

Fuzzy Signatures

COMP4660/8420 - Neural Networks, Deep Learning and Bio-inspired Computing

Overview

- Fuzzy Signatures
 - Example
- Why Fuzzy Signatures?
- Aggregation of Fuzzy Signatures
- Polymorphic Fuzzy Signatures
- Case Studies

Fuzzy Rule Based Systems

Dense rule based systems suffer from a serious problem called *Rule explosion*:

$$|R| = O\left(T^{k}\right) \tag{1}$$

3 possible solutions:

- Sparse fuzzy rule based systems
- Hierarchical fuzzy rule based systems
- Sparse hierarchical fuzzy rule based systems
 - Fuzzy signatures

Definition

A Fuzzy Signature is a vector of fuzzy values, where each vector component can be another vector,

$$A : X \rightarrow [a_i]_{i=1}^k$$
where $a_i = \begin{cases} [a_{ij}]_{j=1}^{k_i} ; \text{ if branch} \\ [0,1] ; \text{ if leaf} \end{cases}$

- Aggregate sub-branches to get the final atomic result
- Two fuzzy signatures (even with slightly different structures) can be compared to find the similarity

An Example Fuzzy Signature

can be graphically represented as a vector or tree

Construct an individual fuzzy signature for each data point in hand

Why Fuzzy Signatures?

Fuzzy Signatures:

- Sparse and hierarchical descriptor of an object
- Simplifies the approximation of aggregation for complex structured data
- Very robust and flexible under perturbed input data

Arbitrary aggregation of fuzzy signatures

Fuzzy signature structure with two arbitrary levels g and (g+1).

Figure: An Arbitrary Fuzzy Signature

Aggregation of an arbitrary branch a_{p...i} in level g can be written as:

$$a_{q...i} = Q_{q...i} \{a_{q...ij}\}$$

Where $@_{q...i}$ is an arbitrary aggregation function of the q...ith branch, j = 1,...,n, and $a_{p...i}, a_{q...ij} \in [0,1]$.

Simple aggregation of fuzzy signatures

- Simple aggregation functions min and max used
- Each sub-branch can have different aggregation function

Figure: Aggregation of fuzzy signatures

Kóczy's Method of Aggregation

$$S = S_1 \wedge S_2$$

$$S = (S_1 \wedge S_2) \vee (\bar{S}_1 \wedge \bar{S}_2)$$

$$S = 1 - |S_1 - S_2|$$

Where S, S_1 , and S_2 are Fuzzy Signatures. \bar{S}_1 is the complement of the Fuzzy Signature S_1

Example

Compare Fuzzy signatures with slightly different structures

Step 1: Truncate to find a common structure

Step 2: Use operations conjunction or disjunction

Step 3: Aggregate resulting fuzzy signature

$$egin{bmatrix} egin{bmatrix} 0.8 \ 0.6 \ 0.5 \ 0.5 \ \end{bmatrix} & egin{bmatrix} 0.6 \ 0.2 \ \end{bmatrix} & egin{bmatrix} 0.8 \ 0.7 \ \end{bmatrix} & egin{bmatrix} 0.3 \ 0.4 \ 0.9 \ \end{bmatrix} & egin{bmatrix} S_1 & S_2 & S_1' = trunc_{s_2}(s_1) \ \end{bmatrix}$$

(a) Truncation

(b) Comparison

Example

Figure: Fuzzy Sub Signatures

Polymorphic Fuzzy Signatures

- Find a common signature structure for set of data points
- Use fuzzy constrains/events at leaves
- Use specialised aggregations operators (such as WRAO) to fuse data

Figure: High Salary Selection PFS

SARS Polymorphic Fuzzy Signatures

Figure: Weighted SARS Patient Classification PFS

Weighted Relevance Aggreg. Method

- ☐ Weighted Relevance Aggregation method (Mendis et al. 2005)
- ☐ Some branches contribute more to final result than others at the same level.
- □ eg. Contribution of *slight*fever, moderate fever, and high fever to SARS is linguistically "less", "somewhat", and "more".
- □ Thus, weights w₁₁₁, w₁₁₂, and w₁₁₃ in Fig.1 were set for these linguistic expressions.

Weight. Relev. Aggreg. Operator (WRAO)

Definition: The generalised WRAO of n branches $s_1, s_2, ..., s_n \in [0,1]$ with n weighted relevancies $w_1, w_2, ..., w_n \in [0,1]$, in a fuzzy signature, is a function $g:[0,1]^{2n} \rightarrow [0,1]$ such that,

 $g(s_1, s_2, ..., s_n; w_1, w_2, ..., w_n) = \left(\frac{1}{n} \sum_{i=1}^n \left(w_i s_i\right)^p\right)^{\frac{1}{p}}$

where $p \in \Re$, $p \neq 0$, $i \in [1, n]$ and $\sum_{i=1}^{n} w_i$ is not necessarily equal to 1.

- Further, we replaced w_i by the following sigmoid function, $w_i = \frac{1}{1 + e^{-\lambda_i}}$
- Now for any λ_i the weighted relevance, $w_i \in [0,1]$
- WRAO can be rewritten as follows, $a_{q...i} = \left[\frac{1}{n}\sum_{j=1}^{n}\left(\left\{\frac{1}{1+e^{-\lambda_{q...ij}}}\right\}a_{q...ij}\right)^{p_{q...i}}\right]^{\frac{1}{p_{q...i}}}$

We called p is the aggregation factor and λ is the weighted relevance factor of the WRAO.

Fuzzy Signature Structure with two arbitrary levels g and (g+1)

$$a_{q...i} = \left[\frac{1}{n} \sum_{j=1}^{n} \left\{ \frac{1}{1 + e^{-\lambda_{q...ij}}} \right\} a_{q...ij} \right]^{p_{q...i}}$$

where
$$\frac{1}{1+e^{-\lambda_{q...ij}}} = w_{q...i}$$

Levenberg-Marquardt Learning of WRAO

- Why Levenberg-Marquardt Learning?
 - WRAO learning is a local search within the scope of the fuzzy signature structure
- Minimize the Sum of Squared Errors (SSE)

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} r_i(x)^2 = \frac{1}{2} \parallel r(x) \parallel_2^2 = r^T r$$

■ The update, u_k , for the k^{th} iteration can be calculated as

$$u_k = (J^T(x_k)J(x_k) + \alpha_k I)^{-1}(-J^T(x_k)r(x_k))$$

Unconstrained WRAO:

$$a_{q...i} = \left[\frac{1}{n} \sum_{j=1}^{n} \left(a_{q...ij} \bullet \left[\frac{1}{1 + e^{-\lambda_{q...ij}}}\right]\right)^{p_{q...i}}\right]^{\frac{1}{p_{q...i}}}$$

Generalized OWA (GOWA)

Definition

$$M(a_1, a_2, \ldots, a_n) = \left(\sum_{j=1}^n w_j b_j^p\right)^{\frac{1}{p}}$$

- $p \in [-\infty, \infty]$
- b_i is the jth largest input
- \mathbf{v}_{i} are collection of weights satisfying
 - (i) $w_j \in [0, 1]$
 - (ii) $\sum_{j=1}^{n} w_j = 1$

Generalized OWA (GOWA)

- Used Levenberg-Marquardt Learning for both GOWA and WRAO
- Both methods use fuzzy signature structure
- Unconstrained WRAO:

$$a_{q...i} = \left\lceil \frac{1}{n} \sum_{j=1}^{n} \left(a_{q...ij} \bullet \left[\frac{1}{1 + e^{-\lambda_{q...ij}}} \right] \right)^{p_{q...i}} \right\rceil^{\frac{1}{p_{q...i}}}$$

Unconstrained GOWA:

$$a_{q...i} = \left(\sum_{j=1}^{n} \left[\frac{e^{\lambda_{q...ij}}}{\sum_{k=1}^{n} e^{\lambda_{q...ik}}}\right] b_{q...ij}^{p_{q...i}}$$

Expt 1: High Salary Selection Fuzzy Sig.

Expt 2: SARS Patient Classification

- 4 Symptoms in input test/train Data
 - 1. SARS
 - 2. Pneumonia
 - 3. Hypertension
 - 4. Normal

Fuzzy classification error

- Mean Squared Error
- Sum of Fuzzy Classification Error (SYCLE)

High Salary Selection Polymorphic Fuzzy Signature

Table: High Salary Selection Experiment: WRAO and GOWA

	MSE Train	SYCLE Train	MSE Test	SYCLE Test
GOWA	0.1639	104.5	0.2003	81.0
WRAO	0.0130	8.5	0.0130	6

SARS Polymorphic Fuzzy Signature

Table: Test Results of SARS Data Classification: WRAO and GOWA

	Train		Test	
	MSE	SYCLE	MSE	SYCLE
GOWA	0.2185	2500	0.2192	2500
WRAO	0.0020	33.5	0.0018	25.5

Eye Gaze path Analysis

Figure: Eye Gaze Experiment

Figure: Eye Gaze PFS

PFS Vs SVM for Eye Gaze Path Analysis

Experiment	FS (3 classes)	FS (2 classes)	SVM (2 classes)
Training	19.77%	3.04%	1.18%
Test	20.00%	5.00%	4.55%

- Fuzzy C-Means clustering to identify better subspaces for PFS
- Fuzzy Signatures for single document analysis

