

Analyse Mathématique

Author: CatMono

Date: July, 2025

Version: 0.1

Contents

Pretace	11
Chapter 1 Preliminaries	1
1.1 Trigonometric Formulas	1
Chapter 2 Limits of Sequences and Continuity of Real Number System	3
2.1 Limits of Sequences	3
2.2 Criteria for Convergence	3
2.3 Substitution	3
2.4 Continuity of Real Number System	3
Chapter 3 Limits and Continuity of Functions	4
3.1 Limits of Functions	4
3.2 Continuous Functions	4
3.3 Infinitesimal and Infinite Quantities	4
3.4 Continuous Functions on Closed Intervals	4
3.5 Period Three Implies Chaos	4
3.6 Functional Equations	4
Chapter 4 Series of Numbers	5
Chapter 5 Series of Functions	6
Chapter 6 Power Series	7
Chapter 7 Limits and Continuity in Euclidean Spaces	8
Chapter 8 Multivariable Differential Calculus	9
8.1 Directional Derivatives and Total Differential	9
Chapter 9 Multiple Integrals	15

Preface

This is the preface of the book...

Chapter 1 Preliminaries

1.1 Trigonometric Formulas

Product-to-Sum Formulas:

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

Sum and Difference Formulas:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

Sum-to-Product Formulas:

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\sin \alpha - \sin \beta = 2 \sin \left(\frac{\alpha - \beta}{2}\right) \cos \left(\frac{\alpha + \beta}{2}\right)$$

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$$

$$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2}\right) \sin \left(\frac{\alpha - \beta}{2}\right)$$

Double Angle Formulas:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

Half Angle Formulas:

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$$

Power-Reducing Formulas:

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

Angle Decomposition Formulas:

$$\sin^2 \alpha - \sin^2 \beta = \sin(\alpha + \beta)\sin(\alpha - \beta)$$
$$\cos^2 \alpha - \sin^2 \beta = \cos(\alpha + \beta)\cos(\alpha - \beta)$$

Remark

- On the gray triangle, the sum of the squares of the two numbers above is equal to the square of the number below, for instance, $\tan^2 x + 1 = \sec^2 x$
- The three trigonometric functions in the clockwise direction have the following properties: $\tan x = \frac{\sin x}{\cos x}$, etc.

Chapter 2 Limits of Sequences and Continuity of Real Number System

- 2.1 Limits of Sequences
- 2.2 Criteria for Convergence
- 2.3 Substitution
- 2.4 Continuity of Real Number System

Chapter 3 Limits and Continuity of Functions

- 3.1 Limits of Functions
- 3.2 Continuous Functions
- 3.3 Infinitesimal and Infinite Quantities
- **3.4 Continuous Functions on Closed Intervals**
- 3.5 Period Three Implies Chaos
- 3.6 Functional Equations

Chapter 4 Series of Numbers

Chapter 5 Series of Functions

Chapter 6 Power Series

Chapter 7 Limits and Continuity in Euclidean Spaces

Chapter 8 Multivariable Differential Calculus

8.1 Directional Derivatives and Total Differential

\P Directional Derivative

Definition 8.1 (Directional Derivative)

Let $U \subset \mathbb{R}^n$ be an open set, $f: U \to \mathbb{R}^1$, **e** is a unit vector in \mathbb{R}^n , $\mathbf{x}^0 \in U$. Define

$$u(t) = f(\mathbf{x}^0 + t\mathbf{e}).$$

If the derivative of u at t = 0

$$u'(0) = \lim_{t \to 0} \frac{u(t) - u(0)}{t} = \lim_{t \to 0} \frac{f(\mathbf{x}^0 + t\mathbf{e}) - f(\mathbf{x}^0)}{t}$$

exists and is finite, it is called the **directional derivative** of f at \mathbf{x}_0 in the direction \mathbf{e} , denoted by $\frac{\partial f}{\partial \mathbf{e}}(\mathbf{x}_0)$. It is the rate of change of f at \mathbf{x}_0 in the direction \mathbf{e} .

Consider the following set of unit coordinate vectors: $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$. Let $\mathbf{e}_i = (0, 0, \cdots, 0, 1, 0, \cdots, 0)$ denote the standard orthonormal basis in \mathbb{R}^n , where the 1 appears in the *i*-th position. That is,

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

For a function f, the directional derivative of f at the point \mathbf{x}_0 in the direction of \mathbf{e}_i is called the ith first-order **partial derivative** of f at \mathbf{x}^0 , denoted by

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^0)$$
 or $D_i f(\mathbf{x}^0)$ or $f_{x_i}(\mathbf{x}^0)$ $(i = 1, 2, \dots, n)$.

 $\mathrm{D}_i = rac{\partial}{\partial x_i}$ is called the *i*th partial differential operator ($i=1,2,\cdots,n$).

 $ilde{f Y}$ Note Let ${f e}$ be a direction, then $\|-{f e}\|=\|{f e}\|=1$, which implies that $-{f e}$ is also a direction. At this point, we have:

$$\frac{\partial f}{\partial (-\mathbf{e})}(\mathbf{x}^0) = -\frac{\partial f}{\partial \mathbf{e}}(\mathbf{x}^0).$$

Definition 8.2 (Jacobian Matrix (Gradient))

Let

$$\mathbf{J} f(\mathbf{x}) = (D_1 f(\mathbf{x}), D_2 f(\mathbf{x}), \dots, D_n f(\mathbf{x})),$$

which is called the **Jacobian matrix** of the function f at the point \mathbf{x} , (a $1 \times n$ matrix) whose counterpart is the first-order derivative of a single-variable function.

Henceforth, we represent the point \mathbf{x} in \mathbb{R}^n and its increments \mathbf{h} as column vectors. In this way, the differential of the function can be expressed using matrix multiplication as follows:

$$df(\mathbf{x}^0)(\mathbf{\Delta}\mathbf{x}) = \mathbf{J}f(\mathbf{x}^0)\mathbf{\Delta}\mathbf{x}.$$

The Jacobian matrix of the function f is also frequently denoted as grad f (or ∇f), that is,

$$\operatorname{grad} f(\mathbf{x}) = \mathbf{J} f(\mathbf{x}),$$

which is called the **gradient** of the scalar function f.

Definition 8.3 (Total Differential)

Let $U\subset\mathbb{R}^n$ be an open set, $f:U\to\mathbb{R}^1$, $\mathbf{x}^0\in U$, $\Delta\mathbf{x}=(\Delta x_1,\Delta x_2,\cdots,\Delta x_n)\in\mathbb{R}^n$. If

$$f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) = \sum_{i=1}^n A_i \Delta x_i + o(\|\Delta \mathbf{x}\|) \qquad (\|\Delta \mathbf{x}\| \to 0),$$

where A_1, A_2, \ldots, A_n are constants independent of $\Delta \mathbf{x}$, then the function f is said to be **differentiable** at the point \mathbf{x}^0 , and the linear main part $\sum_{i=1}^n A_i \Delta x_i$ is called the **total differential** of f at \mathbf{x}^0 , denoted as

$$df(\mathbf{x}^0)(\Delta \mathbf{x}) = \sum_{i=1}^n A_i \Delta x_i.$$

If f is differentiable at every point in the open set U, then f is called a differentiable function on U.

Theorem 8.1 (Conditions of Differentiability)

Necessary Condition If an n-variable function f is differentiable at the point \mathbf{x}_0 , then f is continuous at \mathbf{x}^0 and possesses first-order partial derivatives $\frac{\partial f}{\partial x_i}(\mathbf{x}^0)$ at \mathbf{x}^0 for $i=1,2,\ldots,n$, and

$$\mathbf{A} = (A_1, A_2, \dots, A_n) = \mathbf{J} f(\mathbf{x}^0) = (D_1 f(\mathbf{x}^0), D_2 f(\mathbf{x}^0), \dots, D_n f(\mathbf{x}^0)).$$

^a However, the converse is not true.

Sufficient Condition Let $U \subset \mathbb{R}^n$ be an open set, and let $f: U \to \mathbb{R}^1$ be an n-variable function. If $\mathbf{J}f = (D_1 f, D_2 f, \dots, D_n f)$ is continuous at \mathbf{x}^0 (i.e., $\frac{\partial f}{\partial x_i}$ is continuous at \mathbf{x}^0 for $i = 1, 2, \dots, n$), then f is differentiable at \mathbf{x}^0 . However, the converse is not necessarily true.

^aIt is referred to as the total differential formula, and the more common form is

$$df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) dx + \frac{\partial f}{\partial y}(x_0, y_0) dy.$$

()

Note

- The continuity of the derivative function at \mathbf{x}^0 implies that the original function f is differentiable in some neighborhood of \mathbf{x}^0 .
- In fact, this condition can be relaxed to require that one partial derivative exists at the point, while the remaining n-1 partial derivative functions are continuous at that point.
- Proof Taking a function of three variables as an example.

Assume the 3-ary function $f: \mathbb{R}^3 \to \mathbb{R}$ meets:

- 1. There exists $f_z(x_0, y_0, z_0)$.
- 2. The partial derivative functions $f_x(x, y, z)$ and $f_y(x, y, z)$ are continuous at (x_0, y_0, z_0) , i.e. there are partial derivatives in some neighborhood of (x_0, y_0, z_0) .

Consider the total increment of f at the point (x_0, y_0, z_0) :

$$\Delta f = \underbrace{\left[f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0 + \Delta y, z_0 + \Delta z)\right]}_{I_1} + \underbrace{\left[f(x_0, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0, z_0 + \Delta z)\right]}_{I_2} + \underbrace{\left[f(x_0, y_0, z_0 + \Delta z) - f(x_0, y_0, z_0)\right]}_{I_3}.$$

For I_1, I_2 , by the Lagrange's Mean Value Theorem of unary functions, there exist $\theta_1, \theta_2 \in (0, 1)$ such that

$$I_1 = f_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y, z_0 + \Delta z) \Delta x,$$

$$I_2 = f_y(x_0, y_0 + \theta_2 \Delta y, z_0 + \Delta z) \Delta y.$$

Then by the continuity of the their partial derivatives at (x_0, y_0, z_0) , we have

$$\lim_{\Delta x, \Delta y, \Delta z \rightarrow 0} I_1 = f_x(x_0, y_0, z_0) \Delta x, \quad \lim_{\Delta x, \Delta y, \Delta z \rightarrow 0} I_2 = f_y(x_0, y_0, z_0) \Delta y.$$

They can be expressed in terms of infinitesimals($\rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$):

$$I_1 = f_x(x_0, y_0, z_0)\Delta x + \alpha_1 \Delta x, \quad \alpha_1 \to 0 (\rho \to 0),$$

$$I_2 = f_y(x_0, y_0, z_0)\Delta y + \alpha_2 \Delta y, \quad \alpha_2 \to 0 (\rho \to 0).$$

For I_3 , by the definition of the partial derivative $f_z(x, y, z)$ at (x_0, y_0, z_0) , we have

$$I_3 = f_z(x_0, y_0, z_0)\Delta z + \alpha_3\Delta z, \quad \alpha_3 \to 0 (\rho \to 0).$$

Accordingly,

$$\begin{split} \Delta f &= I_1 + I_2 + I_3 \\ &= \left[f_x(x_0, y_0, z_0) \Delta x + \alpha_1 \Delta x \right] + \left[f_y(x_0, y_0, z_0) \Delta y + \alpha_2 \Delta y \right] + \left[f_z(x_0, y_0, z_0) \Delta z + \alpha_3 \Delta z \right] \\ &= f_x(x_0, y_0, z_0) \Delta x + f_y(x_0, y_0, z_0) \Delta y + f_z(x_0, y_0, z_0) \Delta z + \left[\alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z \right]. \end{split}$$

Apparently,

$$\lim_{\rho \to 0} \frac{\alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z}{\rho} = 0,$$

i.e. $\alpha_1 \Delta x + \alpha_2 \Delta y + \alpha_3 \Delta z = o(\rho)$. Therefore, f(x,y,z) is differentiable at (x_0,y_0,z_0) , which completes the proof.

Note (At some point)

- 1. Differentiable
 - ⇒ Continuous
 - \Longrightarrow Partial derivatives exist: $D_{\vec{u}} = \nabla f \cdot \vec{u}$
- 2. Directional Derivative
 - All directional derivatives exist \iff differentiable or continuous.
 - All directional derivatives exist and are equal \implies differentiable.
- 3. Partial Derivative
 - The continuity and existence of directional/partial derivatives are mutually exclusive.

\P Higher-Order Partial Derivatives and Differential

If the first-order partial derivative of f, $\frac{\partial f}{\partial x_i}$, itself possesses partial derivatives, then the second-order partial derivative of f is defined, and is denoted as follows(the first is also called the mixed partial derivative):

$$f_{x_i x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right), \quad f_{x_i x_i} = \frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right), \quad i, j = 1, 2, \dots, n.$$

Similarly, higher-order partial derivatives of order $3, 4, \cdots m, \cdots$ can be defined.

The following theorem provides the conditions under which mixed partial derivatives are equal.

Theorem 8.2 (Conditions for Fauality of Mixed Partial Derivatives)

1. Let $U \subset \mathbb{R}^2$ be an open set, and $f: U \to \mathbb{R}$ be a function of two variables. If f_{xy} and f_{yx} are continuous at $(x_0, y_0) \in U$, then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

2. Let $U \subset \mathbb{R}^n$ be an open set, and $f: U \to \mathbb{R}$ be a function of n variables. If f has partial derivatives up to order k in D, and all of them are continuous at $\mathbf{x}^0 = (x_1^0, x_2^0, \dots, x_n^0) \in U$, then

$$\frac{\partial^l f}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_l}}(\mathbf{x}^0) = \frac{\partial^l f}{\partial x_{i_2} \partial x_{i_1} \cdots \partial x_{i_l}}(\mathbf{x}^0) = \cdots = \frac{\partial^l f}{\partial x_{i_l} \partial x_{i_{l-1}} \cdots \partial x_{i_1}}(\mathbf{x}^0),$$

that is, the order of taking partial derivatives $l \leq k$ does not affect the result.^a

Proof When $k \neq 0, h \neq 0$, define

$$\varphi(y) = f(x_0 + h, y) - f(x_0, y),$$

and

$$\psi(x) = f(x, y_0 + k) - f(x, y_0).$$

Applying the Lagrange Mean Value Theorem, we have

$$\begin{split} & [f(x_0+h,y_0+k)-f(x_0,y_0+k)] - [f(x_0+h,y_0)-f(x_0,y_0)] \\ = & \varphi(y_0+k) - \varphi(y_0) \\ = & \varphi'(y_0+\theta_1k)k \\ = & [f_y(x_0+h,y_0+\theta_1k)-f_y(x_0,y_0+\theta_1k)]k \\ = & f_{yx}(x_0+\theta_2h,y_0+\theta_1k)hk, \quad 0 < \theta_1,\theta_2 < 1. \end{split}$$

On the other hand,

$$\begin{split} &[f(x_0+h,y_0+k)-f(x_0,y_0+k)]-[f(x_0+h,y_0)-f(x_0,y_0)]\\ =&[f(x_0+h,y_0+k)-f(x_0+h,y_0)]-[f(x_0,y_0+k)-f(x_0,y_0)]\\ =&\psi(x_0+h)-\psi(x_0)\\ =&\psi'(x_0+\theta_3h)h\\ =&[f_x(x_0+\theta_3h,y_0+k)-f_x(x_0+\theta_3h,y_0)]h\\ =&f_{xy}(x_0+\theta_3h,y_0+\theta_4k)hk,\quad 0<\theta_3,\theta_4<1. \end{split}$$

Therefore.

$$f_{xy}(x_0 + \theta_3 h, y_0 + \theta_4 k) = f_{yy}(x_0 + \theta_2 h, y_0 + \theta_1 k).$$

Since f_{xy} and f_{yx} are continuous at (x_0, y_0) , letting $h \to 0, k \to 0$, we obtain

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

By applying 8.1 and the principle of mathematical induction, one can immediately derive the following result.

Suppose z=f(x,y) has continuous partial derivatives in the domain $U\subset\mathbb{R}^2$. Then z is differentiable, and

$$\mathrm{d}z = \frac{\partial z}{\partial x} \mathrm{d}x + \frac{\partial z}{\partial y} \mathrm{d}y.$$

If z also has continuous second-order partial derivatives, then $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are also differentiable, and thus $\mathrm{d}z$ is differentiable. We call the differential of $\mathrm{d}z$ the second-order differential of z, denoted as

$$d^2z = d(dz).$$

^aIf the condition " f_{xy} and f_{yx} are continuous at (x_0, y_0) ", is not satisfied, then the conclusion " $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$ " does not necessarily hold.

In general, based on the k-th order differential (d $^k z$ of z, its (k+1)-th order differential (if it exists) is defined as

$$d^{k+1}z = d(d^k z), \quad k = 1, 2, \cdots.$$

Due to the fact that for the independent variables x and y, we always have

$$d^2x = d(dx) = 0,$$
 $d^2y = d(dy) = 0,$

the second-order differential of z=f(x,y) is given by

$$\begin{split} \mathrm{d}^2 z &= \mathrm{d}(\mathrm{d}z) = \mathrm{d}\left(\frac{\partial z}{\partial x}\mathrm{d}x + \frac{\partial z}{\partial y}\mathrm{d}y\right) \\ &= \mathrm{d}\left(\frac{\partial z}{\partial x}\right)\mathrm{d}x + \frac{\partial z}{\partial x}\mathrm{d}^2x + \mathrm{d}\left(\frac{\partial z}{\partial y}\right)\mathrm{d}y + \frac{\partial z}{\partial y}\mathrm{d}^2y \\ &= \left(\frac{\partial^2 z}{\partial x^2}\mathrm{d}x + \frac{\partial^2 z}{\partial x \partial y}\mathrm{d}y\right)\mathrm{d}x + \left(\frac{\partial^2 z}{\partial y \partial x}\mathrm{d}x + \frac{\partial^2 z}{\partial y^2}\mathrm{d}y\right)\mathrm{d}y \\ &= \frac{\partial^2 z}{\partial x^2}(\mathrm{d}x)^2 + 2\frac{\partial^2 z}{\partial x \partial y}\mathrm{d}x\mathrm{d}y + \frac{\partial^2 z}{\partial y^2}(\mathrm{d}y)^2, \end{split}$$

where $(\mathrm{d}x)^2$ and $(\mathrm{d}y)^2$ denote d^2x and d^2y respectively. If we treat $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ as operators for partial differentiation and define

$$\left(\frac{\partial}{\partial x}\right)^2 = \frac{\partial^2}{\partial x^2}, \quad \left(\frac{\partial}{\partial y}\right)^2 = \frac{\partial^2}{\partial y^2}, \quad \left(\frac{\partial}{\partial x}\frac{\partial}{\partial y}\right) = \frac{\partial^2}{\partial x \partial y},$$

then the formulas for the first and second differentials can be written as

$$dz = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right) z,$$
$$d^2 z = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right)^2 z.$$

Similarly, we define

$$\left(\frac{\partial}{\partial x}\right)^p \left(\frac{\partial}{\partial y}\right)^q = \frac{\partial^{p+q}}{\partial x^p \partial y^q} = \frac{\partial^q}{\partial y^q} \left(\frac{\partial}{\partial x}\right)^p, \quad (p, q = 1, 2, \dots)$$

It is easy to use mathematical induction to prove the formula for higher-order differentials:

$$d^k z = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right)^k z, \quad k = 1, 2, \cdots.$$

For an n-variable function $u = f(x_1, x_2, \dots, x_n)$, higher-order differentials can be similarly defined, and the following holds:

$$d^{k}u = \left(dx_{1}\frac{\partial}{\partial x_{1}} + dx_{2}\frac{\partial}{\partial x_{2}} + \dots + dx_{n}\frac{\partial}{\partial x_{n}}\right)^{k}u, \quad k = 1, 2, \dots$$

■ Derivatives of Vector-Valued Functions

Consider an *n*-dimensional vector-valued function defined on a domain $U \subset \mathbb{R}^n$:

$$f: U \to \mathbb{R}^m,$$

 $\mathbf{x} \mapsto \mathbf{y} = f(\mathbf{x})$

Expressed in coordinate vector form:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_m(x_1, x_2, \dots, x_n) \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in U$$

1. If each component function $f_i(x_1, x_2, \dots, x_n)$ ($i = 1, 2, \dots, m$) is partially differentiable at \mathbf{x}^0 , then the vector-valued function \mathbf{f} is differentiable at \mathbf{x}^0 , and we define the matrix

$$\left(\frac{\partial f}{\partial x_j}(\mathbf{x}^0)\right)_{m \times n} = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_1}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}^0) \\
\frac{\partial f_2}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_2}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{x}^0) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(\mathbf{x}^0) & \frac{\partial f_m}{\partial x_2}(\mathbf{x}^0) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}^0)
\end{pmatrix}$$

This matrix is called the Jacobian matrix of \mathbf{f} at \mathbf{x}^0 , denoted by $f'(\mathbf{x}^0)$ (or $\mathrm{D}f(\mathbf{x}^0)$, $\mathbf{J}_f(\mathbf{x}^0)$).

For the special case m=1, i.e., n-variable scalar function $z=f(x_1,x_2,\ldots,x_n)$, the derivative at \mathbf{x}^0 is

$$f'(\mathbf{x}^0) = \left(\frac{\partial f}{\partial x_1}(\mathbf{x}^0), \frac{\partial f}{\partial x_2}(\mathbf{x}^0), \cdots, \frac{\partial f}{\partial x_n}(\mathbf{x}^0)\right)$$

If the vector-valued function \mathbf{f} is differentiable at every point in U, then \mathbf{f} is said to be differentiable on U, and the corresponding relationship is

$$\mathbf{x} \in U \mapsto f'(\mathbf{x}) = J_f(\mathbf{x})$$

where $f'(\mathbf{x})$ (or $Df(\mathbf{x})$, $\mathbf{J}_f(\mathbf{x})$) denotes the derivative of \mathbf{f} at \mathbf{x} in U.

- 2. If every component function $f_i(x_1, x_2, ..., x_n)$ (i = 1, 2, ..., m) of \mathbf{f} has continuous partial derivatives at \mathbf{x}^0 , then every element of the Jacobian matrix of \mathbf{f} is continuous at \mathbf{x}^0 . In this case, \mathbf{f} is said to have a continuous derivative at \mathbf{x}^0 as a vector-valued function.
 - If the derivative of a vector-valued function \mathbf{f} is continuous at every point in U, then \mathbf{f} is said to have a continuous derivative on U.
- 3. If there exists an $m \times n$ matrix A that depends only on \mathbf{x}^0 (and not on $\Delta \mathbf{x}$), such that in the neighborhood of \mathbf{x}^0 ,

$$\Delta \mathbf{y} = f(\mathbf{x}^0 + \Delta \mathbf{x}) - f(\mathbf{x}^0) = A\Delta \mathbf{x} + o(\|\Delta \mathbf{x}\|)$$

(where $\Delta \mathbf{x} = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)^T$ is a column vector and $\|\Delta \mathbf{x}\|$ denotes its norm), then f is said to be differentiable at \mathbf{x}^0 as a vector-valued function, and $A\Delta \mathbf{x}$ is called the differential of f at \mathbf{x}^0 , denoted as $d\mathbf{y}$. If we denote $\Delta \mathbf{x}$ by $d\mathbf{x}$ ($d\mathbf{x} = (dx_1, dx_2, \dots, dx_n)^T$), then

$$d\mathbf{y} = A d\mathbf{x}.$$

If the vector-valued function f is differentiable at every point in U, then f is said to be differentiable on U.

Combining the above three points, we obtain the following unified statement:

A vector-valued function \mathbf{f} is continuous, differentiable, and has derivatives if and only if each of its coordinate component functions $f_i(x_1, x_2, \dots, x_n)$ ($i = 1, 2, \dots, m$) is continuous, differentiable, and has derivatives.

Chapter 9 Multiple Integrals

Bibliography

- [1] 徐森林, 薛春华. 数学分析. 第一版. 清华大学出版社, 2005.
- [2] 陈纪修,於崇华. 数学分析. 第三版. 高等教育出版社, 2019.
- [3] 常庚哲, 史济怀. 数学分析教程. 第三版. 中国科学技术大学出版社, 2012.
- [4] 裴礼文. 数学分析中的典型问题与方法. 第三版. 高等教育出版社, 2021.
- [5] 汪林. 数学分析中的问题与反例. 第一版. 高等教育出版社, 2015.
- [6] 谢惠民, 恽自求, 易法槐, 钱定边. 数学分析习题课讲义. 第二版. 高等教育出版社, 2019.
- [7] Walter Rudin. Principles of Mathematical Analysis. Third Edition. McGraw-Hill, 1976.
- [8] 菲赫金哥尔茨. 微积分学教程. 第八版. 高等教育出版社, 2006.