

ساختمان دادهها (۲۲۸۲۲)

مدرس: حسین بومری [زمستان ۹۹]

نگارنده: آئیریا محمدی

سوال ۵: الگوريتم ضعيف تحليل ق

رشته ها را به شکل مرتب شده بر اساس طول و با نماد w_1, \cdots, w_n نشان می دهیم که n تعداد رشته ها است و طول هرکدام l_i داریم $l_i < l_{i+1}$.

 $m_{\mathsf{T}} = m - m_{\mathsf{T}}$ فرض کنیم m_{T} پرسمان از رشته های جفت طول کو چکتر مساوی x یا یکی بزرگتر و یکی کو چکتر از x انجام دهیم و m_{T} پرسمان با هر دو رشته با طول بیشتر .

مرتبه زمانی اجرای الگوریتم بر روی دو رشته از مرتبه طول رشته کوتاهتر است پس برای m_1 پرسش اول داریم $T = O(m_1 \cdot x)$

برای $m_{
m Y}$ پرسش نوع دوم به شکل زیر استدلال میکنیم :

.... و المنته کوچکترش برابر با l_n است و دو زوج که طول رشته کوچکترش برابر با l_n است و دو زوج که طول رشته کوچکترش برابر با v_n, w_n و $y \in \Theta(\sqrt{m_1})$ یعنی $\sum_{i=1}^{y+1} 1 = m_1$ می شود که $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی رسمانهای نوع دو به شکل $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_{n-1} + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یا $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یعنی $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$ یا $T = l_n + \Upsilon l_n + \cdots + (y+\Upsilon) l_{n-y+1}$

 $l_n=l_{n-1}=\cdots=l_{n-y+1}$ رابطه بالا در صورتی بیشینه می شود که

و حداکثر مقدار u_1 و u_2 و u_3 و و رشته به طول u_3 و و رشته به طول u_4 و و رشته به طول u_5 و و حداکثر مقدار u_5 و و البرابر می شود با وقتی که u_5 و داریم u_5 و داریم u_6 و داریم u_6 و داریم u_7 و داریم u_7 و داریم u_8 و داریم و u_8 و داریم و داریم

 $T = l_i(1 + Y + \dots + (y + Y)) \in l_i \cdot O(y^Y) = O((\frac{k}{\sqrt{m_Y}} + x)m_Y)$ و برای مرتبه زمانی m_Y پرسش نوع دو خواهیم داشت و جمع طول آنها حداکثر k می شود پس حداکثر تعداد آنها $m_Y = \frac{k}{x}$ از آنجایی که طول تمام رشته ها (در نوع دو) از m_Y بزرگتر است و جمع طول آنها حداکثر k می شود پس حداکثر تعداد آنها $m_Y = \frac{k}{x}$ براشد .

از طرفی اگر $\frac{k}{x}$ و $n_1=n-n_7$ را تعداد رشتههای با طول بزرگتر و کوچکتر از x در نظر بگیریم/ در صورت وجود محدودیت برای پرسمان تکراری حداکثر $\binom{n_1}{y}$ زوج رشته از نوع دو میتوان انتخاب کرد که از $O((n_1)^7)$ میباشد و مشابها تعداد زوجهای قابل انتخاب از رشتههای نوع اول از مرتبه $O((n_1)^7)$.

پس مجموع هزینه ای که برای این دو نوع پرسش خواهیم داد به شکل زیر خواهد بود:

$$T = O(x(n-n_1)^{\mathsf{T}}) + O(k(n_{\mathsf{T}})^{\mathsf{T}}) = O(x(n-\frac{k}{x})^{\mathsf{T}}) + O((\frac{k}{\sqrt{m_{\mathsf{T}}}} + x)m_{\mathsf{T}})$$

به ازای $x=\sqrt{k}$ خواهیم داشت

 $T \in O((n - \sqrt{k})^{\Upsilon} \sqrt{k} + k\sqrt{m_{\Upsilon}} + m_{\Upsilon}\sqrt{k}) = O((n^{\Upsilon} + k + m_{\Upsilon})\sqrt{k} + k\sqrt{m_{\Upsilon}}) = O((n^{\Upsilon} + k + n_{\Upsilon}^{\Upsilon})\sqrt{k} + kn_{\Upsilon})$

ب)

کافیست که پاسخ ها را ذخیره کنیم. درختی دودویی متوازن نگهداری میکنیم که هر گره آن نشان دهنده اندیس رشته اول یک پرسمان است و در آن درخت دیگری نگهداری میشود که هر گره نشان هنده اندیس دوم پرسمان است و محتوای ان پاسخ این پرسمان است.

از آنجایی که m پرسمان تنها داریم و ارتفاع هر دو درخت حداکثر از O(m) است (در هر پرسمان یک نتیجه به آن اضافه می شود) و $O(m\log^n N)$ جستجو در درخت از مرتبه ارتفاع است پس مرتبه زمانی $O(m\log^n N)$ زمان به زمان الگوریتم اصلی اضافه می شود . از طرفی $O(m\log^n N)$ نصل زمان اضافه شده می شود $O(m\log^n N) = O(m\log^n N)$