Guía 5 - Sistemas deductivos para lógica proposicional y aplicaciones de compacidad

Solución de un alumno

Verano 2021

Ejercicio 1

a.

1. $(\alpha \to \beta)$ [pertenece]

2. $(\beta \to \gamma)$ [pertenece]

3.
$$(\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow (\beta \rightarrow \gamma))$$
 [SP1]
4. $(\alpha \rightarrow (\beta \rightarrow \gamma))$ [MP 2 y 3]

4.
$$(\alpha \to (\beta \to \gamma))$$
 [MP 2 y 3

5.
$$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$$
 [SP2]

6.
$$(\alpha \to \beta) \to (\alpha \to \gamma)$$
 [MP 4 y 5]

7.
$$\alpha \rightarrow \gamma$$
 [MP 1 y 6]

b. Es SP3 # Ejercicio 2

c. Una fórmula φ es una tautología si para toda v valuación $v \models \varphi$.

$$\gamma: (\neg \varphi \to \neg \psi) \to (\psi \to \varphi)$$

Realizamos tabla de verdad:

φ	ψ	$\neg \varphi$	$\neg \psi$	$\neg \varphi \to \neg \psi$	$\psi o \varphi$	γ
1	1	0	0	1	1	1
1	0	0	1	1	1	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

Entonces vemos que no importa la valuación que tomemos, $v \models \gamma$, entonces es una tautología.

b.

c.

Ejercicio 3

- $(\Leftarrow) \exists \alpha \text{ tq } \Gamma \vdash \alpha \text{ y } \Gamma \vdash \neg \alpha, \text{ entonces inconsistente.}$
- (\Rightarrow) Sea β tq $\Gamma \vdash \beta$ y $\Gamma \vdash \neg \beta$. Qvq $\Gamma \vdash \alpha$ para cualquier α .
- 1. $\neg \beta$ [pertenece] 1. β [pertenece] 2. $\neg \beta \rightarrow (\neg \alpha \rightarrow \neg \beta)$ [SP1] 3. $(\neg \alpha \rightarrow \neg \beta)$ [MP 1 y 3]
 - 4. $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$ [SP3]
 - 5. $\beta \rightarrow \alpha \text{ [MP 2 y 3]}$
 - 6. α [MP 2 y 6] # Ejercicio 4
 - b. $(mc \Leftrightarrow 1)$

Ambos no pueden estar por consistencia. Veamos que hay uno por lo menos. Suponemos que no. Entonces, como Γ es mc:

$$\Gamma \cup \{\alpha\}$$
es inconsistente $\Rightarrow \Gamma \vdash \neg \alpha$

$$\Gamma \cup \{\neg \alpha\}$$
 es inconsistente $\Rightarrow \Gamma \vdash \alpha$

Entonces Γ es inconsistente. Absurdo. La vuelta

 $(mc \Leftrightarrow 2) \vdash \varphi$ para toda φ axioma. Como Γ es mc, entonces $\varphi \in \Gamma$.

(mc \Leftrightarrow 3) Como todos los axiomas están en SP, $\Gamma \vdash \beta \Rightarrow \beta \in \Gamma$.

c.
$$(\neg \alpha \to \beta) \equiv \alpha \lor \beta$$
.

Veamos por absurdo:

$$\alpha,\beta \notin \Gamma \Rightarrow \neg \alpha, \neg \beta \in \Gamma$$

$$\Rightarrow (\neg \alpha \land \neg \beta) \equiv \neg (\alpha \lor \beta) \in \Gamma$$

Absurdo.

Ejercicio 5

- a.
- Γ_0 es consistente
- Γ_{n+1} es consistente por como se arma
- b. Igual que 4.b.1
- c. Sea α un teorema, entonces $\Gamma \cup \{\alpha\}$ es consistente, entonces por (b) $\alpha \in \Gamma^+$
- d. Es consistente por (a). Es maximal por (b). # Ejercicio 6 (a \Rightarrow b) Veamos por absurdo: Γ no es satisfacible. Entonces Γ no es consistente. Entonces $\Gamma \models \alpha$ y $\Gamma \models \neg \alpha$. Pero entonces por (a), existe $\Gamma_0 \in \Gamma$, $\Gamma_1 \in \Gamma$ finitos tq $\Gamma_0 \models \alpha$ y $\Gamma_1 \models \neg \alpha$. Absurdo.

$$(b \Leftrightarrow c)$$

Es la recíproca.

$$(c \Rightarrow a) \circ (b \Rightarrow a)$$

TERMINAR

Ejercicio 7

Ejercicio 8

Podemos tomar Γ_1 y Γ_2 como los conjuntos me generados por $\Gamma \cup \{\beta\}$ y $\Gamma \cup \{\neg\beta\}$ respectivamente. $\Gamma \cup \{\beta\}$ y $\Gamma \cup \{\neg\beta\}$ son conjuntos consistentes porque $\Gamma \not\vdash \beta$ y $\Gamma \not\vdash \neg\beta$.

Nota: podemos generarlos por lema de Lindenbaum. Entonces $Con(\Gamma)\alpha Con(\Gamma_1)$ y $Con(\Gamma)\alpha Con(\Gamma_2)$ (por ej 4.7.b).

Ejercicio 9

Ejercicio 10

Ejercicio 11

 Γ_1, Γ_2 satisfacibles. $\Gamma_1 \cup \Gamma_2$ insatisfacible, entonces inconsistente.

Entonces $\Gamma_1 \cup \Gamma_2 \models \varphi \wedge \neg \varphi$.

Entonces $\Gamma_1 \models \alpha \ y \ \Gamma_2 \models \neg \varphi$.

Entonces $\alpha \in Con(\Gamma_1)$ y $\beta \in Con(\Gamma_2)$.

Si tomamos $\alpha = \varphi$ y $\beta = \neg \varphi$, entonces se cumple que $\varphi \to \varphi$.

Ejercicio 12

Ejercicio 13

Sabemos que insatisfacible \Rightarrow existe subconjunto finito insatisfacible.

Tomamos el conjunto $\bar{\Gamma} = \{ \neg \alpha : \alpha \in \Gamma \}$. Este conjunto no es satisfacible porque todas las valuaciones no satisfacen algún elemento.

Entonces existe $\bar{\Gamma}_0 \alpha \bar{\Gamma}$, $\bar{\Gamma}_0 = \{\beta_1, ..., \beta_n\}$ insatisfacible. Entonces $(\beta_1 \wedge ... \wedge \beta_n)$ es una contradicción. Entonces $\neg(\beta_1 \wedge ... \wedge \beta_n)$ es una tautología. Esta fórmula equivale a $(\neg \beta_1 \vee ... \vee \neg \beta_n)$ (de Morgan) y todos los $\neg \beta_i \in \Gamma$.

Ejercicio 14

$$\Gamma \models \gamma \underset{ej6.a}{\Rightarrow} \text{ existe } \Gamma_0 \alpha \Gamma \text{ finito}, \Gamma_0 \models \gamma$$

$$\Gamma_0 = \{\alpha_1, ..., \alpha_n\}$$

 $\alpha_1 \rightarrow \alpha_2$ es tautología ó $\alpha_2 \rightarrow \alpha_1$ es tautología

Supongo $\alpha_1 \to \alpha_2$ tautología. Entonces podemos sacar α_2 del conjunto Γ_0 y va a seguir valiendo $\Gamma_0 \models \gamma$. De la otra forma sacabamos α_1 .

Esto podemos repetirlo n-1 veces (sacando n-1 alfas del conjunto) obteniendo:

$$\Gamma_0 = \{\alpha_i\}$$

para algún $1 \leq i \leq n$. Entonces $\alpha_i = \delta$. # Ejercicio 15 Si Γ_1 satisfacible, Γ_2 satisfacible y $\Gamma_1 \cup \Gamma_2$ insatisfacible entonces quiere decir que $\exists \varphi \in \Gamma_2$ tq $\Gamma_1 \cup \{\varphi\}$ es insatisfacible. MAL Qvq existe α tq $\Gamma_1 \models \alpha$ y $\Gamma_2 \models \neg \alpha$.

Veamos por absurdo. No existe $\alpha \in FORM$,

$$\Gamma_1 \models \alpha \Rightarrow \Gamma_2 \models \neg \alpha$$

Vamos agregando elemento por elemento a Γ_1 .

$$\Delta_0 = \Gamma_1$$

$$\Delta_i = \Delta_{i-1} \cup \{\varphi_i\}$$

Siendo φ_i el elemento i de Γ_2 . Sea j el mínimo número tal que Δ_j es inconsistente.

$$\Delta_j \cup \{\varphi_j\} \text{ inconsistente} \Leftrightarrow \Delta_j \vdash \neg \varphi_j \Leftrightarrow \Delta_j \models \neg \varphi_j$$

(dem en teórica, usa teo deducción)

TERMINAR

Ejercicio 16

 Γ_1 y Γ_2 son consistentes. Entonces: - CASO $\Gamma_1 \cup \Gamma_2$ inconsistente: entonces $\Gamma_1 \cup \Gamma_2 \vdash \alpha$ y $\Gamma_1 \cup \Gamma_2 \vdash \neg \alpha$, entonces $\Gamma_1 \cup \Gamma_2 \vdash \alpha \wedge \neg \alpha$. - CASO $\Gamma_1 \cup \Gamma_2$ es consistente: entonces $\Gamma_1 \cup \Gamma_2 \alpha \Delta$ tq Δ mc (lema de Lindenbaum). Entonces $\Gamma_1 \alpha \Delta$ y $\Gamma_2 \alpha \Delta$.