LOAN DOCUMENT PHOTOGRAPH THIS SHEET INVENTORY LEVEL DOCUMENT IDENTIFICATION H **DISTRIBUTION STATEMENT A** Approved for Public Release Distribution Unlimited DISTRIBUTION STATEMENT NTIS UNANNOUNCER JUSTIFICATION DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP DATE RETURNED

20010116 030

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC POM 70A

DOCUMENT PROCESSING SHEET

PREVIOUS EDITIONS MAY BE USED UNTO STOCK IS EXPLAUSTED.

LOAN DOCUMENT

Nellis AFB Site 44

Two-Phase Extraction (TPE)
Pilot-Scale Test Technology
Evaluation Report

FINAL

Nellis Air Force Base Las Vegas, Nevada

November 1995

Prepared for:

U.S. Army Corps of Engineers Omaha District

AGM01-04-0618

38 <u>3</u> 75	DEFENSE TECHNICAL INFO REQUEST FOR SCIENTIFIC AND	· · · · · · · · · · · · · · · · · · ·	
1	AFCEE COllection		anner aga a a a a a a a a a a a a a a a a a
	Report Availability (Please check one bon) This report is available. Complete sections 2a - 2f. This report is not available. Complete section 3.	2s. Number of Copies Forwarded	25. Forwarding Date Outn. 12000
Dal	. Distribution Statement (Please check ONE DOX) Directive 5230.24, 'Distribution Statements on Technical Documents cribed briefly below. Tachnical documents MUST be assigned a distri	;," 18 Mar 87, contains seve	n distribution statements, as
	DISTRIBUTION STATEMENT A: Approved for public relibition STATEMENT B: Distribution authorized DISTRIBUTION STATEMENT C: Distribution authorized confractors.	to U.S. Government /	Agencies only.
Cj	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.		
	DISTRIBUTION STATEMENT E: Distribution suitedized components only. DISTRIBUTION STATEMENT F: Further discomination and indicated below or by higher authority.		
	DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical	led technical data in a	cordance with DoD
24.	Reason For the Above Distribution Statement (in accor		
2e.	Controlling Office HQ AFUEE	Determination	bution Statement
	This report is NOT forwarded for the following reasons It was previously forwarded to DTIC on It will be published at a later date. Enter approximate dat In accordance with the provisions of DoD Directive 3200, because:	ate) and the AD number a If known.	T IS
j D	Allan Lelle	erania de la companya del companya del companya de la companya de	
416 27	phone 0 - 536 - 1431 - 536 - 1431	AG BETTELLY N	101-04-06(8

10389 Old Placerville Road Sacramento, CA 95827 (916) 362-5332 FAX # (916) 362-2318

17 November 1995

U.S. Army Corps of Engineers, Omaha District ATTN: CEMRO-ED-EB (Robert Zaruba) 215 North 17th Street Omaha, Nebraska 68102-4978

SUBJECT:

Contract No. DACA45-93-D-0027, Delivery Order No. 27, Mod No. 2; Final

Nellis AFB Two-Phase Pilot Test Technology Evaluation Report for Site 44

Dear Mr. Zaruba:

Enclosed you will find two copies of the Final Nellis AFB Two-Phase Pilot Test Technology Evaluation Report for Site 44 and associated response to comments table. The only comments received were from Omaha Corps of Engineers (COE) staff. Nellis AFB staff (Mr. John Roe and Mr. Jim Pedrick) were contacted and indicated that they would not be providing any comments.

If you have any questions regarding the report, please call me at (916) 857-7281 or Mike Thompson at (916) 857-7410.

Sincerely,

FRANCIS E. SLAVICH, PE

Project Manager

c: Margaret Calvert, ACC/ESVW (2)
Jim Pedrick, Nellis AFB (3)
Mike Thompson, Radian
Suzanne Felice, Radian
Jeff Lawrence, Radian
Bill Buchans, Radian
James Machin, Radian

Project File

NELLIS AFB TWO-PHASE PILOT TEST TECHNOLOGY EVALUATION REPORT FOR SITE 44

at

Nellis Air Force Base, Nevada

FINAL

Prepared for:

U.S. Army Corps of Engineers Omaha District ATTN: CEMRO-ED-EB 215 North 17th Street Omaha, Nebraska 68102

Prepared by:

Radian Corporation 10389 Old Placerville Road Sacramento, California 95827

November 1995

TABLE OF CONTENTS

		<u>i age</u>
1.0	INTR	ODUCTION 1-1
	1.1	Purpose/Objectives
	1.2	Site Background1-1
		1.2.1 Subsurface Features
		1.2.2 Nature and Extent of Contamination
2. 0	TWO	-PHASE EXTRACTION TEST METHODOLOGY2-1
	2.1	Test Procedures2-1
	2.2	Piezometer Installation
		2.2.1 Test Equipment
	2.3	Sampling and Analytical Methodologies
		2.3.1 Sampling Methodology
		2.3.2 Analytical Methodology
	2.4	Residuals Management
3.0	TEST	RESULTS AND CONCLUSIONS
	3.1	System Operation
	3.2	Radii of Influence and Production Rates
	3.3	VOC Recovery3-4
		3.3.1 Extraction Results
		3.3.2 Comparison with Typical Pump and Treat Technology
	3.4	Conclusions
		3.4.1 Overall Conclusions
4. 0	NELI	LIS AFB REMEDIAL ACTION ENHANCEMENT 4-1
5. 0	REFE	ERENCES 5-1
Appe	ndix A:	WELL AND DRILLING LOGS
	ndix B:	FIELD DATA SHEETS
	ndix C:	DATA QUALITY SUMMARY WITH ANALYTICAL DATA
	ndix D:	AM 4.02 METHODOLOGY
	ndix E:	11 RCRA TESTS
Appe	ndix F:	SUPPORTING CALCULATIONS FOR PUMP AND TREAT DATA

LIST OF FIGURES

1-1	Nellis AFB Location Map	1-3
1-2	Concentrations of TCE in Groundwater Above the MCL	1-4
1-3	Site 44 Water Level Contour Map	1-5
2-1	Piezometer and Vapor Probe Construction Cross-Section	2-2
2-2	Combined Vapor and Liquid Piezometer Plan View	2-3
2-3	Two-Phase Extraction Apparatus Schematic	2-4
2-4	Two-Phase Wellhead Assembly and Extraction Well	2-5
3-1	Drawdown vs Distance Over Time	3-3
3-2	Vacuum Influence vs. Distance Over Time	3-5
	LIST OF TABLES	
2-1	Summary of Wells and Monitoring Point Characteristics	2-1
2-2	Analytical Sampling Field Data Sheet	2-7
3-1	Two-Phase Extraction Technology Selection Criteria	3-2
3-2	Summary of TPE Pilot Study Results	3-1
3-3	Summary of Water Data	3-6
3-4	Summary of Vapor Data	37

ACRONYMS

ACC Air Combat Command

AFB Air Force Base

BGS Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

cfm Cubic Foot (feet) Per Minute

cm/sec Centimeter(s) Per Second

DCA Dichloroethane
DCE Dichloroethylene

DNAPL Dense Non-Aqueous-Phase Liquid
ESVE Enhanced Soil Vapor Extraction

GAC Granulated Activated Carbon gpm Gallon(s) Per Minute

gpm Gallon(s) Per M HQ Headquarters

IRA Interim Removal Action

LNAPL Light Non-Aqueous-Phase Liquid

MCL Maximum Contaminant Level

MW Monitoring Well
PCE Tetrachloroethylene

PID Photo Ionization Detector
ppbv Parts Per Billion by Volume
ppmv Parts Per Million by Volume

PREECA Presumptive Remedy Engineering Evaluation/Cost Analysis

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

scfm Standard Cubic Foot (Feet) Per Minute

SVE Soil Vapor Extraction TCE Trichloroethylene

TPE Two-Phase Extraction Technology

VOA Void of Air

VOC Volatile Organic Compound

μg/L Microgram(s) Per Liter

1.0 INTRODUCTION

In August 1995, Nellis Air Force Base (AFB) and Radian Corporation (Radian) completed a five-day pilot treatability test at Site 44 using the Two-Phase Extraction (TPE) technology. This report provides a summary of the methodology used during the test, the test results, and base-specific recommendations.

1.1 Purpose/Objectives

On 5 May 1995, Headquarters (HQ) Air Combat Command (ACC) published the United States Air Force Presumptive Remedy Engineering Evaluation/Cost Analysis (PREECA) (Radian, 1995) as a standardized decision framework specifying the criteria and associated decision logic necessary for implementing a non-time-critical removal action. This decision framework, developed by Radian in conjunction with the U.S. Army Corps of Engineers and the U.S. Air Force, combines the standard Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action process with the concept of presumptive remedies and a "plug-in" logic approach. The result is a "generic" remedy selection document for all Air Force installations that facilitates early and substantial risk reduction. The PREECA applies only to a closely defined subset of conditions that the Air Force has found to be common to contaminated sites, and that pose sufficient risk to justify non-time-critical removal actions: this methodology was not intended to be used at sites where the need for cleanup actions is not readily apparent. The PREECA focuses on remedies that can satisfy the majority of these common contamination situations, namely, in situ bioventing, soil vapor extraction (SVE), groundwater pump-and-treat for containment, and capping. However, the PREECA is intended to be updated as new, successful remedies are established. The Air Force is currently gathering extensive cost and performance data at a number of contaminated sites for intrinsic groundwater remediation, bioslurping, and two-phase extraction. As part of this effort, HQ ACC has contracted with

Radian through the Omaha District Corps of Engineers to evaluate the TPE technology for inclusion in the Air Force PREECA. Under this contract, Radian, in conjunction with the Air Force, developed an initial remedy profile for TPE as an expansion of the original PREECA effort.

This report presents the results of the TPE pilot test conducted at Site 44, Nellis AFB in August 1995. It evaluates the test results in light of the overall goal of providing additional data to support the validity of the initial TPE remedy profile, and demonstrates that TPE is an effective remedial technology. In addition, it presents data related to the site specific objectives which were to:

- Demonstrate the contaminant removal effectiveness of the TPE technology at Site 44;
- Determine the feasibility of installing a full-scale TPE system at Nellis;
- Collect sufficient engineering data to facilitate the design, installation, and operation of a full-scale TPE; and
- Assist in the prevention of contaminant migration, thereby minimizing the threat of exposure to human health and the environment.

TPE was selected for testing at Site 44 because the site has relatively high concentrations of chlorinated hydrocarbons, primarily trichlorethylene (TCE). The site also has low soil permeabilities that would typically limit the effectiveness of conventional pump and treat systems in capturing groundwater contaminant plumes. The TPE technology is designed to enhance control of groundwater plumes in low-to moderate-permeability formations, as well as to remove contaminants from the saturated zone.

1.2 Site Background

Nellis AFB occupies approximately 11,193 acres (including Areas II and III) northeast of

Las Vegas, Nevada (Figure 1-1). Site 44 is shown on Figure 1-2 and generally occupies an area approximately 900 by 1,200 feet along the flight line between the Flightline Fire Station and the Aerospace Ground Equipment area.

1.2.1 Subsurface Features

The soils underlying Site 44 consist primarily of clay to silty clay with lenses of caliche, silt and sand. The water bearing zone impacted by the TCE plume lies approximately 40 to 65 feet below the ground surface. Groundwater levels measured in March 1995 are shown in Figure 1-3 (Dames & Moore, 1995). The water level contours indicate a groundwater flow direction to the southeast.

1.2.2 Nature and Extent of Contamination

A Remedial Investigation (RI) conducted at Site 44 (Engineering Science, 1994b) identified a plume of TCE-contaminated groundwater as shown on Figure 1-2. The RI also identified a second plume (not shown), southwest of the TCE plume, that contains elevated levels of benzene, toluene, ethylbenzene, and xylenes (BTEX). Another, smaller acetone plume was also identified in the area of the BTEX plume. The TCE plume is believed to be the result of various maintenance activities, primarily in Building 270 (Aircraft Inspection Hangar), but also possibly from Building 271 (Aircraft Washracks) and Building 277 (Fire Department). TCE was reportedly used in Building 270 from 1960 to 1985 and is believed to have reached the vadose zone and groundwater as the result of previous waste disposal activities. Sewer and drain lines that were used for disposal are suspected of leaking TCE as well (Engineering Science, 1994b). The data collected from previous investigations at Site 44 have been used to characterize the subsurface features and the nature and relative extent of contamination at the site. Groundwater contamination has resulted from the previous operations and is migrating to the southeast. The primary contaminant of interest is TCE but 1,2dichloroethane (1,2-DCA) and 1,2-dichloroethene (1,2-DCE) were identified at concentrations above the Maximum Contaminant Level (MCL). Lesser concentrations of 1,1-DCA and perchloroethene (PCE) were identified at concentrations below the MCLs.

Figure 1-1. Nellis AFB Location Map

4

Figure 1-2.
Concentrations of TCE in Groundwater
Above the MCL

NELLIS3.CDR - 10/3/95 - JH - SAC

1-5

2.0 TWO-PHASE EXTRACTION TEST METHODOLOGY

The following information on the technical approach and the sampling and analytical methodologies is a summary of the Nellis AFB Site 44 2-Phase Wacuum Extraction Pilot-Scale Test Work Plan (Work Plan) (Radian Corporation, 1995).

2.1 <u>Test Procedures</u>

The pilot-scale test of the TPE technology consisted of a five-day test conducted on monitoring well (MW) -7 at Site 44. The test was conducted from 7 to 11 August 1995. The primary VOCs of interest included TCE and other trace quantities of chlorinated and nonchlorinated VOCs (refer to Appendix C for complete analytical results). All activities (equipment monitoring, sample collection, sample control, and sample analysis) were conducted in accordance with the procedures and protocols described in the quality assurance/quality control portions of the 1994 Dames and Moore, Site 44 Sampling and Analysis Plan (SAP). Modifications to the SAP are contained in Appendix A of the Work Plan.

2.2 Piezometer Installation

An array of three combined groundwater and vapor piezometers was installed near the extraction well to assess the performance of the TPE system. The groundwater and vapor

piezometers were installed using a hollow-stem auger drilling rig in accordance with the well construction portions of the SAP.

Groundwater piezometers penetrate the saturated zone and are screened below the static water table between 40 to 60 BGS. Vapor piezometers were installed with each groundwater piezometer and screened from approximately 15 feet BGS to 10 feet above the groundwater table. Combined groundwater and vapor piezometer construction cross-sections are shown in Figure 2-1. A plan view of the site showing the combined vapor and liquid piezometers is provided in Figure 2-2. Table 2-1 provides a summary of the well and monitoring point characteristics. Details of the installation of the piezometers is provided in Appendix A.

2.2.1 Test Equipment

The test was conducted using a trailer-mounted, 25-horsepower, high-vacuum extraction unit. A schematic illustration of the TPE unit is provided in Figure 2-3. Extracted groundwater from the formation was treated using aqueous-phase granulated activated carbon (GAC) before discharge to a portable tank for temporary storage; extracted vapor was treated using vapor-phase GAC prior to discharged to the atmosphere. A general schematic of a TPE well is shown in Figure 2-4. Procedures followed during the operation of the TPE system are summarized in the Work Plan.

Table 2-1. Summary of Wells and Monitoring Point Characteristics						
Well/ Piezometer ID	Used to Monitor	Total Depth (Feet BGS)	Screened Interval (Feet BGS)	Approximate Distance from MW-7 (Test Well)		
Vapor PZC-1	Induced Vacuum	35	15-35	10		
Vapor PZC-2	Induced Vacuum	35	15-35	25		
Vapor PZC-3	Induced Vacuum	35	15-35	50		
GW PZC-1	Water Level	62	40-60	10		
GW PZC-2	Water Level	61	40-60	25		
GW PZC-3	Water Level	66	40-60	50		
MW-7	Extraction Well	60	30-60			
MW-15	Water Level	54	39-54	90		

Figure 2-1. Piezometer and Vapor Probe Construction Cross-Section

Figure 2-2. Combined Vapor and Liquid Piezometer Plan View

Figure 2-3. Two-Phase Extraction Apparatus Schematic

Figure 2-4. Two-Phase Wellhead Assembly and Extraction Well

2.3 <u>Sampling and Analytical</u> <u>Methodologies</u>

All sampling and analytical procedures (except where noted) were conducted in accordance with procedures and protocols described in the SAP. The sampling frequency for soil, vapor, and water samples collected during the study are summarized on Table 2-2.

2.3.1 Sampling Methodology

System parameters and extracted vapor and liquid conditions were measured using vacuum and temperature gauges included on the TPE trailer. Groundwater drawdown in the observation wells was measured using a water level meter, and induced vacuum was measured using Magnehelic® gauges. Data collected during the test were recorded on field data sheets (Appendix B).

Baseline groundwater samples were collected from MW-7 prior to TPE testing in 40-milliliter void of air (VOA) vials using a dedicated teflon bailer. Prior to collecting the baseline samples, three well volumes of water were purged from the well. Following the test, post-test groundwater samples were collected using the dedicated bailer.

During the operation of the system, extracted groundwater samples were collected directly from the air/water separator on the TPE trailer in VOA vials. All VOA vials were iced and stored in a dedicated cooler until shipped to Radian's analytical laboratory in Austin, Texas.

All vapor samples were collected using disposable syringes and evacuated vials provided by Microseeps Inc. The samples were stored at ambient conditions until shipped to the Microseeps laboratory for analysis.

Quality control samples were also collected during sample collection activities. Duplicate water and vapor samples were collected at a 10% frequency by the methods previously described. Trip blanks accompanied the VOA vials throughout shipping and handling.

One carbon sample was collected from the vapor phase GAC and one from the aqueous phase GAC for profiling purposes. These samples were analyzed by Weststates Carbon Laboratory.

Base personnel collected composite soil samples of drill cuttings for profiling purposes to determine waste characteristics for disposal. These samples were analyzed by a Nellis AFB selected laboratory.

2.3.2 Analytical Methodology

Extracted groundwater samples were analyzed for VOCs by EPA Method SW8260. Soil vapor samples were analyzed for VOCs by Microseeps Analytical Method AM 4.02. Carbon samples were analyzed by the 11 Resource Conservation and Recovery Act (RCRA) test. Treated groundwater samples were analyzed to determine if the water was within the discharge limits for the sanitary sewer.

Results of the analytical data are provided in Appendix C. The AM 4.02 methodology is provided in Appendix D. The list of methods included in the 11 RCRA test along with the results are provided in Appendix E.

2.4 Residuals Management

The following residuals were generated during the TPE activities:

- One drum of aqueous-phase GAC and one drum vapor-phase GAC;
- Drill cuttings from piezometer and vapor probe installation;
- Purged water from sampling and well development activities; and
- Extracted groundwater from the TPE activities.

The GAC drums are scheduled for disposal following profiling activities. The carbon will be shipped as hazardous waste to a permitted carbon regeneration facility for disposal. This shipment will be manifested by Nellis AFB.

Table 2-2. Analytical Sampling Field Data Sheet

Vapor Phase Carbon Effluent	PID		×				×		×	×	X	X	×	
Liquid Phase Carbon	11 RCRA Test													X
Vapor Phase Carbon	11 RCRA Test											,		X
Vapor Phase Carbon Effluent	AM4.02								×					
Liquid Phase Carbon Effluent	SW-8260								х					
Soil	SW-8260	×												
Soil Vapor	AM4.02	×									·			x
Ground- water	SW-8260	×												Х
Vapor Duplicate	AM4.02						X				X			
Liquid Trip Blank	SW-8260						X				×			
Liquid	SW-8260					X					×			
Extracted Vapor	AM4.02		×	X	×	X	×	×	×	×	×	×	×	
Extracted Liquid	SW-8260		X	×	×	x	×	×	×	×	×	×	×	
Schedule	Hour	before	0.25	2	4	-	24	28	32	48	56	9/	104	after
Sche	Day	0	-	1		1	2	2	2	3	3	4	5	5

F-TBL2-2.DOC

The drill cuttings were placed in a roll-off bin for temporary storage at the site. Following analysis and profiling, Nellis AFB managed the manifesting and disposal of all soils generated during testing activities. The soils were eventually sent to Las Vegas Paving for incineration.

Purged water from sampling and well development activities was temporarily stored in a 600-gallon, trailer-mounted tank. The purged water was then transferred to the existing water treatment plant for treatment. The treatment plant is located at Site 28 at Nellis AFB.

All water extracted during the TPE study was treated using aqueous-phase GAC and then temporarily stored in a 20,000-gallon tank. Following approval of the wastewater analytical results (presented in Appendix C) by the base environmental staff, the wastewater was discharged to the sanitary sewer.

3.0 TEST RESULTS AND CONCLUSIONS

To add a new technology to the PREECA process as a presumptive remedy, the conditions under which the technology can be applied must be determined. The range of site conditions where the technology has been shown to be successful is referred to as the Remedy Profile. Radian has prepared an initial TPE Remedy Profile based on the results of previous TPE tests done at sites across the country. As more information becomes available, the new data are used to update and refine the technology's Remedy Profile.

The data available for Site 44 prior to the test indicated that it was a good TPE candidate site with relatively high VOC concentrations and low permeability. The test was successful at significantly improving the groundwater extraction rate and the VOC mass removal rate over conventional extraction methods such as pump and treat. However, the vapor flow rate observed during the test was higher than expected given the available information on the vadose zone soil types. The relatively high flow rate (87 to 97 scfm) puts the site at the bounds of the current remedy profile.

The TPE test at Site 44 was successful in providing additional verification of the initial draft Remedy Profile. Table 3-1 presents an initial TPE Remedy Profile. In addition, it compares the Nellis Site 44 data to the TPE profile. The "cases" described in the Remedy Profile relate to the relative concentration of contaminants and the permeability of the saturated and vadose zones to site conditions where the technology is applicable.

The test met all of the test objectives related to verifying and expanding the draft Remedy Profile. It also met all of the site-specific objectives related to obtaining site-specific design information (vapor radius of influence, expected flow rates, expected concentrations, etc.) with the exception of determining the exact groundwater radius of influence. While this value has been estimated, the fluctuations in the water table make the values uncertain.

3.1 System Operation

Physical and analytical data were analyzed to determine the following:

- Baseline TCE and total VOC concentrations in groundwater;
- The major VOC constituents in the vapor and water streams;
- Average groundwater and soil vapor extraction rates;
- Average TCE and total VOC extraction rates and total pounds removed;
- The relationship between distance and groundwater drawdown and induced vacuum, including radii of influence.

Table 3-2 summarizes the results achieved using the TPE system at MW-7 and provides a comparison with conventional pump and treat (P&T) applications.

Table 3-2. Summary of TPE Pilot Study Results						
System Parameter	TPE at MW-7	TPE vs. P&1				
Groundwater Extraction Rate	1.7 gpm	2-3 times				
Soil Vapor Extraction Rate	87-97 scfm	NA				
Avg. VOC Removal Rate	0.39 lbs/day	> 30 times				
Avg. TCE Removal Rate	0.33 lbs/day	> 30 times				
Radius of Influence ^a	>85 feet	unknown				
(Groundwater)	•					
Radius of Influence (Vapor) ^a	>50 feet (estimated to be 100 ft by extrapolation)	NA				

^aRadius of influence results were based on limited data as discussed in Section 3.2.

scfm = standard cubic foot (feet) per minute

lb/day = pound(s) per day gpm = gallons per minute NA = not applicable

The supporting calculation for the pump and treat data is provided as Appendix F. The data calculation for the TPE system parameters are provided in Appendix B.

3.2 Radii of Influence and Production Rates

Groundwater drawdown versus the distance from the extraction well over time is presented in Figure 3-1. The groundwater level readings

Table 3-1. Tw	o-Phase Extraction Technology Sele	ction Criteria
Criteria Parameter	PREECA Remedy Profile Guideline	Nellis AFB, Site 44
Contaminant	Halogenated VOCs ^a	Halogenated VOCs: primarily trichloroethylene (TCE)
Contaminant Location	Saturated zone or both the saturated and vadose zones	Saturated and vadose zone
Contaminant Concentration	Significantly greater than MCLs	Significantly greater than MCLs for TCE
Depth of Contamination	< 150 BGS	< 65 feet BGS
Henry's Law Constant of Majority of Contaminants	> 0.01 at 20°C (dimensionless)	0.37 at 20°C for TCE
Vapor Pressure of Contaminant	> 1.0 mm Hg at 20°C	58 mm Hg at 20°C
Hydraulic Conductivity (Saturated Zone)	< 1 x 10 ⁻⁴ cm/sec (silts and clays with minimal interlayered sands and gravels)	2.8 x 10 ⁻⁵ cm/sec (clays, silts, and caliche)
Groundwater Production	< 15 gpm (for 4-inch well casing)	< 1 gpm groundwater only for 4-inch well casing
Average Air Permeability of	Groundwater Only:	,
Vadose Zone and Distribution of Contaminants	Case 1:	Case 2:
	No contamination present in vadose zone. Air permeability in vadose zone is not a determining factor. High concentrations (significantly higher than MCLs) of contaminants in saturated zone.	Low to moderate concentrations of VOC compounds in vadose zone and high concentrations of VOC compounds in saturated zone; and
	Vadose Zone and Groundwater Contamination:	Low to moderate air permeability in both the vadose zone and the saturated zone
	Case 2:	(clays and silt).
	Low to moderate concentrations of contaminants in vadose zone. Low or high air permeability in vadose zone. High concentrations of contaminants in saturated zone.	
	Case 3:	
	Low or high air permeability in vadose zone. High concentrations of contaminants in vadose zone and saturated zone.	
	Case 4:	
	High concentrations of contaminants in vadose zone. Low air permeability in vadose zone. Low to moderate concentrations of contaminant in saturated zone.	
^a TPH and/or BTEX can be includ	ed for sites where expedited action is required.	

taken during the test indicate that the aquifer had not reached steady state at the conclusion of the test. During the first day of operation, the data indicated a reduction in the water table at all four monitoring points. Approximately midday on the second day of testing, the water levels began to increase as the water table rebounded from the initial depression and continued to increase gradually during the remainder of the test. The radius of influence for groundwater, based on the first day of operation, is greater than 85 feet. As shown in Figure 3-1, a drawdown of about 0.2 foot was obtained at MW-15, which is approximately 85 feet from the extraction well. Groundwater levels at all piezometers increased slowly through the end of the test on MW-7. By the end of the test, the water levels showed a net rise over the baseline readings in all monitoring points.

The increase in soil vacuum caused by the TPE unit would tend to cause a rise in the static groundwater level. This does not completely explain the resulting groundwater level results, as the observed rise in the water table was greater than would be expected by a vacuum influence of less than 1 inch of water column. Data obtained during the test indicates that there may have been an outside influence on the water table that was either responsible for a drawdown of the baseline water level readings or recharge to the area. The aquifer is not a source of potable water and is not connected to an aquifer that is currently being pumped by a supply well.

Soil vacuum readings were measured at all three monitoring points indicating a vapor radius of influence greater than 50 feet. No vacuum readings could be collected at MW-15. Figure 3-2 presents the vacuum readings versus distance over time from the extraction well. This figure is used to estimate the approximate vapor radius of influence at the site. The radius of influence for vapor is estimated to be significantly greater than the hydraulic radius, in the range of 80 to 100 feet based on extrapolation of the data.

The groundwater flow rate was measured using a totalizing flow water meter. After an initial surge resulting from evacuating the well, flow slowly decreased to a steady state rate of approximately 1.6 to 1.7 gpm. An average flow of 1.7 gpm was obtained for the 100-hour test.

The vapor flow rate was measured by rotometers on the TPE unit. The flow rate for MW-7 quickly stabilized at a relatively high rate of between 85 and 95 scfm during the entire test. This indicates that the unsaturated zone of the formation have a higher permeability than initially expected.

3.3 VOC Recovery

Tables 3-3 and 3-4 summarize the analytical results for the VOCs detected in the samples collected during the study. TCE, PCE, and other minor amounts of chlorinated organics were the primary contaminants found at the Site (see Appendix C for the analytical laboratory results). Results of sampling at MW-7 included:

- The baseline concentration (before the test) of TCE in groundwater at MW-7 was 1,760 μg/L;
- The post-test concentration of TCE in groundwater at MW-7 was 647 μg/L;
- The concentration of TCE in water samples taken from the TPE air/water separator averaged 58.5 μg/L; and
- The total VOC concentration in extracted vapor ranged from 6,167 to 9,431 parts per billion by volume (ppbv).

3.3.1 Extraction Results

Results of the MW-7 test included:

- Approximately 1.6 lb of total VOC compounds were extracted from MW-7 in 100 hours of testing (approximately 0.39 lb/day). The majority of the compounds were extracted in the vapor phase.
- Average groundwater extraction rate was 1.7 gpm.

Figure 3-2 Formation Vacuum vs. Distance over Time

Concentration in Micrograms per Liter (µg/L) Table 3-3. Summary of Water Data

					Ö	Sample ID ^b					
	Groundwater				Extracto	Extracted Groundwater	ater				Groundwater
Date/Time Collected	Pre-Test	8-7/1330 UW 1	8-7/1600 UW 2	8-8/0930 UW 3	8-8/1200 UW 4	8-8/1530 UW 5	8-9/0700 UW 6	8-9/1540 UW 7	8-10/1230 UW 8	8-11/1400 UW 9	Post-Test GW2
Benzene	0.238	0	0	0	0	0	0	0	0	0	0
Bromodichloromethane	0.171	0.0876	0.106	0.101	0.0817	0.0847	0.0919	0	0.981	0.167	0
Chlorobenzene	0.144	0	0	0	0	0	0	0	0	0	0
Chloroform	0.506	1.15	1.31	1.42	1.07	1.3	1.11	1.17	1.21	1.35	0.361
1,3-Dichlorobenzene	0.38	0	0	0	0	0	0	0	0	0	0
1,1-Dichloroethane	1.19	0	0	0	0	0	0	0	0	0	0
1,1-Dichloroethene	0.331	0	0	0	0	0	0	0	0	0	0
cis-1,2-Dichloroethene	6.09	0.951	0.98	0.898	0.678	0.814	0.673	0.696	0.617	0.59	38.8
trans-1,2-Dichloroethene	0.257	0	0	0	0	0	0	0	0	0	0
2-Hexanone	0	0	0	0	0	0	0	0	0	0.812	0
Tetrachloroethene	12.6	3.49	4.27	6.41	5.08	6.19	5.9	6.48	5.64	7.41	13.2
Toluene	0.153	0	0.216	0	0	0	0	0	0	0	0
Trichloroethene	1760	50.9	53.2	64.1	51.5	61.4	57.1	63.5	55.6	69.5	647
Trichloroflouromethane	9880	0	0	0	0	0	0	0	0	0	0
1,1,2-Trichlorofluoroethane	2.21	0	0.442	(P)	0	0	0	0	0	0	0

*Only analytes with confirmed hits above detection limits are reported.

*Donly last three digits of sample number are shown. The actual extracted groundwater samples were labeled as "UW" for untreated water instead of as "VW" as reported by the laboratory. The correct sample numbers are provided.

Note: All influent samples were taken from the knockout pot prior to carbon treatment.

Should be < Reporting Limit

Table 3-4. Summary of Vapor Data Concentrations in Parts per Billion by Volume (ppbv)

~			Extracted	Vapor Conce	ntration ^a	
Sample ID ^b	Date/Time Collected	Chloroform	Decane	Hexane	PCE	TCE
SV1 (Pre-test) ^c	8-7/0830	43	0	130	210	4,400
UV1	8-7/1330	47	0	280	340	5,500
UV2	8-7/1600	53	0	610	470	6,600
UV3	8-8/0930	48	0 -	710	450	5,200
UV4	8-8/1200	50	0	180	500	5,500
UV5	8-8/1530	52	440	190	610	6,300
UV6	8-9/0715	58	0	0	810	7,700
UV7	8-9/1600	57	0	90	780	7,500
.UV8	8-10/1230	61	240	410	820	7,900
UV9	8-11/1430	63	170	260	820	7,700
SV2 (Post-test) ^c	8-11/1600	54	90	80	610	5,700

^aResults below the method detection limit are shown as "0" ppb. Only analytes with confirmed hits above detection limits are reported.

^bOnly last three digits of sample number is shown on table (UV = untreated vapor, SV = soil vapor).

^cSamples taken of extracted soil gas with the straw above the water table.

 Average vapor extraction rate from the formation was 93 scfm. This flow rate is relatively high and would be considered to be on the upper edge of the remedy profile.

The TPE extraction system transferred over 90% of the VOCs in the groundwater to the vapor phase, resulting in water phase concentrations that required only minimal polishing prior to discharge.

3.3.2 Comparison with Typical Pump and Treat Technology Shoold compare with SVE

Two-phase extraction demonstrated a number of advantages over a typical pump and treat systems if used at Site 44. A number of these advantages are discussed below.

Increased Water Extraction Rate. The increased down-well vacuum increases the pressure gradient within the water bearing zone. This results in a significant increase in water extraction rates in low permeability formations. The well development logs indicate that a pumping rate of 1 gpm could not be sustained

pb. Only analytes with confirmed hits above

These results

IV = untreated vapor, SV = soil vapor).

Water table.

These results

IV = untreated vapor, SV = soil vapor).

The main mass

Increased Contaminant Removal Rate. The contaminant mass removal rate (0.39 lb/day of VOCs) was increased 30 times when contrasted with a conventional pump and treat system that would operate at this site. A conventional pump and treat system for this site would be expected to operate at 0.8 gpm with an average groundwater TCE removal rate of 0.011 lb/day. The increase in mass removal rates occurs as a result of pulling air through the recently dewatered saturated zone and stripping is more. dissolved contaminants from the soil particles. In addition, contaminated soil vapors are often simultaneously extracted from the vadose zone, removal reducing the potential for transfer of additional wechanism contaminants from the vadose zone into the groundwater.

In Situ Air Stripping. The TPE system extracts the groundwater as dispersed droplets. This, combined with highly turbulent vacuum conditions, results in significant transfer of the volatile components from the liquid to the gas phase. Stripping rates greater than 90% were observed during the TPE study at the site. This results in more cost-effective treatment of the extracted contaminants.

3.4 <u>Conclusions</u>

The pilot test on MW-7 demonstrated the effectiveness of the TPE technology for removing VOCs from the saturated zone. Up to 0.39 lbs/day of VOCs were removed from the subsurface during the study. This contaminant removal rate indicates that TPE is an effective technology for contaminant removal at Site 44.

3.4.1 Overall Conclusions

The test demonstrated the TPE system's effectiveness at remediating the site. This provides additional verification of the existing remedy profile for TPE because the site conditions are within the bounds of the current TPE profile.

The TPE process resulted in significantly increased subsurface contaminant mass removal rates. The pilot test data should provide significant information to evaluate the cost and technical feasibility of installing a full-scale system at the site. For use as a source or "hot-spot" remediation technology, the groundwater radius of influence data are adequate to design and install a full-scale system. Due to the fact that the water table did not reach steady-state during the test, making accurate estimation of the groundwater radius of influence uncertain, phased implementation may be required for complete plume and contaminant control. The time required to reach steady-state cannot be determined since the exact cause of the increase in groundwater levels was not identified. Additional review of the most recent groundwater monitoring data should be conducted to verify that the water level fluctuations occur as a result of influences other

than the TPE system. If this cannot be determined, a longer pilot test may be required to obtain better groundwater radius of influence data.

4.0 NELLIS AFB REMEDIAL ACTION ENHANCEMENT

Nellis AFB is currently in the process of evaluating a number of technologies for remediating the soil and groundwater contamination at Site 44. The data from this TPE pilot test will be used to evaluate TPE versus other technologies to identify the most cost-effective solution. The results of the test indicate that TPE would be an effective remedial solution for the site.

5.0 REFERENCES

- Dames & Moore, 1994. Sampling and Analysis Plan Site 44. Las Vegas, NV. 09 August.
- Dames & Moore, 1995. Quarterly Groundwater Monitoring Report, March 1995, Site 44, Nellis AFB. Las Vegas, NV. June.
- Engineering Science, 1994a. Feasibility Study of Site 44 at Nellis AFB, Las Vegas, Nevada. Houston, TX. July.
- Engineering Science, 1994b. Remedial Investigation of Site 44 at Nellis AFB, Las Vegas, Nevada, Final Edition. Houston, TX. May.
- Radian Corporation, 1995. Nellis AFB, Site 44
 2-Phase M Vacuum Extraction Pilot-Scale
 Test Work Plan. Final. Nellis AFB,
 Sacramento, CA. June.
- Radian Corporation, 1995. United States Air Force Presumptive Remedy Engineering Evaluation/Cost Analysis (PREECA). Final. Sacramento, CA. 5 May.

APPENDIX A
Well and Drilling Logs

RADIAN	WELL CONSTRUCTION AS - BUILT	Sheet of
oject Name: NELLS AF roject No.: 612-001-3 eologist: 63 MUKANY filling Co.: WEST HARMA		Well No.: PZC-
Stand	SURFACE COMPLETION: i-up Field Box Flush-mount Traffic Bo	
. [TOP CAP (Slip)	VOLUME OF WATER ADDED (while drilling/bumpplug) Gallons:
GROUND SURFACE		0-13,5= CONC. 13,5-14,5= 0/305A+0 14,5-35,5= 16 SAND 14,5-35,5= 16 SAND 14,5-35,5= 16 SAND
CONCRETE SI $\frac{3}{5} \int_{0}^{\infty} ft to Sur$	EAL OO DOO	epth: O-35 FIRST SCREEN = 15-3C) GROUT MIXTURE Volclay: Cement Type: Cosic SET
	CONCRETE SI	No. of Bags: Bag Weight: BentoniteType: No. of Bags: Bag Weight:
BLANK CASING Type: POC Sched: UO I.D.: Thread: FOST	Top of Bentonite S	Seal: 38.5' ft. 750 (2005) (EA)
Centraliz	Top of Filter Pack	n: 40 ft. Bag Weight: Tremie Pipe: (Y/N)
SCREEN CASIN	4G	Bottom/Side - SAND PACK Brand Name: でんしいこうかん
Sched: 40 I.D.: 472' Thread: 1000 Slot: 0.00' Centraliz	ers (Y/N)	Type: Size: No. of Bags: Bag Weight: Tremie Pipe: (Y/N)
Top of Slough Sand:	ft. Bottom of Screen:	Bottom/Side 60'-7 ft.
(Auger O.D.: <u> 7 \ \ \ </u>	END CAP (Slip (Flush)	

RADIAN

BORING LOG AND SAMPLING RECORD

PAGE 2 OF 2

PROJECT: Nelly APD 2-PHASE PIEZOMETER INSTPROJECT NO: (17-001-31-36 DATE: 7-31-95 BORING DESIGNATION: 726-1 **DRILLING AND** WELL SAMPLE SOIL DESCRIPTION SAMPLER NOTES/ LITH CONST. OVM/FID/PID (BG/R) TIME REC. NO. (Group Name, Group Symbol, Color, ASTM Descriptions) 31' TOP OF CALICHE LAYER, Slow DRILLING LOUT OF CALICHE AT 37 40.5' TOP OF CALLER LAYER. 42.5' OUT OF CALICHE WET AT 441 SAMBY I EAR CAY (K) SMO-1070, 514-1510, CIAS-7790, MAX= GMM. S'UB-ROUMED. WET (MET TO TOUCH) SEFT. HOMOGENEOUS MED PHISTILITY. JD. 57⁵. <u>550</u> 575 (0-

DEPTHS IN FEET BGS n = BLOWS/6 INCHES FOR BLOW COUNT CONVERSION, x + y + z (CAL. MOD. SPLIT SPOON) = (y + z)/2 (SPT)

BG/R = BACKGROUND/READING

RADIAN	WELL CONSTRUCTION AS - BUILT	Sheet of
oject Name: NELLIS AFB Z-PA oject No.: 612-001-31 Geologist: 65 Mukelvey	HASE PICTOMETER INST	Well No.: PTC-Z
Filling Co.: WEST HAZMAT PR	Winin Co.	
	URFACE COMPLETION	
Stand-up F	FieldBox Flush-mount Traffic Box	
		VOLUME OF WATER AREA
7		VOLUME OF WATER ADDED (while drilling/bumpplug)
	TOP CAP (Slip/Flush)	Gallons:
		13.5
<u> </u>	16/73 MAS	13.5 CONGRETE = 14.5 CONGRETE - 35.5 IC SANDERS
	14.5-25-17	- 55.5 IC SANSELLE
GROUND SURFACE	L COMO VAPOR PIE	7.
GROUND SORT ACE	GONDUCTOR	CASING (Y/N)
	Type:	5CH1.40 0-15 (CAPPE) /15-35/5CREEN
CONCRETE SEAL -		OUT MIXTURE — 35.5-38.5
	SO S	Volclay:
ft. to Surface	TO THE REPORT OF THE PARTY OF T	CementType: RAPIDSET CONCRETE
		No. of Bags: 4 Bag Weight: 60
•		BentohiteType:
	CONCRETE SEAL	No. of Bags: Bag Weight:
Type: PVC	(Y/N)	Water (gals):
Sched: 40		Tremie Pipe: (Y/N) Bottom/Side
I.D.: 2'' Thread: Flush	SETONO SAND Top of Bentonite Seal: 35	
	Top of Bentonite Seal:	35 CO(43 37 W)
Centralizers (Y/	Top of Filter Pack: 59.	BENTONITE SEAL Tellet Size: 0/30
,		No. of Bags:
₹ = <u>≈ 44'</u>	Top of Screen: $\underline{\mathcal{U}}$	Bag Weight: $\frac{1}{1}$ Tremie Pipe: $\frac{1}{1}$
		Bottom/Side
•		
SCREEN CASING -		VD. D. CT
Type: PUC	SAN	ND PACK Brand Name: RMC LONESTAIZ
Sched: <u>40</u> I.D.: <u>2</u> "		Type: LAPIS LUSTIFE
Thread: Flust		Size: \(\mathcal{C}\) No. of Bags: \(\)
Slot: 0.010"		Bag Weight: 100
Centralizers (Y/		Tremie Pipe: (YAY) Bottom/Side

Bottom of Screen: 6'7" ft.

(Slip/Flush)

END CAP

Top of Slough Sand: Mr. ft.

Driller's T.D.: 615 ft. (Auger O.D.: 12")

RADIAN

BORING LOG AND SAMPLING RECORD

PAGE OF

PROJECT NO: 612-601-31-36 PROJECT: NEllis AFB 28HASE PIEZENETER INST. BORING DESIGNATION: 72C-7 LOGGED BY: 65 Mikelven **DRILLING AND** WELL SAMPLE SOIL DESCRIPTION SAMPLER NOTES/ CONST. LITH REC. NO. TIME (Group Name, Group Symbol, Color, ASTM Descriptions) OVM/FID/PID (BG/R) 44 SAWDY LEAN CLAY (CL) LIGHT NA CL YEllowish Brzonnes (104Rg (4)), pros-4m MAX= 4MM D.A. DRY. FIRM. HOWGENERUS MED - PLASTICITY. - CALCHE (AGOR AT 3-365 FEET TOP OF CHICHE DAYOF AT 38' FOR OF CALVERY LAYER AT 40.5' 425 at of caliche & 44. SAWOY lear Clay, SAME AS ADONE CL 50: -51-520 MED. HARD CALLUE LAYER. CL FOR OF CALCHE LASERAT \$ 531 - BOTTOM AT 551. 60--TD=61

DEPTHS IN FEET BGS n = BLOWS/6 INCHES FOR BLOW COUNT CONVERSION, x + y + z (CAL. MOD. SPLIT SPOON) = (y + z)/2 (SPT)

BG/R = BACKGROUND/READING

Sheet ____ of ___

roject Name: NELLIS AFB 2-PHASE PLEZOMETER FROT-	Well No.: <u>72C-3</u>
roject No.: 612-601-31 Geologist: 65 MUKENEY	
Geologist: AS MUKENEY Prilling Co.: West HAZMAT Dalling Co.	
SURFACE COMPLETION	
Stand-up Field Box Flush-mount Traffic Box	
→ • • • • • • • • • • • • • • • • • • •	VOLUME OF WATER ADDED
TOP CLP TO	(while drilling/bumpplug) Gallons:
TOP CAP (Slip/Flu	ish)
	0-13' - Roicheset
	2-14.3 - 0/30 SAND
	143-35 = 16/30 MAD (HZ/16)
GROUND SURFACE	FOR CASING (Y)
Typ	pe: PUC SCH-UC I
	pth: <u> </u>
CONCRETE SEAL	GROUT MIXTURE 35.5-38.3
	Volclay:
ft. to Surface	Cement Type: Wilk-SET No. of Bags:
	Bag Weight: (6)
	BentoniteType:
"CONCRETE SE	No. of Bags: AL Bag Weight:
2 BLANK CASING CVN	Water (gals):
Type: PVL BETWEEN VAPUR	Tremie Pipe: (Y/N)
Sched	bottom/side
I.D.: 2" Second Sand Thread: Flust Top of Bentonite Se	383 al: \$6 ft.
	TOUSAND
Centralizers (Y/N)	15 ft. AD Pellet Size:
Top of Fifter Pack:	No. of Bags:
$\nabla = 44$ Top of Screen:	
	Tremie Pipe: (Y/N) Bottom/Side
	2000, 5.00
7 SCREEN CASING	SAND PACK
Type: PVC	Brand Name: 551 Silica SAND
Sched: 40	Type: (alprado Size: 16/30
I.D.: 2" Thread: Fly.M	Size: <u>16/30</u> No. of Bags:
Slot: O Olo 1	Bag Weight: 10015
Centralizers (Y/N)	Tremie Pipe: (Y/N)
	-Bottom/Side
Top of Slough Sand:ft.	(4) 2"
, Bottomor Screen	<u>d)-L_</u> ft.
Driller's T.D.: 66-6" ft.	
(Auger O.D.: 12") END CAP (Slip/Flush)	
LIND CAT (SIIP/FIUSD)	,

BORING LOG AND SAMPLING RECORD

PAGE 2 OF 2

PROJECT: NEILS AFR 2-PHASE AFROMETER INST. PROJECT NO: 612-601-31 DATE: LOGGED BY: // BORING DESIGNATION: P2C -3 MUKELVEVI **DRILLING AND** DEPTH SAMPLER NOTES/ WELL SAMPLE SOIL DESCRIPTION LITH CONST. 2 OVM/FID/PID (BG/R) (Group Name, Group Symbol, Color, ASTM Descriptions) TIME n REC. NO. sawoy leno chy (CL) LIGHT MA MA YEllower Brown (10412, 6/4). MAX= BMA 30% DRY, HOTOGOROW, FIRM. MED. PLASTINTY APPEAR TO DE -less clay, more silt, more power COMUNA INTO HIGHER 315 MATERIA). 7. OF CATICHE. milo caliche layer at 36-36.5° CL TOP OF CALILLE LAYER AT 37.5' MOD. TOUGH DRILLING OUT OF LAYER AT 39 - TOP OF CALLAGE LAYER Very TOULH Peilling UP TO 2800 PSI FEED PRESSIPE FOUT OF CATHLE AT 44.5'. VERY COULD NOT ANOUN Plug OUT OF ANOUN. PUIDO SUE AULIERS ON B-ZP.M. 2' of callthe plucoint 5 1040 ALER REMUVED AN RE-BURED HOVE TO SET CASINGS. 57. 60-DRIllers lost lover & LIENT TO 65 ST DEEPER THAN PLANNED. TO=66'

DEPTHS IN FEET BGS n = BLOWS/6 INCHES FOR BLOW COUNT CONVERSION, x + y + z (CAL. MOD. SPLIT SPOON) = (y + z)/2 (SPT)

BG/R = BACKGROUND/READING

WELL DEVELOPMENT/SAMPLE DATA SHEET

i											
-	PROJECT: PE	llis AFB 2	PHASE P	IE ZOMET	er In:	J. NU	MBER: 61	2-001-31			_
!	WELL IDENTI	FICATION: (PZC-1				DATE:	-7-95			- (
	PURPOSE: DI	EVELOP/SA	MPLE	BY:65	Mikel	VEY	WEL	.L DEPTH: (6.16) FT (FROM	T.O.(.)
	PURGE EQUI	PMENT: 2"	BAILER		3. PUMC			LEVEL (b): (\			_
	SAMPLE EQU	<u></u>	· · · · · ·					COL. (W): (-
	WELL DIAMET	-		nches			PROD I	LEVEL (c): () FT	
	CASING DIAM	, , , , , , , ,		_	NC/ST	STIP	ROD THICK	NESS (P): () FT (b - c)	1
					_ v, O/ O 1.	31.)	TOTAL COI	LUMN (H): (5.64) FT (W+P)	<u>,</u>
	SCREEN PV $A = (D^2 - d^2)0.$			ches			OVA: B/ _ TIME	PV		-	
	$A = (D^{-1} - G^{-})U$. VWA = .30(A)F	/05 = <u></u>	358 358 ft ²	VWC =	$d^2(\pi)H$	/576 = _		 			
	[VWA(3.52							DLUME/CASI	NG VO	LUME (C.V	/ .)
([W.V.)C.V. (Z [VWA = VOL. \	9.3	al [3/5]D=_	146	_gal = `	TOTAL P	PURGE VOL	UME			
		VATER:AND		l	OL. WA	T			T	1	7
	TIME (Feet)	GALLONS	DISCHARGE RATE	TEMP.	Ph	EC (umhos)		ACTERIZATION/ VATIONS	IMHOFF CONE	DRAWDOWN (Feet)	1
	150	210	.75 gps	NA	MA	NA	PO 50105.	PALE BROWN	10.05		
	1575	221	1.7 .410)	17	PO 561 175. A	IMOST CLEAR			1
	1530 46,30		1,2 gpm 7-gpm				clana colo		0.00	1.8	4650
	1540 47.00		<i>)</i> v				/\	1(0,00	2.50	1
	1600 47.90		1.5gp				it	/ (0.00	3.38	1
	1	110	1.45 yru				1:	((0.00	4.37	į .
Port at -	1633 5032	_ I	2.70gm				/ 1	/1	0.00	5.82	1
ECHARGE	1638 45.20									0.70	1
5 mm)			/ /		/	7	/				1
	77		/ /		1	1				/	1
			/			7	7		-	/	1
(4/	17	V	1	1 /			1
	START TIME:	1515	STOP T	ME: (632	# DF	RUMS FILLE	D:_3	165	(nais.)	
	DRUM COND										106.477.
	TOTAL GALLO	ONS EXTRA	CTED = _	165	1 2	7.3	/(W.V ₂ /C.V.) =	= <u>5.63</u> P	URGE	VOLUMES	3
						`		j			
	SAMPLE NO.			ELTES	>	METH		/A		<u>.</u>	
	SAMPLE NO.					METH			···		
	SAMPLE NO. SAMPLE NO.		ì			METH METH	IOD				•
	SAMPLE NO.		()			•		,			
	SAMPLE TIMI					_					

WELL DEVELOPMENT/SAMPLE DATA SHEET

-	PROJE	ECT: <u>N</u> E	(16 AFB	2-PHASE 6	PIERCHET	LX INS	T. NU	MBER: 617-001-31	
	WELL	IDENTII	FICATION:	PZC-Z			<u>-</u>	DATE: 8.2.95	
	PURP	OSE(DE	VELOP/S/	AMPLE	BY:65	order	<u> 264</u>	WELL DEPTH: (5	59.45) FT Franto
			PMENT: Z		12" 50	B. PUT	<u>-رې</u>	-WATER LEVEL (b): (45.∞) FT
			IPMENT:					WATER COL. (W): (
			TER (D):	_	nches			PROD LEVEL (c): (./)FT
			ETER (d):			VC/ST	STIP	ROD THICKNESS (P): (/.) FT (b - c)
			C/ST. ST.:				J, —	TOTAL COLUMN (H): (OVA: B/ R/	4.45) FT (W+P)
	VWA =	.30(A)H	785 = <u>169</u> 1/144 = <u>3</u> .	3\ft³	VWC =	$d^2(\pi)H/2$	<u> </u> = 576	37 ft ³	
	[VWA(3:31)+ vwc	(.32	_)]7.48	= 137	<u>∱</u> gal =	1 WELL VOLUME/CASI PURGE VOLUME	NG VOLUME (C.V.)
2	-{₩,У./С -{VWA =	:.V. (<u>.±</u> = VOL. V	VATER: AN	al][3 / 5] ≥ _ NULUS1 [V	136 WC = V	_gai = ī OL. WA	TOTAL F TER: C	PURGE VOLUME ASING] [DTW = DEPTH T	O WATERI
		DTW		DISCHARGE	T	<u> </u>	EC	WATER CHARACTERIZATION/	T
	TIME	(Feet)	GALLONS	RATE	(°C)	Ph	(umhos)	OBSERVATIONS	CONE (Feet)
	1773	47.44	10 (25)	2.0	12/1	10/11	NIA	columiss. Almos, Clear	0.00 2.44
	1736	28-12	40(55)	3.1				PALE BROWN TRANSJUSTERS	LOISO 6.85
	1803	56,55	95(110)	7.0				Almost COLORIESS Almost CLEAR	60.00 11.55
STOS	1922	56.25	175 (140)	1.6				coloriess clepr.	0.00 11.75
RECHAPILIE	1877	45,50		,					-0.50
				/	4	 	/		
		//	/	7		/_			
		/	/_	/		- /		/	/
	/-		/			 			
	/		/	-/		/	- / -		
	 	/	<i>*</i>	/	1		- /-		 /
	L			<u>/</u>	V	2	\mathcal{N}_{\perp}		
4								RUMS FILLED: 7.5	
								<u>A AGAINST WALL ACTACO</u> (W.V/C.V.) = 5.2 F	
				_					0u_ v 0.100
	SAMP	LE NO.	NOT C	Ollecte	₽		METH	10D NA	
							•	IOD	· · · · · · · · · · · · · · · · · · ·
							-	IOD	
				1,			METH METH	IOD	
		LE TIME		- \ 				(FEET)	
	PVC	. Poharin	wichloride						
	St. St.	= Stain	ylchloride less Steel						•

WELL DEVELOPMENT/SAMPLE DATA SHEET

	PROJE	CT: <u>[Vel</u>	lu AFB 2-1	PHASE PIEZ	MI	7291_	Į.	<u>~17~</u>	<u> </u>	۱U۱	MBER: 612-00 1-31-3	16	
				PZC-3							DATE: 8-2-95		
	PURPO	SE: DE	VELOP/SA	MPLE	BY:	65	M	JE.	WEL	1	WELL DEPTH: (5	9.02)	FT FKon TioiC
	PURGE	EQUIP	MENT: 2"	BALLER	2".	5∪B.	Puu	6			-WATER LEVEL (b): (4	(20. 3	FT
				NIF							WATER COL. (W): (\		
				/ <u>Li</u> in		S					PROD LEVEL (c): (FT
				<u>2</u> _in			$\widehat{VC}t$	ST.	ST.)	Р	ROD THICKNESS (P): (•	
				in		_		•	·,	ſ	TOTAL COLUMN (H); () OVA: B/R/_	5.97	FT (W+P)
	$\Delta = (D^2)$	- 42)0 7	85 - /û	9.9 in2							TIME		
	VWA =	.30(A)H	/ 144 = 3	66_ft³	VW(C =	$d^2(\pi$:)H/	576 :	=	.35_ft		
•	[VWA(_ W,V/C VWA =	3.66 .V. (_3: VOL. V)+ VWC D) over the contract of the cont	(<u>.35</u> jal][3/5] = _ NULUS] [VI	_)]7 _/ <u>/</u> 5 VC	.48 <u>D</u> = V	= <u>30</u> _gal OL. '	70,0 T = "AW	OTA	al a L F	WELL VOLUME/CASII PURGE VOLUME ASING] [DTW = DEPTH T	NG VO	LUME (C.V.)
	TIME	DTW (Feet)	GALLONS	DISCHARGE RATE		MP.	Р		EC (umh	;	WATER CHARACTERIZATION/ OBSERVATIONS	1	DRAWDOWN (Feet)
	1975	55.71	10 (40)	Zapin	Ŋ	A	2	A	2	A	THINSIUCOUT	20.75	12.66
	1944	58,00	65 (15)	29 gpm		1_					COLORIESS-OPACIE	0.00	14.95
५७४	2021	58.00	150	1.5 yrm		_				_	CRYSMI CLEAR COLURIUS:	0.00	14.95
RELHARIK	2031	43.65											0.60
•		/						_		_		/	, , , , , , , , , , , , , , , , , , ,
	/							<u>-</u>			/		
			/							/	/		
		<u>/</u>			_/		\sqcup		/		/	/	
					<u>/.</u>				_	_		/	
			/	/				_/		L			
	/		(4	+		ι	ļ.,				
						<u> </u>	N		1		**************************************		
	STAR	T TIME:	ITION/LOC	STOP T	IME Mo		201	<u>.</u> 517	# 61.45.63	DI	AROS ACAINST WALL, AC	1 <u>/57</u> 201402) (gals.) (B D # Z7
	TOTA	L GALL	ONS EXTR	ACTED = _	15	٩	/_	£	53U		(W.V./C.V.) =	PURGE	VOLUMES
	SAMF	LE NO.	Not	SE CO	11e	TE	D		_ MI	ΞΤŀ	HODN/A		· · · · · · · · · · · · · · · · · · ·
	SAMF	PLE NO.							_				
				1					_		HOD		<u></u>
											HOD V		
		PLE NO. PLE TIM		WATE	R LI	EVE	L:		- ''	_ ' '	(FEET)		
	PVC -	- Polyvii	nvichloride	lluns BF	r ler	n /	ヘア	V)	DE	_1~	l ·		

WELL DEVELOPMENT/SAMPLE DATA SHEET

		(1 0	1 0 m	`	~ T		unen (12 M)1-31-3	í		
			_		PALIN	ZT NOI	MBER: <u>612-001-313</u> BATE: <u>/83-95</u>	0	······································	
			MW-	<u>r</u>						
PURPO	OSE: DE	VELOP/87	MPLE)	BY: <u>(</u> 2)	SMIKE	JOEN	WELL DEPTH: (5	57.30) FT From	T.C.L
PURGE	EQUIF	PMENT:	2" SUR-P	ump		<u> </u>	-WAIEH LEVEL (D): (14.00) []	
SAMPL	E EQU	PMENT: 🖺	EDICATED	> PUC.	BANERA	TSITC				
WELL (DIAMET	ER (D):	/2_ir	nches			PROD LEVEL (c): (/) FT	
CASIN	G DIAM	ETER (d):	<u>By</u> in	cheş (F	VC/ST.	ST.)	ROD THICKNESS (P): () FT (b - c)	
		C/ST. ST.:		ches		ļ	TOTAL COLUMN (H): (1) OVA: B/R/_	<u> </u>	<u>) F I</u> (W+P) -	
$A = (D^2)$	- d ²)0.7	785 = (00)	S in²		_		TIME			
VWA =	.30(A)H	1/144 = 2	ft ³	VWC =	$d^2(\pi)H/G$	576 = _ 579i	1,7_ft3			
[VWA(_	278	_)+ vwc	(1/2	_)]7.48	= 2	gal =	= 1 WELL VOLUME/CASI	NG VO	LUME (C.V	-)
[VWA =	VOL. V	VATER:AN	วลเ _ย [อฺเอ] = _ NULUS] [V\	WC = V	_gar = OL. WA	TER: C	= 1 WELL VOLUME/CASI PURGE VOLUME ASING] [DTW = DEPTH T	TAW O	ERI	_
TIME	DTW (Feet)	GALLONS	DISCHARGE RATE	•	Ph	EC (umhos)	WATER CHARACTERIZATION/	i .	DRAWDOWN (Feet)	i
7046	48.60	10	1.8	NA	NA	NA	CLEAR COLORIESS	NA	4,57	
	52.45	20	1.8				clears colonies		8.42	/- a
2057	56.0	30	1.8				CLEAR COLONIES	1	11,97	PLAPE
								V		
					<u> </u>					
							·			
	ļ									
	<u> </u>							ļ		
				ļ						
	<u> </u>]
STAR	TTIME:	6040	_ STOP T	IME: Z	52 F		RUMS FILLED:56			
DRUM	COND	ITION/LOC	ATIONS: M	MUER	10 570	<u> 2846 P</u>	REA AGAINST WALL, ADJA			
TOTAL	_ GALL(ONS EXTR	ACTED = _	3()	/		(W.V(C.V) = 3.3 F	UNGE	VOLUMES	,
SAMP	LE NO.	NAFB	-08-00	JC		METH	HOD			
			/	4			1OD			•
SAMP	LE NO.		/			_ METH	1OD			
						_	10D			
	LE NO.					-	HOD			
SAMP	LE TIMI	E: <u>0845</u>	WATE	H LEVE	L: <u> </u>	15/10	(FEET)			
PVC =	Polyvir	nylchloride								

St. St. = Stainless Steel

APPENDIX B

Field Data Sheets

Two-Phase System Operating Conditions Data Sheet

Š	Schedule	Ac	Actual Schedule	nle	Syste	System Inlet		Wellhead		Sea	Seal Fluid	Exhaust Vapor	Vapor
Day	Hour	Day	Time	Total Hours	Temp (°F)	Vacuum (in. Hg)	Vacuum (in. Hg)	Valve Position	Water Flow Meter Reading	180-190 Temp (°F)	5 psi Pressure (psi) Vac	225 Peak Temp (°F)	Flow
1	before												
-	start												
1	2	<i>L</i> /8	0945										
1	4	2/8	1130	734.37	71	15	6.5	Closed	NA	175	5.5		
1	9	L/8	1700	739.30	71	14	6.5	Closed	NA	185	5.5	210	95
_	∞												
1	10												
2	24	8/8	0715	753.55	70	10	6.5	Closed	158441	150	5.0	204	06
2	28	8/8	1130	757.76	72	13.5	6.0	Closed	158795	158	5.5	210	92
2	32	8/8	1550	762.15	7.1	14.5	6.0	Closed	159255	165	0.9	210	95
n	48	6/8	0020	177.17	70	12.0	6.0	Closed	160698	158	6.0	200	92
3	52	6/8	1110	781.37	70	15.5	6.0	Closed	161090	154	5.5	205	95
3	56	6/8	1600	786.16	71	18.5	6.0	Closed	161464	170	5.5	213	97
4	72	8/10	0915	803.37	7.1	15.5	0.9	Closed	163174	185	0.9	218	95
4	76	8/10	1205	806.26	71	17.0	0.9	Closed	163466	190	8.0	215	95
4	80	8/10	1530	809.73	11	17.4	6.0	Closed	163871	190	8.0	218	100
5	96	8/11	0710	825.26	70	16.0	0.9	Closed	165530	165	7.0	209	92
5	100	8/11	1135	829.69	71	15.5	6.0	Closed	166006	170	0.9	214	96
5	104	8/11	1435	832.72	71	17.0	6.0	Closed	166064	179	6.5	216	96
5	end												
5	after												

Soil Vapor Radius of Influence - Data Sheet

August 7 to 11, 1995
Nellis Air Force Base, Site 44
sted: MW-7 Date: <u>August</u> Site: <u>Nellis A</u> Well Being Tested:

Sampler(s): RADIAN

			Piez	Piezometer ID				Piezometer I	D
		P1	P2		P3		P1	P2	P3
			Distance I	Distance From Test Well	ell		Dist	Distance From Test Wel	st Well
	Elapsed	10 E	25 E	50	50 ENE	Corresponding	10 E	25 E	50 ENE
	Time	Ipul	uced Vacuur	Induced Vacuum/Pressure (in H2O)	in H2O)	Barometric	Induced	Induced Vac - Adjusted (in H2O)	ed (in H2O)
Date/Time	(min)	Reading	Reading	Reading	Extrapolation	Pressure	Reading	Reading	Reading
		10	25	50	149				
8/7 0945	0	0	0	0		27.795	0	0	0
1130	105	9.0	9.0	0.5		27.77	0.575	0.575	0.475
1300	195	0.65	9.0	0.5		27.75	0.605	0.555	0.455
1645	420	9.0	9.0	0.3	,	27.685	0.49	0.39	0.19
8/8 0730	1305	0.7	99.0	0.5		27.805	0.71	0.66	0.51
1030	1485	0.75	2.0	0.55		27.82	0.775	0.725	0.575
1505	1760	0.7	9.0	0.55		27.73	0.635	0.585	0.485
8/9 0700	2715	0.8	2.0	9.0		27.745	0.75	0.65	0.55
1110	2965	0.7	0.65	0.5		27.755	99.0	0.61	0.46
1600	3255	0.75	99.0	0.5		27.615	0.57	0.47	0.32
8/10 0715	4170	0.8	2.0	0.65		27.66	0.665	0.565	0.515
1205	4460	0.8	0.71	0.65		27.695	0.7	0.61	0.55
1540	4675	8.0	0.71	0.62		27.65	0.655	0.565	0.475
8/11 0710	5605	0.85	8.0	9.0		27.77	0.82	0.77	0.57
1135	5870	0.75	0.75	0.65		27.80	0.755	0.755	0.655
1445	0909	0.8	0.75	9.0		27.76	0.765	0.715	0.565
1615	6150	0	0	0		27.75	-0.05	-0.05	-0.05

Sheet 2 Soil Vapor Radius of Influence, Sheet 3 Groundwater Radius of Influence

Sampler(s):

Groundwater Radius of Influence - Data Sheet

Date: August 7 to 11, 1995
Site: Nellis AFB, Site 44
Well Being Tested: MW-7

		Mor	itoring Wel	Monitoring Well/Piezometer ID	ر ا	Corresp.	Mor	itoring Wel	Monitoring Well/Piezometer ID	آ- ت
		P1	P2	P3	MW-15	Barometric	Ρ1	P2	Р3	MW-15
	Elapsed		istance Fro	Distance From Test Wel		Pressure	u	Jistance Fro	Distance From Test Wel	
	Time	10 E	25 E	50 ENE	85 E	in Hg*	10 E	25 E	50 ENE	85 E
Date/Time	(min)	۸	Vater Level	Water Level Reading (ft)	(M	ater Level I	Water Level Drawdown (ft)	ft)
	Distance (ft)	10	25	20	85		10	52	09	85
8/7 0945	0	44.5	44.4	44.9	45.17	27.795	0	0	0	0
1130	105	44.55	44.76	44.82	45.32	27.77	0.05	0.36	-0.08	0.15
1300	195	44.56	44.8	44.86	45.35	27.75	90.06	0.4	-0.04	0.18
1645	420	44.61	44.81	44.93	45.4	27.685	0.11	0.41	0.03	0.23
8/8 0730	1305	44.47	44.75	44.92	45.4	27.805	-0.03	0.35	0.02	0.23
1030	1485	44.4	44.7	44.91	46.2	27.82	-0.1	0.3	0.01	1.03
1505	1760	44.34	44.6	44.81	45.3	27.73	-0.16	0.2	-0.09	0.13
00/0 6/8	2715	44.23	44.5	44.72	45.25	27.745	-0.27	0.1	-0.18	0.08
1110	2965	44.18	44.47	44.69	45.22	27.755	-0.32	0.07	-0.21	0.05
1600	3255	44.1	44.4	44.62	45.16	27.615	-0.4	0	-0.28	-0.01
8/10 0715	4170	44.11	44.36	44.63	45.16	27.66	-0.39	-0.04	-0.27	-0.01
1205	4460	44.07	44.36	44.61	45.15	27.695	-0.43	-0.04	-0.29	-0.02
1540	(4675	44.04	44.34	44.59	45.13	27.65	-0.46	-0.06	-0.31	-0.04
8/11 0710	2092	44.08	44.35	44.60	45.15	27.77	-0.42	-0.05	-0.3	-0.02
1135	5870	44.02	44.30	44.57	45.11	27.80	-0.48	-0.1	-0.33	-0.06
1445	9090	43.99	44.28	44.54	45.10	27.76	-0.51	-0.12	-0.36	-0.07
1615	5 6150	43.76	44.13	44.46	45.04	27.75	-0.74	-0.27	-0.44	-0.13

Barometric Pressure taken from the nearest hour provided by base meteorological data.

SUMMARY OF SOIL VAPOR DATA

							S	UMMARY	OF CONTA	MINANT R	SUMMARY OF CONTAMINANT REMOVAL RATES	TES				ľ				
								Total	Formation	Dilution	7	TCE	Hexane	e e	Decane	ē	Chloroform	form	PCE	
				Conc. in PPBV	yPBV		-	Flowrate	Flowrate	Factor	Extraction	Cum Total	Extraction Cum Total		Extraction Cum Total		_	Cum Total		Cum Total
Sample ID	Date/Time	Date/Time Elapsed Time	TCE	Hexane	Decane Chloroform	Chloroform	PCE	(scfm)	(sctm)		Rate Ib/min	ibs	Rate Ib/min	lbs	Rate Ib/min	tbs	Rate Ib/min	lbs	Rate Ib/min	sq
Molecular Weight			131.4	86.18	142.28	119.39	165.85													
NEL071000SV1	0807/0830	0	4400	130	Ó	£	210	8	8	1.00	1.00 0.00012164	0	3.594E-06	0	0	ō	1.1888E-06	Ö	5.8058E-06	o
NEL071330UV1	0807/1330	225		280	o	4	340	87	87	1.00			8.418E-06		6	ō	1.4131E-06	0.00031794	1.0222E-05	0.0023
NEL071600UV2	0807/1600	375	0099	610	0	53	470	98	95	1.00	0.00021668	0.0658593	2.003E-05		0	0	1.74E-06	0.00055443	1.543E-05	0.004224
NEL080930UV3	0808/0930	1425		710	0	48	450	8	6	9.1	0.00016173	0.2645257	2.208E-05	0.026135	0	0	1.4929E-06	0.00225171	1.3996E-05	0.019673
NEL081200UV4	0808/1200	1575		180	0	န	200	8	92	1.00			5.723E-06	0.02822		0	1.5897E-06	0.0024829	1.5897E-05	_
NEL081530UV5	0808/1530	1785		190	4	25	610	95	95	1.00	_		6.238E-06	0.029476		0.001517	1.7072E-06	0.00282907	2.0026E-05	_
NEL090715UV6	0809/0715	2730	7700	ō	0	82	810	92	92	8.		_			0	0.008342	1.844E-06	0.00450701	2.5753E-05	0.047317
NEL091600UV7	0809/1600	3255		8	0	22	780	97	97	9.			3.017E-06	0.033215	0	0.008342	1.9107E-06	0.00549264	2.6147E-05	0.060941
NEL101230UV8	0810/1230	4485		410	240	61	820	92	95	8.			1.346E-05	0.043349	7.8793E-06 0.013188	0.013188	2.0026E-06	0.00789936	2.6921E-05	0.093578
NEL111430UV9	0811/1430	6045	7700	260	0,1	8	820	96	96	5. 8.	0.00025545	1.3891852	8.626E-06	0.060576	5.6399E-06	0.023733	2.0901E-06	0.01109169	2.7204E-05	0.135795
NEL111600SV2	0811/1600	6135	2200	88	8	75	610	8	96	8	0.0001891		2.344E-10		2.9858E-06		1.7915E-06		2.0237E-05	
EFFLUENT DATA																				
MW269 - 0327/1630 - EV	0327/1630	8	18											<u> 14</u>	Average Removal Rate	1	0.00022981	0.00022981 Average Removal Rate	val Rate	0.000268
MW269 - 0328/1730 - EV	0328/1730	1590	S								_			VI.	of TCE in Ibs/min	nin		of Total VOCs in Ibs/min	in Ibs/min	
MW269 - 0329/1740 - EV	0329/1740	3035									_				1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MW269 - 0330/1715 - EV	0330/1715	4445	QN]					St. Iotal LBS	of VOC He	moved from 0	Est. Iotal LBS of VOC Removed from the Vapor Phase =	6 #	1.620381

SUMMARY OF GROUNDWATER DATA - 2Phase Extraction Pilot Study - MW-269 Travis AFB

						Sample ID					
				Contam	inant Detec	ted and Con	Contaminant Detected and Concentration in ug/L	J/6r			
Contaminant	NAFB-08-001 (pretest)	NEFO\$1330NM1	NEFOX1600UW2	NELO80930UW3	NEF0815000M¢	NEF0812300M2	NEL090700UW6	NEF0918400MY	NEL101230UW8	NEL111400UW9	NEC111630GW2 (post test)
Acetone	0	0	0	0	0	0	6	0	0	0	
Вепzепе	0.238		6	0	0	0	0	0	0	0	
Bromodichloromethane	0.171	0.0876	0.106	0.101	0.0817	0.0847	0.0919	6 6	0.0981	0.167	0 0
2-Butanone (MEK)	0 144	э c	э с	5 6	5 6	5 6	0	50	5 0	0	0
Chloroform	0.506	1.15	1.31	1.42	1.07	1.3	1.1	1.17	1.21	1.35	0.361
Chloromethane	0		0	0	0	0	0	0	ō	0	•
1,3-Dichlorobenzene	0.38		0	0 (8 6	0 0	00	0	0		0 0
1,1-Dichloroethane	1.19	5 C	5 6	5 0	э c	> C	5 6	5 C	5 6	5 0	5 C
cis-1 2-Dichloroethene	609	0.95	0.98	0.898	0.678	0.814	0.673	0.696	0.617	0.59	38.8
trans-1,2-dichloroehtene	0.257		0	Ö	0	0	0	0	0	0	0
2-Hexanone	0		0	0	0	6			0	0.812	0
Tetrachloroethene	12.6	3.49	4.27	97	5.08	6.19	9.0	6.48	5.64	7.41	13.2
Toluene	0.153		0.216		0 1	5	o i	8	6	5 6	0 [
Trichloroethene	1760	5. 5.	53.2	<u>z</u>	2.0	4. 0	YG	3	o co	e c	È °
Trichlorofluoromethane	0.886	00	0 0	0 0	0 0	5 6	> (5.0	5 6	5 6	5 C
1,1,2-tnchlorotrifluoroethane	1830 966	56.5786	60 524	20 000	58 4097	69 7887	64.8749	71.846	63,1651	79.829	699.361
lotal ugvi	1000.000		420.00		3	3	5	3	3		
Startup	732.62	732.62 = Time	155928	 55928 = Water Meter Reading	er Reading		14 ur - 27 vr 17				
Elapsed Time - Sample (min)	AN	225	375	1425	1575	1785	2730	3255	4485	6045	Ä
System Clock (hours)*	¥	ĸ	-		756.76	762.15	777.17	786.16	806.26	832.72	Z
Elapsed Time - System (min)	≨				1448.4	1771.8	2673	3212.4	4418.4	909	Ž
Water Meter Reading (gal)	¥:				158795	159255	160698	161464	163466	166064	Ž
Water Extraction Rate (gpm)	NA 4 cozcae	2.481203	1.9751166	2.0011148	1.979426	41.6///8.1	1./84511/8	1./23322	1.700/47	1.08/040	
Ave. Extraction Hate (gpm) Contaminant Removal Rate =	1.00/040		action Rate (3PM • 3.785	L/GAL "1E-	 3 g/ug *1/45		in ug/L			
TCE Removal Rate in GW lbs/min		1.05E-06	8.76E-07	1.069E-06	8.5E-07	8.5E-07 9.612E-07	8.495E-07	9.12E-07	7.91E-07	9.78E-07	
TCE Removed from GW lbs		0.000237	0.0003683	0.0014912	0.001619	0.001619 0.0018205	0.00262329	0.003102	0.004075	0.0056	
VOC Removal Rate in GW lbs/min		1.17E-06			9.64E-07	1.093E-06	9.6518E-07	1.03E-06	8.98E-07	1.12E-06	
VOC Removed from GW lbs		0.000263	0.0004128	0.0016904	0.001835	0.0020644	0.00297647	0.003518	0.004623	0.006376	
		è		ì							
% Stripping (Based on TCE)		89% 10	ဥ	97%							

* Elapsed Time = 0 at 9:45 = 732.62 on the system clock; @ T = 0, Water Meter = 155928

APPENDIX C

Data Quality Summary with Analytical Data

QUALITY SUMMARY

This document summarizes results obtained from the quality assurance/quality control (QA/QC) activities performed for the Technology Evaluation Report prepared for the two-phase-extraction pilot study conducted at Site 44 on Nellis Air Force Base (AFB) in Los Vegas, NV.

The primary goals of the QA/QC activities were to:

- Ensure that data of known quality were obtained.
- Minimize transcription and reporting errors.
- Identify any data use limitations and communicate these to the data users.

These goals were accomplished by comparing three types of QC samples, blanks, spikes and duplicates, with the laboratory and method specifications for precision and accuracy and performing a complete review of analytical reports, chain of custody documentation and holding time compliance.

Groundwater, carbon effluent, soil and vapor samples were collected from the twophase extraction system at Site 44 on Nellis AFB on August 3 and August 7 through August
11, 1995. All groundwater, carbon effluent, and soil samples were analyzed by Radian
Analytical Services in Summit Park, TX. All vapor analyses were performed by
MICROSEEPS at the University of Pittsburgh Applied Research Center in Pittsburgh, PA.
All analyses were performed as requested. All holding time requirements were met. All chain
of custody records were well documented and completed.

One systematic data quality issue was identified during this review. Low level acetone and 2-butanone contamination was identified in the SW8260 trip blank. As a result, four SW8260 results may not be used to document extraction efficiency at Site 44 at Nellis AFB.

Due to this contamination, the acetone results from samples NEL071500TW1, NEL081200VW4, and NEL111400UW9 and the 2-butanone result from sample NEL111400UW9 may not be used.

Table 1 lists the sample ID's and analyses performed for this project. One trip blank was analyzed in addition to the field samples listed in Table 1. Field samples with a "D" included in the sample name are field duplicate samples. Four field duplicate QC samples were collected and analyzed.

The assessment of the QC sample results associated with the volatiles analyses, EPA methods 8260, 8260A and MICROSEEPS and the analyses for total hydrocarbons, cyanide, pH, total dissolved solids, total suspended solids, and metals, EPA methods 418.1, 335.3, 150.1, 160.1, 160.2, and 200.7, respectively, follow Table 1. Copies of the analytical results are included at the end of this document.

Table 1 Sample Summary

Sample Names	Dates Collected	Analyses Performed
NAFB-08-001	08/03/95	Volatiles using SW8260
NEL071330VW1	08/07/95	Volatiles using SW8260
NEL071500TW1	08/07/95	Volatiles using SW8260, Total Hydrocarbons using 418.1, Cyanide using 335.3, pH using 150.1, Total Dissolved Solids using 160.1, Total Suspended Solids using 160.2, and Metals
NEL 071 (00 VIV)	00/07/05	using 200.7
NEL071600VW2	08/07/95	Volatiles using SW8260
NEL071600VWD	08/07/95	Volatiles using SW8260
NEL080930VW3	08/07/95	Volatiles using SW8260
NEL081200VW4	08/08/95	Volatiles using SW8260
NEL081530VW5	08/08/95	Volatiles using SW8260
NEL090700UW6	08/09/95	Volatiles using SW8260
NEL091540UW7	08/09/95	Volatiles using SW8260
NEL091540UWD2	08/09/95	Volatiles using SW8260
NEL101230VW8	0810/95	Volatiles using SW8260
NEL111400UW9	08/11/95	Volatiles using SW8260
NEL111630GW2	08/11/95	Volatiles using SW8260
NEL081200S1	08/08/95	Volatiles using SW8260A and % moisture
NEL071000SV1	08/07/95	Volatiles using MICROSEEPS
NEL071330UV1	08/07/95	Volatiles using MICROSEEPS
NEL071600UV2	08/07/95	Volatiles using MICROSEEPS
NEL080930UV3	08/08/95	Volatiles using MICROSEEPS
NEL08930UVD	08/08/95	Volatiles using MICROSEEPS
NEL081200UV4	08/08/95	Volatiles using MICROSEEPS
NEL081530UV5	08/08/95	Volatiles using MICROSEEPS
NEL081530TV1	08/08/95	Volatiles using MICROSEEPS
NEL090715UV6	08/09/95	Volatiles using MICROSEEPS
NEL091600UV7	08/09/95	Volatiles using MICROSEEPS
NEL091600UVD2	08/09/95	Volatiles using MICROSEEPS
NEL101230UV8	08/10/95	Volatiles using MICROSEEPS
NEL111430UV9	08/11/95	Volatiles using MICROSEEPS
NEL111600SV2	08/11/95	Volatiles using MICROSEEPS

Volatiles using 8260, 8260A, and MICROSEEPS

Acetone and 2-butanone (also known as methyl ethyl ketone {MEK}) were detected at 11.8 and 3.98 ug/L, respectively, in the one trip blank analyzed using EPA method SW8260. Any acetone and 2-butanone detected in the field samples within 5 times the trip blank concentrations must be qualified as not detected and attributed to blank contamination. As a result, the acetone results from samples NEL071500TW1, NEL081200VW4, and NEL111400UW9 and the 2-butanone result from sample NEL111400UW9 should be considered not detected. These results may not be used to evaluate two-phase extraction efficiency. Acetone and 2-butanone were not detected in the 8260A soil sample or in any of the MICROSEEPS vapor samples. These samples were not effected by the contamination.

Trichloroethene was quantitated outside the calibration range of the analytical instrument in groundwater sample NEL111400UW9 analyzed using EPA method SW8260. This result may be used to document two-phase extraction efficiency, but should be considered an estimated value.

Field duplicate results for methods SW8260 and MICROSEEPS indicate that overall precision of the sampling and analytical techniques were well within method and laboratory limits. However, the hexane results from the two MICROSEEPS field duplicate pairs indicate that vapor hexane results have increased variability. One field duplicate pair had one not detected result and the other had a relative percent difference (%RPD) of 146%. As a result, the hexane results from the MICROSEEPS analyses may be used to document two-phase extraction efficiency, but should be considered more variable than other sample results. The other SW8260 and MICROSEEPS field duplicate %RPDs ranged from 0% to 24%, indicating precision for the other analytes were well within method and laboratory limits.

The percent recoveries (%Rs) for acetone from one laboratory control spike/laboratory control spike duplicate (LCS/LCSD) pair were 224% and 235%,

respectively. These recoveries exceed laboratory and method quality control (QC) criteria for LCS/LCSD recoveries. Acetone was not detected in any of the field samples analyzed in association with this LCS/LCSD and no sample data was impacted by the high LCS/LCSD recovery for acetone.

All other 8260, 8260A and MICROSEEPS data are valid and accuracy and precision are within the acceptance criteria of the laboratory and analytical method.

Total Hydrocarbons using 418.1

No QA/QC problems were discovered for method 418.1. All data are valid and accuracy and precision are within laboratory and method acceptance criteria.

Cyanide using 335.3

No QA/QC problems were discovered for method 335.3. All data are valid and accuracy and precision are within laboratory and method acceptance criteria.

Total Dissolved and Total Suspended Solids using 160.1 and 160.2

No QA/QC problems were discovered for methods 160.1 and 160.2. All data are valid and accuracy and precision are within laboratory and method acceptance criteria.

Metals using 200.7

No QA/QC problems were discovered for method 200.7. All data are valid and accuracy and precision are within laboratory and method acceptance criteria.

08/18/95 16:15:04

RESULTS SUMMARY

Work Order # 9508115

Page 4

Method Volatile Organics SW8260

Test Code 826SWANA

ᆸ Conc. ᆸ 9 5.70 6.15 5.69 2.68 38.7 3.93 2.96 2.61 5.46 6.84 6.48 08/15/95 03:32:00 ᆸ 9508115-01B NAFB-08-001 08/03/95 CG0814524 received ug/L Water Conc. 0.0709 0.0776 0.106 3.11 0.125 0.101 0.130 0.0554 0.102 0.110 0.0454 08/11/95 11:46:00 ᆸ 9508115-01A NAFB-08-001 (F)810533 08/03/95 received Water ug/L Conc. 0.171 0.144 5.06 , OL 0.380 1.19 0.331 2 2 2 2 2 욷 2 2 cis-1,2-Dichloroethene Bromodichloromethane Dibromochloromethane Carbon tetrachloride 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethane Project Sample ID: Carbon disulfide Dilution Factor: 2-Butanone (MEK) Date Collected: Date Prepared: Date Analyzed: Chloromethane Chlorobenzene Chloroethane Bromomethane Chloroform Report as: Bromoform File ID: Analyte Matrix: Acetone Lab ID: Benzene Column: Units:

08/18/95 16:15:04

RESULTS SUMMARY (Cont'd)

Work Order # 9508115 Page 5

Method Volatile Organics SW8260 Test Code 826SWANA

Project Sample ID:	NAFB-08-001		NAFB-08-001	001				
Lab 10:	9508115-01A	<u></u>	9508115-018	018				
File ID:	F0810533		60814524	54		,		
Date Collected:	08/03/95	15	08/03/95	95				
Date Prepared:								
Date Analyzed:	08/11/95 11:46:00	:46:00	08/15/95 03:32:00	3:32:00				
Dilution Factor:	•		30					
Matrix:	Water	•	Water					
Units:	ng/L		ng/L					
Report as:	received	T1	received	pa				
Column: Analyte	Conc.	70	Conc.	Or	. Conc.	٥	Conc.	DF
trans-1, 2-Dichloroethene	0.257	0.118	Q.	6.36				
1,2-Dichloropropane	QV	0.0763	QV	1.32				
cis-1,3-Dichloropropene	ON	0.0860	QN	3.48				
trans-1,3-Dichloropropene	QN	0.0988	QN	2.17				
Ethylbenzene	, or	0.139	QN N	7.38				
2-Hexanone	QV	0.431	QN	10.4		· · ·		
4-Methyl-2-pentanone(MIBK)	QN	0.130	Q	87.6				
Methylene chloride	< DL B	0.426	< 0L	12.7				
Styrene	QN .	0.0811	ON	5.52		-		
1,1,2,2-Tetrachloroethane	QN	0.152	QV	2.12				
Tetrachloroethene	12.6	0.179	\ \	12.6				
Toluene	0.153	0.0880	ON	4.89				
1,1,1-Trichloroethane	Q	0.0980	QN	3.60				
1,1,2-Trichloroethane	0.330	0.0855	QN	2.03		•		
Trichloroethene	512 ER	0.100	1760	5.91				
Trichlorofluoromethane	0.886	0.172	QN	3.00				
1,1,2-Trichlorotrifluoroethane	2.21	0.148	< DL	96.6				
Vinyl acetate	Q	0.176	Q	11.4				
Vinyl chloride	Q	0.159	QN	5.09				
mgo-Xvlene	70 >	0.248	Q	16.6		•••		

•

08/18/95 16:15:04

RESULTS SUMMARY (Cont'd)

Work Order # 9508115 Page 6

> Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NAFB-08-001	NAFB-08-001			
Lab ID:	9508115-01A	9508115-018			
File ID:	F0810533	60814524			•
Date Collected:	08/03/95	08/03/95			•
nate Prepared:					
Date Analyzed:	08/11/95 11:46:00	08/15/95 03:32:00			
Dilution Factor:	-	30		·*************************************	
Matrix:	Water	Water			
Units:	7/Bn	1/6n			
Report as:	received	received			
Column:					
Analyte	Conc. DL	Conc. DL	Conc. DL	Conc.	טר
o-Xylene	701.0 O.107	ND 6.21			

Surrogate(s)	Recovery %	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	93 114 99	100 90 99		

RESULTS SUMMARY

Work Order # 9508187 Page 4

Project Sample ID:	NEL071330VM1	10VM1	NEL071600W2	00vw2	NEL.071600VMD	OWD	NEL080930VW3	OV43
Lab ID:	9508187-01A	01A	9508187-03A	-03A	9508187-04A	04A	9508187-05A	05A
File ID:	G0814544		G0814545	545	G0814546	946	G0814547	77
Date Collected:	08/01/95	95	08/01/95	/95	08/01/95	95	08/08/95	.62
Date Prepared:								
Date Analyzed:	08/15/95 13:41	3:41:00	08/15/95 14:07:00	14:07:00	08/15/95 14:32:00	4:32:00	08/15/95 14:56:00	4:56:00
Dilution Factor:	-	- 14	-		-			
Matrix:	Water		Water	L	Water		Water	
Units:	1/gn		ng/L		ng/L		1/6n	
Report as:	received	,eq	received	hed	received	p _o ,	received	p _e
Column:								i
Analyte	Conc.	<u>ا</u>	Conc.	םר	Conc.	סר	Conc.	טר
Acetone	< DL	2.30	, 0L	2.30	\ \ \	2.30	Q.	2.30
Benzene	ON	0.122	< DL	0.122	\ 0	0.122	Q	0.122
Bromodichloromethane	0.0876	0.0462	0.106	0.0462	0.103	0.0462	0.101	0.0462
Bromoform	ON	0.136	Q	0.136	QV	0.136	Q	0.136
Bromomethane	QN	0.0500	QN	0.0500	QN	0.0500	Q	0.0500
2-Butanone(MEK)	ON	1.29	ON	1.29	QN	1.29	QN	1.29
Carbon disulfide	QN	0.190	QN	0.190	QN	0.190	QN .	0.190
Carbon tetrachloride	QN	0.131	QN	0.131	Q	0.131	QV	0.131
Chlorobenzene	QV	0.205	QN .	0.205	Q	0.205	QN	0.205
Chloroethane	QN	0.0898	QN	0.0898	QN	0.0898	QV	0.0898
Chloroform	1.15	0.0985	1.31	0.0985	1.04	0.0985	1.42	0.0985
Chloromethane	ON	0.0893	QN	0.0893	QN	0.0893	Q	0.0893
Dibromochloromethane	QV	0.0870	Q	0.0870	QN	0.0870	Q	0.0870
1,2-Dichlorobenzene	QN	0.182	ON	0.182	Q	0.182	QN	0.182
1,3-Dichlorobenzene	QN	0.228	Q	0.228	ON	0.228	Q.	0.228
1,4-Dichlorobenzene	ON	0.216	Q	0.216	QN	0.216	QV	0.216
1,1-Dichloroethane	QN	0.0646	Q	0.0646	QN	0.0646	QV	0.0646
1,2-Dichloroethane	QN	0.0481	QN	0.0481	QN	0.0481	ON	0.0481
1,1-Dichloroethene	QV	0.212	, DL ,	0.212	QV	0.212	ON	0.212
cis-1,2-Dichloroethene	0.951	0.104	0.980	0.104	0.768	0.104	0.898	0.104

RESULTS SUMMARY (Cont'd)

Work Order # 9508187 Page 5

Project Sample ID:	NEL071330VW	۱۳۸	NEL071600V42	0W2	NEL071600VMD	OWD	NEL080930V43	50W3
(ab ID:	9508187-01A	- 1	9508187-03A	03A	9508187-04A	04A	9508187-05A	-05A
File ID:	G0814544	7	G0814545	45	G0814546	97	60814547	247
Date Collected:	08/07/95	2	08/01/95	95	26/10/80	95	08/08/95	795
Date Prepared:		•						
Date Analyzed:	08/15/95 13:41:00	:41:00	08/15/95 14:07:00	4:07:00	08/15/95 14:32:00	4:32:00	08/15/95 14:56:00	14:56:00
Dilution Factor:	-	B.J 18.			-		-	
Matrix:	Water	**************************************	Water		Water		Water	
Units:	ng/L		1/6n		ng/L		ng/L	
Report as:	received	ъ	received	P	received	g g	received	Je Je
Column:								
Analyte	conc.	DL	Conc.	DL	Conc.	Dľ	Conc.	DI,
trans-1,2-Dichloroethene	QN	0.212	QN	0.212	QN	0.212	ON	0.212
1,2-Dichloropropane	Q.	0.0440	Q	0.0440	Q	0.0440	Q	0.0440
cis-1,3-Dichloropropene	Q	0.116	Q	0.116	QV	0.116	ON	0.116
trans-1,3-Dichloropropene	Q	0.0724	Q.	0.0724	Q	0.0724	Q	0.0724
Ethylbenzene	윷	0.246	, DL	0.246	, 9	0.246	ON	0.246
2-Hexanone	Q	0.347	ON	0.347	QV	0.347	QN	0.347
4-Methyl-2-pentanone(MIBK)	9	0.316	ON	0.316	Q	0.316	QN	0.316
Methylene chloride	\ \ \	0.423	\ \ D	0.423	, OL	0.423	, 0,	0.423
Styrene	Ş	0.184	QN	0.184	QN	0.184	QN	0.184
1,1,2,2-Tetrachloroethane	Q	0.0708	QN	0.0708	QV	0.0708	QN	0.0708
Tetrachloroethene	3.49	0.420	4.27	0.420	4.19	0.420	6.41	0.420
Toluene	, DL	0.163	0.216	0.163	ر د و	0.163	< 0L	0.163
1,1,1-Trichloroethane	S	0.120	Q	0.120	Q	0.120	Q	0.120
1,1,2-Trichloroethane	Q	0.0678	Q	0.0678	Ø	0.0678	Q	0.0678
Trichloroethene	50.9	0.197	53.2	0.197	52.3	0.197	64.1	0.197
Trichlorofluoromethane	QV	0.0999	QV	0.0999	8	0.0999	ON	0.0999
1,1,2-Trichlorotrifluoroethane	Q	0.332	, DL	0.332	Q.	0.332	ON .	0.332
Vinyl acetate	< DL	0.381	QV	0.381	S	0.381	QN	0.381
Vinyl chloride	Q	0.0697	QN	0.0697	Q	0.0697	QN	0.0697
m&p-Xylene	\ DF	0.554	, 0L	0.554	\ \	0.554	QN	0.554
						1		

RESULTS SUMMARY (Cont'd)

Work Order # 9508187 Page 6

> Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NEL071330VW1	NEL071600v42	NEL071600VvD	NEL080930VM3
Lab ID:	9508187-01A	9508187-03A	9508187-04A	9508187-05A
File ID:	G0814544	G0814545	G0814546	60814547
Date Collected:	08/07/95	08/07/95	08/07/95	08/08/95
Date Prepared:			-	
Date Analyzed:	08/15/95 13:41:00	08/15/95 14:07:00	08/15/95 14:32:00	08/15/95 14:56:00
Dilution Factor:	-	-	·	-
Matrix:	Water	Water	Water	Water
Units:	ug/L	ng/L	T/6n	ng/L
Report as:	received	received	received	received
Column:				
Analyte	Conc. DL	Conc. DL	Conc. DL	Conc. DL
o-Xylene	< DL 0.207	< DL 0.207	< DL 0.207	ND 0.207

Surrogate(s)	Recovery	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	. 96 66	95 101 99	99 84 98	100 100 98

RESULTS SUMMARY (Cont'd)

Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NEL081200VM	0VW4	NEL081530W5	JVW5				
Lab ID:	9508187-07A	07A	9508187-08A	78A				
File ID:	G0814548	48	G0814549	65				
Date Collected:	26/80/80	95	08/08/95	95				
Date Prepared:								
Date Analyzed:	08/15/95 15:2	5:21:00	08/15/95 15:45:00	5:45:00				
Dilution Factor:	,-		••••					
Matrix:	Water		Water					
Units:	T/6n		1/6n					
Report as:	received	þa	received	Pe				
Column:								
Analyte	Conc.	οΓ	Conc.	01	Conc.	DI.	Conc.	占
Acetone	2.80	2.30	< 0L	2.30				
Benzene	V 01	0.122	\ DF	0.122				
Bromodichloromethane	0.0817	0.0462	0.0847	0.0462				
Bromoform	QN	0.136	Q	0.136				
Bromomethane	S	0.0500	QV	0.0500				
2-Butanone(MEK)	Q.	1.29	QV	1.29				
Carbon disulfide	QN	0.190	QN	0.190				
Carbon tetrachloride	QN	0.131	Q	0.131				
Chlorobenzene	Q	0.205	Q	0.205				
Chloroethane	Q	0.0898	Q	0.0898				
Chloroform	1.07	0.0985	1.30	0.0985				
Chloromethane	Q	0.0893	QN	0.0893				
Dibromochloromethane	S	0.0870	Q	0.0870				
1,2-Dichlorobenzene	Q	0.182	QV	0.182				
1,3-Dichlorobenzene	Q	0.228	QN	0.228				
1,4-Dichlorobenzene	Q	0.216	QN	0.216			*********	
1,1-Dichloroethane	Q	0.0646	ON	0.0646		,		
1,2-Dichloroethane	Q	0.0481	Q	0.0481				
1,1-Dichloroethene	Q	0.212	QV	0.212				
cis-1,2-Dichloroethene	0.678	0.104	0.814	0.104				

RESULTS SUMMARY (Cont'd)

The proper content c	Project Sample ID:	NEL081200VM	**	NEL081530V45	NWS				
	Lab ID:	9508187-07	≪	9508187-0	18A				
Percent: 08/08/95	File ID:	G0814548		G081454					
Pared: 08/15/95 15:21:00 08/15/95 15:45:00 1 1 1 1 1 1 1 1 1	Date Collected:	08/08/95		08/08/6	5				
Factor: Mater Mater Water Wa	Date Prepared:								
Factor: Hater value <	Date Analyzed:	08/15/95 15:	21:00	08/15/95 15	:45:00				
Si. Hater Later Late	Dilution Factor:	•		_					
s: ug/L Label ug/L Label ug/L Label conc. DL Label conc. DL Conc. D	Matrix:	Water		Water		÷			
5:: received received conc. DL Conc.	Units:	ng/L		ng/L					
Conc. DL Co	Report as:	received		receive	72			•	
2-Dichloroethene ND 0.212 ND Loropropane ND 0.0440 ND 0.016 ND 0.016 ND 0.0024	Column: Analyte	Conc.	DF.	Conc.	10	Conc.	סר	Conc	סר
Oropropane ND 0.0440 ND Dichloropropene ND 0.116 ND 3-Dichloropropene ND 0.0724 ND Zene ND 0.246 ND -2-pentanone(MIBK) ND 0.347 ND -2-pentanone(MIBK) ND 0.423 ND -2-pentanone(MIBK) ND 0.184 ND e chloride ND 0.184 ND oroethane ND 0.0708 ND oroethane ND 0.163 < DL	trans-1,2-Dichloroethene	QN	0.212	QN	0.212				
Dichloropropene ND 0.116 ND 3-Dichloropropene ND 0.0724 ND zene ND 0.246 ND -2-pentanone(MIBK) ND 0.347 ND -2-pentanone(MIBK) ND 0.423 ND -2-pentanone(MIBK) ND 0.184 ND e chloride ND 0.184 ND oroethane ND 0.0708 ND oroethane ND 0.163 < DL	1,2-Dichloropropane	Q	0.0440	QN	0.0440	•			
3-Dichloropropene ND 0.0724 ND C zene ND 0.246 ND C ND C ND C ND C ND C DL DL C DL DL	cis-1,3-Dichloropropene	N	0.116	ON	0.116				
zene ND 0.246 ND ne ND 0.347 ND -2-pentanone(MIBK) ND 0.316 ND -2-pentanone(MIBK) ND 0.316 ND e chloride CDL 0.423 CDL e chloride ND 0.0708 ND nD 0.0708 ND 0.197 oroethene ND 0.163 CDL ichloroethane ND 0.0678 ND ofluoromethane CDL 0.0999 ND ichlorotrifluoroethane ND 0.332 ND ichlorotrifluoroethane ND 0.3381 ND ichloride ND 0.3381 ND ichloride ND 0.0697 ND	trans-1,3-Dichloropropene	QV	0.0724	QN	0.0724				
ne ND 0.347 ND -2-pentanone(MIBK) ND 0.316 ND e chloride < DL	Ethylbenzene	QV	0.246	Q	0.246				
-2-pentanone(MIBK) ND 0.316 ND e chloride < DL	2-Hexanone	QN	0.347	QV	0.347				
e chloride C DL 0.423 C DL ND 0.184 ND ND Oroethane ND 0.0708 ND Oroethane C DL 0.163 C DL ichloroethane ND 0.0678 ND ichloromethane C DL 0.0999 ND ichlorotrifluoroethane ND 0.332 ND ichloride ND 0.332 ND ichloride ND 0.354 ND ichride ND 0.0697 ND	4-Methyl-2-pentanone(MIBK)	QN	0.316	QN	0.316				
ND 0.184 ND Ocroethane ND 0.0708 ND Oroethane C DL 0.420 6.19 ichloroethane ND 0.163 C DL ichloromethane ND 0.0678 ND ichlorotrifluoroethane C DL 0.0999 ND ichlorotrifluoroethane ND 0.332 ND ichlorotrifluoroethane ND 0.332 ND ichlorotride ND 0.331 ND ichlorotride ND 0.0697 ND ichlorotride ND 0.0697 ND	Methylene chloride	< DL	0.423	< DL	0.423				
Tetrachloroethane ND 0.0708 ND oroethene 5.08 0.420 6.19 chloroethane KDL 0.163 CDL ichloroethane ND 0.0678 ND oethene 51.5 0.197 61.4 ofluoromethane CDL 0.0999 ND ichlorotrifluoroethane ND 0.332 ND etate ND 0.3381 ND loride ND 0.0697 ND ne CDL 0.554 CDL	Styrene	QN .	0.184	QN	0.184		·		
oroethene 5.08 0.420 6.19 ichloroethane ND 0.163 < DL	1,1,2,2-Tetrachloroethane	QV	0.0708	QN	0.0708				
C DL 0.163 C DL ichloroethane ND 0.120 ND ichloroethane ND 0.0678 ND oethene C DL 0.0999 ND ofluoromethane ND 0.332 ND etate ND 0.331 ND loride ND 0.0697 ND loride ND 0.0697 ND ne C DL 0.554 C DL	Tetrachloroethene	5.08	0.420	6.19	0.420				
ichloroethane ND 0.120 ND ichloroethane ND 0.0678 ND oethene 51.5 0.197 61.4 of Lucromethane CDL 0.0999 ND ichlorotrifluoroethane ND 0.332 ND etate ND 0.381 ND Ioride ND 0.0697 ND ne CDL 0.554 CDL	Toluene	, 0L	0.163	, DL	0.163				
ND 0.0678 ND (197 61.4 c) 197 61.4 c) 197 61.4 c) 197 61.4 c) 197 ND (197 ND (1,1,1-Trichloroethane	QV	0.120	N	0.120				
51.5 0.197 61.4 < DL 0.0999 ND ND 0.352 ND ND 0.381 ND ND 0.0697 ND < DL 0.554 < DL	1,1,2-Trichloroethane	QN	0.0678	Q	0.0678		4		
 C DL 0.0999 ND ND 0.332 ND ND 0.381 ND ND 0.0697 ND C DL 0.554 C DL 	Trichloroethene	51.5	0.197	61.4	0.197				
ND 0.332 ND ND 0.381 ND ND 0.0697 ND C DL C DL C DL	Trichlorofluoromethane	< 0i	0.0999	Q	0.0999				
ND 0.381 ND ND 0.0697 ND C OL 0.554 < DL	1,1,2-Trichlorotrifluoroethane	QN	0.332	QN	0.332				
ND 0.0697 ND C 0.554 < DL	Vinyl acetate	Q	0.381	QV	0.381				
< 01 0.554 < 01	Vinyl chloride	Q	0.0697	Q	0.0697				
	m&p-Xylene	, 0L	0.554	, 0,	0.554				

Work Order # 9508187 Page 9

RESULTS SUMMARY (Cont'd)

	NEL081200V44	NEL081530V45	***************************************			
Lab ID:	9508187-07A	9508187-08A				
File ID:	60814548	60814549	*****			
Date Collected:	08/08/95	08/08/95				
Date Prepared:						
Date Analyzed:	08/15/95 15:21:00	08/15/95 15:45:00				
Dilution Factor:	(***				
Matrix:	Water	Water				
Units:	ng/L	ng/L				
Report as:	received	received				
Column:					٠	
Analyte	Conc. DL	Conc. DL	Conc.	D L	Conc.	סר
o-Xylene	ND 0.207	ND 0.207				

Surrogate(s)	Recovery %	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	66 68 68	98 94 98		

08/16/95 10:43:33

RESULTS SUMMARY

Method Volatile Organics SW8260

Test Code 826SWANA

ᆸ Conc. ᆸ Conc. ᆸ Conc. 0.641 0.194 0.0491 0.0776 0.106 3.11 0.127 0.127 0.101 0.130 0.0709 0.0554 0.102 0.116 0.0794 0.0454 0.148 08/10/95 16:33:00 ᆸ NEL071500TW1 9508210-01A F0810508 08/07/95 received ug/L Water Conc. 2 2.15 2 2 2 2 2 2 2 2 2 2 2 cis-1,2-Dichloroethene Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethane Project Sample ID: Carbon disulfide Dilution Factor: Date Collected: 2-Butanone(MEK) Date Analyzed: Date Prepared: Chloromethane Chlorobenzene Bromomethane Chloroethane Chloroform Report as: Bromoform File ID: Lab 1D: Matrix: Analyte Acetone Benzene Column: Units:

Work Order # 9508210

9508210 Page 4 •

08/16/95 10:43:33

RESULTS SUMMARY (Cont'd)

Work Order # 9508210 Page 5

Project Sample ID:	NEL071500TW1						
Lab ID:	9508210-01A						
File ID:	F0810508						
Date Collected:	08/07/95	-					
Date Prepared:							
Date Analyzed:	08/10/95 16:33:00				,		
Dilution Factor:	-						
Matrix:	Water					,	
Units:	ug/L						
Report as:	received						
Column: Analyte	Conc. DL	Conc	סר	Conc.	0	Conc.	0
trans-1.2-Dichloroethene							
1,2-Dichloropropane	ND 0.0763						
cis-1,3-Dichloropropene							
trans-1,3-Dichloropropene	ND 0.0988						
Ethylbenzene	< DL 0.139						
2-Hexanone	ND 0.431				•		
4-Methyl-2-pentanone(MIBK)	ND 0.130						
Methylene chloride	0.553 8 ~ 0.426						
Styrene	ND 0.0811					_	
1,1,2,2-Tetrachloroethane	ND 0.152						
Tetrachloroethene	ND 0.179						
Toluene	0.126 0.0880						
1,1,1-Trichloroethane	ND 0.0980						
1,1,2-Trichloroethane	O. 0855						
Trichloroethene	0.116 0.100						
Trichlorofluoromethane	ND 0.172						
1,1,2-Trichlorotrifluoroethane	ND 0.148						
Vinyl acetate							
Vinyl chloride	ND 0.159						
m&p-Xylene	< DL 0.248						

08/16/95 10:43:33

RESULTS SUMMARY (Cont'd)

Work Order # 9508210 Page 6

Project Sample ID:	NEL071500Tw1						
Lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor: Matrix: Uhits: Report as:	9508210-01A F0810508 08/07/95 08/10/95 16:33:00 1 Water ug/L received						
Analyte	Conc. DL	conc.	חם	Conc.	סר	Conc.	DL
o-Xylene	0.112 0.107			·			

Surrogate(s)	Recovery	Recovery	Recovery	Recovery
	%	%	%	%
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	87 102 96			

08/28/95 12:03:10

RESULTS SUMMARY

Work Order # 9508228

Page 4

Project Sample IU:	NEL090700UM6	9/100	NEL091540UM7	7M0	NEL091540UAD2	2040	TRIP BLANK	LANK
Lab 10:	9508228-01A)1A	9508228-03A	03A	9508228-04A	-04A	9508228-02A	-02A
File ID:	G0821513	13	60821514	14	G0821515	515	G0821512	512
Date Collected:	98/09/95	95	08/00/82	95	26/60/80	795	26/60/80	795
Date Prepared:	-							
Date Analyzed:	08/21/95 19:26:00	9:56:00	08/21/95 19:50:00	9:50:00	08/21/95 20:15:00	90:15:00	08/21/95 19:02:00	19:02:00
Dilution Factor:	-		-		-		-	
Matrix:	Water		Water	,.	Water		Water	
Units:	ng/L		ug/L		ng/L		ng/L	_1
Report as:	received	72	received	28	received	, ed	received	8 9
Column:								
Analyte	conc.	-	.Conc.	<u></u>	conc.	<u>ਰ</u>	conc.	占
Acetone	QV	2.30	S	2.30	, DL	2.30	11.8	2.30
Benzene	, 0L	0.122	ON	0.122	QV	0.122	ON	0.122
Bromodichloromethane	0.0919	0.0462	QN	0.0462	0.0824	0.0462	QV	0.0462
Bromoform .	Q	0.136	QN	0.136	QV	0.136	Q	0.136
Bromomethane	Q.	0.0500	Q	0.0500	QV	0.0500	QN	0.0500
2-Butanone(MEK)	Q	1.29	QV	1.29	ON	1.29	3.98	1.29
Carbon disulfide	Q	0.190	Q	0.190	ON	0.190	Q	0.190
Carbon tetrachloride	Q	0.131	Q	0.131	QN	0.131	QN	0.131
Chlorobenzene	Q	0.205	ON	0.205	QN	0.205	QN	0.205
Chloroethane	Q	0.0898	ON	0.0898	QN	0.0898	Q	0.0898
Chloroform	1.1	0.0985	1.17	0.0985	1.15	0.0985	Q	0.0985
Chloromethane	7G >	0.0893	Q	0.0893	0.0902	0.0893	QV	0.0893
Dibromochloromethane	Q	0.0870	Q	0.0870	Q	0.0870	Q	0.0870
1,2-Dichlorobenzene	Q	0.182	Q	0.182	QN	0.182	Q	0.182
1,3-Dichlorobenzene	QV	0.228	Q	0.228	QN	0.228	Q	0.228
1,4-Dichlorobenzene	QN	0.216	Q	0.216	Q	0.216	Q	0.216
1,1-Dichloroethane	Q	0.0646	Q	0.0646	Q	0.0646	Q	0.0646
1,2-Dichloroethane	Q	0.0481	Q	0.0481	QV	0.0481	Q.	0.0481
1,1-Dichloroethene	Q	0.212	Q	0.212	Q	0.212	N	0.212
cis-1.2-Dichloroethene	0.673	0, 104	969.0	0 10%	0.650	0,104	Q	0.104

08/28/95 12:03:10

RESULTS SUNNARY (Cont'd)

Work Order # 9508228 Page 5___

Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NEL090700UM6	9701	NEL091540UA	2000	NEL091540UADZ	UMD2	TRIP BLANK	LANK
Lab 10:	9508228-01A	-IA	9508228-03A	03A	9508228-04A	04A	9508228-02A	-02A
File ID:	G0821513	K	60821514	14	G0821515	15	G0821512	512
Date Collected:	26/60/80	ñ.	26/60/80	95	56/60/80 ·	95	96/60/80	795
Date Prepared:						`		
Date Analyzed:	08/21/95 19:26:00	: 56:00	08/21/95 19:50:00	9:50:00	08/21/95 20:15:00	0:15:00	08/21/95 19:02:00	19:02:00
Dilution Factor:	-		-		-			
Matrix:	Water		Water		Water		Water	_
Units:	ng/L		1/6n		1/6n		1/6n	
Report as:	received	7	received	B	received	B	received	bg.
Column: Analyte	Conc.	5	Conc.	2	Conc.	5	Conc.	6
trans-1 2-Dichloroathana	2	0 212	S	0.212	S	0.212	Q	0.212
1.2-Dichloropropane	2 2	0.0440	2	0,0440	2	0.0440	2	0.0440
cis-1,3-Dichloropropene	Q	0.116	QN	0.116	QN	0.116	Q	0.116
trans-1,3-Dichloropropene	QN	0.0724	. O	0.0724	QN	0.0724	QV	0.0724
Ethylbenzene	ON	0.246	QN	0.246	Q	0.246	QV	0.246
2-Hexanone	QN	0.347	QN	0.347	Q	0.347	QN	0.347
4-Methyl-2-pentanone(MIBK)	QN	0.316	QN	0.316	Q	0.316	Q	0.316
Methylene chloride	\ \ \	0.423	OF	0.423	\ \ \	0.423	с рг	0.423
Styrene	QN	0.184	Q	0.184	Q	0.184	QN	0.184
1,1,2,2-Tetrachloroethane	ON	0.0708	ON	0.0708	Q	0.0708	QN	0.0708
Tetrachloroethene	5.90	0.420	6.48	0.420	6.86	0.420	Q	0.420
Toluene	, 0L	0.163	, 0L	0.163	'0 '	0.163	< DL	0.163
1,1,1-Trichloroethane	ነበ ›	0.120	Q	0.120	Q	0.120	QN	0.120
1,1,2-Trichloroethane	QN	0.0678	ON	0.0678	QN	0.0678	Q	0.0678
Trichloroethene	57.1	0.197	63.5	. 0.197	0.99	0.197	, 0L	0.197
Trichlorofluoromethane	QV	0.0999	Q	0.0999	Q.	0.0999	QN	0.0999
1,1,2-Trichlorotrifluoroethane	QN	0.332	Q	0.332	Q	0.332	Q.	0.332
Vinyl acetate	QN .	0.381	Q	0.381	QN	0.381	Q	0.381
Vinyl chloride	Q	0.0697	ON	0.0697	Q	0.0697	Q	0.0697
m&p-Xylene	QN	0.554	Q	0.554	Q	0.554	QV	0.554

08/28/95 12:03:10

RESULTS SUMMARY (Cont'd)

Page 6

Work Order # 9508228

Method Volatile Organics SW8260

Test Code 826SWANA

0.207 08/21/95 19:02:00 ᆸ 9508228-02A TRIP BLANK G0821512 08/09/95 received Water ug/L Conc. 2 0.207 08/21/95 20:15:00 ದ NEL091540UMD2 9508228-04A G0821515 08/09/95 received Water ng/L Sonc. 웆 0.207 08/21/95 19:50:00 ቯ NEL091540UM7 9508228-03A G0821514 08/09/95 received Water ug/L Conc. 2 0.207 08/21/95 19:26:00 ದ NEL090700UM6 9508228-01A G0821513 08/09/95 received Water J/gn Conc. 웆 Project Sample ID: Dilution Factor: Date Collected: Date Prepared: Date Analyzed: Report as: File ID: o-Xylene Matrix: Analyte Lab 10: Column: Units:

Surrogate(s)	Recovery %	Recovery	Recovery %	Recovery %
1,4-Bromofluorobenzene	102	101	99	93
1,2-Dichloroethane-d4	78	87	79	95
Toluene-d8	99	99	88	97

08/28/95 12:09:11

RESULTS SUMMARY

Work Order # 9508272 Page 4___

Lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor:					•		
	9508272-01A	9508272-028	.				
••	G0821517	G0821535					
<u>_</u>	08/11/95	08/11/95				•	
				•			
Dilution Factor:	08/21/95 21:04:00	08/22/95 04:16:00	16:00				
	-	30					
-	Water	Water					
Units:	ng/L	1/6n				•	
Report as:	received	received					
Column:			·				
Analyte Cor	Conc. DL	Conc.	7	conc.	<u>ط</u>	Conc.	ದ
Acetone 6.5	6.59 2.30	QN	69.0				
Benzene	ND 0.122	QV	3.66				
Bromodichloromethane 0.167	167 0.0462	Q	1.39		,		
Bromoform	ND 0.136	Q	4.08				
Bromomethane	ND 0.0500	Q	1.50				
2-Butanone(MEK) 3.0	3.63 1.29	QV	38.7				
Carbon disulfide	ND 0.190	Q	5.70				
Carbon tetrachloride	ND 0.131	Q	3.93			٠	
Chlorobenzene	ND 0.205	Q	6.15				
Chloroethane	ND 0.0898	Q.	5.69				
Chloroform 1.3	1.35 0.0985	3.61	5.96				
Chloromethane < [< DL 0.0893	Q.	5.68				
Dibromochloromethane	ND 0.0870	8	2.61				
1,2-Dichlorobenzene	ND 0.182	ON.	5.46				
	ND 0.228	Q	6.84				
	ND 0.216	Q.	6.48				
1,1-Dichloroethane	ND 0.0646	ON .	1.94	4			
1,2-Dichloroethane	ND 0.0481	2	1.44				
1,1-Dichloroethene	ND 0.212	S	6.36				
cis-1,2-Dichloroethene 0.590	590 0.104	38.8	3.12	٠			

08/28/95 12:09:11

RESULTS SUNNARY (Cont'd)

Work Order # 9508272 Page 5

Methusi Volatile Organics SW8260 Test Code <u>826SWANA</u>

Lab ID: 9508272-01A File ID: G0821517 Date Collected: 08/11/95 Date Prepared: 08/21/95 21:04:00 Dilution Factor: Vater Units: Water Report as: Conc. DL Column: Conc. DL Analyte Conc. DL trans-1,2-Dichloroptopane ND 0.0440 cis-1,3-Dichloropropane ND 0.116 trans-1,3-Dichloropropane ND 0.116 trans-1,3-Dichloropropene ND 0.0440 cis-1,3-Dichloropropene ND 0.116 thylbenzene ND 0.116 2-Hexanone ND 0.116 Hethylene chloride C DL 0.423 Styrene ND 0.184 1,1,2,2-Tetrachloroethane ND 0.163 1,1,1-Trichloroethane ND 0.163 1,1,1-Trichloroethane ND 0.100 ND 0.100 0.100 1,1,1,2-Trichloroethane <th>0.0724 9508272-028 60821535 08/11/95 08/11/95 08/11/95 04:16:00 30 30 4ater ug/L received bl. Conc. bl. 0.0440 ND 6 0.0724 ND 2</th> <th>28 5 5 1.16:00 d 6.36 6.36 1.32 3.48</th> <th>Conc.</th> <th>ā</th> <th>Conc.</th> <th>DL</th>	0.0724 9508272-028 60821535 08/11/95 08/11/95 08/11/95 04:16:00 30 30 4ater ug/L received bl. Conc. bl. 0.0440 ND 6 0.0724 ND 2	28 5 5 1.16:00 d 6.36 6.36 1.32 3.48	Conc.	ā	Conc.	DL
G0821517 08/11/95 08/21/95 21:04	212 440 116 724	5:16:00 d 6.36 1.32 3.48	Conc.	ā	Conc.	DI
### 11/95 ### 1 #### 1 ##### 1 ###### 1 ########	212 440 116 724	5:16:00 d 6.36 1.32 3.48	Conc.	ā	Conc.	D
08/21/95 21:04 1	212 440 116 724	.16:00 d DL 6.36 1.32 3.48	Conc.	ā	Conc.	DF
08/21/95 21:04 1	212 440 116 724	.16:00 d DL 6.36 1.32 3.48	Conc.	ā	Conc.	סר
received ug/L received ug/L received ug/L received received none. Conc. Conc. On D On 812 ND On 812	DL CON 0.212 N 0.0440 N 0.116 N		Conc.	ā	Conc.	DI
Water ug/L ug/L conc. 2-Dichloroethene ND Dichloropropene ND	DL Con 0.212 N 0.0440 N 0.116 N	۵	Conc.	ā	Conc.	DI
ug/L received .2-Dichloroethene ND hloropropane ND -Dichloropropene ND -Dichloropropene ND -Dichloropropene ND -Dichloropropene ND -Tene N	DL Con 0.212 N 0.0440 N 0.116 N		Conc.	ě	Conc.	DI
received conc. 2-Dichloroethene ND hloropropane Dichloropropene ND	DL CON 0.212 N 0.0440 N 0.116 N		Conc.	č	Conc.	ا ا
Conc. 2-Dichloroethene ND -Dichloropropene ND -Dichloropropene ND 3-Dichloropropene ND nzene ND nzene ND nzene ND -Tetrachloroethane ND -Tetrachloroethane ND -Tichloroethane ND		DL 6.36 1.32 3.48	Conc.	č	Conc.	DI
Conc. ,2-Dichloroethene ND -Dichloropropene ND -Dichloropropene ND -Dichloropropene ND -Care		6.36 1.32 3.48	Conc.	2	Conc.	JU
ND ND ND ND C DL ND ND ND ND ND ND ND ND ND ND ND ND ND		6.36 1.32 3.48		DL		
ND ND ND ND (DL ND ND ND ND (DL (DL (DL (DL (DL (DL (DL (D	- 11.4.4.	1.32				
ND ND ND AD ND ND ND ND ND ND ND ND ND ND ND ND ND		3.48				
ND ND 0.812 ND ND ND ND ND ND ND ND ND ND ND 69.5 E						
0.812 ND < DL ND 7.41 < DL ND ND ND ND ND		2.17				
0.812 ND	0.246 ND	7.38				
ND	0.347 ND	10.4				
 C DL ND ND A 11 C DL And And	0.316 ND	9.48				
. ND ND 7.41 < DL ND ND ND	0.423 < DL	12.7			• • • •	
ND 7.41 < DL ND ND ND 69.5 E	0.184 ND	5.52				
7.41 < DL ND ND ND 69.5 E	0.0708 ND	2.12	:			
< DL ND	0.420 13.2	12.6				
ND ND 69.5 E	0.163 < DL	4.89				
ND 69.5 E	0.120 ND	3.60				
69.5 E	0.0678 ND	2.03				
	0.197 647	5.91				
QN	O.0999	3.00				
1,1,2-Trichlorotrifluoroethane ND 0.332	0.332 c DL	9.6				
Vinyl acetate 0.381	0.381 ND	11.4				
Vinyl chloride 0.0697	O. 0697	5.09				
m&p-Xylene 0.554	0.554 ND	16.6				

08/28/95 12:09:11

RESULTS SUNNARY (Cont'd)

Work Order # 9508272 Page 6

Project Sample ID:	NEL111400LM9	NEL111630GW2			
Lab ID:	9508272-01A	9508272-028			
Date Collected:	08/11/95	08/11/95			
Date Prepared: Date Analyzed:	08/21/95 21:04:00	08/22/95 04:16:00			
Dilution Factor:	•	30			
Matrix:	Water	Water			
Units:	1/6n	ng/L			
Report as:	received	received			
Column:					
Analyte	Conc. DL	Conc. DL	Conc. DL	Conc.	:. DL
o-Xylene	ND 0.207	ND 6.21			

Surrogate(s)	Recovery %	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	100 78 98	98 76 98		

08/18/95 16:04:33

RESULTS SUMMARY

Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

9508249-01A	Project Sample ID:	NEL101230V48	OV48						
1 1 2 2 2 2 2 2 2 2	Lab ID:	9508249-	01A		-				
Separadi	File ID:	608145	50					·	
repared; 08/15/95 16:10:00 In Factor: Water Ug/L as: Conc. DL Conc. DL	Date Collected:	08/10/	95						
Section	Date Prepared:				_	***********			
Nater Nater Nater	Date Analyzed:	08/15/95							
ss: Vater big L ug/L ceived ss: cecived conc. DL Conc. DL chiloromethane Conc. DL Conc. DL chiloromethane ND 0.136 Conc. DL Conc. DL chiloromethane ND 0.136 Conc. DL Conc. DL chiloromethane ND 0.136 Conc. DL Conc. DL chiloromethane ND 0.131 Conc. DL Conc. DL chiloromethane ND 0.131 Conc. DL Conc. DL chiloromethane ND 0.182 Conc. DL Conc. DL chiloromethane ND 0.083 Conc. DL Conc. DL chiloromethane ND 0.084 Conc. DL Conc. DL chiloromethane ND 0.044 Conc. DL Conc. D	Dilution Factor:								
as: received conc. DL Conc. DL Conc. DL conc. DL Conc. DL conc. DL Conc. DL conc. DL Conc. DL conc. DL Conc. DL conc. DL Conc. DL conc. DL Conc. DL conc. DL	Matrix:	Water							
Conc. Dl Conc. Dl Conc. Dl Conc. Dl Conc. Dl Conc. Dl	Units:	ng/L			- 7				
Conc. D1 Conc. D1 Conc. D1 (D1 2.30	Report as:	receiv							
CONC. DL CON	Column:	Š	č	į	ā	į	ā		ā
0.0981 ND ND N	Analyte	CONC.	DL.	Conc.	DL	Conc.	DL	Conc.	DL
0.0981 ND ND N	Acetone	\ \ \	2.30				. -		
0.0981 ND ND N	Benzene	\ 0 \	0.122		_	-			•
EK) ND Fide ND Chloride ND MD	Bromodichloromethane	0.0981	0.0462				-		
EX) ND Fide ND Chloride ND Omethane ND Denzene ND Senzene ND Sethane ND Sethene ND Sethe	Bromoform	QN	0.136			***			
fide ND chloride ND chloride ND amethane ND cenzene ND	Bromomethane	QN .	0.0500		_				
fide ND chloride ND methane ND cenzene ND	2-Butanone(MEK)	QN	1.29		-				
chloride ND momethane ND cenzene ND	Carbon disulfide	Q	0.190		_				
ND ND ND ND ND Denzene ND Denzene ND Sthane ND	Carbon tetrachloride	QN	0.131						
nD 1.21 1.21 ND Methane ND Denzene ND Denzene ND Sthane ND Sthene ND	Chlorobenzene	QN	0.205						
1.2.1 G G G G G G G G G G G G G G G G G G G	Chloroethane	ON	0.0898		_	• ••			
N N N N N N N N N N N N N N N N N N N	Chloroform	1.21	0.0985			-			
N N N N N N N N N N N N N N N N N N N	Chloromethane	Q	0.0893				-		
D D D D D D D D D D D D D D D D D D D	Dibromochloromethane	QN	0.0870						
9 9 9 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,2-Dichlorobenzene	QN	0.182				-		
N N N N C	1,3-Dichlorobenzene	Q.	0.228		,				
ON ON ON OTHER	1,4-Dichlorobenzene	QN	0.216						
N ND ND 713 C	1,1-Dichloroethane	QN	0.0646						
ND 417	1,2-Dichloroethane	QN	0.0481		_	••••			
0.617	1,1-Dichloroethene	ON	0.212			<u> </u>			
70.0	cis-1,2-Dichloroethene	0.617	0.104		_				

08/18/95 16:04:33

RESULTS SUMMARY (Cont'd)

Work Order # 9508249 Page 5

> Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NEL101230V48	W#8							
Lab 10:	9508249-0								
File ID:	G0814550	0							
Date Collected:	08/10/9	5				,			
Date Prepared:									
Date Analyzed:	08/15/95 16	:10:00							
Dilution Factor:	-								
Matrix:	Water					,			
Units:	ug/L								
Report as:	received	9					*******		
Column:									
Analyte	conc.	ಕ	conc.	מל	Conc.	JO	Conc.	10	
trans-1,2-Dichloroethene	ON	0.212							
1,2-Dichloropropane	QN	0.0440							
cis-1,3-Dichloropropene	Q	0.116							
trans-1,3-Dichloropropene	QN	0.0724							
Ethylbenzene	QV	0.246							
2-Hexanone	ON	0.347					-		
4-Methyl-2-pentanone(MIBK)	QN	0.316							
Methylene chloride	\ \ OF	0.423					-		
Styrene	Q	0.184							
1,1,2,2-Tetrachloroethane	QV	0.0708							
Tetrachloroethene	5.64	0.420							
Toluene	, DL	0.163			-				
1,1,1-Trichloroethane	QN	0.120							
1,1,2-Trichloroethane	QN	0.0678							
Trichloroethene	55.6	0.197							
Trichlorofluoromethane	QN	0.0999							
1,1,2-Trichlorotrifluoroethane	QN	0.332							
Vinyl acetate	Q	0.381							
Vinyl chloride	Q	0.0697							
m&p-Xylene	QN	0.554							

08/18/95 16:04:33

RESULTS SUMMARY (Cont'd)

Work Order # 9508249 Page 6

Method <u>Volatile Organics SW8260</u> Test Code <u>826SWANA</u>

Project Sample ID:	NEL101230V48				,		•
Lab 10:	9508249-01A						
File ID:	G0814550					•	
Date Collected:	08/10/95						
Date Prepared:							
Date Analyzed:	08/15/95 16:10:00				,		
Dilution Factor:	-						
Matrix:	Water						
Units:	ng/L						
Report as:	received						
Column:							
Analyte	Conc. Dt.	Conc.	OL.	Conc.	DL	Conc.	טר
o-Xylene	ND 0.207						

Surrogate(s)	Recovery %	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	100 95 99			

08/21/95 14:27:42

RESULTS SUMMARY

Method Volatile Organics SW8260A Test Code 826SSANA

Project Sample ID:	NEL081200S1							,
Lab ID:	9508204-01A	-						
File ID:	F0815521							
Date Collected:	08/08/95							
Date Prepared:								
Date Analyzed:	08/16/95 12:2	28:00						
Dilution Factor:	-							
Matrix:	Solid							
Units:	ug/kg	-						
Report as:	dry weight	٠,						
Column:								
Analyte	Conc.	百	Conc.	ឥ	Conc.	5	Conc.	ō
Acetone	, DL	6.04						
Вепzепе	Q	1.08						
Bromodichloromethane	QN	0.978						
Bromoform	QN	0.784						
Bromomethane	QV	1.34						
2-Butanone (MEK)	QN	4.74						
Carbon disulfide	QN	0.943						
Carbon tetrachloride	QN	1.07						
Chlorobenzene	Q.	696.0		-				
Chloroethane	QN	1.35						
Chloroform	ON	1.31						
Chloromethane	QN	1.18						
Dibromochloromethane	Q	1.00						
1,2-Dichlorobenzene	ON	0.569			•			
1,3-Dichlorobenzene	QN	0.736						
1,4-Dichlorobenzene	Q	0.974						
1,1-Dichloroethane	QN	1.35						
1,2-Dichloroethane	QN	926.0						
1,1-Dichloroethene	Q	0.945						
cis-1,2-Dichloroethene	Q	1.12						
		7						

08/21/95 14:27:42

RESULTS SUNMARY (Cont'd)

Method <u>Volatile Organics SW8260A</u> Test Code <u>826SSANA</u>

9508204-01A	.000 OL.	5	Conc.	6	Conc.	Ы
D: Ollected: Oll	·	10	Conc.	5	Conc.	ā
ollected: 08/08/95 repared: 08/16/95 12:28: on Factor: 50lid is 1 is 2-Dichloroethene ND chloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 2-Tetrachloroethane ND 2-Tetrachloroethane ND 2-Tetrachloroethane ND 2-Tetrachloroethane ND 4.66 ND 2-Tetrachloroethane ND 1-1-Tetrachloroethane ND		ಕ	Conc.	6	Conc.	- I
repared: nalyzed: nalyzed: nalyzed: nalyzed: nalyzed: nalyzed: 1	·	16	Conc.	ъ	Conc.	Dr.
nalyzed: on Factor: in 1 solid as: as: conc. 1,2-Dichloroethene ND chloropropane 3-Dichloropropene ND chloropropene ND chloroethane ND		10	Conc.	70	Conc.	Ъ
on Factor: i solid ug/kg as: conc. 1,2-Dichloroethene ND chloropropane 1,3-Dichloropropene ND senzene ND vl-2-pentanone(MIBK) ND cene chloride ND cene chlo	······································	10	Conc.	70	Conc.	P
solid ug/kg as: Conc. 1,2-Dichloroethene Chloropropane 3-Dichloropropene ND 3-Dichloropropene ND		10	Conc.	6	Conc.	Б
ug/kg as: conc. 1,2-Dichloroethene Chloropropane ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND 1,3-Dichloropropene ND ND ND ND ND ND ND CHCACHOROPTOPENE ND ND ND CHCACHOROPTOPENE ND ND CHCACHOROPTOPENE N	·	10	Conc.	6	Conc.	ם
dry weight Conc. ND		d	Conc.	0.	Conc.	ا ا
CODC. ND		10	Conc.	Dr	Conc.	Dr
Conc		70	Conc.	70	Conc.	DL
ON O						
0 0 0 0 0 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0	1.36					
ON O	0.762					
0	0.802					
0 N N N N N N N N N N N N N N N N N N N	0.756					
ON O	0.818					
0 4 . 66 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	3.25					
9 . 6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	2.88					
Q Q Q Q	1.13					
Q Q Q	1.09					
ND ND hane ND	1.42					
ND ichloroethane ND	1.29					
QN	0.934					
	0.993					
1,1,2-Trichloroethane ND 1.	1.02					
Trichly bethen	0.938					
QN	4.29			•••		
	1.14					
Vinyl acetate ND 1.	1.09				-	
vinyl citoride ND 0.5	0.905					
m&p-Xylene ND 1.	1.93			e de la companya de		

08/21/95 14:27:42

RESULTS SUMMARY (Cont'd)

Work Order # 9508204 Page 6___

> Method Volatile Organics SW8260A Test Code 826SSANA

Project Sample ID:	NEL 081200S1	·	٠.			
Lab ID:	9508204-01A	•				
File ID: Date Collected:	F0815521 08/08/95					
Date Prepared:			·			
Date Analyzed:	08/16/95 12:28:00		-			
Dilution Factor:	-					
Matrix:	Solid					
Units:	ug/kg					
Report as:	dry weight					
Column:			•			
Analyte	Conc. DL	Conc. DL	Conc.	ה	Conc.	<u>ا</u>
o-Xylene	ND 0.876					

Surrogate(s)	Recovery %	Recovery %	Recovery %	Recovery %
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	94 118 99			

08/17/95 15:17:27

RESULTS SUMMARY

Work Order # <u>9508203</u> Page <u>4</u>

> Method <u>Percent moisture, SW846</u> Test Code <u>MSRSSA00</u>

Project Sample ID:	NEL 081 200 S1	NEL081200S1				
Lab ID:	9508203-01A	9508203-01A				
File ID:	MSRS081610-1	MSRS081610-2		-		
Date Collected:	08/08/95	08/08/95				
Date Prepared:						
Date Analyzed:	08/16/95 10:50	08/16/95 10:50:00				
Dilution Factor:	-	-				
Matrix:	Solid	Solid				
Units:	H	34				
Report as:						
Column:						
Analyte	Conc. DL	Conc. DL	Conc.	ָםר	Conc.	סר
Percent moisture	23.6	23.0				

08/11/95 13:01:53

RESULTS SUMMARY

Work Order # 9508188 Page 4

> Method ICP analysis by EPA 200.7 Test Code ICPEW5NA

Project Sample ID:	NEL071500Th	M				•		
lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor: Matrix: Units: Column:	9508188-01A JA610811-20 08/07/95 08/11/95 1 Water mg/L received	11A 20 55 57 57 57						
Analyte	Conc.	10	Conc.	DI	Conc.	10	Conc.	סר
Arsenic Beryllium Cadmium Chromium Copper Lead Nicket Selenium	< DL < DL	0.0468 0.000510 0.00386 0.00524 0.00916 0.0216 0.0141 0.0891	·					

08/11/95 10:40:08

RESULTS SUMMARY

Work Order # 9508192

Method pH, water Test Code PH EWA00

Project Sample ID:	NEL071500TW1	NELO71500TW1			
Lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor: Matrix: Units: Report as:	9508192-01A 9400809-6 08/07/95 08/09/95 12:00:00 1 Water pH units received	9508192-01A 9400809-7 08/07/95 08/09/95 12:00:00 1 Water pH units received			- '
Analyte	conc. DL	Conc. DL	Conc. DL	 Conc.	D.
Нд	8.12	8.13			

08/11/95 10:40:42

RESULTS SUMMARY

Work Order # 9508190 Page 4

Method <u>Hydrocarbons, total E418.1</u> Test Code <u>HCTEMA00</u>

Project Sample ID:	NEL071500TW1	NEL071500TW1			
Lab ID:	9508190-01A	9508190-01A			
File ID: Date Collected:	PEIR0810-13 08/07/95	PEIR0810-14 08/07/95			
Date Prepared:	00.00.01	20,00,00			
Dilution Factor:	08/10/95 12:00:00 1	00:00:01 76:00:00			
Matrix:	Water	Water			
Units:	mg/L	mg/L			
Report as:	received	received			
Column:					
Analyte	Conc. DL	Conc. DL	Conc. DL	Conc.	טר
Hydrocarbons	< DL 0.163	< DL 0.163			

RESULTS SUMMARY

KESOLIS SONAN

Method <u>Tot. dissolv. solid E160.1</u> Test Code <u>TDSEWA00</u>

08/11/95 13:25:29

Project Sample ID:	NEL071500TW1		NEL071500TW1	72				
Lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor:	9508191-01A TDS0809-4 08/07/95 08/09/95 16:00:00	00::	9508191-01A TDS0809-5 08/07/95 16:00:00	1A 5 5 5 :00:00			e. T	
Units: Report as: Column: Analyte	mg/L received Conc.	10	mg/L received Conc.	ط 10	Conc.	7	Conc.	Dľ
Total dissolved solids	1500	7.87	1530	7.87				

08/11/95 13:25:29

RESULTS SUMMARY

Work Order # 9508191 Page 13

Method ISS by EPA 160.2 Test Code ISSEWA00

Project Sample ID:	NEL071500TW1		NEL071500TW1	IW1					
Lab ID: File ID: Date Collected: Date Prepared: Date Analyzed: Dilution Factor:	9508191-01A TSS0809-4 08/07/95 08/09/95 12:00:00 1 Water	00	9508191-01A TSS0809-5 08/07/95 1 1 Water	1A -5 5 :00:00					
Units: Report as: Column: Analyte	mg/L received		mg/L received Conc.	- D	Conc.	ឥ	Conc.	DL	
Total suspended solids	< DT	2.17	3.00	2.17					1

08/11/95 14:45:19

RESULTS SUMMARY

Work Order # 9508189 Page 4

Method <u>Total cyanide by EPA 335.3</u> Test Code <u>TCNEWA00</u>

Project Sample ID:	NEL071500TW1	NEL071500T#1				
Lab ID:	9508189-01A	9508189-01A		•		
File ID:	TRAC0811-17	TRAC0811-18				
Date Collected:	08/07/95	08/07/95				
Date Prepared:						
Date Analyzed:	08/11/95 07:47:00	08/11/95 07:47:00				
Dilution Factor:	-	-				
Matrix:	Water	Water				
Units:	mg/L	mg/L				
Report as:	received	received				
Column:						
Analyte	Conc. DI	Conc. DL	Conc.	ಕ	Conc.	ы
Cyanide	< DL 0.00618	< DL 0.00618				

APPENDIX D

AM 4.02 Methodology

ANALYTICAL METHOD AM4A.04

FIELD ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN SOIL GAS

1.0 Scope and Application

1.1 Method AM4A.04 is used to determine the concentration of volatile organic compounds in soil gas samples. Specifically, Method AM4A.04 may be used to detect the volatile organics including but not limited to the following compounds:

pentane hexane heptane octane nonane decane chloromethane vinyl chloride 1,1-dichloroethylene methylene chloride 1,1-dichloroethane 1,2-dichloroethane trans 1,2-dichloroethylene chloroform 1,1,1-trichloroethane carbon tetrachloride trichloroethylene tetrachloroethylene 1,1,2,2-tetrachloroethane 1,3-dichlorobenzene methyl t-butyl ether undecane tridecane pentadecane heptadecane

benzene toluene m & p-xylene o-xylene ethyl benzene freon 113 bromomethane chloroethane fluorotrichloromethane 1,2-dichloropropane bromodichloromethane cis 1,3-dichloropropylene trans 1,3-dichloropropylene 1,1,2-trichloroethane chlorodibromomethane chlorobenzene bromoform 1,2-dichlorobenzene 1,4-dichlorobenzene acetone 2-butanone dodecane tetradecane hexadecane octadecane

1.2 This method is recommended for use by, or under the supervision of, analysts experienced in the operation of a gas chromatograph and in the interpretation of a chromatogram.

AM4A.04

2.0 Summary of Method

The volatile organic compounds are analyzed using a Hewlett Packard Model 5890 Series II Gas Chromatograph in conjunction with a Hewlett Packard Model 7694 Automated Headspace Sampler. A Supelco, 105M x 0.53mm i.d. Vocol, wide bore capillary column is used in conjunction with an output splitter connected to an electron capture detector and a flame ionization detector. The detector output signals are interfaced directly to an IBM compatible microcomputer through an analog to digital converter. Data storage, processing, analysis and presentation are facilitated using a chromatography data system (Chrom Perfect, Justice Innovations).

3.0 <u>Interferences</u>

- 3.1 Contamination by carryover can occur whenever high-level and low-level samples are sequentially analyzed. While in the standby mode, the HP 7694 provides continuous flushing of the sample loop and sample valve between sample analyses. This flush flow should be maintained and the sample valve and loop should be kept heated.
- 3.2 The analyst should demonstrate the absence of carryover contamination by analysis of the contents of the sample loop when purged with pure nitrogen. This demonstration should be performed prior to the analysis of a sample set and when carryover contamination is suspected (after high samples). In the event that 'ghost peaks' (peaks similar to previous sample) appear when a pure nitrogen sample is analyzed measures should be taken to eliminate the carryover contamination.
- 3.3 Extra peaks in a chromatogram can be actual peaks from a previous run. Contamination from compounds eluting late in the chromatogram can occur when injection to injection time is too short. The HP 5890 Series II is equipped with a temperature programmable oven which can be utilized to minimize this interference.
- 3.4 The analyst should be certain that all peaks have eluted from the previous analysis prior to analyzing any sample or standard. This can be accomplished by elevating the oven temperature after an analysis until such time that a clean stable baseline is obtained. If samples or standard chromatograms contain suspected 'extra peaks' the sample should be reanalyzed after a clean baseline is established.

4.0 <u>Materials and Equipment</u>

- 4.1 Sample vials: 22 ml glass vials (Hewlett Packard #9301-0716 or equivalent). Vials should be free of interferences prior to use. This can be accomplished by washing and rinsing with hydrocarbon free water then heating to 100 degrees C for 1 hour followed by purging with pure nitrogen.
- 4.2 Septums: Teflon lined septums (Wheaton #224168 or equivalent) may be used provided vials are capped within two weeks prior to use. Other septums may be used provided they are gas tight and do not produce interferences.
- 4.3 Gas Chromatograph: The Hewlett Packard 5890 Series II Gas Chromatograph is equipped with a Supelco, $105M \times 0.53mm$ i.d. Vocol, wide bore capillary column connected to an electron capture detector and flame ionization detector.
- 4.4 Headspace Sampler: A Hewlett Packard Model 7694 is used. The headspace sampler contains 44 slots for headspace vials. The Model 7694 contains a heated platen, a heated sample valve, a heated sample loop and a heated transfer line to facilitate transfer of the sample onto the column in the gas chromatograph.
- 4.5 Data Acquisition: Chrom Perfect Direct 4i, Justice Innovations, Mountain View, CA. The detector output signals are interfaced directly to an IBM compatible microcomputer through an analog to digital converter (Model DT2804, Data Translations). Data storage, processing, analysis and presentation are facilitated using the Chrom Perfect data system.

5.0 Sample Preparation and Analysis

- 5.1 Sample vial preparation: All sample vials should meet specifications as noted in sections 4.1 and 4.2 above. Vials should be tightly capped and evacuated to a pressure of less than 100 millitorr. The vial septum should be punctured only with needles of 22 gauge or smaller.
- 5.2 The evacuated sample vials should be filled with sample or standard gas to a positive gauge pressure. Sample vials should be used (filled with sample) within two weeks of preparation.
- 5.3 The 22 cc sample vials are heated in the headspace sampling unit for a minimum of 45 minutes prior to injection to minimize component loss via adsorption to the walls of the vial.

AM4A.04

5.4 The headspace sampling unit is programmed to mechanically puncture the septum, transfer the sample to the heated sample loop, and mechanically inject the sample into the column flow stream via the heated transfer line.

6.0 Standards and Calibrations

- 6.1 Gas standards or liquid standards may by used to achieve calibrations. In some situations it may be necessary to use both types of standards. Certified commercial gas standards are most desirable, but may not always be available for all the compounds or for the concentration levels of the compounds of interest.
- 6.2 Commercial gas standards are introduced by filling a 22ml headspace vial with standard gas. The gas standards are placed in the vials and analyzed in the same manner as samples (as described in section 5.0). The concentrations are those certified by the manufacturer.
- 6.3 Liquid standard solutions are injected directly into a capped vial and allowed to vaporize. These standards are produced from high purity compounds as described in the Standard Preparation Methods. The liquid standard solutions are placed in vials that meet specifications described in sections 4.1 and 4.2. The vials used must be capped and be at atmospheric pressure when the liquid standard is injected. The vial is then analyzed in the same manner as a sample as described in section 5.3.
- 6.4 At the beginning of a project or sample set, standards of appropriate calibration ranges will be run at least three times or until the results agree with a percent standard deviation no greater than 10%.
- 6.5 Thereafter, at least one standard will be run for every 10 samples.
- 6.6 The instrument response (for any one subsequent standard in section 6.5 above) must not vary by more than 20%.

7.0 Quality Control

- 7.1 If the parameters set forth in section 6.6 are not met the analytical program will be terminated until the cause is determined and a solution is effected.
- 7.2 Before and during sample analysis, instrument blanks (sample loops filled with flush nitrogen) should be analyzed to assure the absence of interferences as described in section 3.0 above.

AM4A.04

- 7.3 Prior to the analysis of a sample set, multiple standards, at different concentration levels, should be analyzed to establish an initial calibration table. During sample analysis, standards should be run at a rate of 1 for each 10 samples.
- 7.4 Standards analyzed during the course of analyzing samples are compared to the calibration table as well as being used for peak identification. All chromatograms should be examined by an experienced analyst.
- 7.5 The soil gas sample vial is pressurized at the time of sampling. This pressure preserves sample integrity since any leakage is out of the vial and does not result in contamination or sample dilution.
- 7.6 The headspace sampling unit contains a heated platen as well as a heated sampling loop and transfer line. The latter two zones are continually flushed with nitrogen between sample analyses to minimize the chance of instrumental carry over. This nitrogen in the sample loop is injected periodically to check for instrument contamination.
- 7.7 Once the headspace vials are punctured in the headspace unit, the sample loop is allowed to equilibrate to atmospheric pressure just prior to injection (see section 8.2, vent time). This insures that an accurate, equal volume will be injected each time. Each vial is analyzed one time only.
- 7.8 Calibration records are generated and stored in the computer. All such records will be maintained in the laboratory during the course of the project.

8.0 <u>Instrument Conditions</u>

8.1 Gas Chromatograph:

Injection Temp. 220 deg. C.

Flame Ionization Detector Temp. 220 deg. C.

Electron Capture Detector Temp. 375 deg. C.

Oven Temp. Program:

Initial temp. 30 deg. C.

Hold 10 min.

Rate 4 deg. min. to 110 deg. C.

Hold .01 min.

Rate 20 deg. min. to 200 deg. C.

Hold 15 min.

Equilibration Time 1 min.

Initial E.C.D. Signal Range 5

Initial F.I.D. Signal Range 4

Carrier Flow Rates: (output of column split)

Head Space Sampler in 12 cc/min.

Make up gas to E.C.D. 76 cc/min.

Make up gas to F.I.D. 34 cc/min. Total column 12 cc/min. Hydrogen Pressure 22 psig. Flame Air Pressure 30 psig.

8.2 Headspace Sampler:

Platen Temp. 75 deg. C. Valve/Loop Temp. 110 deg. C. Transfer Line 110 deg. C. Sample Equilibration time 45 min. Sampling interval 60 min (remote) Valve Timing:

Pressurize 0.0 min.
Vent/fill loop 0.25 min.
Loop equilibration 0.33 min.
Inject to G.C. 1.0 min.
Carrier Flow 12 cc/min.

APPENDIX E

11 RCRA Tests

Wheelabrator Clean Air Systems Inc.

2130 Lea Avenue Los Angeles, CA 90040 Tel. 213-722-7500 Fax. 213-722-8207

Analytical

Mollis Air Force Base Lab Maber: 5866A CHICART:

Address: Date Suspled: 10389 Did Placerville Roed

8/11/1995 Sacremento, CA 95827

8/14/1995 Ms. Suzuma Felico & Mike Thopson Date Received: Contacts

Orms sample received intact with COC form for 8/31/1995 Suple Date Reported: Request: 11 RCMA tests.

HELTIACI 8/14-8/31 1995 Projects: Date Arelyzed:

Consulting Radian Corporation Sample Natrix: GAC Firms

	PREATER	DESCRIPTION	METIKOS	eesocys	ROW LIKES
	Physical Description	Carbon is spent material; no foreign material present, Liquid phase carbon, KG 401 8x30	Visual Inspection	Acceptable	*NA
	Flash Point	Closed-cup Persky Hartens Flashpoint tester or a Setaflash Closed Cup Tester (ASTR 0-3278-78)	EPA 1010M	> 140 P**	Hust have a finahpoint >60 C (140 F)
	pN .	For corrective identity; sample mixed with 1:1 p) water	EPA 9045	8.7 pH units	< or = to 2 or > or = to 12.5
	Compatibitity	Sample did not exhibit advarse reactions with water; in stable form.	IN-100s (internel)	compatable	*71.4
	Cyenide	Sample extracted by SW-846, Section 7.3 methodology	EPA 9010	< 10 mg/kg	250 mg RCM/kg
	Sulfide	Sample extracted by SN-846. Section 7.3 methodology	EPA 9030	< 10 mg/kg	500 mg 12\$/kg
	Lead	Sample extracted by EPA Method 3050 methodology	GPA 7420	< 5 mg/kg	5.0 mg/kg
P.	Mercury	Sample extracted by EPA Method 7000, cold yapor technique	EPA 7471	40.2 mg/kg	0.2 mg/kg
Si_	Halogen Content	Sample extract from ATU combustate solution	epa 9252	7259 sq/ks	*KA
	Sulfur Content	Sample extract from STU combustate solution	Parr Bomb	4 \$0 mg/kg	*14.4
	Heat of Combustion (BTU)	Part Bomb Calorimeter	EPA 5050	5133 mwtb	*WA

Not Applicable: No defined ACRA Limits; For internal use only

Sample is not ignitable with an open flamm.

Reviewed by:

largaret Jefferson welytical Chemist

Jemes R. Graham, PhD Technical Director

Altech Systems / Ameec / ARI Technologies / Huntington Energy Systems / Westates Carbon A WHEELASKATOR TECHNOLOGIES COMPANY PRINTED ON RECYCLED PAPER

NO.825 PORT/882

MCAS-WESTRIES → CAKLAND, CALIF.

10:21 36/12/60

Mheelabrator Clean Air Systems Inc.

2130 Leo Avenue Los Angeles, CA 90040 Tel. 213-722-7500 Fax. 213-722-8207

Analytical Report

Mailis Air Force Base Lab ibaber: 56668 8/11/1995 10389 Old Placerville Read Sate Sampledt Address: Secremento, CA 9582? Date Beceiveds 8/14/1995 Contact: Ns. Suzarva Felice & Nike Thopson One sample received intect with con form for Seeple Date Reported: 8/31/1995 Populat: 11 RCHA LESTS. Project# : Dack Analyzadi 8/14-8/31 1995 Radian Corporation Seaple Matrix: Consulting 840

	d'scalifetion	NETWOOS	penets	ROM LINETS
Physical Description	Carbon is spent material; no foreign material present, vapor phose carbon, CC 601 6x8	Yisual Inspection	Asceptable	"IIA
Flash Point	Closed-cup Pensky Kartene Flachpoint tester or a Setaflash Closed Cup Tester (ASTM D-3278-76)	EPA 1010H	> 140 F**	Must heve o Flackpoint >60 C (140 F)
Hq	For corrective identity; sample mixed with 1:1 01 water	EPA 9045	9.7 pl units	< or = to 2 or > or = to 12.5
Competibility	Sample did not exhibit adverse reactions with water; in stable form.	(internal)	compatable	*14
Cypnide	Sample extracted by Su-846, Section 7.3 methodology	EPA 9010	< 10 mg/kg	250 mg MCN/kg
Sulfide	Sample extracted by SN-846, Section 7.3 methodology	EPA 9030	< 10 mg/kg	SOO mg H25/kg
Lead	Sample matracted by EPA Method 3050 methodology	EPA 7420	< 5 mg/kg	5.0 mg/kg
Hercury	Sumply extracted by EPA Mathod 7000, cold vapor technique	EPA 7471	<0.2 mg/kg	0.2 mg/kg
Selogen Content	Sumple untract from BTU combustate solution	GPA 9252	3312 mp/kg	*NA
Sulfur Content	Sample extract from BTU combustate solution	Parr Bosb	< 50 mg/kg	MA
Reat of Combustion (STU)	Perr Nomb Calorimeter	EPA 5050	9906 \$TU/Lb	*NA

Not Applicable; No defined RCRA Limits; For internal use only

Completed by:

Reviewed by:

Analytical Chemist

James R. Greham, PhD Technical Director

Sample is now ignitable with an open flame.

APPENDIX F

Supporting Calculations for Pump and Treat Data

RADIAN	CALCULATION SHI	EET	
SIGNATURE M. Thompson PROJECT PRETCH - Nellis TF	DATE	CHECKED # 1 JOB NO. <u>[012 - 001</u>	ALC. NO
SUBJECT Kump : Treat vs TPE	_	SHEET/OF	
Estmatel Pitrent E	xtantion Rute		
Concentration (from	pre:post test sampling	$=\frac{1760 \mu g/l + 641}{2}$	ing/l = 1203 m/l TE
Flow Rate (from Danes Sampling Inform	"Moore Quarterly GW,	= (18 40 + 692 4)/2 Montonia Regard, Append N-7:	hix A, Grondwater
, 3		and the second of the second o	
	30 gal = 0	79 gpm	
Extraction RatelTo	LE)		
j .	10 mg 454g 9	1858 × 0.79 gd × 144	10 mc = 0.011 16 Tec
PITIS TRE =>	.011 16/day =	30 times greater fo	~ TCE

Extraction Rule (Total VOCS)

1270 mg VOC x 1 x 1 x 3.785 x 0.79 x 1440 = 0.012 16 VOC

day

.39 16/day Voc. 32.5 times greater for VOCs

Page 1-2	Paragraph	Reviewer Todd Wilson	Change Lesser levels to Lesser concentrations.	Response Document revised.
1		Todd Wilson	Define trace quantities, or delete.	The document has been modified to reference the exact concentration data provided in the Appendices.
		Todd Wilson	Clarify that profiling is specifically to determine waste characteristics for disposal.	The document has been clarified.
I ————		Todd Wilson	Provide additional clarification as to the 11 RCRA test. Include a list of analyses required for this test.	A copy of the 11 RCRA tests Analytical Report provided by Wheelabrator Clean Air systems is provided in Appendix E. This lists the tests that are included.
1		Todd Wilson	The AM 4.02 methodology should be provided since this is not a standard, EPA, NIOSH, or other approved test method.	The AM 4.02 methodology is now provided as Appendix D.
		Todd Wilson	Groundwater and soil vapor data should be collected at some point after the pilot is complete. A new round of site quarterly groundwater data is to be collected in September/October. Preliminary results indicate that the groundwater concentrations have returned to approximately the same concentrations. Additional information will be available around the 1st of November.	We agree that continued comparison with quarterly monitoring data may provide additional information about the site (particularly related to groundwater levels). However, the data was not available at the time the report was provided and has not been incorporated.
		Todd Wilson	Additional information should be provided based on the disposition of these soils.	Mr. Waldo Pulido of Nellis AFB indicated that the soils were disposed of via incineration at Las Vegas Paving. The report has been modified accordingly.

Section	Page	Paragraph	Reviewer	Comment	Response
3.0	General		Todd Wilson	Provide information used to make comparisons between pump and treat and TPE. State if a pump test was conducted on MW-7, or if previous information was used to extrapolate the operating parameters for pump and treat.	Supporting information on the pump and treat values used are now provided as Appendix F. The pre- and post-test groundwater concentration data combined with previous groundwater flow rate data from the Quarterly Groundwater Monitoring Report were used for the comparison. The extraction rates shown in Table 3-2 have been revised to indicate that the TPE extraction rates were approximately 30 times greater than pump and treat. The revision resulted from an error in the original calculation.
Table 3-2			Todd Wilson	See comment on Section 3.0, General. Provide background in which average VOC and TCE removal rates were determined.	Contaminant removal rate information is currently provided in the "Summary of Contaminant Removal Rates" table provided in Appendix B.
3.2	3-4		Todd Wilson	The vapor component of the plume is expected to be minor. The actual source of the TCE plume has not been determined, and all soil borings and monitoring wells within the area have not been contaminated except at the groundwater interface.	Soil gas readings indicated that reasonably high soil vapor concentrations may be present at the site. Our pre- and post-test soil vapor samples indicated 4,400 ppbv and 5,700 ppbv of TCE. The soil gas survey reported in the Remedial Investigation of Site 44 (ES, May 1994) indicated concentrations of up to 9626 micrograms per liter of TCE in the soil gas.
3.3	3-4		Todd Wilson	See comment to Table 2-2.	Refer to previous response.

ო

Response	The estimated time to clean-up the site cannot be made because there is insufficient information available related to the mass of contaminants in the groundwater and detailed modeling of the water flow through the site. Additionally, the increase in mass removal rate resulting from in-situ air stripping of the VOCs from the dewatered zone cannot be quantified. TPE will range between 2 times (if only the increased water extraction rate is considered) to 30 times (assuming that all of the extracted mass would have to eventually be removed from the groundwater) faster than pump and treat at cleaning up the site. This would also be dependent on the design of the respective TPE and pump and treat systems used for the cleanup.	Refer to previous response.
Comment	Provide an estimate on the time required to cleanup ST-44 as compared to pump and treat.	See comment to Table 2-2.
Reviewer	Todd Wilson	Todd Wilson
Paragraph		
Page	3-4	3-4
Section	3.3.1	13

Response	This pilot test is adequate for determining an approximate vapor ROI for the site.	Since the exact cause of the groundwater fluctuations could not be identified, the exact duration needed to reach steady state cannot be determined. If the rate of change observed in the previous pilot testing remained constant, steady state would be achieved in a two week test.	All test objectives were met with the exception of firm delineation of the groundwater ROI. The report has been modified to make this statement.
Comment	Provide an estimate of time required to meet steady-state. State if all objectives of the study were met, or if a longer pilot study would be required to obtain better ROI information (vapor	and groundwater), or other operating parameters.	
Baviawer	Todd Wilson		
Dogograph			
	3-8		
: 6	3.4.1	,	

Ŋ

Section	Page	Paragraph	Reviewer	Comment	Response
4.0	4-1		Todd Wilson	State what other types of sites this would be useful for, or where it has been used to effectively treat TCE plumes. It is this reader's assumption that BTEX would be treatable as well as chlorinated compounds. Provide general information such as minimum and maximum depth to water, etc. In this case, the groundwater is at approximately 80 feet. This is also the estimated vapor radius of influence. State if it is better for these to overlap, or if this does not matter. It is my guess that the more this exceeds the depth to the water table, the more enhancement of the remediation.	Despite data indicating low soil permeabilities, the vapor flow rates in the test were relatively high. TPE typically will be better relative to other, alternative technologies, when the formation is tighter and the vapor flow rates lower than those found during the test. The Remedy Profile Guideline provided in Table 3-1 is basically a summary of the site conditions where TPE is effective. BTEX compounds are treatable using the TPE technology. BTEX compounds are not included in the Remedy Profile Guidelines except where expedited action is required (See Table 3-1, footnote "a") because BTEX in the groundwater can often be remediated using intrinsic remediation if no receptors will be impacted before the groundwater plume attenuates. It is not important that the depth to the water table overlap the vapor radius of influence. However, if the water table is very shallow, short-circuiting may occur that reduces the vapor radius of influence.
App. A			Todd Wilson	State if headspace readings were collected. None are marked on the bore logs.	No headspace readings were collected.

Response	Acetone results from NEL071500TW1, NEL081200VW4, and NEL111400UW9 and 2-butanone results from sample NEL111400UW9 have been rejected.	The laboratory switched from 8260 to 8260A in June and July. The reporting software for the liquid samples had not been updated to reflect the analytical change. All samples were analyzed using 8260A.
Comment	Clarify if the trip blank contamination led to the rejection of acetone and 2-butanone data. Based on the text, this appears to be the case. If the data isn't rejected, then the data may be used with some bias of the data.	Clarify the reasoning for analyzing both 8260 and 8260A.
Reviewer	Todd Wilson	Todd Wilson
Paragraph		Table 1
Pade		
Section	App. C	App. C