

Fast code with just enough effort

Pashmina Cameron

Low hanging fruit

Understanding data layout

Data layout

```
struct Point {
     float x;
     float y;
     float feature[M];
};
std::vector<Point> pts;
```

```
struct Point {
        float x;
        float y;
};
struct Feature {
        float feat[M];
};
// parallel vectors
std::vector<Point> pts;
std::vector<Feature> ptFeatures;
```

Data layout

```
struct Point {
     float x;
     float y;
     float metadata[N];
     float feature[M];
};
```

```
struct Point {
     float x;
     float y;
     float metadata[N];
};
struct Feature {
     float feature[M];
};
// parallel vectors
std::vector<Point> pts;
std::vector<Feature> ptFeatures;
```

Data layout

```
struct Point {
     float x;
     float y;
     float metadata[N];
     float feature[M];
};
```

```
Data not contiguous in memory
Memory jumps in accessing data
leads to slow distance calculations
```

```
struct Point {
       float x;
       float y;
       float metadata[N];
};
struct Feature {
       float feature[M];
};
// parallel vectors
std::vector<Point> pts;
std::vector<Feature> ptFeatures;
               Data is contiguous
```

Data layout matters

Understanding language and compiler

Language choice

Python

C + +

Purpose

prototyping

shipping

Constraints

readability
time
existing software

memory speed security hardware

A simple benchmark

An algorithm that is

- well-understood
- not domain-specific
- suited to multiple programming languages
- is computationally intensive

Kalman filters

Linear least squares

Monte Carlo simulations

Bundle adjustment

Expectation propagation

Computing Cholesky decomposition of A

$$A = L L^T$$

simplifies the process of solving Ax = b

Python

Python Cholesky implementations

$$(++$$

Speed

C++ Cholesky implementations ($M=LL^T$)

C++ Cholesky implementations ($M=LL^T$)

Using CUDA from Python vs C++

Harnessing domain knowledge

Using domain knowledge

Image courtesy of scikit-cuda docs

Algorithm

- Compute gradients
- Bin gradients into orientation bins
- PopCount on spatial distribution
- Form a feature vector
- L2 norm to match features

Tricks

- Use uint8_t or fixed point to store features instead of floats
- Approximate magnitude (53*min(dx,dy))>>7 + max(dx,dy)
- Use 8 bins and use bit comparison instructions for binning instead of nested branching
- Store distances with 2x precision

4x less storage 8-12x faster feature computation 64x faster feature matching

C++ optimization cycle

When everything else fails....

End of general purpose H/W

Co-designing software and hardware is the future

Domain specific hardware aims to do just that.

Intel Xeon FPGA

Intel Movidius NCS

Google TPU

Microsoft Catapult

ARM ML Processor

Images from company web pages/press releases

Thank you for listening

Blog:

https://pashminacameron.github.io/

Code:

github.com/pashminacameron/optimization_examples

Contact:

pashmina.cameron@microsoft.com