Cover Trees for Nearest Neighbor

Alina Beygelzimer, Sham Kakade, John Langford

(Presented by: Parameswaran Raman, params@ucsc.edu)

April 11, 2016

Nearest Neighbor Problem

Given a set S of n-points in some metric space (X, d), pre-process S s.t given a query point $q \in X$, one can efficiently find a point $p \in S$ which *minimizes* d(p,q).

Brute Force

- requires no pre-processing
- query time is O(n), space is O(n)

K-d Tree [FBL77]

Data points in 2D: (x_1, x_2) (1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)

K-d Tree [FBL77]

Query point: (7, 4)

- works only for low dimensions (\approx 10)
- inexact NN

Ball Tree / Metric Tree [Omo87][Uhl91]

- works on moderately high dimensions (better than K-d trees)
- more generally applicable than K-d trees

Methods that assume structure (intrinsic dimensionality) [KR02][KL04b]

- Karger and Ruth [KR02] defines expansion constant a measure of intrinsic dimensionality
- ▶ Navigating Nets by [KL04b] uses a similar measure
- ▶ Drawback: Although query times are good, space requirements are exponential in d (# of dimensions)

What are the highlights of the paper?

	Brute Force	K-d Tree	Ball Tree	Cover Tree
Const Time	O(n)	O(nlogn)	$O(n^2)$	$O(c^6 \text{ nlogn})$
Const Space	O(n)	O(n)	O(n)	O(n)
Insert/Remove	O(n)	O(log n)	O(n)	$O(c^6 \log n)$
Query Time	O(n)	O(log n)	O(n)	$O(c^{12} \log n)$

- Linear space requirement independent of metric structure and dimensionality
- Query time as good as or better than other methods
- ► Theoretical guarantees
- ▶ Efficient implementations available

Assumption about the structure: Expansion Constant

$$B(p,r) = \{q \in S : d(q,p) < r\} = \text{points within distance } r \text{ of } p.$$

$$\exists c: \forall p \in S, r > 0: c|B(p,r)| \ge |B(p,2r)|$$

c = Expansion Constant of the set of points S

Assumption about the structure: Expansion Constant

If S (set of points in the metric space X) is arranged uniformly on some surface of dimension d, then:

$$c \approx 2^d$$

▶ Eg: grid of equally spaced points in 2-D will have c = 4

- ▶ Eg: grid of equally spaced points in 3-D will have c = 8
- Other interesting cases

- Leveled tree satisfying invariants
- One point per node
- ▶ Lemma: for all nodes, number of children $\leq c^4$
- ▶ Lemma: maximum depth = $O(c^2 \log n)$

▶ (Nesting invariant): $C_i \subseteq C_{i-1}$ ($C_i = \text{nodes at level } i$)

▶ (Covering Tree invariant): $\forall p \in C_{i-1}, \exists q \in C_i$: $d(p,q) \leq 2^i$ (p is a child of q)

▶ (Separation invariant): If $p, q \in C_i$, then $d(p, q) \ge 2^i$

 Explicit Representation = Implicit Representation with duplicates removed

- Start with upper bound at root
- ▶ Descend tree, maintain a "cover set"

- Start with upper bound at root
- ▶ Descend tree, maintain a "cover set"

- Start with upper bound at root
- Descend tree, maintain a "cover set"

- Start with upper bound at root
- ▶ Descend tree, maintain a "cover set"

- Start with upper bound at root
- ▶ Descend tree, maintain a "cover set"

How to make a Cover Tree?

- ► Single Point Insertion $O(c^6 \log n)$
- ► Batch/Lazy Construction

Empirical Study

Speedup over Brute Force

Speedup over sb(S) data structure [Ken Clarkson]

▶ Note: mnist is the largest dataset (n=60,000, d=784)

Effects of expansion constant

Summary

Cover Trees are:

- space-wise efficient than all other discussed methods
- time-wise on par with other discussed methods
- theoretically more elegant than K-d Trees / Metric Trees
- empirically not fully convincing yet experiments need to be done on large-scale datasets comparing against Ball Trees and Navigation Nets
- ► Code: http://hunch.net/~jl/projects/cover_tree/ cover_tree.html

References

- [1] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In *Proceedings of the 23rd international conference on Machine learning*, pages 97–104. ACM, 2006.
- [2] Kenneth L Clarkson. Nearest neighbor queries in metric spaces. *Discrete & Computational Geometry*, 22(1):63–93, 1999.
- [3] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best matches in logarithmic expected time. *ACM Transactions on Mathematical Software (TOMS)*, 3(3):209–226, 1977.
- [4] David R Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics. In *Proceedings of the thiry-fourth annual ACM* symposium on Theory of computing, pages 741–750. ACM, 2002.
- [5] Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for proximity search. In *Proceedings of the fifteenth annual ACM-SIAM* symposium on *Discrete algorithms*, pages 798–807. Society for Industrial and Applied Mathematics, 2004.
- [6] Stephen M Omohundro. Efficient algorithms with neural network behavior. Department of Computer Science, University of Illinois at Urbana-Champaign, 1987.
- [7] Jeffrey K Uhlmann. Satisfying general proximity/similarity queries with metric trees. *Information processing letters*, 40(4):175–179, 1991.

