Spatial Inefficiencies in Africa's Trade Network

Tilman Graff

University of Oxford

24th April 2018

Figure: Road Network Guinea

Figure: Road Network Guinea

Figure: Optimal Road Network Guinea

- Are African roads where they should be?
- Which country has the most efficient trade network?
- ▶ Do some regions have *too* many roads?

Individual transport policies

Overall network efficiency

Overall network efficiency

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Network Nodes

Figure: 10,167 grid cells $(0.5 \times 0.5 \text{ degrees})$

Network Nodes

- ► Population
- Output (night lights)
- Geography

Network Edges

- Average Speed
- Distance
- ▶ Topography

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ▶ Consumers in *i* consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{l_{i,k}^{\gamma}}$
 - ightharpoonup costs fall with $I_{i,k}$ (infrastructure)
 - ightharpoonup costs rise with $Q_{i,k}^n$ (congestion)

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{urban, rural\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- ▶ Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{I_{i,k}^{\gamma}}$
 - costs fall with l_{i,k} (infrastructure)
 - ightharpoonup costs rise with $Q_{i,k}^n$ (congestion)

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- ▶ Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{I_{i,k}^{\gamma}}$
 - ightharpoonup costs fall with $I_{i,k}$ (infrastructure)
 - costs rise with $Q_{i,k}^n$ (congestion)

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patters of reshuffling

- ▶ Social planner can reallocate infrastructure $I_{i,k}$
- Keeping total infrastructure cost fixed

 - where K = total cost of building the current network

Full Planner's Problem

Network Reallocation

Network Reallocation

Network Reallocation

Λ_i for sample countries

Figure: Local Infrastructure Discrimination Index Λ_i

 $\Lambda_i = \frac{\text{Welfare under the optimal Infrastructure}_i}{\text{Welfare under the current Infrastructure}_i}$

Λ_i for entire sample

Figure: African grid cells by Λ_i

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Why do some areas have too few roads while others have too many?

Lasting impact of Colonial Railroads

Figure: Colonial Rails (red) and Placebo Rails (blue)

Source: Jedwab & Moradi (2016) and own digitisations

Lasting impact of Colonial Railroads

Table: Colonial Railroads and Local Infrastructure Discrimination Index

		Dependent variable:								
	Local Infrastructure Discrimination Index Λ_i									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
KM of Colonial Railroads	-0.0002*** (0.0001)	-0.0001*** (0.0001)	-0.0002*** (0.0001)	-0.0002*** (0.0001)						
KM of Colonial Placebo Railroads					0.00004 (0.0003)	-0.0002 (0.0003)	-0.0002 (0.0003)	-0.0003 (0.0003)		
Country FE Geographic controls Simulation controls		Yes	Yes Yes	Yes Yes Yes		Yes	Yes Yes	Yes Yes Yes		
Observations R ²	10,158 0.001	10,158 0.099	10,158 0.124	10,158 0.126	10,158 0.00000	10,158 0.098	10,158 0.122	10,158 0.124		
Note: *p<0.1; **p<0.05; ***p<0.01								***p<0.01		

Favoritism

Table: Regional Favoritism

	Dependent variable: Local Infrastructure Discrimination Index Λ									
		Full Sample					Excluding Capitals			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Years in Power	-0.001*** (0.0003)	-0.001*** (0.0002)	-0.001*** (0.0004)			-0.001*** (0.0003)	-0.001** (0.0004)			
Years in Power \times Democracy			-0.0001 (0.001)				-0.0002 (0.001)			
In Power Dummy				-0.024*** (0.006)	-0.025*** (0.006)			-0.026*** (0.007)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Geographic controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Simulation controls		Yes	Yes		Yes	Yes	Yes	Yes		
Observations	10,066	10,066	10,066	10,066	10,066	10,019	10,019	10,019		
R ²	0.124	0.125	0.125	0.124	0.126	0.128	0.128	0.128		

Note: *p<0.1; **p<0.05; ***p<0.01

Does Aid go into the right locations?

Figure: Spatial Distribution of Development Aid Projects

Does Aid go into the right locations?

	Dependent variable: Local Infrastructure Discrimination Index Λ							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A: Worldbank Projects								
Total disbursements in million 2011 US dollars	-0.0003*** (0.0001)	-0.0004*** (0.0001)						
Transport-sector disbursements in million 2011 US dollars			-0.001*** (0.0002)	-0.001*** (0.0002)				
Number of projects					-0.002*** (0.0004)	-0.003*** (0.0004)		
Number of transport projects							-0.003*** (0.001)	-0.004*** (0.001)
Country FE Geographic controls Simulation controls	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes
Observations R ²	10,158 0.125	10,158 0.128	10,158 0.125	10,158 0.127	10,158 0.127	10,158 0.131	10,158 0.126	10,158 0.129
Panel B: Chinese Development	Projects							
Total commitments in million 2011 US dollars	-0.0001*** (0.00004)	-0.0001*** (0.00004)						
Transport-sector commitments in million 2011 US dollars			-0.0003** (0.0001)	-0.0003** (0.0001)				
Number of projects					-0.003*** (0.001)	-0.004*** (0.001)		
Number of transport projects							-0.013*** (0.004)	-0.014*** (0.005)
Country FE Geographic controls	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Simulation controls	162	Yes	162	Yes	162	Yes	162	Yes
Observations R ²	10,158 0.123	10,158 0.125	10,158 0.123	10,158 0.125	10,158 0.124	10,158 0.126	10,158 0.123	10,158 0.125

Note:

Concerns

- Identification
- Non-linearity of model
- ..

Backup: full planner's problem

$$\begin{aligned} \max_{\left\{C_{i}^{n}, \left\{Q_{i,k}^{n}\right\}_{k \in N(i)}\right\}_{n}} & \sum_{i} L_{i}u(c_{i}) \\ c_{i}, \left\{I_{i,k}\right\}_{k \in N(i)} & \\ \text{subject to} & L_{i}c_{i} \leq \left(\sum_{n=1}^{N} (C_{i}^{n})^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \\ & C_{i}^{n} + \sum_{k \in N(i)} Q_{i,k}^{n}(1 + \tau_{i,k}^{n}(Q_{i,k}^{n}, I_{i,k})) \leq Y_{i}^{n} + \sum_{j \in N(i)} Q_{j,i}^{n} \\ & \sum_{i} \sum_{k \in N(i)} \delta_{i,k}^{i} I_{i,k} \leq K \\ & I_{i,k} = I_{k,i} \text{ for all } i \in \mathcal{I}, k \in N(i) \\ & C_{i}^{n}, c_{i}, Q_{i,k}^{n} \geq 0 \text{ for all } i \in \mathcal{I}, n \in \mathcal{N}, k \in N(i). \end{aligned}$$

Backup: A for entire countries

Figure: African countries by Λ_i