

Computing Science at University of Stirling

T6 DM Tutorial on "Clustering & Association Rules" – Answers

1. K-Means clustering

Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters:

The distance matrix based on the Euclidean distance is given below:

	A1	A2	A3	A 4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{72}$	√13	√50	$\sqrt{52}$	√65	$\sqrt{5}$
A2		0	√37	√18	$\sqrt{25}$	√17	√10	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	√4	√53	√41
A4				0	√13	√17	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	√45	$\sqrt{25}$
A6						0	√29	√29
A7							0	√58
A8								0

Suppose that the initial seeds (centres of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

- a) The new clusters (i.e. the examples belonging to each cluster)
- b) The centres of the new clusters
- c) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.
- d) How many more iterations are needed to converge? Draw the result for each epoch.

Solution:

a) d(a,b) denotes the Eucledian distance between a and b. It is obtained directly from the distance matrix or calculated as follows: $d(a,b)=sqrt((x_b-x_a)^2+(y_b-y_a)^2))$ seed1=A1=(2,10), seed2=A4=(5,8), seed3=A7=(1,2)

```
epoch1 – start:
```

A1:

```
d(A1, seed1)=0 as A1 is seed1
d(A1, seed2)= \sqrt{13} > 0
d(A1, seed3)= \sqrt{65} > 0
→A1 ∈ cluster1
A2:
d(A2, seed1)= \sqrt{25} = 5
d(A2, seed2)= \sqrt{18} = 4.24
```

 $d(A2, seed3) = \sqrt{10} = 3.16 \leftarrow smaller$

```
\rightarrow A2 \in cluster3
A3:
d(A3, seed1) = \sqrt{72} = 8.49
d(A3, seed2) = \sqrt{25} = 5 \leftarrow smaller
d(A3, seed3) = \sqrt{53} = 7.28
\square A3 \in cluster2
A4:
d(A4, seed1) = \sqrt{13}
d(A4, seed2)=0 as A4 is seed2
d(A4, seed3) = \sqrt{52} > 0
\rightarrow A4 \in cluster2
A5:
d(A5, seed1) = \sqrt{50} = 7.07
d(A5, seed2) = \sqrt{13} = 3.60 \leftarrow smaller
d(A5, seed3) = \sqrt{45} = 6.70
\rightarrow A5 \in cluster2
A6:
d(A6, seed1) = \sqrt{52} = 7.21
d(A6, seed2) = \sqrt{17} = 4.12 \leftarrow smaller
d(A6, seed3) = \sqrt{29} = 5.38
\rightarrow A6 \in cluster2
A7:
d(A7, seed1) = \sqrt{65} > 0
d(A7, seed2) = \sqrt{52} > 0
d(A7, seed3)=0 as A7 is seed3
\rightarrow A7 \in cluster3
A8:
d(A8, seed1) = \sqrt{5}
d(A8, seed2) = \sqrt{2} \leftarrow smaller
d(A8, seed3) = \sqrt{58}
\rightarrow A8 \in cluster2
end of epoch1
new clusters: 1: {A1}, 2: {A3, A4, A5, A6, A8}, 3: {A2, A7}
b) Centres of the new clusters:
C1=(2, 10)
C2 = ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6)
C3 = ((2+1)/2, (5+2)/2) = (1.5, 3.5)
```


d) We would need two more epochs. After the 2nd epoch the results would be: 1: {A1, A8}, 2: {A3, A4, A5, A6}, 3: {A2, A7} with centres C1=(3, 9.5), C2=(6.5, 5.25) and C3=(1.5, 3.5).

After the 3rd epoch, the results would be: 1: {A1, A4, A8}, 2: {A3, A5, A6}, 3: {A2, A7} with centres C1=(3.66, 9), C2=(7, 4.33) and C3=(1.5, 3.5).

2. Association Rules

Find all association rules in the following database: (minimum support = 40%, minimum confidence = 70%)

TransID	Items
1	a, b, c
2	b, c, d, e
3	c, d
4	a, b, d
5	a, b, c

Solution:

First find all itemsets with support ≥ 2

C ₁		
set	supp	
{a}	3	
{b}	4	
{c}	4	
{d}	3	
(e)	1	

	C ₂
set	supp
{a,b}	3
{a,c}	2
-{a,d}	
{b,c}	3
$\{b,d\}$	2
{c,d}	2

C	'3
set	supp
{a,b,c}	2
{b,e,d}	-1
(2,3,4)	

TID	Items
1	a, b, c
2	b, c, d, e
3	c, d
4	a, b, d
5	a, b, c

- F = { {a}, {b}, {c}, {d}, {a,b}, {a,c}, {b,c}, {b,d}, {c,d}, {a,b,c} }
- Then split all frequent itemsets in all possible ways

(Trivial rules: X => {} 100%)

ac => b	100%
a => b	100%
b => a	75%
b => c	75%
c => b	75%
{} => b	80%
{} => c	80%

set	supp
{}	5
{a}	3
{b}	4
{c}	4
{d}	3
{a,b}	3
{a,c}	2
{b,c}	3
{b,d}	2
{c,d}	2
{a,b,c}	2