

Module 7: Hands-On: 2

Data Manipulation:

Step 1: Open Anaconda Navigator

Step 2: Click on Launch button under Jupyter Notebook

Step 3: After the notebook opens click on New and Python 3

Step 4: Import the required packages and read the data

Contact us: support@intellipaat.com / © Copyright Intellipaat / All rights reserved

Step 5: Analyze the shape of data

```
In [13]: data.shape
Out[13]: (489, 4)
```


Step 6: Extract a subset of data using iloc

In [16]:	data.iloc[:5, :]				
Out[16]:					
		RM	LSTAT	PTRATIO	MEDV
	0	6.575	4.98	15.3	504000.0
	1	6.421	9.14	17.8	453600.0
	2	7.185	4.03	17.8	728700.0
	3	6.998	2.94	18.7	701400.0
	4	7.147	5.33	18.7	760200.0
In [21]:	da	ta.ilo	c[2:5,	:2]	
Out[21]:					
Out[21]:		RM	LSTAT		
Out[21]:	2		LSTAT 4.03		
Out[21]:	2	7.185			
Out[21]:	3	7.185 6.998	4.03		
Out[21]:	3	7.185 6.998	4.03 2.94		
Out[21]: In [19]:	3 4	7.185 6.998 7.147	4.03 2.94	1:2]	
	3 4	7.185 6.998 7.147	4.03 2.94 5.33	1:2]	
In [19]:	3 4	7.185 6.998 7.147	4.03 2.94 5.33 oc[2:4,	1:2]	
In [19]:	3 4	7.185 6.998 7.147 ta.ilo	4.03 2.94 5.33 oc[2:4,	1:2]	

Step 7: Extract a subset of data using loc

data.loc[:5, 'LSTAT':'MEDV'] In [25]: Out[25]: LSTAT PTRATIO MEDV 15.3 504000.0 4.98 1 9.14 17.8 453600.0 4.03 17.8 728700.0 2.94 18.7 701400.0 5.33 18.7 760200.0 5.21 18.7 602700.0

Step 8: Change all values in LSTAT column to 1

In [26]: data['LSTAT'] = 1 data.head() Out[26]: RM LSTAT PTRATIO MEDV 0 6.575 15.3 504000.0 1 6.421 17.8 453600.0 2 7.185 17.8 728700.0 6.998 18.7 701400.0 7.147 18.7 760200.0

Step 9: Apply function to change LSTAT value to its double (multiply by 2)

In [28]: data['LSTAT'] = data['LSTAT'].apply(lambda x : x * 2)
In [29]: data

0ι	ıt	[29	11:
			4

	RM	LSTAT	PTRATIO	MEDV
0	6.575	2	15.3	504000.0
1	6.421	2	17.8	453600.0
2	7.185	2	17.8	728700.0
3	6.998	2	18.7	701400.0
4	7.147	2	18.7	760200.0