

Multi-variable Optimization software driven by Design of Experiments and Machine learning (MODEM)

Jan-Hendrik Carroll-Pöhls
University of New Brunswick
August 2024

Optimization Procedure

(a) Multiple optimal compositions were predicted using the Latin square approach in the DoE framework. (b) The samples were synthesized, and (c) thermoelectric properties were measured. (d) A support vector classification algorithm was applied to reveal the optimum area (yellow) which is (e) a constraint for the DoE algorithm. The cycle (b-e) is repeated until the optimum composition is found. White and black stars are previous and new predicted chemical compositions, respectively, to synthesize and analyze.

Start the Program

Initial Design of Experiments

Design of Experiments → **Create Design of Experiments**

Choose the Number of Variables

Number of variables → **Dimensions**

Create the Variable Space

Save DoE Information

Save the DoE Parameters as a JSON or Text Documents File (Text Documents can also be opened in Microsoft Excel)

Upload DoE Data

Choose File Format (Text documents [.txt], JSON [.json], CSV [.csv])

Insert your Measured Values/Results

Run Machine Learning

Choose: Support
Vector Machine
Classification or
Support Vector
Machine Regression
Algorithms

Margin of Tolerance

High Gamma: Large __ influence → Complex Fit Low Gamma: Small influence → Simple Fit /

Large Regularization: /
Larger margin of missclassification → Simple Fit
Small Regularization:
Smaller margin of missclassification → Complex
Fit

Machine Learning Plots

Update Design of Experiments

Design of Experiments → **Update Design of Experiments**

Run Updated Classification

Save New DoE Data

Multi-variable Machine Learning

Plot Heatmap of Desired Plane

Questions?

If you have any questions, please send an email to: Jan.Pohls@UNB.ca