Hooke's law

$$\delta = \frac{l}{AE}P$$

$$A = \pi d^2$$

 δ : total elongation of the bar

P: force producing extension of the bar

l: length of the bar

A: cross sectional area of the bar

E: elastic modulus

d: radius

Elastic coeff: $\frac{E\pi d^2}{l}$

Pure bending

$$\frac{1}{r} = \frac{M}{EI_z}$$

$$\frac{1}{r}$$
: curvature $P_{cr} = \frac{\pi^2 E I_z}{l^2}$ $I_z = \frac{\pi}{2} d^4$

$$P_{cr} = \frac{\pi^2 E I_z}{l^2}$$

Bending coeff:
$$\frac{E\pi d^4}{2}$$