CS 105

Introduction to Scientific Computing
Topic #13 – Pseudocode, Algorithms and Problem Solving

Matt Burlick Stevens Institute of Technology

TOPICS

- 1. What are algorithms?
- 2. How can we approach problem solving?

READING

None

MOTIVATION

- Our programs/scripts are getting more complicated ⊗
- Maybe it's clear how to trace existing scripts but how do we take a problem and make a script that may involve multiple
 - Branches
 - Loops
 - Etc..
- One approach is to re-word it to use the language of scientific computing
 - Analogous to solving word problems
- The process may involve
 - Coming up with an algorithm to solve the problem
 - Express this solution in generic pseudocode
 - Translate from pseudocode to the desired programming language
 - In our case, Matlab

WHAT'S AN ALGORITHM?

- An algorithm is a "sequence of unambiguous steps to complete a task in finite time"
- Sequence?
 - One after another
- Unambiguous
 - Clear, can't be confused
 - Should be very simple
- Task
 - The problem we're trying to solve
- Finite
 - The algorithms should eventually finish (even if it takes a reallIllly long time)

EVERY DAY ALGORITHMS

How to go from the Path to Stevens?

COMPUTER ALGORITHMS

- Sorting
- Searching
- Shortest path in a network

CODE VS PSEUDOCODE

- There are so many programming languages out there!
 - C
 - C++
 - Java
 - Python
 - PHP
 - Matlab
 - Etc....
- Often we want to express an algorithm in a generic way so that anyone with programming experience can convert it into the language of their choice.
- We call a generic algorithm pseudocode and a formally structured algorithm for a particular programming language code

PROBLEM SOLVING

- So how can we come up with an algorithm to solve a problem?
- Try re-phrasing it using the language of scientific computing
 - Unambiguous commands include:
 - Assigning a value
 - Doing a basic math operation
 - Branching based on conditions
 - For loops or while loops
 - To re-wording the problem to use things like

• "set x=..."

%assignment/computation

• "If"

%branching

"Foreach"

%for loop

• "While"

%while loop

"Get"

%input

"Display/Output"

%disp

EXAMPLES I

- Sequential Search
 - Find value
- Statistics
 - Sum
 - Mean
 - Standard Deviation
 - Find min/max
- Sorting
 - Selection Sort
- Augmenting Vector/Matrix Data
 - Perform operation on each element

EXAMPLES II

- Keep asking user for input until they type a number
- Keep adding until user types a non-numerical value
- Computed average of numbers typed in by user until they type a non-numerical value