Ciepło właściwe (Nikiel)

Przemysław Ryś

Grudzień 2022

1 Wykres ciepła właściwego w funkcji temperatury.

Na samym początku, importuję dane do programu Excel i przemnażam drugą kolumnę przez masę molową otrzymanego metalu, którym jest nikiel. W ten sposób przechodzę z ciepła właściwego masowego na ciepło właściwe molowe (tabela 1). Masa molowa niklu wynosi $\mu=58,693[\frac{\rm g}{\rm mol}]$. Następnie importując dane do programu OriginLab wykonuję wykres zależności ciepła właściwego molowego od temperatury co pokazane jest na rysunku 1.

Rys. 1: Wykres ciepła właściwego w funkcji temperatury.

2 Wyznaczanie czynnika Sommerfelda oraz temperatury Debye'a.

Ponieważ zakres temperatur jest rzędu kilki kelwinów, uzasadnione jest więc posługiwanie się modelem dla którego ciepło właściwe molowe zadane jest przybliżoną zależnością.

$$c(T) = \gamma T + 3N_A k_B \frac{4\pi^4}{5} (\frac{T}{T_D})^3 \tag{1}$$

Pierwszy czynnik (liniowy) jest związany z ciepłem właściwym elektronów przewodnictwa, drugi natomiast dotyczy ciepła właściwego fononowego. Jak można łatwo zauważyć, by móc wyznaczyć współczynniki γ oraz T_D dla niklu będę potrzebował dopasować do danych z tabeli 1 wielomian trzeciego stopnia, czyli krzywą zadaną równaniem:

$$c(T) = aT^3 + bT^2 + cT + d, (2)$$

gdzie przy porównaniu tej zależności z równaniem 1 współczynniki b oraz d wynoszą 0. Wprowadzam szukaną przez nas funkcję do programu Origin Lab poprzez: $Tools \rightarrow Fitting\ Function\ Organizer$, a następnie wchodzę w pole oznaczone strzałką na rysunku 2, kompiluję kod i zapisuję funkcję.

Rys. 2: Dodawanie funkcji do programu.

W kolejnym kroku wchodzę w opcję: $Analysis \to Fitting \to Nonlinear\ Curve\ Fit$. Wchodząc w zakładkę parameters uzupełniam kolumnę value dowolnymi wartościami np. 1 i 1. Następnie klikam w ikonę χ^2 , a następnie fit. Program dopasowuje krzywą do zaimportowanych danych i podaje parametry z tym związane. Dopasowana krzywa widoczna jest na rysunku 3.

Rys. 3: Wykres ciepła właściwego w funkcji temperatury z dopasowaną zależnością funkcyjną.

Następnie na podstawie danych zwróconych przez program odczytuje czynnik Sommerfelda, który dla przypadku niklu jest równy:

 $\gamma = c \approx (0,00694 \pm 0,00002) \left[\frac{\text{J}}{\text{mol} \cdot \text{K}^2} \right]$

Temperaturę Debye'a otrzymuję poprzez przekształcenie współczynnika a we wzorze 1. Wynosi więc ona:

$$T_D = \sqrt[3]{3N_A k_B \cdot \frac{4\pi^4}{5a}} = \sqrt[3]{3 \cdot 6,02214076 \cdot 10^{23} \cdot 1,380649 \cdot 10^{-23} \cdot \frac{4\pi^4}{5 \cdot 3,02285 \cdot 10^{-5}}} \approx 400,63 \text{ [K]}.$$

Niepewność wyznaczonej temperatury obliczę metodą przenoszenia niepewności dla współczynnika a, która została podana przez program.

$$u(T_D) = \sqrt{(\frac{\partial T_D}{\partial a} \cdot u(a))^2} = |-\frac{1}{3}\sqrt[3]{3N_A k_B \cdot \frac{4\pi^4}{5}} \cdot a^{-\frac{4}{3}} \cdot u(a)| \approx 1,36 \text{ [K]}$$

3 Porównanie z wartością literaturową.

Wartość czynnika Sommerfelda zawiera sie w zakresie dla typowych metali, to znaczy w zakresie 0,001-0,02 $\left[\frac{J}{\text{mol} \cdot K^2}\right]$ Wartość tablicowa temperatury Debye'a dla dolnej granicy temperaturowej (0 [K]) niklu wynosi 477 [K], gdzie wartość wyznaczona na podstawie krzywej do modelu niskotemperaturowego wynosi zaledwie $T_D = (400, 63 \pm 1, 36)$ [K], Jest to znaczący różnica spowodowana związana z metodyka wyznaczenia tej temperatury.

4 Aneks

Tab. 1: Tabela danych ciepła właściwego dla niklu.

T [K]	$C_w \left[\frac{\mathrm{J}}{\mathrm{g} \cdot \mathrm{K}} \right]$	$c_w \left[\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}} \right]$
1,018638	0,000118722	0,00696815
1,04894	0,000121814	0,007149657
1,109706	0,000128049	0,0075156
1,160485	0,000134909	0,007918219
1,230556	0,000142891	0,00838669
1,297832	0,000150546	0,008835974
1,383648	0,000162005	0,009508569
1,467195	0,00017198	0,010094007
1,597132	0,000186899	0,010969691
1,71725	0,000201736	0,011840471
1,883809	0,000223929	0,013143065
2,068117	0,000246505	0,014468092
2,263463	0,000272384	0,015987044
2,452541	0,000293784	0,017243059
2,72173	0,000328579	0,019285309
3,001881	0,000366663	0,021520557
3,242621	0,000401801	0,023582907
3,570876	0,000440306	0,025842896
3,815813	0,000483598	0,028383791
4,32376	0,000549533	0,032253762
4,634619	0,000599016	0,035158066
4,979338	0,000656421	0,038527321
5,251563	0,000698948	0,041023349
5,611784	0,000755573	0,044346836
5,904903	0,000808794	0,047470539
6,344104	0,000884293	0,051901823
6,800218	0,000961008	0,056404451
7,306012	0,001066731	0,062609617
7,807154	0,001175162	0,068973794
8,297742	0,00128389	0,075355352
8,297742	0,00128389	0,075355352
8,894314	0,001414395	0,083015113
9,409563	0,001537098	0,090216904
9,893416	0,001659114	0,097378375

5 Źródła

- \bullet [1] https://www.originlab.com/index.aspx?go = Products/OriginStudentVersion
- [2] $https: //www.knowledgedoor.com/2/elements_handbook/debye_temperature.html$