Sorbonne Université M2 Informatique, Spécialité SAR Algorithmique Répartie Avancée Année universitaire 2020/2021

GRAPHES DYNAMIQUES

Swan DUBOIS

Contexte

- Graphe :
 - Outil mathématique
 - Modèle pour un ensemble d'acteurs (nœuds, sommets) avec des relations binaires (arcs, arêtes)
- Théorie très riche avec nombreux concepts bien définis
- Modèle général :
 - Tâches/travailleurs et possibilité d'affectations
 - Danseurs/danseuses et préférence de partenaires
 - Dépendances entre tâches
 - Réseau (informatique, social, professionnel...)

Contexte

- Algorithmique répartie "à la Lamport" :
 - Tout processus peut communiquer avec tout autre tout le temps
 - Modèle = graphe complet
- Algorithmique répartie avec point de vue "réseaux" :
 - Tout processus peut communiquer avec un sous-ensemble tout le temps
 - Modèle = graphe quelconque
- Algorithmique répartie pour réseaux "modernes" :
 - Tout processus peut communiquer avec un sous-ensemble à certains moments
 - Modèle = ???

Besoin de modèle/théorie pour écrire un algo ?

- OUI!
- Besoin d'accord sur les définitions pour écrire/comprendre l'algorithme
- Mais surtout pour la preuve et l'analyse
- Exemple : preuve par récurrence sur distance à un initiateur
- Distance = longueur du plus court chemin
- Chemin et longueur non clairement définis en dynamique...

Toutes les dynamicités se ressemblent-elles ?

- Mobilité vs. Dynamicité ?
 - Mobilité ⇒ Dynamicité
- Churn vs. Connexion/Déconnexion des nœuds?
 - Churn ⇒ Connexion/Déconnexion des nœuds
 - Connexion/Déconnexion des nœuds

 ⇒ Churn
- Types de dynamicité ?

Dynamicité contrôlée	Dynamicité subie prévisible	Dynamicité subie imprévisible
Réseau robots	Réseau satellites	Réseau ad-hoc
Réseau capteurs/actuateurs	Réseau bus/métro	Réseau véhiculaire
		Réseau téléphones
		Réseau capteurs

Modèles

- Idée = un graphe "qui bouge avec le temps"
- Nombreux modèles issus de nombreux cadres applicatifs distincts
- Aucun modèle ne s'impose vraiment
- Théorie encore jeune et peu développée (comparée aux graphes statiques)

Modèles : Graphes évolutifs/Evolving graphs

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- Temps discret $T = \{0, 1, 2, 3, \ldots\}$
- Graphe évolutif = une suite de sous graphe de G $G = G_0, G_1, G_2, G_3, \dots$ avec $\forall i \in T, G_i \subseteq G$

Modèles : Graphes évolutifs/Evolving graphs

- Simple, généralisation "naturelle" du statique
- Représentation visuelle peu compacte et pratique
- Adapté systèmes synchrones

Modèles : Graphe variant dans le temps/Time-Varying graphs

- Ensemble de sommets V fixe
- Un graphe G = (V, E)
- ullet Temps continu $T=\mathbb{R}^+$
- GVT = étiquetage de G avec une fonction de présence $\mathcal{G} = (G, \rho)$ avec $\rho : E \times T \to \{0, 1\}$ fonction de présence des arêtes

Modèles : Graphe variant dans le temps/Time-Varying graphs

- Simple, généralisation "naturelle" du statique
- Représentation visuelle compacte mais peu intuitive
- Adapté systèmes asynchrones
- Hypothèse courante : toute apparition d'une durée inférieure à la latence est ignorée
- Facile à enrichir : fonctions de présence des nœuds, de latence de communication, ...

Adaptation/Généralisation de la théorie des graphes

- Aussi peu que possible...
- Mais quasi obligatoire
- Parfois simple : voisinage de v

 - Graphe dynamique : ensemble de sommets partageant une arête avec v à un instant t
 - Tout devient fonction du temps!
- Parfois complexe et sujet à débat : connexité, ensemble couvrants, leader...

Degré maximal d'un graphe dynamique

- Graphe statique : Degré d'un nœud deg_v = nombre de voisins
- Graphe dynamique : Degré d'un nœud $deg_v(t)$ = nombre de voisins à un instant t
- Graphe statique : Degré maximal $\Delta_G = \max_{v \in V} \{deg_v\}$
- Graphe dynamique : Degré maximal ?
 - ullet Option 1 : fonction du temps $\Delta_{\mathcal{G}}(t) = \mathit{max}_{v \in V}\{\mathit{deg}_v(t)\}$
 - ullet Option 2 : valeur unique $\Delta_{\mathcal{G}} = \mathit{max}_{v \in V, t \in T} \{\mathit{deg}_v(t)\}$
 - Les deux sont valables, tout dépend de ce dont on a besoin !

Empreinte

- Idée : "résumer" le graphe dynamique en un graphe statique
- $E_{\mathcal{G}} = (V, E)$ avec
 - ullet V l'ensemble de sommets de ${\cal G}$
 - \bullet $\it E$ l'ensemble des arêtes qui sont présentes au moins une fois dans $\it \mathcal{G}$

- Attention aux conclusions hâtives sur l'empreinte !
 - Exemple : degré maximal
 - Δ_G n'est pas toujours Δ_{E_G} !
 - $\Delta_{\mathcal{G}} \leq \Delta_{E_{\mathcal{G}}}$

Chemin

- Dans un graphe statique G, chemin de u à v = suite d'arêtes adjacentes de G menant de u à v
- Longueur d'un chemin = nombre d'arêtes de ce chemin
- Notion centrale en théorie des graphes car permet de définir :
 - Distance de u à v = longueur du plus court chemin de u à v
 - Excentricité de v = plus grande distance entre v et un autre nœud
 - Diamètre de G = plus grande excentricité d'un nœud de G
 - Connexité = existence d'un chemin entre toute paire de nœud
 - etc.
- En algorithmique répartie, intuition d'un chemin = possibilité d'envoyer un message.

Chemin dans un graphe dynamique?

- Idée = conserver l'intuition de possibilité d'envoyer un message
- Chemin dans $G_i \not\Rightarrow$ possibilité d'envoyer un message
- Chemin dans tous les $G_i \Rightarrow$ possibilité d'envoyer un message
- Suffisant mais est-ce nécessaire ?

Trajet

- Il faut prendre en compte le temps et les latences
- Dépend d'une date de départ!
- Trajet de u à v au temps t_d = Chemin a_1, a_2, \ldots de u à v dans l'empreinte **tel que** :
 - a_1 est présente à un $t_1 \geq t_d$
 - a_2 est présente à un $t_2 \ge t_1 + 1$
 - etc.
- Relation non symétrique car trajet "orienté" par le temps

Caractéristiques des trajets

- ullet Date de départ eq Date de première émission
- Longueur du trajet = nombre d'arêtes traversées
- Durée = Date d'arrivée Date de première émission
- Qu'est-ce qu'un bon trajet ?
- Tout dépend de l'objectif :
 - Le plus court = minimise la longueur
 - Le plus rapide = minimise la durée
 - Arrivant le plus vite = minimise la date d'arrivée