1. Let z^* be the optimal objective function value of

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i=1,2,\cdots,m)$$

$$x_j \geq 0 \quad (i=1,2,\cdots,n)$$

and let $y_1^* \cdots y_m^*$ be any optimal solution of the dual problem. Prove that

$$\sum_{j=1}^{n} c_j x_j \le z^* \sum_{i=1}^{m} y_i^* t_i$$

for every feasible solution $x_1^* \cdots x_n^*$ of

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i + t_i \quad (i = 1, 2, \cdots, m)$$

$$x_j \geq 0 \quad (i = 1, 2, \cdots, n)$$

$$\sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_j$$
$$\le \sum_{i=1}^{m} (b_i + t_i) y_i^* = \sum_{i=1}^{m} b_i y_i^* + \sum_{i=1}^{m} t_i y_i^*$$

Since $y_1^* \cdots y_m^*$ are the optimal solution of the dual problem, the strong duality holds.

$$\implies z^* = \sum_{i=1}^m b_i y_i^*$$

$$\implies \sum_{i=1}^n c_j x_j \le \sum_{i=1}^m b_i y_i^* + \sum_{i=1}^m t_i y_i^* = z^* + \sum_{i=1}^m t_i y_i^*$$

2. For each of the two problems below, use the complementary slackness in the preview section to check the optimality of the proposed solution.

(a)

Proposed solution: $x_1^* = 0$, $x_2^* = \frac{4}{3}$, $x_3^* = \frac{2}{3}$, $x_4^* = \frac{5}{3}$, $x_5^* = 0$

(b)

Proposed solution: $x_1^* = 0$, $x_2^* = 0$, $x_3^* = \frac{5}{2}$, $x_4^* = \frac{7}{2}$, $x_5^* = 0$, $x_6^* = \frac{1}{2}$

Then consider the dual form:

We can obtain $y_1 = 1$, $y_2 = 1$ and $y_4 = 1$ from equation (2)(3)(4). Since the solution could not match equation (5), the proposed solution is not the optimal solution.

(b)
$$x_1^* = 0, \ x_2^* = 0, \ x_3^* = \frac{5}{2}, \ x_4^* = \frac{7}{2}, \ x_5^* = 0, \ x_6^* = \frac{1}{2} \Longrightarrow y_9 = 0, \ y_{10} = 0, \ y_{12} = 0$$

$$(0) \qquad -4(\frac{5}{2}) + 3(\frac{7}{2}) + (0) + 4(\frac{1}{2}) = 1$$

$$5(0) + 3(0) + (\frac{5}{2}) + -5(0) + 3(\frac{1}{2}) = 4$$

$$4(0) + 5(0) - 3(\frac{5}{2}) \quad 3(\frac{7}{2}) - 4(0) + 2(\frac{1}{2}) = \frac{7}{2} \le 4 \implies y_3 = 0$$

$$-(0) \qquad +2(\frac{7}{2}) + (0) -0(\frac{1}{2}) = \frac{9}{2} \le 5 \implies y_4 = 0$$

$$-2(0) + (0) + (\frac{5}{2}) + (\frac{7}{2}) + 2(0) + 0(\frac{1}{2}) = 7$$

$$2(0) - 3(0) + 2(\frac{5}{2}) - (\frac{7}{2}) + 4(0) + 0(\frac{1}{2}) = 4 \le 5 \implies y_6 = 0$$

Then consider the dual form:

最佳化概論(Introduction to Optimization)

Homework 04 – 2017/11/22

R05546030 彭新翔

We can obtain $y_1 = \frac{1}{2}$, $y_2 = \frac{3}{2}$ and $y_3 = \frac{3}{2}$ from equation (3)(4)(6). After back substitution and check in another equation. The proposed solution $x_1^* = 0$, $x_2^* = 0$, $x_3^* = \frac{5}{2}$, $x_4^* = \frac{7}{2}$, $x_5^* = 0$ and $x_6^* = \frac{1}{2}$ is the optimal solution.

- 3 -