

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO

Lidar

A remote sensing tool with spatio-temporal and 3D features

It determines the distance to an object by transmitting a laser beam at the object and measuring the time the light takes to return to the transmitter.

Light-Detection-Ranging

Use case 1)

Moving on flat surface with less moving objects in the area

Quick scan in narrow range.

Use case 2)

Moving in the area with many moving objects

Quick scan in wide range.

After detecting the obstacle, change the scanning range and resolution to detect details.

Sensor: https://www.generationrobots.com/blog/en/what-is-lidar-technology/
Use Cases: https://www.generationrobots.com/blog/en/what-is-lidar-technology/
Use Cases: https://phys.org/news/2017-09-d-lidar-sensor-enabling-distances.html

Topographic Near-infrared laser to map the land

Bathymetric riverbed elevations

From about 10 micrometers (infrared) to approximately 250 nm (UV).

Source: https://oceanservice.noaa.gov/facts/lidar.html

Lidar: https://en.wikipedia.org/wiki/Lidar

Water-penetrating green light to also measure seafloor and

Taac Institute for advanced architecture of Catalonia What we measure/detect with Lidar

Others

Public header block Format, number of points, extent of the point cloud and other generic data.

Variable length

spatial reference system, metadata, waveform packet

records (VLR)

spatial reference system, metadata, waveform packet information, user application data. Up to 65,535 bytes.

N points: (Point cloud)

Point data records Coordinates, classification (e.g. terrain or building), flight and scan data, etc.

Extended variable Similar to VLRs. Located after the point data records and up to length records (EVLR) 8-byte size descriptors.

Source: https://en.wikipedia.org/wiki/LAS file format

Satellite

Airborne

UAV

ground based

Portable (e.g., iPad Pro)

Lidar Data Is Becoming an Increasingly Valuable Tool for Cities

As more and more agencies discover uses for lidar technology, the argument for open data strengthens.

BY DANIEL FISHER, DATA-SMART CITY SOLUTIONS / AUGUST 24, 2018

SHUTTERSTOCK/PAVEL CHUKHOV

Lidar data

Some data sets available

MÁXIMA ACTUALIDAD PUBLICADA

Centro de Descargas

Bienvenido | Welcome | Bienvenue

Productos

Buscar

Licencias de uso

Preguntas frecuentes

Novedades Ayuda

Búsqueda por listado Búsqueda en visor Resultados (3366) ↓ Cesta de descargas: 0

Características principales:

- Densidad minima: 0,5 puntos/m².
- Cubre toda Catalunya en diferentes fechas:
- 1ª cobertura: entre 2008 y 2011.
- 24 cobertura: entre 2016 y 2017.

Cada punto LIDAR lleva asociado la fecha y hora de captura (tiempo GPS absoluto)

Descarga la 2a cobertura

Accede a la aplicación para descargar un único fichero ZIP con todos los bioques existentes en el area que selectiones.

Descarga la 1a cobertura

Accede a la aplicación para descargar un único fichero ZIP con todos los bioques existentes en el área que selecciones

@_0

Geoinformación sujeta a una licencia de Atribución 4.0 Internacional de Creative Commons.

Más información

Especificaciones

Los datos se distribuyen por bloques de 2 x 2 km, en formato LAS 1.2 comprimido. Se puede descomprimir mediante herramientas como LASzip.

LAS specification version 1.2 [114,7 kB]

Los nombres de los bioques son las coordenadas en km de la esquina sudoeste de cada bioque, eliminando los 4 millones de la coordenada Y (ejemplo: el bioque 324562 es el bioque con la coordenada sudoeste 324000, 4562000 m).

La nube de puntos ha sido capturada con sensor LIDAR, calibrada y ajustada con áreas de control topográfico, obteniendo una exactitud altimétrico con un error medio cuadrático de unos 6 om en áreas planas con poca vegetación. Posteriormente la nube ha sido clasificada automáticamente y, en la 1º cobertura, además, se han editado manualmente el terreno, los puntos altos y bajos, y las torres y lineas electricas.

Source: https://www.icqc.cat/es/Descargas/Elevaciones/Datos-lidar

Cities/regions around the world with open datasets

dataset			building LoD	other classes			
Adelaide	Australia	2015	LoD1/LoD2	Terrain	true	.3DS with JPEG textures, Blender, FBX	
American cities	USA	2019	LoD1		false	CityJSON, CityGML	125 million buildings, separated by state
Austin	USA	2013	LoD2		false	KMZ	
<u>Berlin</u>	Germany	2013	LoD2		true	CityGML, 2D Shape, 3D Shape - PolygonZ, 3D Shape - Multipatch, KMZ, DXF, DWG, 3DS, ESRI FGDB	Released in 2015
Bordeaux	France	2012	LoD2		true	3DS	Version without textures available here
Boston	USA	2017	LoD1+LoD2	Terrain	false	OBJ, DWG, MAX, Shapefile	
Brussels	Belgium	2014	LoD2		false	CityGML, DWG, DGN, GML, Shapefile, SketchUp	
Cambridge	UK		LoD1		false	DXF, Shapefile, COLLADA	
Dresden	Germany	2009	LoD1/LoD2/LoD3		partially	CityGML	
Dutch cities	Netherlands	2016	LoD1	Terrain and many other	false	CityGML, OBJ, IMGeo	A few Dutch cities generated with 3dfier
Espoo	Finland	2019	LoD1-3		true	CityGML	Many classes from CityGML: water body, terrain, landuse, etc.
Fredericton	Canada	2016	LoD2		true	KMZ	

Hands-on

Visualising Lidar Data

Stand Alone visualisation Software

Get the software http://www.danielgm.net/cc/release/

- 1. Get Lidar data for barcelona at the GDrive folder (CNIG)
- 2. Load the .LAZ file for Barcelona
- 3. Explore 3D views
- 4. Explore visualisation options

GIS extension

- 1. Install the QGIS extension
- 2. Configure GDAL settings (only Windows)
- 3. Load .LAZ file for barcelona
- 4. Explore 3D views
- 5. Explore visualisation options

Documentation: https://rapidlasso.com/lastools/

Grasshopper extension

- 1. Explore software tools for lidar data in Grasshopper
- 2. Get the extension
- 3. Load .LAZ file for barcelona and the north of Spain
- 4. Explore 3D views
- 5. Explore visualisation options
- 6. Explore processing tools

Simulation data 4 analysis

Bringing simulation data into analysis scenarios

How to add the selected / proposed areas to the existing city-level dataset?

Wow the new typologies would change the existing city-level dataset?

Where to put the new values coming from the proposal?

How to add the selected / proposed areas to the existing city-level dataset?

How the new dataset might be incorporated into the city-level data sources?

Hands-on

Integration of simulation and data analysis

Let's see what we are thinking http://etc.ch/nQxA

https://www.directpoll.com/

* This survey is designed only for the live session

Bringing simulation data into a data analysis framework

- 1. Select an outcome from your studio project
- 2. Explore the options to read / import such income into one of the data analysis tools used during the course
- 3. Evaluate the analysis that might be performed over your simulation dataset
- 4. Discuss the benefits of integrating simulation and data analysis

MASTER IN CITY & TECHNOLOGY DIGITAL TOOLS AND BIG DATA 2019/2020

FACULTY DIEGO PAJARITO