Categorical Variables

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub

Lecture Outline

- Preprocessing
- French Motor Claims Dataset
- Ordinal Variables

Keras model methods

- compile: specify the loss function and optimiser
- fit: learn the parameters of the model
- predict: apply the model
- evaluate: apply the model and calculate a metric

```
1 random.seed(12)
2 model = Sequential()
3 model.add(Dense(1, activation="relu"))
4 model.compile("adam", "poisson")
5 model.fit(X_train, y_train, verbose=0)
6 y_pred = model.predict(X_val, verbose=0)
7 print(model.evaluate(X_val, y_val, verbose=0)
```

4.944334506988525

Scikit-learn model methods

- fit: learn the parameters of the model
- predict: apply the model
- score: apply the model and calculate a metric

```
1 model = LinearRegression()
2 model.fit(X_train, y_train)
3 y_pred = model.predict(X_val)
4 print(model.score(X_val, y_val))
```

-0.666850597951445

Scikit-learn preprocessing methods

- fit: learn the parameters of the transformation
- transform: apply the transformation
- fit_transform: learn the parameters and apply the transformation

```
fit fit_transform
```

```
1 scaler = StandardScaler()
2 scaler.fit(X_train)
3 X_train_sc = scaler.transform(X_train)
4 X_val_sc = scaler.transform(X_val)
5 X_test_sc = scaler.transform(X_test)
6
7 print(X_train_sc.mean(axis=0))
8 print(X_train_sc.std(axis=0))
9 print(X_val_sc.mean(axis=0))
10 print(X_val_sc.std(axis=0))
10 print(X_val_sc.std(axis=0))
[2.97e-17 -2.18e-17 1.98e-17 -5.65e-17]
[1. 1. 1.]
```

```
[ 2.97e-17 -2.18e-17 1.98e-17 -5.65e-17]
[1. 1. 1. 1.]
[-0.34 0.07 -0.27 -0.82]
[1.01 0.66 1.26 0.89]
```


Summary of the splitting

Dataframes & arrays

```
1 X_test.head(3)

X1 X2

83 0.075805 -0.677162 0.97512

53 0.954002 0.651391 -0.3152

70 0.113517 0.662131 1.58601
```

	1 X_test_sc				
	array([[0.13,	-0.64.	0.89.	-0.4 1.	
	_			0.62],	
-		-	-	-1.62],	
2	•	•	•	0.31],	
_				2.83],	
7	<u> </u>	-		0.51],	
2	[-0.57,	0.53,	-0.02,	0.86],	
_	[0.16,	0.61,	-0.96,	2.12],	
]	[0.9 ,	0.2 ,	-0.23,	-0.57],	
	[0.62,	-0.11,	0.55,	1.48],	
	[0. ,	1.57,	-2.81,	0.69],	
	[0.96,	-0.87,	1.33,	-1.81],	
	•	•	•	-1.01],	
				1.51],	
	_	-	-	0.22],	
	·	-	•	-1.82],	
	_			-0.9],	
	l 0.68.	-0.17.	-0.34.	1. .	

By default, when you pass sklearn a DataFrame it returns a numpy array.

Keep as a DataFrame

From scikit-learn 1.2:

```
from sklearn import set_config
set_config(transform_output="pandas")

imp = SimpleImputer()
imp.fit(X_train)
X_train_imp = imp.fit_transform(X_train)
X_val_imp = imp.transform(X_val)
X_test_imp = imp.transform(X_test)
```

1 X_test_imp	

	X1	X2			
83	0.075805	-0.677162	0.		
53	0.954002	0.651391	-(
• • •	•••	•••	•••		
42	-0.245388	-0.753736	-(
69	0.199060	-0.600217	0.		
at more var a alumina					

25 rows × 4 columns

Lecture Outline

- Preprocessing
- French Motor Claims Dataset
- Ordinal Variables

French motor dataset

Download the dataset if we don't have it already.

```
from pathlib import Path
from sklearn.datasets import fetch_openml

if not Path("french-motor.csv").exists():
    freq = fetch_openml(data_id=41214, as_frame=True).frame
    freq.to_csv("french-motor.csv", index=False)

else:
    freq = pd.read_csv("french-motor.csv")

freq
```


French motor dataset

	IDpol	ClaimNb	Exposure	Area	VehPower	VehA
O	1.0	1.0	0.10000	D	5.0	0.0
1	3.0	1.0	0.77000	D	5.0	0.0
2	5.0	1.0	0.75000	В	6.0	2.0
• • •	•••	•••	•••	• • •	•••	•••
678010	6114328.0	0.0	0.00274	D	6.0	2.0
678011	6114329.0	0.0	0.00274	В	4.0	0.0
678012	6114330.0	0.0	0.00274	В	7.0	6.0

678013 rows × 12 columns

Data dictionary

- IDpol: policy number (unique identifier)
- ClaimNb: number of claims on the given policy
- Exposure: total exposure in yearly units
- Area: area code (categorical, ordinal)
- VehPower: power of the car (categorical, ordinal)
- VehAge: age of the car in years
- DrivAge: age of the (most common) driver in years

- BonusMalus: bonus-malus level between 50 and 230 (with reference level 100)
- VehBrand: car brand (categorical, nominal)
- VehGas: diesel or regular fuel car (binary)
- Density: density of inhabitants per km² in the city of the living place of the driver
- Region: regions in France (prior to 2016)

The model

Have $\{(\mathbf{x}_i, y_i)\}_{i=1,...,n}$ for $\mathbf{x}_i \in \mathbb{R}^{47}$ and $y_i \in \mathbb{N}_0$.

Assume the distribution

$$Y_i \sim \mathsf{Poisson}(\lambda(\mathbf{x}_i))$$

We have $\mathbb{E}Y_i = \lambda(\mathbf{x}_i)$. The NN takes \mathbf{x}_i & predicts $\mathbb{E}Y_i$.

Lecture Outline

- Preprocessing
- French Motor Claims Dataset
- Ordinal Variables

Subsample and split

```
freq = freq.drop("IDpol", axis=1).head(25_000)

X_train, X_test, y_train, y_test = train_test_split(
freq.drop("ClaimNb", axis=1), freq["ClaimNb"], random_state=2023)

# Reset each index to start at 0 again.
X_train = X_train.reset_index(drop=True)
X_test = X_test.reset_index(drop=True)
```


What values do we see in the data?

```
1 X_train["Area"].value_counts()
2 X_train["VehBrand"].value_counts()
3 X_train["VehGas"].value_counts()
4 X_train["Region"].value_counts()
```

```
VehBrand
Area
     5507
                                                    В1
                                                            5069
D
     4113
                                                    B2
                                                            4838
     3527
                                                    B12
                                                            3708
     2769
                                                            • • •
     2359
                                                    B13
                                                             336
      475
                                                    B11
                                                             284
Name: count, dtype: int64
                                                    B14
                                                             136
                                                    Name: count, Length: 11, dtype: int64
VehGas
                                                    Region
Regular
            10773
                                                    R24
                                                            6498
Diesel
             7977
                                                    R82
                                                            2119
Name: count, dtype: int64
                                                    R11
                                                            1909
                                                            • • •
                                                    R21
                                                              90
                                                    R42
                                                              55
                                                    R43
                                                              26
```

Name: count, Length: 22, dtype: int64

Ordinal & binary categories are easy

```
1 from sklearn.preprocessing import OrdinalEncoder
  2 oe = OrdinalEncoder()
  3 oe.fit(X train[["Area", "VehGas"]])
  4 oe.categories
[array(['A', 'B', 'C', 'D', 'E', 'F'], dtype=object),
 array(['Diesel', 'Regular'], dtype=object)]
  1 for i, area in enumerate(oe.categories [0]):
         print(f"The Area value {area} gets turned into {i}.")
The Area value A gets turned into 0.
The Area value B gets turned into 1.
The Area value C gets turned into 2.
The Area value D gets turned into 3.
The Area value E gets turned into 4.
The Area value F gets turned into 5.
  1 for i, gas in enumerate(oe.categories_[1]):
         print(f"The VehGas value {gas} gets turned into {i}.")
The VehGas value Diesel gets turned into 0.
The VehGas value Regular gets turned into 1.
```


Ordinal encoded values

```
1 X_train_ord = oe.transform(X_train[["Area", "VehGas"]])
2 X_test_ord = oe.transform(X_test[["Area", "VehGas"]])
```

1 X_train[["Area", "VehGas"]].head()

1 X_train_ord.head()

	Area	VehGas
C	C	Diesel
1	C	Regular
2	E	Regular
3	D	Diesel
4	A	Regular

	Area	VehGas
O	2.0	0.0
1	2.0	1.0
2	4.0	1.0
3	3.0	0.0
4	0.0	1.0

Train on ordinal encoded values

```
random.seed(12)
model = Sequential([
Dense(1, activation="exponential")
])

model.compile(optimizer="adam", loss="poisson")

es = EarlyStopping(verbose=True)
hist = model.fit(X_train_ord, y_train, epochs=100, verbose=0,
validation_split=0.2, callbacks=[es])
hist.history["val_loss"][-1]
```

Epoch 22: early stopping 0.7821308970451355

What about adding the continuous variables back in? Use a sklearn *column transformer* for that.

Preprocess ordinal & continuous

```
from sklearn.compose import make_column_transformer

ct = make_column_transformer(
    (OrdinalEncoder(), ["Area", "VehGas"]),
    ("drop", ["VehBrand", "Region"]),
    remainder=StandardScaler()

    )

X_train_ct = ct.fit_transform(X_train)
```

1 X_train.head(3)

1 X_train_ct.head(3)

	Exposure	Area	VehPower		ordinalencoderArea	ordi
O	1.00	C	6.0	O	2.0	0.0
1	0.36	C	4.0	1	2.0	1.0
2	0.02	E	12.0	2	4.0	1.0

Preprocess ordinal & continuous II

```
from sklearn.compose import make_column_transformer

ct = make_column_transformer(
    (OrdinalEncoder(), ["Area", "VehGas"]),
    ("drop", ["VehBrand", "Region"]),
    remainder=StandardScaler(),
    verbose_feature_names_out=False
)

X_train_ct = ct.fit_transform(X_train)
```

1 X_train.head(3)

1 X_train_ct.head(3)

	Exposure	Area	VehPower		Area	VehGas	Exposure	1
O	1.00	C	6.0	0	2.0	0.0	1.126979	_
1	0.36	C	4.0	1	2.0	1.0	-0.590896	_
2	0.02	E	12.0	2	4.0	1.0	-1.503517	3

Glossary

- column transformer
- nominal variables
- ordinal variables

