Calculus: #1. Basic Properties of Numbers

Last modified on 2017-03-01

Alexandre Leibler

Problem 1

Prove the following:

- (i). If ax = a for some number $a \neq 0$, then x = 1.
- (ii). $(x^2 y^2) = (x y)(x + y)$.
- (iii). If $x^2 = y^2$, then x = y or x = -y.
- (iv). $(x^3 y^3) = (x y)(x^2 + xy + y^2)$.
- (v). $(x^n y^n) = (x y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}).$
- (vi). $(x^3 + y^3) = (x + y)(x^2 xy + y^2)$.

Problem 2

What is wrong with the following "proof"? Let x = y. Then

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x+y = y,$$

$$2y = y,$$

$$2 = 1.$$

Problem 3

(i).
$$\frac{a}{b} = \frac{ac}{bc}$$
, if $b, c \neq 0$.

(ii).
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, if $b, d \neq 0$.

(iii).
$$(ab)^{-1} = a^{-1}b^{-1}$$
, if $a, b \neq 0$.

(iv).
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$$
, if $b, d \neq 0$.

(v).
$$\frac{a}{b} / \frac{c}{d}$$
, if $b, c, d \neq 0$.

(vi). If
$$b, d \neq 0$$
, then $\frac{a}{b} = \frac{c}{d}$ if and only if $ad = bc$. Also determine when $\frac{a}{b} = \frac{b}{a}$.

Problem 4

Find all numbers x for which

- (i). 4 x < 3 2x.
- (ii). $5 x^2 < 8$.
- (iii). $5 x^2 < -2$.
- (iv). (x-1)(x-3) > 0.
- (v). $x^2 2x + 2 > 0$.
- (vi). $x^2 + x + 1 > 2$.
- (vii). $x^2 x + 10 > 16$.
- (viii). $x^2 + x + 1 > 0$.
- (ix). $(x-\pi)(x+5)(x-3) > 0$.
- (x). $(x \sqrt[3]{2})(x \sqrt{2}) > 0$.
- (xi). $2^x < 8$.
- (xii). $x + 3^x < 4$.
- (xiii). $\frac{1}{x} + \frac{1}{1-x} > 0$.
- (xiv). $\frac{x-1}{x+1} > 0$.