Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Test 13

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 - \frac{1}{2} = \frac{1}{2}$, $1 - \frac{1}{3} = \frac{2}{3}$, $1 - \frac{1}{4} = \frac{3}{4}$	3p
	$4 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} = 1$	2p
2.	$f(x) \ge g(x) \Leftrightarrow 4x + 1 \ge x + 4$	2p
	$x \ge 1 \Leftrightarrow x \in [1, +\infty)$	3 p
3.	$4x^2 + 3x = 1 \Leftrightarrow 4x^2 + 3x - 1 = 0$	3 p
	$x = -1 \text{ sau } x = \frac{1}{4}$	2p
4.	$\frac{5}{100} \cdot x = 5000$, unde x este profitul anual al firmei	3р
	$x = 100\ 000$ de lei	2p
5.	$AB = \sqrt{(7-4)^2 + (4-0)^2} = 5$, $AC = \sqrt{(1-4)^2 + (4-0)^2} = 5$	2p
	$BC = 6 \Rightarrow P_{\Delta ABC} = 5 + 5 + 6 = 16$	3 p
6.	$\sin 30^\circ = \frac{1}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\sin^2 30^\circ + \cos^2 60^\circ - \cos 60^\circ = \frac{1}{4} + \frac{1}{4} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1) \circ 1 = (-1) + 1 + 50 =$	3 p
	=0+50=50	2 p
2.	$(x \circ y) \circ z = (x + y + 50) \circ z = (x + y + 50) + z + 50 = x + y + z + 100$, pentru orice numere reale $x, y \neq z$	2p
	$x \circ (y \circ z) = x \circ (y + z + 50) = x + (y + z + 50) + 50 = x + y + z + 100 = (x \circ y) \circ z$, pentru orice numere reale x , y și z , deci legea de compoziție " \circ " este asociativă	3 p
3.	$x \circ (-50) = x + (-50) + 50 = x$, pentru orice număr real x	2p
	$(-50) \circ x = (-50) + x + 50 = x$, pentru orice număr real x , deci $e = -50$ este elementul neutru al legii de compoziție " \circ "	3 p
4.	$x^2 + x + 50 = 92 \Leftrightarrow x^2 + x - 42 = 0$	3p
5.	x = -7 sau $x = 6(x^2 - y - 50) \circ (x - y^2) = x^2 - y - 50 + x - y^2 + 50 =$	2p 2p
	$= x^{2} - y^{2} + x - y = (x - y)(x + y) + (x - y) = (x - y)(x + y + 1), \text{ pentru orice numere reale } x \text{ și } y$	3p

Probă scrisă la matematică *M_pedagogic*

Barem de evaluare și de notare

6.	$(m^2 - n - 50) \circ (m - n^2) \circ (m - n) = ((m - n)(m + n + 1)) \circ (m - n) = (m - n)(m + n + 2) + 50$	2p
	(m-n)(m+n+2)=7 și, cum m și n sunt numere naturale, obținem $m=3$, $n=2$	3 p

(30 de puncte) **SUBIECTUL al III-lea**

1.	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 0 \cdot 0 =$	3p
	=1-0=1	2 p
2.	$\det(A(a)) = \begin{vmatrix} 1 & a^2 \\ a^2 & 1 \end{vmatrix} = 1 - a^4, \text{ pentru orice număr real pozitiv } a$	2 p
	$\det(A(a)) = 0 \Leftrightarrow (1-a^2)(1+a^2) = 0 \Leftrightarrow 1-a^2 = 0 \Leftrightarrow a = -1$, care nu convine, sau $a = 1$, care convine	3 p
3.	$A(1) \cdot A(1) - 2A(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
4.	$ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a^2 \\ a^2 & 1 \end{pmatrix} = 3 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1+2a^2 & a^2+2 \\ 2+a^2 & 2a^2+1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \Leftrightarrow a^2 = 1 $	3 p
	Cum a este număr real pozitiv, obținem $a = 1$	2p
5.	$A(a) - A(0) = \begin{pmatrix} 0 & a^2 \\ a^2 & 0 \end{pmatrix} \Rightarrow \det(A(a) - A(0)) = \begin{vmatrix} 0 & a^2 \\ a^2 & 0 \end{vmatrix} =$	3 p
	$=-a^4 \le 0$, pentru orice număr real pozitiv a	2 p
6.	$A\left(\sqrt{a}\right) \cdot A\left(\sqrt{b}\right) = \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix} = \begin{pmatrix} 1+ab & b+a \\ a+b & ab+1 \end{pmatrix}, \ A(2) + A\left(\frac{1}{2}\right) = \begin{pmatrix} 2 & \frac{17}{4} \\ \frac{17}{4} & 2 \end{pmatrix}$	2p
	$ \begin{pmatrix} 1+ab & b+a \\ a+b & ab+1 \end{pmatrix} = \begin{pmatrix} 2 & \frac{17}{4} \\ \frac{17}{4} & 2 \end{pmatrix} \Leftrightarrow ab=1 \text{ si } a+b=\frac{17}{4} \text{, obținem perechile } \left(\frac{1}{4},4\right) \text{ si } \left(4,\frac{1}{4}\right) $	3p