Topology

枫聆

2020年11月30日

目录

1

2	Top	pology Space	1
	2.1	Definition of Topology Space	1
	2.2	Properties of Topology Space	2
	写在最前面		
	拓	扑对我来说是新名字,我对它几乎一无所知,虽然我嘴上总是吵吵着代数拓扑是我的终极目标(~ o ~)~	zZ
终	于今	天抱着巨大的勇气翻开了包志强老师的《点集拓扑和代数拓扑引论》,被文中老师幽默的行文,深深折	服
了	,似马	乎拓扑也并没有想象中那么难,我想这是还不错的开始,我的第一直观感受拓扑也是给定一堆对象,在	上
面	用一	些公理弄些不一样的结构和代数一样,但是我暂时还不知道这堆结构要拿来干什么?有什么有趣的性质	5?
	好口	吧,前面的路还很长,路漫漫,不过一想到前路那些绮丽的景色,多少还是有些兴奋的!虽然这路上没	·有

2020年11月29日23:12:17

Topology Space

Definition of Topology Space

预备知识

一起分享喜悦的人...

1 写在最前面

- 对于开集 U 的理解,首先它是 X 的子集,并且对于 $\forall x \in U$,存在 x 的邻域包含于 U。包老师的书里解释 为 U 是每一个 x 的邻域,我感觉在这里似乎有点强了。wiki 上解释为实数轴上的开区间的一般性推广。
- 那邻域是什么?在邻域之前,应该先理解基准开邻域结构 (base open neighborhood),像定义代数结构一样,基准开邻域结构是一个映射 $\mathcal{N}\colon X\to 2^{(2^X)}$,把每一个点 $x\in X$ 对应到一个子集族 $\mathcal{N}(x)$ 上,满足下面几条公理
 - $\forall x \in X, \mathcal{N}(x) \neq \emptyset$, 并且 $\forall U \in \mathcal{N}(x), x \in U$
 - 若 $U, V \in \mathcal{N}(x)$, 则存在 $W \in \mathcal{N}(x)$, 使得 $W = U \cap V$
 - 若 $y \in U \in \mathcal{N}(x)$, 则存在 $V \in \mathcal{N}(y)$, 使得 $V \subseteq U$

用文字来叙述就是

- 每一个 x 都一定有基准开邻域,并且是其任意基准开邻域的元素
- x 的任意两个基准开邻域的交是 x 的邻域
- 任意基准开邻域是其所含每个元素 y 的邻域
- 子集族是指 X 幂集的子集, 所有子集族构成的集合则是 $2^{(2^X)}$

拓扑定义的直觉来自于微积分中连续函数的" $\varepsilon - \delta$ "语言定义。

Definition 2.1. 如果函数 $f: \mathbb{R} \to \mathbb{R}$ 满足: 任取 $\varepsilon > 0$, 存在 $\delta > 0$ 使得 $|x - x_0| < \delta$, 对 $|f(x) - f(x_0)| < \varepsilon$ 成立。

这个定义需要 $|x-x_0|<\delta$ 和 $|f(x)-f(x_0)|<\varepsilon$ 这样的度量关系来定义,但是对于抽象的结构,不需要这样具体的度量关系,所以我们抽象的"邻域"来描述两点之前的具体,把所有接近 x_0 程度为 δ 的点记做 $B_\delta(x_0)$,这就是邻域的形式化表示,然后对于各种稀奇古怪的接近标准都可以用这个形式来表示。于是乎上面的连续定义可以稍微变一下了

Proposition 2.2. 如果函数 $f: \mathbb{R} \to \mathbb{R}$ 满足对任意的 $\varepsilon > 0$, 存在 $\delta > 0$ 有 $x \in B_{\delta}(x_0)$, 使得 $f(x) \in B_{\varepsilon}(f(x_0))$, 即 $B_{\delta}(x_0) \subseteq f^{-1}(B_{\varepsilon}(f(x_0)))$

完美的略掉了度量关系,在这里 $B_\delta(x_0)$ 表示 $\{x\in\mathbb{R}|\ |x-x_0|<\delta\}$,最后那个包含关系是指 $f(x_0)$ 的任何 ε 程度下的原像包含 x_0 的某个 δ 邻域.

Properties of Topology Space