ENGSCI 711

QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS

(...and other dynamical systems)
Oliver Maclaren
oliver.maclaren@auckland.ac.nz

MODULE OVERVIEW

Qualitative analysis of differential equations (*Oliver Maclaren*) [~15 lectures]

1. Basic concepts [3 lectures]

Basic concepts and definitions: state/phase space, solutions, integral curves, flows, orbits and vector fields. Key qualitative features of interest. Overview of basic analysis procedures. Computer-based analysis.

2. Phase plane analysis, stability, linearisation and classification [4 lectures]

Two-dimensional systems. Linearisation of nonlinear systems. Linear systems - stability and classification of fixed points. Periodic orbits. Geometry (invariant manifolds).

MODULE OVERVIEW

3. Introduction to bifurcation theory [4 lectures]

Hyperbolic vs non-hyperbolic systems and structural instability. Various types of bifurcations. Geometry of bifurcations - invariant manifolds. Bifurcation diagrams.

4. Introduction to fast-slow systems and singular perturbation problems [4 lectures]

Canonical fast-slow examples and importance. Key geometric concepts and perturbation theory.

LECTURE 6

• Introduction to bifurcation theory

PROBLEM PARAMETERS IN DYNAMICAL SYSTEMS

We now return to systems of the form

$$\dot{x} = f(x; \mu)$$

where $x \in \mathbb{R}^n$ is the usual vector of state variables but we have explicitly included $\mu \in \mathbb{R}^m$, a vector of *problem* parameters.

Intuitively, parameters may be thought of as extra 'slowly-varying' state variables and our dynamical system for a fixed parameter value as a 'projection' of a 'background' larger system onto a smaller state space.

PROBLEM PARAMETERS IN DYNAMICAL SYSTEMS

This means we are neglecting some 'processes' or model components and 'summarising' their effects in problem-specific parameters.

In a sense, bifurcation theory is about what happens when this 'projection' of a higher-dimensional system fails to be reliable - our choice of parameter value matters crucially.

These 'system' or 'structural' (c.f. solution) instabilities are called *bifurcations*.

RECALL: BIFURCATIONS AND STRUCTURAL INSTABILITY

When do these occur?

Fixed points for which the local linearisation has a zero eigenvalue are called non-hyperbolic.

In these cases *linear stability analysis fails to hold* for the nonlinear system and we get *structural instabilities and hence bifurcations*

E.g. the number of stationary points or periodic orbits (and/or their stability) may change.

THE CURSE OF INSTABILITY VS THE CURSE OF DIMENSIONALITY?

See Kuehn 'The curse of instability' (http://arxiv.org/abs/1505.04334)

Curse? (Structural) instabilities cause an *increase in dimensionality*, substantially raise the analytical difficulty and are a strong indicator for multiscale dynamical complexity.

THE CURSE OF INSTABILITY VS THE CURSE OF DIMENSIONALITY?

Cure? Separate your system/data/model into regimes with and without (structural) instabilities in the underlying process. So-called "universal" or "generic" dynamical principles are always based upon the absence or presence of certain instability classes.

ONE DIMENSIONAL, ONE PARAMETER SYSTEMS

Even in large systems we often only have bifurcations occuring at for a small number of parameters at a time - e.g. only one eigenvalue crossing the imaginary axis.

Centre manifold theory (which we will come back to) provides a way of analysing the reduced dynamics near a bifurcation.

Because of this we will focus on one-state variable, oneparameter systems, i.e. $x \in \mathbb{R}$ and $\mu \in \mathbb{R}$, which are frequently encountered during bifurcations in larger

10

systems.

TOPOLOGICAL EQUIVALANCE: A PICTURE

If a system is *structurally stable/unstable* then the phase portrait doesn't/does change qualitatively.

We'll (probably) come back to a more formal definition of topological/qualitative equivalance. For now, a picture:

Q: is this a picture of a structurally stable or unstable system.

LOCAL VS GLOBAL?

Note: we can analyse changes (bifurcations) in either or both *local* and *global* qualitative features of the phase portrait.

We will mainly focus on local bifurcations.

BIFURCATION DIAGRAMS

A bifurcation diagram shows how some *property of interest* of a system - e.g. location of an equilibrium point - *depends* on a system parameter (or parameters).

The best way to get a feel is to look at some examples, so let's do that!

EXAMPLES

(See e.g. chapters 3 and 8 of Strogatz)

- saddle-node/turning point bifurcation
- transcritical bifurcation
- pitchfork bifurcation
- Hopf bifurcation

(I'll work through some examples here and give you a fuller summary later)