Índex

Aritmètica entera bàsica

Enters com a anell

Els enters $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ amb $+ i \cdot$ forma un anell:

- $(\mathbb{Z},+)$ és un grup abelià:
 - $ightharpoonup \forall a,b,c: a+(b+c)=(a+b)+c$ (associativa)
 - ▶ $\exists 0 \text{ t.q. } \forall a : a + 0 = 0 + a = a \text{ (el. neutre)}$
 - $\forall a, \exists -a: a + (-a) = (-a) + a = 0$ (el. oposat) $\forall a, b: a + b = b + a$ (commutativa)
- ightharpoonup (\mathbb{Z},\cdot) compleix:
 - $\forall a,b,c:\ a\cdot(b\cdot c)=(a\cdot b)\cdot c \text{ (associativa)}$ $\exists 1 \text{ t.q. } \forall a:\ a\cdot 1=1\cdot a=a \text{ (el. neutre)}$

 - $\forall a, b: a \cdot b = b \cdot a \text{ (commutativa)}$
- ightharpoonup ($\mathbb{Z},+,\cdot$) compleix:
 - $\forall a, b, c: a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (distributiva)

Enters com a conjunt ordenat

Enters amb \leq habitual és conjunt totalment ordenat:

- $ightharpoonup \forall a: a \leq a$
- $ightharpoonup \forall a,b,c:\ a\leq b \ \mathrm{i}\ b\leq c \implies a\leq c$
- $ightharpoonup \forall a,b:\ a\leq b\ {\sf i}\ b\leq a \implies a=b$
- $\blacktriangleright \ \forall a,b \hbox{: o b\'e } a < b \hbox{, o b\'e } a > b \hbox{, o b\'e } a = b$

A més:

▶ Tot subconjunt $S \subset \mathbb{Z}$ fitat inferiorment té mínim: Si $\exists f$ t.q. $\forall a \in S, f \leq a$, aleshores $\exists b \in S$ t.q. $\forall a \in S, b \leq a$

A més, es comporta bé respecte operacions:

- ▶ Si $a \le b$, aleshores $a + c \le b + c$ ($\forall c \in \mathbb{Z}$)
- ▶ Si $a \le b$, aleshores $a \cdot c \le b \cdot c$ ($\forall c \in \mathbb{N}$)

Teorema: Divisió euclidiana

Donats $a,b \in \mathbb{Z}$, $(b \neq 0)$, existeixen únics q (quocient) i r (resta o residu), t.q.

$$a = b \cdot q + r, \qquad 0 \le r < b$$

Demostració

Suposem b > 0. Sigui $R = \{a - bx \mid x \in \mathbb{Z}\} \cap \mathbb{Z}_{>0}$.

- ightharpoonup R fitat inf. per 0
- ▶ R no buid (si $a \ge 0$, $a \in S$; altrament $a ba = a(1 b) \in R$)
- lacksquare Sigui r mínim de R. $r\geq 0$ per definició. Si $r\geq b$, $r-b\in R$ i r no mínim. A més, r=a-bq per a cert q. (existència)
- ▶ Suposem no únics ((q,r) i (q',r')). Si q = q', r = r' i hem acabat. Si q' < q,

$$r' = a - |b|q' = (a - |b|q) + |b|(q - q') \ge (a - |b|q) + |b| = r + |b| \ge |b|,$$

contradicció.

Divisibilitat

- lackbox " $a \mod b$ " indica residu de divisió euclidiana de a entre b
- ▶ Si residu 0 ($a = q \cdot b$):
 - lacktriangle a és múltiple de b
 - ▶ b divideix a, b|a
- Relació amb operacions:
 - ▶ Si a|b i $c \in \mathbb{Z}$ qualsevol: $a|b \cdot c$
 - Si a|b i a|c: a|b+c

Algoritme d'Euclides

Màxim comú divisor

Donats $a, b \in Z$:

- ightharpoonup CD(a,b) divisors comuns positius de a i b
- $ightharpoonup \operatorname{mcd}(a,b)$ major divisor comú positiu de a i b
- ▶ Definició alternativa:

$$x \mid a, \quad x \mid b \implies x \mid \operatorname{mcd}(a, b).$$

▶ a i b són relativament primers (o coprimers) si mcd(a, b) = 1.

Mínim comú múltiple

- $ightharpoonup m{mcm}(a,b)$ menor múltiple comú positiu de a i b
- Definició alternativa:

$$a \mid x, \quad b \mid x \implies \text{mcm}(a, b) \mid x,$$

Lema

Siguin $a, b \in \mathbb{Z}_{>0}$, i $r = a \mod b$. Aleshores $\operatorname{mcd}(a, b) = \operatorname{mcd}(b, r)$.

Demostració

Sigui $a=b\cdot q+r$ la divisió euclidiana. Vegem que $\mathrm{CD}(a,b)=\mathrm{CD}(b,r)$:

- ▶ Sigui $d \in CD(a, b)$. Com r = a bq, d és divisor de r i de b: $d \in CD(b, r)$.
- ▶ Sigui $d \in CD(b,r)$. Com a = bq + r, d és divisor de a i de b: $d \in CD(a,b)$.

Per tant, CD(a, b) = CD(b, r) i mcd(a, b) = mcd(b, r).

Biel Cardona (UIB)

Matematica Discreta

Curs 2014/15

7 / :

Diei Cardona (OID)

Aritmètica Algoritme d'Euclide

Teorema (algorisme d'Euclides)

Donats enters positius $a,b\in\mathbb{Z}_{>0}$, posem $r_0=a,\,r_1=b$ i considerem la successió de divisions euclidianes:

$$r_0 = r_1 q_1 + r_2 \qquad (0 \le r_2 < r_1)$$

$$r_1 = r_2 q_3 + r_3 \qquad (0 \le r_3 < r_2)$$

$$r_2 = r_3 q_4 + r_4 \qquad \qquad (0 \le r_4 < r_3)$$

:

$$r_{i-1} = r_i q_{i+1} + r_{i+1} \qquad (0 \le r_{i+1} < r_i)$$

:

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1} \quad (0 \le r_{k-1} < r_{k-2})$$

$$r_{k-2} = r_{k-1}q_k + r_k \qquad (r_k = 0)$$

Aleshores r_{k-1} (l'últim residu no nul) és igual a mcd(a, b).

Biel Cardona (UIB)

Matemàtica Discreta

rs 2014/15

8 / 1

Demostració

- L'algorisme acaba: Els residus són enters positius i formen successió estrictament decreixent.
- ▶ Al principi: $mcd(a, b) = mcd(r_0, r_1)$
- ▶ A cada pas, pel lema: $mcd(r_{i-1}, r_i) = mcd(r_i, r_{i+1})$
- ▶ Al final: $mcd(r_{k-2}, r_{k-1}) = r_{k-1}$

Per tant, $mcd(a, b) = r_{k-1}$

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2

5 9/

Exemple

Calculem $\operatorname{mcd}(4864,3458)$ donant la seqüència de divisions euclidianes que s'obtenen:

_
!
,
,
,
,

Per tant, mcd(4864, 3458) = 38.

Identitat de Bezout

Donats enters positius $a, b \in \mathbb{Z}_{>0}$, posem

$$r_0 = a$$
, $x_0 = 1$, $y_0 = 0$,
 $r_1 = b$, $x_1 = 0$, $y_1 = 1$

i considerem la successió de divisions euclidianes:

$$\begin{array}{lll} r_0 = r_1q_2 + r_2 & x_2 = x_0 - q_2x_1, & y_2 = y_0 - q_2y_1, \\ r_1 = r_2q_3 + r_3 & x_3 = x_1 - q_3x_2, & y_3 = y_1 - q_3y_2, \\ r_2 = r_3q_4 + r_4 & x_4 = x_2 - q_4x_3, & y_4 = y_2 - q_4y_3, \\ \vdots & \vdots & \vdots & \vdots \\ r_{i-1} = r_iq_{i+1} + r_{i+1} & x_{i+1} = x_{i-1} - q_{i+1}x_i, & y_{i+1} = y_{i-1} - q_{i+1}y_i, \\ \vdots & \vdots & \vdots & \vdots \\ r_{k-2} = r_{k-1}q_k + r_k & x_k = x_{k-2} - q_kx_{k-1}, & y_k = y_{k-2} - q_ky_{k-1}, \end{array}$$

Aleshores $x = x_{k-1}$ i $y = y_{k-1}$ compleixen que $mcd(a, b) = x \cdot a + y \cdot b$.

Demostració

A cada pas: $r_i = x_i a + y_i b$.

- ightharpoonup i=0,1: es compleix trivialment a partir de la definició.
- $i-1, i \implies i+1$:

$$\begin{aligned} x_{i+1} \cdot a + y_{i+1} \cdot b &= (x_{i-1} - q_{i+1}x_i) \cdot a + (y_{i-1} - q_{i+1}y_i) \cdot b \\ &= (x_{i-1} \cdot a + y_{i-1} \cdot b) - q_{i+1}(x_i \cdot a + y_i \cdot b) \\ &= r_{i-1} - q_{i+1}r_i \\ &= r_{i+1}. \end{aligned}$$

Al pas k-1: $mcd(a,b) = r_{k-1} = x_{i-1}a + y_{i-1}b = x \cdot a + y \cdot b$.

Aritmètica

Algoritme d'Euclide

Exemple

Calculem mcd(4864,3458) i els coeficients que compleixen la identitat de Bezout.

i	r	q	x	y
0	4864	_	1	0
1	3458	_	0	1
2	1406	1	1	-1
3	646	2	-2	3
4	114	2	5	-7
5	76	5	-27	38
6	38	1	32	-45
7	0	2	-91	128

Per tant, $mcd(4864, 3458) = 38 = 32 \cdot 4864 + (-45) \cdot 3458$.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

13 / 1

Aritmètic

oritme d'Euclide

Proposició

Fixats enters positius $a,b\in\mathbb{Z}_{>0}$, i un enter arbitrari k, existeixen enters $x,y\in\mathbb{Z}$ tals que $x\cdot a+y\cdot b=k$ ssi k és un múltiple de $\operatorname{mcd}(a,b)$.

Demostració

- ▶ Si k és múltiple de $\operatorname{mcd}(a,b)$, diguem $k=k'\cdot\operatorname{mcd}(a,b)$, per la identitat de bezout tenim que existeixen enters x',y' amb $\operatorname{mcd}(a,b)=x'a+y'b$, d'on k=k'(x'a+y'b)=(k'x')a+(k'y')b.
- ▶ Recíprocament, si k és de la forma $x \cdot a + y \cdot b$, donat d un divisor comú de a i b, es té que d és un divisor de $x \cdot a + y \cdot b$, d'on k és múltiple de d. En particular, k és múltiple de $\operatorname{mcd}(a,b)$.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

14 / 1

Nombres primers

Primers i irreductibles

▶ Un nombre p (positiu) és *primer* si:

$$p | x \cdot y \implies p | x \circ p | y.$$

ightharpoonup Un nombre p (positiu) és *irreductible* si:

$$p = x \cdot y \ (x, y > 0) \implies x = p \circ y = p.$$

Proposició

Donat p enter positiu, són equivalents que sigui primer i que sigui irreductible.

Biel Cardona (UIB

Matemàtica Discret

Curs 201

15 /

Demostració

- (primer \Longrightarrow irreductible): Suposem p primer i sigui p=xy factorització. Com p|xy tenim p|x (o p|y); aleshores x=pq (per a cert q) i p=xy=pqy d'on qy=1. Així y=1 i x=p.
- (irreductible \Longrightarrow primer): Suposem p irreductible i suposem p|xy. Si p|x, hem acabat. Si $p\nmid x$ tenim $\operatorname{mcd}(p,x)=1$, d'on

$$1 = pr + xs \implies y = pry + xsy \implies pry = y - xsy$$

i per tant:

 $p|y - sxy \implies p|y$

Biel Cardona (UIB)

Matematica Discre

rs 2014/15

16 / 1

Aritmèti

Nombres prime

Proposició

Tot nombre major que 1 es divideix per algun nombre primer.

Demostració.

Suposem que no. Sigui n més petit positiu que no es divideix per cap primer.

- ightharpoonup n no és primer (altrament es divideix per ell mateix, un primer)
- ▶ Sigui n=ab factorització (1 < a,b < n). Ara a sí es divideix per nombre primer (n és el més petit que no ho fa). Per tant, n també. Contradicció.

Biel Cardona (UIB)

Matemàtica Discreta

Aritmètica Nombres prin

irs 2014/15

17 / 1

Teorema

Hi ha infinits nombres primers.

Demostració.

Suposem que no, i sigui n una fita superior per als nombres primers. Considerem m=n!+1; aquest nombre no és divisible per cap enter $k\leq n$, ja que $m \bmod k=1 \neq 0$. Per tant, no és divisible per cap nombre primer, cosa que és una contradicció.

Biel Cardona (UIB

Matemàtica Discret

2014/15 1

Teorema fonamental de l'aritmètica

Els nombres enters tenen factorització única. És a dir, donat un enter no nul, aquest es descomposa de forma única (llevat de signe i permutacions) en producte de primers.

Demostració

Existència: Vist a lògica.

Unicitat: Si $n=\pm 1p_1\cdots p_k=\pm 1q_1\cdots q_l$ són factoritzacions:

- ightharpoonup signe ± 1 : determinat pel fet que n sigui positiu o negatiu; és igual en totes dues descomposicions
- $ightharpoonup p_1 \, | \, q_1 \cdots q_l$, d'on $p_1 \, | \, q_i$ (per algun i); per tant, $p_1 = q_i$.
- lterem amb $n/p_1 = n/q_i$.

Biel Cardona (IIIB)

Matematica Discret

ırs 2014/15

19 / 1

Aritmè

p-components

▶ Donat *p* primer i *n* enter:

$$\operatorname{ord}_p(n) = \operatorname{major} k \text{ t.q. } p^k | n$$

► En termes de descomposició:

$$n = \pm 1 \cdot p_1^{\text{ord}_{p_1}(n)} p_2^{\text{ord}_{p_2}(n)} \cdots p_k^{\text{ord}_{p_k}(n)}$$

amb p_i primers diferents 2 a 2.

► Aplicació a med i mem:

$$\operatorname{mcd}(a,b) = \prod_p p^{\min(\operatorname{ord}_p(a),\operatorname{ord}_p(b))}$$

$$\operatorname{mcm}(a,b) = \prod_p p^{\operatorname{max}(\operatorname{ord}_p(a),\operatorname{ord}_p(b))}$$

▶ En particular: ab = mcd(a, b) mcm(a, b)

Biel Cardona (UIB)

Aritmètica

Iombres primer

Exemple

Tenim $4864 = 2^8 \cdot 19$ d'on:

$$\mathrm{ord}_p(4864) = \begin{cases} 8 & \text{si } p = 2 \\ 1 & \text{si } p = 19 \\ 0 & \text{altrament} \end{cases}$$

Tenim $3458 = 2 \cdot 7 \cdot 13 \cdot 19$ d'on

$$\operatorname{ord}_p(3458) = \begin{cases} 1 & \text{si } p = 2,7,13,19 \\ 0 & \text{altrament} \end{cases}$$

Per tant:

$$mcd(4864, 3458) = 2 \cdot 19$$

$$mcm(4864, 3458) = 2^8 \cdot 7 \cdot 13 \cdot 19$$

n.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 201

21 /

Aritmètica modular

Congruències

Fixem enter N > 1:

- $lacksquare a,b\in\mathbb{Z}$ congruent mòdul N si N|a-b|
- Notació: $a \equiv b \pmod{N}$
- ▶ Equivalent: $a \mod N = b \mod N$

Classes de congruències

- ightharpoonup La relació "ser congruents mòdul N" és d'equivalència
- ▶ Classe d'equivalència de $a \in \mathbb{Z}$: $[a]_N$ ó [a]:

$$[a]_N = {\ldots, a-2N, a-N, a, a+N, a+2N, \ldots}.$$

▶ Conjunt de classes d'equivalència: \mathbb{Z}_N :

$$\mathbb{Z}_N = \{[0], [1], \dots, [N-1]\}$$

Biel Cardona (UIB)

Curs 2014/15

22 / 1

Aritmètica Aritm

Exemple

Prenem N=6; aleshores \mathbb{Z}_6 té 6 elements:

$$[0] = \{\ldots, -6, 0, 6, 12, \ldots\}$$

$$[1] = {\ldots, -5, 1, 7, 13, \ldots}$$

$$[2] = {\ldots, -4, 2, 8, 14, \ldots}$$

$$[3] = {\ldots, -3, 3, 9, 15, \ldots}$$

$$[4] = {\ldots, -2, 4, 10, 16, \ldots}$$

$$[5] = {\ldots, -1, 5, 11, 17, \ldots}$$

Bid Codes (IIIB)

Matemàtica Discreta

Curs 2014/15

23 / 1

Operacions amb classes de congruència

Sobre \mathbb{Z}_N : operacions de suma i de producte:

$$[a] + [b] = [a+b]$$

$$[a] \cdot [b] = [a \cdot b]$$

Lema

L'operació està ben definida:

$$\left. \begin{array}{ll} a \equiv a' \pmod{N} \\ b \equiv b' \pmod{N} \end{array} \right\} \implies \left\{ \begin{array}{ll} a + b \equiv a' + b' \pmod{N} \\ a \cdot b \equiv a' \cdot b' \pmod{N} \end{array} \right.$$

Demostració

Sigui k, l t.q kN = a - a' i lN = b - b'. Ara:

$$\begin{array}{c} \blacktriangleright \ (k+l)N = (a+b) - (a'+b') \implies N \, | \, (a+b) - (a'+b') \\ \implies a+b \equiv a'+b' \pmod{N} \implies [a+b] = [a'+b'] \end{array}$$

▶
$$ab = a'b' + N(la' + kb' + klN) \implies N|ab - a'b'$$

 $\implies ab \equiv a'b' \pmod{N} \implies [ab] = [a'b']$

Biel Cardona (UIB)

Matemàtica Discreta

urs 2014/15 2

Aritmètica Aritmètica modular

Exemple

La taula de la suma i el producte a \mathbb{Z}_6 és:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

.	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

\mathbb{Z}_N com a anell

 $(\mathbb{Z}_N,+,\cdot)$ és anell:

- ▶ $(\mathbb{Z}_N, +)$ grup abelià; element neutre: [0]; el. oposat de [a]: [-a].
- (\mathbb{Z}_N, \cdot) propietat associativa; element neutre, [1].
- $lackbox (\mathbb{Z}_N,+,\cdot)$ propietat distributiva del producte respecte de la suma

Invertibles

- ▶ $[a] \in \mathbb{Z}_N$ invertible (o a invertible modul N) si $\exists [b] \in \mathbb{Z}_N : [a] \cdot [b] = [1]$
- lacktriangle Elements invertibles: \mathbb{Z}_N^* (grup amb el producte)

Proposició

 $[a] \in \mathbb{Z}_N \text{ invertible } \iff \operatorname{mcd}(a, N) = 1.$

Demostració

- $\blacktriangleright \ \mathsf{Si} \ [a] \ \mathsf{invertible}, \ \mathsf{sigui} \ [b] \ \mathsf{amb} \ [a] \cdot [b] = [ab] = [1]$ $\Longrightarrow N \mid 1 - ab \implies \exists k : 1 = kN + ab \implies \operatorname{mcd}(a, N) = 1 \text{ (Bezout)}$
- ▶ Si $mcd(a, N) = 1 \implies \exists r, s \in \mathbb{Z}: 1 = ra + sN \implies 1 \equiv ra \pmod{N}$ $\Longrightarrow [1] = [r] \cdot [a].$

Exemple

$$\mathbb{Z}_6^* = \{[1], [5]\}$$

Corol·lari

Si p és primer, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{[0]\}$

Aritmètica

mètica Aritmètica modu

Càlcul d'inversos

Si [a] invertible, es pot trobar l'invers $[a]^{-1}$ amb algorisme d'Euclides estès:

$$\operatorname{mcd}(a, N) = 1 \implies \exists r, s: ra + sN = 1 \implies [r][a] = 1 \implies [a]^{-1} = [r]$$

Exemple

Invers de $35\ \mathrm{modul}\ 2452$

$$\label{eq:mcd} \begin{split} \operatorname{mcd}(2452,35) &= 1, \qquad 1 = (-17) \cdot 2452 + 1191 \cdot 35, \\ [35]_{2452}^{-1} &= [1191]_{2452}. \end{split}$$

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

28 / 1

Diei Cardona (OID)

A

Nombre d'invertibles

- $ightharpoonup \phi(N) := |\mathbb{Z}_N^*| \ (\phi \ \mathsf{d'Euler})$
- Equiv.: $\phi(N) = |\{k \mid 1 \le N < k, \operatorname{mcd}(k, N) = 1\}|$

Teorema d'Euler

Si $y \in \mathbb{Z}$ té $\gcd(y, N) = 1$, aleshores $y^{\phi(N)} \equiv 1 \pmod{N}$.

Lema

Si $\mathbb{Z}_N^*=\{[x_1],\ldots,[x_k]\}$ i $[y]\in\mathbb{Z}_N^*$ quals., $\{[y][x_1],\ldots,[y][x_k]\}=\mathbb{Z}_N^*$.

Demostració (Lema)

Per a cada $[x_i]$, $[y][x_i] = [x_{\sigma(i)}]$ (certa permutació $\sigma \in \mathfrak{S}_k$):

- $\blacktriangleright \ [y][x_i] \text{ t\'e invers } [x_i]^{-1}[y]^{-1} \implies [y][x_i] = [x_{\sigma(i)}]$
- \bullet $\sigma(i) = \sigma(j) \implies [y][x_i] = [y][x_j] \implies [x_i] = [x_j]$

Biel Cardona (UIB)

Teorema d'Euler

Si $y \in \mathbb{Z}$ té $\gcd(y,N) = 1$, aleshores $y^{\phi(N)} \equiv 1 \pmod{N}$.

Demostració

S'ha de provar: $[y] \in \mathbb{Z}_N^* \implies [y]^{\phi(N)} = [1]$:

- ▶ Sigui $\mathbb{Z}_N = \{[x_1], \ldots, [x_k]\}$ $(k = \phi(N))$
- ▶ Sigui $u = [x_1] \dots [x_k] \in \mathbb{Z}_N^*$
- ▶ Lema anterior: $u = [x_1] \cdots [x_k] = ([y][x_1]) \cdots ([y][x_k]) = [y]^k u$
- Per tant: $[y]^k = [1]$.

Corol·lari: Teorema petit de Fermat

Si p és primer, $n^p \equiv n \pmod{p}$ per a tot enter n.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014

irs 2014/15

Aritmètica

Teorema xinès dels residu

Teorema xinès dels residus

Equacions lineals amb congruències

Equació $x\equiv a\pmod M$ (x: variable; a,M: dades) Solucions: $x=\dots,a-2M,a-M,a,a+M,a+2M,\dots$

Teorema xinès dels residus

El sistema

$$x \equiv a \pmod{M}$$
$$x \equiv b \pmod{N}$$

té solució si, i només si,

$$mcd(M, N) | b - a.$$

En tal cas, i donada una solució x_{0} , totes les solucions del sistema són les de la congruència

$$x \equiv x_0 \pmod{\operatorname{mcm}(M, N)}$$
.

Biel Cardona (UIB

Curs 2014/15

31 / 1

ritmètica Teorema xinès dels residu

Demostració

- ► Si hi ha solució, siguin y,z amb x=a+My=b+Nz $\iff My-Nz=b-a \implies \text{(Bezout)} \operatorname{mcd}(M,N) \mid b-a$
- Fig. Si $\operatorname{mcd}(M,N) \, | \, b-a$, sigui y,z amb My-Nz=b-a. Ara x=a+My=b+Nz és solució
- ▶ Si x_0, x_1 són solucions, $x_1 x_0$ és solució de

$$x \equiv 0 \pmod{M}$$

$$x \equiv 0 \pmod{N}$$

equivalent a: $x \equiv 0 \pmod{\operatorname{mcm}(M, N)}$

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

32 / 1

Demostració

Considerem el sistema:

$$x \equiv 11 \pmod{74}$$

$$x \equiv 13 \pmod{63}$$

Les solucions compleixen que existeixen y,z amb

$$x = 11 + 74y = 13 + 63z,$$

d'on tenim que

$$74y - 63z = 2.$$

Fent servir l'algorisme estès d'Euclides obtenim la solució

$$74 \cdot (-17) + 63 \cdot 20 = 2$$

i, per tant, podem prendre y=-17 i z=-20. Aleshores

$$x = 13 - 63 \cdot 20 = -1247$$

és una solució.

Matemàtica Discreta

urs 2014/15 33

11

Corol·lari: Forma clàssica de TXR

Siguin M,N nombres positius relativament primers. Aleshores el sistema de congruències

$$x \equiv a \pmod{M}$$

$$x \equiv b \pmod{N}$$

té sempre solució.

Corol·lari: Forma general de TXR

Siguin M_1,\ldots,M_k nombres positius relativament primers dos a dos. Aleshores el sistema de congruències

$$x \equiv a_i \pmod{M_i}$$
 $(i = 1, \dots, k)$

té sempre solució.

Proposició: càlcul de $\phi(n)$

▶ Si m, n > 0 relativament primers:

$$\phi(m \cdot n) = \phi(m)\phi(n).$$

▶ Si p és primer i $r \ge 1$:

$$\phi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1) = p^r \left(1 - \frac{1}{p}\right).$$

▶ Si $n = \prod_{i=1}^k p_i^{r_i}$ (p_i primers differents):

$$\phi(n) = \prod_{i=1}^{k} p_i^{r_i - 1}(p_i - 1) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right).$$

Demostració

Considerem

$$\mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

Per TXR: a invertible mòd. mn ssi inv. mòdul n i mòdul m.

 $\Longrightarrow \mathsf{Aplicaci\'o} \ \text{\'es bijecci\'o} \ \text{entre} \ \mathbb{Z}_{mn}^* \ \mathbf{i} \ \mathbb{Z}_m^* \times \mathbb{Z}_n^* \ \Longrightarrow \phi(mn) = \phi(m)\phi(n)$

- Immediat a partir dels anteriors

Aplicacions a criptografia

Criptografia

Criptografia: Mètodes per a modificar missatges a enviar de manera que capturant el missatge modificat no es pugui recuperar el missatge original

Codificació

- Codificació: Mètodes per a transformar missatges en números, de manera que es puguin tractar matemàticament
- ▶ *Blocs i codis*: Els missatges es divideixen en blocs de longitud fixada, i cada bloc es codifica en un únic número.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

37 / 1

Aritmetica

Aplicacions a criptograf

Codificacions simples

Alfabet llatí:

► Codificació ASCII:

► Codificació UNICODE: estén ASCII amb caràcters extra (accents,...)

Biel Cardona (UIB)

Matemàtica Discreta

Com 2014/45

38 / 1

Codis per blocs

- ▶ Considerar blocs de k caràcters, codificats entre 0 i N-1.
- ▶ El bloc $(c_{k-1}, c_{k-2}, \dots, c_1, c_0)$ es codifica per:

$$C = c_{k-1} \cdot N^{k-1} + c_{k-2}N^{k-2} + \dots + c_1N + c_0$$

► El codi anterior es decodifica per:

$$\begin{aligned} c_0 &= C \bmod N \\ c_1 &= \frac{C-c_0}{N} \bmod N \\ c_i &= \frac{C-c_0-\dots-c_{i-1}N^{i-1}}{N^i} \bmod N \end{aligned}$$

Biel Cardona (UIB

Matemàtica Discret

Curs 20

39 /

Exemple

Missatge: Criptografia.

Blocs de longitud 4 i codifiquem els caracters pel seu codi ASCII.

Bloc: Crip. Codis ASCII: (67, 114, 105, 112)

$$C = 67 \cdot 128^3 + 114 \cdot 128^2 + 105 \cdot 128 + 112 = 142390512.$$

Seqüencia de codis:

 $142\,390\,512$, $245\,101\,554$, $205\,108\,449$.

Biel Cardona (UIB)

Matemàtica Discreta

Curs 2014/15

40 / :

A. ita

Aritmètica Aplica

Aplicacions a criptografi

Criptografia

▶ Ara missatges són enters (entre 0 i N-1):

$$m \in \mathcal{M} = \{0, \dots, N-1\} \simeq \mathbb{Z}_N$$

▶ Processos de xifrat i desxifrat:

$$E: \mathcal{M} \to \mathcal{C}$$
 $D: \mathcal{C} \to \mathcal{M}$

 ${\cal C}$ conjunt de *criptogrames*

Condició:

$$D(E(m)) = m \quad \text{per a tot } m \in \mathcal{M}$$

lacktriangle Processos sovint depenen de paràmetre k (clau): E_k i D_k

Biel Cardona (UIB)

Matemàtica Discret

Aritmètica Aplicacions a criptografia

Curs 2014/15

41 / 1

Xifrat de Cesar

- ▶ Missatges: $\mathcal{M} = \mathbb{Z}_{26}$ (blocs de 1 caracter llatí)
- Criptogrames: $C = \mathbb{Z}_{26}$
- ► Funcions d'encriptació i desencriptació:

$$E(m) = m + 3 \mod 26,$$
 $D(c) = c - 3 \mod 26$

Exemple

ATAQUEU s'encripta en DWDTXHX

Generalització: xifrat afí

- Paràmetres: $a \in \mathbb{Z}_N^*$, $b \in \mathbb{Z}_N$
- ► Funcions d'encriptació i desencriptació:

$$E_{a,b}(x) = ax + b,$$
 $D_{a,b}(x) = a^{-1}(x - b)$

Biel Cardona (UIB)

Matemàtica Discret

Curs 2014/15

s 2014/15 4

Xifrat de clau pública

- ▶ Idea: Tot usuari pot xifrar missatges per a qualsevol usuari. Únicament el destinatari el pot desxifrar.
- lacktriangle Procés de xifrat E_{k_p} : Depèn de k_p (clau pública del destinatari)
- Procés de desxifrat D_{k_s} : Depèn de k_s (clau privada del destinatari)
- ▶ Condició: Per a tot usuari (amb claus k_p, k_s) i tot missatge m:

$$D_{k_s}(E_{k_p}(m)) = m$$

lacktriangle Condició de seguretat: Donat k_p és molt difícil trobar k_s

Xifrat RSA

- Primer i més emprat sistema de clau pública
- ightharpoonup p, q primers "grans" (200 xifres)
- $ightharpoonup n = p \cdot q$
- $\phi(n) = (p-1)(q-1)$
- $e \text{ amb } 1 < e < \phi(n) \text{ i } \operatorname{mcd}(e, \phi(n)) = 1$
- d invers de e mòdul $\phi(n)$
- $ightharpoonup k_p = (n, e)$
- $k_s = (n, d)$
- $\triangleright E_{k_p}(m) = m^e \mod n$
- $D_{k_s}(c) = c^d \bmod n$

Exemple

Exemple de codificar CRIPTOGRAFIA. Missatges amb $4 \cdot 7 = 28$ bits. Cal p i q amb $p \cdot q > 2^{28}$:

- Prenem p = 16381 i q = 17011.
- Calculem n = pq = 278657191.
- ► Calculem $\phi(n) = (p-1)(q-1) = 278623800$.
- ▶ Triem l'exponent $e = 155\,327$, que és relativament primer amb $\phi(n)$.
- ▶ Calculem l'invers de e mòdul $\phi(n)$, d = 233323463.
- Claus pública i privada:

 $k_s = (278657191, 233323463).$ $k_p = (278657191, 155327),$

- ▶ Xifrat de m = 142390512:
 - $c = m^e \mod n = (142390512)^{155327} \mod 278657191 = 229531282.$
- Desxifrat del criptograma:

 $m = c^d \mod n = (229531282)^{233323463} \mod 278657191 = 142390512.$

