7.2 The L squared operator

Slides: Video 7.2.1 Separating the L squared operator

Text reference: Quantum Mechanics for Scientists and Engineers

Section 9.2

The L² operator

In quantum mechanics we also consider another operator associated with angular momentum the operator \hat{L}^2 This should be thought of as the "dot" product of $\hat{\mathbf{L}}$ with itself and is defined as

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

The L² operator

It is straightforward to show then that

$$\hat{L}^2 = -\hbar^2 \nabla_{\theta,\phi}^2$$

where the operator $\nabla^2_{\theta,\phi}$ is given by

$$\nabla_{\theta,\phi}^{2} = \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

which is actually the θ and ϕ part of the Laplacian (∇^2) operator in spherical polar coordinates

hence the notation

Commutation of L²

 \hat{L}^2 commutes with each of \hat{L}_x , \hat{L}_y , and \hat{L}_z It is easy to see from

$$\nabla_{\theta,\phi}^{2} = \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

and the form of $\hat{L}_z=-i\hbar\frac{\partial}{\partial\phi}$ that at least \hat{L}^2 and \hat{L}_z commute

The operation $\partial/\partial\phi$ has no effect on functions or operators depending on θ alone

Commutation of L²

Of course, the choice of the z direction is arbitrary We could equally well have chosen the polar axis along the *x* or *y* directions Then it would similarly be obvious that \hat{L}^2 commutes with $\hat{L}_{_{
m v}}$ or $\hat{L}_{_{
m v}}$ How can \hat{L}^2 commute with each of $\hat{L}_{_{\!x}}$, $\hat{L}_{_{\!v}}$, and $\hat{L}_{_{\!z}}$ but \hat{L}_x , \hat{L}_y , and \hat{L}_z do not commute with each other? **Answer** we can choose the eigenfunctions of \hat{L}^2 to be the same as those of any one of \hat{L}_{x} , \hat{L}_{y} , and \hat{L}_{z}

Eigenfunctions of L²

We want eigenfunctions of \hat{L}^2 or, equivalently, $\nabla^2_{\theta,\phi}$ and so the equation we hope to solve is of the form

$$\nabla_{\theta,\phi}^{2}Y_{lm}\left(\theta,\phi\right) = -l\left(l+1\right)Y_{lm}\left(\theta,\phi\right)$$

We anticipate the answer

by writing the eigenvalue in the form -l(l+1) but it is just an arbitrary number to be determined

The notation $Y_{lm}(\theta,\phi)$ also anticipates the final answer but it is just an arbitrary function to be determined

Separation of variables

We presume that the final eigenfunctions can be separated in the form

$$Y_{lm}(\theta,\phi) = \Theta(\theta)\Phi(\phi)$$

where

 $\Theta(\theta)$ only depends on θ and

 $\Phi(\phi)$ only depends on ϕ

Substituting this form in $\nabla^2_{\theta,\phi}Y_{lm}\left(\theta,\phi\right) = -l\left(l+1\right)Y_{lm}\left(\theta,\phi\right)$ gives

$$\frac{\Phi(\phi)}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) \Theta(\theta) + \frac{\Theta(\theta)}{\sin^2\theta} \frac{\partial^2 \Phi(\phi)}{\partial\phi^2} = -l(l+1)\Theta(\theta)\Phi(\phi)$$

Separation of variables

Multiplying by $\sin^2\theta/\Theta(\theta)\Phi(\phi)$ and rearranging, gives

$$\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = -l(l+1)\sin^2 \theta - \frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta)$$

The left hand side depends only on ϕ

whereas the right hand side depends only on θ so these must both equal a ("separation") constant

Anticipating the answer

we choose a separation constant of $-m^2$ where m is still to be determined

$$\phi$$
 equation

Taking the left hand side of

$$\frac{1}{\Phi(\phi)} \frac{\partial^2 \Phi(\phi)}{\partial \phi^2} = -l(l+1)\sin^2 \theta - \frac{\sin \theta}{\Theta(\theta)} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) \Theta(\theta) = -m^2$$

we now have an equation

$$\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi)$$

The solutions to an equation like this are of the form $\sin m\phi$, $\cos m\phi$ or $\exp im\phi$

$$\phi$$
 equation

For the solutions of
$$\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi)$$

we choose the exponential form $\exp im\phi$ so Φ is also a solution of the \hat{L}_z eigen equation

$$\hat{L}_z \Phi(\phi) = m\hbar\Phi(\phi)$$

We expect that Φ and its derivative are continuous so this wavefunction must repeat every 2π of angle ϕ Hence, m must be an integer

θ equation

Taking the right hand side of the separation equation

$$-l(l+1)\sin^2\theta - \frac{\sin\theta}{\Theta(\theta)}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)\Theta(\theta) = -m^2$$

Multiplying by $\Theta(\theta)/\sin^2\theta$ and rearranging gives

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} \right) \Theta(\theta) - \frac{m^2}{\sin^2\theta} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

This is the associated Legendre equation whose solutions are the associated Legendre functions

$$\Theta(\theta) = P_l^m (\cos \theta)$$

θ equation

The solutions
$$\Theta(\theta) = P_l^m(\cos\theta)$$
 to this equation
$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} \right) \Theta(\theta) - \frac{m^2}{\sin^2\theta} \Theta(\theta) + l(l+1)\Theta(\theta) = 0$$

require that

$$l = 0,1,2,3,...$$

 $-l \le m \le l$ (*m* integer)

The associated Legendre functions can conveniently be defined using Rodrigues' formula

$$P_{l}^{m}(x) = \frac{1}{2^{l} I!} (1 - x^{2})^{m/2} \frac{d^{l+m}}{dx^{l+m}} (x^{2} - 1)^{l}$$

Associated Legendre functions

For example

$$P_{0}^{0}(x) = 1$$

$$P_{0}^{0}(x) = 1$$

$$P_{1}^{0}(x) = x$$

$$P_{2}^{0}(x) = x$$

Associated Legendre functions

We see that these functions $P_l^m(x)$ have the following properties

- \Box The highest power of the argument x is always x^l
- \Box The functions for a given l for +m and -m are identical other than for numerical prefactors
- Less obviously between -1 and +1 and not including the values at those end points the functions have l-|m| zeros

Eigenfunctions of L²

Putting this all together, the eigen equation is

$$\hat{L}^{2}Y_{lm}(\theta,\phi) = \hbar^{2}l(l+1)Y_{lm}(\theta,\phi)$$

with **spherical harmonics** $Y_{lm}(\theta,\phi)$ as the eigenfunctions which, after normalization, can be written

$$Y_{lm}(\theta,\phi) = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) \exp(im\phi)$$

where l = 0,1,2,3,..., where m is an integer, $-l \le m \le l$ and the eigenvalues are $\hbar^2 l (l+1)$

Eigenfunctions of L² and L_z

As is easily verified these spherical harmonics are also eigenfunctions of the \hat{L}_z operator Explicitly, we have the eigen equation

$$\hat{L}_{z}Y_{lm}(\theta,\phi) = m\hbar Y_{lm}(\theta,\phi)$$

with eigenvalues of \hat{L}_z being $m\hbar$

It makes no difference to the \hat{L}_z eigenfunctions if we multiply them by a function of θ

