New Automation Technology

TwinCAT CNC Training

TwinCAT CNC Training

Systemübersicht

TwinCAT HMI Training

Agenda

- Vorstellung der Beckhoff CNC HMI Applikationsbasis
- Vorstellung einzelner Funktionen
 - Nutzerverwaltung
 - Sprachumschaltung
 - Einstellungen
 - CNC Ansicht
 - NPV Tabelle
 - SPS Maschinendaten
- Anpassungsmöglichkeiten
 - Parametrierungsmöglichkeiten über den Menü Manager
 - Einbindung in Visual Studio

Die HMI Applikationsbasis (V 2.3.x)

- Beckhoff stellt zur Kommunikation mit ADS Geräten (z.B. SPS oder CNC) diverse Bibliotheken zur Verfügung.
- Diese lassen sich mit den entsprechenden Programmiersprachen und deren Entwicklungsumgebungen einsetzen. Dazu zählen u.a.:
 - Visual Basic
 - C / C++
 - Skriptsprachen (VBScript, JScript)
 - VB.NET, C#
 - Java
- Die hier vorgestellte HMI Applikation zeigt beispielhaft, wie auf dieser Grundlage eine industrietaugliche Visualisierungslösung für CNC-Maschinen erstellt werden kann.
- Die folgenden Ausführungen beziehen sich auf die CNC HMI ab Version 2.3.2!

Die HMI Applikationsbasis (V 2.3.x)

- Vollständige Visualisierungslösung (nicht nur) für CNC Maschinen.
- Kostenfrei (kein offizielles Produkt, kein Support) nutzbar als:
 - Beispielapplikation
 - Übergangslösung
- Kostenbehaftet im Rahmen von:
 - Applikationsprojekten
- Entwickelt mit C# (Windows Forms)
- Erweiterbar durch:
 - Konfiguration (z.B. Tastenbelegung, Logo,....)
 - Einbindung eigener CIL Klassenbibliotheken

TwinCAT CNC Training

Vorstellung der wichtigsten Features - Basics

 Die CNC HMI (kurz: HMI) kann mit ihrer Ordnerstruktur an einem beliebigen Ort auf einem Laufwerk des Steuerungs- oder Remote- PC's abgelegt werden.

- Es ist keine Installation / Registrierung erforderlich
- Gestartet wird Sie durch die "Beckhoff.App.Shell.Core.exe "
- Nach dem Start präsentiert sich die HMI mit der eingestellte Defaultform

Vorstellung der wichtigsten Features - Basics

Vorstellung der wichtigsten Features - Nutzerverwaltung

Die HMI beinhaltet eine flexible Nutzerverwaltung, mit der beliebig viele Nutzer – eingeteilt in sechs verschiedene Nutzergruppen – inkl. Passwort konfiguriert werden können.

TwinCAT CNC Training

Vorstellung der wichtigsten Features - Sprachumschaltung

- Ebenfalls vorhanden ist eine Sprachumschaltung.
- Die verschiedenen Texte werden in einer Access Datenbank abgelegt (zu finden unter "...\System\Texte.mdb) und können entweder über die HMI oder ein externes Programm editiert werden.

Vorstellung der wichtigsten Features - Logging

- Wichtige Stör- und Statusmeldungen aus der HMI und auch aus der SPS/CNC werden in Logdateien protokolliert (zu finden unter "...\Log\Program.log").
- Genutzt wird dabei das Open Source Logging Framework "log4net" (mehr unter http://logging.apache.org/log4net/index.html)
- Die entsprechende Konfigurationsdatei befindet sich unter "…\System\log.xml"

Vorstellung der wichtigsten Features - Settings

- Einstellungen, die das Erscheinungsbild oder das Verhalten der HMI beeinflussen, werden in den sog. Settings abgelegt.
- Diese können über die HMI geändert werden.
- Manche Einstellungen erfordern einen Neustart der HMI um wirksam zu werden.
- Der Umfang der Einstellungen hängt von Art und Anzahl der optionalen Features ab und ist meistens stark kundenabhängig

Neben den bisher vorgestellten - für viele Applikationen grundlegend wichtigen -Infrastrukturkomponenten, verfügt die HMI über eine Reihe weiterer nützlicher Funktionen.

- Diese können einen applikationsspezifischen Hintergrund haben, oder auch allgemein gültig sein.
- Die hohe Flexibilität des HMI Applikationsrahmens erlaubt es, solche Funktionen per Konfiguration nutzbar zu machen, als auch diese gänzlich zu entfernen.
- Zwei dieser Komponenten werden im Folgenden kurz erörtert:
 - Nullpunktverschiebungstabelle f
 ür CNC
 - SPS Maschinendatenverwaltung

Vorstellung weiterer Features

Vorstellung weiterer Features - Nullpunktverschiebungen

- Die Nullpunktverschiebungstabelle in der HMI erlaubt das Einstellen der Nullpunktverschiebungsdaten für die CNC, ohne das dazu der System Manager bemüht werden muss.
- Die so konfigurierten NPV-Daten k\u00f6nnen in einer externen Datei abgelegt und bei Bedarf (auch automatisch) wieder geladen werden.
- Achtung: Die so eingestellten NPV-Daten werden nur bei Start der HMI geladen.
 Existiert eine zweite Oberfläche, die dies nicht tut, verfügt die CNC nach einem Neustart nicht über die entsprechenden Werte!

Index	X	Υ	Z
G54	2.00	12.00	0.00
G55	0.00	0.00	0.00
G56	0.00	0.00	0.00
G57	0.00	0.00	0.00
G58	0.00	0.00	0.00
G59	0.00	0.00	0.00

Vorstellung weiterer Features - Maschinendaten

- Maschinendaten (Einstellungswerte, die in der SPS verfügbar sind) können in der HMI mit Hilfe der Klassen aus dem Plugin "Beckhoff.App.PlcStructure.dll" verwaltet werden.
- Die entsprechenden Werte müssen in der SPS mit einem bestimmten Deklarationskommentar versehen werden, um sie als lad- und speicherbare Maschinendaten kenntlich zu machen.
- Nähere Informationen hierzu findet man in der Dokumentation unter "…\Doku\PlcStructure.pdf"

Anpassungsmöglichkeiten – Der Menu Manager

- Beim Menu Manager handelt es sich um eine Komponente, die insbesondere die Belegung der Funktionstasten in der Navigationsleiste verwaltet.
- Die Tastenbelegung wird zur Laufzeit der HMI eingestellt:
 - Durch manuelle Konfiguration
 - Durch Programmcode
- Die manuelle Konfiguration wird in der Datei "...\System\tcMenu.xml" gespeichert
- Weitere Informationen zum Menu Manager befinden sich unter "…\Doku\Menumanager.pdf"
- Den Konfigurationsmodus erreicht und verlässt man bei gedrückten Strg und Alt Tasten durch Klick auf eine der Schaltflächen in der Navigationsleiste.

Anpassungsmöglichkeiten – Der Menu Manager

- Im Konfigurationsmodus erscheint nach Anklicken einer der Schaltflächen ein Dialogfenster, mit dem deren Verhalten eingestellt werden kann.
- Es lassen sich:
 - der Funktionstyp
 - die Zugriffsberechtigung
 - der Anzeigetext (inkl. Schlüssel für die Sprachdatenbank)
 - das Schaltflächensymbol

sowie

 Vorder- und Hintergrundfarbe einstellen.

Anpassungsmöglichkeiten – Der Menu Manager

Es stehen folgende Funktionstypen zur Verfügung:

Form	Öffnet die unter Datal angegebene Form. Diese muss dem Menu Manager ggf. über die Forms List bekannt gemacht werden.	
callMethod	Ruft eine public void deklarierte Methode in der aktuellen Form auf. Diese darf max. einen Übergabeparameter haben.	
Back	Springt zurück zur aufrufenden Form.	
startProcess	Startet eine externe Anwendung.	
ShutDown	Beendet die HMI und fährt den Rechner herunter.	
ExitProgram	Beendet die HMI	
PlcSetAndResetVar	Setzt die unter Datal angegebene BOOL Variable in der PLC bei Betätigen der Schaltfläche und nach deren Freigabe wieder zurück.	
PlcToggleVarAndFeedback	Toggelt die unter Data1 angegebene BOOL Variable in der PLC.	
PlcToggleVarAndFeedbackImage	Toggelt die unter Data1 angegebene BOOL Variable in der PLC. Bei aktiver Variable wird das unter Data2 angegebene Image angezeigt.	

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

 Die Flexibilität des Menu Managers erlaubt es selbst entwickelte Windows Forms Klassen innerhalb der HMI zu nutzen.

X

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

 Zuvor muss das Kompilat mit seinem Inhalt dem Menu Manager jedoch bekannt gemacht werden (Schaltfläche "FormsList" im Konfigurationsdialog)

Windows Forms Steuerelementebibliothek "Training" mit Form "MyForm"

\geq

TwinCAT CNC Training

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

Die "fertige" Konfiguration…

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

... und die eigene Form in der HMI

X

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

- Eine selbst erstellte Windows Forms Klasse kann auch auf die Infrastrukturkomponenten (Logger, Sprachumschaltung, Settings, ADS,...) der HMI zugreifen.
- Dazu muss diese über einen parameterbehafteten Konstruktor verfügen. Als Parameter kommen bestimmte Schnittstellen zum Einsatz.
- Seitens der HMI werden dem Konstruktor geeignete Implementierungen dieser Schnittstellen übergeben.
- Dieser Mechanismus nennt sich "Dependency Injection" (kurz DI) und wird in der HMI über den "Unity Application Block" realisiert.
- Nähere Information dazu unter:
 - http://unity.codeplex.com/
 - http://de.wikipedia.org/wiki/Dependency_Injection

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

- Die verwendbaren Schnittstellendefinitionen befinden sich in den Klassenbibliotheken:
 - "Beckhoff.App.Ads.Core.dll"
 - "Beckhoff.App.Core.Interfaces.dll
- Diese Bibliotheken müssen im Windows Forms Projekt referenziert werden.
- Je nach gewünschter Funktion müssen ggf. noch weitere
 Bibliotheken referenziert werden.

X

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

Die wichtigsten Schnittstellen (Auswahl) sind:

IBAAdsServer	Ermöglicht Nutzung der ADS Kommunikation. Z.B. zum Lesen und Schreiben von SPS Variablen (auch ereignisgesteuert)
IBALanguage	Bietet Zugriff auf den Inhalt der Sprachdatanbank und informiert über Sprachumschaltung
IBALogger	Bietet die Möglichkeit Meldungen in die Log Datei zu schreiben.
IBAMenu	Bietet Zugriff auf den Menu Manager. Z.B zum programm- gesteuerten Belegen der Schaltflächen
IBASettings	Bietet lesenden und schreibenden Zugriff auf die Applikations- einstellungen

Anpassungsmöglichkeiten – Nutzung eigener CIL Klassen

- Die eigene Windows Forms Klasse, die über DI die Infrastruktur der HMI nutzt, kann dabei auch die volle Debuggingfunktionalität der verwendeten Entwicklungsumgebung nutzen.
- Dazu startet man die HMI nicht direkt, sondern bindet diese an den Debugger.
- In Visual Studio müssen dazu die Projekteigenschaften geändert werden.

