Strömungslehre I

Dr.-Ing. Peter Wulf - Raum F219a http://www.mp.haw-hamburg.de/pers/Wulf/

4. Energieerhaltung (Bernoulli-Gleichung)

- Eulersche Bewegungsgleichung
- Bernoulli-Gleichung
- Anwendungen der Bernoulli-Gleichung
- Erweiterte Bernoulli-Gleichung

Fakultät Technik und Informatik Department Maschinenbau und Produktion

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Stand: 2009-09-14

Eulersche Gleichung für 1D-Strömungen (1/3)

- ⇒ Betrachtung eines längs einer Strombahn bewegten Fluidteilchens dm=p·ds·dA
- ⇒ Entlang der Strombahn ändern sich die Höhe **z** des Teilchens, Geschwindigkeit **U** und Druck **p**
- ⇒ 2. Newtonsches Axiom (s. TM3)

$$dm \cdot a_s = dm \cdot \frac{dU}{dt} = \sum F_s$$

a_s = Beschleunigung in Bahnrichtung

F_s = Kräfte in Bahnrichtung

⇒ Aufspaltung der substantiellen Beschleunigung in lokale und konvektive Beschleunigung (s. Kap. 3)

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial s} \longrightarrow dm \cdot \frac{dU}{dt} = \rho ds dA \cdot \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial s}\right) = \sum F_s$$

Eulersche Gleichung für 1D-Strömungen (2/3)

- ⇒ Kräfte, die auf das Fluidteilchen wirken
 - ⇒ Gewichtskraft dG
 - ⇒ Druckkraft dF_p aus Druckdifferenz entlang ds
 - ⇒ Antriebs- und oder Reibungskräfte dF_R
- \Rightarrow Gewichtskraft $dG = gdm = g\rho dsdA$
 - ⇒ Komponente in Bahnrichtung

$$dG_{s} = -dG \cdot \sin \alpha$$

$$\sin \alpha = \frac{\partial z}{\partial s} \qquad \qquad \text{ds}$$

$$dG_{s} = -g \rho ds dA \cdot \frac{\partial z}{\partial s}$$

⇒ Druckkraft

$$dF_{p} = pdA - \left(p + \frac{\partial p}{\partial s}ds\right)dA = -dsdA\frac{\partial p}{\partial s}$$

- ⇒ Antriebs- und/oder Reibkräfte
 - ⇒ werden als allein ortsabhängige Größen angesehen: F_R=F_R(s)

Eulersche Gleichung für 1D-Strömungen (3/3)

$$\Rightarrow \textbf{Eingesetzt} \qquad dm \cdot \frac{dU}{dt} = dG_s + dF_P + dF_R$$

$$\rightarrow \rho ds dA \cdot \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial s}\right) = -g \rho ds dA \frac{\partial z}{\partial s} - ds dA \frac{\partial p}{\partial s} + dF_R \quad \left| \cdot \frac{1}{\rho ds dA} \right|$$

$$\rightarrow \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial s} = -g \frac{\partial z}{\partial s} - \frac{1}{\rho} \frac{\partial p}{\partial s} + \frac{dF_R}{\rho ds dA} \quad dm$$

⇒ Für eine feste Zeit t (t=fix) können alle Größen nur noch vom Ort s abhängig sein ($\partial s \rightarrow ds$). Mit $UdU/ds = \frac{1}{2}dU^2/ds$ folgt:

$$\left. \frac{\partial U}{\partial t} \right|_{t=fix} + \frac{1}{2} \frac{dU^2}{ds} = -g \frac{dz}{ds} - \frac{1}{\rho} \frac{dp}{ds} + \frac{dF_R}{dm} \quad \text{bzw.} \quad \left. \frac{\partial U}{\partial t} \right|_{t=fix} + \frac{1}{2} dU^2 + g dz + \frac{dp}{\rho} = \frac{dF_R}{dm} ds$$

⇒ Diese Gleichung kann formal entlang der Strombahn bzw. Stromlinie (*t*=*fix*) integriert werden

$$\left| \int \frac{\partial U}{\partial t} \right|_{t=fix} + \frac{1}{2} \int dU^2 + \int g dz + \int \frac{dp}{\rho} = \int \frac{dF_R}{dm} ds$$
 Eulersche Bewegungsgleichung für einen Stromfaden

Bernoulli-Gleichung für 1D-Strömungen (1/2)

- ⇒ Für eine <u>stationäre</u> ($\partial U/\partial t=0$) sowie <u>antriebs- und reibungsfreie</u> (dF_R=0) Strömung folgt: $\frac{1}{2}\int dU^2 + \int gdz + \int \frac{dp}{\rho} = 0$
- ⇒ Unbestimmte Integration $\frac{1}{2}U^2 + gz + \int \frac{1}{\rho} d\rho = const$ Zustandsgleichung für Integration notwendig
- ⇒ Für ein <u>inkompressibles</u> Fluid (ρ=const) ergibt sich die
 Bernoulli-Gleichung längs eines Stromfadens

$$\frac{1}{2}U^2 + gz + \frac{p}{\rho} = E_0$$

 $\frac{U^2}{2g} + z + \frac{p}{\rho g} = H_0$

$$\frac{1}{2}\rho U^2 + \rho gz + p = P_0$$

- 1. Schreibweise als <u>spezifische Energie</u>. Dimension: J/kg (die spezifische Energie bleibt erhalten: E_0 =const)
- 2. Schreibweise als <u>Höhengleichung</u>. Dimension: m (die hydraulische Höhe bleibt erhalten: H₀=const)
- 3. Schreibweise als <u>Druckgleichung</u>. Dimension: Pa (das Druckniveau bleibt erhalten: P₀=const)

Bernoulli-Gleichung für 1D-Strömungen (2/2)

- ⇒ Stromröhre: Anwendung der Bernoulli-Gleichung auf die repräsentative Mittelstromlinie
- ⇒ Anschauliche Deutung für die Schreibweise in Höhenform
 - ⇒ Ortshöhe z
 - ⇒ Druckhöhe p/ρg
 - ⇒ Geschwindigkeitshöhe U²/2g

$$\frac{U_1^2}{2g} + z_1 + \frac{p_1}{\rho g} = \frac{U_2^2}{2g} + z_2 + \frac{p_2}{\rho g} = H_0$$

Beispiel

⇒ Ein horizontales zylindrisches Rohr mit Venturi-Einsatz wird reibungsfrei und stationär durchströmt. Zwischen der Strömung im Rohr und in der Einschnürung wird ein Druckunterschied von 0,66bar gemessen.

Geg.: \varnothing_1 =80mm, \varnothing_2 =60mm, ρ =1000kg/m³

Ges.: Volumenstrom V

⇒ Beispiel wird an der Tafel vorgerechnet

Bedeutung der Bernoulli-Gleichung

- ⇒ Interpretation der Bernoulli-Gleichung als Energiegleichung
 - ⇒ Energiebeiträge durch
 - \Rightarrow Spezifische Druckarbeit p/ρ
 - ⇒ Spezifische potentielle Energie gz
 - \Rightarrow Spezifische kinetische Energie $U^2/2$
 - \Rightarrow Energiezufuhr oder -abfuhr durch Term $\int dF_R/dm \cdot ds$ (später)
 - ⇒ Herleitung erfolgte über die Bewegungsgleichung
 - ⇒ Daher: Beschränkung auf mechanische Energie
- ⇒ Alternative Herleitung
 - ⇒ Erster Hauptsatz der Thermodynamik
 - ⇒ Bilanziert alle auftretenden Energiearten
 - ⇒ Beinhaltet Energietransfer durch Wärmeübertragung
 - ⇒ Enthält Bernoulli-Gleichung als Spezialfall

Anwendungen der Bernoulli-Gleichung

- ⇒ Stationärer reibungsfreier Ausfluss aus einem Behälter
 - ⇒ Ausflussquerschnitt A_S << Behälterquerschnitt A_B
 - ⇒ Quasi-Stationärer Prozess
 - ⇒ Reibungsfreie Strömung
 - ⇒ Inkompressible Flüssigkeit
- ⇒ Bernoulli-Gleichung

$$\frac{1}{2}U_1^2 + gz_1 + \frac{p_1}{\rho} = \frac{1}{2}U_2^2 + gz_2 + \frac{p_2}{\rho}$$

⇒ Kontinuitäts-Gleichung

$$\rho U_1 A_B = \rho U_2 A_S$$

$$\frac{U_1}{U_2} = \frac{A_S}{A_B} << 1 \rightarrow U_1 \approx 0$$

$$\rightarrow \frac{1}{2}U_2^2 = g\left(z_1 - z_2\right) + \frac{p_1 - p_2}{\rho} \rightarrow U_2 = \sqrt{2gh + \frac{2}{\rho}(p_1 - p_2)}$$

Bei offenen Behältern: p₁=p₂

$$U_2 = \sqrt{2gh + \frac{2}{\rho}(p_1 - p_2)}$$

$$U_2 = \sqrt{2gh}$$

Ausflussformel nach Torricelli (1644)

Anwendungen der Bernoulli-Gleichung

- ⇒ Staupunktströmungen: Geschwindigkeit im Staupunkt U_S=0
- ⇒ Bernoulli-Gleichung für Staupunktstromlinie

$$\frac{1}{2}U_{\infty}^{2} + gz_{\infty} + \frac{p_{\infty}}{\rho} = \frac{1}{2}U_{S}^{2} + gz_{S} + \frac{p_{S}}{\rho}$$

$$p_S = p_{\infty} + \frac{1}{2}\rho U_{\infty}^2 + \rho g\left(z_{\infty} - z_{S}\right)$$

⇒ Druck im Staupunkt entspricht dem Totaldruck

$$p_t = p_{\infty} + \frac{1}{2}\rho U_{\infty}^2 = p_{stat} + p_{dyn}$$

bestehend aus statischen und dynamischen Druck

$$\Rightarrow$$
 Dynamischer Druck $p_{dyn} = \frac{1}{2}\rho U_{\infty}^2 = p_t - p_{stat}$ (Staudruck)

Messung des statischen Drucks

$$p_u = p_0 - p_{stat} = g\left(\rho_M h_M + \rho_{Fl} h_{Fl}\right)$$

Messung des Totaldrucks (Gesamtdruck)

 ➡ Messung des Totaldrucks durch eine Bohrung im Staupunkt mit Ausrichtung zur Strömung (Öffnung ⊥ Strömung)

$$p_t = p_{\infty} + \frac{1}{2}\rho_{Fl}U_{\infty}^2$$
$$= p_0 + g(\rho_M h_M - \rho_{Fl}h_{Fl})$$

Messung des dynamischen Drucks

⇒ Kombination aus Totaldrucksonde und statischer Sonde

Prandtl-Sonde

$$\Rightarrow$$
 Strömungsgeschwindigkeit $U = \sqrt{\frac{2}{\rho} p_{dyn}} = \sqrt{\frac{2}{\rho} (p_t - p_{stat})}$

Anwendungen der Bernoulli-Gleichung

⇒ Hydrodynamisches Paradoxon

⇒ Radial durchströmter Spalt zwischen zwei Platten

⇒ Zuströmung durch zentral positioniertes Rohr

⇒ Am Außenrand wird Umgebungsdruck p_a erreicht

⇒ Spalthöhe s, Außenradius r_a

Druckverteilung

Gegenplatte

Rohr

Flansch

- \Rightarrow Bernoulli-Gleichung (Spalt) $\frac{1}{2}U^2 + \frac{p}{\rho} = \frac{1}{2}U_a^2 + \frac{p_a}{\rho} \rightarrow p p_a = \frac{\rho}{2}(U_a^2 U^2)$
- \Rightarrow Kontinuitäts-Gleichung $\rho U(r) \cdot 2\pi rs = \rho U_a \cdot 2\pi r_a s \rightarrow U(r) = U_a \frac{r_a}{r}$
- \Rightarrow Druckdifferenz $p p_a = \frac{\rho}{2}U_a^2(1 r_a^2/r^2) < 0$ { Saugkraft F <u>trotz</u> des Gegenstroms aus dem Rohr

Beispiel

Aus einem großen Behälter fließt eine Flüssigkeit (Dichte ρ) durch eine Rohrleitung (Durchmesser d) ab. Am Ende der Leitung befindet sich ein Diffusor mit Auslassdurchmesser D.

Geg.: H=10m, a=6m, b=2m, d=0,1m p_0 =1bar, g=9,81m/s², ρ =1000kg/m³

Ges.: a) Maximal möglicher Durchmesser D, ohne dass der Druck in der Rohrleitung unter p_{kav}=0,15bar fällt

- b) Volumenstrom V (mit D aus a))
- c) Strömungsgeschwindigkeit im Rohr
- ⇒ Beispiel wird an der Tafel vorgerechnet

Erweiterte Bernoulli-Gleichung für 1D-Strömungen (1/3)

- ⇒ Zusätzliche Änderungen der mechanischen Energie
 - ⇒ Spezifische kinetische Energie U²/2 entlang des Stromfadens ist durch U₁ (oder U₂) und die Kontinuitätsgleichung festgelegt
 - ⇒ Spezifische potentielle Energie gz ist durch die Lage der Strombahn festgelegt
 - ⇒ Zufuhr oder Abfuhr von mechanischer Energie kann sich daher nur in einer zusätzlichen Druckänderung ∆p bemerkbar machen
 - \Rightarrow Druckverluste Δp_{V} durch Reibung bzw. Dissipation \rightarrow rechte Seite (Δp_{V} >0)
 - ⇒ Druckerhöhung ∆p_M>0 bei einer Pumpe (Zufuhr von Energie) linke
 - \Rightarrow Druckabsenkung $\Delta p_{M} < 0$ bei einer Turbine (Entnahme von Energie) \int Seite
- ⇒ Erweiterte Bernoulli-Gleichung für inkompressible Fluide

$$\boxed{\frac{1}{2}U_1^2 + gz_1 + \frac{p_1}{\rho} + \frac{\Delta p_M}{\rho} = \frac{1}{2}U_2^2 + gz_2 + \frac{p_2}{\rho} + \frac{\Delta p_V}{\rho}}$$

Druckerhöhung durch eine Pumpe ($\Delta p_M > 0$)

Druckabsenkung durch eine Turbine ($\Delta p_M < 0$)

Druckverluste ($\Delta p_V > 0$) durch Dissipation bzw. Reibung

Erweiterte Bernoulli-Gleichung für 1D-Strömungen (2/3)

- \Rightarrow Druckänderungen $\Delta p/\rho$ entsprechen dem bisher vernachlässigten Term $\int dF_R/dm \cdot ds$ (Eulersche Gleichung, s. Folie 3)
- \Rightarrow Druckänderungen $\Delta p/\rho$ können als spezifische Arbeit w interpretiert werden
 - \Rightarrow Spezifische technische Arbeit einer Pumpe $w_{t_M} = W_M / m = P_M / \dot{m} > 0$
 - \Rightarrow Spezifische technische Arbeit einer Turbine $w_{t_M} = W_M / m = P_M / \dot{m} < 0$
 - \Rightarrow Spezifische Verlustarbeit der Reibung $w_V = W_V / m = P_V / \dot{m}$
 - \Rightarrow W_M = entlang der Stromlinie geleistete oder entzogene Arbeit
 - \Rightarrow W_V = entlang der Stromlinie entstandene Verlustarbeit
 - ⇒ P_M = zu- oder abgeführte Leistung entlang der Stromlinie
 - \Rightarrow P_V = Verlustleistung entlang der Stromlinie

Leistung einer Strömungsmaschine:
$$P_M = \dot{m} \cdot w_{t_M} = \rho \dot{V} \cdot w_{t_M} = \rho \dot{V} \cdot \frac{\Delta p_M}{\rho} = \dot{V} \cdot \Delta p_M$$

Verlustleistung durch Reibung:
$$P_V = \dot{m} \cdot w_V = \rho \dot{V} \cdot w_V = \rho \dot{V} \cdot \frac{\Delta p_V}{\rho} = \dot{V} \cdot \Delta p_V$$

Erweiterte Bernoulli-Gleichung für 1D-Strömungen (3/3)

- \Rightarrow Wirkungsgrad einer Pumpe $\eta = \frac{P_M}{P_W} = \frac{\dot{m} \cdot w_{t_M}}{P_W} < 1$
- \Rightarrow Wirkungsgrad einer Turbine $\eta = \frac{P_W}{P_M} = \frac{P_W}{\dot{m} \cdot w_{t_M}} < 1$
- ⇒ P_W = an der Welle aufgewendete oder genutzte Leistung
- ⇒ Berücksichtigung zusätzlicher Energieformen
 - ⇒ Bernoulli-Gleichung wurde aus der Bewegungsgleichung hergeleitet
 - ⇒ Enthält nur mechanische Energiearten
 - ⇒ Reibung wird nur über den Druckverlust ausgedrückt
 - ⇒ Änderungen der inneren Energie (i.S. der Thermodynamik) werden nicht wiedergegeben, d.h. Erwärmung durch Dissipation, Wärmeleitung und Zustandsänderungen von Gasen werden <u>nicht</u> erfasst
- ⇒ Bestimmung der Druckverluste durch Reibung
 - ⇒ Ansätze werden im Kapitel 6 vorgestellt

Beispiel

Eine Turbinenanlage (Wirkungsgrad η) nutzt die Fallhöhe zwischen dem Oberund Unterwasser eines Stausees.
 Dabei fließt der Volumenstrom V durch die Anlage. In der Rohrleitung tritt der Druckverlust Δp_V auf.

Geg.: H=30m, V=4m³/s, U₂=1m/s, Δp_V =100Pa, η =0,85, ρ =1000kg/m³, g=9,81m/s²

Ges.: Nutzleistung P_W der Turbine

⇒ Beispiel wird an der Tafel vorgerechnet

