

SEQUENCE LISTING

<110> Memorial Sloan-Kettering Cancer Center
Kolesnick, Richard N.
Xing, Hong-Mei R.

<120> KINASE SUPPRESSOR OF RAS INACTIVATION FOR THERAPY OF RAS MEDIATED TUMORIGENESIS

<130> 1216-1-006CIP

<140> US 10/727,358
<141> 2003-12-03

<150> 60/384,228
<151> 2002-05-30

<150> 60/460,023
<151> 2003-04-03

<150> PCT/US03/16961
<151> 2003-05-29

<160> 38

<170> PatentIn version 3.1

<210> 1
<211> 120
<212> DNA
<213> Homo sapiens

<400> 1
ctgcagaagc tcatcgatat ctccatcgcc agtctgcgcg ggctgcgcac caagtgccta 60

gtgtctaacg acctcacaca gcaggagatc cggaccctag aggcaaagct ggtgaaatac 120

<210> 2
<211> 41
<212> PRT
<213> Homo sapiens

<400> 2

Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
1 5 10 15

Thr Lys Cys Ser Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
20 25 30

Leu Glu Ala Lys Leu Val Lys Tyr Ile
35 40

<210> 3
<211> 19
<212> DNA
<213> Homo sapiens

<400> 3
ggcagtctgc gcgggctgc 19

<210> 4
<211> 18
<212> DNA
<213> Homo sapiens

<400> 4
tcagtgta acgaccc 18

<210> 5
<211> 18
<212> DNA
<213> Homo sapiens

<400> 5
cggaccctag aggcaaag 18

<210> 6
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 6
cagcccgcg agactgccg 19

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 7
gaggtcgtta gacactga 18

<210> 8
<211> 16
<212> DNA
<213> Artificial Sequence

<220>

<223> antisense oligonucleotide

<400> 8
ctttgcctct agggtc

16

<210> 9
<211> 873
<212> PRT
<213> Mus musculus

<400> 9

Met Asp Arg Ala Ala Leu Arg Ala Ala Met Gly Glu Lys Lys Glu
1 5 10 15

Gly Gly Gly Gly Ala Ala Ala Asp Gly Gly Ala Gly Ala Ala Val
20 25 30

Ser Arg Ala Leu Gln Gln Cys Gly Gln Leu Gln Lys Leu Ile Asp Ile
35 40 45

Ser Ile Gly Ser Leu Arg Gly Leu Arg Thr Lys Cys Ser Val Ser Asn
50 55 60

Asp Leu Thr Gln Gln Glu Ile Arg Thr Leu Glu Ala Lys Leu Val Lys
65 70 75 80

Tyr Ile Cys Lys Gln Gln Ser Lys Leu Ser Val Thr Pro Ser Asp
85 90 95

Arg Thr Ala Glu Leu Asn Ser Tyr Pro Arg Phe Ser Asp Trp Leu Tyr
100 105 110

Ile Phe Asn Val Arg Pro Glu Val Val Gln Glu Ile Pro Gln Glu Leu
115 120 125

Thr Leu Asp Ala Leu Leu Glu Met Asp Glu Ala Lys Ala Lys Glu Met
130 135 140

Leu Arg Arg Trp Gly Ala Ser Thr Glu Glu Cys Ser Arg Leu Gln Gln
145 150 155 160

Ala Leu Thr Cys Leu Arg Lys Val Thr Gly Leu Gly Gly Glu His Lys
165 170 175

Met Asp Ser Gly Trp Ser Ser Thr Asp Ala Arg Asp Ser Ser Leu Gly
180 185 190

Pro Pro Met Asp Met Leu Ser Ser Leu Gly Arg Ala Gly Ala Ser Thr
195 200 205

Gln Gly Pro Arg Ser Ile Ser Val Ser Ala Leu Pro Ala Ser Asp Ser
210 215 220

Pro Val Pro Gly Leu Ser Glu Gly Leu Ser Asp Ser Cys Ile Pro Leu
225 230 235 240

His Thr Ser Gly Arg Leu Thr Pro Arg Ala Leu His Ser Phe Ile Thr
245 250 255

Pro Pro Thr Thr Pro Gln Leu Arg Arg His Ala Lys Leu Lys Pro Pro
260 265 270

Arg Thr Pro Pro Pro Ser Arg Lys Val Phe Gln Leu Leu Pro Ser
275 280 285

Phe Pro Thr Leu Thr Arg Ser Lys Ser His Glu Ser Gln Leu Gly Asn
290 295 300

Arg Ile Asp Asp Val Thr Pro Met Lys Phe Glu Leu Pro His Gly Ser
305 310 315 320

Pro Gln Leu Val Arg Arg Asp Ile Gly Leu Ser Val Thr His Arg Phe
325 330 335

Ser Thr Lys Ser Trp Leu Ser Gln Val Cys Asn Val Cys Gln Lys Ser
340 345 350

Met Ile Phe Gly Val Lys Cys Lys His Cys Arg Leu Lys Cys His Asn
355 360 365

Lys Cys Thr Lys Glu Ala Pro Ala Cys Arg Ile Thr Phe Leu Pro Leu
370 375 380

Ala Arg Leu Arg Arg Thr Glu Ser Val Pro Ser Asp Ile Asn Asn Pro
385 390 395 400

Val Asp Arg Ala Ala Glu Pro His Phe Gly Thr Leu Pro Lys Ala Leu

405

410

415

Thr Lys Lys Glu His Pro Pro Ala Met Asn Leu Asp Ser Ser Ser Asn
420 425 430

Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro Ala Pro Phe Leu
435 440 445

Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro Asn Pro Ser Pro
450 455 460

Gly Gln Arg Asp Ser Arg Phe Ser Phe Pro Asp Ile Ser Ala Cys Ser
465 470 475 480

Gln Ala Ala Pro Leu Ser Ser Thr Ala Asp Ser Thr Arg Leu Asp Asp
485 490 495

Gln Pro Lys Thr Asp Val Leu Gly Val His Glu Ala Glu Ala Glu Glu
500 505 510

Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Glu Asp Glu Val
515 520 525

Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser Arg
530 535 540

Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro Phe
545 550 555 560

Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly Arg
565 570 575

Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu Glu
580 585 590

Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu Val
595 600 605

Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met Gly
610 615 620

Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys Lys
625 630 635 640

Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu Asp
645 650 655

Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met Gly
660 665 670

Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys Asn
675 680 685

Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu Phe
690 695 700

Gly Ile Ser Gly Val Val Arg Glu Glu Arg Arg Glu Asn Gln Leu Lys
705 710 715 720

Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg Glu
725 730 735

Met Ile Pro Gly Arg Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala Ala
740 745 750

Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg Asp
755 760 765

Trp Pro Phe Lys His Gln Pro Ala Glu Ala Leu Ile Trp Gln Ile Gly
770 775 780

Ser Gly Glu Gly Val Arg Arg Val Leu Ala Ser Val Ser Leu Gly Lys
785 790 795 800

Glu Val Gly Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln Glu
805 810 815

Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Arg Leu Pro Lys
820 825 830

Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala Asp
835 840 845

Ile Asn Ser Ser Lys Val Met Pro Arg Phe Glu Arg Phe Gly Leu Gly
850 855 860

Thr Leu Glu Ser Gly Asn Pro Lys Met
865 870

<210> 10
<211> 866
<212> PRT
<213> Homo sapiens

<400> 10

Met Gly Glu Lys Glu Gly Gly Gly Gly Asp Ala Ala Ala Ala Glu
1 5 10 15

Gly Gly Ala Gly Ala Ala Ala Ser Arg Ala Leu Gln Gln Cys Gly Gln
20 25 30

Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
35 40 45

Thr Lys Cys Ala Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
50 55 60

Leu Glu Ala Lys Leu Val Arg Tyr Ile Cys Lys Gln Arg Gln Cys Lys
65 70 75 80

Leu Ser Val Ala Pro Gly Glu Arg Thr Pro Glu Leu Asn Ser Tyr Pro
85 90 95

Arg Phe Ser Asp Trp Leu Tyr Thr Phe Asn Val Arg Pro Glu Val Val
100 105 110

Gln Glu Ile Pro Arg Asp Leu Thr Leu Asp Ala Leu Leu Glu Met Asn
115 120 125

Glu Ala Lys Val Lys Glu Thr Leu Arg Arg Cys Gly Ala Ser Gly Asp
130 135 140

Glu Cys Gly Arg Leu Gln Tyr Ala Leu Thr Cys Leu Arg Lys Val Thr
145 150 155 160

Gly Leu Gly Gly Glu His Lys Glu Asp Ser Ser Trp Ser Ser Leu Asp
165 170 175

Ala Arg Arg Glu Ser Gly Ser Gly Pro Ser Thr Asp Thr Leu Ser Ala

180

185

190

Ala Ser Leu Pro Trp Pro Pro Gly Ser Ser Gln Leu Gly Arg Ala Gly
195 200 205

Asn Ser Ala Gln Gly Pro Arg Ser Ile Ser Val Ser Ala Leu Pro Ala
210 215 220

Ser Asp Ser Pro Thr Pro Ser Phe Ser Glu Gly Leu Ser Asp Thr Cys
225 230 235 240

Ile Pro Leu His Ala Ser Gly Arg Leu Thr Pro Arg Ala Leu His Ser
245 250 255

Phe Ile Thr Pro Pro Thr Thr Pro Gln Leu Arg Arg His Thr Lys Leu
260 265 270

Lys Pro Pro Arg Thr Pro Pro Pro Ser Arg Lys Val Phe Gln Leu
275 280 285

Leu Pro Ser Phe Pro Thr Leu Thr Arg Arg Lys Ser His Glu Ser Gln
290 295 300

Leu Gly Asn Arg Ile Asp Asp Val Ser Ser Met Arg Phe Asp Leu Ser
305 310 315 320

His Gly Ser Pro Gln Met Val Arg Arg Asp Ile Gly Leu Ser Val Thr
325 330 335

His Arg Phe Ser Thr Lys Ser Trp Leu Ser Gln Val Cys His Val Cys
340 345 350

Gln Lys Ser Met Ile Phe Gly Val Lys Cys Lys His Cys Arg Leu Lys
355 360 365

Cys His Asn Lys Cys Thr Lys Glu Ala Pro Ala Cys Arg Ile Ser Phe
370 375 380

Leu Pro Leu Thr Arg Leu Arg Arg Thr Glu Ser Val Pro Ser Asp Ile
385 390 395 400

Asn Asn Pro Val Asp Arg Ala Ala Glu Pro His Phe Gly Thr Leu Pro
405 410 415

Lys Ala Leu Thr Lys Lys Glu His Pro Pro Ala Met Asn His Leu Asp
420 425 430

Ser Ser Ser Asn Pro Ser Ser Thr Thr Ser Ser Thr Pro Ser Ser Pro
435 440 445

Ala Pro Phe Pro Thr Ser Ser Asn Pro Ser Ser Ala Thr Thr Pro Pro
450 455 460

Asn Pro Ser Pro Gly Gln Arg Asp Ser Arg Phe Asn Phe Pro Ala Ala
465 470 475 480

Tyr Phe Ile His His Arg Gln Gln Phe Ile Phe Pro Asp Ile Ser Ala
485 490 495

Phe Ala His Ala Ala Pro Leu Pro Glu Ala Ala Asp Gly Thr Arg Leu
500 505 510

Asp Asp Gln Pro Lys Ala Asp Val Leu Glu Ala His Glu Ala Glu Ala
515 520 525

Glu Glu Pro Glu Ala Gly Lys Ser Glu Ala Glu Asp Asp Glu Asp Glu
530 535 540

Val Asp Asp Leu Pro Ser Ser Arg Arg Pro Trp Arg Gly Pro Ile Ser
545 550 555 560

Arg Lys Ala Ser Gln Thr Ser Val Tyr Leu Gln Glu Trp Asp Ile Pro
565 570 575

Phe Glu Gln Val Glu Leu Gly Glu Pro Ile Gly Gln Gly Arg Trp Gly
580 585 590

Arg Val His Arg Gly Arg Trp His Gly Glu Val Ala Ile Arg Leu Leu
595 600 605

Glu Met Asp Gly His Asn Gln Asp His Leu Lys Leu Phe Lys Lys Glu
610 615 620

Val Met Asn Tyr Arg Gln Thr Arg His Glu Asn Val Val Leu Phe Met
625 630 635 640

Gly Ala Cys Met Asn Pro Pro His Leu Ala Ile Ile Thr Ser Phe Cys
645 650 655

Lys Gly Arg Thr Leu His Ser Phe Val Arg Asp Pro Lys Thr Ser Leu
660 665 670

Asp Ile Asn Lys Thr Arg Gln Ile Ala Gln Glu Ile Ile Lys Gly Met
675 680 685

Gly Tyr Leu His Ala Lys Gly Ile Val His Lys Asp Leu Lys Ser Lys
690 695 700

Asn Val Phe Tyr Asp Asn Gly Lys Val Val Ile Thr Asp Phe Gly Leu
705 710 715 720

Phe Gly Ile Ser Gly Val Val Arg Glu Gly Arg Arg Glu Asn Gln Leu
725 730 735

Lys Leu Ser His Asp Trp Leu Cys Tyr Leu Ala Pro Glu Ile Val Arg
740 745 750

Glu Met Thr Pro Gly Lys Asp Glu Asp Gln Leu Pro Phe Ser Lys Ala
755 760 765

Ala Asp Val Tyr Ala Phe Gly Thr Val Trp Tyr Glu Leu Gln Ala Arg
770 775 780

Asp Trp Pro Leu Lys Asn Gln Ala Ala Glu Ala Ser Ile Trp Gln Ile
785 790 795 800

Gly Ser Gly Glu Gly Met Lys Arg Val Leu Thr Ser Val Ser Leu Gly
805 810 815

Lys Glu Val Ser Glu Ile Leu Ser Ala Cys Trp Ala Phe Asp Leu Gln
820 825 830

Glu Arg Pro Ser Phe Ser Leu Leu Met Asp Met Leu Glu Lys Leu Pro
835 840 845

Lys Leu Asn Arg Arg Leu Ser His Pro Gly His Phe Trp Lys Ser Ala
850 855 860

Glu Leu
865

<210> 11
<211> 4094
<212> DNA
<213> Mus musculus

<400> 11
gaattccctc ggggcttcc tgccgaggcg cccgtgtccc cgggctcctc gcctcgcccc 60
ccagcggccc cgatgccgag gcatggatag agcggcggtt cgcgcggcag cgatgggcga 120
aaaaaaaggag ggccggcgccg ggggcgcccgc ggccggacggg ggccgcagggg ccgcgcgtcag 180
ccgggcgtc cagcagtgcg gccagctgca gaagctcatc gatatctcca tcggcagtct 240
gcgcgggctc cgcaccaagt gctcagtgtc taacgaccctc acacagcagg agatccggac 300
ccttagaggca aagctggtga aatacatttgc caagcagcag cagagcaagc ttagtgtgac 360
cccaagcgcac aggaccgcgc agctcaacag ctacccacgc ttcaagtact ggctgtacat 420
tttcaacgtc aggccctgagg tggtcagga gatccccaa gagtcacac tggatgtct 480
gctggagatg gacgaggcca aagccaagga gatgctgcgg cgctgggggg ccagcacgga 540
ggagtgacgc cgcctacagc aagcccttac ctgccttcgg aaggtgactg gcctgggagg 600
ggagcacaaa atggactcag gttggagttc aacagatgct cgagacagta gcttggggcc 660
tcccatggac atgctttcct cgctggcag agcgggtgcc agcactcagg gaccccggttc 720
catctccgtc tccgccttc ctcgcctcaga ctctccggtc cccggcctca gtgagggcct 780
ctcggactcc tgtatccct tgcacaccag cggccggctg acccccccggg ccctgcacag 840
tttcatcactc cccctacca cacccagct acgacggcac gccaaagctga agccaccaag 900
gacaccccca cggccaaagcc gcaaggctt ccagctgctc cccagcttcc ccacactcac 960
acggagcaag tccccacgagt cccagctggg aaaccgaatc gacgacgtca ccccgatgaa 1020
gtttgaactc cttcatggat ccccacagct ggtacgaagg gatatcgggc ttcgggtgac 1080
gcacaggttc tccacaaagt catggttgtc acaggtgtgc aacgtgtgcc agaagagcat 1140
gattttggc gtgaagtgc aacactgcag gttaaaatgc cataacaagt gcacaaaaggaa 1200
agctcccgcc tgcaggatca cttccctccc actggccagg cttcggagga cagagtctgt 1260
cccgtcagat atcaacaacc cagtggacag agcagcagag ccccattttgc gaccccttcc 1320
caaggccctg acaaagaagg agcaccctcc agccatgaac ctggactcca gcagcaaccc 1380
atccctccacc acgtcctcca caccctcatc gccggcacct ttccctgacct catctaattcc 1440

tcccagtgcc accacgcctc ccaacccgtc acctggccag cgggacagca ggttcagctt 1500
cccagacatt tcagcctgtt ctcaggcagc cccgctgtcc agcacagccg acagtacacg 1560
gctcgacgac cagccccaaa cagatgtgct aggtgttac 1620
tgaggctggc aagttagagg cagaggatga cgaggaggat gaggtggacg acctccccag 1680
ctcccgccgg ccctggaggg gccccatctc tcgaaaggcc agccagacca gcgttac 1740
gcaagagtgg gacatcccct ttgaacaggt ggaactggc gagccattg gacagggtcg 1800
ctggggccgg gtgcaccgag gccgttggca tggcgaggtg gccattcggc tgctggagat 1860
ggacggccac aatcaggacc acctgaagct gttcaagaaa gaggtgatga actaccggca 1920
gacgcggcat gagaacgtgg tgctttcat gggggcctgc atgaacccac ctcac 1980
cattatcacc agcttctgca aggggcccac attgcattca ttcgtgaggg accccaagac 2040
gtctctggac atcaataaga ctggcagat cgcccaggat atcatcaagg gcatgggta 2100
tcttcatgca aaaggcatcg tgccacaagga cctcaagtcc aagaatgtct tctatgacaa 2160
cgccaaagtg gtcacacag acttcgggct gttggatc tcgggtgtgg tccgagagga 2220
acggcgcgag aaccaactga aactgtcaca tgactggctg tgctac 2280
cgtacgagaa atgatccccgg ggcgggacga ggaccagctg cccttctcca aacccggca 2340
tgtctatgca ttccggactg tgtggatga actacaggca agagactggc ccttaagca 2400
ccagcctgct gaggccttga tctggcagat tggaaagtggg gaaggagtac ggccgtcct 2460
ggcatccgtc agcctgggaa aggaagtcgg cgagatcctg tctgcctgct gggcttcga 2520
tctgcaggag agacccagct tcagcctgct gatggacatg ctggagaggc tgcccaagct 2580
gaaccggcgg ctctccacc ctggcactt ttggaaagtgc gctgacatta acagcagcaa 2640
agtcatgccc cgcttgaaa ggtttggcct gggaccctg gagtccggta atccaaagat 2700
gtagccagcc ctgcacgttc atgcagagag tgtcttcctt tcgaaaacat gatcacgaaa 2760
catgcagacc accaccta 2820
ggaatcagaa gcattgcac ccaagctgcg gactgggagc
gtgtctcctc cctaaaggac gtgcgtgcgt gcgtgcgtgc gtgcgtgcgt gcgtgcgtca 2880
ccaagggtgtg tggagctcag gatgcagacc atacacgcaa ctccagatga taccactacc 2940
gccagtgttt acacagaggt ttctgcctgg caagcttggt atttacagt aggtgaagat 3000
cattctgcag aagggtgctg gcacagtgg 3060
gcagcacgga tgcctccagc ccccggtctg
gaagacccta cagctgtgag aggcccaggg ttgagccaga taaaagaaaa gctgcgtgg 3120

tgtggctgt	acccggaaaa	gggcaggtgg	caggaggttt	gccttggcct	gtgcttggc	3180
cgagaaccac	actaaggagc	agcagcctga	gttaggaatc	tatctggatt	acggggatca	3240
gagttcctgg	agagtggact	cagttctgc	tctgatccag	gcctgttgtg	ctttttttt	3300
ttccccctta	aaaaaaaaaa	agtacagaca	aatctcagc	ggcttctaga	ctgatctgat	3360
gatatcttagc	ccggcttcta	ctgcgggggg	gagggggggg	gggatagcca	cataatctgtg	3420
gagacaccca	cttctttatc	tgaggcctcc	aggtaggcac	aaaggctgtg	gaactcagcc	3480
tctatcatca	gacacccccc	cccaatgcct	cattgacccc	cttccccag	agccaagggc	3540
tagcccatcg	ggtgtgtgta	cagtaagttc	tttgtgaagg	agaacaggga	cgttggcaga	3600
agcagttgc	agtggcccta	gcatctaaa	accattgtc	tgtcacacca	gaaggttcta	3660
gacctaccac	cacttcctt	ccccatctca	tggaaacctt	ttagcccatt	ctgacccttg	3720
tgtgtctct	gagtcagat	cgggttatga	gaccgcccag	gcacatcagt	cagggaggct	3780
ctgatgtgag	ccgcagacct	ctgtgttcat	tcctatgagc	tggagggct	ggactgggtg	3840
gggtcagatg	tgcttggcag	gaactgtcag	ctgctgagca	gggtggtccc	tgagcggagg	3900
ataagcagca	tcaagactcca	caaccagagg	aagaaagaaa	tggggatgga	gcggagaccc	3960
acgggctgag	tcccgctgtg	gagtggcctt	gcagctccct	ctcagttaaa	actcccagta	4020
aagccacagt	tctccgagca	cccaagtctg	ctccagccgt	ctctaaaac	aggccactct	4080
ctgagaagga	attc					4094

<210> 12
 <211> 3772
 <212> DNA
 <213> Homo sapiens

<400> 12	gcgaagctgg	tccgttacat	ttgttaagcag	aggcagtgc	agctgagcgt	ggctcccggt	60
	gagaggaccc	cagagctcaa	cagctacccc	cgcttcagcg	actggctgta	cactttcaac	120
	gtgaggccgg	aggtggtgca	ggagatcccc	cgagacctca	cgctggatgc	cctgctggag	180
	atgaatgagg	ccaaggtgaa	ggagacgctg	cggcgctgtg	gggccagcgg	ggatgagtgt	240
	ggccgtctgc	agtatgcct	cacctgcctg	cggaaagggtga	caggcctggc	ttcatcaccc	300
	cgcaccac	accccagctg	cgacggcaca	ccaagctgaa	gccaccacgg	acgccccccc	360
	cacccagccg	caaggtcttc	cagctgctgc	ccagcttccc	cacactcacc	cgagcaagt	420
	cccatgagtc	tcaagctgggg	aaccgcattg	atgacgtctc	ctcgatgagg	tgagttggga	480

gcacgttcct gcacgtggct atgctgtgg gcctctctca tgagtcagag cgaggaggaga 540
cagctgtgcc tctggagtct gcttttaatt gtctggaaat gcagagatgt ctggttttg 600
cctgagcaaa ataggagttt attttgtac tatcccgagc tggctaagga gagtcacgta 660
gctgtggcg gggcttggg gatgaggagg ggtacagcag gcagggacta tgctgaagt 720
gagctggctg taggaacccc agggaggcac agggggagca tgaagaggag ctacacttcc 780
ctcccttagt gcccggcag aaactcccag ggcccttcac agaaccttgg aggaacattc 840
aacacccccca tctctaggac agccccagcc ttgtcatcct ccaattgctg tggtaacacg 900
gggactggag cagttagatt attaggcctt cagggccagt gtctccatgc agatcagatg 960
gaggcggtgc ttggcacata caccaccta ctgcccattgc ccccagaagt tggtgcat 1020
cataaggtgg ctttggggc taattgattt aagttccaac atagtctgtt tctcttaggc 1080
tggtagctgg cacctttggc cccatgtgtt ttttaattat tttttttt gagacgaaat 1140
ctcgctctat cacccaggct gaagtgcagt agtcaatct cagtcactg cagcctctgc 1200
ctcccggtt caagcaattc tcctgcctca gcctcccgag tagccaggat taaaggtgcc 1260
tgccaccaca catggctaattttt ttaatagaga cggggtttca ccatgttagc 1320
caggctggtc tcaaactcct gacctcaggt gatcttcctg cctcagcctc ccaaagtgt 1380
gggattacag gtgtgagcca ctgcggccag tcatgcccattt gttttttgggt ggtcttggct 1440
gctgatgggtt ggggtgagcc ccaggaggaa gttggacaa gtcaacctca tggcagatgt 1500
gccaggaga gctgcgggtg agatagattt ttcctatccc cctctccttggatgttggagg 1560
actcagtacc tccagcacac ctttctcatg gaggttgggtt atgtggtaact tggcctcaag 1620
tgaaccagca cttcatgagt ccagctttgt gctagaccag cacttggat tgaggggggc 1680
agtggccacc ctcggggac cttctgactc agaggacatg agatggccac actcgagcac 1740
tgtgttcctg acctttctgg gtcacaggc accttgcatttga ttggatgaaa gtcttagatc 1800
ttctttccag agaaaagtct acaacattct actgaaccag tccagagggt tcccgaccc 1860
ccgaagccca cccatggct ggctctggga ggcaatggcg ctgagttatgg gggcatctct 1920
cgcatggatc cccacagatg gtacggagggtt atatcggct gtcggtgacg cacagttct 1980
ccaccaagtc ctggctgtcg caggtctgcc acgtgtgccaa gaagagcatg atatttggag 2040
tgaagtgcaa gcattgcagg ttgaagtgtc acaacaaatg taccaaagaa gcccctgcct 2100
gtagaatatc cttcctgcca ctaactcgcc ttcggaggac agaatctgtc ccctcggaca 2160
tcaacaaccc ggtggacaga gcagccgaac cccattttgg aaccctcccc aaagcactga 2220

caaagaagga	gcaccctccg	gccatgaatc	acctggactc	cagcagcaac	ctttcctcca	2280
ccaccccttc	cacaccctcc	tcacccggcgc	cttcccgac	atcatccaac	ccatccagcg	2340
ccaccacgcc	ccccaaacccc	tcacccggcc	agcgggacag	cagggtcaac	ttcccgactg	2400
cctacttcat	tcatcataga	cagcagtta	tcttccaga	catttcagcc	tttgcacacg	2460
cagccccgct	ccctgaagct	gccgacggta	cccggtcgta	tgaccagccg	aaagcagatg	2520
tgttggaaagc	tcacgaagcg	gaggctgagg	agccagaggc	tggcaagtca	gaggcagaag	2580
acgatgagga	cgaggtggac	gacttgcga	gctctcgccg	gccctggcgg	ggccccatct	2640
ctcgcaaggc	cagccagacc	agcgtgtacc	tgcaggagtg	ggacatcccc	ttcgagcagg	2700
tagagctggg	cgagcccatc	ggcaggggcc	gctggggccg	ggtgcaccgc	ggccgctggc	2760
atggcgaggt	ggccattcgc	ctgctggaga	tggacggcca	caaccaggac	cacctgaagc	2820
tcttcaagaa	agaggtgatg	aactaccggc	agacgcggca	tgagaacgtg	gtgctttca	2880
tgggggcctg	catgaaccccg	ccccacctgg	ccattatcac	cagcttctgc	aaggggcccga	2940
cgttgcactc	gtttgtgagg	gacccaaga	cgtctctgga	catcaacaag	acgaggcaaa	3000
tcgctcagga	gatcatcaag	ggcatggat	atcttcatgc	caagggcatc	gtacacaaag	3060
atctcaaatc	taagaacgtc	ttctatgaca	acggcaaggt	ggtcatcaca	gacttcgggc	3120
tgttggat	ctcaggcgtg	gtccgagagg	gacggcgtga	gaaccagcta	aagctgtccc	3180
acgactggct	gtgcttatctg	gccctgaga	ttgtacgcga	gatgacccccc	ggaaaggacg	3240
aggatcagct	gccattctcc	aaagctgctg	atgtctatgc	atttggact	gtttggtatg	3300
agctgcaagc	aagagactgg	cccttgaaga	accaggctgc	agaggcatcc	atctggcaga	3360
ttggaagcgg	ggaaggaatg	aagcgtgtcc	tgacttctgt	cagcttgggg	aaggaagtca	3420
gtgagatcct	gtcggcctgc	tggccttcg	acctgcagga	gagacccagc	ttcagcctgc	3480
tgtggacat	gctggagaaa	cttcccaagc	tgaaccggcg	gctctccac	cctggacact	3540
tctggaagtc	agctgagttg	taggcctggc	tgccttgcac	gcaccagggg	cttttttcct	3600
cctaataaac	aactcagcac	cgtacttct	gctaaaatgc	aaaatgagat	gcgggcacta	3660
acccaggsga	tgccacccct	gctgctccag	tcgtctctct	cgaggctact	tcttttgctt	3720
tgttttaaaa	actggccctc	tgccctctcc	acgtggcctg	catatgccca	ag	3772

<210> 13

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 13

ggaaccttac ttctgtggtg tgac

24

<210> 14

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 14

tagcagacac tctatgcctg tgtg

24

<210> 15

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> sense oligonucleotide

<400> 15

cggaccctag aggcaaag

18

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> control oligonucleotide

<400> 16

cacgtcacgc gcgcactatt

20

<210> 17

<211> 6

<212> PRT

<213> Homo sapiens

<400> 17

Gly Ser Leu Arg Gly Leu
1 5

<210> 18

<211> 6
<212> PRT
<213> Homo sapiens

<400> 18

Ala Val Ser Asn Asp Leu
1 5

<210> 19
<211> 6
<212> PRT
<213> Homo sapiens

<400> 19

Arg Thr Leu Glu Ala Lys
1 5

<210> 20
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
tatctccatc ggcagtct

18

<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 21
tcgacgctca cacttcaa

18

<210> 22
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 22
ctgaccgctt cctcgtg

17

<210>	23	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
 <220>		
<223>	primer	
 <400>	23	
atagagccca ccgcatcc		18
 <210>	24	
<211>	2601	
<212>	DNA	
<213>	Homo sapiens	
 <400>	24	
atgggagaga aggagggcgg tggcggggg gatgcggcgg cgcggaggg tggcgcaggg		60
gccgcggcca gccgggcgt gcacgcgtgt gggcagctcc agaagctcat cgacatctcc		120
atcgccagtc tgccgggct gcgcaccaag tgccgcgtgt ctaacgacct cacccagcag		180
gagatacggc ccctagaggc aaagctggtc cgttacattt gtaagcagag gcagtgcag		240
ctgagcgtgg ctcccggtga gaggacccca gagctcaaca gctaccccg cttcagcgcac		300
tggctgtaca ctttcaacgt gaggccggag gtggcgcagg agatcccccg agacacctacg		360
ctggatgccc tgctggagat gaatgaggcc aaggtgaagg agacgcgtgcg ggcgtgtgg		420
gccagcgggg atgagtgtgg ccgtctgcag tatgcctca cctgcctgcg gaagggtgaca		480
ggcctggag gggagcacaa ggaggactcc agttggagtt cattggatgc gggcgggaa		540
agtggctcag ggccttccac ggacaccctc tcagcagcca gcctgcctg gcccccagg		600
agctcccagc tggcagagc aggcaacagc gcccagggcc cacgcctccat ctccgtgtca		660
gctctgcctg cctcagactc cccacccca agttcagtg agggcctctc agacacctgt		720
attccccctgc acgccagcgg ccggctgacc ccccgtgccc tgcacagctt catcaccccg		780
cccaccacac cccagctgcg acggcacacc aagctgaagc caccacggac gccccccca		840
cccagccgca aggtcttcca gctgctgccc agttccccca cactcaccgg gagcaagtcc		900
catgagtctc agctgggaa ccgcattgtat gacgtctctt cgatgaggtt tgatctctcg		960
catggatccc cacagatggt acggaggat atcgggtgt cggtgacgca caggttctcc		1020
accaagtctt ggctgtcgca ggtctgccac gtgtgccaga agagcatgtat atttggagtg		1080
aagtgcacgc attgcaggat gaagtgtcac aacaaatgtt ccaaagaagc ccctgcctgt		1140
agaatatcct tcctgccact aactcggctt cggaggacag aatctgtccc ctcggacatc		1200

aacaaccgg	tggacagagc	agccgaaccc	cattttgaa	ccctccccaa	agcactgaca	1260
aagaaggagc	accctccggc	catgaatcac	ctggactcca	gcagcaaccc	ttcctccacc	1320
acccctcca	caccctcctc	accggcgccc	ttcccgacat	catccaaccc	atccagcgcc	1380
accacgcccc	ccaaccctc	acctggccag	cgggacagca	ggttcaactt	cccagctgcc	1440
tacttcattc	atcatagaca	gcagtttatac	tttccagaca	tttcagccctt	tgcacacgca	1500
gccccgctcc	ctgaagctgc	cgacggtacc	cggctcgatg	accagccgaa	agcagatgtg	1560
ttggaagctc	acgaagcgga	ggctgaggag	ccagaggctg	gcaagtca	ggcagaagac	1620
gatgaggacg	aggtggacga	cttgcgcagc	tctcgccggc	cctggcgggg	ccccatctct	1680
cgcaaggcca	gccagaccag	cgtgtacctg	caggagtggg	acatcccctt	cgagcaggta	1740
gagctggcg	agcccatcgg	gcagggccgc	tggggccggg	tgcaccgcgg	ccgctggcat	1800
ggcgaggtgg	ccattcgccct	gctggagatg	gacggccaca	accaggacca	cctgaagctc	1860
ttcaagaaag	aggtgatgaa	ctaccggcag	acgcggcatg	agaacgtgg	gctcttcatg	1920
ggggcctgca	tgaacccgcc	ccacctggcc	attatcacca	gcttctgcaa	ggggcggacg	1980
ttgcactcgt	ttgtgaggg	ccccaaagacg	tctctggaca	tcaacaagac	gaggcaaatc	2040
gctcaggaga	tcatcaaggg	catggatat	cttcatgcca	agggcatcgt	acacaaagat	2100
ctcaaatcta	agaacgtctt	ctatgacaac	ggcaaggtgg	tcatcacaga	cttcgggctg	2160
tttggatct	caggcgtggt	ccgagaggg	cggcgtgaga	accagctaaa	gctgtcccac	2220
gactggctgt	gctatctggc	ccctgagatt	gtacgcgaga	tgaccccccgg	gaaggacgag	2280
gatcagctgc	cattctccaa	agctgctgat	gtctatgcat	ttgggactgt	ttggtatgag	2340
ctgcaagcaa	gagactggcc	cttgaagaac	caggctgcag	aggcatccat	ctggcagatt	2400
ggaagcgggg	aaggaatgaa	gcgtgtcctg	acttctgtca	gcttggggaa	ggaagtca	2460
gagatcctgt	cggcctgctg	ggcttcgac	ctgcaggaga	gaccctgctt	cagcctgctg	2520
atggacatgc	tggagaaact	tcccaagctg	aaccggcgcc	tctcccaccc	tggacacttc	2580
tggaagtcag	ctgagttgta	g				2601

<210> 25
<211> 121
<212> DNA
<213> Homo sapiens

<400> 25
ctccagaagc tcatcgacat ctccatcgcc agtctgcgcg ggctgcgcac caagtgcgcac 60

gtgtctaacg acctcaccca gcaggagata cggaccctag aggcaaagct ggtccgttac 120
a 121

<210> 26
<211> 40
<212> PRT
<213> Homo sapiens

<400> 26

Leu Gln Lys Leu Ile Asp Ile Ser Ile Gly Ser Leu Arg Gly Leu Arg
1 5 10 15

Thr Lys Cys Ala Val Ser Asn Asp Leu Thr Gln Gln Glu Ile Arg Thr
20 25 30

Leu Glu Ala Lys Leu Val Arg Tyr
35 40

<210> 27
<211> 18
<212> DNA
<213> Homo sapiens

<400> 27
gcagtgtcta acgacctc 18

<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 28
ctttgcctct agggtccg 18

<210> 29
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 29
cagcccgcbc agactgcc 18

<210> 30
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 30
gccctccttc tctccat 18

<210> 31
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 31
acaatgtaa cggaccag 18

<210> 32
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 32
cctctcaccg ggagccac 18

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 33
gaaagtgtac agccagtc 18

<210> 34
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense oligonucleotide

<400> 34	
tgcaccacct ccggcctc	18
<210> 35	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 35	
tgaggtctcg gggatct	18
<210> 36	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 36	
caccttggcc tcattcat	18
<210> 37	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 37	
atccaatgaa ctccaaact	18
<210> 38	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> antisense oligonucleotide	
<400> 38	
gagccacttt cccgccgc	18