

## TP Reinforcement Learning

Ewen LE HAY

16 octobre 2025

11 - Apprentissage pour la robotique

École Nationale Supérieure de Techniques Avancées - ENSTA - Palaiseau

## Table des matières

| 1 | Enumerate all the possible policies                                                                 | 3 |
|---|-----------------------------------------------------------------------------------------------------|---|
| 2 | Write the equation for each optimal value function for each state                                   | 4 |
| 3 | Is there exist a value for x, that for all $\gamma \in [0,1)$ and $y \in [0,1]$ , $\pi^*(S0) = a_2$ | 4 |
| 4 | Is there exist a value for y, that for all $\gamma \in [0,1)$ and $x \in (0,1]$ , $\pi^*(S0) = a_1$ | 4 |

## Introduction

This document present the answers to the Task 1 of the Reinforcement Learning Assignement.



## 1 Enumerate all the possible policies

Here are the only 2 solutions:

$$\pi_1(S0) = a_1$$
  

$$\pi_1(S1) = a_0$$
  

$$\pi_1(S2) = a_0$$

$$\pi_1(S3) = a_0$$

&

$$\pi_2(S0) = a_2$$

$$\pi_2(S1) = a_0$$

$$\pi_2(S2) = a_0$$

$$\pi_2(S3) = a_0$$

2 Write the equation for each optimal value function for each state

$$V^*(S_0) = \gamma \max \left( V^*(S_1), V^*(S_2) \right)$$

$$V^*(S_1) = \gamma \left( (1 - x)V^*(S_1) + xV^*(S_3) \right)$$

$$V^*(S_2) = 1 + \gamma \left( (1 - y)V^*(S_0) + yV^*(S_3) \right)$$

$$V^*(S_3) = 10 + \gamma V^*(S_0)$$

3 Is there exist a value for x, that for all  $\gamma \in [0,1)$  and  $y \in [0,1], \pi^*(S0) = a_2$ 

If we take x=0 then  $V^*(S_1)$  become :

$$V^*(S_1) = \gamma V^*(S_1)$$

Since  $\gamma \neq 1$ , we have  $V^*(S_1) = 0$ So  $V^*(S_1) < V^*(S_2)$  (all starting values are positive and only sums are involved so  $V^*(S_2) \geq 0$ ) and so  $\pi^*(S_1) = a_2$ 

4 Is there exist a value for y, that for all  $\gamma \in [0,1)$  and  $x \in (0,1], \pi^*(S0) = a_1$ 

Experimentally (using the python script), we see that no y exist for gamma = 0.9 & x = 0.01