4강 중회귀모형 (1)

정보통계학과 김성수교수

✓ 학습목차

2.1 중회귀모형

2.2 중회귀모형의 추정

3 2.3 회귀방정식의 신뢰성

중회귀모형

중회귀모형의 기본개념

√ 중회귀모형

종속변수의 변화를 설명하기 위하여 두 개 이상의 독립변수가 사용되는 선형회귀모형을 중선형회귀(multiple linear regression model)라 부르며, 간단히 중회귀모형(multiple regression model)이라고도 함.

• 독립변수의 수가 k개인 중회귀모형

$$egin{aligned} Y_i &= eta_0 + eta_1 X_{i1} + eta_2 X_{i2} + \cdots + eta_k X_{ik} + eta_i \ eta_0, eta_1, \cdots, eta_k \ :$$
 회귀계수 $eta_i &\sim N(0, \sigma^2)$ 이고 서로 독립 $i=1,2,\cdots,n$

여기서 $\beta_0, \beta_1, \dots, \beta_k$ 는 모집단의 회귀계수이고, ε_i 는 반응변수 Y_i 를 측정할 때 발생하는 오차.

행렬을 이용한 중회귀모형

✓ 중회귀모형에서 독립변수가 2개인 경우

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i + \varepsilon_i$$
 $i = 1, 2, \dots, n$

n개의 오차 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 은 서로 독립이고, 각각 $N(0, \sigma^2)$ 의 분포를 따른다고 가정.

√ 벡터 표현

$$\begin{split} Y_i &= \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i \\ &= (1, X_{i1}, X_{i2} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \varepsilon_i \end{split}$$

행렬을 이용한 중회귀모형

√ 중회귀모형의 행렬 표현

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} , \quad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \mathbf{I}\boldsymbol{\sigma}^{2})$$

$$\mathbf{Y} = \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & X_{11} & X_{12} \\ 1 & X_{21} & X_{22} \\ \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{pmatrix}, \quad \boldsymbol{\kappa} = \begin{pmatrix} \boldsymbol{\varepsilon}_{1} \\ \boldsymbol{\varepsilon}_{2} \\ \vdots \\ \boldsymbol{\varepsilon}_{n} \end{pmatrix}$$

여기에서

$$E(\varepsilon)=0$$

$$Var(\varepsilon) = E[(\varepsilon - E(\varepsilon))(\varepsilon - E(\varepsilon))']$$

$$= E[\varepsilon \varepsilon']$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix} = I\sigma^2$$

행렬을 이용한 중회귀모형

<표본상점의 총판매액 자료>

MAN -	광고료	상점의 크기	총판매액	
상점번호	(단위;100만원)	(단위: 10 _m ²)	(단위:1000만원)	
1	4.2	4.5	9.3	
2	8.5	12.0	18.5	
3	9.3	15.0	22.8	
4	7.5	8.5	17.7	
5	6.3	7.4	14.6	
6	12.2	18.5	27.9	
7	6.5	5.5	12.5	
8	10.4	16.5	25.2	
9	5.8	3.7	10.8	
10	9.2	13.5	20.5	
11	7.2	5.2	14.9	
12	8.5	15.0	19.2	
13	10.6	14.4	22.5	
14	13.9	13.3	28.4	
15	12.7	12.5	25.6	

회귀모형 Y=Xeta+arepsilon여기서,

2 중회귀모형의 추정

회귀계수의 추정

√ 최소제곱법

• 중회귀모형에서 β 의 최소제곱추정량 $\hat{\beta}$ 는 단순회귀와 마찬가지로 다음과 같은 오차제곱함을 최소로 하는 β 를 구하면 됨.

$$S = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_{i1} - \beta_2 X_{i2} - \dots - \beta_k X_{ik})^2$$

$$S = \sum_{i=1}^{n} \epsilon_i^2 = \epsilon' \epsilon = (Y - X\beta)' (Y - X\beta)$$

$$= YY - YX\beta - \beta'X'Y + \beta'X'X\beta$$

$$\Rightarrow$$
 β 에 관해 미분 $\frac{\partial S}{\partial \beta} = -2X'Y + 2X'X\beta = 0$

- $XX\hat{\beta}=X'Y$
- $\hat{\beta} = (X'X)^{-1}X'Y$

회귀계수의 추정

✓ 참고: 행렬의 미분법

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
라 할 때, $c'x = c_1x_1 + c_2x_2 + \dots + c_nx_n$

$$1) \quad \frac{\partial(c'x)}{\partial x} = \begin{bmatrix} \frac{\partial(c'x)}{\partial x_1} \\ \frac{\partial(c'x)}{\partial x_2} \\ \vdots \\ \frac{\partial(c'x)}{\partial x_n} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = c , \text{ 마찬가지로 } \frac{\partial(c'x)}{\partial c} = x$$

2)
$$n \times n$$
 행렬 A : 대칭행렬인 경우 $\frac{\partial (x'Ax)}{\partial x} = 2Ax$

R 활용 : 행렬 연산

```
> market2 = read.table("c:/data/reg/market-2.txt", header=T)
> head(market2,3)
 ID X1 X2
1 1 4.2 4.5 9.3
2 2 8.5 12.0 18.5
3 3 9.3 15.0 22.8
> X = market2[,c(2:3)]
> X = cbind(1, X)
> Y = market2[,4]
> X = as.matrix(X)
> Y = as.matrix(Y)
> XTX = t(X) \%*\% X
> XTX
             X1
                     X2
        132.80
    15.0
                165.50
X1 132.8 1280.80 1610.68
X2 165.5 1610.68 2149.49
XTXI = solve(XTX)
```

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \begin{pmatrix} 0.850 \\ 1.558 \\ 0.427 \end{pmatrix}$$

적합된 선형회귀식 :

$$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1 + \hat{\beta_2} X_2$$

$$= 0.850 + 1.558 X_1 + 0.427 X_2$$

R 활용: 행렬 연산

• 참고 : 적합된 선형회귀식을 이용하면 X_1 과 X_2 에 대하여 총 판매액의 기대값 E(Y)를 측정할 수 있음.

예) 광고료가 1000만원 $(X_1=10)$ 이고 상점의 크기가 $100m^2(X_2=10)$ 인 상점의 평균 총판매액의 추정값은

$$\hat{Y}$$
= 0.850 + 1.558 × 10 + 0.427 × 10 = 20.7

으로 약 207백만원이 되리라고 추정.

잔차의 성질

✓ 잔차

추정된 회귀식의 값 \hat{Y}_i 과 관찰값 Y_i 의 차이를 잔차, $e_i = Y_i - \hat{Y}_i$ 라 함. 추정값과 잔차벡터의 행렬표현 :

$$\hat{Y} = X\hat{\beta}$$

$$= X(X'X)^{-1}X'Y$$

$$= HY$$

$$e = Y - \hat{Y} = Y - X\hat{\beta}$$

$$= Y - X(X'X)^{-1}X'Y$$

$$= (I - X(X'X)^{-1}X')Y$$

$$= (I - H)Y$$

여기서, $H=X(X'X)^{-1}X'$ 을 나타내며, 이를 햇행렬(hat matrix)이라 함.

잔차의 성질

햇행렬은 다음을 만족하는 멱등행렬(idempotent matrix)임

$$H^2 = HH = H$$
$$H' = H$$

- ▶ 잔차의 성질
 - (1) 잔차의 합은 0 . $\sum e_i = 0$
 - (2) 잔차의 독립변수에 대한 가중합은 0 . 즉 $\sum_{i=1}^{n} X_{ij} e_i = 0, \quad (j=1,2,\cdots,k)$
 - (3) 잔차의 추정값에 대한 가중합도 $\mathbf{0}$. 즉, $\sum \widehat{Y}_i e_i = 0$
 - (4) 중회귀모형 $Y=X\beta+\varepsilon$ 에서 오차항 ε 는 $N(0,I\sigma^2)$ 의 분포를 하며, ε , 간에는 서로 상관관계가 없이 서로 독립적이나, 잔차 \mathbf{e} , 간에는 상관관계가 일반적으로 존재함.

잔차의 성질

$$e' = (e_1, e_2, \dots, e_n)$$
 의 기댓값 벡터와 분산-공분산행렬

$$E(e) = E[(I - H) Y] = (I - H)E(Y)$$

$$= [I - X(X'X)^{-1}X'](X\beta) = 0$$

$$E(Y) = X\beta$$

$$Var(e) = (I - H) Var(Y)(I - H)'$$

$$= (I - H)(I\sigma^{2})(I - H)'$$

$$= (I - H)(I - H)'\sigma^{2} = (I - H)\sigma^{2}$$

$$= [I - X(X'X)^{-1}X']\sigma^{2}$$

 $\Rightarrow Var(e)$ 는 대각선행렬이 1 이 아니며, e_i 와 e_j 간에 공분산이 존재.

3 회귀방정식의 신뢰성

회귀방정식의 신뢰성

✓ 추정된 회귀방정식의 신뢰성 측도

- (1) 분산분석표에 의한 F-검정
- (2) 결정계수(Coefficient of determination)
- (3) 잔차평균제곱(residual mean squares)
- (4) 추정된 회귀계수들의 분산
- (5) 종속변수의 추정량 의 분산

✓ 총제곱합 SST

$$SST = \sum (Y_i - \overline{Y})^2 = \sum Y_i^2 - n(\overline{Y})^2$$
$$= \mathbf{Y} \mathbf{Y} - n(\overline{Y})^2$$

,
$$n(\overline{Y})^2 = \frac{1}{n} (\sum Y_i)^2 = Y'11' Y/n = Y'(\frac{J}{n}) Y$$

, $oldsymbol{J}$ 행렬은 모든 요소가 1인 n imes n 행렬

$$\Rightarrow SST = \mathbf{Y}\mathbf{Y} - n(\overline{\mathbf{Y}})^{2}$$
$$= \mathbf{Y}(\mathbf{I} - \frac{\mathbf{J}}{n})\mathbf{Y}$$

✓ 잔차제곱합 SSE

잔차벡터
$$e=(I-H)Y$$

$$\begin{aligned} SSE &= \sum (Y_i - \widehat{Y}_i)^2 = \sum e_i^2 = e'e \\ &= [(I - H)Y]'[(I - H)Y] \\ &= Y'(I - H)'(I - H)Y \\ &= Y'(I - H)Y \end{aligned}$$

✓ 회귀제곱합 SSR

$$\begin{split} SSR &= \sum (\widehat{Y}_i - \overline{Y})^2 \\ &= \sum \widehat{Y}_i^2 - n(\overline{Y})^2 \\ &= \widehat{Y} \widehat{Y} - n(\overline{Y})^2 \end{split}$$

여기서
$$\hat{Y}=X\hat{\beta}=HY$$
 이므로

$$SSR = \hat{\boldsymbol{\beta}} \boldsymbol{X} \boldsymbol{Y} - n(\overline{\boldsymbol{Y}})^{2}$$

$$= \boldsymbol{Y}' \boldsymbol{H} \boldsymbol{Y} - \boldsymbol{Y}' (\frac{\boldsymbol{J}}{n}) \boldsymbol{Y}$$

$$= \boldsymbol{Y}' (\boldsymbol{H} - \frac{\boldsymbol{J}}{n}) \boldsymbol{Y}$$

√ 변동의 분해

√ 분산분석표

〈중회귀의 분산분석표〉

요인	자유도	제곱합	평균제곱	F_0
회귀	k	SSR	$MSR = \frac{SSR}{k}$	$\frac{MSR}{MSE}$
잔차	n-k-1	SSE	$MSE = \frac{SSE}{n - k - 1}$	
계	n-1	SST		

$$F_0 = rac{M\!S\!R}{M\!S\!E}$$
 : 회귀방정식이 유의한가를 검정하기 위한 검정통계량

귀무가설
$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

대립가설
$$H_1$$
: 최소한 하나의 $\beta_i \neq 0$, $i=1,2,\dots,k$

: 유의수준
$$\alpha$$
에서 만약 F_0 의 값이 $F_0 > F(k,n-k-1;\alpha)$ 이면 귀무가 설을 기각하며, 회귀방정식이 유의(significant)하다는 것을 의미.

: R 분석 결과에서는 검정통계량
$$F_0$$
 의 유의확률 p-값을 이용하여 검정하면 됨.

R 활용 예

```
> market2 = read.table("c:/data/reg/market-2.txt", header=T)
> head(market2, 2)
 ID X1 X2
 1 4.2 4.5 9.3
2 2 8.5 12.0 18.5
> market2.lm = lm(Y ~ X1+X2, data=market2)
> summary(market2.lm)
Coefficients:
       Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.85041 0.84624 1.005 0.334770
         1.55811 0.14793 10.532 2.04e-07 ***
X1
X2
        Residual standard error: 0.9318 on 12 degrees of freedom
```

Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765

F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11

적합된 회귀식 : Y=0.85041+1.55811X1+0.4273X2 결정계수 : 0.9799 F-값=292.5 이고, 유의확률 p-값= 6.597×10^{-11} 로서 적합된 중회귀모형이 이 데이터를 설명하는데 유의함. (이는 귀무가설 $H_0: \beta_1=\beta_2=0$ 이 기각되므로

 β_1 과 β_2 가 동시에 영이 되지는 않을 것이라는 의미임)

R 활용 예 : 분산분석표

> anova(market2.lm)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 485.57 485.57 559.283 1.955e-11 ***

Residuals 12 10.42 0.87

중회귀모형의 분산분석 결과 해석

$$SS(X_1) = 485.57$$

$$SS(X2|X1) = 22.30$$

, 여기서 SS(X2|X1)는 변수 X1이 적합된 후, 변수 X2가 추가되었을 때의 <u>추가제곱합을</u> 의미.

회귀제곱합
$$SS(X1, X2) = SS(X1) + SS(X2|X1)$$

〈분산분석표〉	>
---------	---

요인	자유도	제곱합	평균제곱	F_0	Pr(>F)
회귀	2	507.87	253,94	292	6.597e-11
잔차	12	10.42	0.87		
계	14	518,29			

결정계수

✓ 결정계수(Coefficient of determination)

• 회귀모형에 의하여 설명되는 변동 SSR이 총변동 SST에 비하여 어느 정도인가를 나타내 주는 값

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

• 의미 : \mathbb{R}^2 의 값이 1에 가까운 값을 가지면 추정된 회귀식이 관찰점들을 잘 설명해주고 있으며, \mathbb{R}^2 의 값이 0에 가까운 작은 값을 갖게 되면 그와 같은 <u>회귀식을</u> 추정하게 되는 의의는 거의 없음.

결정계수

✓ 중상관계수(multiple correlation coefficient)

- 단순회귀모형에서 결정계수 : 두 변수의 상관계수의 제곱과 같음.
- 중회귀모형의 결정계수 : 반응변수 Y와 추정값 Y의 상관계수의 제곱과 같음.
- 따라서 결정계수의 제곱근

$$R = \sqrt{R^2}$$

을 중상관계수(multiple correlation coefficient)라고 함.

R 활용: 중상관계수

- > market2.lm = lm(Y ~ X1+X2, data=market2)
- > summary(market2.lm)

Residual standard error: 0.9318 on 12 degrees of freedom Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765

F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11

```
> names(market2.lm)
```

- [1] "coefficients" "residuals" "effects" "rank"
- [5] "fitted.values" "assign" "qr" "df.residual"
- [9] "xlevels" "call" "terms" "model"
- > yhat = market2.lm\$fitted
- > cor(market2\$Y, yhat)
- [1] 0.9898983
- > cor(market2\$Y, yhat)^2
- [1] 0.9798986

R 활용: 중상관계수

✓ 수정결정계수(adjusted R-squared)

- 독립변수가 추가하게 되면 결정계수는 항상 증가함. 왜냐하면 총제곱합 SST는 고정된 값이고, <u>잔차제곱합</u> SSE는 독립변수가 추가 될수록 작아지게 되므로 결정계수는 증가하는 성질을 가지고 있음.
- 따라서 독립변수들을 추가하다 보면 과다한 적합을 할 수 있게 되므로 변수선택과 같은 모형개발이라는 입장에서 볼 때 두 모형을 비교하기 위한 결정계수로서 수정결정계수가 자주 이용됨.

$$R_a^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} = 1 - \frac{(n-1)}{(n-k-1)}(1-R^2)$$

수정결정계수는 설명력이 떨어지는 독립변수가 추가될 때는 감소
 하는 성질을 가지고 있으므로 모형선택의 관점에서 유용하게 이용됨.

R 결과

- > market2.lm = lm(Y ~ X1+X2, data=market2)
- > summary(market2.lm)

Residual standard error: 0.9318 on 12 degrees of freedom Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765

F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11

결정계수: 0.9799

수정결정계수: 0.9765

R 결과

✓ 잔차평균제곱(residual mean squares)

잔차평균제곱 MSE

$$MSE = \frac{SSE}{n-k-1} = \frac{\sum (Y_i - \hat{Y}_i)^2}{n-k-1}$$

- MSE의 기대값 $E(MSE) = \sigma^2$ 으로 MSE는 σ^2 의 불편추정량이 됨.
- MSE의 값이 작으면 작을수록 관찰값 Y_i 들이 추정값 \hat{Y}_i 과 차이 가 거의 없다는 것을 의미하며, 추정된 회귀방정식을 믿을 수 있게됨.

R 결과

- > market2.lm = lm(Y ~ X1+X2, data=market2)
- > summary(market2.lm)

Residual standard error: 0.9318 on 12 degrees of freedom

Multiple R-squared: 0.9799, Adjusted R-squared: 0.9765

F-statistic: 292.5 on 2 and 12 DF, p-value: 6.597e-11

```
잔차평균제곱근 \sqrt{MSE} 0.9318
```

```
> anova(market2.lm)
```

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 485.57 485.57 559.283 1.955e-11 ***

X2 1 22.30 22.30 25.691 0.0002758 ***

Residuals 12 10.42 0.87

> sqrt(10.42/12)

[1] 0.931844

● 다음시간 안내

5강. 중회귀모형 (2)