1.7 (final extraordinario 15/16)

A. (3 puntos) Anotar en el siguiente recuadro la solución de la ecuación en diferencias

$$x^{n+2} + 2x^{n+1} + x^n = 4,$$

que cumple $x^0 = x^1 = 0$.

2.2.3 (primer parcial 18/19)

C. (3 puntos) Dada la función
$$f(z) = \frac{z \cosh z}{\cosh z}$$

Anotar en el siguiente recuadro sus puntos singulares aislados, especificando en cada caso el tipo de singularidad, así como el valor del residuo de f(z) en dichos puntos.

2.3.3 (primer parcial 16/17)

C. (3 puntos) Sea la función compleja de variable compleja, $z = x + \mathrm{i}\,y$, definida como

$$f(z) = (e^x + ae^{-x})\cos y + i(be^x + ce^{-x})\sin y$$

donde a, b y c son números reales. Se pide hallar los valores de a, b y c para los que la función f cumple i) f(0) = 2 y ii) es analítica en todo $\mathbb C$. Anotar en el siguiente recuadro tanto los valores de a, b y c como la expresión analítica de f en función de z.

2.4.4 (primer parcial 17/18)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I_{\underline{\bullet}} = \int_{\Gamma} \operatorname{Log} \bar{z} \, \mathrm{d}z,$$

donde Log es el logaritmo principal y Γ es la semi-circunferencia de centro el origen y radio 2 contenida en el semiplano de las partes imaginarias positivas recorrida desde 2 a -2

2.5.10 (final ordinario 14/15)

B. Los tres primeros términos del desarrollo en serie de Mac-Laurin de la

$$f(z) = \frac{\tanh z}{z}$$

Son

(5)
$$1 - \frac{z^2}{3} - \frac{2z^4}{5!}$$

(6)
$$1 + \frac{z^2}{3} + \frac{z^4}{15}$$

(7)
$$1 - \frac{z^2}{3} + \frac{2z^4}{15}$$

(8)
$$1 + \frac{z^2}{3} + \frac{2z^4}{5!}$$

2.6.2 (primer parcial 15/16)

 ${\cal F}$. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real impropia

$$I = \text{V.P.} \int_{-\infty}^{\infty} \frac{e^{\mathrm{i}2x}}{x(4-x^2)} \mathrm{d}x.$$