

What is claimed:

1. An excipient for a metal chelate contrast agent, wherein said metal chelate contrast agent, M(L), comprises a metal ion complexed with
 5 an organic ligand, which excipient has the formula

wherein X and X' are each independently selected
 10 from calcium or zinc, L' is an organic ligand which may be L or another organic ligand which has a greater affinity for M than for calcium or zinc, and wherein m and n are each independently 1, 2 or 3.

15 2. The excipient of claim 1 wherein X = X'
 = calcium.

20 3. The excipient of claim 1 wherein L and L' are independently selected from linear and macrocyclic polyaminopolycarboxylic acids and derivatives thereof.

4. The excipient of claim 1 wherein L and L' are independently selected from compounds of the formula

25

30

wherein

Y is oxygen or $\begin{matrix} R_1 \\ | \\ -N- \end{matrix}$;

- 5 R₁ and R₂ are each independently hydrogen, alkyl, arylalkyl, aryl, alkoxy, hydroxyalkyl, hydroxyalkoxy,

15 wherein G is NH₂, NCS, $\begin{matrix} O \\ || \\ N-C-CH_2-X \end{matrix}$, CO₂H, NHR₄,

N(R₄)₂, CN, wherein R₄ is alkyl or hydroxyalkyl,

30 wherein n and m are zero or an integer from one to five, R₃ is hydrogen, hydroxyalkyl, alkoxy, alkyl, aryl, arylalkyl or hydroxyalkoxy and X is chloro, bromo or iodo.

5. The excipient of claim 1 wherein L and L' are independently selected from the compounds of the formula

5

10

or

10

C

wherein

X is -COOY, PO₃HY or -CONHOY;

15 Y is a hydrogen atom, a metal ion equivalent and/or a physiologically biocompatible cation of an inorganic or organic base or amino acid;

A is -CHR₂-CHR₃-, -CH₂CH₂(ZCH₂-CH₂)_m-,

20 $\begin{array}{c} \text{N}(\text{CH}_2\text{X})_2 \\ | \\ -\text{CH}_2-\text{CH}-\text{CH}_2 \end{array}$, or $\begin{array}{c} \text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_2\text{X})_2 \\ | \\ -\text{CH}_2-\text{CH}_2-\text{N}-\text{CH}_2-\text{CH}_2- \end{array}$, wherein X is as defined above;

each R₁ is hydrogen or methyl;

25 R₂ and R₃ together represent a trimethylene group or a tetramethylene group or individually are hydrogen atoms, lower alkyl groups (e.g., 1-8 carbons), phenyl groups, benzyl groups or R₂ is a hydrogen atom and R₃ is -(CH₂)_p-C₆H₄-W-protein where p is 0 or 1, W is -NH-, -NHCOCH₂- or -NHCS-, protein represents a protein residue;

30 m is 1, 2 or 3;

Z is an oxygen atom or a sulfur atom or the group NCH₂X or NCH₂CH₂OR₄ wherein X is as defined above and R₄ is C₁₋₈alkyl;

V is X or is -CH₂OH, -CONH(CH₂)_nX or -COB,
 wherein X is as defined above, B is a protein or
 lipid residue, n is an integer from 1 to 12, or if
 R₁, R₂ and R₃ are each hydrogen; then both V's
 5 together form the group

10 where X is as above, w is 1, 2 or 3, provided that
 at least two of the substituents Y represent metal
 ion equivalents of an element with an atomic number
 of 21 to 29, 42, 44 or 57 to 83.

15 6. The excipient of claim 1 wherein L and
 L' are independently selected from the compounds of
 the formula

wherein

Y is N or P;

25 A¹ and A² are each optionally branched C₂₋₆
 alkylene;

U¹, U², U³ and U⁴ are each a single bond or
 optionally branched C₁₋₆ alkylene;

D¹, D², D³, D⁴ are each O, S, C₁₋₆ alkylene
 or NR₇;

30 R₇ is hydrogen or C₁₋₄ alkylene having a
 COOR¹ terminal group;

R¹ is hydrogen or a metal ion equivalent;

- D⁵ is D¹ or CHR⁵, where R⁵ can be hydrogen or optionally unsaturated C₁₋₂₀ alkylene which may include imino, phenyleneoxy, phenyleneimino, amido, ester, O, S and/or N optionally substituted with OH, SH imino and/or amino and may carry a terminal functional group (optionally bonded to a macromolecule B);
- s and t are each 0-5;
- R₂ is hydrogen, optionally substituted C₁₋₁₆ alkyl, acyl, acylalkyl (optionally substituted by one or more OH or lower alkoxy groups), -CH₂-X-V, B or CH₂COB where X is CO, optionally branched C₁₋₁₀ alkylene (optionally substituted by 1 or more OH or lower alkoxy groups) or optionally branched C₂₋₂₃ alkylene interrupted by O;
- V is NR³R⁴ or COOR⁶;
- R³ and R⁴ are each hydrogen, C₁₋₁₆ alkyl (optionally substituted by 1 or more OH or lower alkoxy groups) or together complete a 5-6 membered heterocycle optionally containing another heteroatom;
- R₆ is hydrogen, C₁₋₁₆ saturated, unsaturated, linear branched or cyclic hydrocarbyl, aryl or aralkyl;
- R₂ or R₃ can be bonded by a C₂₋₂₀ alkylene chain (optionally having a terminal carbonyl group, optionally interrupted by 1 or more O or R¹ carboxymethylimino, or substituted by one or more OH, lower alkoxy or carboxy lower alkyl groups) to a second macromolecule of the formula

5 which second macromolecule D' can be the same as or different from the macromolecule of D.

7. The excipient of claim 1 wherein L and L' are independently selected from 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 1,4,7-tris-(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane,
 10 N,N-bis[2-[bis(carboxymethyl)-amino]ethyl]glycine, DTPA-bis methylamide, DTPA bis morpholinoamide and DTPA bis 1,2-dihydroxypropylamide.

15 8. The excipient of claim 1 wherein L and L' are the same organic ligand.

9. A contrast agent composition for use in magnetic resonance, x-ray, ultrasound and radio-diagnostic imaging comprising

20 a metal ion, M, complexed with an organic ligand, L;

a complex salt excipient of the formula

25 wherein X and X' are each independently selected from calcium or zinc, L' is an organic ligand which may be L or another organic ligand which has a greater affinity for M than for calcium or zinc,
 30 and wherein m and n are each independently 1, 2 or 3; and,

a pharmaceutically acceptable carrier therefor.

10. The composition of claim 9 where X and X' are each calcium.

11. The composition of claim 9 wherein L and L' are independently selected from linear and
5 macrocyclic polyaminopolycarboxylic acids and derivatives thereof.

12. The composition of claim 9 wherein L and L' are independently selected from compounds of the formula

10

15

wherein

20

Y is oxygen or $\overset{R_1}{\underset{|}{\text{N}}}$;

R₁ and R₂ are each independently hydrogen, alkyl, arylalkyl, aryl, alkoxy, hydroxyalkyl, hydroxyalkoxy,

25

30

wherein G is NH₂, NCS, $\text{N}(\text{C}-\text{CH}_2-\text{X})$, CO₂H, NHR₄,
 N(R₄)₂, CN, wherein R₄ is alkyl or hydroxyalkyl,

5

hydroxyalkoxy, -N(R)-, (where A is

10

an anion),

15

wherein n and m are zero or an integer from one to five, R₃ is hydrogen, hydroxyalkyl, alkoxy, alkyl, aryl, arylalkyl or hydroxyalkoxy and X is chloro, bromo or iodo.

20

13. The composition of claim 9 wherein L and L' are independently selected from the compounds of the formula

25

or

30

C

wherein

X is -COOY, PO₃HY or -CONHOY;

Y is a hydrogen atom, a metal ion equivalent and/or a physiologically biocompatible cation of an inorganic or organic base or amino acid;

A is $-\text{CHR}_2-\text{CHR}_3-$, $-\text{CH}_2\text{CH}_2(\text{ZCH}_2-\text{CH}_2)_m-$,

5 $\text{N}(\text{CH}_2\text{X})_2$ $\text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_2\text{X})_2$
 $-\text{CH}_2-\overset{\text{l}}{\underset{\text{CH}-\text{CH}_2}{\text{C}}}-\text{CH}_2$, or $-\text{CH}_2-\text{CH}_2-\overset{\text{l}}{\underset{\text{N}-\text{CH}_2-\text{CH}_2-}{\text{C}}}-$, wherein
X is as defined above;

each R₁ is hydrogen or methyl;

10 R₂ and R₃ together represent a trimethylene group or a tetramethylene group or individually are hydrogen atoms, lower alkyl groups (e.g., 1-8 carbons), phenyl groups, benzyl groups or R₂ is a hydrogen atom and R₃ is $-(\text{CH}_2)_p-\text{C}_6\text{H}_4-\text{W-protein}$ where p is 0 or 1, W is -NH-, -NHCOCH₂- or -NHCS-, protein represents a protein residue;

15 m is 1, 2 or 3;

20 Z is an oxygen atom or a sulfur atom or the group NCH₂X or NCH₂CH₂OR₄ wherein X is as defined above and R₄ is C₁₋₈alkyl;

25 V is X or is $-\text{CH}_2\text{OH}$, $-\text{CONH}(\text{CH}_2)_n\text{X}$ or $-\text{COB}$, wherein X is as defined above, B is a protein or lipid residue, n is an integer from 1 to 12, or if R₁, R₂ and R₃ are each hydrogen; then both V's together form the group

25

30 where X is as above, w is 1, 2 or 3, provided that at least two of the substituents Y represent metal ion equivalents of an element with an atomic number of 21 to 29, 42, 44 or 57 to 83.

14. The composition of claim 9 wherein L and L' are independently selected from the compounds of the formula

wherein

10 Y is N or P;

A^1 and A^2 are each optionally branched C_{2-6} alkylene;

U^1 , U^2 , U^3 and U^4 are each a single bond or optionally branched C_{1-6} alkylene;

15 D^1 , D^2 , D^3 , D^4 are each O, S, C₁₋₆ alkylene
or NR₇;

R₇ is hydrogen or C₁₋₄ alkylene having a COOR¹ terminal group;

R^1 is hydrogen or a metal ion equivalent;

20 D⁵ is D¹ or CHR⁵, where R⁵ can be hydrogen
or optionally unsaturated C₁₋₂₀ alkylene which may
include imino, phenyleneoxy, phenyleneimino, amido,
ester, O, S and/or N optionally substituted with
OH, SH imino and/or amino and may carry a terminal
25 functional group (optionally bonded to a
macromolecule B):

s and t are each 0-5:

30 R₂ is hydrogen, optionally substituted C₁₋₁₆ alkyl, acyl, acylalkyl (optionally substituted by one or more OH or lower alkoxy groups), -CH₂-X-V, B or CH₂COB where X is CO, optionally branched C₁₋₁₀ alkylene (optionally substituted by 1 or more OH or lower alkoxy groups) or optionally branched C₂₋₂₃ alkylene interrupted by O;

V is NR³R⁴ or COOR⁶;

- R³ and R⁴ are each hydrogen, C₁₋₁₆ alkyl (optionally substituted by 1 or more OH or lower alkoxy groups) or together complete a 5-6 membered heterocycle optionally containing another heteroatom;
- 5 R₆ is hydrogen, C₁₋₁₆ saturated, unsaturated, linear branched or cyclic hydrocarbyl, aryl or aralkyl;
- 10 R₂ or R₃ can be bonded by a C₂₋₂₀ alkylene chain (optionally having a terminal carbonyl group, optionally interrupted by 1 or more O or R¹ carboxymethylimino, or substituted by one or more OH, lower alkoxy or carboxy lower alkyl groups) to
- 15 a second macromolecule of the formula

which second macromolecule D' can be the same as or different from the macromolecule of D.

15. The composition of claim 9 wherein L and L' are independently selected from 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane, N,N-bis[2-[bis(carboxymethyl)-amino]ethyl]glycine, DTPA bis methylamide, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DTPA bis morpholinoamide and DTPA bis 1,2-dihydroxypropylamide.

16. The composition of claim 9 wherein L and L' are the same organic ligand.

17. The composition of claim 9 wherein the mole ratio of said complex salt to said metal chelate contrast agent is between about 0.05 and 10 percent.

18. The composition of claim 9 wherein said metal ion is selected from paramagnetic metal atoms, lanthanide series elements, yttrium, and the transition series elements.

19. The composition of claim 18 wherein said paramagnetic metals are selected from gadolinium(III), dysprosium(III), manganese(II), manganese(III), chromium(III), iron(II) and iron(III).

20. The composition of claim 9 wherein said metal ion complexed with an organic ligand is gadolinium(III) 1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane and said excipient is calcium bis[1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraaza-cyclododecanatocalcium(II)].

21. The composition of claim 9 wherein said metal ion complexed with an organic ligand is N-methylglucamine gadolinium (III) 1,4,7,10-tetra-azacyclododecane-N,N',N'',N'''-tetraacetic acid and said excipient is calcium [1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetatocalcium(II)].

22. The composition of claim 9 wherein said metal ion complexed with an organic ligand is di-N-methylglucaminium gadolinium(III) N,N-bis[2-[bis(carboxymethyl)-amino]ethyl]glycine and said excipient is calcium bis[diethylenetriamine-N,N',N'',N'''-pentaacetatocalcium(II)].

23. The composition of claim 9 wherein said metal ion complexed with an organic ligand is diethylene triamine pentaacetato-bis methylamide-gadolinium(III) and said excipient is calcium bis[diethylenetriamine-N,N'N',N'',N''-pentaacetato-bis methylamide-calcium(II)].
- 5 24. The composition of claim 9 wherein said metal ion complexed with an organic ligand is gadolinium(III) 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid and said excipient is calcium bis[1,4,7,10-tetraazacyclododecane-1,4,7-triacetato-calcium(II)].
- 10 25. The composition of claim 9 wherein said metal ion complexed with an organic ligand is gadolinium (III) DTPA bis morpholinoamide and said excipient is calcium bis [DTPA-bis morpholinamido calcium (II)].
- 15 26. The composition of claim 9 wherein said metal ion complexed with an organic ligand is gadolinium (III) DTPA bis 1,2-dihydroxypropylamide and said excipient is calcium bis[DTPA bis 1,2-dihydroxypropylamido calcium (II)].
- 20 27. A contrast agent composition comprising a metal chelate which is gadolinium (III) 1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane; an excipient which is calcium bis[1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecanatocalcium(II)];
- 25 30 a buffer; acidic and/or basic solution sufficient to adjust pH of said composition to a desired value; and water.

28. In a method of diagnostic imaging which employs an agent comprising a metal ion, M, complexed with an organic ligand, L, and a pharmaceutically acceptable carrier therefor, the
 5 improvement wherein said agent further includes an excipient of the formula

10 wherein X and X' are each independently selected from calcium or zinc, L' is an organic ligand which may be L or another organic ligand which has a greater affinity for M than for calcium or zinc, and wherein m and n are each independently 1, 2 or
 15 3.

29. The method of claim 28 wherein X and X' are each calcium.

30. The method of claim 28 wherein L and L' are independently selected from linear and
 20 macrocyclic polyaminopolycarboxylic acids and derivatives thereof.

31. The method of claim 28 wherein L and L' are independently selected from compounds of the formula

25

wherein

Y is oxygen or $-\overset{\text{R}_1}{\underset{|}{\text{N}}}-$;

- 5 R_1 and R_2 are each independently hydrogen, alkyl, arylalkyl, aryl, alkoxy, hydroxyalkyl, hydroxyalkoxy,

10

15

wherein G is NH_2 , NCS , $\text{N}-\overset{\text{O}}{\underset{\text{H}}{\text{C}}}-\text{CH}_2-\text{X}$, CO_2H , NHR_4 ,

$\text{N}(\text{R}_4)_2$, CN , wherein R_4 is alkyl or hydroxyalkyl,

20

hydroxyalkoxy, $-\text{N}\left(\begin{array}{c} \text{O} \\ \parallel \\ \text{C} \\ | \\ \text{C} \\ \parallel \\ \text{O} \end{array}\right)$, $\text{C}_6\text{H}_5-\text{N}_2^+\text{A}^-$ (where A is

25

an anion), O-alkyl- , $-\text{CH}\left(\begin{array}{c} (\text{CH}_2)_n-\text{SH} \\ | \\ (\text{CH}_2)_m-\text{SH} \end{array}\right)$,

30

wherein n and m are zero or an integer from one to five, R_3 is hydrogen, hydroxyalkyl, alkoxy, alkyl, aryl, arylalkyl or hydroxyalkoxy and X is chloro, bromo or iodo.

32. The method of claim 28 wherein L and L' are independently selected from the compounds of the formula

5

or

10

wherein

X is -COOY, PO₃HY or -CONHOY;

15 Y is a hydrogen atom, a metal ion equivalent and/or a physiologically biocompatible cation of an inorganic or organic base or amino acid;

A is -CHR₂-CHR₃- , -CH₂CH₂(ZCH₂-CH₂)_m- ,

20 $\begin{array}{ccc} \text{N}(\text{CH}_2\text{X})_2 & & \text{CH}_2-\text{CH}_2-\text{N}(\text{CH}_2\text{X})_2 \\ | & & | \\ -\text{CH}_2-\text{CH}-\text{CH}_2 & , \text{ or } & -\text{CH}_2-\text{CH}_2-\text{N}-\text{CH}_2-\text{CH}_2- \end{array}$, wherein
X is as defined above;

each R₁ is hydrogen or methyl;

25 R₂ and R₃ together represent a trimethylene group or a tetramethylene group or individually are hydrogen atoms, lower alkyl groups (e.g., 1-8 carbons), phenyl groups, benzyl groups or R₂ is a hydrogen atom and R₃ is -(CH₂)_p-C₆H₄-W-protein where p is 0 or 1, W is -NH-, -NHCOCH₂- or -NHCS-, protein represents a protein residue;

30 m is 1, 2 or 3;

Z is an oxygen atom or a sulfur atom or the group NCH₂X or NCH₂CH₂OR₄ wherein X is as defined above and R₄ is C₁₋₈alkyl;

V is X or is -CH₂OH, -CONH(CH₂)_nX or -COB,
wherein X is as defined above, B is a protein or
lipid residue, n is an integer from 1 to 12, or if
R₁, R₂ and R₃ are each hydrogen; then both V's
5 together form the group

10 where X is as above, w is 1, 2 or 3, provided that at least two of the substituents Y represent metal ion equivalents of an element with an atomic number of 21 to 29, 42, 44 or 57 to 83.

33. The method of claim 28 wherein L and L'
15 are independently selected from the compounds of
the formula

wherein

Y is N or P;

A¹ and A² are each optionally branched C₂₋₆ alkylene;

U^1 , U^2 , U^3 and U^4 are each a single bond or optionally branched C₋₆ alkylene;

D^1 , D^2 , D^3 , D^4 are each O, S, C_{1-6} alkylene or NR_2 ;

30 R₇ is hydrogen or C₁₋₄ alkylene having a COOR¹ terminal group:

R^1 is hydrogen or a metal ion equivalent:

- D⁵ is D¹ or CHR⁵, where R⁵ can be hydrogen or optionally unsaturated C₁₋₂₀ alkylene which may include imino, phenyleneoxy, phenyleneimino, amido, ester, O, S and/or N optionally substituted with
- 5 OH, SH imino and/or amino and may carry a terminal functional group (optionally bonded to a macromolecule B);
- s and t are each 0-5;
- R₂ is hydrogen, optionally substituted C₁₋₁₆ alkyl, acyl, acylalkyl (optionally substituted by one or more OH or lower alkoxy groups), -CH₂-X-V, B or CH₂COB where X is CO, optionally branched C₁₋₁₀ alkylene (optionally substituted by 1 or more OH or lower alkoxy groups) or optionally branched C₂₋₂₃
- 10 alkylene interrupted by O;
- 15 V is NR³R⁴ or COOR⁶;
- R³ and R⁴ are each hydrogen, C₁₋₁₆ alkyl (optionally substituted by 1 or more OH or lower alkoxy groups) or together complete a 5-6 membered
- 20 heterocycle optionally containing another heteroatom;
- R₆ is hydrogen, C₁₋₁₆ saturated, unsaturated, linear branched or cyclic hydrocarbyl, aryl or aralkyl;
- 25 R₂ or R₃ can be bonded by a C₂₋₂₀ alkylene chain (optionally having a terminal carbonyl group, optionally interrupted by 1 or more O or R¹ carboxymethylimino, or substituted by one or more OH, lower alkoxy or carboxy lower alkyl groups) to
- 30 a second macromolecule of the formula

5 which second macromolecule D' can be the same as or different from the macromolecule of D.

34. The method of claim 28 wherein L and L' are independently selected from 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 1,4,7-tris-(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane, N,N-bis[2-[bis(carboxymethyl)-amino]ethyl]glycine, DTPA-bis methylamide, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DTPA bis morpholinoamide and DTPA bis 1,2-dihydroxypropylamide.

35. The method of claim 28 wherein L and L' are the same organic ligand.

36. The method of claim 28 wherein the mole ratio of said complex salt to said metal chelate contrast agent is between about 0.05 and 10 percent.

37. The method of claim 28 wherein said metal ion is selected from paramagnetic metal atoms, lanthanide series elements, yttrium, and the transition series elements.

38. The method of claim 28 wherein said paramagnetic metals are selected from gadolinium(III), octahedral manganese(II), chromium(III), and iron(III).

39. The method of claim 28 wherein said metal ion complexed with an organic ligand is gadolinium(III) 1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraazacyclododecane and
5 said excipient is calcium bis[1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-tetraaza-cyclododecanatocalcium(II)].

40. The method of claim 28 wherein said metal ion complexed with an organic ligand is
10 N-methylglucamine gadolinium (III) 1,4,7,10-tetra-azacyclododecane-N,N',N",N'''-tetraacetic acid and said excipient is calcium [1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetatocalcium(II)].

41. The method of claim 28 wherein said
15 metal ion complexed with an organic ligand is di-Nmethylglucamine gadolinium(III) N,N-bis[2-[bis-(carboxymethyl)-amino]ethyl]glycine and said excipient is calcium bis[diethylenetriamine-N,N',N',N",N"-pentaacetatocalcium(II)].

20 42. The method of claim 28 wherein said metal ion complexed with an organic ligand is gadolinium(III) N,N-bis[2-[bis(carboxymethyl)-amino]ethyl]glycine-bis methylamide and said
excipient is calcium bis[diethylenetriamine-N,N',N",N"-pentaacetato-bis methylamide-
25 calcium(II)].

43. The method of claim 28 wherein said metal ion complexed with an organic ligand is gadolinium(III) 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid and said excipient is calcium bis[1,4,7,10-tetraazacyclododecane-1,4,7-triacetato-calcium(II)].

5 44. The method of claim 28 wherein said metal ion complexed with an organic ligand is gadolinium (III) DTPA bis morpholinoamide and said 10 excipient is calcium bis [DTPA-bis morpholinamido calcium (II)].

15 45. The method of claim 28 wherein said metal ion complexed with an organic ligand is gadolinium (III) DTPA bis 1,2-dihydroxypropylamide and said excipient is calcium bis[DTPA bis 1,2-dihydroxypropylamido calcium (II)].

20 46. The method of claim 28 wherein said contrast agent composition comprising
 a metal chelate which is gadolinium (III)
 1,4,7-tris(carboxymethyl)-10-(2'-hydroxypropyl)-
 1,4,7,10-tetraazacyclododecane;
 an excipient which is calcium bis[1,4,7-
 tris(carboxymethyl)-10-(2'-hydroxypropyl)-1,4,7,10-
 tetraazacyclododecanatocalcium(II)];
25 a buffer;
 acidic and/or basic solution sufficient to
 adjust pH of said composition to a desired value;
 and
 water.