计算机组成 CPU 设计文档-P8

计算	机组成	t CPU 设计文档-P81
	整体结	- ちちち - ちちょう - ちょう - ち
	1,	CPU 基本参数与指标2
	2.	CPU 模块结构2
	— 、	模块规格(数据通路)4
	1,	数据通路4
	2.	IFU(取指令单元)6
	3,	GRF(通用寄存器组)7
	4,	Ext (位数扩展器)
	5.	CMP(分支条件判断)8
	6.	NPC(分支跳转指令地址计算器)8
	7.	IDU(指令译码单元)9
	8.	ALU(逻辑运算单元)9
	9,	BED (字节使能译码器)
	10,	DM(数据存储器)11
	11,	MDS(主存数据选择器)11
	12,	MOV(主存操作验证器)12
	13,	CP0(协处理器)12
	14,	PipeReg (流水线寄存器)
	=,	模块规格(控制电路)14
	三、	CPU 功能测试
	1,	功能测试原则
	2.	测试策略
	3.	测试实例
	四、本	章思考题27
	五、≉	5关 CPIJ 扩展的说明 29

整体结构与概览

1、CPU 基本参数与指标

处理器类型:流水线 CPU

处理器字长:32位 处理器支持指令集:

	add	addu	sub	subu		
oolr(16)	sll	srl	sra	sllv	srlv	srav
calr(16)	and	or	xor	nor		
	slt	sltu				
	addi	addiu				
cali(8)	andi	ori	xori			
Call(0)	lui					
	slti	stliu				
	lw					
Id(5)	lb	lbu				
	lh	lhu				
st(3)	SW	sh	sb			
branch(6)	beq	bne	blez	bgtz	bltz	bgez
j	j					
jal	jal					
jr	jr					
jalr	jalr					
EXC	eret	mtc0	mfc0			

中断异常支持:精确异常+优先型外部中断

2、CPU 模块结构

数据通路

- 1. IFU(取指令单元):包括 PC 和存放指令的 ROM, 用于输出当前指令码。
- 2. GRF (通用寄存器组):内含 32 个寄存器,支持对寄存器值的读写。
- 3. ALU (算术逻辑单元):运算执行部件,对 32 位数执行多种运算。
- 4. DM (数据存储器):存储数据部件,支持读写。
- 5. BED (字节使能译码器):根据主控信号,输出 DM 的字写入使能。
- 6. MDS (主存数据选择器):根据主控信号,将 DM 输出的字进行处理。
- 7. EXT(位扩展器):将16位数扩展为32位数,支持有/无符号扩展。

- 8. NPC (外部跳转分支计算器):支持跳转计算和分支计算与判断, 若为分支指令, 会根据 CMP 结果选择正确的 pc 值。
- 9. CMP (分支比较器):根据指令条件设置,返回判断结果。
- 10. MOV(主存操作验证器):验证对主存及外部设备的操作合乎规范。
- 11. IDU(指令译码单元):对输入指令进行单指令译码和类型译码。
- 12. CP0(协处理器):外部中断请求协调与中断异常处理的控制与记录。
- 13. PipeReg(流水线寄存器层):实现 CPU 流水并行效果,上升沿时接受前一层运行完且需要传递至下一级的数据,其他时刻释放本层功能所需的数据。一共分为 FD, DE, EM, MW 四层。
- 14. FuncMux(功能多选器):对同一端口多个数据源进行筛选,目前有 AluSrc、AluSel、WaSel、WdSel 四个。
- 15. TMux (转发多选器):用于转发解决冲突时所使用的多选器,目前有 GRF_RD1, GRF_RD2, DE_RD1, DE_RD2, EM_RD2。
- 16. EMux (异常多选器): 用于筛选每一级所流经的内部异常代码。

控制信号

- 1、主控器:识别指令并生成 CPU 各部分的控制信号,使用逻辑阵列实现。
- 2、冲突控制器:
 - a) GID:通用指令译码器:根据所给指令和流水线段,返回 Tuse、Tnew、写地址、数据管道等参数。
 - b) STALL:暂停控制器,输出是否暂停的指令。
 - c) TRANSMIT:转发控制器,输出5个转发多选器的控制信号。
 - d) ExcCTRL: 异常启动控制器. 用于启动中断异常时的 CPU 全局操作。

一、 模块规格(数据通路)

1、数据通路

表格 1 数据通路端口合成-无转发

部件	端口名称(入) PC	汇总端口	多路选择器	控制信号	0	1	2
	ADD4(inside)	PC					
IFU	IM(inside)	PC					
	PC(inside)	ADD4					
EMUX_F	IF_Error	IF					
FD_IR	II_LIIOI	IM					
FD PC4							
_		ADD4					
FD_PC(display)		PC					
FD_BD		NPC&CTRL					
FD_ExcCode		EMUX_F					
GRF	RA1	FD_IR[rs]					
	RA2	FD_IR[rt]					
EXT		FD_IR[Im16]					
	^						
CMP	Α	RD1					
	В	RD2					
NPC	IM16	FD_IR[IM16]					
	IM26	FD_IR[Im26]					
	RegPc	RD1					
	Cmp	CMP					
	PC4	FD_PC4					
	EPC	CP0					
IDU	IR	FD_IR					
IFU	Pc_Update	NPC					
EMUX_D	IDU_Error	IDU					
DE_IR		FD_IR					
DE_PC4		FD_PC4					
DE_RD1		RD1					
DE_RD2		RD2					
DE_EXT		EXT					
DE_PC(display)		FD_PC					
DE_BD		FD_BD					
DE_ExcCode		EMUX_D					
ALU	Α	DE_RD1					
	В	MUX_AluSrc	MUX_AluSrc	AluSrc	DE_RD2	DE_EXT	DE_PC4
	C		11107 () 1110110	7 110010	DE_MDE	0 L_L/11	52_, 0
		DE_IR[s]					
EMUX_E	Alu_Error	ALU					
	IR	DE_IR					
EM_IR		DE_IR					
EM_ALU		Alu					
EM_RD2		DE_RD2					
M_PC(display)		DE_PC					
EM_BD		DE_BD					
EM_ExcCode		EMUX_E					
BED	Addr	EM_ALU					
DM	Addr	EM_ALU					
	WD	EM RD2					
Dridge (OLIT)	ByteEnable	BED					
Bridge(OUT)	PrAddr	EM ALU					
	PrWD	EM_RD2					
14617	PrBE	BED	-				
MOV	IR DA	EM_IR					
CP0	RA	EM_IR[rd]					
	WA	EM_IR[rd]					
	WD	EM_RD2					
	PC .	PCMUX	EM PC	EM PC-4			
	ExcCode	EXCMUX	EMUX_M	5'd0			
	BD	EMUX_M					
	HWInt	HWInt(out)					
EMUX_M	MOV Error	MOV					
MW_IR		EM_IR					
MW_ALU		EM_ALU					
MW_MD		DM Bridge					
/IW_PC(display)		EM PC					
MW_CP0							
	WA	MUX_WaSel	MUX_WaSel	WaSel	MW_IR[rt]	MW_IR[rd]	31
GRF	WD	MUX_WdSel	MUX_WdSel	WdSel	MW_ALU	MW_MD	MW_CP
	WPC(display)	MW PC					

表格 2 数据通路端口合成-转发

部件	端口名称(入)	汇总端口	多路选择器	控制信号	0	1	2
	PC	50					
IFU	ADD4(inside)	PC					
	IM(inside)	PC ADD4					
EMUX F	PC(inside) IF_Error	IF					
FD_IR	II_LIIOI	IM					
FD_PC4		ADD4					
FD_PC(display)		PC					
FD_BD		NPC&CTRL					
FD_ExcCode		EMUX_F					
GRF	RA1	FD_IR[rs]					
5	RA2	FD_IR[rt]					
EXT	10.12	FD_IR[Im16]					
	^						
CMP	A	TMUX_GRF_RD1					
	В	TMUX_GRF_RD2					
NPC	IM16	FD_IR[IM16]					
	IM26	FD_IR[Im26]					
	RegPc	TMUX_GRF_RD1					
	Cmp	CMP					
	PC4	FD PC4					
	EPC		+				
1511		CP0					
IDU	IR	FD_IR					
IFU	Pc_Update	NPC					
EMUX_D	IDU_Error	IDU					
DE_IR		FD_IR					
DE_PC4		FD_PC4					
DE_RD1		TMUX_GRF_RD1					
DE_RD2		TMUX_GRF_RD2					
DE_EXT		EXT					
DE_PC(display)		FD PC					
DE_BD		FD_BD					
DE_ExcCode		EMUX_D					
ALU	А	DE_RD1					
	В	MUX_AluSrc	MUX_AluSrc	AluSrc	TMUX_DE_RD2	DE_EXT	DE_PC4
	С		WOX_/ WOTE	7110010	TWOX_DE_RDE	DL_EXT	DL_1 04
		DE_IR[s]					
EMUX_E	Alu_Error	ALU					
	IR	DE_IR					
EM_IR		DE_IR					
EM_ALU		Alu					
EM RD2		TMUX_DE_RD2					
EM_PC(display)		DE_PC					
EM_BD		DE_BD					
EM_ExcCode		EMUX_E					
BED	Addr	EM_ALU					
DM	Addr	EM_ALU					
DIVI	WD	TMUX_EM_RD2					
	ByteEnable	BED					
Bridge(OUT)	PrAddr	EM_ALU	+				
bridge(OUT)	PrWD	TMUX_EM_RD2					
	PrBE	BED					
MOV	IR	EM_IR					
CP0	RA	EM_IR[rd]					
	WA	EM_IR[rd]					
	WD	TMUX_EM_RD2					
	PC	PCMUX	EM_PC	EM_PC-4			
	ExcCode	EXCMUX	EMUX_M	5'd0			
	BD	EMUX_M					
	HWInt	HWInt(out)					
EMUX_M	MOV_Error	MOV					
A 444 15	IR	EM_IR					
MW_IR		EM_IR					
MW_ALU		EM_ALU					
MW_MD		DM Bridge					
MW_PC(display)		EM_PC	-				
MANA CDO							
MW_CP0	\Λ/Δ	Ia2c/M XIIM	Index/V/ XIIM	WaSal l	[//\// IDIr+I	M/M/ ID[rd]	-2.1
MW_CP0 GRF	WA WD	MUX_WaSel MUX_WdSel	MUX_WaSel MUX_WdSel	WaSel WdSel	MW_IR[rt] MW_ALU	MW_IR[rd] MW_MD	31 MW_CP0

表格 3 转发多选器

Tmux	0	1	2	3	4
TMUX_GRF_RD1	RD1	EM_ALU	MW_ALU	MW_MD	MW_CP0
TMUX_GRF_RD2	RD2	EM_ALU	MW_ALU	MW_MD	MW_CP0
TMUX_DE_RD1	DE_RD1	EM_ALU	MW_ALU	MW_MD	MW_CP0
TMUX_DE_RD2	DE_RD2	EM_ALU	MW_ALU	MW_MD	MW_CP0
TMUX_EM_RD2	EM_RD2	X	MW_ALU	MW_MD	MW_CP0

2、IFU(取指令单元)

a) 端口

表格 4 IFU 端口表

端口名称	类型	功能描述
Clock	In	控制信号,接受时钟信号
Reset	In	控制信号,接受 Pc 同步复位信号
Branch_Jump	In	控制信号,是否接受 NPC 输出作为 PC 新值
Pc_Update[31:0]	In	数据通路,分支/跳转指令中接受 PC 更新值
PC4[31:0]	Out	数据通路,输出 PC+4(32 位 Byte 编址)
Instr[31:0]	Out	数据通路,输出 32 位指令二进制码
PC[31:0]	Out	调试信号,输出 PC(32 位 Byte 编址)
IF_Error	Out	数据通路,取指错误信号

b) 功能描述

- IFU 主要由 PC 和存放指令的 ROM 组成,用于取出指令和 PC 更新。
- ROM 规格为 2048*32bits,字编址 (访问时需地址转换)。
- PC 为 32 位二进制, 起始地址为 0x00003000, **字节编址**, 支持向字编址转换(除4)。

c) 注意事项

● ROM 和 RAM 部件的地址端口为字编址地址。为保证兼容性,该设计在顶层设计时用字节编址,而在次层具体部件设计时会进行字编址转换。

3、GRF(通用寄存器组)

a) 端口

表格 5 GRF 端口表

端口名称	类型	功能描述
Clock	In	控制信号,接受时钟信号
Reset	In	控制信号,接受同步复位信号
RegWrite	In	控制信号,接受寄存器写使能信号
ReadAddr1/R[4:0]	In	数据通路,读,接受 Rs 寄存器地址
ReadAddr2/R[4:0]	In	数据通路,读,接受 Rt 寄存器地址
WriteAddr/W[4:0]	In	数据通路,写,接受被写入寄存器地址
WriteData/W[31:0]	In	数据通路,写,接受被写入数据
RegData1/R[31:0]	Out	数据通路,读,输出 Rs 寄存器值
RegData2/R[31:0]	Out	数据通路,读,输出 Rt 寄存器值
WPC[31:0]	None	调试信号,用于寄存器写时 display

b) 功能描述

- GRF 中共有 32 个寄存器,对应 MARS 中的 32 个通用寄存器。(注意:不包括 hi, lo, pc 寄存器。)
- 读:GRF 读功能时作为组合逻辑电路,根据输入地址信号,输出数据。
- 写:GRF 写功能作为时序逻辑电路,相应的 Addr, Data, RegWrite 应在时钟上升 沿前做好准备。

c) 备注

- 此版本 GRF 读写功能的地址和数据端口独立,可实现同步读写操作。
- 0号寄存器恒为0值,不可被改写。

4、Ext(位数扩展器)

表格 6 16-32 位扩展器端口表

端口名称	类型	功能描述
ExtOp	In	控制信号,控制扩展方式(0-zero, 1-sign)
In[15:0]	In	数据通路,接收待扩展的 16 位数字。
Out[31:0]	Out	数据通路,输出扩展后的 32 位数字。

5、CMP(分支条件判断)

表格 7 CMP 端口表

端口名称	类型	功能描述
СтрОр	In	控制信号,指定 branch 指令比较策略 (0-equal)
A[31:0]	In	数据通路,比较数 A
B[31:0]	In	数据通路,比较数 B
Cmp	Out	比较结果(1-成立,0-不成立)

6、NPC(分支跳转指令地址计算器)

表格 8 NPC 端口表

端口名称	类型	功能描述
nPc_Sel[2:0]	In	控制信号,控制地址计算方式
		(0-branch, 1-j/jal, 2-jr, 3-eret)
Стр	In	数据通路,接受 CMP 的分支决策信号。(beq)
Im32[31:0]	In	数据通路,接受 EXT 的 符号扩展 立即数。(beq)
Im26[25:0]	In	数据通路,接受指令中的 26 位立即数。(j/jal)
Pc4[31:0]	In	数据通路,接受当前指令 Pc+4。(j/jal/beq)
RegPc[31:0]	In	数据通路,接受从寄存器中读取的跳转值。(jr)
EPC[31:0]	In	数据通路,接受从 CPO 读取的 epc 值。(eret)

Pc_Update[31:0]	Out	数据通路,输出 PC 分支跳转计算的地址。
Slot	Out	数据通路,NPC 延迟槽判断情况(部分判据)

7、IDU(指令译码单元)

表格 9 IDU 端口表

端口名称	类型	功能描述
IR[31:0]	In	数据通路, D 级指令
IRN	Out	数据通路,指令译码号
IRType	Out	数据通路, 指令分类译码号(存在未分类指令)
IDU_Error	Out	数据通路,指令未识别信号(1-未识别)

8、ALU(逻辑运算单元)

a) 端口

表格 10 ALU 端口表

端口名称	类型	功能描述
AluOp[3:0]	In	控制信号,接受算术逻辑信号
A[31:0]	In	数据通路,接受算术逻辑操作数 A
B[31:0]	In	数据通路,接受算术逻辑操作数 B
C[4:0]	In	数据通路,接受算术逻辑操作数 C (常于移位)
Result[31:0]	Out	数据通路,输出结果
Alu_Error	Out	数据通路,算术溢出错误信号

b) 功能描述

● ALU 受 AluController 的控制信号控制,输出不同的算术逻辑结果:

表格 11 ALU 功能表

AluOp 功能	适用指令
----------	------

	狮丁	И
0	A + B	add addu addi addiu <mark>ld st</mark>
1	A - B	sub subu
2	B << s	sll
3	B >> s	srl
4	Signed B >> s	sra
5	B << A[4:0]	sllv
6	B >> A[4:0]	srlv
7	Signed B >> A[4:0]	srav
8	A and B	and andi
9	A or B	or ori
10	A xor B	xor xori
11	A nor B	nor
12	set 1 if A < B Signed	slt slti
13	set 1 if A < B Unsiged	sltu sltiu
14	B << 16	lui
15	B+4	<mark>jal jalr</mark>
other	0	other

* 黄色高亮符号代表此指令是一类指令。

9、BED (字节使能译码器)

表格 12 BED 端口表

端口名称	类型	功能描述
StoreType[1:0]	In	控制信号,接受存储位(字-半字-字节)
Addr[1:0]	In	数据通路,地址后两位。
MemWrite	In 控制信号,写使能	
ByteEnable[3:0]	Out 数据通路, 输出 Addr[31:2]对应字允许写入的写	
	节位置,以独热码形式输出。	
	ByteEnable[3] = 1 : [31:24] WriteEnable	
	ByteEnable[2] = 1 : [23:16] WriteEnable	

	ByteEnable[1] = 1 : [15:8] WriteEnable	
	ByteEnable[0] = 1 : [7:0] WriteEnable	

10、 DM (数据存储器)

a) 端口

表格 13 数据存储器端口表

端口名称	类型	功能描述	
Clock1	In	控制信号,接受时钟信号	
Clock2	In	控制信号,接受双倍时钟信号(Block RAM)	
Reset	In	控制信号,接受同步复位信号	
ByteEnable[3:0]	In	数据通路,写字节使能信号。	
MemAddr[31:0]	In	数据通路,接受 读 /写操作地址, byte 编址	
WriteData[31:0]	In	数据通路,写,写入数据	
ReadData[31:0]	Out	数据通路, 读, 输出数据	
WPC[31:0]	None	调试信号,用于主存写时 display	

b) 描述

- 数据存储器使用 RAM 实现,容量为 2048*32bits,RAM **字节编址**。
- 读/写共用一个地址端口,同一时钟周期只能进行读/写的其中之一。
- 起始地址:0x00000000。
- 由于 BlockRAM 行为限制,P8 中使用 ByteEnable 替代 MemWrite 作为写信号。

11、 MDS(主存数据选择器)

表格 14 MDS 端口表

端口名称	类型	功能描述	
LoadType[1:0]	In	控制信号,接受输出位宽(字-半字-字节)	
SignRead	In	控制信号,结果扩展(1-符号,0-无符号)	
MemRead	In	控制信号,读使能	

Addr[1:0]	In	数据通路, 字节编址 地址后两位
Word[31:0]	In	数据通路,按字读取的数据
RD[31:0]	Out	数据通路,指定位宽、拓展、地址的输出数据

12、 MOV(主存操作验证器)

表格 15 MOV 端口表

端口名称	类型	功能描述
IR[31:0]	In	数据通路,M 级指令内容
Addr[31:0]	In	数据通路,主存操作(读取)地址
MOV_Error	Out	数据通路,操作验证信号(1-错误,0-正确)

13、 CPO (协处理器)

表格 16 协处理器端口表

端口名称	类型	功能描述
Clock	In	控制信号,时钟信号
Reset	In	控制信号,同步复位信号
We	In	控制信号, 写使能信号 (mtc0)
ExlSet	In	控制信号,中断异常位置位信号(中断异常时)
ExlClr	In	控制信号,中断异常位释位信号 (eret)
RA[4:0]	In	数据通路,读取 CP0 寄存器地址 IR[rd]
WA[4:0]	In	数据通路,写入 CP0 寄存器地址 IR[rd]
WD[31:0]	In	数据通路,写入数据 GRF[Rt]
PC[31:0]	In	数据通路,M 级指令的 pc 值
ExcCode[6:2]	In	数据通路,中断异常代码(中断异常时)
BD	In	数据通路,受害指令延迟槽属性(中断异常时)
HWInt[5:0]	In	数据通路, 外设中断请求

IntReq	Out	数据通路,中断请求
EPC[31:0]	Out	数据通路,EPC 寄存器值
RD[31:0]	Out	数据通路,CP0 读出数据

- a) CP0 作为协处理器有多个身份:
 - 外务协调官:接受外部设备的中断请求,根据实际情况决定是否中断。
 - 书记员:在中断异常开始时,"无指令操作"地记录下中断异常的数据。
 - 资料员:能够用指令对齐内容进行操作,读取和更改其寄存器的值。
- b) CP0 对寄存器值的写操作均在 M 级,读操作除了 EPC 为均在 M 级,因此在写操作后面紧跟的 eret 指令需要暂停或转发。

14、 PipeReg (流水线寄存器)

表格 17 PipeReg 端口表

流水线级别	端口	功能描述
	$F_IR \rightarrow FD_IR$	D段指令
	$F_Pc4 \rightarrow FD_Pc4$	D段PC+4
FD 段	$F_Pc \rightarrow FD_Pc$	D段PC (display)
	F_ExcCode → FD_ExcCode	D 段异常代码
	$F_BD \rightarrow FD_BD$	D 段延迟槽标记
	$D_IR \rightarrow DE_IR$	E 段指令
	$D_Pc4 \rightarrow DE_Pc4$	E 段 Pc+4
	$D_RD1 \rightarrow DE_RD1$	E 段 GRF[RS]
DE 段	$D_RD2 \rightarrow DE_RD2$	E 段 GRF[RT]
DE EX	$D_EXT \rightarrow DE_EXT$	E 段扩展立即数
	$D_Pc \rightarrow DE_Pc$	E段PC (display)
	D_ExcCode → DE_ExcCode	E 段异常代码
	$D^-BD \to DE^-BD$	E 段延迟槽标记
EM 段	$E_IR \rightarrow EM_IR$	M 段指令
EWI FX	$E_ALU \rightarrow EM_ALU$	M 段 ALU 计算结果

	$E_RD2 \rightarrow EM_RD2$	M 段 GRF[RT]
	$E_Pc \rightarrow EM_Pc$	M段PC (display)
	E_ExcCode → EM_ExcCode	M 段异常代码
	$EM_BD \rightarrow EM_BD$	M 段延迟槽标记
	$M_IR \rightarrow MW_IR$	W 段指令
	$M_ALU \rightarrow MW_ALU$	W 段 ALU 计算结果
MW 段	$M_MD \rightarrow MW_MD$	W 段 Memory 读取结果
	$M_Pc \rightarrow MW_Pc$	W段Pc (display)
	$M_{CP0} \rightarrow MW_{CP0}$	W 段 CP0 读取值

二、 模块规格(控制电路)

与单周期 CPU 不同的是,流水线 CPU 在运行中存在结构冒险、数据冒险和控制冒险三种冒险问题。结构冒险利用 GRF 和指令数据 DM 分离的方式已经解决,控制冒险使用分支跳转提前+延迟槽的方式实现,而数据冒险需要使用暂停和转发逻辑实现。

综上,控制电路分为主控单元 MainController 和冒险控制单元 HazardController。

1、Controller 主控单元

a) 端口

表格 18 主控单元端口功能表

端口名称	类型	功能(所在通路,作用部件,描述)
Op[5:0]	In	数据通路,指令的 Instr[31:26]
Func[5:0]	In	数据通路,指令的 Instr[5:0]
D_Branch_Jump	Out	通用控制, IF, IF 接受外部 Pc 更新信号 (1-允许, 0-不允许)
D_ExtOp	Out	个性控制,16-32 位扩展类型(1-符号扩展,0-无符号扩展)
D_nPc_Sel[2:0]	Out	通用控制, PC 分支跳转类型 0: Branch 1: Jump/Jal 2: Jr 3: EPC
D_CmpOp	Out	个性控制,Branch 指令比较策略

-		****
E_AluSrc[1:0]	Out	通用控制, MUX, ALU-B 端口选择器信号(1-扩展器, 0-RD2)
E_AluOp[3:0]	Out	个性控制,ALU,ALU 驱动信号(具体请参加 ALU 功能表)
E_HWClr	Out	异常控制,清除延迟槽指令。
M_MemRead	Out	通用控制, Mem, Mem 读使能信号 (1-允许, 0-不允许:高阻)
M_MemWrite	Out	通用控制,Mem,Mem 写使能信号(1-允许,0-不允许)
M_StoreType[1:0]	Out	个性控制,存储位宽选择(0-字,1-半字,2-字节)
M_LoadType[1:0]	Out	个性控制,加载位宽选择(0-字,1-半字,2-字节)
M_ExlClr	Out	异常控制,CP0 中断异常位释位。
M_CP0WE	Out	CPO 控制,CPO 写使能。
SignRead	Out	个性控制,加载内容扩展方式(0-无符号, 1-符号)
W_WaSel[1:0]	Out	通用控制,MUX,GRF 写地址选择
		0 : Rt
		1 : Rs
		2:31
W_WdSel[1:0]	Out	通用控制,MUX,GRF 写数据选择
		0 : Alu
		1 : Memory
W_RegWrite	Out	通用控制,GRF,GRF 写使能信号 (1-允许,0-不允许)

^{*}通用控制:该控制信号能够直接在"指令类型"层面进行定义。

b) 信号真值表

i. 通用控制信号:

表格 19 主控单元通用控制信号真值表

	calr	cali	branch	ld	st	j	jal	jr	jalr	mfc0	mtc0	eret
Branch_Jump	0	0	1	0	0	1	1	1	1	0	0	1
nPc_Sel	x(0)	x(0)	0	x(0)	x(0)	1	1	2	2	x(0)	x(0)	3
AluSrc	0	1	x(0)	1	1	x(0)	2	x(0)	2	x(0)	x(0)	x(0)
MemRead	0	0	0	1	0	0	0	0	0	0	0	x(0)
MemWrite	0	0	0	0	1	0	0	0	0	0	0	x(0)
RegWrite	1	1	0	1	0	0	1	0	1	1	0	x(0)
WaSel	1	0	x(0)	0	x(0)	x(0)	2	x(0)	1	0	x(0)	x(0)
WdSel	0	0	x(0)	1	x(0)	x(0)	0	x(0)	0	2	x(0)	x(0)
ExICIr	0	0	0	0	0	0	0	0	0	0	0	1
CP0WE	0	0	0	0	0	0	0	0	0	0	1	0
HWClr	0	0	0	0	0	0	0	0	0	0	0	1

ii. 个性控制:ExtOp

^{**}个性控制:该控制信号需要在"具体某条指令"层面进行定义(常见于同类指令中不同功能)。

表格 20 ExtOp

ExtOp	func							
	0 unsigned	andi	ori	xori	(Lui)			
	1 signed	addi	addiu	slti	slitu	Id	st	branch
X	((0)	other						

iii. 个性控制:CmpOp

表格 21 CmpOp

СтрОр	func	
0	equal	beq
1	not equal	bne
2	less or equal	blez
3	greater than	bgtz
4	less than	bltz
5	greater or equal	bgez
x(0)		other

iv. 个性控制:AluOp

表格 22 AluOp

AluOp	function						
0	add	add	addu	addi	addiu	ld	st
1	sub	sub	subu				
2	<< s	sll					
3	>> s	srl					
4	Signed >> s	sra					
5	<< B	sllv					
6	>> B	srlv					
7	Signed >> B	srav					
8	and	and	andi				
9	or	or	ori				
10	xor	xor	xori				
11	nor	nor					
12	set 1 less Signed	slt	slti				
13	set 1 less Unsiged	sltu	sltiu				
14	<< 16	lui					
15	B+4	jal	jalr				
x(0)		other					

v. 个性控制:Store_Type

表格 23 Store Type

Store_Type	func	
0	word	SW
1	halfword	sh
2	byte	sb
x(0)		other

vi. 个性控制: Load Type

表格 24 Load Type

Load_Type	func		
0	word	lw	
1	halfword	lh	lhu
2	byte	lb	lbu
x(0)		other	

vii. 个性控制: SignRead

表格 25 SignRead

Sign_Read	func		
1	Sign_Ext	lb	lh
0	Unsigned_Ext	lbu	lhu
x(0)		other	

2、Hazard 冲突控制单元

a) 概览

冲突控制是目前流水线 CPU 与单周期 CPU 差异最大的地方,在实现上也具有一定难度。本 CPU 的冲突控制单元主要解决的是数据冒险问题,(结构冒险和控制冒险已通过功能部件和数据通路构造),通过"流水线工程化"¹方法,主要比较 Tnew、Tuse 等值,即可实现对应的转发和暂停策略。

强抽象:在弱抽象基础上,将指令抽象为 Tnew、Tuse、rwnz 等运行指标。 CPU 的冲突控制单元正是建立在这种强抽象上的。

弱抽象:根据指令代码结构和功能划分为 calr、cali、branch 等信号。

b) General Instruction Decoder (通用指令译码器)

流水线工程化方法实质是对各级指令所对应的 Tnew、Tuse、操作寄存器等参数进行比对,形成解决策略。由于每条指令的参数不相同,为模块化功能,设计了"通用指令译码器"进行一系列参数的计算。

表格 26 GID 端口表

端口名称	类型	功能描述
IR[31:0]	In	数据通路,对应流水段指令
Pipe[2:0]	In	数据通路, 流水段编号 (F-1, D-2, E-3, M-4)

¹ L15-流水线工程化方法-2018-V1, 高小鹏, 北京航空航天大学《计算机组成课程设计》.

游子诺

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Tuse_Rs[2:0]	Out	数据通路,当前流水段 Rs 的 Tuse
		no_more_use = 7
Tuse Rt[2:0]	Out	数据通路,当前流水段 Rt 的 Tuse
		no_more_use = 7
RegWriteNonZero	Out	数据通路,当前指令是否 向非零寄存器写值
A3	Out	数据通路,当前指令写入寄存器地址
		Rt: lw, cali, mtc0
		Rd: calr, jalr
		\$31 : jal
Tnew[2:0]	Out	数据通路,当前指令产生写入结果所需时间
		no_more_new = 0
Dport[2:0]	Out	数据通路,当前指令写入结果所在寄存器"管
		□"
		1: EM_ALU
		2 : MW_ALU
		3 : MW_MD
		4: MW_CP0
HiLo	Out	数据通路,当前指令是否涉及 Hi、Lo 寄存器的
		操作

表格 27 指令分类与读写功能统计表格

指令分类:	读	写
calr	√	√
cali	√	√
ld	√	√
st	√	
btype	√	
jal		√
j		
jr	√	
mfc0		√
mtc0	√	
eret		

表格 28 F 段 Tuse

	Tuse							
IF/ID								
calr/rs/1 calr/rt/1 cali/rs/1 cali/rt/1 ld/rs/1 st/rs/1 st/rt/2 btype/rs/0 btype/rt/0 jr/rs/0 jalr/rs/0 mtc0/rt/2								

表格 29 各级 Tnew (仅针对产生写的指令)

	Tnew						
	ID/EX						
calr/rd/1	cali/rt/1	ld/rt/2	jal/\$31/1	jalr/rd/1	mfc0/rt/2		
		EX	/MEM				
calr/rd/0	cali/rt/0	ld/rt/1	jal/\$31/0	jalr/rd/0	mfc0/rt/1		
MEM/WB							
calr/rd/0	cali/rt/0	ld/rt/0	jal/\$31/0	jalr/rd/0	mfc0/rt/0		

c) STALL 暂停控制模块

表格 30 STALL 暂停控制模块端口

端口名称	类型	功能描述
FD_IR[31:0]	In	数据通路,D 段指令
DE_IR[31:0]	In	数据通路,E 段指令
EM_IR[31:0]	In	数据通路,M 段指令
MW_IR[31:0]	In	数据通路,W 段指令
Stall	Out	数据通路,暂停信号

暂停判断逻辑基于 GID 返回的参数结果, 判断式中不含有具体的指令类型, 因此具有可延伸性。具体判断逻辑式如下(以 Rs 与第 X 段判断和 XALU 乘除法判断为例):

$$Stall_{Rs} = (IR_{FD}[Rs] == A3_X) \& \& (RegWriteNonZero_X) \& \& (Tuse_{FD} < Tnew_X)$$

$$Stall_{cp0} = (D_{Eret} \& (E_{mtc0} \mid M_{mtc0}))$$

$$Stall = \left(Stall_{RS} \mid Stall_{Rt} | Stall_{HiLo} \middle| Stall_{cp0}\right) \& \textcolor{red}{\sim} E_ERET$$

*: 当E级为ERET时,不能暂停,否则将导致ERET延迟槽清除功能出现问题。

d) TRANSMIT 转发控制模块

表格 31 TRANSMIT 端口

端口名称	类型	功能描述
FD_IR[31:0]	In	数据通路,D 段指令
DE_IR[31:0]	In	数据通路,E 段指令
EM_IR[31:0]	In	数据通路,M 段指令

游子诺

MW_IR[31:0]	In	数据通路,W 段指令
TMux_GRF_RD1_Sel[2:0]	Out	数据通路,TMux_GRF_RD2 转发器选择信号
TMux_GRF_RD2_Sel[2:0]	Out	数据通路,TMux_GRF_RD2 转发器选择信号
TMux_EM_RD1_Sel[2:0]	Out	数据通路,TMux_GRF_RD2 转发器选择信号
TMux_EM_RD2_Sel[2:0]	Out	数据通路,TMux_GRF_RD2 转发器选择信号
TMux_MW_RD2_Sel[2:0]	Out	数据通路,TMux_GRF_RD2 转发器选择信号

转发采用了改进的"暴力转发,随时转发"策略,其意思为:被转发位置的指令无论是否需要用到某个寄存器的值,一旦此寄存器的新值在后续流水段中已经产生,则会进行转发。当多个后级流水线转发时,级数较低的优先级更高。

以 TMux_GRF_RD1 接受 X 段 PORT "寄存器管口" 更新值为例:

$$TMux_{GRFRD1} = (RegWriteNonZero_X &&(IR_{DE}[rs] == A3_X)$$

$$&&(Tnew_X == 0) &&(Port_X == PORT)? PORT.$$

e) TMux (转发多选器)

转发多选器 TMux 规格是同样的, 其每个端口所对应供给者是固定的, 因此存在空缺端口的情况。

表格 32 TMUX 端口表

端口名称	类型	功能描述
TMux_Sel[2:0]	In	控制信号,转发器选择信号
Ori[31:0]	In	数据通路,原始通路
EM_ALU[31:0]	In	数据通路,EM 的 ALU 供给者
MW_ALU[31:0]	In	数据通路,MW 的 ALU 供给者
MW_MD	In	数据通路,MW 的 MD 供给者
MW_CP0	In	数据通路,MW 的 CP0 供给者
Forward[31:0]	Out	数据通路,通路正确结果

3、 Exception Controller (异常控制单元)

异常控制单元主要用于"非指令"地启动异常处理机制,当中断异常信号送达控制单元后,单元会发出多个操作信号,"纠正"处理器进入异常处理。

表格 33 EXCCTRL 端口表

端口名称	类型	功能描述
IntReq	In	数据通路,接受 CP0 的中断请求信号。
ExcCode[6:2]	In	数据通路,接受 M 级汇总的异常代码。
BD	In	数据通路,接受 M 级指令延迟槽属性。
ExlSet	Out	通用控制,CPO,中断异常位置位
PPClr	Out	通用控制,PipeReg,流水寄存器清空信号
WriteProtect	Out	通用控制,E、M 级记忆部件,写保护
Handler	Out	通用控制,IF,异常处理代码优先加载
ExcSel	Out	个性控制,中断与异常错误代码选择
PcSel	Out	个性控制,EPC 存入值选择

- a) CPO的所有写操作均在 M 级,唯一需要考虑冲突的是 mtcO 与 eret 的 epc 读取。
- b) Handler 对 IF 中异常代码的调取优先级"仅次于全局同步复位"。
- c) 写保护部件不包括 GRF, 因为 W 级指令会正常执行。

三、 CPU 功能测试

1、 功能测试原则

- 所测试的指令不能够超出 CPU 支持的范围。(谨防同指令标识的拓展指令。)
- 测试的首要目标:全面覆盖性(例如:冲突覆盖、单指令界限等)。
- 测试步骤:功能性检查 -> 抽象模块 GID 正确性检查->冒险覆盖性测试(暂停+转发)->Auto 异常检查->Manual 异常检查->中断检查

2、测试策略

1、数据通路检查:

策略:按照53条指令功能进行测试+转发测试。

请参见"MIPS 测试策略(功能测试)"。

2、抽象模块 GID 正确性检查

原因:除去乘除模块 busy 信号导致的暂停,其余暂停和转发选择信号都是依据 GID 模块抽象出的运行参数进行判断,因此首先对 GID 模块的"抽象功能"进行覆盖性检测。(53 条指令*4 流水线段)

3、冒险覆盖性测试:

a) 暂停: 枚举所有 STOP 情况和部分 NOSTOP 情况,观察 Stall 信号。

b) 转发:覆盖性测试, 自动化评测。

3**、 测试实例**

a) 单指令正确性检查

请参见"MIPS 测试策略(功能测试)"。

b) 冲突控制信号(暂停)检查

暂停控制采用弱抽象,在GID抽象模型已正确的情况下,通过表格枚举 calr, cali, ld, st, branch, j, jal, jr, jalr 九类指令的暂停情况,对于一类指令,其具体指令随机选择。

测试表格如下:

编号	位置	前序指令	冲突寄存器	实例代码
1	F-D	Id	Rt	lw \$1, 0(\$2)
				sub \$2, \$2, \$1
2	F-D	Id	Rs	Ih \$2, \$0(\$3)
				ori \$3, \$2, 1
3	F-D	ld	Rs	lb \$1, 0(\$2)
				lw \$2, 0(\$1)
4	F-D	Id	Rs	lhu \$1, 0(\$2)
				sh \$2, 0(\$1)
5	F-D	ld	None	lbu \$1, 0(\$2)
				sw \$1, 0(\$0)
6	F-D	ld	Rt	lw \$1, 0(\$0)
				beq \$2,\$1,label
7	F-D	ld	Rs	lw \$1, 0(\$0)
				jr \$1
8	F-D	ld	Rs	lw \$1,0(\$0)
				jalr \$ra \$1
9	F-D	calr	Rs	addu \$1,\$2,\$3
				beq \$1,\$2,label
10	F-D	cali	Rs	ori \$1,\$0,100
				bgtz \$1,label
11	F-D	calr	Rs	addu \$1,\$2,\$3
				jr \$1
12	F-D	cali	Rs	lui \$1,0xf
				jr \$1
13	F-D	calr	Rs	srav \$1 \$2 \$3
				jalr \$ra \$1
14	F-D	cali	Rs	xori \$1 \$0 0
				jalr \$ra \$1
15	F-E	nop, ld	Rs	lbu \$1 0(\$1)
				nop
				bne \$1,\$2,label
16	F-E	nop, ld	Rs	lhu \$1 0(\$1)
				nop
				jr \$1
17	F-E	nop, ld	Rs	lb \$1 0(\$1)
				nop
				jalr \$1
21	F-D	mfc0	Rs	mfc0 \$5 \$14
				calr \$3 \$5 \$7
22	F-E	mfc0	Rs	mfc0 \$5 \$14

			jr \$5
23	ERET	mtc0	mtc0 \$5 \$12
			eret

表格 34 暂停测试表格

c) 转发覆盖性检查

在 p5 中,由 lite 指令集合的转发组合已经达到上百种,在 50 条指令的 p6 中若采用此方法,已经不再现实。因此,转发策略要建立在更加抽象的模型上。

- 1. CPU 的转发策略检测基于供给-需求者模型,一共建立起了(5+5+4+5)=19 条 转发路径。
- 2. 分析每条转发路径上可行的供给者和需求者,得到如下的表格:

表格 35 供给-需求者弱抽象表格

	- N.L.	
	需求者	供给者
D-M-RS-1	branch,jr,jalr	calr,cali,jal,jalr
D-M-RT-1	branch	calr,cali,jal,jalr
D-W-RS-2	branch,jr,jalr	calr,cali,jal,jalr,ld
D-W-RT-2	branch	calr,cali,jal,jalr,ld
D-W-RS-3	branch,jr,jalr	ld
D-W-RT-3	branch	ld
D-W-RS-4	branch,jr,jalr	mfc0
D-W-RT-4	branch	mfc0
E-M-RS-1	calr,cali,st,ld	calr,cali,jal,jalr
E-M-RT-1	calr	calr,cali,jal,jalr
E-W-RS-2	calr,cali,st,ld	calr,cali,ld,jal,jalr
E-W-RT-2	calr	calr,cali,ld,jal,jalr
E-W-RS-3	calr,cali,st,ld	1d
E-W-RS-3	calr,cali,st,ld	mfc0

E-W-RT-3	calr	ld
E-W-RT-4	calr	mfc0
M-W-RT-2	st	calr,cali,ld,jal,jalr
M-W-RT-3	st	ld
M-W-RT-4	st, mtc0	mfc0

3. 借助于 GID 完全覆盖性测试的结果,将需求者弱抽象,将供给者强抽象模型,得到"强抽象供给者"-"弱抽象需求者"的对应图:

图 1 强抽象供给者" - "弱抽象需求者

- 4. 穷尽图中的"每一条边"-42条(同一个抽象模型中具体指令随机选择),即可完成基于抽象模型的覆盖性测试。
- * :<mark>强抽象</mark>:在弱抽象基础上,将指令抽象为 Tnew、Tuse、rwnz 等运行指标。 CPU 的冲突控制单元正是建立在这种强抽象上的。

弱抽象:根据指令代码结构和功能划分为 calr、cali、branch 等信号。

**:抽象覆盖性测试的前提是 "GID 覆盖性测试完全充分"。

***:测试原理:加法变成乘法(类比于用二维地址表示一维数据)。

****: 强抽象同类划分参考依据:在不同的流水段中, Tnew 和 D-Port 完全相同, 且目标寄存器相同时 A3 和 RWNZ 相同。

d) Auto 异常检查与 Manual 异常检查

根据表格对异常的分类,编写<u>"抽查"</u>型的测试程序,对于 Mars 能够识别的异常进行自动检查;不能够识别的异常手工查验运行过程。

手工查验运行过程的几个层次(输出行为级-波形级(异常信号流水、CP0等))

ExcCode	助记符	指令	描述与备注	流水段	异常首发模块	检查类型	新增或修改
0	Int		来自cp0的中断请求	М	CP0	manual	
4	AdEL	所有指令	取指PC未4字节对齐	F	IF	manual	
	AdEL	所有指令	取指PC超出0x3000-0x4fff的范围	F	IF	manual	修改
	AdEL	lw	取数未4字节对齐	M	MOV	auto	
	AdEL	lh、lhu	取数未2字节对齐	M	MOV	auto	
	AdEL	Ih、Ihu、Ib、Ibu	取外设的值	M	MOV	manual	修改
	AdEL	Load	算地址加法溢出	E	ALU	auto+(manual)	
	AdEL	Load	取数超出DM和外设的范围	M	MOV	auto+(manual)	修改
5	AdEs	SW	存数未4字节对齐	M	MOV	auto	
	AdEs	sh	存数未2字节对齐	M	MOV	auto	
	AdEs	sh, sb	存外设的值	M	MOV	manual	修改
	AdEs	Store	算地址加法溢出	E	ALU	auto+(manual)	
	AdEs	Store	向Timer-count、key、switch存值	M	MOV	manual	修改
	AdEs	Store	存数超出DM和外设的范围	M	MOV	auto+(manual)	修改
10	RI	所有指令	不认识(非法的)指令码	D	IDU	manual	
12	Ov	add	溢出	E	ALU	auto	
	Ov	addi	溢出	E	ALU	auto	
	Ov	sub	溢出	E	ALU	auto	

e) 外部中断处理

外部中断处理是 P8 的一个难点,也是比较难测出正确性的一部分,重点在于讨论 受害指令的类型,经过思考,我给出了对受害指令的三个考虑维度,来编写测试程序:

- a) 被中断指令的来源?软件:硬件。
 - 软件:代码
 - 硬件互锁 (暂停和 eret 产生的 nop)
- b) 延迟槽性质?
 - 不是延迟槽指令
 - 是延迟槽指令 (Branch+JType)
- c) 在到达 M 级前是否已经对时序部件产生影响?
 - 是: mult、div 等指令(p8 无需考虑)
 - 否:其他指令

中断检测方式大致为:外设读写正常性检查->外部中断功能检查->单维度检查->多维度检查。

四、本章思考题

● 请查阅相关资料,说一说什么是「FPGA 技术」?它有哪些好处和缺陷?

答:FPGA 是中文为现场可编程逻辑阵列,是一种可以利用硬件描述语言进行实时内部逻辑重构的半定制化电路,内部包括可配置逻辑模块 CLB、输入输出模块 IOB 和内部连线三个部分,其以专用集成电路而最初出现。

优点:

- 1. 逻辑可编程: FPGA 可以根据需求改变内部逻辑, 在系统设计与验证阶段及时发现问题, 无需定制专用电路, 从而降低工程的开发周期和开发成本。
- 2. 并行运算: FPGA 相比于 CPLD 有更多的寄存器部件, 因此更适合 "流水"型 并行任务处理, 适合时序任务, 多个部件可同时运行。
- 3. 门电路数量丰富:便于实现个性化功能,被称作"万能芯片",反复刻录。

缺点:

- 1. FPGA 开发较困难:需要工程师对模块自顶而下地设计,实现,仿真和刻录等,同时调试还依赖软硬件的协同。
- 2. 成本高:实现同样逻辑的 FPGA 是 ASIC 芯片成本的 10 倍以上,因此 FPGA 芯片更加适用于高价值、批量小的应用场景,而不适合大规模工业生产。
- 3. 功耗:FPGA的芯片面积更大,更大规模的门电路导致芯片的功耗也随之上升。
- 简述你的中断实现方案。

答:UART 的 RX 部件中主要由有限状态机构成,通过识别串口的启动信号和终止信号完成数据的传输,因此中断信号应添加在状态机中,当发出中断信号时应该满足数据完整且数据有效,数据完整的判定方法是 STOP 状态,数据有效的判定方法是存在有效的结束位(需要是采样点)。经过"仔细的阅读",我发现模块中 clk_rf_av 这个 reg 型变量正好符合 int 信号发出的需求,因此使用其作为中断信号。

(为什么不用 lsr 中的 rs 从 0 到 1 变化作为中断信号?因为根据代码实现,rs 从 0 到 1 是由 clk_rf_av 从 0 到 1 而造成的,但是其从 1 到 0 的变化只有是 rst 和 $over_read$ 才行,

因此设想两个连续读入的数据之间 rs 应该是保持 1 不变,这样就无法产生中断读取第二个数据了。)

五、有关 CPU 扩展的说明

本 CPU 支持一定功能的扩展,需要在 Verilog 上进行改进。由于涉及到流水线的分层结构和冒险管理问题,因此较单周期 CPU 需要考虑的内容更多,因此在新增指令和调试时请务必参考以下的步骤。

- 1. 分析新增指令的需求,必要难以理解时及时借助 MARS 测试,将指令拆分为数据通路+控制逻辑。
- 2. 若时间充裕,以下所有的内容都应该手稿分析后再实践。
- 3. 数据通路:
 - a) 根据指令需求绘制出数据通路图(注意分层和转发器位置)
 - b) **先微观,再宏观:**若仅需细调部分部件功能,则实时调整;若需要新增通路,则 应该以"尽量少增转发器和转发点"为原则构建,同时结合图与先前的数据通路 表格,确定新增数据通路结构。
 - c) 在完成数据通路搭建后,时间充裕情况下应进行检测。
- 4. 主控制指令:与单周期类似,可以**先按照单周期分析**,而后考虑流水线寄存器。若 新增或修改指令、除此还需要考虑指令所在流水段、进行正确的添加。
- 5. ! 冲突控制: 分为暂停和转发
 - a) 冲突控制一定要**借助通路图和工程化方法的指标**分析。
 - b) 暂停:完善指令类型,明确指令的Tnew,加入到GID中。
 - c) ! 转发:
 - i. 若无新通路产生,需求解 Tuse,更改 GID,并细致分析。
 - ii. 若有新的承载数据的通路,则 TMux、GID、TRANSMIT 可能需要都需要修改。
 - iii. 若有新的读取 GRF 的通路(不建议 !),则需新增 TMux,修改 GID 端口、 修改 TRANSMIT。
 - d) 遇到问题:看暂停表和 CPU 供给关键点图。
- 6. 核查:沿着手绘的数据通路+两类控制单元复查。