An introduction to Anderson localization

Author: Jan Šuntajs Mentor: prof. Janez Bonča Comentor: doc. Lev Vidmar

April 9, 2018

University of Ljubljana
Faculty of Mathematics and Physics

What is it about?

 Conduction in NON-INTERACTING systems with DISORDER

Describes the role of IMPURITIES

Completely different than the **Drude** model:

 $\sigma \propto l$, l: the mean-free path

What does it predict?

• for some disorder: $\sigma = 0$

• seminal paper by P. W. Anderson (1958) [1]

Nobel prize in 1977

Probability density profile in ballistic and localized regimes in 1D, L = 1000

Why does it (still) matter?

What began in 1958 ...

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

Why does it (still) matter?

What began in 1958 ...

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

P. W. Anderson

Bell Telephone Laboratories, Murray Hill, New Jersey
(Received October 10, 1957)

... still remains relevant today

PHYSICAL REVIEW B 96, 214201 (2017)

Anderson localization transitions with and without random potentials

Trithep Devakul and David A. Huse
Department of Physics, Princeton University, New Jersey 08544, USA
(Received 20 October 2017; published 6 December 2017)

The current "hot topic"

Many-body localization (MBL) - includes INTERACTIONS

Published in 2015:

Many-Body Localization and Thermalization in Quantum Statistical Mechanics

Rahul Nandkishore¹ and David A. Huse^{1,2}

¹Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544; email: rahuln@princeton.edu, huse@princeton.edu

672 citations as of April 2018 acc. to Google Scholar.

not our today's topic

²Department of Physics, Princeton University, Princeton, New Jersey 08544

Outline

The basic concepts of the Anderson localization

Models of disorder

Numerical simulations

Conclusion

The basics

 DISORDER → (eigen)states can localize

A localized state:

$$|\psi(\mathbf{r})| \sim \exp\left(|\mathbf{r} - \mathbf{r}_0|/\xi\right)$$

• explains vanishing transport

Localization:

Extended Localized

The important keynotes

• An interference phenomenon

Strong dimensionality dependence

ullet Energy dependence o the **mobility edge**

The scaling theory

ullet scaling of the **conductance** g of a **hypercube** L^d [2]

Ohmic conductor:

$$g = \sigma L^{d-2}$$

Localized regime:

$$g \propto \exp(-L)$$

Transition between ext. and loc. states is only possible in 3D. Taken from [4].

The scaling theory

1D, 2D

localization for any finite disorder

3D

localization for some critical disorder

Transition between ext. and loc. states is only possible in 3D. Taken from [4].

The mobility edge

3D, finite disorder

The models of disorder

somehow distorting the ideal crystal

A generic Hamiltonian

$$H = \frac{\hat{p}^2}{2m} + \sum_{j=1}^{N} V_j(\mathbf{r} - \mathbf{R}_j)$$

we consider the Anderson model

Ideal crystal, compositional, structural and kinetic disorder. Adapted acc. to [3].

Our model - the **Anderson model**

The Anderson Hamiltonian [1]

$$H = \sum_{j} \varepsilon_{j} c_{j}^{\dagger} c_{j} - V \sum_{\text{n.n.}} c_{i}^{\dagger} c_{j} + \text{h.c.}$$

Probability distribution of ε_i

$$p(\varepsilon_j) = \frac{1}{2W}\Theta(W - |\varepsilon_j|)$$

The model in 2D. Taken from [4].

The Anderson model

Two mobility edges in 3D

My work - the numerical simulations

- How to extract features of the Anderson localization numerically?
 - implementation in 1D, 2D and 3D
 - calculations were run at the F-1 cluster at IJS
 - Full diagonalization and time evolution calculations
- Two localization criteria:
 - the inverse participation ratio (IPR)
 - the absence of diffusion

Localization criteria - the IPR

The definition

$$P^{-1} = \sum_{\mathbf{r}} |\psi(\mathbf{r})|^4, \quad \ \|\psi\| = 1. \label{eq:power_power}$$

sum over the lattice sites

If L large enough

$$P^{-1} \propto \left\{ egin{array}{ll} 1/L^d, & {
m extended} \\ {
m const}, & {
m localized} \end{array}
ight.$$

IPR - the results

IPR 3D

Absence of diffusion

Time evolution

$$|\psi, t + dt\rangle = \exp(-i\hat{H} dt) |\psi, t\rangle,$$

$$\hat{R^2} = \sum_{\mathbf{r}_j} \mathbf{r}_j^2 \hat{n}_{\mathbf{r}_j},$$

$$\beta(t) = \frac{\mathrm{d}\log R}{\mathrm{d}\log t}$$

$$R(t) = \sqrt{\langle \psi, t | \hat{R}^2 | \psi, t \rangle} - \langle \psi, 0 | \hat{R}^2 | \psi, 0 \rangle$$

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q ()

Absence of diffusion, 2D

Conclusion

• A first step towards the description of conduction in real systems.

A nontrivial numerical implementation.

 Needed in understanding the MBL phenomena, the current "hot topic."

References and sources of images

- Anderson, P. (1958). *Absence of Diffusion in Certain Random Lattices*. Physical Review, **109**(5), pp.1492-1505.
- Abrahams E., Anderson P. W., Licciardello, D. and Ramakrishnan, T.V. (1979). Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett. **42**(10), 673
- Kramer, B. and MacKinnon, A. (1993). Localization: theory and experiment. Reports on Progress in Physics, 56(12), pp.1469-1564.
- Lagendijk, A., Tiggelen, B. and Wiersma, D. (2009). *Fifty years of Anderson localization*. Physics Today, **62**(8), pp.24-29.