МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний технічний університет України «Київський Політехнічний Інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

з дисципліни «Методи оптимізації та планування експерименту» на тему:

«Проведення трьохфакторного експерименту при використанні рівняння регресії з урахуванням квадратичних членів (центральний ортогональний композиційний план)»

Виконав:

Студент 2-го курсу ФІОТ групи IO-82 Шендріков Є.О. Залікова книжка № 8227 Номер у списку групи: 25

Перевірив:

Регіда П. Г.

225	-8	9	-1	8	-9	9
-----	----	---	----	---	----	---

ФРАГМЕНТ КОДУ

```
from math import sqrt
 from scipy.stats import f, t
 from functools import partial
 from random import randint
 from numpy.linalg import solve
x1, x2, x3 = [-8, 9], [-1, 8], [-9, 9]
m, N, 1 = 3, 15, 1.215 \# кількість повторень кожної комбінації \& кількість
повторення дослідів
x \text{ avg} = [(\max(x1) + \max(x2) + \max(x3)) / 3, (\min(x1) + \min(x2) + \min(x3)) / 3]
 # Xcp(max) & Xcp(min)
xo = [(min(x1) + max(x1)) / 2, (min(x2) + max(x2)) / 2, (min(x3) + max(x3)) / 2]
 # Xoi
delta x = [max(x1) - xo[0], max(x1) - xo[1], max(x1) - xo[2]] # delta Xi
y \text{ range} = [200 + int(max(x avg)), 200 + int(min(x avg))] # Yi(max) & Yi(min)
нормовані значення факторів
                           [-1, -1, -1, -1, +1, +1, +1, -1.215, 1.215, 0, 0, 0, 0]
                            [-1, -1, +1, +1, -1, -1, +1, +1, 0, 0, -1.215, 1.215, 0, 0, 0],
                            [-1, +1, -1, +1, -1, +1, -1, +1, 0, 0, 0, 0, -1.215, 1.215, 0]]
xx = [[int(x * y) for x, y in zip(xn[1], xn[2])], # нормовані значення факторів
для ефекту взаємодії
                           [int(x * y) for x, y in zip(xn[1], xn[3])],
                            [int(x * y) for x, y in zip(xn[2], xn[3])]]
xxx = [int(x * y * z) for x, y, z in zip(xn[1], xn[2], xn[3])]
x \times x = [[round(xn[j][i] ** 2, 3) for i in range(N)] for j in range(1, m+1)] #
нормовані знач. факторів для квад. членів
x = [[min(x1), min(x1), min(x1), min(x1), max(x1), max(
 round(-1 * delta x[0] + xo[0], 3),
                           round(1 * \overline{\text{delta x}[0]} + xo[0], 3), xo[0], xo[0], xo[0], xo[0], *
натуральні значення факторів
                       [\min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \max(x2), \max(x2), \max(x2), \max(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \max(x2), \max(x2), \max(x2), \min(x2), \min(x2), \max(x2), \min(x2), \min(x2),
xo[1], xo[1],
                          round(-1 * delta x[1] + xo[1], 3), round(1 * delta x[1] + xo[1], 3),
xo[1], xo[1], xo[1]],
                        [\min(x3), \max(x3), \min(x3), \max(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \min(x3), \max(x3), \min(x3), \min(x3),
 xo[2], xo[2], xo[2], xo[2],
                           round(-1 * delta x[2] + xo[2], 3), round(1 * delta x[2] + xo[2], 3),
 xo[2]]
xx2 = [[round(x * y, 3) for x, y in zip(x[0], x[1])], # натуральні значення
 факторів для ефекту взаємодії
                                [round(x * y, 3) for x, y in zip(x[0], x[2])],
                                [round(x * y, 3) for x, y in zip(x[1], x[2])]]
xxx2 = [round(x * y * z, 3) for x, y, z in zip(x[0], x[1], x[2])]
x = [[round(x[j][i] ** 2, 3)] for i in range(N)] for j in range(m)] #
натуральні значення факторів для квадрат. членів
```

while True:

```
y = [[round(randint(min(y range), max(y range)), 4) for i in range(m)] for j
in range(N)] # формування Y
   arr avg = lambda arr: round(sum(arr) / len(arr), 4)
   y avg = list(map(arr avg, y)) # середнє значення Y
   dispersions = [sum([((y[i][j] - y avg[i]) ** 2) / m for j in range(m)]) for
i in range(N)] # дисперсії по рядках
   x matrix = x + xx2 + [xxx2] + x x \# повна матриця x натуральними значеннями
факторів
   norm\ matrix = xn + xx + [xxx] + x xn \# повна матриця з нормованими
значеннями факторів
   mx = list(map(arr_avg, x_matrix)) # середні значення х по колонкам
   my = sum(y avg) / N # середнє значення Y avg
    # ======= Форматування таблиці
______
   table_factors_1 = ["X0", "X1", "X2", "X3"]
table_factors_2 = ["X1X2", "X1X3", "X2X3", "X1X2X3", "X1^2", "X2^2", "X3^2"]
   table y = ["Y1", "Y2", "Y3"]
   other = ["#", "Y"]
   header format = "+\{0:=^3\}" + "+\{0:=^8\}" * (len(table factors 1)) +
"+\{0:=^8s\} * (
       len(table_factors_2)) + "+\{0:=^6s\}" * (len(table y)) + "+\{0:=^8s\}"
   row format = "|\{:^3\}" + "|\{:^8\}" * (len(table factors 1)) + "|\{:^8\}" *
(len(table_factors_2)) + "|{:^6}" * (
       len(table_y)) + "|{:^8}"
   separator_format = "+\{0:-^3s\}" + "+\{0:-^8s\}" * (len(table factors 1)) +
"+{0:-^8s}" * (
       len(table factors 2)) + "+\{0:-^6s\}" * (len(table y)) + "+\{0:-^8s\}"
    # ======= Нормальні значення
______
   print(header format.format("=") + "+\n" + "|{:^132s}|\n".format("Матриця ПФЕ
(нормальні значення факторів)") +
         header format.format("=") + "+\n" + row format.format(other[0],
*table factors 1, *table factors 2, *table y,
                                                            other[1]) +
"|\n" + header format.format("=") + "+")
    for i in range(N):
       print("|{:^3}|".format(i + 1), end="")
       for j in range(4): print("{:^+8}|".format(xn[j][i]), end="")
       for j in range(3): print("{:^+8}|".format(xx[j][i]), end="")
       print("{:^+8}|".format(xxx[i]), end="")
       for j in range(m): print("{:^+8}|".format(x xn[j][i]), end="")
       for j in range(m): print("\{:^6\}|".format(y[\overline{i}][\overline{j}]), end="")
       print("{:^8.2f}|".format(y avg[i]))
   print(separator_format.format("-") + "+\n\n")
   # ======= Натуральні значення
_____
   print(header_format.format("=") + "+\n" + "|{:^132s}|\n".format("Mатриця ПФЕ
(натуральні значення факторів)") +
        header format.format("=") + "+\n" + row format.format(other[0],
*table_factors_1, *table_factors_2, *table_y,
                                                            other[1]) +
"|\n" + header format.format("=") + "+")
    for i in range(N):
       print("|\{0:^3\}|\{1:^+8\}|".format(i + 1, xn[0][i]), end="")
       for j in range(3): print("{:^ 8}|".format(x[j][i]), end="")
       for j in range(3): print("{:^ 8}|".format(xx2[j][i]), end="")
```

```
print("{:^+8}|".format(xxx2[i]), end="")
        for j in range(m): print("{:^ 8}|".format(x x[j][i]), end="")
        for j in range(m): print("{:^ 6}|".format(y[i][j]), end="")
        print("{:^8.2f}|".format(y avg[i]))
    def a(first, second): return sum([x matrix[first - 1][j] * x matrix[second -
1][j] / N for j in range(N)])
    def find a(num): return sum([y avg[j] * x matrix[num - 1][j] / N for j in
range(N)])
    def check(b lst, k):
        return \overline{b} lst[0] + b lst[1] * x matrix[0][k] + b lst[2] * x matrix[1][k]
+ b lst[3] * x matrix[2][k] + \
              b lst[4] * x matrix[3][k] + b lst[5] * x matrix[4][k] + b lst[6]
* x matrix[5][k] + \
               b lst[7] * x matrix[6][k] + b lst[8] * x matrix[7][k] + b lst[9]
* x matrix[8][k] + \
               b lst[10] * x matrix[9][k]
    unknown = [[1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7],
mx[8], mx[9]],
               [mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6),
a(1, 7), a(1, 8), a(1, 9), a(1, 10)],
               [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6),
a(2, 7), a(2, 8), a(2, 9), a(2, 10)],
               [mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6),
a(3, 7), a(3, 8), a(3, 9), a(3, 10)],
               [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6),
a(4, 7), a(4, 8), a(4, 9), a(4, 10)],
               [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6),
a(5, 7), a(5, 8), a(5, 9), a(5, 10)],
               [mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6),
a(6, 7), a(6, 8), a(6, 9), a(6, 10)],
               [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6),
a(7, 7), a(7, 8), a(7, 9), a(7, 10)],
               [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6),
a(8, 7), a(8, 8), a(8, 9), a(8, 10)],
               [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6),
a(9, 7), a(9, 8), a(9, 9), a(9, 10)],
               [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6)]
6), a(10, 7), a(10, 8), a(10, 9), a(10, 10)]]
    known = [my, find a(1), find a(2), find a(3), find a(4), find a(5),
find a(6), find a(7), find a(8), find a(9), find a(10)]
    b = solve(unknown, known)
   print(separator format.format("-") + f"+\n\n\tOтримане рівняння регресії при
m = \{m\} : \n
                                         f''\hat{y} = \{b[0]:.3f\} + \{b[1]:.3f\}*X1 +
\{b[2]:.3f\}*X2 + "
                                         f''\{b[3]:.3f\}*X3 + \{b[4]:.3f\}*X1X2 +
\{b[5]:.3f\}*X1X3 + "
                                         f''\{b[6]:.3f\}*X2X3 + \{b[7]:.3f\}*X1X2X3 +
\{b[8]:.3f\}*X11^2 + "
                                         f''\{b[9]:.3f\}*X22^2 +
{b[10]:.3f}*X33^2\n\n\tПеревірка:")
    for i in range(N): print("\hat{y}{} = {:.3f} \approx {:.3f}".format((i + 1), check(b,
i), y avg[i]))
    # ======= Критерій Кохрена
_____
    def cochran(f1, f2, q=0.05):
        q1 = q / f1
        fisher = f.ppf(q=1 - q1, dfn=f2, dfd=(f1 - 1) * f2)
        return fisher / (fisher + f1 - 1)
```

```
f1, f2 = m - 1, N
    f3 = f1 * f2
    Gp = max(dispersions) / sum(dispersions)
    Gt = cochran(f1, f2)
    print("\nОднорідність дисперсії (критерій Кохрена): ")
    print(f"Gp = {Gp} \setminus nGt = {Gt}")
    if Gp < Gt:
        print("\nДисперсія однорідна (Gp < Gt)")
        D beta = sum(dispersions) / (N * N * m)
        \overline{Sb} = \operatorname{sqrt}(\operatorname{abs}(D \operatorname{beta}))
        beta = [sum([(y_avg[j] * norm matrix[i][j]) / N for j in range(N)]) for
i in range(len(norm matrix))]
        t list = [abs(i) / Sb for i in beta]
        student = partial(t.ppf, q=1-0.025)
        d, T = 0, student (df = f3)
        print("\nt табличне = ", Т)
        for i in range(len(t list)):
             if t list[i] < T:</pre>
                 b[i] = 0
                 print("\tt{} = {} => коефіцієнт незначимий, його слід виключити
з рів-ня регресії".format(i, t list[i]))
                 print("\tt{} = {} => коефіцієнт значимий".format(i, t list[i]))
        print("\nОтже, кіл-ть значимих коеф. d =", d, "\n\n\tPiв-ня регресії з
урахуванням критерія Стьюдента:\n\hat{y} = ", end="")
        print("{:.3f}".format(b[0]), end="") if b[0] != 0 else None
        for i in range (1, 11):
            print(" + {:.3f}*{}".format(b[i], (table factors 1 +
table factors 2)[i]), end="") if b[i] != 0 else None
        print("\n\n\tПеревірка при підстановці в спрощене рів-ня регресії:")
        for i in range(N): print("y`{} = \{:.3f\} \approx \{:.3f\}".format((i + 1),
check(b, i), y avg[i]))
        f4 = N - d
        fisher sum = sum([(check(b, i) - y avg[i]) ** 2 for i in range(N)])
        D ad = (m / f4) * fisher sum
        fisher = partial(f.ppf, q=1-0.05)
        Fp = D ad / sum(dispersions) / N
        Ft = fisher(dfn=f4, dfd=f3)
        print("\nКритерій Фішера:")
        if Fp > Ft:
            print("\tРівняння регресії неадекватне (Ft < Fp).")
            break
        else:
             print("\tРівняння регресії адекватне (Ft > Fp)!")
    else:
        print("Дисперсія неоднорідна (Gp > Gt), збільшуємо m, повторюємо
операції")
        m += 1
```

РЕЗУЛЬТАТ РОБОТИ ПРОГРАМИ

i											bni		(но	рмальн	Ii	значенн		факторі	в)										
#		Х0		X1		Х2		Х3		X1X2		X1X3		X2X3		X1X2X3		X1^2		X2^2	X3^2		Y1		Y2		Y3		
1	+==: 		==+= 		:+=: 		:+= 		+== 		:+=: 		+== 		=+= 		:+=: 		:+= 			==- 	201		202		206		
1 3		+1						+1 -1		+1 -1						+1		+1		+1	+1 +1		201		203 L94		198 202		0.67 0.67
4		+1 +1				+1 -1		+1 -1						+1 +1				+1 +1		+1 +1	+1 +1	 	206		199 206		197 204		0.67 5.33
1 6				+1 +1				+1 -1				+1 -1						+1 +1		+1 +1	+1 +1	 	196 202		196 207		199 207		7.00 5.33
1 8		+1 +1		+1 -1.215		+1 +0		+1 +0		+1 +0		+1 +0		+1 +0		+1 +0		+1 +1.476		+1 +0	+1 +0		207		201 208		206 205		4.67 6.67
10 11				+1.215 +0		+0 -1.215		+0 +0		+0 +0						+0 +0		+1.476 +0		+0 +1.476	+0 +0		197 196		208 L99		199 205		1.33 0.00
12 13						+1.215 +0		+0 -1.215												+1.476 +0	+0 +1.476		198 199		L97 L95		199 197		
14 15								+1.215 +0													+1.476 +0		194 195		207 L98		208 20 4		
+	+		-+-		+-		+-		+		+		+		+-		+-		+-		+		 -	-+		-+		+	+

	+==++=====++===+++==+++++++++++++++++															
		Х0	=+======= X1 =+=======	X2	X3	X1X2	x1x3	X2X3	X1X2X3	X1^2	X2^2	X3^2	Y1	Y2	Y3	+=====+ Y
1			-+ -8	 -1	-9		+ 72	+ 9	-+ -72	+ 64	 1	81	201	202		203.00
							-72		+72	64		81	201	203	198	200.67
						-64	72	-72	+576	64	64	81		194	202	200.67
						-64	-72	72	-576	64	64	81		199	197	200.67
							81		-81	81		81			204	205.33
							-81		+81	81		81	196	196	199	197.00
						72	81	72	+648	81	64	81	202	207	207	205.33
						72	-81	-72	-648	81	64	81	207	201		204.67
			-9.828			-34.398					12.25		207			206.67
10			10.828			37.898				117.246	12.25		197		199	201.33
11				-3.183		-1.591				0.25	10.131		196	199		
12				10.183		5.091				0.25	103.693		198	197	199	198.00
13					-10.935		-5.468	-38.273	-19.136	0.25	12.25	119.574	199	195	197	197.00
14					10.935		5.468	38.273	+19.136	0.25	12.25	119.574	194	207		203.00
15										0.25	12.25		195	198	204	199.00

```
Отримане рівняння регресії при m=3:
y = 199.265 + -0.145*X1 + 0.134*X2 + 0.184*X3 + 0.033*X1X2 + 0.031*X1X3 + -0.015*X2X3 + -0.004*X1X2X3 + 0.040*X11^2 + -0.015*X22^2 + 0.002*X33^2

Перевірка:
y1 = 203.958 ≈ 203.000
y2 = 202.507 ≈ 200.667
y3 = 200.667
y4 = 201.554 ≈ 200.667
y5 = 205.496 ≈ 205.333
y6 = 196.281 ≈ 197.000
y7 = 204.543 ≈ 205.333
y8 = 202.995 ≈ 204.667
y9 = 203.678 ≈ 206.667
y10 = 203.867 ≈ 201.333
y11 = 198.566 ≈ 200.000
y12 = 199.131 ≈ 198.000
y13 = 198.224 ≈ 197.000
y14 = 201.321 ≈ 203.000
y15 = 199.540 ≈ 199.000

Однорідність дисперсії (критерій Кохрена):
Gp = 0.2534626038640741
Gt = 0.7410730084501662

Дисперсія однорідна (Gp < Gt)
```

```
t табличне = 2.0422724563012373

t0 = 413.2764478474248 => коефіцієнт значимий

t1 = 0.11665621996273738 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t2 = 0.3970133932544307 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t3 = 0.5528706177606709 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t4 = 1.367408532253343 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t5 = 0.911596572112016 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t6 = 1.3674085322533394 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t7 = 0.7292936665919941 => коефіцієнт незначимий, його слід виключити з рів-ня регресії

t8 = 303.50198480495243 => коефіцієнт значимий

t9 = 301.4836898113465 => коефіцієнт значимий

t10 = 301.8873488100677 => коефіцієнт значимий

Oтже, кіл-ть значимих коеф. d = 4

Pів-ня регресії з урахуванням критерія Стьюдента:

ŷ = 199.265 + 0.040*X1^2 + -0.015*X2^2 + 0.002*X3^2
```

```
Перевірка при підстановці в спрощене рів-ня регресії:

у`1 = 201.946 ≈ 203.000

y`2 = 201.946 ≈ 200.667

y`3 = 200.971 ≈ 200.667

y`4 = 200.971 ≈ 205.333

y`6 = 202.621 ≈ 197.000

y`7 = 201.645 ≈ 205.333

y'8 = 201.645 ≈ 204.667

y`9 = 202.908 ≈ 206.667

y`10 = 203.728 ≈ 201.333

y`11 = 199.118 ≈ 200.000

y`12 = 197.669 ≈ 198.000

y`13 = 199.317 ≈ 197.000

y`14 = 199.317 ≈ 203.000

y`15 = 199.085 ≈ 199.000

Критерій Фішера:

Рівняння регресії адекватне (Ft > Fp)!
```