

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY

9701/22

Paper 2 AS Level Structured Questions

February/March 2020

1 hour 15 minutes

You must answer on the question paper.

You will need: Data booklet

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

Answer **all** the questions in the spaces provided.

1

Gro	oup 2	metals form alkaline	e solutions in wa	ater.	
(a)	(i)	Write the equation f	or the reaction	of calcium oxide with	water.
					[1]
	(ii)	Identify the ion that	causes an aque	eous solution to be a	Ikaline.
					[1]
(b)	The	e table shows the me	Iting points of se	ome Group 2 metal o	oxides.
			compound	melting point/°C	
			MgO	2825	
			CaO	2613	
			SrO	2531	
			ВаО	1923	
	Exp	plain the trend in the	melting points o	f the oxides down G	roup 2.
					[2]
(c)		gen reacts readily very the reaction with ox		s, but each Group 2	? metal requires strong heating to
	Sug	gest why strong hea	nting is required	to start these reaction	ons.
					[1]
					[1]
(d)	Ber	yllium oxide reacts w	vith hydrochloric	acid to form molecu	les of $BeCl_2$.
	Dec	duce the bond angle	in BeCl		
	200	and and anight	20002.		
					[1]

(e)	Unl	ike the other oxides of Group 2 metals, beryllium oxide is amphoteric.
	(i)	Give the meaning of the term amphoteric.
		[1]
	(ii)	Beryllium oxide and aluminium oxide have similar chemical properties.
		The $\mathrm{Be}(\mathrm{OH})_4^{2-}$ anion is a product of the reaction between beryllium oxide and excess concentrated $\mathrm{OH}^-(\mathrm{aq})$.
		Construct an equation for this reaction.
		[1]
(f)	Ма	gnesium oxide reacts reversibly with chlorine according to the following equation.
		$2MgO(s) + 2Cl_2(g) \rightleftharpoons 2MgCl_2(s) + O_2(g)$
	Und	der certain conditions, a dynamic equilibrium is established.
	(i)	State two features of a reaction that is in dynamic equilibrium.
		1
		2[2]
	(ii)	The equilibrium constant, $K_{\rm p}$, is given by the following expression.
		, and the second
		$K_{p} = \frac{\rho_{O_2}}{\rho_{Cl_2}^2}$
		At 1.00×10^5 Pa and 500 K, 70% of the initial amount of $Cl_2(g)$ has reacted.
		Calculate K_p and state its units.
		$K_p = \dots$
		units =
		[3]

(g) Magnesium peroxide, ${\rm MgO_2},$ is made in the following reaction.

 $H_2O(I)$

$$MgO(s) + H_2O_2(I) \rightarrow MgO_2(s) + H_2O(I)$$
 $\Delta H = -96 \, kJ \, mol^{-1}$

compound	enthalpy change of formation, $\Delta H_{\rm f}/{\rm kJmol^{-1}}$
MgO(s)	-602
H ₂ O ₂ (I)	-188

-286

(i)	The peroxide ion is O_2^{2-} .	
	Deduce the average oxidation number of oxygen in the peroxide ion.	
		[1]
(ii)	Define the term enthalpy change of formation.	
		[2]
(iii)	Use the data given to calculate the enthalpy change of formation of MgO ₂ (s).	

$$\Delta H_{\rm f} \, {\rm MgO_2}({\rm s}) = \dots k J \, {\rm mol^{-1}} \, [2]$$

(iv) Magnesium peroxide decomposes slowly to form magnesium oxide and oxygen.

$$MgO_2(s) \rightarrow MgO(s) + \frac{1}{2}O_2(g)$$

Use your answer to (g)(iii) and the data in the table to calculate the enthalpy change of this reaction.

If you were unable to obtain an answer to (g)(iii), use the value $\Delta H_f = -550 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$. This is **not** the correct answer.

enthalpy change of reaction =kJ mol⁻¹ [1]

[Total: 19]

		oup 17 elements, chlorine, bromine and iodine, are non-metals that show trends in their and chemical properties.
(a)) Des	scribe the trend in the colour of the Group 17 elements down the group.
		[1]
(b)) The	e Group 17 elements can oxidise many metals to form halides.
	(i)	Describe the relative reactivity of the elements in Group 17 as oxidising agents.
		[1]
	(ii)	Chlorine reacts with hot tin metal to form $tin(IV)$ chloride, $SnCl_4$.
		${\rm SnC} l_4$ is a colourless liquid at room temperature that reacts vigorously with water to form an acidic solution.
		Suggest the type of structure and bonding shown by $SnCl_4$. Explain your answer.
		[2]
(c)) The	e Group 17 elements form soluble halides with sodium.
	(i)	Describe what is seen when dilute ${\rm AgNO_3(aq)}$ is added to ${\rm NaBr(aq)}$ followed by aqueous ammonia.
		101

	(ii)	$NaCl$ reacts with concentrated H_2SO_4 to form HCl and $NaHSO_4$.
		Explain the difference between the reactions of concentrated $\rm H_2SO_4$ with NaC l and with NaI. Your answer should refer to the role of the sulfuric acid in each reaction.
		[3]
(4)	Tho	hydrogen halides are useful reagents in organic and inorganic reactions.
(u)	me	riyurogen nandes are userur reagents in organic and morganic reactions.
	(i)	Describe and explain the trend in the boiling points of the hydrogen halides, HCl , HBr and HI .
		[2]
	(ii)	Describe and explain the trend in the thermal stabilities of the hydrogen halides, $HC\mathit{l}$, HBr and HI .
		[2]

(e)		as's reagent is a mixture of HC l and ZnC $l_{ m 2}$. Primary, secondary and tertiary alcohols car distinguished by their reaction with Lucas's reagent.
	Alc	phols react with the HC $\it l$ in Lucas's reagent to form halogenoalkanes.
	ZnC	${\it Cl}_2$ acts as a homogeneous catalyst for these reactions.
	(i)	Explain the meaning of the term <i>homogeneous</i> .
		[1
	(ii)	$Pentan-3-ol, C_2H_5CH(OH)C_2H_5, reacts slowly with HC1 to form a secondary halogenoal kaned to the property of the property$
		Complete the equation for this reaction using structural formulae.
		$C_2H_5CH(OH)C_2H_5$ +[1]
((iii)	The fastest reaction shown by Lucas's reagent is with a tertiary alcohol.
		Draw the structure of the tertiary alcohol that is an isomer of pentan-3-ol.
		r.
		[1]
	(iv)	Tertiary alcohols tend to react with Lucas's reagent using the same mechanism as in their reaction with HC1.
		Suggest the type of reaction shown by tertiary alcohols with Lucas's reagent.
		[1
		[Total: 17

- **3** Glycerol, CH₂(OH)CH(OH)CH₂OH, is widely used in the food industry and in pharmaceuticals.
 - (a) A series of reactions starting from glycerol is shown.

(i)	Suggest the reagent(s) and conditions for reaction 1.	
		[2]
(ii)	Name the reaction mechanism for reaction 2.	
		[1]
(iii)	Give the observation you would make when 2,4-dinitrophenylhydrazine is added to P .	
		[1]
(iv)	Q does not show optical isomerism.	
	Explain why.	
		[4]

(v) When **Q** is heated with excess aqueous ethanoic acid in the presence of a catalytic amount of sulfuric acid, two reactions take place to form compound **R**.

Identify the two types of reaction that occur.

1

2[2]

(b)	Glycerol can be used as a starting material in the manufacture of nitroglycerine, $C_3H_5N_3O_9$.
	Nitroglycerine decomposes rapidly on heating to form a mixture of gases.
	$4C_3H_5N_3O_9(I) \rightarrow 12CO_2(g) + 10H_2O(g) + 6N_2(g) + O_2(g)$
	A sample of nitroglycerine decomposes, releasing $1.06\mathrm{dm^3}$ of $O_2(g)$ at $850\mathrm{K}$ and $1.00\times10^5\mathrm{Pa}$.

(i) Calculate the mass of nitroglycerine that decomposes.

(ii) Calculate the total volume of gas released by this decomposition at $850\,\mathrm{K}$ and $1.00\times10^5\,\mathrm{Pa}$.

total volume of gas = dm^3 [1]

(c) Fats are compounds made from glycerol and unsaturated carboxylic acids.

4-pentenoic acid is an example of an unsaturated carboxylic acid.

4-pentenoic acid

$$\begin{array}{c} (CH_2)_2COOH \\ H \\ H \end{array}$$

(i) Give the molecular formula of 4-pentenoic acid.

.....[1]

(ii) Draw the repeat unit of the addition polymer that can be formed from 4-pentenoic acid.

[1]

(iii) Unsaturated acids are often brominated before being added to soft drinks.

Complete the mechanism for the addition of Br₂ to 4-pentenoic acid.

- Include the structures of the intermediate and the product of the reaction.
- Include all charges, partial charges, lone pairs and curly arrows.

In the mechanism, R has been used to represent (CH₂)₂COOH.

[4]

(d) A reaction of another unsaturated carboxylic acid, T, is shown.

(i) T is one of a pair of geometrical (cis-trans) isomers.

Draw the other geometrical isomer of ${\bf T}$ and explain why the molecules exhibit this form of isomerism.

	[3]
	• •

(ii) Identify the reagent used to convert **T** to **U**.

.....[1]

(iii) The C–Br bond has an absorption between 500 cm⁻¹ and 600 cm⁻¹ in an infrared spectrum.

The infrared spectra for both **T** and **U** have absorptions between 2850 cm⁻¹ and 2950 cm⁻¹. These correspond to C–H bonds.

For each absorption, give the range of the absorption and the bonds that correspond to

Identify:

- two other absorptions that would be seen in the infrared spectra of both T and U
- one other absorption that would **only** be seen in the infrared spectrum of **T**.

absorption 1 present in both spectra

absorption 2 present in both spectra

absorption only present in spectrum of T

[Total: 24]

[3]

BLANK PAGE

BLANK PAGE

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.