Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ФизМех

Направление подготовки «01.03.02 Прикладная математика и информатика» Специальность «Системное программирование»

Лабораторная работа №3 тема "Решение задач одномерной минимизации" дисциплина "Методы оптимизации"

Выполнили студенты гр. 5030102/00201 Гвоздев С.Ю.,

Золин И.М. Хламкин Е.В.

Преподаватель: Родионова Е.А.

Санкт-Петербург

2023

Содержание

1	Постановка задачи	3
2	Исследование применимости методов	3
3	Алгоритмы методов решения задач одномерной минимизации 3.1 Метод равномерного поиска 3.2 Метод пробных точек 3.3 Метод золотого сечения	3 4 4 5
4	Результаты	5
5	Обоснование достоверности полученного решения 5.1 Теоретическая оценка алгоритмов 5.1.1 Метод равномерного поиска 5.1.2 Метод пробных точек 5.1.3 Метод золотого сечения 5.2 Сравнительный анализ	6 6 6 6 7
6	Выводы	9
7	Приложения	9
8	Библиографический список	10

1 Постановка задачи

Даны функция и отрезок:

$$f(x) = \frac{10\sqrt[3]{(x-1)^2}}{x^2+9}$$
$$x \in [a, b] = [0.1, 1.5]$$

Задачи:

- 1. Найти minf(x) на заданном отрезке с точностью 0.1, 0.01, 0.001 с помощью трех методов: метода равномерного поиска (us), метода пробных точек (tpm) и метода золотого сечения (gold)
- 2. Сравнить методы. В качестве критерия использовать число обращений к вычислению функции
- 3. Сравнить методы с теоретическими оценками

2 Исследование применимости методов

Все три метода применимы только при условии унимодальности целевой функции. Данное условие действительно выполняется. Продемонстрируем этот факт с помощью графика:

Рис. 1: график целевой функции на заданном отрезке

3 Алгоритмы методов решения задач одномерной минимизации

В первую очередь авторы хотели бы обратить внимание на следующий немаловажный факт: решение задачи одномерной минимизации ищется с наперед заданной точностью. Как только длина интервала на конкретной итерации меньше заданной точности, алгоритмы прекращают свое действие и выдают в качестве ответа середину этого

интервала. Однако и любая другая точка последнего интервала по праву может считаться решением. Середина здесь берется исключительно из соображений конкретики (какую-то точку все равно надо брать).

3.1 Метод равномерного поиска

1. Input:

n - число разбиений, [a,b] - отрезок, на котором определена функция, ε - требуемая точность

- 2. Построение точек: $x_i=a+ih,$ где $h=\frac{b-a}{n}, i=\overline{1,n}$
- 3. Вычисляем значение функции в этих точках и находим минимальное их них. Пусть индекс соотвествующий этому элементу: j.
- 4. f(x) унимодальная функция, следовательно $x^* \in [x_{j-1}, b]$ и $x^* \in [a, x_{j+1}] \Rightarrow x^* \in [x_{j-1}, x_{j+1}]$
 - (a) Если ${\bf j}=0,$ то новый интервал последовательности $\left[a,x_{j+1}\right]$
 - (b) Если j=n-2, то новый интервал последовательности $\left[x_{j-1},b\right]$
 - (c) Иначе новый интервал последовательности $\left[x_{j-1},x_{j+1}\right]$

Будем повторять шаги 2-4 до тех пор, пока $\left|x_{j+1}-x_{j-1}\right| \geq \varepsilon$

5. Output:

 x^* - точка из последнего интервала $\left(x^* = \frac{x_{j-1} + x_{j+1}}{2}\right)$

3.2 Метод пробных точек

1. Input:

[a,b] - отрезок, на котором определена функция, ε - требуемая точность

- 2. Если длина отрезка [a,b] меньше ε , то решение найдено. Иначе:
- 3. Добавляем на отрезок [a, b] три точки:

$$x_i = \frac{b-a}{4}i + a, i = 1..3$$

- 4. Вычисляем $f(x_1)$. Если $f(x_2)$ еще не вычислено, то вычисляем (только на первой итерации такое возможно) и сравниваем с $f(x_1)$
 - (а) Если $f(x_1) \le f(x_2)$, переходим к п.1 для нового отрезка $[a,b] := [a,x_2]$ и для уже известного нового значения $f(x_2) := f(x_1)$ (значение серидины нового отрезка)
 - (b) Если $f(x_1) > f(x_2)$, то вычисляем $f(x_3)$ и сравниваем $f(x_2)$ и $f(x_3)$
 - і. Если $f(x_2) \leq f(x_3)$, переходим к п.1 для нового отрезка $[a,b] := [x_1,x_3]$ и для нового известного значения серединного значения $f(x_2) := f(x_2)$
 - іі. Если $f(x_2)>f(x_3)$, переходим к п.1 для нового отрезка $[a,b]:=[x_2,b]$ и для нового известного значения серединного значения $f(x_2):=f(x_3)$

3.3 Метод золотого сечения

- 1. Вводятся значения: a левая граница отрезка, ε требуемая точность.
- 2. Вычисляются $f(x_1)$, $f(x_2)$, где $x_1 = a + 0.382 * (b-a)$, $x_2 = b 0.382 * (b-a)$
- 3. Определяется новый интервал (a, x_2) если $f(x_1) \le f(x_2)$ или (x_1, b) если $f(x_1) > f(x_2)$, в котором локализован минимум.
- 4. Внутри полученного интервала находится новая точка $(x_1$ в случае 1) или $(x_2$ в случае 2), отстоящая от его конца на расстоянии, составляющем 0,382 от его длины. В этой точке рассчитывается значение f(x)
- 5. Вычисления повторяются, начиная с пункта (3), до тех пор, пока величина интервала неопределенности не станет меньше или равна ε .

4 Результаты

Решение поставленной задачи (число обращений к функции и координата минимума):

Точность: 0.1 Метод равномерного поиска: 15 1.00 +- 0.05 Метод пробных точек: 8 1.00 +- 0.05 Метод золотого сечения: 8 1.00 +- 0.05

Точность: 0.01 Метод равномерного поиска: 25 0.999 +- 0.005 Метод пробных точек: 14 0.999 +- 0.005 Метод золотого сечения: 13 0.999 +- 0.005

Точность: 0.001 Метод равномерного поиска: 35 1.0000 +- 0.0005 Метод пробных точек: 19 0.9999 +- 0.0005 Метод золотого сечения: 18 1.0000 +- 0.0005

5 Обоснование достоверности полученного решения

5.1 Теоретическая оценка алгоритмов

5.1.1Метод равномерного поиска

На 1-ом шаге делим отрезок на n частей.

Длинна интервала: $|x_{j+1}^{(1)} - x_{j-1}^{(1)}| = \frac{2}{n}(b-a)$ На 2-ом шаге: $|x_{j+1}^{(2)} - x_{j-1}^{(2)}| = \frac{2^2}{n^2}(b-a)$ На k-ом шаге: $|x_{j+1}^{(k)} - x_{j-1}^{(k)}| = \frac{2^k}{n^k}(b-a)$

Предположим шаг был последним(выполнено условие остановки):

$$k < \frac{\ln \frac{\varepsilon}{b-a}}{\ln \frac{2}{n}} = \frac{\ln(b-a) - \ln \varepsilon}{\ln n - \ln 2}$$

T.e. число итераций, необходимых для достижения заданной точности ε ограниченным числом, стоящим в правой части выражения.

На каждом шаге алгоритма функция цели вычисляется n раз.

Число обращений к целевой функции необходимых для достижения заданной точ-

$$f(n) = \frac{n}{\left[\ln \frac{n}{2}\right]} \left(\left[\ln \frac{(b-a)}{\varepsilon}\right] \right)$$

(Все округления производятся в большую сторону)

Что выгоднее разбивать отрезок на 5 или на 25 частей?

Функция имеет единственный глобальный минимум. Найдём нуль производной:

$$f'(n) = \frac{\ln \frac{n}{2} - 1}{\ln^2 \frac{n}{2}} (\ln(b - a) - \ln \varepsilon) = 0 \Rightarrow n = 2\varepsilon \approx 5.44$$

т.е. оптимальным числом разбиений является 5 или 6.

5.1.2 Метод пробных точек

На первом шаге алгоритма значение функции всегда вычисляется два раза $(f(x_1),$ $f(x_2)$) или три раза $(f(x_1), f(x_2), f(x_3))$ в зависимости от того, в какой части отрезка находится минимум. На каждом из следующих шагов мы уже знаем значение $f(x_2)$, переданное алгоритмом с предыдущего шага. Поэтому теперь необходимое количество вычислений функции - 1 или 2.

Итого:

$$n_{min}=2+1*[\log_2 rac{b-a}{arepsilon}] \ n_{max}=3+2*[\log_2 rac{b-a}{arepsilon}]$$
 (округления всегда производятся в большую сторону)

Заметим, что если минимум находится на левой границе интервала, вычислений бедет меньше. Если же минимум - в середине или справа, то вычислений будет больше

5.1.3 Метод золотого сечения

После каждой итерации метода, интервал неопределенности уменьшается ровно в $(1 - \alpha)$ раз, где $\alpha \approx 0.382$. Мы хотим, что бы интервал неопределенности стал $\leq \varepsilon$. Получаем уравнение:

 $\varepsilon = (1-\alpha)^n*(b-a),$ где n - необходимое число итераций алгоритма, для достижения требуемой точности.

 $n = [log_{(1-\alpha)} \frac{\varepsilon}{(b-a)}] = 20$. (для $\varepsilon = 0.0001$). (Все округления производятся в большую сторону). Число итераций совподает с числом обращений к функции. Так же, необходимо к полученной оценке прибавить еще две итерации вычисления функции, которые происходят в начале алгоритма.

5.2 Сравнительный анализ

Численный эксперимент поставлен следующим образом: На отрезке [a,b]=[-2,2] строится парабола $f(x)=(x-\delta)^2$, где δ - параметр, $\delta\in[-2,2]$. В цикле 1000 раз генерируется рпоизвольное δ . Для таким образом определенной функции строятся решения тремя методами (us,tpm,gold) с точностями $10^{-15}...10^{-1}$. Строятся графики зависимости чила обращений к вычислению функции от точности для каждого метода. Параллельно вычисляются теоретические оценки и также выводятся на графиках

Рис. 2: Метод равномерного поиска (практические + теоретические результаты)

Рис. 3: Метод пробных точек (практические + теоретические результаты)

Рис. 4: Метод золотого сечения (практические + теоретические результаты)

Рис. 5: Сравнение трех методов

Хочется сказать несколько слов о полученных графиках. Во-первых, теоретическая оценка полностью совпала с практическими результатами для методоа равномерного поиска и метода золотого сечения. Этого можно было ожидать, так как на каждом из шагов обращение к функции происходит фиксированное число раз. Того же нельзя сказать о методе пробных точек. Как было выяснено из теоретических оценок, существуют верхняя и нижняя границы, в которые как раз и укладываются практические результаты.

В сравнении друг с другом метод золотого сечения справляется с задачей лучше всего. Немного хуже работает метод пробных точек. Хуже всего удается быстро решить задачу методу равномерного поиска.

6 Выводы

Авторам кажется очевидным вывод о предпочтении метода золотого сечения двум другим рассмотренным методам. Однако можно вспомнить, что в методе равномерного поиска есть параметрическая зависимость от числа разбиений отрезка. Может существовать надеждана то, что вдумчивый подбор этого параметра сможет заставить конкурировать данный метод с меодами золотого сечения и пробных точек. Однако авторы склоняются к тому, что эта надежда скорее обратится химерой, и рекомендуют надежно использовать золотое сечение.

7 Приложения

Peaлизация программы находится в репозиьтории GitHub по ссылке: https://github.com/IMZolin/one-dimension-minimization

8 Библиографический список

1. Кормен, Томас X., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн, Клиффорд. "Алгоритмы. Построение и анализ, 2-е издание"Издательский дом "Вильямс", 2011. — 892—918 с.

URL: https://vk.com/doc191450968_561608466?hash=HUwStWS0yzrW9SaXn8POZtaz3gTyMTmdl=U9ivclLJBeeYQbs3MMhGtwYZ7Mx4nGJelTv0Hv56E4z / [Электронный ресурс]. Режим доступа: (Дата обращения: 04.03.2023)

2. Родионова Е.А., Петухов Л.В., Серёгин Г.А. "Методы оптимизации. Задачи выпуклого программирования "Издательство Политехнического университета, Санкт-Петербург, 2014

URL: https://elib.spbstu.ru/dl/2/i17-98.pdf/info / [Электронный ресурс]. Режим доступа: (Дата обращения: 10.03.2023)

3. Моисеев Н.Н. "Методы оптимизации"

URL: https://avidreaders.ru/book/metody-optimizacii-1.html/ [Электронный ресурс]. Режим доступа: (Дата обращения: 07.03.2023)