Learning To Rank:

— From RankNet to LambdaRank to LambdaMart

Fuka at 2016.09.23

Outline

- Why Learning to Rank(LTR)
- Simple Introduce to LTR
- RankNet
- LambdaRank
- LambdaMart
- Summary

Why Learning to Rank

- 1.A large number of linear models In Search Engine
 - 1) Speed is king
 - 2) Intuitively
 - 3) Easily achievable
- 2. Manual parameter tuning is usually difficult and lead to overfitting
 - 1) Machine Learning

Evaluation Measure

1. WTA(Winner Takes All)

Zero:Top document for a query is relevant, otherwise one

2. Pair-wise Error

Counts the number of pairs that are in the errer order

3. MAP(Mean Average Precision)

$$AP = \frac{\sum_{i:relvance}^{n} P_i / R_i}{n}$$

4. NDCG(Normalized Discounted Cumulative Gain)

$$NDCG = \frac{1}{IDCG} \cdot \sum_{i=1}^{n} \frac{2^{y_i} - 1}{\log(1+i)}$$

Learning to Rank Framework

Pointwise Method

Table 2.7: Characteristics of Pointwise Approach		
Pointwise Approach (Classification)		
	Learning	Ranking
Input	feature vector	feature vectors
	x	$\mathbf{x} = \{x_i\}_{i=1}^n$
Output	category	ranking list
	y = classifier(f(x))	$sort(\{f(x_i)\}_{i=1}^n)$
Model	classifier $(f(x))$	ranking model $f(x)$
Loss	classification loss	ranking loss
Pointwise Approach (Regression)		
	Learning	Ranking
Input	feature vector	feature vectors
	x	$\mathbf{x} = \{x_i\}_{i=1}^n$
Output	real number	ranking list
	y = f(x)	$sort(\{f(x_i)\}_{i=1}^n)$
Model	regression model $f(x)$	ranking model $f(x)$
Loss	regression loss	ranking loss
Pointwise Approach (Ordinal Classification)		
	Learning	Ranking
Input	feature vector	feature vectors
	x	$\mathbf{x} = \{x_i\}_{i=1}^n$
Output	ordered category	ranking list
	y = threshold(f(x))	$sort(\{f(x_i)\}_{i=1}^n)$
Model	threshold(f(x))	ranking model $f(x)$
Loss	ordinal classification loss	ranking loss

Advantage

- 1) Speedly
- 2) Low complexity

Shortcoming

- 1) General performance
- 2) Ignore document pairs
- 3) Ignore the relevance of document and query.

Pairwise Method

Table 2.8: Characteristics of Pairwise Approach			
Pairwise Approach (Classification)			
	Learning	Ranking	
Input	feature vectors	feature vectors	
	$x^{(1)}, x^{(2)}$	$\mathbf{x} = \{x_i\}_{i=1}^n$	
Output	pairwise classification	ranking list	
	classifier $(f(x^{(1)}) - f(x^{(2)}))$	$sort(\{f(x_i)\}_{i=1}^n)$	
Model	classifier $(f(x))$	ranking model $f(x)$	
Loss	pairwise classification loss	ranking loss	
Pairwise Approach (Regression)			
	Learning	Ranking	
Input	feature vectors	feature vectors	
	$x^{(1)}, x^{(2)}$	$\mathbf{x} = \{x_i\}_{i=1}^n$	
Output	pairwise regression	ranking list	
	$f(x^{(1)}) - f(x^{(2)})$	$sort(\{f(x_i)\}_{i=1}^n)$	
Model	regression model $f(x)$	ranking model $f(x)$	
Loss	pairwise regression loss	ranking loss	

Advantage

- 1) care document pairs
- 2) easily to got the pairs

Shortcoming

- 1) Only order but not position
- 2) Vastly different to pairs number between querys

Listwise Method

Training as Query

- 1. Measure specific: usch as L(F(x), y) = exp(-NDCG)
- 2.Non-measure specific:The loss function not relate to evaluate measure

Advantage

1)Generally outperformance then other method

Shortcoming

2)Two complex

RankNet:ICML2005

Target Probability

$$\overline{P}_{i,j} = P(D_i \triangleright D_j)$$

Modeled Probability

$$P_{i,j} \equiv \frac{e^{o_{i,j}}}{1 + e^{o_{i,j}}} \equiv \frac{1}{1 + e^{-o_{i,j}}}$$
 $o_{i,j} = f(x_i) - f(x_j)$

Cross entropy as the loss function

$$C_{i,j} = -\bar{P}_{i,j}logP_{i,j} - (1 - \bar{P}_{i,j})log(1 - P_{i,j})$$

 $C_{i,j}$ can write as:

$$C_{i,j} = -\bar{P}_{i,j}o_{i,j} + log(1 + e^{o_{i,j}})$$

So when $\overline{P}_{i,j} = 1$ Cross Entropy will change to:

$$C_{i,j} = log(1 + e^{-o_{i,j}})$$

Partial derivation of the loss function with O

$$\frac{\partial C}{\partial o_i} = \left(-\bar{P}_{i,j} + \frac{e^{o_i - o_j}}{1 + e^{o_i - o_j}}\right) = \left(-\bar{P}_{i,j} + P_{i,j}\right) = -\frac{\partial C}{\partial o_j}$$

Use gradient descent to optimize the Cross Entropy loss

$$w_k \to w_k - \eta \frac{\partial C}{\partial w_k} = w_k - \eta \left(\frac{\partial C}{\partial o_i} \frac{\partial o_i}{\partial w_k} + \frac{\partial C}{\partial o_j} \frac{\partial o_j}{\partial w_k} \right)$$

η is learning rate, general is 1e-3,1e-5

Now, we can get the change of C

$$\Delta C = \sum_{k} \frac{\partial C}{\partial w_{k}} \Delta w_{k} = \sum_{k} \frac{\partial C}{\partial w_{k}} \left(-\eta \frac{\partial C}{\partial w_{k}} \right) = -\eta \sum_{k} \left(\frac{\partial C}{\partial w_{k}} \right)^{2} < 0$$

Neural Network is the cal score model for RankNet

$$o = f(x:w,b) = f^{(2)} \left(\sum_{l} w_{l}^{(2)} \cdot f^{(1)} \left(\sum_{k} w_{lk}^{(1)} x_{k} + b^{(1)} \right) + b^{(2)} \right)$$

Forword progagation for new parameters (document), and backward propagation re-calculation of the parameters (pairs)

Speed up RankNet Training

Given a training pair $\{(x_i, x_j), \overline{P}_{i,j}\}$, will have:

$$\begin{split} \frac{\partial C}{\partial w_k} &= \frac{\partial C}{\partial o_i} \frac{\partial o_i}{\partial w_k} + \frac{\partial C}{\partial o_j} \frac{\partial o_j}{\partial w_k} \\ &= \left(-\bar{P}_{i,j} + \frac{e^{o_i - o_j}}{1 + e^{o_i - o_j}} \right) \left(\frac{\partial o_i}{\partial w_k} - \frac{\partial o_j}{\partial w_k} \right) \\ &= \lambda_{i,j} \left(\frac{\partial o_i}{\partial w_k} - \frac{\partial o_j}{\partial w_k} \right) \end{split}$$

Now note
$$\lambda_{i,j} = \frac{\partial C}{\partial o_i} = -\frac{\partial C}{\partial o_j} = \left(-\bar{P}_{i,j} + \frac{e^{o_i - o_j}}{1 + e^{o_i - o_j}}\right)$$

We can update the parameters by all document in query instead of pairs:

$$\Delta w_k = -\eta \sum_{i,j \in I} \left(\lambda_{i,j} \frac{\partial o_i}{\partial w_k} - \lambda_{i,j} \frac{\partial o_j}{\partial w_k} \right) = -\eta \sum_i \lambda_i \frac{\partial o_i}{\partial w_k}$$

 $\{i,j\}$ satisfy for $D_i \triangleright D_j$

 λ_i is:

find all: j for which $\{i,j\} \in I$ and k for which $\{k,i\} \in I$ increment λ_i by $\lambda_{i,j}$ and decrement λ_i by $\lambda_{k,i}$

So

$$\lambda_i = \sum_{j:i,j\in I} \lambda_{i,j} - \sum_{j:j,i\in I} \lambda_{i,j}$$

LambdaRank-2006

How could we optmize the evaluate measure (such NDCG)

If i << j, then instead of pairwise error, we would prefer and optimization cost C that has property that

$$\left| \frac{\partial C}{\partial o_i} \right| >> \left| \frac{\partial C}{\partial o_j} \right|$$

The gradient function is defined as:

$$\frac{\partial C}{\partial o_i} = -\lambda_i(o_1, l_1 ... o_n, l_n)$$

The gradient is dependent on query, and the LambdaRank is a ListWise method.

Back for RankNet:

$$\lambda_{i,j} = \frac{\partial C}{\partial o_i} = -\frac{\partial C}{\partial o_j} = -\frac{1}{1 + e^{o_i - o_j}}$$

LambdaRank add evaluate measure to \lambda

$$\lambda_{i,j} = -\frac{1}{1 + e^{o_i - o_j}} |\Delta Z|$$

And

$$\lambda_i = \sum_{j:i,j\in I} \lambda_{i,j} - \sum_{j:j,i\in I} \lambda_{i,j}$$

LambdaMart

Using Mart instead of Neural Networks

$$\gamma_{km} = \frac{\sum_{x_i \in R_{km}} \frac{\partial C}{\partial s_i}}{\sum_{x_i \in R_{km}} \frac{\partial^2 C}{\partial s_i^2}} = \frac{-\sum_{x_i \in R_{km}} \sum_{\{i,j\} \rightleftharpoons I} |\Delta Z_{ij}| \rho_{ij}}{\sum_{x_i \in R_{km}} \sum_{\{i,j\} \rightleftharpoons I} |\Delta Z_{ij}| \sigma \rho_{ij} (1 - \rho_{ij})}$$

Summary

- Start by RankNet
- Change at LambdaRank
- Popular with LambdaMart