

Applied Machine Learning

Kernelized Support Vector Machines

Kevyn Collins-Thompson

Associate Professor of Information & Computer Science University of Michigan

We saw how linear support vector classifiers could effectively find a decision boundary with maximum margin

Easy for a linear classifier

But what about more complex binary classification problems?

Easy for a linear classifier

Difficult/impossible for a linear classifier

A simple 1-dimensional classification problem for a linear classifier

A more perplexing 1-d classification problem for a linear classifier

A more perplexing 1-d classification problem for a linear classifier

Let's transform the data by adding a second dimension/feature (set to the squared value of the first feature)

The data transformation makes it possible to solve this with a linear classifier

What does the linear decision boundary in feature space correspond to in the original input space?

Original input space Feature space

What does the linear decision boundary correspond to in the original input space?

Transforming the data can make it much easier for a linear classifier.

Original input space

Feature space

Source: Wikipedia "Kernel Machine" article. https://commons.wikimedia.org/w/index.php?curid=47868867

Original input space

$$x_i = (x_0, x_1)$$

Radial Basis Function Kernel

A kernel is a similarity measure (modified dot product) between data points

Applying the SVM with RBF kernel

Radial Basis Kernel vs Polynomial Kernel

Radial Basis Function kernel: Gamma Parameter

gamma (γ): kernel width parameter

small gamma (0.01)

large gamma (10)

Squared distance between x and x'

The effect of the RBF gamma parameter on decision boundaries

Increasing C

Reminder: Using a scaler object: fit and transform methods

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X train)
X train scaled = scaler.transform(X train)
X test scaled = scaler.transform(X test)
clf = SVC().fit(X train scaled, y train)
accuracy = clf.score(X test scaled, y test)
Tip: It can be more efficient to do fitting and transforming together on the
training set using the fit transform method.
scaler = MinMaxScaler()
X train scaled = scaler.fit transform(X train)
```


Kernelized Support Vector Machines: pros and cons

Pros:

- Can perform well on a range of datasets.
- Versatile: different kernel functions can be specified, or custom kernels can be defined for specific data types.
- Works well for both lowand high-dimensional data.

Cons:

- Efficiency (runtime speed and memory usage) decreases as training set size increases (e.g. over 50000 samples).
- Needs careful normalization of input data and parameter tuning.
- Does not provide direct probability estimates (but can be estimated using e.g. Platt scaling).
- Difficult to interpret why a prediction was made.

Kernelized Support Vector Machines (SVC): Important parameters

Model complexity

- kernel: Type of kernel function to be used
 - Default = 'rbf' for radial basis function
 - Other types include 'polynomial'
- kernel parameters
 - gamma (γ) : RBF kernel width
- C: regularization parameter
- Typically C and gamma are tuned at the same time.