Formula Sheet EE2E11

MaybE_Tree

2022-09-07

Power 1

Name	Type	Symbol	Unit
Complex Power	Complex Value	S	VA
Active Power	Re(S)	P	W
Reactive Power	$\operatorname{Im}(S)$	Q	VAr
Apparent Power	S	S	VA

1.1 **Factors**

Active Power $= {\bf Distortion\ Factor} * {\bf Displacement\ Factor}$ Power Factor Apparent Power

 $\frac{\text{RMS of fundamental}}{\text{RMS of fundamental}} = 1 \quad \text{(when no harmonics)}$ Distortion Factor

 $\cos \phi$, where ϕ is phase difference between voltage and current Displacement Factor

2 Three-phase

Property	Y	Δ
Voltage	$V_{LL} = \sqrt{3}V_{\phi}$	$V_{LL} = V_{\phi}$
Current	$I_L = I_\phi$	$I_L = \sqrt{3}I_\phi$
Phase	V_{ab} leads V_a by 30°	I_a lags I_{ab} by 30°
Active Power	$P = \sqrt{3}V_L$	$_{L}I_{L}\cos\phi$
Reactive Power	$Q = \sqrt{3}V_L$	$L_L I_L \sin \phi$
Apparent Power	$ S = \sqrt{ S }$	$\sqrt{3}V_{\phi}I_{\phi}$

- All powers are given as total power (3 * Power of single load/coil)
- V_{ϕ} is voltage across one coil.
- I_{ϕ} is current through one coil.
- ϕ is phase difference between voltage and current (conventionally, voltage has 0 phase offset).

3 AC Machines

Value	Symbol	Unit	Notes
Angular Speed	n	rpm [revolutions per minute]	-
Poles	P	-	-
Pole Pairs	p	-	p = P/2
Slip	s	ratio of angular speeds	$0 \le s \le 1$

Synchronous Speed
$$n_s = \frac{120f}{P} = \frac{60f}{p}$$
 Rotor Speed
$$n_r = (1-s)n_s$$
 Rotor Current Frequency
$$f_r = sf_s$$

Parama's equation $P = \frac{V}{I}$ V is voltage, I is current, P is power.

2