OS Windows

Souborové systémy (FS)

Souborový systémy, oddíly, disky

Souborový systém:

- pravidla pro ukládání souborů a adresářů na pevný disk:
- kde na pevném disku je soubor
- jak se jmenuje a v jakém je adresáři
- a jaká má přístupová práva...kdo ho může číst/upravovat

Každý disk/oddíl/výměnné zařízení:

Musí mít svůj souborový systém

Souborový systémy, oddíly, disky

- Souborový systém
 - V MS Windows oddíly/disky vidíme odděleně (C, D,...)

• Z C:\ nemáme "jednoduchý" přístup na G:\, D:\ ...:

- Každý oddíl, disk, externí zařízení ve MS Windows:
 - má svůj kořenový adresář (tzv. root) označený písmenem:
 - C:\ D:\ E:\ ... Z:\

- Souborový systém stromová struktura
 - Adresáře v Windows Stromová struktura:
 - Počátek \ kořenový adresář root:
 - k němu jsou připojeny ostatní podadresáře o V Linuxu: i "jiné samostatné souborové systémy"

- Základní pojmy a symbolika :
 - Kořenový adresář (root):
 - Aktuální adresář
 - ve kterém se uživatel nebo proces v daném okamžiku nachází
 - Nadřízený adresář
 - adresář o úroveň výš v kontextu stromové struktury
 - Cesta (path)
 - umístění konkrétního adresáře v adresářovém stromu

Stromová struktura - Windows

Stromová struktura - Linux

- 1. tradiční souborové systémy (File System)
- 2. žurnálovací FS
- 3. síťové FS
- 4. virtuální FS

- 1) tradiční ("rychlé") FS Windows
 - FAT File Allocation Table:
 - FAT12, FAT16, vFAT, FAT32, exFAT (64) adresace 12,16,32,64b
 - Postupně klesá omezení
 - - max.velikost souboru
 - – max.velikost oddílu
 - – max.počet souborů

- FAT32 W95, W98, diskety/flash disky
 - max.velikost souboru 4GB (109 B)
 - max.velikost oddílu 8TB
 - max.počet souborů cca4 000 000
- exFAT (FAT64) od Windows 7
 - vhodný hlavně pro flash disky, vysokokapacitní karty SDXC...
 - max.velikost souboru 16 x 10⁶⁴ B (EiB ExbiByte)
 - max.velikost oddílu 128EiB
 - max.počet souborů v adresáři > 65536

• 2) žurnálovací FS

- Rozdíl mezi tradičním a žurnálovým systémem:
 - ve způsobu ukládání dat
- Tradiční systém:
 - průběžně ukládá data na disk a sektory označí pro OS jako obsazené
 - Při kolizi (výpadek el.energie) může nastat:
 - Soubor nefunkční/nekompletní,
 - Evidence obsazeného místa chyba
- Při vymazání souboru některé sektory zůstanou obsazené

• Žurnálovací souborový systém NTFS

- New Technology File System
 - Využívá vyhrazené pomocné místo (buffer) na disku žurnál
- Zapisuje jak na disk, tak do žurnálu:
 - Info v žurnálu:
 - Co zapsat a kam (na úrovni sektorů)
 - Co je už zapsané na disku a co ne
 - Byla-li operace kompletní vymaže žurnál

• Žurnálový systém:

- Ukládání na disk ve více krocích:
 - 1) nejprve OS zapíše do žurnálu, co bude ukládat
 - 2) pak uloží data na HDD, metadata na disk
 - 3) zatím sektor pro OS neoznačí za obsazený
 - 3) provede kontrolu (je-li vše ze žurnálu zapsáno na disk)
 - 4) je-li OK označí sektory za obsazené a smaže záznam ze žurnálu

Výhoda systému žurnálu při kolizi:

- část dat zapsaných korektně na disku zbytek nezapsaných:
- Např. výpadek el.energie
 - V žurnálu info že zápis dat neproběhl do konce
- Při restartu:
 - Není-li žurnál prázdný:
 - Z info z žurnálu se provede zbývající zápis dat na pozadí
 - Po kontrole komplet.zápisu žurnál vymazán

Žurnálovací FS - NTFS

- NTFS (New Technology File System)
 - Vyvinutý původně pro Windows NT
 - Windows 2000
 - Windows XP
 - Windows Vista, Windows 7,8,10; Windows Server 20XX
 - NTFS plně nahradil systém FAT

NTFS

- Vlastnosti NTFS:
 - Žurnálování:
 - Access Control List:
 - práva k přístupu a manipulaci se soubory (čtení/zápis/mazání...)
 - Komprese dat
 - úspora místa

NTFS

- Vlastnosti NTFS:
 - Šifrování (EFS Encrypting File System)
 - ochrana dat
 - Diskové kvóty:
 - nastavení velikosti využitelného místa na disku (pro uživatele)
 - Dlouhá jména souborů

Souborové systémy v GNU/Linuxu

- Žurnálovací souborové systémy
 - ext3 žurnálová verze souborového systému ext2
 - (plně kompatibilní stejná struktura)
 - Lze jej připojit jako ext2 o A opačně!!!
 - ext4 kompatibilní s ext3
 - Novinky zrušení omezení ext3, nové fce:
 - velikost FS, počet souborů v adresáři,
 - CRC žurnálu, online defragmentaci, rychlejší kontrola,
 - zvýšení výkonu...

Souborové systémy v GNU/Linuxu

- Žurnálovací souborové systémy
 - ReiserFS
 - Zahrnuto v Linuxovém jádru z roku 2001
 - Dobře zachází s malými soubory / velkým počtem souborů
 - Úspora místa a zlepšení výkonu

Souborové systémy v síti

- 3) síťové souborové systémy
 - NFS Network File System (Sun)
 - internetový protokol pro vzdálený přístup k souborům přes počítačovou síť
 - SMB Server Message Block (Microsoft)
 - Síťový protokol slouží ke sdílenému přístupu:
 - k souborům, tiskárnám, sériovým portům, komunikace mezi uzly
 - využíván hlavně na počítačích/v sítích s operačními systémy Windows

Souborové systémy v OS

- 4) Virtuální souborový systém (VFS)
 - Abstraktní vrstva nad konkrétními FS o Cílem VFS:
 - Poskytnout aplikacím jednotný způsob přístupu k různým FS
 - Tzv. jednotné API

