AE2ADS: Algorithms Data Structures and Efficiency

Lecturer: Heshan Du

Email: <u>Heshan.Du@nottingham.edu.cn</u>

University of Nottingham Ningbo China

Big-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is O(g(n)), if there exist a real constant c > 0 and an integer constant $n_0 \ge 1$ such that for every $n \ge n_0$, $f(n) \le cg(n)$.

- 5 is O(1)
 - $c = 5, n_0 = 1$
- 6 is O(n)
 - $c = 6, n_0 = 1$
- 2n + 3 is O(n)
 - $c = 5, n_0 = 1$
- $3\log n$ is O(n)
 - $c = 3, n_0 = 2$
- - $c = 1, n_0 = 1$

- 100n + 1000 is O(n)
 - $-c = 1100, n_0 = 1$
- $n^2 + 8n 6$ is $O(n^2)$
 - $-c=9, n_0=1$
- $n \log n$ is $O(n^2)$
 - $-c=1, n_0=2$
- $(\log n)^2$ is $O(n \log n)$
 - $-c=1, n_0=2$
- n^3 is $O(2^n)$
 - $-c=1, n_0=10$

Multiplication Rule for Big-Oh

Let d(n), f(n), e(n), g(n) be functions mapping positive integers to positive real numbers.

Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).

Multiplication Rule for Big-Oh

Let d(n), f(n), e(n), g(n) be functions mapping positive integers to positive real numbers. Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).

Proof: Suppose d(n) is O(f(n)) and e(n) is O(g(n)). Then by the definition of Big-Oh, there exist real positive constant c_1 and real positive natural number n_1 such that for every $n \ge n_1$, $d(n) \le c_1 f(n)$. Similarly, there exist real positive constant c_2 and real positive natural number n_2 such that for every $n \ge n_2$, $e(n) \le c_2 g(n)$.

Let $n_3 = \max(n_1, n_2)$, $c_3 = c_1c_2$. Then it is easy to see that for every $n \ge n_3$, $d(n)e(n) \le c_3(f(n)g(n))$. By the definition of Big-Oh, d(n)e(n) is O(f(n)g(n)).

Big-Oh Rules: Drop smaller terms

Let f(n), h(n) be functions mapping positive integers to positive real numbers. Show that if f(n) = (1 + h(n)) with $h(n) \to 0$ as $n \to \infty$, then f(n) is O(1).

Big-Oh Rules: Drop smaller terms

Show that if f(n) = (1 + h(n)) with $h(n) \rightarrow 0$ as $n \rightarrow \infty$, then f(n) is O(1).

Proof (*sketch*):

- $h(n) \to 0$ as $n \to \infty$ means that for large enough n then h(n) will become arbitrarily close to 0.
- Hence, there exists n_0 such that

$$h(n) \le 1$$
 for all $n \ge n_0$

- Hence, $f(n) \le 2$ for all $n \ge n_0$.
- Therefore, f(n) is O(1).

1.
$$f(n) = n^2 + n$$

2.
$$f(n) = n^2 + 2^n$$

3.
$$f(n) = (n \log n) + n^2$$

1.
$$f(n) = n^2 + n = n^2 \left(1 + \frac{1}{n}\right) \in O(n^2)$$

2.
$$f(n) = n^2 + 2^n = 2^n \left(1 + \frac{n^2}{2^n}\right) \in O(2^n)$$

3.
$$f(n) = (n \log n) + n^2 = n^2 \left(1 + \frac{n \log n}{n^2}\right) \in O(n^2)$$

1.
$$f(n) = 5n^2 + 1000n + 10000$$

2.
$$f(n) = 6n^2 + 2^n/1000$$

3.
$$f(n) = (10000n \log n) + n^2$$

1.
$$f(n) = 5n^2 + 1000n + 10000 \in O(n^2)$$

2.
$$f(n) = 6n^2 + 2^n/1000 \in O(2^n)$$

3.
$$f(n) = (10000n \log n) + n^2 \in O(n^2)$$

Order the following functions by asymptotic growth rate.

$$4n(\log n) + 2n, 2^{20}, 2^{\log n}$$

 $3n + 100 \log n, 4n, 2^n$
 $n^2 + 10n, n^3, n(\log n)$

Order the following functions by asymptotic growth rate.

$$4n(\log n) + 2n, 2^{20}, 2^{\log n}$$

 $3n + 100 \log n, 4n, 2^n$
 $n^2 + 10n, n^3, n(\log n)$

$$2^{20}\in O(1); 2^{\log n}=n\in O(n)$$
 The rank from the lowest to the highest growth rates is: $2^{20}, 2^{\log n}, 3n+100\log n$, $4n$, $4n$ $(\log n)+2n$, n $(\log n)$, n^2+10n , n^3 , 2^n

The order of $2^{\log n}$, $3n + 100 \log n$, 4n does not matter, as they are all in O(n). The order of $4n (\log n) + 2n$, $n (\log n)$ does not matter, as they are both in $O(n \log n)$

More Exercises

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

Chapter 4. Analysis Tools