

ADS AD VIDEO COSOUN

www.aduni.edu.pe

ANUAL SAN MARCOS

QUÍMICA

ELCTRÓLISIS I Semana 33

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

1. **Explicar** el proceso de electrólisis y los componentes de una celda electrolítica.

- 2. **Establecer** las semi reacciones que ocurren encada uno de las electrodos de una celda electrolítica que contiene:
 - una sal fundida.
 - salmuera.
 - agua acidulada y una solución diluida.

II. INTRODUCCIÓN

En nuestro que hacer diario hacemos uso de muchos productos como:

Las llaves cromadas de las cerraduras

Cables de cobre alta pureza

Desinfectantes industriales

¡Estos productos fueron posible obtenerlos, debido a la electrólisis!

ELECTRÓLISIS

III. CONCEPTO

La electrólisis es el proceso de descomposición de una sustancia por acción de la corriente eléctrica continua, donde se genera un reacción redox no espontanea.

Aplicación de la electrólisis:

En recubrimientos metálicos (Galvanostegia)

En la purificación de metales (electro refinación)

Cobre blíster 98 - 99% de Cu Cobre electrolítico 99,99% de Cu Obtención de nuevas sustancias

IV. CELDA ELECTRÓLITICA

Es el medio físico donde ocurre el proceso de electrolisis y esta constituido por:

- Tina o cuba electrolítica.
- Fuente de corriente continua.
- Electrodos.
- Electrolito.

Esquema grafica de una celda electrolítica:

Fuente de corriente

Es el medio que alimenta de corriente eléctrica continua en el proceso de electrólisis.

Tina o cuba electrolítica:

Es el recipiente empleado para contener al electrolito, solución o sal fundida, resistente al ataque ácido o calor.

Cable conductor externo

Por donde fluye los electrones del ánodo al cátodo

Electrodos:

Por lo general son barras metálicas, conductoras de la corriente eléctrica en cuya superficie se lleva acabo la reducción u oxidación

- Cátodo (-): ocurre la reducción
- Ánodo(+): ocúrrela oxidación

Electrolito:

Sustancia química conductora de la corriente eléctrica por tener iones en movimiento.

ANUAL SAN MARCOS 2021

Ejercicio:

Respecto a la electrólisis, indique la afirmación incorrecta.

- A) Es un proceso no espontáneo.
- B) El sentido de la corriente eléctrica es del ánodo al cátodo.
- C) En el cátodo, ocurre la reducción; y en el ánodo, la oxidación.
- D) Implica la conversión **de energía química** en energía eléctrica.

RESOLUCIÓN

 Piden indicar las proposiciones incorrecta con relación a la electrólisis.

A) CORRECTA

La electrolisis es un proceso no espontaneo o inducido por acción de la corriente eléctrica continua.

B) CORRECTA

En la electrolisis el sentido de la corriente es de ánodo a cátodo.

C) CORRECTA

En el proceso de electrólisis:

- En el cátodo ocurre la reducción (se gana electrones).
- En el ánodo ocurre la oxidación (se pierde electrones).

D) INCORRECTA

En la electrolisis la energía eléctrica se convierte en energía química

CLAVE: D

ADUNI GIOS

V. ASPECTOS CUALITATIVOS DE LA ELECTRÓLISIS

5.1. Electrólisis de sales fundidas:

Ejemplo:

Electrolisis del cloruro de sodio fundido (NaCl puro se funde a 801 °C)

☐ Las reacciones que ocurren en los electrodos son:

Cátodo (-):
$$(Na_{(l)}^{1+} + 1e^{-} \longrightarrow Na_{(l)}) \times 2$$

Ánodo (+): $(2Cl_{(l)}^{1-} - 2e^{-} \longrightarrow Cl_{2(g)}) \times 1$

Rxn Redox:
$$2Na_{(l)}^{1+} + 2Cl_{(l)}^{1-} \longrightarrow 2Na_{(l)} + 1Cl_{2(g)}$$
$$2NaCl_{(l)}$$

Electrólisis	Cátodo (-)	Ánodo (+)
$NaCl_{(l)}^{+1}$	$Na_{(l)}$	$\mathit{Cl}_{2(g)}$

GENERALIZANDO:

EN LA ELECTRÓLISIS DE UNA SUSTANCIA BINARIA FUNDIDA (LIQUIDA) A_nB_{m(I)} EN EL:

Electrólisis	Cátodo (-)	Ánodo (+)
$+m$ $-n$ $A_nB_{m(l)}$	$A_{(l)}$	$B_{2(g)}$

Cátodo (-): El catión de la sustancia se reduce

$$\mathbf{1}A_{(l)}^{m+} + \mathbf{m}e^{-} \longrightarrow \mathbf{1}A_{(l)}$$

Ánodo (+): El anión de la sustancia se oxida

$${}^{\mathbf{2}}B^{n-}_{(l)} - {}^{\mathbf{2}}ne^- \longrightarrow {}^{\mathbf{1}}B_{2(g)}$$

Ejemplo:

Prediga los productos obtenidos en la electrolisis de las siguientes sustancias con electrodos inertes:

- I) $MgBr_{2(l)}$
- II) $KCl_{(l)}$
- III) $Al_2O_{3(l)}$

Solución:

Electrólisis	Cátodo (-)	Ánodo (+)
$MgBr_{2(l)}$	$Mg_{(l)}$	$Br_{2(g)}$
$+1$ -1 $KCl_{(l)}$	$K_{(l)}$	$Cl_{2(g)}$
$Al_2^{+3}O_{3(l)}^{-2}$	$Al_{(l)}$	$O_{2(g)}$

ANUAL SAN MARCOS 2021

Ejercicio:

Respecto al proceso de electrólisis del cloruro de sodio fundido, señale la secuencia correcta de verdad (V) o falsedad (F).

- Se libera hidrógeno gaseoso en el ánodo.
- II. Se obtiene cloro gaseoso en el electrodo positivo.
- III. Se reduce el sodio, Na, en el cátodo.

 Piden indicar como verdad (V) o falsedad
 (F) las proposición referidas a la electrolisis del cloruro de solio fundido

Tenemos como datos:

ACADEIMIA	AUADEIMA
Cátodo (—)	Ánodo (+)
$Na_{(l)}$	$Cl_{2(g)}$
<u> </u>	<u> </u>
n ACADEMIA	
	$Na_{(l)}$

I. FALSEDAD (F)

En la electrólisis del $NaCl_{(l)}$, en el ánodo se libera $Cl_{2(g)}$

II. VERDAD (V)

En la electrólisis del $NaCl_{(l)}$, en el electrodo positivo o ánodo se libera $Cl_{2(g)}$

III. FALSEDAD (F)

En la electrólisis del $NaCl_{(l)}$, en el cátodo se reduce el ion sodio $\mathrm{Na^{1+}}$.

Rpta: FVF CLAVE: D

5.2. Electrólisis de soluciones acuosas

Muchas sustancias al estar disueltos en agua se disocian o ionizan generando iones los cuales debido a la corriente eléctrica continua tienen movilidad algunos llegando a experimentar el proceso de electrólisis.

a. Electrólisis de la salmuera

☐ Las reacciones que ocurren en los electrodos son:

Cátodo (-):
$$2H_2O_{(l)} + 2e^- \longrightarrow 1H_{2(g)} + 2OH_{(ac)}^-$$

$$+ 2Cl_{(ac)}^- - 2e^- \longrightarrow 1Cl_{2(g)}$$

Redox:
$$2H_2O_{(l)} + 2Cl_{(ac)}^- \longrightarrow 1H_{2(g)} + 1Cl_{2(g)} + 2OH_{(ac)}^-$$

$$2NaCl \qquad \qquad 2NaOH$$

Electrólisis	Cátodo (-)	Ánodo (+)
$NaCl_{(ac)}$	$H_{2(g)}$	$Cl_{2(g)}$

(+)

b. Electrólisis del agua acidulada:

Ejemplo:

Electrólisis del agua acidulada con ácido sulfúrico.

☐ Las reacciones que ocurren en los electrodos son:

Cátodo (-):
$$(2H_{(ac)}^{1+} + 2e^{-} \longrightarrow H_{2(g)})_{x2}$$

Ánodo (+):
$$(2H_2O_{(\ell)} - 4e^- \longrightarrow O_{2(g)} + 4H_{(ac)}^+) \times 1$$

Rxn Redox: $2H_2O_{(I)} \longrightarrow 2H_{2(g)} + O_{2(g)}$

Electrólisis	Cátodo (-)	Ánodo (+)
H_2^{-2} $H_2O_{(acidificado)}$	$H_{2(g)}$	$O_{2(g)}$

c. Electrólisis de soluciones acuosas diluidas:

Cuando la concentraciones de iones en una solución acuosa son muy baja en el proceso de electrólisis estos iones no se reducen y no se oxidan, sólo el agua se descompone en los electrodos liberando H_2 y O_2 . Ejemplo:

Electrólisis de una solución acuosa de NaCl diluida

☐ Las reacciones que ocurren en los electrodos son:

Cátodo (-):
$$(2H_2O_{(\ell)} + 2e^- \rightarrow H_{2(g)} + 2OH_{(ac)}^-) \times 2$$

Ánodo (+): $(2H_2O_{(\ell)} - 4e^- \rightarrow O_{2(g)} + 4H_{(ac)}^+) \times 1$
 $2H_2O_{(I)} \longrightarrow 2H_{2(g)} + O_{2(g)}$ (+)

Electrólisis	Cátodo (-)	Ánodo (+)
$^{+1}$ $^{-1}$ $NaCl_{(diluido)}$	$H_{2(g)}$	$O_{2(g)}$
$CuSO_{4(diluido)}$	$H_{2(g)}$	$O_{2(g)}$

ANUAL SAN MARCOS 2021

Ejercicio:

Señale cuál de las siguientes afirmaciones referidas a la electrólisis de la salmuera es correcta.

- A) Se obtiene sodio metálico en el cátodo.
- B) Se obtiene hidrógeno gaseoso en el cátodo, procedente del agua.
- C) Se forma el mismo número de moles de cloro en el ánodo y sodio en el cátodo.
- D) El proceso no consume energía.

RESOLUCIÓN

 Piden indicar la proposición incorrecta con relación a la electrolisis de la salmuera.

✓ Tenemos como datos:

Electrólisis	Cátodo (—)	Ánodo (+)
+1 -1 NaCl + H ₂ O	$H_{2(g)}$	$Cl_{2(g)}$
	<u> </u>	<u> </u>
Oxidación Reduc	 ción	

A) INCORRECTA

En el cátodo se obtiene $H_{2(g)}$

B) CORRECTA

En el cátodo se obtiene $H_{2(g)}$ producto de la reducción del H_2O

C) INCORRECTA

En los electrodos se forma: $\#eq-g(H_2) = \#eq-g(Cl_2)$

D) INCORRECTA

En todo proceso de electrolisis se consume energía eléctrica.

Rpta:

CLAVE: B

VI. BIBLIOGRAFÍA

- Química esencial; Lumbreras editores.
- Química, colección compendios académicos ADUNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química la ciencia central, Brow, Lemay, Bursten; 2003; PEARSON
- Química, segunda edición Timberlake; 2008, PEARSON
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

