

Data Science Lab

Data Representation Learning is critical step in data analysis since it can entangle and hide the different explanatory factors of variation behind the data.

Specifically, for **networked data analysis**, how to learn the intrinsic structure and discover valuable information from data becomes more and more urgent, important and challenging.

Goal of this course:

Implement and evaluate a Network Representation Learning framework

Chair of Data Science Fatemeh Salehi Rizi

Network Representation Learning

Organization

- Project work in Teams of 5 people
- 3 Phases:
 - Problem definition
 - 2. Implementation (code on gitlab)
 - 3. Evaluation
- Written report per phase (single document, section per phase)
 - Template at: https://github.com/fatemehsrz/Data_Science_Lab
 - Phase 1: (3-4) pages
 - Phase 2: (3-4) pages
 - Phase 3: (3-4) pages
- Final Presentation (20min presentation each team)
- Gitlab at: https://gitlab.fim.uni-passau.de/users/sign_in

- Submission Deadlines:
 - Phase 1 : Report 05.12.2019
 - Phase 2 : Report 05.01.2020
 - Phase 3 : Report 05.02.2020
 - Presentations (04.02 to 13.02.2020)
 - Final Report 30.02.2019
- Final talk must be presented by all team members
- Final Grade is a weighted average of the team grades in phase 1-3
 - 20% from the phase 1
 - 40% from the phase 2
 - 40% from the phase 3

Missing a deadline means failing the report

Table of Content

• Introduction

- Graph Data
- Networkx and Syntactic Graphs
- Autoencoders with Keras
- Feedforward Networks with PyTorch
- Matrix decomposition with SVD

Graph Representation Learning

- Word2Vec (Gensim)
- DeepWalk [1] (Gensim)
- LINE [2] (PyTorch)
- SDNE [3] and HOPE [4] (Optional)

Graph Evaluation Tasks

- Link Prediction
- Node Classification
- Graph Clustering (optional)
- Network Visualization
- Evaluation Metrics (F1, AUC, NMI)
- [1] https://arxiv.org/pdf/1403.6652.pdf
- [2] https://arxiv.org/pdf/1503.03578.pdf
- [3] https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf
- [4] https://www.kdd.org/kdd2016/papers/files/rfp0184-ouA.pdf

Projects

1) A Unified Framework for Graph Representation Learning

- Take graph datasets available at [1]
- Implement a framework which generates embeddings for node2vec [2], HARP [3], WalkLets [4] and struc2vec [5]
- Evaluate representations via graph mining tasks (Link Prediction, Node Classification, Network Visualization)

2) Graph Embedding with Self-clustering

- Take graph datasets available at [1]
- Implement GEMSEC [6] in PyTorch
- Evaluate communities comparing to ComE [7], DANMF [8]
- Evaluate representations via graph mining tasks (Node Classification)
- [1] https://github.com/fatemehsrz/Datasets_Graph_Embedding
- [2] https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
- [3] https://arxiv.org/pdf/1706.07845.pdf
- [4] https://arxiv.org/pdf/1605.02115.pdf
- [5] https://arxiv.org/pdf/1704.03165.pdf
- [6] https://arxiv.org/pdf/1802.03997.pdf
- [7] https://sentic.net/community-embedding.pdf
- [8] https://smartyfh.com/Documents/18DANMF.pdf

Papers Source Codes

- node2vec: https://github.com/aditya-grover/node2vec
- HARP: https://github.com/GTmac/HARP
- WalkLets: https://github.com/benedekrozemberczki/walklets
- Struc2vec: https://github.com/leoribeiro/struc2vec
- GEMSEC: https://github.com/benedekrozemberczki/GEMSEC
- ComE: https://github.com/vwz/ComE
- DANMF: https://github.com/benedekrozemberczki/DANMF

Surveys

- 1) https://arxiv.org/pdf/1709.07604.pdf
- 2) https://arxiv.org/pdf/1705.02801.pdf
- 3) https://arxiv.org/pdf/1801.05852.pdf
- 4) https://arxiv.org/pdf/1711.08752.pdf

Schedule

Session	Lecture To	pic
---------	------------	-----

1: 22/10/19 Introduction

2: 24/10/19 Introduction

3: 29/10/19 Graph Representation Learning

4: 31/10/19 Graph Representation Learning

5: 05/11/19 Graph Mining Tasks

6: 07/11/19 Graph Mining Tasks

12/11/2019 to 13/02/2020 Team work and Presentations

Python Scientific/Data Science Stack

- Data Science Handbook (<u>https://jakevdp.github.io/PythonDataScienceHandbook/</u>)
- Python
 - Cheatsheets https://ehmatthes.github.io/pcc/cheatsheets/README.html
 - <u>Setup with Anaconda</u> https://github.com/molybdaen/data-science-tutorials/blob/master/ws17.md
 - <u>Details</u> https://github.com/zieglerk/python-tutorials/blob/master/DSiP-2-Python-Programing-Basics.ipynb
- Jupyter Notebooks
- Numpy
 - Cheatsheet https://github.com/kailashahirwar/cheatsheets-ai/blob/master/Numpy.png
 - Details https://github.com/zieglerk/python-tutorials/blob/master/DSiP-3-NumPy.ipynb
- Scipy
 - Cheatsheet https://github.com/kailashahirwar/cheatsheets-ai/blob/master/Scipy.png
 - Details https://github.com/zieglerk/python-tutorials/blob/master/DSiP-4-Scipy.ipynb

Python Scientific/Data Science Stack

Matplotlib

- Cheatsheet https://github.com/kailashahirwar/cheatsheets-ai/blob/master/Matplotlib.png
- Details https://github.com/zieglerk/python-tutorials/blob/master/DSiP-5-Matplotlib.ipynb

Pandas

- Cheatsheet https://github.com/kailashahirwar/cheatsheets-ai/blob/master/Pandas-3.png
- <u>Details https://github.com/zieglerk/python-tutorials/blob/master/DSiP-6-Pandas.ipynb</u>

Scikit-Learn

- Cheatsheet https://github.com/kailashahirwar/cheatsheets-ai/blob/master/Scikit%20Learn.png
- Details https://scikit-learn.org/stable/

[Keras/PyTorch]

Python Scientific/Data Science Stack

Sources (explore them for further information)

- Cheatsheets from https://github.com/kailashahirwar/cheatsheets-ai (further useful cheatsheets available)
- Details (mostly) from former course material
 - https://github.com/molybdaen/data-science-tutorials
 - https://github.com/zieglerk/python-tutorials
 - https://github.com/mgrani/LODA-lecture-notes-on-data-analysis