北京师范大学 2021 ~2022 学年第 二 学期期末考试试卷

课程名称:	人工智	7能数学基础	<u></u> Ш	任课教师姓名: _		张家才	
卷面总分:	100_分 考	考试时长: <u>1</u>	.00_分钟	考试类别:	闭卷 ☑	开卷 📗	其他 🗌
院(系):			专业:		-	年级:	2020
姓 名:			学号:			_	
题号	第一题	第二题	第三题	第四题	第五题	总分	
得分							
阅卷教师(签字):						
一、 选择题 (1) Pandas 另一个数据分 理不同类型的	是 Python 数 析包,主要是	效值计算的扩	展包,能够	高效处理高维 Pandas 只能 ²			
(2)人工智 描述数据间的				拿机处理的格 的参数。	式(如向量	或矩阵), ñ (万模型通常)
(3)如果总接用样本来估				唯写成某些参 数法估计。	数的函数。	在此情况下, (提出了直
(4) 对于 N 量都是它的特		,它的特征值	直的代数重数	如几何重数	都是 N,且	N 维空间中位 (£意非零向)
(5)函数z = 区域内两个二				$\frac{\partial^2 z}{\partial y} = \frac{\partial z}{\partial x} \left(\frac{\partial z}{\partial y} \right),$ 两个混合偏导	-	$=\frac{\partial z}{\partial y}\left(\frac{\partial z}{\partial x}\right), t$	□果在某个)
二、填空题 (1)已知一组 的目标函数 E	且数据集{xi, t	•		函数表达式为	y=f(x, w),	请写出基于说	吴差平方和
(2) 假定对和	1 → 1 -2 0 1 0 1 2	$\begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \\ \frac{1}{2} & -3 \end{bmatrix}$ 为二次	Z型 f 对应的	———。 矩阵,则 f(x	₁ ,x ₂ ,x ₃)=		o
(3)从 52 张扑克牌(无大小王)中随机抽出 2 张,已知抽到黑桃 A,抽到两张 A 的概率:。							
(4)针对二次搜索方向:	饮函数 <i>f</i> (x) =	$\frac{x^TQx}{2} + b^Tx +$	- c, 其中 Q ⁊	是正定矩阵, _。	试写出最速	下降法求函数	女最小值的

(5) $f(x) = 2x_1^2 + 2x_1x_2 - x_1 + 5x_2$ 对应的海塞矩阵为:

三、简答题(每题5分,共30分)

(1) 文本挖掘中涉及词向量和文档向量,请简述独热编码表示词向量的要点,及这种数学表示方法的优缺点。

(2) 写出下面线性规划问题的对偶形式。

$$\min z = 5x_1 + 6x_2 + 3x_3$$

$$s.t.\begin{cases} x_1 + 2x_2 + 2x_3 = 5\\ -x_1 + 5x_2 - x_3 \ge 3\\ 4x_1 + 7x_2 + 3x_3 \le 8\\ x_2 \ge 0, x_3 \le 0 \end{cases}$$

(3) 随机变量服从指数分布,密度函数 $p(x|\theta) = \begin{cases} \theta e^{-\theta x}, x \ge 0 \\ 0, x < 0 \end{cases}$ $\theta > 0$,根据这个概率密度抽取了 n个样本 $\{x_1, x_2, ..., x_n\}$,请用最大似然法估计参数 θ 。

(4) 矩阵 $A = \begin{pmatrix} 1 & 0 & 6 & 5 \\ 0 & 1 & 4 & 5 \end{pmatrix}$,请写出 A 的零空间的一组基

(5) 已知两个向量 $A = \binom{2}{5}$ 及 $B = \binom{-5}{2}$,以及以基 $e_1 = \binom{2}{3}$ 及基 $e_2 = \binom{4}{1}$ 为坐标轴的新坐标系,求 A 和 B 两个向量在新坐标系下的向量表示:

(6)设任意相继两天中,雨转晴的概率为 1/3(雨转雨的概率 2/3),晴转雨的概率为 1/2(晴转晴概率为 1/2),如果今天是晴天,那么 n 天后天气为晴天和雨天的概率分别是多少,请利用 Markov 模型和矩阵运算设计解决方案。

四、计算分析题(每题10分,共30分)

- (1) 如果 P(w1)=1/3, P(w2)=2/3。
 - (a)图(a)分别为两类的概率密度。当 x=0.2 时,依据最小错误率准则,该样本判为哪类?
 - (b)图(b)为两个类的概率密度似然比,请写出分类区间。

(2) 求矩阵 $A = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$ A 的 4 次幂 A⁴

- (3) 已知原 2 维空间一组数据的协方差矩阵为 $S = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$
- (a) 求这组数据的两个主成份(投影方向的单位向量)。(4分)
- (b) 求原空间中三个数据 $(1,1)^{\mathsf{T}}$, $(0,1)^{\mathsf{T}}$, $(2,0)^{\mathsf{T}}$ 按主成份降到1维新空间的表达。 (3分)
- (c) 求以上 3 个降维后的样本投影回 2 维空间后的新向量,原始空间中的恢复数据与原始数据有什么区别。(3 分)

五、算法设计与实验分析题(15分)

(1) 分析线性方程组求解算法回答问题。

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

- (a) 该图是什么算法(2分)。
- (b) 该算法对系数矩阵 A 的主 对角元素有什么要求(2分)
- (c)请在图中数字标注处填入适当内容(每空1分)

(2)下面是用 HMM 实现中文分词的维特比算法的 Python 代码片断,其中 text 变量存放文本字符串,states 存放四个状态("B" "S" "E" "M"),start_p, trans_p, emit_p 分别存放起始概率,转移概率和发射概率,请回答下面问题。

```
def viterbi(self, text, states, start p, trans p, emit p):
V = [\{\}]; path = \{\}
for y in states:
    V[0][y] = start_p[y] * emit_p[y].get(text[0], 0)
    path[y] = [y]
for t in range(1, len(text)):
    V.append({}); newpath = {}
    for y in states:
        emitP = emit p[y].get(text[t], 0)
        (prob, state) = max([(V[t - 1][y0] * trans p[y0].get(y, 0), y0)]
                        for y0 in states if V[t-1][y0] > 0] # question (b)
        V[t][y] = (1) # question (a)
        newpath[y] = path[state] + [y]
    path = newpath
 (prob, state) = max([(V[len(text) - 1][y], y) for y in states])
return (prob, path[state])
```

- (a) 请在代码中标有数字处填入适当内容完成算法(2分)。
- (b) 请简述带下划线的代码的功能(2分)。

(c) 代码运行过程中变量 path 可看作状态串组成的二维数组,path 会随着文本字符串的处理而 发生变化。假定当处理长度为 L 的文本串 text 第 n 个字符时,path 变量结果 path1;当处理文本 串 text 中第 m(L>m>n)个字符时,path 变量结果为 path2。请问 path2 中的前 n 个列向量是否 就是 path1 中的列向量,并说明原因(2 分)。