Lecture 7 Non-Linear Optimization

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Learning Objectives

- □ Identify the objective function, parameters and constraints in an optimization problem
- □ Compute the gradient of a loss function for scalar, vector and matrix parameters
- ☐ Efficiently compute a gradient in python.
- ☐ Write the gradient descent update
- ☐ Describe the effect of the learning rate on convergence
- ☐ Determine if a loss function is convex

Outline

Motivating example: Build an optimizer for logistic regression

- ☐ Gradients of multi-variable functions
- ☐ Gradient descent
- ☐ Adaptive step size
- **□**Convexity

Demo on GitHub

□https://github.com/sdrangan/introml/blob/master/optim/grad_descent.ipynb

Demo: Gradient Descent Optimization

In the <u>breast cancer demo</u>, we used the sklearn built-in LogisticRegression class to find problem. The fit routine in that class has an *optimizer* to select the weights to best ma optimizer works, in this demo, we will build a very simple gradient descent optimizer from scrat

- Compute the gradients of a simple loss function and implement the gradient calculations in
- Implement a simple gradient descent optimizer
- Visualize the effect of the learning rate in gradient descent
- Implement an adaptive learning rate algorithm

Loading the Breast Cancer Data

We first load the standard packages.

Recap: Breast Cancer Example

- ☐ Problem from Lecture 6: Determine if sample indicates cancer
- □Classification problem:
 - Input x = 10 features of sample (size, cell mitosis, etc..)
 - Output: Is the sample benign or malignant?

$$\hat{y} = \begin{cases} 1 & \text{malignant (cancer)} \\ 0 & \text{benign (no cancer)} \end{cases}$$

- \square Training data (x_i, y_i) , i = 1, ..., N
 - Data from N = 569 patients

Grades of carcinoma cells http://breast-cancer.ca/5a-types/

Logistic Regression Maximum Likelihood

☐ Assume logistic model for the likelihood function:

$$P(y = 1|x, w) = \frac{1}{1 + e^{-z}}, \qquad z = w_{1:p}^T x + w_0$$

- **w** = unknown weights
- ☐ML (Maximum Likelihood) estimation: Minimize the negative log likelihood:

$$\widehat{w} = \arg\min_{w} f(w), \quad f(w) \coloneqq -\sum_{i=1}^{N} \ln P(y_i|x_i, w)$$

- f(w) = loss function = measure of goodness of fit of parameters
- □Loss function = binary cross entropy (number of classes K=2)

$$f(\mathbf{w}) \coloneqq \sum_{i=1}^{N} -y_i z_i + \ln[1 + e^{z_i}], \qquad z_i = \mathbf{w}_{1:p}^T \mathbf{x}_i + w_0$$

Minimizing the Loss Function

☐ Used sklearn LogisticRegression.fit method

```
data = {'feature': xnames, 'slope': np.squeeze(logreg.coef_)}
dfslope = pd.DataFrame(data=data)
dfslope
```

☐ Used built-in optimizer to minimize loss function

- **Questions**:
 - How does this optimizer work?
 - How would we build one from scratch

	feature	slope
0	thick	1.508834
1	size_unif	-0.015979
2	shape_unif	0.957072
3	marg	0.947234
4	cell_size	0.214964
5	bare	1.395001
6	chrom	1.095654
7	normal	0.650696
8	mit	0.925912

Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- Gradients of multi-variable functions
- ☐ Gradient descent
- ☐ Adaptive step size
- **□**Convexity

Gradients and Optimization

- \square In machine learning, we often want to minimize a loss function J(w)
- \square Gradient $\nabla J(w)$: Key function
- ☐ Gradient has several important properties for optimization
 - Provides a simple linear approximation of a function
 - When at a local minima, $\nabla J(w) = 0$
 - At other points, $-\nabla J(w)$ provides a direction of maximum decrease

Gradient Defined

- \square Consider scalar-valued function f(w)
- \square Vector input w. Then gradient is:

$$\nabla_{w} f(\mathbf{w}) = \begin{bmatrix} \partial f(\mathbf{w}) / \partial w_{1} \\ \vdots \\ \partial f(\mathbf{w}) / \partial w_{N} \end{bmatrix}$$

 \square Matrix input W, size $M \times N$. Then gradient is:

$$\nabla_{W} f(\mathbf{W}) = \begin{bmatrix} \partial f(\mathbf{W})/\partial W_{11} & \cdots & \partial f(\mathbf{W})/\partial W_{1N} \\ \vdots & \vdots & \vdots \\ \partial f(\mathbf{W})/\partial W_{M1} & \cdots & \partial f(\mathbf{W})/\partial W_{MN} \end{bmatrix}$$

☐ Gradient is same size as the argument!

Example 1

$$\Box f(w_1, w_2) = w_1^2 + 2w_1w_2^3$$

- ☐ Partial derivatives:
 - $\circ \ \partial f/\partial w_1 = 2w_1 + 2w_2^3$
 - $\theta = \frac{\partial f}{\partial w_2} = 6w_1w_2^2$
- $\Box \text{Gradient: } \nabla f = \begin{bmatrix} 2w_1 + 2w_2^3 \\ 6w_1w_2^2 \end{bmatrix}$
- ■Example to right:
 - Computes gradient at w = (2,4)
 - Gradient is a numpy vector

```
# Point to evaluate
w = np.array([2,4])
# Function
f = w[0]**2 + 2*w[0]*(w[1]**3)
# Gradient
df0 = 2*w[0]+2*(w[1]**3)
df1 = 6*w[0]*(w[1]**2)
fgrad = np.array([df0, df1])
```

Example 2

■ Consider loss function

$$J(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - ae^{-bx_i})^2, \qquad w = (a, b)$$

- Used for exponential fit with parameters w = (a, b)
- □ Compute gradients:

$$\frac{\partial J(w)}{\partial a} = \sum_{i=1}^{N} (y_i - ae^{-bx_i})(-e^{-bx_i})$$

$$\frac{\partial J(w)}{\partial b} = \sum_{i=1}^{N} (y_i - ae^{-bx_i})(ax_i e^{-bx_i})$$

Gradient:

$$\nabla J = \sum_{i=1}^{N} (y_i - ae^{-bx_i})e^{-bx_i} \begin{bmatrix} -1 \\ ax_i \end{bmatrix}$$

Example 2 in Python

☐ Want to compute gradient:

$$\nabla J = \sum_{i=1}^{N} (y_i - ae^{-bx_i})e^{-bx_i} \begin{bmatrix} -1 \\ ax_i \end{bmatrix}$$

- ☐ Use vectorized operations
- ☐ Gradient is a numpy vector

$$\frac{\partial J(w)}{\partial a} = \sum_{i=1}^{N} (y_i - ae^{-bx_i})(-e^{-bx_i})$$

$$\frac{\partial J(w)}{\partial b} = \sum_{i=1}^{N} (y_i - ae^{-bx_i})(ax_i e^{-bx_i})$$

```
# Generate some random data
ny = 100
y = np.random.randn(ny)
x = np.random.rand(ny)
# Some arbitrary parameters
# to compute the gradient at
a = 1
b = 2
# Compute the loss function
yerr = y-a*np.exp(-b*x)
J = np.sum(yerr**2)
# Compute the gradient
dJ da = -np.sum(yerr*np.exp(-b*x))
dJ_db = np.sum(yerr*a*x*np.exp(-b*x))
Jgrad = np.array([dJ da, dJ db])
```


First-Order Approximations Scalar-Input Functions

- \square Consider function f(x) with scalar input x
- ☐ First-order approximation for a scalar input function

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

- \square Approximates f(x) by a linear function
 - Derivative = $f'(x_0)$ = slope
- ☐ What is the equivalent for vector-input functions?

First-Order Approximations Vector Input Functions

- $\Box \text{Suppose } f(\mathbf{x}) \text{ takes a vector input } \mathbf{x} = (x_1, \dots, x_p)$
- \square For vector x, gradients can be used for first order approximation

$$f(\mathbf{x}) \approx f(\mathbf{x_0}) + \sum_{j=1}^{p} \frac{\partial f}{\partial x_j} \left(x_j - x_{0j} \right) = f(\mathbf{x_0}) + \nabla f(\mathbf{x_0})^T (\mathbf{x} - \mathbf{x_0})$$

- \square Linear function in x
- \square Change in f(x) given by inner product:

$$f(\mathbf{x}) - f(\mathbf{x}_0) \approx \nabla f(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) = \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$$

Gradients and Stationary Points

- \square Stationary point: Any w where $\nabla f(w) = 0$
- □Occurs at any local maxima or minima
- □Also, any saddle point
- ☐ In linear regression:
 - f(w) = RSS loss function
 - Solved for w where $\nabla f(w) = 0$
- \square But, often cannot explicitly solve for $\nabla f(\mathbf{w}) = 0$

Direction of Maximum Increase

- ☐ Gradient indicates direction of maximum increase:
- \square Take a starting point x_0
- \Box Change in f(x) direction u

$$f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) \approx \langle \nabla f(\mathbf{x}_0), \mathbf{u} \rangle = \|\nabla f(\mathbf{x}_0)\| \|\mathbf{u}\| \cos \theta$$

- Maximum increase when $\boldsymbol{u} = \alpha \ \nabla f(\boldsymbol{x}_0)$
- \circ Maximum decrease when $oldsymbol{u} = -lpha \;
 abla f(oldsymbol{x}_0)$

First-Order Approximations Matrix Input Functions

- \square Suppose f(W) takes a matrix input $W = (W_{ij})$
- ☐ First order approximation formula:

$$f(\mathbf{W}) \approx f(\mathbf{W}_0) + \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{\partial f}{\partial W_{ij}} (W_{ij} - W_{0,ij})$$

 \square Change in f(W) given by matrix inner product:

$$f(\mathbf{W}) - f(\mathbf{W}_0) \approx \langle \nabla f(\mathbf{W}_0), \mathbf{W} - \mathbf{W}_0 \rangle, \qquad \langle \mathbf{A}, \mathbf{B} \rangle \coloneqq \sum_{i=1}^{M} \sum_{j=1}^{N} A_{ij} B_{ij}$$

Similar to the vector formula

Example 3: Matrix-Input Function

□Suppose

$$f(W) = a^T W b$$

- Matrix input / scalar output
- \square Then, $f(\mathbf{W}) = \mathbf{a}^T \mathbf{W} \mathbf{b} = \sum_{ij} a_i b_j W_{ij}$
- **□**Gradient:

$$\nabla f(W) = \begin{bmatrix} a_1b_1 & \cdots & a_1b_N \\ \vdots & \vdots & \vdots \\ a_Nb_1 & \cdots & a_Nb_N \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_N \end{bmatrix} [b_1 & \cdots & b_N] = \boldsymbol{a}\boldsymbol{b}^T$$

 \circ ab^T is called the outer product

Example 3 in Python

- $\Box \text{Function: } f(\mathbf{W}) = \mathbf{a}^T \mathbf{W} \mathbf{b}$
 - Use python `dot` for matrix-vector products
- $\Box \mathsf{Gradient} \colon \nabla f(\mathbf{W}) = \mathbf{a}\mathbf{b}^T$
 - Want fgrad[i,j] = a[i]b[j]
 - Avoid for-loops
 - Use python broadcasting
 - a[:,None] = m x 1
 - \circ b[None,:] = 1 x n

```
# Some random data
m = 4
n = 3
W = np.random.randn(m,n)
a = np.random.randn(m)
b = np.random.randn(n)
# Function
f = a.dot(W.dot(b))
# Gradient -- Use python broadcasting
fgrad = a[:,None]*b[None,:]
```

Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- Gradient descent
 - ☐ Adaptive step size
 - □ Convexity

Unconstrained Optimization

 \square Problem: Given f(w) find the minimum:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} f(\mathbf{w})$$

- $\circ f(w)$ is called the objective function
- $\mathbf{w} = (w_1, \dots, w_M)$ is a vector of decision variables or parameters
- □ Called unconstrained since there are no constraints on w
- ☐ Will discuss constrained optimization briefly later

Numerical Optimization

- \square We saw that we can find minima by setting $\nabla f(w) = 0$
 - ∘ *M* equations and *M* unknowns.
 - May not have closed-form solution
- Numerical methods: Finds a sequence of estimates w^k that converges to the true solution $w^k \to w^*$
 - Or converges to some other "good" minima
 - Run on a computer program, like python

Gradient Descent

- ☐ Most simple method for unconstrained optimization
- ☐ Recall gradient:

$$\nabla_{w} f(\mathbf{w}) = \begin{bmatrix} \partial f(\mathbf{w}) / \partial w_{1} \\ \vdots \\ \partial f(\mathbf{w}) / \partial w_{N} \end{bmatrix}$$

- ☐ Gradient descent algorithm:
 - Start with initial w^0
 - $\circ \ w^{k+1} = w^k \alpha_k \nabla f(w^k)$
 - Repeat until some stopping criteria
- $\square \alpha_k$ is called the step size
 - In machine learning, this is called the learning rate

Gradient Descent Illustrated

$$\square M = 1$$

•
$$M = 2$$

Gradient Descent Analysis

■Using gradient update rule

$$f(w^{k+1}) = f(w^k) + \nabla f(w^k) \cdot (w^{k+1} - w^k) + O||w^{k+1} - w^k||^2$$

= $f(w^k) - \alpha \nabla f(w^k) \cdot \nabla f(w^k) + O(\alpha^2)$
= $f(w^k) - \alpha ||\nabla f(w^k)||^2 + O(\alpha^2)$

- lacktriangle Consequence: If step size lpha is small, then $f(w^k)$ decreases
- Theorem: If f''(w) is bounded above, f(w) is bounded below, and α is chosen sufficiently small, then gradient descent converges to local minima

Local vs. Global Minima

☐ Definitions:

- w^* is a global minima if $f(w) \ge f(w^*)$ for all w
- w^* is a local minima if $f(w) \ge f(w^*)$ for all w in some open neighborhood of w^*
- Most numerical methods:
 - Generally only guarantee convergence to local minima
- □Convex functions: Have only global minima (more later)

Logistic Loss Function for Binary Classification (Review)

□ Recall: logistic regression loss function:

$$J(w) = -\sum_{i=1}^{n} \ln P(y_i | \mathbf{x}_i, \mathbf{w}), \qquad P(y_i = 1 | \mathbf{x}_i, \mathbf{w}) = \frac{1}{1 + e^{-z_i}}, \qquad z_i = \mathbf{w}_{1:p}^T \mathbf{x}_i + w_0$$

☐Therefore,

$$P(y_i = 1 | \mathbf{x}_i, \mathbf{w}) = \frac{e^{z_i}}{1 + e^{z_i}}, \qquad P(y_i = 0 | \mathbf{x}_i, \mathbf{w}) = \frac{1}{1 + e^{z_i}}$$

☐Hence,

$$\ln P(y_i|x_i, \mathbf{w}) = y_i \ln P(y_i = 1|x_i, \mathbf{w}) + (1 - y_i) \ln P(y_i = 0|x_i, \mathbf{w}) = y_i z_i - \ln[1 + e^{z_i}]$$

□Loss function = binary cross entropy:

$$J(\mathbf{w}) = \sum_{i=1}^{n} \ln[1 + e^{z_i}] - y_i z_i$$

Logistic Loss as a Two Step Function

☐ Recall logistic loss function = binary cross entropy

$$f(\mathbf{w}) \coloneqq \sum_{i=1}^{n} -y_i z_i + \ln[1 + e^{z_i}], \qquad z_i = \mathbf{w}_{1:p}^T \mathbf{x}_i + w_0$$

- \square Loss function can be represented as a two step process: $f(\mathbf{w}) = g(\mathbf{A}\mathbf{w})$
- \square Step 1: Transform z = Aw

$$A = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix}$$

□Step 2: Factorizable function:

$$f(\mathbf{w}) = g(\mathbf{z}) = \sum_{i=1}^{n} g_i(z_i), \qquad g_i(z_i) = -y_i z_i + \ln[1 + e^{z_i}]$$

Forward-Backward Method

 \square Suppose f(w) = g(Aw) and g(z) is factorizable,

$$g(\mathbf{z}) = \sum_{i=1}^{n} g_i(z_i)$$

☐ Theorem: Gradient can be computed by chain rule (show on the board):

$$\nabla_{w} f(\mathbf{w}) = \mathbf{A}^{T} \nabla_{z} g(\mathbf{z}) \Big|_{\mathbf{z} = \mathbf{A}\mathbf{w}}, \qquad \nabla_{z} g(\mathbf{z}) = \begin{bmatrix} g_{1}'(z_{1}) \\ \vdots \\ g_{n}'(z_{n}) \end{bmatrix}$$

- ☐ Forward-Backward method: to compute function and gradient:
 - Compute forward transform z = Aw
 - Compute function $f(\mathbf{w}) = g(\mathbf{z})$, with $g_i(z_i) = -y_i z_i + \ln[1 + e^{z_i}] = (1 y_i) z_i \ln \frac{1}{1 + e^{-z_i}}$
 - \circ Compute gradient $\nabla_{\!z} g(\mathbf{z})$, with $g_i'(z_i) = -y_i + \frac{1}{1+e^{-z_i}}$
 - Compute reverse transform for gradient $\nabla_{\!\! w} f(w) = A^T \nabla_{\!\! z} g(z)$

Implementation in Python

- □Optimizer requires a python method to compute:
 - Objective function f(w), and
 - Gradient $\nabla f(w)$
- ☐ For logistic loss:

$$f(\mathbf{w}) \coloneqq \sum_{i=1}^{N} -y_i z_i + \ln[1 + e^{z_i}], \qquad z_i = \mathbf{w}_{1:p}^T \mathbf{x}_i + w_0$$

- \square Thus, f(w) and $\nabla f(w)$ depends on training data (x_i, y_i)
 - How do we pass these?
- ☐ Two methods to pass data to the function:
 - Method 1: Use a class
 - Method 2: Use lambda calculus

Method 1: Create a Class

- ☐ Create a class for the objective function
- \square Pass data (x_i, y_i) in constructor
 - Also perform any pre-computations
- ☐ Pass argument w to method feval
 - Evaluates function and gradient
 - Can access the data as class members
 - Note forward-backward method
- ☐ Instantiate the class with data

```
log_fun = LogisticFun(Xtr,ytr)
```

```
class LogisticFun(object):
   def __init__(self,X,y):
        Class for computes the loss and gradient for a logistic regression problem.
        The constructor takes the data matrix 'X' and response vector y for training.
        self.X = X
        self.y = y
        n = X.shape[0]
        self.A = np.column stack((np.ones(n,), X))
   def feval(self,w):
        Compute the loss and gradient for a given weight vector
        # The loss is the binary cross entropy
        z = self.A.dot(w)
        py = 1/(1+np.exp(-z))
        f = np.sum((1-self.y)*z - np.log(py))
        # Gradient
        df dz = py-self.y
        fgrad = self.A.T.dot(df_dz)
        return f, fgrad
```


Testing the Gradient

- □Always test your implementation!
- \square Pick two points w_0 , w_1 that are close
- \square Make sure: $f(\mathbf{w}_1) f(\mathbf{w}_0) \approx \nabla f(\mathbf{w}_0)^T (\mathbf{w}_1 \mathbf{w}_0)$

```
# Take a random initial point
p = X.shape[1]+1
w0 = np.random.randn(p)

# Perturb the point
step = 1e-6
w1 = w0 + step*np.random.randn(p)

# Measure the function and gradient at w0 and w1
f0, fgrad0 = log_fun.feval(w0)
f1, fgrad1 = log_fun.feval(w1)

# Predict the amount the function should have changed based on the gradient
df_est = fgrad0.dot(w1-w0)

# Print the two values to see if they are close
print("Actual f1-f0 = %12.4e" % (f1-f0))
print("Predicted f1-f0 = %12.4e" % df_est)
```

Method 2: Lambda Calculus

 \square Create a function that take w, X, y

 \square Use lambda function to fix X, y

```
# Create a function with all the parameters
def feval param(w,X,y):
   Compute the loss and gradient given w,X,y
    # Construct transform matrix
   n = X.shape[0]
    A = np.column stack((np.ones(n,), X))
   # The loss is the binary cross entropy
   z = A.dot(w)
   py = 1/(1+np.exp(-z))
   f = np.sum((1-y)*z - np.log(py))
   # Gradient
   df dz = py-y
   fgrad = A.T.dot(df dz)
   return f, fgrad
# Create a function with X,y fixed
feval = lambda w: feval param(w,Xtr,ytr)
# You can now pass a parameter like w0
f0, fgrad0 = feval(w0)
```


Gradient Descent

☐ Input parameters:

- Function to return objective and gradient
- Initial value w^0
- \circ Learning rate α
- Number of iterations

□Code returns:

- Final estimate w^k
- Final function value $f(w^k)$
- History (for debugging)

```
def grad_opt_simp(feval, winit, lr=1e-3,nit=1000):
    Simple gradient descent optimization
    feval: A function that returns f, fgrad, the objective
            function and its gradient
    winit: Initial estimate
    lr:
           learning rate
            Number of iterations
    # Initialize
    w0 = winit
    # Create history dictionary for tracking progress per iteration.
    # This isn't necessary if you just want the final answer, but it
    # is useful for debugging
    hist = {'w': [], 'f': []}
    # Loop over iterations
    for it in range(nit):
        # Evaluate the function and gradient
        f0, fgrad0 = feval(w0)
        # Take a gradient step
        w0 = w0 - lr*fgrad0
         # Save history
        hist['f'].append(f0)
        hist['w'].append(w0)
    # Convert to numpy arrays
    for elem in ('f', 'w'):
        hist[elem] = np.array(hist[elem])
    return w0, hist
```

Gradient Descent on Logistic Regression

- ☐ Random initial condition
- □ 1000 iterations
- □ Convergence is slow.
- ☐ Final accuracy poor
 - estimate has not converged


```
# Initial condition
winit = np.random.randn(p)

# Parameters
feval = log_fun.feval
nit = 1000
lr = 1e-4

# Run the gradient descent
w, f0, hist = grad_opt_simp(feval, winit, lr=lr, nit=nit)

# Plot the training loss
t = np.arange(nit)
plt.semilogx(t, hist['f'])
plt.grid()
```

```
def predict(X,w):
    z = X.dot(w[1:]) + w[0]
    yhat = (z > 0)
    return yhat

yhat = predict(Xts,w)
acc = np.mean(yhat == yts)
print("Test accuracy = %f" % acc)
```

Test accuracy = 0.971731

Different Step Sizes

- ☐ Faster learning rate => Faster convergence
- ☐ But, may be unstable

```
lr= 1.00e-05 Test accuracy = 0.681979
lr= 1.00e-04 Test accuracy = 0.964664
lr= 1.00e-03 Test accuracy = 0.989399
```


Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- ☐ Gradient descent
- Adaptive step size
 - □ Convexity

Adaptive Step Size Selection

☐ Most practical algorithms change step size adaptively

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k)$$

- \square Tradeoff: Selecting large α_k :
 - Larger steps, faster convergence
 - But, may overshoot

Armijo Rule

 \square Recall that we know if $w^{k+1} = w^k - \alpha \nabla f(w^k)$

$$f(w^{k+1}) = f(w^k) - \alpha \|\nabla f(w^k)\|^2 + O(\alpha^2)$$

- ☐Armijo Rule:
 - Select some $c \in (0,1)$. Usually c = 1/2
 - \circ Select α such that

$$f(w^{k+1}) \le f(w^k) - c\alpha \left\| \nabla f(w^k) \right\|^2$$

- \circ Decreases by at least at fraction c predicted by linear approx.
- ☐Simple update:
 - If Armijo rule passes: Accept point and increase step size: $\alpha^{k+1} = \beta \alpha^k$, $\beta > 1$
 - \circ If Armijo rule fails: Reject point and decrease step size: $\alpha^{k+1} = \beta^{-1} \alpha^k$
- ☐ Can also use a line search

Armijo Rule Illustrated

Adaptive Gradient Descent in Python

□Simple modification of fixed step size case


```
for it in range(nit):
    # Take a gradient step
    w1 = w0 - lr*fgrad0
    # Evaluate the test point by computing the objective function, f1,
    # at the test point and the predicted decrease, df est
    f1, fgrad1 = feval(w1)
    df est = fgrad0.dot(w1-w0)
    # Check if test point passes the Armijo rule
    alpha = 0.5
   if (f1-f0 < alpha*df_est) and (f1 < f0):
        # If descent is sufficient, accept the point and increase the
        # Learning rate
        lr = lr*2
        f0 = f1
        fgrad0 = fgrad1
        w0 = w1
    else:
        # Otherwise, decrease the learning rate
        lr = lr/2
```

What is β here?

In-Class Exercise

□Complete Jupyter notebook

In-Class Exercise ¶

Try to a build a simple optimizer to minimize:

$$f(w) = a[0] + a[1]*w + a[2]*w^2 + ... + a[d]*w^d$$

for the coefficients a = [0,0.5,-2,0,1].

- Plot the function f(w)
- · Can you see where the minima is?
- · Write a function that outputs f(w) and its gradient.
- . Run the optimizer on the function to see if it finds the minima.
- · Print the funciton value and number of iterations.
- Bonus: Instead of writing the function for a specific coefficient vector a, create a class that works for an arbitrary vector a.

You may wish to use the poly.polyval(w,a) method to evaluate the polynomial.

import numpy.polynomial.polynomial as poly

Outline

- ☐ Motivating example: Build an optimizer for logistic regression
- ☐ Gradients of multi-variable functions
- ☐ Gradient descent
- ☐ Adaptive step size
- Convexity

Convex Sets

□ Definition: A set X is convex if for any $x, y \in X$,

$$tx + (1-t)y \in X$$
 for all $t \in [0,1]$

- ☐ Any line between two points remains in the set.
- **■**Examples:
 - Square, circle, ellipse
 - $\{x \mid Ax \leq b\}$ for any matrix A and vector b

Convex Set Visualized

□Convex

■Not convex

Convex Functions

- \square A real-valued function f(x) is convex if:
 - Its domain is a convex set, and
 - For all x, y and $t \in [0,1]$:

$$\tilde{f}(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Convex Function Examples

- \square Linear function of a scalar f(x) = ax + b
- \Box Linear function of a vector $f(x) = a^T x + b$
- \square If f''(x) exists everywhere, f(x) is convex iff $f''(x) \ge 0$.
 - When x is a vector $f''(x) \ge 0$ means the Hessian must be positive semidefinite
- $\Box f(x) = e^x$
- \square If f(x) is convex, so is f(Ax + b)
- ☐ Logistic loss is convex!

Global Minima and Convex Function

- Theorem: If f(w) is convex and w is a local minima, then w is a global minima
- ☐ Implication for optimization:
 - Gradient descent only converges to local minima
 - In general, cannot guarantee optimality
 - Depends on initial condition
 - But, for convex functions can always obtain optimal

Other Topics We Did Not Cover

- □Our optimizer is OK, but not nearly as fast as sklearn method
- ☐ Many techniques we did not cover
 - Newton's method
 - Quasi-Newton's method
 - Non-smooth optimization
 - Constrained optimization
- ☐ Take an optimization class and learn more.

Lab: Estimating the fundamental frequency and harmonics of an audio signal

☐ Common audio signal model

$$y[n] \approx c + \sum_{j=0}^{J-1} a_j \cos 2\pi (j+1) f_0 n T_s + \sum_{j=0}^{J-1} b_j \sin 2\pi (j+1) f_0 n T_s$$

 f_0 : fundamental frequency (pitch period = $1/f_0$)

 $k f_0$: harmonics

- lacksquare Problem: Given J , estimating f_0 and coefficients c, a_j , b_j
- Nested optimization:
 - \circ Given estimated f_0 , find optimal coefficients: least square problem
 - (Can be solved using linear regression, but you should write your own least squares solver)
 - \circ Determine optimal f_0 using gradient descent, using a evaluation function which solves the coefficients for any current f_0 and evaluate the gradient

What you should know

- □ Identify the objective function, parameters and constraints in an optimization problem
- □ Compute the gradient of a loss function for scalar, vector and matrix parameters
- ☐ Efficiently compute a gradient in python.
- ☐ Write the gradient descent update
- ☐ Describe the effect of the learning rate on convergence
- ☐ Determine if a loss function is convex

