Fig.1

2/15

Fig.2

				3/	ı								
K-VALUE (dB)	0.17	90.0	0.14	0.01	0.15	0.01	ERROR OF MEARUREMENT (dB)	0.19	0.01	0.19	60.0	0.20	60:0
B2/B1	0.98	0.95	0.95	0.93	0.95	0.94	B2/B1	0.98	0.95	0.97	96.0	0.97	96.0
B2 (μm)	10.10	10.10	9.80	9.60	9.80	9.80	B2 (μm)	10.21	10.10	10.03	9.93	66.6	9.89
Β1 (μm)	10.35	10.35	10.35	10.35	10.35	10.40	B1 (μ m)	10.35	10.35	10.35	10.35	10.35	10.35
A1A2 (dΒ/km·μm⁴)	0.13	0.07	0.18	0.16	0.19	0.11	A1A2 (dΒ/km·μm⁴)	0.12	0.05	0.16	0.13	0.17	0.14
A2 (dΒ/km·μm⁴)	0.94	0.87	0.94	0.94	0.94	0.87	A2 (dΒ/km• μ m⁴)	0.94	0.87	0.94	0.94	0.94	0.94
A1 (dB/km· μ m ⁴)	1.07	0.94	1.12	1.10	1.13	0.98	A1 (dΒ/km· μ m ⁴)	1.06	0.92	1.10	1.07	1.11	1.08
SAMPLE	1	2	3	4	5	9	SAMPLE	7	8	6	10	11	12

4/15

Fig.4

5/15

SAMPLE	α1 (dB/km)	$\alpha 2$ (dB/km)	α 1– α 2 (dB/km)	Β1 (μ m)	B2 (μm)	B2/B1	K-VALUE (dB)
13	0.325	0.305	0.020	9.13	8.61	0.94	0.11
14	0.339	0.309	0.031	8.95	8.55	96.0	0.01
15	0.339	0.307	0.032	9.20	8.40	0.91	0.17
16	0.353	0.315	0.037	9.13	8.61	0.94	0.01
SAMPLE	α1 (dB/km)	$\frac{\alpha}{2}$ (dB/km)	$\alpha 1 - \alpha 2$ (dB/km)	B1 (μ m)	B2 (μ m)	B2/B1	ERROR OF MEARUREMENT (dB)
17	0.339	0.317	0.022	9.20	8.50	0.92	0.19
18	0.339	0.315	0.024	9.15	8.65	0.95	0.08
19	0.339	0.314	0.025	9.10	8.40	0.92	0.17
20	0.339	0.312	0.027	9.05	8.60	0.95	0.04

Fig.6

FP04-0298-00

Fig.8

FP04-0298-00

10/15

		SAMPLEA	COMPARATIVE EXAMPLE A
TRANSMISSION LOSS @ 1310	(dB/km)	0 . 29	0 . 33
TRANSMISSION LOSS & 1380	(dB/km)	0 . 27	0 . 62
TRANSMISSION LOSS & 1550	(dB/km)	0 . 17	0 . 19
LOSS DIFFERENCE Δ α (= α 1550- α 1310)	(dB/km)	0 . 12	0 . 14
OH-RELATED LOSS INCREASE Δ α 1380	(dB/km)	0.03	0 . 31
CABLE CUTOFF WAVELENGTH	(mu)	1220	
ZERO DISPERSION WAVELENGTH	(mu)	1310	
MODE FIELD DIAMETER (AT WAVELENGTH OF 1550nm)	(m m)	6 . 7	
BENDING LOSS (AT WAVELENGTH OF 1550nm AND IN BENDING DIAMETER OF 20mm)	(dB/m)	2	

Fig.11

Fig.12

		13	1/15								
FIBER STRUCTURE (CORE MATERIAL /CLADDING MATERIAL)		PURE SILICA GLASS /F-DOPED GLASS								Ge-DOPED GLASS O.19 /PURE SILICA GLASS	
OH-RELATED TRANSMISSION LOSS AT INCREASE AT WAVELENGTH WAVELENGTH OF 1550 nm OF 1380 nm (dB/km) (dB/km)			PURE SILI GLASS GLASS GLASS GLASS								
NOH-RELATED TRANSMISS LOSS AT INCREASE AT WAVELENG WAVELENGTH OF 1550 nm OF 1380 nm (dB/km) (dB/km						≤0.10				0.31	
CHROMATIC DISPERSION ZERO TRANSMISSION/TRANSMISSION/OH-RELATED TRANSMISSION FIBER LOSS AT LOSS						≤0.31	-			0.62	
TRANSMISSION LOSS AT WAVELENGTH OF 1310 nm	(dB/km)			-		≦0.32				0.33	
ZERO DISPERSION I SLOPE		0.0793	0.0806	0.0801	0.0789	0.0816	0.0800	0.0819	0.0790	0.0850	
DISPERSION ZERO SLOPE AT DISPERS WAVELENGTH SLOPE H OF 1550 nm	(ps/hm4/km)	0.0540	0.0544	0.0537	0.0531	0.0536	0.0547	0.0548	0.0544	0.0584	
CHROMATIC DISPERSION DISPERSION SLOPE AT WAVELENGTH OF 1550 nm OF 1550 nm (ps/nm/km) (ps/nm/km)		14.97	15.46	15.39	14.86	15.75	15.90	16.66	15.39	16.50	
ZERC DISPI WAVE		1318	1313	1313	1318	1307	1312	1304	1317	1316	
4T :!ENG1 :10 nm		8.53	8.06	8.57	8.37	8.33	8.72	8.92	8.92	9.13	
CABLE MFD / CUTOFF WAVE		1166	1230	1200	1135	1260	1184	1226	1133	1158	
2a (μ m)		7.80	8.16	8.02	7.56	7.60	8.14	8.52	8.10	,	
∆n (%)		0.38	0.935	0.39	0.395	0.42	0.385	0.38	0.36		
		SAMPLEA	SAMPLE C	SAMPLE D	SAMPLE E	SAMPLE F	SAMPLE G	SAMPLE H	SAMPLE B	COMPARATIVE EXAMPLE B	

Fig.14

FP04-0298-00

Fig.15

