

ELECTRICAL AND ELECTRONIC MATERIALS

Code: EEC/EPM1160

Lecture: 3

Tutorial: 1

Total: 4

Dr. Ahmed Mohamed Azmy

Department of Electrical Power and Machine Engineering

Tanta University - Egypt

Faculty of
Engineering

Tanta University

Mechanisms of Polarization

It is important to define the dielectric constant ϵ_r and dielectric susceptibility χ of a material as functions of basic variables of the materials, e.g. the angular frequency and temperature

$$\chi = \chi (\omega)$$

$$\chi = \chi (T)$$

Mechanisms of Polarization

There are four kinds of polarization mechanisms

- 1 Interface polarization
- 2 Electronic polarization "atom or atomic polarization"
- 3 Ionic polarization
- 4 Orientation polarization

Mechanisms of Polarization

A combination of these polarization mechanisms may act simultaneously.

Atomic polarization is always present in any material and thus occurs together with other mechanisms in the material

Real materials thus can be very complicated in their dielectric behaviour

Mechanisms of Polarization

Interface polarization

Surfaces, particle boundaries, inter-phase boundaries may be charged and contain dipoles

Interface polarization occurs when there is an accumulation of charges at an interface between two materials or between two regions within a material

These dipoles may be oriented under an external field and thus contribute to the polarization of the material

Mechanisms of Polarization

Interface polarization

Interface polarization is normally omitted from the discussion since it has special characteristics that completely differ from the other three mechanisms

There are no straightforward methods to calculate the charges on interfaces and the nature of their contribution to the total polarization of a material is very complex

Only the last three mechanisms will be discussed

Electronic Polarization

A point charge $+q$ in the nucleus

An equal and opposite charge $-q$
homogeneously distributed in the
volume of the atom

The volume of the atom is given
as:

$$V = \frac{4}{3} \pi R^3$$

With R is the radius of the atom

Electronic Polarization

The charge density ρ of the electrons is given as:

$$\rho = -\frac{3q}{4\pi R^3}$$

With an electrical field E , a force F_1 is produced to act on the charges

$$F_1 = q E$$

Electronic Polarization

The positive charge in the nucleus and the equivalent negative charge of the electron cloud will experience forces in different directions and will become shifted

The attractive force between the centres of charges will balance the separating force of the external field and hence the atom will reach an equilibrium situation with a definite separation distance **d**.

$$q_d = \frac{q d^3}{R^3}$$

Electronic Polarization

There are two values of charges

- The total charge "q" inside the sphere
- The fraction of the charge of the electrons contained in the sphere with radius "d"

The attractive force F_a thus is given by:

$$F_a = \frac{q q_d}{4\pi\epsilon_0 d^2}$$

$$q_d = \frac{q d^3}{R^3}$$

where q_d is the fraction of the charge of the electrons contained in the sphere with radius “d”

Electronic Polarization

The attractive force between the charges is given as:

$$F_a = \frac{q^2}{4\pi\epsilon_0 R^3} d$$

The equilibrium takes place when F_1 is equal to F_a

The distance d is called the equilibrium distance d_E

$$q \cdot E = \frac{q^2}{4\pi\epsilon_0 R^3} d_E$$

Electronic Polarization

$$q \cdot E = \frac{q^2}{4\pi\epsilon_0 R^3} d_E$$

$$d_E = \frac{4\pi\epsilon_0}{q} R^3 E$$

$$\mu = q d_E = 4 \pi \epsilon_0 R^3 E$$

$$P = 4 \pi \epsilon_0 N R^3 E$$

Where: N is the density of dipoles per m³

$$\chi_{atom} = p / \epsilon_0 E = 4 \pi N R^3$$

Ionic Polarization

For the ionic crystal of Sodium Chloride NaCl, the lattice consists of Sodium (Na^+) and Chlorine (Cl^-) dipoles

An ionic crystal of Sodium Chloride

Ionic Polarization

Each $\text{Na}^+ - \text{Cl}^-$ pair is a natural dipole and the polarization of a given volume is zero since for every dipole moment there is an adjacent dipole moment with equal magnitude and opposite sign

The dipoles cannot rotate and their direction is fixed

Ionic Polarization

After applying an electrical field, the ions are subjected to forces in opposite directions

The lattice distorts a little bit, where Na^+ ions move in a certain direction and Cl^- ions move in the other direction

The dipole moments between adjacent Na-Cl pairs in field direction have **different values**

There is a net dipole moment in a finite volume

Ionic Polarization

Electrical field applied to an ionic crystal of Sodium Chloride

Ionic Polarization

Considering only one dipole in the field direction, where the distance between the ions is increased by a distance "d", the force F_1 causing the distance increase can be given by equation

$$F_1 = q E$$

Ionic Polarization

A restoring force F_b results from the binding action when the distance between the ions increases

A linear relation can be used between binding force and deviation from the equilibrium distance

$$F_b = K_s \cdot d$$

k_s is the "spring constant" of the bond

$$K_s = Y \cdot d_0$$

Ionic Polarization

For equilibrium status, $F_1 = F_b$

$$F_1 = q E, \quad F_b = Y \cdot d_0 \cdot d$$

$$d_{E\text{-io}} = \frac{q E}{Y \cdot d_0}$$

$$\mu = \frac{q^2 E}{Y \cdot d_0}$$

$$P = \frac{N q^2 E}{Y \cdot d_0}$$

$$\chi_{\text{ion}} = \frac{N q^2}{Y \varepsilon_0 d_0}$$

Orientation Polarization

- Unlike the ionic polarization, orientation polarization requires that the materials under consideration have independent permanent dipoles that **can rotate freely**
- This is commonly found in **liquid water**, where each water molecule represents an independent dipole that has a specific orientation regardless of the other molecules
- With the movement of the molecules, this orientation changes continuously

Orientation Polarization

Natural dipole moments in water molecules

Orientation Polarization

With time, the structure may look totally different in detail, but still has the same characteristics

This configuration forms natural dipoles since the negatively charged O_2 atoms and the two positively charged H_2 atoms have different centres of charge

The molecules carry dipole moments that are equal in magnitude but have different directions

The total dipole moment at any instant is the vector sum of the individual dipole moments

For randomly oriented dipoles, the sum of all dipole moments will be zero

Orientation Polarization

Natural dipole moments in water molecules

Orientation Polarization

Natural dipole moments in water molecules

Orientation Polarization

If an electrical field E is introduced, the dipoles will rotate into the field direction

The dipoles would align themselves along the field lines of the external field for minimum energy

The dipoles are oriented into the field and a large polarization takes place

This results in a large value of dielectric constant

Orientation Polarization

Natural dipole moments in water molecules

E

Orientation Polarization

Natural dipole moments in water molecules

E

Orientation Polarization

The orientation into the field direction is counteracted by random **collisions with other dipoles**

When two molecules collide together, their new orientation is random and independent of the previous orientation before collision

This process is energized by the thermal energy " K_{th} " contained in the water

The thermal energy tries to randomize the orientation of the dipole moments

Orientation Polarization

The average induced dipole moment μ_{op} can be calculated in general as follows

$$\mu_{op} = \frac{\mu_p^2}{3K_{th}} E$$

With μ_p is the permanent dipole moment