Chapter 6: Extensions and Resolutions

§ 6.1 Fix
$$\lambda \in \Lambda^+$$
. Want to realise

 $ch L(\lambda) = \sum_{w} (-1)^{e(w)} ch M(w.\lambda)$ (2.4)

Def A BGG resolution of $L(\lambda)$ is an exact sequence.

(**) $O \rightarrow C_m \xrightarrow{\delta_m} C_{m-1} \rightarrow ... \rightarrow C_1 \xrightarrow{\delta_1} C_0 \xrightarrow{\epsilon} L(\lambda) \rightarrow 0$

with $C_k := \bigoplus_{w \in W(\omega)} M(w.\lambda)$, $k = 0,1,..., m = 10^{+}$

($C_m = M(w_0.\lambda)$, $C_0 = M(\lambda)$).

Goals: (1) BGG resolutions exist

(2) Uniqueness ?

(3) Applications (LA cohomology, Homology of Θ).

Exercise: ($C_0, S_0 \rightarrow L(\lambda)$ BGG resol $\Rightarrow \delta[M(w.\lambda) \neq 0]$

Sketch: $\lambda \in \Lambda^+ \Rightarrow w_0 \cdot \lambda = \mu$ is and down regular.

 $M(w.\lambda) = \langle V_+ \rangle$, $w \in W$
 $\delta(V_+) = O \Rightarrow \exists v \in C_{k+1}$ s.t. $\delta(v) = v_+$
 $\Rightarrow C_{k+1} \rightarrow M(w.\lambda)$
 $\Rightarrow [M(w.\lambda) : L(w.\lambda)] \neq O$, $\exists u \in W^{(k+1)}$
 $\Rightarrow M(w.\lambda) : L(w.\lambda) \neq O$, $\exists u \in W^{(k+1)}$
 $\Rightarrow ww_0 \cdot \mu \leq uw_0 \cdot \mu$
 $\Leftrightarrow ww_0 \leq uw_0$
 $\Rightarrow k = \ell(w) \geqslant \ell(w) = k + 1$

\$ 6.2 Thm $\lambda \in \Lambda^+$ There is an exact seq. $(D_{\bullet}^{\lambda}, \partial_{\bullet}) \rightarrow L(\lambda)$ s.t. D_k^{λ} has std filt with $(D_k^{\lambda}: M(w.\lambda)) = 1$, $\forall w \in W^{(k)}$ Sketch: Assume $\lambda = 0$ (A) Let $\pi \cong V = 0$ / $E \supseteq \{\sigma_1, ..., \sigma_m\}$ basis Who $V' : - \alpha_i \iff \sigma_i$ Who $\Lambda^k V : - \sum \alpha_{ij} \iff \sigma_{ij} \wedge \dots \wedge \sigma_{ik}$ (8) $D_k := Ind_{\mathcal{L}}^{\mathcal{R}}(\Lambda^k V)$, has stol filt. (3.6) $\Rightarrow \mathbb{D}_0 = M(0)$ $\left(\left(\left(\bigwedge^{\circ} V \right) \right) = \left(+ r \right) V$ $D_{m} = M(w_{o'}0)$ (h. v. 1 .- 1 vm = - 2 p(h) v. 1 - 1 vm) (C) Introduce $\partial_k: D_k \rightarrow D_{k-1}$, ϵ (general construction) (principal block) $(\mathfrak{D}) \, \, \mathfrak{D}_{\mathsf{k}}^{\mathsf{k}} \, := \, \, \, \mathfrak{D}_{\mathsf{k}} \, \cap \, \, \mathfrak{O}^{\mathsf{x}_{\mathsf{k}}}$ (E) Apply To > to pass from L(O) -> L(X) Details are in § 6.3 - § 6.5 Claim Each Dx has std filtration $M = \bigwedge^k \bigvee \supseteq \{z_1, ..., z_N\}$ W+s(M) 2 1 µ1, ..., µn } $\mu_i \leqslant \mu_j \implies i \leqslant j$

O
$$\subseteq$$
 $M_N \subseteq ... \subseteq M_2 \subseteq M_1 = D_k$
 $M_1 := lnd_0^{r_0} \langle z_1, ..., z_N \rangle$

S.1. $M_1/_{M_1M_1} \cong M(\mu_1)$

Example of $= Al(3)$, $\Phi^+ = Al(3)$, $Al(3)$, $\Phi^+ = Al(3)$, $Al(3)$, $\Phi^+ = Al(3)$, $\Phi^+ =$

Recall
$$M = \bigoplus_{X} M^{X} \quad \forall M \in \mathbb{C}$$

Claim: $M, N \in \mathbb{O}$, $\psi \in \text{Hom}_{\mathbb{O}}(M, N) \Rightarrow \psi(M^{X}) \subseteq N^{X}$

Proof: $T \in M^{X}$, $z \in Z(q) \Rightarrow (z - \chi(z))^{n} \forall v = 0$, $\exists n \in \mathbb{C}$
 $\Rightarrow 0 = (z - \chi(z))^{n} \forall v(v)$
 $\therefore (D_{q}, \partial_{v}) \Rightarrow L(\lambda) \text{ exact} \Rightarrow (D_{v}^{\chi_{h}}, \partial_{v}^{\chi_{h}}) \Rightarrow L(\lambda) \text{ exact}$

Def: $T = \varphi^{+} \cap w(\varphi^{-})$
 $T = \varphi^{+} \cap w(\varphi^{+})$

Notation: $T \in \varphi^{+} \Rightarrow T = \sum_{\alpha \in T} \alpha \in \mathcal{B}^{*}$.

Lemma: $\mu = w \cdot 0$ occurs in $\Lambda^{\ell(w)} \vee \mathbb{C}$
 $p = \varphi^{+} \cap (w + \varphi^{-}) = \varphi^{+} \cap (w + \varphi^{-})$
 $p = \varphi^{+} \cap (w + \varphi^{-}) = \varphi^{-} \cap (\varphi^{+} \cup \varphi^{-})$
 $p = \varphi^{+} \cap (\varphi^{+} \cup \varphi^{-})$
 $p = \varphi^{-} \cap (\varphi^{-} \cup \varphi^{-})$
 $p = \varphi^{-} \cap (\varphi^{-} \cup \varphi^{-})$
 $p = \varphi^{-} \cap (\varphi^{-} \cup \varphi^{-})$

⇒) w · 0 = = (Tw - Tw) - (Tw + Tw) = -TN

Lemma
$$\mu = w. O$$
 occors only once in $\Lambda^{\circ} V$

Pf: We show: $\Pi \subset \Phi^{\dagger} : A : \Pi = \Pi_{w} \Rightarrow \Pi = \Pi_{w}$.

Clear $\ell(w) = 0$

Suppose $\ell(w) = k > 0$
 $\Rightarrow \ell(s_{w}w) = k - 1$, $\exists a \in \Delta$

(0.3) $\Rightarrow w^{\dagger} A < 0$
 $\Rightarrow \int A \in \Pi_{w}$

Claim $\Pi_{w} = s_{x}\Pi_{w}, \cup \{a\}$
 f : Have

 $s_{x}\Pi_{w}' = s_{x}(\Phi^{\dagger} \cap w' \Phi^{\dagger})$
 $= (\Phi^{\dagger} \setminus \{a\}) \cap w \Phi^{\dagger}$
 $= (\Phi^{\dagger} \setminus \{a\}) \cap w \Phi^{\dagger}$
 $\Rightarrow d \notin \Pi_{w} : \Phi^{\dagger} \cap w' \Phi^{\dagger} \cap w \Phi^{\dagger} = \Pi_{w}$.

Back to the Lemma:

 $\Pi \subseteq \Phi^{\dagger} , \Pi = \Pi_{w} = \rho - w \rho$
 $\Rightarrow S_{x}\Pi = (\rho - a) - S_{x} \circ \rho = (\rho - w' \rho) - a$
 $= \Pi_{w'} - a$

$$=) S_{x} \pi \cup \lambda d Y \subseteq \Phi^{+}$$

$$\Rightarrow) \overline{S_{x}} \pi \cup \lambda d Y = \overline{\Pi}_{w'}$$

$$(1H) \Rightarrow) \overline{\Pi}_{w'} = S_{x} \pi \cup \lambda d Y$$

$$\Rightarrow) d \in \overline{\Pi}_{w'} \quad (\text{condr.})$$

$$\vdots \quad d \in \overline{\Pi}$$

$$Lef \pi' = S_{x} (\pi \setminus \lambda d Y) \subseteq \Phi^{+}$$

$$\Rightarrow) \overline{\pi}' = \overline{\Pi}_{w'}$$

$$(1H) \Rightarrow) \overline{\Pi}' = \underline{\Pi}_{w'}$$

$$\Rightarrow) \overline{\Pi} = S_{x} (\overline{\Pi}_{w'}) \cup \lambda d Y = \overline{\Pi}_{w}$$

deTT => S. TI C ++

So far we showed:

if he M

. De has a stafilhation.

• $W+s(D_k^o) = \{w \cdot O, w \in W^{(k)}\}$

Question! $Ext_{Q}(M(w.\lambda), M(w'.\lambda)) = ?$

 $\ell(\omega) = \ell(\omega')$.

Thm (68) 65
$$\lambda$$
 6 δ^{*}

(a) Ext₀ (M(\mu), M(\lambda)) \(\phi \) \Rightarrow $\mu \uparrow \lambda$, $\mu \neq \lambda$

(b) $\lambda \in \Lambda^{+}$, $w, w' \in W$. Thun

Ext₀ (M(\w.\lambda), M(\w'.\lambda)) \(\phi \) \Rightarrow $e^{(w)} < e^{(w)}$

Pf: (a) (3.1 a) \Rightarrow $e^{(w)} \Rightarrow$ $e^{(w)} < e^{(w)}$
 $e^{(w)} \Rightarrow$ $e^{(w)} \Rightarrow$

(b)
$$\lambda \in \Lambda^{+} \Rightarrow \mu = W_{0} \cdot \lambda$$
 is antidom regular
: Ext₀(M(w.\lambda), M(w'.\lambda)) \neq 0
(a) \Rightarrow wwo.\lambda \gamma w'wo.\lambda & w\neq w'\

(5.2) \Rightarrow wwo < w'wb
 \Rightarrow w > w'

General construction of δk 's [Hilton-Stamb.]

From LA cohomology: M of-module, V(vg) = triv

Hⁿ(of, M) = Ext_u(V(g), M) \quad \quad \text{proj. resol.} \\

Hⁿ(of, M) = Ext_u(V(g), M) \quad \quad \quad \text{of triv.} \\

= Hⁿ(Hom_u(\text{P}, M))

3 e1, --, ex & of ex := ein...nex Notations:

tations:
$$\underline{e}_{k} := e_{1} \cdot ... \wedge e_{k}$$
 $\underline{\exists} e_{1} \cdot ... \wedge e_{k} \in \mathcal{O}_{k}$

$$\underline{\hat{e}}_{k}^{i} := e_{1} \cdot ... \wedge \hat{e}_{i} \wedge ... \wedge e_{k}$$

$$\underline{\hat{e}}_{k}^{i} := e_{1} \cdot ... \wedge \hat{e}_{i} \wedge ... \wedge \hat{e}_{j} \wedge ... \wedge e_{k}$$

$$\underline{\hat{e}}_{k}^{i} := e_{1} \cdot ... \wedge \hat{e}_{i} \wedge ... \wedge \hat{e}_{j} \wedge ... \wedge e_{k}$$

(;<;)

$$\begin{array}{ll}
\underbrace{\text{Det}} & P_{k} := \mathcal{U} \otimes \bigwedge^{k} \sigma_{k} \\
\partial_{k}(u \otimes \underline{e}_{k}) &= \sum_{i} (-i)^{i+1} u e_{i} \otimes \underline{\hat{e}}_{k}^{i} \\
&+ \sum_{i < j} u \otimes [e_{i}, e_{j}] \wedge \underline{\hat{e}}_{k}^{i,j}
\end{array}$$

 $\frac{\mathsf{Prop}}{\mathsf{Prop}} : \partial_{\mathsf{K}^{-1}} \partial_{\mathsf{K}} = 0$ Yk.

Introduce filtrations on PR=UONOJ, 9 >0: $F^{9} := \operatorname{Span} \left\{ e_{m} \otimes e_{n} \mid m+n=9 \right\}$ PBW basis wr.t. 4 ei, ..., ed I d = dim of 4 $F^{q}P_{n} = F^{q} \cap P_{n}$ Def: $W^q = (W_0, \partial_0^q)$ a complex with. $W_n^q := F^q P_n / F^{q-1} P_n$ $\partial_{n}^{q}(u\otimes e_{n}) = \partial_{n}(u\otimes e_{n})$ mod F9-1 = ∑ (-1) "ue, ⊗ ê, W9 exact 49>0 Cor: $\underline{P} = (P_{\bullet}, \partial_{\bullet})$ is a free-resol of triv. From SES F91 P ->> W9 Hn (WP) =0 => Hn (F9-1P) & Hn (F9 P), Vn $F^{\circ}P = 0 \rightarrow \vee (9) \rightarrow \vee (9) \rightarrow 0$

Moral of the story: all goes through The relative version for (9, 6): $\mathcal{D}_{\kappa} = \mathcal{U} \otimes \bigvee_{\kappa} (A/\mathcal{P})$ $\delta_{k}(u \otimes \underline{\sigma}_{k}) = \sum_{i} (-1)^{i} u e_{i} \otimes \underline{\widehat{\sigma}}_{k}^{i}$ + \(\sum_{(-1)}^{i+j} \mathbb{u} \otimes \begin{bmatrix} \end{bmatrix} \\ with Ux = U, A... A UK & Ak (of / b) e; e of a represent of U; Is an exact complex. § 6.6. Thm (BoH) hent, dim H (n, L(h)) = | W(k) | Sketch: $H^k(n^-, L(\lambda)) = E \times h_n(C, L(\lambda))$ W (" ") +

$$\begin{array}{ll}
&\cong \operatorname{Ext}^{k}_{n_{-}}(L(\lambda)^{\vee}, C^{\vee}) & \operatorname{take} \underline{M} \\
&= \operatorname{H}^{k}(\operatorname{Hom}_{n_{-}}(\underline{M}, C)) \\
&= \operatorname{H}^{k}(\operatorname{Hom}_{n_{-}}(\underline{M}, C)) \\
&= \operatorname{Mom}_{n_{-}}(\operatorname{M}(\mu), -\operatorname{proj. resol. of } L(\lambda).
\end{array}$$

$$\begin{array}{ll}
&= \operatorname{Hom}_{n_{-}}(M(\mu), C) \cong (\operatorname{M}(\mu)/n_{-} \operatorname{M}(\mu))^{*} \cong C_{-} \mu \\
&= \operatorname{Hom}_{n_{-}}(D_{k}^{\lambda}, C) \cong \bigoplus_{w \in w^{(k)}} C_{-w, \lambda}
\end{array}$$

=) Hk (Hom ,- (C., C)) = = wewch C_w. x

$$\longrightarrow \text{Hom} \left(\mathcal{D}_{k}^{\lambda}, \mathbb{C} \right) \longrightarrow \text{Hom} \left(\mathcal{D}_{k}^{\lambda}, \mathbb{C} \right) \longrightarrow \cdots$$

$$\stackrel{SII}{\longrightarrow} \bigoplus_{u \in W^{(k)}} \mathbb{C}_{-u \cdot \lambda} \stackrel{\bigcirc}{\longrightarrow} \cdots$$

$$\stackrel{SII}{\longrightarrow} u \in W^{(k)}$$

Remarks on Uniqueness of BGG-resolutions (6.7, 6.8).

Let
$$C = (C_{\bullet}, S_{\bullet}) \xrightarrow{\epsilon} L(\lambda)$$
 be a BGG-res
Rewrite it as $C = (C_{\bullet}, \epsilon_{\bullet})$
 $C_{k}^{\circ} = \bigoplus_{w \in W(k)} M(w \cdot \lambda^{\circ})$, $\lambda^{\circ} := w_{\bullet} \lambda$

$$\mathcal{E}_{k}: C_{k}^{\circ} \to C_{k+1}^{\circ}$$
(Note: $C_{k}^{\circ} = C_{m-k}, \mathcal{E}_{k} = \delta_{m-k}$)

(Note:
$$C_{k}^{\circ} = C_{m-k}$$
, $E_{k} = \delta_{m-k}$)
Now:
 $E_{k} \mid_{M(w,\lambda^{\circ})} \neq 0 \Rightarrow M(w,\lambda^{\circ}) \hookrightarrow M(w',\lambda^{\circ})$,
 $\Leftrightarrow w < w'$

 $w \stackrel{d}{\longrightarrow} w'$: when $w' = S_{\alpha}w$, $\exists \alpha > 0$

Remarks:

(1) $W \rightarrow W'$ is defined up to a scalar call it $e(W, W') \in \mathbb{C}$ (2) e(W, W') = 0 if $\not\ni W \longrightarrow W'$ (3) $\subseteq = (C_{\bullet}, \varepsilon_{\bullet})$ defines a matrix

(3)
$$C = (C_0, E_0)$$
 defines a matrix
$$E = (e(w, w')) w_1 w' \in W$$
Def: Let $(w_1, w_2, w_3, w_4) \in W^4$ s.t.

W₁ > W₃ > W₄

These eliments are said to form a square.

Fact: (BLACK BOX)

Suppose
$$\ell(w_4) = \ell(w_1) + 2$$
. Then,

 $\exists \text{ exactly two } w, w' \in W \text{ s.t.}$

 $t \longrightarrow st \longrightarrow tst$ $l(w): 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4$ Claim: The matrix E = E(C) satisfies

whenever (W1, W2, W3, W4) form a square

(*) $e(w_2, w_4) e(w_1, w_2) + e(w_3, w_4) e(w_4, w_3) = 0$

Sketch: Have $\int W \rightarrow w' \iff w < w'$ Have $\int \mathcal{E}_{K}$ an determined by $\mathcal{E}[n(w.\lambda^{\circ})]$, $\forall w \in W^{(1)}$

From Fact

W2

W4

W4

Wo apply that $\epsilon^2 = 0$

Thm (6.8) Given (C°, E.) a BGG-resol.

all
$$e(w, w') \neq 0$$
 when $\begin{cases} l(w) = k \\ l(w') = k + l \end{cases}$

and $w < w'$.

Pf: Downward induction on $k = l(w)$.

 $k = m$, $(m \cdot l)$ are char:

 $M(w_0 \cdot \lambda^0) = M(\lambda) \xrightarrow{\mathcal{E}} L(\lambda)$ non-zero

 $M(w_0 \cdot \lambda^0) = M(\lambda) \xrightarrow{\mathcal{E}} L(\lambda)$ non-zero

 $M(x_0 \cdot \lambda^0) = M(\lambda)$

Pf: (L) means: | W = SpS2W

$$T = S_{L} \beta \implies S_{R} = S_{L} S_{R} S_{L}$$

$$=) S_{R} W = S_{L} (S_{R} S_{L} W)$$

$$= S_{L} W'$$

$$T + \text{ remains to Show } \{(S_{L} W') = \ell(W') + \ell(L) \Rightarrow \ell(S_{R} W') < \ell(W')$$

$$=) (W')^{-1} \beta < O$$

$$\Leftrightarrow (w')^{-1} S_{L} Y < O$$

$$\Leftrightarrow (S_{L} W') Y < O$$

$$\Leftrightarrow (S_{L} W') Y < O$$

=> e(sy sxw') < e(sxw')

 $\stackrel{(1)}{\Leftrightarrow} \ell(w') = \ell(w) < \ell(\varsigma_{k}w')$

the Theorem