Low Pencer VLSI Ringen bried for low power VISI chips VLSI Chip types -> starting from scratch bod. full customised - Semi custom > ASIC - Application C. b already predefined library available EX: CMOS invertor ASCC: EX! Micontroller. schematic:-8. nehy do nee need how Power? demand by applications (more features) > circuit complexity (has to be minimum) L's drea Chas to be MIN) (area of a cost of manifocting) * when the tack is scaled down (from 180nm > 80nm) Ceminant publicion "interconnect problem" some problems axise. -> interconnect b/w denice to denice > when demices are cascaded, more delay and make consume more power, that becomes complex, or interconnect becomes more hatage cuereat- exists where a device in - diode / trans A.B 3 r V > Vtn. = Reverse saturation I & MOSFET salso results in leakage welent.

* Static Peruer -> always represents clarkage p
Static P = Vad I at) -> it is MAXIMUM when MAX I (Current) Occum
MAX I (Current) Occum
er the circuit
*Low power ckt is mainly concentrated on lower
* Leakage I = Reverse beased current
* Pencer, Area and speed
Reduce the area - Device geometry high speed.
lone poucer, but speed is also low.
* levice parameter
Technology - nehat is Prepuerenent:
Free supply requirement and on
Jechnology - nehat is Prepuerement? Flencer supply requirement appeals Area metal interconnecto layers.
* liperent technologies levels :-
-> Okt level -> Legic level -> softmare le
- system level/architectural level
- Adiabatic Peneer
Elstimake
lener analysis tools - SPICE tool Estimate Probabilistic medel
Ponue dissipated = Static P + Dynamic

= Pal + Painifation Ckt beha & ckt behaviour Pais & cout vad f I Pac = Val Iad. - Pencer has to be pay pre defined and designed pe that power in the back end. 1/1/2020 - Moore's lane. - how power design at the front end. -> As Channel length Hodecreases, the threshold vellage starts narying. (when I is large, the V+n remains constant). - too P consemption may effect the environment as its drawes earry selectricity > Identification of the (sener source) - Poucer aralysis tools are available - MAX Power dissipated - short ckt - lever consumption - she event Static is due to : -> capacitance ... short circuit - logic swing > Cources of Penuer consumption P = Pde + Pdyn agnanic Power More Dominant P = VDD IDD. Poc Payn = Cout Vos f intching event) slayn & Court Vão &

* Speed, Poncer of Frequency! Deince preformance Je freg V delay T l teste remer 1 respondence 1 delay I -> delay & speed 1 frequency 1 * Px speed * area & density & integration & Pencer Consumption Rp = 1 pr(VDD-1VTP1) Bn (VDD - (Vtn)) internal FET contribution Can be reduced the Cent = CFET + Cloud Lichnology evaling -(specific technology is it designed for specific fencer) 1.2V 180 µm 18 nn

problem occured are to scaling: peakage P is also called as the Ico. - 6 ate induced Drain leakage consent -, purch through effect sheet Channe effect ja Egdan Read * Levels of abstraction: partitioning penur deinen system complexity, concuerancy, legularity, Algorithm · Parallelism, pipelining, Redundancy, data encoding circuit/logic - logic state + manipulation ris transister rising threshold reduction, sendle thushold tende, energy Technology recovery * I i len poiner methodology repries optimization at all levels of abstraction. 1) Technology. - Threshold Reduction 0.12 pm = 6 metal (1.2 V, 2.2 V) 0.18 pm - 6 Metal (0.8V, -) -) Transstor rusezing, ordering, logic in cht, 2 CKt/Lopic -> 1/cl operation, synchronisation (3) Architechere. - tay to reduce complexity of algorithm 4) Algorithm Septem spectral of the system

Br & device Br & transconductance (mobility factor depends on concentration) Kn, Kp > processing parameters

> key it constant

Len Lep. > $\beta_n = K'_n \left(\frac{\omega}{L}\right)_n$ $\beta_{r}^{2} = K_{r}^{1} \left(\frac{\omega}{L}\right)_{p}$ her hip. -> () is naived according Kp = μp Cox. Sprocessing
parameter Kn = fer Con Physics of power dissipation: · lechnology - semiconductor Si based technology - Crystalline steuetur - mobility Related to device physics current noltage relation of the decrice Vgs - gate to source nollage of -> physics of -> mobility

denie -> temp

-> current rote: Decree tech -s Perrele structure How do you optimize the poneer has an imput -> demice stencturing

-- preordering

-- prestenduring probe modelling - related to physics plucar 5 parallel. EET is always modelled a. Vma Bm = device transcondution Vm & Vdd and pt uty.

ylower consumption also depends on _ service geometry aspect salio = (w) eatis size ter -> charrel length to -> leakage current tes

Cacip \$>>>

retra-deep sub-micron technology > [Long channel and short channel effect] nehat factors affect? - orientation of the device - also natters : Dynamic P dissipation in como-e;-Payor = Cout Voo f Pays - arbitrary gate dynamic power depends on the logic transition of when the Cour's connected to the inventor. - alone , the current to charge. -> keeps or charging of discharging and. Cout 1. Cout = Cpc + Cc * So pener consumption is min if nee & the Court * Poncer -> 1 et concern Speed - and concer. Cost - 3rd concern -> As freq tes. Pays tes. yn ... Also depends on uput logic Transition releted to pener -> Drea Edynamic) > Temperature -> Vaa -> Grate sizing of the insulating layer Transister sering & gate onide thickness

-> Irannetor sizing and gade onede thickness sdevice geometry Kex 1 Massilic RT, delay t, Part - Parasitic C - mosfet sizing /resiging Channel L 1 = area Tes. > Tean cat 1 => Promsumption V * tox V => more leakage & Von Blacks tox-s defined during manufacture -s affects Cox = AEO Ex - charge the dielecture to improve operationel ? *OLED. - skigh cost - delicate - high Resolution - high quality quality expect transister OTFT - organic tin field effect transister Impact of tech scaling: (non scaling)

from In (mooris law) "autocourd" -> app Loures higher end processor.

UNIT-2 how Poncer design at Circuit & logic level latches and Plip flop -> not synchronised clock. The Flop => synchronised.

It is a mean element. = feedback = makes sure to hold the information show power memory is in demand. * RS Latch Tenth lable. NOR GATE RS latch using NAND Rate !-Gate level description

* Switch level IFAB level. -> 10 comp -> determine > flacement and renting, Planning > consumplier & Grate & Transister Gate - build from transiston 9. Diff blu hate & transictor Switch level SR FLF using MOSFETS. Grequies 8 Transistors [4 preach nand gate Design a memory the. stores come information I using cascaded not gates * Dlatch: clk___ Master slave D F/P :-Clk FIFL (slave) & (maseur) 12 tran required

Scanned with CamScanner

Y=ACB+C)+D AOE } 2 styles -> also determines Poucer Consumption OBAT ASIC * (spols used Cadence (etc. * Finer cimulation tools - analog design is more complicated than eligital disign & Algh Capacitance needes: stores charge EZ ZCYZ - lever consumption - more dominant on C Tife -> depends on Technology & usage Capacitar (apacitance capacitance electrolytre - nede) ... & Cleanic - M Bulk lapacitance Nede capacitance - comes based on stencturing of 6ar GCDP (Gate, Same) (Ocale, newarnel) (Gate (hame) oxide capacitance

* Signal getting Types of sy gating salso imp s basically it is an input source Is very inp for output response.

Poneer spikes' -> poneer consumption ps determining Pconscription The style of connecting the input - I conc Et: *ALU synchronisation suring clock. staft.

slate synchronisation suring clock.

slate synchronisation suring clock.

slate synchronisation suring clock.

slate synchronisation suring clock. * Threshold voltage(Nm) sty gating depends on Vtn:

Le effects Power consumption seneur- To: * Role of sly gating: *In opan - ever if if = 0 V, the of will have marke to correct it -> Deet nollage is given # Logic/segral encoding: 5 no g states & Pouce consumption -> Evaplical method - demonstrates apriganthe che optimization & logical methods to optimise. Optimization & TT, Konap are used to reduce me of the secure me