AGA KHAN UNIVERSITY EXAMINATION BOARD HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI

MODEL EXAMINATION PAPER 2018

Mathematics Paper II

Time: 2 hours Marks: 60

INSTRUCTIONS

Please read the following instructions carefully.

1. Check your name and school information. Sign if it is accurate.

I agree that this is my name and school. Candidate's Signature

RUBRIC

- 2. There are NINE questions. Answer ALL questions. Choices are specified inside the paper.
- 3. When answering the questions:

Read each question carefully.

Use a black pointer to write your answers. DO NOT write your answers in pencil.

Use a black pencil for diagrams. DO NOT use coloured pencils.

DO NOT use staples, paper clips, glue, correcting fluid or ink erasers.

Complete your answer in the allocated space only. DO NOT write outside the answer box.

- 4. The marks for the questions are shown in brackets ().
- 5. You may use a scientific calculator if you wish.

Page 2 of 16	
Q.1.	(Total 4 Marks)
Without using calculator, apply basic operations to separate real and imaginary parts of	$\frac{(3+2i)^{2}}{1+i}.$
M-968-	
Model Chillips 401 401 401	

Page 3 of 16
Q.2. (Total 7 Marks)
a. For the matrices $A = \begin{bmatrix} i \\ 2i \\ 3i \end{bmatrix}$ and $B = \begin{bmatrix} i & 4i \end{bmatrix}$, find $A \times B$ and $(A \times B)^t$.
(Note: $i = \sqrt{-1}$) (3 Marks)
18 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·
b. The multiplicative inverse of the matrix $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ is $\begin{bmatrix} -1 & 0 & a \\ 2 & 0 & -1 \\ -4 & 1 & 2 \end{bmatrix}$. Without using a calculator
find the value of a. (4 Marks)
- 100° SC)
<u> </u>
PLEASE TURN OVER THE PAGE

Page 4 of 16
Q.3. (Total 5 Marks)
Find the first term (a_1) and common difference (d) of an arithmetic sequence which satisfies conditions $4 \times a_6 = a_{26}$ and $a_{15} = 47$.
P. 8, 6
Modelchino

Page 5 of 16	
Q.4. (Total 4	Marks)
a. Find the sum up to the n^{th} term of an arithmetic sequence whose 1^{st} term is 7 and 7^{th} term is (3)	s 37. Marks)
b. Using result of part i, find the sum of first hundred terms of the arithmetic sequence.	l Mark)
100,10	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
M/CS	
KO,	
PLEASE TURN OVER THE PAGE	

Page	6 of 16	
Q.5.		(Total 6 Marks)
a.	How many different words can be formed with the letters of word BREAD if	
	i. all letters are used?	(1 Mark)
	ii. all letters are used and B and R always come together?	(1 Mark)
	iii. only three letters are used?	(1 Mark)
	2	· (O)
	1800	
	· · · · · · · · · · · · · · · · · · ·	\
	12,00,00	
	B,00,7A	
b.	A basket contains 6 white balls and 4 black balls. If all the balls are identical, the selections of 4 balls can be made such that at least 3 of them are white balls?	n how many (3 Marks)
	kO ,	
_		

Page	e 7 of 16	
Q.6. a.		(Total 7 Marks)
	i. Verify that there is no term involving x^5 in the expansion of $(x^2 + 2)^7$.	(2 Marks)
	ii. Find the 5 th term in the expansion of $(x^2 + 2)^7$.	(1 Mark)
		(9)
	1) -01 0	
b.	Show that $\frac{8^n - 3^n}{5}$ is an integer for all natural numbers.	(4 Marks)
	(Note: $n \in N$)	
	40°C	
	W/C	
	PLEASE TURN OVER THE PAGE	

Page 8 of 16	
(ATTEMPT EITHER PART a OR PART b OF Q.7.) Q.7.	(Total 7 Marks)
a. Find the solution set of the equation $x^2 + \frac{1}{x^2} - 7\left(x + \frac{1}{x}\right) + 12 = 0$.	(7 Marks)
b.	
i. Solve the following system of equations.	(6 Marks)
$x^2 + y^2 + 2y = 16$ $3x + y = 6$	
ii. Prove that $\omega^7 = \omega$.	(1 Mark)
(\partial 00')	
100/0	
MODIA	
76.7011	
- 1000 SC.	
401	

Page 9 of	16
Q.8. a.	(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.8.) (Total 14 Marks)
i.	Find the remaining trigonometric ratios, if $\sin \theta = \frac{5}{13}$ and the terminal ray of θ is not in the first quadrant. (4 Marks)
ii. 	Show that $\frac{1 - \cot^2 \theta}{1 + \cot^2 \theta} = \sin^2 \theta - \cos^2 \theta.$ (3 Marks)
	40
	DI EASE TUDN OVED THE DAGE

Page 10 of 16	
(ATTEMPT EITHER PART a OR PART b OF Q.8.)	
Q.8.	
b.	
i. Show that $\cos(\alpha + \beta) \times \cos(\alpha - \beta) = 1 - (\sin^2 \alpha + \sin^2 \beta)$. (4 M	(larks)
8.00	>
2000	
7.0.0	
96.701,	
ii. With the help of $\cos \alpha$, show that $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$. (3 M	Aarks)

Page 11 of 16
(ATTEMPT ANY TWO PARTS FROM a, b AND c OF Q.8.)
Q.8. (Total 7 Marks)
c.
i. With the help of suitable diagram of an oblique triangle ABC, show that $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$. (5 Marks)
Space for diagram
MANUEL SOLONINO
Y O
KO,
·
PLEASE TURN OVER THE PAGE

(2 Marks)

Page	13 of 16
Q.9.	(Total 6 Marks)
a.	Find the solution set of the trigonometric equation $\sin 2x = \cos x$, when $0 \le x \le 2\pi$. (4 Marks)
	-
b.	Find the solution set of the trigonometric equation $\tan^2 \theta + 3 = 0$, when $0 \le \theta \le 2\pi$. (2 Marks)
	16,111,2
	1,70
	KO ,
	END OF DADED

Please use this page for rough work

Please use this page for rough work

Please use this page for rough work

