C22C 38/00 C21D 8/02

[12] 发明专利申请公开说明书

[21] 申请号 98802157.9

[43]公开日 2000年3月1日

[11]公开号 CN 1246161A

[22]申请日 1998.1.23 [21]申请号 98802157.9 [30]优先权

[32]1997.1.29 [33]JP [31]28296/1997 [32]1997.7.15 [33]JP [31]190297/1997 [32]1997.7.15 [33]JP [31]190298/1997

[32]1997.8.6 [33]JP [31]223005/1997

[32]1997.9.24 [33]JP[31]258834/1997 [32]1997.9.24 [33]JP[31]258865/1997

[32]1997.9.24 [33]JP [31]258887/1997

[32]1997.9.24 [33]JP [31]258928/1997

[32]1997.9.24 [33]JP [31]258939/1997

[86]国际申请 PCT/JP98/00272 1998.1.23

[87]国际公布 WO98/32889 日 1998.7.30

[85]进入国家阶段日期 1999.7.29

[71]申请人 新日本制铁株式会社

地址 日本东京

[72]发明人 河野治 胁田淳一 高桥雄三

间浏秀里 高桥学 上西朗弘

栗山幸久 冈本力 佐久间康治

[74]专利代理机构 中国国际贸易促进委员会专利商标事 务所

代理人 郑修哲

权利要求书 5 页 说明书 39 页 附图页数 6 页

[54]发明名称 冲击能吸收特性和成形性良好的高强度钢 板及其制造方法

[57]摘要

一种可以成形并加工成可吸收碰撞时产生的冲击能的部件(例如具有高的吸收冲击能的性能的前端部件)的高强度钢板及其制造方法,上述钢板是一种具有高的动态形变抗力和良好加工性能的高强度钢板,其特征在于,最终获得的钢板的显微组织是一种由铁索体和/或贝氏体(它们中每一种都是主要相)以及含有体积百分数为3—50%的残留奥氏体的第三相组成的复合显微组织,而且,钢板在经过<0%—≥10%等效应变的预变形后按应变速率 5×10^{-4} — $5\times10^{-3}(1/s)$ 进行变形时测得的准静态形变强度 (σ_s) 与钢板在上述预变形后于应变速率 5×10^2 — $5\times10^3(1/s)$ 进行变形时测出的动态形变强度 (σ_d) 之差 $(\sigma_d-\sigma_s)$ 为 ≥ 60 MPa,钢板在5—10%应变时的加工硬化系数为 ≥ 0 . 130。

权利要求书

- 1. 一种在动态变形过程中具有高的流变应力的可压制成形的高强度钢板,其特征在于,该钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有 $3\sim50\%$ 体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其中,在等效应变为> $0\sim <10\%$ 进行预变形后以应变速率 $5\times10^{-4}-5\times10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后接应变速率 $5\times10^2-5\times10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d σ_s 为 σ_d σ_d
- 2. 一种在动态变形过程中具有高的流变应力的可压制成形的高强度钢板,其特征在于,上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有 $3\sim50$ %体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其中,在等效应变为>0~ ≤ 10 %进行预变形后以应变速率 $5\times10^{-4}-5\times10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5\times10^2\sim5\times10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d - σ_s 为 ≥ 60 MPa,而在应变速率范围为 $5\times10^2\sim5\times10^3$ (1/s)变形时等效应变为 $3\sim10$ %的流变应力的平均值 σ_{dyn} (MPa)与在应变速率范围 $5\times10^{-4}\sim5\times10^{-3}$ 进行变形时等效应变为 $3\sim10$ %的流变应力的平均值 σ_{st} (MPa)之间的差值满足如下不等式: $(\sigma_{dyn}-\sigma_{st})\geq -0.272\times TS+300$,式中 TS (MPa)是按应变速率范围 $5\times10^{-4}\sim5\times10^{-3}$ (1/s)进行静态拉伸试验时测定的最大应力,而且,上述钢板在 $5\sim10$ % 应变时的加工硬化系数 ≥ 0.130 .
 - 3. 一种在动态变形过程中具有高的流变应力的可压制成形的高强度钢板, 其特征在于, 上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体, 上述的每一种都是主要相, 与含有 3~50%体积百分数的残留奥氏体的第三相混合组成的复合显微组织, 其中, 在等效应变为>0~≤10%进行预变形后以应变速率 5×10⁻⁴~5×10⁻³ (1/s)进行

变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d 一 σ_s 为 \geqslant 60MPa,而在应变速率范围为 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)变形时等效应变为 $3 \sim 10\%$ 的流变应力的平均值 σ_{dyn} (MPa)与在应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ 进行变形时等效应变为 $3 \sim 10\%$ 的流变应力的平均值 σ_{st} (MPa)之间的差值满足如下不等式: $(\sigma_{dyn} - \sigma_{st}) \geqslant -0.272 \times TS + 300$,式中 TS (MPa)是接应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s)进行静态拉伸试验时测定的最大应力,由上述残留奥氏体中的固溶 [C] 和钢板的平均 Mn 当量 [Mn eq=Mn+(Ni+Cr+Cu+Mo)/2] 并由公式 $M = 678 - 428 \times [C] -33Mn$ eq 计算的 M值为 $\gg -140 \sim 70$,钢板在等效应变为 $\gg 10^2 \sim 10^$

4. 根据权利要求 1~3 中任一项的钢板, 其特征在于, 上述残留奥氏体的平均晶粒直径不大于 5μm, 上述残留奥氏体的平均晶粒直径与主要相中的铁素体或贝氏体的平均晶粒直径之比不大于 0.6, 主要相的平均晶粒直径不大于 10μm, 最好是不大于 6μm.

%进行预变形后的残留奥氏体的体积百分数≥2.5%,残留奥氏体的初

始体积 V(0)与钢板在等效应变 10%下进行预变形后的残留奥氏体的体

积百分数 V(10)之比值即 V(10)/V(0) ≥ 0.3, 钢板在 5~10% 应变的

加工硬化系数≥0.130.

- 5. 根据权利要求 1~4 中任一项的钢板, 其特征在于, 铁素体的体积百分数≥40%。
- 6. 根据权利要求 1~5 中任一项的钢板, 其特征在于, 其拉伸强度×总伸长率≥20000。
- 7. 根据权利要求 1~6 中任一项的钢板,其特征在于,其化学成分按重量%为: C 0.03~0.3%; Si+Al 或其中一种的总量为 0.5~3.0%; 如有必要,加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或几种,总量为 0.5~3.0%,其余为 Fe 作为主要成分。
- 8. 根据权利要求 1~7 中任一项的钢板, 其特征在于, 如有必要, 再加入 Nb、Ti、V、P和 B中的一种或多种, 其中加入 Ni、Ti 和 V 中的一种或几种的总量的重量%不大于 0.3%, P 不大于 0.3 重量%, B

不大于 0.01 重量%。

- 9.根据权利要求 1~8 中任一项的钢板, 其特征在于, 如有必要, 再加入 Ca 0.0005~0.01 重量%, REM 0.005~0.05 重量%.
- 10. 一种制造可压制成形的高强度热轧钢板的方法,所述钢板在 动态变形过程中具有高的流变应力,其中上述钢板最终状态的显微组 织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有3~ 50%体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其 中, 在等效应变为>0~ ≤ 10%进行预变形后以应变速率 5×10⁻⁴~5× 10⁻³ (1/s)进行变形时测定的静态拉伸强度σ_s与在上述预变形后按应 变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_a 之间 的差值即 σ_d - σ_s 为 \geqslant 60MPa,而在应变速率范围为 $5 \times 10^2 - 5 \times 10^3$ (1/s)变形时等效应变为 3~10%的流变应力的平均值 σ_{dyn} (MPa)与在 应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ 进行变形时等效应变为 $3 \sim 10\%$ 的流 变应力的平均值σ_{st}(MPa)之间的差值满足如下不等式: (σ_{dvn}-σ_{st})≥ -0.272×TS+300, 式中 TS(MPa)是按应变速率范围 5×10⁻⁴~5×10⁻³ (1/s)进行静态拉伸试验时测定的最大应力,上述钢板在应变为 5~10 %的加工硬化系数≥0.130,上述方法的特征在于,将一种连续铸造钢 坯直接从铸造步骤送到热轧步骤,或者经过再加热后进行热轧,上述 的钢坯含有如下成分(wt%): C 0.03~0.3%, Si+Al 或其中一种加入总 量为 0.5~3.0%, 如果需要, 加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或 几种, 总加入量为 0.5~3.5%, 如果需要, 再加入 Nb、Ti、V、P、B、 Ca 和 REM 中的一种或几种, 其中 Nb、Ti 和 V 中的一种或几种的总量 为不大于 0.3%, P不大于 0.3%, B不大于 0.01%, Ca 为 0.0005~0.01 %, REM 为 0.005~ 0.05%, 其余为 Fe 作为主要成分, 其特征在于, 上述钢坏在终轧温度为(Ar3-50℃)~(Ar3+120℃)温度范围内完成 热轧工序,并在热轧后在冷却工位上以平均冷却速度 5℃/s 进行冷却。 然后将钢板在不高于500℃的温度下卷绕成捆。
 - 11. 根据权利要求 10 的制造可压制成形的高强度热轧钢板的方法, 其特征在于, 在上述热轧的终轧温度为(Ar₃-50°C)~(Ar₃+120°C)

范围内进行热轧,使其冶金参数 A 满足下列不等式(1)和(2),然后在输出辊道上以平均冷却速度≥5℃/s 冷却,再将钢板卷绕,使上述的冶金参数 A 与卷绕温度(CT)满足下列不等式(3):

 $9 \le \log A \le 18 \tag{1}$

 $\Delta T \le 21 \times 1 \text{ ogA} - 178 \tag{2}$

 $6 \times \log A + 312 \le CT \le 6 \times \log A + 392 \tag{3}$

12. 一种制造可压制成形的高强度冷轧钢板的方法,所述钢板在 动态变形过程中具有高的流变应力,其中上述钢板最终状态的显微组 织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有3~ 50%体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其 中, 在等效应变为>0~≤10%进行预变形后以应变速率 5×10⁻⁴~5× 10⁻³ (1/s)进行变形时测定的静态拉伸强度σ_s与在上述预变形后按应 变速率 $5 \times 10^2 - 5 \times 10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_a 之间 的差值即 σ_d - σ_s 为 \geqslant 60MPa,而在应变速率范围为 $5 \times 10^2 - 5 \times 10^3$ (1/s)变形时等效应变为 3~10%的流变应力的平均值 σ_{dyn} (MPa)与在 应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ 进行变形时等效应变为 $3 \sim 10\%$ 的流 变应力的平均值σ_{st} (MPa)之间的差值满足如下不等式: (σ_{dyn}-σ_{st})≥ -0.272×TS+300, 式中 TS (MPa)是按应变速率范围 5×10-4~5×10-3 (1/s)进行静态拉伸试验时测定的最大应力,上述钢板在应变为 5~10 %的加工硬化系数≥0.130,上述方法的特征在于,将一种连续铸造钢 坯直接从铸造步骤送到热轧步骤,或者经过再加热后进行热轧,上述 的钢坯含有如下成分(wt%): C 0.03~0.3%, Si+A1 或其中一种加入总 量为 0.5~3.0%, 如果需要, 加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或 几种, 总加入量为 0.5~3.5%, 如果需要, 再加入 Nb、Ti、V、P、B、 Ca 和 REM 中的一种或几种, 其中 Nb、Ti 和 V 中的一种或几种的总量 为不大于 0.3%, P不大于 0.3%, B不大于 0.01%, Ca 为 0.0005~0.01 %, REM 为 0.005~0.05%其余为 Fe 作为主要成分, 上述铸坯从浇铸步 骤直接供到热轧步骤,或在再加热后进行热轧,将上述热轧后卷绕的 钢板进行酸洗,然后进行冷轧,在制备最终产品的连续退火步骤的退 火过程中,在 $[0.1 \times (AC_3-AC_1)+AC_1 \, \mathbb{C}] \sim (AC_3+50 \, \mathbb{C})$ 的温度下退火 $10 \sec \sim 3 \, \min$,然后按第一冷却速度为 $1 \sim 10 \, \mathbb{C}/\sec$ 冷却第一冷却停顿温度 $550 \sim 720 \, \mathbb{C}$,再按第二冷却速度 $10 \sim 200 \, \mathbb{C}/\sec$ 冷却至第二冷却停顿温度 $200 \sim 450 \, \mathbb{C}$,然后在 $200 \sim 500 \, \mathbb{C}$ 保温 $15 \sec \sim 20 \, \min$,再冷却至室温。

根据权利要求 12 的制造在动态变形过程中具有高的流变应 力的可压制成形的高强度冷轧钢板的方法,上述冷轧钢板的显微组织 是一种上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上 述的每一种都是主要相,与含有 3~50%体积百分数的残留奥氏体的 第三相混合组成的复合显微组织,其中,在等效应变为>0~≤10%进 行预变形后以应变速率 5×10⁻⁴~5×10⁻³ (1/s)进行变形时测定的静 态拉伸强度 σ_s 与在上述预变形后按应变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)进 行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d - σ_s 为 \geqslant 60MPa, 而在应变速率范围为 5×102~5×103 (1/s)变形时等效应变为 3~10% 的流变应力的平均值 σ_{dyn} (MPa) 与在应变速率范围 $5 \times 10^{-4} - 5 \times 10^{-3}$ 进行变形时等效应变为 3~10%的流变应力的平均值 σ_{st} (MPa)之间的 差值满足如下不等式: (σ_{dyn}-σ_{st})≥-0.272×TS+300, 式中 TS(MPa) 是按应变速率范围 5×10⁻⁴~5×10⁻³ (1/s)进行静态拉伸试验时测定的 最大应力,另外,上述钢板在5~10%应变时的加工硬化系数≥0.130, 上述方法的特征在于,在制备最终产品的上述连续退火步骤的退火过 程中, 先在 0.1× (AC₃-AC₁·)+AC₁℃~ (AC₃+50℃)的温度下退火 10sec~ 3 min, 然后按第一冷却速度 1~10℃/sec 冷却至 550~720℃范围内 的第二次冷却开始温度 Tq, 而后, 按第二冷却速度 10~200℃/sec 冷 却至从取决于成分和退火温度 T。的温度 Tem 至 500 温度范围内的第二 冷却停顿温度 T_e,然后在(T_e-50℃)~500℃温度范围内的 T_{oa} 温度保温 15s~20 min, 再冷却至室温。

冲击能吸收特性和成形性 良好的高强度钢板及其制造方法

本发明涉及在动态变形过程中具有高流变应力的可压制成形的高强 度热轧和冷轧钢板及其制造方法,所述的钢板可用于制造汽车等的零部 件,以便通过有效地吸收碰撞冲击能而对乘员提供安全保障。

近几年来,普遍认识到,对于汽车来说,一个十分重要的问题就是保护乘员不受汽车碰撞带来的伤害,越来越强烈地希望采用抗高速变形能力强的合适材料。例如,将这类材料用于汽车的前端部件,前部碰撞的能量就可在材料受到挤压时被吸收,从而减轻对乘员的冲击。

由于汽车在碰撞时每一部分经受变形的应变速率达到大约 $10^3(1/s)$,故要考虑材料吸收冲击能的性能必须了解高应变速率下材料 的动态变形性能,由于同时考虑诸如节能和减少 CO_2 排出等因素以及减轻汽车重量也十分重要,故越来越需要采用高效的高强度钢板。

例如,本发明人曾在 CAMP - ISIJ Vol. 9 (1996),pp1112~1115报 导过高强度薄钢板和高速变形性能和冲击能吸收性能问题,在该论文中 谈到,在大约 10³(1/s)的高应变速率下的动态强度比在 10⁻³(1/s)的低 应变速率下的静态强度显著增加,应变速率与形变抗力的关系随材料的 强化机理而变化,并指出(高强度高延性) TRIP 钢板和 DP (铁素体/马 氏体两相)钢板与其他高强度钢板相比既具有良好成形性又具有良好的 冲击能吸收性能。

另外, 日本未审查的专利公开 No 7-18372 公开了具有良好的冲击抗力的含有残留奥氏体的高强度钢及其制造方法, 提出简单地通过高形变速率提高屈服强度来解决冲击能吸收的问题。但是尚未说明要提高冲击能吸收性能, 除了残留奥氏体的数量外, 还应控制残留奥氏体的那些其他方面。

因此,虽然不断地在研究有关提高对汽车碰撞时冲击能的吸收有影响的结构件材料的动态变形性能,但是仍然不完全了解应该最大地提高

钢材的什么性能才能使汽车部件所用的钢材具有更优良的冲击能吸收特性,也不甚了解应根据什么标准选用材料。汽车零件用的钢材通过模压制成所需形状的零件,并且通常在涂漆和烘烤后装在汽车上,再进入真实的冲击状况。但是,仍然不清楚钢的什么强化机制适合于改善钢材对于上述预变形和烘烤处理后发生碰撞时的冲击能吸收性能。

本发明的目的是提供具有高的冲击能吸收性能的高强度钢板用于制造诸如在碰撞时可吸收冲击能的前端部件之类零件,以及这类钢板的制造方法,首先,按照本发明的具有高的冲击能吸收性能的高强度钢板包括:

- (1) 一种在动态变形过程中具有高的流变应力的可压制成形的高强度钢板,其特征在于,该钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有 $3\sim50\%$ 体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其中,在等效应变为>0~ <10% 进行预变形后以应变速率 $5\times10^{-4}\sim5\times10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5\times10^2\sim5\times10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d σ_s 为 >60 MPa,而且 $5\%\sim10\%$ 应变的加工硬化系数 >0. 130。
- (2) 一种在动态变形过程中具有高的流变应力的可压制成形的高强度钢板,其特征在于,上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的每一种都是主要相,与含有 $3\sim50\%$ 体积百分数的残留奥氏体的第三相混合组成的复合显微组织,其中,在等效应变为>0~<10%进行预变形后以应变速率 $5\times10^{-4}\sim5\times10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5\times10^2\sim5\times10^3$ (1/s)进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d σ_s 为 > 60MPa,而在应变速率范围为 $5\times10^2\sim5\times10^3$ (1/s) 变形时等效应变为 $3\sim10\%$ 的流变应力的平均值 σ_{dyn} (MPa) 与在应变速率范围 $5\times10^{-4}\sim5\times10^{-3}$ 进行变形时等效应变为 $3\sim10\%$ 的流变应力的平均值 σ_{st} (MPa) 之间的差值 满足如下不等式: (σ_{dyn} σ_{st}) > -0. 272 × TS + 300,式中 TS (MPa) 是按应变速率范围 $5\times10^{-4}\sim5\times10^{-3}$ (1/s)进行静态拉伸试验时测定的最大应力,而且,上述钢板在 $5\sim10\%$ 应变时的加工硬化系数 > 0. 130。

(3)一种在动态变形过程中具有高的流变应力的可压制成形的高强 度钢板,其特征在于,上述钢板最终状态的显微组织是一种由铁素体和 /或贝氏体,上述的每一种都是主要相,与含有 3~50%体积百分数的残 留奥氏体的第三相混合组成的复合显微组织,其中,在等效应变为>0~ ≤10%进行预变形后以应变速率 5×10⁻⁴~5×10⁻³ (1/s)进行变形时测 定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s) 进行变形时测定的动态拉伸强度 σ_d 之间的差值即 σ_d - σ_s 为 \geqslant 60MPa, 而在应变速率范围为 5×10²~5×10³ (1/s)变形时等效应变为 3~10% 的流变应力的平均值 σ_{dyn} (MPa) 与在应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ 进 行变形时等效应变为 3~10%的流变应力的平均值σ_{st}(MPa)之间的差值 满足如下不等式: (σ_{dyn}-σ_{st}) ≥-0.272×TS+300, 式中 TS(MPa)是按 应变速率范围 5×10⁻⁴~5×10⁻³ (1/s)进行静态拉伸试验时测定的最大 应力, 由上述残留奥氏体中的固溶[C]和钢板的平均 Mn 当量 {Mn eq=Mn+(Ni+Cr+Cu+Mo)/2}并由公式 M = 678 - 428 × [C]-33Mn eq 计 算的 M 值为≥-140~<70, 钢板在等效应变为>0~≤10%进行预变形后 的残留奥氏体的体积百分数≥2.5%,残留奥氏体的初始体积 V(0)与钢 板在等效应变 10%下进行预变形后的残留奥氏体的体积百分数 V(10)之 比值即 $V(10)/V(0) \ge 0.3$, 钢板在 $5 \sim 10\%$ 应变的加工硬化系数 ≥ 0.130 .

上述的高强度钢板还包括:

- (4) 按照上述 (1) ~ (3) 的任一种的在动态变形过程中具有高流变应力的高强度钢板,其中,满足下列条件中的任何一项: 残留奥氏体的平均晶粒直径不大于 5μ m; 残留奥氏体的平均晶粒直径与主要相中的铁素体或贝氏体的平均晶粒直径之比不大于 0.6, 而主要相的平均晶粒直径不大于 10μ m, 最好不大于 6μ m; 马氏体的体积百分数为 $3 \sim 30\%$, 而马氏体的平均晶粒直径不大于 10μ m, 最好不大于 5μ m; 铁素体的体积百分数 > 40%, 而拉伸强度 (TS) × 总伸长率 T. El 之值 > 20000.
- (5)本发明的高强度钢板还可以是含有下列成分(重量%)的高强度钢: C为 0.03~0.3%, Si+Al 中的一种或两种的总量为 0.5~3.0%, 如有必要,加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或几种,总量为 0.5~3.5

%, 其余为 Fe 作为主要成分。或者, 本发明的在动态变形时具有高流变应力的高强度钢板是根据需要还添加 Nb、Ti、V、P、B、Ca和 REM 中的一种或几种的高强度钢板, 其中, Nb、Ti 和 V 中的一种或几种的加入总量不大于 0.3%, P 不大于 0.3%, B 不大于 0.01%, Ca 为 0.0005~0.01%, REM 为 0.005~0.05%, 其余为 Fe 作为主要成分。

- (6) 按照本发明的制造在动态变形过程中具有高的流变应力的可压 制成形的高强度热轧钢板的方法,所述钢板在动态变形过程中具有高的 流变应力,其中上述钢板最终状态的显微组织是一种由铁素体和/或贝 氏体,上述的每一种都是主要相,与含有3~50%体积百分数的残留奥 氏体的第三相混合组成的复合显微组织,其中,在等效应变为>0~≤10 % 进行预变形后以应变速率 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s) 进行变形时测定的 静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)进 行变形时测定的动态拉伸强度 σ_a 之间的差值即 σ_a - σ_s 为 \geqslant 60MPa,而 在应变速率范围为 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)变形时等效应变为 $3 \sim 10\%$ 的 流变应力的平均值 σ_{dyn} (MPa)与在应变速率范围 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ 进行 变形时等效应变为 3~10%的流变应力的平均值σ_{st} (MPa)之间的差值满 足如下不等式: (σ_{dyn}-σ_{st}) ≥-0.272×TS+300, 式中 TS(MPa)是接应 变速率范围 5×10-4~5×10-3 (1/s)进行静态拉伸试验时测定的最大应 力,上述钢板在应变为5~10%的加工硬化系数≥0.130,上述方法的特 征在于,将一种连续铸造钢坯直接从铸造步骤送到热轧步骤,或者经过 再加热后进行热轧,上述的钢坯含有如下成分(wt%): C 0.03~0.3%, Si+A1 或其中一种加入总量为 0.5~3.0%, 如果需要, 加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或几种, 总加入量为 0.5~3.5%, 如果需要, 再加入 Nb、 Ti、V、P、B、Ca和 REM 中的一种或几种,其中 Nb、Ti 和 V 中的一种或 几种的总量为不大于 0.3%, P不大于 0.3%, B不大于 0.01%, Ca为 0.0005~0.01%, REM 为 0.005~ 0.05%其余为 Fe 作为主要成分, 其 特征在于,上述钢坏在终轧温度为(Ar3-50℃)~(Ar3+120℃)温度范 围内完成热轧工序,并在热轧后在冷却工位上以平均冷却速度 5℃/s 进 行冷却。然后将钢板在不高于500℃的温度下卷绕成捆。
 - (7)按照上面(6)所述的制造在动态变形中具有高的流变应力的高强

度热轧钢板的方法, 其特征在于, 在上述热轧的终轧温度为(Ar_3 -50°)~(Ar_3 +120°C)范围内进行热轧, 使其冶金参数 A 满足下列不等式(1)和(2), 然后在输出辊道上以平均冷却速度 \geq 5°C/s冷却, 再将钢板卷绕, 使上述的冶金参数 A 与卷绕温度(CT)满足下列不等式(3):

 $9 \le \log A \le 18 \tag{1}$

 $\Delta T \leq 21 \times \log A - 178 \tag{2}$

 $6 \times 1 \operatorname{ogA} + 312 \le \operatorname{CT} \le 6 \times 1 \operatorname{ogA} + 392 \tag{3}$

(8). 按照本发明的制造在动态变形时具有高流变应力的生产高强 度冷轧钢板的方法,所述钢板在动态变形过程中具有高的流变应力,其 中上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的 每一种都是主要相,与含有 3~50% 体积百分数的残留奥氏体的第三相 混合组成的复合显微组织,其中,在等效应变为>0~≤10%进行预变形 后以应变速率 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 $5 \times 10^2 \sim 5 \times 10^3$ (1/s)进行变形时测定 的动态拉伸强度 σ_d 之间的差值即 σ_d - σ_s 为 \geqslant 60MPa, 而在应变速率范 围为 $5 \times 10^2 \sim 5 \times 10^3$ (1/s) 变形时等效应变为 $3 \sim 10\%$ 的流变应力的平 均值σ_{dyn}(MPa)与在应变速率范围 5×10⁻⁴~5×10⁻³进行变形时等效应 变为 3~10%的流变应力的平均值σ_{st}(MPa)之间的差值满足如下不等 式: (σ_{dyn}-σ_{st}) ≥-0.272×TS+300, 式中TS(MPa)是按应变速率范围 5×10-4~5×10-3 (1/s)进行静态拉伸试验时测定的最大应力,上述钢板 在应变为5~10%的加工硬化系数≥0.130,上述方法的特征在于,将一 种连续铸造钢坯直接从铸造步骤送到热轧步骤,或者经过再加热后进行 热轧,上述的钢坯含有如下成分(wt%): C 0.03~0.3%, Si+A1 或其中一 种加入总量为 0.5~3.0%, 如果需要, 加入 Mn、Ni、Cr、Cu 和 Mo 中的 一种或几种, 总加入量为 0.5~3.5%, 如果需要, 再加入 Nb、Ti、V、P、 B、Ca和 REM 中的一种或几种,其中 Nb、Ti和 V 中的一种或几种的总量 为不大于 0.3%, P不大于 0.3%, B不大于 0.01%, Ca 为 0.0005~0.01 %, REM 为 0.005~0.05%其余为 Fe 作为主要成分,上述铸坯从浇铸步 骤直接供到热轧步骤,或在再加热后进行热轧,将上述热轧后卷绕的钢 板进行酸洗,然后进行冷轧,在制备最终产品的连续退火步骤的退火过

程中,在 $[0.1 \times (AC_3-AC_1)+AC_1 \subset]$ ~ $(AC_3+50 \subset)$ 的温度下退火 $10 \sec \sim 3$ min, 然后按第一冷却速度为 $1 \sim 10 \subset /$ sec 冷却到第一冷却停頓温度 $550 \sim 720 \subset)$,再按第二冷却速度 $10 \sim 200 \subset /$ sec 冷却至第二冷却停頓温度 $200 \sim 450 \subset)$ 然后在 $200 \sim 500 \subset$ 保温 $15 \sec \sim 20$ min, 再冷却至室温。

(9) 按照上面(8) 所述的制造在动态变形过程中具有高的流变应力的 可压制成形的高强度冷轧钢板的方法,上述冷轧钢板的显微组织是一种 上述钢板最终状态的显微组织是一种由铁素体和/或贝氏体,上述的每 一种都是主要相,与含有3~50%体积百分数的残留奥氏体的第三相混 合组成的复合显微组织, 其中, 在等效应变为>0~ ≤ 10%进行预变形后 以应变速率 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s)进行变形时测定的静态拉伸强度 σ_s 与在上述预变形后按应变速率 5×102~5×103 (1/s)进行变形时测定的 动态拉伸强度 $σ_d$ 之间的差值即 $σ_d$ - $σ_s$ 为≥ 60MPa,而在应变速率范围 为 $5 \times 10^2 \sim 5 \times 10^3$ (1/s) 变形时等效应变为 $3 \sim 10\%$ 的流变应力的平均 值σ_{dvn}(MPa)与在应变速率范围 5×10⁻⁴~5×10⁻³进行变形时等效应变 为 3~10%的流变应力的平均值 $\sigma_{st}(MPa)$ 之间的差值满足如下不等式: (σ_{dyn}-σ_{st}) ≥ -0.272 × TS + 300, 式中 TS (MPa) 是接应变速率范围 5 × 10⁻⁴~5×10⁻³ (1/s)进行静态拉伸试验时测定的最大应力,另外,上述 钢板在 5~10% 应变时的加工硬化系数≥0.130,上述方法的特征在于, 在制备最终产品的上述连续退火步骤的退火过程中, 先在 0.1× (AC3-AC₁·)+AC₁℃)~(AC₃+50℃)的温度下退火 10sec~3 min, 然后按第一冷 却速度1~10℃/sec 冷却至550~720℃范围内的第二次冷却开始温度 Tq,而后,按第二冷却速度 10~200℃/sec 冷却至从取决于成分和退火 温度T。的温度Tan至500温度范围内的第二冷却停顿温度Tan然后在(Ta-50 C)~500℃温度范围内的 Toa 温度保温 15sec~20 min, 再冷却至室温。

下面结合附图说明本发明, 附图中:

- 图 1 是本发明的部件吸收能 Eab 与拉伸强度 (TS) 的关系图;
- 图 2 是一种用于测量图 1 的部件吸收能的成形件的简图;
- 图 3 是应变为 5~10% 时钢板的加工硬化系数与动态能吸收 (J) 的 关系图;

图 4a 是测量图 3 的动态能吸收的冲击挤压试验所用的试件 (帽罩

图 4b 是图 4a 用的试件的剖视图;

图 4c 是冲击挤压试验方法的示意图;

图 5 是 TS 与 (σ_{dyn} - σ_{st}) 值的关系图, σ_{dyn} 是按 5×10^2 - 5×10^3 (1/s) 应变速率变形时等效应变 $3 \sim 10\%$ 范围下的流变应变的平均值,而 σ_{st} 是按 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s) 应变速率变形时等效应力 $3 \sim 10\%$ 下的流变应力的平均值,上述 (σ_{dyn} - σ_{st}) 是本发明冲击能吸收性能的指标;

图 6 是应变为 5~10%的加工硬化系数与 TS(拉伸强度)× T. EL(总伸长率)值的关系图;

图7是AT与本发明热轧步骤的冶金参数A的关系图;

图 8 是卷绕温度 CT 与本发明的热轧步骤的冶金参数 A 的关系图;

图 9 说明本发明的连续退火步骤中的退火过程;

图 10 是在本发明的连续退火步骤中第二次冷却停顿温度(T_e)与随后的保持温度 T_{oa} 的关系图。

碰撞冲击能吸收部件例如汽车等的前端部件是通过对钢板进行弯曲或压力加工的方法制成的。部件经过上述方法加工后,通常要经过汽车碰撞冲击试验,然后上漆和烘干。因此,要求钢板在加工成部件并上漆和烘烤后具有高的冲击能吸收特性。但是,现在已不必努力寻求作为实际部件的具有优良冲击能吸收特性的钢板,而是要同时考虑由于成形而增大的形变应力和由于高应变速率而增大的流变应力。

由于本发明人多年来研究能满足上述要求的用作冲击吸收部件的高强度钢板,故而发现,在用于制造上述压力加工成形件的钢板中夹入适量的残留奥氏体是获得具有良好的冲击能吸收特性的高强度钢板的有效手段之一。具体说来,业已发现,当理想的显微组织是一种复合组织时在动态变形时便具有高的流变应力,上述的复合组织含有很容易由各种置换元素固溶强化的铁素体和/或贝氏体(每一种都作为主要相)和3~50%(体积)的在变形过程中会转变成强硬的马氏体的残留奥氏体的第三相。另外还发现,只要满足特殊条件,在原始显微组织的第三相中存在马氏体的复合组织也可获得在动态变形中具有高的流变应力的压制成形的高强度钢板。

本发明人在上述发现的基础上经过进一步的试验和研究后发现,冲击吸收件(例如前端部件)压制成形的相应预变形量根据部件截面大小的不同有时可达到 20%以上(最大值),但也发现,截面的大部分经受>0~ < 10%的等效应变,因此在求出上述范围内预变形的影响后,可以估计部件在预变形后的整体性能。因此,按照本发明,选择>0~ < 10%

等效应变下的变形作为部件加工时作用在它们上的预变形量。

图 1 示出用各种钢材(下面要谈到)成形的部件的碰撞吸收能 E_{ab} 与材料强度 S (TS)的关系。部件的吸收能 E_{ab} 就是用一个质量为 400kg 的重物以 15m/s 的速度沿部件的长度方向(图 2 箭头方向)撞击成形件(例如图 2 所示的部件),而使其压扁程度达 100mm 时的吸收能。图 2 所示的成形件是用 2.0mm 厚的钢板制成的帽罩形件 1 制备的,通过点焊将同一厚度的同种钢板 2 固定到帽罩形件 1 上,上述帽罩形件 1 的转角半径为 2 mm。标号 3 示出点焊部位。从图 1 可看出,尽管数据分散,部件吸收能 E_{ab} 还是倾向于随普通拉伸试验测出的拉伸强度 (TS)的提高而增大。对于图 1 所示的每种材料,测出其在等效应变为>0~ \leq 10%下进行预变形后按应变速率范围为 $5 \times 10^{-4} \sim 5 \times 10^{-3}$ (1/s)进行变形时的静态拉伸强度 σ_{s} ,和按应变速率范围为 $5 \times 10^{2} \sim 5 \times 10^{3}$ (1/s)进行变形时的动态拉伸强度 σ_{d} 。

因此,可以按(σ_d - σ_s)进行分类。图 1 符号的意思是:〇代表任何部位的预变形处于>0~ \leq 10%范围内(σ_d - σ_s) \leq 60MPa 的情况;●代表全部预变形处于上述范围时(σ_d - σ_s) \geq 60MPa和预变形为 5% 时 60MPa \leq (σ_d - σ_s) \leq 80MPa 的情况;■代表全部预变形处于上述范围时(σ_d - σ_s) \leq 60MPa 和预变形为 5% 时,80MPa \leq (σ_d - σ_s) \leq 100MPa 的情况;而 \leq 代表全部预变形处于上述范围时(σ_d - σ_s) \leq 60MPa 和预变形为 5% 时 (σ_d - σ_s) \leq 100MPa 的情况。

而且,在所有的预变形处于>0~ \leq 10% 时 (σ_d - σ_s) \geq 60MPa 的情况下,部件碰撞时的吸收能 E_{ab} 大于从材料强度 S (TS) 预测的值,因此,这些钢板作为碰撞冲击吸收件时具有良好的动态变形性能。上述的预测值是图 1 曲线中 E_{ab} =0.062 $S^{0.8}$ 处所示的值,因此,按照本发明,(σ_d - σ_s)为 60MPa 或更高值。

动态拉伸强度通常以静态拉伸强度(TS)的幂的形式表示,动态拉伸强度与静态拉伸强度之差随静态拉伸强度(TS)的提高而减小。但是,从重量随材料的强化而减轻的观点看,动态拉伸强度与静态拉伸强度(TS)之间较小的差异使通过材料替换来显著改善冲击吸收特性的前景暗淡了,所以要减轻重量更难以实现。

另外,冲击吸收件例如前端部件的截面通常是帽罩形的,本发明人通过分析这类部件由于高速碰撞而压扁时的变形情况发现,尽管进行变形时的最大应变高达 40%以上,但是,从高速应力 - 应变图看,总吸收能的至少 70%是在 10%或更低的应变范围中被吸收的。因此,用高速动态变形为 10%或更低时的流变应力作为高速碰撞能吸收性能的指标。具体地说,由于在 3~10% 范围内的应变量极为重要,所以冲击能吸收性能所用的指标是当在应变速率范围为 5×10²-5×10³(1/s)下进行高速变形时等效应变范围为 3~10%的平均应力 σ dyn。

高速变形时发生 3~10% 应变的平均应力 o dyn 随钢板预变形前或焙 烧处理前的静态拉伸强度的提高而增大[最大应力: 即在应变速率范围 5 \times 10^{-4} ~ 5×10^{-3} (1/s) 的静态拉伸试验中测出的拉伸强度 TS (MPa)]。因 此,提高钢板的静态拉伸强度(TS)直接有利于改善部件的冲击能吸收性 能。但是,提高钢板的强度会导致部件成形性能变差而难以使部件获得 所需的形状。因此,希望钢板最好在具有相同拉伸强度(TS)的同时具有 高的 σ_{dyn} 。具体地说,由于部件成形时的应变量通常为 10% 或更低,所 以,从改善成形性能的观点看,使低应变区的应力低是很重要的,这就 是部件成形过程的成形性能(例如压制成形性能)的指标。因此可以说, 从静态观点看, σ _{dyn} (MPa)与在应变速率范围为 5×10⁻⁴~5×10⁻³(1/s) 进行变形时发生 3~10%等效应变的流变应力的平均值 σ st (MPa)之间的 差异较大将可获得好的成形性能,而从动态观点看,将可获得较高的冲 击能吸收性能。从上述关系可以看出,具体满足关系式(σ_{dyn}-σ_{st})≥ -0.272×TS+300(如图 5 所示)的钢板作为实际部件时比其他的钢板 具有更高的冲击能吸收性能,而且,在不增加部件总重的情况下,可以 改善冲击能吸收性能,这就可以提供在动态变形时具有高的流变应力的 高强度钢板。

本发明人还发现,为了改善反碰撞安全性,可对(σ_d-σ_s)较高的钢板增大其压制成形后的加工硬化系数。这就是说,通过如上所述控制钢板的显微组织,从而使应变率为 5%~10%的加工硬化系数至少为 0.130 (最好是至少为 0.16)便可提高反碰撞安全性。换言之,从图 3 所示的作为汽车部件的反碰撞安全性指标的动态能吸收性能与钢板加工硬化系数之间的关系看,当加工硬化系数增大时,动态能吸收性能就提高,这意味着只要屈服强度值相等,便可根据作为汽车部件反碰撞安全性指标的钢板加工硬化系数进行正确的评价。加工硬化系数增大可抑制钢板截面缩小,并改善由"拉伸强度×总伸长率"表示的成形性能。

图 3 所示的动态能吸收值是用冲击挤压试验法按下列方式测定的。 具体地说,将钢板加工成例如图 4b 所示的试片,并用尖部半径为 5.5mm 的焊条在 0.9 倍于冲击电流的电流下对试片点焊,焊点 3 之间距为 35mm,制成一个带有固定在两个端件 1 之间的试件 2 的工件(帽罩形的,如图 4a 所示),然后,在 170℃进行烘烤和涂漆处理 20 分钟,再将一个大约 150Kg 的重物 4 (见图 4C) 从高约 10 m处落下,使放置在具有止动块 6 的机座 5 上的上述工件沿其长度方向压扁,从相应的载荷位移图的面积计算出位移为 0~150mm 的变形功,从而算出动态能吸收值。

可接照钢板加工成 JIS-5 试件(量规长度: 50mm, 平行边宽: 25mm) 并接 0.001/s 应变速率进行拉伸试验时的加工硬化系数(应变为 5~10%的 n值)算出钢板的加工硬化系数。

下面说明本发明钢板的显微组织。

当钢板中存在适量的残留奥氏体时,在变形(成形)过程中受到的应变会使残留奥氏体转变成很硬的马氏体,并因此而具有增大加工硬化系数和由于控制截面的缩小而改善加工成形性能的效果。适量的残留奥氏体的量最好为3%~50%,具体地说,如果残留奥氏体的体积百分数小于3%,制成的部件在受到碰撞变形时就没有良好的加工硬化性能,并且变形载荷保持在低水平,从而使变形功低,因此,动态能吸收值较低,不可能改善反碰撞安全性,而且反截面缩颈的效应也不足,使其不可能获得高的"拉伸强度×总伸长率"值。另一方面,如果残留奥氏体的体积百分数大于50%,则仅仅在轻微的压制成形应变下就会连续发生

加工诱发的马氏体转变,可以肯定也不能改善"拉伸强度×总伸长率", 田为在冲孔时发生的显著硬化使扩孔比变小,因此,即使部件可以压制

因为在冲孔时发生的显著硬化使扩孔比变小,因此,即使部件可以压制成形,压制成形的部件在承受碰撞变形时也不可能具有良好的加工硬化性能。根据上述观点,确定了上述的残留奥氏体含量范围。

除了上述的残留奥氏体体积百分数为 3~50%的条件外,另一个必需的条件是残留奥氏体的平均晶粒直径应为不大于 5µm,最好是不大于 3µm。即使满足残留奥氏体体积百分数为 3~50%,但平均晶粒直径大于 5µm 也是不可取的,因为这将阻止残留奥氏体在钢板中的细小弥散分布,从而部分地降低了由残留奥氏体的特征所起的有利作用。另外还发现,在显微组织中,当残留奥氏体的上述平均晶粒直径与作为主要相的铁素体或贝氏体的平均晶粒直径之比不大于 0.6,并且主要相的平均晶粒直径不大于 10µm(最好为不大于 6µm)时,钢板就具有良好的反碰撞安全性和加工成形性。

本发明人还发现,对于相同的拉伸强度(TS:MPa)在等效应变范围 为 3~10% 时上述平均应力(σ_{dyn} - σ_{st})的差随着钢板在加工成部件之前 所含的残留奥氏体中的固溶碳[C]的含量(重量%)和钢板的平均 Mn 当 量 Mn eq (以 Mn eq=Mn+(Ni+Cr+Cu+Mo) 1/2 表示) 而变化。残留奥氏体 中的碳含量可通过 X 射线衍射和穆斯鲍尔光谱测定法试验测定。例如, 可通过日本钢铁学会杂志 206 卷 (1968 年) 第 60 页报导的方法由采用 Mo-Kd射线的 X 射线衍射测出的铁素体的(200)面、(211)面和奥氏体的 (200)面、(220)面和(311)面的积累反射强度计算出来。根据本发明人 获得的试验结果,还发现: 当由残留奥氏体的固溶碳[C]含量和由加入 钢板中的置换合金元素确定的 Mn 当量 Mn eq (两者均由上述方法测得) 算出的 M 值 (该 M = 678 - 428 × [C]-33Mn eq) 至少为 - 140 并小于 70 时,钢板在>0~≤10%的等效应变的预变形后的残留奥氏体体积百分数 至少为 2.5%, 并且, 10%等效应变后的残留奥氏体体积百分数 V(10) 与原始的残留奥氏体体积百分数 V(0)之比即 V(10):V(0) 至少为 0.3, 故 在相同的静态拉伸强度(TS)下具有大的(σ_{dm}-σ_{st})值。在此情况下, 由于残留奥氏体在 M>70 时的低应变范围内转变为硬的马氏体,故也增 加对成形性能有影响的低应变区的静态应力,结果,不仅使成形性能例

如压制成形性能变差,而且使 $(\sigma_{dyn} - \sigma_{st})$ 值变小,这就不可能达到 既有满意的高成形性能,又有高的冲击能吸收性能,因此,M值设定为<70。再者,当 M 小于 -140 时,残留奥氏体的特变仅限于高应变区,尽管有满意的成形性能,但得不到增大 $(\sigma_{dyn} - \sigma_{st})$ 值的效果,因此 M 值的下限设定为 -140。

关于残留奥氏体的分布位置,由于软的铁素体通常易接受变形发生的应变,故与铁素体不相邻的残留γ(奥氏体)不易发生应变,因此在大约5~10%的变形下不能转变成马氏体,由于有这种较小的影响,故残留奥氏体的分布位置最好是与铁素体相邻。为此,铁素体的体积百分数需要至少为40%,最好为至少60%。如上所述,由于铁素体是显微组织中最软的基体,因此它是决定钢板成形性能的一个重要因素。其体积百分数最好应处于预定值的范围内。此外,增加铁素体的体积百分数和长细比对于提高未转变的奥氏体的碳含量并使之细小分散,从而也提高残余奥氏体的体积百分数和长细比是有效的,这将有益于改善钢板的反碰撞安全性和成形性。

下面说明具有上述显微组织和各种特征的高强度钢板的化学组分及其含量范围。本发明所用的高强度钢板是含有如下成分(按重量百分数)的高强度钢板: C 0.03~0.3%; Si 和 Al 中的一种或两种,总量为 0.5~3.0%; 如果需要的话,加入 Mn、Ni、Cr、Cu 和 Mo 中的一种或几种,其总量为 0.5~3.5%,其余为 Fe 作为主体组分,或者,本发明的高强度钢板是由按需要进一步添加下列组分中的一种或几种到上述高强度钢板中而使其具有高的抗动态变形性能的高强度钢板,所述组分是 Nb、Ti、V、P、B、Ca 和 REM (稀土金属),Nb、Ti 和 V 中的一种或几种加入的总量不大于 0.3%; P 的加入量不大于 0.3%; B 不大于 0.01%; Ca 加入量为 0.0005%~0.01%; REM 为 0.005~0.05%,其余为 Fe 作为主体组分。下面讨论上述的化学元素及其含量(全部为重量百分数)。

C: C是室温下稳定奥氏体的最便宜的元素, 因此有益于奥氏体存留所需的稳定性, 所以可认为 C是本发明的最重要的元素。钢板中的平均 C含量不仅影响室温下可确保的残留奥氏体的体积百分数, 而且还可通过在生产过程的热处理加工中提高它在未转变的奥氏体中的含量而提

高残留奥氏体在加工时的稳定性。但是若 C 含量少于 0.03%, 就不能保证最终残留奥氏体的体积百分数至少为 3%, 因此确定 0.03%为 C 含量的下限。另一方面,当钢板的平均 C 含量增加时,可得到的残留奥氏体的体积百分数也增加,这就使残留奥氏体的稳定性由于残留奥氏体体积百分数的增大而提高,尽管如此,若钢板的 C 含量太高,不仅使钢板的强度超过所需的水平而有损于压制加工等的成形性能,而且也减小了与静态强度的提高有关的动态应力的增大,与此同时,可焊性降低也限制了钢板用于制作部件,所以将碳含量的上限确定为 0.3%。

Si, Al: Si和 Al 它们都是稳定铁素体的元素。用于增加铁素体的 体积百分数,改善钢板的加工性。另外,Si和Al都抑制渗碳体的产生, 从而使C有效地分布在奥氏体内。因此,添加这两个元素对于在室温下 残留适量的奥氏体是重要的。除 Si 和 Al 以外,具有抑制渗碳体的产生 的作用的其它添加元素还有 P、Cu、Cr、Mo 等,适量地添加这些元素也 可望得到同样的效果。但是,如果 Si 和 Al 中的一种或两种的加入总量 少于 0.5% 时, 抑制渗碳体产生的作用将不足够, 从而使 C 形成碳化物 而浪费了大部分加入钢中的对稳定奥氏体最为有效的 C, 这样, 将不能 保证本发明所要求的残留奥氏体的体积百分数,或者,使保证得到残留 奥氏体所需的生产条件不能满足大批生产过程的条件,因此确定其下限 为 0.5%。 另外, 如果 Si 和 Al 中的一种或两种的总量超过 3%, 铁素 体或贝氏体的主要相将变得硬而脆,不仅会妨碍流变应力随应变速率的 增加而增大,而且也会导致钢板的加工性和韧性的降低,使钢板的成本 提高,并且使化学处理等表面处理的特性变得很差,因此,将其上限规 定为 3.0%。在要求特别好的表面性能的情况下, 可加入 Si≤0.1% 避免 产生 Si 的氧化皮,或者相反地,加入 Si≥1.0% 使整个表面产生不太明 显的 Si 氧化皮。

Mn、Ni、Cr、Cu、Mo: 这五种元素都是稳定奥氏体的元素,都是在室温下稳定奥氏体的有效元素。尤其是,为从焊接性能考虑对C含量有所限制时,加入适量的上述的奥氏体稳定化元素可以有效地促进奥氏体的存留。这些元素也有抑制渗碳体产生的效果,虽然作用不如Al和Si明显,但它们可以帮助C分布到奥氏体中。另外,上述元素可以与Al

和 Si 一起对铁素体和贝氏体混合物产生固溶强化作用,因此,也可以提高高速动态变形时的流变应力。但是,如果上述元素中的任何一种或一种以上的总加入量小于 0.5 %,将不可能得到所需的残留奥氏体量,同时会降低钢板的强度,因此不利于降低有效车辆重量的努力,故确定其下限含量为 0.5%。另一方面,如果上述总量大于 3.5%,铁素体或贝氏体的初生相容易硬化,不仅妨碍流变应力随应变速率的增大而增大,而且导致钢板的成形性和韧性降低,使钢板成本提高,故将其含量的上限规定为 3.5%。

Nb、Ti 或 V: 需要时添加这些元素可通过形成碳化物、氮化物或碳氮化物而提高钢板的强度,但是,如果加入的总量大于 0.3%,会有过量的碳化物、氮化物或碳氮化物沉淀在铁素体或贝氏体初生相的颗粒内或晶界上,在高速变形过程中形成一种运动传递源,并使之不可能在动态变形中达到高的流变应力。另外,碳化物的形成抑制了 C 在残留奥氏体中的分布(这是本发明最重要的方面),因此浪费了 C 的含量,故规定其上限为 0.3%。

B或P: 这两种元素也是需要时才加入的。B对于晶界强化和提高钢板的强度是有效的,但是,如果其加入量大于 0.01%,其作用将达到极限,钢板的强度将提高至高于所需的程度,因此妨碍了高速变形流变应力的增大,并降低零件的成形性能,故将其上限规定为 0.01%。另外,P是获得钢板的高强度和残留奥氏体的有效元素,但若其加入量大于 0.2%,钢板的成本将会提高,铁素体或贝氏体的主体相的流变应力将增大到高于所需的程度,从而妨碍高速变形时流变应力的增大,并导致抗开裂能力、疲劳性能和韧性变差,故规定其上限为 0.2%。从防止降低二次加工性、韧性、可焊性和再循环性的观点考虑,其上限最好为 0.02%。另外,关于不可避免的一种杂质 S 的含量,从防止由于硫化物基夹杂物导致成形性能(尤其是扩孔比)和点焊性能降低看,最好将 S 含量的上限规定为 0.01%。

Ca:加入至少 0.0005%的 Ca 可控制硫化物夹杂物的形状(球化) 而改善钢板的成形性能(尤其是扩孔比),考虑到添加过多会使其作用 达到极限,并且由于上述夹杂物增多有不利影响(降低扩孔比),故将

Ca 的上限規定为 0.01%。另外,由于 REM (稀土金属) 具有与 Ca 类似的作用,故也规定其加入量为 0.005%~ 0.05%。

下面就热轧钢板和冷轧钢板详细说明获得本发明的高强度钢板的制造方法。

作为本发明的制造动态变形时具有高流变应力的高强度热轧钢板和冷轧钢板的方法,将具有上述成分的连续铸造钢锭直接从铸造步骤送至热轧步骤,或者,将连续铸锭再加热后进行热轧。除普通的连续铸造锭坯以外,薄尺寸带材连续铸造锭坯也可以用连续轧制技术(循环轧制)进行热轧,但是,为了避免铁素体体积百分数降低和薄钢板的平均晶粒尺寸粗化,热轧前的钢板厚度(初始钢坯厚度)最好为不小于 25mm。而且,根据上面所述问题,热轧时最终通过轧辊的速度最好是不低于 500米/分钟,更好是不低于 600米/分钟。

具体地说,制造高强度热轧钢板时热轧的终轧温度最好选用如下温度范围: $(Ar_3-50\,\mathbb{C})\sim (Ar_3+120\,\mathbb{C})$ (取决于钢板的化学成分)。低于 $(Ar_3-50\,\mathbb{C})$ 时,会产生变形的铁素体,并且 $(\sigma_d-\sigma_s)$ 、 $(\sigma_{dyn}-\sigma_{st})$ 、 $5\sim 10\%$ 加工硬化性能和成形性能都不好。高于 $(Ar_3+120\,\mathbb{C})$ 时,由于钢板显微组织粗化而使 $(\sigma_d-\sigma_s)$ 、 $(\sigma_{dyn}-\sigma_{st})$ 和 $5\sim 10\%$ 加工硬化性能差,而且从产生氧化皮缺陷考虑,也是不可取的。已按上述方法热轧的钢板在输出辊道上冷却后进行卷绕步骤。输出辊道上的平均冷却速度至少为 $5\,\mathbb{C}/s$,冷却速度取决于所需的残留奥氏体体积百分数。冷却方法可以按恒定的冷却速度进行,或综合考虑不同的冷却速度(其中包括工序过程中的低冷却速度)。

随后,使热轧钢板进入卷绕工序,在 500℃(或更低温度)的卷绕温度下将钢板卷绕起来。卷绕温度高于 500℃时,残留奥氏体的体积百分数较低。正如下面要说明的,对于冷轧钢板,没有具体的卷绕温度限制,这些钢板进一步冷轧后还要进行退火。所以采用普通的卷绕条件没有问题。

按照本发明,特别发现,热轧步骤的终轧温度、终轧引道的温度与卷绕温度之间存在一种关系,也就是如图7和8所示的,存在着主要由终轧温度、终轧引道的温度和卷绕温度决定的特定状态。换句话说,进

行热轧时,当热轧的终轧温度为 $(Ar_3-50℃)$ ~ $(Ar_3+120℃)$ 时,冶金参数 A 满足下列的不等式(1)和(2)。所述的冶金参数 A 可由下式表示:

 $A=\epsilon^* \times \exp\{(75282-42745 \times C_{eq})/[1.978 \times (FT+273)]\}$

式中: FT-终轧温度(℃)

C_{eq} - 碳当量 = C + Mn_{eq}/6(%)

Mn_{eq}-锰当量 = Mn+(Ni+Cr+Cu+Mo)/2(%)

E*-最终轧道的应变速率(S⁻¹)

 $\epsilon^* = (\sqrt[r]{\sqrt{R \times h_1}} \times (1/\sqrt{r} \times In\{1/(1-4)\})$

式中: h1- 最后通过引道的钢板厚度

h2- 最后通过出口的钢板厚度

 $r-(h_1-h_2)/h_1$

R-轧辊半径

V- 最后通过出口的速度

ΔT-终轧温度(终轧时最后通过出口的温度)-终轧时引道的温度(终轧时首先通过引道的温度)

 $Ar_3 - 901 - 325C\% + 33Si\% - 92Me_{eq}$

而且,输出辊道上的平均冷却速度为 5°C/s,卷绕工序最好在冶金参数 A 和卷绕温度(CT)之间的关系满足不等式(3)的条件下进行。

$$9 \le \log A \le 18 \tag{1}$$

$$\Delta T \leq 21 \times \log A - 178 \tag{2}$$

$$6 \times \log A + 312 \le CT \le 6 \times \log A + 392 \tag{3}$$

在上述不等式 (1) 中,从产生残留奥氏体和显微组织的细长比考虑,不允许 $\log A < 9$,否则, $(\sigma_d - \sigma_s)$ 、 $(\sigma_{dm} - \sigma_{st})$ 和 $5\% \sim 10\%$ 的加工硬化系数也不理想。

而且,如果 logA>18,就必须采用笨重的生产设备。

如果不满足不等式(2),残留奥氏体将极其不稳定,从而使残留 奥氏体在低应变区转变成硬的马氏体,并使成形性能、 $(\sigma_d - \sigma_s)$ 、 $(\sigma_m - \sigma_{st})$ 和 5% ~ 10% 加工硬化性能变差。 Δ T 的上限可随 \log A 的增大而较灵活地变化。

如果不满足不等式(3)中卷绕温度的上限,可对残留奥氏体的量

产生不利影响(例如降低其量),如果不满足不等式(3)不卷绕温度的下限,则残留奥氏体将极其不稳定而使残留奥氏体在低应变区转变为硬的马氏体,并使成形性能、 $(\sigma_d-\sigma_s)$ 、 $(\sigma_{dn}-\sigma_{st})$ 和 5% ~ 10% 加工硬化性能变差。卷绕温度的上限和下限可随 logA 的增大而较灵活地变化。

本发明钢板在热轧和卷绕后进行不同步骤的冷轧,冷轧的压下比为 40%或更大,然后对冷轧钢板进行退火。退火最好是通过例如图9所示 的退火过程进行连续退火,并且在连续退火步骤的退火过程中制成最终 产品, 退火温度为: [0.1×(Ac3+Ac1)+AC1(℃)]~(AC3+50℃); 退火时 间为 10sec~3 min; 然后以 1~10℃/sec 的第一冷速冷却至第一冷却停 頓温度范围: 550~720℃, 再以第二冷速 10~200℃/sec 冷却至第二冷 却停頓温度范围 200~450℃,此后,在 200~500℃温度范围保温 15sec~ 20min, 然后冷却至室温。如果根据取决于钢板的化学成分的 AC1和 AC3 温度 (见, 例如 W.C. Leslie, 著"钢铁材料科学", Marazen p, 273) 确定的上述退火温度低于 $0.1 \times (Ac_3 - Ac_1) + AC_1 \subset H$,则在该退火温度下 得到的奥氏体将太少,使最终得到的钢板中不可能稳定地留下残留奥氏 体,因此将退火的下限温度规定为 $0.1 \times (Ac_3 - Ac_1) + AC_1 \mathcal{C}$,而且由于退 火温度高于 AC3+50℃时钢板性能得不到改善, 仅仅是提高了成本, 因 此规定退火温度的上限为 AC3+50℃。为了保证温度均匀并使钢板获得 适量的奥氏体,要求在上述退火温度的退火时间最少为 10sec,但是, 若退火时间超过3分钟,上述的作用将达到极限,并因此而提高成本.

为了促进奥氏体转变为铁素体并使 C集中在未转变的奥氏体内使奥氏体稳定,第一次冷却十分重要。如果冷却速度小于 $1 \, \mathbb{C}$ /sec,将需要较长的生产线,因此,为了防止生产率降低,规定冷却速度下限为 $1 \, \mathbb{C}$ /sec。另一方面,如果冷却速度超过 $10 \, \mathbb{C}$ /sec,铁素体转变就不充分,并且难以保证最终钢板中所需的残留奥氏体量。因此规定冷却速度之上限为 $10 \, \mathbb{C}$ /sec。如果第一次冷却进行到 $550 \, \mathbb{C}$ 以下,则在冷却过程中会产生珠光体,而耗费了奥氏体稳定化元素 C,不能获得足够的最终残留奥氏体量。另外,若冷却进行到不低于 $720 \, \mathbb{C}$,则不能进行足够程度的铁素体转变。

随后的第二次冷却是快速冷却且必须在至少为 $10 \, \mathbb{C}$ / sec 的冷却速度下进行,以便在冷却过程中不发生珠光体转变,也不沉淀出碳化铁。但是,如果冷却速度高于 $200 \, \mathbb{C}$ / sec,将增大设备的负担。另外,如果第二次冷却的冷却停顿温度低于 $200 \, \mathbb{C}$,所有留下的奥氏体将在冷却前转变成马氏体,不可能保证最终的残留奥氏体量。反之,若冷却停顿温度高于 $450 \, \mathbb{C}$,最终的 $(\sigma_d - \sigma_s)$ 和 $(\sigma_{dyn} - \sigma_{st})$ 值将降低。

为了使钢板中留下的奥氏体在室温下稳定,最好使其一部分转变为 贝氏体, 以进一步增加奥氏体中的 C 含量. 如果第二次冷却停顿温度低 于贝氏体转变的保持温度,可将钢板加热到该保持温度。只要这个加热 速度为5℃~50℃/sec, 钢板的最终性能将不会受损。反之, 如果第二 次冷却停顿温度高于贝氏体形成温度,那么,即使在5℃~200℃/sec 的冷却速度下强制冷却至贝氏体形成温度并直接输送到预先调到所需温 度的加热区内,也不会损害钢板的最终性能。另一方面,由于在钢板于 200℃以下保温或于 500℃以上保温的情况下不能获得足够量的残留奥氏 体, 故将保温温度的范围规定为 200~500℃。如果在 200~500℃的温 度下保温不到 15sec, 就不能足够地进行贝氏体转变, 也就不能获得最 终需要的残留奥氏体量,同时,若在上述温度范围保温多于20分钟, 将会在贝氏体转变后发生碳化铁沉淀或珠光体转变,这就耗费了产生残 留奥氏体不可缺少的元素 C, 也就不能得到所需量的残留奥氏体, 因此 规定保温时间范围为 15sec~20min。为了促进贝氏体转变,可使钢板在 200~500℃范围内的保温始终在恒定温度下进行,或者在上述温度范围 内故意变化的温度下进行,而不会损害最终钢板的特性。

按照本发明,退火后的最佳冷却条件是:在 $0.1 \times (Ac_3 - Ac_1) + AC_1$ $\mathbb{C} \sim AC_3 + 50 \mathbb{C}$ 的温度下退火 $10 \sec - 3 \min$,然后以 $1 \sim 10 \mathbb{C}$ /sec 的第一冷却速度冷却到范围为 $550 \sim 720 \mathbb{C}$ 的第二次冷却开始温度 T_q ,然后以第二冷却速度 $10 \sim 200 \mathbb{C}$ /sec 冷却到第二冷却停顿温度 T_e (该 T_e 的范围是从取决于钢的成分和退火温度 T_o 的温度 T_{em} 至 $500 \mathbb{C}$),然后在 (T_e 一 $500 \mathbb{C}$) $\sim 500 \mathbb{C}$ 范围内的温度 T_{oa} 下保温 $15 \sec \sim 20 \min$,再冷却至室温。在上述方法中,在图 10 所示的连续退火循环中的终冷温度 T_e 以钢的成分和退火温度 T_o 的函数表示,冷却是在上述的一个给定的临界值温度和速

度下进行的,而整个温度范围 Toa 由含有终冷温度 Te 的关系式确定。

上述的 T_{em} 是在冷却开始温度 Tq 下残留奥氏体转变为马氏体的开始温度。也就是说, T_{em} 由 T_{em} = T_1 - T_2 而定,或者说, T_{em} 是排除奥氏体中 C 含量影响的值 (T_1) 与表明 C 含量影响的值 (T_2) 之间的差值,其中 T_1 是 由除 C 以外的固溶元素的含量算出的温度,而 T_2 是由残留奥氏体在取决于钢板成分的 AC_1 和 AC_3 温度时的碳含量和取决于退火温度 T_0 的 T_q 算出的温度。 C^*_{eq} 表示在退火温度 T_0 下残留奥氏体中的 C 当量。

 $T_1 = [561-33 \times \{Mn\% + (Ni + Cr + Cu + Mo) / 2] - T_2$

其中T2根据下式和退火温度T。求出,

 $AC_1 = 723 - 0.7Mn\% - 16.9 \times Ni\% + 29.1 \times Si\% + 16.9 \times Cr\%$,

 $AC_3 = 910-203 \times (C\%)^{1/2} - 15.2 \times Ni\%+44.7 \times Si\%+104 \times V\% + 31.5 \times Mo\% - 30 \times Mn\% - 11 \times Cr\% - 20 \times Cu\%+700 \times P\% + 400 \times A1\% + 400 \times Ti\%,$

因此, 当

 $C_{eq}^* = (AC_3 - AC_1) \times C/(T_o - AC_1) + (Mn + Si/4 + Ni/7 + Cr + Cu + 1.5Mo)/6$ 大于 0.6 时, $T_2 = 474 \times (AC_3 - AC_1) \times C/(T_o - AC_1)$,

换言之,当 $T_e \leq T_{em}$ 时,产生的马氏体比所需的量大,不可能保证获得足够量的残留奥氏体,同时也降低了 $(\sigma_d - \sigma_s)$ 和 $(\sigma_{om} - \sigma_{st})$ 值,因此,规定 T_e 的下限为 T_{em} 。 另外,若 T_e 高于 500 $\mathbb C$,就会产生珠光体或碳化铁,这将耗费产生残留奥氏体不可缺少的 C,从而不可能获得所需量的残留奥氏体。如果 $T_{oa} < T_e - 50$ $\mathbb C$,便需要设置附加的冷却设备,并且由于连续退火炉的温度与钢板温度差会造成材料性能数据分散性较大。因此规定 $(T_e - 50$ $\mathbb C$)为下限。 另外,若 T_{oa} 高于 500 $\mathbb C$,将产生珠光体或碳化铁,这将耗费产生残留奥氏体不可缺少的元素 C,也就不可能获得所需量的残留奥氏体。而且,如果在 T_{oa} 保温的时间少于 15 sec,贝氏体转变将不能进行到足够程度,结果,最终残留奥氏体的数量和性能不能达到本发明的目的。

采用上述的钢板成分和制造方法,可以制成在动态变形过程中具有

高的流变应力的可压制成形的高强度钢板,其特征在于,最终产品的钢板的显微组织是铁素体和/或贝氏体(它们中每一种都是主要相)与第三相(包括占体积百分数为 3%-50% 的残留奥氏体)的混合物的复合显微组织,其中,静态拉伸强度 σ_s 与动态拉伸强度 σ_d 之间的差值即(σ_s - σ_d)至少为 60MPa,上述的 σ_s 是以等效应变为>0~10%进行预变形后在应变速率为 5×10^{-4} - 5×10^{-3} (1/s)的条件下变形时测定的,而 σ_d 是在上述的预变形后在应变速率为 5×10^{2} - 5×10^{3} (1/s)的条件下变形时测量的,在应变速率范围为 5×10^{2} - 5×10^{3} (1/s)下进行变形时的 $3\sim10$ %等效应变的流变应力的平均值 σ_{dyn} (MPa)与在应变速率范围为 5×10^{-4} - 5×10^{-3} (1/s)下进行变形时的 $3\sim10$ %等效应变的流变应力的平均值 σ_{st} (MPa)之差值满足下列不等式: σ_{dyn} - σ_{st} σ_{st} 0. σ_{st} 0. σ_{st} 10% 是在静态拉伸试验中于应变速率范围为 σ_{st} 10% 内测量的最大应力, σ_{st} 2% σ_{st} 10% σ_{st} 1

按照本发明的可压制成形的高强度钢板可通过退火、平整、电镀等工序制成任何所需的产品。

按下述方法分析钢板的显微组织。

用 1000 倍的光学金相显微镜鉴定用硝酸乙醇腐蚀液 (Nital) 试剂和日本未审查的专利申请 No. 59-219473 中公开的试剂腐蚀过的薄钢板轧制方向的剖面上的铁素体、贝氏体和其余组织、观察局部位置、测量平均等效圆直径和体积百分数。

用 1000 倍光学金相显微镜测定用日本专利申请 No. 3-351209 公开的试剂腐蚀过的钢板轧制方向剖面上残留奥氏体的平均等效圆直径,并从同一照片观察其位置。

进行 M_0 - K_α X 射线分析时,按下式计算残留奥氏体 (γ) 的体积分数 $(V_\gamma, \%)$:

 $V_{\gamma} = (2/3) \{100/(0.7 \times \alpha(211)/\gamma(220)+1)\} + (1/3) \{100/(0.78 \times \alpha(211)/\gamma(311)+1)\}$

式中 $\alpha(211)$ 、 $\gamma(220)$ 、 $\alpha(211)$ 和 $\gamma(311)$ 表示极点强度。

在用 Cu-Kα X 射线分析由奥氏体的(200)面、(220)面和(311)面的反射角求出晶格常数(单位:埃 A°)时按下式计算残留奥氏体γ中

的 C 含量 (C,, %):

C_v= (晶格常数 - 3.572)/0.033

按下列方法评价钢板性能。

按 JISS(量规长度: 50mm, 平行边宽度: 25mm)以应变速率为 0.001/s 进行拉伸试验, 在测定拉伸强度(TS)、总伸长率(T.E1)和加工硬化系数(应变为 5~10%的n值)后, 计算出 TS×T.E1。

通过用 30°维形穿孔器从无毛刺一侧对一个 20mm 的冲孔进行扩张的办法,测量钢板的翻边伸展性能,并测出裂纹穿透钢板厚度时的孔径(d)与原先孔径(do, 20mm)之间的扩孔比(d/do)。

如果用凿刀凿劈一个用顶部半径为5倍于钢板厚度的平方根值的焊条在0.9倍于冲击电流的电流下焊接的点焊试片时出现剥离开裂,便可 判定其点焊性能不好。

下面通过实例说明本发明。

实例1

将表 1 所列的 15 种钢板接表 2 所列的制造条件加热到 1050~1250 $\mathbb C$, 并进行热轧、冷却和卷绕,制成热轧钢板。如图 3 所示,满足本发明成分条件和制造条件的钢板,按照残留奥氏体中固溶 [C] 和钢中的平均锰当量 Mn eq 算出的 M 值为 \geqslant \Rightarrow \Rightarrow 140~ \leqslant 70, 初始的残留奥氏体的量为 3%~ \leqslant 50%,在预变形后的残留奥氏体量为 \Rightarrow 2.5%,并具有合适的稳定性,表现在经 10% 预变形后的残留奥氏体体积百分数与其初始体积百分数之比 \Rightarrow 0.3。从图 4 可明显看出,满足本发明的成分条件、制造条件和显微组织的钢板都具有良好的反碰撞安全性和成形性能,表现在: $(\sigma_d - \sigma_s) \geqslant 60$; $(\sigma_{dyn} - \sigma_{st}) > (-0.272 \times TS + 300)$; 应变 3%~10%的加工硬化系数 \Rightarrow 0.130,TS \times T.E1 \Rightarrow 20000,同时还具有合适的点焊性能。

实例 2

将表 5 列出的 25 种钢在 Ar_3 或更高温度下进行完全的热轧,冷却后卷绕成捆,经过酸洗后进行冷轧。然后由每一钢种的成分确定其 AC_1 和 AC_3 温度。在按表 6 所列的退火条件加热、冷却和保温后,冷却至室温。如表 7 和 8 所示,满足本发明的成分条件和制造条件的钢板按其残

留奥氏体中的固溶[C]和钢板中平均的 Mn eq 确定其 M 值为》 - 140~ 〈70;应变为 5%~10%的加工硬化系数为》 0.130;预变形后的残留奥氏体量为》 2.5%;其 V (10) / V (0) 》 0.3;TS × T.El 值》 20000,并由于满足 $(\sigma_d - \sigma_s)$ 》 60 和 $(\sigma_{dyn} - \sigma_{st})$ 》 $(-0.272 \times TS + 300)$ 而具有良好的反碰撞安全性和成形性能。

如上所述,按照本发明可以以经济而稳定的方式为原先未获得良好 的反碰撞安全性的汽车提供高强度热轧钢板和冷轧钢板,从而提供了范 围十分广泛的应用高强度钢板的目标和条件。

表 1 钢的化学成分

表1 钢的化	字成为	1	2	3	4	5	6	7	8
и, у	С	0.15	0.15	0.15	0.15	0.11	0.16	0.09	0.10
	Si	1.45	1.45	1.45	1.45	1.36	1.60	2.10	2.00
	Mn	0.99	0.79	0.69	0.79	1.54	0.90	1.20	1.10
	P	0.012	0.012	0.012	0.012	0.020	0.020	0.009	0.015
	S	0.002	0.005	0.002	0.002	0.003	0.003	0.001	0.002
	Al	0.02	0.02	0.02	0.02	0.20	0.01	0.02	0.02
	N	0.003	0.002	0.003	0.002	0.003	0.003	0.002	0.003
	Al+Si	1.47	1.47	1.47	1.47	1.56	1.61	2.12	2.02
	Ni		0.4						
/1. »«> /\	Cr			0.6					
化学成分	Cu				0.4				
(重量%)	Мо					0.4			
	Nb						0.04		
	Ti							0.06	
	V								
	В								ļ
	Ca		0.004						
	REM			0.010		ļ <u></u>			
	*1	0.99	1.19	1.29	1.19	1.94	0.90	1.20	1.10
	Ceq	0.32	0.32	0.32	0.32	0.40	0.31	0.29	0.28
	Mneq	0.99	0.99	0.99	0.99	1.74	0.90	1.20	1.10
相变温度	Acl	755	750	768	757	746	760	771	769
	Ac3	868	868	871	866	879	875	932	904
(°C)	Ar3	809	809	809	809	750	819	831	833
类型		A	A	A	A	A	A	A	В

10

5

A: 本发明 B: 比较实施例 *1: Mn + Ni + Cr + Cu + Mo

表 1 钢的化学成分 (续)

1 钢的化学	足成分(奨)		 7			14	15
钢号		9	10	11	12	13		0.19
	С	0.10	0.10	0.15	0.15	0.35	0.15	
	Si	2.00	2.00	1.98	0.01	1.50	0.30	1.10
	Mn	1.10	1.10	1.76	1.00	1.90	1.48	1.50
t	P	0.015	0.015	0.016	0.015	0.015	0.010	0.090
	s	0.002	0.002	0.001	0.002	0.003	0.003	0.003
	Al	0.02	0.02	0.02	1.70	0.03	0.05	0.04
	N	0.003	0.002	0.002	0.002	0.003	0.003	0.005
	Al+Si	2.02	2.02	2.00	1.71	1.53	0.35	1.14
	Ni						 -	
化学成分 (重量%)	Cr				<u> </u>		 	
	Cu					 	 	
	Мо			ļ	<u> </u>	 	 	
	Nb	<u> </u>			 	 		
	Ti					 	 	 -
	V			0.06	 	 	 	+
	В				0.001	 	 	
	Ca					 		-
	REM						1	1.50
	*1	1.10	1.10	1.76				
	Ceq	0.28	0.28	0.44				
	Mneq	1.10	1.10	1.76	1.00			
相变温度 (°C)	Ac1	769	769	762	713	746	716	739
	Ac3	904	904	875	871	802	803	834
	Ar3	833	833	756	761	662	726	
类!		A	A	A	A	A	A	A

A: 本发明

B:比较实施例

带底横线的数据超出本发明的范围

*1: Mn+Ni+Cr+Cu+Mo

表2 钢板的制造条件

4	月号	1	2	3	4	5	6	7	8
	终轧温度 C	905	910	800	790	860	840	795	960
	初始钢板 厚度(mm)	26	27	27	26	28	28	35	20
热轧 条件	最终轧道轧辊 速度(米/分钟)	600	600	600	600	700	700	500	400
	最终钢板厚度	1.8	1.8	1.8	1.8	1.4	1.4	2.2	2.2
	应变速率 (1/s)	150	150	150	160	190	190	100	90
	计算值 (log A)	13.65	13.60	14.77	14.91	13.50	14.46	14.87	13.15
Ì	AT (°C)	100	80	120	125	90	110	120	120
	不一致性 (2)	0	0	o	o	٥	0	0	×
冷却条件	平均冷却 速度(℃/s)	40	35	80	90	50	90	60	50
	注	*1	*1						ļ
卷绕	卷绕温度 (℃)	405	410	475	450	440	420	425	505
条件	不一致性 (3)	0	0	٥	0	0	•	0	x

带有底横线的数据超本发明范围。 *1: 在750-700℃下以15℃/sec速度冷却

表2 钢板的制造条件(续)

	钢号	9	10	11	12	13	14	15
	终轧温度 ℃	<u>730</u>	900	870	875	780	840	790
·	初始钢板 厚度(mm)	26	25	26	28	30	32	55
;	最终轧道轧辊 速度(米/分钟)	500	500	700	800	800	700	1000
	最终钢板厚度 (mm)	2.2	2.2	1.2	1.2	1.2	1.2	1.2
热轧 条件	应变速率 (1/s)	100	100	200	230	240	210	300
<i>3</i> , 11	计算值 (log A)	15.77	13.77	13.07	14.12	12.09	13.78	14.09
	ΔT (°C)	130	100	85	110	60	90	110
	不一致性 (2)	٥	0	0	0	0	0	0
冷却 条件	平均冷却 速度(℃/s)	60	50	50	55	60	50	100
~,,,,	注							
卷绕 条件	卷绕温度 (℃)	510	<u>555</u>	460	425	395	415	445
	不一致性 (3)	x	x	0	o	0	0	٥

带有底横线的数据超本发明范围。

表3 钢板的显微组织

表3 钢似				- Т	-, 1	- 1	6	7	8	
钢号			1	2	3	4	5	· I		
	名称 等效圆直径 (µm)		铁寮 体	铁囊 体	铁 景	铁素 体	快	体	体体	贝氏 <u>体</u>
主要相			5.1	5.7	3.4	2.9	3.9	3.8	2.6	10.8
铁素体	体积百分	分数(%)	79	76	85	86	82	82	85	39
	等效圆直径 (µm)		2.5	2.7	1.6	1.7	1.9	1.5	1.5	4.9
	与主要相的晶 粒直径之比 C含量(%)		0.49	0.47	0.47	0.59	0.49	0.39	0.58	0.45
			1.35	1.45	1.36	1.42	1.40	1.36	1.41	1.01
残留 奥氏体		未预变形 V (0)	9.2	7.9	10.0	9.1	10.8	12.4	10.3	2.3
	体积 百分数	10%预变形 后V(10)		5.7	7.1	5.8	8.0	8.5	6.6	0.2
		V(10)/ V(0)	0.65	0.72	0.71	0.64	0.74	0.69	0.64	0.09
1	其余的相		В	B+M	B+P	В	В	В	В	P
	计算的M值		68	25	63	38	21	66	35	209
M值	不-	-致性	0	0	0	0	0	0	0	X

带有底横线的数据超出本发明范围。 其余的相:B=贝氏体,M=马氏体,P=珠光体

表3 钢板的显微组织(续)

ACO MITAL	IN AT MY SET SV		<u> </u>					- 1	
	钢号			10	11	12	13	14	15
	名称	铁寮 体	铁票 体	铁寨体	铁素 体	铁寮 体	铁 素	铁素 体	
主要相	等效圆直名	(m m)	转换 <u>的</u>	7.6	3.2	4.9	2.4	2.9	2.5
铁素体	体积百分	数(%)	89	61	60	80	51	41	72
OCACIT .	等效圆直径			1.9	2.4	1.1		1.5	
	与主要相的	5主要相的晶粒之比			0.59	0.49	0.46		0.60
	C含量	(%)			1.30	1.36	1.50		1.32
残留 奥氏体	VII	未预变形 V(0)	0.0	0.0	10.8	8.5	6.1	0.0	13.1
	体积 百分数	10%预变形 后V(10)		0.0	7.0	5.4	3.8	0.0	10.1
		V(10)/ V(0)			0.65	0.64	0.62		0.77
	其余相			P	В	В	B+P	B+P	B+P
					64	63	-27		64
M值		计算值 不一致性			0	0	0		0

带有底横线的数据超出本发明范围。 其余的相: B=贝氏体,M=马氏体,P=珠光体

表4 钢板的力学性能

钢	号	1	2	3	4	5	6	7	8
	TS (MPa)	623	631	638	645	670	649	641	657
静态拉伸试验	T.El (2)	38	37	39	36	38	42	41	30
	5-10% of n value	0.136	0.171	0.162	0.221	0.174	0.149	0.181	0.118
	TSxT.El (MPa)•(Z)	23674	23347	24882	23220	25460	27258	26281	19710
	预变形的 方法	C	С	L	С	С	Ċ	С	С
预变形和 BH处理	预变形等效 应变(%)	5 z	52	57	3%	5 Z	72	5 z	5 Z
	BH处理	是	否	是	是	是	是	是	是
	最大拉伸 强度 o s (MPa)	643	651	658	665	690	669	661	667
在预变形 /BH 处理后	3~10%应变 的静态平均 流变应力 σ st (MPa)		605	612	618	642	622	615	654
进行静态和 动态拉伸 试验(应变	最高动态 强度 o d (MPa)	776	781	786	792	814	795	788	711
速率 1000/s)	的动态平均 流变应力	I	771	.778	785	810	789	781	710
	odyn(MPa) 技式	133	130	128	127	124	126	127	44
	(σd-σs) 按式*1	34	37	40	42	51	43	41	<u>-65</u>
44 (1) 14 (2)	焊接	好	好	好	好	好	好	好	好
其他性能	d/do	1.56	1.37	1.47	1.27	1.42	1.47	1.53	1.53

带有底横线的数据超出本发明范围。 *1: (σ dyn-σ st) - (- 0.272×TS + 300) C=沿C方向的单轴拉伸

D=沿L方向的单轴拉伸

表4 钢板的力学性能(续)

TY WITH HI	刀字性能(狭)					33	14	15
钢	号	9	10	11	12	13		
	TS (MPa)	565	570	837	604	1001	643	639
静态拉伸	T.E1 (2)	22	31	31	40	21	24	39
试验 (应变速率	5~10%n值	0.12 5	0.121	0.156	0.152	0.132	0.114	0.162
0.001/s)	TSxT.El (MPa) • (Z)	1243	17670	25947	24160	21021	15432	24921
	预变形 方法	С	С	С	E	С	E	O
预变形和 BH处理	预变形 等效应变	52	52	5%	52	52	5%	52
	BH处理	有	有	有	有	有	有	有
	最高静态强度 σs(MPa)	615	601	857	624	938	653	659
经预变形 和BH处理 后的静态	3~10%应变的 静态平均流变 应力σst(MPa		589	797	580	882	633	613
和动态拉 伸试验 (应变速率	最高动态强度		660	936	761	1056	700	788
1000/s)	3~10%应变的 动态平均流变 应力 o dyn(mPs	636	637	930	744	1055	698	779
	按式	56	59	79	137	118	47	129
	(o d- o s) 按*1式	-119	-97	61	28	146	-61	40
	焊接	好	好	好	好	好	好	好
其他性能	d/do	1.20	1.51	1.31	1.54	1.10	1.62	1.41

带有底横线的数据超出本发明范围。 *1: (σdyn-ust) - (-0.272 x TS + 300) C =沿C方向单轴拉伸 E =等双轴拉伸

表 5: 钢的化学成分

衣り: 1771 11	对化子及	<i>74.73</i>							
钢号		16	17	18	19	20	21	22	23
	С	0.05	0.12	0.20	0.26	0.12	0.12	0.12	0.12
	Si	1.20	1.20	1.20	1.20	2.00	1.80	1.20	1.20
	Mn	1.50	1.50	1.50	1.50	0.50	0.15	1.00	0.15
	P	0.010	0.012	0.008	0.007	0.008	0.007	0.013	0.012
	s	0.003	0.005	0.002	0.003	0.003	0.002	0.003	0.005
	Al	0.04	0.05	0.04	0.05	0.04	0.03	0.05	0.04
	N	0.003	0.002	0.003	0.002	0.003	0.003	0.002	0.003
	Al+Si	0.24	1.25	1.24	1.25	2.04	1.83	1.25	1.24
	Ni				-	0.8			1.5
化学成分	Cr						1.8		
(wt%)	Cu							0.6	
	Мо								0.2
	Nb								
	Ti							ļ	
	V			<u> </u>				<u> </u>	
	В								
	*1	1.50	1.50	1.50	1.50	1.30	1.95	1.60	1.85
	Ceq	0.30	0.37	0.45	0.51	0.27	0.30	0.34	0.29
	Mneq	1.50	1.50	1.50	1.50	0.90	1.05	1.30	1.00
	Acl	742	742	742	742	762	804	747	731
相变温度	Ac3	876	851	830	818	904	898	854	875
(°C)	Ar3	786	764	738	718	845	825	782	810
类型		A	A	A	A	A	A	A	A
1									

A: 本发明

B: 比较实例

带有底横线的数据超出本发明范围。

*1: Mn+Ni+Cr+Cu+Mo

表 5: 钢的化学成分(续)

表 5: 钢片	りんチ	WIT !	次 /					20	- 21
钢号		24	25	26	27	28	29	30	31
	С	0.12	0.10	0.14	0.25	0.15	0.10	0.10	0.10
	Si	1.20	0.50	0.01	1.50	1.00	1.20	1.20	1.20
	Mn	1.20	1.50	1.50	2.00	1.70	1.50	1.50	1.50
	P	0.010	0.013	0.012	0.012	0.100	0.008	0.008	0.008
	S	0.003	0.005	0.003	0.005	0.003	0.003	0.003	0.003
	A1	0.04	1.20	1.50	0.04	0.05	0.04	0.04	0.04
	N	0.003	0.002	0.002	0.002	0.003	0.003	0.003	0.003
	Al+Si	1.24	1.70	1.51	1.54	1.05	1.24	1.24	1.24
	Ni								
化学成分	Cr	2.0							
(重量%)	Cu								
	Мо								
	Nb						0.01		0.02
	Ti							0.02	
	v								0.01
	В				0.002				<u> </u>
	*1	3.20	1.50	1.50	2.00	1.70	1.50	1.50	1.50
	Ceq	0.49	0.35	0.39	0.58	0.43	0.35	0.35	0.35
	Mneq	2.20	1.50	1.50	2.00	1.70	1.50	1.50	1.50
	Acl	779	722	707	745	734	742	742	742
相变温度	Ac3	838	872	850	818	834	857	865	858
(°C)	Ar3	699	747	718	685	729	770	770	770
类型	J	A	A	A	A	В	A	A	A

A: 本发明

B: 比较实例

带有底横线的数据超出本发明范围。

*1: Mn+Ni+Cr+Cu+Mo

表 5: 钢的化学成分(续)

THE LETT	七子风	77 (3	· /						
}	32	33	34	35	36	37	38	39	40
С	0.02	0.35	0.12	0.12	0.10	0.12	0.10	0.12	0.12
Si	1.20	1.00	0.20	3.50	1.50	1.20	1.20	1.50	1.20
Mn	1.50	1.20	1.50	1.50	1.50	1.50	1.50	0.10	1.50
P	0.010	0.008	0.010	0.010	0.250	0.010	0.010	0.010	0.010
s	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.002
Al	0.04	0.05	0.04	0.05	0.04	0.04	0.04	0.05	0.04
N	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.003
Al+ Si	1.24	1.05	0.24	3.55	1.54	1.24	1.24	1.55	1.24
Ni							1.5	0.2	
Cr									
Cu							1.0		
Мо								<u> </u>	
Nb								<u></u>	0.20
Ti							<u> </u>	<u> </u>	0.15
v								<u> </u>	
В						0.012			
*1	1.50	1.20	1.50	1.50	1.50	1.50	4.00	0.30	1.50
Ceq	0.27	0.55	0.37	0.37	0.35	0.37	0.56	0.15	0.37
Mneq	1.50	1.20	1.50	1.50	1.50	1.50	2.75	0.20	1.50
Ac1	742	739	713	809	751	742	717	762	742
Ac3	892	801	806	954	887	851	814	903	911
Ar3	796	710	731	840	780	764	655	893	764
<u>F</u>	В	В	В	В	В	В	В	В	В
	CCSiMn P SAl N Al+ Si Ni Cr Cu Mo Nb Ti V B *1 Ceq Mneq Acl Ac3 Ar3	To 32 C 9.02 Si 1.20 Mn 1.50 P 0.010 S 0.003 Al 0.04 N 0.003 Al+ 1.24 Ni Cr Cu Mo Nb Ti V B *1 1.50 Ceq 0.27 Mneq 1.50 Ac1 742 Ac3 892 Ar3 796	Ti 32 33 33 33 34 35 35 35 35	C 0.02 0.35 0.12 Si 1.20 1.00 0.20 Mn 1.50 1.20 1.50 P 0.010 0.008 0.010 S 0.003 0.002 0.003 A1 0.04 0.05 0.04 N 0.003 0.003 0.002 A1+ Si 1.24 1.05 0.24 Ni Cu Mo Nb Ti W Mneq 1.50 1.20 1.50 Ceq 0.27 0.55 0.37 Mneq 1.50 1.20 1.50 Ac3 892 801 806 Ar3 796 710 731	To 32 33 34 35 C 0.02 0.35 0.12 0.12 Si 1.20 1.00 0.20 3.50 Mn 1.50 1.20 1.50 1.50 P 0.010 0.008 0.010 0.010 S 0.003 0.002 0.003 0.003 Al 0.04 0.05 0.04 0.05 N 0.003 0.003 0.002 0.003 Al ⁺ Si 1.24 1.05 0.24 3.55 Ni Cu Mo Nb Ti Mo *1 1.50 1.20 1.50 1.50 Ceq 0.27 0.55 0.37 0.37 Mneq 742 739<	To 32 33 34 35 36 C 0.02 0.35 0.12 0.12 0.10 Si 1.20 1.00 0.20 3.50 1.50 Mm 1.50 1.20 1.50 1.50 1.50 P 0.010 0.008 0.010 0.010 0.250 S 0.003 0.002 0.003 0.003 0.003 A1 0.04 0.05 0.04 0.05 0.04 N 0.003 0.003 0.002 0.003 0.003 A1+ Si 1.24 1.05 0.24 3.55 1.54 Ni Cu Nb Ti W *1 1.50 1.20 1.50 1.50 Ceq 0.27 0.55 0.37 0.37 <	32 33 34 35 36 37 C 0.02 0.35 0.12 0.12 0.10 0.12 Si 1.20 1.00 0.20 3.50 1.50 1.20 Mn 1.50 1.20 1.50 1.50 1.50 1.50 P 0.010 0.008 0.010 0.010 0.250 0.010 S 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 A1 0.04 0.05 0.04 0.05 0.04 0.04 0.04 N 0.003 0.003 0.002 0.003 0.003 0.003 A1+ 1.24 1.05 0.24 3.55 1.54 1.24 Ni	37 32 33 34 35 36 37 38 C Q.02 Q.35 Q.12 Q.12 Q.10 Q.12 Q.10 Si 1.20 1.00 Q.20 3.50 1.50 1.20 1.20 Mm 1.50 1.20 1.50 1.50 1.50 1.50 1.50 P 0.010 0.008 0.010 0.010 Q.250 0.010 0.010 S 0.003 0.002 0.003	32 33 34 35 36 37 38 39 C Q.Q2 Q.35 0.12 0.12 0.10 0.12 0.10 0.12 Si 1.20 1.00 Q.20 3.50 1.00 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.001

A: 本发明

B: 比较实例的

带有底横线的数据超出本发明范围。

*1: Mn+Ni+Cr+Cu+Mo

表6 钢板制造条件

				9	9	3.0	15	72	23	24	25	26	27	28	
	级 号	91	1	\$	`	3	:		+	T			1	8	
	冷轧压下量(%)	80	80	80	80	9.0	80	80	80	8	8	80	8	2	
; 条 : 年	钢板厚度(mn)	0.8	8.0	8.0	8.0	8.0	8.0	0.8	0.8	8.0	8.0	8.0	8.0	8.0	
	退火温度To(°C)	800	800	800	800	800	850	800	800	190	780	780	780	800	•
	退火时间(s)	90	06	06	06	120	120	96	06	96	8	8	8	8	
	第一冷却速度(℃/s)	5	5	S	5	80	80	5	2	2	S	2	2	80	
巡条 八件	冷却开始温度Tq(℃)	680	680	700	680	680	680	680	650	650	650	650	680	680	
	第二冷却速度(C/s)	100	100	100	80	100	100	100	130	130	100	100	100	100	
	冷却终止温度Te(℃)	007	700	004	430	350	430	400	350	330	400	350	700	300	
		513	512	512	512	531	526	518	528	488	512	512	495	505	
	<u> </u>	0.41	0.53	0.60	↓	0.64	0.64	0.56	0.41	1.22	0.53	0.53	0.92	0.55	
		138	147	144	161	214	116	139	310	300	166	179	248	134	
	计算值 (Tem °C)	374	364	368	351	317	410	379	218	188	345	332	247	371	
	保持温度 Toa(°C)	007	007	005	007	400	430	007	400	300	400	330	007	007	
	保温时间(s)	150	180	180	250	180	180	180	180	180	180	150	180	180	

带有底横线的数据超出本发明范围

表6 钢板制造条件(续)

04	20	1.2	800	90	5	680	100	400	512	0.65	165	346	400	180
39	7.0	1.2	800	06	S	680	100	400	554	0.53	285	270	400	ישר
38	70	1.2	780	06	ا	680	100	430	470	0.66	73	398	430	9
37	80	0.8	800	06	٧	680	100	007	515	0.52	147	364	370	9
36	80	0.8	800	06	S	680	100	400	512	0.59	143	369	400	18
35	80	0.8	850	90	5	680	100	350	512	0.82	200	311	400	3
34	80	0.8	780	06	5	650	100	004	512	0.45	186	326	400	1
33	80	8.0	160	06	S	089	100	350	521	1.29	495	26	350	
32	80	8.0	800	06	5	680	100	400	512	0.35	120	392	004	
31	89	1.2	780	86	5	680	100	007	512	09.0	144	368	007	
30	89	1.2	780	06	S	630	150	400	512	0.62	153	359	400	
29	68	1.2	780	06	80	680	100	400	512	09.0	143	369	007	
倒 号	1 5	钢板厚度(mm)	退火温度で(で)	退火时间(s)	第一冷却速度(C/s)	冷却开始温度Tq(C)	第二冷却速度(°C/s)	冷却终止温度Te(°C)	子質値(T17)	N 并值(Lea*)	: 1 ★ 位 (T2°C)	 	保持温度 Toa(°C)	
4	冷轧	条件				退水	条 (中							

表7 钢板的显微组织

带有底横线的数据超出本发明范围。

表7 钢板的显微组织(续)

0.7	以体	6.2	99	2.2	0.35	1.17	œ	2.2	0.28	æ	127	×
39	以来	10.9	\$8	:	;	;	. 이	0.0	:	æ	:1	×
38	铁琴	5.2 1	32	1.1	0.21	1.01	6	1.9	0.21	ю	154	×
37	教	5.3	59	1.9	0.38 0.36 0.21	1.06	11	2.6	97.0	B	174	×
36	铁素体	6.1	63	2.3	0.38	1.16	2	7.9	0.27	m	134	×
35	贝氏	5.2	51	2.5	0.48	1.20	10	2.7	0.27	B	114	×
34	鉄林	6.8	68	-:	:	:	01	0.0	:1	В	==	×
33	lu	4.5	24	1.1	0.24	1.29	25	6.5	0.26	B+P	88	×
12	ister	10.7	8	2.4	0.22	1.26	-4	0.0	:1	m	8	×
1:1	hilar		72	1.8	0.28	1.56	5	2.7	0.54	m	-39	0
30	13.00	+	69	1.9	0.26	1.40 1.56	7	3.1	0.54 0.44 0.54	m	29	0
) s			74	2.1	0.30 0.26 0.28 0.22 0.24	1.56	S	2.7	0.54	m	-39	0
		 	(%) 禁	等效圆直径 (μm)	与主要相的晶粒 直径之比	(%)	未预变形 V (0)	预 变形10% 后V(0)	V(10)/ V(0)		计算的M值	不一致件
KITACH JE JACATA	i	等效圆直径 (μm)	体积百分数	等效圆直	与主要;	C含量				其余的相	计算	×
AXI MINAHIT	£	上 選 相	铁素体			3	残留 奥氏体					WE

带有底横线的数据超出本发明范围。

表8 钢板力学性能

次の労働の子上記		16	17	18	19	20	21	22	23	77	25	26	27	28
(Pa)	20	995	630	782	911	629	661	623	718	229	288	109	1023	
T.E1 (I) 45	25	Ť.	39	29	56	37	37	42	34	33	44	42	777	27
5 107 of n value 0.243	0.26	7	0.238	0.238	0.256	0.247	0.268	0.277	0.241	0.232	0.251	0.243	0.227	0.211
TSxT.E1 (MPa) • (7) 24570	2457	10	24570	22678	23686	24383	24457	26166	24412	23727	25872	25242	22506	20002
预变形方法 c	U		ပ	7	U	ပ	ບ	ပ	ပ	ല	υ		U	ပ
预变形等效 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	1	S	01	r.	5	3	٧	VO.	10	5	2		S
BI、加州	一年	1	X	有	鱼	争	柜	中	更	X	有	K	佢	田
最大静态强度 o d (MPa)	627		706	823	967	715	683	612	792	824	630	726	1119	884
应变3~10%的 静态平均淹变应力 522	522	1	601	747	871	627	615	563	675	693	523	550	1112	772
最大动态强度 753 o d (MPa)	753	l	841	948	1063	448	831	748	895	913	776	848	1182	935
应要3~10%的 动态平均流变应力 684		مد ا	750	871	963	789	794	738	810	821	711	723	1150	860
数据 (a d-a s) 12	12	10	135	125	96	129	148	136	103	89	146	122	63	ন
	-	16	20	37	0,7	41	59	77	30	54	48	36	97	77
	 	농	ş	농	å	쓩	å	송	송	성	ě	성	송	농
/TIX	$\frac{1}{1}$	1	$\left\{ \right.$											

表8 钢板力学性能(续)

62	0	151	32	33	34	35	ו שו	37	38	39	40
642 651 683	ωl		205	1095	570	865	849	716	916	25	95/
38 35 36	90		2	17	52	27	23	56	22	27	77
0.239 0.216 0.224 0	224	ا ب	156	0.155	0.126	0.195	0.168	0.188	0.169	9.129	0.198
24396 22785 24588	588		15562	18615	14250	23355	19527	18616	20152	13905	20412
၁	ပ		၁	C	U	ပ	ပ	ပ	U	U	ပ
2 2 2	5		5	5	5	2	S	Ŋ	v٦	រភ	5
无 有 有	押		申	单	有	中	中	更	年	恒	年
719 750 753	153		587	1040	693	934	926	827	1021	631	851
601 622 623	523		512	1034	586	820	807	703	006	515	741
838 852 862	862		642	1065	723	986	896	863	1042	659	890
754 770 772	277		598	1035	641	872	855	773	915	604	792
119 102 109	109		35	25	<u>ज</u>	52	77	36	177	28	ន
28 25 35	35		-11	7	-90	-13	-21	-35	-36	7	59-
ok ok ok	송	•	송	poor	yo	ok	ok	ķ	poor	송	ok

带有底横线的数据超出本发明范围。 *1; (α dyn-α st) - (-0. 272×TS+300) C=沿C方向的单轴拉伸, E=等双轴拉伸

说明书附图

0.25

图 3 屈服强度 (500MPa级) 9000 8000 动态能吸收(]) 7000 6000

0.15

0.20

加工硬化系数

图 4a 300mm

图 4b

图 4c

图 5

图 10

