Cellini_Compito #32: ripasso

A) Data la sequenza S = {\$, *, \$, !, @, !, !, @, *, \$, \$, *, @, !, *, @}

- 1. calcolare l'entropia H(S) svolgendo tutti i passaggi
- 2. creare una codifica FLC con il numero minimo possibile
- 3. calcolare la distanza di Hamming tra tutti i simboli
- 4. assumendo la codifica 2) e calcolata la codeword o stringa di bit che rappresenta l'intera sequenza S calcolare il bit di parità pari e dispari
- 5. calcolare la checksum di S considerando la codifica 2) svolgendo tutti i passaggi
- 6. creare una codifica VLC di Huffman della sequenza S svolgendo tutti i passaggi
- 7. calcolare il rapporto di compressione tra il messaggio codificato con 2) e con 6)

$$$ = 4/16 * = 4/16 ! = 4/16 @ = 4/16$$

 $H = -4 * (1/4 * log_2 1/4) = 2 [bit/sym]$
 $S = \{\$, *, \$, !, @, !, !, @, *, \$, \$, *, @, !, *, @\}$

\$	00
*	10
!	01
@	11

codeword = 00100001110101111000001011011011

bit di parità dispari = 1

$$xor = 00 xor 10 = 10$$

$$10 \text{ xor } \$ = 10 \text{ xor } 00 = 10$$

$$10 \text{ xor } ! = 10 \text{ xor } 01 = 11$$

$$00 \text{ xor } ! = 00 \text{ xor } 01 = 01$$

$$01 \text{ xor } ! = 01 \text{ xor } 01 = 00$$

$$00 \text{ xor } @ = 00 \text{ xor } 11 = 11$$

$$01 \text{ xor } \$ = 01 \text{ xor } 00 = 01$$

$$01 \text{ xor } \$ = 01 \text{ xor } 00 = 01$$

$$01 \text{ xor } * = 01 \text{ xor } 10 = 11$$

\$	00
*	01
!	10
@	11

rapporto di compressione 32 : 32 = 1

- **B)** Data la seguenza S = {!, @, @, %, \$, @, *, \$, @, \$, *, *, !, *, !, \$}
 - 1. calcolare l'entropia H(S) svolgendo tutti i passaggi
 - 2. creare una codifica FLC con il numero minimo possibile di bit
 - 3. calcolare la distanza di Hamming tra tutti i simboli
 - 4. assumendo la codifica 2) e data la codeword o stringa di bit che rappresenta l'intera sequenza S calcolare il bit di parità pari e dispari
 - 5. calcolare la checksum di S considerando la codifica 2) svolgendo tutti i passaggi
 - 6. creare una codifica VLC di Huffman della sequenza S svolgendo tutti i passaggi
 - 7. calcolare il rapporto di compressione tra il messaggio codificato con 2) e con 6)

! = 3/16 @ = 4/16 % = 1/16 \$ = 4/16 * = 4/16
H = -3 * (
$$\frac{1}{4}$$
 * $\log_2 \frac{1}{4}$) - (3/16 * $\log_2 3/16$) - (1/16 * $\log_2 1/16$)= 1,5 + 0,4528 + 0,25 = 2,2028 [bit/sym]

!	000
@	001
%	010
\$	100
*	111

bit di parità dispari = 0

! xor @ = 000 xor 001 = 001

001 xor @ = 001 xor 001 = 000

000 xor % = 000 xor 010 = 010

010 xor \$ = 010 xor 100 = 110

110 xor @ = 110 xor 001 = 111

111 xor * = 111 xor 111 = 000

000 xor \$ = 000 xor 100 = 100

100 xor @ = 100 xor 001= 101

101 xor \$ = 101 xor 100 = 001

001 xor * = 001 xor 111 = 110

110 xor * = 110 xor 111 = 001

001 xor! =001 xor 000 = 001

001 xor * = 001 xor 111 = 110

110 xor! = 110 xor 000 = 110

110 xor \$ = 110 xor 100 = 010

checksum = 010

@	00
\$	10
*	10
!	110
%	111

rapporto di compressione 48 : 38,4 = 1,25

C) Dato il seguente codice fiscale: NTLBBB66E12H355 calcolare il check digit e riportare tutti i passaggi

char_pari = {T, B, B, 6, 1, H, 5} char_dispari = {N, L, B, 6, E, 2, 3, 5}

 $char_pari = \{19, 1, 1, 6, 1, 7, 5\} \\ char_dispari = \{20, 4, 0, 15, 9, 5, 7, 13\} \\ check digit = 113 \% 26 = 9 = J$