## UNIVERSITY OF NEW SOUTH WALES School of Mathematics and Statistics

## MATH2089 Numerical Methods and Statistics Term 2, 2019

## Numerical Methods Tutorial – Week 6

1. Let

$$A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 1 & -1 \\ 2 & -1 & 3 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Show that A is symmetric.
- (b) Show that  $A = LDL^T$ .
- (c) Find the Cholesky factorization  $A = R^T R$ , where R is upper triangular.
- (d) Show that A is positive definite.
- (e) Using the Cholesky factorization, find the inverse  $A^{-1}$ .
- (f) Compute the condition numbers  $\kappa_{\infty}(A)$  and  $\kappa_1(A)$ .
- (g) Estimate the relative error in the computed solution to  $A\mathbf{x} = \mathbf{b}$  if  $\mathbf{b}$  is known to 4 significant figures,
- 2. The Matlab script tut06q2.m produces the output
  - (a) What row operations does MATLAB do to produce zeros in the first column of A?
  - (b) Why is chk not equal to zero?
  - (c) Calculate the sparsity of A
  - (d) What is the value of B?
  - (e) Why are x1T and x2T not the same?
- Consider the spy plots of the 156 by 156 matrix A from the chemical plant model http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/chemwest/west0156.html



Figure 1: Spy plots of west0156 matrices

- (a) Are A and  $B = A^T A$  symmetric?
- (b) How many non-zero elements do A and B have?
- (c) Calculate the sparsity of A and B.
- (d) What is the sparsity of B(p, p)?
- (e) What does B(p,p) give and why is it useful?