Brownian Motion.

Q1. Let F a functional on $C(\mathbb{R})$, equipped with the supremum norm. Show that Donsker's theorem can be applied if F is a.s. a continuous with respect to the Wiener measure., i.e. the assumption of continuity of F in Donker's theorem can be relaxed.

Q2. Let $(S_n)_{n>0}$ be a simple, symmetric random walk on the integers.

A. Show that there exist constants C_1, C_2 , such that

$$\frac{C_1}{\sqrt{n}} \le \mathbb{P}_0(S_i \ge 0 \text{ for all } 1 \le i \le n) \le \frac{C_2}{\sqrt{n}},$$

for all n > 1.

B. Write an expression for the limit

$$\lim_{n \to \infty} \mathbb{P}_0 \left(n^{-3/2} \sum_{i=1}^n S_i > a \right),$$

for $a \in \mathbb{R}$.

Q3. (Doob's h transform) Let $\beta(\cdot)$ be a standard d-dimensional Brownian motion and D a subset of \mathbb{R}^d . Denote by $x(\cdot)$ the Brownian motion conditioned never to hit the set D and denote by $p_D(t, x; s, y)$ its transition probabilities. Denote also by p(t, x; s, y) the transition probabilities of $\beta(\cdot)$. Show that

$$p_D(t, x; s, y) = \hat{p}_D(t, x; s, y) \frac{h_D(y)}{h_D(x)},$$

where $\hat{p}_D(t, x; s, y)$ is the transition probability of Brownian motion going from point x at time t to point y at time s without hitting the set D. $h_D(\cdot)$ is the harmonic function on \mathbb{R}^d with zero boundary condition on D. Write down explicitly the transition probabilities $p_D(t, x; s, y)$. Show that the one dimensional Brownian motion condition never to hit zero has the same distribution as the modulus of a three dimensional standard Brownian motion.

State the analogous result in the case of simple random walks on \mathbb{Z}^d .