

SLS Crew Access Arm Crawler-Transport Dynamic Analysis

Siemens PLM Connection 2014
Orlando, FL
June 16-19

www.plmworld.org

Presenters

- Tyler Sorchik & Okon Anwana
 - NASA, ESC Contract, Kennedy Space Center, FL

Background

- SLS Crew Access Arm
 - Operational interface with Orion
 - Commodity Panel and Contingency Access
 - Provides ingress and egress for astronauts
 - Arm weight: ~ 90 kip
 - Elevation: 280' from Mobile Launcher deck

#PLMCONX

www.plmworld.org

Problem: Keep CAA extended or retract for crawler transport?

Keep Extended

- No additional operation
- High vibration concerns

Retract outside VAB

- Additional op to stop crawler, power up and retract arm
- More expensive
- Low vibration concerns

Why can't we leave the arm extended while transporting the vehicle to the pad?

Crawler Movement Info:

- Top Speed
 - 1.6 mph
- Time to Pad
 - ~5 hrs
- Capacity
 - 18,000,000 lbs

#PLMCONX

www.plmworld.org

Preliminary Analysis Overview

- 80% mass participation, 100 Modes
- Assumed 4% viscous damping extended, 2% retracted
- No dynamic wind spectrum for transport wind
- Data from MSFC assumed to be mean data (one-sided PSDs)
- Bracer cable preloaded with enforced displacement (0.442" produces 46.6 kips pretension in cable)

#PLMCONX

www.plmworld.org

Finite Element Model

#PLMCONX

www.plmworld.org

Boundary Condition Scheme (Extended)

#PLMCONX

www.plmworld.org

Arm vs. Tower Modes

- Arm first 5 modes:
- Tower first 3 modes:

- Mode 1: 2.76 Hz
- Mode 2: 5.39 Hz
- Mode 3: 6.31 Hz
- Mode 4: 13.77 Hz
- Mode 5: 14.60 Hz

- Mode 1: ~0.38 Hz
- Mode 2: ~0.40 Hz
- Mode 3: ~2.64 Hz

Potential modal
coupling

#PLMCONX

www.plmworld.org

Mode 1 (2.76 Hz) Animation

#PLMCONX

www.plmworld.org

Mode 2 (5.39 Hz) Animation

#PLMCONX

www.plmworld.org

Mode 3 (6.31 Hz) Animation

#PLMCONX

www.plmworld.org

Load Input & Displacement Results

Extended Condition

#PLMCONX

www.plmworld.org

SLS X-Coordinate (Vertical)

Peak Disp. = 1.62"
3 σ Peak Disp. = 4.88"
80% Mass Participation
100 Modes
4% Viscous Damping

#PLMCONX

www.plmworld.org

SLS Y-Coordinate (Lateral)

Peak Disp. = 6.4"
3 σ Peak Disp. = 19.2"
80% Mass Participation
100 Modes
4% Viscous Damping

#PLMCONX

www.plmworld.org

SLS Z-Coordinate (Axial)

Peak Disp. = 2.24"
3 σ Peak Disp. = 4.5"
80% Mass Participation
100 Modes
4% Viscous Damping

#PLMCONX

www.plmworld.org

Cable Preload Evaluation

K0000058859_sim1 : RespSim1 Result
Subcase - Static Offset, Iteration 1
Reaction Force - Nodal, Magnitude
Min : 0.00E+000, Max : 4.66E+004, Units = lbf
Deformation : Displacement - Nodal Magnitude

#PLMCONX

www.plmworld.org

Extend Lock Reactions

#PLMCONX

www.plmworld.org

Static Stress

- Enforced 6.4" displacement at arm end
- Stress levels near material yield
- Extend lock mechanism compromised

#PLMCONX

www.plmworld.org

Statistical Estimate of Energy Dissipation

- Frequency outside bandwidth will dissipate majority of energy and prevent modal coupling.
- Extended truss must be 60% stiffer in lateral direction to achieve.

#PLMCONX

www.plmworld.org

Boundary Condition Scheme (Retracted)

- Removed cable CBUSH
- Added latchback constraint
- Load input at both locations

#PLMCONX

www.plmworld.org

Arm vs. Tower Modes

- Arm first 4 modes:
 - Mode 1: 7.41 Hz
 - Mode 2: 11.54 Hz
 - Mode 3: 12.25 Hz
 - Mode 4: 17.91 Hz
- Tower first 3 modes:
 - Mode 1: ~0.38 Hz
 - Mode 2: ~0.40 Hz
 - Mode 3: ~2.64 Hz

#PLMCONX

www.plmworld.org

Load Input & Displacement Results

Retracted Condition

Photo courtesy NASA Ames Research Center

#PLMCONX

www.plmworld.org

SLS X-Coordinate (Vertical)

#PLMCONX

www.plmworld.org

SLS Y-Coordinate (Lateral)

- Lateral displacement limited by shock absorber

#PLMCONX

www.plmworld.org

SLS Z-Coordinate (Axial)

#PLMCONX

www.plmworld.org

Joint RMS Stress

Mapped Result 1 on k0000058859_sim1-respsim1.op2

Von-Mises Stress - Elemental, Scalar
Min : 0.000, Max : 1.545, Units = kip/in²(ksi)

#PLMCONX

www.plmworld.org

Static Stress

K0000058859_sim1 : Enforced_Retracted Result
Subcase - Static Loads 1, Static Step 1
Stress - Element-Nodal, Unaveraged, Von-Mises
Beam Section : Maximum, Shell Section : Maximum
Min : 0.00, Max : 209.35, Units = kip/in²(ksi)
Beam Coord sys : Local
Deformation : Displacement - Nodal Magnitude

#PLMCONX

www.plmworld.org

Thank you

Siemens PLM Connection 2014
Orlando, FL
June 16-19, 2014

 #PLMCONX

www.plmworld.org