Abstract

???

Index terms— associative memory, error correcting code

I Introduction

II Networks of neural cliques

- 1 Learning messages
- 2 Retrieving messages
- a The "winner takes all" rule
- b The "a winners take all" rule

less biologically plausible rule same algorithmic complexity

III Retrieval performance

1 Analytical results

number of neurons per cluster lnumber of clusters cnumber of erased clusters c_e number of messages : mnumber of activities per cluster : adensity : dedge : (i,j) probability for i and j to be active in their respective clusters for one message : $\frac{a}{I}$

probability of the edge not being added in the network for one message : $1 - \left(\frac{a}{l}\right)^2$

$$d = 1 - \left(1 - \left(\frac{a}{l}\right)^2\right)^m$$

gap with density in simulations: under 1 percent

probability for a vertex v to achieve the maximum score, that is to mean $a(c-c_e)$: $d^{a(c-c_e)}$

probability for a vertex v not to achieve the maximum : $1-d^{a(c-c_e)}$

probability for none of the vertices of one erased cluster, excepting the correct ones, to achieve the maximum: $(1 - d^{a(c-c_e)})^{l-a}$

probability for none of the vertices in any erased cluster, excepting the correct ones, to achieve the maximum in their respective cluster : $(1-d^{a(c-c_e)})^{c_e(l-a)}$

Whence error rate is:

$$P_{err} = 1 - \left(1 - d^{a(c - c_e)}\right)^{c_e(l - a)}$$

2 Simulations

Improves the retrieval rate for multiple iterations and/or corrupted messages.

The simulations agree with the analytical results for density and error rate.

For one iteration (for erasures, not for errors), winner takes all is the same as a-winners take all.

Figure 1: Theoretical and empirical densities

For multiple iterations a-winners take all is a significant improvement.

"a-winners take all" better than "winner takes all" with errors instead of erasures, even for one iteration.

For errors: only better than only 1 activity per cluster if multiple iterations of the a-winners take all rule. For one iteration, it is less efficient.

Figure 2: 2 activities per cluster, 4 clusters, 512 neurons per cluster, two erasures, each point is the mean of 5 networks with 1000 sampled messagges, analytical result in continuous black

1.00 0.75 maxiterations

Figure 3: 2 activities per cluster, 4 clusters, 512 neurons per cluster, two erasures, each point is the mean of 5 networks with 1000 sampled messagges, analytical result in continuous black

10000 15000 20000 25000 number of learned messages

30000

Spéculations en Français:

Peut-être un intérêt pour cluter based associative memories build from unreliable storage: si une arête porte moins d'info, on peut peut-être en supprimer plus (mais rajout ?!)

Marche mieux pour des bruits importants
$$P(n_{v_c} = n_0) = {ac_k \choose n_0} (1 - \psi)^{n_0} \psi^{ac_k - n_0}$$

$$P_+ = \psi(1 - d) + (1 - \psi)d$$

$$P(n_v = x) = {ac_k \choose x} P_+^x (1 - P_+)^{ac_k - x}$$

Sans tenir compte du choix au hasard si plus sont activés.

Formula for errors insted of erasures:

Formula for errors insted of erasures:
$$P(n_{gc} = (c - c_e - 1) + \gamma + x) = \binom{c_e}{x} d^x (1 - d)^{ce - x}$$

$$P(n_{ge} = (c - c_e) + \gamma + x) = \binom{c_e - 1}{x} d^x (1 - d)^{c_e - 1 - x}$$

$$P(n_{abe} = \gamma + x) = \binom{c - 1}{x} d^x (1 - d)^{c - 1 - x}$$

$$P(n_{be} = x) = P(n_{bc} = x) = \binom{c - 1}{x} d^x (1 - d)^{c_e - 1 - x}$$

$$P(n_{be} = x) = P(n_{bc} = x) = \binom{c - 1}{x} d^x (1 - d)^{c_e - 1 - x}$$

Conclusion IV

References

[LPGRG14] François Leduc-Primeau, Vincent Gripon, Michael Rabbat, and Warren Gross. Cluster-based associative memories built from unreliable storage. In ICASSP, May 2014. To appear.