

# অনুশীলনী – ৩.১

#### লম্ব অভিক্ষেপ:

বিন্দুর লম্ব অভিক্ষেপ: কোনো নির্দিষ্ট সরলরেখার উপর কোনো বিন্দু থেকে অঙ্কিত লম্বের পাদবিন্দুতে ঐ বিন্দুর লম্ব অভিক্ষেপ বলে। P বিন্দু হতে XYরেখার উপর অঙ্কিত লম্ব PP' এর পাদবিন্দু P' । সূতরাং P' হলো Pবিন্দুর লম্ব অভিক্ষেপ।

রেখাংশের লম্ব অভিন্দেপ: AB রেখাংশের প্রান্ত বিন্দু A ও B হতে XYরেখার উপর অঙ্কিত লম্বদ্বয় AA' ও BB' এর পাদবিন্দু A' এবং B'। এই  $A^{\prime}B^{\prime}$  রেখাংশই XY রেখাংশের উপর AB রেখাংশের লম্ব অভিক্ষেপ।



লক্ষণীয়: 🗘 কোনো রেখার উপর ঐ রেখার লম্ব রেখাংশের লম্ব অভিক্ষেপ একটি বিন্দু। যার দৈর্ঘ্য শূন্য।

🗘 কোনো রেখার উপর ঐ রেখার সমান্তরাল কোনো রেখাংশের লম্ব অভিক্ষেপের দৈর্ঘ্য ঐ রেখাংশের দৈর্ঘ্যের সমান।

#### উপপাদ্য-১ ও ২:

পিথাগোরাসের উপপাদ্য: একটি সমকোণী ত্রিভুজে অতিভুজের উপর অঙ্কিত বর্গক্ষেত্রের <u>ক্ষেত্রফল উপর দুই বাহুর</u> উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান।

 $\Delta ABC$  সমকোণী ত্রিভুজের  $\angle B=$  এক সমকোণ হলে পিথাগোরাসের উপপাদ্য অনুসারে,  $AC^2=AB^2+BC^2$  ।

অনুসালে, AC = AD + BC । **পিথাগোরাসের উপপাদ্যের বিপরীত প্রতিজ্ঞা**ঃ কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত। বর্গক্ষেত্রের ক্ষেত্রফল অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের ক্ষেত্রফলের সমষ্টির সমান হলে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে। ABC ত্রিভুজের  $AC^2=AB^2+BC^2$  হলে,  $\angle B=$  এক সমকোণ হবে।



উপপাদ্য-৩: স্থলকোণী ত্রিভুজের স্থলকোণের বিপরীত বাহুর ওপর অঙ্কিত বর্গন্ধেত্র ঐ কোণের সন্নিহিত অন্য দুই বাহুর উপর অঙ্কিত বর্গন্ধেত্রেদ্বয়ের ক্ষেত্রফল এবং ঐ দুই বাহুর যেকোনো একটি ও তার উপর অপর বাহুর লম্ব অভিক্ষেপের অন্তর্গত আয়তক্ষেত্রের ক্ষেত্রফলের দ্বিগুণের সমষ্টির সমান।



ABC ত্রিভূজের  $\angle C$  স্থলকোণ হলে,  $AB^2 = AC^2 + BC^2 + 2BC.CD = AC^2 + BC^2 + 2AC.CE$ (স্থুলকোণের বিপরীত বাহুর উপর লম্ব $)^2=$  দুই বাহুর বর্গের সমষ্টি +~2~ imes একটি বাহু imes উক্ত বাহুর উপর অপর বাহুর লম্ব অভিক্ষেপ

oxdot লক্ষ কর: চিত্র-১ এর ক্ষেত্রে BC বাহুর উপর AC বাহুর লম্ব অভিক্ষেপ CD এবং চিত্র-২ এ AC বাহুর উপর BC বাহুর লম্ব অভিক্ষেপ CE।

### উপপাদ্য-8:





ABC ত্রিভুজের  $\angle C$  সৃক্ষকোণ হলে, (সৃক্ষকোণের বিপরীত বাহুর উপর লম্ব $)^2=$  অপর দুই বাহুর উপর অঙ্কিত বর্গের সমষ্টি  $-2 \times$  একটি বাহু  $\times$  উক্ত বাহুর উপর অপর বাহুর লম্ব অভিক্ষেপ  $AB^2=AC^2+BC^2-2BC.CD=AC^2+BC^2-2AC.CE$ 

☑ লক্ষ কর: উপপাদ্য-৩.৩ শুধুমাত্র স্থলকোণী ত্রিভূজের ক্ষেত্রেই প্রযোজ্য কিন্তু উপপাদ্য-৩.৪ সূক্ষকোণী ত্রিভূজের সাথে সাথে স্থলকোণী ত্রিভূজের স্থলকোণ ব্যতীত অপর দুই সৃক্ষাকোণের ক্ষেত্রেও প্রযোজ্য।

### উপপাদ্য-৫ (এ্যাপোলোনিয়াসের উপপাদ্য):



(ii) ABC ত্রিভুজে BE মধ্যমা হলে,  $AB^2 + BC^2 = 2(BE^2 + CE^2)$ 

(iii) ABC ত্রিভূজে CF মধ্যমা হলে,  $AC^2 + BC^2 = 2(CF^2 + BF^2)$ 

অনুসিদ্ধান্ত:  $\triangle ABC$  এর AB,BC ও CA বাহুর উপর মধ্যমাত্রয় যথাক্রমে CF,AD ও BE হলে,  $3(AB^2+BC^2+CA^2)=4(AD^2+BE^2+CF^2)$ আবার,  $\triangle ABC$  এর  $\angle B$  = এক সমকোণ হলে এবং AD, BE ও CF তিনটি মধ্যমা হলে,  $2(AD^2+BE^2+CF^2)=3AC^2$ 







## $\Delta ABC$ এর $\angle B=60^\circ$ হলে প্রমাণ কর যে, $AC^2=AB^2+BC^2-AB.BC$ ।

সমাধান:



বিশেষ নির্বচনঃ  $\triangle ABC$  এর  $\angle B=60^\circ$  হলে প্রমাণ করতে হবে যে,  $AC^2=AB^2+BC^2-AB.BC$ 

**অঙ্কন:**  $AD \perp BC$  অঙ্কন করি।

প্রমাণ: এখন,  $\triangle ABC$  সূক্ষকোণী ত্রিভুজের সূক্ষকোণ  $\angle ABC$  এর বিপরীত বাহু AC এবং অপর বাহুদ্বয় AB ও  $BC \mid BC$  বাহুতে AB এর লম্ব অভিক্ষেপ BD  $\therefore AC^2 = AB^2 + BC^2 - 2BC.BD$ 

এখন সমকোণী  $\triangle ABD$ -এ,  $\cos \angle ABD = \frac{BD}{AB}$ 

বা, 
$$\cos 60^\circ = \frac{BD}{AB}$$
  
বা,  $\frac{1}{2} = \frac{BD}{AB}$   
 $\therefore BD = \frac{1}{2}AB$ 

$$\therefore BD = \frac{1}{2}AB$$

(ii) নং সমীকরণ হতে পাই,  $AC^2 = AB^2 + BC^2 - 2.BC.\frac{1}{2}$ . AB $\therefore AC^2 = AB^2 + BC^2 - AB.BC$  (প্রমাণিত)





বিশেষ নির্বচনঃ দেওয়া আছে,  $\triangle ABC$ -এর  $\angle B=60^\circ$ ।

প্রমাণ করতে হবে যে.  $AC^2 = AB^2 + BC^2 - AB.BC$ 

**অঙ্কন:**  $AD \perp BC$  অঙ্কন করি এবং DE = BD অংশ নিই। A, E যোগ করি।

প্রমাণ:  $\Delta ABD$  ও  $\Delta ADE$ -এ

BD = ED [অঙ্কনানুসারে]

AD = AD [সাধারণ বাহু]

এবং অন্তর্ভুক্ত  $\angle ADB =$  অন্তর্ভুক্ত  $\angle ADE$  [প্রত্যেকে এক সমকোণ]

 $\therefore \Delta ABD \cong \Delta ADE$ 

[বাহু-কোণ-বাহু উপপাদ্য]

সুতরাং  $\angle ABD = \angle AED$ 

অর্থাৎ  $\angle ABE = \angle AEB = 60^{\circ}$ 

 $\triangle ABE$ -a  $\angle BAE + \angle ABE + \angle AEB = 180^{\circ}$ 

[∵ ত্রিভুজের তিন কোণের সমষ্টি 180°]

বা, 
$$\angle BAE + 60^{\circ} + 60^{\circ} = 180^{\circ}$$

বা, 
$$∠BAE = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

 $\therefore \triangle ABE$ -a  $\angle BAE = \angle ABE = \angle AEB = 60^{\circ}$ 

∴  $\triangle ABE$  একটি সমবাহু ত্রিভুজ। [∵ কোনো ত্রিভুজের তিনটি কোণ পরস্পর সমান হলে, তা একটি সমবাহু ত্রিভুজ]

আবার,  $AB = BE = 2BD \quad [\because D, BE$  এর মধ্যবিন্দু]

এখন,  $\triangle ABC$  সূক্ষকোণী ত্রিভুজের সূক্ষকোণ  $\angle ABC$  এর বিপরীত বাহু AC,

অপর দুই বাহু AB ও BC এবং BC এর উপর AB এর লম্ব অভিক্ষেপ BD

$$AC^2 = AB^2 + BC^2 - 2BCBD$$

$$=AB^2 + BC^2 - AB.BC$$
 [::  $2BD = AB$ ] (প্রমাণিত)



বিশেষ নির্বচন: দেওয়া আছে,  $\Delta ABC$  এর  $\angle B=60^\circ$ । প্রমাণ করতে হবে যে,  $AC^2=AB^2+BC^2-AB.BC$  অন্ধন: A বিন্দু হতে BC-এর উপর AD লম্ব আঁকি। BA হতে BD- এর সমান করে BE অংশ কেটে নিই। E, D যোগ করি।

প্রমাণ:  $\triangle BDE$ -এ BD = BE হওয়ায়  $\angle BED = \angle EDB$  আবার,  $\triangle BDE$ -এ  $\angle BED + \angle EDB + \angle EBD = 180^\circ$  বা,  $\angle BED + \angle BED + 60^\circ = 180^\circ$  বা,  $\angle BED = 180^\circ - 60^\circ$  বা,  $\angle BED = \frac{120^\circ}{2} = 60^\circ$   $\triangle ABDE$ -এ  $\triangle BDE = \angle BED = \angle EBD = 60^\circ$  অর্থাৎ  $\triangle BDE$  সমবাহু ত্রিভুজ  $\triangle ABDE$  সমবাহু ত্রিভুজ  $\triangle ABD$ -এ  $\triangle BAD + \angle ABD + \angle ADB = 180^\circ$  বা,  $\triangle BAD + BO$   $\triangle ABD + BO$   $\triangle ABD + BD$   $\triangle ADD + BD$   $\triangle A$ 

## $\triangle ABC$ এর $\angle B=120^\circ$ হলে প্রমাণ কর যে, $AC^2=AB^2+BC^2+AB.BC$ ।



বিশেষ নির্বচন: দেওয়া আছে,  $\triangle ABC$ -এর  $\angle B=120^\circ$ । প্রমাণ করতে হবে যে,  $AC^2=AB^2+BC^2+AB.BC$  অস্কন: CB এর বর্ধিতাংশের ওপর AD লম্ব টানি।

প্রমাণ: এখন  $\triangle ABC$ -এ,  $\angle ABC=120^\circ$  অর্থাৎ একটি স্থূলকোণ, এর বিপরীত বাহু AC এবং ঐ কোণের সন্নিহিত বাহুদ্বয় যথাক্রমে AB ও BC এবং BD, AB এর লম্ব অভিন্দেপ।

∴  $AC^2 = AB^2 + BC^2 + 2BC.BD$  ... ... (i) এখন,  $\angle ABC$  ও  $\angle ABD$  একই সরলরেখার উপর অবস্থিত সন্নিহিত কোণ বিধায়,

$$\angle ABC + \angle ABD = 180^{\circ}$$
  
₹1,  $\angle ABD = 180^{\circ} - \angle ABC$   
 $= 180^{\circ} - 120^{\circ} \ [\because \angle ABC = 120^{\circ}]$   
 $= 60^{\circ}$ 

∴ সমকোণী ত্রিভুজ ABD-এ  $\cos\angle ABD = \frac{BD}{AB}$ 

বা, 
$$\cos 60^\circ = \frac{BD}{AB}$$

বা, 
$$\frac{1}{2} = \frac{BD}{AB}$$

$$\therefore BD = \frac{1}{2}AB$$

(i) নং সমীকরণ হতে পাই,  $AC^2 = AB^2 + BC^2 + 2BC.BD$ 

$$= AB^2 + BC^2 + 2BC \cdot \frac{1}{2} .AB$$

$$\therefore AC^2 = AB^2 + BC^2 + AB.BC \qquad \text{(প্রমাণিত)}$$



বিশেষ নির্বচনঃ দেওয়া আছে,  $\triangle ABC$ -এর  $\angle B=120^\circ$ । প্রমাণ করতে হবে যে,  $AC^2=AB^2+BC^2+AB.BC$ 

**অঙ্ক**নঃ A বিন্দু হতে CB-এর বর্ধিতাংশের ওপর AD লম্ব আঁকি। BD কে DE পর্যন্ত এমনভাবে বর্ধিত করি যেন DE=BD হয়। A,E যোগ করি।

প্রমাণ:  $\angle ABC + \angle ABE = 180^{\circ}$  [পরস্পর সম্পূরক কোণ]

 $\therefore 120^{\circ} + \angle ABE = 180^{\circ} \quad [\angle B = \angle ABC = 120^{\circ}]$ 

 $\therefore \angle ABE = 180^{\circ} - 120^{\circ} = 60^{\circ}$ 

এখন,  $\Delta ADE$  ও  $\Delta ADB$ -এ

DE = DB; [অঙ্কনানুসারে]

AD = AD [সাধারণ বাহু]

এবং অন্তর্ভুক্ত  $\angle ADE =$  অন্তর্ভুক্ত  $\angle ADB$  ; [প্রত্যেকে এক সমকোণ]

 $\therefore \Delta ADE \cong \Delta ADB$  [বাহু-কোণ-বাহু উপপাদ্য]

 $\angle ABE = \angle AEB = 60^{\circ}$ ; [::  $\angle ABE = 60^{\circ}$ ]

 $\triangle ABE$ -a  $\angle BAE + \angle AEB + \angle ABE = 180^{\circ}$ 

বা,  $\angle BAE + 60^{\circ} + 60^{\circ} = 180^{\circ}$ 

বা,  $∠BAE = 180^{\circ} - 120^{\circ}$ 

 $\therefore \angle BAE = 60^{\circ}$ 

সুতরাং ABE একটি সমবাহু ত্রিভুজ।

 $\therefore AB = BE = 2BD$ ; [ $\because D, BE$  এর মধ্যবিন্দু]

জানা আছে, স্থুলকোণী ত্রিভুজের স্থুলকোণের বিপরীত বাহুর ওপর অঙ্কিত বর্গক্ষেত্র ঐ কোণের সমিহিত অন্য দুই বাহুর ওপর অঙ্কিত বর্গক্ষেত্রদ্বরের ক্ষেত্রফল এবং ঐ দুই বাহুর যেকোনো একটি ও তার ওপর অপর বাহুর লম্ব অভিক্ষেপের অন্তর্গত আয়তক্ষেত্রের ক্ষেত্রফল দ্বিগুণের সমষ্টির সমান। ABC স্থুলকোণী ত্রিভুজের স্থুলকোণ  $\angle ABC$  এর বিপরীত বাহু AC এবং উক্ত কোণের সমিহিত অপর দুই বাহু AB ও BC, CB বাহুর বর্ধিতাংশের AB-এর লম্ব অভিক্ষেপ BD

$$\therefore AC^2 = AB^2 + BC^2 + 2BD. BC$$
 অর্থাৎ  $AC^2 = AB^2 + BC^2 + AB. BC$ ; [ $\because 2BD = AB$ ] (প্রমাণিত)

প্রা দৃষ্টি আকর্ষণ: ১নং প্রশ্নের তৃতীয় পদ্ধতির অনুরূপভাবেও এ প্রশ্নটি সমাধান করা যেতে পারে। সেক্ষেত্রে A বিন্দু থেকে BC এর (বর্ধিতাংশের) উপর AD লম্ব আঁকতে হবে, BA হতে BE = BD অংশ কাটতে হবে। D, E যোগ করতে হবে। চিত্রটি হবে নিমুরূপ:



## ত $\Delta ABC$ এর $\angle C=90^\circ$ এবং BC এর মধ্যবিন্দু D। প্রমাণ কর যে, $AB^2=AD^2+3BD^2$ ।



বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$  এর  $\angle C=90^\circ$  ।  $D,\,BC$ -এর মধ্যবিন্দু । প্রমাণ করতে হবে,  $AB^2=AD^2+3BD^2$ 

প্রমাণঃ সমকোণী ত্রিভুজ ACD-এ,  $AD^2 = AC^2 + CD^2$ 

[পিথাগোরাসের সূত্রানুযায়ী]

বা, 
$$AC^2 = AD^2 - CD^2$$
  
=  $AD^2 - BD^2$  ... ... (i) [:  $CD = BD$ ]

 $\Delta ABC$ -এ AD মধ্যমা হওয়ায়, এ্যাপোলোনিয়াসের উপপাদ্য অনুসারে

$$AB^2 + AC^2 = 2(BD^2 + AD^2)$$
  
বা,  $AB^2 = 2BD^2 + 2AD^2 - AC^2$   
 $= 2BD^2 + 2AD^2 - (AD^2 - BD^2)$  [(i) নং হতে]  
 $\therefore AB^2 = 2AD^2 - AD^2 + 2BD^2 + BD^2$   
সুতরাং  $AB^2 = AD^2 + 3BD^2$  (প্রমাণিত)





বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$  এর  $\angle C=90^\circ$  এবং BC বাহুর মধ্যবিন্দু  $D \mid A,D$  যোগ করি।

প্রমাণ করতে হবে,  $AB^2 = AD^2 + 3BD^2$ 

প্রমাণ:  $\triangle ABC$ -এ  $\angle C$  = এক সমকোণ

:. ACD সমকোণী ত্রিভুজে পিথাগোরাসের উপপাদ্যনুসারে পাই,

$$AD^2 = AC^2 + CD^2$$
  
বা,  $AC^2 = AD^2 - CD^2$ 

আবার, ACB সমকোণী ত্রিভুজে পিথাগোরাসের উপপাদ্যনুসারে পাই,

$$AB^2 = AC^2 + BC^2$$

বা, 
$$AB^2 = AD^2 - BD^2 + (2BD)^2$$
; [:: $BD = CD$  এবং  $BC = 2BD$ ]

বা. 
$$AB^2 = AD^2 - BD^2 + 4BD^2$$

সুতরাং, 
$$AB^2 = AD^2 + 3BD^2$$
 (প্রমাণিত)



বিশেষ নির্বচনঃ দেওয়া আছে,  $\triangle ABC$  এর  $\angle C=90^\circ$  এবং BC বাহুর মধ্যবিন্দু D:A,D যোগ করি।

প্রমাণ করতে হবে,  $AB^2 = AD^2 + 3BD^2$ 

প্রমাণ:  $\triangle ACD$ -এ  $\angle ACD = 90^{\circ}$ 

∴ ∠ADC হলো সূক্ষকোণ।

তাহলে, সূক্ষকোণ  $\angle ADC$  এর সম্পূরক কোণ  $\angle ADB$  হলো স্থূলকোণ।

এখন, স্থুলকোণী  $\Delta ADB$ -এ স্থুলকোণ  $\angle ADB$  এর বিপরীত বাহু AB, অপর সন্নিহিত বাহুদ্বয় AD ও BD

এবং BD বাহুর বর্ধিতাংশে AD বাহুর লম্ব অভিক্ষেপ CD

$$\therefore AB^2 = AD^2 + BD^2 + 2BD \cdot CD$$

বা, 
$$AB^2 = AD^2 + BD^2 + 2BD$$
.  $BD$ 

[::BD=CD কারণ D,BC এর মধ্যবিন্দু]

বা, 
$$AB^2 = AD^2 + BD^2 + 2BD^2$$

$$\therefore AB^2 = AD^2 + 3BD^2 \qquad \text{(প্রমাণিত)}$$

## $oxtless{f 8}$ $\Delta ABC$ এ AD,BC বাহুর উপর লম্ব এবং BE,AC এর উপর লম্ব। দেখাও যে, BC.CD=AC.CE।



বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$ -এর AD, BC-এর উপর লম্ব এবং BE, AC-এর উপর লম্ব ।

প্রমাণ করতে হবে, BC.CD = AC.CE

প্রমাণ:  $\triangle ADC$ -এ  $AD\perp BC$  হওয়ায়  $\angle ACD=\angle ACB$  সূক্ষাকোণ  $\triangle ABC$ -এ সূক্ষাকোণ  $\angle ACB$  এর বিপরীত AB এবং উক্ত কোণের সির্নিহিত বাহুদ্বয় AC ও BC এবং BC এর উপর AC এর লম্ব অভিক্ষেপ CD

$$AB^2 = AC^2 + BC^2 - 2BC.CD...$$
 (i)

আবার. AC বাহুর উপর BC এর লম্ব অভিক্ষেপ CE

:. 
$$AB^2 = BC^2 + AC^2 - 2AC.CE$$
 ... ... (ii)

(i) ও (ii) নং সমীকরণ হতে পাই,

∴ BC.CD = AC.CE (দেখানো হলো)



বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$ -এর AD, BC-এর উপর লম্ব এবং BE, AC-এর উপর লম্ব ।

প্রমাণ করতে হবে, BC.CD = AC.CE

প্রমাণ:  $\Delta BEC$  ও  $\Delta ADC$ -এ

 $\angle BEC = \angle ADC$ ; [প্রত্যেকে এক সমকোণ]

 $\angle BCE = \angle ACD$  ; [সাধারণ কোণ]

এবং অবশিষ্ট  $\angle EBC$  = অবশিষ্ট  $\angle DAC$ 

∴ ∆BEC ও ∆ADC সদৃশকোণী ও তাই সদৃশ।

সুতরাং উহাদের অনুরূপ কোণের বিপরীত বাহুর অনুপাতগুলি সমান।

$$\therefore \frac{BC}{AC} = \frac{CE}{CD}$$

সুতরাং BC.CD = AC.CE (প্রমাণিত)

ক্রি 
$$\Delta ABC$$
 এর  $BC$  বাহু  $P$  ও  $Q$  বিন্দুতে তিনটি সমান অংশে বিভক্ত হয়েছে। প্রমাণ কর যে,  $AB^2+AC^2=AP^2+AQ^2+4PQ^2$ । [সংকেত:  $BP=PQ=QC$ ;  $\Delta ABQ$  এর মধ্যমা  $AP$ ।  $AB^2+AQ^2=2(BP^2+AP^2)=2PQ^2+2AP^2$ ।

$$\triangle APC$$
 এর মধ্যমা  $AO + \therefore AP^2 + AC^2 = 2PO^2 + 2AO^2$  ||

বিশেষ নির্বচনঃ দেওয়া আছে, ABC ত্রিভুজের BC বাহু P ও Q বিন্দুতে BP=PQ=QC এই তিনটি সমান অংশে বিভক্ত হয়েছে। প্রমাণ করতে হবে যে,  $AB^2+AC^2=AP^2+AQ^2+4PQ^2$  প্রমাণঃ  $\Delta ABQ$ -এ BP=PQ [অঙ্কনানুসারে]

তাহলে, AP,  $\Delta ABQ$ -এর মধ্যমা যা BQ-কে P বিন্দুতে সমদ্বিখণ্ডিত করে। এ্যাপোলোনিয়াসের উপপাদ্য অনুসারে

$$AB^2 + AQ^2 = 2(AP^2 + PQ^2) \dots \dots \dots (i)$$

আবার, AQ,  $\Delta APC$ -এর মধ্যমা যা PC-কে Q বিন্দুতে সমদ্বিখণ্ডিত করে। এ্যাপোলোনিয়াসের উপপাদ্য অনুসারে

$$AC^2 + AP^2 = 2(AQ^2 + PQ^2) \dots \dots \dots (ii)$$

(i) ও (ii) নং সমীকরণ যোগ করে পাই,

$$AB^2 + AQ^2 + AC^2 + AP^2 = 2AP^2 + 2PQ^2 + 2AQ^2 + 2PQ^2$$
  
বা,  $AB^2 + AC^2 = 2AP^2 - AP^2 + 2AQ^2 - AQ^2 + 4PQ^2$   
 $\therefore AB^2 + AC^2 = AP^2 + AO^2 + 4PO^2$  (প্রমাণিত)

িউ  $\triangle ABC$  এর AB = AC। ভূমি BC এর উপর P যেকোনো বিন্দু। প্রমাণ কর যে,  $AB^2 - AP^2 = BP.PC$ । সিংকেত BC এর উপর AD লম্ব আঁক। তাহলে  $AB^2 = BD^2 + AD^2$  এবং  $AP^2 = PD^2 + AD^2$ ।

সমাধান:



বিশেষ নির্বচনঃ  $\Delta ABC$  এর AB=AC। ভূমি BC এর উপর P যেকোনো বিন্দু। প্রমাণ করতে হবে যে,  $AB^2-AP^2=BP.PC$ । অন্ধনঃ A,P যোগ করি এবং A হতে ভূমি BC-এর উপর AD লম্ব আাঁকি। প্রমাণঃ সমদ্বিবাহু ত্রিভুজের শীর্ষ হতে অঙ্কিত লম্ব ভূমিকে সমদ্বিখণ্ডিত করে। সমদ্বিবাহু ত্রিভুজ ABC-এ AD, ভূমি BC এর উপর লম্ব হওয়ায় BD=CD APD সমকোণী ত্রিভুজে,

$$AP^2 = AD^2 + PD^2 \dots \dots \dots \dots (i)$$

আবার, ABD সমকোণী ত্রিভুজে,

$$AB^2 = AD^2 + BD^2 \dots \dots \dots \dots (ii)$$

(ii) নং সমীকরণ হতে (i) নং স্মীকরণ বিয়োগ করে পাই,

$$AB^2 - AP^2 = AD^2 + BD^2 - AD^2 - PD^2$$
  
 $AB^2 - AP^2 = BD^2 - PD^2$ 

বা, 
$$AB^2 - AP^2 = (BD + PD)(BD - PD)$$

$$41, AB - AP = (BD + PD)(BD - PD)$$

$$41, AB^2 - AP^2 = (CD + PD). BP$$

বা, 
$$AB^2 - AP^2 = (CD + PD)$$
.  $BP$   
বা,  $AB^2 - AP^2 = BP.PC$  (প্রমাণিত)



বিশেষ নির্বচনঃ দেওয়া আছে, ABC ত্রিভুজে AB=AC। ভূমি BC এর উপর P যেকোনো বিন্দু । প্রমাণ করতে হবে যে,  $AB^2-AP^2=BP.PC$ 

**অঙ্কন:**  $\Delta ABC$  এর পরিবৃত্ত অঙ্কন করি। A, P যোগ করে বর্ধিত করি যেন তা পরিবৃত্তকে E বিন্দুতে ছেদ করে।

A বিন্দু হতে BC এর উপর AD লম্ব আঁকি। বর্ধিত AD পরিবৃত্তকে Fবিন্দুতে ছেদ করে। E, F যোগ করি।

প্রমাণ:  $\triangle ABD$  ও  $\triangle PEC$ -এ

 $\angle ABC = \angle PEC = \angle AEC$  [একই চাপ AC এর ওপর দণ্ডায়মান বৃত্তস্থ কোণ]  $\angle APB = \angle EPC$ [বিপ্রতীপ কোণ]

অবশিষ্ট  $\angle BAD$  = অবশিষ্ট  $\angle PCE$ 

∴ ত্রিভুজদ্বয় সদৃশকোণী এবং সদৃশ।

$$\therefore \frac{AP}{BP} = \frac{PC}{PE}$$

$$\therefore AP.PE = BP.PC \dots \dots \dots (i)$$

এখন, সমকোণী  $\triangle ABD$  ও সমকোণী  $\triangle ADC$ -এ  $[\because AD \perp BC]$ অতিভুজ AB= অতিভুজ AC এবং AD সাধারণ বাহু

$$\therefore \Delta ABD\cong \Delta ADC$$
 [অতিভুজ-বাহু উপপাদ্য]

$$\therefore BD = DC$$

সুতরাং AD রেখা ব্যাস ভিন্ন জ্যা BC এর লম্বদ্বিখণ্ডক। অর্থাৎ AD এর বর্ধিত রূপ AF রেখা হলো পরিবৃত্তের ব্যাস।

আমরা জানি, কোনো ত্রিভুজের যেকোনো দুই বাহুর অন্তর্গত আয়তক্ষেত্র ঐ ত্রিভুজের পরিবৃত্তের ব্যাস এবং ঐ বাহুদ্বয়ের সাধারণ বিন্দু থেকে ভূমির উপর অঙ্কিত লম্বের অন্তর্গত আয়তক্ষেত্রের সমান।

সুতরাং 
$$\triangle ABC$$
-এ  $AB.AC = AD.AF$ 

বা, 
$$AB^2 = AD.AF$$
 ;  $[::AB = AC]$ 

আবার, 
$$\angle AEF$$
 = অর্ধবৃত্তস্থ কোণ = এক সমকোণ

এখন,  $\triangle AEF$  এবং  $\triangle ADP$ -এ

$$\angle AEF = \angle ADP;$$
  $[\because$  প্রত্যেকে এক সমকোণ]

$$\angle EAF = \angle PAD$$
 সাধারণ কোণ]

 $\therefore$   $\Delta AEF$  এবং  $\Delta ADP$  সদৃশকোণী ও তাই সদৃশ।

সুতরাং তাদের অনুরূপ বাহুগুলো সমানুপাতিক।

$$\therefore \frac{AF}{AP} = \frac{AE}{AD}$$

বা, 
$$AD.AF = AP.AE$$

বা, 
$$ADAF = (AE - PE)$$
.  $AE$ ; .....(ii) [::  $AP = AE - PE$ ]

বা, 
$$AD.AE = AE^2 - AE.PE$$

এখন, 
$$AB^2 - AP^2 = AB^2 - (AE - PE)^2$$
 ;  $[\because AP = AE - PE]$   
=  $AE^2 - AE.PE - AE^2 - PE^2 + 2AE.PE$ 

[(ii) নং হতে]

$$= AE.PE - PE^{2}$$
$$= PE(AE - PE)$$

$$=AP.PE$$
 ;  $[\because AP = AE - PE]$   
সুতরাং  $AB^2 - AP^2 = BP.PC$   $[(i)$  নং হতে] (প্রমাণিত)

 $oxed{\P}$   $\Delta ABC$  এর মধ্যমাত্রয় G বিন্দুতে মিলিত হলে প্রমাণ কর যে,  $AB^2+BC^2+AC^2=3(GA^2+GB^2+GC^2)$ । [সংকেত: এ্যাপোলোনিয়াসের উপপাদ্যের আলোকে গৃহীত সিদ্ধান্তসমূহ ব্যবহার করতে হবে অর্থাৎ, ত্রিভুজের বাহুর দৈর্ঘ্য ও মধ্যমার সম্পর্ক ব্যবহার করতে হবে]

সমাধান:

বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$ -এর AD, BE ও CF মধ্যমাত্রয় *G* বিন্দুতে মিলিত হয়েছে।

প্রমাণ করতে হবে যে,  $AB^2 + BC^2 + AC^2 = 3(GA^2 + GB^2 + GC^2)$ প্রমাণ:  $\Delta ABC$ -এ AD, BE ও CF মধ্যমাত্রয় পরস্পর G বিন্দুতে মিলিত হয়েছে। সুতরাং G বিন্দুটি প্রত্যেকটি মধ্যমাকে 2:1 অনুপাতে বিভক্ত করে।

∴ 
$$AG: GD = 2:1$$
  
at,  $GD = \frac{1}{2}AG$ 

অনুরূপে 
$$GE = \frac{1}{2} GB$$
 এবং  $GF = \frac{1}{2} GC$ 

 $\Delta ABG$ -এ GF মধ্যমা। এ্যাপোলোনিয়াসের উপপাদ্য অনুসারে,

$$\therefore GA^2 + GB^2 = 2GF^2 + 2AF^2$$
বা,  $GA^2 + GB^2 = 2\left(\frac{1}{2}GC\right)^2 + 2\left(\frac{1}{2}AB\right)^2$ 
বা,  $GA^2 + GB^2 = \frac{1}{2}GC^2 + \frac{1}{2}AB^2$ 

$$\therefore \frac{1}{2}AB^2 = GA^2 + GB^2 - \frac{1}{2}GC^2 \dots \dots \dots (i)$$
অনুরূপভাবে,  $\frac{1}{2}BC^2 = GB^2 + GC^2 - \frac{1}{2}GA^2 \dots \dots (ii)$ 

্রন্ধপভাবে, 
$$\frac{1}{2}BC^2 = GB^2 + GC^2 - \frac{1}{2}GA^2 \dots \dots \dots (ii)$$

$$\frac{1}{2}AC^2 = GC^2 + GA^2 - \frac{1}{2}GB^2 \dots \dots \dots (iii)$$

(i), (ii) ও (iii) নং সমীকরণ যোগ করে পাই,

$$\frac{1}{2}AB^{2} + \frac{1}{2}BC^{2} + \frac{1}{2}AC^{2} = GA^{2} + GB^{2} - \frac{1}{2}GC^{2} + GB^{2}$$

$$+ GC^{2} - \frac{1}{2}GA^{2} + GC^{2} + GA^{2} - \frac{1}{2}GB^{2}$$

$$\text{FT } \frac{1}{2}(AP^{2} + PC^{2} + AC^{2}) = 2CA^{2} - \frac{1}{2}GA^{2} + 2CP^{2}$$

বা, 
$$\frac{1}{2}(AB^2 + BC^2 + AC^2) = 2GA^2 - \frac{1}{2}GA^2 + 2GB^2$$
$$-\frac{1}{2}GB^2 + 2GC^2 - \frac{1}{2}GC^2$$

$$\therefore AB^2 + BC^2 + AC^2 = 3(GA^2 + GB^2 + GC^2)$$
 (প্রমাণিত)

## সমাধান (দ্বিতীয় পদ্ধতি)



বিশেষ নির্বচনঃ দেওয়া আছে, ABC ত্রিভুজের AD, BE ও CF মধ্যমাত্রায় G বিন্দুতে মিলিত হয়েছে।

প্রমাণ করতে হবে যে,  $AB^2 + BC^2 + AC^2 = 3(GA^2 + GB^2 + GC^2)$ প্রমাণ:  $\Delta ABC$ -এ AD মধ্যমা। এ্যাপোলেনিয়াসের উপপাদ্য অনুসারে,

[::AD মধ্যমা হওয়ায়  $CD = BD = \frac{1}{2}BC]$ 

বা, 
$$AB^2 + AC^2 = 2AD^2 + 2 \cdot \frac{1}{4}BC^2$$
  
বা,  $AB^2 + AC^2 = 2AD^2 + \frac{1}{2}BC^2$ 

ৰা, 
$$2AD^2 = AB^2 + AC^2 - \frac{1}{2}BC^2$$

অনুরূপভাবে,  $BE^2 = \frac{2 AB^2 + 2 BC^2 - AC^2}{4}$ 

এবং 
$$CF^2 = \frac{2 BC^2 + 2 AC^2 - AB^2}{4}$$

$$\therefore AD^{2} + BE^{2} + CF^{2} = \frac{2AB^{2} + 2AC^{2} - BC^{2}}{4} + \frac{2AB^{2} + 2BC^{2} - AC^{2}}{4} + \frac{2BC^{2} + 2AC^{2} - AB^{2}}{4}$$

বা, 
$$AD^2 + BE^2 + CF^2 = \frac{3(AB^2 + BC^2 + AC^2)}{4}$$
  
বা,  $4(AD^2 + BE^2 + CF^2) = 3(AB^2 + BC^2 + AC^2) \dots \dots (1)$ 

এখন, 
$$AG = \frac{2}{3}AD$$

[∵ ভরকেন্দ্র G বিন্দুতে মধ্যমাত্রয় 2 : 1 অনুপাতে বিভক্ত হয়]

বা, 3AG = 2AD

 $\therefore 9AG^2 = 4AD^2$  [উভয় পক্ষ বর্গ করি]

অনুরূপভাবে,  $4BE^2 = 9BG^2$  এবং  $4CF^2 = 9CG^2$ 

(1) নং সমীকরণে এই মানগুলো বসিয়ে পাই,

$$3(AB^2 + BC^2 + AC^2) = 9(GA^2 + GB^2 + GC^2)$$
  
সুতরাং  $AB^2 + BC^2 + AC^2 = 3(GA^2 + GB^2 + GC^2)$  (প্রমাণিত)

## সমাধান (তৃতীয় পদ্ধতি)



বিশেষ নির্বচনঃ দেওয়া আছে,  $\Delta ABC$ -এর মধ্যমাত্রয় G বিন্দুতে মিলিত হয়েছে। প্রমাণ করতে হবে যে,  $AB^2+BC^2+AC^2=3(GA^2+GB^2+GC^2)$  প্রমাণ:  $\Delta ABC$ -এর AD, BE ও CF তিনটি মধ্যমা। এ্যাপোলোনিয়াসের উপপাদ্য অনুযায়ী.

$$AB^2 + AC^2 = 2(AD^2 + BD^2) \dots \dots \dots \dots (i)$$

$$AB^2 + BC^2 = 2(BE^2 + CE^2) \dots \dots \dots \dots (ii)$$

এবং 
$$BC^2 + AC^2 = 2(CF^2 + BF^2) \dots \dots (iii)$$

(i), (ii) ও (iii) নং সমীকরণ যোগ করে পাই,

$$2AB^{2} + 2BC^{2} + 2AC^{2} = 2AD^{2} + 2BD^{2} + 2BE^{2} + 2CE^{2} + 2CF^{2} + 2BF^{2}$$

$$41, 2(AB^2 + BC^2 + AC^2) = 2(AD^2 + BE^2 + CF^2) + 2(BD^2 + CE^2 + BF^2)$$

বা, 
$$4(AB^2 + BC^2 + AC^2) = 4(AD^2 + BE^2 + CF^2) + 4(BD^2 + CE^2 + BF^2)$$

বা, 
$$4(AB^2 + BC^2 + AC^2) = 4(AD^2 + BE^2 + CF^2) + (2BD)^2 + (2CE)^2 + (2BF)^2$$

ৰা, 
$$4(AB^2 + BC^2 + AC^2) = 4(AD^2 + BE^2 + CF^2) + BC^2 + AC^2 + AB^2$$

[::D,E,F যথাক্রমে BC,AC ও AB বাহুর মধ্যবিন্দু,

$$\therefore 2BD = BC, 2CE = AC, 2BF = AB$$

$$\therefore 3(AB^2 + BC^2 + AC^2) = 4AD^2 + 4BE^2 + 4CF^2 \dots \text{ (iv)}$$

আমরা জানি, ত্রিভুজের মধ্যমাগুলো সম্পাত বিন্দুতে 2:1 অনুপাতে বিভক্ত হয়। তাহলে AD মধ্যমা G বিন্দুতে 2:1 অনুপাতের বিভক্ত হয়।

$$\therefore \frac{AG}{GD} = \frac{2}{1}$$

বা, 
$$\frac{GD}{4G} = \frac{1}{2}$$

বা, 
$$\frac{GD + AG}{AG} = \frac{1+2}{2}$$
 [যোজন করে]

বা, 
$$\frac{AD}{AG} = \frac{3}{2}$$

বা, 
$$2AD = 3AG$$

বা, 
$$4AD^2 = 9AG^2$$
 [বর্গ করে]

অনুরূপভাবে,  $4BE^2=9BG^2$  এবং  $4CF^2=9CG^2$ 

সূতরাং. (iv) নং সমীকরণ হতে পাই.

$$3(AB^2 + BC^2 + AC^2) = 9AG^2 + 9BG^2 + 9CG^2$$

$$4d, 3(AB^2 + BC^2 + AC^2) = 9(GA^2 + GB^2 + GC^2)$$

$$\therefore AB^2 + BC^2 + AC^2 = 3(GA^2 + GB^2 + GC^2)$$
 (প্রমাণিত)