EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

BAREM DE EVALUARE ȘI DE NOTARE

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte) $\log_2 \frac{1}{8} = \log_2 2^{-3} = -3$ 2p $\sqrt[3]{27} = \sqrt[3]{3^3} = 3$ 2p $\log_2 \frac{1}{8} + \sqrt[3]{27} = 0$ 1p $x_V = -\frac{b}{2a} = 1$ 2p $y_V = -\frac{\Delta}{4a} = 2$ 2p 1p V(1,2)3. 1p $x^2 - 1 = 0$ 2p $x \in \{-1,1\}$ 2p 2p 3p $\overline{\mathbf{5.}} \quad \overline{\overrightarrow{w}} = 2(2\overrightarrow{i} - \overrightarrow{j}) - (\overrightarrow{i} + 3\overrightarrow{j}) =$ 2p $= 3\vec{i} - 5\vec{j} \Rightarrow \vec{w}(3, -5)$ BC = 53p 2p $h = \frac{AB \cdot AC}{12} = 12$

	$n = \frac{BC}{BC} = \frac{5}{5}$	3p
SUB	SUBIECTUL al II-lea (30 de pu	
1.a)	$A^2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$	3p
	$A^{2} - A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
b)	$\det(A) = -1 \neq 0 \Longrightarrow \exists A^{-1}$	1p
	$A^* = \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix}$	2p
	$A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$	2p

BACALAUREAT 2010 - barem de evaluare și de notare

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii.

c)	Prin înmulțire la stânga cu A^{-1} se obține $(0 1) (2010 2010)$	2p
	$X = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2010 & 2010 \\ 2009 & 2010 \end{pmatrix} =$	2p
	$=\begin{pmatrix} 2009 & 2010 \\ 1 & 0 \end{pmatrix}$	1p
2.a)	$f(\hat{0}) = \hat{0}$	2p
	$f(\hat{1}) = \hat{2}$ $f(\hat{0}) + f(\hat{1}) = \hat{2}$	2p
	$f(\hat{0}) + f(\hat{1}) = \hat{2}$	1p
b)	$f(\hat{0}) = \hat{0}, f(\hat{1}) = \hat{2}, f(\hat{2}) = \hat{0}$	3p
	Rădăcinile lui f sunt $\hat{0}$ și $\hat{2}$	2p
c)	$g(\hat{0}) = a, g(\hat{1}) = a, g(\hat{2}) = \hat{2} + a$	2p
	$g(\hat{0}) + g(\hat{1}) + g(\hat{2}) = a + a + \hat{2} + a = \hat{2}$	2p
	$f(\hat{0}) + f(\hat{1}) + f(\hat{2}) = g(\hat{0}) + g(\hat{1}) + g(\hat{2}) = \hat{2}, \forall a \in \mathbb{Z}_3$	1p

SUBIECTUL al III-lea (30 de pr		de puncte)
1.a)	$f'(x) = (x^2 e^x)' =$	2p
	$=2xe^{x} + x^{2}e^{x} = (2x + x^{2})e^{x}$	3p
b)	$f'(x) \le 0, \forall x \in [-2, 0]$	2p
	f descrescătoare pe $[-2,0]$	3p
c)	f descrescătoare pe $[-1,0] \Rightarrow f(0) \le f(x) \le f(-1)$	1p
	f crescătoare pe $[0,1]$ și $x^2 \in [0,1] \Rightarrow f(0) \le f(x^2) \le f(1)$	2p
	Prin adunarea celor 2 relații se obține $0 \le f(x) + f(x^2) \le \frac{e^2 + 1}{e}$, $\forall x \in [-1, 0]$	2p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{3} x dx =$	2p
	$\left = \frac{x^2}{2} \right ^3 =$	2p
	= 4	1p
b)	$= 4$ $V = \pi \int_{1}^{2} g^{2}(x) dx =$	1p
	$= \pi \int_{1}^{2} \left(x^{2} + 2 + \frac{1}{x^{2}} \right) dx =$	1p
	$=\pi\left(\frac{x^3}{3}+2x-\frac{1}{x}\right)\Big _1^2=$	2p
	$=\frac{29\pi}{6}$	1p

c)	$\int_{1}^{e} f(x) \cdot \ln x dx = \int_{1}^{e} x \cdot \ln x dx + \int_{1}^{e} \frac{1}{x} \cdot \ln x dx =$	1p
	$= \left(\frac{x^2}{2} \ln x - \frac{x^2}{4}\right)^e + \frac{\ln^2 x}{2}^e =$	2p
		2p