Máquinas de Moore e

Extensões

- Autômatos Finitos
- Associam, a cada sentença de entrada, uma correspondente cadeia de saída sobre um segundo alfabeto
 - Eventualmente distinto do alfabeto de entrada

Extensões

- Máquinas de Moore
 - associação de símbolos de saída a partir da sequência de estados percorridos
- Máquinas de Mealy
 - associação de símbolos de saída a partir das transições de que se compõe o autômato finito

Definição formal

$$T_{Moore} = (Q, \Sigma, \Delta, \delta, \lambda, q 0, F)$$

- Δ é o alfabeto de saída
- $\lambda : Q \rightarrow \Delta$ é a função de transdução

```
Exemplo:
 - T = (Q, \Sigma, \Delta, \delta, \lambda, q0, F)
                                                                                  a
 -Q = \{q0, q1\}
-\Sigma = \{a, b, c\}
-\Delta = \{1\}
 -\delta = \{(q0, a) \rightarrow q1, (q1, b) \rightarrow q1, (q1, c) \rightarrow q0\}
-\lambda = \{q0 \rightarrow 1, q1 \rightarrow \epsilon\}
```

 $- F = \{a1\}$

• Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	
abbbcab	
acacaca	
a	

Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	111
abbbcab	11
acacaca	1111
a	1

Definição formal

$$T_{Mealy} = (Q, \Sigma, \Delta, \delta, \lambda, q0, F)$$

- Δ é o alfabeto de saída
- λ : Q × Σ → Δ é a função de transdução
 - No caso das Máquinas de Mealy, associam-se os símbolos do alfabeto de saída às transições, e não aos estados

```
b/\varepsilon
Exemplo:
 - T = (Q, \Sigma, \Delta, \delta, \lambda, q 0, F)
                                                                                         a/ab
 - Q = \{q 0, q 1\}
 -\Sigma = \{a, b, c\}
                                                                                          c/c
 -\Delta = \{a, b, c\}
 -\delta = \{(q 0, a) \rightarrow q 1, (q 1, b) \rightarrow q 1, (q 1, c) \rightarrow q 0\}
 -\lambda = \{(q \ 0 \ , a) \rightarrow ab, (q \ 1 \ , b) \rightarrow \epsilon, (q \ 1 \ , c) \rightarrow c\}
```

 $- F = \{a 1\}$

• Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	
abbbcab	
acacaca	
a	

• Traduções:

Sentença aceita	Cadeia Gerada
abbcabbbcab	abcabcab
abbbcab	abcab
acacaca	abcabcabcab
a	ab

Equivalência

- Dois modelos distintos de transdutores finitos
- Pode-se demonstrar a plena equivalência de ambos
 - toda e qualquer Máquina de Moore pode ser simulada por uma Máquina de Mealy e vice-versa