.012821	
54.5710	0.216466	0.196415	
16.3829	0.528394		
5.50525	0.396475	0.147378	
2.28868	0.007636	-0.381886	
0.845089	0.011905	-0.595371	
0.308909	0.004211	-0.210609	
	Core orbita	ls of V	
Exponent	1s	2s	3s
7092.41	0.020766	0.006772	0.002737
976.252	0.146019	0.047620	0.019245
222.631	0.470452	0.153423	0.062004
63.1619	0.489274	0.159562	0.064485
102.095	-0.003498	0.110226	0.045821
10.9313	0.021381	-0.673710	-0.280061
4.39697	0.014011	-0.441489	-0.183527
7.80343	0.004647	0.002412	-0.242318
1.19854	-0.015619	-0.008107	0.814541
0.463350	-0.007757	-0.004026	0.404515
	2p	3p	
Exponent			
278.404	0.034117	0.012925	
60.7755	0.215350	0.081585	
18.2992	0.528637	0.200273	
6.17425	0.396108	0.150064	
2.60694	0.007806	-0.385728 -0.505001	
0.962299	0.012043	-0.595091 -0.209984	
0.350626	0.004250		
	Core orbita	ds of Cr	
Exponent	1s	2s	3s
7746.47	0.020702	0.006802	0.002486
1066.33	0.145648	0.047852	0.017487
243.222	0.469908	0.154386	0.056419
69.0482	0.489968	0.160976	0.058828
111.668	-0.003531	0.111036	0.046723
12.0250	0.021537	-0.677217	-0.284968
4.85020	0.013953	-0.438750	-0.184622
8.71019	0.004563	0.002420	-0.243353
1.34065	-0.015325	-0.008125	0.817319
0.514280	-0.007590	-0.004024	0.404881
Exponent	2p	3p	
307.755		0.012945	
307.755 67.2679	0.033814		
20.3069	$0.214507 \\ 0.528996$	$0.082118 \\ 0.202510$	
6.87513	0.395535	0.202510 0.151419	
2.94333	0.007933	-0.388316	
1.08522	0.012151	-0.594748	
0.394134	0.004301	-0.210512	
0.001101			
	Core orbita	ls of Mn	
Exponent	1 <i>s</i>	2s	3s
8429.59	0.020644	0.006825	0.002519
1160.41	0.145305	0.048041	0.017728
264.731	0.469403	0.155196	0.057270
75.1997	0.490610	0.162208	0.059857
121.679	-0.003560	0.111774	0.047573
13.1710	0.021682	-0.680406	-0.289591
5.32472	0.013903	-0.436290	-0.185692
9.66231	0.004493	0.002424	-0.244650
1.49112	-0.015086	-0.008139	0.821465
0.569325	-0.007413	-0.003998	0.403656
· · · · · · · · · · · · · · · · · · ·			

Table XI (Continued)

Table 111 (community)			
Exponent	2p	3 <i>p</i>	
338.682	0.033519	0.013030	
	0.213637		
74.1131		0.083050	
22.4267	0.529184	0.205717	
7.61656	0.395224	0.153641	
3.30003	0.008082	-0.391367	
1.21708	0.012290	-0.595150	
0.441364	0.004319	-0.209134	
0.441004			
	Core orbita		
Exponent	1s	2s	3s
9140.63	0.020592	0.006848	0.002546
1258.38	0.144999	0.048216	0.017931
287.139	0.468949	0.155938	0.057990
81.6128	0.491181	0.163330	0.060739
132.131	-0.003587	0.112448	0.000739
			0.048307
14.3695	0.021808	-0.683311	-0.293547
5.81981	0.013854	-0.434084	-0.186480
10.6608	0.004427	0.002423	-0.245430
1.64815	-0.014855	-0.008128	0.823554
0.626556	-0.007284	-0.003987	0.403908
Exponent	2p	3p	
370.601	0.033320	0.013115	
		0.015115	
81.1776	0.213205	0.083917	
24.6147	0.529767	0.208514	
8.38003	0.394311	0.155199	
3.67389	0.008138	-0.393758	
1.35439	0.012301	-0.595206	
0.490277	0.004314	-0.208758	
0.430211			
	Core orbita		
Exponent	1s	2s	3s
9882.72	0.020540	0.006866	0.002570
1360.55	0.144696	0.048368	0.018105
310.494	0.468512	0.156610	0.058624
88.2957			
	0.491745	0.164376	0.061531
143.023	-0.003614	0.113064	0.048966
15.6208	0.021926	-0.685937	-0.297064
6.33608	0.013813	-0.432118	-0.187140
11.7053	0.004368	0.002420	-0.245991
1.81239	-0.014642	-0.008110	0.824616
0.686628	-0.007188	-0.003982	0.404841
Exponent			0.101011
-	2p	3p	
404.504	0.033064	0.013154	
88.6912	0.212404	0.084499	
26.9480	0.529754	0.210748	
9.19818	0.394266	0.156848	
4.06844	0.008294	-0.395234	•
1.49890	0.012495	-0.595428	
0.541492	0.004383	-0.208866	
	Core orbita		
TD			0
Exponent	1s	2s	38
10652.8	0.020494	0.006883	0.002591
1466.61	0.144425	0.048509	0.018261
334.748	0.468116	0.157230	0.059189
95.2405	0.492250	0.165336	0.062240
154.353	-0.003635	0.113632	0.049560
			-0.300204
16.9250	0.022030	-0.688312	
6.87365	0.013774	-0.430366	-0.187702
12.7961	0.004313	0.002416	-0.246387
1.98378	-0.014443	-0.008087	0.825027
0.749424	-0.007110	-0.003982	0.406149

Table XI (Continued)

Exponent	Table AI (Continued)			
439,470	Exponent	2p	3 <i>p</i>	
96.4397				
29.3545				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Core orbitals of Cu				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.594721	0.004416	-0.209032	
11451.7		Core orbita	als of Cu	
1576.65	Exponent			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11451.7	0.020451	0.006899	0.002609
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1576.65	0.144173	0.048638	0.018395
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	359.915	0.467749	0.157801	0.059682
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.114154	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.10.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.9157		0.159765	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.80623			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.649865	0.004452	-0.209600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Core orbita	als of Zn	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exponent	1 s	2s	3s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12280.0	0.020410	0.006914	0.002640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.409205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			
$egin{array}{cccccccccccccccccccccccccccccccccccc$				
$egin{array}{cccccccccccccccccccccccccccccccccccc$				
$egin{array}{cccccccccccccccccccccccccccccccccccc$				
1.99317 0.012841 -0.597059				
0.731286 0.004423 -0.205677				
	0.731286	0.004423	-0.205677	

Table XII. Core orbitals of second-series transition metal atoms.

		Core orbita	ls of Y		
Exponent	1s	2s	38	4 s	
33058.6	0.018414	0.006599	0.002758	0.001015	
3775.31	0.128784	0.046152	0.019290	0.007101	
780.464	0.448332	0.160668	0.067154	0.024721	
209.108	0.530139	0.189984	0.079408	0.029232	
342.408	-0.004303	0.103164	0.050483	0.018602	
37.6433	0.027682	-0.663412	-0.324640	-0.119625	
15.8086	0.018932	-0.453716	-0.222025	-0.081813	
29.4695	0.005771	0.004169	-0.273530	-0.130992	
4.83950	-0.018782	-0.013567	0.890256	0.426340	
2.11670	-0.007698	-0.005561	0.364971	0.174783	
3.61369	0.0	-0.001034	-0.001191	0.296790	
0.684853	0.0	0.003131	0.003612	-0.898499	
0.282092	0.0	0.001347	0.001554	-0.386525	0.1
Exponent	2p	3 <i>p</i>	4p	Exponent	3d
1061.76	0.028395	0.013230	0.004493	138.997	0.025855
227.800	0.190003	0.088526	0.030062	38.2426 13.3840	0.158071
69.2314 23.9781	0.512040 0.423663	0.238570 0.197393	0.081013 0.067030	4.98309	$0.405670 \\ 0.482855$
11.0515	0.423663	-0.412465	-0.186373	1.80507	0.482855
4.42399	0.020972	-0.609366	-0.180373 -0.275343	1.00007	0.134110
1.88048	0.005829	-0.169371	-0.076529		
1.07213	-0.004906	-0.001409	0.489692		
0.441815	-0.005722	-0.001642	0.571155		
0.173043	-0.001402	-0.000403	-0.140062		
		Core orbita	ls of Zr		
Exponent	1 s	2s	3s	4 s	
35924.4	0.018177	0.006538	0.002754	0.001040	
4064.15	0.126977	0.045674	0.019240	0.007266	
835.723	0.444763	0.159981	0.067393	0.025450	
223.208	0.534501	0.192259	0.080991	0.030584	
363.806	-0.004559	0.102377	0.050540	0.019257	
39.7769	0.029628	-0.665055	-0.328318	-0.125097	
16.7284	0.020117	-0.451563	-0.222923	-0.084939	
31.3369	0.006821	0.004155	-0.276145	-0.135669	
5.16415	-0.022269	-0.013562	0.901539	0.442922	
2.26740 3.95655	-0.008812	-0.005368	$0.356811 \\ -0.001200$	0.175300 0.311191	
0.765567	0.0 0.0	$-0.001017 \\ 0.002994$	0.001200	-0.915898	
0.314880	0.0	0.002554	0.001479	-0.382978	
Exponent	2p	3p	4p	Exponent	3d
1134.78	$0.0\overline{2}8023$	0.013197	0.004641	151.610	0.025018
243.172	0.188055	0.088560	0.031145	41.8159	0.154818
73.9084	0.509975	0.240161	0.084460	14.6934	0.403176
25.6289	0.426557	0.200877	0.070644	5.51108	0.485099
11.7917	0.014919	-0.415652	-0.196164	2.01906	0.193771
4.74040	0.021949	-0.611508	-0.288597		
2.02414	0.005882	-0.163880	-0.077340		
1.19949	-0.005450	-0.001388	0.503152		
0.497679	-0.006164	-0.001572	0.569223		
0.194764	-0.001475	-0.000375	0.136349		

Table XII (Continued)

		Core orbital	s of Nb		
Exponent	18	2s	3s	4s	
38664.9	0.018116	0.006541	0.002776	0.001071	
4333.87	0.126328	0.045611	0.019357	0.007467	
886.532	0.443781	0.160229	0.068001	0.026229	
236.025	0.536225	0.193606	0.082166	0.031693	
385.325	-0.004585	0.101815	0.050674	0.019849	
42.1227	0.029900	-0.663931	-0.330440	-0.129436	
17.7433	0.020389	-0.452748	-0.225334	-0.088265	
33.2643	0.006870	0.004205	-0.278695	-0.139998	
5.50323	-0.022474	-0.013755	0.911746	$0.458000 \\ 0.175591$	
$2.42404 \\ 4.31242$	-0.008616 0.0	-0.005272 -0.001020	$0.349550 \\ -0.001206$	0.323193	
0.849419	0.0	0.002935	0.001200	-0.928408	
0.348751	0.0	0.002333	0.001430	-0.382660	
Exponent	2p	3p	4p	Exponent	3d
1211.69	0.027641	0.013148	0.004758	164.614	0.024301
259.322	0.186031	0.088490	0.032026	45.4988	0.152022
78.8173	0.507753	0.241526	0.087411	16.0437	0.401063
27.3627	0.429617	0.204358	0.073960	6.05676	0.487092
12.5601	0.015707	-0.418544	-0.204855	2.24056	0.193285
5.06874	0.023028	-0.613621	-0.300336		
2.17125	0.005958	-0.158750	-0.077700		
1.33369	-0.006067	-0.001373	0.512787		
0.556039	-0.006729	-0.001521	0.568592		
0.217710	-0.001595	-0.000359	0.134787		
		Core orbital	s of Mo		
Exponent	1\$	2s	3s	4s	
41581.3	0.018059	0.006545	0.002797	0.001098	
4617.21	0.125684	0.045548	0.019466	0.007644	
939.450	0.442790	0.160467	0.068580	0.026929	
249.295	0.537956	0.194955	0.083320	0.032716	
407.577	-0.004608	0.101244	0.050779	0.020353	
44.5972	0.030101	-0.661102	-0.331578	-0.132898	
18.8538	0.020729	-0.455265	-0.228340	-0.091518	
35.2673	0.006911	0.004419	-0.280943	-0.143920	
5.85387	-0.022661	-0.014489	0.921211 0.342585	$0.471914 \\ 0.175498$	
2.58522 4.68192	-0.008427 0.0	-0.005387 -0.001176	-0.001208	-0.333056	
0.936271	0.0	0.003309	0.003405	-0.937244	
0.383570	0.0	0.003363	-0.001397	-0.384536	
Exponent	2p	3p	4p	Exponent	3d
1286.92	0.027444	0.013177	0.004884	177.989	0.023687
275.049	0.185021	0.088838	0.032923	49.2861	0.149623
83.5788	0.506871	0.243374	0.090194	17.4335	0.399284
29.0340	0.430979	0.206934	0.076689	6.61963	0.488850
13.3430	0.016036	-0.422421	-0.213180	2.46936	0.192669
5.40379	0.023355	-0.615215	-0.310476		
2.31986	0.005831	-0.153595	-0.077512		
1.47418	-0.006003	-0.001356	0.519647		
0.616690	-0.006570	-0.001486	0.568728		
0.241818	-0.001557	-0.000352	0.134801		

Table XII (Continued)

		Core orbita	ls of Tc		·
Exponent	1s	2s	3s	4 s	
44686.3	0.018005	0.006549	0.002817	0.001124	
4914.97	0.125043	0.045480	0.019567	0.007808	
994.570	0.441787	0.160686	0.069131	0.027587	
263.032	0.539701	0.196300	0.084452	0.033701	
430.817	-0.004631	0.100618	0.050832	0.020790	
47.1156	0.030378	-0.659796	-0.333329	-0.136327	
19.9477	0.021023	-0.456609	-0230679	-0.094343	
37.3360	0.006964	0.004467	-0.283246	-0.147803	
6.21902	-0.022878	-0.014677	0.930542	0.485575	
2.75083	-0.008260	-0.005298	0.336019	0.175342	
5.06458	0.0	-0.001173	-0.001203	0.341742	
1.02610	0.0	0.003249	0.003336	-0.946452	
0.419857	0.0	0.001323	0.001358	-0.385249	
Exponent	2p	3p	4p	Exponent	3s
1371.31	0.027061	0.013109	0.004965	191.780	0.023148
292.670	0.182944	0.088624	0.033567	53.1902	0.147511
88.9220	0.504485	0.244388	0.092565	18.8673	0.397737
30.9215	0.434194	0.210337	0.079667	7.20153	0.490415
14.1682	0.016894	-0.424800	-0.220560	2.70627	0.192037
5.75671	0.024542	-0.617094	-0.320400		
2.47486	0.005936	-0.149268	-0.077499		
1.62189	-0.006704	-0.001355	0.525739		
0.680734	-0.007272	-0.001470	0.570291		
0.266917	-0.001704	-0.000345	0.133717		
		Core orbita	ls of Ru		
Exponent	1s	2s	3s	4 s	
47987.5	0.017955	0.006554	0.002837	0.001148	
5227.56	0.124409	0.045413	0.019660	0.007955	
1051.93	0.440777	0.160895	0.069654	0.028185	
277.243	0.541448	0.197642	0.085563	0.034623	
454.964	-0.004653	0.099962	0.050847	0.021156	
49.7231	0.030657	-0.658379	-0.334891	-0.139338	
21.0817	0.021329	-0.458051	-0.232992	-0.096941	
39.4774	0.007019	0.004516	-0.285420	-0.151423	
6.59739	-0.023100	-0.014864	0.939386	0.498369	
2.92103	-0.008111	-0.005217	0.329831	0.174984	
5.46155	0.0	-0.001170	-0.001194	0.348977	
1.11908	0.0	0.003196	0.003267	-0.953318	
0.457162	0.0	0.001298	0.001327	-0.387229	
Exponent	2p	3p	4p	Exponent	3d
1460.75	0.026652	0.013019	0.005023	206.025	0.022664
311.300	0.180700	0.088271	0.034059	57.2192	0.145613
94.5659	0.501804	0.245129	0.094581	20.3470	0.396366
32.9168	0.437723	0.213825	0.082503	7.80280	0.491857
15.0257	0.017869	-0.426670	-0.227064	2.95115	0.191411
6.12355	0.025921	-0.618951	-0.329391		
2.63447	0.006090	-0.145413	-0.077385		
1.77659	-0.007566	-0.001361	0.529839		
		-0.001468	0.572148		
0.747596	-0.008169	-0.001400	0.012140		

Table XII (Continued)

		G . 124.1	CD1		
.	3	Core orbital			
Exponent	1s	2s	3s	48	
51498.6	0.017909	0.006561	0.002857	0.001170	
5555.77	0.123782	0.045344	0.019746	0.008089	
1111.63	0.439758	0.161091	0.070153	0.028739	
291.940	0.543201	0.198985	0.086655	0.035499	
480.049 52.4219	$-0.004674 \\ 0.030938$	$0.099277 \\ -0.656854$	$0.050825 \\ -0.336275$	0.021465 -0.142019	
22.2568	0.021647	-0.459588	-0.335275 -0.235285	-0.142019 -0.099368	
41.6931	0.007076	0.004566	-0.287472	-0.154841	
6.98930	-0.023325	-0.015053	0.947728	0.510475	
3.09605	-0.007974	-0.005145	0.324038	0.174537	
5.87311	0.0	-0.001167	-0.001185	0.355151	
1.21532	0.0	0.003151	0.003200	-0.958922	
0.495703	0.0	0.001280	0.001300	-0.389655	
Exponent	2p	3p	4p	Exponent	3d
1545.32	0.026496	0.013044	0.005115	220.712	0.022231
328.812	0.179866	0.088552	0.034726	61.3708	0.143910
99.8425	0.501072	0.246687	0.096741	21.8721	0.395153
34.7661	0.438872	0.216065	0.084732	8.42341	0.493172
15.8901	0.018149	-0.430132	-0.233926	3.20408	0.190792
6.49410	0.026163	-0.620047	-0.337210		
2.79466	0.005963	-0.141331	-0.076862		
1.93715	-0.007438	-0.001363	0.533245		
0.816791	-0.008005	-0.001467	0.574012		
0.320823	-0.001878	-0.000344	0.134660		
		Core orbital	ls of Pd		
Exponent	1 s	2s	3s	4 s	
55231.8	0.017867	0.006568	0.002876	0.001191	
5900.35	0.123161	0.045276	0.019827	0.008212	
1173.73	0.438729	0.161282	0.070630	0.029255	
307.134	0.544960	0.200333	0.087731	0.036338	
505.950	-0.004696	0.098588	0.050783	0.021731	
55.2769	0.031133	-0.653392	-0.336564	-0.144024	
23.5556	0.022043	-0.462623	-0.238298	-0.101974	
43.9928	0.007122	0.004814	-0.289201	-0.157971	
7.39327	-0.023523	-0.015899	0.955159	0.521738	
3.27651	-0.007845	-0.005304	0.318622	0.174041	
6.30001 1.31491	0.0 0.0	-0.001339 0.003584	-0.001177 0.003147	0.360460 -0.963547	
0.535525	0.0	0.001460	0.003147	-0.392351	
Exponent	2p	3p	4p	Exponent	3d
1644.09	0.026067	0.012929	0.005144	235.843	
349.268	0.177466	0.012929	0.035020	255.645 65.6452	0.021842
106.024	0.177466	0.088021	0.035020	23.4428	$0.142374 \\ 0.394074$
36.9518	0.442720	0.219585	0.087364	9.06345	0.494373
16.8108	0.019257	-0.431242	-0.239219	3.46512	0.190183
6.88848	0.027765	-0.621776	-0.344912	J.10011	0.100100
2.96394	0.006176	-0.138301	-0.076717		
2.10573	-0.008475	-0.001377	0.535317		
0.889486	-0.009126	-0.001481	0.576348		
0.349693	-0.002151	-0.000348	0.135947		

Table XII (Continued)

_				 .		
		-	Core orbital	ls of Ag		
	Exponent	1 <i>s</i>	2s	3 <i>s</i>	4s	•
	59200.7	0.017829	0.006577	0.002895	0.001211	
	6262.08	0.122548	0.045206	0.019902	0.008324	
	1238.34	0.437692	0.161458	0.071081	0.029731	
	322.838	0.546722	0.201677	0.088788	0.037137	
	533.012	-0.004717	0.097846	0.050691	0.021944	
	58.1689	0.031416	-0.651664	-0.337608	-0.146147	
	24.8194	0.022385	-0.464339	-0.240560	-0.104136	
	46.3622	0.007182	0.004866	-0.291016	-0.160996	
	7.81270	-0.023752	-0.016091	0.962512	0.532481	
	3.46159	-0.007739	-0.005243	0.313594	0.173487	
	6.74199	0.0	-0.001335	-0.001165	0.364984	
	1.41773	0.0	0.003539	0.003087	-0.967177	
	0.576501	. 0.0	0.001447	0.001262	-0.395339	
	Exponent	2p	3p	4p	Exponent	3d
	1735.30	0.025932	0.012951	0.005219	251.407	0.021490
	368.031	0.176727	0.088264	0.035566	70.0398	0.140991
	111.658	0.497419	0.248429	0.100104	25.0583	0.393122
	38.9233	0.443757	0.221628	0.089304	9.72259	0.495472
	17.7318	0.019508	-0.434385	-0.245188	3.73412	0.189571
	7.28359	0.027961	-0.622612	-0.351432		
	3.13247	0.006056	-0.134862	-0.076122		
- ,	2.27975 0.964240	-0.008319 -0.008961	-0.001385 -0.001490	0.537098		
	0.379514	-0.008961 -0.002128	-0.001490 -0.000354	0.578435 0.137378		
	0.515014	-0.002126				
	· · · · · · · · · · · · · · · · · · ·		Core orbital			
	Exponent	1s	2s	3s	4s	
	63419.7	0.017795	0.006585	0.002914	0.001237	
	6641.81	0.121941	0.045124	0.019969	0.008475	
	1305.53	0.436645	0.161580	0.071503	0.030348	
	339.065	0.548492	0.202969	0.089819	0.038122	
	562.816	-0.004724	0.096846	0.050430	0.022127	
	60.5340	0.032503	-0.666291	-0.346955	-0.152232	
	25.3230	0.022121	-0.453464	-0.236130	-0.103606	
	48.7912 8.20903	$0.007331 \\ -0.024626$	0.003174 -0.010660	$-0.294031 \\ 0.987768$	-0.165808	
	3.52093	-0.024626 -0.007389	-0.01060	0.296450	$0.557015 \\ 0.167172$	
	7.17940	0.007303	0.0	0.250450	0.372200	
	1.53027	0.0	0.0	0.0	-0.979788	
	0.634271	0.0	0.0	0.0	-0.394233	
	Exponent	2p	3p	4 p	Exponent	3d
	1830.10	0.025795	0.012968	0.005323	267.613	0.021145
	387.470	0.175966	0.088468	0.036313	74.6157	0.139563
	117.484	0.496726	0.249731	0.102505	26.7427	0.391971
	40.9617	0.444846	0.223648	0.091799	10.4118	0.496438
	18.6811	0.019782	-0.437482	-0.252805	4.01667	0.189509
	7.69051	0.028184	-0.623293	-0.360178		
	3.30337	0.005960	-0.131806	-0.076164		*
	2.46276	-0.008213	-0.001296	0.542849		
	1.05029	-0.008814	-0.001391	0.582680		
	0.417437	-0.001989	-0.000313	0.131577		
_						

Table XIII. Core orbitals of third-series transition metal atoms.

-		Core orbital	ls of Lu		
Exponent	1s	2s	3s	4 <i>s</i>	5 <i>s</i>
279598. 23294.2 3881.27 902.211 1639.48 167.268 73.1682 133.644 22.8241 9.63087 5.24098 2.20470 0.786642	$\begin{array}{c} 0.018203 \\ 0.110006 \\ 0.407866 \\ 0.590395 \\ -0.005111 \\ 0.039855 \\ 0.037506 \\ 0.010078 \\ -0.034416 \\ -0.008651 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	0.007267 0.043914 0.162819 0.235684 0.073404 -0.572184 -0.538473 0.008128 -0.027755 -0.006975 0.006468 0.001678 0.0 0.0	0.003460 0.020910 0.077528 0.112224 0.041423 -0.322895 -0.303871 -0.307483 1.05003 0.263948 -0.007403 -0.001921 0.001574 0.000457	0.001814 0.010962 0.040642 0.058831 0.012163 -0.094808 -0.089221 -0.321553 1.09808 0.276026 -1.22845 -0.318744 0.000726 0.000211	0.000726 0.004385 0.016258 0.023534 0.003265 -0.025448 -0.023949 -0.150476 0.513866 0.129171 -0.941622 -0.244321 1.03797 0.301425
0.306680 Exponent 5323.86 1069.05 315.963 109.574 48.2911 19.0424 8.23676 3.27385 1.06978 0.357016 Exponent 513.058 141.105 49.8796 19.0477 15.5887 6.00256 2.20318	$\begin{array}{c} 0.0 \\ 2p \\ 0.022732 \\ 0.156424 \\ 0.473321 \\ 0.477420 \\ 0.031693 \\ 0.038783 \\ -0.011614 \\ -0.009945 \\ 0.0 \\ 0.0 \\ 3d \\ 0.039710 \\ 0.240446 \\ 0.541472 \\ 0.365206 \\ 0.008556 \\ 0.017969 \\ 0.008640 \\ \end{array}$	3p 0.012549 0.086352 0.261289 0.263552 -0.521415 -0.638070 -0.028060 -0.024032 0.005160 0.004279 $4d$ 0.019637 0.118906 0.267770 0.180602 -0.311252 -0.653705 -0.314319	4p 0.006148 0.042304 0.128005 0.129114 -0.383746 -0.469601 0.690373 0.591278 0.012367 0.010255	5p 0.002114 0.014548 0.044021 0.044403 -0.142360 -0.174210 0.353046 0.302371 -0.661908 -0.548882	0.301425
Exponent 43.5253 12.2135 3.72448 0.993422	4f 0.127172 0.427885 0.534551 0.308482	01021010			
		Core orbita	ls of Hf		
Exponent 297070. 24526.9 4053.49 936.752 1714.10 174.234 76.1971 138.886 23.6864 9.98559 5.46938 2.31034 0.839482	1s 0.018296 0.109704 0.406680 0.591989 -0.005102 0.040050 0.038420 0.010150 -0.034724 -0.008714 0.0 0.0 0.0	$\begin{array}{c} 2s \\ 0.007327 \\ 0.043935 \\ 0.162869 \\ 0.237083 \\ 0.072201 \\ -0.566720 \\ -0.543650 \\ 0.008288 \\ -0.028355 \\ -0.007114 \\ 0.006615 \\ 0.001719 \\ 0.0 \end{array}$	3s 0.003495 0.020957 0.077688 0.113088 0.040829 -0.320478 -0.307432 -0.307136 1.05079 0.263685 -0.007723 -0.002005 0.001595	4s 0.001836 0.011007 0.040803 0.059396 0.012014 -0.094304 -0.090465 -0.322628 1.10379 0.276985 -1.23161 -0.320021 0.000839	5s 0.000747 0.004476 0.016595 0.024156 0.003259 -0.025578 -0.024537 -0.153829 0.526287 0.132066 -0.965456 -0.250864 1.06216

Table XIII (Continued)

		Core orbitals	s of Hf		
Exponent 5537.87 1108.92 327.222 113.387 50.1233 19.7916 8.59481 3.43211 1.13995 0.385126 Exponent 532.591 146.458 51.8033 19.8020 16.3295 6.31850 2.33794 Exponent	2p 0.022690 0.156019 0.472872 0.478189 0.031741 0.038993 -0.011472 -0.009905 0.0 $3d$ 0.039482 0.239644 0.541217 0.365771 0.008553 0.018130 0.008780 $4f$	3p 0.012555 0.086333 0.261662 0.264604 -0.520174 -0.639030 -0.028625 -0.024714 0.005624 0.004480 $4d$ 0.019677 0.119433 0.269730 0.182292 -0.308482 -0.653922 -0.316694	$\begin{array}{c} 4p \\ 0.006175 \\ 0.042459 \\ 0.128687 \\ 0.130134 \\ -0.384896 \\ -0.472841 \\ 0.688247 \\ 0.594252 \\ 0.012734 \\ 0.010145 \end{array}$	5p 0.002176 0.014961 0.045345 0.045855 -0.146541 -0.180025 0.362997 0.313422 -0.677002 -0.539355	
47.7940 13.5564 4.22520 1.17395	0.119968 0.418314 0.538221 0.306343				
		Core orbital	s of Ta		
Exponent 315569. 25823.0 4232.78 972.392 1792.15 181.488 79.3384 144.311 24.5528 10.2697 5.70176 2.41548 0.897028 0.347875 Exponent 5758.76 1149.90 338.756 117.285 51.9684 20.5330 8.95997 3.59524 1.21450 0.414183 Exponent 552.633 151.945 53.7751 20.5761	1s 0.018395 0.109419 0.405492 0.593567 -0.005089 0.040234 0.039374 0.010213 -0.035074 -0.008767 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.155617 0.472420 0.478963 0.031843 0.039193 -0.011374 -0.009873 0.0 0.0 $3d$ 0.039250 0.238808 0.540917 0.366410	2s 0.007390 0.043962 0.162916 0.238479 0.070989 -0.561035 -0.549039 0.008455 -0.029038 -0.007258 0.006826 0.001760 0.0 $3p$ 0.012561 0.086304 0.262002 0.265631 -0.519707 -0.639673 -0.028798 -0.024994 0.005661 0.004354 $4d$ 0.019718 0.119971 0.271742 0.184075	3s 0.003531 0.021006 0.077844 0.113950 0.040223 -0.317885 -0.311088 -0.306699 1.05337 0.263294 -0.009798 -0.002525 0.002023 0.000529 $4p$ 0.006203 0.042618 0.129378 0.131170 -0.386696 -0.475958 0.687297 0.596520 0.013038 0.010028	4s 0.001858 0.011055 0.040967 0.059968 0.011862 -0.093745 -0.091739 -0.323661 1.11163 0.277855 -1.23877 -0.319388 0.000993 0.000260 $5p$ 0.002235 0.015357 0.046622 0.047268 -0.150813 -0.185625 0.373141 0.323857 -0.690899 -0.531431	5s 0.000768 0.004567 0.016925 0.024775 0.003248 -0.025667 -0.025118 -0.157108 0.539595 0.134874 -0.991837 -0.255721 1.08229 0.282812

Table XIII (Continued)

		Çore orbital	s of Ta		
Exponent	4f	·			
51.9573	0.114401				
14.8681	0.410698				
4.71620	0.541221				
1.35274	0.304141				
1,30214	0.504141			•	
		Core orbital	ls of W		
Exponent	1 <i>s</i>	2s	3s	4s	5 s
335154.	0.018500	0.007457	0.003569	0.001882	0.000789
27186.0	0.109149	0.043994	0.021054	0.011103	0.004654
4419.44	0.404300	0.162960	0.077988	0.041126	0.017240
1009.17	0.595129	0.239876	0.114797	0.060538	0.025378
1873.86	-0.005078	0.069769	0.039614	0.011715	0.003236
189.052	0.040403	-0.555110	-0.315190	-0.093209	-0.025743
82.5986	0.040370	-0.554657	-0.314932	-0.093133	-0.025722
149.886	0.010282	0.008628	-0.306149	-0.324632	-0.160247
25.4601	-0.035392	-0.029698	1.05385	1.11747	0.551614
10.6419	-0.008840	-0.007416	0.263216	0.279107	0.137775
5.94409	0.0	0.007001	-0.010145	-1.24332	-1.01620
2.52815	0.0	0.001800	$-0.002608 \\ 0.002024$	$-0.319572 \\ 0.001092$	$-0.261196 \\ 1.09825$
0.959141 0.371598	0.0 0.0	0.0 0.0	0.002024	0.001032	0.280125
					0.200120
Exponent	2p	3p	4p	5p	•
5986.76	0.022609	0.012567	0.006231	0.002291	
1192.01	0.155217	0.086273	0.042781	0.015731	
350.573	0.471963	0.262327	0.130082	0.047833	
121.270	0.479740	0.266650	0.132225	0.048621	
53.9038	$0.031881 \\ 0.039431$	-0.518113 -0.640824	$-0.387702 \\ -0.479525$	-0.154543 -0.191145	
21.3276 9.33804	-0.039431 -0.011246	-0.040824 -0.029480	0.685551	0.382316	
3.76613	-0.011240 -0.009830	-0.025764	0.599142	0.334127	
1.29309	0.0	0.006193	0.013324	-0.703249	
0.443942	0.0	0.004626	0.009953	-0.525290	
Exponent	3d	4d			
573.176	0.039041	0.019761			
157.564	0.238095	0.120510			
55.7938	0.540907	0.273777			
21.3694	0.367320	0.185917			
17.8770	0.007480	-0.303362			
6.98434	0.018867	-0.655089			
2.62480	0.009704	-0.320350			
Exponent	4f				
56.0194	0.110073				
16.1515	0.404670			•	
5.19867	0.543708				
1.53003	0.301702				
		Core orbita	la of Do		
	_				_
Exponent	1s	2s	3 <i>s</i>	4 <i>s</i>	5 <i>s</i>
355754.	0.018600	0.007529	0.003608	0.001907	0.000811
28612.0	0.108815	0.044050	0.021109	0.011155	0.004742
4613.08	0.402755	0.163040	0.078129	0.041288	0.017551
1047.03	0.596073	0.241297	0.115630	0.061106	0.025975
1959.32	-0.005450	0.068561	$0.038995 \\ -0.312314$	0.011564 -0.092618	$0.003220 \\ -0.025787$
196.943 85.9809	$0.044213 \\ 0.038611$	-0.549112 -0.560647	-0.312314 -0.318875	-0.092618 -0.094565	-0.026787 -0.026327
155.643	0.033011	0.009227	-0.305532	-0.325574	-0.020327 -0.163331
26.3896	-0.036185	-0.030348	1.05423	1.12338	0.563570
11.0221	-0.008935	-0.007494	0.263128	0.280389	0.140663
6.19367	0.0	0.006600	-0.010303	-1.24839	-1.04089
2.64403	0.0	0.001878	-0.002930	-0.319357	-0.266275
1.02456	0.0	0.0	0.002037	0.001188	1.11366
0.396896	0.0	0.0	0.000520	0.000303	0.278060
					

Table XIII (Continued)

Exponent 2p 3p 4p 5p						
6222.08 0.022571 0.012572 0.006261 0.002248 1235.27 0.154820 0.068237 0.042945 0.016106 362.677 0.471501 0.2626833 0.130767 0.049950 125.343 0.440521 0.267657 0.133289 0.049988 55.9016 0.031903 -0.516180 -0.388474 -0.158191 22.1526 0.039688 -0.642131 -0.483265 -0.196790 9.72767 -0.011116 -0.030303 0.6883633 0.391461 3.94401 -0.009784 -0.026674 0.601797 0.344600 1.37649 0.0 0.006650 0.013621 -0.714701 0.476413 0.0 0.004984 0.009912 -0.520079 Exponent 3d 4d 594.156 0.038818 0.019806 163.299 0.237257 0.121055 57.8548 0.540569 0.275814 0.225835 0.225814 0.225835 0.237257 0.019806 0.058025 0.157777 18.6824 0.007449 -0.030994 7.33319 0.019806 -0.321806 0.058025 0.157777 18.6824 0.007449 -0.030994 0.0321806 0.009912 0.000832 0.000832 0.0019808 0.056535 0.000994 0.0019808			Core orbital	ls of Re		
8222.08	Exponent	2n	3p	4 <i>p</i>	5p	
1235.27	<u>-</u>					
362.677						
125.343						
55.9016						
22.1526						
9.72767						
3.94401						
1.37649						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Exponent 3d 4d 594.156						•
534.156	0.476413			0.009912	-0.520079	
163.299	Exponent	3d	4d			,
163.299	594.156	0.038818	0.019806			
\$7.8548	163.299					
22.1805	57.8548					
18.6824 0.007449 -0.300994 7.33319 0.019080 -0.655935 2.77587 0.009840 -0.321806 Exponent 4f 60.2216 0.106024 17.4772 0.398790 5.69726 0.546035 1.71425 0.300256 Exponent 1s 2s 3s 4s 5s 377690. 0.018718 0.007602 0.003648 0.001932 0.000832 30119.8 0.108573 0.044096 0.021162 0.011206 0.004825 4815.52 0.401534 0.163080 0.078262 0.041444 0.017843 1086.20 0.597557 0.242694 0.116468 0.061676 0.026554 2048.93 -0.005443 0.067329 0.038371 0.011413 0.003200 205.182 0.044607 -0.542715 -0.309294 -0.091997 -0.025794 88.4939 0.039462 -0.566736 -0.322983 -0.096069 -0.026937 161.586 0.011098 0.009435 -0.304835 -0.326437 -0.166234 27.3432 -0.036542 -0.031064 1.05454 1.12297 0.575066 11.4128 -0.009016 -0.007666 0.263109 0.281753 0.143479 6.45090 0.0 0.006767 -0.010689 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006767 -0.010699 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.006869 -0.002401 0.1213 -0.11046 -0.030485 -0.030390 0.33864 1.42112 -0.009751 -0.026913 0.039390 0.33864 1.42112 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.4212 -0.009751 -0.026913 0.603390 0.33864 1.66.1688 0.038591 0.019848 169.176 0.236383 0.121579 5.9.662 0.540209 0.277835 2.30112 0.368784 0.189670 19.5062 0.007426 -0.298						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Exponent 4f 60.216						
Exponent $4f$ 60.2216 0.106024 17.4772 0.398790 5.69726 0.546035 1.71425 0.300256 0.546035 1.71425 0.300256 0.546035 0.71425 0.300256 0.546035 0.71425 0.300256 0.003648 0.001932 0.000832 0.00832 0.01988 0.018718 0.007602 0.003648 0.001932 0.000832 0.00832 $0.0119.8$ 0.108573 0.044096 0.021162 0.011206 0.004825 0.001534 0.163080 0.078262 0.041444 0.017843 0.08620 0.078262 0.041444 0.017843 0.08620 0.059757 0.242694 0.0116468 0.061676 0.026554 0.08682 0.08682 0.08682 0.08687 0.08871 0.011413 0.003200 0.085182 0.044607 0.542715 0.039294 0.019197 0.025794 0.085182 0.044607 0.0547215 0.039294 0.091997 0.025794 0.091997 0.0039462 0.009199 0.008435 0.009435 0.009435 0.009435 0.009435 0.009408						
60.2216						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•				•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.71425	0.300256				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Core orbital	ls of Os		
377690. 0.018718 0.007602 0.003648 0.001932 0.000832 30119.8 0.108573 0.044096 0.021162 0.011206 0.004825 4815.52 0.401534 0.163080 0.078262 0.041444 0.017843 1086.20 0.597557 0.242694 0.116468 0.061676 0.026554 2048.93 -0.005443 0.067329 0.038371 0.011413 0.003200 205.182 0.044607 -0.542715 -0.309294 -0.091997 -0.025794 89.4939 0.039462 -0.566736 -0.322983 -0.096069 -0.026937 161.586 0.011098 0.009435 -0.304835 -0.326437 -0.166234 27.3432 -0.036542 -0.031064 1.05454 1.12927 0.575066 11.4128 -0.009016 -0.007666 0.263109 0.281753 0.143479 6.45090 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.0001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.0 0.00515 0.000322 0.278669 Exponent 2p 3p 4p 5p 6464.96 0.022535 0.012578 0.006290 0.002401 1279.73 0.154426 0.086192 0.043105 0.016454 375.075 0.471037 0.262905 0.131481 0.050188 129.505 0.481306 0.268637 0.134347 0.051282 57.8999 0.032011 -0.515553 -0.390236 -0.161990 22.9503 0.039918 -0.642904 -0.486631 -0.202004 10.1213 -0.011046 -0.030485 0.683508 -0.400850 4.12412 -0.009751 -0.026913 0.603390 0.353864 1.46244 0.0 0.006828 0.013846 -0.725321 0.509163 0.0 0.004855 0.009845 -0.515698 Exponent 3d 4d 615.688 0.038591 0.019848 169.176 0.236393 0.121579 59.9652 0.540209 0.277835 23.0112 0.368784 0.189670 19.5062 0.007426 -0.298829 7.69103 0.0019299 -0.656926	E-manant	1 -			4.5	· E.
30119.8	- ·					
4815.52 0.401534 0.163080 0.078262 0.041444 0.017843 1086.20 0.597557 0.242694 0.116468 0.061676 0.026554 2048.93 -0.005443 0.067329 0.038371 0.011413 0.003200 205.182 0.044607 -0.542715 -0.309294 -0.091997 -0.025794 89.4939 0.039462 -0.566736 -0.322983 -0.96069 -0.026937 161.586 0.011098 0.009435 -0.304835 -0.326437 -0.166234 27.3432 -0.036542 -0.031064 1.05454 1.12927 0.575066 11.4128 -0.009016 -0.007666 0.263109 0.281753 0.143479 6.45090 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.002037 0.001272 1.12617 0.424973 0.471037 0.26290 0.03418						
1086.20 0.597557 0.242694 0.116468 0.061676 0.026554 2048.93 -0.005443 0.067329 0.038371 0.011413 0.003200 205.182 0.044607 -0.542715 -0.309294 -0.091997 -0.025794 89.4939 0.039462 -0.566736 -0.322983 -0.096069 -0.026937 161.586 0.011098 0.009435 -0.304835 -0.326437 -0.166234 27.3432 -0.036542 -0.031064 1.05454 1.12927 0.575066 11.4128 -0.099016 -0.007666 0.263109 0.281753 0.143479 6.45090 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.002037 0.001272						
2048.93 -0.005443 0.067329 0.038371 0.011413 0.003200 205.182 0.044607 -0.542715 -0.309294 -0.091997 -0.025794 89.4939 0.039462 -0.566736 -0.304835 -0.36437 -0.166234 27.3432 -0.036542 -0.031064 1.05454 1.12927 0.575066 11.4128 -0.009016 -0.007666 0.263109 0.281753 0.143479 6.45090 0.0 0.006767 -0.010669 -1.25380 -1.06502 2.76355 0.0 0.001924 -0.003034 -0.318875 -0.270864 1.09364 0.0 0.0 0.002037 0.001272 1.12617 0.423951 0.0 0.0 0.000515 0.000322 0.278669 Exponent 2p 3p 4p 5p 6464.96 0.022535 0.012578 0.006290 0.002401 1279.73 0.154426 0.86192 0.043105 0.016454 375.075 0.471037 0.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
89.4939						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.423951	0.0	0.0	0.000515	0.000322	0.278669
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exponent	2p	3p	4p	5p	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.130010	2.22000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$egin{array}{cccccccccccccccccccccccccccccccccccc$						
$egin{array}{cccccccccccccccccccccccccccccccccccc$						
$egin{array}{cccccccccccccccccccccccccccccccccccc$						
7.69103 0.019299 -0.656926		0.368784				
2.93120 0.009969 -0.322972						
	2.93120	0.009969	-0.322972			

Table XIII (Continued)

Table IIII (Commun	·>,				
		Core orbital	s of Os		
Exponent	4f				
64.3538	0.102788				
18.7848	0.394043				
6.19100	0.548015				
1.89806	0.298472				
		Core orbita	le of Ir		
1 7	4			4	۳.
Exponent	1s	2s	3s	4s	58
400907.	0.018842	0.007678	0.003690	0.001958	0.000853
31706.4	0.108347	0.044151	0.021217	0.011259	0.004905
5026.45 1126.64	0.400306	0.163124	0.078388	0.041596	0.018122
2142.85	$0.599009 \\ -0.005434$	0.244095 0.066093	$0.117298 \\ 0.037739$	$0.062244 \\ 0.011261$	$0.027117 \\ 0.003178$
213.792	0.045013	-0.536095	-0.306112	-0.091342	-0.025778
93.1417	0.040332	-0.573073	-0.327227	-0.097642	-0.027756
167.740	0.011194	0.009649	-0.303993	-0.327144	-0.168936
28.2967	-0.036910	-0.031814	1.05714	1.13764	0.587476
11.6924	-0.009101	-0.007845	0.263375	0.283432	0.146363
6.71161	0.0	0.006945	-0.013563	-1.26412	-1.09170
2.88022	0.0	0.001973	-0.003853	-0.316460	-0.273294
1.16571	0.0	0.0	0.002625	0.001407	1.13704
0.452496	0.0	0.0	0.000663	0.000355	0.280483
Exponent	2p	3p	4p	5p	
6715.64	0.022500	0.012583	0.006320	0.002452	
1325.41	0.154036	0.086146	0.043267	0.016784	
387.773	0.470568	0.263171	0.132177	0.051273	
133.759	0.482093	0.269617	0.135414	0.052529	
60.0037	0.032017	-0.513234	-0.390708	-0.165072	
23.8278	0.040200	-0.644398	-0.490559	-0.207259	
10.5312 4.31324	-0.010923 -0.009704	$-0.031462 \\ -0.027956$	0.681772 0.605800	0.408918 0.363351	
1.55209	0.0	0.007615	0.014101	-0.734840	
0.542914	0.0	0.005310	0.009833	-0.512437	
Exponent	3d	4d			
637.716	0.038367	0.019888			
175.181	0.235530	0.122091			
62.1208	0.539836	0.279834			
23.8603	0.369559	0.191567			
20.3490	0.007413	-0.296813			
8.05817	0.019521	-0.658027			
3.09080	0.010086	-0.323945			
Exponent	4f				
68.5102	0.100023				
20.1015	0.390024				
6.68914	0.550024				
2.08440	0.296919				
		Core orbita	ls of Pt		
Exponent	1s	2 <i>s</i>	3s	4s	5 <i>s</i>
425651.	0.018990	0.007753	0.003732	0.001984	0.000874
33386.4	0.108247	0.044193	0.021271	0.011309	0.004981
5247.26	0.399521	0.163110	0.078509	0.041741	0.018384
1168.51	0.601198	0.245447	0.118139	0.062811	0.027665
2241.38	-0.005012	0.064833	0.037110	0.011110	0.003154
222.791	0.040910	-0.529023	-0.302809	-0.090650	-0.025734
96.9315	0.044808	-0.579435	-0.331664	-0.099290	-0.028188
174.079	0.010536	0.009382	-0.303140	-0.327824	-0.171523
$29.3000 \\ 12.1032$	$-0.036744 \\ -0.009157$	-0.032721 -0.008154	1.05726 0.263511	1.14335 0.284968	$0.598218 \\ 0.149100$
6.98484	-0.009157 0.0	-0.008154 0.007922	-0.014280	-1.26988	-1.11486
3.00697	0.0	0.001969	-0.003550	-0.315697	-0.277159
1.24155	0.0	0.0	0.002584	0.001474	1.14622
0.482958	0.0	0.0	0.000640	0.000365	0.283922

tile XIII (Continued)

		Core orbital	ls of Pt		
Evmanant	25	3 <i>p</i>		F	
Exponent	2p		$4p \\ 0.006349$	5 <i>p</i>	
6974.37	0.022466	0.012588	0.006349	0.002500	
1372.34	0.153648	0.086092 0.263403	0.132852	0.017095	
400.777	0.470095	0.270569	0.136466	0.052302	
138.105	$0.482885 \\ 0.032129$	-0.512527	-0.392386	0.053725	
62.0925 24.6643	0.040448	-0.645244	-0.493993	-0.168495 -0.212126	
10.9434	-0.010872	-0.031651	0.682145	0.417650	
4.50339	-0.010672 -0.009674	-0.031031	0.606975	0.371627	
1.64414	0.0	0.007566	0.014288	-0.743890	
0.577351	0.0	0.007300	0.009786	-0.509515	
Exponent	3d	4d			
660.314	0.038115	0.019923		4	
181.331	0.234495	0.122576			
64.3263	0.539093	0.281796			
24.7291	0.370135	0.193478			
21.2094	0.008624	-0.294974			
8.43384	0.019273	-0.659208			
3.25433	0.009494	-0.324720			
Exponent	4f				
72.6335	0.097672				
21.4118	0.386413				
7.18690	0.551350				
2.27195	0.294935				
		Core orbital	s of Au		
France and	1.	2s	3s	4 s	5 <i>s</i>
Exponent	1s			•	
451565.	0.019108	0.007839	0.003777	0.002012	0.000895
35139.4	0.107929	0.044280	0.021334	0.011365	0.005056
5475.94 1211.58	0.397792	0.163202 0.246906	$0.078629 \\ 0.118956$	$0.041888 \\ 0.063372$	$0.018636 \\ 0.028194$
2342.28	$0.601814 \\ -0.005412$	0.063661	0.116530	0.010969	0.028194
233.041	0.045810	-0.517471	-0.296710	-0.089157	-0.025447
101.536	0.042188	-0.517471 -0.590217	-0.338422	-0.101693	-0.029023
180.700	0.011386	0.010712	-0.301548	-0.328065	-0.173814
30.3109	-0.037662	-0.035433	1.05618	1.14905	0.608787
12.5332	-0.009287	-0.008738	0.263346	0.286504	0.151794
7.27591	0.0	0.008423	-0.014086	-1.27388	-1.13562
3.14729	0.0	0.002380	-0.003979	-0.317072	-0.282660
1.32035	0.0	0.0	0.002555	0.001405	1.15407
0.514732	0.0	0.0	0.000653	0.000359	0.288135
Exponent	2p	3p	4p	5p	
7241.40	0.022434	0.012594	0.006379	0.002545	
1420.55	0.153263	0.086038	0.043577	0.017388	
414.094	0.469619	0.263634	0.133527	0.053279	
142.546	0.483678	0.271526	0.137524	0.054875	
64.3316	0.032117	-0.509793	-0.392485	-0.171060	
25.5994	0.040756	-0.646926	-0.498063	-0.217075	
11.3745	-0.010749	-0.032808	0.680382	0.424739	
4.70372	-0.009624	-0.029379	0.609275	0.380349	
1.73996	0.0	0.008522	0.014519	-0.751781	
0.612793	0.0	0.005755	0.009805	-0.507703	
Exponent	3d	4d			
683.273	0.037931	0.019965			
187.579	0.233821	0.123069			
66.5684	0.539066	0.283731			
25.6136	0.371145	0.195347			
22.0910	0.007389	-0.293189			
8.81953	0.019967	-0.660466			
3.42219	0.010307	-0.325429			

Table XIII (Continued)

Core orbitals of Au									
Exponent 76.8547 22.7518 7.69560 2.46375	4f 0.095529 0.383239 0.553030 0.293527								
Core orbitals of Hg									
Exponent 479105. 36992.2 5715.06 1256.15 2450.48 242.993 105.660 187.466 31.3687 12.9696 7.56813 3.28026 1.40437 0.555726 Exponent 7517.22 1470.12 427.737 147.085 66.5281 26.4781 11.8083 4.90483 1.84497 0.659196 Exponent 706.779 193.964	1s 0.019253 0.107756 0.396555 0.603199 -0.005401 0.046222 0.043157 0.011481 -0.038051 -0.009386 0.0	Core orbital 2s 0.007925 0.044356 0.163235 0.248296 0.062417 -0.510010 -0.597335 0.010956 -0.036307 -0.008958 0.008650 0.002440 0.0 0.0 3p 0.012599 0.085974 0.263831 0.272460 -0.508992 -0.647840 -0.033014 -0.029592 0.008444 0.005593 4d 0.0200000 0.123527	3s 0.003823 0.021396 0.078740 0.119771 0.035865 -0.293056 -0.343234 -0.300456 1.05596 0.263629 -0.014448 -0.004074 0.002553 0.000637 4p 0.006407 0.043723 0.134173 0.138561 -0.394033 -0.501521 0.680851 0.610280 0.014748 0.009767	4s 0.002041 0.011421 0.042029 0.063930 0.010820 -0.088408 -0.103546 -0.328538 1.15465 0.288269 -1.28001 -0.316275 0.001588 0.000396 $5p$ 0.002603 0.017763 0.054510 0.056293 -0.175137 -0.222912 0.435543 0.390399 -0.761527 -0.504349	5s 0.000920 0.005150 0.018954 0.028832 0.003115 -0.025452 -0.029810 -0.176881 0.621650 0.155201 -1.16392 -0.287590 1.17159 0.285152				
68.8575 26.5162 23.0008 9.22074 3.59723 Exponent 81.3372 24.1795 8.24190 2.67438	$0.538682 \\ 0.371932 \\ 0.007370 \\ 0.020173 \\ 0.010424 \\ 4f \\ 0.093119 \\ 0.379054 \\ 0.553968 \\ 0.293372$	0.285599 0.197191 -0.291163 -0.661399 -0.326750							

These orbitals also will be used for the spd-MPs, which will be presented in a later paper. In the MP calculation with spd-MPs the 3p, 4p, and 5p orbitals for the first, second, and third series, respectively, have to be omitted from the core orbitals, because they are treated as the valence orbitals in the spd-MPs.

The authors (Y.S. and E.M.) are very grateful to Professor Keiji Morokuma for his encouragement during the preparation of the model potentials in the present work. The calculations were carried out at the computer centers of the Institute for Molecular Science, Kyushu University, and the University of Alberta.

References

- 1. R. N. Dixon and I. L. Robertson, Theoretical Chemistry, R. N. Dixon and I. L. Robertson, Eds., Chemical Society, London, 1978, p. 100, Vol. 3.
- 2. S. Topiol, J. W. Moskowitz, and C. F. Melius, J.
- Chem. Phys., 68, 2364 (1978).
 3. S. Topiol, J. W. Moskowitz, and C. F. Melius, J. Chem. Phys., 70, 3008 (1979).
- 4. P.A. Christiansen, Y.S. Lee, and K.S. Pitzer, J. Chem. Phys., 71, 4445 (1979).

- I. Ortega-Blake, J. C. Barthelat, E. Costes-Puech, E. Oliveros, and J. P. Daudey, J. Chem. Phys., 76, 4130 (1982).
- L.S. Bartell, M.J. Rothman, and A. Gavezzotti, J. Chem. Phys., 76, 4136 (1982).
- 1. Y. Sakai, J. Chem. Phys., 75, 1303 (1981).
- Y. Sakai and S. Huzinaga, J. Chem. Phys., 76, 2537 (1982).
- Y. Sakai and S. Huzinaga, J. Chem. Phys., 76, 2552 (1982).
- J. Andzelm, S. Huzinaga, M. Klobukowski, and E. Radzio-Andzelm, Mol. Phys., 52, 1495 (1981).
- S. Huzinaga, M. Klobukowski, and Y. Sakai, J. Phys. Chem., 88, 4880 (1984).
- 3. M. Klobukowski, J. Comput. Chem., 4, 350 (1983).
- W. C. Ermler, Y. S. Lee, K. S. Pitzer, and N. W. Winter, J. Chem. Phys., 69, 976 (1978).
- L. R. Kahn, P.J. Hay, and R.D. Cowan, J. Chem. Phys., 68, 2386 (1978).
- 5. P.J. Hay, W.R. Wadt, L.R. Kahn, and F.W. Bobrowicz, J. Chem. Phys., 69, 984 (1978).
- β 6. P. Hafner and W. H. E. Schwarz, J. Phys. B 11, 217 (1978).
- S. H. Datta, C. S. Ewig, and J. R. VanWazer, *Chem. Phys. Lett.*, 57, 83 (1978).
- \$8. G.B. Bachelet, D.R. Hamann, and M. Schluter, Phys. Rev. B, 26, 4199 (1982).
- Y. Ishikawa and G.L. Malli, J. Chem. Phys., 75, 5423 (1981).
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1984).

- W. R. Wadt and P.J. Hay, J. Chem. Phys., 82, 284 (1984).
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1984).
- V. Bonifacic and S. Huzinaga, J. Chem. Phys., 60, 2779 (1974).
- 24. H. Tatewaki and S. Huzinaga, *J. Comput. Chem.*, 1, 205 (1980).
- H. Tatewaki and S. Huzinaga, J. Chem. Phys., 71, 4339 (1979).
- 26. Y. Sakai, H. Tatewaki, and S. Huzinaga, *J. Comput. Chem.*, **2**, 100 (1981).
- Y. Sakai, H. Tatewaki, and S. Huzinaga, J. Comput. Chem., 2, 108 (1981).
- 28. E. Miyoshi, Y. Sakai, and S. Mori, *Chem. Phys. Lett.*, 113, 457 (1985).
- E. Miyoshi, Y. Sakai, and S. Mori, Surf. Sci., 158, 667 (1985).
- 30. Ch. Froese-Fischer, The Hartree-Fock Method for Atoms, Wiley, New York, 1977.
- 31. R. D. Cowan and D. C. Griffin, J. Opt. Soc. Am., 66, 1010 (1976).
- 32. T.H. Dunning, Jr., and P.J. Hay, Modern Theoretical Chemistry, H. F. Schaefer, III, Ed., Plenum, New York, 1977, Vol. 3, p. 1.
- S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam, 1984.
- 34. P.J. Hay, J. Chem. Phys., 66, 4377 (1977).
- 35. K. Kitaura, private communication.