思考题

- 学生(学号,姓名,性别)
- 课程(课程号,课程名,学分)
- 学习(学号,课程号,成绩)
- 1. 三个关系的候选码? 主码? 主属性?
- 2. 外码是什么?
- 3. 学生表中的学号是否可以取空值?
- 4. 学习表中的学号是否可以取空值?

2.1.3 关系完整性约束

实体完整性规则

规则: 若属性A是基本关系R的主属性,则

属性A不能取空值。

参照完整性规则

规则: 若F是基本关系R的外码,并与S的主码 Ks相对应,则对于R中每个元组在F上的值必 须为:

- 或者取空值
- 或者取S中主码Ks对应的值

用户定义完整性规则

规则: 反映某一具体应用所涉及的数据必须满

足的语义要求。

2.2 关系代数

- 传统的集合运算
 - 并差 交 笛卡尔积
- 专门的关系运算
 - 这样投影 连接 自然连接 除
- 基本关系代数运算
 - 并 差 笛卡尔积 这样 投影

并相容原则

- ▶ 参与运算的两个关系及其属性之间有一定的对应性、可比性或意义关联性。
- ▶ 定义: 关系R与关系S存在相容性, 当且仅当:
 - (1) 关系R和关系S的属性数目必须相同
- (2) 关系R的第i个属性的域必须和关系S的第i个属性的域相同

A(A1,A2,A3) 和 B(B1,B2,B3)

S(SID char(8),Sname char(8),Sage char(3)) T(TID char(8),Tname char(8),Tage char(3))

2.2.1 传统的集合运算

1、并

将R与S合并为一个关系,并且去掉重复元组。 $R \cup S = \{t \mid t \in R \lor t \in S\}$

- ➤ 并运算的结果或者属于R,或者属于关系S
- ➤ RUS 与 SUR是相同的么?
- ▶ 参加体育队的学生(S1),或者参加文艺队的学生(S2)
- ▶ 汉语中的"或者。。。。或者。。。"通常为并运算

课程(课程号,课程名,先行课,学分)

```
将新课程元组('7','物理', '2',
(4')插入关系中
```

课程∪('7','物理','2','4')

2、差:在R中去掉S中存在的元组。由出现在R中但不出现在S中的元组构成。

 $R-S=\{t \mid t \in R \land t \notin S\}$

➤ R-S 与 S-R是相同的么?

将新课程元组('7','物理','2','4') 从关系中删除

- ➤ 只参加体育队没有参加文艺队的学生 S1 S2
- > 没有参加参加文艺队的学生
- ➤ 汉语中的"是···但不含···""没有"通常意义是差运算的 要求

3、文:在R中找出与S中相同的元组组成一个新的关系。

 $R \cap S = \{t | t \in R \land t \in S\}$

- ► R∩S 与 S∩R是相同的么?

- ➤ 汉语中的"既···又···" "···并且···" 通常意义是交运算的要求
- ▶ 可以表达部分"除法"运算实现的功能
- ▶ 如: 至少(同时)选择了(包含)1号和2号课的学生

4、**笛卡尔积**:用R中的每个元组与S中每个元组拼接组成一个新的关系。新的关系度为R与S度之和,元组为R与S元组数相乘积。

 $R \times S = \{t_r t_s | t_r \in R \land t_s \in S\}$

- ▶ 当一个检索涉及到多个表时,如学生表和课程表,便需要 把这些表串接(或者拼接)起来,就需要用笛卡尔积运算
- ▶ 是各种连接运算的基础

学号	姓名	年龄	宿舍
080101	王晓	20	0801
080102	李明	19	0802

课程号	课程名	学分	学时
C1	计算机	2	32
C2	物理	2	32

学号	姓名	年龄	宿舍	课程号	课程名	学分	学时
080101	王晓	20	0801	C1	计算机	2	32
080101	王晓	20	0801	C2	物理	2	32
080102	李明	19	0802	C1	计算机	2	32
080102	李明	19	0802	C2	物理	2	32

2.2.2 专门的关系运算

1、选择:在给定的关系中选择出满足条件的元组组成一个新的关系。

$$\sigma_{\mathbf{F}}(\mathbf{R}) = \{t | t \in \mathbf{R} \land \mathbf{F}(t) = \mathbf{\hat{q}'} \}$$

- ➤ 条件F(t)由逻辑运算符连接比较表达式组成
- ▶ 逻辑运算符包括: △(合取), ∨ (析取), ¬
- 比较表达式: X θ Y,其中X, Y是t的分量、常量或简单函数, θ 是比较运算符

条件的书写很重要,尤其是当不同运算符在一起时,要注意运算符的优先级,优先级的次序由高到低为:{括号;θ; 1, Λ, ∨}

> 例如:

Sage<18 \lor Sage>20 \land D#='03'

不是从左到右依次计算!!!

(Sage $<18 \lor Sage>20) \land D\#='03'$

> 查询所有计算机或者外文学院的学生的信息

R (学生表)

学号	姓名	性别	年龄	学院	宿舍
080101	王晓	男	20	计算机	0801
080102	李明	男	19	外文	0802
080103	小慧	女	19	体育	0901

♂ 学院='计算机' ∨ 学院='外文'(**R**)

学号	姓名	性别	年龄	学院	宿舍
080101	王晓	男	20	计算机	0801
080102	李明	男	19	外文	0802

此处将\替换为人,是否可以?

2、投影:在给定的关系中,按给定的属性及顺序组成一个新的关系。

 $\pi_{\mathbf{A}}(\mathbf{R}) = \{ \mathbf{t}[\mathbf{A}] | \mathbf{t} \in \mathbf{R} \}$

投影操作是从给定关系中找出某些列组成新的关系,而选择操作是从给定关系中找出某些行组成新的关系。

> 查询所有学生的姓名和学院

R (学生表)

学号	姓名	性别	年龄	学院	宿舍
080101	王晓	男	20	计算机	0801
080102	王晓	女	20	计算机	0902
080102	李明	男	19	外文	0802
080103	小慧	女	19	体育	0901

π 姓名, 学院(**R**)

姓名	学院		
<i></i>		姓名	学院
王晓	计算机	王晓	计算机
王晓	计算机		
 李明	外文	李明	外文
	77人	小慧	体育
小慧	体育	<u> </u>	

(1) 需要几个关系? (2) 采用什么关系代数?

1. 查询选修课程号为1或2的学生学号

2. 查询同时选修了课程号为1和2的学生的学号

$$P=A \cap B$$

3. 查询没有选修1号课程的学生学号

 $\pi_{\text{学}}$ (学生)- $\pi_{\text{学}}$ ($\sigma_{\text{课程号='1}}$ (学习))

π_{学号}(σ_{课程号<>'1},(学习))对么?

3、连接:在R与S的笛卡尔积中,找出R中的某一个属性与S中的某一个属性与K中的某一个属性相比较满足条件的元组组成一个新的关系。

$$R \bowtie_{A \theta B} S = \{ t_r t_s | t_r \in R \land t_s \in S \land t_r [A] \theta t_s [B] \}$$

$$R \bowtie_{A \theta B} S = \sigma_{i \theta (n+j)} (R \times S)$$

?			
_	Α	В	С
	a_1	b_1	$c_{\scriptscriptstyle 1}$
	$\mathbf{a_1}$	b ₂	c ₂
	a ₂	b ₂	C ₁

S			
	Α	В	С
	a ₁	b ₂	C ₂
	a_1	b_3	c_2
	a ₂	b ₂	C ₁

$R \times S$

R.A	R.B	R.C	S.A S	S.B 9	S.C
a_1	b_1	c_1	a_1	b_2	C_2
a_1	b_1	C_1	a_1	b_3	C_2
a_1	b_1	C_1	a_2	b_2	C_1
a_1	b_2	C_2	a_1	b_2	C_2
a_1	b_2	C_2	a_1	b_3	C_2
a_1	b_2	C_2	a_2	b_2	C_1
a_2	b_2	C_1	a_1	b_2	C_2
a_2	b_2	C_1	a_1	b_3	C_2
a ₂	b_2	C_1	a ₂	b_2	C ₁

R.A	R.B	R.C	S.A S	S.B :	S.C
a_1	b_1	c_1	a_1	b_2	C_2
a_1	b_1	C_1	a_{1}	b_3	C_2
a_1	b_1	C_1	a_2	b_2	C_1
a_1	b_2	C_2	a_1	b_3	C_2
a_2	b_2	C_1	a_1	b_3	C_2

4 查询同时选修了课程号为1和2的学生的学号 学习(课程号,学号,成绩)

方法1:集合交运算

$$A=\pi_{
m gg}$$
($\sigma_{
m in}$ $\sigma_{
m in}$

方法2:采用"自连接"运算

$$\sigma_{i \theta (n+j)} (R \times s)$$

$$\pi_{[2]}$$
($\sigma_{[1]=`1`\land [4]=`2`\land [2]=[5]}$ (学习×学习))

4、自然连接:在R与S的笛卡尔积中, 找出R与S中的公共属性值相等的元 组,结果为两个属性的集合去掉一个 公共属性。

 $R \bowtie S = \{ t_r t_s | t_r \in R \land t_s \in S \land t_r [B] = t_s [B] \}$

自然连接和等值连接的区别?

5. 查询选修课程号为1的学生姓名和成绩

 5 除: 给定关系R(X,Y) 和S(Y), 其中 X,Y为属性(组)。R除以S得到新 关系P(X), P是R中满足下列条件的 元组在X属性列上的投影:

元组在X上的分量值x的象集Y、包含S在 Y上的投影的集合。记作:

 $R \div S = \{t_r[X] | t_r \in R \land \pi_v(S) \subseteq Y_x\}$ 其中,Yx是分量x在R中Y上的象集。

敲黑板,重点到了

R		S	$R \div S$	
A	В	В	A	
A1	B1	B1	A1	X的分量x={A1, A2, A3
A1	B2			$Y_{A1} = \{B1, B2, B3\}$
A2	B1	B2	A3	$Y_{A2} = \{B1\}$
A3	B2	Y	X	$Y_{A3} = \{B1,B2\}$
A1	В3	1	7 1	$2\pi_{y}(S)$
A3	B1			$=\{B1,B2\}$
X	Y	'		
				$Y_{A1} Y_{A3}$
除法	的运	算		$x = \{A1, A3\}$
	过程			4 $\mathbf{R} \div \mathbf{S} = \{A1, A3\}$

查询哪些供应商的零件(同时)存放在1,3,5三个仓库中?

WH1

WH3

WH5

R

仓库号	供应商号
WH1	S1
WH1	S2
WH1	S3
WH2	S3
WH3	S1
WH3	S2
WH5	S1
WH5	S2
WH5	S4
WH6	S1
WH6	S2

 S
 R÷S

 仓库号
 供应商号

供应商号 S1 S2

R(X,Y) 和S(Y) 如何对应?

除法解决的哪些特殊的问题?

敲黑板,重点到了

查询选修全部课程的学生学号

$$S=\pi_{课程号}$$
(课程)

R=π_{学号,课程号}(学习)

 $R \div S = \pi_{\text{学号, 课程号}}$ (学习) $\div \pi_{\text{课程号}}$ (课程)