Dimensionnement de la MAPSE

Description du modèle :

On considère ici une MAPSE pour Machine à Aimants Permanents Sans Encoches. Le modèle décrit ci-après est tiré de [1] et [2].

Nomenclature:

- B_e induction à vide dans l'entrefer en T
- B_{iron} l'induction du fer en T
- C l'épaisseur des culasses en m
- D le diamètre d'alésage en m
- e l'entrefer mécanique en m
- E l'épaisseur d'entrefers en m
- E_{ch} l'échauffement de la machine en $A^2.m^{-3}$
- J_{cu} densité de courant dans le cuivre en $A.m^{-2}$
- k_r le coefficient de remplissage du bobinage (sans unité)
- K_f le coefficient de fuites inter-polaires (sans unité)
- l_a l'épaisseur des aimants en m
- L la longueur du fer en m
- p le nombre de paires de pôles de la machine (sans unité)
- P l'aimantation en T
- P_j les pertes par effet Joules en W
- V_a le volume des aimants en m^3
- V_u le volume des parties utiles en m^3
- β le coefficient d'arc polaire (sans unité)
- Γ_{em} le couple électromagnétique en N.m
- Δ_p le double pas polaire en m
- $-\lambda$ le facteur de forme de la machine (sans unité)
- ρ_{cu} la résistivité du cuivre en $\Omega.m$

Equations:

$$-C = \frac{\pi \beta B_e}{4pB_{iron}} D$$

$$-p = \frac{\pi D}{\Delta_p}$$

$$-V_u = \pi \frac{D}{\lambda} (D + E - e - l_a)(2C + E + e + l_a)$$

$$-V_a = \pi \beta l_a \frac{D}{\lambda} (D - 2e - l_a)$$

$$-P_j = \pi \rho_{cu} \frac{D}{\lambda} (D + E)E_{ch}$$

Cahier des Charges:

Dans cet exemple, on fixe le couple de la MAPSE ainsi qu'un certain nombre de grandeurs désignées comme paramètres et on cherche les variables de décision qui minimisent le volumes des parties utiles, le volume des aimants et la puissance joules tout en respectant les contraintes.

Variables de Décision						
Paramètre	Valeur min	Valeur max	Valeur initiale	Unité		
B_e	0.1	1.0	0.6284	T		
B_{iron}	1.50			T		
C	0.001	0.05	0.009426	m		
D	0.01	0.5	0.3183	m		
e	0.0010	0.0050	0.0025	m		
E	0.001	0.05	0.00571	m		
E_{ch}	10^{+11}			$A^2.m^{-3}$		
J_{cu}	$1.0 * 10^5$	$1.0 * 10^7$	$5.0 * 10^6$	$A.m^{-2}$		
k_r	0.7			(/)		
K_f	0.01	0.3	0.348	(/)		
l_a	0.001	0.05	0.025	m		
L	0.004	0.5	0.25	m		
p	1	10	8	(/)		
P	0.90			T		
β	0.8	1	0.9	(/)		
Δ_p	0.100			m		
ρ_{cu}	$0.018 * 10^{-6}$			$\Omega.m$		

Sorties						
Paramètre	Type	Valeur	Unité			
Γ_{em}	Fixe	10	N.m			
λ	Contraint par intervalle	[0.02; 125]	(/)			
V_u	Object if	_	m^3			
V_a	Object if	_	m^3			
P_j	Objectif	_	W			

${\bf F} onction \ Object if:$

$$f_{obj}(V) = \frac{V_u(V)}{min(V_u)} + \frac{V_a(V)}{min(V_a)} + \frac{P_j(V)}{min(P_j)}$$

<u>Test de Fiabilité :</u>

Afin de vérifier la validité du modèle proposé, il convient de tester ce dernier avec plusieurs sets de valeurs. Vous trouverez ci-après un ensemble de valeurs d'entrée et les résultats attendus sur la base des valeurs de [1] en ayant corrigé les quelques coquilles qui s'y trouvaient. Ces 4 sets correspondent à la minimisation individuelle des paramètres V_u , V_a et P_j pour enfin minimiser la somme normalisée (divisés par les minimums trouvés) de ces trois grandeurs.

Quantité minimisée	V_u	V_a	P_{j}	$\frac{V_u}{V_{um}} + \frac{V_a}{V_{am}} + \frac{P_j}{P_{jm}}$
B_e	0.4536	0.1439	0.6889	0.4435
C	0.0060	0.0019	0.0115	0.005914
D	0.3183	0.3183	0.3183	0.3183
e	0.0010	0.0010	0.0010	0.0010
E	0.0043	0.0043	0.0050	0.0043
J_{cu}	$5.764 * 10^6$	$5.764 * 10^6$	$5.345 * 10^6$	$5.764 * 10^6$
K_f	0.1998	0.1998	0.2827	0.1998
l_a	0.0055	0.0010	0.0361	0.005216
L	0.0110	0.0347	0.0067	0.011256
p	10	10	10	10
β	0.8	0.8	1	0.8
λ	28.93	9.173	47.51	14.34
V_u	$2.4991 * 10^{-4}$	$3.530*10^{-4}$	$3.922 * 10^{-4}$	$2.4998 * 10^{-4}$
V_a	$0.4726 * 10^{-4}$	$0.2750 * 10^{-4}$	$2.1291*10^{-4}$	$0.4594 * 10^{-4}$
P_j	20.067	63.302	12.235	20.517
$\frac{V_u}{V_{um}} + \frac{V_a}{V_{am}} + \frac{P_j}{P_{jm}}$	4.359	7.586	10.312	4.348

Références

- [1] A. D. Kane, B. Nogarede, and M. L. Mazenc, "Le dimensionnement des actionneurs électriques : un problème de programmation non linéaire," *Journal de la Physique III*, pp. 293–299, feb 1993.
- [2] F. Messine, B. Nogarede, and J.-L. Lagouanelle, "Optimal design of electromechanical actuators: A new method based on global optimization," *IEEE TRANSACTIONS ON MAGNETICS*, pp. 303–307, jan 1998.