

Adventures in Bayesian Structural Time Series Part 1: Introduction

Andrew Bates, Josh Gloyd, Tyler Tucker

The Adventure

Structural time series

The Adventure

- Structural time series
- Bayesian approach to structural time series

The Adventure

- Structural time series
- Bayesian approach to structural time series
- Implementation via bsts in R

Predicting the Present with Bayesian Structural Time Series

Useful Resources

- Predicting the Present with Bayesian Structural Time Series
- An Introduction to State Space Time Series Analysis

- Predicting the Present with Bayesian Structural Time Series
- An Introduction to State Space Time Series Analysis
- Time Series Analysis By State Space Methods

- Predicting the Present with Bayesian Structural Time Series
- ♠ An Introduction to State Space Time Series Analysis
- Time Series Analysis By State Space Methods
- bsts documentation

- Predicting the Present with Bayesian Structural Time Series
- ♠ An Introduction to State Space Time Series Analysis
- Time Series Analysis By State Space Methods
- bsts documentation

Time Series Review

Stochastic process indexed by time

Time Series Review

- Stochastic process indexed by time
 - $\otimes \{X_t, t \in \mathbb{T}\}$

Time Series Review

- Stochastic process indexed by time
 - $\otimes \{X_t, t \in \mathbb{T}\}$
- (weak) Stationarity

- Stochastic process indexed by time
 - $\otimes \{X_t, t \in \mathbb{T}\}$
- (weak) Stationarity
 - Φ $E[X_t] = \mu$

- Stochastic process indexed by time
 - $\otimes \{X_t, t \in \mathbb{T}\}$
- (weak) Stationarity
 - $\otimes E[X_t] = \mu$
 - $Cov(X_t, X_{t+k}) = \gamma(k)$

- Stochastic process indexed by time
 - $\otimes \{X_t, t \in \mathbb{T}\}$
- (weak) Stationarity
 - Φ $E[X_t] = \mu$
 - \otimes $Cov(X_t, X_{t+k}) = \gamma(k)$
- ♥ Not i.i.d.

AR(1)

$$X_t = \phi X_{t-1} + e_t$$

AR(1)

 \otimes

$$X_t = \phi X_{t-1} + e_t$$

 \otimes e_t i.i.d. $(0, \sigma^2)$

AR(1)

 \otimes

$$X_t = \phi X_{t-1} + e_t$$

- \otimes e_t i.i.d. $(0, \sigma^2)$
- $|\phi| < 1$

Simulated AR(1)

MA(1)

$$X_t = \theta e_{t-1} + e_t$$

MA(1)

$$X_t = \theta e_{t-1} + e_t$$

 \otimes e_t i.i.d. $(0, \sigma^2)$

Simulated MA(1)

ARMA(p,q)

$$\phi(B)X_t = \theta(B)e_t$$

ARMA(p,q)

 \otimes

$$\phi(B)X_t = \theta(B)e_t$$

ARMA(p,q)

 \otimes

$$\phi(B)X_t = \theta(B)e_t$$

$$\theta(B)e_t = e_t + \theta_1 e_{t-1} + \cdots + \theta_q e_{t-q}$$

Your quest...