HW 11: ECE 601 Machine Learning for Engineers

Important Notes:

- (a) When a HW question asks for writing a code, you would need to include the entire code as well as the output of the program as well as any other analysis requested in the question.
- (b) Don't panic about the length of the HW assignment. HW assignments are treated as opportunities for improving learning and understanding, so I might include some extra text to help you better understand the concepts or learn about a point that was not covered during the class. The actual work needed from you is indeed manageable.
- (c) Note that there are no programming assignments this week, so you can submit your work as a single PDF.

Question 1: Expected Rewards in an MDP

Problem: Let (S, A, P, R, γ) be a finite Markov Decision Process. Suppose from state s, the agent can take action a_1 or a_2 , with transition probabilities and rewards:

-
$$\mathcal{P}(s_1 \mid s, a_1) = 0.6$$
, $\mathcal{P}(s_2 \mid s, a_1) = 0.4$, $R(s, a_1, s_1) = 1$, $R(s, a_1, s_2) = 0$

-
$$\mathcal{P}(s_1 \mid s, a_2) = 0.5$$
, $\mathcal{P}(s_2 \mid s, a_2) = 0.5$, $R(s, a_2, s_1) = 2$, $R(s, a_2, s_2) = 2$

1. Compute the expected immediate reward for each action:

$$\mathbb{E}[R_{t+1} \mid S_t = s, A_t = a_1], \quad \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a_2]$$

2. Assume a discount factor $\gamma = 0.9$ and that the process continues indefinitely. Suppose the agent always chooses the same action from state s and is returned to s after each transition (i.e., s is recurrent with probability 1).

$$R(s, a_1, s) = 0.6, R(s, a_2, s) = 2.0$$

Let $v(s; a_i)$ denote the expected return starting from s and always taking action a_i . Compute:

$$v(s; a_1), \quad v(s; a_2)$$

Question 2: Solving Bellman Equations for State Values

Problem: Consider an MDP with $S = \{s_1, s_2\}$, $A = \{a\}$, and deterministic transitions:

-
$$\mathcal{P}(s_2 \mid s_1, a) = 1, R(s_1, a, s_2) = 3$$

-
$$\mathcal{P}(s_1 \mid s_2, a) = 1, R(s_2, a, s_1) = 2$$

$$- \pi(a \mid s_1) = \pi(a \mid s_2) = 1$$

-
$$\gamma=0.5$$

- 1. Write the Bellman equations for $v_{\pi}(s_1)$ and $v_{\pi}(s_2)$.
- 2. Solve them to compute the exact values of $v_{\pi}(s_1)$ and $v_{\pi}(s_2)$.