

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

1. Übung zur Vorlesung Theoretische Informatik I Musterlösungen

Aufgabe 1: Die richtigen Lösungen lauten:

- a) Es gilt $111 = 3 \cdot 37$, d.h. die erste Aussage A ist richtig. B dagegen ist falsch, denn wegen $12 = 2 \cdot 2 \cdot 3$ besitzt 12 nur zwei verschiedene Primteiler, nämlich 2 und 3.
- b) Die Aussage " $A \Leftrightarrow (\neg B \land \neg A)$ " würde man am ehesten mit "111 ist genau dann durch 37 teilbar, wenn weder 12 drei verschiedene Primteiler besitzt noch 111 durch 37 teilbar ist" übersetzen.
- c) Für den Wahrheitswert der Aussage ergibt sich:

$$A \Leftrightarrow (\neg B \land \neg A) = W \Leftrightarrow (\neg F \land \neg W) = W \Leftrightarrow (W \land F) = W \Leftrightarrow F = F .$$

Die Aussage ist also falsch.

Aufgabe 2: Wir stellen folgende Wahrheitstafel auf:

Ganz gleich, welchen Wahrheitswert A selbst hat, ist $A \wedge \neg A$ also immer falsch und $A \vee \neg A$ immer richtig.

Aufgabe 3: Wir stellen erneut eine Wahrheitstafel auf:

A	B	C	$A \lor B$	$B \lor C$	$A \lor (B \lor C)$	$(A \lor B) \lor C$
W	W	W	W	W	W	W
W	W	\mathbf{F}	W	W	W	W
W	\mathbf{F}	W	W	W	W	W
W	\mathbf{F}	\mathbf{F}	W	F	W	W
\mathbf{F}	W	W	W	W	W	W
\mathbf{F}	W	\mathbf{F}	W	W	W	W
\mathbf{F}	F	W	F	W	W	W
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F	F	${ m F}$

Die beiden letzten Spalten enthalten die ausgerechneten Werte beider Seiten und sind wie behauptet identisch. \Box

Aufgabe 4: Auch hier erfolgen die Beweise mit Wahrheitstafeln:

a) Für die erste Aussage $(A \Rightarrow B) \land (B \Rightarrow A) = (A \Leftrightarrow B)$ ergibt sich:

A	B	$A \Rightarrow B$	$B \Rightarrow A$	$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$
W	W	W	W	W	W
W	\mathbf{F}	F	W	F	F
\mathbf{F}	W	W	\mathbf{F}	F	F
\mathbf{F}	\mathbf{F}	W	W	W	W

b) Bei der zweiten Aussage $(A \Rightarrow B) \land (\neg A \Rightarrow B) = B$ gilt:

A	B	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow B$	$(A \Rightarrow B) \land (\neg A \Rightarrow B)$
W	W	F	W	W	W
W	\mathbf{F}	F	${ m F}$	\mathbf{W}	F
\mathbf{F}	W	W	W	\mathbf{W}	W
\mathbf{F}	F	W	W	F	F

c) Für die dritte Aussage $A \Rightarrow B = \neg B \Rightarrow \neg A$ erhalten wir:

d) Die vierte Aussage $A \wedge (A \Rightarrow B) = A \wedge B$ stimmt auch:

In allen Fällen ergeben sich bei den beiden entscheidenden Spalten identische Werte.

Aufgabe 5: Die Gesetze von DeMorgan gelten in der Tat auch bei drei oder mehr Variablen.

a) Bei der ersten genannten Regel $\neg(A \lor B \lor C) = \neg A \land \neg B \land \neg C$ ergibt sich für die linke Seite diese Wahrheitstabelle:

A	B	C	$A \lor B$	$A \lor B \lor C$	$\neg (A \lor B \lor C)$
W	W	W	W	W	F
W	W	\mathbf{F}	W	\mathbf{W}	\mathbf{F}
W	\mathbf{F}	W	W	W	\mathbf{F}
W	\mathbf{F}	\mathbf{F}	W	W	\mathbf{F}
\mathbf{F}	W	W	W	W	\mathbf{F}
\mathbf{F}	W	\mathbf{F}	W	W	\mathbf{F}
\mathbf{F}	\mathbf{F}	W	F	W	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F	W

Für die rechte Seite der Regel gilt:

A	B	C	$\neg A$	$\neg B$	$\neg C$	$\neg A \land \neg B$	$\neg A \land \neg B \land \neg C$
W	W	W	F	F	F	F	F
W	W	\mathbf{F}	F	F	W	F	F
W	\mathbf{F}	W	F	W	F	\mathbf{F}	F
W	\mathbf{F}	\mathbf{F}	F	W	W	\mathbf{F}	F
\mathbf{F}	W	W	W	F	F	\mathbf{F}	F
\mathbf{F}	W	\mathbf{F}	W	F	W	\mathbf{F}	F
\mathbf{F}	\mathbf{F}	W	W	W	F	W	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	W	W	W	W	W

Beide Seiten der Regel besitzen also die gleiche Ergebnisspalte. Auch die Gültigkeit der zweiten Regel $\neg(A \land B \land C) = \neg A \lor \neg B \lor \neg C$ kann man so überprüfen.

b) Angenommen, wir formulieren die erste Regel $\neg(A \lor B \lor C) = \neg A \land \neg B \land \neg C$ für vier oder noch mehr Variablen. Egal wie viele Variablen es sind: beide Seiten der Regel sind nur genau dann wahr, wenn alle Variablen den Wahrheitswert F haben. Ansonsten sind beide Seiten immer falsch. Folglich sind sie in allen Fällen immer gleich. Ähnlich sieht es bei der anderen Regel $\neg(A \land B \land C) = \neg A \lor \neg B \lor \neg C$ aus: hier sind beide Seiten nur genau dann falsch, wenn alle Variablen den Wahrheitswert W haben.