Comparative analysis of the thermal stability of the arenediazonium triflates, tosylates and tetrafluoroborates by calorimetric methods

Alexander A. Bondarev,¹ Evgeny V. Naumov,¹ Assiya Zh. Kassanova², Elena A. Krasnokutskaya³, Victor D. Filimonov³

Введение

Ароматические диазониевые соли (DS) являются одними из важнейших строительных блоков классического органического синтеза и индустрии [1]. Кроме того, благодаря способности диазониевых солей реагировать со многими металлическими и неметаллическими поверхностями с элиминированием азота и образованием ковалентных связей ароматических радикалов с поверхностями, они находят применение в получении современных макро- и наноразмерных композитных органических материалов [2].

Вместе с тем, для многих DS типичны такие недостатки, как малая устойчивость при хранении в сухом состоянии и склонность к взрывообразному разложению при нагревании, фотоооблучении и механических воздействиях [1a], что затрудняет их получение и использование особенно в промышленном масштабе.

Давно известно, что солянокислые растворы арендиазоний хлоридов могут быть «стабилизированы» добавками нафталинсульфокислоты. Предполагалось, хотя и без доказательств, что эта стабилизация происходит за счет ионного обмена и образования в растворах арендиазоний нафтилсульфонатов [1a]. Ранее нам впервые удалось получить в индивидуальном состоянии арендиазоний тозилаты ArN₂⁺ TsO⁻ и показать, что они действительно стабильны при хранении в сухом состоянии, хорошо растворимы, как в воде, так и полярных растворителях [3]. В то же время, они недороги, легко получаются из доступного сырья, обладают высокой «диазониевой» активностью и с успехом используются для галоид-дедиазонирования [3,4a-e] и введение в арены изотопа ¹⁸F [4f], для получения ароматических азидов [4g], проведения аzо-соupling с этил α-метилацетоацетатом [5a], замещении диазониевой группы на триэтоксисилильную [5b], Сu- и Pd-catalyzed арилирования 5c,d]. Кроме того, арендиазоний тозилаты оказались удобными агентами ковалентной прививки ароматических групп к поверхностям карбонизированных наночастиц металлов [5e] и графену [5f].

В данной работе мы получили и охарактеризовали арендиазоний трифлаты ArN_2^+ TfO^- (ADTF) (**1a-d**), содержащие нитро- и метоксигруппы в ароматическом кольце, путем диазотирования соответствующих анилинов в присутствии трифторметилсульфокислоты.

¹Department of Biomedicine, Altai State University, Barnaul, Russia, <u>alex_root@mail.ru</u>

² S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan

³Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia

Выбор последнего типа DS обусловлен тем, что трифторметансульфокислота является сильнейшей сульфокислотой и ADTF должны представлять крайний член ряда арендиазоний сульфонатов. Соли **1a-d**, подобно арендиазоний тозилатам, также оказались стабильными при хранении в сухом состоянии.

Для лучшей оценки возможностей безопасного применения ADTF не только в лабораторной практике, но и индустриальном масштабе в планировании химических процессов и проектировании оборудования необходимо тщательно исследовать их термическую стабильность и энергии разложения.

Целью нашей работы являлось первое изучение кинетики и термодинамики термического разложения ADTF 1a-d в сравнении с 4-nitrobenzenediazonium tosilate 2 и 4-nitrobenzenediazonium tetrafluoroborate 3 методами DSC/TGA и потоковой калориметрии и выработка критериев оценки стабильности ряда диазониевых солей с различными анионами и заместителями. В качестве заместителей в ароматическом ядре диазоний-катионов выбраны электроноакцепторная нитро-группа и электронодонорная метокси-группа по следующим соображениям. Во-первых, по некоторым данным диазониевые соли с NO2 группами в ароматическом ядре являются наиболее взрывоопасными и представляют, таким образом, наивысший порог этих свойств. Во-вторых, диазониевые соли с NO2 и MeO группами в ароматическом ядре наиболее резко различаются по своим свойствам [1a], т.е. должны охватывать наиболее широкий диапазон изучаемых свойств.

Другая задача данной работы состояла в оценке возможностей DFT квантовохимических методов для теоретической оценки процессов термического разложения DS и прояснения его механизма. Насколько нам известно, DFT методы для этих целей ранее не использовались.

Эти исследования важны как с прикладной точки зрения, для оценки стабильности конкретных солей, возможностей и ограничений их индустриального применения, так и для лучшего понимания механизмов термического разложения DS. Знание механизмов и основных закономерностей разложения позволит наметить дальнейшие пути для повышения стабильности этого класса веществ. Повышение стабильности в свою очередь расширит сферы применения диазониевых солей и повысит уровень безопасности их использования.

Литературные данные

Опубликован ряд работ, в которых рассматривались процессы термического [6] и фотохимического [7] разложению DS в различных растворах, включая ионные жидкости, главным образом, с целью определения механизмов реакций.

Стабильность же и безопасность диазониевых солей в чистом сухом виде при хранении изучены относительно мало. В работах [8] приводили сравнительный анализ и оценку устойчивости диазониевых солей к детонации и воздействию пламени без определения продуктов разложения. В статье [8b] был исследован изотопный эффект ¹⁵N для реакций разложения фенилдиазоний хлоридов и тетрафторборатов. Выявлено, что изотопный эффект не чувствителен к природе и положению заместителей в ароматическом кольце и природе противоиона. Разница в энергии активации для разложения ¹⁴N и ¹⁵N изотопно-меченых

диазониевых солей составляет 32 кал/моль. В работе [8а] проведен сравнительный анализ энергий термического разложения и детонационной чувствительности арендиазоний хлоридов, замечено, что в ряду орто-, мета- и пара-производных чувствительность к детонации уменьшается. Существенное влияние оказывает природа заместителя в ароматическом ядре, нитропроизводные оказались заметно более чувствительны к удару, чем хлорпроизводные. Наблюдается понижение детонационной чувствительности с увеличением молекулярной массы, что связано с уменьшением удельной величины выделяемой энергии на единицу массы. Отмечено, что детонационная стабильность сильно зависит от размера и формы кристаллов, а также от наличия примесей. Корреляции между чувствительностью к детонации и термической стабильностью не обнаружены. В целом авторы замечают, что установленные зависимости не всегда выполняются и в большинстве случаев вопрос стабильности диазониевых солей необходимо рассматривать в индивидуальном порядке.

В работах [3, 4b] определены энергии термического разложения некоторых арендиазоний тозилатов методом DSC и показано, что в большинстве случаев эти энергии лежат ниже 800 J\g. Однако продукты термического разложения ADTS не исследовались и остаются до сих пор неизвестными.

Материалы и методы

General synthesis of arenediazonium trflates (1a-d)

Для исследований мы синтезировали ряд ДС (1a)-(1d), (2), (3) с вариацией заместителей различной природы (метокси, нитро) и их положения в кольце. Трифлаты были синтезированы в соответствии с ранее опубликованной методикой [1s]. Характеристики полученных солей приведены в приложении ???.

$$N_{2}^{+} \text{ TfO}^{-}$$
 (1a)
 $N_{2}^{+} \text{ TfO}^{-}$ (1b)
 $N_{2}^{+} \text{ TfO}^{-}$ (1b)
 $N_{2}^{+} \text{ TfO}^{-}$ (2)
 $N_{2}^{+} \text{ TfO}^{-}$ (1c)
 $N_{2}^{+} \text{ TfO}^{-}$ (3)
 $N_{2}^{+} \text{ TfO}^{-}$ (3)

Исследования ТГ/ДСК проводили на приборе Q600 SDT фирмы ТА Instruments в открытых кюветах в атмосфере аргона. Измерение теплового потока в изотермических условиях выполняли на микрокалориметре TAM III фирмы ТА Instruments в атмосфере азота. Метод, лежащий в основе STANAG процедуры, основан на измерении максимального теплового потока в течении определенного времени при заданной температуре [10]. Полученных экспериментальных кривых были аппроксимированы в рамках

автокаталитического процесса и проведен анализ Аррениуса по рекомендациям для калориметрического исследования безопасности энергетических материалов [11].

ЯМР спектры снимали на приборе Bruker AC 300 в растворе DMSO-d₆.

Изучение продуктов разложения проводили методом GC-MS на приборе Agilent 7890A\5975C. Образцы солей массой 50 мг нагревались в термостате при 85 °C в течение 14 дней. К полученным продуктам добавляли водный раствор KI для перевода оставшегося количества неразложившихся диазониевых солей в соответствующие арилиодиды, продукты были экстрагированы этилацетатом и профильтрованы через слой силикагеля.

Квантовохимические расчеты предполагаемых реакций разложения диазониевых солей проводили методом R-B3LYP в базисе aug-cc-pVDZ с помощью програмного комплекса Gaussian 09 (Revision-D.01-SMP). Для расчета термодинамики на первом этапе была произведена оптимизация геометрии всех молекул участвующих в реакции, отсутствие отрицательных частот ИК доказывает стационарный характер стабильность исследуемых структур. Затем, проводили расчет колебательных частот и термодинамических поправок для трех температур при которых проводился эксперимент по изотермическому разложению — 75, 80, 85 °C, а также при нормальных условиях 25°C и 1 атм. Полученные термодинамические параметры использовали для расчета теоретической термодинамики предполагаемых процессов.

Результаты и обсуждения

Известно, что на устойчивость DS влияет наличие примесей, которые часто не контролируются обычными аналитическими методами [1а, 8а]. На примере ADTS 2 мы определили параметры изотермического разложения образцов четырех синтетических партий, полученных в идентичных условиях (sources v1-v4), а также образцов, очищенных однократным и двукратным (repricipitation 1 and 2) повторным осаждением из растворов в уксусной кислоте эфиром. Полученные результаты, представленные в таблице 1, показывают, что измерения воспроизводимы и в пределах статистически достоверных различий не зависят от источника образца, хотя существует тенденция снижения величины максимального и начального теплового потока в зависимости от числа переосаждений. Также не замечено статистических различий для проведения разложения в атмосфере азота, воздуха и аргона. Дальнейшие исследования потоковой калориметрии проводились в атмосфере азота. Среднестатистическое отклонение (RMD) для величин констант скорости и энтальпии составляет 5%.

Таблица 1. Воспроизводимость результатов изотермического разложения соли ${\bf 2}$ в зависимости от полученной партии и числа переосаждений (где ${\bf k}$ - константа скорости, ${\bf \Delta}{\bf H}$ - энтальпия)

Группа	k, g·mol ⁻¹ ·c ⁻¹	ΔH, kJ·mol¹		
Синтез 1 азот	0.0818 ± 0.0091	231.0 ± 12.4		
Синтез 2 азот	0.0825 ± 0.0120	243.6 ± 20.7		
Синтез 3 азот	0.0934 ± 0.0080	240.1 ± 5.6		
Синтез 3 воздух	0.0849 ± 0.0042	237.5 ± 13.3		

Синтез 3 аргон	0.1002 ± 0.0113	242.3 ± 8.0
Исходный	0.0842 ± 0.0074	234.9 ± 8.2
Переосаждение 1	0.0862 ± 0.0088	239.3 ± 25.1
Переосаждение 2	0.0934 ± 0.0080	240.1 ± 5.6
Общая статистика	0.0882 ± 0.0045	237.7 ± 4.6

DSC/TGA results

Кривые термического разложения солей **1-3** показаны на рис. **1-6**, из которых следует, что все исследуемые соли при нагревании разлагаются с выделением энергии и потерей массы, найденные температуры и энергии разложения приведены в таблице 2.

Кроме того, для солей **1a,b,d, 3** наблюдаются низкотемпературные эндотермические эффекты в области температур, близких к температурам их плавления. В то же время, при нагревании солей **1c, 2** эндотермические пики отсутствуют и они разлагаются только экзотермически. При этом для соли **2** наблюдаются два экзотермических пика, один низкотемпературный при 69.37 °C с малым тепловыделением 24.47 J/g и основной пик при 146.6 °C с выделением 323.0 J/g тепла.

Потеря массы при нагреве соли **3** в эндотермическом процессе, начиная с 33.7 °C, составляет 28.5%, что точно соответствует отщеплению летучего BF_3 (28.6%) по реакции (1)

$$4-NO_2C_6H_4N_2^+BF_4^- \longrightarrow 4-NO_2C_6H_4N_2^+F^- + BF_3$$
 (1)
3

Это указывает на то, что последующему разложению при 146.5 °C должен подвергаться 4нитробензолдиазоний фторид (**3a**).

Основная потеря массы при нагреве диазониевых солей **1-3** происходит в экзотермических процессах, что с очевидностью связано с образованием летучих продуктов разложения.

Таблица 2. Температуры и энергии разложения диазониевых солей **1-3** в DSC\TGF экспериментах

Диазониевая соль	T ^{endotherm} ,	ΔН ^{endotherm} , Дж/г (кДж/моль)	T ^{exotherm}	ΔН ^{exotherm} , Дж/г (кДж/моль)
$2-NO_2C_6H_4N_2^+TfO^-(1a)$	104.1	73.49 (21.98)	143.3	-753.4 (-225.3)
$3-NO_2C_6H_4N_2^+TfO^-(1b)$	102.5	43.6 (10.04)	111.2	-840.4 (-251.3)
$4-NO_2C_6H_4N_2^+TfO^-(1c)$	-	1	116.4	-219.9 (-65.7)
$4-MeOC_6H_4N_2^+TfO^-(1d)$	88.4	102.2 (29.05)	136.6	-328.9 (-93.5)
4 NO C H N + T _C O (2)	-	-	69.37	-24.47 (-7.8)
$4-NO_2C_6H_4N_2^+$ TsO ⁻ (2)			146.6	-323.0 (-103.7)
$4-NO_2C_6H_4N_2^+BF_4^-$ (3)	33.7	617.3 (146.3)	146.5	-229.2 (-54.3)

Рисунок 1. Исследование разложения соли $\frac{2-NO_2C_6H_4N_2^+TfO^-(1a)}{}$ методом DSC/TGA

Рисунок 2. Исследование разложения соли $3-NO_2C_6H_4N_2^+$ TfO⁻ (1b) методом DSC/TGA

Рисунок 3. Исследование разложения соли <mark>4-NO₂C₆H₄N₂⁺ TfO⁻ (1c) методом DSC/TGA</mark>

Рисунок 4. Исследование разложения соли $\frac{4-\text{MeOC}_6\text{H}_4\text{N}_2^+\text{TfO}^-\text{(1d)}}{1}$ методом DSC/TGA

Рисунок 5. Исследование разложения соли $4-NO_2C_6H_4N_2^+$ TsO $^-$ (2) методом DSC/TGA

Рисунок 6. Исследование разложения соли $\frac{4-NO_2C_6H_4N_2^+}{4-NO_2C_6H_4N_2^+}$ В $\frac{1}{2}$ (3) методом DSC/TGA

С позиций оценки безопасности наиболее практически важны экзотермические эффекты термического разложения диазониевых солей **1-3**. Как можно видеть из таблицы 2, эксперименты $T\Gamma/\text{ДСК}$ показывают, что эти эффекты сильно зависят от природы и положения заместителя в бензольном ядре и отчасти от природы противоионов. Среди солей **1a-d** с трифлатным противоионом выделение энергии при разложении максимально для 3-нитропроизводного **1b** и заметно падает в ряду **1b** > **1a** > **1d** > **1c**. Влияние природы противоионов на экзотермичность разложения в ряду солей **1c**, **2** и **3** с различными противоионами и одинаковым 4-нитробензолдиазоний катионом падает в ряду **2** > **1c** \approx **3**, т.е. наибольшее тепловыделение имеет место в случае TsO^- противоиона, хотя изменение природы противоионов влияет на изменения экзотермического разложения существенно меньше, чем положение и тип заместителей в бензольном ядре.

Потоковая калориметрия

Результаты изотермического разложения солей **1-3** при 75 °C, 80 °C, 90 °C представлены в таблице 3 и рисунках 7-10. По результатам экспериментов значения максимального теплового потока для 4-нитробензолдиазониевых солей **1a-c, 2, 3** практически не зависят от аниона. Трифлат 4-метоксибензолдиазония **1d** имеет значительно меньшие показатели максимального теплового потока. В ряду трифлатов 4- **1c**, 3- **1b** и 2-нитробензолдиазония **1c** наблюдается уменьшение величины максимального теплового потока. Величины максимальных тепловых потоков важны с практической точки зрения, для моделирования и подбора условий хранения солей.

Таблица 3 Интегральная энтальпия и величина максимального теплового потока при разложении диазониевых солей **1-3**

Substance	ΔH, kJ/mol			P max, mW/g			
Substance	75°	80°	85°	75°	80°	85°	
$2-NO_2C_6H_4N_2^+TfO^-(1a)$	414.0	386.0	396.0	0.705	1.49	2.33	
$3-NO_2C_6H_4N_2^+TfO^-(1b)$	227,9	230.0	225.4	6,57	14.15	28.8	
4-NO ₂ C ₆ H ₄ N ₂ ⁺ TfO ⁻ (1c)	200.0	235.1	250.0	20.12	47.89	101.5	
4-MeOC ₆ H ₄ N ₂ ⁺ TfO ⁻ (1d)	183.1	183.2	106.0	1.34	2.97	5.37	
$4-NO_2C_6H_4N_2^+$ TsO ⁻ (2)	253.0	232.4	231.0	21.10	34.82	64.60	
4-NO ₂ C ₆ H ₄ N ₂ ⁺ BF ₄ ⁻ (3)	173.0	156.0	147.0	20.02	31.63	66.87	

На рисунке 7 приведены экспериментальные значения теплового потока разложения солей **1c**, **2** and **3** при 85 °C. Время полураспада солей зависит от вида аниона и составляет для тетрафторбората (**3**) - 2.1 часа, трифлата (**1c**) - 4.5 ч. и для тозилата (**2**) - 6 часов.

Был проведен кинетический анализ кривых изотермического разложения и определены основные параметры аппроксимирующих уравнений. Наблюдаемые зависимости тепловых потоков лучше всего описываются с помощью кинетического уравнения (2) для автокаталитических реакций: $aA \rightarrow cC$

$$\frac{d[C]}{dt} = k \cdot ([A]_0 - \frac{a}{c}([C] - [C]_0)) \cdot [C]_0$$
 (2)

Кинетические параметры в соответствии с уравнением 2 для солей (1a-1d, 2) представлены в таблице 4.

Рисунок 7. Значения теплового потока (Р) изотермического разложения при температуре 85 °C для тетрафторбората (3), тозилата (2) и трифлата 4-нитрофенилдиазония (1c)

Исключением является трифлат 2-нитрофенилдиазония, изотермическая кривая которого плохо описывается простым автокаталитическим процессом и имеет более сложный характер. Следовательно, требуется процедура деконволюции и выделения первичных процессов. Деконволюцию проводили путем компьютерного моделирования комбинаций двух автокаталитических реакций при варьировании величин тепловых эффектов и кинетическимих параметров с минимизацией среднеквадратичного отклонения от экспериментальной кривой. Исходные значения для первого приближения были взяты из данных ДСК-ТГА, для эндотермической реакции ΔH =+74 кДж/моль и для экзотермического процесса ΔH =-753 кДж/моль. На рисунке 8 приведены результаты деконволюции. Полученная экспериментальная кривая теплового потока (Hf-exp) лучше всего описывается композицией двух процессов - небольшого по величине эндотермического процесса с теплотой ΔH =46 кДж/моль (Hf1) с кинетическими параметрами k_1 =1.3, C_{01} =0.0007 и

основным экзотермическим автокаталитическим процессом с теплотой ΔH =-430 кДж/моль (Hf2), k_2 =0,08, C_{02} =0,0020 при 85 °C.

Рисунок <mark>8</mark>. Экспериментальная кривая и результат деконволюции теплового потока изотермического разложения 2-нитробензолдиазоний трифлата (**1a**) при температуре 85 °C (Hf1, Hf2 - тепловые потоки составляющих процессов, Hf - суммарный тепловой поток, Hf-exp - экспериментальная кривая теплового потока)

Таблица 4. Кинетические параметры реакций разложения диазониевых солей **1-3** (P₀ - начальное значение теплового потока, k - константа скорости)

Substance		P ₀ , mW			k, g · mol $^{-1}$ · c $^{-1}$			
Substance	75°	80°	85°	75°	80°	85°		
$2-NO_2C_6H_4N_2^+TfO^-$ (1a)	4.06	8.81	14.7	0.00025	0.00052	0.00073		
$3-NO_2C_6H_4N_2^+TfO^-$ (1b)	0.0094	1.10	4.42	0.00912	0.01958	0.0429		
$4-NO_2C_6H_4N_2^+TfO^-$ (1c)	0.900	1.311	7.952	0.0316	0.0630	0.1680		
4-MeOC ₆ H ₄ N ₂ $^{+}$ TfO $^{-}$ (1d)	1.477	3.200	11.379	0.0021	0.0044	0.0128		
$4-NO_2C_6H_4N_2^+$ TsO ⁻ (2)	1.957	2.745	4.152	0.0289	0.0539	0.1030		
$4-NO_2C_6H_4N_2^+BF_4^-$ (3)	39.241	89.598	180.42	0.0186	0.0344	0.0721		

Время полураспада трифлата 4-нитрофенилдиазония ($\mathbf{1c}$) – 4 ч. значительно меньше, чем метокси производного ($\mathbf{1d}$) - 10 ч. Тепловой поток при разложении трифлата 4-нитрофенилдиазония ($\mathbf{1c}$) - 101.5 mW/g существенно выше чем для трифлата 4-метоксифенилдиазония ($\mathbf{1d}$) - 5.37 mW/g (рисунок 9).

Рисунок <mark>9</mark>. Тепловой поток (Р) при изотермическом разложении трифлатов 4-метоксибензолдиазония (**2**) и 4-нитробензолдиазония (**1c**) при температуре 85 °C

Значительное влияние на стабильность диазониевых солей оказывает положение заместителя в бензольном кольце. Для трифлатов нитробензолдиазония наибольшее время полураспада у орто- производного $1\mathbf{a} - 45$ ч., значительно менее стабильны мета- $1\mathbf{b} - 11$ ч. и наименьшей стабильностью обладает трифлат пара-нитробензолдиазония $1\mathbf{c} - 5$ ч. при 85 °C. Величины максимальных тепловых эффектов имеют обратный характер и убывают в ряду $(1\mathbf{c}) > (1\mathbf{b}) > (1\mathbf{a})$. Результаты представлены в таблицах 3,4 и рисунке 10.

Рисунок 10. Тепловой поток (P) при изотермическом разложении трифлатов 2-, 3- и 4-нитробензолдиазония (1a-c) при температуре 85 °C

Анализируя кинетические данные при различной температуре и аппроксимируя с помощью уравнения Аррениуса мы рассчитали кинетические параметры реакций разложения на температуру 25 °C. Результаты анализа представлены в таблице 5 и графически на рисунке 11. Сравнивая значения энергий активации следует отметить, что для трифлатных солей эта величина существенно выше, чем для тозилатной и тетрафторборатной соли, аномальным является трифлат 2-нитрофенилдиазония с очень низким значением энергии активации.

Таблица 5 Рассчитанные значения кинетических параметров реакций разложения диазониевых солей (1-3) при 25 °C (k_{298} - константа скорости при 298 °K, Ea — энергия активации).

Substance	k ₂₉₈ , g ⋅ mol ⁻¹ ⋅ c ⁻¹	Ea, kJ/mol
$2-NO_2C_6H_4N_2^+TfO^-(1a)$	4.17*10 ⁻⁷	111.4
$3-NO_2C_6H_4N_2^+TfO^-(1b)$	8.66*10 ⁻⁷	159.7
4-NO ₂ C ₆ H ₄ N ₂ ⁺ TfO ⁻ (1c)	1.33*10 ⁻⁶	173.0
4-MeOC ₆ H ₄ N ₂ ⁺ TfO ⁻ (1d)	1.39*10 ⁻⁸	187.1
4-NO ₂ C ₆ H ₄ N ₂ ⁺ TsO ⁻ (2)	1.39*10 ⁻⁵	131.7
4-NO ₂ C ₆ H ₄ N ₂ ⁺ BF ₄ ⁻ (3)	5.33*10 ⁻⁶	140.3

Рисунок 11. Анализ Аррениуса для реакций разложения диазониевых солей 1-3

На основе анализа Аррениуса были рассчитаны теоретические кривые разложения при нормальных условиях для исследуемых солей. Положение заместителя влияет на стабильность трифлатных солей, наибольшим периодом полураспада при 25 °C обладает трифлат 3-нитрофенилдиазония - 90 лет, наименьшим трифлат 2-нитрофенилдиазония - 25 лет (рисунок 12). Наибольшее влияние на стабильность оказывает природа противоиона (рисунок 13), близкие значения периодов полураспада при нормальных условиях имеют тозилатная - 5 лет и тетрафторборатная - 4.5 года соли 4-нитрофенилдиазония. Существенно более стабильной является трифлатная соль 4-нитрофенилдиазония с периодом полураспада -46 лет и значительно более низким значением максимального теплового потока. Следует влияние противоиона становится более заметным только при низких заметить, что температурах, при повышеной температуре (в услових ДСК и потоковой калориметрии) различия во временах разложения солей нивелируются. Этот факт, а также значения энергий активации позволяют предположить, что стабильность солей при нормальных условиях хранения в большей степени определяется прочностью кристаллической решетки. При более высоких температурах, после разрушения кристаллической решетки, на скорость и энергетику процесса, вероятно, влияет как природа диазониевого катиона $Ar-N_2^+$, так и наличие и природа нуклеофилов в ближайшем окружении.

Рисунок 12. Рассчитанные тепловые потоки (Р) для кинетических кривых разложения трифлатов 2-, 3- и 4-нитробензолдиазония (1а-с) при 25 °C.

Рисунок 13. Рассчитанные тепловые потоки (Р) для кинетических кривых разложения тозилата (2), трифлата (1c) и тетрафторбората (3) 4-нитробензолдиазония при 25 °C

GC-MS исследование продуктов термического разложения

Давно установлено, что основными продуктами термического разложения арендиазоний тетрафторборатов являются соответствующие арилфториды (метод Бальца-Шимана) [1а], продукты же термического разложения арендиазоний трифлатов неизвестны. Мы определили продукты, получающиеся при выдерживании солей 1-3 при 85 °С в течение 14 суток с последующим превращением непрореагировавших солей в арилиодиды реакций с КІ. Продукты этих превращений были исследованы методом ГХ-МС.

Основным продуктом разложения солей **1b**, **1c** оказались соответствующие эфиры нитрофенил трифторметансульфонатов ArOTf and ArOTs. При разложении тозилатной соли **2** основными продуктами являются нитробензол и 1-йод-4-нитробензол. Однако в продуктах нет эфира p-NO2-Ph-OTs, может быть он разлагается при пробоподготовке, странно еще то что в базе данных ГХ-МС и NIST есть спектр только для 3-NO2-Ph-OTs и нет для 4-NO2-Ph-Ots? По данным ЛС-МС в отрицательной ионизации есть продукт похожий на эфир, по квантовым расчетам эфир должен существовать). Для тетрафторборатной соли **3** основным продуктом, как и следовало ожидать, является 1-фтор-4-нитробензол. Однако, для соли **1a** с нитро-группой в *орто*-положении продукта замещения диазониевой группы на трифлатанион не обнаружено. Следует отметить, что при разложении всех изученных солей образуются значительные количества смолообразных продуктов, не определяемых методами ГХ-МС. Хроматограммы представлены на рисунках 15-20. (Для тетрафторбората и тозилата две хроматограммы, те что мы снимали в августе (на них нет пиков) и в феврале назад (присутствуют пики 1-фтор-4-нитробензола и 1-йод-4-нитробензола), аналогично для

тозилата. Вероятно это связано с большим временем разложения (2 недели), по этой причине арилиодид присутствует не на всех хроматограммах.

Саша здесь более важно показать и обсудить не масс-спектры (их можно поместить в приложение), а хроматограммы. Тем более, что согласно экспериментальной части, после разложения солей проводилась реакция с КІ. Значит, на хроматограммах должен быть виден продукт разложения и арилиодид. По их соотношению можно оценить степень превращения соли в термолизе и реакционную способность. Я попросил у Асии выслать мне эти хроматограммы, она сообщила, что ранее переправила их тебе. Перешли мне, пожалуйста, чтобы завершить этот раздел.

Рисунок 15. Продукты разложения соли **1a** по данным ГХ-МС.

Рисунок 16. Продукты разложения соли **1b** по данным Γ X-MC. (Пик 9.246 мин. соответствует соединению 3-NO₂-C₆H₄-OSO₂CF₃, рис. 21 в приложении 1)

Рисунок 17. Продукты разложения соли ${f 1c}$ по данным ГХ-МС. (Пик 13.314 мин. соответствует соединению 4-NO $_2$ -C $_6$ H $_4$ -OSO $_2$ CF $_3$,

14.912 мин. 1-йод-4-нитробензолу рис. 22 в приложении 1)

Рисунок 18. Продукты разложения соли ${\bf 1d}$ по данным ГХ-МС. (Пик 8.337 мин. соответствует соединению 4-CH₃O-C₆H₄-OSO₂CF₃, рис. 23 в приложении 1)

Рисунок 19. Продукты разложения соли **2** по данным ГХ-МС. (Пик 6.750 мин. соответствует 1-фтор-4-нитробензолу, 10.642 мин. 1-йод-4-нитробензолу, рис. 24 в приложении 1)

Рисунок 20. Продукты разложения соли **3** по данным ГХ-МС. (Пик 6.307 мин. соответствует 1-фтор-4-нитробензолу, 10.515 мин. 1-йод-4-нитробензолу, рис. 25 в приложении 1)

Квантовохимические исследования

По результатам анализа продуктов термического разложения ${\bf 1a}$ - ${\bf c}$, ${\bf 2}$, ${\bf 3}$ мы впервые провели расчет термодинамики этих процессов методом DFT RB3LYP/aug-cc-pVDZ. В результате расчетов были получены стационарные структуры без мнимых частот IR для солей ${\bf 1a}$ - ${\bf c}$, ${\bf 2}$, ${\bf 3}$ и продуктов замещения диазониевой группы на анионы, декартовы координаты всех соединений и вычисленные термодинамические функции даны в приложении ${\bf 2}$. Основными продуктами для трифлатов ${\bf 1a}$ - ${\bf c}$ и тозилата ${\bf 2}$ выбраны эфиры соответствующих кислот и замещенных фенолов, а при разложении тетрафторбората ${\bf 3}$ - ${\bf 4}$ -фторнитробензол. Расчетные и экспериментальные термодинамические параметры реакций представлены в таблицах ${\bf 6}$, ${\bf 7}$. Исходя из вышеприведенных данных ${\bf T}$ ГА, показывающих, что при термолизе тетрафторбората ${\bf 3}$ первоначально может происходить отщепление ${\bf B}$ Г ${\bf 3}$ с образованием ${\bf 4}$ -NO ${\bf 2}$ С ${\bf 6}$ Н ${\bf 4}$ N ${\bf 2}$ + ${\bf F}$ - ${\bf 3a}$ (уравнение ${\bf 1}$) мы рассчитали термодинамику и этой реакции, а также реакции разложения соли ${\bf 3a}$ (tabl. ${\bf 6}$, entries ${\bf 6a}$, ${\bf b}$).

Таблица 6 Расчётные термодинамические параметры реакций разложения диазониевых солей **1a-c**, **2**, **3** по данным квантово-химических расчетов по методу RB3LYP/aug-cc-pVDZ

Entry	Реакция	ΔG_{298} ,	ΔH_{298} ,	ΔS*298.15,
		kJ/mol	kJ/mol	kJ/mol
1	$2-NO_2C_6H_4N_2^{+-}OTf \rightarrow 2-NO_2C_6H_4OTf + N_2$	-268.6	-230.1	38.5
2	$3-NO_2C_6H_4N_2^{+-}OTf \rightarrow 3-NO_2C_6H_4OTf + N_2$	-282.4	-242.8	39.6
3	$4-NO_2C_6H_4N_2^{+-}OTf \rightarrow 4-NO_2C_6H_4OTf + N_2$	-287.6	-248.0	39.6
4	$4-MeOC_6H_4N_2^{+-}OTf \rightarrow 4-MeOC_6H_4OTf + N_2$	-238.1	-200.5	37.7
5	$4-NO_2C_6H_4N_2^{+-}OTs \rightarrow 4-NO_2C_6H_4OTs + N_2$	-328.4	-283.9	44.6

6	$4-NO_2C_6H_4N_2^{+-}BF_4 \rightarrow 4-NO_2C_6H_4F + BF_3 + N_2$	-276.2	-188.4	87.9
6a	$4-NO_2C_6H_4N_2^{+-}BF_4 \rightarrow 4-NO_2C_6H_4N_2F + BF_3$	76.2	124.6	48.5
6b	$4-NO_2C_6H_4N_2F^- \rightarrow 4-NO_2C_6H_4F + N_2$	-352.3	312.9	39.4

Таблица 7 Экспериментальные и расчётные значения энтальпии разложения диазониевых солей

Реакция	Теоретическое	Потоковая калориметрия		ТГ/ДСК	
	ΔH ₂₉₈ , kJ/mol	ΔH_{348} ,	ΔH_{353} ,	ΔH_{358} ,	ΔH, kJ/mol
		kJ/mol	kJ/mol	kJ/mol	
$2-NO_2C_6H_4N_2^{+-}OTf \rightarrow 2-NO_2C_6H_4OTf + N_2$	-230	-414	-386	-396	-203.4
$3-NO_2C_6H_4N_2^{+-}OTf \rightarrow 3-NO_2C_6H_4OTf + N_2$	-243	-228	-230	-225	-238.5
$4-NO_2C_6H_4N_2^+$ OTf $\rightarrow 4-NO_2C_6H_4$ OTf + N_2	-248	-200	-235	-250	-65.8
$4\text{-MeOC}_6\text{H}_4\text{N}_2^+$ OTf $\rightarrow 4\text{-MeOC}_6\text{H}_4\text{OTf} + \text{N}_2$	-201	-183	-183	-106	-64.5
$4-NO_2C_6H_4N_2^{+-}OTs \rightarrow 4-NO_2C_6H_4OTs + N_2$	-284	-253	-232	-231	-117.3
$4-NO_2C_6H_4N_2^{+-}BF_4 \rightarrow 4-NO_2C_6H_4F + BF_3 + N_2$	-188	-173	-156	-147	-54.3

В целом, для всех реакций разложения солей **1b-d**, **2** and **3** расчетные квантовохимические и экспериментальные значения энтальпий в потоковой калориметрии имеют довольно близкие значения (хотя линейные корреляции между этими величинами отсутствуют). Из чего следует, что именно предложенные реакции (табл. 6, 7) вносят основной вклад в энергии экзотермического разложения, а квантово-химический метод RB3LYP/aug-cc-pVDZ пригоден для теоретической оценки теплот разложения диазониевых солей. Исключением является соль **1a** с нитро-группой в *орто*-положении для которой энтальпия реакции в потоковой калориметрии значительно превышает полученные расчетные значения (табл. 7). Этот факт согласуется с вышеприведенными данными ГХ-МС, которые показывают, что при разложении соли **1a** не образуются продукты замещения диазониевой группы на группу ОТf. Следовательно, разложение соли **1a** проходит по иному маршруту и, возможно, иному механизму, что требует дальнейшего специального исследования.

Некоторые значения энтальпий экзотермического разложения солей **1-3** по данным ТГ/ДСК оказываются значительно меньше, чем расчетные квантово-химические и данные потоковой калориметрии (табл. 7). Причиной этого является то, что разложение солей в условиях ТГ/ДСК протекает при температурах значительно превышающих 85 °С (табл. 2), в результате происходит процесс испарения, сопровождающийся значительной потерей массы, что снижает тепловой эффект реакции.

Выводы

Проведенный анализ Аррениуса и аппроксимация кривых разложения на нормальные условия показали, что сравнение кинетики при более высоких температурах не всегда качественно описывает сравнительную стабильность при нормальных условиях, в следствии

различия механизмов и энергий активации. По результатам анализа определили, что наибольшей стабильностью в хранении при нормальных условиях следует ожидать у трифлатных солей.

Проведение только ТГ/ДСК исследования не может служить надежным критерием термической стабильности и энергетики солей диазония, так как в этом случае происходит разложение при более высоких температурах и сопровождается интенсивным испарением низкомолекулярных продуктов реакции. Кроме того при ТГ/ДСК исследованиях разложение происходит при различных температурах, что затрудняет анализ и сравнение полученных данных. По результатам потоковой калориметрии изученные соединения разлагаются с тепловыми эффектами близкими к пороговому значению 800 Дж/г для безопасной транспортировки, по данным ЮНЕСКО [17]. В случае трифлата 2-нитрофенилдиазония выделяющаяся энергия -1300 Дж/г значительно превышают допустимое значение.

Эксперимент показал, что природа заместителя и его положение существенно влияют на кинетику разложения солей. Вероятно, это связано с электронным строением и стабильностью самого диазониевого катиона. В случае 2-нитрофенилдиазония имеют место более сложные процессы связанные, вероятно, с перегруппировкой или иными побочными процессами после выделения молекулярного азота. Этот факт подтверждается существенным отличием в энергии активации для трифлата 2-нитрофенилдиазония от других изученных диазониевых солей, значительно более высоким энергетическим эффектом, а так же отсутствием в продуктах реакции 2-нитрофенилтрифторметансульфоната по данным ГХ-МС. Очевидно, случай сульфоната 2-нитрофенилдиазония следует рассматривать в индивидуальном порядке. Наибольшим временем хранения при нормальных условиях наблюдается у пара- и мета-производного.

Квантово-химические расчеты удовлетворительно описывают энергетику процессов разложения, при условии адекватности механизма реакции и известных продуктах разложения. Энергетические эффекты для сульфоната 2-нитрофенилдиазония почти в два раза превышают расчетные, что связано с иным механизмом разложения.

Существенное влияние на стабильность солей оказывает вид аниона. В случае трифлата 4-нитрофенилдиазония наблюдается значительное увеличение времени полураспада и уменьшение величины максимального теплового потока при нормальных учловиях. Предположительно, влияние аниона связано с изменением вероятности протекания различных механизмов при разложении солей. Очевидно, что для прогнозирования стабильности солей диазония необходимо более подробное изучение механизмов реакций протекающих при разложении.

References

1. (a) Zollinger, H. *Diazo Chemistry I: Aromatic and Heteroaromatic Compounds*; VCH, Weinheim, **1994**. (b) Roglands, A.; Pla-Quintana, A.; Moreno-Manas M. *Chem. Rev.* **2006**, *106*, 4622. (c) Bonin H.; Fouquet, E.; Felpin, F.-X. *Adv. Synth. Catal.* **2011**, 353, 3063. (d) Mo, F.; Dong, G.; Zhang, Y.; Wang, *J. Org. Biomol. Chem.* **2013**, *11*, 1582. (e) Kölmel, D. K.; Jung, N.; Bräse, S.

- Aust. J. Chem. **2014**, 67, 328. (f) Deadman, B. J.; Collins, S.G.; Maguire, A. R. Chem. Eur. J. **2015**, 21, 2298.
- 2. Mahouche-Chergui, S.; Gam-Derouich, S.; Manganey, C.; Chehimi, M. M. Chem. Soc. Rev. **2011**, 40, 4143.
- 3. Filimonov V. D., Trusova M.E., Postnikov P.S., Krasnokutskaya E.A., Lee Y.M., Hwang H.Y., Kim H., Ki-Whan Chi. Unusually Stable, Versatile, and Pure Arenediazonium Tosylates: their Preparation, Structures, and Synthetic Applicability. *Org. Lett.*, **2008**, *10*, 3961-3964
- (a) Krasnokutskaya E.A., Semenischeva N.I., Filimonov V.D., Knochel P. *Synthesis*, 2007, 81 (b) Gorlushko D.A., Filimonov V.D., Krasnokutskaya E.A., Semenischeva N.I., Go B.S., Hwang H.Y., Chi K-W. *Tetrahedron Lett.*, 2008, 49, 1080 (c) Moon M.E., Choi Y., Lee Y.M., Vajpayee V., Trusova M.E., Filimonov V.D., Chi K.-W. *Tetrahedron Lett.*, 2010, 51, 6769. (d) Lee Y.M., Moon M.E., Vajpayee V., Filimonov V.D., Chi K.-W. *Tetrahedron*, 2010, 66, 7418. (e) Trusova M.E., Krasnokutskaya E.A. Postnikov, P.S., Choi Y.; Chi, K-W., Filimonov V.D. *Synthesis*, 2011, 2154. (f) Riss, P. J.; Kuschel, S.; Aigbirhio, F. I. Tetrahedron Lett. 2012, 53, 1717; (g) Kutonova, K.V.; Trusova, M.E.; Postnikov, P.S.; Filimonov, V.D.; Parello, J. *Synthesis*. 2013, 45, 2706.
- 5. (a) Velikorodov, A. V.; Ionova, V. A.; Temirbulatova, S. I.; Suvorova, M. A. Rus. J. Org. Chem. 2013, 49, 1004. (b) Tang, Z. Y.; Zhang, Y.; Wang, T.; Wang, W. Synlett. 2010, 804. (c) Chaturbhuj, G. U.; Akamanchi, K. C. Tetrahedron Lett. 2011, 52, 4950. (d) Vajpayee, V.; Song, Y. H.; Ahn, J. S.; Chi, K.-W. Bull. Korean Chem. Soc. 2011, 32, 2970. (e) Postnikov, P. S.; Trusova, M. E.; Fedushchak, T. A.; Uimin, M. A.; Ermakov, A. E.; Filimonov, V. D. *Nanotechnologies in Russia*, **2010**, 5, 446. (f) Min, M.; Seo, S.; Lee, J.; Lee, S. M.; Hwang, E.; Lee, H. *Chem. Commun.* **2013**, 49, 6289
- 6. (a) S.K. Dhingra, P. Nag, R. Saxena, Synthesis of Fluoro-Aromatics by Balz-Schiemann Reaction —A Greener Approach, Chem Sci Trans., 2015, 4(4), 1149-1155, (b) K. Al-saadie, I.M. Al-Mousawi, N.Abdul karime, National Journal of Chemistry, Volume 25, (2007) 195-205, (c) N. Kamigata, M. Kobayashi, H. Minato, Cationic Arylation. V. Reaction of Substituted Benzenes with p-Nitrophenyl Cation», Bulletin of the chemical society of Japan, vol. 45, 2047-2050 (1972), (d) Zhang, Y.; Tu, G.; Cao, W. Inclusion Complexation of Diphenylamine-4-diazonium Chloride and p-Sulfonatocalix[4]arene. Supramolec. Chem. 2002, 14, 473-475.
- 7. (a) Jinyu Chen, Chao Zhao, Renxiang Wang, Shuguang Cao, Weixiao Cao, Photochemical and thermal decomposition of diphenylamine diazonium salts, Journal of Photochemistry and Photobiology A: Chemistry 125 (1999) 73-78, (b) M. Tsuda and S. Oikawa, Photochemical proton generation mechanism from onium salts, Journal of Photopolymer Science and Technology. Volume 3, Number 3 (1990) 249 258
- 8. (a) R. Ullrich, Th. Grewer, Decomposition of aromatic diazonium compounds, Thermochimica Acta, 225 (1993) 201-211, (b) L.L. Brown, J.S. Drury, Nitrogen Isotope Effects in the Decomposition of Diazonium Salts, The Journal of Chemical Physics, Vol. 43, Number 5, 1 September 1965, (c) P.D. Storey, Calorimetric Studies of The Thermal Explosion Properties of Aromatic Diazonium Salts, Institution. Chem. Eng. Symposium Series 1981, No. 68. P. 1-3. P. 9

- 11. P. Guillaume, M. Rat, S. Wilker, G. Pantel, Microcalorimetric and Chemical Studies of Propellants Proc. Int Annu. Conf. ICT 29, 133 (1998).
 - 1. J.D. Jonce, R. Dijkstra, P.B. Braun, The thermal, decomposition of o-hydroxy-diazonium compounds, Recueil, Vol. 68 (1949) 430-432

2.

3. Makin, Fred Beresford (1939) A summary of some new reactions of Diazonium Chlorides, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10358/

4.

5. B. A. Abramovitch, W. A. Hymers, J. B. Rajan, R. Wilson, The thermal decomposition of diazonium salts: evidence for the formation of radical intermediates, Tetrahedron Letters No. 23, pp. 1507-1510, 1963

6.

7. B.D. Smith, The Investigation of The Decomposition of Diazonium Salts in Aqueous Solution, A thesis for the Degree Doctor of Philosophy. Georgia Institute of Technology (1996)

8.

9.

- 10. T. J. Kemp, P. Pinot De Moria, The Photochemistry of Aryldiazonium Salts: Fundamental aspects and Applications to Reprographic Processes, Rev. Port. Quím., 17 (1975) 174-182
- 11. G. Smets, A. Aerts, J. Van Eurum, Photochemical Initiation of Cationic Polymerization and Its Kinetics, Polymer Journal, Vol.2, No. 9, pp 539-547 (1980)

12.

13. L.L. Brown, J.S. Drury, Nitrogen Isotope Effects in the Decomposition of Diazonium Salts, The Journal of Chemical Physics, Vol. 43, Number 5, 1 September 1965

14.

15.

16.

- 17. http://www.unece.org/trans/danger/danger.html
- 18. [1s]. V. Filimonov, E. Krasnokutskaya, A. Kassanova, V. Fedorova, K. Stankevich, N. Naumov, A. Bondarev, V. Kataeva. Synthesis, structure, and synthetic potential of arenediazonium trifluoromethanesulfonates as stable and safe diazonium salts. https://doi.org/10.1002/ejoc.201800887

Приложение 1. Получение и характеристики полученных ДС

В 6 ледяной уксусной кислоты растворяли 0.5 мл (1.2)mmol) ΜЛ трифторметансульфокислоты и 1.0 mmol aniline. К раствору при перемешивании по каплям прибавляли 1 mmol butyl nitrite при температуре 0-5 °C. Затем, при охлаждении по каплям прибавляли 0,6 мл бутилнитрита. Реакционную массу перемешивали при 10-15 °C в течение 10-20 мин до исчезновения пятна анилина на TCX (элюент гексан-EtOAc 3:2). К реакционному раствору прибавляли 100-150 мл эфира, отфильтровывали осадок соли 1, промывали эфиром и высушивали в вакууме при комнатной температуре 48 часов.

2-Nitrobenzenediazonium trifluoromethanesulfonate (1a). Yeild 94%, mp 110 °C. ¹H ЯМР (300 МГц, DMSO-d₆), δ, ppm: 8.39-8.44 (м, 1H, J=15.9 Γц), 8.51-8.56 (м, 1H, J=15.9 Γц), 8.79 (д, 1H, J=8.1 Гц), 9.12 (д, 1H, J 8.1 Гц). 13 С ЯМР (75 МГц, ДМСО-d₆) δ: 120.6 (t, CF₃, J=320 Гц), 111.1, 118.5, 122.8, 128.1, 136.6, 142.3, 144.5. IR (KBr): 2359 см⁻¹.

Calc.: $C_7H_4F_3N_3O_5S$, C, 28.10; H, 1.35; N, 14.04; S, 10.72, F, 19.05. Found: C, 28.09; H, 1.32; N, 13.89; S, 10.85; F, 19.40.

- 3-Nitrobenzenediazonium trifluoromethanesulfonate (1b). ¹H NMR (300MHz, DMSO-d₆),
- 4-Nitrobenzenediazonium trifluoromethanesulfonate (1c). ¹H NMR (300MHz, DMSO-d₆),
- **4-Methoxybenzenediazonium trifluoromethanesulfonate (1d).** ^{1}H NMR (300MHz, DMSO- d_{6}),

4-Nitrobenzenediazonium tosylate (2)

В 5 мл ледяной уксусной кислоты растворяли $0.928 \,\mathrm{r}$ (5.4 mmol) p-TsOH и $0.553 \,\mathrm{r}$ (4.0 mmol) p-nitroaniline. К раствору при перемешивании по каплям прибавляли $0.6 \,\mathrm{m}$ л (4.8 mmol) butyl nitrite при температуре $0-5 \,\mathrm{^oC}$. Реакционную массу перемешивали при $10-15 \,\mathrm{^oC}$ в течение $20 \,\mathrm{m}$ ин до исчезновения пятна анилина на TCX (элюент гексан-EtOAc 3:2). К реакционному раствору прибавляли $200 \,\mathrm{m}$ л эфира, отфильтровывали осадок соли 2, промывали эфиром и высушивали в вакууме при комнатной температуре $48 \,\mathrm{vacob}$. Yield, $1.4 \,\mathrm{g}$ (90%), mp $132 \,\mathrm{^oC}$ (lit $^3 \,132 \,\mathrm{^oC}$).

 1 Н ЯМР (300 МГц, DMSO-d₆), δ , ppm: 2.28 (s, 3H), 7.09 (d, 2H, J=7.8 Γ ц), 7.45 (d, 2H, J=7.8 Γ ц), 8.68 (d, 2H, J=9.3 Γ ц), 8.92 (d, 2H, J=9.0 Γ ц). 13 С ЯМР (75 М Γ ц, ДМСО), δ , ppm: 20.84, 121.96, 125.57, 126.05, 128.18, 134.59, 137.85, 145.55, 153.22.

4-Nitrobenzenediazonium tetrafluoroborate (3) получен по методу [9].

Приложение 2. ГХ-МС Спектры основных продуктов разложения ДС

Scan 716 (9.250 min): BAA-2.D\data.ms

900
68.9
95.0
700
400
300
200
100
100
100
120
140
160
180
200
220
240
260

Abundance

Рисунок 21. Основной продукт разложения соли **1b** по данным Γ X-MC, совпадает со спектром 3-NO₂-C₆H₄-OSO₂CF₃ M/Z: 271, 161, 95, 92, 69, 64.

Рисунок 22. Основные продукты разложения соли 1c по данным ГХ-МС, совпадают со спектром 4-NO₂-C₆H₄-OSO₂CF₃ M/Z: 271, 177, 95, 69 и спектром 1-йод-4-нитробензола M/Z: 249, 203, 76.

Рисунок 23. Основной продукт разложения соли ${\bf 1d}$ по данным ГХ-МС, совпадает со спектром 3-CH₃O-C₆H₄-OSO₂CF₃ M/Z: 256, 123, 69, 52.

Рисунок 24. Основные продукты разложения соли $\bf 2$ по данным ГХ-МС, совпадают со спектрами нитробензола M/Z: 123, 77, 51 и 1-йод-4-нитробензола M/Z: 249, 203, 76, 50.

Рисунок 25. Основные продукты разложения соли **3** по данным ГХ-МС, совпадают со спектрами 1-фтор-2-нитробензола M/Z: 141, 111, 95, 75, 50 и 1-йод-4-нитробензола M/Z: 249, 203, 76.

Приложение 3. LS-MC Спектры основных продуктов разложения ДС

Приложение 4. Результаты квантовохимических расчетов