Skill Space

Representation of Developer Expertise in Open Source Software (2021) - Tapajit Dey, Andrey Karnauch, Audris Mockus

Adam Cook

CS540 - Advanced Software Engineering
March 4, 2024

Outline

- Introduction
 - Defining "Expertise"
 - Social vs. Technical Trust
- Research Problem
 - 5 Hypotheses
- Methodology
 - Skill Space
 - Vector Embedding
- Results
- Future Work

What is "expertise"?

- Two factors play into building trust between developers
 - Social aspect interactions between developers
 - Only enhance trust in an already-established developer circle
 - Technical aspect interactions between the developer and projects
 - Referred to as developer expertise
- Gauging expertise is necessary to repeat interactions
 - Establish trust between developers
 - Increase pull request acceptance
 - Frequent issue resolution

Research Problem

- "Develop a feasible representation of a developer's expertise in specific focus areas of software development"
 - Different ways of measuring trust
 - Social = Qualitative
 - Technical = Quantitative

5 Hypotheses

- H1: Developers are likely to choose new APIs closer to what they already know
- H2: Developers a likely to join new projects that align with them
- H3: A project is likely to accept contributions from aligned developers
- H4: Developers aligned with projects have higher pull request acceptances
- H5: A developer's API skills are aligned with their own representation

Skill Space

- Topology of developers, projects, APIs, and programming languages
 - "Skill Vectors"
- World of Code used to extract developer, project & API information
 - Only used data starting from February 2019
 - About ~2 years worth of data
- Provides vector representation of expertise
 - API to API
 - Developer to API
 - Project to API representation
 - Developer representation to API

Data Collected

Max no. of APIs in one delta (changed blob	Fraction of deltas (changed blobs) with 30 or fewer APIs	Distinct APIs	Projects	Authors	Delta (Changed blobs)	Language
100	0.98	59,349	15,623	24,898	1,628,760	FORTRAN
108	0.99	104,725	35,723	18,666	1,297,134	Julia
117	0.998	85,255	516,678	361,754	6,822,662	R
1,158	0.99	687,085	1,154,120	793,261	12,160,775	iPython
109	0.999	58,942	547,115	480,615	18,780,774	Perl
118	0.99	818,686	148,327	95,712	13,599,452	Rust
165	0.99	467,863	164,360	116,317	7,036,000	Dart
1,096	0.96	6,233,673	429,071	281,469	28,129,485	Kotlin
1,013	0.99	7,324,019	2,253,291	1,605,563	239,416,852	TypeScript
150	0.997	6,648,357	3,092,761	2,092,316	220,871,444	C#
1,207	0.995	245,102	662,355	490,967	123,432,323	Go
1,288	0.99	3,571,593	210,175	176,414	36,361,141	Scala
1,002	0.997	669,297	2,343,825	1,222,886	74,618,824	Ruby
10,014	0.67	1,105,918	7,347,050	3,362,191	55,609,812	JavaScript
1,00	0.99	17,227,676	6,820,899	4,795,735	612,708,423	Python
1,007	0.99	2,553,521	4,704,446	3,656,965	1,780,602,124	C/C++
1,004	0.92	85,079,403	7,512,800	5,063,200	1,106,084,606	Java

Vector Embedding with doc2vec

Results (H1)

- APIs used in the future are more closely compared to random APIs they didn't use
 - Most all P-values are much smaller than or equal to 0
 - Sample space for FORTRAN was relatively small

Language	Estimated Difference in Means	95% Confidence Interval	p-Value
Dart	0.41	0.39 - 0.43	3.12e-92
Julia	0.21	0.15 - 0.27	8.57e-05
R	0.14	0.09 - 0.20	1.46e-06
iPython	0.20	0.18 - 0.22	6.68e-65
Perl	0.05	0.03 - 0.06	2.85e-13
Rust	0.21	0.20 - 0.22	2.01e-151
Kotlin	0.21	0.20 - 0.22	1.09e-139
TypeScript	0.23	0.22 - 0.24	0
C#	0.25	0.23 - 0.26	6.16e-137
Go	0.15	0.14 - 0.15	0
Scala	0.20	0.19 - 0.22	8.45e-89
Ruby	0.17	0.16 - 0.18	3.80e-188
Java	0.13	0.12 - 0.13	0
C/C++	0.13	0.13 - 0.13	0
Python	0.12	0.12 - 0.12	0
JavaScript	0.10	0.10 - 0.10	0
FORTRAN	-0.11	-0.73 - 0.51	0.268

Results (H2)

- Significant difference between estimated means and confidence interval
 - Validate expectation that a developer will join new projects that are more aligned with them than a random project
 - Used t-test to measure significant difference between aligned vs. random projects of the same language
 - P-value < 2.2e-16
 - 95% confidence interval of [0.013, 0.021]

Results (H3)

- Compared skill vectors between aligned developers and randomly chosen developers
- Differences between alignments were significant using the t-test
 - P-value < 2.2e-16
 - 96% confidence interval on [0.126, 0.156]

Results (H4)

- The closer a developer's alignment is to a project, the higher the chance their pull request is accepted
 - Data restricted to Pull Requests
 - Logistic regression shows positive coefficient, even after factoring social aspects
 - 'deletions' found to be insignificant, only because of sampled data

Predictor	Coefficient \pm Std. Error	p-Value
(Intercept)	0.654 ± 0.093	2.24e-12
Cosine Similarity Letween De-	0.396 ± 0.084	2.10e-06
veloper and Project		
creator_submitted	-0.120 ± 0.009	< 2e - 16
creator_accepted	0.874 ± 0.033	< 2e - 16
repo_submitted	-0.026 ± 0.005	1.62e-06
repo_accepted	2.864 ± 0.056	< 2e - 16
dependency:1	-0.212 ± 0.021	< 2e - 16
age	-0.221 ± 0.004	< 2e - 16
comments	-0.173 ± 0.013	< 2e - 16
review_comments	0.342 ± 0.011	< 2e - 16
commits	-0.360 ± 0.015	< 2e - 16
additions	-0.015 ± 0.008	0.05
deletions	-0.035 ± 0.006	< 2e - 16
changed_files	-0.151 ± 0.016	< 2e - 16
contain_issue_fix:1	0.123 ± 0.020	1.89e-09
user_accepted_repo:1	1.326 ± 0.027	< 2e - 16
creator_total_commits	0.086 ± 0.009	< 2e - 16
creator_total_projects	0.015 ± 0.007	0.029
contain_test_code:1	-0.418 ± 0.324	0.197

Results (H5)

- An increase in skill alignment has a positive relation with self-reported score
 - Obtained survey data from GH users
 - Compared to Javascript libraries: mongodb, socketio, react
 - Tables shows as self-reported score increases, API alignment (A) and number of commits (B) also increase

Predictors	Estimate ± Std. Err.	p-Value
API:mongodb	0.249 ± 0.013	< 2e-16
API:react	0.307 ± 0.011	< 2e-16
API:socketio	0.422 ± 0.012	< 2e-16
log(No. of Commits)	0.000 ± 0.001	0.9
Self-Reported Score	0.014 ± 0.003	1.8e-6

(B)				
Predictors	Estimate \pm Std. Err.	p-Value		
API:mongodb	2.5 ± 0.10	< 2e-16		
API:react	2.9 ± 0.08	< 2e-16		
API:socketio	1.9 ± 0.12	< 2e-16		
log(No. of Commits)	1.1 ± 0.012	< 2e-16		
Developer-API Alignment	0.98 ± 0.21	1.81e-6		

Future Work

- Branch out to non-technical skills
 - Communication, collaboration
- Further applications:
 - Determine if a "developer" is a bot account
 - Check alignment of skill vectors of different developers for identity resolution
 - Infer transparency of corresponding software supply chains