Chemistry Cheatsheet

Noa Sendlhofer & Cristian Leser nsendlhofer & cleser

Version: December 29, 2022

Template by Micha Bosshart

1. Basics

1.1 Unit conversions

- Energy: $1eV = 1.602 \cdot 10^{-19} J$, 1cal = 4.18 J
- Pressure: $1Pa=9.892atm=1.0 \cdot 10^{-5}bar=7.5 \cdot 10^{-3}torr$
- Amount of substance: $1 \text{mol} = 6.022 \cdot 10^{23}$ elementary entities (Avogadro constant)
- \bullet Length: $1\mbox{\normalfont\AA} = 10^{-10} m$
- STP thermodynamics: 25C = 298K, 1bar, 1mol, 1 cal
- STP electrochemistry: 25C = 298K, 1atm, concentration 1M

1.2 General

- Kinetic energy: $E_{kin} = \frac{1}{2} \cdot m \cdot v^2$
- \bullet Potential energy: $E_{pot} = m \cdot g \cdot \Delta h$
- electrostatic: $E_{el}=\frac{\kappa Q_1 Q_2}{d^3}$ $\kappa=\frac{1}{4\pi\epsilon_0}$
- Photon energy: $E_{\gamma} = h \cdot f = \frac{h \cdot c}{\lambda}$
- De Broglie wavelength: $\lambda = \frac{h}{m \cdot v}$
- Specific heat capacity: $C_s = \frac{q}{m \cdot \Delta T}$

1.3 Trends in the periodic table of elements

- Ionisation energy: The ionization energy is the quantity of energy that an isolated, gaseous atom in the ground electronic state must absorb to discharge an electron, resulting in a cation.
- Electron affinity: Electron affinity is defined as the change in energy (in kJ/mole) of a neutral atom (in the gaseous phase) when an electron is added to the atom to form a negative ion.
- Electronnegativity: Electronegativity is a measure of an atom's ability to attract shared electrons to itself.

5. State of matter

5.1 Intermolekulare Wechselwirkungen

- Wasserstoffbrücken (stark)
 Entstehen zwischen H und O,N,F Atomen
- 2. Dipol-Dipol-Wechselwirkungen (mittel) Entstehen durch polare Bindungen ($\Delta EN>0.5$)
- Van-der-Waals-WW/Dispersionskräfte (schwach)
 Entstehen durch temporäre Fluktuationen der Elektronen
 → temporärer Dipol, Gibts es immer.Grosse und lange
 Moleküle haben die stärksten Dispersionskräfte.

5.2 Flüssigkeiten

Gefrierpunktserniedrigung: $\Delta T_f = K_f m$

 $K_f=$ Kryoskopische Konst. m= Molalität $\left | rac{mol}{kg}
ight |$

Je tiefer die **Viskositä**t, desto grösser die Mobilität der Moleküle. Viskosität proportional zur Stärke der WW. Je höher die Viskosität, desto dickflüssiger.

5.3 Ideale Gase

- Wir machen 2 Annahmen:
 - Gasteilchen wechselwirken nicht.
 - Gasteilchen haben kein Volumen.
- Ideales Gasgesetz: pV = nRT = NkT
- Dichte $\rho = M \frac{n}{V} = M \frac{p}{PT}$
- R ist die universelle Gaskonstante.
- Quadr. Mittelwert der Geschwindigkeit der Gasmoleküle: $u_{rms} = \sqrt{3RT/M}$
- $M\left[gmol^{-1}\right]$, $d\left[gL^{-1}\right]$, $V\left[L\right]$

Bei hohen Drücken verhalten sich Gase nicht mehr ideal \rightarrow korrigierte ideale Gasgleichung:

$$(p + \frac{n^2 A}{V^2})(V - nb) = nRT$$

Partialdruck: Der Partialdruck ist der Anteil eines Gases am Druck des betrachteten Gasgemisches. Partialdrücke einer Gasmischung sind immer kleiner als der Gesamtdruck.

 $p_i = n_i \cdot \frac{RT}{V}$ Gesamtdruck = Σ aller Partialdrücke

5.4 Osmotischer Druck

Der Druck der benötigt würde, um Fluss von Lösungsmittelteilchen zu unterdrücken heisst osmotischer Druck.

$$\Pi = \left(\frac{n}{V}\right)RT = MRT$$
 $M = \text{Molarität}$