Lesson 08 Regularization

Lusine Zilfimian

April 06 (Monday), 2020

Quiz

- Quiz
- Linear Regression (Reminder)

- Quiz
- Linear Regression (Reminder)
- Problems

- Quiz
- Linear Regression (Reminder)
- Problems
- L2 Regularization Ridge regression

- Quiz
- Linear Regression (Reminder)
- Problems
- L2 Regularization Ridge regression
- L1 Regularization LASSO

- Quiz
- Linear Regression (Reminder)
- Problems
- L2 Regularization Ridge regression
- L1 Regularization LASSO
- Selecting the Tuning Parameter

- Quiz
- Linear Regression (Reminder)
- Problems
- L2 Regularization Ridge regression
- L1 Regularization LASSO
- Selecting the Tuning Parameter
- Elastic Net Regression

• Bring an example of Poisson experiment.

- Bring an example of Poisson experiment.
- Why we cannot model mean as a linear function of independent variable?

- Bring an example of Poisson experiment.
- Why we cannot model mean as a linear function of independent variable?
- What is overdispersion, how to deal with in?

- Bring an example of Poisson experiment.
- Why we cannot model mean as a linear function of independent variable?
- What is overdispersion, how to deal with in?
- How to check the goodness of fit in Poisson Regression?

• Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:

- Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:
- $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} (y \hat{\beta_0} \sum_{j=1}^{p} \hat{\beta_j} x_{ij})^2 \rightarrow min$

- Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:
- $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} (y \hat{\beta_0} \sum_{j=1}^{p} \hat{\beta_j} x_{ij})^2 \rightarrow min$
- $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$

- Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:
- $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} (y \hat{\beta_0} \sum_{j=1}^{p} \hat{\beta_j} x_{ij})^2 \rightarrow min$
- $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$
- $Bias(\hat{\beta}_{OLS}) = \mathbb{E}(\hat{\beta}_{OLS}) \beta = 0$

- Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:
- $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} (y \hat{\beta_0} \sum_{j=1}^{p} \hat{\beta_j} x_{ij})^2 \rightarrow min$
- $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$
- $Bias(\hat{\beta}_{OLS}) = \mathbb{E}(\hat{\beta}_{OLS}) \beta = 0$
- $var(\hat{\beta}_{OLS}) = \sigma^2(X^TX)^{-1}$

- Linear regression coefficients $\hat{\beta}_{OLS}$ are the values that minimize the following RSS:
- $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2 = \sum_{i=1}^{n} (y \hat{\beta_0} \sum_{j=1}^{p} \hat{\beta_j} x_{ij})^2 \rightarrow min$
- $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$
- $Bias(\hat{\beta}_{OLS}) = \mathbb{E}(\hat{\beta}_{OLS}) \beta = 0$
- $var(\hat{\beta}_{OLS}) = \sigma^2(X^TX)^{-1}$
- When we have a lot of observations we can be fairly confident that the Least Squares line accurately reflects the relationship between y and x.

• In practice, some of the assumptions of linear regression are violated.

- In practice, some of the assumptions of linear regression are violated.
- Regularization solves the problem caused by the violation of the following assumptions:

- In practice, some of the assumptions of linear regression are violated.
- Regularization solves the problem caused by the violation of the following assumptions:
- Number of observations is much larger than the number of variables (n>>p)

- In practice, some of the assumptions of linear regression are violated.
- Regularization solves the problem caused by the violation of the following assumptions:
- Number of observations is much larger than the number of variables (n>>p)
- Absence of multicollinearity.

- $n \le p$, n > p problems: there are not enough observations to fit data
 - more, slightly less, or equal number of variables than data points.

- n ≤ p, n > p problems: there are not enough observations to fit data
 more, slightly less, or equal number of variables than data points.
- ullet In the first case the OLS estimate for eta coefficient is not unique.

- n ≤ p, n > p problems: there are not enough observations to fit data
 more, slightly less, or equal number of variables than data points.
- In the first case the OLS estimate for β coefficient is not unique.
- In the second case there are overfitting.

- n ≤ p, n > p problems: there are not enough observations to fit data
 more, slightly less, or equal number of variables than data points.
- In the first case the OLS estimate for β coefficient is not unique.
- In the second case there are overfitting.
- Multicollinearity problem:

- n ≤ p, n > p problems: there are not enough observations to fit data
 more, slightly less, or equal number of variables than data points.
- In the first case the OLS estimate for β coefficient is not unique.
- In the second case there are overfitting.
- Multicollinearity problem:
- With perfect collinearity $rank(X) < m \Rightarrow (X^T X)^{-1}$ does not exist.

- n ≤ p, n > p problems: there are not enough observations to fit data
 more, slightly less, or equal number of variables than data points.
- In the first case the OLS estimate for β coefficient is not unique.
- In the second case there are overfitting.
- Multicollinearity problem:
- With perfect collinearity $rank(X) < m \Rightarrow (X^T X)^{-1}$ does not exist.
- With multicollinearity: rank(X) = m, but there are high correlation, thus standard error for $\hat{\beta}_j$ will be large.

• Suppose train data consists of 1 observation and 1 variable

• Suppose train data consists of 1 observation and 1 variable

• All regressions has RSS = 0 for train data.

• Suppose train data consists of 2 two observations and 1 variable:

• Suppose train data consists of 2 two observations and 1 variable:

• Train RSS = 0, test set RSS is large.

• Suppose train data consists of 2 two observations and 1 variable:

- Train RSS = 0, test set RSS is large.
- The regression has high variance and zero bias.

The way of solving these problems

• Subset Selection. Identifying a subset of p predictors that we believe to be related to the response (using theory, significant tests, R^2 , AIC, BIC etc.)

The way of solving these problems

- Subset Selection. Identifying a subset of p predictors that we believe to be related to the response (using theory, significant tests, R^2 , AIC, BIC etc.)
- Shrinkage (Regularization). Fitting a model involving all p
 predictors and then shrinking coefficients towards zero relative to OLS
 estimates.

The way of solving these problems

- Subset Selection. Identifying a subset of p predictors that we believe to be related to the response (using theory, significant tests, R^2 , AIC, BIC etc.)
- Shrinkage (Regularization). Fitting a model involving all p
 predictors and then shrinking coefficients towards zero relative to OLS
 estimates.
- Dimension Reduction. Projecting the p predictors into a m-dimensional subspace by computing m (m<p) linear combinations of p variables.

• Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.
- Regularization penalizes complex models.

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.
- Regularization penalizes complex models.
- Regularization is the method of subset selection.

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.
- Regularization penalizes complex models.
- Regularization is the method of subset selection.
- The main types of regularization are:

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.
- Regularization penalizes complex models.
- Regularization is the method of subset selection.
- The main types of regularization are:
- L2 Regularization Ridge regression

- Perform linear regression model, while shrinking the coefficients $\hat{\beta}$ toward 0.
- Regularization introduces bias, but may significantly decrease the variance of the estimates.
- Regularization penalizes complex models.
- Regularization is the method of subset selection.
- The main types of regularization are:
- L2 Regularization Ridge regression
- L1 Regularization LASSO regression

• Ridge regression coefficients β_{ridge} are the values that minimize the following RSS:

- Ridge regression coefficients β_{ridge} are the values that minimize the following RSS:
- $RSS_{ridge} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2 \rightarrow min$

- Ridge regression coefficients β_{ridge} are the values that minimize the following RSS:
- $RSS_{ridge} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2 \rightarrow min$
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{eta_j}^2
 ightarrow min$

- Ridge regression coefficients β_{ridge} are the values that minimize the following RSS:
- $RSS_{ridge} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2 \rightarrow min$
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{\beta_j}^2 \rightarrow min$
- $\lambda \sum_{i=1}^{p} \hat{\beta}_{j}^{2}$ is a shrinkage penalty

- Ridge regression coefficients β_{ridge} are the values that minimize the following RSS:
- $RSS_{ridge} = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \hat{\beta}_j^2 \rightarrow min$
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{\beta_j}^2 \rightarrow min$
- $\lambda \sum_{j=1}^{p} \hat{\beta}_{j}^{2}$ is a shrinkage penalty
- $\lambda \ge 0$ is the **tuning** parameter

 The shrinkage penalty is applied to coefficients of x, but not to the intercept:

- The shrinkage penalty is applied to coefficients of x, but not to the intercept:
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{\beta_j}^2 \rightarrow min$

- The shrinkage penalty is applied to coefficients of x, but not to the intercept:
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{\beta_j}^2 \rightarrow min$
- Ridge shrinks the estimated association of each variable with the response.

- The shrinkage penalty is applied to coefficients of x, but not to the intercept:
- $RSS_{ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{\beta_j}^2 \rightarrow min$
- Ridge shrinks the estimated association of each variable with the response.
- There is no need to shrink the intercept, which is simply a measure of the mean value of the response when $x_{i1} = x_{i2} = ... = x_{ip} = 0$.

 The main idea of regularization is to find new line that does not fit the Train data as well (to introduce a small amount of bias) in order to have less variance.

- The main idea of regularization is to find new line that does not fit
 the Train data as well (to introduce a small amount of bias) in order
 to have less variance.
- $\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$

- The main idea of regularization is to find new line that does not fit the Train data as well (to introduce a small amount of bias) in order to have less variance.
- $\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$
- $\lambda \to 0, \hat{\beta}_{ridge} \to \hat{\beta}_{OLS};$

- The main idea of regularization is to find new line that does not fit the Train data as well (to introduce a small amount of bias) in order to have less variance.
- $\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$
- $\lambda \to 0, \hat{\beta}_{ridge} \to \hat{\beta}_{OLS};$
- $\lambda \to \infty, \hat{\beta}_{\textit{ridge}} \to 0$

- The main idea of regularization is to find new line that does not fit
 the Train data as well (to introduce a small amount of bias) in order
 to have less variance.
- $\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$
- $\lambda \to 0, \hat{\beta}_{ridge} \to \hat{\beta}_{OLS};$
- $\lambda \to \infty, \hat{\beta}_{ridge} \to 0$
- $Bias(\hat{\beta}_{ridge}) = \sigma^2(X^TX + \lambda I)^{-1}X^TX(X^TX + \lambda I)^{-1};$

- The main idea of regularization is to find new line that does not fit the Train data as well (to introduce a small amount of bias) in order to have less variance.
- $\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$
- $\lambda \to 0, \hat{\beta}_{ridge} \to \hat{\beta}_{OLS};$
- $\lambda \to \infty, \hat{\beta}_{ridge} \to 0$
- $Bias(\hat{\beta}_{ridge}) = \sigma^2(X^TX + \lambda I)^{-1}X^TX(X^TX + \lambda I)^{-1};$
- $\lambda \uparrow \Rightarrow Var \downarrow$

Decrease in the slope: solving the problem of n=p+1

•
$$\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$$

Decrease in the slope: solving the problem of n=p+1

•
$$\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$$

• Now we have another slope (smaller) and intercept.

Decrease in the slope: solving the problem of n=p+1

$$\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T Y$$

- Now we have another slope (smaller) and intercept.
- Shrinking the coefficient estimates can significantly reduce their

Lusine Zilfimian Lesson 08 Regularization April 06 (Monday), 2020

14/36

Decrease in the slope is important

• Smaller the slope less is the sensitivity to x (variables)

Decrease in the slope is important

ullet Smaller the slope less is the sensitivity to x (variables)

Decrease in the slope is important

• Smaller the slope less is the sensitivity to x (variables)

- $\lambda \to \infty, \hat{\beta}_{ridge} \to 0$
- Less and less sensitive to x variable

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

```
data.frame(y = c(10,20,30), x = c(1,1,2))
```

```
## y x
## 1 10 1
## 2 20 1
## 3 30 2
```

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(1,1,2)$)

```
## 1 10 1
## 2 20 1
## 3 30 2
```

y x

• RSS =
$$\sum_{i=1}^{n} (y_i - \hat{\beta}x_i)^2 = \sum_{i=1}^{n} y_i^2 - 2\hat{\beta} \sum_{i=1}^{n} y_i x_i + \hat{\beta}^2 \sum_{i=1}^{n} x_i^2 \to min$$

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(1,1,2)$)

```
## 1 10 1
## 2 20 1
## 3 30 2
```

y x

- $RSS = \sum_{i=1}^{n} (y_i \hat{\beta}x_i)^2 = \sum_{i=1}^{n} y_i^2 2\hat{\beta} \sum_{i=1}^{n} y_i x_i + \hat{\beta}^2 \sum_{i=1}^{n} x_i^2 \to min$
- $RSS' = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 = 0$

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(1,1,2)$)

•
$$RSS = \sum_{i=1}^{n} (y_i - \hat{\beta}x_i)^2 = \sum_{i=1}^{n} y_i^2 - 2\hat{\beta} \sum_{i=1}^{n} y_i x_i + \hat{\beta}^2 \sum_{i=1}^{n} x_i^2 \to min$$

•
$$RSS' = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 = 0$$

•
$$\hat{\beta_{OLS}} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2} = \frac{10 + 20 + 60}{1^2 + 1^2 + 2^2} = \frac{90}{6} = 15$$

•
$$RSS_{ridge} = RSS + \lambda \hat{eta}^2
ightarrow min$$

- $RSS_{ridge} = RSS + \lambda \hat{eta}^2
 ightarrow min$
- $RSS'_{ridge} = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 + 2\lambda \hat{\beta} = 0$

- $RSS_{ridge} = RSS + \lambda \hat{\beta}^2 \rightarrow min$
- $RSS'_{ridge} = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 + 2\lambda \hat{\beta} = 0$

•
$$\beta_{ridge}$$
 = $\frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2 + \lambda} = \frac{90}{6+\lambda}$

- $RSS_{ridge} = RSS + \lambda \hat{eta}^2 o min$
- $RSS'_{ridge} = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 + 2\lambda \hat{\beta} = 0$
- $\beta_{ridge} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2 + \lambda} = \frac{90}{6+\lambda}$
- Suppose $\lambda = 240$

Decrease in the slope: example

•
$$RSS_{ridge} = RSS + \lambda \hat{eta}^2
ightarrow min$$

•
$$RSS'_{ridge} = -2\sum_{i=1}^{n} y_i x_i + 2\hat{\beta} \sum_{i=1}^{n} x_i^2 + 2\lambda \hat{\beta} = 0$$

•
$$\beta_{ridge}^{\hat{}} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2 + \lambda} = \frac{90}{6+\lambda}$$

- Suppose $\lambda = 240$
- $\beta_{\text{ridge}} \frac{90}{6+240} = \frac{90}{6+246} = 0.37 < 15$

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

```
data.frame(y = c(10,20,30), x = c(0,0,0))
```

```
## y x
## 1 10 0
## 2 20 0
## 3 30 0
```

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(0,0,0)$)

•
$$\hat{\beta_{OLS}} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2} = \frac{10 + 20 + 60}{0^2 + 0^2 + 0^2} = \frac{90}{0}$$

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(0,0,0)$)

•
$$\beta \hat{OLS} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2} = \frac{10 + 20 + 60}{0^2 + 0^2 + 0^2} = \frac{90}{0}$$

•
$$\beta_{ridge}^{\hat{}} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2 + \lambda} = \frac{90}{0+\lambda}$$

• Suppose we have $y_i = \beta x_i + \varepsilon_i$ and we have the following data:

data.frame(y =
$$c(10,20,30)$$
, x = $c(0,0,0)$)

•
$$\hat{\beta_{OLS}} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2} = \frac{10 + 20 + 60}{0^2 + 0^2 + 0^2} = \frac{90}{0}$$

•
$$\beta_{ridge} = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2 + \lambda} = \frac{90}{0+\lambda}$$

• $rank(X) < m \Rightarrow (X^T X)^{-1}$ does **NOT** exist, but $(X^T X + \lambda I)^{-1}$ does exist.

Coefficient as a function of lambda

 \bullet Ridge regression will produce a different set of coefficients for each value of λ

Coefficient as a function of lambda

 \bullet Ridge regression will produce a different set of coefficients for each value of λ

• As λ increases, the ridge coefficient estimates shrink towards zero. When λ is extremely large, then all of the ridge coefficient estimates are basically zero; this corresponds to the null model that contains no predictors.

19/36

Coefficient as a function of lambda

 \bullet Ridge regression will produce a different set of coefficients for each value of λ

• As λ increases, the ridge coefficient estimates shrink towards zero. When λ is extremely large, then all of the ridge coefficient estimates are basically zero; this corresponds to the null model that contains no predictors.

19/36

• l_2 - norms:

- l_2 norms:
- $||\hat{\beta}||_2 = \sqrt{\sum_{j=1}^p \hat{\beta_j}^2}$

- l_2 norms:
- $||\hat{\beta}||_2 = \sqrt{\sum_{j=1}^p \hat{\beta_j}^2}$
- $||\hat{\beta}_{ridge}(\lambda)||_2 = \sqrt{\sum_{j=1}^p \hat{\beta}_{j\,ridge}^2}$

- l_2 norms:
- $||\hat{\beta}||_2 = \sqrt{\sum_{j=1}^p \hat{\beta}_j^2}$
- $||\hat{\beta}_{ridge}(\lambda)||_2 = \sqrt{\sum_{j=1}^p \hat{\beta}_{j\,ridge}^2}$
- $\bullet \ 0 < ||\hat{\beta}_{\textit{ridge}}(\lambda)||_2/||\hat{\beta}||_2 \leq 1$

- l_2 norms:
- $||\hat{\beta}||_2 = \sqrt{\sum_{j=1}^p \hat{\beta}_j^2}$
- $||\hat{\beta}_{ridge}(\lambda)||_2 = \sqrt{\sum_{j=1}^p \hat{\beta}_{j \, ridge}^2}$
- $0 < ||\hat{\beta}_{ridge}(\lambda)||_2/||\hat{\beta}||_2 \le 1$
- The amount that the ridge regression coefficient estimates have been shrunken towards zero is the 2 norm of the ridge regression coefficient estimates divided by the 2 norm of the least squares estimates.

• $\lambda \uparrow ||\hat{\beta}_{ridge}(\lambda)||_2 \downarrow \Rightarrow ||\hat{\beta}_{ridge}(\lambda)||_2/||\hat{\beta}||_2 \downarrow$

• $\hat{\beta}_{OLS}$ is scale invariant

- $\hat{\beta}_{OLS}$ is scale invariant
- $\hat{\beta}_{ridge}$ is **NOT** scale invariant

- $\hat{\beta}_{OLS}$ is scale invariant
- $\hat{\beta}_{ridge}$ is **NOT** scale invariant
- The solution is applying standardized predictors

- $\hat{\beta}_{OLS}$ is scale invariant
- $\hat{\beta}_{ridge}$ is **NOT** scale invariant
- The solution is applying standardized predictors

$$ullet$$
 $ilde{x}_{ij}=rac{x_{ij}}{\sqrt{rac{1}{n}\sum(x_{ij}-ar{x_{ij}})^2}}$

Bias-variance trade-off as a function of lambda

• $\lambda \uparrow \Rightarrow Bias \uparrow and Var \downarrow$

Bias-variance trade-off as a function of lambda

- $\lambda \uparrow \Rightarrow Bias \uparrow and Var \downarrow$
- Up to about $\lambda=10$, the variance, plotted in green, decreases rapidly, with very little increase in bias, plotted in black.

Bias-variance trade-off as a function of lambda

- $\lambda \uparrow \Rightarrow Bias \uparrow and Var \downarrow$
- Up to about $\lambda = 10$, the variance, plotted in green, decreases rapidly, with very little increase in bias, plotted in black.
- The **MSE** drops considerably as λ increases from 0 to 10.

Lesson 08 Regularization

23 / 36

The disadvantage of Ridge

• Ridge regression will include all *p* predictors in the final model.

The disadvantage of Ridge

- Ridge regression will include all p predictors in the final model.
- The penalty $\lambda \sum_{j=1}^{p} \hat{\beta_j}^2$ will shrink all of the coefficients towards zero (reduce the magnitudes of the coefficients), but it will not set any of them exactly to zero for any real number of λ .

The disadvantage of Ridge

- Ridge regression will include all p predictors in the final model.
- The penalty $\lambda \sum_{j=1}^{p} \hat{\beta_j}^2$ will shrink all of the coefficients towards zero (reduce the magnitudes of the coefficients), but it will not set any of them exactly to zero for any real number of λ .
- The Lasso is an alternative to ridge regression overcoming this disadvantage.

The disadvantage of Ridge

- Ridge regression will include all p predictors in the final model.
- The penalty $\lambda \sum_{j=1}^{p} \hat{\beta_j}^2$ will shrink all of the coefficients towards zero (reduce the magnitudes of the coefficients), but it will not set any of them exactly to zero for any real number of λ .
- The Lasso is an alternative to ridge regression overcoming this disadvantage.
- Lasso Regression is similar to Ridge Regression with the difference in Penalty term.

• Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \to min$

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO} = \sum_{i=1}^{n} (y_i \hat{eta}_0 \sum_{j=1}^{p} \hat{eta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| o min$

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO}=\sum_{i=1}^n(y_i-\hat{eta}_0-\sum_{j=1}^p\hat{eta}_jx_{ij})^2+\lambda\sum_{j=1}^p|\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| o min$
- $\lambda \sum_{j=1}^{p} |\hat{\beta}_{j}|$ is a shrinkage penalty

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO}=\sum_{i=1}^n(y_i-\hat{eta}_0-\sum_{j=1}^p\hat{eta}_jx_{ij})^2+\lambda\sum_{j=1}^p|\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \rightarrow min$
- $\lambda \sum_{j=1}^{p} |\hat{\beta}_{j}|$ is a shrinkage penalty
- $\lambda \geq 0$ is the **tuning** parameter

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO}=\sum_{i=1}^n(y_i-\hat{eta}_0-\sum_{j=1}^p\hat{eta}_jx_{ij})^2+\lambda\sum_{j=1}^p|\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \rightarrow min$
- $\lambda \sum_{j=1}^{p} |\hat{\beta}_{j}|$ is a shrinkage penalty
- $\lambda \geq 0$ is the **tuning** parameter
- Like Ridge Regression:

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO} = \sum_{i=1}^{n} (y_i \hat{eta}_0 \sum_{j=1}^{p} \hat{eta}_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \rightarrow min$
- $\lambda \sum_{j=1}^{p} |\hat{\beta}_{j}|$ is a shrinkage penalty
- $\lambda \ge 0$ is the **tuning** parameter
- Like Ridge Regression:
- $\lambda \to 0, \hat{\beta}_{LASSO} \to \hat{\beta}_{OLS};$

- Lasso regression coefficients β_{LASSO} are the values that minimize the following RSS:
- $RSS_{LASSO}=\sum_{i=1}^n(y_i-\hat{eta}_0-\sum_{j=1}^p\hat{eta}_jx_{ij})^2+\lambda\sum_{j=1}^p|\hat{eta}_j| o min$
- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \rightarrow min$
- $\lambda \sum_{j=1}^{p} |\hat{\beta}_{j}|$ is a shrinkage penalty
- $\lambda \ge 0$ is the **tuning** parameter
- Like Ridge Regression:
- $\lambda \to 0, \hat{\beta}_{LASSO} \to \hat{\beta}_{OLS};$
- $\lambda \to \infty, \hat{\beta}_{LASSO} \to 0$

Norms

• I_1 - norms:

Norms

- I_1 norms:
- $||\hat{\beta}||_1 = \sum_{j=1}^p |\hat{\beta}_j|$

Norms

- I_1 norms:
- $||\hat{\beta}||_1 = \sum_{j=1}^p |\hat{\beta}_j|$
- $||\hat{\beta}_{LASSO}(\lambda)||_1 = \sum_{j=1}^p |\hat{\beta}_{jLASSO}|$

Norms

- I_1 norms:
- $||\hat{\beta}||_1 = \sum_{j=1}^p |\hat{\beta}_j|$
- $||\hat{\beta}_{LASSO}(\lambda)||_1 = \sum_{j=1}^p |\hat{\beta}_{jLASSO}|$
- $0 < ||\hat{\beta}_{LASSO}(\lambda)||_1/||\hat{\beta}||_1 \le 1$

Norms

- l_1 norms:
- $||\hat{\beta}||_1 = \sum_{j=1}^p |\hat{\beta}_j|$
- $||\hat{\beta}_{LASSO}(\lambda)||_1 = \sum_{j=1}^p |\hat{\beta}_{jLASSO}|$
- $0 < ||\hat{\beta}_{LASSO}(\lambda)||_1/||\hat{\beta}||_1 \le 1$
- The amount that the ridge regression coefficient estimates have been shrunken towards zero is the 1 norm of the lasso regression coefficient estimates divided by the 1 norm of the least squares estimates.

Lesson 08 Regularization

•
$$RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j|
ightarrow min$$

- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| o min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.

- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_{j}| \rightarrow min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.
- $\sum_{i=1}^n (y_i \hat{eta}_0 \sum_{j=1}^p \hat{eta}_j x_{ij})^2 o min$

- $RSS_{LASSO} = RSS + \lambda \sum_{j=1}^{p} |\hat{\beta}_j| \rightarrow min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.
- $\sum_{i=1}^n (y_i \hat{eta_0} \sum_{j=1}^p \hat{eta_j} x_{ij})^2 o min$
- $\sum_{j=1}^{p} |\hat{\beta}_j| \leq s$

•
$$RSS_{Ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{eta_j}^2
ightarrow min$$

- $RSS_{Ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{eta_j}^2
 ightarrow min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.

- $RSS_{Ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{eta_j}^2
 ightarrow min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.
- $\sum_{i=1}^{n} (y_i \hat{eta}_0 \sum_{j=1}^{p} \hat{eta}_j x_{ij})^2 o min$

- $RSS_{Ridge} = RSS + \lambda \sum_{j=1}^{p} \hat{eta_j}^2
 ightarrow min$
- For every value of λ , there is some s such that the equation above and below will give the same lasso coefficient estimates.
- $\sum_{i=1}^n (y_i \hat{eta}_0 \sum_{j=1}^p \hat{eta}_j x_{ij})^2 o min$
- $\bullet \ \sum_{j=1}^{p} \hat{\beta_j}^2 \le s$

• Suppose p = 2

- Suppose p = 2
- LASSO

- Suppose p = 2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta_0} \hat{\beta_1} x_{i1} \hat{\beta_2} x_{i2})^2 \to min$

- Suppose p = 2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta_0} \hat{\beta_1} x_{i1} \hat{\beta_2} x_{i2})^2 \rightarrow min$
- $\bullet |\hat{\beta}_1| + |\hat{\beta}_2| \le s$

- Suppose p = 2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \rightarrow min$
- $\bullet |\hat{\beta_1}| + |\hat{\beta_2}| \le s$
- Ridge

- Suppose p = 2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \rightarrow min$
- $\bullet |\hat{\beta_1}| + |\hat{\beta_2}| \le s$
- Ridge
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \to min$

- Suppose p=2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \rightarrow min$
- $\bullet |\hat{\beta_1}| + |\hat{\beta_2}| \le s$
- Ridge
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \to min$
- $\hat{\beta_1}^2 + \hat{\beta_2}^2 \le s$

- Suppose p = 2
- LASSO
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \rightarrow min$
- $\bullet |\hat{\beta_1}| + |\hat{\beta_2}| \le s$
- Ridge
- $\sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2})^2 \rightarrow min$
- $\hat{\beta_1}^2 + \hat{\beta_2}^2 \leq s$
- If s is sufficiently large, then the constraint regions will contain $\hat{\beta}$, and so the ridge regression and lasso estimates will be the same as the least squares estimates.

• Since ridge regression has a circular constraint with no sharp points, this intersection will not generally occur on an axis, and so the ridge regression coefficient estimates will be exclusively non-zero.

Selecting the Tuning Parameter

 We then select the tuning parameter value for which the cross-validation error is smallest.

Selecting the Tuning Parameter

 We then select the tuning parameter value for which the cross-validation error is smallest.

• Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

• We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for *p* in 1 : *m*:

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for *p* in 1 : *m*:
- for *k* in 1 : *k*:

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for *p* in 1 : *m*:
- for *k* in 1 : *k*:
- keep fold k as hold-out data

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- use the remaining folds and $\lambda = \lambda_m$ to estimate $\hat{\beta}_{ridge}(\hat{\beta}_{LASSO})$

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- use the remaining folds and $\lambda = \lambda_m$ to estimate $\hat{\beta}_{\textit{ridge}}(\hat{\beta}_{\textit{LASSO}})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- ullet use the remaining folds and $\lambda=\lambda_{\it m}$ to estimate $\hat{eta}_{\it ridge}(\hat{eta}_{\it LASSO})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$
- compute a sum of squared residuals: $RSS_k = \sum (y y_{test,k})^2$

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- ullet use the remaining folds and $\lambda=\lambda_{\it m}$ to estimate $\hat{eta}_{\it ridge}(\hat{eta}_{\it LASSO})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$
- compute a sum of squared residuals: $RSS_k = \sum (y y_{test,k})^2$
- end for k

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- ullet use the remaining folds and $\lambda=\lambda_{\it m}$ to estimate $\hat{eta}_{\it ridge}(\hat{eta}_{\it LASSO})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$
- compute a sum of squared residuals: $RSS_k = \sum (y y_{test,k})^2$
- end for k
- average RSS over the folds: $RSS_m = \frac{1}{k} \sum RSS_k$

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- ullet use the remaining folds and $\lambda=\lambda_{\it m}$ to estimate $\hat{eta}_{\it ridge}(\hat{eta}_{\it LASSO})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$
- compute a sum of squared residuals: $RSS_k = \sum (y y_{test,k})^2$
- end for k
- average RSS over the folds: $RSS_m = \frac{1}{k} \sum RSS_k$
- end for p

- We should choose a set of m values of λ to test, split the dataset into k folds, and follow this algorithm:
- for p in 1 : m:
- for k in 1 : k:
- keep fold k as hold-out data
- ullet use the remaining folds and $\lambda=\lambda_{\it m}$ to estimate $\hat{eta}_{\it ridge}(\hat{eta}_{\it LASSO})$
- predict hold-out data $y_{test,k} = x_{test,k} \hat{\beta}_{ridge}$
- compute a sum of squared residuals: $RSS_k = \sum (y y_{test,k})^2$
- end for k
- average RSS over the folds: $RSS_m = \frac{1}{k} \sum RSS_k$
- end for p
- Oprimal value: λ_m which correspond to min RSS_m

•
$$||\hat{\beta}||_p = \{\sum_{j=1}^p |\hat{\beta}_j|^q\}^{\frac{1}{q}}$$

- $||\hat{\beta}||_p = \{\sum_{j=1}^p |\hat{\beta}_j|^q\}^{\frac{1}{q}}$
- Or combination of different norms.

- $||\hat{\beta}||_p = \{\sum_{j=1}^p |\hat{\beta}_j|^q\}^{\frac{1}{q}}$
- Or combination of different norms.
- The most popular combination is **Elastic Net Regression**.

• Elastic Net – combines both methods

• Elastic Net – combines both methods

• Lasso equates coefficients for non important variables to zero

• Elastic Net – combines both methods

- Lasso equates coefficients for non important variables to zero
- Ridge regression shrinks the coefficients close to zero, but nor exactly to zero.

• Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1-\alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^p |\hat{\beta}_j|$ is the penalty for **Lasso**

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^p |\hat{\beta}_j|$ is the penalty for **Lasso**
- $\alpha \sum_{j=1}^{p} \hat{\beta}_{j}^{2}$ is the penalty for **Ridge**

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^{p}|\hat{\beta}_{j}|$ is the penalty for **Lasso**
- $\alpha \sum_{j=1}^{p} \hat{\beta_{j}}^{2}$ is the penalty for **Ridge**
- $\lambda = 0 \Rightarrow OLS$

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^p |\hat{\beta}_j|$ is the penalty for **Lasso**
- $\alpha \sum_{j=1}^{p} \hat{\beta_{j}}^{2}$ is the penalty for **Ridge**
- $\lambda = 0 \Rightarrow OLS$
- $\alpha = 1 \Rightarrow Ridge$

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^p |\hat{\beta}_j|$ is the penalty for **Lasso**
- $\alpha \sum_{j=1}^{p} \hat{\beta_{j}}^{2}$ is the penalty for **Ridge**
- $\lambda = 0 \Rightarrow OLS$
- $\alpha = 1 \Rightarrow Ridge$
- $\alpha = 0 \Rightarrow LASSO$

- Elastic Net Regression coefficients β_{en} are the values that minimize the following RSS:
- $RSS_{en} = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \sum_{j=1}^{p} \hat{\beta}_j x_{ij})^2 + \lambda (\alpha \sum_{j=1}^{p} \hat{\beta}_j^2 + (1 \alpha) \sum_{j=1}^{p} |\hat{\beta}_j|) \rightarrow min$
- $(1-\alpha)\sum_{j=1}^p |\hat{\beta}_j|$ is the penalty for **Lasso**
- $\alpha \sum_{j=1}^{p} \hat{\beta}_{j}^{2}$ is the penalty for **Ridge**
- $\lambda = 0 \Rightarrow OLS$
- $\alpha = 1 \Rightarrow Ridge$
- $\alpha = 0 \Rightarrow LASSO$
- $\{\alpha, \lambda\} \neq 0 \Rightarrow$ *Elastic Net*

Regularization: Summary

 Ridge regression is useful when all variables need to be incorporated in the model according to domain knowledge.

Regularization: Summary

- Ridge regression is useful when all variables need to be incorporated in the model according to domain knowledge.
- Lasso regression is useful for subset selection, because only the most significant variables are kept in the final model.

Regularization: Summary

- **Ridge regression** is useful when all variables need to be incorporated in the model according to domain knowledge.
- Lasso regression is useful for subset selection, because only the most significant variables are kept in the final model.
- Elastic Net regression is useful if the knowledge about data is not available.