- Sullo scaffale della tua libreria è rimasto uno spazio vuoto ampio 3.2×10^{-4} hm tra un libro e un altro. Il tuo libro di storia è fatto di 510 pagine, ciascuna di spessore 8.0×10^{7} pm.
 - ▶ Puoi riporre il libro di storia nello scaffale della tua libreria?

11/10/2021

- ▶ Dopo quanti periodi di *clock* l'orologio del computer deve aumentare il valore dei minuti di uno?
- ▶ Per aprire un'immagine il computer deve portare a termine 2×10^9 istruzioni elementari: quanto tempo impiega ad aprirla?

 $[2,4 \times 10^{11} \text{ periodi; } 0,5 \text{ s}]$

1)
$$\frac{1 \text{ min}}{0,25 \text{ ms}} = \frac{60 \text{ s}}{0,25 \times 10^{-3} \text{ s}} = \frac{240 \times 10^{3}}{2,4 \times 10^{11}}$$

2)
$$t = (2 \times 10^{9})(0,25 \text{ ms}) = 0,5 \times 10^{9} \times 10^{-9} \text{ s} = 0,5 \text{ s}$$

- Un laser è in grado di emettere degli impulsi che hanno una durata di 4 ns. Confronta questa durata con quella di un fulmine, che in media vale 0,2 s e calcola:
 - quanti impulsi può emettere il laser in un arco di tempo pari alla durata media di un fulmine;
 - la durata di entrambi i fenomeni in ps.
 - Quanto tempo devi attendere perché siano emessi ottocento milioni di impulsi laser? Esprimi questo risultato in unità del Sistema Internazionale.

$$[5 \times 10^7; 4 \times 10^3 \text{ ps}, 2 \times 10^{11} \text{ ps}; 3,2 \text{ s}]$$

1)
$$0,23 = 2 \times 10^{-1} \Rightarrow 0,5 \times 10^{8} = 5 \times 10^{7}$$

 $4 \times 10^{-9} \Rightarrow 0,5 \times 10^{8} = 5 \times 10^{7}$

2)
$$0.25 = 0.2 \times 10^{12} \text{ pb} = 2 \times 10^{11} \text{ pb}$$

$$4 \text{ mb} = 4 \times 10^{-3} \text{ b} = 4 \times 10^{-3} \text{ pb}$$

$$= 4 \times 10^{3} \text{ pb}$$

$$= 4 \times 10^{3} \text{ pb}$$

$$1 \text{ pb} = 10^{-12} \text{ b}$$

$$1 \text{ mb} = 10^{-9} \text{ b}$$

$$1 \text{ mb} = 10^{-9} \text{ b}$$

3)
$$t=(4 \text{ ms})(8 \times 10^8) = (4 \times 10^{-9} \text{ J})(8 \times 10^8) =$$

$$= 32 \times 10^{-1} \text{ J} = \boxed{3,2 \text{ J}}$$

- Un vagone merci ha la forma di un parallelepipedo con base 2,5 m × 8,0 m e altezza 2,0 m. Viene riempito con scatole cubiche di lato 25 cm.
 - Esprimi il volume del vagone in metri cubi.
 - Esprimi il volume del vagone usando come unità di misura una scatola.

[40 m³; 2560 scatole]

- Un container per il trasporto delle merci, che ha un volume di $3,83 \times 10^7$ cm³ e una massa di $2,45 \times 10^6$ g, viene riempito con $1,525 \times 10^7$ g di merce.
 - ► Calcola la densità media del container pieno in g/cm³. $[4,62 \times 10^{-1} \text{ g/cm}^3]$

$$d = m = \frac{2,45 \times 10^{6} \text{ g} + 1,525 \times 10^{7} \text{ g}}{3,83 \times 10^{7} \text{ cm}^{3}} = \frac{2,45 \times 10^{6} \text{ g} + 15,25 \times 10^{6} \text{ g}}{3,83 \times 10^{7} \text{ cm}^{3}} = \frac{17,7 \times 10^{6} \text{ g}}{3,83 \times 10^{7} \text{ cm}^{3}} = \frac{17,7 \times 10^{6} \text{ g}}{3,83 \times 10^{7} \text{ cm}^{3}} = \frac{10^{3} \text{ g}}{3,83 \times 10^{7} \text{ cm}^{3}} = \frac{10^{3} \text{ g}}{10^{6} \text{ cm}^{3}} = \frac{10^{3} \text{ g}}{10^{6} \text{ cm}^{3}} = \frac{10^{3} \text{ kg}}{10^{6} \text{ cm}^{3}$$

$$4,62 \times 10^{-1} \frac{8}{\text{cm}^3} = 4,62 \times 10^{-1} \times 10^3 \frac{128}{\text{m}^3} = 4,62 \times 10^2 \frac{128}{\text{m}^3}$$

120 PER COMINCIARE

La definizione della densità d è data dalla formula (d = m/V).

▶ Trova le dimensioni fisiche della densità.

$$[d] = \left[\frac{m}{V}\right] = \frac{\left[\dots \dots \right]}{\left[V\right]} = \frac{\left[\dots \dots \right]}{\left[\dots \dots \right]} = \left[\dots \dots \dots \dots \dots \dots \right]$$

▶ Dalle dimensioni fisiche, ricava l'unità di misura della densità.

Ricava l'unità di misura della densità in funzione delle unità fondamentali dall'ultimo passaggio della risposta precedente.

ORA PROVA TU La celebre formula di Einstein che esprime l'equivalenza massa-energia è $E = mc^2$, dove c indica la velocità della luce nel vuoto.

Determina le dimensioni fisiche dell'energia a partire da questa formula.

$$[E] = [mc^2] = [m] \cdot [c^2] = [m] \cdot \left[\frac{\ell^2}{t^2}\right] = [m] \left[\ell^2\right] \left[t^{-2}\right]$$

Il valore dell'attrazione gravitazionale F fra due oggetti di massa M_1 e M_2 posti a distanza d si determina con la formula $F = G \frac{M_1 M_2}{d^2}$, dove G è una costante. La forza F nel Sistema Internazionale si misura in kilogrammi per metro diviso secondo al quadrato (kg·m/s²).

▶ Determina le dimensioni fisiche e le unità di misura della costante *G* nel Sistema Internazionale.

(JOULE)

$$G = \frac{F \cdot d^2}{M_1 M_2} \quad [G] = \frac{[F] \cdot [L^2]}{[m^2]} = \frac{[m] \cdot [L] \cdot [L^{-2}] \cdot [L^2]}{[m^2]} = \frac{[m^2]}{[m^2]} = \frac{[$$