On the Consistency of Height and Width Potentialism

Chris Scambler April 7, 2022

Abstract

Recent work in philosophy of set theory has furnished some arguments that height and width potentialism are inconsistent with one another. One such argument can be found in this volume (Brauer); the other is forthcoming (Roberts).

At the same time, others have suggested there may be some merit in the combination of height and width potentialism. Such authors have presented views that appear to manifest the combination in a non-trivial way, and have defended philosophical claims on their basis (e.g. that all sets are ultimately countable – cf Builes & Wilson, Meadows, Scambler, Pruss).

Clearly there is a tension here. The business of this article is to explain (what I take to be) its solution. I will argue that height and width potentialism are compatible, and that there is even an attractive view in the foundations of mathematics that arises from their combination. I will do this by explaining that view and how it responds to the arguments alleging inconsistency.

1 Overview

Recent work in philosophy of set theory has furnished some arguments that height and width potentialism are inconsistent with one another. One such argument can be found in this volume (Brauer); the other is forthcoming (Roberts).

At the same time, others have suggested there may be some merit in the combination of height and width potentialism. Such authors have presented views that appear to manifest the combination in a non-trivial way, and have defended philosophical claims on their basis (e.g. that all sets are ultimately countable – cf Builes & Wilson, Meadows, Scambler, Pruss).

Clearly there is a tension here. The business of this article is to explain (what I take to be) its solution. I will argue that height and width potentialism are compatible, and that there is even an attractive view in the foundations of mathematics that arises from their combination. I will do this by explaining that view and how it responds to the arguments alleging inconsistency.

The plan is as follows. Section 1 gives some definitional background and context. Section 2 then presents some axiomatic systems that purport to combine height and width potentialism and discusses issues of relevant to consistency, citing new results on strength and equivalence to standard 'actualist' set

theories. Section 3 presents the inconsistency argument of Roberts and explains how a proponent of height and width potentialism should reply. Section 4 does the same for Brauer.

2 Background

Let me start be explaining the terms.

For present purposes, *potentialism* in set theory will be the idea that there could always be more sets than there in fact are. In slogan form, for the potentialist, the universe of sets is 'indefinitely extendible'.

Height potentialism is the idea that the universe is always extendible 'upwards' to include new sets of higher rank than any given ones. Width potentialism, on the other hand, is the idea that the universe is always extendible 'outwards', to contain new sets of no greater rank than the max of any given ones.

Historically, height potentialism has been motivated by considerations involving the set-theoretic paradoxes. Russell's paradox shows there is no set of all non-self-membered sets, and hence that the cumulative hierarchy of all sets is itself (therefore) not a set. But the height potentialist complains that any 'stopping point' for the cumulative hierarchy would be arbitrary. Surely there is no conceptual obstacle to any particular collection of ranks of the cumulative hierarchy providing 'urelements' for a longer continuation.

It is natural to explicate this idea of an indefinitely extendible universe of sets in modal logic. Indeed, modal axiom systems based around core height potentialist ideas are known to exhibit tight forms of equivalence with standard iterative set theories like ZFC.

Width potentialism has been historically less popular, although has been attracting some attention over the last few decades as a way understand the independence phenomenon in set theory. There is, in fact, a close structural similarity in the motivation for height and width potentialism in these terms (cf Meadows). Just as the height potentialist begins with the intuition that it is arbitrary that there should be some ranks of the cumulative hierarchy that somehow inherently can't extended to include further sets, the width potentialist may begin with the idea that it is arbitrary that there should be some universe of sets that cannot be extended by forcing over its partial orders. Just as in the previous case, the mathematics of forcing seems to lead us to believe there is at least no conceptual obstacle to making sense of such 'forcing extensions of the universe'.

Again, as with height potentialism, a natural way for the width potentialist to formalize their view involves modal logic: one formulates an axiom to the fact that, for any partial order \mathbb{P} , it is possible to find a generic for \mathbb{P} . Such explicitly axiomatic approaches to width potentialism are not very well-studied: the focus of most work in this area has been on model theory. Nevertheless, axiomatic approaches are possible and easy enough to formulate.

There are, in any event, clear analogies in the cases for height and width potentialism. In each case one has a central inexistence result in first order set theory (Russell's paradox, the proof that some filters do not admit partial orders) and one seeks to overcome it, after a fashion, by implementing a modalized version – any things can form a set in the first case, any partial order can

be forced over in the second. Indeed, it is natural to think that going potentialist one way might give you some reason to consider going potentialist the other way too.

3 Height and Width Potentialism Combined

In this section, I will present some axiom systems that seem to explicate the intuitive idea of height and width potentialism, as described above.

3.1 Core Logical Principles

All the versions of height and width potentialism we will consider will be built around two principles: the first is the height potentialist principle that any things can be the elements of a set; the second is the width potentialist 'forcing axiom', that a generic filter can be found for any partial order.

Both potentialist principles involve modality; the first also involves plural quantification. Accordingly the language \mathcal{L}_0 we use to formulate these theories will have at least a modal operator \Box , singular variables x_n , plural variables X_n , the propositional connectives and quantifiers, the identity symbol = and the symbol \in for set membership. The circumstance that some thing x is one of some things X will be represented by the concatenation X_n . Identity is only well formed between terms of the same type (singular/plural).

The following core axioms will be included in all the potentialist theories we will go on to discuss.

FQ Standard rules for free quantifier logic with identity for each type of variable.

Mod The modal logic S4.2 with converse Barcan formula, necessitation, and standard rules for universal quantification within the scope of □.

```
P-ext \Box \forall x [\Diamond Xx \equiv \Diamond Yx] \supset X = Y
```

PR The plural rigidity axioms

```
1. \Diamond Xx \rightarrow \Box Xx
```

2.
$$\diamondsuit(\exists xXx \land x = y) \rightarrow \exists xXx \land x = y$$
.

Comp For any formula $\varphi(x, y, Y)$, $\Box \forall y \Box \forall Y \Box \exists X \forall x [Xx \leftrightarrow \varphi(x, y, Y)]$ is an axiom.

P-Choice A plural version of the axiom of choice.

M-Rep A modal version of the axiom scheme of replacement.

Inf An axiom saying that the set of natural numbers exists.

Set-Ext The axiom of extensionality in the form $\Box \forall x [\Diamond x \in y \equiv \Diamond x \in z] \supset y = z$

Sets The axiom of foundation, and an axiom $\Box \forall x \exists X \Box \forall y [Xy \leftrightarrow y \in x]$ asserting the rigidity of set membership

The precise details of many of these won't be too relevant below, but they are cited here for something like completeness' sake. More details can be found in CITE. The odd one out, perhaps, is **Inf**. It is included here for simplicity, since many of the phenomena we will be interested in occur only at the level of infinite sets.

The basic idea behind the core axioms is to get a modal and plural logic, combined with fundamental principles of set theory, to allow for the development of set theory based on potentialist principles of set existence. Let us now turn to that development.

3.2 Simple HWP

In this section I will present what seems to me to be the simplest formal combination of height and width potentialism. The theory is not mathematically strong, being exactly equivalent in strength to second order arithmetic. But it does offer a clean and simple proof of concept for the combination of height and width potentialism, as well as a useful starting point for further extensions.

The first axiom we add is:

HP $\square \forall X \diamondsuit \exists x \forall y [y \in x \leftrightarrow Xy]$

• Any things can be the elements of a set.

HP enshrines the core idea of height potentialism, since it implies (given the usual notion of rank) that given any sets one can find others of still higher rank.

The second requires a little more preparation. In our background logic we can define the notion of a partial order, the notion of being a filter on a partial order, and the notion of being a dense set in a partial order in the standard way. Let blackboard variables \mathbb{P},\mathbb{Q} range over partial orders. (These are singular variables.) Let $D(X,\mathbb{P})$ mean that all Xs are dense in \mathbb{P} . Finally, let $F_{\cap}(x,\mathbb{P},X)$ mean that x is a filter on \mathbb{P} that intersects every one of the Xs. Then our width potentialist axiom can be stated as:

$$\mathbf{WP} \ \Box \forall \mathbb{P} \forall XD(X,\mathbb{P}) \to \Diamond \exists g(F_{\cap}(g,\mathbb{P},X))$$

Any partial order can be used in forcing.

WP is one way to flesh out width potentialism, since it implies that any sufficiently rich pluarlity of sets sets may be extended to include ones of rank no greater than their max by forcing.

The following will be useful to us going forward. In it, $f: \mathbb{N} \twoheadrightarrow X$ is an abbreviation for the assertion that f is a function on \mathbb{N} with every X in its range.

Proposition 1. Let Count be the principle:

$$\square \forall X \Diamond \exists f [f:\mathbb{N} \twoheadrightarrow X]$$

then Count is equivalent to WP over the core logic + HP.

Proof. See CATBC.

Let us call the result of adding these HP and either WP or Count to the core logic Simple Height and Width Potentialism, or SHWP.

Turning now to questions of consistency, it turns out that SHWP is demonstrably consistent relative to Second Order Arithmetic (SOA). In fact it turns out that SHWP exhibits a tight form of equivalence with SOA, something Tim Button has called 'near synonymy' in the recent literature.

(Here and below, we understand SOA under the guise of ZFC without power + all sets are countable. This is definitionally equivalent to the more standard arithmetical formulations; see e.g. Simpson.)

A detailed account of the relationship between SOA and SHWP would be overkill here. (Details can be found in CITE.) But certain features will be important to our discussion of consistency below, and having some idea of how the interpretation of the modal theory SHWP in the non-modal SOA goes will be very helpful to us going forward. So we will spend some time discussing certain aspects of the 'tight equivalence' just mentioned.

Let \mathcal{L}_{\in} be the first order language of set theory. Then:

Theorem 2. There is a map $\cdot^{\diamond}: \mathcal{L}_{\epsilon} \to \mathcal{L}_0$ that preserves theoremhood from SOA to SHWP.

Theorem 3. There is a map $\cdot^3:\mathcal{L}_0\to\mathcal{L}_\epsilon$ that preserves theoremhood from SHWP to SOA.

Theorem 2 says that SHWP interprets SOA; this direction does not really concern us directly, since it does not imply anything about the consistency of SHWP, but some idea of how things go will be useful. The translation $\varphi \mapsto \varphi^{\Diamond}$ proceeds by prepending every universal quantifier in φ by a \square and every existential by a \Diamond . A result due to Linnebo says that for $\varphi \in \mathcal{L}_{\in}$,

$$\Gamma \vdash \varphi \Leftrightarrow \Gamma^{\Diamond} \vdash_{Core} \varphi^{\Diamond}$$

where Γ^{\diamond} has the obvious meaning of $\{\gamma^{\diamond}:\gamma\in\Gamma\}$. It thus suffices to prove φ^{\diamond} for each axiom of SOA in SHWP, which (using Proposition 1) is not difficult.

Theorem 3 is directly on-topic. It says that SOA interprets SHWP and hence secures the consistency of the latter relative to the former. Full details of the ideal proof are a little fiddly and would go beyond our needs here. But some idea, again, of how things go down will be useful.

The key idea behind the translation $\varphi \mapsto \varphi^{\exists}$ is to factor out use of modal operators in favor of quantification over possible worlds.

In a bit more detail, the idea is that we define the notion of a possible world in SOA to be a transitive set. That means we interpret the language of SHWP so that ordinary quantifiers are always restricted to such worlds, and the modal operators induce quantifiers over such worlds.

Formally, this means our translation will have to carry formulas φ in the modal language (which may be sentences) to formulas $\varphi^{\exists}(w)$ in the first order language with a free 'world' variable w. Key clauses of the translation are things like

$$(\forall x\varphi)^{\exists}(w) := \forall x \in w\varphi^{\exists}(w)$$
$$(\forall X\varphi)^{\exists}(w) := \forall x \subseteq w\varphi^{\exists}(w)$$
$$(\Box \varphi)^{\exists}(w) := \forall u[Tran(u) \land w \subseteq u \to \varphi^{\exists}(u)]$$

where Tran(u) of course is the assertion that u is transitive. (The case of plural containment Xx is a little fiddly, but can be made to work quite nicely.) The potentialist axioms are then readily seen to be true, under the translation, in SOA. For HP, this is because every set is an element of a transitive set. For WP, this is because SOA proves all sets are countable. So for any given partial order, we may move to a transitive set that witnesses its countability, and then proceed to introduce a generic for it if need be.

A final point is that these results can be strengthened to attain something approximating definitional equivalence between the two theories. ...

3.3 Strong HWP

The theory I have just cited combines height and width potentialism in a straightforward way. The result is a theory that is (up to a near-synonymy) second order arithmetic. This is a pretty weak theory, although as we know from the reverse mathematics literature it is plenty strong enough to develop much of the mathematics needed in applications. Can the height and with potentialist do better?

There is indeed a reasonable way to proceed here. Our potentialist is interested with expansions of the universe along two 'directions'. One has the ability to extend the universe 'upwards' to create sets of higher rank; and one has the ability to extend it 'outwards' by forcing. By separating out these two possible methods of expansion, and by asserting strong axioms regarding what can be attained along the vertical dimension of expansion alone, much stronger HWP systems can be derived, indeed ones with all the power of ZFC and more. This extension makes the general picture of height and width potentialism much more philosophically interesting, since such versions have at least the consistency strength to recover all standard mathematics. But they also bring new conceptual problems with them, problems that will be exploited in one of the inconsistency arguments we will consider.

Let us first discuss in a little more detail how to implement this idea. We expand the language \mathcal{L}_0 to \mathcal{L}_1 by adding in two new modal operators, \oplus and \odot . \oplus is to reflect possibility by *only* vertical expansion: one can think of this as possibility by *only* iteratively introducing new sets for given pluarlities. \odot , on the other hand, is to reflect possibility by *only* horizontal expansion: one can think of this, indifferently, as just by adding new generic filters, or adding new enumerating functions. (\square and \square are the duals.) \diamondsuit remains in the language, and represents 'absolute' possibility, that is, possibility by either domain expansion method.

Here is a way to axiomatize a 'strong' system of this kind.¹ We begin by modifying HP and WP.

```
HP \Box \forall X \oplus \exists x \forall y [y \in x \leftrightarrow Xy]
```

WP
$$\Box \forall \mathbb{P} \forall X D(X, \mathbb{P}) \rightarrow \otimes \exists g(F_{\cap}(g, \mathbb{P}, X))$$

Next, we add rules to reflect the generality of ⋄.

Gh
$$\oplus \varphi \rightarrow \Diamond \varphi$$

Gw
$$\Diamond \varphi \rightarrow \Diamond \varphi$$

Finally, add the following restricted version of the powerset axiom to vertical possibility.

r-Pow
$$\Box \forall x \oplus \exists y \boxtimes \forall z [z \in y \leftrightarrow z \subseteq x]$$

r-Pow says that it is always possible by vertical expansion to get all the subsets of any given set, so long as one disregards the subsets you can get by forcing. This is a kind of local powerset axiom: in intuitive (procedural) terms, it says that you can always eventually get all the subsets of a given set you can get without forcing, if you go on introducing sets long enough.

It is useful to compare r-Pow with the corresponding 'unrestricted' version

¹I ignore fiddly details with the background multi-modal logic. Details can be found in CITE.

Pow $\Box \forall x \oplus \exists y \Box \forall z [z \in y \leftrightarrow z \subseteq x]$

which is provably inconsistent with **WP** over the rest of the theory. Pow says that it is possible for there to such things as *all possible* subsets of any given set; but given the existence of an infinite set (as we are guaranteed), and the universal possibility of forcing, enshrined in **WP**, this cannot be, since we can always force to add new subsets to any given set.

Let the extension of the core theory by the above principles (but not, of course, Pow) be called HWP. The following facts come easily.

Theorem 4. There is a translation $\cdot^{\circ}: \mathcal{L}_{\varepsilon} \to \mathcal{L}_{1}$ that preserves theoremhood from ZFC to HWP.

Theorem 5. There is a translation $\cdot^{\diamond}: \mathcal{L}_{\epsilon} \to \mathcal{L}_{1}$ that preserves theoremhood from SOA to HWP.

In each case, the result follows much as it did in the previous case. In fact Theorem 5 really just is Theorem 2. The first uses the same translation but with \oplus in place of \diamondsuit and \square in place of \square everywhere. That the theorem goes through is a known theorem of Linnebo in a slightly different key.

The resulting theory has some intruiging features. If one restricts one's attention to vertical possibility and necessity, one can construct objects that satisfy anything you can get in ZFC, for example the existence of uncountable cardinals, beth fixed points, and so on. But these large cardinals are always mirages: and the mirage can always be revealed by appeal to \odot -possibility. Anything that might in some possible world satisfy the formula saying that it is (say) ω_1 will also not satisfy that description in some other possible world. There are no *absolute* uncountables, only relative pretenders.

The chief advantage HWP has over SHWP is interpretative power: it can interpret all of ZFC, notwithstanding its ultimate commitment to the countability of all things. This gives HWP the capacity, at least once motivational details are filled in, to potentially offer a countabilist foundation for all mathematics. This is I think one of the principle interests of the combination of height and width potentialism.

I have said that the chief advantage of HWP over SHWP is interpretative power. But how much of that does it have? Does it have too much? We now turn to addressing these issues of consistency in HWP.

It turns out that the methods employed in the previous section generalize fairly naturally to cater to systems like HWP and even further extensions. The generalization involves extend second order arithmetic to include 'topological regularity axioms', and then giving a more nuanced definition of possible world in terms of such an extension.

Let's start with the extension of second order arithmetic involved, to include so-called topological regularity axioms. What are those?

Well, there are certain 'nice' topological properties of sets of reals – things like being Lebesgue measurable, or having the perfect set property – that cannot hold everywhere, at least given the axiom of choice. The issue (repeatedly) is that the axiom of choice allows you to well-order the reals and then construct barbaric sets of various kinds, ones that don't have the nice features, by exploiting the well-order.

There's a general feeling in set theory that the 'nice' properties should all hold of easily definable sets of reals, and that the 'nasty' counterexample sets

should all be pretty complicated to define (in terms of the usual analytical hierarchy). For example, if V=L, then there are easily definable nasty sets of reals, and this is generally taken to be a mark against the principle.

Since V=L implies there are easily definable but nasty sets, it follows that principles asserting that easily definable sets are nice must in some cases go beyond SOA (which is of course consistent with V=L). Principles of this kind are what I'm calling *topological regularity axioms*. They assert that good-behavior properties hold for certain easily definable classes of reals, even when this is not provable in SOA (or ZFC).

The weakest such axiom is something called the Π^1_1 -Perfect Set Property (PSP), which says that every uncountable set of reals definable by a Π^1_1 formula is either countable or has a perfect subset.² It turns out that this minimal extension of SOA is enough to secure the interpretability of HWP.

Theorem 6. There is a map $\cdot^3: \mathcal{L}_1 \to \mathcal{L}_{\epsilon}$ that preserves theoremhood from HWP to SOA + Π^1_1 -PSP.

The proof uses similar ideas to those employed for SOA and SHWP in the previous section, but as I said one has to take a more nuanced definition of 'possible world'. In particular, it turns out that here our definition of a world will need to be 'doubly parameterized': that is, we will need *two* free variables in φ^{\exists} .

Why? Let us think about how our possible worlds will have to look to get an interpretation going. In order for r-Pow to be true, there will have to be worlds w at which the set x of all \oplus -possible sets of numbers exist. These worlds are worlds where any plurality of numbers, in the sense of w, forms a set. And yet, since we can always force to add subsets to any infinite set, there must still be further possible sets of numbers. These sets of numbers have numbers as their members. But we said that all pluralities of numbers at w formed sets at w!

The only way out of this tangle for the HWP proponent is to accept indefinite extendability both with respect the singular domain, and with respect the plural domain (holding the singular domain fixed). The introduction of new generics witnesses, on this view, the extension of the plural domain (over a fixed) singular domain. Indefinite extendability 'runs in two dimensions', according to the present picture. Hence, our possible worlds will be doubly parameterized, with one parameter representing the singular domain, and the other parameter representing the plural. Expansions will then be possible, under the proposed interpretation, in both directions.

Let's now look in more detail how this works. We will make use of the following fact, whose proof is originally due to Solovay.

Fact 7. Over SOA, the Π^1_1 -PSP is equivalent to L[r] containing only countably many reals for every r.

Thus, in effect, the Fact says that L[r] always falls badly short of containing all reals if we have Π_1^1 -PSP. It is thus a strong form of $V \neq L$.

It is fairly easy to see that the fact has the following corollary.

Corollary 8. In SOA + Π_1^1 -PSP, L[r] is a (class) model of ZFC for every real r.

²A perfect set is a closed set with no isolated points.

I provide an argument sketch (that the corollary follows from the fact) in a featnete 3

This now gives us the tools we need to implement our parametrized possible worlds strategy. We define, in SOA + Π_1^1 -PSP, our 'possible worlds' to comprise a transitive set t (representing the first order domain) and a real number r (representing the second order domain). We require that $t \in L[r]$, and will say that plural quantification in a possible world is always restricted to subsets of L[r]. A possible world t, r may then be extended along two parameters. 'Vertical' expansion expands the t parameter, staying within L[r]. 'Horizontal' expansion expands the r parameter, and insodoing accommodates the needed growth in the plural domain even holding the first order domain fixed. t will in general have different subsets in L[r] than L[s], and these are the first order theorist's interpretation for talk of plurals in HWP.

To implement this formally, our mapping $\varphi \mapsto \varphi^{\exists}$ will therefore need to carry $\varphi \in \mathcal{L}_1$ to a formula in \mathcal{L}_{\in} with not just one but two free variables: $\varphi \mapsto \varphi^{\exists}(t, r)$. It will contain clauses like

$$(\forall x\varphi)^{\exists}(t,r) := \forall x \in t\varphi^{\exists}(t,r)$$

$$(\forall X\varphi)^{\exists}(t,r) := \forall x \subseteq t[x \in L[r] \to \varphi^{\exists}(t,r)]$$

$$(\Box\varphi)^{\exists}(t,r) := \forall u \in L[r][Tran(u) \land t \subseteq u \land u \in L[r] \to \varphi^{\exists}(u,r)]$$

$$(\Box\varphi)^{\exists}(t,r) := \forall s \ge r \forall u \in L[s][Tran(u) \land t \subseteq u \to \varphi^{\exists}(u,s)]$$

(In the final expression, $s \ge r$ means that r is constructible from s.)

With the full translation in hand it is a fairly straightforward matter to prove that every theorem of HWP comes good in SOA + Π^1_1 -PSP under the translation: $\varphi \mapsto \forall t, rTran(t) \land t \in L[r][\varphi^\exists(t,r)]$. (The fact that L[r] models ZFC in SOA + Π^1_1 -PSP is needed to get the translations of the \oplus axioms to come good.) In fact, one can show that HWP has Π^1_1 -PSP $^{\diamond}$ as a theorem, and prove the same kind of tight proof-theoretic equivalence obtains here between HWP and SOA + Π^1_1 -PSP as did between SHWP and SOA simpliciter. These results can be pushed further: by increasing the strength of the regularity assumed in the interpreting theory, one can ratchet up the consistency strength of the corresponding modal HWP theory, allowing for measurables and beyond to be 'vertically' attainable. (We will return to this observation in more detail below.)

In any case, that concludes the formal arguments in favor of the consistency of height and width potentialism. We have seen, in outline, that there are arguments for the consistency of height and width potentialism in both a strong and a weak form, relative to extensions of SOA by topological regularity axioms.

Let us now turn to the arguments alleging inconsistency between height and width potentialism, and to see how they relate to the approaches sketched up to now.

4 Roberts

Right from the off it is perhaps worth mentioning that Roberts' argument applies to HWP only. This is not a big deal: he is assuming that the height potentialist

³Do.

will be committed at least to the recovery of ZFC in terms of pure height potentialism, so that any commitment to width potentialism will require a bimodal treatment of the sort described in the last section. But it is worth mentioning that a less grand form of height and width potentialism can still be viable, in the form of SHWP.

The actual details of Roberts' argument are at present not entirely clear to me. His paper is a work in progress, but in the most recent version he argues that the addition of an actuality operator to a theory related to HWP is incosistent, and that on that basis we should think that the viewpoint enshrined in HWP is similarly inconsistent. In correspondence, I suggested that the use of an actuality operator was a red-herring, and that in fact the argument turns (whether or not we have an actuality operator in the picture) on whether we are allowed comprehension only in the 'closed' form cited above, or if instead we accept instances of comprehension with free variables. I continue to believe that the fundamentals of the argument Roberts presents turn on issues surrounding comprehension, and that addition of an actuality operator is a needless increase in complexity. So here I will discuss what I take to be the simpler version of the argument, rather than the last one I saw in a draft from Roberts. In an appendix, I will explain why I think the addition of an actuality operator is unnecessary.

Here then is the argument. Let HWP⁺ be the results of allowing all instances of comp.

$$\exists X \forall x [Xx \equiv \varphi]$$

where φ may include free variables. Then:

Theorem 9. HWP+ is inconsistent.

Proof. It is easy to see that HWP implies

$$\Diamond \exists x [\Diamond (\exists y [y \subseteq x \land y = z]) \land \Box (\neg \exists y [y = z])] \tag{1}$$

abbreviate this as $\lozenge \exists x \Psi(x,z)$. By existential instantiation and the comprehension instance

$$\exists X \forall w [Xw \equiv \Diamond w \in z] \tag{2}$$

in parameter z we get:

$$\Diamond (Ex \land \Psi(x, z) \land \exists X \forall w [Xw \equiv \Diamond w \in z])$$
 (3)

Then by HP,

$$\Diamond (Ex \land \Psi(x, z) \land \oplus \exists u \forall w [w \in u \equiv \Diamond w \in z])$$
 (4)

one can then instantiate on u and prove u=z by (our strong modal form of) extensionality, using $z\subseteq x$ to get $z\subseteq u$.

But this is a contradiction.

Naturally, given this argument, we should expect the proof of consistency implicit in the previous section to break down with strong comprehension. And this is precisely what happens in the interpretation offered for HWP in SOA $+\Pi_1^1$ -PSP. Consider for example the following simple case. Let w be the world that has ω for its first order domain and $P(\omega)^L$ for its plural domain. The inter-

pretation for closed plural comprehension at this world amounts to the claim

that for any y and Y in L, the subset of ω for which $\varphi(n,y,Y)$ holds is again in $P(\omega)^L$, which is obviously true. But if we remove the restriction to closed formulas, we are saying that for any φ , y and Y we choose (whether in L or not), the set of n with $\varphi(n,y,Y)$ is in L. But this is provably false in SOA + Π_1^1 -PSP.

The question about the consistency of HWP that arises from this argument concerns, then, the status of the 'strong' open version of plural comprehension. Formally speaking the path toward saving HWP is clear: accept only the closed instances of comprehension.

Roberts' claim is that the open instances are mandatory: any reasonable plural logic will contain them. But I see no good reason for thinking this is so.

For one thing, it is generally assumed that formulas with free variables at best play an auxiliary role in such formalizations, since under interpretation they don't say anything at all. They are analogous to assertions with hanging pronouns, like in 'it's a good thing'. To rest a philosophical case on such formulas being mandatory would therefore be peculiar.

For another, I would argue that the intuitive validity of the instances of comprehension that are used in the cited argument is legitimately (and independently) questionable, whether or not one is a potentialist. In particular, those of a Stalnakerian actualist bent in modal metaphysics are likely to find the open schema doubtful.

Let me explain. Stalnakerian actualism involves contingentism about (among other things) *properties*. For example, in the event that I should not exist, the property of not being identical to me would also fail to exist according to Stalnaker. Of course, given that I exist, it makes sense to look upon some other circumstances in which I don't exist, and truly affirm of various things that they are not identical to me. But this does not mean that the world in question would be one in which various things had the property of not being identical to me, since were those circumstances to be actual there would be no such property.

Whatever the merits of this view in general – I myself happen to be sympathetic to it – it is clearly coherent and a reasonable idea to consider in modal metaphysics. At its core, from a formal point of view, is precisely a denial of arbitrary instances of comprehension for properties. It is not true, on this picture, that arbitrary worlds will satisfy comprehension for properties on formulas like 'being identical to x', though they will have the closed analogue (for every x there is a property of being identical to x.) Similar points go for 'higher order' instances of comprehension, like 'being identical to the property P'.

For a Stalnakerian, the problem with open instances of property comprehension is that they allow worlds illict access to things in *other* worlds in the model. In our formal model, we have a bunch of worlds with separate domains, and we can name all the things in the domain of any model and ask questions about whether one thing that exists according to one world exists according to another. But these questions are only askable with our external, model-theoretic perspective. When z gets assigned something that doesn't exist at w, inhabitants of w do not have the resources to refer to z, and there in a certain sense simply are no comprehension instances involving z at w. Such formulas, under interpretation in the model, just don't correspond to real propositions that exist at the worlds at which truth is to be evaluated. There is no thought there to be thought there.

The view naturally goes along with an analogous one that denies the relevant instances of comprehension for plurals. If we think, for instance, of a

plurality along the lines of the extension of a property – the Ps, for some P – then it seems natural enough to think that in circumstances where no such individuating P exists, the corresponding plurality will not exist, whether or not each individual thing that Ps (given access to P!) exists. Such a view would warrant a formal restriction to closed comprehension along the lines of that just suggested on the Stalnakerian view for property comprehension.

Note that there is no commitment to there being anything intensional about pluralities here: it is precisely as the *extension* of a property, though plurally rather than singularly, that we are conceving of pluarlities, and strong principles of extensionality along the lines of those adopted in HWP would still be warranted. And there is no reason to believe that this account would have to give up on the idea of a plurality as 'many' as opposed to 'one'. It is just that, on this conception, the existence of a plurality would be tied to the existence of an individuating property classifying them.

Such a view would support contingencies in plurality existence along the lines of those just cited. For example, on this view, in circumstances where I did not exist there would be no guarantee there were such things as *my* molecules, unless some other property (not involving me) happened to have them for its extension, even if each individual molecule that would comprise me existed. Similarly, in circumstances where a generic filter for a partial order does not exist there are no such things as its elements, whether or not the elements we will eventually recognize *it* to have in fact exist at the world in question.

Thus the Stalnakerian actualist can provide independent and conceptually motivated grounds for restricting the allowable instances of comprehension to be closed. This amounts to only allowing parameters that represent actual things on comprehension. But from a Stalnakerian point of view this is no restriction at all. The other instances do not even correspond to genuine thoughts, as there are no propositions involving the alleged inexistents to be objects of thought.

This seems to me to be a clear enough rationale for holding only closed comprehension to be valid. But the alleged inconsistency argument turns on the open instances. I conclude it does not go through. (I note in passing that there are various other ways to motivate the restriction on comprehension besides, for example a form of predicativism about pluralities where their existence is tied not to an individuating property but a defining condition. This view can similarly motivate all we need for HWP, but it raises some subtle issues about the strength of predicative comprehension that we don't need to get into here.)

All told then I do not think Roberts' argument shows HWP is inconsistent. But I should say that the argument is useful in bringing out the contours of the philosophical commitments that go along with the view, and in this regard I think it is still a significant contribution.

One particularly important feature of HWP brought out here that bears empahsizing is that it pushes one away from what Roberts has elsewhere called the 'nothing over and above' conception of plurals. This is the popular conception according to which pluralities are the sorts of things you get 'for free' when you have each individual comprising them.⁴ It is absolutely crystal clear that

⁴This must not be confused with the view, accepted on all sides, that a plurality is not a single thing separate from the many comprising it.

this view is incompatible with HWP: for example, the nothing over and above conception would clearly mandate acceptance of

BF
$$\Box \forall Y (\Diamond \exists X \sqsubseteq Y[X = Z] \supset \exists X \sqsubseteq Y[X = Z])$$

where $X \sqsubseteq Y$ abbreviates $\forall x[Xx\supset Yx]$. This says that given pluralities cannot gain sub-pluralities, which is clearly true if the existence of each component of a plurality implies the existence of the plurality; moreover, it is violated in HWP, since there even the sub-pluralities of the natural numbers are indefinitely extendible.

My impression is that Roberts and I agree up to this point: we both agree that this conception and HWP cannot live together. Where we disagree is that Roberts believes the nothing over and above conception is either the only way to think about plurals, or else that it is the only way for a potentialist to think about plurals.

In either case, as I said, I disagree there. Our conception of plurals - of 'some things' - is one bequeathed us from informal thought. Precisely what logical principles they should obey, and how they are to be conceptualized, is not rigidly determined a priori, but something that is to a great extent up to us to decide how to fill in the details. Indeed there are in all likelihood a number of related notions that can serve different roles in philosophical enquiry. (Two besides the 'nothing over and above' idea have been adumbrated here already, both involving the requirement of some kind of individuation, a 'carving out' of the things in question.) The task in the present context is to find such an understanding that suits HWP, and the one that does will necessarily not satisfy BF, since given any definite range of pluralities over a given domain one can find new ones by forcing. Similarly, the conception will not be one according to which many things are 'nothing over and above' the things they comprise, but rather one where they will in general depend for their existence on individuating properties or conditions. There are such conceptions, and there is no reason not to invoke them. The 'nothing over and above' idea is not somehow written into the fabric of reality.

There is a general moral in the vicinity. HWP uses a cluster of ideas: modality, set membership, quantification, plurality, and so on. None of them is an absolute fixed point, and there are basically no conceptual fixed points within them. It is a matter of finding the right configuration of these things to do justice to the guiding picture. That is why, in my view, it is highly unlikely that any serious inconsistency argument for the combination of height and width potentialism will be forthcoming: pretty much any derived inconsistency in a formal system would as naturally be taken to show the formalization was not up to the task. This generally seems to be the right response to these sorts of inconsistency proofs.⁵

5 Brauer

Brauer's argument is quite closely related to Roberts', and in a sense the same key logical observations are at work in each. But Brauer's argument brings out

⁵Compare e.g. Russell's paradox and the concept of set, or Berkeley's critique of the notion of the infinitesimal.

some interesting issues distinctive to the foundations of set theory that are not really brought up by Roberts, and for that reason warrants seprate discussion. The core argument is simple.

- **P1** Height potentialism, as motivated by the iterative concept of set, sanctions only convergent extensions of the universe: if it could be that the set *x* existed, and it could be that some other set *y* existed, then it could be that *x* and *y* both exist together.
- **P2** Width potentialism, as motivated by the idea of forcing potentialism, requires allowing for divergent extensions of the universe: for there are (or at least could be) partial orders P and possible generic filters G_1 and G_2 such that G_1 and G_2 could not exist together.
- C Height and width potentialism (so understood) are inconsistent.

I'm not completely sold on either premise. In the case of P1, Brauer gives an argument which he glosses informally as follows:

The basic idea of the argument is straightforward: if you have a universe V_0 , you can get different extensions V_1 and V_2 when V_1 is formed by bringing together some collections X into sets and V_2 is formed by bringing some other collections Y into sets; but nothing in the process of forming sets out of the X collections would then prevent you from later forming sets out of the Y collections.

So, we are to conclude, that according to height potentialism under the guise of the iterative concept of set, only convergent extensions of the universe are possible.

My doubts about this form of argument concern whether it is OK to conclude that quite generally the iterative concept of set is incompatible with divergent extensions of the universe. After all, set theory is not everything, and although there may be nothing in the simple process of forming sets from given things that prevents re-convergence, nevertheless other things may do so.

For example, suppose I have a handle, a blade, some permanently binding superglue, and a universe of sets V. I can then form the knife K_1 and form its singleton getting a universe of sets V_1 . Or I can form the knife K_2 and form *its* singleton getting V_2 . But these can never be unified.

Or, for a more pointed example (in the spirit of the 'second approach' to width potentialism discussed by Brauer on p7), suppose I have two machines. One takes in some things and gives back a set with them as its elements. The other takes in a partial order, some dense sets in it, and gives back a plurality that intersects all the given dense sets. Then, given suitable background assumptions (including, but not by any means restricted to P2), we will be in a structurally analogous situation to the blade-handle case: we might find it is possible to produce a set whose elements are G_1 , and also possible to find a set whose elements are G_2 , without these addmiting a unification. But this is no different from the previous case, which is (hopefully?) completely unproblematic.

But discussion of P1 is really a red herring, since at least so far as the brands of height and width potentialism here go P2 is false: one can argue in (S)HWP that if it is possible that some generic g_1 exists, and it is possible that some generic g_2 exists, then it is possible that they exist together. One can see this most easily by using the tight form of equivalences offered with extensions

of SOA. Such theories prove that any two generics for a partial order are both contained in a common transitive set, for example a sufficiently large fragment of L[r] with r witnessing the countability of all the relevant parties. Thus the modal logic of forcing, in this setting, *is* convergent.

Brauer's argument on the other hand is based on the familiar result from ZFC saying that, in any given countable transitive model for ZFC, one can find a partial order and a pair of generics for it that can't exist together in a model of ZFC. The argument uses the meta-mathematical fact that any countable model can be enumerated in the metatheory, and one can then encode said enumeration into a real number in an absolute way. That real number then cannot live the relevant countable model, since if it did the model would be able to furnish a bijection between its ordinals and ω . But that of course cannot hold in any model of ZFC.

This is clearly correct, and is indeed a fact that the proponent of HWP can recognize: they can see for example that it is vertically possible that there are models for (fragments of) ZFC, and partial orders they contain, and such that no possible model for the same theory contains both generics. But from the point of view of HWP, this is just because you are ignoring some universes of sets, namely those wherein everything under discussion is in fact countable. More generally, according to them, it is always possible for generics to co-exist, even if sometimes they never cohabitate in a model of ZFC.

The point is that HWP is associated with a radically different coneption of the mathematical universe than that associated with ZFC. Effectively, it locates all mathematics in second order arithmetic, taking all sets to be countable, and interprets ZFC only in restricted inner models. As a result the whole metamathematical landscape looks somewhat different, and standard results about models of ZFC now have quite a different significance. In particular, the Woodin argument no longer shows in any deep sense that the modal logic of forcing fails to converge, at least in the most general sense at issue. It only shows it holds for a certain restricted class of models.

I should say that, as with Roberts previously, there is a sense in which I completely agree with Brauer. Insofar as we view height potentialism and the iterative concept of set as essentially associated with principles related to ZFC, then what he says is correct: width potentialism is incompatible with these things. For example, if our height potentialist requires (as Brauer suggests they should) that *all possible* sets over a given domain get introduced when any set at all gets introduced, then (as with the discussion of Pow on pn) we will be able to prove the negation of width potentialism. But I take it that this is clearly not a deep obstacle to a height and width potentialist theory, since this commitment of height potentialism is optional (cf Linnebo). One could, for example, think of sets as the sort of thing that could be introduced 'one at a time', so that any particular things can be made to form a set, even if it is impossible ever to get absolutely all the sets you can ever get out of a given domain.

Analogous things stand to be said about the iterative concept of set. There are really two ideas, a weak version which says that a set is something obtainable from already given things, and a strong version which says that in addition the powerset is always obtainable from the set. HWP is compatible with the iterative concept in the first form, but not the second. (Although it can interpret the second form in 'inner models', using \odot .)

So as before I think there is value in Brauer's argument, in really bringing

these central distinctions to the fore. But I do not think that in either case there is anything that presents a severe impediment to the combination of height and width potentialism, or to the combination of the iterative concept of set and forcing potentialism, in anything other than unreasonably restricted readings of these terms. With that said, I understand that to some extent this is a terminological point: others may feel differently about what is essential to 'the iterative concept of set', for example. In any case I am not too worried about the terminology: what I hope *is* clear from this discussion is that there is at least a coherent position that incorporates a lot of the traditional ideas in the iterative conception, understood in height potentialist terms, but that amalgamates width potentialism as well.