Deep Neural Network Hyperparameter Optimization with Orthogonal Array Tuning

Xiang Zhang, Xiaocong Chen, Lina Yao, Chang Ge, Manqing Dong

University of New South Wales, Australia

Alexia

CONTENT

This paper presents an efficient **Orthogonal Array Tuning Method (OATM)** for **deep learning hyperparameter tuning**.

Five detailed steps and elaborate on it using two widely used deep neural network structures (Recurrent Neural Networks and Convolutional Neural Networks).

Compared to the state-of-the-art hyper-parameter tuning methods including manually (e.g., grid search and random search) and automatically (e.g., Bayesian Optimization) ones. The experiment results state that OATM can significantly save the tuning time compared to the state-of-the-art methods while preserving the satisfying performance.

"the deep learning classification accuracy dramatically fluctuates from 32.2% to 92.6% due to the different selection of hyper-parameters"

CONTENT - TUNING METHODS

hyper-parameter tuning method

Random search

time-consuming;

cannot converge to the global optimum

Bayesian optimisation

sensitive to parameters of the surrogate model;

highly depending on the quality of the learning model

OATM

CONTENT - ORTHOGONAL ARRAY

2 Basic composition principles of Orthogonal Array

- 1. In the **same column** (factor), different levels have the **same appearing times**.
- 2. In two randomly selected columns (factors), different level combinations are complete and balanced. The number of Orthogonal Array rows is determined by this principle.

Dam Na		Factor N	lo.
now No.	Factor :	1 Factor	2 Factor 3
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3_
8	3	2	1_
9	3	3	2

Table 1: Orthogonal Array with 9 rows, 3 factors and each factor has 3 levels

CONTENT - ADVANTAGE OF OATM

OATM

- Less tuning time & competitive performance;
- All possible values of all hyper-parameters are considered equally;
- Has been commonly used

CONTENT - OATM

Hyperparameters — factors

values of the hyperparameter — levels

Steps:

- 1. Determine # of to-be-tuned factors & # of levels of each factor
- 2. Construct OAT table (Weibull++, SPSS, etc...)
- 3. Run the experiments
- 4. Range analysis
- 5. Run the experiment with optimal hyper-parameter setting

Experiment	Layer thickness	Air gap	Raster angle
1	ı	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3
8	3	2	1
0	2	2	2

CONTENT

CNN + BO

CNN + RS

CNN + OATM

RNN + BO

RNN + RS

RNN + OATM

EEG(electroencephalography)
28k

IMU (inertial measurement
unit)

1.2m

RFID (radio frequency IDentification)
3k

^{*}CNN: Convolutional Neural Networks

Table 3: Factor-Level table of RNN and CNN.

Factor 1 (lr) Factor 2 (λ) Factor 3 (n_l) Factor 4 (n_n)

		` ,	` '	, ,	, , ,
RNN	Level 1 Level 2	0.005	0.004	4	32
RIVIN	Level 2	0.01	0.008	5	64
	Level 3	0.015	0.012	6	96
		Factor 1 (lr')	Factor 2 (f')	Factor 3 (n'_l)	Factor 4 (n'_n)
CNN	Level 1	0.001	[1,2]	1	64
CIVIN	Level 1 Level 2	0.003	[1,4]	2	128
	Level 3	0.005	[1,6]	3	192

12 norm coef

layers#

nodes#

Learning rate

		Table 4	4: Range ana	alysis of RNN		
	Row No.	Factor 1 (lr)	Factor 2 (λ)	Factor 3 (n_l)	Factor 4 (n_n)	Acc
	1	0.005	0.004	4	32	0.875
	2	0.005	0.008	5	64	0.8
	3	0.005	0.012	6	96	0.521
	4	0.01	0.004	5	96	0.888
	5	0.01	0.008	6	32	0.797
	6	0.01	0.012	4	64	0.451
	7	0.015	0.004	6	64	0.897
	8	0.015	0.008	4	96	0.335
CHIM BAC	9	0.015	0.012	5	32	0.471
701-12	R_{level1}	2.196	2.66	1.661	2.143	
of level 1	R_{level2}	2.136	1.932	2.159	2.148	
	R_{level3}	1.703	1.443	2.215	1.744	
ave ,	A_{level1}	0.732	0.887	0.554	0.714	=======================================
orce of	A_{level2}	0.712	0.644	0.720	0.716	
	A_{level3}	0.568	0.481	0.738	0.581	
level i	Lowest Acc	0.568	0.481	0.554	0.581	
	Highest Acc	0.732	0.887	0.738	0.716	
	Range	0.164	0.406	0.184	0.135	
	Importance		lambda >	$n_l > lr > n_n$		
	Best Level	Level 1	Level 1	Level 3	Level 2	
	Optimal Value	0.005	0.004	6	64	0.925

Doto	Models	Iodels Methods Opt			acto	ors	Metrics						
Data	Models	Methods	F1	$\mathbf{F2}$	F3	F4	#-Runnings	Time ($\mathbf{s})$	Acc	Prec F	Recall	F-1
		Grid	0.005	0.004	6	64	81	6853.6	ſ	0.9251	0.9324~0	.9139	0.9231
	RNN	Random	0.01	0.008	6	32	9	766.8		0.7941	0.80030	.7941	0.7947
	KININ	во	0.0135	0.0049	5	32	9	703.4		0.718	0.72460	.6474	0.6838
EEG		Ours	0.005	0.004	6	64	9	821.9		0.925	0.93350	.9223	0.9279
EEG	-	Grid	0.005	4	3	192	81	31891.5		0.828	0.81370	.8256	0.8269
	CNN	Random	0.003	2	1	128	9	662.8		0.7268	0.72770	.7269	0.7266
	CIVIN	во	0.001	4	3	139	9	721.9		0.7244	0.7302~0	.7244	0.7263
		Ours	0.003	4	1	128	9	680.4		0.797	0.79690	.8112	0.8003
		Grid	0.005	0.004	6	96	81	3027.2		0.9936	0.99090	.9976	0.9971
	RNN	Random	0.015	0.004	4	32	9	1008.5		0.9139	0.92090	.9412	0.9156
	RININ	во	0.0132	0.0041	4	48	9	1078.8		0.9872	0.98770	.9851	0.9863
IMU		Ours	0.005	0.004	6	64	9	1138.2		0.9913	0.9924 0	.9905	0.9919
INIO		Grid	0.003	2	1	128	81	41804.9		0.9732	0.97080	.9708	0.9707
	CNN	Random	0.003	2	2	128	9	7089.2		0.9692	0.96910	.9692	0.9691
	CIVIN	во	0.0012	2	2	192	9	6559.7		0.9696	0.9702~0	.9701	0.9701
		Ours	0.003	2	2	128	9	6809.8		0.9702	0.96990	.9703	0.9702
		Grid	0.005	0.008	6	96	81	2846.1		0.9342	$0.9388 \ 0$.9201	0.9252
	RNN	Random	0.005	0.012	4	32	9	642.3		0.8891	$0.9138\ 0$.8826	0.8895
	ILININ	во	0.0142	0.0093	6	79	9	452.2		0.9071	0.8556 0	.8486	0.8436
RFID		Ours	0.005	0.008	6	64	9	497.1		0.9134	$0.9138\ 0$.9029	0.9162
ICFID	191 191	Grid	0.005	4	2	192	81	7890.8		0.9316	0.9513 0	.9316	0.9375
	CNN	Random	0.005	2	1	128	9	1210.3		0.8683	0.9113 0	.8684	0.8779
	CIVIN	во	0.005	5	3	64	9	872.9		0.9168	0.9058 0	.9194	0.9086
		Ours	0.005	4	3	192	9	980.3		0.9235	$0.9316\ 0$.9188	0.9326

CODE OVERVIEW

Input data

```
# Generate dummy data (replace with your actual data)
X_train = np.random.rand(1000, 10, 84) # (samples, timesteps, features)
y_train = np.random.randint(0, 2, size=(1000,)) # Binary labels
```

Hyperparameters

```
for lr in [0.005, 0.1, 0.15]:
    for lam in [0.004, 0.008, 0.012]:
        for n_layers in [4, 5, 6]:
            for nodes in [32, 64, 96]:
```

CODE OVERVIEW -RNN

```
def rnn_run(lr, lam, n_layers, nodes):
   model = Sequential()
   # Input laver
   model.add(SimpleRNN(nodes,
                        input_shape=(X_train.shape[1], X_train.shape[2]),
                        return_sequences=(n_layers > 1),
                        kernel regularizer=l2(lam)))
   # Hidden layers
   for i in range(1, n layers):
        model.add(SimpleRNN(nodes,
                            return_sequences=(i != n_layers - 1),
                            kernel regularizer=l2(lam)))
   # Output layer
   model.add(Dense(1, activation='sigmoid'))
   # Compile
   model.compile(optimizer=Adam(learning_rate=lr),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
   # Train
   history = model.fit(X train, y train, epochs=5, verbose=0)
   # Return last epoch's accuracy
    return history.history['accuracy'][-1]
```

CODE OVERVIEW-RNN

Grid Random

```
for lr in [0.005, 0.1, 0.15]:
    for lam in [0.004, 0.008, 0.012]:
        for n_layers in [4, 5, 6]:
            for nodes in [32, 64, 96]:
                 print(f"Testing lr={lr}, λ={acc = rnn_run(lr, lam, n_layprint(f"→ Accuracy: {acc:.41
```

Bayesian Optimisation

```
----- BAYESIAN OPTIMIZATION -
print("\n/ Starting Bayesian Optimization...")
from skopt import qp minimize
from skopt.space import Real, Integer
from skopt utils import use named args
space = [
    Real(0.005, 0.15, name='lr'),
    Real(0.004, 0.012, name='lam'),
    Integer(4, 6, name='n layers'),
    Integer(32, 96, name='nodes')
@use named args(space)
def objective(lr, lam, n layers, nodes):
    acc = rnn_run(lr, lam, n_layers, nodes)
    print(f"Testing lr={lr:.4f}, \lambda={lam:.4f}, layers
```

CODE OVERVIEW-RNN

```
----- ORTHOGONAL ARRAY -----
# Custom Orthogonal Array L9 (3-level, 4-parameter)
oa_combinations = [
   # lr lam n_layers nodes
   [0.005, 0.004, 4,
                        32].
   [0.005, 0.008, 5,
                        64],
   [0.005, 0.012, 6,
                        96],
   [0.1, 0.004, 5,
                    96],
   [0.1, 0.008, 6,
                        32],
   [0.1, 0.012, 4,
                    64],
   [0.15, 0.004, 6,
                    64],
   [0.15, 0.008, 4, 96],
   [0.15, 0.012, 5,
                        32].
# ----- OATM RUN -----
print("\n@ Starting RNN Orthogonal Array Tuning...")
start_oa = time.time()
best_acc_oa = 0
best_params_oa = {}
for i, (lr, lam, n_layers, nodes) in enumerate(oa_combinations):
   print(f"Testing OA Combination {i+1}: lr={lr}, lam={lam}, lay
```

RNN_BO

```
/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an input_snape / input_dim alsuper().__init__(**kwargs)

Testing lr=0.0937, λ=0.0063, layers=5, nodes=95 → Accuracy: 0.5030
/usr/local/lib/python3.11/dist-packages/keras/src/layers/rnn/rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` alsuper().__init__(**kwargs)

Testing lr=0.1488, λ=0.0120, layers=4, nodes=54 → Accuracy: 0.4980

✓ Bayesian Optimization Results:

Best Accuracy: 0.5540000200271606

Best Hyperparameters: {'lr': 0.09368970827080074, 'lam': 0.004056530441757739, 'n_layers': np.int64(4), 'nodes': np.int64(66)}

Bayesian Optimization Time: 238.9990677833557
```

RNN_RS

```
→ Accuracy: 0.4870
Testing lr=0.15, λ=0.012, layers=6, nodes=96
→ Accuracy: 0.538999974727630€
Best accuracy: 0.538999974727630€
Best hyperparameters: {'lr': 0.005, 'lam': 0.008, 'n_layers': 4, 'nodes': 96}
Total tuning time: 1012.5739166736603
```

RNN + OATM (with random generated data)

```
Testing OA Combination 9: lr=0.15, lam=0.012, layers=5, nodes=32

→ Accuracy: 0.4975

✓ OATM Results:
Best Accuracy: 0.5199999809265137
Best Hyperparameters (OATM): {'lr': 0.005, 'lam': 0.004, 'n_layers': 4, 'nodes': 32}
OATM Tuning Time: 82.40417981147766 seconds
```

83	POW.AF4.BetaL	2000	non-null
84	POW.AF4.BetaH	2000	non-null
85	POW.AF4.Gamma	2000	non-null
86	subject_understood	2000	non-null
d+vn	oc. float64/05) into	61121	

dtypes: float64(85), int64(2)

memory usage: 1.3 MB

pr	<pre>int(df.head()</pre>)						
		bject_id	EEG.AF3		G.F7	EEG.		
0	0		0.641113	4179.10		37.94873		
1	0		1.025879	4188.73		0.1284		
2	0		3.205078	4182.82		32.8203		
4	0		6.538574	4168.73		6.79492		
4	0	0 423	2.436035	4216.92	22852 436	6.92285	52 4270.7690	143
	EEG.T7	EEG.P7	EEG	.01	EEG.02		POW.F8.Alpha	\
0	4207.948730	4165.000000	4135.897		70.000000		1.583895	
1	4209.615234	4152.436035			19.487305		1.709560	
2		4172.436035			17.948730		1.873591	
3	4202.179688	4155.384766	4128.333		1.666504		2.110017	
4	4217.436035	4166.538574	4155.897	461 416	2.820313		2.462552	
	POW.F8.BetaL	POW.F8.Beta	H POW.F8	.Gamma	POW.AF4.7	heta F	POW.AF4.Alpha	a \
0	0.504567	0.47197	9 0.	138717	1.86	1014	1.50479	
1 2	0.606587	0.52761	.6 0.	155580	1.85	9177	1.37961	7
2	0.795834	0.56541	.4 0.	170816		7946	1.283876	5
3	1.021118	0.57965	6 0.	180056	2.26	5952	1.306188	3
4	1.230984	0.57362	0.	181081	2.46	1205	1.522420)
	POW.AF4.Beta	L POW.AF4.Be	taH POW.	AF4.Gamr	na subied	t under	rstood	
0	0.25857	0 0.435	745	0.46948	33	_	0.0	
1	0.31757	9 0.468	416	0.64256	50		0.0	
2	0.44192	5 0.494	701	0.79819	97		0.0	
3	0.61688	1 0.506	062	0.88649	95		0.0	
4	0.82259	8 0.498	361	0.87445	55		0.0	

Paper use: EEG(electroencephalography) 28k

```
83 POW.AF4.BetaL 2000 non-null float64
84 POW.AF4.BetaH 2000 non-null float64
85 POW.AF4.Gamma 2000 non-null float64
86 subject_understood 2000 non-null float64
dtypes: float64(85), int64(2)
memory usage: 1.3 MB
```

RNN +OATM (with EGG data)

```
Epoch 5/9
691/691 — 108s 156ms/step - accuracy: 0.9989 - loss: 0.0035 - val_accuracy: 0.9996 - val_loss: 0.0014

Epoch 6/9
691/691 — 106s 154ms/step - accuracy: 1.0000 - loss: 7.7271e-05 - val_accuracy: 0.9998 - val_loss: 8.4756e-04

Epoch 7/9
691/691 — 142s 154ms/step - accuracy: 1.0000 - loss: 2.3762e-05 - val_accuracy: 0.9998 - val_loss: 8.1429e-04

Epoch 8/9
691/691 — 142s 154ms/step - accuracy: 1.0000 - loss: 1.3162e-05 - val_accuracy: 0.9998 - val_loss: 8.2574e-04

Epoch 9/9
691/691 — 108s 156ms/step - accuracy: 1.0000 - loss: 8.4991e-06 - val_accuracy: 0.9998 - val_loss: 8.2899e-04
```

RNN Config: lr=0.0010, λ =0.0040, layers=4, nodes=64

Test Accuracy: 0.9993

Time taken: 1098.64 seconds

CODE OVERVIEW — CNN

CNN_RS & CNN_BO

```
for lr in [0.001, 0.01, 0.05]:
   for lam in [0.001, 0.01, 0.02]:
      for n_layers in [2, 3]:
          for filters in [32, 64]:
```

```
# ------ BAYESIAN OPTIMIZATION -----
print("\n/ Starting CNN Bayesian Optimization...")
space = [
    Real(1e-4, 0.1, name='lr'),
    Real(1e-4, 0.05, name='lam'),
    Integer(2, 4, name='n_layers'),
    Integer(32, 128, name='filters')
]

@use_named_args(space)
def objective(**params):
    acc = cnn_run(params['lr'], params['lam'], params['
```

CNN_OATM

```
# ----- ORTHOGONAL ARRAY -----
# Custom Orthogonal Array L9 (3-level, 4-parameter)
oa combinations = [
   # lr lam n layers filters
   [0.001, 0.001, 2,
                        321.
   [0.001, 0.01, 3,
                        64],
   [0.001, 0.02, 4,
                        128].
   [0.01, 0.001, 3,
                        128].
   [0.01, 0.01, 4, [0.01, 0.02, 2,
                        32],
                        64],
   [0.05, 0.001, 4,
                        64].
   [0.05, 0.01, 2,
                    128].
   [0.05, 0.02, 3,
                        321.
         ---- OATM RUN --
```

CODE OVERVIEW —CNN

```
----- COMMON CNN TRAINING FUNCTION ------
def cnn run(lr, lam, n layers, filters):
   filters = int(filters)
   n_layers = int(n_layers)
   model = Sequential()
   model.add(Conv1D(filters, kernel size=3, activation='relu', padding='same',
                    input_shape=(X_train.shape[1], X_train.shape[2]),
                    kernel regularizer=l2(lam)))
   for _ in range(1, n_layers):
       model.add(Conv1D(filters, kernel_size=3, activation='relu', padding='same',
                        kernel_regularizer=l2(lam)))
   model.add(Flatten())
   model.add(Dense(1, activation='sigmoid'))
   model.compile(optimizer=Adam(learning_rate=lr),
                 loss='binary crossentropy',
                 metrics=['accuracy'])
   history = model.fit(X_train, y_train, epochs=5, verbose=0)
   return history.history['accuracy'][-1]
```

CNN_BO

```
Best CNN Bayesian Accuracy: 0.6200000047683716

Best Hyperparameters (Bayesian):
    lr = 0.00026
    lam = 0.00105
    n_layers = 4
    filters = 127

Bayesian Optimization Time: 108.28684377670288 seconds
```

CNN_RS

Testing CNN: lr=0.05, $\lambda=0.02$, layers=3, filters=64 \rightarrow Accuracy: 0.4762

☑ Best CNN Grid Search Accuracy: 0.762499988079071

Best Hyperparameters (Grid): {'lr': 0.001, 'lam': 0.0010 | Grid Search Time: 175.24910259246826 | seconds

CNN OATM

→ Accuracy: 0.5225
Testing OA Combination 8: lr=0.05, lam=0.01, lam=0.02, l

☑ Best CNN OATM Accuracy: 0.7774999737739563 Best Hyperparameters (OATM): {'lr': 0.001, 'language of the condition of the

CHALLENGES AND MODIFICATIONS

్డి master ▼ ి 1 Branch 🟷 0 Tags		Q Go to file	<> Code ▼
xiangzhang1015 Create LICENSE		efe56ff · 3 years ago	6 Commits
CNN.py	Add files via upload		6 years ago
CNN_BO.py	Add files via upload		6 years ago
CNN_GS.py	Add files via upload		6 years ago
LICENSE	Create LICENSE		3 years ago
README.md	Update README.md		3 years ago
RNN.py	Add files via upload		6 years ago
RNN_BO.py	Add files via upload		6 years ago
RNN_GS.py	Add files via upload		6 years ago
☐ README MIT license			≔

CHALLENGES AND MODIFICATIONS -1

```
Eg. RNN BO
🔊 xiangzhang1015 Add files via upload
                                                                     Raw 「□ 😃
Code
        Blame 26 lines (21 loc) · 822 Bytes
          from RNN import *
          from bayes opt import BayesianOptimization
          import time
         # define optimization function
         # input hyperparameters needed to be adjust
         def rnn bo(lr, lam, n lavers, nodes):
              acc = rnn_run(lr=lr, lam=lam, n_layers=int(n_layers), nodes=int(nodes))
   10
              return acc
   11
   12
   13
         # specify the values range of required hyperparameters
         bo = BayesianOptimization(rnn_bo,
   14 ~
   15
                                        "lr": (0.005, 0.15),
   16
   17
                                        "lam": (0.004, 0.012),
   18
                                        "n layers": (4, 6),
                                         "nodes": (32, 96)
   19
   20
                                    })
   21
   22
         num iter = 7
   23
         init points = 2
         start time = time.time()
   25
          bo.maximize(init_points=init_points, n_iter=num_iter)
   26
         print("Running time of the optimization is ". time.time() - start time)
```

```
import time
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import 12
from skopt import gp_minimize
from skopt.space import Real, Integer
from skopt.utils import use_named_args
# Generate dummy data
X train = np.random.rand(1000, 10, 84)
y_train = np.random.randint(0, 2, size=(1000,))
# Common model training function
def rnn_run(lr, lam, n_layers, nodes):
    nodes = int(nodes) # > ensure nodes is an integer
    n_layers = int(n_layers) # > ensure n_layers is an integer
   model = Sequential()
    model.add(SimpleRNN(nodes.
                       input shape=(X train.shape[1], X train.shape[2]),
                       return_sequences=(n_layers > 1),
                       kernel regularizer=l2(lam)))
    for i in range(1, n layers):
       model.add(SimpleRNN(nodes,
                           return sequences=(i != n layers - 1),
                           kernel regularizer=l2(lam)))
      model.add(Dense(1, activation='sigmoid'))
      model.compile(optimizer=Adam(learning_rate=lr),
                     loss='binary crossentropy',
                     metrics=['accuracy'])
      history = model.fit(X_train, y_train, epochs=5, verbose=0)
      return history.history['accuracy'][-1]
  # ----- BAYESIAN OPTIMIZATION -
  print("\n/ Starting Bayesian Optimization...")
  from skopt import gp_minimize
  from skopt.space import Real, Integer
  from skopt.utils import use named args
```

CHALLENGES AND MODIFICATIONS - 2 & 3

- Datasets are not provided
- Timing consuming

```
Testing lr=0.15, \lambda=0.012, layers=6, nodes=32
Testing lr=0.15, \lambda=0.012, layers=6, nodes=64
Testing lr=0.15, \lambda=0.012, layers=6, nodes=96
Running time of the optimization is 1092.134437084198
```

Input data

```
# Generate dummy data (replace with your actual data)
X_train = np.random.rand(1000, 10, 84) # (samples, timesteps, features)
y_train = np.random.randint(0, 2, size=(1000,)) # Binary labels
```

CRITICAL EVALUATION - CODE

Code:

- Clear structure
- Concise and easy to understand
- Cannot run(have to modify)
- Dataset is not provided

3.5/5

xiangzhang1015 Add files via upload

```
Blame 26 lines (21 loc) · 822 Bytes
Code
          from RNN import *
          from bayes_opt import BayesianOptimization
          import time
         # define optimization function
         # input hyperparameters needed to be adjust
         def rnn_bo(lr, lam, n_layers, nodes):
              acc = rnn run(lr=lr, lam=lam, n layers=int(n layers), nodes=int(nodes))
  10
             return acc
  11
  12
  13
         # specify the values range of required hyperparameters
         bo = BayesianOptimization(rnn_bo,
  15
  16
                                         "lr": (0.005, 0.15).
  17
                                         "lam": (0.004, 0.012),
                                         "n_layers": (4, 6),
  19
                                         "nodes": (32, 96)
  20
  21
  22
         num iter = 7
         init_points = 2
         start_time = time.time()
         bo.maximize(init_points=init_points, n_iter=num_iter)
         print("Running time of the optimization is ", time.time() - start time)
```

CRITICAL EVALUATION - METHODOLOGY

Efficiency

Evaluates far fewer combinations than grid search while maintaining good coverage.

→ Speed

Much faster than grid search

CRITICAL EVALUATION - METHODOLOGY

learning

No adaptive OATM treats each run independently.

Fixed designs

Limited to predefined OA designs

X Discrete only

OATM is designed for categorical or discrete levels.

CRITICAL EVALUATION - METHODOLOGY

Dow No]	Factor N	lo.
now No.	Factor 1	Factor	2 Factor 3
1	1	1	1
2	1	2	2
3	1	3	3
4	2	1	2
5	2	2	3
6	2	3	1
7	3	1	3_
8	3	2	1_
9	3	3	2

Table 1: Orthogonal Array with 9 rows, 3 factors and each factor has 3 levels

CRITICAL EVALUATION — IMPROVEMENT

- Hybrid Tuning Approach OATM + BO/GS
- 2. Adaptive OA Iterative orthogonal arrays

