

A Comprehensive Study of Network Compression for Image Classification

Jian Cheng jcheng@nlpr.ia.ac.cn

NLPR & AIRIA
Institute of Automation, Chinese Academy of Sciences, China

Introduction

Team

- Team Name: RIAIR
- Affiliation: NLPR & AIRIA, Institute of Automation, Chinese Academy of Sciences, China
- Team Member:

Peisong Wang

Xiangyu He

Tianli Zhao

Cong Leng

Yifan Zhang

Jian Cheng

Introduction

MicroNet Challenge

MicroNet

- Aim: to build efficient models for the specified tasks with required conditions.
- Tasks: ImageNet, CIFAR-100, WikiText-103
- Criteria: Math operations, parameter Storage

Introduction

MicroNet Challenge

- Task 1: ImageNet Classification
 - 75% top-1 accuracy
 - Normalized relative to MobileNetV2-1.4
 - 6.9M parameters,
 - 1170M operations
 - Score = Storage / 6.9M + Ops / 1170M
- Task 2: CIFAR-100 Classification
 - 80% top-1 accuracy
 - Normalized relative to WideResNet-28-10
 - which has 36.5M parameters
 - 10.49B math operations
 - Score = Storage / 36.5M + Ops/ 10.49B

Model Selection

- Select models with a bit higher accuracy than target quality
 - Automl searched models are more preferable
- MixNet for ImageNet Track (Searched on ImageNet)
 - MixNet-S for student (75.9%)
 - MixNet-L for teacher (78.9%)
- DenseNet for CIFAR-100 Track
 - DenseNet-100 for student (81.1%)
 - DenseNet-172 for teacher (84.0%)

Robust Analysis

• Different layers have different robustness to sparsity

Pruning

- Static Pruning
 - Set the smallest proportion of weights to zeros.
 - No grad to masked weights
 - Fixed mask during finetuning
- Dynamic Pruning
 - Pruned weights also get gradients
 - Update mask before the next SGD iteration
- Progressive Pruning
 - No grad to masked weights
 - Update mask before the next epoch

Pruning Results

• Static Pruning ~ Progressive Pruning > Dynamic Pruning

Static pruning results

Models	Param Sparsity	Op Sparsity	Top-1 Accuracy
Original	0	0	75.98
Sparse	58.6 %	45.9 %	75.57
Sparse, large layer ≥ 50 %	59.6 %	47.1 %	75.56
Sparse, large layer ≥ 60 %	63.4 %	59.3 %	75.09

Knowledge Distillation

- KD always improves accuracy
- Stronger teacher means higher accuracy?

Student	Teacher	Teacher Acc.	Top-1 Accuracy
MixNet-s-pruned	-	-	74.4 %
MixNet-s-pruned	MixNet-s	75.9 %	74.6 %
MixNet-s-pruned	MixNet-m	77.2 %	74.9 %
MixNet-s-pruned	MixNet-l	78.9 %	75.0 %
MixNet-s-pruned	SENet154	81.3 %	74.7 %

Quantization

- The same quantization for weights and activations
- Quantization Function:

```
q(x) = clamp(round(x/lpha), Q_{min}, Q_{max}) lpha \in R is a scaling factor
```

- Activation quantization
 - Each layer has a scaling factor
- Weight quantization
 - Each kernel has a scaling factor

Quantization

• Problem:

$$Q \approx \alpha X$$

• Optimization:

$$min \parallel Q - lpha X \parallel_F^2$$

- Iterative optimization
 - Given alpha, optimize Q

$$Q = q(x) = clamp(count(x/alpha), Q_{min}, Q_{max})$$

• Given Q, optimize alpha

$$lpha = rac{X^T Q}{Q^T Q}$$

Activation Quantization

- Extract features using a batch of images
- Optimize scaling factors
- Finetune with fixed scaling factors

Models	Sparsity	Activation	Weight	Top-1 Accuracy
Sparse	59.6 %	FP32	FP32	75.56
Sparse_AQ8	59.6 %	8-bit	FP32	75.82
Sparse_AQ7	59.6 %	7-bit	FP32	75.65
Sparse_AQ6	59.6 %	6-bit	FP32	75.51

Weight Quantization

- Optimize scaling factors
- Finetune with fixed scaling factors

Models	Sparsity	Activation	Weight	Top-1 Accuracy
Sparse	59.6 %	FP32	FP32	75.56
Sparse_AQ7	59.6 %	7-bit	FP32	75.65
Sparse_AQ7_W Q	59.6 %	7-bit	7-5-4-3-bit	75.05

Scoring

- Low-bit quantization allows low-bit accumulation
 - 1. Tree adder
 Different bitwidth for different levels of addition
 Max bitwidth for N elements:

$$L = l + \lceil log_2(N) \rceil$$

- 2. Integer adder Max bitwidth for all levels
- 3. FP16 adder
- 4. FP32 adder

Scoring

Final Results for ImageNet Classification

adder-type	op score	param score	final score
Tree	0.080077	0.049394	0.129463
Int	0.092668	0.049394	0.142063
FP16	0.088973	0.049394	0.138368
FP32	0.139955	0.049394	0.189349

0.34M parameters, 93.7M operations

20.2× compression, 12.5× acceleration

CIFAR-100 Classification Task

Model	Top-1 Accuracy
DensNet-172	84.00 %
DensNet-100	81.17 %
CONV-Prune-75%	81.01 %
Activation-4bit	80.24 %
CONV-Weight-4bit	80.28 %
FC-Prune-50%	80.38 %
FC-Weight-4bit	80.34 %

Final Results for CIFAR-100 Task

adder-type	op score	param score	final score
Tree	0.002805	0.001365	0.004169

49.8K parameters, 29.4M operations 732.6× compression, 356.5× accelerlation

Summary

- Proposed a network compression framework
 - Pruning
 - Quantization
- Practical tips
 - Robust analysis
 - Knowledge distillation
- The simplest method works good
 - With limited time!
- Extreme quantization
 - Binary/tenary
- Neural architecture search for composite compression

Thanks for all your attention!

Code: https://github.com/wps712/MicroNetChallenge

Peisong Wang

Xiangyu He

Tianli Zhao

Cong Leng

Yifan Zhang

Jian Cheng₁₈