Дискретная математика. І Семестр

Лектор: Пузынина Светлана Александровна Автор конспекта: Буглеев Антон 2022

1 Булевы Функции

Булевы Функции. Базис

Def. *Булевой функцией* называется функция вида

$$f: \{0,1\}^n \to \{0,1\}.$$

Def. *Базис* - некоторое множество булевых функций.

Def. Формула над базисом определяется по индукции: База: всякая функция $f \in F$ является формулой над F Индуктивный переход: если $f(x_1,...,x_n)$ - формула над F, а $\Phi_1,...,\Phi_n$ - переменные, либо формулы над F, то тогда $f(\Phi_1,...\Phi_n)$ - тоже формула над F.

ПК, ДНФ, СДНФ, ПД, КНФ, СКНФ, Многочлен (полином) Жегалкина

Def. Простой конъюнкцией (ПК) называется конъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Def. Дизтонктивная нормальная форма (ДНФ) - дизъюнкция простых конъюнкций

Def. Совершенная дизтюнктивная нормальная форма (СДНФ) - ДНФ, в которой в каждой конъюнкции учавствуют все переменные.

Аналогично определяются $Простая дизтонкция (\PiД)$, Контонктивная нормальная форма (КНФ), Совершенная контонктивная нормальная форма (СКНФ).

Def. *Многочлен (полином) Жегалкина* - сумма по модулю 2 конъюнкций переменных без повторений слагаемых, а также (необязательно) слагаемое 1.

$$f(x_1,...,x_n)=a\oplus a_1\wedge x_1\oplus ...\oplus a_{12}\wedge x_1\wedge x_2\oplus ...\oplus a_{1..n}\wedge x_1\wedge ...\wedge x_n$$

Например, $f(x, y, z) = x \oplus x \land y \land z \oplus 1$

Theorem. Для каждой функции существует единственное представление многочленом Жегалкина.

$$Proof.$$
 . . .

Замыкание. Замкнутые классы. Полнота

 $\mathbf{Def.}$ $\mathit{Замыканием}\left[F\right]$ базиса F называется множество всех функций, представимых формулой над F

Def. Замкнутый класс - класс, равный своему замыканию: F = [F]

1.
$$T_0 = \{ f \mid f(0, \dots, 0) = 0 \}$$

2.
$$T_1 = \{ f \mid f(1, \dots, 1) = 1 \}$$

3.
$$S = \{ f \mid f(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n) \}$$

4.
$$M = \{ f \mid \forall \text{ двоичных наборов } \alpha < \beta : f(\alpha) < f(\beta) \}$$

5.
$$L = \{f \mid f(x_1, \dots, x_n) = x_1 \oplus \dots \oplus x_n \oplus c\},$$
где $c \in \{0, 1\}$

Theorem. Классы T_0, T_1, S, M, L являются замкнутыми.

$$Proof.$$
 . . .

Def. Множество булевых функций F называется *полной системой*, если все булевы функции выразимы как формулы над данным базисом.

Theorem. Множество булевых функций F является полным тогда и только тогда, когда F не содержится ни в одном из пяти классов T_0, T_1, S, M, L . (Теорема Поста)

Proof. $1. \Rightarrow$

Предположим, что F содержится в одном из классов \Rightarrow [F] также содержится в одном из классов. Но все булевы функции не исчерпываются только одним классом. Получили противоречие.

 $2. \Leftarrow$

Пусть $f_0, f_1, f_s, f_m, f_l \in F$ и $f_0 \notin T_0, f_1 \notin T_1, f_s \notin S, f_m \notin M, f_l \notin L$.

- (a) $f_0 \notin T_0 \Rightarrow f_0(0,0,\ldots,0) = 1$. Если $f_0(1,1,\ldots,1) = 1$, значит получена константа $\phi_1(x) = f_0(x,\ldots,x) = 1$ Если $f_0(1,\ldots,1) = 0$, значит получено отрицание $\overline{\phi(x)} = f_0(x,\ldots,x) = \overline{x}$
- (b) $f_1 \notin T_1 \Rightarrow f_1(1, \dots, 1) = 0$. Если $f_1(0, \dots, 0) = 1$, значит получено отрицание $\overline{\phi(x)} = f_0(x, \dots, x) = \overline{x}$ Если $f_1(0, \dots, 0) = 0$, значит получена константа $\phi_0(x) = f_1(x, \dots, x) = 0$
- (c) $f_s \notin S \Rightarrow \exists (\sigma_1, \dots, \sigma_n) : f_s(\sigma_1, \dots, \sigma_n) = f_s(\overline{\sigma_1}, \dots, \overline{\sigma_n})$. Имея лишь отрицание из пунктов (a) и (b) мы можем получить константу с помощью $f_s(x^{\sigma_1}, \dots, x^{\sigma_n})$, а с помощью отрицания другую константу.
- (d) $f_m \notin M \Rightarrow \exists (\sigma_1, dots, \sigma_n) : \begin{cases} f_s(\sigma_1, \dots, \sigma_k, 0, \sigma_{k+2}, \dots, \sigma_n) = 1 \\ f_s(\sigma_1, \dots, \sigma_k, 1, \sigma_{k+2}, \dots, \sigma_n) = 0 \end{cases}$ Таким образом, $f_s(\sigma_1, \dots, \sigma_k, x, \sigma_{k+2}, \dots, \sigma_n) = \overline{x}$, получаем отрицание.
- (e) $f_l \notin L \Rightarrow y f_l$ хотя бы одно из слагаемых содержит конъюнкцию. Расмотрим некоторую конъюнкцию. Выберем из неё два множителя x и y. Тогда, поскольку, данная конъюнкция принимают единицу, \exists набор α , при котором остальные множители конъюнкции существуют. Тогда функция принимает вид:

$$f_l(x, y, \alpha) = xyp(\alpha) \oplus xs(\alpha) \oplus yq(\alpha) \oplus r(\alpha)$$

$$f_l(x, y, \alpha) = xy \oplus xs(\alpha) \oplus yq(\alpha) \oplus r(\alpha)$$

$$f_l(x, y) = xy \oplus xa \oplus yb \oplus c; \ a, b, c \in \{0, 1\}$$

Если a=b=c=0 тогда конъюнкция получена. В противном случае:

$$f_l(x \oplus b, y \oplus a) = (x \oplus b)(y \oplus a) \oplus (x \oplus b)a \oplus (y \oplus a)b \oplus c$$

$$f_l = xy \oplus xa \oplus yb \oplus ab \oplus xa \oplus ab \oplus yb \oplus ab \oplus c$$

$$f_l = xy \oplus ab \oplus c$$

При любом наборе (a,b,c) мы получаем либо конъюнкцию, либо её отрицание, но с помощью ещё одного отрицания получаем конъюнкцию. Что и требовалось

2 Комбинаторика

Выборки

Def. Введём $A = \{a_1, \ldots, a_n\}$. Некоторый набор элементов $(a_{i_1}, \ldots, a_{i_r})$ называется выборкой объёма r из n элементов или (n, r)-выборкой.

Выборки бывают *упорядоченные* (порядок элементов важен) или *неупорядоченные* (без разницы, в каком порядке элементы), а также *с повторениями* и *без повторений*.

Пусть объект A можно выбрать n способами, а объект B - m способами. Тогда важны два правила:

- 1. *Правило суммы*. Выбор «A или B» можно выбрать n+m способами.
- 2. *Правило произведения*. Выбор пары (A, B) можно выбрать nm способами.

Def. Выборки k элементов из n:

- 1. Упорядоченная с повторениями: n^k
- 2. Упорядоченная без повторений (размещения): $A_n^k = \frac{n!}{(n-k)!}$

- 3. Неупорядоченная без повторений (сочетания): $C_n^k = \frac{n!}{k!(n-k)!}$
- 4. Неупорядоченная с повторениями: $\stackrel{\wedge}{C} = C^k_{n+k-1}$

Proof. Пусть $A = \{a_1, \ldots, a_n\}$. Неупорядоченная выборка k элементов с повторениями задаётся вектором (x_1,\ldots,x_n) , где x_i - число повторений элемента a_i . Таким образом, $x_1 + \cdots + x_n = k$

Закодируем решение бинарным вектором $\underbrace{11\dots1}_{x_1}0\underbrace{11\dots1}_{x_2}0\dots0\underbrace{11\dots1}_{x_n}$. Получаем вектор, состоящий из k единиц и (n-1) нулей. Число таких векторов: C_{n-1+k}^k , что и требовалось

Полезные свойства сочетаний

Theorem. $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$

Proof.

$$\begin{split} &C_{n-1}^k + C_{n-1}^{k-1} = \\ &\frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = \\ &\frac{(n-k)(n-1)! + k(n-1)!}{k!(n-k)!} = \\ &\frac{(n-1)!((n-k)+k)}{k!(n-k)!} = \\ &\frac{n!}{k!(n-k)!} = C_n^k \end{split}$$

Tреугольник Π аскаля . . .

Theorem. Бином Ньютона.

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Proof. Член $a^k b^{n-k}$ участвует в разложение $(a+b)^n$ столько раз, сколько есть способов выбрать a в k множителях из n - а это C_n^k . \square

Lemma. Грубые оценки для n!:

$$(n/e)^n < n! < n^n$$

Proof. Верхняя оценка очевидна. Докажем нижнюю по индукции:

- 1. База: $(1/e)^1 < 1 \Leftrightarrow 1/e < 1$
- 2. Переход: пусть верно для n:

$$n! > \left(\frac{n}{e}\right)^n \Leftrightarrow (n+1)n! > (n+1)\left(\frac{n}{e}\right)^n$$
$$(n+1)! > (n+1)\left(\frac{n}{e}\right)^n$$

Теперь покажем, что

$$(n+1)\left(\frac{n}{e}\right)^n > \left(\frac{n+1}{e}\right)^{n+1} \Leftrightarrow$$
 $e(n+1)n^n > (n+1)^{n+1} \Leftrightarrow$ $en^n > (n+1)^n$ (верно в курсе матанализа)

Theorem. Формула Стирлинга.

$$n! = (1 + o(1))\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \Leftrightarrow \frac{n!}{1 + o(1)} = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Язык Дика. Число Каталана

Def. Правильная скобочная последовательность. Определим по индукции:

- 1. пустая строка ϵ Π С Π
- 2. если w ПСП, то (w) ПСП
- 3. если w, u ПСП, то wu ПСП

Def. Языком Дика называется множество всех ПСП: ϵ , (), ()(), (()), (()()) . . .

Def. Числа Каталана задаются количеством $\Pi C \Pi$ с n парами скобок

Пример:

- 1. $D_0 = 1 : \epsilon$
- 2. $D_1 = 1$: ()
- 3. $D_2 = 2 : (()), ()$
- 4. ...

Theorem. Рекурентная формула чисел Каталана:

$$D_0 = 1; D_n = \sum_{k=0}^{n-1} D_k D_{n-1-k}$$

Proof. Пусть w - произвольная ПСП длины 2n. Она начинается с открывающей скобки. Найдём ей парную закрывающуюся и представим в виде: w = (u)v, где u, w - ПСП.

Если длина и есть 2k, то u можно составить D_k способами. Тогда длина v есть 2(n-k-1). v можно составить D_{n-k-1} способами. Применим правило произведения и получим, что способов составить $D_n = D_k D_{n-k-1}$

Зададим числа Каталана через монотонные пути. ПСП длины 2n поставим в соответствие путь в квадрате $[0,n] \times [0,n]$ из точки (0,0) в точку (n,n).

Открывающей скобки сопоставим горизонтальный отрезок длины 1, а закрывающей - вертикальный.

Если путь сопоставлен $\Pi C\Pi$, то ни одна его точка не может лежать выше главной диагонали квадрата.

Theorem. $\Pi C\Pi \Leftrightarrow e \forall . (\geq \forall ucno)$

Theorem. Аналитическая формула для чисел Каталана.

$$D_n = \frac{1}{n+1}C_{2n}^n$$

Proof. Сместим правильный путь на клетку вниз: теперь правильный путь идёт из (0,-1) в (n,n-1) и не имеет общих точек с прямой y=x.

Число правильный путей = общее число путей — число неправильных. Общее число путей = C_{2n}^n

Рассмотрим неправильный путь и его первую точку на прямой y=x - пусть это точка A. Отрезок до A заменим симметричным относительно y=x. Получили путь длины 2n из (-1;0) в (n;n-1). Следовательно, неправильных путей из (0;-1) в (n;n-1) столько же, сколько и путей из (-1;0) в (n,n-1): равно C_2n^{n-1}

$$D_n = C_{2n}^n - C_{2n}^{n-1} = \frac{1}{n+1} C_{2n}^n$$

Theorem. Асимптотика чисел Каталана.

$$D_n = (1 + o(1)) \cdot \frac{4^n}{n^{\frac{3}{2}} \sqrt{\pi}}$$

Proof. Применим формулу Стирлинга.

3 Графы

Много определений

Def. Графом называется пара G = (V, E), где V - конечное множество вершин, а $E \subseteq V \times V$ - множество рёбер.

Def. Граф можно задать *матрицей смежности* $A=(a_{ij})$ порядка |V|:

$$\begin{cases} 1, (i, j) \in E \\ 0, (i, j) \notin E \end{cases}$$

Def. Граф *неориентированный*, если $(u,v) \Rightarrow (v,u)$. Иначе граф называется *ориентированным*.

Def. При *мультиграфе* допускаются кратные рёбра. Тогда в таблице смежности будут присутствовать $n \in \mathbb{N}$.

Def. Две вершины u, v называются *смежеными*, если $(u, v) \in E$.

Def. Вершина v и ребро e называются uнuинdеmныmи, если e = (v, u) для некоторой вершины u.

Def. Ребро, концевые вершины которого совпадают, называется $nem n\ddot{e}\ddot{u}$

Def. $Cmenehb \deg(v)$ вершины v - число инциндетных ей ребёр (петля считается дважды)

Lemma.

Во всяком графе сумма степеней всех вершин равна удвоенному числу рёбер

$$Proof.$$
 . . .

Lemma. В ориентированном графе сумма входящих степеней равна сумме исходящих степеней

$$Proof.$$
 . . .

Lemma.	Всякий	конечный	граф	содержит	чётное	число	вершин
нечётной	й степен	u					
Proof							