2 بكالوريا علوم رياضية	تجريبي دورة يونيو 2015	الأكاديمية الجهوية للتربية و التكوين	
مدة الإنجاز: أربع ساعات	لمادة الرياضيات	جهة الرباط سلا زمور زعير	
المعامل: 09		نيابة الخميسات	
■ التمرين رقم 01: (03 نقط)			
🗢 نعتبر في المجموعة 🏿 المعادلة:			
$(E): 2x^{16} - x^{13} - 1 \equiv 0[34]$			
1)- أ- باستعمال خوارزمية أقليدس حدد 16 \wedge 13 .			0,25
(F):ا a -16 b = 1 : ب- إستنتج حلا خاصا للمعادلة		ب- إستنتج حلا خاصا للم	0,25
. ج- حل فــي المجموعة \mathbb{Z}^2 المعادلة (F) مبرزا مراحل الحل			0,5
. $x \wedge 17 = 1$ و $x \wedge 2 = 1$. فإن $x \wedge 2 = 1$ و $x \wedge 2 = 1$. فإن أن إذا كان x حلا للمعادلة $x \wedge 17 = 1$			0,5
$(x \equiv 1[2])$			
		$\equiv 1 \lfloor 2 \rfloor$ \downarrow	0,75
. (E) ثم إستنتج مجموعة حلول ($\forall x\in\mathbb{Z}$); $(x^{13}\equiv 1[17]\Leftrightarrow x\equiv 1[17])$: ثم إستنتج			0,75
التمرين رقم 02: (04 نقط)			
: نعتبر القانون $G=\mathbb{R}-\left\{rac{1}{\sqrt{2}} ight\}$ نعتبر القانون الجموعة $G=\mathbb{R}-\left\{rac{1}{\sqrt{2}} ight\}$			
$(\forall (a,b) \in G^2); a \perp b = a + b - ab\sqrt{2}$			
$(\forall (a,b) \in G^2);$	$; a \perp b = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} (a\sqrt{2} - 1)($	$(b\sqrt{2}-1)$: خقق أن -1 ا- تحقق	0,5
G ب- اِستنتج اُن $oldsymbol{\perp}$ قانون ترکیب داخلی فی			0,25
		رمرة $\left(G,\perp ight)$ زمرة $\left(G,\perp ight)$	0,5
. (G, \perp)	بين أن H زمرة جزئية من (H	$=\left]-\infty, \frac{1}{\sqrt{2}}\right[$: ب- نضع	0,5
	$egin{array}{ccc} \cdot 1 & 1 \ 1 & -1 \end{pmatrix}$ و فتات : $I = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$: فوفتات	- · · -	
	$= \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} \sqrt{2} - a & a \\ a & \sqrt{2} - a \end{pmatrix} / a \in$	`	
$(\forall a \in G); M(a) = I + I$	$\frac{a}{\sqrt{2}}.A$: وأن $(\forall n \in \mathbb{N}^*); A^n =$	$-(-2)^{n-1}.A$: بين أن $-(1)$	0,75
		ب- بين أن E جزء مستق	0,25

. $(\forall a \in G); f(a) = M(a)$: يلي خوG بما يلي G نعتبر التطبيق G المعرف من G نحو G

. E من M(a)من مصفوفة M(a) من ، (E, \times) من ، وحدا

 $(E,\check{ imes})$. $(E,\check{ imes})$ خو (G,\bot) من أ $(E,\check{ imes})$ خور أ

0,75

■ التمرين رقم 03: (03 نقط)

$$f(z) = \frac{iz^2}{z-1}$$
: نکن z من $\mathbb{C} - \{1\}$ نکن z

.
$$0 \prec \theta \prec \frac{\pi}{2}$$
 على الشكل المثلثي ، حيث : $u = i \tan \theta$ على الشكل المثلثي ، حيث -(1) 0,5

.
$$a=1-4i\sqrt{3}$$
 : حدن الجذرين المربعين للعدن العقدي -أ-(2 0,25

.
$$|z_1| = 1$$
: بحيث $(E): f(z) = \frac{1}{\sqrt{3}}$: نامعاندة تا ي z_2 نامعاندة ي z_2 بحيث z_3

.
$$(z_1)^6 - 27(z_2)^6 = 2$$
: ج- بین آن

$$. (E_2) = \{M(z) \in (P); |f(z)| = |z|\} , (E_1) = \{M(z) \in (P); f(z) \in i\mathbb{R}\}$$
 o,5

.
$$z_{B}=rac{1}{2}+irac{\sqrt{3}}{6}$$
 و $Z_{A}=-rac{1}{2}-irac{\sqrt{3}}{2}$: دنتکن A و B انتکن A انتکن A انتکن (4

.
$$\sqrt{3}$$
 طق B' صورة النقطة B بالتحاكي الذي مركزه O و نسبته B' مركزه O

$$\frac{5\pi}{6}$$
 بين أن: $R(A)=B'$ ، حيث R هو الدوران الذي مركزه R و زاويته R 0,25

ج- حدن الكتابة العقدية للتحويل
$$F=R\circ h$$
 ، ثم إستنتج أن صورة المستقيم (D) الذي معادلته $y=\sqrt{3}x$. معادلته $y=\sqrt{3}$ بالتحويل $y=\sqrt{3}$ مستقيم (D)

■ التمرين رقم 04: (3,5 نقطة)

0,5

: تتكن F الدالة المعرفة على \mathbb{R}^+ بما يلي \Leftrightarrow

$$\left(\forall x \in \mathbb{R}^+\right); F\left(x\right) = e^{-x^2} \int_0^x t^2 e^{-t^2} dt$$

.
$$\lim_{x \to +\infty} F(x)$$
 ثم إستنتج ($\forall x \in \mathbb{R}^{*+}$); $0 \le F(x) \le \frac{x^3}{3} e^{-x^2}$: فم إستنتج (-1) 0,5

$$\mathbb{R}^+$$
بين أن F قابلة للإشتقاق على \mathbb{R}^+ و أن \mathbb{R}^+ و أن F

.
$$G(x)=xe^{-x^2}-2\int_0^x t^2e^{-t^2}dt$$
: مين \mathbb{R}^+ بما يلي الدالة المعرفة على جيث G

$$G$$
. $\left(\forall x \in \left] 0, \frac{1}{2} \right]$; $G(x) \succ 0$: و أن $\left[\frac{1}{2}, +\infty \right]$ و أن $G(x) \succ 0$ تناقصية قطعا على المجال $G(x) \succ 0$

: يلى الدالة المعرفة على القطعة
$$[0,1]$$
 بما يلي H

.
$$(\forall x \in]0,1]$$
; $H(x) = F(-\ln x)$, $H(0) = 0$

رول على
$$H$$
 مجتمع أن الله ما مروط ما مرهناته والمحتمد المحتم H أ- بين أن المحتمد ا

.
$$a \succ \frac{1}{2}$$
 : ب- إستنتج أنه $(\exists! a \in \mathbb{R}^{*+}); F'(a) = 0$ و أن 0,75

■ التمرين رقم 05: (6,5 نقطة)

: يلي f الدالة المعرفة على المالة المعرفة -I

$$\cdot (\forall x \in \mathbb{R}); f(x) = (1+x^2)e^{-x}$$

.
$$+\infty$$
 و $-\infty$ جوار $-\infty$ ادرس الفرعين اللانهائيين للمنحنى المنحنى (C_f) جوار $-\infty$

.
$$f$$
 بین أن $(\forall x \in \mathbb{R}); f'(x) = -(x-1)^2 e^{-x}$ ثم ضع جدول تغیرات $(\forall x \in \mathbb{R}); f'(x) = -(x-1)^2 e^{-x}$ من من عبد ال

.
$$(C_f)$$
يين أن ، $(\forall x\in\mathbb{R}); f''(x) = (x^2-4x+3)e^{-x}$ ثم أدرس تقعر المنحنى $(\forall x\in\mathbb{R}); f''(x) = (x^2-4x+3)e^{-x}$ مين أن

. (
$$1cm$$
 هي الوحدة هي $\left(C_f\right)$ أرسم المنحني $\left(C_f\right)$ في معلم متعامل و ممنظم $\left(C_f\right)$ حيث الوحدة هي 0.5

ورق و استنتج مساحة الحيز
$$(E): y'' + 2y' + y = 2e^{-x}:$$
 و استنتج مساحة الحيز $(E): y'' + 2y' + y = 2e^{-x}:$ و المستقيمين اللذين معادلتهما و (C_f) و محور الأفاصيل و المستقيمين اللذين معادلتهما و (C_f)

: يلي المتالية المعرفة بما يلي -II نتكن $(u_n)_{n\in\mathbb{N}}$

$$. \left(\forall n \in \mathbb{N} \right); u_{n+1} = f\left(u_n\right) \mathfrak{z} u_0 = \frac{1}{3} \ln 2$$

.
$$lpha\in\left]\frac{\ln2}{3},1\right[$$
 : بين أن المعادلة $f\left(x
ight)=x$ تقبل حلا وحيدا $lpha$ في \mathbb{R} و أن المعادلة وميدا $f\left(x
ight)=x$

.
$$(\forall n \in \mathbb{N})$$
; $\frac{1}{3} \ln 2 \le u_n \le 1$: من أن -(2) 0,5

$$\left(\forall x \in \left[\frac{\ln 2}{3}, 1\right]\right); \left|f'(x)\right| \leq \frac{1}{2}$$
 بين أن $\left(\forall x \in \mathbb{R}\right); e^{-x} \geq 1 - x$ ثم إستنتج أن $\left(\forall x \in \mathbb{R}\right); e^{-x} \geq 1 - x$

$$(u_n)_{n\in\mathbb{N}}$$
 بين أن $(\forall n\in\mathbb{N}); |u_{n+1}-\alpha| \leq \frac{1}{2}|u_n-\alpha|$ ثم إستنتج أن المتتائية $(\forall n\in\mathbb{N}); |u_{n+1}-\alpha| \leq \frac{1}{2}|u_n-\alpha|$ متقارية محدد نهايتها .

: يلي يا يا المتاليتين المعرفتين بما يلي -III و $(b_n)_{n\in\mathbb{N}^*}$ و المتاليتين المعرفتين المع

$$. \left(\forall n \in \mathbb{N}^* \right); b_n = \frac{1}{n^2} \sum_{k=1}^n \left(f\left(\frac{k}{n}\right) \right)^2 \ \, \Im\left(\forall n \in \mathbb{N}^* \right); a_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

$$\lim_{n o +\infty} b_n = 0$$
: بین آ $\lim_{n o +\infty} a_n$ متقاربة محددا نهایتها و آ $\lim_{n o +\infty} a_n = 0$ متقاربة محددا

.
$$c_n = \prod_{k=1}^n \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right)\right)$$
: نضع نضع ، \mathbb{N}^* من n نضع -(2

.
$$(\forall x \in \mathbb{R}^+); x - \frac{1}{2}x^2 \le \ln(1+x) \le x$$
: آ- ٻين اُن

متقاربة و حدد نهايتها .

$$(c_n)_{n\in\mathbb{N}^*}$$
 . ثم بین آن المتنابیة $(\forall n\in\mathbb{N}^*); a_n-\frac{1}{2}b_n\leq \ln(c_n)\leq a_n$. ب- استنتج آن $(0,75)$