Teoria da Informação - 060046 - UNISINOS

Aula 2 - 2/mar/2007

Canal Binário Simétrico (MacKay)

probabilidade de transmissão com sucesso: 1-f probabilidade de transmissão com erro: f

$$x \xrightarrow{0} y \xrightarrow{0} y \xrightarrow{P(y=0 \mid x=0)} = 1-f; P(y=0 \mid x=1) = f; P(y=1 \mid x=0) = f; P(y=1 \mid x=1) = 1-f$$

Códigos para correção de erro em canais binários simétricos

Códigos de repetição: exemplo do R3

 $s = 0 \ 0 \ 1 \ 0 \ 1 \ 0$

Source	Transmitted			
sequence	sequence			
s	t			
0	000			
1	111			

s	0	0	1	0	1	1	0
t	600	600	$\widetilde{111}$	$\widetilde{\mathfrak{ooo}}$	$\widehat{111}$	$\widehat{111}$	600
\mathbf{n}	000	001	000	000	101	000	000
r	000	001	111	000	010	111	000

onde s:source t:transmitido n:noise r:recebido

corrected errors undetected errors

*

Códigos de bloco (Hamming code (7,4)):

Converte uma sequência de bits s, de comprimento K, numa sequência transmitida t de comprimento N bits, com N > K em função da **redundância** acrescentada.

N=7 e K=4 t1=s1, t2=s2, t3=s3, t4=s4

s	t	s	t	s	t	s	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

$$\mathbf{t} = \mathbf{G}^{\mathsf{T}} \mathbf{s},$$

$$\mathbf{G}^{\mathsf{T}} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \right],$$