Partial English Translation of

LAID OPEN unexamined

JAPANESE PATENT APPLICATION

Publication No. 11-068256

[0011] to [0012] [0011]

[Embodiment] In the present invention, an opaque film is a film through which light does not pass by being absorbed therein or totally reflected thereto. A metal film, a black-colored film and the like, for example, can be used as the opaque film in the present invention. More concretely, Cr, Ni, Al, Ag, Pd and the like can be used for the opaque film. Cr, Ni, Al and the like are preferably used for the opaque film. The opaque film may be formed on a resonance plane of a nitride semiconductor, or on an insulating material film (for example, a reflection mirror as an insulating material) which is previously formed.

[0012] In the present invention, the opaque film is formed on a resonance plane of the nitride semiconductor layer, which is a facet other than a port from which laser beam is irradiated, that is, a facet other than the facets of the active layer. Further, the opaque film may be formed on two or more resonance planes, and is preferably formed on at least a resonance plane of a direction in which laser beam is emitted. Facets of the resonance plane 101 other than those of the active layer are, as shown in Figure 1, the facet 102 of the n-side nitride semiconductor layer (n-side layer) of the n-side GaN layer 2 and the n-side clad layer 3 and the like, and the facet 103 of the p-side nitride semiconductor layer (p-side layer) of the p-side clad layer 5, the p-side contact layer 6 and the like. The opaque film is preferably formed on the n-side layer facet 102. Moreover, although the opaque film is preferably formed on the n-side layer facet 102 and the p-side layer facet 103 for improving the far field pattern, it is not necessary to form the opaque film on the p-side layer facet 103 since it is difficult to form the opaque film on the p-side layer facet 103 and the amount of unnecessary light from the p-side layer facet 103 is neglectable.

Light which scatters and passes through layers other than the active layer so and is emitted from the resonance planes other than the active layer facets 104 is mostly emitted from the n-side layer facet 102. Accordingly, if the emission of unnecessary light from the n-side layer facet 102 can be prevented, an excellent far field pattern can be obtained, thereby easily achieving uniform mode of light. Furthermore, when the opaque film is formed on the p-side layer facet 103 in addition to on the n-side layer facet 102, light can be adjusted better. Moreover, in order to prevent the scattering of light, an opaque film can be formed in a portion other than a portion from which laser beam is emitted even in a laser element having no resonance plane.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 09230537

(51) Intl. Cl.: H01S 3/18 H01L 33/00

(22) Application date: 27.08.97

(30) Priority:	
(43) Date of application 09.03.99 publication:	(71) Applicant: NICHIA CHEM IND LTD (72) Inventor: SANO MASAHIKO (74) Representative:
(84) Designated contracting states:	

(54) NITRIDE SEMICONDUCTOR LASER ELEMENT

(57) Abstract:

PROBLEM TO BE SOLVED: To make good a far-field pattern of a laser beam, by forming a light-impermeable film on one of the opposed end faces of an active layer which are resonance planes, other than the end faces of the active layer.

SOLUTION: On a substrate 1, an nlayer 201 (n-contact layer, n-clad layer etc.), active layer 4, p-layer 202 (p-contact layer, p-clad layer etc.), are laminated, a reflection mirror 203 is formed on the entire resonance plane formed by the cleavage or etching. Further, a lightimpermeable film 204 adjacent to this mirror 203 is formed on the nlayer end face and substrate end face. At this time, the film 204 is not formed on the active layer end face 113, and a laser beam amplified and induced in the active layer 4 is emitted from the end face 113. This improves a far-field pattern of the beam.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-68256

(43)公開日 平成11年(1999)3月9日

(51) Int.CL⁶

識別記号

FΙ

H01S 3/18 H01L 33/00

H01S 3/18 H01L 33/00

C

審査請求 未請求 請求項の数2 OL (全 11 頁)

(21)出顧番号

特顏平9-230537

(71)出願人 000226057

(22)出顧日

平成9年(1997)8月27日

日亜化学工業株式会社

徳島県阿南市上中町岡491番地100

(72)発明者 佐野 雅彦

徳島県阿南市上中町岡491番地100 日亜化

学工業株式会社内

(54) 【発明の名称】 室化物半導体レーザ素子

(57)【要約】

【課題】 レーザ光のファーフィールドパターン形状が 良好で、単一モードのレーザ光が得られる窒化物半導体 レーザ素子を提供することである。

【解決手段】 共振面を有する窒化物半導体レーザ素子 の少なくとも一方の共振面の活性層端面 113以外の端 面に不透光膜204が形成される。

【特許請求の範囲】

【請求項1】 互いに対向する活性層端面を共振面とする窒化物半導体レーザ素子において、少なくとも一方の共振面の活性層端面以外の端面に不透光膜が形成されてなることを特徴とする窒化物半導体レーザ素子。

【請求項2】 前記共振面の活性層端面以外の端面がn 側層端面であることを特徴とする請求項1に記載の窒化 物半導体レーザ素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、窒化物半導体(I_{n_x} $A_{1_y}G_{a_{1-x-y}}N$ 、 $0 \le X$ 、 $0 \le Y$ 、 $X+Y \le 1$)よりなるレーザ素子に関し、特に出射されるレーザ光の単一モード化された集光性のよいレーザ素子に関する。

[0002]

【従来の技術】窒化物半導体レーザ素子には、活性層を含む窒化物半導体層を劈開又はエッチングしてその劈開面又はエッチング面を共振面とし、活性層内で増幅された大きな出力のコヒーレント光を共振面から放射するものがある。

【0003】本発明者等は共振面を有する窒化物半導体 レーザ素子として、波長が410nmの短波長のレーザ 光の連続発振の可能な窒化物半導体レーザ素子を提案し ている。例えば、Appl. Lett. 69(199 6) 3034, Appl. Phys. Lett. 69 (1996) 4056などに記載されている。 レーザ光 は、自然発光で生じた光が活性層内で反射/往復して増 幅され、誘導放出光として共振面中の活性層端面から外 へ放出される。ここで、光は、増幅し活性層中を導波し ているとき、散乱し活性層以外の窒化物半導体層を導波 するものがある。このような光の散乱を防止し発光効率 を向上させるため、上記の半導体レーザ素子は、活性層 内で発生し誘導された光を閉じ込めるための層、光閉じ 込め層(クラッド層)を活性層を挟むようにn側とp側 に設けている。クラッド層は、その層を構成する物質の 光屈折率が活性層物質のそれより小さく設計され、それ によって光を閉じ込める作用を示す。上記クラッド層を 有する本発明者等が提案した窒化物半導体レーザ素子 は、短波長のレーザ光を放射することができるので、光 メモリーの高密度化や大容量化にとって大変有用であ る。

[0004]

【発明が解決しようとする課題】しかしながら、共振面から出射されるレーザ光は、そのファーフィールドパターンが十分に良好な単一のスポットとして得られにくい。その原因として活性層で発生した光の一部がクラッド層を通過し、クラッド層と基板との間に積層されている屈折率が中間の値を示す材料、例えばGaNからなるn側窒化物半導体層(n側層)で導波され、n側層端面から放射される。ちなみに窒化物半導体レーザ索子を構

成する窒化物半導体層の屈折率は、大きい方から順に、 活性層、中間層(GaN等)、クラッド層、基板(サフ ァイア、スピネル等)である。つまり、クラッド層と基 板の間に比較的屈折率の大きい中間層があると散乱した 光は中間層で導波され、また、サファイア基板面で反射 され、n側層端面から放射される。このように散乱した 光は、基板があるとn側層を通過して基板から外部に放 散されることが少なく、n側層端面から放射されファー フィールドパターンを乱す。一方、p側窒化物半導体層 (p側層)に散乱した光は、p側層の最上層に形成され た電極とクラッド層の間に積層されている屈折率の値が 中間の値を示す材料からなる層等を導波しp側層端面か ら放射される。しかし、p側層は、n側層に比べてかな り薄い膜であるので、p側層端面から放射される光はフ アーフィールドパターンをほとんど乱さない。従って、 n側層端面からの不要な光を極力制御する必要がある。 【0005】光がクラッド層を通過しないようにするに は、クラッド層の屈折率を更に小さくすることが考えら れるが、クラッド層物質の物性の点から屈折率の調整に は限界がある。また、クラッド層を厚く積層すれば、ク ラッド層を通過する光がクラッド層内で減衰し不要な光 が出射されなくなるが、クラッド層は厚く積層されると クラックが入り易く、厚く積層させることができない。 このように活性層内の光を十分に閉じ込めることができ なければ、ファーフィールドパターンを十分に良好な単 一モードとすることができず、レーザビーム径を小さく することを必要とするDVD光源や、単一モードの光を 必要とする光通信分野への適用を十分満足させることが できない。

【0006】そこで、本発明の目的は、レーザ光のファーフィールドパターンが良好で、単一モードのレーザ光が得られる窒化物半導体レーザ素子を提供することである。

[0007]

【課題を解決するための手段】即ち、本発明の目的は以下の構成によって達成することができる。

- (1) 互いに対向する活性層端面を共振面とする窒化物半導体レーザ素子において、少なくとも一方の共振面の活性層端面以外の端面に不透光膜が形成されてなることを特徴とする窒化物半導体レーザ素子。
- (2) 前記共振面の活性層端面以外の端面がn側層端面であることを特徴とする前記(1)に記載の窒化物半導体レーザ素子。

【0008】つまり、本発明は、上記の如く活性層端面以外の共振面に不透光膜を形成することで、散乱した光の放出を防止し、共振面の活性層端面のみから増幅された光を放射することができ、それによってレーザ光のファーフィールドパターンを良好にし単一モード化を可能にすることができる。

【0009】従来の不透光膜を有してない窒化物半導体

レーザ素子として図1を例にとって示した。図1は、サファイア基板1上に、n側GaN層2、n側クラッド層3、活性層4、p側クラッド層5、及びp側コンタクト層6を順に積層し、共振面101を有する窒化物半導体レーザ素子の模式的断面図である。活性層4内で増幅4内で増配するが、活性層4内で一部の光が活性層4以外の窒化物半導体層へ散乱する。そしてn側GaN層2を導波する光a及びn側クッド層3を導波する光bがn側層端面102から放出し、更にp側クラッド層5を導波する光d及びp側コンタクト層6を導波する光eがn側層に比べてごくわずかであるがp側層端面103から放射される。このような光a、b、d及びeの放出を防止するのに、クラッド層の屈折率を更に小さくする又はクラッド層を光が減衰するほどに厚く形成することが困難である。

【0010】これに対して、本発明は、従来難しいとさ れている窒化物半導体層内の物質の調整や膜厚等の調整 を行わず、活性層端面104以外の共振面の端面に不透 光膜を形成するといった本発明の意外な発想により、不 要な光の放射を防止し従来の問題点を解決するものであ る。本発明において、活性層端面以外の端面とは、活性 層端面以外であればいずれでもよく、具体的には、図1 の端面102及び103を示す。不透光膜を形成するの に好ましくは、少なくともn側層端面102(但し、本 発明においては光ガイド層は含まれず、n側クラッド層 を含んで基板に接して形成されている窒化物半導体層ま でを示す。) である。なぜならば、n側層端面102か らファーフィールドパターンを乱す不要な光が多量に放 射されるので、n側層端面102に不透光膜を形成する ことでファーフィールドパターンを良好にすることがで きる。また、不透光膜を形成する工程の簡便化及び操作 性の点から、n側層端面102に形成する際基板端面1 05にも形成することが好ましい。またp側層端面10 3(但し、本発明においてはキャップ層や光ガイド層は 含まれず、p側クラッド層を含んで活性層とは反対側の すべての窒化物半導体層を示す。)からも不必要な光が 放射されるので不透光膜を形成することが好ましいが、 その光の量はレーザ光の実用を阻害する程度にファーフ ィールドパターンを乱すものではなく、更にp側層が非 常に薄膜に形成されているため、p側層端面103に不 透光膜を形成しなくてもよい。

[0011]

【発明の実施の形態】本発明において、不透光膜とは、 光を吸収するか光を全反射させるような、光を透過させ ない膜を示す。本発明で用いることのできる不透光膜と しては、例えば金属膜、黒色膜等である。具体的な不透 光膜としては、例えばCr、Ni、Al、Ag、Pd等 を挙げることができる。好ましい不透光膜としては、C r、Ni、Al等である。不透光膜は、窒化物半導体の 共振面に接して形成してもよく、また絶縁体の膜(例え ば絶縁体の反射鏡等)を形成した後に絶縁体膜上に形成 してもよい。

【0012】本発明において、不透光膜の形成される位 置は、窒化物半導体層の共振面であり、レーザ光放射口 以外、つまり活性層端面以外の端面である。また、不透 光膜は2面以上の共振面に形成されてもよく、少なくと もレーザ光放出方向の共振面に形成されるのが好まし い。活性層端面以外の端面とは、図1に示されるよう に、共振面101中、活性層端面104以外の端面であ るn側GaN層2及びn側クラッド層3等のn側窒化物 半導体層 (n側層) 端面102並びにp側クラッド層5 及びp側コンタクト層6等のp側窒化物半導体層(p側 層)端面103である。不透光膜の形成される位置の好 ましくは、n側層端面102である。またn側層端面1 02及びp側層端面103に不透光膜を形成することが ファーフィールドパターンをより良好とするのに好まし が、前記したように p 側層端面 1 0 3 に不透光膜を形成 するのが困難であり、更にp側層端面103からの不要 な光がわずかであるので、p側層端面103には不透光 膜を形成しなくてもよい。散乱し活性層以外の層を導波 して活性層端面104以外の共振面から放出される光 は、n側層端面102から放出されるのが多く、n側層 端面102からの不要な光の放出を防止できればほぼ良 好なファーフィールドパターンが得られ、光を単一のモ ードにし易くなる。更に、n側層端面102に加えて、 p側層端面103にも不透光膜を形成すると、より良好 に光を制御できる。また共振面を有してないレーザ素子 であっても、光が散乱するのを防止するために、レーザ 光放出部分以外の部分であれば不透光膜を形成すること ができる。

【0013】不透光膜の膜厚は、特に限定されず、光りを透過しない範囲の膜厚であればよい。具体的には200Å以上、好ましくは500~10000Å、より好ましくは500~2000Åである。この範囲であると光を完全に遮断でき出射ビームを妨げないので好ましい。【0014】本発明においてレーザ素子の共振面は、窒化物半導体をエッチングあるいは劈開して形成される。エッチング方法及び劈開の方法は、いずれの方法を用いてもよく、特に限定されない。

【0015】本発明において、用いることのできる窒化物半導体をエッチングする方法には、ウエットエッチング、ドライエッチング等の方法があり、共振面となるような平滑な面を形成するには、好ましくはドライエッチングを用いる。ドライエッチングには、例えば反応性イオンエッチング(RIBE)、電子サイクロトロンエッチング(ECR)、イオンビームエッチング等の装置があり、いずれもエッチングガスを適宜選択することにより、窒化物半導体をエッチングして共振面を形成することができる。例えば、本出願人が先に出願した特開平8-178

03号公報記載の窒化物半導体の具体的なエッチング手段を用いることができる。

【0016】上記のように形成された共振面に不透光膜を形成する方法としては、スパッタリング、蒸着により不透光膜を形成する。

【0017】また本発明において、共振面の一方又は両方の、活性層端面あるいは共振面の全面に反射鏡を形成してもよい。反射鏡は窒化物半導体端面に接して形成されることが好ましく、また接して形成される場合は絶縁体の反射鏡が好ましい。反射鏡を形成すると、光損失が少なく、活性層内で光が増幅するための反射/往復が良好に起こり、発光効率が向上するので好ましい。本発明に用いることのできる反射鏡は、例えば誘電体多層膜が挙げられ、その具体例としては、以下のものを挙げることができる。

【0018】誘電体多層膜は基本的に互いに反射率の異 なる無機材料を交互に積層してなり、例えばA/4 n (入:波長、n:屈折率)の厚さで交互に積層すること により反射率を変化させることができる。誘電体多層膜 の各薄膜の種類、厚さ等は発振させようとするレーザ素 子の波長に応じてそれらの無機材料を適宜選択すること により設計可能である。例えばその無機材料には、高屈 折率側の薄膜材料としてTiO₂、ZrO₂、HfO₂、 Sc_2O_3 , Y_2O_3 , MgO, Al_2O_3 , Si_3N_4 , ThO₂の内の少なくとも一種類が選択でき、低屈折率側の 薄膜材料としてSiO,、ThF4、LaF3、MgF2、 LiF、NaF、NagAlF6の内の少なくとも一種類 が選択でき、これら高屈折率側の薄膜材料と、低屈折率 側の薄膜材料とを適宜組み合わせ、発振する波長に応じ て数十オングストローム〜数μmの厚さで数層〜数十層 積層することにより誘電体多層膜を形成することができ る。

【0019】また、窒化物半導体で360nm~460 nmに発振するレーザ素子である場合、その光共振面に形成する誘電体多層膜は、特にSiO2、TiO2、ZrO2より選択された少なくとも2種類以上が最も適している。なぜなら前記3種類の酸化物は360nm~460nmの範囲で光吸収が少なく、窒化物半導体と非常に良く密着して剥がれることもない。さらに前記波長の光が連続的に長時間照射されても劣化することがなく、さらに好ましいことにレーザ素子の発熱に対して非常に耐熱性に優れているからである。

【0020】誘電体多層膜は例えば、蒸着、スパッタ等の気相製膜技術を用いて形成することができる。またその他、上記化合物を含む溶媒にレーザ素子を浸漬(ディッピング)した後、乾燥するという操作を繰り返して形成することも可能である。例えば SiO_2 と ZrO_2 よりなる誘電体多層膜を形成する場合、 SiO_2 、 ZrO_2 を蒸着、スパッタ等の気相製膜技術で形成する他、Siを含む有機金属化合物の溶媒にレーザ素子を浸漬した後、

乾燥し、酸素雰囲気でベーキングして酸化物とし、次に Zrを含む有機金属化合物の溶媒にレーザ素子を浸漬 し、乾燥した後、ベーキングして酸化物とする操作を繰 り返すことにより誘電体多層膜を製膜することが可能で ある。但し、好ましく膜厚制御の面で気相製膜技術を用 いる方がよい。

【0021】本発明の一実施の形態である不透光膜を共振面に形成した窒化物半導体の模式的断面図である図2を用いて本発明に係る不透光膜の形成された窒化物半導体レーザ素子の具体例を示す。図2は、基板1上に、n側層201(n側コンタクト層、n側クラッド層等)、活性層4、p側層202(p側コンタクト層、p側クラッド層等)を順に積層され、劈開又はエッチングにより形成された共振面全体に反射鏡203が形成され、更にこの反射鏡203に接してn側層端面及び基板端面に不透光膜204が形成されている。活性層端面113には不透光膜を形成せず、活性層内で増幅し誘導されたレーザ光がこの活性層端面113から放射される。また、p側層端面には、前記した理由でこの図においては形成していない。

【0022】また、図2のように共振面全面に反射鏡203を形成すると、反射鏡203により活性層内の光が良好に共振できる。また反射鏡は少なくともレーザ光の放射側に形成されていることが好ましく、レーザ光の放射側の反対に形成されてもよい。反射鏡の膜厚は、出射側に形成されるので、出射パワーやしきい値の制御によって異なるが、レーザ光の波長(入)と反射鏡を形成する各物質の屈折率(η)、 $\lambda/4\eta$ 、で表される。例えばSiO2/TiO2め屈折率を η 2とすると、反射鏡の膜厚は、 $\lambda/4\eta$ 1+ $\lambda/4\eta$ 2、となる。また、反射鏡は、SiO2/TiO2の忌が平を η 3となる。また、反射鏡は、SiO2/TiO2のように1ペアとすることが好ましい。図2の反射鏡及び不透光膜の形成方法は、スパッタ、蒸着などによって形成する。

【0023】本発明において、窒化物半導体の層構成は特に限定されず、いずれの層構成及び形状を有していてもよい。またその他のレーザ素子を形成するための構成も限定されない。以下に本発明に用いることのできる好ましい窒化物半導体素子の構成要素の一実施形態を記載する。

【0024】図3は、本発明に用いることのできる好ましい窒化物半導体素子の構造をす模式的な断面図(レーザ光の共振方向に垂直な断面)であり、該窒化物半導体素子は、例えば、C面を主面とするサファイア等の基板1上に、n型窒化物半導体層領域(n側コンタクト層12、クラッド防止層13、n側クラッド層14及びn側光ガイド層15からなる。)とp型窒化物半導体領域(キャップ層17、p側光ガイド層18、p側クラッド層19及びp側コンタクト層20からなる。)とによって挟設された窒化物半導体からなる活性層16を備えた

窒化物半導体レーザダイオード素子である。但し、図3 には、不透光膜を図示していない。

【0025】ここで、本実施形態の窒化物半導体素子は、n型窒化物半導体層領域におけるn側クラッド層14を超格子層で形成し、かつp型窒化物半導体領域におけるp側クラッド層19を超格子層で形成することにより、LD素子である窒化物半導体素子のしきい値電圧を低く設定している。超格子層とは、組成の異なる極めて薄い層が積層されたものであって、各層の厚さが十分薄いために、格子不整に伴う欠陥が発生することなく積層された層のことをいい、量子井戸構造を含む広い概念である。また、この超格子層は、内部に欠陥は有しないが、通常、格子不整に伴う歪みを有するので超格子とも呼ばれる。

【0026】この実施形態の窒化物半導体素子において は、まず、基板10上にバッファ層11と第2のバッフ ァ層112を介してn側コンタクト層12が形成され、 さらにn側コンタクト層12上に、クラック防止層1 3、n側クラッド層14及びn側光ガイド層15が積層 されて、n型窒化物半導体層領域が形成される。なお、 クラック防止層13の両側に露出されたn側コンタクト 層12の表面にはそれぞれ、n側コンタクト層12とオ ーミック接触する n側電極23が形成され、該n側電極 23上には、例えば、ワイヤーボンディング用のn側パ ッド電極が形成される。そして、n 側光ガイド層15上 に窒化物半導体からなる活性層16が形成され、さらに 該活性層16上に、キャップ層17、p側光ガイド層1 8、p側クラッド層19及びp側コンタクト層20が積 層されてp側窒化物半導体層領域が形成される。さら に、p側コンタクト層20上に該p側コンタクト層20 とオーミック接触するp側電極21が形成され、該p側 電極21上には、例えば、ワイヤーボンディング用のp 側パッド電極が形成される。なお、p側コンタクト層2 0とp側クラッド層19の上部とによって、共振方向に 長く伸びた峰状のリッジ部が構成された該リッジ部を形 成することによって、活性層16において、光を幅方向 (共振方向に直交する方向) に閉じ込め、リッジ部 (ス トライプ状の電極)に垂直な方向で劈開された劈開面を 用いて、リッジ部の長手方向に共振する共振器を作製し てレーザ発振させる。

【0027】(基板10)基板10にはC面を主面とするサファイアの他、R面、A面を主面とするサファイア、その他、スピネル (MgA1 $_2$ O $_4$)のような絶縁性の基板の他、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、GaN等の半導体基板を用いることができる。

【0028】(バッファ層11)バッファ層11は、例 えばA1N、GaN、A1GaN、InGaN等が90 0℃以下の温度で成長させて、膜厚数十オングストロー ム〜数百オングストロームに形成される。このバッファ 層11は、基板と窒化物半導体との格子定数不正を緩和 するために形成されるが、窒化物半導体の成長方法、基 板の種類等によってはバッファ層11を省略することも 可能である。

【0029】(第2のバッファ層112)第2のバッフ ァ層112は、前記バッファ層11の上に、前記バッフ ァ層よりも高温で成長させた単結晶の窒化物半導体より なる層であり、バッファ層11よりも厚膜を有する。こ の第2のバッファ層112は次に成長させるn側コンタ クト層12よりもn型不純物濃度が少ない層とするか、 ましくはGaN層とすると、第2のバッファ層112の 結晶性が良くなる。最も好ましくはn型不純物をアンド ープのGaNとすると最も結晶性が良い窒化物半導体が 得られる。従来のように負電極を形成するn側コンタク ト層を数μm以上の膜厚で、高キャリア濃度の単一の窒 化物半導体層で構成しようとすると、n型不純物濃度の 大きい層を成長させる必要がある。不純物濃度の大きい 厚膜の層は結晶性が悪くなる傾向にある。このため結晶 性の悪い層の上に、活性層等の他の窒化物半導体を成長 させても、結晶欠陥を他の層が引き継ぐことになって結 晶性の向上が望めない。そこで、n側コンタクト層12 層を成長させる前に、不純物濃度が小さい、結晶性の良 い第2のバッファ層112を成長させることにより、キ ャリア濃度が大きく結晶性の良いn側コンタクト層12 を成長させることができる。この第2のバッファ層11 2の膜厚は、0.1μm以上、さらに好ましくは0.5 μm以上、最も好ましくは1μm以上、20μm以下に 調整することが望ましい。第2のバッファ層112が O. 1μmよりも薄いと、不純物濃度の大きいn型コン タクト層12を厚く成長させなければならず、n側コン タクト層12の結晶性の向上があまり望めない傾向にあ る。また20µmよりも厚いと、第2のバッファ層11 2自体に結晶欠陥が多くなりやすい傾向にある。また第 2のバッファ層112を厚く成長させる利点として、放 熱性の向上が挙げられる。つまりレーザ素子を作製した 場合に、第2のバッファ層112で熱が広がりやすくレ ーザ素子の寿命が向上する。さらにレーザ光の漏れ光が 第2のバッファ層112内で広がって、楕円形に近いレ ーザ光が得やすくなる。なお、第2のバッファ層112 は、基板にGaN、SiC、ZnO等の導電性基板を使 用した場合には省略してもよい。

【0030】(n側コンタクト層12)n側コンタクト層12は負電極を形成するコンタクト層として作用する層であり、0.2μm以上、4μm以下に調整することが望ましい。0.2μmよりも薄いと、後で負電極を形成する際にこの層を露出させるようにエッチングレートを制御するのが難しく、一方、4μm以上にすると不純物の影響で結晶性が悪くなる傾向にある。このn側コンタクト層12の窒化物半導体にドープするn型不純物の

範囲は1×10¹⁷/cm³~1×10²¹/cm³の範囲、 さらに好ましくは、1×10¹⁸/cm³~1×10¹⁹/ cm³に調整することが望ましい。1×10¹⁷/cm³よ りも小さいとn電極の材料と好ましいオーミックが得ら れにくくなるので、レーザ素子ではしきい値電流、電圧 の低下が望めず、1×10²¹/cm³よりも大きいと、 素子自体のリーク電流が多くなったり、また結晶性も悪 くなるため、素子の寿命が短くなる傾向にある。なおn 側コンタクト層12においては、n電極23とのオーミ ック接触抵抗を小さくするために、該n側コンタクト層 12のキャリア濃度を上げる不純物の濃度を、n側クラ ッド層14よりも大きくすることが望ましい。なお、n 側コンタクト層12は基板にGaN、SiC、ZnO等 の導電性基板を使用し基板裏面側に負電極を設ける場合 にはコンタクト層としてではなくバッファ層として作用 する。

【0031】また、第2のバッファ層112、及び n側コンタクト層12の内の少なくとも一方の層を、超格子層とすることもできる。超格子層とすると、この層の結晶性が飛躍的に良くなり、しきい値電流が低下する。好ましくは第2のバッファ層112よりも膜厚が薄い n側コンタクト層12を互いにバンドギャップエネルギーが異なる第1の層と第2の層とが積層されてなる超格子構造とした場合においては、好ましくはバンドギャップエネルギーの小さな層を露出させて n電極23を形成することにより、n電極23との接触抵抗が低くできしきい値を低下させることができる。なおn型窒化物半導体と好ましいオーミックが得られるn電極23の材料としてはA1、Ti、W、Si、Zn、Sn、In等の金属若しくは合金が挙げられる。

【0032】また、n側コンタクト層12を不純物濃度 が異なる超格子層とすることにより、横方向の抵抗値を 低くでき、LD素子のしきい値電圧、電流を低くするこ とができる。これは、バンドギャップエネルギーの大き な層の方に、多くn型不純物をドープした超格子層をn 層側のコンタクト層として形成した場合について、以下 のようなHEMT (High-Electoron-M obility-Transistor) に類似した作 用が出現した効果が推察される。n型不純物がドープさ れたバンドギャップの大きい第1の層(第2の層)と、 バンドギャップが小さいアンドープ { (undop e);以下、不純物がドープされてない状態をアンドー プという} の第2の層 (第1の層) とを積層した超格子 層では、n型不純物を添加した層と、アンドープの層と のヘテロ接合界面で、バンドギャップエネルギーの大き な層側が空乏化し、バンドギャップエネルギーの小さな 層側の厚さ(100オングストローム)前後の界面に電 子 (二次元電子ガス)が蓄積する。この二次元電子ガス がバンドギャップエネルギーの小さな層側にできるの

で、電子が走行するときに不純物による散乱を受けない ため、超格子層の電子の移動度が高くなり、抵抗率が低 下すると推察される。

【0033】(クラック防止層13)クラック防止層1 3は、例えば、Siを5×10¹⁸/cm³ドープしたIn 0.1Ga0.9Nからなり、例えば、500オングストロー ムの膜厚を有する。 このクラック防止層13は I nを含 むn型の窒化物半導体、好ましくはInGaNを成長さ せて形成することにより、その上に形成されるAlを含 む窒化物半導体層中にクラックが入るのを防止すること ができる。なお、このクラック防止層13は100オン グストローム以上、O.5µm以下の膜厚で成長させる ことが好ましい。100オングストロームよりも薄いと 前記のようにクラック防止として作用しにくく、0.5 μmよりも厚いと、結晶自体が黒変する傾向にある。な お、このクラック防止層13は、n型コンタクト層12 を超格子とする場合、または次に成長させる n型クラッ ド層14を超格子層とする場合には省略してもよい。 【0034】(n型超格子からなるn側クラッド層1 4) n側クラッド層は、例えばSiを5×10¹⁸/cm³ ドープした n型A 10.2 Ga0.8 Nからなり、20オング ストロームの膜厚を有する第1の層、及びアンドープの GaNよりなり、20オングストロームの膜厚を有する 第2の層とが交互に積層された超格子層よりなり、全体 で例えばO.5µmの膜厚を有する。このn型クラッド 層14はキャリア閉じ込め層、及び光閉じ込め層として 作用し、超格子層とした場合にはいずれか一方の層をA

1を含む窒化物半導体、好ましくはA1GaNを成長さ

せることが望ましく、100オングストローム以上、2

μm以下、さらに好ましくは500オングストローム以

上、1μm以下で成長させることにより良好なキャリア

閉じ込め層が成長できる。この n型クラッド層14は単

一の窒化物半導体で成長させることもできるが、超格子

層とすることがクラックのない結晶性のよいキャリア閉じ込め層が形成できる。
【0035】(n側光ガイド層15)n側光ガイド層15は、アンドープGaNからなり、0.1μmの膜厚を有する。このn側光ガイド層6は、活性層の光ガイド層6は、活性層の光ガイド層として作用し、GaN、InGaNを成長させて形成することが望ましく、通常100オングストローム~5μm、さらに好ましくは200オングストローム~1μmの膜厚で成長させることが望ましい。なお、この光ガイド層15も超格子層にすることができる。n側光ガイド層15、n側クラッド層14を超格子層にする場合、超格子層を構成する窒化物半導体層の平均的なバンドギャップエネルギーは活性層よりも大きくする。超格子層とする場合には、第1の層及び第2の層の少なくとも一方

【0036】(活性層16)活性層16は、例えば、S

にn型不純物をドープしてもよいし、またアンドープで

も良い。

i を 8×10^{18} / cm³ でドープした I $n_{0.2}$ G $a_{0.8}$ N よ りなり、25オングストロームの膜厚を有する井戸層 と、Siを8×10¹⁸/cm³ドープしたIn_{0.05}Ga 0.95 Nよりなり、50オングストロームの膜厚を有する 障壁層とを交互に積層することにより、所定の膜厚を有 する多重量子井戸構造 (MQW) で構成する。活性層1 6においては、井戸層、障壁層両方に不純物をドープし ても良く、いずれか一方にドープしてもよい。なおn型 不純物をドープすると閾値が低下する傾向にある。ま た、このように活性層16を多重量子井戸構造とする場 合には必ずバンドギャップエネルギーの小さい井戸層 と、井戸層よりもバンドギャップエネルギーが小さい障 壁層とを積層するため、超格子層とは区別される。井戸 層の厚さは、100オングストローム以下、好ましくは 70オングストローム以下、最も好ましくは、50オン グストローム以下にする。 障壁層の厚さは150オング ストローム以下、好ましくは100オングストローム以 下、最も好ましくは70オングストローム以下にする。 【0037】(p側キャップ層17)p側キャップ層1 7は、活性層16よりもバンドギャップエネルギーが大 きい、例えば、Mgを1×1020/cm3ドープしたp型 Alo.3Gao.7Nよりなり、例えば、200オングスト ロームの膜厚を有する。本実施形態では、このように、 キャップ層17を用いることが好ましいが、このキャッ プ層は、薄い膜厚に形成されるので、本発明では、n型 不純物をドープしてキャリアが補償されたi型としても よい。p側キャップ層17の膜厚は0.1μm以下、さ らに好ましくは500オングストローム以下、最も好ま しくは300オングストローム以下に調整する。0.1 μmより厚い膜厚で成長させると、p側キャップ層17 中にクラックが入りやすくなり、結晶性の良い窒化物半 導体層が成長しにくいからである。また、p側キャップ 層17の膜厚が、0.1μmより大きいと、キャリアが このエネルギーバリアとなるp型キャップ層17をトン ネル効果により通過できなくなるからであり、該トンネ ル効果によるキャリアの通過を考慮すると、上述のよう に500オングストローム以下、さらには300オング ストローム以下に設定することが好ましい

【0038】また、p側キャップ層17には、LD素子を発振しやすくするために、A1の組成比が大きいA1GaNを用いて形成することが好ましく、該A1GaNを薄く形成する程、LD素子は発振しやすくなる。例えば、Y値が0.2以上のA1γGa1-γNであれば500オングストローム以下に調整することが望ましい。p型キャップ層17の膜厚の下限は特に限定しないが、10オングストローム以上の膜厚で形成することが望ましい。

【0039】(p側光ガイド層18)p側光ガイド層18は、バンドギャップエネルギーがp側キャップ層17よりも小さい、例えば、アンドープGaNよりなり、

0. 1μmの膜厚を有する。このρ側光ガイド層18は、活性層16の光ガイド層として作用し、n側光ガイド層15と同じくGaN、InGaNで成長させて形成することが望ましい。また、この層はp型クラッド層19を成長させる際のバッファ層としても作用し、100オングストローム~5μm、さらに好ましくは200オングストローム~1μmの膜厚で成長させることにより、好ましい光ガイド層として作用する。このρ側光ガイド層はMg等のp型不純物をドープしてp型の導電型としても良い。なお、このρ側光ガイド層を超格子層とすることもできる。超格子層とする場合には第1の層及び第2の層の少なくとも一方にp型不純物をドープしてもよいし、またアンドープでも良い。

【0040】(p側クラッド層19=超格子層) p側クラッド層19は、例えば、Mgを1×10²0/cm³ドープしたp型A1_{0.2}Ga_{0.8}Nよりなり、例えば、20オングストロームの膜厚を有する第1の層と、例えばMgを1×10²0/cm³ドープしたp型GaNよりなり、20オングストロームの膜厚を有する第2の層とが交互に積層された超格子層からなる。このp側クラッド層19は、n側クラッド層14と同じくキャリア閉じ込め層として作用し、特にp型層の抵抗率を低下させるための層として作用する。このp側クラッド層19の膜厚も特に限定しないが、100オングストローム以上、2μm以下、さらに好ましくは500オングストローム以上、1μm以下で形成することが望ましい。

【0041】(p側コンタクト層20)p側コンタクト 層20は、p側クラッド層19の上に、例えば、Mgを 2×10²⁰/cm³ドープしたp型GaNよりなり、例え ば、150オングストロームの膜厚を有する。このp側 コンタクト層20はp型のInxAlyGa1-x-yN(0 $\leq X$ 、 $0 \leq Y$ 、 $X+Y \leq 1$)で構成することができ、好まし くは、上述のようにMgをドープしたGaNとすれば、 p電極21と最も好ましいオーミック接触が得られる。 さらにp側コンタクト層の膜厚を500オングストロー ム以下、さらに好ましくは300オングストローム以 下、最も好ましくは200オングストローム以下に調整 することが望ましい。なぜなら、上述したように抵抗率 が数Ω·cm以上もあるp型窒化物半導体層の膜厚を5 00オングストローム以下に調整することにより、さら に抵抗率を低下させることができるため、しきい値での 電流、電圧が低下する。またp型層から除去される水素 の量を多くすることができ、さらに抵抗率を低下させる ことができる。

【0042】なお、本発明では、p側コンタクト層20も超格子層とすることもできる。超格子層とする場合には、特にバンドギャップエネルギーが異なる第1の層と第2の層とを積層し、第1+第2+第1+第2+・・というように積層していき、最後にバンドギャップエネルギーが小さい方の層が露出するようにすると、p電極

21と好ましいオーミック接触が得られる。p電極21 の材料としては、例えばNi、Pd、Ni/Au等を挙 げることができる。

【0043】次に、図3に示すようにp電極21と、n電極23との間に露出した窒化物半導体層の表面にSiO₂よりなる絶縁膜25が形成され、この絶縁膜25に形成された開口部を介してp電極21と電気的に接続されたpパッド電極22、及びn電極23と接続されたnパッド電極24が形成される。このpパッド電極22は実質的なp電極21の表面積を広げて、p電極側をワイヤーボンディング、ダイボンディングできるようにし、一方nパッド電極24はn電極23の剥がれを防止する。

【0044】以上の窒化物半導体素子は、第1の層、及び第2の層を弾性歪み限界以下の膜厚にして積層された超格子層である、結晶性のよいp型クラッド層19を備えている。これによって、本実施形態の窒化物半導体素子は、p側クラッド層19の抵抗値を、超格子構造を有しないp側クラッド層に比較して1桁以上低くすることができるので、しきい値電圧、電流を低くすることができる。

【0045】また、本実施形態の窒化物半導体素子では p型A 1 y Ga1-y Nを含むp側クラッド層19に接して、バンドギャップエネルギーの小さい窒化物半導体を p側コンタクト層20として、その膜厚を500オングストローム以下と薄く形成することにより、実質的に p側コンタクト層20のキャリア濃度が高くなり p電極と 好ましいオーミックが得られて、素子のしきい値電流、電圧を低くすることができる。さらに、n側コンタクト層を成長させる前に、第2のバッファ層112を備えているので、第2のバッファ層112の上に成長させる窒化物半導体層の結晶性が良くなり、長寿命の素子を実現できる。好ましくは、第2のバッファ層112の上に成長させる n側コンタクト層を超格子とすると、横方向の抵抗値が低くなり、しきい値電圧・しきい値電流の低い素子が実現できる。

【0046】なお、本実施形態のLD素子ではInGaNのような、少なくともインジウムを含む窒化物半導体を活性層16に備える場合には、InxGa1-xNと、AlyGa1-xNと、AlyGa1-yNとが交互に積層された超格子層を、活性層16を挟設する層(n側クラッド層14及びp側クラッド層19)として用いることが好ましい。これによって、活性層16と該超格子層とのバンドギャップエネルギー差、屈折率差を大きくできるため、該超格子層として動作させることができる。さらにInGaNは結晶の性質が他のAlGaNのようなAlを含む窒化物半導体に比べて柔らかいので、InGaNを活性層とすると、積層した各窒化物層全体にクラックが入りにくくなる。これによって、LD素子の寿命を長くすることができ

る。

【0047】本実施形態のように量子井戸構造を有する 活性層16を有するダブルヘテロ構造の半導体素子の場 合、その活性層16に接して、活性層16よりもバンド ギャップエネルギーが大きい膜厚0.1μm以下の窒化 物半導体よりなるp側キャップ層17、好ましくはA1 を含む窒化物半導体よりなる p 側キャップ層 17を設 け、そのp側キャップ層17よりも活性層から離れた位 置に、p側キャップ層17よりもバンドギャップエネル ギーが小さい p 側光ガイド層18を設け、そのp 側光ガ イド層18よりも活性層から離れた位置に、p側光ガイ ド層18よりもバンドギャップが大きい窒化物半導体、 好ましくはA1を含む窒化物半導体を含む超格子構造を 有するp側クラッド層19を設けることは非常に好まし い。しかもp側キャップ層17のバンドギャップエネル ギーを大きくしてあるため、n層から注入された電子 が、このp側キャップ層17で阻止されて閉じ込めら れ、電子が活性層をオーバーフローしないために、素子 のリーク電流が少なくなる。

【0048】以上の本実施形態の窒化物半導体素子では、レーザ素子の構造として好ましい構造を示したが、本実施形態では n型の超格子層は活性層16から下の n型窒化物半導体層領域 (n型層側) に少なくとも1層有していれば良く、また p型の超格子層も活性層16から上の p型窒化物半導体層領域 (p型層側) に少なくとも1層有していれば良く、素子構成は特に規定するものではない。但し、前記超格子層は p層側に形成する場合はキャリア閉じ込め層としての p側クラッド層19に形成し、 n層側に形成する場合は n電極23が接した電流注入層としての n コンタクト層12、またはキャリア閉じ込めとしての n 側クラッド層14として形成することが素子の V f、しきい値を低下させる上で最も好ましい傾向にある。

【0049】以上のように構成された実施形態2の窒化物半導体素子では、各層が形成された後、水素を含まない雰囲気、例えば、窒素雰囲気中で、400℃以上、例えば700℃でアニーリングを行うことが好ましく、これによって、p型窒化物半導体層領域の各層をさらに低抵抗化することができるので、これによって、さらにしきい値電圧を低くすることができる。

【0050】また、実施形態の窒化物半導体素子では、p側コンタクト層12の表面にNiとAuよりなるp電極21がストライプ状に形成され、このp電極21に対して左右対称にn側コンタクト層を露出させて、そのn側コンタクト層表面のほぼ全面にn電極23を設けている。このように、絶縁性基板を用いた場合p電極21の両側に左右対称にn電極23を設ける構造は、しきい値電圧を低くする上で非常に有利である。

【0051】なお、本実施形態では、リッジ部(ストライプ状の電極)に垂直な方向で劈開した劈開面(共振器

面) にSiO₂とTiO₂よりなる誘電体多層膜を形成してもよい。

【0052】このように、本実施形態において、超格子層は、活性層を挟設するn型領域又はp型領域に形成されるキャリア閉じ込め層としてのクラッド層、活性層の光ガイド層、若しくは電極が接して形成される電流注入層として用いられるため、超格子層を構成する窒化物半導体の平均バンドギャップエネルギーが活性層よりも大きくなるように調整することが望ましい。

[0053]

【実施例】以下、本発明の一実施例を用いて本発明を更 に詳細に説明する。しかし本発明はこれに限定されるも のではない。

[実施例1]本発明に係る実施例1は図3に示す窒化物半導体素子(LD素子)の作成例であり、以下の手順で作製される。まず、サファイア(C面)よりなる基板10を反応容器内にセットし、容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させ、基板のクリーニングを行う。続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニア(NH3)とTMG(トリメチルガリウム)とを用い、基板10上にGaNよりなるバッファ層11を約200オングストロームの膜厚で成長させる。

【0054】バッファ層11成長後、TMGのみ止めて、温度を1050℃まで上昇させる。1050℃になったら、同じく原料ガスにTMG、アンモニアガスを用い、キャリア濃度 1×10^{18} / cm^3 アンドープGaNよりなる第2のバッファ層112を5 μ mの膜厚で成長させる。第2のバッファ層112は \ln_X A \ln_Y Ga \ln_X - \ln_X N(0 \leq X、0 \leq Y、X+Y \leq 1)で構成でき、その組成は特に問うものではないが、好ましくはアンドープでA1(Y値)が0.1以下のA \ln_Y Ga \ln_Y N、最も好ましくはアンドープのGaNとする。続いて、1050℃でTMG、アンモニア、不純物ガスにシランガス(Si \ln_Y)を用い、Si \ln_Y 1019 / \ln_X ドープした \ln_Y GaNよりなる \ln_X の側コンタクト層12を \ln_X の間の記をさらに好ましい。

【0055】次に、温度を800℃にして、原料ガスに TMG、TMI(トリメチルインジウム)、アンモニ ア、不純物ガスにシランガスを用い、 $Sie5 \times 10^{18}$ /cm³ドープした $In_{0.1}Ga_{0.9}$ Nよりなるクラック防止層13e500オングストロームの膜厚で成長させる。

【0056】そして、温度を1050℃にして、TMA (トリメチルアルミニウム)、TMG、アンモニア、シ ランガスを用い、Siを5×10¹⁸/cm³ドープしたn 型A1_{0.2}Ga_{0.8}Nよりなる第1の層を20オングスト ロームの膜厚で成長させ、続いて、TMA、シランを止 め、アンドープGaNよりなる第2の層を20オングス トロームの膜厚で成長させる。そして、この操作をそれ ぞれ100回繰り返し、総膜厚0.4μmの超格子層よ りなるn側クラッド層14を成長させる。

【0057】続いて、1050℃でアンドープGaNよりなるn関光ガイドBan15を 0.1μ mの膜厚で成長させる。次に、TMG、TMI、アンモニア、シランガスを用いて活性Ban16を成長させる。活性Ban16は温度を800℃に保持して、まずSan16をSan200~に保持して、まずSan16をSan3でドープした $In_{0.2}Ga_{0.8}N$ 4りなる井戸層を25オングストロームの膜厚で成長させる。次にTMI00モル比を変化させるのみで同一温度で、San16をSan1

【0058】次に、温度を1050℃に上げ、原料ガスにTMG、TMA、アンモニア、不純物ガスにCp2Mg(シクロペンタジエニルマグネシウム)を用い、活性層よりもバンドギャップエネルギーが大きく、Mgを1×10²⁰/cm³ドープしたp型A1_{0.3}Ga_{0.7}Nよりなるp側キャップ層17を300オングストロームの膜厚で成長させる。続いて、1050℃で、バンドギャップエネルギーがp側キャップ層17よりも小さい、アンドープGaNよりなるp側光ガイド層18を0.1μmの膜厚で成長させる。

【0059】続いて、TMG、TMA、アンモニア、C p_2 Mgを用い、1050℃でMgを 1×10^{20} /cm³ドープしたp型A $1_{0.2}$ Ga $_{0.8}$ Nよりなる第1の層を20オングストロームの膜厚で成長させ、続いてTMAのみを止め、Mgを 1×10^{20} /cm³ドープしたp型GaNよりなる第2の層を20オングストロームの膜厚で成長させる。そしてこの操作をそれぞれ100回繰り返し、総膜写 0.4μ mの超格子層よりなるp側クラッド層19を形成する。最後に、1050℃で、p側クラッド層19の上に、Mgを 2×10^{20} /cm³ドープしたp型GaNよりなるp側コンタクト層20を150オングストロームの膜厚で成長させる。

【0060】反応終了後、温度を室温まで下げ、さらに窒素雰囲気中、ウェーハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。アニーリング後、ウェーハを反応容器から取り出し、図3に示すように、RIE装置により最上層のp側コンタクト層20と、p側クラッド層19とをエッチングして、4μmのストライプ幅を有するリッジ形状とする。

【0061】次にリッジ表面にマスクを形成し、図3に示すように、ストライプ状のリッジに対して左右対称にして、n側コンタクト層12の表面を露出させる。

【0062】次にp側コンタクト層20のストライプリ

ッジ最表面のほぼ全面にNiとAuよりなるp電極21を形成する。一方、TiとAlよりなるn電極23をストライプ状のn側コンタクト層12のほぼ全面に形成する。

【0063】次に、図3に示すようにp電極21と、n電極23との間に露出した窒化物半導体層の表面にSiO₂よりなる絶縁膜25を形成し、この絶縁膜25を介してp電極21と電気的に接続したpパッド電極22、及びnパッド電極24を形成する。以上のようにして、n電極とp電極とを形成したウェーハを研磨装置に移送し、ダイヤモンド研磨剤を用いて、窒化物半導体を形成していない側のサファイア基板1をラッピングし、基板の厚さを50μmとする。ラッピング後、さらに細かい研磨剤で1μmポリシングして基板表面を鏡面状とする。

【0064】基板研磨後、研磨面側をスクライブして、 ストライプ状の電極に垂直な方向でバー状に劈開し、劈 開面に共振面を作製する。図2のように共振面等にSi O₂(屈折率は1.45)とTiO₂(屈折率は2.5 8) よりなる誘電体多層膜(反射鏡)を膜厚0.109 μmで形成し、更にp側層多端面及び活性層端面にレジ ストでマスクをして図2のようにn側層端面(光ガイド 層を除く)及び基板端面にスパッタリングにてCェより なる不透光膜を膜厚500Åで形成し、その後レジスト 膜を除去し、最後にp電極に平行な方向で、バーを切断 してレーザチップとした。次にチップをフェースアップ (基板とヒートシンクとが対向した状態)でヒートシン クに設置し、それぞれの電極をワイヤーボンディングし て、室温でレーザ発振を試みたところ、室温において、 波長400nm、しきい値電流密度2.9kA/cm2、 しきい値電圧4. 4Vで、ファーフィールドパターンは レーザ光のスポットが1つであり、単一モードで集光性 が良好であった。

【0066】[実施例3]実施例1において、不透光膜をNiからなる膜厚350Åの膜とする他は実施例1と

同様にしてレーザ素子を得た。実施例1と同様にレーザ 発振させたところ、同様に良好なファーフィールドパタ ーンが得られた。

【0067】 [実施例4] 実施例1において、不透光膜をA1からなる膜厚1000Åの膜とする他は実施例1と同様にしてレーザ素子を得た。実施例1と同様にレーザ発振させたところ、同様に良好なファーフィールドパターンが得られた。

【0068】[実施例5]実施例1において、不透光膜の膜厚を700Åとする他は実施例1と同様にしてレーザ素子を得た。実施例1と同様にレーザ発振させたところ、同様に良好なファーフィールドパターンが得られた。

【0069】 [比較例1] 実施例1において、共振面の n 側層及び基板の各端面に不透光膜を形成しない他は同様にして行った。その結果、ファーフィールドパターン は主ビームのスッポトの下に複数のその他の小さいにスッポトが見られ、活性層端面以外から不要な光が放射されていることが確認された。また主ビームの上にもかすかな小さいスッポトが見られたが実用するには差し支えない程度であった。

[0070]

【発明の効果】本発明の窒化物半導体レーザ素子は、レーザ光のファーフィールドパターン形状が良好で、単一モードのレーザ光が得られる窒化物半導体レーザ素子を提供することができる。

【図面の簡単な説明】

【図1】従来の共振面に不透光膜が形成されていない窒 、化物半導体の模式的断面図である。

【図2】本発明に係る一実施形態である共振面に不透光 膜が形成されている窒化物半導体の模式的断面図であ る。

【図3】本発明に係るの一実施形態である共振面に対し 垂直に切断した窒化物半導体素子の模式的断面図であ る。

【符号の説明】

1 · · · · 基板

2····n側GaN層

3・・・・n側クラッド層

4・・・活性層

5 · · · · p側クラッド層

6···・p側コンタクト層

101 · · · · 共振面

102・・・n側層端面

103・・・・p側層端面

104、113・・・活性層端面

201 · · · n 側層

202····p 側層

203 · · · · 反射鏡

204、205 · · · · 不透光膜

10 · · · · 基板

11・・・・バッファ層

112・・・・第2のバッファ層

12····n側コンタクト層

13・・・クラック防止層

14···n側クラッド層(超格子層)

15····n 側光ガイド層

16・・・活性層

17・・・キャップ層

18・・・・p側光ガイド層

19····p側クラッド層(超格子層)

20・・・・p側コンタクト層

21····p電極

22····pパッド電極

23····n電極

24・・・・nパッド電極

25・・・・絶縁膜

【図1】

【図2】

【図3】

