

KT AIVLE School

1일차 정리

전체 Process(CRISP-DM)

모델링을 위해 필요한 것 두가지 - ② 알고리즘

✓ 알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓ 오차를 최소화 하는 직선, 평면 ✓ 직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✔마진을 최대화 하는 초 평면 찾기 ✔데이터 커널 변환	 ✓ 정보전달량 = 부모 불순도 - 자식 불순도 ✓ 정보 전달량이 가장 큰 변수를 기준으로 split 	✔여러 개의 트리 ✔각각 예측 값의 평균 ✔행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✓여러 개의 트리 ✓트리를 더해서 하나의 모델로 생성 ✓더해지는 트리는 오차를 줄이는 모델
전제 조건	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✔NaN조치 ✔가변수화 ✔x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ 스케일링	✓NaN조치 ✓가변수화 ✓스케일링	✔NaN조치 ✔가변수화	✔NaN조치 ✔가변수화	✓ NaN조치 ✓ 가변수화
성능	✓변수 선택 중요 ✓x가 많을 수록 복잡	✔변수 선택 중요 ✔x가 많을 수록 복잡	✓주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✓주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	√주요 hp - max_depth : 클수록 복잡 - min_samples_leaf 작을수록 복잡	✔주요 hp 기본값으로도 충분! - n_estimators - max_features ✔기본값으로 생성된 모 델 ==> 과적합 회피	✓주요 hp - n_estimators - learning_rate ✓ XGB, LGBM : 과적합 회피를 위한 규제

회귀모델 평가

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간...

단계① : 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계②: (예측) 결과를 뽑는다.

단계③ : 오차를 계산한다.

단계④: 오차를 줄이는 방향으로 가중치를 조정

• Optimizer : GD, Adam...

단계⑤: 다시 단계①로 올라가 반복한다.

■ max iteration에 도달.(오차의 변동이(거의) 없으면 끝.)

■ 가중치(weight)의 다른 용어 **파라미터(parameter)**

_		_		
medv =	1	·lstat	+	3

medv	Istat	$\widehat{\mathcal{Y}}$
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

 $w_1: 1 \to 0.8$

 $w_0: 3 \to 3.3$

$$medv = w_1 \cdot lstat + w_0$$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 조정하며 최적의 Weight를 찾아가는 과정

모델의 가중치가 업데이트되는 과정

모델의 오차가 줄어드는 과정

딥러닝 구조

 $medv = w_1 \cdot lstat + w_2 \cdot ptratio + w_3 \cdot crim + w_0$

딥러닝 코드 - Dense

- ✓ input_shape = (,)
 - 분석단위에 대한 shape
 - 1차원 : (feature 수,)
 - 2차원 : (rows, columns)
- ✓ output
 - 예측 결과가 1개 변수(y가 1개 변수)

딥러닝 코드 - Compile

✓ 컴파일(Compile)

선언된 모델에 대해 몇 가지 설정을
 한 후, 컴퓨터가 이해할 수 있는 형태로
 변환하는 작업

Python Code

✓ loss function(오차함수)

- 오차 계산을 무엇으로 할지 결정
- mse : mean squared error, 회귀모델은 보통 mse로 오차 계산

✓ optimizer

- 오차를 최소화 하도록 가중치를 조절하는 역할
- optimizer = 'adam' : learning_rate 기본값 = 0.001
- optimizer = Adam(lr = 0.1) : 옵션 값 조정 가능
 - Ir과 learning_rate은 같지만, learning_rate 사용을 권장

딥러닝 코드 - 학습곡선

✓ .history

- 학습을 수행하는 과정 중에
- 가중치가 업데이트 되면서
- 그때그때마다의 성능을 측정하여 기록
- 학습 시 계산된 오차 기록
- 그것을 저장한 후 차트를 그리면...

Python Code

Epoch	1/20			100			
11/11	[]		1s	31ms/step - Loss	: 571.5110	- val loss	: 577.0120
Epoch							
11/11	[]	-	0s	8ms/step - loss:	489.2647 -	val_loss:	499.1079
Epoch							100 to
11/11	[]	-	0s	11ms/step - loss	: 418.2319	- val_loss	: 432.6833
Epoch	4/20						
11/11	[]	-	0s	11ms/step - loss	: 359.0570	- val_loss	: 377.7811
Epoch							
11/11	[]	-	0s	7ms/step - loss:	309.7421 -	val_loss:	332.4446
Epoch							
11/11	[]	-	0s	7ms/step - loss:	270.8658 -	val_loss:	296.9759
Epoch							
	[======]	-	0s	6ms/step - loss:	240.5217 -	val_loss:	270.1676
Epoch							
	[]	-	0s	12ms/step - loss	: 218.4201	- val_loss	: 249.3737
Epoch				steen w. v			
	[]	-	0s	7ms/step - loss:	200.8222 -	val_loss:	233.2946
	10/20						
		-	0s	10ms/step - loss	: 187.6137	- val_loss	: 219.1513
	11/20		_	-		Track (Vicense)	
	[=======]	-	Us	/ms/step - loss:	175.6799 -	val_loss:	208.9160
	12/20		_				222 2525
	[]	-	US	5ms/step - loss:	167.5694 -	val_loss:	200.2585
	13/20		0 -	70-7-1-0	100 0000		100 0007
	[]	= 1	US	/ms/step - loss:	160.8632 -	val_loss:	193.0237
	[]	_	00	Emploton - Loop!	154 0114 -	ual laga:	106 0270
	15/20	_	05	O#2/2(6b - 1022)	154.9114 -	Va1_1055.	100.3373
	[]	_	Πe	Ome/sten = loss:	140 6200 -	ual loce:	191 1366
	16/20		03	Jm3/3(CP 1033)	143.0200	va1_1033.	101.1000
	[]	-	Πs	Ams/sten - Loss:	145 2706 -	val loss:	176 1777
	17/20		-	00,0.0,0		, 4, _, , 000	
	[]	-	Πs	7ms/sten - Loss:	141 4094 -	val loss:	172 2429
Epoch			-	/ mo/ ocop 1000	14114004	VW1_1000	11212420
	[]	- 1	0s	8ms/step - loss:	138.0926 -	val_loss:	168,4736
Epoch	19/20						
	[=======]	- 1	0s	7ms/step - loss:	135.0007 -	val_loss:	164.8660
	20/20						
11/11	[]	-	0s	13ms/step - loss	: 131.7069	- val_loss	: 161.3870
						101.5	

딥러닝 코드 - 학습곡선

✓ 바람직한 곡선의 모습

- Epoch가 증가하면서 Loss가 큰 폭으로 축소
- 점차 Loss 감소 폭이 줄어들면서 완만해짐.

- Loss가 줄어들기는 하나, 들쑥날쑥
- → Learning_rate을 줄여 봅시다.

- Val_loss가 줄어들다가 다시 상승(과적합)
- → Epochs와 learning_rate을 조절해 봅시다.

딥러닝 구조 - Hidden Layer

✓ layer 여러 개 : 리스트[]로 입력

√ hidden layer

- input_shape 는 첫번째 layer만 필요
- activation
 - 히든 레이어는 활성함수를 필요로 합니다.
 - 활성함수는 보통 'relu'를 사용

✓ output layer

■ 예측 결과가 1개

```
Python Code
# 메모리 정리
clear session()
# Sequential 타입 모델 선언
model3 = Sequential([Dense(2, input shape = (nfeatures,)]
                               , activation = 'relu')
                       , Dense(1))
# 모델요약
model3.summary()
Model: "sequential"
 Layer (type)
                         Output Shape
 dense (Dense)
                         (None, 2)
dense 1 (Dense)
                         (None, 1)
Total params: 29
Trainable params: 29
Non-trainable params: 0
```


활성화 함수 Activation Function

✓ 그래서 활성화 함수는...

- Hidden Layer에서는 : 선형함수를 비선형 함수로 변환
- Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할
 - 주로 분류Classification 모델에서 필요

국룰

요약 : 회귀 모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer	Output Layer		Compile	
一下正	Activation	Activation	Node수	optimizer	loss
Regression	relu	X	1	adam	mse

KT AIVLE School

2일차 정리

Hidden Layer에서 무슨 일이 일어나는가?

✓ 처음으로 돌아와서...Hidden Layer에서는 어떤 일이 일어났나요?

- 기존 데이터를 받아들여,
- (우리는 정확히 알기 어렵지만) 뭔가 **새로운 특징(New Feature)**을 만들어 냈습니다.
- 그 특징은 분명히 예측된 값과 실제 값 사이의 오차를 **최소화** 해주는
- 유익한 특징일 것입니다. (여기서-우리는-믿음이-필요합니다.^^)
- Hidden Layer에서는 기존 데이터가 **새롭게 표현(Representation)** 되였습니다. Feature Engineering이 진행된 것입니다!

Feature Representation

✓ Deep Learning → Representation Learning

딥러닝 구조 - 이진분류

- ✓ Node의 결과를 변환해주는 함수가 필요
 - 그것을 **활성 함수**Activation Function 라고 합니다.

$$p_{+}(\mathbf{x}) = \frac{1}{1 + e^{-f(\mathbf{x})}}$$

딥러닝 구조 – 활성 함수Activation Function

✓ node의 결과를 변환시켜 주는 역할

Layer	Activation Function		기능		
Hidden Layer	ReLU		좀 더 깊이 있는 학습(Deep Learning)을 시키려고. (Hidden Layer를 여러 층 쌓으려고) (선형 모델을 비선형 모델로 바꾸려고)		
	회귀	X	X		
Output Layer	이진분류	sigmoid	결과를 0, 1로 변환하기 위해		
	다중분류	softmax	각 범주에 대한 결과를 범주별 확률 값으로 변환		

딥러닝 구조 - Output Layer

√ Softmax

■ 각 Class 별(Output Node)로 예측한 값을, 하나의 확률 값으로 변환.

요약: 회귀 vs 이진분류 vs 다중분류

		Regression	Two-Class	Multi-Class		
전	Х		· 가변수화, 스케일링			
처 리	У			정수 인코딩 원핫 인코딩		
	은닉층	activation = 'relu'				
모델링	출력층	activation : 없음 Node 수 : 1	activation = 'sigmoid' node 수 : 1	activation = 'softmax' node 수 : y의 class 수		
	컴파일 (loss)	mse	binary_crossentropy	sparse_categorical_crossentropy categorical_crossentropy		
검 증	예측결과 처리		np.where(pred>.5, 1, 0)	np.argmax(pred, axis = 1)		

[참조]가중치 업데이트

- ✓ Gradient : 기울기(벡터)
- ✓ Gradient Decent(경사 하강법, optimizer의 기본)
 - w의 초기값 지정 : w₀
 - 초기값에서의 기울기(방향) 확인 : $\frac{df(w)}{dw}$, $w = w_0$
 - 기울기가 이면 *x* 는 오른쪽(+방향)
 - 기울기가 + 이면 *x* 는 왼쪽(- 방향)
 - 조금 조정 : $\eta \times \frac{df(w)}{dw}$
 - η: eta, 조정하는 비율, Learning Rate

$$\mathbf{w}_{new} = \mathbf{w}_0 - \eta \times \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$$

[참조] Vanishing Gradient(기울기 소실)

✓ 기울기 소실

- 네트워크의 깊은 부분으로 갈수록 기울기가 점점 작아져서, 가중치가 거의 또는 전혀 업데이트되지 않 게 되는 현상
- 초기 activation = 'sigmoid' 를 사용 → 특히 기울기 소실 문제가 심각

[참조] Vanishing Gradient(기울기 소실)

✓ 기울기 소실 문제를 최소화 하기 위한 노력

- 활성화 함수 조정
 - ReLU(Rectified Linear Unit)
 - 음수 입력 0 출력, 양수 입력 그대로 출력 → 양의 기울기 유지하여 기울기 소실 문제를 완화
 - ReLU의 변형된 활성화 함수
 - Leaky ReLU, PReLU, ELU → 음수 입력에 대해서도 매우 작은 기울기를 허용
- 그 외 방법들
 - 가중치 초기화 기법
 - 배치 정규화(Batch Normalization)
 - Residual Connections
 - Gradient Clipping

[참조]Local Minima problem

[참조]Local Minima problem -> Optimizer

[참조] 모델의 성능 최적화

✓ 모델링의 목표

- **완벽한**적절한 예측력을 얻기 위해
- 적절한 복잡도의 모델을 생성

✓모델의 복잡도

- 학습데이터 안에 포함된 패턴을 모델에 반영한 정도
- 대체로 하이퍼 파라미터 조정에 따라 복잡도가 달라짐

✓하이퍼 파라미터(hyper-parameter)

■ 우리가 조정해 줘야 할 대상

KNN	DT	XGB	DL
n_neighbors metric	max_depth min_samples_leaf	n_estimators max_depth learning_rate	Hidden Layer 수, node 수 learning_rate, epochs

[참조] 모델의 성능 최적화

✓ 하이퍼 파라미터 튜닝

- 튜닝 기본 방법 : 다양한 값들도 시도
 - Random Search : 지정한 범위 내에서 무작위로 시도
 - Grid Search: 지정한 범위 내에서, 모든 경우의 수 만큼 시도
- 최적의 모델 선정 → 검증 성능으로 평가
- 검증 성능을 기반으로 최적의 모델을 선정하면, 과적합을 피할 수 있음.