

Aprendizagem automática

Sessão 12 - T

Modelos baseados em árvores - Parte 1

Ciência de Dados Aplicada 2023/2024

Espaço de

características

• Dados linearmente separáveis - o espaço de características pode ser bem separado por uma linha ou um hiperplano;

 Dados linearmente inseparáveis - o espaço de características não pode ser efetivamente dividido por uma única linha ou hiperplano.

Note-se que as classes ainda estão bem separadas no espaço de características, mas os limites de decisão não podem ser descritos por equações lineares simples.

Espaço de características

Espaço de

características

• Embora os modelos lineares com limites lineares ofereçam uma interpretação intuitiva, a interpretação de limites de decisão não lineares apresenta desafios.

- Por conseguinte, é necessário criar modelos que:
 - permitir limites de decisão complexos;
 - são fáceis de interpretar.

Modelos interpretáveis

 Historicamente, pessoas de diversas origens têm confiado em modelos interpretáveis para distinguir entre várias classes de objectos e fenómenos.

What Type of Data? Discrete Data Continuous Data Normally Distributed Skewed 2 groups > 2 groups > 2 groups > 2 groups 2 groups 2 groups Nonpaired Paired Expected Nonpaired Paired Nonpaired Paired Expected counts ≥ 5 in counts ≥ 5 in ≥ 75% cells < 75% cells Wilcoxon Wilcoxon Nonpara-Paired **ANOVA** Fisher's McNemar's t-test Rank Sum Signed Rank metric Square Test **Exact Test** Square Test ANOVA Ho: mean Ho: means Ho: Ho: differences are equal are equal medians median medians proportions proportions proportions proportions are equal are equal are equal differences are equal are equal are equal are equal are equal

ENGINEERING FLOWCHART

Source: Waning B, Montagne M: Pharmacoepidemiology: Principles and Practice: http://www.accesspharmacy.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Modelos baseados em árvores

 Os fluxogramas, como nos exemplos anteriores, podem ser formulados como modelos matemáticos (gráficos) para classificação e regressão.

- Estes modelos são:
 - Interpretável por humanos;
 - Ter limites de decisão complexos;
 - Os limites de decisão são uma combinação de limites lineares que são matematicamente simples de descrever.

- Matematicamente, uma árvore de decisão pode ser definida como um gráfico acíclico dirigido, compreendendo:
 - Nós: Representam pontos de decisão ou condições.
 - Arestas: Ligam os nós e representam os resultados das decisões.
 - Nó de raiz: O ponto de decisão inicial, que representa todo o conjunto de dados.
 - Nós de decisão: Pontos de decisão onde é efectuada uma divisão com base numa caraterística ou atributo.
 - Folha Nós: Nós terminais nós que representam resultados finais ou previsões.

https://www.datacamp.com/tutorial/decision-tree-classification-python

Idade	Peso	Fumador	Previsão
35	80	sim	Risco elevado
25	80	sim	?

Baseado em árvores baseados métodos trabalho por particionamento o espaço de

características em rectângulos;

 As previsões são efectuadas através da média dos valores ou com base na

classe mais frequente em cada retângulo.

Beaulac, C., C Rosenthal, J. S. (2019). Previsão do sucesso acadêmico e principal dos estudantes universitários usando florestas aleatórias. Em Pesquisa em Ensino Superior (Vol. 60, Edição 7, pp. 1048-1064). Springer Science and Business Media LLC. https://doi.org/10.1007/s11162-019-09546-y

Nunca teremos uma divisão como esta!

decisão
• Modelos lineares vs. árvores de decisão

Árvores de decisão: Nós de decisão

• Característica binári $x_i = 0$? True

• Característica categóri $Value_1$ $Value_n$

• Característica numéric $x_i < 101.2?$

Árvores de decisão: Tipos de folhas

Classificação

• Regressão

• Estimativa de probabilidade (y=1) = 0,3

Sessão 12 Modelos baseados

P(y=0) = 0.2

Árvores de decisão: Algoritmo

As árvores são construídas utilizando a guloso guloso: Recursivo particionamento binário

- Isto implica os seguintes passos:
 - A definição de um critério de splititing;
 - A definição de uma regra de paragem;
 - Poda de árvores.

Ganancioso significa que cada divisão é feita de forma a minimizar uma perda **sem olhar** para as divisões futuras!

Árvores de decisão: Critérios de divisão

Em cada passo, é selecionada uma nova divisão, encontrando a caraterística x_j e o ponto de divisão s que melhor divide os dados em dois meios-espaços.

$$\{\mathbf{x}: x_j < s\} \quad \{\mathbf{x}: x_j \ge s\}.$$

■ Para a regressão, queremos a divisão que minimiza a soma residual dos quadrados (RSS)

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

em que \hat{y}_{R_i} são os valores médios dos dados de treino dentro da j-ésima caixa.

- Para a classificação, podemos utilizar:
 - Entropia e ganho de informação
 - Índice de Gini

Arvores de decisão: Entropia e ganho de

Pure

informação • "<u>Na teoria da informação, a entropia de uma variável aleatória é o</u> nível médio de "informação", "incerteza" ou "surpresa" inerente aos resultados possíveis da variável."

 No contexto das árvores de decisão, a entropia mede a desordem ou impureza de um nó.

$$E = -\sum_{i=1}^n p_i log_2(p_i)$$
 Very Impure Less Impure

p_i é a probabilidade de escolher aleatoriamente um exemplo da classe i.

Sessão 12 Modelos baseados

Árvores de decisão: Entropia e ganho de informação

 $InformationGain = Entropy_{parent} - Entropy_{children}$

 $Information Gain = Entropy_{parent} - \underbrace{WeightedAvgEntropy_{children}}$

$$\text{Average Entropy} = \frac{n_{subnode_1}}{n_{parent}} E_{-} \text{subnode}_1 + \frac{n_{subnode_2}}{n_{parent}} E_{-} subnode_2 + \ldots + \frac{n_{subnode_n}}{n_{parent}} E_{-} subnode_n$$

Árvores de decisão: Entropia e ganho de

jnformação

Árvores de decisão: Entropia e ganho de

informação

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

Weighted Average of entropy for each node:

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

Information Gain:

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$

= 0.99 - 0.62
= 0.37

Árvores de decisão: Entropia e ganho de informação

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Residence = OWN) = -\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \approx 0.54$$

$$E(Residence = RENT) = -\frac{4}{10}\log_2\left(\frac{4}{10}\right) - \frac{6}{10}\log_2\left(\frac{6}{10}\right) \approx 0.97$$

$$E(Residence = OTHER) = -\frac{5}{12}\log_2\left(\frac{5}{12}\right) - \frac{7}{12}\log_2\left(\frac{7}{12}\right) \approx 0.98$$

Weighted Average of entropies for each node:

$$E(Residence) = \frac{8}{30} \times 0.54 + \frac{10}{30} \times 0.97 + \frac{12}{30} \times 0.98 = 0.86$$

Inf ormation Gain:

$$IG(Parent, Residence) = E(Parent) - E(Residence)$$

= 0.99 - 0.86
= 0.13

- O Gini índice mede a probabilidade de classificação incorrecta um elemento escolhido aleatoriamente com base na distribuição de etiquetas;
- Valores mais baixos valores indicam maior pureza e melhor separação das classes num nó da árvore de decisão.

$$Gini = 1 - \sum_{i=1}^{j} P(i)^2$$
 ou $Gini = 1 - \sum_{i=1}^{j} P(i)(1 - P(i))$

em que j representa o número de classes na variável-alvo

Árvores de decisão: Índice

$$\textbf{den Gini} \ \ Weighted Avg Gini_{nodes} \quad \ \ \text{Weighted Avg Gini} = \frac{n_{subnode_1}}{n_{parent}} Gini_{subnode_1} + \frac{n_{subnode_2}}{n_{parent}} Gini_{subnode_2} + \ldots + \frac{n_{subnode_n}}{n_{parent}} Gini_{subnode_n}$$

Sessão 12 Modelos baseados

$$Gini_{(Balance < 50)} = 1 - (\frac{12}{13})^2 - (\frac{1}{13})^2 = 0.142$$

$$Gini_{(Balance \ge 50)} = 1 - (\frac{4}{17})^2 - (\frac{13}{17})^2 = 0.360$$

$$Gini = \frac{13}{30} * 0.142 + \frac{17}{30} * 0.360 = 0.266$$

$$Gini_{(OWN)} = 1 - (\frac{7}{8})^2 - (\frac{1}{8})^2 = 0.219$$

$$Gini_{(RENT)} = 1 - (\frac{4}{10})^2 - (\frac{6}{10})^2 = 0.48$$

$$Gini_{(OTHER)} = 1 - (\frac{5}{12})^2 - (\frac{7}{12})^2 = 0.486$$

$$Gini = \frac{8}{30} * 0.219 + \frac{10}{30} * 0.48 + \frac{12}{30} * 0.486 = 0.4128$$

Árvores de decisão: Critérios de divisão

• Porque não minimizar o erro de classificação incorrecta?

Árvores de decisão: Regras de paragem

- Profundidade máxima: limita a profundidade da árvore;
- Mínimo de amostras por folha: limita o número mínimo de amostras que um nó folha pode ter;
- Mínimo de amostras por divisão: limita o número mínimo de amostras necessárias para efetuar uma divisão;
- Número máximo de nós de folha: limita o número total de nós principais numa árvore;
- Limiar de impureza: uma divisão só é efectuada se reduzir a impureza numa determinada quantidade;

• A flexibilidade/complexidade das árvores de decisão é determinada principalmente pela **profundidade** da **árvore**:

Para obter uma pequena polarização, precisamos d

■ No entanto, isto resulta numa grande variação!

- Para melhorar o desempenho:
 - Poda: cultivar árvores profundas (pequena tendência, alta variância) que depois são podadas em árvores mais pequenas (reduzir a variância);
 - Métodos de conjunto (próxima sessão): combinar várias árvores simples.
 - Ensacamento e florestas aleatórias
 - Árvores reforçadas

Árvores de decisão: Poda de árvores

 As árvores profundas ajustam-se frequentemente em excesso aos dados de treino, o que resulta num fraco desempenho nos testes;

 Poderíamos parar de dividir assim que o ganho de informação não melhorasse pelo menos um valor pré-especificado;

 No entanto, os desdobramentos "fracos" no início podem, por vezes, conduzir a um desdobramento realmente bom mais tarde;

• Solução: Cultivar uma árvore profunda e depois podá-la.

Árvores de decisão: Poda por

complexidade de custos • Poda de complexidade de custos, também conhecida como poda do elo mais fraco:

• Matematicamente, a medida de complexidade do custo de uma árvore T é dada por:

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

Onde:

* R(T) é o risco da árvore T (RSS global, Gini/Entropia/etc)

* |T| é o número de nós folha na árvore T

Sessão 12 Modelos baseados

Árvores de decisão: Poda por

pequeno, melhor

• Objetivo: minimizar $R_{lpha}\left(T
ight)=R(T)+lpha|T|$ Dá-nos custos Dá-nos complexidade

Sessão 12 Modelos baseados

 BRAGA

Árvores de decisão: Poda por complexidade de custos • Regra de poda:

podar todos os nós filhos de t se:

$$\underbrace{(|T_t|-1)\alpha}_{\text{Penalização}} > \underbrace{R(t)-R(T_t)}_{\text{Prémio}} \Rightarrow \alpha > \frac{R(t)-R(T_t)}{|T_t|-1}$$

Arvores de decisão: Poda por

complexidade de custos• R(t) = 0,168 * (54/150) = 0,06048

- $R(T_t) = 0.0408 * (58/150) + 0.4444 * (6/150)$ = 0.033552
- |T| = 2
- $\frac{R(t) R(T_t)}{R(t)} = (0.06048 0.033552) / (2-1)$ = 0.026928
- Então, se:
 - α = 0,02 não podamos
 - α = 0,03 podamos
- Pergunta:
 - Como escolher o valor de α ?

Sessão 12 Modelos baseados

Árvores de decisão: Poda por complexidade de custos · Pergunta:

UNIVERSIDADE CATOLICA PORTUGUESA BRAGA

- - Como escolher o valor de α ?
- Utilizar a validação cruzada!

Sessão 12 Modelos baseados em árvores

Árvores de decisão: Profundidade vs Erro

• Parece que uma pequena árvore de 3 folhas tem o erro CV mais baixo!

Árvores de decisão: Vantagens

- Interpretabilidade: fáceis de compreender e interpretar, o que as torna adequadas para explicar o raciocínio subjacente às decisões a não especialistas.
- Sem pré-processamento de dados: pode tratar dados numéricos e categóricos sem necessidade de pré-processamento extensivo, como normalização ou escalonamento.
- Lida com relações não lineares: pode captar relações não lineares entre características e a variável-alvo sem as modelar explicitamente.
- Lida com valores em falta: pode lidar com valores em falta excluindo-os simplesmente do processo de divisão, tornando-os robustos para dados em falta.
- Importância das características: fornece uma medida da importância das características, que pode ajudar a identificar as características mais influentes no conjunto de dados.
- Eficiência: têm um tempo de formação relativamente rápido, especialmente para conjuntos de dados mais pequenos, em comparação com algoritmos mais complexos.

Árvores de decisão: Limitações

- Sobreajuste: são propensos ao sobreajuste, especialmente quando crescem demasiado em profundidade ou não são podados corretamente, captando ruído ou padrões específicos nos dados de treino que não generalizam bem.
- Instabilidade: pequenas variações nos dados podem levar a estruturas de árvore diferentes, tornando as árvores de decisão instáveis e sensíveis a alterações nos dados de formação.
- Enviesamento para as classes dominantes: em tarefas de classificação com classes desequilibradas, as árvores de decisão podem apresentar um enviesamento para as classes dominantes, levando a um fraco desempenho nas classes minoritárias.
- Natureza gulosa: utilizar uma abordagem gulosa, de cima para baixo, para particionar recursivamente o espaço de características, o que pode nem sempre conduzir à estrutura de árvore globalmente óptima.

Recursos

• Koning, M., C Smith, C. (2017). Árvores de decisão e florestas aleatórias. Publicado de forma independente.

https://www.youtube.com/watch?v=_L39rN6gz7Y

https://www.youtube.com/watch?v=_L39rN6gz7Y

https://www.youtube.com/watch?v=wpNl-JwwplA

https://www.youtube.com/watch?v=D0efHEJsfHo