Feedback

- * When present output depends only on input and not on the past output, there is no feedback
- * But when present output depends on past output as well, there is feedback.

* if

$$A_f = \frac{A}{1 + AB} \qquad \left(-\text{ve } f.6\right)$$

$$\frac{dA_f}{dA} = \frac{1+A\beta - A(\beta)}{(1+A\beta)^2}$$

$$dA_f = \frac{dA}{(1+AB)^2}$$

Divide by Af

$$\frac{dA_f}{A_f} = \frac{dA}{(1+A_B)^2} \times \frac{(1+A_B)}{A} = \frac{(dA/A)}{(1+A_B)^2}$$

$$\Rightarrow S = \frac{dAf/Af}{dA/A} = \frac{1}{1+AB} = \frac{1}{D}$$

2. Improved Stability:

* -ve feedback reduces gain (Af < A). That improves stability.

$$D_{2f} = \frac{D_{2}}{(1 + A\beta)} < D_{2}$$

with f.b.,
$$N_{of} = \frac{N_o}{1 + A\beta}$$

Disadvantages:

The 4 Feedback Topologies

fee	dback .		Clasediana		
To po 0/p		Basic Amp	Closed loop Stabilized Gain	unit of	Other name
j) Volta	ge - Series (V)	Av (Vol. Amp)	Arf ~ 1	un'i tless	
	ent - Series (V)	Gim (Trons- (ond. Amp)	9mf ~ 1	<u>Ohm</u>	Series - Series
(1	age - Shunt 1) (I)	Rm (Trans- Resistance Amp)	Rmf ~ 1/8	mho	Shunt - Shunt
4) Cum (I	ren-1 - Shunt) (I) 1/p	Ai (Current Amp)	Aif~ #	unit lers	Shunt-Serjes

Examples: Emitter follower (Common Collector), Source follower (Common Drain), Voitage follower (Non- inverting OpAmp)

	Practical considerations:
	The noise initally needs to be
	The noise initally needs to be amplified, So, AB >1 slightly
	so, AB > slightly
	for sustained os (
	1
*	Also there are losses in the descent so they prevent the Olp from Keep increasing even if MB/>1
	Kens increasing prevent the Up 180m
	The mas 1 1 mas 1 > 1
	-: LAR is only slightly
	bigger than I & that is compensated
	bigger than I & that is compensated by loyer in the ckt.
*	Roposties of Osc:
•	
1,	Gain is so (Ag) or v.large
	7 ve feed back : loop gain = AB=+ro
3-	System stability is less as compared to amplifier.
4	. No the required enternally.
	V
	The noise is sufficient to generate oscillations.
	Oscillations.

* 3 RC stages gle 180° phose shift So,

Storgk RC stage

Should give 60'

phase. Rut If it is giving 60' Then overall of phase of, 3RC stayes is bigger than low' Ø of first stage $= \beta = \tan^{-1}\left(\frac{1}{\omega Rc}\right) > \tan^{-1}\left(\frac{1}{\omega Rc}\right)$ if $\tan^{-1}\left(\frac{1}{\omega Rc}\right) = 60$ (as per design) |Reg| = R|| |Zeg| < R $S_0, \quad \phi_1 > 60$ So, single RC stage phase R&C should be designed such that tan" (L were) < 60°

* Find Osc freq. ?) find B vo 10 of the North No $\beta = \frac{\sqrt{f}}{\sqrt{o}}$ Replace C by $\frac{1}{\int \omega C} = X_C$ (Reactiona) Vo sinc juc juc V find $\frac{V_f}{V_0}$ from KVLAKCL=BSo, B will be a complex number. B = X + J / LB = tan- (x) = 180° Since A = -ve, β should be -ve $\beta = -0.5$ e. β phase = 180

real number (no imag. pest)

$$\Delta$$
 (in this case $\beta = -\frac{1}{29}$

slightly bigger

