CS61B Lectures #29

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Tue Jan 21 15:10:54 2020

CS61B: Lecture #29 1

Better than N lg N?

- ullet Can prove that if all you can do to keys is compare them, then sorting must take $\Omega(N \lg N)$.
- \bullet Basic idea: there are N! possible ways the input data could be scrambled.
- \bullet Therefore, your program must be prepared to do N! different combinations of data-moving operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if-tests in your program, since those determine what move gets moved where (we're assuming that comparisons are 2-way).

 $\begin{array}{c} \text{Decision Tree} \\ \text{Height} \propto \text{Sorting time} \end{array}$

Last modified: Tue Jan 21 15:10:54 2020

CS61B: Lecture #29 2

Necessary Choices

- Since each if-test goes two ways, number of possible different outcomes for k if-tests is 2^k .
- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$N! \in \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right),$$

$$\lg(N!) \in 1/2(\lg 2\pi + \lg N) + N \lg N - N \lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right)$$

$$= \Theta(N \lg N)$$

 \bullet This tells us that k, the worst-case number of tests needed to sort N items by comparison sorting, is in $\Omega(N\lg N)$: there must be cases where we need (some multiple of) $N\lg N$ comparisons to sort N things.

Last modified: Tue Jan 21 15:10:54 2020

CS61B: Lecture #29 3

Beyond Comparison: Distribution

- But suppose can do more than compare keys?
- \bullet For example, how can we sort a set of N integer keys whose values range from 0 to kN , for some small constant k ?
- \bullet One technique: put the integers into N buckets, with an integer p going to bucket |p/k|.
- \bullet At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., k = 2, N = 10:

Start:

14 3 10 13 4 2 19 17 0 9 In buckets:

.n buckets: | 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

 \bullet Now insertion sort is fast. Putting in buckets takes time $\Theta(N),$ and insertion sort takes $\Theta(kN).$ When k is fixed (constant), we have sorting in time $\Theta(N).$

Last modified: Tue Jan 21 15:10:54 2020

CS61B: Lecture #29 4

Distribution Counting

- \bullet Another technique: \emph{count} the number of items <1 , <2 , etc.
- If $M_p=$ #items with value < p, then in sorted order, the j^{th} item with value p must be item # M_p+j .
- Gives another *linear-time* algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives # occurrences of each key.
- \bullet "Running sum" gives cumulative count of keys < each value. . .
- ullet ... which tells us where to put each key:
- \bullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

Distribution Counting Example (II)

Last modified: Tue Jan 21 15:10:54 2020 C561B: Lecture #29 25

Distribution Counting Example (II)

0 0 0 1 1 1 2 3 3 4 4 5 6 7 7 7 9 9 9 Output
0 3 6 9 12 15 18

Last modified: Tue Jan 21 15:10:54 2020 CS61B: Lecture #29 26

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Last modified: Tue Jan 21 15:10:54 2020 CS61B: Lecture #29 27

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
* bat, be, bet / cat, cad, con, can / let / set	1
bat / * be, bet / cat, cad, con, can / let / set	2
bat / be / bet / * cat, cad, con, can / let / set	1
bat / be / bet / * cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Last modified: Tue Jan 21 15:10:54 2020

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- \bullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- \bullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N\lg N$ comparisons really means $N(\lg N)^2$ operations.
- \bullet While radix sort would take $B=N\lg N$ time with minimal-length keys.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- \bullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Last modified: Tue Jan 21 15:10:54 2020 CS61B: Lecture #29 29

Last modified: Tue Jan 21 15:10:54 2020

CS61B: Lecture #29 30

CS61B: Lecture #29 28

Last modified: Tue Jan 21 15:10:54 2020 CS61B: Lecture #29 31	