

代数系统

CONTENT

- 1 运算
- 2 代数系统
- 3 同态与同构
- 4 同余关系与商代数
- 5 直积

❷运算

口定义 1 设A是一个集合, $A \times A$ 到A的映射称为A上的二元运算. 一般地, A^n 到A的映射称为A上的n元运算.

□设f是A上的n元运算,对任意的 $x_1 x_2$, ..., $x_n \in A$, $f(< x_1, x_2, ..., x_n >)$ 称作 $x_1, x_2, ..., x_n$ 在f下的运算结果,并简记为 $f(x_1, x_2, ..., x_n).$

砂运算

□例1 数的加法是实数集R上的二元运算.

- □因为 对任意〈a, b〉 ∈ $\mathbf{R} \times \mathbf{R}$,通过加法可唯一确定一个实数 c = a + b,故加法是 $\mathbf{R} \times \mathbf{R}$ 到 \mathbf{R} 的映射;
 - 即是R上的二元运算.
- □同样,数的乘法、减法都是实数集R上的二元运算.

○运算

- □例 2 数的除法不是实数集R上的二元运算.
- □因为0不能做除数,某些实数对 $\langle a, b \rangle$ 不能通过除法唯一确定一个与之相应的实数(比如,2/0无意义

□但是,任何非0实数a,b,通过除法可唯一确定一个非0实数a/b,故除法是非0实数集R*上的二元运算.

砂运算

回例 3 设S是一个集合,集合的并、交是P(S) 上的二元运算.

□因为对任意<A,B> ∈ $P(S) \times P(S)$,通过集合的并(交)可唯一确定P(S) 的一个元素 $A \cup B$ (或 $A \cap B$),故集合的并(交)是P(S)上的二元运算.

❷运算

□例 4 设R是实数集,令

$$f: \langle a, b \rangle \Rightarrow a+b-ab \quad a, b \in \mathbf{R}$$

则f是R上的二元运算,

❷运算

□例 5 设R是实数集,令

$$g: \langle a, b \rangle \mid \rightarrow \min \{a, b\}$$

$$h: \langle a, b \rangle \mid \rightarrow \max \{a, b\}, \forall a, b \in \mathbb{R}$$

则g,h均为R上的二元运算.

○运算

□今后主要讨论二元运算,简称"运算"

□用一些称作运算符的特殊符号,表示二元运算, 比如: ◊,

*,·, ·, 等

 \square 将a,b在某运算"*"下的运算结果*(a,b)记为a*b.或简写成ab.

●运算

- □实数加法: a+b
- □实数乘法: a·b或ab
- □集合并、交运算: $A \cup B$, $A \cap B$
- □定义*运算:

$$a*b=a+b-ab$$

□定义。、⊕运算:

$$a \circ b = \min \{a, b\}$$

 $a \oplus b = \max \{a, b\}$

○运算

□例 6 设n为正整数, \mathbf{Z}_n 为 模n剩余类 的集合:

$$\mathbf{Z}_{n} = \{ [0], [1], ..., [n-1] \}$$

定义运算 +n 与 $\times n$ 如下:

$$\forall [i], [j] \in \mathbf{Z}_n,$$
规定
$$[i] +_n [j] = [i+j]$$
$$[i] \times_n [j] = [i \cdot j]$$

其中,十与•为通常整数的加法和乘法.

●运算

- □+,, ×,是不是二元运算?
- \square [i] $+_n$ [j] 与 [i] \times_n [j] 由剩余类 [i] , [j] 唯一确定,而与代表元i, j的选取无关
- 口设 [i'] = [i] , [j'] = [j] 则 $n \mid i' i$, $n \mid j' j$. 知 $n \mid (i' + j') (i + j)$ 故 [i' + j'] = [i + j] .

●运算

上是封闭的。

口定义 2 设 f 是 A 上的 n元运算, $S \subseteq A$,如果对 x_1 , x_2 ,…, $x_n \in S$,恒有 $f(x_1, x_2, ..., x_n) \in S$,则称S对运算f是封闭的.运算f在S

- □自然数集对实数集上的加法、乘法封闭
- □自然数集对实数集上的减法不是封闭的
- 口设 $A \subset S$,则P(A)对P(S)上的并、交封闭

□当A是有限集时,A上的运算可用一个表来表示:

0	a_1	a_2	•••	a_{j}	•••	a_n
$\overline{a_1}$	a_{11}	a_{12}	• • •	a_{1j}	• • •	a_{1n}
<i>a</i> ₂ :	a_{21}	a_{12} a_{22} a_{j2} a_{n2}	•••	a_{2j}	•••	a_{2n}
a_j :	a_{j1}	a_{j2}	•••	a_{ij}	•••	a_{in}
a_n	a_{n1}	a_{n2}	•••	a_{nj}	•••	a_{nn}

□例7 $Z_3 = \{[0], [1], [2]\}, +_3, \times_3$ 的运算表分别为:

+3	[0]	[1]	[2]		\times_3	[0]	[1]	[2]
[0]	[0]	[1]	[2]	-	[0]	[0]	[0]	[0]
		[2]			[1]	[0]	[1]	[2]
		[0]			[2]	[0]	[2]	[1]

■例 8 设 $A = \{0, 1\}$,则A到A的映射构成的集合 A^A 中有四个元素 f_0 , f_1 , f_2 , f_3 ,如下:

□A^A中的函数复合的运算表

0	$ f_0 $	f_1	f_2	f_3
$\overline{f_0}$	f_0	f_1	f_2	f_3
f_1	$ f_1 $	f_0	f_3	f_2
f_2	$ f_2 $	f_2	f_2	f_2
f_3	$ f_3 $	f_3	f_3	f_3

○运算律

定义3 设X为集合,*,。为X上的运算. 如果对任意x, y, $z \in X$, 有 (x * y) * z = x * (y * z)则称*满足结合律(可结合的): 如果对任意x, $y \in X$, 有 x * y = y * x则称*满足交换律(可交换的): 如果对任意x, y, $z \in X$, 有 $x * (y \circ z) = (x * y) \circ (x * z)$ 则称*对。满足左分配律(左可分配): 如果对任意x, y, $z \in X$, 有($y \circ z$)* $x = (y * x) \circ (z * x)$ 则称*对。满足右分配律(右可分配): 若*对。既满足左分配律,又满足右分配律,称*对。满足<mark>分配律</mark>(可分配).

○运算律

- □ 如果对任意x, y, $z \in X$, $\exists x * y = x * z$ 时,必有y = x, 则称 * 满足左消去律;
- □ 如果对任意x, y, $z \in X$, $\exists y * x = z * x$ 时, 必有y = z, 则称 * 满足右消去律;
- □ 若*既满足左消去律,又满足右消去律,称其满足消去律.

○运算律

- □整数集上的加法、乘法满足哪些运算律
- 口设A是一集合,P(A)上的并、交运算均满足结合律、交换律、分配律,不满足消去律.
- □运算表怎么表现运算律?

●作业

□习题一1,3

CONTENT

- 1 运算
- 2 代数系统
- 3 同态与同构
- 4 同余关系与商代数
- 5 直积

- 口定义 1 设A是一个非空集合, f_1 , f_2 , ..., f_n 是A上的运算(其元数可以不同),我们说A在运算 f_1 , f_2 , ..., f_n 下构成一个代数系统,记为<A, f_1 , f_2 , ..., f_n >. 在不引起混乱的情况下,也可将其简记为A.
- \square $\langle N, + \rangle$, $\langle N, \cdot \rangle$, $\langle N, +, \cdot \rangle$.
- \square $\langle \mathbf{Z}, + \rangle$, $\langle \mathbf{Z}, \cdot \rangle$, $\langle \mathbf{Z}, +, \cdot \rangle$,
- lacksquare $\langle \mathbf{Q}, + \rangle$, $\langle \mathbf{Q}, \cdot \rangle$, $\langle \mathbf{Q}, +, \cdot \rangle$, $\langle \mathbf{R}, + \rangle$, $\langle \mathbf{R}, \cdot \rangle$, $\langle \mathbf{R}, \cdot \rangle$.

□ 设A是一个集合,P(A) 与集合的并和交运算构成代数系统 < P(A), $\cup >$,< P(A), $\cap >$,< P(A), \cup , $\cap >$

 \square 模n剩余类集 \mathbf{Z}_n 在运算 $+_n$ 和 \times_n 下可构成代数系统

$$\langle \mathbf{Z}_n, +_n \rangle$$
, $\langle \mathbf{Z}_n, \times_n \rangle$, $\langle \mathbf{Z}_n, +_n, \times_n \rangle$

□ 设A是一个集合, 在A上规定运算*如下:

$$\forall x, y \in A, x * y = x$$

则得到一个代数系统 <A, *>

口定义 2 设 $\langle A, * \rangle$ 是代数系统, $S \subseteq A$,如果S对*封闭,则称 $\langle S, * \rangle$ 为 $\langle A, * \rangle$ 的子代数.

- □任一代数系统均为自身的子代数
- \square $\langle N, + \rangle$, $\langle Z, + \rangle$, $\langle Q, + \rangle$, $\langle R, + \rangle$, $\langle Z, \cdot \rangle$

- □定义3 设<A, ∘>是一个代数系统, e_l ∈A, 如果 $\forall x$ ∈A, 有 $e_x = x$, 则称 e_l 为A的左单位元(左恒等元);设 e_r ∈A, 如果 $\forall x$ ∈A, 有 $xe_r = x$, 称 e_r 为A的右单位元(右恒等元);A中的一个元素如果既是左单位元,又是右单位元,则称之为单位元(恒等元).
- \square $\langle N, + \rangle$, $\langle N, \cdot \rangle$ $\langle Z, + \rangle$, $\langle Q, + \rangle$,
- \square $\langle \mathbf{R}, + \rangle$, $\langle \mathbf{Z}, \cdot \rangle$, $\langle \mathbf{Q}, \cdot \rangle$, $\langle \mathbf{R}, \cdot \rangle$,
- $\square < P(A), \cup >, < P(A), \cap >, < \mathbb{Z}_n, +_n >, < \mathbb{Z}_n, \times_n >$
- □ \forall x, $y \in A$, x * y = x, 任何元素均为右单位元

口定理 1 设代数系统〈A,。〉中既有左单位元 e_l ,又有右单位元 e_r ,则 $e_l = e_r$.

口证明 因 e_l 为左单位元,故 $e_l e_r = e_r$,又因 e_r 为右单位元,故 e_l $e_r = e_l$,所以 $e_l = e_r$.

口推论 代数系统〈A,。〉中的单位元如果存在,则必定唯一.

口定义 4 代数系统 $\langle A, * \rangle$, e是单位元.

对于 $a \in A$,

如果存在 $b \in A$,使得ba = e,则称a为左可逆的,且称b为a的 左逆元:

如果存在 $c \in A$,使得ac = e,则称a是右可逆的,且称c为a的右逆元;

如果存在 $a' \in A$,使得a'a = aa' = e,则称a是可逆的,且称a'为a的逆元.

- \square $\langle N, + \rangle$, $\langle Z, + \rangle$, $\langle Q, + \rangle$, $\langle R, + \rangle$
- \square $\langle N, \cdot \rangle$, $\langle Z, \cdot \rangle$,
- \square $\langle \mathbf{Q}, \cdot \rangle$, $\langle \mathbf{R}, \cdot \rangle$
- $\square < P(A), \cup >, < P(A), \cap >$
- $\square < \mathbb{Z}_n, + > , < \mathbb{Z}_n, \times >$

\times_3	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

口定理 2 设e是代数系统〈A,*〉的单位元,*满足结合律,如果 $a \in A$ 的左逆元b及右逆元c均存在,则b = c.

口证明 b = b e = b (ac) = (ba) c = ec = c.

□推论 设〈A,*〉是有单位元的代数系统,*满足结合律.如果 $a \in A$ 的逆元存在,则必定唯一.

口定义 5 设〈A,*〉是一个代数系统,如果 $a \in A$ 满足a*a = a,称a为A的幂等元.

□代数系统的单位元如果存在则必为幂等元.

 $\square \langle P(A), \cup \rangle, \langle P(A), \cap \rangle$

O $\langle Z_n, +_n, \times_n \rangle$ 的性质

- \Box 关于+n的性质:
- **□** 结合律 $([i]+_n[j])+_n[k]=[i]+_n([j]+_n[k])$

□ 单位元 $[i] +_n [0] = [0] +_n [i] = [i]$

□ 逆元 $[i]+_n[n-i]=[n-i]+_n[i]=[0]$

$(Z_n, +_n, \times_n)$ 的性质

- \square 关于 \times *n*的性质.
- □结合律

$$([i] \times_n [j]) \times_n [k] = [i] \times_n ([j] \times_n [k])$$

口交换律 $[i] \times_n [j] = [j] \times_n [i]$

□单位元 $[i] \times_n [1] = [1] \times_n [i] = [i]$

O $\langle Z_n, +_n, \times_n \rangle$ 的性质

- $\square \times n$ 对十n的分配律
- \square $[i] \times_n ([j] +_n [k])$
- $= ([i] \times_n [j]) +_n ([i] \times_n [k])$

- $\square ([j] +_n [k]) \times_n [i]$
- $= ([j] \times_n [i]) +_n [k] \times_n [i])$

●作业

习题二1,3,4

CONTENT

- 1 运算
- 2 代数系统
- 3 同态与同构
- 4 同余关系与商代数
- 5 直积

○ 同态与同构

口定义 1 对<A, *>, <B, \circ >, f: $A \rightarrow B$, 如果f保持运算,即:

$$\forall x, y \in A \ f(x * y) = f(x) \circ f(y)$$

称f为<A,*>到<B, $\circ>$ 的同态映射(同态)

□例 1 设〈A,*〉,〈B,。〉是两个代数系统, $e \in B$ 是B的单位元. 令

$$f(a) = e$$
 , $\forall a \in A$

则 f是A到B的同态(?),称f为零同态.

$$f(a)=8a$$
 , $\forall a \in \mathbb{Z}$

则f是〈 \mathbf{Z} , +〉到〈 \mathbf{Z} , +〉的同态,但不是〈 \mathbf{Z} , ·〉到〈 \mathbf{Z} , ·〉的同态.

□证:

$$\forall a, b \in \mathbb{Z}, f(a+b) = 8(a+b) = 8a+8b = f(a)+f(b);$$

 $f(ab) = 8(ab) \neq 8a \cdot 8b = f(a) \cdot f(b);$

○ 同态与同构

口定义 2 设〈A,*〉,〈B,。〉为两个代数系统, $f: A \rightarrow B$ 为 A到 B的同态.

如果f是单射,称f为单同态;

如果f为满射,称f为满同态,称B是A在f下的同态象,记为f:

 $A \sim B$ 或A B;

如果f是双射,称f为同构映射(同构),这时称A与B在f映射下同构。 记为

 $f: A \cong B \quad \text{id} \quad A \quad B.$

口存在同态映射f,使f: $A \sim B$,称代数系统〈B,。〉是〈A,*〉的同态象,并记为 $A \sim B$;

□存在同构映射f,使 f: $A \cong B$,称两个代数系统〈A,*〉,〈B,。〉是同构的,并记为 $A \cong B$.

回例 3 对〈Z, +〉与〈Z_n, +_n〉,令
$$f(i) = [i],$$
 则 f 是满射,且 $\forall i, j \in \mathbb{Z}$

$$f(i+j) = [i+j] = [i] +_n [j]$$
$$= f(i) +_n f(j)$$

故 $f: \langle \mathbf{Z}, + \rangle \sim \langle \mathbf{Z}_n, +_n \rangle$

口同样讨论可知〈Z,·〉~〈 \mathbf{Z}_n ,×_n〉.

○同态与同构

□例 4 用 R^+ 表示正实数集,考虑〈R,+〉与〈 R^+ ,·〉,令

$$f(x) = e^x$$
 , $\forall x \in \mathbf{R}$,

则f是双射,

并且 $\forall x, y \in \mathbf{R}$

$$f(x+y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y)$$

故 $f: \langle \mathbf{R}, + \rangle \cong \langle \mathbf{R}^+, \cdot \rangle$

○同态与同构

□定理1

f是 < A, *>到 < B, ·> 的同态,g是 < B, ·>到 < C, \triangle >的同态,则 $g \circ f$ 是 < A, *>到 < C, \triangle >的同态.

且当f,g均为单同态、满同态、同构时, $g \circ f$ 也必是单同态、满同态、同构.

□证明

- 1) $g \circ f: A \rightarrow C$.
- 2) g。f保持运算.

$$\forall x, y \in A$$

$$(g \circ f) (x*y) = g (f (x*y))$$

$$=g(f(x) \cdot f(y))$$

$$=g(f(x)) \triangle g(f(y))$$

$$= (g \circ f) (x) \triangle (g \circ f) (y)$$

因而, $g \circ f$ 是A到C的同态......

$$$$

$$\langle B, \cdot \rangle$$

$$\langle C, \wedge \rangle$$

- 口定理 2 $\varphi: \langle A, * \rangle \cong \langle B, \circ \rangle$,则 $\varphi^{-1}: \langle B, \circ \rangle \cong \langle A, * \rangle$
- □证明 由函数的性质可知, φ^{-1} 是B到A的双射; 又, $\forall x, y \in B$ 记 $\varphi^{-1}(x) = x_1, \ \varphi^{-1}(y) = y_1, \ 则$ $x = \varphi(x_1), \ y = \varphi(y_1), \ \text{故}$

$$\begin{split} & \varphi^{-1} \ (x \circ y) \\ &= \varphi^{-1} \ (\varphi \ (x_1) \circ \varphi \ (y_1) \) = \varphi^{-1} \ (\varphi \ (x_1^* y_1) \) \\ &= x_1^* y_1 \\ &= \varphi^{-1} \ (x) \ *\varphi^{-1} \ (y) \ , \ \dots ... \end{split}$$

- 定理3 (满同态保持结合律)
 设φ: <A, *>~<B, 。>, * 满足结合律,则。也必满足结合律.
- □ 证明 $\forall x, y, z \in B$, 由于 φ 是A到B的满同态,故必存在 x_1 , y_1 , $z_1 \in A$, 使 $\varphi(x_1) = x, \ \varphi(y_1) = y, \ \varphi(z_1) = z, \ \mathcal{F}$ 是 $(x \circ y) \circ z$ $= (\varphi(x_1) \circ \varphi(y_1)) \circ \varphi(z_1)$ $= \varphi (x_1 * y_1) \circ \varphi (z_1)$ $= \varphi ((x_1 * y_1) * z_1)$ $= \varphi (x_1 * (y_1 * z_1))$ $= \varphi(x_1) \circ \varphi(y_1 *_{Z_1})$ $= \varphi(x_1) \circ (\varphi(y_1) \circ \varphi(z_1))$ $=_{\mathcal{X}} \circ (v \circ z)$

♥同态与同构

□定理4 (满同态保持交换律)

设 $\langle A, * \rangle \sim \langle B, \circ \rangle$, *满足交换律,则。必满足交换律.

○同态与同构

- 口 定理 5 (满同态保持单位元) φ : <A , $*>\sim <B$, $\circ>$, $e\in A$ 是A 的单位元,则 φ (e) 是B的单位元.
- 证明 $\forall b \in B$, 由于 φ 是满同态,必存在 $a \in A$ 使 $\varphi(a) = b$,因此, $b \circ \varphi(e)$ $= \varphi(a) \circ \varphi(e)$ $= \varphi(a * e)$ $= \varphi(a)$ = b

同理 $\varphi(e) \circ b = b$,

○同态与同构

- □定理6 (满同态保持逆元)
 - 设 φ : $\langle A, * \rangle \sim \langle B, \circ \rangle$, e_A , e_B 分别为A, B的单位元, a, $a' \in A$ 且 a' 是a的逆元, 则 φ (a') 是 φ (a) 的逆元.
- □证明 $\varphi(a') \circ \varphi(a)$
 - $= \varphi (a'*a) = \varphi (e_A)$
 - $=e_B$
 - 同理 $\varphi(a) \circ \varphi(a') = e_B$.
 - 故 $\varphi(a')$ 是 $\varphi(a)$ 的逆元.

♥同态与同构

□定理7 (同态保持幂等元)

设 φ 是 $\langle A, * \rangle$ 到 $\langle B, \circ \rangle$ 的同态,若 $a \in A$ 是幂等元,则 φ (a) $\in B$ 也是幂等元.

 \mathbb{H} : $\varphi(a) \circ \varphi(a) = \varphi(a)$

口定义 3 设〈A,*〉为一个代数系统,〈A,*〉到自身的同态称为A的自同态,〈A,*〉到自身的同构称为A的自同构.

回例 5 设〈A,*〉是一个代数系统,A上的恒等映射 I_A 是A的自同构.

若 A 中存在单位元e,令f(a)=e, $\forall a \in A$,则f是A的自同态.

●作业

• 习题三 2,3,4,6

CONTENT

- 1 运算
- 2 代数系统
- 3 同态与同构
- 4 同余关系与商代数
- 5 直积

口定义 1 设〈A,*〉是一个代数系统,E是A上的等价关系,如果 $\forall x_1, x_2, y_1, y_2 \in A$,

当 $x_1 E y_1$, $x_2 E y_2$ 时, 必有 $x_1 * x_2 E y_1 * y_2$,

则称E为A上的同余关系.

例 2 整数集**Z**上的模m同余关系是〈**Z**,+〉及〈**Z**,・〉上的同余关系.

口设E为〈A,*〉上的同余关系,在商集

$$A/E = \{ [x]_E | x \in A \}$$

上合理地引入一个运算:

令。是A/E上的运算,由下式定义:

$$[x] \circ [y] = [x * y], \forall [x], [y] \in A/E$$

□代数系统〈A/E,。〉,称为A对E的商代数

- \square 〈**Z**, +〉对 R_m 的商代数为〈**Z**/ R_m ,。〉
 - 其中, $\mathbf{Z}/R_m = \mathbf{Z}_m = \{[0], [1], ..., [m-1]\},$
 - 运算。由下式定义:
 - $[i] \circ [j] = [i+j] = [i] +_m [j]$
 - 即 $\langle \mathbf{Z}, + \rangle$ 对 R_m 的商代数为 $\langle \mathbf{Z}_m, +_m \rangle$.

 \square $\langle \mathbf{Z}, \cdot \rangle$ 对 R_m 的商代数为 $\langle \mathbf{Z}_m, \times_m \rangle$.

口定理 1 设E为〈A,*〉上的同余关系,〈A/E,。〉为A对E的 商代数,令

 φ : $A \rightarrow A/E$,定义如下:

$$\varphi(x) = [x], \forall x \in A$$

则 φ : $\langle A, * \rangle \sim \langle A/E, \circ \rangle$.

 $\square \varphi$ 称为 $\langle A, * \rangle$ 到 $\langle A/E, \circ \rangle$ 的自然同态

口定理 2 设f 是〈A, *〉到〈B, 。〉的同态,由f在A上按下式 定义关系 E_f

$$x E_f y \Leftrightarrow f(x) = f(y), \forall x, y \in A$$

则 E_f 为〈A,*〉上的同余关系.

口定理 3 设 f: $\langle A, * \rangle \sim \langle B, \triangle \rangle$, E_f 为由f确定的同余关系, $\langle A/E_f, \circ \rangle$ 为A对 E_f 的商代数,则 $\langle A/E_f, \circ \rangle \cong \langle B, \triangle \rangle$.

CONTENT

- 1 运算
- 2 代数系统
- 3 同态与同构
- 4 同余关系与商代数
- 5 直积

●直积

口定义 1 设〈A,*〉,〈B,。〉为两个代数系统,〈 $A \times B$, \triangle 〉称为A = B的直积,其中, $A \times B$ 是A,B的笛卡尔积, \triangle 定义如下:

 $\langle x, y \rangle \triangle \langle u, v \rangle = \langle x * u, y \circ v \rangle \qquad \forall \langle x, y \rangle, \langle u, v \rangle \in A \times B$

●直积

口直积 $A \times B$ 能够保持A, B的某些性质:

如果*,。均满足结合律(交换律),则△也必满足结合律(交换律);

如果A,B中分别有单位元 e_A , e_B ,则 $\langle e_A, e_B \rangle$ 是 $A \times B$ 的单位元;

如果 $x \in A$, $y \in B$ 分别有<mark>逆元</mark>x', y', 则 $\langle x', y' \rangle$ 是 $\langle x, y \rangle$ 的逆元.

●直积

口定理 1 设〈A,*〉,〈B,。〉为两个代数系统,分别有单位元 e_A , e_B ,则在A, B 的直积〈 $A \times B$, \triangle 〉中存在子代数S,T使

$$S \cong A$$
, $T \cong B$

口证明 $\diamondsuit S = A \times \{e_B\} = \{ \langle x, e_B \rangle \mid x \in A \}$ 则 $S \subseteq A \times B$, $\forall \langle x, e_B \rangle$, $\langle y, e_B \rangle \in S$,

$$\langle x, e_B \rangle \triangle \langle y, e_B \rangle = \langle x * y, e_B \circ e_B \rangle$$

= $\langle x * y, e_B \rangle \in S$

因此 $\langle S, \triangle \rangle$ 构成 $A \times B$ 的子代数,考虑映射 $f: A \rightarrow S$

$$f(a) = \langle a, e_B \rangle$$
, $\forall a \in A$

显然, f为双射, 又 $\forall x, y \in A$

$$f(x * y) = \langle x * y, e_B \rangle = \langle x, e_B \rangle \triangle \langle y, e_B \rangle$$

= $f(x) \triangle f(y)$

则f保持运算,因此f: $A \cong S$.

同理可证,若令 $T = \{e_A\} \times B 则 B \cong T$.