

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta056

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul de coordonate Oxy se consideră punctele A(-1,1), B(1,-1), C(2,0).

- (4p) a) Să se determine lungimea segmentului BC.
- (4p) b) Să se determine aria triunghiului ABC.
- (4p) c) Să se determine coordonatele centrului de greutate al triunghiului ABC.
- (4p) d) Să se calculeze $\cos(\hat{A})$.
- (2p) e) Să se determine panta dreptei AB.
- (2p) f) Să se arate că punctele A, B, C aparțin cercului de ecuație $(2x-1)^2 + (2y-1)^2 10 = 0$.

SUBIECTUL II (30p)

- 1. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}, f(x) = (1+x)^9$.
- (3p) a) Să se calculeze f(-1).
- (3p) b) Să se calculeze suma $C_9^0 C_9^1 + C_9^2 ... C_9^9$.
- (3p) c) Să se determine numărul de termeni iraționali din dezvoltarea binomului $f(\sqrt{2})$.
- (3p) d) Să se determine al treilea termen al dezvoltării binomului $f(\sqrt{2})$.
- (3p) e) Să se calculeze $\hat{5}^7$ în \mathbb{Z}_7 .
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{x}{x^2 + 1}$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se verifice că f(-x) = -f(x), $\forall x \in \mathbf{R}$.
- (3p) c) Să se calculeze $\lim_{x\to 2} \frac{f(x) \frac{2}{5}}{x-2}$.
- (3p) d) Dacă F este primitiva lui f care verifică relația F(0)=1, să se calculeze F(1).
- (3p) e) Să se calculeze $\int_{-2}^{2} f(x) dx$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră matricele
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{si} \quad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (4p) a) Să se calculeze determinantul și rangul matricei A.
- (4p) b) Să se determine $a \in \mathbf{R}$ astfel încât $A^2 = a \cdot A$.
- (4p) c) Să se arate că există $a \in \mathbf{R}$ astfel încât $A^n = a^{n-1}A$, $\forall n \in \mathbf{N}^*$.
- (2p) d) Să se arate că există o matrice coloană $C \in M_{3,1}(\mathbf{R})$ și o matrice linie $L \in M_{1,3}(\mathbf{R})$, astfel ca $A = C \cdot L$.
- (2p) e) Să se arate că matricea $I_3 + A$ este inversabilă și să se determine $b, c \in \mathbb{R}$ astfel încât $(I_3 + A)^{-1} = bI_3 + cA$.
- (2p) Să se arate că pentru $x, y \in \mathbb{R}$, $n \in \mathbb{N}^*$ avem: $(xI_3 + yJ)^n = x^nI_3 + \frac{1}{3}((x+3y)^n x^n)J$.
- (2p) g) Să se arate că dacă $x \ne 0$ şi $x + 3y \ne 0$ atunci matricea $xI_3 + yJ$ este inversabilă şi să se determine inversa acesteia.

SUBIECTUL IV (20p)

Se consideră funcția $f:[1,\infty)\to \mathbf{R}$, $f(x)=\frac{1}{x^\alpha}$ pentru $\alpha>0$ și șirurile $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ definite prin relațiile $a_n=1+\frac{1}{2^\alpha}+...+\frac{1}{n^\alpha}$, $b_n=\int\limits_{-\infty}^n f(x)\,dx$, $\forall\;n\in\mathbf{N}^*$.

- (4p) a) Să se arate că șirul $(a_n)_{n\geq 1}$ este crescător.
- (4p) b) Să se arate că funcția f este descrescătoare.

(4p) c) Să se demonstreze că
$$f(k+1) \le \int_{k}^{k+1} f(x) dx \le f(k)$$
, $\forall k \in \mathbb{N}^*$.

- (2p) d) Să se demonstreze inegalitățile $a_n 1 \le b_n \le a_{n-1}$, $\forall n \in \mathbb{N}, n \ge 2$.
- (2p) e) Pentru $\alpha > 1$, să se calculeze $\lim_{n \to \infty} b_n$.
- (2p) f) Să se arate că $(a_n)_{n\geq 1}$ este convergent pentru $\alpha > 1$ și divergent pentru $\alpha \leq 1$.
- (2p) g) Să se arate că șirul $(a_n b_n)_{n \ge 1}$ este convergent, $\forall \alpha > 0$.

2