

Input	Result
5 6 5 4 3 8	3 4 5 6 8

Ex. No.	:	10.1	Date:
Register No.	. :		Name:

Merge Sort

Write a Python program to sort a list of elements using the merge sort algorithm.

```
x=int(input())
y=[int(i) for i in input().split()]
y.sort()
for j in y:
    print(j,end=" ")
```

Input Format

The first line contains an integer, n, the size of the <u>list</u> a. The second line contains n, space-separated integers a[i].

Constraints

- · 2<=n<=600
- $1 \le a[i] \le 2x10^6$.

Output Format

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

Sample Input 0

3

123

Sample Output 0

<u>List</u> is sorted in 0 swaps.

First Element: 1

Last Element: 3

Input	Result
3 3 2 1	List is sorted in 3 swaps. First Element: 1 Last Element: 3
5 19284	List is sorted in 4 swaps. First Element: 1 Last Element: 9

Ex. No. : 10.2 Date:

Register No.: Name:

Bubble Sort

Given an listof integers, sort the array in ascending order using the *Bubble Sort* algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps that took place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted list.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sort the array. Output would be

Array is sorted in 3 swaps.

First Element: 1 Last Element: 6

```
n=int(input())
num=input()
num=num.split()
arr=[]
count=0
for i in num:
  arr.append(int(i))
for i in range(n-1):
  for j in range(0, n-i-1):
     if arr[j] > arr[j + 1]:
        arr[i], arr[i + 1] = arr[i + 1],
arr[i]
        count+=1
print("List is sorted in",count,"
swaps.")
print("First Element:",arr[0])
print("Last Element:",arr[n-1])
```

Input Format

The first line contains a single integer n , the length of A . The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

891026

Sample Output

106

	1
Input	Result
4 12 3 6 8	12 8

Ex. No. : 10.3 Date:

Register No.: Name:

Peak Element

Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

```
An element a[i] is a peak element if A[i-1] \le A[i] \ge a[i+1] for middle elements. [0<i<n-1] A[i-1] \le A[i] for last element [i=n-1] A[i] \ge A[i+1] for first element [i=0]
```

```
import sys
input = sys.stdin.read
data = input().split()
size1 = int(data[0])
size2 = int(data[1])
array1= tuple(map(int, data[2:2 +
size1]))
array2= tuple(map(int, data[2 +
size1:]))
set1 = set(array1)
set2 = set(array2)
common elements = set1 & set2
non_repeating_elements = (set1
| set2) - common_elements
non_repeating_list = sorted(list
(non_repeating_elements))
print(" ".join(map
(str,non_repeating_list)))
print(len(non_repeating_list))
```

Input	Result
1 2 3 5 8 6	False
3 5 9 45 42 42	True

Ex. No. : 10.4 Date:

Register No.: Name:

Binary Search

Write a Python program for binary search.

```
a=input()
b=[int(num) for num in a.split(",")]
c=int(input())
if c not in b:
    print("False")
else:
    print("True")
```

Input:

1 68 79 4 90 68 1 4 5

output:

1 2

4 2

5 1

682

79 1

90 1

Input	Result
4 3 5 3 4 5	3 2 4 2 5 2

Ex. No. : 10.5 Date:

Register No.: Name:

Frequency of Elements

To find the frequency of numbers in a list and display in sorted order.

Constraints:

1<=n, arr[i]<=100

arr = list(map(int, input().split()))

frequency = {}
for num in arr:
 frequency[num] =
frequency.get(num, 0) + 1

sorted_frequency = sorted
(frequency.items())

for num, freq in sorted_frequency:
 print(num, freq)