Polymeric hole injection layers for perovskite-based Light-Emitting Diodes

Colloquium Prepared for the Degree:

Master of Science

in

Physics

Tassilo Naujoks

Chair of Experimental Physics IV
Institute of Physics
University of Augsburg

15.11.2018

Table of Contents

CCTENNATO CONSCIENT

- Introduction
- Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- 4 Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Introduction

SCIENTIFIC CONSCIENT

- 2 Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

What is a perovskite?

A perovskite is a crystal structure, that features unique dielectric properties.

Figure 1: Illustration of the perovskite structure with the CsPbBr₃ perovskite as example.

- Perovskite is the retained name for CaTiO₃. Calling a material a perovskite refers to its crystal structure being the same as for CaTiO₃.
- A perovskite has a structure of ABX₃.
- Nobel price for the first high temperature super conductor.
- High electric conductivity and high absorbance.

Basic OLED stack design

An Organic Light-Emitting Diode (OLED) consists of anode, cathode and functional organic layers in between.

Figure 2: Simplified illustration of processes, leading to light emission, in OLEDs.

- Electrons and holes are injected by the cathode and anode respectively.
- The ETL and HTL have high mobilities for the respective charge carrier.
- Charge carriers meet to form excitons, which will decay with the emission of a photon.

- Introduction
- Developing a suitable hole injection site
- Oesign of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Developing a suitable hole injection site

poly-TPD has several potential advantages for application in a perovskite based OLED.

Using poly-TPD as additional HIL^a has advantages:

Figure 3: poly-TPD

- Optical optimization by controlling interference effects.
- Electron blocking ability, due to a high LUMO^b.
- Dried film insoluble to most solvents.
- Enhanced hole injection properties in low HOMO^c emitting materials, enabled by a low HOMO of poly-TPD itself.
- Chemical shielding between the HIL underneath and the layer above.

aHIL = hole injection layer

b LUMO = lowest unoccupied molecular orbital

^cHOMO = highest occupied molecular orbital

Introduction

SCIENTIFIC CONSCIENT

- Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- lacktriangle Design of OLED's based on the CsPbBr $_3$ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Investigation on optical properties of (MA)PbI₃

The optical properties are well-suited to verify a perovskite formation.

Experimental Details:

- Precursors PbI₂ and (MA)I^a have been dissolved in DMF^b with 1 M concentration.
- Two solutions have been chosen for the experiment:
 - ▶ PbI₂ in DMF (1 M).
 - ▶ PbI₂ in DMF (1 M) and (MA)I in DMF (1 M) mixed at 1:1 ratio (volumetric).
- The solutions are spin coated at 5000 rpm for 30 seconds on glass substrates and subsequently heated to 90°C for 5 minutes.
- The reflexion and transmission is measured in air.

a MA = Methylammonium

b DMF = Dimethylformamide

Investigation on optical properties of (MA)PbI₃

The the optical properties of PbI₂ are negligible for the mixed solvent's sample, indicating a full (MA)PbI₃ perovskite formation with few residual PbI₂.

Figure 4: Absorption spectra measured by a spectrophotometer.

- The PbI₂ absorption: $\lambda < 500$ nm.
- The (MA)PbI₃ absorption: whole visible spectrum.
- The characteristic trait of (MA)PbI₃ to have blackish color respectively having high absorbance can be verified.^[1]

Introduction

THE SCIENTIFIC CONSCIENT

- 2 Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
 - lacktriangle Design of OLED's based on the CsPbBr $_3$ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Introduction of (MA)PbI₃ into an OLED stack

A standard electron injection site has been chosen, for hole injection the poly-TPD-based system has been applied.

Figure 5: Schematic energy band diagram of the first (MA)PbI₃-based OLED sample.^[2-8]

- The hole injection is performed by a PEDOT:PSS and poly-TPD layer of total thickness of 40 nm
- The emitter is deposited by two different procedures.
 - The one-step-process: deposition by a (MA)PbI₃ solution.
 - The two-step-process: subsequent deposition of PbI₂ and (MA)I.
- For electron injection a 70 nm thick BPhen^a layer was used.

^aBathophenanthroline

Introduction of (MA)PbI₃ in an OLED stack

The (MA)PbI₃ is deposited in two different ways, yielding comparable results.

Figure 6: Current density and luminance versus driving voltage characteristics of the (MA)PbI₃ based OLEDs.

- The two-step-processed OLED shows higher luminance for lower currents.
- The OLED shows no (plain eyed) visible luminance. However devices detect a luminance.

Introduction of (MA)PbI₃ in an OLED stack

(MA)PbI₃'s luminance is at wavelengths reaching the infrared domain.

Figure 7: Electroluminescent spectrum of the (MA)PbI₃ based OLEDs.

- Emission in the near infrared.
- Emission energy approx. matching HOMO-LUMO gap of 1.5 eV.
- The green emission can be ascribed to the PbI₂.

Summary on (MA)PbI₃ films and OLEDs

• (MA)PbI₃ films:

- ▶ A perovskite consisting of PbI₂ and (MA)I, (MA)PbI₃, can be synthesized.
- ► The absorption of (MA)PbI₃ covers the whole spectrum, increasing towards lower wavelengths.
- ► The (MA)PbI₃ surfaces are partly rough and holey.
- ► Solution processing on hot grounds renders the film more closed.

• (MA)PbI₃ based OLEDs:

- The manufactured devices work at low perforance, sufficiently for a proof of concept.
- ► The emission maximum is located at the visible spectrum threshold to the infrared spectrum.
- ► For actual light-emitting diodes material systems like (MA)PbBr₃, are more suited to characterise.

Introduction

THE RESIDENCE PROPERTY OF THE PROPERTY OF THE

- Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Charaterisation of CsPbBr₃ layers

The surface texture and the layer thickness are to be determined.

Experimental Details:

- The CsPbBr₃ quantum dots are present in unknown concentration solved in toluene.
- The solution can be diluted and spin coating speeds can be adjusted.
- Layers of interest are the one grown on poly-TPD. So the standard PEDOT:PSS + poly-TPD layers are applied before spincoating the CsPbBr₃ quantum dots.
- The AFM and profilometer measurement is performed in air.

Atomic Force Microscopy of CsPbBr₃ layers

The surface texture is controlled by concentration and spin-coating speed.

Figure 8: Surface morphology of a CsPbBr₃ quantum dots solution spin-coated at 5000 rpm on a poly-TPD coated substrate.

Figure 9: Surface morphology of a CsPbBr₃ quantum dots solution spin-coated at 5000 rpm on a PMMA coated substrate.

Introduction

SCILAL STRANGES

- 2 Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr3 quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Benchmark of the carrier injection in the OLED.

The charge carrier transport layers are tested with a well known phosphorent emitter.

• The CBP^a:Ir(ppy)₃^b Host-Emitter system is known to have a high efficiency.

 A doping ratio of 8% Ir(ppy)₃ to CBP has been determined to be the most efficient by colleages of the chair.

Figure 10: Schematic energy band diagram of the reference OLED sample. [9, 10]

^aCBP = 4,4'-Bis(N-carbazolyl)-1,1'-biphenyl

^bTris[2-phenylpyridinato-C2,N]iridium(III)

Benchmark of the carrier injection in the OLED.

The CBP:Ir(ppy)₃ device is performing well; so the charge transport layers do not have inheritely an issue.

Figure 11: Current density and luminance versus driving voltage characteristics of the Ir(ppy)₃-based OLED.

- The luminance is about half as high as the one for an ideal (isotropic) phosphorent emitter.^a
- Around the onset the sample is nearly ideal.
- No fast degradation for driving voltages up to 10 V can be observed.

 $^{^{\}mathrm{a}}$ A theoretical device with a constant EQE of 20 %, the same voltage-current dependence, and the same emission spectrum.

Introduction of CsPbBr3 in an OLED stack

For electron injection an Alq₃-OXD7 based system, and for hole injection the poly-TPD-based system has been applied.

- The hole injection is performed by a PEDOT:PSS and poly-TPD layer of total thickness of 90 nm.
- An optional PMMA spacer is added to the system for better film growth.

Figure 12: Schematic energy band diagram of the first CsPbBr₃-based OLED sample. [11, 12]

Introduction of CsPbBr₃ in an OLED stack

The CsPbBr₃ device's color is as expected a green-cyan tone.

Figure 13: Electroluminescent spectrum of the CsPbBr₃ based OLEDs.

- The peak at 513 nm has a FWHM^a
 of approximately 20 nm, which is
 quite good for application in display
 devices.
- Other groups get very similar electroluminescent spectra. [12-14]

^aFWHM = full width half maximum

Introduction of CsPbBr3 in an OLED stack

The $CsPbBr_3$ device is not performing very well, when considering the high quantum yield of $CsPbBr_3$ quantum dots in general. [15]

Figure 14: Current density and luminance versus driving voltage characteristics of the CsPbBr₃-based OLEDs.

- The luminance is an order of magnitude smaller than for an ideal fluorescent emitter.^a
- The currents are two orders of magnitude higher than the ones for the Ir(ppy)₃ based device.
- The device starts degrading within seconds when driven at voltages higher than 6 volts.

 $^{^{\}rm a}{\rm A}$ theoretical device with a constant EQE of 5 %, the same voltage-current dependence, and the same emission spectrum.

Influence of PMMA in the CsPbBr₃-OLED

The PMMA improves the EQE of the devices by a factor of 1.5.

Figure 15: EQE versus driving voltage characteristics of the CsPbBr₃-based OLEDs.

- The PMMA layers leads to an increased EQE.
- However, the EQEs of both devices are an order of magnitude lower than the theoretical limit.

Performance of toluene-free CsPbBr₃-OLEDs

Hexane based samples achieve higher efficiencies.

0.5CsPbBr, solv, in hexane 0.4EQE (%) 0.3 0.1 0.0 - 10^{-2} 10^{0} 10^{-1} 10^{1} 10^{2} Current Density $(\frac{mA}{cm^2})$

versus driving voltage characteristics of the hexane-CsPbBr₃-based OLEDs.

Figure 16: Current density and luminance Figure 17: EQE versus driving voltage characteristics of the hexane-CsPbBr3-based OLEDs.

• The hexane based QDs show worse injection, while showing higher EQE.

Introduction

SCIENTIA PROCEEDINGS OF THE PROCESSION OF THE PR

- 2 Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr₃ quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Summary

Perovskite based OLEDs could be created. However the efficiency is very low.

- (MA)PbI₃ based OLEDs:
 - Nearly infrared light is emitted.
 - Highly depending on environmental conditions during manufacturing.
 - Very poor performance.
- CsPbBr₃ based OLEDs:
 - Green-cyan color, small peak width.
 - ▶ Impaired hole injection, which is a major shortcoming in present devices.
 - Performance depending on used solvent.

Outlook

 $(MA)PbI_3$ based OLEDs will be dropped. $CsPbBr_3$ based OLEDs, need further investigation.

- (MA)PbI₃ based OLEDs:
 - ► Switching to (MA)PbBr₃ to get actual optical devices.
 - ► For further investigation as IR-diode the intial results were too poor and the required equipment is not present.
- CsPbBr₃ based OLEDs:
 - Some optical measurement of the CsPbBr₃ layer may help to find other limiting factors.
 - ► Easing the hole-injection with new or new combination of the HILs
 - ▶ New batches of CsPbBr₃ with different solvents and ligand density should help finding a suitable hole injection system.
 - ▶ An inverted device, where ITO-ZnO is used for electron injection and hole injection can be done by well-known evaporated organics.

Download this presentation:^a

Thousand thanks to:

- Professor Wolfgang Brütting.
- Manuel Engelmayer, Florian Graßl and Thomas Morgenstern, for mentoring.
- Matthew Jurow (University of Berkeley) for supplying the CsPbBr₃ quantum dot solutions.
- All other colleagues of the Chair of Experimental Physics IV.
- and You for Your attention.

ahttps://github.com/TassiloNaujoks/MSc/raw/master/TassiloNaujoks_MScColl_handout.pdf

List of Figures I

Figure 1:	Illustration of the perovskite structure with the CsPbBr ₃ perovskite	
as example		
Figure 2:	Simplified illustration of processes, leading to light emission, in	
OLEDs		
Figure 3:	poly-TPD	
Figure 4:	Absorption spectra measured by a spectrophotometer	
Figure 5:	Schematic energy band diagram of the first (MA)PbI ₃ -based	
OLED sample		
Figure 6:	Current density and luminance versus driving voltage	
charac	teristics of the (MA)PbI ₃ based OLEDs	
Figure 7:	Electroluminescent spectrum of the (MA)PbI $_3$ based OLEDs 14	
Figure 8:	Surface morphology of a CsPbBr3 quantum dots solution	
spin-coated at 5000 rpm on a poly-TPD coated substrate18		
Figure 9:	Surface morphology of a CsPbBr ₃ quantum dots solution	
spin-coated at 5000 rpm on a PMMA coated substrate		

List of Figures II

Figure 10: Schematic energy band diagram of the reference OLED sample20
Figure 11: Current density and luminance versus driving voltage
characteristics of the Ir(ppy) ₃ -based OLED
Figure 12: Schematic energy band diagram of the first CsPbBr ₃ -based OLED
sample
Figure 13: Electroluminescent spectrum of the CsPbBr ₃ based OLEDs23
Figure 14: Current density and luminance versus driving voltage
characteristics of the CsPbBr3-based OLEDs24
Figure 15: EQE versus driving voltage characteristics of the CsPbBr ₃ -based
OLEDs
Figure 16: Current density and luminance versus driving voltage
characteristics of the hexane-CsPbBr ₃ -based OLEDs
Figure 17: EQE versus driving voltage characteristics of the
hexane-CsPbBr ₃ -based OLEDs26

List of Figures III

Figure 18: Current density versus driving voltage characteristics of hole only
devices
Figure 19: Current density versus driving voltage characteristics of solution
processed Ir(ppy) ₃ based devices
Figure 20: EQE versus current density characteristics of solution processed
Ir(ppy) ₃ based devices
Figure 21: Current density versus driving voltage characteristics of TPBi
based devices 37

Introduction

SCIENTIFIC CONSCIENT

- Developing a suitable hole injection site
- 3 Design of OLED's based on the (MA)PbI₃ perovskite
 - Synthesis and characterization of (MA)PbI₃ layers
 - Characterization of OLEDs based on (MA)PbI₃ perovskite
- Design of OLED's based on the CsPbBr₃ perovskite quantum dots
 - Characterization of CsPbBr₃ quantum dot layers
 - Characterization of OLEDs based on CsPbBr3 quantum dots
- Summary and Outlook
- 6 Additional Slides for Disscussion

Hole Only Devices

The hole conductivity is greatly increased by CsPbBr₃ deposition.

Figure 18: Current density versus driving voltage characteristics of hole only devices.

- The CsPbBr₃ solved in toluene device a resistance of only 120 Ω.
- PMMA intervenes, so that the resistance is higher than it is for the CsPbBr₃ free.
- Hexane based CsPbBr₃ devices show extremely low hole conductivity.

Solution Processed Ir(ppy)₃

The toluene susceptibility is still present, but it enhances the efficiency.

10

8

CBP.lr(ppy), 8%

CBP.lr(ppy), 8% toluene treated

PVK.lr(ppy), 10wt.% on PMMA

PVK.lr(ppy), 10wt.% on PMMA

2

10

10

10

10

Current Density (

mA/

cm²

)

Figure 19: Current density versus driving voltage characteristics of solution processed Ir(ppy)₃ based devices.

Figure 20: EQE versus current density characteristics of solution processed Ir(ppy)₃ based devices.

• PMMA does not increase the EQE, but toluene on poly-TPD does.

Switching ETL

TBPi increases the current and the luminance.

Figure 21: Current density versus driving voltage characteristics of TPBi based devices.

- TPBi leads to higher currents.
- But it also leads to overproportionally more luminance.
- This matter of facts contradicts the with a bad hole injection.

References I

- ¹ M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science **338**, 643–647 (2012).
- ² S. Y. Kim, J.-L. Lee, K.-B. Kim, and Y.-H. Tak, "Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes", Journal of Applied Physics **95**, 2560–2563 (2004).
- ³ *PEDOT:PSS' website by ossila*, (02.02.2018) https://www.ossila.com/products/pedot-pss.
- ⁴ Poly-TPD's website by ossila, (02.02.2018) https://www.ossila.com/products/polytpd.

References II

- ⁵ B. A. Nejand, S. Gharibzadeh, V. Ahmadi, and H. R. Shahverdi, "Novel solvent-free perovskite deposition in fabrication of normal and inverted architectures of perovskite solar cells", Scientific Reports 6 (2016) 10.1038/srep33649.
- ⁶ BPhen's website by Merck, (02.02.2018) https://www.sigmaaldrich.com/catalog/product/aldrich/133159.
- ⁷ B. T. J., W. M. Haynes, and D. R. Lide, *Crc handbook of chemistry and physics: a ready-reference book of chemical and physical data*, 97th edition (CRC Press, 2016).
- ⁸ Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy", Applied Physics Letters 68, 2699–2701 (1996).
- ⁹ CBP's website by Ossila, (02.02.2018) https://www.ossila.com/products/cbp.

References III

- ¹⁰Ir(ppy)3's website by Merck, (02.02.2018) https://www.sigmaaldrich.com/catalog/product/aldrich/694924.
- ¹¹OXD-7's website by Ossila, (02.02.2018) https://www.ossila.com/products/oxd-7.
- ¹²H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. H. Choy, and A. L. Rogach, "Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices", The Journal of Physical Chemistry Letters 7, 4398–4404 (2016).
- ¹³ J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent, and O. M. Bakr, "Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering", Advanced Materials 28, 8718–8725 (2016).

References IV

- ¹⁴J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, "Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)", Advanced Materials 27, 7162–7167 (2015).
- ¹⁵ A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, "Colloidal CsPbBr3perovskite nanocrystals: luminescence beyond traditional quantum dots", Angewandte Chemie International Edition 54, 15424–15428 (2015).