To manipulate and analyze multidimensional data efficiently

- Matrix Addition And Substraction Scalar Matrix Multiplication Matrix Multiplication

1) MATRIX ADDITION AND SUBSTRACTION

2) SCALAR MULTIPLICATION

Scalar Multiplication involves multiplying every element of a matrix by scalar value

$$b = \begin{cases} 50 & 30 & 40 \\ 12 & c2 & 32 \\ 10 & 50 & 30 \end{cases}$$

DATASET IT FIRMS

Salarys from 2024		=> 2025	=>	Inflation	1 6%	
Base salary software engineering		Base Salary Human Resourse	Base Salary Accoun	tents		
-	45k	30k	40k	*	1.06	7
	50k	35k	45k	*	1.06	
L	-	-			- 1	

ation: It involves the dot product of rows of the first matrix with columns of the second m

2 matrix A(m x n) and B(n x p), the result matrix C (m x p)

$$\begin{cases} c^{5} = (4 \cdot 3 + 2 \cdot (0 + 6 \cdot 15)) = (24) \\ c^{61} = (4 \cdot \frac{1}{2} + 6 \cdot 4 + 6 \cdot 4) = 120 \\ c^{15} = (4 \cdot \frac{1}{2} + 5 \cdot (0 + 3 \cdot 15)) = 8 + 50 + 36 = 64 \\ c^{17} = (4 \cdot \frac{1}{2} + 5 \cdot 6 + 3 \cdot (1)) = 3 + 18 + 33 = 28 \end{cases}$$