

DM74197 Presettable Binary Counters

General Description

The '197 ripple counter contains divide-by-two and divide-by-eight sections which can be combined to form a modulo-16 binary counter. State changes are initiated by the falling edge of the clock. The '197 has a Master Reset ($\overline{\rm MR}$) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input ($\overline{\rm PL}$) overrides

clocked operations and asynchronously loads the data on the Parallel Data inputs (P_n) into the flip-flops. This preset feature makes the circuit usable as a programmable counter. The circuit can also be used as a 4-bit latch, loading data from the Parallel Data inputs when \overline{PL} is LOW and storing the data when \overline{PL} is HIGH.

Connection Diagram

Dual-In-Line Package

TL/F/9784-1

Order Number DM74197N See NS Package Number N14A

Pin Names	Description		
CP0	÷ 2 Section Clock Input		
	(Active Falling Edge)		
CP1	÷8 Section Clock Input		
	(Active Falling Edge)		
MR	Asynchronous Master Reset Input		
	(Active LOW)		
P0-P3	Parallel Data Inputs		
PL	Asynchronous Parallel Load Input		
	(Active LOW)		
Q0	÷ 2 Section Output*		
Q1-Q3	÷8 Section Outputs		

^{*}Q0 output is guaranteed to drive the full rated fan-out plus the CP1 input.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 5.5V

Operating Free Air Temperature Range DM74

0°C to +70°C

Storage Temperature Range

-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM74197			Units
		Min Nom		Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage	2			٧
V _{IL}	Low Level Input Voltage			0.8	٧
loh	High Level Output Current			-0.25	mA
l _{OL}	Low Level Output Current			16	mA
TA	Free Air Operating Temperature	0		70	°C
t _s (H) t _s (L)	Setup Time HIGH or LOW Pn to PL	10 15			ns
t _h (H) t _h (L)	Hold Time HIGH or LOW	0			ns
t _w (H)	CP0 Pulse Width HIGH	20			ns
t _w (H)	CP1 Pulse Width HIGH	30			ns
t _w (L)	PL Pulse Width LOW	20			ns
t _w (L)	MR Pulse Width LOW	15			ns
t _{rec}	Recovery Time PL to CPn	20			ns
t _{rec}	Recovery Time MR to CPn	20			ns

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -12 \text{ mA}$			-1.5	٧
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _{OH} = Max V _{IL} = Max	2.4	3.4		٧
V _{OL}	Low Level Output Voltage	V _{CC} = Min, I _{OL} = Max V _{IH} = Min		0.2	0.4	٧
Iį	Input Current @ Max Input Voltage	V _{CC} = Max, V ₁ = 5.5V			1	mA
l _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 5.5V, \overline{CP}_1$			1	mA
		V _{CC} = Max, V _I = 2.4V			40	μΑ
I _I L	Low Level Input Current	$V_{CC} = Max, V_1 = 0.4V$			-1.6	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-18		-57	mA
lcc	Supply Current	V _{CC} = Max, All Inputs = GND			59	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time.

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)

Symbol	Parameter	$C_L = 15 pF$ $R_L = 400 \Omega$		Units
	i arameter			
**		Min	Max	
f _{max}	Maximum Count Frequency at CP0	50		MHz
f _{max}	Maximum Count Frequency at CP1	25		MHz
t _{PLH} t _{PHL}	Propagation Delay CP0 to Q0		12 15	ns
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q1		18 21	ns
t _{PLH} t _{PHL}	Propagation Delay CP1 to Q2		36 42	ns
^t PLH ^t PHL	Propagation Delay CP1 to Q3		54 63	ns
^t PLH ^t PHL	Propagation Delay P _n to Q _n		24 38	ns
t _{PLH} t _{PHL}	Propagation Delay PL to Q _n		33 36	ns
t _{PHL}	Propagation Delay MR to Q _n		37	ns

Logic Symbol

Mode Selection Table

inputs			Response
MA	PL	CP	Tiesponse
L	Х	Х	Q _n Forced LOW
Н	L	Χ	$P_n \rightarrow Q_n$
Н	Н	~	Count Up

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Logic Diagram

