Homework 9: Introduction to OpenMP

Due Date: Before class on Thursday, April 28th.

We watched Tim Mattson give an introduction to OpenMP. You can find all the videos we watched in a youtube playlist, which also has links to his slides and source code.

For this assignment, the first twelve videos (ending with "Introduction to OpenMP: 10 Discussion 4") are relevant. We didn't watch all of these in class!

Calculating pi

You will follow Mattson's example, write some OpenMP code, and time it to see a parallel speedup. Specifically:

- 1. Start with the pi.c from his example code. Move the calculation loop into a function called serial_pi.
- 2. I asked you to try parallelizing the code after the second day of videos. Put that code in a function my_parallel_pi.
- 3. Mattson's presentation and example code have a few tricks that may make the parallel calculation even faster. Put that code into a function final_parallel_pi.
- 4. Have your code call the functions, timing the completion time, and print the result in a simple table. It should look like:

	executio	n time	(sec.)	for	threads:
code	1	2	3	4	
serial	10.1	_			
	10.5	8.3	6.5	5	.7
final_parallel	10.4	5.7	3.2	2	.7

5. Put a copy of the output in a comment at the top of your code, as well as information about your computer's CPU: type, speed, number of cores.

Turning it in

Make a folder labeled Homework 09 in your turn-in folder, and copy in your source code.