

PHY2301P - Molécules et Cristaux - TD 1

Exercice 1 : Espèces carbonées

- 1. Proposer une structure de Lewis pour chacune des espèces suivantes : CO₂, CH₃OH, CO₃²⁻.
- 2. Proposer une structure de Lewis pour l'espèce CO, ne faisant pas apparaître de charge formelle. Pourquoi cette structure n'est-elle pas satisfaisante?
- 3. En déduire la structure de Lewis de l'espèce CO. Est-elle en accord avec l'électronégativité des atomes?

Exercice 2: Les oxydes d'azote

- 1. Proposer une formule de Lewis des composés suivants : NO₂, NO₂, NO₂, N₂O, NO₃, HNO₃.
- 2. NO_2 se dimérise très facilement en N_2O_4 . À partir des formes mésomères de NO_2 , interpréter ce résultat et écrire trois formules de Lewis pour le dimère N_2O_4 .

Exercice 3 : Composés de l'oxygène

- 1. Expliquer pourquoi, dans la molécule d'ozone O₃, on observe une seule longueur de liaison.
- 2. Quelle peut être la géométrie de la molécule d'ozone?
- 3. Commenter les valeurs des distances O O pour les espèces suivantes :

Dioxygène O_2	Ozone O ₃	Anion superoxyde O_2^-	Anion peroxyde O_2^{2-}
121 pm	126 pm	132 pm	149 pm

Exercice 4: Le chlorure stanneux

Le chlorure d'étain(II) SnCl₂ est utilisé en tant qu'agent réducteur en chimie organique.

- 1. Proposer un schéma de Lewis de la molécule de chlorure d'étain(II) ne faisant pas apparaître de charge formelle.
- 2. Peut-on qualifier $SnCl_2$ d'acide de Lewis? de base de Lewis? Justifier.
- 3. Prévoir la géométrie de la molécule, et donner une valeur approchée de l'angle Cl Sn Cl.
- 4. Expérimentalement, on a déterminé la valeur de cet angle : 95°. Proposer une interprétation.

PHY2301P - TD - 2022