

On Certain Projections of C^* -Matrix Algebras

Ahmed Al-Rawashdeh
 Department of Mathematical Sciences
 UAEU *
 aalrawashdeh@uaeu.ac.ae

Abstract

H. Dye defined the projections $P_{i,j}(a)$ of a C^* -matrix algebra by

$$\begin{aligned} P_{i,j}(a) &= (1 + aa^*)^{-1} \otimes E_{i,i} + (1 + aa^*)^{-1}a \otimes E_{i,j} \\ &\quad + a^*(1 + aa^*)^{-1} \otimes E_{j,i} + a^*(1 + aa^*)^{-1}a \otimes E_{j,j}, \end{aligned}$$

and he used it to show that in the case of factors not of type I_{2n} , the unitary group determines the algebraic type of that factor. We study these projections and we show that in $\mathbb{M}_2(\mathbb{C})$, the set of such projections includes all the projections. For infinite C^* -algebra A , having a system of matrix units, including the Cuntz algebra \mathcal{O}_n , we have $A \simeq \mathbb{M}_n(A)$. M. Leen proved that in a simple, purely infinite C^* -algebra A , the $*$ -symmetries generate $\mathcal{U}_0(A)$. We revise and modify Leen's proof to show that part of such $*$ -isometry factors are of the form $1 - 2P_{i,j}(\omega)$, $\omega \in \mathcal{U}(A)$. In simple, unital purely infinite C^* -algebras having trivial K_1 -group, we prove that all $P_{i,j}(\omega)$ have trivial K_0 -class. In particular, if $u \in \mathcal{U}(\mathcal{O}_n)$, then u can be factorized as a product of $*$ -symmetries, where eight of them are of the form $1 - 2P_{i,j}(\omega)$.

Keywords: C^* -algebras; K_0 -class.

MSC2010: 46L05; 46L80.

1 Introduction

Let A be a unital C^* -algebra. The set of projections and the group of unitaries of A are denoted by $\mathcal{P}(A)$ and $\mathcal{U}(A)$, respectively. Recall that the C^* -matrix algebra over A which is denoted by $\mathbb{M}_n(A)$ is the algebra of all $n \times n$ matrices $(a_{i,j})$ over A , with the usual addition, scalar multiplication, and multiplication of matrices and the involution (adjoint) is $(a_{i,j})^* = (a_{j,i}^*)$. As in Dye's viewpoint of $\mathbb{M}_n(A)$, let $S_n(A)$ denote the direct sum of n copies of A , considered as a left A -module. Addition of n -tuples $\bar{x} = (x_1, x_2, \dots, x_n)$ in $S_n(A)$ is componentwise

*United Arab Emirates University, P.O. Box 17551, Al-Ain UAE, Fax: +971-3-7671291,
 Phone: +971-3-7136388.

and $a \in A$ acts on \bar{x} by $a(\bar{x}) = (ax_1, ax_2, \dots, ax_n)$. Then $S_n(A)$ is a Hilbert C^* -algebra module, with the inner product defined by

$$\langle \bar{x}, \bar{y} \rangle = \sum_{i=1}^n x_i y_i^*.$$

By an A -endomorphism T of $S_n(A)$, we mean an additive mapping on $S_n(A)$ which commutes with left multiplication: $a(\bar{x}T) = (a\bar{x})T$. In a familiar way, assign to any T a uniquely determined matrix (t_{ij}) over A ($1 \leq i, j \leq n$) so that $\bar{x}T = (\sum_i x_i t_{i1}, \dots, \sum_i x_i t_{in})$.

If p is a projection in $\mathbb{M}_n(A)$, then p is a mapping on $S_n(A)$ having its range as a sub-module of $S_n(A)$. Then two projections are orthogonal means their sub-module ranges are so. The C^* -algebra $\mathbb{M}_n(A)$ contains numerous projections. For each $a \in A$ and each pair of indices i, j ($i \neq j$, $1 \leq i, j \leq n$), H. Dye in [7] defined the projection $P_{i,j}(a)$ in $\mathbb{M}_n(A)$, whose range consists of all left multiples of the vector with 1 in the i^{th} -place, a in the j^{th} -place and zeros elsewhere. As a matrix

$$P_{i,j}(a) = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & (1 + aa^*)^{-1} & \cdots & (1 + aa^*)^{-1}a & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & a^*(1 + aa^*)^{-1} & \cdots & a^*(1 + aa^*)^{-1}a & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Recall that (see [7], p.74) a system of matrix units of a unital C^* -algebra A is a subset $\{e_{i,j}^r\}$, $1 \leq i, j \leq n$ and $1 \leq r \leq m$ of A , such that

$$e_{i,j}^r e_{j,k}^r = e_{i,k}^r, \quad e_{i,j}^r e_{k,l}^s = 0 \text{ if } r \neq s \text{ or } j \neq k, \quad (e_{i,j}^r)^* = e_{j,i}^r, \quad \sum_{i,r} e_{i,i}^r = 1$$

and for every i , $e_{i,i} \in \mathcal{P}(A)$. For the C^* -complex matrix algebra $\mathbb{M}_n(\mathbb{C})$, let $\{E_{i,j}\}_{i,j=1}^n$ denote the standard system of matrix units of the algebra, that is $E_{i,j}$ is the $n \times n$ matrix over \mathbb{C} with 1 at the place $i \times j$ and zeros elsewhere. It is also known that $\mathbb{M}_n(A)$ is $*$ -isomorphic to $A \otimes \mathbb{M}_n(\mathbb{C})$ (see [11]). We will see that having a system of matrix units is a necessary condition in order that a C^* -algebra A is $*$ -isomorphic to a C^* -matrix algebra $\mathbb{M}_n(B)$. Using the notion of a system of matrix units, we write

$$\begin{aligned} P_{i,j}(a) &= (1 + aa^*)^{-1} \otimes E_{i,i} + (1 + aa^*)^{-1}a \otimes E_{i,j} \\ &\quad + a^*(1 + aa^*)^{-1} \otimes E_{j,i} + a^*(1 + aa^*)^{-1}a \otimes E_{j,j} \in \mathcal{P}(\mathbb{M}_n(A)). \end{aligned}$$

If $a = 0$, then $P_{i,j}(a)$ is the i^{th} diagonal matrix unit of $\mathbb{M}_n(A)$, which is $1 \otimes E_{i,i}$, or simply E_i .

Also in [10], M. Stone called the projection $P_{i,j}(a)$ the characteristics matrix of a .

H. Dye used these projections as a main tool to prove that an isomorphism between the discrete unitary groups of von Neumann factors not of type I_n , is implemented by a $*$ -isomorphism between the factors themselves [[7], Theorem 2]. Indeed, let us recall main parts of his proof. Let A and B be two unital C^* -algebras and let $\varphi : \mathcal{U}(A) \rightarrow \mathcal{U}(B)$ be an isomorphism. As φ preserves self-adjoint unitaries, it induces a natural bijection $\theta_\varphi : \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ between the sets of projections of A and B given by

$$1 - 2\theta_\varphi(p) = \varphi(1 - 2p), \quad p \in \mathcal{P}(A).$$

This mapping is called a projection orthoisomorphism, if it preserves orthogonality, i.e. $pq = 0$ iff $\theta(p)\theta(q) = 0$.

Now, let θ be an orthoisomorphism from $\mathcal{P}(\mathbb{M}_n(A))$ onto $\mathcal{P}(\mathbb{M}_n(B))$. In [[7], Lemma 8] when A and B are von Neumann algebras, Dye proved that for any unitary $u \in \mathcal{U}(A)$, $\theta(P_{i,j}(u)) = P_{i,j}(v)$, for some unitary $v \in \mathcal{U}(B)$. A similar result is proved in the case of simple, unital C^* -algebras by the author in [1]. Afterwards, Dye in [[7], Lemma 6], proved that there exists a $*$ -isomorphism (or $*$ -antiisomorphism) from $\mathbb{M}_n(A)$ onto $\mathbb{M}_n(B)$ which coincides with θ on the projections $P_{i,j}(a)$. In fact, he proved that θ induces the $*$ -isomorphism ϕ from A onto B defined by the relation $P_{i,j}(a) = P_{i,j}(\phi(a))$.

In this paper, we study the projections $P_{i,j}(a)$ of a C^* -matrix algebra $\mathbb{M}_n(A)$, for some C^* -algebra A , and we deduce main results concerning such projections.

The paper is organized as follows: In Section 2, we show that every projection in $\mathbb{M}_2(\mathbb{C})$ is of the form $P_{1,2}(a)$, for $a \in \mathbb{C}$. In Section 3, we show that some infinite C^* -algebra A is isomorphic to its matrix algebra $\mathbb{M}_n(A)$, such as the Cuntz algebra \mathcal{O}_n , so the projections $P_{i,j}(a)$ can be considered as projections of A .

In a simple, unital purely infinite C^* -algebra A , M. Leen proved that self-adjoint unitaries (also called $*$ -symmetries, or involutions) generate the connected component $\mathcal{U}_0(A)$ of the unitary group $\mathcal{U}(A)$. Indeed, any unitary can be written as a product of eleven $*$ -symmetries. In Section 4, we modify Leen's proof, and we write these $*$ -symmetry factors explicitly. By revising his proof and fixing some arbitrariness using a given system of matrix units, we show that eight of these $*$ -symmetry factors are in fact of the form $1 - 2P_{i,j}(\omega)$, $\omega \in \mathcal{U}(A)$.

Finally, in Section 5, we compute the K_0 -class of such certain projections, and we prove that in simple, unital purely infinite C^* -algebras (assuming $K_1 = 0$), all projections of the form $P_{i,j}(u)$, $u \in \mathcal{U}(A)$ have trivial K_0 -class. As a good application for \mathcal{O}_n , we have that every unitary can be written as a product of eleven $*$ -symmetries (self-adjoint unitaries, also called involutions), where eight of them are of the form $1 - 2P_{i,j}(\omega)$, $\omega \in \mathcal{U}(\mathcal{O}_n)$. Hence using [2] (Lemma 2.1), all such involutions of the form $1 - 2P_{i,j}(\omega)$ are indeed conjugate, as group elements in $\mathcal{U}(\mathcal{O}_n)$.

2 The 2×2 -Complex Algebra Case

Let A be a unital C^* -algebra, and let $\mathcal{P}_{i,j}^n(A)$ denote the family of all projections in $\mathbb{M}_n(A)$ of the form $P_{i,j}(a)$, $1 \leq i, j \leq n$, $a \in A$. Also, let $\mathcal{U}_{i,j}^n(A)$ denote the set of all self-adjoint unitaries in $\mathbb{M}_n(A)$ of the form $1 - 2P_{i,j}(a)$, $1 \leq i, j \leq n$, $a \in A$. Notice that $\mathcal{P}_{i,j}^n(A)$ contains non-trivial projections. In this small section, we show that in the case of $\mathbb{M}_2(\mathbb{C})$, the set $\mathcal{P}_{i,j}^2(\mathbb{C})$ includes all the non-trivial projections $\mathcal{P}(\mathbb{M}_2(\mathbb{C}))$, i.e. every non-trivial projection is of the form $P_{i,j}(a)$, for some complex number a .

Proposition 2.1. *If $p \in \mathcal{P}(\mathbb{M}_2(\mathbb{C})) \setminus \{0, 1\}$, then $p \in \mathcal{P}_{i,j}^2(\mathbb{C})$.*

Proof. Let $p = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a non-trivial projection in $\mathcal{P}(\mathbb{M}_2(\mathbb{C}))$. Then a and d are real numbers. If $b = 0$, then p is either the diagonal matrix unit $E_{1,1}$ or $E_{2,2}$. Otherwise, we have $a + b = 1$, $a = a^2 + |b|^2$ and $d = d^2 + |b|^2$, therefore $|b|^2 \leq \frac{1}{4}$. By straightforward computations, one can deduce that p is of the form

$$P_{1,2} \left(\frac{2b}{1 + \sqrt{1 - 4|b|^2}} \right), \text{ or } P_{1,2} \left(\frac{2b}{1 - \sqrt{1 - 4|b|^2}} \right).$$

□

Remark 2.2. *The projections in $\mathcal{P}_{i,j}^n(A)$ are all of rank one by definition, this implies that in the case of $\mathbb{M}_3(\mathbb{C})$, the set $\mathcal{P}_{i,j}^3(\mathbb{C})$ does not cover all the non-trivial projections. Indeed, there are projections in $\mathcal{P}(\mathbb{M}_3(\mathbb{C}))$ of rank one which do not belong to $\mathcal{P}_{i,j}^3(\mathbb{C})$, since every projection in this latest family projects into a subspace of \mathbb{C}^3 which lies entirely in one coordinate plan.*

3 Some Results for infinite C^* -algebras

Let A be a unital C^* -algebra having a system of matrix units $\{e_{i,j}\}_{i,j=1}^n$, for some $n \geq 3$. Recall that $e_{1,1}Ae_{1,1}$ is a C^* -algebra (corner algebra) which has $e_{1,1}$ as a unit. This system of matrix units implements a $*$ -isomorphism between A and $\mathbb{M}_n(e_{1,1}Ae_{1,1})$. Indeed, let us define the mapping

$$\eta_1 : \mathbb{M}_n(e_{1,1}Ae_{1,1}) \rightarrow A$$

by

$$\eta_1((a_{i,j})^n) = \sum_{i,j=1}^n e_{i,1}a_{i,j}e_{1,j}.$$

Moreover if $e_{1,1}$ is equivalent to 1 (i.e. A is assumed to be infinite C^* -algebra), then there exists a partial isometry v of A such that $v^*v = e_{1,1}$ and $vv^* = 1$, and this defines the $*$ -isomorphism $\Delta_v : A \rightarrow e_{1,1}Ae_{1,1}$ by $\Delta_v(x) = v^*xv$. The isomorphism Δ_v can be used to decompose a projection as a sum of orthogonal equivalent projections.

Proposition 3.1. *Let A be a unital C^* -algebra having a system of matrix units $\{e_{i,j}\}_{i,j=1}^n$. If p is equivalent to the unity, then p can be written as a sum of orthogonal equivalent subprojections.*

Proof. As p equivalent to 1, we consider the isomorphism Δ_v , then apply it to the equality $1 = \sum_{i=1}^n e_{i,i}$, to get $p = \sum_{i=1}^n v^* e_{i,i} v$. Then $p_i = v^* e_{i,i} v$, for all $1 \leq i \leq n$, are equivalent subprojections of p . \square

Recall that, for two unital C^* -algebras A and B , if $\alpha : A \rightarrow B$ is a *-isomorphism, then α induces the *-isomorphism $\widehat{\alpha} : \mathbb{M}_n(A) \rightarrow \mathbb{M}_n(B)$, which is defined by $(a_{i,j}) \mapsto (\alpha(a_{i,j}))$. Then we have the following result.

Proposition 3.2. *Let A be an infinite unital C^* -algebra having a system of matrix units $\{e_{i,j}\}_{i,j=1}^n$. If $e_{1,1}$ is equivalent to 1, then $\mathbb{M}_n(A)$ is *-isomorphic to A .*

Proof. Let $\Delta_v : A \rightarrow e_{1,1} A e_{1,1}$ and $\eta_1 : \mathbb{M}_n(e_{1,1} A e_{1,1}) \rightarrow A$ be defined as above. Then the mapping $\eta = \eta_1 \circ \widehat{\Delta_v}$ is a *-isomorphism from $\mathbb{M}_n(A)$ onto A . Moreover,

$$\begin{aligned} \eta(a_{i,j})^n &= \sum_{i,j}^n e_{i,1} v^* a_{i,j} v e_{1,j}, \text{ and} \\ \eta^{-1}(x) &= (v e_{1,i} x e_{j,1} v^*)_{i,j}^n. \end{aligned}$$

\square

As a main example of purely infinite C^* -algebras, let us recall the Cuntz algebra \mathcal{O}_n ; $n \geq 2$, is the universal C^* -algebra which is generated by isometries s_1, s_2, \dots, s_n , such that $\sum_{i=1}^n s_i s_i^* = 1$ with $s_i^* s_j = 0$, when $i \neq j$ and $s_i^* s_i = 1$ (for more details, see [5], [[6], p.149]). Let

$$e_{i,j} = s_i s_j^*, \quad 1 \leq i, j \leq n. \quad (1)$$

Then $\{e_{i,j}\}_{i,j=1}^n$ forms a system of matrix units for \mathcal{O}_n . As s_1^* partial isometry between $e_{1,1}$ and the unity, then Proposition 3.2 shows that the mapping

$$\eta : \mathbb{M}_n(\mathcal{O}_n) \rightarrow \mathcal{O}_n, \quad (a_{i,j})_{i,j} \mapsto \sum_{i,j=1}^n s_i a_{i,j} s_j^* \quad (2)$$

is a *-isomorphism. Indeed, for $x \in \mathcal{O}_n$, $\eta^{-1}(x) = (s_i^* x s_j)_{i,j} \in \mathbb{M}_n(\mathcal{O}_n)$. Therefore, we have proved the following result, which is in fact known, but for sake of completeness:

Proposition 3.3. *The Cuntz algebra \mathcal{O}_n is isomorphic to the C^* -algebra $\mathbb{M}_n(\mathcal{O}_n)$.*

Then for $a \in \mathcal{O}_n$, $P_{i,j}(a)$ are considered as projections of \mathcal{O}_n by applying the mapping η . Therefore,

$$P_{i,j}(a) = s_i (1 + a a^*)^{-1} s_i^* + s_i (1 + a a^*)^{-1} a s_j^* + s_j a^* (1 + a a^*)^{-1} s_i^* + s_j a^* (1 + a a^*)^{-1} a s_j^*.$$

4 Unitary Factors in Purely Infinite C^* -Algebras

Recall that in a unital C^* -algebra A , every self-adjoint unitary u ($*$ -symmetry, or also called an involution) can be written as $u = 1 - 2p$, for some projection $p \in \mathcal{P}(A)$, let us say " the self-adjoint unitary u is associated to the projection p ". In this section, we assume that A is purely infinite simple C^* -algebra, and we study the factorizations of unitaries of A . Recall that in [9], M. Leen proved that every unitary in the connected component of the unity $\mathcal{U}_0(A)$ is generated by $*$ -symmetries.

Consider a system of matrix units $\{e_{i,j}\}_{i,j=1}^n$ of A , with $e_{1,1} \sim 1$. Let us recall the $*$ -isomorphisms $\eta_1 : \mathbb{M}_n(e_{1,1}Ae_{1,1}) \rightarrow A$, and $\eta = \eta_1 \circ \widehat{\Delta_v}$ from $\mathbb{M}_n(A)$ onto A . We modify Leens' proof of Theorem 3.5 in [9] by revising his arguments, and then we prove the following main theorem, which shows that every unitary of A can be factorized as a product of eleven self-adjoint unitaries ($*$ -symmetries) moreover, where eight of such factors are associated to the projections $P_{i,j}(\mu)$, for some $\mu \in \mathcal{U}(A)$.

Theorem 4.1. *Let A be a simple, unital purely infinite C^* -algebra, such that $K_1(A) = 0$, and let $\{e_{i,j}\}_{i,j=1}^n$ be a system of matrix units of A , with $e_{1,1} \sim 1$. Then every unitary a of A can be written as*

$$a = z_1 \left(\prod_{k=1}^4 v_k \right) z_2 z_3,$$

where z_1, z_2, z_3 are some self-adjoint unitaries and the v'_i 's are the self-adjoint unitaries of A defined by:

$$\begin{aligned} v_1 &= [1 - 2\eta(P_{1,2}(-\alpha))][1 - 2\eta(P_{1,2}(-1))] \\ v_2 &= [1 - 2\eta(P_{1,3}(-\alpha))][1 - 2\eta(P_{1,3}(-1))] \\ v_3 &= [1 - 2\eta(P_{1,2}(-\gamma))][1 - 2\eta(P_{1,2}(-1))] \\ v_4 &= [1 - 2\eta(P_{1,3}(-\gamma))][1 - 2\eta(P_{1,3}(-1))], \end{aligned}$$

for some $\alpha, \gamma \in \mathcal{U}(A)$.

Consequently, as the Cuntz algebra is simple, unital purely infinite C^* -algebra, and $K_1(\mathcal{O}_n) = 0$, see [4], and using Proposition 3.3, we have the following result.

Corollary 4.2. *If $u \in \mathcal{U}(\mathcal{O}_n)$, then*

$$\begin{aligned} u &= z_1(1 - 2P_{1,2}(-\alpha))(1 - 2P_{1,2}(-1))(1 - 2P_{1,3}(-\alpha))(1 - 2P_{1,3}(-1)) \\ &\quad \cdot (1 - 2P_{1,2}(-\gamma))(1 - 2P_{1,2}(-1))(1 - 2P_{1,3}(-\gamma))(1 - 2P_{1,3}(-1))z_2 z_3, \end{aligned}$$

for some self-adjoint unitaries z_1, z_2, z_3 and $\alpha, \gamma \in \mathcal{U}(\mathcal{O}_n)$.

Now, in order to prove our main theorem, let us recall the following result of M. Leen.

Theorem 4.3 ([9], Theorem 3.8). *Let A be a simple, unital purely infinite C^* -algebra. Then the $*$ -symmetries (self-adjoint unitaries) generate the connected component of the unity $\mathcal{U}_0(A)$.*

So Leen proved that every unitary in the component of the unity, can be written as a finite product of self-adjoint unitaries. We shall use Leen's approach, indeed, we fix some arbitrates, and we modify some of his arguments. Then using the system of matrix units and the mappings η_1, η , we write some arguments in an explicit way. Finally, we deduce that eight of those self-adjoint unitaries, as factors, are in fact associated to the projections $P_{i,j}(u)$, for some $u \in \mathcal{U}(A)$.

Let us introduce the following lemma which in fact, M. Leen used in his proof, and we do in our proof as well.

Lemma 4.4. *Let A be a simple, unital purely infinite C^* -algebra, and let ρ be a non-trivial projection of A . If $a \in \mathcal{U}_0(A)$, then there exist self-adjoint unitaries z_1, z_2, z_3 of A and $x \in \mathcal{U}_0(A)$ such that*

$$z_1 a z_2 z_3 = \begin{pmatrix} x & 0 \\ 0 & 1 - \rho \end{pmatrix}.$$

Proof. Mimic the first part of the proof of Theorem 3.5 in [9], with replacing symmetries by $*$ -symmetries and invertible by unitaries. \square

Proof of Theorem 4.1:

Proof. Since A is a simple, unital purely infinite C^* -algebra, using [4], we have $K_1(A) \simeq \mathcal{U}(A)/\mathcal{U}_0(A)$. As $K_1(A)$ is assumed to be trivial, we have $\mathcal{U}(A) = \mathcal{U}_0(A)$. Now suppose $a \in \mathcal{U}(A)$, we shall revise Leen's proof, for many details, we just refer to him, and we explain new arguments which shall lead to our result. Let $p = e_{1,1}$, as $p \sim 1$, use Proposition 3.1 and the isomorphism Δ_u ($u^*u = e_{1,1}, uu^* = 1$) to find a projection $p_1 < p$ (precisely, $p_1 = u^*e_{1,1}u$) which is equivalent to p moreover, set the partial isometry $v = u^*e_{1,1}$, and put $\rho = p - p_1$. Using Lemma 4.4, there exist self-adjoint unitaries z_1, z_2 and z_3 such that

$$z_1 a z_2 z_3 = \begin{pmatrix} x & 0 \\ 0 & 1 - \rho \end{pmatrix},$$

where $x \in \mathcal{U}(\rho A \rho)$. We will show that the right hand side can be written as a product of eight self-adjoint unitaries, each of them is associated to a projection of the form $\eta P_{i,j}(u)$, for some $u \in \mathcal{U}(A)$. We may replace $z_1 a z_2 z_3$ by a .

Choose $q = e_{2,2}$, $r = e_{3,3}$ and put $r_1 = p + q + r$, then we have $q \sim r < 1 - p - q$. Let $v_1 = e_{2,1}$, $v_2 = e_{3,2}$, and $v_3 = e_{1,3}$, so v_1, v_2 and v_3 are partial isometries such that

$$v_1^* v_1 = p, \quad v_1 v_1^* = q, \quad v_2^* v_2 = q, \quad v_2 v_2^* = r, \quad v_3^* v_3 = r, \quad v_3 v_3^* = p.$$

Let $w = v_1 + v_2 + v_3$. Recall that \mathbb{K} denotes the compact operators on the separable, infinite dimensional Hilbert space $\ell^2(\mathbb{N})$. By I in $\rho A \rho \otimes \mathbb{K}$ we mean $\rho \otimes 1_\infty(\mathbb{C})$.

Leen defined in his proof three isomorphisms: $\rho A\rho \otimes \mathbb{K} \longrightarrow r_1 Ar_1$. In order to build the first of the three copies of $\rho A\rho \otimes \mathbb{K}$, he defined an infinite collection of projections using w and ρ as follows: $\rho_k = w\rho_{k-1}w^*$, for $k \geq 2$, $\rho_1 = \rho$ and $w_k = w^{k-1}\rho$. Then $w_k w_k^* = \rho_k$ and $w_k^* w_k = \rho$, the ρ'_k 's are orthogonal equivalent projections which satisfy $\rho_{3n-2} < p$, $\rho_{3n-1} < q$ and $\rho_{3n} < r$, for $n \geq 1$.

Define $\chi : \rho A\rho \otimes \mathbb{K} \rightarrow r_1 Ar_1$ by $y \otimes E_{i,j}(\mathbb{C}) \mapsto w_i y w_j^*$, and $I \mapsto r_1$. Next we produce two other copies of $\rho A\rho \otimes \mathbb{K}$ in $r_1 Ar_1$ as follows: For each n choose orthogonal equivalent projections $\{e_{3n-2}^j : j = 1, \dots, 4^{n-1}\}$ such that $e_{3n-2}^j \sim \rho_{3n-2}$ and

$$\rho_{3n-2} = \sum_{j=1}^{4^{n-1}} e_{3n-2}^j,$$

then put $e_{3n-1}^j = w(e_{3n-2}^j)w^*$ and $e_{3n}^j = w(e_{3n-1}^j)w^*$, for each n and j , and order the e_i^j 's as: $e_1^1, e_2^1, e_3^1, e_4^1, \dots, e_4^4, e_5^1, \dots$. Use the partial isometries which implements the equivalences $\rho_{3n-2} \sim e_{3n-2}^j$ and $\rho_{3n-2} \sim \rho$ to define partial isometries r_{3n-2}^j so that $r_{3n-2}^j(r_{3n-2}^j)^* = \rho$ and $(r_{3n-2}^j)^* r_{3n-2}^j = e_{3n-2}^j$, and put $r_{3n-1}^j = r_{3n-2}^j w^*$ and $r_{3n}^j = r_{3n-1}^j w^*$. Then use the r_i^j to define $\varphi_1 : \rho A\rho \otimes \mathbb{K} \rightarrow r_1 Ar_1$.

Similarly choose orthogonal equivalent projections $\{f_i^j\}$ such that $\rho = f_1^1$ and

$$\rho_{3n-1} = \sum_{j=1}^{2 \cdot 4^{n-1}} f_{3n-1}^j,$$

for $n \geq 1$. Then put $f_{3n}^j = w(f_{3n-1}^j)w^*$ and $f_{3n+1}^j = w(f_{3n}^j)w^*$, for any n and j . Order the f_i^j as:

$$f_1^1, f_2^1, f_2^2, f_3^1 f_3^2, f_4^1, f_4^2, f_5^1, \dots, f_5^8, f_6^1, \dots$$

Using the partial isometries which implement $f_i^j \sim \rho$, define $\varphi_2 : \rho A\rho \otimes \mathbb{K} \rightarrow r_1 Ar_1$.

Recall that $w = e_{2,1} + e_{3,2} + u^* e_{1,3}$, then

$$w^2 = e_{2,1} u^* e_{1,3} + e_{3,1} + e_{3,2} u^* e_{1,3} + u^* e_{1,2} + u^* e_{1,3} u^* e_{1,3}$$

Now for $1 \leq k \leq 3$, let $u_k = w^{k-1}p$ therefore $u_k = e_{k,1}$. Define the map

$$\begin{aligned} \zeta : r_1 Ar_1 &\longrightarrow \mathbb{M}_3(pAp) \\ \text{by } x &\longmapsto (u_i^* x u_j)_{i,j=1}^3 \\ \text{i.e. } x &\longmapsto (e_{1,i} x e_{j,1})_{i,j=1}^3. \end{aligned}$$

The map ζ is a $*$ -isomorphism, indeed

$$\begin{aligned} \zeta^{-1} : \mathbb{M}_3(pAp) &\longrightarrow r_1 Ar_1 \\ \text{is defined by } (a_{i,j}) &\longmapsto \sum_{i,j}^3 e_{i,1} a_{i,j} e_{1,j}. \end{aligned}$$

Now we turn to factorization of a (In fact, we factorize $z_1az_2z_3$). Let $r_0 = 1 - r_1$. From the definitions of φ_i 's, and since $a = \begin{pmatrix} x & 0 \\ 0 & 1 - \rho \end{pmatrix}$, where $x \in \mathcal{U}(\rho A \rho)$, we have the following:

$$\begin{aligned}\varphi_i(\text{diag}(x, 1, 1, \dots)) &= \varphi_i(\text{diag}(x - \rho, 0, 0, \dots) + I) \\ &= r_1 + \varphi_i(\text{diag}(x - \rho, 0, 0, \dots)) \\ &= r_1 + x - \rho \\ &= p + q + r + x - \rho \\ &= a - r_0.\end{aligned}$$

If $a - r_0$ is a product of *-symmetries in $r_1 A r_1$, then a is a product of *-symmetries in A . Using [[9], proof of Theorem 1], we factorize $\text{diag}(x, 1, 1, \dots)$ as follows:

$$\begin{aligned}\text{diag}(x, 1, 1, \dots) &= \text{diag}(x^{1/2}, x^{-1/2}, 1, x^{1/8}, x^{1/8}, x^{1/8}, x^{1/8}, x^{-1/8}, x^{-1/8}, x^{-1/8}, x^{-1/8}, 1, 1, 1, 1, \dots) \\ &\cdot \text{diag}(x^{1/2}, 1, x^{-1/2}, x^{1/8}, x^{1/8}, x^{1/8}, x^{1/8}, 1, 1, 1, 1, x^{-1/8}, x^{-1/8}, x^{-1/8}, x^{-1/8}, \dots) \\ &\cdot \text{diag}(1, x^{1/4}, x^{1/4}, x^{-1/4}, x^{-1/4}, 1, 1, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, \dots) \\ &\cdot \text{diag}(1, x^{1/4}, x^{1/4}, 1, 1, x^{-1/4}, x^{-1/4}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, x^{1/16}, \dots) \\ &= b_1 b_2 b_3 b_4.\end{aligned}$$

We must factorize b_i as a product of *-symmetries. We use φ_1 to factorize b_1 , b_2 , and use φ_2 to factorize b_3 , b_4 . We check the details only for b_1 and b_2 . Let us first factorize b_1 .

$$b_1 = (b_1^1, b_1^2, \dots, b_1^n, \dots);$$

where $b_1^n = \text{diag}(x_n, x_n^{-1}, 1)$ and x_n be the diagonal $4^{n-1} \times 4^{n-1}$ matrix with all diagonal entries equal to $x^{(\frac{1}{2 \cdot 4^{n-1}})}$, so $b_1 \in \prod_{n=1}^{\infty} \mathbb{M}_3(\mathbb{M}_{4^{n-1}}(\rho A \rho))$. Then Leen defined the map

$$\Phi : \prod_{n=1}^{\infty} \mathbb{M}_3(\mathbb{M}_{4^{n-1}}(\rho A \rho)) \longrightarrow \prod_{n=1}^{\infty} \mathbb{M}_3(\rho A \rho)$$

Let $\Phi(b_1) = c^1$. He showed that $\chi(c^1) = \varphi_1(b_1)$, and

$$\zeta(\chi(c^1)) = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha^{-1} & 0 \\ 0 & 0 & p \end{pmatrix};$$

where α is a unitary in pAp . Let $\beta_1 = \begin{pmatrix} 0 & \alpha & 0 \\ \alpha^{-1} & 0 & 0 \\ 0 & 0 & p \end{pmatrix}$ and $\beta_2 = \begin{pmatrix} 0 & p & 0 \\ p & 0 & 0 \\ 0 & 0 & p \end{pmatrix}$, so $\beta_1 \beta_2 = \zeta(\chi(c^1))$ and

$$\frac{I - \beta_1}{2} = P_{1,2}(-\alpha), \quad \frac{I - \beta_2}{2} = P_{1,2}(-p),$$

where now $P_{1,2}(-\alpha), P_{1,2}(-p) \in \mathcal{P}(\mathbb{M}_3(pAp))$. Therefore,

$$\chi(c^1) = \zeta^{-1}(\beta_1)\zeta^{-1}(\beta_2) = (r_1 - 2\zeta^{-1}(P_{1,2}(-\alpha)))(r_1 - 2\zeta^{-1}(P_{1,2}(-p))),$$

but $\zeta^{-1}(P_{1,2}(-\alpha)) = \eta_1(P_{1,2}(-\alpha))$ and $\zeta^{-1}(P_{1,2}(-p)) = \eta_1(P_{1,2}(-p))$.

Now to factorize b_2 :

$$b_2 = (b_2^1, b_2^2, \dots, b_2^n, \dots) \text{ where } b_2^n = \text{diag}(x_n, 1, x_n^{-1})$$

and x_n is the same as in b_1 so $b_2 \in \prod_{n=1}^{\infty} \mathbb{M}_3(\mathbb{M}_{4^{n-1}}(\rho A \rho))$. Let $\Phi(b_2) = c^2$.
 $\chi(c^2) = \varphi_1(b_2)$

$$\zeta(\chi(c^2)) = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & \alpha^{-1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \alpha \\ 0 & p & 0 \\ \alpha^{-1} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & p \\ 0 & p & 0 \\ p & 0 & 0 \end{pmatrix} = \beta_3 \beta_4$$

so β_3, β_4 are self-adjoint unitaries in $\mathbb{M}_3(pAp)$, indeed

$$\frac{I - \beta_3}{2} = P_{1,3}(-\alpha), \text{ and } \frac{I - \beta_4}{2} = P_{1,3}(-p)$$

therefore,

$$\chi(c^2) = \zeta^{-1}(\beta_3)\zeta^{-1}(\beta_4) = (r_1 - 2\zeta^{-1}(P_{1,3}(-\alpha)))(r_1 - 2\zeta^{-1}(P_{1,3}(-p)))$$

but $\zeta^{-1}(P_{1,3}(-\alpha)) = \eta_1(P_{1,3}(-\alpha))$, and $\zeta^{-1}(P_{1,3}(-p)) = \eta_1(P_{1,3}(-p))$.

Now we use φ_2 to factorize b_3 and b_4 :

$$b_3 = (1, b_3^1, b_3^2, \dots, b_3^n, \dots); \text{ where } b_3^n = \text{diag}(x_n, x_n^{-1}, 1)$$

and x_n is a $2.4^{n-1} \times 2.4^{n-1}$ diagonal of diagonal entries matrix $x^{\frac{1}{4.4^{n-1}}}$
so $b_3 \in (\rho A \rho) \times (\prod \mathbb{M}_3(\mathbb{M}_{2.4^{n-1}}(\rho A \rho)))$. Then we define the map

$$\Phi' : (\rho A \rho) \times (\prod \mathbb{M}_3(\mathbb{M}_{2.4^{n-1}}(\rho A \rho))) \longrightarrow (\rho A \rho) \otimes \mathbb{K},$$

which acts as the identity map on the first component. Let $\Phi'(b_3) = d^1$. We have $\chi(d^1) = \varphi_2(b_3)$.

$$\zeta(\chi(d^1)) = \begin{pmatrix} \gamma & 0 & 0 \\ 0 & \gamma^{-1} & 0 \\ 0 & 0 & p \end{pmatrix};$$

where γ is a unitary in $\rho A \rho$, so similar to case b_1 , just replace α by γ , to get

$$\chi(d^1) = (r_1 - 2\eta_1(P_{1,2}(-\gamma)))(r_1 - 2\eta_1(P_{1,2}(-p))).$$

Now finally to factorize b_4 :

$$b_4 = \text{diag}(1, b_4^1, b_4^2, \dots, b_4^n, \dots); \text{ where } b_4^n = \text{diag}(x_n, 1, x_n^{-1}),$$

and x_n is the same as in the case of b_3 . Let $\Phi'(b_4) = d^2$. We have $\chi(d^2) = \varphi_2(b_4)$.

$$\zeta(\chi(d^2)) = \begin{pmatrix} \gamma & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & \gamma^{-1} \end{pmatrix}$$

again, it's similar to case b_2 , so

$$\chi(d^2) = (r_1 - 2\eta_1(P_{1,3}(-\gamma)))(r_1 - 2\eta_1(P_{1,3}(-p))).$$

Then, we factorize $a - r_0$ as

$$a - r_0 = \chi(c^1)\chi(c^2)\chi(d^1)\chi(d^2)$$

therefore,

$$\begin{pmatrix} a - r_0 & 0 \\ 0 & r_0 \end{pmatrix} = \begin{pmatrix} \chi(c^1) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} \chi(c^2) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} \chi(d^1) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} \chi(d^2) & 0 \\ 0 & r_0 \end{pmatrix}.$$

And also we have the following:

$$\begin{pmatrix} \chi(c^1) & 0 \\ 0 & r_0 \end{pmatrix} = \begin{pmatrix} r_1 - 2\eta_1(P_{1,2}(-\alpha)) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} r_1 - 2\eta_1(P_{1,2}(-p)) & 0 \\ 0 & r_0 \end{pmatrix}$$

$$\begin{pmatrix} \chi(c^2) & 0 \\ 0 & r_0 \end{pmatrix} = \begin{pmatrix} r_1 - 2\eta_1(P_{1,3}(-\alpha)) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} r_1 - 2\eta_1(P_{1,3}(-p)) & 0 \\ 0 & r_0 \end{pmatrix}$$

$$\begin{pmatrix} \chi(d^1) & 0 \\ 0 & r_0 \end{pmatrix} = \begin{pmatrix} r_1 - 2\eta_1(P_{1,2}(-\gamma)) & 0 \\ 0 & r_0 \end{pmatrix} \begin{pmatrix} r_1 - 2\eta_1(P_{1,2}(-p)) & 0 \\ 0 & r_0 \end{pmatrix}$$

Therefore,

$$\begin{aligned} z_1 a z_2 z_3 &= (1 - 2\eta_1(P_{1,2}(-\alpha)))(1 - 2\eta_1(P_{1,2}(-p)))(1 - 2\eta_1(P_{1,3}(-\alpha)))(1 - 2\eta_1(P_{1,3}(-p))) \\ &\quad \cdot (1 - 2\eta_1(P_{1,2}(-\gamma)))(1 - 2\eta_1(P_{1,2}(-p)))(1 - 2\eta_1(P_{1,3}(-\gamma)))(1 - 2\eta_1(P_{1,3}(-p))) \end{aligned}$$

The factors in the right side are all self-adjoint unitaries in A . Hence using the mapping η , we have that

$$\begin{aligned} a &= z_1(1 - 2\eta(P_{1,2}(-\alpha)))(1 - 2\eta(P_{1,2}(-1)))(1 - 2\eta(P_{1,3}(-\alpha)))(1 - 2\eta(P_{1,3}(-1))) \\ &\quad \cdot (1 - 2\eta(P_{1,2}(-\gamma)))(1 - 2\eta(P_{1,2}(-1)))(1 - 2\eta(P_{1,3}(-\gamma)))(1 - 2\eta(P_{1,3}(-1)))z_2 z_3 \end{aligned}$$

where α and γ are unitaries in A , and this ends the proof. \square

Finally, let us finish this section by the following open question:

Question 4.5. *In the Cuntz algebra \mathcal{O}_n , do self-adjoint unitaries of the form $\{1 - 2P_{i,j}(a)\}$ generate the unitary group $\mathcal{U}(\mathcal{O}_n)$?*

5 K-Theory of Certain Projections

In this section, we study the K_0 -class of the projections $P_{i,j}(u)$, where u is a unitary of some unital C^* -algebra A . In particular, if A is a simple purely infinite C^* -algebra, with $K_1(A) = 0$, or A is a von Neumann factor of type II_1 , or III , then for any unitary u of A , $P_{i,j}(u)$ has trivial K_0 -class. Afterwards, we present an application of Theorem 4.1, to the case of Cuntz algebras.

Proposition 5.1. *Let A be a unital C^* -algebra. If v is a unitary in A of finite order, then $[P_{i,j}(v)] = [1]$ in $K_0(A)$.*

Proof. Consider a unitary v in A , such that $v^m = 1$, for some positive integer m . For $i \neq j$, let

$$W = \frac{1}{\sqrt{2}}(v \otimes E_{i,i} + v \otimes E_{i,j} + E_{j,i} - E_{j,j} + \sum_{k \notin \{i,j\}} \sqrt{2} \otimes E_{k,k}) ,$$

then $W^* = \frac{1}{\sqrt{2}}(v^{m-1} \otimes E_{i,i} + E_{i,j} + v^{m-1} \otimes E_{j,i} - E_{j,j} + \sum_{k \notin \{i,j\}} \sqrt{2} \otimes E_{k,k})$, therefore $W \in \mathcal{U}(\mathbb{M}_n(A))$. Moreover,

$$\begin{aligned} W^* P_{i,j}(v) W &= \frac{1}{4}(2v^{m-1} \otimes E_{i,i} + 2 \otimes E_{i,j})(\sqrt{2}W) \\ &= \begin{pmatrix} 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \quad (1 \text{ at the } i\text{-th place}) \\ &= E_{i,i}. \end{aligned}$$

This implies that the projection $P_{i,j}(v)$ is unitarily equivalent to $E_{i,i}$ in $\mathbb{M}_n(A)$, therefore we have that $[P_{i,j}(v)] = [1]$ in $K_0(A)$, hence the proposition has been checked. \square

Proposition 5.2. *Let A be a unital C^* -algebra. If w_1, w_2 and v are unitaries of A such that v has order m , then $[P_{i,j}(w_1vw_2)] = [1]$ in $K_0(A)$.*

Proof. As w_1 and w_2 are unitaries in A , then for all $i \neq j$, $W = w_1 \otimes E_{i,i} + w_2^* \otimes E_{j,j} + \sum_{k \notin \{i,j\}} E_{k,k} \in \mathcal{U}(\mathbb{M}_n(A))$. Moreover, $WP_{i,j}(v)W^* = P_{i,j}(w_1vw_2)$, therefore by Proposition (5.1) we have $[P_{i,j}(w_1vw_2)] = [P_{i,j}(v)] = [1]$. \square

Proposition 5.3. *Let A be a unital C^* -algebra. If u and v are self-adjoint unitaries in A , then $[P_{i,j}(uv)] = [1]$ in $K_0(A)$.*

Proof. For $i \neq j$, let

$$W = \frac{1}{\sqrt{2}}(uv \otimes E_{i,i} + uv \otimes E_{i,j} + E_{j,i} - E_{j,j} + \sum_{k \notin \{i,j\}} \sqrt{2} \otimes E_{k,k}) ,$$

then $W \in \mathcal{U}(\mathbb{M}_n(A))$. Moreover,

$$\begin{aligned} W^* P_{i,j}(uv) W &= \frac{1}{4} (2uv \otimes E_{i,i} + 2 \otimes E_{i,j})(\sqrt{2}W) \\ &= E_{i,i}, \end{aligned}$$

and this implies that the projection $P_{i,j}(uv)$ is unitarily equivalent to $E_{i,i}$ in $\mathbb{M}_n(A)$, therefore we have that $[P_{i,j}(uv)] = [1]$ in $K_0(A)$, hence the proposition has been checked. \square

Combining the previous results, we have the following theorem concerning the K_0 -class of those projections $P_{i,j}(u)$ in $\mathcal{P}(\mathbb{M}_n(A))$, evaluated at any unitary u of A .

Theorem 5.4. *Let A be a simple, unital purely infinite C^* -algebra, such that $K_1(A)$ is the trivial group. If $u \in \mathcal{U}(A)$, then $[P_{i,j}(u)] = [1]$ in $K_0(A)$.*

Proof. Consider a unitary u of A . As $K_1(A) = 0$, and we know by [[4], p.188] that $K_1(A) \simeq \mathcal{U}(A)/\mathcal{U}_0(A)$ then using M. Leen's result (Theorem 4.3), we have that $u = \prod_{k=1}^n v_k$, where v_k is a self-adjoint unitary (*-symmetry) of A . If $n = 1$, then the result holds by using Proposition (5.1). Proposition (5.3) proves the case $n = 2$. If $n \geq 3$, then the result is done by Proposition (5.2), hence the proof is completed. \square

Moreover, as M. Broise in [[3], Theorem 1] proved that in the case of von Neumann factors of either type II_1 or III , the unitaries are generated by the self-adjoint unitaries, then a similar result in the case of von Neumann factors can be deduced as follows:

Theorem 5.5. *Let A be a von Neumann factor of type II_1 or III . If $u \in \mathcal{U}(A)$, then $[P_{i,j}(u)] = [1]$ in $K_0(A)$.*

Proof. Let u be a unitary of A . By [[3], Theorem 1], u can be written as a finite product of self-adjoint unitaries of A , then mimic the proof of Theorem 5.4. \square

Consequently, we have the following results concerning the K_0 -class of some certain projections.

Corollary 5.6. *Let A be a unital C^* -algebra which is either:*

- (1) *Simple, purely infinite, with $K_1(A) = 0$, or*
- (2) *von Neumann factor of type II_1 , or III .*

If u be a unitary of A , and p is the projection of $\mathbb{M}_n(A)$ defined by

$$p = \frac{1}{2} \otimes E_{1,1} + \frac{v}{2} \otimes E_{1,2} + \frac{v^*}{2} \otimes E_{2,1} + \frac{1}{2} \otimes E_{2,2} + E_{3,3} + E_{4,4} \cdots + E_{m,m}$$

for some positive integer $m \leq n - 2$, then $[p] = (m+1)[1]$, in $K_0(A)$.

Proof. As the projection p is the orthogonal sums of $P_{1,2}(v) + E_{3,3} + E_{4,4} \cdots + E_{m,m}$, then by either Theorem 5.4 or 5.5,

$$[p] = [1] + ([1] + \cdots + [1]) = (m+1)[1].$$

□

Corollary 5.7. *Let A be a unital C^* -algebra which is either:*

- (1) *Simple, purely infinite, with $K_1(A) = 0$, or*
- (2) *von Neumann factor of type II_1 , or III .*

If $v_1, v_2 \cdots v_n$ are unitaries of A , and p is the projection of $\mathbb{M}_{2n}(A)$ defined by

$$\begin{aligned} p &= \frac{1}{2} \otimes E_{1,1} + \frac{v_1}{2} \otimes E_{1,2} + \frac{v_1^*}{2} \otimes E_{2,1} + \frac{1}{2} \otimes E_{2,2} \\ &+ \frac{1}{2} \otimes E_{3,3} + \frac{v_2}{2} \otimes E_{3,4} + \frac{v_2^*}{2} \otimes E_{4,3} + \frac{1}{2} \otimes E_{4,4} + \cdots \\ &+ \frac{1}{2} \otimes E_{2n-1,2n-1} + \frac{v_n}{2} \otimes E_{2n-1,2n} + \frac{v_n^*}{2} \otimes E_{2n,2n-1} + \frac{1}{2} \otimes E_{2n,2n}, \end{aligned}$$

then $[p] = n[1]$, in $K_0(A)$.

Proof. Using Theorem 5.4 (or Theorem 5.5), we have

$$[p] = [P_{1,2}(v_1)] + [P_{3,4}(v_2)] + \cdots + [P_{2n-1,2n}(v_n)] = n[1].$$

□

Now let us prove the following lemma, which will be used in order to prove our main result in this section (Theorem 5.9), which is in fact a consequence application of Theorem 4.1, to the case of Cuntz algebras \mathcal{O}_n .

Lemma 5.8. *Let A be a unital, simple purely infinite C^* -algebra, with $K_1(A) = 0$, and let $\{e_{i,j}\}^n$, with $e_{1,1} \sim 1$ be a system of matrix units of A . Then for any unitary $u \in \mathcal{U}(A)$ we have $[\eta(P_{i,j}(u))] = [1]$ in $K_0(A)$.*

Proof. As we have seen in the proof of Propositions 5.1, 5.2, 5.3 and Theorem 5.4, there exists a unitary $W \in \mathcal{U}(\mathbb{M}_n(A))$, such that $W^* P_{i,j}(u) W = E_{i,i}$. Therefore,

$$\eta(W)^* \eta(P_{i,j}(u)) \eta(W) = \eta(E_{i,i}) = \eta_1 \hat{\Delta}_v(E_{i,i}) = \eta_1(e_{1,1} \otimes E_{i,i}) = e_{i,i}.$$

Then

$$\eta(P_{i,j}(u)) \sim_u e_{i,i} \sim e_{1,1} \sim 1,$$

hence $\eta(P_{i,j}(u))$ and 1 have the same class in $K_0(A)$. □

Finally, let us consider the case of the Cuntz algebra \mathcal{O}_n . Let u be a self-adjoint unitary (involution), so $u = 1 - 2p$, for some $p \in \mathcal{P}(\mathcal{O}_n)$. We recall the concept *type of involution* which is introduced by the author in [2], as follows: Since $K_0(\mathcal{O}_n) \simeq \mathbb{Z}_n$ (see [4]), then the type of u is defined to be the element

$[p]$ in $K_0(\mathcal{O}_n)$. By ([2], Lemma 2.1), two involutions are conjugate as group elements in $\mathcal{U}(\mathcal{O}_n)$ iff they have the same type.

As a consequence of Theorem 4.1, and the results concerning the K_0 -group of the projections $P_{i,j}(u)$, which are deduced in this section, we have the following result.

Theorem 5.9. *If u is a unitary of \mathcal{O}_n , then there exist self-adjoint unitaries z_1, z_2, z_3 and v_k , for $1 \leq k \leq 8$ such that*

$$u = z_1 \left(\prod_{k=1}^8 v_k \right) z_2 z_3, \quad (3)$$

$v_k \in \{1 - 2\eta P_{i,j}(\omega)\}$, $\omega \in \mathcal{U}(\mathcal{O}_n)$ consequently, all the v_k factors are conjugate involutions.

Proof. Using [4] and [5], the Cuntz algebra \mathcal{O}_n is simple, unital purely infinite C^* -algebra with trivial K_1 -group. Then the decomposition of u as in Equation 3 holds by Theorem 4.1, so the type of each involution v_k is $[\eta(P_{i,j}(w))]$, for some $1 \leq i \neq j \leq n$ and a unitary w , hence by Lemma 5.8, the type of v_k is 1. Then by [[2], Lemma 2.1], all these involutions are conjugate indeed, to the trivial involution -1 . \square

References

- [1] A. Al-Rawashdeh, *The Unitary Group As An Invariant of a Simple Unital C^* -Algebra*, Ph.D Thesis, University of Ottawa, Canada (2003).
- [2] A. Al-Rawashdeh, *Normal Generation of Unitary Groups of Cuntz Algebras By Involutions*, Acta Math. Univ. Comenianae, Vol. LXXVII, 1 (2008), p.1-7.
- [3] M. Broise, *Commutateurs Dans le Groupe Unitaire d'un Facteur*, J. Math. Pures et appl., 46 (1967), p.299-312.
- [4] J. Cuntz, *K-Theory for Certain C^* -Algebras*, Ann. of Math., 113 (1981), p.181-197.
- [5] J. Cuntz, *Simple C^* -Algebras Generated by Isometries*, Comm. Math. Phys., 57 (1977), p.173-185.
- [6] K.R. Davidson, *C^* -Algebras by Example*, Fields Institute Monographs, 6, Amer. Math. Soc., Providence, RI (1996).
- [7] H. Dye, *On the Geometry of Projections in Certain Operator Algebras*, Ann. of Math., Second Series, 61 (1955), p.73-89.
- [8] P. de la Harpe and V. Jones, *An Introduction to C^* -Algebras*, Université de Genève (1995).

- [9] M. Leen, *Factorization in the Invertible Group of a C^* -Algebra*, Can. J. Math., 49(6) (1997), p. 1188-1205.
- [10] M. Stone, *The Theory of Representations For Boolean Algebras*, Trans. Amer. Math. Soc. 4 (1936), p.37-111.
- [11] N. Wegge-Olsen, *K-Theory and C^* -Algebras*, Oxford Science Publications, Oxford University Press, New York (1993).