

Tangents and Normals Ex 16.2 Q12

The given equations are,

$$y = x \log_e x$$
 --- (i)
 $2x - 2y + 3 = 0$ --- (ii)

Slope m_1 of (i)

$$m_1 = \frac{dy}{dx} = \log_e x + 1$$

slope m_2 of (ii)

$$m_2 = 1$$

Tangents and Normals Ex 16.2 Q13 The equation of the given curve is $y = x^2 - 2x + 7$.

On differentiating with respect to x, we get:

$$\frac{dy}{dx} = 2x - 2$$

(a) The equation of the line is 2x - y + 9 = 0.

$$2x - y + 9 = 0 \Rightarrow y = 2x + 9$$

This is of the form y = mx + c.

::Slope of the line = 2

If a tangent is parallel to the line 2x - y + 9 = 0, then the slope of the tangent is equal to the slope of the line.

Therefore, we have:

$$2 = 2x - 2$$

$$\Rightarrow 2x = 4$$

$$\Rightarrow x = 2$$

Now, x = 2

$$\Rightarrow$$
 $y = 4 - 4 + 7 = 7$

Thus, the equation of the tangent passing through (2, 7) is given by,

$$y-7 = 2(x-2)$$
$$\Rightarrow y-2x-3 = 0$$

Hence, the equation of the tangent line to the given curve (which is parallel to line 2x - y + 9 = 0) is y - 2x - 3 = 0

(b) The equation of the line is 5y - 15x = 13.

$$5y - 15x = 13 \Rightarrow y = 3x + \frac{13}{5}$$

This is of the form y = mx + c.

::Slope of the line = 3

If a tangent is perpendicular to the line 5y - 15x = 13, then the slope of the tangent is $\frac{-1}{\text{slope of the line}} = \frac{-1}{3}$.

$$\Rightarrow 2x - 2 = \frac{-1}{3}$$

$$\Rightarrow 2x = \frac{-1}{3} + 2$$

$$\Rightarrow 2x = \frac{5}{3}$$

$$\Rightarrow x = \frac{5}{6}$$
Now, $x = \frac{5}{6}$

$$\Rightarrow y = \frac{25}{36} - \frac{10}{6} + 7 = \frac{25 - 60 + 252}{36} = \frac{217}{36}$$

Thus, the equation of the tangent passing through $\left(\frac{5}{6}, \frac{217}{36}\right)$ is given by,

$$y - \frac{217}{36} = -\frac{1}{3} \left(x - \frac{5}{6} \right)$$

$$\Rightarrow \frac{36y - 217}{36} = \frac{-1}{18} (6x - 5)$$

$$\Rightarrow 36y - 217 = -2(6x - 5)$$

$$\Rightarrow 36y - 217 = -12x + 10$$

$$\Rightarrow 36y + 12x - 227 = 0$$

Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y - 15x = 13) is 36y + 12x - 227 = 0.

******* END *******