GCxGC-(MS) methods

Pim Leonards

Outline

- Principles of GCxGC
- Selection of detectors
- PCB, PBDE analysis
- Other examples

Principles of GCxGC

- Selection of modulator
- •6 different modulators:

Selection 1st and 2nd dimension GC columns

- 1st dimension
 - Apolar type phases:

DB-1, DB-5, CP-Sil 8 type of columns

2nd dimension

Second-dimension column				
Commercial code ^a	Stationary phase	Dimensions $(m \times mm \times \mu m)$		
LC-50	50% liquid crystalline-methylpolysiloxane	0.8 × 0.1, 0.1		
007-65HT	65% phenyl-methylpolysiloxane	$1.0 \times 0.1, 0.1$		
VF-23ms	Proprietary (high cyano containing polymer; with absolute cyano content 70-90%)	$1.5 \times 0.1, 0.1$		
007-210	50% trifluoropropyl-methylpolysiloxane	$2.0 \times 0.1, 0.1$		
HT-8	8% phenyl-methylpolysiloxane (carborane)	$1.0 \times 0.1, 0.1$		
SupelcoWax-10	Polyethylene glycol	$1.0 \times 0.1, 0.1$		

How does it work? Cryogenic modulator

Principle and contour plots

Contour plot

Detectors for GCxGC systems

- Fast scanning detectors
 - Acquisition rate >20 Hz
- Low dead volume detectors

Commercial equipment

- GCxGC-FID
- GCxGC-ECD
- GCxGC-qMS
- GCxGC-ToF-MS
- GCxGC-AED not commercial available

GCxGC-μECD

GCxGC-µECD 125 PBDE's

Korytar et al., J Chrom A, 1100 (2005) 200–207

GCxGC-µECD various contaminants

GCxGC-µECD different column combination

GCxGC-µECD dust sample

A 1086 (2005) 29-44

Background matrix separation from dioxins

GCxGC-MS

GCxGC with qMS

Requirements

fast acquisition spectral quality: no skewing

Quadrupole MS

High acquisition rates

- short Rf setup time
- fast scanning

R_f setup time:

Scan rate:

Scan width (amu):

10.4 ms

10000 amu/s

@ 50Hz: 96

@ 33 Hz: 195

@ 25 Hz: 296

No skewing

mass ratio plot (m/z 330/326)

Quality of spectra

P. Korytar et al. / J. Chromatogr. A 1067 (2005) 255-264

Mass range scanned

Mass range	Minimum inter- scan delay (s)	Maximum/scan speed: 6700 Da/s			
scanned (Da)		Scan time ^a (s)	Max. data a rate ^b (Hz)	quisition	Min. detectable peak width ^c (ms)
400	0.014	0.060	14		510
300	0.011	0.045	18	/	380
200	0.010	0.030	25		280
100	0.005	0.015	50		140
50	0.001	0.007	125		56

P. Korytar et al. / J. Chromatogr. A 1067 (2005) 255–264 259

GCxGC-qMS

- Fast enough
- Selective enough
 - separation of coeluters
- Limited scanning range (300 Da)
- Not sensitive enough in El
 - NCI required

Eel extract GCxGC-qMS PBDE analysis

P. Korytar et al. / J. Chromatogr. A 1067 (2005) 255-264

GCxGC ToFMS

- Fast scan speed: 100-500 Hz
- No mass skewing
- Automated search

GCxGC-ToF-MS, Tern egg Western Scheldt

Screening chemicals in household dust

GCxGC-ToFMS of an hexane extract of dust

Chlorinated and brominated compounds in house dust

- >10,000 peaks detected
- 145 compounds contain chlorine or bromine

Other compounds identified in household dust

Compound class	Number found by filter	Plausible on review	
Chlorine/bromine-containing	165	145 (93%)	
Phthalates	52	33 (57%)	
PAHs	145	94 (65%)	
Nitro compounds	8	1 (13%)	

Hilton et al., 2010. J. Chrom A, 1217 (2010) 6851–6856

GCxGC-AED oil

Sulphur

Carbon

van Stee et al. / J. Chromatogr. A 1019 (2003) 89-99

Effect-directed analysis (EDA)

Combined sample treatment scheme chemical and bioassay analysis

Houtman et al. 2006

- Sediment sample from a harbour
- Bioassays
 - Dioxin like compounds (DR-CALUX)
 - Estrogenic compounds (ER-CALUX)
- Chemical identification
 - •GC-MS
 - •GCxGC-ToFMS

Bioassay activity of the sediment

Active fraction GCxGC-ToFMS

Houtman et al., 2006, Chemosphere 65, 2244-2252

Identified compounds and explained bioassay activity

- 76% of the estrogenic activity was explained by 17α -, 17β -estradiol and estrone
- 38% of dioxin-like activity explained by PAHs

Summary

- GCxGC is a powerful separation technique
- Separation of interfering compounds and matrix
- GCxGC is especially suitable for the separation of complex mixtures
- GCxGC combined with mass spectrometry can be used for the identification of "new" flame retardants

